Homework 3*

Problem 1 (20 points) Divide $9x^2 + 3x + 5$ by 7x + 3 assuming that the polynomials are over Z_{11} .

Problem 2 (20 points) Compute the following assuming the polynomials are over GF(2).

$$(x^{5} + x^{3} + x^{2} + x + 1) + (x^{2} + x + 1)$$

 $(x^{5} + x^{3} + x^{2} + x + 1) - (x^{2} + x + 1)$
 $(x^{5} + x^{3} + x^{2} + x + 1) \times (x^{2} + x + 1)$
 $(x^{5} + x^{3} + x^{2} + x + 1) / (x^{2} + x + 1)$

Problem 3 (20 points) There are two different irreducible polynomials of degree 3 over GF(2):

$$x^3 + x + 1$$
$$x^3 + x^2 + 1$$

The finite field $GF(2^3)$ can be constructed with either of these two irreducible polynomials. Regardless which to use, we have the same bit patterns related to the eight polynomials in $GF(2^3)$:

$$\{000, 001, 010, 011, 100, 101, 110, 111\}$$

- Find the multiplicative inverse (MI) of 010 when the irreducible polynomial $x^3 + x + 1$ is used to construct $GF(2^3)$.
- Will the MI of 010 be different when the irreducible polynomial $x^3 + x^2 + 1$ is used?

^{*}Your solutions must be typed, and to receive full credits, please show detailed steps/calculations. If you only show the final results, no credits will be given regardless the correctness of the results.

Problem 4 (20 points) Suppose the finite field $GF(2^3)$ is constructed with the irreducible polynomial $x^3 + x + 1$. Perform the following calculations directly:

$$(x^{2} + x + 1) + (x^{2} + 1)$$

 $(x^{2} + x + 1) - (x^{2} + 1)$
 $(x^{2} + x + 1) x (x^{2} + 1)$
 $(x^{2} + x + 1) / (x^{2} + 1)$

Will the results change if the modulus polynomial becomes to $x^3 + x^2 + 1$?

Problem 5 (20 points) Suppose $GF(2^8)$ is constructed using $m(x) = x^8 + x^4 + x^3 + x + 1$ and f(x) and g(x) are defined as follows:

$$f(x) = x^7 + x^5 + x^3 + x^2 + 1$$

$$g(x) = x^3 + x^2 + 1$$

- Convert f(x) and g(x) into their binary representations based on which to compute f(x) + g(x) and $f(x) \times g(x)$.
- Find the multiplicative inverses of f(x) and g(x) in $GF(2^8)$ respectively.

Optional Problem (20 points) Implement a computer program that, given an irreducible polynomial that defines $GF(2^n)$ and any f(x) in $GF(2^n)$, returns the multiplicative inverse of f(x).