

Support Vector Machines for Classification I

Swati Mishra

Applications of Machine Learning (4AL3)

Fall 2024

ENGINEERING

Review

- Multiclass classification
- Softmax Function
- Multinomial Logisitic Regression
- Accuracy, Precision, Recall, Sensitivity, Specifity

Classification Problem

- Diagnostic of Breast Cancer Wisconsin
- Classification goal to classify if a tissue is cancerous.

Variables Table		
Variable Name	Role	Туре
ID	ID	Categorical
Diagnosis	Target	Categorical
radius1	Feature	Continuous
texture1	Feature	Continuous
perimeter1	Feature	Continuous
area1	Feature	Continuous
smoothness1	Feature	Continuous
compactness1	Feature	Continuous
concavity1	Feature	Continuous
concave_points1	Feature	Continuous

Variables Table		
Variable Name	Role	Туре
symmetry1	Feature	Continuous
fractal_dimension1	Feature	Continuous
radius2	Feature	Continuous
texture2	Feature	Continuous
perimeter2	Feature	Continuous
area2	Feature	Continuous
smoothness2	Feature	Continuous
compactness2	Feature	Continuous
concavity2	Feature	Continuous
concave_points2	Feature	Continuous

Variables Table		
Variable Name	Role	Туре
symmetry2	Feature	Continuous
fractal_dimension2	Feature	Continuous
radius3	Feature	Continuous
texture3	Feature	Continuous
perimeter3	Feature	Continuous
area3	Feature	Continuous
smoothness3	Feature	Continuous
compactness3	Feature	Continuous
concavity3	Feature	Continuous
concave_points3	Feature	Continuous

• In a p-dimensional space, a hyperplane is a flat affine subspace of p-1 dimension.

- In a p-dimensional space, a hyperplane is a flat affine subspace of p-1 dimension.
 - In two dimensions, a hyperplane is a flat one-dimensional subspace
 - In three dimensions, a hyperplane is a flat two-dimensional subspace—that is, a plane

This is correct classification

- In a p-dimensional space, a hyperplane is a flat affine subspace of p-1 dimension.
 - In two dimensions, a hyperplane is a flat one-dimensional subspace
 - In three dimensions, a hyperplane is a flat two-dimensional subspace—that is, a plane

• When the hyperplane is too close to one of the classes, it fails to accurately classify new instances.

• The goal of SVM which is to find the "separating hyperplane" that is furthest away from the training set

• The goal of SVM which is to find the "separating hyperplane" that is furthest away from the training set and defined by the optimal margin.

• The goal of SVM which is to find the "separating hyperplane" that is furthest away from the training set and defined by the optimal margin.

- The goal of SVM which is to find the "separating hyperplane" that is furthest away from the training set and defined by the optimal margin.
- SVM is the generalization of maximum margin classifier, where margin is the distance between the observations and the hyperplane.

• A test observation is defined based on which side of the hyperplane it is.

A test observation is defined based on which side of the hyperplane it is.

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} > 0$$
 if $y_i = 1$ Class \bigstar

$$\beta_0$$
 + $\beta_1 x_{i1}$ + $\beta_2 x_{i2}$ + \cdots + $\beta_p x_{ip}$ > 0 if y_i = -1 Class

A test observation is defined based on which side of the hyperplane it is.

Let's say there is a hyperplane H_1

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} \ge 1$$
 when $y_i = 1$

Let's say there is hyperplane H_2

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} \le -1 \text{ when } y_i = -1$$

A test observation is defined based on which side of the hyperplane it is.

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \ge 1 \text{ when } y_i = 1$$

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \le -1 \text{ when } y_i = -1$$

A test observation is defined based on which side of the hyperplane it is.

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \ge 1 \text{ when } y_i = 1$$
 $eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \le -1 \text{ when } y_i = -1$

Then hyperplane
$$H_1$$
 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} = 1$

A test observation is defined based on which side of the hyperplane it is.

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \ge 1 \text{ when } y_i = 1$$
 $eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \le -1 \text{ when } y_i = -1$

Then hyperplane
$$H_1$$
 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = 1$

Then hyperplane
$$H_2$$
 β_0 + $\beta_1 x_{i1}$ + $\beta_2 x_{i2}$ + \cdots + $\beta_p x_{ip}$ = -1

A test observation is defined based on which side of the hyperplane it is.

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \ge 1 \text{ when } y_i = 1$$

$$eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_p x_{ip} \le -1 \text{ when } y_i = -1$$

Then hyperplane
$$H_1$$
 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} = 1$

Then hyperplane
$$H_2$$
 β_0 + $\beta_1 x_{i1}$ + $\beta_2 x_{i2}$ + \cdots + $\beta_p x_{ip}$ = -1

...and
$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = 0$$
 is our H_0

A test observation is defined based on which side of the hyperplane it is.

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} \ge 1$$
 when $y_i = 1$

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} \le -1 \text{ when } y_i = -1$$

Then hyperplane
$$H_1$$
 $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} = 1$

Then hyperplane
$$H_2$$
 β_0 + $\beta_1 x_{i1}$ + $\beta_2 x_{i2}$ + \cdots + $\beta_p x_{ip}$ = -1

...and
$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} = 0$$
 is our H_0

• Some properties:

- d^+ It is the shortest distance closest to the positive point
- d^- It is the shortest distance closest to the negative point

$$Margin = d^+ + d^-$$

Some properties:

Moving other vectors has no effect on the margin

Some properties:

Moving other vectors has no effect on the margin

Moving support vectors has effect on the margin

Our optimization algorithm therefore must learn the weights in such a way that only the support vectors determine the weights and thus the boundary .

$$\begin{aligned} & \textit{maximize } & \textit{M} \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, \textit{M} \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq \textit{M}(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq \textit{C}, \end{aligned}$$

$$\begin{aligned} & & maximize \quad M \\ & & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, M \\ & \text{subject to } & & \sum_{j=1}^p \beta_j^2 = 1, \\ & & & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \ x_{ip}) \geq M(1 - \epsilon_i), \\ & & & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

The optimization goal of the SVM is:

What we know

Distance from a point (x_0, y_0) to a line ax + by + c = 0 is $\frac{|ax+by+c|}{\sqrt{a^2+b^2}}$

$$\begin{aligned} & \textit{maximize } \ \textit{M} \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, \textit{M} \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \ x_{ip}) \geq \textit{M}(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq \textit{C}, \end{aligned}$$

What we know

Distance from a point
$$(x_0, y_0)$$
 to a line $ax + by + c = 0$ is $\frac{|ax+by+c|}{\sqrt{a^2+b^2}}$

$$maximize \ M$$

$$\beta_0 \ , \beta_1, \dots, \beta_p \ , \epsilon_1, \dots \epsilon_n, M$$
 subject to
$$\sum_{i=1}^p \beta_j^2 = 1,$$

$$\beta_1, \beta_2 \dots, \beta_p$$
 = weight vector **w**

$$\beta_0$$
 = bias vector **b**

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C,$$

The optimization goal of the SVM is:

With these knowledge points,

$$maximize \ M$$

$$\beta_0 \ , \beta_1, \dots, \beta_p \ , \epsilon_1, \dots \epsilon_n, M$$
 subject to
$$\sum_{j=1}^p \beta_j^2 = 1,$$

If weight vector is represented by \mathbf{w} , then $d^+ = \frac{1}{||\mathbf{w}||}$ and $\mathbf{M} = \frac{2}{||\mathbf{w}||}$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C,$$

The optimization goal of the SVM is:

$$\begin{aligned} \max & \frac{2}{||\mathbf{w}||} \\ b, \mathbf{w}, \epsilon_1, \dots \epsilon_n, M \\ \text{subject to} & \sum_{j=1}^p \beta_j^2 = 1, \\ y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq M(1 - \epsilon_i), \\ \epsilon_i \geq 0, \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

Note 1: To maximize M, we need to minimize ||w||

$$\begin{aligned} \max & \frac{2}{||\mathbf{w}||} \\ b, \mathbf{w}, \epsilon_1, \dots \epsilon_n, M \\ \text{subject to} & \sum_{j=1}^p \beta_j^2 = 1, \\ y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq M(1 - \epsilon_i), \\ \epsilon_i \geq 0, \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

Note 2: Minimizing ||w|| is same as minimizing $\frac{1}{2}||w||^2$

The optimization goal of the SVM is:

What if observations are not linearly separable?

$$\begin{aligned} & & maximize \quad M \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, M \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \ x_{ip}) \geq M(1 - \epsilon_i), \\ & & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

- This observation is on correct side
- This observation is on wrong side of margin
- This observation is on wrong side of hyperplane

$$\begin{aligned} & \textit{maximize } M \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, M \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \ x_{ip}) \geq M(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } & \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

• The optimization goal of the SVM is:

- $\epsilon_i = 0$
- \bullet $\epsilon_i > 0$
- $\epsilon_i > 1$

$$\begin{aligned} & \textit{maximize } M \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, M \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq M(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } & \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

Problem corresponds to soft margin!

The optimization goal of the SVM is:

- $\epsilon_i = 0$
- $\epsilon_i > 0$
- $\epsilon_i > 1$

$$\beta_0$$
 , β_1 , ... , β_p , ϵ_1 , ... ϵ_n , M

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1,$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \geq 0$$
 , $\sum_{i=1}^n \epsilon_i \leq C$,

 $\epsilon_i \geq 0$, $\sum_{i=1}^n \epsilon_i \leq C$, C is the allowable budget for violations. It is a tuning parameter. It represents the amount that the margin can be violated by the n observations.

 x_1

What if C=0?

- $\epsilon_i = 0$ $\epsilon_i > 0$
- $\epsilon_i > 1$

$$\begin{aligned} & \textit{maximize } & \textit{M} \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, \textit{M} \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq \textit{M}(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq \textit{C}, \end{aligned}$$

$$\begin{aligned} & \textit{maximize } \ \textit{M} \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, \textit{M} \\ & \text{subject to } \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \ x_{ip}) \geq \textit{M}(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq \textit{C}, \end{aligned}$$

$$\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+...+\beta_px_{ip}$$
 is a hyperplane $k\left(\beta_0+\beta_1x_{i1}+\beta_2x_{i2}+...+\beta_px_{ip}\right)$ is also a hyperplane if $k\neq 0$

$$\begin{aligned} & & \textit{maximize} \quad \textit{M} \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, \textit{M} \\ & \text{subject to} \quad \sum_{j=1}^p \beta_j^2 = 1, \\ & & y_i (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq \textit{M} (1 - \epsilon_i), \\ & & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq \textit{C}, \end{aligned}$$

The optimization goal of the SVM is:

 $y_i \left(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip}\right)$ alone does not make much sense, but...

$$\begin{aligned} & & \textit{maximize} \quad M \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, M \\ & \text{subject to} \quad \sum_{j=1}^p \beta_j^2 = 1, \\ & & y_i (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq M(1 - \epsilon_i), \\ & & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq C, \end{aligned}$$

The optimization goal of the SVM is:

$$y_i \left(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p \, x_{ip}\right)$$
 alone does not make much sense, but...

$$\max maximize \ M$$

$$\beta_0 \ , \beta_1, \dots \ , \beta_p \ , \epsilon_1, \dots \epsilon_n, M$$
 subject to
$$\sum_{j=1}^p \beta_j^2 = 1,$$

With this constraint, it represents the perpendicular distance of i^{th} observation to the hyperplane

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i),$$

$$\epsilon_i \ge 0, \sum_{i=1}^n \epsilon_i \le C,$$

When will this fail?

- SVM cannot be solved using a straightforward equation.
- The optimization goal of the SVM is:

$$\begin{aligned} & \textit{maximize } & \textit{M} \\ & \beta_0 \text{ , } \beta_1, \dots, \beta_p \text{ , } \epsilon_1, \dots \epsilon_n, \textit{M} \\ & \text{subject to } & \sum_{j=1}^p \beta_j^2 = 1, \\ & y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p \, x_{ip}) \geq \textit{M}(1 - \epsilon_i), \\ & \epsilon_i \geq 0 \text{ , } \sum_{i=1}^n \epsilon_i \leq \textit{C}, \end{aligned}$$

The previous optimization problem can be re-written as:

$$\min_{\beta_0, \beta_1, \dots, \beta_p} \left\{ \sum_{i=1}^n \max[0, 1 - y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip})] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$

That is how it is introduced in ISLP

The previous optimization problem can be re-written as:

Regularization / Penalty

The previous optimization problem can be re-written as:

$$\min_{\beta_0, \beta_1, \dots, \beta_p} \left\{ \sum_{i=1}^n \max[0, 1 - y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip})] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$

Above equation is same as:

minimize
$$\begin{cases} C \sum_{i=1}^{n} \max[0, 1 - y_i(b + w.x)] + \frac{1}{2}||w||^2 \end{cases}$$

That is how it is introduced in MML.

The previous optimization problem can be re-written as:

$$\min_{\beta_0, \beta_1, \dots, \beta_p} \left\{ \sum_{i=1}^n \max[0, 1 - y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip})] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$

Above equation is same as:

 λ plays the inverse role of C

minimize
$$\begin{cases} C \sum_{i=1}^{n} \max[0, 1 - y_i(b+w.x)] + \frac{1}{2}||w||^2 \end{cases}$$

Readings

Required Readings:

Introduction to Statistical Learning

1. Chapter 9 – Section 9.1 – 9.3 Page 367 – 382

Supplemental Readings (Not required but recommended):

Mathematics for Machine Learning

1. Chapter 12 – Section 12.1 – 12.3 Page 370 – 383

Thank You

