1 相互結合型ニューラルネットワーク

1.1 相互結合型ニューラルネットワークの形態

相互結合型ニューラルネットワークは任意のニューロン同士が結合しているネットワークである。階層型ニューラルネットワークは一般に結合の向きで各ニューロンに順序関係が定まるのに対して、相互結合型ニューラルネットワークにおいては順序関係が定まらない。また、階層型ニューラルネットワークは一般に時系列を扱わないのに対して、相互結合型ニューラルネットワークは時刻の経過によって出力を計算する。

相互結合型ニューラルネットワークには外界から入力を受け取るユニット I、外界へ出力を出すユニット O、それ以外のユニット H が存在する。また必ずしも $I \cup O = \phi$ であるとは限らない。

1.2 連想記憶

人間における記憶の検索は連想によって行なわれているとされる。この連想による検索を再現するニューラルネットワークが相互結合型ニューラルネットワークである。ここで、ニューラルネットワークにおける連想記憶の定義を示す。

定義 1: 連想記憶 (associative memory) 入力パターンの集合 I、出力パターンの集合 O に対してニューラルネットワーク n が写像 $n: I \to O$ として定まることである。また I = O であるような連想記憶を自己相関連想記憶 (autoassociative memory)、 $I \neq O$ であるような連想記憶 (heteroassociative memory) という。

代表的な相互結合型ニューラルネットワークであるホップフィールドモデルは最適化問題にも用いられている。

1.3 ホップフィールドモデル

1.3.1 ホップフィールドモデル (Hopfield model)

ホップフィールドモデルはアメリカの物理学者 J.J. Hopfield が導入したニューラルネットワークである。以下にホップフィールドモデルの特徴を示す。

- 複数のニューロンで構成され、各ニューロンは自分以外の全てのニューロンから出力を受け取る
- エネルギー関数の極小化するように各ニューロンの内部状態が変化する
- ニューロン間のシナプス結合荷重が対称である
- ニューロンの出力は各ニューロンの内部状態に依存する

• ある時刻において、1 つのニューロンのみが他のニューロンからの出力を受け内部状態変化を起こす

ホップフィールドモデルは当初2値の出力値を扱うものとして提案されたが、その後連続値へと拡張された。このモデルは物理モデルから発展したものであり、脳のモデル化と言い難いものである。したがって、あくまでニューラルネットワークの特徴の解析から発生した1つの数理モデルであるととらえるべきである。

ニューラルネットワークの状態は各ニューロンの出力を並べてベクトルとすることで表わすことができる。

1.3.2 2 値ホップフィールドモデル

本節では $n \in \mathbb{N}$ 個の 2 値出力のニューロンからなるホップフィールドモデルを考える。 離散時間 t $(t=0,1,2,\cdots)$ のときにニューロン i $(i=1,2,\cdot,n)$ の内部状態 $u_i(t)$ 、出力値 $x_i(t)$ を

$$x_i(t+1) = \begin{cases} 1, & u_i(t) > 0 \\ x_i(t), & u_i(t) = 0 \\ 0, & u_i(t) < 0 \end{cases}$$
 (1.1)

$$u_i(t) = \sum_{j=1}^{n} w_{i,j} x_j(t) - \theta_i$$
 (1.2)

と定義する。ここで $w_{i,j}$ はニューロンi とニューロンj 間のシナプス結合荷重、 θ_i はニューロンi の時刻t におけるしきい値である。また $w_{i,i}=w_{i,i},w_{i,i}=0$ である。

式 (1.2) は神経細胞モデルにおいて膜電位の計算式と同等であるため、式 (1.1) とあわせてみると、膜電位を越えたら出力は 1 となり膜電位を越えない場合は出力は 0 となるととらえることができる。ホップフィールドモデルにおいてニューロンの内部状態とは階層型ニューラルネットワークでの膜電位と同じ意味の単語である。膜電位ではなく内部状態という単語を用いているのは、ホップフィールドモデルが物理から発展したモデルであるためである。

ニューラルネットワークの状態は各ニューロンの出力を並べたものであるため、n 個のニューロンによる 2 値ホップフィールドモデルならば 2^n の状態を持つ。

このニューラルネットワークのエネルギー関数 E は

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} x_i x_j + \sum_{i=1}^{n} \theta_i x_i$$
 (1.3)

として定義される。式 (1.3) の値は任意の状態から式 (1.1) と式 (1.2) に従って内部状態変化を繰り返すことで必ず平衡状態へと遷移する。

Proof. ホップフィールドモデルにおいて1度の内部状態変化では1つのニューロンの内部状態のみが変化する。よって1度の内部状態変化でエネルギー関数の値が減少もしくは変らないことを示せばよい。

まず式 (1.3) をある k $(k = 1, 2, \dots, n)$ を用いて

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j} x_i x_j + \sum_{i=1}^{n} \theta_i x_i$$

$$= -\frac{1}{2} \sum_{i \neq k} \sum_{j \neq k} w_{i,j} x_i x_j + \sum_{i \neq k} \theta_i x_i - \frac{1}{2} x_k \sum_{i=1}^{n} w_{i,k} x_i - \frac{1}{2} x_k \sum_{j=1}^{n} w_{k,j} x_j + \theta_k x_k$$

と変形すると $w_{i,j} = w_{j,i}$ であるため

$$E = -\frac{1}{2} \sum_{i \neq k} \sum_{i \neq k} w_{i,j} x_i x_j + \sum_{i \neq k} \theta_i x_i - x_k \sum_{i=1}^n w_{i,k} x_i + \theta_k x_k$$
 (1.4)

となる。

ここである t ($t=0,1,2,\cdots$) においてニューロン k が式 (1.1) と式 (1.2) に従って内部状態変化を起こしたとすると、 k でない任意の i ($i=1,2,\cdots,n$) に対して

$$x_k(t+1) = x_k(t) + \Delta x_k$$
$$x_i(t+1) = x_i(t)$$

が成立する。ここで $\Delta x_k \in \{-1,0,1\}$ である。式 (1.4) から時刻 t と t+1 のエネルギー E(t), E(t+1) を計算するとそれぞれ

$$E(t) = -\frac{1}{2} \sum_{i \neq k} \sum_{j \neq k} w_{i,j} x_i(t) x_j(t) + \sum_{i \neq k} \theta_i x_i(t) - x_k(t) \sum_{i=1}^n w_{i,k} x_i(t) + \theta_k x_k(t)$$

$$E(t+1) = -\frac{1}{2} \sum_{i \neq k} \sum_{j \neq k} w_{i,j} x_i(t) x_j(t) + \sum_{i \neq k} \theta_i x_i(t) - x_k(t+1) \sum_{i=1}^n w_{i,k} x_i(t) + \theta_k x_k(t+1)$$

となり、エネルギー関数の差分 ΔE は

$$\Delta E = E(t+1) - E(t)$$

$$= -\left[x_k(t+1) - x_k(t)\right] \sum_{i=1}^n w_{i,k} x_i(t) + \left[x_k(t+1) - x_k(t)\right] \theta_k x_k(t+1)$$

$$= -\left[\sum_{i=1}^n w_{i,k} x_i(t) - \theta_k\right] \Delta x_k$$

と書くことができ、式(1.2)から

$$\Delta E = -u_k(t)\Delta x_k$$

が得られる。時刻 t から t+1 にかけてニューロン k の内部状態が変化しなかった場合は $\Delta x_k=0$ であるため $\Delta E=0$ となる。内部状態が変化した場合を考えると $u_k(t)>0$ かつ $x_k(t)=0$ というパターンと $u_k(t)<0$ かつ $x_k(t)=1$ というパターンが考えられる。 $u_k(t)>0$ かつ $x_k(t)=0$ である場合、式 (1.1) から $x_k(t+1)=1$ であることため $\Delta x_k=1$ となり $\Delta E<0$ となる。 $u_k(t)<0$ かつ $x_k(t)=1$ である場合も、式 (1.1) から $x_k(t+1)=0$ であることため $\Delta x_k=1$ となり $\Delta E<0$ となる。 よってどのような場合であっても $\Delta E\leq0$ が成立する。したがって任意の t ($t=0,1,2,\cdots$) に対してエネルギーの差分 $\Delta E=E(t+1)-E(t)$ は $\Delta E\leq0$ となり、E(t) を時間の関数とみると単調減少であることが言える。

また、エネルギー関数の値はニューラルネットワークの状態に対して一意に定まるため同じニューラルネットワークの状態に遷移することなない。さらにニューラルネットワークの状態が有限であることから、必ずエネルギー関数の値に平衡点が存在し、エネルギー関数の値は時間の増加に対して収束する。

1.3.3 連想記憶への応用

2値ホップフィールドモデルは連想記憶に適用された。これを実現する方法として、不正確なパターンを入力とし、ニューラルネットワークの状態遷移を発生させ、最終的に到達したニューラルネットワークの状態を想起パターンとすることである。また以降2値ホップフィールドの出力値は0.1でなく-1.1を用いる。

パターンをベクトルで表現し各成分を各ニューロンの出力値とすれば、パターンのベクトル表記はニューラルネットワークの状態とみることができる。この記憶させることを記銘させるという。P 個のパターンを記銘させようとし、記銘させたい s ($s=1,2,\cdots,P$) 個目のパターンを $\mathbf{x}^s \in \{-1,1\}^n$ と表わすと、ニューラルネットワークにパターン \mathbf{x}^s を記銘させるということは、エネルギー関数が \mathbf{x}^s で極小値をとるようにシナプス結合荷重を与えることと等しくなる。ここで、各ニューロンのしきい値が 0 である場合のシナプス結合荷重の設計を考える。

各ニューロンのしきい値を 0 とするとエネルギー関数 (式(1.3)) は

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} w_{i,j} x_i x_j$$

となる。ここで、P 個のパターン $\mathbf{x}^s = \left(x_1^s, x_2^s, \cdots, x_n^s\right) \in \{-1, 1\}^n$ を極小値とするシナプス 結合荷重の一つは

$$w_{i,j} = \sum_{s=1}^{P} x_i^s x_j^s$$
 $i, j = 1, 2, \dots, n$

である。これは、この式をエネルギー関数に代入することで

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{s=1}^{P} x_i^s x_j^s x_i x_j$$

$$= -\frac{1}{2} \sum_{s=1}^{P} \sum_{i=1}^{n} \sum_{j=1}^{n} x_i^s x_i x_j^s x_j$$

$$= -\frac{1}{2} \sum_{s=1}^{P} \sum_{i=1}^{n} x_i^s x_i \sum_{j=1}^{n} x_j^s x_j$$

$$= -\frac{1}{2} \sum_{s=1}^{P} \left(\sum_{i=1}^{n} x_i^s x_i \right)^2$$

$$= \frac{1}{2} \sum_{s=1}^{P} \left[-\left(\sum_{i=1}^{n} x_i^s x_i \right)^2 \right]$$

となり、 x_i^s や x_i が -1 か 1 しかとらないことから、エネルギー関数が各 \mathbf{x}^s を極小値とする 2 次関数の和となっていることがわかる。パターンの数 \mathbf{P} が少ない等いくつかの制約の上ではこのエネルギー関数が任意の \mathbf{x}^s を極小値とすることが直感的にわかる。また、 \mathbf{x}^s と $-\mathbf{x}^s$ はエネルギーの値が同じであるため \mathbf{x}^s を記銘することと $-\mathbf{x}^s$ を記銘することは同じ意味を持つ。

なお、大きなn似たいして記銘ベクトルをランダムに選ぶことで $\{-1,1\}$ の2値ホップフィールドモデルの記憶容量は

$$\frac{n}{2\log_2 n}$$

で近似できることが示されている。

1.3.4 連続値ホップフィールドモデル

本節では連続値ホップフィールドモデルについて考える。連続値ホップフィールドモデルと 2 値ホップフィールドモデルとの違いは、出力値がとりうる値の区間が [0,1] であることである。また、出力値の変化に共なってニューロン i の内部状態 $u_i(t)$ の変化は微分方程式

$$\frac{du_i(t)}{dt} = -\frac{u_i(t)}{\tau} + \sum_{j=1}^{n} w_{i,j} x_j(t) - \theta_i$$
 (1.5)

$$x_i(t) = f_i(u_i(t)) \tag{1.6}$$

で表わされる。ここで $i=1,2,\cdots,n$ であり、 $f_i(u)$ は非線形な連続単調増加関数である。また、 τ はニューロンの内部状態における時定数である。

式 (1.5) の第 1 項目は $u_i(t)$ を指数関数的に減少させることで、 $u_i(t)$ の発散を抑制し平衡値へと近づける効果がある。第 1 項を除けば式 (1.5) は式 (1.1) と同等の式とみることができ、膜電位に対応する値が正であれば $u_i(t)$ は時間的に増加させる、負であれば $u_i(t)$ は時間的に減少させる、0 であれば $u_i(t)$ の変化に寄与しないという効果がある。また

$$u_i(t) = \tau \left(\sum_{j=1}^n w_{i,j} x_j(t) - \theta_i \right)$$

のとき式 (1.5) は 0 となり平衡状態となり、 $\tau = 1$ のとすると 2 値ホップフィールドモデルの式 (1.2) と一致する。

このネットワークに対してエネルギー関数は

$$E = -\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} w_{i,j} x_i x_j + \sum_{i=1}^{n} \theta_i x_i + \frac{1}{\tau} \sum_{i=1}^{n} \int_{0}^{x_i} f_i^{-1}(x) dx$$
 (1.7)

と定義される。ここで $f_i^{-1}(x)$ は $f_i(x)$ の逆関数である。式 (1.7) は 2 値ホップフィールドモデルのエネルギー関数 (式 (1.3)) に項を追加したものである。これはエネルギー関数が時間 t に対して単調減少関数であるために追加された項である。

2 値ホップフィールドモデルと同様に時間変化によるエネルギーの変化を考える。エネルギー関数 (式 (1.7)) を時間 t によって微分すると式 (1.4) によって

$$\frac{dE}{dt} = \sum_{i=1}^{n} \frac{\partial E}{\partial x_i} \frac{dx_i}{dt}$$

$$= \sum_{i=1}^{n} \left(-\sum_{j=1}^{n} w_{i,j} x_j + \theta_i - \frac{1}{\tau} f_i^{-1}(x_i) \right) \frac{dx_i}{dt}$$

$$= -\sum_{i=1}^{n} \left(\sum_{j=1}^{n} w_{i,j} x_j - \theta_i + \frac{1}{\tau} f_i^{-1}(x_i) \right) \frac{dx_i}{dt}$$

となり、 f_i^{-1} が f_i の逆関数であることと式 (1.5) と式 (1.6) から

$$\frac{dE}{dt} = \sum_{i=1}^{n} \frac{du_i}{dt} \frac{dx_i}{dt}$$

となり、また

$$\frac{dx_i}{dt} = \frac{df_i}{du_i} \frac{du_i}{dt}$$

であるため

$$\frac{dE}{dt} = \sum_{i=1}^{n} \frac{df_i}{du_i} \left(\frac{du_i}{dt}\right)^2$$

が得られる。よって $\frac{df_i}{du_i} > 0$ であることから

$$\frac{dE}{dt} \le 0$$

となり、エネルギー関数 (式 (1.7)) が時間に対して単調減少であることが示された。エネルギー関数が単調減少であるため、連続値ホップフィールドモデルのエネルギーは時間 $t\to\infty$ によって極小値となる。

ホップフィールドは単調増加関数としてシグモイド関数

$$f_i(u_i) = \frac{1}{1 + e^{-\frac{2u_i}{\mu_0}}}$$

を用いており、ここで μ_0 は基準活性化レベル (reference activation level) と呼ばれる。

1.3.5 最適化問題への応用

組み合わせ最適化問題 (combinatorial optimization problem) は、目的関数を最小化する組み合わせを探す問題である。ここで組み合わせ最適化問題の変数列をベクトル $\mathbf{x} \in \{0,1\}^n$ へ変換し、また目的関数と式 (1.3) が一致するような $w_{i,j}$ を求めることができれば、2 値 ホップフィールドモデルの平衡状態は組み合わせ最適化問題の目的関数の極小値と同等である。よって 2 値ホップフィールドモデルは組み合わせ最適化問題を解きうるモデルであるといえる。本節では NP 困難である組み合わせ最適化問題の中で代表的な問題である TSP を解くことを考える。

- 1.3.6 連続値ホップフィールドモデルの改良
- 1.4 ボルツマンマシン
- 1.4.1 ボルツマンマシンの動作
- 1.4.2 ボルツマンマシンの学習
- 1.4.3 ボルツマンマシンの特徴