	Page No.
	Guaran A
	Group - A
	Practical No 1
	Practical No. 1
A	Title:= Duta Wrangling 1
A	Date of Completion :=
	of completion:
A	Objective: To parlower date accordance data
	Objective:= To perform data preprocessing, data transformation and data normalization.
#	Problem Statement: Perform the following operations using Python on any open source data set (eg: data.csv). Import all the required Python Libraries. Locate an open source data from the web. Provide a clear description of data and its source. Load the dataset into pandas data frame.
-	using Python on any open sounce data set (eg: data.csv).
i	Import all the required Python Libraries.
2	Locate an open source data from the web. Provide
	a clear description of data and its source.
3	Load the doitaset into pandas doita frame.
4)	Vala preprocessing. Check for missing values in the
	data using pandas insult(), describe() function
	data using pandas insult(), describe() function to get some initial statistics. Provide variable description
	Types of variables elc. Theck the dimensions of
	the data frame.
5	Data Formatting and Data Normalization: Summarize
	Types of Variables by checking data types of
	variables in the adu ser - p variables are
	types of variables by checking data types of variables in the data set. If variables are not in correct data type, apply proper type
-	Conversion.
6	conversion. Turn categorical variables into quantitative variables in Python. Teacher's Signature
	in Pylnon. Teacher's Signature
	2 continue

		Page No. Date
	*	Software and Mardware Requirements:= Python, datuset.
1	X	Theory
	1)	Source of data: - Kaggle There are several data pre-processing (wrangling) techniques Data Cleaning
)	2 3 9	Data Cleaning Duta Integration Data Reduction Data Transformation
	5)	Data Discretization.
		Data Cleaning: - It can involve transformation to correct wrong data, such as by transforming entries for a date filled to a common format.
	c)	Duta Wrangling: - It is the process of cleaning and unifying messy and complex dat
		Duta Wrangling: - It is the process of cleaning and unifying messy and complex data sets to make them more appropriate and valuable for a variety of downstream purpose such as analytics.
	0)	Data Normalization: - Converting data variable into a given vange.
	1)	M May novemalization.
		V' = V-Vmin (new-max - new-min) + new-min Vmax - Vmin

	Page No.
	Date
2)	
4)	Z - Score normalization:
	V' = V - A
	5 A
3	Decimal Scaling:
	$V^{1}=V$
	Ini
) A	Conclusion: Perform about mentioned operations
	Conclusion:= Perform above mentioned operations using Python.
1. 1. 1. 1.	using rymon.
	The second of th
	The transfer of the state of th
	Company of the control of the contro
))	
To all	
1000	
	the state of the s
	The trade of the second section of the section of the second section of the section
W.	The same of the sa

1. Import all the required Python Libraries

```
In [4]:
```

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

```
In [ ]:
```

1. Load the Dataset into pandas data frame

```
In [12]:
```

```
data = {
    "Roll_No" : [1,2,3],
    "Marks" : [50,40,45]
}
#load data into a DataFrame object:
df = pd.DataFrame(data)
df
```

Out[12]:

Roll_No Marks 0 1 50 1 2 40 2 3 45

In [13]:

```
print(df)
```

```
Roll_No Marks
0 1 50
1 2 40
2 3 45
```

In [24]:

```
print(df.to string)
```

```
<bound method DataFrame.to_string of Roll_No Marks
ABC     1     50
PQR     2     40
XYZ     3     45>
```

In [23]:

```
print(df.to string())
```

```
Roll_No Marks
ABC 1 50
PQR 2 40
XYZ 3 45
```

In [18]:

```
print(df.loc[2])
```

```
Roll_No
          3
Marks 45
Name: 2, dtype: int64
In [19]:
print(df.loc[[0,2]])
  Roll_No Marks
   1 50
0
2
       3
             45
In [20]:
#load data into a DataFrame object:
df = pd.DataFrame(data,index = ["ABC","PQR","XYZ"])
print(df)
    Roll No Marks
     1
2
             50
ABC
PQR
               40
XYZ
         3
               45
In [21]:
print(df.loc["XYZ"])
Roll No
          3
Marks
          45
Name: XYZ, dtype: int64
In [ ]:
```

1. Data Preprocessing

```
In [25]:
```

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"
df = pd.read_csv(path)
df
```

Out[25]:

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
12	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3

15	Duration 60	Date '2020/12/15'	Pulse 98	Maxpulse 123	Calories 275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
18	45	'2020/12/18'	90	112	NaN
19	60	'2020/12/19'	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
22	45	NaN	100	119	282.0
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25'	102	126	334.5
26	60	20201226	100	120	250.0
27	60	'2020/12/27'	92	118	241.0
28	60	'2020/12/28'	103	132	NaN
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [26]:

df.head()

Out[26]:

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0

In [27]:

df.head(10)

Out[27]:

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269.0

In [28]:

```
df.tail()
```

Out[28]:

	Duration	Date	Pulse	Maxpulse	Calories
27	60	'2020/12/27'	92	118	241.0
28	60	'2020/12/28'	103	132	NaN
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [29]:

```
df.info()
```

In [30]:

```
new_df = df.dropna()
print(new_df.to_string())
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
12	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3
15	60	'2020/12/15'	98	123	275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
19	60	' 2020/12/19 '	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25 '	102	126	334.5
26	60	20201226	100	120	250.0
27	60	'2020/12/27 '	92	118	241.0
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [31]:

df

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
12	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3
15	60	'2020/12/15'	98	123	275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
18	45	'2020/12/18'	90	112	NaN
19	60	'2020/12/19'	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
22	45	NaN	100	119	282.0
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25'	102	126	334.5
26	60	20201226	100	120	250.0
27	60	'2020/12/27'	92	118	241.0
28	60	'2020/12/28'	103	132	NaN
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [33]:

df.dropna(inplace = True)
print(df.to_string())

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269 N

_	U U	۷۷۷/ ۲۷/ ۲۷	J U	±	200.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
12	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3
15	60	'2020/12/15'	98	123	275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
19	60	'2020/12/19'	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25'	102	126	334.5
26	60	20201226	100	120	250.0
27	60	'2020/12/27'	92	118	241.0
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [34]:

df

Out[34]:

	Duration	Data	Dulas	Maynulae	Colorias	
_	Duration	Date	Pulse	Maxpulse		
0	60	'2020/12/01'	110	130	409.1	
1	60	'2020/12/02'	117	145	479.0	
2	60	'2020/12/03'	103	135	340.0	
3	45	'2020/12/04'	109	175	282.4	
4	45	'2020/12/05'	117	148	406.0	
5	60	'2020/12/06'	102	127	300.0	
6	60	'2020/12/07'	110	136	374.0	
7	450	'2020/12/08'	104	134	253.3	
8	30	'2020/12/09'	109	133	195.1	
9	60	'2020/12/10'	98	124	269.0	
10	60	60 '2020/12/11'		147	329.3	
11	60	'2020/12/12'	100	120	250.7	
12	60	'2020/12/12'	100	120	250.7	
13	60	60 '2020/12/13'		128	345.3	
14	60	'2020/12/14'	104	132	379.3	
15	60	'2020/12/15'	98	123	275.0	
16	60	'2020/12/16'	98	120	215.2	
17	60	'2020/12/17'	100	120	300.0	
19	60	'2020/12/19'	103	123	323.0	
20	45	'2020/12/20'	97	125	243.0	
21	60	'2020/12/21'	108	131	364.2	
23	60	'2020/12/23'	130	101	300.0	
24	45	'2020/12/24'	105	132	246.0	
25	60	'2020/12/25'	102	126	334.5	
26	60	20201226	100	120	250.0	
27	60	'2020/12/27'	92	118	241.0	
29	60	'2020/12/29'	100	132	280.0	

```
30 Duration 2020/12/30' Pulse Maxpulse Calories 31 60 2020/12/31' 92 115 243.0
```

In [36]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)

df.fillna(130, inplace = True)

df
```

Out[36]:

	Duration	Date	Pulse	Maxpulse	Calories	
0	60	'2020/12/01'	110	130	409.1	
1	60	'2020/12/02'	117	145	479.0	
2	60	'2020/12/03'	103	135	340.0	
3	45	'2020/12/04'	109	175	282.4	
4	45	'2020/12/05' 117 148	406.0			
5	60	'2020/12/06'	102	127	300.0	
6	60	'2020/12/07'	110	136	374.0	
7	450	'2020/12/08'	104	134	253.3	
8	30	'2020/12/09'	109	133	195.1	
9	60	'2020/12/10'	98	124	269.0	
10	60	'2020/12/11'	103	147	329.3	
11	60	'2020/12/12'	100	120	250.7	
12	60	'2020/12/12'	100	120	250.7	
13	60	'2020/12/13'	106	128	345.3	
14	60	'2020/12/14'	104	132	379.3 275.0	
15	60	'2020/12/15'	98	123		
16	60	'2020/12/16'	98	120	215.2	
17	60	'2020/12/17'	100	120	300.0	
18	45	'2020/12/18'	90	112	130.0	
19	60	'2020/12/19'	103	123	323.0	
20	45	'2020/12/20'	97	125	243.0	
21	60	'2020/12/21'	108	131	364.2	
22	45	130	100	119	282.0	
23	60	'2020/12/23'	130	101	300.0	
24	45	'2020/12/24'	105	132	246.0	
25	60	'2020/12/25'	102	126	334.5	
26	60	20201226	100	120	250.0	
27	60	'2020/12/27'	92	118	241.0	
28	60	'2020/12/28'	103	132	130.0	
29	60	'2020/12/29'	100	132	280.0	
30	60	'2020/12/30'	102	129	380.3	
31	60 '2020/12/31'		92	115	243.0	

In [37]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"
df = pd.read_csv(path)
df["Calories"].fillna(130, inplace = True)
```

print(df) Date Pulse Maxpulse Calories Duration 60 '2020/12/01' 409.1 60 '2020/12/02' 479.0 60 '2020/12/03' 340.0 45 '2020/12/04' 282.4 '2020/12/05' 406.0 '2020/12/06' 300.0 60 '2020/12/06' 102 60 '2020/12/07' 110 450 '2020/12/08' 104 30 '2020/12/09' 109 60 '2020/12/10' 98 60 '2020/12/11' 103 60 '2020/12/12' 100 60 '2020/12/12' 100 374.0 253.3 195.1 269.0 329.3 250.7 250.7 2020/12/12' 100 120 250.7 60 '2020/12/13' 106 128 345.3 60 '2020/12/14' 104 132 379.3 60 '2020/12/15' 98 123 275.0 60 '2020/12/16' 98 120 215.2 60 '2020/12/17' 100 120 300.0 45 '2020/12/18' 90 112 130.0 60 '2020/12/19' 103 123 323.0 45 '2020/12/20' 97 125 243.0 60 '2020/12/21' 108 131 364.2 45 NaN 100 119 282.0 60 '2020/12/23' 130 101 300.0 45 '2020/12/24' 105 132 246.0 60 '2020/12/25' 102 126 334.5 60 20201226 100 120 250.0 60 '2020/12/27' 92 118 241.0 60 '2020/12/28' 103 132 130.0 60 '2020/12/28' 103 132 130.0 60 '2020/12/29' 100 132 280.0 60 '2020/12/29' 100 132 280.0 60 '2020/12/30' 102 129 380.3 60 '2020/12/31' 92 115 243.0 250.7 250.7 345.3 379.3 275.0 215.2 300.0 130.0 323.0 243.0

In [38]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"
df = pd.read csv(path)
x = df["Calories"].mean()
df["Calories"].fillna(x, inplace = True)
print(df)
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.10
1	60	'2020/12/02'	117	145	479.00
2	60	'2020/12/03'	103	135	340.00
3	45	'2020/12/04'	109	175	282.40
4	45	'2020/12/05'	117	148	406.00
5	60	'2020/12/06'	102	127	300.00
6	60	'2020/12/07'	110	136	374.00
7	450	'2020/12/08'	104	134	253.30
8	30	'2020/12/09'	109	133	195.10
9	60	'2020/12/10'	98	124	269.00
10	60	'2020/12/11'	103	147	329.30
11	60	'2020/12/12'	100	120	250.70
12	60	'2020/12/12'	100	120	250.70
13	60	'2020/12/13'	106	128	345.30
14	60	'2020/12/14'	104	132	379.30
15	60	'2020/12/15'	98	123	275.00
16	60	'2020/12/16'	98	120	215.20
17	60	'2020/12/17'	100	120	300.00
18	45	'2020/12/18'	90	112	304.68
19	60	'2020/12/19'	103	123	323.00
20	45	'2020/12/20'	97	125	243.00
21	60	'2020/12/21'	108	131	364.20
22	45	NaN	100	119	282.00
23	60	'2020/12/23'	130	101	300.00
24	45	'2020/12/24'	105	132	246.00
25	60	'2020/12/25'	102	126	334.50
26	60	20201226	100	120	250.00

```
27
          60
              '2020/12/27'
                                92
                                          118
                                                  241.00
28
               '2020/12/28'
                                          132
                                                  304.68
          60
                                103
               '2020/12/29'
29
                                100
                                          132
                                                  280.00
          60
30
               '2020/12/30'
                                          129
                                102
                                                  380.30
          60
              '2020/12/31'
31
          60
                                          115
                                                  243.00
                                92
```

In [39]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)

x = df["Calories"].median()

df["Calories"].fillna(x, inplace = True)

df
```

Out[39]:

	Duration	Date	Pulse	Maxpulse	Calories	
0	60	'2020/12/01'	110	130	409.1	
1	60	'2020/12/02'	117	145	479.0	
2	60	'2020/12/03'	103	135	340.0	
3	45	'2020/12/04'	109	175	282.4	
4	45	'2020/12/05'	117	148	406.0	
5	60	'2020/12/06'	102	127	300.0	
6	60	'2020/12/07'	110	136	374.0	
7	450	'2020/12/08'	104	134	253.3	
8	30	'2020/12/09'	109	133	195.1	
9	60	'2020/12/10'	98	124	269.0	
10	60	'2020/12/11'	103	147	329.3	
11	60	'2020/12/12'	100	120	250.7	
12	60	'2020/12/12'	100	120	250.7	
13	60	'2020/12/13'	106	128	345.3	
14	60	'2020/12/14'	104	132	379.3	
15	60	'2020/12/15'	98	123	275.0	
16	60	'2020/12/16'	98	120	215.2	
17	60	'2020/12/17'	100	120	300.0	
18	45	'2020/12/18'	90	112	291.2	
19	60	'2020/12/19'	103	123	323.0	
20	45	'2020/12/20'	97	125	243.0	
21	60	'2020/12/21'	108	131	364.2	
22	45	NaN	100	119	282.0	
23	60	'2020/12/23'	130	101	300.0	
24	45	'2020/12/24'	105	132	246.0	
25	60	'2020/12/25'	102	126	334.5	
26	60	20201226	100	120	250.0	
27	60	'2020/12/27'	92	118	241.0	
28	60	'2020/12/28'	103	132	291.2	
29	60	'2020/12/29'	100	132	280.0	
30	60	'2020/12/30'	102	129	380.3	
31	60	'2020/12/31'	92	115	243.0	

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)

df["Date"] = pd.to_datetime(df["Date"])
print(df)
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	2020-12-01	110	130	409.1
1	60	2020-12-02	117	145	479.0
2	60	2020-12-03	103	135	340.0
3	45	2020-12-04	109	175	282.4
4	45	2020-12-05	117	148	406.0
5	60	2020-12-06	102	127	300.0
6	60	2020-12-07	110	136	374.0
7	450	2020-12-08	104	134	253.3
8	30	2020-12-09	109	133	195.1
9	60	2020-12-10	98	124	269.0
10	60	2020-12-11	103	147	329.3
11	60	2020-12-12	100	120	250.7
12	60	2020-12-12	100	120	250.7
13	60	2020-12-13	106	128	345.3
14	60	2020-12-14	104	132	379.3
15	60	2020-12-15	98	123	275.0
16	60	2020-12-16	98	120	215.2
17	60	2020-12-17	100	120	300.0
18	45	2020-12-18	90	112	NaN
19	60	2020-12-19	103	123	323.0
20	45	2020-12-20	97	125	243.0
21	60	2020-12-21	108	131	364.2
22	45	NaT	100	119	282.0
23	60	2020-12-23	130	101	300.0
24	45	2020-12-24	105	132	246.0
25	60	2020-12-25	102	126	334.5
26	60	2020-12-26	100	120	250.0
27	60	2020-12-27	92	118	241.0
28	60	2020-12-28	103	132	NaN
29	60	2020-12-29	100	132	280.0
30	60	2020-12-30	102	129	380.3
31	60	2020-12-31	92	115	243.0

In [46]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)

df.dropna(subset = ["Date"] , inplace = True)
print(df)
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
12	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3
15	60	'2020/12/15'	98	123	275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
18	45	'2020/12/18'	90	112	NaN
19	60	'2020/12/19'	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25'	102	126	334.5

```
27
              '2020/12/27'
                              92
          60
                                        118
                                                241.0
28
             '2020/12/28'
                                        132
         60
                              103
                                                 NaN
              '2020/12/29'
29
         60
                              100
                                        132
                                                280.0
30
         60
              '2020/12/30'
                             102
                                        129
                                                380.3
31
         60
             '2020/12/31'
                              92
                                        115
                                                243.0
In [49]:
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"
df = pd.read csv(path)
df.loc[7, "Duration"] = 45
print(df)
    Duration
                      Date Pulse Maxpulse Calories
             '2020/12/01'
                            110
          60
             '2020/12/02'
                             117
1
          60
                                        145
                                                479.0
             '2020/12/03'
          60
                             103
                                       135
                                                340.0
3
          45
             '2020/12/04'
                             109
                                       175
                                                282.4
4
          45
             '2020/12/05'
                             117
                                       148
                                                406.0
5
             '2020/12/06'
                                                300.0
          60
                             102
                                       127
             '2020/12/07'
6
         60
                             110
                                        136
                                                374.0
7
             '2020/12/08'
         45
                             104
                                       134
                                                253.3
             '2020/12/09'
8
         30
                              109
                                        133
                                                195.1
9
         60
             '2020/12/10'
                              98
                                        124
                                                269.0
             '2020/12/11'
10
         60
                              103
                                        147
                                                329.3
11
         60
             '2020/12/12'
                             100
                                       120
                                                250.7
12
         60
             '2020/12/12'
                             100
                                       120
                                                250.7
13
         60
             '2020/12/13'
                             106
                                       128
                                                345.3
14
         60
             '2020/12/14'
                             104
                                       132
                                                379.3
                             98
15
         60
             '2020/12/15'
                                       123
                                                275.0
16
         60
             '2020/12/16'
                              98
                                       120
                                                215.2
17
         60
             '2020/12/17'
                             100
                                       120
                                                300.0
18
         45
             '2020/12/18'
                             90
                                       112
                                                 NaN
19
         60
             '2020/12/19'
                             103
                                       123
                                                323.0
20
         45
             '2020/12/20'
                             97
                                       125
                                                243.0
21
         60
             '2020/12/21'
                             108
                                       131
                                                364.2
22
         45
                             100
                                                282.0
                                       119
                     NaN
23
             '2020/12/23'
                             130
         60
                                        101
                                                300.0
             '2020/12/24'
                                        132
24
         45
                             105
                                                246.0
             '2020/12/25'
25
                                        126
         60
                              102
                                                334.5
26
         60
                  20201226
                              100
                                        120
                                                250.0
             '2020/12/27'
27
         60
                              92
                                        118
                                                241.0
28
         60
             '2020/12/28'
                              103
                                        132
                                                 NaN
29
         60
             '2020/12/29'
                              100
                                        132
                                                280.0
30
         60
              '2020/12/30'
                             102
                                        129
                                                380.3
31
         60
             '2020/12/31'
                              92
                                        115
                                                243.0
In [50]:
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"
df = pd.read csv(path)
for x in df.index :
    if df.loc[x, "Duration"] > 120 :
        df.loc[x, "Duration"] = 120
print(df)
    Duration
                      Date Pulse Maxpulse Calories
0
              '2020/12/01'
          60
                            110
                                   130
                                                409.1
             '2020/12/02'
1
          60
                              117
                                        145
                                                479.0
2
             '2020/12/03'
          60
                              103
                                        135
                                                340.0
3
          45
              '2020/12/04'
                              109
                                        175
                                                282.4
4
         45
              '2020/12/05'
                             117
                                        148
                                                406.0
5
         60
             '2020/12/06'
                             102
                                       127
                                                300.0
6
         60
             '2020/12/07'
                             110
                                       136
                                                374.0
7
        120
             '2020/12/08'
                             104
                                       134
                                                253.3
8
         30
             '2020/12/09'
                             109
                                       133
                                                195.1
9
             '2020/12/10'
                             98
         60
                                       124
                                                269.0
         60
                             103
10
             '2020/12/11'
                                       147
                                                329.3
11
         60
             '2020/12/12'
                             100
                                       120
                                                250.7
12
         60
             '2020/12/12'
                             100
                                       120
                                                250.7
13
          60
             '2020/12/13'
                              106
                                        128
                                                345.3
```

250.0

```
'2020/12/14'
14
         60
                             104
                                       132
                                               379.3
15
             '2020/12/15'
                             98
                                       123
                                               275.0
         60
            '2020/12/16'
16
                             98
                                       120
                                               215.2
         60
         60 '2020/12/17'
17
                             100
                                       120
                                               300.0
            '2020/12/18'
18
         45
                             90
                                       112
                                                 NaN
            '2020/12/19'
19
         60
                             103
                                       123
                                               323.0
20
         45
             '2020/12/20'
                              97
                                       125
                                               243.0
21
         60
             '2020/12/21'
                             108
                                               364.2
                                       131
22
         45
                             100
                                               282.0
                      NaN
                                       119
             '2020/12/23'
                                               300.0
23
         60
                             130
                                       101
24
         45
             '2020/12/24'
                             105
                                       132
                                               246.0
         60
             '2020/12/25'
25
                             102
                                       126
                                               334.5
26
         60
                 20201226
                             100
                                       120
                                               250.0
             '2020/12/27'
27
         60
                             92
                                       118
                                               241.0
             '2020/12/28'
                             103
28
         60
                                       132
                                                NaN
29
         60
             '2020/12/29'
                             100
                                       132
                                               280.0
30
         60
             '2020/12/30'
                             102
                                       129
                                               380.3
31
         60
             '2020/12/31'
                             92
                                       115
                                               243.0
```

In [51]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)

for x in df.index :
    if df.loc[x, "Duration"] > 120 :
        df.drop(x, inplace = True)

print(df)
```

	Duration	Date	Pulse	Maxpulse	Calories
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	' 2020/12/05 '	117	148	406.0
5	60	' 2020/12/06 '	102	127	300.0
6	60	' 2020/12/07 '	110	136	374.0
8	30	' 2020/12/09 '	109	133	195.1
9	60	' 2020/12/10 '	98	124	269.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
12	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3
15	60	'2020/12/15'	98	123	275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
18	45	'2020/12/18'	90	112	NaN
19	60	'2020/12/19'	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
22	45	NaN	100	119	282.0
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25'	102	126	334.5
26	60	20201226	100	120	250.0
27	60	'2020/12/27'	92	118	241.0
28	60	'2020/12/28'	103	132	NaN
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [52]:

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)
print(df.duplicated())
```

```
0 False
1 False
2 False
3 False
4 False
```

```
5
      False
6
      False
7
      False
8
      False
9
      False
10
      False
11
     False
12
      True
13
     False
14
     False
15
     False
16
     False
     False
17
     False
18
19
     False
     False
20
21
    False
22
     False
23
     False
24
     False
25
     False
26
     False
27
     False
28
     False
29
      False
30
      False
31
     False
dtype: bool
```

In [53]:

Duration

```
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\dirtydata.csv"

df = pd.read_csv(path)

df.drop_duplicates(inplace = True)
print(df)
```

Date Pulse Maxpulse Calories

	Dalacion	Date	LUISC	Maxpaisc	Caidiics
0	60	'2020/12/01'	110	130	409.1
1	60	'2020/12/02'	117	145	479.0
2	60	'2020/12/03'	103	135	340.0
3	45	'2020/12/04'	109	175	282.4
4	45	'2020/12/05'	117	148	406.0
5	60	'2020/12/06'	102	127	300.0
6	60	'2020/12/07'	110	136	374.0
7	450	'2020/12/08'	104	134	253.3
8	30	'2020/12/09'	109	133	195.1
9	60	'2020/12/10'	98	124	269.0
10	60	'2020/12/11'	103	147	329.3
11	60	'2020/12/12'	100	120	250.7
13	60	'2020/12/13'	106	128	345.3
14	60	'2020/12/14'	104	132	379.3
15	60	' 2020/12/15 '	98	123	275.0
16	60	'2020/12/16'	98	120	215.2
17	60	'2020/12/17'	100	120	300.0
18	45	' 2020/12/18 '	90	112	NaN
19	60	' 2020/12/19 '	103	123	323.0
20	45	'2020/12/20'	97	125	243.0
21	60	'2020/12/21'	108	131	364.2
22	45	NaN	100	119	282.0
23	60	'2020/12/23'	130	101	300.0
24	45	'2020/12/24'	105	132	246.0
25	60	'2020/12/25'	102	126	334.5
26	60	20201226	100	120	250.0
27	60	'2020/12/27'	92	118	241.0
28	60	'2020/12/28'	103	132	NaN
29	60	'2020/12/29'	100	132	280.0
30	60	'2020/12/30'	102	129	380.3
31	60	'2020/12/31'	92	115	243.0

In [10]:

```
data = pd.Series({'1st':1, '2nd':2, '3rd':3, '4th':4})
```

```
print(data,'\n')
print('Size = ',data.size)
1st
      1
2nd
       2
3rd
      3
4th
       4
dtype: int64
Size = 4
In [11]:
df = pd.DataFrame({'1st':[1,2], '2nd':[3,4], '3rd':[5,6], '4th':[7,8]})
print(df,'\n')
print('Size = ',df.size)
  1st 2nd 3rd 4th
   1
        3
             5
1
    2.
        4
              6
                   8
Size = 8
In [12]:
df = pd.DataFrame({'1st':[1,2], '2nd':[3,4], '3rd':[5,6], '4th':[7,8]})
print(df,'\n')
print('Size = ', df.size)
print('Dimension = ', df.ndim)
print('Shape = ', df.shape)
   1st 2nd 3rd 4th
  1 3 5
                   7
1
     2
          4
              6
                   8
Size = 8
Dimension = 2
Shape = (2, 4)
In [ ]:
 1. Data Formatting and Data Normalization
In [13]:
df = pd.DataFrame({'Name':['Rohit', 'Raj', 'Shubh', 'Shivam'], 'Marks':[95,74,84,26], 'S
ubject':['Maths', 'Science', 'English', 'Social Science']})
column_names=df.columns
print(column names)
Index(['Name', 'Marks', 'Subject'], dtype='object')
In [14]:
data = {'Name':['Rohit', 'Raj', 'Shubh', 'Shivam'], 'Marks':[95,74,84,26]}
df = pd.DataFrame(data)
column names=df.columns
print(column_names)
Index(['Name', 'Marks'], dtype='object')
In [16]:
df = pd.DataFrame({'A':[21, 11, 19, None, 1],
                   'B':[7, 19, 57, 3, None],
                   'C':[10, 16, 11, 3, 8],
                   'D':[14 , 3, None, 2, 6]})
```

index_row = ['Row_1', 'Row_2', 'Row_3', 'Row_4', 'Row_5']

```
df.index = index_row
print(df)
print(df.columns)
         Α
              В
                  С
             7.0 10 14.0
Row 1
      21.0
Row_2
      11.0
            19.0
                  16
Row 3 19.0 57.0 11
                       NaN
                 3
      NaN 3.0
Row 4
                       2.0
Row_5
      1.0
            NaN
                  8
                       6.0
Index(['A', 'B', 'C', 'D'], dtype='object')
In [17]:
dict = { 'Phone':['Samsung S20', 'iPhone 11', 'Reliance Jio'], 'Price':[1000, 1100, 100]}
df = pd.DataFrame(dict)
print('The DataType of DataFrame is: ')
print(df.dtypes)
The DataType of DataFrame is:
Phone
       object
         int64
Price
dtype: object
In [18]:
dict = { 'Phone':['Samsung S20', 'iPhone 11', 'Reliance Jio'], 'Price':[1000, 1100, 100],
'Discount':[np.nan, np.nan, np.nan]}
df = pd.DataFrame(dict)
print('The DataType of DataFrame is: ')
print(df.dtypes)
The DataType of DataFrame is:
           object
Price
             int64
Discount
           float64
dtype: object
In [19]:
dict = { 'Phone':['Samsung S20', 'iPhone 11', 'Reliance Jio'], 'Price':[1000, 1100, 100],
'Discount':[np.nan, np.nan, np.nan], 'ArrivalDate':[pd.Timestamp('20180310'), pd.Timesta
mp('20190310'), pd.Timestamp('20140310')]}
df = pd.DataFrame(dict)
print('The DataType of DataFrame is: ')
print(df.dtypes)
The DataType of DataFrame is:
Phone
                      object
Price
                       int64
Discount
                     float64
ArrivalDate
              datetime64[ns]
dtype: object
In [21]:
dict = {'Phone':['Samsung S20', 'iPhone 11', 'Reliance Jio'], 'Price':[1000, 1100, 100],
'Discount':[np.nan, np.nan, np.nan], 'ArrivalDate':[pd.Timestamp('20180310'), pd.Timesta
mp('20190310'), pd.Timestamp('20140310')]}
df = pd.DataFrame(dict)
print('The Info of DataFrame is: ')
print(df.info())
The Info of DataFrame is:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 4 columns):
 # Column
                 Non-Null Count Dtype
___
    _____
                 -----
0
   Phone
                 3 non-null
                                 object
1
   Price
                 3 non-null
                                 int64
   Discount
                0 non-null
                                 float64
```

```
3 ArrivalDate 3 non-null
                                datetime64[ns]
dtypes: datetime64[ns](1), float64(1), int64(1), object(1)
memory usage: 224.0+ bytes
None
In [25]:
dataset = {'Name':['Rohit', 'Raj', 'Shubh', 'Shivam', 'Arun'],
           'Roll_No':['01', '02', '03', '04', np.nan], 'Maths':['93', '63', np.nan, '94', '83'],
           'Science':['88', np.nan, '66', '94', np.nan],
           'English':['93', '74', '84', '92', '87']}
df = pd.DataFrame(dataset)
print('DataFrame: \n\n', df)
print('\nCount: \n')
df2 = df.count()
print(df2)
DataFrame:
     Name Roll No Maths Science English
0
                        88
   Rohit
           01
                  93
                                    93
1
              02
                    63
                           NaN
                                    74
     Raj
2
   Shubh
              03
                   NaN
                            66
                                    84
                  94
3
              04
                           94
                                    92
  Shivam
                                    87
    Arun
             NaN
                   83
                           NaN
Count:
Name
Roll No
Maths
Science
English
dtype: int64
In [26]:
'Maths':['93', '63', np.nan, '94', '83'],
           'Science':['88', np.nan, '66', '94', np.nan],
           'English':['93', '74', '84', '92', '87']}
df = pd.DataFrame(dataset)
print('DataFrame: \n\n', df)
print('\nCount: \n')
df2 = df.count(axis='columns')
print(df2)
DataFrame:
     Name Roll No Maths Science English
0
              01
                  93
                                    93
   Rohit
                          88
                                    74
1
     Raj
              02
                   63
                           NaN
2
  Shubh
              03
                   NaN
                           66
                                    84
                           94
3
             04
                   94
                                    92
  Shivam
                                    87
    Arun
             NaN
                   83
                           NaN
Count:
0
    5
1
    4
2
     4
    5
3
4
    3
dtype: int64
```

In [271:

```
'Maths':['93', '63', np.nan, '94', '83'],
           'Science':['88', np.nan, '66', '94', np.nan],
           'English':['93', '74', '84', '92', '87']}
df = pd.DataFrame(dataset)
print('DataFrame: \n\n', df)
print('\nCount: \n')
df2 = df.set index(['Maths', 'English']).count(level='Maths')
print(df2)
DataFrame:
      Name Roll No Maths Science English
0
               01
                    93
   Rohit
                            88
                                      74
1
      Raj
               02
                    63
                            NaN
2
   Shubh
               03
                    NaN
                             66
                                      84
3
              04
                    94
                            94
                                      92
 Shivam
4
                     83
                                      87
    Arun
              NaN
                           NaN
Count:
       Name Roll No Science
Maths
63
          1
                   1
                            0
83
          1
                   0
                            0
93
          1
                   1
                            1
                   1
                            1
94
          1
In [5]:
df = pd.DataFrame([
    [180000, 110, 18.9, 1400],
[360000, 905, 23.4, 1800],
[230000, 230, 14.0, 1300],
    [60000, 450, 13.5, 1500]],
    columns=['Col A', 'Col B', 'Col C', 'Col D'])
display(df)
   Col A Col B Col C Col D
0 180000
          110
               18.9
                   1400
1 360000
          905
               23.4
                   1800
2 230000
          230
               14.0
                   1300
               13.5 1500
3 60000
          450
In [31]:
```

```
df.plot(kind = 'bar')
```

Out[31]:

<AxesSubplot:>


```
50000
```

In [32]:

```
df_max_scaled = df.copy()

for column in df_max_scaled.columns:
    df_max_scaled[column] = df_max_scaled[column]/df_max_scaled[column].abs().max()

display(df_max_scaled)
```

	Col A	Col B	Col C	Col D
0	0.500000	0.121547	0.807692	0.777778
1	1.000000	1.000000	1.000000	1.000000
2	0.638889	0.254144	0.598291	0.722222
3	0.166667	0.497238	0.576923	0.833333

In [33]:

```
df_max_scaled.plot(kind = 'bar')
```

Out[33]:

<AxesSubplot:>

In [6]:

```
df_min_max_scaled = df.copy()

for column in df_min_max_scaled.columns:
    df_min_max_scaled[column] = (df_min_max_scaled[column]-df_min_max_scaled[column].min
())/(df_min_max_scaled[column].max()-df_min_max_scaled[column].min())

display(df_min_max_scaled)
```

	Col A	Col B	Col C	Col D
0	0.400000	0.000000	0.545455	0.2
1	1.000000	1.000000	1.000000	1.0
2	0.566667	0.150943	0.050505	0.0
3	0.000000	0.427673	0.000000	0.4

In [7]:

```
df_min_max_scaled.plot(kind = 'bar')
```

Out[7]:

<AxesSubplot:>

In [8]:

```
df_z_scaled = df.copy()

for column in df_z_scaled.columns:
    df_z_scaled[column] = (df_z_scaled[column]-df_z_scaled[column].mean())/df_z_scaled[column].std()

display(df_z_scaled)
```

	Col A	Col B	Col C	Col D
0	-0.221422	-0.895492	0.311486	-0.46291
1	1.227884	1.373564	1.278167	1.38873
2	0.181163	-0.552993	-0.741122	-0.92582
3	-1.187625	0.074922	-0.848531	0.00000

In [12]:

```
df_z_scaled.plot(kind = 'bar')
```

Out[12]:

<AxesSubplot:>

In []:

1. Turn categorical variables into quantitative variables in Python

In [13]:

```
d = {'coll': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
df.dtypes
```

```
Out[13]:
col1
       int64
       int64
col2
dtype: object
In [14]:
df.astype('int32').dtypes
Out[14]:
       int32
col1
     int32
col2
dtype: object
In [15]:
df.astype({'col1': 'int32'}).dtypes
Out[15]:
col1
       int32
     int64
col2
dtype: object
In [18]:
ser = pd.Series([1, 2], dtype='int32')
ser
Out[18]:
0
    1
1
    2
dtype: int32
In [19]:
ser.astype('int64')
Out[19]:
    1
1
    2
dtype: int64
In [20]:
ser.astype('category')
Out[20]:
0 1
    2
1
dtype: category
Categories (2, int64): [1, 2]
In [21]:
from pandas.api.types import CategoricalDtype
cat_dtype = CategoricalDtype(categories=[2, 1], ordered=True)
ser.astype(cat_dtype)
Out[21]:
0
    1
    2
1
dtype: category
Categories (2, int64): [2 < 1]
In [22]:
```

```
s2 = s1.astype('int64', copy=False)
s2[0] = 10
s1
Out[22]:
    10
1
      2
dtype: int64
In [23]:
ser_date = pd.Series(pd.date_range('20200101', periods=3))
ser date
Out[23]:
0
    2020-01-01
1
    2020-01-02
    2020-01-03
dtype: datetime64[ns]
In [40]:
path = "C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\sales_data_types.csv"
df = pd.read_csv(path)
df
Out[40]:
  Customer Number Customer Name
                                      2016
                                                 2017 Percent Growth Jan Units Month Day Year Active
0
                                                                                                Υ
           10002.0 Quest Industries $125,000.00
                                                             30.00%
                                                                        500
                                                                                    10 2015
                                            $162500.00
                                                                                    15 2014
1
          552278.0
                   Smith Plumbing $920,000.00 $101,2000.00
                                                             10.00%
                                                                        700
                                                                                6
                                                                                                Υ
2
           23477.0 ACME Industrial
                                 $50,000.00
                                             $62500.00
                                                             25.00%
                                                                        125
                                                                                3
                                                                                    29 2016
                                                                                                Υ
3
           24900.0
                      Brekke LTD $350,000.00
                                                             4.00%
                                                                         75
                                                                                    27 2015
                                                                                                Υ
                                            $490000.00
                                                                               10
          651029.0
                       Harbor Co
                                 $15,000.00
                                             $12750.00
                                                            -15.00%
                                                                     Closed
                                                                                2
                                                                                     2 2014
                                                                                                Ν
In [4]:
df['2016']+df['2017']
Out[4]:
0
       $125,000.00$162500.00
1
     $920,000.00$101,2000.00
2
          $50,000.00$62500.00
3
        $350,000.00$490000.00
4
          $15,000.00$12750.00
dtype: object
In [6]:
df.dtypes
Out[6]:
Customer Number
                     float64
Customer Name
                      object
2016
                      object
2017
                      object
Percent Growth
                      object
Jan Units
                      object
Month
                       int64
Day
                       int64
Year
                       int64
Active
                      object
dtype: object
```

si = pa.series([i, Z])

Tn [71•

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 10 columns):
# Column
                   Non-Null Count Dtype
                    -----
   Customer Number 5 non-null
0
                                   float64
1 Customer Name 5 non-null
                                  object
   2016
                    5 non-null
                                   object
 3
   2017
                    5 non-null
                                   object
 4 Percent Growth 5 non-null
                                   object
 5 Jan Units 5 non-null
                                   object
 6 Month
                   5 non-null
                                   int64
7
   Day
                    5 non-null
                                   int64
                    5 non-null
8
                                    int64
    Year
                  5 non-null
                                object
9
    Active
dtypes: float64(1), int64(3), object(6)
memory usage: 528.0+ bytes
In [8]:
df['Customer Number'].astype('int')
Out[8]:
\cap
     10002
1
    552278
2
     23477
3
     24900
4
     651029
Name: Customer Number, dtype: int32
In [29]:
df['Customer Number'] = df['Customer Number'].astype('int')
df.dtypes
Out[29]:
Customer Number
                   int32
Customer Name
                  object
2016
                  float64
2017
                 float64
Percent Growth
                 object
Jan Units
                  object
Month
                   int64
                   int64
Day
                   int64
Year
Active
                    bool
dtype: object
In [13]:
df['2016'].astype('float')
                                        Traceback (most recent call last)
ValueError
<ipython-input-13-999869d577b0> in <module>
----> 1 df['2016'].astype('float')
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\generic.py in astype(self, dtype
, copy, errors)
   5875
              else:
   5876
                  # else, only a single dtype is given
-> 5877
                  new data = self. mgr.astype(dtype=dtype, copy=copy, errors=errors)
  5878
                  return self._constructor(new_data).__finalize__(self, method="astype
" )
  5879
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in astype(
self. dtvpe. copv. errors)
```

• و با تنت

```
629
               self, dtype, copy: bool = False, errors: str = "raise"
            ) -> "BlockManager":
    630
--> 631
                return self.apply("astype", dtype=dtype, copy=copy, errors=errors)
    632
    633
            def convert (
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in apply(s
elf, f, align keys, ignore failures, **kwargs)
                            applied = b.apply(f, **kwargs)
    426
                        else:
--> 427
                            applied = getattr(b, f) (**kwargs)
    428
                    except (TypeError, NotImplementedError):
    429
                        if not ignore failures:
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\internals\blocks.py in astype(se
lf, dtype, copy, errors)
                    vals1d = values.ravel()
    672
                    try:
--> 673
                        values = astype nansafe(vals1d, dtype, copy=True)
    674
                    except (ValueError, TypeError):
    675
                        # e.g. astype nansafe can fail on object-dtype of strings
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\dtypes\cast.py in astype nansafe
(arr, dtype, copy, skipna)
   1095
            if copy or is object dtype (arr) or is object dtype (dtype):
                # Explicit copy, or required since NumPy can't view from / to object.
   1096
-> 1097
                return arr.astype(dtype, copy=True)
   1098
   1099
            return arr.view(dtype)
ValueError: could not convert string to float: '$125,000.00'
In [14]:
df['Jan Units'].astype('int')
                                           Traceback (most recent call last)
ValueError
<ipython-input-14-31333711e4a4> in <module>
---> 1 df['Jan Units'].astype('int')
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\generic.py in astype(self, dtype
, copy, errors)
   5875
                else:
   5876
                    # else, only a single dtype is given
-> 5877
                    new data = self. mgr.astype(dtype=dtype, copy=copy, errors=errors)
   5878
                    return self. constructor (new data). finalize (self, method="astype
")
   5879
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in astype(
self, dtype, copy, errors)
    629
                self, dtype, copy: bool = False, errors: str = "raise"
    630
            ) -> "BlockManager":
--> 631
                return self.apply("astype", dtype=dtype, copy=copy, errors=errors)
    632
    633
            def convert (
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in apply(s
elf, f, align keys, ignore failures, **kwargs)
                            applied = b.apply(f, **kwargs)
    425
    426
                        else:
                            applied = getattr(b, f) (**kwargs)
--> 427
    428
                    except (TypeError, NotImplementedError):
    429
                        if not ignore failures:
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\internals\blocks.py in astype(se
lf, dtype, copy, errors)
    671
                    vals1d = values.ravel()
    672
--> 673
                        values = astype nansafe(vals1d, dtype, copy=True)
    674
                    except (ValueError, TypeError):
```

```
675
                          # e.g. astype_nansafe can fail on object-dtype of strings
D:\Program Files\Anaconda3\lib\site-packages\pandas\core\dtypes\cast.py in astype nansafe
(arr, dtype, copy, skipna)
   1072
                  # work around NumPy brokenness, #1987
   1073
                 if np.issubdtype(dtype.type, np.integer):
-> 1074
                      return lib.astype intsafe(arr.ravel(), dtype).reshape(arr.shape)
   1075
   1076
                  # if we have a datetime/timedelta array of objects
pandas\ libs\lib.pyx in pandas. libs.lib.astype intsafe()
ValueError: invalid literal for int() with base 10: 'Closed'
In [15]:
df['Active'].astype('bool')
Out[15]:
0
     True
1
     True
2
     True
3
     True
4
     True
Name: Active, dtype: bool
In [16]:
df
Out[16]:
   Customer Number Customer Name
                                     2016
                                                2017 Percent Growth Jan Units Month Day Year Active
                                                                                              Υ
0
            10002 Quest Industries $125,000.00
                                           $162500.00
                                                           30.00%
                                                                      500
                                                                                  10 2015
                                                                                              Υ
1
           552278
                  Smith Plumbing $920,000.00 $101,2000.00
                                                           10.00%
                                                                      700
                                                                                  15 2014
                                                                              6
2
            23477 ACME Industrial
                                $50,000.00
                                            $62500.00
                                                           25.00%
                                                                       125
                                                                              3
                                                                                  29 2016
                                                                                              Υ
3
            24900
                     Brekke LTD $350,000.00
                                           $490000.00
                                                            4.00%
                                                                                  27 2015
                                                                                              Υ
                                                                       75
                                                                              10
           651029
                                $15,000.00
                                            $12750.00
                                                           -15.00%
                                                                                   2 2014
                                                                                             Ν
                      Harbor Co
                                                                    Closed
In [45]:
def convert currency(val):
    new_val = val.replace(',','').replace('$','')
    return float(new val)
In [18]:
df['2016'].apply(convert_currency)
Out[18]:
0
     125000.0
1
     920000.0
2
      50000.0
3
     350000.0
4
      15000.0
Name: 2016, dtype: float64
In [19]:
df['2016'].apply(lambda x: x.replace(',','').replace('$','')).astype('float')
Out[19]:
0
     125000.0
     920000.0
1
2
      50000.0
     350000.0
```

```
15000.0
Name: 2016, dtype: float64
In [24]:
df['2016'] = df['2016'].apply(convert currency)
df['2017'] = df['2017'].apply(convert currency)
df.dtypes
Out[24]:
Customer Number
                  float64
Customer Name
                   object
2016
                   float64
2017
                   float64
Percent Growth
                   object
Jan Units
                   object
Month
                     int64
                     int64
Day
                     int64
Year
Active
                    object
dtype: object
In [25]:
df['Percent Growth'].apply(lambda x: x.replace('%','')).astype('float')/100
Out[25]:
    0.30
1
     0.10
2
    0.25
3
    0.04
4
   -0.15
Name: Percent Growth, dtype: float64
In [46]:
def convert percent(val):
   new_val = val.replace('%','')
   return float(new val)/100
df['Percent Growth'].apply(convert_percent)
Out[46]:
    0.30
0
1
    0.10
    0.25
2
3
    0.04
   -0.15
Name: Percent Growth, dtype: float64
In [27]:
df['Active'] = np.where(df['Active'] == 'Y', True, False)
In [28]:
df
Out[28]:
```

	Customer Number	Customer Name	2016	2017	Percent Growth	Jan Units	Month	Day	Year	Active
0	10002.0	Quest Industries	125000.0	162500.0	30.00%	500	1	10	2015	True
1	552278.0	Smith Plumbing	920000.0	1012000.0	10.00%	700	6	15	2014	True
2	23477.0	ACME Industrial	50000.0	62500.0	25.00%	125	3	29	2016	True
3	24900.0	Brekke LTD	350000.0	490000.0	4.00%	75	10	27	2015	True

```
4 Customer (Númber Customer 19ame
                               15020018
                                        1272019 Percent GF6NVth Jan Unite Month Day 2014 Active
In [30]:
df.dtypes
Out[30]:
Customer Number
                     int32
Customer Name
                    object
2016
                    float64
2017
                    float64
Percent Growth
                    object
Jan Units
                    object
Month
                      int64
                      int64
Day
                      int64
Year
Active
                      bool
dtype: object
In [31]:
pd.to numeric(df['Jan Units'], errors='coerce')
Out[31]:
0
     500.0
1
     700.0
2
     125.0
3
      75.0
4
       NaN
Name: Jan Units, dtype: float64
In [32]:
pd.to numeric(df['Jan Units'], errors='coerce').fillna(0)
Out[32]:
0
     500.0
1
     700.0
2
     125.0
3
      75.0
4
       0.0
Name: Jan Units, dtype: float64
In [33]:
pd.to datetime(df[['Month', 'Day', 'Year']])
Out[33]:
    2015-01-10
1
    2014-06-15
2
    2016-03-29
3
   2015-10-27
   2014-02-02
dtype: datetime64[ns]
In [34]:
df['Jan Units'] = pd.to numeric(df['Jan Units'], errors='coerce')
df['Start Date'] = pd.to datetime(df[['Month','Day','Year']])
df.dtypes
Out[34]:
Customer Number
                             int32
```

Customer Name object 2016 float64 2017 float64 Percent Growth object

```
Month
                            int64
                            int64
Day
                            int64
Year
Active
                             bool
Start Date
                  datetime64[ns]
dtype: object
In [64]:
df 2 = pd.read csv("C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\sales data ty
pes.csv",
                   dtype={'Customer Number' : 'int'},
                   converters={'2016' : convert currency,
                                '2017' : convert_currency,
                                'Percent Growth' : convert percent,
                                'Jan Units' : lambda x: pd.to numeric(df['Jan Units'], e
rrors='coerce').fillna(0),
                               'Active' : lambda x: np.where(df['Active'] == 'Y', True, Fa
1se)
                  )
df 2.dtypes
Out[64]:
Customer Number
                    int32
                    object
Customer Name
2016
                   float64
2017
                   float64
Percent Growth
                  float64
Jan Units
                   object
Month
                    int64
Day
                    int64
Year
                     int64
Active
                    object
dtype: object
In [5]:
dictionary = {'OUTLOOK' : ['Rainy', 'Rainy',
                            'Overcast', 'Sunny',
                            'Sunny', 'Sunny',
                            'Overcast', 'Rainy',
                            'Rainy', 'Sunny',
                            'Rainy', 'Overcast',
              'HUMIDITY': ['High', 'High', 'High', 'Normal', 'Normal',
                            'Normal', 'High', 'Normal',
                            'Normal', 'Normal', 'High',
                            'Normal', 'High'],
              'WINDY': ['No', 'Yes', 'No', 'No', 'No', 'Yes', 'Yes', 'No',
                         'No', 'No', 'Yes', 'Yes',
                         'No', 'Yes']
             }
df = pd.DataFrame(dictionary)
df
```

Jan Units

Out[5]:

iloat64

	8A1F88K	TEMPERATURE	HUMIBITY	₩INB¥
0	Rainy	Hot	High	No
1	Rainy	Hot	High	Yes
2	Overcast	Hot	High	No
3	Sunny	Mild	High	No
4	Sunny	Cool	Normal	No
5	Sunny	Cool	Normal	Yes
6	Overcast	Cool	Normal	Yes
7	Rainy	Mild	High	No
8	Rainy	Cool	Normal	No
9	Sunny	Mild	Normal	No
10	Rainy	Mild	Normal	Yes
11	Overcast	Mild	High	Yes
12	Overcast	Hot	Normal	No
13	Sunny	Mild	High	Yes

In [66]:

```
df2 = df.copy()
df2 = pd.get_dummies(df2, columns = ['WINDY', 'OUTLOOK'])
df2
```

Out[66]:

	TEMPERATURE	HUMIDITY	WINDY_No	WINDY_Yes	OUTLOOK_Overcast	OUTLOOK_Rainy	OUTLOOK_Sunny
0	Hot	High	1	0	0	1	0
1	Hot	High	0	1	0	1	0
2	Hot	High	1	0	1	0	0
3	Mild	High	1	0	0	0	1
4	Cool	Normal	1	0	0	0	1
5	Cool	Normal	0	1	0	0	1
6	Cool	Normal	0	1	1	0	0
7	Mild	High	1	0	0	1	0
8	Cool	Normal	1	0	0	1	0
9	Mild	Normal	1	0	0	0	1
10	Mild	Normal	0	1	0	1	0
11	Mild	High	0	1	1	0	0
12	Hot	Normal	1	0	1	0	0
13	Mild	High	0	1	0	0	1

In [68]:

```
from sklearn.preprocessing import LabelBinarizer

df3 = df.copy()
label_binarizer = LabelBinarizer()
label_binarizer_output = label_binarizer.fit_transform(df3['TEMPERATURE'])
result_df = pd.DataFrame (label_binarizer_output, columns = label_binarizer.classes_)

display(result_df)
```

Cool Hot Mild

v	Cool	Hot	Mild
-	0001	1	0
2	0	1	0
3	0	0	1
4	1	0	0
5	1	0	0
6	1	0	0
7	0	0	1
8	1	0	0
9	0	0	1
10	0	0	1
11	0	0	1
12	0	1	0
13	0	0	- 1

In [1]:

```
!pip install category_encoders
```

Collecting category_encoders

Downloading category encoders-2.3.0-py2.py3-none-any.whl (82 kB)

Requirement already satisfied: scikit-learn>=0.20.0 in d:\program files\anaconda3\lib\sit e-packages (from category_encoders) (0.24.1)

Requirement already satisfied: patsy>=0.5.1 in d:\program files\anaconda3\lib\site-packag es (from category_encoders) (0.5.1)

Requirement already satisfied: statsmodels>=0.9.0 in d:\program files\anaconda3\lib\site-packages (from category_encoders) (0.12.2)

Requirement already satisfied: scipy>=1.0.0 in d:\program files\anaconda3\lib\site-packag es (from category encoders) (1.6.2)

Requirement already satisfied: pandas>=0.21.1 in d:\program files\anaconda3\lib\site-pack ages (from category_encoders) (1.2.4)

Requirement already satisfied: numpy>=1.14.0 in d:\program files\anaconda3\lib\site-packa ges (from category encoders) (1.20.1)

Requirement already satisfied: pytz>=2017.3 in d:\program files\anaconda3\lib\site-packag es (from pandas>=0.21.1->category encoders) (2021.1)

Requirement already satisfied: python-dateutil>=2.7.3 in d:\program files\anaconda3\lib\s ite-packages (from pandas>=0.21.1->category encoders) (2.8.1)

Requirement already satisfied: six in d:\program files\anaconda3\lib\site-packages (from patsy>=0.5.1->category encoders) (1.15.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in d:\program files\anaconda3\lib\sit e-packages (from scikit-learn>=0.20.0->category encoders) (2.1.0)

Requirement already satisfied: joblib>=0.11 in \overline{d} :\program files\anaconda3\lib\site-packag es (from scikit-learn>=0.20.0->category encoders) (1.0.1)

Installing collected packages: category-encoders

Successfully installed category-encoders-2.3.0

In [6]:

```
import category_encoders as cat_encoder

df4 = df.copy()
encoder = cat_encoder.BinaryEncoder (cols = df4.columns)
df_category_encoder = encoder.fit_transform(df4)

display(df_category_encoder)
```

OUTLOOK_0 OUTLOOK_1 TEMPERATURE_0 TEMPERATURE_1 HUMIDITY_0 HUMIDITY_1 WINDY_0 WINDY_1

0	0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	1	0
2	1	0	0	1	0	1	0	1

³ o	OUTLOOK_	OUTLOOK_1	TEMPERATURE_0	TEMPERATURE_1	HUMIDITY_8	HUMIDITY_1	WINDY_8	windy_1
4	1	1	1	1	1	0	0	1
5	1	1	1	1	1	0	1	0
6	1	0	1	1	1	0	1	0
7	0	1	1	0	0	1	0	1
8	0	1	1	1	1	0	0	1
9	1	1	1	0	1	0	0	1
10	0	1	1	0	1	0	1	0
11	1	0	1	0	0	1	1	0
12	1	0	0	1	1	0	0	1
13	1	1	1	0	0	1	1	0

Group - A Practical No. 2 * Title:= Data Wrangling II Date of Completion := Dejective: To perform operations using Python Problem Statement: (veate an "Academic performance"

dataset of students and perform the following

poerations wing Puthon operations using Python. If there are missing values and inconsistencies, use any of the suitable techniques to deal with them. 2) Scan all numeric variables for outliers. If there are outliers, use any of suitable techniques to deal with them. 3) Apply data transformations on at least one of the variables. The purpose of this transformation · should be one of the following reasons: to change the scale for better understanding of variable, to convert a non linear relation into a linear one, or to decrease the skewness & convert the distribution ento a normal distribution

	Page No. Date
A	Software and Mardware Requirements := Python, dataset.
#	Theory :=
,	Pata cleaning: Process of detecting 6 removing the errors 6 inconsistencies present in the data and improve its quality. Inconsistente: Data contains difference in codes or names etc
	of data => i) I ynore the tuple.
	Incomplete (Missing Data): Now to handle such type of data => i) I ynore the tuple. ii) Fill missing values manually. iii) Fill it with mean or median of attribute
B)	Outliers: It is an observation in a given dataset
	that lies for from rest of observations. That means an
	Outliers: It is an observation in a given dataset that lies far from rest of observations. That means an outlier is vastly larger or smaller than remaining values and in the set.
	yands 440 CV NIU SEC
	Detecting outliers: Inter Quartile Range (TAD)
1)	Sort data in ascending order.
2)	Detecting outliers: Inter Quartile Range (IRR) Sort data in ascending order. Calculate 1st and 3rd quartiles (Q1 6 Q3).
31	Compule Iak = 63-61
4)	Compute Lower bound = (Q1-1.5 * JQR),
	upper bound = (Q3 + 1.5 * IQR)
5	Loop through the values of dataset and check for
	Those who pelow me lower bound to above the
	upper bound and mark them as outliers

Page No.	
Date	

C) Skewness: It is the measure of assymetry of an ideally symmetric probability distribution and is given by their # standardized moment.

Two Types of skewness: 1) Positive skewness

2) Negative skewness.

Positive Skewness

a) Logarithmic

b) Sqvt

c) Cube

d) Reciprocal

Conclusion:= Performed above mentioned operations using Python.

Missing Values

```
In [1]:
```

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np
```

In [3]:

	First	Score	Second	Score	Third	Score
0		100.0		30.0		NaN
1		90.0		45.0		40.0
2		NaN		56.0		80.0
3		95.0		NaN		98.0

Out[3]:

First Score Second Score Third Score

0	False	False	True
1	False	False	False
2	True	False	False
3	False	True	False

In [5]:

```
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"

df = pd.read_csv(path)
print(df)
```

	First Name	Gender	Start Date	Last Login Ti	me Salary	Bonus %	١
0	Douglas	Male	8/6/1993	12:42	PM 97308	6.945	
1	Thomas	Male	3/31/1996	6 : 53	AM 61933	4.170	
2	Maria	Female	4/23/1993	11:17	AM 130590	11.858	
3	Jerry	Male	3/4/2005	1:00	PM 138705	9.340	
4	Larry	Male	1/24/1998	4:47	PM 101004	1.389	
995	Henry	NaN	11/23/2014	6:09	AM 132483	16.655	
996	Phillip	Male	1/31/1984	6:30	AM 42392	19.675	
997	Russell	Male	5/20/2013	12:39	PM 96914	1.421	
998	Larry	Male	4/20/2013	4:45	PM 60500	11.985	
999	Albert	Male	5/15/2012	6:24	PM 129949	10.169	

Team	Management	Senior	
Marketing	True	0	0
NaN	True	1	1
Finance	False	2	2
Finance	True	3	3
Client Services	True	4	4

```
. . .
995
               False
                             Distribution
996
               False
                                 Finance
997
              False
                                 Product
               False Business Development
998
999
               True
                                   Sales
[1000 rows x 8 columns]
In [6]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
                     Non-Null Count Dtype
 # Column
---
                      _____
0
                     933 non-null
   First Name
                                     object
   Gender
1
                     855 non-null
                                     object
   Start Date
                      1000 non-null
                                     object
   Last Login Time
                                   object
                      1000 non-null
    Salary
                      1000 non-null int64
 5
   Bonus %
                      1000 non-null float64
 6
   Senior Management 933 non-null object
7 Team
                      957 non-null
                                     object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB
In [7]:
df.describe()
```

Out[7]:

	Salary	Bonus %
count	1000.000000	1000.000000
mean	90662.181000	10.207555
std	32923.693342	5.528481
min	35013.000000	1.015000
25%	62613.000000	5.401750
50%	90428.000000	9.838500
75%	118740.250000	14.838000
max	149908.000000	19.944000

In [8]:

```
# creating bool series True for NaN values
bool_series = pd.isnull(df["Gender"])

# filtering data
# displaying data only with Gender = NaN
df[bool_series]
```

Out[8]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
20	Lois	NaN	4/22/1995	7:18 PM	64714	4.934	True	Legal
22	Joshua	NaN	3/8/2012	1:58 AM	90816	18.816	True	Client Services
27	Scott	NaN	7/11/1991	6:58 PM	122367	5.218	False	Legal
31	Joyce	NaN	2/20/2005	2:40 PM	88657	12.752	False	Product
41	Christine	NaN	6/28/2015	1:08 AM	66582	11.308	True	Business Development

								•••
961	First Name Antonio	Gender NaN	Start Date 6/18/1989	Last Login Time 9:37 PM	Salary 103050	Bonus % 3.050	Senior Management False	Team Legal
972	Victor	NaN	7/28/2006	2:49 PM	76381	11.159	True	Sales
985	Stephen	NaN	7/10/1983	8:10 PM	85668	1.909	False	Legal
989	Justin	NaN	2/10/1991	4:58 PM	38344	3.794	False	Legal
995	Henry	NaN	11/23/2014	6:09 AM	132483	16.655	False	Distribution

145 rows × 8 columns

In [11]:

Out[11]:

First Score Second Score Third Score

0	True	True	False
1	True	True	True
2	False	True	True
3	True	False	True

In [12]:

```
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"

df = pd.read_csv(path)
# creating bool series True for NaN values

bool_series = pd.notnull(df["Gender"])

# filtering data
# displayind data only with Gender = Not NaN

df[bool_series]
```

Out[12]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.170	True	NaN
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
994	George	Male	6/21/2013	5:47 PM	98874	4.479	True	Marketing
996	Phillip	Male	1/31/1984	6:30 AM	42392	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949	10.169	True	Sales

855 rows × 8 columns

- ----

```
In [13]:
```

```
First Score Second Score Third Score
             30.0
0
      100.0
                              NaN
1
       90.0
                   45.0
                              40.0
2
                  56.0
                             80.0
        NaN
3
        95.0
                   NaN
                              98.0
```

Out[13]:

First Score Second Score Third Score 0 100.0 30.0 0.0 90.0 45.0 40.0 1 2 0.0 56.0 80.0 3 95.0 0.0 98.0

In [1]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
    'Second Score': [30, 45, 56, np.nan],
    'Third Score':[np.nan, 40, 80, 98]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
print(df)
# filling a missing value with
# previous ones
df.fillna(method ='pad')
```

	First	Score	Second	Score	Third	Score
0		100.0		30.0		NaN
1		90.0		45.0		40.0
2		NaN		56.0		80.0
3		95.0		NaN		98.0

Out[1]:

	First Score	Second Score	Third Score
0	100.0	30.0	NaN
1	90.0	45.0	40.0
2	90.0	56.0	80.0
3	95.0	56.0	98.0

In [2]:

```
# importing pandas as pd
import pandas as pd
```

```
# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
    'Second Score': [30, 45, 56, np.nan],
    'Third Score':[np.nan, 40, 80, 98]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
print(df)
# filling null value using fillna() function
df.fillna(method ='bfill')
```

```
First Score Second Score Third Score
0 100.0 30.0 NaN
1 90.0 45.0 40.0
2 NaN 56.0 80.0
3 95.0 NaN 98.0
```

Out[2]:

	First Score	Second Score	Third Score
0	100.0	30.0	40.0
1	90.0	45.0	40.0
2	95.0	56.0	80.0
3	95.0	NaN	98.0

In [3]:

```
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"

df = pd.read_csv(path)
# Printing the first 10 to 24 rows of
# the data frame for visualization
df[10:25]
```

Out[3]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
10	Louise	Female	8/12/1980	9:01 AM	63241	15.132	True	NaN
11	Julie	Female	10/26/1997	3:19 PM	102508	12.637	True	Legal
12	Brandon	Male	12/1/1980	1:08 AM	112807	17.492	True	Human Resources
13	Gary	Male	1/27/2008	11:40 PM	109831	5.831	False	Sales
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14.543	True	Finance
15	Lillian	Female	6/5/2016	6:09 AM	59414	1.256	False	Product
16	Jeremy	Male	9/21/2010	5:56 AM	90370	7.369	False	Human Resources
17	Shawn	Male	12/7/1986	7:45 PM	111737	6.414	False	Product
18	Diana	Female	10/23/1981	10:27 AM	132940	19.082	False	Client Services
19	Donna	Female	7/22/2010	3:48 AM	81014	1.894	False	Product
20	Lois	NaN	4/22/1995	7:18 PM	64714	4.934	True	Legal
21	Matthew	Male	9/5/1995	2:12 AM	100612	13.645	False	Marketing
22	Joshua	NaN	3/8/2012	1:58 AM	90816	18.816	True	Client Services
23	NaN	Male	6/14/2012	4:19 PM	125792	5.042	NaN	NaN
24	John	Male	7/1/1992	10:08 PM	97950	13.873	False	Client Services

In [5]:

```
df["Gender"].fillna("No Gender", inplace = True)
```

Out[5]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.170	True	NaN
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
							•••	***
995	Henry	No Gender	11/23/2014	6:09 AM	132483	16.655	False	Distribution
996	Phillip	Male	1/31/1984	6:30 AM	42392	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949	10.169	True	Sales

1000 rows × 8 columns

In [6]:

df[10:25]

Out[6]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
10	Louise	Female	8/12/1980	9:01 AM	63241	15.132	True	NaN
11	Julie	Female	10/26/1997	3:19 PM	102508	12.637	True	Legal
12	Brandon	Male	12/1/1980	1:08 AM	112807	17.492	True	Human Resources
13	Gary	Male	1/27/2008	11:40 PM	109831	5.831	False	Sales
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14.543	True	Finance
15	Lillian	Female	6/5/2016	6:09 AM	59414	1.256	False	Product
16	Jeremy	Male	9/21/2010	5:56 AM	90370	7.369	False	Human Resources
17	Shawn	Male	12/7/1986	7:45 PM	111737	6.414	False	Product
18	Diana	Female	10/23/1981	10:27 AM	132940	19.082	False	Client Services
19	Donna	Female	7/22/2010	3:48 AM	81014	1.894	False	Product
20	Lois	No Gender	4/22/1995	7:18 PM	64714	4.934	True	Legal
21	Matthew	Male	9/5/1995	2:12 AM	100612	13.645	False	Marketing
22	Joshua	No Gender	3/8/2012	1:58 AM	90816	18.816	True	Client Services
23	NaN	Male	6/14/2012	4:19 PM	125792	5.042	NaN	NaN
24	John	Male	7/1/1992	10:08 PM	97950	13.873	False	Client Services

In [7]:

df.replace(to_replace = np.nan, value = -99)

Out[7]:

ı	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing

_							_	
Team	Senior Management True	Bonus %	Salary 61933	Last Login Time 6:53 AM	Start Date 3/31/1996	Gender Male	First Name Thomas	1
Finance	False	11.858	130590	11:17 AM	4/23/1993	Female	Maria	2
Finance	True	9.340	138705	1:00 PM	3/4/2005	Male	Jerry	3
Client Services	True	1.389	101004	4:47 PM	1/24/1998	Male	Larry	4
Distribution	False	16.655	132483	6:09 AM	11/23/2014	No Gender	Henry	995
Finance	False	19.675	42392	6:30 AM	1/31/1984	Male	Phillip	996
Product	False	1.421	96914	12:39 PM	5/20/2013	Male	Russell	997
Business Development	False	11.985	60500	4:45 PM	4/20/2013	Male	Larry	998
Sales	True	10.169	129949	6:24 PM	5/15/2012	Male	Albert	999

1000 rows × 8 columns

```
In [8]:
```

Out[8]:

```
        A
        B
        C
        D

        0
        12.0
        NaN
        20.0
        14.0

        1
        4.0
        2.0
        16.0
        3.0

        2
        5.0
        54.0
        NaN
        NaN

        3
        NaN
        3.0
        3.0
        NaN

        4
        1.0
        NaN
        8.0
        6.0
```

In [9]:

```
df.interpolate(method ='linear', limit_direction ='forward')
```

Out[9]:

	A	В	С	D
0	12.0	NaN	20.0	14.0
1	4.0	2.0	16.0	3.0
2	5.0	54.0	9.5	4.0
3	3.0	3.0	3.0	5.0
4	1.0	3.0	8.0	6.0

In [10]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np
```

Out[10]:

	First Score	Second Score	Third Score	Fourth Score
0	100.0	30.0	52	NaN
1	90.0	NaN	40	NaN
2	NaN	45.0	80	NaN
3	95.0	56.0	98	65.0

In [11]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score': [100, 90, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score': [52, 40, 80, 98],
    'Fourth Score': [np.nan, np.nan, np.nan, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)

# using dropna() function
df.dropna()
```

Out[11]:

First Score Second Score Third Score Fourth Score 3 95.0 56.0 98 65.0

In [12]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[np.nan, np.nan, np.nan, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
```

Out[12]:

0	First Score	Second Score	Third Score	Fourth Score
1	NaN	NaN	NaN	NaN
2	NaN	45.0	80.0	NaN
3	95.0	56.0	98.0	65.0

In [14]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[np.nan, np.nan, np.nan, 65]}

df = pd.DataFrame(dict)

# using dropna() function
df.dropna(how = 'all')
```

Out[14]:

	First Score	Second Score	Third Score	Fourth Score
0	100.0	30.0	52.0	NaN
2	NaN	45.0	80.0	NaN
3	95.0	56.0	98.0	65.0

In [15]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[60, 67, 68, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
df
```

Out[15]:

	First Score	Second Score	Third Score	Fourth Score
0	100.0	30.0	52.0	60
1	NaN	NaN	NaN	67
2	NaN	45.0	80.0	68
3	95.0	56.0	98.0	65

In [16]:

```
# importing pandas as pd
import pandas as pd
# importing numpy as np
```

```
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[60, 67, 68, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)

# using dropna() function
df.dropna(axis = 1)
```

Out[16]:

Four	th Score
0	60
1	67
2	68
3	65

In [17]:

```
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"
data = pd.read_csv(path)

# making new data frame with dropped NA values
new_data = data.dropna(axis = 0, how ='any')
new_data
```

Out[17]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
5	Dennis	Male	4/18/1987	1:35 AM	115163	10.125	False	Legal
994	George	Male	6/21/2013	5:47 PM	98874	4.479	True	Marketing
996	Phillip	Male	1/31/1984	6:30 AM	42392	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949	10.169	True	Sales

764 rows × 8 columns

In [18]:

```
print("Old data frame length:", len(data))
print("New data frame length:", len(new_data))
print("Number of rows with at least 1 NA value: ", (len(data)-len(new_data)))

Old data frame length: 1000
New data frame length: 764
Number of rows with at least 1 NA value: 236
```

In [19]:

```
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read_csv(path)
print(df)
    Rollno Marks Gender
                             Age
                                   PhD
0
            140.0
                            47.0
         1
                                   Yes
1
         2
             30.0
                            65.0
                                  Yes
             35.1
2
         3
                         0
                            56.0
                                    No
3
         4
             30.0
                            23.0
                         1
                                    No
         5
4
             80.0
                         0
                                  Yes
                             NaN
              . . .
95
        96
             18.6
                         1
                            26.0
                                    No
96
        97
            152.0
                         1
                            56.0
                                   Yes
97
        98
              1.8
                         1
                            28.0
98
        99
             35.0
                         0
                            44.0
                                   NaN
99
       100
              4.0
                         0
                            24.0
[100 rows x 5 columns]
In [20]:
df.shape
Out[20]:
(100, 5)
In [21]:
print(df.isnull().sum())
Rollno
           0
           0
Marks
           0
Gender
Age
          16
PhD
          13
dtype: int64
In [22]:
df.dropna(inplace=True)
print(df.isnull().sum())
Rollno
          0
Marks
          0
Gender
          0
Age
          0
PhD
          0
dtype: int64
In [24]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
    Rollno Marks Gender
                                   PhD
                             Age
0
            140.0
                            47.0
         1
                         1
                                   Yes
         2
             30.0
                         0
                            65.0
1
                                   Yes
2
         3
             35.1
                         0
                            56.0
                                    No
3
             30.0
         4
                         1
                            23.0
                                    No
         5
4
             80.0
                         0
                             NaN
                                   Yes
               . . .
       . . .
                              . . .
. .
95
        96
             18.6
                            26.0
                         1
                                    No
96
        97
            152.0
                         1
                            56.0
                                   Yes
97
        98
              1.8
                         1
                            28.0
                                   No
98
        99
             35.0
                         0
                            44.0
                                   NaN
99
       100
                         0
                            24.0
              4.0
                                    No
[100 rows x 5 columns]
```

```
In [25]:
df["Age"] = df["Age"].replace(np.NaN, df["Age"].mean())
print(df["Age"][:10])
0
    47.000000
1
     65.000000
2
     56.000000
3
     23.000000
4
    47.821429
5
     27.000000
6
    53.000000
7
    47.821429
8
    44.000000
9
    63.000000
Name: Age, dtype: float64
In [26]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
    Rollno Marks Gender
                           Age
                                 PhD
           140.0
0
                    1 47.0
       1
                                 Yes
1
         2
            30.0
                        0 65.0
                                Yes
2
        3
            35.1
                       0
                          56.0
3
        4
             30.0
                       1 23.0
                                 No
4
        5
           80.0
                       0
                          NaN Yes
. .
       . . .
             . . .
                      . . .
                           . . .
                      1 26.0
95
       96
           18.6
                                 No
       97 152.0
96
                       1 56.0 Yes
97
                       1 28.0
       98
            1.8
                                 No
98
       99
           35.0
                      0 44.0 NaN
99
      100
            4.0
                       0 24.0
[100 rows x 5 columns]
In [28]:
df["Age"] = df["Age"].replace(np.NaN, df["Age"].median())
print(df["Age"][:10])
0
     47.0
1
     65.0
2
     56.0
3
     23.0
    50.0
4
    27.0
5
6
    53.0
7
    50.0
8
    44.0
9
    63.0
Name: Age, dtype: float64
In [29]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
    Rollno Marks Gender
                          Age
                                 PhD
0
        1
           140.0
                       1
                          47.0
            30.0
                        0 65.0
1
         2
                                Yes
2
        3
            35.1
                       0 56.0
                                 No
3
        4
            30.0
                       1 23.0
                                 No
4
        5
           80.0
                       0 NaN Yes
             . . .
95
       96
            18.6
                      1 26.0
                                No
```

```
96
        97
           152.0
                       1 56.0
                                Yes
97
        98
            1.8
                       1 28.0
                                No
98
       99
            35.0
                       0 44.0 NaN
99
      100
            4.0
                       0 24.0
                                No
[100 rows x 5 columns]
In [30]:
import statistics
df["Age"] = df["Age"].replace(np.NaN, statistics.mode(df["Age"]))
print(df["Age"][:10])
0
     47.0
1
     65.0
2
    56.0
3
    23.0
4
    65.0
5
    27.0
6
    53.0
7
    65.0
8
    44.0
9
    63.0
Name: Age, dtype: float64
In [31]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
   Rollno Marks Gender
                          Age PhD
0
       1 140.0
                  1 47.0
                                Yes
1
         2 30.0
                       0 65.0
                               Yes
2
        3 35.1
                       0 56.0
                                No
3
        4 30.0
                       1 23.0
                                No
4
        5 80.0
                      0
                          NaN Yes
. .
       . . .
            . . .
                      . . .
                           . . .
                                 . . .
95
      96 18.6
                      1 26.0
                                No
96
      97 152.0
                       1 56.0
                               Yes
97
       98
                       1 28.0
            1.8
                                No
98
       99
            35.0
                       0 44.0
                                NaN
                      0 24.0
      100
99
            4.0
                                No
[100 rows x 5 columns]
In [32]:
df.isnull().sum()
Out[32]:
Rollno
           0
Marks
           0
Gender
           0
Age
          16
PhD
          13
dtype: int64
In [33]:
df["PhD"] = df["PhD"].fillna('U')
df.isnull().sum()
Out[33]:
Rollno
           0
Marks
           0
Gender
           0
Age
          16
PhD
           0
d+ + + + 61
```

```
acype: Incoa
In [34]:
print(df)
   Rollno Marks Gender
                          Age
                                PhD
          140.0
                       1 47.0
                                Yes
        1
1
        2
            30.0
                       0 65.0 Yes
2
        3
           35.1
                       0 56.0
                                No
3
        4
            30.0
                       1 23.0
                                No
4
        5
           80.0
                       0
                          NaN Yes
             . . .
                       1 26.0
95
       96
            18.6
                                 No
                         56.0
96
       97
          152.0
                       1
                               Yes
                         28.0
97
       98
             1.8
                       1
98
        99
            35.0
                       0
                          44.0
                                 U
99
      100
             4.0
                       0 24.0
                                 No
[100 rows x 5 columns]
In [35]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
dataset = pd.read csv(path)
#LOCF - last observation carried forward
dataset["Age"] = dataset["Age"].fillna(method ='ffill')
dataset.isnull().sum()
print(dataset)
   Rollno Marks Gender
                                PhD
                         Age
0
        1
          140.0
                       1
                         47.0
                                Yes
1
        2
            30.0
                       0
                         65.0
                                Yes
            35.1
2
        3
                       0 56.0
                                No
3
        4
            30.0
                       1 23.0
                                No
        5 80.0
                      0 23.0 Yes
4
            . . .
95
       96
           18.6
                      1 26.0
                                No
96
       97 152.0
                       1 56.0 Yes
97
       98
            1.8
                      1 28.0
                                No
98
        99
           35.0
                      0 44.0 NaN
                      0 24.0
99
      100
             4.0
                                No
[100 rows x 5 columns]
In [36]:
import pandas as pd
import numpy as np
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
dataset = pd.read csv(path)
#interpolation - linear
dataset["Age"] = dataset["Age"].interpolate(method='linear', limit direction='forward',
axis=0)
print(dataset)
dataset.isnull().sum()
   Rollno Marks Gender
                          Age PhD
0
           140.0
                      1 47.0
        1
                                Yes
1
        2
            30.0
                       0
                          65.0
                                Yes
2
        3
            35.1
                       0
                         56.0
                                 No
3
        4
            30.0
                       1
                          23.0
                                 No
        \sqsubseteq
                          25 0
```

0 0 0

 \cap

Vaa

```
. . .
            . . .
                    ... ... ...
. .
                    1 26.0
9.5
     96 18.6
                               No
                     1 56.0 Yes
96
      97 152.0
                     1 28.0 No
97
      98 1.8
98
      99 35.0
                     0 44.0 NaN
99
     100 4.0
                     0 24.0 No
[100 rows x 5 columns]
Out[36]:
Rollno
         0
Marks
Gender
Age
     13
PhD
dtype: int64
In [37]:
#for knn imputation - we need to remove normalize the data and categorical data we need t
o convert
cat variables = dataset[['PhD']]
cat dummies = pd.get dummies(cat variables, drop first=True)
cat dummies.head()
dataset = dataset.drop(['PhD'], axis=1)
dataset = pd.concat([dataset, cat dummies], axis=1)
dataset.head()
#removing unwanted features
dataset = dataset.drop(['Gender'], axis=1)
dataset.head()
#scaling mandatory before knn
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
dataset = pd.DataFrame(scaler.fit transform(dataset), columns = dataset.columns)
dataset.head()
#knn imputer
from sklearn.impute import KNNImputer
imputer = KNNImputer(n neighbors=3)
dataset = pd.DataFrame(imputer.fit transform(dataset),columns = dataset.columns)
#checking for missing
dataset.isnull().sum()
Out[37]:
Rollno
Marks
Age
          0
PhD Yes
         0
dtype: int64
In [2]:
import pandas as pd
import numpy as np
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
dataset = pd.read_csv(path)
print(dataset)
   Rollno Marks Gender Age PhD
          140.0 1 47.0 Yes
0
       1
                      0 65.0 Yes
1
           30.0
       3
           35.1
                      0 56.0
2
                     1 23.0 No
0 NaN Yes
           30.0
3
        4
4
       5 80.0
            . . .
      . . .
                    . . .
                         18.6 1 26.0
     96
95
          18.0
```

No

F C O

 \sim \neg

0 23.0 169

J 0U.U

4

```
1 56.U Yes
96
       9/ 152.0
97
       98
          1.8
                      1 28.0
98
      99 35.0
                     0 44.0 NaN
99
     100 4.0
                     0 24.0
                              No
[100 rows x 5 columns]
In [39]:
dataset["PhD"].isnull()
Out[39]:
0
     False
1
     False
2
     False
3
     False
4
     False
     . . .
95
     False
96
     False
97
     False
98
      True
99
     False
Name: PhD, Length: 100, dtype: bool
In [40]:
# Detecting numbers
cnt=0
for row in dataset['PhD']:
   try:
       int(row)
       dataset.loc[cnt, 'PhD']=np.nan
    except ValueError:
       pass
    cnt+=1
In [41]:
dataset["PhD"].isnull()
print(dataset)
   Rollno Marks Gender Age PhD
0
       1 140.0
                  1 47.0 Yes
1
        2 30.0
                      0 65.0 Yes
2
        3 35.1
                     0 56.0
                               No
3
        4 30.0
                      1 23.0
                               No
       5 80.0
                         NaN Yes
4
                     0
            . . .
          18.6
                     1 26.0
95
       96
                                No
                      1 56.0
96
       97
          152.0
                              Yes
                      1 28.0
97
       98
            1.8
                      0 44.0 NaN
98
       99
           35.0
99
     100
            4.0
                      0 24.0
[100 rows x 5 columns]
In [4]:
dataset.skew(axis=0)
Out[4]:
        0.00000
Rollno
Marks
         1.077026
Gender
         0.000000
       -0.236916
Age
dtype: float64
In [5]:
import seaborn as sn
```

```
sn.distplot(dataset["Marks"])
D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning
: `distplot` is a deprecated function and will be removed in a future version. Please ada
pt your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
Out[5]:
<AxesSubplot:xlabel='Marks', ylabel='Density'>
  0.012
  0.010
  0.008
  0.006
  0.004
  0.002
  0.000
       -50
                    50
                          100
                                 150
                                       200
                                              250
                         Marks
In [6]:
np.log(1.077026)
Out[6]:
0.07420353901563533
In [7]:
log Marks=np.log(dataset["Marks"])
In [8]:
log_Marks.head()
Out[8]:
0
    4.941642
     3.401197
1
2
     3.558201
3
     3.401197
4
     4.382027
Name: Marks, dtype: float64
In [9]:
log Marks.skew()
Out[9]:
-1.3980101345258154
In [10]:
import seaborn as sn
sn.distplot(log Marks)
D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning
: `distplot` is a deprecated function and will be removed in a future version. Please ada
pt your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
Out[10]:
```

<AxesSubplot:xlabel='Marks', ylabel='Density'>

In [11]:

```
log_Marks_sq=np.sqrt(dataset["Marks"])
```

In [12]:

```
log_Marks_sq.head()
```

Out[12]:

```
0 11.832160
1 5.477226
2 5.924525
3 5.477226
4 8.944272
```

Name: Marks, dtype: float64

In [13]:

```
log_Marks_sq.skew()
```

Out[13]:

0.21202620353224017

In [14]:

```
import seaborn as sn
sn.distplot(log_Marks_sq)
```

D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please ada pt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[14]:

<AxesSubplot:xlabel='Marks', ylabel='Density'>

Marks In [15]: log Marks cb=np.cbrt(dataset["Marks"]) In [16]: log_Marks_cb.head() Out[16]: 0 5.192494 1 3.107233 2 3.274179 3 3.107233 4 4.308869 Name: Marks, dtype: float64 In [17]: log Marks cb.head() Out[17]: 0 5.192494 1 3.107233 2 3.274179 3 3.107233 4 4.308869 Name: Marks, dtype: float64 In [18]: log Marks cb.skew() Out[18]: -0.18525230594632391 In [19]: import seaborn as sn sn.distplot(log_Marks_cb) D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning : `distplot` is a deprecated function and will be removed in a future version. Please ada pt your code to use either `displot` (a figure-level function with similar flexibility) o r `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) Out[19]: <AxesSubplot:xlabel='Marks', ylabel='Density'> 0.35 0.30 0.25 0.20 0.15 0.15

In [21]:

0.10

0.05

0.00

3

Marks

5

```
Marks reci=np.reciprocal(dataset["Marks"])
In [22]:
Marks reci.head()
Out[22]:
0
     0.007143
1
     0.033333
2
     0.028490
3
     0.033333
4
     0.012500
Name: Marks, dtype: float64
In [23]:
import seaborn as sn
sn.distplot(Marks reci)
D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning
: `distplot` is a deprecated function and will be removed in a future version. Please ada
pt your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
Out[23]:
<AxesSubplot:xlabel='Marks', ylabel='Density'>
  10
   8
Density
   6
   4
   2
                                ż
                       Marks
In [24]:
Marks reci.skew()
Out[24]:
9.14246062263327
In [25]:
import matplotlib.pyplot as plt
his Marks cplt=plt.hist(dataset["Marks"])
 25
 20
 15
```

10

5

```
0 25 50 75 100 125 150 175
```

In [26]:

```
plot marks=sn.kdeplot(dataset["Marks"])
```


In [27]:

```
import scipy.stats as stats
import pylab
```

In [28]:

```
stats.probplot(dataset["Marks"],plot=pylab)
```

Out[28]:

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
         -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
         -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
         -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
         -0.82012357, -0.78564937, -0.75208458, -0.71934648, -0.68736185,
         -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
         -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
         -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
         -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
         -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
          0.01248789,
                       0.03747145,
                                     0.06247843,
                                                   0.08752455,
                                                                 0.1126257
          0.13779803,
                       0.16305799,
                                                   0.21390872,
                                      0.18842244,
                                                                  0.23953472,
          0.26531902,
                        0.29128096,
                                      0.31744076,
                                                   0.34381966,
                                                                  0.37044003,
                        0.42450149,
                                      0.45199463,
                                                   0.47983378,
          0.39732558,
                                                                  0.50804994,
                                                                  0.65606548,
          0.53667655,
                        0.56574992,
                                      0.59530962,
                                                   0.62539893,
          0.68736185,
                        0.71934648,
                                      0.75208458,
                                                    0.78564937,
                                                                  0.82012357,
          0.85560121,
                        0.89218993,
                                      0.93001393,
                                                    0.96921765,
                                                                  1.00997067,
          1.05247413,
                        1.09696931,
                                      1.14374949,
                                                    1.19317644,
                                                                  1.24570419,
          1.30191411,
                                      1.42869743,
                                                    1.50174123,
                        1.36256869,
                                                                  1.58381122,
                                                                  2.46203784]),
          1.67819304,
                        1.79044653,
                                      1.93122778,
                                                    2.12570747,
                    1.7 ,
                            1.8 ,
                                     2.5 ,
                                             3. ,
 array([ 0.25,
                                                      3.
                                                               4.
                                                                       4.6 ,
                                             9.5 ,
                                                     10.
           7.
                    9.
                            9.
                                     9.
                                                              12.
                                                                      14.7 ,
                                    16.
                                                                      20.
          15.
                   15.
                           15.2 ,
                                            18.6 ,
                                                     19.
                                                              20.
                  20.
                           22.
                                            24.
                                                     25.
          20.
                                    22.3
                                                              25.
                                                                      25.8
                                            30.
                                                     30.
          28.
                   28.6
                           30.
                                    30.
                                                              30.
                                                                      31.1
                                    35.
                                            35.
                                                     35.
          32.
                   32.
                           34.8
                                                              35.1
                                                                      36.
                                    40.
          38.
                   38.8
                           39.8
                                            40.7
                                                     41.
                                                              45.6
                                                                      46.
                           51.
                                    52.
                                            52.
                                                     52.
          48.
                   50.
                                                              55.
                                                                      55.
          55.
                   60.
                           62.
                                    63.
                                            65.
                                                     66.
                                                              72.
                                                                      72.
          72.
                   73.
                           74.
                                    80.
                                            81.
                                                     84.
                                                              84.
                                                                      89.
                                    90.
                                            92.
                                                     96.
          89.
                   90.
                           90.
                                                            100.
                                                                     102.
                        , 120.
         106.
                 115.
                                , 125.
                                          130.
                                                  , 130.
                                                           , 140.
                                                                   , 150.
         152.
                        , 160.
                                 , 190.
                , 152.
                                         ])),
 (40.79054296233955, 52.5244999999999, 0.9515395328716016))
```


In [29]:

stats.probplot(log Marks cb,plot=pylab)

```
Out[29]:
```

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
                -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
                -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
                -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
                -0.82012357, \ -0.78564937, \ -0.75208458, \ -0.71934648, \ -0.68736185, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.8
                -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
                -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
                -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
                -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
                -0.1126257 , -0.08752455, -0.06247843, -0.03747145, -0.01248789,
                                                                                          0.08752455,
                  0.01248789,
                                         0.03747145,
                                                                  0.06247843,
                                                                                                                 0.1126257 ,
                  0.13779803,
                                          0.16305799,
                                                                  0.18842244,
                                                                                           0.21390872,
                                                                                                                   0.23953472,
                  0.26531902,
                                          0.29128096,
                                                                  0.31744076,
                                                                                           0.34381966,
                                                                                                                   0.37044003,
                  0.39732558,
                                          0.42450149,
                                                                  0.45199463,
                                                                                           0.47983378,
                                                                                                                   0.50804994,
                                          0.56574992,
                                                                  0.59530962,
                                                                                           0.62539893,
                                                                                                                   0.65606548,
                  0.53667655,
                                                                  0.75208458,
                                                                                           0.78564937,
                  0.68736185,
                                          0.71934648,
                                                                                                                   0.82012357,
                  0.85560121,
                                          0.89218993,
                                                                  0.93001393,
                                                                                           0.96921765,
                                                                                                                   1.00997067,
                                                                  1.14374949,
                                                                                           1.19317644,
                  1.05247413,
                                          1.09696931,
                                                                                                                   1.24570419,
                                                                                           1.50174123,
                                          1.36256869,
                                                                  1.42869743,
                                                                                                                   1.58381122,
                  1.30191411,
                                          1.79044653,
                                                                  1.93122778,
                                                                                           2.12570747,
                                                                                                                   2.46203784]),
                  1.67819304,
   array([0.62996052, 1.19348319, 1.2164404 , 1.35720881, 1.44224957,
                1.44224957, 1.58740105, 1.6631035 , 1.91293118, 2.08008382, 2.08008382, 2.11791179, 2.15443469, 2.28942849,
                2.44965982, 2.46621207, 2.46621207, 2.47712466, 2.5198421
                2.64954306, 2.66840165, 2.71441762, 2.71441762, 2.71441762,
                2.71441762, 2.80203933, 2.81471841, 2.88449914, 2.92401774,
                2.92401774, 2.95488036, 3.03658897, 3.05812578, 3.10723251,
                3.10723251, 3.10723251, 3.10723251, 3.10723251, 3.14475486,
                3.1748021 , 3.1748021 , 3.2648238 , 3.27106631, 3.27106631,
                3.27106631, 3.27417865, 3.30192725, 3.36197541, 3.38540456,
                3.41424245, 3.41995189, 3.43978636, 3.44821724, 3.57263198,
                3.58304787, 3.63424119, 3.6840315 , 3.70842977, 3.73251116,
                3.73251116, 3.73251116, 3.80295246, 3.80295246, 3.80295246,
                3.91486764, 3.95789161, 3.97905721, 4.02072576, 4.04124002,
                4.16016765, 4.16016765, 4.16016765, 4.1793392 , 4.19833645,
                4.30886938, 4.32674871, 4.37951914, 4.37951914, 4.4647451 ,
                4.4647451 , 4.48140475, 4.48140475, 4.48140475, 4.51435744,
                4.57885697, 4.64158883, 4.67232873, 4.73262349, 4.86294413,
                                                         , 5.06579702, 5.06579702, 5.1924941 ,
                4.93242415, 5.
                5.31329285, 5.3368033 , 5.3368033 , 5.42883523, 5.74889708])),
 (1.0964930316814503, 3.441077741563151, 0.9963217176950497))
```



```
2 - 1 0 1 2 Theoretical quantiles
```

In [30]:

stats.probplot(log Marks sq,plot=pylab)

```
Out[30]:
```

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
         -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
         -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
         -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
         -0.82012357, -0.78564937, -0.75208458, -0.71934648, -0.68736185,
         -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
         -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
         -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
         -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
         -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
          0.01248789,
                        0.03747145,
                                     0.06247843,
                                                   0.08752455,
                                                                 0.1126257 ,
          0.13779803,
                        0.16305799,
                                     0.18842244,
                                                   0.21390872,
                                                                 0.23953472,
          0.26531902,
                        0.29128096,
                                     0.31744076,
                                                   0.34381966,
                                                                 0.37044003,
          0.39732558,
                        0.42450149,
                                     0.45199463,
                                                   0.47983378,
                                                                 0.50804994,
                        0.56574992,
                                     0.59530962,
          0.53667655,
                                                   0.62539893,
                                                                 0.65606548,
                        0.71934648,
                                     0.75208458,
                                                   0.78564937,
                                                                 0.82012357,
          0.68736185,
                                                   0.96921765,
          0.85560121,
                        0.89218993,
                                     0.93001393,
                                                                 1.00997067,
          1.05247413,
                        1.09696931,
                                     1.14374949,
                                                   1.19317644,
                                                                 1.24570419,
          1.30191411,
                        1.36256869,
                                     1.42869743,
                                                   1.50174123,
                                                                 1.58381122,
          1.67819304,
                        1.79044653,
                                     1.93122778,
                                                   2.12570747,
                                                                 2.46203784]),
 array([ 0.5
                        1.30384048,
                                     1.34164079,
                                                   1.58113883,
                                                                 1.73205081,
          1.73205081,
                        2.
                                     2.14476106,
                                                   2.64575131,
                        3.
                                                                 3.46410162,
          3.
                                     3.082207
                                                   3.16227766,
          3.8340579 ,
                        3.87298335,
                                     3.87298335,
                                                   3.89871774,
                                                                 4 .
          4.31277173,
                        4.35889894,
                                     4.47213595,
                                                   4.47213595,
                                                                 4.47213595,
                                                   4.89897949,
                                                                 5.
          4.47213595,
                        4.69041576,
                                      4.72228758,
                        5.07937004,
                                                                 5.47722558,
                                     5.29150262,
                                                   5.34789678,
          5.47722558,
                        5.47722558,
                                     5.47722558,
                                                   5.47722558,
                                                                 5.5767374
          5.65685425,
                        5.65685425,
                                     5.89915248,
                                                   5.91607978,
                                                                 5.91607978.
          5.91607978,
                        5.9245253 ,
                                     6.
                                                   6.164414
                                                                 6.2289646 ,
          6.30872412,
                        6.32455532,
                                     6.37965516,
                                                   6.40312424,
                                                                 6.75277721,
          6.78232998,
                        6.92820323,
                                     7.07106781,
                                                   7.14142843,
                                                                 7.21110255,
                        7.21110255,
                                     7.41619849,
          7.21110255,
                                                   7.41619849,
                                                                 7.41619849,
          7.74596669,
                        7.87400787,
                                     7.93725393,
                                                   8.06225775,
                                                                 8.1240384 ,
          8.48528137,
                        8.48528137,
                                     8.48528137,
                                                   8.54400375,
                                                                 8.60232527,
                        9.
          8.94427191,
                                     9.16515139,
                                                   9.16515139,
                                                                 9.43398113,
          9.43398113,
                        9.48683298,
                                     9.48683298,
                                                   9.48683298,
                                                                 9.59166305,
          9.79795897, 10.
                                  , 10.09950494, 10.29563014, 10.72380529,
         10.95445115, 11.18033989, 11.40175425, 11.40175425, 11.83215957,
         12.24744871, 12.32882801, 12.32882801, 12.64911064, 13.78404875])),
 (2.983044720739973, 6.6254088687442305, 0.9951899042212309))
```


In [31]:

```
stats.probplot(Marks reci,plot=pylab)
```

```
Out[31]:
```

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
         -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
        -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
        -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
        -0.82012357, \ -0.78564937, \ -0.75208458, \ -0.71934648, \ -0.68736185,
        -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
        -0.50804994, \ -0.47983378, \ -0.45199463, \ -0.42450149, \ -0.39732558,
        -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
        -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
        -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
         0.01248789, 0.03747145, 0.06247843, 0.08752455,
                                                             0.1126257 ,
         0.13779803, 0.16305799, 0.18842244,
                                                0.21390872,
                                                              0.23953472,
                                                              0.37044003,
         0.26531902,
                      0.29128096,
                                   0.31744076,
                                                 0.34381966,
         0.39732558,
                      0.42450149,
                                   0.45199463,
                                                 0.47983378,
                                                              0.50804994,
                      0.56574992,
                                   0.59530962,
                                                 0.62539893,
         0.53667655,
                                                              0.65606548,
         0.68736185,
                      0.71934648,
                                    0.75208458,
                                                 0.78564937,
                                                              0.82012357,
         0.85560121,
                      0.89218993,
                                    0.93001393,
                                                 0.96921765,
                                                              1.00997067,
         1.05247413,
                      1.09696931,
                                    1.14374949,
                                                 1.19317644,
                                                              1.24570419,
         1.30191411,
                      1.36256869,
                                    1.42869743,
                                                 1.50174123,
                                                              1.58381122,
         1.67819304,
                      1.79044653,
                                   1.93122778,
                                                 2.12570747,
                                                              2.46203784]),
                              , 0.00657895, 0.00657895, 0.00666667,
 array([0.00526316, 0.00625
                                                      , 0.00833333,
         0.00714286, 0.00769231, 0.00769231, 0.008
                                                       , 0.01041667,
        0.00869565, 0.00943396, 0.00980392, 0.01
        0.01086957, 0.011111111, 0.011111111, 0.011111111, 0.01123596,
        0.01123596, 0.01190476, 0.01190476, 0.01234568, 0.0125
        0.01351351, 0.01369863, 0.01388889, 0.01388889, 0.01388889,
        0.01515152, 0.01538462, 0.01587302, 0.01612903, 0.01666667,
        0.01818182, 0.01818182, 0.01818182, 0.01923077, 0.01923077,
        0.01923077, 0.01960784, 0.02
                                           , 0.02083333, 0.02173913,
        0.02192982, 0.02439024, 0.02457002, 0.025
                                                       , 0.02512563,
        0.0257732 , 0.02631579, 0.02777778, 0.02849003, 0.02857143,
        0.02857143, 0.02857143, 0.02873563, 0.03125
                                                      , 0.03125
        0.03215434, 0.03333333, 0.03333333, 0.03333333, 0.03333333,
        0.03333333, 0.03496503, 0.03571429, 0.03875969, 0.04
                   , 0.04166667, 0.04484305, 0.04545455, 0.05
        0.04
                                          , 0.05263158, 0.05376344,
                   , 0.05
        0.05
                               , 0.05
        0.0625
                   , 0.06578947, 0.06666667, 0.06666667, 0.06802721,
        0.08333333, 0.1
                               , 0.10526316, 0.111111111, 0.111111111,
                                                      , 0.33333333,
        0.111111111, 0.14285714, 0.2173913 , 0.25
                               , 0.55555556, 0.58823529, 4.
         0.33333333, 0.4
                                                                    ])),
 (0.16654238388625658, 0.0958160800017085, 0.4031270817229625))
```


In [32]:

```
stats.probplot(log_Marks,plot=pylab)
```

Out[32]:

```
 \hbox{((array([-2.46203784,\ -2.12570747,\ -1.93122778,\ -1.79044653,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1
```

```
-1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
        -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
        -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
        -0.82012357, -0.78564937, -0.75208458, -0.71934648, -0.68736185,
        -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
        -0.50804994, \ -0.47983378, \ -0.45199463, \ -0.42450149, \ -0.39732558,
        -0.37044003, \ -0.34381966, \ -0.31744076, \ -0.29128096, \ -0.26531902,
        -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
        -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
         0.01248789, 0.03747145,
                                   0.06247843,
                                                 0.08752455,
                                                               0.1126257 ,
         0.13779803,
                      0.16305799,
                                    0.18842244,
                                                  0.21390872,
                                                                0.23953472,
                      0.29128096,
                                    0.31744076,
                                                  0.34381966,
                                                                0.37044003,
         0.26531902,
         0.39732558,
                      0.42450149,
                                    0.45199463,
                                                  0.47983378,
                                                                0.50804994,
                      0.56574992,
                                    0.59530962,
                                                  0.62539893,
                                                                0.65606548,
         0.53667655,
         0.68736185,
                      0.71934648,
                                    0.75208458,
                                                  0.78564937,
                                                                0.82012357,
         0.85560121,
                      0.89218993,
                                    0.93001393,
                                                  0.96921765,
                                                                1.00997067,
         1.05247413,
                      1.09696931,
                                    1.14374949,
                                                  1.19317644,
                                                                1.24570419,
         1.30191411,
                      1.36256869,
                                    1.42869743,
                                                  1.50174123,
                                                                1.58381122,
         1.67819304,
                      1.79044653,
                                    1.93122778,
                                                  2.12570747,
                                                                2.46203784]),
                                    0.58778666,
array([-1.38629436,
                      0.53062825,
                                                  0.91629073,
                                                                1.09861229,
                                                                2.19722458,
         1.09861229,
                      1.38629436,
                                    1.5260563 ,
                                                  1.94591015,
                                    2.2512918 ,
                                                  2.30258509,
         2.19722458,
                      2.19722458,
                                                                2.48490665,
                                    2.7080502 ,
                                                  2.72129543,
         2.68784749,
                      2.7080502 ,
                                                                2.77258872,
         2.92316158,
                      2.94443898,
                                    2.99573227,
                                                  2.99573227,
                                                                2.99573227,
                                    3.10458668,
                                                  3.17805383,
         2.99573227,
                       3.09104245,
                                                                3.21887582,
         3.21887582,
                       3.25037449,
                                    3.33220451,
                                                  3.35340672,
                                                                3.40119738,
         3.40119738,
                      3.40119738,
                                    3.40119738,
                                                  3.40119738,
                                                                3.43720782,
         3.4657359 ,
                      3.4657359 ,
                                    3.54961739,
                                                  3.55534806,
                                                                3.55534806,
         3.55534806,
                      3.55820113,
                                    3.58351894,
                                                  3.63758616,
                                                                3.65842025,
         3.68386691,
                      3.68887945,
                                    3.70622809,
                                                  3.71357207,
                                                                3.81990772,
         3.8286414 ,
                      3.87120101,
                                    3.91202301,
                                                  3.93182563,
                                                                3.95124372,
         3.95124372,
                      3.95124372,
                                    4.00733319,
                                                  4.00733319,
                                                                4.00733319,
         4.09434456,
                      4.12713439,
                                    4.14313473,
                                                  4.17438727,
                                                                4.18965474,
         4.27666612,
                      4.27666612,
                                    4.27666612,
                                                  4.29045944,
                                                                4.30406509,
                      4.39444915,
                                    4.4308168 ,
                                                  4.4308168 ,
                                                                4.48863637,
         4.38202663,
                                    4.49980967,
                                                  4.49980967,
         4.48863637,
                      4.49980967,
                                                                4.52178858,
         4.56434819,
                      4.60517019,
                                    4.62497281,
                                                  4.66343909,
                                                                4.74493213,
                                    4.86753445,
                                                  4.86753445,
         4.78749174,
                      4.82831374,
                                                                4.94164242,
                                                  5.07517382,
         5.01063529,
                       5.02388052,
                                    5.02388052,
                                                                5.24702407])),
(1.1033972747040552, 3.522558182933606, 0.9494491339528739))
```


Group - A

Practical No. 3

Title:= Descriptive Statistics - Measures of Central
Tendency and variability.

* Date of Completion :=

Objective: To display some basic statistical details and provide summary of statistics.

Problem Statement: Perform the following operations on any open source dataset (eg: data.csv).

i) Provide summary statistics (mean, median, minimum, maximum, standard deviation) for a dataset (age, income, etc.) with numeric value grouped by one of qualitative (categorical) variable. For example, if your categorical variable is age groups and

quantitative variable is income, then provide summary statistics of income grouped by age groups. Create a list that contains a numeric value for each

response to the categorical variable.

Write a python program to display some basic statistical details like percentile, mean, standard deviation etc. of the species of 'Iris-setosce', 'Iris-versicolor' and 'Iris-versicolor' of iris-csv dataset.

	Page No. Date
A	Software and Mardware Requirements := Python, dataset.
	Theory:= Measures of central tendency:-
	1) Mean
	2) Median
	3) Mode.
. \	
A,	Mean: It is average of sample values in a given
-	alasel.
	$\bar{X} = \frac{\hat{\Sigma}}{\hat{\Sigma}} Xi$, $\bar{X} = \hat{\Sigma} Xi$, \bar
B	Median: - It is the value separating higher half from
	Median: - It is the value separating higher half from lower half of data sample, population or a probability distribution.
	probability distribution.
C	Mode: - It is the value that occurs most
	fre quently in the set. It is possible for greatest
	frequency to correspond to several different values which voutes in more than one mode.
-	Writer 1900) I'L Way 2 10 au 17 110 ac.
7)	Standard Deviation: It is the measure of how spread
	out the data is. The way to calculate, it
	is to compute the squares of distance from
	euch data point to mean of set. Add them all
	up, divide by n-1, and then take square root
	Standard Deviation: It is the measure of how spread out the data is. The way to calculate, it is to compute the squares of distance from each data point to mean of set. Add them all up, divide by n-1, and then take square root. S: \(\begin{align*} \frac{\pi}{(\pi_i - \pi_j)^2} \\ \frac{\pi}{(\pi_i - \pi_j)^2} \\ \end{align*}
	Teacher's Signature

	Page No. Date
м	Claim the statistics and
₩.	Conclusion := We have provided summary statistics and displayed statistical details.
)	The state of the s
	The state of the second
3	