MA 109 : Calculus-I D4-T3, Tutorial 2

Krushnakant

IIT Bombay

2nd December 2020

Today we'll do...

- Sheet 1
 - 13 (ii) Continuity
 - 15 Differentiability
 - 18 Functional Equation
- Sheet 2
 - 3 Intermediate Value Property and Rolle's Theorem; Uniqueness and Existence.
 - 5 Mean Value Theorem
- Optional Sheet 1
 - 7 Increment Lemma
 - 10- Fixed Point

13. (ii) The given function is continuous everywhere.

Proof. For $x \neq 0$, it simply follows from the fact that product and composition of continuous functions is continuous.

To show continuity at x=0 : using $\epsilon-\delta$ method

Let $\epsilon > 0$ be given.

Then we have to find a $\delta > 0$ such that $0 < |x - 0| < \delta$ should imply $|f(x) - f(0)| < \epsilon$

f(0)=0, so, we have to find a $\delta>0$ such that $0<|x|<\delta$ should imply $|f(x)|<\epsilon$

For $x \neq 0$ (which we can assume since we only worry about $0 < |x| < \delta$)

We have
$$|f(x)| = |x \sin(1/x)| < |x|$$

So if we consider $\delta := \epsilon$, we have

$$0 < |x| < \delta \implies 0 < |x| < \epsilon \implies |f(x)| < |x| < \epsilon$$

And we are done.

13. (ii) The function is continuous everywhere.

Proof. For $x \neq 0$, it simply follows from the fact that product and composition of continuous functions is continuous.

To show continuity at x = 0:

Let (x_n) be any sequence of real numbers such that $x_n \to 0$. We must show that $f(x_n) \to 0$.

Let $\epsilon > 0$ be given.

Observe that
$$|f(x_n) - 0| = \left| x_n \sin \left(\frac{1}{x_n} \right) \right| \le |x_n|$$
.

Now, we shall use the fact $\dot{x_n} \to 0$.

By this hypothesis, there must exist $n_1 \in \mathbb{N}$ such that $|x_n| = |x_n - 0| < \epsilon \quad \forall n \ge n_1$. Choosing $n_0 = n_1$, we have it that $|f(x_n) - 0| \le |x_n| < \epsilon \quad \forall n \ge n_0$.

15. To Show that f(x) is differentiable where $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

For $x \neq 0$, it simply follows from the fact that product and composition of differentiable functions is differentiable.

At x = 0, we use the definition:

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h^2 \sin(1/h) - 0}{h} = \lim_{h \to 0} h \sin\left(\frac{1}{h}\right) = 0 \quad \text{(Proved earlier)}$$

15. contd.

By Chain Rule, the derivative of f(x) is

$$f'(x) = \begin{cases} 2x \sin(1/x) - \cos(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

 $\lim_{x\to 0} 2x \sin(1/x) = 0 \text{ but } \cos(1/x) \text{ does not exist!}$

 $\lim_{x\to 0} f(x)$ does not exist. f is discontinuous at 0.

This is a function which is differentiable, but not continuously differentiable.

18. Given:
$$f(x+y) = f(x)f(y)$$
 for all $x, y \in \mathbb{R}$. (1)

To prove f is differentiable.

Let x = y = 0. This gives us that $f(0) = (f(0))^2$.

Thus, f(0) = 0 or f(0) = 1.

Case 1.
$$f(0) = 0$$
. Substitute $y = 0$ in (1). Thus, $f(x) = f(0)f(x) = 0$.

Thus, f is identically 0 which means it's differentiable everywhere with derivative 0.

Verify that f'(c) = f'(0)f(c) does hold for all $x \in \mathbb{R}$. (We did not need to use the fact that f is differentiable at 0, it followed from definition.)

Case 2. f(0) = 1.

As f is differentiable at 0, we know that:

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = f'(0) \implies \lim_{h \to 0} \frac{f(h) - 1}{h} = f'(0). \tag{2}$$

18 contd.

Now, let us show that f is differentiable everywhere.

Let $c \in \mathbb{R}$. We must show that the following limit exists:

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}$$

Using (1), we can write the above expression as:

$$\lim_{h \to 0} \frac{f(c)f(h) - f(c)}{h} \ = \lim_{h \to 0} \frac{f(c)(f(h) - 1)}{h} = f(c) \cdot \lim_{h \to 0} \frac{f(h) - 1}{h}.$$

By (2), we know that the above limit exists. Thus, we have it that f is differentiable at c for every $c \in \mathbb{R}$. Moreover, f'(c) = f'(0)f(c).

(**Optional**) We have gotten that f' is a scalar multiple of f. Use this to conclude.

Note. Optional problems 7, 10 are covered last, after Sheet 2's question 5 is done.

Lagrange's Mean Value Theorem (MVT)

```
Theorem (MVT)
```

Let a < b and $f : [a, b] \to \mathbb{R}$ be a function such that

- (i) f is continuous on [a, b], and
- (ii) f is differentiable on (a, b).

Then there exists
$$c \in (a, b)$$
 such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Optional Exercise

Last Year's Quiz Question.

Let $f:[0,1]\to\mathbb{R}$ be continuous on [0,1] and differentiable on (0,1).

Further, Suppose $\lim_{x\to 0^+} = L$ for some $L\in\mathbb{R}$.

Show that f'(0) exists and f'(0) = L.

3. Part 1. We will first show the existence of such an $x_0 \in (a, b)$. Proof. I := [a, b] is an interval and f is continuous. Thus, f has the intermediate value property on I. Thus, the range J := f(I) must be an interval. As f(a) and f(b) are of different signs, 0 lies between them. As f(a), $f(b) \in J$ and J is an interval, we have it that $0 \in J = f(I)$. Thus, $0 = f(x_0)$ for some $x_0 \in I = (a, b)$.

Part 2. Now we will show the uniqueness of x_0 . Assume that there exists $x_1 \in (a, b)$ such that $f(x_1) = 0$. We may assume that $x_0 < x_1$.

Now, we know the following:

- (i) f is continuous on $[x_0, x_1]$,
- (ii) f is differentiable on (x_0, x_1) , and
- (iii) $f(x_0) = f(x_1)$.

Thus, by Rolle's Theorem, there exists $x_2 \in (x_0, x_1)$ such that $f'(x_2) = 0$. But this contradicts the hypothesis that $f'(x) \neq 0$ for all $x \in (a, b)$.

5. To prove that $|\sin a - \sin b| \le |a - b|$ for all $a, b \in \mathbb{R}$.

Case 1. a = b. Trivial.

Case 2. $a \neq b$. Without loss of generality, we can assume that a < b.

As $f := \sin is$ continuous and differentiable on \mathbb{R} , there exists $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$
 (By MVT)

Also, we know that $|f'(c)| = |\cos c| \le 1$.

Thus, we have it that $\left| \frac{f(b) - f(a)}{b - a} \right| \le 1$.

This is equivalent to what we wanted to prove.

Increment Lemma

Definition (Increment Lemma)

Let $f: D \to \mathbb{R}$, and c be an interior point of D. Then, f is differentiable at c \iff there is a function $f_1:D\to\mathbb{R}$. which is continuous at c. and satisfies

$$f(x) - f(c) = (x - c)f_1(x)$$
 for all $x \in D$

Here, f_1 is unique and $f'(c) = f_1(c)$.

Try. Prove the Chain Rule using the above definition of differentiability.

We'll prove $(i) \implies (ii)$, $(ii) \implies (i)$; $(i) \iff (iii)$. Equivalence follows.

1. For (i) \Longrightarrow (ii). Given: f is differentiable at c. Let $\alpha = f'(c)$. Then we have: f(c+h) - f(c)

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}=\alpha$$

That means, for every $\epsilon > 0$, there is a $\delta > 0$, such that

$$0<|h|<\delta \implies |\frac{f(c+h)-f(c)}{h}-\alpha|<\epsilon.$$

Then, choose some ϵ , say $\epsilon=0.01$, take the corresponding δ and define $\epsilon_1(h)$ as follows:

$$\epsilon_1(h) = \begin{cases} \frac{f(c+h) - f(c) - \alpha h}{h} & \text{if} \quad h \in (-\delta, \delta) \setminus \{0\} \\ 0 & \text{if} \quad h = 0 \end{cases}$$

Easy to verify that, indeed, $\lim_{h\to 0} \epsilon_1(h) = 0$.

Thus we have shown the existence of a $\delta > 0$, and the function $\epsilon_1(h)$.

2. For $(ii) \implies (i)$.

We're given that there exists a $\delta > 0$ and a function $\epsilon_1 : (-\delta, \delta) \to \mathbb{R}$, with

 $\lim_{h\to 0} \epsilon_1(h) = 0$, such that the following holds:

$$f(c+h) = f(c) + \alpha h + h\epsilon_1(h).$$

We have to prove that f is differentiable at c.

For $h \in (-\delta, \delta) \setminus \{0\}$ (We don't have to worry about h = 0), rewriting given equation as:

$$\frac{f(c+h)-f(c)}{h}=\alpha+\epsilon_1(h)$$
, and taking limit as $h\to 0$; we have:

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}=\alpha$$

3.
$$(i) \iff (iii)$$

Given: f is differentiable at c. Let $\alpha = f'(c)$.

$$\iff \lim_{h\to 0} \frac{f(c+h)-f(c)}{h} = \alpha$$

$$\iff \lim_{h\to 0} \frac{f(c+h)-f(c)}{h} - \alpha = 0$$

$$\iff \lim_{h\to 0} \frac{f(c+h)-f(c)-\alpha h}{h} = 0$$

$$\iff \lim_{h\to 0} \left| \frac{f(c+h) - f(c) - \alpha h}{h} \right| = 0$$

$$\iff \lim_{h\to 0} \frac{|f(c+h)-f(c)-\alpha h|}{|h|} = 0$$

Fixed Point

Definition (Fixed Point)

A **fixed point** (sometimes shortened to *fixpoint*, also known as an *invariant* point) of a function $f: \mathbb{A} \to \mathbb{B}$, is an element of the function's domain (some $c \in \mathbb{A}$) that is mapped to itself by the function, i.e. f(c) = c.

In simpler words, c is a fixed point of the function f if f(c) = c.

This means $f(f(\cdots f(c)\cdots)) = f^n(c) = c$.

It is an important terminating consideration when recursively computing f.

A set of fixed points is sometimes called a fixed set.

- **Q.** Show that any (i.e. *every*) continuous function $f:[0,1] \to [0,1]$ has a fixed point. We'll prove a more general result.
- **Q.** For $a, b \in \mathbb{R}$, a < b; every continuous function $f : [a, b] \to [a, b]$ has a fixed point.

Proof.

First see that $f(a) \ge a$ and $f(b) \le b$. Equivalently, $-f(a) \le -a$ and $-f(b) \ge -b$. Consider the function g(x) = x - f(x).

As g is a difference of two continuous functions, it is continuous.

$$g(a) = a - f(a) \le a - a = 0$$
 Also, $g(b) = b - f(b) \ge b - b = 0$

Thus,
$$g(a) \le 0 \le g(b)$$
, i.e. $0 \in [g(a), g(b)]$

By intermediate value theorem, there is some c for which g(c) = 0., i.e. f(c) = c.

