## Location + Inventory + Routing = LIRP



### State of the art

| Reference              | Year | Multi.<br>prod | Multi<br>period | Heterog.<br>Fleet | RL | Routing | Layers | Flow          |
|------------------------|------|----------------|-----------------|-------------------|----|---------|--------|---------------|
| Ambrosino Scutella     | 2005 |                | (✓)             | 1                 |    | arc     | 4      | direct+loops  |
| Ago et al.             | 2007 | /              | 1               |                   |    | n o     | 3      | direct+(loop  |
| Chanchan et al.        | 2008 |                | /               |                   | /  | arc     | 3      | direct + loop |
| Zhang Bo et al.        | 2008 |                | /               |                   |    | arc     | 3      | direct + loop |
| Ahmadi Javid, Azad     | 2010 |                |                 |                   |    | arc     | 3      | direct + loop |
| Hiassat Diabat         | 2011 |                | /               |                   |    | route   | 2      | Гоор          |
| Sajjadi, Cheraghi      | 2011 | /              |                 |                   |    | arc     | 3      | direct + loop |
| Ahmadi Javid, Seddighi | 2012 |                |                 |                   |    | arc     | 3      | direct + loop |
| Li et al.              | 2013 |                |                 |                   | /  | route   | 3      | direct + loop |
| Ahmad et al.           | 2014 |                | /               |                   |    | arc     | 3      | direct + loop |
| Nekooghadirli et al.   | 2014 | /              | 1               | /                 |    | arc     | 3      | direct + loop |
| Zhang et al.           | 2014 |                | /               |                   |    | arc     | 2      | Гоор          |
| Guerrero et al.        | 2015 |                | 1               |                   |    | route   | 3      | direct + loop |
| Liu et al.             | 2015 |                |                 |                   | /  | route   | 3      | direct + loop |
| Deng et al.            | 2016 |                |                 |                   | /  | route   | 3      | direct + loop |
| Yuchi et al.           | 2016 |                |                 |                   | -  | arc     | 3      | direct + loop |
| Zhalechian et al.      | 2016 | /              | /               | /                 | /  | arc     | 3      | direct + loop |
| Lerhlaly et al.        | 2016 |                | 1               | 1                 |    | route   | 3      | direct + loop |

 $(\checkmark)$ : model with multiple products, experiments with 1 product.



# Inventory management in LIRP

| Demand<br>uncertainty | Inventory policy<br>(r,Q)                                                                                      | fixed interval              | lot-sizing                                                                                                                                                                     |
|-----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                  | Ahmadi Javid, Seddighi<br>(2012), Li et al. (2013),<br>Deng et al. (2016)                                      |                             | Ambrosino Scutella (2005),<br>Hiassat Diabat (2011), Ahmad<br>et al. (2014), Zhang et al.<br>(2014), Guerrero et al. (2015),<br>Yuchi et al. (2016), Lerhlaly et<br>al. (2016) |
| Poisson               |                                                                                                                | Sajjadi, Cheraghi<br>(2011) | Chanchan et al. (2008), Zhang<br>Bo et al. (2008)                                                                                                                              |
| Normal                | Ahmadi Javid, Azad<br>(2010), Nekooghadirli et<br>al. (2014), Liu et al.<br>(2015), Zhalechian et<br>al.(2016) |                             |                                                                                                                                                                                |

## Other interesting references

- 3 early papers with L+R + calculation of inventory costs: Liu and Lee (2003), Liu and Lin (2005), Ma and Davidrajuh (2005).
- 1 paper with l+L + a posteriori optimization of routing costs: Mete and Zabinsky (2010).
- 1 paper with I+L+ approximation of routing costs: Shen and Qi (2007).

## A typology of LIRP models



September 30, 2016

### Solution methods

| References                    | Method                      | Facilities/T/P | Comments      |
|-------------------------------|-----------------------------|----------------|---------------|
| Ambrosino & Scutella (2005)   | General purpose code        | 20+130/1/      |               |
| Ago et al. (2007)             | Lagrangean decomp.          | 3+21+3/3/      |               |
| Chanchan et al. (2008)        | 2 phase heuristic           | 20+5           |               |
| Zhang Bo et al. (2008)        | GA, routing with savings    | 30+10          |               |
| Ahmadi Javid, Azad (2010)     | Tabu/SA, nearest neighbor   | 50+400         | nonlinear     |
| Hiassat Diabat (2011)         | GAMS/Cplex                  | 4+2            |               |
| Sajjadi, Cheraghi (2011)      | SA, savings                 | 3+30+350//40   | nonlinear     |
| Ahmadi Javid, Seddighi (2012) | SA + ant colony             | 25+50+350      | nonlinear     |
| Li et al. (2013)              | hybrid GA + SA              | 29+5           |               |
| Ahmad et al. (2014)           | cost saving method          | 5+20           | transshipment |
| Nekooghadirli et al. (2014)   | MOICA, MOPSA, NSGA II, PAES | 15+100/7/5     | 2 obj         |
| Zhang et al. (2014)           | NSGA-II                     | 15+318         | 3 obj.        |
| Guerrero et al. (2015)        | CG,LR,local search          | 5+7/7/         | -             |
| Liu et al. (2015)             | Parallel GA                 | 29+5           |               |
| Deng et al. (2016)            | Ant Colony                  | 10+100         |               |
| Yuchi et al. (2016)           | tabu search                 | 10+200         | nonlinear     |
| Zhalechian et al. (2016)      | Hybrid GA, GAMS/Baron       | 2+5+6/2/2      | 3 obj., nl    |
| Lerhlaly et al. (2016)        | Cplex                       | 5+20/5/        | 2 obj.        |

∢□▶ ∢圖▶ ∢團▶ ∢團▶ September 30, 2016

# Main findings

### A "rich" problem by nature

- Large typology of problem variants
- Prevalence of the "direct+loop" flow
- Only 4 models with multiple products, 4 models with heterogeneous fleet

#### Main model features

- Location: even in multi-periodic models, the facility location decision is *static*
- Routing: more and more route based models.
- Inventory: simple policies.



# Model 1: a "direct+loop" LIRP model



## Data Sets and parameters

| Set                                                                                    | Definition                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} I \\ J \\ P \\ T = \{0, \dots,  T \} \\ V \\ V^* \\ R \end{array} $ | Set of customers Set of distribution centers Set of plants (1 plant here) set of time periods (days) Set of all nodes $V = P \cup I \cup J$ . $= I \cup J$ . Set of routes (in the second layer) |

## Data Sets and parameters

| Data                              | Definition                                                                          |
|-----------------------------------|-------------------------------------------------------------------------------------|
| fj                                | Fixed cost of opening distribution center $j \in J$                                 |
| Q                                 | Capacity of vehicles (homogeneous fleet)                                            |
| $	au_{	extit{max}}$               | Maximum shelf life.                                                                 |
| $d_i^t$                           | Demand of customer $i \in I$ in period $t \in \{1, \dots,  T  + \tau_{max} - 1\}$ . |
| $h_i^t$                           | Holding cost at facility $i \in V^*$ in time period $t \in \mathcal{T}$             |
| $I_{i0}$                          | Initial inventory at facility $i \in V^*$                                           |
| $c_i$                             | Cost of delivering distribution center $j \in J$ (1 $^{st}$ layer)                  |
| с <sub>ј</sub><br>с' <sub>r</sub> | Cost of route $r \in R$ (2 <sup>nd</sup> layer)                                     |
| $lpha_{\it ir}$                   | =1 if route $r \in R$ visits facility $i \in V^*$ , 0 otherwise                     |

### **Variables**

### Binary Variables

- $\mathbf{y}_i = 1$  if distribution center  $i \in J$  is selected. 0 otherwise.
- $z_r^t = 1$  if route  $r \in R$  is selected in period  $t \in T$ , 0 otherwise
- $x_i^t$  =1 if distribution center  $j \in J$  is delivered in time period  $t \in T$

#### Continuous Variables

- $q_j^t$  quantity delivered to distribution center  $j \in J$  in time period  $t \in \mathcal{T}$  .
- $u_{ir}^t$  quantity delivered by route  $r \in R$  to client  $i \in I$  in time period  $t \in T$ .
  - inventory at facility  $i \in I \cup J$  in time period  $t \in T$

### LIRP model 1

$$\min \sum_{j \in J} f_j \mathbf{y}_j + \sum_{t \in T} \left( \sum_{j \in J} c_j \mathbf{x}_j^t + \sum_{r \in R} c_r' \mathbf{z}_r^t \right) + \sum_{t \in T} \sum_{i \in V^*} h_i^t I_i^t \tag{1}$$

$$\sum_{r \in R} \alpha_{ir} z_r^t \le 1 \qquad \forall i \in I, \forall t \in T$$
 (2)

$$q_{j,t} \leq Q x_j^t \qquad \forall j \in J, \forall t \in T$$
 (3)

$$x_j^t \le y_j \qquad \forall j \in J, \forall t \in T \tag{4}$$

$$\sum_{i \in I} u_{ir}^t \le Q z_r^t \qquad \forall r \in R, \forall t \in T$$
 (5)

$$z_r^t \le \sum_{i \in I} \alpha_{jr} \mathbf{y}_j \qquad \forall r \in R, \forall t \in T$$
 (6)

$$\sum_{r \in R} z_r^t \le |K| \qquad \forall t \in T \tag{7}$$

Olivier Péton

# LIRP model 1 (continued)

$$I_j^t = I_j^{t-1} + q_j^t - \sum_{r \in R} \alpha_{jr} \left( \sum_{i \in I} \alpha_{ir} \ u_{ir}^t \right) \quad \forall j \in J, \forall t \in T$$
 (8)

$$I_i^t = I_i^{t-1} + \sum_{r \in R} \alpha_{ir} \ u_{ir}^t - d_i^t \qquad \forall i \in I, \forall t \in T$$
 (9)

$$I_i^t \le \sum_{t' \ge t}^{t' \le t + \tau_{max}} d_i^{t'} \qquad \forall i \in I, \forall t \in T$$
 (10)

$$\mathbf{y}_{j} \in \{0, 1\} \qquad \forall j \in J \tag{11}$$

$$z_r^t \in \{0, 1\} \qquad \forall r \in R, \forall t \in T$$
 (12)

$$\mathbf{x}_{j}^{t} \in \{0, 1\} \qquad \forall j \in J, \forall t \in T$$
 (13)

$$I_i^t, I_j^t \ge 0$$
  $\forall i \in I, \forall j \in J, \forall t \in T$  (14)

$$q_{j}^{t}, u_{ir}^{t} \geq 0$$
  $\forall i \in I, \forall j \in J, \forall t \in T, \forall r \in R$ 

Olivier Péton September 30, 2016 13 / 22

### Constraints of model 1

- Objective function = facility fixed cost + routing cost + inventory cost
- (2) Each supplier is visited by at most one route at every period
- (3) Capacity constraint between the plant and the distribution centers.
- (4) No routes to non-selected distribution centers
- (5) Capacity constraint on route r, if it is performed in time period t.
- (6) A route starts from a selected distribution centers
- (7) Fleet size limitation
- (8) Flow conservation at DC j
- $\bullet$  (9) Flow conservation at customer i
- (10) Max inventory at customers (valid inequality)

# Model 2: a "loop+direct" LIRP model



### New notation

| Data          | Definition                                                                      |
|---------------|---------------------------------------------------------------------------------|
| R             | Set of routes (in first layer)                                                  |
| $c_r$         | Cost of route $r \in R$ $(1^{st}$ layer)                                        |
| $c_{ij}'$     | Cost of delivering customer $i \in I$ from DC $j \in J$ (2 <sup>nd</sup> layer) |
| $\alpha_{jr}$ | =1 if route $r \in R$ visits DC $j \in J$ , 0 otherwise                         |

### Binary Variables

```
y_j = 1 if distribution center j \in J is selected. 0 otherwise.
```

$$z_r^t = 1$$
 if route  $r \in R$  is selected in period  $t \in T$ , 0 otherwise

$$\mathbf{x}_{ij}^{t} = 1$$
 if customer i is delivered by DC  $j \in J$  in time period  $t \in T$ 

#### Continuous Variables

 $v_{ij}^t$  quantity delivered from DC  $j \in J$  to customer  $i \in I$  in period  $t \in T$ .

16 / 22

### LIRP model 2

$$\min \sum_{j \in J} f_j \mathbf{y}_j + \sum_{t \in T} \left( \sum_{j \in J} c_r \mathbf{z}_r^t + \sum_{i \in I} \sum_{j \in J} c'_{ij} \mathbf{x}_{ij}^t \right) + \sum_{t \in T} \sum_{i \in V^*} h_i^t I_i^t$$

$$\tag{16}$$

$$\sum_{r \in R} \alpha_{jr} z_r^t \le 1 \qquad \forall j \in J, \forall t \in T$$
 (17)

$$q_j^t \le Q z_r^t$$
  $\forall j \in J, \forall r \in R, \forall t \in T$  (18)

$$z_r^t \le \alpha_{jr} \, \mathbf{y}_j \qquad \qquad \forall j \in J, \forall t \in T \tag{19}$$

$$\sum_{r \in R} z_r^t \le |K| \qquad \forall t \in T$$
 (20)

$$v_{ij}^t \leq Q x_{ij}^t$$
  $\forall i \in I, \forall j \in J, \forall t \in T$  (21)

$$v_{ij}^{t} \leq \left(\sum_{t \geq t}^{t' \leq t + \tau_{max}} d_{i}^{t'}\right) x_{ij}^{t} \qquad \forall i \in I, \forall j \in J, \forall t \in T$$
(22)

$$x_{ij}^{t} \leq \underline{y_{j}} \qquad \forall i \in I, \forall j \in J, \forall t \in T$$
 (23)

## LIRP model 2 (continued)

$$I_j^t = I_j^{t-1} + q_j^t - \sum_{i \in I} v_{ij}^t$$

$$I_i^t = I_i^{t-1} + \sum_{j \in J} v_{ij}^t - d_i^t$$

$$\textit{I}_{\textit{i}}^{t} \leq \sum_{t' \geq t}^{t' \leq t + \tau_{\textit{max}}} \textit{d}_{\textit{i}}^{t'}$$

$$y_j \in \{0,1\}$$

$$z_r^t \in \{0,1\}$$

$$\mathbf{x}_{ij}^t \in \{0,1\}$$

$$I_i^t, I_j^t \geq 0$$

$$q_j^t, v_{ij}^t \geq 0$$

$$\forall i \in I, \forall j \in J, \forall t \in T \tag{24}$$

$$\forall i \in I, \forall t \in T$$
 (25)

$$\forall i \in I, \forall t \in T$$
 (26)

$$\forall j \in J \tag{27}$$

$$\forall r \in R, \forall t \in T \tag{28}$$

$$\forall i \in I, \forall j \in J, \forall t \in T$$

$$\forall i \in I, \forall j \in J, \forall t \in T \tag{30}$$

$$\forall i \in I, \forall j \in J, \forall t \in T, \forall r \in R$$
 (31)

(29)

### Constraints of model 2

- Objective function = facility fixed cost + routing cost + inventory cost
- (17) Each DC is visited by at most one route in every time period
- (18) Capacity constraint on routes.
- (19) No routes to unselected distribution centers
- (20) Fleet size limitation
- (21) (22) Capacity constraints on route r, if it is performed in time period t.
- (23) A customer is served from a selected distribution center
- (24) Flow conservation at DC j
- (25) Flow conservation at customer i
- (25) Max inventory at customers (valid inequality)

## Comparison of models

| # variables          | Model 1<br>direct+loop                             | Model 2<br>loop+direct                                |
|----------------------|----------------------------------------------------|-------------------------------------------------------|
| Binary<br>Continuous | J  +  R  T  +  J  T  $ J  T  +  I  R  T  +  I  T $ | $\frac{ J  +  R  T  +  I  J  T }{ I  J  T  +  J  T }$ |

- The number of routes is much larger in Model 1.
- Many variables  $x_{ij}^t$  can be set at 0.
- ullet Stable allocation  $x_{ij}^t = x_{ij}^{t'}, orall t, t' \in \mathcal{T}$
- Model 2 can be improved (variables  $x_{ij}^t$  can be replaced by several 2-index variables)

## **Applications**

### Features of potential applications

- many independent customers
- small frequent shipments
- possible consolidation at intermediate facilities
- agile networks, intermittent customers

### Example of potential applications

- reverse logistics in construction and civil engineering
- reverse logistics: recovery of e-commerce goods
- collection of breast milk
- distribution of dairy products

## Work proposal

### Implementation

- Reading existing problem instances provided by Guerrero et al. (already available)
- Implementation and computation experiments with an MILP solver

### Analysis

- Comparison of both models
- What if analysis: try to understand in which cases one model outperforms the other one.

#### Academic contribution

- State of the art
- Write a conference paper (8-10 pages)