

Introduction to CHAPSim

Wei Wang

SCD, STFC-Daresbury Laboratory, UKRI wei.wang@stfc.ac.uk

November 4, 2020

Overview

- About CHAPSim
- 2 Code Structure
- 3 Examples
- 4 Code Development

License

License

The GNU General Public License v3.0 (GPLv3)

https://www.gnu.org/licenses/quick-guide-gplv3.en.html

Main Contacts

- Wei Wang, STFC-DL, UKRI. (wei.wang@stfc.ac.uk)
- Mehdi Seddighi, Liverpool John Moors University. (m.seddighi@ljmu.ac.uk)
- Shuisheng He, The University of Sheffield. (s.he@sheffield.ac.uk)

History of CHAPSim

A CHannel And Pipe flow Simulation solver *CHAPSim*) is an incompressible Direct Numerical Simulation (DNS) code for flow and heat transfer with MPI parallelization.

History of *CHAPSim*(cont'd)

Functions existed/under-development but not yet merged to the main branch:

- Large Eddy Simulation (LES) (Smagorinsky Model, Dynamic Geromano-Lily Model,, WALE model)
- Immersed Boundary Method (IBM) (for roughness)
- Conjugate Heat Transfer (CHT)
- Boundary layer developing flow (under development in UoS)
- Unsteady pulsating flow (under development in LJM)

Code Building

- Acquire the source code by cloning the git repository:
 \$git clone git@github.com:WeiWangSTFC/CHAPSim.git
- Compile the codes: \$mkdir bin obj

\$make all

Debugging mode compiling:

\$make cfg=gnu
\$make cfg=intel

Numerical Methods

	Methods		
Parallel	MPI		
Mesh	Structured, generated on the fly		
Spacial Discretization	Finite Difference		
Nonlinear terms	Divergence form		
	2nd order spacial accuracy		
	explicit Runge-Kutta & Adams-Bashforth method for temporal discretization		
Viscous terms	implicit Crank-Nicolson method for temporal discretization		
Pressure	FFT and Fractional step method		
Thermodynamics	Quasi-incompressible flow		
	Thermal properties updated by table-searching or specified functions of temperature		

Figure: Numerical Methods

Code Structure

Directory Structure

▶ in	1 item	Folder	2020-10-27 15:45:41
docs	3 items	Folder	2020-10-21 16:57:44
▶ iib	3 items	Folder	2020-10-15 10:44:27
▶ 🚞 obj	140 items	Folder	2020-10-27 15:45:41
scripts	13 items	Folder	2020-10-15 10:44:27
▶ <mark>i src</mark>	66 items	Folder	2020-11-04 01:02:10
test_cases	18 items	Folder	2020-10-19 10:46:32
▶ 🚞 test_cases_additional	10 items	Folder	2020-10-19 10:46:15
test_cases_template	17 items	Folder	2020-10-19 10:59:01
test_loop	2 items	Folder	2020-10-15 10:44:27
• igit	12 items	Folder	2020-10-28 08:36:28
· vscode	1 item	Folder	2020-10-20 09:48:04
CHAPSim_workspace.code-workspace	60 bytes	Unknown	2020-10-22 20:54:37
LICENSE	35.1 kB	Text	2020-10-16 09:08:58
Makefile	6.5 kB	Text	2020-10-27 14:39:54
README.md	3.6 kB	Text	2020-10-26 16:46:50
.gitignore	394 bytes	Text	2020-10-23 14:38:02

Read in parameters

https://github.com/WeiWangSTFC/CHAPSim/blob/main/test_cases_template/TC4_Channel_IO_thermal_ScpWater/readdata.ini

Simulation - monitoring

Figure: Simulation Monitoring

Simulation - data storage

Instantanous Data

- -u, v, w, p as function of (x, y, z, t)
- T, D, E, M, K as function of (x, y, z, t)
- Binary format for both restarting and further post processing.

RA/FA Data

- ASCII format. Tecplot format.
- for peridoc x and z, up to third order momentum and heat flux
- for peridoc z only, up to second order momentum and heat flux (* included in Jundi's version?)

Output Data explanation

The file format is '.dat', which can be opened by any text editor, like Notepad, Gedit, etc. Lines starting with '%' or '#' are comment lines.

Example file: 'Result.IO.undim.Profile.Flow.Favre.dat'

Variables in this file are all dimensionless, scaled by the reference state labeled as 0, which are given in the file 'table.plt'. The variables in this file is dimensionless, scaled by the reference state, and Favre Averaged.

Y $y = y^*/L0$, the scaled distance to the wall, (-1,1)

Y+ $y^+ = y \cdot Re_{ au}$, the distance scaled by wall parameter

Utau U_{τ} , skin velocity for each side wall

Ux \widetilde{U}_x , the streamwise velocity

Uy \widetilde{U}_y , the wall-normal velocity

Uz \widetilde{U}_z , the spanwise velocity

P p, pressure

TKE
$$\widetilde{k} = \frac{1}{2} \left(\overline{\rho u'' u''} + \overline{\rho v'' v''} + \overline{\rho w'' w''} \right)$$
, turbulent kinetic energy

Ruu $\overline{\rho u''u''}$, Favre Averaged Reynolds Stress

Ruv $\rho u''v''$, Favre Averaged Reynolds Stress

Ruw $\overline{\rho u''w''}$, Favre Averaged Reynolds Stress

Rvv $\overline{\rho v''v''}$, Favre Averaged Reynolds Stress

Rvw $\rho v''v''$, Favre Averaged Reynolds Stress

Rww $\overline{\rho w''w''}$, Favre Averaged Reynolds Stress

 $\mathrm{Ruv_{vis}}\ \mu \frac{\partial \widetilde{U}_{\mathrm{x}}}{\partial \mathrm{y}}$, Viscous shear stress

dUdY $\frac{\partial \hat{U}_x}{\partial y}$, Mean velocity gradient

Example file: 'Result.IO.undim.Profile.Heat.Transfer.dat'

Variables in this file are all dimensionless, scaled by the reference state labeled as 0, which are given in the file 'table.plt'.

Y
$$y = y^*/L0$$
, the scaled distance to the wall, $(-1,1)$

Y+
$$y^+ = y \cdot Re_{ au}$$
, the distance scaled by wall parameter

$$\overline{\rho}$$
, Mean Density

$$T$$
 \overline{T} , Mean Temperature

$$H_{ra}$$
 \overline{h} , Reynolds Averaged Mean Enthalpy

M
$$\overline{\mu}$$
, Mean Viscousity

Drms
$$\sqrt{\overline{\rho'^2}}$$
, RMS of density

Trms
$$\sqrt{T'^2}$$
, RMS of Temperature

$$\operatorname{Hrms}_{\operatorname{ra}} \sqrt{\overline{h'^2}}$$
, RMS of RA enthalpy

$$\operatorname{Hrms}_{ra} \sqrt{\overline{h''^2}}$$
, RMS of FA enthalpy

- D(T) $\rho(\overline{T})$, Density, table-searched based on \overline{T}
- M(T) $\mu(\overline{T})$, Viscousity, table-searched based on \overline{T}
- K(T) $\kappa(\overline{T})$, thermal conductivity, table-searched based on \overline{T}
- $\operatorname{Cp}(T)$ $c_p(\overline{T})$, specific heat capacity, table-searched based on \overline{T}
- $\Pr(T) \ Pr = \mu(\overline{T}) \cdot c_p(\overline{T})/\kappa(\overline{T}), \ \text{Prandtl number}$
- thfx_{ra} $\overline{\rho}\overline{u'h'}$, RA turbulent heat flux in the streamwise direction
- thfy_{ra} $\overline{\rho}\overline{v'h'}$, RA turbulent heat flux in the wall-normal direction
- $thfz_{ra} \overline{\rho}w'h'$, RA turbulent heat flux in the spanwise direction
- thfx_{fa} $\overline{\rho u''h''}$, FA turbulent heat flux in the streamwise direction
- thfy_{fa} $\overline{\rho v''h''}$, FA turbulent heat flux in the wall-normal direction
- thfz_{fa} $\overline{\rho w''h''}$, FA turbulent heat flux in the spanwise direction

 $\begin{array}{l} {\tt qflux_x} \ \ \overline{\kappa \frac{\partial T}{\partial x}} \ \, {\tt conductive\ heat\ flux\ in\ the\ streamwise\ direction} \\ {\tt qflux_y} \ \ \overline{\kappa \frac{\partial T}{\partial y}} \ \, {\tt conductive\ heat\ flux\ in\ the\ wall-normal\ direction} \\ {\tt qflux_z} \ \ \overline{\kappa \frac{\partial T}{\partial z}} \ \, {\tt conductive\ heat\ flux\ in\ the\ spanwise\ direction} \\ {\tt du_{per}} \ \ \overline{\rho' u'} \\ {\tt dv_{per}} \ \ \overline{\rho' v'} \\ {\tt dw_{per}} \ \ \overline{\rho' w'} \\ {\tt dh_{per}} \ \ \overline{\rho' h'} \\ \end{array}$

Simulation - data visualisationn

Contour check

- subroutine PP-TEC360-DATA-CHECK.f90
- stored in folder 5-instant-pltdata
- format tecplot 360 (tecplot, paraview)

Averaged contours check

- subroutine PP-TEC360-DATA-CHECK-xzt.f90
- stored in folder 4-averaged-pltdata

Averaged data visualisation

- subroutine WRT-TEC-AVERAGE-XZperiodic-XX.f90
- stored in folder 4-averaged-pltdata

Example - Channel (periodic streamwise)

The benchmark data for turbulence in a fully developed channel flow is the channel flow at $Re_{\tau}=180$ (named "KMM180"). The reference data of [?] can be downloaded via http://turbulence.ices.utexas.edu/MKM_1999.html

DNS data	Kim et al. (1987)	Current DNS
$Re_{ au}$	180	180
Re_b	3300	3300
Method	Spectral	finite difference
Domain size	$4\pi\delta imes2\delta imes2\pi\delta$	$12.8\delta imes 2\delta imes 3.5\delta$
mesh size	$192\times128\times160$	$512\times192\times200$
Δy_{min}^+	0.05	0.2
Δy_{max}^{+}	4.4	3.5
Δx^+	12	4.5
Δz^+	7	3.15
Δt^+	not given	0.08
Averaging time	$10\Delta t^+$	$10\Delta t^+$

Example - Channel (cont'd)

Example - Channel (cont'd)

Example - Channel (cont'd)

How to upload your version to Github?

- Work on your own branch
- Review your code before merging to the main branch

Website and Forum

- Website: www.ccpnth.ac.uk under development.
- Forum: chapsim.slack.com

Work Plan Discussion

Code Modularisation

```
derxx 00.derxx 11.derxx 12.derxx 21.derxx 22
dervy 00.dervy 11.dervy 12.dervy 21.dervy 22
```

Figure: Example of modules

• 2-D decompsition and MPI

Figure 3, 2D domain decomposition example using a 4×3 MPI processes.

The End