

SEQUENCE LISTING

<110> PARDO-FERNANDEZ, LUIS ANGEL
 STUHMER, WALTER
 BECKH, SYNNOVE
 BRUGGEMANN, ANDREA
 FERNANDEZ-MIRANDA, DONATO DEL CAMINO
 PEREZ, ARACELI SANCHEZ
 WESELOH, RUDIGER

<120> NOVEL HUMAN K⁺ ION CHANNEL AND THERAPEUTIC APPLICATIONS THEREOF

<130> MPG-8

<140> 09/694,777
 <141> 2000-10-23

<150> PCT/EP99/02695
 <151> 1999-04-21

<150> EP 98 10 7268.9
 <151> 1998-04-21

<160> 15

<170> PatentIn Ver. 2.1

<210> 1
 <211> 3002
 <212> DNA
 <213> Homo sapiens

<400> 1
 aattccgggc cgcgggacc ccgagctgct gggaggatga ccatggctgg gggcaggagg 60
 ggactagtgg cccctcaaaa cacgttctg gagaatattg ttcggggcgt caatgatact 120
 aattttgtgt tggggaatgc tcagatagtg gactggccta ttgtgtacag caatgatgga 180
 ttttgcaggc tgcgtggcta tcacaggcga gaagtgtatgc aaaaaaagcag cacctgcagt 240
 tttatgtatg gggagctgac tgataaaagac acgatggaaa aagtgcggca aacatttgag 300
 aactatgaga tgaattccctt tgaattctg atgtacaaga agaacaggac acctgtgtgg 360
 ttctttgtga aaattgtcc aattcgaaac gaacaggata aagtgggtttt atttctttgc 420
 actttcagtg acataaacagc tttcaaaacag ccaattgggg atgattcatg taaaggctgg 480
 gggaaagtggc ctcggctgac aagagcactg acaaggcagca ggggtgtcct gcagcagctg 540
 gctccaaagcg tgcaaaaagg cgagaatgtc cacaaggact cccgcctggc agaggtccta 600
 cagctgggct cagacatcct tccccagttac aagcaagagg caccggaaac tccccctcac 660
 atcatcttac attattgtgt ttttaagacc acgtgggattt ggtatcatttt gatcttgacc 720
 ttctatacag ccatcttggc cccttataat gtctccttca aaaccaggca gaataatgtg 780
 gctctggctgg ttgttgatag catcgatggat gttatctttt tgggtggacat tggctcaat 840
 tttcataccca cctttgttgg accagcaggc gaggtgtatggt dtgaccccaa acttatccgc 900
 atgaactacc tgaagacgtg gtttgtgatt gaccttctgt ctgtttgccc atatgatgtc 960
 atcaacgctt ttgagaacgtt ggatggggc atcagcagcc tggctcagtc tctaaaagg 1020
 gtcggctgc tccgtttgg gcgagtgcc cgtaaatgtt acggactacat tgaatatgga 1080
 gctgctgtgc tggctctgtt ggtgtgtgt tttggctgg ctgcacactg gatggcctgc 1140
 atctggtaa cgttgggaa ctatgatgtt tttacggagg acaccaagac aatccgcaac 1200
 aacagctggc tggatggacat agcgtggacat tttacggatcc tttacggatc tttacggatc 1260
 ggctcaggaa agtggaaagg tggccatggc aagaattctg tttacatc tttacatc 1320
 ttcacaatgtt ccaggctcac cgttggggc tttggaaaca tttacatc tttacatc 1380
 gagaagatct ttgtggc catcatgtt atggctcac ttctctatgc caccatcttc 1440

ggaatgtga	cgactattt	ccaacagatg	tatgccaaca	ccaaacagata	ccatgagatg	1500
ctcaacagtg	ttcgggactt	cctgaagctc	taccaggtgc	caaaaggatt	gagtgagcga	1560
gtaatggatt	atattgtgtc	caacttggcc	atgtccagag	gcattgacac	agagaaggtc	1620
ctgcagatct	gccccaaagga	catgagagcc	gacatctgcg	tgcacctgaa	ccgcaagggt	1680
ttcaaggaggc	accggcctt	ccggctggcc	agtatggct	gcctccggc	actggccatg	1740
gagttccaga	cggtgcactg	tgccccaggg	gacctcatct	accatgcagg	agagagcgtt	1800
gacagcctct	gctttgtgtt	ttctggctcc	ctggaggtga	tccaagatga	tgaggtgggt	1860
gccattctag	aaaaaggaga	cgtgtttgga	gatgtgttct	ggaaggaagc	cacccttggc	1920
cagtctgtg	ccaatgttag	ggccttgacc	tactgtgatc	tgcatgtat	caagcgggat	1980
gccctgcaga	aagtgcgtga	attctacacg	gccttctccc	attccttc	ccggaacctg	2040
attctgacgt	acaacttgag	gaagaggatt	gtttccgg	agatcagcga	tgtaaaacgt	2100
gaagaggaag	aacgcatgaa	acgaaagaat	gagccccccc	tgatcttgc	cccgaccac	2160
cctgtccggc	gccttcca	gagattccga	cagcagaaag	aggccaggct	ggcagctgag	2220
agagggggcc	gggacctgga	tgaccttagat	gtggagaagg	gcaatgtct	tacagagcat	2280
gcctccgcca	accacagcct	cgtgaaggcc	agcgtggtca	ccgtgcgtga	gagtcttgc	2340
acgccccgtat	cttccaggc	agcctccacc	tccgggtgc	cagaccacgc	aaagctacag	2400
gcccgggg	ccgagtcct	gggccccaaag	gggggggggg	gcgattgtgc	caagcgcaaa	2460
agctggggcc	gcttcaaaga	tgcttgcggg	aagagtgagg	actggaaaca	ggtgtccaag	2520
gctgagtcga	tggagacact	tcccggaggg	acaaaagcgt	caggcgaggc	cacactgaag	2580
aagacagact	cgtgtgacag	tggcatcacc	aagagcact	tgcgccttgc	caacgtgggt	2640
gaggccagga	gtccccagga	tcggagttccc	atcttggcag	aggtaagca	ttcggttctac	2700
cccatccctg	agcagacgct	gcaggccaca	gtcctggagg	tgaggcacga	gctgaaggag	2760
gacatcaagg	ccttaaacgc	caaaatgacc	aatattgaga	aacagctctc	ttagataactc	2820
aggatattaa	cttccagaag	atcctctcag	tctcctcagg	agttgttgc	aatatcgagg	2880
ccacagtccc	cagaatcaga	gagagacatt	tttggagcca	gctgagaggt	ctataaaaa	2940
aaaaagtctag	agacagatac	ctccaaccct	gccgtcacca	ccacccctac	cacccggaaat	3000
tc						3002

<210> 2
 <211> 3083
 <212> DNA
 <213> Homo sapiens

<400> 2						
aattccgggc	ccgccccgacc	ccgagctgct	gggaggatga	ccatggctgg	gggcaggagg	60
ggactagtgg	ccctcaaaa	cacgtttctg	gagaatattg	ttcggcggtc	caatgatact	120
aattttgtgt	tgggaatgc	tcatagatgt	gactggccta	tttgttacag	caatgatgga	180
ttttgcaga	tgtctggcta	tcacaggcga	gaagtgtatgc	aaaaaaagcag	cacctgcagt	240
tttatgtatg	gggagctgac	tgataaaagac	acgattgaaa	aagtgcggca	aacatttgag	300
aactatgaga	tgaattcctt	tgaaattctg	atgtacaaga	agaacaggac	acctgtgtgg	360
ttctttgtga	aaattgtctc	aattcgaaac	gaacaggata	aagtggttt	atttcttgc	420
actttcagtg	acataaacgc	tttcaaacag	ccaatttgggg	atgattcatg	taaaggctgg	480
ggaagtttgc	ctcggtgtac	aagagcactg	acaaggcagca	gggggtgcct	gcagcagctg	540
gctccaagcg	tgcaaaaaagg	cgagaatgtc	cacaaggact	cccgccctggc	agaggtccta	600
cagctgggc	cagacatcct	tccccagttac	aagcaagagg	caccaaaagac	tccccctcac	660
atcatcttac	attattgtgt	tttaaagacc	acgtggggatt	ggatcatctt	gatcttgcacc	720
ttctatacag	ccatottgg	cccttataat	gtctccttca	aaaccaggca	gaataatgtg	780
gcctggctgg	ttgttgcata	catcggtggat	gttatcttt	tggtggacat	tgtgctcaat	840
tttcataccat	cctttgttgg	accagcaggg	gaggtgattt	ctgaccccaa	acttatccgc	900
atgaactacc	tgaagacgtg	gtttgtgatt	gaccttctgt	cctgtttgc	atatgatgtc	960
atcaacgctt	ttgagaacgt	ggatgagggtt	agtgccctta	tgggtgtatcc	agggaaagatt	1020
ggttttgcgt	atcagattcc	accaccactg	gaggggagag	agagtcaagg	catcagcagc	1080
cttttcagct	ctctaaaagt	tgtccggctg	ctccgtcttg	ggcgagttgc	ccgtaaagctg	1140
gaccactaca	ttgaatatgg	agctgtgtg	ctggctctgc	tgggtgtgt	gtttgggctg	1200
gctgcacact	ggatggctg	catctggatc	agcattgggg	actatgagat	cttgacgag	1260
gacaccaaga	caatccgcaa	caacagctgg	ctgtaccaac	tagcgatgga	cattggcacc	1320
ccttaccagt	ttaatgggtc	tggctcaggg	aagtggaaag	gtggtcccag	caagaattct	1380

gtctacatct cctcggttga tttcacaatg accagcctca ccagtgtggg ctttgggaac 1440
 atcgccccat ccacagacat tgagaagatc tttgcagtgg ccatcatgat gattggctca 1500
 cttctctatg ccaccatctt cgggaatgtg acgactattt tccaacagat gtatgccaac 1560
 accaacagat accatgagat gctcaacagt gttcgggact tcctgaagct ctaccaggtg 1620
 ccaaaggat tgagtgagcg agtaatggat tattattgtt ccacttggc catgtccaga 1680
 ggcattgaca cagagaaggt cctgcagatc tgccccaagg acatgagagc cgacatctgc 1740
 gtgcacctga accgcaaggt gttcaaggag caccggct tccggctggc cagtgtatggc 1800
 tgcctccggg cactggccat ggagttccag acgggtgact gtgcccagg ggacctcatc 1860
 taccatgcag gagagagcgt tgacagccctc tgctttgtgg tttctggctc cctggagggtg 1920
 atccaagatg atgaggtggt ggccattcta ggaaaaggag acgtgtttgg agatgtgttc 1980
 tggaaaggaag ccacccttgc ccagtcctgt gccaatgtta gggccttgac ctactgtat 2040
 ctgcatgtga tcaagcggga tgccctgcag aaagtgtctgg aattctacac gccttctcc 2100
 cattcctct cccgaaacct gattctgacg tacaacttga ggaagaggat tgtgttccgg 2160
 aagatcagcg atgtgaaacg tgaagaggaa gaacgcatga aacgaaagaa tgaggcccc 2220
 ctgatcttgc ccccgacca ccctgtccgg cgccttccac agagattccg acagcagaaaa 2280
 gaggccaggc tggcagctga gagagggggc cgggacctgg atgacctaga tgtggagaag 2340
 ggcaatgtcc ttacagagca tgccctccggc aaccacagcc tcgtgaaggc cagcgtggc 2400
 accgtgcgtg agagtcctgc cacgcccgtt tccttccagg cagcctccac ctccgggggtg 2460
 ccagaccacg caaaactaca ggcgccaggg tccgagtgcc tgggccccaa gggggggcggg 2520
 ggcattgtg ccaagcgc当地 aagctggcc cgccttcaag atgctgc当地 gaagagttag 2580
 gactggaaaca aggtgtccaa ggctgagtcg atggagacac ttcccagag gacaaaagcg 2640
 tcagggcagg ccacactgaa gaagacagac tcgtgtgaca gtggcatcac caagagc当地 2700
 ttgcgcctgg acaacgtggg tgaggccagg agtccccagg atcggagtcc catcctggca 2760
 gaggtcaagc attcgttcta ccccatccct gaggcagacgc tgcaggccac agtccctggag 2820
 gtgaggc当地 agctgaagga ggacatcaag gccttaaacc cccaaatgac caatatttag 2880
 aaacagctt ctgagatact caggatatta acttccagaa gatcctctca gtctcctc当地 2940
 gagttgtttg aaatatcgag gccacagtcc ccagaatcag agagagacat ttttgagcc 3000
 agctgagagg tctataaa aaaaaagtca gagacagata cctccaaccc tgccgtc当地 3060
 accaccctta ccacccggaa ttc 3083

<210> 3

<211> 962

<212> PRT

<213> Homo sapiens

<400> 3

Met	Thr	Met	Ala	Gly	Gly	Arg	Arg	Gly	Leu	Val	Ala	Pro	Gln	Asn	Thr
1									10						15

Phe	Leu	Glu	Asn	Ile	Val	Arg	Arg	Ser	Asn	Asp	Thr	Asn	Phe	Val	Leu
				20				25						30	

Gly	Asn	Ala	Gln	Ile	Val	Asp	Trp	Pro	Ile	Val	Tyr	Ser	Asn	Asp	Gly
				35				40						45	

Phe	Cys	Lys	Leu	Ser	Gly	Tyr	His	Arg	Ala	Glu	Val	Met	Gln	Lys	Ser
									50			55		60	

Ser	Thr	Cys	Ser	Phe	Met	Tyr	Gly	Glu	Leu	Thr	Asp	Lys	Asp	Thr	Ile
				65				70			75			80	

Glu	Lys	Val	Arg	Gln	Thr	Phe	Glu	Asn	Tyr	Glu	Met	Asn	Ser	Phe	Glu
				85					90					95	

Ile	Leu	Met	Tyr	Lys	Lys	Asn	Arg	Thr	Pro	Val	Trp	Phe	Phe	Val	Lys
				100					105					110	

Ile Ala Pro Ile Arg Asn Glu Gln Asp Lys Val Val Leu Phe Leu Cys
 115 120 125

Thr Phe Ser Asp Ile Thr Ala Phe Lys Gln Pro Ile Glu Asp Asp Ser
 130 135 140

Cys Lys Gly Trp Gly Lys Phe Ala Arg Leu Thr Arg Ala Leu Thr Ser
 145 150 155 160

Ser Arg Gly Val Leu Gln Gln Leu Ala Pro Ser Val Gln Lys Gly Glu
 165 170 175

Asn Val His Lys His Ser Arg Leu Ala Glu Val Leu Gln Leu Gly Ser
 180 185 190

Asp Ile Leu Pro Gln Tyr Lys Gln Glu Ala Pro Lys Thr Pro Pro His
 195 200 205

Ile Ile Leu His Tyr Cys Val Phe Lys Thr Thr Trp Asp Trp Ile Ile
 210 215 220

Leu Ile Leu Thr Phe Tyr Thr Ala Ile Leu Val Pro Tyr Asn Val Ser
 225 230 235 240

Phe Lys Thr Arg Gln Asn Asn Val Ala Trp Leu Val Val Asp Ser Ile
 245 250 255

Val Asp Val Ile Phe Leu Val Asp Ile Val Leu Asn Phe His Thr Thr
 260 265 270

Phe Val Gly Pro Ala Gly Glu Val Ile Ser Asp Pro Lys Leu Ile Arg
 275 280 285

Met Asn Tyr Leu Lys Thr Trp Phe Val Ile Asp Leu Leu Ser Cys Leu
 290 295 300

Pro Tyr Asp Val Ile Asn Ala Phe Glu Asn Val Asp Glu Gly Ile Ser
 305 310 315 320

Ser Leu Phe Ser Ser Leu Lys Val Val Arg Leu Leu Arg Leu Gly Arg
 325 330 335

Val Ala Arg Lys Leu Asp His Tyr Ile Glu Tyr Gly Ala Ala Val Leu
 340 345 350

Val Leu Leu Val Cys Val Phe Gly Leu Ala Ala His Trp Met Ala Cys
 355 360 365

Ile Trp Tyr Ser Ile Gly Asp Tyr Glu Ile Phe Asp Glu Asp Thr Lys
 370 375 380

Thr Ile Arg Asn Asn Ser Trp Leu Tyr Gln Leu Ala Met Asp Ile Gly
 385 390 395 400

Thr Pro Tyr Gln Phe Asn Gly Ser Gly Ser Gly Lys Trp Glu Gly Gly
 405 410 415

Pro Ser Lys Asn Ser Val Tyr Ile Ser Ser Leu Tyr Phe Thr Met Thr
 420 425 430

Ser Leu Thr Ser Val Gly Phe Gly Asn Ile Ala Pro Ser Thr Asp Ile
 435 440 445

Glu Lys Ile Phe Ala Val Ala Ile Met Met Ile Gly Ser Leu Leu Tyr
 450 455 460

Ala Thr Ile Phe Gly Asn Val Thr Thr Ile Phe Gln Gln Met Tyr Ala
 465 470 475 480

Asn Thr Asn Arg Tyr His Glu Met Leu Asn Ser Val Arg Asp Phe Leu
 485 490 495

Lys Leu Tyr Gln Val Pro Lys Gly Leu Ser Glu Arg Val Met Asp Tyr
 500 505 510

Ile Val Ser Thr Trp Ser Met Ser Arg Gly Ile Asp Thr Glu Lys Val
 515 520 525

Leu Gln Ile Cys Pro Lys Asp Met Arg Ala Asp Ile Cys Val His Leu
 530 535 540

Asn Arg Lys Val Phe Lys Glu His Pro Ala Phe Arg Leu Ala Ser Asp
 545 550 555 560

Gly Cys Leu Arg Ala Leu Ala Met Glu Phe Gln Thr Val His Cys Ala
 565 570 575

Pro Gly Asp Leu Ile Tyr His Ala Gly Glu Ser Val Asp Ser Leu Cys
 580 585 590

Phe Val Val Ser Gly Ser Leu Glu Val Ile Gln Asp Asp Glu Val Val
 595 600 605

Ala Ile Leu Gly Lys Gly Asp Val Phe Gly Asp Val Phe Trp Lys Glu
 610 615 620

Ala Thr Leu Ala Gln Ser Cys Ala Asn Val Arg Ala Leu Thr Tyr Cys
 625 630 635 640

Asp Leu His Val Ile Lys Arg Asp Ala Leu Gln Lys Val Leu Glu Phe
 645 650 655

Tyr Thr Ala Phe Ser His Ser Phe Ser Arg Asn Leu Ile Leu Thr Tyr
 660 665 670

Asn Leu Arg Lys Arg Ile Val Phe Arg Lys Ile Ser Asp Val Lys Arg
 675 680 685

Glu Glu Glu Glu Arg Met Lys Arg Lys Asn Glu Ala Pro Leu Ile Leu
 690 695 700

Pro Pro Asp His Pro Val Arg Arg Leu Phe Gln Arg Phe Arg Gln Gln
 705 710 715 720

Lys Glu Ala Arg Leu Ala Ala Glu Arg Gly Gly Arg Asp Leu Asp Asp
 725 730 735

Leu Asp Val Glu Lys Gly Asn Val Leu Thr Glu His Ala Ser Ala Asn
 740 745 750

His Ser Leu Val Lys Ala Ser Val Val Thr Val Arg Glu Ser Pro Ala
 755 760 765

Thr Pro Val Ser Phe Gln Ala Ala Ser Thr Ser Gly Val Pro Asp His
 770 775 780

Ala Lys Leu Gln Ala Pro Gly Ser Glu Cys Leu Gly Pro Lys Gly Gly
 785 790 795 800

Gly Gly Asp Cys Ala Lys Arg Lys Ser Trp Ala Arg Phe Lys Asp Ala
 805 810 815

Cys Gly Lys Ser Glu Asp Trp Asn Lys Val Ser Lys Ala Glu Ser Met
 820 825 830

Glu Thr Leu Pro Glu Arg Thr Lys Ala Ser Gly Glu Ala Thr Leu Lys
 835 840 845

Lys Thr Asp Ser Cys Asp Ser Gly Ile Thr Lys Ser Asp Leu Arg Leu
 850 855 860

Asp Asn Val Gly Glu Ala Arg Ser Pro Gln Asp Arg Ser Pro Ile Leu
 865 870 875 880

Ala Glu Val Lys His Ser Phe Tyr Pro Ile Pro Glu Gln Thr Leu Gln
 885 890 895

Ala Thr Val Leu Glu Val Arg His Glu Leu Lys Glu Asp Ile Lys Ala
 900 905 910

Leu Asn Ala Lys Met Thr Asn Ile Glu Lys Gln Leu Ser Glu Ile Leu
 915 920 925

Arg Ile Leu Thr Ser Arg Arg Ser Ser Gln Ser Pro Gln Glu Leu Phe
 930 935 940

Glu Ile Ser Arg Pro Gln Ser Pro Glu Ser Glu Arg Asp Ile Phe Gly
 945 950 955 960

Ala Ser

<210> 4
 <211> 989
 <212> PRT
 <213> Homo sapiens

<400> 4

Met Thr Met Ala Gly Gly Arg Arg Gly Leu Val Ala Pro Gln Asn Thr
 1 5 10 15

Phe Leu Glu Asn Ile Val Arg Arg Ser Asn Asp Thr Asn Phe Val Leu
 20 25 30
 Gly Asn Ala Gln Ile Val Asp Trp Pro Ile Val Tyr Ser Asn Asp Gly
 35 40 45
 Phe Cys Lys Leu Ser Gly Tyr His Arg Ala Glu Val Met Gln Lys Ser
 50 55 60
 Ser Thr Cys Ser Phe Met Tyr Gly Glu Leu Thr Asp Lys Asp Thr Ile
 65 70 75 80
 Glu Lys Val Arg Gln Thr Phe Glu Asn Tyr Glu Met Asn Ser Phe Glu
 85 90 95
 Ile Leu Met Tyr Lys Lys Asn Arg Thr Pro Val Trp Phe Val Lys
 100 105 110
 Ile Ala Pro Ile Arg Asn Glu Gln Asp Lys Val Val Leu Phe Leu Cys
 115 120 125
 Thr Phe Ser Asp Ile Thr Ala Phe Lys Gln Pro Ile Glu Asp Asp Ser
 130 135 140
 Cys Lys Gly Trp Gly Lys Phe Ala Arg Leu Thr Arg Ala Leu Thr Ser
 145 150 155 160
 Ser Arg Gly Val Leu Gln Gln Leu Ala Pro Ser Val Gln Lys Gly Glu
 165 170 175
 Asn Val His Lys His Ser Arg Leu Ala Glu Val Leu Gln Leu Gly Ser
 180 185 190
 Asp Ile Leu Pro Gln Tyr Lys Gln Glu Ala Pro Lys Thr Pro Pro His
 195 200 205
 Ile Ile Leu His Tyr Cys Val Phe Lys Thr Thr Trp Asp Trp Ile Ile
 210 215 220
 Leu Ile Leu Thr Phe Tyr Thr Ala Ile Leu Val Pro Tyr Asn Val Ser
 225 230 235 240
 Phe Lys Thr Arg Gln Asn Asn Val Ala Trp Leu Val Val Asp Ser Ile
 245 250 255
 Val Asp Val Ile Phe Leu Val Asp Ile Val Leu Asn Phe His Thr Thr
 260 265 270
 Phe Val Gly Pro Ala Gly Glu Val Ile Ser Asp Pro Lys Leu Ile Arg
 275 280 285
 Met Asn Tyr Leu Lys Thr Trp Phe Val Ile Asp Leu Leu Ser Cys Leu
 290 295 300
 Pro Tyr Asp Val Ile Asn Ala Phe Glu Asn Val Asp Glu Val Ser Ala
 305 310 315 320

Phe Met Gly Asp Pro Gly Lys Ile Gly Phe Ala Asp Gln Ile Pro Pro
 325 330 335
 Pro Leu Glu Gly Arg Glu Ser Gln Gly Ile Ser Ser Leu Phe Ser Ser
 340 345 350
 Leu Lys Val Val Arg Leu Leu Arg Leu Gly Arg Val Ala Arg Lys Leu
 355 360 365
 Asp His Tyr Ile Glu Tyr Gly Ala Ala Val Leu Val Leu Leu Val Cys
 370 375 380
 Val Phe Gly Leu Ala Ala His Trp Met Ala Cys Ile Trp Tyr Ser Ile
 385 390 395 400
 Gly Asp Tyr Glu Ile Phe Asp Glu Asp Thr Lys Thr Ile Arg Asn Asn
 405 410 415
 Ser Trp Leu Tyr Gln Leu Ala Met Asp Ile Gly Thr Pro Tyr Gln Phe
 420 425 430
 Asn Gly Ser Gly Ser Gly Lys Trp Glu Gly Gly Pro Ser Lys Asn Ser
 435 440 445
 Val Tyr Ile Ser Ser Leu Tyr Phe Thr Met Thr Ser Leu Thr Ser Val
 450 455 460
 Gly Phe Gly Asn Ile Ala Pro Ser Thr Asp Ile Glu Lys Ile Phe Ala
 465 470 475 480
 Val Ala Ile Met Met Ile Gly Ser Leu Leu Tyr Ala Thr Ile Phe Gly
 485 490 495
 Asn Val Thr Thr Ile Phe Gln Gln Met Tyr Ala Asn Thr Asn Arg Tyr
 500 505 510
 His Glu Met Leu Asn Ser Val Arg Asp Phe Leu Lys Leu Tyr Gln Val
 515 520 525
 Pro Lys Gly Leu Ser Glu Arg Val Met Asp Tyr Ile Val Ser Thr Trp
 530 535 540
 Ser Met Ser Arg Gly Ile Asp Thr Glu Lys Val Leu Gln Ile Cys Pro
 545 550 555 560
 Lys Asp Met Arg Ala Asp Ile Cys Val His Leu Asn Arg Lys Val Phe
 565 570 575
 Lys Glu His Pro Ala Phe Arg Leu Ala Ser Asp Gly Cys Leu Arg Ala
 580 585 590
 Leu Ala Met Glu Phe Gln Thr Val His Cys Ala Pro Gly Asp Leu Ile
 595 600 605
 Tyr His Ala Gly Glu Ser Val Asp Ser Leu Cys Phe Val Val Ser Gly
 610 615 620

Ser Leu Glu Val Ile Gln Asp Asp Glu Val Val Ala Ile Leu Gly Lys
625 630 635 640

Gly Asp Val Phe Gly Asp Val Phe Trp Lys Glu Ala Thr Leu Ala Gln
645 650 655

Ser Cys Ala Asn Val Arg Ala Leu Thr Tyr Cys Asp Leu His Val Ile
660 665 670

Lys Arg Asp Ala Leu Gln Lys Val Leu Glu Phe Tyr Thr Ala Phe Ser
675 680 685

His Ser Phe Ser Arg Asn Leu Ile Leu Thr Tyr Asn Leu Arg Lys Arg
690 695 700

Ile Val Phe Arg Lys Ile Ser Asp Val Lys Arg Glu Glu Glu Arg
705 710 715 720

Met Lys Arg Lys Asn Glu Ala Pro Leu Ile Leu Pro Pro Asp His Pro
725 730 735

Val Arg Arg Leu Phe Gln Arg Phe Arg Gln Gln Lys Glu Ala Arg Leu
740 745 750

Ala Ala Glu Arg Gly Gly Arg Asp Leu Asp Asp Leu Asp Val Glu Lys
755 760 765

Gly Asn Val Leu Thr Glu His Ala Ser Ala Asn His Ser Leu Val Lys
770 775 780

Ala Ser Val Val Thr Val Arg Glu Ser Pro Ala Thr Pro Val Ser Phe
785 790 795 800

Gln Ala Ala Ser Thr Ser Gly Val Pro Asp His Ala Lys Leu Gln Ala
805 810 815

Pro Gly Ser Glu Cys Leu Gly Pro Lys Gly Gly Gly Asp Cys Ala
820 825 830

Lys Arg Lys Ser Trp Ala Arg Phe Lys Asp Ala Cys Gly Lys Ser Glu
835 840 845

Asp Trp Asn Lys Val Ser Lys Ala Glu Ser Met Glu Thr Leu Pro Glu
850 855 860

Arg Thr Lys Ala Ser Gly Glu Ala Thr Leu Lys Lys Thr Asp Ser Cys
865 870 875 880

Asp Ser Gly Ile Thr Lys Ser Asp Leu Arg Leu Asp Asn Val Gly Glu
885 890 895

Ala Arg Ser Pro Gln Asp Arg Ser Pro Ile Leu Ala Glu Val Lys His
900 905 910

Ser Phe Tyr Pro Ile Pro Glu Gln Thr Leu Gln Ala Thr Val Leu Glu
915 920 925

Val Arg His Glu Leu Lys Glu Asp Ile Lys Ala Leu Asn Ala Lys Met
930 935 940

Thr Asn Ile Glu Lys Gln Leu Ser Glu Ile Leu Arg Ile Leu Thr Ser
945 950 955 960

Arg Arg Ser Ser Gln Ser Pro Gln Glu Leu Phe Glu Ile Ser Arg Pro
965 970 975

Gln Ser Pro Glu Ser Glu Arg Asp Ile Phe Gly Ala Ser
980 985

<210> 5
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 5
ccaaacacac acaccagc 18

<210> 6
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 6
cgtggatgtt atctttttgg 20

<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<400> 7
gggaggatga ccatggct 18

<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic DNA

<220>
 <221> modified_base
 <222> (15)
 <223> a, t, c or g

<400> 8
 cagaayaayg tggcntggct

20

<210> 9
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 9
 tcactraaga tctatartc

19

<210> 10
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 10
 cgcatgaact acctgaagac g

21

<210> 11
 <211> 21
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 11
 tctgtggatg gggcgatgtt c

21

<210> 12
 <211> 18
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic DNA

<400> 12
 gggaggatga ccatggct

18

<210> 13
 <211> 2886
 <212> DNA
 <213> Homo sapiens

<400> 13
 atgaccatgg ctggggcag gagggacta gtggccctc aaaacacgtt tctggagaat 60
 attgttcggc ggtccatga tactaattt gtgttggga atgctcagat agtggactgg 120
 cctattgtgt acagcaatga tggatttgc aagctgtctg gctatcacag ggcagaagtg 180
 atgcaaaaaa gcagcacctg cagtttatg tatggggagc tgactgataa agacacgatt 240
 gaaaaagtgc ggcaaacatt tgagaactat gagatgaatt ccttggaaat tctgatgtac 300
 aagaagaaca ggacacctgt gtggttctt gtggaaatttgc ctccaattcg aaacgaacag 360
 gataaaagtgg ttttatttct ttgcacttc agtgcataa cagcttcaa acagccaatt 420
 gaggatgatt catgtaaagg ctggggaaag tttgctcggc tgacaagagc actgacaagc 480
 agcaggggtg tcctgcagca gctggctcca agcgtgcaaa aaggcgagaa tggccacaag 540
 cactccogcc tggcagaggt cctacagctg ggctcagaca tccttccccca gtacaagcaa 600
 gaggcaccaa agactcccccc tcacatcatc ttacattatt gtgttttaa gaccacgtgg 660
 gattggatca tcttgatctt gaccttctat acagccatct tggccctta taatgtctcc 720
 ttcaaaacca ggcagaataa tggccctgg ctggttgtt atagcatgtt ggatgttattc 780
 ttttggtgg acattgtgtc caattttcat accaccttttggaccagc aggggaggtg 840
 atttctgacc ccaaacttat ccgcataac tacctgaaga cgtggtttgc gattgacatt 900
 ctgtcctgtt tgcataatga tgcataac gcttttgaga acgtggatga gggcatcagc 960
 agcctgttca gctctctaaa agttgtccgg ctgtccgtc ttggccgagt gggccgttaag 1020
 ctggaccact acattgaata tggagctgtc gtgctggtcc tgctgggtgt tgggtttggg 1080
 ctggctgcac actggatggc ctgcatactgg tacagcatttgc gggactatga gatctttgac 1140
 gaggacacca agacaatccg caacaacagc tggctgtacc aactagcgat ggacattggc 1200
 accccttacc agttaatgg gtctggctca gggaaagtggg aagggtggcc cagcaagaat 1260
 tctgtctaca tctcctcggtt gtatttcaca atgaccagcc tcaccagtgtt gggctttggg 1320
 aacatcgccc catccacaga cattgagaag atctttgcag tggccatcat gatgattggc 1380
 tcacttctct atgcccacat cttcggaaat gtgacgacta ttttccaaca gatgtatgcc 1440
 aacaccaaca gataccatga gatgctcaac agtggccggg acttcctgaa gctctaccag 1500
 gtgccaaaag gattgagtga gcgagtaatg gattatatttggccacttgc gtccatgtcc 1560
 agaggcatttgc acacagagaa ggtcctgcag atctgcggca aggacatgag agccgacatc 1620
 tgcgtgcacc tgaaccgcaa ggtgttcaag gggccactggc catggagttc cagacgggtgc actgtggccc aggggacactc 1680
 ggctgcctcc gggactggc atggccgttcc cttccggctt ggcggatgtat 1740
 atctaccatg caggagagag cgttgcacgc ctctgttttgc tgggttctgg ctccctggag 1800
 gtgatccaag atgatgagggt ggtggccatttgc ctagggaaatg gggccacttgc tggagatgtg 1860
 ttcttggaaagg aagccaccct tggccacttgc tggccatgtt ttagggccctt gacctactgt 1920
 gatctgcatttgc tggccatgttgc ggtggcccttgc cttccggctt gggccacttgc 1980
 tcccatttgc tctcccgaa cctgtatttgc acgtacaact tgaggaaatgg gattgttttgc 2040
 cggaaatgtca gcatgtgttgc acgtgaagag gaagaacgca tggccatgttgc 2100
 cccctgatct tggccatgttgc ccacccctgtc cggcccttgc tccagagatttgc cccacacggc 2160
 aaagaggccca ggctggcagc tgagagaggg gggccggacc tggatgacacttgc agatgtggag 2220
 aaggggcaatg tccttacaga gcatgccttgc gccaaccaca gcctcgatgttgc 2280
 gtcaccgtgc gtgagatgttgc tggccatgttgc gtatcccttgc agggccacttgc 2340
 gtgccagacc acgcaaaatgttgc acaggccatc ggtggccacttgc tggccatgttgc 2400
 gggggccgatt gtgccaatgttgc cttccggcttgc cttccggcttgc 2460
 gaggacttggc acaagggtgttgc caaggctgttgc tggccatgttgc 2520
 gcgtcaggccg aggccacacttgc gggccacttgc tggccatgttgc 2580
 gacttgcgttgc tggccatgttgc gggccacttgc tggccatgttgc 2640
 gcagagggtca agcattgttgc tggccatgttgc tggccatgttgc 2700
 gaggttggccg acgagatgttgc gggccacttgc tggccatgttgc 2760
 gagaaacacgc tctcttgc tggccatgttgc tggccatgttgc 2820
 caggagttgttgc tggccatgttgc tggccatgttgc 2880
 gggccacttgc 2886

<210> 14
 <211> 2967
 <212> DNA
 <213> Homo sapiens

<400> 14
 atgaccatgg ctggggcag gagggacta gtggccctc aaaacacgtt tctggagaat 60
 attgttcggc ggtccaatga tactaatttt gtgttggga atgctcagat agtggactgg 120
 cctattgtgt acagcaatga tggatttgc aagctgtctg gctatcacag ggcagaagtg 180
 atgcaaaaaaaaa gcagcacctg cagtttatg tatggggagc tgactgataa agacacgatt 240
 gaaaaaagtgc ggcaaacatt tgagaactat gagatgaatt ccttggaaat tctgtatgtac 300
 aagaagaaca ggacacctgt gtggttctt gtgaaaattt ctcacattcg aaacgaacag 360
 gataaagtgg ttttatttct ttgcacttgc agtgacataa cagcttcaa acagccaatt 420
 gaggatgatt catgtaaagg ctgggggaag tttgctcggc tgacaagagc actgacaagc 480
 agcaggggtg tcctgcagca gctggctcca aegctgcaaa aaggcgagaa tgtccacaag 540
 cactcccgcc tggcagaggt ctcacagctg ggctcagaca tcctcccca gtacaagcaa 600
 gaggcaccata agactcccccc tcacatcatc ttacattttt gtgttttaa gaccacgtgg 660
 gattggatca tcttgcattt gacccatcatc acagccatct tggtccctta taatgtctcc 720
 ttcaaaacca ggcagaataa tggtggctgg ctgggttgg atagcatcg ggatgttatac 780
 ttttgggtt acattgtgtt caattttcat accacctttt tggtggccagc aggggaggtg 840
 atttctgacc ccaaacttat cccatgttgc tacctgaaga cgtgggttgg gattgacctt 900
 ctgtcctgtt tgccatataa tgcatcaac gctttgaga acgtggatga gtttagtggcc 960
 tttatgggtt atccaggaa gattgggtt gctgatcaga ttccaccacc actggagggg 1020
 agagagagtc agggcatcag cagcctgttca agctctctaa aagttgtccg gctgctccgt 1080
 cttgggcgag tggccctgtaa gctggaccac tacattgaat atggagctgc tggctggc 1140
 ctgctgggtt gtgttgg gctggctgca cactggatgg cctgcattctg gtacagcatt 1200
 ggggactatg agatcttgc cggggacacc aagacaatcc gcaacaacag ctggctgtac 1260
 caactagcga tggacattgg cacccttac cagtttaatg ggtctggctc agggaagttg 1320
 gaagggtggc ccagaagaa ttctgttcatc atctcctgt tgattttcac aatgaccagc 1380
 ctcaccatgtt gggctttgg gaacatcgcc ccatccacag acattggagaa gatcttgc 1440
 gtggccatca tgatgattgg ctcaatttc tatgccacca tcttcggaa tgtgacgact 1500
 atttccaaac agatgtatgc caacaccaac agataccatg agatgtcaa cagtgttccg 1560
 gacttcctga agctctacca ggtgcacaaa ggattgagtg agcgagtaat ggattatatt 1620
 gtgtccactt ggtccatgtc cagaggcatt gacacagaga agtgcctgca gatctgcccc 1680
 aaggacatga gagccgacat ctgcgtgcac ctgaaccgca aggtgttcaa ggagcaccgg 1740
 gccttcggc tggccagtga tggctgcctc cgggactgg ccatggagtt ccagacggg 1800
 cactgtgccc caggggacat catctaccat gcaggagaga gcgttgcacag cctctgcctt 1860
 gtggttctg gtcctctgg ggtgatccaa gatgatgagg tggtgccat tctaggaaaa 1920
 ggagacgtgt ttggagatgt gttctggaaag gaagccaccc ttgcccagtc ctgtgccaat 1980
 gttaggccct tgactactg tgatctgcattt gttatcaagc gggatgcctt gcagaaaagtg 2040
 ctggaaattt acacggcattt ctccccatcc ttctccggaa acctgattct gacgtacaac 2100
 ttgaggaaga ggattgtgtt ccggaaagatc agcgatgtga aacgtgaaga ggaagaacgc 2160
 atgaaacgaa agaatgaggc cccctgtatc ttgccccccgg accaccctgt ccggcgccctc 2220
 ttccagagat tccgacagca gaaagagggc aggtggcag ctgagagagg gggccgggac 2280
 ctggatgacc tagatgtggaa gaagggaat gtcttacag agcatgcctc cgcccaaccac 2340
 agcctcgta agggcagcgt ggtcaccgtg cgtgagagtc ctgcccacgccc cgtatccctc 2400
 caggcagcct ccacccctgg ggtggccagac caccggaaacg tacaggcgc agggtcccgag 2460
 tgcctggcc ccaagggggg cggggggcgt tggccaaagc gcaaaagctg gccccgcctc 2520
 aaagatgctt gcgggaaagag tgaggactgg aacaagggtgt ccaaggctga gtcgatggag 2580
 acacttcccg agaggacaaa agcgtcaggc gaggccacac tgaagaagac agactcgtgt 2640
 gacagtggca tcaccaagag cgacttgcgc ctggacaacg tgggtgaggc caggagtc 2700
 caggatcgga gtcccatcctt ggcagaggtc aagcattcgt tctacccat ccctgagcag 2760
 acgctgcagg ccacatcctt ggaggtgagg caccgactga aggaggacat caaggcccta 2820
 aacgccaaaaa tgaccaatat tgagaaacag ctctctgaga tactcaggat attaacttcc 2880
 agaagatcct ctcagtcctt tcaggagttt tttgaaatat cgaggccaca gtccccagaa 2940
 tcagagagag acatttttgg agccagc 2967

B1
sub
C15
UMT

<210> 15
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Antisense
phosphorothioate ODN

<400> 15
cagccatggc catcctccc