IBSS Heuristic Notes

Karl Tayeb

2022-02-19

Contents

"Justification" for running IBSS with general likelihood

With $q = \prod q_l$

$$\mathcal{L}_{SuSiE}(q_l; q_{-l}) = \mathbb{E}_q[\log p(y, \beta_l, \beta_{-l}|X) - \log q]$$
(1)

$$\approx \mathbb{E}_{q_l} \left[\log p(y, \beta_l, \bar{\beta}_{-l}) - \log q_l \right] + C \tag{2}$$

$$= \mathcal{L}_{SER}(q_l, \bar{\beta}_{-l}) + H(q) \tag{3}$$

In the second line we "approximate" by simply pushing the expectation over q_{-l} into the log likelihood term. It turns out this holds exactly when $\log p$ is quadratic in $\beta = \beta_l + \beta_{-l}$ (e.g. Gaussian likelihood case). Noting that $\mathbb{E}_q\left[\beta^2\right] = (\beta_l + \bar{\beta}_{-l})^2 + V(\beta_{-l})$, we can see that $\mathbb{E}_q\left[Q(\beta)\right] = \mathbb{E}_{q_l}\left[Q(\beta_l + \bar{\beta}_{-l})\right] + C$ where C is a constant with respect to q_l , and Q is a quadratic function.

The approximation should be good when $\log p(y, \beta_l, \beta_{-l})$ is well approximated by a quadratic function in β , that is, in the asymptotic regime (large n small $|\beta|$). Then, we might hope this approximation works well when $\log p(y, \beta_l, \bar{\beta}_{-l})$:

$$\begin{split} \mathbb{E}_{q_{l}} \left[\mathbb{E}_{q_{-l}} [\log p(y, \beta_{l}, \beta_{-l})] \right] &\approx \mathbb{E}_{q_{l}} \left[\mathbb{E}_{q_{-l}} [Q(\beta_{l} + \beta_{-l})] \right] \\ &= \mathbb{E}_{q_{l}} \left[Q(\beta_{l} + \bar{\beta}_{-l}) + C \right] \\ &\approx \mathbb{E}_{q_{l}} \left[\log p(y, \beta_{l}, \bar{\beta}_{-l}) \right] + C \end{split}$$