

ey concept T8 L5

Point Estimates

	Population Parameters	Sample Statistics
Mean	μ	$ar{X}$
Variance	σ^2	S^2
Proportion	p	\hat{p}

Confidence Interval for µ

- Confidence interval
 - o one sample
 - standard error = s.d. of sample
 - o level of confidence $100(1-\alpha)\%$

- \circ σ known : Z distribution $X \sim N(\mu, \sigma^2)$
 - o Z-value (Critical Value) $Z_{\alpha/2}$ is the value corresponding to an upper-tail probability of $\alpha/2$ from the standardized normal distribution
 - Sampling Error (Margin of Error)

$$\circ E = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- o σ unknown: Student's **t** distribution $T \sim t(v)$ $S \rightarrow \sigma$
 - Degrees of freedom in t-distribution
 - the number of values in the final calculation of a statistic that are free to vary
 - d.f. = total no. of observations no. of parameters estimated as intermediate steps in the estimation of the parameter itself

$$P\left(-Z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le Z_{\alpha/2}\right) = 1 - \alpha$$

$$\Rightarrow P\left(-Z_{\alpha/2} \le \bar{X} - \mu \le Z_{\alpha/2} \le \bar{X}\right) = 1 - \alpha$$

$$\Rightarrow P\left(Z_{\alpha/2} \le \bar{X} - \mu \le Z_{\alpha/2} \le \bar{X}\right) = 1 - \alpha$$

$$\Rightarrow P\left(Z_{\alpha/2} \le \mu - \bar{X} \ge -Z_{\alpha/2} \le \bar{X}\right) = 1 - \alpha$$

$$\Rightarrow P\left(\bar{X} - Z_{\alpha/2} \le \bar{X}\right) \le \mu \le \bar{X} + Z_{\alpha/2} \le \bar{X}\right) = 1 - \alpha$$

Confidence Interval - Z table - two-tail

Some common Z value and probabilities

Confidence level	$P(Z>Z_{\alpha/2})$	$Z_{lpha/2}$
80%	0.1	1.28
90%	0.05	1.645
95%	0.025	1.96
99%	0.005	2.575

- Mean & Standard Deviation
 - \circ Mean = 0 for v >1, otherwise it is undefined
 - Standard deviation = v/(v-2) for v > 2, = ∞ for 1<v≤2, otherwise undefined
- The shape of the density function
 - o The theoretical range of T is infinite, i.e. -∞ to+∞
 - Bell shaped
 - Symmetric about T = 0
 - Median = mode = 0
 - As v increases, the density curve approaches the N(0, 1) curve

t distribution

$$\bar{X} \pm t_{\alpha/2,n-1} \frac{S}{\sqrt{n}}$$

○ with (n-1) degrees of freedom

Z distribution

$$\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Confidence Interval - t table

The column gives the

Critical Values of t

For a particular number of degrees of freedom, entry represents the critical value of t corresponding to a specified upper-tail area (a)

upper tail	area	
ntry represents upper-tail		,
	1	O (to.dt)

		l	Upper-Tail Are	as ^V		
Degrees of						
Freedom	0.25	0.10	0.05	0.025	0.01	0.005
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995
_				^		

The row shows the degrees of freedom

The value within the table gives the t-value corresponding to a particular degrees of freedom and upper-tail area

At 7 degrees of freedom, P(t > 2.3646) = 0.025

- Interpretation
 - A relative frequency interpretation
 - o In the long run, $100(1-\alpha)\%$ of all the confidence intervals that can be constructed will cover the unknown population parameter
 - A conventional interpretation
 - We are $100(1-\alpha)\%$ confident that the unknown population parameter lies between $\bar{X}-Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ and $\bar{X}+Z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$
 - In other words, you got this interval by a method that gives correct results $100(1-\alpha)\%$ of the time
- A specific interval will either cover or not cover the population parameter
 - o No probability involved in a specific interval -> cannot know whether the sample is one of the $100(1-\alpha)\%$ for which the interval catches μ , or one of the unlucky 5%

Factors Affecting Interval Width (Precision)

$$\bar{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

data variation sample size

 $n \uparrow \rightarrow \sigma_{\bar{X}} \downarrow \rightarrow \text{width of interval} \downarrow$

confidence level

 $(1 - \alpha) \uparrow \rightarrow |Z$ -value| $\uparrow \rightarrow$ width of interval \uparrow

- \circ σ : unchanged
- o x: location, not width

Determine Sample Size

Sampling error E: should be large enough to make the results credible

$$E = Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\rightarrow n = (\frac{Z_{\alpha/2}\sigma}{E})^2$$

 Always round up: because sample size can only be integer; and if round down, the size will not be enough.

Standard deviation:

- o when σ is unknown -> use S to replace σ
- when S is unknown -> use range/4 to estimate

P(z <a)< th=""><th>Z=a</th></a)<>	Z=a
0.01	-2.33
0.025	-1.96
0.05	-1.645
0.1	1.28
0.5	0
0.9	-1.28
0.95	1.645
0.975	1.96
0.99	2.33