

GRID NET, INC. ADDENDUM TEST REPORT TO FC09-049A

FOR THE

GE WIMAX SMARTGRID ROUTER, WX-SGR

FCC PART 15 SUBPART B SECTIONS 15.107 & 15.109 CLASS B AND PART 27

DATE OF ISSUE: AUGUST 10, 2009

PREPARED FOR:

Grid Net, Inc. 340 Brannan Street, Suite 501 San Francisco, CA 94107

P.O. No.: DEV 09-14 W.O. No.: 89201

PREPARED BY:

Joyce Walker CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Date of test: February 13 – July 27, 2009

Report No.: FC09-049B

This report contains a total of 80 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information	3
Approvals	3
Summary of Results	4
Conditions During Testing	4
Equipment Under Test (EUT) Description	5
Equipment Under Test	5
Peripheral Devices	5
Temperature and Humidity During Testing	6
FCC 2.1033(c)(3) User's Manual	6
FCC 2.1033(c)(4) Type of Emissions	6
FCC 2.1033(c)(5) Frequency Range	6
FCC 2.1033(c)(6) Operating Power	6
FCC 2.1033(c)(8) DC Voltages	6
FCC 2.1033(c)(9) Tune-Up Procedure FCC 2.1033(c)(10) Schematics and Circuitry Description FCC 2.1033(c)(11) Label and Placement FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(10) Schematics and Circuitry Description	6
FCC 2.1033(c)(11) Label and Placement	6
FCC 2.1033(c)(12) Submittal Photos	6
FCC 2.1033(c)(13) Modulation Information	6
Measurement Uncertainties (C)	7
FCC 15.107 – AC Conducted Emissions	8
FCC 2.1033(c)(14)/2.1046/27.50 – Conducted RF Power Output	35
FCC 2.1049 - Occupied Bandwidth	37
FCC 2.1033(c)(14)/2.1051/27.53 - Spurious Emissions at Antenna Terminal	45
FCC 27.53 – Bandedge Antenna Conducted	
FCC 2.1033(c)(14)/2.1053/27.53 - Field Strength of Spurious Radiation	
FCC 2.1033(c)(14)/2.1055 - Frequency Stability	73

Page 2 of 80 Report No.: FC09-049B

ADMINISTRATIVE INFORMATION

DATE OF TEST: February 13 – July 27, 2009	DATE OF RECEIPT: February 13, 2009
REPRESENTATIVE: Patrick Orallo	
MANUFACTURER: GE Energy	TEST LOCATION: CKC Laboratories, Inc. 1120 Fulton Place Fremont, CA 94539
FREQUENCY RANGE TESTED: 10 kHz-26.9	GHz
TEST METHOD: ANSI C63.4 (2003) and FCC I	Part 27
PURPOSE OF TEST: Original: To perform the testing of the GF W requirements for FCC Part 15 Subpart B Sections Addendum A: To repeat testing of sections 15. with the external chassis removed from the FUT. Addendum B: During the changes made for Add the bandedge antenna conducted data section ar spurious radiated emissions testing. These corrections APPROVALS	lendum A, incorrect data sheets were placed in and part of the test equipment was left out for
QUALITY ASSURANCE:	TEST PERSONNEL:
Steve Behm, Director of Engineering Services	Art Rice, Senior EMC Engineer
Dran.	
Amrinder Brar, EMC Engineer/Lab Manager	

Page 3 of 80 Report No.: FC09-049B

SUMMARY OF RESULTS

Test	Specification/Method	Results
Conducted Emissions	FCC 15.107	Pass
Radiated Emissions	FCC 15.109	Pass
RF Output Power	FCC 27.50(h)	Pass
Occupied Bandwidth	FCC 2.1049	Pass
Spurious Emissions at Antenna Terminal	FCC 27.53(m)	Pass
Bandedge Antenna Conducted	FCC 27.53(m)	Pass
OATS Spurious Emissions	FCC 27.53(m)	Pass
Bandedge OATS	FCC 27.53(m)	Pass
Frequency Stability	FCQ2.1056///////	Pass
Site File No.	FCC195897191	

CONDITIONS DURING TESTING

E Tronic F5-NF-65B-02 ferrite was added to the Ethernet cable at the EUT to reduce an emission at 250 MHz.

Page 4 of 80 Report No.: FC09-049B

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

The following information has been changed by the customer since the time of testing. Any differences between the names does not affect their EMC characteristics and therefore meets the level of testing equivalent to the tested model name shown on the data sheets:

Customer Declaration

GE Energy

None

GE WiMAX SmartGrid Router

At the Time of Testing

WiMAX SmartGrid Router

Grid-Net **Manufacturer Name Customer Name GE** Energy

EQUIPMENT UNDER TEST

WiMAX SmartGrid Router

Manuf: GE Energy Model: WX-SGR

Device Name

Serial: GN1S11ASS8BS000W

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop PC 24 VDC Power Supply

Manuf: Manuf: CUI Inc. Dell Model: Latitude D830 3A-401DN24 Model:

Serial: 9THV3G1 Serial: NA

Power Supply for EUT Fan Cooling Fan

Manuf: Tektronix Manuf: CoolerMaster

Model: **CPS250** Model: AA225-25BB-5EA-F1

Serial: CKC AN00900A Serial: NA

AC Adapter for Laptop Antenna

Manuf: Mars Antennas and RF System, Inc Model: ANT.MA-VM26-3F Model: LA90PS0-00

Serial: NA Serial: CN-0DF266-71615-834-0DC3

Manuf:

Dell

Page 5 of 80 Report No.: FC09-049B

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

FCC 2.1033(c) (3) USER'S MANUAL

The necessary information is contained in a separate document.

FCC 2.1033 (c)(4) TYPE OF EMISSIONS

4M 44 W7D and 9M06 W7D

FCC 2.1033 (c)(5) FREQUENCY RANGE

2498MHz – 2688MHz

FCC 2.1033 (c)(6) OPERATING POWER

26.1 dBm

FCC 2.1033 (c)(8) DC VOLTAGES

The necessary information is contained in a separate document

FCC 2.1033 (c)(9) TUNE-UP PROCEDURE

The necessary information is contained in a separate document.

FCC 2.1033(c)(10) SCHEMATICS AND CIRCUITRY DESCRIPTION

The necessary information is contained in a separate document.

FCC 2.1033(c)(11) LABEL AND PLACEMENT

The necessary information is contained in a separate document.

FCC 2.1033(c)(12) SUBMITTAL PHOTOS

The necessary information is contained in a separate document.

FCC 2.1033 (c)(13) MODULATION INFORMATION OFDMA, QPSK, 16QAM

Page 6 of 80 Report No.: FC09-049B

MEASUREMENT UNCERTAINTIES

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Page 7 of 80 Report No.: FC09-049B

FCC 15.107 – AC CONDUCTED EMISSIONS

Test Setup Photos

Page 8 of 80 Report No.: FC09-049B

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: **FCC 15.107 B COND [AVE]**

Work Order #: Date: 2/26/2009 89201 Test Type: **Conducted Emissions** Time: 18:29:50 Equipment: Sequence#: 17 WiMAX SmartGrid Router Manufacturer: Grid-Net Tested By: Art Rice Model: WX-SGR

120V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/1 <mark>3/201</mark> 0	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	6 4/02 <mark>/2</mark> 009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGIR	GN1S11ASS8BS000W

Support Devices:

~ F F			<u>.</u>
Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF	ANT.MA-VM26-3F	none
	System, Inc.		
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-
			0DC3

Page 9 of 80 Report No.: FC09-049B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks.

24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Transducer Legend:

1. ansaucer Ecgena.	
T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measur	rement Data:	Re	ading lis	ted by ma	argin.		1	Test Lead	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	√dB/	Table	dΒμV	dΒμV	dB	Ant
1	628.498k	30.7	+0.0	+10.1	+0.6)+1/2	f 0.0	40.9	46.0	-5.1	Line
2	2.489M	30.6	-0.1	+10.0	+ 1	J+0.2	+0.0	40.8	46.0	-5.2	Line
3	970.566k	30.3	+0.1	+10.1	140.1	+0.1	+0.0	40.7	46.0	-5.3	Line
4	833.568k	30.4	+0.0	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	Line
5	462.696k	30.6	+0.1	+10.1	+0.0	+0.0	+0.0	40.8	46.6	-5.8	Line
6	3.437M	30.0	-0.1	+10.0	+0.1	+0.2	+0.0	40.2	46.0	-5.8	Line
7	587.047k	29.7	+0.1	+10.1	+0.0	+0.1	+0.0	40.0	46.0	-6.0	Line
8	2.034M	29.7	+0.0	+10.0	+0.1	+0.2	+0.0	40.0	46.0	-6.0	Line
9	705.581k	29.5	+0.0	+10.1	+0.0	+0.0	+0.0	39.6	46.0	-6.4	Line
10	1.430M	29.2	+0.0	+10.0	+0.1	+0.1	+0.0	39.4	46.0	-6.6	Line
11	1.034M	29.0	+0.0	+10.1	+0.1	+0.0	+0.0	39.2	46.0	-6.8	Line
12	469.968k	29.1	+0.1	+10.1	+0.0	+0.1	+0.0	39.4	46.5	-7.1	Line
13	168.180k	37.3	+0.0	+10.0	+0.4	+0.1	+0.0	47.8	55.0	-7.2	Line
14	635.042k	28.3	+0.0	+10.1	+0.0	+0.1	+0.0	38.5	46.0	-7.5	Line

Page 10 of 80 Report No.: FC09-049B

15	795.026k	28.2	+0.0	+10.0	+0.1	+0.1	+0.0	38.4	46.0	-7.6	Line
16	11.013M	32.1	+0.0	+10.0	+0.1	+0.2	+0.0	42.4	50.0	-7.6	Line
17	10.644M	31.9	+0.0	+10.1	+0.1	+0.2	+0.0	42.3	50.0	-7.7	Line
18	11.409M	31.8	+0.0	+10.0	+0.1	+0.3	+0.0	42.2	50.0	-7.8	Line
19	6.959M	31.6	+0.1	+10.1	+0.1	+0.2	+0.0	42.1	50.0	-7.9	Line
20	336.000k Ave	31.1	+0.0	+10.0	+0.1	+0.0	+0.0	41.2	49.3	-8.1	Line
^	336.163k	36.4	+0.0	+10.0	+0.1	+0.0	+0.0	46.5	49.3	-2.8	Line
22	1.532M	27.7	+0.0	+10.0	+0.1	+0.1	+0.0	37.9	46.0	-8.1	Line
23	6.671M	31.3	+0.1	+10.1	+0.1	+0.2	+0.0	41.8	50.0	-8.2	Line
24	10.175M	31.4	+0.0	+10.1	+0.1	+0.2	+0.0	41.8	50.0	-8.2	Line
25	9.806M	31.2	+0.0	+10.1	+0.1	+0,3	19.0	41.7	50.0	-8.3	Line
26	741.214k	27.5	+0.0	+10.1	+0.6)+0/0	70.0	37.6	46.0	-8.4	Line
27	7.319M	30.7	+0.1	+10.1	D+0-1	HO.B	+0.0	41.3	50.0	-8.7	Line
28	8.553M	30.9	+0.1	+10.0	1	+0.2	+0.0	41.3	50.0	-8.7	Line
29	378.000k Ave	29.2	+0.1	+10.1	+0.0	+0.1	+0.0	39.5	48.3	-8.8	Line
^	378.341k	36.8	+0.1	+10.1	+0.0	+0.1	+0.0	47.1	48.3	-1.2	Line
31	8.184M	30.8	+0.1	+10.0	+0.1	+0.2	+0.0	41.2	50.0	-8.8	Line
32	15.013M	30.6	+0.0	+10.1	+0.2	+0.3	+0.0	41.2	50.0	-8.8	Line
33	15.544M	30.6	+0.0	+10.1	+0.2	+0.3	+0.0	41.2	50.0	-8.8	Line
34	7.725M	30.7	+0.1	+10.0	+0.1	+0.2	+0.0	41.1	50.0	-8.9	Line
35	294.713k	31.0	+0.1	+10.0	+0.2	+0.0	+0.0	41.3	50.4	-9.1	Line
36	949.000k Ave	26.3	+0.1	+10.1	+0.1	+0.1	+0.0	36.7	46.0	-9.3	Line
٨	949.301k	33.2	+0.1	+10.1	+0.1	+0.1	+0.0	43.6	46.0	-2.4	Line
38	15.806M	29.6	+0.1	+10.1	+0.2	+0.3	+0.0	40.3	50.0	-9.7	Line

39	502.000k Ave	24.8	+0.1	+10.1	+0.0	+0.1	+0.0	35.1	46.0	-10.9	Line
٨	502.328k	32.7	+0.1	+10.1	+0.0	+0.1	+0.0	43.0	46.0	-3.0	Line
41	1.285M Ave	24.3	+0.0	+10.1	+0.1	+0.1	+0.0	34.6	46.0	-11.4	Line
٨		32.6	+0.0	+10.1	+0.1	+0.1	+0.0	42.9	46.0	-3.1	Line
43		23.1	+0.0	+10.1	+0.1	+0.1	+0.0	33.4	46.0	-12.6	Line
٨	Ave 987.578k	32.0	+0.0	+10.1	+0.1	+0.1	+0.0	42.3	46.0	-3.7	Line
45		23.0	+0.0	+10.0	+0.1	+0.1	+0.0	33.2	46.0	-12.8	Line
٨	Ave 1.694M	32.0	+0.0	+10.0	+0.1	+0.1	+0.0	42.2	46.0	-3.8	Line
47		22.8	+0.0	+10.0	+0.1	+0.1	+0.0	33.0	46.0	-13.0	Line
^	Ave 1.655M	31.5	+0.0	+10.0	+0.1	+0.1	+0.0	41.7	46.0	-4.3	Line
49		21.9	+0.0	+10.0	+0.1	+0,01	19.0	32.0	46.0	-14.0	Line
^	Ave 905.265k	31.9	+0.0	+10.0	±0.	7+0/1	10.0	42.1	46.0	-3.9	Line
51		21.0	+0.0	+10.0	1-0.1 ₀	/+0: <u>1</u>	+0.0	31.2	46.0	-14.8	Line
٨	Ave 875.473k	31.1	+0.0	+10.0	1/6/	+0.1	+0.0	41.3	46.0	-4.7	Line
53	668.000k	20.3	+0.0	+10.1	+0.0	+0.1	+0.0	30.4	46.0	-15.6	Line
^	Ave 668.675k	31.3	+0.0	+10.1	+0.0	+0.1	+0.0	41.5	46.0	-4.5	Line
55	4.275M	20.0	+0.0	+10.1	+0.1	+0.2	+0.0	30.4	46.0	-15.6	Line
	Ave										
۸	4.275M	35.8	+0.0	+10.1	+0.1	+0.2	+0.0	46.2	46.0	+0.2	Line
57	545.000k Ave	19.7	+0.0	+10.1	+0.0	+0.1	+0.0	29.9	46.0	-16.1	Line
^		32.3	+0.0	+10.1	+0.0	+0.1	+0.0	42.5	46.0	-3.5	Line
59	3.199M Ave	19.3	-0.1	+10.0	+0.1	+0.1	+0.0	29.4	46.0	-16.6	Line
۸		31.0	-0.1	+10.0	+0.1	+0.1	+0.0	41.1	46.0	-4.9	Line
61	3.650M Ave	18.8	+0.0	+10.1	+0.1	+0.2	+0.0	29.2	46.0	-16.8	Line
٨		33.4	+0.0	+10.1	+0.1	+0.2	+0.0	43.8	46.0	-2.2	Line

63	2.838M	18.8	-0.1	+10.0	+0.1	+0.1	+0.0	28.9	46.0	-17.1	Line
	ve	10.0	0.1	110.0	10.1	10.1	10.0	20.7	10.0	17.1	Line
^	2.838M	31.4	-0.1	+10.0	+0.1	+0.1	+0.0	41.5	46.0	-4.5	Line
	2.030WI	31.4	-0.1	+10.0	+0.1	+0.1	+0.0	41.3	40.0	-4.3	Line
65	3.688M	18.4	+0.0	+10.1	+0.1	+0.2	+0.0	28.8	46.0	-17.2	Line
A	ve										
٨	3.688M	33.3	+0.0	+10.1	+0.1	+0.2	+0.0	43.7	46.0	-2.3	Line
67	3.616M	18.3	+0.0	+10.1	+0.1	+0.2	+0.0	28.7	46.0	-17.3	Line
	ve	10.5	10.0	110.1	10.1	10.2	10.0	20.7	10.0	17.5	Line
Λ	100										
٨	3.616M	33.5	+0.0	+10.1	+0.1	+0.2	+0.0	43.9	46.0	-2.1	Line

CKC Laboratories, Inc. Date: 2/26/2009 Time: 18:29:50 GE Energy WO#: 89201 FCC 15.107 B COND [AVE] Test Lead: Line 120V 60Hz Sequence#: 17

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

FCC 15.107 B COND [AVE] Specification:

Work Order #: 89201 Date: 2/26/2009 Test Type: **Conducted Emissions** Time: 18:15:22 Equipment: WiMAX SmartGrid Router Sequence#: 16 Manufacturer: Grid-Net Tested By: Art Rice Model: WX-SGR 120V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	WX/SIGR /	GN1S11ASS8BS000W
Router*			
Sunnort Devices:		MISTAL	

Support Devices:

	Additional Control of the Control of		
Function	Manufacturer	Model #	S/N
Laptop PC	Dell V	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF	ANT.MA-VM26-3F	none
	System, Inc.		
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-
			0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks.

24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Transducer Legend:

T1=LISN - AN00493 - White - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Neutral		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	667.039k	30.7	+0.0	+10.1	+0.0	+0.1	+0.0	40.9	46.0	-5.1	Neutral
2	873.564k	30.6	+0.0	+10.0	+0.1	+0.1	+0.0	40.8	46.0	-5.2	Neutral
3	627.043k	30.2	+0.0	+10.1	+0.0	+0.1	+0.0	40.4	46.0	-5.6	Neutral
4	377.000k Ave	32.3	+0.1	+10.1	+0.0	+0.1	+0.0	42.6	48.3	-5.7	Neutral
٨	376.886k	36.6	+0.1	+10.1	+0.0	+0.1	+0.0	46.9	48.3	-1.4	Neutral
6	833.568k	30.1	+0.0	+10.0	+0.1	+0.1	+0.0	40.3	46.0	-5.7	Neutral
7	2.034M	29.8	+0.0	+10.0	+0.1	+0.2	+0.0	40.1	46.0	-5.9	Neutral
8	1.200M	29.7	+0.0	+10.1	+0.1	+0.1	+0.0	40.0	46.0	-6.0	Neutral
9	688.128k	29.7	+0.0	+10.1	+0.6)+//	10.0	39.9	46.0	-6.1	Neutral
10	1.017M	29.7	+0.0	+10.1	1)+1/1	V+0.0	D _{+0.0}	39.9	46.0	-6.1	Neutral
11	1.098M	29.5	+0.0	+10.1	1/6.1	+0.1	+0.0	39.8	46.0	-6.2	Neutral
12	587.774k	29.5	+0.0	+10.1	+0.0	+0.1	+0.0	39.7	46.0	-6.3	Neutral
13	457.606k	29.7	+0.0	+10.1	+0.0	+0.0	+0.0	39.8	46.7	-6.9	Neutral
14	10.995M	32.2	+0.0	+10.0	+0.1	+0.2	+0.0	42.5	50.0	-7.5	Neutral
15	9.815M	31.7	+0.1	+10.1	+0.1	+0.3	+0.0	42.3	50.0	-7.7	Neutral
16	336.000k Ave	31.3	+0.1	+10.0	+0.1	+0.0	+0.0	41.5	49.3	-7.8	Neutral
۸	336.345k	36.7	+0.1	+10.0	+0.1	+0.0	+0.0	46.9	49.2	-2.3	Neutral
18	555.050k	27.9	+0.0	+10.1	+0.0	+0.1	+0.0	38.1	46.0	-7.9	Neutral
19	736.123k	28.0	+0.0	+10.1	+0.0	+0.0	+0.0	38.1	46.0	-7.9	Neutral
20	795.026k	27.9	+0.0	+10.0	+0.1	+0.1	+0.0	38.1	46.0	-7.9	Neutral
21	11.319M	31.5	+0.0	+10.0	+0.1	+0.3	+0.0	41.9	50.0	-8.1	Neutral
22	11.752M	31.4	+0.0	+10.0	+0.1	+0.3	+0.0	41.8	50.0	-8.2	Neutral

Page 15 of 80 Report No.: FC09-049B

23	737.578k	27.6	+0.0	+10.1	+0.0	+0.0	+0.0	37.7	46.0	-8.3	Neutral
24	10.094M	31.1	+0.1	+10.1	+0.1	+0.2	+0.0	41.6	50.0	-8.4	Neutral
25	293.986k	31.7	+0.0	+10.0	+0.2	+0.0	+0.0	41.9	50.4	-8.5	Neutral
26	7.328M	30.9	+0.1	+10.1	+0.1	+0.3	+0.0	41.5	50.0	-8.5	Neutral
27	12.851M	31.1	+0.0	+10.0	+0.1	+0.3	+0.0	41.5	50.0	-8.5	Neutral
28	953.000k	27.0	+0.0	+10.1	+0.1	+0.1	+0.0	37.3	46.0	-8.7	Neutral
^	Ave 953.048k	33.8	+0.0	+10.0	+0.1	+0.1	+0.0	44.0	46.0	-2.0	Neutral
	933.040K	55.6	+0.0	+10.0	+0.1	+0.1	+0.0	44.0	40.0	-2.0	redutat
30	6.950M	30.7	+0.1	+10.1	+0.1	+0.2	+0.0	41.2	50.0	-8.8	Neutral
31	170.362k	35.5	+0.0	+10.0	+0.4	+0.1	+0.0	46.0	54.9	-8.9	Neutral
32	8.788M	30.6	+0.1	+10.0	+0.1	+0.2	+0.0	41.0	50.0	-9.0	Neutral
33	8.508M	30.5	+0.1	+10.0	+0.1	+0,2	19.0	40.9	50.0	-9.1	Neutral
34	15.418M	30.2	+0.0	+10.1	+0.2)+/0/3	10.0	40.8	50.0	-9.2	Neutral
35	14.616M	30.0	+0.0	+10.1	1+0-2		+0.0	40.6	50.0	-9.4	Neutral
36	15.698M	30.0	+0.0	+10.1	1 10.2	+0.3	+0.0	40.6	50.0	-9.4	Neutral
37	6.607M	29.7	+0.1	+10.1	+0.1	+0.2	+0.0	40.2	50.0	-9.8	Neutral
38	6.229M	29.6	+0.1	+10.1	+0.1	+0.2	+0.0	40.1	50.0	-9.9	Neutral
39	14.743M	29.5	+0.0	+10.1	+0.2	+0.3	+0.0	40.1	50.0	-9.9	Neutral
40	15.481M	29.4	+0.0	+10.1	+0.2	+0.3	+0.0	40.0	50.0	-10.0	Neutral
41	911.000k	25.6	+0.0	+10.0	+0.1	+0.0	+0.0	35.7	46.0	-10.3	Neutral
^	Ave	21.7	.00	. 10.0	.0.1	.00	ı O O	41.8	46.0	4.2	Nautual
	911.024k	31.7	+0.0	+10.0	+0.1	+0.0	+0.0	41.8	46.0	-4.2	Neutral
43	543.000k Ave	24.8	+0.0	+10.1	+0.0	+0.1	+0.0	35.0	46.0	-11.0	Neutral
۸	543.597k	32.1	+0.0	+10.1	+0.0	+0.1	+0.0	42.3	46.0	-3.7	Neutral
45	1.281M Ave	24.7	+0.0	+10.1	+0.1	+0.1	+0.0	35.0	46.0	-11.0	Neutral
٨	1.281M	32.6	+0.0	+10.1	+0.1	+0.1	+0.0	42.9	46.0	-3.1	Neutral

47	1.366M	24.6	+0.0	+10.1	+0.1	+0.1	+0.0	34.9	46.0	-11.1	Neutral
	Ave										
٨	1.366M	32.4	+0.0	+10.1	+0.1	+0.1	+0.0	42.7	46.0	-3.3	Neutral
	1.300111	32.1	10.0	110.1	10.1	10.1	10.0	12.7	10.0	3.3	rveatrar
49	502 0001	24.6	. 0. 0	. 10 1	. 0. 0	. 0. 1	. 0. 0	247	16.0	11.2	NT 1
	502.000k	24.6	+0.0	+10.1	+0.0	+0.1	+0.0	34.7	46.0	-11.3	Neutral
	Ave										
^	502.601k	32.4	+0.0	+10.1	+0.0	+0.1	+0.0	42.6	46.0	-3.4	Neutral
51	1.689M	21.7	+0.0	+10.0	+0.1	+0.1	+0.0	31.9	46.0	-14.1	Neutral
	Ave										
٨	1.689M	32.6	+0.0	+10.0	+0.1	+0.1	+0.0	42.8	46.0	-3.2	Neutral
	1.00711	32.0	10.0	110.0	10.1	10.1	10.0	72.0	-1 0.0	-3.2	rveuttai
	4.0443.6	20.0	0.1	10.1	0.1	0.0	0.0	21.1	4.5.0	446	37 . 1
53	4.011M	20.9	+0.1	+10.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Neutral
1	Ave										
^	4.011M	35.4	+0.1	+10.1	+0.1	+0.2	+0.0	45.9	46.0	-0.1	Neutral
55	4.347M	19.8	+0.1	+10.1	+0.1	+0.2	+0.0	30.3	46.0	-15.7	Neutral
		17.0	10.1	110.1	10.1	10.2	10.0	30.3	40.0	13.7	redutar
^	Ave	25.0	0.1	10.1	0.1	0.0	0.0		460	0.4	37 . 1
	4.347M	35.9	+0.1	+10.1	+0.1	+0.2	+0.0	46.4	46.0	+0.4	Neutral
57	3.943M	19.6	+0.1	+10.1	+0.1	+0,1	+0.0	30.0	46.0	-16.0	Neutral
	Ave					~ 1	141				
٨	3.943M	35.3	+0.1	+10.1	±0.	1+0/1	+0.0	45.7	46.0	-0.3	Neutral
	3.7 (3141	33.3	10.1	110.1	NII)		10.0	J 13.7	10.0	0.5	rveatrar
50	2 1021/	10.6	. 0. 1	. 10.0	0.11	1.001	J. 0 0	20.0	16.0	1.6.1	NT 1
59	3.182M	19.6	+0.1	+10.0	1 144 1	10.1	+0.0	29.9	46.0	-16.1	Neutral
	Ave										
٨	3.182M	31.6	+0.1	+10.0	A0.1	+0.1	+0.0	41.9	46.0	-4.1	Neutral
61	2.821M	19.6	+0.1	+10.0	+0.1	+0.1	+0.0	29.9	46.0	-16.1	Neutral
	Ave										
^	2.821M	31.6	+0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Neutral
"	2.021WI	31.0	+0.1	+10.0	+0.1	+0.1	+0.0	41.9	40.0	-4.1	rieutral
		4					0 -	• • •			
63	2.485M	19.3	+0.1	+10.0	+0.1	+0.2	+0.0	29.7	46.0	-16.3	Neutral
	Ave										
٨	2.485M	30.8	+0.1	+10.0	+0.1	+0.2	+0.0	41.2	46.0	-4.8	Neutral
65	3.675M	18.3	+0.1	+10.1	+0.1	+0.2	+0.0	28.8	46.0	-17.2	Neutral
		10.5	+0.1	F10.1	⊤0.1	±0.2	±0.0	20.0	40.0	-17.2	recuital
	Ave	24.5	0.1	10.1	0.1	0.2	0.0	45.1	16.0	0.0	37
^	3.675M	34.6	+0.1	+10.1	+0.1	+0.2	+0.0	45.1	46.0	-0.9	Neutral

CKC Laboratories, Inc. Date: 2/26/2009 Time: 18:15:22 GE Energy W0#: 89201 FCC 15.107 B COND [AVE] Test Lead: Neutral 120V 60Hz Sequence#: 16

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

FCC 15.107 B COND [AVE] Specification:

Work Order #: 89201 Date: 2/26/2009 Test Type: **Conducted Emissions** Time: 17:37:31 Equipment: WiMAX SmartGrid Router Sequence#: 14 Manufacturer: Grid-Net Tested By: Art Rice Model: WX-SGR

240V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
S.A., RF Section HP-8568B	2601A02492	01/06/2009	01/06/2011	02663
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258
Cable	None	05/13/2008	05/13/2010	00880
10 dB Pad		04/05/2007	04/05/2009	00081
LISN, Emco 3816/2	9408-1006	04/02/2007	04/02/2009	00493

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	WX/SIGR /	GN1S11ASS8BS000W
Router*			
Support Devices:		MISTAL	

Support Devices:

FF	the state of the s		
Function	Manufacturer	Model #	S/N
Laptop PC	Dell V V	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF	ANT.MA-VM26-3F	none
	System, Inc.		
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-
			0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks.

24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz
- 2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Transducer Legend:

T1=LISN - AN00493 - Black - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Line 1		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dBμV	dΒμV	dB	Ant
1	987.578k	33.6	+0.0	+10.1	+0.1	+0.1	+0.0	43.9	46.0	-2.1	Line
2	401.611k	35.3	+0.1	+10.1	+0.0	+0.1	+0.0	45.6	47.8	-2.2	Line
3	3.637M	33.3	+0.0	+10.1	+0.1	+0.2	+0.0	43.7	46.0	-2.3	Line
4	957.807k	33.2	+0.1	+10.1	+0.1	+0.1	+0.0	43.6	46.0	-2.4	Line
5	1.613M	33.1	+0.0	+10.0	+0.1	+0.1	+0.0	43.3	46.0	-2.7	Line
6	902.518k	32.6	+0.0	+10.0	+0.1	+0.0	+0.0	42.7	46.0	-3.3	Line
7	1.715M	32.4	+0.0	+10.0	+0.1	+0.1	+0.0	42.6	46.0	-3.4	Line
8	1.183M	32.2	+0.0	+10.1	+0.1	+0,1	+0.0	42.5	46.0	-3.5	Line
9	1.694M	32.3	+0.0	+10.0	+0.)+//	70.0	42.5	46.0	-3.5	Line
10	856.111k	32.0	+0.0	+10.0	1+1/1	V+0.2	+0.0	42.3	46.0	-3.7	Line
11	1.660M	32.1	+0.0	+10.0	1/6.1	+0.1	+0.0	42.3	46.0	-3.7	Line
12	430.699k	33.2	+0.1	+10.1	+0.0	+0.0	+0.0	43.4	47.2	-3.8	Line
13	877.000k	31.9	+0.0	+10.0	+0.1	+0.1	+0.0	42.1	46.0	-3.9	Line
14	3.055M	31.8	-0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Line
15	2.353M	31.5	+0.0	+10.0	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Line
16	3.612M	31.4	+0.0	+10.1	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Line
17	376.886k	33.6	+0.1	+10.1	+0.0	+0.1	+0.0	43.9	48.3	-4.4	Line
18	875.018k	31.2	+0.0	+10.0	+0.1	+0.1	+0.0	41.4	46.0	-4.6	Line
19	3.135M	31.1	-0.1	+10.0	+0.1	+0.1	+0.0	41.2	46.0	-4.8	Line
20	829.205k	30.9	+0.0	+10.0	+0.1	+0.1	+0.0	41.1	46.0	-4.9	Line
21	1.830M	30.7	+0.0	+10.0	+0.1	+0.1	+0.0	40.9	46.0	-5.1	Line
22	453.970k	31.4	+0.1	+10.1	+0.0	+0.0	+0.0	41.6	46.8	-5.2	Line

Page 20 of 80 Report No.: FC09-049B

23	1.460M	30.4	+0.0	+10.0	+0.1	+0.1	+0.0	40.6	46.0	-5.4	Line
24	3.531M	30.2	+0.0	+10.1	+0.1	+0.2	+0.0	40.6	46.0	-5.4	Line
25	800.117k	30.3	+0.0	+10.0	+0.1	+0.1	+0.0	40.5	46.0	-5.5	Line
26	8.815M	34.1	+0.1	+10.0	+0.1	+0.2	+0.0	44.5	50.0	-5.5	Line
27	574.685k	30.1	+0.1	+10.1	+0.0	+0.1	+0.0	40.4	46.0	-5.6	Line
28	2.867M	30.3	-0.1	+10.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	Line
29	1.243M	29.8	+0.0	+10.1	+0.1	+0.1	+0.0	40.1	46.0	-5.9	Line
30	3.408M	29.9	-0.1	+10.0	+0.1	+0.2	+0.0	40.1	46.0	-5.9	Line
31	597.228k	29.7	+0.1	+10.1	+0.0	+0.1	+0.0	40.0	46.0	-6.0	Line
32	315.802k	33.3	+0.1	+10.0	+0.2	+0.1	+0.0	4 3.7	49.8	-6.1	Line
33	1.013M	28.8	+0.0	+10.1	+0.1	+0,0	+9.0	39.0	46.0	-7.0	Line
^	Ave 1.013M	34.0	+0.0	+10.1	+0.)+ 0/ 0	70.0	44.2	46.0	-1.8	Line
35	4.403M	25.2	+0.0	+10.1	1+0.1	/+0.P	+0.0	35.6	46.0	-10.4	Line
^	Ave 4.403M	39.1	+0.0	+10.1	1/0.1	+0.2	+0.0	49.5	46.0	+3.5	Line
37	4.471M	24.4	+0.0	+10.1	+0.1	+0.2	+0.0	34.8	46.0	-11.2	Line
^	Ave 4.471M	39.3	+0.0	+10.1	+0.1	+0.2	+0.0	49.7	46.0	+3.7	Line
39	4.513M	24.3	+0.1	+10.0	+0.1	+0.2	+0.0	34.7	46.0	-11.3	Line
	Ave										
^	4.513M	39.1	+0.1	+10.0	+0.1	+0.2	+0.0	49.5	46.0	+3.5	Line
41	4.530M Ave	23.9	+0.1	+10.0	+0.1	+0.2	+0.0	34.3	46.0	-11.7	Line
۸	4.530M	38.7	+0.1	+10.0	+0.1	+0.2	+0.0	49.1	46.0	+3.1	Line
43	4.245M Ave	23.8	+0.0	+10.1	+0.1	+0.2	+0.0	34.2	46.0	-11.8	Line
^	4.245M	37.5	+0.0	+10.1	+0.1	+0.2	+0.0	47.9	46.0	+1.9	Line
45	4.220M Ave	23.4	+0.0	+10.1	+0.1	+0.2	+0.0	33.8	46.0	-12.2	Line
٨	4.220M	37.1	+0.0	+10.1	+0.1	+0.2	+0.0	47.5	46.0	+1.5	Line

47	4.569M Ave	22.9	+0.1	+10.0	+0.1	+0.2	+0.0	33.3	46.0	-12.7	Line
^	4.569M	37.6	+0.1	+10.0	+0.1	+0.2	+0.0	48.0	46.0	+2.0	Line
49	4.199M	22.8	+0.0	+10.1	+0.1	+0.2	+0.0	33.2	46.0	-12.8	Line
^	Ave 4.199M	36.7	+0.0	+10.1	+0.1	+0.2	+0.0	47.1	46.0	+1.1	Line
51	4.156M	21.7	+0.0	+10.1	+0.1	+0.2	+0.0	32.1	46.0	-13.9	Line
٨	Ave 4.156M	36.4	+0.0	+10.1	+0.1	+0.2	+0.0	46.8	46.0	+0.8	Line
53	3.858M	21.1	+0.0	+10.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
٨	Ave 3.858M	35.8	+0.0	+10.1	+0.1	+0.1	+0.0	46.1	46.0	+0.1	Line
55	3.824M	21.1	+0.0	+10.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
٨	Ave 3.824M	35.8	+0.0	+10.1	+0.1	+0.1	+0.0	46.1	46.0	+0.1	Line
57		20.9	+0.0	+10.1	+0.1	+0,2	19.0	31.3	46.0	-14.7	Line
٨	Ave 3.761M	35.6	+0.0	+10.1	+0.	1+0/2	70.0	46.0	46.0	+0.0	Line
59		20.2	+0.0	+10.1	D+0.10	HO.P.	+0.0	30.6	46.0	-15.4	Line
٨	Ave 3.680M	33.9	+0.0	+10.1	1	+0.2	+0.0	44.3	46.0	-1.7	Line
61	3.663M	19.9	+0.0	+10.1	+0.1	+0.2	+0.0	30.3	46.0	-15.7	Line
٨	Ave 3.663M	34.0	+0.0	+10.1	+0.1	+0.2	+0.0	44.4	46.0	-1.6	Line
63	3.935M	19.8	+0.0	+10.1	+0.1	+0.1	+0.0	30.1	46.0	-15.9	Line
٨	3.935M	35.2	+0.0	+10.1	+0.1	+0.1	+0.0	45.5	46.0	-0.5	Line
65	3.982M	19.5	+0.0	+10.1	+0.1	+0.1	+0.0	29.8	46.0	-16.2	Line
٨	Ave 3.982M	34.2	+0.0	+10.1	+0.1	+0.1	+0.0	44.5	46.0	-1.5	Line
67		19.4	+0.0	+10.1	+0.1	+0.2	+0.0	29.8	46.0	-16.2	Line
٨	Ave 4.028M	35.0	+0.0	+10.1	+0.1	+0.2	+0.0	45.4	46.0	-0.6	Line

CKC Laboratories, Inc. Date: 2/26/2009 Time: 17:37:31 GE Energy W0#: 89201 FCC 15.107 B COND [AVE] Test Lead: Line 1 240V 60Hz Sequence#: 14

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

FCC 15.107 B COND [AVE] Specification:

Work Order #: 89201 Date: 2/26/2009 Test Type: **Conducted Emissions** Time: 17:53:21 Equipment: WiMAX SmartGrid Router Sequence#: 15 Manufacturer: Grid-Net Tested By: Art Rice Model: WX-SGR 240V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

z est z quipintentt					
Function	S/N	Calibration Date	e Cal Due Date	Asset #	
S.A., RF Section HP-	2601A02492	01/06/2009	01/06/2011	02663	
8568B					
S.A., Display HP-85662A	2542A12169	01/06/2009	01/06/2011	02662	
QP Adapter HP-85650A	2521A00909	01/07/2009	01/07/2011	00683	
TTE High Pass Filter	H4120	12/18/2008	12/18/2010	05258	
Cable	None	05/13/2008	05/13/2010	00880	
10 dB Pad		04/05/2007	04/05/2009	00081	
LISN, Emco 3816/2	9408-1006	04/02/2007	04/102/2009	00493	
Equipment Under Test (*	= EUT):		161		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	/ DWX-SGR	GN1S11ASS8BS000W
Router*			
Support Devices:			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF	ANT.MA-VM26-3F	none
	System, Inc.		
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834-
			0DC3

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. It is mounted on styrofoam blocks.

24VDC power supply for EUT is powered by the AC input. The 24VDC power supply is inside the metal cabinet that contains the EUT.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Using command prompt "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

An unterminated RS-485 cable is bundled to 40cm above the ground plane.

NOTES:

1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz

2) Testing the digital circuitry of the EUT.

Conducted emissions 0.15-30 MHz.

Page 24 of 80 Report No.: FC09-049B

Transducer Legend:

T1=LISN - AN00493 - White - ELC "OUT"	T2=AN P00081 10dB Attenuator
T3=FIL-ANP05258-121808 CE HP Filter	T4=Cable Calibration ANP00880

Measur	ement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: Line 2		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	399.430k	35.5	+0.1	+10.1	+0.0	+0.1	+0.0	45.8	47.9	-2.1	Line
2	1.034M	33.7	+0.0	+10.1	+0.1	+0.0	+0.0	43.9	46.0	-2.1	Line
3	1.124M	33.6	+0.0	+10.1	+0.1	+0.1	+0.0	43.9	46.0	-2.1	Line
4	953.554k	33.1	+0.0	+10.1	+0.1	+0.1	+0.0	43.4	46.0	-2.6	Line
5	1.064M	33.1	+0.0	+10.1	+0.1	+0.1	+0.0	43.4	46.0	-2.6	Line
6	3.633M	32.7	+0.1	+10.1	+0.1	+0.2	+0.0	43.2	46.0	-2.8	Line
7	1.098M	32.7	+0.0	+10.1	+0.1	+0.1	+0.0	4 B.0	46.0	-3.0	Line
8	1.149M	32.7	+0.0	+10.1	+0.1	+0,1	10.0	43.0	46.0	-3.0	Line
9	1.570M	32.8	+0.0	+10.0	+0.)+//	70.0	43.0	46.0	-3.0	Line
10	379.068k	34.7	+0.1	+10.1	1+0.9	V+0.1	+0.0	45.0	48.3	-3.3	Line
11	4.832M	32.4	+0.0	+10.0	VAL.	+0.2	+0.0	42.7	46.0	-3.3	Line
12	4.947M	32.3	+0.0	+10.0	+0.1	+0.2	+0.0	42.6	46.0	-3.4	Line
13	427.063k	33.7	+0.0	+10.1	+0.0	+0.0	+0.0	43.8	47.3	-3.5	Line
14	853.930k	32.2	+0.0	+10.0	+0.1	+0.2	+0.0	42.5	46.0	-3.5	Line
15	928.036k	32.4	+0.0	+10.0	+0.1	+0.0	+0.0	42.5	46.0	-3.5	Line
16	876.473k	32.2	+0.0	+10.0	+0.1	+0.1	+0.0	42.4	46.0	-3.6	Line
17	894.012k	32.2	+0.0	+10.0	+0.1	+0.1	+0.0	42.4	46.0	-3.6	Line
18	3.008M	31.9	+0.1	+10.0	+0.1	+0.1	+0.0	42.2	46.0	-3.8	Line
19	373.978k	34.2	+0.1	+10.1	+0.0	+0.1	+0.0	44.5	48.4	-3.9	Line
20	3.106M	31.6	+0.1	+10.0	+0.1	+0.1	+0.0	41.9	46.0	-4.1	Line
21	2.353M	31.3	+0.0	+10.0	+0.1	+0.2	+0.0	41.6	46.0	-4.4	Line
22	2.927M	31.2	+0.1	+10.0	+0.1	+0.1	+0.0	41.5	46.0	-4.5	Line

Page 25 of 80 Report No.: FC09-049B

23	4.985M	31.0	+0.0	+10.0	+0.1	+0.2	+0.0	41.3	46.0	-4.7	Line
24	820.478k	30.9	+0.0	+10.0	+0.1	+0.1	+0.0	41.1	46.0	-4.9	Line
25	455.424k	31.6	+0.0	+10.1	+0.0	+0.0	+0.0	41.7	46.8	-5.1	Line
26	569.594k	30.6	+0.0	+10.1	+0.0	+0.1	+0.0	40.8	46.0	-5.2	Line
27	343.435k	33.4	+0.1	+10.0	+0.1	+0.0	+0.0	43.6	49.1	-5.5	Line
28	8.842M	34.1	+0.1	+10.0	+0.1	+0.2	+0.0	44.5	50.0	-5.5	Line
29	795.026k	30.2	+0.0	+10.0	+0.1	+0.1	+0.0	40.4	46.0	-5.6	Line
30	315.074k	33.8	+0.0	+10.0	+0.2	+0.1	+0.0	44.1	49.8	-5.7	Line
31	3.399M	29.9	+0.1	+10.0	+0.1	+0.2	+0.0	40.3	46.0	-5.7	Line
32	3.416M	29.7	+0.1	+10.0	+0.1	+0.2	+0.0	40.1	46.0	-5.9	Line
33	578.321k	29.8	+0.0	+10.1	+0.0	+0,1	1-9.0	40.0	46.0	-6.0	Line
34	3.242M	29.7	+0.1	+10.0	+0.)+0/1	10.0	40.0	46.0	-6.0	Line
35	3.437M	29.6	+0.1	+10.0	1-1-1	10.P	+0.0	40.0	46.0	-6.0	Line
36	10.806M	33.5	+0.0	+10.1	1	+0.2	+0.0	43.9	50.0	-6.1	Line
37	983.000k Ave	28.2	+0.0	+10.1	+0.1	+0.1	+0.0	38.5	46.0	-7.5	Line
٨	983.325k	34.0	+0.0	+10.1	+0.1	+0.1	+0.0	44.3	46.0	-1.7	Line
39	4.462M Ave	24.9	+0.1	+10.1	+0.1	+0.2	+0.0	35.4	46.0	-10.6	Line
٨	4.462M	39.6	+0.1	+10.1	+0.1	+0.2	+0.0	50.1	46.0	+4.1	Line
41	4.292M Ave	24.6	+0.1	+10.1	+0.1	+0.2	+0.0	35.1	46.0	-10.9	Line
٨	4.292M	37.9	+0.1	+10.1	+0.1	+0.2	+0.0	48.4	46.0	+2.4	Line
43	4.573M Ave	22.6	+0.0	+10.0	+0.1	+0.2	+0.0	32.9	46.0	-13.1	Line
٨	4.573M	38.3	+0.0	+10.0	+0.1	+0.2	+0.0	48.6	46.0	+2.6	Line
45	3.795M Ave	21.2	+0.1	+10.1	+0.1	+0.1	+0.0	31.6	46.0	-14.4	Line
٨	3.795M	35.8	+0.1	+10.1	+0.1	+0.1	+0.0	46.2	46.0	+0.2	Line

Page 26 of 80 Report No.: FC09-049B

47	3.778M	21.1	+0.1	+10.1	+0.1	+0.1	+0.0	31.5	46.0	-14.5	Line
A	ve										
۸	3.778M	36.0	+0.1	+10.1	+0.1	+0.1	+0.0	46.4	46.0	+0.4	Line
٨	3.769M	35.1	+0.1	+10.1	+0.1	+0.1	+0.0	45.5	46.0	-0.5	Line
50 A	4.126M	20.9	+0.1	+10.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Line
^	4.126M	35.3	+0.1	+10.1	+0.1	+0.2	+0.0	45.8	46.0	-0.2	Line
52 A	3.739M Ave	20.9	+0.1	+10.1	+0.1	+0.2	+0.0	31.4	46.0	-14.6	Line
٨	3.739M	35.4	+0.1	+10.1	+0.1	+0.2	+0.0	45.9	46.0	-0.1	Line
54 A	3.833M	21.0	+0.1	+10.1	+0.1	+0.1	+0.0	31.4	46.0	-14.6	Line
٨	3.833M	35.7	+0.1	+10.1	+0.1	+0.1	+0.0	46.1	46.0	+0.1	Line
56	3.901M	20.9	+0.1	+10.1	+0.1	+0.1	+0.0	31.3	46.0	-14.7	Line
٨	3.901M	36.0	+0.1	+10.1	+0.1	+0,1	+0.0	46.4	46.0	+0.4	Line
58 A	3.854M	20.8	+0.1	+10.1	+0.)+1/1	70.0	31.2	46.0	-14.8	Line
۸	3.854M	35.9	+0.1	+10.1	1-1-1	10.1	+0.0	46.3	46.0	+0.3	Line
60 A	3.939M	20.0	+0.1	+10.1	46.1	+0.1	+0.0	30.4	46.0	-15.6	Line
۸	3.939M	35.8	+0.1	+10.1	+0.1	+0.1	+0.0	46.2	46.0	+0.2	Line
62 A	3.994M	19.5	+0.1	+10.1	+0.1	+0.2	+0.0	30.0	46.0	-16.0	Line
٨	3.994M	35.6	+0.1	+10.1	+0.1	+0.2	+0.0	46.1	46.0	+0.1	Line

CKC Laboratories, Inc. Date: 2/26/2009 Time: 17:53:21 GE Energy W0#: 89201 FCC 15.107 B COND [AVE] Test Lead: Line 2 240V 60Hz Sequence#: 15

FCC 15.109 – RADIATED EMISSIONS

Test Setup Photos

Page 29 of 80 Report No.: FC09-049B

Page 30 of 80 Report No.: FC09-049B

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 15.109 Class B Radiated 30-1000MHz

Work Order #: 89201 Date: 7/22/2009
Test Type: Maximized Emissions Time: 17:01:52
Equipment: WiMAX SmartGrid Router Sequence#: 31
Manufacturer: Grid-Net Tested By: Art Rice

Model: WX-SGR

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Preamp, HP8447D	2443A03707	02/09/2009	02/09/2011	00730
Antenna, Bilog	2630	12/22/2008	12/22/2010	00852
Cable	None	04/21/2008	04/21/2010	P05440
Cable	None	03/06/2009	03/06/2011	P05299
Cable	None	03/06/2009	03/06/2011	P05300
SA - Agilent E4446A	US44300408	03/09/2009	03/09/2011	02668

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF	ANT.MA-VM26-3F	none
	System, Inc.		
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834- 0DC3

Page 32 of 80 Report No.: FC09-049B

Test Conditions / Notes:

The transceiver is placed on top of the wooden test table. The fan is taped to the bottom of the EUT. It is mounted on styrofoam blocks.

24VDC power supply for EUT powered by 120VAC.

The laptop PC communicates to the EUT through the Ethernet connected to the laptop located on the test table. The laptop is constantly pinging the EUT to exercise the port.

Use command prompt command "ping -t 192.168.137.1" to exercise Ethernet.

The laptop PC is also connected to the EUT through the RS232 cable. A Hyperterminal session is opened to establish communication.

An unterminated RS-485 cable is bundled to 40cm above the ground plane.

A loopback cable is connected to the unsupported second RJ45 port.

NOTES:

- 1) Spectrum analyzer settings: 0.15-30 MHz RBW=9kHz, 30-1000 MHz RBW=120kHz
- 2) Testing the digital circuitry of the EUT.
- 3) E Tronic F5-NF-65B-02 ferrite was added to the Ethernet cable at the EUT to reduce an emission at 250 MHz.

Radiated emissions 30-1000 MHz.

Transducer Legend:

T1=AMP-AN00730-020909 .01-1000

T3=CAB-ANP05299-030609

T5=Cable Calibration ANP05440

T2=ANT AN00852 25-1000MHz

T4=CAB-ANP05300-030609

15-00	15-Cubic Cambration 7111 05440										
		·							·		
Measurement Data: Reading listed by margin Test Distance: 3 Meters											
#	Freq	Rdng	T1	T2	173//	VT4	Dist	Corr	Spec	Margin	Polar
			T5		0/0"						
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBμV/m	dB	Ant
1	250.000M	56.9	-27.2	+12.5	+0.3	+0.7	+0.0	44.2	46.0	-1.8	Horiz
	QP		+1.0				168				123
^	249.993M	57.5	-27.2	+12.5	+0.3	+0.7	+0.0	44.8	46.0	-1.2	Horiz
			+1.0				171				123
3	399.998M	52.9	-27.3	+16.0	+0.1	+0.6	+0.0	43.5	46.0	-2.5	Vert
	QP		+1.2				359				100
٨	400.003M	53.3	-27.3	+16.0	+0.1	+0.6	+0.0	43.9	46.0	-2.1	Vert
			+1.2				359				100
5	250.002M	55.0	-27.2	+12.5	+0.3	+0.7	+0.0	42.3	46.0	-3.7	Vert
	QP		+1.0				75				100
^	250.003M	55.3	-27.2	+12.5	+0.3	+0.7	+0.0	42.6	46.0	-3.4	Vert
			+1.0				75				100
7	549.995M	45.9	-27.2	+18.8	+0.2	+0.9	+0.0	40.0	46.0	-6.0	Horiz
			+1.4				217				175
8	674.998M	42.4	-27.0	+20.1	+0.2	+0.9	+0.0	38.2	46.0	-7.8	Horiz
			+1.6				248				145
9	500.009M	44.2	-27.2	+17.9	+0.2	+0.9	+0.0	37.3	46.0	-8.7	Horiz
			+1.3				218				185

Page 33 of 80 Report No.: FC09-049B

10	403.564M	46.4	-27.3	+16.1	+0.1	+0.7	+0.0	37.2	46.0	-8.8	Vert
			+1.2				361				101
11	650.007M	41.5	-27.0	+19.9	+0.2	+0.9	+0.0	37.1	46.0	-8.9	Horiz
			+1.6				243				154
12	407.139M	45.5	-27.3	+16.2	+0.1	+0.7	+0.0	36.4	46.0	-9.6	Vert
			+1.2				363				101
13	74.840M	45.4	-27.3	+6.8	+0.2	+0.4	+0.0	26.0	40.0	-14.0	Vert
			+0.5				24				101
14	81.180M	44.5	-27.3	+7.4	+0.1	+0.4	+0.0	25.6	40.0	-14.4	Vert
			+0.5				77				101

FCC 2.1033(c)(14)/2.1046/27.50 – CONDUCTED RF POWER OUTPUT

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Power Meter	00174	HP	435B	2342A08531	01-04-08	01-04-10
Sensor & 30	02572	HP	8482B	2703A04102	11-30-07	11-30-09
dB attenuator						

Test Conditions

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM

3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3) CONDUCTED FROM ANTENNA PO

Test Setup Photos

Page 35 of 80 Report No.: FC09-049B

Test Data

Model: WX-SGR 5 MHz Channel Bandwidth

Channel-Frequency in	Average Conducted Power	Average Conducted Power		
MHz	Output-dBm: QPSK 1/2	Output-dBm: 16 QAM 3/4		
Low-2498.5	25.2	25.2		
Mid-2600	26.1	26.1		
Hi-2687.5	25.1	25.1		

Model: WX-SGR 10 MHz Channel Bandwidth

Channel-Frequency in	Average Conducted Power	Average Conducted Power		
MHz	Output-dBm: QPSK 1/2	Output-dBm: 16 QAM 3/4		
Low-2501	23.4	23.4		
Mid-2600	24.2	23.9		
Hi-2685	22.7	22.8		

Page 36 of 80 Report No.: FC09-049B

FCC 2.1049 - OCCUPIED BANDWIDTH

Test Equipment

Equipment	Asset #	Manufacturer	Model #	Serial #	Cal Date	Cal Due
Spectrum	02668	Agilent	E4446A	US44300408	03/05/07	03/05/09
Analyzer						
Cable	03015	Astrolab	32022-2-29094K-	none	02/04/08	02/04/10
			24TC			
10 dB	ANP05411	Weinschel	54A-10	P7186	02/05/08	02/05/10
attenuator						

Test Conditions

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz/BW QPSK 1/2. C=5 MHz BW 16QAM

3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) SA offset of 9.8 dB to correct for cable and attenuator loss.

Test Setup Photos

Test Data

Model: WX-SGR 5 MHz Channel Bandwidth

Channel-Frequency in MHz	Occupied bandwidth in MHz: QPSK 12	Occupied bandwidth in MHz:
Low-2498.5	4.4400	16 QAM 3/4 4.4272
Mid-2600	4.4412	4.4283
Hi-2687.5	4.4431	4.4383

Model: WX-SGR 10 MHz Channel Bandwidth

Channel-Frequency in	Occupied bandwidth in	Occupied bandwidth in
MHz	MHz: QPSK 1/2	MHz:
		16 QAM 3/4
Low-2501	9.0542	9.0556
Mid-2600	9.0491	9.0653
Hi-2685	9.0601	9.0626

Page 38 of 80 Report No.: FC09-049B

Test Plots

OCCUPIED BANDWIDTH - 5 MHz QPSK LOW CHANNEL

OCCUPIED BANDWIDTH - 5 MHz QPSK MID CHANNEL

Page 39 of 80 Report No.: FC09-049B

OCCUPIED BANDWIDTH - 5 MHz QPSK HIGH CHANNEL

OCCUPIED BANDWIDTH - 10 MHz OPSK LOW CHANNEL

OCCUPIED BANDWIDTH - 10 MHz QPSK MID CHANNEL

OCCUPIED BANDWIDTH - 10 MHz OPSIX THIGH CHANNEL

OCCUPIED BANDWIDTH - 5 MHz 16QAM LOW CHANNEL

OCCUPIED BANDWIDTH - 5 MHz 16QANI MID CHANNEL

OCCUPIED BANDWIDTH - 5 MHz 16QAM HIGH CHANNEL

OCCUPIED BANDWIDTH - 10 MHz 160AM LOW CHANNEL

OCCUPIED BANDWIDTH - 10 MHz 16QAM MID CHANNEL

OCCUPIED BANDWIDTH - 10 MHz 160 AM HIGH CHANNEL

$\underline{FCC~2.1033(c)(14)/2.1051/27.53-SPURIOUS~EMISSIONS~AT~ANTENNA~TERMINAL}$

Test Setup Photos

Page 45 of 80 Report No.: FC09-049B

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) spurious dBuV Ave

Work Order #:89201Date:2/20/2009Test Type:Conducted EmissionsTime:18:30:46Equipment:WiMAX SmartGrid RouterSequence#:6Manufacturer:Grid-NetTested By:Art Rice

Model: WX-SGR 120V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668
Analyzer				
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid Router*	Grid-Net	WX-SGR	GN1S11ASS8BS000W

Support Devices:

Function	Manufacturer		Model #	S/N
Laptop PC	Dell		Lantude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	10/0	3A-401DN24	none

Page 46 of 80 Report No.: FC09-049B

Test Conditions / Notes:

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30MHz RBW=VBW=9kHz, 30-1000MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on Low channel.

FCC 27.53(m)(2)(v)

Conducted emissions 10 kHz-26900 MHz.

Transducer Legend:

T1=CAB-AN03015-020408

T2=ATT-ANP05411-020508

Measu	rement Data:	Re	eading lis	ted by in	rgin.			Test Lea	nd: Antenna	port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2499.167M	125.2	+0.4	+9.4			+0.0	135.0	140.0	-5.0	Anten
									Fundamen	tal	
2	25325.020 M	74.9	+1.1	+10.3			+0.0	86.3	94.0	-7.7	Anten
3	25230.400 M	74.5	+1.2	+10.3			+0.0	86.0	94.0	-8.0	Anten
4	4997.148M	75.8	+0.7	+9.4			+0.0	85.9	94.0 Harmonic	-8.1	Anten
5	2500.188M	121.9	+0.4	+9.4			+0.0	131.7	140.0	-8.3	Anten
6	25747.810 M	74.3	+1.0	+10.4			+0.0	85.7	94.0	-8.3	Anten
7	25251.030 M	73.8	+1.2	+10.3			+0.0	85.3	94.0	-8.7	Anten
8	25026.710 M	73.7	+1.1	+10.3			+0.0	85.1	94.0	-8.9	Anten

Page 47 of 80 Report No.: FC09-049B

9	25028.130	73.7	+1.1	+10.3	+0.	0 85.1	94.0	-8.9	Anten
	M						,		
10	25133.180 M	73.4	+1.2	+10.3	+0.	0 84.9	94.0	-9.1	Anten
11	25008.450 M	73.5	+1.0	+10.3	+0.	0 84.8	94.0	-9.2	Anten
12	25150.250 M	73.2	+1.2	+10.3	+0.	0 84.7	94.0	-9.3	Anten
13	25224.000 M	73.0	+1.2	+10.3	+0.	0 84.5	94.0	-9.5	Anten
14	24888.990 M	73.1	+0.9	+10.4	+0.	0 84.4	94.0	-9.6	Anten
15	24952.990 M	73.1	+1.0	+10.3	+0.	0 84.4	94.0	-9.6	Anten
16	25190.330 M	72.9	+1.2	+10.3	0) 1 +6:	84.4	94.0	-9.6	Anten
17	25185.590 M	72.8	+1.2	+10.3	// JU-0.	0 84.3	94.0	-9.7	Anten
18	25216.410 M	72.6	+1.2	+10.3	+0.	0 84.1	94.0	-9.9	Anten
19	26665.250 M	72.6	+1.1	+10.4	+0.	0 84.1	94.0	-9.9	Anten
20	24171.900 M	72.8	+0.9	+10.3	+0.	0 84.0	94.0	-10.0	Anten
21	25065.360 M	72.6	+1.1	+10.3	+0.	0 84.0	94.0	-10.0	Anten
22	25074.140 M	72.6	+1.1	+10.3	+0.	0 84.0	94.0	-10.0	Anten
23	25135.550 M	72.5	+1.2	+10.3	+0.	0 84.0	94.0	-10.0	Anten
24	25175.630 M	72.5	+1.2	+10.3	+0.	0 84.0	94.0	-10.0	Anten
25	25301.300 M	72.6	+1.1	+10.3	+0.	0 84.0	94.0	-10.0	Anten

Page 48 of 80 Report No.: FC09-049B

26	24509.940	72.7	+0.8	+10.4	+0	0 (33.9	94.0	-10.1	Anten
20	M	, 2.,	10.0	10.1		,,,,		<i>y</i> 1.0	10.1	7 1111011
27	25003.710 M	72.6	+1.0	+10.3	+0	0.0	33.9	94.0	-10.1	Anten
28	26020.740 M	72.5	+1.0	+10.4	+0	0.0	33.9	94.0	-10.1	Anten
29	24140.890 M	72.6	+0.9	+10.3	+0	0.0	33.8	94.0	-10.2	Anten
30	24261.910 M	72.5	+1.0	+10.3	+0	0.0	33.8	94.0	-10.2	Anten
31	26623.990 M	72.3	+1.1	+10.4	+0	0.0	33.8	94.0	-10.2	Anten
32	24292.910 M	72.4	+1.0	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
33	25006.560 M	72.4	+1.0	+10.3		70 1	33.7	94.0	-10.3	Anten
34	25043.790 M	72.3	+1.1	+10.3		0.0	33.7	94.0	-10.3	Anten
35	25125.830 M	72.2	+1.2	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
36	25163.770 M	72.2	+1.2	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
37	25173.490 M	72.2	+1.2	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
38	25189.380 M	72.2	+1.2	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
39	25235.860 M	72.2	+1.2	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
40	25330.000 M	72.3	+1.1	+10.3	+0	0.0	33.7	94.0	-10.3	Anten
41	26114.640 M	72.3	+1.0	+10.4	+0	0.0	33.7	94.0	-10.3	Anten
42	26315.490 M	72.3	+1.0	+10.4	+0	0.0	33.7	94.0	-10.3	Anten

Page 49 of 80 Report No.: FC09-049B

43 24229 N	+1.0	+10.3	+0.0	83.6	94.0	-10.4	Anten
44 25031 N	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
45 25080 M	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
46 25141 N	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
47 25744 N	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
48 26321 N	+1.0	+10.4	+0.0	83.6	94.0	-10.4	Anten
49 25063 N	+1.1	+10.3	+0.0	83.5	94.0	-10.5	Anten
50 25207 N	+1.2	+10.3	(D) (1 +b.p)	83.5	94.0	-10.5	Anten
51 26595 M	+1.1	+10.4	000	83.5	94.0	-10.5	Anten
		100					

CKC Laboratories, Inc. Date: 2/20/2009 Time: 18:30:46 GE Energy WO#: 89201 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 120V 60Hz Sequence#: 6 WX-SGR Antenna port through cable and 10 dB atten. QPSK 1/2 5 MHz Low ch

Sweep Data
Readings

1 - F(X Peak

1 - FCC 27.53(m)(2)(v) spurious dBuV Ave Peak Readings

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) spurious dBuV Ave

Work Order #: 89201 Date: 2/20/2009
Test Type: Conducted Emissions Time: 18:08:55
Equipment: WiMAX SmartGrid Router Sequence#: 5
Manufacturer: Grid-Net Tested By: Art Rice
Model: WX-SGR 120V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668
Analyzer				
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411

Equipment Under Test (* = EUT):

Equipment Chaci Icsi	(- LO1).	1	
Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	WX-SGR	GN1S11ASS8BS000W
Router*			

Support Devices:

$\sim r_F$				
Function	Manufacturer	Model #	S/N	
Laptop PC	Dell	Agritude 10/830	9THV3G1	
24 VDC Power Supply	CUI Inc.	3401DN24	none	

Test Conditions / Notes:

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on Mid channel.

FCC 27.53(m)(2)(v)

Conducted emissions 10 kHz-26900 MHz.

Page 52 of 80 Report No.: FC09-049B

Transducer Legend:

T1=CAB-AN03015-020408	T2=ATT-ANP05411-020508

3 2	Freq MHz 25267.160 M 2601.200M 25034.300 M 24188.900 M	Rdng dBμV 74.4 121.9 74.3	T1 dB +1.2 +0.4 +1.1 +0.9	T2 dB +10.3 +9.4 +10.3	dB	dB	Dist Table +0.0 +0.0 +0.0	Corr dBµV 85.9 131.7	Spec dBμV 94.0 140.0	Margin dB -8.1 -8.3	Anten Anten
3 2	25267.160 M 2601.200M 25034.300 M 24188.900 M	74.4 121.9 74.3	+1.2 +0.4 +1.1	+10.3 +9.4 +10.3	dB	dB	+0.0	85.9	94.0	-8.1	Anten Anten
3 2	M 2601.200M 25034.300 M 24188.900 M	74.3 74.0	+0.4	+9.4			+0.0	131.7	140.0	-8.3	Anten
3 2	25034.300 M 24188.900 M 25074.610	74.3	+1.1	+10.3							
4 2	M 24188.900 M 25074.610	74.0					+0.0	85.7	94.0	-83	Anton
	M 25074.610		+0.9	+10.3					71.0	0.5	AIICII
		=					+0.0	85.2	94.0	-8.8	Anten
5 2	M	73.7	+1.1	+10.3			+0.0	85.1	94.0	-8.9	Anten
6 2	25174.440 M	73.6	+1.2	+10.3			1 5	85.1	94.0	-8.9	Anten
7 2	25108.280 M	73.4	+1.1	+10.3		2//1	f0.0 [84.8	94.0	-9.2	Anten
8 2	25081.010 M	73.2	+1.1	+10.3	U		+0.0	84.6	94.0	-9.4	Anten
9 2	25163.770 M	73.1	+1.2	+10.3			+0.0	84.6	94.0	-9.4	Anten
10 2	24116.890 M	73.3	+0.9	+10.3			+0.0	84.5	94.0	-9.5	Anten
11 2	24832.980 M	73.2	+0.8	+10.4			+0.0	84.4	94.0	-9.6	Anten
12 2	24868.980 M	73.1	+0.9	+10.4			+0.0	84.4	94.0	-9.6	Anten
13 2	26000.040 M	72.8	+1.0	+10.4			+0.0	84.2	94.0	-9.8	Anten
14 2	25090.970 M	72.8	+1.1	+10.3			+0.0	84.2	94.0	-9.8	Anten
15 2	24235.900 M	72.8	+1.0	+10.3			+0.0	84.1	94.0	-9.9	Anten

16	25083.380 M	72.7	+1.1	+10.3	+0.0	84.1	94.0	-9.9	Anten
17	25152.150 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
18	25183.690 M	72.6	+1.2	+10.3	+0.0	84.1	94.0	-9.9	Anten
19	25006.790 M	72.7	+1.0	+10.3	+0.0	84.0	94.0	-10.0	Anten
20	26086.660 M	72.6	+1.0	+10.4	+0.0	84.0	94.0	-10.0	Anten
21	24388.920 M	72.7	+0.9	+10.3	+0.0	83.9	94.0	-10.1	Anten
22	25879.650 M	72.5	+1.0	+10.4	+0.0	83.9	94.0	-10.1	Anten
23	25104.020 M	72.4	+1.1	+10.3		83.8	94.0	-10.2	Anten
24	26565.180 M	72.3	+1.1	+10.4	D 1-0.0	83.8	94.0	-10.2	Anten
25	24968.000 M	72.4	+1.0	+10.3	+0.0	83.7	94.0	-10.3	Anten
26	25175.150 M	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
27	25197.440 M	72.2	+1.2	+10.3	+0.0	83.7	94.0	-10.3	Anten
28	5200.314M	73.5	+0.7	+9.4	+0.0	83.6	94.0	-10.4	Anten
29	24166.890 M	72.4	+0.9	+10.3	+0.0	83.6	94.0	-10.4	Anten
30	25060.860 M	72.2	+1.1	+10.3	+0.0	83.6	94.0	-10.4	Anten
31	25147.170 M	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten
32	25165.900 M	72.1	+1.2	+10.3	+0.0	83.6	94.0	-10.4	Anten

33	25178.000	72.1	+1.2	+10.3	+0.0	0 83.6	94.0	-10.4	Anten
	M								
34	25223.050 M	72.1	+1.2	+10.3	+0.	0 83.6	94.0	-10.4	Anten
35	25257.200 M	72.1	+1.2	+10.3	+0.0	0 83.6	94.0	-10.4	Anten
36	25318.140 M	72.2	+1.1	+10.3	+0.0	0 83.6	94.0	-10.4	Anten
37	26573.240 M	72.1	+1.1	+10.4	+0.0	0 83.6	94.0	-10.4	Anten
38	23497.810 M	72.5	+0.7	+10.3	+0.0	0 83.5	94.0	-10.5	Anten
39	25020.310 M	72.2	+1.0	+10.3	+0.	0 83.5	94.0	-10.5	Anten
40	23527.820 M	72.4	+0.7	+10.3		83.4	94.0	-10.6	Anten
41	25167.800 M	71.9	+1.2	+10.3) 40.0	0 83.4	94.0	-10.6	Anten
42	25188.670 M	71.9	+1.2	+10.3	+0.0	0 83.4	94.0	-10.6	Anten
43	25314.580 M	72.0	+1.1	+10.3	+0.0	0 83.4	94.0	-10.6	Anten
44	25880.840 M	72.0	+1.0	+10.4	+0.0	0 83.4	94.0	-10.6	Anten
45	26098.040 M	72.0	+1.0	+10.4	+0.0	0 83.4	94.0	-10.6	Anten
46	26358.410 M	72.0	+1.0	+10.4	+0.0	0 83.4	94.0	-10.6	Anten
47	26750.850 M	72.0	+1.0	+10.4	+0.0	0 83.4	94.0	-10.6	Anten
48	25232.300 M	71.8	+1.2	+10.3	+0.0	0 83.3	94.0	-10.7	Anten
49	25241.310 M	71.8	+1.2	+10.3	+0.0	0 83.3	94.0	-10.7	Anten

50	25399.950 M	71.8	+1.1	+10.4	+0.0	83.3	94.0	-10.7	Anten
51	25980.900	71.9	+1.0	+10.4	+0.0	83.3	94.0	-10.7	Anten
	M								
52	26606.680	71.8	+1.1	+10.4	+0.0	83.3	94.0	-10.7	Anten
	M								
53	23400.040	71.1	+0.7	+10.3	+0.0	82.1	94.0	-11.9	Anten
	M								
54	20800.020	70.8	+0.6	+10.1	+0.0	81.5	94.0	-12.5	Anten
	M								
55	15600.070	69.5	+1.1	+10.1	+0.0	80.7	94.0	-13.3	Anten
	M								
56	18200.010	68.6	+0.7	+10.0	+0.0	79.3	94.0	-14.7	Anten
	M					14			
57	10400.130	68.5	+1.0	+9.6	+6.9	79.1	94.0	-14.9	Anten
	M			ſ					
58	13000.140	67.4	+1.4	+9.7	10.0	78.5	94.0	-15.5	Anten
	M								
59	7800.219M	67.7	+0.6	+9.4	+0.0	77.7	94.0	-16.3	Anten

CKC Laboratories, Inc. Date: 2/20/2009 Time: 18:08:55 GE Energy WO#: 89201 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 120V 60Hz Sequence#: 5 WX-SGR Antenna port through cable and 10 dB atten. QPSK 1/2 5 MHz Mid ch

Sweep DataReadings

×

1 - FCC 27.53(m)(2)(v) spurious dBuV Ave Peak Readings

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) spurious dBuV Ave

Work Order #: 89201 Date: 2/20/2009
Test Type: Conducted Emissions Time: 18:54:36
Equipment: WiMAX SmartGrid Router Sequence#: 7

Manufacturer: Grid-Net Tested By: Art Rice Model: WX-SGR 120V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #	
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668	
Analyzer					
Cable - HF - 32022-2	2- n/a	02/04/2008	02/04/2010	03015	
29094K-24TC					
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411	

Equipment Under Test (* = EUT):

Equipment Chaci Icsi	(- LC 1).	1	
Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	WX-SGR	GN1S11ASS8BS000W
Router*			

Support Devices:

$\sim r_F$				
Function	Manufacturer	Model #	S/N	
Laptop PC	Dell	Agritude 10/830	9THV3G1	
24 VDC Power Supply	CUI Inc.	3401DN24	none	

Test Conditions / Notes:

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES

1) The EUT is transmitting continuously with OFDMA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Transmitting on High channel.

FCC 27.53(m)(2)(v)

Conducted emissions 10 kHz-26900 MHz.

Page 58 of 80 Report No.: FC09-049B

Transducer Legend:

Measu	rement Data:	Re	eading lis	sted by margin. Test Lead: Antenna port							
#	Freq	Rdng	T1	T2			Dist	Corr		Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2688.171M	124.5	+0.4	+9.4			+0.0	134.3	140.0 Fundamenta	-5.7 1	Anten
2	25265.730 M	73.7	+1.2	+10.3			+0.0	85.2	94.0	-8.8	Anten
3	24078.880 M	73.9	+0.8	+10.3			+0.0	85.0	94.0	-9.0	Anten
4	24990.000 M	73.7	+1.0	+10.3			+0.0	85.0	94.0	-9.0	Anten
5	25072.480 M	73.6	+1.1	+10.3			+0.0	85.0	94.0	-9.0	Anten
6	24338.920 M	73.6	+0.9	+10.3			+0.07	84.8	94.0	-9.2	Anten
7	25177.760 M	73.3	+1.2	+10.3			70.0	84.8	94.0	-9.2	Anten
8	25003.000 M	73.3	+1.0	+10.3			+0.0	84.6	94.0	-9.4	Anten
9	25076.510 M	73.2	+1.1	+10.3			+0.0	84.6	94.0	-9.4	Anten
10	25130.100 M	73.1	+1.2	+10.3			+0.0	84.6	94.0	-9.4	Anten
11	25159.740 M	73.1	+1.2	+10.3			+0.0	84.6	94.0	-9.4	Anten
12	25208.110 M	73.1	+1.2	+10.3			+0.0	84.6	94.0	-9.4	Anten
13	24156.890 M	73.2	+0.9	+10.3			+0.0	84.4	94.0	-9.6	Anten
14	25007.980 M	73.1	+1.0	+10.3			+0.0	84.4	94.0	-9.6	Anten
15	24921.990 M	73.0	+0.9	+10.4			+0.0	84.3	94.0	-9.7	Anten

16	25013.200 M	73.0	+1.0	+10.3	+0.0	84.3	94.0	-9.7	Anten
17	25023.160 M	73.0	+1.0	+10.3	+0.0	84.3	94.0	-9.7	Anten
18	25142.430 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
19	25156.420 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
20	25158.550 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
21	25164.010 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
22	25226.610 M	72.8	+1.2	+10.3	+0.0	84.3	94.0	-9.7	Anten
23	24928.990 M	72.9	+0.9	+10.4	10/1	84.2	94.0	-9.8	Anten
24	24988.000 M	72.9	+1.0	+10.3	+0.0	84.2	94.0	-9.8	Anten
25	25323.120 M	72.8	+1.1	+10.3	+0.0	84.2	94.0	-9.8	Anten
26	23400.800 M	73.1	+0.7	+10.3	+0.0	84.1	94.0	-9.9	Anten
27	24966.000 M	72.8	+1.0	+10.3	+0.0	84.1	94.0	-9.9	Anten
28	26231.540 M	72.7	+1.0	+10.4	+0.0	84.1	94.0	-9.9	Anten
29	26544.790 M	72.6	+1.1	+10.4	+0.0	84.1	94.0	-9.9	Anten
30	26601.460 M	72.6	+1.1	+10.4	+0.0	84.1	94.0	-9.9	Anten
31	24084.880 M	72.8	+0.9	+10.3	+0.0	84.0	94.0	-10.0	Anten
32	24354.920 M	72.8	+0.9	+10.3	+0.0	84.0	94.0	-10.0	Anten

Page 60 of 80 Report No.: FC09-049B

22	24960 090	72.7	+0.9	+10.4	.0.4	2 940	04.0	10.0	Anton
33	24860.980 M	12.1	+0.9	+10.4	+0.0	0 84.0	94.0	-10.0	Anten
34	24889.990 M	72.7	+0.9	+10.4	+0.0	94.0	94.0	-10.0	Anten
35	26350.110 M	72.6	+1.0	+10.4	+0.0	0 84.0	94.0	-10.0	Anten
36	24816.980 M	72.7	+0.8	+10.4	+0.0	0 83.9	94.0	-10.1	Anten
37	25072.000 M	72.5	+1.1	+10.3	+0.0	0 83.9	94.0	-10.1	Anten
38	25193.650 M	72.4	+1.2	+10.3	+0.0	0 83.9	94.0	-10.1	Anten
39	25937.510 M	72.5	+1.0	+10.4	+0.0	0 83.9	94.0	-10.1	Anten
40	26596.480 M	72.4	+1.1	+10.4	10/1	83.9	94.0	-10.1	Anten
41	25224.950 M	72.3	+1.2	+10.3	140.0	83.8	94.0	-10.2	Anten
42	25261.940 M	72.3	+1.2	+10.3	+0.0	83.8	94.0	-10.2	Anten
43	25283.990 M	72.4	+1.1	+10.3	+0.0	83.8	94.0	-10.2	Anten
44	25771.760 M	72.4	+1.0	+10.4	+0.0	0 83.8	94.0	-10.2	Anten
45	26030.220 M	72.4	+1.0	+10.4	+0.0	0 83.8	94.0	-10.2	Anten
46	24253.910 M	72.4	+1.0	+10.3	+0.0	0 83.7	94.0	-10.3	Anten
47	25000.000 M	72.4	+1.0	+10.3	+0.0	0 83.7	94.0	-10.3	Anten
48	25053.740 M	72.3	+1.1	+10.3	+0.0	0 83.7	94.0	-10.3	Anten
49	25064.890 M	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten

50 25349.910 M	72.3	+1.1	+10.3	+0.0	83.7	94.0	-10.3	Anten
51 5375.144M	71.0	+0.8	+9.5	+0.0	81.3	94.0 Harmonic	-12.7	Anten

CKC Laboratories, Inc. Date: 2/20/2009 Time: 18:54:36 GE Energy W0#: 89201 FCC 27.53(m)(2)(v) spurious dBuV Ave Test Lead: Antenna port 120V 60Hz Sequence#: 7 WX-SGR Antenna port through cable and 10 dB atten. QPSK 1/2 5 MHz High ch

Sweep Data
Readings

 1 - FCC 27.53(m)(2)(v) spurious dBuV Ave Peak Readings

FCC 27.53 – BANDEDGE ANTENNA CONDUCTED

Test Setup Photos

Page 63 of 80 Report No.: FC09-049B

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) Band Edge dBm Ave

Date: 7/21/2009 Work Order #: 89201 Test Type: **Conducted Emissions** Time: 15:06:31 Equipment: WiMAX SmartGrid Router Sequence#: 4

Manufacturer: Tested By: Art Rice Grid-Net Model: WX-SGR 120V 60Hz

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/05/2010	P05411
SA - Agilent E4446A	US44300408	03/09/2009	03/09/2011	02668

Equipment Under Test (* = EUT):

Equipment Chack Test (- 20 2)•		
Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	WX-SGR	GN1S11ASS8BS000W
Router*			
Support Devices:			

Function	Manufacturer	Model #	S/N	
Laptop PC	Dell	1 1 atiende 12/830	9THV3G1	
24 VDC Power Supply	CUI Inc.	3A-401DN24	none	

Page 64 of 80 Report No.: FC09-049B

Test Conditions / Notes:

The router is placed on top of the wooden test table.

Powered by 120VAC to the 24VDC power supply.

The laptop PC communicates to the EUT through the Ethernet cable.

NOTES:

1) The EUT is transmitting continuously with OFMDA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: 9kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz

7) Averaged (100 samples) readings.

8) Band edge readings performed at 1% of 26dB BW of signal. 47 kHz for 5 MHz BW (26dB BW=4.7MHz). 100kHz for 10 MHz BW (26dB BW=9.3 MHz), per 27.53(m)(6).

9) SA offset of 9.8 dB to correct for cable and attenuator loss.

FCC 27.53(m)(2)(v)

Conducted emissions 2.4-2.7 GHz

Transducer Legend:

Measi	Measurement Data: Reading listed by margin. Test Lead: Antenna port										
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	2687.850M	25.6					+0.0	25.6	26.1	-0.5	Anten
	Ave								Fundamen	ıtal, 5	
									MHz QPS	K 1/2,	
									High		
2	2499.000M	24.2					+0.0	24.2	26.1	-1.9	Anten
	Ave								Fundamen	ıtal, 5	
									MHz QPS	K 1/2,	
									Low		
3	2502.580M	21.8					+0.0	21.8	26.1	-4.3	Anten
	Ave								Fundamen	tal, 10	
									MHz QPS	K 1/2,	
									Low		
4	2685.440M	20.6					+0.0	20.6	26.1	-5.5	Anten
	Ave								Fundamen	tal, 10	
									MHz QPS	K 1/2,	
									High		

Page 65 of 80 Report No.: FC09-049B

5 2690.050M	-27.6	+0.0	-27.6	-13.0	-14.6	Anten
Ave				Band Edge, 5 MHz		
				QPSK 1/2,	High,	
				RBW=47k	Hz	
6 2690.390M	-29.8	+0.0	-29.8	-13.0	-16.8	Anten
Ave				Band Edge	, 10	
				MHz QPSI	X 1/2,	
				High,		
				RBW=100	kHz	
7 2495.828M	-30.6	+0.0	-30.6	-13.0	-17.6	Anten
Ave				Band Edge	, 5 MHz	
				QPSK 1/2,	Low,	
				RBW=47k	Hz	
8 2495.550M	-34.9	+0.0	-34.9	-13.0	-21.9	Anten
Ave				Band Edge	, 10	
				MHz QPSI		
				Low,	ŕ	
				RBW=100	kHz	

BANDEDGE - 5 MHz QPSK LOW CHANNEL

BANDEDGE - 5 MHz QPSK HIGH CHANNEL

Page 67 of 80 Report No.: FC09-049B

BANDEDGE - 10 MHz QPSK LOW CHANNEL

BANDEDGE - 10 MHz QPSK HIGH C

$\underline{FCC~2.1033(c)(14)/2.1053/27.53}-\underline{FIELD~STRENGTH~OF~SPURIOUS~RADIATION}$

Test Setup Photos

Page 69 of 80 Report No.: FC09-049B

Page 70 of 80 Report No.: FC09-049B

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.53(m)(2)(v) Spurious Rad dBuV Ave

Work Order #:89201Date:7/22/2009Test Type:Maximized EmissionsTime:13:57:20Equipment:WiMAX SmartGrid RouterSequence#:28Manufacturer:Grid-NetTested By:Art Rice

Model: WX-SGR

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/11/2009	03/11/2011	02668
Analyzer				
Active Horn 26-	1097854	11/12/2008	11/12/2010	02695
40GHz				
Active Horn 18-	1114018	11/13/2008	11/13/2010	02742
26GHz				
HF Cable	None	08/12/2008	.08/1/2/20 10	05843
HF Cable	None	02/04/2008	6 2/04 <mark>/2</mark> 010	03015
HF Cable	HOL-HF-025-06	05/06/2008	05/06/2010	P05138
HF Cable	None	05/06/20087 //	05/06/2010	P04241
Horn - DRG-118A	1064	01/09/2009/	01/09/2011	02061
Preamp, HP83017A	00873	02/20/2009	02/20/2011	02812
Cable	None	04/2/1/2008	04/21/2010	P05440
3.5 GHz HP Filter	None	\$4/91 /2008	04/01/2010	P01416
Cable	None	63/06/2009	03/06/2011	P05300
Cable	None	03/06/2009	03/06/2011	P05299
Preamp, HP8447D	2443A03707	02/09/2009	02/09/2011	00730
Antenna, Bilog	2630	12/22/2008	12/22/2010	00852
Mag Loop - 6502	2078	05/18/2009	05/18/2011	00432

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
WiMAX SmartGrid	Grid-Net	WX-SGR	GN1S11ASS8BS000W
Router*			

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
24 VDC Power Supply	CUI Inc.	3A-401DN24	none
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
Antenna	Mars Antennas and RF	ANT.MA-VM26-3F	none
	System, Inc.		

Page 71 of 80 Report No.: FC09-049B

Test Conditions / Notes:

The transceiver is placed on top of the wooden test table.

24VDC power supply for EUT powered by 120VAC.

The laptop PC communicates to the EUT through the Ethernet.

Unterminated RS-232 and RS-485 cables are bundled to 40cm above the floor.

NOTES:

1) The EUT is transmitting continuously with OFMDA modulation.

Modulation types: A=5 MHz BW QPSK 1/2. B=10 MHz BW QPSK 1/2. C=5 MHz BW 16QAM 3/4. D=10 MHz BW 16QAM 3/4.

Low ch=2498.5 MHz for 5 MHz BW

Low ch=2501 MHz for 10 MHz BW

Mid ch=2600MHz

Hi ch=2687.5MHz for 5 MHz BW

Hi ch=2685 MHz for 10 MHz BW

2) Transmit power set at 27dBm.

3)

4)

- 5) Spectrum analyzer atten=10 dB.
- 6) Spectrum analyzer settings: 10kHz-150kHz RBW=VBW=200Hz, 0.15-30 MHz RBW=VBW=9kHz, 30-1000 MHz RBW=VBW=120kHz, 1-27GHz RBW=VBW=1 MHz
- 7) Transmitting with worst case modulation 5 MHz QPSK 1/2.
- 8) Checked low, mid, and high channels.

9) Frequencies above 1 GHz were pre-scanned near field. Signals found in the pre-scans 9kHz-26900MHz were maximized.

Radiated emissions 4.9-5.4 GHz.

Operating Frequency: 2498 MHz 12688 MHz

Channels: Low, Mid and High

Highest Measured Output Power: 26.10 ERP(dBm)= 0.407 ERP(Watts)

Distance: 3 meters

Limit: 43+10Log(P) 39.10 dBc

Freq. (MHz)	Reference Level (dBm)	Antenna Polarity (H/V)	dBc
4,997.12	-38.4	Vert	64.50
5,200.06	-40	Vert	66.10
5,375.17	-42	Vert	68.10
4,997.01	-45.5	Horiz	71.60
5,200.06	-45.8	Horiz	71.90
5,375.17	-46.4	Horiz	72.50

Page 72 of 80 Report No.: FC09-049B

FCC 2.1033(c)(14)/2.1055- FREQUENCY STABILITY

Test Setup Photos

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **GE Energy**

Specification: FCC 27.50(h)(2) Max Power dBuV

Work Order #: 89201 Date: 3/4/2009 Test Type: Frequency Stability with Voltage Time: 11:37:28

Variations

Equipment: WiMAX SmartGrid Router Sequence#: 18 Manufacturer: Grid-Net Tested By: Art Rice Model: WX-SGR 15-30VDC

S/N: GN1S11ASS8BS000W

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset #
E4446A Spectrum	US44300408	03/05/2007	03/05/2009	02668
Analyzer				
Cable - HF - 32022-2-	n/a	02/04/2008	02/04/2010	03015
29094K-24TC				
10dB Pad 54A-10	P7186	02/05/2008	02/) 5/2 010	P05411
DMM, Fluke 85	65380320	07/17/2008	07/17/2 010	02361
Tenma Power Supply	0201714	10/06/2008	1 d /0 6/2 010	P05574
Temperature	10911-S	04/0372008) / /	04/0 <mark>3/</mark> 2010	02721
Chamber		1011/11		

Equipment Under Test	(* = EUT):		1 V	
Function	Manufacturer		Model #	S/N
WiMAX SmartGrid	Grid-Net		WX-SGR	GN1S11ASS8BS000W
Router*		•		

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop PC	Dell	Latitude D830	9THV3G1
Power supply for EUT fan	Tektronix	CPS250	CKC AN00900A
Cooling Fan	CoolerMaster	AA225-25BB-5EA-F1	none
AC Adapter for laptop	Dell	LA90PS0-00	CN-0DF266-71615-834- 0DC3

Page 75 of 80 Report No.: FC09-049B

Test Conditions / Notes:

The wall mount transceiver is placed on top of the wooden test table. Powered by 15-30VDC.

The laptop PC communicates through the Ethernet cable to the EUT.

NOTES:

1) The EUT is transmitting continuously with a single-tone signal. Low ch= $2498.5~\mathrm{MHz}$

Hi ch=2687.5MHz

- 2) Transmit power set at 27dBm.
- 3) CONDUCTED FROM ANTENNA PORT.
- 4) EUT on table next to Spectrum Analyzer.
- 5) Spectrum analyzer atten=40 dB, External atten=10dB.
- 6) Spectrum analyzer settings: RBW=VBW=1 kHz
- 7) Frequency stability with voltage variation per FCC 2.1055(d)
- 8) Testing over the entire specified voltage input range.

Conducted emissions 2.4-2.7 GHz.

Transducer Legend:

T1=CAB-AN03015-020408			T2=ATT-ANP05411-020508								
Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	nd: Antenna	ı port	
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dΒ	J dB/	Tatole	dΒμV	dΒμV	dB	Ant
1	2498.502M	121.4	+0.4	+9.4		4/10/	 0.0	131.2	140.0	-8.8	Anten
						1/1			Low ch, 2	4VDC	
2	2498.502M	121.3	+0.4	+9.4	IIII	11	+0.0	131.1	140.0	-8.9	Anten
					VIL				Low ch, 1	5VDC	
3	2498.502M	121.2	+0.4	+9.4			+0.0	131.0	140.0	-9.0	Anten
									Low ch, 3	0VDC	
4	2687.502M	120.4	+0.4	+9.4			+0.0	130.2	140.0	-9.8	Anten
									High ch, 3	0VDC	
5	2687.503M	120.1	+0.4	+9.4			+0.0	129.9	140.0	-10.1	Anten
									High ch, 2	4VDC	
6	2687.503M	119.8	+0.4	+9.4			+0.0	129.6	140.0	-10.4	Anten
									High ch, 1	5VDC	

Page 76 of 80 Report No.: FC09-049B

FREQUENCY STABILITY - LOW CHANNEL 15VDC

FREQUENCY STABILITY - LOW CHANNEL 24NDC

FREQUENCY STABILITY - LOW CHANNEL 30VDC

FREQUENCY STABILITY - HIGH CHANNEL 15 VDC

FREQUENCY STABILITY - HIGH CHANNEL 24VDC

FREQUENCY STABILITY - HIGH CHANNEL 30 VDC

Temperature Variations

		Channel 1 (MHz)	Dev. (MHz)
Channel F	requency:	2498.5	
Temp			
(C)	Voltage		
-30	24.0	2498.50347	0.00347
-20	24.0	2498.50167	0.00167
-10	24.0	2498.50253	0.00253
0	24.0	2498.50360	0.00360
10	24.0	2498.50447	0.00447
20	24.0	2498.50373	0.00373
30	24.0	2498.50210	0.00210
40	24.0	2498.50130	0.00130
50	24.0	2498.50123	0.00123

Channel 3 (MHz) 2687.5	Dev. (MHz)
2687.50347	0.00347
2687.50133	0.00133
2687.50220	0.00220
2687.50403	0.00403
2687.50447	0.00447
2687.50423	0.00423
2687.50127	0.00127
2687.50107	0.00107
2687.50093	0.00093

Voltage Variations (±15%)

	20	15.0	2498.50204	0.00203
	20	24.0	2498.50210	0.00210
	20	30.0	2498.50197	0.00196
1				CONTROLOGICAL PROPERTY OF THE PARTY OF THE P

2687.50254	0.00254
2687.50296	0.00296
2687.50218	0.00218

Max Deviation (MHz) 0.00447

0.00447