check if sorted element or grouped data!!! absoluten Häufigkeiten

sortierte Elemente

BlockA A5: Stellen Sie die absoluten Häufigkeiten graphisch dar.

Häufigkeitstabelle:

a_{j}	$h(a_j)$	$\int f(a_j)$	H(x)	F(x)
1	40	0.20	40	0.20
3	50	0.25	90	0.45
4	70	0.35	160	0.80
5	10	0.05	170	0.85
6	30	0.15	200	1.00
	n = 200	1.00		

3) Stabdiagramm:

gruppierte Daten

BlockA A4: Stellen Sie die absoluten Häufigkeiten graphisch dar.

2) Die tabellarischen Häufigkeiten:

vonbis unter	h_{j}	$ f_j $	F(x)	b_j	$\tilde{f}(x) = \frac{h_j}{b_j}$
[0; 3)	30	0,30	0,30	3	10
[3; 6)	48	0,48	0,78	3	16
[6; 8)	17	0,17	0,95	2	8,5
[8; 12]	5	0,05	1,00	4	1,25
	n = 100	1,00			

3) Histogramm zeichnen, da die gruppierten Daten von unterschiedlicher Blockbreite sind:

Stellen Sie die absolute Häufigkeitsverteilung der gruppierten Daten graphisch dar.

	${\rm von}\dots {\rm bis}\ {\rm unter}$	h_j	H(x)	f_j	F(x)	b_{j}	$\tilde{f}(x) = \frac{f_j}{b_j}$	m_j	$m_j \cdot h_j$
	[1400; 2000)	10	10	0,5	0,5	600	0,01670	1700	17 000
5)	[2000; 3000)	8	18	0,4	0,9	1000	0,00800	2500	20000
	[3000; 6000]	2	20	0,1	1,0	3000	0,00067	4500	9000
		20		1,0					46 000

6)
$$\overline{x} = \frac{1}{20} \cdot 46.000 = 2300 \, [\text{cm}^3]$$

7) Histogramm:

BlockA A1: Häufigkeitsfunktion Skizzieren

1) Das statistische Merkmal ist die Semesteranzahl. Es ist kardinal, diskret skaliert.

		2)	3)	
a_{j}	$\int f(a_j)$	$h(a_j)$	H(x)	F(x)
10	0,10	20	20	0,10
11	$0,\!10$	20	40	0,20
12	$0,\!40$	80	120	0,60
13	$0,\!20$	40	160	0,80
14	$0,\!15$	30	190	0,95
15	$0,\!05$	10	200	1,00
	1,00	200		

4)

relativen kumulierten Häufigkeiten

Eg1: Stellen Sie die relativen kumulierten Häufigkeiten graphisch dar.

Häufigkeitstabelle:

a_{j}	$h(a_j)$	$f(a_j)$	H(x)	F(x)
1	40	0.20	40	0.20
3	50	0.25	90	0.45
4	70	0.35	160	0.80
5	10	0.05	170	0.85
6	30	0.15	200	1.00
	n = 200	1.00		

4) empirische Verteilungsfunktion:

BlockA A1: Verteilungsfunktion Skizzieren

1) Das statistische Merkmal ist die Semesteranzahl. Es ist kardinal, diskret skaliert.

		2)	3)	
a_{j}	$\int f(a_j)$	$h(a_j)$	H(x)	F(x)
10	0,10	20	20	0,10
11	$0,\!10$	20	40	0,20
12	$0,\!40$	80	120	0,60
13	$0,\!20$	40	160	0,80
14	$0,\!15$	30	190	0,95
15	$0,\!05$	10	200	1,00
	1,00	200		

4)

BlockA A4: Stellen Sie die relativen kumulierten Häufigkeiten graphisch dar.

2) Die tabellarischen Häufigkeiten:

vonbis unter	h_j	f_j	F(x)	$\mid b_{j} \mid$	$\tilde{f}(x) = \frac{h_j}{b_j}$
[0; 3)	30	0,30	0,30	3	10
[3; 6)	48	0,48	0,78	3	16
[6; 8)	17	0,17	0,95	2	8,5
[8; 12]	5	0,05	1,00	4	1,25
	n = 100	1,00			

4) Es wird eine Gleichverteilung innerhalb der Gruppen angenommen:

BlockA A3: Zeichnen Sie die empirische relative Verteilungsfunktion.

2) Die tabellarischen Häufigkeiten:

a_{j}	$h(a_j)$	$\int f(a_j)$	H(x)	F(x)
1	10	0,25	10	0,25
2	16	0,40	26	$0,\!65$
4	6	0,15	32	0,80
5	6	$0,\!15$	38	$0,\!95$
6	2	0,05	40	1,00
	n = 40	1,00		

3) relative Verteilungsfunktion:

zur Verteilungsfunktion gehörende Histogramm

BlockA, A2: Zeichnen Sie das zur Verteilungsfunktion gehörende Histogramm.

Sei das statistische Merkmal X : ",gestoppte Zeit beim $100m{\rm -Lauf}$ "

$\operatorname{von}\ldots\operatorname{bis}\operatorname{unter}$	$ f_j $	F(x)	$ig h_j$	b_{j}	$\int \widetilde{f}(x) = \frac{h_j}{b_j}$
[10,0;10,2)	0,1	0,1	2	0,2	10
$[10,\!2;10,\!6)$	0,5	0,6	10	0,4	25
[10,6;10,8)	0,2	0,8	4	0,2	20
[10,8;11,0]	0,2	1,0	4	0,2	20
	1,0		n = 20		

1) Histogramm:

