ORF 418 Special Topic

The "Ad-click" Game

Apr 15, 2019

Donghun Lee

Ph.D. Candidate, Dept. of Computer Science

Contents

• Intro to Ad-click Game (Behind the SSAs)

Simulator Operation

Attributes in SSA: Google's Twist

Intro to Ad-click Game

Behind the sponsored search auctions

Sponsored Search Auction (SSA)

Sponsored search auction result

• When someone sends in a search query

Auction happens behind the curtain

The ads from the winners appear in the result

You may click on an ad

Then that advertiser pay for your click

- Goal: maximize profit (from advertising)
 - Profit = [revenue] [cost]
- Find the policy
 - that maximizes profit
 - by bidding to advertise in the SSA

- Goal: maximize profit (from advertising)
 - Profit = [revenue] [cost]
- Find the policy
 - that maximizes profit
 - by bidding to advertise in the SSA
- Simulated in the "Ad-click" game

From the Policy's Viewpoint, on the Simulator ver. 2

- In every iteration, the simulator
 - Gathers bids from all policies
 - Generates searches
 - And holds an auction for each search
 - For the winning policies
 - Randomly sample clicks and conversions
 - Compute costs and revenues
 - For all policies
 - Report individualized results

- In every iteration, the simulator
 - Gathers bids from all policies
 - Generates searches
 - And holds an auction for each search
 - For the winning policies
 - Randomly sample clicks and conversions
 - Compute costs and revenues
 - For all policies
 - Report individualized results

- In every iteration, the simulator
 - Gathers bids from all policies
 - Generates searches
 - And holds an auction for each search
 - For the winning policies
 - Randomly sample clicks and conversions
 - Compute costs and revenues
 - For all policies
 - Report individualized results

- In every iteration, the simulator
 - Gathers bids from all policies
 - Generates searches
 - And holds an auction for each search
 - For the winning policies
 - Randomly sample clicks and conversions
 - Compute costs and revenues
 - For all policies
 - Report individualized results

Simulator Operation: Policy's View

- In every iteration, each policy
 - Sends in the bids
 - Learns from the results

Policy.bid()

- In every iteration, each policy
 - Sends in the bids
 - Learns from the results

Policy.learn()

In every iteration, each policy

Sends in the bids

Learns from the results

Simulator Operation: Policy's View

- In every iteration, each policy
 - Sends in the bids
 - Learns from the results
- Bids:
 - All "joint" attributes
- Results:
 - Only "marginal" attributes

Simulator Operation: Policy's View

- In every iteration, each policy
 - Sends in the bids
 - Learns from the results

Google's Twist

- Bids:
 - All "joint" attributes
- Results:
 - Only "marginal" attributes

Discrepancy between the Joint and the Marginals

Example

- Gender: {M, F, U}
- Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}

- Example
 - Gender: {M, F, U}
 - Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}
- "Attributes" of a user
 - who does the web search
 - which initiates the sponsored search auction (SSA)
 - Me: {gender: M, age: 30-39}

Simulator Operation, revisited

- In every iteration, the simulator
 - Gathers bids from all policies
 - Generates searches
 - And holds an auction for each search
 - For the winning policies
 - Randomly sample clicks and conversions
 - Compute costs and revenues
 - For all policies
 - Report individualized results

Replicate for each "attributes"

Example

• Gender: {M, F, U}

• Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}

	0-19	20-29	30-39	40-49	50-59	60-69	70-
М							
F							
U							

Example

• Gender: {M, F, U}

• Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}

	0-19	20-29	30-39	40-49	50-59	60-69	70-
M							
F				Joint			
U							

- Your policy can specify bids
 - for each of these attribute combinations (the entire joint)

Example

• Gender: {M, F, U}

• Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}

	•			•			•			
			Marginal							
		0-19	20-29	30-39	40-49	50-59	60-69	70-		
nal	М									
argir	F									
Σ	U									

- Your policy will get results
 - only along the marginals

Example

• Gender: {M, F, U}

• Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}

			Marginal								
		0-19	20-29	30-39	40-49	50-59	60-69	70-			
lal	M										
argir	F				Joint						
Σ	U										

Discrepancy

- Bid (Act): can be specified for the entire joint
- Learn: only gets data along the marginals

Example

• Gender: {M, F, U}

• Age: {0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-}

			Marginal							
		0-19	20-29	30-39	40-49	50-59	60-69	70-		
lal	М									
argir	F				Joint					
Ma	U									

Discrepancy

- Bid (Act): can be specified for the entire joint
- Learn: only gets data along the marginals

- The new ad-click simulator (2019)
 - Joint work with RoomSage Data Science team
 - Emulates Google's interface for SSA

- Mind the gap:
 - result space (marginal) ⊆ bid space (joint)

- Mind the gap:
 - result space (marginal) ⊆ bid space (joint)

- Mind the gap:
 - result space (marginal) ⊆ bid space (joint)

- The new ad-click simulator (2019)
 - Joint work with RoomSage Data Science team
 - Emulates Google's interface for SSA (Joint-Marginal gap)
 - Fully agent-based
 - Dynamic, transient, and potentially adversarial

Inherited from the original ad-click simulator (2018)

Your bidding policy competes

- Your bidding policy competes
 - against other policies

- Your bidding policy competes
 - against other policies
 - that may learn from the results as well

This is how LTLO fits in the ad-click game

- The new ad-click simulator (2019)
 - Joint work with RoomSage Data Science team
 - Emulates Google's interface for SSA (Joint-Marginal gap)
 - Fully agent-based
 - Dynamic, transient, and potentially adversarial

Inherited from the original ad-click simulator (2018)

Fully compatible with the LTLO framework

Questions?

