

ICS141: Discrete Mathematics for Computer Science I

Dept. Information & Computer Sci., University of Hawaii

Jan Stelovsky
based on slides by Dr. Baek and Dr. Still
Originals by Dr. M. P. Frank and Dr. J.L. Gross
Provided by McGraw-Hill

Chapter 3. The Fundamentals

3.1 Algorithms

Algorithms

- Previously...
 - Characteristics of algorithms
 - Pseudocode
 - Examples: Max algorithm
- Today...
 - Examples: Sum algorithm
 - Problem of searching an ordered list
 - Linear search & binary search algorithms
 - Sorting problem
 - Bubble sort & insertion sort algorithms

Practice Exercises

- Devise an algorithm that finds the sum of all the integers in a list.
- procedure $sum(a_1, a_2, ..., a_n)$: integers) s := 0 {sum of elements so far}
 for i := 1 to n {go thru all elements} $s := s + a_i$ {add current item}
 {now s is the sum of all items}
 return s

Searching Algorithms

- Problem of searching an ordered list.
 - Given a list L of n elements that are sorted into a definite order (e.g., numeric, alphabetical),
 - And given a particular element x,
 - Determine whether x appears in the list,
 - And if so, return its index (position) in the list.
- Problem occurs often in many contexts.
- Let's find an efficient algorithm!

Linear Search (Naïve)

```
{Given a list of integers and an integer x to look up,
returns the index of x within the list or 0 if x is not in the list}
procedure linear search
  (x: integer, a_1, a_2, ..., a_n: distinct integers)
  i := 1 {start at beginning of list}
  while (i \le n \land x \ne a_i) {not done and not found}
       i := i + 1 {go to the next position}
  if i \le n then index := i {it was found}
  else index := 0 {it wasn't found}
  return index {index where found or 0 if not found}
```


Alg. #2: Binary Search

 Basic idea: At each step, look at the middle element of the remaining list to eliminate half of it, and quickly zero in on the desired element.

Search Alg. #2: Binary Search

```
procedure binary search
  (x: integer, a_1, a_2, ..., a_n: increasing integers)
  i := 1 {left endpoint of search interval}
 j := n {right endpoint of search interval}
  while i < j begin {while interval has > 1 item}
      m := |(i + j)/2| \{midpoint\}
      if x > a_m then i := m + 1 else j := m
  end
  if x = a_i then location := i else location := 0
  return location {index or 0 if not found}
```


Search Example

Search for 19 in the list

- using linear search
- using binary search
 - *Entering while loop*: *i* = 1, *j* = 16

•
$$m = \lfloor (i+j)/2 \rfloor = \lfloor (1+16)/2 \rfloor = \lfloor 8.5 \rfloor = 8$$
,

•
$$m = \lfloor (i+j)/2 \rfloor = \lfloor (9+16)/2 \rfloor = \lfloor 12.5 \rfloor = 12,$$

•
$$m = \lfloor (i+j)/2 \rfloor = \lfloor (13+16)/2 \rfloor = \lfloor 14.5 \rfloor = 14$$

•
$$m = \lfloor (i+j)/2 \rfloor = \lfloor (13+14)/2 \rfloor = \lfloor 13.5 \rfloor = 13$$
,

Exit loop

Sorting Algorithms

- Sorting is common in many applications.
 - E.g. spreadsheets and databases
 - We can search quickly when data is odrered!
- Sorting is also widely used as a subroutine in other data-processing algorithms.
- Two sorting algorithms shown in textbook:
 - Bubble sort
 - Insertion sort

However, these are *not* very efficient, and you should not use them on large data sets!

We'll see some more efficient algorithms later in the course.

Bubble Sort

 Smaller elements "float" up to the top of the list, like bubbles in a container of liquid, and the larger elements "sink" to the bottom.

© The McGraw-Hill Companies, Inc. all rights reserved.

First pass	-3	2	2	2	Second pass	12	2	2
	2	13	3	3		3	73	1
	4	4	-4	1		1	1	13
	1	1	1	14		4_	_4_	4
	5	5	5	5		5	5	5

Third pass
$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 4 & 5 \end{bmatrix}$$

Jniversity of Hawa

Bubble Sort Algorithm

```
procedure bubble\_sort
(a_1, a_2, ..., a_n): real numbers, n \ge 2)
for i := 1 to n - 1 {iterate n - 1 passes}

for j := 1 to n - i

if a_j > a_{j+1} then interchange a_j and a_{j+1}
\{a_{n-i+1}, ..., a_n \text{ is sorted and } \le a_1, ..., a_{n-i}\}
\{a_1, a_2, ..., a_n \text{ is sorted}\}
```

Example 4: Use the bubble sort to put 3, 2, 4,
 1, 5 into increasing order. (See previous slide)

Insertion Sort

- English description of algorithm:
 - Start with the second element, for each item in the input list:
 - "Insert" it into the correct place in the sorted output list generated so far. Like so:
 - Find the location where the new item should be inserted using linear or binary search.
 - Then, shift the items from that position onwards up by one position.
 - Put the new item in the remaining hole.

Insertion Sort Example

- Use the insertion sort to put 3, 2, 4, 1, 5 into increasing order
 - Insert the 2nd element 2 in the right position:
 - $3 > 2 \Rightarrow$ put 2 in front of 3. \Rightarrow 2, 3, 4, 1, 5
 - Insert the 3rd element 4 in the right position:
 - $4 > 2 \Rightarrow$ do nothing. Move to the next comparison.
 - $4 > 3 \Rightarrow$ do nothing. Done. $\Rightarrow 2, 3, 4, 1, 5$
 - Insert the 4th element 1 in the right position:
 - $2 > 1 \Rightarrow$ put 1 in front of $2 \Rightarrow 1, 2, 3, 4, 5$
 - Insert the 5th element 5 in the right position:
 - $5 > 1 \Rightarrow$ do nothing. Move to the next comparison.
 - $5 > 2 \Rightarrow$ do nothing. Move to the next comparison.
 - $5 > 3 \Rightarrow$ do nothing. Move to the next comparison.
 - $5 > 4 \Rightarrow$ do nothing. Done. $\Rightarrow 1, 2, 3, 4, 5$

Insertion Sort Algorithm

```
procedure insertion sort
          (a_1, a_2, ..., a_n): real numbers, n \ge 2
   for i := 2 to n begin
          m := a_i {the element to be inserted}
         j := 1
          while a_i < m {look for the index of the hole with j }
                    j := j + 1
          \{\text{now } a_1, ..., a_{i-1} < m \le a_i, ..., a_i\}
          {the hole is at j; j \le i, i.e. possibly j = i }
          for k := j + 1 to i
                    a_{k} := a_{k+1}
          a_i := m
          \{a_1, a_2, ..., a_i \text{ are sorted in increasing order}\}
   end \{a_1, a_2, ..., a_n \text{ are sorted in increasing order}\}
```


Efficiency of Algorithms

- Intuitively we see that binary search is much faster than linear search,
- Also, we may see that insertion sort is better than bubblesort in some cases (why? when?),
- But how do we analyze the efficiency of algorithms formally?
- Use methods of algorithmic complexity,
 which utilize the order-of-growth concepts