Leandro Vendramin

Rings and modules

Notes

Saturday 20th November, 2021

Preface

The notes correspond to the bachelor course *Ring and Modules* of the Vrije Universiteit Brussel, Faculty of Sciences, Department of Mathematics and Data Sciences. The course is divided into thirteen two-hours lectures.

The material is somewhat standard. Basic texts on abstract algebra are for example [1], [3] and [6]. Lang's book [7] is also a standard reference, but maybe a little bit more advanced. We based the lectures on representation theory of finite groups on [8] and [9].

We also mention a set of great expository papers by Keith Conrad available at https://kconrad.math.uconn.edu/blurbs/. The notes are extremely well-written and are useful at at every stage of a mathematical career.

Thanks go to Arne van Antwerpen, Luca Descheemaeker, Lucas Simons and Geoffrey Jassens.

This version was compiled on Saturday 20th November, 2021 at 11:16.

Leandro Vendramin Brussels, Belgium

Contents

_	•	•	•		•	٠	•	•	•	•	•	•	•	 •	٠	٠	•	 •	٠	٠	٠	•	•	•	٠	٠	•	 ·	٠	•	•	•	•	•	•	•	 •	٠	•	•	•	٠	•	•	 ٠	•		-
2																																																7
3																																															1	13
4																																															1	9
5																																															2	27
6																																															3	33
7																																															4	11
8																																															4	17
9																																															6	53
10																																															7	71
11																																															7	79
Some	h	ir	ıts	S.																																											ç	1
Some	e se	ol	u	ti	01	15	5																																								ç)3
Refer	er	ıc	es	S .																																											ç)9
Index	Κ.																																														10)1

List of topics

81	Kings	1
§ 2	Ideals and quotients	4
§3	Chinese remainder theorem	10
§4	Noetherian rings	13
§5	Factorization	15
§6	Zorn's lemma	28
§7	The characteristic of a ring	30
§8	Group algebras	31
§9	Group representations	33
§10	Characters	42
§11	Schur's orthogonality relations	45
§12	Examples	51
§13	An application	55
§14	Finite simple groups	59
§15	Modules	63
§16	Noetherian modules	71
§17	Quotient fields	74

Contents
74
79
83
•

Lecture 1

§1. Rings

We will devote five lectures to basic theory of rings. The topics to cover are: 1) Basic definitions and examples, 2) ideals, homomorphisms and quotient rings, 3) Chinese remainder theorem, 4) noetherian rings and Hilbert's theorem, 5) factorization in commutative rings, 6) Fermat's theorem, and 7) Zorn's lemma and maximal ideals.

Definition 1.1. A **ring** is a set *R* with two binary operations, the addition $R \times R \to R$, $(x,y) \mapsto x+y$, and the multiplication $R \times R \to R$, $(x,y) \mapsto xy$, such that the following properties hold:

- 1) (R,+) is an abelian group.
- 2) (xy)z = x(yz) for all $x, y, z \in R$.
- 3) x(y+z) = xy + xz for all $x, y, z \in R$.
- 4) (x+y)z = xz + yz for all $x, y, z \in R$.
- 5) There exists $1_R \in R$ such that $x1_R = 1_R x = x$ for all $x \in R$.

Our definition of a ring is that of a ring with identity. In general one writes the identity element 1_R as 1 if there is no risk of confusion.

Definition 1.2. A ring *R* is said to be **commutative** if xy = yx for all $x, y \in R$.

Example 1.3. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative rings.

Example 1.4. The set

$$\mathbb{R}[X] = \left\{ \sum_{i=0}^{n} a_i X^i : n \in \mathbb{Z}_{\geq 0}, a_1, \dots, a_n \in \mathbb{R} \right\}$$

of real polynomials in one variable is a commutative ring with the usual operations.

More generally, if R is a commutative ring, then R[X] is a commutative ring. This construction allows us to define the polynomial ring R[X,Y] in two commuting

variables X and Y and coefficients in R as R[X,Y] = (R[X])[Y]. One can also define the ring $R[X_1,...,X_n]$ of real polynomials in n commuting variables $X_1,...,X_n$ with coefficients in R as $R[X_1,...,X_n] = (R[X_1,...,X_{n-1}])[X_n]$.

Example 1.5. If *A* is an abelian group, then the set End(A) of group homomorphisms $A \to A$ is a ring with

$$(f+g)(x) = f(x) + g(x), \quad (fg)(x) = f(g(x)), \quad f,g \in \text{End}(A) \text{ and } x \in A.$$

Let *R* be a ring. Some facts:

- 1) x0 = 0x = 0 for all $x \in R$.
- 2) x(-y) = -xy for all $x, y \in R$.
- 3) If 1 = 0, then |R| = 1.

Example 1.6. The real vector space $H(\mathbb{R}) = \{a1 + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$ with basis $\{1, i, j, k\}$ is a ring with the multiplication induced by the formulas

$$i^2 = j^2 = k^2 = -1$$
, $ij = k$, $jk = i$, $ki = j$.

As an example, let us perform a calculation in $H(\mathbb{R})$:

$$(1+i+j)(i+k) = i+k-1+ik+ji+jk = i+k-1-j-k+i = -1+2i-j$$

as ik = i(ij) = -j. This is the ring of real **quaternions**.

Example 1.7. Let $n \ge 2$. The abelian group $\mathbb{Z}/n = \{0, 1, ..., n-1\}$ of integers modulo n is a ring with the usual multiplication modulo n.

Example 1.8. Let $n \ge 1$. The set $M_n(\mathbb{R})$ of real $n \times n$ matrices is a ring with the usual matrix operations. Recall that if $a = (a_{ij})$ and $b = (b_{ij})$, the multiplication ab is given by

$$(ab)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Similarly, for any ring R one defines the ring $M_n(R)$ of $n \times n$ matrices with coefficients in R.

Definition 1.9. Let R be a ring. A **subring** S of R is a subset S such that (S, +) is a subgroup of (R, +) such that $1 \in S$ and if $x, y \in S$, then $xy \in S$.

Clearly, $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$ is a chain of subrings.

Example 1.10. $\mathbb{Z}[i] = \{a+bi : a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} . This is known as the ring of **Gauss integers**.

A **square-free** integer is an integer which is divisible by no perfect square other than 1. Some examples: 2, 3, 5, 6, 7 and 10. The numbers 4, 8, 9 and 12 are not square-free.

Example 1.11. Let N be a square-free integer. Then $\mathbb{Z}[\sqrt{N}]$ is a subring of \mathbb{C} .

If *N* is a square-free integer, then $a + b\sqrt{N} = c + d\sqrt{N}$ in $\mathbb{Z}[\sqrt{N}]$ if and only if a = b and c = d. Why?

Example 1.12. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R} .

Why in the ring $\mathbb{Q}[\sqrt{2}]$ equality $a + b\sqrt{2} = c + d\sqrt{2}$ implies a = c and b = d?

Example 1.13. If *R* is a ring, then the **center** $Z(R) = \{x \in R : xy = yx \text{ for all } y \in R\}$ is a subring of *R*.

If S is a subring of a ring R, then the zero element of S is the zero element of R, i.e. $0_R = 0_S$. Moreover, the additive inverse of an element $s \in S$ is the additive inverse of s as an element of R.

Exercise 1.14.

- 1) If S and T are subrings of R, then $S \cap T$ is a subring of R.
- 2) If $R_1 \subseteq R_2 \subseteq \cdots$ is a sequence of subrings of R, then $\bigcup_{i>1} R_i$ is a subring of R.

Definition 1.15. Let R be a ring. An element $x \in R$ is a **unit** if there exists $y \in R$ such that xy = yx = 1.

The set $\mathcal{U}(R)$ of units of a ring R form a group with the multiplication. For example, $\mathcal{U}(\mathbb{Z}) = \{-1, 1\}$ and $\mathcal{U}(\mathbb{Z}/8) = \{1, 3, 5, 7\}$.

Exercise 1.16. Compute $\mathcal{U}(\mathbb{R}[X])$.

Definition 1.17. A division ring is a ring R such that $\mathcal{U}(R) = R \setminus \{0\}$.

The ring $H(\mathbb{R})$ real quaternions is a non-commutative division ring. Find the inverse of an arbitrary element $a1 + bi + cj + dk \in H(\mathbb{R})$.

Definition 1.18. A **field** is a commutative division ring with $1 \neq 0$.

Clearly, \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields. If p is a prime number, then \mathbb{Z}/p is a field.

Exercise 1.19. Prove that $\mathbb{Q}[\sqrt{2}]$ is a field. Find the multiplicative inverse of a non-zero element of the form $x + y\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$.

More challenging: Prove that

$$\mathbb{Q}[\sqrt[3]{2}] = \{x + y\sqrt[3]{2} + z\sqrt[3]{4} : x, y, z \in \mathbb{Q}\}$$

is a field. What is the inverse of a non-zero element of the form $x + y\sqrt[3]{2} + z\sqrt[3]{4}$?

§2. Ideals and quotients

Definition 2.1. Let R be a ring. A **left ideal** of R is a subset I such that (I, +) is a subgroup of (R, +) and such that $RI \subseteq I$, i.e. $ry \in I$ for all $r \in R$ and $y \in I$.

Similarly one defines right ideals, one needs to replace the condition $RI \subseteq I$ by the inclusion $IR \subseteq I$.

Example 2.2. Let $R = M_2(\mathbb{R})$. Then

$$I = \begin{pmatrix} \mathbb{R} & \mathbb{R} \\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

is a right ideal R that is not a left ideal.

Can you find an example of a right ideal that is not a left ideal?

Definition 2.3. Let R be a ring. An **ideal** of R is a subset that is both a left and a right ideal of R.

If R is a ring, then $\{0\}$ and R are both ideals of R.

Exercise 2.4. Let *R* be a ring.

- 1) If $\{I_{\alpha} : \alpha \in \Lambda\}$ is a collection of ideals of R, then $\cap_{\alpha} I_{\alpha}$ is an ideal of R.
- **2**) If $I_1 \subseteq I_2 \subseteq \cdots$ is a sequence of ideals of R, then $\bigcup_{i \ge 1} I_i$ is an ideal of R.

Example 2.5. Let $R = \mathbb{R}[X]$. If $f(X) \in R$, then the set

$$(f(X)) = \{f(X)g(X) : g(X) \in R\}$$

of multiples of f(X) is an ideal of R. One can prove that this is the smallest ideal of R containing f(X).

If R is a ring and X is a subset of R, one defines the ideal generated by X as the smallest ideal of R containing X, that is

$$(X) = \bigcap \{I : I \text{ ideal of } R \text{ such that } X \subseteq I\}.$$

One proves that

$$(X) = \left\{ \sum_{i=1}^{m} r_i x_i s_i : m \in \mathbb{Z}_{\geq 0}, x_1, \dots, x_m \in X, r_1, \dots, r_m, s_1, \dots, s_m \in R \right\},\,$$

where by convention the empty sum is equal to zero. If $X = \{x_1, ..., x_n\}$ is a finite set, then we write $(X) = (x_1, ..., x_n)$.

xca:ideals_Z | **Exercise 2.6.** Prove that every ideal of \mathbb{Z} is of the form $n\mathbb{Z}$ for some $n \ge 0$.

Exercise 2.7. Let $n \ge 2$. Find the ideals of \mathbb{Z}/n .

Exercise 2.8. Find the ideals of \mathbb{R} .

A similar exercise is to find the ideals of any division ring.

Definition 2.9. Let R be a ring and I be an ideal of R. Then I is **principal** if I = (x) for some $x \in R$.

The division algorithm shows that every ideal of \mathbb{Z} is principal, see Exercise 2.6.

Exercise 2.10. Prove that every ideal of $\mathbb{R}[X]$ is principal.

If K is a field, there is a division algorithm in the polynomial ring K[X]. Then one proves that every ideal of K[X] is principal.

xca:x_unit

Exercise 2.11. Let *R* be a ring and $x \in R$. Prove that $x \in \mathcal{U}(R)$ if and only if (x) = R.

A division ring (and, in particular, a field) has only two ideals.

Definition 2.12. Let R and S be rings. A map $f: R \to S$ is a **ring homomorphism** if f(1) = 1, f(x+y) = f(x) + f(y) and f(xy) = f(x)f(y) for all $x, y \in R$.

Our definition of a ring is that of a ring with identity. This means that the identity element 1 of a ring R is part of the structure. For that reason, in the definition of a ring homomorphism f one needs f(1) = 1.

Example 2.13. The map $f: \mathbb{Z}/6 \to \mathbb{Z}/6$, $x \mapsto 3x$, is not a ring homomorphism because f(1) = 3.

If R is a ring, then the identity map id: $R \to R$, $x \mapsto x$, is a ring homomorphism.

Example 2.14. The inclusions $\mathbb{Z} \hookrightarrow \mathbb{Q} \hookrightarrow \mathbb{R} \hookrightarrow \mathbb{C}$ are ring homomorphisms.

More generally, if *S* is a subring of a ring *R*, then the inclusion map $S \hookrightarrow R$ is a ring homomorphism.

Example 2.15. Let R be a ring. The map $\mathbb{Z} \to R$, $k \mapsto k1$, is a ring homomorphism.

Example 2.16. Let $x_0 \in \mathbb{R}$. The evaluation map $\mathbb{R}[X] \to \mathbb{R}$, $f \mapsto f(x_0)$, is a ring homomorphism.

The **kernel** of a ring homomorphism $f: R \to S$ is the subset

$$\ker f = \{x \in R : f(x) = 0\}.$$

One proves that the kernel of f is an ideal of R. Moreover, recall from group theory that ker $f = \{0\}$ if and only if f is injective. The image

$$f(R) = \{ f(x) : x \in R \}$$

is a subring of S. In general, f(R) is not an ideal of S. Provide an example!

Example 2.17. The map $\mathbb{C} \to M_2(\mathbb{R})$, $a+bi \mapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, is an injective ring homomorphism.

Example 2.18. The map $\mathbb{Z}[i] \to \mathbb{Z}/5$, $a+bi \mapsto a+2b \mod 5$, is a ring homomorphism with ker $f = \{a+bi : a+2b \equiv 0 \mod 5\}$.

Exercise 2.19. There is no ring homomorphism $\mathbb{Z}/6 \to \mathbb{Z}/15$. Why?

Exercise 2.20. If $f: \mathbb{R}[X] \to \mathbb{R}$ is a ring homomorphism such that the restriction $f|_{\mathbb{R}}$ of f onto \mathbb{R} is the identity, then there exists $x_0 \in \mathbb{R}$ such that f is the evaluation map at x_0 .

Lecture 2

Let R be a ring and I be an ideal of R. Then R/I is an abelian group with

$$(x+I) + (y+I) = (x+y) + I$$

and the **canonical map** $R \to R/I$, $x \mapsto x + I$, is a surjective group homomorphism. Recall that R/I is the set of cosets x + I, where

$$x + I = y + I \iff x - y \in I$$
.

Note that here we only used that I is an additive subgroup of R. We need an ideal to put a ring structure on the set R/I of cosets modulo I. As in the case of the integers, we use the following notation. For $x, y \in R$ we write

$$x \equiv y \mod I \Longleftrightarrow x - y \in I.$$

How can we put a ring structure on R/I? It makes sense to define a multiplication on R/I in such a way that the canonical map $R \to R/I$ is a surjective ring homomorphism. For that purpose, we define

$$(x+I)(y+I) = (xy) + I.$$

Since *I* is an ideal of *R*, this multiplication is well-defined. In fact, let $x + I = x_1 + I$ and $y + I = y_1 + I$. We want to show that $xy + I = x_1y_1 + I$. Since $x - x_1 \in I$,

$$xy - x_1y = (x - x_1)y \in I$$

because *I* is a right ideal. Similarly, since $y - y_1 \in I$, it follows that

$$x_1y - x_1y_1 = x_1(y - y_1) \in I$$
,

as I is a left ideal. Thus

$$xy - x_1y_1 = xy - x_1y + x_1y - x_1y_1 = (x - x_1)y + x_1(y - y_1) \in I$$
.

Theorem 2.21. Let R be a ring and I be an ideal of R. Then R/I with

$$(x+I)+(y+I)=(x+y)+I, (x+I)(y+I)=(xy)+I,$$

is a ring and the canonical map $R \to R/I$, $x \mapsto x + I$, is a surjective ring homomorphism with kernel I.

We have already seen that the multiplication is well-defined. The rest of the proof is left as an exercise. As an example, we show that the left distributive property holds in R/I because it holds in R, that is

$$(x+I) ((y+I) + (z+I)) = (x+I)(y+z+I)$$

$$= x(y+z) + I$$

$$= xy + xz + I$$

$$= (xy+I)(xz+I)$$

$$= (x+I)(y+I) + (x+I)(z+I).$$

Example 2.22. Let $R = (\mathbb{Z}/3)[X]$ and $I = (2X^2 + X + 2)$ be the ideal of R generated by the polynomial $2X^2 + X + 2$. If $f(X) \in R$, the division algorithm allows us to write

$$f(X) = (2X^2 + X + 2)q(X) + r(X),$$

for some $q(X), r(X) \in R$, where either r(X) = 0 or $\deg r(X) < 2$. This means that r(X) = aX + b for some $a, b \in \mathbb{Z}/3$. Note that $f(X) \equiv aX + b \mod (2X^2 + X + 2)$ for some $a, b \in \mathbb{Z}/3$, so the quotient ring R/I has nine elements. Can you find an expression for the product (aX + b)(cX + d) in R/I?

An **isomorphism** between the rings R and S is a bijective ring homomorphism $R \to S$. If such a homomorphism exists, then R and S are said to be isomorphic and the notation is $R \simeq S$. As it happens in the case of groups, to understand quotient rings one has the first isomorphism theorem.

Theorem 2.23 (First isomorphism theorem). *If* $f: R \to S$ *is a ring homomorphism, then* $R/\ker f \simeq f(R)$.

This is somewhat similar to the result one knows from group theory. One needs to show that the map $R/I \to f(R)$, $x+I \mapsto f(x)$, is a well-defined bijective ring homomorphism.

Example 2.24. Let

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{Q} \right\}$$

with the usual matrix operations. A direct calculation shows that the map $R \to \mathbb{Q}$, $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mapsto a$, is a surjective ring homomorphism with $\ker f = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} : b \in \mathbb{Q} \right\}$. Thus $R/\ker f \simeq \mathbb{Q}$.

Example 2.25. The evaluation map $\mathbb{R}[X] \to \mathbb{C}$, $f(X) \mapsto f(i)$, is a surjective ring homomorphism with kernel $(X^2 + 1)$. Thus

$$\mathbb{R}[X]/(X^2+1) \simeq \mathbb{C},$$

by the first isomorphism theorem. In practice, this is how it works. Let $f(X) \in \mathbb{R}[X]$. The division algorithm on $\mathbb{R}[X]$ allows us to write

$$f(X) = (X^2 + 1)q(X) + r(X)$$

for some $q(X), r(X) \in \mathbb{R}[X]$, where r(X) = 0 or $\deg r(X) < 2$. Thus r(X) = aX + b for some $a, b \in \mathbb{R}$. This implies that

$$f(X) \equiv aX + b \mod (X^2 + 1).$$

It is quite easy to describe the ring operation of $\mathbb{R}[X]/(X^2+1)$. Clearly

$$(aX+b)+(cX+d) \equiv (a+c)X+(b+d) \mod (X^2+1),$$

Since $X^2 \equiv -1 \mod (X^2 + 1)$,

$$(aX+b)(cX+d) \equiv X(ad+bc) + (bd-ac),$$

which reminds us of the usual multiplication rule of the field of complex numbers.

Exercise 2.26. Prove that $\mathbb{Z}[\sqrt{-5}] \simeq \mathbb{Z}[X]/(X^2+5)$.

Similarly, if *N* is a square-free integer, then $\mathbb{Z}[\sqrt{N}] \simeq \mathbb{Z}[X]/(X^2 - N)$.

Exercise 2.27. Prove the following isomorphisms:

- 1) $\mathbb{Z}[X]/(7) \simeq (\mathbb{Z}/7)[X]$.
- 2) $\mathbb{Q}[\sqrt{2}] \simeq \mathbb{Q}[X]/(X^2-2)$.
- 3) $\mathbb{R}[X]/(X^2-1) \simeq \mathbb{R} \times \mathbb{R}$.
- **4)** $\mathbb{Q}[X]/(X-2) \simeq \mathbb{Q}$.
- 5) $\mathbb{R}[X,Y]/(X) \simeq \mathbb{R}[Y]$.

Exercise 2.28. Are the rings $\mathbb{Q}[\sqrt{2}]$ and $\mathbb{Q}[\sqrt{3}]$ isomorphic?

Exercise 2.29. Let *R* be the ring of continuous maps $[0,2] \to \mathbb{R}$, where the operations are given by

$$(f+g)(x) = f(x) + g(x), \quad (fg)(x) = f(x)g(x).$$

Prove that the set $I = \{ f \in \mathbb{R} : f(1) = 0 \}$ is an ideal of \mathbb{R} and that $\mathbb{R}/I \simeq \mathbb{R}$.

Exercise 2.30. Let $n \ge 1$. Let R be a ring and I be an ideal of R. Prove that $M_n(I)$ is an ideal of $M_n(R)$ and that $M_n(R)/M_n(I) \simeq M_n(R/I)$.

Exercise 2.31. Let $R = \mathbb{Z}[\sqrt{10}]$ and $I = (2, \sqrt{10})$. Prove that $R/I \simeq \mathbb{Z}/2$.

Exercise 2.32. Prove that $\mathbb{Z}[i]/(1+3i) \simeq \mathbb{Z}/10$.

kca:Z[sqrt10]/(2,sqrt10)

Exercise 2.33. Prove that there is no ideal I of $\mathbb{Z}[i]$ such that $\mathbb{Z}[i]/I \simeq \mathbb{Z}/15$.

Exercise 2.34. Let $R = (\mathbb{Z}/2)[X]/(X^2 + X + 1)$.

- 1) How many elements does R have?
- 2) Can you recognize the additive group of R?
- **3**) Prove that *R* is a field.

As it happens in group theory, one has the following important result.

Theorem 2.35 (Correspondence theorem). Let $f: R \to S$ be a surjective ring homomorphism. There exists a bijective correspondence between the set of ideals of R containing ker f and the set of ideals of S. Moreover, if f(I) = J, then $R/I \simeq S/J$.

Sketch of the proof. Let I be an ideal of R containing ker f and let J be an ideal of S. We need to prove the following facts:

- 1) f(I) is an ideal of S.
- 2) $f^{-1}(J)$ is an ideal of R containing ker f.
- 3) $f(f^{-1}(J)) = J$ and $f^{-1}(f(I)) = I$.
- 4) If f(I) = J, then $R/I \simeq S/J$.

We only prove the fourth statement, the others are left as exercises. Note that the third claim implies that f(I) = J if and only if $I = f^{-1}(J)$. Let $\pi: S \to S/J$ be the canonical map. The composition $g = \pi \circ f: R \to S/J$ is a ring homomorphism and

$$\ker g = \{x \in R : g(x) = 0\} = \{x \in R : f(x) \in J\} = \{x \in R : x \in f^{-1}(J) = I\} = I.$$

Since g(R) = S/J, the first isomorphism theorem implies that $R/I \simeq S/J$.

§3. Chinese remainder theorem

We now work with commutative rings. If R is a commutative ring and I and J are ideals of R, then

$$I + J = \{u + v : u \in I, v \in J\}$$

is an ideal of R. The sum of ideals makes sense also in non-commutative rings.

Definition 3.1. Let R be a commutative ring. The ideals I and J of R are said to be **coprime** if R = I + J.

The terminology is motivated by the following example. If I and J are ideals of \mathbb{Z} , then I = (a) and J = (b) for some $a, b \in \mathbb{Z}$. Then Bezout's theorem states that

a and b are coprime \iff 1 = ra + sb for some $r, s \in \mathbb{Z} \iff I$ and J are coprime.

If I and J are ideals of R, then

$$IJ = \left\{ \sum_{i=1}^{m} u_i v_i : m \in \mathbb{Z}_{\geq 0}, u_1, \dots, u_m \in I, v_1, \dots, v_m \in J \right\}$$

is an ideal of R. Note that $IJ \subseteq I \cap J$. The equality does not hold in general. Take for example $R = \mathbb{Z}$ and I = J = (2). Then $IJ = (4) \subsetneq (2) = I \cap J$.

Proposition 3.2. Let R be a commutative ring. If I and J are coprime ideals, then $IJ = I \cap J$.

Proof. Let $x \in I \cap J$. Since I and J are coprime, 1 = u + v for some $u \in I$ and $v \in J$, $x = x1 = x(u + v) = xu + xv \in IJ$.

Theorem 3.3 (Chinese remainder theorem). Let R be a commutative ring and I and J be coprime ideals. If $u, v \in R$, then there exists $x \in R$ such that

$$\begin{cases} x \equiv u \mod I, \\ x \equiv v \mod J. \end{cases}$$

Proof. Since the ideals I and J are coprime, 1 = a + b for some $a \in I$ and $b \in J$. Let x = av + bu. Then

$$x - u = av + (b - 1)u = av - au = a(v - u) \in I$$

that is $x \equiv u \mod I$. Similarly, $x - v \in J$ and $x \equiv v \mod J$.

Corollary 3.4. Let R be a commutative ring. If I and J are coprime ideals of R, then $R/(I \cap J) \simeq R/I \times R/J$.

Proof. Let $\pi_I: R \to R/$ and $\pi_J: R \to R/J$ be the canonical maps. A straightforward calculation shows that the map $\varphi: R \to R/I \times R/J$, $x \mapsto (\pi_I(x), \pi_J(x))$, is an injective ring homomorphism with $\ker \varphi = I \cap J$. The chinese remainder theorem implies that φ is surjective. If $(u+I,v+J) \in R/I \times R/J$, then there exists $x \in R$ such that $x-u \in I$ and $x-v \in J$. This translates into the surjectivity of φ . Now $R/(I \cap J) \simeq R/I \times R/J$ by the first isomorphism theorem.

Let R be a commutative ring and I_1, \ldots, I_n be ideals of R. Then

$$I_1 \cdots I_n = \left\{ \sum_{i=1}^m u_{i_1} \cdots u_{i_n} : m \in \mathbb{Z}_{\geq 0}, u_{i_1}, \dots, u_{i_n} \in I_{i_j} \right\}$$

is an ideal of R. If I_1 and I_j are coprime for all $j \in \{2, ..., n\}$, then I_1 and $I_2 \cdots I_n$ are coprime. If I_i and I_j are coprime whenever $i \neq j$, then

$$R/(I_1 \cap \cdots \cap I_n) \simeq R/I_1 \times \cdots \times R/I_n$$
.

With small changes the Chinese remainder theorem can be proved in arbitrary non-commutative rings, see for example [6, Chapter III, Theorem 2.25].

Exercise 3.5 (Lagrange's interpolation theorem). The Chinese remainder theorem proves the following well-known result. Let $x_1, \ldots, x_k \in \mathbb{R}$ be such that $x_i \neq x_j$ whenever $i \neq j$ and $y_1, \ldots, y_k \in \mathbb{R}$. Then there exists $f(X) \in \mathbb{R}[X]$ such that

$$\begin{cases} f(X) \equiv y_1 \mod (X - x_1), \\ f(X) \equiv y_2 \mod (X - x_2), \\ \vdots \\ f(X) \equiv y_k \mod (X - x_k). \end{cases}$$

The solution f(X) is unique modulo $(X-x_1)(X-x_2)\cdots(X-x_n)$.

xca:gather_people

Exercise 3.6. Let us gather people in the following way. When I count by three, there are two persons left. When I count by four, there is one person left over and when I count by five there is one missing. How many persons are there?

xca:no_solution

Exercise 3.7. Prove that

$$\begin{cases} x \equiv 29 \mod 52, \\ x \equiv 19 \mod 72. \end{cases}$$

does not have solution.

xca:consecutive

Exercise 3.8. Find three consecutive integers such that the first one is divisible by a square, the second one is divisible by a cube and the third one is divisible by a fourth power.

xca:perfect_square

Exercise 3.9. Prove that for each n > 0 there are n consecutive integers such that each integer is divisible by a perfect square $\neq 1$.

Lecture 3

§4. Noetherian rings

We now study noetherian rings. We will prove Hilbert's basis theorem. After that we will start our study of factorization in commutative rings.

Definition 4.1. A ring R is said to be **noetherian** if every (increasing) sequence $I_1 \subseteq I_2 \subseteq \cdots$ of ideals of R stabilizes, that is $I_n = I_m$ for some $m \in \mathbb{Z}_{>0}$ and all $n \ge m$.

The ring \mathbb{Z} of integers is noetherian.

Exercise 4.2. Let $R = \{ f : [0,1] \rightarrow \mathbb{R} \}$ with

$$(f+g)(x) = f(x)+g(x), \quad (fg)(x) = f(x)g(x), \quad f,g \in R, x \in [0,1].$$

For $n \in \mathbb{Z}_{>0}$ let $I_n = \{ f \in R : f|_{[0,1/n]} = 0 \}$. Then each I_n is an ideal of R and the sequence $I_1 \subsetneq I_2 \subsetneq \cdots$ does not stabilizes. Thus R is not noetherian.

Definition 4.3. Let R be a ring. An ideal I of R is said to be **finitely generated** if I = (X) for some finite subset X of R.

If R is a ring, $\{0\}$ and R are finitely generated.

Proposition 4.4. Let R be a ring. Then R is noetherian if and only if every ideal of R is finitely generated.

Proof. Assume first that R is noetherian. Let I be an ideal of R that is not finitely generated. Thus $I \neq \{0\}$. Let $x_1 \in I \setminus \{0\}$ and let $I_1 = (x_1)$. Since I is not finitely generated, $I \neq I_1$ and hence $\{0\} \subseteq I_1 \subseteq I$. Let $x_2 \in I \setminus I_1$. Then $I_2 = (x_1, x_2)$ is a finitely generated ideal such that $I_1 \subseteq I_2 \subseteq I$. Once I have the ideals I_1, \ldots, I_{k-1} , let $x_k \in I \setminus I_{k-1}$ (such an element exists because I_{k-1} is finitely generated and I is not) and $I_k = (I_{k-1}, x_k)$. The sequence $\{0\} \subseteq I_1 \subseteq I_2 \subseteq \cdots$ does not stabilize.

Assume now that every ideal of R is finitely generated and let $I_1 \subseteq I_2 \subseteq \cdots$ be a sequence of ideals of R. Then $I = \bigcup_{i \ge 1} I_i$ is an ideal of R, so it is finitely generated,

say $I = (x_1, ..., x_n)$. We may assume that $x_j \in I_{i_j}$ for all j. Let $N = \max\{j_1, ..., j_n\}$. Then $x_j \in I_N$ for all $j \in \{1, ..., n\}$ and hence $I \subseteq I_N$. This implies that $I_m = I_N$ for all $m \ge N$.

Exercise 4.5. Let $R = \mathbb{C}[X_1, X_2, \cdots]$ be the ring of polynomial in an infinite number of commuting variables. Prove that the ideal $I = (X_1, X_2, \ldots)$ of polynomials with zero constant term is not finitely generated.

The correspondence theorem and the previous proposition allow us to prove easily the following result.

Proposition 4.6. Let I be an ideal of R. If R is noetherian, then R/I is noetherian.

Proof. Let $\pi: R \to R/I$ be the canonical surjection and let J be an ideal of R/I. Then $\pi^{-1}(J)$ is an ideal of R containing I. Since R is noetherian, $\pi^{-1}(J)$ is finitely generated, say $\pi^{-1}(J) = (x_1, \dots, x_k)$ for $x_1, \dots, x_k \in R$. Thus

$$J = \pi(\pi^{-1}(J)) = (\pi(x_1), \dots, \pi(x_k)),$$

because π is surjective and hence J is finitely generated.

Since \mathbb{Z} is noetherian, \mathbb{Z}/n is noetherian for all $n \geq 2$.

Exercise 4.7. Prove that $\mathbb{R}[X]$ is noetherian.

Theorem 4.8 (Hilbert). Let R be a commutative ring. If R is noetherian ring, then R[X] is noetherian.

Proof. We need to show that every ideal of R[X] is finitely generated. Assume that there is an ideal I of R[X] that is not finitely generated. In particular, $I \neq \{0\}$. Let $f_1(X) \in I \setminus \{0\}$ be of minimal degree n_1 . Since I is not finitely generated, it follows that $I \neq (f_1(X))$. Let $f_2(X) \in I \setminus (f_1(X))$ be of minimal degree n_2 . In particular, $n_2 \geq n_1$. For i > 1 let $f_i(X) \in I$ be a polynomial of minimal degree n_i such that such that $f_i(X) \notin (f_1(X), \ldots, f_{i-1}(X))$ (note that such an $f_i(X)$ exists because I is not finitely generated). Moreover, $n_i \geq n_{i-1}$. This happens because if $n_i < n_{i-1}$, then $f_i(X) \notin (f_1(X), \ldots, f_{i_2}(X))$, which contradicts the minimality of $n_{i-1} = \deg f_{i-1}(X)$. For each $i \geq 1$ let a_i be the leading coefficient of $f_i(X)$, that is

$$f_i(X) = a_i X^{n_i} + \cdots,$$

where the dots denote lowest degree terms. Note that $a_i \neq 0$ for all $i \geq 1$.

Let $J = (a_1, a_2, ...)$. Since R is noetherian, the sequence

$$(a_1) \subseteq (a_1, a_2) \subseteq \cdots (a_1, a_2, \ldots, a_k) \subseteq \cdots$$

stabilizes, so we may assume that $J=(a_1,\ldots,a_m)$ for some $m\in\mathbb{Z}_{>0}$. In particular, there exist $u_1,\ldots,u_m\in R$ such that

§5 Factorization

$$a_{m+1} = \sum_{i=1}^m u_i a_i.$$

Let

$$g(X) = \sum_{i=1}^{m} u_i f_i(X) X^{n_{m+1}-n_i} \in (f_1(X), \dots, f_m(X)) \subseteq I.$$

The leading coefficient of g(X) is $\sum_{i=1}^{m} u_i a_i = a_{m+1}$ and, moreover, the degree of g(X) is n_{m+1} . Thus $\deg(g(X) - f_{m+1}(X)) < n_{m+1}$.

Since $f_{m+1}(X) \notin (f_1(X), \dots, f_n(X)),$

$$g(X) - f_{m+1}(X) \notin (f_1(X), \dots, f_n(X)),$$

a contradiction to the minimality of the degree of f_{m+1} .

Since $R[X_1,...,X_n] = (R[X_1,...,X_{n-1}])[X_n]$, by induction one proves that if R is a commutative noetherian ring, then $R[X_1,...,X_n]$ is noetherian.

Example 4.9. Since \mathbb{Z} is noetherian, so is $\mathbb{Z}[X]$ by Hilbert's theorem. Now $\mathbb{Z}[\sqrt{N}]$ is noetherian, as $\mathbb{Z}[\sqrt{N}] \simeq \mathbb{Z}[X]/(X^2 - N)$ and quotients of noetherian rings are noetherian.

Example 4.10. The ring $\mathbb{Z}[X, X^{-1}]$ is noetherian, as $\mathbb{Z}[X, X^{-1}] \simeq \mathbb{Z}[X, Y]/(XY-1)$.

Exercise 4.11. Let R be a ring and R[[X]] be the ring of formal power series with the usual operations. Prove that R[[X]] is noetherian if R is noetherian.

Exercise 4.12. Let $f: R \to R$ be surjective ring homomorphism. Prove that f is an isomorphism if R is noetherian.

§5. Factorization

Definition 5.1. A **domain** R is a ring such that xy = 0 implies x = 0 or y = 0. An **integral** domain is a commutative ring that is also a domain.

The rings \mathbb{Z} and $\mathbb{Z}[i]$ are both integral domains. More generally, if N is a square-free integer, then the ring $\mathbb{Z}[\sqrt{N}]$ is an integral domain. The ring $\mathbb{Z}/4$ of integers modulo 4 is not an integral domain.

Definition 5.2. Let R be an integral domain and $x, y \in R$. Then x divides y if y = xz for some $x \in R$. Notation: $x \mid y$ if and only if x divides y. If x does not divide y one writes $x \nmid y$.

Note that $x \mid y$ if and only if $(y) \subseteq (x)$.

Definition 5.3. Let R be an integral domain and $x, y \in R$. Then x and y are **associate** in R if x = yu for some $u \in \mathcal{U}(R)$.

Note that x and y are associate if and only if (x) = (y).

Example 5.4. The integers 2 and -2 are associate in \mathbb{Z} .

Example 5.5. Let $R = \mathbb{Z}[i]$.

- 1) Let $d \in \mathbb{Z}$ and $a+ib \in R$. Then $d \mid a+ib$ in R if and only if $d \mid a$ and $d \mid b$ in \mathbb{Z} .
- 2) 2 and -2i are associate in R.

Example 5.6. Let $R = \mathbb{R}[X]$ and $f(X) \in R$. Then f(X) and $\lambda f(X)$ are associate in R for all $\lambda \in \mathbb{R}^{\times}$.

Definition 5.7. Let R be an integral domain and $x \in R \setminus \{0\}$. Then x is **irreducible** if and only if $x \notin \mathcal{U}(R)$ and x = ab with $a, b \in R$ implies that $a \in \mathcal{U}(R)$ or $b \in \mathcal{U}(R)$.

Note that *x* is irreducible if and only if $(x) \neq R$ and there is no principal ideal (y) such that $(x) \subsetneq (y) \subsetneq R$.

Example 5.8. Let $R = \mathbb{R}[X]$ and $f(X) \in R \setminus \{0\}$. Then the polynomial f(X) is irreducible if $\lambda \in \mathbb{R}^{\times}$ or $\lambda f(X)$ for $\lambda \in \mathbb{R}^{\times}$ are the only divisors of f(X).

The irreducibles of \mathbb{Z} are the prime numbers. Note that $p \in \mathbb{Z}$ is prime if and only if $p \mid xy$ then $p \mid x$ or $p \mid y$.

Definition 5.9. Let R be an integral domain and $p \in R \setminus \{0\}$. Then p is **prime** if $p \notin \mathcal{U}(R)$ and $p \mid xy$ implies that $p \mid x$ or $p \mid y$.

In $\mathbb Z$ primes and irreducible coincide. This does not happen in full generality. However, the following result holds.

Proposition 5.10. Let R be an integral domain and $p \in R$. If p is prime, then p is irreducible.

Proof. Let p be a prime. Then $p \neq 0$ and $p \notin \mathcal{U}(R)$. Let x be such that $x \mid p$. Then p = xy for some $y \in R$. This means $xy \in (p)$, so $x \in (p)$ or $y \in (p)$ because p is prime. If $x \in (p)$, then x = pz for some $z \in R$ and hence

$$p = xy = (pz)y$$
.

Since p - pzy = p(1 - zy) and R is an integral domain, it follows that 1 - zy = 0. Thus $y \in \mathcal{U}(R)$. Similarly, if $y \in (p)$, then $x \in \mathcal{U}(R)$.

To show that there are rings where some irreducibles are not prime, we need the following lemma.

Lemma 5.11. Let $N \in \mathbb{Z}$ be a non-zero square-free integer and $R = \mathbb{Z}[\sqrt{N}]$. Then the map

$$N: R \to \mathbb{Z}_{\geq 0}, \quad a + b\sqrt{N} \mapsto |a^2 - Nb^2|,$$

satisfies the following properties:

- 1) $N(\alpha) = 0$ if and only if $\alpha = 0$.
- **2)** $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in R$.
- 3) $\alpha \in \mathcal{U}(\mathbb{Z}[\sqrt{N}])$ if and only if $N(\alpha) = 1$.
- **4)** If $N(\alpha)$ is prime in \mathbb{Z} , then α is irreducible in R.

Proof. The first three items are left as exercises. Let us prove 4). If $\alpha = \beta \gamma$ for some $\beta, \gamma \in R$, then $N(\alpha) = N(\beta)N(\gamma)$. Since $N(\alpha)$ is a prime number, it follows that $N(\alpha) = 1$ or $N(\beta) = 1$. Thus $\beta \in \mathcal{U}(R)$ or $\gamma \in \mathcal{U}(R)$.

Example 5.12. Let $R = \mathbb{Z}[i]$.

- **1)** $\mathcal{U}(R) = \{-1, 1, i, -i\}.$
- 2) 3 is irreducible in R. In fact, if $3 = \alpha \beta$, then $9 = N(\alpha)N(\beta)$. This implies that $N(\alpha) \in \{1,3,9\}$. Write $\alpha = a + bi$ for $a,b \in \mathbb{Z}$. If $N(\alpha) = 1$, then $\alpha \in \mathcal{U}(R)$ by the lemma. If $N(\alpha) = 9$, then $N(\beta) = 1$ and hence $\beta \in \mathcal{U}(R)$ by the lemma. Finally, if $N(\alpha) = 3$, then $\alpha^2 + b^2 = 3$, which is a contradiction since $a,b \in \mathbb{Z}$.
- 3) 2 is not irreducible in R. In fact, 2 = (1+i)(1-i) and since

$$N(1+i) = N(1-i) = 2$$
,

it follows that $1+i \notin \mathcal{U}(R)$ and $1-i \notin \mathcal{U}(R)$.

Lecture 4

Example 5.13. Let $R = \mathbb{Z}[\sqrt{-3}]$ and $x = 1 + \sqrt{-3}$.

1) x is irreducible. If $x = \alpha\beta$ for some $\alpha, \beta \in R$, then $4 = N(x) = N(\alpha)N(\beta)$. Write $\alpha = a + b\sqrt{-3}$ for some $a, b \in \mathbb{Z}$. Then $N(\alpha) = a^2 + 3b^2 \neq 2$. If $N(\alpha) = 2$, then $a^2 + 3b^2 = 2$ and then a and b both have the same parity.

If both a and b are even, say a = 2k and b = 2l for some $k, l \in \mathbb{Z}$, then

$$2 = a^2 + 3b^2 = 4k^2 + 12l^2$$

is divisible by 4, a contradiction.

If both a and b are odd, say a = 2k + 1 and b = 2l + 1 for some $k, l \in \mathbb{Z}$, then

$$2 = a^2 + 3b^2 = 4k^2 + 4k + 12l^2 + 12l + 4$$

is divisible by 4, a contradiction.

2) x is not prime. Note that $(1+\sqrt{-3})(1-\sqrt{-3})=4$, then x divides $4=2\cdot 2$. But $1+\sqrt{-3} \nmid 2$, as

$$(a-3b) + (a+b)\sqrt{3} = (1+\sqrt{-3})(a+b\sqrt{-3}) = 2$$

implies that a - 3b = 2 and a + b = 0, which yields $a = 1/2 \notin \mathbb{Z}$, a contradiction.

Exercise 5.14. Let $R = \mathbb{Z}[\sqrt{-5}]$.

- 1) Prove that $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are irreducible in R.
- 2) Prove that 2, 3, $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are not associate in R.

Exercise 5.15. Let $R = \mathbb{Z}[\sqrt{5}]$. Prove that $1 + \sqrt{5}$ is irreducible and not prime in R.

Definition 5.16. Let R be an integral domain. Then R is **principal** (or a principal domain) if every ideal I of R is of the form I = (x) for some $x \in R$.

An ideal I of the form I = (x) for some x is called a **principal ideal**. The rings \mathbb{Z} and $\mathbb{R}[X]$ are both principal.

Example 5.17. The ring $\mathbb{Z}[X]$ is not principal. For example, the ideal I = (2, X) is not principal.

First note that $I \neq \mathbb{Z}[X]$. In fact, if $I = \mathbb{Z}[X]$, then 1 = 2f(X) + Xg(X) for some $f(X), g(X) \in \mathbb{Z}[X]$. Then 1 = 2f(0), which implies that $-1/2 = f(0) \in \mathbb{Z}$, a contradiction.

If I = (h(X)) for some $h(X) \in \mathbb{Z}[X]$, then 2 = h(X)g(X) for some $g(X) \in \mathbb{Z}[X]$. This implies that $\deg(h(X)) = 0$, so $h(X) = h(1) \in \mathbb{Z}$. In particular, 2 = h(1)g(1) and hence $h(1) \in \{-1, 1, 2, 2\}$. Since $I \neq \mathbb{Z}[X]$, it follows that $h(X) = h(1) \notin \{-1, 1\}$. Now X = h(X)f(X) for some $f(X) \in \mathbb{Z}[X]$. In particular, $\deg(f(X)) = 1$, so we may assume that $f(X) = a_0 + a_1 X$ for $a_0, a_1 \in \mathbb{Z}$ and $a_1 \neq 0$. It follows that

$$X = \pm 2f(X) = \pm 2(a_0 + a_1 X)$$

and therefore $\pm 1/2 = a_1 \in \mathbb{Z}$, a contradiction.

Exercise 5.18. Let *R* be a principal domain. Prove that *R* is noetherian.

Example 5.19. Let $R = \mathbb{Z}[\sqrt{-5}]$. The ideal $I = (2, 1 + \sqrt{-5})$ is not principal, so R is not principal.

We first note that $I \neq R$. If not, there exist $x, y, u, v \in \mathbb{Z}$ such that

$$1 = 2(x + y\sqrt{-5}) + (1 + \sqrt{-5})(u + y\sqrt{-5}) = (2x + u - 5y) + \sqrt{-5}(2y + u + y).$$

This implies that 1 = 2x + u - 5v and 0 = 2y + u + v. These formulas imply that 1 = 2(x + y + u - 2v), a contradiction because $x + y + u - 2v \in \mathbb{Z}$.

Now assume that $I = (\alpha)$. Then $\alpha \mid 2$ and $\alpha \mid 1 + \sqrt{-5}$. Then $N(\alpha) \mid 4$ and $N(\alpha) \mid 6$, because N(2) = 4 and $N(1 + \sqrt{-5}) = 6$. Thus $N(\alpha) \in \{1, 2\}$. If we write $\alpha = a + b\sqrt{-5}$ for $a, b \in \mathbb{Z}$, then it follows that $a^2 + 5b^2 = N(\alpha) = 1$ and hence $\alpha \in \mathcal{U}(R)$. Therefore I = R, a contradiction.

Sometimes primes and irreducibles coincide.

Proposition 5.20. Let R be a principal domain and $x \in R$. Then x is irreducible if and only if x is prime.

Proof. We only need to prove that if x is irreducible, then x is prime. Let us assume that $x \mid yz$. Let I = (x, y). Since R is principal, I = (a) for some $a \in R$. In particular, x = ab for some $b \in R$. Since x is irreducible, $a \in \mathcal{U}(R)$ or $b \in \mathcal{U}(R)$. If $a \in \mathcal{U}(R)$, then I = R and hence 1 = xr + ys for some $r, s \in R$. Thus

$$z = z1 = z(xr + ys) = zxr + zys$$

and therefore $x \mid z$. If $b \in \mathcal{U}(R)$, then x and a are associate in R. Thus I = (x) = (a) and hence xt = y for some $t \in R$, that is $x \mid y$.

In the integers primes and irreducible coincide. This happens because $\mathbb Z$ is a principal domain.

ca:principal=>noetherian

ro:PID:irreducible=prime

Example 5.21. Since $\mathbb{Z}[\sqrt{-3}]$ have irreducible elements that are not prime, it follows that $\mathbb{Z}[\sqrt{-3}]$ is not a principal domain.

Definition 5.22. Let R be an integral domain. We say that R is an **euclidean domain** if there exists a map $\varphi \colon R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for every $x, y \in R$ with $y \neq 0$ there exist $q, r \in R$ such that x = qy + r, where r = 0 or $\varphi(r) < \varphi(y)$.

Note that in the definition of euclidean domains we do not ask for the uniqueness of the quotient and the remainder. In fact, we will meet important examples of euclidean domains where uniqueness in the division algorithm is not achieved.

Example 5.23. \mathbb{Z} is an euclidean domain with $\varphi(x) = |x|$.

Do we have uniqueness in the previous example?

Example 5.24. $\mathbb{R}[X]$ is an euclidean domain with $\varphi(f(X)) = \deg(f(X))$.

The previous examples shows why in the definition of an euclidean domain we consider $\varphi \colon R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$.

Example 5.25. Let $R = \mathbb{Z}[i]$. Then R is an euclidean domain with $\varphi(\alpha) = N(\alpha)$. Let Let $\alpha, \beta \in \mathbb{Z}[i]$ and assume that $\beta \neq 0$. We want to find Gauss integers $\gamma, \delta \in \mathbb{Z}[i]$ such that

$$\frac{\alpha}{\beta} = \gamma + \frac{\delta}{\beta}$$

and $\varphi(\delta/\beta) = \varphi(\delta)/\varphi(\beta) < 1$. Note that every complex number $z \in \mathbb{C}$ can be written $z = \xi + \eta$, where $\xi \in \mathbb{Z}[i]$ and $\varphi(\eta) < 1$. Indeed, this follows from the fact that \mathbb{C} is covered by open unit disks of radius one and centers in Gauss integers, see the following figure:

fig:covering

Now let $\alpha = a + ib$ and $\beta = c + id$, where $a, b, c, d \in \mathbb{Z}$. Write

$$\frac{\alpha}{\beta} = \frac{a+ib}{c+id} = r+is$$

for some $r, s \in \mathbb{Q}$. Let $m, n \in \mathbb{Z}$ be such that $|r - m| \le 1/2$ and $|s - n| \le 1/2$. If $\delta = m + in$ and $\gamma = \alpha - \beta \delta$, then $\gamma \in R$, $\delta \in R$ and $\alpha = \beta \delta + \gamma$. If $\gamma \ne 0$, then

$$\varphi(\gamma) = \varphi\left(\beta\left(\frac{\alpha}{\beta} - \delta\right)\right) = \varphi(\beta)\varphi\left(\frac{\alpha}{\beta} - \delta\right)$$

$$= \varphi(\beta)\varphi((r - m) + i(s - n)) = \varphi(\beta)((r - m)^2 + (s - n)^2)$$

$$\leq \varphi(\beta)(1/4 + 1/4)$$

$$< \varphi(\beta).$$

In $\mathbb{Z}[i]$ the division algorithm does not have uniqueness. In fact, if $\alpha, \beta \in \mathbb{Z}[i]$ and $\alpha = \beta \delta + \gamma$ for some $\delta, \gamma \in \mathbb{Z}[i]$, then there are up to four possibilities for the remainder γ .

Example 5.26. Let $R = \mathbb{Z}[i]$ and $\alpha = -1 + i$ and $\beta = 1 + 2i$. Let $I = (\beta)$ be the ideal of R generated by β . First note that

$$I = (\beta) = (1+2i)R = (1+2i)\mathbb{Z} + (1+2i)\mathbb{Z}i = (1+2i)\mathbb{Z} + (-2+i)\mathbb{Z}.$$

This allows us to draw the lattice of elements of I, that is the lattice formed by the multiples of β , see Figure 4.1. Since $\alpha - \gamma \in I = (\beta)$, there are at most four possibilities for writing the division algorithm. In our particular example, we find three possible cases:

1) If $\alpha - \gamma = \beta_0$, where $0 = \beta_0 = \beta_0$, then $\gamma = \alpha = -1 + i$ and

$$-1+i = (1+2i)0+(-1+i)$$

with
$$N(-1+i) = 2 < N(\beta) = 5$$
.
2) If $\alpha - \gamma = \beta_1$, where $-2 + i = \beta_1 = \beta i$, then $\gamma = -1$ and

$$-1+i = (1+2i)i + (-1)$$

with
$$N(-1) = 1 < N(\beta) = 5$$
.

3) If
$$\alpha - \gamma = \beta_2$$
, where $-1 + 3 = \beta_2 i = \beta(1+i)$, then $\gamma = 2i$ and

$$-1+i = (1+2i)(1+i)+(-2i)$$

and
$$N(-2i) = 4 < N(\beta) = 5$$
.

We know that \mathbb{Z} and $\mathbb{R}[X]$ are both principal. The proofs are very similar, as both use the division algorithm essentially in the same way. The following result takes advantage of this fact.

Proposition 5.27. *Let* R *be an euclidean domain. Then* R *is principal.*

Proof. Let *I* be an ideal of *R*. If $I = \{0\}$, then $I = \{0\}$ and hence it is principal. So we may assume that $I \neq \{0\}$. Let $y \in I \setminus \{0\}$ be such that $\varphi(y)$ is minimal. We claim that I = (y). If $z \in I$, then z = yq + r, where r = 0 or $\varphi(r) < \varphi(y)$. The minimality of $\varphi(y)$ implies that r = 0. Thus $z = yq \in (y)$ and it follows that I = (y).

Example 5.28. Since $\mathbb{Z}[i]$ is euclidean, then it is principal.

4

Figure 4.1 Division algorithm in $\mathbb{Z}[i]$.

fig:Z[i]

Example 5.29. The rings $\mathbb{Z}[\sqrt{-5}]$ and $\mathbb{Z}[\sqrt{-3}]$ are not principal. Why?

The ring $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is an example of a ring that is principal and not euclidean. We will not prove this fact in these notes. For a proof for example see [2], [12] or [11].

Definition 5.30. Let R be an integral domain. Then R is a **unique factorization domain** if the following statements hold:

- 1) Each $x \in R \setminus \{0\}$ that is not a unit can be written as $x = c_1 \cdots c_n$ for irreducibles c_1, \dots, c_n .
- 2) If $x = c_1 \cdots c_n = d_1 \cdots d_m$ for irreducibles c_1, \dots, c_n and d_1, \dots, d_m , then n = m and there exists $\sigma \in \mathbb{S}_n$ such that c_i and $d_{\sigma(i)}$ are associate for all $i \in \{1, \dots, n\}$.

It is important to remark that some rings have factorizations and this factorization is not unique. In fact, if N is a square-free integer, $\mathbb{Z}[\sqrt{N}]$ is noetherian and hence it has factorization. However, not all these rings admit are unique factorization domains.

Example 5.31. The ring $R = \mathbb{Z}[\sqrt{-6}]$ is not a unique factorization domain. In fact,

$$10 = 2 \cdot 5 = (2 + \sqrt{-6})(2 - \sqrt{-6}).$$

Note that $N(a+b\sqrt{-6}) = a^2+6b^2 \neq 2$. This implies that 2 is irreducible, as if $2 = \alpha\beta$, then $4 = N(2) = N(\alpha)N(\beta)$. Similarly, 5 is irreducible. It is an exercise to prove that $2 + \sqrt{-6}$ and $2 - \sqrt{-6}$ are both irreducible.

thm:PID=>UFD

Theorem 5.32. Let R be a principal domain. Then R is a unique factorization domain.

Proof. We divide the proof into three steps.

Claim. R is noetherian.

This is trivial, as every ideal is, in particular, finitely-generated by assumption.

Claim. R admits factorizations.

Let $x \in R \setminus \{0\}$ be such that $x \notin \mathcal{U}(R)$. If x is irreducible, there is nothing to prove. If not, $x = x_1x_2$ with $x_1 \notin \mathcal{U}(R)$ and $x_2 \notin \mathcal{U}(R)$. If x_1 and x_2 are both irreducibles, we are done. If not, say x_1 can be written as $x_1 = x_{11}x_{12}$ with $x_{11} \notin \mathcal{U}(R)$ and $x_{12} \notin \mathcal{U}(R)$. If this process does not terminate, it means that there is a sequence of ideals

$$(x) \subsetneq (x_1) \subsetneq (x_{11}) \subsetneq \cdots$$

that does not stabilize, which contradicts the fact that R is noetherian.

Claim. R admits unique factorization.

Let $x \in R$ be such that x factorizes into irreducibles as $x = c_1 \cdots c_n = d_1 \cdots d_m$. Note that since R is a principal domain, irreducibles and primes coincide by Proposition 5.20. We may assume that $n \le m$. We proceed by induction on m. If m = 1, then n = 1 and $c_1 = d_1$. If m > 1, then, since c_1 is prime and $c_1 \mid d_1 \cdots d_m$, it follows that $c_1 \mid d_j$ for some j, say $c_1 \mid d_1$ (here is precisely where the permutation σ appears). Since d_1 is irreducible, c_1 and d_1 are associate, that is $c_1 = ud_1$ for some $u \in \mathcal{U}(R)$. Then

$$c_1c_2\cdots c_n = (ud_1)c_2\cdots c_n = d_1d_2\cdots d_m$$
.

Since $d_1 \neq 0$,

$$d_1(uc_2\cdots c_n-d_2\cdots d_m)=0,$$

which implies that $(uc_2)\cdots c_n = d_2\cdots d_m$ because R is an integral domain. Note that uc_2 is irreducible and hence the claim follows by the inductive hypothesis.

It is interesting to remark that the proof of the previous theorem is exactly the proof one does for \mathbb{Z} .

Example 5.33. The ring $\mathbb{Z}[i]$ is a unique factorization domain.

Let us show that the converse of Theorem 5.32 does not hold.

xca:content

Exercise 5.34. A polynomial $f \in \mathbb{Z}[X]$ is **primitive** if the greatest common divisors of its coefficients is equal to one. Let $f \in \mathbb{Z}[X]$ be a non-constant polynomial. If $f = af_1$ for some $a \in \mathbb{Z}$ and some primitive polynomial f_1 , then a is the greatest common divisor of the coefficients of f.

xca:Gauss

Exercise 5.35. Prove the following statements:

- 1) Let $f,g \in \mathbb{Z}[X]$ be primitive polynomials. Prove that fg es primitive.
- 2) Let $f \in \mathbb{Z}[X]$ be non-constant. Then f is irreducible in $\mathbb{Z}[X]$ if and only if f is primitive and f is irreducible in $\mathbb{Q}[X]$.

The first item of Exercise 5.35 is known as Gauss' lemma. The second one, as Gauss' theorem. These results should be used to prove the following result:

xca:Z[X]_UFD

Exercise 5.36. Prove that $\mathbb{Z}[X]$ is a unique factorization domain.

4

Finally, the example.

Example 5.37. The ring $\mathbb{Z}[X]$ is a unique factorization domain that is not a principal domain.

The same technique could be used to prove that if R is a unique factorization domain, then R[X] is a unique factorization domain, see for example [6, Chapter III, Theorem 6.14].

Lecture 5

In this lecture we prove Fermat's theorem, which concludes our study of factorization in arbitrary commutative rings. Then we present Zorn's lemma and some applications. Finally, we introduce the (complex) group algebra and other basic examples of algebras.

Theorem 5.38 (Fermat). *Let* $p \in \mathbb{Z}_{>0}$ *be a prime number. The following statements are equivalent:*

- 1) $p = 2 \text{ or } p \equiv 1 \mod 4$.
- 2) There exists $a \in \mathbb{Z}$ such that $a^2 \equiv -1 \mod p$.
- 3) p is not irreducible in $\mathbb{Z}[i]$.
- 4) $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

Proof. We first prove that 1) \Longrightarrow 2). If p = 2, take a = 1. If p = 4k + 1 for some $k \in \mathbb{Z}$, then by Fermat's little theorem, the polynomial $X^{p-1} - 1 \in (\mathbb{Z}/p)[X]$ has roots $1, 2, \ldots, p-1$. Write

$$(X-1)(X-2)\cdots(X-(p-1))=X^{p-1}-1=X^{4k}-1=(X^{2k}+1)(X^{2k}-1)$$

in $(\mathbb{Z}/p)[X]$. Since p is prime, \mathbb{Z}/p is a field and hence $(\mathbb{Z}/p)[X]$ is a unique factorization domain (because it is euclidean). Thus there exists $\alpha \in \mathbb{Z}/p$ such that $\alpha^{2k} + 1 = 0$. To finish the proof take $a = \alpha^k$.

We now prove that $2) \Longrightarrow 3$). If $a^2 \equiv -1 \mod p$, then $a^2 + 1 = kp$ for some $k \in \mathbb{Z}$. Since $(a-i)(a+i) = a^2 + 1 = kp$, then p divides (a-i)(a+i). Let us prove that p is not prime in $\mathbb{Z}[i]$. We claim that p does not divide a-i in $\mathbb{Z}[i]$. Indeed, if $p \mid a-i$, then a-i=p(e+fi) for some $e, f \in \mathbb{Z}$ and this implies that 1=pf, a contradiction. Similarly, p does not divide a+i. Thus p is not prime in $\mathbb{Z}[i]$ and hence it is not irreducible in $\mathbb{Z}[i]$ (because in $\mathbb{Z}[i]$ primes and irreducible coincide).

We now prove that 3) \Longrightarrow 4). If p = (a+bi)(c+di) with $a+bi \notin \mathcal{U}(\mathbb{Z}[i])$ and $c+di \notin \mathcal{U}(\mathbb{Z}[i])$, then

$$p^2 = N(p) = N(a+bi)N(c+di) = (a^2+b^2)(c^2+d^2)$$

in \mathbb{Z} . Since \mathbb{Z} has unique factorization, it follows that $p = a^2 + b^2$.

Finally we prove that 4) \Longrightarrow 1). The only possible remainders after division by four are 0, 1, 2 and 3. For all a, either $a^2 \equiv 0 \mod 4$ or $a^2 \equiv 1 \mod 4$. If $p \equiv 3 \mod 4$, then p is never a sum of two squares, as $a^2 + b^2 \equiv 0 \mod 4$, $a^2 + b^2 \equiv 1 \mod 4$ or $a^2 + b^2 \equiv 2 \mod 4$.

xca:Z[i]irreducibles

Exercise 5.39. Find the irreducible elements of $\mathbb{Z}[i]$.

§6. Zorn's lemma

Definition 6.1. A non-empty set R is said to be a **partially ordered set** (or poset, for short) if there is a subset $X \subseteq R \times R$ such that

- 1) $(r,r) \in X$ for all $r \in R$,
- 2) if $(r,s) \in X$ and $(s,t) \in X$, then $(r,t) \in X$, and
- 3) if $(r, s) \in X$ and $(s, r) \in X$, then r = s.

The set *X* is a partial order relation on *R*. We will use the following notation: $(r,s) \in X$ if and only if $r \le s$. Moreover, r < s if and only if $r \le s$ and $r \ne s$.

Definition 6.2. Let R be a poset and $r, s \in R$. Then r and s are **comparable** if either r < s or s < r.

Example 6.3. Let $U = \{1, 2, 3, 4, 5\}$ and T be the set of subsets of U. Then T is a poset with the usual inclusion, that is $C \le D$ if and only if $C \subseteq D$. The subsets $\{1, 2\}$ and $\{3, 4\}$ of U are elements of T that are not comparable.

Definition 6.4. Let R be a poset and $r \in R$. Then r is **maximal** in R if $r \le t$ implies r = t.

Example 6.5. \mathbb{Z} has no maximal elements.

Example 6.6. Let $R = \{(x, y) \in \mathbb{R}^2 : y \le 0\}$ with $(x_1, y_1) \le (x_2, y_2)$ if and only if $x_1 = x_2$ and $y_1 \le y_2$. Then R is a poset and each (x, 0) is maximal. Thus R has infinitely many maximal elements.

Definition 6.7. Let R be a poset and S be a non-empty subset of R. An **upper bound** for S is an element $u \in R$ such that $s \le u$ for all $s \in S$.

Example 6.8. Let $S = \{6\mathbb{Z}, 12\mathbb{Z}, 24\mathbb{Z}\}$ be a subset of the set of subgroups of \mathbb{Z} partially ordered by the inclusion. Then $6\mathbb{Z} = 6\mathbb{Z} \cup 12\mathbb{Z} \cup 24\mathbb{Z}$ is an upper bound of the subset S.

Definition 6.9. Let *R* be a poset. A **chain** is a non-empty subset *S* of *R* such that any two elements of *S* are comparable.

We now state Zorn's lemma:

Let *R* be a poset such that every chain in *R* admits an upper bound in *R*. Then *R* contains a maximal element.

It is not intuitive, but it is logically equivalent to a more intuitively statement in set theory, the Axiom of Choice, which says every Cartesian product of non-empty sets is non-empty. It is more an axiom than a lemma. The reason for calling Zorn's lemma a lemma rather than an axiom is purely historical.

Definition 6.10. Let R be a ring. An ideal I of R is said to be **maximal** if $I \neq R$ and if J is an ideal of R such that $I \subseteq J$, then either I = J or J = R.

If p is a prime number, then $p\mathbb{Z}$ is a maximal ideal of \mathbb{Z} .

Exercise 6.11. Let R be a commutative ring. Prove that R is a field if and only if $\{0\}$ is a maximal ideal of R.

Exercise 6.12. Let R be a commutative ring and I be an ideal of R. Prove that I is maximal if and only if R/I is a field.

The following application of Zorn's lemma uses the identity of a ring.

Theorem 6.13 (Krull). Let R be a ring. Each proper ideal I of R is contained in a maximal ideal. In particular, all rings have maximal ideals.

Proof. Let $X = \{J : J \text{ is an ideal of } R \text{ such that } I \subseteq J \subseteq R\}$. Since $I \in X$, it follows that X is non-empty. Moreover, X is a poset with respect to the inclusion. If C is a chain in X (say for example an increasing sequence

$$I_1 \subseteq I_2 \subseteq \cdots$$

of proper ideals of R containing I), then $\cup_{J \in C} J$ is an upper bound for C, as $\cup_{J \in C} J$ is an ideal and $\cup_{J \in C} J \neq R$ because $1 \notin \cup_{J \in C} J$. Zorn's lemma implies that there exists a maximal element $M \in X$. We claim that M is a maximal ideal of R. The definition of X implies that M is a proper ideal of R that contains I. If M_1 is a proper ideal of R such that $M \subseteq M_1$, it follows that $I \subseteq M_1$ and hence $M_1 \in X$. The maximality of M implies that $M = M_1$.

In the proof of previous theorem it is crucial to consider rings with identity.

Exercise 6.14. Compute the maximal ideals of $\mathbb{R}[X]$ and $\mathbb{C}[X]$.

One can also compute the maximal ideals of K[X] for any field K.

Exercise 6.15. Let *R* be a principal domain and $p \in R \setminus \{0\}$. Then *p* is irreducible if and only if (p) is maximal.

Example 6.16. The ideal $(X^2 + 2X + 2)$ is maximal in $\mathbb{Q}[X]$ because

$$X^2 + 2X + 2 = (X+1)^2 + 1$$

has degree two and no rational roots. Hence $X^2 + 2X + 2$ is irreducible in $\mathbb{Q}[X]$ and it generates a maximal ideal.

Example 6.17. Let $R = (\mathbb{Z}/2)[X]$ and $f(X) = X^2 + X + 1$. Since f(X) is irreducible (because deg f(X) = 2 and f(X) has no roots in $\mathbb{Z}/2$, it follows that (f(X)) is a maximal ideal. Thus R/I is a field.

Exercise 6.18. Compute the maximal ideals of \mathbb{Z}/n .

xca:Jacobson

Exercise 6.19. Let R be a commutative ring and J(R) be the intersection of all maximal ideals of R. Prove that $x \in J(R)$ if and only if $1 - xy \in \mathcal{U}(R)$ for all $y \in R$. The ideal J(R) is proper and it is known as the **Jacobson's radical** of R.

We conclude the lecture with a different application of Zorn's lemma.

Exercise 6.20. Prove that every non-zero vector space has a basis.

The previous exercise can be used to solve the following exercises:

xca:extend

Exercise 6.21. Every linearly independent subset of a non-zero vector space V can be extended to a basis of V.

Exercise 6.22. Let V be a vector space. Prove that every subspace U of V is a direct summand of V, that is $V = U \oplus W$ for some subspace W of V.

Exercise 6.23. Prove that every spanning set of a non-zero vector space contains a basis.

xca:fx=cx

Exercise 6.24. Prove that there exists a group homomorphism $f: \mathbb{R} \to \mathbb{R}$ that is not of the form $f(x) = \lambda x$ for some $\lambda \in \mathbb{R}$.

xca:Rn=R

Exercise 6.25. Prove that the abelian groups \mathbb{R}^n and \mathbb{R} are isomorphic.

xca:aut

Exercise 6.26. Prove that if G is a group such that |G| > 2, then $|\operatorname{Aut}(G)| > 1$.

§7. The characteristic of a ring

Definition 7.1. Let R be a ring. If there is a least positive integer n such that nx = 0 for all $x \in R$, then R has **characteristic** n, i.e. char R = n. If no such n exists, then R is of characteristic zero.

Easy examples: $\operatorname{char} \mathbb{Z} = 0$ and $\operatorname{char} \mathbb{Z}/n = n$.

Proposition 7.2. Let R be a ring such that char R = n > 0,

- 1) The map $f: \mathbb{Z} \to R$, $m \mapsto m1$, is a ring homomorphism and $\ker f = n\mathbb{Z}$.
- 2) $n = \min\{k \in \mathbb{Z}_{>0} : k1 = 0\}.$
- 3) If R is a domain, then n is a prime number.

Proof. We leave 1) as an exercise.

Let us prove 2). Let $n_1 = \min\{k \in \mathbb{Z}_{>0} : k1 = 0\}$. Clearly $n \ge n_1$. For $x \in R$, $n_1x = n_1(1x) = (n_11)x = 0x = 0$ and hence $n_1 \ge n$.

Finally we prove 3). If n is not prime, say n = rs with 1 < r, s < n. Then

$$0 = n1 = (rs)1 = (r1)(s1)$$

and hence r1 = 0 or s1 = 0, a contradiction.

xca:freshman_dream

Exercise 7.3. Let R be a commutative ring of prime characteristic p.

- 1) If $x, y \in R$, then $(x + y)^{p^n} = x^{p^n} + y^{p^n}$ for all $n \ge 0$.
- 2) The map $R \to R$, $x \mapsto x^{p^n}$, is a ring homomorphism for all $n \ge 0$.

§8. Group algebras

We now discuss an important family of examples. Fix a field K. For a finite group G let K[G] be the vector space (over K) with basis $\{g:g\in G\}$. Then K[G] is a ring with

$$\left(\sum_{g \in G} \lambda_g g\right) \left(\sum_{h \in G} \mu_h h\right) = \sum_{g,h \in G} \lambda_g \mu_h(gh).$$

Thus K[G] is a ring and also a vector space (over K) and these structures are somewhat compatible. Note that

$$(\lambda a + \mu b = c = \lambda(ac) + \mu(bc), \quad a(\lambda b + \mu c) = \lambda(ab) + \mu(ac)$$

for all $\lambda, \mu \in K$ and $a, b, c \in K[G]$.

Definition 8.1. Let *A* be a ring. Then *A* is an algebra (over the field *K*) if *A* is a vector space (over *K*) such that $\lambda(ab) = (\lambda a)b = a(\lambda b)$ for all $\lambda \in K$ and $a, b \in A$.

Other examples of algebras are polynomial rings K[X] and K[X,Y] and matrix rings $M_n(K)$.

Example 8.2. If A is an algebra, then $M_n(A)$ is an algebra.

The ring K[G] is commutative if and only if G is abelian. Moreover, K[G] is a vector space of dimension dim K[G] = |G|.

Example 8.3. Let $G = \langle g : g^3 = 1 \rangle = \{1, g, g^2\} \simeq C_3$ be the cyclic group of order three. If $\alpha = a_1 1 + 2g + a_3 g^2$ and $\beta = b_1 1 + b_2 g + b_3 g^2$, then

$$\alpha\beta = (a_1b_1 + a_2b_3 + a_3b_2)1 + (a_1b_2 + a_2b_1 + a_3b_3)g + a_1b_3 + a_2b_2 + a_3b_1)g^2.$$

One can check that $\mathbb{C}[G] \simeq \mathbb{C}[X]/(X^3 - 1)$.

In general, one proves that the group algebra of C_n , the cyclic group of order $n \ge 2$, is isomorphic to $\mathbb{C}[X]/(X^n-1)$.

xca:RC3

Exercise 8.4. Prove that $\mathbb{R}[C_3] \simeq \mathbb{R} \times \mathbb{C}$.

Exercise 8.5. Let $G = \{1, g\} \simeq C_2$ be the cyclic group of order two. The product of $\mathbb{C}[G]$ is

$$(a1+bg)(c1+gd) = (ac+bd)1+(ad+bc)g.$$

Prove that the map $\mathbb{C}[G] \to \mathbb{C} \times \mathbb{C}$, $a1 + bg \mapsto (a + b, a - b)$, is a linear isomorphism of rings.

Exercise 8.6. Let $K = \mathbb{Z}/2$ and $G = \{1, g\} \simeq C_2$ be the cyclic group of order two. Prove that the map $K[G] \to \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}$, $a1 + bg \mapsto \begin{pmatrix} a+b & b \\ 0 & a+b \end{pmatrix}$, is a linear isomorphism of rings.

The group ring has the following property, which is left as an exercise. Let A be an algebra and G be a finite group. If $f: G \to \mathcal{U}(A)$ is a group homomorphism, then there exists a unique algebra homomorphism $\varphi: K[G] \to A$ such that $\varphi|_G = f$.

Example 8.7. Let $\mathbb{D}_3 = \langle r, s : r^3 = s^2 = 1, srs^{-1} = r^{-1} \rangle$ be the dihedral group of six elements. We claim that

$$\mathbb{C}[\mathbb{D}_3] \simeq \mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C}).$$

Let ω be a primitive root of one. Let

$$R = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

One easily checks that $SRS^{-1} = R^{-1}$ and $R^3 = S^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. It follows that there exists a group homomorphism $G \to \mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C})$ such that $r \mapsto (1, 1, R)$ and $s \mapsto (1, -1, S)$. This group homomorphism is a ring isomorphism.

Lecture 6

§9. Group representations

We will spend four lectures studying the basics on complex representations of finite groups. The topics to cover are: 1) Basic definitions and examples, 2) characters, 3) Schur's orthogonality relations and applications.

Definition 9.1. A **representation** (over the field K) of a group G is a group homomorphism $\rho: G \to \mathbf{GL}(V), g \mapsto \rho_g$, for some vector space V (over K).

The **degree** of the representation $\rho: G \to \mathbf{GL}(V)$ will be the dimension of V. Note that if V is finite-dimensional, say $\dim V = n$, fixing a basis of V we get a **matrix representation** $\rho: G \to \mathbf{GL}(V) \simeq \mathbf{GL}_n(K)$ of G. Depending on the context we will use either representations on vector spaces or matrix representations.

Example 9.2. We use group representations to show that $G = \langle x, y : x^2 = y^2 = 1 \rangle$ is infinite. Note that

$$\rho: G \to \mathbf{GL}_2(\mathbb{C}), \quad x \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad y \mapsto \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

is a group homomorphism, as $\rho_x^2 = \rho_y^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We claim that the elements of the form $(xy)^n$ are different for all n. It is enough to show that $(xy)^n = (xy)^m$, then n = m. Note that

$$\rho_{xy} = \rho_x \rho_y = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Thus
$$\rho_{xy}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$
 and $\rho_{xy}^m = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$. Then

$$(xy)^n = (xy)^m \implies \rho_{xy}^n = \rho_{xy}^m \implies n = m.$$

The previous example shows the power of group representations, even for infinite groups. However, in this course we will work with complex finite-dimensional representations of finite groups.

Example 9.3. If G is a group, then $\rho: G \to \mathbb{C}^{\times}$, $g \mapsto 1$, is a representation. This representation is known as the **trivial representation** of G.

Example 9.4. The sign yields a representation of \mathbb{S}_n . It is the group homomorphism $\mathbb{S}_n \to \mathbb{C}^{\times}$, $\sigma \mapsto \text{sign}(\sigma)$.

Example 9.5. Let $G = \langle g : g^6 = 1 \rangle$ be the cyclic group of order six. Then

$$\rho: G \to \mathbf{GL}_2(\mathbb{C}), \quad g \mapsto \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$$

is a group representation of degree two.

Definition 9.6. Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be representations of a finite group G. A linear map $T: V \to W$ is said to be invariant if the diagram

$$V \xrightarrow{\rho_g} V \\ \downarrow T \\ \downarrow T \\ W \xrightarrow{\psi_g} W$$

commutes, i.e. $\psi_g T = T \rho_g$ for all $g \in G$.

It is convenient to introduce an alternative notation for group representations. Let $\rho: G \to \mathbf{GL}(V), g \mapsto \rho_g$, be a representation. For $g \in G$ and $v \in V$ write $g \cdot v = \rho_g(v)$. Then the following properties hold:

- 1) $1 \cdot v = v$ for all $v \in V$,
- 2) $g \cdot (h \cdot v) = (gh) \cdot v$ for all $g, h \in G$ and $v \in V$,
- 3) $g \cdot (v + w) = g \cdot v + g \cdot w$ for all $g \in G$ and $v, w \in V$, and
- **4)** $g \cdot (\lambda v) = \lambda(g \cdot v)$ for all $g \in G$, $\lambda \in \mathbb{C}$ and $v \in V$.

Using this notation for the representations $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$, a linear map $T: V \to W$ is invariant if and only if

$$T(g \cdot v) = g \cdot T(v)$$

for all $v \in V$ and $g \in G$. Note that altough we use the same notation for different representations there is no risk of confusion.

Definition 9.7. The representations $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ are **equivalent** if there exists a bijective map $T: V \to W$ invariant with respect to ρ and ψ .

Now we can understand why we can alternatively use representations or matrix representations.

xca:change_of_basis

Example 9.8. Let $\rho: G \to GL(V)$ be a representation, say of degree $n = \dim V$. Choose a basis $B = \{v_1, \dots, v_n\}$ of V and let

$$T: V \to \mathbb{C}^n, \quad \sum_{i=1}^n \lambda_i v_i \mapsto (\lambda_1, \dots, \lambda_n)$$

the isomorphism that takes coordinates with respect to the basis B. Then

$$\psi \colon G \to \mathbf{GL}(\mathbb{C}^n), \quad g \mapsto T\rho T^{-1},$$

is a representation of G equivalent to ρ .

Example 9.9. Let $G = \mathbb{Z}/n$. The representations

$$\rho \colon G \to \mathbf{GL}_2(\mathbb{C}), \quad m \mapsto \begin{pmatrix} \cos(2\pi m/n) - \sin(2\pi m/n) \\ \sin(2\pi m/n) & \cos(2\pi m/n) \end{pmatrix}$$

and

$$\psi: G \to \mathbf{GL}_2(\mathbb{C}), \quad m \mapsto \begin{pmatrix} e^{2\pi i m/n} & 0 \\ 0 & e^{-2\pi i m/n} \end{pmatrix}$$

are equivalent, as $\rho_m T = T \psi_m$ for all $m \in G$ if $T = \begin{pmatrix} i & -i \\ 1 & 1 \end{pmatrix}$.

Definition 9.10. Let $\rho: G \to \mathbf{GL}(V)$ a representation. A subspace W of V is said to be **invariant** (with respect to ρ) if $\rho_g(W) \subseteq W$ for all $g \in G$.

If $\rho: G \to \mathbf{GL}(V)$ is a representation and $W \subseteq V$ is invariant, then the map $\rho|_W: G \to \mathbf{GL}(W), g \mapsto (\rho_g)|_W$, is a representation. The map $\rho|_W$ is the **restriction** of ρ to W.

Example 9.11. If $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ are representations and $T: V \to W$ is an invariant map, then the **kernel**

$$\ker T = \{ v \in V : T(v) = 0 \}$$

is an invariant of V and the **image**

$$T(V) = \{T(v) : v \in V\}$$

is an invariant subspace of W.

Definition 9.12. Let $\rho \colon G \to \mathbf{GL}(V)$ a representation. A **subrepresentation** of ρ is a restricted representation of the form $\rho|_W \colon G \to \mathbf{GL}(W)$ for some invariant subspace W of V.

Definition 9.13. A representation $\rho: G \to \mathbf{GL}(V)$ is **irreducible** if $\{0\}$ and V are the only invariant subspaces of V.

Degree-one representations are irreducible.

The irreducibility of a representation, of course, depends on the base field. In the following example it is crucial using real representations.

Example 9.14. Let $G = \langle g : g^3 = 1 \rangle$ be the cyclic group of order three and

$$\rho\colon G\to \mathbf{GL}_3(\mathbb{R}), \quad g\mapsto \begin{pmatrix} 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \\ 1 \ 0 \ 0 \end{pmatrix}.$$

Note that in this example we work with a real representation! It is a routine calculation to prove that

$$W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y + z = 0 \right\}$$

is an invariant subspace of \mathbb{R}^3 . We claim that W is irreducible. Let S be a non-zero

invariant subspace of W and let $s = \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \in S$ be a non-zero element. Then

$$t = \begin{pmatrix} y_0 \\ z_0 \\ x_0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix} \in S.$$

We claim that $\{s,t\}$ are linearly independent. If not, there exists $\lambda \in \mathbb{R}$ such that $\lambda s = t$. Thus $\lambda x_0 = y_0$, $\lambda y_0 = z_0$ and $\lambda z_0 = x_0$. This implies that $\lambda^3 x_0 = x_0$. Since $x_0 \neq 0$ (because if $x_0 = 0$, then $y_0 = z_0 = 0$, a contradiction), it follows that $\lambda = 1$ and hence $x_0 = y_0 = z_0$, a contradiction because $x_0 + y_0 + z_0 = 0$. Therefore dim S = 2 and hence S = W.

What happens in the previous example if we work over the complex numbers?

Exercise 9.15. Let $\rho: G \to \mathbf{GL}(V)$ be a degree-two representation. Prove that ρ is irreducible if and only if there is no common eigenvector for the ρ_g , $g \in G$.

The previous exercise can be used to show that the representation $\mathbb{S}_3 \to GL_2(\mathbb{C})$ of the symmetric group \mathbb{S}_3 given by

$$(12) \mapsto \begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix}, \quad (123) \mapsto \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$$

is irreducible.

Example 9.16. Let $\rho: G \to \mathbf{GL}_n(\mathbb{C})$ and $\psi: G \to \mathbf{GL}_m(\mathbb{C})$ be representations. One defines the **direct sum** $\rho \oplus \psi$ of ρ and ψ as

$$\rho \oplus \psi \colon G \to \mathbf{GL}_{n+m}(\mathbb{C}), \quad g \mapsto \begin{pmatrix} \rho_g & 0 \\ 0 & \psi_g \end{pmatrix}$$

Let us describe the previous example without using matrix representations. If V and W are complex vector spaces, the (external) direct sum of V and W is defined as the set $V \times W$ with the complex vector space structure given by

$$(v, w) + (v_1, w_1) = (v + v_1, w + w_1), \quad \lambda(v, w) = (\lambda v, \lambda w)$$

for all $v, v_1 \in V$, $w, w_1 \in W$ and $\lambda \in \mathbb{C}$. If $\rho : G \to \mathbf{GL}(V)$ and $\psi : G \to \mathbf{GL}(W)$ are representations, the **direct sum** $\rho \oplus \psi$ of ρ and ψ is then

$$\rho \oplus \psi : G \to \mathbf{GL}(V \oplus W), \quad g \mapsto (\rho \oplus \psi)_g$$

where $(\rho \oplus \psi)_g : V \oplus W \to V \oplus W$, $(v, w) \mapsto (\rho_g(v), \psi_g(w))$. Note that $V \simeq V \oplus \{0\}$ and $W \simeq \{0\} \oplus W$ are invariant subspaces of $V \oplus W$.

Definition 9.17. A representation $\rho: G \to \mathbf{GL}(V)$ is said to be **completely reducible** if ρ can be decomposed as $\rho = \rho_1 \oplus \cdots \oplus \rho_n$ for some irreducible representations ρ_1, \ldots, ρ_n of G.

Note that if $\rho: G \to \mathbf{GL}(V)$ is completely reducible and $\rho = \rho_1 \oplus \cdots \oplus \rho_n$ for some irreducible representations $\rho_i: G \to \mathbf{GL}(V_i), i \in \{1, \dots, n\}$, then each V_i is an invariant subspace of V and $V = V_1 \oplus \cdots V_n$. Moreover, in some basis of V the matrix ρ_g can be written as

$$\rho_g = \begin{pmatrix} (\rho_1)_g & & \\ & (\rho_2)_g & \\ & & \ddots \\ & & (\rho_n)_g \end{pmatrix}.$$

Definition 9.18. A representation $\rho: G \to \mathbf{GL}(V)$ is **decomposable** if V can be decomposed as $V = S \otimes T$ where S and T are non-zero invariant subspaces of V.

A representation is **indecomposable** if it is not decomposable.

xca:equivalence

Exercise 9.19. Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be equivalent representations. Prove the following facts:

- 1) If ρ is irreducible, then ψ is irreducible.
- **2)** If ρ is decomposable, then ψ is decomposable.
- 3) If ρ is completely reducible, then ψ is compeltely reducible.

Since we are considering finite-dimensional vector spaces, our vector spaces are Hilbert spaces, so they have an inner product $V \times V \to \mathbb{C}$, $(v, w) \mapsto \langle v, w \rangle$.

Definition 9.20. A representation $\rho: G \to \mathbf{GL}(V)$ is **unitary** if $\langle \rho_g v, \rho_g w \rangle = \langle v, w \rangle$ for all $g \in G$ and $v, w \in V$.

Example 9.21. Let G be a finite group and $V = \mathbb{C}[G]$. The **left regular representation** of G is the representation

$$L: G \to \mathbf{GL}(V), \quad g \mapsto L_g,$$

where $L_g(h) = gh$. With the inner product

$$\left\langle \sum_{g \in G} \lambda_g g, \sum_{g \in G} \mu_g g \right\rangle = \sum_{g \in G} \lambda_g \overline{\mu_g}$$

the representation L is unitary.

If V is a vector space and W is a subspace of V,

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ for all } w \in W \}.$$

is called the **orthogonal complement** of W. The following result is extremely important:

pro:irr_or_dec

rho_diagonalizable

Proposition 9.22. Let $\rho: G \to \mathbf{GL}(V)$ be a unitary representation. Then ρ is either irreducible or decomposable.

Proof. If ρ is not irreducible, there exists an invariant subspace W of V such that $\{0\} \subseteq W \subseteq V$. Then $V = W \oplus W^{\perp}$ as complex vector spaces, where $W^{\perp} \neq \{0\}$. So ρ will be decomposable if we can prove that W^{\perp} is an invariant subspace of V. Let $v \in W^{\perp}$, $w \in W$ and $g \in G$. Then

$$\langle \rho_g(v), w \rangle = \langle v, \rho_g^{-1}(w) \rangle = 0$$

since $\rho_g^{-1}(w) \in W$, as W is an invariant subspace of V. This means that $\rho_g(v) \in W^{\perp}$ and hence $V = W \oplus W^{\perp}$ is decomposable.

Theorem 9.23 (Weyl's trick). Every representation $\rho: G \to GL_n(\mathbb{C})$ of a finite group is unitary.

Proof. Let $V = \mathbb{C}^n$ and $V \times V \to \mathbb{C}$, $(v, w) \mapsto \langle v, w \rangle_0$, be an inner product on V. A straighforward calculation shows that

$$\langle v, w \rangle = \sum_{g \in G} \langle \rho_g v, \rho_g w \rangle_0$$

is an inner product of V. Since

$$\begin{split} \langle \rho_g v, \rho_g w \rangle &= \sum_{h \in G} \langle \rho_h \rho_g v, \rho_h \rho_g w \rangle_0 \\ &= \sum_{h \in G} \langle \rho_{hg} v, \rho_{hg} w \rangle_0 = \sum_{x \in G} \langle \rho_x v, \rho_x w \rangle_0 = \langle v, w \rangle, \end{split}$$

the representation ρ is unitary.

Weyl's trick has several interesting consequences:

Corollary 9.24. Let $\rho: G \to \mathbf{GL}(V)$ be a representation of a finite group G. The following properties hold:

§9 Group representations

- 1) ρ is equivalent to a unitary representation.
- 2) ρ is either irreducible or decomposable.
- *3)* Each ρ_g is diagonalizable.

Proof. The first claim follows from Example 9.8 and Weyl's trick. The second claim, from 1) and Proposition 9.22. Finally 3) follows immediately from Weyl's trick, as unitary matrices are diagonalizable. □

Exercise 9.25. If G is an infinite group it is not longer true that every non-zero representation is either irreducible or decomposable. Find an example.

Lecture 7

Recall that, by convention, we only consider complex finite-dimensional representations of finite groups.

Theorem 9.26 (Maschke). Every representation of a finite group is completely reducible.

Proof. Let G be a finite group and $\rho: G \to \mathbf{GL}(V)$ be a representation of G. We proceed by induction on $\dim V$. If $\dim V = 1$, the result is trivial, as degree-one representations are irreducible. Assume that the result holds for representations of degree $\leq n$. Suppose that ρ has degree n+1. If ρ is irreducible, we are done. If not, write $V = S \oplus T$, where S and T are non-zero invariant subspaces of V. Since $\dim S < \dim V$ and $\dim T < \dim V$, it follows from the inductive hypothesis that both S and T are spaces of completely reducible representations. Thus ρ is completely reducible.

Example 9.27. Let $G = \mathbb{S}_3$ and $\rho : G \to \mathbf{GL}_3(\mathbb{C})$ be the representation given by

$$(12) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (123) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Then ρ_g is unitary for all $g \in G$ (because $\rho_{(12)}$ and $\rho_{(123)}$ are both unitary). Moreover,

$$S = \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right), \quad T = S^{\perp} = \left(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right),$$

are irreducible invariant subspaces of $V = \mathbb{C}^3$. A direct calculation shows that in the orthogonal basis $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix} \right\}$ the matrices $\rho_{(12)}$ and $\rho_{(123)}$ can be written as

$$\rho_{(12)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \rho_{(123)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}.$$

Exercise 9.28. Let G be a finite group. Prove that there is a bijection between degree-one representations of G and degree-one representations of G/[G,G].

The following result is simple and crucial.

Lemma 9.29 (Schur). Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be irreducible representations. If $T: V \to W$ is a non-zero invariant map, then T is bijective.

Proof. Since T is non-zero and ker T is an invariant subspace of V, it follows that $\ker T = \{0\}$, as ρ is irreducible. Thus T is injective. Since T(V) is a non-zero invariant subspace of W, it follows from the fact that ψ is irreducible that T is surjective. Therefore T is bijective.

Two applications:

Proposition 9.30. *If* $\rho: G \to \mathbf{GL}(V)$ *is an irreducible representation and* $T: V \to V$ *is invariant, then* $T = \lambda$ id *for some* $\lambda \in \mathbb{C}$.

Proof. Let λ be an eigenvector of T. Then $T - \lambda$ id is invariant, as

$$(T - \lambda \operatorname{id})\rho_g = T\rho_g - \lambda \rho_g = \rho_g (T - \lambda \operatorname{id})$$

for all $g \in G$ since T is invariant. By definition, $T - \lambda id$ is not bijective. Thus $T - \lambda id = 0$ by Schur's lemma.

Proposition 9.31. *Let* G *be a finite abelian group. If* $\rho: G \to \mathbf{GL}(V)$ *is an irreducible representation, then* $\dim V = 1$.

Proof. Let $h \in G$. Note that since G is abelian, $T = \rho_h$ is invariant:

$$T\rho_g = \rho_h \rho_g = \rho_{hg} = \rho_{gh} = \rho_g \rho_h = \rho_g T.$$

By the previous proposition, there exists $\lambda_h \in \mathbb{C}$ such that $\rho_h = \lambda_h$ id. If $v \in V \setminus \{0\}$, then $V = \langle v \rangle$. In fact, since $\langle v \rangle$ is a non-zero invariant subspace of V and ρ is irreducible, it follows that $V = \langle v \rangle$.

§10. Characters

This lecture is devoted to study character theory. Fix a group and consider (matrix) representations of groups. How can we study those matrices? Since equivalence of representations translates into equivalence of matrices, it makes sense to use linear algebra. We can use the characteristic polynomial of the matrix,

$$A \in \mathbb{C}^{n \times n} \rightsquigarrow \chi_A(X) = a_0 + a_1 X + \dots + a_n X^n \in \mathbb{C}[X],$$

or any of the numbers $a_0, \ldots, a_n \in \mathbb{C}$, as all of them are indeed invariants of the matrix A. The determinant and the trace of A are examples of such numbers. In the context of group representations, the trace is particularly interesting.

Definition 10.1. Let $\rho: G \to GL(V)$ be a representation. The **character** of ρ is the map $\chi_{\rho}: G \to \mathbb{C}$, $g \mapsto \operatorname{trace} \rho_g$.

If a representation ρ is irreducible, its character is said to be an **irreducible** character. The **degree** of a character is the degree of the affording representation.

Proposition 10.2. Let $\rho: G \to \mathbf{GL}(V)$ be a representation, χ be its character and $g \in G$. The following statements hold:

- 1) $\chi(1) = \dim V$.
- **2)** $\chi(g) = \chi(hgh^{-1})$ for all $h \in G$.
- 3) $\chi(g)$ is the sum of $\chi(1)$ roots of one of order |g|.
- **4)** $\chi(g^{-1}) = \overline{\chi(g)}$.
- 5) $|\chi(g)| \le \chi(1)$.

Proof. The first statement is trivial. To prove 2) note that

$$\chi(hgh^{-1}) = \operatorname{trace}(\rho_{hgh^{-1}}) = \operatorname{trace}(\rho_h\rho_g\rho_h^{-1}) = \operatorname{trace}\rho_g = \chi(g).$$

Statement 3) follows from the fact that the trace of ρ_g is the sum of the eigenvalues of ρ_g and these numbers are roots of the polynomial $X^{|g|} - 1 \in \mathbb{C}[X]$. To prove 4) write $\chi(g) = \lambda_1 + \cdots + \lambda_k$, where the λ_i are roots of one. Then

$$\overline{\chi(g)} = \sum_{i=1}^{k} \overline{\lambda_{j}} = \sum_{i=1}^{k} \lambda_{j}^{-1} = \operatorname{trace}(\rho_{g}^{-1}) = \operatorname{trace}(\rho_{g^{-1}}) = \chi(g^{-1}).$$

Finally, we prove 5). Use 3) to write $\chi(g)$ as the sum of $\chi(1)$ roots of one, say $\chi(g) = \lambda_1 + \cdots + \lambda_k$ for $k = \chi(1)$. Then

$$|\chi(g)| = |\lambda_1 + \dots + \lambda_k| \le |\lambda_1| + \dots + |\lambda_k| = \underbrace{1 + \dots + 1}_{k\text{-times}} = k.$$

If two representations are equivalent, their characters are equal.

Definition 10.3. Let G be a group and $f: G \to \mathbb{C}$ be a map. Then f is a **class function** if $f(g) = f(hgh^{-1})$ for all $g, h \in G$.

Characters are class functions.

Proposition 10.4. *If* $\rho: G \to \mathbf{GL}(V)$ *and* $\psi: G \to \mathbf{GL}(W)$ *are representations, then* $\chi_{\rho \oplus \psi} = \chi_{\rho} + \chi_{\psi}$.

Proof. For $g \in G$, it follows that $(\rho \oplus \psi)_g = \begin{pmatrix} \rho_g & 0 \\ 0 & \psi_g \end{pmatrix}$. Thus

$$\chi_{\rho \oplus \psi}(g) = \operatorname{trace}((\rho \oplus \phi)_g) = \operatorname{trace}(\rho_g) + \operatorname{trace}(\psi_g) = \chi_{\rho}(g) + \chi_{\psi}(g).$$

Let *V* be a vector space with basis $\{v_1, \ldots, v_k\}$ and *W* be a vector space with basis $\{w_1, \ldots, w_l\}$. A **tensor product** of *V* and *W* is a vector space *X* with together with a bilinear map

$$V \times W \to X$$
, $(v, w) \mapsto v \otimes w$,

such that $\{v_i \otimes w_j : 1 \le i \le k, 1 \le j \le l\}$ is a basis of X. The tensor product of V and W is unique up to isomorphism and it is denoted by $V \otimes W$. Note that

$$\dim(V \otimes W) = (\dim V)(\dim W).$$

Definition 10.5. Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be representations. The **tensor product** of ρ and ψ is the representation of G given by

$$\rho \otimes \psi : G \to \mathbf{GL}(V \otimes W), \quad g \mapsto (\rho \otimes \psi)_g$$

where

$$(\rho \otimes \psi)_g(v \otimes w) = \rho_g(v) \otimes \psi_g(w)$$

for $v \in V$ and $w \in W$.

A direct calculation shows that the tensor product of representations is indeed a representation.

Proposition 10.6. *If* $\rho: G \to \mathbf{GL}(V)$ *and* $\psi: G \to \mathbf{GL}(W)$ *are representations, then*

$$\chi_{\rho\otimes\psi}=\chi_{\rho}\chi_{\psi}.$$

Proof. For each $g \in G$ the map ρ_g is diagonalizable. Let $\{v_1, \ldots, v_n\}$ be a basis of eigenvectors of ρ_g and let $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ be such that $\rho_g(v_i) = \lambda_i v_i$ for all $i \in \{1, \ldots, n\}$. Similarly, let $\{w_1, \ldots, w_m\}$ be a basis of eigenvectors of ψ_g and $\mu_1, \ldots, \mu_m \in \mathbb{C}$ be such that $\psi_g(w_j) = \mu_j w_j$ for all $j \in \{1, \ldots, m\}$. Each $v_i \otimes w_j$ is eigenvector of $\rho \otimes \psi$ with eigenvalue $\lambda_i \mu_j$, as

$$(\rho \otimes \psi)_{\varrho}(v_i \otimes w_i) = \rho_{\varrho} v_i \otimes \psi_{\varrho} w_i = \lambda_i v_i \otimes \mu_i v_i = (\lambda_i \mu_i) v_i \otimes w_i.$$

Thus $\{v_i \otimes w_j : 1 \le i \le n, 1 \le j \le m\}$ is a basis of eigenvectors and the $\lambda_i \mu_j$ are the eigenvalues of $(\rho \otimes \psi)_g$. It follows that

$$\chi_{\rho \otimes \psi}(g) = \sum_{i,j} \lambda_i \mu_j = \left(\sum_i \lambda_i\right) \left(\sum_j \mu_j\right) = \chi_{\rho}(g) \chi_{\psi}(g). \quad \Box$$

For completeness we mention without proof that it is also possible to define the dual $\rho^* : G \to \mathbf{GL}(V^*)$ of a representation $\rho : G \to \mathbf{GL}(V)$ by the formula

§11 Schur's orthogonality relations

$$(\rho_{\varrho}^* f)(v) = f(\rho_{\varrho}^{-1} v), \quad g \in G, f \in V^* \text{ and } v \in V.$$

We claim that the character of the dual representation is then $\overline{\chi_{\rho}}$. Let $\{v_1, \ldots, v_n\}$ be a basis of V and $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ be such that $\rho_g v_i = \lambda_i v_i$ for all $i \in \{1, \ldots, n\}$. If $\{f_1, \ldots, f_n\}$ is the dual basis of $\{v_1, \ldots, v_n\}$, then

$$(\rho_g^* f_i)(v_j) = f_i(\rho_g^{-1} v_j) = \overline{\lambda_j} f_i(v_j) = \overline{\lambda_j} \delta_{ij}$$

and the claim follows.

§11. Schur's orthogonality relations

Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be representations of a finite group G. Since V and W are vector spaces, the set

$$\operatorname{Hom}(V, W) = \{T : V \to W : T \text{ is linear}\}\$$

is a vector space with

$$(\lambda T)(v) = \lambda T(v)$$
 for all $\lambda \in \mathbb{C}$ and all $v \in V$,
 $(T + T_1)(v) = T(v) + T_1(v)$ for all $v \in V$.

We claim that the set $\operatorname{Hom}_G(V, W)$ of invariant maps is a subspace of $\operatorname{Hom}(V, W)$. Indeed, the zero map is clearly invariant. If $T, T_1 \in \operatorname{Hom}_G(V, W)$ and $\lambda \in \mathbb{C}$, then

$$(T+\lambda T_1)(\rho_g v) = T(\rho_g v) + \lambda T_1(\rho_g v) = \psi_g T(v) + \lambda \psi_g T_1(v) = \psi_g ((T+\lambda T_1)(v))$$

for all $v \in V$.

Proposition 11.1. Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be representations and $T: V \to W$ be a linear map. Then

$$T^{\#} = \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} T \rho_g \in \text{Hom}_G(V, W).$$

Moreover, the map $\operatorname{Hom}(V,W) \to \operatorname{Hom}_G(V,W)$, $T \mapsto T^{\#}$, is linear and surjective.

Proof. Let $h \in G$ and $v \in V$. Then

$$\begin{split} T^{\#}\rho_{h}(v) &= \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} T \rho_{g} \rho_{h}(v) = \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} T \rho_{gh}(v) \\ &= \frac{1}{|G|} \sum_{x \in G} \psi_{hx^{-1}} T \rho_{x}(v) = \frac{1}{|G|} \sum_{x \in G} \psi_{h} \psi_{x^{-1}} T \rho_{x}(v) = \psi_{h} T^{\#}(v). \end{split}$$

It is a routine calculation to show that $T \mapsto T^{\#}$ is a linear map. The map $T \mapsto T^{\#}$ is surjective since if $T \in \text{Hom}_G(V, V)$, then

$$T^{\#}(v) = \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} T \rho_g(v) = \frac{1}{|G|} \sum_{g \in G} \psi_{g^{-1}} \psi_g T(v) = T(v)$$

holds for all $v \in V$, so $T^{\#} = T$.

If $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ are non-equivalent irreducible representations and $T: V \to W$ is a linear map, then $T^\# = 0$, as $T^\# \in \mathrm{Hom}_G(V, W) = \{0\}$ by the previous proposition and Schur's lemma.

Theorem 11.2 (Ergodic theorem). Let $\rho: G \to \mathbf{GL}(V)$ be an irreducible representation. If $T: V \to V$ is linear, then $T^{\#} = (\dim V)^{-1} \operatorname{trace}(T)$ id.

Proof. The previous proposition and Schur's lemma imply that $T^{\#} = \lambda$ id for some $\lambda \in \mathbb{C}$. We now compute the trace of $T^{\#}$. On the one hand,

$$\operatorname{trace}(T^{\#}) = \operatorname{trace}(\lambda \operatorname{id}) = (\dim V)\lambda.$$

On the other hand.

$$\operatorname{trace}(T^{\#}) = \frac{1}{|G|} \sum_{g \in G} \operatorname{trace}(\rho_{g^{-1}} T \rho_g) = \frac{1}{|G|} \sum_{g \in G} \operatorname{trace}(T) = \operatorname{trace}(T),$$

as $trace(ABA^{-1}) = trace(B)$ for all A and B. Hence

$$\operatorname{trace}(T^{\#}) = (\dim V)^{-1} \operatorname{trace}(T) \operatorname{id}.$$

Lecture 8

We now prove Schur's orthogonality relations. We need some preliminary material. First recall that the matrix E_{ij} is given by

$$(E_{ij})_{kl} = \delta_{ik}\delta_{jl}, \qquad \delta_{xy} = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

If $\rho: G \to \mathbf{GL}(V) \simeq \mathbf{GL}_n(\mathbb{C})$ is a representation, then ρ_g is the matrix $(\rho_{ij}(g))$ and hence the character of ρ is given by

$$\chi_{\rho}(g) = \sum_{i=1}^{n} \rho_{ii}(g).$$

Lemma 11.3. Let $\rho: G \to \mathbf{GL}(V)$ and $\psi: G \to \mathbf{GL}(W)$ be irreducible representations. Then $(E_{ik}^{\#})_{lj} = \langle \rho_{ij}, \psi_{kl} \rangle$.

Proof. We compute

$$(E_{ki}^{\#})_{lj} = \frac{1}{|G|} \sum_{g \in G} (\psi_{g^{-1}} E_{ki} \rho_g)_{lj}$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{p,q} \psi_{lq} (g^{-1}) (E_{ki})_{qp} (\rho_{ij}(g))_{pj}$$

$$= \frac{1}{|G|} \sum_{g \in G} \psi_{lk} (g^{-1}) \rho_{ij} (g)$$

$$= \frac{1}{|G|} \sum_{g \in G} \overline{\psi_{kl}(g)} \rho_{ij} (g) = \langle \rho_{ij}, \psi_{kl} \rangle.$$

Theorem 11.4 (Schur). *Let* $\rho: G \to \mathbf{GL}(V)$ *and* $\psi: G \to \mathbf{GL}(W)$ *be irreducible representations. Then the following statements hold:*

1) $\langle \rho_{ij}, \psi_{kl} \rangle = 0$ if ρ and ψ are not equivalent.

2)
$$\langle \rho_{ij}, \rho_{kl} \rangle = \frac{1}{\dim V} \delta_{ik} \delta_{jl}$$
.

Proof. Let us prove the first claim. Since ρ and ψ are not equivalent, it follows from Schur's lemma that $\operatorname{Hom}_G(V,W)=\{0\}$. Thus $E_{ki}^\#\in\operatorname{Hom}_G(V,W)=\{0\}$ by the Ergodic theorem.

To prove the second claim, we use the previous lemma:

$$(E_{ki}^{\#})_{lj} = \langle \rho_{ij}, \psi_{kl} \rangle = \frac{1}{\dim V} (\operatorname{trace} E_{ki}) \delta_{lj} = \frac{1}{\dim V} \delta_{ki} \delta_{lj}. \qquad \Box$$

Now we can prove Schur's first orthogonality relation.

Theorem 11.5 (Schur). *Let* $\rho: G \to \mathbf{GL}(V)$ *and* $\psi: G \to \mathbf{GL}(W)$ *be irreducible representations. Then*

$$\langle \chi_{\rho}, \chi_{\psi} \rangle = \begin{cases} 1 & \text{if } \rho \simeq \psi, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. Let $n = \dim V$ and $m = \dim W$. We compute

$$\begin{split} \langle \chi_{\rho}, \chi_{\psi} \rangle &= \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) \overline{\chi_{\psi}}(g) \\ &= \sum_{l=1}^{n} \sum_{j=1}^{m} \frac{1}{|G|} \rho_{ii}(g) \overline{\psi_{jj}(g)} = \sum_{l=1}^{n} \sum_{j=1}^{m} \frac{1}{|G|} \langle \rho_{ii}, \psi_{jj} \rangle = \begin{cases} 1 & \text{if } \rho \simeq \psi, \\ 0 & \text{otherwise.} \end{cases} \Box \end{split}$$

Schur's theorem has several important corollaries.

If $\rho: G \to \mathbf{GL}(V)$ is an irreducible representation of degree n, then

$$\{\sqrt{n}\rho_{i,j}:1\leq i,j\leq n\}$$

is an orthonormal set.

Corollary 11.6. A finite group has finitely many classes of irreducible representations.

Proof. Let G be a finite group. Every isomorphism class of representations of G contains a unitary representation. Since $\dim L(G) = |G|$, it follows that G admits $\leq |G|$ equivalence classes of irreducible representations. Let $\rho_1, \ldots \rho_r$ be the representatives of the isomorphism classes of the irreducible representations of G. For each k let $n_k = \deg \rho_k$. Since the $n_1^2 + \cdots n_r^2$ maps $\sqrt{n_k}(\rho_k)_{ij}$, $1 \leq k \leq r$, $1 \leq i, j \leq n_k$, form an orthonormal set of L(G), it follows that $r \leq n_1^2 + \cdots n_r^2 \leq |G|$.

Let G be a finite group. Since G has only finitely many non-equivalent irreducible representation, we will often say that

$$\rho_1,\ldots,\rho_r$$

are *the* irreducible representations of G, where it is assumed that the ρ_i form a complete set of representatives of irreducible representations of G. For each i we write $\chi_i = \chi_{\rho_i}$. The set of irreducible characters will be denoted by

$$Irr(G) = \{\chi_1, \ldots, \chi_r\}.$$

Recall that $L(G) = \{f : G \to \mathbb{C}\}$ is a vector space with

$$(f+g)(x) = f(x) + g(x), \quad \lambda f(x) = \lambda f(x), \quad f,g \in L(G), \lambda \in \mathbb{C}, x \in G.$$

Let C(G) be the subspace of class functions. We claim that $\dim C(G) = K(G)$, the number of conjugacy classes of G. If C is a conjugacy class, then

$$\delta_C : G \to \mathbb{C}, \quad \delta_C(x) = \begin{cases} 1 & \text{if } x \in C, \\ 0 & \text{otherwise.} \end{cases}$$

is a class function. Let us prove that the set $\{\delta_C : C \text{ is a conjugacy class of } G\}$ is a basis of C(G). It is a generating set because each f can be written as

$$f = \sum_{C} f(C)\delta_{C}.$$

The δ_C are linearly independent because they are orthogonal: If C and D are conjugacy classes of G, then

$$\langle \delta_C, \delta_D \rangle = \frac{1}{|G|} \sum_{x \in G} \delta_C(x) \overline{\delta_D(x)} = \begin{cases} |C|/|G| & \text{if } C = D, \\ 0 & \text{otherwise.} \end{cases}$$

Corollary 11.7. Let G be a finite group. There are at most K(G) equivalence classes of irreducible representations of G.

Proof. Non-equivalent representations have different characters. Irreducible characters form an orthonormal set, thus they are linearly independent. Since irreducible characters are class functions, it follows that there are at most K(G) irreducible different characters.

Let $m \in \mathbb{Z}_{>0}$. If V is a vector space, we write $mV = V \oplus \cdots \oplus V$ (m-times). Similarly, if ρ is a representation, we write $m\rho = \rho \oplus \cdots \oplus \rho$ (m-times).

Theorem 11.8. Let ρ_1, \ldots, ρ_r be the irreducible representations of a finite group G. If $\rho = \sum_{i_1}^r m_j \rho_j$ where $m_1, \ldots, m_r \in \mathbb{Z}_{\geq 0}$, then $m_j = \langle \rho_\rho, \rho_j \rangle$ for all $j \in \{1, \ldots, r\}$.

Proof. Write $\chi_{\rho} = \sum_{j=1}^{r} m_j \chi_j$. Then

$$\langle \chi_{\rho}, \chi_{i} \rangle = \sum_{j=1}^{r} \langle \chi_{j}, \chi_{i} \rangle = m_{i}$$

for all $i \in \{1, ..., r\}$.

The theorem states that the decomposition of a representation ρ into irreducibles is unique and that it is determined (up to equivalence) by its character.

Corollary 11.9. A representation ρ is irreducible if and only if $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$.

Proof. We first decompose ρ as a sum of irreducibles, say $\rho = \sum_{j=1}^r m_j \rho_j$ with $m_1, \ldots, m_r \geq 0$. Then $\langle \chi_\rho, \chi_\rho \rangle = \sum_{j=1}^r m_j^2$. Now $\langle \chi_\rho, \chi_\rho \rangle = 1$ if and only if there is exactly one j such that $m_j = 1$ and $m_i = 0$ for all $i \neq j$.

Exercise 11.10. Let $\rho: H \to \mathbf{GL}(V)$ be an irreducible representation of H and $f: G \to H$ be a surjective group homomorphism. Prove that the composition $\rho \circ f: G \to \mathbf{GL}(V)$ is an irreducible representation.

Theorem 11.11. Let G be a finite group and L be its regular representation. Then $L = \sum_{j=1}^{r} n_j \rho_j$, where $n_j = \deg \rho_j$.

Proof. Let $G = \{g_1, \dots, g_n\}$, n = |G|. If $g \in G$, since $L_g(g_i) = gg_i$ for all i, the matrix of L_g in the basis $\{g_1, \dots, g_n\}$ is then

$$(L_g)_{ij} = \begin{cases} 1 & \text{if } g_i = gg_j, \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$\chi_L(g) = \operatorname{trace}(L_g) = \sum_{i=1}^r (L_g)_{ii} = \begin{cases} |G| & \text{if } g = 1, \\ 0 & \text{otherwise.} \end{cases}$$

In particular,

$$\langle \chi_L, \chi_i \rangle = \frac{1}{|G|} \sum_{g \in G} \chi_L(g) \overline{\chi_i(g)} = \frac{1}{|G|} |G| \overline{\chi_i(1)} = n_i$$

for all
$$i \in \{1, ..., n\}$$
.

Now several corollaries.

Corollary 11.12. *Let* G *be a finite group and* ρ_1, \ldots, ρ_r *be the irreducible representations of* G. *For each* k *let* $n_k = \deg \rho_k$. *The following statements hold:*

- 1) $|G| = n_1^2 + \cdots + n_r^2$.
- 2) $\{\sqrt{n_k}(\rho_k)_{ij}: 1 \le k \le r, 1 \le i, j \le n_k\}$ is an orthonormal basis of L(G).
- 3) r is equal to the number of conjugacy classes of G.

Proof. Since $\chi_L = \sum_{j=1}^r n_j \chi_j$, the first claim follows. The second claim follows from the orthogonality relations. Let us prove the third claim. Let $f \in C(G)$ and write f as a linear combination of the $(\rho_k)_{ij}$, say

$$f = \sum_{i,j,k} \lambda_{ijk}(\rho_k)_{ij}, \quad \lambda_{ijk} \in \mathbb{C}.$$

§12 Examples

If $x \in G$, then

$$f(x) = \frac{1}{|G|} \sum_{g \in G} f(g^{-1}xg)$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{i,i,k} \lambda_{ijk}(\rho_k)_{ij}(g^{-1}xg) = \sum_{i,i,k} \lambda_{ijk} \frac{1}{|G|} \sum_{g \in G} (\rho_k)_{ij}(g^{-1}xg).$$

Let $T = (\rho_k)_x : V \to V$. Then

$$T^{\#} = \frac{1}{|G|} \sum_{g \in G} (\rho_k)_{g^{-1}} (\rho_k)_x (\rho_k)_g = \frac{1}{|G|} \sum_{g \in G} (\rho_k) (g^{-1}xg) = \frac{1}{\dim V} \chi_k(x) \operatorname{id}$$

by the Ergodic theorem and because ρ_k is a group homomorphism. Thus

$$f(x) = \sum_{i,j,k} \lambda_{ijk} ((\rho_k)_x)_{ij} = \sum_{i,j,k} \lambda_{ijk} \frac{1}{\dim V} \chi_k(x) \delta_{ij} = \sum_{i,k} \lambda_{ijk} \frac{1}{n_k} \chi_k(x). \quad \Box$$

This implies that $\dim C(G) \leq r$ and the claim follows.

In the following exercise, the reader is asked to provide a proof of the second Schur's orthogonality relation.

Exercise 11.13. Let G be a finite group and C and D be conjugacy classes of G. If $g \in C$ and $h \in D$, then

$$\sum_{\chi \in \operatorname{Irr}(G)} \chi(g) \overline{\chi(h)} = \begin{cases} |G|/|C| & \text{if } C = D, \\ 0 & \text{otherwise.} \end{cases}$$

§12. Examples

This chapter contains examples of character tables. Then we study modules over rings, submodules, module homomorphisms and finitely-generated modules.

Let G be a finite group and χ_1, \ldots, χ_r be the irreducible characters of G. Without loss of generality we may assume that χ_1 is the trivial character, i.e. $\chi_1(g) = 1$ for all $g \in G$. Recall that r is the number of conjugacy classes of G. Each χ_j is constant on conjugacy classes. The **character table** of G is given by

	1	k_2	• • •	k_r
	1	82	• • •	g_r
<i>X</i> 1	1	1	• • •	1
χ_2	n_2	$\chi_2(g_2)$	• • •	$\chi_2(g_r)$
:	:	•	٠.	:
χ_r	n_r	$\chi_r(g_2)$	• • •	$\chi_r(g_r)$

where the n_j are the degrees of the irreducible representations of G and each k_j is the size of the conjugacy class of the element g_j . By convention, the character table contains not only the values of the irreducible characters of the group.

Example 12.1. Sea $G = \langle g : g^4 = 1 \rangle$ be the cyclic group of order four. The character table of G is given by

Exercise 12.2. Let $n \in \mathbb{Z}_{>0}$ be such that $n \ge 2$. Let $C_n = \langle g : g^n = 1 \rangle$ be the cyclic group of order n.

- 1) Prove that the maps $\chi_i : C_n \to \mathbb{C}^{\times}$, $g^k \mapsto e^{2\pi i k/n}$, where $i \in \{0, 1, ..., n-1\}$, are the irreducible representations of C_n .
- 2) Let λ be a primitive root of 1 of order n. Prove that the character table of C_n of order n is given by

	1	1	1	• • •	1
	1	g	g^2	• • •	g^{n-1}
χ_1	1	1	1		1
χ_2	1	λ	λ^2	• • •	λ^{n-1}
X1 X2 X3	1	λ^2	λ^4	• • •	λ^{n-2}
:	:	:	:	٠.	:
χ_n	1	λ^{n-1}	λ^{n-2}	• • •	λ

Exercise 12.3. Let *A* and *B* be abelian groups. We write $Irr(A) = \{\rho_1, ..., \rho_r\}$ and $Irr(B) = \{\phi_1, ..., \phi_s\}$. Prove that the maps

$$\varphi_{ij}: A \times B \to \mathbb{C}^{\times}, \quad (a,b) \mapsto \rho_i(a)\phi_j(b),$$

where $i \in \{1, ..., r\}$ and $j \in \{1, ..., s\}$, are the irreducible representations of $A \times B$.

Let us show a particular example of the previous exercise.

Example 12.4. The character table of the group $C_2 \times C_2 = \{1, a, b, ab\}$ is

	1	1	1	1
	1	a	b	ab
χ_1	1	1	1	1
χ_2	1	1	-1	-1
<i>X</i> 3	1	-1	1	-1
X1 X2 X3 X4	1	-1	-1	1

§12 Examples

Clearly, the order in which the computer returns the irreducible characters is not necessarily the same we used!

Example 12.5. The symmetric group \mathbb{S}_3 has three conjugacy classes. The representatives are id, (12) and (123). There are three irreducible representations. We already found all the irreducible characters! The character table of \mathbb{S}_3 is given by

	1	3	2
	1	(12)	(123)
χ_1	1	1	1
χ_2	1	-1	1
X1 X2 X3	2	0	-1

Let us recall how this table was computed. Degree-one irreducibles were easy to compute. To compute the third row of the table one possible approach is to use the irreducible representation

$$(12) \mapsto \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}, \quad (123) \mapsto \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}.$$

Then

$$\chi_3((12)) = \operatorname{trace} \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = 0,$$

$$\chi_3((123)) = \chi_3((12)(23)) = \operatorname{trace} \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = -1.$$

We should remark that the irreducible representation mentioned is not really needed to compute the third row of the character table. We can, for example, use the regular representation L. The character of L is given by

$$\chi_L(g) = \begin{cases} 6 & \text{si } g = \text{id}, \\ 0 & \text{si } g \neq \text{id}. \end{cases}$$

The equality $0 = \chi_L((12)) = 1 - 1 + 2\chi_3((12))$ implies that $\chi_3((12)) = 0$ and the equality $0 = \chi_L((123)) = 1 + 1 + 2\chi_3((123))$ implies that $\chi_3((123)) = -1$.

Another approach uses the orthogonality relations. We need to compute $\chi_3((12))$ and $\chi_3((123))$. Let $a = \chi_3((12))$ and $b = \chi_3((123))$. Then we get that a = 0 and b = -1. We just need to solve

$$0 = \langle \chi_3, \chi_1 \rangle = \frac{1}{6} (2 + 3a + 2b),$$

$$0 = \langle \chi_3, \chi_2 \rangle = \frac{1}{6} (2 - 3a + 2b).$$

Exercise 12.6. Compute the character table of \mathbb{S}_4 .

Example 12.7. We now compute the character table of the alternating group \mathbb{A}_4 . This group has 12 elements and four conjugacy classes.

Since $[\mathbb{A}_4, \mathbb{A}_4] = \{\text{id}, (12)(34), (13)(24), (14)(23)\}, \mathbb{A}_4/[\mathbb{A}_4, \mathbb{A}_4]$ has three elements. Thus \mathbb{A}_4 has three degree-one irreducibles and an irreducible character of degree three. Let $\omega = \exp(2\pi i/3)$ be a primitive cubic root of 1. If χ is a non-trivial degree-one character, then $\chi((123)) = \omega^j$ for some $j \in \{1,2\}$ and $\chi((132)) = \omega^{2j}$. Since (132)(134) = (12)(34) and the permutations (134) and (123) are conjugate,

$$\chi_i((12)(34)) = \chi_i((132)(134)) = \chi_i((132))\chi_i((134)) = \omega^3 = 1$$

for all $i \in \{1, 2\}$.

To compute χ_4 we use the regular representation.

$$0 = \chi_L((12)(34)) = 1 + 1 + 1 + 3\chi_4((12)(34)),$$

$$0 = \chi_L((123)) = 1 + \omega + \omega^2 + 3\chi_4((123)),$$

$$0 = \chi_L((132)) = 1 + \omega + \omega^2 + 3\chi_4((132)).$$

Then we obtain that $\chi_4((123)) = \chi_4((132)) = 0$ and $\chi_4((12)(34)) = -1$. Therefore, the character table of \mathbb{A}_4 is given by

	id	(123)	(132)	(12)(34)
χ_1	1	1	1	1
χ_2	1	ω	ω^2	1
χ_3	1	ω^2	ω	1
χ_4	3	0	0	-1

Example 12.8. Let $Q_8 = \{-1, 1, i, -i, j, -j\}$ be the quaternion group. Let us compute the character table of Q_8 . The group Q_8 is generated by $\{i, j\}$ and the map $\rho: Q_8 \to \mathbf{GL}_2(\mathbb{C})$,

$$i \mapsto \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \quad j \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

is a representation. The conjugacy classes of Q_8 are $\{1\}$, $\{-1\}$, $\{-i,i\}$, $\{-j,j\}$ and $\{-k,k\}$. So there are five irreducible representations. We can compute the character of ρ :

Then ρ is irreducible, es $\langle \chi_{\rho}, \chi_{\rho} \rangle = 1$.

Since $[Q_8,Q_8]=\{-1,1\}=Z(Q_8)$, the quotient group $Q_8/[Q_8,Q_8]$ has four elements and hence there are four irreducible degree-one representations. Since Q_8 is non-abelian, $Q_8/Z(Q_8)$ cannot be cyclic. This implies that $Q_8/[Q_8,Q_8] \simeq C_2 \times C_2$. This allows us to compute almost all the character table of Q_8 .

§13 An application

	1	-1	i	j	k
χ_1	1	1	1	1	1
χ_2	1	1	-1	1	-1
<i>X</i> 3	1	1	1	-1	-1
<i>X</i> 4	1	1	-1	-1	1
X1 X2 X3 X4 X5	2	-2	0	0	0

It remains to compute $\chi_j(-1)$ for $j \in \{2,3,4\}$, these missing values are presented in shaded cells. To compute these values that $\langle \chi_i, \chi_j \rangle = 0$ whenever $i \neq j$. The calculations are left as an exercise.

Exercise 12.9. Compute the character table of the dihedral group of eight elements.

§13. An application

Let N be a normal subgroup of G and $\pi \colon G \to G/N$, $g \mapsto gN$, be the canonical map. If $\widetilde{\rho} \colon G/N \to \mathbf{GL}(V)$ is a representation of G/N with character $\widetilde{\chi}$, the composition $\rho = \widetilde{\rho} \circ \pi \colon G \to \mathbf{GL}(V)$, $\rho(g) = \widetilde{\rho}(gN)$, is a representation of G. Thus

$$\chi(g) = \operatorname{trace} \rho_g = \operatorname{trace}(\widetilde{\chi}(gN)) = \widetilde{\chi}(gN).$$

In particular, $\chi(1) = \widetilde{\chi}(1)$. The character χ is the **lifting** to G of the character $\widetilde{\chi}$ of G/N.

Proposition 13.1. *If* $\chi \in Irr(G)$ *, then*

$$\ker \chi = \{g \in G : \chi(g) = \chi(1)\}$$

is a normal subgroup of G.

Proof. Let $\rho: G \to \mathbf{GL}_n(\mathbb{C})$ be a representation with character χ . Then $\ker \rho \subseteq \ker \chi$, as $\rho_g = \mathrm{id}$ implies $\chi(g) = \mathrm{trace}(\rho_g) = n = \chi(1)$. We claim that $\ker \chi \subseteq \ker \rho$. If $g \in G$ is such that $\chi(g) = \chi(1)$, since ρ_g is diagonalizable, there exist eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ such that

$$n = \chi(1) = \chi(g) = \sum_{i=1}^{n} \lambda_i.$$

Since each λ_i is a root of one, $\lambda_1 = \cdots = \lambda_n = 1$. Hence $\rho_g = \text{id}$.

If χ is an irreducible character, the subgroup ker χ is the **kernel** of χ .

Theorem 13.2 (Correspondence theorem). *Let* N *be a normal subgroup of a finite group G. There exists a bijective correspondence*

$$Char(G/N) \longleftrightarrow \{\chi \in Char(G) : N \subseteq \ker \chi\}$$

that maps irreducible characters to irreducible characters.

Proof. If $\widetilde{\chi} \in \text{Char}(G/N)$, let χ be the lifting of $\widetilde{\chi}$ to G. If $n \in N$, then

$$\chi(n) = \widetilde{\chi}(nN) = \widetilde{\chi}(N) = \chi(1)$$

and thus $N \subseteq \ker \chi$.

If $\chi \in \operatorname{Char}(G)$ is such that $N \subseteq \ker \chi$, let $\rho \colon G \to \operatorname{GL}(V)$ be a representationn with character χ . Let $\widetilde{\rho} \colon G/N \to \operatorname{GL}(V)$, $gN \mapsto \rho(g)$. We claim that $\widetilde{\rho}$ is well-defined:

$$gN = hN \iff h^{-1}g \in N \iff \rho(h^{-1}g) = \mathrm{id} \iff \rho(h) = \rho(g).$$

Moreover, $\tilde{\rho}$ is a representation, as

$$\widetilde{\rho}((gN)(hN)) = \widetilde{\rho}(ghN) = \rho(gh) = \rho(g)\rho(h) = \widetilde{\rho}(gN)\widetilde{\rho}(hN).$$

If $\widetilde{\chi}$ is the character of $\widetilde{\rho}$, then $\widetilde{\chi}(gN) = \chi(g)$.

We now prove that χ is irreducible if and only if $\widetilde{\chi}$ is irreducible. If U is a subspace of V, then

$$U$$
 is invariant $\iff \rho(g)(U) \subseteq U$ for all $g \in U$
 $\iff \widetilde{\rho}(gN)(U) \subseteq U$ for all $g \in U$.

Thus

$$\chi$$
 is irreducible $\iff \rho$ is irreducible $\iff \widetilde{\gamma}$ is irreducible . \square

Example 13.3. Let $G = \mathbb{S}_4$ and $N = \{ \text{id}, (12)(34), (13)(24), (14)(23) \}$. We know that N is normal in G and that $G/N = \langle a, b \rangle \simeq \mathbb{S}_3$, where a = (123)N and b = (12)N. The character table of G/N is

	1	(12)N	(123)N
$\widetilde{\chi}_1$	1	1	1
$\widetilde{\chi}_2$	1	-1	1
$\widetilde{\chi}_3$	2	0	-1

For each $i \in \{1,2,3\}$ we compute the lifting χ_i to G of the character $\widetilde{\chi}_i$ of G/N. Since $(12)(34) \in N$ and $(13)(1234) = (12)(34) \in N$,

$$\chi((12)(34)) = \widetilde{\chi}(N), \quad \chi((1234)) = \widetilde{\chi}((13)N) = \widetilde{\chi}((12)N).$$

Since the characters $\tilde{\chi}_i$ are irreducibles, the liftings χ_i are also irreducibles. With this process we obtain the following irreducible characters of G:

	1	(12)	(123)	(12)(34)	(1234)
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
X1 X2 X3	2	0	-1	2	0

The character table of a group can be used to find the lattice of normal subgroups. In particular, the character table detect simple groups.

Lemma 13.4. Let G be a finite group and let $g, h \in G$. Then g and h are conjugate if and only if $\chi(g) = \chi(h)$ for all $\chi \in \text{Char}(G)$.

Proof. If g and h are conjugate, then $\chi(g) = \chi(h)$, as characters are class functions of G. Conversely, if $\chi(g) = \chi(h)$ for all $\chi \in \operatorname{Char}(G)$, then f(g) = f(h) for all class function f of G, as characters G generate the space of class functions of G. In particular, $\delta(g) = \delta(h)$, where

$$\delta(x) = \begin{cases} 1 & \text{if } x \text{ and } g \text{ are conjugate,} \\ 0 & \text{otherwise.} \end{cases}$$

This implies that g and h are conjugate.

As a consequence, we get that

$$\bigcap_{\chi \in Irr(G)} \ker \chi = \{1\}. \tag{8.1} \qquad \text{eq:kernels}$$

Indeed, if $g \in \ker \chi$ for all $\chi \in \operatorname{Irr}(G)$, then g = 1 since the lemma implies that g and 1 are conjugate because $\chi(g) = \chi(1)$ for all $\chi \in \operatorname{Irr}(G)$.

pro:normal

Proposition 13.5. Let G be a finite group. If N is a normal subgroup of G, then there exist characters $\chi_1, \ldots, \chi_k \in Irr(G)$ such that

$$N = \bigcap_{i=1}^{k} \ker \chi_i.$$

Proof. Apply the previous remark to the group G/N to obtain that

$$\bigcap_{\widetilde{\chi} \in \operatorname{Irr}(G/N)} \ker \widetilde{\chi} = \{N\}.$$

Assume that $\operatorname{Irr}(G/N) = \{\widetilde{\chi}_1, \dots, \widetilde{\chi}_k\}$. We lift the irreducible characters of G/N to G to obtain (some) irreducible characters χ_1, \dots, χ_k of G such that $N \subseteq \ker \chi_1 \cap \dots \cap \ker \chi_k$. If $g \in \ker \chi_i$ for all $i \in \{1, \dots, k\}$, then

$$\widetilde{\chi}_i(N) = \chi_i(1) = \chi_i(g) = \widetilde{\chi}_i(gN)$$

for all $i \in \{1, ..., k\}$. This implies that

$$gN \in \bigcap_{i=1}^{k} \ker \widetilde{\chi}_i = \{N\},$$

that is $g \in N$.

Recall that a non-trivial group is **simple** if it contains no non-trivial normal proper subgroups. Examples of simple groups are cyclic groups of prime order and the alternating groups \mathbb{A}_n for $n \ge 5$. As a corollary of Proposition 13.5, we can use the character table to detect simple groups.

Proposition 13.6. Let G be a finite group. Then G is not simple if and only if there exists a non-trivial irreducible character χ such that $\chi(g) = \chi(1)$ for some $g \in G \setminus \{1\}$.

Proof. If G is not simple, there exists a normal subgroup N of G such that $N \neq G$ and $N \neq \{1\}$. By Proposition 13.5, there exist characters $\chi_1, \ldots, \chi_k \in \operatorname{Irr}(G)$ such that $N = \ker \chi_1 \cap \cdots \cap \ker \chi_k$. In particular, there exists a non-trivial character χ_i such that $\ker \chi_i \neq \{1\}$. Thus there exists $g \in G \setminus \{1\}$ such that $\chi_i(g) = \chi_i(1)$.

Assume now that there exists a non-trivial character χ such that $\chi(g) = \chi(1)$ for some $g \in G \setminus \{1\}$. In particular, $g \in \ker \chi$ and hence $\ker \chi \neq \{1\}$. Since χ is non-trivial, $\ker \chi \neq G$. Thus $\ker \chi$ is a proper non-trivial normal subgroup of G. \square

Example 13.7. If there exists a group G with a character table of the form

χ_1	1	1	1	1	1	1
χ_2	1	1	1	-1	1	-1
χ_3	1	1	1	1	-1	-1
χ_4	1	1	1	-1	-1	1
χ_5	2	-2	2	0	0	0
$\begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \\ \chi_4 \\ \chi_5 \\ \chi_6 \end{array}$	8	0	-1	0	0	0

then G cannot be simple. Note that such a group G would have order $\sum_{i=1}^{6} \chi_i(1)^2 = 72$. Mathieu's group M_9 has precisely this character table!

Example 13.8. Let $\alpha = \frac{1}{2}(-1 + \sqrt{7}i)$. If there exists a group G with a character table of the form

X1 X2 X3 X4	1	1	1	1	1	1
χ_2	7	-1	-1	1	0	0
<i>X</i> 3	8	0	0	-1	1	1
<i>X</i> 4	3	-1	1	0	α	$\overline{\alpha}$
<i>X</i> 5	3	-1	1	0	$\overline{\alpha}$	α
X5 X6	6	2	0	0	0	0

then G is simple. Note that such a group G would have order $\sum_{i=1}^{6} \chi_i(1)^2 = 168$. The group

$$PSL_2(7) = SL_2(7)/Z(SL_2(7))$$

is a simple group that has precisely this character table!

§14. Finite simple groups

Character theory is one of the key tools in the classification of finite simple groups. One of the first non-trivial applications one finds of character theory is the following result:

Theorem 14.1 (Burnside). Let G be a finite simple group of order $p^a q^b$ for some prime numbers p and q. Then G is cyclic.

The proof is a basic application of character theory. Is not at all hard, but it is out of the scope of this course. Burnside's theorem is important and generalizes in many different directions.

Theorem 14.2 (Feit–Thompson). *Let G be a finite simple group of odd order. Then G is cyclic.*

The proof is extremely hard and occupies a full volume of the *Pacific Journal* of *Mathematics*, see [4]. Feit–Thompson's theorem was formally verified by the computer proof assistant Coq, see [5] for the announcement.

The proof of Feit–Thompson's theorem suggest the following conjecture:

Conjecture 14.3 (Feit–Thompson). There are not distinct prime numbers p and q such that $\frac{p^q-1}{p-1}$ divides $\frac{q^p-1}{q-1}$.

The conjecture is still open, see [10] for some partial results.

Feit–Thompson's theorem is one of the starting points of the classification of finite simple groups. This classification is one of the deepest theorems of the 20th century.

Theorem 14.4. Let G be a finite simple group. Then G lies in one (or more) of the following families:

- 1) Cyclic groups of prime order.
- 2) \mathbb{A}_n for $n \geq 5$.
- *3)* Finite groups of Lie type.
- 4) 26 sporadic simple groups.

Groups of Lie type are finite analogs of simple Lie groups such as $\mathbf{SL}_n(\mathbb{C})$. A typical example of a finite simple group of Lie type is $\mathbf{PSL}_n(p)$ for some prime number p, which is defined as $\mathbf{SL}_n(p)$ over its center.

The sporadic groups are 26 groups that do not follow a systematic pattern. The first five of the sporadic groups were discovered by Mathieu in the 1860s and the other 21 were found between 1965 and 1975. Several of these groups were predicted to exist before they were constructed, sometimes just knowing their character tables! The full list of sporadic simple groups is:

- Mathieu groups M_{11} , M_{12} , M_{22} , M_{23} and M_{24} .
- Janko groups J_1 , J_2 , J_3 and J_4 .

- Conway groups Co_1 , Co_2 and Co_3 .
- Fischer groups Fi_{22} , Fi_{23} and Fi_{24} .
- Higman–Sims group HS.
- McLaughlin group McL.
- Held group He.
- Rudvalis group Ru.
- Suzuki group Suz.
- O'Nan group ON.
- Harada–Norton group *HN*.
- Lyons group Ly.
- Thompson group Th.
- Baby Monster group B.
- Monster group M.

Mathieu groups can be realized as automorphism groups of certain very complicated combinatorial structures known as **Steiner systems**. A concrete example:

$$M_{11} = \langle (1234567891011), (37118)(41056) \rangle,$$

which is a subgroup of \mathbb{S}_{11} of order 7920. The group M_{11} contains ten irreducible characters, so the character table of M_{11} is essentially a 10×10 matrix. Let us use the computer software GAP to see how the character table looks like:

```
gap> Display(CharacterTable("M11"));
M11
           4 1 3 . 1
     11 1
        1a 2a 3a 4a 5a 6a 8a 8b 11a 11b
     2P 1a 1a 3a 2a 5a 3a 4a 4a 11b 11a
     3P 1a 2a 1a 4a 5a 2a 8a 8b 11a 11b
     5P 1a 2a 3a 4a 1a 6a 8b 8a 11a 11b
    11P 1a 2a 3a 4a 5a 6a 8a 8b 1a
X.1
        1 1 1 1 1 1 1 1
        10 2 1 2 . -1 . .
                                      -1
X.2
                                  -1
X.3
        10 -2 1 . . 1 A -A -1
       10 -2 1 . . 1 -A A -1 -1
       11 3 2 -1 1 . -1 -1
X.5
X.6
       16 . -2 . 1 . . . B /B
       16 . -2 . 1 . . . /B B
44 4 -1 . -1 1 . . . . . .
45 -3 . 1 . . -1 -1 1 1
55 -1 1 -1 . -1 1 1 . . .
X.7
X.8
X.9
X.10
A = E(8) + E(8)^3
  = Sqrt(-2) = i2
B = E(11) + E(11)^3 + E(11)^4 + E(11)^5 + E(11)^9
```

§14 Finite simple groups

$$= (-1+Sqrt(-11))/2 = b11$$

Thus the character table of the Mathieu group M_{11} is given by

<i>X</i> 1	1	1	1	1	1	1	1	1	1	1
χ_2	10	2	1	2	0	-1	0	0	-1	-1
<i>X</i> 3	10	-2	1	0	0	1	α	$-\alpha$	-1	-1
χ_4	10	-2	1	0	0	1	$-\alpha$	α	-1	-1
<i>X</i> 5	11	3	2	-1	1	0	-1	-1	0	0
χ_6	16	0	-2	0	1	0	0	0	β	$1/\beta$
<i>X</i> 7	16	0	-2	0	1	0	0	0	$1/\beta$	β
χ_8	44	4	-1	0	-1	1	0	0	0	0
X9	45	-3	0	1	0	0	-1	-1	1	1
χ_{10}	55	-1	1	-1	0	-1	1	1	0	0

where
$$\alpha = \sqrt{-2}$$
 and $\beta = \frac{-1 - \sqrt{-11}}{2}$

where $\alpha = \sqrt{-2}$ and $\beta = \frac{-1 - \sqrt{-11}}{2}$. The largest sporadic simple group is the **Monster group** M and has order

8080174247945128758864599049617107570057543680000000000,

which is roughly 8×10^{53} . The monster group was predicted by Fischer and Griess. Griess proved the existence of the Monster group realizing it as the automorphism group of a certain space of dimension 196884. The group M can be represented as a subgroup of $GL_{196883}(\mathbb{C})$. It has 194 conjugacy classes, so the character table is a 194×194 array.

Lecture 9

§15. Modules

The rest of the course will be devoted to study modules over rings. We first start with the main definitions and basic examples.

Definition 15.1. Let *R* be a ring. A **module** (over *R*) is an abelian group *M* with a map $R \times M \to M$, $(x,m) \mapsto x \cdot m$, such that the following conditions hold:

```
1) (r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m for all r_1, r_2 \in R y m \in M.
```

- **2)** $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$ for all $r \in R$ y $m_1, m_2 \in M$.
- 3) $r_1 \cdot (r_2 \cdot m) = (r_1 r_2) \cdot m$ for all $r_1, r_2 \in R$ y $m \in M$.
- **4)** $1 \cdot m = m$ for all $m \in M$.

Our definition is that of left module. Similarly one defines right modules. We will always consider left modules, so they will be referred simply as modules.

Example 15.2. A module over a field is a vector space.

Example 15.3. Every abelian group is a module over \mathbb{Z} .

Example 15.4. Let R be a ring. Then R is a module (over R) with $x \cdot m = xm$. This is the (left) regular representation of R and it usually be denoted by R.

Example 15.5. If *R* is a ring, then $R^n = \{(x_1, ..., x_n) : x_1, ..., x_n \in R\}$ is a module (over *R*) with $r \cdot (x_1, ..., x_n) = (rx_1, ..., rx_n)$.

Example 15.6. If R is a ring, then $M_{m,n}(R)$ is a module (over R) with usual matrix operations.

Students usually ask why in the definition of a ring homomorphism one needs the condition $1 \mapsto 1$. The following example provides a good explanation.

Example 15.7. If $f: R \to S$ is a ring homomorphism and M is a module (over S) wih $(s,m) \mapsto sm$, then M is also a module (over R) with $r \cdot m = f(r)m$ for all $r \in R$ and $m \in M$. In fact,

$$1 \cdot m = f(1)m = 1m = m,$$

$$r_1 \cdot (r_2 \cdot m) = f(r_1)(r_2 \cdot m) = f(r_1)(f(r_2)m) = (f(r_1)f(r_2))m = f(r_1r_2)m$$

for all $r_1, r_2 \in R$ and $m \in M$.

Example 15.8. Let $R = \mathbb{R}[X]$ and $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Then $M = \mathbb{R}^n$ with

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot v = \sum_{i=0}^{n} a_i T^i(v)$$

is a module (over R).

Example 15.9. If $\{M_i|i\in I\}$ is a family of modules, then

$$\prod_{i \in I} M_i = \{ (m_i)_{i \in I} : m_i \in M_i \text{ for all } i \in I \}$$

is a module with $x \cdot (m_i)_{i \in I} = (x \cdot m_i)_{i \in I}$, where $(m_i)_{i \in I}$ denotes the map $I \to M_i$, $i \mapsto m_i$. This module is the **direct product** of the family $\{M_i : i \in I\}$.

Example 15.10. If $\{M_i|i\in I\}$ is family of modules, then

$$\bigoplus_{i \in I} M_i = \{(m_i)_{i \in I} : m_i \in M_i \text{ for all } i \in I \text{ and } m_i = 0 \text{ except finitely many } i \in I\}$$

is a module with $x \cdot (m_i)_{i \in I} = (x \cdot m_i)_{i \in I}$. This module is the **direct sum** of the family $\{M_i : i \in I\}$.

If *M* is a module, then $0 \cdot m = 0$ and $-m = (-1) \cdot m$ for all $m \in M$ and $x \cdot 0 = 0$ for all $x \in R$.

Example 15.11. Let $M = \mathbb{Z}/6$ as a module (over \mathbb{Z}). Note that $3 \cdot 2 = 0$ but $3 \neq 0$ (in \mathbb{Z}) and $2 \neq 0$ (in $\mathbb{Z}/6$).

xca:Z4overZ2

Exercise 15.12. Prove that $\mathbb{Z}/4$ is not a module over $\mathbb{Z}/2$.

Definition 15.13. Let M be a module. A subset N of M is a **submodule** of M if (N,+) is a subgroup of (M,+) and $x \cdot n \in N$ for all $x \in R$ and $n \in N$.

Clearly, if M is a module, then $\{0\}$ and M are submodules of M.

Example 15.14. Let R be a field and M be a module over R. Then N is a submodule of M if and only if N is a subspace of M.

Example 15.15. Let $R = \mathbb{Z}$ and M be a module (over R). Then N is a submodule of M if and only if N is a subgroup of M

Example 15.16. If $M = {}_R R$, then a subset $N \subseteq M$ is a submodule of M if and only if N is a left ideal of R.

Example 15.17. If *V* is a vector space and $T: V \to V$ is a linear map, then *V* is a module (over $\mathbb{R}[X]$) with

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot v = \sum_{i=0}^{n} a_i T^i(v).$$

A submodule is a subspace W of V such that $T(W) \subseteq W$.

Clearly, a subset N of M is a submodule if and only if $r_1n_1 + r_2n_2 \in N$ for all $r_1, r_2 \in R$ and $n_1, n_2 \in N$.

Exercise 15.18. If N and N_1 are submodules of M, then

$$N + N_1 = \{n + n_1 : n \in \mathbb{N}, n_1 \in \mathbb{N}_1\}$$

is a submodule of M.

Definition 15.19. Let M and N be modules over R. A map $f: M \to N$ is a **module homomorphism** if f(x+y) = f(x) + f(y) and $f(r \cdot x) = r \cdot f(x)$ for all $x, y \in M$ and $r \in R$.

We denote by $\operatorname{Hom}_R(M,N)$ the set of module homomorphisms $M \to N$.

Exercise 15.20. Let $f \in \text{Hom}_R(M, N)$.

- 1) If V is a submodule of M, then f(V) is a submodule of N.
- 2) If W is a submodule of N, then $f^{-1}(W)$ is a submodule of M.

If $f \in \text{Hom}_R(M, N)$, the **kernel** of f is the submodule

$$\ker f = f^{-1}(\{0\}) = \{m \in M : f(m) = 0\}$$

of M. We say that f is a **monomorphism** (resp. **epimorphism**) if f is injective (resp. surjective). Moreover, f is an **isomorphism** if f is bijective.

Exercise 15.21. Let $f \in \text{Hom}_R(M, N)$. Prove that the following statements are equivalent:

- 1) f is a monomorphism.
- **2**) $\ker f = \{0\}.$
- **3)** For every module *V* and every $g, h \in \text{Hom}_R(V, M), f \circ g = f \circ h \implies g = h$.
- **4)** For every module V and every $g \in \text{Hom}(V, M)$, $f \circ g = 0 \implies g = 0$.

Later we will see a similar exercise for surjective module homomorphisms.

Example 15.22. Let $R = \begin{pmatrix} \mathbb{R} & 0 \\ 0 & \mathbb{R} \end{pmatrix}$. We claim that $\begin{pmatrix} \mathbb{R} \\ 0 \end{pmatrix} \neq \begin{pmatrix} 0 \\ \mathbb{R} \end{pmatrix}$ as modules over R, where the module structure is given by the usual matrix multiplication. Assume that they are isomorphic. Let $f: \begin{pmatrix} 0 \\ \mathbb{R} \end{pmatrix} \rightarrow \begin{pmatrix} \mathbb{R} \\ 0 \end{pmatrix}$ be an isomorphism of modules and let $x_0 \in \mathbb{R} \setminus \{0\}$ be such that $f \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} x_0 \\ 0 \end{pmatrix}$. Thus

$$f\begin{pmatrix}0\\1\end{pmatrix} = f\begin{pmatrix}\begin{pmatrix}0&0\\0&1\end{pmatrix} \cdot \begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}0&0\\0&1\end{pmatrix} \cdot f\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}0&0\\0&1\end{pmatrix} \cdot \begin{pmatrix}x_0\\0\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix},$$

a contradiction, as f is injective.

If N and N_1 are submodules of M, we say that M is the **direct sum** of N and N_1 if $M = N + N_1$ and $N \cap N_1 = \{0\}$. In this case, we write $M = N \oplus N_1$. Note that if $M = N \oplus N_1$, then each $m \in M$ can be written uniquely as $m = n + n_1$ for some $n \in N$ and $n_1 \in N_1$. Such a decomposition exists because $M = N + N_1$. If $m \in M$ can be written as $m = n + n_1 = n' + n'_1$ for some $n, n' \in N$ and $n_1, n'_1 \in N_1$, then $-n' + n = n'_1 - n_1 \in N \cap N_1 = \{0\}$ and hence n = n' and $n_1 = n'_1$. If $M = N \oplus N_1$, the submodule N (resp. N_1) is a **direct summand** of M and the submodule N_1 (resp. N) is a **complement** of N in M.

Example 15.23. If $M = \mathbb{R}^2$ as a vector space, then every subspace of M is a direct summand of M.

Clearly, the submodules $\{0\}$ and M are direct summands of M.

Example 15.24. If $M = \mathbb{Z}$ as a module over \mathbb{Z} , then $m\mathbb{Z}$ is a direct sum of M if and only if $m \in \{0, 1\}$, as $n\mathbb{Z} \cap m\mathbb{Z} = \{0\}$ if and only if nm = 0.

xca:projector

Exercise 15.25. Let M be a module. A module N is isomorphic to a direct summand of M if and only if there are module homomorphisms $i: N \to M$ and $p: M \to N$ such that $p \circ i = \mathrm{id}_N$. In this case, $M = \ker p \oplus i(N)$.

The **direct sum** of submodules can be defined for finitely many summands. If V_1, \ldots, V_n are submodules of M, we say that $M = V_1 \oplus \cdots \oplus V_n$ if every $m \in M$ can be written uniquely as $m = v_1 + \cdots + v_n$ for some $v_1 \in V_1, \ldots, v_n \in V_n$.

Exercise 15.26. Prove that $M = V_1 \oplus \cdots \oplus V_n$ if and only if $M = V_1 + \cdots + V_n$ and

$$V_i \cap \left(\sum_{j \neq i} V_j\right) = \{0\}$$

for all $i \in \{1, ..., n\}$.

If $\{N_i : i \in I\}$ is a family of submodules of a module M, then the intertopic $\cap_{i \in I} N_i$ is also a submodule of M.

§15 Modules

xca:submodules

Exercise 15.27. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map and $M = \mathbb{R}^2$ with the module structure over $\mathbb{R}[X]$ given by

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot (x, y) = \sum_{i=0}^{n} a_i T^i(x, y).$$

Find the submodules of M in the following cases.

1)
$$T(x, y) = (0, y)$$
.

2)
$$T(x, y) = (y, x)$$
.

xca:commuting

Example 15.28. Let *V* be a real vector space and $T: V \to V$ be a linear map. Then *V* is a module over $\mathbb{R}[X]$ with

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot v = \sum_{i=0}^{n} a_i T^i(v).$$

Prove that a module homomorphism $g: V \to V$ commutes with T.

xca:Hom

Exercise 15.29. Prove that $\operatorname{Hom}_R(M,N)$ is a module over Z(R).

Let M be a module and N be a submodule of M. In particular, M/N is an abelian group and the map $\pi: M \to M/N$, $m \mapsto m+N$, is a surjective group homomorphism with kernel equal to N. We claim that the **quotient** M/N is a module with

$$r \cdot (m+N) = (r \cdot m) + N, \quad r \in R, m \in M.$$

Let us check that this operation on M/N is well-defined. If x + N = y + N, then $x - y \in N$ implies that

$$r \cdot x - r \cdot y = r \cdot (x - y) \in N$$
,

that is $r \cdot (x+N) = r \cdot (y+N)$. It is an exercise to show that the map $\pi \colon M \to M/N$, $x \mapsto x+N$, is a surjective module homomorphism.

Example 15.30. If $R = M = \mathbb{Z}$ and $N = 2\mathbb{Z}$, then $M/N \simeq \mathbb{Z}/2$.

Example 15.31. Let *R* be a commutative ring. We claim that

$$M \simeq \operatorname{Hom}_R({}_R R, M).$$

Since R is commutative, it follows that $\operatorname{Hom}_R({}_RR,M)$ is a module, see Exercise 15.29. Let $\varphi \colon M \to \operatorname{Hom}_R({}_RR,M), m \mapsto f_m$, where $f_m \colon R \to M, r \mapsto r \cdot m$. To show that φ is well-defined it is enough to see that $\varphi(m) \in \operatorname{Hom}_R({}_RR,M)$, that is

$$f_m(r+s) = (r+s) \cdot m = r \cdot m + s \cdot m, \quad f_m(rs) = (rs) \cdot m = r \cdot (s \cdot m) = r \cdot f_m(s).$$

Let us show that φ is a module homomorphism. We first note that

$$\varphi(m+n) = \varphi(m) + \varphi(n)$$

for all $m, n \in M$, as

$$\varphi(m+n)(r) = f_{m+n}(r) = r \cdot (m+n)$$
$$= r \cdot m + r \cdot n = f_m(r) + f_n(r) = \varphi(m)(r) + \varphi(n)(r).$$

Moreover,

$$\varphi(r \cdot m) = r \cdot \varphi(m)$$

for all $r \in R$ and $m \in M$, as

$$\varphi(r \cdot m)(s) = f_{r \cdot m}(s) = s \cdot (r \cdot m) = (sr) \cdot m$$
$$= (rs) \cdot m = f_m(rs) = \varphi(m)(rs) = (r \cdot \varphi(m))(s).$$

It remains to show that φ is bijective. We first prove that φ is injective. If $\varphi(m) = 0$, then $r \cdot m = \varphi(m)(r) = 0$ for all $r \in R$. In particular, $m = 1 \cdot m = 0$. We now prove that φ is surjective. If $f \in \operatorname{Hom}_R({}_RR, M)$, let m = f(1). Then $\varphi(m) = f$, as

$$\varphi(m)(r) = r \cdot m = r \cdot f(1) = f(r).$$

As one does for groups, it is possible to show that if M is a module and N is a submodule of M, the pair $(M/N, \pi \colon M \to M/N)$ has the following properties:

- 1) $N \subseteq \ker \pi$.
- 2) If $f: M \to T$ is a homomorphism such that $N \subseteq \ker f$, then there exists a unique module homomorphism $\varphi: M/N \to T$ such that the diagram

$$\begin{array}{c}
M \xrightarrow{f} T \\
\pi \downarrow & \varphi \\
M/N
\end{array}$$

is commutative, that is $\varphi \circ \pi = f$.

Recall that if S and T are submodules of a module M, then both $S \cap T$ and

$$S + T = \{s + t : s \in S, t \in T\}$$

are submodules of M. The **isomorphism theorems** hold:

- 1) If $f \in \operatorname{Hom}_R(M, N)$, then $M/\ker f \simeq f(M)$.
- 2) If $T \subseteq N \subseteq M$ are submodules, then

$$\frac{M/T}{N/T} \simeq M/N$$

3) If S and T are submodules of M, then $(S+T)/S \simeq T/(S \cap T)$.

Example 15.32. If K is a field and V is a module over K, then V is, by definition, a vector space over K. If S and T are subspaces of V, then they are submodules of

§15 Modules

V. By the second isomorphism theorem, $(S+T)/T \simeq S/(S \cap T)$ as vector spaces. By applying dimension,

$$\dim(S+T) - \dim T = \dim(S) - \dim(S \cap T)$$
.

Example 15.33. If N is a direct summand of M and M and X is a complement for N, then $X \simeq M/N$, as

$$M/N = (N \oplus X)/N \simeq X/(N \cap X) = X/\{0\} \simeq X$$

by the second isomorphism theorem. So all complements of *N* in *M* are isomorphic.

It is also possible to prove that there exists a bijective correspondence between submodules of M/N and submodules of M containing N. The correspondence is given by $\pi^{-1}(Y) \hookrightarrow Y$ and $X \mapsto \pi(X)$.

Exercise 15.34. Let $f \in \text{Hom}_R(M, N)$. Prove that the following statements are equivalent:

- 1) f is an epimorphism.
- **2)** $N/f(M) \simeq \{0\}.$
- **3)** For every module *W* and every $g, h \in \text{Hom}_R(N, T), g \circ f = h \circ f \implies g = h$.
- **4)** For every module T and every $g \in \operatorname{Hom}_R(N,T)$, $g \circ f = 0 \Longrightarrow g = 0$.

xca:mod_iso_max

Exercise 15.35. Let R be a ring and M_1 and M_2 be maximal ideals of R. Prove that $R/M_1 \simeq R/M_2$ as modules over R if and only if there exists $r \in R \setminus M_2$ such that $rM_1 \subseteq M_2$.

Lecture 10

§16. Noetherian modules

Definition 16.1. Let *M* be a module and *X* be a subset of *M*. The submodule of *M* generated by *X* is defined as

$$(X) = \bigcap \{N : N \text{ is a submodule of } M \text{ that contains } X\},$$

the smallest submodule of M containing X.

One can prove that

$$(X) = \left\{ \sum_{i=1}^{m} r_i \cdot x_i : m \in \mathbb{Z}_{\geq 0}, r_1, \dots, r_m \in R, x_1, \dots, x_m \in X \right\}$$

Definition 16.2. A module M is **finitely-generated** if M = (X) for some finite subset X of M.

If
$$X = \{x_1, \dots, x_m\}$$
 one writes $(X) = (x_1, \dots, x_n)$. For example, $\mathbb{Z} = (1) = (2,3)$ and $\mathbb{Z} \neq (2)$.

Exercise 16.3. Let R be the ring of continuous maps $[0,1] \to \mathbb{R}$ with point-wise operations and $M = {}_R R$. Prove that $N = \{ f \in R : f(x) \neq 0 \text{ for finitely many } x \}$ is not finitely-generated.

Exercise 16.4. Let $G = \{g_1, \dots, g_n\}$ be a finite group. Prove that if $M = \mathbb{C}[G]$ is finitely-generated, then M is a finite-dimensional complex vector space.

If $f \in \operatorname{Hom}_R(M,N)$ and M is finitely-generated, then f(M) is finitely-generated. We can prove something strong. For that purpose we need exact sequences. A sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} T \longrightarrow 0 \tag{10.1} \quad \text{eq:exactal}$$

of modules and homomorphism is said to be **exact** if f is injective, g is surjective and $f(M) = \ker g$. For example, the sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} M \otimes N \stackrel{g}{\longrightarrow} N \longrightarrow 0$$

where f(m) = (m, 0) and g(m, n) = n is exact.

Exercise 16.5. Si

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} T \longrightarrow 0$$

be an exact sequence. Prove the following statements:

- 1) If N if finitely generated, then T is finitely generated.
- 2) If M and T are finitely generated, then N is finitely generated.

Proposition 16.6. Let R be a ring and M be a module over R. Then M is finitely-generated if and only if M is isomorphic to a quotient of R^k for some k.

Proof. Assume first that $M = (m_1, ..., m_k)$ is finitely-generated. A routine calculation shows that the map

$$\varphi \colon R^k \to M, \quad (r_1, \dots, r_k) \mapsto \sum_{j=1}^k r_j \cdot m_j,$$

is a surjective module homomorphism. The first isomorphism theorem implies that $R^k/\ker \varphi \simeq \varphi(R^k) = M$.

Now assume that there exists a surjective module homomorphism $\varphi \colon R^k \to M$. Since $R^k = (e_1, \dots, e_k)$, where

$$(e_i)_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j, \end{cases}$$

it follows that $\{\varphi(e_1), \dots, \varphi(e_k)\}$ generates $\varphi(R^k) = M$. Indeed, if $m \in M$, we write $m = \varphi(r_1, \dots, r_k)$ for some $(r_1, \dots, r_k) \in R^k$ and hence

$$m = \varphi(r_1, \dots, r_k) = \varphi\left(\sum_{i=1}^k r_i \cdot e_i\right) = \sum_{i=1}^k r_i \cdot \varphi(e_i).$$

Definition 16.7. A module is **noetherian** if every sequence $M_1 \subseteq M_2 \subseteq \cdots$ of submodules of M stabilizes, that is there exists n such that $M_k = M_{n+k}$ for all k.

Proposition 16.8. Let M be a module. The following statements are equivalent:

- 1) M is noetherian.
- 2) Submodules of M are finitely generated.

3) Each non-empty family of submodules of M has a maximal element (with respect to the inclusion).

Proof. We first prove $2) \Longrightarrow 1$). If $S_1 \subseteq S_2 \subseteq \cdots$ is a sequence of submodules of M, it follows that $S = \bigcup_{i \ge 1} S_i$ is a submodule of M. Since S is finitely generated, $S = (x_1, \ldots, x_n)$ for some $x_1, \ldots, x_n \in M$. It follows that $x_1, \ldots, x_n \in S_N$ for some positive integer N. Thus $S \subseteq S_N$ and hence $S_N = S_{N+k}$ for all k.

We now prove 1) \Longrightarrow 3). Let F be a non-empty family of submodules of M with no maximal elements. Let $S_1 \in F$. Since S_1 is not maximal, there exists $S_2 \in F$ such that $S_1 \subsetneq S_2$. Having constructed with this method the submodules $S_1 \subsetneq \cdots \subsetneq S_k$, since S_k is not maximal, there exists $S_{k+1} \in F$ such that $S_k \subsetneq S_{k+1}$. This means that the sequence $S_1 \subsetneq S_2 \subsetneq \cdots$ does not stabilize.

We finally prove 3) \implies 2). Let S be a submodule of M and let

 $F = \{T \subseteq S : T \text{ finitely generated submodule of } M\}.$

By assumption, F has a maximal element N. Thus N is a finitely generated submodule of M such that $N \subseteq S$. We may assume that $N = (n_1, \ldots, n_k)$. If N = S, then, in particular, S is finitely generated. Suppose that $N \ne S$ and let $x \in S \setminus N$. It follows that $N \subseteq (n_1, \ldots, n_k, x) \subseteq S$. Since $(n_1, \ldots, n_k, x) \in F$ and N is maximal, it follows that $N = (n_1, \ldots, n_k, x)$, a contradiction to $x \notin N$.

xca:Pruffer

Exercise 16.9. Find a non-noetherian module such that every proper submodule is finitely generated.

xca:exacta_noetheriano

Exercise 16.10. Let

$$0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} T \longrightarrow 0$$

be an exact sequence. Prove the following statements:

- 1) If N is noetherian, then M and T are noetherian.
- **2)** If *M* and *T* are noetherian, then *N* is noetherian.

xca:regular_noetheriano

Exercise 16.11. A commutative ring R is noetherian if and only if $_RR$ is noetherian.

xca:directa_noetheriano

Exercise 16.12. If M_1, \ldots, M_n are noetherian, then $M_1 \oplus \cdots \oplus M_n$ is noetherian.

The previous exercise cannot be extended to infinitely many modules. Why?

Proposition 16.13. *If R is noetherian and M is a finitely generated module, then M is noetherian.*

Proof. Assume that $M = (m_1, ..., m_k)$. There exists a surjective homomorphism $R^k \to N$, $(r_1, ..., r_k) \mapsto \sum_{i=1}^k r_i \cdot m_i$, where $R^k = \bigoplus_{i=1}^k R$. Since R is noetherian, R^k is noetherian. Thus M is noetherian.

§17. Quotient fields

Let *R* be an integral domain and $S = R \setminus \{0\}$. On $R \times S$ we define the following relation:

$$(r,s) \sim (r_1,s_1) \iff rs_1 - r_1s = 0.$$

Exercise 17.1. Prove that \sim is an equivalence relation.

The equivalence class of (r, s) will be denoted by r/s or $\frac{r}{s}$.

It is possible to prove that the set $K(R) = (R \times S)/\sim$ of equivalence classes is a field with the operations

$$\frac{r}{s} + \frac{r_1}{s_1} = \frac{rs_1 + r_1s}{ss_1}, \quad \frac{r}{s} \frac{r_1}{s_1} = \frac{rr_1}{ss_1}.$$
 (10.2) eq:K(R)

Definition 17.2. K(R) is known as the **quotient field** of R.

Simple example: $K(\mathbb{Z}) = \mathbb{Q}$.

Exercise 17.3. Let R be an integral domain. Prove that K(R) is a field.

To prove that K(R) is a field one first needs to prove that the operations (10.2) are well-defined. For example, let us check the addition is well-defined. If $r/s \sim r'/s'$ and $r_1/s_1 \sim r'_1/s'_1$, then $r/s + r_1/s_1 \sim r'/s' + r'_1/s'_1$. In fact, since $r/s \sim r'/s'$, it follows that rs' - r's = 0. Similarly, $r_1s'_1 - r'_1s_1 = 0$, as $r_1/s_1 \sim r'_1/s'_1$. Thus

$$\frac{rs_1 + r_1s}{ss_1} = \frac{r's_1' + r_1's'}{s's_1'}$$

as

$$(rs_1+r_1s)s's_1'=rs_1s's_1'+r_1ss's_1'=r'ss_1s_1'+r_1's_1ss'=(r's_1'+r_1's)ss_1.$$

§18. Free modules

Definition 18.1. Let R be a ring, M be a module over R and X be a subset of M. We say that X is **linearly independent** if for each $k \in \mathbb{Z}_{>0}$, $r_1, \ldots, r_k \in R$ and $m_1, \ldots, m_k \in X$ such that $\sum_{i=1}^k r_i \cdot m_i = 0$, then $r_1 = \cdots = r_k = 0$.

In any ring, the set $\{1\}$ is linearly independent.

Examples 18.2.

- 1) $\{2,3\}$ is a linear dependent subset of \mathbb{Z} .
- 2) $\{2\}$ is a linearly dependent subset of $\mathbb{Z}/4$.
- 3) Let $R = \mathbb{Z}$, $M = \mathbb{Q}$ and $x \in M \setminus \{0\}$. Then $\{x\}$ is linearly independent subset of M. Is $y \in M \setminus \{x\}$, then $\{x,y\}$ is linearly dependent.

§18 Free modules

Examples 18.3. Let $R = M_2(\mathbb{R})$ and $M = \begin{pmatrix} 0 & \mathbb{R} \\ 0 & \mathbb{R} \end{pmatrix}$. Then $\left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$ is a minimal generating set and it is linearly independent.

xca:LI

Exercise 18.4. Let $f \in \text{Hom}_R(M, N)$ and X be a subset of M.

- 1) If X is linearly dependent, then f(X) is linearly dependent.
- 2) If X is linearly independent and f is injective, then f(X) is linearly independent.
- 3) If M = (X) and f is surjective, then N = (f(X)).

Definition 18.5. Let M be a module and B be a subset of M. Then B is a **basis** of M if B is linearly independent and M = (B). A module M is said to be **free** if it admits a basis.

As a consequence of Zorn's lemma, vector spaces are free.

Examples 18.6.

- 1) If R is a ring, then $\{1\}$ is a basis of ${}_RR$, so ${}_RR$ is free.
- 2) If R is a ring, then R^n is free as a module over R.

Exercise 18.7. Prove that \mathbb{Q} is not free as a module over \mathbb{Z} .

xca:linear_algebra

Exercise 18.8. Let R be a division ring and M be a non-zero and finitely generated module over R. Prove the following facts:

- 1) Every finite set of generators contains a basis.
- 2) Every linearly independent set can be extended into a basis.
- 3) Any two bases contain the same number of elements.

This means that modules over division rings have dimension.

Example 18.9. $\mathbb{R}[X]$ is a free module (over \mathbb{R}) with basis $\{1, X, X^2, \dots\}$.

Exercise 18.10. Prove that $\{(a,b),(c,d)\}$ is a basis of $\mathbb{Z} \times \mathbb{Z}$ (as a module over \mathbb{Z}) if and only if $ad - bc \in \{-1,1\}$.

Example 18.11. If $u \in \mathcal{U}(R)$, then $\{u\}$ is a basis of ${}_RR$. Converely, if R is an integral domain and $\{z\}$ is a basis of ${}_RR$, then $z \in \mathcal{U}(R)$. Since 1 = yz for some $y \in R$, it follows that zy = 1, as

$$(zy-1)z = z(yz) - z = z1 - z = z - z = 0.$$

Example 18.12. If *I* is a non-empty set, the module $R^{(I)}$ is free with basis $\{e_i : i \in I\}$, where

$$(e_i)_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

Example 18.13. If $R = M_2(\mathbb{Z})$, then $M = {}_R R$ is free with basis $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. The sub-

module $N = \begin{pmatrix} \mathbb{Z} & 0 \\ \mathbb{Z} & 0 \end{pmatrix}$ does not admits a basis as a module over R.

In modules, the size of a basis is not an invariant of the module.

Example 18.14. Let *V* be the complex vector space with infinite basis $e_0, e_1, e_2, ...$ and let R = End(V) with the ring structucture given by

$$(f+g)(v) = f(v)+g(v), \quad (fg)(v) = f(g(v))$$

for $f, g \in R$ and $v \in V$.

Let $M = {}_R R$. The set {id} is a basis for R. We claim that M admits a basis with two elements. If $r, s \in R$ are such that

$$r(e_{2n}) = e_n,$$
 $r(e_{2n+1}) = 0,$ $s(e_{2n}) = 0,$ $s(e_{2n+1}) = e_{2n},$

then $\{r, s\}$ is a basis of M. If $f \in R$, then $f = \alpha r + \beta s$, where $\alpha : V \to V$, $e_n \mapsto f(e_{2n})$ for all n, and $\beta \in V \to V$, $e_n \mapsto f(e_{2n+1})$ for all n. In fact,

$$(\alpha r + \beta s)(e_{2n}) = \alpha(r(e_{2n})) + \beta(s(e_{2n})) = f(e_{2n}),$$

$$(\alpha r + \beta s)(e_{2n+1}) = \alpha(r(e_{2n+1})) + \beta(s(e_{2n+1})) = f(e_{2n+1}).$$

Moreover, $\{r, s\}$ is linearly independent. Indeed, if $\alpha r + \beta s = 0$ for some $\alpha, \beta \in R$, Evaluation on e_{2n} yields $\alpha = 0$ and evaluation on e_{2n+1} yields $\beta = 0$.

Example 18.15. If M is a free module with basis X and N is a free module with basis Y, then $M \oplus N$ is a free module with basis

$$\{(x,0): x \in X\} \cup \{(0,y): y \in Y\}.$$

Exercise 18.16. Let R be a commutative ring. If M and N are free and finitely generated, then $\operatorname{Hom}_R(M,N)$ is free and finitely generated.

Some properties of free modules:

Proposition 18.17. If M is free, then there exists a subset $\{m_i : i \in I\}$ of M such that for each $m \in M$ there exist unique $r_i \in R$, $i \in I$, where $r_i = 0$ except for finitely many $i \in I$ such that $m = \sum r_i \cdot m_i$.

Proof. Since M is free, there exists a basis $\{m_i : i \in I\}$ of M. If $m \in M$, $m = \sum r_i \cdot m_i$ (finite sum) for some $r_i \in I$. We claim that the r_i 's are unique. If $m = \sum s_i \cdot m_i$, then $\sum (r_i - s_i) \cdot m_i = 0$. Since $\{m_i : i \in I\}$ is linearly independent, $r_i = s_i$ for all $i \in I$. \square

pro:libre

Proposition 18.18. Let M be a free module with basis $\{m_i : i \in I\}$ and let N be a submodule of M. If $\{n_i : i \in I\} \subseteq N$ is a subset, then there exists a unique $f \in \operatorname{Hom}_R(M,N)$ such that $f(m_i) = n_i$ for all $i \in I$.

Sketch of the proof. Note that the unique homomorphism $f: M \to N$ is defined as $f(\sum r_i \cdot m_i) = \sum r_i \cdot n_i$.

Another application:

Example 18.19. There is no surjective homomorphism $\mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ (of modules over \mathbb{Z}). If $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ is a surjective homomorphism, let $\{u, v\}$ a basis of $\mathbb{Z} \times \mathbb{Z}$. Then f(k) = u and f(l) = v for some $k, l \in \mathbb{Z}$. Proposition 18.18 implies that there exists a homomorphism $g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ such that g(u) = k and g(v) = l. In particular, $f \circ g = \mathrm{id}_{\mathbb{Z} \times \mathbb{Z}}$ and hence g is injective. Since

$$g(lu - kv) = lg(u) - kg(v) = lk - kl = 0.$$

it follows that lu - kv = 0 and thus k = l = 0, as $\{u, v\}$ is linearly independent, a constradiction

Another important property:

Proposition 18.20. *If* M *is free, then* $M \simeq R^{(I)}$ *for some set* I.

Proof. Suppose that M has basis $\{m_i : i \in I\}$. There exists a unique homomorphism $f \in \operatorname{Hom}_R(M, R^{(I)})$ such that $f(m_i) = e_i$ for all $i \in I$, where

$$(e_i)_j = \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$$

We claim that f is an isomorphism. We first prove that the map f is surjective: if $(r_i)_{i \in I} \in R^{(I)}$, then $f(\sum r_i \cdot m_i) = (r_i)_{i \in I}$. Let us prove that f is injective:

$$0 = f(\sum r_i \cdot m_i) = \sum r_i \cdot f(m_i) = \sum r_i \cdot e_i \implies r_i = 0 \text{ for all } i \in I.$$

Corollary 18.21. Every module is (isomorphic to) a quotient of a free module.

Proof. Let M be a module. We claim that there exists a free module L and a surjective homomorphism $f \in \operatorname{Hom}_R(L,M)$. Then $L/\ker f \simeq M$. Let $\{m_i : i \in I\}$ be a generating set of M (note that such a generating set always exists, as one could take, for example, the set $\{m : m \in M\}$) and let $L = R^{(I)}$. Then L is free and $f : R^{(I)} \to M$, $e_i \mapsto m_i$, is a surjective homomorphism.

Another important property of free modules: free modules are *projective*.

Proposition 18.22. *If* M *is a free module and* $f \in \operatorname{Hom}_R(N,T)$ *is surjective and* $h \in \operatorname{Hom}_R(M,T)$, then there exists $\varphi \in \operatorname{Hom}_R(M,N)$ such that $f \circ \varphi = h$.

Proof. Let $\{m_i : i \in I\}$ be a basis of M. Since f is surjective, for each $i \in I$ there exists $n_i \in N$ such that $f(n_i) = h(m_i)$. Since M is free, there exists a unique homomorphism $\varphi \colon M \to N$ such that $\varphi(m_i) = n_i$ for all $i \in I$. Thus homomorphism is such that $f \varphi = h$.

Theorem 18.23. Let R be an integral domain. If M is free with a finite basis, then any two bases of M have the same number of elements.

Proof. Let K = K(R) be the field of fractions of R. Note that $V = \operatorname{Hom}_R(M, K)$ is an abelian group and hence it is a vector space (over K) with

$$(\lambda f)(m) = \lambda f(m),$$

where $\lambda \in K$, $f \in V$ and $m \in M$.

The vector space V has a well-defined dimension. Let us compute dim V. Let $\{e_1, \ldots, e_n\}$ be a basis of M. For each $i \in \{1, \ldots, n\}$ let

$$f_i \colon M \to K, \quad e_j \mapsto \begin{cases} 1 & \text{si } i = j, \\ 0 & \text{si } i \neq j. \end{cases}$$

We claim that $\{f_1, \ldots, f_n\}$ is basis of V. It generates V, as if $f \in V$, then

$$f = \sum_{i=1}^{n} f(e_i) f_i,$$

as these homomorphisms coincide in the elements of a basis of M, that is $f(e_j) = (\sum_{i=1}^n f(e_i)f_i)(e_j)$ for all $j \in \{1, \dots, n\}$. Moreover, $\{f_1, \dots, f_n\}$ is linearly independent, as if $0 = \sum_{i=1}^n \lambda_i f_i$, then, evaluating on each e_j , it follows that

$$0 = \left(\sum_{i=1}^{n} \lambda_i f_i\right) (e_j) = \lambda_j$$

for all $j \in \{1, ..., n\}$. Thus $n = \dim V$.

Definition 18.24. Let R be an integral domain. If M is a finitely generated module, we define the **rank** of M as the size of a basis of M. If M is not finitely generated, we say that the rank of M is infinite.

The rank of a module M will be denoted by rank(M).

Lecture 11

§19. Modules over principal domains

thm:rango

Theorem 19.1. Let R be a principal domain. If F is a finitely generated free module and N is a submodule of F, then N is free and $\operatorname{rank}(N) \leq \operatorname{rank}(F)$.

Proof. We proceed by induction on $n = \operatorname{rank}(F)$. Si n = 1, entonces $F \simeq_R R$ and the submodules of F are exactly the left ideals of R. In particular, N = (r) for some $r \in R$. If r = 0, then $N = \{0\}$ and the result holds. If $r \neq 0$, then $\{r\}$ is basis of N and the result holds.

Supongamos ahora que el resultado es válido para todo módulo libre de rango < n. Sea $\{f_1, \ldots, f_n\}$ una base de F y sea $F_n = (f_1, \ldots, f_{n-1})$. Por hipótesis inductiva, el submódulo $U = N \cap F_n$ es libre de rango $\le n-1$. Sea $\{n_1, \ldots, n_k\}$ una base de U (por convención, si $U = \{0\}$, entonces k = 0). Si $f \in F$, existen únicos $r_1, \ldots, r_n \in R$ tales que

$$f = \sum_{i=1}^{n} r_i \cdot f_i.$$

Queda definido entonces un morfismo

$$\varphi \colon F \to R, \quad \sum_{i=1}^n r_i \cdot f_i \mapsto r_n.$$

Si $\varphi(N) = \{0\}$, entonces $N \subseteq (f_1, \dots, f_{n-1})$ y luego N = U. Si $\varphi(N) \neq \{0\}$, entonces $\varphi(N)$ es un ideal de R, digamos $\varphi(N) = (x)$ para algún $x \in R \setminus \{0\}$. Sea $n_{k+1} \in N$ tal que $\varphi(n_{k+1}) = x$. Veamos que $\{n_1, \dots, n_k, n_{k+1}\}$ es base de N. Si $n \in N$, entonces $\varphi(n) = rx$ para algún $r \in R$. Entonces $n - r \cdot n_{k+1} \in N \cap \ker \varphi = N \cap F_n = U$ pues $\varphi(n - r \cdot n_{k+1}) = 0$. En particular,

$$n-r\cdot n_{k+1}\in(n_1,\ldots,n_k)\implies n\in(n_1,\ldots,n_k,n_{k+1}).$$

Veamos ahora que $\{n_1, \dots, n_k, n_{k+1}\}$ es linealmente independiente. Si

$$0 = \sum_{i=1}^{k+1} r_i \cdot n_i,$$

para $r_1, \ldots, r_{k+1} \in R$, entonces, como $\varphi(n_i) = 0$ para todo $i \in \{1, \ldots, k\}$, se tiene que

$$0 = \varphi(r_{k+1} \cdot n_{k+1}) = r_{k+1}x,$$

que implica $r_{k+1} = 0$. Queda entonces que $\sum_{i=1}^{k} r_i \cdot n_i = 0$. Como $\{n_1, \dots, n_k\}$ es base de U, se concluye que $r_1 = \dots = r_k = 0$.

El teorema anterior también vale en el caso de bases infinitas. La demostración, sin embargo, depende del lema de Zorn.

Corollary 19.2. Sea R un dominio de ideales principales. Si M es finitamente generado y N es un submódulo de M, entonces N es también finitamente generado.

Proof. Sabemos que existe un módulo libre F de rango finito y un epimorfismo $\varphi \colon F \to M$. Como $N_1 = \varphi^{-1}(N)$ es un submódulo de F, el teorema anterior implica que rank $(N_1) \le \operatorname{rank} F$. Si $\{x_1, \dots, x_k\}$ es base de N_1 , entonces, como φ es un epimorfismo, $\{\varphi(x_1), \dots, \varphi(x_k)\}$ es un conjunto de generadores de $\varphi(N_1) = \varphi(\varphi^{-1}(N)) = N$. En particular, $\operatorname{rank}(N) \le k = \operatorname{rank}(N_1) \le \operatorname{rank}(F)$.

Algunos ejercicios útiles:

xca:rank

Exercise 19.3. Sea R un dominio de ideales principales y sea M un módulo libre. Si S es un submódulo de M tal que M/S es libre, entonces $M \simeq S \oplus (M/S)$. Si además S es libre, entonces

$$rank(M) = rank(S) + rank(M/S)$$
.

xca:n_elements

Exercise 19.4. Sea R un dominio de ideales principales. Si M es un módulo libre de rango n, entonces todo conjunto linealmente independiente de M tiene a lo sumo n elementos.

Exercise 19.5. Sea R un dominio de ideales principales y sean M y N dos módulos libres. Demuestre que $M \simeq N$ si y sólo si $\operatorname{rank}(M) = \operatorname{rank}(N)$.

xca:base

Exercise 19.6. Sea R un dominio de ideales principales. Si M es un módulo libre tal que n = rank(M) y $\{s_1, \ldots, s_n\}$ es un conjunto de generadores, entonces $\{s_1, \ldots, s_n\}$ es una base de M.

Si M es un módulo, el **anulador** de M se define como

$$Ann(M) = \{r \in R : r \cdot m = 0 \text{ para todo } m \in M\}.$$

Si $m \in M$ se define

$$Ann(m) = \{r \in R : r \cdot m = 0\}.$$

Observar que $Ann(M) = \bigcap_{m \in M} Ann(m)$. Dejamos como ejercicio demostrar que Ann(M) y Ann(m) son ideales de R. Si $r \in R$, el anulador de r en M se define como

$$\operatorname{Ann}_{M}(r) = \{ m \in M : r \cdot m = 0 \}.$$

Dejamos como ejercicio demostrar que $Ann_M(r)$ es un submódulo de M.

Exercise 19.7. Sean M un módulo, $m \in M$ y $r \in R$ tal que $\mathrm{Ann}(m) = (r)$. Sea $p \in R$ irreducible.

- 1) Si p divide a r, entonces $(m)/p \cdot (m) \simeq R/(p)$.
- **2)** Si *p* no divide a *r*, entonces $p \cdot (m) = (m)$.

La **torsión** de un módulo *M* se define como el subconjunto

$$T(M) = \{ m \in M : r \cdot m = 0 \text{ para algún } r \in R \}.$$

Queda como ejercicio demostrar que T(M) es un submódulo de M. Se dice que un módulo M no tiene torsión si $T(M) = \{0\}$ y que es de torsión si T(M) = M.

Exercise 19.8. Si $M \simeq N$, entonces $T(M) \simeq T(N)$.

Exercise 19.9. Demuestre que $T(\bigoplus_{i \in I} M_i) \simeq \bigoplus_{i \in I} T(M_i)$.

xca:free

Exercise 19.10. Sean R un dominio principal y M un R-módulo. Pruebe que si M es finitamente generado y $S \subseteq M$ es un submódulo libre tal que M/S no tiene torsión, entonces M es libre

Examples 19.11.

- 1) $T(_R R) = \{ r \in R : rs = 0 \text{ para algún } s \in R \}.$
- **2)** $T(\mathbb{Z}/n) = \mathbb{Z}/n$.
- **3**) $T(\mathbb{Q}) = \{0\}.$
- **4)** $T(\mathbb{Z}^{\mathbb{Z}_{>0}}) = \{0\}.$

Example 19.12. Si V es un espacio vectorial de dimensión finita y $T: V \to V$ es una transformación lineal, sabemos que V es un K[X]-módulo con la acción

$$\left(\sum_{i=0}^{n} a_i X^i\right) \cdot v = \sum_{i=0}^{n} a_i T^i(v).$$

Veamos que V es de torsión, es decir V = T(V). Sea $n = \dim V$. Si $v \in V$, entonces $\{v, T(v), \dots, T^n(v)\}$ es linealmente dependiente, pues tiene n+1 elementos. En particular, existen $a_0, \dots, a_n \in K$ no todos cero tales que

$$0 = \sum_{i=0}^{n} a_i T^i(v) = \left(\sum_{i=0}^{n} a_i X^i\right) \cdot v.$$

Luego $v \in T(V)$.

Theorem 19.13. Sea R un dominio de ideales principales y sea M finitamente generado. Si $T(M) = \{0\}$, entonces M es libre.

Proof. Sin perder generalidad podemos suponer que M es no nulo. Supongamos además que M = (X), donde X es un conjunto finito de generadores. Si $x \in X$, entonces $r \cdot x = 0 \iff r = 0$, pues $T(M) = \{0\}$. Sea $S = \{x_1, \ldots, x_k\} \subseteq X$ maximal con respecto a la siguiente propiedad:

$$r_1 \cdot x_1 + \dots + r_k \cdot x_k = 0$$
 para $r_1, \dots, r_k \in R \implies r_1 = \dots = r_k = 0$.

Sea F = (S) el módulo libre con base en el conjunto S. Si X = S, no hay nada para demostrar. Si $y \in X \setminus S$, entonces existen $r_y, r_1, \dots, r_k \in R$ no todos cero tales que

$$r_y \cdot y + \sum_{i=1}^k r_i \cdot x_i = 0.$$

Como entonces $r_y \cdot y = -\sum_{i=1}^k r_i \cdot x_i \in F$, se concluye que $r_y \neq 0$, pues si $r_y = 0$ entonces $r_1 = \cdots = r_k = 0$. Como X es finito,

$$r = \prod_{y \in X \setminus S} r_y$$

está bien definido pues R es conmutativo y es tal que $r \cdot X \subseteq F$. Si $f : M \to M$, $x \mapsto r \cdot x$, entonces f es un morfismo tal que $f(M) = r \cdot M$. Como $T(M) = \{0\}$, entonces $\ker f = \{0\}$. Luego

$$r \cdot M = f(M) \simeq M$$

y en consecuencia M es libre.

Theorem 19.14. Sea R un dominio de ideales principales. Si M es un módulo finitamente generado, entonces $M = T(M) \oplus F$ con $F \simeq M/T(M)$ libre y finitamente generado. La parte de torsión es única y la parte libre es única salvo isomorfismos.

Proof. Veamos que $T(M/T(M)) \simeq \{0\}$. Si $x+T(M) \in T(M/T(M))$, sea $r \in R \setminus \{0\}$ tal que $r \cdot (x+T(M)) = T(M)$. Entonces $r \cdot x \in T(M)$, es decir que existe $s \in R \setminus \{0\}$ tal que $s \cdot (r \cdot x) = (sr) \cdot x = 0$. Como $sr \neq 0$, se concluye que $x \in T(M)$.

Como M es finitamente generado, el cociente M/T(M) es también finitamente generado. Como además M/T(M) no tiene torsión, se concluye que M/T(M) es libre. Como entonces M/T(M) es proyectivo, la sucesión exacta

$$0 \longrightarrow T(M) \xrightarrow{\iota} M \xrightarrow{\pi} M/T(M) \longrightarrow 0$$

donde ι es la inclusión y π es el morfismo canónico, el teorema...implica que $M \simeq T(M) \oplus M/T(M)$.

Para demostrar la unicidad, supongamos que $M = T \oplus L$, donde T es de torsión y L es libre. Primero demostraremos que T = T(M). Claramente $T \subseteq T(M)$. Por otro lado, si $m \in T(M)$, entonces m = t + l para ciertos $t \in T$ y $l \in L$. En particular, $r \cdot m = 0$ y $s \cdot t = 0$ para ciertos $r, s \in R$. Como R es conmutativo,

$$0 = (rs) \cdot m = (rs) \cdot (t+l) = (rs) \cdot t + (rs) \cdot l = (rs) \cdot l.$$

y entonces $l \in T(L)$. Pero como L es libre, $T(L) = \{0\}$ (pues T(L) es también libre y entonces cualquier elemento x de una base de T(L) sería tal que $\{x\}$ es linealmente independiente, una contradicción). Luego l = 0 y en consecuencia $m = t \in T$. La unicidad salvo isomorfismo de la parte libre se obtiene inmediatamente al observar que M/T(M).

§20. Smith's normal form

We finish the course with an algorithm that allows us to understand the structure of certain finitely generated modules. We will discuss the case of modules over euclidean domains, as in this case the algorithm is constructive.

Let M be a finitely generated module and $\{m_1, ..., m_k\}$ be a set of generators. There exists a surjective module homomorphism

$$\varphi \colon R^k \to M, \quad (r_1, \dots, r_k) \mapsto \sum_{i=1}^k r_i \cdot m_i,$$

and hence $M \simeq R^k/\ker \varphi$. The submodule $\ker \varphi$ is the **relations submodule** of M. Since R is an euclidean domain, R is a principal domain. Since M is finitely generated, then so is $\ker \varphi$. Let $\{e_1, \ldots, e_l\}$ be a generating set of $\ker \varphi$, say

$$e_1 = (a_{11}, a_{12}, \dots, a_{1k}),$$

 $e_2 = (a_{21}, a_{22}, \dots, a_{2k}),$
 \vdots
 $e_l = (a_{l1}, a_{l2}, \dots, a_{lk}).$

The matrix $A = (a_{ij})_{1 \le i \le l, 1 \le j \le k}$ is the **relations matrix** of M with respect to $\{m_1, \ldots, m_k\}$ and $\{e_1, \ldots, e_l\}$.

Claim. If $P \in \mathbb{R}^{l \times l}$ is invertible, then the rows $\{f_1, \dots, f_l\}$ of PA generate $\ker \varphi$. Moreover, PA is the relations matrix with respect to $\{m_1, \dots, m_k\}$ and $\{f_1, \dots, f_l\}$.

Let us prove the claim. Assume that $P = (p_{ij})$. The rows of PA are

$$f_{1} = p_{11}e_{1} + \dots + p_{1l}e_{l},$$

$$f_{2} = p_{21}e_{1} + \dots + p_{2l}e_{l},$$

$$\vdots$$

$$f_{l} = p_{l1}e_{1} + \dots + p_{ll}e_{l}.$$

Moreover, $f_j \in \ker \varphi$ for all $j \in \{1, ..., l\}$. Since P is invertible, the set $\{f_1, ..., f_l\}$ generates $\ker \varphi$. Indeed, each e_j is a linear combination of the f_i 's,

$$\begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_l \end{pmatrix} = P^{-1} \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_l \end{pmatrix}.$$

In particular, PA is the relations matrix with respect to $\{m_1, \ldots, m_k\}$ and $\{f_1, \ldots, f_l\}$.

Claim. If $Q \in R^{k \times k}$ is invertible and $Q^{-1} = (q_{ij})$ and for each $j \in \{1, ..., k\}$ we define $n_j = \sum_{i=1}^k q_{ij} \cdot m_i$, the set $\{n_1, ..., n_k\}$ generates M and the rows of AQ generate $\ker \varphi$. Moreover, AQ is the relations matrix with respect to $\{n_1, ..., n_k\}$.

Now we prove the claim. Since

$$\begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_k \end{pmatrix} = Q^{-1} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix},$$

it follows that

$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = A \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix} = (AQ) \begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_k \end{pmatrix}.$$

This implies that the rows of AQ are relations with respect to the generating set $\{n_1,\ldots,n_k\}$. Let $\psi: R^k \to M$, $(r_1,\ldots,r_k) \mapsto \sum_{i=1}^k r_i \cdot n_i$. Let us prove that the rows of AQ generate $\ker \psi$ with respect to $\{n_1,\ldots,n_k\}$. If $(r_1,\ldots,r_k) \in \ker \psi$, then $\sum_{i=1}^k r_i \cdot n_i = 0$. Write

$$\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = (r_1 \cdots r_k) Q^{-1} \begin{pmatrix} m_1 \\ m_2 \\ \vdots \\ m_k \end{pmatrix}.$$

We remark that each e_i belongs to R^k . Thus

$$(r_1 \cdots r_k)Q^{-1} = \left(\sum_{i=1}^k r_i \cdot q_{i1}, \sum_{i=1}^k r_i \cdot q_{2i}, \dots, \sum_{i=1}^k r_i \cdot q_{ki}\right) \in \ker \varphi.$$

Since $\ker \varphi$ is generated by $\{e_1, \ldots, e_l\}$, there exist $s_1, \ldots, s_l \in R$ such that

§20 Smith's normal form

$$(r_1 \cdots r_k)Q^{-1} = \sum_{i=1}^l s_i \cdot e_i,$$

that is

$$(r_1 \dots r_k)Q^{-1} = (s_1 \dots s_l) \begin{pmatrix} e_1 \\ \vdots \\ e_l \end{pmatrix} = (s_1 \dots s_l) \begin{pmatrix} a_{11} \ a_{12} \dots a_{1k} \\ \vdots \ \vdots \ \vdots \\ a_{l1} \ a_{l2} \dots a_{lk} \end{pmatrix}.$$

Rewritting this expression as

$$(r_1 \cdots r_k) = (s_1 \cdots s_l) A Q$$

we conclude that $(r_1, ..., r_k)$ is a linear combination of the rows of AQ, as

$$(r_1,\ldots,r_k) = \left(\sum_{i=1}^l s_i \cdot x_{i1},\ldots,\sum_{i=1}^l s_i \cdot x_{ik}\right) = \sum_{i=1}^l s_i \cdot (x_{11},\ldots,x_{1k}).$$

Therefore $\{n_1, ..., n_k\}$ generates M and the rows of AQ generate the corresponding relations submodule and AQ is the relations matrix with respect to $\{n_1, ..., n_k\}$ and $\{e_1, ..., e_l\}$.

Proposition 20.1. Let A be the relations matrix of a module M. If there exist invertible matrices $P \in R^{l \times l}$ and $Q \in R^{k \times k}$ such that

$$PAQ = \begin{pmatrix} a_1 & 0 & \cdots & \cdots & 0 \\ 0 & a_2 & \cdots & \cdots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & \cdot & \cdots & a_r & \cdots & 0 \\ 0 & \cdot & \cdots & 0 & \cdots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & \cdot & \cdots & \cdot & \cdots & 0 \end{pmatrix}$$

where $a_i \neq 0$ for all $i \in \{1, ..., r\}$ and $a_i \mid a_{i+1}$ for all $i \in \{1, ..., r-1\}$, then

$$M \simeq R/(a_1) \oplus \cdots \oplus R/(a_r) \oplus R^{n-r}$$
.

Proof. The matrix PAQ is the relations matrix with respect to the generating set $\{m_1, \ldots, m_k\}$ de M and respect to the relations submodule given by the rows of PAQ. If $\varphi \colon R^k \to M$, $(r_1, \ldots, r_k) \mapsto \sum_{i=1}^k r_i \cdot m_i$, then $R^k / \ker \varphi \simeq M$, as φ is a surjective homomorphism. For each $j \in \{r+1, \ldots, k\}$ let $a_j = 0$. Let

$$\psi: \mathbb{R}^k \to \mathbb{R}/(a_1) \oplus \cdots \oplus \mathbb{R}/(a_k), \quad (s_1, \ldots, s_k) \mapsto (s_1 + (a_1), \ldots, s_k + (a_k)).$$

A straighforward calculation shows that

$$\ker \psi = (a_1) \oplus \cdots \oplus (a_k).$$

Thus $R^k/\ker\psi\simeq \bigoplus_{i=1}^k R/(a_i)$.

It is an exercise to show that $\ker \varphi = \ker \psi$.

Therefore $M \simeq R/(a_1) \oplus \cdots \oplus R/(a_k)$. To finish the proof we need to note that $R/(a_i) \simeq R$ for all $i \in \{r+1, \ldots, k\}$.

The decomposition given in the previous proposition is known as the **Smith normal form** of the matrix M. How can we find the matrices P and Q? Consider the following matrix operations:

- 1) Switch the *i*-th row and *j*-th row, that is $F_i \leftrightarrow F_j$.
- 2) Replace row F_i by $F_i + \lambda F_j$ for some $\lambda \in R$ and $j \neq i$.
- 3) Switch the *i*-th column and the *j*-th column, that is $C_i \leftrightarrow C_j$.
- **4)** Replace column C_i by $C_i + \lambda C_j$ for some $\lambda \in R$ and $j \neq i$.

These operations are invertible. For example, the first operation corresponds to multiply A on the left by a permutation matrix. a izquierda a la matriz A por una matriz de permutación. The second operation corresponds to multiply A by $I + \lambda E_{ij}$ on the left, where

$$(E_{ij})_{kl} = \begin{cases} 1 & \text{if } i = k \text{ and } j = l, \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, column operations correspond to multiply on the right the matrix A either by a permutation matrix or a matrix of the form $I + \lambda E_{ij}$.

Theorem 20.2 (Smith's normal form). Let R be an euclidean domain. If $A \in R^{l \times k}$, there exists invertible matrices $P \in R^{l \times l}$ and $Q \in R^{k \times k}$ such that

$$PAQ = \begin{pmatrix} a_1 & 0 & \cdots & \cdots & 0 \\ 0 & a_2 & \cdots & \cdots & \cdots & 0 \\ \vdots & \ddots & & \vdots & \vdots \\ 0 & \cdots & a_r & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

where $a_1 \cdots a_k \neq 0$ and $a_i \mid a_{i+1}$ for all $i \in \{1, \dots, r-1\}$.

Sketch of the proof. Vamos a demostrar que podemos transformar a la matriz A en una matriz de la forma

$$B = \begin{pmatrix} b_{11} & 0 & \cdots & 0 \\ 0 & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & & \vdots \\ 0 & b_{n2} & \cdots & b_{nm} \end{pmatrix}$$

tal que cada b_{ij} es divisible por b_{11} . Repetimos el mismo procedimiento en la submatriz

$$\begin{pmatrix} \frac{b_{22}}{b_{11}} & \cdots & \frac{b_{2m}}{b_{11}} \\ \vdots & & \vdots \\ \frac{b_{n2}}{b_{11}} & \cdots & \frac{b_{nm}}{b_{11}} \end{pmatrix}$$

e iteramos el algoritmo hasta que no podamos continuar.

Veamos cómo conseguir la matriz B. Al aplicar operaciones de fila y columna podemos suponer que el elemento de la matriz A de menor norma está en la posición (1,1). Si algún a_{i1} no es divisible por a_{11} , escribimos $a_{i1} = a_{11}u + r$ para $u \in R$ y $r \in R$ tal que $\varphi(r) < \varphi(a_{11})$. Aplicamos entonces la transformación $F_i \leftarrow F_i - uF_1$ y nos queda una matriz que en el lugar (1,i) tendrá al elemento r. Similarmente, si algún a_{1j} no es divisible por a_{11} , entonces $a_{1j} = va_{11} + s$ con $\varphi(s) < \varphi(a_{11})$ y aplicamos la transformación $C_j \leftarrow C_j - vC_1$ para quedarnos con una matriz que en el lugar (j,1) tiene al elemento s. Si todos los a_{i1} son divisibles por a_{11} , digamos $a_{i1} = a_{11}\lambda_i$, entonces aplicamos la transformación $F_i \leftarrow \lambda_i F_1 - F_i$. Similarmente, si todos los a_{1j} son divisibles por a_{11} , digamos $a_{1j} = a_{11}\mu_j$, entonces aplicamos la transformación $C_j \leftarrow \mu_j C_1 - C_j$. Esto nos permite quedarnos con una matriz de la forma

$$\begin{pmatrix} a_{11} & 0 \\ 0 & A_1 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \cdots & * \end{pmatrix}.$$

Si alguna de las entradas de la submatriz A_1 no fuera divisible por a_{11} , hacemos la operación $F_1 \leftarrow F_1 + F_i$ o bien la operación $C_1 \leftarrow C_1 + C_j$ y repetimos el procedimiento.

Veamos algunos ejemplos.

Example 20.3. Sea

$$A = \begin{pmatrix} 2 & 5 & 3 \\ 8 & 6 & 4 \\ 3 & 1 & 0 \end{pmatrix} \in \mathbb{Z}^{3 \times 3}.$$

Vamos a encontrar la forma normal de Smith de la matriz A. Como el elemento de menor norma se encuentra en la posición (3,2), hacemos las operaciones $F_1 \leftrightarrow F_3$ y $C_1 \leftrightarrow C_2$ y nos queda la matriz

$$\begin{pmatrix} 1 & 3 & 0 \\ 6 & 8 & 4 \\ 5 & 2 & 3 \end{pmatrix}$$
.

Para obtener ceros en las posiciones (1,2), (1,3), (2,1) y (2,3) hacemos las operaciones $F_2 \leftrightarrow 6F_1 - F_2$, $F_3 \leftrightarrow 5F_1 - F_3$ y luego $C_1 \leftrightarrow 3C_1 - C_2$. Nos queda entonces la matriz

$$\begin{pmatrix} 1 & 3 & 0 \\ 0 & -10 & -4 \\ 0 & -13 & -3 \end{pmatrix}.$$

Para sacarnos de encima los números negativos multiplicamos la segunda y la tercera fila por -1, que es una unidad de \mathbb{Z} :

$$\begin{pmatrix} 1 & 3 & 0 \\ 0 & 10 & 4 \\ 0 & 13 & 3 \end{pmatrix}.$$

Ahora hacemos lo mismo en la submatriz $\begin{pmatrix} 10 & 4 \\ 13 & 3 \end{pmatrix}$. Para que en el lugar (2,2) nos quede el elemento de la submatriz que tiene menor norma, aplicamos las transformaciones $F_2 \leftrightarrow F_3$ y $C_3 \leftrightarrow C_2$. Nos queda entonces

$$\begin{pmatrix} 3 & 13 \\ 4 & 10 \end{pmatrix}$$
.

Escribimos $13 = 3 \cdot 4 + 1$ y aplicamos la transformación $C_2 \leftarrow C_2 - 4C_1$ para obtener $\begin{pmatrix} 3 & 1 \\ 4 & -6 \end{pmatrix}$. Intercambiamos la primera y la segunda columna y nos queda la matriz $\begin{pmatrix} 1 & 3 \\ -6 & 4 \end{pmatrix}$. Aplicamos ahora la transformación $F_2 \leftarrow 6F_1 + F_2$ y al resultado le aplicamos la transformación $C_2 \leftarrow 3C_1 - C_2$:

$$\begin{pmatrix} 1 & 0 \\ 0 & 22 \end{pmatrix}$$
.

Luego

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -22 \end{pmatrix}$$

es la forma normal de Smith de la matriz A.

Veamos ahora algunas aplicaciones.

Example 20.4. Sea M el grupo abeliano con generadores m_1, m_2, m_3 y relaciones $8m_1 + 4m_2 + 8m_3 = 0$, $4m_1 + 8m_2 + 4m_3 = 0$. La matriz de relaciones es entonces

$$A = \begin{pmatrix} 8 & 4 & 8 \\ 4 & 8 & 4 \end{pmatrix}.$$

Veamos que $M \simeq \mathbb{Z}/4 \times \mathbb{Z}/12$. Si hacemos la operación $F_1 \leftarrow 2F_2 - F_1$, nos queda la matriz

$$\begin{pmatrix} 0 & 12 & 0 \\ 4 & 8 & 4 \end{pmatrix},$$

que corresponde a los generadores $\{m_1, m_2, m_3\}$ con las relaciones $12m_2 = 0$ y $4m_1 + 8m_2 + 4m_3 = 0$. Si hacemos simultáneamente las operaciones $C_2 \leftarrow C_2 - 2C_1$ y $C_3 \leftarrow C_3 - C_1$, nos queda la matrix

§20 Smith's normal form

$$\begin{pmatrix} 0 & 12 & 0 \\ 4 & 0 & 0 \end{pmatrix}$$
,

que corresponde al conjunto de generadores $\{m_1 + 2m_2 + m_3, m_2\}$ con las relaciones $12m_2 = 0$ y $4(m_1 + 2m_2 + m_3) = 0$. Por último, al intercambiar la primera y la segunda columna, nos queda la matriz

$$\begin{pmatrix} 4 & 0 & 0 \\ 0 & 12 & 0 \end{pmatrix}$$
,

que corresponde al conjunto de generadores $\{m_2, m_1 + 2m_2 + m_3\}$ con las relaciones $4(m_1 + 2m_2 + m_3) = 0$ y $12m_2 = 0$. En conclusión, $M \simeq \mathbb{Z}/4 \times \mathbb{Z}/12$.

Example 20.5. Sea M el grupo abeliano generdo por $\{m_1, \ldots, m_4\}$ y sea K el subgrupo generado por $\{e_1, e_2, e_3\}$, donde

$$e_1 = 22m_3$$
, $e_2 = -2m_1 + 2m_2 - 6m_3 - 4m_4$, $e_3 = 2m_1 + 2m_2 + 6m_3 + 8m_4$.

Queremos calcular M/K. La matriz de relaciones es

$$A = \begin{pmatrix} 0 & 0 & 22 & 0 \\ -2 & 2 & -6 & -4 \\ 2 & 2 & 6 & 8 \end{pmatrix}.$$

Si aplicamos la operación $F_1 \leftrightarrow F_3$ y después la operación $F_2 \leftarrow F_1 + F_2$ nos da la matriz

$$\begin{pmatrix} 2 & 2 & 6 & 8 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 22 & 0 \end{pmatrix}.$$

Ahora aplicamos las operaciones $C_2 \leftarrow C_2 - C_1$, $C_3 \leftarrow C_3 - 3C_1$ y $C_4 \leftarrow C_4 - 4C_1$ y obtenemos

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 22 & 0 \end{pmatrix}.$$

Hacemos ahora $C_4 \leftarrow C_4 - C_2$ y nos queda la matriz

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 22 & 0 \end{pmatrix}$$

pero ahora nos encontramos con que $4 \nmid 22$. Utilizamos las operaciones $F_2 \leftarrow F_2 + F_3$, $C_3 \leftarrow C_3 - 5C_2$, $C_3 \leftarrow C_2$, $F_3 \leftarrow F_3 - 11F_2$ y $C_3 \leftarrow C_3 - C_2$ y nos queda

$$\begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -44 & 0 \end{pmatrix}.$$

Luego el grupo abeliano M/K puede presentarse con la base $\{n_1, n_2, n_3, n_4\}$ y las relaciones $2n_1 = 0$, $2n_2 = 0$ y $44n_3 = 0$. En conclusión, $M/K \simeq \mathbb{Z} \times (\mathbb{Z}/2)^2 \times (\mathbb{Z}/44)$.

Some hints

Lecture 2

- **2.31** Use the ring homomorphism $\mathbb{Z}[\sqrt{10}] \to \mathbb{Z}/2$, $a + b\sqrt{10} \mapsto a \mod 2$.
- **2.32** Use the ring homomorphism $\mathbb{Z} \hookrightarrow \mathbb{Z}[i] \xrightarrow{\pi} \mathbb{Z}[i]/(1+3i)$, where π is the canonical map.

Lecture 5

- **6.21** If X is a linearly independent set, a basis of V that contains X will be found as a maximal linearly independent set containing X.
- **7.3** Use induction on n and the fact that the prime number p divides $\binom{p}{k}$ for all $k \in \{1, 2, \ldots, p-1\}$. Alternatively, one could use that the prime number p divides $\binom{p^n}{k}$ for all $k \in \{1, 2, \ldots, p^n 1\}$.

Some solutions

Lecture 1

2.11 If x is a unit, then yx = xy = 1 for some $y \in R$ and hence ryx = r for all $r \in R$. Conversely, if R = (x), then, in particular, $1 \in R = (x)$ and hence 1 = xy and 1 = zx for some $y, z \in R$. Now z = z1 = z(xy) = (zx)y = 1y = 1 and hence x is a unit.

Lecture 4

5.18 Let $I_1 \subseteq I_2 \subseteq$ be a sequence of ideals of R. Since R is principal, each I_j is principal, say $I_j = (a_j)$ for some $a_j \in R$, so the sequence is of the form

$$(a_1) \subsetneq (a_2) \subsetneq \cdots$$
.

Since $I = \bigcup_{i \ge 1} (a_i)$ is an ideal of R, there exists $x \in R$ such that I = (x). Since $x \in (a_n)$ for some $n \in \mathbb{Z}_{>0}$, it follows that $(a_k) \subseteq I = (x) \subseteq (a_n)$ for all $k \in \mathbb{Z}_{>0}$.

5.34 Let d be the greatest common divisor of the coefficients of f. Since a divides all the coefficients of f, it follows that a divides d. If p is a prime that divides d, then either p divides a or p divides all the coefficients of the primitive polynomial f_1 . It follows that d divides a.

5.35

1) Let $f = \sum_{i=0}^{n} a_i X^i$, $g = \sum_{i=0}^{m} b_i X^i$. Suppose that fg is not primitive and let p be a prime number dividing all the coefficients of fg. Since both f and g are primitive, there exist $i \in \{0, ..., n\}$ and $j \in \{0, ..., m\}$ minimal such that $p \nmid a_i$ and $p \nmid b_j$. If c_{i+j} is the coefficient of X^{i+j} in fg, then

$$c_{i+j} = \sum_{k>i} a_k b_{i+j-k} + \sum_{k< i} a_k b_{i+j-k} + a_i b_j.$$

Thus p divides $\sum_{k>i} a_k b_{i+j-k} + \sum_{k< i} a_k b_{i+j-k}$ and does not divide the integer $a_i b_j$, that is p does not divide c_{i+j} , a contradiction.

2) Suppose that f is irreducible in $\mathbb{Z}[X]$. If f is not primitive, then $f = af_1$ for some $a \in \mathbb{Z} \setminus \{-1, 1\}$ and some primitive polynomial f_1 , a contradiction to the irreducibility of f. Let us prove that f is irreducible in $\mathbb{Q}[X]$. If not, say f = gh for some $g, h \in \mathbb{Q}[X]$ of positive degree. After multiplying by a suitable rational number, we may assume that

$$f = \frac{a}{h}g_1h_1,$$

where gcd(a,b) = 1 and $g_1, h_1 \in \mathbb{Z}[X]$ are primitive polynomials, that is

$$bf = ag_1h_1$$
.

The greatest common divisor of the coefficients of bf is b. Since g_1h_1 is primitive by the previous item, the greatest common divisor of the coefficients of ag_1h_1 is a. Thus a = b or a = -b, that is $f = g_1h_1$ or $f = -g_1h_1$ in $\mathbb{Z}[X]$.

5.36 Since \mathbb{Z} is noetherian, it follows that $\mathbb{Z}[X]$ is noetherian by Hilbert's theorem. Then $\mathbb{Z}[X]$ admits factorizations. We need to show that the factorization into irreducibles is unique. Let $f \in \mathbb{Z}[X]$ be non-zero and assume that

$$f = f_1 \cdots f_k = g_1 \cdots g_l$$

be factorizations of f into non-constant irreducibles integer polynomials. Since f_1, \ldots, f_k and g_1, \ldots, g_k are irreducible in $\mathbb{Q}[X]$ and $\mathbb{Q}[X]$ is a unique factorization domain, it follows that k = s and there exits $\sigma \in \mathbb{S}_k$ such that g_i and $h_{\sigma(i)}$ are associate for all $i \in \{1, \ldots, k\}$. After reordering we may assume that for each $i \in \{1, \ldots, k\}$ there exists $a_i/b_i \in \mathbb{Q}$ such that $b_ig_i = a_ih_i$. Since both g_i and h_i are irreducible integer polynomials, it follows from Exercise 5.35 that both g_i and h_i are primitive. By Exercise 5.34, a_i (resp. b_i) is the greatest common divisor of the coefficients of a_ih_i (resp. b_ig_i). This implies that a_i and b_i are associate, so a_i/b_i is a unit. Hence g_i and h_i are associate in $\mathbb{Z}[X]$.

5.39 Let $x \in \mathbb{Z}[i]$ be irreducible. Since $x \notin \mathcal{U}(\mathbb{Z}[i])$, it follows that N(x) > 1. Write the integer N(x) as a product of (not necessarily different) primes p_1, \ldots, p_k . Since x divides $N(x) = x\overline{x} = p_1 \cdots p_k$ and x is prime, x divides p_i for some $i \in \{1, \ldots, k\}$.

If p_i is irreducible in $\mathbb{Z}[i]$, then x and p_i are associate, so $x \in \{p_i, -p_i, ip_i, -ip_i\}$ for some prime number p_i that is irreducible in $\mathbb{Z}[i]$.

If p_i is not irreducible, say $p_i = \alpha \beta$ for some $\alpha, \beta \in \mathbb{Z}[i]$ that are not units of $\mathbb{Z}[i]$. Then $p_i^2 = N(p_i) = N(\alpha)N(\beta)$ with $N(\alpha) > 1$ and $N(\beta) > 1$. The unique factorization of \mathbb{Z} implies that $N(\alpha) = N(\beta) = p_i$ and hence α and β are irreducible in $\mathbb{Z}[i]$. Thus x divides $\alpha\beta$. If x divides the irreducible α , then x and α are associate in $\mathbb{Z}[i]$. This means that $\alpha \in \{x, -x, xi, -xi\}$ and $N(x) = N(\alpha) = p_i$ for some prime number p_i .

Combining the previous paragraphs with Fermat's theorem it follows that the irreducibles of $\mathbb{Z}[i]$ are 1+i, 1-i, -1+i and -1-i, p, -p, pi and -p for some prime

number $p \in \mathbb{Z}$ such that $p \equiv 3 \mod 4$, and the elements $x \in \mathbb{Z}[i]$ such that N(x) = p where $p \in \mathbb{Z}$ is a prime number such that $p \equiv 1 \mod 4$.

Lecture 5

6.24 Consider \mathbb{R} as a \mathbb{Q} -vector space. Since $\sqrt{2} \notin \mathbb{Q}$, the subset $\{1, \sqrt{2}\}$ of \mathbb{R} is linearly independent over \mathbb{Q} . Extend $\{1, \sqrt{2}\}$ to a basis B of \mathbb{R} as a \mathbb{Q} -vector space. The linear map $f: \mathbb{R} \to \mathbb{R}$ such that $f(1) = \sqrt{2}$, $f(\sqrt{2}) = 1$ and f(b) = b for all $b \in B \setminus \{1, \sqrt{2}\}$ is not of the form $f(x) = \lambda x$. Indeed, if $f(x) = \lambda x$ for some $\lambda \in \mathbb{R}$, then $\sqrt{2} = f(1) = \lambda$ and $1 = f(\sqrt{2}) = \lambda \sqrt{2}$, a contradiction.

6.25 Let $\{x_i : i \in I\}$ be a basis of \mathbb{R} as a \mathbb{Q} -vector space and let $\{e_1, \dots, e_n\}$ be the standard basis of \mathbb{R}^n as a vector space over \mathbb{R} . Routine calculations prove that

$${x_i e_i : i \in I, 1 \le j \le n}$$

is a basis of \mathbb{R}^n as a \mathbb{Q} -vector space. Since I and $I \times \{e_1, \dots, e_n\}$ have the same cardinality, there exists a bijective map $f: I \to I \times \{e_1, \dots, e_n\}$. This bijective map extends to a linear isomorphisms between the rational vector spaces \mathbb{R}^n and \mathbb{R} . In particular, \mathbb{R}^n and \mathbb{R} are isomorphic as abelian groups.

6.26 Let G be a group such that $Aut(G) = \{id\}$. Then G is abelian, as the map $G \to G$, $x \mapsto gxg^{-1}$, is an automorphism of G. Since G is abelian, the map $G \to G$, $x \mapsto x^{-1}$, is an automorphism of G. Since the automorphism group of G is trivial, $x = x^2$ for all $x \in G$. At this point it is convenient to write G additively. We claim that G is a vector space over the field $\mathbb{Z}/2$ of two elements, the action is $\mathbb{Z}/2 \times G \to G$, $(\lambda, g) \mapsto \lambda g$. Note that we need g + g = 0 to prove that G is indeed a vector space over $\mathbb{Z}/2$, as for example

$$0 = 0g = (1+1)g = 1g + 1g = g + g$$

for all $g \in G$. ${}^{\circ}$ Let B be a basis of G over $\mathbb{Z}/2$. If $|I| \ge 2$, the automorphism of G that exchanges to basis elements of B and and fixes all other elements of B would be non-trivial. Hence |I| = 1 and G is either trivial of cyclic of order two. Both groups have trivial automorphism group.

7.3 One approach to solve this exercise requires the following fact: p is a prime and $1 \le k \le p^n - 1$, then $\binom{p^n}{k}$ is divisible by p. Let us prove this claim. Write

$$\binom{p^n}{k} = \frac{(p^n)!}{k!(p^n-k)!} = \frac{p^n}{k} \binom{p^n-1}{k-1}.$$

Then

$$k\binom{p^n}{k} = p^n \binom{p^n - 1}{k - 1},$$

that is p^n divides $k\binom{p^n}{k}$.

If gcd(p, k) = 1, then it follows that p divides $\binom{p^n}{k}$ by unique decomposition of every integer as a product of primes. We may assume then that $gcd(p, k) \neq 1$, say $k = p^{\alpha}m$ for some integer m not divisible by p. Then

$$p^{n}\binom{p^{n}-1}{k-1} = k\binom{p^{n}}{k} = p^{\alpha}m\binom{p^{n}}{k}$$

and hence

$$p^{n-\alpha} \binom{p^n-1}{k-1} = m \binom{p^n}{k}.$$

Since $k < p^n$, it follows that $m - \alpha \ge 1$. Thus p divides $m\binom{p^n}{k}$ and hence p divides $\binom{p^n}{k}$ because p and m are coprime.

8.4 Let $G = \langle g : g^3 = 1 \rangle$ be the cyclic group of order three and ω be a primitive cubic root of one. The map $G \to \mathbb{R} \times \mathbb{C}$, $g \mapsto (1, \omega)$, extends to an algebra homomorphism $\varphi \colon \mathbb{R}[G] \to \mathbb{R} \times \mathbb{C}$. Since $\dim_{\mathbb{R}} \mathbb{R} \times \mathbb{C} = \dim_{\mathbb{R}} [G] = 3$, it follows that φ is a bijective.

Lecture 6

9.19 Let $T: V \to W$ be a bijective linear map such that $T\rho_g = \psi_g T$ for all $g \in G$.

1) Assume that ψ is not irreducible. Let Y be an invariant subspace of W. Then $X = T^{-1}(Y)$ is an invariant subspace of V, as

$$\rho_g(X) = \rho_g T^{-1}(Y) = T^{-1} \psi_g(Y) \subseteq T^{-1}(Y) = X$$

for all $g \in G$.

2) By assumption V can be decomposed as $V = X \oplus Y$ for some invariant subspaces X and Y. Let $X_1 = T(X)$ and $Y_1 = T(Y)$. Note that X_1 and Y_1 are invariant. In fact, if $g \in G$, then $\psi_g(X_1) = \psi_g T(X) = T\rho_x(X) \subseteq T(X) = X_1$. Similarly, $\psi_g(Y_1) \subseteq Y_1$ for all $g \in G$. Now we prove that $W = X_1 \oplus Y_1$. If $w \in W = T(V)$, then w = T(V) for some $v \in V$ since T is surjective. Write v = x + y for $x \in X$ and $y \in Y$. Then $w = T(v) = T(x) + T(y) \in X_1 + Y_1$. Now if $w \in X_1 \cap Y_1$, then w = T(x) = T(y) for some $x \in X$ and $y \in Y$. Since T is injective, it follows that $x = y \in X \cap Y = \{0\}$. Hence w = 0.

3)

Lecture 9

15.12 Note that if M is a module over $\mathbb{Z}/2$, then 2m = 0 for all $m \in M$. If $\mathbb{Z}/4$ is a module over $\mathbb{Z}/2$, then $0 = 2 \cdot 1 = 1 + 1 = 2$, a contradiction.

16.9 Take for example the \mathbb{Z} -module $\cup_{k\geq \mathbb{Z}}/(p^k)$.

References

- 1. M. Artin. Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ, 1991.
- O. A. Cámpoli. A principal ideal domain that is not a Euclidean domain. Amer. Math. Monthly, 95(9):868–871, 1988.
- 3. D. S. Dummit and R. M. Foote. *Abstract algebra*. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2004.
- W. Feit and J. G. Thompson. Solvability of groups of odd order. *Pacific J. Math.*, 13:775–1029, 1963.
- G. Gonthier, A. Asperti, J. Avigad, and et al. A machine-checked proof of the odd order theorem. In *Interactive theorem proving*, volume 7998 of *Lecture Notes in Comput. Sci.*, pages 163–179. Springer, Heidelberg, 2013.
- T. W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1980. Reprint of the 1974 original.
- S. Lang. Algebra. Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, second edition, 1984.
- J.-P. Serre. Linear representations of finite groups. Graduate Texts in Mathematics, Vol. 42. Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott.
- B. Steinberg. Representation theory of finite groups. Universitext. Springer, New York, 2012.
 An introductory approach.
- 10. N. M. Stephens. On the Feit-Thompson conjecture. Math. Comp., 25:625, 1971.
- 11. J. C. Wilson. A principal ideal ring that is not a Euclidean ring. Math. Mag., 46:34–38, 1973.
- R. A. Wilson. 101.15 An elementary proof that not all principal ideal domains are Euclidean domains. *Math. Gaz.*, 101(551):289–293, 2017.

Index

Algebra, 31	of a character, 55
Anulador	Krull's theorem, 29
de un elemento del anillo, 80	
de un módulo, 80	Maschke's theorem, 41
	Mathieu's group M_9 , 58
Burnside's theorem, 59	Módulo
	de torsión, 81
Center	sin torsión, 81
of a ring, 3	
Character, 43	Representation, 33
Chinese remainder theorem, 11	completely reducible, 37
Classification of simple groups, 59	decomposable, 37
Correspondence theorem	indecomposable, 37
for characters, 55	irreducible, 35
Domain, 15	unitary, 37
Domain, 13	Representations
Ergodic theorem, 46	equivalence, 34
Engoure uncoroni, to	Ring, 1
Feit–Thompson's conjecture, 59	commutative, 1
Feit–Thompson's theorem, 59	division, 3
Fermat's theorem, 27	homomorphism, 5
Field, 3	~
Freshman's dream, 31	Schur's
	first orthogonality relation, 48
Gauss integers, 2	lemma, 42
Group	theorem, 47, 48
simple, 58	Smith's normal form, 86
T1 1 4	Subrepresentation, 35
Ideal, 4	Subring, 2
left, 4	Torsión
maximal, 29	
Integral domain, 15	de un módulo, 81
Invariant map, 34	Units, 3
Invariant subspace, 35	Olitis, 3
Jacobson's radical, 30	Weyl's trick, 38
Kernel	Zorn's lemma, 29