INTRO TO MULTIPLE BLOCKING FACTORS

Chapter 12

LEARNING OBJECTIVES

- Identify crossed/nested blocking factors
- Describe Latin square design and relate it to an RCBD
- Describe how to properly randomize a LSD
- Write and explain statistical model for a LSD and perform analysis in R

PRODUCTION OF CERAMIC COOKWARE

- Compare different production methods for ceramic cookware
- Anticipate two nuisance sources of variation:
 - Batch of raw material to make cookware
 - Different ovens used for baking cookware

- These make up two blocking factors
- We have c batches of material and r different ovens
 - Every batch type is used with every oven type
- Idea: Think of this as block design with c*r blocks

CROSSED BLOCKING FACTORS

Have enough raw material in a batch/oven combo to do each production method one time

- \blacksquare RCBD with b=cr blocks and t treatments
- Group: What are the EUs? How many EUs would this experiment have?

CROSSED BLOCKING FACTORS – STATISTICAL MODEL

- Index blocking factors using i=1,...,r and j=1,...,c
- Usual block model would be:

$$Y_{ijk} = \mu + eta_{ij} + au_k + E_{ijk}$$
 $eta_{ij} = heta_i + \gamma_j + heta\gamma_{ij}$

$$Y_{ijk} = \mu + \theta_i + \gamma_j + \theta \gamma_{ij} + \tau_k + E_{ijk}$$

Some block/treatment interaction effects could also be considered

NESTED BLOCKING FACTORS – STATISTICAL MODEL

- Same label "Batch 1" across ovens but Batch 1 in Oven 1 doesn't equal Batch 1 in Oven 2
- Batch "main effect" no longer makes sense, comparisons of Batch must be done Oven-by-oven
- Call batch a nested blocking factor (within oven)
- Call oven a nesting blocking factor
- Let i=1,...,r be nesting factor; j=1,...,c be nested factor

$$\beta_{ij} = \theta_i + \gamma_{j(i)}$$

Won't worry about these examples in this class

ONE EU PER COMBINATION

- Designs shown earlier require too many EUs
- What if we have one EU per combination?
 - Another example of an unreplicated factorial experiment!
- \blacksquare Assume that r=c=t
- If row or column factor dropped, we'd want a RCBD
- Goal: Find design that is RCBD with respect to both rows and columns

1	2	3
2	3	1
3	1	2

t=	4
----	---

1	2	3	4
2	3	4	1
3	4	1	2
4	1	2	3

How can we randomize these to maintain this structure?

How do we construct these designs?

LATIN SQUARE DESIGNS CYCLIC CONSTRUCTION

- Fortunately, these types of designs have been studied for a long time
- Such designs are called Latin square designs (LSD)
 - A t x t array of t symbols such that each symbol appears exactly once in each row and column
- Construct an LSD for any t using cyclic pattern

1	2	3	4
2	3	4	1
3	4	1	2
4	V 1	2	3

This is a design plan, we still need to randomize

- Properly randomized when all possible LSD's are equally likely to be chosen
- Generally difficult to guarantee this property, requires concept of transformation sets
- In practice, usually start with the cyclic design plan
- Fact 1: If we permute the rows we will maintain this structure (same with columns)
- Fact 2: If we permute treatment labels we will also maintain this structure

- Step 1: Randomly permute labels of t treatments
- Step 2: Randomly permute rows
- Step 3: Randomly permute columns

1	2	3	4
2	3	4	1
3	4	1	2
4	1	2	3

Label Permutation

$$\begin{array}{c} 1 \rightarrow 2 \\ 2 \rightarrow 3 \end{array}$$

$$2 \rightarrow 3$$

$$3 \rightarrow 1$$

$$4 \rightarrow 4$$

- Step 1: Randomly permute labels of t treatments
- Step 2: Randomly permute rows
- Step 3: Randomly permute columns

2	3	1	4
3	1	4	2
1	4	2	3
4	2	3	1

Row Permutation

 $1 \rightarrow 1$ $2 \rightarrow 4$

 $3 \rightarrow 2$

 $4 \rightarrow 3$

- Step 1: Randomly permute labels of t treatments
- Step 2: Randomly permute rows
- Step 3: Randomly permute columns

2	3	1	4
1	4	2	3
4	2	3	1
3	1	4	2

Column Permutation

 $1 \rightarrow 4$

 $2 \rightarrow 2$

 $3 \rightarrow 3$

 $4 \rightarrow 1$

Step 1: Randomly permute labels of t treatments

Step 2: Randomly permute rows

Step 3: Randomly permute columns

4	3	1	2
3	4	2	1
1	2	3	4
2	1	4	3

All done!

LATIN SQUARE DESIGNS - STATISTICAL MODEL

- Just like with RCBD, we fit main effect model
- Gives us the following additive model:

$$Y_{ijk} = \mu + heta_i + \gamma_j + au_k + E_{ijk}$$
 $i=1,\ldots,t$ $j=1,\ldots,t$ Wait, there's only t^2 EUs $k=1,\ldots,t$

- For a given (i, j) we only have a single k
- How can we write the model that reflects this dependency?

LATIN SQUARE DESIGNS - STATISTICAL MODEL

Let d[i,j] be a function of i and j that produces the treatment label assigned to that cell

4	3	1	2
3	4	2	1
1	2	3	4
2	1	4	3

Change model to only use indices i and j

$$Y_{ij} = \mu + \theta_i + \gamma_j + \tau_{d[i,j]} + E_{ij}$$

Fortunately, R doesn't care about this

LATIN SQUARES – ADVANTAGES AND DISADVANTAGES

Advantages

- Accounts for two sources of heterogeneity simultaneously (just like any multiple block factor design)
- Minimal resources compared to usual crossed block design since only 1 EU per cell
- Straightforward analysis

Disadvantages

- Requires number of row and column blocks to equal t
- If t is small there aren't many degrees-of-freedom left for error
- For small t we'd rather have more EU's

LEARNING OBJECTIVES REVIEW

- Identify crossed/nested blocking factors
- Describe Latin square design and relate it to an RCBD
- Describe how to properly randomize a LSD
- Write and explain statistical model for a LSD and perform analysis in R