# Lecture 11 Shortest Paths

Jianchen Shan
Department of Computer Science
Hofstra University

#### **Lecture Goals**

- In this lecture we study shortest-paths problems. We begin by analyzing some basic properties of shortest paths and a generic algorithm for the problem.
- We introduce and analyze Dijkstra's algorithm for shortestpaths problems with nonnegative weights.
- Next, we consider an even faster algorithm for DAGs, which works even if the weights are negative.
- We conclude with the Bellman–Ford–Moore algorithm for edge-weighted digraphs with no negative cycles.
- We also consider applications ranging from content-aware fill to arbitrage.

#### Shortest Paths in an Edge-weighted Digraph

Given an edge-weighted digraph, find the shortest path from s to t.

#### edge-weighted digraph

| 4->5 | 0.35 |
|------|------|
| 5->4 | 0.35 |
| 4->7 | 0.37 |
| 5->7 | 0.28 |
| 7->5 | 0.28 |
| 5->1 | 0.32 |
| 0->4 | 0.38 |
| 0->2 | 0.26 |
| 7->3 | 0.39 |
| 1->3 | 0.29 |
| 2->7 | 0.34 |
| 6->2 | 0.40 |
| 3->6 | 0.52 |
| 6->0 | 0.58 |
| 6->4 | 0.93 |



#### shortest path from 0 to 6

| 0->2 | 0.26 |
|------|------|
| 2->7 | 0.34 |
| 7->3 | 0.39 |
| 3->6 | 0.52 |

Can we use BFS?

#### Variants

- **\*** Which vertices?
- Single source: from one vertex s to every other vertex.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.
- **Nonnegative weights?**
- **\*** Cycles?
- Negative cycles.





Simplifying assumption: Each vertex is reachable from s.

## Weighted Directed Edge API

#### public class DirectedEdge

```
DirectedEdge(int v, int w, double weight) //weighted edge v->w

int from() // vertex v

int to() // vertex w

double weight() // the weight

String toString() // string representation
```



Idiom for processing an edge e: int v = e.from(), w = e.to();

## Weighted Edge: Java Implementation

```
public class DirectedEdge
   private final int v, w;
   private final double weight;
   public DirectedEdge(int v, int w, double weight)
      this.v = v;
      this.w = w;
      this.weight = weight;
   }
   public int from()
   { return v; }
  public int to()
   { return w; }
   public int weight()
   { return weight; }
```

## **Edge-Weighted Graph API**

#### public class EdgeWeightedDigraph

```
EdgeWeightedDigraph(int V) // edge-weighted digraph with V vertices

void addEdge(DirectedEdge e) // add weighted directed edge e

Iterable <DirectedEdge> adj(int v) // edges pointing from v

Iterable <DirectedEdge> edges() // all edges in this graph

int V() // number of vertices

int E() // number of edges

String toString() // string representation
```



#### Edge-Weighted Digraph: Adjacency-Lists Implementation

```
public class EdgeWeightedDigraph
   private final int V;
   private final List<DirectedEdge>[] adj;
   public EdgeWeightedDigraph (int V)
       this.V = V;
       adj = (List<DirectedEdge>[]) new ArrayList[V];
      for (int v = 0; v < V; v++)
          adj[v] = new ArrayList<DirectedEdge>();
   public void addEdge(DirectedEdge e)
       int v = e.from();
       adj[v].add(e);
   public Iterable < DirectedEdge > adj(int v)
      return adj[v];
```

add edge e = v->w to only v's adjacency lists

## Single-source Shortest Paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP

SP(EdgeWeightedGraph G, int s) // shortest paths from s in graph G

double distTo(int v) // length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) // shortest path from s to v
```

#### Data Structures for Single-source Shortest Paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists.

**Consequence.** Can represent the SPT with two vertexindexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



shortest-paths tree from 0

```
edgeTo[]
             distTo[]
  null
  5->1 0.32
                1.05
  0 -> 20.26
               0.26
               0.97
  7->3 0.37
  0 - > 40.38
               0.38
  4->5 0.35
               0.73
  3->6 0.52
               1.49
               0.60
  2->7 0.34
```

parent-link representation

```
public double distTo(int v)
{ return distTo[v]; }

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```

### **Edge Relaxation**

#### Relax edge $e = v \rightarrow w$ . (basic of building SPT)

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If e = v→w gives shorter path to w through v, update distTo[w] and edgeTo[w].



```
private void relax(DirectedEdge e)
{
   int v = e.from(), w = e.to();
   if (distTo[w] > distTo[v] + e.weight())
   {
      distTo[w] = distTo[v] + e.weight();
      edgeTo[w] = e;
   }
}
```

## Shortest-paths Optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s *iff*:

- $\operatorname{distTo}[s] = 0$ .
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge  $e = v \rightarrow w$ ,  $distTo[w] \le distTo[v] + e.weight()$ .

#### Pf. $\Rightarrow$ [necessary]

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge  $e = v \rightarrow w$ .
- Then, e gives a path from s to w (through v) of length less than distTo[w].



## Shortest-paths Optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s *iff*:

- $\operatorname{distTo}[s] = 0$ .
- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge  $e = v \rightarrow w$ ,  $distTo[w] \le distTo[v] + e.weight()$ .

```
Pf. ← [ sufficient ]
```

- Suppose that  $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k = w$  is a shortest path from s to w.
- Then,  $\begin{aligned} \operatorname{distTo}[v_1] &\leq \operatorname{distTo}[v_0] + e_1.\operatorname{weight}() \\ \operatorname{distTo}[v_2] &\leq \operatorname{distTo}[v_1] + e_2.\operatorname{weight}() \\ & \dots \\ \operatorname{distTo}[v_k] &\leq \operatorname{distTo}[v_{k-1}] + e_k.\operatorname{weight}() \end{aligned}$



• Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0:

$$distTo[w] = distTo[v_k] \le e_1.weight() + e_2.weight() + ... + e_k.weight()$$

• Thus, distTo[w] is the weight of shortest path to w.



## Generic Shortest-paths Algorithm

#### **Generic algorithm (to compute SPT from s)**

```
For each vertex v: distTo[v] = \infty.
```

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

Repeat until done:

- Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

#### Pf.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm. (nonnegative weights, directed cycles).
- Ex 2. Topological sort algorithm. (no directed cycles).
- Ex 3. Bellman–Ford algorithm. (no neigtive cycles).

## Dijkstra's Algorithm

Consider vertices in increasing order of distance from s(non-tree vertex with the lowest distTo[] value).

relax all edges adjacent from 1

Add vertex to tree and relax all edges pointing from that vertex.

choose vertex 5
relax all edges adjacent from 5
choose vertex 2
relax all edges adjacent from 2
choose vertex 3
relax all edges adjacent from 3
choose vertex 6
relax all edges adjacent from 6



relax all edges adjacent from 4

## Dijkstra's Algorithm: Correctness Proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

#### Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed),
  - leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
  - distTo[w] cannot increase ← distTo[] values are monotone decreasing
  - distTo[v] will not change
     we choose lowest distTo[] value at each step (and edge weights are nonnegative)
- Thus, upon termination, shortest-paths optimality conditions hold.

#### Dijkstra's Algorithm: Java Implementation

```
public class DijkstraSP
   private DirectedEdge[] edgeTo;
   private double [] distTo;
   private MinPQ<Double> pq;
           DijkstraSP(EdgeWeightedDigraph G, int s)
   public
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      pq = new MinPQ<Double>(G.V());
      for (int v = 0; v < G.V(); v++)
          distTo[v] = Double.POSITIVE INFINITY;
         distTo[s] = 0.0;
      pq.insert(s, 0.0);
      while (!pq.isEmpty())
      {
           int v = pq.delMin();
           for (DirectedEdge e : G.adj(v))
              relax(e);
```

relax vertices in order of distance from s

#### Dijkstra's Algorithm: Java Implementation

## Shortest Paths in Edge-weighted DAG

Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?



- Consider vertices in topological order.
- Relax all edges pointing from that vertex



# v distTo[] 0 ∞ 0 1 ∞ 5 2 ∞ 17 15 14 3 ∞ 20 17 4 ∞ 9 5 13 6 ∞ 29 26 25 7 ∞ 8



#### Shortest Paths in Edge-weighted DAG: Correctness Proof

Proposition. Topological sort algorithm computes SPT in any edgeweighted DAG in time proportional to E + V.

edge weights can be negative!

#### Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed),
  - leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
  - distTo[w] cannot increase ←─── distTo[] values are monotone decreasing
- Thus, upon termination, shortest-paths optimality conditions hold.

#### Shortest Paths in Edge-weighted DAG: Java Implementation

```
public class AcyclicSP
{
   private DirectedEdge[] edgeTo;
   private double[] distTo;
   public AcyclicSP (EdgeWeightedDigraph G, int s)
      edgeTo = new DirectedEdge[G.V()];
      distTo = new double[G.V()];
      for (int v = 0; v < G.V(); v++)
         distTo[v] = Double.POSITIVE INFINITY;
         distTo[s] = 0.0;
      Topological topological = new Topological(G);
                                                                    topological order
      for (int v :topological.order())
         for (DirectedEdge e : G.adj(v))
             relax(e);
```

## Longest Paths in Edge-weighted DAG

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.



equivalent: reverse sense of equality in relax()

#### longest paths input shortest paths input

| 5->4 | 0.35 | 5->4 | -0.35 |
|------|------|------|-------|
| 4->7 | 0.37 | 4->7 | -0.37 |
| 5->7 | 0.28 | 5->7 | -0.28 |
| 5->1 | 0.32 | 5->1 | -0.32 |
| 4->0 | 0.38 | 4->0 | -0.38 |
| 0->2 | 0.26 | 0->2 | -0.26 |
| 3->7 | 0.39 | 3->7 | -0.39 |
| 1->3 | 0.29 | 1->3 | -0.29 |
| 7->2 | 0.34 | 7->2 | -0.34 |
| 6->2 | 0.40 | 6->2 | -0.40 |
| 3->6 | 0.52 | 3->6 | -0.52 |
| 6->0 | 0.58 | 6->0 | -0.58 |
| 6->4 | 0.93 | 6->4 | -0.93 |



Key point. Topological sort algorithm works even with negative weights.

#### Longest Paths in Edge-weighted DAG: Application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.



| job | duration |   | con | iplete<br>e |
|-----|----------|---|-----|-------------|
| 0   | 41.0     | 1 | 7   | 9           |
| 1   | 51.0     | 2 |     |             |
| 2   | 50.0     |   |     |             |
| 3   | 36.0     |   |     |             |
| 4   | 38.0     |   |     |             |
| 5   | 45.0     |   |     |             |
| 6   | 21.0     | 3 | 8   |             |
| 7   | 32.0     | 3 | 8   |             |
| 8   | 32.0     | 2 |     |             |
| 9   | 29.0     | 4 | 6   |             |

Use longest path from the source to schedule each job.



## Shortest Paths with Negative weights

Dijkstra. Doesn't work with negative edge weights.





Conclusion.

Need a different algorithm.

Dijkstra selects vertex 3 immediately after 0. But shortest path from 0 to 3 is  $0 \rightarrow 1 \rightarrow 2 \rightarrow 3$ .

Adding 9 to each edge weight changes the shortest path from  $0\rightarrow 1\rightarrow 2\rightarrow 3$  to  $0\rightarrow 3$ .

Re-weighting. Add a constant to every edge weight doesn't work.

- A negative cycle is a directed cycle whose sum of edge weights is negative.
- A SPT exists iff no negative cycles, assuming all vertices reachable from s



negative cycle (-0.66 + 0.37 + 0.28) 5->4->7->5

shortest path from 0 to 6

0->4->7->5->4->7->5...->1->3->6

| 4-73 | 0.55  |
|------|-------|
| 5->4 | -0.66 |
| 4->7 | 0.37  |
| 5->7 | 0.28  |
| 7->5 | 0.28  |
| 5->1 | 0.32  |
| 0->4 | 0.38  |
| 0->2 | 0.26  |
| 7->3 | 0.39  |
| 1->3 | 0.29  |
| 2->7 | 0.34  |
| 6->2 | 0.40  |
| 3->6 | 0.52  |
| 6->0 | 0.58  |
| 6->4 | 0.93  |

1->5 0 35

## Bellman-Ford Algorithm

#### Bellman-Ford algorithm

```
For each vertex v: distTo[v] = \infty.
```

For each vertex v: edgeTo[v] = null.

distTo[s] = 0.

**Repeat V-1 times:** 

- Relax each edge.

```
for (int i = 1; i < G.V(); i++)

for (int v = 0; v < G.V(); v++)

for (DirectedEdge e : G.adj(v))

relax(e);

relax(e);
```

## Bellman-Ford Algorithm

Repeat V – 1 times: relax all E edges.



| V | distTo[]                     | <u> </u>      |               |    |
|---|------------------------------|---------------|---------------|----|
| 0 | <del></del>                  | 0             |               |    |
| 1 | <del></del>                  | 5             |               |    |
| 2 | <del></del>                  | <del>17</del> | 14            |    |
| 3 | <del></del>                  | <del>20</del> | <b>17</b>     |    |
| 4 | $\overline{\infty}$          | 9             |               |    |
| 5 | <del>~~</del>                | 13            |               |    |
| 6 | <del></del>                  | <del>28</del> | <del>20</del> | 25 |
| 7 | $\overline{\mathbf{\omega}}$ | 8             |               |    |
|   |                              |               |               |    |

| v e | edgeTo | <b>[</b> ] |   |   |
|-----|--------|------------|---|---|
| 0   | -      |            |   |   |
| 1   | _      | 0          |   |   |
| 2   | _      | 1          | 5 |   |
| 3   | _      | 1          | 2 |   |
| 4   |        | 0          |   |   |
| 5   | _      | 4          |   |   |
| 6   | _      | 2          | 5 | 2 |
| 7   | _      | 0          |   |   |

pass 1 pass 2 pass 3 (no further changes) pass 4-7 (no further changes)

 $0 \longrightarrow 1 \ 0 \longrightarrow 4 \ 0 \longrightarrow 7 \ 1 \longrightarrow 2 \ 1 \longrightarrow 3 \ 1 \longrightarrow 7 \ 2 \longrightarrow 3 \ 2 \longrightarrow 6 \ 3 \longrightarrow 6 \ 4 \longrightarrow 5 \ 4 \longrightarrow 6 \ 4 \longrightarrow 7 \ 5 \longrightarrow 2 \ 5 \longrightarrow 6 \ 7 \longrightarrow 2 \ 7 \longrightarrow 5$ 

#### Bellman–Ford Algorithm: Correctness Proof

- Proposition. Let  $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k = v$  be a shortest path from s to v. Then, after pass i,  $distTo[v_i] = d^*(v_i)$ .

  | Description | Proposition | Propo
- Pf. [ by induction on i ]
  - Inductive hypothesis: after pass i,  $distTo[v_i] = d^*(v_i)$ .



- Since distTo[ $v_{i+1}$ ] is the length of some path from s to  $v_{i+1}$ , we must have distTo[ $v_{i+1}$ ]  $\geq d^*(v_{i+1})$ .
- Immediately after relaxing edge  $v_i \rightarrow v_{i+1}$  in pass i+1, we have

```
\begin{aligned} distTo[v_{i+1}] &\leq distTo[v_i] + weight(v_i, v_i+1) \\ &= d*(v_i) + weight(v_i, v_{i+1}) \\ &= d*(v_{i+1}). \end{aligned}
```

- Thus, at the end of pass i+1,  $distTo[v_{i+1}] = d*(v_{i+1})$ .
- Corollary. Bellman–Ford computes shortest path distances.
- Pf. There exists a shortest path from s to v with at most V 1 edges.  $\Rightarrow \leq V - 1$  passes.

## Bellman-Ford Algorithm Visualization

#### passes 4











## Bellman-Ford Algorithm Analysis

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i + 1.

Queue-based implementation of Bellman–Ford. Maintain queue of vertices whose distTo[] values needs updating.

In the worst case, the running time is still proportional to  $E \times V$ . But much faster in practice.



Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeTo[v] entries to find it).

Finding a negative cycle

#### Negative Cycle Application: Arbitrage Detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

|     | USD   | EUR   | GBP   | CHF   | CAD   |
|-----|-------|-------|-------|-------|-------|
| USD | 1     | 0.741 | 0.657 | 1.061 | 1.011 |
| EUR | 1.350 | 1     | 0.888 | 1.433 | 1.366 |
| GBP | 1.521 | 1.126 | 1     | 1.614 | 1.538 |
| CHF | 0.943 | 0.698 | 0.620 | 1     | 0.953 |
| CAD | 0.995 | 0.732 | 0.650 | 1.049 | 1     |

Ex.  $$1,000 \Rightarrow 741 \text{ Euros} \Rightarrow 1,012.206 \text{ Canadian dollars} \Rightarrow $1,007.14497.$ 



#### Negative Cycle Application: Arbitrage Detection

#### Currency exchange graph.

Challenge. Express as a negative cycle detection problem.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.



#### Model as a negative cycle detection problem by taking logs.

- Let weight of edge v→w be In (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.</li>
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).</li>

## Single Source Shortest-paths Implementation: Cost Summary

| algorithm                     | restriction            | typical case | worst case | extra space |
|-------------------------------|------------------------|--------------|------------|-------------|
| topological sort              | no directed<br>cycles  | E + V        | E + V      | V           |
| Dijkstra<br>(binary heap)     | no negative<br>weights | E log V      | E log V    | V           |
| Bellman-Ford                  | no negative            | EV           | EV         | V           |
| Bellman-Ford<br>(queue-based) | cycles                 | E + V        | EV         | V           |

- Remark 1. Directed cycles make the problem harder.
- Remark 2. Negative weights make the problem harder.
- Remark 3. Negative cycles makes the problem intractable.

## Backup Slides

## Dijkstra's Algorithm Analysis

- Dijkstra's algorithm seem familiar?
  - Prim's algorithm is essentially the same algorithm.
  - Both are in a family of algorithms that compute a graph's spanning tree.
- Main distinction: Rule used to choose next vertex for the tree.
  - Prim's: Closest vertex to the tree (via an undirected edge).
  - Dijkstra's: Closest vertex to the source (via a directed path).
- Note: DFS and BFS are also in this family of algorithms.





 $O(E \log V)$ 

| operation    | frequency | time per op |
|--------------|-----------|-------------|
| Insert       | Е         | log V       |
| delete min   | Е         | log V       |
| decrease key | Е         | log V       |

Computing spanning trees in graphs