Lecture 7: Linear Functions & Functions of 3 Variables

Last Time: (1) Discussed linear functions of I variables

(2) Started linear functions of 2 variables

(3) OH -> Today 10:10-11:00 Baken Math Grad Lounge (6th floor).

(4) → Dove Liana

Today: (1) Finish linear functions of 2 variables

(2) Functions of 3 variables.

Recall: A linear fet of 2 variables is of the form $f(x_1y) = z = mx + ny + c$ where $m_1n_1 c \in \mathbb{R}$. $m = \frac{\Delta^2}{\Delta x}$ and $n = \frac{\Delta^2}{\Delta y}$ and $c = z_0$.

Class 1: To consider a table of values.

x\y	l	2	3	4
l	2	6	lo	14
2	-3	l	5	9
3	-8	-4	0	4
4	-13	- 9	- 5-	- (

Questin: How can we obtain the rule of the function from the table

Step 1: Compute Slapes:
$$M = \frac{\Delta^2}{\Delta \chi} = \frac{1-\zeta}{2-1} = \frac{-5}{1} = -5$$

$$N = \frac{\Delta^2}{\Delta y} = \frac{6-2}{2-1} = \frac{4}{1} = 4.$$

$$2 = -5 + 4 + C \implies C = 3.$$

$$\rightarrow f(x_{1}y) = -5x + 4y + 3.$$

Class 2: Given 3 pts find the eq. + Sketch

Ex. A = (1,0,0), B = (0,2,0), C = (0,0,3) be pts in IR3,

Step 1: Find the Slopes.

Here you have to be careful since in order to compute $M = \frac{\Delta t}{\Delta n}$ you need y to be the same and similarly to compute $N = \frac{\Delta t}{\Delta y}$ you held $N = \frac{\Delta t}{\Delta y}$ you held N =

To compute $M = \frac{\Delta^2}{\Delta x}$ choose the pts A + C. Then $M = \frac{3-0}{0-1} = -3$

And similarly to compute $n = \frac{\Delta z}{\Delta y}$ choose the pts B and C then $n = \frac{\Delta z}{\Delta y} = \frac{3-o}{o-z} = -\frac{3}{2}.$

Step 2: Sub Into f = mx + hy +c

$$\Rightarrow f = -3x - \frac{3}{2}y + c.$$

Step 3: Find C by using any pt.

$$3 = c$$

Step 4: Sub C back into 7

$$\Rightarrow f = -3\chi - \frac{3}{2}\gamma + 3$$

Aside: $w = f(x_1y_1z) = x^2 + 3y + 4z + 9$ not a hyperplan since it is quadratic in π .

Ex. Let
$$f(x_{1y}) = x + 2y + 1$$
.

1. Is I a linear function? Yes.

2.	The	foll.	Wina	table	15	the	table	that	contains	the	values	0-	t .
		7	7									J	
	Com	olete	the	table.									

x\y	0	L	2	3	4	5	Ь	
0	l	3	S ⁻	•	-			
l	2	4	6					

3. Compare
$$\frac{\Delta z}{\Delta y}$$
 for each now
$$\frac{3-1}{1-0} = 2 \quad \text{for pts} \quad (3_{1}1) + (1_{1}0)$$

$$\frac{S-3}{z-1} = 2 \quad \text{for pts} \quad (S_{1}2) + (3_{1}1)$$

$$\vdots$$

$$\frac{\Delta t}{\Delta y} = 2$$
 for any two consecutive pts.

4. Compan
$$\frac{52}{\Delta x}$$
 for each tow $\frac{32}{\Delta x} = 1$ for any two consecutive pts.

5. Takeaways.

For every linear fet all the rows have the same slope and all the columns have the same slope.

Ēx.	Cohich	of the	f. llowin	19 ar	y the	tables of values for a linear function.
	(a)	x\y	0	l	2	not a linear function since heither row/column increases leverly.
		0	4	l	4	not a linear function since heither row/column
		l	l	0	١	increases lucarly.
		2	4	l	4	•
	(h)	x/y	0	l	2	this is a likear function.
		0	16	13	16	this is a likear function.
		l	6	9	اک	J
		2	2	ζ	δ	
	(c)	<u>x</u> /y	0	l	2	
		0	0	5	10	this is a linear fot.
		1	2_	7	12	V
		2	4	9	14	
			\			
				1		
				\times		

Summany: How to recognize linear fots from a table.

- · each now/column is likear
- · all nows have the same slope.
- " all columns have the same slope.

Functions of 3 Variables

Def: A fet of 3 variables, f, is a rule that assigns to each ordered triple. (x1412) in the domain $D \leq \mathbb{R}^3$ a unique (single) real number denoted by $w = f(x_14_12)$.

Ex. The temp T at a pt on the surface of the Earth depends on the longitude x, the latitude y, and the time t. i.e. T = f(x,y,t)

Q: If we want to depict fets of 3 variables what can be look at?

A: Its 3d level surfaces

Def: Let $f: \mathbb{R}^3 \to \mathbb{R}$. The set of pts $(x,y,z) \in \mathbb{R}^3$ when f has a constant value f(x,y,z) = c are level surfaces. In other words $f^{-1}(c) = \{(x,y,z) \in D_{\overline{f}} \mid c = f(x,y,z)\}.$