COMS3261: Computer Science Theory

Fall 2013

Mihalis Yannakakis

Lecture 23, 11/27/13

Post Correspondence Problem

- Many undecidable problems don't have to do with TMs and programs
- PCP Input: Two finite lists $A=(w_1,...,w_k)$, $B=(x_1,...,x_k)$ with the same number of strings over same alphabet Σ .
- Question: ∃? finite sequence of indices i₁,...i_m (repetitions allowed) such that w_{i1} ... w_{im} = x_{i1} ... x_{im}?

PCP Example

Α	В
Wi	X i
1	111
10111	10
10	0
	Wi 1 10111

Solution: 2 1 1 3

If only strings 2,3 then no solution (strings of A longer than B)

Modified PCP (MPCP)

- Input: Same as PCP: Two finite lists A=(w₁,...,w_k),
 B=(x₁,...,x_k) with the same number of strings over same alphabet Σ.
- Question: ∃ solution that starts with strings 1?

PCP, MPCP are both undecidable

Will show:

- (1) Lu ≤m MPCP
- (2) MPCP ≤m PCP

Proof of MPCP ≤m PCP

- Trick: new symbols *, \$
- A list: Put * after every symbol: w_i → w'_i
- B list: Put * before every symbol: $x_i \rightarrow x'_i$
- Add pair 0: (*w'₁,x'₁) and pair k+1: (\$, *\$)
- Example:

	Α	В
<u>i</u>	Wi	Xi
1	1	111
2	10111	10
3	10	0

	Α'	Β'
<u> </u>	W 'i	X'i
0	*1*	*1*1*1
1	1*	*1*1*1
2	1*0*1*1*1*	*1*0
2	1*0*	*0
4	\$	*\$

Solution must start with 0 pair \Rightarrow A string has extra * at the end, and this continues \Rightarrow must finish with (k+1) pair

Proof of Lu ≤m MPCP

- Given (M,w) compute MPCP instance (lists A,B) such that M accepts w iff MPCP has a solution.
- Assume wlog that M has semi-infinite tape, does not write B (blank can use substitute B'), and represent ID as before but without the final B if head is at right end reading B, i.e. ID= string over Γ + a unique state
- Represent computation of M on w as string $\#ID_0\#ID_1\#ID_2...$ where $\# \notin \Gamma$ a separator
- Will construct lists A, B so that solution (if ∃) is the computation of M on w, where B string is one ID ahead of A, and when accepting state is entered then A can catch up with B to finish up with equal string.
- In general, the two strings in a prefix of a solution can get arbitrarily far from each other before they catch up.

MPCP instance				
	A list	B list		
1 st pair	#	#qow#		
2001	X	X	∀X∈Γ	
copy	#	#		
	qX	Yp	if $\delta(q,X)=(p,Y,R)$	
ZqX transitions _q # Zq#	pZY	if $\delta(q,X)=(p,Y,L), \forall Z \in \Gamma$		
	Yp#	if $\delta(q,B)=(p,Y,R)$		
	Zq#	pZY#	if $\delta(q,B)=(p,Y,L), \forall Z \in \Gamma$	
alaanina	XqY	q	$\forall q \in F, \forall X, Y \in \Gamma$	
LID	Xq	q		
	qΥ	q		
finish	q##	#	∀q∈F	
		ı		

Example

B:
$$\# q_0 \ 0 \ 0 \ 1 \ 0 \# 1 \ p \ 0 \ 1 \ 0 \# r \ 1 \ 1 \ 0 \ 0 \# r \ 1 \ 1 \ 0 \dots$$
A: $\# q_0 \ 0 \ 0 \ 1 \ 0 \# 1 \ p \ 0 \ 1 \ 0 \# r \ 1 \ 1 \ 1 \ 0 \# r \ 1 \ 1 \ 0 \dots$

clean- up

where $r \in F$

B: ... $\# r \ 0 \# r \# \#$

A: ... $\# r \ 0 \# r \# \#$

- Forced to form the computation of M on w to match.
- If no accepting state, then B string will always be ahead (longer)

PCP to CFL languages

- List A: strings w₁, w₂, ..., w_k over Σ; assume 1,2,...,k ∉Σ
- Language LA = { Wi1 ... Wim Im ... i1 | i1,..., im \in {1,...,k} } over alphabet T = $\Sigma \cup$ {1,...,k}
- Both L_A, and its complement L_A^c are CFL, in fact DCFL
- CFG GA for LA: A \rightarrow w1A1 | w2A2 | ... | wkAk | w11 | ... | wkk
- DPDA for La: Read letters from Σ and push on stack. Then
 for each index i ∈{1,...,k} in input, pop stack and verify that
 it contains the reverse of wi
- Stop and reject if there is a problem (not a match)
- Accept at end if stack is emptied and input finished.
- DPDA for Lac: Similar but always in accepting state except if input in La

Undecidable problems for CFL languages

- Emptiness of ∩: Is L(G1) ∩ L(G2) = Ø?
- Reduction from PCP: Given instance= lists A,B, construct the CFG GA, GB for them with variables A, B L(GA) ∩ L(GA) ≠Ø iff PCP instance has a solution
- Ambiguity of a grammar
- Reduction from PCP: Given instance= lists A,B, construct the CFG GA, GB for them with variables A, B define grammar G: S → A | B plus productions of GA, GB G is ambiguous iff PCP instance has a solution

Undecidable problems for CFL languages

- L(G) = T*? where G is grammar with terminal alphabet T
- Proof: Take grammars G'A, G'B for LA^c, LB^c, with start symbols A', B'

Let $G = S \rightarrow A' \mid B'$, plus productions of G'A, G'B

Then $L(G) = L_{A^{C}} \cup L_{B^{C}} = T^{*} - (L_{A} \cap L_{B}) \Rightarrow$

 $L(G) = T^* \Leftrightarrow L_A \cap L_B \neq \varnothing \Leftrightarrow PCP \text{ has no solution}$

Undecidable problems for CFL languages

- Corollaries: The following are undecidable
- $L(G_1) = L(G_2)$? for given CFGs G_1 , G_2
- L(G) =L(R)? for given CFG G and regular expression R
- $L(G_1) \subseteq L(G_2)$? for given CFGs G_1 , G_2
- $L(R) \subseteq L(G)$? for given reg expr R, CFG G
- But L(G) ⊆ L(R)? for given CFG G, regular expression R is decidable (⇔ L(G) ∩R^c = Ø and L(G) ∩R^c is CFL)