Majorizing Cubics on Intervals

Jan de Leeuw

Version 15, December 11, 2016

Abstract

We illustrate uniform quadratic majorization, sharp quadratic majorization, and sublevel quadratic majorization using the example of a univariate cubic.

Contents

1	Introduction					
2	Majorizing a Cubic					
	2.1	Uniform Quadratic Majorization	3			
	2.2	Sharp Quadratic Majorization	5			
	2.3	Sublevel Quadratic Majorization	6			
3	Appendix: Code					
	3.1	auxilary.R	8			
	3.2	iterate. R	9			
	3.3	sublevel.R	12			
\mathbf{R}_{i}	efere	nces	12			

Note: This is a working paper which will be expanded/updated frequently. All suggestions for improvement are welcome. The directory deleeuwpdx.net/pubfolders/cubic has a pdf version, the complete Rmd file with all code chunks, the bib file, and the R source code.

1 Introduction

Suppose \mathcal{I} is the closed interval [L,U], and $f:\mathcal{I}\to\mathbb{R}$. A function $g:\mathcal{I}\otimes\mathcal{I}\to\mathbb{R}$ is a majorization scheme for f on \mathcal{I} if

- g(x,x) = f(x) for all $x \in \mathcal{I}$,
- $g(x,y) \ge f(x)$ for all $x,y \in \mathcal{I}$.

In other words for each y the global minimum of g(x,y) - f(x) over $x \in \mathcal{I}$ is zero, and it is attained at y. If the functions f and g are differentiable and the minimum is attained at an interior point of the interval, we have $\mathcal{D}_1 g(x,y) = \mathcal{D} f(x)$. If the functions are in addition twice differentiable we have $\mathcal{D}_{11} g(x,y) \geq \mathcal{D}^2 f(x)$.

The majorization conditions are not symmetric in x and y, and consequently it sometimes is more clear to write $g_y(x)$ for g(x,y), so that $g_y: \mathcal{I} \to \mathbb{R}$. We say that g_y majorizes f on \mathcal{I} at y, or with support point y.

A majorization algorithm is of the form

$$x^{(k+1)} \in \operatornamewithlimits{argmin}_{x \in \mathcal{I}} g(x, x^{(k)})$$

It then follows that

$$f(x^{(k+1)}) \le g(x^{(k+1)}, x^{(k)}) \le g(x^{(k)}, x^{(k)}) = f(x^{(k)}), \tag{1}$$

Thus a majorization step decreases the value of the objective function. The chain (1) is called the *sandwich inequality*. In (1) the inequality $f(x^{(k+1)}) \leq g(x^{(k+1)}, x^{(k)})$ follows from majorization, the inequality $g(x^{(k+1)}, x^{(k)}) \leq g(x^{(k)}, x^{(k)})$ follows from minimization. This explains why majorization algorithms are also called *MM algorithms* (Lange (2016 (in press))). Using the *MM* label has the advantage that it can also be used for the dual family of minorization-maximization algorithms.

In this note we are interested in quadratic majorization, i.e. in majorization functions of the form

$$g(x,y) = f(y) + f'(y)(x-y) + \frac{1}{2}K(x-y)^2,$$
 (2)

and specifically on quadratic majorizers of a cubic on an closed interval of the real line. If $K \leq 0$ in (2) the majorization function is concave and attains its minimum at one of endpoints of \mathcal{I} . If K > 0 then define the algorithmic map $\mathcal{A}(x) = x - f'(x)/K$ and

$$x^{(k+1)} = \begin{cases} L & \text{if } \mathcal{A}(x^{(k)}) < L, \\ \mathcal{A}(x^{(k)}) & \text{if } L \le \mathcal{A}(x^{(k)}) \le U, \\ U & \text{if } \mathcal{A}(x^{(k)}) > U. \end{cases}$$

Assuming that the sequence $x^{(k)}$ converges to a fixed point x_{∞} of \mathcal{A} , i.e a point with $\mathcal{D}f(x_{\infty})=0$, the rate of convergence is

$$\rho(x_{\infty}) = 1 - \frac{\mathcal{D}^2 f(x_{\infty})}{K}.$$

2 Majorizing a Cubic

Suppose f is a non-trivial cubic, with non-zero leading coefficient. The function and its derivatives are

$$f(x) = d + cx + bx^{2} + ax^{3},$$

$$f'(x) = c + 2bx + 3ax^{2},$$

$$f''(x) = 2b + 6ax,$$

$$f'''(x) = 6a.$$

2.1 Uniform Quadratic Majorization

Define

$$K_0 = \max_{L \le x \le U} f''(x) = \max(f''(A), f''(B)).$$

Thus

$$K_0 = \begin{cases} 6aU + 2b & \text{if } a > 0, \\ 6aL + 2b & \text{if } a < 0. \end{cases}$$

Our majorization function is the quadratic

$$g(x,y) := f(y) + f'(y)(x-y) + \frac{1}{2}K_0(x-y)^2.$$

The corresponding majorization algorithm is

$$x^{(k+1)} = \operatorname*{argmin}_{L \leq x \leq U} g(x, x^{(k)})$$

Note the majorizing function can be a concave quadratic, in which case its minimum is always at one of the endpoints of the interval. Assuming we eventually converge to a value $L < x_{\infty} < U$ the convergence rate (or asymptotic error constant) is

$$\rho(x_{\infty}) := 1 - \frac{f''(x_{\infty})}{K_0} = \begin{cases} \frac{6a(U - x_{\infty})}{6aU + 2b} & \text{if } a > 0, \\ \frac{6a(L - x_{\infty})}{6aL + 2b} & \text{if } a < 0. \end{cases}$$

Note that this does not depend on the lower limit L of the interval if a > 0. Convergence is faster if the upper limit U happens to be close to x_{∞} , and in fact it can be close to zero. If $U \to \infty$ the rate of convergence goes to one.

As a first example, consider $f(x) = \frac{1}{6}(1 - 2x + x^3)$. This cubic has roots at -1.6180339887, 0.6180339887, 1. There is a local maximum at $-\frac{1}{3}\sqrt{6}$ and a local minimum at $\frac{1}{3}\sqrt{6}$. The function (red), its first derivative (blue), and its second derivative (green) are in figure 1.

Figure 1: Example Cubic

We will look for a local minimum in the interval [-2,2], stating with initial value 1. Note that f''(x) = x and thus $K_0 = B = 2$. At $x_\infty = \frac{1}{3}\sqrt{3}$ we have $\rho(x_\infty) = 1 - \frac{1}{6}\sqrt{3}$, i.e. approximately 0.7113248654. We report the results of the final iteration.

Iteration: 35 xinit: 1.00000000 xfinal: 0.57735207 rate: 0.71132334

If we look for a local minimum in the interval [0,1] instead of [-2,2], we get much faster convergence, because the upper bound is now much closer to the solution.

Iteration: 14 xinit: 0.50000000 xfinal: 0.57734974 rate: 0.42265183

If we start at a value to the left of $-\frac{1}{3}\sqrt{3}$ and look for a minimum in [-2,2] then the algorithm converges to the boundary at -2.

Iteration: 3 xinit: -1.50000000 xfinal: -2.00000000 rate: 0.00000000

Note that alteratively we could have used

$$K_0^+:=\max_{L\leq x\leq U}|f''(x)|$$

in our majorization fuctions. Since f'' is linear we see that |f''| is convex, and thus $K_0^+ = \max(|f''(L)|, |f''(U)|)$. Using K_0^+ gives a majorization which is generally less precise, but uses majorization functions that are always convex quadratics. Also note that if there is a strict local minimum in \mathcal{I} then $K_0 > 0$, although we can still have $K_0 < K_0^+$. Think of [-1, .75], for which $K_0 = .75$ and $K_0^+ = 1$.

2.2 Sharp Quadratic Majorization

Consider the general representation of a cubic around the point y

$$f(x) = f(y) + f'(y)(x - y) + \frac{1}{2}f''(y)(x - y)^{2} + \frac{1}{6}f'''(x - y)^{3}.$$

For a quadratic function of the form (2) we have

$$g(x,y) - f(x) = \frac{1}{2}(x-y)^2 \{K - f''(y) - \frac{1}{3}f'''(x-y)\}.$$
 (3)

Thus the quadratic function is a majorizer if

$$K \ge \max_{x \in \mathcal{I}} f''(y) + \frac{1}{3}f'''(x - y) \tag{4}$$

which works out to $K \ge f''(y) + \frac{1}{3} \max (f'''(U-y), f'''(L-y))$. We get the *sharp quadratic majorization* (De Leeuw and Lange (2009)) by choosing K equal to its lower bound. The corresponding rate in the cubic case, with positive leading coefficient, is

$$\rho(x_{\infty}) = \frac{\frac{1}{3}f'''(U - x_{\infty})}{f''(x_{\infty}) + \frac{1}{3}f'''(U - x_{\infty})}.$$

If we reanalyze our example with the sharp bound we find faster convergence in the first two computing runs.

Iteration: 17 xinit: 1.00000000 xfinal: 0.57735073 rate: 0.45096147

Iteration: 8 xinit: 0.50000000 xfinal: 0.57735010 rate: 0.19615217

We also find convergence to the local minimum, and not to the nearby boundary, in the third run.

Iteration: 18 xinit: -1.50000000 xfinal: 0.57735105 rate: 0.45096119

2.3 Sublevel Quadratic Majorization

We know that quadratic majorization of a cubic on the whole line is impossible. This is one of the reasons for looking at quadratic majorization on a closed interval, where a continuous second derivative is always bounded. In this section we relax the majorization requirements, using a closed interval that depends on the current solution and becomes smaller if we get closer to a minimum. The reuslting majorization method can be thought of as a safeguarded version of Newton's method.

A function $g: \mathcal{I} \otimes \mathcal{I} \to \mathbb{R}$ is a sublevel majorization scheme for f on \mathcal{I} if

- g(x,x) = f(x) for all $x \in \mathcal{I}$,
- $g(x,y) \ge f(x)$ for all $x,y \in \mathcal{I}$ for which $g(x,y) \le g(y,y)$.

The second part of the definition says that g majorizes f on the sublevel set $\{x \in \mathcal{I} \mid g(x,y) \leq g(y,y)\}$. If we minimize the sublevel majorization the sandwich inequality (1) is still valid, so we still have monotone convergence of function values.

We quickly specialize this to quadratic majorization functions, suppose \mathcal{I} is the whole real line, and also require $K \geq 0$. If g is given by (2) then the sublevel set is the interval between y and y - 2f'(y)/K. Note that either of the two bounds can be the smaller one. Thus we want inequality

$$K \ge f''(y) + \frac{1}{3}f'''(x - y)$$

on the sublevel set, or equivalently at both endpoints. Thus $K \ge \max(f''(y), 0)$ and

$$K \ge f''(y) - \frac{2}{3} \frac{f'''f'(y)}{K}.$$

This means we must have

$$K^{2} - Kf''(y) + \frac{2}{3}f'''f'(y) \ge 0.$$
 (5)

Define K(y) as the smallest $K \ge \max(f''(y), 0)$ satisfying (5), and we have sharp sublevel quadratic majorization (De Leeuw (2006)).

If the quadratic equation corresponding to (5) has no real roots or a single real root, then the inequality (5) is satisfied for all K, and thus $K(y) = \max(f''(y), 0)$. If the equation has two real roots, they are written as $p(y) \le q(y)$. We have p(y) + q(y) = f''(y). Thus if p(y) and q(y) are non-negative, then $0 \le p(y) \le q(y) \le f''(y)$, and consequently $K(y) = f''(y) \ge 0$. If $p(y) \le 0$ and $q(y) \ge 0$ then $q(y) = f''(y) - p(y) \ge f''(y)$ and thus K(y) = q(y). If both $p(y) \le 0$ and $q \le 0$ then $f''(y) \le p(y) \le q(y) \le 0$, and thus K(y) = 0 and the sharp sublevel quadratic is linear.

Figure 2 shows for $y=\frac{1}{2}$ and various values of K what sublevel majorization looks like. The function is in red, the quadratic sublevel majorization in blue. Note the different lengths of the sublevel intervals. We see that $K=\frac{1}{2}$ is too small. For $y=\frac{1}{2}$ the quadratic is $K^2=K-\frac{1}{2}K-\frac{1}{36}$, which has roots -0.0504626063, 0.5504626063 and thus the sharp sublevel quadratic has K equal to 0.5504626063.

Figure 2: Sublevel Majorization

If we are close to a strict local minimum x we have $f'(x) \approx 0$ and f''(x) > 0. Thus the quadratic will have one root approximately zero and one root approximately equal to f''(x), and the iteration is basically a Newton iteration. Thus, at least for cubics, sublevel majorization has quadratic convergence. We illustrate this by analyzing our small example with sublevel majorization, starting from x = 1 and $x = \frac{1}{2}$.

<pre>## Iteration: ## Iteration: ## Iteration: ## Iteration: ## Iteration:</pre>	1 xold: 2 xold: 3 xold: 4 xold: 5 xold:	1.00000000 xnew: 0.66666667 xnew: 0.58333333 xnew: 0.57738095 xnew: 0.57735027 xnew:	0.66666667 cnew: 0.583333333 cnew: 0.57738095 cnew: 0.57735027 cnew: 0.57735027 cnew:	0.33333333 rate: 0.08333333 rate: 0.00595238 rate: 0.00003068 rate: 0.00000000 rate:
<pre>## Iteration: ## Iteration: ## Iteration:</pre>	1 xold:	0.50000000 xnew:	0.57569391 cnew:	0.07569391 rate:
	2 xold:	0.57569391 xnew:	0.57734948 cnew:	0.00165557 rate:
	3 xold:	0.57734948 xnew:	0.57735027 cnew:	0.00000079 rate:

If $\mathcal{I}=[L,U]$ then our analysis must be modified slightly. We want inequality (4) on the intersection of the sublevel interval and [L,U]. If the sublevel interval is in [L,U] our previous analysis applies. Because we always have $y\in [L,U]$ the other possible intervals are [y,U] if $y\leq U\leq y-2f'(y)/K$ and [L,y] if $y-2f'(y)/K\leq L\leq y$.

3 Appendix: Code

3.1 auxilary.R

```
mprint \leftarrow function (x, d = 2, w = 5) {
  print (noquote (formatC (
    x, di = d, wi = w, fo = "f"
  )))
}
cobwebPlotter <-</pre>
  function (xold,
             func,
             lowx = 0,
             hghx = 1,
             lowy = lowx,
             hghy = hghx,
             eps = 1e-10,
             itmax = 25,
             ...) {
    x \leftarrow seq (lowx, hghx, length = 100)
    y <- sapply (x, function (x)
      func (x, ...))
    plot (
      х,
      xlim = c(lowx, hghx),
      ylim = c(lowy, hghy),
      type = "1",
      col = "RED",
      lwd = 2
    abline (0, 1, col = "BLUE")
    base <- 0
    itel <- 1
    repeat {
      xnew <- func (xold, ...)</pre>
      if (itel > 1) {
        lines (matrix(c(xold, xold, base, xnew), 2, 2))
      lines (matrix(c(xold, xnew, xnew, xnew), 2, 2))
      if ((abs (xnew - xold) < eps) || (itel == itmax)) {</pre>
        break ()
```

```
base <- xnew
      xold <- xnew</pre>
      itel <- itel + 1
    }
  }
minQuadratic <- function (a, lw, up) {</pre>
  f <- polynomial (a)
  fup <- predict (f, up)</pre>
  flw <- predict (f, lw)</pre>
  if (a[3] <= 0) {
    if (fup \leq flw) return (list (x = up, f = fup))
    if (fup >= flw) return (list (x = lw, f = flw))
  }
  xmn \leftarrow -a[2] / (2 * a[3])
  fmn <- predict (f, xmn)</pre>
  if (xmn \ge up) return (list (x = up, f = fup))
  if (xmn \le lw) return (list (x = lw, f = flw))
  return (list (x = xmn, f = fmn))
}
```

3.2 iterate.R

```
myIterator <-</pre>
  function (xinit,
             f,
             eps = 1e-6,
              itmax = 100,
             verbose = FALSE,
             final = TRUE,
              ...) {
    xold <- xinit</pre>
    cold <- Inf</pre>
    itel <- 1
    repeat {
      xnew <- f (xold, ...)</pre>
       cnew <- abs (xnew - xold)</pre>
      rate <- cnew / cold
      if (verbose)
         cat(
           "Iteration: ",
```

```
formatC (itel, width = 3, format = "d"),
      "xold: ",
      formatC (
        xold,
        digits = 8,
        width = 12,
        format = "f"
      ),
      "xnew: ",
      formatC (
        xnew,
       digits = 8,
       width = 12,
       format = "f"
      ),
      "cnew: ",
      formatC (
        cnew,
       digits = 8,
       width = 12,
        format = "f"
      ),
      "rate: ",
      formatC (
        rate,
       digits = 8,
       width = 12,
       format = "f"
      ),
      "\n"
  if ((cnew < eps) || (itel == itmax))</pre>
    break
  xold <- xnew</pre>
  cold <- cnew</pre>
  itel <- itel + 1
}
if (final)
  cat(
    "Iteration: ",
    formatC (itel, width = 3, format = "d"),
    "xinit: ",
    formatC (
      xinit,
```

```
digits = 8,
          width = 6,
          format = "f"
        ),
        "xfinal: ",
        formatC (
          xnew,
          digits = 8,
          width = 6,
          format = "f"
        ),
        "rate: ",
        formatC (
          rate,
         digits = 8,
         width = 6,
          format = "f"
        ),
        "\n"
      )
    return (list (
     itel = itel,
     xinit = xinit,
     xfinal = xnew,
     change = cnew,
     rate = rate
    ))
  }
cubicUQ <- function (x, a, up, lw, sharp = FALSE) {</pre>
  f <- polynomial (a)</pre>
  g <- deriv (f)
 h <- deriv (g)
  i <- deriv (h)
  if (!sharp) {
  if (a[4] > 0)
    k <- predict (h, up)
  if (a[4] < 0)
    k <- predict (h, lw)
  }
  if (sharp) {
    if (a[4] > 0)
      k \leftarrow predict (h, x) + predict (i, x) * (up - x) / 3
    if (a[4] < 0)
```

```
k <- predict (h, x) + predict (i, x) * (lw - x) / 3
}

xmin <- x - predict (g, x) / k
if ((xmin <= up) && (xmin >= lw))
    return (xmin)
fup <- predict (f, up)
flw <- predict (f, lw)
    return (ifelse (fup < flw, up, lw))
}</pre>
```

3.3 sublevel.R.

```
tester <- function (y, k, func, grad) {
  qmaj \leftarrow function (x) func (y) + grad (y) * (x - y) + .5 * k * (x - y) ^ 2
    ybnd \leftarrow y - 2 * grad (y) / k
    up <- max (y, ybnd)
    lw <- min (y, ybnd)</pre>
    x \leftarrow seq (lw, up, length = 100)
    s <- paste ("K = ", formatC(k, digits = 1, format= "f"))
    plot (x, func (x), col = "RED", lwd = 2, type = "l", ylab = "f,g", main = s)
    lines (x, qmaj (x), col = "BLUE", lwd = 2)
    abline (v = up)
    abline (v = lw)
}
f \leftarrow function (x) log (1 + exp (x))
g \leftarrow function(x) exp(x) / (1 + exp(x))
a \leftarrow function (x) (x ^3 - x) / 6
b \leftarrow function (x) (3 * x ^ 2 - 1) / 6
cubicSublevel <- function (y, a, sharp = FALSE) {</pre>
  f <- polynomial (a)
  g <- deriv (f)
  h <- deriv (g)
  i <- deriv (h)
  dfy <- predict (g, y)
  dgy <- predict (h, y)
  dhy <- predict (i, y)</pre>
  disk \leftarrow dgy ^2 - 4 * (2 / 3) * dhy * dfy
  if (disk <= 0) k <- max (0, dgy)</pre>
  else {
```

References

De Leeuw, J. 2006. "Sharp Local Quadratic Majorization."

De Leeuw, J., and K. Lange. 2009. "Sharp Quadratic Majorization in One Dimension." Computational Statistics and Data Analysis 53: 2471–84.

Lange, K. 2016 (in press). MM Optimization Algorithms.