PRESENTAZIONE PROGETTO PMCSN 2018/19 TRACCIA: B2

Di Somma Alessia Nedia Salvatore

MODELLO CONCETTUALE — ALGORITMO 1

Controllore

Tipo di serventi e code

• Cloudlet: $M/H_2/N/N$

• Cloud: $G/M/\infty$

Stato del sistema

- \cdot N = numero job nel cloudlet
 - Dove N = n1 + n2

SCELTA ALGORITMO 2

```
Algoritmo 2;
Arrivi di classe 1;
if n1=N then
   send on cloud;
end
if n1+n2 < S then
   accept task on cloudlet;
   if n2 > 0 then
      preemption;
   else
      accept task on cloudlet;
   end
end
Arrivi di classe 1;
if n1+n2 \ge S then
   send on cloud;
else
   accept task on cloudlet;
end
```

Obiettivo: migliorare il tempo di risposta globale

Esecuzione task classe 1 nel cloudlet più conveniente di quella dei task di classe 2

Scelta utilizzare la prelazione

Migrazione task classe 2 dal cloudlet al cloud per favorire l'ingresso di uno di classe 1

Utilizzando valore di soglia S (S=20)

MODELLO CONCETTUALE — ALGORITMO 2

Controllore

Tipo di serventi e code

• Cloudlet: $M/H_2/N/N$

• Cloud: $G/M/\infty$

Stato del sistema

• n1, n2, N

MODELLO ANALITICO — ALGORITMO 1

$$\begin{cases} \Pi_{0}(\lambda_{1} + \lambda_{2}) = \Pi_{1}(\mu_{1} + \mu_{2}) \\ \dots \\ \Pi_{i}(\lambda_{1} + \lambda_{2}) = \Pi_{i+1}(i+1)(\mu_{1} + \mu_{2}) \\ \dots \\ \Pi_{N-1}(\lambda_{1} + \lambda_{2}) = \Pi_{N}N(\mu_{1} + \mu_{2}) \\ \sum_{i=0}^{N} \Pi_{i} = 1 \end{cases} \Rightarrow \begin{cases} \Pi_{0} = \frac{1}{\sum\limits_{i=0}^{N} (\frac{\lambda}{\mu})^{i} (\frac{1}{i!})} \\ \dots \\ \Pi_{i} = \frac{\Pi_{0}(\lambda_{1} + \lambda_{2})^{i}}{i!(\mu_{1} + \mu_{2})^{i}} \\ \dots \\ \Pi_{N} = \frac{\Pi_{0}(\lambda_{1} + \lambda_{2})^{N}}{N!(\mu_{1} + \mu_{2})^{N}} \end{cases}$$

$$\begin{aligned} p_{cloudlet} &= 1 - \Pi_{20} \\ p_{cloud} &= \Pi_{20} \end{aligned}$$

MODELLO ANALITICO — ALGORITMO 2

Equazione generica dello stato:

$$\begin{split} &\Pi_{x,y}(a\lambda_1 + b\lambda_2 + y\mu_2 + x\mu_1) \\ &= \Pi_{x-1,y}(c\lambda_1) + \Pi_{x,y-1}(d\lambda_2) \\ &+ \Pi_{x+1,y}(e(x+1)\mu_1) + \Pi_{x,y+1}(f(x+1)\mu_2) \\ &+ \Pi_{x-1,y+1}(g\lambda_1) \end{split}$$

Numero degli stati :
$$numero_{stati} = N + 1 + \sum_{k=1}^{S} k = \frac{S(S+1)}{2} + N + 1$$

MODELLO COMPUTAZIONALE

Algoritmo 1

Next-Event simulator

- Arrivo task di classe 1
- Arrivo task di classe 2
- Partenza da cloudlet
- Partenza da cloud

Stato del sistema

N

Input

 N, seed, tempo di simulazione, dimensione di batch, tassi di arrivo e completamento

Algoritmo 2

Next-Event simulator

- Arrivo task di classe 1
- Arrivo task di classe 2
- Partenza da cloudlet
- Partenza da cloud

Stato del sistema

• n1, n2, N

Input

 N, S, seed, tempo di simulazione, dimensione di batch, tassi di arrivo e completamento

METODOLOGIE UTILIZZATE

Replicazione per verificare la stazionarietà:

- Run consecutivi
- Indipendenza dei seed garantita dalla consecutività delle simulazioni
- Il valore iniziale di ogni seed è l'ultimo numero pseudo-random generato nell'ultima simulazione

Batch means:

- Usato per il calcolo delle statistiche a regime
- Con l'algoritmo di Welford
- · Azzeramento delle statistiche parziali alla fine di ogni batch
- Evita il bias iniziale
- Parametri di simulazione
- Lunghezza del run: 86400 s
- Numero di batch: 24
 - In base alle linee guida
- Dimensione del batch: 3600 s

VERIFICA E VALIDAZIONE

Simulatore Next-Event: Test per valori aspettati

Algoritmo 1

	Valori teorici	Valori simulati
Tempo risposta globale (s)	3.625938	3.622958
Tempo risposta classe 1 (s)	2.959198	2.970106
Tempo risposta classe 2 (s)	4.05265	4.041308
Throughput globale (task/s)	10.25	10.249711
Throughput classe 1 (task/s)	4	4.003705
Throughput classe 2 (task/s)	6.25	6.246006

Algoritmo 2

	Valori teorici	Valori simulati
Tempo risposta globale (s)	3.496811	3.519627
Tempo risposta classe 1 (s)	2.231252	2.222095
Tempo risposta classe (s)	4.509257	4.196501
Throughput globale (task/s)	10.25	10.231508
Throughput classe 1 (task/s)	4	3.989881
Throughput classe 2 (task/s)	6.25	6.241627

VERIFICA E VALIDAZIONE — ALGORITMO 2

Algoritmo 2:

- Generatore di matrice di transizione di stato
 - Verifica per N=1, S=1 (test manuale)

	π_{00}	π_{10}	π_{01}
π_{00}	0	λ_1	λ_2
π_{10}	μ_1	0	0
π_{01}	μ_2	λ_1	0

Numero stati :
$$N + 1 + \sum_{k=1}^{S} k = \frac{S(S+1)}{2} + N + 1 = 3$$

$$\text{Equazioni}: \begin{cases} \Pi_{0,0}(\lambda_1+\lambda_2) = \Pi_{1,0}(\mu_1) + \Pi_{0,1}(\mu_2) \\ \Pi_{1,0}\mu_1 = \Pi_{0,1}(\lambda_1) + \Pi_{0,0}(\lambda_1) \\ \Pi_{0,0} + \Pi_{1,0} + \Pi_{0,1} = 1 \end{cases}$$

ANALISI SUI DATI-STAZIONARIETÀ

Algoritmo 1

ANALISI SUI DATI-STAZIONARIETÀ

Algoritmo 2

DISTRIBUZIONE DEGLI INTERARRIVI-ALGORITMO1

Cloudlet

Distribuzione data dal minimo dei due flussi esponenziali

$$\dot{P}(\min(T_1, T_2) > t) = P(T_1 > t, T_2 > t)
= P(T_1 > t)P(T_2 > t) = e^{-\lambda_1 t} e^{-\lambda_2 t} = e^{-(\lambda_1 + \lambda_2)t}$$

Sistema : $M/H_2/N/N$

Cloud

Distribuzione data dall'unione di tre flussi di arrivi -tassi di arrivo diretti al cloud (task1 & task2) solo se cloudlet pieno

Sistema : $G/M/\infty$

DISTRIBUZIONE DEGLI INTERARRIVI-ALGORITMO2

Cloudlet

Distribuzione data dal minimo dei due flussi esponenziali

$$\dot{P}(\min(T_1, T_2) > t) = P(T_1 > t, T_2 > t)
= P(T_1 > t)P(T_2 > t) = e^{-\lambda_1 t} e^{-\lambda_2 t} = e^{-(\lambda_1 + \lambda_2)t}$$

Sistema : $M/H_2/N/N$

Cloud

Distribuzione data dall'unione di tre flussi di arrivi

- -tassi di arrivo diretti al cloud (task1 & task2)
- -tasso di arrivo dei job interrotti nel cloudlet

Sistema: $G/M/\infty$

CONFRONTI TRA METRICHE A REGIME E VALORI TEORICI-ALGORITMO 1

Parametri di simulazione

- 1. Tempo totale: 86400 secondi
- 2. Seed iniziale: 123456
- 3. Dimensione del batch: 3600 secondi
- 4. Scheduling: Random
- 5. Tempo servizio Cloudlet: Esponenziale

TEMPO DI RISPOSTA GLOBALE

a: 3.625938 s s: 3.622958 (+/-0.00347)

TEMPO DI RISPOSTA PER CLASSE

THROUGHPUT GLOBALE

THROUGHPUT PER CLASSE

TEMPI DI RISPOSTA PER CLOUD

POPOLAZIONE MEDIA PER CLOUD

TEMPI DI RISPOSTA PER CLOUDLET

POPOLAZIONE MEDIA PER CLOUDLET

CONFRONTI TRA METRICHE A REGIME E VALORI TEORICI-ALGORITMO 2

Parametri di simulazione

- 1. Tempo totale: 86400 secondi
- 2. Seed iniziale: 123456
- 3. Dimensione del batch: 3600 secondi
- 4. Scheduling: Random
- 5. S=20
- . Tempo servizio Cloudlet: Esponenziale

TEMPO DI RISPOSTA GLOBALE

a: 3.495674 s s: 3.458544 (+/-0.00237) s

TEMPO DI RISPOSTA PER CLASSE

Valori simulati Media teorica Media simulata

THROUGHPUT GLOBALE

a: 10.25 task/s

THROUGHPUT PER CLASSE

TEMPI DI RISPOSTA PER CLOUD

s: 4.538889 (+/-0.00422) s

POPOLAZIONE MEDIA PER CLOUD

s: 0.013062 (+/-0.00059) task

s:17.029314 (+/-0.04705) task

TEMPI DI RISPOSTA PER CLOUDLET

POPOLAZIONE MEDIA PER CLOUDLET

s: 9.497830 (+/-0.02069) task

VARIANTE ALGORITMO 2

Job di classe 2 prelazionati rieseguono il task partendo dal punto di partenza

Esecuzione di un tempo di set-up

Per permettere lo spostamento senza alcuna perdita di tempo si è utilizzata una euristica che permettesse di approssimare il tempo effettivo rimanente da eseguire sul cloud.

$$E(S_{remaining})_{cloud} = \frac{\mu_1}{\mu_2} \cdot E(S_{remaining})_{clet}$$

	Algoritmo 2	Variante algoritmo 2
Tempo di risposta globale (s)	3.458544 (+/-0.00237)	3.330771 (+/-0.00150)
Tempo di risposta prima classe (s)	2.222094 (+/-0.00274)	2.218547 (+/-0.00207)
Tempo di risposta seconda classe (s)	4.103553 (+/-0.00254)	3.911301 (+/-0.00242)
Tempo di risposta prima classe al cloud (s)	4.130490 (+/-0.00020)	4.213663 (+/-0.11359)
Tempo di risposta seconda classe al cloud (s)	4.538889 (+/-0.01014)	4.146376 (+/-0.00244)
Tempo di risposta prima classe al cloudlet (s)	2.218467 (+/-0.00750)	2.217407 (+/-0.00202)
Tempo di risposta seconda classe al cloudlet (s)	2.426817 (+/-0.016152)	3.698034 (+/-0.00290)