Question	Answer	Marks	Guidance
6	$\frac{\frac{10(1-r^{8})}{1-r}}{\frac{10(1-r^{4})}{1-r}} = \frac{17}{16} \left[a \frac{(1-r^{8})}{(1-r)} = \frac{17}{16} \times a \frac{(1-r^{4})}{(1-r)} \right]$	M1*	OE, i.e. substituting p and q expressions into ratio $\frac{17}{16}$. $16 = a\frac{\left(1-r^4\right)}{\left(1-r\right)}, \ 17 = a\frac{\left(1-r^8\right)}{\left(1-r\right)} \text{ gets M0 unless recovered later.}$
	Simplifying to $16r^8 - 17r^4 + 1$ [=0] (or equivalent form)	DM1	Or $\frac{\left(1-r^8\right)}{\left(1-r^4\right)} = \left(1+r^4\right) = \frac{17}{16}$.
	$\left[\left(16r^4 - 1 \right) \left(r^4 - 1 \right) = 0 \right] \Rightarrow r = \pm \frac{1}{2}$	A1	Or $r^4 = \frac{1}{16} \implies r = \pm \frac{1}{2}$ (condone extra $r = \pm 1$ solution).
	$S_{\infty} = \frac{10}{1 - \left(\left[\pm \right] \frac{1}{2} \right)}$	DM1	Use of correct sum to infinity formula with either of their r values providing $ r < 1$.
	$S_{\infty} = 20$ and $\frac{20}{3}$	A1	Allow 6.67 or better. A0 if there is only one or more than two S_{∞} values.
		5	