

Lecture Presentation

Chapter 19 Electrochemistry

Pulling the Plug on the Power Grid

- The power grid distributes centrally generated electricity throughout the country to homes and businesses.
- The average U.S. household currently consumes about 1000 kWh of electricity per month.
- Some companies are developing small, fuel-cell power plants, about the size of a refrigerator.
- Similar fuel cells can power cars.
- Fuel cells are based on oxidation-reduction reactions.

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$$

Electricity from Chemistry

- In a hydrogen—oxygen fuel cell, the hydrogen and oxygen are separated, forcing electrons to travel through an external wire.
- The moving electrons constitute an electrical current.
- A fuel cell employs the electron-gaining tendency of oxygen and the electronlosing tendency of hydrogen to force electrons to move through a wire, creating electricity.

© 2017 Pearson Education, Inc.

Oxidation-Reduction

- Reactions where electrons are transferred from one atom to another are called oxidation–reduction reactions.
 - Redox reactions for short
- Atoms that lose electrons are being oxidized; atoms that gain electrons are being reduced.
- Increase in oxidation state is oxidation; decrease in oxidation state is reduction.

 $Cl_2 + 2e \rightarrow 2Cl$ reduction, CI is going from 0 to -1 oxidation state

Half-Reactions

- We generally split the redox reaction into two separate half-reactions—reactions involving just oxidation or reduction, as on the previous slide.
 - The oxidation half-reaction has electrons as products.
 - The reduction half-reaction has electrons as reactants.

$$3 \text{ Cl}_2 + \text{I}^- + 3 \text{ H}_2\text{O} \rightarrow 6 \text{ CI}^- + \text{IO}_3^- + 6 \text{ H}^+$$

0 -1 +1 -2 -1 +5 -2 +1

Oxidation: $I^- \rightarrow IO_3^- + 6 e^-$

Reduction: $Cl_2 + 2 e^- \rightarrow 2 Cl^-$

© 2017 Pearson Education, Inc.

Balancing Redox Reactions by the Half- Reaction Method

- This method is a helpful way to balance complex redox reactions in solution.
- The reaction is broken down into two halfreactions, one for oxidation and another for reduction.
- Each half-reaction is balanced individually, for both mass and charge.
- The two half-reactions are added back together to get the overall balanced equation.

Balancing Redox Reactions

- 1. Assign oxidation states.
 - a) Determine the element oxidized and the element reduced.
- 2. Write oxidation and reduction half-reactions.
- 3. Balance the mass of half-reactions.
 - a) First balance elements other than H and O.
 - b) Balance O by adding H₂O where O is needed.
 - c) Balance H by adding $H^{\scriptscriptstyle +}$ where H is needed.
 - d) If the reaction is in a basic solution, neutralize H⁺ with OH⁻.
- 4. Balance charge of half-reactions by adding electrons.
- 5. Make the number of electrons in both half-reactions the same by multiplying one or both by a small whole number.
- 6. Add half-reactions, and cancel like terms.
- 7. Check by counting atoms and total charge.

© 2017 Pearson Education, Inc.

Electrical Current

- Electrons flow through a conductor in response to an electrical potential difference similar to water flowing downhill in response to a difference in gravitational potential energy.
- Electric current—the amount of electric charge that passes a point in a given period of time
 - Whether as electrons flowing through a wire, or ions flowing through a solution $e^ e^ e^ e^ e^ e^-$

Electrical Current

- **Current** is the number of electrons that flow through the system per second.
 - Unit = ampere (or amp, A)
- 1 A of current = 1 coulomb of charge flowing each second
 - $-1 A = 6.242 \times 10^{18}$ electrons per second

Potential Difference

- The difference in potential energy between the reactants and products is the potential difference.
 - Unit = volt
- 1 V = 1 J of energy per coulomb of charge
 - The voltage needed to drive electrons through the external circuit
- The amount of force pushing the electrons through the wire is called the electromotive force, emf.

© 2017 Pearson Education, Inc.

Cell Potential

- The difference in potential energy between the anode and the cathode in a voltaic cell is called the cell potential.
- The cell potential depends on the relative ease with which the oxidizing agent is reduced at the cathode and the reducing agent is oxidized at the anode.
- The cell potential under standard conditions is called the **standard emf**, E°_{cell} .
 - 25 °C, 1 atm for gases, 1 M concentration of solution
 - Sum of the cell potentials for the half-reactions

Electrochemical Cells

- Oxidation and reduction half-reactions are kept separate in half-cells.
- Electron flow through a wire along with ion flow through a solution constitutes an electric circuit.
- It requires a conductive solid electrode to allow the transfer of electrons.
 - Through external circuit
 - Metal or graphite
- Requires ion exchange between the two half-cells of the system.
 - Electrolyte

© 2017 Pearson Education, Inc.

Electrodes and Salt Bridge

- Anode
 - Electrode where oxidation always occurs
 - More negatively charged electrode in voltaic cell
- Cathode
 - Electrode where reduction always occurs
 - More positively charged electrode in voltaic cell
- Salt bridge is an inverted, U-shaped tube containing a strong electrolyte and connecting the two half-cells.

Electrodes

- Typically
 - The anode is made of the metal that is oxidized.
 - The cathode is made of the same metal as is produced by the reduction.
- If the redox reaction involves the oxidation or reduction of an ion to a different oxidation state, or the oxidation or reduction of a gas, we may use an inert electrode.
 - An inert electrode is one that not does participate in the reaction but just provides a surface on which the transfer of electrons can take place.

Cell Notation

- Shorthand representation of an electrochemical cell
- Oxidation half-cell on the left, reduction half-cell on the right, separated by two vertical lines
- Substances in different phases are separated by a single vertical line, which represents the boundary between the phases.
- Single | = phase barrier
 - If multiple species are in same phase, a comma is used rather than |.
 - Often use an inert electrode
- Double line || = salt bridge
- Electrode | electrolyte || electrolyte | electrode

© 2017 Pearson Education, Inc.

Electrochemical Cell Notation

Because the half-reaction involves reducing the Mn oxidation state from +7 to +2, we use an electrode that will provide a surface for the electron transfer without reacting with the MnO_4^- .

Platinum works well because it is extremely nonreactive and conducts electricity.

 $Fe(s) | Fe^{2+}(aq) | | MnO_4^-(aq), Mn^{2+}(aq), H^+(aq) | Pt(s)$

Standard Reduction Potential

- We cannot measure the absolute tendency of a half-reaction; we can measure it only relative to another half-reaction.
- We select as a standard half-reaction the reduction of H⁺ to H₂ under standard conditions, which we assign a potential difference = 0 v.
 - Standard hydrogen electrode, SHE

Cell Potential

- A half-reaction with a strong tendency to occur has a large positive half-cell potential.
- When two half-cells are connected, the electrons will flow so that the half-reaction with the stronger tendency will occur.

Half-Cell Potentials

- SHE reduction potential is defined to be exactly 0 V.
- Standard reduction potentials compare the tendency for a particular reduction half-reaction to occur relative to the reduction of H⁺ to H₂.
 - Under standard conditions
- Half-reactions with a stronger tendency toward reduction than the SHE have a positive value for E°_{red}.
- Half-reactions with a stronger tendency toward oxidation than the SHE have a negative value for E°_{red} .
- For an oxidation half-reaction, $E^{\circ}_{\text{oxidation}} = -E^{\circ}_{\text{reduction}}$.
- $E^{\circ}_{call} = -E^{\circ}_{reduction} E^{\circ}_{oxidation}$

Calculating Cell Potentials under Standard Conditions

- $E^{\circ}_{\text{cell}} = E^{\circ}_{\text{reduction}} E^{\circ}_{\text{oxidation}}$
- When adding *E*° values for the half-cells, if you need to multiply the half-reactions to balance the equation, *do not multiply* the half-cell *E*° values.

© 2017 Pearson Education, Inc.

Tendencies from the Table of Standard Reduction Potentials

- Higher on the table of standard reduction potentials, the stronger tendency for the reactant to be reduced
- Lower on the table of standard reduction potentials, the stronger tendency for the product to be oxidized

Predicting Spontaneity of Redox Reactions

- Substances listed at the top of Table 19.1 tend to undergo reduction; they are good oxidizing agents.
- Substances listed near the bottom of Table 19.1 tend to undergo oxidation; they are good reducing agents.
- Any reduction reaction in Table 19.1 is spontaneous when paired with the reverse of any of the reactions listed below it on the table.

$$Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$$
 $E^{\circ}_{red} = +0.34 \text{ V}$
 $Zn^{2+}(aq) + 2 e^{-} \rightarrow Zn(s)$ $E^{\circ}_{red} = -0.76 \text{ V}$

$$Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$$
 spontaneous $Cu(s) + Zn^{2+}(aq) \rightarrow Cu^{2+}(aq) + Zn(s)$ nonspontaneous

© 2017 Pearson Education, Inc.

Predicting Whether a Metal Will Dissolve in Acid

- Metals whose reduction half-reactions are listed below the reduction of H⁺ to H₂ in Table 19.1 dissolve in acids.
- Metals listed above H⁺ to H₂ in Table 19.1 do not dissolve in acids.
- Almost all metals will dissolve in HNO₃.
 - Having N reduced rather than H
 - Au and Pt dissolve in HNO₃ + HCl

 $Zn(s) + 2 H^{+}(aq) \longrightarrow$ $Zn^{2+}(aq) + H_{2}(g)$

$$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \rightarrow NO(g) + 2 H_2O(l)$$

E°_{cell} , ΔG° , and K

- For a spontaneous reaction, one that proceeds in the forward direction with the chemicals in their standard states
 - $-\Delta G^{\circ} < 0$ (negative)
 - $-E^{\circ} > 0$ (positive)
 - -K > 1

- $\Delta G^{\circ} = -nFE_{\text{cell}}^{\circ}$ $\Delta G^{\circ} = -RT \ln K$ $E^{\circ}_{\text{cell}} = 0.0592 \text{ V} \log K$
- $\Delta G^{\circ} = -nFE^{\circ}_{cell}$
 - n = the number of electrons
 - F = Faraday's constant = 96,485 C/mol e⁻

© 2017 Pearson Education, Inc.

Relationship between E°_{cell} and K

- $\Delta G^{\circ} = -RT \ln K$
- $-nFE_{\text{cell}}^{\circ} = -RT \ln K$
- $E_{\text{cell}}^{\circ} = \frac{RT}{nF} \ln K$
- Substituting values for R, F, and 298.15K for T, and converting to log instead of In, we get

•
$$E_{\text{cell}}^{\circ} = \frac{0.0592 \,\text{V}}{n} \log K$$

Cell Potential under Nonstandard Conditions

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
$$-nFE_{\text{cell}} = -nFE_{\text{cell}}^{\circ} + RT \ln Q$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{RT}{nF} \ln Q$$

$$E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0592 \,\text{V}}{n} \log Q$$

This equation, known as the **Nernst equation**, helps us determine the cell potential at nonstandard conditions.

Concentration Cells

- It is possible to get a spontaneous reaction when the oxidation and reduction reactions are the same, as long as the electrolyte concentrations are different.
- Calculating cell potential using the Nernst equation helps us determine the direction of spontaneity in the cell.
- Electrons will flow from the electrode in the less concentrated solution to the electrode in the more concentrated solution.
 - Oxidation of the electrode in the less concentrated solution will increase the ion concentration in the solution; the less concentrated solution has the anode.
 - Reduction of the solution ions at the electrode in the more concentrated solution reduces the ion concentration; the more concentrated solution has the cathode.

© 2017 Pearson Education, Inc.

Dry-Cell Batteries

• Anode = Zn (or Mg)

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-}$$

- Cathode = graphite rod
- MnO₂ is reduced.

2 MnO₂(s) + 2 NH₄⁺(aq) + 2 H₂O(I) + 2 e⁻

$$\rightarrow$$
 2 NH₄OH(aq) + 2 Mn(O)OH(s)

Cell voltage = 1.5 V

Alkaline Dry-Cell Batteries

- Same basic cell as acidic dry cell, except electrolyte is alkaline KOH paste
- Anode = Zn (or Mg) $Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-}$
- Cathode = graphite or brass rod
- MnO₂ is reduced.
 2 MnO₂(s) + 2 NH₄⁺(aq) + 2 H₂O(I) + 2 e⁻
 → 2 NH₄OH(aq) + 2 Mn(O)OH(s)
- Cell voltage = 1.54 V
- Longer shelf life than acidic dry cells, longer working time, and little corrosion of zinc

© 2017 Pearson Education, Inc.

Lead Storage Battery

- Six electrochemical cells in series, each producing 2 V for a total of 12 V
- Electrolyte = 30% H₂SO₄
- Anode: $Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2 e^-$
- Cathode: Pb coated with PbO₂
- PbO₂ is reduced.

$$PbO_2(s) + 4 H^+(aq) + SO_4^{2-}(aq) + 2 e^- \rightarrow PbSO_4(s) + 2 H_2O(l)$$

NiCad Battery

- Electrolyte is concentrated KOH solution.
- Anode: Cd(s); cathode: NiO(OH)(s)
- Cd is oxidized; NiO₂ is reduced.
 - Cd(s) + 2 OH⁻(aq) → Cd(OH)₂(s) + 2 e⁻E° = 0.81 V
 - NiO₂(s) + 2 H₂O(I) + 2 e⁻ → Ni(OH)₂(s) + 2OH⁻E° = 0.49 V
- Cell voltage = 1.30 V
- Rechargeable, long life, light; however, recharging incorrectly can lead to battery breakdown

© 2017 Pearson Education, Inc.

Ni-MH Battery

- Electrolyte is concentrated KOH solution.
- Anode: metal alloy with dissolved hydrogen
- Cathode: Ni coated with NiO₂
- Oxidation of H from H⁰ to H⁺; NiO₂ is reduced.
 - M · H(s) + OH⁻(aq) → M(s) + H₂O(I) + e⁻ E° = 0.89 V
 - NiO₂(s) + 2 H₂O(I) + 2 e⁻ → Ni(OH)₂(s) + 2OH⁻ E° = 0.49 V
- Cell voltage = 1.30 V
- Rechargeable, long life, light, more environmentally friendly than NiCad, greater energy density than NiCad

Lithium-Ion Battery

- Electrolyte is concentrated KOH solution.
- Anode: graphite impregnated with Li ions
- Cathode: Li—transition metal oxide
 - Reduction of transition metal
- Works on Li ion migration from anode to cathode causing a corresponding migration of electrons from anode to cathode
- Rechargeable, long life, very light, more environmentally friendly, greater energy density

© 2017 Pearson Education, Inc.

TABLE 19.2	Energy Density and Overcharge Tolerance of Several
	Rechargeable Batteries

Battery Type	Energy Density(W · h/kg)	Overcharge Tolerance
NiCad	45–80	Moderate
NiMH	60–120	Low
Li ion	110–160	Low
Pb storage	30–50	High

Fuel Cells

- Like batteries in which reactants are constantly being added
 - So it never runs down!
- Anode and cathode both Pt -coated metal
- Electrolyte is OH⁻ solution.
- Anode reaction

$$2 H_2 + 4 OH^- \rightarrow 4 H_2O(I) + 4 e^-$$

· Cathode reaction

$$O_2$$
 + 4 H_2O + 4 $e^- \rightarrow$ 4 OH^-

© 2017 Pearson Education, Inc.

Driving Nonspontaneous Reactions

- In all cells, whether voltaic or electrolytic, oxidation occurs at the anode, and reduction occurs at the cathode.
- Voltaic cells—Spontaneous reaction generates electricity.
 - Anode is the source of electrons and has a (-) charge.
 - Cathode draws electrons and has a (+) charge.
- Electrolytic cells—nonspontaneous reaction driven by external electrical current

Electrolysis

- Electrolysis is the process of using electrical current to drive nonspontaneous reaction.
- Electrolysis is carried out in an electrolytic cell.
- Electrolytic cells can be used to separate compounds into their elements.

Oxygen Quarter Water With Subbles Salt Subbles Salt Phydrogen Salt Phydro

Electrolytic Cells

- Electrons are drawn away from the anode, which must be connected to the positive terminal of the external power source (anode +).
- Electrons are forced to the cathode, which must be connected to the negative terminal of the power source (cathode -).
- The reaction that takes place is the nonspontaneous process.

 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(I)$ spontaneous

 $2 H_2O(I) \rightarrow 2 H_2(g) + O_2(g)$ electrolysis

© 2017 Pearson Education, Inc.

Electrolytic Cells

- The electrical energy is supplied by a directcurrent power supply, a battery or DC power supply.
- Some electrolysis reactions require more voltage than E_{cell} predicts. This is called the **overvoltage**.

Electrolysis of Pure Compounds

- The compound must be in a molten (liquid) state.
- · Electrodes are normally graphite.
- Cations are reduced.
- · Anions are oxidized.

© 2017 Pearson Education, Inc.

Electrolysis of NaCl(/) Electrolysis of a Molten Salt Voltage Inert Inert electrode electrode $Cl_2(g)$ Molten NaCl - Cl Na⁺ Anode Cathode 2 Cl⁻(l) - $2 \text{ Na}^+(l) + 2 \text{ e}^ Cl_2(g) + 2 e^ \rightarrow$ 2 Na(s) © 2017 Pearson Education, Inc.

Mixtures of Ions

- When more than one cation is present, the cation that is easiest to reduce will be reduced first at the cathode.
 - Least negative or most positive E°_{red}
- When more than one anion is present, the anion that is easiest to oxidize will be oxidized first at the anode.
 - Least negative or most positive E°_{ox}

© 2017 Pearson Education, Inc.

Electrolysis of Aqueous Solutions

- Possible cathode reactions
 - Reduction of cation to metal
 - Reduction of water to H₂

```
• 2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^-
```

 E° = -0.83 V at stand. cond. E° = -0.41 V at pH 7

- Possible anode reactions
 - Oxidation of anion to element
 - Oxidation of H₂O to O₂

• $2 H_2O \rightarrow O_2 + 4 e^- + 4H^+$

 E° = -1.23 V at stand. cond. E° = -0.82 V at pH 7

- Oxidation of electrode
 - Particularly Cu
 - · Graphite doesn't oxidize.
- Half-reactions that lead to least negative E_{cell} will occur.
 - Unless overvoltage changes the conditions

Electrolysis of Nal(aq) with Inert Electrodes

Possible oxidations $2 I^- \rightarrow I_2 + 2 e^- E^\circ = -0.54 V$ $2 H_2O \rightarrow O_2 + 4 e^- + 4 H^+ E^\circ = -0.82 V$

Oxidation with more negative E° 2 I⁻ \rightarrow I₂ + 2 e⁻ E° = -0.54 V 2 H₂O \rightarrow O₂ + 4 e⁻ + 4 H⁺ E° = -0.82 V

© 2017 Pearson Education, Inc.

Electrolysis of Nal(aq) with Inert Electrodes

Possible reductions Na⁺ + 1 e⁻ \rightarrow Na⁰ E° = -2.71 V 2 H₂O + 2 e⁻ \rightarrow H₂ + 2 OH⁻ E° = -0.41 V

Reduction with greatest E° Na⁺ + 1 e⁻ \rightarrow Na⁰ E° = -2.71 V 2 H₂O + 2 e⁻ \rightarrow H₂ + 2 OH⁻ E° = -0.41 V

Inert electrode

Aqueous NaI

H₂(g)

Aqueous NaI

H₂O

Anode Cathode $2 I_{2}(aq) \longrightarrow I_{2}(aq) + 2 e^{-} \longrightarrow I_{2}(g) + 2 OH^{-}(aq)$

Electrolysis of an Aqueous Salt Solution

Electrolysis of Nal(aq) with Inert Electrodes

Electrolysis of an Aqueous Salt Solution

Overall reaction

$$2 I^{-}(aq) + 2 H_2O(I) \rightarrow I_2(aq) + H_2(g) + 2 OH^{-}(aq)$$

© 2017 Pearson Education, Inc.

Stoichiometry of Electrolysis

- In an electrolytic cell, the amount of product made is related to the number of electrons transferred.
 - Essentially, the electrons are a reactant.
- The number of moles of electrons that flow through the electrolytic cell depends on the current and length of time.
 - 1 amp = 1 coulomb of charge/second
 - 1 mole of e^- = 96,485 coulombs of charge
 - · Faraday's constant

Corrosion

- Corrosion is the undesirable, spontaneous, gradual oxidation of a metal by oxidizing agents in the environment.
 - Mainly O₂
- A metal must usually be reduced to extract it from its ore. In corrosion, the metal is oxidized back to its more natural state.

© 2017 Pearson Education, Inc.

Reduction of O₂

- O₂ is very easy to reduce in moist conditions. O₂(g) + 2 H₂O(I) + 4 e⁻ \rightarrow 2 OH⁻(aq) E⁰ = 0.40 V
- O₂ is even easier to reduce under acidic conditions. O₂(g) + 4 H+ + 4 e⁻ \rightarrow 2 H₂O(I) E⁰ = 1.23 V
- Because the reduction of most metal ions lies below O₂ on the table of standard reduction potentials, the oxidation of those metals by O₂ is spontaneous.

Corrosion of Iron: Rusting

- At the anodic regions, Fe(s) is oxidized to Fe²⁺.
- The electrons travel through the metal to a cathodic region where O₂ is reduced.
 - In acidic solution from gases dissolved in the moisture
- The Fe²⁺ ions migrate through the moisture to the cathodic region where they are further oxidized to Fe³⁺, which combines with the oxygen and water to form **rust**.
 - Rust is hydrated iron(III) oxide, Fe₂O₃ nH₂O.
 - Moisture must be present. Water is a reactant.
 - Ion flow is required between cathodic and anodic regions.
- Electrolytes promote rusting.
 - Enhance current flow
- Acids promote rusting.
 - Lowering pH will lower E^o_{red} of O₂.

© 2017 Pearson Education, Inc.

Corrosion of Iron: Rusting

Preventing Corrosion

- One way to reduce or slow corrosion is to coat the metal surface to keep it from contacting corrosive chemicals in the environment.
 - Paint
 - Some metals, such as Al, form an oxide that strongly attaches to the metal surface, preventing the rest of the metal from corroding.
- Another method to protect a metal is to attach it to a more reactive metal that is cheap.
 - Sacrificial electrode
 - · Galvanized nails

