Module 11: Linear Regression

Rebecca C. Steorts

Agenda

- What is linear regression
- Motivating Example
- Application from Hoff

Regression models

How does an outcome Y vary as a function of the covariates $\mathbf{x} = (x_1, \dots, x_p)$?

- ▶ Which *x_i*'s have an effect?
- What are the effect sizes?
- Can we predict Y as a function of x?

Such question can be assessed via a regression model $p(y \mid x)$.

Setup

- \triangleright $X_{n\times p}$: regression features or covariates (design matrix)
- \triangleright $x_{p\times 1}$: *i*th row vector of the regression covariates
- ▶ $y_{n \times 1}$: response variable (vector)
- ▶ $\beta_{p \times 1}$: vector of regression coefficients

Goal: Estimation of $p(y \mid x)$.

Dimensions: $y_i - \beta^T x_i = (1 \times 1) - (1 \times p)(p \times 1) = (1 \times 1)$.

Oxygen uptake experiment

Exercise is hypotheized to relate to O_2 uptake What type of exercise is the most beneficial? Experimental design: 12 male volunteers.

- 1. O_2 uptake measured at the beginning of the study.
- 2. 6 randomized to step aerobics program
- 3. 6 remaining men do a running program
- 4. O_2 uptake measured at end of study

Data

Plot

Data analysis

```
y= change in oxygen uptake x_1= exercise indicator (0 for aerobic, 1 for running) x_2= age How can we estimate p(y\mid x_1,x_2)? Linear regression
```

Linear regression

Assume that smoothness is a function of age.

For each group,

$$y = \beta_o + \beta_1 x_2 + \epsilon$$

This is called a linear regression model.

Linearity means linear in the parameters.

We could also try the model

$$y = \beta_0 + \beta_1 x_2 + \beta_2 x_2^2 + \beta_3 x_2^3 + \epsilon$$

which is also a linear regression model.

Multiple linear regression

We can estimate for both groups simulatenously.

$$Y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \epsilon_i$$

where

$$x_{i1} = 1$$
 for subject i (1)
 $x_{i2} = 0$ if running program for subject; 1 if aerobics (2)
 $x_{i3} =$ age of subject i (3)
 $x_{i4} = x_{i2} \times x_{i3}$ (4)

Under this model,

$$E[Y \mid \mathbf{x}] = (\beta_1 + \beta_3) \times \text{age if } x_2 = 0$$

$$E[Y \mid \mathbf{x}] = (\beta_1 + \beta_2) + (\beta_3 + \beta_4) \times \text{age if } x_2 = 1$$

Least squares regression lines

Normal Regression Model

The Normal regression model specifies that

- \triangleright $E[Y \mid x]$ is linear and
- the sampling variability around the mean is independent and identically (iid) from a normal distribution

$$Y_i = \beta^T x_i + e_i \tag{5}$$

$$e_1, \ldots, e_n \stackrel{iid}{\sim} Normal(0, \sigma^2)$$

Normal Regression Model (continued)

This full specifies the density of the data:

$$p(y_1,\ldots,y_n\mid x_1,\ldots x_n,\beta,\sigma^2)$$
 (6)

$$=\prod_{i=1}^{n}p(y_{i}\mid x_{i},\beta,\sigma^{2}) \tag{7}$$

$$(2\pi\sigma^2)^{-n/2} \exp\{\frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta^T x_i)^2\}$$
 (8)

Multivariate Setup

Let's assume that we have data points (x_i, y_i) available for all i = 1, ..., n.

y is the response variable

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}_{n \times 1}$$

 \triangleright x_i is the *i*th row of the design matrix $X_{n \times p}$.

Consider the regression coefficients

$$\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_p \end{pmatrix}_{p \times 1}$$

Multivariate Setup

$$y \mid X, \beta, \sigma^2 \sim MVN(X\beta, \sigma^2 I)$$

 $\beta \sim MVN(0, \tau^2 I)$

The likelihood in the multivariate setting simpifies to

$$p(y_1,\ldots,y_n\mid x_1,\ldots x_n,\beta,\sigma^2)$$
 (9)

$$(2\pi\sigma^2)^{-n/2} \exp\{\frac{-1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta^T x_i)^2\}$$
 (10)

$$(2\pi\sigma^2)^{-n/2} \exp\{\frac{-1}{2\sigma^2}(y - X\beta)^T(y - X\beta)\}\tag{11}$$

Posterior computation

Let $a = 1/\sigma^2$ and $b = 1/\tau^2$.

$$p(\beta \mid y, X) \propto p(y \mid X, \beta)p(\beta)$$

$$\propto \exp\{-a/2(y - X\beta)^{T}(y - X\beta)\} \times \exp\{-b/2\beta^{T}\beta\}\}$$
(13)

Just like in the Multivariate modules, we just simplify. (Check these details on your own).

$$p(\beta \mid y, X) \propto MVN(\beta \mid y, X, \Lambda^{-1})$$

where $\Lambda = aX^TX + bI$ and $\mu = a\Lambda^{-1}X^Ty$.

Posterior computation (details)

$$p(\beta \mid y, X)$$

$$\propto \exp\{-\frac{a}{2}(y - X\beta)^{T}(y - X\beta)\} \times \exp\{-\frac{b}{2}\beta^{T}\beta\}$$

$$\propto \exp\{-\frac{a}{2}[y^{T}y - 2\beta^{T}X^{T}y + \beta^{T}X^{T}X\beta] - \frac{b}{2}\beta^{T}\beta\}$$

$$\propto \exp\{a\beta^{T}X^{T}y - \frac{a}{2}\beta^{T}X^{T}X\beta - b/2\beta^{T}\beta\}$$

$$\propto \exp\{a\beta^{T}[X^{T}y] - 1/2\beta^{T}(aX^{T}X + bI)\beta\}$$

$$(14)$$

$$(15)$$

$$(16)$$

$$(17)$$

$$(18)$$

Then $\Lambda = aX^TX + bI$ and $\mu = a\Lambda^{-1}X^Ty$.

Multivariate inference for regression models

$$\mathbf{y} \mid \boldsymbol{\beta} \sim MVN(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})\boldsymbol{\beta} \qquad \sim MVN(\boldsymbol{\beta}_0, \boldsymbol{\Sigma}_0)$$
 (19)

The posterior can be shown to be

$$\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{X} \sim MVN(\boldsymbol{\beta}_n, \boldsymbol{\Sigma}_n)$$

where

$$\boldsymbol{\beta}_n = E[\boldsymbol{\beta} \; \textit{mid} \, \boldsymbol{y}, \boldsymbol{X}, \sigma^2] = (\boldsymbol{\Sigma}_o^{-1} + (\boldsymbol{X}^T \boldsymbol{X})^{-1} / \sigma^2)^{-1} (\boldsymbol{\Sigma}_o^{-1} \boldsymbol{\beta}_0 + \boldsymbol{X}^T \boldsymbol{y} / \sigma^2)$$

$$\Sigma_n = \text{Var}[\beta \ \textit{mid} \, \mathbf{y}, \mathbf{X}, \sigma^2] = (\Sigma_o^{-1} + (X^T X)^{-1}/\sigma^2)^{-1}$$

Linear Regression Applied to Swimming

- ▶ We will consider Exercise 9.1 in Hoff very closely to illustrate linear regression.
- The data set we consider contains times (in seconds) of four high school swimmers swimming 50 yards.
- ▶ There are 6 times for each student, taken every two weeks.
- ► Each row corresponds to a swimmer and a higher column index indicates a later date.

Data set

```
read.table("https://www.stat.washington.edu/~pdhoff/Book/Da
```

```
## V1 V2 V3 V4 V5 V6
## 1 23.1 23.2 22.9 22.9 22.8 22.7
## 2 23.2 23.1 23.4 23.5 23.5 23.4
## 3 22.7 22.6 22.8 22.8 22.9 22.8
## 4 23.7 23.6 23.7 23.5 23.5 23.4
```

Full conditionals (Task 1)

We will fit a separate linear regression model for each swimmer, with swimming time as the response and week as the explanatory variable. Let $Y_i \in \mathbb{R}^6$ be the 6 recorded times for swimmer i. Let

$$X_i = \begin{bmatrix} 1 & 1 \\ 1 & 3 \\ \dots \\ 1 & 9 \\ 1 & 11 \end{bmatrix}$$

be the design matrix for swimmer *i*. Then we use the following linear regression model:

$$\begin{aligned} & Y_i \sim \mathcal{N}_6 \left(X \beta_i, \tau_i^{-1} \mathcal{I}_6 \right) \\ & \beta_i \sim \mathcal{N}_2 \left(\beta_0, \Sigma_0 \right) \\ & \tau_i \sim \mathsf{Gamma}(a, b). \end{aligned}$$

Derive full conditionals for β_i and τ_i .

Solution (Task 1)

The conditional posterior for β_i is multivariate normal with

$$V[\beta_{i} | Y_{i}, X_{i}, \tau_{i}] = (\Sigma_{0}^{-1} + \tau X_{i}^{T} X_{i})^{-1}$$

$$\mathbb{E}[\beta_{i} | Y_{i}, X_{i}, \tau_{i}] = (\Sigma_{0}^{-1} + \tau_{i} X_{i}^{T} X_{i})^{-1} (\Sigma_{0}^{-1} \beta_{0} + \tau_{i} X_{i}^{T} Y_{i}).$$

while

$$au_i \mid Y_i, X_i, eta \sim \mathsf{Gamma}\left(a+3, \ b+ \dfrac{(Y_i-X_ieta_i)^T(Y_i-X_ieta_i)}{2}
ight).$$

These can be found in in Hoff in section 9.2.1.

Task 2

Complete the prior specification by choosing a,b,β_0 , and Σ_0 . Let your choices be informed by the fact that times for this age group tend to be between 22 and 24 seconds.

Solution (Task 2)

Choose a = b = 0.1 so as to be somewhat uninformative.

Choose $\beta_0 = [23 \ 0]^T$ with

$$\Sigma_0 = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}.$$

This centers the intercept at 23 (the middle of the given range) and the slope at 0 (so we are assuming no increase) but we choose the variance to be a bit large to err on the side of being less informative.

Gibbs sampler (Task 3)

Code a Gibbs sampler to fit each of the models. For each swimmer i, obtain draws from the posterior predictive distribution for y_i^* , the time of swimmer i if they were to swim two weeks from the last recorded time.

Posterior Prediction (Task 4)

The coach has to decide which swimmer should compete in a meet two weeks from the last recorded time. Using the posterior predictive distributions, compute $\Pr\{y_i^* = \max(y_1^*, y_2^*, y_3^*, y_4^*)\}$ for each swimmer i and use these probabilities to make a recommendation to the coach.

This is left as an exercise.