An Application of Machine Learning to Grading

Gautam Singh

March 29, 2023

Outline

- Introduction
- 2 Resources
- Grading Using the Gaussian Method
- Grading Using the K-Means Method
- Results
- Conclusions

Aim

Compare grade distribution obtained by using the K-means algorithm to the grade distribution obtained using a standard normal distribution.

- Which method is fairer?
 - Ourses with skewed performance?
 - 2 Courses with less students:)?
- Which method is faster to compute grades?
- Which method reflects student efforts better?
- What about failing students?
- Which method can be extended to assess based on other factors?

Resources

Marks datasheet and relevant Python codes can be found here.

- Marks of students: marks.xlsx
- Python code using Gaussian method: grades_norm.py
- Open Python code using K-means method: grades.py

Data Visualization

Figure: Histogram showing distribution of marks of the students.

Population Measures

Consider a dataset $\{\mathbf{x}_i\}_{i=1}^N$.

• The population mean is given by

$$\boldsymbol{\mu} \triangleq \mathbb{E}\left[\mathbf{x}\right] \tag{1}$$

The population covariance matrix is given by

$$\mathbf{\Sigma} \triangleq \mathbb{E}\left[(\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^{\top} \right]$$
 (2)

Sample Measures

Consider a sample $\{\mathbf{y}_i\}_{i=1}^n$ drawn from the earlier dataset $(n \ll N)$.

1 The sample mean is given by

$$\bar{\mathbf{x}} \triangleq \mathbb{E}\left[\mathbf{y}\right]$$
 (3)

The sample covariance matrix is given by

$$\mathbf{s} \triangleq \frac{n}{n-1} \mathbb{E} \left[(\mathbf{y} - \bar{\mathbf{x}}) (\mathbf{x} - \bar{\mathbf{x}})^{\top} \right]$$
 (4)

Note that the sample measures are **unbiased estimators** of their corresponding population measures.

The Z-score

- **1** We assume that the number of students is large and the distribution of their parameters follows a normal distribution with population mean μ and population covariance Σ .
- ② The Z-score of a student given their parameters x is given by

$$\mathbf{Z} \triangleq \mathbf{\Sigma}^{-\frac{1}{2}} \left(\mathbf{x} - \boldsymbol{\mu} \right) \tag{5}$$

Statistical Note

If the population is large, computing population parameters directly is cumbersome. In this case, use the sample parameters to calculate the Z-score.

Application

In this case, data is one dimensional (marks of the student). Also, the population size is small enough to directly compute population measures.

The Z-score in this case will be

$$Z = \frac{x - \mu}{\sigma} \tag{6}$$

where x denotes the marks of the student.

- ② The runtime in this case is O(N).
- The marks were scaled relative to the highest scoring student.

Grading Scheme

Interval	Grade
$(-\infty, -3]$	F
(-3, -2]	D
(-2, 1]	С
(-1, 0]	B-
(0, 1]	В
(1, 2]	A-
(2, 3]	Α
(3,∞)	A+

Table: Grading scheme used for calculation of Z-scores

The K-Means Algorithm

- 1 It is an unsupervised learning algorithm.
- It is a classification algorithm.
- 3 It is an EM algorithm (explained ahead).

Definitions

Consider a dataset $\{\mathbf{x}_n\}_{n=1}^N$ and K means $\{\boldsymbol{\mu}_k\}_{k=1}^K$.

① We define binary indicator variables r_{nk} for $1 \le n \le N$, $1 \le k \le K$ as

$$r_{nk} \triangleq \begin{cases} 1 & k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\|^{2} \\ 0 & \text{otherwise} \end{cases}$$
 (7)

The cost function is given by

$$J \triangleq \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$
 (8)

③ We are required to find $\{\mu_k\}_{k=1}^K$ such that (8) is minimized.

Working of the K-Means Algorithm

The K-Means algorithm is an EM algorithm. Initally, we choose an arbitrary set of means. In each iteration, there are two steps.

- **1** *E-step*: Here, we calculate all the r_{nk} as defined in (7).
- M-step: We set

$$\mu_k \leftarrow \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}} \tag{9}$$

What if a Cluster is Empty?

If we encounter a k such that $r_{nk} = 0 \ \forall \ 1 \le n \le N$, we can either

- **①** Discard the cluster (by setting $K \leftarrow K 1$)
- Selecting a point "far away" from all clusters.

Application

- In this case, K=8 and N=114. The algorithm converged in 5 iterations.
- ② The runtime in this case is O(NK) per iteration.
- The marks were scaled relative to the highest scoring student.

(a) Standard Normal Distribution

(b) K-Means Algorithm

Figure: Comparison of grading distributions using both algorithms.

Conclusions

- Grading on a Gaussian curve failed less (in fact zero) students than in the case of grading using the K-means algorithm.
- Grading on a Gaussian curve is faster for larger datasets, and both algorithms would have very little difference.
- The K-Means algorithm gives a better idea of the performance of the class, especially when it is skew.
- The K-Means algorithm can be extended to involve other factors such as attendance, prerequisites completed, and so on.