

Figure 3

Chrom	Gene	၁ <u>၅</u> %	Probe Oligo Sequence	SEQ ID NO	Invader Oligo Sequence	SEQ ID NO
-	ACTA1	₽N	ACGGACGCGGAGGAACCCTGTGACAT		CCATCCAGGGAAGAGTGGCCTGTT	100
-	ACTA1	¥			CCATCCAGGGAAGAGTGGCCTGTTT	101
-	ACTA1	Ϋ́	ACGGACGCGGAGAGGAACCCTGTGACATTT		CCATCCAGGGAAGAGTGGCCTGTTT	102
-	ACTA1	Ϋ́	ACGGACGCGGAGGGAACCCTGTGACATTTC	•	CCATCCAGGGAAGAGTGGCCTGTTT	103
-	ACTA1	¥	ACGGACGCGGAGGTGGCCTGTTAGGAAC		CGTTGGCACCCCATCCAGGGAAGAT	ই
	ACTA1	54%	<u>ACGGACGCGGAGCCCCGCAGTCACT</u>		GGGCGGCTGAGCTCCAGCCAT	105
-	ACTA1	28%	<u> ACGGACGCGGAGTGGAGGTGTG</u>		7 TTCGTCGTCGTGAAGTCGCGTGCC	106
-	ACTA1	63%	ACGGACGCGGACCCGATCTCACCGA	~	GCGCCTGGACCTGGCGGCT	107
_	ACTA1	62%	ACGGACGCGGAGCCATTGTCGCACA		GCCGGCTTTCACCAGGCCGGAT	188
-	HIST2H2BE	28%	ACGGACGCGGAGGTGACCGGACACA	_	10 GGCCCCATCGCACGCAGAACTT	109
_	HIST2H2BE	26%	ACGGACGCGGACCTGCGTGACAGCTC	_	1/ACAATTCAGCCCGGGTTCCGCAAACAA	110
-	SVZA	29%	ACGGACGCGGACCAGCCAGCTGAG	.7	2 CAGGGCCAGAGGTGCCAAGGGG	111
-	SR	29%	ACGGACGCGGAGCTTCCCTGCTGGCA	_ ~	3 TCAGCTCTGTCCTTGGCGGGACAGTCC	112
2	DSCR8		CGCGCCGAGGCAAGAATTCTCATGTCTCAG	7	14 CACTGCAGCCTCCCAGTTT	113
21	DSCR6	%09	CGCGCCGAGGCTCGACTCACGGCA	1	SCCCAGGCTGGAATGCAATGGTGCGATT	114
7	DSCR8	25	CGCGCCGAGGCCGTGATTGAACCACTG	7	16 ACTGGGAGGTGGCTGCAGTGATT	115
7	DSCR6	88	CGCGCCGAGGCTCCAGGTGTCTGGAT	17	17 GGCCTTCCAGTTCTGGTCAGCTCAGCATT	116
21	DSCR1	26	CGCGCCGAGGCAGTGAGCTCAGGAGA	31	18 СПСТСТСТСТВ В В В В В В В В В В В В В В В	117
21	AML1	28%	CGCGCCGAGCCCACCTGTGCGA	×	20 GCCTCAGTGGAGAGAGGGGAAAACATGGTT	119
21	AML1	26%	CGCGCCGAGGCCCTCTCTGCAGAACT	2	21/TGGACGTGCCAGCGCATGACAAT	120
21	AML1	54%	CGCGCCGAGGCCTACCACAGAGCCA	72	22 CTTCACAACCCACCGCAAGTCGCCAT	121
2	DSCR9	21%	CGCCCCGAGGGAGCAGTCTGTAACGTG	23	23 CTCCCCACCGTTCCATCCCAGGCT	12
21	DSCR9	21%	CGCCCCGAGGAGGCGAGCAGTCTG	24	24 GCACCTCCCCACCGTTCCATCCCT	13
×	L1CAM	28%	CGCCCCGAGCCTGAGCAACGTGC	25	25/CGGATTCAGCGTGGCGCCCTGATT	124
×	L1CAM	28%	CGCGCCGAGGCCTGAGCAACGTGCA	26	26 CGGATTCAGCGTGGCGCCTGATT	125
×	L1CAM	28%	CGCGCCGAGGCATGCAGTGCAGCAG	27	27 CGGATTCAGCGTGGCGCCTGATCT	136
×	LICAM	58%	CGCGCCGAGGGATCCTGAGCAACGTG	28	28 CCGGATTCAGCGTGGCGCCTT	127
×	L1CAM	28%	CGCCCGAGGAGCAACGTGCAGC	28	29 GATT CAGC GT GGC GC CCT GAT CCTT	128
×	LICAM	28%	CGCGCCGAGGGTGCAGCCCAGTGA	96	30 CCGGATTCAGCGTGGCGCCTT	129
×	PDCD8	25%	CGCGCCGAGGCTACAAGCACGCTC	<u>۔</u>	31 CAGATTTTGGTGGCTTCCGGGTAAATGCAGAT	8
×	PPEF1	23%		35	32/TGTCTGGCCTTCAGTCGAGCTTTGTAACCTT	131
>	SRY	22%		ee 	33 GCTTCCCGCAGATCCCGCTTCGGTAT	132
>	EIF1AY	26%	CGCGCCGAGGCTCTAAGAGCCGACTGA	*	34 GACCTCTTCCGACTCCTTTCTGGCGGTTACTAT	133
18	GATA6	54%	CGCGCCGAGGCGCGTTTCTGCG	35	35 CACAAGCATTGCACGGGTTCACCCTT	13 24
18	SERPINB2	21%	CGCGCGAGGCCAGTTCTCCCTGTCA	36	36 CTGCCACAAACTGTGGGCCTCCATGTT	135
13	DLEU1	21%	CGCGCCGAGGTTCTGCGCATGTGC	37	37 AGGGAGAGCCGTGCACCACGATGAC	38
5	ABCC4	%99	CGCGCCGAGGAGCACGTAGGTG	88	38 CGGCTGGCTGTGATCACACTGCCGT	137
5	POU4F1	65 %	<u>CGCGCCGAGG</u> CCATCTGCAGGTTCG	36	39 CGTGGGCTCACTCAGCCAGAGCAT	138
13	POU4F1	65%	CGCGCCGAGGCTCCAGCTCCGAGG	4	40 CTGAGCACAAGTACCCGTCGCTGCAT	139
13	POU4F1	63%	CGCGCCGAGGCCCGAGAACTGGAC	41	41 CCTCGTCCGAGAAGATCGCCGCCATCT	140
13	POU4F1	% %	CGCCCGAGGCCATAGGCCTCTCA	42	42 CCACTCACTTCCCGGGATTGGAGGGGT	141

142	54	₹	145	146	147	148	140	2	3	2	3	হ্র	<u>ᅕ</u>	155	156	157	8 2	1 50	2	191	162	ই	泵	ऋ	8	167	\$	8	170	171	172	173	174	175	176	12	178	179	8	181	182	<u>惑</u>	\$	2 8
43 ACTACCCACCGGCTCATGGTCTCCTAGACT	44 GGCCCTTTGTCTTGAAGCCTCCTTGGGAAT	45/ACAGTGCTGGCTAGTGACGGCAGCTT	46 GTGCCCTCTCAGCCATTCCTGGCC	47/TGGACGGACACACTTTGAGCCTGTCCAT	48 CGAAGAGGTGACTTCGACCGAGCTCTCCAT	49 CGTTAGAGCCTGTGCACTGGACCTGCTTT		10 10 10 10 10 10 10 10	מו פפרישריפרו פראינפו ובופורוו	52 TGGCCAACTTCAGTCCCAGGGCATT	53 TGGCCAACTTCATTCAGTCCCAGGGCATT	54 GTGACTGGTCCACACCTTCAGGGAGCTT	55 GTTCACCCTGGGCCTCAGCCCAT	56 CTGCCTCTGCTGCCGGCCAACT	57 GAGGCGGAACGGCTCACTCCAGCT	58 GAGGCGGAACGGCTCACTCCAGCT	59 GGGTGACTCTCCTTCTGCCACAGTGGCT	60 TGTCCCCAGTCATTTCCCAAGAGAACACTCTCT	61 GCACCCAGAGTAGGGGTGGAGTATACCCTTT	62 GTCCCCTCGGCTCCTAATCTCTTCTCAAAACTCAGC	63 TCGGCATCCCTAGCACATGCCTCTT	64 GCACAGTTCCCAGTACAGAGACCCGGAT	65 GCTCCTGCTGTGCAGAGCGCACT	66 GCTCCTGCTGTGCAGAGCGCACT	67 TGCACCCGGACGCAACTCCTTCT	68 GCCACGATTGACTTCTACGACGATGAGTCTACTGAGTT	69 CCGTTCCATCCCAGGCGAGCTT	70 AAGTGCGCTTGCAGCCATCCTGGATT	71 GTGGAAGGGTTTGTCTTGTGCCCAGGCT	72 GTGGAAGGGTTTGTCTTGTGCCCAGGCT	73 TGGCCGAGCTCCACCGTGTCAT	74 GGAGAAGAGGGGGAATCAGGAGGATGATGGAAT	75/ACCAGAGGGGGGGGGGCTCAGCGTT	76 TCCTGGTACCTGCAGCCACTGCTCAAT	77 CGCTGCTTGAAGGCGTTTGCATGGTCT	78/TCCATTTTGCCAGGCGCTTGTCCATCT	79 TCCATTTTGCCAGGCGCTTGTCCATCT	80 ACCACCTCATCACGGAGAACTTCCCGCC	81 GCCTCTGCACACTCAGCAGGGATGCT	82 CCATGACTGCAGTTCCCGCCACT	83 CTCCTTTTCTTCCCCCAGATGTCTGTGAACACAT	84 TGGCCTCCAGCTGGCATCTTGACCTT	85CCGCACCGCGTTCACGCAGTTTCT	86 CTGGTGATCATATGCCCCCAAGGAGCTTGATCT
CGCCCGAGGCACTGTCACTGCAGC	CGCGCCGAGGCTGCACTCTGAGGCA	CGCGCCGAGGCCACTCCTGCTCGA	CGCGCCGAGGTCCGTGGTAGCAGAA	CGCGCCGAGGCTGGGATCTGTGGG	CGCGCGAGGGTGGAGACCAGAGTCA	CGCGCCGAGCATGCCACAGATGCC	COCCO COCOCO COCCO	CGCGCCGAGGCAI I CGGAGACIC	CGCGCCGAGGCIGGCAICCAIGIC	CGCGCCGAGCCAGCTCCCTGAAGGT	<u>cgcgccgagg</u> cagctccctgaaggtg	CGCGCCGAGGGATGCCCTGGGACT	CGCGCCGAGGCCTTCCGTGCTGGA	CGCGCCGAGGAGCTTCAACCGCAAC	CGCGCCGAGGCATGCAGTGCAGCA	CGCGCCGAGGCATGCAGTGCAGCAG	CGCGCCGAGGCTGCGTAGCTCCCA	CGCGCCGAGGACGCCTGGATTATTCTG	CGCGCCGAGGCCCATGTGTTAGTGAAAATG	CGCGCCGAGGTAGCTCAGGTTCTCTGG	CGCGCCGAGGCCAAGAGGGCTGTG	CGCGCCGAGGCAGGTGGCTGTTCTC	CGCGCCGAGGCTGCCTTACCAGTGTC	CGCGCCGAGGCTGCCTTACCAGTGTCC	CGCGCCGAGGGACATGCTGAGAAACCT	CGCGCCGAGGCTGCTTCCGAAGCTG	CGCGCCGAGGCTGTAACGTGGTGCAG	CGCGCCGAGGGTCAACTGGCCACAG	CGCCCGAGGCTTGCGGTCATGCAA	CGCCCGAGGCTTGCGGTCATGCAAG	CCCCCCAGGCCATTCCAGGTCC	<u>CGCGCCGAGG</u> GTTGCTGCTGCAGAT	CGCCCGAGGCTTGAGCAGTGGCTG	CGCGCCGAGGGACGCTGAGCTTCAC	CGCCCGAGGCATGGCTCATGGACC	CGCGCCGAGGCGTCTGCCGCACCT	CGCGCGAGGCGTCTGCGCCACCTC	CGCGCCGAGGTGAAGCTCTGCAGGA	CGCCCGAGGGTAGTGTCCTGGCTCG	CGCGCCGAGGCGGAAGATCTCAGTGCT	CGCGCCGAGGGATCCTGGGACCTCC	CGCGCCGAGGCAGCATCATGAGAGTCC	CGCGCGAGGAGCTGCAGGAGCTAG	CGCGCCGAGGCAATGGTGAGGGAAGTC
21%	X %	5 2%	51%	52%	269	28,8	3 8	800	%.7C	26%	26%	26%	% 09	62%	29%	29%	21%	48%	55%	53%	26%	26%	%	% %	%09	57%	28%	22%	%95	26%	29%	54%	88	8	58%	21%	21%	21%	63%	28%	53%	26%	62%	52%
РСБН9	PCDH9	РСОНЭ	РСБН9	F1.123403	KIAAN222	7100	100000	MGC33285	2	PFKFB1	PFKF81	PFKFB1	ZNF157	FLJ22843	DUSP21	DUSP21	MGC33889	PRKY	PRKY	PRKY	TMSB4Y	TMSB4Y	NRIP1	NRIP1	HCS	DSCR6	DSCR9	DSCR3	DSCR4	DSCR4	DSCR10	CN2	HLCS	HLCS	HLCS	DSCR9	DSCR9	DSCR3	DSCR6	MTMR8	MGC23947	FLJ21174	ESX1L	ZNF157
13	1 3	13	13	~	<u>α</u>	5 2	3 8	5 2	7	×	×	×	×	×	×	×	×	>	>	>	>	>	21	2	7	7	77	21	21	77	21	18	7	7	21	7	77	51	77	×	×	×	×	×

186	187	8	189	<u>8</u>	191	192	193	<u>\$</u>	195	196	197	198	218	22	22	224	92 22	228	230
87 CTGCACCTCATCCGAGGACGTGGCC	88 GGTGACTCTCCTTCTGCCACAGTGGCCC	89 CTCCCCACCGTTCCATCCCAGGCT	90 GCACCTCCCCACCGTTCCATCCCT	91 GTCTGCGCACCTCCCCACCGTTT	92 CGTCTGCGCACCTCCCCACCGC	93 GAAGTGCAACTGGACAACAGGTTGTACAGGGATT	94 GGTACTCTGCAGCGAAGTGCAACTGGACAACT	95 TGCTGCCGAAGAATTGCAGTTTGCTTCCCT	96 GAAGAATTGCAGTTTGCTTCCCGCAGATCCCT	97 CGCCCTGCTTATTGGCATCTGTGGCAC	98 GCTTGAAGGTGACACAGTGACACGGGAT	99 CCAAAGTAAGGAGTCGCATCCCCTGCCTCT	217 GCCTATGGTCTCCACAGGCTGACGTCTTT	219 GAGGGCCAAGAGCCTCCATCAATCCCTT	221/CGACTCTGGTACGCAGCTGCCTCGTT	223 TCCACCAGCCAGTCCACCAGAATCGTT	225 GTCTGTTCTGAGAGGGAAACTGCAGCTT	227 GCTAGGCCCGCTTCATCCGCCC	229 GAACTCCCAGGACAGACCTACGATGCCACT
<u>AGG</u> TGAAGCCTGGTCACT	<u>AGG</u> TGCGTAGCTCCCAG	<u>AGG</u> GAGCAGTCTGTAACGTG	<u>AGG</u> AGGCGAGCAGTCTG	<u>AGGCCATCCCAGGCGA</u>	<u>AGG</u> TTCCATCCCAGGCG	<u>AGG</u> GACTGTACGAAAGCCAC	<u>AGG</u> AGGTTGTACAGGGATGA	AGGCCAGATCCCGCTTC	AGGCTTCGGTACTCTGC	<u>AGGTGAAGCAGGTCCAGT</u>	AGGCCATGCCTCTGCAC	AGGCCAGTCAGGCCTCC	AGOCCACGTCTTGGTGATAG	AGGCTTGGATAGCCACTC	AGGCCAGTGCTCCGGA	<u>AGG</u> GCGCATGCCTTCC	<u>AGG</u> CGTAGGAACAGCAGC	AGGTCAGCGACCAATCGT	NGGCCAGCAGTGCAACC
CCCCCCAGGTG	CGCGCCGAGGT	CGCGCCGAGG	CGCGCCGAGG	CGCCCCGAGC	CGCGCCGAGG	CGCGCCGAGG	CGCGCCGAGG	CGCGCCGAGG	CGCGCCGAGC	CGCGCCGAGG	CGCGCCGAGC	CGCGCCGAGG	CGCGCCGAGC	CCCCCCGAG	CGCGCCGAGC	CGCGCCGAGC	CCCCCCAGO	CGCGCCGAG	CGCGCCGAGC
cececce	CCCCCCG	200000	(SCCCCC)	200000	CCCCCCG	000000	cececce.	CGCGCCG	000000	/9229292	6000000	/9229292	6000000	CCCCCC	/9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		/9229292	(9009090	/9229292
cececce	CCCCCCG	27% CGCGCCG	57% CGCGCCG	57% CGCGCCG	57% CGCGCCG	25% CGCGCCG	/9229292 %5 9	26% CGCGCCG	54% CGCGCCG	/9229292	26% CGCGCG	5 57% CGCGCCG/	S4 CGCGCG	53% CCCCCCC	/9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25% CCCCCC	/9229292	(9009090	785 SBW CGCGCGG

SEQ ID NO:199 SEQ ID NO:200

FAM FRET cassette RED FRET cassette

Fam-TCT-228-AGCGGGTTTTCCGGCTGAGACCTCGGCGCG-hex Red-TCT-228-TCGGCCTTTTGGCCGAGAGACTCCGCGTCCGT-hex

FIGURE 4

8

8

8

ಬ

Genomic DNA (ng)

FIGURE 5

WO 2005/007869 PCT/US2004/022014

FIGURE 6

10/21

WO 2005/007869 PCT/US2004/022014

FIGURE 7 (continued)

FIGURE 8

Sample # 46, XX
1-5
46, XX
6-10
45, X
47, XY
48, XX
48, XXX, +18
48, XXXX
15
48, XXXX
18
47, XYY

FIGURE 9

FIGURE 10

Trisomy #1: Coriell AG13429

Trisomy #2: Coriell AG09394

Trisomy #3: Coriell AG10098

-all genomic DNA's were prepped using the Gentra Autopure Prep

FIGURE 11A

מוכין מיוויים וכיום												l						1	ı	ı	l	۱	ı	l	ı	
S. Maternal Contamination	ءِ					0	-	2	2	8	S	8	8	S	8	8	0		2	5	8	SO 80	8	8	8	힐
o	29 05	S 53	8	50 85	_	i	ı		₽	8	S	8	8	8		100	0	0.5	2.5	2	5 13	2 3	\$	47.5		8
9 6	٥		0	0	8	5		8	8	8	8	8	5					49.5 47					- 1		3	٩
Sid 205	4	3	2	14		דו	- ا	2		122	8		l	l' -			1	785 80	803 80	187 908		195 6		516	497	3
			418				1174			1048						73	803				22		2		497	Ş
																_										
Av 220	449	482	8	\$	888	1066	55	1127	1127	1085	88			75.							752 633		\$		4	8
	_	•	~			S	ង	5		25																2
=	80	8	70	ž	X,	88	ĸ	4%	%	2%	¥	38	ž	ž	K	5%	6% 0	2 2	7,	3%	6% 1%	X,	X	Š	ğ	K
onal/Bkod	202	١,,	5			Ľ		5.12	5.12	4.93	1	1			3.35	3.36			1	1			•			ž
Net Stanal	8		8				939	6	8	865					518	519			592 573	532	2 413	350	327	E	E	ğ
	1	l			1	1																				
Alpha Actin Signal (Red)	5			į									ļ			ŀ					ı	١	ı	ı		
% Maternal Contamination	Ē					0	-	40	9	8	S	8	8	95	8	001	0	-	5	t0 2	8	8	8	8	8	Š
0 Bu		50 82 50 83 50 84 50 85	3	8 8	0		-	S	2	8	ន	8	8		86	<u>8</u>	0	0.5	2.5	5	10 23	5 40	\$	47.5	49.5	ક્ષ
	-	0	0	0	20 05	8	8	95	8	8	S	8	5	\$	-	0	8	49.5 47	47.5	45	45	5 10	8	2.5	0.5	0
Sid	18	3	8	33	Ŗ	1.	\$	ই	8	8	8		282	["		١,,	ı		1	l''			ຕ	35	345	3
			88				8	446	472	479							285 X				328	8 324	8	គ្គ	8	3
Av 111	8	ž	88	328	8	2	437	\$	£	Š	33	497	3	195	573		280	285	321 328		33 33	83		ğ	7	Ę,
SD		13	8				-	e	ij	જ	7	•		m			80				5		m -		•	Ħ
*	*	*	*	K	ž	ž	É	*	ř	£	8		*	36	3%		3% 3	3% 1	1% 3%	3%		XX 3		- 1	ž	£
nal/Bknd	١,	٣	2.69	1	Ľ		i	8	8							5.22			30 2.96	300	3.03	3 2.98	3.08	2	3.10	2
Net Signal	198						327	8	371			387						184 21	211 217	7 224	22	5 219	8	2	Ħ	Ħ
Ratio	0.59	9.55	25.	0.57	1.23	1.3 8.	1.44	1.35	1.23	1,11	0.81	0.73	0.67	0.59 0	0.56 0	0.56	1.55 1.57	17.1 1.41	1.33	B 1.19	19 0.92	2 0.80	0.72	8	9	35
Am 0.56																									;	- ;
Mormagned Datto	3 5	210 108	ě		200 4 40	46	5 16	A R2	2	3 95	516 487 439 395 289 262 240 213 201	262	40	13 2	2	8	200 553 559 505	9	à	27	8 m	287	228	2.32	213	707

WO 2005/007869 PCT/US2004/022014

				Figure 12	
Chrom	Gene	Accession # Cytoband	Cytoband	Target Sequence	SEQ ID NO:
-	alpha actin (ACTA1)	M20543	1942.13	1942.13 (ATGTCACAGGGTCC[TJAACAGGCCACTCTTCCCTGGATGG)	5 8
-	HISTZH2B E	NM 003528	1921.2	GTATCCACAGGA(GGCCCCATCGCACGGCAGAACT[G]GTGACCGGACACA)AAAGCTGCTGCCAAGCGTCAGTCATACAGAGCTGTCACGCAGT	204
51	DLEU1	NM_005887		G(GCACATGCGCAGABITCATCGTGGTGCACGGCTCTCCCT)TTGCTTCTT 13q14.2 CGGTTGCAGTCTTTGCGCGTGCGTGTAGCGCTTT	205
5	РСОН	NM 020403	13q21.33	NM 020403 13q21.33 ACTGT)CATTGTCAGGGGGGGGGGGGGGGGGGGGGGGGGG	506
18	FLJ23403	NM_022068	18p11.22	GCCAACACTTCAGGATGAATATGTGAGCATAGATGTCCT(CCACACAGATGATGTGTGTGCGTCCAYGACCCAGATGTGTGTGTGCGTCCAYCACCCAGTC	207
×	PFKF81	NM 002625	Xp11.21	ATGGTCCTCTTCATGTGACTGGTCCA[CACCTTCAGGGAGCTB]ATGCCC TGGGCATAGGCA	208
>	PRKY	NM 002760	Yp11.2	CTCCTTCT(GCACCCAGAGTAGGGGTGGAGTATACCCTTB)CCATGTGTT	209
23	NRIP1	NM 003489	21q11.2	GGCTCCGATTTAAAGTCTTCG(GACACTGGTAAGGCAG)GTGCGCTTCTC TGCACAGCAGGAGC)CATACCCAAGAATGGGGCACTCTTAGCAT	210
22	HLCS	NM 000411	21922.13	GAGGATG(AGGTTTCTCAGCATGTC)GAAGGAGTTGCCGTCCGGGTGCA)	211
85		NM_018235	18q22.3	TGGCC(GGAGAAGAGGCGAAATCAGGAGGATGATGGAAGITTGCTGC 1822.3 +TGCAGAT)GTTAAGCAGTTGGGGGGCTCTGTGGAACTGGTGGATA	212
×	MTMR8	NM 017677	Xq11.2	CCTTGGGTACCGTAATATGAT(CCATGACTGCAGTTCCCGCCAC C GGAA GATCTCAGTGCTJACTCCAGATGCCGCCGCCCACCGGTCTAGCCG	213
×	FLJ21174	NM 024863		GAAGAGTTCAGCTGCTAGGTTCTTATTTTG(GGACTCTCATGATGCT[G]AG	214
×	PCTK1	NIM_033018	Xp11.3	GAGATTGTGCACGAGGCTTGAAGATGGGGTCTGATGGGGAG(AGTGAC CAGGCTTC(A)GCCACGTCCTCGGATGAGGTGCAG)TCTCCAGTGA	215
>	SRY	NM_003140	Yp11.31	ITCATCCTGTACAACCTGTTGTCCAGTTGCACTTCGCT(GCAGAGTACCG NM 003140 Yp11.31 AAG C GGGATCTGCGGGAAGCAAACTGCAATTCTTC)GGCAGCA	216

Chromosome Xp Invader Assay:PFKFB1+PCTK1 -Varying DNA Levels Figure 13A

- 3 30 ng of DNA per reaction
- Equivocol zones: 1.4 -1.6; 2.3 2.5
- N=637 samples, 517 normal, 120 aneuploid
- No call rate 1.9% (7 samples < 1.4 FOZ, 5 equivocal samples)
- Miscall rate 0%

Chromosome Xq Invader Assay:MTMR8+FLJ21174 -Varying DNA Levels Figure 13B

- 3 30 ng of DNA per reaction
- Equivocol zones: 1.4 -1.6; 2.4 2.6
- N=638 samples, 518 normal, 120 aneuploid
- No call rate 3.3% (15 samples < 1.4 FOZ, 6 equivocal samples)
- Miscall rate 0%

Figure 14. Chromosome 18 Invader® Assay - Sample Mixtures

Trisomy 18 / Disomy sample mixtures

10 ng of DNA per reaction

• Equivocal zone: 2.3 – 2.5

N=315 samples, 198 disomy, 117 trisomy (+18 with 0%, 10% and 20% disomy contamination)

No call rate 2.9%

Miscall rate 0%

Figure 15: Analysis of Triploidy Samples (69, XXY)

Normalized Ratio Analysis

(Ratio of male control sample) Normalized Ratio= (Ratio of unknown sample) (Net internal control FOZ) where Net FOZ = FOZ - 1

(Net chromosome specific FOZ) Inversed Ratio = ((Net internal control FOZ) (Ratio of male control sample) Inversed Normalized Ratio= (Ratio of unknown sample) where Net FOZ = FOZ -

Note: Samples not containing a Y chr. not shown on graph due to high inversed normalized ratios (>10)