Random Graph theory

Benjamin Chu

March 1, 2020

Most materials from this note is taken from [1, 3]

1 Erdos-Renyi Graph Model

- We use G(n, p) to denote an undirected (Erdos-Renyi) graph with n nodes.
- An edge is formed between 2 nodes with probability $p \in (0,1)$ independently of other edges.
- A graph is **connected** when there is a path between every pair of vertices.

When p = p(n) is a function of n, we may be interested in the behavior of G(n, p(n)) as $n \to \infty$.

1.1 Warm-up

- **Q1.** What is the probability that a vertex is isolated in G(n, p)? Ans: A given node i cannot form an edge with each of the remaining n-1 nodes. Thus the probability is $(1-p)^{n-1}$.
- **Q2.** What is the probability that node 1 and node 2 are both isolated? Let I_1, I_2 be the indicator that node 1 and node 2 are isolated. Then $P(I_1 \cap I_2) = P(I_1)P(I_2 \mid I_1) = (1-p)^{n-1} * (1-p)^{n-2} = (1-p)^{2n-3}$.
- **Q3.** What is the probability that a group of k nodes do not connect to the rest of the n-k nodes? There are $\binom{n}{k}$ number of ways to choose k vertices. Each of these cannot form an edge with the remaining n-k nodes independently with probability $(1-p)^{n-k}$. So overall we have $(1-p)^{(n-k)k}$.

2 Sharp Threshold for Connectivity

The first lecture will be a proof of the following result. This proof uses several techniques you learned in this class.

Theorem 2.1 Erdos-Renyi 1961

Consider a graph $g \sim G(n,p(n))$ where $p(n) = \lambda \frac{\ln(n)}{n}$. Then as $n \to \infty$,

 $P(g \text{ connected}) \rightarrow 0 \text{ if } \lambda < 1$

 $P(g \text{ connected}) \rightarrow 1 \text{ if } \lambda > 1$

Proof. Suppose $\lambda < 1$. Since P(connected) = 1 - P(disconnected), we will show $P(\text{disconnected}) \to 1$ by showing that **there is at least 1 isolated node**. Define

- X_n to be a random variable that counts the number of isolated nodes
- I_i to be a (Bernoulli) indicator random variable such that $I_i = 1$ when node i is isolated and is 0 otherwise
- Let p = p(n) and $q = q(n) = (1 p(n))^{n-1}$ be the probability of a node being isolated

We want to show $P(X_n > 0) \to 1$, or equivalently, $P(X_n = 0) \to 0$. To get a bound on $P(X_n = 0)$, we observe:

$$Var(X_n) = E(X_n - E(X_n))$$

$$= P(X_n = 0)(0 - E(X_n)^2 + P(X_n = 1)(1 - E(X_n))^2 + \dots$$

$$\geq P(X_n = 0)E(X_n)^2.$$

Thus

$$\frac{\operatorname{Var}(X_n)}{E(X_n)^2} \ge P(X_n = 0). \tag{2.1}$$

We will now calculate $Var(X_n)$ and $E(X_n)$ explicitly to show that the left hand side of (2.1) goes to 0. By linearity of expectation and applying definition of indicators,

$$E(X_n) = E\left(\sum_{i=1}^n I_i\right) = \sum_{i=1}^n E(I_i) = \sum_{i=1}^n P(I_i) = nq.$$

Since indicators I_i are **not independent** (why?), we use equation (1.10) in your book [2]:

$$Var(X_n) = Var\left(\sum_{i=1}^n I_i\right) = \sum_{i=1}^n Var(I_i) + \sum_{i=1}^n \sum_{j \neq i} Cov(I_i, I_j)$$

$$= \sum_{i=1}^n q(1-q) + \sum_{i=1}^n \sum_{j \neq i} [E(I_i I_j) - E(I_i) E(I_j)] \quad \text{(since Var(Bernoulli)} = p(1-p))$$

$$= nq(1-q) + \sum_{i=1}^n \sum_{j \neq i} [P(I_i \cap I_j) - P(I_i) P(I_j)]$$

$$= nq(1-q) + \sum_{i=1}^n \sum_{j \neq i} [(1-p)^{n-1}(1-p)^{n-2} - (1-p)^{n-1}(1-p)^{n-1}]$$

$$= nq(1-q) + \sum_{i=1}^n \sum_{j \neq i} \left[\frac{q^2}{1-p} - q^2 \right]$$

$$= nq(1-q) + n(n-1)q^2 \frac{p}{1-p}.$$

Thus

$$\frac{\operatorname{Var}(X_n)}{E(X_n)^2} = \frac{nq(1-q) + n(n-1)q^2 \frac{p}{1-p}}{(nq)^2} = \frac{1-q}{nq} + \frac{n-1}{n} \frac{p}{1-p}.$$

We will now show these terms approach 0 as $n \to \infty$, then eq (2.1) will give us what we need. The first term is dominated by nq, and

$$\begin{split} &\lim_{n\to\infty} nq = \lim_{n\to\infty} n(1-p)^{n-1} = \lim_{n\to\infty} \exp\left\{\ln(n) + (n-1)\ln(1-p)\right\} \\ &= \lim_{n\to\infty} \exp\left\{\ln(n) + (n-1)\ln\left(1 - \frac{\lambda \ln(n)}{n}\right)\right\} \\ &\approx \lim_{n\to\infty} \exp\left\{\ln(n) - \lambda \frac{n-1}{n}\ln(n)\right\} \quad \left(\ln(1-x) = 1 - x + \frac{x^2}{2} - \dots \approx -x + O(x^2) \text{ for small } x\right) \\ &= \lim_{n\to\infty} \exp\left\{\ln(n)\left(1 - \lambda \frac{n-1}{n}\right)\right\} \\ &= \infty \qquad \left(\text{since } \lambda < 1 \text{ and } n \to \infty\right) \end{split}$$

For the second term, observe that $p = \lambda \frac{\ln(n)}{n} \to 0$ as $n \to \infty$. So $\frac{p}{1-p} \to 0$ as well. This completes the case for $\lambda < 1$.

Part II. Now suppose $\lambda > 1$. We want to show $P(\text{connected}) \to 1$, or equivalently $P(\text{disconnected}) \to 0$. A graph is disconnected if there is a subgraph of k nodes that does not connect to any of the other n - k nodes

(draw a picture). By symmetry, we only have to consider $k \in \{1, 2, ... \lfloor n/2 \rfloor\}$. So

$$P(\text{disconnected}) = \bigcup_{k=1}^{\lfloor n/2 \rfloor} P(\text{some set of } k \text{ nodes not connected to the rest})$$

$$\leq \sum_{k=1}^{\lfloor n/2 \rfloor} P(\text{some set of } k \text{ nodes not connected to the rest}) \quad (\text{inclusion-exclusion picture})$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \left[(1-p)^{(n-k)} \right]^k$$

$$\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} e^{p(n-k)k} \quad \left(e^{-x} = 1 - x + \frac{x^2}{2} - \dots \approx 1 - x + O(x^2) \text{ for small } x \right)$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \exp \left\{ \frac{-\lambda \ln(n)(n-k)k}{n} \right\}$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k}$$

$$= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} + \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} \quad \left(\text{Choose } n^*s.t. \frac{\lambda(n-n^*)}{n} > 1 \iff n^* = \lfloor n(1-\frac{1}{\lambda}) \rfloor \right)$$

For the first term,

$$\begin{split} \sum_{k=1}^{n^*} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} &\leq \sum_{k=1}^{n^*} n^k n^{\frac{-\lambda}{n}(n-k)k} = \sum_{k=1}^{n^*} \left[n^{1-\frac{\lambda}{n}(n-k)} \right]^k \\ &\leq \sum_{k=1}^{n^*} \left[n^{1-\frac{\lambda}{n}(n-n^*)} \right]^k \qquad \text{(judiciously bound inner} k \text{ with something bigger)} \\ &= \sum_{k=1}^{n^*} r^k \qquad \left(\text{define } r = n^{1-\frac{\lambda}{n}(n-n^*)} \right) \\ &= \left(\sum_{k=0}^{n^*} r^k \right) - 1 \\ &= \frac{r}{1-r} \qquad \text{(geometric series; } 1 - \frac{\lambda}{n}(n-n^*) < 0, \text{ so } r < 1) \\ &= \frac{1}{n^{\frac{\lambda}{n}(n-n^*)-1}-1}} \\ &\longrightarrow 0 \qquad \text{(since } n \to \infty \text{ and exponent} > 0) \end{split}$$

For the second term, we use a better bound than before (see homework):

$$\binom{n}{k} < \left(\frac{ek}{k}\right)^k.$$

Thus

$$\begin{split} \sum_{k=n^*+1}^{\lfloor n/2\rfloor} \binom{n}{k} n^{\frac{-\lambda}{n}(n-k)k} &\leq \sum_{k=n^*+1}^{\lfloor n/2\rfloor} \left(\frac{en}{k}\right)^k n^{\frac{-\lambda(n-k)k}{n}} = \sum_{k=n^*+1}^{\lfloor n/2\rfloor} \left[\frac{en^{1-\frac{\lambda(n-k)}{n}}}{k}\right]^k \\ &\leq \sum_{k=n^*+1}^{\lfloor n/2\rfloor} \left[\frac{en^{1-\frac{\lambda(n-k)}{n}}}{n^*+1}\right]^k \qquad \text{(bound inner k with something from above)} \\ &= \sum_{k=n^*+1}^{\lfloor n/2\rfloor} \left[\frac{en^{1-\frac{\lambda}{2}}}{n(1-\frac{1}{\lambda})+1}\right]^k \leq \sum_{k=n^*+1}^{\lfloor n/2\rfloor} \left[\frac{en^{\frac{-\lambda}{2}}}{1-\frac{1}{\lambda}}\right]^k \\ &\leq \sum_{k=n^*+1}^{\lfloor n/2\rfloor} r^k \qquad (r = \frac{en^{\frac{-\lambda}{2}}}{1-\frac{1}{\lambda}}, 0 < r < 1 \text{ for large } n) \\ &\leq \sum_{k=n^*+1}^{\infty} r^k = \sum_{k=0}^{\infty} r^k - \sum_{k=n^*+1}^{n^*} r^k \\ &= \frac{1}{1-r} - \frac{1-r^{n^*+1}}{1-r} \qquad \text{(finite geometric series } \sum_{k=0}^{m} r^k = \frac{1-r^{m+1}}{1-r}) \\ &= \frac{r^{n^*+1}}{1-r} \longrightarrow 0 \qquad \text{since } n^* \to \infty. \end{split}$$

3 Clustering graphs

Sometimes it is informative to lump a graph's nodes into several groups, so that there are much more edges within groups than between groups. There are many ways to do this, but this lecture will cover a simple extension of k-means clustering based on random walks [6]. First some motivations:

- Document classification
- Image segmentation
- Protein structural integrity: consider a protein where each amino acid residue are nodes. We can cluster the residues to identify protein substructure and/or important residues crucial for the protein's structural or catalytic functions.

3.1 Review: Euclidean distance for K-means and Hierarchical clustering

Clustering algorithms require some measures of distance between nodes **x** and **y**. One common distance measure is the Euclidean distance: $d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_i (x_i - y_i)^2}$.

4 Problems

In honor of Ken Lange, you are required to do 2 problems. If you do more I will grade your top 2 problems. Every problem is worth the same number of points. If a problem has subproblems, each subproblem is worth the same number of points.

Problem 4.1 Bounds of binomial coefficients

For integers n and k, prove the following inequalities

$$\frac{n^k}{k^k} \le \binom{n}{k} \le \frac{n^k}{k!} < \left(\frac{ne}{k}\right)^k$$

which is used in our proof for theorem 2.1. For the strict inequality, rewrite $\frac{n^k}{k!} = \left(\frac{n}{k}\right)^k \frac{k^k}{k!}$ and use Taylor expansion on e^k .

Problem 4.2 Colorings of graphs

Let K_z be a **complete graph** where all $z \in \mathbb{Z}_+$ nodes forms an edge with every other node. With equal probability, each edge is colored with red or green. Prove that z = 6 is the minimal number of nodes needed to guarantee the existence of a **monochromatic triangle** (i.e. triangle with all edges the same color).

Side story to this problem: in Ramsey theory, this corresponds to the value R(3,3). Similarly, R(3,4) is the minimal number of nodes to guarantee a red triangle or green square. Function R obviously generalizes to more colors and shapes. Using Erdos' probabilistic method, Ramsey's theorem (see [5] or theorem 3.3 of [4]) says this number is finite but exponential. This takes us to Erdos' famous quote:

Suppose aliens invade earth and threaten to obliterate us within a year unless human beings can find R(5,5). We could marshal the world's best minds and fastest computers, and within a year we could probably calculate the value. However, if the aliens demanded R(6,6), we would have no choice but to launch a preemptive attack.

If you want to be famous, find R(5,5).

References

- [1] Acemoglu, D. and Ozdaglar, A. (2009). Lecture 3: Erdos-Renyi graphs and Branching Processes. http://economics.mit.edu/files/4621.
- [2] Lange, K. (2010). Applied probability. Springer Science & Business Media.
- [3] Ramchandran, K. (2009). Random Graphs. https://inst.eecs.berkeley.edu/~ee126/sp18/random-graphs.pdf.
- [4] Van Lint, J. H., Wilson, R. M., and Wilson, R. M. (2001). *A course in combinatorics*. Cambridge university press.

- [5] Vasey, S. (2018). The Probabilistic Method and Ramsey Theory. http://people.math.harvard.edu/~sebv/probability-spring-2018/probabilistic-notes.pdf.
- [6] Yen, L., Vanvyve, D., Wouters, F., Fouss, F., Verleysen, M., and Saerens, M. (2005). clustering using a random walk based distance measure. In *ESANN*, pages 317–324.