5 三角関数のグラフ

5.1 基本

(1) $y = \sin \theta$

T.							
8	$-\pi$	- 7	ででです。	TC	$\frac{3}{2}\pi$	270	3π
	b	-1	0 - 13 1	. 0	-(0	n

特徴

ullet 2π ごとに同じ形を繰り返している. (周期が 2π)

値域は ____ ≦ y ≦ ____ |

• ______ に関して対称. (奇関数という)

(2) $y = \cos \theta$

15 15			3.8							
θ	$-\pi$		0	$\frac{\pi}{2}$	T	2 41	27(3π	
y	-1	U 700	1	1 0	-1	0	ı		- 1	

特徴

周期が工へ

値域は _____ ≤ y ≤ ____

• **工事由** に関して対称. (偶関数という)

- 周期が
- ・ 値域は 実数すべて
- ______ に関して対称.
- $y=\tan\theta$ のグラフは, θ が $\frac{1}{2}\pi$ に近づくと, 直線 $\theta=\frac{1}{2}\pi$ に近づく. (グラフが限りなく近づく直線を漸近線という.)

5.2 拡大・縮小・平行移動

(1) $y = 3\sin\theta$

θ	$-\pi$	$-\frac{\pi}{2}$	0	7/2	TC	27(3π
u	0	- 3	0	3	0	0	0

(2) $y = \frac{1}{2}\cos\theta$

θ	$-\pi$	-1	0	77	75	27	3π
u		0	1	0	-1/2	1 2	$-\frac{1}{2}$

(3) $y = \sin\left(\theta - \frac{1}{4}\pi\right)$

θ	$-\pi$	12	$-\frac{\pi}{q}$ 0	R	7	3 77	47	3π
y	0: 34	a	-1 -1	0	12	1 12	0	n E *

 $y=\sin\left(heta-rac{1}{4}\pi
ight)$ のグラフは, $y=\sin heta$ のグラフを heta 軸方向に _____ だけ平行移動したグラフ.

(4)
$$y = \cos\left(\theta + \frac{1}{3}\pi\right)$$

 $y=\cos\left(heta+rac{1}{3}\pi
ight)$ のグラフは, $y=\cos heta$ のグラフを heta 軸方向に だけ平行移動したグラフ.

2/1音の速ででするか!!

- かんりかり始後から内に かん2012 2年後!!

θ	$-\pi$	0 47 1 3 TO TO	27	3π
y	a	0 1 0 -1 0	5 2	a

(6)
$$y = \cos \frac{1}{2}\theta$$

1					
θ	$-\pi$	0	R	270	3π
21	0	1	0	-1	0

 $y=\sin\left(2 heta+rac{\pi}{3}
ight)$ のグラフは、y= 上が、 χ のグラフを heta 軸方向に だけ平行移動したグラフ

周期は_ て

(8)
$$y = \cos\left(\frac{\theta}{2} - \frac{\pi}{3}\right) = \cos\left(\frac{1}{2}\left(\theta - \frac{2}{3}\pi\right)\right)$$

6 三角関数と二次関数

例題

 $y = \sin^2 x - 2\sin x + 3$ $(0 \le x < 2\pi)$ について、以下の問いに答えよ。

(1) $t = \sin x$ とおいたとき、t の値の範囲を求めよ。 $0 \le 3C < 27$ 、 $Z'' \qquad - \left| \le F in 2 \le \right| 7$ かZ'

(2) yをtの式で表せ.

(3) y の最大値、最小値と、そのときのx の値を求めよ.

$$y = x^{2} - 2x + 3$$

= $(x - 1)^{2} + 2$ $(-1 \le x \le 1)$
= $x = 1$.

$$t = |avet|$$
 $t = |avet|$
 $t = -|avet|$
 $t = -|avet|$

1.
$$9c = \frac{\pi}{2} 2^{11} | \text{Map} 2$$

$$1c = \frac{3}{2} \pi 2^{11} | \text{Map} 6$$

練習1

 $y = 2\cos^2 x - 4\cos x$ $(0 \le x < 2\pi)$ について、以下の問いに答えよ.

(1) $t = \cos x$ とおいたとき, t の値の範囲を求めよ.

(2) yをtの式で表せ.

(3) y の最大値、最小値と、そのときのx の値を求めよ.

$$y=2x^2-4x$$
= $x(x-1)^2-x$. $(-1 \le x \le 1)$

= $x = x = 1$

$$t=-|x|$$
 $t=|x|$ $t=0$
 $t=-|x|$ $t=-1$
 $t=-1$

練習2

 $y = \cos 2x + 4\cos x - 2$ $(0 \le x < 2\pi)$ について、以下の問いに

(1) $t = \cos x$ とおいたとき, t の値の範囲を求めよ.

(2) yをtの式で表せ.

$$Cos 2x = Cos^{2}x - 5h^{2}i$$

$$= cos^{2}x - ((-cos^{2}x))$$

$$= 2cos^{2}x - (1 - 2t^{2} - 1).$$

(3) y の最大値, 最小値と、そのときのx の値を求めよ.

$$y = 2x^2 + 4x - 3$$

= $2(x+1)^2 - 5$ (-1 $\leq x \leq 5$)
= $\frac{1}{2}$

22211 t=- art Oss8=-1. 7C= TC

i'. 9C=722 M7u-5 x=02" May 3

練習3

 $y = \cos 2x + 2\sin x - 2$ $(0 \le x < 2\pi)$ について、以下の問いに

(1) $t = \sin x$ とおいたとき, t の値の範囲を求めよ. DEXCELT(7" -1512X5 17002"

(3) y の最大値, 最小値と, そのときの x の値を求めよ.

1.
$$1 = \frac{3}{4}\pi^{21}$$
 MM - 5
 $1 = \frac{\pi}{4}$ $\frac{5}{4}\pi^{21}$ Mox - $\frac{1}{4}$

6.1 実数解の個数

確認

(1) $y=\sin x$ と $y=\frac{1}{2}$ の $(0\leq x<2\pi)$ における共有点の個数を求めよ.

(2) $y = \tan x$ と y = 1 の $(0 \le x < 2\pi)$ における共有点の個数を求めよ.

上四刊 _27

サードルウィナ25huxナーリソード カートラコをかり

例題

方程式 $\sin^2 x + 2\sin x + 1 = k \quad (0 \le x < 2\pi)$ の実数解の個数を求めよ

车分子、禄野、奥教解、工教门、

Y= かいてもとかかくけし Y= た の共有点の上数でみる。

4= byx 422yx + 1. 122112.

0 ≤ 9C < 27,7007" - (15) 10 x ≤ |. .'. - (5 x ≤ |.

y= ++++1== (++1)=

大二一一、してきは、対応するなの値はしつでう。 一一く大くしてきは、対抗するなの値は2つずっ。

· 左一1,4<大心樂解02.

· 左=-1,4< 心樂解12

· 左=-1,4 ~ 定教解12

方程式 $\cos^2 x - 2\cos x + 3 = k$ $(0 \le x < 2\pi)$ の実数解の個数を

与えられて、市科学の東教師のコ数は、 27の曲網。

y= &

の大有点のコダスである。

0 5 7C < 2TL 7 M d2"

-1 < Cosnes | . . . - | < + 5 | .

ナニート、しょきは対応するなの値はしつから、 一一く大く | のほしみ対応する 2の/直は 2つすら、

、!、上の国から、

- (Ossan+4 pinne)= to.

練習問題 2

練習問題 2方程式 $\cos 2x + 4\sin x + k = 0 \quad (0 \le x < 2\pi)$ の実数解の個数を

李文弘7: 声程可,康教解的二数的。 279曲系引

y= t.

の共有点のコータマであるの

ナニーし、しのは、対応するなの値はしつすら、 -1<十くしゃ建、好成ある との値は2つすかり、

, 上面图的,

「た<-3,5<たマ" 東勢所 02. た=-3,5 マ" 東勢所 12. -3<よくちマ" 東勢所 22