Analyses of APA dynamics across rice tissues with the mov APA package

Xiaohui Wu, Wenbin Ye, Tao Liu, Hongjuan Fu

Last modified 2020-07-25

Contents

1	Overview				
2	Preparations				
	2.1 Rice PAC data	2			
	2.2 Reference genome	3			
	2.3 Genome annotation	4			
3	Preprocessing of PAC data 4				
	3.1 Remove internal priming artifacts	4			
	3.2 Group nearby cleavage sites	4			
	3.3 Merge multiple PAC datasets	4			
	3.4 Normalization	6			
4	Annotate PACs	6			
5	Statistical analyses of PACs				
6	Poly(A) signals and sequences	12			
	• •	12			
	- (/ =	14			
	*	15			
7	Quantification of PACs by various metrics	18			
	7.1 Quantification of each PAC by $movPAindex$	18			
	7.2 Quantification of APA by $movAPAindex$				
8	DE genes	23			
	8.1 Detect DE genes	23			
	8.2 Output DE genes				
9	DE PACs	25			
	9.1 Detect DE PACs				
	9.2 Statistics of DE PACs				
	9.3 Output DE PACs	27			

	9.4	Visualize DE PACs in a gene	29
10	3'U'	TR switching	31
	10.1	Detect 3'UTR switching events	31
	10.2	Statistics of 3'UTR switching results	34
	10.3	Visualize 3'UTR switching events	35
11	\mathbf{AP}^{A}	A site switching	40
	11.1	Detect 3'UTR-PAC switching	40
	11.2	Detect APA-site switching	41
	11.3	Subset PACds by switching genes or PACs	42
	11.4	Visualization of APA-site switching	42
12	Sess	sion Information	44
13	Refe	erences	46

1 Overview

We investigated the application of movAPA on a poly(A) site dataset of 14 tissues in *Oryza sativa japonica* from 3'end sequencing (Fu, et al., 2016). We used a subset of the rice data containing 1233 PACs in 455 genes from three tissues (embryo, anther, and mature pollen) for demonstration. The original dataset containing full list of PACs can be downloaded from plantAPAdb (Zhu et al, 2019). Here the poly(A) sites are already poly(A) site clusters (PACs) which were grouped from nearby cleavage sites.

2 Preparations

2.1 Rice PAC data

movAPA implemented the *PACdataset* object for storing the expression levels and annotation of PACs from various conditions/samples. Almost all analyses of poly(A) site data in movAPA are based on the *PACdataset*. The "counts" matrix is the first element in the array list of *PACdataset*, which stores non-negative values representing expression levels of PACs. The "colData" matrix records the sample information and the "anno" matrix stores the genome annotation or additional information of the poly(A) site data.

The moveAPA package includes an example rice PAC data stored as a PAC dataset object, which contains 1233 PACs from 455 genes. First load movAPA by library(movAPA) and then load the example data.

```
## library(movAPA, warn.conflicts = FALSE, quietly=TRUE)
data("PACds")
PACds
#> PAC# 1233
#> gene# 455
#> nPAC
```

```
#> 3UTR
               482
#> 5UTR
                20
#> CDS
                44
#> Ext_3UTR
               391
#> intergenic
               181
#> intron
               115
#> sample# 9
#> anther1 anther2 anther3 embryo1 embryo2 ...
#> groups:
#> @colData...[9 x 1]
#>
            group
#> anther1 anther
#> anther2 anther
#> @counts...[1233 x 9]
#>
                         anther1 anther2 anther3 embryo1 embryo2 embryo3
#> Ds01q0151600:2792379
                               0
                                       1
                                                0
                                                        2
                                                                1
                                                                         1
#> Os01q0151600:2795487
                              11
                                      16
                                               17
                                                       60
                                                               55
                                                                        51
#>
                         maturePollen1 maturePollen2 maturePollen3
#> 0s01q0151600:2792379
                                     0
                                                    3
#> Os01g0151600:2795487
                                    24
                                                                 10
#> @colData...[9 x 1]
#>
            group
#> anther1 anther
#> anther2 anther
#> @anno...[1233 x 10]
                         chr UPA_start UPA_end strand
                                                                  ftr
                                                         coord
#> Os01q0151600:2792379
                               2792363 2792427
                                                     + 2792379 intron Os01q0151600
                                                                 3UTR Os01q0151600
#> Os01g0151600:2795487
                           1
                               2795427 2795509
                                                     + 2795487
                              gene_type ftr_start ftr_end
#> Os01g0151600:2792379 protein_coding
                                          2792174 2792920
#> 0s01g0151600:2795487 protein_coding
                                          2795347 2795857
```

2.2 Reference genome

The reference genome is not necessary, while it is required for removing internal priming or poly(A) signal analyses. movAPA uses reference genome sequences that are represented as a *BSgenome* object or stored in a fasta file. The *BSgenome* of rice for this example can be downloaded from the github website of movAPA. Please refer to the *BSgenome* package for making a *BSgenome* object if there is no corresponding *BSgenome* package for your species. Alternatively, the genome assembly can be stored in a fasta file, which can also be used as input for movAPA.

```
library("BSgenome.Oryza.ENSEMBL.IRGSP1")
bsgenome <- BSgenome.Oryza.ENSEMBL.IRGSP1</pre>
```

2.3 Genome annotation

Genome annotation stored in a GFF/GTF file or a TXDB R object can be used for annotating PACs. The function *parseGff* is used to parse the given annotation and the processed annotation can be saved into an rdata object for further use. The GFF file or the processed rdata file of rice for this example can be downloaded from the github website of movAPA (https://github.com/BMILAB/movAPA).

```
gffFile="Oryza_sativa.IRGSP-1.0.42.gff3"
gff=parseGff(gffFile)
save(gff, file='Oryza_sativa.IRGSP-1.0.42.gff.rda')
```

3 Preprocessing of PAC data

3.1 Remove internal priming artifacts

Internal priming (IP) artifacts can be removed by the removePACdsIP function. Here, PACs with six consecutive or more than six As within the -10 to +10 nt window are considered as internal priming artifacts. We scan the internal priming artifacts in PACds and get two PACdatasets recording internal priming PACs and real PACs. Since IP artifacts are already removed in the example PACds, we did not perform this step in this case study.

3.2 Group nearby cleavage sites

The function *mergePACds* can be used to group nearby cleavage sites into PACs. Here is an example to group nearby PACs within 100 bp into one PAC.

```
PACdsClust=mergePACds(PACds, d=100)

length(PACds)

#> [1] 1233
length(PACdsClust)

#> [1] 1132
```

3.3 Merge multiple PAC datasets

The function mergePACds can also be used to merge multiple PACdatasets. Notably, the annotation columns (e.g., gene, ftr) are lost after merging, you need call annotatePAC to annotate the merged PACds.

```
## Constuct another demo PACdataset for merging.
PACds2=PACds
PACds2@anno$coord = PACds2@anno$coord + sample(-50:50, 1)
## You may also change the sample names and group names.
rownames(PACds2@colData)=paste0(rownames(PACds2@colData),'v2')
PACds2@colData$group=paste0(PACds2@colData$group,'v2')
colnames(PACds2@counts) = paste0(colnames(PACds2@counts), 'v2')
## Construct a list of PACds to be merged.
PACdsList=list(pac1=PACds, pac2=PACds2)
## Merge two PACdatasets, nearby PACs within 24bp of each other
## will be merged into one PAC.
pp=mergePACds(PACdsList, d=24)
tail(pp@colData)
#>
                           group
#> embryo1v2
                        embryov2
#> embryo2v2
                        embryov2
#> embryo3v2
                        embryov2
#> maturePollen1v2 maturePollenv2
#> maturePollen2v2 maturePollenv2
#> maturePollen3v2 maturePollenv2
рp
#> PAC# 2450
#> sample# 18
#> anther1 anther2 anther3 embryo1 embryo2 ...
#> groups:
#> @colData...[18 x 1]
          group
#> anther1 anther
#> anther2 anther
#> @counts...[2450 x 18]
#> anther1 anther2 anther3 embryo1 embryo2 embryo3 maturePollen1 maturePollen2
         0
                                 0
#> 1
                0
                         0
                                        0
                                                 0
                                 2
                                        1
                                                 1
                                                               0
#> 2
         0
                 1
                          0
                                                                            0
#> maturePollen3 anther1v2
         0
#> 2
               0
#> @colData...[18 x 1]
          group
#> anther1 anther
#> anther2 anther
#> @anno...[2450 x 8]
#> chr strand coord tottag UPA_start UPA_end nPA maxtag
#> 1 1 + 2792347 5 2792347 2792347
                                                1
#> 2 1 + 2792379 5 2792379 2792379 1
```

3.4 Normalization

The function *normalizePACds* can be called for normalization, which implements three strategies including TPM (Tags Per Million), the normalization method of DESeq (Anders and Huber, 2010), and the TMM method used in EdgeR (Robinson, et al., 2010).

```
## Here normalization method TMM (or EdgeR) is used,
## while you may also choose TPM or DESeq.
PACds=normalizePACds(PACds, method='TMM')
#> converting counts to integer mode
## Library sizes after normalization.
colSums(PACds@counts)
#>
         anther1
                       anther2
                                      anther3
                                                     embryo1
                                                                   embryo2
                                                       30468
#>
                         21529
                                        21640
                                                                     31384
         embryo3 maturePollen1 maturePollen2 maturePollen3
#>
                          76027
#>
           30768
                                        62261
```

4 Annotate PACs

Users can use annotate PAC to annotate a PAC dataset with a GFF/GTF file or a TXDB R object. Here we parse the genome annotation file in GFF3 format and save the processed annotation into a rdata object for further use.

```
gffFile="Oryza_sativa.IRGSP-1.0.42.gff3"
gff=parseGff(gffFile)
save(gff, file='Oryza_sativa.IRGSP-1.0.42.gff.rda')
```

Then we can load the parsed annotation file.

```
load('Oryza_sativa.IRGSP-1.0.42.gff.rda')
```

Here is an example to annotate PACds with the genome annotation. Because the demo data already contains the annotation, we removed the annotation columns before calling *annotatePAC*.

```
PACds1=PACds
PACds1@anno[,c('gene','ftr','gene_type','ftr_start','ftr_end')]=NULL
PACds1=annotatePAC(PACds1, gff)
```

We can output the annotated PACds and the sample information to text files.

5 Statistical analyses of PACs

To make statistics of distributions of PACs for each sample, first we pooled replicates.

```
PACds1=subsetPACds(PACds, group='group', pool=TRUE)
head (PACds1@counts)
#>
                         anther embryo maturePollen
#> Os01g0151600:2792379
                              1
                                      3
                                                    0
#> Os01q0151600:2795487
                             33
                                    116
                                                   65
#> Os01q0151600:2795636
                             51
                                     60
                                                   11
#> Os01g0151600:2795858
                                                    3
                             17
                                     45
#> Os01q0179300:4125553
                                                    0
                              6
                                     13
#> Os01q0179300:4125845
                              3
                                                    0
```

Then we can make statistics of distribution of PACs using different PAT cutoffs. minPAT=5 means that only PACs with >=5 reads are used for statistics.

```
pstats=movStat(PACds1, minPAT=c(1, 5, 10, 20, 50, 60), ofilePrefix=NULL)
names(pstats)
                "pat5" "pat10" "pat20" "pat50" "pat60"
#> [1] "pat1"
pstats$pat10
#>
                nPAC
                        nPAT nGene nAPAgene APAextent 3UTR_nPAT 5UTR_nPAT CDS_nPAT
#> anther
                  524
                       61855
                               340
                                         135 0.3970588
                                                            33008
                                                                         102
                                                                                   31
                  507 91051
                               307
                                         150 0.4885993
                                                            66158
                                                                          61
                                                                                  631
#> embryo
#> maturePollen 513 191317
                               332
                                         122 0.3674699
                                                            47998
                                                                          67
                                                                                     0
                  709 344223
                                         200 0.5154639
                                                                         230
#> total
                               388
                                                           147164
                                                                                   662
#>
                Ext_3UTR_nPAT intergenic_nPAT intron_nPAT 3UTR_nPAC 5UTR_nPAC
#> anther
                         25951
                                           2235
                                                         528
                                                                    274
                                                                                5
#> embryo
                                           6090
                                                                                2
                         17494
                                                         617
                                                                    288
#> maturePollen
                        138323
                                           3793
                                                        1136
                                                                    277
                                                                                3
#> total
                        181768
                                                        2281
                                                                                5
                                          12118
                                                                    359
#>
                 CDS_nPAC Ext_3UTR_nPAC intergenic_nPAC intron_nPAC
                        3
                                                                    13
#> anther
                                     199
                                                       30
                        7
#> embryo
                                     182
                                                       16
                                                                    12
#> maturePollen
                        0
                                     185
                                                       35
                                                                    13
#> total
                        9
                                                       57
                                     255
                                                                    24
```

Statistical results can be visualized by barplots to show PAC#, PAT#, APA gene%, PAC%, PAT% across samples and genomic regions. Here we plot all statistical results with cutoffs 5 and 10, with each plot having two smaller plots corresponding to the two cutoffs.

```
plotPACdsStat(pstats, pdfFile='PACds_stat.pdf', minPAT=c(5,10))
```

Plot specific cutoffs and conditions.

Plot the overall distributions using pooled samples (total) and two cutoffs.

Plot the overall distributions using pooled samples (total) and one cutoff.

Plot figures to the current device.

```
plotPACdsStat(pstats, pdfFile=NULL, minPAT=c(5,10))
```

Number of PACs

#> Plot Number of PACs

#> Plot Number of PATs

#> Plot APA extent

#> Plot PAC% distribution

#> Plot PAT# distribution

#> Plot PAT% distribution

6 Poly(A) signals and sequences

movAPA provides several functions, including annotateByPAS, faFromPACds, kcount, and plotATCG-forFAfile, for sequence extraction and poly(A) signal identification.

6.1 Poly(A) signals

Annotate PACs by corresponding signal of AATAAA located upstream 50 bp of the PAC.

```
PACdsPAS=annotateByPAS(PACds, bsgenome, grams='AATAAA',
from=-50, to=-1, label=NULL)

summary(PACdsPAS@anno$AATAAA_dist)

#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

#> 16.00 22.00 25.00 26.92 30.00 50.00 1132
```

Scan AATAAA's 1nt variants.

```
PACdsPAS=annotateByPAS(PACds, bsgenome, grams='V1',
                       from=-50, to=-1, label=NULL)
table(PACdsPAS@anno$V1_gram)
#>
#> AAAAAA AACAAA AAGAAA AATAAA AATAAC AATAAG AATAAT AATACA AATAGA AATATA AATCAA
       91
                     50
                             74
                                           31
                                                   31
                                                          25
                                                                 26
                                                                        55
                                                                                26
                                    15
#> AATGAA AATTAA ACTAAA AGTAAA ATTAAA CATAAA GATAAA TATAAA
       56
                             21
                                    27
                                           13
                                                   11
```

Scan custom k-grams.

```
PACdsPAS=annotateByPAS(PACds, bsgenome,

grams=c('AATAAA','ATTAAA','GATAAA','AAAA'),

from=-50, to=-1, label='GRAM')

table(PACdsPAS@anno$GRAM_gram)

#>

#>

#AAAA AATAAA ATTAAA GATAAA

#>

409

48

24

8
```

Scan patterns with priority: AATAAA >> ATTAAA >> remaining k-grams.

```
PACdsPAS=annotateByPAS(PACds, bsgenome,

grams=c('AATAAA','ATTAAA','GATAAA','AAAA'),

priority=c(1,2,3,3),

from=-50, to=-1, label='GRAM')

table(PACdsPAS@anno$GRAM_gram)

#>

#>

AAAA AATAAA ATTAAA GATAAA

#>

337

101

44

7
```

Plot signal logos.

Here we show another example to scan mouse signals in rice PACs. First, we get mouse signals and set the priority.

```
v=getVarGrams('mm')
priority=c(1,2,rep(3, length(v)-2))
```

Then scan upstream regions of PACs for mouse signals.

```
PACdsMM=annotateByPAS(PACds, bsgenome, grams=v, priority=priority, from=-50, to=-1, label='mm')
```

Prepare the data to plot PAS distributions.

```
pas=as.data.frame(cbind(region=PACdsMM@anno$ftr, PAS=PACdsMM@anno$mm_gram))
pas$PAS[is.na(pas$PAS)]='NOPAS'
pas$PAS[pas$PAS %in% v[-c(1:2)]]='Variants'
n=pas %>% dplyr::group_by(region, PAS) %>% dplyr::summarise(nPAC=n())
#> `summarise()` regrouping output by 'region' (override with `.groups` argument)
n2=pas %>% dplyr::group_by(region) %>% dplyr::summarise(nTot=n())
#> `summarise()` ungrouping output (override with `.groups` argument)
```

Plot PAS distributions.

```
ggplot(data=n, aes(x=region, y=PAC, fill=PAS)) +
  geom_bar(stat="identity") +
  ylab("PAC Fraction") + theme_bw()
```


6.2 Exract sequences

The faFromPACds function provides various options to extract sequences of interest.

Here we show some examples to extract sequences from different poly(A) signal regions.

```
## The suggested signal regions when species is 'chlamydomonas reinhardtii'.
files=faFromPACds(PACds, bsgenome, what='updn', fapre='Chlamy.NUE',
                  up=-25, dn=-5, byGrp='ftr')
files=faFromPACds(PACds, bsgenome, what='updn', fapre='Chlamy.FUE',
                  up=-150, dn=-25, byGrp='ftr')
files=faFromPACds(PACds, bsgenome, what='updn', fapre='Chlamy.CE',
                  up=-5, dn=5, byGrp='ftr')
files=faFromPACds(PACds, bsgenome, what='updn', fapre='Chlamy.DE',
                  up=-5, dn=30, byGrp='ftr')
## The suggested signal regions when species is plant.
## In Arabidopsis or rice, signal regions are: FUE -200~-35, NUE -35~-10, CE -10~15.
files=faFromPACds(PACds, bsgenome, what='updn', fapre='plants.NUE',
                  up=-35, dn=-10, byGrp='ftr')
files=faFromPACds(PACds, bsgenome, what='updn', fapre='plants.FUE',
                  up=-200, dn=-35, byGrp='ftr')
files=faFromPACds(PACds, bsgenome, what='updn', fapre='plants.CE',
                  up=-10, dn=15, byGrp='ftr')
```

6.3 Base compostions and k-grams

The function *plotATCGforFAfile* is for plotting single nucleotide profiles for given fasta file(s), which is particularly useful for discerning base compositions surrounding PACs.

First trim sequences surrounding PACs. Sequences surrounding PACs in different genomic regions are extracted into files. The PAC position is 301.

```
#> 391 >>> updn.Ext_3UTR.fa

#> 44 >>> updn.CDS.fa

#> 181 >>> updn.intergenic.fa

#> 20 >>> updn.5UTR.fa
```

Then plot base compositions for specific sequence file(s).

We can also plot a single fasta file and specify a region.

Users can also generate these plots into a PDF file and save the calculated base compositions.

After extracting sequences, we can call the *kcount* function to obtain the number of occurrences or frequencies of k-grams from the whole sequences or a specified region of sequences. Particularly, specific k-grams (e.g., AAUAAA, AUUAAA) or a value of k (e.g., k=6 means all hexamers) can be set.

```
## Count top 10 hexamers (k=6) in the NUE region
## (normally from 265~295 if the PAC is at 301).
fafile='updn.3UTR.fa'
kcount(fafile=fafile, k=6, from=265, to=295, topn=10)
        grams count
                          perc
#> 1
       AAAAAA
                74 0.005904883
                38 0.003032237
#> 274 ATATAT
#> 3073 GAAAAA
               34 0.002713055
       AAAAAT 31 0.002473667
#> 2
              31 0.002473667
#> 257 ATAAAA
#> 5
       AAAATA 30 0.002393872
#> 65
       AATAAA 30 0.002393872
#> 1366 TTTTTT 28 0.002234280
#> 449 ATGAAA
               27 0.002154485
#> 769 AGAAAA
                27 0.002154485
## Count given hexamers.
kcount(fafile=fafile, grams=c('AATAAA','ATTAAA'),
      from=265, to=295, sort=FALSE)
#>
     grams count
                      perc
#> 1 AATAAA
              30 0.7142857
#> 2 ATTAAA
              12 0.2857143
## Count AATAAA and its 1nt variants in a given region.
kcount(fafile=fafile, grams='v1', from=265, to=295, sort=FALSE)
      grams count
                         perc
#> 1 AATAAA
               30 0.092024540
#> 2 TATAAA
              14 0.042944785
#> 3 CATAAA
               8 0.024539877
#> 4 GATAAA
               9 0.027607362
#> 5 ATTAAA
             12 0.036809816
#> 6 ACTAAA
               3 0.009202454
#> 7 AGTAAA
               8 0.024539877
#> 8 AAAAAA 74 0.226993865
#> 9 AACAAA 13 0.039877301
#> 10 AAGAAA
               21 0.064417178
#> 11 AATTAA
               14 0.042944785
#> 12 AATCAA
               11 0.033742331
#> 13 AATGAA
               19 0.058282209
#> 14 AATATA
               26 0.079754601
#> 15 AATACA
               9 0.027607362
#> 16 AATAGA
               8 0.024539877
#> 17 AATAAT
               23 0.070552147
#> 18 AATAAC
               7 0.021472393
#> 19 AATAAG
               17 0.052147239
```

7 Quantification of PACs by various metrics

movAPA provides various metrics to measure the usages of PACs across samples, including three metrics for the quantification of the usage of each single poly(A) site by the *movPAindex* function and four metrics for the quantification of APA site usage of a gene by the *movAPAindex* function.

7.1 Quantification of each PAC by movPAindex

movPAindex provides three metrics for the quantification of each PAC in a gene, including "ratio", "Shannon", and "geo". First you can merge replicates of the same sample and remove lowly expressed PACs before calculate the index.

```
p=subsetPACds(PACds, group='group', pool=TRUE, totPACtag=20)
```

Calculate the tissue-specificity. Q or H=0 means that the PAC is only expressed in one tissue. NA means the PAC is not expressed in the respective tissue.

```
paShan=movPAindex(p, method='shan')
#> Using count for Shannon.
#> Tissue-specific PAC's H_cutoff (mean-2*sd):
#> Tissue-specific PAC's Q_cutoff (mean-2*sd):
                                              0.2052354
#> Tissue-specific PAC# (H<H_cutoff): 35</pre>
#> Tissue-specific PAC# (Q<Q_cutoff): 25</pre>
#> Constitutive PAC's H_cutoff (mean+2*sd): 1.957418
#> Constitutive PAC's Q cutoff (mean+2*sd): 3.42726
#> Constitutive PACs (H>H_cutoff): 0
#> Constitutive PACs (Q>Q cutoff): 0
## Show some rows with low H value (which means high overall tissue-specificity).
head(paShan[paShan$H<0.2742785, ], n=2)
#>
                                     Q_min Q_min_cond
                                                       anther
                                                                embryo
embryo 5.200622 0.246426
#> Os01q0571300:21939527 0.0000000 0.000000
                                              embryo
                                                           NA 0.000000
                        mature Pollen
#>
#> Os01q0266100:9088974
                                 NA
#> 0s01g0571300:21939527
```

Use the relative expression levels (ratio) to calculate tissue-specificity.

```
paShan2=movPAindex(p, method='shan', shan.ratio = TRUE)
#> Using ratio for Shannon.
#> Tissue-specific PAC's H_cutoff (mean-2*sd): 0.6462506
#> Tissue-specific PAC's Q_cutoff (mean-2*sd): 0.9463281
#> Tissue-specific PAC# (H<H_cutoff): 20
#> Tissue-specific PAC# (Q<Q_cutoff): 24
#> Constitutive PAC's H_cutoff (mean+2*sd): 2.053762
#> Constitutive PAC's Q_cutoff (mean+2*sd): 3.81471
#> Constitutive PACs (H>H_cutoff): 0
#> Constitutive PACs (Q>Q_cutoff): 0
head(paShan2, n=2)
```

Cacluate the geo metric, which is only suitable for APA genes. NA means no PAC of the gene is expressed in the respective tissue. geo>0 means the PAC is used more than average usage of all PACs in the gene. geo~0 means similar usage; <0 means less usage.

Cacluate the ratio metric, which is only suitable for APA genes. NA means no PAC of the gene is expressed in the respective tissue.

```
paRatio=movPAindex(p, method='ratio')
head(paRatio)
#>
                                  anther
                                            embryo maturePollen
#> ENSRNA049472915:32398829 0.007231405 0.1183852
                                                     0.01146789
#> ENSRNA049472915:32398407 0.992768595 0.8816148
                                                     0.98853211
#> Os01q0151600:2795487
                            0.326732673 0.5248869
                                                     0.82278481
#> Os01q0151600:2795636
                            0.504950495 0.2714932
                                                     0.13924051
#> Os01g0151600:2795858
                            0.168316832 0.2036199
                                                     0.03797468
#> Os01q0179300:4126216
                            0.927272727 0.8699634
                                                     0.99152542
```

Plot a heatmap to show the distribution of tissue-specificity of PACs. It is only reasonable to plot the heatmap of the Shanno metric. Or you may filter the proximal or distal PAC of the gene first and plot the ratio or geo metrics.

First, remove rows with NA and then plot the heatmap.

Calculate the tissue-specificity for each replicate.

```
paShan=movPAindex(PACds, method='shan')
#> Using count for Shannon.
#> Tissue-specific PAC's H_cutoff (mean-2*sd): 0.269235
#> Tissue-specific PAC's Q_cutoff (mean-2*sd): 0.3825375
#> Tissue-specific PAC# (H<H_cutoff): 91
#> Tissue-specific PAC# (Q<Q_cutoff): 91
#> Constitutive PAC's H_cutoff (mean+2*sd): 3.69439
#> Constitutive PAC's Q_cutoff (mean+2*sd): 6.527702
#> Constitutive PACs (H>H_cutoff): 0
#> Constitutive PACs (Q>Q_cutoff): 0
## Plot heamap to show the consistency among replicates.
paShanHm=paShan[, -(1:3)]
paShanHm=paShanHm[rowSums(is.na(paShanHm))==0, ]
Heatmap(paShanHm, show row names=FALSE, cluster columns = TRUE,
```


7.2 Quantification of APA by movAPAindex

The *movAPAindex* function provides four gene-level metrics for the quantification of APA site usage, including RUD (Relative Usage of Distal PAC) (Ji, et al., 2009), WUL (Weighted 3' UTR Length) (Ulitsky, et al., 2012; Fu, et al., 2016), SLR (Short to Long Ratio) (Begik, et al., 2017), and GPI (Geometric Proximal Index) (Shulman and Elkon, 2019).

Get APA index using the WUL method.

Plot gene's metric values across samples by heatmap with the ComplexHeatmap package.

```
## Remove NA rows before plotting heatmap.
geneWUL=geneWUL[rowSums(is.na(geneWUL))==0, ]
Heatmap(geneWUL, show_row_names=FALSE)
```

Get APA index using the RUD method.

Get APA index by method=SLR, using the proximal and distal PACs.

```
geneSLR=movAPAindex(p, method="SLR", choose2PA='PD')
head(geneSLR, n=2)
geneSLR=geneSLR[rowSums(is.na(geneSLR))==0, ]
Heatmap(geneSLR, show_row_names=FALSE)
```

Get APA index by method=GPI, using the proximal and distal PACs.

```
geneGPI=movAPAindex(PACds, method="GPI", choose2PA='PD')
head(geneGPI)
#>
                            anther2
                                      anther3
                                                embryo1
                                                          embryo2
                 anther1
#> Ds01q0151600 -0.4587689 -0.3107442 -0.1400540 0.3912043 0.6609640
#> 0s01q0261200 -1.0253130 -0.9437626 -0.6497801 -0.7075187 -0.1315172
#> Os01g0263600 -0.5000000
                               NaN -0.5000000 -1.2924813 -0.2924813
#> Ds01q0314000 1.1609640 0.7924813 1.0000000 0.5000000 1.00000000
#> Os01q0524500 -0.3140156 -0.5000000 -0.2237295
                                                    NaN
                                                              NaN
#>
                    embryo3 maturePollen1 maturePollen2 maturePollen3
#> 0s01q0151600 3.552467e-01
                                2.014874
                                            0.5000000
                                                        0.35021986
#> Os01g0254900 -9.965440e-02
                                1.347822
                                            1.2221596
                                                        0.35975231
#> Os01q0261200 -3.203427e-16
                               -2.043731
                                           -0.5351947
                                                       -1.00000000
#> Os01g0263600 -1.292481e+00
                                     NaN
                                                  NaN
                                                               NaN
#> Os01q0314000 2.924813e-01
                                     NaN
                                                               NaN
                                                  NaN
#> Os01q0524500  0.000000e+00
                                1.100817
                                            0.2311716
                                                      0.03700029
geneGPI=geneGPI[rowSums(is.na(geneGPI))==0, ]
Heatmap(geneGPI, show row names=FALSE, cluster columns = TRUE,
       heatmap_legend_param = list(title = 'GPI'))
```


8 DE genes

3' seq data have been demonstrated informative in quantifying expression levels of genes by summing up 3' seq reads of all PACs in a gene (Lianoglou, et al., 2013). To detect DE genes between samples with 3' seq, we implemented the function movDEgene with the widely used R package DESeq2.

8.1 Detect DE genes

First we show an example of detecting DE genes for two conditions.

```
## Subset two conditions first.
pacds=subsetPACds(PACds, group='group',cond1='anther', cond2='embryo')
## Detect DE genes using DESeq2 method,
```

```
## only genes with total read counts in all samples >=50 are used.
DEgene=movDEGene(PACds=pacds, method='DESeq2', group='group', minSumPAT=50)
```

Make statistics of the DE gene results; genes with padj<0.05 & log2FC>=0.5 are considered as DE genes.

We can also detect DE genes among more than two conditions.

```
DEgene=movDEGene(PACds=PACds, method='DESeq2', group='group', minSumPAT=50)
stat=movStat(object=DEgene, padjThd=0.05, valueThd=1)
```

```
## Number of DE genes in each pair of conditions.
stat$nsig
#>
                        siq.num
#> anther.embryo
                            150
#> anther.maturePollen
                             77
#> embryo.maturePollen
                            192
## Overlap between condition pairs.
stat$ovp
#>
                                         pair n1.sig.num n2.sig.num novp.sig.num
#> 1
                                                                  77
           anther.embryo-anther.maturePollen
                                                      150
                                                                                47
           anther.embryo-embryo.maturePollen
#> 2
                                                      150
                                                                               122
                                                                 192
#> 3 anther.maturePollen-embryo.maturePollen
                                                                 192
                                                                                62
```

8.2 Output DE genes

Output movStat results into files: "DEgene.plots.pdf" and 'DEgene.stat'. Several heatmaps are generated.

```
outputHeatStat(heatStats=stat, ostatfile='DEgene.stat', plotPre='DEgene')
```

You can further call movSelect() to select DE gene results with more information. Select DE gene results with full information including the read counts in each sample.

```
selFull=movSelect(DEgene, condpair='embryo.anther', padjThd=0.05, valueThd=1,
                out='full', PACds=PACds)
#> Warning: condpair is flip of movRes@conds, so movRes@pairwise$value*(-1)
head(selFull)
            gene anther1 anther2 anther3 embryo1 embryo2 embryo3 maturePollen1
195
                                                         170
                     38
                            42
                                    39
                                                  195
                                                                       58
                     59
                            65
                                                  359
                                                         295
52
                                           376
                                                                       22
```

```
#> 3 Os01q0224200
                                       0
                               1
                                              15
                                                      13
                                                             16
                                                                            0
8
                              11
                                      12
                                               0
                                                      0
                                                              2
                                                                           62
#> 5 Os01q0247600
                                     123
                                              20
                                                      15
                                                              12
                     106
                             132
                                                                            6
26
                              25
                                      24
                                               0
                                                       0
                                                              2
                                                                          138
     maturePollen2 maturePollen3
                                        padj
                                                 value
                             29 3.594718e-10
#> 1
               31
                                             2.234465
                             82 5.726760e-08
#> 2
               60
                                             2.548997
#> 3
                5
                              1 4.048010e-03 4.459420
#> 4
               17
                            111 6.343326e-03 -3.954189
#> 5
               63
                              7 1.080655e-03 -2.941261
#> 6
              105
                             76 1.104847e-05 -5.228812
```

Select DE gene results with only padj and value. Here value is log2(anther/embryo).

Output gene names of DE genes.

9 DE PACs

movAPA provides the function movDEPAC to identify DE PACs between samples. Three strategies were utilized: (i) using DESeq2 with replicates; (ii) using DEXseq with replicates; (iii) using chi-squared test without replicates ("chisq").

9.1 Detect DE PACs

First we show an example of detecting DE PACs among all pairwise conditions using three different methods. Only PACs with total read counts in all samples >=20 are used.

```
DEPAC=movDEPAC(PACds, method='DESeq2', group='group', minSumPAT=20)

DEXPAC=movDEPAC(PACds, method='DEXseq', group='group', minSumPAT=20)

DEqPAC=movDEPAC(PACds, method='chisq', group='group', minSumPAT=20)
```

Number of DE PACs among methods.

```
## Get significant DE results.
stat1=movStat(object=DEPAC, padjThd=0.05, valueThd=1)
stat2=movStat(object=DEXPAC, padjThd=0.05, valueThd=1)
stat3=movStat(object=DEqPAC, padjThd=0.05, valueThd=0.95)
## Count the number of DE PACs by different methods.
nsig=as.data.frame(cbind(stat1$nsig, stat2$nsig, stat3$nsig))
colnames(nsig)=c('DESeq2','DEXseq','Chisq.test')
nsig$tissueA.tissueB=rownames(nsig)
nsig
#>
                      DESeq2 DEXseq Chisq.test
                                                   tissueA.tissueB
#> anther.embryo
                          242
                                                      anther.embryo
                                146
                                            58
                                            41 anther.maturePollen
#> anther.maturePollen
                         114
                                121
#> embryo.maturePollen
                         313
                                202
                                           93 embryo.maturePollen
## Plot a barplot.
nsig=melt(nsig, variable.name='Method')
#> Using tissueA.tissueB as id variables
ggplot(data=nsig, aes(x=tissueA.tissueB, y=value, fill=Method)) +
 geom_bar(stat="identity", position=position_dodge()) +
 ylab("DE PAC#") + theme_bw()
```


We can also detect DE PACs between two given conditions.

9.2 Statistics of DE PACs

Make statistics of the DE PACs result by DESeq2 method (DEPAC).

```
stat=movStat(object=DEPAC, padjThd=0.05, valueThd=1)
```

```
## Number of DE PACs between conditions.
stat$nsig
#>
                       sig.num
#> anther.embryo
                           242
#> anther.maturePollen
                           114
#> embryo.maturePollen
                           313
## Overlap of DE PACs between different pairs of conditions.
head(stat$ovp)
#>
                                        pair n1.siq.num n2.siq.num novp.siq.num
#> 1
           anther.embryo-anther.maturePollen
                                                    242
                                                                114
           anther.embryo-embryo.maturePollen
                                                                313
                                                                             199
                                                    242
#> 3 anther.maturePollen-embryo.maturePollen
                                                    114
                                                                313
                                                                              90
## DE PAC list
head(stat$siglist[[1]])
#> [1] "Ds01q0151600:2795487" "Os01q0179300:4126216" "Ds01q0179300:4126779"
#> [4] "Ds01q0238500:7668102" "Ds01q0247600:8130944" "Ds01q0247600:8131074"
```

We can also plot a venn diagram to show the overlap among results from different pairwise comparisons.

Stat the DE PAC result from the chisq-test method, here the value column of DEqPAC is 1-pvalue_of_the_gene. So using padjThd=0.05 and valueThd=0.95 means filtering DE PACs with adjusted pvalue of PAC <0.05 and adjusted pvalue of gene <0.05.

```
stat=movStat(object=DEqPAC, padjThd=0.05, valueThd=0.95)
```

9.3 Output DE PACs

We can use *movSelect* to output full or simple list of DE PACs.

```
## Here method is DEXseq, so the valueThd (log2FC) threshold is automatelly determined.
sel=movSelect(aMovRes=DEXPAC, condpair='embryo.anther',
             padjThd=0.1, out='full', PACds=PACds)
#> Warning: condpair is flip of movRes@conds, so movRes@pairwise$value*(-1)
#> Warning: movRes is DEXPAC, but valueThd/upThd/dnThd are all NULL, mannually set valueThd=mi
#> Warning: movRes is DEXPAC, also filter by rowMax(movRes@pairwise$value)
head(sel, n=2)
#>
                           PA chr UPA_start UPA_end strand
                                                                            ftr
#> 1 ENSRNA049444301:25040070 12 25040068 25040071
                                                          - 25040070 intergenic
#> 2 ENSRNA049472915:32398407 3 32398154 32398573
                                                          - 32398407
               gene gene_type ftr_start ftr_end anther1 anther2 anther3 embryo1
#>
#> 1 ENSRNA049444301
                        tRNA 25043356 25032325
                                                                0
                                                                        0
                                                        0
#> 2 ENSRNA049472915
                        snoRNA 32398830 32398830
                                                              324
                                                                      352
                                                                              510
                                                      285
     embryo2 embryo3 maturePollen1 maturePollen2 maturePollen3
#> 1
           0
                   0
                                               3
                                                             0 6.971614e-02
                               24
         558
#> 2
                                                           110 1.081613e-13
                 548
                               130
                                             191
#>
          value
#> 1 -0.7671602
#> 2 0.8623713
## You can also mannually set a log2FC threshold.
sel=movSelect(aMovRes=DEXPAC, condpair='embryo.anther',
             padjThd=0.1, valueThd=2, out='pa');
#> Warning: condpair is flip of movRes@conds, so movRes@pairwise$value*(-1)
#> Warning: movRes is DEXPAC, also filter by rowMax(movRes@pairwise$value)
head(sel)
#> [1] "0s01q0263600:8948833" "0s01q0327400:12630082" "0s01q0327400:12630218"
#> [4] "0s01g0812200:34534443" "0s01g0841000:36096864" "0s01g0881300:38257576"
## Filter only up-regulated PACs in embryo
## (value=log2(embryo_this_others/anther_this_others)).
sel=movSelect(aMovRes=DEXPAC, condpair='embryo.anther',
             padjThd=0.1, upThd=2, out='full', PACds=PACds)
#> Warning: condpair is flip of movRes@conds, so movRes@pairwise$value*(-1)
#> Warning: movRes is DEXPAC, also filter by rowMax(movRes@pairwise$value)
head(sel, 2)
#>
                          PA chr UPA_start UPA_end strand
                                                                            ftr
                                                               coord
#> 1 ENSRNA049472915:32398407
                                3 32398154 32398573
                                                          - 32398407
        Os01g0327400:12630082
                               1 12629955 12630117
                                                          + 12630082 intergenic
                          gene_type ftr_start ftr_end anther1 anther2 anther3
#>
                gene
#> 1 ENSRNA049472915
                            snoRNA 32398830 32398830
                                                           285
                                                                   324
                                                                           352
        Os01g0327400 protein_coding 12582256 12646586
                                                             1
                                                                     1
                                                                             1
   embryo1 embryo2 embryo3 maturePollen1 maturePollen2 maturePollen3
#> 1
        510
                558
                         548
                                       130
                                                     191
                                                                   110
#> 2
           0
                   0
                           0
                                         0
                                                       0
                                                                     0
            padj
#> 1 1.081613e-13 0.8623713
```

9.4 Visualize DE PACs in a gene

Here we take the DEPAC result for example to show the visualization of DE PACs in a gene.

Visualize DE PACs in an example gene by *movViz*. First, we examine all PACs in this gene. There are three PACs, two in 3'UTR and one in extended 3'UTR. But the expression level of the PAC in extended 3UTR is only 3.

```
gene='0s05g0541900'
gp=PACds[PACds@anno$gene==gene, ]
cbind(gp@anno$ftr, rowSums(gp@counts))
                                       [,2]
                          [,1]
#> 0s05q0541900:26902813 "3UTR"
                                       "79"
#> Ds05g0541900:26902492 "3UTR"
                                        "40"
#> Os05g0541900:26902388 "3UTR"
                                       "8"
#> 0s05q0541900:26902140 "3UTR"
                                       "340"
#> Os05q0541900:26901800 "Ext_3UTR"
                                       "3"
                                       "2"
#> 0s05q0541900:26900274 "intergenic"
```

Visualize PACs of this gene in individual conditions. Here the Y-axis is read count, the scale of which is different among conditions.DE PACs identified by DESeq2 method with padj < padjThd are highlighted in dashed yellow lines.

We can also show condition pairs in individual tracks and only display and/or highlight given condition pairs. If padjThd is given, then the DE PACs (padj < padjThd) will be highlighted (dashed yellow line).

```
movViz(object=DEPAC, gene=gene, txdb=gff, PACds=PACds, collapseConds=TRUE,
    padjThd=0.01, showPV=TRUE, showAllPA=FALSE, showRatio=F,
    conds=DEPAC@conds[c(1,3),], highlightConds=DEPAC@conds[c(3),])
```


10 3'UTR switching

APA dynamics (i.e., APA site switching or 3'UTR lengthening/shortening) of a gene can be deduced by comparing the ratios of expression levels of one poly(A) site (e.g., the short isoform) over the other poly(A) site (e.g., the long isoform) between two biological samples. For unity, here we refer 3'UTR lengthening/shortening to 3'UTR switching, and refer APA dynamics involving a pair of PACs to APA site switching. Function movUTRtrend is used to identify 3'UTR switching events between samples. We developed three methods in movUTRtrend for detecting 3'UTR switching events from samples with or without replicates: (i) the strategy based on the chi-squared test for trend in proportions ("linearTrend"); (ii) the strategy based on DE PACs from DESeq2 ("DE"); (iii) the strategy based on DE PACs from DESeq2 ("DE").

10.1 Detect 3'UTR switching events

First, we used the 'linearTrend' method to detect 3'UTR switching events. Only PACs and genes with average read count between the two conditions >=10 and >=20 are used.

```
#> anther.maturePollen
#> embryo.maturePollen
## Number of genes for analyzing, including those not significant.
lapply(utr@fullList, nrow)
#> $anther.embryo
#> [1] 44
#>
#> $anther.maturePollen
#> [1] 31
#>
#> $embryo.maturePollen
#> [1] 47
head(utr@fullList[["anther.embryo"]], n=2)
                      gene nPAC geneTag1 geneTag2 avgUTRlen1 avgUTRlen2
#> Os01q0151600 Os01q0151600
                              2
                                     28
                                             59
                                                  231.4643
                                                             191.5085
#> Os01q0254900 Os01q0254900
                              2
                                    221
                                                  265.5520
                                                             286.9604
                                             101
#>
                   pvalue
                               padj change
                                                 cor logRatio
#> Os01g0151600 0.018098744 0.4886661
                                       -1 -0.2534036 -1.072588
#> Os01q0254900 0.008878056 0.2840978
                                        1 0.1458238 1.128916
#>
                                                        PAs1
#> Os01g0254900 Os01g0254900:8475658=133;Os01g0254900:8475521=88
#>
                                                       PAs2
#> Os01g0151600 Os01g0151600:2795487=39;Os01g0151600:2795636=20
#> Os01g0254900 Os01g0254900:8475658=45;Os01g0254900:8475521=56
```

Make statistics of the results; genes with padj<0.1 and abs(cor)>0 are considered as 3'UTR switching.

```
stat=movStat(object=utr, padjThd=0.1, valueThd=0)
#> All cond pairs in heat@colData, get de01 and deNum
stat$nsig
#> sig.num
#> anther.embryo 9
#> anther.maturePollen 4
#> embryo.maturePollen 24
```

Output 3'UTR switching results for a pair of conditions.

```
## read counts of each PA in each sample, etc.
out=movSelect(aMovRes=utr, condpair='anther.embryo',
            padjThd=0.1, valueThd=0, out='full')
## Output full information for 3UTR lengthening genes from anther to embryo (change=1).
out=movSelect(aMovRes=utr, condpair='anther.embryo',
            padjThd=0.1, upThd=0, out='full')
## Output full information for 3UTR shortening genes from anther to embryo (change=-1).
out=movSelect(aMovRes=utr, condpair='anther.embryo',
            padjThd=0.1, dnThd=0, out='full')
head(out, n=2)
#>
                     gene nPAC geneTag1 geneTag2 avgUTRlen1 avgUTRlen2
#> Os02q0759700 Os02q0759700
                                   77
                            2
                                           54
                                                539.7662
                                                          323.3704
                            2
#> Ds05q0438800 Ds05q0438800
                                   93
                                          197
                                                348.7204
                                                         294.7005
                   pvalue
                                padj change
                                                  cor
                                                       logRatio
#> Os02q0759700 2.499868e-09 1.049944e-07
                                        -1 -0.5208556 0.5111023
#> Os05g0438800 6.160952e-06 2.464381e-04
                                        -1 -0.2654699 -1.0820747
#>
#> Os02g0759700 Os02g0759700:31988970=10;Os02g0759700:31989403=67
#>
#> Ds05q0438800 Ds05q0438800:21501003=53;Ds05q0438800:21500764=144
```

Here is another example of using DEX method to detect 3'UTR switching events. First get DE PAC results by DEXseq and then get 3'UTR switching events.

Get 3'UTR switching genes with padj<0.1 and $|\log 2FC|>=1$.

```
stat=movStat(object=swDEX, padjThd=0.01, valueThd=1)
#> All cond pairs in heat@colData, get de01 and deNum
stat$nsig
#>
                     siq.num
#> anther.embryo
                           6
#> anther.maturePollen
                           1
#> embryo.maturePollen
                          15
out=movSelect(aMovRes=swDEX, condpair='anther.embryo',
             padjThd=0.01, valueThd=1, out='full')
head(out, n=2)
            gene nPAC geneTag1 geneTag2 avgUTRlen1 avgUTRlen2
                                                               fisherPV
2
                           77
                                        539.7662 323.3704 4.912714e-09
                                   54
2
                           93
                                  197
                                        348.7204 294.7005 3.852680e-06
```

```
#> logFC change PA1 PA2 dist nDEPA

#> 1 -3.364997 -1 0s02g0759700:31988970 0s02g0759700:31989403 434 2

#> 2 -2.744903 -1 0s05g0438800:21501003 0s05g0438800:21500764 240 1

#> nSwitchPair PAs1

#> 1 0s02g0759700:31988970=10;0s02g0759700:31989403=67

#> 2 1 0s05g0438800:21501003=4;0s05g0438800:21500764=89

#> PAs2

#> 1 0s02g0759700:31988970=34;0s02g0759700:31989403=20

#> 2 0s05g0438800:21501003=53;0s05g0438800:21500764=144
```

10.2 Statistics of 3'UTR switching results

Here we used three methods to call 3'UTR switching and then compared the results from these methods.

Get significant 3'UTR switching events.

```
stat1=movStat(object=swLinear, padjThd=0.1, valueThd=0)
stat2=movStat(object=swDEX, padjThd=0.01, valueThd=1)
stat3=movStat(object=swDE, padjThd=0.01, valueThd=1)
```

Count number of 3'UTR switching events by different methods

```
nsig=as.data.frame(cbind(stat1$nsig, stat2$nsig, stat3$nsig))
colnames(nsig)=c('LinearTrend','DE-DEXseq','DE-DESeq')
nsig$tissueA.tissueB=rownames(nsig)
nsig
#>
                       LinearTrend DE-DEXseq DE-DESeq
                                                          tissueA.tissueB
#> anther.embryo
                                 9
                                           6
                                                            anther.embryo
#> anther.maturePollen
                                 4
                                           1
                                                    6 anther.maturePollen
#> embryo.maturePollen
                                24
                                          15
                                                  19 embryo.maturePollen
nsig=melt(nsig, variable.name='Method')
#> Using tissueA.tissueB as id variables
ggplot(data=nsig, aes(x=tissueA.tissueB, y=value, fill=Method)) +
  geom_bar(stat="identity", position=position_dodge()) +
 ylab("3\'UTR switching events #") + theme_bw()
```


10.3 Visualize 3'UTR switching events

Gene Os02g0759700 is identified as 3'UTR switching. This gene has one PAC in CDS and two PACs in 3UTR; the 3UTR switching happens between anther~embryo and between embryo~maturePollen.

Plot all PACs of this gene in all conditions and replicates. Highlight PACs involving in the switching analysis in orange.

Show in each track a condition pair and use line to link PACs to show the trend. There is 3'UTR switching between anther and maturePollen, and embryo and maturePollen. Highlight specific condition pair with blue background and only show PACs involving the switching analysis with a dashed line in orange.

Show only the condition pair anther~embryo and only PACs involving the 3UTR switching. Do not show gene model but only the genomic region of PACs, and show all PACs but hightlight the switching PACs in dashed yellow line. Show only switching PACs.

This example shows using heatmaps for DEPAC results. First call the differential analysis and then call *movStat* to stat the results.

```
stat=movStat(object=swDE, padjThd=0.01, valueThd=1)
#> All cond pairs in heat@colData, get de01 and deNum
stat$nsig
#> sig.num
#> anther.embryo 9
#> anther.maturePollen 6
#> embryo.maturePollen 19
```

Output stat results into files. The pdf file stores the plots about the number of significant events and the overlap among different condition pairs.

To plot heatmap mannually, first convert the movRes object to a heatmap object and then filter switching genes.

```
heat=movRes2heatmapResults(swDE)
heatUp=subsetHeatmap(heat, padjThd=0.05, valueThd=1)
```

From the heatmap, we can see gene Os06g0682633 is shorter from anther to embryo (value=-8) and

longer from embryo to maturePollen (value=7).

plotHeatmap(heatUp@value, show_rownames=TRUE, plotPre=NULL, cluster_rows=TRUE)

Get the switching information for this gene.

```
fl=swDE@fullList$anther.embryo
fl[fl$gene=='0s06g0682633',]
#>
       gene nPAC geneTag1 geneTag2 avgUTRlen1 avgUTRlen2
                                       fisherPV
2
                 11
                     353
                           1181
                               558.3938 1.420396e-12
     logFC change
                                    PA2 dist nDEPA
                       PA1
           #> 7 -7.370687
  nSwitchPair
#>
#> 7
        #>
                              PAs2
```

11 APA site switching

The function movAPAswitch is used to detect both canonical and non-canonical APA site switching events. The strategy of movAPAswitch is similar to the strategy based on DE PACs in movUTRtrend but with higher flexibility. If a gene has more than two PACs, then each pair of PACs (denoted as PA1 and PA2) are analyzed. The following criteria are used to determine a APA switching event: whether PA1 or PA2 are DE; average read count for both sites; distance between PA1 and PA2; average read count for a gene; relative change of PA1 and PA2 (RC); read count ratio (PA1:PA2) >1 in one sample and <1 in another sample; p-value of the Fisher's exact test for PA1 and PA2 read counts between samples. Pairs of PACs that meet user specified conditions are considered as APA site switching events. Users can use the movSelect function to filter 3' UTR switching events or APA site switching events with higher flexibility.

11.1 Detect 3'UTR-PAC switching

First get DE PAC results by DEXseq.

```
DEXPAC=movDEPAC(PACds, method='DEXseq', group='group', minSumPAT=10)
```

Then get 3'UTR switching genes, usig selectOne=NULL to detect all pairs of switching PACs.

Stat the switching results.

```
stat=movStat(object=swDEX, padjThd=0.1, valueThd=1)
#> All cond pairs in heat@colData, get de01 and deNum
stat$nsig
#> sig.num
#> anther.embryo 32
#> anther.maturePollen 11
#> embryo.maturePollen 38
```

Output switching genes with full information for anther~embryo.

```
sel=movSelect(aMovRes=swDEX, condpair='anther.embryo',
          padjThd=0.1, valueThd=1, out='full')
head(sel, n=2)
          gene nPAC geneTag1 geneTag2 avgUTRlen1 avgUTRlen2
#>
                                                   fisherPV
2
                      84
                            176
                                 231.4643
                                         191.7955 6.670538e-05
#> 3 Os01q0655400
                2
                      70
                                 144.7857
                                         200.5000 2.241096e-02
                             76
       logFC change
                              PA1
                                               PA2 dist nDEPA
              #> 1 -1.552604
#> 3 1.120104
```

11.2 Detect APA-site switching

Detect APA switching events involving non-3'UTR PACs, using selectOne=NULL to get all pairs of switching PACs.

Stat the switching results.

```
stat=movStat(object=swDE, padjThd=0.1, valueThd=1)
#> All cond pairs in heat@colData, get de01 and deNum
stat$nsig
#> sig.num
#> anther.embryo 43
#> anther.maturePollen 21
#> embryo.maturePollen 57
```

Output switching genes with full information for anther~embryo.

```
sw=movSelect(aMovRes=swDE, condpair='anther.embryo',
       padjThd=0.01, valueThd=1, out='full')
head(sw[order(sw$fisherPV), ], n=2)
       gene nPAC geneTag1 geneTag2
                         fisherPV
                                 logFC change
#> 25 Os04q0635800
                    3437 7.680786e-75 -6.255737
            2
                94
                                       -1
2
                549
                     124 6.634803e-35 -3.837820
                                       -1
#>
             PA1
                         PA2 dist nDEPA nSwitchPair
2
76
                                 2
                                        1
#>
ftr
Os02q0790500:33573091=89;Os02q0790500:33573166=35 3UTR, Ext_3UTR
```

11.3 Subset PACds by switching genes or PACs

First get list of genes or PACs of switching events, then subset PACds by genes or PACs.

```
genes=movSelect(aMovRes=swDE, condpair='anther.embryo',
                padjThd=0.01, valueThd=1, out='gene')
swPAC=subsetPACds(PACds, genes=genes, verbose=TRUE)
#>
                        txt
#> before subsetPACds 1233
#> genes
                        138
table(swPAC@anno$ftr)
#>
                                       Ext\_3UTR intergenic
#>
         3UTR
                     5UTR
                                 CDS
                                                                 intron
#>
           66
                        8
                                   7
                                              31
                                                          11
                                                                     15
PAs=movSelect(aMovRes=swDE, condpair='anther.embryo', padjThd=0.01,
              valueThd=1, out='pa')
swPAC=subsetPACds(PACds, PAs=PAs, verbose=TRUE)
                        txt
#> before subsetPACds 1233
                         77
#> PAs
table(swPAC@anno$ftr)
#>
       3UTR Ext_3UTR
                        intron
         53
```

11.4 Visualization of APA-site switching

Show one switching gene (Os05g0451900), where switching happens between a 3'UTR PAC and an intronic PAC. This gene has 2 PACs in intron and 1 PAC in 3UTR; the APA-site switching happens between anther~maturePollen.

Plot all PACs of this gene in all conditions and replicates. Highlight PACs involving in the switching analysis in orange.

Show in each track a condition pair and use line to link PACs to show the trend. Highlight specific condition pair with blue background and only show PACs involving the switching analysis with a dashed line in orange. There is APA-site switching between anther and maturePollen.

12 Session Information

The session information records the versions of all the packages used in the generation of the present document.

```
sessionInfo()
#> R version 4.0.0 (2020-04-24)
#> Platform: x86_64-pc-linux-qnu (64-bit)
#> Running under: Ubuntu 16.04.5 LTS
#>
#> Matrix products: default
#> BLAS:
           /usr/lib/atlas-base/atlas/libblas.so.3.0
#> LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0
#>
#> locale:
#>
   [1] LC_CTYPE=en_GB.UTF-8
                                    LC NUMERIC=C
  [3] LC_TIME=zh_CN.UTF-8
                                    LC\_COLLATE = en\_GB.UTF - 8
#> [5] LC_MONETARY=zh_CN.UTF-8
                                   LC MESSAGES=en GB.UTF-8
#> [7] LC_PAPER=zh_CN.UTF-8
                                    LC_NAME = C
#> [9] LC_ADDRESS=C
                                    LC\_TELEPHONE=C
```

```
#> [11] LC_MEASUREMENT=zh_CN.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid
                 stats4
                            parallel stats
                                              graphics grDevices utils
#> [8] datasets methods
                            base
#>
#> other attached packages:
#> [1] BSgenome.Oryza.ENSEMBL.IRGSP1_1.4.2 movAPA_0.1.0
#> [3] ComplexHeatmap_2.4.2
                                            motifStack\_1.32.0
#> [5] ade4_1.7-15
                                            MotIV_1.43.0
#> [7] grImport2_0.2-0
                                            DEXSeq_1.34.1
#> [9] BiocParallel_1.22.0
                                            DESeq2_1.28.1
#> [11] SummarizedExperiment_1.18.1
                                            DelayedArray_0.14.0
#> [13] matrixStats_0.56.0
                                            GenomicFeatures_1.40.0
#> [15] AnnotationDbi_1.50.0
                                            Biobase_2.48.0
#> [17] ggbio_1.36.0
                                            BSgenome_1.56.0
#> [19] rtracklayer_1.48.0
                                            Biostrings\_2.56.0
#> [21] XVector_0.28.0
                                            ggplot2_3.3.1
#> [23] data.table_1.12.8
                                            RColorBrewer_1.1-2
#> [25] GenomicRanges_1.40.0
                                            GenomeInfoDb_1.24.2
#> [27] IRanges_2.22.2
                                            S4Vectors_0.26.1
#> [29] BiocGenerics_0.34.0
                                            reshape2_1.4.4
#> [31] dplyr_1.0.0
#>
#> loaded via a namespace (and not attached):
#>
    [1] backports_1.1.8
                                  circlize_0.4.10
                                                           Hmisc_4.4-0
   [4] BiocFileCache_1.12.0
#>
                                  plyr_1.8.6
                                                           lazyeval_0.2.2
#>
    [7] splines_4.0.0
                                  usethis_1.6.1
                                                           digest_0.6.25
#> [10] ensembldb_2.12.1
                                  htmltools_0.5.0
                                                           fansi_0.4.1
#> [13] magrittr_1.5
                                                           memoise_1.1.0
                                  checkmate_2.0.0
#> [16] cluster_2.1.0
                                  remotes_2.1.1
                                                           annotate_1.66.0
                                  prettyunits_1.1.1
#> [19] askpass_1.1
                                                           jpeg_0.1-8.1
#> [22] colorspace_1.4-1
                                  blob 1.2.1
                                                           rappdirs_0.3.1
#> [25] xfun_0.14
                                  callr_3.4.3
                                                           crayon_1.3.4
#> [28] RCurl_1.98-1.2
                                  graph_1.66.0
                                                           genefilter_1.70.0
#> [31] survival_3.1-12
                                  VariantAnnotation_1.34.0 glue_1.4.1
#> [34] gtable_0.3.0
                                  zlibbioc_1.34.0
                                                           GetoptLong_1.0.2
#> [37] pkgbuild_1.0.8
                                                           scales_1.1.1
                                  shape_1.4.4
#> [40] DBI_1.1.0
                                  GGally_2.0.0
                                                           Rcpp_1.0.4.6
#> [43] xtable_1.8-4
                                  progress_1.2.2
                                                           htmlTable_2.0.1
#> [46] clue_0.3-57
                                  foreign_0.8-76
                                                           bit_1.1-15.2
#> [49] OrganismDbi_1.30.0
                                                           htmlwidgets_1.5.1
                                  Formula_1.2-3
#> [52] httr_1.4.1
                                                           ellipsis_0.3.1
                                  acepack_1.4.1
#> [55] farver_2.0.3
                                  pkqconfiq_2.0.3
                                                           reshape_0.8.8
#> [58] XML_3.99-0.3
                                                           dbplyr_1.4.4
                                  nnet_7.3-14
#> [61] locfit_1.5-9.4
                                  labeling_0.3
                                                           tidyselect_1.1.0
#> [64] rlang_0.4.6
                                  munsell\_0.5.0
                                                           tools_4.0.0
```

```
[67] cli_2.0.2
#>
                                   generics_0.0.2
                                                             RSQLite_2.2.0
    [70] devtools_2.3.0
                                   evaluate_0.14
#>
                                                             stringr_1.4.0
    [73] rGADEM 2.36.0
#>
                                   yaml_2.2.1
                                                             fs 1.4.1
#>
    [76] processx_3.4.2
                                   knitr_1.28
                                                             bit64_0.9-7
#>
    [79] purrr 0.3.4
                                   AnnotationFilter 1.12.0
                                                             RBGL 1.64.0
                                   compiler_4.0.0
    [82] biomaRt_2.44.0
                                                             rstudioapi 0.11
#>
                                                             testthat_2.3.2
#>
    [85] curl_4.3
                                   png_0.1-7
    [88] tibble 3.0.1
                                   statmod_1.4.34
                                                             geneplotter 1.66.0
    [91] stringi_1.4.6
                                                             highr_0.8
#>
                                   ps_1.3.3
    [94] desc_1.2.0
                                                             ProtGenerics_1.20.0
#>
                                   lattice_0.20-41
   [97] Matrix_1.2-18
                                   vctrs\_0.3.1
                                                             pillar_1.4.4
#> [100] lifecycle_0.2.0
                                   BiocManager_1.30.10
                                                             GlobalOptions\_0.1.2
#> [103] bitops_1.0-6
                                   R6_2.4.1
                                                             latticeExtra_0.6-29
#> [106] hwriter_1.3.2
                                   qridExtra_2.3
                                                             sessioninfo_1.1.1
#> [109] dichromat_2.0-0
                                   pkqload_1.1.0
                                                             MASS_7.3-51.6
#> [112] assertthat 0.2.1
                                   seqLogo_1.54.3
                                                             rprojroot_1.3-2
#> [115] openssl_1.4.1
                                   rjson_0.2.20
                                                             withr 2.2.0
#> [118] GenomicAlignments_1.24.0 Rsamtools_2.4.0
                                                             GenomeInfoDbData_1.2.3
#> [121] hms_0.5.3
                                   rpart_4.1-15
                                                             rmarkdown_2.3
#> [124] biovizBase_1.36.0
                                   base64enc_0.1-3
```

13 References

- [1] Fu, H., Yang, D., Su, W., et al. Genome-wide dynamics of alternative polyadenylation in rice. Genome Res. 2016;26(12):1753-1760.
- [2] Zhu, S., Ye, W., Ye, L., et al. PlantAPAdb: A Comprehensive Database for Alternative Polyadenylation Sites in Plants. Plant Physiol. 2020;182(1):228-242.
- [3] Anders, S. and Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):2010-2011.
- [4] Robinson, M.D., McCarthy, D.J. and Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26(1):139-140.
- [5] Ji, Z., Lee, J.Y., Pan, Z., et al. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl. Acad. Sci. USA 2009;106(17):7028-7033.
- [6] Ulitsky, I., Shkumatava, A., Jan, C.H., et al. Extensive alternative polyadenylation during zebrafish development. Genome Res. 2012;22(10):2054-2066.
- [7] Begik, O., Oyken, M., Cinkilli Alican, T., et al. Alternative Polyadenylation Patterns for Novel Gene Discovery and Classification in Cancer. Neoplasia 2017;19(7):574-582.
- [8] Shulman, E.D. and Elkon, R. Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data. Nucleic Acids Res 2019;47(19):10027-10039.
- [9] Lianoglou, S., Garg, V., Yang, J.L., et al. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 2013;27(21):2380-2396.