

Advanced Classification Kick-Off 2304PTDS

November 2023

1

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

By the end of this session you should be able to:

- Recall key machine learning concepts
- Explain the concept of classification
- Distinguish between a regression problem and a classification problem

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

What is Machine Learning?

Umbrella term for finding patterns amidst noise.

Underlying assumption:

- A process has an underlying pattern that relates some aspect of the process to another
- In the data there may be deviations from this pattern called noise

Example:

- Information on insurance clients
- Age, smoking status, drinking status, income input variables
- Want to find a relationship between these factors and individual's risk category (low/medium/high)
- Risk category output variable

The goal of machine learning is to find this pattern.

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

What is Regression?

Predicting a **number** from predictor variables

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

What is Classification?

Predicting a **category/discrete class** from predictor variables

X_{j}		- S	Y
Area	Location		Sold
43	Sandton		Yes
87	Clifton	X	No
		SOME	•
		RELATIONSHIP	•

What is Classification?

Predicting a category/discrete class from predictor variables

- Supervised Machine Learning task
- Predict categorical or discrete class labels
- Data instances are assigned to predefined classes based on shared features or qualities
- Outcome variable → class!
- Model is trained on these features in order to be able to predict the class or category the data point belongs to
- Once trained, your model should be able to make classifications on unseen data
- Classification can aid in domains that involve decision making,
 and providing insights into data and patterns

Classification use cases

Where is it used? Why is it important?

- Healthcare
- Finance
- Customer Service
- Marketing
- Natural Language Processing
- Image and Object recognition
- Social Media analysis
- Environmental Sciences
- Manufacturing and Quality Control
- Security and Intrusion Detection

Types of classification

How do we classify?

Soft vs Hard predictions:

- Soft data points have predicted probabilities of being in each class
- Hard data points are predicted to be in one class and only one class

Binary vs Multiclass classification:

- Binary data points are in one of two classes
- Multi-class data points are in one of multiple classes

Binary Classification

Multiclass Classification

Classification algorithms

How do we classify?

Some popular algorithms:

- Logistic Regression
- Decision Tree Classifiers
- Random Forest Classifiers
- Support Vector Machines
- Naive Bayes
- and more...

Evaluation metrics

How do we know how well our model is doing?

- Accuracy: overall correctly classified instances
- Precision: proportion of correctly predicted positives out of all predicted positives
- Recall: proportion of correctly predicted positives out of all actual positives
- F1 Score: Harmonic mean of precision and recall - balanced measure of model performance

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

The Data Science Process

How do we solve a data science problem?

Preprocessing

Model Building

Model Evaluation

Deployment

- Data Cleaning
 - Impute
 - Normalise/Standardise
 - Label/Dummy encode
- Train-Test split / Kfold

- Model Selection
- Model Training
- Hyperparameter Tuning

- Evaluate Model on Test set
- Report Performance metrics
- Hosting and Versioning
- Dashboards
- Containerization
 - Docker
 - Kubernetes

Processing and splitting our data

Remember: trash in = trash out

- Features: variables or predictors we use as inputs to our model
- Labels: our output the class or category the data belongs to
- Training Data: the labelled data we use to train our model
 - Splitting our data into a 'train' and 'test'/'validation' portion, so we can train our data, and then evaluate how well it is performing
 - This can help us to tune our model and select best hyperparameters
- Test Data: the unlabelled data we use to see how well our model can perform
- Exploring data: we need to actually *understand* our data
- Processing data: we need to know how to get our data and our features into an optimal format for our modelling process!

Modelling and evaluation

- Create and train our models
- Evaluate their performance on a test/validation set
- Tuning models improving and optimising performance
- Selecting our best performing model(s)
- Make predictions on truly unseen data!

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

Natural Language Processing (NLP)

What is it?

- Human written or spoken language is largely unstructured
- NLP enables computers to understand and interpret human language
- Uses algorithms and techniques to process and analyse natural language data
- NLP is crucial for certain elements of human-computer interaction and for extracting insights from text data
- Applications in machine translation, chatbots, sentiment analysis and more

Natural Language Processing

Where is it used?

Spam filters

- Scan the text of each email.
- Attempt to gain context or understanding.
- Determine whether spam or not.

Algorithmic Trading

- Read and digest masses of news and articles relevant to stocks.
- Combined with ML, determines buy/hold/sell positions.

Answering questions

- Major use-case: have search engines understand what we mean.
- Bonus: respond in the same language, tone, etc.
- Used widely in Siri, Google Assistant, Alexa, etc.

• Summarising information

- Far too much info out there for us to process wholly.
- Using NLP we can parse large document volumes.
- Attempt to understand meaning and generate summaries.

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

Advanced Classification - Learning Journey

Tree-based Logistic Methods Ensemble **Neural Networks** Regression Methods, Natural 2 8. Model Support Vector Tuning & Classification Comparing Language Overview **Improvements** Machines Validation Models **Predict Project Processing** Metrics Familiarise Improving Tree-Based KNNs and Naive Neural Network Advanced Intro to Binary How Machines vourself with Classification Classifier Classification Methods for Bayes Understand Classification what you'll Models Classification • Hyperparameters • Build All the Predict Using Logistic Language cover over the Improving a Support and Model Classifiers NLP Practical Regression next few weeks. Logistic Image Vector Validation Test [Code Logistic Look at your Regression Machines Hyperparameter Classification Regression [Code Challenge] Model Tuning [Code [Code project NLP Theory Challengel instructions. Dealing with Challengel | Challenge Binary Test [MCQ] download the Imbalanced MCQ1 Classification data and look at Data Metrics

Introduction to

Multiclass Classification

the problem

statement.

Learning activities include videos, interactive tools, knowledge tests and curated external training.

Important note

- There will be a break over the Christmas/New Year's period
- Academy will close and course will pause (but you will still be able to access Athena over this time)
- Course will resume in January and we will pick up where we left off
- Dates and more details will be shared soon

6 / Natural Language Processing

2 / Recap: What is Machine Learning?

7 / Sprint overview

3 / Recap: Regression?

8 / Predict overview

4 / What is Classification?

Predict Project

Build and deploy Classification models and to participate in a Kaggle challenge.

You

You are tasked with building a classification model(s) to identify users' sentiments towards climate change based on their novel tweet data

Python

You are free to use any relevant classification method(s).

NLP + Classification Models

Supervised machine learning techniques covered throughout this sprint will be used to build a model to classify your data.

Learn

The purpose of this predict is to guide you through the typical steps of a real-world data science projects from initial EDA, to model development and deployment and finally to communication of results.

Questions?

