Лекция 2. Абелевы группы. Действие группы на множестве

Определение 1. Группа называется коммутативной (или абелевой), если дополнительно выполнена аксиома: $\forall a, b \in G, \ a \cdot b = b \cdot a$.

Операцию в коммутативных группах обычно называют сложением и обозначают "+". Соответственно меняется и другая терминология: единицу группы обозначают 0, обратный элемент называют противоположным -a и т.д.

Примеры коммутативных групп

- **0** Циклические группы: бесконечного порядка \mathbb{Z} и конечные C_n .
- 1 Группа всех остатков по модулю n с операцией сложения. Обозначается \mathbb{Z}_n .
- **2** Группа всех остатков по модулю n взаимно простых с n с операцией умножения. Обозначается \mathbb{Z}_n^* .

Абстрактную группу можно задавать таблицей умножения. Ниже приведены таблицы умножения для групп C_4 , \mathbb{Z}_4 , \mathbb{Z}_5^* . Через r мы обозначаем образующую группы C_4 .

		e	r	r^2	r^3	
	e	e	r	r^2	r^3	
C_4	r	r	'	r^3	e	
	r^2	r^2	r^3	e	r	
	r^3	r^3	e	r	r^2	

		0	1	2	3
	0	0	1	2	3
\mathbb{Z}_4	1	1	2	3	0
	2	2	3	0	1
	3	3	0	1	2

		1	2	4	3
1	.	1	2	4	3
2	?	2	4	3	1
4	=	4	3	1	2
3	3	3	1	2	4

 \mathbb{Z}_5^*

Предложение 1. В таблице умножения группы в каждой строчке встречаются все элементы группы по одному разу. Аналогично про столбцы.

Определение 2. Две группы G и H называются u зоморфными, если существует биекция $\varphi \colon G \to H$ такая, что $\forall a, b \in G, \ \varphi(a \cdot_G b) = \varphi(a) \cdot_H \varphi(b)$.

При изоморфизме групп таблицы умножения переходят друг в друга.

Предложение 2. Группа \mathbb{Z}_n изоморфна C_n .

Доказательство. При изоморфизме остаток $k, \ 0 \leqslant k < n$ переходит в поворот на угол $\frac{2\pi k}{n}$.

Предложение 3. Группа G из n элементов изоморфна C_n тогда и только тогда, когда в ней есть элемент g порядка n.

Доказательство. В одну сторону предложение очевидно, нужно доказывать только что если элемент g имеет порядок n, то $G \simeq C_n$. Но в этом случае все элементы e,g,\ldots,g^{n-1} различны, а так как |G|=n, то любой элемент G имеет вид g^k , где $0\leqslant k < n$. Тогда изоморфизм строится так: элемент $r^k \in C_n$ переходит в $g^k \in G$.

Предложение 4. Группа \mathbb{Z}_5^* изоморфна группе C_4 .

Доказательство. При изоморфизме 1, 2, 4, 3 (остатки по модулю 5) переходят в повороты на углы $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$. То, что это изоморфизм, видно из таблицы умножения.

Другой способ: воспользоваться предыдущим предложением и заметить, что элемент $2 \in \mathbb{Z}_5^*$ имеет порядок 4. \blacksquare

Определение 3. Прямым произведением групп G и H называется множество пар $G \times H = \{(g,h)|g \in G, h \in H\}$ с операцией $(g_1,h_1) \cdot (g_2,h_2) = (g_1g_2,h_1h_2).$

Предложение 5. Группа \mathbb{Z}_8^* изоморфна группе $C_2 \times C_2$.

Доказательство. см. таблицы умножения.

Julianianianianianianianianianianianianiani												
		1	3	5	7			(e,e)	(e,r)	(r,e)	(r,r)	
	1	1	3	5	7		(e,e)	(e,e)	(e,r)	(r,e)	(r,r)	
\mathbb{Z}_8^*	3	3	1	7	5	$C_2 \times C_2$	(e,r)	(e,r)	(e,e)	(r,r)	(r,e)	
	5	5	7	1	3		(r,e)	(r,e)	(r,r)	(e,e)	(e,r)	
	7	7	5	3	1		(r,r)	(r,r)	(r,e)	(e,r)	(e,e)	

Предложение 6. Группы $C_2 \times C_2$ и C_4 не изоморфны.

Доказательство. В группе $C_2 \times C_2$ любой элемент в квадрате равен 1, а в группе C_4 нет. \blacksquare

Теорема 7. Любая абелева группа с конечным числом образующих изоморфна произведению циклических групп $G \simeq \mathbb{Z}^n \times C_{n_1} \times \ldots \times C_{n_l}$.

В формулировке теоремы \mathbb{Z}^n — это произведение n групп изоморфных \mathbb{Z} — бесконечная абелева группа. Теорема в частности утверждает, что любая конечная абелева группа изоморфна произведению конечных циклических групп $G \simeq C_{n_1} \times \ldots \times C_{n_l}$. При этом порядок группы G равен $|G| = n_1 \cdot \ldots \cdot n_l$.

Пользуясь этой теоремой, можно перечислить абелевы группы данного порядка. Ясно, что существует ровно одна абелева группа порядка 1, так же для групп порядка 2 и порядка 3. Выше мы уже видели, что существует две неизоморфныее абелевы группы порядка 4: $C_2 \times C_2$ и C_4 . Для порядка 5 абелева группа одна: C_5 , для порядка 6 есть уже два кандидата $C_2 \times C_3$ и C_6 , но на самом деле они изоморфны.

Предложение 8. Группы $C_2 \times C_3$ и C_6 изоморфны.

 \mathcal{A} оказательство. В группе $C_2 \times C_3$ есть элемент (r,r) порядка 6.

Можно доказать общее утверждение

Предложение 9. Группы $C_m \times C_n$ и C_{mn} изоморфны если и только если m и n взаимно просты. Доказательство Если m и n взаимно просты, то элемент $(r,r) \in C_m \times C_n$ имеет порядок mn, значит группа $C_m \times C_n$ изоморфна циклической.

В другую сторону, если m и n не взаимно просты, то $\mathrm{HOK}(m,n) < mn$. Ясно, что любой элемент группы $C_m \times C_n$ равен 1 в степени $\mathrm{HOK}(m,n)$, т.е. в этой группе нет элемента порядка mn.

Часто в физике группы возникают как группы симметрий какой-то физической задачи в пространстве. Среди движений пространства можно выделить трансляции и движения сохраняющие некоторую точку, которую удобно считать началом координат. Также движения разделяются на движения сохраняющие ориентацию (они также называются собственными) и несохраняющие ориентацию. Все движения пространства описаны:

- а) Движения плоскости, сохраняющие начало координат: повороты R_{α} вокруг начала координат на угол α (сохраняют ориентацию) и симметрии S_l относительно прямых l, проходящих через начало координат (меняют ориентацию).
- **б)** Движения трехмерного пространства, сохраняющие начало координат: повороты $R_{l,\alpha}$ вокруг осей, проходящих через начало координат (сохраняют ориентацию)

и *зеркальные повороты* $S_{\pi,\alpha}$ — композиции симметрии относительно плоскости π и поворота вокруг перпендикулярной ей оси на угол α , плоскость и ось пересекаются в начале координат, зеркальные повороты меняются ориентацию.

Конечные группы возникают как подгруппы группы симметрий.

Пример а) Группа симметрий на плоскости правильного многоугольника D_n . Эта группа часто называется диэдральной группой. Состоит из n поворотов и n осевых симметрий. Всего 2n элементов.

б) Группа симметрий правильного многогранника т.е. группа движений трехмерного пространства переводящих правильный многогранник в себя.

Определение 4. Действие группы G на множестве X — это отображение $\rho: G \times X \to X$ такое, что:

a)
$$\forall g, h \in G, x \in X, \rho(g, \rho(h, x)) = \rho(gh, x);$$
 6) $\forall x \in X, \rho(e, x) = x.$

Для упрощения обозначений обычно действие группы записывается как умножение слева $\rho(g,x)=gx$. Тогда первое свойство — это просто ассоциативность, а второе это свойство единичного элемента.

Пример Группа S_n действует на множестве $\{1,2,\ldots,n\}$ переставляя его элементы.

Определение 5. Пусть группа G действует на множестве X.

Орбитой элемента $x \in X$ называется множество $Gx = \{y \in X | \exists g \in G, y = gx\}$. Множество всех орбит обозначается X/G.

Стабилизатором элемента $x \in X$ называется множество $G_x = \{g \in G | gx = x\}.$

Примеры

- 1. Группа S_n действует на множествен $\{1, 2, ..., n\}$. Тогда орбита любой точки i совпадет со всем множеством $\{1, 2, ..., n\}$, а стабилизатор будет изоморфен S_{n-1} .
- **2.** Группа C_n действует на \mathbb{R}^2 поворотами на угол $2\pi/n$. Тогда орбитой точки будут вершины правильного n-угольника. Множество орбит можно отождествить с точками угла $2\pi/n$ в котором стороны угла между собой склеены. Таким образом, множество орбит это конус.

Предложение 10. Для любой точки $x \in X$ стабилизатор G_x является подгруппой в G.

Предложение 11. Любые две орбиты Gx и Gy или не пересекаются или совпадают.

Можно ввести отношение $x \sim y$ если $x \in Gy$ и проверить, что оно является рефлексивным, симметричным и транзитивным. То есть является *отношением эквивалентности*.

Теорема 12. Пусть G — конечная группа. Для любой точки $x \in X$ верно $|G| = |Gx| \cdot |G_x|$.

Примеры.

1. Группа C_n действует на \mathbb{R}^2 поворотами. Тогда орбита любой точки из $\mathbb{R}^2 \setminus \{O\}$ состоит из n точек, а стабилизатор тривиален. Для начала координат орбита состоит

только из одной точки, но стабилизатор состоит из всей группы, т.е. из n элементов. В любом случае произведение длины орбиты на порядок стабилизатора равен n.

- **2** Группа $G = D_n$ симметрий правильного n-угольника, множество X множество вершин правильного n-угольника. Тогда если A произвольная вершина, то орбита GA это все X, стабилизатор G_A это группа состоящая из тождественного преобразования и симметрии относительно оси проходящей через A и начало координат. Теорема 10 дает равенство: $|D_n| = n \cdot 2$.
- 3 Группа G симметрий куба $ABCDA_1B_1C_1D_1$, $X = \{A, B, C, D, A_1, B_1, C_1, D_1\}$ множество вершин куба. Тогда орбита GA состоит из всех 8 вершин куба. А стабилизатор G_A состоит из 6 преобразований сохранящих A: тождественное, два поворота вокруг оси AC_1 , симметрии относительно плоскостей ABC_1 , ADC_1 , AA_1C_1 . Тогда $|G| = 6 \cdot 8 = 48$. Через G_+ обозначим подгруппу собственных движений куба, ее порядок равен 24.

Домашнее задание

Решения упражнений 1-3 надо прислать до начала следующей лекции 21 февраля. Решения остальных задач надо прислать до начала лекции 28 февраля. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Упражнение 1. а) Докажите, что группа Z_{10}^* изоморфна C_4 .

б) Верно ли, что группа Z_{15}^* циклическая?

Упражнение 2. а) Пусть G — группа симметрий куба, X — множество ребер. Найдите стабилизатор произвольного ребра. Изоморфен ли он какой-то известной вам группе? б) Пусть X — множество граней. Найдите стабилизатор произвольной грани. Изоморфен ли он какой-то известной вам группе?

Упражнение 3. Группа S_3 действует на себе сопряжениями $(g,x) \mapsto gxg^{-1}$. Найдите стабилизатор каждого элемента. Найдите орбиты для этого действия.

Задача 4. Найдите (с точностью до изоморфизма) все абелевы группы порядка 54.

Задача 5. Докажите предложение 10: любой точки $x \in X$ стабилизатор G_x является подгруппой в G.