République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2017

Session Complémentaire

Honneur - Fratemité - Justice

Série : Sciences de la Nature Epreuve: Mathématiques

- Durée: 4 heures Coefficient: 6

Exercice 1 (3 points)

On définit les suites numériques (u_n) , (v_n) et (w_n) pour tout $n \ge 1$ par $u_n = 2^n - 2n$, $v_n = 1 + \frac{u_n}{2n}$ et $w_n = \ln(nv_n)$. Soit $S_n = u_1 + u_2 + u_3 + ... + u_n$ la somme des n premiers termes de la suite (u_n) .

Parmi les réponses proposées pour chaque question ci-après, une seule est exacte.

No	Question	Réponse A	Réponse B	Réponse C
1 .	Le terme général de (v _n) est	v _n = 1	v, = 2°	$v_n = \frac{2^{n-1}}{n}$
2	La suite (u,) est	croissante	décroissante ·	constante
3	La valeur de S _a est	$S_n = 2^{n+1} - n^2 - n - 2$	$S_n = 2^n - n^2 - n - 2$	$S_n = 2^{n+1} - n^2 - n + 2$
4	La suite (v _n) est	convergente	divergente	constante
5	La suite (w,) est	arithmétique	géométrique	convergente
6	Si $e^{\ln 1 + \ln 2 + \ln 3 + + \ln n} = 120$ alors la valeur de n est	n = 3	n = 4	n = 5

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée :

Question no	,1	2	3	4	5	6
Réponse						٠

Exercice 2 (5 points)

- 1) Pour tout nombre complexe z on pose: $P(z) = z^3 4\sqrt{2}z^2 + 12z 8\sqrt{2}$
- a) Calculer $P(2\sqrt{2})$.
- b) Déterminer les réels a et b tels que pour tout z on a: $P(z) = (z 2\sqrt{2})(z^2 + az + b)$ (0,5pt)
- c) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0 (0,5pt)
- 2) Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

Soient les points A, B et C d'affixes respectives : $z_A = \sqrt{2} - i\sqrt{2}$, $z_B = 2\sqrt{2}$ et $z_C = \sqrt{2} + i\sqrt{2}$.

- a) Placer les points A, B et C dans le repère $(O; \vec{u}, \vec{v})$ (0,5pt)
- b) Déterminer la nature du triangle ABC et celle du quadrilatère OABC (0,5pt)
- 3) Pour tout nombre $z \neq \sqrt{2} i\sqrt{2}$; on pose: $f(z) = \frac{z \sqrt{2} i\sqrt{2}}{z \sqrt{2} + i\sqrt{2}}$
- a) Vérifier que $f(z_B) = -i$ et interpréter graphiquement. (0,5pt)
- b) Déterminer et construire Γ_1 l'ensemble des points M du plan d'affixe z tel que |f(z)| = 1. (0,5pt)
- c) Déterminer et construire Γ_2 l'ensemble des points M d'affixe z tel que f(z) soit imaginaire pur.
- d) Déterminer et construire Γ_3 l'ensemble des points M du plan d'affixe z tel que |f(z)-1|=2. |(0.5pt)|
- e) Vérifier que les trois ensembles Γ_1 , Γ_2 et Γ_3 passent par les points O et B. (0,5pt)

Exercice 3 (5 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+2)(1+e^{-x})$ et soit Γ sa courbe représentative dans un repère orthonormé $(0; \overline{i}, \overline{j})$.

1° a) Montrer que $\lim_{x\to\infty} f(x) = -\infty$ et que $\lim_{x\to\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement. (0.5pt

Baccalauréat 2017

Session Complémentaire

Epreuve de Mathématiques

Série Sciences de la Nature

1/2

•	an mit albeatalathichteichte feiteite mei hab de a birt be a. m. a.	- Arrent
	b) Montrer que $f(x) = x + 2 + \frac{x}{e^x} + \frac{2}{e^x}$, puis calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} (f(x) - (x+2))$.	(0,5pt)
	 c) En déduire que Γ admet une asymptote oblique D dont on donnera une équation. d) Etudier la position relative entre Γ et D . 	(0,25pt) (0,25pt)
	2° a) Montrer que $f'(x) = 1 - (x+1)e^{-x}$ où f' est la dérivée première de f'	(0,5pt)
	b) Etudier les variations de f'et en déduire le signe de f'(x).	(0,5pt)
	c) Dresser le tableau de variation de f.	(0,25pt)
	3° a) Déterminer le point A de Γοù la tangente Τ à la courbe Γ est parallèle à l'asymptote D. Donner une équation de Τ.	(0,5pt)
	b) Déterminer les points d'intersection de Γavec les axes de coordonnées	(0,25pt)
٠	c) Tracer D, T et Γ dans le repère (O; i, j).	(0,5pt)
	4° a) calculer l'intégrale $I = \int_{-2}^{0} 2e^{-x} dx$	(0,25pt)
	b) A l'aide d'une intégration par parties calculer l'intégrale $J = \int_{-2}^{0} xe^{-x} dx$.	(0,25pt)
	c) En déduire l'aire du domaine délimité par l'asymptote D, la courbe Γ et les droites d'équations $x=-2$ et $x=0$	(0,25pt)
	5° Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $x + 2 = (m - 2)e^x$	(0,25pt)
		•
	Exercice 4 (7 points)	3.0
	Soit f la fonction définie sur $D_r =]0,1[\cup]1,+\infty[$ pa : $f(x) = \frac{2x-1+\ln x}{x-1}$ et soit (C) sa courbe	
	représentative dans un repère orthonormé (O; i, j).	
	1° On considère la fonction u définie sur $]0,+\infty[$ pa : $u(x)=1+x\ln x$.	
	a) Calculer $\lim_{x\to 0} u(x)$ et $\lim_{x\to 0} u(x)$	(0,5pt)
	b) Calculer u'(x) où u' est la dérivée de u, puis dresser le tableau de variation de u	(0,75pt)
	c) Montrer que $\forall x > 0$ on $u(x) \ge 1 - \frac{1}{c}$. En déduire le signe de $u(x)$	(0,5pt)
	2° a) Montrer que $\lim_{x\to 0^+} f(x) = +\infty$ et interpréter graphiquement	(0,5pt)
	b) Calculer et interpréter les limites $\lim_{x\to 1^-} f(x)$ et $\lim_{x\to 1^+} f(x)$	(0,5pt)
	3° a) Monter que f(x) peut s'écrire sous la forme f(x) = $2 + \frac{1}{x-1} + \frac{\ln x}{x-1}$	(0,5pt)
	b) Calculer $\lim_{x\to +\infty} f(x)$ et en déduire que la courbe (C) admet une asymptote horizontale (Δ) dont	(0,5pt)
	ou donnera une équation.	(0.7.)
	c) Etudier la position relative de (C) et (Δ) .	(0,5pt)
٠	4°a) Calculer f'(x) et vérifier que pour tout x de D_f on a : $f'(x) = \frac{-u(x)}{x(x-1)^2}$.	(0,5pt) (0,5pt)

Fin.

6° a) Montrer que la courbe (C) coupe (Ox) en un unique point A d'abscisse α avec

a) Montrer que g est une bijection de]0,1[sur un intervalle I que l'on précisera.

b) Dresser le tableau de variation de g-1, où g-1 est la réciproque de g.

b) Tracer (Δ);(C) et (C') dans le repère (O; i, j). cù (C') est la courbe de g

92

 $0.6 < \alpha < 0.8$

b) Dresser le tableau de variation de f.

5°Soit g la restriction de f sur l'intervalle]0,1[

(0,5pt)

(0,5pt)

(0,5pi)

(0,25pt)

(0,5pt)