P3 de Álgebra Linear I -2012.1

16 de junho de 2012.

Nome:	Matricula:
Assinatura:	Turma:
Preencha CORRETA e COMPLETAMENT cula, assinatura e turma).	ΓE todos os campos (nome, matrí-

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Q	1.a	1.b	1.c	1.d	1.e	2.a	2.b	2.c	3.a	3.b	3.c	3.d	soma
\mathbf{V}	1.0	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0	0.5	0.5	1.0	10.0
N													

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Seja A uma matriz 3×3 com polinômio característico

$$p(\lambda) = \det(A - \lambda Id) = (1 - \lambda)(2 - \lambda)^2.$$

- a) Calcule o determinante de A e o traço de A.
- b) Considere a matriz $B = A^3$. Determine o traço de B.
- c) Determine se a matriz A possui inversa. Em caso afirmativo determine o traço de A^{-1} (a matriz inversa de A).

Suponha agora que a matriz A é da forma

$$A = P D P^t$$

onde D é uma matriz diagonal e P é uma matriz ortogonal.

- d) Sabendo que o vetor (1, 1, 1) é um autovetor de A associado ao autovalor 1, encontre (se possível) uma base ortonormal β formada por autovetores de A.
- e) Determine explicitamente as matrizes P e D.

Resposta:

2) Considere a matriz

$$A = \left(\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array}\right)$$

e observe que (1, 1, 1) é um autovetor de A.

- (a) Determine todos os autovalores de A.
- (b) Determine (se possível) uma base ortonormal de autovetores de A.
- (c) Determine explicitamente matrizes $D,\,P$ e P^{-1} tais que

$$A = P D P^{-1},$$

onde D é uma matriz diagonal.

Resposta:

3) Considere a transformação linear

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$

de projeção ortogonal no plano

$$\pi: x + y - z = 0.$$

Isto é, $T(\bar{u})=u$ se \bar{u} é um vetor paralelo ao plano π e $T(\bar{n})=\bar{0}$ se \bar{n} é um vetor perpendicular ao plano π .

- (a) Determine a matriz $[T]_{\mathcal{E}}$ de T na base canônica.
- (b) Encontre (se possível) uma base γ tal que a matriz de T na base γ seja

$$[T]_{\gamma} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

(c) Considere a base η de \mathbb{R}^3

$$\{(1,1,-1),(0,1,1),(1,1,1)\}$$

Determine a matriz $[T]_{\eta}$ de T na base η .

(d) Determine os autovalores da transformação linear

$$T^5 - 3T^4 + T^3 - T^2 - 3I.$$

Resposta: