Use strong induction to show that $\forall n \in \mathbb{N}$ $f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$ where f_n is the f_n is the f_n is the f_n term of the Fibonacci sequence.

Claim:
$$\forall n \in \mathbb{N}, \ f_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Base Claim: $f_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^1 \right]$ and $f_2 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^2 \right]$

Proof: $f_1 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^1 \right] = \frac{1}{\sqrt{5}} \left[\frac{1+\sqrt{5}-1+\sqrt{5}}{2} \right] = \frac{1}{\sqrt{5}} \left[\frac{2\sqrt{5}}{2} \right] = \frac{\sqrt{5}}{\sqrt{5}} = 1 = f_1$

$$f_2 = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^2 \right] = \frac{1}{\sqrt{5}} \left[\frac{\left(1+\sqrt{5} \right)^2 - \left(1-\sqrt{5} \right)^2}{\left(2 \right)^2} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\frac{\left(1+2\sqrt{5}+5 \right) - \left(1-2\sqrt{5}+5 \right)}{4} \right] = \left(\frac{1}{\sqrt{5}} \right) \left(\frac{4\sqrt{5}}{4} \right) = \frac{\sqrt{5}}{\sqrt{5}} = 1 = f_2$$

Inductive Claim: For every $n \in \mathbb{N}$, if $f_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right]$ for every $k = \{1, 2, ..., n\}$,

then
$$f_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

Proof: Assume that $f_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right]$ for all $k \in \{1, 2, ..., n\}$. We must show

that
$$f_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$
. Note that by the definition of the Fibonacci

sequence,
$$f_{n+1} = f_n + f_{n-1}$$
, $f_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right]$

So, we must show that

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right] = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$
Note that
$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] + \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right]$$

Class: MATH-337

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n + \left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n + \left(\frac{1+\sqrt{5}}{2} \right)^{n-1} - \left(\frac{1-\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^{n-1} \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n \left(1 + \left(\frac{1+\sqrt{5}}{2} \right)^{-1} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^n \left(1 + \left(\frac{1-\sqrt{5}}{2} \right)^{-1} \right) \right]$$

Note that:

$$1 + \left(\frac{1+\sqrt{5}}{2}\right)^{-1} = 1 + \frac{2}{1+\sqrt{5}} = \frac{1+\sqrt{5}}{1+\sqrt{5}} + \frac{2}{1+\sqrt{5}} = \frac{3+\sqrt{5}}{1+\sqrt{5}}$$
$$= \left(\frac{1+\sqrt{5}}{1+\sqrt{5}}\right) \left(\frac{3+\sqrt{5}}{1+\sqrt{5}}\right) = \frac{\left(1+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{6+2\sqrt{5}}$$
$$= \frac{\left(1+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{2\left(3+\sqrt{5}\right)} = \frac{1+\sqrt{5}}{2}$$

and

$$1 + \left(\frac{1 - \sqrt{5}}{2}\right)^{-1} = 1 + \frac{2}{1 - \sqrt{5}} = \frac{1 - \sqrt{5}}{1 - \sqrt{5}} + \frac{2}{1 - \sqrt{5}} = \frac{3 - \sqrt{5}}{1 - \sqrt{5}}$$
$$= \left(\frac{1 - \sqrt{5}}{1 - \sqrt{5}}\right) \left(\frac{3 - \sqrt{5}}{1 - \sqrt{5}}\right) = \frac{\left(1 - \sqrt{5}\right)\left(3 - \sqrt{5}\right)}{6 - 2\sqrt{5}}$$
$$= \frac{\left(1 - \sqrt{5}\right)\left(3 - \sqrt{5}\right)}{2\left(3 - \sqrt{5}\right)} = \frac{1 - \sqrt{5}}{2}$$

Thus,

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n \left(1 + \left(\frac{1+\sqrt{5}}{2} \right)^{-1} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^n \left(1 + \left(\frac{1-\sqrt{5}}{2} \right)^{-1} \right) \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n \left(\frac{1+\sqrt{5}}{2} \right)^1 - \left(\frac{1-\sqrt{5}}{2} \right)^n \left(\frac{1-\sqrt{5}}{2} \right)^1 \right]$$

$$= \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right]$$

$$= f_{n+1}$$