

- Main article: Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl Neural Message Passing for Quantum Chemistry, International Conference on Machine Learning (2017)
- Simpler model based on Gilmer: Bishop and Bishop Deep Learning Foundations and Concepts (2024), chapter 13 Graph Neural Networks
- QM9 Dataset used by Gilmer: Raghunathan Ramakrishnan, Pavlo Dral, Matthias Rupp and Anatole Lilienfeld: Quantum chemistry structures and properties of 134 kilo molecules, Scientific Data (2014)

The simple model of Bishop (2024) (T)

- Supervised learning, observations are molecules, classified as water soluble/insoluble
- Applying ML to a deterministic rather than stochastic process
- Nodes, attributes X, edges, adjacency matrix A

From

$$X = \begin{bmatrix} x_{11}, ..., x_{1D} \\ ... \\ x_{N1}, ..., x_{ND} \end{bmatrix}$$

$$A = \begin{bmatrix} 0, \dots 1 \\ \dots \\ 1, \dots, 0 \end{bmatrix}$$

• i.i.d. is out and permutation equivariance is in

Chantiers de Science https:

But ... diffferent molecules have different dimensionality? (A)

- Convolution is your friend
- Node (atom) x_v has a hidden value h_{ν} that is updated by each layer
- $h_v^{t+1} = Update(h_v^t, Aggregate(h_m^t))$ $m \in N(x_v)$
- The larger the molecule, the deeper the network

Bishop, Figure 13.4

Gilmer (2017) (T)

- Predict not one but 13 different variables related to molecules
- Two types of known variable values
 - What chemists already know (does not cover all 130.000 molecules)
 - 2. What can be approximated using quantum computing (expensive)
- ML is almost as good as (1) and much less expensive than (2)

No.	Property	Unit	Description				
1	tag	-	'gdbg' string to facilitate extraction				
2	i	-	Consecutive, 1-based integer identifier				
3	A	GHz	Rotational constant				
4	В	GHz	Rotational constant				
5	С	GHz	Rotational constant				
6	μ	D	Dipole moment				
7	α	a_0^3	Isotropic polarizability				
8	ϵ_{HOMO}	Ha	Energy of HOMO				
9	ϵ_{LUMO}	Ha	Energy of LUMO				
10	ϵ_{gap}	Ha	Gap (ε _{LUMO} – ε _{HOMO})				
11	⟨R²⟩	a_0^2	Electronic spatial extent				
12	zpve	Ha	Zero point vibrational energy				
13	U _o	Ha	Internal energy at o K				
14	U	Ha	Internal energy at 298.15 K				
15	Н	Ha	Enthalpy at 298.15 K				
16	G	Ha	Free energy at 298.15 K				
17	C _v	_cal_ molK	Heat capacity at 298.15 K				

Table 3. Calculated properties. Properties are stored in the order given by the first column.

Ramakrishnan (2014)

Predict one variable (A)

- Edges become multi-dimensional real-valued vectors
- Message from atom x_v to x_w $M(h_v, h_w, e, vw) = B(e_{vw})h_w$
- Notation suppresses number of layer
- $O(n^2d^2)$ but large molecules are rarely cliques
- If the largest molecule in the training data is big, build a deep network and vice versa
- Not robust if test molecules are much larger than those in the training data (no i.i.d.)
- Next: 'attention mechanism' across all atoms

Gilmer Table 2: Results (T)

Shirt construction and the same of the sam								Gilmer			
Previous non-graph models Table 2. Comparison of Previous Approaches (left) with MPNN							Previous graph models		Graph model Ensemble		
Target	BAML	BOB	CM	ECFP4	HDAD	GC	GG-NN	DTNN	enn-s2s	enn-s2s-ens	
mu	4.34	4.23	4.49	4.82	3.34	0.70	1.22	_	0.30	0.20	
alpha	3.01	2.98	4.33	34.54	1.75	2.27	1.55	-	0.92	0.68	
HOMO	2.20	2.20	3.09	2.89	1.54	1.18	1.17	-	0.99	0.74	
LUMO	2.76	2.74	4.26	3.10	1.96	1.10	1.08	-	0.87	0.65	
gap	3.28	3.41	5.32	3.86	2.49	1.78	1.70	-	1.60	1.23	
R2	3.25	0.80	2.83	90.68	1.35	4.73	3.99	-	0.15	0.14	
ZPVE	3.31	3.40	4.80	241.58	1.91	9.75	2.52	-	1.27	1.10	
U0	1.21	1.43	2.98	85.01	0.58	3.02	0.83	-	0.45	0.33	
U	1.22	1.44	2.99	85.59	0.59	3.16	0.86	-	0.45	0.34	
H	1.22	1.44	2.99	86.21	0.59	3.19	0.81	-	0.39	0.30	
G	1.20	1.42	2.97	78.36	0.59	2.95	0.78	$.84^{2}$	0.44	0.34	
Cv	1.64	1.83	2.36	30.29	0.88	1.45	1.19	-	0.80	0.62	
Omega	0.27	0.35	1.32	1.47	0.34	0.32	0.53	-	0.19	0.15	
Average	2.17	2.08	3.37	53.97	1.35	2.59	1.36	-	0.68	0.52	

- Unit is proportion of the error that chemists make using traditional methods
- ChatGPT was used to mark all errors green if <1