Sea A una matriz real de tamaño 4×2 y B otra matriz real de tamaño 2×4 tales que:

$$AB = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

Hallar BA.

Solución:

Se puede expresar el producto como $AB = \begin{pmatrix} I & -I \\ -I & I \end{pmatrix}$, siendo I la matriz identidad de orden 2. Y también se puede decir que $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ y $B = \begin{pmatrix} B_1 & B_2 \end{pmatrix}$, con A_1 , A_2 , B_1 , B_2 matrices 2×2 .

Entonces,

$$AB = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} \begin{pmatrix} B_1 & B_2 \end{pmatrix} = \begin{pmatrix} I & -I \\ -I & I \end{pmatrix} \iff \begin{cases} A_1B_1 & = & I \\ A_1B_2 & = & -I \\ A_2B_1 & = & -I \\ A_2B_2 & = & I \end{cases}$$

Por otro lado, $BA = (B_1 \ B_2) \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} = B_1 A_1 + B_2 A_2$. Como $A_1 B_1 = I$, se puede decir que $B_1 A_1 = I$. Y entonces también $A_2 B_2 = I \iff B_2 A_2 = I$. Visto esto, se concluye que

$$BA = B_1 A_1 + B_2 A_2 = 2I = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$