CSE7850/CX4803 Machine Learning in Computational Biology

Lecture 18: Protein Function Prediction

Yunan Luo

Protein function prediction

Two types of prediction problems for protein functions

- Categorical function annotation (classification)

 Paper #1
 - Scientists have defined a set of function labels
 - ML model predicts the functions for a given protein

- Quantitative function activity (regression)Paper #2
 - For a given target property (fitness), predict the level of this property
 - Stability
 - Binding affinity

Gene Ontology (GO)

Sequence	Score
DNGVDGEWTYDDA	1.0
DNGCDGEWTYDDA	0.2
DNGVWGEWTYDDA	5.4
DNGVSGEWTYDDA	0.6
DNGVDGFWTYDDA	1.1
DVGVDGEWTFGDA	0.7
DNGVDGEWTYFDA	2.5
YNGVDGEWTYDPA	0.1

Structure of the label space

Previously, we considered the multi-class problems where the relationships of labels (classes) were not defined

Now, we have a multi-class problems where the relationships of labels (classes) were arranged in a tree-like structure

Contrastive learning

Contrastive learning: triplet margin loss


```
PyTorch code

def distance_loss2(self, output_seq1, output_seq2, output_seq3, margin):
    dist_seq1 = self.cos(output_seq1, output_seq2)
    dist_seq2 = self.cos(output_seq1, output_seq3)
    margin = margin.to(output_seq1)
    zeros = torch.zeros(dist_seq1.shape).to(output_seq1)
    loss = torch.mean(torch.max(dist_seq1 - dist_seq2 + margin, zeros))
    return loss
```


RESEARCH

FUNCTION PREDICTION

Enzyme function prediction using contrastive learning

Tianhao Yu^{1,2,3}†, Haiyang Cui^{1,2,3}†, Jianan Canal Li^{3,4}, Yunan Luo⁵, Guangde Jiang^{1,2}, Huimin Zhao^{1,2,3,6}*

Paper #1 generalizes this idea to multiple hierarchy systems

Paper #2

Sequence	Score
DNGVDGEWTYDDA	1.0
DNGCDGEWTYDDA	0.2
DNGVWGEWTYDDA	5.4
DNGVSGEWTYDDA	0.6
DNGVDGFWTYDDA	1.1
DVGVDGEWTFGDA	0.7
DNGVDGEWTYFDA	2.5
YNGVDGEWTYDPA	0.1

An unsupervised approach based on protein language models (PLMs)

Q: Why PLMs can predict the fitness even without training on labeled data?