Understanding Resilience of Vision-Based Navigation

Joshua Chiu

Drones in Real World

- Zipline: Delivering blood by drone (Rwanda)
- Meituan: Delivering takeout meals (China)
- Wing: Delivering Groceries (USA)
- Geodis: Warehouse Inventory (USA)

Drone are increasingly used in industrial use cases

What if... no GPS?

Indoor Environments

Low GPS Reception around Tall Buildings

Interference from Power Lines

Correctness of Camera Input is important

Effects of Laser Interference

Cause temporary blindness or permanent sensor damage

Lasers interference can be malicious or inadvertent

- light shows
- autonomous lidar
- laser structure scanners
- malicious intent

Existing Work

- Attacking LiDAR with Lasers
- Attacking Traffic Sign Recognition

Our Distinction

- Attacking Positioning Algorithm
- Using Lasers to affect cameras

Vision Algorithms

- Visual Odometry (Egomotion, Corner tracking)
- Vision Inertial Odometry (Sensor Fusion with IMU)

Landmark data [L] having Gaussian distribution with mean μ and covariance C at discrete timeframes TF

Detection

Projection plane

UAV navigation trajectory

An Intuition

Feature Points: Erroneous Tracking

- Incorrect landmarks are tracked
- Pose and trajectory calculated incorrectly
- Error exists between ground truth and estimation

The Drone thinks it is somewhere else

Testing Plan and Method

Simulation

- Build vehicle
- Test control algorithms

Real life replication

 Show the system reacting (adversely) to damage and interference

Defining Low, Medium, High

Damage	Percent of Sensor Damaged
None	0%
Low	< 1%
Medium	< 10%
Severe	10%+

Video: Before and After

Normal (Perfect) Trajectory

Able to accurately detect and calculate its position and fly to each of the waypoints

Attack Trajectory

Struggle to detect and calculate its position to mitigate the noise and fly to each of the waypoints

Evaluation: Successful Arrivals

Damage	Sample Overlay	Successful Arrival Rate
None		99.8%
Low	C. C. Company C.	95.2%
Medium		61.0%
Severe		0.9%

Extending the Attack: Hijack Forward Control

Laser damage on the left side of sensor

- Left side stationary, right side moving
- Thinks vehicle is turning left
- Corrects with right deviation

Replication in simulator

 Reliability about 3 out of 4 times to deviate 1 meter along a 10 meter straight path

Summary

- Vision Navigation requires accurate feature points representation
- Lasers are everywhere and can interfere with a camera sensor
- The resiliency of VO to interference from lasers is weak
- Laser artifacts on cameras can easily affect flight paths

Learning and Takeaways

- How to tell a story, the different types of narratives
- Effectively communicate to different audiences
- Project planning and management

Closing

Joshua Chiu

joshchiu@student.ubc.ca joshuachiu.com

With thanks to the DSS team at UBC, Pritam Dash and Dr. Karthik Pattabiraman

University of British Columbia

Closing

Joshua Chiu

joshchiu@student.ubc.ca joshua.chiu@student.ethz.ch <u>joshuachiu.com</u>

With thanks to the ROVIO team at ETHz, DSS team at UBC, Pritam Dash and Dr. Karthik Pattabiraman

Appendix: The Attack

- Introduce bad input
- Observe effects on feature detection
- Observe effects on navigation

Background

Unmanned aerial vehicles are getting (more) popular

- Drones are used in Urban Delivery
- Safety Issues in fault handling
 - Can't just stop
- Lasers already an existing problem for pilots

Urban Navigation Challenges

- GPS is unavailable, weak or inaccurate here
- Rely on positioning by other means, primarily cameras
- Susceptible to obstruction and damage

Vision Algorithms

- Visual Odometry (Egomotion, Corner tracking)
- Vision Inertial Odometry (Sensor Fusion with IMU)

Can laser interference be used to maliciously attack vision algorithms?

Reasoning and Justification

Laser (from light shows, autonomous lidar, mobile laser scanners, malicious intent, etc.)

- Laser can cause temporary or permanent damage on most camera sensor
- Vision navigation algorithms can falsely use these attributes as landmarks (corners)
- Lost of navigation can cause unexpected behaviour, shutdown or emergency landing

Existing Work

- Attacking LiDAR with Lasers
- Attacking Traffic Sign Recognition
- Vision Navigation (Egomotion)
- Sensor Input Spoofing

Real Examples

Real Examples

Attacking VO/VIO/SLAM

Feature Point and Corner Algorithms

(b)

28

Attacking VO/VIO/SLAM

Using a known landmark detection algorithms

- 1. Construct a bad image input
- 2. Observe effects on feature detection
- 3. Observe effects on navigation navigation algorithm

Testing Plan and Method

Now - February

Simulation

- Build environment and vehicle
- Create ground truth
- Implement control algorithms

Real life replication (if time allows)

 Show the system reacting (adversely) to damage or interference

30

Testing Plan and Method

Summary

Visual is crucial

Correctness of camera is crucial

Resiliency of VIO to interference to lasers

Contact info