Differences – LED and LASER

- Spontaneous vs. stimulated emission
- Smaller linewidth LED/LASER : (>5nm)/(<1 nm),
 spectral purity
- Directivity LASER light is directive
- Coherence Phase coherence for LASER
- Light intensity LASER has higher power
- Efficiency LASER higher efficiency
- LED to LASER Transition Threshold current or threshold power
- Modulation bandwidth Higher speed for laser

Spontaneous vs. Stimulated Emission

- Radiative recombination in the presence of another photon
- Same wavelength and phase
- Carrier lifetime ns versus ps

Linewidth

- FWHM LED10-50 nm; LASER < 1 nm
- LED Emission governed by Fermi-Dirac Distribution
- LASER Stimulated emission governed by Fermi's golden rule

Directivity

- LED Generally follows Lambert's cosine law
- LASER Gaussian

Coherence

Coherent Laser Light

Incoherent LED Light

Light Intensity and Efficiency

Output power vs. Forward current (P-IF)

Modulation Bandwidth

Higher modulation bandwidth for laser

LASER from LED

Electronic Oscillator = Large Gain Amplifier

+ Frequency Selective Network

LASER = Large Gain LED + Optical Cavity

Laser Building Blocks: the Optical Gain Medium and the Optical Resonator

Optical Gain

Optical Resonators

- Standing EM modes of certain λ
- Higher reflectivity better quality factor

Transient Response – Relaxation Oscillations

$$\frac{dN(t)}{dt} = \frac{I(t)}{q \cdot V_a} - g_0 \cdot \frac{[N(t) - N_0] \cdot S(t)}{1 + \varepsilon \cdot S(t)} - \frac{N(t)}{\tau_n}$$
(1)

$$\frac{dS(t)}{dt} = \Gamma \cdot g_0 \cdot \frac{[N(t) - N_0] \cdot S(t)}{1 + \varepsilon \cdot S(t)} - \frac{S(t)}{\tau_p} + \frac{\Gamma \cdot \beta}{\tau_n} \cdot N(t)$$
 (2)

TransientResponseOfASemiconductorLaser.cdf

Fabry-Perot Laser – Edge Emitting

VCSEL – Surface Emitting Laser

Various Types of Semiconductor Lasers

- Cleaved coupled laser
- Quantum cascade laser
- DFB Laser

GaN Lasers

GaN Lasers

Useful Research Problems

- Choice of gain medium
- Choice of optical resonator
- Gain medium active region Quantum well, wire or dots
- Increasing carrier capture
- Reduced chirp wavelength fluctuation
- Temperature independency
- Single mode
- Effective carrier distribution
- Highly reflective mirror

Thank You