Lecture 11 Logical Agents, Knowledge Representation & Reasoning: Part I

Rob Gaizauskas

Lecture Outline

- Knowledge-based Agents
- Wumpus World
- Logic
 - Syntax
 - Semantics
 - Model Checking
 - Inference
- Agents Based on Propositional Logic
- Reading: (Readings that begin with * are mandatory)
 - *Russell and Norvig (2010), Chapter 7 "Logical Agents", sections: 7.1-7.4 and 7.7

Lecture Outline

Knowledge-based Agents

Today

- Wumpus World
- Logic
 - Syntax
 - Semantics
 - Model Checking
 - Inference
- Agents Based on Propositional Logic
- Reading: (Readings that begin with * are mandatory)
 - *Russell and Norvig (2010), Chapter 7 "Logical Agents", sections: 7.1-7.4 and 7.7

Knowledge-based Agents

- Humans know things and can reason using this knowledge to help them do things
 - E.g. if I know Fred is in the next room and has the key to the lab then I can reason that to get into the lab I should go and ask Fred for the key
- I.e. humans do not act purely by reflex but by processes of reasoning that work over internal representations of knowledge
 - In AI this approach to intelligence modelling internal representations of knowledge and processes of reasoning
 - is embodied in knowledge-based agents

Knowledge-based Agents

- Central component of a knowledge-based agent is its knowledge base or KB
- A KB is a set of sentences
 - A sentence is an assertion about the world
 - Sentences are expressed in a knowledge representation language
 - A sentence that is not derived from other sentences is sometimes called an axiom

Knowledge-based Agents and Inference

- Need to be able to add sentences to the KB and query the KB to find out what is known
 - These operations are usually called TELL and ASK
- Both TELL and ASK may involve inference deriving new sentences from old
 - Must be such that when ASKing the KB a question the answer must follow from what the KB has been told (TELLed)

A Knowledge-based Agent Program

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

- Program takes percept as input and returns an action
- Agent maintains a KB may initially contain some background knowledge
- Each time agent is called it:
 - 1. TELLs the KB what it has perceived
 - May involve reasoning as part of interpreting raw percepts as, e.g. an object type in a scene type
 - 2. ASKs the KB what action it should perform
 - May involve reasoning about state of the world + outcomes of possible action sequences
 - 3. TELLs the KB which action was chosen
- Agent then executes the action

KB Agents and Agent Structure

Model-based Reflex Agent (lecture 8)

Goal-based Agent (lecture 8)

- Recall agent structures discussed in Lecture 8
- A KB agent is one form a model-based reflex agent, goal-based agent or a utility-based agent could take

Knowledge vs Implementation Level

- KB-Agent is like agents with internal state introduced in Lecture 8
- But, because of definitions of TELL and ASK, it is not an arbitrary program for calculating actions
 - Program can be described at the knowledge level
 - I.e. only need to specify what the agent knows and what its goals are to fix its behaviour

• Example:

- Robot has goal of going from DCS Reception to the Lewin Lab
- Knows lift is the only way for it to get from Level 1 to Level 0
- Then we can expect it to take lift because it knows that will achieve its goal
- This analysis independent of how robot works at implementation level
 - Knowledge of building layout may be implemented as lists or hash tables
 - Reasoning may be carried out by manipulating strings of symbols or propagating noisy signals in a neural network

Knowledge vs Implementation Level

- KB-Agent is like agents with internal state introduced in Lecture 8
- But, because of definitions of TELL and ASK, it is not an arbitrary program for calculating actions
 - Program can be described at the knowledge level
 - I.e. only need to specify what the agent knows and what its goals are to fix its behaviour
- Example:
 - Robot has goal of going from DCS Reception to the Lewin Lab
 - Knows lift is the only way for it to get from Level 1 to Level 0
 - Then we can expect it to take lift because it knows that will achieve its goal
- This analysis independent of how robot works at implementation level
 - Knowledge of building layout may be implemented as lists or hash tables
 - Reasoning may be carried out by manipulating strings of symbols or propagating noisy signals in a neural network

Doesn't matter

Declarative vs Procedural Approaches to System Building

- A KB agent can be built by TELLing it what it needs to know
 - Start with an empty KB
 - Designer TELLs it sentences 1-by-1 till it knows how to operate in its environment
 - Called the declarative approach to system building
- Alternative:
 - Encode desired behaviour directly as program code
 - Called the procedural approach to system building
- 1970s and 80s saw heated debates between proponents of two approaches
 - Now realize both approaches useful & that declarative knowledge can often be compiled into more efficient procedural code
- Note: can provide a KB-agent with mechanisms for learning
 - Can create general knowledge about environment from series of percepts
 - Such agents can be fully autonomous

Wumpus World: Extended Example

- The power of the knowledge-based agent approach can be demonstrated via a simple game in an imaginary environment called the wumpus world
- The wumpus world:
 - is a cave consisting of rooms connected by passageways
 - wumpus is a beast lurks in a room in the cave and eats anyone who enters its room
 - wumpus can be shot by agent; but agent has only 1 arrow
 - some rooms have bottomless pits
 - somewhere in the cave is a heap of gold
- Simple by modern game standards
 - But good illustration of important points about intelligence

PEAS description of Wumpus World

- Task environment specified by PEAS (lecture 7) description:
- Performance measure:
 - +1000 for climbing out of cave with gold
 - -1000 for falling into a pit or being eaten by the wumpus
 - -1 for each action taken
 - -10 for using up the arrow
 - Game ends when agent dies or exits the cave successfully

SSSSS Stench		Breeze	PIT
10 B B	Breeze \$5555 Stench \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	PIT	Breeze
SSSSS Stench		Breeze	
START	Breeze	PIT	Breeze

Environment:

- A 4 x 4 grid of rooms
- Agent always starts in [1,1] facing right
- Position of gold and wumpus chosen randomly with uniform distribution from squares other than [1,1]

2

Each square other than [1,1] can be a pit with probability 0.2

PEAS description of Wumpus World

Actuators:

- Agent can move Forward, TurnLeft by 90° or TurnRight by 90°
- Agent dies if it enters a room with a pit or a live wumpus
- If agent tries to move forward and 2
 bumps into wall then does not move
- Action Grab picks up gold, if agent is in same room as gold
- Action Shoot fires an arrow in straight line in direction of agent – continues until it either kills wumpus or hits wall (only 1 arrow)
- Action Climb allows agent to exit cave from [1,1]

2

3

COM1005/2007 2015-16

PEAS description of Wumpus World

3

2

- Sensors: agent has 5 sensors:
 - Agent perceives a Stench in a room directly adjacent to the wumpus
 - Agent perceives a Breeze in a room directly adjacent to a pit
 - Agent perceives a Glitter in the room with the gold
 - Agent perceives a Bump when it walks into a wall
 - Wumpus when killed, emits a Scream perceivable anywhere in the cave

Percepts given to agent as a quintuple, e.g. if there is a stench and a breeze but no glitter, bump or scream then agent gets: [Stench, Breeze, None, None, None]

Characteristics of Wumpus Environment

- In terms of distinctions introduced in Lecture 7 environment is:
 - Discrete: finite number of discrete states, time handled discretely, agent has finite number of distinct percepts and actions
 - Static: environment does not change while agent is deliberating
 - Sequential: the current decision could affect all future decisions
 - Partially observable: some aspects of state not directly perceivable
 - Agent location, wumpus's state of health; availability of arrow
 - Location of pits and wumpus
 - Could treat as unobserved parts of state in which case transition model for environment completely known
 - Or treat transition model as unknown (which Forward actions are fatal?) so discovering their locations completes knowledge of transition model
 - Deterministic: next state of the environment is completely determined by the current state and the agent's action
 - Single-agent

Characteristics of Wumpus Environment

- Main challenge for agent is initial ignorance of configuration of environment
 - Overcoming this ignorance appears to require logical reasoning
- In most instances of the world agent can retrieve gold safely
 - Sometimes agent must choose between going home without gold or risking death to retrieve it
 - About 21% of environments are unfair as gold is either in a pit or surrounded by pits

Exploring in the Wumpus World

- Consider a knowledge-based agent 4 exploring this wumpus world
- Agent's initial KB contains rules of the environment as described above:
 - Knows it starts in [1,1] and that this is 2
 a safe square
- First percept is [None, None, None, None]

From this agent can conclude that [1,2] and [2,1] are safe

Exploring in the Wumpus World

1,4	2,4	3,4	4,4
1,-1	<i>_</i> , 1	0,1	1,-1
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
,	,	- ,	,
OV			
OK			
1,1	2,1	3,1	4,1
A			
OK	ОК		
(a)			

A	= Agent
В	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
\mathbf{V}	= Visited
\mathbf{W}	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
ОК			
1,1	2,1 A	3,1 P?	4,1
V	B		
ОК	OK		
-	•		•

(b)

- Suppose agent moves forward into [2,1]
- Perceives breeze, so there must be a pit in [3,1] or [2,2] (cannot be in [1,1])
- At this point only one known safe square not yet visited [1,2]
- So agent backtracks and visits [1,2]

Exploring in the Wumpus World

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

A	= Agent
В	= Breeze
G	= Glitter, Gold
OK	= Safe square
P	= Pit
\mathbf{S}	= Stench
${f V}$	= Visited
1.1 /	- Mumnue

1,4	2,4 P?	3,4	4,4
1,3 _{W!}	2,3 A S G B	3,3 _{P?}	4,3
1,2 S V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(b)

(a)

- In [1,2] agent perceives [Stench, None, None, None, None]. What can it infer?
 - 1. There is a wumpus in [1,3] (there was no stench perceived in [2,1])
 - 2. There is a pit in [3,1] difficult inference based on previous inference that there is a pit in [2,2] or [3,1] and current inference that there is no pit in [2,2]
- Agent can now move to [2,2]. If it then choses to move to [2,3] it will find the gold

Logic

- Note that in the example above, when the agent draws a conclusion from available information the conclusion is guaranteed to be correct
 - This is a fundamental property of logical reasoning
- Assume you know fundamentals of propositional and predicate logic from COM1002
- Will
 - Give brief overview of fundamental concepts of formal logic
 - Discuss use of formal logic for knowledge representation in Al
 - Describe how to construct a wumpus world agent that uses propositional logic

Syntax and Semantics

- KB consists of sentences
- Sentences in formal logical languages are expressed according to the syntax of the language
 - Syntax defines what is a well-formed ("allowable") sentence in the representation language
 - E.g.
 - "x+y=4" is a well-formed sentence of arithmetic
 - "x4y+=" is not is a well-formed sentence of arithmetic
- A logic must also define the semantics or meaning of sentences
 - Semantics defines the truth of each sentence wrt a possible world
 - E.g. semantics of arithmetic specifies "x + y = 4" is
 - true in a world where x is 2 and y is 2
 - false in a world where x = 1 and y = 1
 - In standard logics every sentence must be either true or false in every possible world

Models and Entailment

- The term "model" is used instead of "possible world" in formal logic
 - "possible world" suggests a potential real environment an agent might find itself in
 - "model" is a more precise, mathematical abstraction of this idea – a model fixes/assigns the truth or falsity of each sentence in the KB
- If sentence α is true in a model m we say m satisfies α or m is a model of α
- $M(\alpha)$ refers to the set of all models of α

Models and Entailment

- Given a notion of truth can now talk about reasoning
- A sentence β logically follows from another sentence α or equivalently

```
\alpha entails \beta, written \alpha \models \beta,
```

if and only if in every model in which α is true β is also true

- Informally: "whenever α is true, β is true too", or, "whenever α is true it is impossible for β to be false"
- More formally this is written as:

```
\alpha \vDash \beta if and only if M(\alpha) \subseteq M(\beta)
```

• Note if $\alpha \models \beta$ then α is a stronger assertion than β – it rules out more possible worlds

Entailment in the Wumpus World

- Consider the wumpus world example above where the agent detected nothing in [1,1] and a breeze in [2,1]
- KB at this point consists of these two percepts + the rules of the wumpus world
- Agent wants to know if [1,2], [2,2] or [3,1] contain pits
- Each might or might not contain a pit
 - So there are $2^3 = 8$ possible models

Entailment in the Wumpus World

- KB can be thought of as a set of sentences
- KB is false, i.e. contains false sentences, in models that contradict what agent knows
 - E.g. KB is false in any model where [1,2] contains a pit, since no breeze was perceived in [1,1]
- Only 3 (of 8) models where KB is true
 - Surrounded by solid line

Entailment in the Wumpus World

Consider

 α_1 = "There is no pit in [1,2]"

 α_2 = "There is no pit in [2,2]"

- Models of α_1 are those in (a) surrounded by dotted lines; models of α_2 are similarly shown in (b)
- By visual inspection can see that in every model in which KB is true, α_1 is also true
 - − so KB \vdash α_1 and agent can conclude there is no pit in [1,2]
- Can also see that in some models in which KB is true α_2 is false
 - so KB $\not= \alpha_2$ and agent cannot conclude there is no pit in [2,2] (or that there is)