Supervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

• Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

All figures have been taken from https://github.com/amueller/introduction_to_ml_with_ python/blob/master/02-supervised-learning.ipynb

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - kNN regression
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Linear models for classification
 - Summary

- 4. Naive Bayes Classifiers
 - Summary
- 5. Decission Trees
 - Summary
- 6. Ensembles of Decision Trees
 - Summary
- 7. Support Vector Machines
 - Kernelized Support Vector Machines
 - Summary
- 8. A
 - **■**b
 - A: Summary
 - ARIMA

Generalization

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest classifier

- Given a data point, it takes its k closests neighbors
- Same prediction than its neighbors

k-NN does not generate a model

• The whole dataset must be stored

k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k
- If k equals the number of samples, k-NN always predicts the most frequent class

How to figure out the best k?

k-NN classification (III)

kNN regression (I)

k-NN regression

Given a data point

- 1. Take the k closest data points
- 2. Predict same target value (1-NN) or averate target value (k-NN)

Performace is measured with a regression metric, by default, R²

kNN regression (II)

k determines boundary smoothness

- 1. With k = 1, prediction visits all data points
- 2. With large k values, fit is worse

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear models

Linear model (I)

Linear model

$$y = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

for a single feature $y = a_0 + a_1 x_1$, where

- a_0 is the intercept
- a₁ is the slope

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Different linear models for regression

• The difference lies in how a_i parameters are learned

Linear models (II)

Several methods to fit coefficients

- Ordinary Least Squares (OLS)
- Generalized Least Squares (GSL)
- Weighted Least Squares (WLS)
- Generalized Least Squares with AR Covariance Structure (GLSAR)

Regularization: Term that penalizes complexity

- L1 (Lasso regression)
- L2 (Ridge regression)
- ElasticNet: L1 and L2

Lasso

$$\lambda \sum_{j}^{n} \beta_{j}^{2}$$

Ridge

$$\lambda \sum_{i=1}^{n} |\beta_{i}|$$

ElasticNet

$$\alpha \sum_{j}^{n} \beta_{j}^{2} + (1-\alpha) \sum_{j}^{n} |\beta_{j}|$$

Linear models

Summary

Hyperparameters Advantages Disadvantages

Naive Bayes Classifiers

Naive Bayes Classifiers

Summary

Hyperparameters Advantages Disadvantages

Decission Trees

Decission Trees

Summary

Hyperparameters Advantages Disadvantages

Ensembles of Decision Trees

k-Nearest Neighbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machine

Ensembles of Decision Trees

Summary

Hyperparameters Advantages Disadvantages

Support Vector Machines

Support Vector Machines Kernelized Support Vector Machines

Support Vector Machines Summary

Hyperparameters Advantages Disadvantages

P

Ι

B: Summary

Advantages Disadvantages Hyperparameters

Algorithms

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

ARMA model = AR + MA

• ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

A 0000