COMP561: Computational Biology Methods & Research

RNA minimum free energy secondary structures

Jérôme Waldispühl School of Computer Science, McGill

RNA world

In prebiotic world, RNA thought to have filled two distinct roles:

1.an information carrying role because of RNA's ability (in principle) to self-replicate,

2.a catalytic role, because of RNA's ability to form complicated 3D

shapes.

Over time, DNA replaced RNA in Its first role, while proteins replaced RNA in its second role.

RNA classification

Messenger RNA:

- Carry genetic information,
- Structure less important.

Non-coding RNA:

- Functional,
- Structure is important.

RNA structure and function

- RNAs have a 3D structure,
- This 3D structure allow complex functions,
- The variety of RNA structures allow the specific recognition of a wide range of ligands,
- Some molecules target these RNA structures (antibiotics, antiviruses):

RNA vs DNA: Chemical nature

- 2'-OH group attached to sugar (instead of 2'-H): more polar
- Substitution of thymine by uracile = suppression of group 5-CH3

Small modifications => big effects

RNA vs DNA: Modification of the local and global geometry

:Local conformation

Global conformation:

RNA vs DNA: Consequence of the modification of the geometry

RNA secondary structure

RNA secondary structure

Central assumption: RNA secondary structure forms before the tertiary structure.

This class: Secondary structure prediction using energy minimization principles

Principle of minimum energy

For a closed system with fixed entropy, the total energy is minimized at equilibrium.

Application to RNA folding:

- Closed system: Isolated RNA molecule
- Energy of system: Folding energy of the RNA
- State of the system: An RNA (secondary) structure

Definition

- Let $\omega \in \{A,C,G,U\}^*$ be a RNA sequence
- Let Δ be the ensemble of all secondary structures S compatible with ω.
- Let E(S, ω) be the free energy on ω folded in S.

Then, the minimum free energy (MFE) of ω is:

$$MFE(\omega) = \min_{S \in \Delta} (E(S, \omega))$$

And the minimum free energy secondary structure of ω is the structure S such that $E(S,\omega) = MFE(\omega)$.

Note: Here, we assume it exists an unique structure S satisfying the equation.

Free energy of a RNA secondary structure

First approximation:

- Base pairs stabilize the RNA secondary structure
- Free energy ≡ number of base pairs

Second approximation:

- Base pairs have different energies
- Free energy: sum of all base pair energies

Modeling RNA secondary structure

- Read from left to right
- The last open parenthesis is paired with the next closed parenthesis
- Dots are unpaired nucleotides

RNA Nomenclature

CUAGCAGUCAGUCAGACUGCAACAGCACACUAGCACAGUGUCGACUGCACAGCACGACACUAGCAAGUGUCA((((...(((...((((...)))))))))))

String to contacts

Contacts:

(5,9)

(4,10)

(2,13)

(1,14)

Notes:

- Assume no crossing interactions.
- Each it exist a closing parenthesis for each opening one.
- Base pair opens before closing.

Contacts to String

Principle: Look up at the rightmost position.

- If there is a base pair, print it and print recursively before and between this base pair.
- Otherwise, print unpaired and move one position left.

```
Contacts: (4,10), (5,8), (1,3).
1234567890
              f(1,10)
XXX(XXXXX)
              f(1,3)+f(5,9)
XXX(XXXX.)
               f(1,3)+f(5,8)
XXX((XX).)
xxx((x.).)
              f(1,3)+f(6,7)
               f(1,3)+f(6,6)
XXX((..))
(X)(.(..))
              f(1,3)
(.)(.(..))
              f(2,2)
```

RNA secondary structure prediction using dynamic programming

Compute the secondary structure with the maximal number of canonical base pairs (Nussinov-Jacobson, 1980).

$$\delta(i,j) = \begin{cases} 1 & (i,j) \text{ is a valid base pair} \\ -\infty & Otherwise \end{cases}$$

Algorithm (Nussinov-Jacobson):

$$M(i,j) = \begin{cases} 0 & \text{if } i \ge j - \theta \\ M(i,j-1) & \text{No base pair at } j \\ \max_{i \le k < j - \theta} \left(\delta(k,j) + M(i,k-1) + M(k+1,j-1) \right) & (k,j) \text{ is a base pair} \end{cases}$$

Example

 Ω =GCCAGU, θ=1

	0	1	2	3	4	5	6
0	М	G	С	С	A	G	U
1	G	0	0	1	1	1	2
2	С	-	0	0	0	1	1
3	С	-	_	0	0	1	1
4	A	-	_	1	0	0	1
5	G	-	-	-	-	0	0
6	U	_	_	_	_	_	0

M(1,6)

$$\begin{split} \mathsf{M}(1,3) &= \mathsf{max}(\mathsf{M}(1,2), \pmb{\delta}(1,3) + \mathsf{M}(2,2)) = \mathsf{max}(0,1+0) = 1 \\ \mathsf{M}(1,4) &= \mathsf{max}(\mathsf{M}(1,3), \, \pmb{\delta}(1,4) + \mathsf{M}(2,3), \, \pmb{\delta}(2,4) + \mathsf{M}(1,1) + \mathsf{M}(3,3)) \\ &= \mathsf{max}(1,0+0,0+0+0) = 1 \end{split}$$

Backtracking

 $M(1,|\omega|)$ returns the maximal number of base pairs but not the structure.

How do we retrieve the secondary structure?

Backtracking!

Idea: Once we know the value of $M(1,|\omega|)$, we can trace the base pairs that were used to obtain it.

Example

 Ω =GCCAGU, θ=1

M	G	С	С	A	G	U
G	0	0 🖊	1	1	1	2
С	_	0	0	0	1	1
С	_	_	0	0	1	1
А	_	_	_	0	0	1
G	_	_	_	_	0	0
U	_	_	_	_	_	0

$$M(1,5) = 1$$

$$\delta(1,6) + M(2,5) = 1 + 1 = 2$$

$$M(1,1) + \delta(2,6) + M(3,5) = 0 + 0 + 1 = 1$$

$$M(1,2) + \delta(3,6) + M(4,5) = 0 + 0 + 0 = 0$$

$$M(1,3) + \delta(4,6) + M(5,5) = 1 + 1 + 0 = 2$$

Example (option 1)

 Ω =GCCAGU, θ=1

М	G	С	С	A	G	U
G	0	0	1	1	1	2
С	_	0	0	0	1	1
С	_	_	0	0	1	1
A	_	_	_	0	0	1
G	_	_	_	_	0	0
U	_	_	_	1	_	0

```
(????) Base pairs=\{(1,6)\}
```

$$((??))$$
 Base pairs= $\{(1,6),(2,5)\}$

((
$$\bullet \bullet$$
)) Base pairs={(1,6),(2,5)}

Example (option 2)

 Ω =GCCAGU, θ=1

М	G	С	С	A	G	U
G	0	0	1	1	1	2
С	-	0	0	0	1	1
С	_	_	0 🗲	0	1	1
A	_	_	_	0	0	1
G	_	1	_	1	0	0
Ū	_	_	_	_	_	0

```
(????) Base pairs=\{(1,6)\}
```

$$(?(?))$$
 Base pairs= $\{(1,6),(3,5)\}$

$$(\cdot (\cdot))$$
 Base pairs= $\{(1,6),(3,5)\}$

Example (option 3)

Ω=GCCAGU, θ=1

M	G	С	С	A	G	U
G	0	0	1 🗲	1	1	2
С	_	0	0	0	1	1
С	_	_	0	0	1	1
A	_	_	_	0	0	1
G	_	_	_	_	0	0
U	_	_	_	_	-	0

```
???(?) Base pairs=\{(4,6)\}
```

$$(?)(?)$$
 Base pairs= $\{(1,3),(4,6)\}$

(•) (•) Base pairs=
$$\{(1,3),(4,6)\}$$

RNA nearest neighbor energy model

Accuracy of the Nussinov-Jacobson model is moderate. We need a better model to weight the structures.

How?: Build an energy model from experimental measures (D. Turner).

But we need:

- to define what are the important structural features that has to be evaluated.
- to keep the energy contribution local in order to allow a divide-and-conquer aproach (fast).

Stacking base pairs

- Base stacking interactions between the pi orbitals of the bases' aromatic rings contribute to stability.
- GC stacking interactions with adjacent bases tend to be more favorable.

Note: Stacking energy are orientated.

$$5' - CG - 3' \neq 5' - GC - 3'$$

 $3' - GC - 5' \neq 3' - CG - 5'$

Nearest Neighbor Energy Model

http://biomol.bme.utexas.edu

Zuker Algorithm

- Introduced by M. Zuker and P. Stiegler in 1981.
- Calculate the secondary structure with the MFE.
- Adaption of the Nussinov-Jacobson model to the thermodynamical nearest energy model.
- Algorithm originally implemented in the *mfold* software.
- Other popular implementation include:
 - RNAfold in the Vienna RNA Package
 - RNAstructure
 - UNAfold (mfold successor)

Want to know more?

Enroll COMP564 "Advanced Computational Biology Methods & Research" !!!

When? Winter 2019

Why? You liked COMP561 and want to know about bioinformatics.

What? We cover fundamental algorithms in computational structural & system biology.

jeromew@cs.mcgill.ca