Bubble Sort

Insertion Sort

Shell Sort

Selection Sort

Merge Sort

Bucket Sort

9	7	6	15	16	5	10	11
---	---	---	----	----	---	----	----

a) find the maximum value of the given array

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

b) create and initialize the buckets, the size should be maximum + 1

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	1	1

c) go through the original array, update corresponding bucket if that value exists

5 6	7	9	10	11	15	16
-----	---	---	----	----	----	----

d) go through buckets from the smallest index, build the sorted array

Quick Sort

Build Heap

Convert to Max Heap

