Números de Bernoulli y números de Stirling

Alexey Beshenov (cadadr@gmail.com)

2 de Marzo de 2017

Digresión combinatoria: los números de Stirling

Nuestro próximo objetivo es obtener algunas expresiones para los números de Bernoulli que permitan estudiar sus propiedades aritméticas, específicamente sus numeradores y denominadores. En el camino surgen ciertos números combinatorios, conocidos como los **números de Stirling**.

Definición. Sean k y ℓ dos números naturales positivos.

El número de Stirling de primera clase $[\ell]$ es el número de permutaciones en el grupo simétrico S_k que consisten en ℓ ciclos disjuntos.

El **número de Stirling de segunda clase** $\binom{k}{\ell}$ es el número de posibilidades de escribir un conjunto de k elementos como una unión disjunta de ℓ conjuntos no vacíos.

Ejemplo. $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 11$. Las permutaciones correspondientes en S_4 son

Ejemplo. ${4 \choose 2} = 7$. Las descomposiciones de conjuntos correspondientes son

$$\{1,2,3,4\} = \{1\} \cup \{2,3,4\} = \{2\} \cup \{1,3,4\} = \{3\} \cup \{1,2,4\} = \{4\} \cup \{1,2,3\}$$
$$= \{1,2\} \cup \{3,4\} = \{1,3\} \cup \{2,4\} = \{1,4\} \cup \{2,3\}.$$

De la definición se siguen las identidades

(1)
$$\begin{bmatrix} k \\ \ell \end{bmatrix} = 0 \quad \text{para } \ell > k,$$
(2)
$$\begin{bmatrix} k \\ k \end{bmatrix} = 1,$$
(3)
$$\begin{bmatrix} k \\ 1 \end{bmatrix} = (k-1)!,$$

$$\begin{bmatrix} k \\ 1 \end{bmatrix} = (k-1)!,$$

$$\sum_{1\leq\ell\leq k} \begin{bmatrix} k \\ \ell \end{bmatrix} = k!,$$

(6)

(7)
$$\begin{cases} k \\ \ell \end{cases} = 0 \quad \text{para } \ell > k,$$

(8)
$${k \brace k} = 1,$$

(9)
$${k \brace 1} = 1,$$

(10)
$$\sum_{1 \le \ell \le k} \begin{Bmatrix} k \\ \ell \end{Bmatrix} = b(k),$$

(11)
$${k+1 \brace \ell} = {k \brace \ell-1} + \ell {k \brace \ell}.$$

(2) significa que la única permutación en S_k que se descompone en el producto de k ciclos disjuntos es la permutación identidad. (3) significa que en S_k hay (k-1)! diferentes k-ciclos (¿por qué?).

(4) es el hecho de que toda permutación puede descomponerse en un producto de ciclos disjuntos. (10) es el análogo de esta identidad: el número total de particiones se conoce como el **número de Bell** b(k). Los primeros números de Bell son b(1) = 1, b(2) = 2, b(3) = 5, b(4) = 15, b(5) = 52, b(6) = 203, ...; véase http://oeis.org/A000110 En este curso, no vamos estudiar estos números (también porque la notación parece mucho a los números de Bernoulli :-)

Las recurrencias (5) y (11) se siguen de la definición combinatoria. Por ejemplo, en (5), consideremos las permutaciones de elementos $\{1,\ldots,k,k+1\}$. Sea $\sigma\in S_{k+1}$ una permutación que se descompone en el producto de ℓ ciclos disjuntos. Si $\sigma(k+1)=k+1$, entonces (k+1) forma un ciclo por sí mismo, y para el resto de los elementos hay $\binom{k}{\ell-1}$ posibles descomposiciones. Si $\sigma(k+1) \neq k+1$, entonces k+1 pertenece a algún ciclo. Para enumerar todas las posibilidades, podemos primero considerar $\binom{k}{\ell}$ descomposiciones de las permutaciones de $\{1,\ldots,k\}$ en ℓ ciclos disjuntos, y luego para cada descomposición hay k posibilidades de poner k+1 en uno de los ciclos. La fórmula (11) se explica de la misma manera: si tenemos un conjunto X de k+1 elementos, podemos considerar un elemento $x \in X$. Para las descomposiciones de X en la unión de ℓ subconjuntos hay dos casos: o bien $\{x\}$ forma un conjunto en la descomposición, y quedan $\{x\}$ posibilidades para descomponer $X \setminus \{x\}$; o bien x pertenece a algún conjunto. En el segundo caso, hay $\binom{\ell}{\ell}$ posibilidades de descomponer $X\setminus\{x\}$ en ℓ subconjuntos, y luego en cada caso hay ℓ posibilidades de poner *x* en uno de los conjuntos.

También será útil definir $\begin{bmatrix} k \\ \ell \end{bmatrix}$ y $\begin{Bmatrix} k \\ \ell \end{Bmatrix}$ para $k, \ell = 0$:

Definición.

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \quad \begin{bmatrix} k \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \ell \end{bmatrix} = 0 \text{ para } k, \ell \neq 0,$$
$$\begin{cases} 0 \\ 0 \end{bmatrix} = 1, \quad \begin{cases} k \\ 0 \end{cases} = \begin{cases} 0 \\ \ell \end{cases} = 0 \text{ para } k, \ell \neq 0.$$

Podemos definir $\binom{k}{\ell}$ y $\binom{k}{\ell}$ por los valores iniciales de arriba y las relaciones de recurrencia (5) y (11). Esta definición es compatible con la primera. Por ejemplo, en el caso de $\binom{k}{\ell}$, podemos ver que las identidades

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \quad \begin{bmatrix} k \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \ell \end{bmatrix} = 0 \text{ para } k, \ell \neq 0$$

implican

$$\begin{bmatrix} k \\ 1 \end{bmatrix} = (k-1)! \text{ para } k \geq 1, \quad \begin{bmatrix} 1 \\ \ell \end{bmatrix} = 0 \text{ para } \ell \geq 1.$$

En efecto,

$$\begin{bmatrix} k \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} k \\ 0 \end{bmatrix}}_{0} + (k-1) \begin{bmatrix} k-1 \\ 1 \end{bmatrix} = (k-1)(k-2) \begin{bmatrix} k-2 \\ 1 \end{bmatrix} = \cdots$$
$$= (k-1)(k-2)\cdots 2 \cdot 1 \left(\underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{1} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{0} \right) = (k-1)!$$

y para $\ell > 1$

$$\begin{bmatrix} 1 \\ \ell \end{bmatrix} = \begin{bmatrix} 0 \\ \ell - 1 \end{bmatrix} + 0 \cdot \begin{bmatrix} 0 \\ \ell \end{bmatrix} = 0.$$

En PARI/GP, stirling(k,1,2) = $\binom{k}{\ell}$ (el parametro "2" significa "de segunda clase"):

? stirling (4,2,2) % = 7

PARI/GP usa otra definición de los números de Stirling de primera clase. La única diferencia es el signo: $stirling(k,l) = (-1)^{k-\ell} {k \brack \ell}$:

? stirling (4,2)

% = 11

? stirling(4,3)

% = -6

Ejercicio. Demuestre que $\begin{bmatrix} k \\ k-1 \end{bmatrix} = {k \choose 2}$.

Ejercicio. Note que las recurrencias de arriba con los valores iniciales para $k, \ell = 0$ nos permiten definir $\binom{k}{\ell}$ y $\binom{k}{\ell}$ para todo $k, \ell \in \mathbb{Z}$. Demuestre que

 $\begin{bmatrix} k \\ \ell \end{bmatrix} = \begin{Bmatrix} -\ell \\ -k \end{Bmatrix}.$

Esto significa que los números de Stirling de primera y de segunda clase son esencialmente el mismo objeto.

Ejercicio. Demuestre que $\binom{k}{\ell} = 0$ para $k\ell < 0$.

(Los últimos dos ejercicios sirven solo para acostumbrarse a las recurrencias con $[^k_\ell]$ y $\{^k_\ell\}$; no vamos a usar los números de Stirling para k y ℓ negativos.)

k	0	1	2	3	4	5	6	7	8	9
0	1									
1	0	1								
2	0	1	1							
3	0	2	3	1						
4	0	6	11	6	1					
5	0	24	50	35	10	1				
6	0	120	274	225	85	15	1			
7	0	720	1764	1624	735	175	21	1		
8	0	5040	13068	13132	6769	1960	322	28	1	
9	0	40320	109584	118124	67284	22449	4536	546	36	1

Valores de $[^k_\ell]$

k	0	1	2	3	4	5	6	7	8	9
0	1									
1	0	1								
2	0	1	1							
3	0	1	3	1						
4	0	1	7	6	1					
5	0	1	15	25	10	1				
6	0	1	31	90	65	15	1			
7	0	1	63	301	350	140	21	1		
8	0	1	127	966	1701	1050	266	28	1	
9	0	1	255	3025	7770	6951	2646	462	36	1

Valores de $\binom{k}{\ell}$

Relación entre B_k y los números de Stirling

Lema. Para todo $\ell \geq 0$

$$\frac{(e^t - 1)^\ell}{\ell!} = \sum_{k > \ell} \begin{Bmatrix} k \\ \ell \end{Bmatrix} \frac{t^k}{k!}.$$

Demostración. Tenemos que verificar que

$$\frac{d^k}{dt^k} \left(\frac{(e^t - 1)^\ell}{\ell!} \right) (0) = \begin{Bmatrix} k \\ \ell \end{Bmatrix}.$$

Los valores iniciales coinciden, y va a ser suficiente demostrar que la recurrencia

$${k+1 \brace \ell} = {k \brace \ell-1} + \ell {k \brace \ell}$$

se cumple en nuestro caso:

$$\frac{d^{k+1}}{dt^{k+1}} \left(\frac{(e^t - 1)^{\ell}}{\ell!} \right) (0) = \frac{d^k}{dt^k} \left(\frac{(e^t - 1)^{\ell-1}}{(\ell - 1)!} \right) (0) + \ell \frac{d^k}{dt^k} \left(\frac{(e^t - 1)^{\ell}}{\ell!} \right) (0).$$

En efecto,

$$\begin{split} \frac{d^{k+1}}{dt^{k+1}} \left(\frac{(e^t-1)^\ell}{\ell!} \right) &= \frac{d^k}{dt^k} \left(\frac{(e^t-1)^{\ell-1}}{(\ell-1)!} \, e^t \right) = \frac{d^k}{dt^k} \left(\frac{(e^t-1)^{\ell-1} \, (1+e^t-1)}{(\ell-1)!} \right) \\ &= \frac{d^k}{dt^k} \left(\frac{(e^t-1)^{\ell-1}}{(\ell-1)!} + \frac{(e^t-1)^\ell}{(\ell-1)!} \right) \\ &= \frac{d^k}{dt^k} \left(\frac{(e^t-1)^{\ell-1}}{(\ell-1)!} \right) + \ell \, \frac{d^k}{dt^k} \left(\frac{(e^t-1)^\ell}{\ell!} \right). \end{split}$$

Ejercicio. Demuestre la identidad

$$\frac{(-\ln(1-t))^{\ell}}{\ell!} = \sum_{k > \ell} \begin{bmatrix} k \\ \ell \end{bmatrix} \frac{t^k}{k!}.$$

(De nuevo, es suficiente considerar las derivadas formales y verificar que se cumple la misma recurrencia que define los números de Stirling correspondientes: $\binom{k+1}{\ell} = \binom{k}{\ell-1} + k \binom{k}{\ell}$.)

Lo que acabamos de ver son las funciones generatrices para los números de Stirling, pero no soy tan sádico para dar esto como la definición de $\binom{k}{\ell}$ y $\binom{k}{\ell}$.

Lema. *Para* k, $\ell \geq 0$

$$\begin{Bmatrix} k \\ \ell \end{Bmatrix} = \frac{(-1)^{\ell}}{\ell!} \sum_{0 \le i \le \ell} (-1)^{i} \binom{\ell}{i} i^{k}.$$

Demostración. De nuevo, podemos verificar que los valores iniciales coinciden y la suma satisface la misma recurrencia que $\binom{k}{\ell}$:

$${k+1 \brace \ell} = {k \brace \ell-1} + \ell {k \brace \ell}.$$

Para los valores iniciales, si $k=\ell=0$, la suma nos da $\{^0_0\}=1$ (como siempre en el contexto algebraico/combinatorio, $0^0=1$); si k>0, $\ell=0$, la suma nos da 0; si k=0, $\ell>0$, la suma también nos da $\sum_{0 \le i < \ell} (-1)^i \, \binom{\ell}{i} = 0$. Para la recurrencia,

$$\begin{split} \frac{(-1)^{\ell}}{\ell!} \sum_{0 \leq i \leq \ell} (-1)^{i} \binom{\ell}{i} i^{k+1} &= \frac{(-1)^{\ell}}{(\ell-1)!} \sum_{0 \leq i \leq \ell} (-1)^{i} \frac{i}{\ell} \binom{\ell}{i} i^{k} \\ &= \frac{(-1)^{\ell}}{(\ell-1)!} \sum_{0 \leq i \leq \ell} (-1)^{i} \binom{\ell}{i} - \binom{\ell-1}{i} i^{k} \\ &= \frac{(-1)^{\ell-1}}{(\ell-1)!} \sum_{0 \leq i \leq \ell-1} (-1)^{i} \binom{\ell-1}{i} i^{k} + \ell \frac{(-1)^{\ell}}{\ell!} \sum_{0 \leq i \leq \ell} (-1)^{i} \binom{\ell}{i} i^{k}. \end{split}$$

Aquí hemos usado la identidad

$$\binom{\ell}{i} - \binom{\ell-1}{i} = \frac{i}{\ell} \binom{\ell}{i}.$$

Teorema.

$$B_k = (-1)^k \sum_{0 \le \ell \le k} \frac{(-1)^\ell \ell! \, \binom{k}{\ell}}{\ell+1} = (-1)^k \sum_{0 \le \ell \le k} \frac{1}{\ell+1} \sum_{0 \le i \le \ell} (-1)^i \, \binom{\ell}{i} \, i^k.$$

La segunda igualdad viene de la expresión de los números de Stirling en términos de los coeficientes binomiales y (¡por fin!) nos da una expresión para B_k sin recurrencias.

Demostración. La función generatriz para B_k es $\frac{t e^t}{e^t - 1}$. Ya que la exponencial y el logaritmo formales son inversos, podemos escribir

$$\frac{t e^t}{e^t - 1} = \frac{t}{1 - e^{-t}} = \frac{-\ln(1 - (1 - e^{-t}))}{1 - e^{-t}}.$$

Luego,

$$\begin{split} \frac{-\ln(1-(1-e^{-t}))}{1-e^{-t}} &= \frac{1}{1-e^{-t}} \sum_{\ell \ge 1} \frac{(1-e^{-t})^{\ell}}{\ell} \\ &= \sum_{\ell \ge 1} \frac{(1-e^{-t})^{\ell-1}}{\ell} \\ &= \sum_{\ell \ge 0} \frac{(-1)^{\ell} \ell!}{\ell+1} \sum_{k \ge \ell} {k \brace \ell} \frac{(-t)^k}{k!} \quad \text{por} \\ &= \sum_{k \ge 0} (-1)^k \left(\sum_{0 \le \ell \le k} \frac{(-1)^{\ell} \ell! \begin{Bmatrix} k \rbrace}{\ell+1} \right) \frac{t^k}{k!}. \end{split}$$

? bernbin (k) = $(-1)^k * sum (l=0,k, 1/(l+1)*sum(i=0,l, (-1)^i*binomial(l,i)*i^k));$? vector (10,k,bernbin(k)) % = [1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]