

DSP: Efficient GNN Training with Multiple GPUs

Zhenkun Cai¹, Qihui Zhou¹, Xiao Yan², Da Zheng³, Xiang Song³, Chenguang Zheng¹, James Cheng¹, George Karypis³

¹Department of Comptuer Sicence and Engineering, The Chinese University of Hong Kong ²Department of Computer Science and Engineering, Southern University of Science and Technology ³Amazon Web Services

{zkcai,qhzhou,cgzheng,jcheng}@cse.cuhk.edu.hk,yanx@sustech.edu.cn,{dzzhen,xiangsx,gkarypis}@amazon.com

目的: 联合利用多个GPU来训练图神经网络。

方式:用一种特殊的数据布局来利用GPU之间的 NVLink 连接,并且GPU (显存)中存放了图形 拓扑和popular node features。

措施:

- 引入集体采样源语: collective sampling primitive
- 设计了基于消费者生产者的管道: 允许不同小批量任务并行。

H2 先抨击了已有的系统: Quiver 和 DGL-UVA

系统 Quiver 与 DGL-UVA : 将图形拓扑存放在内存中,而节点特征存放在GPU的显存中,每个GPU独立进行图采样,并使用UVA (统一虚拟寻址) 通过PCle (一种高速串行计算机扩展总线标准,支持显卡) 访问图拓扑,但有两个问题:

1. 高沟通成本:

Figure 1. The communication volume of different graph sampling methods when using 8 GPUs (normalized by *Ideal*)

Table 1. Aggregate bandwidth (GBps) of NVLinks and PCIe on a DGX-1 GPU server when different GPUs are used [26]

	1-GPU	2-GPU	4-GPU	8-GPU
PCIe	32	32	64	128
NVLink	0	100	400	1200

图1和表1说明:

- UVA等系统读入了太多无用的数据量
- 采用的PCIe接口远远慢于NVLink,但UVA与Quiver对NVLink的支持并不好,UVA采样是在PCIe上的

2. GPU利用率低

Figure 2. Execution speed for the graph sampling and feature loading kernels of Quiver when changing physical threads. One GPU with 5120 physical threads is used.

图为"更改物理线程时候Quiver的图形采样和功能加载的执行速度",且这个GPU最多开5120个线程。

图中可以发现,均存在某个点,在那个点之后,就算再开线程,但速度就不变了基本。因此无法充分利用GPU。

H2 提出自己的模型

DSP:

将图结构划分为不同的图块,这些图块都是联通(well-connected)的,并把每个图块放在一个GPU中,这样图形采样就能通过NVLink,而不是用PCIe了,而且由于不用PCIe了,所以读取的数据量就变少了。

为什么呢?因为看前面,前两个系统把图结构存放在内存中,而NVLink是适用于GPU之间通信的,因此采样需要通过PCIe,但如果把图信息放到GPU中,那采样就是读取GPU,就可以通过NVLink了。

每个GPU的剩余显存,则用来存放不同的节电功能,之后,所有的GPU形成一个通过NVLink的大型聚合缓存,来减少节点通过PCIe对CPU内存的访问。

• 定义了采样器, 装载器和训练器:

。 采样器: 就是采样——集体采样源语: CSP

。 装载器: 加载图样本的节点特征

。 训练器: 用来训练

- CSP (集体采样源语:将每个图节点上的采样任务推送到其驻留的GPU上,而不是拉出其邻接列表(图1)大幅度减少通信数据量:因为通常只对节点邻居节点进行采样。
- 利用生产者消费者管道,来重叠"使用GPU"的任务

H2 基于采样的GNN训练

基于文中的假设,太长了不写了,直接复制,狠狠地复制!

不基于采样的GNN训练

Consider a graph G = (V, E), where each node $v \in V$ has a *feature vector* h_n^0 (e.g., author profiles for each author node in

然后我们知道GNN的聚合公式:

$$h_v^k = \text{AGGREGATE}^k(h_u^{k-1}, \forall u \in \mathcal{N}(v) \cup v; w^k),$$

不知道? 不知道滚回去看文章中的解释。

有个关键点就是:

用第一层训练节点v 的时候,要聚合v的邻居节点的信息,同时其邻居节点也聚合了他们自己邻居节点的信息,因此当在第二层训练节点v时,表面上节点v是再次聚合了它邻居节点的信息,实则同时聚合了邻居节点以及邻居节点的邻居节点的信息。故,GNN有k层,训练一个节点v就需要聚合其k-邻居节点的信息,并且貌似重复聚合了很多次。所以在稠密图中复杂度贼高。

基于采样的GNN训练

训练是在小批量中进行的,并且在每个小批量中,使用某些节点(称为批量的种子节点)而不是图中的所有节点的输出嵌入来计算梯度。此外,在计算种子节点v的输出嵌入时,不是使用v的所有 K 跳邻居,而是从 v 的 K 跳邻居中采样子图(称为图样本)以降低复杂性。(不用全部的邻居了,而是只挑一部分)

例子:

Figure 3. An illustration of graph sampling, the seed node is *A*, the number of layers is 2, and the fan-out vector is [2,2].

此处有个 "fan-out" 向量。[2,2]:

对于节点采样: 每层, 每个节点选择两个邻居。

对于分层采样,扇出向量指明了该层中的所有种子节点采用的邻居总数。

节点特征

节点向量通常具有高纬度,并且可能GPU显存没法存下整个图,因此需要存到内存中,这就需要用 PCIe了,但作者观察到:在训练GNN的时候,某些节点的访问频率比其他节点高很多,因此把这些 节点存放在GPU的显存中,这样之后进行特征采样时候,就能用NVLink了。

H2 DSP架构

H3 数据布局

每个GPU都存了一个图划分,包含一些节点和邻接表。 (METIS方法)

怎么划分?用到了一种能够最小化不同划分之间边缘交叉边数量的划分方式,来尽量减少跨GPU的通信。

对于每个图划分中的热门节点,尽可能多地存在GPU中,其余节点就放在CPU中。

为什么能把图拓扑存在显存中呢?因为即使对于特大型的图,如超过10亿条边的图,也只需要大约8G的显存,况且还可以只存热节点。

除此之外,该模型还采用了分区特征缓存,也就是把相似的节点,就算不在同一个子图中,也存在有空位的多余的GPU的显存中,之后提取图特征的时候,还是只用访问显存以及GPU之间的通信,而不用通过内存。

H3 训练过程

如图4,每个GPU中有3个东西:

Sampler采样器

每个GPU上的采样器通过与其他GPU上的采样器合作,来构造出图样本,并且当采样器需要访问其他GPU上的图拓扑时,不是直接把整个图拉过来,而是通过另外的采样器实现。

采样器构造如图b:

Figure 3. An illustration of graph sampling, the seed node is *A*, the number of layers is 2, and the fan-out vector is [2,2].

Loader装载器

就是获取采样器采集到的描述图样本的节点的特征向量,热门节点直接在显存中获得,冷门节点则 在内存中获得,两者并行,因为一个用NVLink,一个用PCIe

trainer训练器

每个训练器都有模型参数的副本,就是用loader给过来的特征向量进行训练,分别计算最终的输出以及梯度,然后部署在不同GPU上的trainer,用collective allerduce聚合梯度。

同一批量的三个er,顺序执行

对于不同批量,作者设计了前文提到"生产者消费者管道"来并行利用GPU资源。

注意

当只有一个GPU时候, Sampler和Loader就变成本地服务了, 不再需要从其他GPU上采集交换信息。

DSP可在多机多GPU上运行,此时DSP会将图的拓扑结构和热节点复制到每个机器中,然后不同的机器存储不同的冷节点,机器之间仅需要传送关于冷节点的知识,同一个机器内部将图进程划分,存在不同的GPU上

H2 CSP:集体采样原语

主要用于GPU之间的通信。

H3 工作流程

CSP可用Node-wise和layer-wise,但我们假设CSP采用Node-wise的方法逐层采样:以图3 (b)为例

在具体采样过程中,对于每一层,CSP由**所有**GPU上的采样器共同来执行完采样工作,且采样工作分三个阶段完成:shuffle,sample,reshuffle。

例图:

Figure 5. An example of conducting one layer of CSP in three stages, i.e., shuffle, sample, and reshuffle. GPU 1 has frontier nodes *A* and *E*, and holds adjacency list for node *A* and *B*; GPU 2 has frontier nodes *B* and *E*, and holds adjacency list for node *E* and *F*; each frontier node samples 2 neighbors.

Figure 3. An illustration of graph sampling, the seed node is *A*, the number of layers is 2, and the fan-out vector is [2,2].

有2个GPU, 4个seed node(作为训练样本的节点)

- 在shuffle阶段:利用GPU之间的通信,将每个 $seed\ node$ 交给存有其临街列表的GPU,如E与B换位置了(数据推送)
- 在sample阶段:每个GPU在本地存放的邻接表中找出自己有的seed node的所有邻居节点,并进行采样(挑出来几个,如A挑选出了C与E)
- 在reshuffle阶段: 把shuffle阶段换走的seed node换回来,同时连带着其在sample阶段采样的节点一起回来。

采样的每个阶段,都设置了同步操作来保证各个GPU的进度一致。

H3 CSP长什么样子

参数

Table 2. Some of the configurable parameters in CSP

	Type	Description
Seed	Integer array	Set of seed nodes for a GPU
Scheme	String	Neighbor-wise or layer-wise sampling
Layer	Integer	Number of layers to sample
IsBiased	Boolean	Biased or unbiased sampling
FanOut	List of integers	Number of neighbor nodes to sample

采样方式:

• 有偏采样:按照每个节点权重占比作为其被选择的概率,权重放到边上。

• 无偏采样: 大家概率一样

我们发现,由于在shuffle阶段,每个seed node都被换到了存有其邻接表的GPU中,因此无论有偏采样还是无偏采样均可以通过只访问GPU实现。

frontier node: 其邻居将被采样的节点。

由于DSP与CSP支持两种主流的图采样: node-wise和layer-wise, 因此, 以下分别介绍这两种:

在node - wise中,fan-out向量直接指出了每层中每个 $frontier\ node$ 采样的邻居节点的数量;

在layer-wise中,fan-out向量只能确定每层中所有 $frontier\ node$ 总共采样的邻居节点的数量,具体确定每个 $frontier\ node$ 采样的邻居数量的方式,也是按照其邻居的总权重占所有 $frontier\ node$ 的邻居的总权重的占比确定的。

H2 消费者生产者管道

同一小批量数据在GPU中必须要依次走过采样器,装载器和训练器,必须同步执行。但不同的小批量数据无所谓,同时,由于同步问题,且有些数据利于计算,有些不利于,但每个阶段所有GPU必须同步执行,因此就会造成GPU的闲置,于是就设计了这种管道重叠执行不同的小批量任务。

如图:

在这里再理一下DSP模型:每个GPU内部,用三个东西:Sampler,Loader和Trainer,这三个东西在行动时候,需要占用特定的SM,但这些SM可能会重叠。对于同一个小批量任务,必须按照Sampler,Loader以及Trainer的顺序执行,但是可以在GPU1上的Sampler执行,然后到GPU2上执行Loader,最后在GPU3上执行Trainer。但每个GPU执行Sampler Loader以及Trainer时候,都会需要其他某些GPU参与,且要求也调用与之相同的东西。

GPU只存部分图节点和其邻接表。但每个GPU

不定地被分到哪一个小批量数据的训练任务。当其被分到一个小批量任务时候,他拿到seed nodes,作为此时的frontier node,进入Sampler进行采

样。采样过程细化为这个图:

Figure 5. An example of conducting one layer of CSP in three stages, i.e., shuffle, sample, and reshuffle. GPU 1 has frontier nodes A and E, and holds adjacency list for node A and B; GPU 2 has frontier nodes B and E, and holds adjacency list for node E and E; each frontier node samples 2 neighbors.

, 采样时候由CSP原语控制, 由于某个GPU的

任务可能会涉及到一些他没存储的节点(如GPU1中的E节点),那么他需要借助其他GPU的采用器,同时调用GPU们的通信内核,shuffle这些seed node。采样的每个小阶段,都需要不同GPU之间的配合,主要调用GPU的通信内核,但负荷很轻(只需要少部分的内核参与即可),且只需要少量的带宽就可以完成通信,多余的带宽可以让其他通信内核使用。采样完毕后,该GPU的才能执行loader和trainer,因此采样时候该GPU的部分计算内核就被空闲了,所以它在采样时候可以同时运行多个计算任务。这时候,这些其他的loader和trainer任务从哪里来,就用到了管道。loader和trainer过程也需要用到通信内核与其他GPU进行交互。

这里可以看出管道的一个用处,就是把同一个批量的训练任务的三个阶段: Sampler, loader, trainer分开了,尽管是同步执行的,但不再是必须在同一个GPU上执行

结果:

Figure 6. GPU utilization for sequential execution (DSP-Seq) and the pipeline, experiment settings detailed in Section 7

DSP-Seq为顺序执行,没有管道,DSP为有管道,纵轴为GPU的利用率。

H3 处理死锁问题

死锁产生的原因:

- 1. GPU内核的分配直到任务结束是不可撤销的,也就是不可剥夺的,非抢占式调度
- 2. 且通信必须在所有参与通信的GPU的通信内核启动时候才会进行,否则就等待。

例子:

Figure 8. An illustration of communication deadlock.

SM为流处理多处理器,里面通常包含多个CUDA核心,每个GPU内有多个SM,每个内核需要调用 多个SM来完成任务。

在这里,负责Sampler通信的通信内核需要多个SM,假设GPU1的需要SM1,SM2,SM4,其余GPU的Sampler和Loader同理。

然后GPU1想完成Sampler任务,需要GPU2的Sampler参与,但GPU2的Sampler需要SM2与SM3,但被GPU2的Loader占用了,但Loader没法释放资源,因为任务没完成,它想完成任务需要等待GPU1的Loader与之通信。

解决办法

采用集中式通信协调方案:即,专门用一个GPU,作为leader,来规定其他所有GPU的通信内核的启动顺序。

具体操作:

为每个工作实例,比方说,对于每个小批量训练任务,我们都会安排执行该任务的worker (Sampler, Loader, Trainer) ,然后为每个worker分配固定的id, 无论他们在哪个GPU上。

对于每个GPU,当工作的线程准备好进行通信时,会将其对应的id放到待处理集合中,然后Leader使用队列来管理这个集合,并且按照提交顺序启动通信内核。一旦启动某个worker的通信内核,就会把他的id广播到所有的GPU中,然后需要配合的GPU就会开始配合它进行通信,

H2 实验

训练过程:

- (a) Accuracy v.s. batch count
- **(b)** Accuracy v.s. training time

Figure 9. Training quality for GraphSAGE on the Papers graph with 8 GPUs. Dashed line denotes converged accuracy.

左图,表明,DSP的准确度在随着小批量的增多时,与已有系统是一致的,这说明DSP的训练有效性。

右图则表明DSP能在更短的时间内训练完成。

用GNN进行测试:

Systems		Prod	lucts		Papers			Friendster				
0,000	1-GPU	2-GPU	4-GPU	8-GPU	1-GPU	2-GPU	4-GPU	8-GPU	1-GPU	2-GPU	4-GPU	8-GPU
PyG	28.8	20.4	17.1	16.1	131	89.0	68.3	49.2	1110	828	575	477
DGL-CPU	14.7	9.29	6.43	5.45	111	76.0	62.3	45.1	1080	781	537	470
Quiver	5.71	4.06	2.82	2.51	70.9	42.3	23.8	17.2	449	249	145	118
DGL-UVA	6.87	6.03	3.17	1.61	47.5	39.6	30.2	18.3	432	410	207	107
DSP	3.11	1.75	0.992	0.613	39.1	24.5	15.3	4.62	270	116	64.6	44.8

这个图说明每轮的训练时间,DSP均是最优的。

用GCN (图卷积) 进行测试

Table 5. Epoch time for training GCN (in seconds) using 8 GPUs, best in bold and second best in italic

Dataset	Products	Papers	Friendster
PyG	15.5	41.4	501
DGL-CPU	8.32	48.7	478
Quiver	3.97	23.7	172
DGL-UVA	4.91	13.6	137
DSP	0.552	5.97	29.9

发现也是极优的。

然后作者进行了进一步测试:

H3 说明图拓扑结构存入GPU显存的优越性

为了说明DSP将图拓扑结构也存入GPU是优于只讲图的节点特征存入GPU的Quiver:

限制每个GPU的显存的大小由24GB改为6GB,同样用8个GPU,来训练两个较大的图:Papers和Friendster

Figure 10. Epoch time when varying the cache size for node feature, experimented conducting using 8 GPUs

图中是DSP的结果,发现当分配给用于存储节点特征显存为2GB时候,效果最明显,因为此时用于存放图拓扑的内存总容量为4*8=32G,大于图拓扑大小:

Table 3. Statistics of the graph datasets in the experiments

Products	Papers	Friendster
2M	111M	66M
123M	3.2B	3.6B
50.5	28.8	54.5
100	128	256
0.984	25.6	28.8
0.8	56.8	67.6
	2M 123M 50.5 100 0.984	2M 111M 123M 3.2B 50.5 28.8 100 128 0.984 25.6

同时,由于进行采样时候,主要用部分热门节点的节点特征,因此增加对节点特征的存储会使得收益变低,而增加图的拓扑结构则会是收益变高,因为采样时候就可以尽量通过NVLink而不是PCIe进行操作了,因此,曲线先下后上。

由此说明,将图拓扑结构存入GPU是收益很大的一件事情。

H3 说明图采样过程CSP的优越性:

Systems	Products			Papers			Friendster					
	1-GPU	2-GPU	4-GPU	8-GPU	1-GPU	2-GPU	4-GPU	8-GPU	1-GPU	2-GPU	4-GPU	8-GPU
PyG	5.03	4.41	4.26	4.21	30.0	31.0	35.0	29.1	134	140	145	152
DGL-CPU	4.96	3.89	2.86	2.57	30.3	21.8	19.4	16.1	189	176	141	137
Quiver	3.72	2.94	2.19	1.98	24.1	18.1	15.1	11.3	108	78.9	54.4	41.2
DGL-UVA	2.39	1.97	1.12	0.613	14.2	11.5	4.91	2.61	95.3	71.2	30.0	15.2
DSP	1.60	0.834	0.461	0.323	12.1	6.91	2.47	1.40	61.3	33.2	13.4	7.09

结果表明,仅就图采样过程,DSP也是极其优秀的,最多可快20倍,并且提升还优于线性。

主要原因是,DSP将图拓扑结构尽量存在显存中,采样过程通过NVLink而不是PCIe

H3 说明DSP通过"push data"的方式进行采样是优越的

前文说到,DSP在采样中一般采用push data的方式,就是对于采样任务,把不存有该点的GPU的采样任务,推送给存有该点邻接表的GPU上进行采样,采样完再送回来。对于pull data的方式,是将没有的邻接表拉入执行任务的GPU,然后进行采样,这样会导致一个显著的问题,就是拉来了很多不必要的数据。

H3 然后说明如果在采样时DSP采用layer-wise的采样方式, 也是优越的

当前的其他系统均不支持在GPU上进行layer-wise采样,因此作者比较了在CPU上的FastGCN系统:

Table 7. Sampling time (in seconds) in an epoch for lay-wise sampling without replacement

| Dataset Products Papers Friendster |
| FastGCN 37.5 489 252000 |
| DSP 0.12 8.96 52.8

可以发现,提升巨大。

H3 然后说明DSP采用training pipelin的方式是优越的

下图说明和DSP-seq的比较:

