LSA 511: Computational Models of Sound Change

James Kirby & Morgan Sonderegger

11 Jul 2013

Phonologization

- *Phonologization*: how phonetic variation \rightarrow phonological
- · Two traditions:
 - ► Phonetic (e.g. Ohala 1981): focus on individuals; phonetic variables; continuous parameter spaces
 - ► Socio-historical (e.g. Weinrich et al. 1968, Kroch 1989, Labov 2001): focus on speech communities; grammatical change
- · Today: continuous parameters in populations.

Phonologization through coarticulation

(Some? all?) systematic phonological variation originates in phononologization of phonetic detail, especially coarticulation (Baudouin 1895; Öhman, 1966; Ohala, 1981; Blevins, 2004....)

WGmc	Pre-OHG	OHG (NHD)
*gasti	gesti	gest (<i>Gäste</i>)
*lambir	lembir	lemb (<i>Lämme</i>)
*fasti	festi	fest (<i>fest</i>)

Primary umlaut in West Germanic (after Iverson and Salmons, 2006).

For Germanicists (from Iverson & Salmons 2003)

- (1) Primary umlaut, OHG
 - a. $gast \sim gesti$ 'guest, guests'
 - b. $lamb \sim lembir$ 'lamb, lambs'
 - c. $fasto \sim festi$ 'solid/fast', adv. and adj.
- (2) Blocking of primary umlaut, OHG (but 2ndary MHG umlaut)
 - a. $maht \sim mahti$ 'power, powers' (also dialect. mehti)
 - b. $haltan \sim haltis$ 'to hold, you hold' (also dialect. heltis)
 - c. starch ~ starchio 'strong, stronger' (also sterchio)
- (3) General fronting of all back vowels before /i,i/
 - a. OHG gruoni, MGer grün 'green'
 - b. OHG skoni, MGer schön 'beautiful'

The listener as a source of sound change (Ohala, 1994)

The listener as a source of sound change (Ohala, 1994)

The listener as a source of sound change (Ohala, 1994)

From individuals to populations

- 'I assume without further argument that the initiation of such sound changes is accomplished by the phonetic mechanism just described; their spread, however, is done by social means, e.g., borrowing, imitation, etc.' (Ohala 1981: 184)
- Is such a mechanism plausible in social (as opposed to iterated) learning scenarios (Niyogi & Berwick, 2009)?

Phonologization at the population level

- The mere *presence* of a potential trigger does not imply that phonetic change is inevitable (Kiparsky, 1995)
- Default is stability, not change! (Weinrich et al, 1968)
- Change in a single individual is neither necessary nor sufficient for diachronic change
- If 'initiation' (actuation) is at the level of the individual, under what conditions will it take hold in a population?

Learning: continuous vs. discrete

- Learning of phonetic category structure (VOT, F1) is effectively continuous (maybe)
- Tuesday's case: learning a continuous probability over discrete selection space
- Here: both data and parameter being learned are continuous

Learning, in general

- In \mathcal{G}_{t+1} , each learner is presented with n examples drawn from teachers in \mathcal{G}_t chosen by some sampling procedure \mathcal{S} .
- Learner applies some learning algorithm \mathcal{A} .
- Assuming S and A are the same for all learners in G_{t+1} , this implies the following evolution equation for π_t :

$$(\pi_{t+1}) = f_{S,\mathcal{A}}(\pi_t \mid \mathsf{constants})$$

Learning: continuous vs. discrete

- This holds in general but the form of f can be rather different
- Discrete pmf (from Tues):

$$\Pr(X = k) = \binom{N}{k} (\pi_t)^k (1 - \pi_t)^{N-k}$$

· Continuous pdf:

$$\Pr(a \le X \le b) = \int_{a}^{b} f(x) \, dx$$

• where f is Gaussian, Poisson, or something

Stability and change

- Goal: explore effects of different assumptions about bias and population structure on the evolution of a continuous phonetic parameter of the sort presupposed in the previous section
- · Under what assumptions can we predict
 - 1. Stability of limited coarticulation in the population.
 - 2. Stability of full coarticulation in the population (e.g. umlaut).
 - 3. Change from stable limited to full coarticulation.

Properties of populations

(a) Parallel diffusion chains (classic IL)

(b) Single-teacher learning

(c) Multiple-teacher learning

Framework

Some assumptions:

- speech sounds have been organised into discrete segments
- · phonetic realisation of segments is subject to coarticulation
- · learners have access to the complete segmental inventory

Framework

- Task: infer offset parameter p from sample \bar{y} , where $P(y_i) \sim N(\mu_a p, \sigma_a^2)$
- State of population at t wholly characterized by distribution of $p \sim \pi_t(p)$

Framework

Even more assumptions:

· for a given learner, categories are distributed

$$V_1 \sim N(\mu_a, \sigma_a^2), V_2 \sim N(\mu_b, \sigma_b^2), V_{12} \sim N(\mu_a - p, \sigma_a^2)$$

- learners are divided into discrete generations \mathcal{G}_t of size M
- assume M is infinite, so evolution of the population is not a stochastic process

Models

 $\begin{array}{c} \textbf{complex} \text{ prior} \\ (\mathcal{A}_{\text{complex}}) \end{array}$

Models

MaxLik

no prior (A_{naive})

$$\hat{p} = \mu_a - \bar{y}$$

simple prior (A_{simple})

MAP/EV

$$\hat{p} = \frac{(\mu_a - \bar{y})}{1 + \sigma_a^2 / n\tau^2}$$

 $\begin{array}{c} \textbf{complex} \text{ prior} \\ (\mathcal{A}_{\text{complex}}) \end{array}$

 $\hat{p} = \text{intractable}$

$\mathcal{A}_{\mathsf{naive}}$

• Given a training sample $\vec{y} = (y_1, \dots, y_n)$, the learner's maximum-likelihood estimate of p is

$$\hat{p} = \mu_a - \bar{y}$$

• The (noisy) distribution of values they could learn is then

$$P(\hat{p} \mid p_{\mathsf{parent}}) = \mathcal{N}(p_{\mathsf{parent}}, \sigma_a^2/n)$$

Let's just consider the evolution of mean and variance...

Evolution of π_t under $\mathcal{A}_{\mathsf{naive}}, \mathcal{S}_{\mathsf{single}}$

• Expected value of \hat{p} is

$$E[\hat{p}] = \int \pi_{t+1}(\hat{p}) \, \hat{p} \, d\hat{p}$$
$$= E[p]$$

• The variance of \hat{p} is

$$\begin{aligned} \mathsf{Var}(\hat{p}) = & E[(\hat{p} - E[\hat{p}])^2] \\ = & E[\hat{p}^2] - E[\hat{p}]^2 \\ = & \sigma_a^2/n + \mathsf{Var}(p) \end{aligned}$$

Evolution of π_t under $\mathcal{A}_{\mathsf{naive}}, \mathcal{S}_{\mathsf{single}}$

• Expected value of \hat{p} is

$$E[\hat{p}] = \int \pi_{t+1}(\hat{p}) \,\hat{p} \,d\hat{p}$$
$$= E[p]$$

• The variance of \hat{p} is

$$\begin{aligned} \mathsf{Var}(\hat{p}) = & E[(\hat{p} - E[\hat{p}])^2] \\ = & E[\hat{p}^2] - E[\hat{p}]^2 \\ = & \frac{\sigma_a^2/n}{} + \mathsf{Var}(p) \end{aligned}$$

Example: normally distributed p

• Suppose p_{parent} is normally distributed in generation t:

$$p_{\mathsf{parent}} \sim \mathcal{N}(p_0, \sigma_0^2)$$

• Then \hat{p} is also normally distributed:

$$\hat{p} \sim \mathcal{N}(p_0, \sigma_0^2 + \sigma_a^2/n)$$

Evolution of π_t under $\mathcal{A}_{\mathsf{naive}}, \mathcal{S}_{\mathsf{single}}, p_0 \sim N$

100 epochs, 100 examples, 1000 agents

Evolution of π_t under $\mathcal{A}_{\mathsf{naive}}, \mathcal{S}_{\mathsf{multiple}}$

- Now: learners in \mathcal{G}_{t+1} receive each training example from a randomly-chosen teacher in generation \mathcal{G}_t
- The ML estimate is still $P(\hat{p} | \vec{p}) = \mathcal{N}(\mu_a \bar{y}, \sigma_a^2/n)$
- However, the expected value and variance of \hat{p} are now

$$E(\hat{p}) = E(p_t), \quad \mathsf{Var}(\hat{p}) = \sigma_a^2/n + \mathsf{Var}(p_t)/n$$

· Var moves to

$$\alpha_* = \sigma_a^2/(n-1)$$

Evolution of π_t under $\mathcal{A}_{\mathsf{naive}}, \mathcal{S}_{\mathsf{multiple}}$

- Now: learners in \mathcal{G}_{t+1} receive each training example from a randomly-chosen teacher in generation \mathcal{G}_t
- The ML estimate is still $P(\hat{p} | \vec{p}) = \mathcal{N}(\mu_a \bar{y}, \sigma_a^2/n)$
- However, the expected value and variance of \hat{p} are now

$$E(\hat{p}) = E(p_t), \quad \text{Var}(\hat{p}) = \sigma_a^2/n + \frac{\text{Var}(p_t)}{n}$$

· Var moves to

$$\alpha_* = \sigma_a^2/(n-1)$$

100 epochs, 10 examples, 1000 agents

Summary: A_{naive}

- A_{naive} has different dynamics under S_{single} and S_{multiple}
- Under S_{single}, variability increases w/each generation, i.e. speakers come to coarticulate more and more differently
- Under S_{multiple} , mean of the distribution of p stays the same over time, but its variance moves towards a single value α_* .
- Both are clearly inadequate: but why do naive models fail?

$\mathcal{A}_{\mathsf{simple}}$

- No force counteracting the noise in each learner's estimate
- Assume simple prior bias on p: $\alpha \sim \mathcal{N}(0, \tau^2)$

$\mathcal{A}_{\mathsf{simple}}$

• How should the learner estimate \hat{p} ?

$$\hat{p}_{\mathsf{EV}} = \int P(p|\vec{y})p \, dp$$
 $\hat{p}_{\mathsf{MAP}} = \arg\max_{p} P(\vec{y}|p)P(p)$

• Both estimates turn out to be equivalent:

$$\hat{p}_{\mathrm{MAP}} = \hat{p}_{\mathrm{EV}} = \frac{(\mu_a - \bar{y})}{K}, \ \mathrm{where} \ K = 1 + (\sigma_a^2/\ n \tau^2)$$

• The distribution of \hat{p} is then

$$P(\hat{p} \,|\, p_{\mathsf{parent}}) = \mathcal{N}(p_{\mathsf{parent}}/K, \sigma_a^2/nK^2)$$

Where will \hat{p} be relative to p_{parent} ?

• Because K > 1 (for any values of σ_a , n, and τ), the expected value of p decreases with each generation:

$$E(\hat{p}) = E(p_{\mathsf{parent}})/K$$

• The variance of p moves over time towards the fixed point α_* :

$$\operatorname{Var}(\hat{p}) = [\sigma_a^2/n + \operatorname{Var}(p)]/K^2$$

Evolution of π_t under $\mathcal{A}_{\text{simple}}, \mathcal{S}_{\text{single}}$

100 epochs, 100 examples, 1000 agents, $\tau=10$

Evolution of π_t under $\mathcal{A}_{\text{simple}}, \mathcal{S}_{\text{multiple}}$

100 epochs, 100 examples, 1000 agents, $\tau=10$

$\mathcal{A}_{\mathsf{complex}}$

- Neither A_{naive} nor A_{simple} are adequate: one predicts constant change, the other lacks the ability to model any change
- · Prior needs to encode some kind of category preference
- One option: quadratic polynomial with a minimum at $(\mu_a \mu_b)/2$, concave up between 0 and $\mu_a \mu_b$

$\mathcal{A}_{\mathsf{complex}}$

$$P(p) \propto \left[a(\mu_a - \mu_b)^2 + (p - (\mu_a - \mu_b)/2)^2 \right]$$

Evolution of π_t under $\mathcal{A}_{\text{complex}}, \mathcal{S}_{\text{single}}$

Evolution of density of p over time (indicated by color) with (left) a strong polynomial prior (a = 0.01) or (right) a weak polynomial prior (a = 0.99).

Evolution of π_t under $\mathcal{A}_{\text{complex}}$

- Stability is now possible, but change is still elusive why?
- Prior is strong enough to bias learners towards p = 0 or $p = \mu_{V_1} \mu_{V_2}$, but no bias towards full coarticulation.

Evolution of π_t under $\mathcal{A}_{complex}$

- One type of bias: external force increasing the likelihood of coarticulated variants (Pierrehumbert, 2002; Wedel, 2006)
- Here: assume some percentage (10%) of examples have been moved towards μ_{V_2} by a quantity $\ell \sim \mathcal{N}(\lambda, \lambda/2)$ (...)

Varying λ under $\mathcal{A}_{\text{complex}}, \mathcal{S}_{\text{single}}, a = 0.01$

Discussion

- Bifurcation occurred (maybe?) as a system parameter (the amount of production bias) was varied past a critical value.
- Bifurcations suggested as a potential mechanism underlying actuation of linguistic change, but only shown to occur in models of change in discrete parameters (e.g. Niyogi 2006)
- Possibility of bifurcations in continuous case suggests they play a key role in the actuation of change more generally...?

Discussion

- Among the models considered here, empirically adequate account seems to require **both** a strong learning bias **and** some kind of trigger/production bias
- Assumptions about populations did not matter so much: impacted rates, but not qualitative outcomes

• (Note that this was not true for A_{naive} .)

