METODA REGRESJI GŁÓWNYCH SKŁADOWYCH (PCR)

Istotnym ograniczeniem stosowania MLR w modelowaniu QSAR jest to, że gdy pomiędzy zmiennymi występują silne korelacje nie jest możliwe poprawne odwrócenie macierzy (X^TX), a więc wzór nie może zostać użyty do obliczenia współczynników b. W tego typu przypadkach konieczne jest skorzystanie z innej metody np. regresji głównych składowych (PCR, *Principal Component Regression*) – zamiast oryginalnych zmiennych objaśniających wykorzystywane są wówczas niezależne od siebie (ortogonalne) główne składowe.

Algorytm PCR składa się z trzech etapów:

- 1) zastosowanie analizy głównych składowych(PCA) do wygenerowania głównych składowych,
- 2) zachowanie *k* pierwszych głównych składowych, które wyjaśniają największą ilość wariancji w danych,
- 3) dopasowanie modelu regresji liniowej (metoda najmniejszych kwadratów) do *k* głównych składowych.

Analiza głównych składowych

Pierwszym etapem analizy głównych składowych jest utworzenie macierzy korelacjikowariancji $C(m \times m)$ na podstawie autoskalowanej macierzy danych $X(n \times m)$ zgodnie ze wzorem (4):

$$\mathbf{C} = \mathbf{X}^T \mathbf{X} \tag{1}$$

Następnie wyznacza się wektory własne macierzy C (macierz W). Elementy wektorów własnych są współczynnikami kombinacji liniowej zmiennych objaśniających definiujących poszczególne główne składowe. Z każdym z wektorów własnych związana jest jedna wartość własna λ_i . Liczba ta charakteryzuje zasób informacji (zmienności) wyjaśnianej przez daną zmienną.

PCA zakłada, że zmienność właściwa uwzględniania jest w *k* pierwszych głównych składowych o największych wartościach własnych, przy czym wartości własne są proporcjonalne do ilości wyjaśnianej informacji.

W następnym kroku dla wybranych głównych składowych obliczane są dwie macierze: macierz ładunków czynnikowych P oraz macierz wartości czynnikowych T.

Macierz P o wymiarach $n \times k$ otrzymuje się poprzez odcięcie z macierzy C wektorów nieistotnych głównych składowych. Jej elementy stanowią ładunki wnoszone do kolejnych składowych przez poszczególne zmienne. Innymi słowy, macierz ta opisuje zależności między zmiennymi w przestrzeni głównych składowych. Zgodnie z regułą Malinowskiego istotne są te zmienne, których znormalizowane wartości ładunków czynnikowych są większe lub równe 0,7, lub mniejsze bądź równe -0,7. Informację tę można przedstawić graficznie w formie wykresu ładunków czynnikowych.

Rysunek 1. Przykładowy wykres ładunków czynnikowych dla 3 głównych składowych Na podstawie wykresu ładunków czynnikowych można ocenić jaki wkład i jak skorelowane są poszczególne zmienne objaśniające w tworzenie głównych składowych.

Macierz T o wymiarach $m \times k$ powstaje w wyniku pomnożenia autoskalowanej macierzy X przez macierz P (Rysunek 2.) i zawiera współrzędne obiektów w przestrzeni nowych składowych (zmiennych). Na jej podstawie tworzy się tzw. mapy liniowe przedstawiające rzuty przestrzeni na płaszczyznę wyznaczaną przez kolejne główne składowe. Przykładowa mapa liniowa przedstawiona jest na Rynsuku 3.

Rysunek 2. Schemat przekształceń prowadzący do uzyskania współrzędnych obiektów w wielowymiarowej przestrzeni cech.

Rysunek 3. Przykładowa mapa liniowa PC1:PC2

Optymalną liczbę głównych składowych możemy wyznaczyć na podstawie kilku kryteriów:

- Kryterium Kaisera wykorzystywane są główne składowe których wartości własne są większe niż 1.
- 2. Wykres osypiska liczbę głównych składowych wyznacza się na podstawie punktu w którym wykres zaczyna się wypłaszczać i nie ma gwałtownych spadków wartości własnej. Oznacza to, że po tym punkcie nie ma znaczącego przyrostu informacji.

Rysunek 4. Przykładowy wykres osypiska

- 3. Sumaryczny procent wyjaśnianej wariancji umowne określenie, ile procent maksymalnej wariancji wyjaśnianej przez główne składowe jest wystarczające. Najczęściej przyjmuje się, że akceptowalny poziom wynosi 70-80%.
- 4. Średni błąd kwadratowy metoda wykorzystywana, jeśli na otrzymanych składowych planowana jest dalsza regresja. Buduje się model regresji i wyznacza wartość RMSE z każdą dodaną główną składową. Wybiera się taką ilość głównych składowych dla których wynik RMSE jest najniższy.

Rysunek 5. Przykładowy wykres RMSE od ilości głównych składowych.