การเปรียบเทียบ Google Dataplex และ Microsoft Purview สำหรับ วิศวกรข้อมูล

บทสรุปสำหรับผู้บริหาร

ในยุคที่ข้อมูลมีการกระจายตัวและมีความซับซ้อนสูง การกำกับดูแลข้อมูล (Data Governance) ได้ กลายเป็นรากฐานสำคัญสำหรับการขับเคลื่อนคุณค่าทางธุรกิจและการนำ AI มาใช้ Google Dataplex และ Microsoft Purview เป็นสองแพลตฟอร์มชั้นนำที่ออกแบบมาเพื่อจัดการกับความท้าทายเหล่านี้ โดยมีจุดแข็งและแนวทางที่แตกต่างกัน

Google Dataplex มุ่งเน้นไปที่การสร้าง "Data Fabric" ที่เป็นหนึ่งเดียวสำหรับการกำกับดูแลข้อมูล และสินทรัพย์ AI ภายในระบบนิเวศของ Google Cloud โดยเฉพาะ แพลตฟอร์มนี้โดดเด่นในการ ผสานรวมอย่างลึกซึ้งกับบริการของ Google Cloud การสนับสนุนสถาปัตยกรรม Data Mesh และ ความสามารถด้าน AI/ML สำหรับการจัดการเมทาดาตาและข้อมูลเชิงลึก

ในทางตรงกันข้าม Microsoft Purview นำเสนอชุดโซลูชันที่ครอบคลุมทั้งการกำกับดูแลข้อมูล ความ ปลอดภัยของข้อมูล และการจัดการความเสี่ยงและการปฏิบัติตามข้อกำหนด โดยเน้นย้ำถึงแนวคิด "Data as a Product" และการกำกับดูแลแบบรวมศูนย์ (Federated Governance) การผสานรวม อย่างแน่นแฟ้นกับบริการของ Azure และ Microsoft 365 เป็นจุดแข็งหลักของ Purview

การตัดสินใจเลือกระหว่าง Dataplex และ Purview ขึ้นอยู่กับกลยุทธ์คลาวด์หลักขององค์กร สถาปัตยกรรมข้อมูลที่ต้องการ และลำดับความสำคัญเฉพาะด้าน เช่น ความต้องการด้านความ ปลอดภัยและการปฏิบัติตามข้อกำหนดที่เข้มงวด หรือการมุ่งเน้นไปที่การสร้าง Data Mesh ภายใน คลาวด์เดียว

บทนำสู่การกำกับดูแลข้อมูลบนคลาวด์

ภูมิทัศน์ข้อมูลในปัจจุบันมีการเปลี่ยนแปลงอย่างรวดเร็ว โดยข้อมูลมีการกระจายตัวอย่างมหาศาลข้าม สภาพแวดล้อมแบบไฮบริด มัลติคลาวด์ และแอปพลิเคชัน SaaS ¹ การกระจายตัวของข้อมูลนี้สร้าง ความซับซ้อนอย่างมากในการบริหารจัดการ การรับรองคุณภาพ และการรักษาการปฏิบัติตาม ข้อกำหนด ซึ่งเป็นกระบวนการที่ใช้เวลาและซับซ้อน ⁶ เพื่อตอบสนองต่อความท้าทายนี้ แพลตฟอร์ม การกำกับดูแลข้อมูลแบบครบวงจรจึงมีความจำเป็นอย่างยิ่งในการรวมการกำกับดูแล ความปลอดภัย และการปฏิบัติตามข้อกำหนดเข้าไว้ในระบบอัจฉริยะเดียว ³

การกำกับดูแลข้อมูลได้พัฒนาจากการเป็นเพียงกลไกป้องกันที่ขับเคลื่อนด้วยการปฏิบัติตามข้อกำหนด ไปสู่บทบาทเชิงกลยุทธ์ในการปลดล็อกคุณค่าทางธุรกิจ ขับเคลื่อนนวัตกรรมอย่างมีความรับผิดชอบ และสนับสนุนการวิเคราะห์ขั้นสูง รวมถึงเวิร์กโหลด Al/ML ² การเปลี่ยนแปลงนี้แสดงให้เห็นว่าการ กำกับดูแลข้อมูลไม่ได้เป็นเพียงแค่การทำเครื่องหมายในช่องสี่เหลี่ยมตามข้อบังคับอีกต่อไป ³ แต่เป็น สิ่งสำคัญอย่างยิ่งในการรับรองความถูกต้อง ความน่าเชื่อถือ และความสามารถในการใช้งานของข้อมูล เพื่อวัตถุประสงค์ทางธุรกิจที่สำคัญ

สำหรับวิศวกรข้อมูล ซึ่งเป็นผู้ที่อยู่แนวหน้าในการออกแบบ สร้าง และบำรุงรักษาไปป์ไลน์ข้อมูลและ โครงสร้างพื้นฐาน การมีโซลูชันการกำกับดูแลข้อมูลที่แข็งแกร่งเป็นสิ่งจำเป็นอย่างยิ่ง แพลตฟอร์ม เหล่านี้ช่วยให้มั่นใจว่าข้อมูลสามารถค้นพบได้ ถูกต้อง น่าเชื่อถือ และได้รับการปกป้อง 5 การกำกับดูแล ที่มีประสิทธิภาพช่วยลดภาระการดำเนินงาน ปรับปรุงคุณภาพข้อมูล อำนวยความสะดวกในการแบ่งปัน ข้อมูล และรับรองการปฏิบัติตามข้อกำหนด ซึ่งส่งผลโดยตรงต่อประสิทธิภาพและความน่าเชื่อถือของ เวิร์กโฟลว์วิศวกรรมข้อมูล 2 ความต้องการแพลตฟอร์มแบบครบวงจรจึงเกิดขึ้นจากการที่ข้อมูลใน ปัจจุบันมีการกระจายตัว ทำให้การบริหารจัดการข้อมูลเป็นเรื่องที่ซับซ้อนและใช้เวลานาน หากไม่มี แพลตฟอร์มเหล่านี้ วิศวกรข้อมูลจะต้องเผชิญกับความท้าทายในการควบคุมและมองเห็นข้อมูลที่ กระจัดกระจายอยู่ในไซโลต่างๆ ซึ่งจะเพิ่มภาระการดำเนินงานและความเสี่ยงโดยไม่จำเป็น

Google Dataplex: มุมมองของวิศวกรข้อมูล

Google Dataplex ได้รับการออกแบบมาเพื่อทำหน้าที่เป็น "Data Fabric" อัจฉริยะที่รวมศูนย์การ จัดการและการกำกับดูแลข้อมูลทั่วทั้งองค์กร ¹²

ความสามารถหลักและคุณสมบัติ

แค็ตตาล็อกเมทาดาตาแบบรวมศูนย์และการค้นพบข้อมูล

Dataplex Universal Catalog ทำหน้าที่เป็นโซลูชันการกำกับดูแลที่ชาญฉลาดและเป็นหนึ่งเดียว สำหรับสินทรัพย์ข้อมูลและ AI ใน Google Cloud โดยมีรายการข้อมูลส่วนกลางที่รวบรวมเมทาดาตา ทางธุรกิจ เทคนิค และรันไทม์ทั้งหมด ⁶ แพลตฟอร์มนี้ใช้ประโยชน์จากปัญญาประดิษฐ์ (AI) และการ เรียนรู้ของเครื่อง (ML) เพื่อค้นหาความสัมพันธ์และความหมายในเมทาดาตา ซึ่งช่วยให้การสอบถาม ข้อมูลและข้อมูลเชิงลึกง่ายขึ้น ⁶

สำหรับวิศวกรข้อมูล Dataplex ช่วยให้สามารถดึงเมทาดาตาสำหรับทรัพยากร Google Cloud ที่ หลากหลาย เช่น BigQuery, Cloud SQL, Spanner, Vertex AI, Pub/Sub, Dataform และ Dataproc Metastore 6 นอกจากนี้ยังรองรับการสแกนข้อมูลทั้งแบบมีโครงสร้างและไม่มีโครงสร้าง ใน Cloud Storage buckets เพื่อแยกและจัดทำแค็ตตาล็อกเมทาดาตา 6 ความสามารถในการค้นหา ข้อมูลของ Dataplex ยังรวมถึง "Data Insights" ที่ขับเคลื่อนด้วย AI ซึ่งสร้างคำถามภาษาธรรมชาติ เกี่ยวกับข้อมูล และ "Semantic metadata search" ที่ช่วยให้ผู้ใช้ค้นหาข้อมูลโดยใช้ภาษาธรรมชาติ

การเน้นการรวบรวมเมทาดาตาทางธุรกิจ เทคนิค และรันไทม์ และการใช้ AI เพื่อค้นหาความสัมพันธ์ แสดงให้เห็นว่า Dataplex ถือว่าเมทาดาตาเป็นชั้นที่ใช้งานได้และชาญฉลาดสำหรับการกำกับดูแล การนำเสนอการค้นหาด้วยภาษาธรรมชาติผ่าน AI ช่วยให้การค้นพบข้อมูลเป็นประชาธิปไตยมากขึ้น สิ่ง นี้หมายความว่าวิศวกรข้อมูลจะต้องพิจารณาการสร้างและคุณภาพของเมทาดาตาเป็นส่วนสำคัญของ การออกแบบไปป์ไลน์ข้อมูลของตน หากเมทาดาตาพื้นฐานไม่มีคุณภาพ การค้นหาและข้อมูลเชิงลึกที่ ขับเคลื่อนด้วย AI จะไม่มีประสิทธิภาพ ซึ่งนำไปสู่ความไม่ไว้วางใจในแค็ตตาล็อก อย่างไรก็ตาม การที่ AI เข้ามาช่วยในส่วนนี้อาจลดคำขอสอบถามเฉพาะกิจสำหรับการทำความเข้าใจข้อมูลพื้นฐานลงได้ ทำให้วิศวกรมีเวลาไปทำงานที่ซับซ้อนมากขึ้น

คุณภาพข้อมูลและโปรไฟล์ข้อมูลอัตโนมัติ

Dataplex ช่วยให้สามารถกำหนดและวัดคุณภาพของข้อมูลในตาราง BigQuery โดยตรวจสอบข้อมูล ตามนโยบายขององค์กรและบันทึกการแจ้งเตือนหากข้อมูลไม่เป็นไปตามเกณฑ์คุณภาพที่กำหนด ⁶ การทำโปรไฟล์ข้อมูลจะระบุลักษณะทั่วไปของข้อมูลในคอลัมน์ (เช่น ค่าข้อมูลทั่วไป การกระจายข้อมูล และจำนวนค่าว่าง) ซึ่งเป็นสิ่งสำคัญสำหรับการจัดประเภทข้อมูลและการประกันคุณภาพ ⁶

กฏคุณภาพข้อมูลสามารถจัดการได้ "ในรูปแบบโค้ด" โดยมีตัวเลือกในการแนะนำกฏตามผลลัพธ์การส แกนโปรไฟล์ข้อมูลของ Dataplex Universal Catalog รวมถึงกฏที่กำหนดไว้ล่วงหน้า (ระดับแถว, ระดับรวม) และกฏ SQL แบบกำหนดเอง ⁶ ประเภทกฏที่กำหนดไว้ล่วงหน้า ได้แก่

RangeExpectation, NonNullExpectation, SetExpectation, RegexExpectation, Uniqueness และ StatisticRangeExpectation ¹⁹ กฎ SQL แบบกำหนดเองรองรับเงื่อนไขระดับ แถว เงื่อนไขระดับตาราง (SQL รวม) และการยืนยัน SQL ⁶ กฎเหล่านี้สามารถเชื่อมโยงกับมิติข้อมูล

เช่น ความสดใหม่ ปริมาณ ความสมบูรณ์ ความถูกต้อง ความสอดคล้อง ความแม่นยำ และความเป็น เอกลักษณ์ เพื่อผลลัพธ์ที่รวมกัน ⁶ ผลการสแกนยังสามารถส่งออกไปยัง BigQuery เพื่อการวิเคราะห์ เพิ่มเติมและการจัดทำรายงานแบบกำหนดเอง ⁶

ความสามารถในการจัดการกฎคุณภาพข้อมูลและการปรับใช้ในรูปแบบโค้ดนั้นสอดคล้องโดยตรงกับ แนวทางปฏิบัติของ DataOps และ DevOps สมัยใหม่ ซึ่งช่วยให้วิศวกรข้อมูลสามารถควบคุมเวอร์ชัน ทดสอบ และปรับใช้การตรวจสอบคุณภาพข้อมูลโดยอัตโนมัติพร้อมกับไปป์ไลน์ข้อมูลของตน การ แนะนำกฎตามการสแกนโปรไฟล์ข้อมูลยังช่วยลดความยุ่งยากในการตั้งค่ากฎคุณภาพข้อมูลในเบื้องต้น สิ่งนี้บ่งชี้ถึงการเปลี่ยนแปลงที่สำคัญจากสคริปต์การตรวจสอบข้อมูลด้วยตนเองแบบตอบโต้ ไปสู่ แนวทางที่เน้นการประกาศ ใช้โค้ด และเป็นอัตโนมัติ วิศวกรข้อมูลสามารถฝังคุณภาพข้อมูลโดยตรงใน ไปป์ไลน์ CI/CD ของตน ซึ่งช่วยปรับปรุงความสมบูรณ์ของการผลิตข้อมูลและลดความพยายามด้วย ตนเองในการระบุและแก้ไขปัญหาข้อมูล การควบคุมที่ละเอียดอ่อนที่นำเสนอโดยกฎที่กำหนดไว้ ล่วงหน้าและกฎ SQL แบบกำหนดเองช่วยให้วิศวกรสามารถใช้ตรรกะการตรวจสอบที่ซับซ้อนและ เฉพาะเจาะจงทางธุรกิจได้โดยตรงภายในแพลตฟอร์มการกำกับดูแล เพื่อให้มั่นใจในความน่าเชื่อถือ ของข้อมูลในวงกว้าง

อย่างไรก็ตาม การตรวจสอบคุณภาพข้อมูลและการทำโปรไฟล์ข้อมูลจัดอยู่ในหมวดหมู่ "Premium Processing" ของ Dataplex ซึ่งมีค่าใช้จ่ายที่วัดเป็น Data Compute Unit (DCU) ชั่วโมง และไม่มี ระดับฟรี 12 เอกสารแนะนำให้ "เลือกใช้คุณสมบัติอย่างรอบคอบ" "ใช้การสุ่มตัวอย่างและขอบเขตแบบ เพิ่มขึ้น" และ "ลดความซับซ้อนของกฎคุณภาพข้อมูล" เพื่อ "ควบคุมการใช้งาน" 12 นี่แสดงว่าการเปิด ใช้งานการทำโปรไฟล์และตรวจสอบคุณภาพข้อมูลอย่างครอบคลุมโดยไม่มีการวางแผน อาจนำไปสู่ค่า ใช้จ่ายที่สูงและไม่คาดคิด วิศวกรข้อมูลจึงต้องมีส่วนร่วมอย่างแข็งขันในกลยุทธ์การเพิ่มประสิทธิภาพ ต้นทุน เช่น การทำโปรไฟล์เฉพาะชุดข้อมูลที่สำคัญ การใช้การสแกนแบบเพิ่มขึ้นสำหรับตารางที่อัปเดต บ่อยครั้ง และการออกแบบกฎคุณภาพข้อมูลอย่างมีประสิทธิภาพ สิ่งนี้ทำให้วิศวกรต้องเข้าใจแบบ จำลองราคาและผลกระทบโดยตรงต่อการเลือกสถาปัตยกรรมและการดำเนินงาน โดยต้องสร้างสมดุล ระหว่างความน่าเชื่อถือของข้อมูลและข้อจำกัดด้านงบประมาณ

สายข้อมูลแบบครบวงจร (End-to-End Data Lineage)

Dataplex ช่วยให้สามารถติดตามการเคลื่อนที่ของข้อมูลผ่านระบบต่างๆ รวมถึงแหล่งที่มา ปลายทาง และการแปลงที่ใช้ ⁶ มีการจัดเตรียมสายข้อมูลอัตโนมัติสำหรับแหล่งข้อมูล Google Cloud ที่ หลากหลาย เช่น BigQuery, Cloud Data Fusion, Cloud Composer, Dataflow, Dataproc และ Vertex Al ⁶

แพลตฟอร์มนี้ยังรองรับการขยายไปยังแหล่งข้อมูลบุคคลที่สามและระบบภายนอกผ่าน Data Lineage API และการผสานรวม OpenLineage ซึ่งช่วยให้สามารถบันทึกข้อมูลสายข้อมูลด้วยตนเอง ได้ ⁶ ข้อมูลสายข้อมูลถูกจัดระเบียบโดยใช้โมเดลลำดับชั้นของกระบวนการ การรัน และเหตุการณ์ และ สามารถแสดงเป็นกราฟ การแสดงภาพพาธ หรือในมุมมองรายการ ⁶

ข้อจำกัดที่สำคัญคือข้อมูลสายข้อมูลทั้งหมดจะถูกเก็บไว้ในระบบเพียง 30 วันเท่านั้น ²⁰ นี่เป็นข้อจำกัด ที่ส่งผลกระทบโดยตรงต่อกลยุทธ์การกำกับดูแลข้อมูลระยะยาว สำหรับองค์กรที่มีข้อกำหนดการ ปฏิบัติตามกฎระเบียบที่เข้มงวด (เช่น GDPR, HIPAA, SOX) หรือความต้องการในการตรวจสอบ ภายในที่ต้องการแหล่งที่มาของข้อมูลนานกว่า 30 วัน สายข้อมูลใน Dataplex ไม่เพียงพอในฐานะ แหล่งความจริงเพียงแหล่งเดียว วิศวกรข้อมูลจะต้องออกแบบและใช้งานกลไกภายนอกเพิ่มเติมเพื่อ ดึงและจัดเก็บเมทาดาตาของสายข้อมูล (เช่น การใช้ Data Lineage API เพื่อส่งออกข้อมูลไปยัง ตาราง BigQuery หรือที่เก็บข้อมูลถาวรอื่นๆ) สิ่งนี้เพิ่มความซับซ้อนทางสถาปัตยกรรม ความพยายาม ในการพัฒนา และค่าใช้จ่ายในการดำเนินงานอย่างต่อเนื่อง ทำให้คุณสมบัติที่ดูเหมือนจะรวมอยู่ในตัว กลายเป็นโซลูซันหลายองค์ประกอบสำหรับการปฏิบัติตามข้อกำหนดระยะยาว

นอกจากนี้ เอกสารยังแนะนำวิศวกรข้อมูลให้ "เพิ่มประสิทธิภาพการโหลดข้อมูลสำหรับสายข้อมูล" โดย "หลีกเลี่ยงการอัปเดตตราง BigQuery จำนวนมากด้วยการอัปเดตเล็กๆ น้อยๆ" เนื่องจาก "การ อัปเดตแต่ละครั้งจะสร้างเหตุการณ์สายข้อมูล" ซึ่ง "อาจทำให้กราฟสายข้อมูลขยายใหญ่เกินไปและ เพิ่มการใช้ DCU และพื้นที่จัดเก็บข้อมูล" และแนะนำให้ใช้คำสั่ง BigQuery MERGE สำหรับการ อัปเดตจำนวนมาก 12 นี่แสดงให้เห็นความสัมพันธ์โดยตรงระหว่างรูปแบบการโหลดข้อมูลในไปป์ไลน์ ETL/ELT และค่าใช้จ่ายสายข้อมูลของ Dataplex กลยุทธ์การอัปเดตที่ไม่มีประสิทธิภาพหรือละเอียด อ่อนอาจนำไปสู่การเพิ่มขึ้นของเหตุการณ์สายข้อมูล ซึ่งจะผลักดันค่าใช้จ่ายในการประมวลผล (DCU) และค่าใช้จ่ายในการจัดเก็บเมทาดาตาภายใต้ระดับ Premium Processing วิศวกรข้อมูลจึงต้องออก แบบไปป์ไลน์ข้อมูล BigQuery โดยคำนึงถึงการเพิ่มประสิทธิภาพต้นทุนสายข้อมูล โดยให้ความสำคัญ กับการดำเนินงานแบบกลุ่มและคำสั่ง DML ที่มีประสิทธิภาพเพื่อจัดการค่าใช้จ่ายในการดำเนินงาน อย่างมีประสิทธิภาพ โดยเฉพาะอย่างยิ่งสำหรับชุดข้อมูลที่มีปริมาณมากและมีการอัปเดตบ่อยครั้ง

อภิธานศัพท์ทางธุรกิจและข้อมูลเชิงลึก

Dataplex มีคุณสมบัติ Business Glossary สำหรับการจัดการคำศัพท์และคำจำกัดความที่เกี่ยวข้อง กับธุรกิจ ซึ่งสามารถแนบไปกับคอลัมน์ตารางเพื่อส่งเสริมความเข้าใจที่สอดคล้องกันในการใช้ข้อมูล ⁶ คุณสมบัตินี้ช่วยปรับปรุงการค้นพบข้อมูลและลดความกำกวม ซึ่งนำไปสู่การวิเคราะห์ที่แม่นยำยิ่งขึ้น และข้อมูลเชิงลึกที่รวดเร็วยิ่งขึ้น ⁶

ความสามารถของ Business Glossary ในการจัดการคำศัพท์และคำจำกัดความทางธุรกิจ และการ แนบคำศัพท์เหล่านี้เข้ากับคอลัมน์ตาราง ⁶ ช่วยแก้ไขปัญหาทั่วไป: ความไม่สอดคล้องกันระหว่าง โครงสร้างข้อมูลทางเทคนิคและความเข้าใจทางธุรกิจ เมื่อรวมกับ "Data Insights" ที่ขับเคลื่อนด้วย AI และ "Semantic search" ⁶ จะช่วยให้ผู้ใช้ทางธุรกิจสามารถสำรวจข้อมูลได้อย่างเป็นธรรมชาติมาก ขึ้น สิ่งนี้บ่งชี้ถึงศักยภาพในการลดเวลาที่วิศวกรข้อมูลใช้ในการแปลคำถามทางธุรกิจเป็นคำสั่งทาง เทคนิค หรืออธิบายคำจำกัดความของข้อมูล อย่างไรก็ตาม ยังวางความรับผิดชอบให้วิศวกรข้อมูล

(หรือผู้ดูแลข้อมูลที่พวกเขาร่วมงานด้วย) ต้องมั่นใจว่าสินทรัพย์ข้อมูลทางเทคนิคได้รับการติดแท็กและ เชื่อมโยงกับอภิธานศัพท์ทางธุรกิจอย่างถูกต้อง ประสิทธิภาพของข้อมูลเชิงลึกที่ขับเคลื่อนด้วย AI ขึ้น อยู่กับคุณภาพและความสมบูรณ์ของเมทาดาตาบริบททางธุรกิจนี้อย่างมาก ซึ่งส่งเสริมสภาพแวดล้อม การทำงานร่วมกันมากขึ้น โดยวิศวกรข้อมูลมีส่วนร่วมในการทำความเข้าใจข้อมูลนอกเหนือจากการ เคลื่อนย้ายและการแปลงข้อมูลเพียงอย่างเดียว

ปรัชญาสถาปัตยกรรมและการนำ Data Mesh ไปใช้

Dataplex ถูกอธิบายว่าเป็น "Data Fabric" อัจฉริยะที่รวมการจัดการข้อมูลในสภาพแวดล้อมที่ หลากหลาย (เช่น Data Lake, Data Warehouse, ฐานข้อมูลปฏิบัติการ) เข้าไว้ในเฟรมเวิร์กเดียว ¹³ แพลตฟอร์มนี้มีบทบาทสำคัญในการนำหลักการสถาปัตยกรรม "Data Mesh" มาปฏิบัติ ซึ่งส่งเสริม การกระจายอำนาจการเป็นเจ้าของข้อมูลโดยเจ้าของข้อมูลโดเมน ในขณะที่ยังคงรักษาการกำกับดูแล แบบรวมศูนย์ ¹³

Dataplex ช่วยให้องค์กรสามารถจัดระเบียบข้อมูลอย่างมีเหตุผลเป็น "Lake" (ทำหน้าที่เป็นโดเมน Data Mesh) และ "Zone" (แสดงถึงทีมแต่ละทีมหรือโดเมนย่อย) โดยมี "Assets" ที่แมปกับข้อมูลที่ จัดเก็บใน Cloud Storage หรือ BigQuery ¹⁵ สถาปัตยกรรมนี้สนับสนุนแนวคิด "Data as a Product" โดยรับรองว่าชุดข้อมูลมีความสะอาด ค้นพบได้ และใช้งานได้ทั่วทั้งโดเมน โดยผู้ผลิตข้อมูล ต้องรับผิดชอบต่อคุณภาพและเอกสารประกอบ ¹³ นอกจากนี้ Dataplex ยังผสานรวมอย่างลึกซึ้งกับ BigLake ซึ่งเป็นเอนจินจัดเก็บ Apache Iceberg ดั้งเดิมของ Google Cloud ซึ่งเป็นรากฐานที่มีการ จัดการสำหรับ Lakehouse แบบเปิด ¹⁷

การออกแบบหลักของ Dataplex ที่สอดคล้องกับ Data Mesh โดยเน้น "การจัดการข้อมูลแบบ กระจายอำนาจ" พร้อม "การกำกับดูแลแบบรวมศูนย์" ¹³ และมีโครงสร้างที่ชัดเจน เช่น "Lake" เป็นโด เมนและ "Zone" เป็นโดเมนย่อย ¹⁵ ทำให้ Dataplex เป็นแพลตฟอร์มพื้นฐานที่ช่วยให้หลักการเหล่านี้ ใช้งานได้จริงภายใน GCP สำหรับองค์กรที่นำสถาปัตยกรรม Data Mesh มาใช้หรือวางแผนที่จะใช้ Dataplex ไม่ใช่แค่เครื่องมือ แต่เป็นแพลตฟอร์มที่ทำให้หลักการเหล่านี้เป็นจริงภายใน GCP สิ่งนี้ หมายความว่าวิศวกรข้อมูลที่ทำงานในสภาพแวดล้อมดังกล่าวจะพบว่าโครงสร้างโดยธรรมชาติของ Dataplex เข้ากันได้ดีกับการพัฒนาผลิตภัณฑ์ข้อมูลที่เน้นโดเมน ซึ่งช่วยลดความซับซ้อนในการนำ สัญญาข้อมูล การควบคุมการเข้าถึง และการแบ่งปันข้อมูลไปใช้ในทีมที่กระจายอำนาจ ซึ่งอาจช่วยเร่ง การนำ Data Mesh ไปใช้และประสบความสำเร็จโดยการให้การสนับสนุนในตัวสำหรับหลักการหลัก ของมัน

ระบบนิเวศการผสานรวม

Dataplex มีการผสานรวมอย่างลึกซึ้งและอัตโนมัติในการนำเข้าเมทาดาตาจากบริการ Google Cloud ที่หลากหลาย รวมถึง BigQuery, Cloud Storage, Cloud SQL, Spanner, Vertex AI, Pub/Sub, Dataform และ Dataproc Metastore ⁶

นอกจากนี้ยังมีความสามารถในการขยายเพื่อรวมเมทาดาตาจากแหล่งข้อมูลบุคคลที่สาม แหล่งข้อมูล ภายในองค์กร และแหล่งข้อมูลมัลติคลาวด์ ซึ่งทำได้ผ่าน "Custom Entries" "Custom Entry Types" และ "Aspect Types" ซึ่งกำหนดโครงสร้างสำหรับเมทาดาตาภายนอก ² สามารถพัฒนาตัว เชื่อมต่อแบบกำหนดเอง (เช่น โดยใช้ PySpark บน Dataproc Serverless) เพื่อดึงเมทาดาตาจาก ระบบภายนอกและนำเข้าสู่ Dataplex โดยใช้ไฟล์รูปแบบ JSON Lines ผ่าน API

metadataJobs.create ⁶ นอกจากนี้ยังรองรับการผสานรวม OpenLineage สำหรับการติดตามสาย ข้อมูลจากระบบภายนอก ⁶

แม้ว่า Dataplex จะถูกนำเสนอว่าเป็น "Data Fabric" แบบครบวงจรที่ "ครอบคลุมผู้ให้บริการคลา วด์หลายรายและสภาพแวดล้อมภายในองค์กร" ² แต่เอกสารรายละเอียดแสดงให้เห็นถึงความแตกต่าง ที่ชัดเจนในความพยายามในการผสานรวม การดึงเมทาดาตาอัตโนมัติเป็นไปอย่างราบรื่นสำหรับบริการ GCP ⁶ อย่างไรก็ตาม การผสานรวม "แหล่งข้อมูลบุคคลที่สาม" หรือ "แหล่งข้อมูลแบบกำหนดเอง" ต้องมีการสร้าง "Custom Entries" "Custom Entry Types" และ "Custom Connectors" ⁶ ซึ่งมัก เกี่ยวข้องกับการพัฒนา PySpark และการจัดการไฟล์นำเข้า JSON Lines สิ่งนี้บ่งชี้ว่า Dataplex มี ประสิทธิภาพสูงสุดและพร้อมใช้งานทันทีสำหรับองค์กรที่ใช้ GCP เป็นหลัก แม้ว่าการผสานรวมแบบ มัลติคลาวด์และไฮบริดจะทำได้ในทางเทคนิค แต่ก็ต้องใช้ต้นทุนรวมในการเป็นเจ้าของ (TCO) ที่สูงขึ้น อย่างมาก เนื่องจากต้องมีการพัฒนา การปรับใช้ และการบำรุงรักษาที่กำหนดเองจากทีมวิศวกรข้อมูล จำนวนมาก สำหรับสภาพแวดล้อมข้อมูลที่มีความหลากหลายอย่างแท้จริง วิศวกรข้อมูลจะต้องชั่ง น้ำหนักประโยชน์ของการผสานรวม GCP อย่างลึกซึ้งของ Dataplex กับภาระในการสร้างและบำรุง รักษาไปป์ไลน์การผสานรวมแบบกำหนดเองสำหรับแหล่งข้อมูลที่ไม่ใช่ GCP สิ่งนี้ทำให้ Dataplex เป็น ตัวเลือกที่ "เหมาะสมที่สุด" สำหรับองค์กรที่เน้น GCP ซึ่งมีข้อมูลภายนอกบางส่วน มากกว่าจะเป็นโซ ลูชันการกำกับดูแลแบบมัลติคลาวด์ที่ไม่ขึ้นกับผู้จำหน่ายโดยไม่ต้องลงทุนด้านวิศวกรรมแบบกำหนด เองจำนวนมาก

รูปแบบการกำหนดราคาและการเพิ่มประสิทธิภาพต้นทุน

Dataplex ทำงานบนรูปแบบการเรียกเก็บเงินแบบจ่ายตามการใช้งานจริง (pay-as-you-go) โดยมี ปัจจัยหลักในการบริโภคคือการประมวลผลข้อมูล (วัดเป็น Data Compute Unit, DCU, ชั่วโมง) การ จัดเก็บเมทาดาตา และการใช้งาน API ¹²

• การประมวลผลข้อมูล (DCU):

- Standard Processing: ครอบคลุมงานการจัดการข้อมูลพื้นฐาน เช่น การค้นพบและการ ลงทะเบียนเมทาดาตาจากแหล่งข้อมูล มีการใช้งานฟรี 100 DCU ชั่วโมงแรกต่อเดือน 12
- Premium Processing: สำหรับความสามารถขั้นสูง เช่น การตรวจสอบคุณภาพข้อมูล การ ทำโปรไฟล์ข้อมูล และสายข้อมูล ไม่มีระดับฟรีสำหรับ Premium Processing และมีอัตราต่อ ชั่วโมงต่อ DCU ที่สูงกว่า ¹² สายข้อมูลเป็นปัจจัยสำคัญที่ทำให้เกิดค่าใช้จ่าย Premium Processing ¹²
- การจัดเก็บเมทาดาตา: เมทาดาตาทางเทคนิคที่รวบรวมโดยอัตโนมัติจะถูกจัดเก็บโดยไม่มีค่าใช้ จ่าย เมทาดาตาที่เสริม (เช่น Business Glossary, Custom Aspects) จะถูกเรียกเก็บเงิน มี พื้นที่จัดเก็บฟรี 1 MiB แรก จากนั้นคิดค่าบริการ 2 ดอลลาร์ต่อ GiB ต่อเดือน 12
- การใช้งาน API: การโต้ตอบแบบโปรแกรมผ่าน API (Data Catalog API, Data Lineage API) จะถูกเรียกเก็บเงินหลังจากมีการเรียกใช้ฟรี 1 ล้านครั้งแรกต่อเดือน (10 ดอลลาร์ต่อ 100,000 การเรียกใช้) 12

แบบจำลองการกำหนดราคาแบบแบ่งระดับ (Standard vs. Premium) และปัจจัยที่ทำให้เกิดค่าใช้ จ่ายที่ชัดเจนสำหรับการประมวลผล (DCU) การจัดเก็บเมทาดาตา และการใช้งาน API ¹² หมายความว่า ค่าใช้จ่ายขึ้นอยู่กับ

วิธีการ ใช้คุณสมบัติของ Dataplex อย่างมาก คำแนะนำในการ "เลือกใช้คุณสมบัติอย่างรอบคอบ" "ใช้ การสุ่มตัวอย่างและขอบเขตแบบเพิ่มขึ้น" และ "ลดความซับซ้อนของกฎคุณภาพข้อมูล" 12 เชื่อมโยง การตัดสินใจทางวิศวกรรมกับผลลัพธ์ทางการเงินโดยตรง สิ่งนี้บ่งชี้ว่าแนวทาง "เปิดใช้งานทั้งหมด" โดยเฉพาะอย่างยิ่งสำหรับคุณสมบัติ Premium เช่น คุณภาพข้อมูล การทำโปรไฟล์ และสายข้อมูล อาจ นำไปสู่ค่าใช้จ่ายที่ไม่คาดคิดและอาจสูง วิศวกรข้อมูลต้องใช้ความคิดที่คำนึงถึงต้นทุนในการออกแบบ และการดำเนินงาน ซึ่งหมายถึงการประเมินความจำเป็นและขอบเขตของแต่ละคุณสมบัติอย่าง รอบคอบ การควบคุมการรันงานอย่างละเอียด (เช่น การกำหนดเวลา การสุ่มตัวอย่าง) และการเพิ่ม ประสิทธิภาพรูปแบบการโหลดข้อมูลเพื่อลดการใช้ DCU พวกเขาจำเป็นต้องเข้าใจว่าการเลือกทาง เทคนิคของพวกเขาส่งผลโดยตรงต่อรายการการเรียกเก็บเงิน ซึ่งจำเป็นต้องสร้างสมดุลระหว่างการ กำกับดูแลที่ครอบคลุมและประสิทธิภาพด้านต้นทุน

กลยุทธ์การเพิ่มประสิทธิภาพต้นทุนสำหรับวิศวกรข้อมูล: วิศวกรข้อมูลสามารถลดค่าใช้จ่าย Dataplex ได้โดย:

- เลือกใช้คุณสมบัติอย่างรอบคอบ โดยใช้การทำโปรไฟล์และการตรวจสอบคุณภาพเฉพาะในส่วนที่ จำเป็นจริงๆ 12
- ใช้การสุ่มตัวอย่างและขอบเขตแบบเพิ่มขึ้นสำหรับงานทำโปรไฟล์และคุณภาพข้อมูลเพื่อจำกัด ปริมาณข้อมูลที่ประมวลผล ¹²
- ลดความซับซ้อนของกฎคุณภาพข้อมูล เพื่อลดความซับซ้อนในการประมวลผล 12
- เพิ่มประสิทธิภาพการโหลดข้อมูลสำหรับสายข้อมูล หลีกเลี่ยงการอัปเดตเล็กๆ น้อยๆ จำนวนมาก และเลือกใช้การดำเนินการแบบกลุ่ม เช่น คำสั่ง BigQuery MERGE 12
- ตรวจสอบการใช้งานโดยใช้รายงาน Cloud Billing โดยกรองด้วยป้ายกำกับ dataplex เพื่อระบุ ปัจจัยที่ทำให้เกิดค่าใช้จ่าย เช่น LINEAGE หรือ DATA PROFILE 12

จุดแข็งและข้อควรพิจารณาสำหรับวิศวกรข้อมูล

จุดแข็ง:

- การผสานรวม GCP อย่างลึกซึ้ง: การนำเข้าเมทาดาตาที่ราบรื่นและอัตโนมัติจากบริการ Google Cloud ที่หลากหลาย ช่วยลดความพยายามในการผสานรวมสำหรับสภาพแวดล้อมข้อมูลที่ใช้ GCP เป็นหลัก
- การกำกับดูแลที่ขับเคลื่อนด้วย AI: ใช้ AI/ML สำหรับการค้นพบเมทาดาตา การค้นหาเชิงความ หมาย และข้อมูลเชิงลึก ซึ่งอาจทำให้การเข้าถึงข้อมูลเป็นประชาธิปไตยและลดความพยายามใน การทำความเข้าใจข้อมูลด้วยตนเอง 16
- **การสนับสนุน Data Mesh ที่แข็งแกร่ง:** จัดเตรียมโครงสร้างสถาปัตยกรรม (Lake, Zone) ที่ สอดคล้องโดยตรงกับหลักการ Data Mesh ซึ่งอำนวยความสะดวกในการกระจายอำนาจการเป็น เจ้าของข้อมูลพร้อมกับการกำกับดูแลแบบรวมศูนย์ ¹³
- การดำเนินงานแบบ Serverless: ฟังก์ชันการทำงานของ Dataplex จำนวนมากเป็นแบบ Serverless ซึ่งช่วยลดความซับซ้อนของโครงสร้างพื้นฐานพื้นฐานและทำให้การดำเนินงานง่ายขึ้น
- คุณภาพข้อมูลและสายข้อมูลอัตโนมัติ: นำเสนอความสามารถที่แข็งแกร่งสำหรับการทำโปร ไฟล์ข้อมูล การกำหนดกฎคุณภาพ (ในรูปแบบโค้ด) และการติดตามการไหลของข้อมูลโดย อัตโนมัติสำหรับบริการ GCP ⁶
- Metamodel ที่ขยายได้: อนุญาตให้ใช้ประเภทรายการและลักษณะที่กำหนดเองเพื่อรวมเมทาดา ตาจากแหล่งข้อมูลที่ไม่ใช่ GCP ซึ่งให้ความยืดหยุ่นสำหรับภูมิทัศน์ข้อมูลที่หลากหลาย ⁶

ข้อควรพิจารณา/ข้อจำกัด:

- การเก็บรักษาสายข้อมูลที่จำกัด: ข้อมูลสายข้อมูลจะถูกเก็บไว้เพียง 30 วันเท่านั้น ซึ่งเป็นข้อจำกัด ที่สำคัญสำหรับการปฏิบัติตามข้อกำหนดและการตรวจสอบระยะยาว ซึ่งจำเป็นต้องมีโซลูซันการ จัดเก็บภายนอกเพิ่มเติม 20
- ความซับซ้อนในการกำหนดราคา: การกำหนดราคาแบบ DCU แบบแบ่งระดับและปัจจัยที่ทำให้ เกิดค่าใช้จ่ายต่างๆ อาจซับซ้อนในการคาดการณ์และจัดการหากไม่มีการตรวจสอบและกลยุทธ์ การเพิ่มประสิทธิภาพอย่างรอบคอบ 12
- ความพยายามในการผสานรวมแบบมัลติคลาวด์/ไฮบริด: แม้ว่าจะขยายได้ แต่การรวมแหล่งข้อมูล
 ที่ไม่ใช่ GCP แบบมัลติคลาวด์ หรือแหล่งข้อมูลภายในองค์กรต้องใช้การวิศวกรรมแบบกำหนด
 เองจำนวนมาก (การสร้างตัวเชื่อมต่อ การจัดการเวิร์กโฟลว์การนำเข้า) ซึ่งเพิ่ม TCO สำหรับสภาพ
 แวดล้อมที่หลากหลาย ²
- ขอบเขตภูมิภาค: ขอบเขตภูมิภาคไม่กว้างขวางเท่ากับคู่แข่งบางราย ซึ่งอาจส่งผลกระทบต่อเวลา แฝงหรือข้อกำหนดด้านความซ้ำซ้อนในบางพื้นที่ทางภูมิศาสตร์ 26
- โควตาและข้อจำกัดของระบบ: มีโควตาคำขอ API และข้อจำกัดของระบบที่เข้มงวดเกี่ยวกับขนาด

และจำนวนรายการ/ลักษณะ ซึ่งจำเป็นต้องพิจารณาสำหรับการใช้งานขนาดใหญ่มาก ²⁷

แม้ว่า Dataplex จะถูกนำเสนออย่างสม่ำเสมอว่าเป็น "Data Fabric" แบบครบวงจรที่ "ครอบคลุมผู้ ให้บริการคลาวด์หลายรายและสภาพแวดล้อมภายในองค์กร" ² แต่รายละเอียดวิธีการผสานรวมสำหรับ แหล่งข้อมูลที่ไม่ใช่ GCP ⁶ นั้นเกี่ยวข้องกับการสร้าง "ตัวเชื่อมต่อแบบกำหนดเอง" และ "การนำเข้าเม ทาดาตาด้วยตนเอง" ผ่าน API ซึ่งแตกต่างอย่างมากจาก "เมทาดาตาที่ดึงมาโดยอัตโนมัติ" สำหรับ บริการ GCP ดั้งเดิม ⁶ ความไม่สอดคล้องกันนี้เน้นย้ำว่าแม้ Dataplex

สามารถ ผสานรวมแหล่งข้อมูลภายนอกได้ แต่ความพยายามที่ต้องใช้ก็สูงกว่ามากสำหรับข้อมูลที่ใช้ GCP เป็นหลัก สำหรับวิศวกรข้อมูล สิ่งนี้หมายความว่าวิสัยทัศน์ "Data Fabric" แบบครบวงจรนั้น สามารถทำได้ง่ายกว่าและคุ้มค่ากว่าในสภาพแวดล้อมที่ใช้ GCP เป็นหลัก การขยายไปยังคลาวด์อื่นหรือ ระบบภายในองค์กรต้องใช้ค่าใช้จ่ายในการพัฒนาและบำรุงรักษาที่สูงมาก ทำให้เป็นแพลตฟอร์มที่เน้น GCP เป็นอันดับแรกพร้อมความสามารถในการขยาย มากกว่าจะเป็นโซลูชันมัลติคลาวด์ที่ไม่ขึ้นกับผู้ จำหน่ายอย่างแท้จริงโดยไม่ต้องลงทุนด้านวิศวกรรมแบบกำหนดเองจำนวนมาก นี่เป็นข้อควรพิจารณา ที่สำคัญสำหรับองค์กรที่มีกลยุทธ์มัลติคลาวด์เป็นอันดับแรกอย่างแท้จริง

Microsoft Purview: มุมมองของวิศวกรข้อมูล

Microsoft Purview เป็นชุดผลิตภัณฑ์ที่ครอบคลุมซึ่งครอบคลุมโซลูชันการกำกับดูแลข้อมูล ความ ปลอดภัยของข้อมูล และความเสี่ยงและการปฏิบัติตามข้อกำหนด 1

ความสามารถหลักและคุณสมบัติ

แค็ตตาล็อกแบบรวมศูนย์และ Data Map

Microsoft Purview เป็นพอร์ตโฟลิโอที่ครอบคลุมสำหรับการกำกับดูแลข้อมูล ความปลอดภัยของ ข้อมูล และความเสี่ยงและการปฏิบัติตามข้อกำหนด ¹ Unified Catalog และ Data Map เป็นหัวใจ สำคัญของโซลูชันการกำกับดูแลข้อมูล โดยมอบประสบการณ์ที่ทันสมัยเพื่อการมองเห็นที่ครอบคลุม และความน่าเชื่อถือของข้อมูล ⁷

Data Map เป็นองค์ประกอบพื้นฐานสำหรับการค้นพบข้อมูลและการกำกับดูแล โดยรวบรวมเมทาดา

ตาจากระบบการวิเคราะห์, SaaS และระบบปฏิบัติการในสภาพแวดล้อมแบบไฮบริด, ภายในองค์กร และมัลติคลาวด์ ²⁹ Data Map รักษาความทันสมัยผ่านระบบการสแกนและการจัดประเภทแบบรวม ศูนย์ ซึ่งสนับสนุนการค้นพบและการจัดประเภทข้อมูลโดยอัตโนมัติ ⁸ Unified Catalog ช่วยให้ สามารถสร้างโดเมนการกำกับดูแล จัดการผลิตภัณฑ์ข้อมูล และเชื่อมโยงข้อมูลกับแนวคิดทางธุรกิจ (OKRs, คำศัพท์ในอภิธานศัพท์) ⁷ Data Map ปรับขนาดได้อย่างยืดหยุ่นตามความต้องการ โดยมี หน่วยความจุ (CU) สำหรับปริมาณงาน (25 การดำเนินการ/วินาทีต่อ CU) และการจัดเก็บเมทาดาตา (10 GB ต่อ CU) ²⁹

การนำเสนอ Purview ในฐานะ "พอร์ตโฟลิโอที่ครอบคลุม" ¹ ที่รวม "โซลูชันความปลอดภัยข้อมูล และ ความเสี่ยงและการปฏิบัติตามข้อกำหนด" เข้ากับการกำกับดูแลข้อมูลอย่างชัดเจน ถือเป็นจุดเด่นที่ สำคัญ คุณสมบัติที่รวมเข้าด้วยกัน เช่น Data Loss Prevention (DLP), Information Protection และ Insider Risk Management ³ แสดงให้เห็นถึงแนวทางแบบองค์รวม สิ่งนี้หมายความว่าวิศวกร ข้อมูลสามารถใช้แพลตฟอร์มเดียวสำหรับการค้นพบข้อมูลและสายข้อมูล รวมถึงการบังคับใช้นโยบาย ข้อมูลที่ละเอียดอ่อนและการควบคุมการปฏิบัติตามข้อกำหนด ซึ่งช่วยลดความซับซ้อนในการจัดการ เครื่องมือรักษาความปลอดภัยที่แตกต่างกัน และอาจลดความจำเป็นในการผสานรวมแบบกำหนดเอง สำหรับการปกป้องข้อมูล สำหรับองค์กรในอุตสาหกรรมที่มีการควบคุมอย่างเข้มงวด ชุดโซลูชันแบบ รวมศูนย์นี้ช่วยลดความพยายามทางวิศวกรรมที่จำเป็นในการปฏิบัติตามข้อกำหนดด้านความปลอดภัย และการปฏิบัติตามข้อกำหนดที่ซับซ้อน โดยมอบระนาบควบคุมแบบรวมศูนย์สำหรับการจัดการความ เสี่ยงข้อมูล

ความสามารถในการ "ปรับขนาดได้อย่างยืดหยุ่น" และ "ปรับขนาดอัตโนมัติ" ของ Data Map โดยมี การเรียกเก็บเงินตามหน่วยความจุ (CU) สำหรับการดำเนินการและพื้นที่จัดเก็บ ²⁹ แสดงให้เห็นถึง สถาปัตยกรรมที่ยืดหยุ่นซึ่งออกแบบมาสำหรับความต้องการในการประมวลผลและจัดเก็บเมทาดาตาที่ ผันผวน การออกแบบนี้หมายความว่าวิศวกรข้อมูลอาจมีภาระการดำเนินงานที่เกี่ยวข้องกับการวางแผน ความจุสำหรับที่เก็บเมทาดาตาน้อยลง Purview สามารถปรับให้เข้ากับการใช้งานที่เพิ่มขึ้นอย่างรวดเร็ว (เช่น การสแกนเริ่มต้นจำนวนมาก การไหลเข้าของเมทาดาตาใหม่ทันที) ซึ่งอาจรับประกันประสิทธิภาพ ที่สอดคล้องกันโดยไม่ต้องมีการแทรกแซงด้วยตนเอง อย่างไรก็ตาม การกล่าวถึงการต้อง "ขอโควตา" เพื่อ "เพิ่มหน้าต่างความยืดหยุ่น" สำหรับปริมาณงานที่สูงขึ้น ²⁹ ชี้ให้เห็นว่าแม้การปรับขนาดส่วนใหญ่ จะเป็นไปโดยอัตโนมัติ แต่สถานการณ์ที่มีปริมาณงานสูงมากหรือต่อเนื่องอาจยังคงต้องมีการคาด การณ์และการแทรกแซงจากผู้ดูแลระบบ นี่เป็นข้อควรพิจารณาที่สำคัญสำหรับสถาปนิกที่วางแผน สำหรับสภาพแวดล้อมข้อมูลองค์กรขนาดใหญ่

การตรวจสอบคุณภาพข้อมูลและข้อมูลเชิงลึกอัตโนมัติ

Purview นำเสนอความสามารถด้านคุณภาพข้อมูลในตัว ซึ่งช่วยให้เจ้าของข้อมูลสามารถกำกับดูแล และปรับปรุงคุณภาพของระบบนิเวศข้อมูลของตนได้ ⁷ มีข้อมูลเชิงลึกด้านคุณภาพข้อมูลอัตโนมัติและ คุณสมบัติในการตรวจสอบและแก้ไขบันทึกข้อผิดพลาดด้านคุณภาพข้อมูล รวมถึงการจัดการข้อยกเว้น ของกฎ ⁸ คุณสมบัติการสังเกตการณ์ข้อมูลอยู่ในช่วงพรีวิวสำหรับผู้ดูแลข้อมูลและเจ้าของผลิตภัณฑ์ ข้อมูล ³³ การตรวจจับรูปแบบอัตโนมัติ (Parquet, Delta, Iceberg) มีให้บริการทั่วไปสำหรับการส แกนคุณภาพข้อมูล ซึ่งช่วยลดความซับซ้อนในการตั้งค่าสำหรับผู้ดูแลคุณภาพข้อมูล ³³ การจัดการ สุขภาพข้อมูล รวมถึงคุณภาพข้อมูล จะถูกเรียกเก็บเงินตามหน่วยประมวลผลการกำกับดูแลข้อมูล (DGPU) ³⁴

เอกสารของ Purview เน้นย้ำถึง "ประสบการณ์คุณภาพข้อมูลในตัวเพื่อเสริมสร้างศักยภาพให้เจ้าของ ข้อมูลกำกับดูแลระบบนิเวศข้อมูลของตน" 1 และช่วยให้ "วิศวกรข้อมูล ผู้ดูแลคุณภาพข้อมูล และนัก วิเคราะห์สามารถตรวจสอบและแก้ไขข้อมูล รวมถึงติดตามการปรับปรุงอย่างต่อเนื่อง" 33 สิ่งนี้บ่งชี้ถึง รูปแบบการจัดการคุณภาพข้อมูลแบบรวมศูนย์หรือกระจายอำนาจมากขึ้น โดยที่เจ้าของข้อมูลทาง ธุรกิจมีอินเทอร์เฟซโดยตรงสำหรับการโต้ตอบ แนวทางนี้หมายความว่าวิศวกรข้อมูลอาจมีส่วนร่วม น้อยลงในการกำหนดและแก้ไขปัญหาคุณภาพข้อมูลประจำวัน เนื่องจากความรับผิดชอบบางส่วนถูก โอนไปยังเจ้าของข้อมูลทางธุรกิจหรือผู้ดูแลข้อมูลโดยเฉพาะ ในขณะที่วิศวกรยังคงรับผิดชอบในการ สร้างไปป์ไลน์ข้อมูลพื้นฐานและรับรองความแข็งแกร่งของกรอบการทำงานคุณภาพข้อมูล บทบาทของ พวกเขาอาจพัฒนาไปสู่การเป็นผู้สนับสนุนและแก้ไขปัญหาสำหรับกระบวนการคุณภาพข้อมูลที่จัดการ โดยผู้มีส่วนได้ส่วนเสียที่ไม่ใช่ด้านเทคนิค ซึ่งสามารถเพิ่มเวลาให้วิศวกรทำงานที่ซับซ้อนมากขึ้นได้ แต่ ต้องมีไปป์ไลน์ที่สามารถผสานรวมและตอบสนองต่อข้อเสนอแนะด้านคุณภาพที่ขับเคลื่อนโดยเจ้าของ ข้อมูล

สายข้อมูล (Data Lineage)

Purview ให้บริการสายข้อมูลอัตโนมัติสำหรับบริการ Azure จำนวนมาก รวมถึง Azure Data Factory, Azure Data Share, Azure Synapse, Power BI และ Microsoft Fabric ⁹ สายข้อมูล ช่วยระบุความสัมพันธ์ระหว่างผลิตภัณฑ์ข้อมูลและติดตามสาเหตุหลักของปัญหาคุณภาพ ⁷

การรายงานสายข้อมูลแบบกำหนดเองได้รับการสนับสนุนผ่าน Apache Atlas API hooks และ REST API สำหรับสถานการณ์ที่สายข้อมูลอัตโนมัติไม่สมบูรณ์หรือขาดหายไป ³⁵ รองรับทั้งสายข้อมูลระดับ สินทรัพย์และระดับคอลัมน์ โดยมีตัวเลือกสายข้อมูลด้วยตนเองสำหรับแหล่งที่มาที่ยังไม่รองรับระบบ อัตโนมัติ ³⁶ แคนวาสสายข้อมูลมีการแสดงภาพ โดยมีมุมมองเริ่มต้นห้าระดับที่สามารถขยายได้ ³⁶

แม้ว่า Purview จะนำเสนอสายข้อมูลอัตโนมัติสำหรับบริการ Azure ดั้งเดิม ³⁵ แต่ก็ยอมรับอย่าง ชัดเจนถึงสถานการณ์ที่ "สายข้อมูลที่สร้างขึ้นโดย Purview โดยอัตโนมัติไม่สมบูรณ์หรือขาดหายไป" และมี "สายข้อมูลด้วยตนเอง" หรือ "Apache Atlas API/REST API" สำหรับการรายงานแบบกำหนด เอง ³⁶ สิ่งนี้สะท้อนถึงแนวทางของ Dataplex สำหรับแหล่งข้อมูลภายนอก ซึ่งบ่งชี้ว่าการบรรลุสาย ข้อมูลแบบครบวงจรอย่างแท้จริงในสภาพแวดล้อมข้อมูลที่ซับซ้อนสูงหรือหลากหลาย (โดยเฉพาะ อย่างยิ่งที่เกี่ยวข้องกับการแปลงแบบกำหนดเองที่ไม่ใช่ Azure หรือเครื่องมือของบุคคลที่สาม) ยังคง ต้องใช้ความพยายามในการพัฒนาอย่างมีนัยสำคัญจากวิศวกรข้อมูล พวกเขาจะต้องใช้ Apache Atlas

API เพื่อส่งเมทาดาตาของสายข้อมูลสำหรับกระบวนการ ETL/ELT แบบกำหนดเองหรือระบบภายนอก ซึ่งเพิ่มภาระในการพัฒนาและบำรุงรักษา ซึ่งหมายความว่าการอ้างสิทธิ์ "แบบครบวงจร" นั้นเป็นจริง สำหรับบริการ Azure ดั้งเดิมเป็นหลัก และวิศวกรจะต้องเติมเต็มช่องว่างอย่างแข็งขันเพื่อภาพรวมที่ สมบูรณ์ทั่วทั้งภูมิทัศน์ข้อมูลของตน

ความปลอดภัยของข้อมูลและการปฏิบัติตามข้อกำหนด

Purview เป็นชุดโชลูชันที่ครอบคลุมซึ่งครอบคลุมความปลอดภัยของข้อมูล ความเสี่ยง และการปฏิบัติ ตามข้อกำหนด โดยให้ความคุ้มครองแบบรวมศูนย์ ¹ คุณสมบัติความปลอดภัยที่สำคัญ ได้แก่ Data Loss Prevention (DLP), Information Protection, Insider Risk Management และ Data Security Posture Management (DSPM) สำหรับ AI ³

แพลตฟอร์มนี้ให้การเข้าถึงแบบโปรแกรมไปยังเอนจินการประเมินนโยบายเพื่อการบังคับใช้นโยบาย ความปลอดภัยข้อมูลและการกำกับดูแลที่สอดคล้องกัน ³¹ รองรับการจัดประเภทอัตโนมัติและการ กำหนดป้ายกำกับความละเอียดอ่อน รวมถึงการจัดการการปฏิบัติตามข้อกำหนดสำหรับกฎระเบียบ ต่างๆ เช่น GDPR, HIPAA, SOX และ ISO 27001 ³

การรวม DLP, Information Protection และ Insider Risk Management เข้ากับแพลตฟอร์มการ กำกับดูแลอย่างชัดเจนและลึกซึ้ง ³ ถือเป็นข้อได้เปรียบที่สำคัญเหนือ Dataplex ซึ่งมุ่งเน้นไปที่ Data Fabric และการกำกับดูแลที่แคบกว่า แนวทางแบบรวมศูนย์นี้หมายความว่าวิศวกรข้อมูลสามารถใช้ แพลตฟอร์มเดียวสำหรับการค้นพบข้อมูล การจัดประเภท และการบังคับใช้นโยบายข้อมูลที่ละเอียด อ่อน ซึ่งช่วยลดความซับซ้อนในการจัดการเครื่องมือรักษาความปลอดภัยที่แตกต่างกัน และปรับปรุง ความพยายามในการปฏิบัติตามข้อกำหนดโดยให้มุมมองที่เป็นหนึ่งเดียวของความเสี่ยงข้อมูลและการ บังคับใช้นโยบายอัตโนมัติ สำหรับองค์กรที่มีข้อกำหนดด้านกฎระเบียบที่เข้มงวดหรือเน้นการปกป้อง ข้อมูลเชิงรุก Purview นำเสนอโซลูชันที่ครอบคลุมและพร้อมใช้งานทันที ซึ่งช่วยลดความจำเป็นในการ ผสานรวมความปลอดภัยแบบกำหนดเองในไปป์ไลน์ข้อมูลของตน

อย่างไรก็ตาม Purview มี "ข้อจำกัด" เฉพาะของระบบเกี่ยวกับ "จำนวนสูงสุดของ SITs แบบกำหนด เอง" "จำนวนสูงสุดของนโยบายต่อผู้เช่า" และ "จำนวนสูงสุดของป้ายกำกับการเก็บรักษา" ⁴⁰ ตัวอย่าง เช่น ผู้เช่ารายเดียวมีนโยบายสูงสุด 10,000 นโยบายในทุกประเภทการปฏิบัติตามข้อกำหนด สำหรับ องค์กรขนาดใหญ่หรือซับซ้อนมากที่มีแหล่งข้อมูลหลายพันแห่ง การควบคุมการเข้าถึงที่ละเอียดอ่อน หรือข้อกำหนดด้านกฎระเบียบที่กว้างขวาง ข้อจำกัดเหล่านี้อาจกลายเป็นข้อจำกัดได้ วิศวกรข้อมูลและ สถาปนิกจะต้องวางแผนการกำหนดนโยบายภายใน Purview อย่างรอบคอบเพื่อหลีกเลี่ยงการชนกับ ขีดจำกัดเหล่านี้ ซึ่งอาจจำเป็นต้องมีแนวทางเชิงกลยุทธ์ในการรวมนโยบาย การจัดกลุ่มกฎ หรือการ จัดการข้อยกเว้น ซึ่งอาจส่งผลกระทบต่อระดับความละเอียดที่ต้องการสำหรับสถานการณ์การปฏิบัติ ตามข้อกำหนดบางอย่าง วิศวกรจำเป็นต้องตระหนักถึงข้อจำกัดเหล่านี้ในระหว่างการออกแบบโซลูซัน

ปรัชญาสถาปัตยกรรมและ Data as a Product

Purview ส่งเสริม "แนวทางการกำกับดูแลแบบรวมศูนย์" โดยสร้างสมดุลระหว่างการกำกับดูแลแบบ รวมศูนย์ (สำหรับกฎ ความปลอดภัย คุณภาพ และมาตรฐาน) กับความรับผิดชอบแบบกระจายอำนาจ และความสามารถในการบริการตนเองสำหรับการเข้าถึงข้อมูล การค้นพบ และการบำรุงรักษา 7 แพลตฟอร์มนี้เน้นย้ำอย่างมากถึงโมเดล "Data as a Product" (DaaP) ซึ่งข้อมูลถูกดูแล กำกับดูแล และส่งมอบด้วยความตั้งใจที่ชัดเจนเพื่อตอบสนองวัตถุประสงค์ทางธุรกิจที่เฉพาะเจาะจง เป็นไปตาม มาตรฐานคุณภาพ และสามารถนำกลับมาใช้ใหม่ได้ทั่วทั้งทีม 9 โมเดลนี้กำหนดความเป็นเจ้าของที่ ชัดเจน เมทาดาตาที่สอดคล้องกับธุรกิจ กฎคุณภาพ มาตรการการปฏิบัติตามข้อกำหนด และเวิร์ก โฟลว์การเข้าถึงที่กำหนดไว้สำหรับผลิตภัณฑ์ข้อมูลแต่ละรายการ 11 Unified Catalog ของ Purview รองรับ "โดเมนการกำกับดูแล" "ผลิตภัณฑ์ข้อมูล" "องค์ประกอบข้อมูลที่สำคัญ" "คำศัพท์ในอภิธาน ศัพท์" และ "วัตถุประสงค์และผลลัพธ์หลัก (OKRs)" เพื่อเชื่อมโยงข้อมูลกับเป้าหมายทางธุรกิจ 9 Purview เป็นโซลูซัน Platform-as-a-Service (PaaS) ที่มีจุดเชื่อมต่อสาธารณะที่สามารถเข้าถึงได้ ผ่านอินเทอร์เน็ต แม้ว่าจะมีตัวเลือกการเชื่อมต่อส่วนตัวก็ตาม 44

การที่ Purview สอดคล้องอย่างแน่นแฟ้นกับโมเดล "Data as a Product" (DaaP) ⁹ แสดงให้เห็นว่า แพลตฟอร์มนี้ได้รับการออกแบบมาเพื่อเปิดใช้งานการเปลี่ยนแปลงองค์กรและวัฒนธรรมเฉพาะในการ จัดการและการบริโภคข้อมูล โมเดลนี้เน้นย้ำว่าผลลัพธ์ข้อมูลควรได้รับการปฏิบัติอย่างเคร่งครัดเช่น เดียวกับผลิตภัณฑ์ซอฟต์แวร์ โดยมีเจ้าของที่ชัดเจน กฎคุณภาพ และการเข้าถึงที่กำหนดไว้ การ เปลี่ยนแปลงนี้บ่งบอกถึงวิวัฒนาการที่สำคัญในบทบาทของวิศวกรข้อมูล พวกเขาไม่ได้เพียงแค่สร้างไป ป์ไลน์เพื่อย้ายและแปลงข้อมูลเท่านั้น แต่ยังร่วมสร้าง "ผลิตภัณฑ์ที่สร้างขึ้นตามวัตถุประสงค์" ¹¹ ซึ่ง ต้องสามารถค้นพบได้ มีคุณภาพสูง และเป็นไปตามข้อกำหนด การเปลี่ยนแปลงนี้จำเป็นต้องมีการทำ งานร่วมกันอย่างใกล้ชิดกับ "เจ้าของผลิตภัณฑ์ข้อมูล" และ "ผู้ดูแลข้อมูล" ¹¹ เพื่อกำหนดเมทาดาตาที่ สอดคล้องกับธุรกิจ มาตรฐานคุณภาพ และเวิร์กโฟลว์การเข้าถึง ซึ่งส่งเสริมให้วิศวกรใช้ความคิดที่เน้น ผลิตภัณฑ์ โดยมุ่งเน้นที่ความสามารถในการบริโภคและคุณค่าที่แท้จริงของผลลัพธ์ข้อมูลของตน ซึ่ง นำไปสู่การสอดคล้องกับความต้องการทางธุรกิจที่ดีขึ้นและความน่าเชื่อถือของข้อมูลที่เพิ่มขึ้น

ระบบนิเวศการผสานรวม

Purview มีการผสานรวมอย่างแน่นแฟ้งกับบริการ Azure ที่หลากหลาย รวมถึง Azure Data Factory, Azure Synapse Analytics, Azure SQL Database, Azure Data Lake Storage

Gen2 และ Power Bl นอกจากนี้ยังผสานรวมกับ Microsoft Fabric ด้วย 7

Data Map รองรับการสแกนอัตโนมัติของแหล่งข้อมูลภายในองค์กร (เช่น SQL Server, Oracle, File Share ผ่าน Self-Hosted Integration Runtimes) และสภาพแวดล้อมมัลติคลาวด์ (เช่น AWS S3, Google BigQuery) ³ สามารถสร้างตัวเชื่อมต่อแบบกำหนดเอง (เช่น ใน Power Automate/Apps) เพื่อผสานรวมกับระบบภายนอก และมี REST APIs (อิงตาม Apache Atlas) สำหรับสายข้อมูลแบบกำหนดเองและการจัดการเมทาดาตา ³⁵ นอกจากนี้ยังรองรับการเชื่อมต่อที่ ปลอดภัยผ่าน Private Endpoints สำหรับทั้งบัญชี Purview และการนำเข้าแหล่งข้อมูล เพื่อให้มั่นใจ ว่าข้อมูลยังคงอยู่ในเครือข่ายส่วนตัว ⁴⁴

จุดแข็งของ Purview อยู่ที่การผสานรวมอัตโนมัติอย่างลึกซึ้งภายในระบบนิเวศของ Azure ⁷ อย่างไรก็ตาม ยังรองรับ "การสแกนอัตโนมัติของแหล่งข้อมูลภายในองค์กร มัลติคลาวด์ (AWS S3, Google BigQuery) และ SaaS" อย่างชัดเจน ³⁰ แม้ว่าจะให้ความครอบคลุมเมทาดาตาที่กว้างขวาง แต่ความลึกของความสามารถในการกำกับดูแลอัตโนมัติ (เช่น สายข้อมูลหรือการตรวจสอบคุณภาพ) อาจยังคงแข็งแกร่งที่สุดสำหรับบริการ Azure ดั้งเดิม โดยมักจะต้องมีการพัฒนา API แบบกำหนดเอง สำหรับการผสานรวมการไหลของข้อมูลที่ไม่ใช่ Azure อย่างสมบูรณ์ ³⁶ สิ่งนี้บ่งชี้ว่า Purview สามารถ นำเสนอเส้นทางที่รวดเร็วกว่าในการสร้าง

มุมมองเมทาดาตาแบบรวมศูนย์ ทั่วทั้งสภาพแวดล้อมข้อมูลที่มีความหลากหลายอย่างแท้จริง อย่างไรก็ตาม วิศวกรข้อมูลจะต้องประเมินอย่างรอบคอบว่า "การสแกน" นี้ให้ความลึกของการกำกับ ดูแลที่เพียงพอหรือไม่ (เช่น สายข้อมูลระดับคอลัมน์อัตโนมัติหรือการบังคับใช้คุณภาพข้อมูลที่ละเอียด อ่อน) สำหรับสินทรัพย์ข้อมูลที่สำคัญที่อยู่ภายนอก Azure หากต้องการการกำกับดูแลอัตโนมัติอย่าง ลึกซึ้งสำหรับแหล่งข้อมูลที่ไม่ใช่ Azure วิศวกรควรคาดการณ์ความพยายามในการพัฒนาแบบกำหนด เองที่คล้ายคลึงกัน (เช่น การใช้ Apache Atlas APIs) เช่นเดียวกับ Dataplex แม้ว่า Purview จะอ้าง ว่ามีการสแกนเริ่มต้นที่กว้างกว่าก็ตาม ซึ่งหมายถึงการทำความเข้าใจการแลกเปลี่ยนระหว่างการจัดทำ แค็ตตาล็อกที่กว้างขวางและการกำกับดูแลอัตโนมัติอย่างลึกซึ้งทั่วทั้งแพลตฟอร์มที่หลากหลาย

รูปแบบการกำหนดราคาและการเพิ่มประสิทธิภาพต้นทุน

Purview ทำงานบนรูปแบบการเรียกเก็บเงินแบบจ่ายตามการใช้งานจริง (pay-as-you-go) 34

- การเรียกเก็บเงิน Unified Catalog: คิดค่าบริการสำหรับ "สินทรัพย์ที่อยู่ภายใต้การกำกับดูแล" ซึ่งเป็นสินทรัพย์ข้อมูลที่ไม่ซ้ำกันที่เชื่อมโยงกับแนวคิดการกำกับดูแล เช่น ผลิตภัณฑ์ข้อมูล หรือ องค์ประกอบข้อมูลที่สำคัญ สินทรัพย์ที่รวบรวมใน Data Map แต่ไม่ได้เชื่อมโยงกับแนวคิดการ กำกับดูแลจะไม่ถูกเรียกเก็บเงิน 34
- การจัดการสุขภาพข้อมูล: รวมถึงคุณภาพข้อมูล จะถูกเรียกเก็บเงินตามหน่วยประมวลผลการ กำกับดูแลข้อมูล (DGPU) ³⁴ DGPU เป็นหน่วยประมวลผลที่มีการจัดการเต็มรูปแบบที่ใช้ในการ รันความสามารถที่ต้องใช้การประมวลผลหนัก เช่น คุณภาพข้อมูลและการจัดการสุขภาพข้อมูล

DGPU ที่ใช้ขึ้นอยู่กับประเภทกฏ (สำเร็จรูปหรือกำหนดเอง) ปริมาณข้อมูล และประเภทแหล่ง ที่มา ³⁴

- Data Map และค่าใช้จ่ายในการสแกน: ไม่มีการเรียกเก็บเงินสำหรับการสแกนสินทรัพย์เข้าสู่ Data Map หากเป็นไปตามเงื่อนไขการเรียกเก็บเงินบางประการ ³⁴ Data Map มีหน่วยความจุ (CU) สำหรับปริมาณงาน (25 การดำเนินการ/วินาทีต่อ CU) และการจัดเก็บเมทาดาตา (10 GB ต่อ CU) ²⁹
- **การทดลองใช้ฟรี:** มีเวอร์ชันฟรีของโซลูชันการกำกับดูแลของ Purview ที่มีข้อจำกัด เช่น สินทรัพย์ที่ติดคำอธิบายประกอบสูงสุด 1,000 รายการ และไม่สามารถเปิดตั๋วสนับสนุนได้ ²⁹

การเรียกเก็บเงินของ Purview สำหรับคุณภาพข้อมูลและการจัดการสุขภาพข้อมูลอิงตาม Data Governance Processing Units (DGPU) ซึ่งได้รับอิทธิพลจากประเภทกฎ ปริมาณข้อมูล และ ประเภทแหล่งที่มา ³⁴ สิ่งนี้หมายความว่าเช่นเดียวกับ Dataplex วิศวกรข้อมูลต้องคำนึงถึงต้นทุนการ คำนวณของการตรวจสอบคุณภาพข้อมูลและสุขภาพข้อมูล การออกแบบกฎที่มีประสิทธิภาพ การใช้ การสุ่มตัวอย่าง และการทำความเข้าใจผลกระทบของปริมาณข้อมูลต่อการใช้ DGPU เป็นสิ่งสำคัญ สำหรับการจัดการต้นทุน ความสามารถในการ "จัดการตารางเวลาได้อย่างเต็มที่และปิดการควบคุมบาง อย่างเพื่อเพิ่มประสิทธิภาพต้นทุน" ³⁴ ช่วยให้วิศวกรมีเครื่องมือในการควบคุมค่าใช้จ่ายในการดำเนิน งาน

แบบจำลองการเรียกเก็บเงินสำหรับ "สินทรัพย์ที่อยู่ภายใต้การกำกับดูแล" ซึ่งกำหนดเป็นสินทรัพย์ ข้อมูลที่ไม่ซ้ำกันที่ "เชื่อมโยงกับแนวคิดการกำกับดูแล เช่น ผลิตภัณฑ์ข้อมูลหรือองค์ประกอบข้อมูลที่ สำคัญ" โดยสินทรัพย์ที่รวบรวมใน Data Map แต่ ไม่ได้ เชื่อมโยงจะไม่ถูกเรียกเก็บเงิน ³⁴ แบบจำลอง การเรียกเก็บเงินนี้กระตุ้นให้มีการจัดการแค็ตตาล็อกอย่างมีกลยุทธ์ วิศวกรข้อมูลควรทำงานร่วมกับ เจ้าของข้อมูลและผู้ดูแลข้อมูลเพื่อจัดลำดับความสำคัญของสินทรัพย์ที่ต้องการการกำกับดูแลอย่าง เต็มที่ (เช่น การเชื่อมโยงกับแนวคิดทางธุรกิจ) เพื่อจัดการต้นทุนอย่างมีประสิทธิภาพ สิ่งนี้ไม่สนับสนุน แนวทาง "แค็ตตาล็อกทุกอย่าง" หากไม่ใช่ทุกสินทรัพย์ที่ต้องการการกำกับดูแลอย่างกระตือรือร้น ซึ่ง ผลักดันให้วิศวกรมุ่งเน้นความพยายามไปที่ผลิตภัณฑ์ข้อมูลที่มีมูลค่าสูงและองค์ประกอบข้อมูลที่ สำคัญ ซึ่งจำเป็นต้องมีความเข้าใจอย่างลึกซึ้งเกี่ยวกับลำดับความสำคัญทางธุรกิจเพื่อเพิ่ม ประสิทธิภาพทั้งประสิทธิภาพการกำกับดูแลและประสิทธิภาพด้านต้นทุน

จุดแข็งและข้อควรพิจารณาสำหรับวิศวกรข้อมูล

จุดแข็ง:

- การกำกับดูแลที่ครอบคลุม: นำเสนอชุดโซลูชันที่ครบวงจรสำหรับการกำกับดูแลข้อมูล ความ ปลอดภัย และการปฏิบัติตามข้อกำหนด ซึ่งช่วยลดความซับซ้อนในการจัดการเครื่องมือที่แตกต่าง กัน 1
- การผสานรวม Azure ที่แข็งแกร่ง: การผสานรวมอย่างลึกซึ้งและอัตโนมัติกับบริการ Azure ที่

หลากหลาย ช่วยลดความพยายามในการผสานรวมสำหรับสภาพแวดล้อมข้อมูลที่ใช้ Azure เป็น หลัก ⁷

- **แนวทางการกำกับดูแลแบบรวมศูนย์ (Federated Governance):** สนับสนุนรูปแบบ Data as a Product ที่ส่งเสริมการกระจายอำนาจความรับผิดชอบข้อมูลพร้อมกับการควบคุมแบบรวม ศูนย์ ⁷
- **ข้อมูลเชิงลึกที่ขับเคลื่อนด้วย AI:** ใช้ AI/ML เพื่อการจัดประเภทข้อมูลอัตโนมัติ การตรวจสอบ คุณภาพ และการระบุความเสี่ยง ⁸
- รองรับสภาพแวดล้อมที่หลากหลาย: Data Map สามารถสแกนและรวบรวมเมทาดาตาจากแหล่ง ข้อมูลภายในองค์กร มัลติคลาวด์ (AWS S3, Google BigQuery) และ SaaS ได้ ²⁹
- **การเชื่อมต่อที่ปลอดภัย:** รองรับ Private Endpoints สำหรับการเข้าถึงบัญชี Purview และ การนำเข้าข้อมูล ทำให้มั่นใจได้ถึงความปลอดภัยของเครือข่าย 44

ข้อควรพิจารณา/ข้อจำกัด:

- **เส้นทางการเรียนรู้:** อาจมีเส้นทางการเรียนรู้ที่สูงชันสำหรับผู้ใช้ใหม่ โดยเฉพาะอย่างยิ่งเนื่องจาก ความกว้างของชุดคุณสมบัติ ⁵⁰
- การพึ่งพาผู้จำหน่าย: แม้จะรองรับมัลติคลาวด์ แต่การผสานรวมอย่างลึกซึ้งที่สุดและการทำงาน อัตโนมัติยังคงอยู่ในระบบนิเวศของ Microsoft ซึ่งอาจนำไปสู่การพึ่งพาผู้จำหน่ายสำหรับองค์กร ที่ใช้เครื่องมือที่ไม่ใช่ Microsoft อย่างมาก 50
- ข้อจำกัดของนโยบาย: มีข้อจำกัดเฉพาะของระบบเกี่ยวกับจำนวนสูงสุดของนโยบาย ป้ายกำกับ การเก็บรักษา และ SITs (Sensitive Information Types) ซึ่งอาจเป็นข้อจำกัดสำหรับองค์กร ขนาดใหญ่ที่มีข้อกำหนดด้านการกำกับดูแลที่ละเอียดอ่อนมาก ⁴⁰
- **ปัญหาประสิทธิภาพ:** มีรายงานปัญหาประสิทธิภาพที่ช้าในบางกรณี ซึ่งอาจส่งผลกระทบต่อ ประสิทธิภาพการทำงาน ⁵⁰
- ความพยายามในการผสานรวมแบบกำหนดเอง: แม้จะสามารถสแกนแหล่งข้อมูลที่หลากหลายได้ แต่การบรรลุการกำกับดูแลอัตโนมัติอย่างลึกซึ้ง (เช่น สายข้อมูลระดับคอลัมน์หรือการบังคับใช้ คุณภาพข้อมูลแบบละเอียด) สำหรับแหล่งข้อมูลที่ไม่ใช่ Azure ยังคงต้องใช้ความพยายามในการ พัฒนาแบบกำหนดเองอย่างมีนัยสำคัญ 36

แม้ว่า Purview จะนำเสนอความสามารถในการ "สแกนอัตโนมัติของแหล่งข้อมูลภายในองค์กร มัลติคลาวด์ (AWS S3, Google BigQuery) และ SaaS" ³⁰ ซึ่งให้ความครอบคลุมเมทาดาตาที่ กว้างขวาง แต่ความลึกของความสามารถในการกำกับดูแลอัตโนมัติ (เช่น สายข้อมูลหรือการตรวจสอบ คุณภาพ) อาจยังคงแข็งแกร่งที่สุดสำหรับบริการ Azure ดั้งเดิม โดยมักจะต้องมีการพัฒนา API แบบ กำหนดเองสำหรับความสมบูรณ์ในการผสานรวมการไหลของข้อมูลที่ไม่ใช่ Azure ³⁶ สิ่งนี้บ่งชี้ว่า Purview สามารถนำเสนอเส้นทางที่รวดเร็วกว่าในการสร้าง

มุมมองเมทาดาตาแบบรวมศูนย์ ทั่วทั้งสภาพแวดล้อมข้อมูลที่มีความหลากหลายอย่างแท้จริง อย่างไรก็ตาม วิศวกรข้อมูลจะต้องประเมินอย่างรอบคอบว่า "การสแกน" นี้ให้ความลึกของการกำกับ ดูแลที่เพียงพอหรือไม่สำหรับสินทรัพย์ข้อมูลที่สำคัญที่อยู่ภายนอก Azure หากต้องการการกำกับดูแล อัตโนมัติอย่างลึกซึ้งสำหรับแหล่งข้อมูลที่ไม่ใช่ Azure วิศวกรควรคาดการณ์ความพยายามในการ พัฒนาแบบกำหนดเองที่คล้ายคลึงกัน (เช่น การใช้ Apache Atlas APIs) เช่นเดียวกับ Dataplex แม้ ว่า Purview จะอ้างว่ามีการสแกนเริ่มต้นที่กว้างกว่าก็ตาม ซึ่งหมายถึงการทำความเข้าใจการ แลกเปลี่ยนระหว่างการจัดทำแค็ตตาล็อกที่กว้างขวางและการกำกับดูแลอัตโนมัติอย่างลึกซึ้งทั่วทั้ง แพลตฟอร์มที่หลากหลาย

การเปรียบเทียบโดยตรง: Dataplex กับ Purview

เพื่อให้วิศวกรข้อมูลเข้าใจความแตกต่างระหว่าง Dataplex และ Purview ได้อย่างชัดเจน การ เปรียบเทียบคุณสมบัติและรูปแบบการกำหนดราคาโดยตรงจึงเป็นสิ่งสำคัญ

ตารางเปรียบเทียบคุณสมบัติ

คุณสมบัติ	Google Dataplex	Microsoft Purview
เมทาดาตาและ แค็ตตาล็อก	แค็ตตาล็อกแบบ รวมศูนย์สำหรับเม ทาดาตาทางธุรกิจ เทคนิค และรันไทม์ ใช้ AI/ML เพื่อค้น หาความสัมพันธ์ และข้อมูลเชิงลึก รองรับการค้นหา ด้วยภาษาธรรมชาติ	Unified Catalog และ Data Map รวบรวมเมทาดาตา จากระบบที่ หลากหลาย รวมถึง การสแกนและการ จัดประเภท
คุณภาพข้อมูลและ การทำโปรไฟล์	กำหนดและวัด คุณภาพข้อมูลใน BigQuery ทำโปร ใฟล์ข้อมูลเพื่อระบุ ลักษณะเฉพาะ จัดการกฎ "ในรูป แบบโค้ด" (กฎที่ กำหนดไว้ล่วงหน้า,	ความสามารถด้าน คุณภาพข้อมูลในตัว ช่วยให้เจ้าของ ข้อมูลกำกับดูแล และปรับปรุง คุณภาพได้ มีข้อมูล เชิงลึกอัตโนมัติ การแก้ไขบันทึกข้อ ผิดพลาด 7

สายข้อมูล	ติดตามการ เคลื่อนที่และการ แปลงข้อมูล สาย ข้อมูลอัตโนมัติ สำหรับบริการ GCP (BigQuery, Dataflow, Dataproc) ขยาย ได้ถึงบุคคลที่สาม ผ่าน Data Lineage API/OpenLineag e ⁶	ข้อจำกัด: เก็บ ข้อมูลเพียง 30 วัน ²⁰	สายข้อมูลอัตโนมัติ สำหรับบริการ Azure (ADF, Synapse, Power BI, Fabric) รองรับ สายข้อมูลระดับ สินทรัพย์และ คอลัมน์ ³⁵ สามารถ สร้างสายข้อมูล แบบกำหนดเอง ผ่าน Apache Atlas API/REST API ³⁶	
การผสานรวมและ การขยาย	GCP Native: ผสานรวมอย่าง ลึกซึ้งกับ BigQuery, Cloud Storage, Cloud SQL, Spanner, Vertex AI, Pub/Sub, Dataform, Dataproc Metastore ⁶	On-Prem/Multi -Cloud: ขยายได้ ผ่าน Custom Entries, Custom Connectors (PySpark), Metadata Import API ²	Azure Native: ผสานรวมอย่าง แข็งแกร่งกับ Azure Data Factory, Synapse Analytics, SQL DB, ADLS Gen2, Power BI, Fabric	On-Prem/Multi -Cloud: Data Map สแกนแหล่ง ข้อมูลที่หลากหลาย (AWS S3, Google BigQuery) ³⁰ มี Custom Connectors/RES T APIs ⁴⁶
การจัดแนว สถาปัตยกรรม	"Intelligent Data Fabric" ที่ สนับสนุนหลักการ Data Mesh (การ กระจายอำนาจการ เป็นเจ้าของข้อมูล, การกำกับดูแลแบบ รวมศูนย์) 13	"Federated Governance" และโมเดล "Data as a Product" (DaaP) โดยเน้น เจ้าของผลิตภัณฑ์ ข้อมูลและโดเมน		
ความสามารถด้าน Al/ML	Al/ML สำหรับการ ค้นพบเมทาดาตา, Semantic Search, Data Insights (สร้างคำ ถามภาษา ธรรมชาติ) ¹⁶	Al-driven Insights สำหรับ คุณภาพข้อมูล, Automated Classification, DSPM for Al ⁸		

ส่วนประกอบราคา	Google Dataplex	Microsoft Purview
หน่วยประมวลผลหลัก	Data Compute Unit (DCU)ชั่วโมง: Standard Processing(ค้นพบเมทาดาตา, ลงทะเบียน) มี100 DCU ชั่วโมงฟรี/เดือนPremium Processing (DQ,Profiling, Lineage) ไม่มีฟรี และมีอัตราสูงกว่า 12	Data Governance Processing Unit (DGPU): สำหรับคุณภาพข้อมูลและการ จัดการสุขภาพข้อมูล ขึ้นอยู่กับ ประเภทกฎ ปริมาณข้อมูล และ แหล่งที่มา ³⁴
การจัดเก็บเมทาดาตา	เมทาดาตาทางเทคนิคที่รวบรวม อัตโนมัติฟรี เมทาดาตาที่เสริม (Business Glossary, Custom Aspects) คิดค่าบริการ (1 MiB แรกฟรี จากนั้น \$2/GiB/เดือน) ¹²	Data Map มีหน่วยความจุ (CU) สำหรับพื้นที่จัดเก็บ (10 GB/CU) ซึ่งปรับขนาดได้อย่างยืดหยุ่น ²⁹
การใช้งาน API	1 ล้านครั้งแรกฟรี/เดือน หลังจาก นั้น \$10/100,000 ครั้ง สำหรับ Data Catalog API และ Data Lineage API ¹²	การใช้งาน API สำหรับเมทาดาตา และนโยบายอาจมีค่าใช้จ่าย ขึ้นอยู่ กับปริมาณการเรียกใช้ ³⁷ (ราย ละเอียดเฉพาะเจาะจงน้อยกว่า Dataplex)
ระดับฟรี/การทดลองใช้	เครดิตฟรี \$300 สำหรับ POC, 20+ ผลิตภัณฑ์ฟรีตลอดเวลา ¹⁶	การทดลองใช้โซลูชันการกำกับดูแล ข้อมูลฟรี (จำกัด 1,000 สินทรัพย์ที่ ติดคำอธิบายประกอบ) ²⁹

ความแตกต่างที่สำคัญและส่วนที่ทับซ้อนกัน

- ความลึกของการผสานรวมคลาวด์ดั้งเดิม: Dataplex มีการผสานรวมอย่างลึกซึ้งและอัตโนมัติ ภายในระบบนิเวศของ GCP ซึ่งทำให้เป็นตัวเลือกที่แข็งแกร่งสำหรับองค์กรที่ใช้ GCP เป็นหลัก Purview มีความแข็งแกร่งคล้ายกันภายใน Azure และ Microsoft 365
- แนวทางการกำกับดูแลและการเป็นเจ้าของข้อมูล: Dataplex สอดคล้องกับแนวคิด Data Mesh โดยจัดเตรียมโครงสร้างที่รองรับการกระจายอำนาจการเป็นเจ้าของข้อมูลโดยมีศูนย์กลางการ กำกับดูแล Purview เน้นโมเดล Data as a Product และแนวทางการกำกับดูแลแบบรวมศูนย์ ซึ่งส่งเสริมการจัดการข้อมูลแบบกระจายอำนาจพร้อมเครื่องมือสำหรับเจ้าของธุรกิจ
- ความสามารถในการขยายสำหรับสถานการณ์ไฮบริด/มัลติคลาวด์: ทั้งสองแพลตฟอร์มสามารถ ผสานรวมกับแหล่งข้อมูลภายนอกได้ แต่ต้องใช้ความพยายามในการวิศวกรรมแบบกำหนดเอง

- อย่างมีนัยสำคัญสำหรับแหล่งข้อมูลที่ไม่ใช่คลาวด์ดั้งเดิม Dataplex ต้องการการสร้างตัวเชื่อมต่อ และไปป์ไลน์การนำเข้าที่กำหนดเอง ในขณะที่ Purview ใช้ Data Map สำหรับการสแกนที่กว้าง กว่า และ Apache Atlas API สำหรับสายข้อมูลแบบกำหนดเอง
- ความสมบูรณ์ของชุดคุณสมบัติ: Purview นำเสนอชุดโซลูชันที่ครอบคลุมมากกว่า โดยรวมความ ปลอดภัยของข้อมูล (DLP, Insider Risk) และการปฏิบัติตามข้อกำหนดเข้ากับการกำกับดูแล หลัก Dataplex มุ่งเน้นไปที่ Data Fabric และการกำกับดูแลข้อมูลเป็นหลัก โดยมีคุณสมบัติ Al/ML ที่แข็งแกร่งสำหรับการค้นพบและข้อมูลเชิงลึก

การเลือกแพลตฟอร์มที่เหมาะสม: คำแนะนำสำหรับวิศวกรข้อมูล

การตัดสินใจเลือกระหว่าง Google Dataplex และ Microsoft Purview ขึ้นอยู่กับบริบทและลำดับ ความสำคัญเฉพาะขององค์กรเป็นอย่างมาก วิศวกรข้อมูลควรพิจารณาปัจจัยต่อไปนี้อย่างรอบคอบ:

คำแนะนำตามสถานการณ์

- สภาพแวดล้อมที่ใช้ GCP เป็นหลัก: สำหรับองค์กรที่ลงทุนอย่างมากใน Google Cloud และมี การดำเนินงานส่วนใหญ่ใน GCP, Google Dataplex เป็นตัวเลือกที่เหมาะสมที่สุด การผสาน รวมอย่างลึกซึ้งกับบริการ GCP ช่วยลดความซับซ้อนในการจัดการเมทาดาตา การทำโปรไฟล์ และ สายข้อมูลภายในระบบนิเวศนั้นๆ นอกจากนี้ การสนับสนุนสถาปัตยกรรม Data Mesh ยังช่วยให้ องค์กรสามารถนำแนวทางปฏิบัติที่ทันสมัยมาใช้ในการจัดการข้อมูลแบบกระจายอำนาจได้ง่ายขึ้น
- สภาพแวดล้อมที่ใช้ Azure เป็นหลัก: หากองค์กรมีโครงสร้างพื้นฐานและไปป์ไลน์ข้อมูลส่วน ใหญ่อยู่ใน Microsoft Azure, Microsoft Purview จะเป็นตัวเลือกที่เหนือกว่า ชุดโชลูชันที่ ครอบคลุมของ Purview ซึ่งรวมถึงการกำกับดูแลข้อมูล ความปลอดภัย และการปฏิบัติตาม ข้อกำหนด จะช่วยให้วิศวกรข้อมูลสามารถจัดการความเสี่ยงและข้อกำหนดด้านกฎระเบียบได้ อย่างมีประสิทธิภาพมากขึ้นภายในแพลตฟอร์มเดียว การเน้นโมเดล Data as a Product ยัง ส่งเสริมการสร้างสินทรัพย์ข้อมูลที่ใช้งานได้และมีคุณภาพสูง
- กลยุทธ์ไฮบริดหรือมัลติคลาวด์: ทั้ง Dataplex และ Purview ต่างก็มีความสามารถในการผสาน รวมกับแหล่งข้อมูลภายนอกและสภาพแวดล้อมมัลติคลาวด์ อย่างไรก็ตาม วิศวกรข้อมูลควร ตระหนักว่าการผสานรวมที่ลึกซึ้งและอัตโนมัติที่สุดยังคงจำกัดอยู่เฉพาะบริการคลาวด์ดั้งเดิมของ แต่ละแพลตฟอร์ม การผสานรวมแหล่งข้อมูลที่ไม่ใช่คลาวด์ดั้งเดิมมักต้องใช้ความพยายามในการ วิศวกรรมแบบกำหนดเองอย่างมีนัยสำคัญ (เช่น การสร้างตัวเชื่อมต่อหรือการใช้ API) ซึ่งเพิ่ม ต้นทุนรวมในการเป็นเจ้าของ สำหรับองค์กรที่มีกลยุทธ์มัลติคลาวด์ที่แท้จริง การเลือก แพลตฟอร์มอาจขึ้นอยู่กับระบบคลาวด์ที่โดดเด่นที่สุด หรือความต้องการเฉพาะสำหรับการกำกับ ดูแลที่ครอบคลุมทั่วทั้งแพลตฟอร์มที่หลากหลาย

- การมุ่งเน้นเฉพาะด้านคุณภาพข้อมูล สายข้อมูล หรือความปลอดภัย:
 - หากลำดับความสำคัญสูงสุดคือ คุณภาพข้อมูลและสายข้อมูล ภายในสภาพแวดล้อม GCP,
 Dataplex มีความสามารถที่แข็งแกร่งในการทำโปรไฟล์ การกำหนดกฎคุณภาพในรูป
 แบบโค้ด และการติดตามสายข้อมูลอัตโนมัติ
 - หากเน้นที่ ความปลอดภัยและการปฏิบัติตามข้อกำหนด ที่ครอบคลุม, Purview นำเสนอชุด โซลูชันที่ผสานรวมอย่างแน่นแฟ้นสำหรับ DLP, Information Protection และ Insider Risk Management ซึ่งช่วยลดความซับซ้อนในการจัดการความเสี่ยงด้านข้อมูล

ปัจจัยที่ต้องพิจารณา

- การลงทุนในคลาวด์ที่มีอยู่: การเลือกแพลตฟอร์มที่สอดคล้องกับโครงสร้างพื้นฐานคลาวด์ที่มีอยู่ ขององค์กรจะช่วยลดความซับซ้อนในการผสานรวมและใช้ประโยชน์จากความเชี่ยวชาญของทีมที่มี อยู่
- ขนาดของสภาพแวดล้อมข้อมูล: สำหรับสภาพแวดล้อมข้อมูลขนาดใหญ่มาก วิศวกรข้อมูลควร ตรวจสอบข้อจำกัดของระบบ โควตา และผลกระทบต่อประสิทธิภาพการทำงานของแต่ละ แพลตฟอร์มอย่างละเอียด
- ข้อกำหนดการปฏิบัติตามข้อกำหนด: องค์กรที่มีข้อกำหนดด้านกฎระเบียบที่เข้มงวด (เช่น HIPAA, GDPR, SOX) ควรประเมินความสามารถในการรักษาข้อมูลสายข้อมูลระยะยาว (สำหรับ Dataplex) และข้อจำกัดของนโยบาย (สำหรับ Purview) อย่างรอบคอบ
- ความเชื่ยวชาญของทีม: ความคุ้นเคยของทีมวิศวกรข้อมูลกับบริการคลาวด์และเครื่องมือเฉพาะ ของผู้จำหน่ายแต่ละรายจะส่งผลต่อเส้นทางการเรียนรู้และความเร็วในการนำไปใช้
- งบประมาณ: ทำความเข้าใจรูปแบบการกำหนดราคาโดยละเอียดของแต่ละแพลตฟอร์ม และ พิจารณาผลกระทบของกลยุทธ์การใช้งานต่อต้นทุนรวม
- แผนงานในอนาคต: พิจารณาแผนงานและวิสัยทัศน์ของแต่ละแพลตฟอร์ม เพื่อให้แน่ใจว่า สอดคล้องกับกลยุทธ์ข้อมูลระยะยาวขององค์กร

บทสรุป

ทั้ง Google Dataplex และ Microsoft Purview เป็นแพลตฟอร์มการกำกับดูแลข้อมูลที่มี ประสิทธิภาพสูง ซึ่งได้รับการออกแบบมาเพื่อจัดการกับความท้าทายที่ซับซ้อนของสภาพแวดล้อมข้อมูล สมัยใหม่ ทั้งสองแพลตฟอร์มนำเสนอความสามารถหลักที่สำคัญสำหรับวิศวกรข้อมูล เช่น การจัดการ เมทาดาตา คุณภาพข้อมูล และสายข้อมูล อย่างไรก็ตาม จุดแข็งและแนวทางของแต่ละแพลตฟอร์ม แตกต่างกันอย่างมีนัยสำคัญ Dataplex โดดเด่นในการผสานรวมอย่างลึกซึ้งกับระบบนิเวศของ Google Cloud และการจัดแนว สถาปัตยกรรมกับหลักการ Data Mesh ซึ่งทำให้เป็นตัวเลือกที่น่าสนใจสำหรับองค์กรที่ใช้ GCP เป็น หลักและมุ่งมั่นที่จะใช้โครงสร้างข้อมูลแบบกระจายอำนาจ

ในทางกลับกัน Purview นำเสนอชุดโซลูชันที่ครอบคลุมมากขึ้น ซึ่งรวมการกำกับดูแลข้อมูล ความ ปลอดภัย และการปฏิบัติตามข้อกำหนดเข้าไว้ด้วยกันอย่างแน่นแฟ้น โดยเน้นที่โมเดล Data as a Product และการกำกับดูแลแบบรวมศูนย์ ทำให้เป็นตัวเลือกที่แข็งแกร่งสำหรับองค์กรที่ใช้ Azure เป็นหลักและมีข้อกำหนดด้านความปลอดภัยและการปฏิบัติตามข้อกำหนดที่เข้มงวด

สำหรับวิศวกรข้อมูล การเลือกแพลตฟอร์มที่เหมาะสมนั้นไม่ได้เกี่ยวกับว่าแพลตฟอร์มใด "ดีกว่า" แต่ เกี่ยวกับว่าแพลตฟอร์มใดที่สอดคล้องกับกลยุทธ์คลาวด์ที่มีอยู่ สถาปัตยกรรมข้อมูลที่ต้องการ และ ลำดับความสำคัญทางธุรกิจขององค์กรมากที่สุด การทำความเข้าใจความแตกต่างทางเทคนิค รูปแบบ การกำหนดราคา และความพยายามในการผสานรวมสำหรับแหล่งข้อมูลที่ไม่ใช่คลาวด์ดั้งเดิมเป็นสิ่ง สำคัญในการตัดสินใจอย่างมีข้อมูล เพื่อให้มั่นใจว่าแพลตฟอร์มที่เลือกจะสามารถสนับสนุนความ ต้องการด้านวิศวกรรมข้อมูลและการกำกับดูแลข้อมูลขององค์กรได้อย่างมีประสิทธิภาพในระยะยาว

Works cited

- 1. Learn about Microsoft Purview, accessed August 4, 2025, https://docs.azure.cn/en-us/purview/purview
- 2. Data Quality and Governance in Google Cloud: Data Catalog vs Dataplex dataroots, accessed August 4, 2025, https://dataroots.io/blog/data-quality-and-governance-in-google-cloud
- 3. Implementing Data Governance with Microsoft Purview Emergent Software, accessed August 4, 2025, https://www.emergentsoftware.net/blog/implementing-data-governance-with-microsoft-purview/
- Simplifying Data Management with Google Cloud Dataplex CloudThat, accessed August 4, 2025, https://www.cloudthat.com/resources/blog/simplifying-data-management-with-google-cloud-dataplex
- 5. What is Microsoft Purview? Benefits, Features (2025) Infrassist, accessed August 4, 2025, https://www.infrassist.com/microsoft-purview/
- 6. Dataplex Universal Catalog overview | Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/introduction
- 7. Learn about data governance with Microsoft Purview | Microsoft Learn, accessed August 4, 2025,
 - https://learn.microsoft.com/en-us/purview/data-governance-overview
- 8. Ensuring Data Quality with Azure Purview: Features and Best Practices XenonStack, accessed August 4, 2025, https://www.xenonstack.com/blog/data-quality-with-azure-purview
- 9. Learn about Microsoft Purview Unified Catalog, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/unified-catalog

- 10. Making Al Work: How Google Cloud Dataplex Brings Order to Your Data Medium, accessed August 4, 2025, https://medium.com/curione-data-engineering/making-ai-work-how-google-cloud-dataplex-brings-order-to-your-data-56edcd847f16
- 11. Microsoft Purview and the Shift to Data as a Product, accessed August 4, 2025, https://erstudio.com/blog/microsoft-purview-and-the-shift-to-data-as-a-product/
- 12. Deciphering Dataplex Consumption in Google Cloud Billing | by Justin Taras Medium, accessed August 4, 2025, https://medium.com/@jtaras/deciphering-dataplex-consumption-in-google-cloud-billing-3a260b6c8113
- 13. Cloud Dataplex and Data Mesh Architecture in GCP, accessed August 4, 2025, https://www.gcpstudyhub.com/pages/blog/cloud-dataplex-and-data-mesh-architecture-in-gcp
- 14. Google Dataplex- A Game Changer in Data Fabric Era HCLTech, accessed August 4, 2025, https://www.hcltech.com/blogs/google-dataplex-a-game-changer-in-data-fabric-era
- 15. Using BigQuery Dataplex to build a data mesh | Google Cloud Blog, accessed August 4, 2025, https://cloud.google.com/blog/products/data-analytics/using-bigquery-dataplex-to-build-a-data-mesh/
- 16. Dataplex Universal Catalog documentation | Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs
- 17. Dataplex Universal Catalog | Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex
- 18. About data catalog management in Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/catalog-overview
- 19. Auto data quality overview | Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/auto-data-quality-overview
- 20. About data lineage | Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/about-data-lineage
- 21. Data Lineage API Marketplace Google Cloud console, accessed August 4, 2025, https://console.cloud.google.com/marketplace/product/google/datalineage.googleapis.com
- 22. Build a data mesh | Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/build-a-data-mesh
- 23. Integrate data sources with Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/integrate-data-sources
- 24. Manage entries and ingest custom sources | Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/ingest-custom-sources

- 25. Dataplex Lineage Costs Data Analytics Google Developer forums, accessed August 4, 2025, https://discuss.google.dev/t/dataplex-lineage-costs/193842
- 26. Google Dataplex Reviews 2025: Details, Pricing, & Features | G2, accessed August 4, 2025, https://www.g2.com/products/google-dataplex/reviews
- 27. Quotas and limits | Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/quotas
- 28. Best practices for Dataplex Universal Catalog Google Cloud, accessed August 4, 2025, https://cloud.google.com/dataplex/docs/best-practices
- 29. Microsoft Purview | Microsoft Learn, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/
- 30. Best practices for scanning data sources in Microsoft Purview Data Map, accessed August 4, 2025, https://docs.azure.cn/en-us/purview/data-map-scanning-best-practices
- 31. Microsoft Purview data security and governance overview, accessed August 4, 2025, https://learn.microsoft.com/en-us/graph/security-datasecurityandgovernance-overview
- 32. Microsoft Purview: Guide to Data Governance, Compliance, and Security, accessed August 4, 2025, https://dynatechconsultancy.com/blog/microsoft-purview-data-governance-compliance-and-security
- 33. What's new in Microsoft Purview, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/whats-new
- 34. Billing in Microsoft Purview Data Governance, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/data-governance-billing
- 35. Data lineage Cloud Adoption Framework Microsoft Learn, accessed August 4, 2025, https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/scenarios/cloud-scale-analytics/govern-lineage
- 36. Data lineage user guide for classic Microsoft Purview Data Catalog, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/data-gov-classic-lineage-user-guide
- 37. Learn about Microsoft Purview collections metadata policy and roles APIs, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/legacy/tutorial-metadata-policy-collections-apis
- 38. Metadata driven Etl data lineage on purview Microsoft Q&A, accessed August 4, 2025, https://learn.microsoft.com/en-us/answers/questions/690872/metadata-driven-etl-data-lineage-on-purview
- 39. Microsoft Purview Unified Data Governance element61, accessed August 4, 2025, https://www.element61.be/en/competence/microsoft-purview-unified-data-governance
- 40. Sensitive information type limits | Microsoft Learn, accessed August 4, 2025,

- https://learn.microsoft.com/en-us/purview/sit-limits
- 41. Limits for Microsoft 365 retention policies and retention label policies Microsoft Learn, accessed August 4, 2025,
 - https://learn.microsoft.com/en-us/purview/retention-limits
- 42. Get started with data governance experience in Microsoft Purview, accessed August 4, 2025,
 - https://learn.microsoft.com/en-us/purview/data-governance-get-started
- 43. Plan for Microsoft Purview Unified Catalog with best practices, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/unified-catalog-plan
- 44. Microsoft Purview network architecture and best practices, accessed August 4, 2025.
 - https://learn.microsoft.com/en-us/purview/legacy/concept-best-practices-network
- 45. Learn about Microsoft Purview Data Map | Microsoft Learn, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/data-map
- 46. Create a custom connector from scratch Microsoft Learn, accessed August 4, 2025,
 - https://learn.microsoft.com/en-us/connectors/custom-connectors/define-blank
- 47. Set up a connector to import third-party insider risk detections (preview) Microsoft Learn, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/import-insider-risk-indicators
- 48. Microsoft Purview Zetaris, accessed August 4, 2025, https://kbase.zetaris.com/knowledge/how-to-access-microsoft-purview-data-through-lightning
- 49. Connect to your Microsoft Purview and scan data sources privately and securely, accessed August 4, 2025, https://learn.microsoft.com/en-us/purview/data-gov-classic-private-link-end-to-e nd
- 50. Microsoft Purview Data Lifecycle Management Pros and Cons | User Likes & Dislikes G2, accessed August 4, 2025, https://www.g2.com/products/microsoft-purview-data-lifecycle-management/reviews?gs=pros-and-cons