Linear Regression with Gradient Descent

Linear Regression Model

- $\bullet \quad f(x) = \mathbf{w}_0 + \mathbf{w}_1 x$
- How to choose the <u>optimal</u> weight vector?
 - Iterative method (Gradient Descent)
 - Closed form solution (OLS)

Gradient Descent Algorithm

Repeat until convergence:

$$w_j = w_j - \eta \frac{\partial J(w)}{\partial w_j}$$
 $j = 0, 1, ..., d$

- η = learning rate
- $J(w) = \text{cost function} = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) y_i)^2$

•
$$\frac{\partial J(w)}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m \left[f(x^{(i)}) - y_i \right] x_j^{(i)}$$

- d = number of dimensions
- m = number of training examples
- $x^{(i)}$ = input variable (features) of the i^{th} training example
- y_i = output variable of the i^{th} training example
- $x_j^{(i)}$ = the j^{th} feature in the i^{th} training example

Multivariate Linear Regression

• Linear Regression with multiple variables (features)

Size	No bedrooms	No bathrooms	Price (\$1000)
1400	3	2	250
1719	3	2	299

- Feature vector and weight vector have d+1 dimensions
- $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \mathbf{w}_0 \mathbf{x}_0 + \mathbf{w}_1 \mathbf{x}_1 + \dots + \mathbf{w}_d \mathbf{x}_d$
- Cost function = $J(\mathbf{w}) = \frac{1}{2m} \sum_{i=1}^{m} (f(\mathbf{x}^{(i)}) y_i)^2$

Repeat until convergence:

$$w_j = w_j - \eta \frac{\partial J(\mathbf{w})}{\partial w_j} \qquad j = 0, \dots, d$$

$$\text{where } \frac{\partial J(w)}{\partial w_j} = \frac{1}{m} \sum_{i=1}^m \left[f \left(x^{(i)} \right) - y_i \right] x_j^{(i)}$$

Stochastic Gradient Descent

- Batch gradient descent uses all training examples for each iteration.
 - Slow, requires large memory but less sensitive to variation
- Stochastic gradient descent updates the parameters with every training example
 - Much faster, allows on-line training but may suffer from high variance

```
shuffle data set  \text{repeat } \{ \\ \text{for i = 1, ..., m } \{ \\ w_j = w_j - \eta \nabla_{w_j} J \text{ where } \nabla_{w_j} J = \big[ f\big(\mathbf{x}^{(i)}\big) - y_i \big] x_j^{(i)} \\ (j = 0, 1, ..., d) \\ \}
```

Mini Batch Gradient Descent

- Similar to stochastic gradient descent, but the parameters are updated with n training examples for each iteration
 - Batch Gradient Descent: m training examples per iteration
 - Stochastic Gradient Descent: 1 training example per iteration
 - Mini Batch Gradient Descent: n training examples per iteration,
 n << m