Examen du 4 janvier 2012

I – Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbf{R} . On note $||\ ||$ la norme de la convergence uniforme.

Pour toute fonction $f \in E$, on note \hat{f} la fonction définie par :

$$\widehat{f}(x) = \int_0^1 f(t) \cos(xt) dt$$

- 1) Montrer que pour tout $f \in E$, \hat{f} est une fonction continue de [0,1] dans \mathbf{R} .
- 2) Montrer que la transformation $\Phi: f \mapsto \widehat{f}$ est une application linéaire de E dans E.
- 3) Soit f une fonction de E. Montrer l'inégalité :

$$||\widehat{f}|| \le ||f||$$

En déduire que Φ est continue.

- 4) Déterminer \hat{f} lorsque f est constante. En déduire la norme de Φ .
- II Soit D le disque unité de \mathbb{R}^2 et C le cercle unité :

$$(x,y) \in D \iff x^2 + y^2 \le 1$$
 $(x,y) \in C \iff x^2 + y^2 = 1$

On note f la fonction définie par : $f(x,y) = \frac{1+x^2+y^2}{2+x^4-y^4}$.

- 1) Montrer que f est une fonction de classe C^2 sur un ouvert U de \mathbb{R}^2 contenant D.
- 2) Montrer que f(D) est un intervalle fermé [a,b] de ${\bf R}.$
- 3) Soit z = (x, y) un point critique de f. Montrer que y est nul. Montrer que f a exactement trois points critiques 0, z_0 et $-z_0$ et que ces points appartiennent au disque D. Déterminer f(0), $f(z_0)$ et $f(-z_0)$.
 - 4) Montrer que f(C) est l'intervalle [2/3, 2]. En déduire que [a, b] est l'intervalle [1/2, 2].
- III Soit E un \mathbf{R} -espace vectoriel normé. On notera $||\ ||$ sa norme et d la distance associée. Pour tout point $z \in E$ et toute partie non vide X de E, on note : $d(z,X) = \inf_{x \in X} d(z,x)$ la distance de z à X. Si X et Y sont deux fermés non vides de E on note Z(X,Y) l'ensemble des éléments $z \in E$ vérifiant :

$$d(z,X)/2 \leq d(z,Y) \leq 2d(z,X)$$

1) Montrer que Z(X,Y) est égal à Z(Y,X).

2) Montrer que Z(X,Y) est un fermé de E et que l'on a :

$$X \cap Y = X \cap Z(X,Y) = Y \cap Z(X,Y)$$

3) Soit r un réel. On suppose que X et Y sont contenus dans la boule fermée B de rayon r centrée en 0. Montrer que l'on a, pour tout $z \in E$:

$$||z|| - r \le d(z, X) \le ||z|| + r$$
 $||z|| - r \le d(z, Y) \le ||z|| + r$

- 4) On suppose toujours que X et Y sont contenus dans B. Soit z un vecteur de E avec $||z|| \ge 3r$. Montrer que z appartient à Z(X,Y).
- IV Soit E l'espace \mathbb{R}^2 muni de la norme euclidienne. Pour tout (x,y) dans E, on note B(x,y) la boule fermée de rayon 4/3 centrée en (x,y). On note X l'union des boules B(1,1), B(1,-1), B(-1,1) et B(-1,-1) et on note U le complémentaire de X. Soit C le carré fermé $[-1,1] \times [-1,1]$ et C' le carré ouvert $[-1,1] \times [-1,1]$.
 - 1) Dessiner X. Montrer que X est connexe.
- 2) Montrer que le complémentaire de C' dans C est contenu dans X. Montrer que $C \cap U$ est un ouvert fermé de U. L'espace U est-il connexe?
- V Soit X un espace métrique. Soient Y et Z deux fermés de X. On suppose que X est l'union de Y et Z. Soit E un espace métrique. Soient g une fonction de Y dans E et h une fonction de Z dans E. On suppose que g et h sont continues et coïncident sur $Y \cap Z$.
- 1) Montrer qu'il existe une unique fonction f de X dans E qui coïncide avec g sur Y et avec h sur Z.
 - 2) Soit F un fermé de E. Montrer que $f^{-1}(F)$ est fermé. En déduire que f est continue.
- \mathbf{VI} Soit E l'espace vectoriel des matrices 2×2 à coefficients réels. Soit f la fonction de E dans \mathbf{R} qui à une matrice de E associe son déterminant.
 - 1) Montrer que f est une fonction de classe C^{∞} . Déterminer les points critiques de f.
 - 2) Pour chaque point critique de f déterminer sa signature.
- **VII** Soit f la fonction de \mathbf{R} dans \mathbf{R} définie par : $f(x) = \text{Log } (2 + x^2)$, Log désignant le logarithme népérien. Montrer que f a un unique point fixe.
- **VIII** Soit f la fonction de \mathbf{R}^2 dans \mathbf{R}^2 définie par : $f(x,y) = (x + e^y, y e^x)$.
- 1) Soient z = (x, y) et $z_1 = (x_1, y_1)$ deux points de \mathbf{R}^2 vérifiant : $x \leq x_1$ et $f(z) = f(z_1)$. Déterminer le signe de $y y_1$. En déduire que f est injective.
- 2) Soit (u, v) un point de \mathbf{R}^2 . Montrer qu'il existe un point z de \mathbf{R}^2 tel que f(z) = (u, v).
 - 3) Montrer que f est un difféomorphisme de classe \mathbb{C}^{∞} de \mathbb{R}^2 sur \mathbb{R}^2 .
- \mathbf{IX} Soit f une fonction continue de \mathbf{R} dans \mathbf{R} vérifiant : $|f(x)| \leq 1$ pour tout réel x. Montrer que f possède un point fixe.

Indication : On pourra considérer la fonction $x \mapsto x - f(x)$.