M 431: Assignment 4

Nathan Stouffer

Page 55 — Problem 21

Problem. If A, B are subgroups of G such that $b^{-1}Ab \subset A$ for all $b \in B$, show that AB is a subgroup of G.

Proof.

Page 65 — Problem 19

 $\it Problem.$ Find all the distinct conjugacy classes of S_3 .

Proof.

Page 65 — Problem 21

Problem. Let G be the dihedral group of order 8. Find the conjugacy classes in G.

Proof.

Heisenberg group problem

Problem. Find the center of our new friend, the Heisenberg group,

$$\mathbb{H}_3(\mathbb{R}) := \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$

Proof.

Crayon the clock

Problem. Let G be equal to $\mathbb{Z}_{15}:=\{0,1,2,...,14\}$. Draw it some way. Find a subgroup H of order |H|=5 and then color differently all the different subsets of \mathbb{Z}_{15} of the form aH. (How many are there?) If you have more crayons, do another drawing for an H with |H|=3.

Proof.