定理 3.6 論理式 A, B, C に対して,

- (1) $A \Rightarrow B$ であるとき , A が恒真式であるならば , B も恒真式である。
- (2) $A \Rightarrow B$ かつ $B \Rightarrow C$ であるとき , $A \Rightarrow C$ が成り立つ。
- (3) $A \Rightarrow B$ かつ $A \Rightarrow C$ であるとき , $A \Rightarrow B \land C$ が成り立つ。
- (4) $A \Rightarrow B$ かつ $C \Rightarrow B$ であるとき , $A \lor C \Rightarrow B$ が成り立つ。

【証明】

- (1) $A \Rightarrow B$ であるとき, $A \rightarrow B \Leftrightarrow T$ 。すなわち, $\neg A \lor B \Leftrightarrow T$ 。A が恒真式であるならば, $\neg A$ は恒偽式である。すなわち, $\neg A \Leftrightarrow F$ 。よって, $T \Leftrightarrow \neg A \lor B \Leftrightarrow F \lor B \Leftrightarrow B$ 。ゆえに,B も恒真式である。
- (2) $A \Rightarrow B$ かつ $B \Rightarrow C$ であるとき , $A \rightarrow B \Leftrightarrow T$ かつ $B \rightarrow C \Leftrightarrow T$ 。 よって ,

$$T \Leftrightarrow A \to B$$
$$\Leftrightarrow \neg A \lor B$$

$$\Leftrightarrow \neg A \lor B \land T$$

$$\leftrightarrow u v b \wedge v$$

$$\Leftrightarrow \neg A \lor B \land (B \to C)$$

$$\Leftrightarrow \neg A \lor B \land (\neg B \lor C)$$

$$\Leftrightarrow \neg A \lor B \land C$$

$$\Leftrightarrow (\neg A \lor B) \land (\neg A \lor C)$$

$$\Leftrightarrow$$
 $(A \to B) \land (A \to C)$

$$\Leftrightarrow T \land (A \rightarrow C)$$

$$\Leftrightarrow (A \to C)$$
 \Leftrightarrow $(A \to C)$ \Leftrightarrow $(A \to C)$

(3) $A \Rightarrow B$ かつ $A \Rightarrow C$ であるとき , $A \rightarrow B \Leftrightarrow T$ かつ $A \rightarrow C \Leftrightarrow T$ 。 よって ,

$$T \Leftrightarrow (A \to B) \land (A \to C)$$

$$\Leftrightarrow (\neg A \lor B) \land (\neg A \lor C)$$

$$\Leftrightarrow \neg A \lor B \land C$$

(4) $A \Rightarrow B$ かつ $C \Rightarrow B$ であるとき , $A \rightarrow B \Leftrightarrow T$ かつ $C \rightarrow B \Leftrightarrow T$ 。 よって ,

$$T \Leftrightarrow (A \to B) \land (C \to B)$$

$$\Leftrightarrow (\neg A \lor B) \land (\neg C \lor B)$$

$$\Leftrightarrow \neg A \land \neg C \lor B$$

$$\Leftrightarrow \neg (A \lor C) \lor B$$

$$\Leftrightarrow A \lor C \to B$$
 . φ