- 3. Prasad, Gorakh (2016). Differential Calculus (19th ed.). Pothishala Pvt. Ltd. Allahabad.
- 4. Ross, Kenneth A. (2013). *Elementary Analysis: The Theory of Calculus* (2nd ed.). Undergraduate Texts in Mathematics, Springer. Indian reprint.

Suggestive Readings

- Apostol, T. M. (2007). *Calculus: One-Variable Calculus with an Introduction to Linear Algebra* (2nd ed.). Vol. 1. Wiley India Pvt. Ltd.
- Ghorpade, Sudhir R. & Limaye, B. V. (2006). *A Course in Calculus and Real Analysis*. Undergraduate Texts in Mathematics, Springer (SIE). Indian reprint.

DISCIPLINE SPECIFIC CORE COURSE – 6: ORDINARY DIFFERENTIAL EQUATIONS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	Credit distribution of the course			Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		(if any)
Ordinary Differential Equations	4	3	0	1	Class XII pass with Mathematic s	NIL

Learning Objectives: The main objective of this course is to introduce the students:

- The exciting world of differential equations.
- Their applications and mathematical modeling.

Learning Outcomes: The course will enable the students to:

- Learn the basics of differential equations and compartmental models.
- Formulate differential equations for various mathematical models.
- Solve first order non-linear differential equations, linear differential equations of higher order and system of linear differential equations using various techniques.
- Apply these techniques to solve and analyze various mathematical models.

SYLLABUS OF DSC-6

UNIT – I: First-Order Differential Equations

(12 hours)

Concept of implicit, general and singular solutions for the first order ordinary differential equation; Bernoulli's equation, Exact equations, Integrating factors, Initial value problems, Reducible second order differential equations; Applications of first order differential equations to Newton's law of cooling, exponential growth and decay problems.

UNIT – II: Second and Higher-Order Differential Equations

(18 hours)

General solution of homogenous equation of second order, Principle of superposition for a homogenous equation, Wronskian and its properties, Linear homogeneous and non-homogeneous equations of higher order with constant coefficients, Method of variation of parameters, Method of undetermined coefficients, Two-point boundary value problems, Cauchy- Euler's equation, System of linear differential equations, Application of second order differential equation: Simple pendulum problem.

UNIT – III: Formulation and Analysis of Mathematical Models

(15 hours)

Introduction to compartmental models, Lake pollution model; Density-dependent growth model, Interacting population models, Epidemic model of influenza and its analysis, Predator-prey model and its analysis, Equilibrium points, Interpretation of phase plane

Practical (30 hours)- Practical / Lab work to be performed in a Computer Lab:

Modeling of the following problems using SageMath/Mathematica/MATLAB/Maple/Maxima /Scilab etc.

- 1. Solutions of first, second and third order differential equations.
- 2. Plotting of family of solutions of differential equations of first, second and third order.
- 3. Solution of differential equations using method of variation of parameters.
- 4. Growth and decay model (exponential case only).
- 5. Lake pollution model (with constant/seasonal flow and pollution concentration).
- 6. Density-dependent growth model.
- 7. Predatory-prey model (basic Volterra model, with density dependence, effect of DDT, two prey one predator).
- 8. Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).

Essential Readings

- 1. Barnes, Belinda & Fulford, Glenn R. (2015). *Mathematical Modeling with Case Studies*, Using Maple and MATLAB (3rd ed.). CRC Press. Taylor & Francis Group.
- 2. Edwards, C. Henry, Penney, David E., & Calvis, David T. (2015). *Differential Equations and Boundary Value Problems: Computing and Modeling* (5th ed.). Pearson Education.
- 3. Ross, Shepley L. (2014). *Differential Equations* (3rd ed.). Wiley India Pvt. Ltd.

Suggestive Reading

• Simmons, George F. (2017). *Differential Equations with Applications and Historical Notes* (3rd ed.). CRC Press. Taylor & Francis Group.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.