Vandre.Tasks_I_II

November 20, 2017

```
In [1]: # Task I - Data Exploration
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib.patches as mpatches
        from sklearn import datasets, linear_model
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import mean_absolute_error
In [2]: plt.rcParams['figure.figsize'] = (12.0, 4.0)
        X = pd.read_csv('../data/X.csv')
        Y = pd.read_csv('../data/Y.csv')
In [3]: # 1. Compute the following statistics for each component of X and Y:
        # mean, maximum, minimum, 25th percentile, 90th percentile, and standard
        deviation.
        metrics = pd.merge(X, Y, on='TimeStamp')
        metrics.iloc[:,1:].describe(percentiles=[.25, .90])
Out[3]:
                all_..idle
                              X..memused
                                                                           file.nr
                                                proc.s
                                                             cswch.s
               3600.000000
                             3600.000000
                                          3600.000000
                                                         3600.000000
                                                                       3600.000000
        count
                               89.137517
                                                        54045.874022
                                                                       2656.333333
                  9.064981
                                              7.683303
        mean
                 16.122822
                                8.183662
                                              8.532606
                                                        19497.811540
                                                                        196.110748
        std
        min
                  0.000000
                               73.030000
                                              0.000000
                                                        11398.000000
                                                                       2304.000000
        25%
                  0.000000
                               82.965000
                                              0.000000
                                                        31302.000000
                                                                       2496.000000
        50%
                  0.000000
                               92.175000
                                              6.000000
                                                        63908.000000
                                                                       2688.000000
        90%
                 38.621000
                               96.770000
                                             20.000000
                                                        72135.100000
                                                                       2880.000000
                 69.540000
                               97.840000
                                             48.000000
                                                        83880.000000
                                                                       2976.000000
        max
                 sum_intr.s
                                  ldavg.1
                                                 tcpsck
                                                              pgfree.s
                                                                          DispFrames
                3600.000000
                              3600.000000
                                            3600.000000
                                                           3600.000000
                                                                         3600.000000
        count
               19978.040747
                                75.875772
                                              48.997500
                                                          72872.154569
                                                                           18.818394
        mean
                                                          19504.321175
        std
                4797.271325
                                43.862445
                                              15.871155
                                                                            5.219756
        min
               10393.000000
                                11.130000
                                              21.000000
                                                          15928.000000
                                                                            0.000000
        25%
               16678.000000
                                28.200000
                                              34.000000
                                                          61601.750000
                                                                           13.390000
        50%
               18109.000000
                                75.390000
                                              47.000000
                                                          71686.500000
                                                                           19.120001
        90%
               28228.400000
                               127.993000
                                             71.000000
                                                          97532.500000
                                                                           24.610000
               35536.000000
                               147.470000
                                              87.000000
                                                         145874.000000
                                                                           30.390000
        max
```

```
In [4]: # 2. Compute the following quantities:
    # (a) the number of observations with memory usage larger than 80%;
    a = metrics[metrics['X..memused'] > 80].count()['X..memused']
    print 'a) Number of observations:', a

# (b) the average number of used TCP sockets for observations
# with more than 18000 interrupts/sec;
    b = metrics[metrics['sum_intr.s'] > 18000].mean()['tcpsck']
    print 'b) Average number of used TCP sockets: %.2f' % b

# (c) the minimum memory utilization for observations
# with CPU idle time lower than 20%.
    c = metrics[metrics['all_..idle'] < 20].min()['X..memused']
    print 'c) Minimum memory utilization: %.2f' % c

a) Number of observations: 2875
b) Average number of used TCP sockets: 46.35
c) Minimum memory utilization: 73.03</pre>
```

In [5]: # 3. Produce the following plots:

```
# (a) Time series of percentage of idle CPU and of used memory
# (both in a single plot);
series = pd.DataFrame(metrics, columns=['all_..idle', 'X..memused']);
ts = series.plot(title = 'Time series of idle CPU and used memory')
ts.legend(['Idle CPU', 'Used memory'])
ts.set_xlabel("Second")
ts.set_ylabel("Percentage (%)")
fig = ts.get_figure()
plt.show()
```


In [6]: plt.close(fig)

```
In [7]: # (b) Density plots, histograms, and box plots of idle CPU and of used memory.
    kde = series.plot.kde(title = 'Density of idle CPU and used memory')
    kde.legend(['Idle CPU', 'Used memory'])
    kde.set_xlabel("Percentage (%)")
    fig = kde.get_figure()
    plt.show()
```


In [8]: plt.close(fig)

```
In [9]: hist = series.plot.hist(title = 'Histogram of idle CPU and used memory')
          hist.legend(['Idle CPU', 'Used memory'])
          hist.set_xlabel("Percentage (%)")
          fig = hist.get_figure()
          plt.show()
```



```
In [12]: plt.close(fig)
In [13]: # Task II - Estimating Service Metrics from Device Statistics
         def nmae(y_test, y_pred):
             y_test = pd.DataFrame(y_test)
             y_pred = pd.DataFrame(y_pred)
             sum = 0.0
             m = len(y_test)
             average = np.mean(y_test)
             for i in range(m):
                 sum += abs(y_test.iloc[i, 0] - y_pred.iloc[i, 0])
                 i += 1
             nmae = (sum / m) / average
             return nmae
In [14]: # 1. Evaluate the Accuracy of Service Metric Estimation
         # (a) Model Training - use linear regression to train a model M
         # with the training set. Provide the coefficients of your model M.
         X = X.iloc[:, X.columns != 'TimeStamp']
         Y = Y.iloc[:, Y.columns != 'TimeStamp']
         X_train, X_test, y_train, y_test = train_test_split(X, Y, train_size=0.7,
         test_size=0.3)
```

```
lm = linear_model.LinearRegression()
         model = lm.fit(X_train, y_train)
         y_pred = lm.predict(X_test)
         print 'Coefficients:', lm.coef_
Coefficients: [[ -8.63879476e-02 -7.72699183e-02 -1.33623558e-02
-9.87963259e-05
   -3.54053585e-03
                     2.15181648e-05 -5.89256394e-02 -5.60887870e-02
   -1.58745163e-05]]
In [15]: # (b) Accuracy of Model M - compute the estimation error of M over the test set.
         # Explained variance score: 1 is perfect prediction
         print 'Accuracy score: %.4f' % model.score(X_test, y_test)
         print 'Normalized Mean Absolute Error: %0.4f ' % nmae(y_test, y_pred)
Accuracy score: 0.7282
Normalized Mean Absolute Error: 0.1012
In [16]: plt.clf()
In [17]: # (c) Produce a time series plot that shows both the measurements and
         # the model estimations for M for the Video Frame Rate values in the
         # test set (see example of such a plot in Figure 4(a) of [1]).
         # Show also the prediction of the a naive method.
         interval = np.arange(0, 1080, 1)
         naive_pred = [np.mean(y_test) for i in range(len(y_test))]
         naive_pred = pd.DataFrame(naive_pred)
         plt.plot(interval, y_test, 'red', interval, y_pred, 'blue', interval,
         naive_pred, 'yellow')
         plt.title('Time series plot with measurements and model estimations')
         plt.ylabel('Frames/seg')
         plt.xlabel('Second')
         plt.show()
                        Time series plot with measurements and model estimations
      25
      20
      10
```

Second

1000

0


```
In [20]: plt.hist(y_test.DispFrames, bins=1, normed=1)
    plt.axis([0, 60, 0, 0.1])
    fig = hist.get_figure()
    plt.show()
```

In [21]: plt.close(fig)

In [19]: plt.close(fig)

In [25]: # 2. Study the Relationship between Estimation Accuracy and the Size of
the Training Set (a) From the above training set with 2520 observations,
create six training sets by selecting uniformly at random 50, 100, 200,
500, 1000, and 2520 observations (which is the original set).
(b) Train a linear model and compute the NMAE for each model for the
original test set with 1080 observations. (c) Perform the above 50 times,
so you train models for 50 different subsets of a given size.

```
NMAE = {}
group_sizes = [2520, 1000, 500, 200, 100, 50]
rounds = 50
```

```
for size in group_sizes:
             group_results = []
             for i in range(rounds):
                 if(size == 2520):
                      gX_train = X_train
                      gy_train = y_train
                 else:
                      gX_train, gX_test, gy_train, gy_test = train_test_split(X_train,
         y_train, train_size=size, test_size=0)
                 lm = linear_model.LinearRegression()
                 model = lm.fit(gX_train, gy_train)
                 y_pred = lm.predict(X_test)
                 res = nmae(y_test, y_pred)
                 group_results.append([i, res])
             NMAE[size] = np.array(group_results)
In [26]: # (d) Produce a plot that shows NMAE for M against the size of
         # the training set. Use error bars or box plots to show the
         # range of the NMAE values for a given set size.
         data = [NMAE[50][:,1], NMAE[100][:,1], NMAE[200][:,1], NMAE[500][:,1],
         NMAE[1000][:,1], NMAE[2520][:,1]]
         plt.title('Box plot of NMAE 50(1), 100(2), 200(3), 500(4), 1000(5), 2520(6)')
         plt.ylabel('NMAE');
         plt.grid(True)
         plt.boxplot(data)
         plt.show()
                         Box plot of NMAE 50(1), 100(2), 200(3), 500(4), 1000(5), 2520(6)
               φ
      0.130
      0.125
```

0.120 WA 0.115

> 0.110 0.105 0.100

In [27]: # (e) Based on the above, discuss the relationship between the accuracy # of the model estimations and the training set.

Estimations are more accurate when the amount of observations in
a training set is closer to the total amount of observations.