Guía de ejercicios # 1 - Lógica Digital

Organización de Computadoras 2014

UNQ

- 1. Escribir la tabla de verdad de las siguientes expresiones booleanas.
 - a) $p \bullet q + \overline{p \bullet q}$
 - $b) (\overline{p} + q) \bullet (p + \overline{q})$
 - c) $(p \bullet q \bullet w) + \overline{p \bullet q \bullet w}$
 - $d) (p \bullet q \bullet w) + p \bullet \overline{q \bullet w} + \overline{p \bullet q \bullet w}$
 - $e) p \bullet (q \bullet \overline{w} + \overline{q} \bullet w)$
 - $f) (p+q) \bullet (p+w) \bullet (\overline{p}+\overline{q})$
- 2. Dadas las siguientes tablas de verdad, escribir la expresión booleana subyacente:

a)			
,	p	q	F(p,q)
	0	0	1
	0	1	1
	1	0	1
	1	1	0

)			
,	р	q	G(p,q)
	0	0	0
	0	1	1
	1	0	1
	1	1	0

;)				
,	A	В	С	F(A,B,C)
	1	1	0	0
	1	0	0	1
	1	0	1	1
	0	1	0	0
	0	0	1	0
	0	1	1	1
	1	1	1	1
	0	0	0	0

- 3. Dada la expresión booleana de verdad del ejercicio 2c:
 - a) Calcular la cantidad de compuertas que requiere la implementación literal de la expresión.
 - b) ¿Se puede simplificar la expresión usando propiedades del álgebra booleana? Dibujar el circuito correspondiente utilizando la menor cantidad de compuertas que pueda.
- 4. Construir la fórmula de verdad para los siguientes circuitos:

- 5. Especifique la tabla de verdad de cada circuito del ejercicio anterior.
- 6. Diseñe un circuito de 3 entradas y una salida, cuya salida sea tal que la cantidad de unos entre las entradas y las salidas sea par (por ejemplo, para la entrada 101 la salida es 0 y para la entrada 111 la salida es 1). Plantee la solución como una tabla de verdad y derive el circuito de esta última.
- 7. Haga un circuito con 4 entradas y una salida tal que la salida sea 1 si y sólo si hay exactamente 2 entradas en 1.
- 8. Haga el circuito de un comparador de 1 bit. Debe tener 2 entradas (a y b) y 5 salidas $(S_1$, S_2 , S_3 , S_4 , S_5), tales que:
 - $S_1 = 1 \leftrightarrow a > b$
 - $S_2 = 1 \leftrightarrow a \ge b$
 - $S_3 = 1 \leftrightarrow a = b$
 - $S_4 = 1 \leftrightarrow a \leq b$
 - $S_5 = 1 \leftrightarrow a < b$
- 9. Dibujar el circuito de un demultiplexor de 2 líneas de control, 1 línea de entrada y 4 líneas de salida. Este circuito dirige la única línea de entrada a una de las cuatro líneas de salida, dependiendo del estado de las dos líneas de control. Es decir:
 - Si $c_1 = c_0 = 0$ entonces $s_0 = e$ y las restantes salidas valen 0
 - Si $c_1 = 0$ y $c_0 = 1$ entonces $s_1 = e$ y las restantes salidas valen 0

- \bullet Si $c_1=1$ y $c_0=0$ entonces $s_2=e$ y las restantes salidas valen 0
- Si $c_1 = c_0 = 1$ entonces $s_3 = e$ y las restantes salidas valen 0

10. Dibujar el circuito de un decodificador de 2 líneas de entrada (e_i) y 4 líneas de salida (s_i) , cuya tabla de verdad es la siguiente:

e_1	$ e_0 $	s_3	s_2	s_1	s_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

- 11. **Usando el circuito anterior**, dibujar un demultiplexor de 1 línea de entrada, 2 líneas de control y 4 líneas salidas.
- 12. Diseñar un $full\ adder$ de 1 bit
- 13. Dis<u>eñar un restador de</u> 1 bit:

- 14. Diseñar un restador con carry de 1 bit:
- 15. Diseñar un $full\ adder$ de 4 bits reusando circuitos que conozca.
- 16. Diseñar un restador de 4 bits reusando circuitos que conozca.