Probability and Statistics: Lecture-17

Monsoon-2020

by Pawan Kumar (IIIT, Hyderabad) on September 18, 2020

1. Higher Order Moments and Moment Generating Function	
2. Solved Problems	
	[2/23]

» Table of contents

Define *n*th moment

The *n*th moment about the mean or *n*th central moment of a real valued random variable *X* is defined as follows

$$\mu_n = E[(X - E[X])^n],$$

where E is the expectation operator.

Define *n*th moment

The *n*th moment about the mean or *n*th central moment of a real valued random variable *X* is defined as follows

$$\mu_n = E[(X - E[X])^n],$$

where E is the expectation operator.

* The zeroth central moment μ_0 is 1

Define *n*th moment

The nth moment about the mean or nth central moment of a real valued random variable X is defined as follows

$$\mu_n = E[(X - E[X])^n],$$
ator.

where $\it E$ is the expectation operator.

- * The zeroth central moment μ_0 is 1
- * The first central moment μ_1 is 0 (not the same as expected value!)

Define *n*th moment

The nth moment about the mean or nth central moment of a real valued random variable X is defined as follows

$$\mu_n = E[(X - E[X])^n],$$
ator.

where E is the expectation operator.

- * The zeroth central moment μ_0 is 1
- * The first central moment μ_1 is 0 (not the same as expected value!)
 - * First central moment about origin is indeed expectation!

Define *n*th moment

The nth moment about the mean or nth central moment of a real valued random variable X is defined as follows

$$\mu_n = E[(X - E[X])^n],$$

where E is the expectation operator.

- * The zeroth central moment μ_0 is 1
- st The first central moment μ_1 is 0 (not the same as expected value!)
 - * First central moment about origin is indeed expectation!
- * The second central moment μ_2 is called variance, denoted by σ^2

Define *n*th moment

The *n*th moment about the mean or *n*th central moment of a real valued random variable *X* is defined as follows

$$\mu_n = E[(X - E[X])^n],$$

where E is the expectation operator.

- * The zeroth central moment μ_0 is 1
- st The first central moment μ_1 is 0 (not the same as expected value!)
 - * First central moment about origin is indeed expectation!
- st The second central moment μ_2 is called variance, denoted by σ^2

Generating Moments...

Is there a quick way to generate moments?

» Moment Generating Function...

» Moment Generating Function...

Moment Generating Function

The moment generating function $M_X(t)$ is the expectation value

$$M_X(t) = E[e^{tX}] = \sum_{x} e^{tx} p_X(x)$$

$$M_X(0) = 1$$

$$E[X] = M'_{x}(0)$$
, where ' is the derivative w.r.t. t

- » Moment Generating Function for Binomial Distribution...
 - * Let X be a discrete random variable whose PMF is given by Binomial distribution with parameters n and p

- * Let X be a discrete random variable whose PMF is given by Binomial distribution with parameters n and p
- * The moment generating function is given by

- * Let X be a discrete random variable whose PMF is given by Binomial distribution with parameters n and p
- * The moment generating function is given by

$$M_X(t) = \sum_{x=0}^{n} \binom{n}{x} p^x (1-p)^{n-x} e^{tx}$$

$$= \sum_{x=0}^{n} \binom{n}{x} (e^t p)^x (1-p)^{n-x}$$

$$= (e^t p + 1 - p).$$

- st Let X be a discrete random variable whose PMF is given by Binomial distribution with parameters n and p
- * The moment generating function is given by

$$M_X(t) = \sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} e^{tx}$$
$$= \sum_{x=0}^n \binom{n}{x} (e^t p)^x (1-p)^{n-x}$$
$$= (e^t p + 1 - p).$$

Differentiating w.r.t. t, we have

- \ast Let X be a discrete random variable whose PMF is given by Binomial distribution with parameters n and p
- * The moment generating function is given by

$$M_X(t) = \sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} e^{tx}$$
$$= \sum_{x=0}^n \binom{n}{x} (e^t p)^x (1-p)^{n-x}$$
$$= (e^t p + 1 - p).$$

Differentiating w.r.t. t, we have

$$M_X'(t) = n(e^t p + 1 - p)^{n-1} p e^t$$

- st Let \it{X} be a discrete random variable whose PMF is given by Binomial distribution with parameters \it{n} and \it{p}
- * The moment generating function is given by

$$M_X(t) = \sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} e^{tx}$$

$$= \sum_{x=0}^n \binom{n}{x} (e^t p)^x (1-p)^{n-x}$$

$$= (e^t p + 1 - p). \longleftarrow$$

Differentiating w.r.t. t, we have

$$M'_{\mathcal{X}}(t) = n(e^t p + 1 - p)^{n-1} p e^t$$

* Setting
$$t = 0$$
, $M'_X(0) = np = E[X]$

* Let X be the random variable whose PMF is a Poisson distribution with parameter λ .

- * Let X be the random variable whose PMF is a Poisson distribution with parameter λ .
- * The moment generating function is

- * Let X be the random variable whose PMF is a Poisson distribution with parameter λ .
- * The moment generating function is

$$M_X(t) = \sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^x}{x!} e^{tx}$$

$$= \sum_{x=0}^{\infty} e^{-\lambda} \frac{(\lambda e^t)^x}{x!}$$

$$= e^{\lambda(e^t-1)}$$

- * Let X be the random variable whose PMF is a Poisson distribution with parameter λ .
- * The moment generating function is

$$M_X(t) = \sum_{\kappa=0}^{\infty} e^{-\lambda} \frac{\lambda^{\kappa}}{\kappa!} e^{t\kappa}$$

$$= \sum_{\kappa=0}^{\infty} e^{-\lambda} \frac{(\lambda e^t)^{\kappa}}{\kappa!}$$

$$= e^{\lambda(e^t-1)}$$

st Differentiating w.r.t. to $oldsymbol{t},$

- * Let X be the random variable whose PMF is a Poisson distribution with parameter λ .
- * The moment generating function is

$$M_X(t) = \sum_{x=0}^{\infty} e^{-\lambda} \frac{\lambda^x}{x!} e^{tx}$$
$$= \sum_{x=0}^{\infty} e^{-\lambda} \frac{(\lambda e^t)^x}{x!}$$
$$= e^{\lambda (e^t - 1)}$$

* Differentiating w.r.t. to t,

$$M_X'(t) = e^{\lambda(e^t-1)} \lambda e^t$$

- * Let X be the random variable whose PMF is a Poisson distribution with parameter λ .
- * The moment generating function is

$$egin{aligned} M_{X}(t) &= \sum_{x=0}^{\infty} e^{-\lambda} \; rac{\lambda^{x}}{x!} e^{tx} \ &= \sum_{x=0}^{\infty} e^{-\lambda} \; rac{(\lambda e^{t})^{x}}{x!} \ &= e^{\lambda(e^{t}-1)} \end{aligned}$$

* Differentiating w.r.t. to t,

$$M_X'(t) = e^{\lambda(e^t-1)} \lambda e^t$$

* Setting
$$t = 0$$
, $M'_{\chi}(0) = \underline{\lambda}$

» Variance Using Moment Generating Function...'

ECAS

E(x)

Variance Using Moment Generating Function

$$\mathsf{Var}(\mathbf{X}) = \mathbf{M}_{\mathbf{X}}''(0) - \mathbf{M}_{\mathbf{X}}'(0)^2$$

$$Var(X) = M'_X(0) - M_X(0)^2$$

$$Var(X) = E[X] - (E[X])$$

Computing Variance using moment generating function

Let X be a discrete random variable whose PMF is a binomial distribution with parameters n and p. It has mean $\mu=np$ and the moment generating function is

$$M_X(t) = (e^t p + 1 - p)^n$$

$$M_{x}(t) = n(et + 1 - p)^{n} pet$$
 $M_{x}(t) = n(et + 1 - p)^{n} pet$
 $M_{x}(t) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) + n(et + 1 - p) pet$
 $M_{x}(0) = n(n-1)(et + 1 - p) pet$

[8/23]

Computing Variance using moment generating function

Let X be a discrete random variable whose PMF is a binomial distribution with parameters n and p. It has mean $\mu=np$ and the moment generating function is

$$M_X(t) = (e^t p + 1 - p)^n$$

Find the Variance using $M_X(t)$.

Computing Variance using moment generating function

Let X be a discrete random variable whose PMF is a Poisson distribution with mean λ .

The moment generating function is
$$M_X(t) = e^{\lambda(e^t-1)} \qquad \text{for all the first of the first of$$

$$M_{x}'(t) = e^{\lambda(e^{t}-1)} \cdot e^{t} \cdot \lambda$$

$$M_{\times}^{1}(0) = \lambda \leftarrow M_{\times}^{1}(0) = \lambda \leftarrow M_{\times}^{1}(0) = M_{\times}^{1}(0) = M_{\times}^{1}(0) = M_{\times}^{1}(0) = M_{\times}^{1}(0) = \lambda + \lambda^{2} = \lambda + \lambda^{2} - (\lambda)$$

At $t = 0$
 $M_{\times}^{1}(0) = \lambda + \lambda^{2} = \lambda + \lambda^{2} - (\lambda)$

Computing Variance using moment generating function

Let X be a discrete random variable whose PMF is a Poisson distribution with mean λ . The moment generating function is

$$M_X(t) = e^{\lambda(e^t-1)}$$

Find the Variance using $M_X(t)$.

Problem

Let X be a discrete R.V. with PMF

Problem

Let X be a discrete R.V. with PMF

$$P_X(x) = \begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.4 \\ 0.2 & \text{for } x = 0.5 \\ 0.3 & \text{for } x = 0.8 \\ 0.2 & \text{for } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Problem

Let X be a discrete R.V. with PMF

$$P_{X}(x) = \begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.4 \\ 0.2 & \text{for } x = 0.5 \\ 0.3 & \text{for } x = 0.8 \\ 0.2 & \text{for } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Answer the following:

Problem

Let X be a discrete R.V. with PMF

$$P_{X}(x) = \begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.4 \\ 0.2 & \text{for } x = 0.5 \\ 0.3 & \text{for } x = 0.8 \\ 0.2 & \text{for } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Answer the following:

1. Find R_X

Problem

Let X be a discrete R.V. with PMF

$$P_{X}(x) = \begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.4 \\ 0.2 & \text{for } x = 0.5 \\ 0.3 & \text{for } x = 0.8 \\ 0.2 & \text{for } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Answer the following:

- 1. Find R_X
- 2. Find $P(X \le 0.5)$

Problem

Let X be a discrete R.V. with PMF

$$P_X(x) = \begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.4 \\ 0.2 & \text{for } x = 0.5 \\ 0.3 & \text{for } x = 0.8 \\ 0.2 & \text{for } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Answer the following:

- 1. Find R_X
- 2. Find $P(X \le 0.5)$
- 3. Find P(0.25 < X < 0.75)

Problem

Let X be a discrete R.V. with PMF

$$P_{X}(x) = \begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.4 \\ 0.2 & \text{for } x = 0.5 \end{cases}$$

$$\begin{cases} 0.1 & \text{for } x = 0.2 \\ 0.2 & \text{for } x = 0.8 \\ 0.2 & \text{for } x = 1 \\ 0 & \text{otherwise} \end{cases}$$

Answer the following:

- 1. Find R_X
- 2. Find $P(X \le 0.5)$
- 3. Find P(0.25 < X < 0.75)
- 4. Find $P(X = 0.2 \mid X < 0.6)$

* Answer to previous problem...

Find
$$R_{x} = \{0.2, 0.4, 0.5, 0.6, 1\}$$

$$= P(x=0.4) + P(x=0.5)$$

$$= 0.2 + 0.2$$

$$= 0.2 + 0.2$$

$$= 0.4$$

$$P(x=0.2) + P(0.4) + P(0.5)$$

$$= P(x=0.2) + P(x=0.4) + P(x=0.5)$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$= 0.4$$

$$P(X \subset 0.75)$$

$$P(x \in \{0.4, 0.5\})$$
 = $P(x = 0.2) = \frac{0.4}{0.5}$

P(XC0.6) =

Problem

Let *X* and *Y* be two random variables that denote the outcome of the roll of two dice.

Problem

Problem

Let X and Y be two random variables that denote the outcome of the roll of two dice. Answer the following:

1. Find R_X , R_Y and the PMF of X and Y

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)
- 3. Find $P(X > 3 \mid Y = 2)$

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)
- 3. Find $P(X > 3 \mid Y = 2)$
- 4. Let Z = X + Y. Find the range and PMF of Z

Problem

- 1. Find R_X , R_Y and the PMF of X and Y
- 2. Find P(X = 2, Y = 6)
- 3. Find $P(X > 3 \mid Y = 2)$
- 4. Let Z = X + Y. Find the range and PMF of Z
- 5. Find $P(X = 4 \mid Z = 8)$

Problem

Consider an exam that contains 20 MCQs.

Problem

Consider an exam that contains 20 MCQs. Each question has 4 choices.

Problem

Consider an exam that contains 20 MCQs. Each question has 4 choices. Assume that you can answer 10 questions correctly, but you are not sure about other 10 questions, so you answer them randomly.

Problem

Consider an exam that contains 20 MCQs. Each question has 4 choices. Assume that you can answer 10 questions correctly, but you are not sure about other 10 questions, so you answer them randomly. Let the random variable $\it X$ denote the score, which is equal to the total number of correct answers.

Problem

Consider an exam that contains 20 MCQs. Each question has 4 choices. Assume that you can answer 10 questions correctly, but you are not sure about other 10 questions, so you answer them randomly. Let the random variable $\it X$ denote the score, which is equal to the total number of correct answers. Answer the following:

Problem

Consider an exam that contains 20 MCQs. Each question has 4 choices. Assume that you can answer 10 questions correctly, but you are not sure about other 10 questions, so you answer them randomly. Let the random variable $\it X$ denote the score, which is equal to the total number of correct answers. Answer the following:

1. What is PMF of X?

Problem

Consider an exam that contains 20 MCQs. Each question has 4 choices. Assume that you can answer 10 questions correctly, but you are not sure about other 10 questions, so you answer them randomly. Let the random variable $\it X$ denote the score, which is equal to the total number of correct answers. Answer the following:

- 1. What is PMF of *X*?
- 2. What is P(X > 15)?

** Answer to previous problem... For each question, successful Record to find PMF of X. We perform to independ of Beanoulli (14)
$$X = Y + 10$$

Trials and y is the rest of successful $X = Y + 10$

So, $P_{Y}(X) = S(X) =$

$$P(x 715) = P_{x}(16) + P_{x}(17) + \cdots + P_{x}(20)$$

$$= {10 \choose 6} {1 \choose 4}^{6} {2 \choose 4}^{6} + \cdots + {10 \choose 10} {1 \choose 4}^{10} {3 \choose 4}^{6}$$

Problem

Average number of customers arriving at a grocery store per hour is 10.

Problem

Average number of customers arriving at a grocery store per hour is 10. Let $\it X$ denote the number of customers arriving from $\it 10AM$ to $\it 11:30AM$.

» Problem 4 **Problem** Average number of customers arriving at a grocery store per hour is 10. Let X denote the number of customers arriving from 10AM to 11:30AM. What is $P(10 < X \le 15)$? We have interval of length 1.5 hours. No. of customer in this interval is ~ Priston (> = 12 × 10 = 15)