DESCRIPTIVE STATISTICS

Descriptive statistics consists of the collection, organization, summarization and presentation of data.

They reduce a large array of numbers into a handful of figures that describe it accurately

Statistics Basics

Distributions

Central Tendency

Variability

TYPES OF VARIABLES

There are two main <u>types of variables</u> in a dataset: Numerical & Categorical

- Numerical or Quantitative variables
- Categorical or Qualitative variables

Statistics Basics

Distributions

Central Tendency

Variability

NUMERICAL:

customer_id	age	tenure	balance	products_nur	credit_card	active_memb	estimated_sa	churn
15634602	42	2	0	1	1	1	101348.88	1
15647311	41	1	83807.86	1	0	1	112542.58	0
15619304	42	8	159660.8	3	1	0	113931.57	1
15701354	39	1	0	2	0	0	93826.63	0
15737888	43	2	125510.82	1	1	1	79084.1	0
15574012	44	8	113755.78	2	1	0	149756.71	1
15592531	50	7	0	2	1	1	10062.8	0
15656148	29	4	115046.74	4	1	0	119346.88	1
15792365	44	4	142051.07	2	0	1	74940.5	0
15592389	27	2	134603.88	1	1	1	71725.73	0
15767821	31	6	102016.72	2	0	0	80181.12	0
15737173	24	3	0	2	1	0	76390.01	0
15632264	34	10	0	2	1	0	26260.98	0
15691483	25	5	0	2	0	0	190857.79	0
15600882	35	7	0	2	1	1	65951.65	0
15643966	45	3	143129.41	2	0	1	64327.26	0
15737452	58	1	132602.88	1	1	0	5097.67	1
15788218	24	9	0	2	1	1	14406.41	0
15661507	45	6	0	1	0	0	158684.81	0
15568982	24	6	0	2	1	1	54724.03	0
15577657	41	8	0	2	1	1	170886.17	0
15597945	32	8	0	2	1	0	138555.46	0
15699309	38	4	0	1	1	0	118913.53	1
P15135737/e	questi	on: 3	0	2	0	1	8487.75	0
16606047	20	e	^	1	1	1	107010 10	^

CATEGORICAL:

country	gender
France	Female
Spain	Female
France	Female
France	Female
Spain	Female
Spain	Male
France	Male
Germany	Female
France	Male
France	Male
France	Male
Spain	Male
France	Female
France	Female
Snain	Female

TYPES OF DESCRIPTIVE STATISTICS

There are 3 main types of descriptive statistics that can be applied to a variable:

Central Tendency Represents the middle of the values Examples: • Mean, Median, and Mode • Skew Class Average 80.17

HEY THIS IS IMPORTANT!

Most measures of central tendency and variability can only be applied to numerical variables

FREQUENCY DISTRIBUTIONS

A frequency distribution counts the observations of each possible value in a variable

They are commonly depicted using frequency tables

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
US 200 1	

63.3

FREQUENCY TABLE:

Undergrad Degree	Frequency	Relative Frequency
Art	1	6%
Business	8	47%
Computer Science	2	12%
Engineering	4	24%
Finance	2	12%

The relative frequency shows the count of each value as a % of the total

TIP: Use a PivotTable or the COUNTIFS() function to calculate frequencies for categorical variables in Excel

Finance

FREQUENCY DISTRIBUTIONS

For numerical variables, a frequency distribution typically counts the number of observations that fall into defined ranges or "bins" (1-5, 6-10, etc.)

They are commonly depicted using grouped frequency tables or histograms

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

This isn't a meaningful representation of the distribution of the data

FREQUENCY DISTRIBUTIONS

For numerical variables, a frequency distribution typically counts the number of observations that fall into defined ranges or "bins" (1-5, 6-10, etc.)

They are commonly depicted using grouped frequency tables or histograms

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

The cumulative relative frequency shows the running total of the relative frequencies

TIP: Group the numerical values in a PivotTable or use the FREQUENCY() function with the upper limits to calculate frequencies for each bin in Excel

HISTOGRAMS

Histograms are used to visualize the distribution of a numerical variable

They also provide a glimpse of the variable's central tendency and variability

Statistics Basics

Distributions

Central Tendency

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	63.3

TIP: Create a histogram by using a column chart to plot the variable's frequency table, instead of using Excel's native histogram chart type (not as customizable)

HISTOGRAMS

Histograms are used to visualize the distribution of a numerical variable

They also provide a glimpse of the variable's central tendency and variability

Statistics Basics

Distributions

Central **Tendency**

Variability

Undergrad Degree	Undergrad Grade
Business	78.9
Business	74
Business	74.6
Engineering	79.3
Engineering	70.1
Business	88.8
Business	66
Art	82.9
Business	93.6
Business	75.6
Finance	67.5
Computer Science	68.7
Business	76
Computer Science	67.7
Engineering	75.3
Engineering	68.1
Finance	F2.3

Histograms are best suited for variables with many observations, to reflect the true population distribution

TIP: Bin size can significantly change the shape and "smoothness" of a histogram, so select a bin width that accurately shows the data distribution

MEAN

The **mean** is the calculated "average" value in a set on numbers

- It is calculated by dividing the sum of all values by the count of all observations
- It can only be applied to numerical variables (not categorical)

Statistics Basics

Distributions

Central Tendency

Variability

customer id credit score age

Mean = 37.92

(average **37.9**

Use the **AVERAGEIFS**() function if you want to calculate the mean for values that meet a specified criteria (i.e., Mean by Undergrad Degree)

LIMITATIONS OF THE MEAN

The main limitation of the mean is that it is sensitive to outliers (extreme values)

"The average income in America is not the income of the average American"

Statistics Basics

Distributions

Central Tendency

Variability

\$35,000 \$50,000 \$65,000

mean = **\$50,000**

\$100,000,000

mean = **\$25,037,500**

HEY THIS IS IMPORTANT!

While the mean is typically great for making a "best-guess" estimate of a value, it's important to complement this value with other descriptive statistics like the distribution, median, and mode to see if the mean value is being distorted by outliers

MEDIAN

The **median** is the "middle value" in a sorted set of numbers

- Unlike the mean, the median is NOT sensitive to outliers
- When there are two middle-ranked values, the median is the average of the two

Jla	1115	LICS	Da	5105

Distributions

Central Tendency

Variability

