# Laptop Usage Patterns -A Statistical Analysis

# **MA2540: APPLIED STATISTICS**

# **Group Members**

| GUNTI LAHARI                | AI22BTECH11008 |
|-----------------------------|----------------|
| JANAPAREDDY HIMA CHANDH     | AI22BTECH11009 |
| KONDAPARTHY ANURAGA CHANDAN | AI22BTECH11011 |
| RUVVA SURAJ KUMAR           | AI22BTECH11022 |
| SINGA DIVIJA REDDY          | AI22BTECH11026 |

Prof. Dr. Sameen Naqvi

2<sup>nd</sup> May, 2024



# **INTRODUCTION:**

This report provides a Statistical Analysis of laptop usage patterns among students of IIT HYDERABAD. By gathering data on weekly screentime, types of usage with the laptops, preferred operating system, preferred modes of purchasing and which type of features they focus while getting a new laptop (by asking them to rate each feature out of 5, how much they consider it); through a google forms link, we seek to understand students' laptops preferences. This analysis maybe helpful if some student is planning to buy a new laptop for his studies, or other works (gaming, designing, etc.)

#### The Questions we have asked were:

- Which degree? (UG, PG, PhD)
- Department?
- Laptop brand?
- Weekly usage time?
- Primary use of laptop?
- Preferred OS?
- Mode of purchase?
- How important are the factors (like performance, battery life, price, etc.)? (with a rating out of 5)

Our analysis is based only on the responses received through the google forms.

We have received 245 responses.





















Analysis 1: Screen Time

#### Different ranges of screen time VS Number of Students



# 1. Considering all the students (without dividing into UG, PG, PhD)



Mean = 28.1591

Median = 25

Standard Deviation = 13.5542

Lower quartile = 17

Upper quartile = 40

• 25% of the students use their laptop between 17hrs to 25hrs per week.

#### **Confidence Interval Estimation**

i. Mean ( $\mu$ ):

$$\overline{X} = 28.1591$$

$$S = 13.5542$$

$$95\% CI \Rightarrow \alpha = 0.05$$

$$n = 245$$

$$t_{\alpha/2, n-1} = 1.9697$$

$$CI \equiv \left[\overline{X} - t_{\alpha/2, n-1} \left(\frac{S}{\sqrt{n}}\right), \overline{X} + t_{\alpha/2, n-1} \left(\frac{S}{\sqrt{n}}\right)\right]$$

$$\Rightarrow CI \equiv \left[26.4535, 29.8647\right]$$

 $\div$  The Confidence Interval for mean  $\mu$  of the weekly screen time is

[26, 4535, 29, 8647]

ii. Variance ( $\sigma$ ):

$$S = 13.5542 \Rightarrow S^{2} = 183.7163$$

$$\alpha = 0.05$$

$$n = 245$$

$$a = \chi_{1-\alpha/2,n-1}^{2} = \chi_{0.975,244}^{2} = 202.6272$$

$$b = \chi_{\alpha/2,n-1}^{2} = \chi_{0.025,244}^{2} = 289.1591$$

$$CI \equiv \left[\frac{(n-1)S^{2}}{b}, \frac{(n-1)S^{2}}{a}\right]$$

$$g \Rightarrow CI \equiv [155.0246, 221.2278]$$

: The Confidence Interval for the variance  $\sigma^2$  of the weekly screen time is [155.0246, 221.2278] and for standard deviation  $\sigma$  is [12.45, 14.8737].

Is the mean of weekly screen time by student is more than 25hrs?

**Hypothesis:** 

$$\mu_0 = 25$$
 $H_0: \mu \le \mu_0$   $H_a: \mu > \mu_0$ 
 $\overline{X} = 28.1591$ 
 $S = 13.5542$ 
 $n = 245 \Rightarrow df = n - 1 = 244$ 

**Test Statistic:** 

$$t^* = \frac{\overline{X} - \mu_0}{S / \sqrt{(n)}}$$

$$\Rightarrow t^* = \frac{28.1591 - 25}{13.5542 / \sqrt{244}} = 3.6408$$

**Rejection Region Approach:** 

$$lpha = 0.01$$
Reject if  $t^* \geq t_{lpha,n-1}$ 
 $t_{lpha,n-1} = 2.3417$ 
 $\therefore$  Reject  $H_0$ 

# p-Value approach:

$$P(t \ge t^*) = 0.0003$$
  
 $0.0003 \le 0.01$   
 $p \le \alpha$   
 $\Rightarrow \text{Reject H}_0$ 

# 2. Considering 2 samples: UG and PG



#### **Confidence Interval Estimation**

For difference of means of screen time of UG  $(\mu_1)$  and PG  $(\mu_2)$ 

Mean of UGs' screen time:  $\overline{X_1}=27.1122$ Mean of PGs' screen time:  $\overline{X_2}=32.13$ Number of UGs in the sample: n=196Number of PGs in the sample: m=31

$$S_1^2 = 13.2594$$
  
 $S_2^2 = 13.6326$   
 $\overline{X_1} - \overline{X_2} = -5.0178$ 

 $\frac{{S_1}^2}{{S_2}^2} < 4 \implies$  Two sample pooled interval

$$S_p^2$$
 = pooled sample variance =  $\frac{(n-1)S_x^2 + (m-1)S_y^2}{n+m-2}$ 

$$S_p^2 = \frac{(195 \times 13.2594) + (30 \times 13.6326)}{196 + 31 - 2} = 13.30916$$

$$S_{p} = 3.6482$$

$$t_{\alpha/2,m+n-2} = t_{0.025,225} = 1.97056$$

$$CI = \left[ \{ \overline{X_{1}} - \overline{X_{2}} \} - t_{\alpha/2,n+m-2} \times S_{p} \sqrt{\frac{1}{n} + \frac{1}{m}}, \{ \overline{X_{1}} - \overline{X_{2}} \} \right]$$

$$+ t_{\alpha/2,n+m-2} \times S_{p} \sqrt{\frac{1}{n} + \frac{1}{m}}$$

$$\left[ -5.0178 - 1.97056 \times 3.6482 \sqrt{\frac{1}{196} + \frac{1}{31}}, -5.0178 + 1.97056 \times 3.6482 \sqrt{\frac{1}{196} + \frac{1}{31}} \right]$$

$$CI = \left[ -6.40734, -3.6282 \right]$$

We see that the interval is negative, so we can say that mean screen time of PGs is higher than UGs by  $x \in [3.6282, 6.40734]$  with a 95% confidence level.

Is the difference of means of PG and PhD screen times greater than 0.5?

ASSUMPTION: population distributions are normal with unequal variances.

 $\overline{X_1}$  = Average screen time of PGs = 32.13  $\overline{X_2}$  = Average Screen time of PhD = 32.7

$$S_1^2 = 185.85$$
  
 $S_2^2 = 228.80$   
 $n_1 = 31, n_2 = 18$ 

Hypothesis (Right-tailed test):

$$H_0$$
:  $\mu_1 - \mu_2 \le 0.5$   $H_a$ :  $\mu_1 - \mu_2 > 0.5$ 

**Test Statistic:** 

$$t^* = \frac{(\overline{X_1} - \overline{X_2}) - 0.5}{\sqrt{\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}}} = \frac{-1.07}{4.32} = -0.24768$$

degrees of freedom 
$$df = \frac{\left(\frac{{S_1}^2}{n_1} + \frac{{S_2}^2}{n_2}\right)^2}{\frac{\left({S_1}^2/n_1\right)^2}{n_1 - 1} + \frac{\left({S_2}^2/n_2\right)^2}{n_2 - 1}} \sim 33$$

$$t_{\alpha,df} = t_{0.05,33} = 1.69236$$

**Rejection Region Approach:** 

$$-0.24768 < 1.69236 \Rightarrow t^* < t_{\alpha,df}$$

∴ We fail to reject H<sub>0</sub>

Do the variances of UG  $(\sigma_1^2)$  and PG  $(\sigma_2^2)$  screen times differ significantly?

UG: 
$$S_1^2 = 175.81$$
  
PG:  $S_2^2 = 185.85$   
 $n_1 = 196$  (UG),  $n_2 = 31$  (PG)  
 $\alpha = 0.05$ 

Hypothesis (Two-tailed test):

$$H_0: \sigma_1^2 = \sigma_2^2$$
  $H_a: \sigma_1^2 \neq \sigma_2^2$ 

**Test Statistic:** 

$$F = \frac{{S_1}^2}{{S_2}^2} = 0.9459$$

$$df_1 = n_1 - 1 = 195$$

$$df_2 = n_2 - 1 = 30$$

$$F_{\alpha/2, df_1, df_2} = F_{0.025, 195, 30} = 1.837$$

$$F_{1-\alpha/2, df_1, df_2} = 0.609$$

**Rejection Region Approach:** 

$$0.9459 > 0.609 \ {
m and} \ 0.9459 < 1.837$$
  $\Rightarrow F > F_{1-\alpha/2,df_1,df_2} \ {
m and} \ F < F_{\alpha/2,df_1,df_2}$   $\therefore \ {
m We fail to reject } {
m H}_0$ 

# Analysis 2: Mode of Purchase



#### **Confidence Interval Estimation**

For proportion of students using online mode of purchase with 95% confidence

Students who chose online mode: 104

Confidence level = 95%

$$\alpha = 0.05$$

$$\widehat{p} = \frac{104}{245} = 0.424$$

$$z_{\alpha/2} = 1.96$$

$$CI \equiv \left[\widehat{p} - z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}, \widehat{p} + z_{\alpha/2} \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\right]$$

$$\left[0.424 - 1.96 \sqrt{\frac{0.424(0.576)}{245}}, 0.424 + 1.96 \sqrt{\frac{0.424(0.576)}{245}}\right]$$

 $CI \equiv [0.3621, 0.4859]$ 

 $\therefore$  the confidence interval for the proportion of students choosing online mode of purchase is [0.3621, 0.4859] with a 95% confidence level.

The proportion of students preferring online mode for purchasing laptop is less than HALF?

$$H_0$$
:  $\widehat{p} \geq 0.5$ 

$$H_1: \hat{p} < 0.5$$

Students who chose online mode: 104

significance level  $\alpha = 0.01$ 

$$\widehat{p} = \frac{104}{245} = 0.424$$

$$z^* = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.424 - 0.5}{\sqrt{\frac{0.5 \times 0.5}{245}}} = -2.37$$

critical value  $z_{\alpha}=2.326$ 

Reject 
$$H_0$$
 if  $z^* \leq z_{\alpha}$ 

$$-2.37 < 2.326 \Rightarrow z^* < z_{\alpha}$$

 $\therefore$  we reject  $H_0$ 

Our hypothesis is correct.

We can even verify it from the Confidence Interval [0.3621, 0.4859] where it is less than 0.5

# **Analysis 3: Operating System**

|                  | Windows | Non-Windows |
|------------------|---------|-------------|
| $PG(n_1 = 31)$   | 27      | 4           |
| PhD $(n_2 = 18)$ | 14      | 4           |



 $p_1 \rightarrow \text{ proportion of Windows users in PG}$ 

 $p_2 \rightarrow \text{ proportion of Windows users in PhD}$ 

#### **Confidence Interval Estimation**

Confidence Level = 95%

$$\alpha = 0.05$$

$$CI \equiv \left[ (\widehat{p_1} - \widehat{p_2}) - z_{\alpha/2} \times \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}, \right.$$

$$(\widehat{p_1} - \widehat{p_2}) + z_{\alpha/2} \times \sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}} \right]$$

$$\widehat{p_1} = \frac{27}{31} = 0.870$$

$$\widehat{p_2} = \frac{14}{18} = 0.777$$

$$z_{\alpha/2} = 1.96$$

CI for  $\widehat{p_1} - \widehat{p_2} \equiv [0.093 - 1.96\sqrt{0.0036 + 0.0096}, 0.093 + 1.96\sqrt{0.0036 + 0.0096}]$ 

 $\therefore$  The Confidence Interval for  $\widehat{p_1} - \widehat{p_2}$  is [-0.132, 0.318]

$$\widehat{p_1} = \frac{27}{31} = 0.870$$

$$\widehat{p_2} = \frac{14}{18} = 0.777$$

$$z_{\alpha/2} = 1.96$$

Hypothesis:

$$H_0: p_1 - p_2 = 0$$

$$H_a: p_1 - p_2 \neq 0$$

**Test Statistic:** 

$$z^* = \frac{(\widehat{p_1} - \widehat{p_2}) - p_0}{\sqrt{\frac{\widehat{p_1}(1 - \widehat{p_1})}{n_1} + \frac{\widehat{p_2}(1 - \widehat{p_2})}{n_2}}} = \frac{0.093}{0.115} = 0.808$$

Rejection Region Approach:

$$0.808 < 1.96$$
  
 $\Rightarrow z^* < z_{\alpha}/2$ 

∴ We fail to reject H<sub>0</sub>

# **Analysis 4: Performance**

 $\mu_1 = \text{Average performance of HP}$ 

 $\mu_2$  = Average performance of Dell

$$\overline{X_1} = 4.264$$

$$\overline{X_2} = 4.596$$

$$S_1^2 = 1.139$$

$$S_2^2 = 0.4023$$

$$n_1 = 87, n_2 = 52$$



**Hypothesis:** 

$$H_0: \mu_1 - \mu_2 \ge 0.3$$

$$H_a$$
:  $\mu_1 - \mu_2 < 0.3$ 

**Test Statistic:** 

$$t^* = \frac{(\overline{X_1} - \overline{X_2}) - 0.3}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = -0.032$$

$$S_p = \sqrt{\frac{(\boldsymbol{n}_1 - \boldsymbol{1})\boldsymbol{S}_1^2 + (n_2 - \boldsymbol{1})\boldsymbol{S}_2^2}{\boldsymbol{n}_1 + n_2 - 2}} = 0.9299$$

$$df = n_1 + n_2 - 2 = 137$$
$$t_{\alpha,df} = 2.3538$$

Rejection Region Approach:

$$-0.032 > 2.3538 \Rightarrow t^* > t_{\alpha}, df$$

 $\therefore$  We fail to reject H<sub>0</sub>

# **Analysis 5: Laptop Brand**

# **Contingency Table of Degree and Laptop Brand**

# **Original Frequencies**

| DEGREE | Brand       |        |       | total |
|--------|-------------|--------|-------|-------|
|        | <b>ASUS</b> | LENOVO | OTHER |       |
| UG     | 20          | 28     | 148   | 196   |
| PG     | 10          | 5      | 16    | 31    |
| PhD    | 4           | 2      | 12    | 18    |
| total  | 34          | 35     | 176   | 245   |

$$E_{ij} = \frac{(\text{Row Total}_i) \times (\text{Column Total}_j)}{\text{Grand Total}}$$

# **Expected Frequencies**

| DEGREE | Brand |        | total |     |
|--------|-------|--------|-------|-----|
|        | ASUS  | LENOVO | OTHER |     |
| UG     | 27.2  | 28     | 140.8 | 196 |
| PG     | 4.3   | 4.4    | 22.3  | 31  |
| PhD    | 2.5   | 2.6    | 12.9  | 18  |
| total  | 34    | 35     | 176   | 245 |

# Chi Square Test of Independence

$$\chi^{2*} = \sum_{i=1}^{r \times c} \frac{(O_i - E_i)^2}{E_i}$$

where, r is number of rows in the Contingency Table. c is number of columns in the Contingency Table.

$$\chi^{2*} = 12.7927$$
 $\alpha = 0.01$ 

 $H_0$ : There is no association between degree and laptop brand.

 $H_a$ : There is an association between degree and laptop brand.

$$\mathbf{H_0}: \chi^{2*} \sim \chi^2_{(r-1)(c-1)}$$

$$\chi_{\alpha,4}^2 = 13.2767$$

$$12.7927 < 13.2767 \Rightarrow \chi^{2*} < \chi^2_{\alpha,04}$$

∴ We fail to reject H<sub>0</sub>

There is no significant evidence to suggest an association between degree and laptop brand.

.....

#### **CONTRIBUTIONS**

#### G LAHARI ai22btech11008@iith.ac.in

- Project idea
- Confidence Interval Estimation and Hypothesis Testing
- Plotting graphs

#### J HIMA CHANDH ai22btech11009@iith.ac.in

- Data collection and cleaning
- Slides for presentation
- Python coding for box plots, pie charts

#### K ANURAGA CHANDAN ai22btech11011@iith.ac.in

- Preparing report
- Data visualization
- Slides for presentation

# R SURAJ KUMAR ai22btech11022@iith.ac.in

- Slides for presentation
- Plotting graphs in Python
- Central tendencies

#### S DIVIJA ai22btech11026@iith.ac.in

- Confidence Interval Estimation and Hypothesis Testing
- Plotting graphs
- Project idea