Тест подъема аппарата

План-график работ

№	Сроки	Содержание работ
1	Октябрь	Определение дополнительных миссий аппарата, постановка задач
2	Ноябрь - Декабрь	Выбор способов решения поставленных задач, определение состава аппарата, разработка модели аппарата, подбор комплектующих
2	Декабрь	Прохождение онлайн-тестирования
3	Январь	Разработка модели аппарата, начало написания кода, подготовка к отборочной сессии
4	Февраль	Отборочная сессия, доработка ПО, доработка модели аппарата, разработка печатных плат
5	Март	Изготовление элементов конструкции аппарата, доработка ПО, испытания всех систем
6	Апрель	Разработка ПО для взаимодействия всех систем, сборка аппарата, пайка микросхем
7	Май	Сборка тестовой модели аппарата, проведение испытаний, проверка работы всех систем, заочный допуск
8	Июнь	Разбор телеметрии с испытаний, устранение недочетов, сборка финальной модели аппарата
9	Июль	Финал чемпионата

Энергопотребление компонентов аппарата

Устройство	Количество, шт.	Потребление в рабочем режиме, А	Напряжение питания, В	Мощность, Вт
Микроконтроллер STM32F411 Black Pill	1	0,0234	3,3	0,07722
SD карта	1	0,25	3,3	0,825
Радиомодуль E220-400T22S	1	0,11	3,3	0,363
Акселерометр + гироскоп LSM6DS3	1	0,0009	3,3	0,00297
Магнитометр LIS3MDL	1	0,0002	3,3	0,00066
Датчик тока INA219	1	0,00002	3,3	0,000066
Фоторезистор VT93N1	2	0,0006	3,3	0,00198
АЦП 8-канальный AD5593RBRUZ	2	0,001	3,3	0,0033
GPS модуль NEO-7M	1	0,1000	5	0,5
Пищалка	1	0,025	5	0,125
Датчик давления, температуры, влажности ВМЕ280	1	0,012	5	0,06
Датчик примесей воздуха MICS-5524	1	0,032	5	0,16
Датчик качества воздуха CCS811	1	0,03	5	0,15
Датчик примесей воздуха MICS-6814	1	0,032	5	0,16
Компрессор JSB1523018	1	0,12	5	0,6
Электромагнитный клапан ZT2-3C	1	0,204	5	1,02
Мотор двухосевой панели GA12-N20	1	0,06	5	0,3
Мотор угловой панели GA12-N20	1	0,04	5	0,2
Мотор угловой лепестки GA12-N20 активные	2	0,26	16	4,16
Мотор угловой лепестки GA12-N20 пассивные	6	0,02	16	0,32
Пережигатель	2	2	4,1	8,2

Энергопотребление компонентов аппарата

Потребление	Ток, А	To
Максимальное потребление	3,245	Максимальна
Максимальное потребление (3,3V)	0,388	Максимальна
Максимальное потребление (5V)	0,859	Максимальна
Максимальное потребление (16V)	0,640	Максимальна

Токоотдача	Ток, А
Максимальная токоотдача	8,000
Максимальная токоотдача (3,3V)	4,500
Максимальная токоотдача (5V)	3,000
Максимальная токоотдача (16V)	1,000

Расчет скорости спуска без парашюта

уравнение скорости с учетом аэродинамического сопротивления

$$v = v_0 + \left(g - \frac{C_x \cdot S \cdot \frac{\rho \cdot v^2}{2}}{M}\right) \cdot t$$
12

$$2 \cdot M \cdot \left(\frac{\sqrt{\frac{2 \cdot C_x \cdot S \cdot \rho \cdot g \cdot t^2 + 2 \cdot C_x \cdot S \cdot \rho \cdot v_0 \cdot t + M}{M}}}{\frac{M}{2}} - \frac{1}{2} \right)$$

 $C_r \cdot S \cdot \rho \cdot t$

текущая скорость аппарата с учетом аэродинамического сопротивления

$$s(t) = \int_0^t \!\! v(t) dt$$
 текущее изменение высоты с учетом аэродинамического сопротивления

$$C_{r} = 0.84$$

коэффициент аэродинамического сопротивления

$$S = rac{\pi \cdot (84 \ mm)^2}{4} = 5 \ 542 \ mm^2$$
 площа

площадь сечения аппарата

− Изменение высоты s(t), м − Скорость спуска v(t), м/с

$$v_0 = 7 \; \frac{m}{s}$$

 $v_0=7\,rac{m}{c}$ скорость аппарата

масса аппарата

 $M = 840 \ gm$

 $\rho = 1.225 \, \frac{kg}{m^3}$

36

MICS

Параметры датчиков

	Измерения	Диапазон измерений	Точность измерени я	Частота измерени я	Объем данных , байт		Измерения	Диапазон измерений	Точность измерения	Частота измерени я	Объем данных , байт
	Температура	-40 - +85 град	0,5 град		2	Фото	Сопротивлени е	12-300K	-	28,6 Гц	4
DNAE300	Давление		100 Па (1 м)	157 Гц -	4	CCS811 MICS-5524	Напряжение	0 - 26 B		1 14.7 ГЦ∣	2
DIVILZOO	Влажность	0% - 100%	3%	26,32 Гц			Ток	-	1% (0,2%)		4
	Высота	0% - 100%	1M		4		углекислый СО2	400 – 8192 ppm			2
LSM6DSL	Акселеромет р	16 g	40 mg	104,2 Гц	6		концентрация летучих веществ TVOC	0 – 1187 ppb			2
	Гироскоп	2000 град/с	3 град/с		6		угарный СО	1 – 1000 ppm		4 Гц	. 2
LIS3MDL	Магнитометр	16 гаусс	1 гаусс	80 Гц	6		этанол С2Н5ОН	10 – 500 ppm			
	Широта	-	2,5 м	10 Гц	4		водород Н2	1 – 1000 ppm			
	Долгота	-			4		аммиак NH3	1 – 500 ppm			
	Высота	0 - 50000 м			4		метан СН4	1000 ppm			
Ublox neo	Скорость, узл	0 - 500 м/с	0,1 м/с		-	MICS-6814 TF-luna	угарный СО	1-1000 ppm		4 Гц	2
/m	Время, с	-	30 нс		4		диоксид азота NO2	0,05 - 10 ppm			2
	Время, мкс	-	55110		4		аммиак NH3	1 - 300 ppm			2
	Fix	-	-		1				+6cm (0.2-3m)	′l 100 Ful	
Madgwick	q1, q2, q3, q4	-	-	40 Гц	16			0,2 - 8м	±2% (3-8M)		2

Расчет радиолинии (E220-400T22S)

с – скорость света

f – частота радио

<u>λ – д</u>лина волны

d – максимальное расстояние между радиомодулями

ΣL – суммарные потери в пространстве

ΣР – суммарная мощность на входе в радиоприемник

Р_{тіп} – чувствительность радиоприемника

∆ – запас мощности на входе в радиоприемник

$$\sum l = -20\log\left(4\pi\frac{d}{\lambda}\right)$$

 $\lambda = \frac{c}{f}$

c = 299792458 m/c

f = 450.125 МГц

 $\lambda = 0.666 \text{ M}$

d = 7000 M

 $\Sigma L = -102.417 \text{ dBm}$

 $\Sigma P = P_{npd} - L_{npd} + G_{npd} - \Sigma L + G_{npm} - L_{npm} = -76 \text{ dBm}$

 $P_{min} = -117 \text{ dBm}$

 $\Delta = \Sigma P - P_{min} = 41 \text{ dBm}$

Радиомодуль	Кабель	Антенна	Воздух	Антенна	Кабель	Радиомодуль
22	-2	0	-102	8	-2	117
дБм	дБ	дБи	дБ	дБи	дБ	дБм
Рпрд	L _{прд}	G _{прд}	ΣL	G _{прм}	L _{прм}	P _{min}