LECTURE # 13

- · AXISYMMETRIC ROTATIONS
 - BODY CONES
 - SPACE CONES
 - PRECESSION , NUTATION
- · GEOMETRIC INTERPRETATIONS

ATTITUDE MOTION - TORQUE FREE

- HAVE DISCUSSED THE ROTATIONAL MOTION FROM
 THE PERSPECTIVE OF THE "BODY FRAME"
 - NEED TO FIND A WAY TO CONNECT

 THE MOTION TO THE INERTIAL FRAME

 SO WE CAN DESCRIBE THE ACTUAL MOTION.
- TYPICALLY DONE BY DESCRIBING MOTION OF VEHICLE ABOUT THE H SINCE THIS IS FIXED IN THE INERTIAL FRAME (M = 0)
 - CONSIDER AXISYMMETRIC BODIES
 - · "PLATES"
 - · "TUBES"
- CAN DEVELOP SIMPLE, FAIRLY INTUITIVE GEOMETRIC INTERPRETATIONS FOR THE RESULTING MOTION.
 - CLASSIC PROBLEM IN CLASSICAL MECHANICS

- AXISYMMETRIC WITH PRIMARY SPIN ABOUT
 THE C3 AXIS
 I, = I2
- EVLERS E.O.M REDUCE TO: $I, \dot{\omega}_1 + (I_3 - I_1) \omega_2 \omega_3 = 0$ $I_2 \dot{\omega}_2 + (I_1 - I_3) \omega_1 \omega_3 = 0$ $I_3 \dot{\omega}_3 = 0$

=> W3 = CONSTANT = V

REWRITE :

$$\dot{W}_1 + \lambda W_2 = 0$$

$$\dot{W}_2 - \lambda W_1 = 0$$

 $\Rightarrow \ddot{W}_1 + \lambda^2 W_1 = 0$

$$\lambda = \left(\frac{\mathbf{I}_{1} - \mathbf{I}_{3}}{\mathbf{I}_{1}}\right) \mathbf{J}$$

" RELATIVE SPIN RATE"

SOLUTION OF THE FORM $W_1(t) = W_{10} \cos \lambda t + W_{20} \sin \lambda t$ $W_2(t) = W_{20} \cos \lambda t - W_{10} \sin \lambda t$

EASY TO SHOW
$$W_{12}^2 = W_1^2 + U_2^2$$

$$= W_{10}^2 + W_{20}^2 = CONSTANT.$$

SO, CONSTANTS IN THIS PROBLEM ARE i) V ii) W12

AND TIME to AT WHICH W. =0, W2 = W.2

$$\Rightarrow \quad t_o = \frac{1}{\lambda} TAN^{-1} \left(-\frac{U_{10}}{U_{20}} \right)$$

JUST DEFINES THE "START" TIME

- SO WIZ CORRESPONDS TO THE PROJECTION OF THE \hat{w} Instantaneously into the body frame.
 - BODY FRAME IS ROTATING IN 3-0
 - THE W IS ALSO MOVING IN 3-0

=> ONLY THING THAT IS FIXED IS THE H

- OF THE BODY (=3) AND THE W ?
 - \Rightarrow CAN ANSWER THIS BY STUDYING THE MOTION OF $\vec{\omega}$ PROTECTED ONTO THE \vec{e}_1, \vec{e}_2 PLANE. \Rightarrow $\vec{\omega}_{11}$ = $\vec{\omega}_{12}$ \vec{e}_1 + $\vec{\omega}_2$ \vec{e}_2

BOOY PRINCIPAL AXES

- RECALL: |Wiz = CONSTANT
- DIRECTION THAT WIZ POINTS (SIZE OF W, W) COMPONENTS) WILL CHANGE AS A FUNCTION OF TIME.
- DEFINE μ = λ(t-t.)

 $W_1 = W_{12} \leq IN M$ $W_2 = W_{12} cos M$

- 1743

NOTE: A CAN
BE EITHER tre
OR -ve

-> GIVES RELATIVE SPIN RATE.

BUT
$$\int_{\omega_{n}^{2}+\omega_{2}^{2}}^{\omega_{10}} -\omega_{10} \propto = TAN^{-1} \left(\frac{-\omega_{10}}{\omega_{20}}\right) \equiv \lambda t_{0}$$

:
$$\cos \lambda t_0 = \frac{\omega_{20}}{\sqrt{\omega_{10}^2 + \omega_{20}^2}} = \frac{\omega_{20}}{\sqrt{\omega_{12}^2}} = \frac{\omega_{20}}{\omega_{12}}$$

SUMMARY

$$W_1 = W_{12} SIN M$$
 $W_2 = W_{12} COS M$
 $W_3 = V$
 $W_3 = V$
 $W_4 = W_{12}^2 + W_2^2 + W_3^2$
 $W_5 = V_1^2 + W_{12}^2 = CONSTANT.$

- . NOW CONSIDER ANGULAR MOMENTUM.
 - H FIXED , BUT

 - DETAILS: $H_1 = I_1 W_1 = I_1 W_{12} \sin \mu$ $H_2 = I_2 W_2 = I_2 W_{12} \cos \mu = I_1 W_{12} \cos \mu$ $H_3 = I_3 U_3 = I_3 U$

$$\begin{cases}
H_{1} = H_{12} 51N \mu \\
H_{2} = H_{12} \cos \mu \\
H_{3} = I_{3} V
\end{cases}$$

NOTE: M STILL DEFINES

ANGLE FROM É2

TO $\vec{H}_{12} = \vec{H}_1 \vec{e}_1 + \vec{H}_2 \vec{e}_2$

- MORE ON & LATER

- . FOR THE GEOMETRY , LET:
 - 8 BE THE ANGLE BETWEEN THE \vec{n} AND THE 3-Axis of the BODY FRAME (\vec{e}_3)
 - O BE THE ANGLE BETHEEN
 THE H AND THE 3-AXIS OF
 THE BODY FRAME. (3)
- · THEN WE HAVE :

$$TAN \Theta = \frac{H_{R}}{H_{3}} = \frac{I_{1} w_{R}}{I_{3} V}$$

$$TAN 8 = \frac{W^2}{W_3} = \frac{W^3}{V}$$

KEY EQUATION.

- .. TAN $\theta = \left(\frac{I_1}{I_3}\right)$ TAN 8
- IF I,>I3 (ROD) THEN θ > \forall I, \langle I3 (DISC) THEN θ <
- NOTE: O GIVES BODY AXIS ORIENTATION WRT

 INERTIAL DIRECTION, AND IS OFTEN

 CALLED THE <u>NUTATION</u> ANGLE.

• NOTE - FAIRLY EASY TO SHOW THAT \$\vec{u}\$, \$\vec{H}\$, \$\vec{e}_3\$

ALL LIE IN ONE PLANE.

O SINCE À FIXED, THIS PLANE ROTATES ABOUT À.

PATH OF W IN 3-0 CREATES
 A BODY CONE AND
 A SPACE CONE

Chara:

- BOOY CONE: ATTACHED TO Ê3 OF BODY + ALIGNED
 WITH SYMMETRY AXIS
 AT AN ANGLE Y FROM €3 TO W
- SPACE CONE: ATTACHED TO H, SO FIXED

 IN INERTIAL SPACE.

 AT AN ANGLE | 8-0 | FROM H TO W
- TO IS AT THE LINE OF TANGENCY OF THE TWO

 CONES

 BODY ATTITUDE MOTION CAN BE VISUALIZED

BY ROLLING ONE CONE (BOOY) ON THE OTHER.

· RECALL FROM BEFORE

BODY CONE ROLLS ON FIXED SPACE CONE

NALWAYS AT

LINE OF

TANGENACY OF THE

2 CONES.

- THE ROTATION OF E3 AND W ABOUT H

 IS CALLED <u>PRECESSION</u>
 - BUT WE HAVE TWO DIFFERENT TYPES OF PRECESSION HERE
 - DIFFERENTIATE BETWEEN THEM BY HOW

 è3 AND W ARE MOUING WRT TO EACH

 OTHER. → DETERMINED BY A ↔ M
 - SINCE $\lambda = \left(\frac{\pm_{1} \pm_{3}}{\pm_{1}}\right) \Gamma$, THEN IF

$$I_3 > I_1$$
 (01sc) $\lambda < 0$

$$I_3 < I_1$$
 (RoO) $\lambda > 0$

- " $\lambda > 0$ CALLED RETROGRADE PRECESSION

 " $\lambda > 0$ " DIRECT PRECESSION
- THIS DIFFERENCE IS NOT SOMETHING THAT CAN NORMALLY BE SEEN.

- FINAL STEP IS TO CONNECT THE BODY
 TO THE INERTIAL FRAME MORE CONCRETELY
 USING EULER ANGLES.
 - ROTATE BY 4 ABOUT H X1, Y, Z, > X2, Y2, Z2
 - ROTATE BY & ABOUT X2 > X3, Y3, Z3
 - ROTATE BY & ABOUT Z3 = E3

NOTE: & CONSTANT.

\$ ~ BOOY SPIN RATE

· CAN RELATE $\vec{u} = \vec{\Psi} \vec{z}_1 + \hat{\phi} \vec{e}_3$

PROJECT INTO BODY FRAME COMPONENTS:

$$W_1 = \dot{\Psi} SIN\Theta SIN\Phi$$
 $W_2 = \dot{\Psi} SIN\Theta COS\Phi$
 $W_3 = \dot{\Phi} + \dot{\Psi} COS\Theta$

CAN SHOW

Y = CONSTANT

ψ ~ PRECESSION SPEED - RATE OF ROTATION OF

X IN INERTIAL SPACE

+ (I3-I1)(4 SINO COS 4)(4+4(050)=0

$$\dot{\psi} = \frac{I_3}{(I,-I_3)\cos\theta} \dot{\phi}$$

T3> I, $\dot{\Psi}$, $\dot{\Phi}$ HAVE OPPOSITE
SIGNS.

SUMMARY

- * SPACE AND BODY CONES GIVE A LOT

 OF INSIGHT INTO THE MOTION OF THE

 BODY NO DIRECT INTEGRATION

 ⇒ COMPLEX BEC \$\vec{\pi}\$, \$\vec{\pi}\$ NoT ALIGNED.
- "CONING" MOTION OF BODY AROUND THE H
 - POORLY THROWN SPIRAL ON A
 FOOTBALL
- OFTEN HEAR ABOUT "SPIN STABILIZATION"
 - REFERS TO GIVING A BODY A LARGE SPIN RATE -> LARGE H
 - MAKES IT RELATIVELY IMMUNE TO
 THE INFLUENCE OF SMALL EXTERNAL
 TORQUES.
 - USED EXTENSIVELY IN EARLY SPACECRAFT.

 LESS SO NOW.