Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Outline

- Advantages of GANs
- Disadvantages of GANs

Advantages of GANs

Amazing empirical results - especially with fidelity

Advantages of GANs

- Amazing empirical results especially with fidelity
- Fast inference (image generation during testing)

• Lack of intrinsic evaluation metrics

- Lack of intrinsic evaluation metrics
- Unstable training

- Lack of intrinsic evaluation metrics
- Unstable training
- No density estimation

- Lack of intrinsic evaluation metrics
- Unstable training
- No density estimation
- Inverting is not straightforward

Summary

Advantages

- Amazing empirical results
- Fast inference

Disadvantages

- Lack of intrinsic evaluation metrics
- Unstable training
- No density estimation
- Inverting is not straightforward

Summary

Advantages

- Amazing empirical results
- Fast inference

GANs have amazing results, but shortcomings as well.

Disadvantages

- Lack of intrinsic evaluation metrics
- Unstable training
- No density estimation
- Inverting is not straightforward

Alternatives to GANs

Outline

- Overview of generative models
- VAEs and other alternatives

Generative Models

Noise Class Features
$$\xi, Y \to X$$

$$P(X|Y)$$

Generative Models

There are other generative models than just GANs!

Noise Class Features
$$\xi, Y \to X$$

$$P(X|Y)$$

Variational Autoencoders (VAEs)

Available from: https://arxiv.org/abs/1804.00891

Variational Autoencoders (VAEs)

Advantages

- Has density estimation
- Invertible
- Stable training

Disadvantages

Lower quality results

Variational Autoencoders (VAEs)

VQ-VAE (Proposed)

BigGAN deep

Available from: https://arxiv.org/abs/1906.00446

Autoregressive Models

Left: source image Right: new portraits generated from high-level latent representation

Relies on previous pixels to generate next pixel

Available from: https://arxiv.org/abs/1606.05328

Flow Models

Uses invertible mappings

Available from: https://openai.com/blog/glow/

Hybrid Models

Summary

- VAEs have the opposite pros/cons as GANs
 - Often lower fidelity results
 - Density estimation, inversion, stable training
- Other alternative generative models:
 - Autoregressive models
 - Flow models
 - Hybrid models

Intro to Machine Bias

Outline

- Machine Bias (ProPublica)
- Racial disparity in AI for risk assessments
- Impacts of biased AI

Machine Bias

Machine Bias

Risk assessment
= likelihood of
committing a
crime in the
future

One of two leading commercial tools used by the legal system

- One of two leading commercial tools used by the legal system
- Used in pretrial hearings and criminal sentencing to assess risk of re-offense (recidivism)

- One of two leading commercial tools used by the legal system
- Used in pretrial hearings and criminal sentencing to assess risk of re-offense (recidivism)
- Score based on proprietary calculations
 - Not available to the public
 - Unvalidated

- One of two leading commercial tools used by the legal system
- Used in pretrial hearings and criminal sentencing to assess risk of re-offense (recidivism)
- Score based on proprietary calculations
 - Not available to the public
 - Unvalidated
- Predicts recurrence of violent crime correctly only 20% of the time

Biased Risk Assessment

These charts show that scores for white defendants were skewed toward lower-risk categories. Scores for black defendants were not. (Source: ProPublica analysis of data from Broward County, Fla.)

Biased Risk Assessment

Paul Zilly

Plea deal overturned and sentenced to two years in state prison.

A vailable from: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing and the sentencing of the sente

Paul Zilly

Plea deal overturned and sentenced to two years in state prison.

"Had I not had the COMPAS, I believe it would likely be that I would have given one year, six months"

- Appeals judge

Sade Jones

Bond was raised from the recommended \$0 to \$1000

Sade Jones

Bond was raised from the recommended \$0 to \$1000

"I went to McDonald's and a dollar store, and they all said no **because of my background**"

- Jones

Prediction Failure

Prediction Fails Differently for Black Defendants

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Overall, Northpointe's assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much more likely than blacks to be labeled lower risk but go on to commit other crimes. (Source: ProPublica analysis of data from Broward County, Fla.)

Available from: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Summary

- Machine learning bias has a disproportionately negative effect on historically underserved populations
- Proprietary risk assessment software:
 - Difficult to validate
 - Misses important considerations about people

Defining Fairness

Outline

- What is fairness?
- Complexity of defining fairness

Fairness in Machine Learning

Reading 1: Fairness Definitions

Explained

Reading 2: A Survey on Bias and

Fairness in Machine Learning

	Definition	Paper	Citation #	Result
3.1.1	Group fairness or statistical parity	[12]	208	×
3.1.2	Conditional statistical parity	[11]	29	✓
3.2.1	Predictive parity	[10]	57	√
3.2.2	False positive error rate balance	[10]	57	×
3.2.3	False negative error rate balance	[10]	57	1
3.2.4	Equalised odds	[14]	106	×
3.2.5	Conditional use accuracy equality	[8]	18	×
3.2.6	Overall accuracy equality	[8]	18	✓
3.2.7	Treatment equality	[8]	18	×
3.3.1	Test-fairness or calibration	[10]	57	×
3.3.2	Well calibration	[16]	81	×
3.3.3	Balance for positive class	[16]	81	√
3.3.4	Balance for negative class	[16]	81	×
4.1	Causal discrimination	[13]	1	×
4.2	Fairness through unawareness	[17]	14	✓
4.3	Fairness through awareness	[12]	208	×
5.1	Counterfactual fairness	[17]	14	-
5.2	No unresolved discrimination	[15]	14	=
5.3	No proxy discrimination	[15]	14	-0
5.4	Fair inference	[19]	6	=0

Table 1: Considered Definitions of Fairness

Available from: https://fairware.cs.umass.edu/papers/Verma.pdf

Defining Fairness

Defining Fairness

Defining Fairness

	WHITE	AFRICAN AMERICAN
Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Available from: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Summary

- Fairness is difficult to define
- There is no single definition of fairness
- Important to explore these before releasing a system into production

Ways Bias is Introduced

Outline

- A few ways bias can enter a model
- PULSE: A case study with a biased GAN

Training Bias

Training data

No variation in who or what is represented

Training Bias

Training data

- No variation in who or what is represented
- Bias in collection methods

Training Bias

Training data

- No variation in who or what is represented
- Bias in collection methods

Data labelling

Diversity of the labellers

• Images can be biased to reflect "correctness" in the dominant culture

• Images can be biased to reflect "correctness" in the dominant culture

Available from: https://arxiv.org/abs/1906.02659

• Images can be biased to reflect "correctness" in the dominant culture

Available from: https://arxiv.org/abs/1906.02659

Images can be biased to reflect "correctness" in the dominant culture

Figure 3: Average accuracy (and standard deviation) of six object-recognition systems as a function of the normalized consumption income of the household in which the image was collected (in US\$ per month).

Available from: https://arxiv.org/abs/1906.02659

Model Architecture Bias

 Can be influenced by the coders who designed the architecture or optimized the code

Other Avenues for Bias Introduction

Bias can appear at any step:

- Research
- Design
- Engineering
- Anywhere a person was involved

PULSE

"Upsampled"

 $\label{thm:https://arxiv.org/abs/2003.03808} \end{tabular} Available from: $$https://arxiv.org/abs/2003.03808$ (Right) Available from: $$https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias.$

PULSE

Available from: https://www.theverge.com/21298762/face-depixelizer-ai-machine-learning-tool-pulse-stylegan-obama-bias

Summary

- Bias can be introduced into a model at each step of the process
- Awareness and mitigation of bias is vital to responsible use of AI and, especially, state-of-the-art GANs

