CS 3313 Foundations of Computing:

Lab 3: Regular Expessions Review and the Pumping Lemma

Outline

Proving Languages not Regular

- NFA/DFA Pumping Lemma
 - Using Closure Properties

How to prove a language is not regular... The Pumping Lemma for Regular Languages

For every regular language L

There is an integer p, such that (note; you cannot fix p)

For every string w in L of length $\geq p$ (you can choose w)

We can write w = xyz such that:

- 1. $|xy| \le p$ (this lets you focus on pumping within first p symbols)
- 2. |y| > 0 (y cannot be empty)
- 3. For all $i \ge 0$, xy^iz is in L. (to get contradiction find one value of i where pumped string is not in L)

Pumping Lemma as an Adversarial Game

- 1. Player 1 (me) picks language L to be proved nonregular
 - ❖ Prove $L = \{ss^R \mid s \in \{a, b\}^*\}$ is not regular.
- Player 2 picks p, but doesn't tell me what p is, player 1 must win for all values of p
- 3. Player 1 picks a string w, which may depend on p, and must be of <u>length at least p</u>
 - Assume *L* is regular. Let $w = a^p b^1 b^1 a^p \in L$, i.e., $s = a^p b^1$; as well as $|s| \ge p$.

Note: Words in purple are the example wordings we use in this type of proofs.

Pumping Lemma as an Adversarial Game

- 4. Player 2 divides w into xyz s.t. |y|>0 and |xy|<=p
 - He does not tell player 1 this division, player 1's strategy must work for all choices
 - Then by the Pumping Lemma, w can be divided into three parts w = xyz, such that $x = a^{\alpha}$, $y = a^{\beta}$, $z = a^{p-\alpha-\beta}b^1b^1a^p$, where $\beta \ge 1$, $(\alpha + \beta) \le p$.
- 5. Player 1 "wins" by picking an integer k>=0, which may be a function of p,x,y, and z, such that $xy^kz \notin L$
 - Now, consider k=0. Then the string after the pumping becomes $w'=xy^0z=xz=a^{p-\beta}b^1b^1a^p$. Note that since $\beta\geq 1$, there's no way for w' to be in the form of a string followed by its reverse; hence $w'\notin L$. Contradiction. $\Longrightarrow L$ not regular.

Pumping Lemma Remarks

- How do we know what string we need to choose?
 - Trial and Error and some eureka
 - $L = \{ss^R \mid s \in \{a,b\}^*\}$, if we'd chosen $w = a^n a^n$, then for $w' = a^{n-\beta}a^n$, then adversary can just choose $\beta \ge 1$ to be of even length, such that $w' = s's'^R$. So, choosing such a w has no use for us.
 - $L = \{a^n b^m \mid m \neq n, n, m \geq 1\}$, if we choose $w = a^p b^{p+1}$ or $w = a^p b^{2p}$, can we find some integer k such for $w' = xy^k z$, number of a's equals to number of b's.

[We saw this in class]

Exercise 1: Pumping Lemma

Exercise: Prove that $L = \{a^m b^n \mid m < n\}$ is not regular.

- 1. What string w should we choose?
- 2. What does the pumping lemma tell us?
- 3. How to complete the proof?

Exercise 2: Pumping Lemma

Exercise: Prove that $L = \{0^m 1^n \mid m \neq 2n\}$ is not regular.

- 1. What string w should we choose?
- 2. What does the pumping lemma tell us?
- 3. How to complete the proof?

4. Remember, it's okay if you don't pick w correctly on the first try!

Outline

Proving Languages not Regular

- NFA/DFA Pumping Lemma
- Using Closure Properties

Closure Properties of Regular Languages

We have proven that regular languages are closed under a number of operation:

- 1. \overline{L} is regular if L is
- 2. $L_1 \cup L_2$ is regular if L_1 , L_2 are
- 3. $L_1 \cap L_2$ is regular if L_1 , L_2 are
- 4. $L_1 \parallel L_2$ is regular if L_1 , L_2 are
- 5. L^R is regular if L is
- 6. L* is regular if L is
- 7. NOPREFIX, NOEXTEND
- 8. There are many more

Proving Non-Regularity Using Closure

To prove L' is not regular:

- 1. Assume L' is regular
- 2. Show that if L' is regular than by closure, we get that some language L is regular
- 3. If we know that L is not regular, this is a contradiction.

Proving Non-Regularity Using Closure

To prove L' is not regular:

- 1. Assume L' is regular
- 2. Show that if L' is regular than by closure, we get that some language L is regular
- 3. If we know that L is not regular, this is a contradiction.

Example:

Prove that $L = \{0^n 1^n \cup 1^n 0^n\}$ is not regular

- 1. Assume L is regular
- 2. Observe that $L' = \{0^*1^*\}$ is regular
- 3. $\{0^n1^n\} = L \cap L'$, so if L is regular we have a contradiction

Exercise 3: Closure Properties

Exercise: Prove that $L = \{0^n 1^{n-3}\}$ is not regular.

- 1. What do we assume?
- 2. What closure property should we use here?
- 3. How do we get to contradiction?