Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 4

Mathematical Induction

4.1 Weak Induction

Definition 4.1 (Well-Order).

Let X be a set with a relation \leq defined on it. We say that X is well-ordered by this relation iff every non-empty subset of X has a minimal element with respect to \leq . In other words, we say that \leq is a well-order on X : \Leftrightarrow

$$(\forall A \in \mathcal{P}(X))(\exists a \in A)(\forall b \in A)a \leqslant b.$$

Theorem 4.1 (\mathbb{N} is Well-Ordered).

$$(\forall A \subseteq \mathbb{N}) (A \neq \emptyset \Rightarrow (\exists a \in A) (\forall b \in A) (a \leqslant b))$$

This says that every nonempty subset of \mathbb{N} has a least element (according to the \leqslant order defined on \mathbb{N}).

Proof. This proof is left as an exercise.

Q.E.D.

Theorem 4.2 (Weak Induction).

If $\varphi(\cdot)$ is a wff, then

$$(\forall n \in \mathbb{N}) \big(\varphi(n) \big) \iff \varphi(0) \land (\forall k \in \mathbb{N}) \big(\varphi(k) \implies \varphi(k+1) \big).$$

Proof. There are two fragments to this proof: the forward (\Rightarrow) direction and the backward (\Leftarrow) direction.

Fragment 1 (\Rightarrow):

Suppose that $(\forall n \in \mathbb{N})(\varphi(n))$. Since $0 \in \mathbb{N}$, we then obviously have $\varphi(0)$. Now, let $k \in \mathbb{N}$ and assume $\varphi(k)$. Since $k+1 \in \mathbb{N}$, we know from our initial assumption that $\varphi(k+1)$. Thus, we have $(\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1))$, and we have reached both of our desired conclusions.

Fragment 2 (\Leftarrow):

Assume $\varphi(0)$ and $(\forall k \in \mathbb{N}) (\varphi(k) \Rightarrow \varphi(k+1))$. Towards a contradiction, suppose that there is some $a \in \mathbb{N}$ such that $\neg \varphi(a)$. Consider $A := \{x \in \mathbb{N} \mid \neg \varphi(x)\}$, which we clearly know exists by Axiom 4. We know that $n \in A$ because we assumed that $\neg \varphi(n)$, which implies that $A \neq \emptyset$. Then, we can use Theorem 4.1 to conclude that there is a minimal element a in A.

Since we know that $\varphi(0)$, it follows that $a \neq 0$, so a must be a successor number. This means there is a $b \in \mathbb{N}$ such that b+1=a.

If $b \in A$, then that would mean that $a \le b$ since a is minimal in A. However, we know that b < b+1 = a, so we would then have $a \le b < a$. \mathcal{J} Therefore, $b \notin A$.

With these two directions proven, we finally have $(\forall n \in \mathbb{N})(\varphi(n)) \Leftrightarrow \varphi(0) \land (\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1))$.

Q.E.D.

Note. The above theorem actually generalizes beyond just \mathbb{N} . In fact, we can generalize the proof of Theorem 4.2 to any well-ordered set X by replacing k+1 with the least element of the non-empty subset $X \setminus \{\ell \in X \mid \ell \leq k\}$.

Let's practice induction by proving the following few theorems.

Example 4.1 (Gaussian Summation Formula).

$$(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \right).$$

Proof. We will prove the claim by induction on $n \in \mathbb{N}$.

Base Case:

Observe that $\sum_{i=0}^{0} i = 0 = \frac{0*(0+1)}{2}$. Therefore, the statement is satisfied at 0.

Inductive Step:

Let $k \in \mathbb{N}$ and assume $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$ (this is our *inductive hypothesis*). Now, observe

$$\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i\right) + (k+1) \qquad \text{by definition}$$

$$= \left(\frac{k(k+1)}{2}\right) + (k+1) \qquad \text{by the } inductive \ hypothesis}$$

$$= (k+1)\left(\frac{k}{2}+1\right) \qquad \text{by the distributive property of multiplication*}^{\dagger}$$

$$= \frac{(k+1)(k+2)}{2} \qquad \text{because } \frac{k}{2}+1 = \frac{k}{2}+\frac{2}{2} = \frac{k+2}{2}.^{\dagger \ddagger}$$

Thus, we have that $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$, as desired.

Therefore, we can conclude that $(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \right)$.

Q.E.D.

Example 4.2.

 $3n \leqslant 3^n$ for all $n \in \mathbb{N}_+$.

Proof. We will prove the claim by induction on $n \in \mathbb{N}_+$.

Base Case:

Observe that $3 \cdot 1 = 3 \leq 3 = 3^1$.

Inductive Step:

Let $k \in \mathbb{N}_+$ and assume $3 \cdot k \leq 3^k$ (this is our *inductive hypothesis*). Now, observe

$$\begin{array}{ll} 3\cdot (k+1) = 3\cdot k + 3 & \text{by the distributive property of multiplication} \\ \leqslant 3^k + 3 & \text{by the } inductive \ hypothesis} \\ \leqslant 3^k + 3^k & \text{because } 1 \leqslant k \ \Rightarrow \ a^1 \leqslant a^k \ \text{if } a < 0^{*\dagger} \\ \leqslant 3^k + 3^k + 3^k & \text{since } a^k \ \text{is always positive if } 0 < a^{*\dagger} \\ = 3 \cdot 3^k & \text{because } \sum_{i=1}^m a = m \cdot a \ \text{for any } a^{*\dagger} \\ = 3^{k+1} & \text{because } a^b a^c = a^{b+c} \ \text{for any } a.^{*\dagger} \end{array}$$

So, $3 \cdot (k+1) \leq 3^{k+1}$, as desired.

Therefore, $(\forall n \in \mathbb{N}_+)(3n \leqslant 3^n)$.

Q.E.D.

 $^{^*}$ These "basic grade-school" algebraic properties will now be assumed without special mention.

 $^{^{\}dagger}$ This is true in any ordered semiring where exponentiation is defined in terms of multiplication.

 $^{^\}ddagger \text{This}$ is true in any field.

Example 4.3.

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \text{ for all } n \in \mathbb{N}.$$

Proof. We will prove the claim by induction on $n \in \mathbb{N}$.

Base Case:

Observe that
$$\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2 - 1 = 2^{1+1} - 1$$

Inductive Step:

Let $k \in \mathbb{N}_+$ and assume that $\sum_{i=0}^k 2^i = 2^{k+1} - 1$ (this is our *inductive hypothesis*). Observe that

$$\sum_{i=0}^{k+1} 2^i = \left(\sum_{i=0}^k 2^i\right) + 2^{k+1} \qquad \text{by definition}$$

$$= \left(2^{k+1} - 1\right) + 2^{k+1} \qquad \text{by the } inductive \ hypothesis}$$

$$= 2 \cdot 2^{k+1} - 1 \qquad \text{using some basic algebra}$$

$$= 2^{k+2} - 1 \qquad \text{using some basic algebra}.$$

So, we get $\sum_{i=0}^{k+1} 2^i = 2^{k+1} - 1$, as desired.

Therefore, we can conclude $(\forall n \in \mathbb{N}) \Big(\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \Big)$.

Q.E.D.

Example 4.4.

Every natural number is either even or odd.

Proof. We will prove the claim by using *strong* induction on \mathbb{N} .

Base Case:

Firstly, observe that $0 = 2 \cdot 0$ by definition; since $0 \in \mathbb{N}$, we now know that 0 is even. Secondly, observe that $1 = 0 + 1 = 2 \cdot 0 + 1$ by definition; since $0 \in \mathbb{N}$, we also know that 1 is odd.

Inductive Step:

Let $k \in \mathbb{N}$ and assume, for any $\ell \leq k$, that ℓ is either even or odd. In particular, k is either even or odd.

Case 1:

If k is even, then there is an $\ell \in \mathbb{N}$ such that $k = 2\ell$. But then $k + 1 = 2\ell + 1$, so k + 1 is odd.

Case 2:

If k is odd, then there is an $\ell \in \mathbb{N}$ such that $k = 2\ell + 1$. Similarly then, we can see that $k+1 = (2\ell+1) + 1 = 2\ell + (1+1) = 2\ell + 2 = 2(\ell+1)$, so that k+1 is even.

Thus, from these two cases, k+1 is either even or odd.

Therefore, $(\forall n \in \mathbb{N})((n \text{ is even}) \vee (n \text{ is odd}))$.

Q.E.D.

Lemma 4.1.

For any $n, m \in \mathbb{N}$, if n = 2m or n = 2m + 1, then $n \ge m$.

Proof. Let $n \in \mathbb{N}$ and $m \in \mathbb{N}$. There are two cases.

Case 1:

If n=2m, then suppose towards a contradiction that m>n. We would then have $n=2m>2n=n+n\geqslant n$, so that n>n, implying $n\neq n$. f This shows us $m\leqslant n$.

Case 2:

If n=2m+1, then again assume towards a contradiction that m>n. This would mean $n=2m+1>2n+1>2n=n+n\geqslant n$, so n>n, implying $n\neq n$. § So, we get $m\leqslant n$.

Q.E.D.

4.2 Strong Induction

Theorem 4.3 (Strong Induction). If $\varphi(\cdot)$ is a wff and $r \in \mathbb{N}$, then

$$(\forall n \in \mathbb{N}) \big(\varphi(n) \big) \iff \left(\bigwedge_{i=0}^r \varphi(r) \right) \wedge (\forall k \in \mathbb{N}) \Big((\forall \ell \leqslant k) \big(\varphi(\ell) \big) \implies \varphi(\ell+1) \Big).$$

Note. An equivalent way to state the *inductive hypothesis* for a proof involving strong induction is to say that we assume $(\forall \ell < k)(\varphi(\ell))$, and then our task in the inductive step is to prove $\varphi(k)$.

Example 4.5.

 $(\forall n \in \mathbb{N})(\exists r \in \mathbb{N})(\exists c_0, \dots c_r \in \{0, 1\}) \Big(n = \sum_{i=0}^r c_i 2^i\Big); i.e., \text{ every natural number admits a binary representation.}$ Proof. We will prove the claim by using strong induction on \mathbb{N} .

Base Case:

Consider r := 0 and $c_0 := 0$ and observe that $0 = 0 \cdot 1 = 0 \cdot 2^0 = \sum_{i=0}^0 c_i 2^i = \sum_{i=0}^r c_i 2^i$.

Inductive Step:

Let $k \in \mathbb{N}$ and assume that $(\forall \ell \leq k)(\exists r \in \mathbb{N})(\exists c_0, \dots c_r \in \{0,1\}) \left(\ell = \sum_{i=0}^r c_i 2^i\right)$. Since k, being a natural number, must be either even or odd, we can consider the following two cases.

Case 1:

If k is even, then we know $k = 2\ell$ for some $\ell \in \mathbb{N}$ by definition. This implies that $\ell \leqslant k$ by Lemma 4.1, so we then we can apply the *inductive hypothesis* to get $\ell = \sum_{i=0}^{r} c_i 2^i$ for some $r \in \mathbb{N}$ and some $c_0, \ldots c_r \in \{0, 1\}$. We can then see that

$$k+1=2\ell+1=1+2\sum_{i=0}^{r}c_{i}2^{i} \qquad \text{by the } inductive \; hypothesis}$$

$$=1+\sum_{i=0}^{r}c_{i}2^{i+1} \qquad \text{by distribution and the fact that } 2\cdot 2^{i}=2^{i+1}$$

$$=1+\sum_{i=1}^{r+1}c_{i-1}2^{i} \qquad \text{by shifting our indices of summation}$$

$$=1\cdot 2^{0}+\sum_{i=1}^{r+1}c_{i-1}2^{i}\cdot 2^{0} \; \text{because } 1=2^{0}$$

So, if we let $\tilde{r} := r + 1$, $\tilde{c}_0 := 1$, and $\tilde{c}_i := c_{i-1}$, we can conclude $k + 1 = \sum_{i=0}^{\tilde{r}} \tilde{c}_i 2^i$.

Case 2:

If k is odd, then we know $k=2\ell+1$ for some $\ell\in\mathbb{N}$ by definition. Lemma 4.1 then tells us that $\ell\leqslant k$, so again we know that $\ell=\sum_{i=0}^r c_i 2^i$ for some $r\in\mathbb{N}$ and some $c_0,\ldots c_r\in\{0,1\}$ by the *inductive hypothesis*. We now observe that

$$k+1=(2\ell+1)+1=2\ell+2=2^2\ell=2^2\sum_{i=0}^rc_i2^i \qquad \text{by the } inductive \ hypothesis}$$

$$=\sum_{i=0}^rc_i2^{i+2} \qquad \text{by distribution and } 2^22^i=2^{i+2}$$

$$=0+0+\sum_{i=2}^{r+2}c_{i-2}2^i \text{ by shifting our indices}$$

So, if we let $\tilde{r} := r+2$, $\tilde{c}_0 := 0$, $\tilde{c}_1 := 0$, and $\tilde{c}_i := c_{i-1}$, we can conclude $k+1 = \sum_{i=0}^{\tilde{r}} \tilde{c}_i 2^i$.

Therefore, every natural number has a binary representation.