

Chương 03 Tâng liên kết dữ liệu

MẠNG MÁY TÍNH

Tháng 09/2011

Mục tiêu

- □Điều khiển truy cập đường truyền
- □Điều khiển liên kết

Application

Presentation

Session

Transport

Network

Data link

Physical

Nội dung

- ☐Giới thiêu
- □Kỹ thuật phát hiện và sửa lỗi
- □ Điều khiển truy cập đường truyền
- **□** ARP
- ☐ Ethernet

Giới thiệu - 1

- ☐ Link: "kết nối/liên kết"giữa các nodes kề nhau
 - Wired
 - Wireless
- □ Data link layer: chuyển gói tin (frame) từ một node đến node kề qua 1 link
 - Mỗi link có thể dùng giao thức khác nhau để truyền tải frame

Giới thiệu - 2

□Tại nơi gởi:

- Nhận các packet từ tầng network → đóng gói thành các frame
- Truy cập đường truyền (nếu dùng đường truyền chung)

□ Tại nơi nhận:

- Nhận các frame dữ liệu từ tầng physical
- Kiểm tra lỗi
- Chuyển cho tầng network

Giới thiệu - 3

Application

Presentation

Session

Transport

Network

Data link

Physical

□ LLC (Logical Link Control)

- Điều khiển luồng
- Kiểm tra lỗi
- Báo nhận
- ☐ MAC (Media Access Control)
 - Truy cập đường truyền

Logical Link Control

Media Access Control

Nội dung

- ☐ Giới thiệu
- □Kỹ thuật phát hiện và sửa lỗi
- □Điều khiển truy cập đường truyền
- **□** ARP
- ☐ Ethernet

Kỹ thuật phát hiện và sửa lỗi - 1 cdio

Kỹ thuật phát hiện và sửa lỗi - 2 cdio

☐ Các phương pháp:

- Parity Check (bit chan le)
- Checksum
- Cylic Redundancy Check (CRC)

Parity Check

- □ Dùng thêm một số bit để đánh dấu tính chẵn lẻ
 - Dựa trên số bit 1 trong dữ liệu
 - Phân loai:
 - Even Parity: số bit 1 phải là một số chẵn
 - Odd Parity: số bit 1 phải là một số lẻ
- ☐ Các phương pháp:
 - Parity 1 chiều
 - Parity 2 chiều
 - Hamming code

- ☐Số bit parity: 1 bit
- □Chiều dài của dữ liệu cần gởi đi: d bit
 - → DL gởi đi sẽ có (d+1) bit
- □Bên gởi:
 - Thêm 1 bit parity vào dữ liệu cần gởi đi
 - Mô hình chẵn (Even parity)
 - số bit 1 trong d+1 bit là một số chẵn
 - Mô hình lẻ (Odd Parity)
 - số bịt 1 trong d+1 bịt là một số lẻ
 d bits
 Parity bit

0111000110101011

l (mô hình chẵn)

) (mô hình lẻ)

- ☐ Bên nhân:
 - Nhận D' có (d+1) bits
 - Đếm số bit 1 trong (d+1) bits = x
 - Mô hình chẵn: nếu x lẻ → error
 - Mô hình lẻ: nếu x chẵn → error
- ☐ Ví dụ: nhận 0111000110101011
 - Parity chẵn: sai
 - Parity le: đúng
 - Dữ liệu thật: 011100011010101
- □ Đặc điểm:
 - Phát hiện được lỗi khi số bit lỗi trong dữ liệu là số lẻ
 - Không sửa được lỗi

- □Dữ liệu gởi đi được biểu diễn thành ma trận NxM
- \square Số bit parity: (N + M + 1) bit
- □Đặc điểm:
 - Phát biện và sửa được 1 bit lỗi
- □ Bên gởi
 - Biểu diễn dữ liệu cần gởi đị thành ma trận NxM
 - Tính giá trị bit parity của từng từng cột

13

□Ví dụ:

- Dùng parity chẵn
- N = 3, M = 5
- Dữ liệu cần gởi đi· 10101 11110 01110

```
101011
111100
011101
```


□Bên nhân:

- Biểu diễn dữ liệu nhận thành ma trận (N+1)x(M+1)
- Kiểm tra tính đúng đắn của từng dòng/cột
- Đánh dấu các dòng/cột dữ liệu bị lỗi
- Bit lỗi: bit tại vị trí giao giữa dòng và cột bị lỗi

□Ví dụ:

Dùng parity chẵn

$$D\tilde{u}_{li} = 101011 + 111100 + 111101 + 11101 + 111101$$

Không có lỗi Dữ liệu thật: 10101 11110 01110 Dữ liệu nhận:101011 101100 011101 001010

Có lỗi Dữ liệu thật: 10101 11110 01110

☐ Mỗi hamming code

- có M bit, đánh số từ 1 đến M
- Bit parity: log₂M bits, tại các vị trí lũy thừa của 2
- Dữ liệu thật được đặt tại các vị trí không là lũy thừa của 2
- VD: M = 7
 - $\log_2 7 = 3$: dùng 3 bits làm bit parity (1, 2, 4)
 - Có 4 vị trí có thể đặt dữ liệu (3, 5, 6, 7)

□Đặc điểm:

- sửa lỗi 1 bit
- nhận dạng được 2 bit lỗi
- Sửa lỗi nhanh hơn Parity code 2 chiều

□Bên gởi:

- Chia dữ liệu cần gởi đi thành các khối dữ liệu (với số bit là số vị trí có thể đặt vào Hamming Code)
- Với mỗi khối dữ liệu → tạo 1 Hamming Code
 - Đặt các bit dữ liệu vào các vị trí không phải là lũy thừa của 2 trong Hamming Code
 - lưu ý: vị trí được đánh số từ 1 đến M
 - Tính check bits
 - Tính giá trị của các bit parity

□Ví dụ:

- M = 7
- Dùng parity lẻ
- Thông tin cần Thông tin cần gửi:

Tính check bits:

$$3 = 2^{1} + 2^{0} = 0 \quad 1 \quad 1$$

$$5 = 2^{2} + 2^{0} = 1 \quad 0 \quad 1$$

$$6 = 2^{2} + 2^{1} + = 1 \quad 1 \quad 0$$

$$7 = 2^{2} + 2^{1} + 2^{0} = 1 \quad 1 \quad 1$$

19

Check bits:

$$3 = 2^{1} + 2^{0} = 0 \quad 1 \quad 1$$
 $5 = 2^{2} + 2^{0} = 1 \quad 0 \quad 1$
 $6 = 2^{2} + 2^{1} + = 1 \quad 1 \quad 0$
 $7 = 2^{2} + 2^{1} + 2^{0} = 1 \quad 1 \quad 1$

Vị trí 2^0 :

- Xét cột 20 trong check bit > các vị trí có bit 1
- Lấy các bit DL tại các vị trí có bit 1 trong check bit → tính bit parity cho các bit dữ liệu này

21

□Dữ liệu cần gởi: 1011

☐ Dữ lệu gởi: 1011011

- ☐ Bên nhận: với mỗi Hamming Code
 - Điền các bit Hamming Code nhận vào các vị trí từ
 1 đến M
 - Tính check bit
 - Kiểm tra các bit parity
 - Nếu tại bit 2ⁱ phát hiện sai → đánh dấu Error, hệ số k_i =
 1
 - Ngược lại, đánh dấu No Error = 0, hệ số $k_i = 0$
 - Vị trí bit lỗi: pos =∑ 2^{i*}k_i

Tính check bits:

$$3 = 2^{1} + 2^{0} = 0 \quad 1 \quad 1$$
 $5 = 2^{2} + 2^{0} = 1 \quad 0 \quad 1$
 $6 = 2^{2} + 2^{1} = 1 \quad 1 \quad 0$
 $7 = 2^{2} + 2^{1} + 2^{0} = 1 \quad 1 \quad 1$

Odd parity: Không có lỗi

Odd parity: LÔI

Odd parity: LÕI

→ Lỗi bit thứ 6 trong Hamming Code

Dữ liệu nhận đúng: 1011011

Dữ liệu thật: 1011

Check sum - 1

- □ Bên gởi
 - d bits trong DL gởi đi được xem như gồm N số k bits: x₁, x₂, ..., x_N
 - Tính tổng $X = x_1 + x_2 + ... + x_N$
 - Tính bù 1 của X → giá trị checksum
- □ VD: Dữ liệu cần gởi: 1110 0110 0110 0110, k
 - = 4
 - **1110, 0110, 0110, 0110**
 - **•** 0101, 0110, 0110
 - **....**
 - Sum = 0010
 - Checksum = 1101

0110

0100

→1

Check sum - 1

□Bên nhận:

- tính tổng cho tất cả giá trị nhận được (kể cả giá trị checksum).
- Nếu tất cả các bit là 1, thì dữ liệu nhận được là đúng; ngược lại: có lỗi xảy ra

UVD:

- nhận: 1110 0110 0110 0110 1101
 - Sum = 1111
 - → đúng
- Nhận: 1010 0110 0110 0110 1101
 - Sum = 1011
 - → sai

Nội dung

- ☐ Giới thiêu
- ☐ Kỹ thuật phát hiện và sửa lỗi
- □ Điều khiển truy cập đường truyền
- □ Ethernet

Điều khiển truy cập đường truyền cơib

□ Loại liên kết (link)

- Điểm đến điểm (Point-to-point)
 - Dialup
 - Női trực tiếp giữa: host host, host SW
- Chia se (Shared)

Điều khiển truy cập đường truyền cdo

☐ Trong môi trường chia sẻ

Hạn chế xảy ra collision

- → Giao thức tầng Data link: Quyết định cơ chế để các node sử dụng môi trường chia sẻ
 - khi nào được phép gởi DL xuống đường truyền
 - Làm sao phát hiện xảy ra Collision
 - ...

Điều khiển truy cập đường truyền cdb

☐ Các phương pháp:

- Phân chia kênh truyền (Channel partition protocols)
- Tranh chấp (Random access protocols)
- Luân phiên (Taking-turns protocols)

Phân chia kênh truyền

- □TDM (Time Division Multiplexing)
- ☐ FDM (Frequency Division Multiplexing)
- □ CDMA (Code Division Multiple Access)

TDM

☐Ý tưởng:

- Chia kênh truyền thành các khe thời gian
- Mỗi khe thời gian chia thành N khe nhỏ
- Mỗi khe nhỏ dành cho 1 node trong mạng
- → Mỗi node có băng thông: R/N

FDM

☐Ý tưởng:

- Chia kênh truyền thành N kênh truyền nhỏ
- Mỗi kênh truyền dành cho 1 node
- → Mỗi node có băng thông: R/N

CDMA - 1

☐Ý tưởng:

- Mỗi node có 1 code riêng
- Bên gởi: mã hoá dữ liệu trước khi gởi bằng code của mình và bên nhận phải biết code của người gởi
- 1 bit DL được mã hoá thành M bits
- Kênh truyền: chia thành từng các khe thời gian,
 mỗi bit truyền trong 1 khe

CDMA - 2

CDMA - 3

receiver 1

slot 0

received

input

slot 1 received

input

Tranh chấp

- ☐ Các node chiếm trọn băng thông khi truyền
- ☐ Lắng nghe đụng độ sau khi truyền
- ☐ Một số phương pháp:
 - ALOHA (Slotted, Pure)
 - CSMA (Carrier Sense Multiple Access)

Pure ALOHA

- ☐ Mỗi node có thể bắt đầu truyền dữ liệu bất cứ khi nào node có nhu cầu
- Nếu phát hiện xung đột → chờ 1 khoảng thời gian rồi truyền lại

Slotted ALOHA

□Giả thiết:

- Các frame có kích thước tối đa là L bits
- □ Kênh truyền: chia thành các khe thời gian có kích thước L/R (s)
- Khi 1 node có nhu cầu truyền dữ liệu: phải chờ đến thời điểm bắt đầu của 1 khe mới được truyền
 - cần đồng bộ thời gian giữa các node
- Nếu đụng độ xảy ra: truyền lại với xác suất là p

CSMA - 1

- □ Lắng nghe đường truyền trước khi truyền:
 - Đường truyền rảnh: truyền dữ liệu
 - Đường truyền bận: chờ
- Lắng nghe đường truyền sau khi truyền
 - Nếu đụng độ xảy ra:
 - dùng truyền
 - đợi 1 khoảng thời gian và truyền lại

CSMA - 2

□Đánh giá:

- Các node có quyền ngang nhau
- Chi phí cao
- Tốc độ: chấp nhận được nếu số lượng node ít
- Không ấn định độ ưu tiên cho thiết bị đặc biệt

□Cải tiến:

- CSMA/CD (Carrier Sense Multiple Access / Collision Detection)
- CSMA/CA (Carrier Sense Multiple Access / Collision Avoidance)

CSMA/CD

□Ý tưởng:

- Thiết bị lắng nghe đường truyền
- Nếu đường truyền rảnh, thiết bị truyền DL của mình lên đường truyền
- Sau khi truyền, lắng nghe đụng độ?
- Nếu có, thiết bị gởi tín hiệu cảnh báo các thiết bị khác
- Tạm dừng 1 khoảng thời gian ngẫu nhiên rồi gởi
 DL
- Nếu tiếp tục xảy ra đụng độ, tạm dừng khoảng thời gian gấp đôi.
- □ Dùng trong mạng Ethernet

Luân phiên

- □ Dùng thẻ bài (Token Passing)
- □ Dò chọn (Polling)

Token Passing

□Ý tưởng:

- Dùng 1 thẻ bài (token) di chuyển qua các node
- Thiết bị muốn truyền DL thì phải chiếm được thẻ bài

□Đánh giá:

- Thích hợp cho các mạng có tải nặng
- Thiết lập được độ ưu tiên cho thiết bị đặc biệt
- Chậm hơn CSMA trong mạng có tải nhẹ
- Thiết bị mạng đắt tiền
- □ Dùng trong mạng Token Ring

Polling

□Ý tưởng:

- Có 1 node đóng vai trò điều phối
- Node điều phối kiểm tra nhu cầu gởi DL của các node thứ cấp và xếp vào hàng đợi theo thứ tự và độ ưu tiên
- Thiết bị truyền DL khi đến lượt

□Đánh giá:

- Có thể thiết lập độ ưu tiên
- Tốn chi phí
- Việc truyền DL của 1 thiết bị tuỳ thuộc vào thiết bị dò chọn

Nội dung

- ☐ Giới thiêu
- ☐ Kỹ thuật phát hiện và sửa lỗi
- □ Điều khiển truy cập đường truyền
- □ Ethernet

ARP - 1

ARP - 2

□ ARP (Address Resolution Protocol)

- Phân giải từ địa chỉ IP thành địa chỉ MAC
- Chỉ phân giải trong cùng đường mạng
- Sử dụng ARP table:
 - IP
 - MAC
 - TTL :thời gian sống của record
 - Luu trong RAM

ARP – cơ chế hoạt động

ARP – minh họa - 1

ARP – minh họa - 2

ARP — minh hoa - 3

ARP – minh họa - 4

ARP – Request

MAC A.B.C.1.3.3 MAC ff.ff.ff.ff.ff IP IP
197.15.22.33 197.15.22.126

What is your MAC Addr?

ARP - Checking

MAC MAC IP IP What is your MAC Addr? ff.ff.ff.ff.ff.ff A.B.C.1.3.3 197.15.22.33 197.15.22.126 197.15.22.34 1.15.2.126 197.15.22.33 A.B.C.1.3.3 A.B.C.4.3.4 A.B.C.7.3.5

ARP - Reply

MAC A.B.C.7.3.5 MAC A.B.C.1.3.3 IP IP 197.15.22.126197.15.22.33

This is my MAC Addr

A

B

C

ARP - Caching

A.B.C.7.3.5 - 197.15.22.126

MAC A.B.C.1.3.3

MAC A.B.C.7.3.5

IP .97.15.22.33197.15.22.126

Data

197.15.22.33

A.B.C.1.3.3

A.B.C.4.3.4

197.15.22.126

A.B.C.7.3.5

Nội dung

- ☐ Giới thiệu
- ☐ Kỹ thuật phát hiện và sửa lỗi
- □ Điều khiển truy cập đường truyền
- **ARP**
- □ Ethernet

Ethernet - 1

- □ Là 1 kỹ thuật (technology) mạng LAN có dây
 - Là 1 kỹ thuật mạng LAN đầu tiên
 - Chuẩn 802.3
 - Hoạt động tầng Data Link và Physical
 - Tốc độ: 10 Mbps 10 Gbps
 - Đồ hình mạng:
 - Bus
 - Star
 - Giao thức tầng MAC: CSMA/CD
 - Đơn giản và rẻ hơn mạng Token Ring LAN, ATM

CSMA/CD – quá trình truyền dữ liệdio

- Host wants to transmit
- Is carrier sensed?
- Assemble frame
- Start transmitting
- 5 Is a collision detected?
- Keep transmitting
- 7. Is the transmission done?
- Transmission completed
- Broadcast jam signal
- Attempts = Attempts + 1
- 11. Attempts > Too many?
- 12. Too many collisions; abort transmission
- Algorithm calculates backoff
- Wait for t microseconds

Ethernet – cấu trúc frame

Bytes	8	6	6	2	0-1500	0-46	4	
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum	
		*))			-
(b)	Preamble S		Source address	Length	Data	Pad	Check- sum	

a) earlier Ethernet frames - b) 802.3 frames

- ☐ Preamble (8 bytes)
 - Đồng bộ đồng hồ bên gởi và bên nhận (10101010)
 - Start of Frame (SOF): báo hiệu bắt đầu frame (10101011)
- ☐ Dest. Addr (6 bytes)
 - địa chỉ MAC của card mạng nhận gói tin tiếp theo
- ☐ Src. Addr (6 bytes)
 - địa chỉ MAC của card mạng gởi gói tin
- ☐ Type (2 bytes)
 - Giao thức sử dụng ở tầng trên
- ☐ CRC: dùng để kiểm tra lỗi

Ethernet – trường type

EtherType	Protocol
0x0800	Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x8035	Reverse Address Resolution Protocol (RARP)
0x809b	AppleTalk (Ethertalk)
0x80f3	AppleTalk Address Resolution Protocol (AARP)
0x8100	IEEE 802.1Q-tagged frame
0x8137	Novell IPX (alt)
0x8138	Novell
0x86DD	Internet Protocol, Version 6 (IPv6)
0x8847	MPLS unicast
0x8848	MPLS multicast

Ethernet – minh hoa

Ethernet – các công nghệ mạng

- **□** 10Base2
- **□** 10Base5
- □10BaseT
- □ 100BaseTX
- □ 100BaseFX
- ☐ Gigabit Ethernet 10 Base T

Tốc độ mạng

Loại cáp

Kiểu truyền dữ liệu

Ethernet – chuẩn 10Mbps

Standard	Topology	Medium	Maximum cable length	Transport
10BASE5	Bus	Thick coaxial cable	500m	Half-duplex
10BASE2	Bus	Thin coaxial cable	185m	Half-duplex
10BASE-T	Star	CAT3 UTP	100m	Half or Full- duplex

Ethernet – chuẩn 100Mbps

Standard	Medium	Maximum cable length
100BASE-TX	CAT5 UTP	100m
100BASE-FX	Multi-mode fibre (MMF) 62.5/125	412m

Ethernet – chuẩn gigabit

Standard	Medium	Maximum cable length
1000BASE-SX	Fiber optics	550 m
1000BASE-LX	Fiber optics	5000 m
1000BASE-CX	STP	25 m
1000BASE-T	Cat 5 UTP	100 m

Tài liệu tham khảo

- ☐ Slide của J.F Kurose and K.W. Ross về Computer Networking: A Top Down Approach
- ☐ Slide CCNA, version 3.0, Cisco

