# Visualizing statistical relationships

Statistical analysis is a process of understanding how variables in a dataset relate to each other and how those relationships depend on other variables. Visualization can be a core component of this process because, when data are visualized properly, the human visual system can see trends and patterns that indicate a relationship.

## 1. Numerical Data Ploting

- relplot()
- scatterplot()
- lineplot()

# 2. Categorical Data Ploting

- catplot()
- boxplot()
- stripplot()
- swarmplot()
- etc...

## 3. Visualizing Distribution of the Data

- distplot()
- kdeplot()
- jointplot()
- rugplot()

# 4. Linear Regression and Relationship

- regplot()
- Implot()

# 5. Controlling Ploted Figure Aesthetics

- · figure styling
- axes styling
- color palettes
- etc..

```
In [87]: import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
In []:
In [88]: sns.set(style = 'darkgrid')
```

```
In [92]: tips = sns.load_dataset('tips')
  tips['size']
```

| Out[92]: | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23 | 2 3 3 2 4 4 2 2 2 4 2 4 2 2 3 3 3 3 2 2 2 4 2 4 |
|----------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|          | 24                                                                                                                                 | 2                                               |
|          | 25<br>26                                                                                                                           | 2                                               |
|          | 27                                                                                                                                 | 2                                               |
|          | 28                                                                                                                                 | 2                                               |
|          | 29                                                                                                                                 | 2                                               |
|          | 214                                                                                                                                | ••                                              |
|          | 215                                                                                                                                | 2                                               |
|          | 216                                                                                                                                | 5                                               |
|          | 217                                                                                                                                | _                                               |
|          | 218                                                                                                                                | 2                                               |
|          | 219                                                                                                                                | 4                                               |
|          | 220                                                                                                                                | 2                                               |
|          | 221<br>222                                                                                                                         | 2                                               |
|          | 222                                                                                                                                | 1<br>3                                          |
|          | 223                                                                                                                                | 3                                               |

```
224
       2
2
225
226
       2
227
       4
228
       2
229
       2
230
       4
231
       3
232
       2
       2
233
234
       2
235
       2
236
       2
237
       2
238
       3
239
       3
       2
240
241
       2
242
       2
243
       2
Name: size, Length: 244, dtype: int64
```

file:///C:/Users/hp/Documents/Seaborn (1).html

```
In [4]: sns.relplot(x = 'total_bill', y = 'tip', data = tips)
```

Out[4]: <seaborn.axisgrid.FacetGrid at 0x1a163cca58>



```
In [ ]:
In [90]: tips['smoker'].value_counts()
```

Out[90]: No 151 Yes 93

Name: smoker, dtype: int64

```
In [6]: sns.relplot(x = 'total_bill', y = 'tip', data = tips, hue = 'smoker', style = 'time')
```

Out[6]: <seaborn.axisgrid.FacetGrid at 0x1a167335f8>



```
In [7]: sns.relplot(x = 'total_bill', y = 'tip', style = 'size', data = tips)
```

Out[7]: <seaborn.axisgrid.FacetGrid at 0x1a169183c8>



```
In [8]: sns.relplot(x = 'total_bill', y = 'tip', hue = 'size', data = tips)
```

Out[8]: <seaborn.axisgrid.FacetGrid at 0x1a16af3b38>



```
In [91]: sns.relplot(x = 'total_bill', y = 'tip', data = tips,hue = 'smoker', style = 'time', size = 'size')
```

Out[91]: <seaborn.axisgrid.FacetGrid at 0x1a182184a8>



```
In [10]: sns.relplot(x = 'total_bill', y = 'tip', data = tips, size = 'size')
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x1a16e30860>



```
In []:
In [11]: from numpy.random import randn
In [93]: df = pd.DataFrame(dict(time = np.arange(500), value = randn(500).cumsum()))
```

file:///C:/Users/hp/Documents/Seaborn (1).html

```
In [94]: df.head()
```

Out[94]:

|   | time | value     |
|---|------|-----------|
| 0 | 0    | 0.778793  |
| 1 | 1    | 0.220757  |
| 2 | 2    | -0.925876 |
| 3 | 3    | -0.934216 |
| 4 | 4    | -0.429557 |

```
In [95]: sns.relplot(x = 'time', y = 'value', kind = 'line', data = df, sort = True)
```

Out[95]: <seaborn.axisgrid.FacetGrid at 0x1a1eff5898>



```
In [131]: df = pd.DataFrame(randn(500, 2).cumsum(axis = 0), columns = ['time', 'value'])
In [132]: df.head()
```

#### Out[132]:

|   | time      | value     |
|---|-----------|-----------|
| 0 | 0.903653  | 0.368656  |
| 1 | -0.308014 | 0.718321  |
| 2 | -3.324021 | -0.020677 |
| 3 | -3.974930 | -1.278554 |
| 4 | -4.260735 | -1.982611 |

```
In [136]: sns.relplot(x = 'time', y = 'value', kind = 'line', data = df, sort = True)
```

#### Out[136]: <seaborn.axisgrid.FacetGrid at 0x1a2240d470>



```
In [ ]:
In [99]: fmri = sns.load_dataset('fmri')
fmri.head()
```

#### Out[99]:

|   | subject | timepoint | event | region   | signal    |
|---|---------|-----------|-------|----------|-----------|
| 0 | s13     | 18        | stim  | parietal | -0.017552 |
| 1 | s5      | 14        | stim  | parietal | -0.080883 |
| 2 | s12     | 18        | stim  | parietal | -0.081033 |
| 3 | s11     | 18        | stim  | parietal | -0.046134 |
| 4 | s10     | 18        | stim  | parietal | -0.037970 |

```
In [100]: sns.relplot(x = 'timepoint', y = 'signal', kind = 'line', data = fmri)
```

Out[100]: <seaborn.axisgrid.FacetGrid at 0x1a1f6083c8>



```
In [101]: sns.relplot(x = 'timepoint', y = 'signal', kind = 'line', data = fmri, ci = 'sd')
```

Out[101]: <seaborn.axisgrid.FacetGrid at 0x1a1f7a8390>



```
In [102]: sns.relplot(x = 'timepoint', y = 'signal', estimator = None, kind = 'line', data = fmri)
```

Out[102]: <seaborn.axisgrid.FacetGrid at 0x1a1f7a87b8>



```
In [22]: sns.relplot(x = 'timepoint', y = 'signal', hue = 'event', kind = 'line', data = fmri)
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x1a17cae748>



In [23]: fmri.head()

## Out[23]:

|   | subject | timepoint | event | region   | signal    |
|---|---------|-----------|-------|----------|-----------|
| 0 | s13     | 18        | stim  | parietal | -0.017552 |
| 1 | s5      | 14        | stim  | parietal | -0.080883 |
| 2 | s12     | 18        | stim  | parietal | -0.081033 |
| 3 | s11     | 18        | stim  | parietal | -0.046134 |
| 4 | s10     | 18        | stim  | parietal | -0.037970 |

```
In [103]: sns.relplot(x = 'timepoint', y = 'signal', hue = 'region', style = 'event', kind = 'line', data = fmri)
```

Out[103]: <seaborn.axisgrid.FacetGrid at 0x1a1f84d0f0>



In [25]: sns.relplot(x = 'timepoint', y = 'signal', hue = 'region', style = 'event', kind = 'line', data = fmri, markers = True
, dashes = False)

Out[25]: <seaborn.axisgrid.FacetGrid at 0x1a18060e10>



```
In [26]: sns.relplot(x = 'timepoint', y = 'signal', hue = 'event', style = 'event', kind = 'line', data = fmri)
```

Out[26]: <seaborn.axisgrid.FacetGrid at 0x1a18238668>



```
In [104]: df = pd.DataFrame(dict(time = pd.date_range('2019-06-02', periods = 500), value = randn(500).cumsum()))
```

In [105]: df.head()

#### Out[105]:

|   | time       | value     |
|---|------------|-----------|
| 0 | 2019-06-02 | -0.060196 |
| 1 | 2019-06-03 | -0.572343 |
| 2 | 2019-06-04 | -1.002752 |
| 3 | 2019-06-05 | -0.626627 |
| 4 | 2019-06-06 | 0.021314  |

```
In [108]: g = sns.relplot(x = 'time', y = 'value', kind = 'line', data = df)
g.fig.autofmt_xdate()
```



In [109]: tips.head()

Out[109]:

|   | total_bill | tip  | sex    | smoker | day | time   | size |
|---|------------|------|--------|--------|-----|--------|------|
| 0 | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
| 1 | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
| 2 | 21.01      | 3.50 | Male   | No     | Sun | Dinner | 3    |
| 3 | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
| 4 | 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |

```
In [31]: sns.relplot(x = 'total_bill', y = 'tip', hue = 'smoker', col = 'time', data = tips)
```

Out[31]: <seaborn.axisgrid.FacetGrid at 0x1a185f4cc0>



In [32]: sns.relplot(x = 'total\_bill', y = 'tip', hue = 'smoker', col = 'size', data = tips)

Out[32]: <seaborn.axisgrid.FacetGrid at 0x1a1898d048>



In [ ]:

file:///C:/Users/hp/Documents/Seaborn (1).html

```
In [33]: sns.relplot(x = 'total_bill', y = 'tip', hue = 'smoker', col = 'size', data = tips, col_wrap=3, height=3)
```

Out[33]: <seaborn.axisgrid.FacetGrid at 0x1a18fa9898>



```
In [137]: sns.scatterplot(x = 'total_bill', y = 'tip', data = tips)
```

Out[137]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1f22a4a8>



In [ ]:

In [138]: fmri.head()

Out[138]:

|   | subject | timepoint | event | region   | signal    |
|---|---------|-----------|-------|----------|-----------|
| 0 | s13     | 18        | stim  | parietal | -0.017552 |
| 1 | s5      | 14        | stim  | parietal | -0.080883 |
| 2 | s12     | 18        | stim  | parietal | -0.081033 |
| 3 | s11     | 18        | stim  | parietal | -0.046134 |
| 4 | s10     | 18        | stim  | parietal | -0.037970 |

In [36]: sns.lineplot(x = 'timepoint', y = 'signal', style = 'event', hue = 'region', data = fmri, markers = True, ci = 68, er
r\_style='bars')

Out[36]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a19a834a8>



```
In [37]: sns.scatterplot(x = 'total_bill', y = 'tip', data = tips, hue = 'smoker', size = 'size', style = 'time')
```

Out[37]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a197f6d68>



```
In [ ]:
```

In [139]: iris = sns.load\_dataset('iris')

In [140]: iris.head()

Out[140]:

| species | petal_width | petal_length | sepal_width | sepal_length |   |
|---------|-------------|--------------|-------------|--------------|---|
| setosa  | 0.2         | 1.4          | 3.5         | 5.1          | 0 |
| setosa  | 0.2         | 1.4          | 3.0         | 4.9          | 1 |
| setosa  | 0.2         | 1.3          | 3.2         | 4.7          | 2 |
| setosa  | 0.2         | 1.5          | 3.1         | 4.6          | 3 |
| setosa  | 0.2         | 1.4          | 3.6         | 5.0          | 4 |

27/64

```
In [141]: sns.scatterplot(x = 'sepal_length', y = 'petal_length', data = iris)
```

Out[141]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1f22a908>



```
In [142]: sns.scatterplot(x = iris['sepal_length'], y = iris['petal_length'])
```

Out[142]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1ff3bda0>



# 2. Categorical Data Ploting

- catplot()
- boxplot()
- stripplot()
- swarmplot()
- etc...

```
In [143]: tips.head()
Out[143]:
          total_bill tip sex smoker day time size
```

|   | total_bill | tip  | sex    | smoker | day | time   | size |
|---|------------|------|--------|--------|-----|--------|------|
| 0 | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
| 1 | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
| 2 | 21.01      | 3.50 | Male   | No     | Sun | Dinner | 3    |
| 3 | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
| 4 | 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |

```
In [145]: titanic = sns.load_dataset('titanic')
```

In [146]: titanic.head()

Out[146]:

|   | survived | pclass | sex    | age  | sibsp | parch | fare    | embarked | class | who   | adult_male | deck | embark_town | alive | alone |
|---|----------|--------|--------|------|-------|-------|---------|----------|-------|-------|------------|------|-------------|-------|-------|
| 0 | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | S        | Third | man   | True       | NaN  | Southampton | no    | False |
| 1 | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | С        | First | woman | False      | С    | Cherbourg   | yes   | False |
| 2 | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | S        | Third | woman | False      | NaN  | Southampton | yes   | True  |
| 3 | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | S        | First | woman | False      | С    | Southampton | yes   | False |
| 4 | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | S        | Third | man   | True       | NaN  | Southampton | no    | True  |

file:///C:/Users/hp/Documents/Seaborn (1).html

```
In [45]: #catplot()
In [46]: sns.catplot(x = 'day', y = 'total_bill', data = tips)
```

Out[46]: <seaborn.axisgrid.FacetGrid at 0x1a19f3f208>



```
In [147]: sns.catplot(y = 'day', x = 'total_bill', data = tips)
```

Out[147]: <seaborn.axisgrid.FacetGrid at 0x1a1ea3ea20>



```
In [48]: sns.catplot(x = 'day', y = 'total_bill', data = tips, jitter = False)
```

Out[48]: <seaborn.axisgrid.FacetGrid at 0x1a19f995c0>



```
In [49]: sns.catplot(x = 'day', y = 'tip', data = tips, kind = 'swarm', hue = 'size')
```

Out[49]: <seaborn.axisgrid.FacetGrid at 0x1a1a2d3978>



```
In [50]: sns.catplot(x = 'smoker', y = 'tip', data = tips, order= ['No', 'Yes'])
```

Out[50]: <seaborn.axisgrid.FacetGrid at 0x1a1a43c1d0>



In [51]: tips.head()

## Out[51]:

|   | total_bill | tip  | sex    | smoker | day | time   | size |
|---|------------|------|--------|--------|-----|--------|------|
| 0 | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
| 1 | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
| 2 | 21.01      | 3.50 | Male   | No     | Sun | Dinner | 3    |
| 3 | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
| 4 | 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |

```
In [52]: sns.catplot(x = 'day', y = 'tip', kind = 'box', data = tips, hue = 'sex')
```

Out[52]: <seaborn.axisgrid.FacetGrid at 0x1a1a78b668>



```
In [53]: sns.catplot(x = 'day', y = 'total_bill', kind = 'box', data = tips, hue = 'sex', dodge = False)
```

Out[53]: <seaborn.axisgrid.FacetGrid at 0x1a1a53c898>



```
In [ ]:
```

# Out[148]:

|   | carat | cut     | color | clarity | depth | table | price | X    | у    | z    |  |
|---|-------|---------|-------|---------|-------|-------|-------|------|------|------|--|
| 0 | 0.23  | Ideal   | Е     | SI2     | 61.5  | 55.0  | 326   | 3.95 | 3.98 | 2.43 |  |
| 1 | 0.21  | Premium | Е     | SI1     | 59.8  | 61.0  | 326   | 3.89 | 3.84 | 2.31 |  |
| 2 | 0.23  | Good    | E     | VS1     | 56.9  | 65.0  | 327   | 4.05 | 4.07 | 2.31 |  |
| 3 | 0.29  | Premium | 1     | VS2     | 62.4  | 58.0  | 334   | 4.20 | 4.23 | 2.63 |  |
| 4 | 0.31  | Good    | J     | SI2     | 63.3  | 58.0  | 335   | 4.34 | 4.35 | 2.75 |  |

```
In [55]: sns.catplot(x = 'color', y = 'price', kind = 'boxen', data = diamonds.sort_values('color'))
```

Out[55]: <seaborn.axisgrid.FacetGrid at 0x1a1a77fc88>



```
In [56]: sns.catplot(x = 'color', y = 'price', kind = 'boxen', data = diamonds.sort_values('color'))
```

Out[56]: <seaborn.axisgrid.FacetGrid at 0x1a1ac8e278>



```
In [57]: sns.catplot(x = 'day', y = 'total_bill', kind = 'boxen', data = tips, dodge = False)
```

Out[57]: <seaborn.axisgrid.FacetGrid at 0x1a1cb035c0>



```
In [58]: sns.catplot(x = 'total_bill', y = 'day', hue = 'sex', kind = 'violin', data = tips, split = True,)
```

Out[58]: <seaborn.axisgrid.FacetGrid at 0x1a1caf9860>



```
In [59]: g = sns.catplot(x = 'day', y = 'total_bill', kind = 'violin', inner = None, data = tips)
sns.swarmplot(x = 'day', y = 'total_bill', color = 'k', size = 3, data = tips, ax = g.ax)
```

Out[59]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1cb1b550>



In [149]: titanic.head()

## Out[149]:

|   | survived | pclass | sex    | age  | sibsp | parch | fare    | embarked | class | who   | adult_male | deck | embark_town | alive | alone |
|---|----------|--------|--------|------|-------|-------|---------|----------|-------|-------|------------|------|-------------|-------|-------|
| 0 | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | S        | Third | man   | True       | NaN  | Southampton | no    | False |
| 1 | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | С        | First | woman | False      | С    | Cherbourg   | yes   | False |
| 2 | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | S        | Third | woman | False      | NaN  | Southampton | yes   | True  |
| 3 | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | S        | First | woman | False      | С    | Southampton | yes   | False |
| 4 | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | S        | Third | man   | True       | NaN  | Southampton | no    | True  |

```
In [ ]:
```

```
In [61]: sns.catplot(x = 'deck', kind = 'count', palette = 'ch:0.95', data = titanic, hue = 'class')
```

Out[61]: <seaborn.axisgrid.FacetGrid at 0x1a1bddb908>



In [ ]:

## 3. Visualizing Distribution of the Data

- distplot()
- kdeplot()
- jointplot()
- rugplot()

```
In [150]: x = randn(100)
```

```
In [152]: sns.distplot(x, kde = True, hist = True, rug= False, bins= 30)
```

Out[152]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a22decf98>



In [153]: tips.head()

## Out[153]:

| total_bill | tip                              | sex                                                  | smoker                                                  | day                                                                                    | time                                                                                                   | size                                                                                                                                                                                                |
|------------|----------------------------------|------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.99      | 1.01                             | Female                                               | No                                                      | Sun                                                                                    | Dinner                                                                                                 | 2                                                                                                                                                                                                   |
| 10.34      | 1.66                             | Male                                                 | No                                                      | Sun                                                                                    | Dinner                                                                                                 | 3                                                                                                                                                                                                   |
| 21.01      | 3.50                             | Male                                                 | No                                                      | Sun                                                                                    | Dinner                                                                                                 | 3                                                                                                                                                                                                   |
| 23.68      | 3.31                             | Male                                                 | No                                                      | Sun                                                                                    | Dinner                                                                                                 | 2                                                                                                                                                                                                   |
| 24.59      | 3.61                             | Female                                               | No                                                      | Sun                                                                                    | Dinner                                                                                                 | 4                                                                                                                                                                                                   |
|            | 16.99<br>10.34<br>21.01<br>23.68 | 16.99 1.01<br>10.34 1.66<br>21.01 3.50<br>23.68 3.31 | 16.99 1.01 Female<br>10.34 1.66 Male<br>21.01 3.50 Male | 16.99 1.01 Female No<br>10.34 1.66 Male No<br>21.01 3.50 Male No<br>23.68 3.31 Male No | 16.99 1.01 Female No Sun<br>10.34 1.66 Male No Sun<br>21.01 3.50 Male No Sun<br>23.68 3.31 Male No Sun | 10.34       1.66       Male       No       Sun       Dinner         21.01       3.50       Male       No       Sun       Dinner         23.68       3.31       Male       No       Sun       Dinner |

```
In [65]: x = tips['total_bill']
y = tips['tip']
```

In [66]: sns.jointplot(x = x, y=y)

Out[66]: <seaborn.axisgrid.JointGrid at 0x1a1c477ef0>



```
In [67]: sns.set()
sns.jointplot(x = x, y=y, kind = 'hex')
```

Out[67]: <seaborn.axisgrid.JointGrid at 0x1a1c3a34a8>



```
In [68]: sns.jointplot(x = x, y = y, kind = 'kde')
```

Out[68]: <seaborn.axisgrid.JointGrid at 0x1a1cf7b630>



```
In [69]: f, ax = plt.subplots(figsize = (6,6))
cmap = sns.cubehelix_palette(as_cmap = True, dark = 0, light = 1, reverse= True)
sns.kdeplot(x, y, cmap = cmap, n_levels=60, shade=True)
```

Out[69]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a1d2a9208>



```
In [70]: g = sns.jointplot(x, y, kind = 'kde', color = 'r')
    g.plot_joint(plt.scatter, c = 'w', s = 30, linewidth = 1, marker = '+')
    g.ax_joint.collections[0].set_alpha(0)
```



In [71]: sns.pairplot(iris)

Out[71]: <seaborn.axisgrid.PairGrid at 0x1a1d77e4a8>



```
In [72]: g = sns.PairGrid(iris)
    g.map_diag(sns.kdeplot)
    g.map_offdiag(sns.kdeplot, n_levels = 10)
```

Out[72]: <seaborn.axisgrid.PairGrid at 0x1a1bd57438>



```
In [ ]:
```

# 4. Linear Regression and Relationship

- regplot()
- Implot()

```
In [154]: tips.head()
```

#### Out[154]:

|   | total_bill | tip  | sex    | smoker | day | time   | size |
|---|------------|------|--------|--------|-----|--------|------|
| 0 | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
| 1 | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
| 2 | 21.01      | 3.50 | Male   | No     | Sun | Dinner | 3    |
| 3 | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
| 4 | 24 59      | 3 61 | Female | No     | Sun | Dinner | 4    |

```
In [74]: sns.lmplot(x = 'total_bill', y= 'tip', data = tips)
```

Out[74]: <seaborn.axisgrid.FacetGrid at 0x1a1e6e55c0>



```
In [ ]:
```

In [155]: data = sns.load\_dataset('anscombe')
 data.head()

## Out[155]:

|   | dataset | X    | у    |
|---|---------|------|------|
| 0 | 1       | 10.0 | 8.04 |
| 1 | 1       | 8.0  | 6.95 |
| 2 | 1       | 13.0 | 7.58 |
| 3 | 1       | 9.0  | 8.81 |
| 4 | 1       | 11.0 | 8.33 |

II 11 I 11

Name: dataset, dtype: int64

```
In [157]: f, ax = plt.subplots(figsize = (8,4))
sns.regplot(x = 'total_bill', y = 'tip', data = tips, ax = ax)
```

Out[157]: <matplotlib.axes.\_subplots.AxesSubplot at 0x1a24e0dcc0>



```
In [78]: sns.lmplot(x = 'total_bill', y = 'tip', data = tips, col = 'day', col_wrap=2, height = 4)
```

Out[78]: <seaborn.axisgrid.FacetGrid at 0x1a1d716ba8>



## **5. Controlling Ploted Figure Aesthetics**

- · figure styling
- axes styling
- color palettes
- etc..

```
In [162]: sinplot()
```



```
In [ ]:
```



```
In [82]: sns.axes style()
Out[82]: {'axes.facecolor': 'white',
           'axes.edgecolor': '.15',
           'axes.grid': True,
           'axes.axisbelow': True,
           'axes.labelcolor': '.15',
           'figure.facecolor': 'white',
           'grid.color': '.8',
           'grid.linestyle': '-',
           'text.color': '.15',
           'xtick.color': '.15',
           'ytick.color': '.15',
           'xtick.direction': 'in',
           'ytick.direction': 'out',
           'lines.solid capstyle': 'round',
           'patch.edgecolor': 'w',
           'image.cmap': 'rocket',
           'font.family': ['sans-serif'],
           'font.sans-serif': ['Arial',
            'DejaVu Sans',
            'Liberation Sans',
            'Bitstream Vera Sans',
            'sans-serif'],
           'patch.force edgecolor': True,
           'xtick.bottom': True,
           'xtick.top': False,
           'ytick.left': True,
           'ytick.right': False,
           'axes.spines.left': True,
           'axes.spines.bottom': True,
           'axes.spines.right': True,
           'axes.spines.top': True}
In [83]: sns.set style('darkgrid')
```

file:///C:/Users/hp/Documents/Seaborn (1).html

62/64





```
In [ ]:
```

In [85]: current\_palettes = sns.color\_palette()
 sns.palplot(current\_palettes)



In [86]: sns.palplot(sns.color\_palette('hls', 8))



file:///C:/Users/hp/Documents/Seaborn (1).html