日本国特許庁 JAPAN PATENT OFFICE

25.11.03

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月19日

出 願 番 号 Application Number:

特願2003-329115

[ST. 10/C]:

[JP2003-329115]

RECEIVED 15 JAN 2004

WIPO PCT

出 願 人
Applicant(s):

東レ株式会社

財団法人 東京都医学研究機構

ヨハネス グーテンベルク ウニベルスィテート マインツ

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年12月26日

【書類名】 特許願 【整理番号】 P03-0852 【提出日】 平成15年 9月19日 【あて先】 特許庁長官 殿 【国際特許分類】 C12N 15/00 【発明者】 【住所又は居所】 東京都板橋区成増3-37-1-302 【氏名】 脇田 隆字 【発明者】 【住所又は居所】 愛知県名古屋市瑞穂区松月町1-41-206 【氏名】 加藤 孝宣 【発明者】 【住所又は居所】 神奈川県川崎市中原区新城3-13-5-303 【氏名】 伊達 朋子 【特許出願人】 【識別番号】 000003159 【氏名又は名称】 東レ株式会社 【特許出願人】 【識別番号】 591063394 【氏名又は名称】 財団法人 東京都医学研究機構 【特許出願人】 【識別番号】 503189262 ヨハネス グーテンベルク ウニベルスィテート マインツ 【氏名又は名称】 【代理人】 【識別番号】 100091096 【弁理士】 【氏名又は名称】 平木 祐輔 【選任した代理人】 【識別番号】 100096183 【弁理士】 【氏名又は名称】 石井 貞次 【選任した代理人】 【識別番号】 100118773 【弁理士】 【氏名又は名称】 藤田筋 【選任した代理人】 【識別番号】 100119183 【弁理士】 【氏名又は名称】 松任谷 優子 【先の出願に基づく優先権主張】 【出願番号】 特願2003-148242 【出願日】 平成15年 5月26日 【手数料の表示】 【予納台帳番号】 015244 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 【物件名】 明細書 1 【物件名】 図面 1

【物件名】

要約書 1

【書類名】特許請求の範囲

【請求項1】

遺伝子型2aのC型肝炎ウイルスのゲノムRNA上の、5'非翻訳領域と、NS3タンパク質、NS4Aタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする塩基配列と、3'非翻訳領域とを少なくとも含む塩基配列からなる、レプリコンRNA。

【請求項2】

少なくとも1つの選択マーカー遺伝子又はリポーター遺伝子、及び少なくとも1つのIR ES配列を含む、請求項1記載のレプリコンRNA。

【請求項3】

配列番号9又は10で示される塩基配列からなる5'非翻訳領域と、少なくとも1つの選択マーカー遺伝子若しくはリポーター遺伝子と、IRES配列と、遺伝子型2aのC型肝炎ウイルスのゲノムRNA上のNS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする塩基配列と、配列番号11又は12で示される塩基配列からなる3'非翻訳領域とを含む塩基配列からなる、レプリコンRNA。

【請求項4】

遺伝子型2aのC型肝炎ウイルスのゲノムRNAが、配列番号3又は5で示される塩基配列からなるRNAである、請求項 $1\sim3$ のいずれか1項記載のレプリコンRNA。

【請求項5】

以下の(a)又は(b)のRNAからなるレプリコンRNA。

- (a) 配列番号1又は2で示される塩基配列からなるRNA
- (b) 配列番号 1 又は 2 で示される塩基配列において $1\sim1$ 0 個の塩基が欠失、置換又は付加された塩基配列からなり、かつ、自律複製能を有する RNA

【請求項6】

請求項 $1\sim5$ のいずれか1項記載のレプリコンRNAを細胞に導入することにより作製された、レプリコン複製細胞。

【請求項7】

細胞が真核細胞である、請求項6記載のレプリコン複製細胞。

【請求項8】

真核細胞がヒト肝由来細胞、ヒト子宮頸由来細胞、又はヒト胎児腎由来細胞である、請求項7記載のレプリコン複製細胞。

【請求項9】

真核細胞が、Huh7細胞、HepG2細胞、IMY-N9細胞、HeLa細胞、及び293細胞からなる群より選ばれるいずれかの細胞である、請求項7記載のレプリコン複製細胞。

【請求項10】

C型肝炎ウイルス感染の治療剤若しくは診断剤の製造、又は評価のための、請求項1~5のいずれか1項記載のレプリコンRNA。

【請求項11】

C型肝炎ウイルス感染の治療剤若しくは診断剤の製造、又は評価のための、請求項6~9のいずれか1項記載のレプリコン複製細胞。

【請求項12】

C型肝炎ウイルス感染に対するワクチンの製造のための、請求項 $1\sim5$ のいずれか1項記載のレプリコンRNA。

【請求項13】

C型肝炎ウイルス感染に対するワクチンの製造のための、請求項6~9のいずれか1項記載のレプリコン複製細胞。

【請求項14】

請求項 $6\sim9$ のいずれか1項記載のレプリコン複製細胞からレプリコンRNAを抽出することを含む、遺伝子型2aのC型肝炎ウイルスのレプリコンRNAの製造方法。

【謂豕垻15】

請求項6~9のいずれか1項記載のレプリコン複製細胞を培養し、得られる培養物から

出証特2003-3107783

ウイルスタンパク質を取得することを含む、遺伝子型2aのC型肝炎ウイルスのウイルスタンパク質の製造方法。

【請求項16】

被験物質の存在下で、請求項6~9のいずれか1項記載のレプリコン複製細胞を培養し、得られる培養物中のレプリコンRNAの複製を検出することを含む、C型肝炎ウイルスの複製を促進又は抑制する物質をスクリーニングする方法。

【請求項17】

請求項 $6 \sim 9$ のいずれか 1 項記載のレプリコン複製細胞から複製レプリコンRNAを取得し、取得した複製レプリコンRNAを該レプリコン複製細胞とは別の細胞に導入して新たなレプリコン複製細胞を作製する工程を 1 回以上行うことを含む、遺伝子型 2a の C 型肝炎ウイルスのレプリコンRNAの複製効率を増大させる方法。

【請求項18】

複製効率の増大が、レプリコン複製細胞に最初に導入されたレプリコンRNAの複製効率と比較して、少なくとも2倍の増大である、請求項17記載の方法。

【請求項19】

請求項6~9のいずれか1項記載のレプリコン複製細胞から複製レプリコンRNAを取得し、取得した複製レプリコンRNAを該レプリコン複製細胞とは別の細胞に導入して新たなレプリコン複製細胞を作製する工程を1回以上行うこと、及び最終的に得られたレプリコン複製細胞から複製レプリコンRNAを取得することを含む、複製効率が増大した遺伝子型2aのC型肝炎ウイルスのレプリコンRNAを製造する方法。

【請求項20】

請求項19に記載の方法によって製造された複製効率が増大したレプリコンRNAについて、レプリコン複製細胞に最初に導入されたレプリコンRNAとの間の塩基変異又はアミノ酸変異を検出すること、及び複製効率を増大させようとするレプリコンRNAにその検出された塩基変異又はアミノ酸変異を導入することを含む、複製効率が増大した遺伝子型2aのC型肝炎ウイルスのレプリコンRNAを製造する方法。

【請求項21】

配列番号 1 で示される塩基配列上において、以下の $(a)\sim(u)$:

- (a) 塩基番号7157の部位におけるAからGへの変異、
- (b) 塩基番号4955の部位におけるCからUへの変異、
- (c) 塩基番号4936の部位におけるAからGへの変異、
- (d) 塩基番号 5 0 0 0 の部位におけるAからGへの変異、
- (e) 塩基番号 7 2 8 8 の部位におけるAからGへの変異、
- (f) 塩基番号5901の部位におけるGからUへの変異、
- (g) 塩基番号6113の部位におけるAからUへの変異、
- (h) 塩基番号2890の部位におけるAからGへの変異、
- (i) 塩基番号6826の部位におけるCからAへの変異、
- (j) 塩基番号6887の部位におけるCからAへの変異、
- (k) 塩基番号6580の部位におけるUからAへの変異、
- (1) 塩基番号 7 1 5 9 の部位におけるUからCへの変異、
- (m) 塩基番号7230の部位におけるUからAへの変異、
- (n) 塩基番号 6 9 4 3 の部位におけるCからAへの変異、
- (o) 塩基番号 5 6 8 7 の部位におけるGからAへの変異、
- (p) 塩基番号6110の部位におけるAからGへの変異、
- (q) 塩基番号5550の部位におけるUからCへの変異、
- (r) 塩基番号7217の部位におけるAからGへの変異、
- (s) 塩基番号3643の部位におけるAからGへの変異、
- (t) 塩基番号5851の部位におけるGからAへの変異、及び
- (u) 塩基番号 5 9 1 4 の部位におけるGからAへの変異、

からなる群より選択される少なくとも1つの変異を有する塩基配列からなるレプリコンRN

Ao

【書類名】明細書

【発明の名称】遺伝子型2aのC型肝炎ウイルス(HCV)ゲノム由来の核酸を含む核酸構築物 、及び該核酸構築物を導入した細胞

【技術分野】

[0001]

本発明は、遺伝子型2aのC型肝炎ウイルスのレプリコンRNA、該レプリコンRNAを導入したレプリコン複製細胞、及び該レプリコンRNAの複製効率を増大させる方法に関する。

【背景技術】

[0002]

C型肝炎ウイルス (Hepatitis C virus、HCV) は、フラビウイルス科に属する、一本鎖の (+) 鎖センスRNAをゲノムとするウイルスであり、C型肝炎の原因となることが知られている。近年の研究により、C型肝炎ウイルスは遺伝子型又は血清型により多数の型に分類されることが分かってきた。現在主流であるHCV遺伝子型の分類法である、SimmondsらによるHCV 株の塩基配列を用いた系統解析法では HCV は遺伝子型1a、遺伝子型1b、遺伝子型2a、遺伝子型2b、遺伝子型3a、遺伝子型3bの 6 タイプに分類され(非特許文献 1)、さらにそれらの各タイプがいくつかのサブタイプに分類されている。現在では、HCVの複数の遺伝子型についてゲノム全長の塩基配列が決定されている(特許文献 1 及び非特許文献 $2\sim5$)。

[0003]

HCVは持続的に感染することにより慢性肝炎を引き起こす。現在、世界的規模で認められる慢性肝炎の主たる原因がHCV持続感染である。実際、持続感染者の50%程度が慢性肝炎を発症し、そのうち約20%の患者が10年~20年を経て肝硬変に移行し、さらにその一部は肝癌といった致死的な病態へと進展する。

[0004]

C型肝炎に対する現在の主な治療は、インターフェロンーα、インターフェロンーβ、及びインターフェロンーαとプリンーヌクレオシド誘導体であるリバビリンとの併用療法により行われている。しかしながら、これらの治療を行っても、全治療者の約60%に治療効果が認められるだけであり、効果が出た後に治療を中止すると半分以上の患者が再燃する。インターフェロンの治療効果は、HCVの遺伝子型と関連することが知られており、遺伝子型1bに対しては効果が低く、遺伝子型2aに対してはより効果が高いと言われている(非特許文献6)。

[0005]

工業国において罹患率が高く、最終的に深刻な結果を招き、かつ現在は原因治療法が存在しないC型肝炎に対する効果的な治療薬又は予防薬の開発は重要な目標である。そのため、HCV特異的な化学療法、ワクチン療法の発展が切望されている。抗HCV薬開発のターゲットとしては、HCVの複製抑制やHCVの細胞感染の抑制が考えられる。

[0006]

最近まで、HCVを細胞培養系で増やすこと、培養細胞に感染させることは困難であり、また、HCVに感染可能かつ実験可能な動物はチンパンジーしかなかったため、HCVの複製機構や感染機構の研究は困難であった。しかし最近になって、HCV由来の自律複製能を有するRNAとして、HCVサブゲノムRNAレプリコンが作製されたことにより(特許文献 2、非特許文献 7~10)、培養細胞を用いてHCVの複製機構を解析することが可能となった。これらのHCVサブゲノムRNAレプリコンは、遺伝子型1bのHCVゲノムRNAの5'非翻訳領域中のHCVIRESの下流に存在する構造タンパク質を、ネオマイシン耐性遺伝子及びその下流に連結したEMCVIRESによって置換したものである。このRNAレプリコンは、ヒト肝癌細胞Huh7に導入してネオマイシン存在下で培養することにより、Huh7細胞内で自律複製することが証明された。

[0007]

しかしながら、このようなHCVの細胞内RNA複製系は、未だ遺伝子型1bのHCVのゲノムRNAを用いたものしか作製されていない。異なる遺伝子型のHCVではコードされるウイルスタ

ンパク質にも違いがあることが報告されていることから、遺伝子型1bのHCV由来のサブゲ ノムRNAレプリコンの解析だけでは、HCVの複製機構を十分に解明することは難しいと考え られる。さらに、インターフェロンの治療効果がHCVの遺伝子型によって異なることから 、遺伝子型1bのHCVのサブゲノムRNAレプリコンを含むHCV複製系のみを用いて色々なタイ プのHCVに効果を及ぼす抗HCV薬を開発することは特に難しいと考えられる。

【特許文献1】特開2002-171978号公報

【特許文献2】特開2001-17187号公報

【非特許文献 1】Simmonds, P. et al, Hepatology, (1994) 10, p. 1321-1324

【非特許文献 2】Choo et al., Science, (1989) 244, p. 359-362

【非特許文献 3】 Kato et al., J. Med. Virol., (2001) 64(3) p. 334-339

【非特許文献 4】 Okamoto, H et al, J. Gen. Virol., (1992) 73 p. 673-679

【非特許文献 5】 Mori, S. et al, Biochem. Biophis. Res. Commun., (1992) 183, p. 334-342

【非特許文献 6】 Yoshioka et al., Hepatology, (1992) 16(2): p. 293-299

【非特許文献 7】 Lohmann et al., Science, (1999) 285, p. 110-113

【非特許文献 8】 Blight et al., Science, (2000) 290, p. 1972-1974

【非特許文献 9】Friebe et al., J. Virol., (2001) 75(24): p. 12047-12057

【非特許文献 1 0 】 Ikeda et al., J. Virol., (2002) 76(6): p. 2997-3006

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明は、未だレプリコンRNAが作製されていない遺伝子型のHCV由来のレプリコンRNA を提供することを目的とする。

【課題を解決するための手段】

[0010]

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、遺伝子型2aのHCVのレプ リコンRNAを作製することに成功した。

[0011]

すなわち、本発明は以下のとおりである。

- 遺伝子型2aのC型肝炎ウイルスのゲノムRNA上の、5'非翻訳領域と、NS3タンパク質 、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする塩 基配列と、3'非翻訳領域とを少なくとも含む塩基配列からなる、レプリコンRNA。このレ プリコンRNAは、少なくとも1つの選択マーカー遺伝子又はリポーター遺伝子、及び少な くとも1つのIRES配列をさらに含むことが好ましい。
- [2] 配列番号9又は10のいずれか1つで示される塩基配列からなる5'非翻訳領域と、 少なくとも1つの選択マーカー遺伝子若しくはリポーター遺伝子と、IRES配列と、遺伝子 型2aのC型肝炎ウイルスのゲノムRNA上のNS3タンパク質、NS4Aタンパク質、NS4Bタンパク 質、NS5Aタンパク質及びNS5Bタンパク質をコードする塩基配列と、配列番号11又は12 のいずれか1つで示される塩基配列からなる3'非翻訳領域とを含む塩基配列からなる、 レプリコンRNA。
- [3] 遺伝子型2aのC型肝炎ウイルスのゲノムRNAが、配列番号3又は5で示される塩基配 列からなるRNAである、上記[1]又は[2]記載のレプリコンRNA。
- [4] 以下の(a)又は(b)のRNAからなるレプリコンRNA。
- (a) 配列番号1又は2で示される塩基配列からなるRNA
- (b) 配列番号1又は2で示される塩基配列において1~10個の塩基が欠失、置換又は付 加された塩基配列からなり、かつ、自律複製能を有するRNA
- [5] 上記[1]~[4]記載のいずれかのレプリコンRNAを細胞に導入することにより作製され た、レプリコン複製細胞。このレプリコン複製細胞において、レプリコンRNAを導入する 細胞は、真核細胞であることが好ましく、ヒト肝由来細胞、ヒト子宮頸由来細胞、又はヒ

- ト胎児腎由来細胞であることがより好ましく、Huh7細胞、HepG2細胞、IMY-N9細胞、HeLa細胞、及び293細胞からなる群より選ばれるいずれかの細胞であることがさらに好ましい
- [6] C型肝炎ウイルス感染の治療剤若しくは診断剤の製造、又は評価のための、上記[1] ~[4]記載のレプリコンRNA。
- [7] C型肝炎ウイルス感染の治療剤若しくは診断剤の製造、又は評価のための、上記[5] 記載のレプリコン複製細胞。
- [8] C型肝炎ウイルス感染に対するワクチンの製造のための、上記[1]~[4]記載のレプリコンRNA。
- [9] C型肝炎ウイルス感染に対するワクチンの製造のための、上記[5]記載のレプリコン 複製細胞。
- [10] 上記[5]記載のレプリコン複製細胞からレプリコンRNAを抽出することを含む、遺伝子型2aのC型肝炎ウイルスのレプリコンRNAの製造方法。
- [11] 上記[5]記載のレプリコン複製細胞を培養し、得られる培養物からウイルスタンパク質を取得することを含む、遺伝子型2aのC型肝炎ウイルスのウイルスタンパク質の製造方法。
- [12] 被験物質の存在下で、上記[5]記載のレプリコン複製細胞を培養し、得られる培養物中のレプリコンRNAの複製を検出することを含む、C型肝炎ウイルスの複製を促進又は抑制する物質をスクリーニングする方法。
- [13] 上記[5]記載のレプリコン複製細胞から複製レプリコンRNAを取得し、取得した複製レプリコンRNAを該レプリコン複製細胞とは別の細胞に導入して新たなレプリコン複製細胞を作製する工程を1回以上行うことを含む、遺伝子型2aのC型肝炎ウイルスのレプリコンRNAの複製効率を増大させる方法。この方法においては、複製効率の増大が、レプリコン複製細胞に最初に導入されたレプリコンRNAの複製効率と比較して、少なくとも2倍の増大であることがより好ましい。
- [14] 上記[5]記載のレプリコン複製細胞から複製レプリコンRNAを取得し、取得した複製レプリコンRNAを該レプリコン複製細胞とは別の細胞に導入して新たなレプリコン複製細胞を作製する工程を1回以上行うこと、及び最終的に得られたレプリコン複製細胞から複製レプリコンRNAを取得することを含む、複製効率が増大した遺伝子型2aのC型肝炎ウイルスのレプリコンRNAを製造する方法。
- [15] 上記[14]記載の方法によって製造された複製効率が増大したレプリコンRNAについて、レプリコン複製細胞に最初に導入されたレプリコンRNAとの間の塩基変異又はアミノ酸変異を検出すること、及び複製効率を増大させようとするレプリコンRNAにその検出された塩基変異又はアミノ酸変異を導入することを含む、複製効率が増大した遺伝子型2aのC型肝炎ウイルスのレプリコンRNAを製造する方法。
- [16] 配列番号 1 で示される塩基配列上において、以下の(a)~(u):
- (a) 塩基番号 7 1 5 7 の部位におけるAからGへの変異、
- (b) 塩基番号 4 9 5 5 の部位におけるCからUへの変異、
- (c) 塩基番号 4 9 3 6 の部位におけるAからGへの変異、
- (d) 塩基番号 5 0 0 0 の部位におけるAからGへの変異、
- (e) 塩基番号 7 2 8 8 の部位におけるAからGへの変異、
- (f) 塩基番号 5 9 0 1 の部位におけるGからUへの変異、
- (g) 塩基番号 6 1 1 3 の部位におけるAからUへの変異、
- (h) 塩基番号 2 8 9 0 の部位におけるAからGへの変異、
- (i) 塩基番号 6 8 2 6 の部位におけるCからAへの変異、
- (i) 塩基番号 6 8 8 7 の部位におけるCからAへの変異、
- (k) 塩基番号 6 5 8 0 の部位におけるUからAへの変異、
- (1) 塩基番号7159の部位におけるUからCへの変異、
- (m) 塩基番号 7 2 3 0 の部位におけるUからAへの変異、
- (n) 塩基番号 6 9 4 3 の部位におけるCからAへの変異、

- (o) 塩基番号 5 6 8 7 の部位におけるGからAへの変異、
- (p) 塩基番号 6 1 1 0 の部位におけるAからGへの変異、
- (q) 塩基番号 5 5 5 0 の部位におけるUからCへの変異、
- (r) 塩基番号 7 2 1 7 の部位におけるAからGへの変異、
- (s) 塩基番号3643の部位におけるAからGへの変異、
- (t) 塩基番号5851の部位におけるGからAへの変異、及び
- (u) 塩基番号 5 9 1 4 の部位におけるGからAへの変異、

からなる群より選択される少なくとも1つの変異を有する塩基配列からなるレプリコンRN A。

【発明の効果】

[0012]

本発明により、遺伝子型2aのHCV株に由来するHCV-RNAレプリコンが初めて提供された。本発明に係るレプリコン複製細胞は、遺伝子型2aのHCV由来のRNA及びHCVタンパク質を持続的に産生させるための培養系として用いることができる。さらに本発明に係るレプリコン複製細胞は、HCVの複製及び/又はHCVタンパク質の翻訳に影響を及ぼす各種物質をスクリーニングするための試験系として有用である。

【発明を実施するための最良の形態】

[0013]

以下、本発明を詳細に説明する。

[0014]

1. 本発明に係るHCV由来のレプリコンRNA

C型肝炎ウイルス(HCV)のゲノムは、約9600ヌクレオチドからなる(+)鎖の一本鎖RNAである。このゲノムRNAは、5'非翻訳領域(5'NTR又は5'UTRとも表記する)、構造領域と非構造領域とから構成される翻訳領域、及び3'非翻訳領域(3'NTR又は3'UTRとも表記する)からなる。その構造領域にはHCVの構造タンパク質がコードされており、非構造領域には複数の非構造タンパク質がコードされている。

[0015]

このようなHCVの構造タンパク質と非構造タンパク質は、翻訳領域から一続きのポリプロテインとして翻訳された後、プロテアーゼによって限定分解を受けて構造タンパク質(Core、E1、及びE2)と非構造タンパク質(NS2、NS3、NS4A、NS4B、NS5A、及びNS5B)とが各タンパク質として遊離することにより、生成される。これらの構造タンパク質及び非構造タンパク質(すなわち、HCVのウイルスタンパク質)のうち、Coreはコアタンパク質であり、E1及びE2はエンベロープタンパク質であり、非構造タンパク質(NS2、NS3、NS4A、NS4B、NS5A、及びNS5B)はウイルス自身の複製に関与するタンパク質である。NS2はメタロプロテアーゼ活性、NS3はセリンプロテアーゼ活性(N末端側の3分の1)とヘリカーゼ活性(C末端側の3分の2)を有することが知られている。またNS4AはNS3のプロテアーゼ活性に対するコファクターであり、NS5BはRNA依存RNAポリメラーゼ活性を有することも報告されている。そして、遺伝子型2aのHCVのゲノムも同様の遺伝子構造を有することがすでに報告されている(特許文献1)。

[0016]

本発明者らは、このような遺伝子型2aのHCVゲノムを用いて、自律的に複製することが可能なRNAを構築した。すなわち本発明のHCV由来のレプリコンRNAは、遺伝子型2aのHCVゲノムの全体又は部分RNAを含む自律複製能を有するRNA構築物である。

[0017]

本明細書では、自律複製能を有しておりHCVウイルスゲノムを改変して作製されたRNAを、「レプリコンRNA」又は「RNAレプリコン」と呼び、遺伝子型2aのHCVから人為的に作製される自律複製能を有するRNAを、遺伝子型2aのHCV由来のレプリコンRNAと称する。本明細書においてHCV由来のレプリコンRNAは、HCV-RNAレプリコンとも称する。

[0018]

本発明において、「遺伝子型2aのC型肝炎ウイルス」「遺伝子型2aのHCV」とは、Simmo

5/

[0019]

さらに「遺伝子型2aのC型肝炎ウイルスのゲノムRNA」とは、遺伝子型2aのC型肝炎ウイルスの一本鎖の(+)鎖センスRNAからなるゲノムの全領域にわたる塩基配列を有するRNAを意味する。限定するものではないが、遺伝子型2aのC型肝炎ウイルスのゲノムRNAは、好ましくは配列番号3又は5で示される塩基配列からなるRNAである。

[0020]

本願明細書において、「5'非翻訳領域(5'NTR又は5'UTR)」、「NS3タンパク質、NS4A タンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列」、 「Coreタンパク質をコードする配列 (Core領域又はC領域)」、「E1タンパク質をコード する配列 (E1領域) 」、「E2タンパク質をコードする配列 (E2領域) 」、「N2タンパク質 ~ をコードする配列(NS2領域)」、「NS3タンパク質をコードする配列(NS3領域)」、「N S4Aタンパク質をコードする配列(NS4A領域)」、「NS4Bタンパク質をコードする配列(N S4B領域) | 、「NS5Aタンパク質をコードする配列(NS5A領域) | 、「NS5Bタンパク質を コードする配列(NS5B領域)」、及び「3'非翻訳領域(3'NTR又は3'UTR)」、並びにその 他の特定の領域若しくは部位は、遺伝子型2aのHCVであるJFH-1株のゲノム全領域をコード する全長cDNA(JFH-1クローン)の塩基配列(配列番号3)を基準として、定めるものと する。配列番号3の塩基配列は、国際DNAデータバンク (DDBJ/EMBL/GenBank) からアクセ ッション番号AB047639により取得可能である。具体的には、配列番号3で示される塩基配 列に対して特定のHCVのRNA配列をアラインメントしたときに、配列番号3で示される塩基 配列上の塩基番号 1 ~340にアラインメントされる配列がそのRNAの「5'非翻訳領域」、同 塩基番号3431~9442にアラインメントされる配列が「NS3タンパク質、NS4Aタンパク質、N S4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列」、同塩基番号343 1~5323にアラインメントされる配列が「NS3タンパク質をコードする配列」、塩基番号53 24~5485にアラインメントされる配列が「NS4Aタンパク質をコードする配列」、同塩基番 号5486~6268にアラインメントされる配列が「NS4Bタンパク質をコードする配列」、同塩 基番号6269~7666にアラインメントされる配列が「NS5Aタンパク質をコードする配列」、 塩基番号7667~9442にアラインメントされる配列が「NS5Bタンパク質をコードする配列」 、同塩基番号9443~9678にアラインメントされる配列が「3'非翻訳領域」である。また、 この場合「アラインメント」される配列にはギャップ、付加、欠失、置換等が存在してい てもよい。さらに上記の「特定のHCV」は、限定するものではないが、JFH-1株若しくはJC H-1株又はそれらの誘導体であるウイルス株を包含する。

[0021]

本発明に係るHCV RNA-レプリコンの一つの実施形態は、遺伝子型2aのC型肝炎ウイルスのゲノムRNA上の、5'非翻訳領域と、NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列と、3'非翻訳領域とを少なくとも含む塩基配列からなる、レプリコンRNAである。このレプリコンRNAは、少なくとも1つの選択マーカー遺伝子若しくはリポーター遺伝子、及び少なくとも1つのIRES配列をさらに含んでもよい。さらにこのレプリコンRNAは、遺伝子型2aのC型肝炎ウイルスのゲノムRNA上の、NS3、NS4A、NS4B、NS5A及びNS5Bタンパク質以外のウイルスタンパク質をコードする配列を、含んでもよい。

[0022]

本発明に係るHCV RNA-レプリコンの別の好適な実施形態は、配列番号9又は10で示される塩基配列からなる5'非翻訳領域と、少なくとも1つの選択マーカー遺伝子若しくはリポーター遺伝子と、IRES配列と、遺伝子型2aのC型肝炎ウイルスのゲノムRNA上のNS3タンパク質、NS4Aタンパク質、NS4Aタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコード

する配列と、配列番号11又は12で示される塩基配列からなる3'非翻訳領域とを含む塩 基配列からなる、レプリコンRNAである。ここで配列番号9及び10で示される塩基配列 は、それぞれ、本発明に係るレプリコンRNAであるrSGREP-JFH1(配列番号1)及びrSGREP -JCH1(配列番号2)の5'非翻訳領域の配列である。また配列番号11及び12で示され る塩基配列は、それぞれ、本発明に係るレプリコンRNAであるrSGREP-JFH1 (配列番号1) 及びrSGREP-JCH1(配列番号2)の3′非翻訳領域の配列である。

[0023]

本発明に係るHCV RNA-レプリコンのさらに好ましい1つの実施形態は、配列番号1又は 2で示される塩基配列からなるRNAからなるレプリコンRNAである。さらに、この配列番号 1又は2で示される塩基配列において、1~50個、1~30個、1~10個、1~6個、1~数個(2 ~5個)の塩基が欠失、置換又は付加された塩基配列からなるレプリコンRNAであって、か つ、自律複製能を有するRNAも、好適な実施形態として本発明の範囲に含まれる。本発明 において「自律複製能を有する」とは、レプリコンRNAを細胞中に導入したときに、その レプリコンRNAが細胞内でそのレプリコンRNA自身の全長を複製することができることを意 味する。限定するものではないが、この自律複製能は、例えば、レプリコンRNAをHuh7細 胞中にトランスフェクションし、Huh7細胞を培養し、得られる培養物中の細胞から抽出し たRNAについて、導入したレプリコンRNAを特異的に検出可能なプローブを用いたノーザン ブロットハイブリダイゼーションを行ってレプリコンRNAの存在を検出することにより、 確認することができる。自律複製能を確認するための具体的な操作は、本明細書の実施例 に記載されたコロニー形成能の測定、HCVタンパク質の発現確認、レプリコンRNAの検出等 の記載に従って行うことができる。

[0024]

本発明において「選択マーカー遺伝子」とは、その遺伝子が発現された細胞だけが選択 されるような選択性を細胞に付与することができる遺伝子を意味する。選択マーカー遺伝 子の一般的な例としては抗生物質耐性遺伝子が挙げられる。本発明において好適な選択マ ーカー遺伝子の例としては、ネオマイシン耐性遺伝子、チミジンキナーゼ遺伝子、カナマ イシン耐性遺伝子、ピリチアミン耐性遺伝子、アデニリルトランスフェラーゼ遺伝子、ゼ オシン耐性遺伝子、ピューロマイシン耐性遺伝子等が挙げられるが、ネオマイシン耐性遺 伝子、チミジンキナーゼ遺伝子が好ましく、ネオマイシン耐性遺伝子がさらに好ましい。 但し本発明における選択マーカー遺伝子はこれらに限定されるものではない。

[0025]

また本発明において「リポーター遺伝子」とは、その遺伝子発現の指標となる遺伝子産 物をコードするマーカー遺伝子を意味する。リポーター遺伝子の一般的な例としては、発 光反応や呈色反応を触媒する酵素の構造遺伝子が挙げられる。本発明において好適なリポ ーター遺伝子の例としては、トランスポゾンTn9由来のクロラムフェニコールアセチル トランスフェラーゼ遺伝子、大腸菌由来の β グルクロニダーゼ若しくは β ガラクトシダー ゼ遺伝子、ルシフェラーゼ遺伝子、緑色蛍光タンパク質遺伝子、クラゲ由来のイクリオン 遺伝子、分泌型胎盤アルカリフォスファターゼ(SEAP)遺伝子等が挙げられる。但し本発 明におけるリポーター遺伝子はこれらに限定されるものではない。

[0026]

上記の選択マーカー遺伝子及びリポーター遺伝子は、レプリコンRNA中にどちらか一方 のみが含まれていてもよいし、両方が含まれていてもよい。

[0027]

本発明における「IRES配列」とは、RNAの内部にリボソームを結合させて翻訳を開始さ せることが可能な内部リボゾーム結合部位を意味する。本発明におけるIRES配列の好適な 例としては、以下に限定するものではないがEMCV IRES (脳心筋炎ウイルスの内部リボゾ ーム結合部位)、FMDV IRES、HCV IRES等が挙げられるが、EMCV IRES及びHCV IRESがより 好ましく、EMCV IRESが最も好ましい。

[0028]

さらに本発明に係るレプリコンRNAは、他のHCV株又は他の遺伝子型のHCVのゲノムRNA上

の配列を含んでもよい。例えば、遺伝子型1bのHCVゲノムの断片を含んでもよい。他のHCV株としては、例えばHCV-1、HCV-H、HC-J1、HCT-18、H77、DK-7、US11、S14、HCT23、HCV-Th、DR1、DR4、HCT27、S18、SW1、DK9、H90、TD-6E1、S9、HCV-BK、T10、DK1、HC-J4、HCV-J、HK3、HK8、HK5、HCV-G3、IND5、IND8、P10、D1、D3、SW2、T3、S45、SA10、US6、HCV-JK1、HCV-JK4、HCV-JK3、HCV-JK2、HCV-JT、HC-J2、HCV-T、HK4、HC-G9、Z1、Bi,S.I.、Cho,J.M.、HCV-J6、T4、T9、US10、HC-J5、T2、HC-J7、DK11、SW3、DK8、T8、HC-J8、S83、HK2、HC-J6、HC-J8、BEBE1、HCV-J6、HCV-J8、HD10-2、BR36-9、S52、S54、S2、BR33-1、HK10、DK12、HCV-TR、BA-1、BA-2、DK13、Z1、Z4、Z6、Z7、HK2、SA1、SA4、SA5、SA7、SA13、SA6、NZL1、SA30、EG-13、HCV-K3a/650、ED43、EUH1480、EUHK2、Th580、VN235、VN405、VN004、JK049、JK046、JFH-1、JCH-1、JCH-2、JCH-3、JCH-4、JCH-5、JCH-6、J6CF、H77等が挙げられるが、これらに限定するものではない。

[0029]

本発明に係るレプリコンRNAは、好ましくは、最も5'側に遺伝子型2aのHCVのゲノムRNA上の5'非翻訳領域を、最も3'側に遺伝子型2aのHCVのゲノムRNA上の3'非翻訳領域を有する。選択マーカー遺伝子又はリポーター遺伝子は、IRES配列の上流に連結されてもよいし、「NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質、NS5Aタンパク質、NS5Aタンパク質、NS4Aタンパク質、NS5Aタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列」の中に挿入されてもよい。

[0030]

本発明に係るレプリコンRNAは、より好ましくは、最も5'側に遺伝子型2aのHCVのゲノムRNA上の5'非翻訳領域を有し、それよりも下流に選択マーカー遺伝子若しくはリポーター遺伝子と、IRES配列と、「NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列」とをこの順番で有し、さらに最も3'側に遺伝子型2aのHCVのゲノムRNA上の3'非翻訳領域を有する。

[0031]

本発明に係るレプリコンRNAには、上記したような配列の他に、レプリコンRNAを導入する細胞内で発現させたい任意の外来遺伝子を含むRNAを含んでもよい。外来遺伝子は、5'非翻訳領域の下流に連結してもよいし、選択マーカー遺伝子若しくはリポーター遺伝子の上流又は下流に連結させてもよいし、「NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列」の上流又は下流に連結してもよいし、「NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配列」の中に挿入してもよい。外来遺伝子を含むレプリコンRNAは、導入された細胞内で翻訳される際に、該外来遺伝子にコードされたタンパク質を発現することができる。従って外来遺伝子を含むレプリコンRNAは、遺伝子治療などの、特定の遺伝子産物を細胞内で生成させることを目的とする場合にも、好適に使用することができる。

[0032]

また本発明に係るレプリコンRNAには、さらにリボザイムを含んでいてもよい。リボザイムは、5'側のレプリコンRNA中の選択マーカー遺伝子、リポーター遺伝子又は外来遺伝子と、それより3'側のIRES配列及び「NS3タンパク質、NS4Aタンパク質、NS5Bタンパク質をコードする配列」とを連結するように挿入し、リボザイムの自己切断活性により両者が切断されて分離するようにすることができる。

[0033]

本発明に係るレプリコンRNAにおいては、上述したような選択マーカー遺伝子、リポーター遺伝子、遺伝子型2aのC型肝炎ウイルスのゲノムRNA上のウイルスタンパク質をコードする配列、遺伝子型2a以外のHCVのウイルスタンパク質コード配列、及び外来遺伝子等が、レプリコンRNAから正しい読み枠で翻訳されるように連結される。それらの配列のうちでタンパク質をコードする配列は、遺伝子型2aのC型肝炎ウイルスの「NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする配

列| から翻訳されるポリタンパク質とともに融合タンパク質として発現させた後で、プロ テアーゼによって各タンパク質へと分離するように、プロテアーゼ切断部位等を介して互 いに連結させてもよい。

[0034]

2. 本発明に係るレプリコンRNAの作製

本発明に係るHCV RNA-レプリコンは、当業者に公知である任意の遺伝子工学的手法を用 いて作製することができる。限定するものではないが、HCV RNA-レプリコンは、例えば以 下のような方法で作製することができる。

[0035]

まず、遺伝子型2aのC型肝炎ウイルスのゲノムRNAの全領域に対応するDNAを、常法によ りRNAプロモーターの下流に連結し、DNAクローンを作製する。ここで、「RNAに対応するD NA|とは、当該RNAの塩基配列のU(ウラシル)をT(チミン)に置き換えた塩基配列を有 するDNAを意味する。前記RNAプロモーターは、プラスミドクローン中に含まれるものであ ることが好ましい。RNAプロモーターとしては、限定するものではないが、T7 RNAプロモ ーターが特に好ましい。

[0036]

次に、作製したDNAクローンについて、例えば、5'非翻訳領域の下流に位置する構造領 域(Core配列、E1配列、E2配列)及びNS2タンパク質をコードする配列を、選択マーカー 遺伝子若しくはレポーター遺伝子とその下流に連結したIRES配列とを含むDNA断片によっ て置換する。この置換においては、構造領域以外の部分、例えば5'非翻訳領域の3'末端側 の断片及びNS3タンパク質をコードする配列の一部が、別の遺伝子型のHCVに由来する配列 に置換されてもよい。

[0037]

次いで、その置換したDNAクローンを鋳型として、RNAポリメラーゼによりRNAを合成す る。RNA合成は、5'非翻訳領域及びIRES配列から、常法により開始させることができる。 鋳型DNAがプラスミドクローンの場合には、そのプラスミドクローンから、RNAプロモータ ーの下流に連結された上記DNA領域を制限酵素によって切り出して、そのDNA断片を鋳型と して用いてRNAを合成することもできる。なお、好ましくは合成されるRNAの3'末端がウイ ルスゲノムRNAの3'非翻訳領域と一致し、他の配列が付加されたり削除されたりしないこ とが好ましい。このようにして合成されたRNAが、本発明に係るレプリコンRNAである。

[0038]

3.遺伝子型2aのHCVのレプリコンRNAを導入したレプリコン複製細胞の作製

上記のようにして作製されるレプリコンRNAを、レプリコンRNAを複製させるべき細胞に 導入することにより、レプリコンRNAが持続的に複製されている細胞を得ることができる 。本明細書では、レプリコンRNAが持続的に増幅されている細胞を「レプリコン複製細胞 」と称する。

[0039]

レプリコンRNAを導入する細胞としては、継代培養することが可能な細胞であれば任意 の細胞を用いることができるが、真核細胞であることが好ましく、ヒト肝由来細胞、ヒト 子宮頸由来細胞、又はヒト胎児腎由来細胞であることがより好ましく、Huh7細胞、HepG2 細胞、IMY-N9細胞、HeLa細胞、及び293細胞からなる群より選ばれるいずれかの細胞であ ることがさらに好ましい。これらの細胞は、市販のものを利用してもよいし、細胞寄託機 関から入手して使用してもよいし、任意の細胞(例えば癌細胞又は幹細胞)から株化した 細胞を使用してもよい。

[0040]

前記細胞は、ワクチン製造のようにHCVタンパクの大量製造を目的とする場合には、大 量培養が可能な細胞を用いることが望ましい。そのような観点からは、Huh7細胞以外の細 胞であることが好ましい。

[0041]

レプリコンRNAの細胞内への導入は、当業者には公知の任意の技術を使用して行うこと

ができる。そのような導入法としては、例えば、エレクトロポレーション、パーティクルガン法、リポフェクション法、リン酸カルシウム法、マイクロインジェクション法、DEAEセファロース法等が挙げられるが、エレクトロポレーションによる方法が特に好ましい。

[0042]

レプリコンRNAは、目的のレプリコンRNAを単独で導入してもよいし、他の核酸と混合させたものを導入してもよい。導入するRNA量を一定にしてレプリコンRNAの量を変化させたい場合には、目的のレプリコンRNAを、導入する細胞から抽出したトータル細胞性RNAと混合して、細胞内導入に用いればよい。細胞内導入に用いるレプリコンRNAの量は、使用する導入法に応じて決めればよいが、好ましくは1ピコグラム~100マイクログラム、より好ましくは10ピコグラム~10マイクログラムの量を使用する。

[0043]

細胞内導入のために選択マーカー遺伝子又はリポーター遺伝子を含有するレプリコンRN Aを用いる場合には、そのレプリコンRNAが導入され持続的に複製している細胞を、選択マーカー遺伝子又はリポーター遺伝子の発現を利用して、選択することができる。具体的には、例えば、そのようなレプリコンRNAの細胞内導入処理を施した細胞を、選択マーカー遺伝子又はリポーター遺伝子の発現により選択可能となる培地において培養すればよい。一例として、レプリコンRNAにネオマイシン耐性遺伝子が選択マーカー遺伝子として含まれる場合には、そのレプリコンRNAを用いて細胞内導入処理した細胞を培養ディッシュに播種し、16~24時間培養した後に、培養ディッシュにG418(ネオマイシン)を0.05ミリグラム/ミリリットル~3.0ミリグラム/ミリリットルの濃度で添加し、その後、週に2回培養液を交換しながら培養を継続し、播種時から好ましくは10日間~40日間、より好ましくは14日間~28日間培養した後にクリスタルバイオレットで生存細胞を染色することにより、レプリコンRNAが導入され持続的に複製されている細胞を、形成されたコロニーとして選択することができる。

[0044]

形成されたコロニーからは、常法により生存細胞をクローン化し、培養を継続することにより、細胞をクローン化することができる。このようにして得られる目的のレプリコンRNAが持続的に複製されている細胞クローンを、本明細書では「レプリコン複製細胞クローン」と称する。

[0045]

樹立した細胞クローンについては、導入されたレプリコンRNAから該細胞クローン中で複製されているレプリコンRNAの検出、導入されたレプリコンRNA中の選択マーカー遺伝子又はリポーター遺伝子の宿主ゲノムDNAへの組み込みの有無の確認、及びHCVタンパク質の発現の確認を行って、実際に目的のレプリコンRNAが持続的に複製されていることを確認することが好ましい。

[0046]

導入されたレプリコンRNAから該細胞クローン中で複製されたレプリコンRNA(本明細書中では、以下便宜的に、「複製レプリコンRNA」と称する)の検出は、当業者には公知の任意のRNA検出法に従って行えばよいが、例えば、細胞クローンから抽出したトータルRNAについて、導入されたレプリコンRNAに対して特異的なDNA断片をプローブとして用いるノーザンハイブリダイゼーション法を実施することにより検出することができる。

[0047]

また導入されたレプリコンRNA中の選択マーカー遺伝子又はリポーター遺伝子の宿主ゲノムDNAへの組み込みの有無の確認は、限定するものではないが、例えば、細胞クローンから抽出した宿主ゲノムDNAについて該選択マーカー遺伝子又はリポーター遺伝子の少なくとも一部を増幅するPCRを行い、その増幅産物の有無を確認することによって行うことができる。増幅産物が確認された細胞クローンでは、宿主ゲノム中に選択マーカー遺伝子又はリポーター遺伝子が組み込まれていると判断されることから、レプリコンRNA自体は該細胞内で持続的に複製されていない可能性がある。この場合、レプリコンRNAが持続的に複製されているか否かを、次に示すHCVタンパク質の発現の確認実験によって、確認す

ることができる。

[0048]

HCVタンパク質の発現の確認は、例えば、導入されたレプリコンRNAから発現されるべき HCVタンパク質に対する抗体を、細胞クローンから抽出したタンパク質と反応させることによって行うことができる。この方法は、当業者には公知の任意のタンパク質検出法によって行うことができるが、具体的には例えば、細胞クローンから抽出したタンパク質試料をニトロセルロース膜にプロッティングし、それに対して抗HCVタンパク質抗体(例えば、抗NS3特異的抗体、又はC型肝炎患者から採取した抗血清)を反応させ、さらにその抗HCVタンパク質抗体を検出することによって行うことができる。細胞クローンから抽出したタンパク質中からHCVタンパク質が検出されれば、その細胞クローンは、HCV由来のレプリコンRNAが持続的に複製してHCVタンパク質を発現しているものと判断することができる。

[0049]

以上のようにして、目的のレプリコンRNAを持続的に複製していることが確認された細胞クローン(レプリコン複製細胞クローン)を得ることができる。また本発明においては、このレプリコン複製細胞から、例えばRNAを抽出しその中からレプリコンRNAを電気泳動法により分離する等の当業者には公知の任意の方法により、レプリコンRNAを取得することができる。本発明はそのようなレプリコンRNAの製造方法にも関する。さらに本発明に係るレプリコン複製細胞は、HCVタンパク質を製造するために好適に使用することができる。レプリコン複製細胞からのHCVタンパク質の取得は、当業者であれば常法に従って行うことができる。具体的には例えば、レプリコン複製細胞を培養し、得られる培養物(培養細胞及び培養培地を含む)から常法によりタンパク質を採取し、さらにそのタンパク質から、抗HCVタンパク質抗体を用いた検出等によりウイルスタンパク質を選択的に得ることにより、遺伝子型2aのC型肝炎ウイルスのウイルスタンパク質を製造することができる

[0050]

また本発明に係るレプリコン複製細胞が、外来遺伝子を含有するレプリコンRNAを持続的に複製している場合には、そのレプリコン複製細胞を用いて外来遺伝子にコードされるタンパク質を発現させて取得することができる。具体的には例えば、レプリコン複製細胞を培養し、得られる培養物(培養細胞及び培養培地を含む)から常法によりタンパク質を採取し、さらにそのタンパク質から、目的のタンパク質に対する抗体を用いた検出等によりタンパク質を選択的に得ることにより、外来遺伝子にコードされたタンパク質を取得することができる。

[0051]

4. 遺伝子型2aのHCVのレプリコンRNAへの複製効率を増大させる突然変異の導入

本発明に係るレプリコン複製細胞において複製され生成されたレプリコンRNA (複製レプリコンRNA) には、複製効率を向上させる突然変異が頻繁に生ずる。このような突然変異は適合変異であると思われる。

本発明では、このことを利用して、本発明に係るレプリコンRNAに複製効率を向上させる突然変異の導入を促進することができる。

[0052]

具体的には、第1のレプリコン複製細胞(好ましくは本発明に係るレプリコンRNAを導入したレプリコン複製細胞)から、第1の複製レプリコンRNAを抽出等により取得し、第1の複製レプリコンRNAをさらに別の細胞に再導入して第2のレプリコン複製細胞を作製するという工程を、1回以上、好ましくは1~10回、より好ましくは1~5回、さらに好ましくは1~2回反復的に行うことにより、レプリコン複製細胞中で、レプリコンRNAに複製効率を増大させる突然変異を高頻度に導入することができる。

[0053]

複製レプリコンRNAを再導入する細胞としては、任意の細胞を用いることができるが、 最初にレプリコンRNAを導入した細胞と同じ生物種由来の細胞であることが好ましく、最 初にレプリコンRNAを導入した細胞と同じ生物種由来の同じ組織由来の細胞であることが

ページ: 11/

好ましく、最初にレプリコンRNAを導入した細胞と同じ細胞株の細胞であることがさらに好ましい。

[0054]

従って本発明では、上記の方法を用いて、複製効率を増大させる突然変異を導入したレプリコンRNAを製造することができる。すなわち、まず第1のレプリコン複製細胞(好ましくは本発明に係るレプリコンRNAを導入したレプリコン複製細胞)から、第1の複製レプリコンRNAを抽出等により取得し、さらにこの第1の複製レプリコンRNAをさらに別の細胞に再導入して第2のレプリコン複製細胞を作製する工程を、1回以上、好ましくは1~10回、より好ましくは1~5回、さらに好ましくは1~2回反復的に行った後、この反復工程の最後に得られる最終的なレプリコン複製細胞から、複製レプリコンRNAを抽出等によって取得することにより、複製効率が増大したレプリコンRNAを製造することができる。

[0055]

本発明では、以上のような方法により、レプリコンRNAの複製効率を少なくとも2倍、好ましくは10~100倍、より好ましくは100~10000倍に増大させることができる。

[0056]

このような方法により製造した複製効率が増大したレプリコンRNAについては、逆転写PCRによってcDNAを得てそれを塩基配列決定に供するなどの公知の方法により、塩基配列を決定することが好ましい。さらに、決定された塩基配列又はそれにコードされるアミノ酸配列を、最初に細胞に導入されたレプリコンRNAの塩基配列と比較することにより、適合変異を同定することができる。複製効率を増大させる適合変異としては、特に、レプリコンRNAにコードされたウイルスタンパク質のアミノ酸を変異させる非同義置換が好ましい

[0057]

また本発明は、そのようにして同定した適合変異を、複製効率を増大させようとするレプリコンRNAに常法により導入することによって、複製効率が増大した遺伝子型2aのC型肝炎ウイルスのレプリコンRNAを製造することができる方法も提供する。

[0058]

以上のようにして製造された複製効率が増大したレプリコンRNAは、その方法に使用した細胞中においてレプリコンRNAを大量に製造するために使用することができる。

[0059]

本発明に係るレプリコンRNAの複製効率は、当業者に公知の方法により決定することができるが、例えば次のような方法に従って決定すればよい。たとえばHuh7細胞に0.0001、0.0003、0.001、0.003、0.01、0.03、0.1、0.3、1.0マイクログラムの量のレプリコンRNAをトランスフェクションして、前述の実験手法と同様の方法でG418による選択培養を21日間行った後にコロニー形成数(コロニー数)を測定する。導入したRNA量とコロニー形成数とを比較して容量依存的にコロニー形成が増加するレプリコンRNA導入量の範囲を決定し、その範囲内でのコロニー形成数を、導入したRNA量で除算して得られる値を、1マイクログラムあたりのコロニー形成率とする。この計算式は、以下のとおりである。コロニー形成率 [(Colony forming Unit; CFU)/マイクログラム] = コロニー形成数 [個]/導入したRNA量 [マイクログラム]

[0060]

こうして算出されたコロニー形成率を、導入したレプリコンRNAの複製効率を示す値とする。すなわち、コロニー形成率が高いほど、そのレプリコンRNAの複製効率は高い。またレプリコンRNAの複製効率は、形成されたコロニー1個あたりの導入したレプリコンRNAのコピー数で示されるコロニー形成能で表すこともできる。すなわち、以下のような計算式に従って算出することができる。

コロニー形成能=導入したレプリコンRNAのコピー数 [コピー]/コロニー形成数 [個]

【0061】 5. 本発明の他の実施形態

本発明に係るレプリコンRNA複製細胞は、例えばC型肝炎ウイルスの複製を促進又は抑

制する物質をスクリーニングするための試験系として使用することもできる。具体的には例えば、被験物質の存在下で、レプリコン複製細胞を培養し、得られる培養物中のレプリコンRNAの複製を検出し、その被験物質がレプリコンRNAの複製を促進又は抑制するかどうかを判定することにより、C型肝炎ウイルスの複製を促進又は抑制する物質をスクリーニングすることができる。この場合、得られる培養物中のレプリコンRNAの複製の検出は、レプリコンRNA複製細胞から抽出したRNA中のレプリコンRNAの量又は有無を検出することによるものであってもよいし、培養物中または該培養物に含まれるレプリコンRNA複製細胞中のタンパク質に含まれるHCVタンパク質の量又は有無を検出するものであってもよい

[0062]

このような本発明に係るレプリコンRNA複製細胞を用いる試験細胞系は、C型肝炎ウイルス感染の治療のための治療剤若しくは診断剤の製造又は評価を目的とすることが考えられる。そのような目的としては、具体的には、以下のような例が挙げられる。

[0063]

(1) 遺伝子型2aのHCVの増殖を抑制する物質の探索

遺伝子型2aのHCVの増殖を抑制する物質としては、例えば、直接的若しくは間接的に遺伝子型2aのHCVの増殖に影響を及ぼす有機化合物、あるいは遺伝子型2aのHCVゲノム若しくはその相補鎖の標的配列にハイブリダイズすることによりHCVの増殖若しくはHCVタンパク質の翻訳に直接的又は間接的に影響を及ぼすアンチセンスオリゴヌクレオチド等が挙げられる。

- (2) 細胞培養中で抗ウイルス作用を有する各種物質の評価 前記各種物質としては、合理的ドラッグデザイン又はハイスループットスクリーニング を用いて得られた物質(例えば単離精製された酵素)等が挙げられる。
- (3) 遺伝子型2aのHCVに感染した患者の治療のための、新規攻撃標的の同定 例えばHCVウイルス増殖のために重要な役割を果たす宿主細胞性タンパク質を同定する ために、本発明に係るレプリコン複製細胞を使用することができる。
- (4) HCVウイルスの薬剤等に対する耐性獲得能の評価及び該耐性に関わる変異の同定
- (5) C型肝炎ウイルス感染の診断薬又は治療薬の開発、製造及び評価のために使用可能な 抗原としてのウイルスタンパク質の製造
- (6) C型肝炎ウイルス感染の診断薬又は治療薬の開発、製造及び評価のために使用しうる HCVウイルス又はウイルス様粒子を製造するための、ウイルスゲノム複製系
- (7) 遺伝子型2aのHCVに対するワクチンとして使用可能なワクチン抗原の製造
- (8) 遺伝子治療用の外来遺伝子を組み込んで使用する、肝細胞指向性遺伝子ベクターの製造

【実施例】

[0064]

本発明を、以下の実施例及び図面に基づいてさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。

[0065]

[実施例1] レプリコンRNAの作製

(A)発現ベクターの構築

劇症肝炎の患者から分離したC型肝炎ウイルスJFH-1株(遺伝子型2a)のウイルスゲノム全領域に対応するDNAを、該ウイルス株のゲノム全長cDNAを含むJFH-1クローンから取得して、pUC19プラスミドに挿入したT7 RNAプロモーター配列の下流に挿入した。このようにして構築されたプラスミドDNAを、以下、pJFH1と称する。同様に、慢性肝炎の患者から分離したC型肝炎ウイルスJCH-1株(遺伝子型2a)のウイルスゲノム全領域に対応するDNAを、該ウイルス株のゲノム全長cDNAを含むJCH-1クローンから取得して、pUC19プラスミドに挿入したT7 RNAプロモーター配列の下流に挿入した。このようにして構築されたプラスミドDNAを、以下、pJCH1と称する。なお、上記JFH-1クローン及びJCH-1クローンの作製については、特許文献1及び非特許文献3に記載されている。またJFH-1クローンの全長cDN

[0066]

このようにして構築したプラスミドDNA pJFH1及VpJCH1の構造を、図1の上段に示す。「T7」はV7 RNAプロモーター、「V6」は、挿入したV7 RNAプロモーター配列のV7 RNAプロモーター、V7 RNAプロモーター、V7 RNAプロモーター、V7 RNAプロモーター、V7 RNAプロモーター、V7 RNAプロモーター、V7 RNAプロモーター配列のV7 RNAプロエーター配列のV7 RNAプロエーターのV7 RNA

[0067]

次に、プラスミドDNA pJFH1及びpJCH1の構造領域と非構造領域の一部を、ネオマイシン耐性遺伝子(neo;ネオマイシンホスホトランスフェラーゼ遺伝子とも称する)及びEMCV-IRES(脳心筋炎ウイルスの内部リボゾーム結合部位)で置換して、プラスミドDNA pSGREP-JFH1及びpSGREP-JCH1をそれぞれ構築した(図1の下段)。この構築手順は、既報(非特許文献7)に従った。具体的には、プラスミドpJFH1及びpJCH1を制限酵素AgeI及びClaIで切断し、その切断部位に、pJFH-1由来の5'NTRからCore領域におよぶ配列とpRSV5NEO由来のネオマイシン耐性遺伝子とをPCR増幅により結合し制限酵素AgeIとPmeIで切断した断片、及びEMCV IRESからNS3領域におよぶ配列をPCR増幅により結合し制限酵素PmeIとClaIで切断した断片を、挿入し連結した。

[0068]

また、pSGREP-JFH1中のNS5B領域について、該領域にコードされるRNAポリメラーゼの活性中心に相当するアミノ酸モチーフGDDをGNDに変異させる突然変異を導入して、突然変異プラスミドクローンpSGREP-JFH1/GNDを作製した。

[0069]

さらに、pSGREP-JFH1中のNS5B領域について、該領域にコードされるRNAポリメラーゼの活性中心に相当するアミノ酸モチーフGDDを含む連続した10アミノ酸配列を欠失させる突然変異を導入して、突然変異プラスミドクローンpSGREP-JFH1/dGDDを作製した。

[0070]

なお上記で作製した突然変異クローンpSGREP-JFH1/GND及びpSGREP-JFH1/dGDDは、それらにコードされているNS5Bタンパク質の活性部位のアミノ酸配列が変異しているため、レプリコンRNAを複製するのに必要な活性NS5Bタンパク質を発現することができない。

[0071]

(B) レプリコンRNAの作製

レプリコンRNA合成に用いる鋳型DNAを作製するために、上記のとおり構築した発現ベクターpSGREP-JFH1、pSGREP-JCH1、pSGREP-JFH1/GND、pSGREP-JFH1/dGDDを、それぞれ制限酵素XbaIで切断した。

[0072]

次いで、これらのXbaI切断断片のそれぞれについて、 $10\sim20\,\mu\,\mathrm{g}\,\mathrm{e}\,50\,\mu\,\mathrm{l}$ の反応液中に含有させ、Mung Bean Nuclease 20 Uを用いて $30\,\mathrm{C}\,\mathrm{c}\,30\,\mathrm{f}\,\mathrm{l}\,\mathrm{l}$ ンキュベートすることにより、さらに処理した。Mung Bean Nucleaseは、二本鎖DNA中の一本鎖部分を選択的に分解する反応を触媒する酵素である。通常、上記XbaI切断断片をそのまま鋳型として用いてRNA合成を行うと、XbaIの認識配列の一部であるCUGAの 4 塩基が 3 '末端に余分に付加されたレプリコンRNAが合成されてしまう。そこで本実施例では、XbaI切断断片をMung Bean Nucleaseで処理することにより、XbaI切断断片からCUGAの 4 塩基を除去した。この後、XbaI切断断片を含むMung Bean Nuclease処理後の溶液について、通常法に従ったタンパク質除去処理により、CUGAの 4 塩基が除去されたXbaI切断断片を精製して、これを鋳型DNAとした。

[0073]

次に、この鋳型DNAから、T7 RNAポリメラーゼを用いてRNAをin vitro合成した。このRN A合成にはAmbion社のMEGAscriptを用いた。鋳型DNAを $0.5\sim1.0$ マイクログラム含む反応液 20μ 1を製造業者の使用説明書に従って反応させた。

[0074]

RNA合成終了後、反応溶液にDNase (2U) を添加して37℃で15分間反応させた後、さらに酸性フェノールによるRNA抽出を行って、鋳型DNAを除去した。このようにしてpSGREP-JFH1、pSGREP-JCH1、pSGREP-JFH1/GND、pSGREP-JFH1/dGDDに由来する上述の鋳型DNAから合成したRNA (レプリコンRNA) を、それぞれrSGREP-JFH1、rSGREP-JCH1、rSGREP-JFH1/GND、rSGREP-JFH1/dGDDと命名した。これらのレプリコンRNAの塩基配列を、rSGREP-JFH1については配列番号1及び図2、rSGREP-JCH1については配列番号2及び図3、rSGREP-JFH1/GNDについては配列番号7、rSGREP-JFH1/dGDDについては配列番号8に示す。

[0075]

[実施例2] レプリコン複製細胞クローンの樹立

(C) レプリコンRNAのトランスフェクション、トランスフェクション細胞のコロニー形成能の測定、及び細胞クローンの樹立

上記の合成レプリコンRNA(rSGREP-JFH1、rSGREP-JCH1、rSGREP-JFH1/GND、rSGREP-JFH 1/dGDD)のそれぞれについて、様々な量のレプリコンRNAをHuh7細胞から抽出したトータル細胞性RNAと混合して、RNA総量が 10μ gとなるように調製した。次いでその混合RNAをエレクトロポレーション法によりHuh7細胞に導入した。エレクトロポレーション処理を行ったHuh7細胞を培養ディッシュに播種し、16時間から24時間培養した後に、培養ディッシュにG418(ネオマイシン)を様々な濃度で添加した。その後、週に2回培養液を交換しながら培養を継続した。播種時から21日間培養した後、クリスタルバイオレットで生存細胞を染色した。染色されたコロニー数を計測し、トランスフェクションしたレプリコンRNA量 1μ g当たりに得られたコロニー数を計算した。

[0076]

コロニー形成が認められたrSGREP-JFH1又はrSGREP-JCH1トランスフェクション細胞については、上記の培養21日後の培養ディッシュからさらに生存細胞のコロニーをクローン化し、培養を継続した。このようなコロニーのクローニングにより、細胞クローンを複数株樹立することができた。

[0077]

樹立した細胞クローンについては、後述の実施例4と同様にして、複製レプリコンRNAの検出、ネオマイシン耐性遺伝子の宿主ゲノムDNAへの組み込みの有無の確認、及びHCVタンパク質の発現の確認を行った。細胞中でのレプリコンの複製が確認された細胞クローンを、レプリコン複製細胞クローンとした。

[0078]

(D) 各トランスフェクション細胞におけるコロニー形成能

上記のトランスフェクションの結果、トランスフェクションしたレプリコンRNA $1 \mu g$ 当たりのコロニー形成能は、rSGREP-JFH1をトランスフェクションしたHuh7細胞では、G41 8濃度が1.0 mg/mlの場合、 $94700 CFU (Colony Forming Unit; コロニー形成単位)/\mu g \cdot R$ NAであった(図 4 の左列)。これに対して、rSGREP-JFH1/dGDD、rSGREP-JFH1/GNDをそれ・ぞれトランスフェクションしたHuh7細胞では、コロニー形成が認められなかった(図 4 の中央列及び右列)。このことは、rSGREP-JFH1レプリコンRNAをトランスフェクションしたHuh7細胞のコロニー形成能は、rSGREP-JFH1から発現されるNS5B (RNAポリメラーゼ)の活性に依存していることを示す。つまり、コロニーを形成した細胞では、rSGREP-JFH1から発現されるNS5BのはたらきによりrSGREP-JFH1レプリコンRNAが自律複製することによって、ネオマイシン耐性遺伝子が持続的に発現されG418耐性が維持される結果、細胞増殖が可能になったものと考えられた。

[0079]

一方、rSGREP-JCH1をトランスフェクションしたHuh7細胞では、G418濃度が $1\sim0.5 mg/ml$ の場合にはコロニー形成が認められなかった(図 5)。G418濃度を0.25 mg/mlに下げた場合には、rSGREP-JCH1をトランスフェクションしたHuh7細胞でもコロニー形成が認められた。

[0080]

さらに、上記(B)で得られた発現ベクターpSGREP-JFH1のXbaI切断断片をMung Bean Nucleaseで処理せずにRNA合成の鋳型DNAとして用いてレプリコンRNAを合成し、それを上記(C)と同様にしてHuh7細胞にトランスフェクションした。Mung Bean Nuclease処理を行わずに作製したこのレプリコンRNAには、CUGAの4塩基が3'末端に余分に付加されていた。

[0081]

この結果、Mung Bean Nucleaseで処理せずに作製したレプリコンRNAをトランスフェクションしたHuh7細胞のコロニー形成能は、 $512~CFU/\mu g$ ・RNAに低下した(図 6 の左側)。このことから、レプリコンRNAの 3 末端の配列がトランスフェクションした細胞のコロニー形成能に影響を及ぼすことが明らかになった。

[0082]

[実施例3]

(E) レプリコン複製細胞由来の複製レプリコンRNAの再トランスフェクション

実施例 2 に従ってrSGREP-JFH1のHuh7細胞へのトランスフェクションにより樹立したレプリコン複製細胞クローンから、常法により全RNA(トータルRNA)を抽出した。この細胞性RNAに含まれる複製レプリコンRNAのコピー数を、ノーザンブロット解析及び定量的RT-PCR法により決定した。

[0083]

ノーザンブロット解析は、Molecular Cloning, A laboratory Manual, 2nd edition, J. Sambrook, E.F. Fritsch, T. Maniatis著、Cold Spring Harbor Laboratory Press (19 89) の記載に従って行った。細胞から抽出したRNAを変性アガロース電気泳動に供し、泳動終了後に該RNAをポジティブチャージナイロン膜に転写した。pSGREP-JFH1から作製した32PラベルしたDNAまたはRNAプローブを、前記のとおり膜に転写したRNAに対しハイブリダイゼーションさせ、次いでその膜を洗浄し、それをフィルムに感光させることにより、レプリコン特異的なRNAバンドを検出した。

[0084]

レプリコンRNAの定量的RT-PCRによる検出は、Takeuchi T, Katsume A, Tanaka T, Abe A, Inoue K, Tsukiyama-Kohara K, Kawaguchi R, Tanaka S, Kohara M. Real-Time de tection system for quantification of Hepatitis C virus genome. Gastroenterology 116: 636-642 (1999) に従いHCV RNAの5'非翻訳領域のRNAを検出することによりおこなった。具体的には、細胞から抽出したRNAに含まれるレプリコンRNAを、合成プライマー、R6-130-S17, 5'-CGGGAGAGCCATAGTGG-3'(配列番号13)、R6-290-R19, 5'-AGTACCACAAG GCCTTTCG-3'(配列番号14)、TaqMan Probe, R6-148-S21FT, 5'-CTGCGGAACCGGTGAGTA CAC-3'(配列番号15)とEZ rTth RNA PCR kitを用いてPCR増幅し、次いでABI Prism 7 700 sequence detector systemにより検出した。

[0085]

次に、上記レプリコン複製細胞クローンのうちのクローン 6、及びプールクローン (コロニー形成したレプリコン複製細胞を 1 ディッシュ分集めて培養した細胞) から抽出したトータル細胞性RNAの一部を、再トランスフェクションにより新たなHuh7細胞へ導入した。トランスフェクションに用いたトータル細胞性RNAは、上記で測定したレプリコンRNAのコピー数に基づき、 1×10^7 コピーのレプリコンRNAを含むように調製した。トランスフェクションを上記(C)と同様の手法で行い、次いでG418濃度が1 mg/mlの条件下で選択培養したところ、レプリコン複製細胞のコロニー形成がみとめられた(図 7)。この場合のコロニー形成能は、得られたコロニー数から計算すると、トランスフェクションに用いたレプリコンRNAの 1×10^6 コピー当たり 1 コロニー以上であった。

[0086]

一方、pSGREP-JFH1を鋳型としてT7 RNAポリメラーゼにより試験管内で合成したin vitr o合成RNAのコピー数は、RNAの重量とRNAの長さから計算すると約 2×10^{11} コピー/ μ g・RNAであり、このin vitro合成RNAを上記と同様にしてトランスフェクションに用いた場合のコロニー形成能は、 5×10^7 コピー当たり1コロニーであった。このような結果から、レプリコン複製細胞から抽出した細胞由来RNAとin vitro合成RNAを同じコピー数のレプ

リコンRNAとしてHuh7細胞にトランスフェクションした場合、Huh7細胞内で複製されたレプリコンRNAを用いると、コロニー形成能がin vitro合成RNAと比べて50倍程度高いことが明らかになった。

[0087]

「実施例4]

(F) レプリコンRNAの検出

上記(E)に従ってrSGREP-JFH1のHuh7細胞へのトランスフェクションにより樹立したレプリコン複製細胞クローンから取得したトータルRNAを新たなHuh7細胞に再トランスフェクションして樹立した細胞クローン[クローン1~11]及びそれらのプールクローン(コロニー形成した細胞クローンを1ディッシュ分集めて培養した細胞)から、酸性フェノール抽出法によりトータルRNAを抽出した。次いでこのトータルRNAをノーザンプロット法により解析した。プローブとしてはpSGREP-JFH1特異的プローブを用いた。対照としては、トランスフェクションを行っていないHuh7細胞から同様に抽出したトータルRNA(図8中、「Huh7」として示す)、Huh7細胞から抽出したトータルRNAに試験管内で合成したレプリコンRNAを10の7乗コピー加えたサンプル(図8中、「10 7 」として示す)、及びHuh7細胞から抽出したトータルRNAに試験管内で合成したレプリコンRNAを10の8乗コピー加えたサンプル(図8中、「10 8 」として示す)を用いた。図8中、1~11は細胞クローンの番号である。

[0088]

この結果、rSGREP-JFH1と同程度の大きさのRNAがpSGREP-JFH1特異的プローブにより検出された(図 8)。これにより、最初にトランスフェクションしたrSGREP-JFH1に由来するレプリコンRNAが細胞クローン内で複製増殖していることが確認された。また細胞クローン間で、複製レプリコンRNAの量に差があることが示された。図 8 中、例えば、クローン2、6、9、10は複製レプリコンRNAの量が多く、クローン4、8、11は複製レプリコンRNAの量が少なかった。

[0089]

(G) ネオマイシン耐性遺伝子のゲノムDNAへの組み込みの有無の確認

実施例3の手順と同様にして作製した、レプリコンRNAを再トランスフェクションして 得られた細胞クローンについて、その細胞クローンのG418に対する耐性がネオマイシン耐 性遺伝子のゲノムへの組み込みによるものでないことを確認するために、ネオマイシン耐 性遺伝子特異的プライマー(センスプライマー、NEO-S3:5'-AACAAGATGGATTGCACGCA-3'(配列番号 1 6), アンチセンスプライマー、NEO-R:5'-CGTCAAGAAGGCGATAGAAG-3'(配列番 号17))を用いて、細胞クローンから抽出した宿主細胞のゲノムDNAを鋳型とするPCR増 幅を行った。用いた細胞クローンは、rSGREP-JFH1由来の複製レプリコンRNAを再トランス フェクションして得られた細胞クローン1~8(rSGREP-JFH1由来細胞クローン1~8) 、及びrSGREP-JCH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞 クローン1~6(rSGREP-JCH1由来細胞クローン1~6)であった。この結果、図9に示 すとおり、rSGREP-JFH1由来細胞クローンについては、調べた8クローン中、ネオマイシ ン耐性遺伝子の増幅が示された陽性クローンは認められなかった。rSGREP-JCH1由来細胞 クローンについては、調べた6クローン中1クローンのみが陽性であった(図9中、右側 写真のレーン3)。この陽性クローンは、rSGREP-JCH1由来の複製レプリコンRNA中のネオ マイシン耐性遺伝子が宿主細胞のゲノムDNA中に組み込まれたことにより、G418耐性を獲 得したと考えられた。この陽性クローンにおいては、他のクローンとは異なり、レプリコ ンRNA自体は細胞内で自律複製していないものと考えられた。このことは、次の(H)に示 す実験で、この陽性クローンからHCVタンパク質が検出されなかったことにより確認され た。

[0090]

(H) HCVタンパク質の検出

rSGREP-JFH1及びrSGREP-JCH1トランスフェクション細胞クローンから常法によりタンパク質を抽出して、SDS-PAGE及びウエスタンブロット法により解析した(図10)。調べた

細胞クローンは、上記(G)で用いたものと同じであり、rSGREP-JFH1由来細胞クローン1 ~8、及びrSGREP-JCH1由来細胞クローン1~6である。また、NS3遺伝子を含む発現プラ スミドDNAをHuh7細胞にトランジエントにトランスフェクションして得られた細胞抽出液 を陽性対照(NS3タンパク質)とした。さらに、トランスフェクションしていないHuh7細 胞から抽出したタンパク質を陰性対照として用いた。それぞれの細胞クローンから抽出し たタンパク質試料をPVDF膜(Immobilon- P , Millipore社製)にプロッティングし、抗NS 3特異的抗体 (Dr. Moradpour より分与されたもの; Wolk B. et al, J. Virology. 2000 ; 74: 2293-2304) を用いて複製レプリコンRNAにコードされているNS3タンパク質を検出 した。図10に示されるとおり、rSGREP-JFH1由来細胞クローン1~8及びrSGREP-JCH1由 来細胞クローン1、2、4~6では、陽性対照と同じ大きさのタンパク質が検出された。 なおrSGREP-JCH1由来細胞クローン3(上記(G)で陽性クローンとして検出されたクロー ン)では、NS3タンパク質の発現は検出されなかった。すなわち、rSGREP-JCH1由来細胞ク ローン3では、レプリコンRNAの複製は確認されなかった。トランスフェクションしてい ないHuh7細胞でNS3タンパク質が検出されなかったため、NS3タンパク質が検出された細胞 クローンでは、トランスフェクションされたレプリコンRNAが自律複製することによりNS3 タンパク質が発現されていることが判明した。

[0091]

なお、C型肝炎患者の血清を抗体として用いることにより、上記でNS3タンパク質の発現が確認された各細胞クローンについて、レプリコンRNAからのNS5aタンパク質の発現も確認した。

[0092]

以上の(G)及び(H)の結果から、レプリコンRNAをトランスフェクションして樹立した 細胞クローンでは、レプリコンRNAが複製されていることが確認された。

[0093]

[実施例5]

(I)適合変異の解析

実施例3に従って、rSGREP-JFH1のHuh7細胞へのトランスフェクションを経て樹立したレプリコン複製細胞クローンから取得したトータルRNAを新たなHuh7細胞に再トランスフェクションして、21の細胞クローンを樹立した。これらの細胞クローンから、常法によりトータルRNAをそれぞれ抽出した。このトータルRNAを鋳型にして逆転写酵素Superscript II(Invitrogen社製)とプライマー9641R-IH(5'-GCACTCTCTGCAGTCATGCGGCTCACGGAC-3'(配列番号18))によりレプリコンRNAに対応するcDNAを合成した。逆転写反応によるcDNA合成のための反応液組成を以下に示す。

[0094]

反応液組成	液量(µ1)
5x 1st strand Buffer	4
2mM dNTP	5
O. 1M DTT	1
9651R-IH プライマー (100μM)	1
DW(蒸留水)	6.5
Sample RNA (2 mg/mL)	1
RNasin (Promega社製)(40U/μL)	0.5
Superscript II RT (Invitrogen社製)	1
合計量	$20 \mu 1$

[0095]

cDNA合成反応としては、まず上記のRNasinとSuperscript II以外の試薬を混合して最初の反応液を調製し、それを90℃で3分間加熱した後、氷上で冷却した。その後、この反応液に RNasinとSuperscript IIを添加して42℃で1時間反応させた後、さらに70℃で15分

[0096]

さらに、このようにして得られたcDNAについて、以下の手順により5組のプライマーセットを用いるPCR増幅を行って、レプリコンRNAのほぼ全領域にわたるDNA増幅断片を得た。用いたプライマーセット及びその各々により増幅される領域を下記の表1及び表2に示す。

【0097】 【表1】

増幅断片の名称	プライマーセット		増幅領域	
	プライマー1	プライマー 2		
A/	42S-IH	433R-neo	41 - 470	
B/	C/S17ssp	4680R-1H	28 - 3026	
C/	4534S-IH	7279R-IH	2880 - 5625	
D/	7198S-IH	9367R-IH	5544 - 7713	
E/	9247S-NF	9576R-NF	7597 - 7960	

なお表1中、増幅領域はrSGREP-JFH1(配列番号1)において対応する塩基番号で示した。 【表2】

プライマーの名称	塩基配列 (5'→3')	配列番号
42S-IH	CCCCTGTGAGGAACTACTGTCTTCACGC	配列番号19
C/S17ssp	CCGGGAGAGCCATAGTGGTCTGCG	配列番号20
4534S-IH	CCACTCAAAGAAAAGTGTGACGAGCTCGC	配列番号21
7198S-IH	GGCTTGGGCACGGCCTGA	配列番号22
9247S-NF	GCGGTGAAGACCAAGCTCAAACTCACTCCA	配列番号23
433R-neo	AGAACCTGCGTGCAATCCATC	配列番号24
4680R-IH	CCCGTCATGAGGGCGTCGGTGGC	配列番号25
7279R-IH	ACCAGCAACGGTGGGCGGTTGGTAATC	配列番号26
9367R-RI	GGCACGCGACACGCTGTG	配列番号27
9576R-NF	AGCTAGCCGTGACTAGGGCTAAGATGGAGC	配列番号28

【0098】 このPCR反応における反応液組成は以下のとおりである。

	<u>液量(μ1)</u>
プライマー1(10μM)	1.0
プライマー2(10μM)	1.0
2.5mM dNTPs	5.0
10x LA Buffer	5.0
MgCl ₂ (25mM)	5.0
LA Taq(TAKARA) $(5U/\mu 1)$	0.3
DW(蒸留水)	30.7
鋳型 cDNA	2.0
合計量	$50 \mu 1$

[0099]

また、PCR反応の条件は、以下のとおりであった: 95℃で 2 分間; 98℃で10秒間に続き68℃で8分間を 3 5 サイクル; 72℃で7 分間; 4 ℃で保持。

[0100]

以上のようにして得られた各PCR産物の塩基配列を決定し、そのDNA配列対応するRNA配列とrSGREP-JFH1の配列との比較を行った。その結果を表3に示す。

[0101]

【表3】

_				
	領域	同義的 置換	非同義 置換	全変異
	NS3	0	5	5
	NS4A	0	2	2
	NS4B	0	3	3
	NS5A	0	7	7
	NS5B	3	5	8
	合計	3	22	25

[0102]

表3のとおり、21の細胞クローンにおいて認められた塩基変異は全部で25個あったが、そのうち22個はアミノ酸の変異を引き起こす非同義置換であった。これらの変異の種類を、表4に示す。またこれらの変異の非構造領域における位置を図11に示す。

[0103]

【表 4】

クローン名		変.	異部位	
	塩基番号	塩基変異	アミノ酸変異	アミノ酸番号
C1	7098	$A \Rightarrow G$	なし	
	7157	$A \Rightarrow G$	$A \Rightarrow C$	2824
C2	4955	$c \Rightarrow v$	$A \Rightarrow V$	2090
C3	4936	$A \Rightarrow G$	$T \Rightarrow A$	2084
	5000	$A \Rightarrow G$	$A \Rightarrow C$	2105
	7287	$A \Rightarrow G$	なし	•
	7288	$A \Rightarrow G$	$\mathtt{M} \Rightarrow \mathtt{V}$	2868
C4	5901	$G \Rightarrow U$	$E \Rightarrow D$	2405
	6113	$A \Rightarrow U$	$H\Rightarrow\Gamma$	2476
C5	2890	$A \Rightarrow G$	$K \Rightarrow E$	1402
C6	7209	$A \Rightarrow G$	なし	-

[0104]

表4及び図11において、「C1~C6」は、変異が見出されたレプリコンRNAを有するレプリコン複製細胞クローンC1~C6を示す。「塩基番号」はレプリコンRNA rSGREP -JFH1の塩基配列(配列番号1)中の対応する塩基の番号として示している。「アミノ酸番号」は、JFH-1クローンにコードされるアミノ酸配列(配列番号4)中の対応するアミノ酸の番号として示している。変異部位の塩基及びアミノ酸の種類は、通常の表記法に従って記載されている。表4に示されるとおり、クローンC2では、レプリコンRNA上の配列番号1の塩基番号4955に相当する塩基がC(シトシン)からU(ウラシル)へ変異し、その結果、配列番号4のアミノ酸番号2090に相当するアミノ酸がA(アラニン)からV(バリン)へ変異した。

[0105]

また図11に示した変異の位置は、表4に示す塩基番号を付記した縦線で示している。 太い縦線は非同義置換、細い縦線は同義置換を表す。

[0106]

なお、アミノ酸の変異を引き起こす塩基変異を全く有しないクローンも2クローンあった。この2クローンについてノーザンブロット解析を行ったところ、これらの2クローンにおいては、レプリコンRNAの複製量が、アミノ酸変異を生じる塩基変異を有するレプリコンRNAを複製している細胞クローンよりも少ないことが示された。つまり、レプリコンRNAの複製が率を増大させる適合変異であると考えられた。

[0107]

[実施例6]

(J) Huh7細胞以外の細胞を用いたレプリコン複製細胞クローンの樹立

実施例1に記載した方法に従って、Huh7細胞以外の肝癌細胞及び非肝臓由来細胞に、rSG REP-JFH1をトランスフェクションし、培養ディッシュ中に播種して培養して、コロニー形

成の観察とコロニー数の計測を行った。使用した細胞は、以下のとおりである。

[0108]

- (1) HepG2細胞 (Huh7細胞と共に代表的な肝癌細胞である)
- (2) IMY-N9細胞 (Itoらにより樹立された。HepG2細胞とヒト初代培養肝細胞との融合細胞; Hepatology 2001; 34: 566-572)
- (3) Hela細胞 (ヒト子宮頸癌由来細胞; Can Cer Res. 1952; 12: 264-265)
- (4) 293細胞(ヒト胎児腎由来細胞; Gen. Virol. 1977: 36: 59-72)

[0109]

[0110]

樹立した細胞クローンは、後述の(L)、(M)と同様にして、複製レプリコンRNAの検出、ネオマイシン耐性遺伝子の宿主ゲノムDNAへの組み込みの有無の確認、及びHCVタンパク質の発現の確認を行った。こうして細胞中でのレプリコンの複製が確認された細胞クローンを、レプリコン複製細胞クローンとした。すなわち、rSGREP-JFH1を用いることにより、今まで、HCVレプリコン複製細胞の作出に成功していなかった(Blight et al., Science, (2000) 290, 1972-1974)、Huh7以外の肝癌細胞、及び非肝細胞でのHCVレプリコン複製細胞の作製が可能であることが示された。

[0111]

(K) Huh7細胞以外の細胞を用いたレプリコン複製細胞におけるレプリコンRNAの検出 ノーザンブロット解析は、(Molecular Cloning, A laboratory Manual, 2nd edition, J. Sambrook, E.F. Fritsch, T. Maniatis著、Cold Spring Harbor Laboratory Press (1989)) の記載に従って行った。前項(J)に従い、rSGREP-JFH1をHepG2、IMYあるいはHeLa 細胞へのトランスフェクションにより樹立したレプリコン複製細胞クローン、及びrSGREP -JFH1を239細胞へのトランスフェクションにより樹立したレプリコン複製細胞のプールク ローン (コロニー形成した細胞クローンを1ディッシュ分集めて培養した細胞) から、酸 性フェノール抽出法によりトータルRNAを抽出した。次いでこのトータルRNAをノーザンブ ロット法により解析した。プローブとしてはpSGREP-JFH1特異的プローブを用いた。対照 としては、トランスフェクションを行っていないHuh7細胞及び、HepG2 細胞から同様に抽 出したトータルRNA(図13中、lane1及び17)、Huh7細胞から抽出したトータルRNAに試 験管内で合成したレプリコンRNAを10の7乗コピーあるいは、10の8乗コピー加えたもの (図13中、lane2 及び、3)を用いた。この結果、rSGREP-JFH1と同程度の大きさのRNA がpSGREP-JFH1特異的プローブにより検出された(図13)。これにより、最初にトラン スフェクションしたrSGREP-JFH1に由来するレプリコンRNAが細胞クローン内で複製増殖し ていることが確認された。また細胞の種類により、複製レプリコンRNAの量に差があり、I MY 細胞は極めて効率よくレプリコンRNA を複製することが明らかになった。また、クロ ーン間で複製レプリコンRNAの量に差があることが明らかになった。

[0112]

(L) ネオマイシン耐性遺伝子のゲノムDNAへの組み込みの有無の確認

樹立したレプリコンRNA複製細胞クローンについて、その細胞クローンのG418に対する 耐性がネオマイシン耐性遺伝子のゲノムへの組み込みによるものでないことを確認するために、ネオマイシン耐性遺伝子特異的プライマー(センスプライマー、NEO-S3:5'-AACAA GATGGATTGCACGCA-3'(配列番号 2 9)、アンチセンスプライマー、NEO-R:5'-CGTCAAGAAGGC GATAGAAG-3'(配列番号 3 0))を用いて、細胞クローンから抽出した宿主細胞のゲノムDNA を鋳型とするPCR増幅を行った。用いた細胞クローンは、HepG2 細胞に rSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン 1、5、7、8、9、10、11、12、及び13、ならびにIMY N9 細胞に rSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン 3、4、5、6、7

、8、9、10、及び11であった。この結果、図14に示すとおり、HepG2細胞にrSGRE P-JFH1導入した細胞クローンについては、調べた9クローン中、ネオマイシン耐性遺伝子の増幅が示された陽性クローンは認められなかった。IMY N9細胞にrSGREP-JFH1導入した細胞クローンについては、調べた9クローン中、ネオマイシン耐性遺伝子の増幅が示された陽性クローンは認められなかった。

[0113]

同様に、Hela 細胞にrSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン及び293細胞にrSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローンについて、同様の検討を行ったところ、ネオマイシン耐性遺伝子の増幅が示された陽性クローンは認められなかった。

[0114]

(M) HCVタンパク質の検出

樹立した細胞クローンから常法によりタンパク質を抽出して、SDS-PAGE及びウエスタン ブロット法により解析した(図15)。調べた細胞クローンは、前項で用いたものと同じ であり、HepG2 細胞に rSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクション して得られた細胞クローン1、5、7、8、9、10、11、12、及び13、ならびに IMY N9 細胞にrSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得ら れた細胞クローン3、4、5、6、7、8、9、10、及び11である。また、既報(Le hmann et.al., Science, (1999)) に従って、HuH7にrSGREP-JFH1を導入して作製したHCV RNAレプリコン複製細胞クローンを陽性対照(図15 lane 4-1、C6)とした。さらに、ト ランスフェクションしていない細胞から抽出したタンパク質を陰性対照として用いた(図 15 lane N)。それぞれの細胞クローンから抽出したタンパク質試料をPVDF膜(Immobil on-P, Millipore社製)にブロッティングし、抗NS3特異的抗体(Dr. Moradpour より分与 されたもの; Wolk B, et al, J. Virology. 2000; 74: 2293-2304) を用いて複製レプリ コンRNAにコードされているNS3タンパク質を検出した。図15上段に示されるとおり、rS GREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン 1、5、7、8、9、10、11、12、及び13、ならびにIMY N9細胞にrSGREP-JFH1 由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン3、4、 5、6、7、8、9、10、及び11では、陽性対照と同じ大きさのタンパク質が検出さ れた。

[0115]

また、C型肝炎患者の血清を抗体として用いることにより、上記でNS3タンパク質の発現が確認された各細胞クローンについて、レプリコンRNAからのNS5aタンパク質の発現の確認をおこなった。 NS3タンパク質の発現と同様に抗体を患者血清を変えて検討を行った。その結果、図15下段に示すように、rSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン1、5、7、8、9、10、11、12、及び13、ならびにIMY N9細胞にrSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン3、4、5、6、7、8、9、10、及び11では、陽性対照と同じ大きさのタンパク質が検出された。

[0116]

同様に、Hela細胞にrSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローン及び293細胞にrSGREP-JFH1由来の複製レプリコンRNAを再トランスフェクションして得られた細胞クローンについて、同様の検討を行ったところ、NS3及びNS5aタンパク質の発現が確認できた。

[0117]

以上のとおり、レプリコンRNAをトランスフェクションして樹立した細胞クローンでは、レプリコンRNAが複製されていることが確認された。

[0118]

[実施例7]

(N) 適合変異の解析

実施例3に従って、rSGREP-JFH1のHepG2及びHeLa細胞へのトランスフェクションを経て樹立したレプリコン複製細胞クローンから取得したトータルRNAを新たな各々の細胞に再トランスフェクションして、HepG2細胞については14の細胞クローンを、HeLa細胞については8の細胞クローンを樹立した。これらの細胞クローンから、常法によりトータルRNAをそれぞれ抽出した。このトータルRNAを鋳型にして逆転写酵素Supers Cript II (Invitroge n社製)とプライマー9641R-IH(5'-GCACTCTCTGCAGTCATGCGGCTCACGGAC-3'(配列番号31)によりレプリコンRNAに対応するcDNAを合成した。逆転写反応によるcDNA合成のための反応液組成を以下に示す。

[0119]

	液量(μ1)
5x 1st strand Buffer	4
2mM dNTP	5
O.1M DTT	1
9651R-IH プライマー(100μM)	1
DW(蒸留水)	6.5
Sample RNA (2 mg/mL)	1
RNAsin (Promega社製)(40U/μL)	0.5
Superscript II RT (Invitrogen社製)	1
合計量	20 μ1

[0120]

cDNA合成反応としては、まず上記のRNAsinとSuperscript II以外の試薬を混合して最初の反応液を調製し、それを90℃で3分間加熱した後、氷上で冷却した。その後、この反応液に RNAsinとSuperscript IIを添加して42℃で1時間反応させた後、さらに70℃で15分間反応させた。

[0121]

さらに、このようにして得られたcDNAについて、以下の手順により5組のプライマーセットを用いるPCR増幅を行って、レプリコンRNAのほぼ全領域にわたるDNA増幅断片を得た。用いたプライマーセット及びその各々により増幅される領域を下記の表5及び表6に示す。

[0122]

【表 5】

増幅断片の名称	プライ	マーセット	増幅領域
	プライマー1	プライマー2	
A	42S-IH	433R-neo	41-470
В	C/S17ssp	4680R-IH	28-3026
С	4534S-IH	7279R-IH	2280-5625
D	7198S-IH	9367R-IH	5544-7713
E	9247S-NF	9576R-NF	7597-7966

なお表中、増幅領域は、rSGREP-JFH1(配列番号 1)において対応する塩基番号で示した。 【 0 1 2 3】

【表 6】

プライマーの名称	塩基配列(5' to 3')	配列番号
43S-IH	CCCCTGTGAGGAACTACTGTCTTCACGC	配列番号14
C/S17ssp	CCGGGAGAGCCATAGTGGTCTGCG	配列番号15
4534S-IH	CCACTCAAAGAAAAAGTGTGACGAGCTCGC	配列番号16
7198S-IH	GGCTTGGGCACGGCCTGA	配列番号17
9247S-NF	GCGGTGAAGACCAAGCTCAAACTCACTCCA	配列番号18
433R-neo	AGAACCTGCGTGCAATCCATC	配列番号19
4680R-IH	CCCGTCATGAGGGCGTCGGTGGC	配列番号20
7279R-IH	ACCAGCAACGGTGGGCGGTTGGTAATC	配列番号21
9367R-IH	GGAACGCGACACGCTGTG	配列番号22
9576R-NF	AGCTAGCCGTGACTAGGGCTAAGATGGAGC	配列番号23

[0124]

このPCR反応における反応液組成は以下のとおりである。

反応液組成	液量(μl)
プライマー1 (10μM)	1.0
プライマー 2 (10 μ M)	1.0
2.5mM dNTPs	5.0
10x LA Buffer	5.0
MgC12 (25mM)	5.0
LA Taq(TAKARA) (5U/ μ 1)	0.3
DW (蒸留水)	30.7
鋳型 CDNA	2.0
合計量	50 μ1

[0125]

また、PCR反応の条件は、以下のとおりであった: 95℃で2分間; 98℃で10秒間に続き68℃で8分間を35サイクル; 72℃で7分間;4℃で保持。

[0126]

以上のようにして得られた各PCR産物の塩基配列を決定し、そのDNA配列対応するRNA配列とrSGREP-JFH1の配列との比較を行った。その結果を表7及び8に示す。

【表7】

HepG2 細胞におけるJFH-1 レプリコンにおける適合変異の解析

クローン	変異部位			
	塩基番号	アミノ酸番号		アミノ酸
HeplH1	6826	2714	C⇒A	Q⇒K
HeplH3	6887	2734	C⇒A	T⇒N
HepIH5	6887		U⇒A	なし
HeplH8	6580	2632	U⇒A	S⇒T
•	7159	2825	U⇒C	Y⇒H
HepiH9	3342		A⇒G	なし
	3594		C⇒A	なし
	7230	2848	U⇒A	N⇒K
HepiH10	· 5052		U⇒C	なし
-	6943	2753	C⇒A	P⇒T
HeplH12	なし			
HeplH13	4302		C⇒U	なし
•	5687	2334	G⇒A	G⇒D
	6110	2475	A⇒G	Y⇒C

[0127]

表7のとおり、HepG2細胞については8の細胞クローンにおいて認められた塩基変異は全部で13個あったが、そのうち8個はアミノ酸の変異を引き起こす非同義置換であった。これらの変異の種類を、表8に示す。一方、HeLa細胞については3の細胞クローンにおいて認められた塩基変異は全部で7個あったが、そのうち5個はアミノ酸の変異を引き起こす非同義置換であった。これらの変異の種類を、表8に示す。

[0128]

【表8】

HeLa 細胞におけるJFH-1 レプリコンにおける適合変異の解析

クローン	変異部位		変	変異	
	塩基番号	アミノ酸番号	塩基	アミノ酸	
HeLaH1	なし				
HeLalH2	5550	2272	U⇒C	S⇒P	
	6252		A⇒G	なし	
	7182		U⇒C	なし	
	7217	2844	A⇒G	H⇒R	
HeLalH5	3643	1653	A⇒G	M⇒V	
	5851	2389	G⇒A	A⇒T	
	5914	2410	G⇒A	E⇒K	

[0129]

表7及び8において、「HepIH No.」は、HepG2 細胞を用いてクローン化したレプリコ

ンRNAを有するレプリコン複製細胞クローン番号を示す。「塩基番号」はレプリコンRNA r SGREP-JFH1の塩基配列(配列番号 1)中の対応する塩基の番号として示している。「アミノ酸番号」は、JFH-1クローンにコードされるアミノ酸配列(配列番号 4)中の対応するアミノ酸の番号として示している。変異部位の塩基及びアミノ酸の種類は、通常の表記法に従って記載されている。表 7 に示されるとおり、例えば、クローン HepIH1では、レプリコンRNA上の配列番号 の塩基番号 6826 に相当する塩基がCからAへ変異し、その結果、配列番号のアミノ酸番号2714に相当するアミノ酸がQからEへ変異したことを示している。同様に表 8 において、「HeLaIH No.」は、HeLa細胞を用いて、クローン化したレプリコンRNAを有するレプリコン複製細胞クローン番号を示す。

[0130]

なお、アミノ酸の変異を引き起こす塩基変異を全く有しないクローンについてノーザンブロット解析を行ったところ、レプリコンRNAの複製量は、アミノ酸変異を生じる塩基変異を有するレプリコンRNAを複製している細胞クローンよりも少ないことが示された。つまり、レプリコンRNAにおけるアミノ酸変異を引き起こす塩基変異は、細胞においてレプリコンRNAの複製効率を増大させる適合変異であると考えられた。

【産業上の利用可能性】

[0131]

本発明に係るレプリコン複製細胞は、遺伝子型2aのHCV由来のRNA及びHCVタンパク質を持続的に産生させるための培養系として利用することができる。さらに本発明に係るレプリコン複製細胞は、HCVの複製及び/又はHCVタンパク質の翻訳に影響を及ぼす各種物質をスクリーニングするための試験系として有用である。

【図面の簡単な説明】

[0132]

【図1】図1は、本発明に係るHCV-RNAレブリコンを作製するための鋳型DNAの構築手順を示す概略図である。図1の上段は、pJFH1及びpJCH1のウイルスゲノム挿入領域の構造を示す。図1の下段は、pJFH1及びpJCH1のウイルスゲノム挿入領域の一部をネオマイシン耐性遺伝子とEMCV IRESを含むDNA断片で置換することにより構築したプラスミドDNA pSGREP-JFH1及びpSGREP-JCH1のウイルスゲノム挿入領域の構造を示す。図中の記号は以下のとおりである。T7:T7 RNAプロモーター、G:挿入したJFH-1又はJCH-1由来DNAの5'端の上流かつT7 RNAプロモーター配列の3'端の下流に挿入したdGTP、5'NTR:5'非翻訳領域、Core:コアタンパク質、3'NTR:3'非翻訳領域。E1、E2:エンベロープタンパク質。NS2、NS3、NS4A、NS4B、NS5A、NS5B:非構造タンパク質。Age I、Cla I、Xba I:制限酵素Age I、Cla I及びXba Iの切断部位。GDD:NS5Bタンパク質の活性中心に相当するアミノ酸モチーフGDDの位置。neo:ネオマイシン耐性遺伝子、EMCV IRES:EMCVIRES(脳心筋炎ウイルスの内部リボソーム結合部位)。

【図2A】図2Aは、rSGREP-JFH1の塩基配列を示す。

【図2B】図2Bは、rSGREP-JFH1の塩基配列を示す。

【図2C】図2Cは、rSGREP-JFH1の塩基配列を示す。

【図2D】図2Dは、rSGREP-JFH1の塩基配列を示す。

【図2E】図2Eは、rSGREP-JFH1の塩基配列を示す。

【図2F】図2Fは、rSGREP-JFH1の塩基配列を示す。

【図3A】図3Aは、rSGREP-JCH1の塩基配列を示す。

【図3B】図3Bは、rSGREP-JCH1の塩基配列を示す。 【図3C】図3Cは、rSGREP-JCH1の塩基配列を示す。

【図3D】図3Dは、rSGREP-JCH1の塩基配列を示す。

【図3E】図3Eは、rSGREP-JCH1の塩基配列を示す。

【図3F】図3Fは、rSGREP-JCH1の塩基配列を示す。

【図4】図4は、rSGREP-JFH1、rSGREP-JFH1/GND及びrSGREP-JFH1/dGDDをそれぞれトランスフェクションしたHuh7細胞のコロニー形成を示した写真である。トランスフェ

クションしたRNAの量は、上段の3つはいずれも100 ng、下段の3つはいずれも300 n gである。

【図5】図5は、rSGREP-JFH1及びrSGREP-JCH1をそれぞれトランスフェクションした Huh7細胞の、培地中のG418の濃度が0.5mg/mlである場合のコロニー形成を示した写真である。トランスフェクションしたRNAの量は、いずれも100mgである。

【図6】図6は、トランスフェクション細胞のコロニー形成能に対する、Mung Bean Nuclease処理の影響を示した写真である。トランスフェクションしたrSGREP-JFH1 RN Aの量は、いずれも100 ngである。いずれも培地中のG418の濃度は1.0mg/mlである

【図7】図7は、rSGREP-JFH1をトランスフェクションして樹立したレプリコン複製細胞クローン由来のトータル細胞性RNAを新たなHuh7細胞に再トランスフェクションした場合に示されるコロニー形成を示す写真である。左側写真は、レプリコン複製細胞クローン6由来のトータル細胞性RNAを用いて96コロニーの形成がみとめられた結果、右側写真: プールクローン由来のトータル細胞性RNAを用いて77コロニーの形成がみとめられた結果を示す。いずれもレプリコンRNAを 1×10^7 コピー含む量を再トランスフェクションした。

【図8】図8は、rSGREP-JFH1をトランスフェクションして樹立したレプリコン複製細胞クローン由来のトータル細胞性RNAを新たなHuh7細胞に再トランスフェクションして得た細胞クローン由来のトータルRNAに対して、rSGREP-JFH1特異的プローブを用いてノーザンブロット法による検出を行った結果を示す写真である。レーンの説明は以下のとおりである。 10^8 : Huh7細胞から抽出したトータルRNAに試験管内で合成したレプリコンRNAを10の8乗コピー加えたサンプル、 10^7 : Huh7細胞から抽出したトータルRNAに試験管内で合成したレプリコンRNAを10の7乗コピー加えたサンプル、Huh7: トランスフェクションしていないHuh7細胞から抽出したトータルRNA、プールクローン: プールクローンから抽出したトータルRNA、 $1\sim11$: 細胞クローン $1\sim1$ 0ぞれぞれから抽出したトータルRNA。「レプリコンRNA」は、rSGREP-JFH1の分子量サイズを示すマーカー、「28S」は4.5kbの分子量サイズを示すリボソームRNAマーカーの泳動位置を示す。

【図9】図9は、rSGREP-JFH1又はrSGREP-JCH1由来複製レプリコンRNAが再トランスフェクションされた細胞クローンにおける、ネオマイシン耐性遺伝子の宿主細胞のゲノムDNAへの組み込みの有無を示す写真である。左側写真のレーンの説明は以下のとおりである。M: DNA分子量マーカー、 $1 \sim 8$: rSGREP-JFH1由来細胞クローン $1 \sim 8$ 、N: トランスフェクションしていないHuh7細胞、P: 陽性対照(ネオマイシン耐性遺伝子のPCR増幅産物)。一方、右側写真のレーンの説明は以下のとおりである。M: DNA分子量マーカー、 $1 \sim 6$: rSGREP-JCH1由来細胞クローン $1 \sim 6$ 。

【図10】図10は、rSGREP-JFH1又はrSGREP-JCH1由来複製レプリコンRNAが再トランスフェクションされた細胞クローンにおいて、発現されたNS3タンパク質の検出結果を示す写真である。左側写真のレーン1~8: rSGREP-JFH1由来細胞クローン1~8。右側写真のレーン1~6: rSGREP-JCH1由来細胞クローン1~6。右側写真のレーン0P: NS3タンパク質(陽性対照)、N: トランスフェクションしていないHuh7細胞から抽出したタンパク質(陰性対照)。

【図11】図11は、rSGREP-JFH1由来の複製レプリコンRNAのHuh7細胞への再トランスフェクションを経て樹立した21の細胞クローンから取得したレプリコンRNA中の塩基変異の位置を示す図である。変異の位置は、表4に示す塩基番号を付記した縦線で示している。太い縦線は非同義置換、細い縦線は同義置換を表す。

【図12】図12は、1) HepG2細胞、2) IMY-N9細胞、3) 293細胞、又は4) Hela細胞を用いたrSGREP-JFH1トランスフェクションの結果を示す。

【図13】図13は、レプリコン複製細胞クローンのノーザンプロッティングの結果を示す。

【図14】図14は、ネオマイシン耐性遺伝子のゲノムDNAへの組み込みを確認する

ための電気泳動の結果を示す。

【図15】図15は、レプリコン複製細胞クローン由来のタンパク質をウエスタンプロット法により解析した結果を示す。

【配列表フリーテキスト】

[0133]

配列番号1-人工配列の説明:レプリコン 配列番号2-人工配列の説明:レプリコン 配列番号7-人工配列の説明:レプリコン 配列番号8~12-人工配列の説明:合成RNA 配列番号13~41-人工配列の説明:合成DNA

【配列表】

SEQUENCE LISTING

<110> Toray Industries Inc. Tokyo Metropolitan Organization for Medical Research Johannes Gutenberg-Universitaet Mainz <120> Establishment of the genotype 2a Hepatitis C virus subgenomic replicon <130> P03-0852 <140> <141> <150> JP 2003-148242 <151> 2003-05-26 <160>41<170> PatentIn Ver. 2.1 <210> 1 <211> 8024 <212> RNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: replicon <220> <223> Inventor: Wakita, Takaji Inventor: Kato, Takanobu Inventor: Date, Tomoko <400> 1accugececu aauaggggeg acaeueegee augaaueaeu eeceugugag gaacuaeugu 60 cuucacgcag aaagcgccua gccauggcgu uaguaugagu gucguacagc cuccaggccc 120 ccccucccg ggagagccau aguggucugc ggaaccggug aguacaccgg aauugccggg 180 aagacugggu ccuuucuugg auaaacccac ucuaugcccg gccauuuggg cgugcccccg 240 caagacugcu agccgaguag cguuggguug cgaaaggccu ugugguacug ccugauaggg 300 cgcuugcgag ugccccggga ggucucguag accgugcacc augagcacaa auccuaaacc 360 ucaaagaaaa accaaaagaa acaccaaccg ucgcccaaug auugaacaag auggauugca 420 cgcagguucu ccggccgcuu ggguggagag gcuauucggc uaugacuggg cacaacagac 480 aaucggcugc ucugaugccg ccguguuccg gcugucagcg caggggggcc cgguucuuuu 540 ugucaagacc gaccuguccg gugcccugaa ugaacugcag gacgaggcag cgcggcuauc 600 guggcuggcc acgacgggcg uuccuugcgc agcugugcuc gacguuguca cugaagcggg 660 aagggacugg cugcuauugg gcgaagugcc ggggcaggau cuccugucau cucaccuugc 720 uccugeegag aaaguaucea ucauggeuga ugeaaugegg eggeugeaua egeuugauce 780 ggcuaccugc ccauucgacc accaagcgaa acaucgcauc gagcgagcac guacucggau 840

ggaagccggu cuugucgauc aggaugaucu ggacgaagag caucaggggc ucgcgccagc 900

		•				
				_	ucgugaccca	
					gauucaucga	
					cccgugauau	
					guaucgccgc	
					gaguuuaaac	
					ggccggugug	
					${\tt agggcccgga}$	
					gccaaaggaa	
					ugaagacaaa	
					aggugccucu	
					cagugccacg	
					uucaacaagg	
					ccucggugca	
					aaccacgggg	
					uuaugcccag	
caaacacgag	gccuccuggg	cgccauagug	gugaguauga	cggggcguga	caggacagaa	1860
					aacaaccauc	
					cggcuuacgg	
gguccgguca	cgcagaugua	cucgagugcu	gagggggacu	ugguaggcug	gcccagcccc	2040
					ucuggucacg	
cggaacgcug	augucauccc	ggcucggaga	cgcggggaca	agcggggagc	auugcucucc	2160
					cccuaggggc	
cacgucguug	ggcucuuccg	agcagcugug	ugcucucggg	gcguggccaa	auccaucgau	2280
uucauccccg	uugagacacu	cgacguuguu	acaaggucuc	ccacuuucag	ugacaacagc	2340
					aacuggcagu	
ggaaagagca	ccaagguccc	ugucgcguau	gccgcccagg	gguacaaagu	acuagugcuu	2460
aaccccucgg	uagcugccac	ccugggguuu	ggggcguacc	uauccaaggc	acauggcauc	2520
					cacguacucc	
acauauggca	aauuucucgc	cgaugggggc	ugcgcuagcg	gcgccuauga	caucaucaua	2640
ugcgaugaau	gccacgcugu	ggaugcuacc	uccauucucg	gcaucggaac	gguccuugau	2700
					ccccggguca	
gugacaaccc	cccaucccga	uauagaagag	guaggccucg	ggcgggaggg	ugagaucccc	2820
uucuauggga	gggcgauucc	ccuauccugc	aucaagggag	ggagacaccu	gauuuucugc	2880
cacucaaaga	aaaaguguga	cgagcucgcg	gcggcccuuc	ggggcauggg	cuugaaugcc	2940
guggcauacu	auagaggguu	ggacgucucc	auaauaccag	cucagggaga	uguggugguc	3000
gucgccaccg	acgcccucau	gacgggguac	acuggagacu	uugacuccgu	gaucgacugc	3060
aauguagcgg	ucacccaagc	ugucgacuuc	agccuggacc	ccaccuucac	uauaaccaca	3120
cagacugucc	cacaagacgc	ugucucacgc	agucagcgcc	gcgggcgcac	agguagagga	3180
agacagggca	cuuauaggua	uguuuccacu	ggugaacgag	ccucaggaau	guuugacagu	3240
guagugcuuu	gugagugcua	cgacgcaggg	gcugcguggu	acgaucucac	accagcggag	3300
accaccguca	ggcuuagagc	guauuucaac	acgcccggcc	uacccgugug	ucaagaccau	3360
cuugaauuuu	gggaggcagu	uuucaccggc	cucacacaca	uagacgccca	cuuccucucc	3420
caaacaaagc	aagcggggga	gaacuucgcg	uaccuaguag	ccuaccaagc	uacggugugc	3480
					ggcccgacuc	
					uaccaaugag	
					ugaccuugag	
					cgcauauugc	
					agucgucguu	
					cgccucuagg	
					gauccaaggc	
		_	_			

uugcugcagc	aggccucuaa	gcaggcccag	gacauacaac	ccgcuaugca	ggcuucaugg	3960
				ucauuagcgg		
cucgcaggau	ugucaacacu	gccagggaac	${\tt cccgcggugg}$	cuuccaugau	ggcauucagu	4080
				uucucaacau		
ugguuagcgu	cccagaucgc	accacccgcg	ggggccaccg	gcuuugucgu	caguggccug	4200
gugggggcug	ccgugggcag	cauaggccug	gguaaggugc	ugguggacau	ccuggcagga	4260
uauggugcgg	gcauuucggg	ggcccucguc	gcauucaaga	ucaugucugg	cgagaagccc	4320
ucuauggaag	augucaucaa	ucuacugccu	gggauccugu	cuccgggagc	ccugguggug	4380
ggggucaucu	gcgcggccau	ucugcgccgc	cacgugggac	cgggggaggg	cgcgguccaa	4440
uggaugaaca	ggcuuauugc	cuuugcuucc	agaggaaacc	acgucgcccc	uacucacuac	4500
gugacggagu	cggaugcguc	gcagcgugug	acccaacuac	uuggcucucu	uacuauaacc	4560
				gccccauccc		
uccuggcucc	gcgacgugug	ggacuggguu	ugcaccaucu	ugacagacuu	caaaaauugg	4680
cugaccucua	aauuguuccc	caagcugccc	ggccuccccu	ucaucucuug	ucaaaagggg	4740
uacaagggug	ugugggccgg	cacuggcauc	augaccacgc	gcugcccuug	cggcgccaac	4800
aucucuggca	auguccgccu	gggcucuaug	aggaucacag	ggccuaaaac	cugcaugaac	4860
				gccagugcgc		
cccacgaacu	acaagaccgc	caucuggagg	guggcggccu	cggaguacgc	ggaggugacg	4980
cagcaugggu	cguacuccua	uguaacagga	cugaccacug	acaaucugaa	aauuccuugc	5040
caacuaccuu	cuccagaguu	uuucuccugg	guggacggug	ugcagaucca	uagguuugca	5100
cccacaccaa	agccguuuuu	ccgggaugag	gucucguucu	gcguugggcu	uaauuccuau	5160
gcugucgggu	cccagcuucc	cugugaaccu	gagcccgacg	cagacguauu	gagguccaug	5220
cuaacagauc	cgcccacau	cacggcggag	acugcggcgc	ggcgcuuggc	acggggauca	5280
ccuccaucug	aggcgagcuc	cucagugagc	cagcuaucag	caccgucgcu	gcgggccacc	5340
ugcaccaccc	acagcaacac	cuaugacgug	gacauggucg	augccaaccu	gcucauggag	5400
ggcggugugg	cucagacaga	gccugagucc	agggugcccg	uucuggacuu	ucucgagcca	5460
auggccgagg	aagagagcga	ccuugagccc	ucaauaccau	cggagugcau	gcucccagg	5520
				acuacaaccc		
				cugguugugc		
				cagugggucu		
				uuggccagcc		
				ccggcggucc		
				ugccccccu		
				aaccuccccc		
				gcuccgagga		
				uaauaacucc		
				uguugcgaua		
				aaaagguaac		
				acaucaagcu		
				aguugacucc		
				gcuuguccgg		
				cacaaacacc		
				ccaagggggg		
				gcgagaaaau		
				ccuauggcuu	-	
				aaaagaagga		
				agagagacau		
				gcacugccau		
				agggucaaac		
agacguugcc	gcgccagcgg	ggugcuaacc	acuagcaugg	guaacaccau	cacaugcuau	6900
					•	

```
gugaaagccc uagcggccug caaggcugcg gggauaguug cgcccacaau gcugguaugc 6960
ggcgaugacc uaguagucau cucagaaagc caggggacug aggaggacga gcggaaccug 7020
agagecuuca eggaggecau gaceagguae ueugeeceue euggugauee eeceagaeeg 7080
gaauaugacc uggagcuaau aacauccugu uccucaaaug ugucuguggc guugggcccg 7140
cggggccgcc gcagauacua ccugaccaga gacccaacca cuccacucgc ccgggcugcc 7200
ugggaaacag uuagacacuc cccuaucaau ucauggcugg gaaacaucau ccaguaugcu 7260
ccaaccauau ggguucgeau gguccuaaug acacacuucu ucuccauucu caugguccaa 7320
gacacccugg accagaaccu caacuuugag auguauggau caguauacuc cgugaauccu 7380
uuggaccuuc cagccauaau ugagagguua cacgggcuug acgccuuuuc uaugcacaca 7440
uacucucacc acgaacugac gcggguggcu ucagcccuca gaaaacuugg ggcgccaccc 7500
cucagggugu ggaagagucg ggcucgcgca gucagggcgu cccucaucuc ccguggaggg 7560
aaagcggccg uuugcggccg auaucucuuc aauugggcgg ugaagaccaa gcucaaacuc 7620
acuccauugc cggaggcgcg ccuacuggac uuauccaguu gguucaccgu cggcgccggc 7680
gggggcgaca uuuuucacag cgugucgcgc gcccgacccc gcucauuacu cuucggccua 7740
cuccuacuuu ucguagggu aggccucuuc cuacuccccg cucgguagag cggcacacac 7800
uuuuuuuuu cuuuuuuuu uuuuucccuc uuucuucccu ucucaucuua uucuacuuuc 7920
uuucuuggug gcuccaucuu agcccuaguc acggcuagcu gugaaagguc cgugagccgc 7980
augacugcag agagugccgu aacuggucuc ucugcagauc augu
                                                              8024
```

<210> 2

<211> 8024

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: replicon

<400> 2

```
accegececu aauaggggeg acaeueegee augaaueaeu eeeeugugag gaaeuaeugu 60
cuucacgcag aaagcgucua gccauggcgu uaguaugagu gucguacagc cuccaggccc 120
ccccucccg ggagagccau aguggucugc ggaaccggug aguacaccgg aauugccggg 180
aagacugggu ccuuucuugg auaaacccac ucuaugcccg gccauuuggg cgugcccccg 240
caagacugcu agccgaguag cguuggguug cgaaaggccu ugugguacug ccugauaggg 300
ugcuugcgag ugccccggga ggucucguag accgugcacc augagcacaa aucccaaacc 360
ucaaagaaaa accaaaagaa acacuaaccg ucgcccaaug auugaacaag auggauugca 420
cgcagguucu ccggccgcuu ggguggagag gcuauucggc uaugacuggg cacaacagac 480
aaucggcugc ucugaugccg ccguguuccg gcugucagcg caggggggcgcc cgguucuuuu 540
ugucaagacc gaccuguccg gugcccugaa ugaacugcag gacgaggcag cgcggcuauc 600
guggcuggcc acgacgggcg uuccuugcgc agcugugcuc gacguuguca cugaagcggg 660
aagggacugg cugcuauugg gcgaagugcc ggggcaggau cuccugucau cucaccuugc 720
uccugecgag aaaguaucca ucauggeuga ugcaaugegg eggeugeaua egeuugauce 780
ggcuaccugc ccauucgacc accaagcgaa acaucgcauc gagcgagcac guacucggau 840
ggaagccggu cuugucgauc aggaugaucu ggacgaagag caucaggggc ucgcgccagc 900
cgaacuguuc gccaggcuca aggcgcgcau gcccgacggc gaggaucucg ucgugaccca 960
uggcgaugcc ugcuugccga auaucauggu ggaaaauggc cgcuuuucug gauucaucga 1020
cuguggccgg cugggugugg cggaccgcua ucaggacaua gcguuggcua cccgugauau 1080
ugcugaagag cuuggcggcg aaugggcuga ccgcuuccuc gugcuuuacg guaucgccgc 1140
uccegauucg cagegeaucg ceuucuaucg ceuucuugac gaguucuucu gaguuuaaac 1200
```

5/

ccucucccuc cccccccu aacguuacug gccgaagccg cuuggaauaa ggccggugug 1260 cguuugucua uauguuauuu uccaccauau ugccgucuuu uggcaaugug agggcccgga 1320 aaccuggece ugucuucuug acgageauuc cuaggggucu uuccecucuc gecaaaggaa 1380 ugcaaggucu guugaauguc gugaaggaag caguuccucu ggaagcuucu ugaagacaaa 1440 caacgucugu agcgacccuu ugcaggcagc ggaacccccc accuggcgac aggugccucu 1500 gcggccaaaa gccacgugua uaagauacac cugcaaaggc ggcacaaccc cagugccacg 1560 uugugaguug gauaguugug gaaagaguca aauggcucuc cucaagcgua uucaacaagg 1620 ggcugaagga ugcccagaag guaccccauu guaugggauc ugaucugggg ccucggugca 1680 caugcuuuac auguguuuag ucgagguuaa aaaaacgucu aggccccccg aaccacgggg 1740 acgugguuuu ccuuugaaaa acacgauaau accauggccc ccaucaccgc uuacgcccag 1800 cagacacgag gucucuuggg cucuauagug gugagcauga cggggcguga caagacagaa 1860 caggccgggg agguccaagu ccuguccaca gucacucagu ccuuccucgg aacauccauu 1920 ucgggggucu uauggacugu uuaccacgga gcuggcaaca agacacuagc cggcucgcgg 1980 ggcccgguca cgcagaugua cucgagcgcc gagggggacu uggucgggug gcccagcccu 2040 ccugggacca aaucuuugga gccguguacg uguggagcgg ucgaccugua uuuggucacg 2100 cggaacgcug augucauccc ggcucgaaga cgcggggaca agcggggagc gcugcucucc 2160 ccgagacccc uuucgaccuu gaaggggucc ucggggggac cugugcuuug cccuaggggc 2220 cacgcugucg gaaucuuccg ggcagcugug ugcucucggg guguggcuaa guccauagau 2280 uucauccccg uugagacgcu cgacaucguc acgcggucuc ccaccuuuag ugacaacagc 2340 acaccaccag cugugcccca gaccuaucag gugggguacu ugcacgcccc cacuggcagu 2400 ggaaaaagca ccaagguccc cgucgcguac gccgcccagg gguauaaagu gcuggugcuc 2460 aaucccucgg uggcugccac ccugggauuu ggggcguacu uguccaaggc acauggcauc 2520 aaccccaaca uuaggacugg agucagaacu gugacgaccg gggagcccau uacauacucc 2580 acguauggua aauuccucgc cgaugggggc ugcgcaggcg gcgccuauga caucaucaua 2640 ugcgaugaau gccacucugu ggaugcuacc acuauucucg gcaucgggac aguccuugac 2700 caagcagaga cagccggggu caggcuaacu guacuggcca cggccacgcc ccccgggucg 2760 gugacaaccc cccaucccaa uauagaggag guagcccucg gacaggaggg ugagaucccc 2820 uucuauggga gggcguuucc ccugucuuac aucaagggag ggaggcacuu gauuuucugc 2880 cacucaaaga aaaaguguga cgagcucgca acggcccuuc ggggcauggg cuugaacgcu 2940 guggcauauu acagaggguu ggacgucucc auaauaccaa cucaaggaga uguggugguc 3000 guugccaccg acgcccucau gacgggguau acuggagacu uugacuccgu gaucgacugc 3060 aacguagegg ucacceagge eguagacuuc ageeuggace ecaceuucae uauaaceaca 3120 cagacugucc cgcaagacgc ugucucacgu agucagcgcc gaggggggcac ggguagagga 3180 agacugggca uuuauaggua uguuuccacu ggugagcgag ccucaggaau guuugacagu 3240 guaguacucu gugagugcua cgacgcagga gcugcuuggu augagcucuc accaguggag 3300 acgaccguca ggcucagggc guauuucaac acgccuggcu ugccugugug ccaggaccac 3360 cagacaaagc agucggggga aaauuucgca uacuuaguag ccuaucaggc cacagugugc 3480 aagcccacgc uugugggccc uacaccucuc cuguaccguu ugggcucugu uaccaacgag 3600 gucacccuua cacaccccgu gacaaaauac aucgccacau gcaugcaagc ugaccucgag 3660 gucaugacca gcacgugggu ccuggcuggg ggagucuuag cagccgucgc cgcguauugc 3720 uuagcgaccg gguguguuuc caucauuggc cguuuacaca ucaaccagcg agcugucguc 3780 gcuccggaca aggagguccu cuaugaggcu uuugaugaga uggaggaaug ugccuccaga 3840 gcggcucucc uugaagaggg gcagcggaua gccgagaugc ugaaguccaa gauccaaggc 3900 uuauugcagc aagccucuaa acaggcccag gacauacaac ccgcugugca agcuucgugg 3960 cccaagaugg agcaauucug ggccaaacau auguggaacu ucauaagcgg cauucaguac 4020 cucgcaggac ugucaacacu gccagggaac ccugcugugg cuuccaugau ggcauucagc 4080 geegeecuca ecagueeguu gucaacuage accaecauce uucuuaacau ueugggggge 4140 uggcuggcgu cccaaauugc gccacccgcg ggggccacug gcuuuguugu caguggccug 4200

6/

gugggagcug cuguuggcag cauaggcuug gguaaagugc ugguggacau ccuggcaggg 4260 uauggugcgg gcauuucggg ggcccucguc gcguuuaaga ucaugucugg cgagaagccc 4320 uccauggagg augucaucaa cuugcugccu gggauucugu cuccaggugc ucugguggug 4380 ggagucaucu gcgcggccau ucugcgccgc caugugggac cgggggaagg cgcgguccaa 4440 uggaugaaca ggcuuaucgc cuucgcuucc agaggaaacc acgucgcccc uacucacuac 4500 gugacggagu cggaugcguc gcagcguguc acccaacugc uuggcucucu cacuauaacu 4560 agucuacuca ggagacuuca caacuggauc acugaggauu gccccauccc augcgccggc 4620 ucguggcucc gcgaugugug ggacuggguc uguaccaucc uaacagacuu uaagaacugg 4680 cugaccucca agcuguuccc aaagaugccu ggccuccccu uuaucucuug ccaaaagggg 4740 uacaagggcg ugugggccgg cacuggcauc augaccacac gaugccccug cggcgccaac 4800. aucucuggea acgucegeuu gggeucuaug agaaucacag gacecaaaac cugeaugaac 4860 accuggcagg ggaccuuucc uaucaauugu uauacagaag gccagugcuu gccgaaaccc 4920 gcguuaaacu ucaagaccgc caucuggaga guggcggccu cagaguacgc ggaagugacg 4980 cagcacggau cauaugccua uauaacaggg cugaccacug acaacuuaaa agucccuugc 5040 caacucccu cuccagaguu uuucucuugg guggacggag uacaaaucca uagguccgcc 5100 cccacaccaa agccguuuuu ccgggaugag gucucguuca gcguugggcu caauucauuu 5160 gucgucgggu cucagcuucc cugugacccu gagcccgaca cugagguagu gauguccaug 5220 cuaacagacc caucccauau cacggcggag gcugcagcgc ggcguuuagc gcggggguca 5280 eccecaucug aggeaageue eucagegage eageuguegg egeeauegeu gegageeaee 5340 ugcaccaccc acgguaggac cuaugaugug gacauggugg augccaaccu guucaugggg 5400 ggcggcguga uucggauaga gucugagucc aaaguggucg uucuggacuc ccucgacuca 5460 augaccgagg aagagggcga ccuugagccu ucaguaccau cggaguauau gcuccccagg 5520 aagagguucc caccggccuu accggcuugg gcgcggccug auuacaaccc accgcuugug 5580 gaaucgugga agaggccaga uuaccaacca cccacuguug cgggcugugc ucucccccc 5640 cccaaaaaga ccccgacgcc uccuccaagg agacgccgga cagugggucu gagcgagagc 5700 accauaggag augeceucea acageuggee aucaagueeu uuggeeagee eeeceeaage 5760 ggcgauucag gccuuuccac gggggcggac gccgccgacu ccggcgaucg gacacccccu 5820 gacgaguugg cucuuucgga gacagguucu accuccucca ugcccccccu cgagggggag 5880 ccuggggacc cagaccugga gccugagcag guagagcuuc aaccuccucc ccaggggggg 5940 gaggeageue eeggeuegga euegggguee uggueuaeuu geueegagga ggaugaeuee 6000 gucgugugcu gcuccauguc auauuccugg accggggcuc uaauaacucc uuguagcccc 6060 gaagaggaaa aguugccaau uaacuccuug agcaacucgc uguugcgaua ccauaacaag 6120 guauacugua cuacaucaaa gagugccuca cuaagggcua aaaagguaac uuuugauagg 6180 augcaagugc ucgacgccua uuaugauuca gucuuaaagg acaucaagcu agcggccucc 6240 aaggucagcg caaggcuccu caccuuagag gaggcgugcc aauugacccc accccacucu 6300 gcaagaucca aguauggguu uggggcuaag gagguccgca gcuuguccgg gagggccguc 6360 aaccacauca aguccgugug gaaggaccuc uuggaagacu cacaaacacc aauuccuaca 6420 accaucaugg ccaaaaauga gguguucugc guggaccccg ccaagggggg uaaaaaacca 6480 geuegeeuua ueguuuaeee ugaeeuegge gueagggueu gegagaagau ggeeeuuuau 6540 gaugucacac aaaagcuucc ucaggcggug augggggcuu cuuauggcuu ccaguacucc 6600 cccgcucagc ggguggaguu ucucuugaag gcaugggcgg aaaagagaga cccuaugggu 6660 uuuucguaug auacccgaug cuuugacuca accgucacug agagagacau caggacugag 6720 gaguccauau accaggccug cuccuuaccc gaggaggccc gaacugccau acacucgcug 6780 acugagagac ucuauguggg agggcccaug uucaacagca agggccaguc cugcggguac 6840 aggeguugee gegeeagegg ggugeuuaee acuaguaugg ggaacaecau cacaugeuau 6900 guaaaagccc uagcggcuug caaggcugcg gggauaauug cgcccacgau gcugguaugc 6960 ggcgacgacu uggucgucau cucagaaagc caggggacug aggaggacga gcggaaccug 7020 agagecuuca eggaggeuau gaccagguau ucugeeecuc euggugaeee eeceagaeeg 7080 gaauaugacc uggagcuaau aacaucuugu uccucaaacg ugucuguggc acuuggccca 7140 cagggccgcc gcagauacua ccugaccaga gaccccacca cuucaauugc ccgggcugcc 7200

```
ugggaaacag uuagacacuc cccugucaau ucauggcugg gaaacaucau ccaguacgcu 7260 ccaaccauau ggguucgcau gguccugaug acacacuucu ucuccauucu cauggcccag 7320 gacacccuag accagaaccu uaacuuugaa auguacggau cgguguacuc cgugaguccu 7380 cuggaccucc cagccauaau ugaaagguua cacgggcuug acgccuucuc ucugcacaca 7440 uacacucccc acgaacugac gcggguggcu ucagcccuca gaaaacuugg ggcgccaccc 7500 cucagagcgu ggaagagucg ggcgcgugca guuagggcgu cccucaucuc ccgugggggg 7560 agggcggccg uuugcggucg guaccucuuc aacugggcgg ugaagaccaa gcucaaacuc 7620 acuccuuugc cggaggcacg ccuccuggau uuguccaguu gguuuaccgu cggcgccggc 7680 gggggcgaca uuuaucacag cgugucgcgu gcccgacccc gccuauuacu ccuuagccua 7740 cuccuacuuu cuguaggggu aggccucuuc cuacucccg cucgauagag cggcacacau 7800 uagcuacacu ccauagcua agcccuauc cuuuuuuuuu uuuuuuuuu uuuuuuuuu 17860 uuuuuuuuuu gcucaucuu agcccuaguc acggcaagcu gugaaagguc cgugagccgc 7980 augacugcag agagugccgu aacuggucu uucucccu uucucaucuuu uucuucuuc 7920 uuucuuggug gcuccaucuu aacuggucu acggcaagcu gugaaagguc cgugagccgc 7980 augacugcag agagugccgu aacuggucu uucugcagau augu 8024
```

<210> 3

<211> 9678

<212> DNA

<213> Hepatitis C virus

<220>

<221> CDS

<222> (341).. (9442)

<400> 3

acctgeect aatagggeg acacteegee atgaateact eccetgtgag gaactaetgt 60 etteacgeag aaagegeeta gecatggegt tagtatgagt gtegtacage eteeaggeee 120 eeeeeteege ggagageeat agtggtetge ggaaceggtg agtacacegg aattgeeggg 180 aagaetgggt eetttettgg ataaaceeae tetatgeeeg gecatttggg egtgeeeeeg 240 eaagaetget ageegagtag egttgggttg egaaaggeet tgtggtaetg eetgataggg 300 egettgegag tgeeeeggga ggtetegtag accgtgeaee atg age aca aat eet 355 Met Ser Thr Asn Pro 1 5

aaa cct caa aga aaa acc aaa aga aac acc aac cgt cgc cca gaa gac
Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Glu Asp
10 15 20

gtt aag ttc ccg ggc ggc ggc cag atc gtt ggc gga gta tac ttg ttg Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val Tyr Leu Leu 25 30 35

ccg cgc agg ggc ccc agg ttg ggt gtg cgc acg aca agg aaa act tcg 499 Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Thr Thr Arg Lys Thr Ser 40 45 50

				cgt Arg									547
				gcc Ala 75				 _					595
				ctc Leu		 _			_			cga Arg	643
	_			tgg Trp			_				_	_	691
				atc Ile						_	_		739
				gtc Val			_				_	_	787
				gtg Val 155									835
				ggt Gly					_	_	_	_	883
				gtt Val									931
				gtg Val									979
_			_	gcg Ala	_		_		_	_		_	1027
				acg Thr 235									1075

9/

440 445 450

_	_		_	_	_				-						1747
		_		_											1795
	_						_	_	_		_	_			1843
		_					_				_	_	_	_	1891
															1939
			_			_		_		_	_	_	_		1987
Trp			_	_		_									2035
				_	_		_	_	_			_	_	-	2083
	_	_		_	_	_			_						2131
	_	_													2179
			-						_		_				2227
Phe															2275
	Arg 455 acc Thr tac Tyr tct Ser ggc Gly gag Glu 535 tgg Trp ggc Gly ttg Leu att Ile tac Tyr 615	Arg Leu 455 acc cta Thr Leu tac tgc Tyr Cys tct gtg Ser Val ggc acg Gly Thr 520 gag aca Glu Thr 535 tgg ttc Trp Phe ggc gcg Gly Ala ttg ttg Leu Leu att aag Ile Lys 600 tac cct Tyr Pro 615 ttc aag Phe Lys	Arg Leu Ser 455 acc cta cag Thr Leu Gln tac tgc tgg Tyr Cys Trp tct gtg tgt Ser Val Cys 505 ggc acg acc Gly Thr Thr 520 gag aca gat Glu Thr Asp 535 tgg ttc ggc Trp Phe Gly ggc gcg cca Gly Ala Pro ttg ttg tgc Leu Leu Cys 585 att aag tgt Ile Lys Cys 600 tac cct tac Tyr Pro Tyr 615 ttc aag ata	Arg Leu Ser Ala 455 acc cta cag tac Thr Leu Gln Tyr tac tgc tgg cac Tyr Cys Trp His 490 tct gtg tgt ggc Ser Val Cys Gly 505 ggc acg acc gac Gly Thr Thr Asp 520 gag aca gat gtc Glu Thr Asp Val 535 tgg ttc ggc tgc Trp Phe Gly Cys ggc gcg cca cct Gly Ala Pro Pro 570 ttg ttg tgc cct Leu Leu Cys Pro 585 att aag tgt ggt Ile Lys Cys Gly 600 tac cct tac aga Tyr Pro Tyr Arg 615 ttc aag ata aga	Arg Leu Ser Ala Cys 455 acc cta cag tac gag Thr Leu Gln Tyr Glu 475 tac tgc tgg cac tac Tyr Cys Trp His Tyr 490 tct gtg tgt ggc cca Ser Val Cys Gly Pro 505 ggc acg acc gac aga Gly Thr Thr Asp Arg 520 gag aca gat gtc ttc Glu Thr Asp Val Phe 535 tgg ttc ggc tgc acg Trp Phe Gly Cys Thr 555 ggc gcg cca cct tgc Gly Ala Pro Pro Cys 570 ttg ttg tgc cct acg Leu Leu Cys Pro Thr 585 att aag tgt ggt tct Ile Lys Cys Gly Ser 600 tac cct tac aga ctc Tyr Pro Tyr Arg Leu 615 ttc aag ata aga atg	Arg Leu Ser Ala Cys Arg 455	Arg Leu Ser Ala Cys Arg Asn 460 acc cta cag tac gag gat aat Thr Leu Gln Tyr Glu Asp Asn 475 tac tgc tgg cac tac ccc cca Tyr Cys Trp His Tyr Pro Pro 490 tct gtg tgt ggc cca gtg tac Ser Val Cys Gly Pro Val Tyr 505 ggc acg acc gac gac aga cgt gga Gly Thr Thr Asp Arg Arg Gly 520 gga aca gat gtc ttc cta ctg Glu Thr Asp Val Phe Leu Leu 535 tgg ttc ggc tgc acg tgg atg Trp Phe Gly Cys Thr Trp Met 555 ggc gcg cca cct tgc cgc acc Gly Ala Pro Pro Cys Arg Thr 570 ttg ttg tgg cct acg gat tgt ttg tg tgc acc Gly Ala Pro Pro Cys Arg Thr 570 ttg ttg tgg ggt tct ggg ccc acc Gly Ala Pro Pro Tyr Arg Leu Trp His 615 ttc aag ata aga atg tat gta tat gta Phe Lys Ile Arg Met Tyr Val	Arg Leu Ser Ala Cys Arg Asn Ile 455 acc cta cag tac gag gat aat gtc Thr Leu Gln Tyr Glu Asp Asn Val 475 tac tgc tgg cac tac ccc cca aag Tyr Cys Trp His Tyr Pro Pro Lys 490 tct gtg tgt ggc cca gtg tac tgt Ser Val Cys Gly Pro Val Tyr Cys 505 ggc acg acc gac aga cgt gga gtg Gly Thr Thr Asp Arg Arg Gly Val 520 gga aca gat gtc ttc cta ctg aac Glu Thr Asp Val Phe Leu Leu Asn 535 tgg ttc ggc tgc acg tgg atg aca Trp Phe Gly Cys Thr Trp Met Asn 555 ggc gcg cca cct tgc cgc acc aga Gly Ala Pro Pro Cys Arg Thr Arg 570 ttg ttg tg tgc cct acg gat tgt tt Leu Leu Cys Pro Thr Asp Cys Phe 585 att aag tgt ggt tct ggg cat tac Tyr Pro Goo att aag tgt ggt tct ggg ccc tgg Ile Lys Cys Gly Ser Gly Pro Trp 600 ttc aag ata aga atg tat gta ggg ttc aag ata ggg ttc aag ata ggg ttc tac tac aga ctc tgg cat tac Tyr Pro Tyr Arg Leu Trp His Tyr 615	Arg Leu Ser Ala Cys Arg Asn Ile Glu 455	Arg Leu Ser Ala Cys Arg Asn Ile Glu Ala 455 acc cta cag tac gag gat aat gtc acc aat Thr Leu Gln Tyr Glu Asp Asn Val Thr Asn 475 tac tgc tgg cac tac ccc cca aag ccg tgt Tyr Cys Trp His 505 tct gtg tgt ggc cca gtg tac tgt ttc acc Ser Val Cys Gly Pro Val Tyr Cys Phe Thr 505 ggc acg acc gac aga cgt gga gtg ccc acc Gly Thr Thr Asp Arg Arg Gly Val Pro Thr 520 gag aca gat gtc ttc cta ctg aac agc acc Glu Thr Asp Val Phe Leu Leu Asn Ser Thr 535 tgg ttc ggc tgc acg tgg atg acc act Trp Phe Gly Cys Thr Trp Met Asn Ser Thr 555 ttg ttc ggc cct tgc cgc acc aga gct gac Gly Ala Pro Pro Cys Arg Thr Arg Ala Asp 570 ttg ttg tg tgc cct acg gat tgt ttt agg aag Leu Leu Cys Pro Thr Asp Cys Phe Arg Lys 585 att aag tgt ggt tct ggg ccc tgg ccc tgg ctc aca Ile Lys Cys Gly Ser Gly Pro Trp His Tyr Pro Cys 615 ttc aag ata aga atg tat gta ggg ggg gtt Lys Ile Arg Met Tyr Val Gly Gly Val	Arg Leu Ser Ala Cys Arg Asn Ile Glu Ala Phe 455 acc cta cag tac gag gat aat gtc acc aat cca Thr Leu Gln Tyr Glu Asp Asn Val Thr Asn Pro 475 tac tgc tgg cac tac ccc cca aag ccg tgt ggc Tyr Cys Trp His Tyr Pro Pro Lys Pro Cys Gly 490 tct gtg tgt ggc cca gtg tac tgt ttc acc ccc Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro 505 ggc acg acc gac aga cgt gga gtg ccc acc tac Gly Thr Thr Asp Arg Arg Gly Val Pro Thr Tyr 520 gag aca gat gtc ttc cta ctg aac agc acc cga Glu Thr Asp Val Phe Leu Leu Asn Ser Thr Arg 535 tgg ttc ggc tgc acg tgg atg acc cat ggt Trp Phe Gly Cys Thr Trp Met Asn Ser Thr Gly 555 ggc gcg cca cct tgc cgc acc aga get gac ttc Gly Ala Pro Pro Cys Arg Thr Arg Ala Asp Phe 570 ttg ttg tgc cct acg at tgt ttt agg aag cat Leu Leu Cys Pro Thr Asp Cys Phe Arg Lys His 585 att aag tgt ggt tct ggg cat tac ccc tgc aca Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr 615	Arg Leu Ser Ala Cys Arg Asn Ile Glu Ala Phe Arg 465 acc cta cag tac gag gat aat gtc acc aat cca gag Thr Leu Gln Tyr Glu Asp Asn Val Thr Asn Pro Glu 475 tac tgc tgg cac tac ccc ca aag ccg tgt ggc gta Tyr Cys Trp His Tyr Pro Pro Lys Pro Cys Gly Val 490 tct gtg tgt ggc cca gtg tac tgt ttc acc ccc agc Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser 510 ggc acg acc gac gag cgt gga gtg ccc acc tac aca Gly Thr Thr Asp Arg Arg Gly Val Pro Thr Tyr Thr Asp Arg Arg Gly Val Pro Thr Tyr Thr Asp Val Phe Leu Leu Asn Ser Thr Arg Pro 545 tgg ttc ggc tgc acg tgc acg tgg atg acc cca acc tac aca Gly Thr Asp Val Phe Leu Leu Asn Ser Thr Arg Pro 545 tgg ttc ggc tgc acg tgc acg tgg atg acc cac acc tac acc Gly Ala Pro Pro Cys Arg Thr Arg Ala Asp Phe Asn 570 ttg ttg tgc cct acg gat tgt ttt agg aag cct cac ccl Gly Ala Pro Pro Cys Arg Thr Arg Ala Asp Phe Asn 570 ttg ttg tgc cct acg gat tgt ttt agg aag ccc cac acc acc Gly Ala Pro Pro Thr Asp Cys Phe Arg Lys His Pro 585 att aag tgt ggt tct ggc ccc tgg ccc tac aca agg Ile Lys Cys Gly Ser Gly Pro Trp Leu Thr Pro Lys 600 tac cct tac aga ctc tgg cat tac ccc tgc aca gtc Tyr Pro Tyr Arg Leu Trp His Tyr Pro Cys Thr Val 615 ttc aag ata aga atg tat gta ggg ggg gtt gag cac Phe Lys Ile Arg Met Tyr Val Gly Gly Val Glu His	Arg Leu Ser Ala Cys Arg Asn Ile Glu Ala Phe Arg Ile 455 acc cta cag tac gag gat aat gtc acc aat cca gag gat Thr Leu Gln Tyr Glu Asp Asn Val Thr Asn Pro Glu Asp 480 tac tgc tgg cac tac ccc cca aag ccg tgt ggc gta gtc Tyr Cys Trp His Tyr Pro Pro Lys Pro Cys Gly Val Val 490 tct gtg tgt ggc cca gtg tac tgt ttc acc ccc agc ccg Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro 505 ggc acg acc gac aga cgt gga gtg ccc acc tac aca tagg Gly Thr Thr Asp Arg Arg Gly Val Pro Thr Tyr Thr Trp 520 gag aca gat gtc ttc cta ctg aac agc acc cga ccg Glu Thr Asp Val Phe Leu Leu Asn Ser Thr Arg Arg Pro Pro 545 tgg ttc ggc tgc acg tgg atg acc act acc acc tac acc acc Glu Thr Asp Val Phe Leu Leu Asn Ser Thr Gly Phe Thr 555 ggc gcg cca cct tgc cgc acc aga gtg acc cac acc tac acc acc Gly Ala Pro Pro 555 tgg ttc ggc tgc acg tgg atg acc tcc acc acc tac acc acc Gly Ala Pro Pro Cys Arg Thr Arg Ala Asp Phe Asn Ala 570 ttg ttg tgc cct acg gat tgt ttt agg acg cac cct acc acc gat tgt ttt agg acg cac acc ct tgc cgc acc acc ttg cac acc acc acc acc acc acc acc acc ac	Arg Leu Ser Ala Cys Arg Asn Ile Glu Ala Phe Arg Ile Gly 455 acc cta cag tac gag gat aat gtc acc aat cca gag gat atg Thr Leu Gln Tyr Glu Asp Asn Val Thr 475 tac tgc tgg cac tac ccc cca aag ccg tgt ggc gta gtc ccc Tyr Cys Trp His Tyr Pro Pro Lys Pro Cys Gly Val Val Pro 490 tct gtg tgt ggc cca gtg tac tgt ttc acc ccc agc ccg gta Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val 505 ggc acg acc gac aga cgt ggg ggt ccc acc tac aca tgg gga Gly Thr Thr Asp Arg Arg Gly Val Pro Thr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Tyr Ty	acc cta cag tac gag gat aat gtc acc aat cca gag gat atg agg Thr Leu Gln Tyr Glu Asp Asn Val Thr Asn Pro Glu Asp Met Arg 485 tac tgc tgg cac tac ccc cca aag ccg tgt ggc gta gtc ccc gcg Tyr Cys Trp His Tyr Pro Pro Lys Pro Cys Gly Val Val Pro Ala 490 tct gtg tgt ggc cca gtg tac tgt ttc acc ccc agc ccg gta gta Ser Val Cys Gly Pro Val Tyr Cys Phe Thr Pro Ser Pro Val Val 505 ggc acg acc gac aga cgt gga gtg ccc acc tac aca tgg gga gag Gly Thr Thr Asp Arg Arg Gly Val Pro Thr Tyr Thr Trp Gly Glu 525 gga aca gat gtc ttc cta ctg aac agc acc cga ccg cag ggc Glu Thr Asp Val Phe Leu Leu Asn Ser Thr Arg Pro Pro Gln Gly 535 tgg ttc ggc tgc acg tgg atg acc tcc act gat gcc cac acc tac aca acc acc acc acc acc a

_	gca Ala	_				_			-	_	_	_		_		2323
_	agg Arg	_	_	_			_	_				_	_		_	2371
	ctg Leu		-				_			_	_					2419
	cac His 695			_				_	_			-				2467
	cct Pro	_					_	_			-	-				2515
	ttc Phe	_				_	_					Cys				2563
	atc Ile	_	_		_	_	_				gag	aag				2611
_	cac His	_		_		-		_								2659
	ttc Phe 775			_	_							Val			ttg Leu	2707
	acc Thr		_												atg Met 805	2755
	-								_	Ala					cag Gln	2803
									Thr					Thr	ccg Pro	2851
		_							_			Leu	Cys	Tyr	ctc Leu	2899
													o sure c	3 A A		n 1 0 7 7

840	845	850

						atg Met 860										2947
						ggc Gly										2995
						att Ile										3043
	_					gcc Ala	-	_								3091
						agg Arg										3139
		Arg				gtg Val 940										3187
	Thr					cac His					Ser				gct Ala 965	3235
					Leu					Glu					agt Ser	3283
				Lys					Gly					Ala	tgt Cys	3331
			Leu			Leu		Val			Arg		Gly		gag Glu	3379
Ile		Leu					Gly					Gly			ctc Leu	3427
	Āla					Tyr					Arg				g ggc i Gly 1045	3475

gcc ata gtg gtg agt atg acg ggg cgt gac agg aca gaa cag gcc ggg Ala Ile Val Val Ser Met Thr Gly Arg Asp Arg Thr Glu Gln Ala Gly 1050 1055 1060	3523
gaa gtc caa atc ctg tcc aca gtc tct cag tcc ttc ctc gga aca acc Glu Val Gln Ile Leu Ser Thr Val Ser Gln Ser Phe Leu Gly Thr Thr 1065 1070 1075	3571
atc tcg ggg gtt ttg tgg act gtt tac cac gga gct ggc aac aag act Ile Ser Gly Val Leu Trp Thr Val Tyr His Gly Ala Gly Asn Lys Thr 1080 1085 1090	3619
cta gcc ggc tta cgg ggt ccg gtc acg cag atg tac tcg agt gct gag Leu Ala Gly Leu Arg Gly Pro Val Thr Gln Met Tyr Ser Ser Ala Glu 1095 1100 1105	3667
ggg gac ttg gta ggc tgg ccc agc ccc cct ggg acc aag tct ttg gag Gly Asp Leu Val Gly Trp Pro Ser Pro Pro Gly Thr Lys Ser Leu Glu 1110 1115 1120 1125	3715
ccg tgc aag tgt gga gcc gtc gac cta tat ctg gtc acg cgg aac gct Pro Cys Lys Cys Gly Ala Val Asp Leu Tyr Leu Val Thr Arg Asn Ala 1130 1135 1140	3763
gat gtc atc ccg gct cgg aga cgc ggg gac aag cgg gga gca ttg ctc Asp Val Ile Pro Ala Arg Arg Arg Gly Asp Lys Arg Gly Ala Leu Leu 1145 1150 1155	3811
tcc ccg aga ccc att tcg acc ttg aag ggg tcc tcg ggg ggg ccg gtg Ser Pro Arg Pro Ile Ser Thr Leu Lys Gly Ser Ser Gly Gly Pro Val 1160 1165 1170	3859
ctc tgc cct agg ggc cac gtc gtt ggg ctc ttc cga gca gct gtg tgc Leu Cys Pro Arg Gly His Val Val Gly Leu Phe Arg Ala Ala Val Cys 1175 1180 1185	3907
tct cgg ggc gtg gcc aaa tcc atc gat ttc atc ccc gtt gag aca ctc Ser Arg Gly Val Ala Lys Ser Ile Asp Phe Ile Pro Val Glu Thr Leu 1190 1195 1200 1205	3955
gac gtt gtt aca agg tct ccc act ttc agt gac aac agc acg cca ccg Asp Val Val Thr Arg Ser Pro Thr Phe Ser Asp Asn Ser Thr Pro Pro 1210 1215 1220	4003
gct gtg ccc cag acc tat cag gtc ggg tac ttg cat gct cca act ggc Ala Val Pro Gln Thr Tyr Gln Val Gly Tyr Leu His Ala Pro Thr Gly 1225 1230 1235	4051
agt gga aag agc acc aag gtc cct gtc gcg tat gcc gcc cag ggg tac Ser Gly Lys Ser Thr Lys Val Pro Val Ala Tyr Ala Ala Gln Gly Tyr	4099

1240 1245 1250

·	
acg ggg tac act gga gac ttt gac tcc gtg atc gac tgc aat gta gcg Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Val Ala 1450 1455 1460	4723
gtc acc caa gct gtc gac ttc agc ctg gac ccc acc ttc act ata acc Val Thr Gln Ala Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Thr 1465 1470 1475	4771
aca cag act gtc cca caa gac gct gtc tca cgc agt cag cgc cgc ggg Thr Gln Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly 1480 1485 1490	4819
cgc aca ggt aga gga aga cag ggc act tat agg tat gtt tcc act ggt Arg Thr Gly Arg Gly Arg Gln Gly Thr Tyr Arg Tyr Val Ser Thr Gly 1495 1500 1505	4867
gaa cga gcc tca gga atg ttt gac agt gta gtg ctt tgt gag tgc tac Glu Arg Ala Ser Gly Met Phe Asp Ser Val Val Leu Cys Glu Cys Tyr 1510 1515 1520 1525	4915
gac gca ggg gct gcg tgg tac gat ctc aca cca gcg gag acc acc gtc Asp Ala Gly Ala Ala Trp Tyr Asp Leu Thr Pro Ala Glu Thr Thr Val 1530 1535 1540	4963 6
agg ctt aga gcg tat ttc aac acg ccc ggc cta ccc gtg tgt caa gac Arg Leu Arg Ala Tyr Phe Asn Thr Pro Gly Leu Pro Val Cys Gln Asp 1545 1550 1555	5011
cat ctt gaa ttt tgg gag gca gtt ttc acc ggc ctc aca cac ata gac His Leu Glu Phe Trp Glu Ala Val Phe Thr Gly Leu Thr His Ile Asp 1560 1565 1570	5059
gcc cac ttc ctc tcc caa aca aag caa gcg ggg gag aac ttc gcg tac Ala His Phe Leu Ser Gln Thr Lys Gln Ala Gly Glu Asn Phe Ala Tyr 1575 1580 1585	5107
cta gta gcc tac caa gct acg gtg tgc gcc aga gcc aag gcc cct ccc Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro 1590 1595 1600 1605	5155
ccg tcc tgg gac gcc atg tgg aag tgc ctg gcc cga ctc aag cct acg Pro Ser Trp Asp Ala Met Trp Lys Cys Leu Ala Arg Leu Lys Pro Thr 1610 1615 1620	5203
ctt gcg ggc ccc aca cct ctc ctg tac cgt ttg ggc cct att acc aat Leu Ala Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Pro Ile Thr Asn 1625 1630 1635	5251
gag gtc acc ctc aca cac cct ggg acg aag tac atc gcc aca tgc atg Glu Val Thr Leu Thr His Pro Gly Thr Lys Tyr Ile Ala Thr Cys Met	5299

1640 1645 1650

caa gct gac ct Gln Ala Asp Le 1655					5347
gtc ctg gca gc Val Leu Ala Al 1670		Tyr Cys Leu			5395
atc atc ggc cg Ile Ile Gly Ar					5443
aag gag gtc ct Lys Glu Val Le 170	eu Tyr Glu Ala		Met Glu Glu		5491
agg gcg gct ct Arg Ala Ala Le 1720	u Ile Glu Glu				5539
tcc aag atc ca Ser Lys Ile Gl 1735					5587
ata caa ccc gc Ile Gln Pro Al 1750		Ser Trp Pro			5635
gcc aga cac at Ala Arg His Me					5683
ttg tca aca ct Leu Ser Thr Le 178	u Pro Gly Asn	ccc gcg gtg Pro Ala Val 1790	Ala Ser Met	atg gca ttc Met Ala Phe 795	5731
agt gcc gcc ct Ser Ala Ala Le 1800	u Thr Ser Pro				5779
aac atc atg gg Asn Ile Met Gl 1815	a ggc tgg tta y Gly Trp Leu 1820	gcg tcc cag Ala Ser Gln	atc gca cca Ile Ala Pro 1825	ccc gcg ggg Pro Ala Gly	5827
gcc acc ggc tt Ala Thr Gly Ph 1830	t gtc gtc agt e Val Val Ser 1835	Gly Leu Val	ggg gct gcc Gly Ala Ala 1840	gtg ggc agc Val Gly Ser 1845	5875

ata ggc Ile Gly	_	Gly					Asp		_	_		Tyr		- -	5923
ggc att Gly Ile	Ser		-			Ala		_		_	Ser				5971
ccc tct Pro Ser					Ile			_		Gly		_			6019
gga gcc Gly Ala 1895			-	Gly			_		Ala		_	_	_		6067
gtg gga Val Gly 1910	-		Glu			_		Trp	_				Ile	Ç	6115
ttt gct Phe Ala		Arg					Ala					Val	-		6163
tcg gat Ser Asp	Ala	_	_			Thr					Ser				6211
acc agc Thr Ser		Leu	_	_	Leu					Thr		_	_		6259
atc cca Ile Pro 1975	Cys			Ser					Val						6307
acc atc Thr Ile 1990	_		Asp					Leu				_	Phe		6355
aag ctg Lys Leu		Gly					Ser	_		_		Tyr	_	-	6403
gtg tgg Val Trp	Ala					Met		_	_	_	${\tt Pro}$				6451
aac atc Asn Ile				_					_	Arg	Ile	Thr	Gly	Pro	6499 1 0 7 7
											ALT- HILL			- 0	

2040 2045 2050

		ggg acc ttt cct Gly Thr Phe Pro 2065		5547
		ccc ccc acg aac Pro Pro Thr Asn 2080	0 0	5595
Ile Trp Arg Val		tac gcg gag gtg Tyr Ala Glu Val 2095		6643
_		acc act gac aat Thr Thr Asp Asn 2110	- C	6691
		Phe Ser Trp Val	0 00 0 0	6739
-		aag ccg ttt ttc Lys Pro Phe Phe 2145	00,0,00	6787
		tat gct gtc ggg Tyr Ala Val Gly 2160		6835
Cys Glu Pro Glu		gta ttg agg tcc Val Leu Arg Ser 2175	•	6883
		gcg gcg cgg cgc Ala Ala Arg Arg 2190	0 0 00	6931
		Ser Val Ser Gln	cta tca gca ccg Leu Ser Ala Pro 2210	6979
	_	•	Tyr Asp Val Asp	7027
			gct cag aca gag Ala Gln Thr Glu 2245	7075

cct gag tcc agg gtg ccc gtt ctg gac ttt ctc gag cca atg gcc gag Pro Glu Ser Arg Val Pro Val Leu Asp Phe Leu Glu Pro Met Ala Glu 2250 2255 2260	7123
gaa gag agc gac ctt gag ccc tca ata cca tcg gag tgc atg ctc ccc Glu Glu Ser Asp Leu Glu Pro Ser Ile Pro Ser Glu Cys Met Leu Pro 2265 2270 2275	7171
agg agc ggg ttt cca cgg gcc tta ccg gct tgg gca cgg cct gac tac Arg Ser Gly Phe Pro Arg Ala Leu Pro Ala Trp Ala Arg Pro Asp Tyr 2280 2285 2290	7219
aac ccg ccg ctc gtg gaa tcg tgg agg agg cca gat tac caa ccg ccc Asn Pro Pro Leu Val Glu Ser Trp Arg Arg Pro Asp Tyr Gln Pro Pro 2295 2300 2305	7267
acc gtt gct ggt tgt gct ctc ccc ccc ccc aag aag gcc ccg acg cct Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys Lys Ala Pro Thr Pro 2310 2315 2320 2325	7315
ccc cca agg aga cgc cgg aca gtg ggt ctg agc gag agc acc ata tca Pro Pro Arg Arg Arg Thr Val Gly Leu Ser Glu Ser Thr Ile Ser 2330 2335 2340	7363
gaa gcc ctc cag caa ctg gcc atc aag acc ttt ggc cag ccc ccc tcg Glu Ala Leu Gln Gln Leu Ala Ile Lys Thr Phe Gly Gln Pro Pro Ser 2345 2350 2355	7411
agc ggt gat gca ggc tcg tcc acg ggg gcg ggc gcc gcc gaa tcc ggc Ser Gly Asp Ala Gly Ser Ser Thr Gly Ala Gly Ala Ala Glu Ser Gly 2360 2365 2370	7459
ggt ccg acg tcc cct ggt gag ccg gcc ccc tca gag aca ggt tcc gcc Gly Pro Thr Ser Pro Gly Glu Pro Ala Pro Ser Glu Thr Gly Ser Ala 2375 2380 2385	7507
tcc tct atg ccc ccc ctc gag ggg gag cct gga gat ccg gac ctg gag Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Glu 2390 2395 2400 2405	7555
tct gat cag gta gag ctt caa cct ccc ccc cag ggg ggg ggg gta gct Ser Asp Gln Val Glu Leu Gln Pro Pro Gln Gly Gly Gly Val Ala 2410 2415 2420	7603
ccc ggt tcg ggc tcg ggg tct tgg tct act tgc tcc gag gag gac gat Pro Gly Ser Gly Ser Gly Ser Trp Ser Thr Cys Ser Glu Glu Asp Asp 2425 2430 2435	7651
acc acc gtg tgc tgc tcc atg tca tac tcc tgg acc ggg gct cta ata Thr Thr Val Cys Cys Ser Met Ser Tyr Ser Trp Thr Gly Ala Leu Ile	7699

2440 2445 2450

act ccc tgt agc Thr Pro Cys Ser 2455		_		
aac tcg ctg ttg Asn Ser Leu Leu 2470	_	Asn Lys Val	_	
agc gcc tca cag Ser Ala Ser Gln				
ctc gac gcc cat Leu Asp Ala His 2505	Tyr Asp Ser	_	-	ı Ala Ala
tcc aag gtc agc Ser Lys Val Ser 2520	Ala Arg Leu		-	
act cca ccc cat Thr Pro Pro His 2535		Ser Lys Tyr		•
gtc cgc agc ttg Val Arg Ser Leu 2550		Ala Val Asn	_	-
aag gac ctc ctg Lys Asp Leu Leu				
gcc aaa aat gag Ala Lys Asn Glu 2585	Val Phe Cys			y Lys Lys
cca gct cgc ctc Pro Ala Arg Leu 2600	lle Val Tyr	_		
aaa atg gcc ctc Lys Met Ala Leu 2615	_	Thr Gln Lys	ctt cct cag gcg Leu Pro Gln Ala 2625	
gga gct tcc tat Gly Ala Ser Tyr 2630		Tyr Ser Pro	-	

				atg ggt ttt tcg Met Gly Phe Ses 2660	r Tyr
Asp Thr Arg			al Thr Glu	aga gac atc ag Arg Asp Ile Ar 2675	
				gag gag gcc cg Glu Glu Ala Ar 2690	
			eu Tyr Val	gga ggg ccc at Gly Gly Pro Me 705	
		Cys Gly T		tgc cgc gcc ag Cys Arg Ala Se	
				tgc tat gtg aa Cys Tyr Val Ly 274	s Ala
Leu Ala Ala			le Val Ala	ccc aca atg ct Pro Thr Met Le 2755	
	Asp Leu Va			cag ggg act ga Gln Gly Thr Gl 2770	
			hr Glu Ala	atg acc agg ta Met Thr Arg Ty 2785	
		o Pro Arg P		gac ctg gag ct Asp Leu Glu Le	
_				ggc ccg cgg gg Gly Pro Arg Gl 282	ly Arg
Arg Arg Tyr		r Arg Asp F		cca ctc gcc cg Pro Leu Ala An 2835	
				tca tgg ctg gg Ser Trp Leu G 出証特 2 0	
		•	•	· ·	

8947

8995

9043

特願2003-329115 2850 2840 2845 atc atc cag tat gct cca acc ata tgg gtt cgc atg gtc cta atg aca Ile Ile Gln Tyr Ala Pro Thr Ile Trp Val Arg Met Val Leu Met Thr 2855 2860 2865 cac ttc ttc tcc att ctc atg gtc caa gac acc ctg gac cag aac ctc His Phe Phe Ser Ile Leu Met Val Gln Asp Thr Leu Asp Gln Asn Leu 2870 aac ttt gag atg tat gga tca gta tac tcc gtg aat cct ttg gac ctt Asn Phe Glu Met Tyr Gly Ser Val Tyr Ser Val Asn Pro Leu Asp Leu 2890 2895 2900

cca gcc ata att gag agg tta cac ggg ctt gac gcc ttt tct atg cac 9091 Pro Ala Ile Ile Glu Arg Leu His Gly Leu Asp Ala Phe Ser Met His 2905 2910 2915

aca tac tct cac cac gaa ctg acg cgg gtg gct tca gcc ctc aga aaa 9139 Thr Tyr Ser His His Glu Leu Thr Arg Val Ala Ser Ala Leu Arg Lys 2920 2925 2930

ctt ggg gcg cca ccc ctc agg gtg tgg aag agt cgg gct cgc gca gtc 9187 Leu Gly Ala Pro Pro Leu Arg Val Trp Lys Ser Arg Ala Arg Ala Val 2935 2940 2945

agg gcg tcc ctc atc tcc cgt gga ggg aaa gcg gcc gtt tgc ggc cga 9235 Arg Ala Ser Leu Ile Ser Arg Gly Gly Lys Ala Ala Val Cys Gly Arg 2950 2955 2960 2965

tat ctc ttc aat tgg gcg gtg aag acc aag ctc aaa ctc act cca ttg 9283 Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Leu 2970 2975 2980

ccg gag gcg cgc cta ctg gac tta tcc agt tgg ttc acc gtc ggc gcc 9331 Pro Glu Ala Arg Leu Leu Asp Leu Ser Ser Trp Phe Thr Val Gly Ala 2985 2990 2995

ggc ggg ggc gac att ttt cac agc gtg tcg cgc cgc cgc ccc cgc tca 9379 Gly Gly Asp Ile Phe His Ser Val Ser Arg Ala Arg Pro Arg Ser 3000 3005 3010

tta ctc ttc ggc cta ctc cta ctt ttc gta ggg gta ggc ctc ttc cta 9427 Leu Leu Phe Gly Leu Leu Leu Phe Val Gly Val Gly Leu Phe Leu 3015 3020 3025

ctc ccc gct cgg tag agcggcacac actaggtaca ctccatagct aactgttcct 9482 Leu Pro Ala Arg 3030 <210> 4 <211> 3033 <212> PRT <213> Hepatitis C virus <400> 4 Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Glu Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Thr Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys Asp Arg Arg Ser Thr Gly Lys Ala Trp Gly Lys Pro Gly 75 Arg Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp Gly Pro Thr Asp Pro Arg His Arg Ser Arg Asn Val Gly Lys Val Ile Asp Thr Leu Thr Cys 115 120 125 Gly Phe Ala Asp Leu Met Gly Tyr Ile Pro Val Val Gly Ala Pro Leu 135 Ser Gly Ala Ala Arg Ala Val Ala His Gly Val Arg Val Leu Glu Asp Gly Val Asn Tyr Ala Thr Gly Asn Leu Pro Gly Phe Pro Phe Ser Ile 165 170 Phe Leu Leu Ala Leu Leu Ser Cys Ile Thr Val Pro Val Ser Ala Ala 185 Gln Val Lys Asn Thr Ser Ser Ser Tyr Met Val Thr Asn Asp Cys Ser Asn Asp Ser Ile Thr Trp Gln Leu Glu Ala Ala Val Leu His Val Pro 215 220 Gly Cys Val Pro Cys Glu Arg Val Gly Asn Thr Ser Arg Cys Trp Val 230 235 Pro Val Ser Pro Asn Met Ala Val Arg Gln Pro Gly Ala Leu Thr Gln 245 250 Gly Leu Arg Thr His Ile Asp Met Val Val Met Ser Ala Thr Phe Cys 265 Ser Ala Leu Tyr Val Gly Asp Leu Cys Gly Gly Val Met Leu Ala Ala

		275			_	_	280	_		_		285			_
Gln		Phe	He	Val	Ser		Gln	Tyr	His	Trp		Val	Gln	Glu	Cys
	290	_		_	_	295					300				
	Cys	Ser	He	Tyr		Gly	Thr	He	Thr		His	Arg	Met	Ala	_
305				_	310	_	_			315			_		320
Asp	Met	Met	Met		Trp	Ser	Pro	Thr		Thr	Met	He	Leu		Tyr
				325					330			_		335	
Val	Met	Arg		Pro	Glu	Val	Ile		Asp	Ile	Val	Ser	Gly	Ala	His
_			340			_		345		_			350		_
Trp	Gly		Met	Phe	Gly	Leu		Tyr	Phe	Ser	Met		Gly	Ala	Trp
	_	355				_	360	_				365	_		
Ala		Val	He	Val	Ile		Leu	Leu	Ala	Ala		Val	Asp	Ala	Gly
	370					375				_	380				
	Thr	Thr	Val	Gly		Ala	Val	Ala	Arg		Thr	Asn	Val	Ile	
385			_		390					395					400
Gly	Val	Phe	Ser		Gly	Pro	Gln	Gln		Ile	Gln	Leu	Ile		Thr
				405					410					415	
Asn	Gly	Ser		His	Ile	Asn	Arg		Ala	Leu	Asn	Cys	Asn	Asp	Ser
			420					425					430		
Leu	Asn		Gly	Phe	Leu	Ala		Leu	Phe	Tyr	Thr		Arg	Phe	Asn
•		435					440					445			
Ser		Gly	Cys	Pro	Gly	-				Cys	_	Asn	Ile	Glu	Ala
	450					455		•			468				
Phe	Arg	Ile	Gly	Trp		Thr	Leu	Gln	Tyr		Asp	Asn	Val	Thr	
465					470					475					480
Pro	Glu	Asp	Met	_	Pro	Tyr	Cys	Trp		Tyr	Pro	Pro	Lys		Cys
				485					490					495	
Gly	Val	Val		Ala	Arg	Ser	Val	-	Gly	Pro	Val	Tyr	Cys	Phe	Thr
			500					505		•			510		
Pro	Ser			Val	Val	Gly		Thr	Asp	Arg	Arg		Val	Pro	Thr
		515					520					525			
Tyr		Trp	Gly	Glu	Asn		Thr	Asp	Val	Phe	Leu	Leu	Asn	Ser	Thr
	530					535					540				
Arg	Pro	Pro	Gln	Gly	Ser	Trp	Phe	Gly	Cys		Trp	Met	Asn	Ser	Thr
545					550					555					560
Gly	Phe	Thr	Lys	Thr	Cys	Gly	Ala	Pro	Pro	Cys	Arg	Thr	Arg	Ala	Asp
				565					570					575	
Phe	Asn	Ala	Ser	Thr	Asp	Leu	Leu	Cys	Pro	Thr	Asp	Cys	Phe	Arg	Lys
			580					585					590		
His	Pro	Asp	Ala	Thr	Tyr	Ile	Lys	Cys	Gly	Ser	Gly	Pro	Trp	Leu	Thr
		595					600					605			
Pro	Lys	Cys	Leu	Val	His	Tyr	Pro	Tyr	Arg	Leu	Trp	His	Tyr	Pro	Cys
•	610					615					620				
Thr	Val	Asn	Phe	Thr	Ile	Phe	Lys	Ile	Arg	Met	Tyr	Val	Gly	Gly	Val
625					630					635					640
Glu	His	Arg	Leu		Ala	Ala	Cys	Asn	Phe	Thr	Arg	Gly	Asp	Arg	Cys
				645		-			650					655	
Asp	Leu	Glu	Asp	Arg	Asp	Arg	Ser	Gln	Leu	Ser	Pro	Leu	Leu	His	Ser
			660	•				665					670		
Thr	Thr	Glu	Trp	Ala	Ile	Leu	Pro	Cys	Thr	Tyr	Ser	Asp	Leu	Pro	Ala

	675					680					685			
Leu Sei 690	Thr	Gly	Leu	Leu	His 695		His	Gln	Asn	Ile 700		Asp	Val	Gln
Tyr Met 705	Tyr	Gly	Leu	Ser 710	Pro	Ala	Ile	Thr	Lys 715	Tyr	Val	Val	Arg	Trp 720
Glu Tr	Val	Val	Leu 725	Leu	Phe	Leu	Leu	Leu 730	Ala	Asp	Ala	Arg	Val 735	Cys
Ala Cys	Leu	Trp 740	Met	Leu	Ile	Leu	Leu 745	Gly	Gln	Ala	Glu	Ala 750	Ala	Leu
Glu Lys	Leu 755	Val	Val	Leu	His	Ala 760	Ala	Ser	Ala		Asn 765	Cys	His	Gly
Leu Leu 77(Phe	Ala	Ile	Phe 775	Phe	Val	Ala	Ala	Trp 780	His	Ile	Arg	Gly
Arg Val 785	Val	Pro	Leu	Thr 790	Thr	Tyr	Cys	Leu	Thr 795	Gly	Leu	Trp	Pro	Phe 800
Cys Lei			805					810				_	815	
Pro Val	His	Gly 820	Gln	Ile	Gly	Val	Gly 825	Leu	Leu	Ile	Leu	Ile 830	Thr	Leu
Phe Thi	835				- ,	840		_		_	845	_		_
Trp Let 850)				855					860				
Val Pro 865) Pro	Met	Gln	Val 870	Arg	Gly	Gly	Arg	Asp 875	Gly	Ile	Ala	Trp	Ala 880
Val Th	: Ile	Phe	Cys 885	Pro	Gly	Val	Val	Phe 890	Asp	Ile	Thr	Lys	Trp 895	Leu
Leu Ala		900					905					910		
Val Pro	915					920					925			
Val Lys 930)				935					940				
Leu Gly 945				950					955					960
Ser Ası			965					970					975	
Pro Ile		980					985					990	_	
Glu Th	995					1000					1005			
Arg Let 1010)				1015					1020				
Lys G1 ₂ 1025				1030					1035					1040
Arg Gly			1045					1050					1055	
Thr Glu		1060					1065					1070		
Phe Le	ı Gly	Thr	Thr	Ile	Ser	Gly	Val	Leu	Trp	Thr	Val	Tyr	His	Gly

		1075]	1080]	1085			
	Ala Gly 1090	Asn	Lys	Thr		Ala 1095	Gly	Leu	Arg		Pro 1100	Val	Thr	Gln	Met
	Tyr Ser 1105	Ser	Ala			Asp		Val		Trp 1115	Pro		Pro		Gly 120
	Thr Lys	Ser													
	Val Thr				Asp	Val			_	Arg	Arg				Lys
	Arg Gly			Leu	Ser					Ser				Gly	Ser
	Ser Gly 1170		Pro	Val									Gly	Leu	Phe
	Arg Ala	Ala	Val			Arg	Gly				Ser	Ile	-		Ile 1200
	Pro Val	Glu		Leu		Val		Thr	Arg	Ser	Pro		Phe		
	Asn Ser											Val			Leu
	His Ala			Gly	Ser			Ser	Thr	-				Ala	Tyr
•	Ala Ala 1250	Gln		Tyr		Val		Val	Leu	Asn			Val	Ala	Ala
	Thr Leu	Gly					Leu		Lys				Ile		Pro 1280
	Asn Ile		Thr												
	Tyr Ser		Tyr	Gly		Phe		Ala							Gly
	Ala Tyr		Ile			Cys			Cys		Ala			Ala	Thr
	Ser Ile 1330	Leu	Gly	Ile		Thr	Val	Leu	Asp		Ala	Glu	Thr	Ala	Gly
	Val Arg 1345			Val					Thr				Ser		Thr 1360
	Thr Pro	His				Glu	Glu				Gly	Arg			
	Ile Pro				Arg	Ala				Ser	Cys				Gly
	Arg His			Phe	Cys				Lys	Lys				Leu	Ala
	Ala Ala 1410	Leu	Arg	Gly				Asn	Ala				Tyr	Arg	Gly
	Leu Asp 1425		Ser				Ala	Gln				Val	Val		Ala 1440
	Thr Asp	Ala				Gly	Tyr				Phe	Asp			
	Asp Cys				Val	Thr				Asp	Phe				Pro
	Thr Phe			Thr	Thr	Gln			Pro	Gln	Asp			Ser	Arg

1475]	1480]	l 4 85			
Ser Gln Arg 1490	Arg	Gly		Thr 1495	Gly	Arg	Gly	_	Gln 1500	Gly	Thr	Tyr	Arg
Tyr Val Ser 1505	Thr			Arg					Phe	_	Ser		Val 1520
Leu Cys Glu		Tyr 1525	Asp	Ala	Gly	Ala	Ala L530	${\tt Trp}$	Tyr	Asp			
Ala Glu Thr	Thr 1540		Arg			Ala	Tyr	Phe		Thr			Leu
Pro Val Cys 1555				Leu	Glu		Trp		Ala			Thr	Gly
Leu Thr His 1570	Ile	Asp		His 1575	Phe	Leu	Ser				Gln	Ala	Gly
Glu Asn Phe 1585	Ala			Val	Ala		Gln			Val	Cys		Arg 1600
Ala Lys Ala				Ser		${\tt Asp}$		Met	Trp				
Arg Leu Lys		Thr		Ala		${\tt Pro}$		${\tt Pro}$	Leu	Leu			Leu
Gly Pro Ile 1635				Val		Leu		His	Pro			Lys	Tyr
Ile Ala Thr	Cys			Ala	Asp		Glu	Val			Ser	Thr	Trp
Val Leu Ala 1665	Gly	Gly		Leu	Ala	Ala	Val	Ala	Ala	Tyr			Ala 1680
Thr Gly Cys	Val					Arg					Gln		
Val Val Ala		Asp	Lys			Leu	Tyr		Ala				Met
Glu Glu Cys 1715	Ala	Ser		Ala	Ala 1720	Leu	Île	Glu	Glu	Gly 1725		Arg	Ile
Ala Glu Met 1730	Leu	Lys	Ser	Lys	Ile	Gln	Gly		Leu	Gln	Gln	Ala	Ser
Lys Gln Ala 1745		Asp					Met				Trp		Lys 1760
Val Glu Gln				Arg	His				Phe	Ile			
Gln Tyr Leu			Leu	Ser				Gly	Asn				Ala
Ser Met Met 1795		Phe	Ser				Thr	Ser				Thr	Ser
Thr Thr Ile 1810	Leu	Leu				Gly	Gly	_			Ser	Gln	Ile
Ala Pro Pro 1825	Ala				Gly	Phe		Val		Gly	Leu		
Ala Ala Val				Gly	Leu	-	Lys	1835 Val	Leu	Val		Ile	l840 Leu
Ala Gly Tyr			Gly	Ile		Gly	l850 Ala	Leu	Val			1855 Lys	Ile
Met Ser Gly		Lvs	Pro	Ser		1865 Glu	Asp	Val	Ile			Leu	Pro

1875				1880					1885			
Gly Ile Leu 1890		o Gly		Leu			Gly		Ile		Ala	Ala
Ile Leu Arg 1905	Arg Hi			Pro			Gly 1915			Gln		Met 1920
Asn Arg Leu	Ile Al 192		Ala						Val	Ala		Thr
His Tyr Val			Asp	Ala		Gln	Arg		Thr			
Gly Ser Leu 1955	Thr Il	e Thr	Ser	Leu	Leu		Arg				Trp	Ile
Thr Glu Asp 1970	Cys Pr		Pro 1975		Ser	Gly				Arg	Asp	Val
Trp Asp Trp 1985	Val Cy			Leu		Asp	Phe 1995	Lys	Asn	Trp		Thr 2000
Ser Lys Leu	Phe Pr 200			Pro	Gly	Leu 2010	Pro	Phe	Ile	Ser		
Lys Gly Tyr	Lys G1 2020	y Val	Trp		Gly		Gly	Ile	Met			Arg
Cys Pro Cys 2035	Gly Al				Gly		Val	Arg		Gly	Ser	Met
Arg Ile Thr 2050	Gly Pr		Thr 2055		Met		Thr			Gly	Thr	Phe
Pro Ile Asn 2065	Cys Ty	r Thr 2070		Gly	Gln				Lys	Pro		Thr 2080
Asn Tyr Lys	Thr Al 208		Trp			Ala 2090		Ser				
Val Thr Gln		y Ser				Val	Thr	Gly	Leu	Thr 2110	Thr	Asp
Asn Leu Lys 2115	Ile Pr	o Cys		Leu 2120		Ser			Phe 2125	Phe	Ser	Trp
Val Asp Gly 2130	Val Gl	n Ile	His 2135	Arg	Phe	Ala		Thr 2140	Pro	Lys	Pro	Phe
Phe Arg Asp 2145	Glu Va	l Ser 2150	Phe	Cys	Val		Leu 2155	Asn	Ser	Tyr		Val 2160
Gly Ser Gln	Leu Pr 216		Glu	Pro		Pro 2170	Asp	Ala	Asp			
Ser Met Leu	Thr As 2180	p Pro	Pro		Ile 2185	Thr	Ala	Glu				Arg
Arg Leu Ala 2195	Arg Gl	y Ser		Pro 2200	Ser	Glu	Ala				Val	Ser
Gln Leu Ser 2210	Ala Pr		Leu 2215	Arg	Ala	Thr		Thr 2220	Thr	His	Ser	Asn
Thr Tyr Asp 2225	Val As	p Met 2230	Val	Asp	Ala		Leu 2235	Leu	Met	Glu		Gly 2240
Val Ala Gln	Thr G1 224		Glu	Ser				Val	Leu			
Glu Pro Met	Ala Gl 2260	u Glu	Glu				Glu	Pro				Ser
Glu Cys Met	Leu Pr	o Arg	Ser	Gly	Phe	Pro	Arg	Ala			Ala	Trp

A1 A T											2285			
Ala Arg I 2290	ro	Asp	Tyr		Pro 2295	Pro	Leu	Val		Ser 2300	Trp	Arg	Arg	Pro
Asp Tyr (2305					Val	Ala	Gly		Ala 2315	Leu	Pro	Pro		Lys 2320
Lys Ala F	ro		Pro 2325	Pro		Arg		Arg						
Glu Ser 7								Gln		Ala	Ile			Phe
Gly Gln I			Ser	Ser			Ala	Gly	Ser	Ser	Thr 2365		Ala	Gly
Ala Ala (2370	lu	Ser	Gly		${\tt Pro}$		Ser	${\bf Pro}$	Gly			Ala	Pro	Ser
Glu Thr (2385	Sly	Ser		Ser 2390	Ser	Met	Pro	Pro	Leu	Glu	Gly			Gly 2400
Asp Pro A	lsp						Val		Leu	Gln		Pro		
Gly Gly (Val	Ala	Pro				Ser	Gly	Ser	Trp			Cys
Ser Glu (Glu	Asp	Asp		Thr	Val	Cys	Cys	Ser	Met	Ser 2445		Ser	Trp
Thr Gly A 2450				Thr			Ser	Pro	Glu			Lys	Leu	Pro
Ile Asn I 2465					Ser	Leu	Leu	Arg	Tyr	His				
Cys Thr		Ser			Ala		Gln	Arg	Ala	Lys	Lys	Val		Phe
Asp Arg 7		Gln					His				Val	Leu	2495 Lys	Asp
Ile Lys I		500					2505			_		2510		
-71		Ala	Ala	Ser	Lys		Ser	Ala	Arg				Leu	Glu
	515				2	2520				2	2525	Thr		
Glu Ala (2530	S15 Cys	Gln	Leu	Thr	Pro 2535	2520 Pro	His	Ser	Ala	Arg 2540	2525 Ser	Thr Lys	Tyr	Gly
Glu Ala (2530 Phe Gly A 2545	S15 Cys Ala	Gln Lys	Leu Glu	Thr Val 2550	Pro 2535 Arg	2520 Pro Ser	His Leu	Ser Ser	Ala Gly 2555	Arg 2540 Arg	2525 Ser Ala	Thr Lys Val	Tyr Asn	Gly His 2560
Glu Ala (2530 Phe Gly A	S15 Cys Ala	Gln Lys Val	Leu Glu	Thr Val 2550	Pro 2535 Arg	2520 Pro Ser	His Leu Leu	Ser Ser	Ala Gly 2555	Arg 2540 Arg	2525 Ser Ala	Thr Lys Val Thr	Tyr Asn	Gly His 2560
Glu Ala (2530 Phe Gly A 2545	S15 Cys Ala Ser	Gln Lys Val	Leu Glu Trp 2565	Thr Val 2550 Lys	Pro 2535 Arg Asp	2520 Pro Ser Leu Asn	His Leu Leu	Ser Ser Glu 2570	Ala Gly 2555 Asp	Arg 2540 Arg Pro	2525 Ser Ala Gln Val	Thr Lys Val Thr	Tyr Asn Pro 2575	Gly His 2560 Ile
Glu Ala (2530) Phe Gly A 2545 Ile Lys S Pro Thr T	S15 Cys Ala Ser Chr 2	Gln Lys Val Ile 580	Leu Glu Trp 2565 Met	Thr Val 2550 Lys Ala	Pro 2535 Arg Asp Lys	2520 Pro Ser Leu Asn	His Leu Leu Glu 2585	Ser Ser Glu 2570 Val	Ala Gly 2555 Asp	Arg 2540 Arg Pro Cys	2525 Ser Ala Gln Val	Thr Lys Val Thr Asp 2590	Tyr Asn Pro 2575 Pro	Gly His 2560 Ile Ala
Glu Ala (2530) Phe Gly A 2545 Ile Lys S Pro Thr T	S15 Cys Ala Ser Chr Sly S195	Gln Lys Val Ile 580 Lys	Leu Glu Trp 2565 Met Lys	Thr Val 2550 Lys Ala Pro	Pro 2535 Arg Asp Lys	Ser Leu Asn Arg 2600	His Leu Leu Glu 2585 Leu	Ser Ser Glu 2570 Val Ile	Ala Gly 2555 Asp Phe Val	Arg 2540 Arg Pro Cys Tyr	2525 Ser Ala Gln Val Pro 2605	Thr Lys Val Thr Asp 2590 Asp	Asn Pro 2575 Pro Leu	Gly His 2560 Ile Ala Gly
Glu Ala (2530) Phe Gly A 2545 Ile Lys S Pro Thr T Lys Gly (25 Val Arg V	S15 Cys Ala Ser Chr 2 Sly 595 Val	Gln Lys Val Ile 580 Lys Cys	Leu Glu 27rp 2565 Met Lys Glu Met	Thr Val 2550 Lys Ala Pro	Pro 2535 Arg Asp Lys Ala Met 2615	Ser Leu Asn Arg 2600 Ala	His Leu Leu Glu 2585 Leu Leu	Ser Ser Glu 2570 Val Ile Tyr Gly	Ala Gly 2555 Asp Phe Val Asp	Arg 2540 Arg Pro Cys Tyr Ile 2620	2525 Ser Ala Gln Val Pro 2605 Thr	Thr Lys Val Thr Asp 2590 Asp Gln	Tyr Asn 2575 Pro Leu Lys Pro	Gly His 2560 Ile Ala Gly Leu
Glu Ala (2530) Phe Gly A 2545 Ile Lys S Pro Thr T Lys Gly (25 Val Arg V 2610) Pro Gln A	S15 Cys Ala Ala Ser 2 Cly S95 Val	Gln Lys Val Ile 580 Lys Cys Val Glu	Leu Glu Trp 2565 Met Lys Glu Met	Thr Val 2550 Lys Ala Pro Lys Gly 2630	Pro 2535 Arg Asp Lys Ala Met 2615 Ala	Ser Leu Asn Arg 2600 Ala Ser	His Leu Leu Slu 2585 Leu Leu Tyr	Ser Ser Glu 2570 Val Ile Tyr Gly Trp	Ala Gly 2555 Asp Phe Val Asp Phe 2635	Arg 2540 Arg Pro Cys Tyr Ile 2620 Gln	2525 Ser Ala Gln Val Pro 2605 Thr	Thr Lys Val Thr Asp 2590 Asp Gln Ser Lys	Asn Pro 2575 Pro Leu Lys Pro Asp	Gly His 2560 Ile Ala Gly Leu Ala 2640
Glu Ala (2530) Phe Gly A 2545 Ile Lys S Pro Thr A Lys Gly (25 Val Arg V 2610) Pro Gln A 2625	S15 Cys Ala Ala Ser 2 Chr 2 Sly S95 Val	Gln Lys Val Ile 580 Lys Cys Val Glu	Leu Glu Trp 2565 Met Lys Glu Met Tyr 2645	Thr Val 2550 Lys Ala Pro Lys Gly 2630 Leu	Pro 2535 Arg Asp Lys Ala Met 2615 Ala Leu	Ser Leu Asn 2600 Ala Ser Lys	His Leu Leu Glu 2585 Leu Leu Tyr	Ser Ser Glu 2570 Val Ile Tyr Gly Trp 2650	Ala Gly 2555 Asp Phe Val Asp Phe 2635 Ala	Arg 2540 Arg Pro Cys Tyr Ile 2620 Gln Glu	2525 Ser Ala Gln Val Pro 2605 Thr Tyr Lys	Thr Lys Val Thr Asp 2590 Asp Gln Ser Lys	Asn Pro 2575 Pro Leu Lys Pro Asp 2655	Gly His 2560 Ile Ala Gly Leu Ala 2640 Pro

2675			2680		2685)	
Glu Glu Ala 2690	Arg Thr	Ala Ile 2695			Glu Arg 2700	Leu Tyr	Val
Gly Gly Pro 2705			Lys Gly	Gln Thr			Arg 2720
Cys Arg Ala		Val Leu	Thr Thr	Ser Met		Thr Ile	Thr
Cys Tyr Val		Leu Ala	Ala Cys	Lys Ala	Ala Gly		
Pro Thr Met 2755	Leu Val	Cys Gly		Leu Val			Ser
Gln Gly Thr 2770	Glu Glu		Arg Asn	Leu Arg	Ala Phe 2780	Thr Glu	Ala
Met Thr Arg	_	Ala Pro 2790					Tyr 2800
Asp Leu Glu	Leu Ile 2805		-	Ser Asn 2810		Val Ala 2815	
Gly Pro Arg	Gly Arg 2820	Arg Arg	Tyr Tyr 2825		Arg Ası	Pro Thr 2830	Thr
Pro Leu Ala 2835	_	Ala Trp		Val Arg			Asn
Ser Trp Leu 2850					Thr I16 2860	e Trp Val	Arg
Met Val Leu 2865			Phe Ser	Ile Leu 2875			Thr 2880
Leu Asp Gln	Asn Leu 2885			Tyr Gly 2890	Ser Va	l Tyr Ser 2895	
Asn Pro Leu		Pro Ala				s Gly Leu 2910	ı Asp
Ala Phe Ser 2915		-	Ser His 2920	His Glu	Leu Th		l Ala
Ser Ala Leu 2930		Leu Gly 2935					s Ser
Arg Ala Arg 2945	; Ala Val	Arg Ala 2950	Ser Lei	ı Ile Ser 2955		y Gly Lys	s Ala 2960
Ala Val Cys	Gly Arg 2965		ı Phe Asr	n Trp Ala 2970	l Val Ly	s Thr Lys 2975	
Lys Leu Thr	Pro Leu 2980	ı Pro Glu	ı Ala Arg 2985		ı Asp Le	u Ser Sei 2990	r Trp
Phe Thr Val 2995		a Gly Gly	Gly Asp 3000	Ile Phe	His Se 300		r Arg
Ala Arg Pro 3010	Arg Sei	Leu Leu 3015		Leu Leu	ı Leu Le 3020	u Phe Val	l Gly
Val Gly Leu 3025	Phe Let	ı Leu Pro 3030	Ala Arg	g			

<210> 5 <211> 9674 <212> DNA <213> Hepatitis C virus

<220>

<221> CDS

<222> (341).. (9442)

<400>5accegeceet aataggggeg acaeteegee atgaateaet eeeetgtgag gaactaetgt 60 cttcacgcag aaagcgtcta gccatggcgt tagtatgagt gtcgtacagc ctccaggccc 120 cccctcccg ggagagccat agtggtctgc ggaaccggtg agtacaccgg aattgccggg 180 aagactgggt cetttettgg ataaacccac tetatgeeeg gecatttggg egtgeeeeg 240 caagactgct agccgagtag cgttgggttg cgaaaggcct tgtggtactg cctgataggg 300 355 tgcttgcgag tgccccggga ggtctcgtag accgtgcacc atg agc aca aat ccc Met Ser Thr Asn Pro 403 aaa cct caa aga aaa acc aaa aga aac act aac cgt cgc cca caa gac Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn Arg Arg Pro Gln Asp gtt aag ttt ccg ggc ggc ggc cag atc gtt ggc gga gta tac ttg ttg 451 Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly Gly Val Tyr Leu Leu 25 35 499 ccg cgc agg ggc ccc agg ttg ggt gtg cgc gcg aca agg aag gct tcg Pro Arg Arg Gly Pro Arg Leu Gly Val Arg Ala Thr Arg Lys Ala Ser 45 547 gag cgg tcc cag cca cgt ggg agg cgc cag ccc atc ccc aaa cat cgg Glu Arg Ser Gln Pro Arg Gly Arg Arg Gln Pro Ile Pro Lys His Arg 55 65 595 cgc tcc act ggc aag tcc tgg ggg aag cca gga tac ccc tgg ccc ctg Arg Ser Thr Gly Lys Ser Trp Gly Lys Pro Gly Tyr Pro Trp Pro Leu 70 75 85 tat ggg aat gag ggg ctc ggt tgg gca gga tgg ctc ctg tcc cct cga 643 Tyr Gly Asn Glu Gly Leu Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg

aat gtg ggt aag gtc atc gat acc cta acg tgc ggc ttt gcc gac ctc 739

110

ggt tee egt eee tea tgg gge eee aat gae eee egg eat agg teg ege

Gly Ser Arg Pro Ser Trp Gly Pro Asn Asp Pro Arg His Arg Ser Arg

105

115

691

Asn	Val	Gly 120	Lys	Val	Ile	Asp	Thr 125	Leu	Thr	Cys	Gly	Phe 130	Ala	Asp	Leu	
	ggg Gly 135															787
	ctc Leu															835
	ggg Gly											_	_	_		883
	tcc Ser												_			931
	aac Asn	-		_				_	_			_	_			979
	cag Gln 215											_	_	_		1027
	aaa Lys	_						_								1075
	gct Ala															1123
	gac Asp	_	_		_		_	_		-		_				1171
	gac Asp															1219
	ccg Pro 295				_			_	_	_		_				1267
	ggc Gly															1315

Val	Gly	Thr 520	Thr	Asp	Arg	Leu	Gly 525	Val	Pro	Thr	Tyr	Thr 530	Trp	Gly	Glu	
	gag Glu 535															1987
	tgg Trp															2035
_	ggc Gly	_			_	_		-								2083
_	ctg Leu		-													2131
	atc Ile		_					-		-						2179
_	tac Tyr 615									_					tcc Ser	2227
	ttc Phe														atg Met 645	2275
															agg Arg	2323
															gcc Ala	2371
	ttg Leu												Thr		ctt Leu	2419
		Leu					Val					Met			ctg Leu	2467
	Pro	_				Tyr		-			Glu			_	ctc Leu 725	2515

						gcc Ala		-	_	_					2563
			 		_	gaa Glu	_	_	_		_	_	_	_	2611
_		_	 _	_	_	agc Ser 765	_				-			_	2659
			 _			cac His		_				_		_	2707
_	-				_	ctg Leu		_				_		cta Leu 805	2755
_			_			gcc Ala		-	_					_	2803
			-		_	ctg Leu								ccg Pro	2851
						_								ctc Leu	2899
														cag Gln	2947
	_		 _	_		atc Ile			_	_				_	2995
_		_		_		acc Thr	_							ggg Gly	3043
			Leu	_		gct Ala	-	Thr	_				Phe	gtc Val	3091
															0100

Arg Ala His Ala Leu Leu Arg Met Cys Thr Met Val Arg His Leu Ala 920 925 930	
ggg ggt agg tac gtc cag atg gcg cta tta gcc ctt ggc agg tgg act Gly Gly Arg Tyr Val Gln Met Ala Leu Leu Ala Leu Gly Arg Trp Thr 935 940 945	187
ggc act tac atc tat gac cac ctc acc cct atg tcg gat tgg gct gct Gly Thr Tyr Ile Tyr Asp His Leu Thr Pro Met Ser Asp Trp Ala Ala 950 965	235
agc ggc ctg cgg gac ttg gcg gtc gct gtg gag cct atc atc ttc agt Ser Gly Leu Arg Asp Leu Ala Val Ala Val Glu Pro Ile Ile Phe Ser 970 975 980	283
ccg atg gag aag aaa gtc atc gtt tgg gga gcg gag acg gct gcg tgc 33 Pro Met Glu Lys Lys Val Ile Val Trp Gly Ala Glu Thr Ala Ala Cys 985 990 995	331
ggg gac atc ttg cac gga ctt ccc gtg tcc gcc cga ctc ggt cgg gag Gly Asp Ile Leu His Gly Leu Pro Val Ser Ala Arg Leu Gly Arg Glu 1000 1005 1010	379
atc ctc ctt ggc cca gct gat ggc tac acc tcc aag ggg tgg aag ctt Ile Leu Leu Gly Pro Ala Asp Gly Tyr Thr Ser Lys Gly Trp Lys Leu 1015 1020 1025	427
ctc gcc ccc atc acc gct tac gcc cag cag aca cga ggt ctc ttg ggc Leu Ala Pro Ile Thr Ala Tyr Ala Gln Gln Thr Arg Gly Leu Leu Gly 1030 1035 1040 1045	475
tct ata gtg gtg agc atg acg ggg cgt gac aag aca gaa cag gcc ggg Ser Ile Val Val Ser Met Thr Gly Arg Asp Lys Thr Glu Gln Ala Gly 1050 1055 1060	523
gag gtc caa gtc ctg tcc aca gtc act cag tcc ttc ctc gga aca tcc Glu Val Gln Val Leu Ser Thr Val Thr Gln Ser Phe Leu Gly Thr Ser 1065 1070 1075	571
att tcg ggg gtc tta tgg act gtt tac cac gga gct ggc aac aag aca Ile Ser Gly Val Leu Trp Thr Val Tyr His Gly Ala Gly Asn Lys Thr 1080 1085 1090	619
cta gcc ggc tcg cgg ggc ccg gtc acg cag atg tac tcg agc gcc gag Leu Ala Gly Ser Arg Gly Pro Val Thr Gln Met Tyr Ser Ser Ala Glu 1095 1100 1105	667
ggg gac ttg gtc ggg tgg ccc agc cct cct ggg acc aaa tct ttg gag 3 Gly Asp Leu Val Gly Trp Pro Ser Pro Pro Gly Thr Lys Ser Leu Glu 1110 1115 1120 1125	715

ccg tgt acg tgt gga gcg gtc gac ctg tat ttg gtc acg cgg aac gct Pro Cys Thr Cys Gly Ala Val Asp Leu Tyr Leu Val Thr Arg Asn Ala 1130 1135 1140	3763
gat gtc atc ccg gct cga aga cgc ggg gac aag cgg gga gcg ctg ctc Asp Val Ile Pro Ala Arg Arg Gly Asp Lys Arg Gly Ala Leu Leu 1145 1150 1155	3811
tcc ccg aga ccc ctt tcg acc ttg aag ggg tcc tcg ggg gga cct gtg Ser Pro Arg Pro Leu Ser Thr Leu Lys Gly Ser Ser Gly Gly Pro Val 1160 1165 1170	3859
ctt tgc cct agg ggc cac gct gtc gga atc ttc cgg gca gct gtg tgc Leu Cys Pro Arg Gly His Ala Val Gly Ile Phe Arg Ala Ala Val Cys 1175 1180 1185	3907
tct cgg ggt gtg gct aag tcc ata gat ttc atc ccc gtt gag acg ctc Ser Arg Gly Val Ala Lys Ser Ile Asp Phe Ile Pro Val Glu Thr Leu 1190 1195 1200 1205	3955
gac atc gtc acg cgg tct ccc acc ttt agt gac aac agc aca cca cca Asp Ile Val Thr Arg Ser Pro Thr Phe Ser Asp Asn Ser Thr Pro Pro 1210 1215 1220	4003
gct gtg ccc cag acc tat cag gtg ggg tac ttg cac gcc ccc act ggc Ala Val Pro Gln Thr Tyr Gln Val Gly Tyr Leu His Ala Pro Thr Gly 1225 1230 1235	4051
agt gga aaa agc acc aag gtc ccc gtc gcg tac gcc gcc cag ggg tat Ser Gly Lys Ser Thr Lys Val Pro Val Ala Tyr Ala Ala Gln Gly Tyr 1240 1245 1250	4099
aaa gtg ctg gtg ctc aat ccc tcg gtg gct gcc acc ctg gga ttt ggg Lys Val Leu Val Leu Asn Pro Ser Val Ala Ala Thr Leu Gly Phe Gly 1255 1260 1265	4147
gcg tac ttg tcc aag gca cat ggc atc aac ccc aac att agg act gga Ala Tyr Leu Ser Lys Ala His Gly Ile Asn Pro Asn Ile Arg Thr Gly 1270 1275 1280 1285	4195
gtc aga act gtg acg acc ggg gag ccc att aca tac tcc acg tat ggt Val Arg Thr Val Thr Thr Gly Glu Pro Ile Thr Tyr Ser Thr Tyr Gly 1290 1295 1300	4243
aaa ttc ctc gcc gat ggg ggc tgc gca ggc ggc gcc tat gac atc atc Lys Phe Leu Ala Asp Gly Gly Cys Ala Gly Gly Ala Tyr Asp Ile Ile 1305 1310 1315	4291

ata tgc gat gaa tgc cac tct gtg gat gct acc act att ctc ggc atc 4339

Ile Cys Asp Glu Cys His Ser Val Asp Ala Thr Thr Ile Leu Gly Ile 1320 1325 1330	
ggg aca gtc ctt gac caa gca gag aca gcc ggg gtc agg cta act gta Gly Thr Val Leu Asp Gln Ala Glu Thr Ala Gly Val Arg Leu Thr Val 1335 1340 1345	4387
ctg gcc acg gcc acg ccc ccc ggg tcg gtg aca acc ccc cat ccc aat Leu Ala Thr Ala Thr Pro Pro Gly Ser Val Thr Thr Pro His Pro Asn 1350 1355 1360 1365	4435
ata gag gag gta gcc ctc gga cag gag ggt gag atc ccc ttc tat ggg Ile Glu Glu Val Ala Leu Gly Gln Glu Gly Glu Ile Pro Phe Tyr Gly 1370 1375 1380	4483
agg gcg ttt ccc ctg tct tac atc aag gga ggg agg cac ttg att ttc Arg Ala Phe Pro Leu Ser Tyr Ile Lys Gly Gly Arg His Leu Ile Phe 1385 1390 1395	4531
tgc cac tca aag aaa aag tgt gac gag ctc gca acg gcc ctt cgg ggc Cys His Ser Lys Lys Cys Asp Glu Leu Ala Thr Ala Leu Arg Gly 1400 1405 1410	4579
atg ggc ttg aac gct gtg gca tat tac aga ggg ttg gac gtc tcc ata Met Gly Leu Asn Ala Val Ala Tyr Tyr Arg Gly Leu Asp Val Ser Ile 1415 1420 1425	4627
ata cca act caa gga gat gtg gtg gtc gtt gcc acc gac gcc ctc atg Ile Pro Thr Gln Gly Asp Val Val Val Val Ala Thr Asp Ala Leu Met 1430 1435 1440 1445	4675
acg ggg tat act gga gac ttt gac tcc gtg atc gac tgc aac gta gcg Thr Gly Tyr Thr Gly Asp Phe Asp Ser Val Ile Asp Cys Asn Val Ala 1450 1455 1460	4723
gtc acc cag gcc gta gac ttc agc ctg gac ccc acc ttc act ata acc Val Thr Gln Ala Val Asp Phe Ser Leu Asp Pro Thr Phe Thr Ile Thr 1465 1470 1475	4771
aca cag act gtc ccg caa gac gct gtc tca cgt agt cag cgc cga ggg Thr Gln Thr Val Pro Gln Asp Ala Val Ser Arg Ser Gln Arg Arg Gly 1480 1485 1490	4819
cgc acg ggt aga gga aga ctg ggc att tat agg tat gtt tcc act ggt Arg Thr Gly Arg Gly Arg Leu Gly Ile Tyr Arg Tyr Val Ser Thr Gly 1495 1500 1505	4867
gag cga gcc tca gga atg ttt gac agt gta gta ctc tgt gag tgc tac Glu Arg Ala Ser Gly Met Phe Asp Ser Val Val Leu Cys Glu Cys Tyr 1510 1515 1520 1525	4915

gac gca gga gct gct tgg tat gag ctc tca cca gtg gag acg acc gtc Asp Ala Gly Ala Ala Trp Tyr Glu Leu Ser Pro Val Glu Thr Thr Val 1530 1535 1540	4963
agg ctc agg gcg tat ttc aac acg cct ggc ttg cct gtg tgc cag gac Arg Leu Arg Ala Tyr Phe Asn Thr Pro Gly Leu Pro Val Cys Gln Asp 1545 1550 1555	5011
cac ctt gag ttt tgg gag gca gtt ttc acc ggc ctc aca cac ata gac His Leu Glu Phe Trp Glu Ala Val Phe Thr Gly Leu Thr His Ile Asp 1560 1565 1570	5059
gct cat ttc ctt tcc cag aca aag cag tcg ggg gaa aat ttc gca tac Ala His Phe Leu Ser Gln Thr Lys Gln Ser Gly Glu Asn Phe Ala Tyr 1575 1580 1585	5107
tta gta gcc tat cag gcc aca gtg tgc gcc agg gcc aaa gcg ccc ccc Leu Val Ala Tyr Gln Ala Thr Val Cys Ala Arg Ala Lys Ala Pro Pro 1590 1595 1600 1605	5155
ccg tcc tgg gac gtc atg tgg aag tgc ttg act cga ctc aag ccc acg Pro Ser Trp Asp Val Met Trp Lys Cys Leu Thr Arg Leu Lys Pro Thr 1610 1615 1620	5203
ctt gtg ggc cct aca cct ctc ctg tac cgt ttg ggc tct gtt acc aac Leu Val Gly Pro Thr Pro Leu Leu Tyr Arg Leu Gly Ser Val Thr Asn 1625 1630 1635	5251
gag gtc acc ctt aca cac ccc gtg aca aaa tac atc gcc aca tgc atg Glu Val Thr Leu Thr His Pro Val Thr Lys Tyr Ile Ala Thr Cys Met 1640 1645 1650	5299
caa gct gac ctc gag gtc atg acc agc acg tgg gtc ctg gct ggg gga Gln Ala Asp Leu Glu Val Met Thr Ser Thr Trp Val Leu Ala Gly Gly 1655 1660 1665	5347
gtc tta gca gcc gtc gcc gcg tat tgc tta gcg acc ggg tgt gtt tcc Val Leu Ala Ala Val Ala Ala Tyr Cys Leu Ala Thr Gly Cys Val Ser 1670 1675 1680 1685	5395
atc att ggc cgt tta cac atc aac cag cga gct gtc gtc gct ccg gac Ile Ile Gly Arg Leu His Ile Asn Gln Arg Ala Val Val Ala Pro Asp 1690 1695 1700	5443
aag gag gtc ctc tat gag gct ttt gat gag atg gag gaa tgt gcc tcc Lys Glu Val Leu Tyr Glu Ala Phe Asp Glu Met Glu Glu Cys Ala Ser 1705 1710 1715	5491

Arg Ala Ala Leu Leu Glu Glu Gly Gln Arg Ile Ala Glu Met Leu Lys 1720 1725 1730	
tcc aag atc caa ggc tta ttg cag caa gcc tct aaa cag gcc cag gac Ser Lys Ile Gln Gly Leu Leu Gln Gln Ala Ser Lys Gln Ala Gln Asp 1735 1740 1745	5587
ata caa ccc gct gtg caa gct tcg tgg ccc aag atg gag caa ttc tgg Ile Gln Pro Ala Val Gln Ala Ser Trp Pro Lys Met Glu Gln Phe Trp 1750 1755 1760 1765	5635
gcc aaa cat atg tgg aac ttc ata agc ggc att cag tac ctc gca gga Ala Lys His Met Trp Asn Phe Ile Ser Gly Ile Gln Tyr Leu Ala Gly 1770 1775 1780	5683
ctg tca aca ctg cca ggg aac cct gct gtg gct tcc atg atg gca ttc Leu Ser Thr Leu Pro Gly Asn Pro Ala Val Ala Ser Met Met Ala Phe 1785 1790 1795	5731
agc gcc gcc ctc acc agt ccg ttg tca act agc acc acc atc ctt ctt Ser Ala Ala Leu Thr Ser Pro Leu Ser Thr Ser Thr Thr Ile Leu Leu 1800 1805 1810	5779
aac att ctg ggg ggc tgg ctg gcg tcc caa att gcg cca ccc gcg ggg Asn Ile Leu Gly Gly Trp Leu Ala Ser Gln Ile Ala Pro Pro Ala Gly 1815 1820 1825	5827
gcc act ggc ttt gtt gtc agt ggc ctg gtg gga gct gct gtt ggc agc Ala Thr Gly Phe Val Val Ser Gly Leu Val Gly Ala Ala Val Gly Ser 1830 1835 1840 1845	5875
ata ggc ttg ggt aaa gtg ctg gtg gac atc ctg gca ggg tat ggt gcg Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala 1850 1855 1860	5923
ggc att tcg ggg gcc ctc gtc gcg ttt aag atc atg tct ggc gag aag Gly Ile Ser Gly Ala Leu Val Ala Phe Lys Ile Met Ser Gly Glu Lys 1865 1870 1875	5971
ccc tcc atg gag gat gtc atc aac ttg ctg cct ggg att ctg tct cca Pro Ser Met Glu Asp Val Ile Asn Leu Leu Pro Gly Ile Leu Ser Pro 1880 1885 1890	6019
ggt gct ctg gtg gtg gga gtc atc tgc gcg gcc att ctg cgc cgc cat Gly Ala Leu Val Val Gly Val Ile Cys Ala Ala Ile Leu Arg Arg His 1895 1900 1905	6067
gtg gga ccg ggg gaa ggc gcg gtc caa tgg atg aac agg ctt atc gcc Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala 1910 1915 1920 1925	6115

ttc gct tcc aga gga aac cac gtc gcc cct act cac tac gtg acg gag Phe Ala Ser Arg Gly Asn His Val Ala Pro Thr His Tyr Val Thr Glu 1930 1935 1940	6163
tcg gat gcg tcg cag cgt gtc acc caa ctg ctt ggc tct ctc act ata Ser Asp Ala Ser Gln Arg Val Thr Gln Leu Leu Gly Ser Leu Thr Ile 1945 1950 1955	6211
act agt cta ctc agg aga ctt cac aac tgg atc act gag gat tgc ccc Thr Ser Leu Leu Arg Arg Leu His Asn Trp Ile Thr Glu Asp Cys Pro 1960 1965 1970	6259
atc cca tgc gcc ggc tcg tgg ctc cgc gat gtg tgg gac tgg gtc tgt Ile Pro Cys Ala Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Val Cys 1975 1980 1985	6307
acc atc cta aca gac ttt aag aac tgg ctg acc tcc aag ctg ttc cca Thr Ile Leu Thr Asp Phe Lys Asn Trp Leu Thr Ser Lys Leu Phe Pro 1990 1995 2000 2005	6355
aag atg cct ggc ctc ccc ttt atc tct tgc caa aag ggg tac aag ggc Lys Met Pro Gly Leu Pro Phe Ile Ser Cys Gln Lys Gly Tyr Lys Gly 2010 2015 2020	6403
gtg tgg gcc ggc act ggc atc atg acc aca cga tgc ccc tgc ggc gcc Val Trp Ala Gly Thr Gly Ile Met Thr Thr Arg Cys Pro Cys Gly Ala 2025 2030 2035	6451
aac atc tct ggc aac gtc cgc ttg ggc tct atg aga atc aca gga ccc Asn Ile Ser Gly Asn Val Arg Leu Gly Ser Met Arg Ile Thr Gly Pro 2040 2045 2050	6499
aaa acc tgc atg aac acc tgg cag ggg acc ttt cct atc aat tgt tat Lys Thr Cys Met Asn Thr Trp Gln Gly Thr Phe Pro Ile Asn Cys Tyr 2055 2060 2065	6547
aca gaa ggc cag tgc ttg ccg aaa ccc gcg tta aac ttc aag acc gcc Thr Glu Gly Gln Cys Leu Pro Lys Pro Ala Leu Asn Phe Lys Thr Ala 2070 2075 2080 2085	6595
atc tgg aga gtg gcg gcc tca gag tac gcg gaa gtg acg cag cac gga Ile Trp Arg Val Ala Ala Ser Glu Tyr Ala Glu Val Thr Gln His Gly 2090 2095 2100	6643
tca tat gcc tat ata aca ggg ctg acc act gac aac tta aaa gtc cct Ser Tyr Ala Tyr Ile Thr Gly Leu Thr Thr Asp Asn Leu Lys Val Pro 2105 2110 2115	6691

tgc caa ctc ccc tct cca gag ttt ttc tct tgg gtg gac gga gta caa 6739

Cys Gln Leu Pro Ser Pro Glu Phe Phe Ser Trp Val Asp Gly Val Gln 2120 2125 2130	
atc cat agg tcc gcc ccc aca cca aag ccg ttt ttc cgg gat gag gtc Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe Phe Arg Asp Glu Val 2135 2140 2145	6787
tcg ttc agc gtt ggg ctc aat tca ttt gtc gtc ggg tct cag ctt ccc Ser Phe Ser Val Gly Leu Asn Ser Phe Val Val Gly Ser Gln Leu Pro 2150 2155 2160 2165	6835
tgt gac cct gag ccc gac act gag gta gtg atg tcc atg cta aca gac Cys Asp Pro Glu Pro Asp Thr Glu Val Val Met Ser Met Leu Thr Asp 2170 2175 2180	6883
cca tcc cat atc acg gcg gag gct gca gcg cgg cgt tta gcg cgg ggg Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg Arg Leu Ala Arg Gly 2185 2190 2195	6931
tca ccc cca tct gag gca agc tcc tca gcg agc cag ctg tcg gcg cca Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro 2200 2205 2210	6979
tcg ctg cga gcc acc tgc acc acc cac ggt agg acc tat gat gtg gac Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg Thr Tyr Asp Val Asp 2215 2220 2225	7027
atg gtg gat gcc aac ctg ttc atg ggg ggc ggc gtg att cgg ata gag Met Val Asp Ala Asn Leu Phe Met Gly Gly Val Ile Arg Ile Glu 2230 2235 2240 2245	7075
tct gag tcc aaa gtg gtc gtt ctg gac tcc ctc gac tca atg acc gag Ser Glu Ser Lys Val Val Leu Asp Ser Leu Asp Ser Met Thr Glu 2250 2255 2260	7123
gaa gag ggc gac ctt gag cct tca gta cca tcg gag tat atg ctc ccc Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser Glu Tyr Met Leu Pro 2265 2270 2275	7171
agg aag agg ttc cca ccg gcc tta ccg gct tgg gcg cgg cct gat tac Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp Ala Arg Pro Asp Tyr 2280 2285 2290	7219
aac cca ccg ctt gtg gaa tcg tgg aag agg cca gat tac caa cca ccc Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro Asp Tyr Gln Pro Pro 2295 2300 2305	7267
act gtt gcg ggc tgt gct ctc ccc ccc ccc aaa aag acc ccg acg cct Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys Lys Thr Pro Thr Pro 2310 2315 2320 2325	7315

cct cca agg aga cgc cgg aca gtg ggt ctg agc gag agc acc ata gga Pro Pro Arg Arg Arg Thr Val Gly Leu Ser Glu Ser Thr Ile Gly 2330 2335 2340	7363
gat gcc ctc caa cag ctg gcc atc aag tcc ttt ggc cag ccc ccc cca Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe Gly Gln Pro Pro 2345 2350 2355	7411
age gge gat tea gge ett tee aeg ggg geg gae gee gee gae tee gge Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp Ala Ala Asp Ser Gly 2360 2365 2370	7459
gat cgg aca ccc cct gac gag ttg gct ctt tcg gag aca ggt tct acc Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser Glu Thr Gly Ser Thr 2375 2380 2385	7507
tcc tcc atg ccc ccc ctc gag ggg gag cct ggg gac cca gac ctg gag Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly Asp Pro Asp Leu Glu 2390 2395 2400 2405	7555
cct gag cag gta gag ctt caa cct cct ccc cag ggg ggg gag gca gct Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln Gly Gly Glu Ala Ala 2410 2415 2420	7603
ccc ggc tcg gac tcg ggg tcc tgg tct act tgc tcc gag gag gat gac Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys Ser Glu Glu Asp Asp 2425 2430 2435	7651
tcc gtc gtg tgc tgc tcc atg tca tat tcc tgg acc ggg gct cta ata Ser Val Val Cys Cys Ser Met Ser Tyr Ser Trp Thr Gly Ala Leu Ile 2440 2445 2450	7699
act cct tgt agc ccc gaa gag gaa aag ttg cca att aac tcc ttg agc Thr Pro Cys Ser Pro Glu Glu Glu Lys Leu Pro Ile Asn Ser Leu Ser 2455 2460 2465	7747
aac tcg ctg ttg cga tac cat aac aag gta tac tgt act aca tca aag Asn Ser Leu Leu Arg Tyr His Asn Lys Val Tyr Cys Thr Thr Ser Lys 2470 2475 2480 2485	7795
agt gcc tca cta agg gct aaa aag gta act ttt gat agg atg caa gtg Ser Ala Ser Leu Arg Ala Lys Lys Val Thr Phe Asp Arg Met. Gln Val 2490 2495 2500	7843
ctc gac gcc tat tat gat tca gtc tta aag gac atc aag cta gcg gcc Leu Asp Ala Tyr Tyr Asp Ser Val Leu Lys Asp Ile Lys Leu Ala Ala 2505 2510 2515	7891

Ser Lys Val Ser Ala Arg Leu Leu Thr Leu Glu Glu Ala Cys Gln Leu 2520 2525 2530	
acc cca ccc cac tct gca aga tcc aag tat ggg ttt ggg gct aag gag Thr Pro Pro His Ser Ala Arg Ser Lys Tyr Gly Phe Gly Ala Lys Glu 2535 2540 2545	7987
gtc cgc agc ttg tcc ggg agg gcc gtc aac cac atc aag tcc gtg tgg Val Arg Ser Leu Ser Gly Arg Ala Val Asn His Ile Lys Ser Val Trp 2550 2555 2560 2565	8035
aag gac ctc ttg gaa gac tca caa aca cca att cct aca acc atc at	8083
gcc aaa aat gag gtg ttc tgc gtg gac ccc gcc aag ggg ggt aaa aaa Ala Lys Asn Glu Val Phe Cys Val Asp Pro Ala Lys Gly Gly Lys Lys 2585 2590 2595	8131
cca gct cgc ctt atc gtt tac cct gac ctc ggc gtc agg gtc tgc gag Pro Ala Arg Leu Ile Val Tyr Pro Asp Leu Gly Val Arg Val Cys Glu 2600 2605 2610	8179
aag atg gcc ctt tat gat gtc aca caa aag ctt cct cag gcg gtg atg Lys Met Ala Leu Tyr Asp Val Thr Gln Lys Leu Pro Gln Ala Val Met 2615 2620 2625	8227
ggg gct tct tat ggc ttc cag tac tcc ccc gct cag cgg gtg gag ttt Gly Ala Ser Tyr Gly Phe Gln Tyr Ser Pro Ala Gln Arg Val Glu Phe 2630 2635 2640 2645	8275
ctc ttg aag gca tgg gcg gaa aag aga gac cct atg ggt ttt tcg tat Leu Leu Lys Ala Trp Ala Glu Lys Arg Asp Pro Met Gly Phe Ser Tyr 2650 2655 2660	8323
gat acc cga tgc ttt gac tca acc gtc act gag aga gac atc agg act Asp Thr Arg Cys Phe Asp Ser Thr Val Thr Glu Arg Asp Ile Arg Thr 2665 2670 2675	8371
gag gag tcc ata tac cag gcc tgc tcc tta ccc gag gag gcc cga act Glu Glu Ser Ile Tyr Gln Ala Cys Ser Leu Pro Glu Glu Ala Arg Thr 2680 2685 2690	8419
gcc ata cac tcg ctg act gag aga ctc tat gtg gga ggg ccc atg ttc Ala Ile His Ser Leu Thr Glu Arg Leu Tyr Val Gly Gly Pro Met Phe 2695 2700 2705	8467
aac agc aag ggc cag tcc tgc ggg tac agg cgt tgc cgc gcc agc ggg Asn Ser Lys Gly Gln Ser Cys Gly Tyr Arg Arg Cys Arg Ala Ser Gly 2710 2715 2720 2725	8515

_		e aca tgc tat gta aaa gcc e Thr Cys Tyr Val Lys Ala 5 2740	8563
		gcg ccc acg atg ctg gta e Ala Pro Thr Met Leu Val 2755	8611
		a agc cag ggg act gag gag a Ser Gln Gly Thr Glu Glu 2770	8659
		g gct atg acc agg tat tct 1 Ala Met Thr Arg Tyr Ser 2785	8707
Ala Pro Pro Gly Asp		a tat gac ctg gag cta ata ı Tyr Asp Leu Glu Leu Ile 2800 2805	8755
		a ctt ggc cca cag ggc cgc a Leu Gly Pro Gln Gly Arg 2820	8803
		c act tca att gcc cgg gct r Thr Ser Ile Ala Arg Ala 2835	8851
	_	e aat tca tgg ctg gga aac I Asn Ser Trp Leu Gly Asn 2850	8899
		t cgc atg gtc ctg atg aca I Arg Met Val Leu Met Thr 2865	8947
His Phe Phe Ser Ile		c acc cta gac cag aac ctt Thr Leu Asp Gln Asn Leu 2880 2885	8995
		gtg agt cct ctg gac ctc r Val Ser Pro Leu Asp Leu 2900	9043
		t gac gcc ttc tct ctg cac 1 Asp Ala Phe Ser Leu His 2915	9091

aca tac act ccc cac gaa ctg acg cgg gtg gct tca gcc ctc aga aaa 9139

Thr Tyr Thr Pro His Glu Leu Thr Arg Val Ala Ser Ala Leu Arg Lys 2920 2925 2930 9187 ctt ggg gcg cca ccc ctc aga gcg tgg aag agt cgg gcg cgt gca gtt Leu Gly Ala Pro Pro Leu Arg Ala Trp Lys Ser Arg Ala Arg Ala Val 2935 2940 9235 agg gcg tcc ctc atc tcc cgt ggg ggg agg gcg gcc gtt tgc ggt cgg Arg Ala Ser Leu Ile Ser Arg Gly Gly Arg Ala Ala Val Cys Gly Arg 2950 2965 2955 tac ctc ttc aac tgg gcg gtg aag acc aag ctc aaa ctc act cct ttg 9283 Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Leu 2970 2975 2980 9331 ccg gag gca cgc ctc ctg gat ttg tcc agt tgg ttt acc gtc ggc gcc Pro Glu Ala Arg Leu Leu Asp Leu Ser Ser Trp Phe Thr Val Gly Ala 2985 9379 ggc ggg ggc gac att tat cac agc gtg tcg cgt gcc cga ccc cgc cta Gly Gly Gly Asp Ile Tyr His Ser Val Ser Arg Ala Arg Pro Arg Leu 3000 3005 3010 tta ctc ctt agc cta ctc cta ctt tct gta ggg gta ggc ctc ttc cta 9427 Leu Leu Leu Ser Leu Leu Leu Ser Val Gly Val Gly Leu Phe Leu 17 3015 3020 3025 ctc ccc gct cga tag ageggcacac attagctaca ctccatagct aactgttcct 9482 Leu Pro Ala Arg 3030 tettecette teatettatt etaetttett tettggtgge tecatettag eeetggteae 9602 ggctagctgt gaaaggtccg tgagccgcat gactgcagag agtgccgtaa ctggtctctc 9662

<210> 6

<211> 3033

tgcagatcat gt

<212> PRT

<213> Hepatitis C virus

<400> 6

Met Ser Thr Asn Pro Lys Pro Gln Arg Lys Thr Lys Arg Asn Thr Asn

1 5 10 15

Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly Gly Gln Ile Val Gly

20 25 30

9674

Gly	Val	Tyr 35	Leu	Leu	Pro	Arg	Arg 40	Gly	Pro	Arg	Leu	Gly 45	Val	Arg	Ala
Thr	Arg 50	Lys	Ala	Ser	Glu	Arg 55	Ser	Gln	Pro	Arg	Gly 60	Arg	Arg	Gln	Pro
Ile 65	Pro	Lys	His	Arg	Arg 70	Ser	Thr	Gly	Lys	Ser 75	Trp	Gly	Lys	Pro	Gly 80
Tyr	Pro	Trp	Pro	Leu 85	Tyr	Gly	Asn	Glu	Gly 90	Leu	Gly	Trp	Ala	Gly 95	Trp
Leu	Leu	Ser	Pro 100	Arg	Gly	Ser	Arg	Pro 105	Ser	Trp	Gly	Pro	Asn 110	Asp	Pro
Arg	His	Arg 115	Ser	Arg	Asn	Val	Gly 120	Lys	Val	Ile	Asp	Thr 125	Leu	Thr	Cys
Gly	Phe 130	Ala	Asp	Leu	Leu	Gly 135	Tyr	Val	Pro	Val	Val 140	Gly	Ala	Pro	Leu
Ser 145	Gly	Val	Ala	Ser	Ala 150	Leu	Ala	His	Gly	Val 155	Arg	Val	Leu	Glu	Asp 160
Gly	Val	Asn	Phe	Ala 165	Thr	Gly	Asn	Leu	Pro 170	Gly	Cys	Ser	Phe	Ser 175	Ile
Phe	Leu	Leu	Ala 180	Leu	Leu	Ser	Cys	Ile 185	Thr	Thr	Pro	Val	Ser 190	Ala	Val
		195					200					205	Asp	-	
Asn	Asp 210	Ser	Ile	Thr	Trp	Gln 215	Leu	Glu	Ala	Ala	Val 220	Leu	His	Val	Pro
Gly 225	Cys	Val	Pro	Cys	Glu 230	Lys	Met	Gly	Asn	Thr 235	Ser	Arg	Cys	Trp	Ile 240
				245					250				Leu	255	_
Gly	Leu	Arg	Thr 260	His	Ile	Asp	Met	Val 265	Val	Leu	Ser	Ala	Thr 270	Leu	Cys
Ser	Ala	Leu 275	Tyr	Val	Gly	Asp	Leu 280	Cys	Gly	Gly	Val	Met 285	Leu	Ala	Ser
	290					295					300				Cys
305					310					315			Met		320
				325					330				Leu	335	
			340					345					Gly 350		
Trp	Gly	Val 355	Met	Phe	Gly	Leu	Ala 360	Tyr	Phe	Ser	Met	Gln 365	Gly	Ala	Trp
	370					375					380		Asp		
385					390					395			Ser		400
			_	405					410				Ile	415	
Asn	Gly	Ser	Trp 420	His	Ile	Asn	Arg	Thr 425	Ala	Leu	Asn	Cys	Asn 430	Asp	Ser

Leu	His	Thr 435	Gly	Phe	Phe	Thr	Ala 440	Leu	Phe	Tyr	Ile	His 445	Lys	Phe	Asn
	Ser 450	Gly	Cys	Pro	Glu	Arg 455	Leu	Ser	Ala	Cys	Arg 460	Asn	Ile	Glu	Asp
		Ile	Gly	Trp	Gly 470		Leu	Gln	Tyr	Asp 475		Asn	Val	Thr	Asn 480
	Glu	Asp	Met	Arg 485		Tyr	Cys	Trp	His 490		Pro	Pro	Lys	Gln 495	
Gly	Val	Val	Pro 500		Gly	Thr	Val	Cys 505		Pro	Val	Tyr	Cys 510		Thr
Pro	Ser	Pro 515		Val	Val	Gly	Thr 520	Thr		Arg	Leu	Gly 525		Pro	Thr
Tyr	Thr 530		Gly	Glu	Asn	Glu 535		Asp		Phe	Leu 540		Asn	Ser	Thr
Arg 545		Pro	Ser	Gly	Ser 550		Phe	Gly	Cys	Thr 555		Met	Asn	Ser	Thr 560
	Phe	Thr	Lys	Thr 565		Gly	Ala	Pro	Pro 570		Arg	Thr	Arg	Ala 575	
Phe	Asn	Thr	Ser 580		Asp	Leu	Leu	Cys 585		Thr	Asp	Cys	Phe 590		Lys
His	Pro				Tyr	Ile	Lys 600	Cys	Gly	Ser	Gly	Pro 605		Leu	Thr
Pro	Lys 610				Asp	Tyr 615		Tyr	Arg	Leu	Trp 620		Tyr	Pro	Cys
Thr 625		Asn	Tyr	Ser	Thr 630		Lys	Ile	Arg	Met 635		Val	Gly	Gly	Val 640
	His	Arg	Leu	Met 645	Ala	Ala	Cys	Asn	Phe 650		Arg	Gly	Asp	Arg 655	
Asn	Leu	Glu	Asp 660	Arg		Arg	Ser	Gln 665		Thr	Pro	Leu	Leu 670		Ser-
Thr	Thr		Trp	Ala								-	Leu	Pro	Ala
Leu	Ser 690	Thr										Val		Val	Gln
Tyr 705			Gly	Leu	Ser 710	Pro	Ala	Leu	Thr	Gln 715	Tyr	Ile	Val	Arg	Trp 720
	Trp	Val	Val	Leu 725	Leu	Phe	Leu	Leu	Leu 730		Asp	Ala	Arg	Val 735	
Ala	Cys	Leu	Trp 740	Met		Ile	Leu	Leu 745	Gly		Ala	Glu	Ala 750	Ala	Leu
Glu	Lys	Leu 755	Val		Leu	His	Ala 760		Ser	Ala	Ala	Ser 765		Asn	Gly
Phe	Leu 770	Tyr		Val	Ile	Phe 775	Leu		Ala	Ala	Trp 780	His		Lys	Gly
Arg 785			Pro	Leu	Ala 790	Ala		Ser	Leu	Thr 795	Gly		Trp	Pro	Phe 800
	Leu	Leu	Leu	Leu 805	Ala		Pro	Gln	Gln 810	Ala		Ala	·Tyr	Asp 815	Ala
Ser	Val	His	Gly 820	Gln		Gly	Ala	Ala 825	Leu		Val	Leu	lle 830	Thr	Leu

Phe	Thr	Leu 835	Thr	Pro	Gly	Tyr	Lys 840	Thr	Leu	Leu	Ser	Gln 845	Ser	Leu	Trp
Trp	Leu 850		Tyr	Leu	Leu	Thr 855		Ala	Glu	Thr	Met 860		Gln	Glu	Trp
Ala 865	Pro	Ser	Met	Gln	Ala 870	Arg	Gly	Gly	Arg	Asp 875	Gly	Ile	Ile	Trp	Ala 880
Ala	Thr	Ile	Phe	Cys 885	Pro	Gly	Val	Val	Phe 890	Asp	Ile	Thr	Lys	Trp 895	Leu
Leu	Ala	Val	Leu 900	Gly	Pro	Gly	Tyr	Leu 905	Leu	Arg	Gly	Ala	Leu 910	Thr	Arg
Val	Pro	Tyr 915	Phe	Val	Arg	Ala	His 920	Ala	Leu	Leu	Arg	Met 925	Cys	Thr	Met
Val	Arg 930	His	Leu	Ala	Gly	Gly 935	Arg	Tyr	Val	Gln	Met 940	Ala	Leu	Leu	Ala
Leu 945	Gly	Arg	Trp	Thr	Gly 950	Thr	Tyr	Ile	Tyr	Asp 955	His	Leu	Thr	Pro	Met 960
Ser	Asp	Trp	Ala	Ala 965	Ser	Gly	Leu	Arg	Asp 970	Leu	Ala	Val	Ala	Val 975	Glu
			Phe 980					985	-				990	_	
		995	Ala				1000				-	1005			
	1010		Arg		-	1015				-	1020				
1025	5	_	Lys		1030					1035	_			-	1040
				1045					1050			_		1055	• •
		•	Ala 1060	_				1065					1070		
		1075	Thr				1080			_		1085	_		_
	1090		Lys			1095				•	1100				
110	5		Ala -		1110				•	1115					1120
				1125		-			1130			_		1135	
			Asn 1140		_			1145					1150	_	-
_		1155	Leu				1160				•	1165	-		
	1170		Pro			1175			-		1180			-	
118	5		Val		1190					1195					1200
				1205					1210					1215	
ASN	ser		Pro 1220	rro	міа	vai		61n 1225		ıyr	GIN		G19 1230	ıyr	Leu

HIS AIA	Pro 1 235	ınr	СІУ	Ser			ser				245	vai	Ala	lyr
Ala Ala		Gly	Tyr			Leu	Val	Leu	Asn	Pro	Ser	Val	Ala	Ala
1250 Thr Leu	Gly H	Phe		Ala		Leu		Lys	Ala					
1265 Asn Ile	Aro 1	Thr	Clv	.270 Val	Ara	Thr	Val	Thr	.275 Thr	Glw	Gl 11	Pro		.280 Thr
		1	285				1	290		•		1	.295	
Tyr Ser		Tyr 300	Gly	Lys	Phe		Ala 1305			Gly		Ala 1310	Gly	Gly
Ala Tyr	Asp] 315				_	Asp 320		-			Val .325	Asp	Ala	Thr
Thr Ile 1330	Leu (Gly	Ile	Gly	Thr	Val	Leu	Asp	Gln	Ala 1340		Thr	Ala	Gly
Val Arg			Val	Leu				Thr	Pro		Gly	Ser		
1345 Thr Pro	uic I	Dro		1350	Clu	C1,,	Vo 1		355	Clar	Cln	C1		1360
1111 110	1115 1					Giu				Gly			1375	GIU
Ile Pro					Ala		Pro	Leu	Ser		Ile		Gly	Gly
Arg His	Leu 1 395	Ile	Phe	Cys		Ser 1400	_		Lys	-	Asp 405	Glu	Leu	Ala
Thr Ala		Arg	Glv	Met						-		Tvr	Arg	Glv
1410			-]	415					1420	-			•
Leu Asp												Val		Ala 1440
1425 Thr Asp														
		1	445]	l 45 0	-		_	J	l455	
Asp Cys		Val 460				Gln				Phe		Leu 1470	Asp	Pro
Thr Phe													Ser	Arg
1	475					1480					1485			
Ser Gln 1490	Arg A	Arg	Gly		Thr 1495	Gly	Arg	Gly		Leu 1500	Gly	Ile	Tyr	Arg
Tyr Val 1505	Ser '	Thr	-	Glu 1510	Arg	Ala	Ser	-	Met 1515	Phe	Asp	Ser		Val 1520
Leu Cys	Glu (Tyr		Ala	Gly		Ala		Tyr	Glu		Ser	
Val Glu	Thr '		1525 Val	Arg	Leu	Arg		1530 Tyr	Phe	Asn	Thr		1535 Gly	Leu
	1	540				:	1545					1550		
	555		-		:	1560					1565			
Leu Thr 1570	His	Ile	Asp		His 1575	Phe	Leu	Ser		Thr 1580	Lys	Gln	Ser	Gly
Glu Asn 1585	Phe .	Ala		Leu 1590	Val	Ala	Tyr		Ala 1595	Thr	Val	Cys		Arg 1600
Ala Lys	Ala		Pro		Ser	Trp		Val		Trp	Lys		Leu	
Arg Leu	Lvs		1605 Thr	Len	Va1	Glv		1610 Thr	Pro	Leu	Leu		1615 Arg	Leu
6 Dou		620	****	Lu	,		1625		0			1630		

Gly	Ser				Glu				Thr			Val 1645	Thr	Lys	Tyr
T1 -												-	C	ŒL.	Т
	Ala 1650	Inr	Cys	Met		A1a 1655			Glu		меt 1660	Inr	Ser	Inr	1rp
	Leu	A12	C1 vr	C157								Trr	CTTC	Lou	A 1 2
166				GIY		Leu					ніа		-		.680
											Tlo	Aon	Cln		
1111	Gly	CyS		3e1 1685		116			1690		116			1695	ніа
Val	Val	412	Pro	Acn											Mot
Val	Val		1700	veh	гуѕ	Giu		1705	IJI	Giu	пта		1710	GIU	MEL
G111	Glu	Cve	Ala	Ser	Ara	Ala			I 611	Glu	Glu	C1v	Gln	Ara	Tla
Olu		1715	пта	561	шg				Leu			1725	0111	мg	110
Ala	Glu	Met	I 211	Tve	Ser						Len	Gln	Gln	Ala	Ser
	1730	MCt	Leu	шуз		1735			Gly		1740	OIII.	OIM	піа	SCI
		A 1 -	C1-	۸								C	Т	D	T
	Gln	мга	GIII	_							Ala	ser	rrp		_
174	5			-	1750					1755]	1760
Met	Glu	Gln	Phe	Trp	Ala	Lvs	His	Met	Trp	Asn	Phe	Ile	Ser	Glv	Ile
				_		-			1770					1775	
Δ1	т	T						7	D	C1	۸	D	A 1 .		A 1
Gin	Tyr													vai	Ala
			1780					1785					1790		
Ser	Met	Met	Ala	Phe	Ser	Ala	Ala	Len	Thr	Ser	Pro	Len	Ser	Thr	Ser
001		1795			001		1800	LCu		501			501		OCI
			_	_						_		1805	_		
Thr	Thr	He	Leu	Leu	Asn	He	Leu	Gly	Gly	Trp	Leu	Ala	Ser	Gln	He
	1810					1815					1820				•
	Pro	Pro	Δ1a	C157	412							C137	Lou	Val	C1 ₃₇
		110	піа												
182					1830					1835					1840
Ala	Ala	Val	Gly	Ser	Ile	Gly	Leu	Gly	Lys	Val	Leu	Val	Asp	Ile	Leu
				1845					1850				_	1855	
۸1۵	C1	T			C1	Tla	Com				V-1	۸۱.			T1a
мта	Gly													Lys	тте
			1860										1870		
Met	Ser	Gly	Glu	Lys	Pro	Ser	Met	Glu	Asp	Val	Ile	Asn	Leu	Leu	Pro
		1875		-			1880		•			1885			
01			C	D	C1					01			C	A 1 -	A 1
	Ile		Ser	Pro				vai	vai				Uys	Ala	Ala
	1890					1895					1900				
Ile	Leu	Arg	Arg	His	Val	Glv	Pro	Glv	Glu	Glv	Ala	Val	Gln	Trp	Met
190		6	6		1910	5		3		1915			·	_	1920
			т1				_								
Asn	Arg	Leu	He	Ala	Phe	Ala	Ser	Arg	Gly	Asn	His	۷al	Ala	Pro	Thr
				1925					1930					1935	
His	Tyr	Val			Ser	Asn	Ala				Val	Thr			Len
1110	1 9 1			oru	oci	изр				mg	vai			LCu	LCu
	_		1940			_		1945					1950		
Gly	Ser	Leu	Thr	Ile	Thr	Ser	Leu	Leu	Arg	Arg	Leu	His	Asn	Trp	Ile
		1955					1960		_	_		1965			
Th				D=0	Tlo			۸1_	C1	C			A	100	V-1
	Glu		Cys	FIO			Cys	Ala	GIY				Arg	ASP	vai
	1970					1975					1980				
Trp	Asp	Trp	Val	Cvs	Thr	Ile	Leu	Thr	Asp	Phe	Lvs	Asn	Trp	Leu	Thr
					1990			~							2000
198		T	DI.			16 -	ъ	Δ1		1995		т	_		
ser	Lys	Leu				met	Pro				Phe	TIE			GIN
				2005					2010					2015	
Lve	Gly	Tvr	Lvs	Glv	Val	Trn	Ala				Tle	Met	Thr	Thr	Arø
<i>د ر</i> ــ	J- J		2020		, 41	17		2025		Oly			2030		ö
								///////					Z/\ I+]\ I		

Gly Ser Gln Leu Pro Cys Asp Pro Glu Pro Asp Thr Glu Val Val Met 2165						_	Gly Ser Met
2050 2055 2060				_	4 671		
Pro Ile Asn Cys Tyr Thr Glu Gly Gln Cys Leu Pro Lys Pro Ala Leu 2065							Gly Thr Phe
2065 2070 2075 2080							. D
Asn Phe Lys Thr Ala Ile Trp Arg Val Ala Ala Ser Glu Tyr Ala Glu 2085 2090 2095 Val Thr Gln His Gly Ser Tyr Ala Tyr Ile Thr Gly Leu Thr Thr Asp 2100 2105 2110 Asn Leu Lys Val Pro Cys Gln Leu Pro Ser Pro Glu Phe Phe Ser Trp 2115 2120 2125 Val Asp Gly Val Gln Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe 2130 2135 2140 Phe Arg Asp Glu Val Ser Phe Ser Val Gly Leu Asn Ser Phe Val Val 2145 2150 2155 2160 Gly Ser Gln Leu Pro Cys Asp Pro Glu Pro Asp Thr Glu Val Val Met 2165 2170 2175 Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg 2180 2185 2190 Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ala Ser 2195 2200 2205 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2220 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2206 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 Ala Arg Pro Asp Tyr Asn Pro Pro Int Val Ala Gly Cys Ala Leu Pro Pro Lys 2305 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Lys 2305 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Lys 2305 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Lys 2305 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Lys 2305 2300 Asp Tyr Gln Pro Pro Thr Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2340 Gly Gln Pro Pro Pro Ser Gly Asp Arg Arg Arg Arg Arg Thr Val Gly Leu Ser Phe 2370 2365 Glu Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2370 2305 Glu Glu Fro Glu Glu Glu Glu Glu Glu Glu Glu Glu Pro Glu Cave 2375 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Glu Cave 2375 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Glu Cave 2405 Asp Pro Asp Leu Glu Pro Glu Glu Val Glu Leu Gln Pro Pro Pro Gln 2405 Asp Pro Asp Leu Glu Pro Glu Glu Fasp Ser Gly Ser Trp Ser							
2085 2090 2095				Ara Val	A10 A10		
Val Thr Gln His Gly Ser Tyr Ala Tyr Ile Thr Gly Leu Thr Thr Asp 2100 2105 2110 Asn Leu Lyx Val Pro Cys Gln Leu Pro Ser Pro Glu Phe Phe Ser Trp 2115 2120 2125 Val Asp Gly Val Gln Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe 2130 2135 2140 Phe Arg Asp Glu Val Ser Phe Ser Val Gly Leu Asn Ser Phe Val Val 2145 2150 2155 2160 Gly Ser Gln Leu Pro Cys Asp Pro Glu Pro Asp Thr Glu Val Val Met 2165 2170 2175 Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg 2180 2180 2190 Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser 2195 2200 2205 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2220 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 Gly Gln Pro Pro Pro Ser Gly Asp Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 Glu Gln Pro Pro Pro Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Asp 2355 2360 Gly Gln Pro Pro Pro Ser Gly Asp Arg Thr Pro Pro Leu Glu Gly Gly Pro Gly 2385 2390 2395 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Gly Pro Gly 2385 2390 2395 Glu Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys Gly Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	ASII THE LYS						
Asn Leu Lys Val Pro Cys Gln Leu Pro Ser Pro Glu Phe Phe Ser Trp 2115 Val Asp Gly Val Gln Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe 2130 Val Asp Gly Val Gln Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe 2130 Phe Arg Asp Glu Val Ser Phe Ser Val Gly Leu Asn Ser Phe Val Val 2145 2150 Cly Ser Gln Leu Pro Cys Asp Pro Glu Pro Asp Thr Glu Val Val Met 2165 2170 Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg 2180 Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser 2195 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 Clo Ser Ser Ala Ser Leu Arg Ala Asn Leu Phe Met Gly Gly Gly 2225 Qual Try Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 Asp Ser Met Thr Glu Glu Gly Gly Asp Leu Glu Pro Ser Val Arg Pro 2260 Clu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 Clu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Asp Ser Pro 2290 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 Clu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Pro 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 Clu Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 Clu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 Clu Gln Pro Pro Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 Quant Ser Thr Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 Quant Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 Quant Ser Gly Asp Arg Thr Pro Pro Leu Glu Gly Glu Pro Gly 2385 Quant Ser Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys Gly Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Val Thr Glr	His Glv	Ser Tvr				
Val Asp Gly Val Gln Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe 2130 2135 2140	1012 1112 011						
Val Asp Gly Val Gln Ile His Arg Ser Ala Pro Thr Pro Lys Pro Phe 2130 2135 2140	Asn Leu Lys	s Val Pro	Cys Gln	Leu Pro	Ser Pro	Glu Phe	Phe Ser Trp
Val Asp Gly Val Gln 11e His Arg Ser Ala Pro Thr Pro Lys Pro Pro 2140 Phe Arg Asp Glu Val Ser Pro Gly Leu Ass Ser Phe Val Lya 2140 Ser Arg Asp Arg Gly Leu Arg Asp Pro Glu Pro Asp Thr Glu Val Val Mal Ata Ala	2115	5		2120		2125	5
2130	Val Asp Gly	7 Val Gln	Ile His	Arg Ser	Ala Pro	Thr Pro	Lys Pro Phe
2145	2130		2135			2140	•
Gly Ser Gln Leu Pro Cys Asp Pro Glu Pro Asp Thr Glu Val Val Met 2165 2170 2170 2175 Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg 2180 2185 2190 Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser 2195 2200 2205 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2230 2235 2240 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2355 Glu Ser Thr Ile Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Pro Fro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys				Ser Val	Gly Leu	Asn Ser	· Phe Val Val
Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg 2180 2185 2190	2145		2150		2155		2160
Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Arg 2180 2185 2190	Gly Ser Glr	ı Leu Pro	Cys Asp	Pro Glu	Pro Asp	Thr Glu	Val Val Met
Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu Ala Ala Ala Ala Arg 2180 2185 2190 Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser 2195 2205 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2220 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2320 2335 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395							
2180	Ser Met Leu	ı Thr Asp	Pro Ser	His Ile	Thr Ala	Glu Ala	
Arg Leu Ala Arg Gly Ser Pro Pro Ser Glu Ala Ser Ser Ser Ala Ser 2195 2200 2205 Gln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2220 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2280 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Pro Gln 2405 2410 2415 Gly Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys							
Clin Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2220 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Gly Gly Gly Glu Ala Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys Cly Gly Gl	Arg Leu Ala						
Cln Leu Ser Ala Pro Ser Leu Arg Ala Thr Cys Thr Thr His Gly Arg 2210 2215 2220					oiu nia		
2210 2215 2220 Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		•			The Con		
Thr Tyr Asp Val Asp Met Val Asp Ala Asn Leu Phe Met Gly Gly Gly 2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys				_	_		HIS GIY Arg
2225 2230 2235 2240 Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Pro Arg Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2365 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Gln Val Glu Leu Gln Pro Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys 2410 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Val Ile Arg Ile Glu Ser Glu Ser Lys Val Val Val Leu Asp Ser Leu 2245 2250 2255 Asp Ser Met Thr Glu Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2365 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Gln Val Glu Leu Gln Pro Pro Pro Pro Gln 2410 2415 Gly Gly Glu Ala Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys 2410							
Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys					**		
Asp Ser Met Thr Glu Glu Glu Gly Asp Leu Glu Pro Ser Val Pro Ser 2260 2265 2270 Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Val Ile Arg	g Ile Glu	Ser Glu	Ser Lys	Val Val	Val Leu	ı Asp Ser Leu
Clu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp		_					
Clu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp	Asp Ser Met	Thr Glu	Glu Glu	Gly Asp	Leu Glu	Pro Ser	: Val Pro Ser
Glu Tyr Met Leu Pro Arg Lys Arg Phe Pro Pro Ala Leu Pro Ala Trp 2275 2280 2285 Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		2260	•	2265			2270
Ala Arg Pro Asp Tyr Asn Pro Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Glu Tyr Met	Leu Pro	Arg Lys	Arg Phe			ı Pro Ala Tro
Ala Arg Pro Asp Tyr Asn Pro Leu Val Glu Ser Trp Lys Arg Pro 2290 2295 2300 2300 2300 2300 2320 2335 2335 60 23235 2320 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
2290 2295 2300 Asp Tyr Gln Pro Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2365 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Pro Pro Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Ala Arg Pro	Asp Tyr					
Asp Tyr Gln Pro Pro Thr Val Ala Gly Cys Ala Leu Pro Pro Pro Lys 2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		, F J -					, Lijo ing 110
2305 2310 2315 2320 Lys Thr Pro Thr Pro Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2325 2330 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		Pro Pro					Pro Pro Ive
Lys Thr Pro Thr Pro Pro Pro Arg Arg Arg Arg Thr Val Gly Leu Ser 2335 Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 2350 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Pro Gln 2405 2410 2415 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys				Mia diy			
Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys				A A	_		
Glu Ser Thr Ile Gly Asp Ala Leu Gln Gln Leu Ala Ile Lys Ser Phe 2340 2345 Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Lys Inr Pro					inr val	
Cly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	01 0 7						
Gly Gln Pro Pro Pro Ser Gly Asp Ser Gly Leu Ser Thr Gly Ala Asp 2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Glu Ser Thi		Asp Ala			Ala Ile	
2355 2360 2365 Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys							
Ala Ala Asp Ser Gly Asp Arg Thr Pro Pro Asp Glu Leu Ala Leu Ser 2370 2375 2380 Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	Gly Gln Pro	o Pro Pro	Ser Gly	Asp Ser	Gly Leu	Ser Thi	: Gly Ala Asp
2370	2355	5		2360		2365	;
2370	Ala Ala Asp	Ser Gly	Asp Arg	Thr Pro	Pro Asp	Glu Lei	ı Ala Leu Ser
Glu Thr Gly Ser Thr Ser Ser Met Pro Pro Leu Glu Gly Glu Pro Gly 2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		_					
2385 2390 2395 2400 Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		Ser Thr					Glu Pro Gly
Asp Pro Asp Leu Glu Pro Glu Gln Val Glu Leu Gln Pro Pro Gln 2405 2410 2415 Gly Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys							
2405 2410 2415 Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys		•		Cln Vol			
Gly Glu Ala Ala Pro Gly Ser Asp Ser Gly Ser Trp Ser Thr Cys	woh iio wol					GIII FIC	
	Cl+ Cl- C1					C- M	
	dry dry Gll	1 A12 A12 <i>242</i> 0	rro Gly			ser irp	Ser Thr Cys

Ser			Asp	Asp	Ser							Ser 2445	Tyr	Ser	Trp
6 71		2435	_	- .	m			^					_	т	т.
	Gly 2450	Ala	Leu	He	Thr	Pro 455	Cys	Ser	Pro		Glu 2460	Glu	Lys	Leu	Pro
		Sar	Ĭ AII	Sor	Asn		Ī AII	Ι Δ11	Ara			Aen	Ινσ	Val	Tur
		Ser	Leu			Ser	Leu	Leu					Lys		
2465			_		2470		_	_	_		_				480
Cys	Thr	Thr		-	Ser	Ala	Ser		_	Ala	Lys	Lys			Phe
•				2485				-	2490					2495	
Asp	Arg		Gln 2500	Val	Leu	Asp		Tyr 2505	Tyr	Asp	Ser		Leu 2510	Lys	Asp
Tla	Ινε			Ala	Ser	I 379			Ala	Ara	Len			Len	Glu
110		2515			501			OCI		ııı g		2525	1111	LCu	oru
C1,,										۸1۵			Lvc	Tur	C157
		Cys	GIII	Leu	Thr		LIO	1115	Ser			261	Lys	1 9 1	Gry
	2530		-	٥.		2535	_	-	_		2540	4.1			***
Phe	Gly	Ala	Lys		Val	Arg	Ser	Leu		-	Arg	Ala	Val		
254	5			2	2550				4	2555				2	2560
Ile	Lys	Ser	Val	Trp	Lys	Asp	Leu	Leu	Glu	Asp	Ser	Gln	Thr	Pro	Ile
	-		2	2565	-	_		2	2570				4	2575	
Pro	Thr	Thr			Ala	Lvs	Asn					Val			Ala
110	****		2580			_, _		2585					2590		
T	C1			T	Pro	A 1 a								T 011	C157
Lys				LyS	FIO								ush	Leu	Gry
		2595		۵.	_			-				2605	~ 1		_
	_		-		Lys			Leu	Tyr			Thr	Gln	Lys	Leu
	2610										2620				
Pro	Gln	Ala	Val	Met	Gly	Ala	Ser	Tyr	Gly	Phe	Gln	Tyr	Ser	Pro	Ala
262					2630			•		2635					2640
		Val	Glu		Leu					Ala	Glu	Lvs	Arg	Asp	Pro
V		,		2645			_, ~		2650					2655	
Mot	C1 ₃₇	Pho			Asp	Thr	Δτα								Gla
MET	Gry						_						2670	1111	Giu
۸	Α.		2660		01			2665						T	D
Arg	_		_	ınr	Glu					Gin			Ser	Leu	Pro
		2675					2680					2685			
Glu	Glu	Ala	Arg	Thr	Ala	Ile	His	Ser	Leu	Thr	Glu	Arg	Leu	Tyr	Val
	2690					2695					2700				
Glv	Glv	Pro	Met	Phe	Asn	Ser	Lvs	Gly	Gln	Ser	Cys	Gly	Tyr	Arg	Arg
270	-				2710		•	•		2715		•	_		$272\overline{0}$
		Ala	Ser		Val	I en	Thr	Thr				Asn	Thr		
Cys	nig	піа		2725		LCu	1111		2730		ury	11011		2735	
C	σ.	37 - 1				A 1 -	۸1				A 1 _	C1			
Cys	lyr				Leu	Ala				Ala	Ala				Ala
			2740					2745					2750		_
Pro	Thr	Met	Leu	Val	Cys	Gly	Asp	Asp	Leu	Val	Val	Ile	Ser	Glu	Ser
		2755	ı				2760					2765			
Gln	Glv	Thr	Glu	Glu	Asp	Glu	Arg	Asn	Leu	Arg	Ala	Phe	Thr	Glu	Ala
	2770		•			2775					2780				
			. Т	S0*	Ala			C1					Pro	Clar	Тит
		vi 8	Tyr				110	Gly				, mg	110		
278		01	•		2790		•	0		2795		C	T7_ 1		2800
Asp	Leu	Glu			Thr	ser	Cys				val	ser			
				2805					2810					2815	
Gly	Pro	Gln	Gly	Arg	Arg	Arg	Tyr	Tyr	Leu	Thr	· Arg	: Asp	Pro	Thr	Thr
			2820					2825					2830		

54/

```
Ser Ile Ala Arg Ala Ala Trp Glu Thr Val Arg His Ser Pro Val Asn
       2835
                          2840
                                               2845
Ser Trp Leu Gly Asn Ile Ile Gln Tyr Ala Pro Thr Ile Trp Val Arg
                       2855
                                           2860
Met Val Leu Met Thr His Phe Phe Ser Ile Leu Met Ala Gln Asp Thr
2865
                   2870
                                       2875
Leu Asp Gln Asn Leu Asn Phe Glu Met Tyr Gly Ser Val Tyr Ser Val
               2885
                                   2890
Ser Pro Leu Asp Leu Pro Ala Ile Ile Glu Arg Leu His Gly Leu Asp
           2900
                               2905
                                                    2910
Ala Phe Ser Leu His Thr Tyr Thr Pro His Glu Leu Thr Arg Val Ala
                           2920
Ser Ala Leu Arg Lys Leu Gly Ala Pro Pro Leu Arg Ala Trp Lys Ser
                       2935
                                           2940
Arg Ala Arg Ala Val Arg Ala Ser Leu Ile Ser Arg Gly Gly Arg Ala
2945
                                                            2960
                   2950
                                        2955
Ala Val Cys Gly Arg Tyr Leu Phe Asn Trp Ala Val Lys Thr Lys Leu
               2965
                                   2970
Lys Leu Thr Pro Leu Pro Glu Ala Arg Leu Leu Asp Leu Ser Ser Trp
           2980
                               2985
                                                    2990
Phe Thr Val Gly Ala Gly Gly Gly Asp Ile Tyr His Ser Val Ser Arg
       2995
                           3000
                                                3005
Ala Arg Pro Arg Leu Leu Leu Leu Ser Leu Leu Leu Leu Ser Val Gly
                       3015
                                            3020
Val Gly Leu Phe Leu Leu Pro Ala Arg
3025
                   3030
```

<210> 7 <211> 8024 <212> RNA <213> Artificial Sequence

<440>

<223> Description of Artificial Sequence: replicon

<400> 7

accugeccu aauaggggeg acacucegec augaaucacu ececugugag gaacuacugu 60 cuucacgeag aaagegecua gecauggegu uaguaugagu gueguacage euecaggeec 120 ceeccuceeg ggagagecau aguggueuge ggaaceggug aguacacegg aauugeeggg 180 aagacugggu eeuuucuugg auaaacecac ucuaugeeeg gecauuuuggg egugeeeeg 240 caagacugeu ageegaguag eguuuggguug egaaaggeeu ugugguacug eeugauaggg 300 egeuugegag ugeeeegga ggueueguag acegugeaee augageaeaa auceuaaaee 360 ucaaagaaaa accaaaagaa acacaaaeeg ucgeeeaaug auugaacaag auugauugea 420 egeagguucu eeggeegeuu ggguggagag geuauuegge uaugaeagag aacaaaagaa 480 aaueggeuge ucugaugeeg eegugueeg gugeeeugaa ugaacugeag gaegaggege egeggeuaue 540 ugucaagace gaeeugueeg gugeeeugaa ugaacugeag gaegaggeag egeggeuaue 600 guggeuggee acgaeggeg uuceuugege ageugueee gaeguuguea eugaagegg 660 aagggaeugg eugeuauugg gegaagugee ggggeaggau euceuugea cuccugueau eucaecuuge 720

uccugcegag aaaguaucca ucauggeuga ugcaaugegg eggeugeaua egeuugauce 780 ggcuaccugc ccauucgacc accaagcgaa acaucgcauc gagcgagcac guacucggau 840 ggaagccggu cuugucgauc aggaugaucu ggacgaagag caucaggggc ucgcgccagc 900 cgaacuguuc gccaggcuca aggcgcgcau gcccgacggc gaggaucucg ucgugaccca 960 uggcgaugcc ugcuugccga auaucauggu ggaaaauggc cgcuuuuucug gauucaucga 1020 cuguggccgg cugggugugg cggaccgcua ucaggacaua gcguuggcua cccgugauau 1080 ugcugaagag cuuggcggcg aaugggcuga ccgcuuccuc gugcuuuacg guaucgccgc 1140 ucccgauucg cagcgcaucg ccuucuaucg ccuucuugac gaguucuucu gaguuuaaac 1200 ccucucccuc ccccccccu aacguuacug gccgaagccg cuuggaauaa ggccggugug 1260 cguuugucua uauguuauuu uccaccauau ugccgucuuu uggcaaugug agggcccgga 1320 aaccuggece ugucuucuug acgageauue cuaggggueu uueeeeucue geeaaaggaa 1380 ugcaaggucu guugaauguc gugaaggaag caguuccucu ggaagcuucu ugaagacaaa 1440 caacgucugu agcgacccuu ugcaggcagc ggaacccccc accuggcgac aggugccucu 1500 geggecaaaa gecaegugua uaagauacae eugeaaagge ggeaeaaeee eagugeeaeg 1560 uugugaguug gauaguugug gaaagaguca aauggcucuc cucaagcgua uucaacaagg 1620 ggcugaagga ugcccagaag guaccccauu guaugggauc ugaucugggg ccucggugca 1680 caugcuuuac auguguuuag ucgagguuaa aaaaacgucu aggccccccg aaccacgggg 1740 acgugguuuu ccuuugaaaa acacgaugau accauggcuc ccaucacugc uuaugcccag 1800 caaacacgag gccuccuggg cgccauagug gugaguauga cggggcguga caggacagaa 1860 caggccgggg aaguccaaau ccuguccaca gucucucagu ccuuccucgg aacaaccauc 1920 ucggggguuu uguggacugu uuaccacgga gcuggcaaca agacucuagc cggcuuacgg 1980 gguccgguca cgcagaugua cucgagugcu gagggggacu ugguaggcug gcccagcccc 2040 ccugggacca agucuuugga gccgugcaag uguggagccg ucgaccuaua ucuggucacg 2100 cggaacgcug augucauccc ggcucggaga cgcggggaca agcggggagc auugcucucc 2160 ccgagaccca uuucgaccuu gaaggggucc ucgggggggc cggugcucug cccuaggggc 2220 cacgucguug ggcucuuccg agcagcugug ugcucucggg gcguggccaa auccaucgau 2280 uucauccccg uugagacacu cgacguuguu acaaggucuc ccacuuucag ugacaacagc 2340 acgccaccgg cugugcccca gaccuaucag gucggguacu ugcaugcucc aacuggcagu 2400 ggaaagagca ccaagguccc ugucgcguau gccgcccagg gguacaaagu acuagugcuu 2460 aaccccucgg uagcugccac ccugggguuu ggggcguacc uauccaaggc acauggcauc 2520 aaucccaaca uuaggacugg agucaggacc gugaugaccg gggaggccau cacguacucc 2580 acauauggca aauuucucgc cgaugggggc ugcgcuagcg gcgccuauga caucaucaua 2640 ugcgaugaau gccacgcugu ggaugcuacc uccauucucg gcaucggaac gguccuugau 2700 caagcagaga cagccggggu cagacuaacu gugcuggcua cggccacacc ccccggguca 2760 gugacaaccc cccaucccga uauagaaaag guaggccucg ggcgggaggg ugagaucccc 2820 uucuauggga gggcgauucc ccuauccugc aucaagggag ggagacaccu gauuuucugc 2880 cacucaaaga aaaaguguga cgagcucgcg gcggcccuuc ggggcauggg cuugaaugcc 2940 guggcauacu auagaggguu ggacgucucc auaauaccag cucagggaga uguggugguc 3000 gucgccaccg acgcccucau gacgggguac acuggagacu uugacuccgu gaucgacugc 3060 aauguagegg ucaeceaage uguegaeuue ageeuggaee eeaeeuueae uauaaeeaea 3120 cagacugucc cacaagacgc ugucucacgc agucagcgcc gcgggcgcac agguagagga 3180 agacagggca cuuauaggua uguuuccacu ggugaacgag ccucaggaau guuugacagu 3240 guagugcuuu gugagugcua cgacgcaggg gcugcguggu acgaucucac accagcggag 3300 accaccguca ggcuuagagc guauuucaac acgcccggcc uacccgugug ucaagaccau 3360 cuugaauuuu gggaggcagu uuucaccggc cucacacaca uagacgccca cuuccucucc 3420 caaacaaagc aagcggggga gaacuucgcg uaccuaguag ccuaccaagc uacggugugc 3480 gccagagcca aggccccucc cccguccugg gacgccaugu ggaagugccu ggcccgacuc 3540 aagccuacgc uugcgggccc cacaccucuc cuguaccguu ugggcccuau uaccaaugag 3600 gucacccuca cacacccugg gacgaaguac aucgccacau gcaugcaagc ugaccuugag 3660 gucaugacca gcacgugggu ccuagcugga ggaguccugg cagccgucgc cgcauauugc 3720 cuggegacug gaugeguuuc caucaucgge egeuugeaeg ucaaceageg aguegueguu 3780 gcgccggaua aggagguccu guaugaggcu uuugaugaga uggaggaaug cgccucuagg 3840 gcggcucuca ucgaagaggg gcagcggaua gccgagaugu ugaaguccaa gauccaaggc 3900 uugcugcage aggecucuaa geaggeecag gacauacaae eegeuaugea ggeuucaugg 3960 cccaaagugg aacaauuuug ggccagacac auguggaacu ucauuagcgg cauccaauac 4020 cucgcaggau ugucaacacu gccagggaac cccgcggugg cuuccaugau ggcauucagu 4080 geegeeeuca eeagueeguu guegaeeagu aceaeeauce uucueaaeau eaugggagge 4140 ugguuagegu eccagauege accaeeegeg ggggeeaeeg geuuuguegu eaguggeeug 4200 gugggggcug ccgugggcag cauaggccug gguaaggugc ugguggacau ccuggcagga 4260 uauggugcgg gcauuucggg ggcccucguc gcauucaaga ucaugucugg cgagaagccc 4320 ucuauggaag augucaucaa ucuacugccu gggauccugu cuccgggagc ccugguggug 4380 ggggucaucu gcgcggccau ucugcgccgc cacgugggac cgggggaggg cgcgguccaa 4440 uggaugaaca ggcuuauugc cuuugcuucc agaggaaacc acgucgcccc uacucacuac 4500 gugacggagu cggaugcguc gcagcgugug acccaacuac uuggcucucu uacuauaacc 4560 agccuacuca gaagacucca caauuggaua acugaggacu gccccauccc augcuccgga 4620 uccuggcucc gcgacgugug ggacuggguu ugcaccaucu ugacagacuu caaaaauugg 4680 cugaccucua aauuguuccc caagcugccc ggccuccccu ucaucucuug ucaaaagggg 4740 uacaagggug ugugggccgg cacuggcauc augaccacgc gcugcccuug cggcgccaac 4800 aucucuggea augucegeeu gggeueuaug aggaueaeag ggeeuaaaae eugeaugaae 4860 accuggcagg ggaccuuucc uaucaauugc uacacggagg gccagugcgc gccgaaaccc 4920 cccacgaacu acaagaccgc caucuggagg guggcggccu cggaguacgc ggaggugacg 4980 cagcaugggu cguacuccua uguaacagga cugaccacug acaaucugaa aauuccuugc 5040 caacuaccuu cuccagaguu uuucuccugg guggacggug ugcagaucca uagguuugca 5100 cccacaccaa agccguuuuu ccgggaugag gucucguucu gcguugggcu uaauuccuau 5160 gcugucgggu cccagcuucc cugugaaccu gagcccgacg cagacguauu gagguccaug 5220 cuaacagauc cgccccacau cacggcggag acugcggcgc ggcgcuuggc acggggauca 5280 ccuccaucug aggegageuc cucagugage cagcuaucag caccguegeu gegggecace 5340 ugcaccaccc acagcaacac cuaugacgug gacauggucg augccaaccu gcucauggag 5400 ggcggugugg cucagacaga gccugagucc agggugcccg uucuggacuu ucucgagcca 5460 auggecgagg aagagagega eeuugageee ucaauaceau eggagugeau geueeeeagg 5520 ageggguuue eaegggeeuu aeeggeuugg geaeggeeug aeuaeaaeee geegeuegug 5580 gaaucgugga ggaggccaga uuaccaaccg cccaccguug cugguugugc ucucccccc 5640 cccaagaagg ccccgacgcc ucccccaagg agacgccgga cagugggucu gagcgagagc 5700 accauaucag aagcccucca gcaacuggcc aucaagaccu uuggccagcc ccccucgagc 5760 ggugaugcag gcucguccac gggggcgggc gccgccgaau ccggcggucc gacguccccu 5820 ggugagccgg cccccucaga gacagguucc gccuccucua ugcccccccu cgagggggag 5880 ccuggagauc cggaccugga gucugaucag guagagcuuc aaccucccc ccaggggggg 5940 gggguageue eegguueggg eueggggueu uggueuaeuu geueegagga ggaegauaee 6000 accgugugcu gcuccauguc auacuccugg accggggcuc uaauaacucc cuguagcccc 6060 gaagaggaaa aguugccaau caacccuuug aguaacucgc uguugcgaua ccauaacaag 6120 guguacugua caacaucaaa gagcgccuca cagagggcua aaaagguaac uuuugacagg 6180 acgcaaguge ucgaegeeca uuaugaeuca gueuuaaagg acaucaageu ageggeuuce 6240 aaggucagcg caaggcuccu caccuuggag gaggcgugcc aguugacucc accccauucu 6300 gcaagaucca aguauggauu cggggccaag gagguccgca gcuuguccgg gagggccguu 6360 aaccacauca aguccgugug gaaggaccuc cuggaagacc cacaaacacc aauucccaca 6420 accaucaugg ccaaaaauga gguguucugc guggaccccg ccaagggggg uaagaaacca 6480 gcucgccuca ucguuuaccc ugaccucggc guccgggucu gcgagaaaau ggcccucuau 6540 gacauuacac aaaagcuucc ucaggcggua augggagcuu ccuauggcuu ccaguacucc 6600 ccugcccaac ggguggagua ucucuugaaa gcaugggcgg aaaagaagga ccccaugggu 6660 uuuucguaug auacccgaug cuucgacuca accgucacug agagagacau caggaccgag 6720

```
gaguccauau accaggecug cucceugece gaggaggece geaeugeeau acaeuegeug 6780
acugagagac uuuacguagg agggcccaug uucaacagca agggucaaac cugcgguuac 6840
agacguugcc gcgccagcgg ggugcuaacc acuagcaugg guaacaccau cacaugcuau 6900
gugaaagccc uagcggccug caaggcugcg gggauaguug cgcccacaau gcugguaugc 6960
ggcaaugacc uaguagucau cucagaaagc caggggacug aggaggacga gcggaaccug 7020
agagecuuca eggaggeeau gaecagguae ueugeeceue euggugauee eeceagaeeg 7080
gaauaugacc uggagcuaau aacauccugu uccucaaaug ugucuguggc guugggcccg 7140
cggggccgcc gcagauacua ccugaccaga gacccaacca cuccacucgc ccgggcugcc 7200
ugggaaacag uuagacacuc cccuaucaau ucauggcugg gaaacaucau ccaguaugcu 7260
ccaaccauau ggguucgcau gguccuaaug acacacuucu ucuccauucu caugguccaa 7320
gacacccugg accagaaccu caacuuugag auguauggau caguauacuc cgugaauccu 7380
uuggaccuuc cagccauaau ugagagguua cacgggcuug acgccuuuuc uaugcacaca 7440
uacucucacc acgaacugac geggguggeu ucageceuca gaaaacuugg ggegecacec 7500
cucagggugu ggaagagucg ggcucgcgca gucagggcgu cccucaucuc ccguggaggg 7560
aaagcggccg uuugcggccg auaucucuuc aauugggcgg ugaagaccaa gcucaaacuc 7620
acuccauuge eggaggegeg ecuaeuggae uuauceaguu gguucaeegu eggegeegge 7680
gggggcgaca uuuuucacag cgugucgcgc gcccgacccc gcucauuacu cuucggccua 7740
cuccuacuuu ucguagggu aggccucuuc cuacucccg cucgguagag cggcacacac 7800
иииииииии сицииииии ииииисссис ииисииссси исисаисииа иисиасииис 7920
uuucuuggug gcuccaucuu agcccuaguc acggcuagcu gugaaagguc cgugagccgc 7980
                                                               8024
augacugcag agagugccgu aacuggucuc ucugcagauc augu
```

```
<210> 8
<211> 7994
<212> RNA
```

<213> Artificial Sequence

<220>

<400> 8

<223> Description of Artificial Sequence: replicon

```
accugeccu aauaggggeg acaeueegee augaaueaeu eeeeugugag gaacuaeugu 60 euueaegeag aaagegeeua geeauggegu uaguaugagu gueguaeage eueeaggeee 120 eeeeeeeeg ggagageeau aguggueuge ggaaceggug aguaeaeegg aauugeeggg 180 aagaeugggu eeuuueuugg auaaaeeeae ueuaugeeeg geeauuuggg egugeeeeeg 240
```

caagacugcu agccgaguag cguuggguug cgaaaggccu ugugguacug ccugauaggg 300 cgcuugcgag ugccccggga ggucucguag accgugcacc augagcacaa auccuaaacc 360 ucaaagaaaa accaaaagaa acacaaccg ucgcccaaug auugaacaag auggauugca 420

cgcagguucu ccggccgcuu ggguggagag gcuauucggc uaugacuggg cacaacagac 480 aaucggcugc ucugaugccg ccguguuccg gcugucagcg caggggggcgc cgguucuuuu 540

ugucaagacc gaccuguccg gugcccugaa ugaacugcag gacgaggcag cgcggcuauc 600 guggcuggcc acgacgggcg uuccuugcgc agcugugcuc gacguuguca cugaagcggg 660

aagggacugg cugcuauugg gcgaagugcc ggggcaggau cuccugucau cucaccuugc 720 uccugccgag aaaguaucca ucauggcuga ugcaaugcgg cggcugcaua cgcuugaucc 780

ggcuaccugc ccauucgacc accaagcgaa acaucgcauc gagcgagcac guacucggau 840 ggaagccggu cuugucgauc aggaugaucu ggacgaagag caucaggggc ucgcgccagc 900 cgaacuguuc gccaggcuca aggcgcgcau gcccgacggc gaggaucucg ucgugaccca 960

uggcgaugcc ugcuugccga auaucauggu ggaaaauggc cgcuuuucug gauucaucga 1020

cuguggccgg	cugggugugg	cggaccgcua	ucaggacaua	gcguuggcua	cccgugauau	1080
					guaucgccgc	
					gaguuuaaac	
ccucucccuc	cccccccu	aacguuacug	gccgaagccg	cuuggaauaa	ggccggugug	1260
					agggcccgga	
aaccuggccc	ugucuucuug	acgagcauuc	cuaggggucu	uuccccucuc	gccaaaggaa	1380
ugcaaggucu	guugaauguc	gugaaggaag	caguuccucu	ggaagcuucu	ugaagacaaa	1440
					aggugccucu	
gcggccaaaa	gccacgugua	uaagauacac	cugcaaaggc	ggcacaaccc	cagugccacg	1560
uugugaguug	gauaguugug	gaaagaguca	aauggcucuc	cucaagcgua	uucaacaagg	1620
ggcugaagga	ugcccagaag	guaccccauu	guaugggauc	ugaucugggg	ccucggugca	1680
caugcuuuac	auguguuuag	ucgagguuaa	aaaaacgucu	aggcccccg	aaccacgggg	1740
acgugguuuu	ccuuugaaaa	acacgaugau	accauggcuc	ccaucacugc	uuaugcccag	1800
caaacacgag	gccuccuggg	cgccauagug	gugaguauga	cggggcguga	caggacagaa	1860
caggccgggg	aaguccaaau	ccuguccaca	gucucucagu	ccuuccucgg	aacaaccauc	1920
ucggggguuu	uguggacugu	uuaccacgga	gcuggcaaca	agacucuagc	cggcuuacgg	1980
					gcccagcccc	
					ucuggucacg	
					auugcucucc	
					cccuaggggc	
					auccaucgau	
					ugacaacagc	
					aacuggcagu	
					acuagugcuu	
					acauggcauc	
					cacguacucc	
					caucaucaua	
					gguccuugau	
					ccccggguca	
					ugagaucccc	
					gauuuucugc	
					cuugaaugcc	
					uguggugguc	
					gaucgacugc	
					uauaaccaca	
					agguagagga	
					guuugacagu	
					accagcggag	
					ucaagaccau	
					cuuccucucc	
					uacggugugc	
					ggcccgacuc	
					uaccaaugag	
					ugaccuugag	
					cgcauauugc	
					agucgucguu	
					cgccucuagg	
					gauccaaggc	
					ggcuucaugg	
					cauccaauac	

cucgcaggau	ugucaacacu	gccagggaac	cccgcggugg	cuuccaugau	ggcauucagu	4080
gccgcccuca	ccaguccguu	gucgaccagu	accaccaucc	uucucaacau	caugggaggc	4140
ugguuagcgu	cccagaucgc	accacccgcg	ggggccaccg	gcuuugucgu	caguggccug	4200
		cauaggccug				
uauggugcgg	gcauuucggg	ggcccucguc	gcauucaaga	ucaugucugg	cgagaagccc	4320
ucuauggaag	augucaucaa	ucuacugccu	gggauccugu	cuccgggagc	ccugguggug	4380
ggggucaucu	gcgcggccau	ucugcgccgc	cacgugggac	cgggggaggg	cgcgguccaa	4440
uggaugaaca	ggcuuauugc	cuuugcuucc	agaggaaacc	acgucgcccc	uacucacuac	4500
gugacggagu	cggaugcguc	gcagcgugug	acccaacuac	uuggcucucu	uacuauaacc	4560
agccuacuca	gaagacucca	caauuggaua	acugaggacu	gccccauccc	augcuccgga	4620
		ggacuggguu				
		caagcugccc				
uacaagggug	ugugggccgg	cacuggcauc	augaccacgc	gcugcccuug	cggcgccaac	4800
aucucuggca	auguccgccu	gggcucuaug	aggaucacag	ggccuaaaac	cugcaugaac	4860
		uaucaauugc				
cccacgaacu	acaagaccgc	caucuggagg	guggcggccu	cggaguacgc	ggaggugacg	4980
cagcaugggu	cguacuccua	uguaacagga	cugaccacug	acaaucugaa	aauuccuugc	5040
caacuaccuu	cuccagaguu	uuucuccugg	guggacggug	ugcagaucca	uagguuugca	5100
cccacaccaa	agccguuuuu	ccgggaugag	gucucguucu	gcguugggcu	uaauuccuau	5160
gcugucgggu	cccagcuucc	cugugaaccu	gagcccgacg	cagacguauu	gagguccaug	5220
cuaacagauc	cgcccacau	cacggcggag	acugcggcgc	ggcgcuuggc	acggggauca	5280
ccuccaucug	aggcgagcuc	cucagugagc	cagcuaucag	caccgucgcu	gcgggccacc	5340
ugcaccaccc	acagcaacac	cuaugacgug	gacauggucg	augccaaccu	gcucauggag	5400
ggcggugugg	cucagacaga	gccugagucc	agggugcccg	uucuggacuu	ucucgagcca	5460
auggccgagg	aagagagcga	ccuugagccc	ucaauaccau	cggagugcau	gcuccccagg	5520
agcggguuuc	cacgggccuu	accggcuugg	gcacggccug	acuacaaccc	gccgcucgug	5580
gaaucgugga	ggaggccaga	uuaccaaccg	cccaccguug	cugguugugc	ucucccccc	5640
cccaagaagg	cccgacgcc	uccccaagg	agacgccgga	cagugggucu	gagcgagagc	5700
accauaucag	aagcccucca	gcaacuggcc	aucaagaccu	uuggccagcc	cccucgagc	5760
ggugaugcag	gcucguccac	gggggcgggc	gccgccgaau	ccggcggucc	gacguccccu	5820
ggugagccgg	ccccucaga	gacagguucc	gccuccucua	ugccccccu	cgagggggag	5880
ccuggagauc	cggaccugga	gucugaucag	guagagcuuc	aaccuccccc	ccaggggggg	5940
gggguagcuc	ccgguucggg	cucggggucu	uggucuacuu	gcuccgagga	ggacgauacc	6000
accgugugcu	gcuccauguc	auacuccugg	accggggcuc	uaauaacucc	cuguagcccc	6060
gaagaggaaa	aguugccaau	caacccuuug	aguaacucgc	uguugcgaua	ccauaacaag	6120
guguacugua	caacaucaaa	gagcgccuca	cagagggcua	aaaagguaac	uuuugacagg	6180
acgcaagugc	ucgacgccca	uuaugacuca	gucuuaaagg	acaucaagcu	agcggcuucc	6240
aaggucagcg	caaggcuccu	caccuuggag	gaggcgugcc	aguugacucc	accccauucu	6300
gcaagaucca	aguauggauu	cggggccaag	gagguccgca	gcuuguccgg	gagggccguu	6360
aaccacauca	aguccgugug	gaaggaccuc	cuggaagacc	cacaaacacc	aauucccaca	6420
accaucaugg	ccaaaaauga	gguguucugc	guggaccccg	ccaagggggg	uaagaaacca	6480
gcucgccuca	ucguuuaccc	ugaccucggc	guccgggucu	gcgagaaaau	ggcccucuau	6540
gacauuacac	aaaagcuucc	ucaggcggua	augggagcuu	ccuauggcuu	ccaguacucc	6600
ccugcccaac	ggguggagua	ucucuugaaa	gcaugggcgg	aaaagaagga	ccccaugggu	6660
uuuucguaug	auacccgaug	cuucgacuca	accgucacug	agagagacau	caggaccgag	6720
		cucccugccc				
acugagagac	uuuacguagg	agggcccaug	uucaacagca	agggucaaac	cugcgguuac	6840
		ggugcuaacc				
		caaggcugcg				
		gcggaaccug				
				أحقد سدين		

```
ucugececue cuggugauce ecceagaceg gaauaugace uggageuaau aacauceugu 7080
uccucaaaug ugucuguggc guugggcccg cggggccgcc gcagauacua ccugaccaga 7140
gacccaacca cuccacucge eegggeugee ugggaaacag uuagacacue eecuaucaau 7200
ucauggcugg gaaacaucau ccaguaugcu ccaaccauau ggguucgcau gguccuaaug 7260
acacacuucu ucuccauucu caugguccaa gacacccugg accagaaccu caacuuugag 7320
auguauggau caguauacuc cgugaauccu uuggaccuuc cagccauaau ugagagguua 7380
cacgggcuug acgccuuuuc uaugcacaca uacucucacc acgaacugac gcggguggcu 7440
ucageceuca gaaaaeuugg ggegeeaeee eucagggugu ggaagagueg ggeuegegea 7500
gucagggcgu cccucaucuc ccguggaggg aaagcggccg uuugcggccg auaucucuuc 7560
aauugggcgg ugaagaccaa gcucaaacuc acuccauugc cggaggcgcg ccuacuggac 7620
uuauccaguu gguucaccgu cggcgccggc gggggcgaca uuuuucacag cgugucgcgc 7680
gcccgacccc gcucauuacu cuucggccua cuccuacuuu ucguaggggu aggccucuuc 7740
cuacucceg cuegguagag eggeacaeae uagguaeaeu ecauageuaa euguueeuuu 7800
uuucuucccu ucucaucuua uucuacuuuc uuucuuggug gcuccaucuu agcccuaguc 7920
acggcuagcu gugaaagguc cgugagccgc augacugcag agagugccgu aacuggucuc 7980
ucugcagauc augu
                                                                7994
<210> 9
<211> 340
<212> RNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic RNA
<400> 9
accugecceu aauaggggeg acaeucegee augaaucaeu eeceugugag gaacuaeugu 60
cuucacgcag aaagcgccua gccauggcgu uaguaugagu gucguacagc cuccaggccc 120
cccccuccg ggagagccau aguggucugc ggaaccggug aguacaccgg aauugccggg 180
aagacugggu ccuuucuugg auaaacccac ucuaugccg gccauuuggg cgugccccg 240
caagacugcu agccgaguag cguuggguug cgaaaggccu ugugguacug ccugauaggg 300
cgcuugcgag ugccccggga ggucucguag accgugcacc
                                                                340
<210> 10
<211> 340
<212> RNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic RNA
<400> 10
accegececu aauaggggeg acaeucegee augaaucaeu eeccugugag gaacuaeugu 60
cuucacgcag aaagcgucua gccauggcgu uaguaugagu gucguacagc cuccaggccc 120
cccccuccg ggagagccau aguggucugc ggaaccggug aguacaccgg aauugccggg 180
aagacugggu ccuuucuugg auaaacccac ucuaugcccg gccauuuggg cgugcccccg 240
```

caagacugcu agccgaguag cguuggguug cgaaaggccu ugugguacug ccugauaggg 300

<213> Artificial Sequence

340

<210> 11 <211> 236 <212> RNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic RNA	
<400> 11 agcggcacac acuagguaca cuccauagcu aacuguuccu uuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuu	120
<210> 12 <211> 232 <212> RNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic RNA	
<400> 12 agcggcacac auuagcuaca cuccauagcu aacuguuccu uuuuuuuuu uuuuuuuuu uuuuuuuuu uuuuuu	120
<210> 13 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 13 cgggagagcc atagtgg	17
<210> 14 <211> 19 <212> DNA	

<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 14 agtaccacaa ggcctttcg	19
<210> 15 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 15 ctgcggaacc ggtgagtaca c	21
<210> 16 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 16 aacaagatgg attgcacgca	20
<210> 17 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 17 cgtcaagaag gcgatagaag	20
<210> 18 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	

<400> 18 30 gcactctctg cagtcatgcg gctcacggac <210> 19 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic DNA <400> 19 28 ccctgtgag gaactactgt cttcacgc <210> 20 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic DNA <400> 20 24 ccgggagagc catagtggtc tgcg <210> 21 ° <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: synthetic DNA <400> 21 30 ccactcaaag aaaaagtgtg acgagctcgc <210> 22 <211> 18 <212> DNA <213> Artificial Sequence

<220><223>

<223> Description of Artificial Sequence: synthetic DNA

<400> 22

ggcttgggca cggcctga

<210> 23 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 23 gcggtgaaga ccaagctcaa actcactcca	30
<210> 24 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 24 agaacctgcg tgcaatccat c	21
<210> 25 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 25 cccgtcatga gggcgtcggt ggc	23
<210> 26 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 26 accagcaacg gtgggcggtt ggtaatc	27

<210> 27 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 27 ggcacgcgac acgctgtg	18
<210> 28 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: synthetic DNA	
<400> 28 agctagccgt gactagggct aagatggagc	30
<210> 29 <211> 20 <212> DNA <213> Artificial Sequence	-
<220> <223> Description of Artificial Sequence:synthetic DNA(primer)	
<400> 29 aacaagatgg attgcacgca	20
<210> 30 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic DNA(primer)	
<400> 30 cgtcaagaag gcgatagaag	20

<210> 31 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic DNA	
<400> 31 gcactctctg cagtcatgcg gctcacggac	30
<210> 32 <211> 28 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic DNA	
<400> 32 cccctgtgag gaactactgt cttcacgc	28
<210> 33 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence::synthetic DNA	
<400> 33 ccgggagagc catagtggtc tgcg	24
<210> 34 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence::synthetic DNA	
<400> 34 ccactcaaag aaaaagtgtg acgagctcgc	30
<210> 35 <211> 18	

<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:synthetic DNA(primer)	
<400> 35 ggcttgggca cggcctga	18
<210> 36 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence::synthetic DNA	
<400> 36 gcggtgaaga ccaagctcaa actcactcca	30
<210> 37 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence::synthetic DNA	
<400> 37 agaacctgcg tgcaatccat c	21
<210> 38 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence::synthetic DNA	
<400> 38 cccgtcatga gggcgtcggt ggc	23
<210> 39 <211> 27 <212> DNA	

<220>

<223> Description of Artificial Sequence::synthetic DNA

<400> 39

accagcaacg gtgggcggtt ggtaatc

27

<210> 40

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence::synthetic DNA

<400> 40

ggaacgcgac acgctgtg

18

<210> 41

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence::synthetic DNA

<400> 41

agctagccgt gactagggct aagatggagc

30

【曹類名】図面 【図1】

pSGREP-JFH1, pSGREP-JCH1

【図2A】

10	20	93	40	50	GAACUACUGU
ACCUGCCCCU	AAUAGGGGOG	ODGOOUDADA	AUGAAUCACU	CCCCUGUGAG	
70		90	100	110	120
CUUCAGGCAG		UDOJĐUADOĐ	UAGUAUGAGU	GUCGUACAGC	CUCCAGGCCC
130	140	150	160	170	180
	GGAGAGCCAU	AGUGGUCUGC	GGAACCGGDG	AGUACACOGG	AAUUGCCGGG
190	confinctinge	210	220	GCCAUUUGGG	240
AAGACUGGGU	500	AUARACCCAC	UCUAUGOCOG	230	CGUGCCCCCG
250	Z60	270	260	390	300 CCUGAVAGGG
CAAGACUGCU	AGCCGAGUAG	CGUUGGGUUG	CGAAAGGCCU	UGUGGUACUG	
310	025	330	340	350	360
CECTUCCGAG	ADDCCCCCO	GGUCUCGUAG	ACCGUGCACC	AUGAGCACAA	AUCCUAAACC
370	08E	096	400	410	420
UCAAAGAAAA	AADAAACOA	DODKADDADA	UCGCCCAAUG	AUUGAACAAG	AUGGAUUGCA
430 CCCAGGUUCU	COGGCCGCUU	450 GGGUGGAGAG	460 GCUAUUQGC	470 UAUGACUGGG	GACAACAGAC
AAUOGGCUGC	DOUGAUGOOG	CCGUGUUCCG	GCUGUCAGOG	CAGGGGGGGCC	CGGUUCUUUU
UGUCAAGACC	560 GACCUGUCCG	GUGCCCUGAA	UGAACUGCAG	GACGAGGCAG	OGOGGCUAUC
6±0	620	630	640	650	560
GUGGCUGGCC	ACGACGGGCG	DUCCUUSOGC	AGCUGUGCUC	GACGUUGUCA	CUGAAGCGGG
670	680	006	700	710	720
AAGGGACUGG	CUGCUAUNGG	CCGAAGUGCC	GGGGCAGGAU	CUCCUGUCAU	CUCACCUUGC
730	027	UCAUGGCUGA	760	770	750
UCCUGCCGAG	ADOUAUGAAA	PORTUGGCUGA	UGCAAUGOGG	CGGCUGCAUA	OGCUUGAUCC
-790	CCAUUCGACC	81.0	820	GAGCGAGCAC	840
GCUNCCUGC		ACCAAGCGAA	ACAUCGCAUC	B30	GUACUCGGAU
850	CUDGUCGAUC	870	088	068	DCGCGCCAGC
GGAAGOÓGGU		AGGAUGAUCU	DADAADOADO	CAUCAGGGGC	900
910	920	AGECGCGCAU	940	950	950
CGAACUGUUC	GCAGGCUCA		GCCCGACCGC	GAGGAUCUCG	UCGUGACCCA
9.70 UGGCGAUGCC	DECUUECCGA	990 AUAUCAUGGU	1000 GGAAAAUGGC	1010 CGCUUUUCUG	GAUUCAUCGA
1030	1040	1050	1050	1070	CCCGUGAUAU
CUGUGGCCGG	CUGGGUGUGG	CGGACCGCUA	UCAGGACAUA	GOGUDGGCUA	
					GUAUCGCCGC
		OCUBCUADOS			1200 GAGUUUAAAC
	1220 CCCCCCCCU				1250 GGCCGGUGUG
1270	1280	1290	1300	1310	1320
CGUIUGICUA	VAUGUUAUUU	UCCACCAUAU	UGCGGUGUUU	UGGCAAUGUG	AGGGCCOGGA
	1340 UGUCUUCUUG				1380 GCCAAAGGAA

【図2B】

UGCAAGGUCU	001£ CUDGAAQUUD	1410 GUGAAGGAAG	CAGUUCCUCU 1420	1430 GGAAGCUUCU	1440 UGAAGACAAA
1450 CAACGUCUGU	1460 AGCGACCCUU	1470 DGCAGGCAGC	1480 GGAACCCCCC	1490 ACCUGGCGAC	1500 AGGUGCCUCU
1510 GOGGCCAAAA	1520 GOCACGUGUA	1530 UAAGAUACAC	1540 CUGCAAAGGC	1550 GCACAACCC	1560 CAGUSCCACE
UUGUGAGUUG	1580 CAVAGUUGUG	GAAAGAGUCA	AAUGGCUCUC	CUCAAGOGUA	UUCAACAAGG
1630 GGCUGAAGGA	1640 DECCCAGAAG	1650 GUACCCCAUU	1660 GUAUGGGAUC	1670 DGAUCUGEGG	1680 CCUCGGUGCA
CAUGCUUUAC	1700 AUGUGUUUAG	UCGAGGUUAA	AAAAACGUCU	Yeeccccccc	AACCACGGGG
ACGUGGUUUU	1760 CCUUUGAAAA	ACACGAUGAU	ACCAUGGCUC	CCAUCACUGC	UUAUGCCCAG
CAAACACGAG	1820 GOÇUCCUGGG	CGCCAUAGUG	GUGAGUADGA	CEGECCUGA	CAGGACAGAA
	1880 AAGUCCAAAU				
DCGGGGGDDD	1940 UGUGGACUCU	UUACCACGGA	GCUGGCAACA	AGACUCUAGC	CGGCUUACGG
	2000 CGCAGAUGUA				
	2060 AGUUUXGGA				
	2120 AUGUCAUCOC				
	UUUCGACCUU				
	2240 GCUCUUCCG				
UUCAUCCOCG	2300 UUGAGACACU	CGACGUUGUU	ACAAGGUCUC	CCACOUUCAG	UGACAACAGO
	2360 CUGUGCCCCA				
ggaaagagca		UGUOGOGUAU	GCCGCCCAGG	GGUACAAAGU	ACUAGUGCUL
2470 AACCCCUOGG	2480 UAGCUGCCAC	CCUGGGGUUU	GEGECGUACC	UAUCCAAGGC	ACAUGGCAUC
GERS ADAADDOUKA	2540 UUAGGACUGG	AGUCAGGACC	2560 GUGAUGACÓG	2570 GGGAGGCCAU	2580 CACGUACUCO
	2600 AAUUUCUCGC	0.000 OGAUGGGGGC	2520 UGCGCUAGCG	2630 GCGCCUAUGA	2640 CAUCAUCAUA
2650 UGCGAUGAAU	2660 UZKOZOACO	2670 GGAUGCUAÇC	2680 UCCAUUCUCG	2590 GCAUCGGAAC	2700 GGUCCUUGAU
2710 CAAGCAGAGA	2720 CAGCCGGGGU	QEYS UDAAUDADAD	2740 GUGCUGGCUA	2750 CGGCCACACC	2760 CCCCGGGGUCA

【図2C】

2770 GIXGACAACOC	2780 CCCAUCCCGA	2790 Uauagaagag	2800 GUAGGCCUCG	2810 GGCGGGAGGG	02820 UGAGAUCOCC
2830 UUCUAUGGGA	GGGCGAUUCC	CCOVACCACC	AUCAAGGGAG	GGAGACACCU	2880 GAÜÜUÜCÜĞC
CACUCAAAGA	2900 AAAAGUGUGA	CCAGCUCGCG	2920 GCGGCCCUDC	2930 GGGGCAUGGG	2940 CUUGAAUGCC
GUGGCAUACU	AUAGAGGGUU		AUAAUACCAG	CUCAGGGAGA	neneeneenc
					3060 GAUCGACUGC
AAUGUAGCGG	UCACCCAAGC		AGCCUGGACC	CCACCUUCAC	UAUAACCACA
CAGACUGUCC	CACAAGACGC	3150 UGUCUCACGC	AGUCAGCGCC	GCGGGCGCAC	AGGUAGAGGA
					3240 GUUUGACAGU
3250 GUAGUGCUUU	3260 GUGAGUGCUA	3270 CGACECAGOG	3260 GCUGCGUGGU	3290 ACGAUCUCAC	3300 ACCAGCGGAG
3310 ACCACOGUCA	3320 GGCTUAGAGC	3330 GUAUUUCAAC	ACCCCCCCC	3350 UACCCGUGUG	3350 UCAAGACCAU
3370 COUGAAUUUU	3380 GGGAGGCAGU	3390 UUUCACCGGC	CUCACACACA 3400	3410 UAGACGCCCA	3420 CUUCCUCUCC
		3450 GAACUUCGCG			
GCUAGAGCCA	AGGCCCCUCC	3510 CCCGUCCUGG	GACGCCADGU	GGAAGUGCCU	GGCCCGACUC
111111111111111111111111111111111111111	000000000000000000000000000000000000000	3570 CACACCUCUC	CUGUNCUGUU	CASC CLUBO	ORCCHHOOM?
					3660 [.] UGACCIJUGAG
					3720 OGCAUAUUGC
					3780 AGUCGUCGUU
					3840 OGCCUCUAGG
3850 GCGGCUCICA	3860 UOGAAGAGGU	3870 GCAGOGGAUA	3680 GCCGAGAUGU	3890 UGANGUCCAA	3900 GAUCCAAGGC
3910 UDGCUGCAGC	3920 AGGCCUCUAA	3930 GCAGGCCCAG	3940 GACAUACAAC	3950 CCGCUAUGCA	3960 GGCUUCAUGG
3970 CCCAAAGUGG	3960 AACAAUUUUG	3990 GGCCAGACAC	4000. AUGUGGAACU	1010 UCAUUAGCGG	4020 CAUCCAAUAC
4030 CUCCCAGGAU	4040 UGUÇAAÇAÇU	4050 GCCAGGGANC	4060 OCCGOGGUEG	4070 CUUCCAUGAU	. 4080 GGCAUUCAGU
4090 GCCGCCCCICA	4100 CCAGUCCGUU	4110 GUCGACCAGU	9120 ACCACCAUCC	4130 UUCUCAAÇAU	4140 CAUGGGAGGC

【図2D】

4150 UGGUUAGOGU	4160 CCCAGAUCGC	4170 ACCACCCGCG	4180 GGGGCCACCG	4190 GCUUUGUOGU	4200 CAGUGGCCUG
4210 GUGGGGGCUG	4220 CCGUGGGCAG	4230 CAUAGGCCUG	4240 GGUAAGGUGC	4250 UGGUGGAÇAU	4260 CCUGGCAGGA
4270 UAUGGUGOGG	4280 GCAUUUCGGG	4290 GGCCCUCGUC	4300 GCAUUCAAGA	4310 UCAUGUCUGG	4320 CGAGAAGCCC
4330 UCUAUGGAAG	4340 AUGUCAUCAA	4350 UCUACUGCCU	4360 GGGAUCCUGU	4370 CUCOGGGAGC	4380 OCUGGUGGUG
4390 GGGGUCAUCU	4400 GCGCGCCAU	4410 UCUGCGCOGC	4420 CACGUGGGAC	. 4430 CEGGEGAGGG	4440 CCCGGUCCAR
4450 UGGAUGAACA	4450 GGCUUAUUGC	4470 CUUUGCUUCC	4480 AGAGGAAACC	4490 ACGUCCCCC	4500 UACUCACUAC
GUGAQGGAGU	OGGAUGCGUC	GCAGCGUGUG	ACCCAACUAC	UUGGCUCUCU	4560 UACUAUAACC
AGCCUACUCA	GAAGACUCCA	CAAUUGGAUA		GCCCCAUCCC	AUGCUCCGGA
	GOGACGUGUG	GGACUGGGUU	UGCACCAUCU	VGACAGACUU	GAAAAAUUGG CAAAAAUUGG
CUGACCUCUA	AAUUGUUOCC	CAAGCUGOCC	eccanccocn	UCAUCUCUUG	4740 UCAAAAGGGG
UACAAGGGUG	DGUGGGCCGG	CACUGGCAUC		ecuececure	OGGCGCCAAC
AUCUCUGGCA	AUGUCCCCCU	GGGCUCUADG		GGCCUAAAAC	CUGCAUGAAC
•	GGACCUTUCC	UAUCAAUUGC .4950		GCCYGGGGC	GCCGAAACCC
4930 CCCACGAACU 4990	ACAAGACCGC	CAUCUGGAGG 5010	CUCCCCCCCCC	COGREDACEC	4980 GGAGGUGACG
	OGUACUCCUA	OGUAACAGGA	CUGACCACUG	ACAAUCUGAA	AAUUCCUUGC
		UUUCUCCUGG	5080 GUGGACGGUG 5140	UGCAGAUCCA	UAGGUUUGCA .
	AGCCGUUUUU	OCGGGAUGAG	encocconco.	GCGUUGGGCU	UAAUUCCUAU
GCUGUCGGGU	COCACCUTICC		GAGCCCGACG	CAGACGUAUU	GAGGUCCAUG
CUAACAGAUC	CGCCCCACAU	CACGGCGGAG	•	GGCGCUTGGC	ACGGGGAUCA
CCUCCAUCUG	AGGCGAGCUC	CUCAGUGAGC		Cyccencecn	GCGGGCCACC
UGCACCACCC	ACAGCAACAC	CUAUGACGUG		AUGCCAACCU	GCUCAUGGAG
5410 GGCGGUGUGG	5420 CECAGAÇAGA	5430 GCCUGAGUCC	0442 2000000000	9450 UUCUGGACUU	5460 UCUOGAGCCA
5470 AUGGCCGAGG	0842 AQQQAQAQAA	5490 CCUUGAGCCC	5500 UCAAVACCAU	5510 CGGAGUGCAU	5520 GCUCCCCAGG

【図2E】

.5580	5570	5560	ACCGGCUUGG	5540	5530
GCCGCUCGUG	ACUACAACCC	GCACGCCUG	5550	CACGGGCCUU	AGCGGGUUUC
5640	5630	5620	5610	5500	5590
UCUCOCCOO	CUGGUUGUGU	CCCACCGUUG	UUACCAACCG	GGAGGCCAGA	GAAUCGUGGA
S700	5690	5680	5670	5660	5650
GAGCGAGAGC	CAGUGGGUCU	AGACGCCGGA	UCCCCCAAGG	CCCCGACGCC	CCCAAGAAGG
5760	5750	5740 AUCAAGACCU	5730	5720	5710
5820	5810	5800 GCOGCOGAAU	5790	5780	. 5770
S880	5870	5850	5850	5840	5830
CGAGGGGGAG	UGCCCCCCU	GCCUCCUCUA	GACAGGUUCC	CCCCCCCAGA	GGUGAGCCGG
5940	5930	5920	5910	5900	5890
CCAGGGGGG	AACCUCCCCC	GUAGAGCUUC	GUCUGAUCAG	CGGACCUGGA	CCUGGAGAUC
GGACGAUACO	990	5980	5970	5960	5950
	GCUCCGAGGA	UGGUCUACUU	CUCGGGGUCU	COGGUUCGGG	GGGUAGCUC
CUGUAGCCCC	6050 UAAUAACUCC	.6040 ACCGGGGCUC	AUACUCCUGG	6020 GCUCCAUGUC	ACCGUGUGCO
6126	6110	6100	6090	6080	6070
CCAUAACAAG	DGUUGCGAUA	AGUAACUCGC	CAACCCUUUG	AGUUGCCAAU	Gaagaggaaa
6186	6170	6160	6150	6140	6130
UUUUGACAGG	AAAAGGUAAC	CAGAGGGCUA	GAGCGCCUCA	CAACAUCAAA	GUGUACUGUA
AGCGGCUUCC	6230	6220	UUAŅGACUCA	0059	6190
	ACAUCAAGCU	GUCUUAAAGG	6210	4200 20 000	ACGCAAGUGC
6300	AGUUGACUCC	6280	6270	6260	6250
ACCCCADUCU		GAGGCGUGCC	CACCUUGGAG	CAAGGCUOCU	AAGGUCAGCG
6360	6350	6340	CGGGGCCAAG	6320	6310
GAGGGCCGUU	GCUUGUÇOGG	GAGGUCCGCA		AGUAUGGAUU	GCAAGAUCCA
6420	6410	5400	6390	6380	6370
AAUUCCCACA	CACAAACACC	CUGGAAGACC	GARGGACCUC	AGUCCGUGUG	AACCACAUCA
6480	6470	6460	. 6450	6640	ACCAUCAUGG
UAAGAAACCA	CCAAGGGGG	GUGGACCCOG	GGUGUUCUGC	CCAAAAAUGA	
6540	6530	6520	6510	6500	6490
GGCCCUCUAC	GCGAGAAAU	GUCCGGGUCU	UGACCUĈGGC	1000UUACCC	GCUCGCCUCA
		6580 AUGGGAGCUÜ			
6660	6650	6640	6630	6620	6610
CCCCAUGGGC	Aaagaagga	GCAUGGGCGG	UCUCUUGAAA	GGGUGGAGUA	CCIGCCCAAC
6720	6710	6700	6690	0879	6570
CAGGACCGAG	Agagagacau	ACCGUCACUG	CUUCGACUCA	AUACCOGAUG	UUUUGUAUG
6780	6770	6760	67.50	6740	6730
ACACUCGCUG	GCACUGCCAU	GAGGAGGCCC	CUCCCUGCCC	ACCAGECCUG	GAGUCCAUAU
6840	6830	6620	6810	6600	6790
CUGCGGUUAC		UUCAACAGCA	AGGGOCCAUG	UUUNQGUAGG	ACUGAGAGAC
6900				•	

【図2F】

6910	6920	6930	0443	6950	6960
GUGAAAGOCC	UAGOGGOCUG	CAAGGCUGCG	DUUDAUKDDD	CCCCACAAU	GCUGGUAUGC
6970	6980	6990	7000	7020	7020
GGCGAUGACC	UAGUAGUCAU	CUCAGAAAGC	CAGGGGACUG	AGGAGGACGA	GOGGAACCUG
7030	7040	7050	7060	7070	7080
AGAGÇCUUCA	CGGAGGOCAU	GACCAGGUAC	DOUGCCCCUC	CUGGUGAUCC	COCCAGACOG
7090	7100		7120	7130	7140
GAAUAUGACC	UGGAGCUAAU		UCCUCAAAUG	UGUCUGUGGC	GUUGGGCCCG
7150	7160	7170	0817	7190	7200
CGGGGCCCCC	GCAGAUACUA	CCUGACCAGA	GACCCAACCA	CUCCACUCGC	COGGGCUGCC
7210	7,220	7230	7240	7250	
UGGGAAACAG	UUAGACACUC	CCCUAUCAAU	UCAUGGCUGG	GAAACAUCAU	
7270	7280	7290	7300	7310	7320
CCAACCAUAU	GGGUUCGCAU	GGUCCUAAUG	ACACACUUCU	UCUCCAUUCU	CAUGGUCCAA
7330	7340	7350	7360	7370	7380
GACACCCUGG	ACCAGAACCU	CAACUUUGAG	AUGUAUGGAU	CAGUAUACUC	CGUGAAUCCU
7390	7400	7410	7420	7430	
DUGGAÇCUUC	CAGCCAUAAU	UGAGAGGUUA	CACGGGCUUG	AOGCCUUUUC	
7450 VACUCUCACC	7460 ACEAACIXEAC	7470 GOGGGUGGCU	UCAGCCCUCA	GAAAACUOGG	GGCGCCACCC
7510 CUCAGGGUGU	GENAGAGUOG	GGCUCGCGCA.	GUCAGGGGGU		COGUGGAGGG
7570 AAAGCGGCCG	UUUGCGGCCG	ACAUCUCUUC	7600 AAUUGGGOGG	UGAAGACCAA	GCUCAAACUC
	COGRAGGOGOG	CCUACUGGAC		GGUUCAÇÇGU	cecceccéec
•	•				7740 CUUCOGCCUA
. 7750	7760	7770	7780	7790	7800
CUCCUACUUU	UCGUAGGGGU	AGGCCUCUUC	CUACUCCOCG	CUCGGUAGAG	CGGCACACAC
7810	7520	7830	7840	7850	7860
UNGGUACACU	CCAUAGCUAA	CUGUUCCUUU	บบบบบบบบบบ	บบบบบบบบบบบ	111111111111111111111111111111111111
7870	7889	7890	ນນາເກດເວດກ	7910	7920
បឋបបបបប	CUUUUUUU	00000000000	7900	UCUCAUCUUA	EUCUACOUUC
7930 0000000GGG	GCUCCAUCUU	AGCCCUAGUC	ACGGCUAGCU	GUGAAAGGUC	7980 CGUGAGCOGC
7990	0000	8010	8020	8030	8040
AUGACUGCAG	0 00000000	AACUGGUCUC	UCUGCAGAUC	AUGU	

【図3A】

		•			
ACCCGCCCCU	20 AAUAGGGGCG	30 ACACUCCCCC	AUGAAUCACU	50 CCCCUGUGAG	60 GAACUACUGU
. 70	60 Aaagcgucua	90	100	110	120
130 CCCCCCCCC	140 GGAGAGCCAU	150 AGUGGUCUGC	150 GGAACCGGUG	170 AGUACACCOG	PSSCOOUNAK
190 AAGACUGGGU	200 CCUUUCUUGG	210 AUAAACCCAC	220 UCUAUGCCOG	230 GCCAUUUGGG	CGRECCCCCC
250 CAAGACUGCU	260 AGCCGAGUAG	270 CGUUEGGUUG	280 CGAAAGGCCU	. 290 UGUGGUACUG	300 CCUGAUAGOĞ
UGCUUGCGAG	320 UGCCCCGGGA	GGUCUCGUAG	ACCGUGCACC	AUGAGCACAA	AUCCCAAACC
370 UCAAAGAAAA	380 ACCAARAGAR	390 ACACUAACOG	400 UCGCCCAAUG	410 AUUGAACAAG	420 AUGGAUUGCA
CGCAGGUUCU	cccccccuu	GGGUGGAGAG	GCUAUUCGGC	UAUGACUGGG	CACAACAGAC
490 AAUCGGCUGC	ucugaugcog	CCGUGUUCCG	GCDGUCAGCG	CAGGGGGGCCC	CGGUUCUUUU
550 UGUCAAGACC	GACCUGUCCG	GUGCCCUGAA		GACGAGGCAG	OGCGGCUAUC
610 GUGGCUGGCC	ACGACGGGCG	nnccnnecec		GACGUUGUCA	COGAAGCGGG
670 AAGGGACUGG	680 CUGCUAUUGG	690 GCGAAGUGCC	700 GGGGCAGGAU	CUCCUGUCAU	CUCACCUUGC
730 UCCUGCOGAG	740 AAAGURUCCA	UCAUGÉCUGA		COCCUCCAUA	780 OGCUUGAUCC
790 GGCUACCUGC		accaagogaa	ACAUCGCAUC	GAGCGAGCAC	840 GUACUCGGAU
850 GGAAGCCGGU	CUUGUCGAUC	AGGAUGAUCU	GGACGAAGAG	CAUCAGGGGC	900 UCGCGCCAGC
910 ÇGAAÇUĞUUÇ	920 GCCAGGCUCA	930 AGGCGCGCAU	940 ecceaceec	GAGGAUCUCG	960 UCGUGACCCA
970 UGGCGAUGCC		990 AUAUCAUGGU	1000 GGAAAAUGGC	1010 OGCUUUUCUG	1020 GAUUCAUCGA
1030 CUGUGGÓCGG				GCGUUGGCUA	1080 CCCGUGAUAU
000 Dadaagudeu	CUUGGCGGCG	1110 AAUGGGCUGA	coscuuccuc 1120	1130 GUGCUUUACG	1140 GUAUCGCCGC
1150 UCCCGAUUCG			1180 CCUUCUUGAC		1200 GAGUUUAAAC
	1920 CCCCCCCCC	1230 AACGUUACUG	1240 GCCGAAGCCG	1250 CUUGGAAUAA	1260 GCCCGUGUG
	1280 DAUGUUAGUU		1300 UGCCGUCUUU		1320 AGGCCCGGA
1330 AACCUGGCCC	1340 UGUCUUCUUG	1350 ACGAGCAQUO	QQAGGGGUCU COAGGGGGUCU	1370 UUCCCCUCUC	1380 GOCAAAGGAA

【図3B】

1390	1490	1410	CAGUUCCUCU	1.430	1440
UGCAAGGUCU	GUUGAAUGUC	GUGAAGGAAG		GGAAGCUUCU	UGAAGACAAA
1450	1460	1470	1480	1490	1500
CAAOGUCUGU	AGCGACCCUU	UGCAGGCAGC	GGAACCCCCC	ACCUGGCGAC	AGGUGCCUCU
GCGGCCAAAA	1520	1530	1540	1550	1560
	GCCACGUGUA	UAAGAUACAC	CUGCAAAGGC	GGCACAACCC	Cagugocaog
1570	1580	1590	1600	1610	1620
DUGUGAGUUG	GAUAGUUGUG	Gaaagaguca	AAUGGCUCUC	CUCAAGCGUA	DUCAACAAGG
0630	1640	1650	1660	1670	1680
GGCUGAAGGA	UGCCCAGAAG	GUACCCCAVU	GUAUGEGAUC	UGAUCUGGGG	CCUCGGUGCA
CAUGCUUUAC	1700	1710	1720	1730	1740
	AUGUGUUUAG	UCGAGGUUAA	AAAAACGUCU	AGGCCCCCG	AACCACGGGG
1750	1760	1770	1780	1790	1800
ACGUGGUUUU	CCUUUGAAAA	ACACGAUAAD	ACCADEGCCC	CCAUCACOGC	DUACGCCAG
1810	1820	1930	1840	1850	1860
CAGACACGAG	GUCUCUUGGG	CUCUAUAGUG	GUGAGCAUGA	CGGGGGGGA	CAAGACAGAA
CAGGCCGGGG	1880	1890	1900	1910	1920
	AGGUCCAAGU	CCUGUCCACA	GUCACUCAGU	CCUUCCUCGG	AACAUCCAUU
1930	1940	1950	1960	1970	1980
UCGGGGGUCU	UAUGGACUGU	UUACCACGGA	GCUGGCAACA	AGACACUAGO	COGCUCGCGG
1990	2000	2010	2020	2030	2040
GGCCCGGUCA	CGCAGAUGUA	CUCGAGOGCC	GAGGGGGACU	DGGUCGGGUG	GCCCAGCCCU
2050	2060	2070	2080	2090	2160
COUGGGACCA	AAUCUUUGGA	GCCGUGUACG	UGUGGAGCGG	UCGACCUGUA	UUUGGUCACG
2110	2170	GGCUCGAAGA	2140	2150	21.60
CEGAACECUS	AUGUCAUCCC	21,30	CGCGGGGACA	AGCGGGGAGC	GCUGCUCUCC
2170	DENOCACCON	2190	2200	2210	CCCAYCCCCC
CCGAGACCCC	3180	GRAGGGGUCC	UCGGGGGGAC	CUGUGCUUUG	5350
2238 CACGCUGUCG		2250 GGCAGCUGUG	UGCUCUCGGG		GUCCAUAGAU
nncyncccoe 3330		2310 CGACAUCGUC	ACCCCCUCUC	CCACCUUUAG	2340 UGACAACAGC
2350	COCOCCCC	2370	2380	2390	2400
ACACCACCAG	2360	GACCUAUCAG	GUGGGGUACU	UGCACGCCCC	CACUGGCAGU
2410		2430	2440	2450	2460
GGAAAAAGCA		CGUCGCGUAC	GCCGCCCAGG	GGUAUAAAGU	GCOGGUGÇUC
		2490 CCUGGGAUUU			
OEEE	2540	2550	2560	2570	UACAUACUCC
AŻKAŻZZZZKA	UUAGGACUGG	AGUCAGAACU	GUGAOGACOG	GGGAGOCCAU	
2590	2600	2610	2620	2630	2640
ACGUAUGGUA	AAUUCCUCGC	CGAUGGGGGC	UGOGCAGGOG	GOGCCUAUGA	CAUCAUCAUA
		2670 GGAUGCVACC			
. 2710	. 2720	2730	2740	2750	2760
CAAGCAGAGA	CAGCOGGGGU	CAGGCUAACU	GUACUGGCCA	CGGCCACGCC	CCCCGGGUCG

[図3C]

	COCAUCCCAA	2790 UAUAGAGGAG	GUAGCOCUÇG	GAÇAGGAGGG	UGAGAUCCCC
· 2830 UUCUAUGGGA	2840 GGGCGUUUCC	2850 CCUGUCUUAC	2860 DADÇQAGADUA	2670 GGAGGCACUU	CAUUUUCUGC
2890 CACUCAAAGA	2900 AAAAGUGUGA	2910 CGAGCUCGCA	2920- ACGGCCCUUC	2930 GGGGCAUGGG	2940 CUUGAAÇGCU
2950 GUGGCAUAUU	2960 ACAGAGGGUU	2970 GGACGUCDCC	2980 AUAAUACCAA	2990 CUCAAGGAGA	3000 UGUGGUGGUC
3010 GUUGCCACCG	BOŽO ACGCCCCCAU	3030 GACGGGGUAU	3040 ACUGGAGACU	3050 UUGACUCOGU	3060 GAUCGACUGC
AACGUAGCGG	UCACCCAGGC	3090 CGUAGACUUC	AGCCUGGACC	CCACCUUCAC	UAUAACCACA
3130 CAGACUGUCC	3140 CGCAAGACGC	3150 UGUCUCAEGU	3160 AGUCAGOGOC	3170 GAGGGGGCAC	3180 GGGUAGAGGA
3190 AGACUGGGCA	3200 DUUAUAGGUA	nennoccyća 3310	3220 GGUGÁGOGAG	CCUCAGGAAU 3230	3240 GUUUGACAGU
3250 GUAGUACUCU	3260 GUGAGUGCUA	3270 CGACGCAGGA	3280 GCUGCUUGGU	VOGYGENCAC 3330	33D0 ACCAGUGGAG
ACGACCGUCA	GGCUCAGGGC	3330 GUAUUUCAAC	3340 ACGCCDGGCD	3350 DGCCUGUGUG	3350 CCAGGACCAC.
3370 CUUGAGUUUU	GOGAGGCAGU	3390 DUUCACOGGC	3400 CUCACACACA	3410 UAGACGCUCA	3420 UUUUCCUUUCC
		3450 AAAUUUOGCA			
3496 GCCAGGGCCA		3510 ccccccccc			
AAGCCCACGC	TUGUGGGCCC	3570 UACACCUCUC	CUGUACCGUU	negecnenen	UACCAACGAG
		3630 GACAAAAUAC			
GUCAUGACCA	GCACGUGGGU	3690 OCUGGCUGGG	GGAGUÇUUAG	CAGCOGUOGC	CGCGUAUUGC
3730 UUAGCGACCG	GCUGUGUUUC	3750 CAUCAUUGGC	3760 CGULUACACA	3770 UCAACCAGCG	3780 AGCUGUCGUC
3790 GCUCOGGÁČA		3810 CUAIXAGGCU	OS8E ADADUADUU	3830 Uggaggaaug	3840 UGCCUCCAGA
3850 GCGCUCUCC	038E D DDADAADU U		GOOGAGAUGC	UGAAGUCCAA	9909 GAUCCAAGGC
3910 UUAUUGCAGC		3930 ACAGGCCCAG	3940 GACAUACAAC	3950 CCGCUGUGCĂ	3960 AGCUUCGUGG
		3990 GGCCAAACAU			4020 CAUUCAGUAC
	4040 UGUCAACACU		CCDECDEDGE		4080 GGCAUUCAGC
4090 GCCGCCCUCA					4140 UCUQGGGGGC

【図3D】

						:
CUG CUG	AGUGGC	41,90 GCUUUGUUGU	4180 GGGGCCACUG	4170 GCCACCCGCG	4160 CCCAAAUUGC	4150 UGGCUGGOGU
260	<u>د</u>	4250	4240	0521 OUUDDDAUAC	4220	4240
				. 4290 GGCCCUCGUC		
				4350 CUUGCUGCCU		
440	4	4430	4420	4410 UCUGOGOCGC	4100	4390
-			•	4470 CUUCGCUUCC		
				4530 GCAGCGUGUC		
620		4670	4600	4590 CAACUGGAUC	4586	AETA
1680		4670	4660	4650 GGACUGGGUC	4660	4630
1740		4730	4720	4710 AAAGAUGCCU	4700	4690
1800		4790	4780	4770 CACUGGCAUC	4760	
186D		4850	4840	•	4820	4810
4920		4910	4900			4870
1980		4970	4960	4950 CAUCUGGAGA	4940	4930
5040	•	5030	5020		sonn	
51 0 Q		5090	5080	•	5060	5050
5160	•	5150	. 5140		5120	5110
5220		5210	5200.		5180	5170
5280		5270	5260	5250 CACGGCGGAG	5240	5230
5340		. 5330	5320	S310	5300	5290
5400	:	5390	5380	. 5370 CUAUGAUGUG	5360	5350
5450		5450	5440	5430	5420	5410
CUCA 5520		=	•	GUCUGAGUCC 5490		
CAGG	GCTCCC	CGGAGUAUAU	UCAGUACCAU	CCUUGAGCCU	AAGAGGGCGA	AUGACCGAGG

[図3E]

5530	5540	5550	5560	5570	5580
AAGAGGÜÜCC	CACCGGCCUU	ACCGGCUUGG	GCCCGGCCUG	AUUACAACCC	ACCGCUUGUG
GAAUCGUGGA	AGAGGCCAGA	UUACCAACCA	5620 CCCACUGUUG	CGGGCUGUGC	acaececec
5650	5660	5670	0862	5690	5700
CCCAAAAAGA	CCCCGACGCC	UCCUCCAAGG	ADDOODOADA	CAGUGGGUCU	Gagcgagagc
5710	5720	5730	5740	5750	5760
ACCAUAGGAG	AUGCCCUCCA	ACAGCUGGCC	AUCAAGUCCU	UUGGCCAGCC	CCCCCCAAGC
5770	5780	5790	5800	5810	5820
GGCGAUUCAG	GCCUUUCCAC	GGGGGGGAC	GCCGCCGACÚ	CCGGCGAUCG	GACACCCCCU
GACGAGUUGG	CUCUTUCGGA	GACAGGUUCU	5860 ACCUCCUCCA	nececcocca	CGAGGGGGAG
5890	5900	5910	5920	AACCUCCUCC	.594.0
CCUGGGACC	CAGACCUGGA	GOCUGAGCAG	GUAGAGCUUC		CCAGGGGGGG
5950	5960	5970	5980	5990	GGDB
CAGGCAGCUC	COGGCUCGGA	CUCGGGGUCC	UGGUCUACUU	GCUCCGAGGA	GGAUGACUCC
6010	6020	0E0a	6040	6050	0303AUDUU
GUOGUGUGCU	GCUCCAUGUC	AUAUUUCUGG	ACCOGGGCUC	UAAUAACUCC	
GAAGAGGAAA	AGUUGCCAAU	UAACUCCUUG	6100 AGCAACUCGC	AUAGOGAUA	CCAUAACAAG
			6160 CUAAGGGCUA		
			6220 GUCUUAAAGG		
AAGGUCAGCG	CAAGGCUCCU	CACCUUAGAG		AAUUGACCCC	VCCCCVCCCC
			6340 GAGGUCOGCA		
5370	6380	6390	6400	6410	6420
AACCACAUCA	AGUCCGUGUG	GAAGGACCUC	UUGGAAGACU	CACAAACACC	AAUUCCUACA
6430	0440	6450	6460	6470	0816
ACCAUCAUGG	Aburarado	GGUGUUCUGC	GUGGACOCOG	CCAAGGGGGG	ACCAAAAAU
6490	6500	6510	6520	6530	6540
GCUCGCCUUA	UCGUUDACCC	VGACCUCGCC	GUCAGGGUCU	GOGAGAAGAU	GCCCUUUAU
	: AAAAGCUUĆČ	UCAGGOGGUG	6580 AUGGGGGCUU	CUUAUGGCUU	CCAGUACUCC
6610	6629	0630	6640	0650	COCUAUGEGU
CCCGCUCAGO	GGGUGGAGUÜ	OCUCUUGAAG	GCAUGGGCGG	Adagagaaa	6560
5670	6689	6690	ACOGUCACUG	6710	6720
UUUUCGUAUG	AUACCCGAUG	CUUUGACUCA		AGAGAGACAU	CAGGACUGAG
	6740 ACCAGGCCUG				6780 ACACUCGCUG
6790 ACUGAGAGA	0033 UCUAUGUGUGU		OŠBB ADDADAKOUU		. CUGOGGGUAC
6850 AGGCGUUGCC	6860 GOGCCAGCGG	6870 GGUGCUUACO			00ea Cacaugcuau

[図3F]

6910 GUARANGCCC	6920 UAGCGGCUUG	6930 CANGGEUGCG	6940 GGGAUAAUUG	6950 OGCCCACGAU	6950 GCXGGUAUGC
6970 GGOGACGACU	6980 UGGUCGUCAU	6990 CUCAGAAAGC	7000 CAGGGGAÇUG	7010 AGGAGGACGA	7020 GCGGAACCUG
7030 AGAGCCUUCA	7040 CGGAGGCUAU	7050 GACCAGGUAU	7060 DEUGECCEUC	7070 CUGGUGACCC	7080 CCCCAGACOG
GAAUAUGACC	7100 UGGAGCUAAU	7110 AACAUCUUGU	7120 UCCUCAAACG	7130 UGUCUGUGGC	7140 ACUUGGCCCA
7150 CAGGGCCGCC	7150 GCAGAUACUA	CCUGACCAGA	7.180 GACCOCACCA	CUUCAAUUGC	7200 CCGGGCUGCC
7210 UGGGAAACAG		7230 CCCUGUCAAD	7240 UCAUGGCUGG	GAAACAUCAU	CCAGUACGCU
7270 CCAACCAUAU	GGGUUCGCXU		ACACACUUCU	•	
		UAACUUUGAA	AUGUACGGAU	COGUGUACUC	CGUGAGUCCU
			CACGGGCUUG		UCUGCACACA
			7460 UCAGOCCUCA		
			7540 GUUAGGGGGU		
AGGGGGGCCG	UUUGCGGUCG	GUACCUCUNG	7600 AACUGGGGGG	UGAAGACCAA	GCUCAAACUC
			7650 UUGUCCAGUD		
GGGGGGGACA	UTUAUCACAG	CGGCCCCCCC	97720 GCCCGACCCC	GOCUAUUACU	CCUUAGOCUA
COCCUACUIO	CUGUAGGGGÚ	AGGCCUCUUC	7780 CUACUCCOOG	COCEVAYER	. CGGCACACAU
UAGCUACACU	CCAUAGCUAA	COCOCCOCO	7840 ບນບບບບບບບ	7850	
			7900		
			7960 ACGGCUAGCU		•
7990 ADGACUGCAÇ	AGAGUGCCGU	AACUGGUCUC	8020 UCUGCAGAUC	9030 AUGU	8040

【図4】

G418 0.5mg/ml トランスフェクションした RNA量 100ng

【図6】

【図7】

【図8】

【図11】

[図12]

【図13】

10: IMY-IH-4

12: IMY-IH-10 11: IMY-IH-7

13: 293-IH transfected cell pool

14: HeLa-IH-9

15: HeLa-IH-12

16: HeLa-IH-13

17: HeLa (negative cont.

Replicon RNA

Lane 1: HepG2 (negative cont.)

2: Synthetic RNA 108 copies

3: Synthetic RNA 107 copies

4: Hep-IH-1

5: Hep-IH-3

7: Hep-IH-11 6: Hep-IH-5

8: Hep-IH-13 9: IMY-IH-3

Detection of neomycine resistent gene integrations In HepG2 and IMYN9 replicon cells by genomic DNA PCR analysis

M: DNA size marker P: Positeve control

H: HepG2 cell

PCR product

Western blot analysis of NS3 and NS5a protein

ページ: 1/E

【書類名】要約書

【要約】

【課題】 遺伝子型1bとは異なる遺伝子型のHCV由来のレプリコンRNAを提供すること。 【解決手段】 遺伝子型2aのC型肝炎ウイルスのゲノムRNA上の、5'非翻訳領域と、NS3タンパク質、NS4Aタンパク質、NS4Bタンパク質、NS5Aタンパク質及びNS5Bタンパク質をコードする塩基配列と、3'非翻訳領域とを少なくとも含む塩基配列からなる、レプリコンRNA

【選択図】 なし

特願2003-329115

出願人履歴情報

識別番号

[000003159]

1. 変更年月日

2002年10月25日

[変更理由]

住所変更

住所

東京都中央区日本橋室町2丁目2番1号

氏 名

東レ株式会社

特願2003-329115

出願人履歴情報

識別番号

[591063394]

1. 変更年月日

1999年10月26日

[変更理由]

名称変更

住所変更

住 所 名

東京都新宿区河田町10番10号 財団法人 東京都医学研究機構

2. 変更年月日 [変更理由]

2001年10月 9日

住所変更

住 所 名

東京都新宿区西新宿二丁目8番1号

財団法人 東京都医学研究機構

特願2003-329115

出願人履歴情報

識別番号

[503189262]

1. 変更年月日

2003年 5月26日

[変更理由]

新規登録

住 所

ドイツ連邦共和国 55099 マインツ

氏 名

ヨハネス グーテンベルク ウニベルスィテート マインツ