

Departamento de Matemática, Universidade de Aveiro

Cálculo I - Agrupamento 4 — 1.ª Prova de Avaliação Discreta 13 de novembro de 2019

Duração: 2h

[25pts]

- 1. Considere a função f de domínio $\mathbb R$ tal que $f(x)=2\arctan(x^3)+2x-\frac{\pi}{2}$.
 - (a) Calcule f(1) e f'(1).
 - (b) Justifique que f é invertível e calcule $(f^{-1})'(2)$.

[30pts]

- 2. Seja $h: \mathbb{R}^+ \to \mathbb{R}$ tal que $h(x) = \ln(e^x 1) 2x$.
 - (a) Estude h quanto à monotonia e determine, caso existam, os seus extremantes globais.
 - (b) Indique, justificando, o contradomínio de h.

[35pts]

- $\text{3. Seja g a função definida em } [0,1] \text{ por } g(x) = \left\{ \begin{array}{cc} 0 & se & x=0 \\ \arcsin(x^2) \cot(\frac{\pi x}{4}) & se & 0 < x \leq 1. \end{array} \right.$
 - (a) Mostre que g é contínua em [0,1].
 - (b) g tem extremos globais em [0,1]? Justifique, sem fazer cálculos adicionais.
 - (c) Prove que existe $c \in]0,1[$ tal que $g'(c)=\frac{\pi}{2}.$

[25pts]

4. Determine a função $F: \mathbb{R}^+ \to \mathbb{R}$ tal que F(1) = 0 e $F'(x) = 3 - \frac{1}{2x^2} + e^{2-2x}$, para todo o $x \in \mathbb{R}^+$.

[25pts]

5. Determine o conjunto de todas as primitivas da função $f(x)=\frac{7x+4}{x^2-x-6}$, $x\in]3,+\infty[$.

[25pts]

6. Determine $\int \frac{x^2}{\sqrt{1-x^2}} dx$, usando a mudança de variável $x = \sin t$, indicando o domínio utilizado para a variável t

[20pts]

7. Determine $\int \frac{1}{\sqrt[3]{x^2} + \sqrt[3]{x^4}} dx.$

[15pts]

pts] 8. Considere a função $f \colon \mathbb{R} \to \mathbb{R}$ cuja segunda derivada f'' existe e é contínua em \mathbb{R} . Mostre que, se f(0) = f(1) = 0, $f'(0) \ge 0$ e $f'(1) \ge 0$, então existe $c \in]0,1[$ tal que f''(c) = 0.