

TD3 : Formes bilinéaires & formes quadratiques

Module : Mathématiques de Base 3 Classes : 2^{ème} année AU : 2024 / 2025

Exercice 1:

Soit q la forme quadratique de \mathbb{R}^3 dans \mathbb{R} de matrice

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

dans la base canonique $\mathcal{B} = (e_1, e_2, e_3)$ de \mathbb{R}^3 .

- 1. Donner l'expression analytique de q dans la base canonique $\mathcal B$ et expliciter sa forme polaire ϕ .
- 2. Déterminer le noyau de ϕ .
- 3. En appliquant l'algorithme de Décomposition de Gauss en somme de carrées de formes linéaires indépendantes. Déterminer les formes l_1 , l_2 et l_3 telle que :

$$q(x) = 2(l_1(x))^2 + \frac{1}{2}(l_2(x))^2 + (l_3(x))^2.$$

- 4. Déterminer la signature et le rang de q.
- 5. Montrer que ϕ est un produit scalaire sur \mathbb{R}^3 .
- 6. On notera N la norme induite par le produit scalaire $\phi(.,.)$. Soient $V_1=(1,2,-1)$ et $V_2=(0,3,1)$.
 - a) Calculer $N(V_1)$ et $N(V_2)$.
 - b) Calculer la distance $d(V_1, V_2)$.

Exercice 2:

Soit b l'application définie par

$$b: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$$

 $((x_1, y_1), (x_2, y_2)) \mapsto 3x_1x_2 + 3y_1y_2 - (x_1y_2 + x_2y_1)$

- 1. Vérifier que b est une forme biliéaire symétrique.
- 2. Déterminer A la matrice de b dans la base canonique $B = (e_1, e_2)$ de \mathbb{R}^2 .
- 3. Déterminer les valeurs propres de A.
- 4. *b* est-elle définie? positive?
- 5. b est-elle un produit scalaire?
- 6. Donner la norme | | . | | associée à ce produit scalaire.
- 7. Soient X_1 et X_2 deux vecteurs de \mathbb{R}^2 , à quelle condition on a

$$||X_1 + X_2||^2 = ||X_1||^2 + ||X_2||^2$$
?

Exercice 3:

Soit q l'application définie par

$$q: \mathbb{R}^3 \to \mathbb{R}$$

$$((x,y,z)) \mapsto 2x^2 + 2xy + 2xz + 2y^2 + 2yz + 2z^2$$

- 1. Vérifier que q est une forme quadratique et déterminer la forme polaire ϕ associée à q.
- 2. Déterminer M la matrice de ϕ dans la base canonique $B=(e_1,e_2,e_3)$ de \mathbb{R}^3 .
- 3. ϕ est-elle non dégénrée?
- 4. Décomposer q en somme des carrés.
- 5. En déduire la signature de q.
- 6. q est-elle définie positive?
- 7. ϕ est-elle bien un produit scalaire?
- 8. Donner N la norme associée à ϕ , et d la distance assiciée à N.

Exercice 4:

Soit Φ l'application définie par

$$\Phi : \mathbb{R}_2[X] \times \mathbb{R}_2[X] \to \mathbb{R}$$

$$(P,Q) \mapsto P(0)Q(0) + P(1)Q(1) + P(2)Q(2)$$

- 1. Vérifier que Φ est une forme biliéaire symétrique.
- 2. Déterminer la matrice M de Φ dans la base canonique $(1, X, X^2)$ de $\mathbb{R}_2[X]$.
- 3. Φ est-elle un produit scalaire?
- 4. Préciser le rang et la signature de Φ .
- 5. Soient $P_1(X) = -X + \frac{8}{3}$ et $P_2(X) = X^2 + X 2$ deux polynomes de $\mathbb{R}_2[X]$, vérifier l'orthogonalité des deux pôlynomes P_1 et P_2 .

HONORIS UNITED UNIVERSITIES