Easy Category

1	The degree and order of the differential equation $(y^{lll})^{3/2} + (y^l)^2 = x^3$ is :
	a. 3,3 b. 3/2,3 c. 3,3/2 d. 1,3
2	The degree and order of the differential equation $\frac{[y^{ll}-(y^l)]^{1/2}}{x}=y$ is :
	a.1,2 b. 1/2,2 c. 2,1 d. 1/2,1/2
3	The differential equation $y^{lll} - 2y^{ll} = 4y + x^3$ is :
	a. Linear differential equation with constant coefficientsb. Linear differential equation with variable coefficientsc. Non - linear differential equationd. Cauchy's differential equation
4	The differential equation $y^{ll} - xy^l + x^2y = \cos x$ is :
	a. Linear differential equation with variable coefficientsb. Linear differential equation with constant coefficientsc. Non - linear differential equationd. Cauchy's differential equation
5	The differential equation $y^{lll} - yy^{ll} + xy^3y^l = 0$ is :
	a. Non - linear differential equationb. Linear differential equation with constant coefficientsc. Linear differential equation with variable coefficientsd. Cauchy's differential equation
6	The differential equation $x^3y^{lll} - 2xy^l = \log x$ is :
	a. Cauchy's differential equationb. Exact Differential equationc. Non - linear differential equationd. Linear differential equation with constant coefficients
7	A particular solution of the differential equation $y^{ll} - 2y^l + y = 0$ is :
	a. $y = 2e^x$ b. $y = e^{2x}$ c. $y = e^{-x}$ d. $y = 1$
8	A particular solution of the differential equation $y^{ll} - y = 0$ is :
	a. $y = 2e^x$ b. $y = e^{2x}$ c. $y = e^{-2x}$ d. $y = 2e^{2x}$
9	A particular solution of the differential equation $y^{ll} + 9y = 0$ is :
	a. $y = \sin 3x$ b. $y = 3\sin x$ c. $y = 3\cos x$ d. $y = \sin 9x$
10	A particular solution of the differential equation $y^{lll} = 0$ is :

11	a. $y = x^2y = x^3$ b. c. $y = x^4 + x$ d. $y = (x - 1)^4$
11	The complementary function of the differential equation $(D-3)^2y=e^{3x}$ is: a. $y_c=(C_1+C_2x)e^{3x}$ b. $y_c=(C_1+C_2)xe^{3x}$ c) $y_c=(C_1e^{3x}+C_2e^{-3x})$ d. $y_c=(C_1+C_2x)$
12	The complementary function of $y^{ll} - 2y^l + y = xe^x \sin x$ is: a) $y_c = (C_1x + C_2)e^x$ b) $y_c = (C_1e^x + C_2e^{-x})$ c) $y_c = (C_1 + C_2x)e^{-x}$ d) $y_c = (C_1x + C_2)e^{2x}$
13	The complementary function of $(D^2 + 3D - 4)y = 12e^{2x}$ is : a) $y_c = (C_1e^{-4x} + C_2e^x)$ b) $y_c = (C_1e^{-x} + C_2e^{-4x})$ c) $y_c = (C_1e^{-4x} + C_2e^{-x})$ d) $y_c = (C_1e^{4x} + C_2e^{-4x})$
14	The complementary function of $y^{ll} + 9y = \sin^2 x$ is: a. $y_c = C_1 \cos 3x + C_2 \sin 3x$ b. $y_c = (C_1 e^{3x} + C_2 e^{-3x})$ c) $y_c = (C_1 + C_2 x) e^{3x}$ d) $y_c = C_1 \cos x + C_2 \sin x$
15	The complementary function of the differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} = 0$ is : a) $y_c = (C_1 + C_2 e^x)$ b) $y_c = (C_1 + C_2) e^x$ c) $y_c = (C_1 x + C_2) e^x$ d) $y_c = (C_1 e^{-x} + C_2) e^x$
16	The absolute value of the Wronskian of e^{2x} and xe^{2x} is: a) e^{4x} b) e^{-2x} c) e^{2x} d) e^{-4x}
17	9. The absolute value of the Wronskian of cos2 <i>x</i> and sin2 <i>x</i> is: a)2 b)4 c) 3 d)1
18	The Cauchy's differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 1$ can be transformed in to a linear differential equation with constant coefficients, by taking x as: a) e^t b. $\log t$ c) e^{-t} d) $\frac{1}{t}$
19	If <i>D</i> is the differential operator, then for any function $f(x)$, $\frac{1}{D}f(x)$ represents: a. $\int f(x)dx$ b. $\int f(D)dx$ c. $\frac{d}{dx}f(x)$ d. $\frac{f(D)}{x}$
20	If y_1 and y_2 are the solutions of a homogeneous differential equation, then which of the following is also a solution of the same equation: a. $y_1 + y_2$ b. $\frac{y_1}{y_2}$ c. y_1y_2 d. $y_1^2 + y_2^2$
21	The number of arbitrary constants in the general solution of a 3 rd order differential equation is: a. 3 b. 0 c. 4 d. 2
22	The particular integral of the differential equation $f(D)y = xe^x$ is:

23	Which of the following option is true for the differential equation $\frac{d^2y}{dx^2} - 49y = 0$:
	a)The roots of the auxiliary equation are 7 and -7 b)The roots of the auxiliary equation are $\pm 7i$ c)The auxiliary equation has a repeated root of 7 d)The roots of the auxiliary equation are 0 and 7
24	The general solution of the differential equation $f(D)y = X$; where X is a non – zero function of x , contains: a. Both complementary function and particular integral
	b. Only complementary functionc. Only particular integrald. Neither complementary function nor particular integral
25	A differential equation is considered to be ordinary if it has:
	(A) one independent variable B) more than one dependent variable
	(C) two independent variable (D) more than two independent variable

Difficult Category

1	If $y = e^{2x}$ is a solution of the differential equation $y^{ll} - 5y^l + ky = 0$, then the value of k is :
	a. 6 b 6 c. 0 d. 4
2	If $y = \sin 2x$ is a solution of the differential equation $y^{ll} - ky = 0$, then the value of k is :
	a 4 b. 2 c2 d. 4
3	The two linearly independent solutions of the differential equation $(D-2)^2y=0$ is :
	a. e^{2x} , xe^{2x} b. $2e^x$, $2xe^x$ c. $2e^{2x}$, $4e^{2x}$ d. xe^{2x} , $2xe^{2x}$
4	The two linearly independent solutions of the differential equation $(D^2 + 16)y = 0$ is :
	a. $\cos 4x$, $\sin 4x$ b. $\cos 2x$, $\sin 2x$ c. $4\cos x$, $4\sin x$ d. $e^x \cos 4x$, $e^x \sin 4x$
5	If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are real and distinct, then the complementary solution is of the form:

 If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are real and equal, then the complementary solution is of the form a. y_c = Ae^{mx} + Bxe^{mx} b. y_c = Ae^{m₁x} + Be^{m₂x} c. y_c = Ae^{mx} + Be^{mx} d. y_c = Ae^{m₁x} + Bxe^{m₂x} d. y_c = Ae^{m₁x} + Bxe^{m₂x} b. y_c = Acosβx order linear differential equation with constant coefficients are purely imaginary, then the complementary solution is of the form a. y_c = Acosβx + Bsinβx b. y_c = Acosβx c. y_c = Asinβx d. y_c = Ae^{ax}cosβx + Be^{ax}sinβx If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are equal to zero, then the complementary solution is of the form a. y_c = A + Bx b. y_c = Ae^{m₁x} + Be^{m₂x} c. y_c = A + Bx + Cx² d. y_c = Ae^{m₂x}Be^{mx} If the roots of the auxiliary equation of a differential equation are 0,1,0then the different equation is: a. (D³ - D²)y = 0 b. (D - 1)³y = 0 c. (D² - D)y = 0 d. D³y = y If the roots of the auxiliary equation of a differential equation are 1 ± ithen the different equation is: 	: 1
 Ae^{m₁x} + Bxe^{m₂x} If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are purely imaginary, then the complementary solution is of the form. a. y_c = Acosβx + Bsinβx b. y_c = Acosβx c. y_c = Asinβx d. y_c = Ae^{αx}cosβx + Be^{αx}sinβx If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are equal to zero, then the complementary solution is of the form. a. y_c = A + Bx b. y_c = Ae^{m₁x} + Be^{m₂x} c. y_c = A + Bx + Cx² d. y_c = Ae^{m₂x} Be^{mx} If the roots of the auxiliary equation of a differential equation are 0,1,0then the different equation is: a. (D³ - D²)y = 0 b. (D - 1)³y = 0 c. (D² - D)y = 0 d. D³y = y If the roots of the auxiliary equation of a differential equation are 1 ± ithen the differ	I
constant coefficients are purely imaginary, then the complementary solution is of the form a. $y_c = A\cos\beta x + B\sin\beta x$ b. $y_c = A\cos\beta x$ c. $y_c = A\sin\beta x$ d. $y_c = Ae^{\alpha x}\cos\beta x + Be^{\alpha x}\sin\beta x$ 8 If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are equal to zero, then the complementary solution is of the form a. $y_c = A + Bx$ b. $y_c = Ae^{m_1 x} + Be^{m_2 x}$ c. $y_c = A + Bx + Cx^2$ d. $y_c = Ae^{m_2 x}$ 9 If the roots of the auxiliary equation of a differential equation are 0,1,0then the different equation is: a. $(D^3 - D^2)y = 0$ b. $(D - 1)^3 y = 0$ c. $(D^2 - D)y = 0$ d. $D^3 y = y$ 10 If the roots of the auxiliary equation of a differential equation are $1 \pm i$ then the differential equation are $1 \pm i$	I
 Ae^{αx}cosβx + Be^{αx}sinβx 8 If two roots of the auxiliary equation of a second order linear differential equation with constant coefficients are equal to zero, then the complementary solution is of the form a. y_c = A + Bx b. y_c = Ae^{m₁x} + Be^{m₂x} c. y_c = A + Bx + Cx² d. y_c = Ae^{m₂x} Be^{mx} 9 If the roots of the auxiliary equation of a differential equation are 0,1,0then the different equation is: a. (D³ - D²)y = 0 b. (D - 1)³y = 0 c. (D² - D)y = 0 d. D³y = y 10 If the roots of the auxiliary equation of a differential equation are 1 ± ithen the differential equation a	
constant coefficients are equal to zero, then the complementary solution is of the form a. $y_c = A + Bx$ b. $y_c = Ae^{m_1x} + Be^{m_2x}$ c. $y_c = A + Bx + Cx^2$ d. $y_c = Ae^{m_2x}$ 9 If the roots of the auxiliary equation of a differential equation are 0,1,0then the different equation is: a. $(D^3 - D^2)y = 0$ b. $(D - 1)^3y = 0$ c. $(D^2 - D)y = 0$ d. $D^3y = y$ 10 If the roots of the auxiliary equation of a differential equation are $1 \pm i$ then the differential equation are 1	
Be ^{mx} 9 If the roots of the auxiliary equation of a differential equation are 0,1,0then the different equation is: a. $(D^3 - D^2)y = 0$ b. $(D - 1)^3y = 0$ c. $(D^2 - D)y = 0$ d. $D^3y = y$ 10 If the roots of the auxiliary equation of a differential equation are $1 \pm i$ then the differential equation are $1 \pm i$ then t	I
equation is : $a. (D^3 - D^2)y = 0 \qquad b. (D - 1)^3y = 0 \qquad c. (D^2 - D)y = 0 \qquad d. D^3y = y$ 10 If the roots of the auxiliary equation of a differential equation are $1 \pm i$ then the differential	^{nx} +
If the roots of the auxiliary equation of a differential equation are $1 \pm i$ then the differential	ıtial
	ıtial
a. $(D^2 - 2D + 2)y = 0$ b. $(D^2 + 2D - 2)y = 0$	
c. $(D^2 + 4D + 4)y = 0$ d. $(D^2 - 4D + 4)y = 0$	
The particular integral of $(D^2 + 3D - 4)y = 12e^{2x}$ is: a) $2e^{2x}$ b) $y_p = e^{2x}$ c) $y_p = 3e^{2x}$ d) $y_p = -2e^{2x}$	
12 If $f(D) = D^2 - 2$, then $\frac{1}{f(D)}e^{2x}$ is:	
a) $\frac{e^{2x}}{2}$ b) $2e^{2x}$ c) e^{2x} d) $\frac{e^{2x}}{-6}$	
13 If $f(D) = D^2 + 36$, then $\frac{1}{f(D)} 4\cos 2x$ is	
a) $\frac{\cos 2x}{8}$ b) $\frac{x}{3}\cos 2x$ c) $\frac{x}{3}\sin 2x$ d) $x\cos 2x$	
14 $y = (C_1e^{-6x} + C_2e^{2x})$ is the general solution of the equation: a) $y^{ll} + 4y^l - 12y = 0$ b) $y^{ll} - 4y^l - 12y = 0$	
c) $y^{ll} - 4y^l + 12y = 0$ d) $y^{ll} + 4y^l + 12y = 0$	
15 $y = C_1 \cos 2x + C_2 \sin 2x$ is the general solution of the equation a) $y^{ll} + 4y = 0$ b) $y^{ll} - 4y = 0$ c) $y^{ll} - 2y = 0$ d) $y^{ll} + 2y = 0$	

16	The particular integral of the differential equation $\frac{d^2y}{dx^2} = x$ is :
	a. $y_p = \frac{x^3}{6}$ b. $y_p = \frac{x^2}{2}$ c. $y_p = \frac{x^3}{3}$ d. $y_p = 1 + x$
17	For $(D^2 + 4)y = \tan 2x$, solving by variation of parameters, the absolute value of Wronskian W is :
	a. 2 b. 4 c. 1 d 4
18	Which of the following is not a solution of $y^{ll} + y = 0$:
	a. $y = \sin 2x$ b. $2\sin x$ c. $y = \cos x$ d. $y = 2\cos x$
19	Which of the following is not a solution of $y^{ll} - 5y^l + 6y = 0$:
	a. $y = e^{-2x}$ b. $y = e^{2x}$ b. $y = e^{3x}$ d. $y = 10e^{2x}$
20	The Cauchy's differential equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = \log x$ on substituting $x = e^t$, reduces
	a. $\frac{d^2y}{dt^2} = t$ b. $\frac{d^2y}{dt^2} = \log t$ c. $\frac{d^2x}{dt^2} = t$ d. $\frac{d^2y}{dt^2} = e^t$
21	The particular integral of $(D^2 - 6D + 9)y = \log 2is$:
	a) $y_p = \frac{\log 2}{9}$ b) $y_p = \frac{\log 2}{3}$ c) $y_p = \frac{\log 2}{4}$ d) $y_p = \log 2$
22	The Cauchy's differential equation $2x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = x$ on substituting $x = e^t$, reduces to
	$a2\frac{d^2y}{dt^2} - \frac{dy}{dt} = e^t$. $2\frac{d^2y}{dt^2} + \frac{dy}{dt} = t$ b. $2\frac{d^2x}{dt^2} + \frac{dx}{dt} = e^t$ c. $2\frac{d^2y}{dt^2} + \frac{dy}{dt} = e^t$
23	The particular integral of $(D+5)(D-4)y = 1000$ is: a) $y_p = -50$ b) $y_p = 50$ c) $y_p = 100$ d) $y_p = -100$
24	The particular integral of the differential equation $(D-1)y = -x$ is :
	a. $y_p = x + 1$ b. $y_p = x - 1$ c. $y_p = x$ d. $y_p = 2x + 1$
25	The solution of the initial value problem $(D-2)(D-3)y=0; y(0)=0, y^l(0)=-1i$
	a. $y = e^{2x} - e^{3x}$ b. $y = e^{2x} + e^{3x}$ c. $y = e^{-2x} - e^{-3x}$ b. $y = e^{-2x} + e^{-3}$