Esercizio 3

Il test della media di una distribuzione normale, $X \simeq NOR(\mu, \frac{\sigma}{\sqrt{n}})$ è utilizzata nei test d'ipotesi quando la varianza del campione è nota per determinare se accettare o rifiutare l'ipotersi nulla H_0 nella seguente maniera:

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases}$$

nel caso di un test bilatero o a due code, oppure:

$$\begin{cases} H_0: \mu \leq \mu_0 \\ H_1: \mu > \mu_0 \end{cases} \quad \bigvee \quad \begin{cases} H_0: \mu \geq \mu_0 \\ H_1: \mu < \mu_0 \end{cases}$$

nel caso di un test unilatero o ad una coda.

Si determina la media campionaria che coinciderà con la nostra statistica test U:

$$U = \frac{\overline{X}_n - \mu_0}{\sqrt{\frac{\sigma^2}{n}}}$$

La statistica U calcolata ricaderà su una distribuzione normale standardizzata, $X \simeq NOR(0,1)$. A questo punto in base al tipo di test (unilatero o bilatero) si determina se la statistica U ricade in una zona critica o in una zona di accettazione della normale standardizzata, delimitate dagli intervalli di confidenza con livello di fiducia α .

Con α solitamente scelto tra $\alpha = 0.1(90\%)$, $\alpha = 0.05(95\%)$ o $\alpha = 0.01(99\%)$.

Se la statistica U ricade in una zona di accettazione si accetta l'ipotesi nulla H_0 , in caso contrario si rifiuta l'ipotesi nulla H_0 e si accetta l'ipotesi alternativa H_1 .