Programming Project 1

A. Implement Perceptron Learning Algorithm (PLA)

- 1. Implement the full PLA algorithm discussed in the class. Do not use the "perceptron" classifier already implemented in some programming languages.
- 2. It is recommended to use MATLAB or Python programming languages, where working with datasets as matrices is easier.
- 3. Use **Bankruptcy data** provided in this document to report the requested results.
- 4. Use the following two different initial weights separately to learn two perceptrons on the same data.
 - (a) $\mathbf{w} = \langle w_0, w_1, w_2 \rangle = \langle 0.2, 5.1, 2.3 \rangle$
 - (b) $\mathbf{w} = \langle w_0, w_1, w_2 \rangle = \langle 1.0, 1.0, 1.0 \rangle$
- 5. Do not forget to add the bias feature (x_0) to the data.
- 6. Consider learning rate $\eta = 1$.
- 7. For each initial weight vector report two following results:
 - (a) the final updated weight vector that can classify the whole data set without error,
 - (b) the number of iterations through which the algorithm converged to the final weights.

B. Implement Pocket Algorithm

- 1. Add two data points < 5, 1, -1 > and < 3, 1.5, -1 > to make data not linearly separable.
- 2. Modify your PLA implementation to work for non-separable data as well.
- 3. Set the number of iterations to 2000 and report:
 - (a) the best weight vector
 - (b) the accuracy of the best perceptron you could learn

$$Accuracy = \frac{\text{# of correctly classified samples}}{\text{total # of samples}}$$

x1	x2	Class/Label
3	0.2	-1
1	0.3	-1
4	0.5	-1
2	0.7	-1
0	1	-1
1	1.2	-1
1	1.7	-1
6	0.2	1
7	0.3	1
6	0.7	1
3	1.1	1
2	1.5	1
4	1.7	1
2	1.9	1