

• absent during training, •

poorly sampled, or

not well defined

Adversarially Learned One-Class Classifier for Novelty Detection

M. Sabokrou¹, M. Khalooei², M. Fathy¹, **Ehsan Adeli**³

¹Institute for Research in Fundamental Sciences ²Amirkabir University of Technology ³Stanford University

Too few samples

(highly imbalanced

classification)

What is novelty?

• Due to the unavailability of data from the novelty class, training an end-to-end deep network is challenging.

Joint Training of R+D

Experiments

- Outlier Detection (MNIST)
 - Trained to detect each digit separately
 - Other digits pose as outliers (10 to 50 percent)

244029050316600

First row (X)
Second row R(X)

Reconstructs '1'
properly, distorts others

Trained with digit '1' as

Experiments (cont'd)

- Outlier Detection (Caltech-256)
 - Similar to previous works [52], we repeat the procedure three times and use images from n={1; 3; 5} randomly chosen categories as inliers (i.e., target).
 - Outliers are randomly selected from the "clutter" category, such that each experiment has exactly 50% outliers.

		CoP [32]	REAPER [22]	OutlierPursuit [50]	LRR [24]	DPCP [45]	R-graph [52]	Ours $\mathcal{D}(X)$	Ours $\mathcal{D}(\mathcal{R}(X))$
1 outlier	AUC	0.905	0.816	0.837	0.907	0.783	0.948	0.932	0.942
category	F_1	0.880	0.808	0.823	0.893	0.785	0.914	0.916	0.928
3 outlier	AUC	0.676	0.796	0.788	0.479	0.798	0.929	0.930	0.938
categories	F_1	0.718	0.784	0.779	0.671	0.777	0.880	0.902	0.913
5 outlier	AUC	0.487	0.657	0.629	0.337	0.676	0.913	0.913	0.923
categories	F_1	0.672	0.716	0.711	0.667	0.715	0.858	0.890	0.905

Video Anomaly Detection (UCSD Ped2)

Frame-level comparisons

Method	EER	Method	EER
IBC [6]	13%	RE [36]	15%
MPCCA [19]	30%	Ravanbakhsh <i>et al.</i> [34]	13%
MDT [26]	24%	Ravanbakhsh <i>et al.</i> [33]	14%
Bertini <i>et al</i> . [4]	30%	Dan Xu <i>et al</i> . [48]	17%
Dan Xu <i>et al</i> . [49]	20%	Sabokrou <i>et al</i> . [37]	19%
Li <i>et al</i> . [23]	18.5%	Deep-cascade [39]	9%
Ours - $\mathcal{D}(X)$	16%	Ours - $\mathcal{D}(\mathcal{R}(X))$	13%

Conclusion

- Unlike majority of GAN applications, here, both trained networks are used in testing.
- After training the model, Recan reconstruct target class samples correctly, while it distorts samples that do not have the concept shared among the target class samples, which indeed helps D.
- No significant problems with Mode Collapse, as Redirectly sees all possible samples of the target class data and implicitly learns the manifold spanned by the target data distribution.
- Questions: sabokro@ipm.ir, eadeli@cs.stanford.edu