

OptiMOS[™] Small-Signal-Transistor

Features

- Dual N-channel
- Enhancement mode
- Logic level
- Avalanche rated
- · Fast switching
- Qualified according to AEC Q101
- 100% lead-free; RoHS compliant
- Halogen-free according to IEC61249-2-21

source (1) pin 1 gate (1) pin 2 drain (2) pin 3 pin 4

Product Summary

V _{DS}	60	V	
R _{DS(on),max}	V _{GS} =10 V	3	Ω
	V _{GS} =4.5 V	4	
I _D		0.3	Α

PG-SOT363

	RoHS	
AEC® Qualified		Halogen-Free

Туре	Package	Tape and Reel Information	Marking	HalogenFree	Packing
2N7002DW	PG-SOT363	H6327: 3000 pcs/reel	X8s	Yes	Non Dry
		·			

Parameter 1)	Symbol	Conditions	Value	Unit
Continuous drain current	ID	T _A =25 °C	0.30	А
		T _A =70 °C	0.24	
Pulsed drain current	I _{D,pulse}	T _A =25 °C	1.2	
Avalanche energy, single pulse	E _{AS}	$I_{\rm D} = 0.3 \; {\rm A}, \; R_{\rm GS} = 25 \; {\rm \Omega}$	1.3	mJ
Reverse diode d v /d t	dv/dt	$I_{\rm D}{=}0.3$ A, $V_{\rm DS}{=}48$ V, di/dt=200 A/ μ s, $T_{\rm j,max}{=}150$ °C	6	kV/µs
Gate source voltage	V_{GS}		±20	V
ESD class		JESD22-A114 (HBM)	class 0 (<250V)	
Power dissipation	P_{tot}	T _A =25 °C	0.5	W
Operating and storage temperature	$T_{\rm j},T_{\rm stg}$		-55 150	°C
IEC climatic category; DIN IEC 68-1			55/150/56	

¹⁾ Remark: one of both transistors in operation.

Parameter	Symbol Conditions		Values			
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - minimal footprint ²⁾	R_{thJA}		-	-	250	K/W

Electrical characteristics, at T_j =25 °C, unless otherwise specified

Static characteristics

Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D =250 μA	60	-	-	V
Gate threshold voltage	$V_{\rm GS(th)}$	V _{DS} =V _{GS} , I _D =250 μA	1.5	2.1	2.5	
Drain-source leakage current	I _{D (off)}	$V_{\rm DS}$ =60 V, $V_{\rm GS}$ =-10 V, $T_{\rm j}$ =25 °C	ı	ı	0.1	μΑ
		V _{DS} =60 V, V _{GS} =0 V, T _j =150 °C	1	1	5	
Gate-source leakage current	I _{GSS}	V _{GS} =20 V, V _{DS} =0 V	-	1	10	nA
Drain-source on-state resistance	$R_{ ext{DS(on)}}$	V _{GS} =4.5 V, I _D =0.25 A	ı	2.0	4	Ω
		V _{GS} =10 V, I _D =0.5 A	-	1.6	3	
Transconductance	g_{fs}	$ V_{\rm DS} > 2 I_{\rm D} R_{\rm DS(on)max},$ $I_{\rm D} = 0.24~{\rm A}$	0.2	0.36	-	S

 $^{^{2)}}$ Perfomed on a $40x40\text{mm}^2$ FR4 PCB with both sided Cu sense-force traces, each 1mm wide, $70\mu\text{m}$ thick and 20mm long.

Parameter	Symbol	Symbol Conditions		Values		Unit
			min.	typ.	max.	
Dynamic characteristics						
Input capacitance	Ciss		-	13	20	pF
Output capacitance	Coss	V _{GS} =0 V, V _{DS} =25 V, f=1 MHz	-	4.1	6	1
Reverse transfer capacitance	C _{rss}		-	2.0	3	
Turn-on delay time	$t_{d(on)}$		-	3.0	4.5	ns
Rise time	t _r	V _{DD} =30 V, V _{GS} =10 V,	-	3.3	5	
Turn-off delay time	$t_{d(off)}$	$I_{\rm D}$ =0.5 A, $R_{\rm G,ext}$ =6 Ω	-	5.5	9	
Fall time	t_{f}]	-	3.1	5	
Gate Charge Characteristics						
Gate to source charge	Q _{gs}	$V_{\rm DD}$ =48 V, $I_{\rm D}$ =0.5 A, $V_{\rm GS}$ =0 to 10 V	-	0.05	0.1	nC
Gate to drain charge	Q_{gd}		-	0.2	0.4	
Gate charge total	Q_g		-	0.4	0.6	
Gate plateau voltage	V _{plateau}		-	4.0	-	V
Reverse Diode						
Diode continous forward current	Is	T _25 °C	-	-	0.3	А
Diode pulse current	I _{S,pulse}	T _A =25 °C	-	-	1.2]
Diode forward voltage	V _{SD}	V _{GS} =0 V, I _F =0.5 A, T _j =25 °C	-	0.96	1.2	V
Reverse recovery time	t _{rr}	V _R =30 V, I _F =0.5 A,	-	8.5	13	ns
Reverse recovery charge	Q _{rr}	d <i>i_F</i> /d <i>t</i> =100 A/μs	-	2.4	4	nC

1 Power dissipation

$P_{\text{tot}} = f(T_A)$

2 Drain current

3 Safe operating area

 $I_D=f(V_{DS}); T_A=25 \text{ °C}; D=0$

parameter: t_p

4 Max. transient thermal impedance

 $Z_{\text{thJA}} = f(t_p)$

parameter: $D=t_p/T$

5 Typ. output characteristics

 $I_D=f(V_{DS}); T_i=25 °C$

parameter: V_{GS}

7 Typ. transfer characteristics

 $I_{D}=f(V_{GS}); |V_{DS}|>2|I_{D}|R_{DS(on)max}$

6 Typ. drain-source on resistance

 $R_{DS(on)}=f(I_D); T_j=25 \text{ °C}$

parameter: V_{GS}

8 Typ. forward transconductance

 g_{fs} =f(I_D); T_j =25 °C

9 Drain-source on-state resistance

 $R_{DS(on)} = f(T_i); I_D = 0.3 A; V_{GS} = 10 V$

10 Typ. gate threshold voltage $V_{\text{corr}} = f(T_1)$: $V_{\text{corr}} = V_{\text{corr}} = 250 \text{ Hz}$

 $V_{\rm GS(th)}$ =f($T_{\rm j}$); $V_{\rm DS}$ =V_{GS}; $I_{\rm D}$ =250 μ A parameter: $I_{\rm D}$

11 Typ. capacitances

 $C=f(V_{DS}); V_{GS}=0 V; f=1 MHz; T_i=25$ °C

12 Forward characteristics of reverse diode

 $I_{\text{F}} = f(V_{\text{SD}})$ parameter: T_{i}

13Avalanche characteristics

 $I_{AS} = f(t_{AV}); R_{GS} = 25\Omega$

parameter: T_{J(start)}

14 Typ. gate charge

 V_{GS} =f(Q_{gate}); I_D =0.5 A pulsed

parameter: $V_{\rm DD}$

15 Drain-source breakdown voltage

 $V_{BR(DSS)}=f(T_j); I_D=250 \mu A$

SOT363

Package Outline:

Footprint:

HLG05826

Packing:

Note: For symmetric types there is no defined Pin 1 orientation in the reel.

Dimensions in mm

Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.