MAS472/6004: Computational Inference

Chapter 4 Likelihood-based inference

4.1 Likelihoods

Data $\mathbf{x} = \{x_1, \dots, x_n\}$, joint distribution of \mathbf{x} depends on unknown θ .

Likelihood is density (or probability if x_i is discrete) of the data x conditional on the parameter θ , i.e.

$$f(\mathbf{x}|\theta).$$

Function of θ for fixed \mathbf{x} , so denote the likelihood function by $L(\theta; \mathbf{x})$:

$$L(\theta; \mathbf{x}) = f(\mathbf{x}|\theta).$$

If x_1, \ldots, x_n are independent, then $f(\mathbf{x}|\theta) = f(x_1|\theta) \times f(x_2|\theta) \times \ldots \times f(x_n|\theta)$, and so

$$L(\theta; \mathbf{x}) = \prod_{i=1}^{n} f(x_i | \theta).$$

Used for point and interval estimation, and hypothesis testing.

Score statistics, Fisher information and the Cramer-Rao minimum variance bound

The score statistic is defined to be $\frac{\partial}{\partial \theta} l(\theta; \mathbf{x}) = \frac{\partial}{\partial \theta} \log f(\mathbf{x}|\theta)$. **X**: unobserved value of **x**. Define the random variable

$$\frac{\partial}{\partial \theta} l(\theta; \mathbf{X}) = \frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta).$$

Transformation of a r.v. \mathbf{X} , where transformation is derivative, w.r.t. θ , of the log of the density of \mathbf{X} .

N.B. We treat $l(\theta; \mathbf{X})$ as a function of the random data \mathbf{X} , evaluated at the true value of θ , rather than a function of the parameter θ for fixed data \mathbf{x} .

$$\begin{split} \frac{\partial}{\partial \theta} l(\theta; \mathbf{X}) &= \frac{\partial}{\partial \theta} \log L(\theta; \mathbf{X}) \\ &= \left\{ \frac{\partial}{\partial \theta} L(\theta; \mathbf{X}) \right\} \times \frac{1}{L(\theta; \mathbf{X})} = \left\{ \frac{\partial}{\partial \theta} f(\mathbf{X} | \theta) \right\} \times \frac{1}{f(\mathbf{X} | \theta)}. \end{split}$$

$$\begin{split} E\left\{\frac{\partial}{\partial \theta}l(\theta;\mathbf{X})\right\} &= \int \left\{\frac{\partial}{\partial \theta}l(\theta;\mathbf{x})\right\} f(\mathbf{x}|\theta) d\mathbf{x} \\ &= \int \left\{\frac{\partial}{\partial \theta}f(\mathbf{x}|\theta)\right\} \times \frac{1}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x} \\ &= \frac{\partial}{\partial \theta} \int f(\mathbf{x}|\theta) d\mathbf{x} \\ &= \frac{\partial}{\partial \theta} 1 = 0. \end{split}$$

Expected value of the derivative of the log-likelihood at the true value of θ is 0.

Consider example of $X \sim exp(rate = \theta)$. Then $l(\theta; X) = \log \theta - \theta X$ and

$$\frac{\partial}{\partial \theta}l(\theta; \mathbf{X}) = \frac{1}{\theta} - X,$$

SO

$$E\left\{\frac{\partial}{\partial \theta}l(\theta; \mathbf{X})\right\} = \int \left(\frac{1}{\theta} - x\right) \theta \exp(-\theta x) dx$$
$$= \frac{1}{\theta} \int \theta \exp(-\theta x) dx - \int x \theta \exp(-\theta x) dx$$
$$= \frac{1}{\theta} - \frac{1}{\theta} = 0.$$

However, the expected value of the derivative of the log-likelihood evaluated at the *wrong* value of θ , say θ^* , is not 0. For example,

$$\left. \frac{\partial}{\partial \theta} l(\theta; \mathbf{X}) \right|_{\theta = \theta^*} = \frac{1}{\theta^*} - X,$$

with

$$E\left\{\frac{\partial}{\partial \theta}l(\theta; \mathbf{X})\Big|_{\theta=\theta^*}\right\} = \int \left(\frac{1}{\theta^*} - x\right)\theta \exp(-\theta x)dx$$
$$= \frac{1}{\theta^*} - \frac{1}{\theta},$$

which is non-zero for $\theta^* \neq \theta$.

To derive an expression for the variance of $\frac{\partial}{\partial \theta}l(\theta; \mathbf{X})$, we note that

$$0 = \int \frac{\partial}{\partial \theta} l(\theta; \mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$\Rightarrow 0 = \frac{\partial}{\partial \theta} \int \frac{\partial}{\partial \theta} l(\theta; \mathbf{x}) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$\Rightarrow 0 = \int \left\{ \frac{\partial^2}{\partial \theta^2} l(\theta; \mathbf{x}) \right\} f(\mathbf{x}|\theta) d\mathbf{x} + \int \left\{ \frac{\partial}{\partial \theta} l(\theta; \mathbf{x}) \right\} \left\{ \frac{\partial}{\partial \theta} f(\mathbf{x}|\theta) \right\} d\mathbf{x}$$

$$\Rightarrow 0 = \int \left\{ \frac{\partial^2}{\partial \theta^2} l(\theta; \mathbf{x}) \right\} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$+ \int \left\{ \frac{\partial}{\partial \theta} l(\theta; \mathbf{x}) \right\} \left\{ \frac{\partial}{\partial \theta} l(\theta; \mathbf{x}) \right\} f(\mathbf{x}|\theta) d\mathbf{x}$$

$$\Rightarrow E \left[\left\{ \frac{\partial}{\partial \theta} l(\theta; \mathbf{X}) \right\}^2 \right] = -E \left\{ \frac{\partial^2}{\partial \theta^2} l(\theta; \mathbf{X}) \right\}.$$

$$E\left[\left\{\frac{\partial}{\partial \theta}l(\theta;\mathbf{X})\right\}^2\right] = -E\left\{\frac{\partial^2}{\partial \theta^2}l(\theta;\mathbf{X})\right\}$$

Since $E\{\frac{\partial}{\partial \theta}l(\theta; \mathbf{X})\} = 0$, we have

$$Var\left\{\frac{\partial}{\partial \theta}l(\theta; \mathbf{X})\right\} = -E\left\{\frac{\partial^2}{\partial \theta^2}l(\theta; \mathbf{X})\right\}.$$

The term $-E\left\{\frac{\partial^2}{\partial \theta^2}l(\theta; \mathbf{X})\right\}$ is known as the **Fisher information** which we will denote by $\mathcal{I}_E(\theta)$:

$$\mathcal{I}_E(\theta) \equiv -E \left\{ \frac{\partial^2}{\partial \theta^2} l(\theta; \mathbf{X}) \right\}.$$

Fisher information: measure of amount of information a sample size of n contains about θ . For independent observations X_1, \ldots, X_n ,

$$l(\theta; \mathbf{X}) = \sum_{i=1}^{n} \log f(X_i | \theta),$$

$$\mathcal{I}_E(\theta) = -nE\left\{\frac{\partial^2}{\partial \theta^2}l(\theta; X_i)\right\},$$

hence Fisher information is proportional to sample size.

• Example. Consider $X_1, \ldots, X_n \sim N(\theta, \sigma^2)$ with σ^2 known. Then

$$-E\left\{\frac{\partial^2}{\partial \theta^2}l(\theta; \mathbf{X})\right\} = -E\left\{\frac{\partial^2}{\partial \theta^2}\frac{-1}{2\sigma^2}\sum_{i=1}^n (X_i - \theta)^2\right\}$$
$$= \frac{n}{\sigma^2},$$

Fisher information is n/σ^2 . As σ^2 decreases, the observations more likely to be close to θ , so data more informative about θ .

Fisher information can be used to give a bound on the variance of an estimator.

Let $T(\mathbf{X})$ be an unbiased estimator, with X_1, \ldots, X_n independent. Then it is possible to prove that

$$Var(T) \ge \frac{1}{\mathcal{I}_E(\theta)}.$$

This is known as the **Cramer-Rao minimum variance** bound.

Asymptotic normality

For large n, the distribution of the m.l.e $\hat{\theta}$ is approximately normal, with

$$\hat{\theta} \sim N\{\theta, \mathcal{I}_E(\theta)^{-1}\}.$$

Thus for large n, the m.l.e. $\hat{\theta}$ is approximately unbiased, and achieves the Cramer-Rao minimum variance bound.

In the multivariate case with $\theta = (\theta_1, \dots, \theta_d)$ we have

$$\mathcal{I}_{E}(\theta) = \begin{pmatrix} e_{1,1}(\theta) & \cdots & e_{1,d}(\theta) \\ \vdots & & \vdots \\ e_{d,1}(\theta) & \cdots & e_{d,d}(\theta) \end{pmatrix},$$

with

$$e_{i,j}(\theta) = E\left\{-\frac{\partial^2}{\partial \theta_i \, \partial \theta_j} l(\theta)\right\}.$$

So for large n, the distribution of the m.l.e of θ is approximately multivariate normal:

$$\hat{\theta} \sim N_d(\theta, \mathcal{I}_E(\theta)^{-1}),$$

Example: normally distributed data

Consider X_1, \ldots, X_n with $X_i \sim N(\theta_1, \theta_2)$, with both θ_1 and θ_2 unknown. We write $\theta = (\theta_1, \theta_2)^T$.

$$l(\theta; \mathbf{x}) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log\theta_2 - \frac{1}{2\theta_2}\sum_{i=1}^{n}(x_i - \theta_1)^2,$$

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\theta}_2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

 $\mathcal{I}_E(\theta) = \left(\begin{array}{cc} \frac{n}{\theta_2} & 0\\ 0 & \frac{n}{2\theta^2} \end{array} \right).$

For large n, the approximate distribution of $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2)^T$ is

$$\left(\begin{array}{c} \hat{\theta}_1 \\ \hat{\theta}_2 \end{array} \right) \sim N \left\{ \left(\begin{array}{c} \theta_1 \\ \theta_2 \end{array} \right), \left(\begin{array}{cc} \frac{\theta_2}{n} & 0 \\ 0 & \frac{2\theta_2^2}{n} \end{array} \right) \right\}$$

Confidence intervals based on asymptotic normality

Suppose we want a $100(1-\alpha)\%$ confidence interval for any particular element of θ , say θ_j . For suitably large n, we have

$$\hat{\theta_j} \sim N(\theta_j, \gamma_{j,j}),$$

where $\gamma_{j,j}$ is the $\{j,j\}$ element of $\mathcal{I}_E(\theta)^{-1}$. This then gives us an approximate interval as

$$(\hat{\theta_j} - z_{1-\frac{\alpha}{2}}\sqrt{\gamma_{j,j}}, \hat{\theta_j} + z_{1-\frac{\alpha}{2}}\sqrt{\gamma_{j,j}}),$$

 θ unknown, so approximate $\mathcal{I}_E(\theta)$ by observed information matrix

$$\mathcal{I}_{O}(\theta) = \begin{pmatrix} -\frac{\partial^{2}}{\partial \theta_{1}^{2}} l(\theta) & \cdots & -\frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{d}} l(\theta) \\ \vdots & & \vdots \\ -\frac{\partial^{2}}{\partial \theta_{d} \partial \theta_{1}} (\theta) & \cdots & -\frac{\partial^{2}}{\partial \theta_{d}^{2}} l(\theta) \end{pmatrix},$$

evaluated at $\theta = \hat{\theta}$.

 $\tilde{\gamma}_{i,j}$: the i, jth element of the inverse of $\mathcal{I}_O(\theta)$, we use

$$(\hat{\theta_j} - z_{1-\frac{\alpha}{2}}\sqrt{\tilde{\gamma}_{j,j}}, \hat{\theta_j} + z_{1-\frac{\alpha}{2}}\sqrt{\tilde{\gamma}_{j,j}}),$$

as an approximate confidence interval. Since we know that $\hat{\theta} \to \theta$ as $n \to \infty$, with probability 1, we would expect $\mathcal{I}_O(\theta)$ to be similar to $\mathcal{I}_E(\theta)$ for large sample sizes.

4.2 Profile Likelihood

- ▶ RV X, density function f, parameters $\boldsymbol{\theta} = \{\theta_1, \dots, \theta_d\}$
- Given $\mathbf{x} = (x_1, \dots, x_n)$, only want inferences about *subset* of $\boldsymbol{\theta}$.
- ▶ Partition $\boldsymbol{\theta}$ into $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$ with $\boldsymbol{\theta}_1$ the parameters of direct interest.
- ▶ θ_2 , the parameters not of direct interest are known as nuisance parameters.

- ▶ Example: $X \sim N(\mu, \sigma^2)$ with both μ and σ^2 unknown, though we may only be interested in the mean parameter μ .
- ► Can use asymptotic distribution of m.l.e. to derive confidence intervals for individual parameters.
- ▶ Will now consider an alternative form of likelihood function which in some cases can produce more accurate confidence intervals.

Partitioning $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2)$, **profile** log-likelihood function for $\boldsymbol{\theta}_1$ is

$$l_p(\boldsymbol{\theta}_1; \mathbf{x}) = \max_{\boldsymbol{\theta}_2} l(\boldsymbol{\theta}). \tag{1}$$

To get the profile log-likelihood function for θ_1 :

- 1. Treat $\boldsymbol{\theta}_1$ as a constant in $l(\boldsymbol{\theta}; \mathbf{x})$.
- 2. Find the maximum likelihood estimate $\hat{\boldsymbol{\theta}}_2$ in terms of the data \mathbf{x} and $\boldsymbol{\theta}_1$.
- 3. Plug in this expression for $\boldsymbol{\theta}_2$ into the full log-likelihood $l(\boldsymbol{\theta}; \mathbf{x})$ to get the profile log-likelihood $l_p(\boldsymbol{\theta}_1; \mathbf{x})$.
- ▶ Writing $\boldsymbol{\theta} = (\theta_i, \boldsymbol{\theta}_{-i})$, plotting $l_p(\theta_i)$ gives us profile of log-likelihood surface viewed from θ_i axis.
- ▶ If $\hat{\boldsymbol{\theta}} = (\hat{\boldsymbol{\theta}}_1, \hat{\boldsymbol{\theta}}_2)$ maximises $l(\boldsymbol{\theta})$, then $\hat{\boldsymbol{\theta}}_1$ maximises $l_p(\boldsymbol{\theta}_1)$ and $\hat{\boldsymbol{\theta}}_2$ maximises $l_p(\boldsymbol{\theta}_2)$.
- Useful exploratory tool; allows you to plot a likelihood $l_p(\theta_i)$ for a single parameter θ_i .
- ▶ Can be used to derive more accurate confidence intervals.

Example 1

 $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ i.i.d.

$$l(\mu, \sigma^2; \mathbf{x}) = -n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$
 (2)

Fixing μ , the MLE of σ^2 is $\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$. Substituting this back into the full log-likelihood $l(\mu, \sigma^2; \mathbf{x})$, we get

$$l_p(\mu; \mathbf{x}) = -\frac{n}{2} \log\{\frac{1}{n} \sum (x_i - \mu)^2\} - \frac{n}{2}.$$
 (3)

Fixing σ^2 , the MLE of μ is \bar{x} . The profile log-likelihood for σ^2 is

$$l_p(\sigma^2; \mathbf{x}) = -n \log \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \bar{x})^2.$$
 (4)

Inference using the deviance function

- ightharpoonup Can construct CI for θ based on asymptotic normality of MLE. Alternative approach: use **deviance function**.
- For arbitrary θ^* ,

$$D(\boldsymbol{\theta}^*) = 2\{l(\hat{\boldsymbol{\theta}}; \mathbf{x}) - l(\boldsymbol{\theta}^*; \mathbf{x})\}.$$
 (5)

 $\hat{\boldsymbol{\theta}}$ maximises log-likelihood, so $D(\boldsymbol{\theta}^*) \geq 0$.

- ▶ If $D(\boldsymbol{\theta}^*)$ is small, then $l(\boldsymbol{\theta}^*)$ must be close to $l(\hat{\boldsymbol{\theta}})$, which suggests that $\boldsymbol{\theta}^*$ is a plausible estimate for the true unknown value of $\boldsymbol{\theta}$.
- ightharpoonup A confidence interval (or region if $ethat{\theta}$ is a vector) could then be of the form

$$C = \{ \boldsymbol{\theta}^* : D(\boldsymbol{\theta}^*) \le c \}, \tag{6}$$

for some suitable value of c.

- ▶ With data $x_1, ..., x_n$, for sufficiently large n, it can be shown that at the true value of $\boldsymbol{\theta}$, $D(\boldsymbol{\theta}) \sim \chi_d^2$, where d is the dimensionality of $\boldsymbol{\theta}$.
- ▶ An approximate (1α) confidence region for $\boldsymbol{\theta}$ is then given by

$$C_{\alpha} = \{ \boldsymbol{\theta}^* : D(\boldsymbol{\theta}^*) \le c_{\alpha} \}, \tag{7}$$

with c_{α} the $(1-\alpha)$ percentage point of the χ_d^2 distribution.

► Usually more accurate than asymptotic normality approximation, may require greater computational effort.

Profile likelihood and the deviance function

▶ $\theta = (\theta_1, \theta_2)$, with θ_1 a k-dimensional subset of θ . Profile deviance:

$$D_p(\boldsymbol{\theta}_1^*) = 2\{l(\hat{\boldsymbol{\theta}}; \mathbf{x}) - l_p(\boldsymbol{\theta}_1^*; \mathbf{x})\},\tag{8}$$

with $\hat{\boldsymbol{\theta}}$ the maximum likelihood estimator of $\boldsymbol{\theta}$.

 \triangleright Based on a sample of size n, with n sufficiently large,

$$D_p(\boldsymbol{\theta}_1) \sim \chi_k^2. \tag{9}$$

 \triangleright Can obtain a confidence interval for any element θ_i as

$$C_{\alpha} = \{\theta_i^* : D_p(\theta_i^*) \le c_{\alpha}\},\tag{10}$$

again, with c_{α} the $(1 - \alpha)$ percentage point of the χ_1^2 distribution.

▶ This will often be more accurate than the interval

$$\hat{\theta}_i \pm z_{\frac{\alpha}{2}} \sqrt{\psi_{i,i}} \tag{11}$$

stated earlier.

Example: leukaemia data

▶ Leukaemia patients given drug, 6-mercaptopurine (6-MP), and the number of days t_i until freedom from symptoms is recorded:

$$6^*, 6, 6, 6, 7, 9^*, 10^*, 10, 11^*, 13, 16, 17^*, 19^*, 20^*, 22, 23, 25^*, 32^*, 32^*, 10^*$$

A * denotes an observation censored at that time.

► Weibull model:

$$f_T(t) = \alpha \beta (\beta t)^{\alpha - 1} \exp\{-(\beta t)^{\alpha}\}$$
 (12)

for t > 0. $\alpha = 1$ gives exponential distribution.

► For censored data

$$P(T > t) = \exp\{-(\beta t)^{\alpha}\}. \tag{13}$$

d: no. of uncensored observations, $\sum_{u} \log t_{i}$: sum of all logs of the uncensored observations.

$$l(\alpha, \beta; \mathbf{x}) = d\log\alpha + \alpha d\log\beta + (\alpha - 1) \sum_{i} \log t_i - \beta^{\alpha} \sum_{i=1}^{n} t_i^{\alpha}.$$
 (14)

Treat α as fixed, and find MLE of β as function of data and α .

$$\hat{\beta} = \left(\frac{d}{\sum_{i=1}^{n} t_i^{\alpha}}\right)^{\frac{1}{\alpha}}.$$
 (15)

The profile log-likelihood of α is then given by

$$l_p(\alpha) = l(\alpha, \hat{\beta})$$

$$= d \log \alpha + \alpha d \log \left(\frac{d}{\sum_{i=1}^n t_i^{\alpha}}\right)^{\frac{1}{\alpha}} + (\alpha - 1) \sum_{i=1}^n \log t_i - d$$

- ▶ Finding the full MLE $(\hat{\alpha}, \hat{\beta})$ cannot be done analytically, so numerical methods have to be used.
- ▶ To construct the confidence interval, onlyneed $\hat{\alpha}$ that maximises $l_p(\hat{\alpha})$, as $l_p(\hat{\alpha}) = l(\hat{\alpha}, \hat{\beta})$.
- ▶ For a 95% confidence interval, the 95th percentage point of the χ^2_1 distribution is 3.841. The confidence interval is then given by

$$C_{0.05} = \{\alpha^* : D_p(\alpha^*) \le 3.841\}$$
 (16)

$$= [\alpha^* : 2\{l_p(\hat{\alpha}) - l_p(\alpha^*)\} \le 3.841]$$
 (17)

$$= \{\alpha^*: l_p(\alpha^*) > l_p(\hat{\alpha}) - 3.841/2\}.$$
 (18)

- Numerically, we estimate the MLE $\hat{\alpha}$ to be 1.35, with $l_p(\hat{\beta}) = -41.66$.
- ▶ From the graph, we can then read off the 95% confidence interval for α as (0.73,2.2).
- ► This contains the value 1, so the simpler exponential distribution is plausible for this dataset.

Example: machine component failure

- Level of corrosion w in a machine component recorded and component tested until a failure is observed, at time t.
- ▶ Denote each observation by (w_i, t_i) , where w_i is the level of corrosion, and t_i is the failure time.
- ▶ Possible model: $T \sim Exponential(\lambda)$ distribution, with λ a function of the corrosion level w:

$$\lambda = \alpha w^{\beta}. \tag{19}$$

w treated as fixed, i.e. model distribution of the failure time conditional on the corrosion.

▶ $\beta = 0$ implies same expected time to failure, α^{-1} for all components, regardless of the corrosion level w.

The density of a single observation (w,t) is given by

$$f_T(t) = \alpha w^{\beta} \exp\{-\alpha w^{\beta} t\}. \tag{20}$$

$$l(\alpha, \beta; \mathbf{x}) = n \log \alpha + \beta \sum_{i=1}^{n} \log w_i - \alpha \sum_{i=1}^{n} w_i^{\beta} t_i.$$
 (21)

We can derive an expression for the profile log-likelihood of β : Treating β as fixed, we obtain the MLE of α as

$$\hat{\alpha} = \frac{n}{\sum_{i=1}^{n} w_i^{\beta} t_i}.$$
 (22)

We then substitute this expression for α in the full log-likelihood $l(\alpha, \beta)$ to get the profile log-likelihood for β :

$$l_p(\beta; \mathbf{x}) = n \log \left(\frac{n}{\sum_{i=1}^n w_i^{\beta} t_i} \right) + \beta \sum_{i=1}^n \log w_i - n.$$
 (23)

- Numerically, estimate $\hat{\beta} = 0.473$, with $l_p(\hat{\beta}; \mathbf{x}) = -20.01$.
- ▶ From graph, read off 95% confidence interval for β as (0.11,0.95).
- ▶ Doesn't contain zero, and so there is clear evidence that $\beta \neq 0$
- ▶ For comparison, compute confidence interval for β using normal approximation.
- Observed information matrix is given by

$$\begin{pmatrix} -\frac{\partial^2 l}{\partial \alpha^2} & -\frac{\partial^2 l}{\partial \alpha \partial \beta} \\ -\frac{\partial^2 l}{\partial \alpha \partial \beta} & -\frac{\partial^2 l}{\partial \beta^2} \end{pmatrix} = \begin{pmatrix} n\alpha^{-2} & \sum w_i^{\beta} t_i \log w_i \\ \sum w_i^{\beta} t_i \log w_i & \alpha \sum w_i^{\beta} t_i (\log w_i)^2 \end{pmatrix}$$
(24)

- ▶ Obtain $\hat{\alpha}$ by substituting $\beta = 0.473$ into formula, gives $\hat{\alpha} = 1.099$.
- ▶ Substitute $\alpha = 1.099$, $\beta = 0.473$ into observed information matrix, invert to get

$$V = \begin{pmatrix} 0.0534 & -0.0241 \\ -0.0241 & 0.0442 \end{pmatrix}. \tag{25}$$

 \triangleright CI for β using asymptotic normality is

$$\hat{\beta} \pm 1.96 \times 0.0442^{0.5},\tag{26}$$

which gives (0.0611, 0.8849).