Autômato Finito

Prof. Yandre Maldonado e Gomes da Costa

- AFD modelo matemático p/ definição de linguagem
- Caráter reconhecedor
- Modelam também sistemas de estados finitos
- Exemplo clássico: problema HLCR (Hopcroft e Ullman)

- Problema: um homem quer atravessar um rio levando consigo um lobo, uma cabra e um repolho e no bote só cabem ele e mais um dos outros três.
- Exemplos de possíveis estados do sistema:
 - <HLCR-0> todos na margem esquerda
 - <L-HCR> lobo na margem esquerda, cabra e repolho na direita
- Entradas do sistema:
- h homem atravessa o rio sozinho
- I homem atravessa o rio com o lobo
- c homem atravessa o rio com a cabra
- r homem atravessa o rio com o repolho

- o Objetivo: <HLCR-0> ⇒ <0-HLCR>
- Representação por diagrama:
 - círculos representam estados
 - arcos representam ação ou transição (de um estado p/ outro)
 - O estado final é marcado por um círculo duplo
 - As respostas p/ o problema são as sequências de ações que levam do estado inicial para o final

- Exemplo de sistema que pode ser representados desta forma:
 - Forno de micro-ondas
 - Entradas: porta aberta ou fechada, comandos fornecidos pelo cozinheiro através do painel, sinal do "timer" que expira.
 - Estados: aberto, esperando por comandos, cozinhando, desligado.

- Um AFD A define uma linguagem L(A) sobre um alfabeto Σ
- Caráter reconhecedor, ao contrário das gramáticas estudadas que tinham caráter gerador
 - dada uma cadeia x, ela pertence a L(A)?

- Uma abstração de um AFD
 - uma cabeça de leitura extrai sequencialmente o conteúdo de uma fita (string)
 - uma luz de aceitação que acende somente se a cadeia pertencer a linguagem representada pela AFD
 - exemplos de strings aceitos em HLCR:
 - chrclhc, ccchllrclllhccc, ...

- o Definição Matemática de um AFD Um AFD é uma quintupla $\langle \Sigma, S, S_0, \delta, F \rangle$, onde:
 - Σ é o alfabeto de entrada
 - S é um conjunto finito não vazio de estados
 - S_0 é o estado inicial, $S_0 \in S$
 - δ é a função de transição de estados, definida δ : S x $\Sigma \to$ S
 - F é o conjunto de estados finais, F⊆ S

- Um string x para ser aceito, deve levar do estado S₀ para algum estado pertencente a F
- A função δ determina como são as transições de estados. Ela leva um par <*s*, *a*> onde *s* é um estado e *a* uma letra do alfabeto num estado *s* '
 - $\delta(s, a) = s'$

• Então, dado um AFD $A=<\Sigma,S,S_0,\delta,F>$ e o string $x=a_1a_2...a_n \in \Sigma^*$, o autômato parte de S₀ Ao processar a₁ passa para o estado $\delta(S_0,a_1)$. Ao processar a_2 passa para $\delta(\delta(S_0,a_1),a_2)$, e assim por diante até processar a_n. Nesse ponto o autômato estará num estado R qualquer. Se R ∈ F então o string $x \in L(A)$.

- Finito: numero de estados envolvidos no sistema é finito
- Determinístico: estabelece que para uma cadeia x ∈ L(A), só existe uma única sequência de estados no AFD A para processá-la.

Exemplo de Autômato:

 $V = <\Sigma$, S, S₀, δ , F> onde:

$$\Sigma = \{a, b\}$$

$$S = \{\langle S_0 \rangle, \langle S_1 \rangle, \langle S_2 \rangle, \langle S_f \rangle\}$$

 $S_0 = \langle S_0 \rangle$ - estado inicial

$$F = \{\langle Sf \rangle\}$$

$$\delta (S_1, a) = S_f$$

$$\delta (S_1, b) = S_2$$

$$\delta (S_2, b) = S_1$$

Exercícios

Dados os seguintes autômatos:

- Identifique a linguagem associada a cada um;
- Descreva as funções de transição de cada um (exceto para o terceiro diagrama);

• Exemplo:

 Modelagem de uma "vending machine" que aceita moedas de 5, 10 e 25 centavos. O preço do produto que ela entrega é 30 centavos.

- Partindo do estado inicial (0 centavos) deveremos reconhecer seqüências que nos levem a estados finais (valor inserido >= 30 centavos)
- Podemos chamar o autômato de V

o Assim: $V = <\Sigma, \, S, \, S_0, \, \delta, \, F > \, onde:$

 $\Sigma = \{5, 10, 25\}$ - cada um destes símbolos (ou letras) representa uma ação

 $S = \{<0c>, <5c>, <10c>, <15c>, <20c>,$ <25c>, <30c>, <35c>, <40c>, <45c>, <50c>} - cada estado indica quanto foi depositado

 $S_0 = \langle 0c \rangle$ - estado inicial

 $F = \{<30c>, <35c>, <40c>, <45c>, <50c>\}$ estado onde a entrada é válida e o produto pode ser liberado

Delta é definida como:

$$\delta(<0c>, 5) = <5c>$$
 $\delta(<0c>, 10) = <10c>$
 $\delta(<0c>, 25) = <25c>$
 $\delta(<5c>, 5) = <10c>$
 $\delta(<5c>, 10) = <15c>$
 $\delta(<5c>, 25) = <30c>$
 $\delta(<10c>, 5) = <15c>$
 $\delta(<10c>, 5) = <35c>$

- - -

l Tabela de transição de estados

δ	5	10	25
<0c>	<5c>	<10c>	<25c>
<5c>	<10c>	<15c>	<30c>
<10c>	<15c>	<20c>	<35c>
<15c>	<20c>	<25c>	<40c>
<20c>	<25c>	<30c>	<45c>
<25c>	<30c>	<35c>	<50c>
<30c>	_	_	_
<35c>	_	_	_
<40c>	_	_	_
<45c>	_	_	_
<50c>	_	-	_

- Teste de cadeias:
 5 5 25 <u>simulação</u>
 5 5 10

Diagrama de transições

• • Algoritmo do AFD

```
Início
Estado Atual ← Estado Inicial;
Para I variar do Símbolo inicial da fita até o símbolo final
Faça Se Existe δ (Estado Atual, I)

Então Estado Atual ← δ (Estado Atual, I);
Senão REJEITA;
Se Estado Atual é estado final

Então ACEITA;
Senão REJEITA;
Fim.
```

Autômato Finito Não Determinístico - AFND

- Modelo matemático semelhante ao AFD;
- Condições mais flexíveis;
- Podem haver múltiplos caminhos para processar um string;

Definição formal

- o Definição Matemática de um AFND Um AFND é uma quíntupla $\langle \Sigma, S, S_0, \delta, F \rangle$, onde:
 - Σ é o alfabeto de entrada
 - S é um conjunto finito não vazio de estados
 - S₀ é um conjunto não vazio de estados iniciais, S₀ ⊆ S
 - δ é a função de transição de estados, definida δ: S x Σ → ρ(S)
 - F é o conjunto de estados finais, F⊆ S

- Σ, S e F são os mesmos do AFD;
- S₀ era um único estado em AFD. Em AFND é um conjunto com pelo menos um estado inicial;
- Então em AFD $S_0 \in S$, e em AFND $S_0 \subseteq S$;
- Um AFND pode ter mais de um estado "ativo" (corrente) num instante;
- Inicialmente, todo estado de S₀ são ativados;

- 6 "Alternativas" para processar um único string;
- Se o processamento de um string não levar ao estado final por um caminho, deve-se tentar por outros caminhos (se houverem);
- Se algum dos caminhos possíveis levar o string x a um estado final, então ele faz parte da linguagem definida pelo autômato.

- O string é rejeitado se a partir de nenhum estado inicial for possível atingir um estado final ao término do processamento;
- A função δ agora é definida S x Σ → ρ(S), onde cada elemento do contradomínio (ρ(S)) é um conjunto de estados pertencentes a S;

• Exemplo da função: $\delta(S,a) = \{R, T\}$

 Se o estado S estiver ativo e a letra a for processada, então tanto R quanto T passaram a estar ativos;

- Se seguirmos por R e não chegarmos a um estado final, podemos tentar por T;
- Se alguma das alternativas levar a um estado final, a string é reconhecida;
- Se nenhuma alternativa levar a um estado final, a string é rejeitada;

- Ao processar uma letra, todas as transições rotuladas com aquela letra, a partir de todos os estados ativos serão efetuadas;
- Então, podemos novamente observar que podemos ter vários estados ativos ao mesmo tempo, ao contrário dos AFD's.

Simulação 1
Simulação 2

Equivalência entre AFD e AFND

- A classe dos AFD's é equivalente à classe dos AFND's. Assim, para todo AFD existe um AFND equivalente e vice-versa.
 - Exemplo:

Exercício

 Construa um AFD e um AFND para a seguinte linguagem:

• $L(A) = \{w | w \in \{a,b\}^* \land w \text{ possui aa como subpalavra}\}$

- Para todo AFND existe um AFD equivalente;
- Dado um AFND $A=<\Sigma$, S, S_0 , δ , F>, define-se o AFD $A^d=<\Sigma$, S^d , S^d_0 , δ^d , $F^d>$ equivalente da seguinte forma:
 - $S^d = \rho(S)$

Conjunto de todas as combinações de estados de S

• $S_0^d = S_0$

- F^d: todas as combinações de estados de S^d que possui como componente algum estado de F;
- Seja Q∈ S^d, δ^d(Q,a) vai levar à um estado que corresponde à combinação de todos os estados que podem ser alcançados ao processar o símbolo 'a' a partir de qualquer componente de Q.

Dado o AFND:

Cria-se inicialmente um estado para cada combinação possível de estados do AFND.

Estabelece-se como estado inicial a combinação correspondente ao conjunto de estados iniciais do AFND

Estados finais: todos que possuem em sua combinação algum dos estados finais do AFND

- Criação das transições:
 - δ^d(Q,a) será igual ao estado que corresponda à combinação de todos os estados que formam o conjunto δ(Q,a);

o Exercício:

- É possível prever quantos estados serão formados em um AFD obtido a partir de um AFND?
 - 2^Q para um AFD com função de transição total;
 - 2^Q-1 para um AFD com função de transição parcial;
 - Onde Q é o número de estados do AFND.
- Mostre como ficaria o AFD do exemplo 1 com função de transição total.

- Durante a transformação de um AFND em um AFD podem ser criados estados que fiquem "isolados" do(s) estado(s) inicial(is);
- Estes podem simplesmente ser eliminados;
- Exercício: transforme o AFND descrito a seguir em AFD.

- Dois AFD's A e B são equivalentes, denotado por A≡B, se L(A)=L(B);
- Um autômato mínimo para uma linguagem regular L é um autômato com o menor número de estados possível que aceita L;

Um AFD $A=<\Sigma$, S_A , S_{0A} , δ_A , $F_A>$ é dito mínimo se para qualquer AFD $B=<\Sigma$, S_B , S_{0B} , δ_B , $F_B>$ tal que $A\equiv B$, temos que $|S_A|\leq |S_B|$.

- o Pré-requisitos para a minimização:
 - O Autômato deve ser determinístico;
 - Não pode ter estados inacessíveis a partir do estado inicial;
 - A função de transição deve ser total (todas as saídas devem ser previstas para todos os estados).
 - Para este último requisito, muitas vezes é necessário introduzir um estado S_{trash} para lançar as transições não previstas originalmente.

- A estratégia consiste fundir estados equivalentes* num mesmo estado;
- Para isto, são identificados estados nãoequivalentes e, por exclusão, encontrase os equivalentes;
- Utiliza-se uma tabela triangular que possui um cruzamento para cada par de estados distintos do autômato (incluindo S_{trash} quando este é acrescentado).

^{*} Dois estados são equivalentes se, ao processarem uma mesma palavra, ambos chegam a estados finais, ou ambos chegam a estados não finais.

• Supondo um autômato com $S = \{S_0, S_1, ..., S_{n-1}, S_n, S_{trash}\}$

Estados não
equivalentes serão
sinalizados, ao final do
processo, os
cruzamentos em
branco deverão indicar
estados equivalentes.

• • Minimização de AFD

- Inicia-se a marcação pelos estados trivialmente não-equivalentes;
 - Dois estados são trivialmente nãoequivalentes se um é final e o outro não;

Exemplo

 Considere o seguinte AFD e sua tabela de cruzamentos de estados:

	_				ialment
S ₁	X		₹ IIaU-	equival	entes
S ₂	X				
S_3	X				
S ₄		X	X	X	
S ₅		X	X	X	
	S ₀	S ₁	S ₂	S_3	S ₄

- Análise dos pares ainda não marcados:
 - Verificar se cada par de estados não marcado leva, ao processar um mesmo símbolo, à estados nãoequivalentes;
 - Nesta etapa os pares serão marcados com o símbolo ⊗.

S ₁	X				
S ₂	X				
S_3	X				
S ₄		X	X	X	
S ₅		X	X	X	
	S ₀	S ₁	S ₂	S ₃	S ₄

- Análise dos pares ainda não marcados:
 - $\bullet \{S_0, S_4\}$?

•
$$\delta(S_0, a) = S_2$$

$$\delta(S_4, a)=S_3$$

$$\Rightarrow$$

$$\delta(S_4, b)=S_2$$

$$\Rightarrow$$

S ₁	X				
S ₂	X	_	} {5	S_0, S_4	}
S_3	X		_	} {	S_0, S_4
S ₄		X	X	X	
S ₅		X	X	X	
	S ₀	S ₁	S ₂	S_3	S ₄

- Análise dos pares ainda não marcados:
 - $\bullet \{S_0, S_5\}$?

•
$$\delta(S_0, a) = S_2$$
 $\delta(S_5, a) = S_2$

$$\delta(S_5, a)=S_2$$

•
$$\delta(S_0, b)=S_1$$
 $\delta(S_5, b)=S_3$ \Rightarrow $\{S_1, S_3\}$?

$$\delta(S_5, b)=S_3$$

S ₁	X						
S ₂	X	_	$\longrightarrow \{S_0, S_4\}$				
S_3	X		_	} {	S_0, S_4		
S ₄		X	X	X			
S ₅		X	X	X			
	S ₀	S ₁	S ₂	S ₃	S ₄		

- Análise dos pares ainda não marcados:
 - $\bullet \{S_1, S_2\}$?

•
$$\delta(S_1, a)=S_1$$

$$\delta(S_2, a)=S_4$$

$$\Rightarrow$$

$$\{S_1, S_4\} = \lambda$$

•
$$\delta(S_1, a) = S_1$$
 $\delta(S_2, a) = S_4$ \Rightarrow $\{S_1, S_4\} = X$
• $\delta(S_1, b) = S_0$ $\delta(S_2, b) = S_5$ \Rightarrow $\{S_0, S_5\}$?

$$\delta(S_2, b)=S_5$$

$$\Rightarrow$$

$$\{S_0, S_5\}$$
?

S ₁	X							
S ₂	X		$\{S_0, S_4\}$					
S_3	X		_	\ {	S_0, S_4			
S ₄		X	X	X				
S ₅		X	X	X				
	S ₀	S ₁	S ₂	S_3	S ₄			

- Análise dos pares ainda não marcados:
 - $\bullet \{S_1, S_3\}$?

•
$$\delta(S_1, a) = S_1$$

$$\delta(S_3, a)=S_5$$

$$\Rightarrow$$

$$\{S_1, S_5\} = \lambda$$

•
$$\delta(S_1, a) = S_1$$
 $\delta(S_3, a) = S_5$ \Rightarrow $\{S_1, S_5\} = X$
• $\delta(S_1, b) = S_0$ $\delta(S_3, b) = S_4$ \Rightarrow $\{S_0, S_4\} = \emptyset$

$$\delta(S_3, b)=S_4$$

$$\Rightarrow$$

$$\{S_0, S_4\} = \otimes$$

S ₁	X		$\{S_0,$	S_5	
S ₂	X	8			
S_3	X		_	\	S_0, S_4
S ₄	8	X	X	X	
S ₅		X	X	X	
	S ₀	S ₁	S ₂	S_3	S ₄

- Análise dos pares ainda não marcados:
 - $\bullet \{S_2, S_3\}$?

•
$$\delta(S_2, a)=S_4$$

$$\delta(S_3, a)=S_5$$

$$\Rightarrow$$

•
$$\delta(S_2, a) = S_4$$
 $\delta(S_3, a) = S_5$ \Rightarrow $\{S_4, S_5\}$?
• $\delta(S_2, b) = S_5$ $\delta(S_3, b) = S_4$ \Rightarrow $\{S_4, S_5\}$?

$$\delta(S_3, b)=S_4$$

$$\Rightarrow$$

S ₁	X					
S ₂	X	8				
S_3	X	8	-	} {\$	S_0, S_4	
S ₄	8	X	X	X	{S ₂ , S	⊃ ₃
S ₅	8	X	X	X	1	
	S ₀	S ₁	S ₂	S ₃	S ₄	

- Análise dos pares ainda não marcados:
 - $\{S_4, S_5\}$?

•
$$\delta(S_4, a) = S_3$$

$$\delta(S_5, a)=S_2$$

$$\Rightarrow$$

•
$$\delta(S_4, a) = S_3$$
 $\delta(S_5, a) = S_2$ \Rightarrow $\{S_2, S_3\}$?
• $\delta(S_4, b) = S_2$ $\delta(S_5, b) = S_3$ \Rightarrow $\{S_2, S_3\}$?

$$\delta(S_5, b)=S_3$$

$$\Rightarrow$$

S ₁	X			(C		
S ₂	X	8			S_4, S_5	
S ₃	X	8	_	}}	S_0, S_4	
S ₄	8	X	X	X	{S ₂ , \$	⊃ ₃
S ₅	8	X	X	X		
	S ₀	S ₁	S ₂	S_3	S ₄	

- o Conclusão
 - Não foi identificada a não-equivalência entre os pares: S₂xS₃ e S₄xS₅;
 - Assim, estes pares podem ser "fundidos" em um único estado;

S ₁	X				
S ₂	X	8			
S_3	X	8			
S ₄	8	X	X	X	
S ₅	8	X	X	X	
	S ₀	S ₁	S ₂	S ₃	S ₄

• Fusão dos pares S₂xS₃ e S₄xS_{5:}

• • | Minimização de AFD

- Critério usado para a marcação dos estados não-equivalentes:
 - Para cada par {S_u, S_v} não marcado e para cada símbolo a ∈ Σ, suponha que δ(S_u, a)=R_u e δ(S_v, a)=R_v:
 - Se $R_u = R_v$, então S_u e S_v são equivalente e, para o símbolo a não deve ser marcado;
 - Se R_u ≠ R_v e o par {R_u, R_v} não está marcado, então {S_u, S_v} é incluído em uma lista a partir de {R_u, R_v} para posterior análise;
 - Se R_u ≠ R_v e o par {R_u, R_v} está marcado, então:
 - {S_u, S_v} é não equivalente e deve ser marcado;
 - Se {S_u, S_v} encabeça uma lista de pares, então todos os pares da lista devem ser marcados.

- Na unificação de estados equivalentes:
 - Pares de estados finais equivalentes podem ser unificados como um único estado final;
 - Pares de estados não-finais equivalentes podem ser unificados como um único estado não-final;
 - Se algum dos estados equivalentes é inicial, então o correspondente estado unificado é inicial.

• • Bibliografia

- MENEZES, Paulo Blauth. Linguagens Formais e Autômatos. Porto Alegre: Editora Sagra-Luzzatto, 1998;
- DELAMARO, Márcio Eduardo. Linguagens Formais e Autômatos. UEM, 1998;
- HOPCROFT, J. E. & ULLMAN, J. D. Formal Languages and Their Relation to Automata
 Addison-Wesley, 1969.