Application des transducteurs finis à la cryptographie

Source image: https://cryptoast.fr/wp-content/uploads/2020/04/keys-cryptography.jpg

Thibault Lestienne n°14454

Dans quelle mesure les transducteurs finis peuvent-ils être une alternative sécurisée pour le transfert de l'information?

Objectif

Alice et Bob s'accordent sur une clé

Alice écrit un message pour Bob et le chiffre avec la clé

Bob déchiffre le message à l'aide de la clé et lit le message envoyé par Alice

Plan

- Le chiffre de César
- II Présentation des transducteurs
- III Analyse du chiffre proposé
- IV Applications concrètes

Formalisation

Un chiffre sur (M, N, C) est défini par un couple (E, D) avec

- \bullet M l'ensemble des messages chiffrables
- \bullet N l'ensemble des messages chiffrés
- C l'ensemble des clés
- la fonction de chiffrement $E: M \times C \to N$
- la fonction de déchiffrement $D: N \times C \to M$

et est tel que $\forall w \in M, \forall c \in C, w = D(E(w, c), c)$

Chiffrement de César

Exemple Clé c = 10

$$\Sigma = \{a,b,...,z\}$$

(M,N,C) = $(\Sigma^*,\Sigma^*,[|0;25|])$

Ep : $x,c \mapsto char((ord(x)+c)mod 26)$

 $E : w,c \mapsto \forall i, w_i = Ep(w_i)$

Dp : $x,c \mapsto char((ord(x)-c)mod 26)$

D : $w,c \mapsto \forall i, w_i = Dp(w_i)$

X	Т	E	S	Т
ord(x)	19	4	18	19
ord(x)+c	29	14	28	29
(ord(x)+c)mod 26	3	14	2	3
Ep(x,c)	D	0	С	D

Attaque par force brute

message intercepté : qdcydjgpidjh

0	qdcydjgpidjh	9	zmlhmspyrmsq	18	ivuqvbyhavbz
1	redzekhqjeki	10	anmintqzsntr	19	jwvrwczibwca
2	sfeaflirkflj	11	bonjouratous	20	kxwsxdajcxdb
3	tgfbgmjslgmk	12	cpokpvsbupvt	21	lyxtyebkdyec
4	uhgchnktmhnl	13	dqplqwtcvqwu	22	mzyuzfclezfd
5	vihdioluniom	14	erqmrxudwrxv	23	nazvagdmfage
6	wjiejpmvojpn	15	fsrnsyvexsyw	24	obawbhengbhf
7	xkjfkqnwpkqo	16	gtsotzwfytzx	25	pcbxcifohcig
8	ylkglroxqlrp	17	hutpuaxgzuay		

Automatisation : Analyse de fréquence

Lettre	Fréquence	Lettre	Fréquence	Lettre	Fréquence
A	8.84%	J	0.53%	S	7.50%
В	1.05%	К	0.006%	Т	7.67%
С	3.15%	L	5.96%	U	6.38%
D	3.52%	M	2.82%	V	1.81%
E	17.1%	N	6.73%	W	0.01%
F	1.10%	0	5.16%	X	0.33%
G	0.93%	Р	2.61%	Y	0.36%
Н	0.97%	Q	1.19%	Z	0.15%
1	7.50%	R	6.41%		

A partir du texte *Des Misérables* de Victor Hugo

Recherche de la clé minimisant les écarts de fréquences

$$f(x) = \mathop{\rm argmin}_{i \in [0,25]} \sum_{c='a'}^{c='z'} freqth(c) - freq(D(c,i))$$

0	1.584441	9	1.440731	18	1.445246
1	1.249991	10	1.033370	19	1.420465
2	1.085935	11	1.004318	20	1.509557
3	1.447905	12	1.292903	21	1.224687
4	1.306998	13	1.353504	22	1.364631
5	1.182302	14	1.382257	23	1.314707
6	1.289146	15	1.347347	24	1.346961
7	1.644467	16	1.534583	25	1.541625
8	1.539500	17	1.434164		

Approche simplifiée des transducteurs

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1		а		
2		b		
3		а		
4		b		

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а		
2		b		
3		а		
4		b		

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а	1	а
2		b		
3		а		
4		b		

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а	1	а
2	1	b		
3		а		
4		b		

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а	1	а
2	1	b	1	a
3	1	а		
4		b		

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а	1	а
2	1	b	1	а
3	1	а	0	b
4	0	b		

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а	1	а
2	1	b	1	а
3	1	а	0	b
4	0	b	1	b

Etape	état initial	lettre à encoder	état suivant	lettre encodée
1	0	а	1	а
2	1	b	1	а
3	1	а	0	b
4	0	b	1	b

Calcul du transducteur inverse

s'inverse en

Remarque : $(t^{-1})^{-1} = t$

Etape	état initial	lettre encodée	état suivant	lettre décodée
1	0	а	1	а
2	1	а	1	b
3	1	b	0	а
4	0	b	1	b

Transducteur: définition

Un transducteur est un quintuplet $t = (\Sigma_1, \Sigma_2, Q, q_0, \delta)$ tel que :

- Σ_1 est l'alphabet d'entrée,
- Σ_2 est l'alphabet de sortie,
- \bullet Q est l'ensemble des états,
- $q_0 \in Q$ est l'état initial,
- $\delta: Q \times \Sigma_1 \to Q \times \Sigma_2$ est la fonction de transition.

On ajoutera dans le cadre de cet exposé la contrainte :

 $\forall q \in Q, c \mapsto \delta_2(q,c)$ est une bijection de Σ^* dans Σ^* .

On note T l'ensemble des transducteurs avec $\Sigma_1 = \Sigma_2 = \{a, b, \dots, z\}^*$

Démonstration de "(E,D) est un chiffre sur (Σ^*,Σ^*,T) "

Le point délicat est de prouver que :

$$\forall w \in \Sigma^*, \forall t \in T, w = D(E(w, t), t)$$

Cela se fait par récurrence sur la longueur du mot avec comme hypothèse de récurrence :

(Pn): " $\forall w \in \Sigma n, \forall t \in T, w = D(E(w,t),t)$ et l'état final après l'encodage de w est le même que celui après décodage de E(w,t)"

Cas des transducteurs à un état : méthode MCMC

Α	σ(A)
В	σ(B)
Z	σ(Z)

Cas des transducteurs à un état : méthode MCMC

Lettre (français)	Fréquence en francais
А	8.84%
В	1.05%
С	3.15%
D	3.52%
Е	17.1%
F	1.10%
G	0.93%
Z	0.15%

Fréquence dans le message intercepté	Lettre (message)
7.04%	А
3.02%	В
0.12%	С
0.53%	D
1.23%	Е
18.4%	F
0.01%	G
1.34%	Z

Alignement des fréquences

Lettre (français)	Fréquence en francais	Fréquence dans le message intercepté	Lettre (message)	Lettre (français)
E	17.1%	18.4%	F	E
Α	8.84%	8.6%	Н	Α
Т	7.67%	7.8%	W	Т
S	7.50%	7.45%	Р	S
I	7.50%	7.04%	А	I
N	6.73%	6.76%	R	N
R	6.41%	6.51%	N	R
K	0.006%	0.007%	U	K

Alignement des fréquences

Exploitation des fréquences des couples de lettres

En français certaines successions de lettres sont plus probables que d'autres. On s'attend par exemple à trouver plus de "qu" que de "qa"

On va chercher a minimiser $f(\sigma)$

$$f(\sigma) = \sum_{c_1 = 'a'}^{c_1 = 'z'} \sum_{c_2 = 'a'}^{c_2 = 'z'} |freqth(c_1c_2) - freq(\sigma(c_1)\sigma(c_2))|$$

Alignement des fréquences

Si $f(\sigma_2) < f(\sigma_1)$ on itère le raisonnement sur σ_2 sinon sur σ_1

Résultat sans itérations

Résultat après 100 itérations

Résultat après 500 itérations

Résultat après 1 000 itérations

Résultat après 10 000 itérations

Résultat après 100 000 itérations

Les composantes fortement connexes

Estimer le nombre d'état

A : Deux lettres successives dans le message original sont identiques

B : Deux lettres successives dans le message chiffré sont identiques

$$N = \frac{|\Sigma| \times P(A) - 1}{|\Sigma| \times P(B) - 1}$$

Démonstration de " $\forall n \in \mathbb{N}$, $u,v \in \Sigma^n, \exists t \in T, E(u,t) = v$ "

Soit $n \in \mathbb{N}$, $u, v \in \Sigma^n$ On note $u = u_1 u_2 \dots u_n$ et $v = v_1 v_2 \dots v_n$

On pose alors le transducteur t comme defini ci-dessous :

Démonstration de " $\forall n \in \mathbb{N}$, $u,v \in \Sigma^n$, $\exists t \in T$, E(u,t) =

Etape	état initial	lettre encodée	état suivant	lettre décodée
1	0	u ₁	1	V ₁
2	1	u ₂	2	V ₂
n	n-1	u _n	0	V _n

Conséquence

Si l'attaquant qui ne possède pas la clé intercepte le message : "jdikes", le message original peut être "gentil" ou "ennemi" ou n'importe quel autre mot de 6 lettres.

Chiffrer avec un ordinateur

Déchiffrer avec un ordinateur


```
| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
                 | 19c|1 x|0 a|19z|4 d|3 k|16p|12r|13e|12l|13j|9 i|19n|11q|6 v|15o|13t|14s|11b|16h|0 m|18w|7 g|14f|7 u|7 y|
état 1
                   |4 z|3 j|19h|11v|3 c|12q|13t|8 p|8 f|15m|4 o|5 e|9 s|19x|18b|7 r|2 g|4 1|17a|17d|3 u|9 k|4 w|17i|16y|18n|
                   |7 g|10m|8 x|15r|9 y|13b|8 e|5 j|141|13u|5 q|10s|17z|8 c|18n|5 p|16h|5 a|1 k|0 w|1 v|14f|14t|15o|13i|14d|
état 2
état 3
                   |1 o|2 c|1 v|7 z|17e|5 g|16d|1 t|15h|7 k|5 n|15w|7 b|5 s|17a|19x|12q|3 1|18j|5 r|7 u|7 f|14i|10p|14m|9 y|
état 4
                    |16k|2 w|10j|2 q|3 a|1 t|12y|12s|12z|8 n|2 b|5 h|17o|11v|8 u|3 g|16d|4 e|16i|0 1|5 f|5 x|12r|12p|10m|15c|
                   |5 \times |18i| |10u| |8 = |13q| |17k| |11b| |9 p| |0 r| |7 m| |13d| |17n| |13s| |11h| |6 f| |12a| |2 t| |19g| |3 j| |1 y| |6 z| |11l| |1 v| |12c| |8 o| |5 w| |15 x| |16 y| |17 x| 
état 5
                   |5 y|4 d|16g|5 n|9 k|14u|6 b|15v|7 p|16c|19a|11j|17o|10e|8 m|6 z|5 f|6 s|16h|7 q|10t|151|2 x|6 i|0 w|13r|
état 6
état 7
                   |15y|0 h|17d|16q|13w|4 b|13k|13o|14m|14g|18t|16n|11c|0 e|12f|3 a|1 x|3 z|141|18p|13r|16i|12s|5 u|18v|16j|
                   |9| r|1| i|15f|7| q|17u|11p|131|14e|0| k|11b|7| d|1| o|13y|15c|15t|12a|9| s|3| x|6| z|18m|0| j|8| q|10n|10v|2| h|5| w|
état 8
état 9 ||18q|19i|6 u|0 z|16b|7 f|11x|141|18t|12y|1 g|9 n|1 o|7 v|18w|0 c|11r|14h|12m|13k|8 d|4 a|1 p|10e|4 j|6 s|
état 10 |1 v|9 x|15u|6 w|15q|17y|13k|111|13r|0 h|14g|8 b|13n|2 j|19a|6 s|9 o|17i|16t|0 d|9 c|16e|13p|8 m|15f|6 z|
état 11 | 9 x | 16 j | 12 f | 16 c | 2 u | 2 b | 7 r | 5 p | 0 y | 4 k | 9 n | 6 o | 16 v | 0 q | 8 z | 9 d | 16 l | 1 w | 4 e | 12 i | 0 q | 18 s | 2 m | 2 a | 4 h | 10 t |
état 12 |7 o|11x|1 f|4 q|13p|18m|12v|8 s|17b|4 j|16a|5 y|9 g|8 k|14t|1 c|0 w|1 l|0 r|15i|9 e|18u|11d|17z|4 n|4 h|
état 13 |18f|2 e|14k|3 g|6 x|7 v|6 q|11d|171|17b|3 c|9 p|14w|0 z|15s|8 t|8 m|2 a|12r|5 u|5 i|1 y|12n|16h|9 o|19j|
état 14 |5 y|7 h|10e|14w|19f|2 b|4 u|18c|17g|11o|8 d|14r|4 z|13p|17k|5 m|13v|3 s|151|2 j|13n|3 i|5 t|2 a|18q|16x|
état 15 |4 w|15n|14k|14y|3 v|19x|9 j|16g|7 d|18a|6 e|6 f|9 m|2 s|13h|3 t|3 u|2 i|15z|6 q|19r|1 b|6 l|2 p|16o|12c|
état 16 |15s|19z|11h|3 c|3 n|10p|11x|8 i|6 a|2 r|9 g|18d|0 f|16k|5 b|17w|12v|8 o|131|18j|5 t|4 q|14u|16y|11e|13m|
état 17 |14k|18j|18f|18s|3 d|13t|19c|2 g|1 n|9 r|16x|9 h|2 u|6 1|12y|6 b|10v|3 p|16a|5 w|8 z|8 i|5 q|10o|5 m|10e|
état 18 | 9 1 | 4 r | 4 k | 14q | 6 m | 8 p | 4 h | 7 b | 9 q | 16y | 14s | 0 e | 19i | 19o | 14v | 15w | 3 d | 11a | 12t | 8 i | 17f | 19u | 15z | 8 c | 9 x | 1 n | 6 t | 7 t | 10 t | 10
état 19 |13r|19m|19f|14e|0 k|2 j|18x|15y|16c|8 d|19n|6 g|10q|1 b|11p|13a|0 s|7 o|9 v|16w|17i|13t|2 u|6 z|4 l|4 h|
```

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | | 19c|1 x|0 a|19z|4 d|3 k|16p|12r|13e|12l|13j|9 i|19n|11q|6 v|15o|13t|14s|11b|16h|0 m|18w|7 g|14f|7 u|7 y| état 0 |4 z|3 j|19h|11v|3 c|12q|13t|8 p|8 f|15m|4 o|5 e|9 s|19x|18b|7 r|2 g|4 1|17a|17d|3 u|9 k|4 w|17i|16y|18n| état 1 |7 g|10m|8 x|15r|9 y|13b|8 e|5 j|141|13u|5 q|10s|17z|8 c|18n|5 p|16h|5 a|1 k|0 w|1 v|14f|14t|15o|13i|14d| état 2 état 3 |1 o|2 c|1 v|7 z|17e|5 g|16d|1 t|15h|7 k|5 n|15w|7 b|5 s|17a|19x|12q|3 1|18j|5 r|7 u|7 f|14i|10p|14m|9 y|état 4 |16k|2 w|10j|2 q|3 a|1 t|12y|12s|12z|8 n|2 b|5 h|17o|11v|8 u|3 g|16d|4 e|16i|0 1|5 f|5 x|12r|12p|10m|15c| $|5 \times |18i| |10u| |8 = |13q| |17k| |11b| |9 p| |0 r| |7 m| |13d| |17n| |13s| |11h| |6 f| |12a| |2 t| |19g| |3 j| |1 y| |6 z| |111| |1 v| |12c| |8 o| |5 w| |15 x| |16 y| |17 x| |17 x|$ état 5 |5 y|4 d|16g|5 n|9 k|14u|6 b|15v|7 p|16c|19a|11j|17o|10e|8 m|6 z|5 f|6 s|16h|7 q|10t|151|2 x|6 i|0 w|13r| état 6 | 15y|0 h|17d|16q|13w|4 b|13k|13o|14m|14g|18t|16n|11c|0 e|12f|3 a|1 x|3 z|141|18p|13r|16i|12s|5 u|18v|16j| état 7 état 8 | 9 r|1 i|15f|7 q|17u|11p|131|14e|0 k|11b|7 d|1 o|13y|15c|15t|12a|9 s|3 x|6 z|18m|0 j|8 q|10n|10v|2 h|5 w état 9 ||18q|19i|6 u|0 z|16b|7 f|11x|141|18t|12y|1 g|9 n|1 o|7 v|18w|0 c|11r|14h|12m|13k|8 d|4 a|1 p|10e|4 j|6 s| état 10 |1 v|9 x|15u|6 w|15q|17y|13k|111|13r|0 h|14g|8 b|13n|2 j|19a|6 s|9 o|17i|16t|0 d|9 c|16e|13p|8 m|15f|6 z| état 11 | 9 x | 16 j | 12 f | 16 c | 2 u | 2 b | 7 r | 5 p | 0 y | 4 k | 9 n | 6 o | 16 v | 0 q | 8 z | 9 d | 16 l | 1 w | 4 e | 12 i | 0 q | 18 s | 2 m | 2 a | 4 h | 10 t | état 12 |7 o|11x|1 f|4 q|13p|18m|12v|8 s|17b|4 j|16a|5 y|9 g|8 k|14t|1 c|0 w|1 l|0 r|15i|9 e|18u|11d|17z|4 n|4 h| état 13 | $18f|2 = |14k|3 = |6 \times 7 \times 6 = |11d|171|17b|3 = |9 \times 6 = |14w|0 \times 6 = |15s|8 = |18 \times 6 = |12r|5 = |14w|5 = |1$ état 14 |5 y|7 h|10e|14w|19f|2 b|4 u|18c|17g|11o|8 d|14r|4 z|13p|17k|5 m|13v|3 s|151|2 j|13n|3 i|5 t|2 a|18q|16x| état 15 |4 w|15n|14k|14y|3 v|19x|9 j|16g|7 d|18a|6 e|6 f|9 m|2 s|13h|3 t|3 u|2 i|15z|6 q|19r|1 b|6 l|2 p|16o|12c| état 16 |15s|19z|11h|3 c|3 n|10p|11x|8 i|6 a|2 r|9 g|18d|0 f|16k|5 b|17w|12v|8 o|131|18j|5 t|4 q|14u|16y|11e|13m| état 17 |14k|18j|18f|18s|3 d|13t|19c|2 g|1 n|9 r|16x|9 h|2 u|6 1|12y|6 b|10v|3 p|16a|5 w|8 z|8 i|5 q|10o|5 m|10e| état 18 | 9 1 | 4 r | 4 k | 14q | 6 m | 8 p | 4 h | 7 b | 9 q | 16y | 14s | 0 e | 19i | 19o | 14v | 15w | 3 d | 11a | 12t | 8 i | 17f | 19u | 15z | 8 c | 9 x | 1 n | 6 t | 7 t | 10 état 19 |13r|19m|19f|14e|0 k|2 j|18x|15y|16c|8 d|19n|6 g|10q|1 b|11p|13a|0 s|7 o|9 v|16w|17i|13t|2 u|6 z|4 l|4 h|

Etat actuel: 0

Message original	Т	Е	S	Т
Message encodé				

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | | 19c|1 x|0 a|19z|4 d|3 k|16p|12r|13e|12l|13j|9 i|19n|11q|6 v|15o|13t|14s|11b|16h|0 m|18w|7 g|14f|7 u|7 y| état 0 |4 z|3 j|19h|11v|3 c|12q|13t|8 p|8 f|15m|4 o|5 e|9 s|19x|18b|7 r|2 g|4 1|17a|17d|3 u|9 k|4 w|17i|16y|18n| état 1 |7 g|10m|8 x|15r|9 y|13b|8 e|5 j|141|13u|5 q|10s|17z|8 c|18n|5 p|16h|5 a|1 k|0 w|1 v|14f|14t|15o|13i|14d| état 2 état 3 |1 o|2 c|1 v|7 z|17e|5 g|16d|1 t|15h|7 k|5 n|15w|7 b|5 s|17a|19x|12q|3 1|18j|5 r|7 u|7 f|14i|10p|14m|9 y|état 4 |16k|2 w|10j|2 q|3 a|1 t|12y|12s|12z|8 n|2 b|5 h|17o|11v|8 u|3 g|16d|4 e|16i|0 1|5 f|5 x|12r|12p|10m|15c| $|5 \times |18i| |10u| |8 = |13q| |17k| |11b| |9 p| |0 r| |7 m| |13d| |17n| |13s| |11h| |6 f| |12a| |2 t| |19g| |3 j| |1 y| |6 z| |111| |1 v| |12c| |8 o| |5 w| |15 x| |16 y| |17 x| |17 x|$ état 5 |5 y|4 d|16g|5 n|9 k|14u|6 b|15v|7 p|16c|19a|11j|17o|10e|8 m|6 z|5 f|6 s|16h|7 q|10t|151|2 x|6 i|0 w|13r| état 6 |15y|0 h|17d|16q|13w|4 b|13k|13o|14m|14g|18t|16n|11c|0 e|12f|3 a|1 x|3 z|141|18p|13r|16i|12s|5 u|18v|16j| état 7 | 9 r|1 i|15f|7 g|17u|11p|131|14e|0 k|11b|7 d|1 o|13y|15c|15t|12a|9 s|3 x|6 z|18m|0 j|8 g|10n|10v|2 h|5 w| état 8 état 9 ||18q|19i|6 u|0 z|16b|7 f|11x|141|18t|12y|1 g|9 n|1 o|7 v|18w|0 c|11r|14h|12m|13k|8 d|4 a|1 p|10e|4 j|6 s| état 10 |1 v|9 x|15u|6 w|15q|17y|13k|111|13r|0 h|14g|8 b|13n|2 j|19a|6 s|9 o|17i|16t|0 d|9 c|16e|13p|8 m|15f|6 z| état 11 | 9 x | 16 j | 12 f | 16 c | 2 u | 2 b | 7 r | 5 p | 0 y | 4 k | 9 n | 6 o | 16 v | 0 q | 8 z | 9 d | 16 l | 1 w | 4 e | 12 i | 0 q | 18 s | 2 m | 2 a | 4 h | 10 t | état 12 |7 o|11x|1 f|4 q|13p|18m|12v|8 s|17b|4 j|16a|5 y|9 g|8 k|14t|1 c|0 w|1 l|0 r|15i|9 e|18u|11d|17z|4 n|4 h| état 13 |18f|2 e|14k|3 g|6 x|7 v|6 q|11d|171|17b|3 c|9 p|14w|0 z|15s|8 t|8 m|2 a|12r|5 u|5 i|1 y|12n|16h|9 o|19j| état 14 |5 y|7 h|10e|14w|19f|2 b|4 u|18c|17g|11o|8 d|14r|4 z|13p|17k|5 m|13v|3 s|151|2 j|13n|3 i|5 t|2 a|18q|16x| état 15 |4 w|15n|14k|14y|3 v|19x|9 j|16g|7 d|18a|6 e|6 f|9 m|2 s|13h|3 t|3 u|2 i|15z|6 q|19r|1 b|6 l|2 p|16o|12c| état 16 |15s|19z|11h|3 c|3 n|10p|11x|8 i|6 a|2 r|9 g|18d|0 f|16k|5 b|17w|12v|8 o|131|18j|5 t|4 q|14u|16y|11e|13m| état 17 |14k|18j|18f|18s|3 d|13t|19c|2 g|1 n|9 r|16x|9 h|2 u|6 1|12y|6 b|10v|3 p|16a|5 w|8 z|8 i|5 q|10o|5 m|10e| état 18 | 9 1 | 4 r | 4 k | 14q | 6 m | 8 p | 4 h | 7 b | 9 q | 16y | 14s | 0 e | 19i | 19o | 14v | 15w | 3 d | 11a | 12t | 8 i | 17f | 19u | 15z | 8 c | 9 x | 1 n | 6 t | 7 t | 10 état 19 |13r|19m|19f|14e|0 k|2 j|18x|15y|16c|8 d|19n|6 g|10q|1 b|11p|13a|0 s|7 o|9 v|16w|17i|13t|2 u|6 z|4 l|4 h|

Message original	Т	Е	S	Т
Message encodé	Н			

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | | 19c|1 x|0 a|19z|4 d|3 k|16p|12r|13e|121|13j|9 i|19n|11q|6 v|15o|13t|14s|11b|16h|0 m|18w|7 g|14f|7 u|7 y| état 0 |4 z|3 j|19h|11v|3 c|12q|13t|8 p|8 f|15m|4 o|5 e|9 s|19x|18b|7 r|2 g|4 l|17a|17d|3 u|9 k|4 w|17i|16y|18n| état 1 |7 g|10m|8 x|15r|9 y|13b|8 e|5 j|141|13u|5 q|10s|17z|8 c|18n|5 p|16h|5 a|1 k|0 w|1 v|14f|14t|15o|13i|14d| état 2 état 3 |1 o|2 c|1 v|7 z|17e|5 g|16d|1 t|15h|7 k|5 n|15w|7 b|5 s|17a|19x|12q|3 1|18j|5 r|7 u|7 f|14i|10p|14m|9 y|état 4 |16k|2 w|10j|2 q|3 a|1 t|12y|12s|12z|8 n|2 b|5 h|17o|11v|8 u|3 g|16d|4 e|16i|0 1|5 f|5 x|12r|12p|10m|15c| $|5 \times |18i| |10u| |8 = |13q| |17k| |11b| |9 p| |0 r| |7 m| |13d| |17n| |13s| |11h| |6 f| |12a| |2 t| |19g| |3 j| |1 y| |6 z| |11l| |1 v| |12c| |8 o| |5 w| |15 x| |16 y| |17 x| |17 x|$ état 5 |5 y|4 d|16g|5 n|9 k|14u|6 b|15v|7 p|16c|19a|11j|17o|10e|8 m|6 z|5 f|6 s|16h|7 q|10t|151|2 x|6 i|0 w|13r| état 6 |15y|0 h|17d|16q|13w|4 b|13k|13o|14m|14g|18t|16n|11c|0 e|12f|3 a|1 x|3 z|141|18p|13r|16i|12s|5 u|18v|16j| état 7 état 8 | 9 r|1 i|15f|7 g|17u|11p|131|14e|0 k|11b|7 d|1 o|13y|15c|15t|12a|9 s|3 x|6 z|18m|0 j|8 g|10n|10v|2 h|5 w| état 9 ||18q|19i|6 u|0 z|16b|7 f|11x|141|18t|12y|1 g|9 n|1 o|7 v|18w|0 c|11r|14h|12m|13k|8 d|4 a|1 p|10e|4 j|6 s| état 10 |1 v|9 x|15u|6 w|15q|17y|13k|111|13r|0 h|14g|8 b|13n|2 j|19a|6 s|9 o|17i|16t|0 d|9 c|16e|13p|8 m|15f|6 z| état 11 | 9 x | 16 j | 12 f | 16 c | 2 u | 2 b | 7 r | 5 p | 0 y | 4 k | 9 n | 6 o | 16 v | 0 q | 8 z | 9 d | 16 l | 1 w | 4 e | 12 i | 0 q | 18 s | 2 m | 2 a | 4 h | 10 t | état 12 |7 o|11x|1 f|4 q|13p|18m|12v|8 s|17b|4 j|16a|5 y|9 g|8 k|14t|1 c|0 w|1 l|0 r|15i|9 e|18u|11d|17z|4 n|4 h| état 13 |18f|2 e|14k|3 g|6 x|7 v|6 q|11d|171|17b|3 c|9 p|14w|0 z|15s|8 t|8 m|2 a|12r|5 u|5 i|1 y|12n|16h|9 o|19j| état 14 |5 y|7 h|10e|14w|19f|2 b|4 u|18c|17g|11o|8 d|14r|4 z|13p|17k|5 m|13v|3 s|151|2 j|13n|3 i|5 t|2 a|18q|16x| état 15 |4 w|15n|14k|14y|3 v|19x|9 j|16g|7 d|18a|6 e|6 f|9 m|2 s|13h|3 t|3 u|2 i|15z|6 q|19r|1 b|6 l|2 p|16o|12c| état 16 |15s|19z|11h|3 c|3 n|10p|11x|8 i|6 a|2 r|9 g|18d|0 f|16k|5 b|17w|12v|8 o|131|18j|5 t|4 q|14u|16y|11e|13m| état 17 |14k|18j|18f|18s|3 d|13t|19c|2 g|1 n|9 r|16x|9 h|2 u|6 1|12y|6 b|10v|3 p|16a|5 w|8 z|8 i|5 q|10o|5 m|10e| état 18 | 9 1 | 4 r | 4 k | 14q | 6 m | 8 p | 4 h | 7 b | 9 q | 16y | 14s | 0 e | 19i | 19o | 14v | 15w | 3 d | 11a | 12t | 8 i | 17f | 19u | 15z | 8 c | 9 x | 1 n | 6 t | 7 t | 10 état 19 |13r|19m|19f|14e|0 k|2 j|18x|15y|16c|8 d|19n|6 g|10q|1 b|11p|13a|0 s|7 o|9 v|16w|17i|13t|2 u|6 z|4 l|4 h|

Etat suivant: 3

Message original	Т	Е	S	Т
Message encodé	Н	N		

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | | 19c|1 x|0 a|19z|4 d|3 k|16p|12r|13e|121|13j|9 i|19n|11q|6 v|15o|13t|14s|11b|16h|0 m|18w|7 g|14f|7 u|7 y| état 0 |4 z|3 j|19h|11v|3 c|12q|13t|8 p|8 f|15m|4 o|5 e|9 s|19x|18b|7 r|2 g|4 l|17a|17d|3 u|9 k|4 w|17i|16y|18n| état 1 |7 g|10m|8 x|15r|9 y|13b|8 e|5 j|141|13u|5 q|10s|17z|8 c|18n|5 p|16h|5 a|1 k|0 w|1 v|14f|14t|15o|13i|14d| état 2 état 3 |1 o|2 c|1 v|7 z|17e|5 g|16d|1 t|15h|7 k|5 n|15w|7 b|5 s|17a|19x|12q|3 1|18j|5 r|7 u|7 f|14i|10p|14m|9 y|état 4 |16k|2 w|10j|2 q|3 a|1 t|12y|12s|12z|8 n|2 b|5 h|17o|11v|8 u|3 g|16d|4 e|16i|0 1|5 f|5 x|12r|12p|10m|15c| $|5 \times |18i| |10u| |8 = |13q| |17k| |11b| |9 p| |0 r| |7 m| |13d| |17n| |13s| |11h| |6 f| |12a| |2 t| |19g| |3 j| |1 y| |6 z| |111| |1 v| |12c| |8 o| |5 w| |15 x| |16 y| |17 x| |17 x|$ état 5 |5 y|4 d|16g|5 n|9 k|14u|6 b|15v|7 p|16c|19a|11j|17o|10e|8 m|6 z|5 f|6 s|16h|7 q|10t|151|2 x|6 i|0 w|13r| état 6 |15y|0 h|17d|16q|13w|4 b|13k|13o|14m|14g|18t|16n|11c|0 e|12f|3 a|1 x|3 z|141|18p|13r|16i|12s|5 u|18v|16j| état 7 état 8 | 9 r|1 i|15f|7 g|17u|11p|131|14e|0 k|11b|7 d|1 o|13y|15c|15t|12a|9 s|3 x|6 z|18m|0 j|8 g|10n|10v|2 h|5 w| état 9 ||18q|19i|6 u|0 z|16b|7 f|11x|141|18t|12y|1 g|9 n|1 o|7 v|18w|0 c|11r|14h|12m|13k|8 d|4 a|1 p|10e|4 j|6 s| état 10 |1 v|9 x|15u|6 w|15q|17y|13k|111|13r|0 h|14g|8 b|13n|2 j|19a|6 s|9 o|17i|16t|0 d|9 c|16e|13p|8 m|15f|6 z| état 11 | 9 x | 16 j | 12 f | 16 c | 2 u | 2 b | 7 r | 5 p | 0 y | 4 k | 9 n | 6 o | 16 v | 0 q | 8 z | 9 d | 16 l | 1 w | 4 e | 12 i | 0 q | 18 s | 2 m | 2 a | 4 h | 10 t | état 12 |7 o|11x|1 f|4 q|13p|18m|12v|8 s|17b|4 j|16a|5 y|9 g|8 k|14t|1 c|0 w|1 l|0 r|15i|9 e|18u|11d|17z|4 n|4 h| état 13 |18f|2 e|14k|3 g|6 x|7 v|6 q|11d|171|17b|3 c|9 p|14w|0 z|15s|8 t|8 m|2 a|12r|5 u|5 i|1 y|12n|16h|9 o|19j| état 14 |5 y|7 h|10e|14w|19f|2 b|4 u|18c|17g|11o|8 d|14r|4 z|13p|17k|5 m|13v|3 s|151|2 j|13n|3 i|5 t|2 a|18q|16x| état 15 |4 w|15n|14k|14y|3 v|19x|9 j|16g|7 d|18a|6 e|6 f|9 m|2 s|13h|3 t|3 u|2 i|15z|6 q|19r|1 b|6 l|2 p|16o|12c| état 16 |15s|19z|11h|3 c|3 n|10p|11x|8 i|6 a|2 r|9 g|18d|0 f|16k|5 b|17w|12v|8 o|131|18j|5 t|4 q|14u|16y|11e|13m| état 17 |14k|18j|18f|18s|3 d|13t|19c|2 g|1 n|9 r|16x|9 h|2 u|6 1|12y|6 b|10v|3 p|16a|5 w|8 z|8 i|5 q|10o|5 m|10e| état 18 | 9 1 | 4 r | 4 k | 14q | 6 m | 8 p | 4 h | 7 b | 9 q | 16y | 14s | 0 e | 19i | 19o | 14v | 15w | 3 d | 11a | 12t | 8 i | 17f | 19u | 15z | 8 c | 9 x | 1 n | 6 t | 7 t | 10 état 19 |13r|19m|19f|14e|0 k|2 j|18x|15y|16c|8 d|19n|6 g|10q|1 b|11p|13a|0 s|7 o|9 v|16w|17i|13t|2 u|6 z|4 l|4 h|

Message original	Т	Е	S	Т
Message encodé	Н	N	J	

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | | | 19c|1 x|0 a|19z|4 d|3 k|16p|12r|13e|12l|13j|9 i|19n|11q|6 v|15o|13t|14s|11b|16h|0 m|18w|7 g|14f|7 u|7 y état 0 |4 z|3 j|19h|11v|3 c|12q|13t|8 p|8 f|15m|4 o|5 e|9 s|19x|18b|7 r|2 g|4 l|17a|17d|3 u|9 k|4 w|17i|16y|18n| état 1 |7 g|10m|8 x|15r|9 y|13b|8 e|5 j|141|13u|5 q|10s|17z|8 c|18n|5 p|16h|5 a|1 k|0 w|1 v|14f|14t|15o|13i|14d| état 2 état 3 |1 o|2 c|1 v|7 z|17e|5 g|16d|1 t|15h|7 k|5 n|15w|7 b|5 s|17a|19x|12q|3 1|18j|5 r|7 u|7 f|14i|10p|14m|9 y|état 4 |16k|2 w|10j|2 q|3 a|1 t|12y|12s|12z|8 n|2 b|5 h|17o|11v|8 u|3 g|16d|4 e|16i|0 1|5 f|5 x|12r|12p|10m|15c| $|5 \times |18i| |10u| |8 = |13q| |17k| |11b| |9 p| |0 r| |7 m| |13d| |17n| |13s| |11h| |6 f| |12a| |2 t| |19g| |3 j| |1 y| |6 z| |11l| |1 v| |12c| |8 o| |5 w| |15 x| |16 y| |17 x| |17 x|$ état 5 |5 y|4 d|16g|5 n|9 k|14u|6 b|15v|7 p|16c|19a|11j|17o|10e|8 m|6 z|5 f|6 s|16h|7 q|10t|151|2 x|6 i|0 w|13r| état 6 |15y|0 h|17d|16q|13w|4 b|13k|13o|14m|14g|18t|16n|11c|0 e|12f|3 a|1 x|3 z|141|18p|13r|16i|12s|5 u|18v|16j| état 7 état 8 | 9 r|1 i|15f|7 q|17u|11p|131|14e|0 k|11b|7 d|1 o|13y|15c|15t|12a|9 s|3 x|6 z|18m|0 j|8 q|10n|10v|2 h|5 w| état 9 ||18q|19i|6 u|0 z|16b|7 f|11x|141|18t|12y|1 g|9 n|1 o|7 v|18w|0 c|11r|14h|12m|13k|8 d|4 a|1 p|10e|4 j|6 s| état 10 |1 v|9 x|15u|6 w|15q|17y|13k|111|13r|0 h|14g|8 b|13n|2 j|19a|6 s|9 o|17i|16t|0 d|9 c|16e|13p|8 m|15f|6 z| état 11 | 9 x | 16 j | 12 f | 16 c | 2 u | 2 b | 7 r | 5 p | 0 y | 4 k | 9 n | 6 o | 16 v | 0 q | 8 z | 9 d | 16 l | 1 w | 4 e | 12 i | 0 q | 18 s | 2 m | 2 a | 4 h | 10 t | état 12 |7 o|11x|1 f|4 q|13p|18m|12v|8 s|17b|4 j|16a|5 y|9 g|8 k|14t|1 c|0 w|1 l|0 r|15i|9 e|18u|11d|17z|4 n|4 h| état 13 |18f|2 e|14k|3 g|6 x|7 v|6 q|11d|171|17b|3 c|9 p|14w|0 z|15s|8 t|8 m|2 a|12r|5 u|5 i|1 y|12n|16h|9 o|19j| état 14 |5 y|7 h|10e|14w|19f|2 b|4 u|18c|17g|11o|8 d|14r|4 z|13p|17k|5 m|13v|3 s|151|2 j|13n|3 i|5 t|2 a|18q|16x| état 15 |4 w|15n|14k|14y|3 v|19x|9 j|16g|7 d|18a|6 e|6 f|9 m|2 s|13h|3 t|3 u|2 i|15z|6 q|19r|1 b|6 l|2 p|16o|12c| état 16 |15s|19z|11h|3 c|3 n|10p|11x|8 i|6 a|2 r|9 g|18d|0 f|16k|5 b|17w|12v|8 o|131|18j|5 t|4 q|14u|16y|11e|13m| état 17 |14k|18j|18f|18s|3 d|13t|19c|2 g|1 n|9 r|16x|9 h|2 u|6 1|12y|6 b|10v|3 p|16a|5 w|8 z|8 i|5 q|10o|5 m|10e| état 18 |9 1|4 r|4 k|14q|6 m|8 p|4 h|7 b|9 q|16y|14s|0 e|19i|19o|14v|15w|3 d|11a|12t|8 j|17f|19u|15z|8 c|9 x|1 n| état 19 |13r|19m|19f|14e|0 k|2 j|18x|15y|16c|8 d|19n|6 g|10q|1 b|11p|13a|0 s|7 o|9 v|16w|17i|13t|2 u|6 z|4 l|4 h|

Etat suivant: 8

Message original	Т	Е	S	Т
Message encodé	Н	N	J	J

Récapitulatif

Chiffrement	César	Vigenere	RSA	Transducteur
Est humainement utilisable	Oui	Oui	Non	Oui
Temps moyen nécessaire pour un humain pour encoder un caractère	2.5 seconde	4.6 seconde	N/A	4.9 seconde
La clé peut être mémorisée par un humain	Oui	Oui	N/A	Non
Actuellement décodable par ChatGPT	Oui	Oui	Non	Non
Déchiffrable sans la clé en temps raisonnable	Oui	Oui	Non démontré	Non démontré
Déchiffrable sans la clé en temps infini	Oui	Oui	Oui	Non démontré

Démonstration du nombre d'état

A : Deux lettres successives dans le message original sont identiques

B : Deux lettres successives dans le message chiffré sont identiques

$$P(B|A) = 1/N + \frac{N-1}{N} \times \frac{1}{|\Sigma|}$$

$$P(B|\overline{A}) = \frac{N-1}{N} \times \frac{1}{|\Sigma|}$$

$$P(B) = P(A) \times P(B|A) + P(\overline{A}) \times P(B|\overline{A})$$

$$P(B) = (1/N + \tfrac{N-1}{N} \times \tfrac{1}{|\Sigma|}) * P(A) + (\tfrac{N-1}{N} \times \tfrac{1}{|\Sigma|}) * P(\overline{A})$$

$$P(B) = \frac{1}{N} \times P(A) + \frac{N-1}{N|\Sigma|} \times (P(A) + P(\overline{A}))$$

$$P(B) = \frac{1}{N} \times P(A) + \frac{N-1}{N|\Sigma|}$$

$$P(B) = \frac{N - 1 + P(A) \times |\Sigma|}{N|\Sigma|}$$

$$N|\Sigma| \times P(B) = N - 1 + P(A) \times |\Sigma|$$

$$N(|\Sigma| \times P(B) - 1) = P(A) \times |\Sigma| - 1$$

$$N = \frac{|\Sigma| \times P(A) - 1}{|\Sigma| \times P(B) - 1}$$

Kosaraju graphe exemple

Kosaraju premier parcours

Parcours depuis 1 1 2 3 7 5 6

Kosaraju premier parcours

Parcours depuis 4 1 2 3 7 5 6 4

Kosaraju graphe transposé

Parcours dans le graphe transposé depuis 4 1 2 3 7 5 6 4

Parcours dans le graphe transposé depuis 4 <u>1</u> 2 3 7 <u>5</u> <u>6</u> 4

Parcours dans le graphe transposé depuis 4 4 2 3 7 5 6 4

Parcours dans le graphe transposé depuis 4 4 2 3 7 5 6 4

RSA

Choisir deux nombres premier p et q (pour l'exemple on prendra p = 5, q = 11)

On pose n = pq (ici n = 55)

Calculer $\varphi(n)=(p-1)(q-1)$ (ici $\varphi(n)=40$)

Choisir un nombre e dans $[|1,\phi(n)[|$ (ici e = 23) premier avec $\phi(n)$

Calculer l'inverse modulaire de e noté d (ici d = 7)

Pour chiffrer on calcul M^d mod n (ici M = 4 on calcul $4^7 = 49$ mod 55) Pour déchiffrer on calcul N^e mod n (ici N = 24 on calcul $24^{23} = 4$ mod 55)

Le petit Théorème de Fermat nous donne la preuve que nous avons bien à faire à un chiffre

Inverse modulaire: Algorithme d'Euclide étendu

Appliquer l'algorithme d'euclide

Exemple : inverse de 23 modulo 40 $40 = 23 \times 1 + 17$ $23 = 17 \times 1 + 6$

 $17 = 6 \times 2 + 5$

 $6 = 5 \times 1 + 1$

Substituer

 $1 = 6 - 5 \times 1$ or $5 = 17 - 6 \times 2$ donc $1 = 6 - (17 - 6 \times 2) \times 1$ donc $1 = 3 \times 6 - 17$ or 6 = 23 - 17 donc $1 = 3 \times (23 - 17) - 17$ donc $1 = -4 \times 17 + 3 \times 23$ or 17 = 40 - 23 donc $1 = -4 \times (40 - 23) + 3 \times 23$ donc $1 = 7 \times 23 - 4 \times 40$

donc $1 = 7 \times 23 \mod 40$