Priority Queues: Binary Heaps

Alexander S. Kulikov

Steklov Institute of Mathematics at St. Petersburg Russian Academy of Sciences

Data Structures Fundamentals Algorithms and Data Structures

Outline

- Binary Trees
- 2 Basic Operations
- 3 Complete Binary Trees
- 4 Pseudocode
- 6 Heap Sort
- **6** Final Remarks

Definition

Binary max-heap is a binary tree (each node has zero, one, or two children) where the value of each node is at least the values of its children.

Definition

Binary max-heap is a binary tree (each node has zero, one, or two children) where the value of each node is at least the values of its children

In other words

For each edge of the tree, the value of the parent is at least the value of the child.

Example: heap

Example: not a heap

Example: not a heap

Outline

- 1 Binary Trees
- 2 Basic Operations
- 3 Complete Binary Trees
- 4 Pseudocode
- 6 Heap Sort
- **6** Final Remarks

GetMax

GetMax

GetMax

this may violate the heap property

this may violate the heap property

to fix this, we let the new node sift up

42 for this, we swap the prob-18 lematic node with its parent 18 until the property is satisfied 32

this edge gets closer to the root while sifting up

running time: O(tree height)

SiftDown

we swap with the larger child which automatically fixes one of the two bad edges

SiftDown

running time: O(tree height)

change the priority and let the 42 changed element sift up or 18 down depend-18 ing on whether its priority decreased or increased

change the priority and let the 42 changed element sift up or 18 down depend-18 ing on whether its priority decreased or increased

change the priority and let the 42 changed element sift up or 18 down depend-18 ing on whether its priority decreased or increased

running time: O(tree height)

running time: O(tree height)

Summary

■ GetMax works in time O(1), all other operations work in time O(tree height)

Summary

- GetMax works in time O(1), all other operations work in time O(tree height)
- we definitely want a tree to be shallow

Outline

- 1 Binary Trees
- 2 Basic Operations
- 3 Complete Binary Trees
- 4 Pseudocode
- 6 Heap Sort
- **6** Final Remarks

How to Keep a Tree Shallow?

Definition

A binary tree is complete if all its levels are filled except possibly the last one which is filled from left to right.

Example: complete binary tree

Example: complete binary tree

Example: complete binary tree

First Advantage: Low Height

Lemma

A complete binary tree with n nodes has height at most $O(\log n)$.

Proof

- Complete the last level to get a full binary tree on $n' \ge n$ nodes and the same number of levels ℓ .
- Note that $n' \leq 2n$.
- Then $n'=2^\ell-1$ and hence $\ell=\log_2(n'+1)\leq\log_2(2n+1)=O(\log n).$

What do we pay for these advantages?

- What do we pay for these advantages?
- We need to keep the tree complete.

- What do we pay for these advantages?
- We need to keep the tree complete.
- Which binary heap operations modify the shape of the tree?

- What do we pay for these advantages?
- We need to keep the tree complete.
- Which binary heap operations modify the shape of the tree?
- Only Insert and ExtractMax (Remove changes the shape by calling ExtractMax).

Outline

- 1 Binary Trees
- 2 Basic Operations
- 3 Complete Binary Trees
- 4 Pseudocode
- 6 Heap Sort
- 6 Final Remarks

General Setting

maxSize is the maximum number of elements in the heap

General Setting

- maxSize is the maximum number of elements in the heap
- *size* is the size of the heap

General Setting

- maxSize is the maximum number of elements in the heap
- *size* is the size of the heap
- *H*[1... *maxSize*] is an array of length *maxSize* where the heap occupies the first *size* elements

Example

Parent(i) return $\lfloor \frac{i}{2} \rfloor$ LeftChild(i) return 2i RightChild(i)

return 2i+1

SiftUp(i)

```
while i > 1 and H[Parent(i)] < H[i]:
```

 $i \leftarrow \mathtt{Parent}(i)$

swap H[Parent(i)] and H[i]

SiftDown(i) $maxIndex \leftarrow i$

```
\ell \leftarrow \texttt{LeftChild}(i)
```

if $\ell \leq size$ and $H[\ell] > H[maxIndex]$: $maxIndex \leftarrow \ell$

 $r \leftarrow \text{RightChild}(i)$

if $r \leq size$ and H[r] > H[maxIndex]:

 $maxIndex \leftarrow r$

if $i \neq maxIndex$:

swap H[i] and H[maxIndex]

SiftDown(maxIndex)

```
Insert(p)
```

```
if size = maxSize:
```

return ERROR $size \leftarrow size + 1$

 $size \leftarrow size + 1$ $H[size] \leftarrow p$ SiftUp(size)

ExtractMax()

```
result \leftarrow H[1]H[1] \leftarrow H[size]
```

 $size \leftarrow size - 1$

SiftDown(1)

return result

Remove(i)

 $H[i] \leftarrow \infty$ SiftUp(i)

ExtractMax()

ChangePriority(i, p)

 $oldp \leftarrow H[i]$ $H[i] \leftarrow p$

if p > oldp:

SiftUp(i)

SiftDown(i)

else:

The resulting implementation is

• fast: all operations work in time $O(\log n)$ (GetMax even works in O(1))

The resulting implementation is

- fast: all operations work in time $O(\log n)$ (GetMax even works in O(1))
- space efficient: we store an array of priorities; parent-child connections are not stored, but are computed on the fly

The resulting implementation is

- fast: all operations work in time $O(\log n)$ (GetMax even works in O(1))
- space efficient: we store an array of priorities; parent-child connections are not stored, but are computed on the fly
- easy to implement: all operations are implemented in just a few lines of code

Outline

- 1 Binary Trees
- 2 Basic Operations
- 3 Complete Binary Trees
- 4 Pseudocode
- 6 Heap Sort
- **6** Final Remarks

Sort Using Priority Queues

```
HeapSort(A[1...n])
create an empty priority queue
for i from 1 to n:
  Insert(A[i])
for i from n downto 1:
  A[i] \leftarrow \text{ExtractMax}()
```

■ The resulting algorithms is comparison-based and has running time $O(n \log n)$ (hence, asymptotically optimal!).

- The resulting algorithms is comparison-based and has running time $O(n \log n)$ (hence, asymptotically optimal!).
- Natural generalization of selection sort: instead of simply scanning the rest of the array to find the maximum value, use a smart data structure.

- The resulting algorithms is comparison-based and has running time O(n log n) (hence, asymptotically optimal!).
- Natural generalization of selection sort: instead of simply scanning the rest of the array to find the maximum value, use a smart data structure.
- Not in-place: uses additional space to store the priority queue.

This lesson

In-place heap sort algorithm. For this, we will first turn a given array into a heap by permuting its elements.

Turn Array into a Heap

BuildHeap(A[1...n])

```
size \leftarrow n
for i from \lfloor n/2 \rfloor downto 1:
SiftDown(i)
```

We repair the heap property going from bottom to top.

- We repair the heap property going from bottom to top.
- Initially, the heap property is satisfied in all the leaves (i.e., subtrees of depth 0).

- We repair the heap property going from bottom to top.
- Initially, the heap property is satisfied in all the leaves (i.e., subtrees of depth 0).
- We then start repairing the heap

property in all subtrees of depth 1.

- We repair the heap property going from bottom to top.
- Initially, the heap property is satisfied in all the leaves (i.e., subtrees of depth 0).
- We then start repairing the heap
- When we reach the root, the heap property is satisfied in the whole tree.

property in all subtrees of depth 1.

- We repair the heap property going from bottom to top.
- Initially, the heap property is satisfied in all the leaves (i.e., subtrees of depth 0).
- We then start repairing the heap property in all subtrees of depth 1.
- When we reach the root, the heap property is satisfied in the whole tree.
- Online visualization

- We repair the heap property going from bottom to top.
- Initially, the heap property is satisfied in all the leaves (i.e., subtrees of depth 0).
- We then start repairing the heap property in all subtrees of depth 1.
- When we reach the root, the heap property is satisfied in the whole tree.
- Online visualization
- Running time: $O(n \log n)$

In-place Heap Sort

```
HeapSort(A[1...n])
```

```
 \begin{aligned} & \text{BuildHeap}(A) & & \{ \textit{size} = \textit{n} \} \\ & \text{repeat } (\textit{n}-1) \text{ times:} \\ & \text{swap } A[1] \text{ and } A[\textit{size}] \\ & \textit{size} \leftarrow \textit{size} - 1 \\ & \text{SiftDown}(1) \end{aligned}
```

The running time of BuildHeap is $O(n \log n)$ since we call SiftDown for O(n) nodes.

- The running time of BuildHeap is O(n log n) since we call SiftDown for O(n) nodes.
- If a node is already close to the leaves, then sifting it down is fast.

- The running time of BuildHeap is O(n log n) since we call SiftDown for O(n) nodes.
- If a node is already close to the leaves, then sifting it down is fast.
- We have many such nodes!

- The running time of BuildHeap is O(n log n) since we call SiftDown for O(n) nodes.
- If a node is already close to the leaves, then sifting it down is fast.
- We have many such nodes!
- Was our estimate of the running time of BuildHeap too pessimistic?

$$T(\text{BuildHeap}) \leq \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \dots$$
 $\leq n \cdot \sum_{i=1}^{\infty} \frac{i}{2^i} = 2n$

Partial sorting

Input: An array A[1 ... n], an integer $1 \le k \le n$.

Output: The last k elements of a sorted version of A.

Partial sorting

Input: An array A[1 ... n], an integer $1 \le k \le n$.

Output: The last k elements of a sorted version of A.

Can be solved in O(n) if $k = O(\frac{n}{\log n})!$

PartialSorting(A[1...n], k)

BuildHeap(A)

for *i* from 1 to *k*:

ExtractMax()

PartialSorting(A[1...n], k)

BuildHeap(A)
for i from 1 to k:

ExtractMax()

Running time: $O(n + k \log n)$

Heap sort is a time and space efficient comparison-based algorithm: has running time $O(n \log n)$, uses no additional space.

Outline

- 1 Binary Trees
- 2 Basic Operations
- 3 Complete Binary Trees
- 4 Pseudocode
- 6 Heap Sort
- 6 Final Remarks

0-based Arrays

Parent(i)

return $\lfloor \frac{i-1}{2} \rfloor$

LeftChild(i)

return 2i+1

return 2i+2

Binary Min-Heap

Definition

Binary min-heap is a binary tree (each node has zero, one, or two children) where the value of each node is at most the values of its children.

Can be implemented similarly.

■ In a *d*-ary heap nodes on all levels except for possibly the last one have exactly *d* children.

- In a *d*-ary heap nodes on all levels except for possibly the last one have exactly *d* children.
- The height of such a tree is about $\log_d n$.

- In a *d*-ary heap nodes on all levels except for possibly the last one have exactly *d* children.
- The height of such a tree is about $\log_d n$.
- The running time of SiftUp is $O(\log_d n)$.

- In a *d*-ary heap nodes on all levels except for possibly the last one have exactly *d* children.
- The height of such a tree is about $\log_d n$.
- The running time of SiftUp is $O(\log_d n)$.
- The running time of SiftDown is $O(d \log_d n)$: on each level, we find the largest value among d children.

Priority queue supports two main operations: Insert and ExtractMax.

- Priority queue supports two main operations: Insert and ExtractMax.
- In an array/list implementation one operation is very fast (O(1)) but the other one is very slow (O(n)).

- Priority queue supports two main operations: Insert and ExtractMax.
- In an array/list implementation one operation is very fast (O(1)) but the other one is very slow (O(n)).
- Binary heap gives an implementation where both operations take $O(\log n)$ time.

- Priority queue supports two main operations: Insert and ExtractMax.
- In an array/list implementation one operation is very fast (O(1)) but the other one is very slow (O(n)).
- Binary heap gives an implementation where both operations take $O(\log n)$ time.
- Can be made also space efficient.