

Исследование распределений статистик и мощности критериев однородности в случае больших массивов данных

Выполнил: Федосов Д. Н., ФПМИ, группа ПММ-61,

Научный руководитель: д.т.н., доцент Чимитова Е.В.

Цель и задачи исследования

Цель исследования: исследование критериев однородности по выборкам большого объема в случае ограниченной точности регистрации наблюдений.

Задачи:

- 1) Программная реализация вычисления статистик критериев, значений предельных функций распределений соответствующих критериев и оценок мощности критериев.
- 2) Исследование распределения статистик и мощности критериев.
- 3) Выявить наиболее предпочтительные критерии.

Критерий Лемана-Розенблатта

$$T = \frac{1}{mn(m+n)} \left[n \sum_{i=1}^{n} (r_i - i)^2 + m \sum_{j=1}^{m} (s_j - j)^2 \right] - \frac{4mn - 1}{6(m+n)},$$

где r_i – порядковый номер (ранг) y_i ; s_j – порядковый номер (ранг) x_j в объединенном вариационном ряде.

Критерий Лемана-Розенблатта

$$T = \frac{1}{mn(m+n)} \left[n \sum_{i=1}^{n} (r_i - i)^2 + m \sum_{j=1}^{m} (s_j - j)^2 \right] - \frac{4mn - 1}{6(m+n)},$$

где r_i – порядковый номер (ранг) y_i ; s_j – порядковый номер (ранг) x_j в объединенном вариационном ряде.

$$\lim_{\substack{m \to \infty \\ n \to \infty}} P\{T < t\} = a1(t),$$

$$a1(t) = \frac{1}{\sqrt{2t}} \sum_{j=0}^{\infty} \frac{\Gamma(j+1/2)\sqrt{4j+1}}{\Gamma(1/2)\Gamma(j+1)} \exp\left\{-\frac{(4j+1)^2}{16t}\right\} \times \left\{I_{-\frac{1}{4}} \left[\frac{(4j+1)^2}{16t}\right] - I_{\frac{1}{4}} \left[\frac{(4j+1)^2}{16t}\right]\right\},$$

где $I_{-\frac{1}{4}}(*), I_{\frac{1}{4}}(*)$ — модифицированные функции Бесселя.

Критерий Смирнова

$$D_{m,n} = \sup_{x} \left| G_m(x) - F_n(x) \right|$$

Критерий Смирнова

$$D_{m,n} = \sup_{x} \left| G_m(x) - F_n(x) \right|$$

$$D_{m,n}^{+} = \max_{1 \le r \le m} \left[\frac{r}{m} - F_n(x_r) \right] = \max_{1 \le s \le n} \left[G_m(y_s) - \frac{s-1}{n} \right] \qquad D_{m,n}^{-} = \max_{1 \le r \le m} \left[F_n(x_r) - \frac{r-1}{m} \right] = \max_{1 \le s \le n} \left[\frac{s}{n} - G_m(y_s) \right]$$

$$D_{m,n} = \max(D_{m,n}^+, D_{m,n}^-)$$

Критерий Смирнова

$$D_{m,n} = \sup_{x} \left| G_m(x) - F_n(x) \right|$$

$$D_{m,n}^{+} = \max_{1 \le r \le m} \left[\frac{r}{m} - F_n(x_r) \right] = \max_{1 \le s \le n} \left[G_m(y_s) - \frac{s-1}{n} \right] \qquad D_{m,n}^{-} = \max_{1 \le r \le m} \left[F_n(x_r) - \frac{r-1}{m} \right] = \max_{1 \le s \le n} \left[\frac{s}{n} - G_m(y_s) \right]$$

$$D_{m,n} = \max\left(D_{m,n}^+, D_{m,n}^-\right)$$

$$S_{\rm C} = \sqrt{\frac{mn}{m+n}} D_{m,n}$$

$$\lim_{\substack{m \to \infty \\ n \to \infty}} P\{S_{\mathcal{C}} < S\} = K(S), \quad K(s) = \sum_{k = -\infty}^{\infty} (-1)^k e^{-2k^2 s^2}$$

Критерий Андерсона-Дарлинга

$$A^{2} = \frac{1}{mn} \sum_{i=1}^{m+n-1} \frac{\left(M_{i}(m+n) - mi\right)^{2}}{i(m+n-i)},$$

где M_i — число элементов первой выборки, меньших или равных i—му элементу вариационного ряда объединенной выборки.

Критерий Андерсона-Дарлинга

$$A^{2} = \frac{1}{mn} \sum_{i=1}^{m+n-1} \frac{\left(M_{i}(m+n) - mi\right)^{2}}{i(m+n-i)},$$

где M_i — число элементов первой выборки, меньших или равных i—му элементу вариационного ряда объединенной выборки.

$$a2(t) = \frac{\sqrt{2\pi}}{t} \sum_{j=0}^{\infty} (-1)^{j} \frac{\Gamma(j+1/2)(4j+1)}{\Gamma(1/2)\Gamma(j+1)} \exp\left\{-\frac{(4j+1)^{2}\pi^{2}}{8t}\right\} \times \left\{-\frac{(4j+1)^{2}\pi^{2}}{8t}\right\} \times \left\{-\frac{(4j+1)^{2}\pi^{2}y^{2}}{8t}\right\} dy$$

Исследование распределений статистик

• Объем моделирования N = 16600

• $\rho = \sup_{x} |F_n(x) - F(x)|$ - расстояние между эмпирической и предельной функциями распределения статистик критерия в метрике Колмогорова. Где $F_n(x)$ - эмпирическая функция распределения по вычисленным значениям статистик; F(x) – предельная функция распределения статистики критерия.

Исследование распределений статистик критерия Лемана-Розенблатта

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.01	243.5
500, 500	0.01	369.5
1000, 1000	0.01	448.5
2000, 2000	0.01	510.5
5000, 5000	0.01	578.5

Округление до 2 знаков, n=m, выборки из нормального закона распределения с параметрами $\theta_0=0, \theta_1=1$

Исследование распределений статистик критерия Лемана-Розенблатта, $n \neq m$

Исследование распределений статистик критерия Смирнова

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.09	246.5
500, 500	0.07	368.5
1000, 1000	0.07	449.0
2000, 2000	0.07	507.0
5000, 5000	0.06	580.5

Округление до 2 знаков, n=m, выборки из нормального закона распределения с параметрами $\theta_0=0$, $\theta_1=1$

Исследование распределений статистик критерия Смирнова, $n \neq m$

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.09	246.5
500, 500	0.07	368.5
1000, 1000	0.07	449.0
2000, 2000	0.07	507.0
5000, 5000	0.06	580.5

n, m	ρ	среднее число различных значений в объединенной выборке
500, 500	0.07	368.5
500, 1000	0.07	421.05
500, 2000	0.06	468.0
500, 5000	0.05	533.5

Исследование распределений статистик критерия Андерсона-Дарлинга

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.02	241.0
500, 500	0.02	377.0
1000, 1000	0.03	442.0
2000, 2000	0.04	510.0
5000, 5000	0.08	576.5

Округление до 2 знаков, n=m, выборки из нормального закона распределения с параметрами $\theta_0=0, \theta_1=1$

Исследование распределений статистик критерия Андерсона-Дарлинга

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.02	241.0
500, 500	0.02	377.0
1000, 1000	0.03	442.0
2000, 2000	0.04	510.0
5000, 5000	0.08	576.5

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.02	249.0
500, 500	0.02	374.5
1000, 1000	0.02	442.5
2000, 2000	0.04	503.5
5000, 5000	0.09	569.0

n, m	ρ	среднее число различных значений в объединенной выборке
200, 200	0.02	221.0
500, 500	0.03	321.0
1000, 1000	0.04	374.0
2000, 2000	0.06	421.5
5000, 5000	0.12	475.0

Округление до 2 знаков, n=m, выборки из нормального закона распределения с параметрами $\theta_0=0, \theta_1=1$

Округление до 1 знака, n=m, выборки из нормального закона распределения с параметрами $\theta_0=0, \theta_1=10$

Округление до целых, n=m, выборки из нормального закона распределения с параметрами $\theta_0=0, \theta_1=80$

Исследование распределений статистик критерия Андерсона-Дарлинга, $n \neq m$

Виды распределения в альтернативах относительно стандартного нормального распределения

Сравнительный анализ мощности критериев, n=m=2000, $\alpha=0.05$

Заключение

- ✓ для критерия Лемана-Розенблатта распределения статистики остаются близкими к предельному закону при равных объемах выборок, однако при $n \neq m$ расстояние между эмпирической функцией распределения статистики и предельным увеличивается с ростом разницы в объемах выборок;
- ✓ для критерия Смирнова наблюдается довольно медленная сходимость распределения статистики к предельному закону при увеличении объемов выборок при n = m. Но при $n \neq m$, расстояние между функцией распределения статистики и предельной функцией становится несколько меньше, чем в случае n = m;
- ✓ для критерия Андерсона-Дарлинга расстояние между эмпирической функцией распределения статистики и предельным уменьшается с ростом отношения числа различных значений в объединенной выборке к объему объединенной выборки при n=m; А также, наблюдается сближение распределение статистики к предельному распределению при увеличении разности объемов выборок;

Заключение

- ✓ на данных ограниченной точности наибольшую мощность среди рассмотренных критериев показали критерии Андерсона-Дарлинга и Лемана-Розенблатта. Однако в случае округления наблюдений в выборках до целых критерий Андерсона-Дарлинга оказался смещенным относительно конкурирующих гипотез с пересечением функций распределения;
- ✓ обобщая полученные результаты, можно сделать вывод о предпочтительности использования критерия Лемана-Розенблатта при равных объемах выборок n=m.