

**Amendments to the Claims:**

This listing of claims will replace all prior versions and listings of claims in the application:

**Listing of Claims:**

Claim 1 (currently amended): A communications back-channel, for coordinating routing decisions, the communications back channel comprising:

a plurality of networking devices;

a plurality of routing intelligence units, wherein each of the plurality of routing intelligence units includes software for controlling a distinct subset of the plurality of networking devices, each of the plurality of routing intelligence units further including:

one or more processes for controlling the distinct subset of networking devices; and

one or more coordination processes for exchanging routing parameters performance information with the plurality of routing intelligence units.

Claim 2 (original): The communications back-channel of claim 1, wherein the one or more processes for controlling the distinct subset of networking devices are Border Gateway Protocol (BGP) sessions.

Claim 3 (original): The communications back-channel of claim 2, wherein each of the routing intelligence units is a route-reflector client.

Claim 4 (original): The communications back-channel of claim 3, wherein each of the distinct subset of networking devices is a route reflector to the route reflector client.

Claim 5 (original): The communications back-channel of claim 1, wherein the one or more coordination process in each of the routing intelligence units includes BGP sessions.

Claim 6 (original): The communications back-channel of claim 5, wherein the BGP sessions in the one or more coordination processes of each of the routing intelligence units includes:

at least one BGP process; and

at least one BGP stack, such that the at least one BGP stack exchanges routing parameters between the routing intelligence unit and the at least one BGP process, and the at least one BGP process exchanges routing parameters with the plurality of routing intelligence units.

Claim 7 (original): The communications back-channel of claim 6, wherein the at least one BGP stack is a route reflector client, and the at least one BGP process is a route reflector.

Claim 8 (currently amended): The communications back-channel of claim 6, wherein the routing parameters include performance information includes local path performance characteristics.

Claim 9 (currently amended): The communications back-channel of claim 6, wherein the routing parameters include performance information includes performance scores for routes.

Claim 10 (original): The communications back-channel of claim 9, wherein the performance scores are exchanged via a Local Preference field.

Claim 11 (original): The communications back-channel of claim 1, further comprising:

a plurality of communication links directly coupling the plurality of routing intelligence units, wherein the plurality of communication links are dedicated exclusively for exchanging routing parameters between the plurality of routing intelligence units.

Claim 12. (original): The communications back-channel of claim 11, wherein the plurality of communication links are at least partially comprised of physical links between the plurality of routing intelligence units.

Claim 13 (original): The communications back-channel of claim 11, wherein the plurality of communication links are at least partially comprised of logical links between the plurality of routing intelligence units.

Claim 14 (currently amended): A method of exchanging routing parameters amongst a plurality of decision makers, each decision maker controlling a distinct subset of a plurality of routers, wherein the plurality of decision makers are in communication via a dedicated mesh, the method comprising:

asserting a first plurality of preferred routes for a first plurality of prefixes to the subset of routers; and

concurrent with the asserting the first plurality of preferred routes, sending a plurality of local performance scores generated from performance measurements for the first plurality of routes to the plurality of decision makers via the dedicated mesh.

Claim 15 (original): The method of claim 14, further comprising:

receiving a second plurality of routes for a second plurality of prefixes via the dedicated mesh.

Claim 16 (original): The method of claim 15, further comprising:

receiving a plurality of performance scores for the second plurality of routes.

Claim 17 (original): The method of claim 16, wherein the plurality of performance scores are included in one or more Local Preferences fields in a BGP feed.

Claim 18 (original): The method of claim 16, further comprising:

applying penalties to each of the plurality of performance scores.

Claim 19 (original): The method of claim 14, wherein the asserting the first plurality of preferred routes is performed via a BGP feed to the subset of routers.

Claim 20 (original): The method of claim 14, wherein the plurality of local performance scores are sent via a BGP feed to the dedicated mesh.

Claim 21 (original): The method of claim 14, wherein the dedicated mesh is at least partially comprised of physical links between the plurality of decision makers.

Claim 22 (original): The method of claim 14, wherein the dedicated mesh is at least partially comprised of logical links between the plurality of decision makers.

Claim 23 (new): A communications back-channel for coordinating routing decisions, the communications back channel comprising:

a plurality of routers;

a plurality of routing intelligence units, wherein each of the plurality of routing intelligence units includes software for controlling a distinct subset of the plurality of routers, wherein each of the plurality of routing intelligence units further includes:

one or more processes for controlling the distinct subset of routers; and

one or more coordination processes for exchanging performance information among the plurality of routing intelligence units.