```
[5]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

[6]: df = pd.read_csv("Heart.csv")
 df.head()

[6]:		Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
	0	1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
	1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
	2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
	3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
	4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No

[7]: df.shape

[7]: (303, 15)


```
[18]: fig, ax = plt.subplots()
    fig.set_size_inches(10, 6)
    sns.histplot(x="Age", data=df, hue="AHD", palette="bright")
    sns.set_style("whitegrid")
    plt.tilde("Effect of age on frequency of heart disease")
    plt.xlabel("Age")
    plt.ylabel("Frequency")
    plt.legend(["Heart Disease","No Heart Disease"])
    plt.show()
```

```
[12]: mean_age =df['Age'].mean()
    mean_age
```

[12]: 54.43894389438944

[13]: df.columns

[15]: df2 = df.filter(['Age','Sex','ChestPain','RestBP','Chol'])
 df2

[15]:		Age	Sex	ChestPain	RestBP	Chol
	0	63	1	typical	145	233
	1	67	1	asymptomatic	160	286
	2	67	1	asymptomatic	120	229
	3	37	1	nonanginal	130	250
	4	41	0	nontypical	130	204
	298	45	1	typical	110	264
	299	68	1	asymptomatic	144	193
	300	57	1	asymptomatic	130	131
	301	57	0	nontypical	130	236
	302	38	1	nonanginal	138	175

303 rows × 5 columns

```
[10]: df.dtypes
[10]: Unnamed: 0
                        int64
       Age
Sex
ChestPain
                        int64
int64
                       object
int64
int64
       RestBP
       Chol
      Fbs
RestECG
                        int64
int64
                      int64
int64
int64
float64
int64
      MaxHR
ExAng
       Oldpeak
       Slope
                      float64
                       object
object
       Thal
       AHD
       dtype: object
[11]: (df == 0).sum(axis=0)
[11]: Unnamed: 0
      Age
Sex
                       97
       ChestPain
RestBP
       Chol
      Fbs
RestECG
MaxHR
ExAng
                      258
                      151
                      204
       01dpeak
                       99
      Slope
Ca
Thal
                        0
                        0
       AHD
       dtype: int64
[25]: X = df[['Age','Sex','ChestPain','RestBP','Chol','RestECG','MaxHR']]
         Y= df['AHD']
[27]: from sklearn.model_selection import train_test_split
         X_train, Y_train, X_test, Y_test =train_test_split(X,Y,test_size=0.25)
```