Inhaltsverzeichnis

V	orwort	5
1	Beispiele normierter Räume	7
2	Funktionale und Operatoren	21
3	Dualräume und ihre Darstellungen	31
4	Kompakte Operatoren	37
5	Der Satz von Hahn-Banach	45
6	Schwache Konvergenz und Reflexivität	57
7	Hauptsätze für Operatoren auf Banachräumen	61

7

Hauptsätze für Operatoren auf Banachräumen

{satz7.1}

Satz 7.1 Satz von Baire

Sei (X,d) ein vollständiger metrischer Raum und $(\mathcal{O}_n)_{n\in\mathbb{N}}$ eine Folge offener und dichter Teilmengen von X. Dann ist auch $\bigcap_{n\in\mathbb{N}}\mathcal{O}_n$ dicht in X.

Beweis: Sei $D := \bigcap_{n \in \mathbb{N}} \mathcal{O}_n$. Es ist zu zeigen: Jede ε -Kugel in X enthält ein Element von D. Sei

$$B_{\varepsilon_0}(x_0) := \{ x \in X \mid d(x, x_0) < \varepsilon_0 \}$$

eine dieser Mengen. Da \mathcal{O}_1 offen und dicht ist, existiert ein $x_1 \in \mathcal{O}_1$, $0 < \varepsilon_1 < \frac{1}{2}\varepsilon_0$ so dass

$$b_{\varepsilon_1}(x_1) \subseteq \mathcal{O}_1 \cap B_{\varepsilon_0}(x_0)$$

Weiter induktiv:

$$B_{\varepsilon_{n+1}}(x_{n+1}) \subseteq \mathcal{O}_n \cap B_{\varepsilon_n}(x_n)$$

mit $0 < \varepsilon_{n+1} < \frac{1}{2}\varepsilon_n$.

Sei m > n. Dann folgt:

$$d(x_m, x_n) < \varepsilon_n < 2^{-1} \varepsilon_{n-1} < \dots < 2^{-n} \varepsilon_0$$

 $(x_n)_{n\in\mathbb{N}}$ ist eine Cauchyfolge in X.

Sei $x := \lim_{n \to \infty} x_n$.

$$d(x_n, x) \le d(x_n, x_m) + d(x_m, x) < e_n$$

für m hinreichend groß. Also ist

$$x \in B_{\varepsilon_n}(x_n) \subseteq \mathcal{O}_{n-1} \cap B_{\varepsilon_{n-1}}(x_{n-1}) \subseteq \mathcal{O}_{n-1} \cap \dots \cap \mathcal{O}_1 \cap B_{\varepsilon_0}(x_0) \forall n \in \mathbb{N}$$

Und somit $x \in D \cap B_{\varepsilon_0}(x_0)$.

{kor7.2}

Korollar 7.2 Bairescher Kategoriensatz

Sei (X,d) ein vollständiger metrischer Raum und $X = \bigcup_{n=1}^{\infty} A_n$ mit A_n abgeschlossen. Dann existiert ein $n_0 \in \mathbb{N} : \mathring{A}_{n_0} \neq \emptyset$.

Beweis: Übungsaufgabe.

Bemerkung

Der Bairesche Kategoriensatz liefert häufig relativ einfache Beweise für Existenzaussagen, z.B.: Es gibt stetige Funktionen auf [0,1] die an keiner Stelle differenzierbar sind.

{thm7.3}

Theorem 7.3 Satz von Banach-Steinhaus, Prinzip der gleichmässigen Beschränktheit

Seien X ein Banachraum und Y ein normierter Raum, I eine Indexmenge und $T_i \in L(X,Y), i \in I$. Falls

$$\sup_{i \in I} \|T_i x\| < \infty \forall x \in X$$

so folgt

$$\sup_{i\in I}\|T_i\|<\infty$$

Beweis: Zu $n \in \mathbb{N}$:

$$E_n := \left\{ x \in X \middle| \sup_{i \in I} ||T_i x|| \le n \right\}$$

Aus der Voraussetzung folgt: $X=\bigcup_{n\in\mathbb{N}}E_n$. Da die T_i s stetig sind, ist die Menge

$$E_n = \bigcap_{i \in I} \|T_i\|^{-1}([0,n])$$

abgeschlossen. Nach dem Baireschen Kategoriensatz hat dann mindestens eine Menge E_n einen inneren Punkt. Also $\exists N \in \mathbb{N} : \exists y \in E_N \exists \varepsilon > 0$:

$$||x - y|| \le \varepsilon \Rightarrow x \in E_N$$

Da E_N symmetrisch ist, d.h. $z \in E_N \Rightarrow -z \in E_N$, hat -y dieselbe Eigenschaft. Da E_N konvex ist folgt:

$$||u|| \le \varepsilon, u \in X \Rightarrow u = \frac{1}{2}((u+y) + (u-y)) \in \frac{1}{2}(E_n + E_n) = E_n$$

Somit gilt: Aus $||u|| \le \varepsilon$ folgt $||T_i u|| \le N \forall i \in I$.

$$\sup_{i \in I} \|T_i\| = \sup_{i \in I} \sup_{\substack{u \in X \\ \|u\| \le 1}} \|T_i u\| \le \frac{N}{\varepsilon} < \infty$$

Bemerkung

- i) Der Satz von Banach-Steinhaus gibt keinen Aufschluss über die Größe von $\sup_{i \in I} ||T_i||$.
- ii) Die Vollständigkeit von X ist wesentlich für den Satz von Banach-Steinhaus.

Beispiel

 $X = (d, \|\cdot\|_{\infty})$ und $T_n : d \to \mathbb{K}$ mit $T_n(x_m)_{m \in \mathbb{N}} = nx_n$. T_n ist linear. Sei $x = (x_m)_{m \in \mathbb{N}} \in d$ beliebig.

$$x = (x_1, x_2, x_3, ..., x_N, 0, ...0)$$

$$\sup_{i\in\mathbb{N}}\|T_ix\|=\sup_{i\in\mathbb{N}}|ix_i|=\sup_{i=1}^N|ix_i|<\infty$$

Aber es gilt:

$$\|T_i\| = \sup_{\substack{x \in d \\ \|x\|_\infty \leq 1}} \|T_i x\| = \sup_{\substack{x \in d \\ \|x\|_\infty \leq 1}} |ix_i| = i$$

Also $T_i \in L(d, \mathbb{K})$ und $\sup ||T_i|| = \infty$. //

{kor7.4}

Korollar 7.4

Für eine Teilmenge M eines normierten Raumes X sind äquivalent:

- i) M ist beschränkt, d.h. $\exists c > 0 : ||x|| \le c \forall x \in M$.
- ii) $\forall x' \in X'$ ist $x'(M) \subseteq \mathbb{K}$ beschränkt.

Beweis:

 $i) \Rightarrow ii$): trivial, da $x' \in X'$.

ii)⇒i): Wir betrachten die Funktionale $i_X(x)$ für $x \in M$, welche auf dem Banachraum X' definiert sind. Nach Voraussetzung gilt:

$$\sup_{x \in M} |x'(x)| = \sup_{x \in M} |i_X(x)(x')| < \infty \forall x' \in X'$$

Mit dem Satz von Banach-Steinhaus (I := M, für X wählen wir X', $Y := \mathbb{K}$, $T_i := i_X(x)$) folgt:

$$\sup_{x\in M}\|x\|=\sup_{x\in M}\|i_X(x)\|<\infty$$

{kor7.5}

Korollar 7.5

Schwach konvergente Folgen sind beschränkt.

Beweis: Konvergiert $(x_n)_n$ schwach, so ist für $x' \in X'$ die Folge $(x'(x_n))_{n \in \mathbb{N}}$ beschränkt, da konvergent. Mit Korollar 7.4 folgt die Behauptung.

{kor7.6}

Korollar 7.6

Sei X ein Banachraum und $M \subseteq X'$. Dann sind äquivalent:

- i) *M* ist beschränkt.
- ii) $\forall x \in X$ ist $\{x'(x) \mid x' \in M\}$ beschränkt.

Beweis:

i)⇒*ii*): √

 $ii) \Rightarrow i$: Dies ist ein Spezialfall vom Satz von Banach-Steinhaus.

r7.7}

Korollar 7.7

Sei X ein Banachraum und Y ein normierter Raum, sowie $T_n \in L(X,Y)$, $\forall n \in \mathbb{N}$. Für $x \in X$ existiere $Tx := \lim_{n \to \infty} T_n x$. Dann gilt $T \in L(X,Y)$.

Beweis: Die Linearität von T ist klar, da 'lim' linear ist. Es bleibt zu zeigen: T ist stetig. Da $(T_n x)_{n \in \mathbb{N}}$ für alle $x \in X$ konvergiert, ist stets $\sup_{n \in \mathbb{N}} \|T_n x\| < \infty \forall x \in X$. Mit dem Satz von Banach-Steinhaus folgt:

$$\sup_{n\in\mathbb{N}}\|T_n\|=:M<\infty$$

Also:

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| \le M ||x|| \, \forall x \in X$$

{def7.8}

Definition 7.8

Eine Abbildung zwischen metrischen Räumen heißt offen, wenn sie offene Mengen auf offene Mengen abbildet.

Bemerkung

Eine offene Abbildung muss abgeschlossene Mengen nicht auf abgeschlossene Mengen abbilden.

Beispiel

 $p: \mathbb{R}^2 \to \mathbb{R}, \ p(s,t) = s. \ p$ ist offen, aber die abgeschlossene Menge

$$\{(s,t) \mid s \ge 0, st \ge 1\}$$

wird auf $]0,\infty[$ abgebildet. $/\!\!/$

{lemma7.9}

Lemma 7.9

Für eine lineare Abbildung $T: X \to Y$ zwischen normierten Räumen sind äquivalent:

- i) T ist offen.
- ii) T bildet offene Kugeln um 0 auf Nullumgebungen ab, d.h.

$$\forall r > 0 \exists \varepsilon > 0 : B_{\varepsilon}(0) \subseteq T(B_r(0))$$

iii)

$$\exists \varepsilon > 0 : B_{\varepsilon}(0) \subseteq T(B_{-}1(0))$$

Beweis:

ii)⇔iii): Klar, da T linear.

 $i)\Rightarrow ii$: $B_r(0)$ offen. Da T offen gilt, dass $T(B_r(0))$ offen ist und $0 \in T(B_r(0))$. Daraus folgt, dass ein $\varepsilon > 0$ mit der gewünschten Eigenschaft existiert.

ii)⇒*i*): Sei $O \subseteq X$ offen und $x \in O$. Dann ist $Tx \in T(O)$. Da O offen ist, existiert ein r > 0 mit $x + B_r(0) \subseteq O$. Dann folgt $Tx + T(B_r(0)) \subseteq T(O)$. Mit ii) folgt nun:

$$Tx + B_{\varepsilon}(0) \subseteq Tx + T(B_{r}(0)) \subseteq T(O)$$

Da x beliebig war, ist T(O) offen.

Beispiel

- i) Jede Quotientenabbildung ist offen (T Quotientenabbildung $\Leftrightarrow T(B_1(0)) = B_1(0)$).
- ii) Die Abbildung $T: \ell^{\infty} \to c_0, (x_n)_n \mapsto \left(\frac{1}{n}x_n\right)_n$, ist nicht offen, denn:

$$T(B_1(0)) = \left\{ (y_n)_n \in c_0 \, \middle| \, |y_n| < \frac{1}{n} \right\}$$

ist keine Nullumgebung.

iii) Jede offene lineare Abbildung ist surjektiv. In vollständigen Räumen gilt auch die Umkehrung, wie der folgende Satz zeigt.

//

{thm7.10}

Theorem 7.10 Satz von der offenen Abbildung

Sind *X* und *Y* Banachräume und $T \in L(X,Y)$ ist surjektiv, dann ist *T* offen.

Beweis: Wir zeigen, dass Lemma 7.9 iii) gilt.

i) Zeige zunächst:

$$\exists e_0 > 0 : B_{\varepsilon_0}(0) \subseteq \overline{T(B_1(0))}$$

Da T surjektiv ist, gilt

$$Y = \bigcup_{n \in \mathbb{N}} T(B_n(0)) = \bigcup_{n \in \mathbb{N}} \overline{T(B_n(0))}$$

Mit dem Baireschen Kategoriensatz existiert dann ein $N \in \mathbb{N}$ so dass $\overline{T(B_n(0))} \neq \emptyset$, also existiert ein $y_0 \in \overline{T(B_n(0))}$ und $\varepsilon > 0$:

$$||z - y_0|| < \varepsilon \Rightarrow z \in T(B_N(0))$$

Nun ist $\overline{T(B_N(0))}$ symmetrisch, d.h. diese Menge enthält mit z auch -z (denn $T(B_n(0))$ ist symmetrisch und damit auch der Abschluss und das Innere). Dann hat $-y_0$ dieselbe Eigenschaft, d.h.

$$||z + y_0|| < \varepsilon \Rightarrow z \in \overline{T(B_N(0))}$$

Sei nun $||y|| < \varepsilon$. Dann:

$$\|(y_0 + y) - y_0\| < \varepsilon \quad \text{und} \quad \|(-y_0 + y) + y_0\| < \varepsilon$$

Somit gilt $y_0 + y, -y_0 + y \in \overline{T(B_N(0))}$. Da $\overline{T(B_N(0))}$ konvex ist, gilt: T(

$$y = \frac{1}{2}(y_0 + y) + \frac{1}{2}(-y_0 + y) \in \overline{T(B_N(0))}$$

Also: $B_{\varepsilon}(0) \subseteq \overline{T(B_N(0))}$ und $B_{\frac{\varepsilon}{N}}(0) \subseteq \overline{T(B_1(0))}$.

ii) Sei $\varepsilon_0 > 0$ wie in Teil i). Es bleibt zu zeigen:

$$B_{\varepsilon_0}(0) \subseteq T(B_1(0))$$

Sei dazu $y \in Y$ mir $||y|| < \varepsilon_0$ beliebig. Wähle $\varepsilon > 0$ mit $||y|| < \varepsilon < \varepsilon_0$ und setze $\bar{y} := \frac{\varepsilon_0}{\varepsilon} y$. Dann:

$$\|\bar{y}\| = \frac{\varepsilon_0}{\varepsilon} \|y\| < \varepsilon_0$$

und aus Teil i) folgt $\bar{y} \in \overline{T(B_1(0))}$. Dann existiert ein $y_0 = Tx_0 \in T(B_1(0))$ mit $\|\bar{y} - y_0\| < \alpha \varepsilon_0$. Hierbei ist $\alpha \in]0,1[$ so klein gewählt, so dass

$$\frac{\varepsilon}{\varepsilon_0} \frac{1}{1 - \alpha} < 1 \Rightarrow \frac{\bar{y} - y_0}{\alpha} \in B_{\varepsilon_0}(0) \Rightarrow \frac{\bar{y} - y_0}{\alpha} \in \overline{T(B_1(0))}$$

Dann existiert ein $y_1 = Tx_1 \in T(B_1(0))$ mit

$$\left\|\frac{\bar{y}-y_0}{\alpha}-y_1\right\|<\alpha\varepsilon_0\Rightarrow\|\bar{y}-(y_0+\alpha y_1)\|<\alpha^2\varepsilon_0\Rightarrow\frac{\bar{y}-(y_0+\alpha y_1)}{\alpha^2}\in B_{\varepsilon_0}(0)$$

Mit vollständiger Induktion existiert nun eine Folge $(x_n)_n \in B_1(0)$:

$$\left\| \bar{y} - T \left(\sum_{i=0}^{n} \alpha^{i} x_{i} \right) \right\| < \alpha^{n+1} \varepsilon_{0}$$

Wegen $\alpha \in]0,1[$ konvergiert die Reihe

$$\sum_{i=0}^{\infty} \alpha^i x_i$$

absolut. Da X vollständig existiert der Grenzwert

$$\bar{x} \coloneqq \sum_{i=0}^{\infty} \alpha^i x_i \in X$$

Nach Konstruktion ist $T\bar{x} = \bar{y}$. Setze $x \coloneqq \frac{\varepsilon}{\varepsilon_0}\bar{x} \Rightarrow Tx = y$ und

$$||x|| = \frac{\varepsilon}{\varepsilon_0} ||\bar{x}|| = \frac{\varepsilon}{\varepsilon_0} \left\| \sum_{i=0}^{\infty} \alpha^i x_i \right\| \le \frac{\varepsilon}{\varepsilon_0} \frac{1}{1-\alpha} < 1$$

Also ist $y \in T(B_1(0))$ und somit folgt die Behauptung.

{kor7.11}

Korollar 7.11

Sind X und Y Banachräume und ist $T \in L(X,Y)$ bijektiv, so ist die inverse Abbildung T^{-1} stetig.

{def7.12}

Definition 7.12

Seien X und Y normierte Räume, $D \subseteq X$ sei ein Untervektorraum, $T: D \to Y$ sei eine lineare Abbildung. Dann heißt T abgeschlossen, falls: Konvergiert eine Folge $(x_n)_n$, $x_n \in D$, gegen $x \in X$ und konvergiert $(Tx_n)_n$, etwa gegen $y \in Y$, so folgt $x \in D$ und Tx = y. Ist T auf $D \subseteq X$ definiert, so schreibt man dom(T) = D bzw. $T: dom(T) \subseteq X \to Y$.

Bemerkung Wie hängen Abgeschlossenheit und Stetigkeit zusammen? Für den Spezialfall dom(T) = X betrachten wir die Aussagen:

- i) $x_n \to x$ in X.
- ii) (Tx_n) konvergiert, etwa $Tx_n \to y$ in Y.
- iii) Tx = y.

Dann gilt:

T stetig, falls i)⇒ii) und iii).

T ist abgeschlossen: i) und ii)⇒iii)

Somit: T stetig $\Rightarrow T$ ist abgeschlossen.

Bemerkung

Abgeschlossene Operatoren bilden im Allgemeinen nicht abgeschlossene Mengen auf abgeschlossene Mengen ab. Abgeschlossenheit heißt hier 'Graphen abgeschlossen'.

Für eine lineare Abbildung $T: D \subseteq X \to Y$ ist der Graph von T definiert als

$$Gr(T) := \{(x, Tx) \mid x \in D\} \subseteq X \times Y$$

{lemma7.13}

Lemma 7.13

Seien X, Y normierte Räume, $D \subseteq X$ ein Untervektorraum und $T: D \to Y$ linear. Dann gilt:

i) Gr(T) ist ein Untervektorraum von $X \times Y$.

Beweis:

i) Klar.