Constructing A General Purpose Cellular Computer

An Explorative Approach to Nanocomputers

Markus Koskimies
Master's Thesis presentation
30.4.2010

Supervisors: Dr. Peter Antoniac, Mr. Antti Alasalmi

Reviewers: Prof. Olli Martikainen, Prof. Valentin Cristea

Contents

- Backgrounds
- Research objectives
- Research method
- Results
- Conclusions
- Further research

Backgrounds

- Find out, how future computers are programmed
- Generally, increasing number of logical switches increases the processing power of the computer → nanotechnology
- There are evidence from previous research that nanocomputers are made cellular
 - Simple processing cells
 - Connected to nearest neighbors

Research objectives

- Analyze the properties of cellular computer
- Make experiments with a cellular computer
- Analyze, how software could be build and organized with cellular computers
- Research questions
 - What kind of physical structure a cellular computer has?
 - How cellular computer is built as general purpose computer?
 - How to implement and organize operating system and software to cellular computer?

Research method

- Constructive research
 - A virtual cellular computer was built
 - Evaluated with selected experiments
- Eplorative nature
 - At the beginning, all possibilities were considered
 - By analyzing, the ones with most support with current research were selected

General Purpose Computer

- A general purpose computer has two important theoretical properties:
 - It is Turing complete
 - It is self-reconfigurable

Cellular Computer

Physical realization

- 3D technology
 - Massive amounts of devices
 - The size is not practical otherwise
- Energy consumption, heat generation
 - A big problem with massive amounts of switching devices
- Defects and faults
 - Even with nearly perfect manufacturing, large numbers of defected cells

Physical realization

- To fight against the problems:
 - Asynchronicity; tolerates variations in timings, due to overheating or lack of energy
 - Self-reconfigurability; for creating configurations on the fly, not using faulty cells

Logical Cell Model

- Was created for experimenting cellular computer
- String based processing:
 - Streams of NIL terminated tokens (in this case, 5 bits)
 - Cells are state machines
 - For being able to do configurations manually

Logical Cell Model

Experiments

- Three problems selected
 - A Turing machine emulation
 - A self-replicating machine
 - An algorithm to solve Eight Queens' Problem

Turing Machine Emulation

- Busy Beaver 501 implemented as an example
- Two-stack approach
 - Fits well for cellular automaton

Turing machine emulation

Turing machine emulation

Self replicating loop

- Originally, a von Neumann processor was considered
 - Sequential processor
 - Both data and code in same memory
- Later, a simpler solution was found and implemented

Self replicating loop

Self replicating loop

 Implemented for experimenting selfreconfigurability

Eight Queen's Problem

- Implemented for experimenting computational problem solving
- Two approaches
 - With (general purpose) sequential processor emulation
 - With dedicated configuration

MLI, Machine Language Interp.

- Emulation of sequential processor
- Executing recursive algorithm to solve the problem

MLI Architecture

Dedicated solution

- Dedicated, parallel solver
- DEQPS (Dedicated Eight Queens' Problem Solver)

Software and Operating System

- As backgrounds, research on reconfigurable platforms was analyzed
- Combined with the results of the experiments

Software development

- Existing languages, tools and methodologies can be used
- Selection criteria is human productiveness
 - Compiler technology hides the low-level architecture
- Similar toolchain as with reconfigurable computers

Operating System

Boundary cells

Operating System (3D)

Conclusions

- General purpose cellular computers are:
 - Turing Complete
 - Asynchronous
 - Self-reconfigurable
- The software development is similar to existing computers (with future advances)
- The operating system is logically the same, but internally very different from existing computers

Further research

- String based computation
- Larger constructions
- Realtime vs. asynchronicity
- Distributed computing
- Dataflow computing

Thank you!