KNIGHT'S TOUR PROBLEM

BACKTRACKING

Knight's tour problem

- A sequence of moves of a knight on a chessboard such that the knight visits every square EXACTLY once
- Closed tour: when the knight end point is the same as the starting point
- ► The knight's tour problem is an instance of the more general Hamiltonian-path problem
- Closed knight tour ~ hamiltonian-cycle problem !!!
- Solutions: brute-force approach + backtracking

Schwenk theorem

- ► For an **m** x **n** chessboard the closed knight tour problem is always feasible, unless:
 - **m** and **n** are both odds
 - $\mathbf{m} = 1.2 \text{ or } 4$
 - ightharpoonup m = 3 and n = 4,6 or 8

Backtracking

- Start with an empty solution matrix / 2D array
- ▶ When adding a new item → we check whether adding the current item violates the problem constraints or not
- ▶ Yes: we backtrack
- ▶ No: we add the item to the solution set and go to the next item
- ▶ If we have considerd all the items we are ready !!!

	8		2	
	3		7	12
9		1		
4			11	6
	10	5		

	8	13	2	
	3		7	12
9		1		
4			11	6
	10	5		

	8	13	2	
14	3		7	12
9		1		
4			11	6
	10	5		

	8	13	2	
14	3		7	12
9		1		
4	15		11	6
	10	5		

	8	13	2	
14	3		7	12
9		1		
4	15		11	6
	10	5	16	

	8	13	2	
14	3		7	12
9		1		17
4	15		11	6
	10	5	16	

	8	13	2	
14	3		7	12
9		1		17
4	15	18	11	6
	10	5	16	

	8	13	2	
14	3		7	12
9		1		17
4	15	18	11	6
	10	5	16	19

	8	13	2	
14	3		7	12
9		1	20	17
4	15	18	11	6
	10	5	16	19

	8	13	2	21
14	3		7	12
9		1	20	17
4	15	18	11	6
	10	5	16	19

	8	13	2	21
14	3	22	7	12
9		1	20	17
4	15	18	11	6
	10	5	16	19

23	8	13	2	21
14	3	22	7	12
9		1	20	17
4	15	18	11	6
	10	5	16	19

23	8	13	2	21
14	3	22	7	12
9	24	1	20	17
4	15	18	11	6
	10	5	16	19

23	8	13	2	21
14	3	22	7	12
9	24	1	20	17
4	15	18	11	6
25	10	5	16	19