ECOM40006/90013 ECONOMETRICS 3

Week 11 Extras

Question 1: GLM, Maximum Likelihood, and You

Before delving into the more nitty-gritty aspects of generalized linear models, let's start off with the basics. Consider, for example, the classic linear regression model

$$y_i = \beta_0 + \beta_1 x_i + u_i,$$

where $y_i \in \{0, 1\}$ is a binary variable and for now, u_i is an i.i.d. mean zero disturbance, with its distribution being symmetric around zero.

- (a) The first way that we're going to interpret these models is via straight OLS. The resulting model is often called the *linear probability model*.
 - (i.) Give an interpretation of the coefficient $\hat{\beta}_1$ estimated by OLS.
 - (ii.) Describe the advantages of using a linear probability model.
 - (iii.) Correspondingly, what are the drawbacks?
- (b) The *Bernoulli* probability mass function forms the foundation for an alternative type of model: the *generalized linear model*, or GLM. Its probability mass function is

$$p(y = y_i; \theta) = \theta^{y_i} (1 - \theta)^{1 - y_i}$$

where $\theta \in [0, 1]$ and $y_i = \{0, 1\}$.

- (i.) The parameter θ can be interpreted as a probability. To see why, substitute in $y_i = 1$ and $y_i = 0$. What do you get?
- (ii.) Obtain the log-likelihood and find the MLE θ .
- (c) The mean of a Bernoulli random variable is $\mathbb{E}(y_i) = \theta = \mathbf{P}(y_i = 1)$. If we assume this mean depends on x_i , we naturally get the conditional mean $\mathbb{E}(y_i|x_i) = \mathbf{P}(y_i = 1|x_i)$. Suppose that the true data generating process for y_i proceeds as follows:

$$y_i = \begin{cases} 1 & \text{if } \beta_0 + \beta_1 x_i + u_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

(i.) Explain why this type of data generating process can be said to fall into the category of *latent*, or *unobservable* variables models.

- (ii.) The source of randomness in this model comes from the disturbance u_i . Denote the CDF of u_i as $F(u_i)$. Write the probability that $y_i = 1$ in terms of $F(\cdot)$, the regressor x_i and the parameters β_0 and β_1 .
- (d) One way to get around the drawbacks of the linear probability model is to assume that the probability $\mathbf{P}(y_i = 1)$ depends on the regressors in some way. That is, we can replace $\theta = \theta_i$, where one possibility for θ_i is the *probit link function*

$$\theta_i = \Phi(\beta_0 + \beta_1 x_i) = \int_{\infty}^{\beta_0 + \beta_1 x_i} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz$$

where $\Phi(\cdot)$ is the CDF of the standard normal distribution. In this sense, we can write the distribution of an individual y_i as

$$p(y_i; \theta_i) = \theta_i^{y_i} (1 - \theta_i)^{1 - y_i}.$$

- (i.) In terms of the predicted values of θ_i , why might this potentially be more preferable to using a linear probability model?
- (ii.) Obtain expressions for the partial derivatives

$$\frac{\partial \theta_i}{\partial \beta_0}$$
, $\frac{\partial \theta_i}{\partial \beta_1}$

using the Fundamental Theorem of Calculus¹ (and the Chain Rule). Use $\phi(\cdot)$ to denote the standard normal PDF:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right).$$

It might help to define $\phi_i = \phi(\beta_0 + \beta_1 x_i)$.

(iii.) Suppose $\beta = (\beta_0, \beta_1)$. Noting that θ_i is a function of β , the log-likelihood for this probit model can be written

$$\log L(\beta; y, X) = \sum_{i=1}^{n} [y_i \log(\theta_i) + (1 - y_i) \log(1 - \theta_i)]$$

(this can be obtained from part (b) as well by making appropriate substitutions.) Derive the score function. Do the first-order conditions have an analytic solution?

$$\frac{dF(y)}{dy} = \frac{d}{dy} \left(\int_a^y f(x) \, dx \right) = f(y).$$

¹Let f be continuous on [a,b]. If $F(y)=\int_a^y f(x)\,dx$ for $a\leq y\leq b$, then F is differentiable:

(iv.) A natural (albeit painful) progression of the concepts from here is to transition to matrix notation. In preparation for this, consider adding another regressor so we have

$$y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u_i. \tag{1}$$

- i. Obtain an expression for $\frac{\partial \theta_i}{\partial \beta_2}$.
- ii. With the support of your previous answers (particularly from (d)-(ii) and your partial derivative just above), infer the form of the partial derivative

$$\frac{\partial \theta_i}{\partial \beta_i}$$
.

iii. Hence, infer an expression for the gradient vector

$$\frac{\partial \theta_i}{\partial \beta}$$

in matrix form, for an arbitrary number of parameters k.

- (e) Demonstrate the following properties of the probit model:
 - (i.) The marginal effects are not constant.
 - (ii.) Relative marginal effects are constant.
 - (iii.) The sign of the coefficient estimate tells you what effect it has on $P(y_i = 1)$.
- (f) Describe three ways in which you could potentially interpret the output from a probit regression model.

Question 2: GLM Formalities

If you're feeling more familiar with the foundations of binary response models, then this question will take things a bit further and formalize everything in matrix notation. It's recommended you give question 1 a look before you try this stuff out!

Consider a sample of n observations on a binary variable $y_i \in \{0,1\}$. You have available k regressors, represented in the $1 \times k$ row vector x_i' for a single observation i. You are interested in the latent variables model

$$y_i = x_i' \beta + u_i,$$

where u_i is a mean zero disturbance and a distribution function $F(u_i)$ (with associated PDF $f(u_i)$) which is symmetric around zero. As alluded to in Question 1, the expression $F(x_i'\beta)$ represents the probability that y_i equals 1, conditional on the regressors x_i .

- (a) Suppose that in the sample of size n, you observe that
 - $y_i = 1$ occurs n_1 times

- $y_i = 0$ occurs n_2 times
- so that $n_1 + n_2 = n$. Use this to obtain an expression for the joint density of the sample y, conditional on the regressors X. Carefully explain your steps. (Remember: this is just the fancy way of saying "go find the likelihood function".)
- (b) Obtain an expression for the log-likelihood function. If you observe any similarities between this question and previous questions, you may skip the relevant working with justification.
- (c) Show that the score function can be written in the form

$$S(\beta) = \sum_{i=1}^{n} x_i \nu_i(\beta), \quad \text{where} \quad \nu_i(\beta) = \frac{[y_i - F(x_i'\beta)]f(x_i'\beta)}{F(x_i'\beta)[1 - F(x_i'\beta)]}$$

is called the *generalized residual* when evaluated at the MLE $\hat{\beta}$.

- *Hint*: it is always a good idea to remember that both $x'_i\beta$ and $F(x'_i\beta)$ are scalars. The Chain Rule is used liberally here to get the desired answer.
- The notation can easily get out of hand. Shorthand like $F_i = F(x_i'\beta)$ and $f_i = f(x_i'\beta)$ may help reduce notational burden.
- (d) Show that the score function has zero expected value. Hint: $\mathbb{E}(y_i|x_i) = F(x_i'\beta)$.
- (e) (i.) Show that the score multiplied by its transpose gives

$$\sum_{i=1}^{n} x_i x_i' \nu_i(\beta)^2 + \sum_{i=1}^{n} \sum_{j \neq i} x_i x_j' \nu_i(\beta) \nu_j(\beta).$$

- (ii.) Hence derive an expression for the conditional variance of the score.
- (f) Let $\gamma_i = (y_i F_i)f_i$ and $\theta_i = F_i(1 F_i)$, with F_i and f_i defined as in part (c) above. Consider the expression

$$\nu_i \equiv \nu_i(\beta) = \frac{(y_i - F_i)f_i}{F_i(1 - F_i)} = \frac{\gamma_i}{\theta_i}.$$

(i.) Show that for any $j = 1, \ldots, k$,

$$\Gamma_{ij} = \frac{\partial \gamma_i}{\partial \beta_j} = \left([y_i - F_i] \frac{\partial f_i}{\partial x_i' \beta} - f_i^2 \right) x_{ij},$$

$$\Theta_{ij} = \frac{\partial \theta_i}{\partial \beta_j} = (1 - 2F_i) f_i x_{ij}.$$

and hence derive an expression for $\frac{\partial \nu_i}{\partial \beta_i}$.

- (ii.) Using your answers above, derive an expression for the Hessian $H(\beta)$.
- (g) Calculate the expected value of the Hessian given the regressors x_i . How does this compare to the conditional variance of the score?