Devoir à la maison n° 8

À rendre le 5 décembre

I. Propriété de la borne supérieure sur Q.

Dans tout ce problème, on pourra utiliser sans démonstration le résultat connu suivant :

$$\forall x \in \mathbb{Q}, \ x^2 \neq 2.$$

Dans ce problème, on n'utilisera que des arguments portant sur \mathbb{Q} , en s'interdisant les arguments propres à \mathbb{R} . On interdira notamment tout résultat utilisant les notions de continuité, de dérivabilité etc. Sont autorisées les manipulations de limites de suites à valeurs rationnelles, notamment les passages à la limite dans des inégalités. Soit

$$A = \left\{ x \in \mathbb{Q}_+^* \mid x^2 < 2 \right\} \text{ et } B = \left\{ x \in \mathbb{Q}_+^* \mid x^2 > 2 \right\}.$$

On désire montrer par l'absurde que A ne possède pas de borne supérieure dans \mathbb{Q} . Supposons donc qu'une telle borne supérieure existe et notons la α ($\alpha \in \mathbb{Q}$). On pose $\beta = \frac{2}{\alpha}$.

- 1) Montrer que $\mathbb{Q}_+ \to \mathbb{Q}$, $x \mapsto x^2$ est strictement croissante.
- 2) Soit $f: \mathbb{Q}_+^* \to \mathbb{Q}_+^*$, $x \mapsto \frac{2}{x}$. Montrer que f(A) = B et que f(B) = A.
- 3) Montrer que β est bien défini et est la borne inférieure de B dans \mathbb{Q} .
- 4) a) Montrer que $\alpha^2 \leq 2$ et en déduire que $\beta^2 \geq 2$.
 - b) En déduire une comparaison de α et de β .
- 5) a) Soit $a \in A$ et $b \in B$, montrer que $a \leq b$.
 - b) Retrouver la comparaison entre α et β précédemment obtenue.
- 6) En utilisant $\gamma = \frac{\alpha + \beta}{2}$, déduire une contradiction des questions précédentes.
- 7) L'ensemble ordonné (\mathbb{Q}, \leqslant) possède-t-il donc la propriété de la borne supérieure ?

II. Une partie entière sur un exercice.

- 1) Montrer que pour tout $n \in \mathbb{N}^*$, $\lfloor \sqrt{n^2 + 1} \rfloor = n$.
- 2) En déduire que pour tout $n \in \mathbb{N}^*$, $\left| \sqrt{n^2 + \sqrt{4n^2 + \sqrt{16n^2 + 1}}} \right| = n$.
- 3) Généraliser cela.

— FIN —