10-708: Probabilistic Graphical Models 10-708, Spring 2017

Homework3

Lecturer: Eric P. Xing Name: Yuan Liu(yuanl4)

1 Variational Autoencoders

1.1 Derive the evidence lower bound

$$\begin{split} D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) &= \int q_{\phi}(z|x) \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} dz = \int q_{\phi}(z|x) \log \frac{q_{\phi}(z|x)p_{\theta}(x)}{p_{\theta}(z|x)p_{\theta}(x)} dz \\ &= E_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)p_{\theta}(x)}{p_{\theta}(x,z)} \right] = E_{q_{\phi}(z|x)} \left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(x,z)} \right] + \log p_{\theta}(x) \end{split}$$

Because we know $D_{KL}(q_{\phi}(z|x)||p_{\theta}(z|x)) \geq 0$. Then we can get:

$$\log p_{\theta}(x) \ge E_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right]$$
$$log p_{\theta}(D) = \sum_{i=1}^{n} \log p_{\theta}(x^{(i)}) \ge \sum_{i=1}^{n} E_{q_{\phi}(z|x^{(i)})} \left[\log \frac{p_{\theta}(x^{(i)},z)}{q_{\phi}(z|x^{(i)})} \right]$$

1.2 Wake-sleep algorithm

• Wake phase: Maximize the bound with respect to p_{θ} , which means

$$\theta := arg \max_{\theta} \sum_{i=1}^{n} E_{q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}|z) \right]$$

- We first generate samples $\{z^{(i,j)}\}_{j=1}^m$ from $q(z|x^{(i)})$ for each i.
- Then we maximize

$$\theta := arg \max_{\theta} \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} \log p_{\theta}(x^{(i)}|z^{(i,j)})$$

• Sleep phase: Maximize $F'(\theta, \psi; x) = -\log p_{\theta}(x) + D_{KL}(p_{\theta}(z|x)||q_{\phi}(z|x))$ with respect to $q_{\phi}(z|x)$, which means:

$$\phi := \arg \max_{\phi} E_{p_{\theta}(z,x)} \left[\log q_{\phi}(z|x) \right]$$

- We first generate samples $\{(x^{(j)},z^{(j)})\}_{j=1}^m$ from $p_{\theta}(z,x)$ through top-down pass.
- Then we maximize

$$\phi := arg \max_{\phi} \frac{1}{m} \sum_{j=1}^{m} \log q_{\phi}(z^{(j)}|x^{(j)})$$

2 Homework3

• Advantage: It is generally applicable to a wide range of generative models by training a separate inference network.

• **Disadvantages:**(1) KL distance is not symmetric. (2) Doesn't optimize a well-defined objective function. (3) Not guaranteed to converge.

1.3 Autoencoding variational Bayes approach

According to ELBO we know:

$$\begin{split} \log p_{\theta}(x) &\geq E_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \right] = E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x,z) - \log q_{\phi}(z|x) \right] \\ &= E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) p(z) - \log q_{\phi}(z|x) \right] \\ &= E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL}(q_{\phi}(z|x)||p(z)) \end{split}$$

Let

$$L(\theta, \phi, x) := E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL}(q_{\phi}(z|x)||p(z))$$

- Maximize $L(\theta, \phi, x)$ with respect to $p_{\theta}(x|z)$. This step is the same as wake phase.
 - We first generate samples $\{z^{(i,j)}\}_{j=1}^m$ from $q(z|x^{(i)})$ for each i.
 - Then we maximize

$$\theta := arg \max_{\theta} \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} \log p_{\theta}(x^{(i)}|z^{(i,j)})$$

$$\nabla_{\theta} L(\theta, \phi, x) \approx \frac{1}{mn} \sum_{i=1}^{n} \sum_{j=1}^{m} \nabla_{\theta} \log p_{\theta}(x^{(i)}|z^{(i,j)})$$

• Maximize $L(\theta, \phi, x)$ with respect to $q_{\phi}(z|x)$.

$$\nabla_{\phi} E_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] = E_{\epsilon \sim N(0,I)} \left[\nabla_{\phi} \log p_{\theta}(x|z_{\phi}(\epsilon)) \right]$$

$$\nabla_{\phi} D_{KL}(q_{\phi}(z|x)||p(z)) = E_{\epsilon \sim N(0,I)} \left[\nabla_{\phi} \left(\log q_{\phi}(z_{\phi}(\epsilon)|x) - \log p(z_{\phi}(\epsilon)) \right) \right]$$

- We first generate samples $\{\epsilon^{(i)}\}_{i=1}^m$ from normal distribution.
- Then me get

$$\nabla_{\phi} L(\theta, \phi, x) \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_{\phi} [\log p_{\theta}(x | z_{\phi}(\epsilon^{(i)})) - \log q_{\phi}(z_{\phi}(\epsilon^{(i)}) | x) + \log p(z_{\phi}(\epsilon^{(i)})))]$$

- Advantage (1)Enjoy similar applicability with wake-sleep algorithm. (2)Reduce variance through reparameterization of the recognition distribution
- **Disadvantage** (1)Not applicable to discrete latent variables. (2)Usually use a fixed standard normal distribution as prior, leading to limited flexibility

Homework3 3

1.4 Tighter bound

$$L_K = E[\log \frac{1}{k} \sum_{i=1}^k \frac{p_{\theta}(x, z^{(i)})}{q_{\phi}(z^{(i)}|x)}] \le E[\log \frac{1}{k} \sum_{i=1}^k \frac{p_{\theta}(x, z^{(i)})}{q_{\phi}(z^{(i)}|x)}] = \log p(x)$$

Let $I \in 1,...,k+1$ with |I|=k be a uniformly distributed subset of distinct indices from 1,...,k+1. We will use the following simple observation: $E_{I=\{i_1,...i_k\}}[\frac{a_{i_1}+...+a_{i_k}}{k}] = \frac{a_1+...+a_{k+1}}{k+1}$ for any sequence of numbers $a_{i_1}+...+a_{i_k}$.

$$L_{k+1} = E[\log \frac{1}{k+1} \sum_{i=1}^{k+1} \frac{p_{\theta}(x, z^{(i)})}{q_{\phi}(z^{(i)}|x)}]$$

$$= E\left[\log E_{I=\{i_{1},...i_{k}\}} \left[\frac{1}{k} \sum_{i=1}^{k} \frac{p_{\theta}(x, z^{(i_{k})})}{q_{\phi}(z^{(i_{k})}|x)}\right]\right]$$

$$\geq E\left[E_{I=\{i_{1},...i_{k}\}} \left[\log \frac{1}{k} \sum_{i=1}^{k} \frac{p_{\theta}(x, z^{(i_{k})})}{q_{\phi}(z^{(i_{k})}|x)}\right]\right]$$

$$= E\left[\log \frac{1}{k} \sum_{i=1}^{k} \frac{p_{\theta}(x, z^{(i)})}{q_{\phi}(z^{(i)}|x)}\right]$$

$$= L_{k}$$

Then we can get

$$\log p(x) \ge L_{k+1}(x) \ge L_k(x)$$

1.5 Counterexample

We know if $\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}$ is bounded, from the strong law of large numbers, $\lim_{n\to\infty} L_n \to \log p(x)$. Then we can get: if we want to find counter example, we need to make $\frac{p_{\theta}(x,z)}{q_{\phi}(z|x)}$ unbounded. For example, let $p_{\theta}(x,z)$ is supported on $[0,1]\times[0,1]$, and make $q_{\phi}(z|x)\equiv 0$ on $[0,1]\times[0,1]$.

2 Implementation and Experience

4 Homework3

Figure 1: L_{1000} of both algorithm. The left one is about sleep wake algorithm, and the right part is about AEVB algorithm

Figure 2: Visualize of both algorithm. The left one is about sleep wake algorithm, and the right part is about AEVB algorithm

Homework3 5

Figure 3: The distribution of wake_sleep algorithm

Figure 4: The distribution of AEVB algorithm