Problem session 4 PSYC 4301

Given the assumptions of classical test theory, answer the following:

1. If the observed score X is 85 and the error score E is 7, what is the true score T?

- 2. If the true score T is 32 and the observed score X is 28, what is the error score E?
- 3. If the true score variance σ_T^2 is 10 and the observed score variance σ_X^2 is 12, what is the error score variance σ_E^2 ?
- 4. If the observed score variance σ_X^2 is 16 and the true score variance σ_T^2 is 9, calculate the correlation between observed scores X and true scores T.
- 5. If the error score variance σ_E^2 is 3 and the true score variance σ_T^2 is 8, calculate the reliability coefficient $\rho_{XX'}$.
- 6. If the true score variance σ_E^2 is 15 and the error score variance σ_X^2 is 4, calculate the reliability coefficient $\rho_{XX'}$.

Suppose we have a test X with reliability coefficient $\rho_{XX'} = 0.75$ and we calculate an observed score variance of 32.

1. Calculate and interpret the values of σ_T^2/σ_X^2 , σ_E^2/σ_X^2 , ρ_{XE} , and ρ_{XT}

2. Calculate the true-score variance and the error variance.

3. Calculate the expected measurement error of our test X.

Suppose we have a test X with reliability coefficient $\rho_{XX'} = 0.40$ and we calculate an observed score variance of 84.

1. Calculate the true-score variance and the error variance.

2. Calculate expected measurement error for our test X.

3. Suppose someone scores 75 on this test. Calculate a 95% confidence interval for their true score.