

Model building: dummy variables

Lecture 11

STA 371G

Let's predict fuel economy (miles per gallon) for different car models of the 70s.

Let's predict fuel economy (miles per gallon) for different car models of the 70s.

- Cylinders
- Displacement
- Horsepower

- Weight
- Acceleration
- Year (After 1975 or not)

ŀ	nead (cars)						
	MPG	Cylinders	Displacement	HP	Weight	Acceleration	After1975	Origin
1	l 18	8	307	130	3504	12.0	No	US
2	2 15	8	350	165	3693	11.5	No	US
3	3 18	8	318	150	3436	11.0	No	US
4	1 16	8	304	150	3433	12.0	No	US
5	5 17	8	302	140	3449	10.5	No	US
6	5 15	8	429	198	4341	10.0	No	US

he	head(cars)							
	MPG	Cylinders	Displacement	НР	Weight	Acceleration	After1975	Origin
1	18	8	307	130	3504	12.0	No	US
2	15	8	350	165	3693	11.5	No	US
3	18	8	318	150	3436	11.0	No	US
4	16	8	304	150	3433	12.0	No	US
5	17	8	302	140	3449	10.5	No	US
6	15	8	429	198	4341	10.0	No	US

How do we handle the Yes/No data in the After1975 column?

Are late-model cars different?

To incorporate the After1975 variable into a regression model, we create a dummy variable called LateModel that maps a "Yes" to 1, and "No" to 0.

To incorporate the After1975 variable into a regression model, we create a dummy variable called LateModel that maps a "Yes" to 1, and "No" to 0.

```
cars$LateModel <-
  ifelse(cars$After1975 == "Yes", 1, 0)</pre>
```

To incorporate the After1975 variable into a regression model, we create a dummy variable called LateModel that maps a "Yes" to 1, and "No" to 0.

```
cars$LateModel <-
  ifelse(cars$After1975 == "Yes", 1, 0)</pre>
```

Now let's a regression model using the predictors Cylinders, Displacement, HP, Weight, Acceleration, and LateModel.

R will actually create this "dummy" (0/1) variable for us automatically, when you put a categorical variable (what R calls a "factor" into a model).

```
summary(lm(MPG ~ Cylinders + Displacement + HP + Weight +
    Acceleration + After1975, data=cars))
Call:
lm(formula = MPG ~ Cylinders + Displacement + HP + Weight + Acceleration
    After1975, data = cars)
Residuals:
    Min
            10 Median 30
                                  Max
-8.9302 -2.5727 -0.2574 2.0630 15.0381
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 42.1939988 2.3687735 17.81<u>3 < 2e-16 ***</u>
Cylinders -0.5840362 0.3601220 -1.622 0.106
Displacement 0.0074811 0.0079791 0.938 0.349
          -0.0198909 0.0147848 -1.345 0.179
HP
Weight -0.0059904 0.0007194 -8.32<u>7 1.46e-15 ***</u>
Acceleration 0.0354327 0.1103506 0.321
                                            0.748
After1975Yes 4.3590043 0.4016220 10.853 < 2e-16 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 3.721 on 385 degrees of freedom

6/17

Dummy variables

After1975Yes is 1 whenever After1975 is "Yes," and 0 otherwise:

MPG		Acceleration	After1975	After1975Yes	
•••	•••	•••	•••	•••	
25		13.5	No	0	
33		17.5	No	0	
28		15.5	Yes	1	
25		16.9	Yes	1	

Dummy variables

After1975Yes is 1 whenever After1975 is "Yes," and 0 otherwise:

MPG		Acceleration	After1975	After1975Yes	
•••	•••		•••	•••	
25		13.5	No	0	
33		17.5	No	0	
28		15.5	Yes	1	
25		16.9	Yes	1	

Notice that we do not have a After1975No variable; it would cause problems because it would be perfectly correlated with After1975Yes.

Our regression equation is:

$$\widehat{MPG} = 41.71 - 0.02 \cdot HP - 0.01 \cdot Weight + 4.33 \cdot After 1975 Yes.$$

Our regression equation is:

$$\widehat{MPG} = 41.71 - 0.02 \cdot HP - 0.01 \cdot Weight + 4.33 \cdot After 1975 Yes.$$

Let's interpret the coefficient 4.33. Consider this:

• Model A and B have the same HP and Weight.

Our regression equation is:

$$\widehat{MPG} = 41.71 - 0.02 \cdot HP - 0.01 \cdot Weight + 4.33 \cdot After 1975 Yes.$$

Let's interpret the coefficient 4.33. Consider this:

- Model A and B have the same HP and Weight.
- Model A was manufactured before 1975, whereas B was manufactured after 1975.

Our regression equation is:

$$\widehat{MPG} = 41.71 - 0.02 \cdot HP - 0.01 \cdot Weight + 4.33 \cdot After 1975 Yes.$$

Let's interpret the coefficient 4.33. Consider this:

- Model A and B have the same HP and Weight.
- Model A was manufactured before 1975, whereas B was manufactured after 1975.
- We predict Model B will have a MPG that is 4.33 higher than Model A.

R has assigned "Yes" to 1 and "No" to 0 in our dummy variable, so the "reference level" is cars manufactured before 1975.

R has assigned "Yes" to 1 and "No" to 0 in our dummy variable, so the "reference level" is cars manufactured before 1975.

If we created a dummy variable After1975No that is 1 for cars manufactured *before* 1975, what would the regression look like?

The Origin variable represents the country of manufacture:

 The Origin variable has 3 "levels"—US, EU, and JP—so we can't easily convert this into a 0/1 dummy variable.

- The Origin variable has 3 "levels"—US, EU, and JP—so we can't easily convert this into a O/1 dummy variable.
- The solution is to create a dummy variable for each level (category), and include all but one of them as predictors in the model.

- The Origin variable has 3 "levels"—US, EU, and JP—so we can't easily convert this into a O/1 dummy variable.
- The solution is to create a dummy variable for each level (category), and include all but one of them as predictors in the model.
- The category left out is the reference level and all slope coefficients for dummy variables are interpreted as the difference between that category and the reference level.

- The Origin variable has 3 "levels"—US, EU, and JP—so we can't easily convert this into a O/1 dummy variable.
- The solution is to create a dummy variable for each level (category), and include all but one of them as predictors in the model.
- The category left out is the reference level and all slope coefficients for dummy variables are interpreted as the difference between that category and the reference level.
- If any of the dummy variables are significant for a particular categorical variable, we consider the entire categorical variable to be significant!

```
origin.model <- lm(MPG ~ HP + Weight + After1975 + Origin, data=cars)
summary(origin.model)</pre>
```

```
Call:
```

 $lm(formula = MPG \sim HP + Weight + After1975 + Origin, data = cars)$

Residuals:

Min 1Q Median 3Q Max -9.705 -2.243 -0.199 1.816 13.789

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.181974 0.874271 45.96 <2e-16 ***

HP -0.027984 0.009865 -2.84 0.0048 **
Weight -0.005160 0.000477 -10.81 <2e-16 ***

After1975Yes 4.334280 0.392849 11.03 <2e-16 ***

OriginJP 1.000586 0.611954 1.64 0.1029

OriginUS -1.592573 0.561900 -2.83 0.0048 **
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.6 on 386 degrees of freedom Multiple R-squared: 0.787,Adjusted R-squared: 0.784 F-statistic: 285 on 5 and 386 DF, p-value: <2e-16

• In the original dataset, the origin was represented as 1 for US, 2 for EU and 3 for JP.

- In the original dataset, the origin was represented as 1 for US, 2 for EU and 3 for JP.
- We would not want to just put these numbers in the regression as numbers, because then regression would treat this as if it were a quantitative variable!

- In the original dataset, the origin was represented as 1 for US, 2 for EU and 3 for JP.
- We would not want to just put these numbers in the regression as numbers, because then regression would treat this as if it were a quantitative variable!
- Even though the representation in the file is numeric, it is still a categorical variable and should be treated as such.

Statistical significance of a categorical variable

While dealing with categorical variables, we want to look at the significance of the categorical variable as a whole, rather than looking at *p*-values of individual dummy variables.

Statistical significance of a categorical variable

While dealing with categorical variables, we want to look at the significance of the categorical variable as a whole, rather than looking at *p*-values of individual dummy variables.

We want to test the compound null hypothesis

$$H_0$$
: $\beta_{US} = \beta_{JP} = 0$.

Statistical significance of a categorical variable

To do this, we look at the ANOVA table; the *p*-value on the Origin line (2.4×10^{-5}) is the *p*-value for the compound null hypothesis $H_0: \beta_{IIS} = \beta_{IP} = 0$.

```
anova(origin.model)
Analysis of Variance Table
Response: MPG
          Df Sum Sq Mean Sq F value Pr(>F)
HP
             14433
                    14433 1096.0 < 2e-16 ***
Weight
       1 2392 2392 181.6 < 2e-16 ***
After1975 1 1623 1623 123.2 < 2e-16 ***
Oriain
       2 288
                    144 10.9 2.4e-05 ***
Residuals 386 5083
                       13
Signif. codes:
                     0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Practical significance of a categorical variable

Since p < .05, we can conclude that Origin is a statistically significant predictor of MPG. But is it a *practically* significant predictor?

Practical significance of a categorical variable

Since p < .05, we can conclude that Origin is a statistically significant predictor of MPG. But is it a *practically* significant predictor?

To do this, compare R^2 values, or standard error of residuals:

Model	R^2	Residual standard error
Origin not included in model	0.77	3.72
Origin included in model	0.79	3.63

We have to decide if the increased precision is worth the extra complexity in the model.