Simulazione di evacuazione di folle in Alchemist: un modello di mappa mentale per pedoni cognitivi

Lorenzo Paganelli

Alma Mater Studiorum · Università di Bologna Campus di Cesena

17 Marzo 2020

Eventi rilevanti

Piazza San Carlo, Torino 1500 feriti, 3 morti (2017)

Ponte Jamarat, Mina Più di 2000 morti (2015)

Simulazioni di evacuazione

Simulazione reale

Simulazione computerizzata

Il simulatore Alchemist

Alchemist è

Un simulatore nato all'interno dell'Università di Bologna che consente la simulazione di vari scenari, tra cui l'evacuazione di folle

In Alchemist sono modellati

Diversi aspetti psicologici e sociali dei pedoni

Problema

I pedoni simulati in Alchemist sono sprovvisti della capacità di orientarsi

Pathfinding

Human wayfinding

Problema

Il pathfinding assume che i pedoni conoscano perfettamente l'ambiente, ma individui diversi hanno una conoscenza diversa dello spazio circostante, spesso parziale e inaccurata

Obbiettivo

Fornire i pedoni simulati di una tale eterogeneità

Conoscenza spaziale

La mappa cognitiva è

- La rappresentazione mentale di un individuo dell'ambiente circostante
- Incompleta e inaccurata

Problema

Che fare delle informazioni apprese dai pedoni durante la simulazione?

Soluzione: la memoria volatile

- Permette di riconoscere aree dell'ambiente già visitate durante l'evacuazione
- E' una mappa che ad ogni area associa il numero di visite

Elaborazione di informazioni spaziali

Il sistema di pesi

Assegna un peso w ad ogni arco e visibile, l'arco di peso minimo viene poi attraversato:

$$w(e) = f_{volatile\ memory} \cdot f_{cognitive\ map} \cdot f_{final} \cdot f_{impasse} \cdot f_{congestion} \qquad (1)$$

Esempi di simulazione

4 simulazioni

- Conoscenza completa
- Conoscenza parziale (30%)
- Nessuna conoscenza
- Aggiramento delle congestioni

Conclusioni e sviluppi futuri

In conclusione

- I pedoni realizzati presentano il comportamento desiderato
- I contributi fatti permettono di ottenere pattern di navigazione dell'ambiente più realistici

Sviluppi futuri

- Raffinare quanto già presente
- Modellare caratteristiche e interazioni fisiche

Riferimenti

Erik Andresen, Mohcine Chraibi, and Armin Seyfried.

A representation of partial spatial knowledge: A cognitive map approach for evacuation simulations.

Transportmetrica A: Transport Science, 14:1–34, 01 2018.

C. Ellard.

You Are Here: Why We Can Find Our Way to the Moon, but Get Lost in the Mall.

Knopf Doubleday Publishing Group, 2009.

R. Golledge.

Human wayfinding and cognitive maps.

Wayfinding Behavior, 1, 1999.