Assignment 5

Brian Sohn

1. Fitting a Mixture Model to Estimate Probabilities and Mean Number of Events

```
Parameters to estimate are:
```

```
p w: probability that a person is a whale
```

pzero 0: probability that a person is a non-purchaser, given that a person is not a whale, when group 0 pzero 1: probability that a person is a non-purchaser, given that a person is not a whale, when group 1 mu 0: mean number of events for casual purchaser, when group 0

mu 1: mean number of events for casual purchaser, when group 1

mu w diff: mean number of events for whale - mu 0

Priors are set as:

```
p_w \sim \text{invlogit}(N(logit(0.005, tau=1)))
pzero 0 \sim \text{invlogit}(N(logit(0.85, tau=1)))
pzero 1 \sim \text{invlogit}(N(\text{logit}(0.85, \text{tau}=1)))
mu 0 \sim HN(tau=1)
mu_1 \sim HN(tau=1)
mu w diff \sim HN( tau=0.01)
```

For group i, a mixture model is fit using

```
X_i \sim Mixture ([f_w, f_n], [p_w, 1-p_w])
```

f w ~ Poisson((mu 0+mu w diff)): distribution for whales

f n ~ ZeroInflatedPoisson(psi=1-pzero i, mu=mu i) : distribution for non-whales

Results from Pymc are summarized in the following table.

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
mu_0	4.305	0.076	4.163	4.443	0.001	0.001	5114.0	3296.0	1.0
mu_w_diff	59.088	1.611	56.139	62.172	0.021	0.015	5830.0	3105.0	1.0
mu_1	3.044	0.071	2.911	3.174	0.001	0.001	5551.0	3062.0	1.0
p_w	0.002	0.000	0.002	0.003	0.000	0.000	6417.0	3325.0	1.0
pzero_0	0.845	0.005	0.835	0.855	0.000	0.000	5792.0	3178.0	1.0
pzero_1	0.855	0.005	0.845	0.864	0.000	0.000	5572.0	3196.0	1.0

2. Deciding Price to Minimize Expected Loss

If the price is \$3.99 (group 0), then the expected revenue per user is

```
rev_0 = 3.99 * expected purchases
= 3.99 * (p_w * (mu_0 + mu_w_diff) + (1 - p_w) * (1 - pzero_0) * mu_0)
Similarly, the expected revenue per user when the price is $4.99 is
rev_1 = 4.99 * (p_w * (mu_0 + mu_w_diff) + (1 - p_w) * (1 - pzero_1) * mu_1)
```

For each sample in the posterior, we can calculate values for both rev_0 and rev_1. In each sample, decision 0's loss will be 0 if rev_0 >= rev_1, and rev_1 - rev_0 if rev_0 < rev_1. Decision 1's loss will be 0 if rev_0 <= rev_1, and rev_0 - rev_1 if rev_0 > rev_1.

Finally, to calculate the expected loss per user for each decision, we simply compute the mean of losses over the posterior samples.

The result is:

```
print(f"Expected Loss per person when price is $3.99: ${loss_0:.4f}")
print(f"Expected Loss per person when price is $4.99: ${loss_1:.4f}")

Expected Loss per person when price is $3.99: $0.0011
Expected Loss per person when price is $4.99: $0.2896
```

Therefore we decide to price our in-app feature at \$3.99 so that expected loss is minimized.