Python for High Performance Data Analytics

— (1) Computation —

Qiyang Hu
UCLA Office of Advanced Research Computing
April 28, 2023

About this series

- The lectures will focus on
 - High-level overviews.
 - Introducing libraries that require minimal efforts to boost performance.
 - Short Jupyter Notebook demos
- What can/can't expected in the series?

✓ CAN	X CAN'T	
From an end users' perspective	From a package developers' perspective	
A <u>BIGGER</u> -picture review on the selected 3rd-party python libraries	 Native Python tricks (e.g. container, lazy eval, mem) Line-by-line explanations on these library interfaces 	
Demos on specific example problems	Discussion on the performance of various algorithms	

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

COMPUTATION

Single Node/GPU, SIMD

- Pypy, Numba, NumExpr
- Pythran, Cython
- F2py, ctypes

DISTRIBUTED

Multiple Nodes/Machines

- MapReduce-based: PySpark, PyFlink
- MPI-based: mpi4py, Horovod
- Joblib, Dask, Ray

- Viz process for big data
- Matplotlib, Bokeh, Plotly
- Holoview and Datashader
- Traited VTK, Mayavi,
 Paraview

Single Node/GPU, SIMD

- Numpy
- Pandas, Polars
- Modin, Pandarallel, Swifter
- Dask DataFrame, Vaex

Two Big **Do-Not's**

Don't optimize prematurely.

"The real problem is that programmers have spent far too much time worrying about efficiency in the wrong places and at the wrong times..."

-- Donald Knuth in "TAOCP"

- Easiest to understand and explain
- Quickest to write
- Easiest to test and maintain
- Most portable to migrate

Don't trust benchmarks.

All benchmark numbers are "wrong".

- Specific hardware/OS/libraries
- In-situ running environments
- Different nature of datasets
- Sometimes very version-sensitive

- Understand the mechanisms
- Focus on the qualitative comparisons
- Need to do your own experiments.

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

Why learning Python in the ChatGPT era?

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

Seriously, what is Python?

Why Python is slow?

Python is Dynamically Typed rather than Statically Typed.

```
/* C code */
int a = 1;
int b = 2;
int c = a + b;
```

```
# python code
a = 1
b = 2
c = a + b
```

<u>Source</u>

o 2a. Set b->PyObject HEAD->typecode to integer

o 2b. Set b->val = 2

- 3. call binary_add(a, b)
 - 3a. find typecode in a->PyObject_HEAD
 - **3b.** a is an integer; value is a->val
 - 3c. find typecode in b->Py0bject_HEAD
 - o **3d.** b is an integer; value is b->val
 - o 3e.call binary_add<int, int>(a->val, b->val)
 - o 3f. result of this is result, and is an integer.
- 4. Create a Python object c
 - 4a. set c->PyObject_HEAD->typecode to integer
 - 4b. set c->val to result

The "Shannon Plan"

- A <u>plan</u> to make CPython faster
 - Originally proposed by Eric Snow, and Mark Shannon in 2020
 - Guido van Rossum joined and gave a talk in Python Language Summit (May 2021)
 - Based on the experience with "HotPy" and "HoyPy 2"
 - Promising 5x in 4 years, 1.5x per year

Compatibility guarantees

- Don't break stable ABI compatibility
- Don't break limited API compatibility
- Don't break or slow down extreme cases

What will 3.12 look like?

- Python 3.11 is 25% faster than 3.10
 - An adaptive, specializing bytecode interpreter and lots of optimization tweaks
 - Faster startup times and more efficient use of/communication with C
 - Will mostly benefit: CPU-intensive pure Python code

Operation	Form	Specialization	Operation speedup (up to)	Contributor(s)
Binary operations	x+x; x*x; x-x;	Binary add, multiply and subtract for common types such as int, float, and str take custom fast paths for their underlying types.	10%	Mark Shannon, Dong-hee Na, Brandt Bucher, Dennis Sweeney
Subscript	a[i]	Subscripting container types such as list, tuple and dict directly index the underlying data structures. Subscripting customgetitem is also inlined similar to Inlined Python function calls.	10-25%	Irit Katriel, Mark Shannon
Store subscript	a[i] = z	Similar to subscripting specialization above.	10-25%	Dennis Sweeney
Calls	f(arg) C(arg)	Calls to common builtin (C) functions and types such as 1en and str directly call their underlying C version. This avoids going through the internal calling convention.	20%	Mark Shannon, Ken Jin
Load global variable	print len	The object's index in the globals/builtins namespace is cached. Loading globals and builtins require zero namespace lookups.	[1]	Mark Shannon
Load attribute	o.attr	Similar to loading global variables. The attribute's index inside the class/object's namespace is cached. In most cases, attribute loading will require zero namespace lookups.	[2]	Mark Shannon
Load methods for call	o.meth()	The actual address of the method is cached. Method loading now has no namespace lookups – even for classes with long inheritance chains.	10-20%	Ken Jin, Mark Shannon
Store attribute	o.attr = z	Similar to load attribute optimization.	2% in pyperformance	Mark Shannon
Unpack Sequence	*seq	Specialized for common containers such as list and tuple. Avoids internal calling convention.	8%	Brandt Bucher

GIL: Guilty or Gilly?

- GIL (Global Interpreter Lock)
 - A mutex (or a lock) that allows only one *thread* to hold the control of the Python interpreter.
- Why Python uses it?
 - GILs is added to the ref count variables to be kept protected from race conditions
 - GIL has performance benefits of GIL in single-threaded situation.
 - Historically Python has been around when OS did not have a concept of threads.
- Correct way to use it:
 - Multi-processing vs multi-threading:
 - Multi-threading: good for IO-intensive code, bad for CPU-intensive code
 - use multiple processes with "multiprocessing" module instead of threads
 - Consider to use Intel Distribution of Python
 - Attempts from Python community to remove the GIL from CPython:
 - <u>Gilectomy</u> (abandoned)
 - A new compiler flag: <u>nogil</u> (expected in Python 3.12)
 - Alternative Python interpreters, as GIL only with CPython
 - multiple interpreter implementations

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

Boosting the speed by JIT

Pypy: using Python to interpret Python

RPython = Restricted/Reduced Python

Numba: a high-performance python JIT compiler

NumExpr: C-based JIT booster for numpy large arrays

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

Boosting the speed by **AOT** Compiler

Pythran: an AOT compiler for a subset of the Python

Cython: Compiler to write C extensions for Python

f2py: wrap fortran code for use in Python

- What's the performance concerns for big data analytics?
- Why learning Python in the ChatGPT era?
- Why Python is slow?
- How to speed Python up using JIT?
- How to speed Python up using AOT?
- Colab demos

Hands-on Demo

bit.ly/hpdspy_01

- Code example will be running in Google Colab.
 - o **IPython** (interpreter implementation) as Python kernel in Jupyter Notebook
 - Based on **CPython**, enhancing interactive features.
 - Shell prompted as In [#]:
 - Interacting with external files/modules by %magic commands
 - Some comparisons were not made in the same baseline.
 - A "maybe" game changer: PyScript
 - Colab comes with some installed libraries, but not all.
 - Performance benchmark was done based on array operations
 - Started with 1000 points in 3 dimensions
 - Calculate the pairwise 1000x1000 distances
 - Arrays (containers, dataframes) will be our main subject to discuss in the next lecture.

Key Takeaways

- Before optimization:
 - Be sure everything is working properly in a simplest way.
 - Know what's going on (data (dense/sparse?), code, algorithm, etc).
 - Profile your code and find the performance bottleneck.

Optimization selection:

- Consider the easiest way first (minimum changes), then the fastest.
- Dive into the documentations
- My personal preference order for performance optimization:
 - Scipy/Sklearn/<u>numpy</u> > Numba > Pythran > numexpr > Cython