W-algebra について

東北大学理学部数学教室 黒木 玄 (Gen Kuroki)

 \mathfrak{g} は \mathbb{C} 上の finite-dimensional simple Lie algebra とし、 $\widehat{\mathfrak{g}}$ はそれに対する affine Lie algebra とする:

$$\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}] \oplus \mathbb{C}K.$$

このとき、 $\hat{\mathfrak{g}}$ の universal enveloping algebra のある graded completion を \hat{U} と表わし、 $k\in\mathbb{C}$ に対して、 \hat{U} を両側イデアル (K-k) で割ってできる商環を \hat{U}_k と表わす。このとき、 $\hat{\mathfrak{g}}$ が $A_n^{(1)}$, $B_n^{(1)}$, $C_n^{(1)}$ 型の場合に ([H])、level が critical すなわち $k=-h^\vee(h^\vee$ は dual Coxeter number) のとき、 \hat{U}_k が十分多くの central elements を持つことが証明されている。更に、その結果を用い、上の型の $\hat{\mathfrak{g}}$ に対する Kac-Kazhdan conjecture が証明されている。我々は、 \hat{U}_{-h^\vee} の center もしくはその適切な subalbegra でもって、classical W-algebra を定義する。このとき、classical W-algebra には自然に Poisson algebra structure が入る。したがって、本来の quantum W-algebra は、そのパラメーター k に関する変形 (Sugawara operator の algebra として得られる筈のものである。

一方、より一般の affine Lie algebra に対する Kac-Kazhdan conjecture は、現在では、Wakimoto modules (affine Lie algebra の boson 表示、[W], [FF], [K1,2]) を用いることによって証明できることが知られている。

有限次元の場合には、 $\mathfrak g$ の universal enveloping algebra $U(\mathfrak g)$ の center は、Harish-Chandra 同型によって、Cartan subalgebra から生成される多項式の Weyl 群不変式環と同型になることが知られている。Harish-Chandra 同型の証明には、Verma modules の理論が有効に使われる。そこで、 \widehat{U}_{-h^\vee} に対する Harish-Chandra 同型の類似が、Wakimoto modules を利用して得られないかどうか考えてみよう。

まず、affine Lie algebra の boson 表示について簡単に説明する。(詳しいことは、[K1,2] を見られたい。) $\mathfrak g$ の positive roots 全体を Δ_+ と表わし、 $\mathfrak g$ の Cartan subalgebra を $\mathfrak h$ と表わす。 $\kappa \in \mathbb C$ に対して、 $\mathcal A_\kappa$ は

$$\{\delta_{\alpha}[m], x_{\alpha}[m], p_i[m] \mid \alpha \in \Delta_+, i = 1, \cdots, \dim \mathfrak{h}, m \in \mathbb{Z}\}$$

から生成され、以下の交換関係によって定義される algebra であるとする:

$$\begin{bmatrix} \delta_{\alpha}[m], x_{\beta}[n] \end{bmatrix} = \delta_{\alpha,\beta}\delta_{m+n,0},$$
 $\begin{bmatrix} p_i[m], p_j[n] \end{bmatrix} = \kappa(H_i|H_j)m\delta_{m+n,0},$ (他の組み合わせの commutator) = 0.

すなわち、 A_{κ} は無限次元空間上の微分作用素環である。ここで、 $(\cdot|\cdot)$ は $\mathfrak g$ の normalized Killing form であり、 $\{H_i\}$ は $\mathfrak h$ の basis である。 A_{κ} のある graded completion を \widehat{A}_{κ} と書く。 \widehat{U} から \widehat{A}_{κ} への algebra homomorphism π で、 $\pi(K)=\kappa-h^{\vee}$ を満たし、種々の良い性質を持つものが構成できる。 \widehat{A}_{κ} の自然な表現と

して Fock spaces が定義され、 π を通して、affine Lie algebra $\hat{\mathfrak{g}}$ が Fock spaces の上に定まるのである。これが、所謂 Wakimoto modules である。なお、この Fock spaces は、直感的には、dimension も codimension も無限次元のある subspace 上に台を持つ超函数の空間として定義される。

注意すべきことは、 $\kappa=0$ の場合と $\kappa\neq0$ の場合とでは、 \widehat{A}_{κ} の center の大きさが全く違うということである。 \widehat{A}_{κ} の center は、 $\kappa=0$ のときは $\{p_i[m]\mid i=1,\cdots,\dim\mathfrak{h},\,m\in\mathbb{Z}\}$ から生成され、 $\kappa\neq0$ のときは $\{p_i[0]\mid i=1,\cdots,\dim\mathfrak{h},\,\}$ から生成される。これに呼応して、 π を通して、条件 $k=-h^\vee$ と 条件 $\kappa=0$ が対応していることにも注意して欲しい。これらのことから容易に予想される通り、以下を示せる。

上の π は $\widehat{U}_{\kappa-h^\vee}$ から $\widehat{\mathcal{A}}_{\kappa}$ への homomorphism を与えるが、それを π_{κ} と書くことにする。このとき、次が成り立つ:

$$\pi_0(\text{center of }\widehat{U}_{-h^\vee}) \subset (\text{center of }\widehat{\mathcal{A}}_0).$$

すなわち、 \widehat{U}_{-h^ee} の center の元は $\widehat{\mathcal{A}}_0$ の中では $\{\,p_i[m]\,\}$ の式で表わされる。

この事実を元にして、classical W-algebra = center of \widehat{U}_{-h^\vee} の構造、さらには、quantum W-algebra の構造を調べるということが 1 つの目標である。Affine Lie algebra の boson 表示が、Knizhnik-Zamolodchikov 方程式の解の多変数超幾何型積分表示を与えるように、W-algebra の理論にもなにがしかの面白い応用がある筈である。しかし、これ以上の話はまだ未完成であるので、これからの研究に期待されたい。

References

- [FF] Feigin, B., Frenkel, E.: Representation of affine Kac-Moody algebras, bosonization and resolutions. In: Brink, L., Friedan, D., Polyakov, A.M. (eds.) Physics and Mathematics of Strings. Memorial volume for Vadim Knizhnik, pp. 271-316. Singapore, New Jersey, London, Hong Kong: World Scientific 1990
- [H] Hayashi, T.: Sugawara operators and Kac-Kazhdan conjecture. Invent. math. **94**, 13-52 (1988)
- [K1] Kuroki, G.: Fock space representations of affine Lie algebras and integral representations in the Wess-Zumino-Witten models. Commun. Math. Phys. 141, 511-542 (1991)
- [K2] Kuroki, G: Fock space representations of twisted affine Lie algebras. 数理解析研究所講究録 778, 42-49 (1992)
- [W] Wakimoto, N.: Fock representations of the affine Lie algebra $A_1^{(1)}$. Commun. Math. Phys. **104**, 605-609 (1986)