

planetmath.org

Math for the people, by the people.

statistical model

Canonical name StatisticalModel
Date of creation 2013-03-22 14:33:18
Last modified on 2013-03-22 14:33:18

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 10

Author CWoo (3771) Entry type Definition Classification msc 62A01

Defines identifiable parameterization

Defines parameter space

Let $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector with a given realization $\mathbf{X}(\omega) = (x_1, \dots, x_n)$, where ω is the outcome (of an observation or an experiment) in the sample space Ω . A *statistical model* \mathcal{P} based on \mathbf{X} is a set of probability distribution functions of \mathbf{X} :

$$\mathcal{P} = \{F_{\mathbf{X}}\}.$$

If it is known in advance that this family of distributions comes from a set of continuous distributions, the statistical model \mathcal{P} can be equivalently defined as a set of probability density functions:

$$\mathcal{P} = \{ f_{\mathbf{X}} \}.$$

As an example, a coin is tossed n times and the results are observed. The probability of landing a head during one toss is p. Assume that each toss is independent of one another. If $\mathbf{X} = (X_1, \dots, X_n)$ is defined to be the vector of the n ordered outcomes, then a statistical model based on \mathbf{X} can be a family of Bernoulli distributions

$$\mathcal{P} = \{ \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} \},\,$$

where $X_i(\omega) = x_i$ and $x_i = 1$ if ω is the outcome that the *i*th toss lands a head and $x_i = 0$ if ω is the outcome that the *i*th toss lands a tail.

Next, suppose X is the number of tosses where a head is observed, then a statistical model based on X can be a family binomial distributions:

$$\mathcal{P} = \left\{ \binom{n}{x} p^x (1-p)^{n-x} \right\},\,$$

where $X(\omega) = x$, where ω is the outcome that x heads (out of n tosses) are observed.

A statistical model is usually parameterized by a function, called a parameterization

$$\Theta \to \mathcal{P}$$
 given by $\theta \mapsto F_{\theta}$ so that $\mathcal{P} = \{F_{\theta} \mid \theta \in \Theta\},\$

where Θ is called a *parameter space*. Θ is usually a subset of \mathbb{R}^n . However, it can also be a function space.

In the first part of the above example, the statistical model is parameterized by

$$p \mapsto \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}.$$

If the parameterization is a one-to-one function, it is called an *identifiable* parameterization and θ is called a parameter. The p in the above example is a parameter.