

Adapting the Massively-Parallel Monte Carlo Radiation Transport Code Shift to Solve Time-Dependent Neutron Transport

Aaron James Reynolds^a, Todd Palmer^a

Center for Exascale Monte-Carlo Neutron Transport (CEMeNT), ^aOregon State University

Objective

Determine if modifications to Shift curtailed performance

Shift

• Monte Carlo neutron transport code performant on up to 1000 Summit nodes

A Brief Performance Analysis

CPU Scaling

Conclusions

Impacts to performance were negligible on the test problem considered

Future Work

- Implement population control approaches and measure performance impact
- Assess performance impact of outputting tally results after each time step

References

[1] S. P. Hamilton and T. M. Evans,

"Continuous-energy Monte Carlo neutron
transport on GPUs in the Shift code,"

Annals of Nuclear Energy (Oxford),
vol. 128, 1 2019.

Acknowledgements

This work was supported by the Center for Exascale Monte-Carlo Neutron Transport (CEMeNT) a PSAAP-III project funded by the Department of Energy, grant number DE-NA003967.