PROBLEM SOLVING SESSIONS

All varieties are assumed to be normal.

1. Line bundles and linear series

Exercise 1.1. Let A and B be two \mathbb{Q} -Cartier \mathbb{Q} -divisors. Show that

- A + B is ample when A is ample and B is nef,
- A + B is nef when both A and B are nef,
- A + B is base point free when A and B are base point free.

For a Cartier divisor D on a projective variety X, we define $\kappa(D)$ to be the dimension of $\phi_{|mD|}(X)$ for divisible enough $m \gg 0$, where $\phi_{|mD|}$ is the map associated to |mD|. One can show that $\kappa(D) = r$ if and only if $h^0(X, \mathcal{O}_X(mD)) \sim Cm^r$ for some C > 0. We say that D is big if $\kappa(D) = \dim X$.

Exercise 1.2. Let L be a nef Cartier divisor on a (smooth) projective surface S such that $L^2 > 0$. Show that L is big. Hint: show that $H^2(X, mL) = 0$ for $m \gg 0$ and use the Riemann-Roch formula.

Exercise 1.3. Let X be a projective variety and let L be any Cartier divisor. Show that $\kappa(L) \leq \dim X$. Hint: find an ample divisor A such that A - L is effective, and show the statement for A by looking at its Hilbert polynomial.

Exercise 1.4. Let X be a projective variety and let L be a Cartier divisor on X.

• Assume that L is big and let F be any effective divisor. Show that $H^0(X, mL - F) \neq 0$ for some $m \gg 0$. Hint: consider the short exact sequence

$$0 \to \mathcal{O}_X(mL - F) \to \mathcal{O}_X(mL) \to \mathcal{O}_F(mL|_F) \to 0$$

• Show that L is big if and only if $L \sim_{\mathbb{Q}} A + E$ for some ample \mathbb{Q} -divisor A and effective \mathbb{Q} -divisor E.

• Show that L + N is big for any nef \mathbb{Q} -divisor N when L is big.

Exercise 1.5. Let α be any real number and let L be an ample Cartier divisor on a projective variety X of dimension d such that $L^d > \alpha$. Show that for any point $x \in X$ there exists an effective \mathbb{Q} -divisor $D \sim_{\mathbb{Q}} L$ such that $\mathrm{mult}_x D > \alpha$. Hint: Consider the exact sequence

$$0 \to \mathcal{O}_X(mL) \otimes m_x^k \to \mathcal{O}_X(mL) \to \mathcal{O}_X/m_x^k \to 0$$

Exercise 1.6. Let X be a smooth projective surface, and let L be an ample Cartier divisor on X. Show that if $K_X + L$ is ample and the base locus of $K_X + L$ is of dimension zero, then $3(K_X + L)$ is base point free (*).

2. Singularities of the MMP

Exercise 2.1. Let $C \subseteq \mathbb{P}^n$ be a smooth projective curve embedded into some \mathbb{P}^n and let $S \subseteq \mathbb{A}^{n+1}$ be its cone. Show that

- S is klt if g(C) = 0,
- S is lc but not klt if g(C) = 1,
- S is not lc if g(C) > 1.

Exercise 2.2. Let (X, Δ) be a klt pair and let A be a big and nef \mathbb{Q} -Cartier \mathbb{Q} -divisor. Show that there exists an effective \mathbb{Q} -divisor $E \sim_{\mathbb{Q}} A$ such that $(X, \Delta + E)$ is klt.

Exercise 2.3. Show that $lct(\mathbb{P}^2; C)$ is equal to 1 when C is a nodal rational curve, and $\frac{5}{6}$ when C is a rational cuspidal curve.

Exercise 2.4. Let X be a (non-necessarily) smooth toric variety, and let D be the union of all toric divisors. Show that (X, D) is log canonical.

Exercise 2.5. Let $f: X \to Y$ be a projective fibration.

- Assume that X is ϵ -klt. Show that a general fibre of f is ϵ -klt as well.
- Using the canonical bundle formula, show that if X is klt and $\rho(X/Y) = 1$, then Y is klt.

3. MMP

Exercise 3.1. Let X be a klt projective variety such that K_X is big and nef. Using the base point free theorem show that K_X is semiample.

Exercise 3.2. Let X be a smooth projective surface.

- Let C be a curve such that $C^2 < 0$ and $K_X \cdot C < 0$. Show that C is an exceptional curve (i.e. $C \simeq \mathbb{P}^1$ and $C^2 = -1$).
- Assume that X is not uniruled (covered by rational curves). Using the cone theorem and the contraction theorem show that K_X is nef if and only if there are no exceptional curves on X.

Exercise 3.3. Let $f: X \to Y$ be a morphism from a \mathbb{Q} -Gorenstein variety X such that codim $\operatorname{Exc} f \geq 2$ and $-K_X$ is f-ample. Show that K_Y is not \mathbb{Q} -Cartier.

Exercise 3.4. Let (X, B) be a log Fano variety. Show that you can run the MMP for any divisor D.

Exercise 3.5. Let X be a normal projective variety.

- Let $f: X \to Y$ be a birational morphisms. Show that $H^0(X, f^*D + E) \simeq H^0(Y, D)$ for any Cartier divisor D on Y and an effective Cartier divisor E on X.
- Let $f: X \dashrightarrow Y$ be a K_X -negative divisorial contraction or a flip between \mathbb{Q} -Gorenstein varieties. Show that $H^0(X, mK_X) \simeq H^0(Y, mK_Y)$ for divisible enough $m \in \mathbb{N}$.

Assume that X is terminal and the full MMP and the abundance conjecture (i.e. K_X nef implies semiample) holds. Show that X is either uniruled or $\kappa(X) \ge 0$.

Exercise 3.6. Let X and Y be two birational terminal projective varieties such that both K_X and K_Y are nef (*).

- Show that X and Y are isomorphic in codimension one.
- Let A be an ample \mathbb{Q} -Cartier divisor on Y, and let A_X be its strict transform on X. Show that if $K_X + A_X$ is nef, then $X \simeq Y$.
- Show that X and Y are connected by a sequence of log flips.
- Show that X and Y are connected by a sequence of flops (**).

We say that $f: X \dashrightarrow Y$ is a log flip, if there exists a klt pair (X, Δ) s.t. f is a $(K_X + \Delta)$ -flip. We call f a flop if it is a K_X -crepant log flip.

4. Boundedness and effective results

Exercise 4.1. Show that polarised varieties (X, L) with L very ample and the Hilbert polynomial $\chi(tL)$ fixed, belong to a bounded family.

Exercise 4.2. Let n be a natural number. Show (using the boundedness of Fano varieties) that there exists $b \in \mathbb{N}$ depending only on n such that $h^0(X, -K_X) \leq b$ for any smooth projective Fano variety X of dimension n.

Exercise 4.3. Let $\mathcal{X} \to T$ be a bounded family of klt varieties. Show that there exists $\epsilon > 0$ such that every element of the family is ϵ -klt.

Exercise 4.4. Let m be a natural number.

- Using the BAB theorem, show that klt del Pezzo surfaces X with mK_X Cartier are bounded.
- Show the same statement without using the BAB theorem (**). Hint: show that the volume is bounded and then use Kollár's effective base point freeness.

Exercise 4.5. Let L be a Cartier divisor such that $L - K_X$ is ample. Show that $H^0(X, iL) \neq 0$ for some $1 \leq i \leq \dim X + 1$. (*)

Exercise 4.6. Fix a natural number n and $\epsilon > 0$. Let (X, Δ) be an ϵ -lc n-dimensional pair, let Δ be big, and let $K_X + \Delta \sim_{\mathbb{Q}} 0$. Using the general version of BAB conjecture and the boundedness of lc-thresholds, show that there exists $0 < \delta = \delta(n, \epsilon)$ such that if (X, Φ) is a log pair with $\Phi > (1 - \delta)\Delta$ and $K_X + \Phi \sim_{\mathbb{Q}} 0$, then (X, Φ) is klt (*).