Задание 1 (2 балла)

Вариант А

T(n) = T(S(n)) + 1, где S(n) — сумма цифр числа n

Вариант В

$$T(n) = T(\sqrt{n}) + \log n$$

Задание 2 (2 балла)

Вариант С

Придумайте перестановку с 20 инверсиями из 10 элементов (элементы от 1 до 10).

Вариант D

Придумайте перестановку с 25 инверсиями из 10 элементов (элементы от 1 до 10).

Вариант Е

Придумайте перестановку с 32 инверсиями из 10 элементов (элементы от 1 до 10).

Задание 3 (2 балла)

Вариант F

Выберите правильные утверждения:

- 1. Быстрая сортировка стабильна
- 2. Все сортировки с помощью сравнений требуют $\Omega(n\log n)$ сравнений
- 3. Сортировка слиянием всегда делает обменов столько же, сколько инверсий в массиве
- 4. Сортировка кучей в худшем случае работает за $\Omega(n^2)$
- 5. Быстрая сортировка делает $\mathcal{O}(n)$ сравнений
- 6. Сортировка вставками делает $\mathcal{O}(n)$ обменов
- 7. Сортировка подсчетом сортирует пары натуральных чисел, не превышающих C, за $\mathcal{O}(n^2+C)$

Задание 4 (2 балла)

Вариант G

Выберите все верные утверждения относительно элементов двоичной кучи $h[0 \dots n-1]$, в корне которой находится минимум (считайте, что i и j таковы, что все рассматриваемые элементы существуют).

- 1. $h[0] \le h[i]$
- 2. $h[0] \le h[n-1]$
- 3. $h[i] \le h[n-1]$
- 4. $h[i] \le h[i+1]$
- 5. $h[i] \le h[2i+1]$
- 6. $h[i] \le h[2i+2]$
- 7. $h[i] \le h[(i-1) \div 2]$
- 8. $h[(i-1) \div 2] \le h[i]$
- 9. $h[i] \neq h[j]$ при $i \neq j$

Задание 5 (3 балла)

Вариант Н

Реализуйте следующую структуру данных. Есть матрица из нулей и единиц размера $n \times n$. Изначально все ячейки заполнены нулями. Есть три операции:

- 1. setBit(i, j) присвоить единицу в клетку (i,j).
- $2. \ {
 m clearRow(i)} {
 m присвоить} \ {
 m нули} \ {
 m во} \ {
 m все} \ {
 m клетки} \ {
 m строки} \ {
 m i}.$
- 3. clearColumn(j) присвоить нули во все клетки столбца
- 4. getBit(i, j) узнать значение в ячейке (i,j).

Амортизированная стоимость всех операций должна быть $\mathcal{O}(1)$. Докажите амортизированную оценку операций.

Задание 6 (2 балла)

Вариант I

На вход подается последовательность целых чисел a_1, a_2, \ldots, a_n . У вас имеется стек, при помощи которого вы должны отсортировать данную последовательность чисел по неубыванию. Разрешается делать следующие операции:

- Взять очередное число из последовательности и положить в стек.
- Взять верхнее число из стека и отправить в выходную последовательность.

Требуется, чтобы выходная последовательность после обработки всей исходной последовательности была отсортирована по неубыванию. Сформулируйте и докажите критерий, который позволит за полиномиальное от размера исходной последовательности время проверить, можно ли ее отсортировать при помощи стека.

Вариант Ј

Разработайте структуру данных, поддерживающую за амортизированную оценку $\mathcal{O}(1)$ следующие операции:

- 1. Добавить элемент в конец.
- 2. Получить элемент по номеру.
- 3. Отметить текущий элемент. Если ранее какой-то элемент уже был отмечен, то отметка с него снимается.
- 4. Удалить все элементы, добавленные до отмеченного.

Если в структуре данных находится n элементов, то она должна занимать $\mathcal{O}(n)$ памяти. Докажите амортизированную оценку всех операций.

Задание 7 (2 балла)

Вариант К

Задана битовая строка из n бит. Нужно отвечать на запросы двух типов:

- поменять бит и посчитать число блоков из 1.
- Блок максимальная по включению непрерывная подпоследовательность.

Время на ответы на запросы: $\mathcal{O}(1)$.