$$= e^{h\theta} \left[\left[-xe^{nx} \right]_{x=\theta}^{x=\omega} + \left[-\frac{e^{-nx}}{h} \right]_{x=\theta}^{x=\omega} \right] =$$

$$= e^{h\theta} \left[\theta e^{n\theta} - \lim_{x \to \infty} \frac{x}{e^{nx}} + \frac{e^{-n\theta}}{h} - \lim_{x \to \infty} \frac{1}{he^{nx}} \right] =$$

$$= \theta + \frac{1}{h}$$

Por tanto podemos tomar $S(X_1 - X_n) = X_{(1)} - \frac{1}{n}$ como estadístico suficiente y que además será insesgado para θ ya que $E[S] = F[X_{(1)} - \frac{1}{n}] = E[X_{(1)}] - \frac{1}{n} = \theta + \frac{1}{n} - \frac{1}{n} = \theta$

Ejercicio 5: Dada una mas. de termaño n=1 de X-Poisson (X) y dudo el estimador $\Gamma(X)=\int 1$ si X=0 , demostrar que Γ es inses gado para $Z(\lambda)=\bar{e}^{\lambda}$. CEs Γ eficiente para estimar $Z(\lambda)=\bar{e}^{\lambda}$.

 $E(\lambda) = e^{-\lambda}$. En primer lugar recordamos que si $\times \sim P_0$ isson(λ) $f_{\chi}(x) = \frac{e^{-\lambda} \lambda^{\chi}}{x!} = P[X=x]$ $\lambda > 0$ $\chi = 0, 1, 2 - \cdots$

Por tanto $E[T] = 1 \cdot p[x=0] + 0 \cdot p\{x>1\} = p[x=0] = e^{\lambda}$, luego T es inses gado para $Z(\lambda) = e^{\lambda}$ ya que $b_{\lambda}(T) = E[T] - Z(\lambda) = e^{\lambda} - e^{\lambda} = 0$. The paravers T is efficiente para estimar T bashavers T is a varianza alcanza la cota de Fréchet - Cramer - Rao para T ya que hemos visto que es insesgado.