전복 연령 예측 회귀 분석

⊙ 프로젝트 타입	팀 프로젝트
i≡ Tool	Python
⊞ 날짜	@2024년 4월 11일 → 2024년 4월 26일

목차

Regression with an Abalone Dataset

cir. 데이터 설명

1_1. 데이터 크기

1_2. 변수 설명

cii. 데**이터 EDA 시각화**

2_1. 단일 변수 분석(Histogram,BarPlot)

2_2. 단일 변수 분석(BoxPlot)

____ 2_3. 변수 간 관계 분석(ScatterPlot, Heatmap)

cir. 전처리

<u>3_1. 변수 제거</u>

3_2. 이상치

3_3. 로그 변환

3_4. Scailing

3_5. Encoding

cir. 분석 모델링

<u>4_1. 데이터</u> 분리

4_2. 사용 모델 결정

4_3. 하이퍼 파라미터 최적화(단일 모델 score)

4_4. Voting 모델링

cir. Deep Learning

5_1. MLP

5_2. DNN

5_3. 딥러닝 모델 정리

Regression with an Abalone Dataset

: 전복 연령 예측

Regression with an Abalone Dataset

Playground Series - Season 4, Episode 4

 $\textcolor{red}{\pmb{k}} \hspace{0.2cm} \textbf{https://www.kaggle.com/competitions/playground-series-s4e4/data}$

해당 보고서는 기존 프로젝트 진행 후 피드백 진행하여 작성

• 기존 프로젝트

<u>회귀 기획서</u>

<u>회귀</u>

- 피드백
 - 1. 상관관계 분석 결과 모델 활용
 - 2. 로그 변환 시 특정 값을 더하는 근거
 - 3. 딥러닝 시도(DNN)

🖳. 데이터 설명

1_1. 데이터 크기

	행(row)	열(column)
Train	90615	10

	행(row)	열(column)
Test	60411	9
Submission	60411	2
Original	4177	10

1_2. 변수 설명

Feature	mean	Туре	measure	Train NA	Test NA	Origin NA	Submis
Id	아이디	int64	-	0	0	0	0
Sex	전복 성별	object	-	0	0	0	-
Length	전복 길이	float64	mm	0	0	0	-
Diameter	전복 둘레	float64	mm	0	0	0	-
Height	전복 높이	float64	mm	0	0	0	-
Whole_weight	전복 전체 무게	float64	grams	0	0	0	-
Shucked_weight	껍질 제외 무게	float64	grams	0	0	0	-
Viscra_weight	출혈 후 내장 무게	float64	grams	0	0	0	-
Shell_weight	건조 후 껍질 무게	float64	grams	0	0	0	-

Target	mean	Туре	Train NA	Test NA	Origin NA	Submission NA
Rings	전복 연령	int64	0	-	0	0

^{*} 자세한 전복 데이터의 설명은 링크 참조

🛂. 데이터 EDA 시각화

: train, test 분포 동일

2_1. 단일 변수 분석(Histogram, BarPlot)

。 분포

- F(29.3%), I(36.3%), M(34.3%)로 구성되어 있음.
- I(Intermediate)가 가장 높은 비율을 차지하며, F와 M은 상대적으로 유사한 분포를 보임.
- 데이터의 성별 분포가 특정 그룹에 치우치지 않고 고 르게 나타남.

• Length (전복의 가장 긴 부분 측정)

- 。 평균
 - **0.52**
- 。 분포
 - 대체로 정규분포 형태
 - 0.5~0.6 사이에 데이터가 집중
 - 극단값(0.1 이하, 0.7 이상)은 상대적으로 적음

。 값

■ 최소: 0.075

■ 최대: 0.815

• Diameter (전복 직경)

。 평균

0.40

。 분포

■ 대체로 정규분포 형태

■ 0.4~0.5에 데이터가 집중

。 값

최소: 0.055최대: 0.65

• Height(전복 높이)

∘ 평균

0.14

∘ 분포

■ 0.1 근처에 데이터가 매우 집중

■ 데이터 대부분이 0.0 - 0.2 사이 분포

。 값

최소: 0.004최대: 1.13

• Whole_weight(전복 전체 무게)

。 평균

0.79

ㅇ 분포

■ 오른쪽 꼬리가 긴 분포

■ 0.5~1.0 구간에 대부분의 데이터가 밀집

■ 전체 무게가 약 1.0인 개체가 가장 많음

。 값

최소: 0.002최대: 2.8255

• Shucked_weight(껍질 분리 무게)

。 평균

0.34

∘ 분포

■ 오른쪽 꼬리가 긴 분포

■ 0.2~0.4 구간에 대부분의 데이터가 밀집

■ 껍질 분리 무게 약 0.4인 개체가 가장 많음

。 깂

■ 최소 : 0.001

■ 최대 : 1.488

• Viscera_weight(전복 내장 무게)

- 。 평균
 - **0.17**
- 。 분포
 - 오른쪽 꼬리가 긴 분포
 - 0.1~0.3 구간에 대부분의 데이터가 밀집
 - 내장 무게 약 0.2인 개체가 가장 많음
- 。 값
 - 최소 : 0.0005
 - 최대: 0.76

• Rings(전복 연령)_Target

- 。 평균
 - **9.71**
- 。 분포
 - 오른쪽 꼬리가 긴 분포
 - 8~11 구간에 대부분의 데이터가 밀집
 - 고리가 약 10개인 개체가 가장 많음
- 。 값
 - 최소: 1
 - 최대 : 29

• Shell_weight(전복 껍질 무게)

- 。 평균
 - 0.23
- 。 분포
 - 오른쪽 꼬리가 긴 분포
 - 0.2 구간에 대부분의 데이터가 밀집
 - 껍질 무게 약 0.3인 개체가 가장 많음
- 。 값
 - 최소 : 0.0015
 - 최대 : 1.005

2_2. 단일 변수 분석(BoxPlot)

• Length (전복의 가장 긴 부분 측정)

- 。 중앙값
 - **0.55**
- 。 이상치
 - 존재
 - 약 0.2 이하의 길이를 가진 전복
- 。 분포
 - 대체로 대칭

• Height(전복 높이)

- 。 중앙값
 - **0.14**
- 。 이상치
 - 존재
 - 0과 근사치, 0.2 이상의 높이를 가진 전복
- 。 분포
 - 왼쪽 꼬리가 긴 분포

• Diameter (전복 직경)

- 。 중앙값
 - **0.42**
- 。 이상치
 - 존재
 - 약 0.2 이하의 지름을 가진 전복
- 。 분포
 - 대체로 대칭

• Whole_weight(전복 전체 무게)

- 。 중앙값
 - 0.80
- 。 이상치
 - 존재
 - 약 2.0 이상의 전체 무게를 가진 전복
- 。 분포
 - 오른쪽 꼬리가 긴 분포

- 。 중앙값
 - 0.33
- 。 이상치
 - 존재
 - 약 0.8 이상의 껍질 분리 무게를 가진 전복
- 。 분포
 - 오른쪽 꼬리가 긴 분포

• Shell_weight(전복 껍질 무게)

- 。 중앙값
 - **0.23**
- 。 이상치
 - 존재
 - 약 0.6 이상의 껍질 무게를 가진 전복
- 。 분포

• Viscera_weight(전복 내장 무게)

- 。 중앙값
 - **0.17**
- 。 이상치
 - 존재
 - 약 0.4 이상의 내장 무게를 가진 전복
- ㅇ 분포
 - 오른쪽 꼬리가 긴 분포

• Rings(전복 연령)_Target

- 。 중앙값
 - **9.00**
- 。 이상치
 - 존재
 - 약 5 이하, 15 이상의 고리 개수를 가진 전복
- 。 분포

2_3. 변수 간 관계 분석(ScatterPlot, Heatmap)

- 모든 변수가 양의 상관 관계
- Rings
 - Length
 - 상대적으로 큰 분산
 - Diameter
 - 상대적으로 큰 분산
 - Height
 - 밀집된 분포를 보이나, 직접적인 상관관계
- Height는 다른 모든 변수와 데이터 포인트가 밀집되어있음
- 논리적으로 연관이 있는 변수가 상관 관계 높은 경향
 - o length, diameter
 - o All Weight (Whole, Shucked, Viscera, Shell)
- Rings는 Height 제외한 피처데이터가 상대적으로 분산 되어있음

→ 모두 강한 양의 상관관계를 가짐

Length

- 길이가 길 수록 직경, 높이, 무게가 높은 수치를 나타냄 (피처 간의 수치가 비례함)
- 。 길이가 길 수록 전복의 고리의 수가 많음

Diameter

- 직경이 클 수록 길이, 높이, 무게가 높은 수치를 나타냄 (피처 간의 수치가 비례함)
- 직경이 클 수록 전복의 고리의 수가 많음

Height

- 높이가 높을 수록 길이, 직경, 무게가 높은 수치를 나타냄 (피처 간의 수치가 비례함)
- 。 높이가 높을 수록 전복의 고리의 수가 많음

• All Weight (Whole, Shucked, Viscera, Shell)

- 무게가 클 수록 길이, 직경, 높이가 높은 수치를 나타냄 (피처 간의 수치가 비례함)
- 무게가 클 수록 전복의 고리의 수가 많음

🛂. 전처리

3_1. 변수 제거

• id : 아이디

3_2. 이상치

: 논리적으로 존재할 수 없는 데이터 제거

설명	총 개수	내장 무게 > 전체 무게	껍질 제외 무게 > 전체 무게	껍질 무게 > 전체 무게	전복 특성 변수 = 0
train	63	2	45	8	8
test	51	2	38	9	2

- train과 test에 존재하는 이상치의 개수가 거의 유사
 - 。 train에 존재하는 이상치 제거

3_3. 로그 변환

: 히스토그램 그래프를 통해 로그 변환 판단

- All Weight
 - Whole_weight
 - Shucked_weight
 - Viscera_weight
 - Shell_weight

3_4. Scailing

- Robust Scailing
 - 。 이상치의 영향을 최소화 하기 위해 사용
 - 。 Sex와 Rings(target)를 제외한 모든 변수

3_5. Encoding

- dummy 변수 생성
 - Sex_I
 - Sex_F
 - Sex_M

🖳 분석 모델링

4_1. 데이터 분리

- train = 95%
- test = 5%

4_2. 사용 모델 결정

• AutoML : 모델 개발 작업 자동화

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
catboost	CatBoost Regressor	1.247	3.404	1.845	0.664	0.150	0.126	14.738
lightgbm	Light Gradient Boosting Machine	1.255	3.456	1.859	0.659	0.151	0.127	5.286
xgboost	Extreme Gradient Boosting	1.260	3.502	1.871	0.655	0.152	0.127	0.712
gbr	Gradient Boosting Regressor	1.287	3.604	1.898	0.645	0.154	0.130	9.610
rf	Random Forest Regressor	1.287	3.572	1.890	0.648	0.155	0.132	45.678

- CatBoost
- LightGBM
- XGBoost

• GBR

- RandomForest
 - 파이널 프로젝트 당시 RF의 RMSLE(0.1506)가 다른 알고리즘에 비해 높게 나타났으며, 소요 시간이 길어 비효율적인 알고 리즘으로 판단

4_3. 하이퍼 파라미터 최적화(단일 모델 score)

- Optuna + StratifiedKFold : AWS에서 제공하는 모델 별 하이퍼 파라미터 목록 사용
 - CatBoost Hyper Parameters

Best RMSLE: 0.1495001562545041

Best hyperparameters:

max_depth: 7

subsample: 0.9865994295496124

min_data_in_leaf: 43

learning_rate: 0.10626171034559712

n_estimators: 485 I2_leaf_reg: 3

random_strength: 0.8817285905269581

rsm: 0.8420506888504059 bagging_temperature: 2 max_leaves: 127

sampling_frequency: PerTree

max_bin: 485 thread_count: 2

LightGBM Hyper Parameters

Best RMSLE: 0.14958315313216322

Best hyperparameters: num_boost_round: 549

max_depth: 11

subsample: 0.271963602330989

min_data_in_leaf: 83

learning_rate: 0.056233765958497474

n_estimators: 714 I2_leaf_reg: 1

feature_fraction: 0.8111960329373981 bagging_fraction: 0.9449319850477282

num_leaves: 48 max_bin: 490 thread_count: 2 bagging_freq: 6

max_delta_step: 8.845779023076112 lambda_I1: 4.938299731440447 lambda_I2: 4.572127810578763 min_gain_to_split: 0.875054487071554

11111_ga111_to_spiit. 0.073034467071334

feature_fraction_bynode: 0.9000396254058078

num_threads: 11 tree_learner: data

tweedie_variance_power: 1.131534682185736

XGBoost Hyper Parameters

Best RMSLE: 0.1504762607666011

Best hyperparameters:

max_depth: 10

learning_rate: 0.0855578084718704

n_estimators: 250

subsample: 0.539502650596425

num_round: 485

alpha: 8.391484056276457 gamma: 3.2237185871415996 lambda: 8.582605846188228 lambda_bias: 6.569575706287025

max_leaves: 124

min_child_weight: 4.784627032949729 base_score: 5.29698073664351

colsample_bylevel: 0.6278608058509046 colsample_bynode: 0.9261929464846934 colsample_bytree: 0.5963754416589548 csv_weights: 0.011035973853488007

eta: 0.5417543810547697

tweedie_variance_power: 1.550169566483108

o GradientBoostingRegressor Hyper Parameters

Best RMSLE: 0.1514334035141312

Best hyperparameters:

learning_rate: 0.18641287847558408

n_estimators: 386

subsample: 0.3639755898480478

max_depth: 4 min_samples_split: 7 min_samples_leaf: 2

min_weight_fraction_leaf: 0.006660890611244898 min_impurity_decrease: 0.4802279957700628

alpha: 0.20948280132044253

max_leaf_nodes: 6

validation_fraction: 0.5364580858808121 max_features: 0.8665681638771795

4_4. Voting 모델링

- Voting 사용
 - ∘ Final Project 당시 분석 : 기본 전처리 + 로그 변환

모델	RMSLE
cat	0.14902
lgbm	0.14912
xgb	0.14920
gbr	0.14859
cat +lgbm +gbr	0.14631
cat + lgbm + xgb	0.14684
TOP 4	0.14643

。 단일 모델들 보다 Voting을 진행한 모델들이 RMSLE 값이 현저히 낮음

• Colab 성능

- 。 성능이 안 좋은 개별 모델이 추가될 수록 Voting 모델 점수 하락
- 。 최고 성능
 - 교차 검증 X + Voting(CatBoost+LightGBM) : 0.1461

모델	교차검증 X	K-Fold	Stratified K-Fold
Cat + LGB + XGB + GBR	0.1466 🗸	0.1492 🗸	0.1491
Cat + LGB + XGB	0.1463 🗸	0.1490 🗸	0.1489 🗸
Cat + LGB	0.1461 🔽	0.1489 🗸	0.1487 🗸
Cat + XGB	0.1467	0.1494	0.1492
Cat + GBR	0.1470	0.1495	0.1490 🔽
LGB + XGB + GBR	0.1469	0.1496	0.1495

• Kaggle 성능 <Private>

- 。 최고 성능
 - Stratified K-Fold + Voting(CatBoost+LightGBM) : 0.14660

모델	교차검증 X	K-Fold	Stratified K-Fold
Cat + LGB + XGB + GBR	0.14690 🗸	0.14699 🗸	
Cat + LGB + XGB	0.14675 🗸	0.14682 🗸	0.14662 🗸
Cat + LGB	0.14674 🗸	0.14680 🗸	0.14660 🗸 🗸
Cat + XGB			
Cat + GBR			0.14678 🗸
LGB + XGB + GBR			

• kaggle 성능 <public>

- 。 최고 성능
 - K-Fold + Voting(CatBoost+LightGBM) : 0.14710

모델	교차검증 X	K-Fold	Stratified K-Fold
Cat + LGB + XGB + GBR	0.14739 🗸	0.14757 🗸	
Cat + LGB + XGB	0.14725 🗸	0.14731 🗸	0.14728 🗸
Cat + LGB	0.14711 🗸	0.14710 🗸 🗸	0.14718 🗸
Cat + XGB			
Cat + GBR			0.14741 🗸
LGB + XGB + GBR			

Deep Learning

: Optuna와 같이 사용

<u>5_1. M</u>LP

- 1. epoch=100 + optuna 활용
- Optuna
 - 50 trial

• hyper parameter

■ dropout_rate : 0.0 ~ 0.5

• optimizer_name : Adam, RMSprop, SGD

■ *learning_rate* : 1e-5 ~ 1e-2

• Dense

o 128

activation : Relu

o 64

activation : Relu

• early_stopping_rounds

o patience=4

· hyper parmeter

o dropout_rate : 0.1925116505889767

o optimizer_name: Adam

• learning_rate: 0.000685280087375688

Validation RMSLE

o 0.15210

2. epoch=10, hyper parameter 고정

hyper parameter

o dropout_rate: 0.1925116505889767

optimizer_name : Adam

• learning_rate: 0.000685280087375688

Dense

o 128

activation : Relu

。 64

activation : Relu

Validation RMSLE

0.15077

5_2. DNN

1. epoch=100, optuna 활용

Optuna

o 50 trial

hyper parameter

■ dropout_rate : 0.0 ~ 0.5

optimizer_name : Adam, RMSprop, SGD

■ *learning_rate* : 1e-5 ~ 1e-2

Dense

- o 256
 - activation: Relu
- o 128
 - activation : Relu
- o 64
 - activation : Relu
- o 32
 - activation : Relu
- o 16
 - activation : Relu

• early_stopping_rounds

- o patience=4
- hyper parameter
 - o dropout_rate: 0.0714098671768656
 - o optimizer_name: adam
 - learning_rate: 0.00011810487365492639
- Validation RMSLE
 - o 0.15933

2. epoch=10, optuna 활용

- Optuna
 - o 50 trial
 - hyper parameter
 - dropout_rate : 0.0 ~ 0.5
 - optimizer_name : Adam, RMSprop, SGD
 - *learning_rate* : 1e-5 ~ 1e-2
- Dense
 - o 256
 - activation : Relu
 - o 128
 - activation : Relu
 - 。 64
 - activation : Relu
 - o 32
 - activation : Relu
 - 。 16
 - activation : Relu
- early_stopping_rounds
 - o patience=4
- hyper parameter

o dropout_rate: 0.11223936580456312

o optimizer_name : adam

o learning_rate: 0.0003178594873943924

• Validation RMSLE

0.14992

<u>5_3. 딥러닝 모델 정리</u>

모델	epoch=100 + optuna (MLP)	epoch=10, hyper parameter(epoch=1000 사용 (MLP)	epoch=100 + optuna (DNN)	epoch=10 + optuna (DNN)
Colab	0.15210	0.15077	0.15933	0.14992
Kaggle private		0.15183		0.15054 🗸
kaggle public		0.15343		0.15138