ELABORATO DI CALCOLO NUMERICO

Federico Schipani Tommaso Ceccarini Giuliano Gambacorta

28 maggio 2015

Indice

4 INDICE

L'errore assoluto da un informazione relativa, l'errore relativo da un informazione assoluta!

Sestini, Brugnano, Magherini

6 INDICE

Errori ed aritmetica finita

1.1 Esercizi del libro

Qua ci sono gli esercizi contenuti del libro

1.1.1 Esercizio 1.1

Sia $x=\pi\approx 3.1415=\tilde{x}$. Calcolare il corrispondente errore relativo ϵ_x . Verificare che il numero di cifre decimali corrette nella rappresentazione approssimata di x mediante \tilde{x} è all'incirca dato da

$$-\log_{10}|\epsilon_x|$$

Soluzione:

$$x = \pi \approx 3.1415, \qquad \tilde{x} = 3.1415$$

$$\Delta_x = x - \tilde{x} = 0,0000926$$

$$\epsilon_x = \frac{\Delta_x}{x} = 0, 3 \cdot 10^{-4}$$

$$-log_{10}|\epsilon_x| = -log_{10}|0, 3 \cdot 10^{-4}| \approx 4,5$$

Arrotondando 4, 5 si nota che il numero delle cifre decimali corrette nella rappresentazione è 4

1.1.2 Esercizio 1.2

Dimostrare che, se f(x) è sufficientemente regolare e h>0 è una quantità "piccola", allora:

$$\frac{f(x_0+h)-f(x_0-h)}{2h} = f'(x_0) + O(h^2)$$
$$\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2} = f''(x_0) + O(h^2)$$

1.1.3 Esercizio 1.3

Dimostrare che il metodo iterativo (1.1), convergente a x^* (vedi(1.2)), deve verificare la condizione di consistenza

$$x^* = \Phi(x^*)$$

Ovvero la soluzione cercata deve essere un $\underline{punto\ fisso}$ per la funzione di iterazione che definisce il metodo.

1.1.4 Esercizio 1.4

Il metodo iterativo

$$x_{n+1} = \frac{x_n x_{n-1} + 2}{x_n + x_{n-1}}, \qquad n = 1, 2, ..., x_0 = 2, \qquad x_1 = 1.5$$

definisce una successione di approssimazioni convergente a $\sqrt{2}$. Calcolare a quale valore di n bisogna arrestare l'iterazione, per avere un errore di convergenza $\approx 10^{-22}$ (comparare con i risultati in Tabella 1.1)

1.1.5 Esercizio 1.5

Il codice Fortran

```
program INTERO
c variabili intere da 2 byte
integer*2 numero, i
numero = 32765
do i = 1, 10
write(*,*) i, numero
numero = numero +1
end do
```

Produce il sequente output:

1. 32765

end

- 2. 32766
- 3. 32767
- 4. -32768
- 5. -32767
- 6. -32766
- 7. -32765
- 8. -32764
- 9. -32763
- 10. -32762

Spiegarne il motivo

1.1.6 Esercizio 1.6

Dimostrare i teoremi 1.1 e 1.3

1.1.7 Esercizio 1.7

Completare la dimostrazione del teorema 1.4

1.1.8 Esercizio 1.8

Quante cifre binarie sono utilizzate per rappresentare, mediante arrotondamento, la mantissa di un numero, sapendo che la precisione di machina è u $\approx 4.66 \cdot 10^{-10}$

1.1.9 Esercizio 1.9

Dimostrare che, detta u la precisione di macchina utilizzata,

$$-log_{10}u$$

 $fornisce,\ approssimativamente,\ il\ numero\ di\ cifre\ decimali\ correttamente\ rappresentate\ dalla\ mantissa.$

1.1.10 Esercizio 1.10

Con riferimento allo standard IEEE 754 determinare, relativamente alla doppia precisione:

- 1. il più grande numero di macchina
- 2. il più piccolo numero di macchina normalizzato positivo
- 3. il più piccolo numero di macchina denormalizzato positivo
- 4. la precisione di macchina

Confrontare le risposte ai primi due quesiti col risultato fornito dalle function Matlab realmax e realmin

1.1.11 Esercizio 1.11

Eseguire le seguenti istruzioni Matlab:

$$x = 0$$
; $delta = 0.1$; while $x \setminus tilde = 1$, $x = x+delta$ end

Spiegarne il (non) funzionamento

1.1.12 Esercizio 1.12

Individuare l'algoritmo più efficace per calcolare, in aritmetica finita, l'espressione $\sqrt{x^2+y^2}$

1.1.13 Esercizio 1.13

Eseguire le sequenti istruzioni Matlab:

help eps ((eps/2+1)-1)*(2/eps) (eps/2+(1-1))*(2/eps)

Concludere che la somma algebrica non gode, in aritmetica finita, della proprietà associativa.

1.1.14 Esercizio 1.14

Eseguire e discutere il risultato delle seguenti istruzioni Matlab

$$(1e300 - 1e300) * 1e300,$$
 $(1e300 * 1e300) - (1e300 * 1e300)$

1.1.15 Esercizio 1.15

Eseguire l'analisi dell'errore (relativo), dei due seguenti algoritmi per calcolare la somma di tre numeri:

1)
$$(x \oplus y) \oplus z$$
, 2) $x \oplus (y \oplus z)$

1.1.16 Esercizio 1.17

(Cancellazione numerica) Si supponga di dover calcolare l'espressione

$$y = 0.12345678 - 0.12341234 \equiv 0.0000444,$$

utilizzando una rappresentazione decimale con arrotondamento alla quarta cifra significativa. Comparare il risultato esatto con quello ottenuto in aritmetica finita, e determinare la perdita di cifre significative derivante dalla operazione effettuata. Verificare che questo risultato è in accordo con l'analisi di condizionamento.

1.1.17 Esercizio 1.18

(Cancellazione Numerica) Eseguire le seguenti istruzioni Matlab

```
\begin{array}{ll} \textbf{format} & long & e \\ a & = 0.1 \\ b & = 0.099999999999 \\ a-b \end{array}
```

Valutare l'errore relativo sui dati di ingresso e l'errore relativo sul risultato ottenuto.

1.2 Esercizi integrativi

Questi sono gli esercizi integrativi sul capitolo 1

1.2.1 Esercizio 1

un'approssimazione del secondo ordine di $f'(x_0)$ utilizzando il passo di discretizzazione h e i seguenti tre valori di funzione $f(x_0), f(x_0 + h), f(x_0 + 2h)$ (molecola a tre punti in avanti).

1.2.2 Esercizio 2

Dimostrare che se un numero reale x viene approssimato da \tilde{x} con un certo errore relativo ϵ_x , la quantità $-log_{10}|\epsilon_x|$ fornisce approssimativamente il numero di cifre decimali esatte di \tilde{x} .

1.2.3 Esercizio 3

Calcolare il più grande e il più piccolo numero reale di macchina positivo normalizzato che si può rappresentare utilizzando lo standard IEEE 754 nel formato della singola precisione e in quello della doppia precisione. Soluzione:

Il numero più piccolo è uguale a:

$$R_1 = b^{\nu}$$

Per cui nel caso di questo esercizio:

$$2^{-126}$$

Il numero più grande è uguale a

$$R_2 = (1 - 2^{-24})2^{\varphi}$$

con

$$\varphi = 2^8 - 127$$

quindi

$$R_2 = 6.805646933 \cdot 10^{38}$$

•

1.2.4 Esercizio 4

Siano $x=2.7352\cdot 10^2, y=4.8017\cdot 10^{-2}$ e $z=3.6152\cdot 10^{-2}$. Utilizzando un'aritmetica finita che lavora in base 10 con arrotondamento e che riserva m=4 cifre alla mantissa, confrontare gli errori assoluti R_1-R e R_2-R , dove R=x+y+z e

$$R_1 = (x \oplus y) \oplus z, \qquad R_2 = x \oplus (y \oplus z).$$

Soluzione:

Per facilitare i calcoli si portano x e y da 10^{-2} a 10^2 :

$$y = 4.8017 \cdot 10^{-2} = 0.00048017 \cdot 10^{2}$$

$$z = 3.6152 \cdot 10^{-2} = 0.00031652 \cdot 10^{2}$$

Successivamente si calcola R_1 , R_2 ed R:

$$R_1 = (x \oplus y) \oplus z = (2.7352 + 0.00048017) + 0.00031652 = 2,7359 \cdot 10^2$$

$$R_2 = x \oplus (y \oplus z) = 2.7352 + (0.00048017 + 0.00031652) = 2.7360 \cdot 10^2$$

$$R = x + y + z = 2.73604169$$

Attraverso R si calcolano gli errori assoluti su R_1 ed R_2 :

$$R_1 - R = -0.000014169 \cdot 10^2$$

$$R_2 - R = 0.000004169 \cdot 10^2$$

1.2.5 Esercizio 5

Un'aritmetica finita utilizza la base 10, l'arrotondamento, m=5 cifre per la mantissa, s=2 cifre per l'esponente e lo shift $\nu=50$. Per gli interi esso utilizza N=7 cifre decimali. Dire se il numero intero x=136726 è un numero intero di macchina e come viene convertito in reale di macchina. Dire quindi se il numero intero $x=78345\cdot 10^{40}$ un reale di macchina e/o se è un intero di macchina.

Soluzione:

Si verifica facilmente che il numero x=136726 è un intero di macchina. Il numero x viene convertito in reale di macchina in questo modo: $x_r=1,36726\cdot 10^5$

Invece il numero $x=78345\cdot 10^{40}$ è un reale di macchina in quanto non bastano 5 cifre per rappresentarlo.

Per un maggiore sicurezza si calcola il più grande reale di macchina:

 $R_2 = (1 - 10^{-5})10^{50} = 9.9999 \cdot 10^{49}$

Essendo $x < R_2$ è confermato che è un reale di macchina.

1.2.6 Esercizio 6

Dimostrare che il numero di condizionamento del problema di calcolo $\sqrt[n]{x}$ è $\frac{1}{n}$. Soluzione:

Per prima cosa si riscrive la funzione: $f(x) = x^{\frac{1}{n}}$

Il numero di condizionamento è uguale a $k = |f'(x)\frac{x}{y}|$

Si calcola la derivata di f(x) che è uguale a $f'(x) = \frac{x^{\frac{1}{n}-1}}{n}$

Quindi: $k = \left| \frac{x^{\frac{1}{n}-1}}{n} \frac{x}{\sqrt[n]{x}} \right|$

Da cui con passaggi algebrici: $|\frac{\sqrt[n]{x} \ x^{-1}}{n} \frac{x}{\sqrt[n]{x}}| = |\frac{1}{n}| = \frac{1}{n}.$

1.2.7 Esercizio 7

Individuare l'algoritmo più efficace per valutare, in aritmetica finita, la funzione $f(x) = \ln x^4$

Soluzione:

Bisogna semplicemente riscrivere la funzione per evitare problemi di overflow e underflow e poi valutarla. $f(x) = \ln x^4 = 4 \cdot \ln x$

L'algoritmo è questo:

Result = $4 \cdot \ln x$

Return Result

1.2.8 Esercizio 8

Individuare una forma algebrica equivalente ma preferibile in aritmetica finita per il calcolo dell'espressione $(x+2)^3 - x^3$ Soluzione:

$$(x+2)^3 - x^3 = (x+2)(x+2)^2 - x^3 = (x+2)(x^2+4x+4) - x^3 = x^3+4x^2+4x+2x^2+8x+8-x^3 = 6x^2+12x+8$$

1.2.9 Esercizio 9

Si calcoli l'approssimazione \tilde{y} della differenza tra y fra $x_2=3.5555$ e $x_1=3.5554$ utilizzando un'aritmetica finita che lavora con arrotondamento in base 10 con 4 cifre per la mantissa normalizzata. Se ne calcoli quindi il corrispondente errore relativo e la maggiorazione di esso che si ottiene utilizzando il numero di condizionamento della somma algebrica. Soluzione:

Prima si calcola un'approssimazione di x_1 e x_2 poi si calcola un approssimazione \tilde{y} della differenza y. $\tilde{x_1}=3.555$

$$\tilde{x_2} = 3.556$$

$$\begin{array}{l} \tilde{y} = \tilde{x_1} - \tilde{x_2} = 0.001 \ y = x_2 - x_1 = 0.0001 \\ \text{L'errore relativo è uguale a:} \ \varepsilon_y = \frac{0.001 - 0.0001}{0.0001} = 9 \\ \text{Per la maggiorazione serve} \ max\{|\varepsilon_{x_1}|, |\varepsilon_{x_2}|\} \\ \varepsilon_{x_1} = \frac{\tilde{x_1} - x_1}{x_1} = -1.125 \cdot 10^{-4} \\ \varepsilon_{x_2} = \frac{\tilde{x_2} - x_2}{x_2} = 1.406 \cdot 10^{-4} \\ \text{Quindi:} \ k = \frac{|-3.5554| + |3.5555|}{|3.5555 - 3.5554|} \cdot 1.406 \cdot 10^{-4} = 9.9979254 \end{array}$$

1.2.10 Esercizio 10

Dimostrare che il numero razionale 0.1 (espresso in base 10) non può essere un numero di macchina in un'aritmetica finita che utilizza la base 2 indipendentemente da come viene fissato il numero m di bit riservati alla mantissa. Dare una maggiorazione del corrispondente errore relativo di rappresentazione supponendo di utilizzare l'aritmetica finita binaria che utilizza l'arrotondamento e assume m=7.

Radici di una equazione

2.1 Esercizi del libro

2.1.1 Esercizio 2.1

Definire una procedura iterativa basata sul metodo di Newton per determinare \sqrt{a} , per un assegnato a>0. Costruire una tabella dell'approssimazioni relativa al caso $a=x_0=2$ (Comparare con la tabella 1.1)

2.1.2 Esercizio 2.2

Generalizzare il risultato del precedente esercizio, derivando una procedura iterativa basata sul metodo di Newton per determinare $\sqrt[r]{a}$ per un assegnato a>0

2.1.3 Esercizio 2.3

In analogia con quanto visto nell'Esercizio 2.1, definire una procedura iterativa basata sul metodo delle secanti per determinare \sqrt{a} . Confrontare con l'esercizio 1.4.

2.1.4 Esercizio 2.4

Discutere la convergenza del metodo di Newton, applicato per determinare le radici dell'equazione (2.11) in funzione della scelta del punto iniziale x_0

2.1.5 Esercizio 2.5

Comparare il metodo di Newton (2.9), il metodo di Newton modificato (2.16) ed il metodo di accellerazione di Aitken (2.17), per approsimare gli zeri delle funzioni:

$$f_1(x) = (x-1)^{10}, f_2(x) = (x-1)^{10}e^x$$

per valori decrescenti della tolleranza tolx. Utilizzare, in tutti i casi, il punto iniziale $x_0=10$.

2.1.6 Esercizio 2.6

È possibile, nel caso delle funzioni del precedente esercizio utilizzare il metodo di bisezione per determinare lo zero?

2.1.7 Esercizio 2.7

Costruire una tabella in cui si comparano, a partire dallo stesso punto iniziale $\mathbf{x}_0 = \mathbf{0}$, e per valori decrescenti della tolleranza \mathtt{tolx} , il numero di iterazioni richieste per la convergenza dei metodi di Newton, corde e secanti, utilizzati per determinare lo zero della funzione

$$f(x) = x - \cos x$$

2.1.8 Esercizio 2.8

Completare i confronti del precedente esercizio inserendo quelli con il metodo di bisezione, con intervallo di confidenza iniziale [0,1].

2.1.9 Esercizio 2.9

Quali controlli introdurreste, negli algoritmi 2.4-2.6, al fine di rendere più "robuste" le corrispondenti iterazioni?

Capitolo 3

3.1 Esercizi del libro

3.1.1 Esercizio 3.1

Riscrivere gli Algoritmi 3.1-3.4 in modo da controllare che la matrice dei coefficenti sia non singolare.

3.1.2 Esercizio 3.2

Dimostrare che la somma ed il prodotto di matricitriangolari inferiori(superiori), è una matrice triangolare inferiore (superiore).

3.1.3 Esercizio 3.3

Dimostrare che il prodotto di due matrici triangolari inferiori a diagonale unitaria è a sua volta una matrice triangolare inferiore a digonale unitaria

3.1.4 Esercizio 3.4

Dimostrare che la matrice inversa di una matrice triangolare inferiore è as ua volta triangolare inferiore. Dimostraarare inoltrre che, se la matrice ha diagonale unitaria, tale è anche la diagonale della sua inversa.

3.1.5 Esercizio 3.5

Dimostrare i lemmi 3.2 e 3.3.

3.1.6 Esercizio 3.6

Dimostrare che il numero di flop richiesti dall'algoritmo 3.5 è dato da (3.25)

3.1.7 Esercizio 3.7

Scrivere una function matlab che implementi efficientemente l'algoritmo 3.5 per calcolare la fattorizzazione LU di una matrice.

3.1.8 Esercizio 3.8

Scrivere una function Matlab che, avendo in ingresso la matrice A riscritta dall'algoritmo 3.g, ed un vettore x contenente i termini noti del sistema lineare (3.1), ne calcoli efficientemente la soluzione.

3.1.9 Esercizio 3.9

Dimostrare i lemmi 3.4 e 3.5

3.1.10 Esercizio 3.10

Completare la dimostrazione del Teorema 3.6

3.1.11 Esercizio 3.11

Dimostrare che , se A è non singolare, le matrici A^TA e AA^T sono sdp.

3.1.12 Esercizio 3.12

3.1.13 Esercizio 3.13

3.1.14 Esercizio 3.14

Capitolo 4. Approssimazione di funzioni

4.1 Esercizi del libro

4.1.1 Esercizio 1

Sia $f(x) = 4x^2 - 12x + 1$. Determinare $p(x) \in \Pi_4$ che interpola f(x) sulle ascisse $x_i = i, i = 0, \dots 4$.

4.1.2 Esercizio 2

Dimostrare che il seguente algoritmo, SCRIVERE ALGORITMO

valuta il polinomio (4.4) nel punto x, se il vettore a contiene i coefficienti del polinomio p(x) (Osservare che in Matlab i vettori hanno indice che parte da 1, invece che da 0).

4.1.3 Esercizio 3

Dimostrare il lemma 4.1

4.1.4 Esercizio 4

Dimostrare il lemma 4.2

4.1.5 Esercizio 5

Dimostrare il lemma 4.4

4.1.6 Esercizio 6

Costruire una function Matlab che implementi in modo efficiente l'Algoritmo $4.1\,$

4.1.7 Esercizio 7

Dimostrare che il seguente algoritmo, che riceve in ingresso i vettori x e f prodotti dalla function dell'Esercizio 4.6, valuta il corrispondente polinomio interpolante di Newton in un punto xx assegnato.

SCRIVERE ALGORITMO

Quale è il suo costo computazionale? Confrontarlo con quello dell'Algoritmo 4.1. Costruire, quindi, una corrispondente function Matlab che lo implementi efficientemente (complementare la possibilità che xx sia un vettore)

4.1.8 Esercizio 8

Costruire una funciton Matlab che implementi efficientemente l'Algoritmo 4.2.