Rapport de laboratoire 1: modélisation et résolution de problèmes avec IPOPT

MTH8408

Dawut Esse

```
using Pkg
Pkg.activate("rapport_env")  # activate a virtual environment
Pkg.add(["JuMP", "Ipopt"]);
```

Modélisation d'un problème avec contraintes

Modéliser le problème

$$\min_{x \in \mathbb{R}^2} \; (x_1 - 2)^2 + (x_2 - 1)^2 \quad \text{s.c. } x_1^2 - x_2 \leq 0, \; x_1 + x_2 \leq 2$$

à l'aide de ADNLPModels.jl et le résoudre avec IPOPT à l'aide de NLPModelsIpopt.jl. Vous pouvez fournir à IPOPT un point initial de votre choix. Il ne requiert pas un point initial réalisable (c'est-à-dire qui satisfait les contraintes).

Nous avons vu en classe comment modéliser un problème sans contraintes. Dirigez-vous vers https://jso.dev/ADNLPModels.jl/stable/ pour découvrir comment modéliser des contraintes. Effectuez les opérations suivantes :

1. résolvez ce problème avec IPOPT et faites afficher la solution ;

```
# Insérez votre code ici
using JuMP, Ipopt
using LinearAlgebra

m1 = Model(Ipopt.Optimizer)
    @variable(m1, x[1:2])
    @NLobjective(m1, Min, (x[1] - 2)^2 + (x[2] - 1)^2)
    @NLconstraint(m1, x[1]^2 - x[2] <= 0)
    @constraint(m1, x[1] + x[2] <= 2)

# Résolution
optimize!(m1)</pre>
```

```
sol1 = value.(x)
println("Solution x* = ", sol1)
This program contains Ipopt, a library for large-scale nonlinear optimization.
Ipopt is released as open source code under the Eclipse Public License (EPL).
        For more information visit https://github.com/coin-or/Ipopt
************************************
This is Ipopt version 3.14.17, running with linear solver MUMPS 5.7.3.
Number of nonzeros in equality constraint Jacobian...:
                                                          0
Number of nonzeros in inequality constraint Jacobian .:
                                                          4
Number of nonzeros in Lagrangian Hessian....:
                                                          3
Total number of variables....:
                                                          2
                   variables with only lower bounds:
                                                          0
               variables with lower and upper bounds:
                                                          0
                   variables with only upper bounds:
                                                          0
Total number of equality constraints....:
                                                          0
Total number of inequality constraints....:
                                                          2
       inequality constraints with only lower bounds:
                                                          0
  inequality constraints with lower and upper bounds:
                                                          0
       inequality constraints with only upper bounds:
                                                          2
iter
                   inf_pr
                            inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr ls
       objective
  0 5.0000000e+00 0.00e+00 1.60e+00 -1.0 0.00e+00
                                                    - 0.00e+00 0.00e+00
  1 1.8768873e+00 7.78e-01 3.74e+00 -1.0 1.07e+00
                                                    - 4.56e-01 1.00e+00f 1
  2 2.3931799e+00 0.00e+00 1.88e+00 -1.0 1.01e+00
                                                    - 1.00e+00 1.00e+00h 1
  3 1.0488320e+00 0.00e+00 1.03e-01 -1.0 8.48e-01
                                                    - 1.00e+00 1.00e+00f
  4 1.0296800e+00 0.00e+00 6.38e-04 -1.7 2.73e-01
                                                    - 1.00e+00 1.00e+00h 1
  5 1.0011635e+00 0.00e+00 2.10e-04 -3.8 2.68e-02
                                                    - 1.00e+00 1.00e+00f
                                                    - 1.00e+00 1.00e+00h
  6 1.0000063e+00 0.00e+00 7.94e-08 -5.7 1.54e-03
  7 9.999999e-01 0.00e+00 5.79e-12 -8.6 7.04e-06
                                                    - 1.00e+00 1.00e+00h 1
Number of Iterations....: 7
                                 (scaled)
                                                        (unscaled)
                          9.9999998506912280e-01
                                                   9.9999998506912280e-01
Objective....:
Dual infeasibility....:
                          5.7880367165807911e-12
                                                   5.7880367165807911e-12
                                                   0.000000000000000e+00
Constraint violation...:
                          0.000000000000000e+00
Variable bound violation:
                          0.000000000000000e+00
                                                   0.000000000000000e+00
Complementarity....:
                          2.5673012579471588e-09
                                                   2.5673012579471588e-09
```

1. Solution trouvée

Overall NLP error....:

2.5673012579471588e-09

2.5673012579471588e-09

```
Number of objective function evaluations = 8
Number of objective gradient evaluations = 8
Number of equality constraint evaluations = 0
Number of inequality constraint evaluations = 8
Number of equality constraint Jacobian evaluations = 0
Number of inequality constraint Jacobian evaluations = 8
Number of Lagrangian Hessian evaluations = 7
Total seconds in IPOPT = 14.160
EXIT: Optimal Solution Found.
Solution x* = [1.0000000074654387, 1.000000008683609]
```

2. donnez le statut final d'IPOPT;

```
# Insérez votre code ici
println("Statut : ", termination_status(m1))
```

Statut : LOCALLY_SOLVED

3. Validez manuellement que la solution vérifie les contraintes ;

```
# Insérez votre code ici
println("C1 = x1^2 - x2 = ", sol1[1]^2 - sol1[2])
println("C2 = x1 + x2 = ", sol1[1] + sol1[2])
```

```
C1 = x1^2 - x2 = 6.247268480308321e-9

C2 = x1 + x2 = 2.0000000161490474
```

4. faites afficher les résidu d'optimalité calculés par IPOPT, contenues dans stats.primal_feas et stats.dual_feas, respectivement. NB: primal_feas donne la satisfaction des contraintes et dual_feas est la norme du gradient du lagrangien du problème.

```
# Insérez votre code ici
using JuMP, Ipopt, LinearAlgebra

# 1. Création du modèle et des contraintes
m1 = Model(Ipopt.Optimizer)
@variable(m1, x[1:2])
@NLobjective(m1, Min, (x[1] - 2)^2 + (x[2] - 1)^2)
c1 = @NLconstraint(m1, x[1]^2 - x[2] <= 0)
c2 = @constraint(m1, x[1] + x[2] <= 2)

# 2. Résolution
optimize!(m1)
sol1 = value.(x)</pre>
```

```
# 3. Affichage de la solution
println("Solution x* = ", sol1)
# 4. Résidus d'optimalité
# --- primal feasibility
viol1 = max(sol1[1]^2 - sol1[2], 0.0)
viol2 = max(sol1[1] + sol1[2] - 2, 0.0)
println("Primal feas (max violation): ", max(viol1, viol2))
# --- dual feasibility
1 = dual(c1)
2 = dual(c2)
g1 = 2*(sol1[1] - 2) + 1*2*sol1[1] + 2
g2 = 2*(sol1[2] - 1) - 1 + 2
println("Dual feas (norm grad Lagrangien): ", norm([g1, g2]))
This is Ipopt version 3.14.17, running with linear solver MUMPS 5.7.3.
Number of nonzeros in equality constraint Jacobian...:
                                                           0
Number of nonzeros in inequality constraint Jacobian .:
                                                           4
Number of nonzeros in Lagrangian Hessian....:
                                                           3
Total number of variables....:
                                                           2
                    variables with only lower bounds:
                                                           0
                                                           0
               variables with lower and upper bounds:
                    variables with only upper bounds:
                                                           0
Total number of equality constraints....:
                                                           0
Total number of inequality constraints....:
                                                           2
       inequality constraints with only lower bounds:
                                                           0
   inequality constraints with lower and upper bounds:
                                                           0
       inequality constraints with only upper bounds:
                                                           2
                            inf du lg(mu) ||d|| lg(rg) alpha du alpha pr ls
iter
       objective
                    inf pr
  0 5.0000000e+00 0.00e+00 1.60e+00 -1.0 0.00e+00
                                                     - 0.00e+00 0.00e+00
   1 1.8768873e+00 7.78e-01 3.74e+00 -1.0 1.07e+00
                                                     - 4.56e-01 1.00e+00f 1
                                                     - 1.00e+00 1.00e+00h 1
  2 2.3931799e+00 0.00e+00 1.88e+00 -1.0 1.01e+00
   3 1.0488320e+00 0.00e+00 1.03e-01 -1.0 8.48e-01
                                                     - 1.00e+00 1.00e+00f 1
  4 1.0296800e+00 0.00e+00 6.38e-04 -1.7 2.73e-01
                                                     - 1.00e+00 1.00e+00h
  5 1.0011635e+00 0.00e+00 2.10e-04 -3.8 2.68e-02
                                                     - 1.00e+00 1.00e+00f
  6 1.0000063e+00 0.00e+00 7.94e-08 -5.7 1.54e-03
                                                     - 1.00e+00 1.00e+00h 1
  7 9.999999e-01 0.00e+00 5.79e-12 -8.6 7.04e-06
                                                     - 1.00e+00 1.00e+00h 1
Number of Iterations....: 7
                                 (scaled)
                                                         (unscaled)
                          9.9999998506912280e-01
                                                   9.9999998506912280e-01
Objective....:
```

```
5.7880367165807911e-12
                                                     5.7880367165807911e-12
Dual infeasibility....:
Constraint violation...:
                           0.000000000000000e+00
                                                     0.000000000000000e+00
Variable bound violation:
                           0.000000000000000e+00
                                                     0.000000000000000e+00
Complementarity....:
                           2.5673012579471588e-09
                                                     2.5673012579471588e-09
Overall NLP error...:
                           2.5673012579471588e-09
                                                     2.5673012579471588e-09
Number of objective function evaluations
Number of objective gradient evaluations
Number of equality constraint evaluations
Number of inequality constraint evaluations
                                                    = 8
Number of equality constraint Jacobian evaluations
Number of inequality constraint Jacobian evaluations = 8
Number of Lagrangian Hessian evaluations
                                                    = 7
Total seconds in IPOPT
                                                    = 0.009
EXIT: Optimal Solution Found.
Solution x* = [1.0000000074654387, 1.000000008683609]
Primal feas (max violation): 1.6149047432634234e-8
Dual feas (norm grad Lagrangien): 3.9999999701324573
```

Modélisation d'un problème dégénéré

Modéliser le problème

$$\min_{x \in \mathbb{R}} x \quad \text{s.c. } x^2 = 0$$

à l'aide de ADNLPModels.jl et le résoudre avec IPOPT à l'aide de NLPModelsIpopt.jl.

Un solveur comme IPOPT ne requiert pas un point initial réalisable. Utilisez le point initial x = 1.

```
# Insérez votre code ici
# 0. Packages
using ADNLPModels
                    # description du problème
using NLPModelsIpopt
                   # appel d'IPOPT
# 1. Définition du problème
f(x) = x[1]
                     # objectif
c(x) = [x[1]^2]
                     # contrainte g(x) = 0
x0 = [1.0]
                     # point initial (non réalisable)
nlp = ADNLPModel(
                   # objectif + point initial
       f, x0;
                   # fonction de contraintes
       c = c
       1con = [0.0],
                     # bornes inférieures
       ucon = [0.0] # bornes supérieures
```

```
# 2. Appel d'IPOPT
stats = ipopt(nlp; print_level = 5)
                                     # ou print_level = 0 pour silence
# 3. Résumé rapide
println("\n====== IPOPT ======")
println("Statut : ", stats.status)
println("Itérations: ", stats.iter)
println("x*
                : ", stats.solution)
                 : ", stats.objective)
println("f(x*)
println("||g(x*)|| : ", stats.primal_feas)
                                          # violation contrainte
              : ", stats.dual_feas)
println("|| L||
                                         # résidu dual
This is Ipopt version 3.14.17, running with linear solver MUMPS 5.7.3.
Number of nonzeros in equality constraint Jacobian...:
                                                          0
Number of nonzeros in inequality constraint Jacobian .:
                                                          0
Number of nonzeros in Lagrangian Hessian....:
                                                          0
Total number of variables....:
                                                          1
                   variables with only lower bounds:
                                                          0
               variables with lower and upper bounds:
                                                          0
                    variables with only upper bounds:
                                                          0
Total number of equality constraints....:
                                                          0
Total number of inequality constraints....:
                                                          0
       inequality constraints with only lower bounds:
                                                          0
  inequality constraints with lower and upper bounds:
                                                          0
       inequality constraints with only upper bounds:
                                                          0
iter
                            inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr
       objective
                   inf_pr
  0 1.0000000e+00 0.00e+00 1.00e+00 -1.0 0.00e+00
                                                  - 0.00e+00 0.00e+00
  1 -9.9990000e+03 0.00e+00 1.00e+00 -1.7 1.00e+04 -4.0 1.00e+00 1.00e+00f
                                                                          1
  2 -3.9999000e+04 0.00e+00 1.00e+00 -1.7 3.00e+04 -4.5 1.00e+00 1.00e+00f
                                                                          1
  3 -1.2999900e+05 0.00e+00 1.00e+00
                                    -1.7 9.00e+04 -5.0 1.00e+00 1.00e+00f
  4 -3.9999900e+05 0.00e+00 1.00e+00
                                   -1.7 2.70e+05 -5.4 1.00e+00 1.00e+00f
  5 -1.2099990e+06 0.00e+00 1.00e+00
                                                 -5.9 1.00e+00 1.00e+00f
                                    -1.7 8.10e+05
  6 -3.6399990e+06 0.00e+00 1.00e+00
                                    -1.7 2.43e+06
                                                 -6.4 1.00e+00 1.00e+00f
  7 -1.0929999e+07 0.00e+00 1.00e+00
                                    -1.7 7.29e+06
                                                 -6.9 1.00e+00 1.00e+00f
  8 -3.2799999e+07 0.00e+00 1.00e+00
                                    -1.7 2.19e+07
                                                  -7.3 1.00e+00 1.00e+00f
  9 -9.8409999e+07 0.00e+00 1.00e+00 -1.7 6.56e+07 -7.8 1.00e+00 1.00e+00f
                                                                          1
                            inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr
       objective
                   inf_pr
iter
  10 -2.9524000e+08 0.00e+00 1.00e+00 -1.7 1.97e+08 -8.3 1.00e+00 1.00e+00f
  11 -8.8573000e+08 0.00e+00 1.00e+00
                                    -1.7 5.90e+08 -8.8 1.00e+00 1.00e+00f
                                                                          1
  12 -2.6572000e+09 0.00e+00 1.00e+00
                                    -1.7 1.77e+09 -9.2 1.00e+00 1.00e+00f
  13 -7.9716100e+09 0.00e+00 1.00e+00
                                    -1.7 5.31e+09 -9.7 1.00e+00 1.00e+00f
```

```
14 -2.3914840e+10 0.00e+00 1.00e+00
                                      -1.7 1.59e+10 -10.2 1.00e+00 1.00e+00f
  15 -7.1744530e+10 0.00e+00 1.00e+00
                                      -1.7 4.78e+10 -10.7 1.00e+00 1.00e+00f
  16 -2.1523360e+11 0.00e+00 1.00e+00
                                       -1.7 1.43e+11 -11.2 1.00e+00 1.00e+00f
  17 -6.4570081e+11 0.00e+00 1.00e+00
                                      -1.7 4.30e+11 -11.6 1.00e+00 1.00e+00f
                                                                               1
  18 -1.9371024e+12 0.00e+00 1.00e+00
                                       -1.7 1.29e+12 -12.1 1.00e+00 1.00e+00f
                                       -1.7 3.87e+12 -12.6 1.00e+00 1.00e+00f
  19 -5.8113073e+12 0.00e+00 1.00e+00
        objective
                     inf pr
                              inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr
                                       -1.7 1.16e+13 -13.1 1.00e+00 1.00e+00f
  20 -1.7433922e+13 0.00e+00 1.00e+00
 21 -5.2301766e+13 0.00e+00 1.00e+00
                                       -1.7 3.49e+13 -13.5 1.00e+00 1.00e+00f
                                       -1.7 1.05e+14 -14.0 1.00e+00 1.00e+00f
  22 -1.5690530e+14 0.00e+00 1.00e+00
 23 -4.7071589e+14 0.00e+00 1.00e+00
                                       -1.7 3.14e+14 -14.5 1.00e+00 1.00e+00f
                                                                                1
 24 -1.4121477e+15 0.00e+00 1.00e+00
                                       -1.7 9.41e+14 -15.0 1.00e+00 1.00e+00f
                                       -1.7 2.82e+15 -15.5 1.00e+00 1.00e+00f
  25 -4.2364430e+15 0.00e+00 1.00e+00
  26 -1.2709329e+16 0.00e+00 1.00e+00
                                       -1.7 8.47e+15 -15.9 1.00e+00 1.00e+00f
                                       -1.7 2.54e+16 -16.4 1.00e+00 1.00e+00f
  27 -3.8127987e+16 0.00e+00 1.00e+00
  28 -1.1438396e+17 0.00e+00 1.00e+00
                                       -1.7 7.63e+16 -16.9 1.00e+00 1.00e+00f
                                                                               1
  29 -3.4315189e+17 0.00e+00 1.00e+00
                                       -1.7 2.29e+17 -17.4 1.00e+00 1.00e+00f
                              inf_du lg(mu) ||d|| lg(rg) alpha_du alpha_pr
iter
        objective
                     inf_pr
  30 -1.0294557e+18 0.00e+00 1.00e+00
                                       -1.7 6.86e+17 -17.8 1.00e+00 1.00e+00f
  31 -3.0883670e+18 0.00e+00 1.00e+00
                                       -1.7 2.06e+18 -18.3 1.00e+00 1.00e+00f
                                       -1.7 6.18e+18 -18.8 1.00e+00 1.00e+00f
  32 -9.2651009e+18 0.00e+00 1.00e+00
  33 -2.7795303e+19 0.00e+00 1.00e+00
                                      -1.7 1.85e+19 -19.3 1.00e+00 1.00e+00f
  34 -8.3385908e+19 0.00e+00 1.00e+00
                                      -1.7 5.56e+19 -19.7 1.00e+00 1.00e+00f
  35 -1.8338591e+20 0.00e+00 1.00e+00
                                      -1.7 1.00e+20 -20.0 1.00e+00 1.00e+00f
```

Number of Iterations....: 35

```
(scaled)
                                                         (unscaled)
Objective....:
                          -1.8338590849833298e+20
                                                   -1.8338590849833298e+20
Dual infeasibility....:
                          1.0000000000000000e+00
                                                   1.000000000000000e+00
Constraint violation...:
                          0.000000000000000e+00
                                                   0.000000000000000e+00
Variable bound violation:
                          0.000000000000000e+00
                                                   0.000000000000000e+00
Complementarity...:
                          0.000000000000000e+00
                                                   0.000000000000000e+00
Overall NLP error...:
                          1.000000000000000e+00
                                                   1.0000000000000000e+00
```

```
Number of objective function evaluations = 36

Number of objective gradient evaluations = 36

Number of equality constraint evaluations = 0

Number of inequality constraint evaluations = 0

Number of equality constraint Jacobian evaluations = 0

Number of inequality constraint Jacobian evaluations = 0

Number of Lagrangian Hessian evaluations = 35

Total seconds in IPOPT = 2.768
```

EXIT: Iterates diverging; problem might be unbounded.

Warning: could not parse Ipopt log file. SystemError("opening file \"C:\\\Users\\\\dawut\\\\
@ NLPModelsIpopt C:\Users\dawut\.julia\packages\NLPModelsIpopt\OGzSv\src\NLPModelsIpopt.jl:29

====== IPOPT ======

Statut : unknown

Itérations: -1

x* : [-1.8338590849833298e20]
f(x*) : -1.8338590849833298e20

 $\|g(x*)\|$: 0.0 $\|L\|$: Inf

Commentez le statut final d'IPOPT, les résidus d'optimalité, ainsi que la solution finale identifiée. Ajoutez vos propres commentaires concernant ce problème d'optimisation.

Commentaires

Dans le cadre de la modélisation d'un problème dégénéré, le résumé IPOPT affichant status = un-known, iter = -1, un pas gigantesque vers -1.8×10^2 et un résidu primal nul révèle que la contrainte $x^2=0$ n'a pas été transmise au modèle : IPOPT s'est donc retrouvé sans aucune restriction, a constaté que l'objectif linéaire f(x)=x est non borné vers $-\infty$ et a quitté aussitôt avec un gradient infini.