HOJA DE REGLAS DE INFERENCIAS LÓGICAS

<u>Nota</u>: Una expresión $P\Rightarrow Q$ (1) es una deducción con conjunto de premisas P (separadas por comas) y conclusión Q. En el conjunto de premisas P puede aparecer a su vez otra deducción, llamada sub-deducción, por ejemplo $A\Rightarrow C$, y la escribiremos entre paréntesis ($A\Rightarrow C$). Cuando en una deducción se dé la situación P se añade a la deducción la fbf Q correspondiente.

REGLAS DE CONJUNCIÓN	
IC (Introducción conjunción)	$A, B \Rightarrow A \wedge B$
EC (Eliminación conjunción)	$A \wedge B \Rightarrow A$; $A \wedge B \Rightarrow B$
ECQ	$A \land \neg A \Rightarrow C$

REGLAS DE DISYUNCIÓN	
ID (Introducción disyunción)	$A \Rightarrow \underline{A} \lor B$
ED (Prueba por casos)	$A \vee B$, $(A \Rightarrow C)$, $(B \Rightarrow C) \Rightarrow C$

REGLAS DE IMPLICACIÓN / CONDICIONAL	
TD (Teorema de Deducción)	$(A \Rightarrow B) \Rightarrow A \rightarrow B$
MP (modus ponens)	$A \rightarrow B$, $A \Rightarrow B$
MT (modus tollens)	$A \rightarrow B$, $\neg B \Rightarrow \neg A$
ECO (Eliminación bicondicional)	$(A \leftrightarrow B) \Leftrightarrow (A \to B) \land (B \to A)$

REGLAS DE NEGACIÓN	
IN (Reducción al absurdo)	$(A \Rightarrow B \land \neg B) \Rightarrow \neg A$
EN (Eliminación negación)	$\neg\negA\RightarrowA$
IDN (Introducción de doble negador)	$A \Rightarrow \neg \neg A$

SILOGISMOS	
SH (Silogismo Hipotético)	$A \rightarrow B$, $B \rightarrow C \Rightarrow A \rightarrow C$
SD (Silogismo Disyuntivo)	$A \vee B$, $\neg B \Rightarrow A$

DILEMAS	
Dil ₁	$\neg A \lor \neg B$, $C \rightarrow A$, $C \rightarrow B \Rightarrow \neg C$
Dil ₂	$A \vee B$, $A \rightarrow C$, $B \rightarrow D \Rightarrow C \vee D$
Dil3	$\neg A \lor \neg B$, $C \to A$, $D \to B \Rightarrow \neg C \lor \neg D$

REGLAS DE EQUIVALENCIA	
(DIA) (Definición implicador conjunción)	$A \to B \Leftrightarrow \neg(A \land \neg B)$
(DIv) (Definición implicador disyunción)	$A \to B \Leftrightarrow \neg A \lor B$
Cp (Contrapositivo)	$A \to B \Leftrightarrow \neg B \to \neg A$
De Morgan	$ (M \land) \neg (A \lor B) \Leftrightarrow \neg A \land \neg B; (M \lor) \neg (A \land B) \Leftrightarrow \neg A \lor \neg B $
Idempotencia	$ (Idc) A \wedge A \Leftrightarrow A; \qquad (Idd) A \vee A \Leftrightarrow A $
Absorción	(AbsC) $A \wedge (A \vee B) \Leftrightarrow A$; (AbsD) $A \vee (A \wedge B) \Leftrightarrow A$
Distributiva	(DD) $A \wedge (B \vee C) \Rightarrow (A \wedge B) \vee (A \wedge C)$
	(DC) $A \lor (B \land C) \Rightarrow (A \lor B) \land (A \lor C)$
$(\neg U) \neg \forall x P(x) \Leftrightarrow \exists x \neg P(x)$	$(\neg E) \neg \exists x \neg P(x) \Leftrightarrow \forall x P(x)$
(U¬) $\forall x \neg P(x) \Leftrightarrow \neg \exists x P(x)$	$(E\neg) \neg \forall x \neg P(x) \Leftrightarrow \exists x P(x)$
Equivalencias semánticas	$E_1: p \land \neg p = F;$ $E_2: p \lor \neg p = V;$ $E_3: p \land V = p;$
	$\mathbf{E_4}$: $p \lor V = V$; $\mathbf{E_5}$: $p \land F = F$; $\mathbf{E_6}$: $p \lor F = p$;