Exercise Track Lepatriinu

Audio and Music Processing

June 23, 2013

Wolfgang Küllinger (0955711) Fabian Jordan (0855941)

Contents

1	\mathbf{Arc}	chitecture	3
	1.1	General class structure overview	3
	1.2	Analyzer	4
	1.3	OnsetDetector	4
		1.3.1 SimpleOnsetDetector	5
		1.3.2 SpectralFluxOnsetDetector	5
		1.3.3 HighFrequencyOnsetDetector	6
		1.3.4 GroundTruthPicker	6
	1.4	TempoExtractor	6
		1.4.1 InterOnsetTempoExtractor	6
	1.5		6
		1.5.1 AutoCorrelationBeatDetector	7
	1.6	Best practices	7
2	$\mathbf{U}\mathbf{se}$	er interface	8
	2.1	Purpose	8
	2.2		

1 Architecture

1.1 General class structure overview

The project was separated into several classes. The given framework simple calls methods which are defined in the package at.jku.amp.lepatriinu.

Figure 1.1: Class diagram

1.2 Analyzer

The *Analyzer* class defines all the constants that are needed for any algorithm in the project to succeed. In order to make central configurations possible, the constants are collected in this single class.

Furthermore it provides the central interface to the at.cp.jku.teaching.amprocessing project. It is initialized with a pre-processed (e.g. FFT) audio file of type Audiofile. The order of usage is important. In the first place, onset detection can be done. This information can directly be retrieved from the audio file. The found onsets are the base for tempo extraction. Therefore the onset list has to be provided as parameter of the tempo extraction function. Finally beat detection can be performed. In order to be able to use the best algorithms both the onset list as well as the calculated tempo should be provided.

- 1. Onset detection: onsets = performOnsetDetection()
- 2. Tempo extraction: tempo = performTempoExtraction(onsets)
- 3. Beat Detection: beats = performBeatDetection(onsets, tempo)

1.3 OnsetDetector

OnsetDetector is the abstract superclass of all onset detection algorithm's classes. It provides two different peak picking methods which can be used by any sub class.

- 1. The first peak picking method is taken from lecture slides (5.40) and called *Adaptive Thresholding*.
- 2. The second one is a slight modification of the adaptive thresholding algorithm. Instead of a threshold it simply isolates the highest magnitudes by zeroing everything but the peak as well as close neighbors that are lower. As a result a clear list of onsets remains. We called this method mountain climbing.

Constants

- USE_MOUNTAIN_PEAKPICK defines which peakpicking method to use. If constant is true, mountain peakpicking is chosen. Otherwise adaptive thresholding is performed.
- THRESHOLD_RANGE is used to specify the int size of the shifted slice used in adaptive

thresholding as well as the range of zoroed neighbors in mountain climbing. The best results were produced by a range of 5.

- PEAKPICK_USE_MEAN defines whether to use mean (true) or median (false) in order to select the threshold that is later on applied to all the onset calculations of adaptive thresholding.
- THRESHOLD is used to define a fixed int threshold for choosing the magnitude peaks when using mountain climbing. The value that prouced the best results in our experiments was 13.

1.3.1 SimpleOnsetDetector

This very simplistic method is taken from the given framework. Generally it calculates the distances between every pair of spectral data bins and validates it against a fixed threshold of 10.

1.3.2 SpectralFluxOnsetDetector

This onset detection function implements the idea of spectral differences ("spectral flux"). Therefore the idea of slide 5.20 was implemented. Because this method evolved from a copy of SimpleOnsetDetector in the first place, two minimally different versions of this algorithm were implemented.

The mode can be chosen by the constant FLUX_USE_TOTAL_ENERGY.

- true: like the SimpleOnsetDetector the first version uses the total energy of each bin in order to calculate the differences, which are subsequently processed according to the formula.
- false: unlike the first method but according to the slides, the second method uses differences of magnitudes between bins. This has the unfortunate attitude to need an additional loop.

1.3.3 HighFrequencyOnsetDetector

1.3.4 GroundTruthPicker

1.4 TempoExtractor

TempoExtractor is the abstract superclass of which all tempo extractors should be derived.

1.4.1 InterOnsetTempoExtractor

As the name suggests, *InterOnsetTempoExtractor* performs the Inter Onset Intervals as described in the lecture slides 5.10 through 5.14. The method calculates the most common gap size between the onsets inside a set of onsets.

Because of the inaccuracy that evolves when adding vague double values and the necessarity to provide some sort of categorization and clusterization an indirectional mapping from the double value of the gap size to the int value of the number of occurencies was established. In order to reach this goal actually two mappings are done:

- 1. double → int: specified by the constant TEMPO_KEY_TOLERANCE, given distances are separated into different categories which are consecutively numbered using the int values. To be more precise, if distance ± TEMPO_KEY_TOLERANCE meets one key in the map, it is put into the same category. Otherwise it is put into a new one.
- 2. int \rightarrow int: The *value* of the mapping in 1 is the *key* of the second mapping, which provides the number of occurrencies.

Of course this is to be done if the distance is within the range of usual tempi. Therefore distances that are smaller than MIN_TEMPO or greater than MAX_TEMPO are not taken into account.

The tempo then is returned in beats per minute (bpm).

1.5 BeatDetector

Also *BeatDetector* is an abstract class, thats purpose is to be the superclass of all beat detection algorithms.

1.5.1 AutoCorrelationBeatDetector

This subclass implements beat detection based on auto correlation. It accommodates an enumeration, named Mode, which allows to switch between three different ideas and implementations:

- 1. AUTO_TEMPO_CORRELATION simply implements the idea of the pulse train, described on slides 5.15 through 5.19. To tackle the inaccuracy the list of onsets will always carry along we use a threshold, called AUTO_PHASE_TOLERANCE which, after excessive testing we found best to be set around 0.21 and pushed it up to 48% (average over all 18 provided data sets).
- 2. AUTO_ONSET_CORRELATION represents the implementation of the IOI idea presented on lecture slides 5.10 through 5.14.
- 3. AUTO_SPECTRAL_CORRELATION was the attempt to improve the onset correlation by trying to reinterprete the formulas as to be the spectral data instead of the onsets. It didn't work out that well (less than 4% over 18 data sets).

1.6 Best practices

The best results were reached by using the following configuration:

- Onset detection:
 - onset detector: SpectralFluxOnsetDetector (see 1.3.2)
 - mode: USE_TOTAL_ENERGY = true
 - peak picking: USE_MOUNTAIN_PEAKPICK = true (see 1.3)
 - constants: THRESHOLD = 13 and THRESHOLD_RANGE = 5
- Tempo extraction:
 - tempo extractor: InterOnsetTempoExtractor (see 1.4.1)
 - constants: MIN_TEMPO = 0.3 (= 200 bpm), MAX_TEMPO = 1 (= 60 bpm) and TEMPO_KEY_TOLERANCE = 0.0195.
- Beat detection:
 - beat detector: AutoCorrelationBeatDetector (see 1.5.1)
 - $-\bmod e$: AUTO_FUNCTION = AUTO_TEMPO_CORRELATION
 - constant: AUTO_PHASE_TOLERANCE = 0.21

2 User interface

2.1 Purpose and functionality

As the pure command line interface provided too few possibilities to see the overall performance of our algorithms and lacks a simple way to execute batches of runs, we decided to develop a small GUI in Swing to match these two requirements.

In order to prevent the program from shutting down at any occurring error we had to edit the Runner file a little bit and replace the System.exit(0) calls by simple RuntimeExceptions.

Starting the program will allow you to select one or multiple files, which should be located in the "./data/" folder. On the bottom of the window three checkboxes let you choose, whether the output files should be generated. The "Run" buttons on the top are pretty self-explanatory.

2.2 Outputs

The outputs are displayed seperately for Onsets, Tempo and Beat, to keep a straight interface. Each of the three output tabs has the same layout:

- In the upper half, each output file will be displayed. For onsets and beat, only the respective "*.eval" files appear, whereas for the tempo the "*.bpms" as well as the "*.bpms.eval" file.
- In the bottom half, the selected file will be displayed as well as the summary of this set of evaluations. To make differences easy to spot at first look, the summaries are color coded pretty straight forward: The greener, the better.

Figure 2.1: Graphical user interface

Figure 2.2: The output of the onsets