PJ4: Car Tracking

杜闻博 18307110359

1 Problem 1: Bayesian network basics

First, we write the probability distribution in the bayes network as follows:

C_1	$P(C_1)$
0	0.5
1	0.5

C_t	C_{t+1}	$P(C_{t+1} C_t)$
0	0	1 - ε
0	1	ε
1	0	ε
1	1	1-ε

C_t	D_t	$P(D_t C_t)$
0	0	1 - η
0	1	η
1	0	η
1	1	1- η

1.1 a. Compute $P(C_2 = 1 | D_2 = 0)$.

From above, we can calculate $P(C_2 = 1|D_2 = 0)$ as follows:

$$P(C_2 = 1|D_2 = 0) \propto P(C_2 = 1, D_2 = 0)$$

$$= P(D_2 = 0|C_2 = 1)P(C_2 = 1)$$

$$= P(D_2 = 0|C_2 = 1) \sum_{c_1} P(C_2 = 1|c_1)P(c_1)$$

$$= \eta[0.5 \times \varepsilon + 0.5 \times (1 - \varepsilon)]$$

$$= 0.5\eta$$

$$P(C_2 = 0|D_2 = 0) \propto P(C_2 = 0, D_2 = 0)$$

$$= P(D_2 = 0|C_2 = 0)P(C_2 = 0)$$

$$= P(D_2 = 0|C_2 = 0) \sum_{c_1} P(C_2 = 0|c_1)P(c_1)$$

$$= (1 - \eta)[0.5 \times (1 - \varepsilon) + 0.5 \times \varepsilon]$$

$$= 0.5(1 - \eta)$$

Then we normalize it and get:

$$P(C_2 = 1|D_2 = 0) = \frac{0.5\eta}{0.5\eta + 0.5(1 - \eta)} = \eta$$

1.2 b. Compute $P(C_2 = 1 | D_2 = 0, D_3 = 1)$.

From distribution tables, we can calculate $P(C_2 = 1 | D_2 = 0, D_3 = 1)$ as follows:

$$P(C_2 = 1|D_2 = 0, D_3 = 1) \propto P(C_2 = 1, D_2 = 0, D_3 = 1)$$

$$= P(C_2 = 1) \cdot P(D_2 = 0|C_2 = 1) \cdot P(D_3 = 1|C_2 = 1, D_2 = 0)$$

$$= 0.5\eta \cdot \sum_{c_3} P(c_3|C_2 = 1)P(D_3 = 1|c_3)$$

$$= 0.5\eta \cdot [\varepsilon \eta + (1 - \varepsilon)(1 - \eta)]$$

$$P(C_2 = 0|D_2 = 0, D_3 = 1) \propto P(C_2 = 0, D_2 = 0, D_3 = 1)$$

$$= P(C_2 = 0) \cdot P(D_2 = 0|C_2 = 0) \cdot P(D_3 = 1|C_2 = 0, D_2 = 0)$$

$$= 0.5(1 - \eta) \cdot \sum_{c_3} P(c_3|C_2 = 0)P(D_3 = 1|c_3)$$

$$= 0.5(1 - \eta) \cdot [\varepsilon(1 - \eta) + (1 - \varepsilon)\eta]$$

Then we normalize it and get:

$$P(C_2 = 1 | D_2 = 0, D_3 = 1) = \frac{0.5\eta \cdot [\varepsilon \eta + (1 - \varepsilon)(1 - \eta)]}{0.5\eta \cdot [\varepsilon \eta + (1 - \varepsilon)(1 - \eta)] + 0.5(1 - \eta) \cdot [\varepsilon (1 - \eta) + (1 - \varepsilon)\eta]}$$
$$= \frac{\varepsilon \eta^2 + \eta(1 - \varepsilon)(1 - \eta)}{\varepsilon \eta^2 + 2\eta(1 - \varepsilon)(1 - \eta) + \varepsilon(1 - \eta)^2}$$

1.3 c. Suppose $\varepsilon = 0.1$ and $\eta = 0.2$.

1.3.1 (i) Compute and compare $P(C_2 = 1 | D_2 = 0)$ and $P(C_2 = 1 | D_2 = 0, D_3 = 1)$.

Substitute $\varepsilon = 0.1$ and $\eta = 0.2$ into the above result, we can calculate that:

$$P(C_2 = 1|D_2 = 0) = \eta = 0.2$$

$$P(C_2 = 1|D_2 = 0, D_3 = 1) = \frac{\varepsilon \eta^2 + \eta(1 - \varepsilon)(1 - \eta)}{\varepsilon \eta^2 + 2\eta(1 - \varepsilon)(1 - \eta) + \varepsilon(1 - \eta)^2} \approx 0.4157$$

1.3.2 (ii) How did $D_3 = 1$ changes the result?

Because $\eta = 0.2$ is small, from the distribution table, we can know that it is more likely that $C_3 = 1$, where the sensor probability is $1 - \eta = 0.8$. And at the same time, because ε is also small, so $C_3 = 1$ implies that C_2 is more likely to be 1 to have a bigger transition probability $1 - \varepsilon$. So the observation $D_3 = 1$ implies it is more likely that $C_2 = 1$, which is the same as our results calculated above.

1.3.3 (iii) How did $D_3 = 1$ changes the result?

First, solve the following function:

$$\frac{\varepsilon \eta^2 + \eta (1 - \varepsilon)(1 - \eta)}{\varepsilon \eta^2 + 2\eta (1 - \varepsilon)(1 - \eta) + \varepsilon (1 - \eta)^2} = \eta$$

Substitute $\eta = 0.2$ in, we can obtain $\varepsilon = 0.5$.

In this situation, we can't get more information from $D_3 = 1$, because although the sensor probability tells us C_3 is more likely to be 1, when it comes to the transition probability, either $C_2 = 1$ or $C_2 = 0$, have equal transition probability to arrive $C_3 = 1$.