White Rose Social Sciences Doctoral Training Partnership

- Thiago Oliveira
- Lecturer in Criminology, University of Manchester
- 8 April 2025, University of Leeds

Potential outcomes framework

Goal in causal inference is to assess the causal effect of a treatment/exposure on some outcome

- → Does raising the minimum wage reduce employment?
- → Does housing assistance reduce homelessness?
- → Do body-worn cameras reduce police use of force?
- → Does voting by mail increase voter turnout?
- → Does exposure to misinformation reduce political trust??

**~**→ ...



Potential futures Present

Potential outcomes framework



Potential outcomes framework



## $Y_i$ : Observed outcome variable of interest for unit i

#### Potential outcomes

 $Y_{0i}$  and  $Y_{1i}$ : Potential outcomes for unit

$$Y_{\cdot i} = \left\{ egin{array}{ll} Y_{1i} & ext{Potential outcome for unit } i ext{ with treatment} \\ Y_{0i} & ext{Potential outcome for unit } i ext{ without treatment} \end{array} \right.$$

 $D_i$ : Indicator of treatment intake for *unit* 

$$D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{cases}$$

## Definition of causal effect

$$\delta_i = Y_{1i} - Y_{0i}$$

## Fundamental problem of causal inference

 $\rightarrow$  We cannot observe both potential outcomes for the same unit i!

 $Y_i$ : Observed outcome variable of interest for unit i

#### Potential outcomes

Potential outcomes framework

 $Y_{0i}$  and  $Y_{1i}$ : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ egin{array}{ll} Y_{1i} & ext{Potential outcome for unit } i ext{ with treatment} \\ Y_{0i} & ext{Potential outcome for unit } i ext{ without treatment} \end{array} \right.$$

$$D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{cases}$$

$$\delta_i = Y_{1i} - Y_{0i}$$

 $Y_i$ : Observed outcome variable of interest for unit i

#### Potential outcomes

 $Y_{0i}$  and  $Y_{1i}$ : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ egin{array}{ll} Y_{1i} & ext{Potential outcome for unit } i ext{ with treatment} \\ Y_{0i} & ext{Potential outcome for unit } i ext{ without treatment} \end{array} \right.$$

D<sub>i</sub>: Indicator of treatment intake for unit i

$$D_i = \left\{ egin{array}{ll} 1 & ext{if unit } i ext{ received the treatment} \\ 0 & ext{otherwise.} \end{array} 
ight.$$

$$\delta_i = Y_{1i} - Y_{0i}$$

 $Y_i$ : Observed outcome variable of interest for unit i

#### Potential outcomes

 $Y_{0i}$  and  $Y_{1i}$ : Potential outcomes for unit i

$$Y_{\cdot i} = \left\{ egin{array}{ll} Y_{1i} & ext{Potential outcome for unit } i ext{ with treatment} \\ Y_{0i} & ext{Potential outcome for unit } i ext{ without treatment} \end{array} \right.$$

D<sub>i</sub>: Indicator of treatment intake for unit i

$$D_i = \begin{cases} 1 & \text{if unit } i \text{ received the treatment} \\ 0 & \text{otherwise.} \end{cases}$$

## Definition of causal effect

$$\delta_i = Y_{1i} - Y_{0i}$$

## Fundamental problem of causal inference

 $\rightsquigarrow$  We cannot observe both potential outcomes for the same unit i!

#### Randomisation solves the problem!

Logic of randomised control trials

- → Randomly divide a sample in two groups
- → Because this was random, both groups are on average the same
- Then apply the treatment/exposure to one group (the treatment group), but not the other (control group)
- → Because the exposure happened after the treatment assignment, the only difference between the two groups is the treatment/exposure
- Therefore, any subsequently observed differences are attributable to the treatment/exposure
- we we randomisation, we can thus find the average treatment effect

## What if we cannot conduct an experiment?

- → Randomised Experiments
- ∴ Observational Studies
  - Selection on observables
    - Regression
    - Matching
    - Weighting
  - Selection on unobservables
    - Difference-in-Differences and synthetic control
    - Instrumental Variables
    - Regression Discontinuity Designs

- Causality is defined by potential outcomes, not by realised (observed) outcomes
- → Observed association is neither necessary nor sufficient for causality
- → Estimation of causal effects of a treatment (usually) starts with studying the assignment mechanism
- The goal is to mimic the features of a randomised experiment even if we don't have one
- when we don't have an RCT, our ability to make causal inferences often relies on making untestable assumptions about the assignment mechanism
- ⇒ Now let's see how we can leverage panel data to make causal inferences!

Potential outcomes framework

# Difference-in-differences

#### ⇒ What if we use **time** in our favour?

- ⇒ What if we use **time** in our favour?
- $\rightsquigarrow$  Collect data on Y at two points in time: before and after the treatment/exposure/policy intervention

- ⇒ What if we use **time** in our favour?
- $\rightsquigarrow$  Collect data on Y at two points in time: before and after the treatment/exposure/policy intervention
- Analyse the extent to which Y changes in units that received the treatment
- Analyse the extent to which Y changes in units that did NOT receive the treatment
- → Compare the two changes

## Some conceptual clarification to make our lives easier

Some conceptual clarification to make our lives easier

- → Variation between units: difference
- → Variation within units (over time): changes

Some conceptual clarification to make our lives easier

- → Variation between units: difference
- → Variation within units (over time): changes
- ⇒ We want to estimate the difference in changes or (difference-in-differences)

Some conceptual clarification to make our lives easier

→ Variation between units: difference

or (difference-in-differences)

- → Variation within units (over time): changes
- ⇒ We want to estimate the difference in changes
  - $\rightarrow$  The difference between (a) changes in Y before and after the intervention among treated units and (b) changes in Y before and after

the intervention among non-treated units is the causal effect!

(under some assumptions regarding those changes... Let's dive into it)













 $\rightarrow$  Problem: Missing potential outcomes:  $E[Y_{i,t=1}(0)|D_i=1]$  and  $E[Y_{i,t=1}(1)|D_i=0]$ 

**Strategy**: Use the change in the control group to assume  $E[Y_{t=1}(0)|D_i=1]$ 



Assumption: Trend over time would be the same for treatment and control

**Strategy**: Use the change in the control group to assume  $E[Y_{t=1}(0)|D_i=1]$ 



**Assumption**: Trend over time would be the same for treatment and control

# Identification assumption

## Parallel trends

→ Had the treated units not received the treatment, they would have followed the same trend as the control units

#### Difference-in-differences estimator

Difference in changes:

$$\delta_{ATT} = \Big\{ \text{Changes in treatment group before and after treatment} \Big\} \\ - \Big\{ \text{Changes in control group before and after treatment} \Big\}$$

# Threats to validity

## Non-parallel trends

- Very critical assumption: treatment units have similar trends to control units in the absence of treatment
- ~ Fundamental problem of causal inference: we cannot observe potential outcome under the control condition for treated units in the post-treatment period
  - ⇒ What can we do? (more on that later...)
    - · Careful assessment: is assuming parallel trends plausible?
    - · Estimate treatment effects at different time points (placebo tests)

# Using regression to estimate the difference-in-differences

We can obtain the difference in differences using regression techniques.

$$Y_i = \alpha + \beta_1 \cdot D_i + \beta_2 \cdot T_i + \delta \cdot (D_i \cdot T_i) + \varepsilon.$$

We can see that

$$E[Y_i|D_i,T_i]$$
  $T_i=0$   $T_i=1$  Changes after - before  $D_i=0$   $lpha$   $lpha+eta_1$   $lpha+eta_1+eta_2+\delta$   $eta_2+\delta$  Treated - control  $eta_1$   $eta_1+\delta$   $\delta$ 



We can obtain the difference in differences using regression techniques.

$$Y_i = \alpha + \beta_1 \cdot D_i + \beta_2 \cdot T_i + \delta \cdot (D_i \cdot T_i) + \varepsilon.$$

We can see that:

| $E[Y_i D_i,T_i]$  | $T_i = 0$          | $T_i = 1$                             | Changes after - before |
|-------------------|--------------------|---------------------------------------|------------------------|
| $D_i = 0$         | $\alpha$           | $\alpha + \beta_2$                    | $eta_2$                |
| $D_i = 1$         | $\alpha + \beta_1$ | $\alpha + \beta_1 + \beta_2 + \delta$ | $\beta_2 + \delta$     |
| Treated - control | $\beta_1$          | $\beta_1 + \delta$                    | δ                      |



We can obtain the difference in differences using regression techniques.

$$Y_i = \alpha + \beta_1 \cdot D_i + \beta_2 \cdot T_i + \delta \cdot (D_i \cdot T_i) + \varepsilon.$$

We can see that:

| $E[Y_i D_i,T_i]$                                                                                                                                                                                                                                               | $T_i = 0$          | $T_i = 1$                             | Changes after - before |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------|------------------------|--|
| $D_i = 0$                                                                                                                                                                                                                                                      | α                  | $\alpha + \beta_2$                    | $eta_2$                |  |
| $D_i = 1$                                                                                                                                                                                                                                                      | $\alpha + \beta_1$ | $\alpha + \beta_1 + \beta_2 + \delta$ | $\beta_2 + \delta$     |  |
| Treated - control                                                                                                                                                                                                                                              | $\beta_1$          | $\beta_1 + \delta$                    | $\delta$               |  |
| $\beta_1 + \delta$ $\beta_1 + \delta$ $\beta_1 + \delta$ $\beta_1 + \delta$ $\alpha + \beta_1 + \beta_2 + \delta$ $\beta_2 + \delta$ $\delta$ $\alpha + \beta_1 + \beta_2 + \delta$ $\beta_2 + \delta$ $\delta$ $\beta_2 + \delta$ $\delta$ $\beta_2 + \delta$ |                    |                                       |                        |  |

### Estimator (Regression 2)

With panel data we can use regression with first differences:

$$\Delta Y_i = \alpha + \delta \cdot D_i + X'\beta + u.$$

where 
$$\Delta Y_i = Y_i(1) - Y_i(0)$$
.

With two periods this gives the same result as other regressions

### 1. We can include covariates

- Controlling for some covariates may increase precision
- Time-varying covariates may strengthen the parallel assumptions
- (add covariates cautiously! e.g., beware of post-treatment bias)
- - (not just binary)

# Advantages of the regression estimator

- 1. We can include covariates
  - Controlling for some covariates may increase precision
  - Time-varying covariates may strengthen the parallel assumptions
  - (add covariates cautiously! e.g., beware of post-treatment bias)
- 2. Easy to calculate standard errors
  - (though be careful about clustering)
- - (not just binary)

# Advantages of the regression estimator

- 1. We can include covariates
  - Controlling for some covariates may increase precision
  - Time-varying covariates may strengthen the parallel assumptions
  - (add covariates cautiously! e.g., beware of post-treatment bias)
- 2. Easy to calculate standard errors
  - (though be careful about clustering)
- 3. Easy to extend to other types of treatment
  - (not just binary)

- >> This setup only works for the simplest scenario with two time periods
  - → It doesn't make use more periods
    - Useful to make careful assessments of time trends
  - → Sometimes different units are treated at different time points

# Difference-in-differences with multiple periods

>> Assume a pool of structured data



Multiple periods

>> Assume a pool of structured data



>> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a unit *i* 

 $\leadsto$  Each circle represents a group j

>> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a unit i

 $\leadsto$  Each circle represents a group j

· Pooled approach

>> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a unit i

 $\rightsquigarrow$  Each circle represents a group j

- · Pooled approach
- · Between approach

>> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a unit *i* 

 $\rightsquigarrow$  Each circle represents a group j

- · Pooled approach
- · Between approach
- · Random Effects

### >> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a unit i

 $\leadsto$  Each circle represents a group j

- · Pooled approach
- · Between approach
- · Random Effects
- · Fixed Effects

- >> Focus on within-group variation
- >> Implementation: dummy variables for each group j  $(\gamma_i)$

$$Y_{ij} = \gamma_j + \beta \cdot X_{ij} + \varepsilon$$

### >> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a unit i

 $\leadsto$  Each circle represents a group j

- · Pooled approach
- · Between approach
- · Random Effects
- · Fixed Effects

- >> Focus on within-group variation
- >> Implementation: dummy variables for each group j  $(\gamma_i)$

$$Y_{ij} = \gamma_j + \beta \cdot X_{ij} + \varepsilon$$

### >> Assume a pool of structured data



→ Each dot represents a unit i

 $\leadsto$  Each circle represents a group j

- · Pooled approach
- · Between approach
- · Random Effects
- · Fixed Effects

- >> Focus on within-group variation
- >> Implementation: dummy variables for each group j  $(\gamma_j)$

$$Y_{ij} = \gamma_j + \beta \cdot X_{ij} + \varepsilon$$

### >> Assume a pool of structured data



→ Each circle represents a group *j* 

- · Pooled approach
- Between approach
- · Random Effects
- · Fixed Effects

- >> Focus on within-group variation
- >> Implementation: dummy variables for each group  $j(\gamma_i)$

$$Y_{ij} = \gamma_j + \beta \cdot X_{ij} + \varepsilon$$

>> Assume a pool of structured data



 $\leadsto$  Each dot represents a measure t

# Fixed-effect regression with panel data

### >> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a measure t

- → Each circle represents a unit i

$$Y_{it} = \gamma_i + \beta \cdot X_{it} + \varepsilon$$

Multiple periods

# Fixed-effect regression with panel data

### >> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a measure t

- → Each circle represents a unit i
- >> Focus on within-unit variation
- >> Implementation: dummy variables for each unit  $i(\gamma_i)$

$$Y_{it} = \gamma_i + \beta \cdot X_{it} + \varepsilon$$

# Fixed-effect regression with panel data

### >> Assume a pool of structured data



 $\rightsquigarrow$  Each dot represents a measure t

- >> Focus on within-unit variation
- >> Implementation: dummy variables for each unit i  $(\gamma_i)$

$$Y_{it} = \gamma_i + \beta \cdot X_{it} + \varepsilon$$

>> What about time fixed-effect?

# DiD: Two-way fixed-effect regression

### Estimator (Regression with Multiple Time Periods)

We can generalise to multiple groups/time periods using unit and period fixed-effects ('two-way' fixed-effect model):

$$Y_{it} = \gamma_i + \alpha_t + \delta \cdot D_{it} + \varepsilon$$

- $\gamma_i$  is a fixed-effect for units (dummy for each unit)
- $\alpha_t$  is a fixed-effect for time periods (dummy for each period)
- $\delta$  is the DiD estimate based on  $D_{it}$

- we can replace  $D_{it}$  with almost any type of treatment (not only binary)
- we can extend easily to multiple periods
- we can have units treated at different times
- we can estimate unit-specific time trends by including a unit-period interaction

# DiD: Two-way fixed-effect regression

# Estimator (Regression with Multiple Time Periods)

We can generalise to multiple groups/time periods using unit and period fixed-effects ('two-way' fixed-effect model):

$$Y_{it} = \gamma_i + \alpha_t + \delta \cdot D_{it} + \varepsilon$$

- $\gamma_i$  is a fixed-effect for units (dummy for each unit)
- $\alpha_t$  is a fixed-effect for time periods (dummy for each period)
- $\delta$  is the DiD estimate based on  $D_{it}$

### Very flexible approach

- we can replace  $D_{it}$  with almost any type of treatment (not only binary)
- we can extend easily to multiple periods
- we can have units treated at different times
- we can estimate unit-specific time trends by including a unit-period interaction
  - → useful when treatment occurs at different times for different units and there are slight deviations from parallel trends

Multiple periods

# DiD: Two-way fixed-effect regression

- - i.e., changes over time!

$$ightarrow \hat{\delta} 
ightarrow \hat{\delta}_{ATT}$$
 (it might not be that simple...)

- Fine in panel data, as we have same units at several points in time
- units in each time period Longitudinal Data Analysis

- $\rightarrow$  Unit FEs means that we are only using within unit variation in Y to calculate the effect of D
  - i.e., changes over time!
  - This removes all time-constant confounders

- Fine in panel data, as we have same units at several points in time
- units in each time period Longitudinal Data Analysis

# DiD: Two-way fixed-effect regression

- $\rightarrow$  Unit FEs means that we are only using within unit variation in Y to calculate the effect of D
  - i.e., changes over time!
  - This removes all time-constant confounders
- Time FEs means that we remove the effect of any changes to the response variable that affect all units at the same time

$$ightarrow \hat{\delta} 
ightarrow \hat{\delta}_{ATT}$$
 (it might not be that simple...)

- - Fine in panel data, as we have same units at several points in time
  - units in each time period Longitudinal Data Analysis

Slides: ThiagoROliveira.com/2-LDA-2025.pdf

- $\rightarrow$  Unit FEs means that we are only using within unit variation in Y to calculate the effect of D
  - i.e., changes over time!
  - This removes all time-constant confounders
- Time FEs means that we remove the effect of any changes to the response variable that affect all units at the same time

$$ightarrow$$
  $\hat{\delta} 
ightarrow \hat{\delta}_{ATT}$  (it might not be that simple...)

- It is hard to provide a visual inspection of the parallel trends assumption here as treatment may switch on at different time for different units
- Nevertheless, we are still assuming that treated/control units would have evolved identically over time in absence of treatment
- - Fine in panel data, as we have same units at several points in time
  - units in each time period Longitudinal Data Analysis

- $\rightarrow$  Unit FEs means that we are only using within unit variation in Y to calculate the effect of D
  - i.e., changes over time!
  - This removes all time-constant confounders
- Time FEs means that we remove the effect of any changes to the response variable that affect all units at the same time

$$ightarrow \hat{\delta} 
ightarrow \hat{\delta}_{ATT}$$
 (it might not be that simple...)

- It is hard to provide a visual inspection of the parallel trends assumption here as treatment may switch on at different time for different units
- Nevertheless, we are still assuming that treated/control units would have evolved identically over time in absence of treatment
- >> Why not always use unit dummies?
  - Fine in panel data, as we have same units at several points in time
  - Not possible with repeated cross-section when we do not have the same units in each time period Longitudinal Data Analysis

Some caution with two-way fixed-effect models



A rare photo of an applied economist keeping up with the difference-indifferences literature





When Should We Use Unit Fixed Effects Regression Models for Causal Inference with Longitudinal Data? 🛍 😝

Kosuke Imai

Harvard University

In Song Kim Massach

Massachusetts Institute of Technology

- → Imai & Kim (2019) show that unit FEs might not be that effective in adjusting for unobserved time-constant confounders
- → The issue is related to possible dynamic causal relationships



→ Some dynamic causal relationships compromise unit FEs

- → Imai & Kim (2019) show that unit FEs might not be that effective in adjusting for unobserved time-constant confounders
- → The issue is related to possible dynamic causal relationships



Some dynamic causal relationships compromise unit EEs

- → Imai & Kim (2019) show that unit FEs might not be that effective in adjusting for unobserved time-constant confounders
- → The issue is related to possible dynamic causal relationships



→ Some dynamic causal relationships compromise unit FEs

### FIGURE 2 Identification Assumptions of Regression Models with Unit Fixed Effects



(a) past outcome affects current outcome

(b) past treatments affect current outcome



 $X_{i3}$ 

(d) past outcomes affect both current outcome and treatment. Longitudinal Data Analysis

(1) Past outcome affects current outcome

(2) Past treatments affect current outcome

→ (3) Past outcomes affect current treatment

(4) Past outcomes affect current outcome and treatment

(c) past outcomes affect current treatment Thiago Oliveira

Slides: ThiagoROliveira.com/2-LDA-2025.pdf

### Key assumptions of unit fixed effects models

### Key assumptions of unit fixed effects models

- 1. Past treatments do not directly influence current outcome

### Key assumptions of unit fixed effects models

- 1. Past treatments do not directly influence current outcome
- 2. Past outcomes do not affect current treatment

- → Causal inference with observational data is really hard!
- → Longitudinal data can help, but it's not a silver bullet
  - · Have a look at all assumptions involved
  - · Parallel trends is an untestable assumption
- → This is a fast-changing topic. Keep up with the literature!
  - Callaway and Sant'Anna (2020); Callaway et al. (2021); Imai et al. (2021); Goodman-Bacon (2018); Imai and Kim (2019)
- Now let's see how to estimate those models using R!
  - Find the lab notes here: thiagoroliveira/2-LDA-lab.html

# Thank you!

- thiago.oliveira@manchester.ac.uk
- ★ ThiagoROliveira.com
- @oliveiratr.bsky.social

### REFERENCES

- Callaway, B., A. Goodman-Bacon, and P. H. Sant'Anna (2021). Difference-in-differences with a continuous treatment. arXiv preprint arXiv:2107.02637.
- Callaway, B. and P. H. Sant'Anna (2020). Difference-in-differences with multiple time periods. Journal of Econometrics. Published online.
- Goodman-Bacon, A. (2018). Difference-in-differences with variation in treatment timing. Technical report, National Bureau of Economic Research
- Imai, K. and I. S. Kim (2019). When should we use unit fixed effects regression models for causal inference with longitudinal data? American Journal of Political Science 63(2), 467-490.
- Imai, K., I. S. Kim, and E. H. Wang (2021). Matching methods for causal inference with time-series cross-sectional data. American Journal of Political Science.