ZGY-ConfigGeo

Neal Yan, 'tac-nayn06'

January 20, 2023 (OTIS VIII)

Remark. 'cause every night I lie in bed, synthetic geo fills my head... geometry is keeping me awake...

Contents

1	[50*] External references	2
2	[13*] Configs	2
	2.1 [3*] Schwatt	 2
	2.2 [2*] + [2*] Humpty Dumpty	 3
	2.3 [3*] Sharky-Devil	 5
	2.4 [3*] First isogonality lemma	
3	[65*] Contest probs	7
	3.1 [5*] 21EGMO3	 7
	3.2 [3*] 19IndTST8	 8
	3.3 [3*] 19Shrg20	 9
	3.4 [5*] 16ChnTST26	
	3.5 [3*] 13DecTST3	
	3.6 [3*] O5ChnTST	
	3.7 [5*] 19SLG6	
	3.8 [3*] 19ESLG3	
	3.9 [5*] 13Shrg19	
	3.10 [3*] 13Bra6	-
	3.11 [5*] 04SLG7	
	3.12 [5*] 16SLG2	
	3.13 [9*] Grant's Amerigeo	
	3.14 [3*] O9IrnTST9	
	3.15 [5*] 20MOP1Z	
	3.16 [9*] 20IGOA4	
	3.17 [5*] 21CHMMC6	

♣1 [50**♣**] External references

As I really enjoyed quite a few problems on this unit, some of them may be found on a **geo paper** I wrote, namely: [3*] TwCh0061, [5*] 18SLG5, [5*] 12RMM6, [5*] 20FakeUSMO3, [5*] 20MOP1Z, [9*] 20IGOA4, [9*] 20DeuXMOII3, and [9*] 20USEMO3.

Remark. Oops, I 'stole' almost all the [9♣] problemsd...also, I should really set up von someday.

♣2 [13**♣**] Configs

♣ 2.1 [3♣] Schwatt

Let ABC be a triangle with altitude \overline{AD} . Let M and N denote the midpoints of \overline{AD} and \overline{BC} . Show that line MN passes through the symmedian point K of $\triangle ABC$ (this line is called the A-Schwatt line).

Let the A-symmedian meet \overline{BC} at E, ω be the circumcircle of $\triangle ABC$, and $X \in \overline{AE}$ be the pole of \overline{BC} wrt ω . Clearly, \overline{AD} , $\overline{NX} \perp \overline{BC} \Rightarrow \overline{AD} \parallel \overline{NX}$. Then

$$-1 = (A, C; B, \overline{BK}) \stackrel{B}{=} (AE; KX) \stackrel{N}{=} (A, D; \overline{NK} \cap \overline{AD}, \infty_{AD})$$

so \overline{NK} bisects \overline{AD} .

Remark. Instead of using this config to solve TSTST 2016/6, I actually discovered it from that problem...

♣ 2.2 [2♣] + [2♣] Humpty Dumpty

Although defined in the next problem, we invoke the notation early: G as A-orthocenter Miquel point, and $T = \overline{AG} \cap \overline{BC}$ (which exists by radical axis).

By isogonal / antiparallel lines, \overline{AM} is a symmedian in $\triangle AEF$; since $Q \in (AH)$, this is (AQ; EF) = -1. First,

Lemma (3b) – T, Q, H collinear.

Proof. Harmonics: $(D, \overline{HQ} \cap \overline{BC}; B, C) \stackrel{H}{=} (AQ; EF) = -1 \text{ implies } T = \overline{HQ} \cap \overline{BC}.$

Second, $\angle MDH = \angle MQH = 90^\circ$ means MDQH cyclic, or in PoP terms, $TQ \cdot TH = TM \cdot TD$. By midpoints of harmonics bundles lemma on (TD; BC), the last product equals $TB \cdot TC$, so **2a: BCHQ** cyclic by PoP converse.

Remark. Iran TST 2018/1/4 should be in the pset...or is it only in the D version?

Third, from the above lemma and $\overline{AHD} \perp \overline{TM}$, **3c: H is orthocenter of triangle ATM**. If A' is the antipode of A on (ABC), then $\angle HGA = \angle A'GA = 90^\circ$ implies **3a: A', M, H, G collinear**.

Fourth, using midpoints of harmonics on (TD; BC) again, we can obtain $MQ \cdot MA = MD \cdot MT = MB^2 = MC^2$, implying **2b: line BC touches (ABQ), (ACQ)**.

Let O be the circumcenter of $\triangle ABC$, K be the pole of \overline{BC} wrt (ABC), $X \ne A$ be the intersection of the A-symmedian with (ABC) and Y = (A + X)/2 the A-Dumpty point, so that $Y \in (OBCK)$.

Proof. By symmetry, sufficient to prove $\angle ABY = \angle QBC$. Indeed, observing that \overline{AY} , \overline{AM} isogonal, we have

$$\angle KYB = \angle KCB = \angle CAB \Rightarrow \angle ABY = \angle BAY + \angle KYB = \angle CAY = \angle MAB \stackrel{\text{tangency}}{=} -\angle MAY. \qquad \Box$$

♣ 2.3 [3♣] Sharky-Devil

A scary fish and a fiend

20TSTST2 AoPS thread title

Let M be the midpoint of arc BC excluding A, K be the A-SD point, S be the antipode of A on (ABC). Let Ω , ω denote the circumcircle and incircle respectively.

- (a) Angle bisector theorem on $KB/KC \stackrel{\text{spiral}}{=} BF/EC = BD/DC$ implies that \overline{KD} bisects $\angle BKC \Rightarrow K, D, M$ collinear.
- (b) Due to the previous part (and the circles-inscribed-in-segments lemma from EGMO book) we may construct a circle γ tangent to Ω , \overline{BC} at K, D respectively. (This circle is tangent internally to Ω , ω at K, D respectively: $\omega \subseteq \gamma \subseteq \Omega$.) Now, by Monge on (ω, γ, Ω) , \overline{KD} passes through the exsimilicenter of (Ω, ω) .
- (c) By angle bisector theorem, equivalent to prove EP/PF = EK/KF; by spiral, EK/KF = EC/FB = CD/DB. Construct $X = \overline{EF} \cap \overline{BC}$ so that (XD; BC) = -1. Since \overline{KD} bisects $\angle BKC$, we have $\angle DKX = 90^\circ = DPX$, or XDKP cyclic. In other words, (XBF), (XCE), (XPD) concur at $K \neq X$, so CD/DB = EP/PF follows from spiral.
- (d) By radical axis on $((AI), \Omega, (BIC)), \overline{AK}, \overline{BC}$, and the line through I perpendicular to \overline{AI} concur.
- (e) Let $U = \overline{KD} \cap (AI) \ (\neq K)$. Then, $\overline{UI} \parallel \overline{BC}$ by spiral at A, so $\overline{AU} \perp \overline{UI} \parallel \overline{BC}$.

♣ 2.4 [3♣] First isogonality lemma

In a triangle *ABC*, let *P* be an interior point with $\angle ABP = \angle PCA$, and Q = B + C - P. Then \overline{AP} , \overline{AQ} isogonal wrt $\angle A$.

Let $B' = \overline{PB'} \cap \overline{AC}$, $C' = \overline{PC'} \cap \overline{AB}$. Then, consider the composition b of a homothety at A with scale factor AB/AB' = AC/AC' with a reflection in the bisector of $\angle A$. As $(B', C', P) \stackrel{b}{\to} (B, C, Q)$ by linearity / etc, the result follows.

♣3 [65♣] Contest probs

Note. Split into two sections for accessibility reasons.

♣ 3.1 [5**♣**] **21EGMO3**

Let ABC be a triangle with an obtuse angle at A. Let E and F be the intersections of the external bisector of angle A with the altitudes of ABC through B and C respectively. Let M and N be the points on the segments EC and FB respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points E, F, N, M lie on a circle.

The problem becomes a lot simpler if we consider problem wrt $\triangle HBC$ where H is the orthocenter (of $\triangle ABC$.) Define:

- Q as the H-orthocenter Miquel point in $\triangle HBC$, aka the A-Humpty point in $\triangle ABC$;
- ω_b as the circle through A touching \overline{BC} at B; it's well-known that $Q \in \omega_b$, while the given angle condition implies $N \in \omega_b$ as well.

Lemma (source?) - *HQEF* cyclic.

Proof. By angle chasing, $\triangle BEA \stackrel{-}{\sim} \triangle CFA$; thus, if $A' \in (HBC)$ is the reflection of A in \overline{BC} (so that (QA'; BC) = -1),

$$\Rightarrow \frac{BE}{CF} = \frac{BA}{CA} = \frac{BA'}{CA'} \stackrel{\text{harmonics}}{=} \frac{BQ}{CQ'}$$

proving the lemma via spiral.

To finish, all we need is:

Claim - NQHF cyclic.

Proof.
$$\angle QNF = \angle QNB = \angle QBC = \angle QHC = \angle QHF$$
.

From above claim, $M, N \in (AQEF)$ completing the proof.

Remark. Everyone's sol is the same...

♣ 3.2 [3♣] 19IndTST8

Let ABC be an acute triangle with circumcircle Γ and altitudes \overline{AD} , \overline{BE} , \overline{CF} meeting at H. Let ω be the circumcircle of $\triangle DEF$. Point $S \neq A$ lies on Γ such that $\overline{DS} = DA$. Line \overline{AD} meets \overline{EF} at Q, and meets ω at $L \neq D$. Point M is chosen such that \overline{DM} is a diameter of ω . Point P lies on \overline{EF} with $\overline{DP} \perp \overline{EF}$. Prove that lines SH, MQ, PL are concurrent.

Obviously, *L* is the midpoint of minor arc *BC*, *M* is the antipode of *D* (on ω).

Construct $X = (DQ) \cap \omega \ (\neq D)$. I claim this is the desired concurrency point. Two of the three desired lines are easy to deal with, in American fashion:

Claim 1 -
$$X \in \overline{LP}, \overline{MQ}$$
.

Proof. $\angle DPQ = 90^\circ = \angle DXQ$ implies DQPX cyclic. If $X' = \overline{LP} \cap \omega$, then $LP \cdot LX' = LQ \cdot LA = LE^2 = LF^2$, or DQPX' cyclic. Hence, X' = X.

To see that $X \in \overline{MQ}$, simply observe that $\angle DXQ = \angle DXM = 90^{\circ}$ by construction.

Define A' = 2D - A as the reflection of A in \overline{BC} , allowing us to define S more naturally as $(AA') \cap (ABC) \ (\neq A)$. Since $\angle BAQ = -\angle BAD = -\angle QEB$, BA'EQ cyclic. For the last line, we can actually show:

Claim 2 - If *i* denotes the inversion at *H* with (negative) power $p = HA \cdot HD = HB \cdot HE = HC \cdot HF$, then $S \stackrel{i}{\leftrightarrow} X$.

Proof. It's well-known that i swaps (ABC), ω .

I claim that i swaps (Q, A'). Indeed applying power of a point converse to claim 2 implies $HA' \cdot HQ = HB \cdot HE = p$. As H, A, D, Q, A' all collinear, it follows that i swaps ((AA'), (DQ)) and thus (S, X) as well.

♣ 3.3 [3♣] 19Shrg20

Let O be the circumcenter of triangle ABC, H be its orthocenter, and M be the midpoint of AB. The line MH meets the line passing through O and parallel to AB at point K lying on the circumcircle of ABC. Let P be the projection of K onto AC. Prove that $PH \parallel BC$.

Let H_c be the reflection of H in \overline{AB} , $D = \overline{CH_c} \cap (CH)$, $Q = \overline{BC} \cap (CH)$, and $N = \overline{PQ} \cap \overline{CH}$; s denote the spiral at K mapping P, Q, $D \to A$, B, H_c . Finally let K' be the reflection of K in the perpendicular bisector of \overline{AB} . By the given condition this is also the antipode of K in the $\Omega = (ABC)$, so that $\angle K'CK = 90^\circ$ whence $\overline{CK'}$ touches (CK).

Claim 1 - N is the midpoint of \overline{PQ} .

Proof. It's well-known that $\overline{H_cK'}$ passes through M, i.e. it bisects \overline{AB} ; applying s^{-1} means \overline{CD} bisects \overline{PQ} as deisred.

Claim 2 - N is also the midpoint of \overline{CH} .

Proof. Applying s^{-1} to " $\overline{KK'} \parallel \overline{AB}$ " means that $\overline{KC} \parallel \overline{PQ}$, so CPQK is a cyclic isosceles trapezoid. Thus $N = \frac{P+Q}{2}$ is on the common perpendicular bisector of \overline{CK} , \overline{PQ} . But in right $\triangle HKC$, since it's on a perpendicular bisector of a side and the hypotenuse, it must be the circumcenter, hence NC = NH as required.

It follows that *CPHQ* is a parallelogram, completing the proof.

♣ 3.4 [5♣] **16ChnTST26**

The diagonals of a cyclic quadrilateral ABCD intersect at P, and there exists a circle Γ tangent to the extensions of \overline{AB} , \overline{BC} , \overline{AD} , \overline{DC} at X, Y, Z, T respectively. Circle Ω passes through points A, B, and is externally tangent to circle Γ at S. Prove that $\overline{SP} \perp \overline{ST}$.

Solution outline with CyclicISLscelesTrapezoid and v4913. (AoPS post link)

By Brianchon's on AXBCTD and AZDCYB, \overline{XY} and \overline{YZ} intersect at P. By angle chasing, \overline{XT} and \overline{YZ} are perpendicular. Let M and N be the midpoints of \overline{XZ} and \overline{XY} , respectively, let T' be the antipode of T with respect to Γ , and redefine S as the second intersection of $\overline{PT'}$ with Γ . By inversion about Γ , it suffices to show that Γ is tangent to the circumcircle of SMN at S. By angle chasing, XYZT' is a cyclic isosceles trapezoid, so we are done by **SL 2011/G4**.

♣ 3.5 [3**♣**] 13DecTST3

Let ABC be a scalene triangle with $\angle BCA = 90^{\circ}$, and let D be the foot of the altitude from C.Let X be a point in the interior of the segment CD. Let K be the point on the segment AX such that BK = BC. Similarly, let L be the point on the segment BX such that AL = AC. The circumcircle of triangle DKL intersects segment AB at a second point T (other than D). Prove that $\angle ACT = \angle BCT$.

Let ω_a , ω_b be the circles A, B through C, $K' = \overline{AX} \cap \omega_b$ ($\neq K$), and similarly for L'. Let $C' \in \omega_a \cap \omega_b$ be the reflection of C in \overline{AB} .

Claim 1 – KLK'L' is harmonic.

Proof. The quadrilateral is cyclic by power of a point at $X: XK \cdot XK' = XC \cdot XC' = XL \cdot XL'$.

Call its circumcircle Ω . Meanwhile, power of a point at A means it's harmonic too:

$$AK \cdot AK' = AC^2 = AL^2 = AL'^2 \Rightarrow \overline{AL}, \overline{AL'} \text{ touch } \Omega.$$

Let O be the center of Ω , and $Z = \overline{KL'} \cap \overline{LK'}, Z' = \overline{KL} \cap \overline{K'L'}$ which both lie on \overline{AB} by Brokard. As \overline{AB} is the polar of $X = \overline{KK'} \cap \overline{LL'}$ wrt Ω , D is the Miquel point of KLK'L', whence $Z \in (DKL)$ and Z = T.

Claim 2 -
$$\angle ZCZ' = 90^{\circ}$$
.

Proof. Equivalent to prove $DC^2 = DZ \cdot DZ'$. O is the orthocenter of $\triangle XZZ'$ by Brokard, while it's also the orthocenter of $\triangle XAB$ because $\overline{AO} \perp \overline{LL'}$, $\overline{BO} \perp \overline{KK'}$. Recall that in a triangle ABC with orthocenter H and D the foot of the A-altitude, $DB \cdot DC = DH \cdot DA$. Thus, applying the result to $\triangle XZZ'$, XAB, we obtain

$$DZ \cdot DZ' = DO \cdot DX = DA \cdot DB = DC^2$$

as needed.

Finally, since (AB; ZZ') = -1 (Ceva-Menelaus) and $\angle ZCZ' = \angle ACB = 90^{\circ}$, \overline{CZ} bisects $\angle ACB$ by a well-known result.

♣ 3.6 [3♣] **05ChnTST**

Let ω be the circumcircle of acute triangle ABC. The tangents to ω at B and C intersect at P, and $D = \overline{AP} \cap \overline{BC}$. Points E, F are on \overline{AC} and \overline{AB} , respectively, such that $\overline{DE} \parallel \overline{BA}$ and $\overline{DF} \parallel \overline{CA}$.

- (a) Prove that points F, B, C, and E are concyclic.
- (b) Let A_1 denote the circumcenter of cyclic quadrilateral *FBCE*. Points B_1 and C_1 are defined similarly. Prove that $\overline{AA_1}$, $\overline{BB_1}$, and $\overline{CC_1}$ are concurrent.

For part (a), since \overline{AD} is a symmedian in $\triangle ABC$ and a median in $\triangle AEF$, \overline{BC} , \overline{EF} are antiparallel wrt $\angle A$.

For part **(b)**, we'll show that $\overline{AA_1}$ passes through the center L of the Lemoine circle ω . Define K as the symmedian point, and $X_{bc} = \overline{K \otimes AC} \cap \overline{AB}$ and its five other variants. Consider homothety h at A mapping $D \to K$. By parallel lines, this homothety also maps $BCEF \to X_{ac}X_{ab}X_{cb}X_{bc}$ and thus their circumcenters $A_1 \to L$ as well. Hence $L \in \overline{AA_1}$ as required.

Remark. wth is the lemoine circle

♣ 3.7 [5**♣**] **19SLG6**

Let ABC be a triangle with incenter I whose incircle touches sides BC, CA, AB at D, E, F. Line EF meets the circumcircle of $\triangle ABC$ at two points P and Q. Prove that

$$\angle DPA + \angle AQD = \angle QIP$$
.

If Ω , ω are the circumcircle and incircle respectively, define $P' = \overline{PD} \cap \omega \ (\neq P)$, and Q' similarly.

Claim - $\overline{AQ'}$ is the polar of P wrt ω . Thus, $\overline{AQ'} \perp \overline{PI}$.

Proof. Since *A* is obviously on that polar, it suffices to prove $(P, \overline{AQ} \cap \overline{EF}; E, F) = -1$. Indeed,

$$(P, \overline{AQ} \cap \overline{EF}; E, F) \stackrel{A}{=} (PQ'; BC) \stackrel{Q}{=} (KD; BC) = -1.$$

Now the problem is a simple angle chase: the claim implies $\angle QIP = \angle P'AQ'$, while (arcs directed mod 360°)

$$\angle DPA + \angle AQD = \frac{1}{2}(\widehat{P'A} + \widehat{AQ'}) = \angle P'AQ'$$

as well, as required.

♣ 3.8 [3**♣**] 19ESLG3

Let $\triangle ABC$ be an acute triangle with incenter I and circumcenter O. The incircle touches sides BC, CA, and AB at D, E, and F respectively, and A' is the reflection of A over O. The circumcircles of ABC and A'EF meet at G, and the circumcircles of AMG and A'EF meet at a point $H \neq G$, where M is the midpoint of EF. Prove that if GH and EF meet at T, then $DT \perp EF$.

Redefine T as the foot from D to \overline{EF} , so that we want T on the radical axis of (AMG), (A'EF). Construct Q as the A-SD point.

By radical axis on (AI), (A'EFG), (ABC), there exists a point $X = \overline{AQ} \cap \overline{EF} \cap \overline{AG}$.

Claim - *AGMX, IMQX* cyclic.

Proof. The first follows from $\angle AGX = \angle AGA' = 90^{\circ} = \angle AMX$, while the second from $\angle IQX = 90^{\circ} = \angle IMX$.

Finish by power of a point at T: Pow(T, (A'EF)) = $TE \cdot TF = TQ \cdot TI = TM \cdot TX = Pow(<math>T$, (AMGX)), as required.

♣ 3.9 [5**♣**] 13Shrg19

Let ABC be a triangle with circumcenter O and incenter I. The incircle is tangent to sides \overline{BC} , \overline{CA} , \overline{AB} at A_0 , B_0 , C_0 . Point L lies on \overline{BC} so that $\angle BAL = \angle CAL$. The perpendicular bisector of \overline{AL} meets BI and CI at Q and P, respectively. Let C_1 and B_1 denote the projections of B and C onto lines CI and BI. Let O_1 and O_2 denote the circumcenters of triangles ABL and ACL.

Prove that the six lines BC, PC_0 , QB_0 , C_1O_1 , B_1O_2 , and OI are concurrent.

Rename A_0 , B_0 , C_0 , O_1 , O_2 to D, E, F, O_c , O_b respectively.

Claim 1 - $\triangle LQP, \triangle DEF$ are homothetic.

Proof. Observe that P, Q are midpoints of \widehat{AL} on (ACL), (ABL) respectively, so that $\angle ALQ = \frac{B}{2}$; thus

$$\angle QLC = \frac{B}{2} + \angle ABL + \angle LAB = \frac{A+B}{2} = \frac{\pi-C}{2} = \angle ELC \Rightarrow \overline{LQ} \parallel \overline{DE}$$

and its cyclic variant, $\overline{LP} \parallel \overline{DF}$. Additionally \overline{PQ} , $\overline{EF} \perp \overline{AI}$ (by design) implies $\overline{PQ} \parallel \overline{EF}$; as the triangles have parallel sides, they're indeed homothetic.

Let $X = \overline{BC} \cap \overline{QE} \cap \overline{PF}$ be the similicenter of these two triangles. I is the orthocenter of $\triangle LPQ$ because $\overline{CP} \perp \overline{DE} \parallel \overline{LQ}$ and $\overline{BQ} \perp \overline{LP}$ analogously.

Claim 2 - \overline{OI} is the common Euler line of $\triangle DEF$, $\triangle LPQ$, and passes through X.

Proof. It's well-known that \overline{OI} is the Euler line of $\triangle DEF$. By homothety, the Euler line of $\triangle DEF$ is parallel to that of $\triangle LPQ$.

However, since these parallel lines share a point I (not at infinity), they must coincide. In order for a line to map to itself under a homothety, it must pass through the center– in other words, $X \in \overline{OI}$.

Let O' be the circumcenter of $\triangle LPQ$. It remains to prove that:

Claim 3 - O_o C_1 correspond under the homothety.

Proof. Recall that \overline{CI} is the perpendicular bisector of \overline{DE} while $O_cL = O_cQ$ and O'L = O'Q by design means $\overline{O_cO'}$ is the that of \overline{LQ} . By Iran lemma, $C_1 = \overline{CI} \cap \overline{EF}$, so it corresponds with $O_c = \overline{O_cO'} \cap \overline{PQ}$.

♣ 3.10 [3**♣**] 13Bra6

The incircle of triangle ABC touches sides BC, CA and AB at points D, E and F, respectively. Let P be the intersection of lines AD and BE. The reflections of P with respect to EF, FD and DE are X, Y and Z, respectively. Prove that lines AX, BY and CZ are concurrent at a point on line IO, where I and O are the incenter and circumcenter of triangle ABC.

Let T_a be the foot from D to \overline{EF} , and X be the similicenter of homothetic triangles DEF, $I_aI_bI_c$. Clearly, it must also be the similicenter of their respective orthic triangles, so A, T_a , X collinear.

Next, let $V = \overline{AD} \cap \overline{EF}$, so that (DV; AP) = -1. Because $\angle DT_aV = 90^\circ$, \overline{EF} must bisect $\angle AT_aP$, whence $P_a \in \overline{AT_aA'}$. Considering triangles ABC, DEF, and the orthic triangle of $\triangle DEF$, the concurrency holds by cevian nest.

♣ 3.11 [5**♣**] **04SLG7**

For a given triangle ABC, let X be a variable point on the line BC such that C lies between B and X and the incircles of the triangles ABX and ACX intersect at two distinct points P and Q. Prove that the line PQ passes through a point independent of X.

Let I_b be the *B*-excenter, and ℓ be the *A*-midline in $\triangle ABX$, ACX. Also, let ω_b , ω_c be the incircles of $\triangle ABX$, ACX respectively, respectively touching \overline{BC} at T_b , T_c and \overline{AX} at Y_b , Y_c . Finally, let M, N be respective midpoints of $\overline{T_bT_c}$, $\overline{Y_bY_c}$, so that \overline{MNPQ} is the radical axis of ω_b , ω_c .

Recall the following result:

Lemma – In a triangle ABC, if the incircle touches \overline{AB} , \overline{AC} at X, Y, then the B-midline, the C-angle bisector, and \overline{XY} are concurrent.

Consider the fixed points $K = \overline{BI_b} \cap \ell$ ($\in \overline{T_bY_b}$) and $L = \overline{CI_b} \cap \ell$ ($\in \overline{T_cY_c}$). It's routine to show that \overline{MN} is midway between the parallel lines $\overline{T_bY_b}$, $\overline{T_cY_c}$ and thus passes through $Z = \frac{K+L}{2}$, also a fixed point.

\$ 3.12 [5*****] **16SLG2**

Let ABC be a triangle with circumcircle Γ and incenter I and let M be the midpoint of \overline{BC} . Denote by D the foot of the perpendicular from I to \overline{BC} . The line through I perpendicular to \overline{AI} meets sides AB and AC at F and E respectively. Suppose the circumcircle of $\triangle AEF$ intersects Γ at a point X other than A. Prove that lines XD and AM meet on Γ .

Let $A' \in \Gamma$ denote the reflection of A in the perpendicular bisector of \overline{BC} , and T denote the contact point of the A-mixtilinear incircle with Γ . Since \overline{TD} , \overline{TA} isogonal wrt $\angle BTC$, $A' \in \overline{TD}$. It's well-known that E, F lie on said mixtilinear incircle.

Claim -
$$(XT; BC) = -1$$
.

Proof. By a well-known lemma, \overline{TE} , \overline{TF} respectively bisect $\angle ATC$, $\angle ATB$, so

$$\frac{FB}{FT}\frac{FA}{TA} = \frac{EA}{TA} = \frac{EC}{TC} \Rightarrow \frac{XB}{XC} \stackrel{\text{spiral}}{=} \frac{FB}{EC} = \frac{TB}{TC}.$$

Now, let $P = \overline{XD} \cap \Gamma \ (\neq X)$. Then

$$(\overline{AP} \cap \overline{BC}, \infty_{BC}; B, C) \stackrel{A}{=} (PA'; BC) \stackrel{D}{=} (XT; BC) \stackrel{\text{claim}}{=} -1$$

means \overline{AP} bisects \overline{BC} . In other words, $P=\overline{XD}\cap\overline{AM}\cap\Gamma$ as required.

Remark. Should be [3*] instead of [5*]? No intention of casting aspersion, oops...

♣ 3.13 [9**♣**] Grant's Amerigeo

(in ARCH, H1746385.)

Convex pentagon ABMCN is inscribed in circle Γ with diameter \overline{MN} , with BM = CM. Two distinct circles ω_B and ω_C are drawn, each tangent to segments AM and BC, and internally tangent to Γ . Finally, we draw a circle γ externally tangent to ω_B and ω_C , and internally tangent to Γ at a point W on arc \overline{BMC} of Γ .

- (a) Prove that \overline{AM} and \overline{WN} meet on γ .
- (b) Prove that \overline{AM} passes through one of the intersections of γ and the A-mixtilinear incircle.

(asy'd without Geogebra conversion, despite lack of productivity in doing so...)

Let I, I_a , α be the incenter, A-excenter, and A-excircle respectively. Define $D = \overline{AI} \cap \overline{BC}$ and $T = \alpha \cap \overline{BC}$.

Claim 1 - ω_b , ω_c touch \overline{AD} at I.

Proof. Recalling the properties of curvilinear incircles, the line through the tangency points of ω_b with \overline{AD} , \overline{BD} passes through I. It follows that the former tangency point is simply I.

Now, let i denote the inversion about A with power $AB \cdot AC = AM \cdot AD = AI \cdot AI_a$ composed with a reflection in \overline{AM} . Let the images of ω_b , ω_c under i (which we call ω_b' , ω_c') touch \overline{BC} at R, S, so that $DI_a = DR = DS$.

Lemma - If two circles α , *beta* touch a segment AB at A, B respectively, and each other at P, then $\angle APB = 90^{\circ}$.

Proof. If M is the midpoint of \overline{AB} , then since it's on the radical axis of α , β , we have MA = MB = MP, which implies the result.

 \Rightarrow $\triangle RI_aS$ right. Also, let γ map to a circle γ' tangent to ω'_b, ω'_c , and \overline{BC} at some point K.

Claim 2 - $\overline{I_aK}$ bisects $\angle RI_aS$.

Proof. Invert at I_a with arbitrary power; then, if R, S map to R', S', γ' maps to a circle γ'' tangent to (the tangents to $I_aR'S'$ at R', S') and ($I_aR'S'$) itself. By symmetry (about the perpendicular bisector of $\overline{R'S'}$), γ'' touches \widehat{BC} at its midpoint. The angle bisection directly follows.

Let *U* be the antipode of *K* on γ' . To get rid of $\triangle ABC$, we'll need:

Claim 3 -
$$U \in \overline{AI_aD}$$
.

Proof. Let $X = \omega_b' \cap \gamma'$, $Y = \omega_c' \cap \gamma'$. By homothety/etc, we obtain $U \in \overline{RX}$, \overline{SY} , while by similar triangles,

$$UR \cdot UX = UK^2 = US \cdot UY$$

means U is on the radical axis of ω'_b, ω'_c , which is $\overline{I_aD}$. (In fact, $UK = UI_a$...)

Now we can obtain (a): $\overline{WN} \stackrel{\iota}{\Leftrightarrow} (AEK)$, so it's equivalent to show:

Claim 4 - *UKAE* cyclic.

Proof. $\angle UKE = 90^{\circ} = \angle UAE$ using last claim.

Finally, let $P \in \overline{I_aD}$ be the reflection of T in \overline{AK} , so that $AT = AP \Rightarrow T \in \alpha$. Performing i on the statement of **(b)** changes it to " α , $\overline{I_aD}$ meet at a point (namely, P). Indeed, $P \in \gamma'$ because $\angle KPU = \angle KPA = 90^\circ$, the end!

♣ 3.14 [3♣] **O9IrnTST9**

In triangle ABC, D, E and F are the points of tangency of incircle with the center of I to BC, CA and AB respectively. Let M be the foot of the perpendicular from D to EF. P is on DM such that DP = MP. If H is the orthocenter of BIC, prove that PH bisects EF.

Recalling the lemma famously associated with this problem, let $Y, Z \in \overline{EF}$ be the feet from B, C to $\overline{CI}, \overline{BI}$ respectively. Then, we can get rid of triangle ABC as follows:

Iran TST 2009/9 reduced

In triangle HBC, D, Y, Z are the respective feet of altitudes, and I is the orthocenter. If M is the foot from I to \overline{YZ} and P is the midpoint of the altitude from D to \overline{YZ} , then P, M, H are collinear

But this is just the below lemma from EGMO chapter 4, applied to $\triangle DYZ$, so we're done...

Lemma (EGMO Ch. 4) – In a triangle ABC, the midpoint of the A-altitude, the intouch point on \overline{BC} , and the A-excenter are collinear.

♣ 3.15 [5♣] **20MOP1Z**

Let ABCD be a quadrilateral inscribed in circle Ω . Circles ω_A and ω_D are drawn internally tangent to Ω , such that ω_A is tangent to \overline{AB} and \overline{AC} while ω_D is tangent to \overline{DB} and \overline{DC} . Prove that we can draw a line parallel to \overline{AD} which is simultaneously tangent to both ω_A and ω_D .

Solution by **v4913**. Define...

- P, Q as the respective midpoints of \widehat{BC} , \widehat{BAC} , I_a , I_d as the respective incenters of ω_a , ω_d , and M as the midpoint of \overline{BC} ;
- O_a , O_d as respective centers of ω_a , ω_d , and $\gamma = (BI_aI_dC)$ (with center P), so that \overline{QB} , \overline{QC} touch γ ;
- E_a , F_a , $T_a = \omega_a \cap \overline{AB}$, \overline{AC} , Ω ; K_a as the intersection of $\overline{AT_d}$ with ω_a closer to A, and their symmetric variants. It's well-known that Q, I_a , T_a collinear, and that I_a is the midpoint of $\overline{E_aF_a}$;
- s_a as the spiral similarity mapping $\gamma \to \omega_a$ and thus Q, B, C, $M \to A$, E_a , F_a , I_a . Since $\Delta K_a A F_a = \frac{1}{2} \widehat{T_d C} = \Delta I_d Q C$ by design, we also have $(K_a \overset{s_a}{\to} I_d)$.

We contend that $\overline{K_aK_d}$ is the desired tangent, using the following two parts:

Claim 1 -
$$\overline{O_a K_a}$$
, $\overline{O_d K_d} \perp \overline{AD}$.

Proof. We angle chase:

$$\measuredangle(\overline{O_aK_a},\overline{AD})=\measuredangle O_aK_aA+\measuredangle K_aAD\stackrel{s_a}{=} \measuredangle PI_dQ+\measuredangle T_dQD=\measuredangle(\overline{PI_d},\overline{QD})=\frac{1}{2}\widehat{PQ}=90^\circ.$$

The claim follows by symmetry.

Claim 2 - $\overline{K_aK_d} \parallel \overline{AD}$.

Proof. Let $X = \overline{AT_d} \cap \overline{DT_a}$, so that it'll suffice to prove $AK_a/AX = DK_d/DX$. Indeed, using s_a , $AK_a = QI_d \cdot \frac{AI_a}{QM}$ and similarly $DK_d = QI_a \cdot \frac{DI_d}{QM}$. We thus have:

$$\frac{AK_a}{DK_d} = \frac{AI_a/QI_a}{DI_d/QI_d} = \frac{AT_a/QP}{DT_d/QP} = \frac{AX}{DX}.$$

From the previous two claims, $\overline{O_aK_a}$, $\overline{O_dK_d} \perp \overline{K_aK_d}$, \overline{AD} so $\overline{K_aK_d}$ touches both ω_a , ω_d while also parallel to \overline{AD} , as required.

♣ 3.16 [9**♣**] **20IGOA4**

Convex circumscribed quadrilateral ABCD with its incenter I is given such that its incircle is tangent to \overline{AD} , \overline{DC} , \overline{CB} , and \overline{BA} at K, L, M, and N. Let $E = \overline{AD} \cap \overline{BC}$ and $F = \overline{AB} \cap \overline{CD}$. Let $X = \overline{KM} \cap \overline{AB}$ and $Y = \overline{KM} \cap \overline{CD}$. Let $Z = \overline{LN} \cap \overline{AD}$ and $T = \overline{LN} \cap \overline{BC}$.

Prove that the circumcircle of triangle $\triangle XFY$ and the circle with diameter EI are tangent if and only if the circumcircle of triangle $\triangle TEZ$ and the circle with diameter FI are tangent.

imagine doing both directions

CyclicISLscelesTrapezoid

We contend that (XFY), (EI) tangent $\iff \overline{KM} \perp \overline{LN}$, which is just another expression of 'ABCD bicentric'. Call the incircle ω . Define $S = \overline{KM} \cap \overline{LN}$ and Q as the Miquel point of KLMN aka the inverse of S wrt ω , which obviously lies on the polar \overline{EF} of S wrt ω . It follows that $\angle SQE = \angle SQF = 90^\circ$. Let $F' = \overline{QF} \cap \overline{KM} \cup D$ be the midpoint of $\overline{SF'}$.

Claim - \overline{QF} always bisects $\angle XQY$, and $UM \cdot UK = US^2 = UX \cdot UY$, so U lies on the radical axis of (EIMK), (XFY).

Proof. By Brianchon on ABMCDK, $S = \overline{AB} \cap \overline{CD}$ as well. Apply DIT to \overline{KM} and quadrilateral ABCD and project to Q, to obtain an involutive pairing i : Q(XY; SS; KM). The last two pairs imply that i is just reflection in \overline{QS} , so \overline{QS} bisects $\angle XQY$. As $\overline{QF} \perp \overline{QS}$, it must also bisect the same angle: i : Q(F'F').

By these right angles and angle bisections, (SF'; MK) = (SF'; XY) = -1, so the last result follows by midpoints of harmonic bundles lemma.

Now because $\angle SQF' = 90^\circ$, we have $UQ = US = UF' \Rightarrow (EI)$, (XQY) tangent at Q; this means that the desired is equivalent to FQXY cyclic.

Note. Actually, there are two circles through *X*, *Y*, but one of them is extraneous by configuration issues.

Next, we show that this happens iff FX = FY.

"If" direction Since $\angle FQX = \angle YQF$, triangles FQX, FQY have equal circumradii, so their circumcircles either coincide or are reflections of each other in \overline{QF} . If they were to be reflections, we'd obtain two possibilities, each

absurd in the context of the problem: (i) Q, X, Y collinear $\Rightarrow \overline{XY}, \overline{EF}$ coincide; and (ii) X, Y reflections in $\overline{QF} \Rightarrow \overline{XY}, \overline{SQ} \perp \overline{EF}, \overline{XY} \parallel \overline{SQ}$. Thus (FQX) = (FQY) as required.

"Only if" direction $\angle YQF = \angle FQX \Rightarrow \widehat{YF} = \widehat{FX}$, trivial;

To finish the problem, observe that FX = FY is equivalent to \overline{MK} making equal angles with \overline{AB} , \overline{CD} . As FN = FL as well, \overline{LN} (always) makes equal angles with the same two lines. Since K, L, M, N form a convex polygon, this is in turn equivalent to $\overline{KM} \perp \overline{LN}$, completing the proof.

♣ 3.17 [5**♣**] **21CHMMC6**

Let ABC be a triangle with circumcenter O. The interior bisector of $\angle BAC$ intersects BC at D. Circle ω_A is tangent to segments AB and AC and internally tangent to the circumcircle at P. Let E and E be the points at which the E-excircle and E-excircle are tangent to E and E and E pass through a common point E0 on the circumcircle of E1.

- (a) Prove that the circumcircle of PDO passes through N.
- (b) Suppose that PD/BC = 2/7. Find, with proof, the value of $\cos \angle BAC$.

First part Let $\Omega = (ABC)$, $\omega = (AEF)$, the latter with center G. Also let S, T be the respective midpoints of \widehat{BC} , \widehat{BAC} . Since BF = CE, $S \in \omega$ by spiral. Also, as customary in bash solutions, let A = BC, B = CA, B = CA

Claim 1 - *D* is the Miquel point of *AENF*.

Proof. Let D' be the Miquel point of AENF and thus BFCE as well. Again, since BF = CE and there exists a spiral similarity at D' mapping $B, F \to C, E$, that spiral similarity must in fact be a rotation. Thus, D'B = D'E, so $\overline{AD'}$ bisects $\angle BAC$. Additionally, by Brokard, D' lies on the line through $B = \overline{EN} \cap \overline{AF}$ and $C = \overline{FN} \cap \overline{AE}$, which pins down the position of D'.

Remark. This looks like one of CyclicISLscelesTrapezoid's discarded problem ideas...

Claim 2 - b + c = 2a and $I \in \omega$ as well.

Proof. Since AFCD cyclic by definition of Miquel point, power of a point gives

$$a\frac{ac}{b+c} = BD \cdot BC = BF \cdot BA = c(s-a) \Rightarrow (2a-b-c)(a+b+c) = 0 \Rightarrow b+c = 2a.$$

Now if we let E', F' be the feet from I to \overline{AC} , \overline{AB} , then $\triangle FF'I \cong \triangle EE'I$ implies $\angle EIF = \angle E'IF' = \pi - A$, and $I \in \omega$ as claimed.

Claim 3 - N is the reflection of T in \overline{BC} .

Proof. Using the cyclic quads associated with Miquel points, we've $\angle NBD = \angle CFD = \angle CAD = \frac{A}{2}$; similarly, $\angle NCD = \frac{A}{2} = \angle NDC$. Noting that $T \neq N$ also satisfies these angle conditions, it follows that the two points are indeed reflections in \overline{BC} .

From the last claim, N must be the foot from I to \overline{ST} , while it's well-known that P is the foot from T to \overline{SI} . From the second claim, D is the midpoint of \overline{TI} . Obviously, G, O are the respective midpoints of \overline{SI} , \overline{ST} while A is the foot from S to \overline{IT} .

To conclude, A, G, O, N, D, P lie on the nine-point circle of $\triangle IST$.

Second part Let PD = 2, BC = 7. Since $\angle IPT = \angle INT$ by the claims from the previous part, D is the center of (INTP); we then obtain TI = 4 so $\triangle TBC$ has sides 4, 4, 7. We obtain

$$\cos A = -\cos \angle BTC = \frac{7^2 - 2 \cdot 4^2}{2 \cdot 4^2} = \boxed{\frac{17}{32}}.$$