Course 02402 Introduction to Statistics

Lecture 1: Introduction and R

DTU Compute Technical University of Denmark 2800 Lyngby – Denmark

Practical course information

Overview

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Descriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Agenda

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Obscriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Practical course information

Practical course information

Teaching module

- Lectures: Tuesday 13-15 at Zoom Channel introstat_F21_02402
- Exercises: Tuesday 15-17 at
 - Zoom Channels. See Email or Course Website.
 - Quizzes and Area9 Rhapsode

• Exam

- Sunday 30 May 2021 9am-1pm
- 4 hour multiple choice

Mandatory projects

- 2 projects must be approved in order to participate in the exam.
- For each project, choose between one of four topics.

Introduction to Statistics Spring 2021 3 / 47 Spring 2021 4 / 47

Practical course information

Generic weekly agenda

- Before teaching: Read relevant chapters/sections in eNote/book
- Lectures: 2 hours, curriculum of the week
- Exercises: 2 hours, exercises and online guizzes
- After teaching: Online "exam quiz" (test yourself)

Teaching material

- Available under Material on course website
- Optional: Use the available R script to download all the material in one go (but beware that it overwrites changes made to previously downloaded files)
- Lecture slides and R code will be updated shortly before each lecture (remember to refresh browser)

Introduction to Statistics - a primer

Overview

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Descriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Practical Information

Homepage: 02402.compute.dtu.dk

- Online book (website or via lix)
- Syllabus
- Lecture plan / agenda
- Exercises & solutions
- Slides
- Discussion forum
- Podcasts of previous years' lectures (English and Danish)
- Quizzes

Learn: learn.inside.dtu.dk/d21/home/60261

- Announcements (Must subscribe to get email)
- Projects description and submission

Introduction to Statistics - a primer

Introduction to Statistics - a primer

New England Journal of Medicine:

EDITORIAL: Looking Back on the Millennium in Medicine, N Engl J Med, 342:42-49, January 6, 2000.

http://www.nejm.org/doi/full/10.1056/NEJM200001063420108

Spring 2021 7 / 47

Spring 2021 8 / 47

Millennium list

- Elucidation of human anatomy and physiology
- Discovery of cells and their substructures
- Elucidation of the chemistry of life
- Application of statistics to medicine
- Development of anesthesia
- Discovery of the relation of microbes to disease
- Elucidation of inheritance and genetics
- Knowledge of the immune system
- Development of body imaging
- Discovery of antimicrobial agents
- Development of molecular pharmacotherapy

Introduction to Statistics - a prime

John Snow

The origin of modern epidemiology is often traced to 1854, when John Snow demonstrated the transmission of cholera from contaminated water by analyzing disease rates among citizens served by the Broad Street Pump in London's Golden Square. He arrested the further spread of the disease by removing the pump handle from the polluted well.

(See also http://en.wikipedia.org/wiki/John_Snow_(physician)).

James Lind

One of the earliest clinical trials took place in 1747, when James Lind treated 12 scorbutic ship passengers with cider, an elixir of vitriol, vinegar, sea water, oranges and lemons, or an electuary recommended by the ship's surgeon. The success of the citrus-containing treatment eventually led the British Admiralty to mandate the provision of lime juice to all sailors, thereby eliminating scurvy from the navy.

(See also http://en.wikipedia.org/wiki/James_Lind).

Introduction to Statistics - a prime

Google - Big Data

A quote from the New York Times article titled For Today's Graduate, Just One Word: Statistics (5 August 2009)

http://www.nytimes.com/2009/08/06/technology/06stats.html

I keep saying that the sexy job in the next 10 years will be statisticians, said Hal Varian, chief economist at Google. And I'm not kidding.

IBM - Big Data

The key is to let computers do what they are good at, which is trawling these massive data sets for something that is mathematically odd, said Daniel Gruhl, an I.B.M. researcher whose recent work includes mining medical data to improve treatment. And that makes it easier for humans to do what they are good at - explain those anomalies.

Statistics and Engineers

Overview

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Descriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Intro Case stories: IBM big data, Novo Nordisk small data, Skive fjord

- Presentation by Senior Scientist Hanne Refsgaard, Novo Nordisk A/S
- IBM Social Media podcast by Henrik H. Eliassen, IBM.
- Skive Fjord podcasts, by Jan K. Møller, DTU.

Statistics and Engineers

- Analysis of data ("both small & big")
- Understanding random variation
- Understanding the advantages (and limitations) of statistics for problem solving
- Quality improvement
- Design of experiments
- Prediction of future values
- ... and much more!

- Statistics is often about analyzing a *sample*, taken from a *population*.
- Based on the sample, we try to generalize to the population.
- Therefore, it is important that the sample is *representative* of the population.

Md Saifuddin Khalid (DTU Compute)

Introduction to Statistics

oring 2021 17

2021 17 / 47

Descriptive Statistics

Overview

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Oescriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Statistics

Descriptive Statist

Summary statistics

We use *summary statistics* to summarize and describe data (stochastic variables)

- Measures of centrality
 - e.g.: mean (\bar{x}) and median
- Measures of dispersion
 - e.g.: variance (s^2) and standard deviation (s)
- Measures of relation
 - e.g.: covariance and correlation

Note the difference between, e.g., the *(sample)* mean \bar{x} and the *(population)* mean μ .

l Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2021 19/47 Md Saifuddin Khalid (DTU Compute) Introduction to Statistics Spring 2021

Mean, Definition 1.4

The mean value is a key number which indicates the centre of gravity or centering of the data.

The sample mean (average):

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

We say that \bar{x} is an *estimate* of the population mean.

Example: Student heights

• **Sample:** Student heights in cm, n = 5.

$$(x_1, x_2, x_3, x_4, x_5) = (185, 184, 194, 180, 182)$$

Mean:

$$\bar{x} = \frac{1}{5}(185 + 184 + 194 + 180 + 182) = 185$$

- Median:
 - First order the data: 180, 182, 184, 185, 194.
 - Then choose the third/middle number (n uneven): 184
- If a person with height 235 cm is added to the data:

Mean: 193

Median: 184.5

Median, Definition 1.5

The median is also a key number indicating the center of the data.

In some cases, for example in the case of extreme values, the median is preferable to the mean.

Sample median:

The observation in the middle (in sorted order).

Descriptive Statistics Variance and standard deviation

Variance and standard deviation, Definition 1.10

The variance and the standard deviation indicate the dispersion ("spread") of the data:

Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Standard deviation

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Descriptive Statistics Variance and standard deviation

Example: Student heights

• **Sample:** Student heights in cm, n = 5.

$$(x_1, x_2, x_3, x_4, x_5) = (185, 184, 194, 180, 182)$$

Variance:

$$s^{2} = \frac{1}{4}((185 - 185)^{2} + (184 - 185)^{2} + \dots + (182 - 185)^{2}) = 29$$

Standard deviation:

$$s = \sqrt{29} = 5.385$$

Percentiles and quantiles

Percentiles and quantiles

The median it the value that divides the data into two halves.

More generally, we may compute *percentiles*, e.g.:

- 0,25,50,75,100 % percentiles and/or
- 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 % percentiles

Note:

- The median is the 50% percentile.
- The 25, 50, 75 % percentiles are often referred to as the first, second and third quartiles, and denoted Q1, Q2, and Q3, respectively.
- Inter Quartile Range (IQR): Q3 Q1

The coefficient of variation, Definition 1.12

The standard deviation and the variance are key numbers for absolute variation.

If it is of interest to compare variation between different data sets, it might be a good idea to use a relative key number.

Coefficient of variation:

$$V = \frac{s}{\bar{x}} \tag{1}$$

Quantiles, Definition 1.7

The p'th quantile, also named the 100p'th percentile, can be defined by the following procedure:

- **①** Order the *n* observations from smallest to largest: $x_{(1)}, \ldots, x_{(n)}$.
- Compute pn.
- **3** If pn is an integer: Average the pn'th and (pn+1)'th ordered observations:

The
$$p$$
'th quantile $= (x_{(np)} + x_{(np+1)})/2$

 \bullet If pn is a non-integer, take the next ordered observation:

The
$$p$$
'th quantile $= x_{(\lceil np \rceil)}$

where $\lceil np \rceil$ is the *ceiling* of np, that is, the smallest integer larger than np.

Spring 2021 27 / 47

Spring 2021 28 / 47

Example: Student heights

• Sample: Ordered student heights in cm.

$$(x_{(1)}, x_{(2)}, x_{(3)}, x_{(4)}, x_{(5)}) = (180, 182, 184, 185, 194)$$

- Lower quartile, Q1:
 - Establish that np = 1.25, as p = 0.25 and n = 5.
 - The smallest integer larger than np is 2.
 - $Q1 = x_{(2)} = 182$.
- Upper quartile, Q3:
 - Establish that np = 3.75, as p = 0.75 and n = 5.
 - The smallest integer larger than np is 4.
 - $Q3 = x_{(4)} = 185$.
- IQR:
 - Q3 Q1 = 3

Descriptive Statistics Covariance and correlation

Covariance and correlation, Definitions 1.18 and 1.19

The sample covariance is given by

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})$$

The sample correlation coefficient is given by

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \bar{x}}{s_x} \right) \left(\frac{y_i - \bar{y}}{s_y} \right) = \frac{s_{xy}}{s_x \cdot s_y}$$

where s_x and s_y are the sample standard deviations for x and y respectively.

Covariance and correlation

Height (x_i)

Covariance and correlation

Covariance and correlation

Student	1	2	3	4	5	6	7	8	9	10
Heights (x _i)	168	161	167	179	184	166	198	187	191	179
Weights (y_i)	65.5	58.3	68.1	85.7	80.5	63.4	102.6	91.4	86.7	78.9
$(x_i - \bar{x})$	-10	-17	-11	1	6	-12	20	9	13	1
$(y_i - \bar{y})$	-12.6	-19.8	-10	7.6	2.4	-14.7	24.5	13.3	8.6	8.0
$(x_i - \bar{x})(y_i - \bar{y})$	126.1	336.8	110.1	7.6	14.3	176.5	489.8	119.6	111.7	0.8

$$s_{xy} = \frac{1}{9}(126.1 + 336.8 + 110.1 + 7.6 + 14.3 + 176.5 + 489.8 + 119.6 + 111.7 + 0.8)$$

$$= \frac{1}{9} \cdot 1493.3$$

$$= 165.9$$

$$s_x = 12.21$$
, and $s_y = 14.07$

$$r = \frac{165.9}{12.21 \cdot 14.07} = 0.97$$

Spring 2021 31 / 47

Spring 2021 32 / 47

Descriptive Statistics Covariance and correlation

Correlation - properties

- r is always between -1 and $1: -1 \le r \le 1$.
- r measures the degree of linear relation between x and у.
- $r = \pm 1$ if and only if all points in the scatterplot are exactly on a line.
- r > 0 if and only if the general trend in the scatterplot is positive.
- r < 0 if and only if the general trend in the scatterplot is negative.

Descriptive Statistics Plots/figures

Figures/Tables

Quantitative data

- Scatter plot (xy plot)
- Histogram
- Cumulative distribution
- Box plot

Count data

- Bar chart
- Pie chart

Correlation

Software: R & RStudio

Overview

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Descriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Software: R & RStudio

- R: Software/language for statistical analysis and visualization of data.
- R & RStudio: Free to download, can be installed on Linux, Mac, Windows.
- R, RStudio, extra packages under continuous development.
- Introduction in the book.
- Intregrated in the course material and teaching.
- Learning by doing. Also: use Google!

Introduction to Statistics

Software: R & RStudio

Software: R

```
# Height data from before
x <- c(168, 161, 167, 179, 184, 166, 198, 187, 191, 179)
```

Sample mean mean(x)

[1] 178

Sample median median(x) ## [1] 179

Sample variance var(x)

[1] 149

Software: R & RStudio

Software: R

```
> # Adding numbers in the console
> 2 + 3
## [1] 5
```

```
> # Assigning a number to a variable
> x <- 3
> x
## [1] 3
```

```
> # Assigning a vector to a variable
> x \leftarrow c(1, 4, 6, 2); x
## [1] 1 4 6 2
```

```
> # A vector of integers from 1 to 10
> ( x <- 1:10 )
## [1] 1 2 3 4 5 6 7 8 9 10
```

Software: R & RStudio

Software: R

```
# Sample standard deviation
sd(x)
## [1] 12
```

```
# Sample quartiles
quantile(x, type = 2)
## 0% 25% 50% 75% 100%
## 161 167 179 187 198
```

```
# Sample quantiles 0%, 10%,...,90%, 100%
quantile(x, probs = seq(0, 1, by = 0.10), type = 2)
## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
## 161 164 166 168 174 179 184 187 189 194 198
```

Software: R & RStudio

Software: R

A histogram of the heights
hist(x)

Md Saifuddin Khalid (DTU Compute)

Introduction to Statistics

Spring 2021 41 / 47

Software: R & RStudio

Software: R

Empirical cumulative distribution function of the heights
plot(ecdf(x), verticals = TRUE)

Software: R & RStudio

Software: R

A density histogram of the heights
hist(x, prob = TRUE, col = "red", nclass = 8)

Md Saifuddin Khalid (DTU Compute)

Introduction to Statistics

Spring 2021 42 / 47

Software: R & RStudio

Software: R

Basic box plot of the heights ('range = 0' makes it "basic")
boxplot(x, range = 0, col = "red", main = "Basic box plot")
text(1.3, quantile(x), c("Minimum", "Q1", "Median", "Q3", "Maximum"), col = "blue")

Software: R & RStudio

Software: R

```
# Modified box plot of heights with an additional extreme observation (235 cm)
# The modified version is the default.
boxplot(c(x, 235), col = "red", main = "Modified box plot")
text(1.3, quantile(c(x, 235)), c("Minimum", "Q1", "Median", "Q3", "Maximum"), col = "blue")
```


Introduction to Statistics

Software: R & RStudio Next week

Agenda

- Practical course information
- Introduction to Statistics a primer
- Statistics and Engineers
- Obscriptive Statistics
 - Mean and median
 - Variance and standard deviation
 - Percentiles and quantiles
 - Covariance and correlation
- Software: R & RStudio

Introduction to Statistics Spring 2021 47 / 47 Next week:

Probability, part 1 - eNote/book chapter 2.

Software: R & RStudio Next week