Poisson Processes

Definition 1 (Markov property) The sequence of random variables (Y_n) is a discrete time Markov chain with state space S if it satisfies the Markov property

$$\mathbb{P}(Y_n=y_n\,|\,Y_0=y_0,\ldots,Y_{n-1}=y_{n-1})=\mathbb{P}(Y_n=y_n\,|\,Y_{n-1}=y_{n-1}).$$

As shown in Part A, provided the Markov chain is time-homogeneous, then the distribution of (Y_n) is entirely specified by an initial distribution $\mu_s = \mathbb{P}(Y_0 = s)$, and a transition $matrix P = (P_{st})_{s,t \in \mathbb{S}}.$

Definition 2 Let (Z_n) be a sequence of i.i.d. $\text{Exp}(\lambda)$ distributed random variables for $\lambda > 0$. With

$$T_n = \sum_{k=1}^n Z_k,$$

we define (X_t) for $t \ge 0$ by

$$X_t = \sup\{n \ge 1 : T_n \le t\}.$$

 (X_t) is called a Poisson process of rate λ , written $(X_t) \sim \text{PP}(\lambda)$.

Theorem 1 Take $(X_t) \sim \text{PP}(\lambda)$. For $t \geq 0$, $(X_r)_{r \leq t}$ and $(X_r)_{r \geq t}$ are conditionally independent on X_t , and $(X_{s+t})_{s\geq 0} \sim \text{PP}(\lambda)$ started from X_t . **rewrite this**.

Continuous-time Markov chains

Definition 3 A Q-matrix or generator is a matrix $Q = (q_{ij})$ for $i, j \in \mathbb{S}$ a countable

state space, such that

i. for $i \in \mathbb{S}$, $q_{ii} \in (\infty, 0]$,

ii. for $i, j \in \mathbb{S}$, $i \neq j$, $q_{ij} \in [0, \infty)$, and

 $iii. for \ i \in \mathbb{S}, \sum_{j \in \mathbb{S}} q_{ij} = 0.$ $We \ of ten \ write \ q_i := -q_{ii}.$

We construct from this a stochastic matrix $\Pi = (\pi_{ij})$ such that for $q_i \neq 0, j \in \mathbb{S}$,

$$\pi_{ij} := (1 - \delta_{ij}) \frac{q_{ij}}{q_i}$$

 $\pi_{ij} = \delta_{ij}$.

and for $q_i = 0, j \in \mathbb{S}$,

Definition 4 (Jump chain) A minimal right-continuous process (X_t) is a continuous time Markov chain with initial distribution ν and Q-matrix Q, $(X_t) \sim \operatorname{Markov}(\nu, Q)$,

i. (Y_n) is a discrete Markov chain with initial distribution ν , transition matrix Π ;

 $ii.\ conditional\ on\ Y_0=i_0,Y_1=i_1,\ldots,Y_{n-1}=i_{n-1},\ the\ holding\ times$ $Z_1, Z_2, \ldots, Z_{n-1}$ are independent exponential random variables distributed with parameters $q_{i_0}, q_{i_1}, \ldots, q_{i_{n-1}};$ and

iii. with $T_n := \sum_{k=1}^n Z_k$,

$$X_{t} = \begin{cases} Y_{n} & if T_{n} \leq t < T_{n+1} \\ \infty & otherwise. \end{cases}$$