CS699 Lecture 2 Data Exploration

Types of Data Sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: termfrequency vector
- Transaction data
- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures
- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Spatial, image and multimedia:
 - Spatial data: maps
 - Image data:
 - Video data:

stabs	team	coach	pla y	ball	score	game	n n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Data Objects

- Data sets are made up of data objects.
- A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes.
- Database rows -> data objects; columns ->attributes.

Attributes

- Attribute (or fields, dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - E.g., customer _ID, name, address
- Types:
 - Nominal (or categorical), Binary, Ordinal
 - Numeric: quantitative
 - Interval-scaled
 - Ratio-scaled

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known.
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C°or F°, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floatingpoint variables

Basic Statistical Descriptions of Data

Motivation

 To better understand the data: central tendency, variation and spread

Central Tendency

- Location of center of a data distribution
- mean, median, mode, etc.

Data dispersion

- How the data is spread out
- quartiles, interquartile range, boxplot, standard deviation, variance, etc.

Measuring the Central Tendency

Mean (algebraic measure) (sample vs. population):

Note: *n* is sample size and *N* is population size.

$$- \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ (sample)}, \quad \mu = \frac{\sum x}{N} \text{ (population)}$$

– Weighted arithmetic mean:

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

Trimmed mean: chopping extreme values

Measuring the Central Tendency

Median:

 Middle value if odd number of values, or average of the middle two values otherwise

- median of <2, 5, 6, 8, 11, 20, 40> is 8
- median of <2, 5, 6, 8, 20, 40> is 7 (= (6 + 8) / 2)

Measuring the Central Tendency

Mode

- Value that occurs most frequently in the data
- Unimodal, bimodal, trimodal
- mode of <1, 1, 3, 3, 3, 5, 8, 9, 10, 10> is 3 (unimodal)
- modes of < 1, 1, 3, 3, 3, 5, 8, 9, 10, 10, 10> are 3 and 10(bimodal)
- Empirical formula to estimate mode for unimodal,
 moderately skewed data (given mean and median):

$$mean-mode = 3 \times (mean-median)$$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q_1 , median, Q_3 , max
 - Boxplot: ends of the box are the quartiles; median is marked;
 add whiskers, and plot outliers individually
 - Outlier:
 - Less than Q₁ − 1.5 * IQR
 - Greater than Q₃ + 1.5 * IQR
 - Note: There are different ways of determining quartiles.

Measuring the Dispersion of Data

Example

Median = 15

Q1 = median of lower half <2, 10, 12> = 10 (some include the median, 15, in the lower half)

Q3 = median of upper half <17, 20, 53> = 20 (some include the median, 15, in the upper half)

$$IQR = 20 - 10 = 10$$

$$Q1 - 1.5*IQR = 10 - 15 = -5$$

$$Q3 + 1.5*IQR = 20 + 15 = 35$$

So, 53 is an outlier

Measuring the Dispersion of Data

- Variance and standard deviation (sample: s, population: σ)
 - Variance:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

- Denominator in the formula
 - n-1 is used for sample
 - N is used for population
- **Standard deviation** s (or σ) is the square root of variance s^2 (or σ^2)

Boxplot Analysis

- Five-number summary of a distribution
 - Minimum, Q1, Median, Q3, Maximum

Boxplot

- Data is represented with a box and lines
- Can be drawn vertically or horizontally
- The ends of the box are at the first and third quartiles. So, the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extended to
 Minimum and Maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Boxplot Analysis

Example

Boxplot: min, Q1, median, Q3, max

Visualization of Data Dispersion: 3-D Boxplots

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ –σ to μ +σ: contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis represents frequencies
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Histograms Often Tell More than Boxplots

22

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min,Q1, median, Q3, max
- But they have rather different data distributions

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Similarity and Dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Value is higher when objects are more alike
- Often falls in the range [0,1]
- **Dissimilarity** (e.g., distance)
 - Numerical measure of how different two data objects are
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies
- Proximity refers to a similarity or dissimilarity

Data Matrix and Dissimilarity Matrix

Data matrix

- n data points with p dimensions
- Two modes

$$\begin{bmatrix} x_{11} & \cdots & x_{1f} & \cdots & x_{1p} \\ \cdots & \cdots & \cdots & \cdots \\ x_{i1} & \cdots & x_{if} & \cdots & x_{ip} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & \cdots & x_{nf} & \cdots & x_{np} \end{bmatrix}$$

Dissimilarity matrix

- n data points, but registers only the distance
- A triangular matrix
- Single mode

```
\begin{bmatrix} 0 \\ d(2,1) & 0 \\ d(3,1) & d(3,2) & 0 \\ \vdots & \vdots & \vdots \\ d(n,1) & d(n,2) & \dots & \dots & 0 \end{bmatrix}
```

Example: Data Matrix and Dissimilarity Matrix

Data Matrix

point	attribute1	attribute2
x1	1	2
<i>x</i> 2	3	5
<i>x3</i>	2	0
<i>x4</i>	4	5

Dissimilarity Matrix

(with Euclidean Distance)

	<i>x1</i>	<i>x</i> 2	<i>x3</i>	<i>x4</i>
<i>x1</i>	0			
<i>x</i> 2	3.61	0		
<i>x</i> 3	2.24	5.1	0	
<i>x4</i>	4.24	1	5.39	0

Proximity Measure for Nominal Attributes

• Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)

• Distance: $d(i, j) = \frac{p - m}{p}$

where *m*: # of matches, *p*: total # of variables

(or distance = #mismatches / all)

Example

Object	Income	Housing	Zip	Marital_status
Molly	high	own	02215	yes
Greg	medium	own	02215	yes

distance(Molly, Greg) = 1/4 or 0.25

Dissimilarity between Binary Variables

- For symmetric binary variables, use the same method that is used for nominal attributes: distance = #mismatches / all
- Example

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	Y	N	P	N	N	N
Mary	Y	N	P	N	P	N
Jim	Y	P	N	N	N	N

$$d (jack, mary) = \frac{1}{6} = 0.17$$

 $d (jack, jim) = \frac{2}{6} = 0.33$
 $d (jim, mary) = \frac{3}{6} = 0.5$

Standardizing Numeric Data

- z-score: $z = \frac{x \mu}{\sigma}$
 - X: raw score to be standardized, μ : mean, σ (or s): standard deviation
 - the distance between the raw score and the population mean in units of the standard deviation
 - negative when the raw score is below the mean, "+" when above
- An alternative way: Use **mean absolute deviation**, S_f , instead of σ

$$s_f = \frac{1}{n}(|x_{1f} - \mu| + |x_{2f} - \mu| + ... + |x_{nf} - \mu|)$$

– standardized measure (z-score):

$$z_{if} = \frac{x - \mu}{s_f}$$

Using mean absolute deviation is more robust than using standard deviation

Standardizing Numeric Data

Example

Data =
$$(5, 8, 3, 12, 7)$$

 $\mu = 7, s = 3.391$
 $S_f = (|5-7| + |8-7| + |3-7| + |12-7| + |7-7|) / 5 = 2.4$

Standardizing 5 and 8 using standard deviation:

$$(5-7)/3.391 = -0.590, (8-7)/3.391 = 0.295$$

Standardizing 5 and 8 using mean absolute deviation:

$$(5-7)/2.4 = -0.833, (8-7)/2.4 = 0.417$$

Distance on Numeric Data: Minkowski Distance

• Minkowski distance: A popular distance measure

$$d(i,j) = \sqrt[h]{|x_{i1} - x_{j1}|^h + |x_{i2} - x_{j2}|^h + \dots + |x_{ip} - x_{jp}|^h}$$

where $i = (x_{i1}, x_{i2}, ..., x_{ip})$ and $j = (x_{j1}, x_{j2}, ..., x_{jp})$ are two pdimensional data objects, and h is the order (the distance so defined is also called L-h norm)

- Properties
 - d(i, j) > 0 if $i \ne j$, and d(i, i) = 0 (Positive definiteness)
 - d(i, j) = d(j, i) (Symmetry)
 - $d(i, j) \le d(i, k) + d(k, j)$ (Triangle Inequality)
- A distance that satisfies these properties is called metric

Special Cases of Minkowski Distance

- h = 1: Manhattan distance (city block, L₁ norm)
 - E.g., the Hamming distance: the number of bits that are different between two binary vectors

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

• h = 2: Euclideean distance (L₂ norm)

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

- $h \to \infty$. "supremum" distance (L_{max} norm, L_{∞} norm)
 - This is the maximum difference between any component (attribute) of the vectors

$$d(i,j) = \lim_{h \to \infty} \left(\sum_{f=1}^{p} |x_{if} - x_{jf}|^h \right)^{\frac{1}{h}} = \max_{f} |x_{if} - x_{jf}|$$

Example: Minkowski Distance

point	attribute 1	attribute 2
x1	1	2
x2	3	5
х3	2	0
x4	4	5

Manhattan (L₁)

L	x1	x2	х3	x4
x1	0			
x2	5	0		
x3	3	6	0	
x4	6	1	7	0

Euclidean (L₂)

L2	x1	x2	х3	x4
x1	0			
x 2	3.61	0		
x 3	2.24	5.1	0	
x4	4.24	1	5.39	0

Supremum

L_{∞}	x1	x2	х3	x4
x1	0			
x2	3	0		
x3	2	5	0	
x4	3	1	5	0

Cosine Similarity

• A **document** can be represented by thousands of attributes, each recording the *frequency* of a particular word (such as keywords) or phrase in the document.

Document	team	coach	hockey	baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	0	2	0	0	2	0	0
Document2	3	0	2	0	1	1	0	1	0	1
Document3	0	7	0	2	1	0	0	3	0	0
Document4	0	1	0	0	1	2	2	0	3	0

- Other vector objects: gene features in micro-arrays, ...
- Applications: information retrieval, biologic taxonomy, gene feature mapping, ...
- Cosine measure: If d_1 and d_2 are two vectors (e.g., term-frequency vectors), then

$$cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$$
, where \cdot indicates vector dot product, $||d||$: the length of vector d

Between 0 and 1, inclusive; Closer to 0: less similar; Closer to 1: more similar

Example: Cosine Similarity

- $cos(d_1, d_2) = (d_1 \cdot d_2) / ||d_1|| ||d_2||$, where • indicates vector dot product, ||d|| is the length of vector d
- Ex: Find the **similarity** between documents 1 and 2.

$$d_1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)$$

 $d_2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)$

$$\begin{aligned} d_1 \bullet d_2 &= 5*3 + 0*0 + 3*2 + 0*0 + 2*1 + 0*1 + 0*0 + 2*1 + 0*0 + 0*1 = 25 \\ ||d_1|| &= (5*5 + 0*0 + 3*3 + 0*0 + 2*2 + 0*0 + 0*0 + 2*2 + 0*0 + 0*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| &= (3*3 + 0*0 + 2*2 + 0*0 + 1*1 + 1*1 + 0*0 + 1*1 + 0*0 + 1*1)^{0.5} = (17)^{0.5} = 4.12 \end{aligned}$$

$$cos(d_1, d_2) = 25 / (6.481 * 4.12) = 0.94$$

Attributes of Mixed Types

- Distance between object 1 and object 2.
- A1 and A2: interval-scaled; A3, A4, and A5: asymmetric binary (P is more important than N); A6 and A7: nominal; A8 is ordinal (ranks are gold = 3, silver = 2, bronze = 1); "?" indicates a missing value.
- A1: |8-21|/(21-6) = 0.867
- A2: |17 6| / (21 6) = 0.733
- A3: 1, A6: 0, A7: 1
- A8: |1 0.5| / (1 0) = 0.5
- d(O1,O2)= (0.87 + 0.73 + 1 + 0 + 1 + 0.5) / 6= 0.68

OID	A1	A2	A3	A4	A5	A6	A7	A8
1	8	17	N	N	N	two	4wd	gold
2	21	6	Р	?	N	two	fwd	silver
3	10	10	Р	Р	N	two	fwd	bronze
4	16	12	Р	N	Υ	four	4wd	gold
5	12	14	Р	N	Υ	four	fwd	gold
6	13	11	N	P	N	two	fwd	silver
7	10	8	Р	N	N	four	4wd	bronze
8	6	21	N	Р	Υ	four	fwd	gold

References

- Han, J., Kamber, M., Pei, J., "Data mining: concepts and techniques," 3rd Ed., Morgan Kaufmann, 2012
- http://www.cs.illinois.edu/~hanj/bk3/