Balloon Design Lab

Group 3

Luca Barton, Eliza Bourne, AJ Lauffer, Linus Schmitz, Blake Wilson

Table of Contents

- 1. Overview
 - a. Contents (Eliza)
- 2. Design Requirements (Linus)
- 3. Brief Design Overview (Linus)
- 4. Design Research
 - a. Polyurethane Shell (Luca)
 - b. Reflectivity (Linus)
 - c. Helium Propellant (AJ)
- 5. Design Specifications
 - a. Code (Linus)
 - b. Use of Scale Model (Eliza)
 - c. Zero Pressure vs. Super Pressure Balloons (Eliza)
 - d. Assumptions (Blake)

- 6. Design Analysis
 - a. FBD (AJ)
 - b. Volume and Buoyancy (AJ)
 - c. Final Mass Budget (Luca)
- 7. Performance Subject to Radiation
 - a. Assumptions, Equation, Process (Blake)
 - b. Design Decisions (Blake)
- 8. Design Deliverables
 - a. Findings (Luca)
 - b. Further Research (Eliza)
 - c. Sources
 - d. Images

Design Requirements

Requirements

- Remain at 25km (∓ 1km)
- Minimum of 24 hrs
- 500 kg payload (research instruments)
- Factor of safety reasonable and consistent with other projects: 1.45

Brief Design Overview

Design overview

- Final balloon size: 15.68 m radius
- Lifting gas: Helium
- Material: Thermoplastic Polyurethane Film
- Total weight: 614.54kg
- Balloon thickness: 0.00284mm
- Balloon Coating: Z93 white paint produced by AZ Technology

Design Research

Polyurethane shell

- Balloon is made of Thermoplastic Polyurethane Film
- "The most promising polymeric materials were found to be polyolefin, polyurethane, ethylene propylene diene monomer (EPDM) rubber, and silicone rubber." - American Institute of Aeronautics and Astronautics

Reflectivity

- Z-93 white paint (reflects ~13% of solar radiation)
- Caused change in density of balloon shell:
 rho of paint = 2,200 kg/m³
- Increased mass of shell by ~10kg
- Increase mass of the system ~ 14kg
- Applied in vertical stripes to minimize effects of cracking
- \$460/ quart

Helium Propellant

- Less dense than air, relatively inexpensive and not highly flammable
- Well tested in many experiments
- Scale Model

Design Specifications

Possible increase of up to 80°K

Altitude restriction of ∓ 1km

Factor of Safety: 1.45

Maximum increase in temp of Helium 37.6° K

Planned increase in temperature of helium: 26°K.

Minimum reflectivity of balloon: 67.5%

Under normal (night-time) operating conditions the following values apply:

Radius: 15.49 m

Volume: 15571.51 m³
Mass of Shell: 29.61 kg
Mass of Helium: 84.93 kg
Mass of Payload: 500 kg
Total Payload: 614.54 kg

Temperature of Helium: 221.65 K

Under maximum (daytime) operating conditions these are the new Values:

Radius: 15.68 m

Volume: 16133.27 m³

Mass of Shell: 29.61 kg

Mass of Helium: 84.93 kg

Mass of Payload: 500 kg

Total Payload: 614.54 kg

Temperature of Helium: 247.65 K

Scale Model vs. Full-Scale Ballon

	Radius	Shell Mass	Payload	Volume	Expanded Volume
Scale Model	17.15 cm	9.553 g	1.54 g	12879 cm^3	19353 cm^3
Full-Scale	15.30 m	10.12 kg	500 kg	14998 m^3	16758 m^3

Zero Pressure Balloons vs. Super Pressure Balloons

- Ballast system to keep Zero Pressure
 Balloon at specified altitude (fluctuates)
- Super Pressure don't allow change in volume to stay at altitude (level)

Assumptions

- Perfectly Spherically Shaped
- No Forces due to launching/Reaching Elevation of 25 km
- Only Forces are Weight Force and Buoyant Force
- The 500 kg payload includes any tethering mechanisms
- The gas can't escape the balloon shell (no leaks)

Design Analysis

Free Body Diagram

$$2 Fy = ma$$

$$a = 0 \quad (not moving)$$

$$0 = F_B - W \implies F_B = W$$

$$\int_{ans} V = (m_{shell} + m_{gas} + m_{payload})g$$

$$\int_{arm} = \frac{M_{shell} + m_{gas} + m_{pl}}{\frac{U}{3} \pi r^3}$$

Local FBD

Global FBD

Volume and Buoyancy

$$\rho_{atm} = \frac{m_{payload} + m_{shell} + m_{He}}{\frac{4}{3}\pi r^3}$$

$$\rho_{shell} = \frac{m}{V} = \frac{m}{SA \cdot t} = \frac{m}{4\pi r^2 \cdot t} \qquad \rho_{shell} = \frac{m}{4\pi r^2 \cdot t}$$

$$m_{payload} = 500 kg$$
 $m_{shell} = \rho_{shell} \cdot t \cdot 4\pi r^2$
$$m_{He} = \rho_{He} \cdot \frac{4}{3}\pi r^3$$

Volume and Buoyancy

$$PV = nRT$$
 $P = \rho_{He}R_{specific}T$ $\rho_{He} = \frac{P}{R_{spec}T}$

$$t = \frac{P_g r}{2\sigma}$$
 $\sigma = \frac{Y.S}{F.S.}$ $t = \frac{P_g \cdot r \cdot F.S.}{2 \cdot Y.S.}$

$$m_{shell} = \rho_{shell}(\frac{2\pi \cdot P_g \cdot F.S.}{Y.S.})$$

$$\rho_{atm} = \frac{m_{payload} + m_{shell} + m_{He}}{\frac{4}{3}\pi r^3}$$

$$r = \sqrt{\frac{m_{payload}}{\frac{4}{3}\pi(\rho_{atm} - \rho_{He}) - \rho_{shell}(\frac{2\pi \cdot P_g \cdot F.S.}{Y.S.})}}$$

$$V = \frac{4}{3}\pi r^3$$

Final Mass Budget

Our Design

- The Balloon does not have a ballast system or venting gas.
- With the use of Z93, the amount of energy entering the balloon system is lowered
- This keeps our balloon within the 25 ± 1 km altitude
- Mass = 614.54 kg

Scale Model

- The scale model had no release of gas or ballast system
- Final mass equaled Initial mass
- Mass = 12.641 g

Performance Subject to Radiation

Design Decisions

- After using radiation equations a given absorption keeps balloon in altitude range
- Researched many highly reflective materials
 - Silvered teflon
 - BoPET
 - Aluminized Kapton
- We choose Z93 because it had a high reflectivity of 87% while still being manufactured
 - o Paint could be easier to work with

Assumptions, Equations, Processes

- Z93 coating would offer 87 percent reflectivity
- The Balloon is launched at sunset on winter solstice
- Constant Mass (Z93 degradation)
- Z93 adheres to polyurethane shell without need for primers

Processes:

• A spray painting gun is used to apply the Z93 to our specified thickness across a fully inflated balloon.

Design Deliverables

Further Research

- Weather conditions
- Recovery system
- Increasing time aloft
- Material Design

Findings

- Our design is theoretical and would need scale model testing before it could be cleared.
- Not bound by cost. We designed our balloon to surpass the design requirements rather than being a cost effective solution.
 - Cost estimate:
- Our beginning research was not adequate to have an understanding of the entire project.
- Decisions were made and changed multiple times.
- Final Decisions
 - Thermoplastic Polyurethane Film (TPU), Z93, and Helium to fulfill the design requirements

Sources

RTP Company Website - https://www.rtpcompany.com/manufacturing/film/

AZ Technology Company Website -

http://www.aztechnology.com/

Material Challenges for Lighter-Than-Air Systems in High Altitude Applications-American Institute of Aeronautics and Astronautics

http://www.tcomlp.com/wp-content/uploads/2014/09/2005 7488.pdf

Images

Super Pressure and Zero Pressure - https://sites.wff.nasa.gov/code820/spb differences between zpandspb.html

Title Slide Image -

https://www.optimistdaily.com/2020/07/nasa-will-fly-a-stadium-sized-high-altitude-balloon-to-watch-newborn-stars/