Probability Distribution and Parameter Values	Probability Mass Function	Moment- Generating Function	Mean E(X)	Variance Var(X)	Examples	Probability Distribution and Parameter Values	Probability Density Function	Moment- Generating Function	Mean $E(X)$	Variance Var(X)	Examples
$\begin{aligned} & \textbf{Bernoulli} \\ & 0$	$p^x q^{1-x}, \ x = 0, 1$	$\begin{array}{l} q+pe^t,\\ -\infty < t < \infty \end{array}$	p	pq	Experiment with two possible outcomes, say success and failure, $p = P(\text{success})$	Beta $\alpha > 0$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1},$		$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$	$X = X_1/(X_1 + X_2),$ where X_1 and X_2 have
Binomial $n = 1, 2, 3,$ 0	$\binom{n}{x} p^x q^{n-x},$ $x = 0, 1, \dots, n$	$\begin{array}{l} (q+pe^t)^n, \\ -\infty < t < \infty \end{array}$	np	npq	Number of successes in a sequence of n Bernoulli trials, $p = P(success)$	$\beta > 0$	0 < x < 1 $x^{r/2-1}e^{-x/2}$	1 1			independent gamma distributions with same θ
Geometric $0 q = 1 - p$	$ q^{x-1}p, x = 1, 2, \dots $	$\frac{pe^{t}}{1 - qe^{t}}$ $t < -\ln(1 - p)$	$\frac{1}{p}$	$\frac{q}{p^2}$	The number of trials to obtain the first success in a sequence of Bernoulli trials	Chi-square $r = 1, 2, \dots$	$\frac{\Gamma(r/2)2^{r/2}}{0 < x < \infty},$	$\frac{1}{(1-2t)^{r/2}},\ t<\frac{1}{2}$	r	2r	Gamma distribution, $\theta = 2$, $\alpha = r/2$; sum of squares of r independent $N(0,1)$ random variables
Hypergeometric $x \le n, x \le N_1$ $n - x \le N_2$ $N = N_1 + N_2$ $N_1 > 0, N_2 > 0$	$\frac{\binom{N_1}{x}\binom{N_2}{n-x}}{\binom{N}{n}}$		$n \bigg(\! \frac{N_1}{N} \! \bigg)$	$n \binom{N_1}{N} \binom{N_2}{N} \binom{N-n}{N-1}$	Selecting n objects at random without replacement from a set composed of two types of objects	Exponential $\theta > 0$	$\frac{1}{\theta} e^{-x/\theta}, \ 0 \le x < \infty$	$\frac{1}{1-\theta t},t<\frac{1}{\theta}$	θ	θ^2	Waiting time to first arrival when observing a Poisson process with a mean rate of arrivals equal to $\lambda = 1/\theta$
Negative Binomial $r = 1, 2, 3, \dots$ 0	$ \binom{x-1}{r-1} p^r q^{x-r}, $ $ x = r, r+1, \dots$	$\frac{(pe^t)^r}{(1-qe^t)^r},$ $t < -\ln(1-p)$	$\frac{r}{p}$	$\frac{rq}{p^2}$	The number of trials to obtain the rth success in a sequence of Bernoulli trials	Gamma $\alpha > 0$ $\theta > 0$	$\frac{x^{\alpha-1}e^{-x/\theta}}{\Gamma(\alpha)\theta^{\alpha}},$ $0 < x < \infty$	$\frac{1}{(1-\theta t)^{\alpha}},\ t<\frac{1}{\theta}$	$\alpha\theta$	$\alpha\theta^2$	Waiting time to α th arrival when observing a Poisson process with a mean rate of arrivals equal to $\lambda = 1/\theta$
Poisson $\lambda > 0$	$\frac{\lambda^x e^{-\lambda}}{x!},$ $x = 0, 1, \dots$	$e^{\lambda(e^t-1)} \\ -\infty < t < \infty$	λ	λ	Number of events occurring in a unit interval, events are occurring randomly at a mean	$\begin{array}{l} \textbf{Normal} \\ -\infty < \mu < \infty \\ \sigma > 0 \end{array}$	$\frac{e^{-(x-\mu)^2/2\sigma^2}}{\sigma\sqrt{2\pi}},$ $-\infty < x < \infty$	$e^{itt+\sigma^2t^2/2} - \infty < t < \infty$	μ	σ^2	Errors in measurements; heights of children; breaking strengths
Uniform $m > 0$	$\frac{1}{m}, \ x = 1, 2, \dots, m$		$\frac{m+1}{2}$	$\frac{m^2-1}{12}$	rate of λ per unit interval Select an integer randomly from $1, 2,, m$		$\frac{1}{b-a}, \ a \le x \le b$	$\frac{e^{tb} - e^{ta}}{t(b-a)}, t \neq 0$ $1, \qquad t = 0$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	Select a point at random from the interval $[a,b]$

$$(A \cup B) \cup C = A \cup (B \cup C) \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \qquad (A \cup B)' = A' \cap B'$$

$$(A \cap B) \cap C = A \cap (B \cap C) \qquad A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \qquad (A \cap B)' = A' \cup B'$$

$$_{n}P_{r} = \frac{n(n-1)\cdots(n-r+1)(n-r)\cdots(3)(2)(1)}{(n-r)\cdots(3)(2)(1)} = \frac{n!}{(n-r)!}$$

Each of the ${}_{n}C_{r}$ unordered subsets is called a **combination of** n **objects taken** r at a time, where

Each of the ${}_{n}P_{r}$ arrangements is called a **permutation of** n **objects taken** r **at a**

$$_{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}.$$

$$\binom{n}{n_1, n_2, \dots, n_s} = \frac{n!}{n_1! \, n_2! \, \cdots \, n_s!}. \qquad n_{-1+r}C_r = \frac{(n-1+r)!}{r! \, (n-1)!}.$$

$$n-1+rC_r = \frac{(n-1+r)!}{r!(n-1)!}.$$

 $P(A \cap B \cap C) = P(A)P(B \mid A)P(C \mid A \cap B).$ P(A' | B) = 1 - P(A | B)

$$P(B \mid A_1 \cup A_2 \cup A_3) = \frac{P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B)}{P(A_1) + P(A_2) + P(A_3)}$$

Events A and B are **independent** if and only if $P(A \cap B) = P(A)P(B)$. Otherwise, A and B are called **dependent** events.

$$P(B_k | A) = \frac{P(B_k)P(A | B_k)}{\sum_{i=1}^{m} P(B_i)P(A | B_i)}, \qquad P(A) = \sum_{i=1}^{m} P(B_i \cap A)$$
$$= \sum_{i=1}^{m} P(B_i)P(A | B_i)$$

离散型随机变量分

(a)
$$f(x) > 0$$
, $x \in S$;

(b)
$$\sum f(x) = 1;$$

$$\subseteq S$$

(c)
$$P(X \in A) = \sum_{x \in A} f(x)$$

(a)
$$f(x) > 0$$
, $x \in S$;
(b) $\sum_{x \in S} f(x) = 1$; $E[u(X)] = \sum_{x \in S} u(x)f(x)$.

(c)
$$P(X \in A) = \sum_{x \in A} f(x)$$
, $\sigma^2 = E[X(X - 1)] + E(X) - [E(X)]^2$,

连续型随机变量分布

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt,$$

$$\sigma^2 = \text{Var}(X) = E[(X - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx,$$
The mean, variance, and moment-generating function of X , which is $U(0,1)$, are not difficult to calculate. (See Exercise 3.1-1.) They are, respectively,

The (100p)th percentile is a number π_p such that the area under f(x) to the left of π_p is p. That is,

$$p = \int_{-\infty}^{\pi_p} f(x) \, dx = F(\pi_p).$$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt, \qquad -\infty < x < \infty. \quad \mu = E(X) = \int_{-\infty}^{\infty} x f(x) dx,$$

$$\begin{array}{c}
\text{X} \sim \text{U(0,1)} & \mu = \frac{a+b}{2}, \quad \sigma^2 = \frac{(b-a)^2}{12}, \\
M(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)}, & t \neq 0, \\ 1, & t = 0. \end{cases}$$

Exponential Distribution

$$M'(t) = \frac{\theta}{(1 - \theta t)^2}$$
 $M''(t) = \frac{2\theta^2}{(1 - \theta t)^3}$.

Chi Distribution

We say that X has a **chi-square distribution with** r **degrees of freedom**, which we abbreviate by saying that X is $\chi^2(r)$. The mean and the variance of this chi-square distribution are, respectively,

$$\mu = \alpha \theta = \left(\frac{r}{2}\right)2 = r$$
 and $\sigma^2 = \alpha \theta^2 = \left(\frac{r}{2}\right)2^2 = 2r$.

Normal Distribution

If X is
$$N(\mu, \sigma^2)$$
, then $Z = (X - \mu)/\sigma$ is $N(0, 1)$.

If the random variable X is $N(\mu, \sigma^2)$, $\sigma^2 > 0$, then the random variable $V = (X - \mu)^2 / \sigma^2 = Z^2$ is $\chi^2(1)$.

Additional

Let's summarize the formulas for the four categories of sampling. Assuming that we have a set with n elements, and we want to draw k samples from the set, then the total number of ways we can do this is given by the following table.

ordered sampling with replacement	n^k
ordered sampling without replacement	$P_k^n = \frac{n!}{(n-k)!}$
unordered sampling without replacement	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
unordered sampling with replacement	$\binom{n+k-1}{k}$