

Physics I: Introduction to Wave Theory SDU Course Number: sd01232810 (Fall 2024)

Lecture 2: Magnetostatics and Faraday's Law

Outline

- Magnetic Fields
- Lorentz Force
- Magnetic Dipoles
- Force and Torque on Magnetic Dipoles
- Biot-Savart Law
- Ampere's Law
- Faraday's Law

Magnetism –Bar Magnet

Magnetic Field of Bar Magnet:

- A magnet has two poles, North (N) and South (S)
- Like poles repel, opposite poles attract
- Magnetic field lines leave from N, end at S

➤ Magnetic field lines leave from N, end at S

➤ Magnetic field lines leave from N, end at S

➤ Magnetic field lines leave from N, end at S

Bar Magnets Are Dipoles!

Magnetic Field of Bar Magnet:

- > Create Dipole Field
- Rotate to orient with Field

Is there magnetic "mass" or magnetic "charge?"

NO! Magnetic monopoles do not exist in isolation

Magnetic Monopoles?

Electric dipole

Magnetic dipole

When cut: 2 dipoles

Magnetic monopoles do not exist in isolation Another Maxwell's Equation! (2 of 4)

$$\iint_{S} \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{Q_{in}}{\mathcal{E}_{0}}$$

Gauss's Law

$$\oiint_S \overrightarrow{B} \cdot d\overrightarrow{A} = 0$$

Magnetic Gauss's Law

Moving Charges Feel Magnetic Force

$$\vec{F}_B = \vec{qv} \times \vec{B}$$

Magnetic force perpendicular both to: Velocity v of charge and magnetic field B

Putting it Together: Lorentz Force

Charges Feel...

$$\overrightarrow{F}_E = q\overrightarrow{E}$$

Electric fields

$$\vec{F}_B = \vec{qv} \times \vec{B}$$

Magnetic fields

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

This is the final word on the force on a charge (Lorentz Force)

Application: Velocity Selector

Particle moves in a straight line when

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) = 0$$
 $\Rightarrow v = \frac{E}{B}$

Application: Cyclotron Motion

(1) r : radius of the circle

$$qvB = \frac{mv^2}{r} \Rightarrow r = \frac{mv}{qB}$$

(2) T: period of the motion

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB}$$

(3) ω : cyclotron frequency

$$\omega = 2\pi f = \frac{v}{r} = \frac{qB}{m}$$

Magnetic Force on Current-Carrying Wire

Current is the collective moving charges, and moving charges feel a force in a magnetic field

Magnetic Force on Current-Carrying Wire

$$\overrightarrow{F}_{B} = \overrightarrow{qv} \times \overrightarrow{B}$$

$$= (\text{charge}) \frac{\text{m}}{\text{s}} \times \overrightarrow{B}$$

$$= \frac{\text{charge}}{\text{s}} \text{m} \times \overrightarrow{B}$$

$$|\overrightarrow{F}_B = I(\overrightarrow{L} \times \overrightarrow{B})|$$

Rectangular Current Loop

Place rectangular current loop in uniform B field

$$\vec{F}_1 = \vec{F}_3 = 0 \qquad (I\vec{L} \parallel \vec{B})$$

$$\overrightarrow{F}_2 = I(-a\hat{y}) \times (B\hat{x}) = IaB\hat{z}$$

$$\vec{F}_4 = I(a\hat{y}) \times (B\hat{x}) = -IaB\hat{z}$$

$$\overrightarrow{F}_{net} = \overrightarrow{F}_1 + \overrightarrow{F}_2 + \overrightarrow{F}_3 + \overrightarrow{F}_4 = 0$$

No net force on the loop!!

Torque on Rectangular Loop

Recall:
$$\vec{\tau} = \vec{r} \times \vec{F}$$

$$\vec{\tau} = \left(-\frac{b}{2}\hat{x}\right) \times \vec{F}_2 + \left(\frac{b}{2}\hat{x}\right) \times \vec{F}_4$$

$$= \left(-\frac{b}{2}\hat{x}\right) \times \left(IaB\hat{z}\right) + \left(\frac{b}{2}\hat{x}\right) \times \left(-IaB\hat{z}\right)$$

$$= \frac{IabB}{2}\hat{y} + \frac{IabB}{2}\hat{y} = IabB\hat{y}$$

$$\vec{\tau} = I \vec{A} \times \vec{B}$$

$$\vec{A} = A\hat{n}$$

Torque Direction:

Thumb in torque direction, fingers rotate with object

Magnetic Dipole Moment

Define Magnetic Dipole Moment

$$\vec{p}_m = IA\hat{n} = I\vec{A}$$

Then:

$$\vec{\tau} = \vec{p}_m \times \vec{B}$$

Analogous to
$$\vec{\tau} = \vec{p}_e \times \vec{E}$$

τ tends to align p_m with B

Dipoles in Non-Uniform Fields: force

To determine force, we need to know energy

$$U_{Dipole} = -\overrightarrow{p}_m \cdot \overrightarrow{B}$$

Force tells how the energy changes with position

$$\overrightarrow{F}_{Dipole} = -\nabla U_{Dipole} = \nabla \left(\overrightarrow{p}_{m} \cdot \overrightarrow{B} \right)$$

Dipoles only feel force in non-uniform field

Force on Magnetic Dipole

Force down

$$\vec{F}_{Dipole} = \nabla (\vec{p}_m \cdot \vec{B}) = p_m \frac{\partial \vec{B}}{\partial z}$$

Bar magnet below dipole, with N pole on top It is aligned with the dipole pictured, they attract!

The Biot-Savart Law

Current element of length ds carrying current I produces a magnetic field:

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{s} \times \hat{r}}{r^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m/A}$$

$$\vec{B} = \int_{wire} d\vec{B} = \frac{\mu_0 I}{4\pi} \int_{wire} \frac{d\vec{s} \times \hat{r}}{r^2}$$

similar to the Coulomb's law

$$d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \hat{r}$$

Example: Coil of Radius R

In the circular part of the coil...

$$|\vec{ds} \perp \hat{r}| \implies |\vec{ds} \times \hat{r}| = ds$$

Biot-Savart:

$$dB = \frac{\mu_0 I}{4\pi} \frac{\left| \overrightarrow{ds} \times \widehat{r} \right|}{r^2} = \frac{\mu_0 I}{4\pi} \frac{ds}{r^2}$$
$$= \frac{\mu_0 I}{4\pi} \frac{Rd\theta}{R^2} = \frac{\mu_0 I}{4\pi} \frac{d\theta}{R}$$

At point O:
$$\vec{B} = \hat{x} \int dB = \hat{x} \int_{0}^{2\pi} \frac{\mu_{0} I}{4\pi} \frac{d\theta}{R} = \hat{x} \frac{\mu_{0} I}{2R}$$

Ampere's Law: The Idea

Gauss's Law

$$\Phi_E = \oiint_S \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{Q_{in}}{\mathcal{E}_0}$$

Ampere's Law

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc} = \mu_0 \oiint_S \vec{J} \cdot d\vec{A}$$

Applying Ampere's Law

- 1. Identify regions in which to calculate B field Get B direction by right hand rule
- 2. Choose Amperian Loops S: Symmetry B is 0 or constant on the loop!
- 3. Calculate $\oint \vec{B} \cdot d\vec{s}$
- 4. Calculate current enclosed by loop S
- 5. Apply Ampere's Law to solve for B

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{enc}$$

Example: Wire of Radius R

Region 1: Outside wire (r ≥ R)

Cylindrical symmetry

=>

Amperian Circle B-field counterclockwise

$$\oint \vec{B} \cdot d\vec{s} = B \oint ds = 2\pi r B$$

$$= \mu_0 I_{enc} = \mu_0 I$$

$$B = \frac{\mu_0 I}{2\pi r}$$
 counterclockwise

Example: Wire of Radius R

Region 2: Inside wire (r < R)

$$\oint \vec{B} \cdot d\vec{s} = B \oint ds = 2\pi rB$$

$$= \mu_0 I_{enc} = \mu_0 I \frac{\pi r^2}{\pi R^2}$$

$$B = \frac{\mu_0 Ir}{2\pi R^2}$$
 counterclockwise

Could also say
$$J = \frac{I}{A} = \frac{I}{\pi R^2}$$
; $I_{enc} = JA_{enc} = \frac{I}{\pi R^2} (\pi r^2)$

Example: Wire of Radius R

$$B_{in} = \frac{\mu_0 I r}{2\pi R^2} \qquad B_{out} = \frac{\mu_0 I}{2\pi r}$$

Magnetic Field of Solenoid

For ideal solenoid, B is uniform inside & zero outside

Magnetic Field of Ideal Solenoid

Using Ampere's law: Think!

$$\begin{cases} \overrightarrow{B} \perp \overrightarrow{ds} & \text{along sides 2 and 4} \\ \overrightarrow{B} = 0 & \text{along side 3} \end{cases}$$

$$\oint \vec{B} \cdot d\vec{s} = \iint_{1} \vec{B} \cdot d\vec{s} + \iint_{2} \vec{B} \cdot d\vec{s} + \iint_{3} \vec{B} \cdot d\vec{s} + \iint_{4} \vec{B} \cdot d\vec{s}$$

$$= Bl + 0 + 0 + 0$$

$$I_{enc} = nlI$$
 n: turn density

$$\oint \vec{B} \cdot d\vec{s} = Bl = \mu_0 n l I$$

n = N/L: turns/unit length

$$B = \mu_0 nI$$

Maxwell's Equations (So Far)

Electric charges make diverging Electric Fields

No Magnetic Monopoles! (No diverging B Fields)

Ampere's Law:
$$\oint_C \vec{B} \cdot d\vec{s} = \mu_0 I_{enc}$$

Currents make curling Magnetic Fields

This Time: Faraday's Law -Fourth (Final) Maxwell's Equation

Electromagnetic Induction

https://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/faraday/15-inductance/15-1 wmv320.html

Magnetic Flux Thru Wire Loop

Analogous to Electric Flux (Gauss' Law)

(1) Uniform B

$$\Phi_B = B_{\perp} A = BA \cos \theta = \overrightarrow{B} \cdot \overrightarrow{A}$$

(1) Non-Uniform B

$$\Phi_B = \iint_S \overrightarrow{B} \cdot d\overrightarrow{A}$$

Faraday's Law of Induction

A changing magnetic flux induces an electromotive force (emf)

$$emf = -N\frac{d\Phi_B}{dt} = -N\frac{d}{dt}(BA\cos\theta)$$

Ways to Induce EMF

Quantities which can vary with time:

- Magnitude of B, e.g. Falling Magnet
- Area A enclosed by the loop
- \triangleright Angle θ between B and loop normal

Emf looks like potential. It's a "driving force" for current

$$emf = \int \vec{E} \cdot d\vec{s}$$

Minus Sign? Lenz's Law

Homopolar motor

Homopolar motor 3D

Homopolar motor 2D

Current, magnetic field lines and Lorentz force on Homopolar motor

https://en.wikipedia.org/wiki/Homopolar_motor

Maxwell's Equations

Creating Electric Fields

$$\iint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{in}}{\mathcal{E}_{0}}$$
 (Gauss's Law)

$$\oint_C \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt} \quad \text{(Faraday's Law)}$$

Creating Magnetic Fields

$$\iint_{S} \vec{B} \cdot d\vec{S} = 0$$
(Magnetic Gauss's Law)

$$\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I_{enc} \qquad \text{(Ampere's Law)}$$

习题

习题 1.1: 一条载有电流 I 的无穷长直导线,在一处弯折成半径为 R 的半圆弧,如图所示,**试求半圆弧中心** O 点的磁感应强度 B 。

习题 **1.2**: 电缆由一导体圆柱和一同轴导体圆管构成,使用时,电流 I从一导体流去,由另一导体流回, I均匀分布在导线的横截面上,也均匀分布在圆管横截面上。已知圆柱的半径为 r1,圆管的内外半径分别为 r2和 r3,横截面如图所示。**试求离轴线为** r **处的磁感应强度** B 。

实验作业

通过MATLAB、 COMSOL等软件来仿真课程相关的 实例。

第二章静磁场:

无限长通电直导线周围磁场的计算与展示, 半径为R的电流环(磁偶极子)在三维空间的 磁场分布