Devoir de Mathématiques n°1

Polisano Kévin MP*

Jeudi 10 septembre 2009

Partie I - Généralité algébriques

A. On calcule les premiers $\Delta^k(P)$:

$$\Delta^{2}(P) = (P(X+2) - P(X+1)) - (P(X+1) - P(X)) = P(X+2) - 2P(X+1) + P(X)$$

$$\Delta^{3}(P) = P(X+3) - 3P(X+2) + 3P(X+1) - P(X)$$

$$\Delta^{4}(P) = P(X+4) - 4P(X+5) + 6P(X+2) - 4P(X+1) + P(X)$$

On remarque que les coefficients des P(X + k) sont ceux du triangle de Pascal.

On conjecture alors la formule suivante :

$$\Delta^{n}(P) = \sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} P(X+k)$$

On la démontre par récurrence, initialisation :

$$(-1)^{1+0} \binom{1}{0} P(X+0) + (-1)^{1+1} \binom{1}{1} P(X+1) = P(X+1) - P(X) = \Delta(P)$$

Hérédité:

$$\Delta^{n+1}(P) = \sum_{k=0}^{n} (-1)^{k+n} \binom{n}{k} P(X+k+1) - \Delta^{n}(P)$$

Changement de variable $k \leftarrow k+1$:

$$\Delta^{n+1}(P) = \sum_{k=1}^{n+1} (-1)^{n+k-1} \binom{n}{k-1} P(X+k) - \sum_{k=0}^{n} (-1)^{n+k} \binom{n}{k} P(X+k)$$

$$\Delta^{n+1}(P) = P(X+n+1) + (-1)^{n+1}P(X) + \sum_{k=1}^{n} (-1)^{n+k+1}P(X+k) \left[\binom{n}{k-1} + \binom{n}{k} \right]$$

On applique la formule de Pascal et on récupère les indices k=0 et k=n+1 dans la somme :

$$\Delta^{n+1}(P) = \sum_{k=0}^{n+1} (-1)^{n+1+k} \binom{n+1}{k} P(X+k)$$

B.
$$P \in \text{Ker}\Delta \Rightarrow P(X+1) = P(X) \Rightarrow P(0) = P(1) = P(2) = \cdots$$

Par suite P(X) - P(0) a une infinité de 0 (N), donc est le polynôme nul P(X) = P(0).

Ainsi $P \in \mathbb{R}_0[X]$. Réciproquement si $P \in \mathbb{R}_0[X]$ alors $\Delta(P) = 0$. Donc $\text{Ker}\Delta = \mathbb{R}_0[X]$.

C. $P(X) = \sum_{k=0}^{n} a_k X^k$. Le terme dominant se situe dans la différence $a_n((X+1)^n - X^n)$.

Par le binôme de Newton
$$(X+1)^n - X^n = \sum_{k=0}^n \binom{n}{k} X^k - X^n = \sum_{k=0}^{n-1} \binom{n}{k} X^k$$
.

Par conséquent $\Delta(P) \in \mathbb{R}_{n-1}[X]$. On applique la formule du rang à $\Delta_{\mathbb{R}_n[X]}$:

$$\dim(\mathbb{R}_n[X]) = \dim(\mathrm{Ker}(\Delta)) + \dim(\Delta(\mathbb{R}_n[X]))$$

 $\operatorname{car} \operatorname{Ker}(\Delta_{|\mathbb{R}_n[X]}) = \operatorname{Ker}(\Delta) \cap \mathbb{R}_n[X] = \operatorname{Ker}(\Delta).$

Il vient $\dim(\Delta(\mathbb{R}_n[X]) = (n+1) - 1 = n = \dim(\mathbb{R}_{n-1}[X])$, d'où $\Delta(\mathbb{R}_n[X]) = \mathbb{R}_{n-1}[X]$.

Ainsi $\Delta^*: \mathbb{R}_n[X] \to \mathbb{R}_{n-1}[X]$ est surjective. Montrons que Δ l'est aussi :

Soit $P \in \mathbb{R}[X]$ de degré p = n - 1, $P \in \mathbb{R}_{n-1}[X]$, donc d'après ce qui précède il existe bien un antécédent $Q \in \mathbb{R}_n[X] \subset \mathbb{R}[X]$ tel que $\Delta^*(Q) = \Delta(Q) = P$.

D. Par itération $\Delta^k(\mathbb{R}_n[X]) = \mathbb{R}_{n-k}$, la formule du rang donne $\dim(\Delta^k) = k$.

E. Si P était de degré pair $\lim_{x\to +\infty} P(x) = \lim_{x\to -\infty} P(x) = \pm \infty$ et donc on ne pourrait avoir $P(\mathbb{Z}) = \mathbb{Z}$. Supposons maintenant P de degré $n\geqslant 3$ et $a_n>0$. On a donc $\lim_{x\to +\infty} P(x) = +\infty$. Le nombre de changements de variations potentiels sont donnés par les zéros de la dérivée première. Comme P est un polynôme, la dérivée aura un nombre fini de zéros. Donc on sait qu'à partir d'un x_0 , P sera strictement croissant. Pour $a\geqslant x_0$ entier et $x\in]a,a+1[$ on a P(a)< x< P(a+1). Or on a calculé le terme dominant de ΔP précédemment : $\Delta P(a)\to +\infty$ quand $a\to +\infty$, ainsi on peut trouver un entier n_0 entre les entiers P(a) et P(a+1) pour a suffisamment grand. Ce qui contredit l'hypothèse $P(\mathbb{Z})=\mathbb{Z}$. On en conclut que les polynômes vérifiant cette hypothèse sont ceux de la forme $P(X)=\pm X+b$ avec $b\in \mathbb{Z}$.

F. 1) $\forall k \in \mathbb{N}, \deg(H_k) = k, (H_k)$ est une famille échelonnée donc une base de $\mathbb{R}[X]$.

$$\Delta(H_n) = \frac{1}{n!} \left[\prod_{k=0}^{n-1} (X - (k-1)) - \prod_{k=0}^{n-1} (X - k) \right]$$

$$\Delta(H_n) = \frac{1}{n!} [(X+1) - (X - (n-1))] \prod_{k=1}^{n-1} (X - (k-1)) = \frac{1}{(n-1)!} \prod_{k=0}^{n-2} (X - k) = H_{n-1}(X)$$

On exprime P dans la base $(H_k): P = \sum_{k=0}^{+\infty} a_k H_k$ (support fini). Si $P \in \mathrm{Ker}\Delta$:

$$0 = \Delta(P) = \sum_{k=1}^{+\infty} a_k H_{k-1}$$

On peut alors identifier au polynôme nul dans cette même base : $\forall k \ge 1, a_k = 0$.

$$P = a_0 H_0 = a_0, \ P \in \mathbb{R}_0[X]$$
. Et pour l'image c'est clair à partir de $\Delta(P) = \sum_{k=1}^{+\infty} a_k H_{k-1}$.

3)
$$a \ge n : H_n(a) = \frac{1}{n!}a(a-1)\cdots(a-(n-1)) = \frac{a!}{n!(a-n)!} = \binom{a}{n} \in \mathbb{Z}.$$

 $0 \leqslant a < n$ donc un des facteurs est nul $H_n(a) = 0$.

$$a < 0, b = -a > 0, H_n(a) = (-1)^n b(b+1) \cdots (b+(n-1)) = \frac{b+(n-1)}{(b-1)!n!} = {b+(n-1) \choose n} \in \mathbb{Z}.$$

Dans tous les cas on a $H_n(a) \in \mathbb{Z}$.

G. 1)
$$\Delta^k(P)(a) = \sum_{i=0}^k (-1)^{k+i} {k \choose i} P(a+i) \in \mathbb{Z} \operatorname{car} (-1)^{k+i} {k \choose i} \in \mathbb{Z} \operatorname{et} P(a+i) \in \mathbb{Z}.$$

2) Le terme constant de $\Delta^k(P)$ est a_k puisque $\Delta^k(H_k)=H_0=1$, donc en évaluant en 0:

$$a_k = \Delta^k(P)(0)$$

$$P \in \mathfrak{L} \Rightarrow \Delta^k(P) \in \mathfrak{L} \Rightarrow \Delta^k(P)(0) \in \mathbb{Z} \Rightarrow a_k \in \mathbb{Z}$$

3) Si les
$$a_k \in \mathbb{Z}$$
 et $b \in \mathbb{Z}$, $a_k.b^k \in \mathbb{Z}$ et donc $P(b) = \sum_{k=0}^n a_k b^k \in \mathbb{Z}$.

Partie II - Liens entre D et Δ

A.
$$D(\Delta(P)) = D(P(X+1) - P(X)) = P'(X+1) - P'(X)$$
.

$$\Delta(D(P)) = \Delta(P') = P'(X+1) - P'(X). \ \forall P \in \mathbb{R}[X], D\Delta(P) = \Delta D(P).$$

B. 1)
$$A(P) = \sum_{k=0}^{+\infty} \alpha_k \Delta^k(P)$$
 a un sens car pour $k > \deg(P), \Delta^k(P) = 0$.

2) Δ est un endomorphisme, donc Δ^k également. Ainsi :

$$A(P + \lambda Q) = \sum_{k=0}^{+\infty} \alpha_k \Delta^k (P + \lambda Q) = \sum_{k=0}^{+\infty} \alpha_k \Delta^k (P) + \lambda \sum_{k=0}^{+\infty} \alpha_k \Delta^k (Q) = A(P) + \lambda A(Q)$$

A est bien un endomorphisme de $\mathbb{R}[X]$.

 \implies Par l'absurde supposons $\alpha_0 = 0$. Il existe un endomorphisme B tel que

$$I = AB = \Delta \left(\sum_{k=1}^{+\infty} \alpha_k \Delta^{k-1} B \right) = BA = \left(\sum_{k=1}^{+\infty} \alpha_k B \Delta^{k-1} \right) D$$

Alors D serait inversible, absurde puisque $\operatorname{Ker}\Delta = \mathbb{R}_0[X] \neq \{0\}$. Donc $\alpha_0 \neq 0$.

 \sqsubseteq Comme A stabilise $\mathbb{R}_n[X]$ on considère son induit f.

Mieux comme $\Delta(\mathbb{R}_n[X]) = \mathbb{R}_{n-1}[X]$ la matrice de f dans la base canonique est triang. sup.

Ainsi sur la diagonale de $M = \mathcal{M}_{B_0}(f)$ se trouve que des α_0 , d'où :

$$\det(M) = \alpha_0^n \neq 0$$

Donc f est bijective. L'induit de A est surjectif, et comme en I.C A l'est donc aussi.

Par ailleurs si A(P)=0 en passant au degré $\deg(A(P))=\deg(P)=-\infty$ d'où P=0.

Donc $Ker A = \{0\}$ et A est injective, donc bijective.

C. 1) $deg(D(H_n)) = n - 1$ et (H_k) base $de \mathbb{R}[X]$ donc :

$$\exists (\beta_0, ..., \beta_n) \in \mathbb{R}^n, D(H_n) = \sum_{k=0}^n \beta_k \Delta^k(H_n)$$

 $\beta_n \Delta^n(H_n) = \beta_n H_0 = \beta_n$ terme constant de $D(H_n) = H'_n$. D'où :

$$\beta_n = H'_n(0) = \frac{1}{n!} \sum_{i=0}^{n-1} \prod_{i \neq i}^{n-1} (X - i) = \frac{(-1)^{n-1} (n-1)!}{n!} = \frac{(-1)^{n-1}}{n}$$

2) Comme D et Δ commutent, on a (sachant qu $\Delta^n(H_{n-1}) = 0^*$):

$$D(H_{n-1}) = D(\Delta H_n) = \Delta D(H_n) = \sum_{k=1}^{n-1} \beta_k \Delta^k(H_{n-1})$$

Ainsi on a de même $\beta_{n-1} = \frac{(-1)^{(n-1)-1}}{n-1}$ et de proche en proche $\beta_k = \frac{(-1)^{k-1}}{k-1}$.

Donc les éléments de ${\mathcal H}$ vérifient la formule donnée.

* on peut alors écrire une somme infinie comme suit.

Mais
$$P = \sum_{i=0}^{+\infty} a_i H_i$$
. On écrit :

$$D(P) = \sum_{i=0}^{+\infty} a_i D(H_i) = \sum_{i=0}^{+\infty} a_i \sum_{k=1}^{+\infty} \beta_k \Delta^k(H_i)$$

Puisque les sommes sont en réalité finies on peut les intervertir :

$$D(P) = \sum_{k=1}^{+\infty} \beta_k \Delta^k \left(\sum_{i=0}^{+\infty} a_i H_i \right) = \sum_{k=1}^{+\infty} \beta_k \Delta^k (P)$$

3) De la même manière les $D^k(H_n)$ forment une base de degrés échelonnés donc

$$\exists (\gamma_0, ..., \gamma_n) \in \mathbb{R}^n, \Delta(H_n) = \sum_{k=0}^n \gamma_k D^k(H_n)$$

PARTIE III - ULM 2001

A. $a_0 > 0$, $\lim_{x \to +\infty} P(x) = +\infty$ donc $\exists x_0 \in \mathbb{R}, x \geqslant x_0, P(x) \geqslant 0$.

Ainsi $\varphi: x \to \sqrt[n]{P(x)}$ est définie pour $x \geqslant x_0$.

B. Posons $Q(X) = P(X + \ell)$. Les coefficients sont donnés par la formule de taylor $b_i = \frac{Q^i(0)}{i!}$

$$Q(X) = \sum_{i=0}^{k} b_i X^i$$

Or $\frac{Q^i(0)}{i!} = \frac{P^i(\ell)}{i!}$ et $b_k = a_0$ par le binôme, $b_0 = Q(0) = P(\ell)$ d'où :

$$P(X+\ell) = a_0 X^k + \frac{P^{(k-1)}(\ell)}{(k-1)!} X^{k-1} + \dots + P(\ell)$$

On met ensuite $a_0 X^k$ en facteur comme l'indique l'énoncé :

$$P(X+\ell) = a_0 X^k \left(1 + \frac{P^{(k-1)}(\ell)}{a_0(k-1)!X} + \frac{P^{k-2}(\ell)}{a_0(k-2)!X^2} + \dots + \frac{P(\ell)}{a_0 X^k} \right)$$

On en prend la racine n-ième :

$$\varphi(X+\ell) = bX^{k/n} \left(1 + \frac{P^{(k-1)}(\ell)}{a_0(k-1)!X} + \frac{P^{k-2}(\ell)}{a_0(k-2)!X^2} + \dots + \frac{P(\ell)}{a_0X^k} \right)^{1/n}$$

On effectue ensuite un développement asymptotique et on tronque à l'ordre p:

$$\varphi(X+\ell) = bX^{k/n} \left(1 + \frac{A_1(\ell)}{X} + \dots + \frac{A_p(\ell)}{X^p} + o\left(\frac{1}{X^p}\right) \right)$$

C. 1) On prend maintenant $\ell = 0$ et on applique r fois δ :

$$(\delta^r(\varphi))(X) = \left(\frac{\Delta^r A_1(0)}{X} + \frac{\Delta^r A_2(0)}{X^2} + \dots + \frac{\Delta^r A_p(0)}{X^p} + o\left(\frac{1}{X^p}\right)\right)$$

On choisit r de telle sorte que $\Delta^r A_i(0) = 0$ pour $i \neq p$ et $p > \frac{k}{n}$.

2) On a $(\delta^r(\varphi))(x) \to 0$ quand $x \to +\infty$ et les $(\delta^r(\varphi))(m)$ entier donc nuls pour m assez grand.