Exercise 3.68 - Enhanced - with Feedback

MISSED THIS? Read Section 3.8 (Pages 111 - 113); Watch IWE 3.13.

Calculate the mass (in grams) of each sample.

Part A

 $7.3\times10^{25}\,\mathrm{O}_3$ molecules

Express your answer to two significant figures and include the appropriate units.

3×0=3×16.00

ANSWER:

 $m_{O_3} =$

 $7.3 \times 10^{25} O_{3} \times \frac{1 \text{ mol } O_{3}}{6.022 \times 10^{23} O_{3}} \times \frac{48.0090_{3}}{1 \text{ mol } O_{3}} = 5800_{9} O_{3}$

Part B

6.93×10¹⁹ CCl₂F₂ molecules

Express your answer to three significant figures and include the appropriate units.

ANSWER:

 $m_{\text{CCl}_2\text{F}_2} =$

Part C

3 water molecule(s)

Express your answer to four significant figures and include the appropriate units.

ANSWER:

 $m_{\rm H_2O} =$

3 H20x 1 mol H20 x 18.026 H20 = 9 x (0 g H20

	Spoichiometry.
	$mol \iff mol \checkmark$
	g X mol Y V
	$g \leftrightarrow g$
	ex: (3H8(g) + 50, (g) -> 3(0, (g) + 4H20(0) ?mol (3H8 (2) coefficient) ?mol (02
	? mol C3H8 (2) corphical) ? mol (O2
	1) molar mass (0)
	454g C3H8 ?q CO2
	Q: what mass CO2 is made when we burn 4549 (3H8?
0	C3H8 3xC=3x12.01 1xC=1x12.01 1mol (3Hg=3mol (Q
	3xC=3x12.01 xC=1x12.01 mol (3Hg=3mol (0)
	8×H=8× 1.008 2×0= 2× 16.00
	44.099/mol 44.019/mol
	454g (3H8 x 1 mol (3H8 x 3 mol (02 x 44.01g (02 = 1359.5 g (02
	44.09 Cotts I mol Cotts I motto
	= 1360g (O2

ex: $N_2 + 3H_2 \rightarrow 2NH_2$ Q: mass NHz can we make from 5.0g Nz and 4.0gHz? % yield = actual yield x100

Theoretical yield ex: if we only got 3.8g NHz, "oyield = 3.8g x100=62%