MATH 424 HW1

Dilys Wu

January 24, 2024

$\mathbf{Q}\mathbf{1}$

Consider the empty set \emptyset as the subset of the reals \mathbb{R} . Give a convincing argument that every $x \in \mathbb{R}$ is an upper bound of \emptyset and a lower bound of \emptyset . Does \emptyset have the least upper bound? Explain.

Proof:

Let $x \in \mathbb{R}$ be arbitrary, then $s \leq x$ for all $s \in \emptyset$ since there are no elements in \emptyset , the statement is vacuously true. So every $x \in \mathbb{R}$ is an upper bound of \emptyset . Similarly, $s \geq x$ for all $s \in \emptyset$ and every $x \in \mathbb{R}$ is an upper bound of \emptyset . Suppose by contradiction that \emptyset has a least upper bound, say $a' \in \mathbb{R}$ and let x' = a' - 1. We've proven that every element of \mathbb{R} is an upper bound of \emptyset , so x' is an upper bound of \emptyset . But x' < a', contradicting that a' is the least upper bound, so \emptyset does not have the least upper bound.

$\mathbf{Q2}$

Consider \mathbb{Z}_3 , the integers modulo 3. It is a field and you don't need to prove this. Prove that \mathbb{Z}_3 cannot be an ordered field. Hint: p. 23 of the textbook. **Proof:**

Let P be the positive subset of \mathbb{Z}_3 . We first show that 1,2 are positive. $1 = 1 \times 1 = 1^2 \in P$. Also, $2 = 1 + 1 \in P$. Now suppose by contradiction that \mathbb{Z}_3 is an ordered field. Then $1,2 \in P$ by above and $1+2 \in P$. But by the definition of \mathbb{Z}_3 , $1+2=0 \notin P$, a contradiction, so \mathbb{Z}_3 is not an ordered field.

Q3

Let $a, b \in \mathbb{R}$ be two numbers with a < b < 0. Prove that

$$\frac{1}{b} < \frac{1}{a}$$

Hint: O8, p. 20.

Proof:

By O5 we know that the product of two negative numbers is positive, so we

have ab > 0, hence $(ab)^{-1} > 0$ by O7. Multiplying a < b both sides by $(ab)^{-1}$ gives $(ab)^{-1}a < (ab)^{-1}b$, which simplifies to $\frac{1}{b} < \frac{1}{a}$.

$\mathbf{Q4}$

Prove that for any $a, b \in \mathbb{R} \max\{a, b\} = \frac{1}{2}(a + b + |b - a|)$.

Proof:

There are two cases. Either $a \ge b$ or a < b. If $a \ge b$, then $\max\{a,b\} = a$ and |b-a| = a-b. Thus we have $\frac{1}{2}(a+b+|b-a|) = \frac{1}{2}(a+b+a-b) = \frac{1}{2}2a = a = \max\{a,b\}$. If a < b, then $\max\{a,b\} = b$ and |b-a| = b-a. So $\frac{1}{2}(a+b+|b-a|) = \frac{1}{2}(a+b+b-a) = \frac{1}{2}2b = b = \max\{a,b\}$. In both cases, we've shown that $\max\{a,b\} = \frac{1}{2}(a+b+|b-a|)$.

Q_5

Give a careful proof that $1 = \sup([0, 1))$.

Proof:

It is obvious that 1 is an upper bound of 1 since for all $x \in [0,1), x \le 1$. Now we show that any a < 1 cannot be an upper bound of [0,1). Let $x = \frac{1-a}{2} + a$, clearly x > a because $\frac{1-a}{2} > 0$. But note that also x < 1. To see this, suppose by contradiction that $x \ge 1$, then $2x = 2 \cdot (\frac{1-a}{2} + a) = (1-a) + 2a = 1 + a \ge 2$, which gives $a \ge 1$, a contradiction. Hence there is $x \in [0,1)$ such that x > a, so a is not an upper bound of [0,1) and 1 is the supremum of [0,1).

Q6

Consider a function $d: \mathbb{R}^2 \times \mathbb{R}^2 \mapsto [0, \infty)$ defined by

$$d((x_1, x_2), (y_1, y_2)) := max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Prove that the triangle inequality holds for d: for all $x = (x_1, x_2)$, $y = (y_1, y_2)$, $z = (z_1, z_2) \in \mathbb{R}^2$, $d(x, y) \leq d(x, z) + d(z, y)$.

Proof:

 $\max\{|x_1-y_1|,|x_2-y_2|\} \leq d(x,y)+d(y,z) \iff |x_1-z_1| \leq d(x,y)+d(y,z)$ and $|x_2-z_2| \leq d(x,y)+d(y,z)$. But by the Triangle Inequality, $|x_1-z_1| = |x_1-y_1+y_1-z_1| \leq |x_1-y_1|+|y_1-z_1| \leq \max\{|x_1-y_1|,|x_2-y_2|\}+\max\{|y_1-z_1|,|y_2-z_2|\} = d(x,y)+d(y,z)$. Similarly, $|x_2-z_2| = |x_2-y_2+y_2-z_2| \leq |x_2-y_2|+|y_2-z_2| \leq d(x,y)+d(y,z)$, which ends our proof.