Московский Физико-Технический Институт

(государственный университет)

Кафедра общей физики Лабораторная работа № 3.1.1

Магнитометр

Студент			Преподаватель
(кми)	(фамилия)	(имя)	(отчество)
	группа	_	(фамилия)

Цель работы: определить горизонтальную составляющую магнитного поля Земли и установить количественное соотношение между единицами электрического тока в системе СИ и абсолютной гауссовой системе.

В работе используются: магнитометр, осветитель со шкалой, источник питания, вольтметр, электромагнитный переключатель, конденсатор, намагниченный стержень, прибор для определения периода крутильных колебаний, секундомер, рулетка, штангенциркуль

Задание 1.

Экспериментальная установка

а) Схема магнитометра

б) Схема измерения угла отклонения магнитной стрелки

Рис. 1: Устройство магнитометра

Магнитометр — прибор для магнитных измерений — это компас, теодолит,веберметр и пр. С помощью магнитометров измеряют намагниченность ферромагнетиков, напряжённость магнитных полей, исследуют магнитные аномалии.

Постановка задачи. Измерим угол отклонения магнитной стрелки в поле намагниченного стержня и период колебаний этого стержня в поле Земли. По результатам измерений рассчитываем горизонтальную составляющую магнитного поля Земли.

Выполнение измерений. В нашей установке магнитную стрелку заменяют сменяют смещения двух световых зайчиков относительно друг друга. Вставляя намагниченный стержень в отверстие Р (Рис. 1a) измерим смещение подвижного зайчика x_1 (Рис. 1б). Поменяв ориентацию стержня измерим x_2 . Измерим расстояние от шкалы до зеркала L

$$x1 =$$

$$x2 =$$

$$L =$$

Опустим стержень на длинной нити в стеклянный сосуд, и измерим период его колебаний.

Таблица 1: Зависимость времени от колебаний

t, c			
N, колебаний			
T, c			

Получаем средний период колебаний $T_{\rm cp.}=$ Измерим линейные размеры стержня

$$m =$$

$$d =$$

$$l =$$

Также нам был дан радиус кольца K (Рис. 1a) R= . Приведем основные погрешности измерений:

$$\sigma_{l}= \hspace{1cm} \sigma_{R}= \ \sigma_{r}= \ \sigma_{L}= \ \sigma_{T}= \ \sigma_{x_{1}}= \ \sigma_{x_{2}}= \ \sigma_{x_{3}}= \ \sigma_{x_{4}}= \ \sigma_{x_{5}}= \ \sigma_{x_$$

Произведем рассчет момента инерции ферромагнитного стержня:

$$J =$$

$$\Delta J =$$

Теперь рассчитаем магнитное поле:

$$B_0 =$$

$$\Delta B_0 =$$

Задание 2.

Вынув намагниченный стержень из гнезда P, мы собрали электрическую схема (Puc. 2). Подадим на рабочую установку напряжение U. Замкнем ключ K и включим электровибратор. Напряжение не изменилось, а отклонение зайчика x_1' . Поменяем полярность ключа и проведем аналогичные измерения: x_2' , среднее значение x

$$U = x_1' = x_2' = x_2' = x_2'$$

Теперь рассчитаем силу тока в разных система СИ – $I_{\rm CH}$ и в абсолютной гауссовой – $I_{\rm a6c}$.

Из параметров установки нам известно, что N= , рассчитаем $\lg \varphi_2=$. Получим:

 $I_{\rm CW} =$

$$\Delta I_{\rm CM} =$$

Для расчёта $I_{\rm a6c}$ переведем U в абс. гауссову систему $U_{\rm a6c} =$, тогда:

$$I_{
m a6c} =$$
 $\Delta I_{
m a6c} =$ $c =$ $\Delta c =$

B итоге c =

Вывод

-		