GROUP k-SCHEMES

1. Transporters

Definition 1.1. Let \mathfrak{G} be a monoid k-functor and let $\alpha : \mathfrak{G} \times \mathfrak{X} \to \mathfrak{X}$ be an action of \mathfrak{G} on a k-functor \mathfrak{X} . Suppose that $\mathfrak{Y}_1, \mathfrak{Y}_2$ are k-subfunctors of \mathfrak{X} . For every k-algebra A we define

Transp_{\mathcal{G}}
$$(\mathfrak{Y}_1, \mathfrak{Y}_2)(A) = \{ g \in \mathfrak{G}(A) \mid \alpha_g(\mathfrak{Y}_1(A)) \subseteq \mathfrak{Y}_2(A) \}$$

where as usual α_g is a slice of α along g. Then Transp_{\mathfrak{G}} ($\mathfrak{Y}_1, \mathfrak{Y}_2$) is a k-subfunctor of \mathfrak{G} . It is called the transporter of \mathfrak{Y}_1 into \mathfrak{Y}_2 with respect to α .

2. CHEVALLEY'S THEOREM

Now are ready to prove the following fundamental result.

Theorem 2.1 (Chevalley's theorem). Let k be a field and let \mathbf{M} be an affine monoid k-scheme of finite type over k. Suppose that \mathbf{N} is a closed monoid k-subscheme of \mathbf{M} . Then there exists a finitely dimensional vector space V over k and a morphism of monoid k-functors $\rho: \mathfrak{P}_{\mathbf{M}} \to \mathcal{L}_V$ such that the following assertions hold.

- **(1)** ρ *is closed immersion of k-functors.*
- **(2)** There exists a subspace W of V such that $N = \text{Transp}_{\mathbf{M}}(W, W)$.

For the proof we need the following elementary result.

Lemma 2.1.1. Let I be an ideal of \mathbf{N} in $k[\mathbf{M}]$. We consider $k[\mathbf{M}]$ as a representation of \mathbf{M} . Then $\mathbf{N} = \operatorname{Transp}_{\mathbf{M}}(I, I)$

Proof.