

CALIFICACIÓN:

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorios de docencia

Fundamentos de programación Serie 1

Profesor(a):	Oscar René Valdez Casillas
Asignatura:	Fundamentos de Programación
Grupo: _	21
Integrante(s): _	Santiago Durán Rendón
Semestre:	2025-1
Fecha de entrega: _	17/09/2024
Observaciones:	
_	

Índice

Índice	2
Problema 1	7
Lecturas	8
1era lectura	8
2da lectura.	8
3era lectura	8
Diagrama de flujo.	9
Pseudocódigo	10
Prueba de escritorio	10
Problema 2	10
Lecturas	11
1era lectura	11
2da lectura.	11
3era lectura	11
Diagrama de flujo	12
Pseudocódigo	13
Prueba de escritorio	13
Problema 3	13
Lecturas	13
1era lectura	13
2da lectura	13
3ra lectura	14
Diagrama de flujo	15
Pseudocódigo	16
Prueba de escritorio	16
Problema 4	16

Lecturas	16
1era lectura	16
2da lectura	16
3era lectura	17
Diagrama de flujo	18
Pseudocódigo	19
Prueba de escritorio	19
Problema 5	20
Lecturas	20
1era lectura	20
2da lectura	20
3era lectura	20
Diagrama de flujo	21
Pseudocódigo	22
Prueba de escritorio.	22
Problema 6	22
Lecturas	23
1era lectura	23
2da lectura	23
3era lectura	23
Diagrama de flujo	24
Pseudocódigo	25
Prueba de escritorio.	26
Problema 7	27
Lecturas	27
1era lectura	
2da lectura	27
Sera lectura	27

Diagrama de flujo	28
Pseudocódigo	29
Prueba de escritorio.	29
Problema 8	30
Lecturas	30
1era lectura	30
2da lectura	30
3era lectura	30
Diagrama de flujo	31
Pseudocódigo	32
Prueba de escritorio.	32
Problema 9	32
Lecturas	33
1era lectura	33
2da lectura	33
3era lectura	33
Diagrama de flujo	34
Pseudocódigo	35
Prueba de escritorio.	36
Problema 10	37
Lecturas	37
1era lectura	37
2da lectura	37
3era lectura	37
Diagrama de flujo	38
Pseudocódigo	39
Prueba de escritorio	40
Problema 11	41

Lecturas	41
1era lectura	41
2da lectura	41
3era lectura	41
Diagrama de flujo	42
Pseudocódigo	43
Prueba de escritorio	43
Problema 12	44
Lecturas	44
1era lectura	44
2da lectura	44
3era lectura	44
Diagrama de flujo	45
Pseudocódigo	46
Prueba de escritorio.	46
Problema 13	48
Lecturas	48
1era lectura	48
2da lectura	
3era lectura	49
Diagrama de flujo	49
Pseudocódigo	
Prueba de escritorio.	51
Problema 14	51
Lecturas	52
1era lectura	
2da lectura	
Sera lectura	52

Diagrama de flujo	52
Pseudocódigo	53
Prueba de escritorio.	53
Problema 15	53
Lecturas	54
1era lectura	54
2da lectura	54
3era lectura	54
Diagrama de flujo	54
Pseudocódigo	55
Prueba de escritorio.	55
Problema 16.	55
Lecturas	56
1era lectura	56
2da lectura	56
3era lectura	56
Diagrama de flujo	57
Pseudocódigo	58
Prueba de escritorio.	58
Problema 17	58
Lecturas	58
1era lectura	58
2da lectura	59
3era lectura	59
Diagrama de flujo	59
Pseudocódigo	
Prueba de escritorio	
Problema 18	60

Lecturas	61
1era lectura	61
2da lectura	61
3era lectura	61
Diagrama de flujo	62
Pseudocódigo	62
Prueba de escritorio.	62
Problema 19	63
Lecturas	64
1era lectura	Error! Bookmark not defined.
2da lectura	Error! Bookmark not defined.
3era lectura	Error! Bookmark not defined.
3era lectura Diagrama de flujo	
	64
Diagrama de flujo	64 65
Diagrama de flujo Pseudocódigo	
Diagrama de flujo	
Diagrama de flujo Pseudocódigo Prueba de escritorio Problema 20. Lecturas	
Diagrama de flujo Pseudocódigo Prueba de escritorio Problema 20. Lecturas	
Diagrama de flujo Pseudocódigo Prueba de escritorio Problema 20 Lecturas 1era lectura	
Diagrama de flujo Pseudocódigo Prueba de escritorio Problema 20 Lecturas 1era lectura 2da lectura	

Problema 1.

Construya un algoritmo tal que dadas las coordenadas de los puntos P1, P2 y P3 que corresponden a los vértices de un triángulo, calcule su perímetro. Los puntos pertenecen a R^2.

Lecturas

1era lectura.

Se desea calcular el perímetro de un triángulo en el plano R^2 a partir de coordenadas de sus vértices. La aplicación de la fórmula entre distancia entre dos puntos para obtener las longitudes de los lados del triángulo y sumarlas para calcular el perímetro.

2da lectura.

Coordenadas de los tres puntos P1(x1, y1), P2(x2, y2), P3(x3, y3).

3era lectura.

La salida será el perímetro del triángulo, ósea la suma de los tres lados.

INICIO Algoritmo perímetro triángulo

ESCRIBIR "Introduzca las coordenadas de los puntos P1, P2, P3. De forma (x1,y1)" /* Lectura de datos*/

LEER x1, y2

LEER x2, y2

LEER x3, y3

/* Procesamiento de datos*/

Lado1 = $sqrt((x2 - x1)^2 + (y2 - y1)^2)$

Lado2 = $sqrt((x3 - x2)^2 + (y3 - y2)^2)$

Lado3 = $sqrt(x3 - x1)^2 + (y3 - y1)^2$

Perimetro = Lado1 + Lado2 + Lado3

ESCRIBIR "El perímetro del triángulo es: ", perimetro

FIN

Prueba de escritorio

X1	Y1	X2	Y2	ХЗ	Y3	Lado1	Lado2	Lado3	Perimetro
1	1	2	2	3	3	$\sqrt{(2-1)^2+(2-1)^2}$	$\sqrt{(3-1)^2+(3-1)^2}$	$\sqrt{(3-2)^2+(3-2)^2}$	1.41
						= 1.41	= 2.82	= 1.41	+ 2.82
									+ 1.41
									= 5.64
5	3	4	7	9	10	$\sqrt{(4-5)^2+(7-3)^2}$	$\sqrt{(9-5)^2+(10-3)^2}$	$\sqrt{(9-4)^2+(10-7)^2}$	4.12
						= 4.12	= 8.06	= 5.83	+ 8.06
						- 4.12	- 0.00	- 5.65	+ 5.38
									= 17.56

Problema 2.

Construya un algoritmo tal que, dado el perímetro de la base, la apotema y la altura de un prisma pentagonal; calcule el área de la base, el área lateral, el área total y el volumen.

Lecturas

1era lectura.

Calcular el área de la base, área lateral, área total y volumen.

2da lectura.

Perímetro de base, apotema y la altura del prisma pentagonal.

3era lectura.

El área de la base, área lateral, área total y volumen.

INICIO Algoritmo pentágono área base, área lateral y volumen

ESCRIBIR "Ingrese el perímetro de la base de un pentágono, su apotema y su altura"

LEER Perimetro : Real, apotema : Real, altura : Real

Ab = (Perimetro * apotema) / 2

AI = (Perimetro * altura) * 5

V = (Ab * altura)

ESCRIBIR "El área de la base del prisma pentagonal es : ", Ab, ", El área lateral es: ", Al, " y su volumen

es: ", V

FIN

Prueba de escritorio

Perimetro	apotema	altura	Ab	Al	V
10	5	9	$\frac{10*5}{2} = 25$	(10*9)*5 = 450	25 * 9 = 225
25	30	101	$\frac{25 * 30}{2} = 375$	(25 * 101) * 5 = 12625	375 * 101 = 37875

Problema 3.

Desarrolle un algoritmo que permita calcular la cotangente de un ángulo, considerando que se conoce el valor del seno y coseno de este.

Lecturas

1era lectura

Sacar la cotangente de un ángulo conociendo su seno y coseno.

2da lectura

Angulo, seno y coseno de este.

3ra lectura

Cotangente del ángulo.

INICIO Algoritmo cotangente

ESCRIBIR "Para sacar la cotangente se requiere que ingrese el ángulo, su seno y su coseno previamente calculados"

LEER angulo: Real, seno: real, coseno: Real

tan = seno / coseno

ESCRIBIR "La cotangente del ángulo ", angulo, " es: ", cotangente

FIN

Prueba de escritorio

angulo	seno	coseno	tan
11°	0.190809	0.981627	0.19438
55°	0.819152	0.573576	1.42815

Problema 4.

Dada la siguiente tabla:

- a. SUELDO < \$10,000 -> AUMENTO DE 15%
- b. \$10,000 ≤ SUELDO ≤ \$15,000 -> AUMENTO DEL 11%
- c. SUELDO > \$15,000 -> AUMENTO DEL 8%

Desarrolle un algoritmo que imprima el nuevo sueldo del trabajador.

Lecturas

1era lectura

Se desea saber en que porcentaje el sueldo del trabajador aumenta, si este es menor a \$10,000 aumenta 15%, si es mayor o igual a \$10,000 y es menor o igual a \$15,000 aumenta 11%, si es mayor a \$15,000 aumenta 8%.

2da lectura

La entrada es el sueldo del trabajador.

3era lectura

La salida es el nuevo sueldo del trabajador.


```
INICIO Algoritmo sueldo nuevo
```

```
ESCRIBIR "Ingrese el sueldo actual del trabajador"
      LEER Sueldo : Real
      SI Sueldo < 10,000
            Sueldo = (Sueldo * 0.15) + Sueldo
      SI NO
            SI Sueldo >= 10,000 OR Sueldo <= 15,000
                   Sueldo = (Sueldo * 0.11) + Sueldo
            SI NO
                   MIENTRAS Sueldo > 15,000 HACER
                         Sueldo = (Sueldo * 0.08) + Sueldo
                   SI NO
                         ESCRIBIR "Error"
                   FIN SI
            FIN SI
      FIN SI
      ESCRIBIR "El nuevo sueldo del trabajador es: $", Sueldo
FIN
```

Prueba de escritorio

Sueldo	Sueldo < 10,000	Sueldo > 10,000	Sueldo > 15,000	Sueldo
		OR Sueldo <=		
		15,000		
28,310	NO	NO	SI	(28310 * 0.08)
				+ 28310 = 30574.8
6,930	SI	-	-	(6930 * 0.15)
				+ 6930 = 7969.5

Problema 5.

Dados tres números reales A, B y C, identifique cuál es el mayor. Considere que los números deben ser diferentes. Si se ingresan tres números iguales, se le debe indicar al usuario que la entrada del algoritmo no es correcta y se debe de solicitar que ingrese otros valores.

Lecturas

1era lectura

Identificar el número mayor entre tres valores dados, si los tres números son iguales notificar que los valores no son válidos.

2da lectura

Tres números reales A, B y C.

3era lectura

El mayor número de entre los valores ingresados o una advertencia si los números son iguales.


```
INICIO Algoritmo comparar tres números
      LEER A: REAL, B: REAL, C: REAL
      MIENTRAS A == B OR A == C OR B == C HACER
            ESCRIBIR "Los números son iguales, ingresa de nuevo los números"
            LEER A: REAL, B: REAL, C: REAL
      FIIN MIENTRAS
      SIA > BANDA > C
            ESCRIBIR "El número mayor es: ", A
      SI NO
            SIB > A AND B > C
                  ESCRIBIR "El número mayor es: ", B
            SI NO
                  SIC > A AND C > B
                        ESCRIBIR "El número mayor es: ", B
                  FIN SI
            FIN SI
      FINSI
```

Prueba de escritorio.

А	В	С	Salida
1	1	1	Los números son iguales, ingresa de nuevo los números
10	13	67	El número mayor es: 67
89	65	35	El número mayor es: 89

Problema 6.

En un restaurante se sirven 7 platillos diferentes. Cada platillo se reconoce por una clave, que es un valor numérico comprendido entre 1 y 7. Diariamente se atienden a numerosos clientes y es necesario generar los tickets de venta con el siguiente formato:

Número de Ticket: #						
Clave	Cantidad	Precio unitario	Precio Total			
1	2	45	90			
2	1	15	15			
Total a pagar: \$105						

Escriba el algoritmo que haga lo siguiente:

- a) Lea los precios de los 7 platillos.
- b) Lea los datos de cada cliente y entregue el ticket como el presentado. Los tickets se numeran desde el 1 hasta la N, iniciando desde el comienzo del día.
- c) Calcule lo que ha vendido el restaurante al final del día.
- d) Calcule cuantos platos se han servido de cada platillo.

Lecturas

1era lectura

Se debe generar un algoritmo que maneje la emisión de tickets de un restaurante que sirve 7 platillos diferentes. El algoritmo lee los precios de los platillos, genera tickets para cada cliente, calcula la venta total del día y cuántos platos se vendieron de cada tipo.

2da lectura

Precios de los 7 platillos y los datos de cada cliente (clave del platillo y cantidad pedida).

3era lectura

Ticket con el total a pagar, Venta total del restaurante, número de platos servidos de cada platillo.

Fin Mientras

```
Inicio Algoritmo restaurante
  // Inicializar variables
  precios[7] // Arreglo para los precios de los 7 platillos
  total ventas = 0 // Acumulador para las ventas totales del día
  platos_servidos[7] = {0, 0, 0, 0, 0, 0, 0} // Contador de platos servidos por cada platillo
  número_ticket = 1 // Contador de tickets
  // Leer los precios de los 7 platillos
  Para i desde 0 hasta 6 Hacer
     Escribir "Ingrese el precio del platillo ", i+1
     Leer precios[i]
  Fin Para
  // Procesar las ventas de los clientes
  Mientras (true) Hacer
     total cliente = 0 // Inicializar total por cliente
     Escribir "Ingrese el número de platillos que comprará el cliente (0 para finalizar)"
     Leer num_platillos
     Si (num_platillos == 0) Entonces
        // Si se ingresa 0, finalizar el día
        Romper
     // Generar el ticket
     Escribir "Número de Ticket: ", número_ticket
     Para i desde 1 hasta num platillos Hacer
        Escribir "Ingrese la clave del platillo (1-7) y la cantidad"
        Leer clave, cantidad
        // Calcular el precio total por platillo
        precio_unitario = precios[clave-1]
        precio_total = precio_unitario * cantidad
        total_cliente = total_cliente + precio_total
        platos servidos[clave-1] = platos servidos[clave-1] + cantidad
        // Mostrar el detalle del platillo en el ticket
        Escribir "Clave: ", clave, " Cantidad: ", cantidad, " Precio Unitario: ", precio_unitario, " Precio Total: ",
precio_total
     Fin Para
     // Mostrar el total a pagar por el cliente
     Escribir "Total a pagar: $", total_cliente
     // Acumular la venta total del día
     total_ventas = total_ventas + total_cliente
     // Incrementar el número de ticket
     número_ticket = número_ticket + 1
```

```
// Mostrar las ventas totales al final del día
Escribir "Total de ventas del día: $", total_ventas

// Mostrar cuántos platos se han servido de cada platillo
Para i desde 0 hasta 6 Hacer
Escribir "Platillo ", i+1, ": ", platos_servidos[i], " platos servidos."
Fin Para
Fin
```

Prueba de escritorio.

- 1. Entrada de precios:
 - Platillo 1: \$45
 - Platillo 2: \$15
 - Platillo 3: \$30
 - Platillo 4: \$50
 - Platillo 5: \$20
 - Platillo 6: \$25
 - Platillo 7: \$40
- 2. Cliente 1:
 - Compra 2 platillos.
 - Clave: 1, Cantidad: 2 → Total: \$90
 - Clave: 2, Cantidad: 1 → Total: \$15
 - Total cliente: \$105
- 3. Cliente 2:
 - Compra 1 platillo.
 - Clave: 3, Cantidad: 3 → Total: \$90
 - Total cliente: \$90
- 4. Final del día:
 - Ventas totales: \$105 + \$90 = \$195
 - Platos servidos:
 - Platillo 1: 2 platos
 - o Platillo 2: 1 plato
 - Platillo 3: 3 platos
 - o Platillos 4, 5, 6, 7: 0 platos

Problema 7.

Escriba un algoritmo que imprima todos los pares de m y n que cumplan con la siguiente condición:

a) $m^4 + 7n^2 < 540$; siendo m y n positivos

Lecturas

1era lectura

Encontrar todos los pares de números enteros positivos m y n de la condición $m^4 + 7n^2 < 540$ 2da lectura

Ninguna entrada ya que el algoritmo genera valores para m y n.

3era lectura

Los pares de los valores de m y n.


```
Inicio Algoritmo pares m y n

// Declarar variables

Para m desde 1 hasta un valor máximo (determinado por el problema) Hacer

Para n desde 1 hasta un valor máximo (determinado por el problema) Hacer

// Calcular la expresión

resultado = m^4 + 7 * n^2

// Verificar si el par (m, n) cumple con la condición

Si (resultado < 540) Entonces

Escribir "Par (m, n): ", m, ", ", n

Fin Si

Fin Para

Fin Para

Fin Para
```

Prueba de escritorio.

- 1. Primer par: m = 1, n = 1
 - $m4+7n2=14+7(12)=1+7=8m^4+7n^2=1^4+7(1^2)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7n^2=14+7(12)=1+7=8m^4+7(12)=14$
 - Cumple la condición 8<5408 < 5408<540.
 - Salida esperada: (1, 1)
- 2. Segundo par: m = 2, n = 1
- $m4+7n2=24+7(12)=16+7=23m^4+7n^2=2^4+7(1^2)=16+7=23m^4+7n^2=24+7(12)=16+7=23$
- Cumple la condición 23<54023 < 54023<540.
- Salida esperada: (2, 1)
- 3. Tercer par: m = 3, n = 2
- $m4+7n2=34+7(22)=81+7(4)=81+28=109m^4 + 7n^2 = 3^4 + 7(2^2) = 81 + 7(4) = 81 + 28 = 109m4+7n2=34+7(22)=81+7(4)=81+28=109$
- Cumple la condición 109<540109 < 540109<540.
- Salida esperada: (3, 2)
- 5. Cuarto par: m = 5, n = 4
- $m4+7n2=54+7(42)=625+7(16)=625+112=737m^4 + 7n^2 = 5^4 + 7(4^2) = 625 + 7(16) = 625 + 112 = 737m4+7n2=54+7(42)=625+7(16)=625+112=737$
- No cumple la condición 737>540737 > 540737>540.
- No hay salida esperada.

Problema 8.

El máximo común divisor (MCD) entre dos números es el natural más grande que divide a ambos. Construya el algoritmo que calcule el MCD de dos números naturales A y B.

Lecturas

1era lectura

Encontrar el Máximo Común Divisor de dos números naturales A y B.

2da lectura

Dos números naturales A y B

3era lectura

El Máximo Común Divisor de los números A y B.


```
Inicio

// Leer los valores de A y B
Escribir "Ingrese el valor de A"
Leer A
Escribir "Ingrese el valor de B"
Leer B

// Aplicar el algoritmo de Euclides para calcular el MCD
Mientras (B!= 0) Hacer
residuo = A % B // Calcular el residuo de la división
A = B // Asignar el valor de B a A
B = residuo // Asignar el valor del residuo a B
Fin Mientras
// El MCD es el valor de A cuando B llega a 0
Escribir "El MCD es: ", A
```

Fin

Prueba de escritorio.

- 1. Caso 1: A = 56, B = 42
- Paso 1: A=56,B=42A = 56, B = 42A=56,B=42, residuo =56mod 42=14= 56 \mod 42 = 14=56mod42=14
- Paso 2: A=42,B=14A = 42, B = 14A=42,B=14, residuo =42mod 14=0= 42 \mod 14 = 0=42mod14=0
- Resultado: MCD = 14
- 2. Caso 2: A = 15, B = 10
- Paso 1: A=15,B=10A = 15, B = 10A=15,B=10, residuo =15mod 10=5= 15 \mod 10 = 5=15mod10=5
- Paso 2: A=10,B=5A = 10, B = 5A=10,B=5, residuo =10mod 5=0=10 \mod 5 = 0=10mod5=0
- Resultado: MCD = 5

Problema 9.

La función sen(x) se puede aproximar por la siguiente serie:

b)
$$sen(x) = x - \frac{x^3}{5!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Mientras más elementos se agreguen a la sumatoria, menor será la diferencia entre el valor de sen(x) y el calculado con la sumatoria.

Escriba un algoritmo tal que dado un valor de X cualquiera calcule el sen(x) utilizando la serie anterior, de tal modo que la diferencia entre la serie y un nuevo termino agregado sea menor o igual 0.01. Imprima el número de términos requerido para obtener esta precisión.

Lecturas

1era lectura

Aproximar el valor de la función seno sen(x) utilizando su serie de Taylor. A medida que se agregan más términos a la serie, la aproximación mejora.

2da lectura

Ingresar el valor de x, ángulo en radianes para el que se calculará el seno usando la serie.

3era lectura

El número de términos requeridos para lograr una precisión en la serie tal que el término adicional tenga una magnitud menor o igual a 0.01.


```
INICIO Serie de Taylor
  x, suma, n: ENTERO
  presicion, termino: FLOTANTE
  precision = 0.01
  suma = 0
  n = 1
  termino = x
  IMPRIMIR "Ingrese el valor de x"
  LEER x
  MIENTRAS |termino| > precisión ENTONCES
    suma = suma + término
    n = n + 1
    termino = (-1)^{(n-1)} * x^{(2n-1)} / (2n-1)!
  FIN MIENTRAS
  IMPRIMIR suma
  IMPRIMIR "Número de términos: n"
FIN Serie de Taylor
```

Instrucción	valorInicial	valorFinal	salida
X != ENTERO			X debe ser un número entero
X = 0	0	0	Numero de términos: 0
X = 1	1		
n += 1	1	2	
termino	х	0.1667	
suma = suma + termino	0	1	
termino	0.1667	0.0083	
suma = suma + termino	1	0.8333	suma
n += 1	2	3	Numero de terminos: 3

Problema 10.

Escriba un algoritmo que obtenga e imprima todos los números considerados "Primos Gemelos" comprendidos entre A y B (enteros positivos). Los primos gemelos" son parejas de números primos con una diferencia entre sí de exactamente dos unidades. Por ejemplo, 3 y 5 son primos gemelos.

Lecturas

1era lectura

Identificar todas las parejas de números primos que sean "Primos Gemelos" entre dos valores A y B, aquellos con una diferencia de dos unidades entre sí

2da lectura

El usuario debe proporcionar los valores de los números A y B que definen el rango en el que se buscarán los primos gemelos.

A: ENTERO B : ENTERO

3era lectura

Las parejas de números primos que sean primos gemelos dentro del rango A, B. gemelos: []

FIN

```
INICIO Primos gemelos
     a, b, n: ENTERO
     gemelos = []
     LEER a
     LEER b
     SI a > b ENTONCES
        IMPRIMIR "Error: A debe ser menor o igual a B"
     FIN SI
     FUNCION esPrimo(n: ENTERO) RETORNAR: BOOLEANO
        SI n < 2 ENTONCES
          RETORNAR Falso
        FIN SI
        PARA i = 2 HASTA √n PARA i + 1 HACER
          SI n % i == 0 ENTONCES
            RETORNAR Falso
          FIN SI
        FIN PARA
        RETORNAR Verdadero
     FIN FUNCION
     PARA p HASTA b - 2 PARA p = a HACER
        SI esPrimo(p) Y esPrimo(p + 2) ENTONCES
          AGREGAR (p, p + 2) A gemelos
        FIN SI
     FIN PARA
     SI longitud(gemelos) == 0 ENTONCES
        IMPRIMIR "No hay primos gemelos en el rango."
     FIN SI
     DE LO CONTRARIO
        IMPRIMIR "Primos gemelos encontrados:"
        PARA CADA i EN gemelos HACER
          IMPRIMIR i
        FIN PARA
     FIN DE LO CONTRARIO
```

39

Instrucción	valorInicial	valorFinal	salida
			a debe ser
a != ENTERO			un número
a := ENTERO			entero
			positivo
b != ENTERO			b debe ser
			un número
		Г	
			entero
			positivo
			a debe ser
a> b			menoro
			igual a b
a=10	10		
b = 1	1		
gemelos	[]		
р	a	3	
р	3	5	
р	5	7	
gemelos	[]	[3,5]	
р	7	9	
			Primos
gemelos	[3 5]		gemelos
801110100	[3,5]		encontrados
	I .	I .	I .

: gemelos

Problema 11.

Diseñe un algoritmo que, dado un número cualquiera, determine e imprima que parte de la ley de la tricotomía le aplica.

Lecturas

1era lectura

Determinar qué parte de la ley de la tricotomía aplica para un número dado. La ley de la tricotomía establece que para cualquier número real n, siempre se cumple una de estas tres posibilidades: n es mayor que 0, n es igual a 0, o n es menor que 0.

2da lectura

El número real que se desea evaluar. No puede ingresar caracteres no numéricos, como texto o símbolos. n:FLOTANTE

3era lectura

La salida sería un mensaje impreso basado en la comparación. Se quiere imprimir una de las siguientes salidas:

- El número es mayor que 0.
- El número es igual a 0.
- El número es menor que 0.

INICIO Ley Tricotomía numero: FLOTANTE LEER numero

> SI numero > 0 ENTONCES IMPRIMIR "El número es mayor que 0" FIN SI

SI numero == 0 ENTONCES IMPRIMIR "El número es igual a 0" FIN SI

SI numero < 0 ENTONCES IMPRIMIR "El número es menor que 0" FIN SI

FIN Ley Tricotomía

Prueba de escritorio.

Instrucción	salida
numero !=	El número
FLOTANTE	debe ser un
TEOTAINE	número real
	El número
numero > 0	es mayor
	que 0
	El número
numero < 0	es menor
	que 0

	El número
Numero == 0	es igual que
	0

Problema 12.

Describa un algoritmo tal que, dado el radio, la generatriz y la altura de un cono, calcule e imprima el área de la base, el área lateral, el área total y su volumen. Tome en cuenta los valores que no pueden ser ingresados y advierta al usuario de que se ha producido un error al introducirlo. El algoritmo no debe seguir hasta que el

usuario introduzca valores válidos para los parámetros solicitados.

Lecturas

1era lectura

Calcular el área de la base, el área lateral, el área total y el volumen de un cono a partir de su radio, generatriz y altura. Usando las fórmulas geométricas conocidas.

• Área de la base: $A_{base} = \pi r^2$

• Área lateral: $A_{lateral} = \pi rg$ (g es la generatriz)

• Área total: $A_{base} + A_{lateral}$

• $Volumen: V = \frac{1}{3}\pi r^2 h$ (h es la altura)

2da lectura

El radio r, la generatriz g, y la altura h. El usuario no debe ingresar números negativos o no numéricos, ya que el radio, la generatriz y la altura deben ser mayores que 0.

radio,generatriz,altura: FLOTANTE

3era lectura

 $A_{base}, A_{lateral}, A_{total}, Volumen: FLOTANTE$


```
INICIO Valores de un cono
      radio, generatriz, altura: FLOTANTE
      ESCRIBIR "Ingrese el valor del radio"
      LEER radio
      SI radio <= 0 ENTONCES
         ESCRIBIR "Error: el radio debe ser mayor que 0"
      FIN SI
      ESCRIBIR "Ingrese el valor de la generatriz"
      LEER generatriz
      SI radio <= 0 ENTONCES
         ESCRIBIR "Error: la generatriz debe ser mayor que 0"
      FIN SI
      ESCRIBIR "Ingrese el valor de la altura"
      LEER altura
      SI radio <= 0 ENTONCES
         ESCRIBIR "Error: la altura debe ser mayor que 0"
      FIN SI
      SI radio Y generatriz Y altura ENTONCES
         // Cálculos
         aBase = pi * radio^2
         aLateral = pi * radio * generatriz
         aTotal = aBase + aLateral
         volumen = (1/3) * pi * radio^2 * altura
        // Imprimir resultados
         ESCRIBIR "Área de la base: ", aBase
         ESCRIBIR "Área lateral: ", aLateral
        ESCRIBIR "Área total: ", aTotal
         ESCRIBIR "Volumen: ", volumen
      FIN SI
```

FIN Valores de un cono

Prueba de escritorio.

Instrucción	valorInicial	valorFinal	salida
radio != FLOTANTE < 0			El radio debe ser un número mayor a 0
generatriz != FLOTANTE < 0			La generatriz debe ser un
			número mayor a 0
Altura != FLOTANTE < 0			La altura debe ser un número mayor a 0
radio = 10	10		El número es igual que 0
generatriz = 12	12		
altura = 30	30		
aBase	Π×radio^2	314.16	"Área de la base: ", aBase
aLateral	π×radio×generatriz	376.99	"Área lateral: ", aLateral
aTotal	aBase + aLateral	691.15	"Área total: ", aTotal
volumen	1/3 ×π×r2×altura	3141.60	"Volumen: ", volumen

Problema 13.

Escriba un algoritmo que permita realizar la conversión entre medidas de longitud, volumen y peso del sistema métrico decimal y el sistema de medidas inglés. Se le debe solicitar al usuario que seleccione la magnitud a convertir y posteriormente darle las opciones a usar.

Considere:

Longitud	Peso
1 pulgada = 25.40 mm	1 onza = 28.35 gr
1 yarda = 0.9144 m	1 libra = 0.45359 kg
1 milla = 1.6093 km	1 ton inglesa = 1.016 ton
Volumen	-
1 1 $pie^3 = 0.02832 m^3$	-
$1 \ yarda^3 = 0.7646 \ m^3$	-
1 galón = 4.54609 lt	-

Lecturas

1era lectura

convertir medidas entre el sistema métrico decimal y el sistema de medidas inglés. Considerando la longitud, volumen y peso. El usuario debe poder seleccionar la magnitud y la conversión específica que desea realizar.

2da lectura

- Longitud: Pulgada, Yarda, Milla, m, km.
- Volumen: Pie³, Yarda³, Galón, m³, Litro.
- Peso: Onza, Libra, Ton, gramo, kg, ton.

Proporcionar los factores de conversión para cada unidad.

Entrada: Magnitud, Conversión, Valor.

Inicio: Conversión de Unidades

Repetir

Mostrar "Seleccione la magnitud a convertir"

Mostrar "1. Longitud"

Mostrar "2. Volumen"

Mostrar "3. Peso"

Según magnitud:

Caso 1:

Mostrar "Seleccione la conversión de longitud"

Mostrar "1. Pulgada a mm"

Mostrar "2. mm a pulgada"

Mostrar "3. Yarda a m"

Mostrar "4. m a Yarda"

Mostrar "5. Km a Milla"

Mostrar "6. Milla a Km"

Leer opción

Caso 2:

Mostrar "Seleccione la conversión de volumen"

Mostrar "1. Pie3 a m3"

Mostrar "2. m³ a Pie³"

Mostrar "3. Yarda3 a m3"

Mostrar "4. m³ a Yarda³"

Mostrar "5. Galón a Litros"

Mostrar "6. Litros a Galón"

Leer opción

Caso 3:

Mostrar "Seleccione la conversión de peso"

Mostrar "1. Onza a gr"

Mostrar "2. gr a Onza"

Mostrar "3. Libra a kg"

Mostrar "4. kg a Libra"

Mostrar "5. Ton Ing. a Ton"

Mostrar "6. Ton a Ton Ing."

Leer opción

Mostrar "Ingrese el valor a convertir"

Leer valor

Según magnitud y opción

// Valores de Conversión

// Ejemplo:

Caso magnitud = 1 y opción = 1: resultado = valor * 25.40 Caso magnitud = 2 y opción = 1: resultado = valor * 0.02832 Caso magnitud = 3 y opción = 1: resultado = valor * 28.35

// Se repite el ciclo

Fin según

Mostrar "El resultado de la conversión es", resultado Mostrar "¿Desea realizar otra conversión? (S/N)" Leer respuesta

Hasta que respuesta = "N" o respuesta = "n"

Fin

Prueba de escritorio.

Paso	Acción	Entrada/Calculo	Salida
1	Mostrar menú de	-	1. Longitud
	magnitudes		2. Volumen
			3. Peso
2	Leer magnitud	1	-
3	Mostrar opciones de longitud	-	Pulgada a mm
Δ	Leer opción	1	_
		<u>'</u>	
5	Leer valor a convertir	5	-
6	Realizar conversión	5.25	-
7	Mostrar resultado	-	127 mm
8	Preguntar si desea	N	-
	continuar		
9	FIN	-	-

Problema 14.

Haga un algoritmo para obtener la tabla de multiplicar de un número entero K, comenzando desde 1.

Lecturas

1era lectura

Generar una tabla de multiplicar de un número dando K, donde el primer factor siempre es K y el segundo factor comienza desde 1 y va aumentado hasta un valor máximo que puede variar. El resultado de la secuencia de productos de K por esos números sucesivos.

2da lectura

K: ENTERO

Multiplicar K por cada valor de un contador que va de 1 al límite.

3era lectura

La tabla de multiplicar K, desde K * 1 hasta K * n


```
INICIO Algoritmo tabla multiplicar
ESCRIBIR "Ingrese un número entero K"
LEER K: ENTERO
PARA i desde 1 HASTA 10 HACER
resultado = k * 1
ESCRIBIR K, " x ", 1, " = ", resultado
FIN PARA
```

Prueba de escritorio.

i	Calculo	Salida
1	7*1	7
2	7*2	14
3	7*3	21
4	7*4	28
5	7*5	35
6	7*6	42
7	7*7	49
8	7*8	56
9	7*9	63
10	7*10	70

Problema 15.

Construya un algoritmo que imprima todos los números de la secuencia de Fibonacci, mientras que el número no exceda de 50 000. La impresión debe ser de la siguiente forma:

- 1 0
- 2 1
- 3 1
- 4 2
- 5 3
- 6 5
- 7 8
- 8 13 ...

Lecturas

1era lectura

La secuencia se imprime hasta llegar a un número mayor o igual a 5000.

2da lectura

Secuencia de Fibonacci

$$F(n) = F(n-1) + F(n-2) con F(1) = 0 y F(2) = 1$$

3era lectura

La secuencia de Fibonacci impresa en formato posición-número


```
INICIO Secuencia de Fibonacci
      a = 0
      b = 1
      Posición = 1
      IMPRIMIR Posición, "-", a
      Posición = Posición + 1
      IMPRIMIR posición, "-", b
      Posición = Posición + 1
      MIENTRAS b <= 5000 HACER
            temp = a + b
            a = b
            b = temp
            IMPRIMIR Posición, "-", b
            Posición = Posición + 1
      FIN MIENTRAS
FIN
```

Prueba de escritorio.

Posición	а	b	temp	Salida
1	0	1		1-0
2	0	1		2-1
3	1	1	1	3-1
4	1	2	2	4-2
5	2	3	3	5-3
6	3	5	5	6-5
7	5	8	8	7-8
8	8	13	13	8-13
9	13	21	21	9-21
10	21	34	34	10-34
11	34	55	55	11-65
12	55	84	84	12-84
		•••		
24	28657			
25	X	X	Х	X

Problema 16.

Dado N valores de Y, hacer un algoritmo para calcular el resultado de la siguiente función:

 $X = \begin{cases} 3* Y + 36 & \text{si } 0 < Y <= 11 \\ Y^4 - 10 & \text{si } 11 < Y <= 33 \\ Y^{15} + Y^{10} - 1 & \text{si } 33 < Y <= 64 \\ 0 & \text{cualquier otro caso} \end{cases}$

Se debe imprimir lo siguiente:

$$Y1 = X1$$

$$Y2 = X2$$

. .

. .

$$YN = XN$$

Lecturas

1era lectura

Calcular el valor de una función x para un conjunto de valores Y, donde un conjunto de condiciones determina como se calcula x en función de Y.

2da lectura

Un número REAL

3era lectura

Un número ENTERO


```
INICIO Algoritmo valores de Y
      PARA I DESDE 1 HASTA N HACER
            LEER Y
             SI 0 < Y <= 11
                   x = 3 * Y + 36
             SI NO
                   SI 11 < Y <= 33
                         x = Y ^4 - 10
                   SI NO
                         SI 33 < Y <= 64
                                x = Y ^15 + Y ^10 - 1
                         SI NO
                                X = 0
                         FIN SI
                   FIN SI
            FIN SI
            ESCRIBIR "Y ", i, " = ", x
      FIN PARA
FIN
```

Prueba de escritorio.

i	Y	Condición cumplida	Cálculo de x	Salida
1	5	0 < Y <= 11	X = 3 * 5 + 36 = 51	Y = 51
2	20	11 < Y <= 33	$x = 20^4 - 10 = 15$	Y = 159990
			999000	
3	40	33 < Y <= 64	$x = 40^15 + 40^10 -$	Y = 1099511627
			1 =	
4	70	Y > 64	x = 0	Y = 0
5	0	Y <= 0	Y = 0	Y = 0

Problema 17.

En una clase de una universidad se tienen 35 alumnos. Hacer el algoritmo que calcule e imprima la matrícula y el promedio de calificaciones de cada alumno. Cabe aclarar que cada alumno tiene 5 calificaciones. Sugerencia: Usar tipos de datos compuestos.

Lecturas

1era lectura

Sacar el promedio de 5 calificaciones para 35 matriculas de diferentes alumnos. Ir acumulando la suma de cada una de las 5 calificaciones y hacer un promedio.

2da lectura

El valor de cada calificación y su número de matrícula.

3era lectura

Float : calificaciones

Float: promedio


```
INICIO Algoritmo promedios
      i = 0
      REPETIR HASTA i < 35
             ESCRIBIR "Ingrese la matricula del alumno", i + 1, ":"
             LEER matricula
             suma = 0
             J = 0
             REPETIR HASTA J < 5
                   ESCRIBIR "Ingrese la calificación", J + 1, " Para el alumno ", matricula, ":"
                   LEER calificaciones
                   suma = suma + calificaciones
                   J = J + 1
             FIN REPETIR
             Promedio = suma / 5
             ESCRIBIR "Matricula: ", matricula
             ESCRIBIR "Promedio de calificaciones: ", promedio
             i = i + 1
      FIN REPETIR
FIN
```

Prueba de escritorio.

	Alumno 1 A01
LEER matricula	A01
Inicializar suma	Suma = 0
LEER calificación 1	Calificaciones [0]= 8
Acumular suma	Suma = 8
LEER calificación 2	Calificaciones [1] = 7
Acumular suma	Suma = 15
LEER calificación 3	Calificaciones [2] = 9
Acumular suma	Suma = 24
LEER calificación 4	Calificaciones [3] = 6
Acumular suma	Suma = 30
LEER calificación 5	Calificaciones [4] = 8
Acumular suma	Suma = 38
Calcular promedio	Promedio = 38 / 5 = 7.6

Problema 18.

Con el mismo planteamiento inicial del inciso 17, realice un algoritmo que solo imprima la matrícula y promedio del mejor y peor alumno.

Lecturas

1era lectura

Con los datos del algoritmo pasado solo dar el mejor y peor promedio.

2da lectura

Las calificaciones.

3era lectura

Las matriculas del mejor alumno y peor alumno.

Pseudocódigo

```
Estructura Alumno:
    entero matricula
    real calificaciones[5]
    real promedio
Algoritmo IdentificarMejorPeorAlumno:
    Alumno alumnos[35]
    entero i, j
    real suma, mejorPromedio = 0, peorPromedio = 10
    entero mejorAlumno, peorAlumno
    Para i = 0 hasta 34 hacer
         Escribir "Ingrese la matrícula del alumno ", i+1, ": "
        Leer alumnos[i].matricula
         suma = 0
        Para j = 0 hasta 4 hacer
             Escribir "Ingrese la calificación ", j+1, " del alumno ", i+1, ": "
             Leer alumnos[i].calificaciones[j]
             suma = suma + alumnos[i].calificaciones[j]
         FinPara
        alumnos[i].promedio = suma / 5
        Si alumnos[i].promedio > mejorPromedio entonces
             mejorPromedio = alumnos[i].promedio
             mejorAlumno = i
        FinSi
        Si alumnos[i].promedio < peorPromedio entonces
             peorPromedio = alumnos[i].promedio
             peorAlumno = i
         FinSi
    FinPara
   Escribir "Mejor alumno - Matrícula: ", alumnos[mejorAlumno].matricula, " Promedio: ", alumnos[mejorAlumno].promedio
   Escribir "Peor alumno - Matrícula: ", alumnos[peorAlumno].matricula, " Promedio: ", alumnos[peorAlumno].promedio
FinAlgoritmo
```

Prueba de escritorio.

Problema 19.

Dado tres valores enteros positivos que representan las longitudes de los lados del un probable triángulo, construya el algoritmo que determine efectivamente si los datos corresponden a un triángulo. En caso de que sí corresponda, escriba si el triángulo es equilátero, isósceles o escaleno. Calcule además su área.

Considere que es triángulo, si se cumple que la suma de los dos lados menores es mayor que la del lado mayor. El área se calculará con la siguiente expresión: AREA = $(S(S-A)(S-B)(S-C))^{\frac{1}{2}}$; donde S representa la suma de los lados A,B y C. Considere también los valores que no se pueden ingresar al algoritmo y envíe una advertencia al usuario, reiniciando la lectura de los valores cada vez que uno de los tres números no esté dentro de los valores admitidos.

Lecturas

```
1et Lectura - (comprender y definir variables) ¿ Qué se desea solucionar? ¿ De qué trata el problema? ¿ Conozco el tema? ¿ Existe algún proceso matemático que lo resoel va?

* Se busco implementar un algoritmo que defina el área y tipo de triángulo al dar ties valores positivos, s: ono de estos valores no es positivo se reinicará la lectura de datos. Al sader la foinula de su área y somiperimetro podemos bumbién raber que tigo de triangulo es.

Area - J [S(S-A)(S-B)(S-C)] = Area

Semilerimetro - A+B+C = S

2nda Lectura- (Identificar variables de entrada) ¿ Qué tipo de datos necesitor dor el usuario? ¿ A que tigo de dato perience los datos del usuario? ¿ Couales tipos de dato el usuario? couales tipos de dato el usuario no puede ingresar?

* El usuario debe ingresar caracteres no mumericas, hi valores negativos incluyendo el cero.
```



```
Inicio
    Definir variables enteras: A,B,C.
     Definir variable tipo float: Area.
     Definit variable tipo float: S
   - Hepetir
          -Imprimir Ingrese la longitud del lado 1:
          -Si A <= 0 Entonces
               Imprimir "Valor invalido, Ingrese un entero positivo."
          Continuar con la siguiente Iteración
          -Fin Si and la state
          :-- Imprimir Ingresar la longitud del lado Bi
          Leer B
          1-- Si B <= 0 Entonces
        Imprimir "Valor invalido. Ingrese un entere positivo."
               continual con la siguiente itélación
          -- Finsí
         - Imprimir "Ingreve la longitud del lado C:
         1 Leer C
         1-- Si C = D Entonces
               Imprimir "Valor invalido. Ingrese un entero positivo."
                Continual con la siguiente iteración
          - finsi
            SI (A+B>C) y (A+C>B) y (B+C>A) Entonces
            -51 A== B y B == C Entonces
                Implimit "El briongulo es equilatero"
            Sino Si A== 8 o A== C O B== C Entonces
                 Impermit "El triangulo es isósceles"
                  Imprimir "El triangulo es escaleno".
            - Fin Si
            S= (A+B+C)/2
            Area = sqrt (S*(S-A)* (S-B)* (S-C))
            Imprimir "El area del triangulo es", A rea
      - Romper bucle
            Imprimit "Bepita lectura de datos".
        Finsi
    Hasta que se rompa bucle
```

Prueba de escritorio.

A=5,B=5 Ca Ea	, C=5 so 1: Triángolo juilátero	В	∃ B) = 0	B= 6 A=0 Caso 6: valores no validos
Leer y Vulidar	Si	S:	Si	Sí	No	No
A1B1C70 Verificar triángulo	Si	Si	S:	No	Lado A viegativa	
	Equiláte10	Isosceles	Escaleno	N/A	N/A	N/A
Calcular	10.83	12.0	16.25	N/A	NIA	NIA
Imprimit resultados	"Triangulo equilibro" "El área del tricingulo el	"Trianguo isosceles" "El area del triangols es 12.0?	"Triargulo Ocato "El area del triargulo es 16,25 ?	"Repita lectiva de clatas"		"Ingrese enteres Positivos
Calcular S	10.83*	9	li .	N/A	N/A	N/A

Problema 20.

Construya un algoritmo que pueda determinar, dados dos números enteros, si un número es divisor de otro.

Lecturas

1era lectura

A es divisor de B si B dividido por A da como resultado un número entero sin residuo.

2da lectura

Dos números ENTEROS, A y B

3era lectura

Indicar si A es divisor en B o no


```
Algoritmo DeterminarDivisor
Entero A, B

Escribir "Ingrese el primer número (posible divisor):"
Leer A
Escribir "Ingrese el segundo número:"
Leer B

Si A = 0 Entonces
Escribir "Error: No se puede dividir por cero"
Sino
Si B MOD A = 0 Entonces
Escribir A, " es divisor de ", B
Sino
Escribir A, " no es divisor de ", B
FinSi
FinSi
FinSi
FinAlgoritmo
```

Prueba de escritorio.

1. Caso 1: A es divisor de B. A=3, B=12

Paso	Acción	Resultado
1	LEER A	A = 3
2	LEER B	B = 12
3	A = 0	No
4	B mod $A = 0$	12 mod 3 = 0
5	Salida	"3 es divisor de 12"

2. Caso 2: A no es divisor de B. A=5, B=12

Paso	Acción	Resultado
1	LEER A	A = 5
2	LEER B	B = 12
3	A = 0	No
4	B mod $A = 0$	$12 \mod 5 = 0$
5	Salida	"5 no es divisor de 12"

3. Caso 3: A es igual a 0. A=0, B=12.

Paso	Acción	Resultado
1	LEER A	A = 0
2	LEER B	B = 12
3	A = 0	Si
4	Salida	"Error: No se puede dividir por
		cero"