STAT37810 Assignment1

Yanfei Zhou (UCID:12207462)

Question 4.1.1

```
2a)
Fibonacci <- numeric(30)</pre>
Fibonacci[1] <- Fibonacci[2] <- 1 #assign first two element sin Fibonacci as
for (i in 3:30){
Fibonacci[i] <- Fibonacci[i - 2] + Fibonacci[i - 1]</pre>
Fibonacci
## [1]
             1
                                                        13
                                                               21
                                                                      34
                                                                             55
## [11]
            89
                  144
                          233
                                 377
                                        610
                                               987
                                                     1597
                                                             2584
                                                                    4181
                                                                           6765
## [21] 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040
Fib ratio <-numeric(29)
for ( i in 2: 30){
  Fib_ratio[i] = Fibonacci[i]/Fibonacci[i-1]
}
Fib_ratio
## [1] 0.000000 1.000000 2.000000 1.500000 1.666667 1.600000 1.625000
## [8] 1.615385 1.619048 1.617647 1.618182 1.617978 1.618056 1.618026
```

The sequence appears to be converging to 1.618034

[29] 1.618034 1.618034

2 b)

```
Golden_ratio = (1+sqrt(5))/2
Golden_ratio
## [1] 1.618034
```

[15] 1.618037 1.618033 1.618034 1.61800 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080 1.6080

The Fibonacci sequence converges to this ratio:

```
Let \psi = \frac{1+\sqrt{5}}{2}, notice \psi = 1 + \frac{1}{\psi}. Let \{F_n\} with n=1,2,3,... be Fibonacci sequence. Let R_n = \frac{F_{n+1}}{F_n}, to prove:
```

$$\lim_{n \to \infty} R_n = \psi = \frac{1 + \sqrt{5}}{2}$$

$$R_n = \frac{F_{n+1}}{F_n}$$

$$= \frac{F_n + F_{n-1}}{F_n}$$

$$= 1 + \frac{1}{R_{n-1}}$$

$$|R_n - \psi| = |1 + \frac{1}{R_{n-1}} - 1 - \frac{1}{\psi}|$$

$$= |\frac{\psi - R_{n-1}}{R_{n-1}\psi}|$$

$$= \frac{1}{\psi} |\frac{\psi - R_{n-1}}{R_{n-1}}|$$

$$\leq \frac{1}{\psi} |\psi - R_{n-1}| \qquad (as \ R_n > 1)$$

$$= \frac{1}{\psi} |R_{n-1} - \psi|$$

$$\leq (\frac{1}{\psi})^n |R_1 - \psi|$$

$$\lim_{n \to \infty} |R_n - \psi| \leq \lim_{n \to \infty} (\frac{1}{\psi})^n |R_1 - \psi|$$

$$\to 0 \qquad (as \ \frac{1}{\psi} < 1)$$

Hence we have

$$\lim_{n\to\infty} |R_n| = \psi$$

Question 4.1.1.

3 a)

```
answer = 15
answer <- 0
for (j in 1:5) answer <- answer + j
answer
## [1] 15</pre>
```

```
3 b)
answer = 12345
answer <- NULL
for (j in 1:5) answer <- c(answer, j)
answer
## [1] 1 2 3 4 5
3 c)
answer = 0.12345
answer <- 0
for (j in 1:5) answer <- c(answer, j)</pre>
answer
## [1] 0 1 2 3 4 5
3 d)
answer = 120
answer <- 1
for (j in 1:5) answer <- answer * j
answer
## [1] 120
3 e)
3 21 23 6 11 15 12 22 30 24 13 29 17 26 27 3
answer <- 3
for (j in 1:15) answer <- c(answer, (7 * answer[j]) %% 31)</pre>
answer
## [1] 3 21 23 6 11 15 12 22 30 24 13 29 17 26 27 3
the sequence 3 21 23 6 11 15 12 22 30 24 13 29 17 26 27 will repeat when second 3
appears.
Question 4.1.2
```

```
4
GIC<-function(P,t){
  if (t>3){
    return (P*((1 + 0.05)^t - 1))
  } else {
    return (P*((1 + 0.04)^t - 1))
```

```
}}
GIC(100,3)
## [1] 12.4864

5

Mortgage <-function(n,P,open){
    if (open==TRUE){
        i = 0.005
    } else{
        i = 0.004
    }
    return (P*i/(1-(1+i)^(-n)))
}
Mortgage(3,100,FALSE)
## [1] 33.60035
</pre>
```

Question 4.1.3

```
2
i=1
Fibonacci \leftarrow c(1, 1)
while (i<30) {
  Fibonacci <- c(Fibonacci, Fibonacci[i-1]+Fibonacci[i])</pre>
  i = i+1
}
Fibonacci
## [1]
                                           5
                                                                21
                                                                                55
             1
                     1
                            2
                                    3
                                                   8
                                                         13
                                                                        34
## [11]
            89
                   144
                          233
                                  377
                                         610
                                                 987
                                                       1597
                                                              2584
                                                                      4181
                                                                             6765
## [21] 10946 17711 28657 46368 75025 121393 196418 317811 514229 832040
4
i <- 0.006
b = 1
a = 0
while (abs(b - a) >= 0.000001) {
 b <- i
 i \leftarrow (1 - (1 + i)^{-20}) / 19
  a <- i
}
#trying other starting values
## [1] 0.004954139
i <- 0.005
b = 1
```

```
a = 0
while (abs(b - a)>=0.000001) {
  b <- i
  i <- (1 - (1 + i)^(-20)) / 19
  a <- i
}
i
## [1] 0.004953866</pre>
```

When using another starting guess, the point estimation becomes slightly different.

```
i <- 0.006
b = 1
a = 0
n = 0
while (abs(b - a)>=0.000001) {
   b <- i
   i <- (1 - (1 + i)^(-20)) / 19
   a <- i
   n = n+1}
n</pre>
## [1] 74
```

Question 4.1.5

2 a)

```
Eratosthenes<- function(n) {
    #find all the primes between 2 to n
    if (n>=2){
        sieve <- seq(2,n) #create a consecutive integer sequence from 2 up to n
        primes <- c() #create an empty list to store primes later
        while(length(sieve)>0){
            p<-sieve[1] #store the first element remaining in sieve as p
            primes<-c(primes,p) #add p to prime list
            sieve<-sieve[(sieve%%p)!=0] #remove all the elements in remaining sieve
sequence that can be divided by p
        }
        return (primes) #return prime list
    } else{
        stop("Input value of n should be at least 2.") }
}
Eratosthenes(11)
## [1] 2 3 5 7 11</pre>
```

2 b)

```
Eratosthenes<- function(n) {</pre>
  if (n>=2){
    sieve <- seq(2,n)</pre>
    primes <- c()</pre>
    while(length(sieve)>0){
      p<-sieve[1]</pre>
      if (p>=sqrt(n)){
         print(c("sieve: ",sieve))
         break}
      primes<-c(primes,p)</pre>
      sieve<-sieve[(sieve%%p)!=0]</pre>
    return(primes)
  } else{
    stop("Input value of n should be at least 2.") }
Eratosthenes(11)
## [1] "sieve: " "5"
                              "7"
                                          "11"
## [1] 2 3
```

Hence once $p \ge \sqrt{n}$, all the remaining entries in sieve are primes.

2 c)

```
Eratosthenes<- function(n) {</pre>
  if (n>=2){
    sieve \leftarrow seq(2,n)
    primes <- c()</pre>
    while(length(sieve)>0){
       p<-sieve[1]</pre>
       if(p>=sqrt(n)){
         primes<-c(primes, sieve)</pre>
         break}
       primes<-c(primes,p)</pre>
       sieve<-sieve[(sieve%%p)!=0]</pre>
    return (primes)
  } else{
    stop("Input value of n should be at least 2.") }
Eratosthenes(11)
## [1] 2 3 5 7 11
```

Question 4.2.1.

```
2 a)
compound.interest <- function(P, n, ir){
   return (P*((1+ir)^n))}
compound.interest(100,3,0.04)

## [1] 112.4864

2 b)
compound.interest(1000,30,0.01)

## [1] 1347.849</pre>
```

He will have \$1347.849 in the bank at the end of 30 months.

Question 4.2.1.

```
bisection <- function(f, a, b, nmax=100, tol=1e-8){</pre>
  # check if f(a) and f(b) has opposite signs
  if(sign(f(a))==sign(f(b))) {
    stop('Oops! f(a) and f(b) have same signs. Need to change a or b to have
f(a), f(b) opposite signs!')
    }
  n = 1
  while(n < nmax){</pre>
    # find midpoint
    c < - (a+b)/2
    # if c is the root or the midpoint is below tolerance, output c
    if ((f(c)==0) | (b - a) / 2 < tol) return (c)
    #check the signs of f(a) with f(c), and f(c) with f(b), reassign a or b
accordingly as the value of c to be used in the next iteration.
    else if (sign(f(a))!=sign(f(c))) b <- c
    else a <- c
    n = n+1
  }
  #when root is not found after nmax iteration
  print("method failed, try more iterations or check function!")
f1 <- function(x) {</pre>
  x^3 - 2 * x - 5
bisection(f1,a=-5,b=3)
## [1] 2.094551
```

Question 4.4.1. (1)

```
1
mergesort <- function (x, descending) {</pre>
  len <-length(x)</pre>
  if (len < 2) result <-x
  else {
    y \leftarrow x[1:(len / 2)]
    z \leftarrow x[(len / 2 + 1):len]
    y <- mergesort(y, descending)</pre>
    z <- mergesort(z, descending)</pre>
    result <- c()
    if (descending==FALSE){
      while (\min(length(y), length(z)) > 0) {
        if (y[1] < z[1]) {
          result <- c(result, y[1])
          y < -y[-1]
          } else {
             result <- c(result, z[1])
             z < -z[-1]
      if (length(y) > 0) result <- c(result, y)</pre>
      else result <- c(result, z)
      return (result)
    } else if (descending==TRUE){
      while (\min(length(y), length(z)) > 0) {
        if (y[1] > z[1]) {
          result <- c(result, y[1])
          y < -y[-1]
        } else {
          result <- c(result, z[1])
          z < -z[-1]
      if (length(y) > 0) result <- c(result,y)</pre>
      else result <- c(result,z)
      return (result)
    }
  }
mergesort(c(2,6,1,7,5,22), descending = TRUE)
## [1] 7 6 5 2
mergesort(c(2,6,1,7,3,22),descending = FALSE)
## [1] 2 3 6 7
2 a)
newton<-function(f,g, tol=1e-8,nmax=100,x0,y0){ #define function with
argument: function f, function g, minimum tolerance, maximum number of
iterations nmax, set initial values x0, y0
h = 1e-8
```

```
i = 1
 while( i <= nmax){</pre>
    #find x1, y1 from the definition of derivatives and rules of Newton
method
    df.dx = (f(x0+h,y0)-f(x0,y0))/h
    df.dy = (f(x0,y0+h)-f(x0,y0))/h
    dg.dx = (g(x0+h,y0)-g(x0,y0))/h
    dg.dy = (g(x0,y0+h)-g(x0,y0))/h
    x1 = x0 - (dg.dy*f(x0,y0) - df.dy*g(x0,y0))/(df.dx*dg.dy - df.dy*dg.dx)
    y1 = y0 - (df.dx*g(x0,y0) - dg.dx*f(x0,y0))/(df.dx*dg.dy - df.dy*dg.dx)
    i = i+1
    #if the tolerance between two iteration is smaller than threshold we set,
then break and output x1, y1
    if (abs(x1-x0)<tol && abs(y1-y0)<tol) break
    #if the tolerance is not small enough, continue to next iteration
   x0 = x1
   y0 = y1
  return(c(x1,y1))
2 b)
f \leftarrow function(x,y) x^2+2*y^2-2
g<-function(x,y) x+y
newton(f=f,g=g,x0=1,y0=1)
newton(f=f, g=g, x0=-1, y0=-1)
## [1] 0.8164966 -0.8164966
```

Analytical solutions:

$$\begin{cases} x + y = 0 \\ x^2 + 2y^2 - 2 = 0 \end{cases}$$

From the first equation we have x=-y, substitute into second equation, we get $y^2+2y^2-2=0$, which gives $y=\sqrt{\frac{2}{3}}$, one root coincides with the numerical solution we found above.

Chapter 4

```
1
```

```
directpoly<-function(c,x){
    P=0
    for (i in 1:length(c)){
        P = P + c[i]*(x**(i-1))
</pre>
```

```
return(P)
directpoly(c(1,5,2,6,2),c(1,2))
## [1] 16 99
2
hornerpoly<-function(c,x){</pre>
  a<-matrix(c,0,nrow=length(c),ncol=length(x))</pre>
  for (i in (length(c)-1):1){
    a[i,]=a[i+1,]*x+c[i]
  return(a[1,])
hornerpoly(c(1,5,2,6,2),c(1,2))
## [1] 16 99
3 a)
system.time(directpoly(c=c(1,-2,2,3,4,6,7),x=seq(-10,10,length=5000000)))
##
      user system elapsed
##
     0.926
             0.085
                     1.055
system.time(hornerpoly(c=c(1,-2,2,3,4,6,7),x=seq(-10,10,length=5000000)))
##
      user system elapsed
##
     0.613 0.164
                     0.826
```

Hornerpoly is more efficient when the number of polynomial coefficients is large.

3 b)

```
system.time(directpoly(c=c(-3,17,2),x=seq(-10,10,length=5000000)))
## user system elapsed
## 0.164 0.025 0.208
system.time(hornerpoly(c=c(-3,17,2),x=seq(-10,10,length=5000000)))
## user system elapsed
## 0.181 0.071 0.257
```

When the number of polynomial coefficient is small, directpoly turns to be more efficient.