Assignment 2 of MATP6610/4820

(Due on Feb-14-2020 in class)

Problem 1

Consider the function we used in class: $f(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2 - x_1 - x_2$. At the point $\mathbf{x}^{(0)} = (0, 0)$,

- 1. give the search direction vector **p** for the steepest descent method.
- 2. Let $c_1 = 0.1$, determine $\bar{\alpha} > 0$ such that the Armijo's condition holds for any $\alpha \in (0, \bar{\alpha}]$.
- 3. Let $c_1 = 0.1$ and $c_2 = 0.5$, determine the values of $\underline{\alpha}$ and $\bar{\alpha}$ such that the Wolfe's conditions hold for any $\alpha \in [\underline{\alpha}, \bar{\alpha}]$.

Problem 2

Consider the unconstrained quadratic minimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x}$$
 (QuadMin)

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix, and $\mathbf{b} \in \mathbb{R}^n$.

- 1. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$. Set the initial vector $\mathbf{x}^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Do by hand two iterations of steepest gradient descent with exact line search.
- 2. Use the instructor's provided file quadMin_gd.m to write a Matlab function quadMin_gd with input \mathbf{A} , \mathbf{b} , initial vector $\mathbf{x}0$, and tolerance tol, and with stopping condition $\|\nabla f(\mathbf{x}^k)\| \leq \text{tol}$. Also test your function by running the provided test file test_gd.m and compare to the instructor's function. Print your code and the results you get.

Problem 3 (only for MATP 4820 students)

Let
$$\mathbf{A} = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}$$
.

- 1. Given $\mathbf{p}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$, find a vector \mathbf{p}_2 with unit 2-norm and \mathbf{A} -conjugate to \mathbf{p}_1 .
- 2. Give two vectors \mathbf{p}_1 and \mathbf{p}_2 such that they are **A**-conjugate and also orthogonal to each other.

Problem 4

Consider again the problem (QuadMin) in Problem 1.

- 1. Let $\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ 0 \end{bmatrix}$. Set the initial vector $\mathbf{x}^0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Do by hand the conjugate gradient method to find the **exact solution**.
- 2. Use the instructor's provided file quadMin_cg.m to write a Matlab function quadMin_cg with input \mathbf{A} , \mathbf{b} , initial vector $\mathbf{x}0$, and tolerance \mathbf{tol} , and with stopping condition $\|\nabla f(\mathbf{x}^k)\| \leq \text{tol}$. Also test your function by running the provided test file test_cg.m and compare to the instructor's function. Print your code and the results you get.

Problem 5 (only for MATP 6100 students)

For the conjugate gradient method, prove that $\langle \mathbf{r}^{(k)}, \mathbf{r}^{(i)} \rangle = 0$ for any $i = 1, 2, \dots, k-1$ and for $k \geq 2$. Recall that we showed, in class, $\langle \mathbf{r}^{(2)}, \mathbf{r}^{(1)} \rangle = 0$. You can use this as an initial step and complete the proof by induction.