Operasionalisasi Distribusi Uang Rupiah Bank Indonesia

Kreiton Sitorus (13416006)

Pendahuluan

Pengelolaan uang rupiah sebagai rantai suplai

Pada dasarnya, pengelolaan uang rupiah adalah sebuah rantai suplai. Terdapat enam (6) aktivitas:

- Perencanaan
- Pencetakan
- Pengeluaran
- Pengedaran
- Pencabutan/Penarikan
- Pemusnahan

Pengedaran uang rupiah oleh Command Center DPU

Departemen Pengedaran Uang (DPU) bertanggung jawab untuk mendistribusikan uang rupiah yang diproduksi oleh PERURI. Tugas DPU adalah:

Memastikan persediaan uang rupiah tiap khazanah cukup untuk memenuhi kebutuhan uang rupiah masyarakat di wilayah operasional.

Asal	Tujuan	Moda	Muatan	Kontainer
Jakarta	Medan	Kapal	Rp50k : 1000 peti Rp20k : 2000 peti Rp10k : 500 peti	1
Samarinda	Palu	Truk	Rp50k : 200 peti Rp20k : 50 peti Rp10k : 0 peti	1
Jakarta	Surabaya	Kereta	Rp50k : 2000 peti Rp20k : 1000 peti Rp10k : 1000 peti	2

Pengendalian Inventori Konvensional

Perencanaan distribusi Bank Indonesia masih banyak menyerupai pengendalian inventori konvensional yang **didasari permintaan pelanggan** – yang pada kasus ini adalah **khazanah-khazanah** Bank Indonesia.

Pengendalian Inventori Konvensional

Pendekatan ini mendikotomikan **manajemen inventori** dengan **manajemen transportasi** – dua komponen krusial dalam manajemen logistik dan menghambat optimasi sistem (Kleywegt, 2002)

Integrasi Inventori dan Transportasi

- Konsep *vendor-managed inventory* di mana pengisian ulang inventori di sejumlah lokasi dikendalikan oleh pengambil keputusan pusat sebuah vendor.
- Contohnya beragam, *e-commerce solutions* memiliki subsistem ini di mana pelanggan-pelanggan menyerahkan pemenuhan inventori pada *fulfillment services* pihak ketiga

Integrasi Inventori dan Transportasi

Penerapan seperti ini memungkinkan **optimasi total** sistem distribusi, namun seiring bertambahnya ukuran jaringan, dibutuhkan **kemampuan komputasi untuk optimasi rencana distribusi** periodik lewat utilisasi informasi tingkat persediaan, kapasitas penyimpanan, estimasi permintaan, armada tersedia

Sebuah Kerangka Kerja

Penelitian ini menjawab:

Bagaimana permasalahan operasionalisasi distribusi ini dapat dioptimasi melalui integrasi inventori dan transportasi?

Dikembangkan sebuah *framework* yang mengutilisasi data-data jaringan untuk mencari susunan pengiriman terbaik yang meminimasi biaya total dan memastikan persediaan selalu cukup agar khazanah dapat memenuhi kebutuhan masyarakat

Pemahaman Masalan

Analisis Pemangku Kepentingan (hlm. 20)

Peran	Entitas
Problem Owner	DPU
Problem User	DPU, penyedia moda transportasi, pengelola khazanah
Problem Customer	Bank komersial, masyarakat umum
Problem Analyst	Peneliti

Identifikasi Elemen Permasalahan (hlm. 21)

Elemen	Entitas	
Pengambil Keputusan	DPU	
Objektif	Pengedaran uang optimal	
Ukuran Performa	Biaya total layanan, Pemenuhan kebutuhan uang rupiah, Utilisasi jaringan logistik (moda transportasi dan gudang penyimpanan)	
Kriteria Keputusan	Minimal, Fisibel (semua kebutuhan terpenuhi), Fisibel (mengikuti kapasitas gudang dan kapasitas terkait transportasi)	

Diagram Sistem Relevan (hlm. 23)

Dikembangkan dua diagram utk menangkap sistem relevan:

- Jaringan Terekspansi
- Influence Diagram

Operasionalisasi Distribusi Uang Rupiah Bank Indonesia

Formulasi

Model

Penyusunan Model (hlm. 28)

Umumnya disebut *inventory routing problem*, namun *inventory routing problem* dapat didekati dengan ragam model – pada penelitian ini digunakan *min cost fixed-charge multicommodity network flow* yang menyerupai jaringan terekspansi yang dibangun.

$$egin{aligned} & \min \operatorname{obj}(\mathbf{x},\mathbf{y}) = \sum_{a \in A} \left[var_a \cdot \sum_{p \in P} x_a^p + fix_a \cdot dist_a \cdot y_a
ight] \ & ext{s.t.} \quad \sum_{a \in \operatorname{IN}(n)} x_a^p - \sum_{a \in \operatorname{OUT}(n)} x_a^p & = d_n^p & orall n \in N_{plan}, p \in P \ & \sum_{a \in \operatorname{IN}(n)} x_a^p & = stock_n^p & orall n \in N_{init}, p \in P \ & \sum_{a \in \operatorname{IN}(n)} x_a^p & = sink_n^p & orall n \in N_{sink}, p \in P \ & \sum_{p \in P} x_a^p & \leq Q_a \cdot y_a & orall a \in A \end{aligned}$$

$$egin{array}{lll} sink_n^p & \in & \mathbb{R}_{\geq 0} & orall n \in N_{sink}, p \in P \ x_a^p & \in & \mathbb{R}_{\geq 0} & orall a \in A, p \in P \ y_a & \in & igl[0,1igr] & orall a \in A_{inv} \ y_a & \in & \mathbb{N}_0 & orall a \in A_{trans} \ \end{array}$$

Verifikasi Model (hlm. 31)

Persamaan	Sisi Kiri	Sisi Kanan
4.1	Rupiah	Rupiah/Peti * Peti + Rupiah/Kontainer/km * km * Kontainer = Rupiah
4.2	Peti - Peti = Peti	Peti
4.3	Peti	Peti
4.4	Peti	Peti
4.5	Peti	Peti/Kontainer * Kontainer = Peti

Pengembangan Algoritma

- Digunakan paket pemodelan Julia Mathematical Programming dalam bahasa pemrograman Julia serta *solver* Gurobi. Gurobi menggunakan *branch and cut* sebagai metode utama dalam menyelesaikan permasalahan.
- Verifikasi algoritma dilakukan dengan tes-tes kecil:
 - Jika tidak ada permintaan, tidak ada pengiriman
 - Konsolidasi persediaan ke tempat yang membutuhkan
 - Dispersi persediaan ke tempat yang membutuhkan
 - Jika ada sumber yang lebih dekat, sumber tersebut yang melakukan pengiriman

Pengujian dan Analisis

Kerangka Pengujian

Perlu dilakukan pengujian bagaimana model berperilaku -- terutama ketika dihadapkan dengan ketakpastian karena sifat model yang deterministik. Penggunaan model akan disimulasikan dan dijawab beberapa pertanyaan:

- 1. Apakah ada titik dalam ruang parameter model di mana perilaku di dunia nyata dapat diemulasi?
- 2. Bagaimana pengaruh akurasi ramalan terhadap performa model jangka panjang?
- 3. Bagaimana pengaruh perubahan parameter biaya terhadap struktur solusi?
- 4. Bagaimana pengaruh panjang horizon perencanaan terhadap performa model jangka panjang?
- 5. Bagaimana pengaruh struktur jaringan trayek yang tersedia terhadap performa model jangka panjang?

Desain Simulasi (1)

Terdapat tiga entitas dalam simulasi:

- DPU sebagai *planner*: Entitas ini memengaruhi tingkat persediaan khazanah dengan mengeksekusi distribusi setiap *timestep* simulasi. **Atribut**: parameter-parameter optimasi beserta model perencanaan
- Masyarakat : Entitas ini memengaruhi tingkat persediaan khazanah dengan meminta aliran persediaan uang rupiah untuk keluar atau masuk. Atribut: realisasi kebutuhan uang pada periode tertentu
- Khazanah : Entitas yang dipengaruhi sepanjang simulasi. **Atribut**: tingkat persediaan, kapasitas, lokasi

Desain Simulasi (2)

Inisialisasi simulasi:

Dimunculkan entitas-entitas khazanah Tingkat persediaan khazanah ditetapkan untuk memulai simulasi

Desain Simulasi (3)

Events simulasi tiap timestep:

- 1. Plan
 - DPU muncul, membaca atribut entitas-entitas khazanah, membuat rencana distribusi
- 2. Transport
 - a. Rencana distribusi DPU dieksekusi
 - b. Tingkat persediaan tiap khazanah diubah sesuai distribusi yang dilakukan.
 - c. Entitas DPU untuk periode ini dibebaskan.
- 3. Fulfill
 - a. Masyarakat muncul dan menyampaikan permintaan
 - b. Tiap-tiap khazanah memenuhi permintaan sesuai dengan ketersediaan masing-masing

Akurasi Ramalan

- Model sensitif terhadap ramalan, dengan rata-rata kenaikan harga sebesar
 Rp9.595 per simpangan satu (1) peti dengan simpangan baku Rp4.846 (120 simulasi -- dua fungsi realisasi)
- Untuk memberikan konteks, dengan data yang digunakan, simpangan 5% dari realisasi (jarak *L1-norm* antara ramalan dengan realisasi) diekspektasikan menaikkan biaya total sebesar ~3%

Parameter Biaya

Dengan menggunakan Jaccard Similarity Measure, ditemukan bahwa secara pilihan lokasi kesamaan solusi tidak lebih rendah dari 70% untuk simpangan biaya Rp2.000 tiap moda dan komponen biaya.

Struktur Jaringan

Mempertimbangkan lebih banyak trayek memberikan hasil yang lebih baik valid untuk optimality gap tertentu (\leq 20%) -- setelah panjang horizon tertentu (\geq 4).

Horizon Perencanaan

Pada optimality gap yang lebih besar, penurunan biaya total layanan menjadi tidak monoton. Penurunan biaya total layanan dari $H=1\,\mathrm{s.d.}\,H=6$ adalah:

- 16.0% utk GAP = 59%
- 28.2% utk GAP = 20%
- 39.2% utk GAP = 8%

Di mana tiap-tiap $optimality\ gap$ memiliki biaya total layanan berbeda pada H=1.

Performa Aktual

Terdapat aktivitas pengiriman selama tahun 2019 dan aktivitas tersebut dapat diemulasi dengan menggunakan model yang dimodifikasi untuk mengizinkan $\it overloading$ kapasitas khazanah, $\it optimality gap$ 60%, dan panjang horizon perencanaan $\it H=1$ atau $\it H=2$

Kesimpulan dan Saran

- Sebagai kerangka kerja optimasi, model dan algoritma optimasi/aproksimasi adalah layak untuk digunakan
- Bentuk jaringan terekspansi merupakan sasaran empuk untuk ekstensi model:
 - Produksi (w. fixed-charge) --> titik tambahan yang dapat membuat aliran (semacam surplus untuk persediaan)
 - Fixed Charged Warehouse --> beri nilai parameter biaya tetap untuk busur inventori
 - Fleet Variance --> konstruksi jaringan dapat dimodifikasi untuk mempertimbangkan trayek yang berbeda tiap periode

A model is only as good as its data.

Terima

Kasin