Introduction to Convolutional Neural Networks (CNNs)

Farhad Maleki

Agenda

- Introduction to Convolutional Neural Networks
- Convolution Operation
- Activation Functions
- Pooling Layers
- Batch Normalization
- Regularization Techniques
- Transfer Learning
- Advanced Architectures
- Real-world Applications

Introduction to Convolutional Neural Networks

- CNNs are designed to process grid-like data, such as images
- They exploit the spatial structure of images using local connectivity and parameter sharing
- CNNs are capable of hierarchical feature learning

Why not Using MLP for Images?

Why CNNs are Commonly Used in Computer Vision

- Scalability: High dimension of visual data
- Local connectivity
- Parameter sharing
- Hierarchical feature learning
- Translation invariance

Convolution Operation

- Convolution involves sliding a filter over the input image
- Computes the element-wise product between the filter and the image patch
- Outputs a feature map or activation map

Convolution Operation

nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3)

Convolution with Padding

Convolution Half Padding (Same Padding)

Convolution with Stride-No Padding

Convolution with Stride and Padding

Dilated Convolution

Transposed convolution

Activation Functions

- Introduce non-linearity into the model
- Common activation functions: ReLU, sigmoid, and tanh
- ReLU is computationally efficient and helps mitigate the vanishing gradient problem

Pooling Layer

- To reduce the spatial dimensions of the feature maps
- To reduce the number of parameters in the network and control overfitting
- Used to downsample spatial dimensions and reduce computational complexity
- Increases translation invariance
- Common types: max pooling and average pooling

Max-Pooling

Video Link

The covariate shift problem

Batch normalization

$$\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$$
 4 Mini-batch mean

$$\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \varepsilon}}$$

$$y_i \leftarrow \gamma X_i + \beta$$

Batch Normalization

- Improves training by normalizing input distribution of each layer
- Mitigates the internal covariate shift problem
- Improves training speed, generalization, and stability