2. Упорядоченные множества

Note 1

d8936dde76084fbfaa621700f57c7cd4

Пусть $R\subseteq A\times A$ — отношение эквивалентности. (кезаМножество классов эквивалентности R_0) называется (кезафактормножеством множества A по отношению R_0)

Note 2

212c805b47c40c48f35bdbd5130db2l

Бинарное отношение $R\subseteq \{(c3:A\times A)\}$ называется $\{(c2:has)$ ывается отношением частичного порядка,(c1:has) если $\{(c1:has)$ оно рефлексивно, антисимметрично и транзитивно.(c1:has)

Note 3

2a3a6e89d50d41068b22bfd1c595b39

Отношение ((с2. частичного порядка) обычно обозначается символом ((с1. €.))

Note 4

90 faa 1 ffe f 764 c 7 d 808 d 675 7 d 97 d fa4b

Множество A с (са: заданным на нём отношением частичного порядка) называется (са: частично упорядоченным множеством.)

Note 5

4157aa1725c244a58f3e32a92a0937bb

Пусть (A, \leq) — частично упорядоченное множество, $x, y \in A$. Говорят, что $\{(x) : x \in y \text{ или } y \leq x\}$

Note 6

e75ca87d267f4673a53c15a0e7adcccl

Бинарное отношение $R\subseteq \{(c3):A\times A\}\}$ называется $\{(c2):$ отношением линейного порядка, $\{(c1):A-(c1):R-(c2):$ отношение частного порядка и любые $x,y\in A$ сравнимы. $\{(c1):A\times A\}$

Note 7

79eba4d41c8b4aafa75c4a7c56268adb

Множество A с $\{c_2, 3$ аданным на нём отношением линейного порядка $\{c_1, 3\}$ называется $\{c_1, 3\}$ линейно упорядоченным множеством.

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Говорят, что $\{(ax) : x < y, \}$ если $\{(ax) : x \leqslant y \text{ и } x \neq y, \}$

Note 9

264501d4458400e8b0073eac66b95f6

Пусть (A,\leqslant) — частично упорядоченное множество. Во избежание путаницы, отношение $\{(c1),c2\}$ называют отношением $\{(c1),c2\}$ порядка.

Note 10

ec44ba694d2541deaae260221aaafdc5

Пусть (A,\leqslant) — частично упорядоченное множество. Во избежание путаницы, отношение $((c2),\leqslant)$) называют отношением ((c1) нестрого) порядка.

Note 11

962a3744a3cc4153bd9317aab2cb46cb

Пусть (A, \leq) — частично упорядоченное множество. Мы читаем знак < как (как «меньше».)

Note 12

850b05ff29334d869b6a9c7e96eef9a9

Пусть (A,\leqslant) — частично упорядоченное множество. Мы читаем знак \leqslant как $\|(a)\|$ «меньше или равно».

Note 13

0e5d3d3ef97541309f99f132d7d20073

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда $\{(cz:x\leqslant y)\}$ $\{(cz:x=y,y)\}$ или $\{(cz:x=y,y)\}$

Note 14

9b75255301e143ba94b347847852b33f

Пусть (A, \leqslant) — частично упорядоченное множество. Является ли отношение < рефлексивным?

Нет.

Пусть (A, \leqslant) — частично упорядоченное множество. Является ли отношение < антирефлексивным?

Да.

Note 16

2d5bf110950f42b4bc343f143b82dfc8

Пусть (A,\leqslant) — частично упорядоченное множество. Является ли отношение < транзитивным?

Да.

Note 17

378780d3b9d74367a71bdf0fb3f67e9f

Пусть (A,\leqslant) — частично упорядоченное множество. Является ли отношение < асимметричным?

Да.

Note 18

f4e2e2fe9c8140a6b8fcda896dd5da35

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда если $\{(a,b) \in X \leqslant y \leqslant x, \}$ то $\{(a,b) \in Y \in Y \}$

Note 19

1ca369e310d2477782f82089ab512891

Пусть (A,\leqslant) — частично упорядоченное множество, $x,y\in A$. Тогда если $x\leqslant y\leqslant x$, то x=y. В чём ключевая идея доказательства?

Антисимметричность.

Note 20

0af7ee8e9a5c4ad88db6ea371bee9527

Пусть (A, \leqslant) — частично упорядоченное множество, $x, y \in A$. Почему не стоит читать $x \leqslant y$ как «x не больше y»?

 $\overline{x \geqslant y} \implies x \leqslant y$, если порядок не линеен.

Note 21

414d948920404634bec1fec01bd9b0b2

Бинарное отношение $R\subseteq \{\{c3::A\times A\}\}$ называется $\{\{c2::$ называется отношением предпорядка, $\{\}\}$ если $\{\{c1::$ оно рефлексивно и транзитивно. $\{\}\}$