

te.com

Features

- Compact Design
- mV or Amplified Analog Outputs
- Optional I²C Digital Interface
- High Over Range Capability

Applications

- Medical Infusion Pumps
- Analog & Digital Scales
- Fitness & Exercise Equipment
- Payload Weighing
- Power Tools
- Robotics
- Surgical & Dental Tools
- Battery Powered Devices
- Manufacturing Equipment

FX29

Compact Compression Load Cell

Versatile Miniature Force Sensor mV, Amplified, and Digital Outputs Low Power Consumption Rugged Microfused Sensing Element Stainless Steel Enclosure Several Load Ranges

TE Connectivity's (TE) FX29 is a compact compression load cell that offers exceptional price-to-performance in a robust sensor package. Optimized for embedded force sensing applications from disposable medical devices to durable appliances and exercise equipment. The FX29 allows design flexibility with mV, amplified, and digital output options.

The FX29 incorporates the high reliability Microfused technology and is offered in ranges from 10lbf to 200lbf (50N to 1000N). Microfused technology provides excellent span and zero stability, outstanding cycle life, superior resolution, high over-range capabilities, and an unamplified span sensitivity of 20mV/V.

The FX29 utilizes a two-piece construction of stainless steel materials. The combination of a metal injection molded flexure and micro miniaturized MEMS strain gauges allows flexibility of force range options for a lower cost sensor. These improvements over previous load cell designs give the FX29 more precise dimensional control and better performance.

CLICK HERE > CONNECT WITH A SPECIALIST

Absolute Maximum Ratings (Analog) (1)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Supply voltage	V_{dd}			6.0	V	Analog mV Output
	V dd			5.25	V	Analog 0.5-4.5V Output
Storage temperature	Ts	-40		+85	°C	
Compressive load	L _{max}			2.5X	Rated	
ESD		-4.0		4.0	kV	Human Body Model

⁽¹⁾ Maximum limits the device will withstand without damage

Standard Load Ranges

Pounds-Force (lbf)	Newtons (N)
10	50
25	125
50	250
100	500
200	1000

Electrical Specifications (Analog)

(Unless otherwise specified, all parameters are measured at 25°C @ 5.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Cumply voltage (\(\lambda \)	V	1.00		6.0	V	mV Output only
Supply voltage (V _{supply})	V _{dd}	4.75		5.25	V	0.5-4.5V Output only
Operating current	I _{dd}			3	mA	0.5-4.5V Output only
Input resistance	Rin	2.4	3.0	3.6	kΩ	mV Output only
Output resistance	Rout	1.76	2.2	2.64	kΩ	mV Output only
Rise time	Tr			2.0	ms	10% to 90%
Maximum output current	Io	2.2			mA	0.5-4.5V Output only
Output short circuit duration	Ts			∞	seconds	0.5-4.5V Output only
Insulation resistance		50			ΜΩ	@250VDC
Bandwidth				1.0	kHz	

Operating Specifications (Analog)

(Unless otherwise specified, all parameters are measured at 25°C @ 5.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions	
Zero offset ¹		-15		15	mV/V	mV Output only	
Zero onser		300	500	700	mV	0.5-4.5V Output only	
Full cools apan1		16	20	24	mV/V	mV Output only	
Full scale span ¹		3800	4000	4200	mV	0.5-4.5V Output only	
Non-linearity		-1		1	%Span	BFSL	
Hysteresis		-0.8		0.8	%Span		
Zero repeatability		-0.8		0.8	%Span		
Span repeatability		-0.8		0.8	%Span		
Thermal shift for zero		-0.05		0.05	%Span/°C	Reference to 25°C, over	
Thermal shift for span		-0.05		0.05	%Span/°C	compensated temperature	
Cycle life		1E+6				0 to full scale cycles	
Deflection at rated load				0.03	mm		
Weight			6.0		grams	Without ribbon cable	

⁽¹⁾ Span and zero offset are ratiometric to power supply voltage

Environmental Specifications (Analog)

(Unless otherwise specified, all parameters are measured at 25°C @ 5.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Compensated temperature range	To	0 50 °C		0.5-4.5V Output only		
Storage temperature	Ts	-40		85	°C	
Ambient humidity		0		85	%RH	Non-condensing
EMI/RFI/ESD protection		IEC61000 IEC61000 EN55032)-4-3 (3V/n	mV Output only		
Ingress protection	IP					
Media compatibility		External exposed surfaces: 17-4 and 304 stainless steel				Excluding cable & connector

Schematic Diagram – mV output (Analog)

Block Diagram – 0.5 to 4.5V output (Analog)

Absolute Maximum Ratings (Digital) (1)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Supply voltage				5.50	V	
Storage temperature	Ts	-40		+85	°C	
Compressive load	L _{max}			2.5X	Rated	
ESD		-4.0		4.0	kV	Human Body Model

⁽¹⁾ Maximum limits the device will withstand without damage

Standard Load Ranges

Pounds-Force (lbf)	Newtons (N)
10	50
25	125
50	250
100	500
200	1000

Electrical Specifications (Digital)

(Unless otherwise specified, all parameters are measured at 25°C @ 3.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Supply voltage (V _{supply})	V _{dd}	2.7		5.5	V	
Operating current	I _{dd}			3	mA	
Sleep mode current	I _{slp}		0.5	5	μA	
Insulation resistance		50			ΜΩ	@250VDC

Force Operating Specifications (Digital)

(Unless otherwise specified, all parameters are measured at 25°C @ 3.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Zero offset		300	1000	1700	Counts	Base ₁₀
Full scale span		14300	15000	15700	Counts	Base ₁₀
Non-linearity		-1		1	%Span	BFSL
Hysteresis		-0.8		0.8	%Span	
Zero repeatability		-0.8		0.8	%Span	
Span repeatability		-0.8		0.8	%Span	
Thermal shift for zero		-0.05		0.05	%Span/°C	Reference to 25°C, over
Thermal shift for span		-0.05		0.05	%Span/°C	compensated temperature
Cycle life		1E+6				0 to full scale cycles
A/D resolution			14		Bits	
Decrease time				3	mS	4MHz, non-sleep mode
Response time				8.4	mS	4MHz, sleep mode
Deflection at rated load				0.03	mm	
Weight			6.0		grams	Without ribbon cable

Environmental Specifications (Digital)

(Unless otherwise specified, all parameters are measured at 25°C @ 3.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Compensated temperature range	То	0		50	°C	
Storage temperature	Ts	-40		85	°C	
Ambient humidity		0		85	%RH	Non-condensing
Ingress protection	IP					
Media compatibility		External e stainless s		Excluding cable & connector		

Block Diagram – I²C Digital Output (Digital)

Force Output Graph (Digital)

$$OUTPUT (decimal counts) = \frac{14000}{LOAD \ RANGE} * FORCE + 1000$$

Force Sensor Output

%Output	Counts (decimal)	Counts (hex)
0%	1000	0x3E8
5%	1700	0x6A4
10%	2400	0x960
50%	8000	0x1F40
90%	13600	0x3520
95%	14300	0x37DC
100%	15000	0x3A98

I²C Typical Circuit

Note: only one pair of pull up resistors are needed for multiple sensing devices.

I²C Interface

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
SCLK clock frequency	FSCL	100		400	kHz	
Start condition hold time relative to SCL edge	thosta	0.1			μS	
Minimum SCL clock low width ¹	t _{LOW}	0.6			μS	
Minimum SCL clock high width ¹	thigh	0.6			μS	
Start condition startup time relative to SCL edge	t susta	0.1			μS	
Data hold time on SDA relative to SCL edge	thddat	0			μS	
Data setup time on SDA relative to SCL edge	tsudat	0.1			μS	
Stop condition setup time on SCL	t susto	0.1			μS	
Bus free time between stop and start condition	t BUS	2			μS	

I²C Interface Timing Diagram

Digital Input and Output Parameters

(Unless otherwise specified, all parameters are measured at 25°C @ 3.0V applied)

Parameter	Symbol	Min	Тур	Max	Units	Notes/Conditions
Input high voltage	ViH	0.8		1.0	x Vdd	
Input low voltage	V _{IL}	0.0V		0.2	x Vdd	
Output low level					x Vdd	
Load capacitance @ SDA				200	pF	@400 kHz
Input capacitance (each pin)				10	pF	

I²C Measurement Packet Read Sequence

(1) I²C Read_MR – Measurement Request: Slave starts a measurement and DSP calculation cycle.

(2) I²C Read_DF2 – Data Fetch 2 Bytes: Slave returns only bridge data to the master in 2 bytes.

- s Start Condition
- Device Slave Address (example: Bit 5)
- Data Bit (example: Bit 2)
- Read/Write Bit (example: Read=1)
- A Acknowledge (ACK)
- No Acknowledge (NACK)
- s Stop Condition
- Status Bit

General Working Mode

Outline Drawing and Connections

CONNECTIONS INFORMATION:

PIN	WIRE COLOR	OUTPUT SIGNAL			
FIIN	WIKE COLOR	mV	0.5~4.5V	I ² C	
4	RED	V+	V+	V+	
3	YELLOW	0+	0+	SCL	
2	WHITE	0-	N/A	SDA	
1	BLACK	V-	COMMON	V-	

CONNECTOR INFORMATION:

BRAND	PART	DECRIPTION	MATING RECOMMANDATION
	HOUSING	TE: # 440146-4, CONN RCPT 4POS SGL 1.25MM NATRL	TE:# 1734598-4, CONN
TE	TERMINAL	TE: # 1734193-1, CONN SOCKET 28- 32AWG CRIMP TIN	HEADER VERT 4POS 1.25MM

0.5~4.5V OUTPUT

WIRING INFORMATION

I²C OUTPUT

Mounting Recommendation

The sensor can be put into a simple slot fixture for load testing. The load should be applied to the spherical face of center boss. Recommended to stick the sensor with double face 3M adhesive or glue. Some feature to clamp the sensor from top to down can be optional.

See below for reference:

NOTE: Clamping force may shift the zero reading slightly. Re-zero if needed.

Below table shown the Zero change difference when loaded 5 Lbf from the top. (For reference only)

Dimension for reference:

^{*}Sensor features shown in **bold** are typically stocked by our distribution partners, or available with short lead times from the factory depending on availability. Contact customer service for details.

Caution:

For the digital sensor. User can change the address along with the guide as below link.

Please notice, any data changed by users means users give up the quality assurance terms. TE will not guarantee the sensor performance any more.

https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Specification+Or+Standard%7FDIGITAL MODELS CHANGING I2C SLAVE ADDRES%7FA1%7Fpdf%7FEnglish%7FENG SS DIGITAL MODELS CHANGING I2C SLAVE ADDRES A1 .pdf%7FCAT-PTT0015

REVISION HISTORY

Revision Number	Change Description	Date	Approval
A3	Minor corrections ;	06/24/2019	MH
A4	Correct pin numerical to be same as connector	07/29/2020	MH
A5	Mounting Recommendation and Caution added;	10/27/2020	MH

CLICK HERE > CONNECT WITH A SPECIALIST

NORTH AMERICA Tel +1 800 522 6752 **EUROPE**

Tel +31 73 624 6999

ASIA

Tel +86 0400 820 6015

te.com/sensors

Microfused, Measurement Specialties (MEAS), TE Connectivity, TE, TE Connectivity (logo) and Every Connection Counts are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, resale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2020 TE Connectivity Corporation. All Rights Reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

TE Connectivity:

```
FX29K0-040B-0010-L FX29K0-100A-0100-L FX293X-100A-0050-L FX292X-100A-0010-L FX292X-040B-0025-L FX292X-040B-0010-L FX29K0-040B-0050-L FX29K0-100A-0010-L FX292X-100A-0025-L FX29K0-040B-0025-L FX293X-040B-0010-L FX292X-040B-0050-L FX29K0-040B-0100-L FX292X-100A-0100-L FX29X-040B-0100-L FX293X-040B-0050-L FX293X-040B-00
```