

Winning Space Race with Data Science

Michalis Chatzinikolaou October 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- Collection of Data: Using Web APIs and Web Scrapping to collect SPACE-X launch data.
- Data Wrangling: Creation of binary success/failure outcome.
- Data Exploration: Exploring the data through visualization techniques to draw early insights.
- Data Analysis: Analyzing data with SQL to export constants
- Data Visualization: Visualizing in a map the successful launch sites.
- Model Building: Building predictive model.

Summary of all results

- Success increases over time
- KSC LC-39A is most successful launch site.
- GEO,ES-L1,HEO and SSO 100% successful.

Introduction

Background

SpaceX, a leader in the space industry, strives to make space travel affordable for everyone. Its
accomplishments include sending spacecraft to the international space station, launching a
satellite constellation that provides internet access and sending manned missions to space.
SpaceX can do this because the rocket launches are relatively inexpensive (\$62 million per
launch) due to its novel reuse of the first stage of its Falcon 9 rocket. Other providers, which are
not able to reuse the first stage, cost upwards of \$165 million each. By determining if the first
stage will land, we can determine the price of the launch. To do this, we can use public data and
machine learning models to predict whether SpaceX -or a competing company -can reuse the
first stage.

Explore

- How payload mass, launch site, number of flights, and orbits affect first-stage landing success
- Rate of successful landings over time
- Best predictive model for successful landing (binary classification)

Methodology

Executive Summary

- Data collection methodology:
 - Data collected both by SPACE-X API and web scrapping.
- Perform data wrangling
 - Using one-hot encoding and mainly python pandas.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data Collection

- Steps
- **Requestdata** from SpaceX API rocket launch data API.
- Convert to dataframe.
- Filter to contain only Falcon 9 launches
- **Export** to csv

Data Collection – SpaceX API

(https://github.com/mchatzinikolaou/IBM DataScience Capstone/blob/main/1 API.ipy nb)

Used spacex_url="https://api.spacexdata.com/v4/launches/past"

endpoint from SPACE-X api:

https://github.com/r-spacex/SpaceX-API

Data Collection - Scrapping

https://github.com/mchatzinikolaou/IBM DataScience Capstone/blob/main/2 Web S crapping.ipynb

Data Wrangling

https://github.com/mchatzinikolaou/IBM_DataScience_Capstone/blob/main/3_Wranggling.ipynb

 Added Failure where launch was not successful, Success where it was.

EDA with Data Visualization

 https://github.com/mchatzinikolaou/IBM_DataScience_Capston e/blob/main/5_Visualization.ipynb

EDA with SQL

• https://github.com/mchatzinikolaou/IBM_DataScience_Capstone/blob/main/4_SQL.ipynb

Build an Interactive Map with Folium

https://github.com/mchatzinikolaou/IBM_DataScience_Capstone/blob/main/6_Follium.ipynb

Build a Dashboard with Plotly Dash

 https://github.com/mchatzinikolaou/IBM_DataScience_Capstone/blob/main/7_ Plotly.py

Predictive Analysis (Classification)

 https://github.com/mchatzinikolaou/IBM_DataScience_Capstone/blob/main/8_ Predictive_Analytics.ipynb

Results

- Launch success has improved over time
- KSC LC-39A has the highest success rate among landing sites
- Orbits ES-L1, GEO, HEO and SSO have a 100% success rate
- Most launch sites are near the equator, and all are close to the coast to take advantage of Earth's rotation and avoid damaging any cities.

Flight Number vs. Launch Site

- Earlier flights had a lower success rate (blue = fail)
- Later flights had a higher success rate (orange = success)
- · Around half of launches were from CCAFS SLC 40 launch site
- VAFB SLC 4E and KSC LC 39A have higher success rates
- We can infer that new launches have a higher success rate

Payload vs. Launch Site

Exploratory Data Analysis

- Typically, the higher the payload mass (kg), the higher the success rate
- Most launces with a payload greater than 7,000 kg were successful
- KSC LC 39A has a 100% success rate for launches less than 5,500 kg
- VAFB SKC 4E has not launched anything greater than $\sim 10,000 \text{ kg}$

2023

19

Success Rate vs. Orbit Type

- 100% Success Rate: ES-L1, GEO, HEO and SSO
- 50%-80% Success Rate: GTO, ISS, LEO, MEO, PO
- 0% Success Rate: SO

Flight Number vs. Orbit Type

- The success rate typically increases with the number of flights for each orbit
- This relationship is highly apparent for the LEO orbit
- The GTO orbit, however, does not follow this trend

Payload vs. Orbit Type

- Heavy payloads are better with LEO, ISS and PO orbits
- The GTO orbit has mixed success with heavier payloads

Launch Success Yearly Trend

- The success rate improved from 2013-2017 and 2018-2019
- The success rate decreased from 2017-2018 and from 2019-2020
- Overall, the success rate has improved since 2013

All Launch Site Names

Launch Site Names

- CCAFS LC-40
- CCAFS SLC-40
- KSC LC-39A
- VAFB SLC-4E

Landing Outcome Cont.

Records with Launch Site Starting with CCA

• Displaying 5 records below

	ACEXTBL \	LIKE'CCAN' LIM	IT_5;						
sqlite:/	//my_data1	. db		b9-abla4348F4a4.c3n41cmd8ngnrk39u98g.databases.appdo					
DATE	time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
010-06-04	18:45:00	F9 v1.0 80003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
010-12-08	15:43:00	F9 v1.0 80004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LBO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
12-05-22	07:44:00	F9 v1.0 80005	CCAFS LC-40	Dragon demo flight C2	525	LBO (ISS)	NASA (COTS)	Success	No attempt
12-10-08	00:35:00	F9 v1.0 80006	CCAFS LC-40	SpeceX CRS-1	500	LBO (155)	NASA (CRS)	Success	No attempt
013-03-01	15:10:00	E9 v1 0 80007	CCAES LC-40	SnareY CRS-2	677	180 (155)	NASA (CRS)	Success	No attempt

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'

```
* *sql select * from SPACEXTABLE where Launch_Site like 'CCA%' limit 5
```

* sqlite:///my_data1.db Done.

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mi
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	

boosters launched by NASA (CRS)

Total Payload Mass

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) \
    FROM SPACEXTBL \
    WHERE CUSTOMER = 'NASA (CRS)';

* ibm_db_sa://yyy33800:***@1bbf73c5-d84a-48
    sqlite:///my_data1.db
Done.
    1

45596
```

Total Payload Mass

45,596 kg (total) carried by

Average Payload Mass

 2,928 kg (average) carried by booster version F9 v1.1

Average Payload Mass by F9 v1.1

```
%sql SELECT AVG(PAYLOAD_MASS__KG_) \
    FROM SPACEXTBL \
    WHERE BOOSTER_VERSION = 'F9 v1.1';

* ibm_db_sa://yyy33800:***@1bbf73c5-d84a-4
    sqlite:///my_data1.db
Done.

1
2928
```

12/22/2015

First
Successful
Ground
Landing Date

```
%sql SELECT MIN(DATE) \
FROM SPACEXTBL \
WHERE LANDING_OUTCOME = 'Success (ground pad)'

* ibm_db_sa://yyy33800:***@1bbf73c5-d84a-4bb0-85b!
sqlite:///my_data1.db
Done.

1
2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

- Booster mass greater than 4,000 but less than 6,000
- JSCAT-14, JSCAT-16, SES-10, SES-11 / EchoStar 105

```
Nagl SELECT PAYLOAD \
FROM SPACEXTBL \
NHERE LANDING OUTCOME = 'Success (drone ship)' \
AND PAYLOAD MASS_KG_BETWEEN 4800 AND 6800;

+ ibm_db_sa://yyy33800:***@ibbf73c5-d84a-4bb0-85b9-sqlite://ny_data1.db
Done.

payload

JCSAT-14

JCSAT-16

SES-11 / EchoStar 105
```

Total Number of Successful and Failure Mission Outcomes

- 1 Failure in Flight
- 99 Success
- 1 Success (payload status unclear)

Boosters Carried Maximum Pay load

Carrying Max Payload

- F9 B5 B1048.4
- F9 B5 B1049.4
- F9 B5 B1051.3
- F9 B5 B1056.4
- F9 B5 B1048.5
- F9 B5 B1051.4
- F9 B5 B1049.5
- F9 B5 B1060.2
- F9 B5 B1058.3
- F9 B5 B1051.6
- F9 B5 B1060.3
- F9 B5 B1049.7

```
%sql SELECT BOOSTER_VERSION \
FROM SPACEXTBL \
WHERE PAYLOAD_MASS__KG_ = (SELECT_MAX(PAYLOAD_MASS__KG_) FROM_SPACEXTBL);

* sqlite://my_datal.db
Done.

Booster_Version
F9 B5 B1048.4
```

F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6

F9 B5 B1060.3 F9 B5 B1049.7

2015 Launch Records

Showing month, date, booster version, launch site and landing outcome

With Markers

Near Equator: the closer the launch site to the equator, the easier it is to
launch to equatorial orbit, and the more help you get from Earth's rotation
for a prograde orbit. Rockets launched from sites near the equator get an
additional natural boost - due to the rotational speed of earth - that helps
save the cost of putting in extra fuel and boosters.

At Each Launch Site

- Outcomes:
- Green markers for successful launches
- Red markers for unsuccessful launches
- Launch site CCAFS SLC-40 has a 3/7 success rate (42.9%)

- .86 km from nearest coastline
- 21.96 km from nearest railway
- 23.23 km from nearest city
- 26.88 km from nearest highway

 KSC LC-39A has the most successful launches amongst launch sites (41.2%)

SpaceX Launch Records Dashboard

Success as Percent of Total

- KSC LC-39A has the highest success rate amongst launch sites (76.9%)
- 10 successful launches and 3 failed launches

SpaceX Launch Records Dashboard

- Payloads between 2,000 kg and 5,000 kg have the highest success rate
- 1 indicating successful outcome and 0 indicating an unsuccessful outcome

Classification Accuracy

Accuracy

- All the models performed at about the same level and had the same scores and accuracy. This is likely due to the small dataset. The Decision Tree model slightly outperformed the rest when looking at .best_score_
- .best_score_ is the average of all cv folds for a single combination of the parameters

	LogReg	SVM	Tree	KNN
Jaccard_Score	0.800000	0.800000	0.800000	0.800000
F1_Score	0.888889	0.888889	0.888889	0.888889
Accuracy	0.833333	0.833333	0.833333	0.833333

Best params is : {'criterion': 'gini', 'max_depth': 16, 'max_features': 'auto', 'min_samples_leaf': 4, 'min_samples_split': 10, 'splitter': 'random'}

Confusion Matrix

Performance Summary

- A confusion matrix summarizes the performance of a classification algorithm
- All the confusion matrices were identical
- The fact that there are false positives (Type 1 error) is not good
- Confusion Matrix Outputs:
 - · 12 True positive
 - 3 True negative
 - 3 False positive
 - · 0 False Negative
- Precision = TP / (TP + FP)
 - 12/15 = .80
- Recall = TP / (TP + FN)
 - 12 / 12 = 1

- 2*(.8*1)/(.8+1) = .89
- Accuracy = (TP + TN) / (TP + TN + FP + FN) = .833

Conclusions

- Model Performance: The models performed similarly on the test set with the decision tree
 model slightly outperforming
- **Equator**: Most of the launch sites are near the equator for an additional natural boost due to the rotational speed of earth -whichhelps save the cost of putting in extra fuel and boosters
- • Coast: All the launch sites are close to the coast
- Launch Success: Increases over time
- **KSC LC-39A**: Has the highest success rate among launch sites. Has a 100% success rate for launches less than 5,500 kg
- •Orbits: ES-L1, GEO, HEO, and SSO have a 100% success rate
- **Payload Mass**: Across all launch sites, the higher the payload mass (kg), the higher the success rate

