ABSTRACT

A control apparatus calculates the capacitor maximum power (P_{CAPU}) that can be supplied to a capacitor depending on the detected value of the temperature of the capacitor, and calculates the output power (P_{FC}) of the fuel cell, the real power of the motor (P_{MOT}) that actually powers the drive motor, and the load power (P_{AC}) that actually powers an electrical load, excluding the drive motor. The control apparatus calculates the motor power limiting value (P_{MOTU}), which is the motor power that corresponds to the capacitor maximum power (P_{CAPU}), based on the output power (P_{FC}) of the fuel cell, the load power (P_{AC}) that powers the electrical load, excluding the drive motor, and the capacitor maximum power (P_{CAPU}). The control apparatus outputs to the output controller a control command that directs the real power of the motor (P_{MOT}) to take the value of the motor power limiting value (P_{MOTU}) in the case that the real power of the motor (P_{MOT}) is larger than the motor power limiting value (P_{MOTU}). The drivability of a fuel cell vehicle is improved while protecting the capacitor.