第七章 复数 典型易错题集

易错点 1. 忽视复数 z = a + bi 是纯虚数的充要条件

例题 1. (湖南·高一课时练习)求m为何实数时,复数 $z=m^2+m-6+(m^2-2m-15)$ i 是纯虚数;

【常见错解】若复数 z 为纯虚数,则 $m^2 + m - 6 = 0$ 解得m = 2或者m = -3

【错因分析】对复数为纯虚数理解不透彻,对于复数 z = a + bi 为纯虚数 \Leftrightarrow $\begin{cases} a = 0 \\ b \neq 0 \end{cases}$,在本

题中, $z = m^2 + m - 6 + (m^2 - 2m - 15)$ i,错解只考虑了实部 $m^2 + m - 6 = 0$,而忽略了考虑虚部 $m^2 - 2m - 15 \neq 0$ 而造成错解.

【正解】m=2;

【解析】解: 若复数 z 为纯虚数,则
$$\{ m^2 + m - 6 = 0 \}$$
 ,解得 $m = 2$.

【动手实战】

1. (湖南·高一课时练习) 若复数 $z = (a^2 - 2a) + (a^2 - a - 2)$ i 对应的点在虚轴上,求实数 a 应满足的条件.

【答案】a=2或a=0

【详解】

: 复数 $z = (a^2 - 2a) + (a^2 - a - 2)i$ 对应的点在虚轴上,

 $a^2 - 2a = 0$,解得a = 2或a = 0.

2. (湖南·高一课时练习) 当实数 a 为何值时, 复数 $z = (a^2 + 2a - 3) + (a + 3)$ i 为纯虚数?

【答案】1

【详解】

若复数 $z = (a^2 + 2a - 3) + (a + 3)i$ 为纯虚数,且 a∈R,

 $|| a^2 + 2a - 3 = 0 || a + 3 \neq 0 ||$

解得a=1.

3. (贵州·沿河民族中学高二开学考试(理))已知复数 $z = \frac{m^2 - m - 6}{m + 2} + (m^2 - 2m - 15)$ i(i

是虚数单位),复数 z 是纯虚数,求实数 m 的值.

【答案】m=3.

复数是纯虚数,则
$${m^2 - m - 6 = 0}$$

 $m + 2 \neq 0$
 $m^2 - 2m - 15 \neq 0$

解得 m=3.

易错点2. 错误的理解复数比大小

例题 1. (湖南·高一课时练习)求使不等式 $\lambda^2 - (\lambda^2 - 3\lambda)$ i $< (\lambda^2 - 4\lambda + 3)$ i + 10 成立的实数 λ 的取值范围.

【常见错解】因为不等式 $\lambda^2 - (\lambda^2 - 3\lambda)i < (\lambda^2 - 4\lambda + 3)i + 10$ 成立,

【错因分析】对于复数a+bi < c+di错误的理解两个复数比大小,

 $a+bi < c+di \Leftrightarrow \begin{cases} a < c \\ b < d \end{cases}$, 而造成错误,事实上,两个复数不能直接比大小,但如果

a+bi < c+di 成立,等价于 $\begin{cases} a < c \\ b=d=0 \end{cases}$ 本题是实数比较大小的惯性思维导致的错误.

【正解】 $\lambda = 3$

因为不等式 $\lambda^2 - (\lambda^2 - 3\lambda)i < (\lambda^2 - 4\lambda + 3)i + 10 成立,$

所以
$$\{\lambda^2 - 3\lambda = 0$$

所以 $\{\lambda^2 - 4\lambda + 3 = 0$,解得: $\lambda = 3$
 $\{\lambda^2 < 10$

即实数λ的取值范围为λ=3.

【动手实战】

1. (全国·) 设 $z_1 = m^2 + 1 + (m^2 + m - 2)i$, $z_2 = 4m + 2 + (m^2 - 5m + 4)i$, 若 $z_1 < z_2$, 求实数 m 的取值范围.

【答案】m=1.

【详解】

由于 $z_1 < z_2$, $m \in \mathbb{R}$,

 $z_1 \in \mathbb{R} \ \underline{\mathbb{R}} \ z_2 \in \mathbb{R}$

当 $z_1 \in R$ 时, $m^2+m-2=0$,m=1或m=-2,

当 $z_2 \in R$ 时, $m^2-5m+4=0$,m=1 或 m=4,

:当m=1时, $z_1=2$, $z_2=6$,满足 $z_1< z_2$

 $\therefore z_1 < z_2$ 时,实数 m 的取值范围为 m=1.

2. (重庆市万州沙河中学) 己知复数 $z = (m^2 - 8m + 15) + (m^2 - 7m + 12)$ i (其中 i 为虚数单位),当实数 m 为何值时.复数 z < 0.

【答案】4.

【详解】

因为
$$z < 0$$
,所以 $m^2 - 8m + 15 < 0$ $\Rightarrow m = 4$. $m^2 - 7m + 12 = 0$

3. (上海师范大学第二附属中学) 已知复数 $z = m^2 - 5m + 6 + (m^2 - m - 2)i$ (i 为虚数单位). 若 z > 0,求实数 m 的值.

【答案】 m=-1.

【详解】

解: 因为z > 0,

所以
$$m^2 - 5m + 6 > 0$$
 解得 $m = -1$.

易错点3. 错误的惯性思维理解复数的模

例题 1. (福建宁德·模拟预测)复数 $z_1 = \cos x - i \sin x$, $z_2 = \sin x - i \cos x$, 则 $|z_1 \cdot z_2| =$ _____.

【常见错解】 $z_1 = \cos x - i \sin x \Rightarrow |z_1| = \sqrt{\cos^2 x + (-\sin x)^2} = 1$,同样,

$$z_2 = \sin x - i\cos x \Rightarrow |z_2| = \sqrt{\sin^2 x + (-\cos x)^2} = 1$$
, $\text{FIU}|z_1 \cdot z_2| = |z_1| \cdot |z_2| = 1$

【错因分析】错误的理解两个复数乘积的模等于两个复数模的积 $|z_1\cdot z_2|=|z_1|\cdot |z_2|$ 而造成错解.

【正解】1

【详解】

 $z_1 \cdot z_2 = (\cos x - i \sin x)(\sin x - i \cos x) = -i(\sin^2 x + \cos^2 x) = -i$

故 $|z_1 \cdot z_2| = 1$

故答案为: 1

例题 2. (山东潍坊·高三期末)复数 z 满足 zi = 2 - i (其中 i 为虚数单位),则 $|z| = _____$.

【常见错解】
$$zi = 2-i \Rightarrow z = \frac{2-i}{i} = -1-2i$$
, 所以 $|z| = |-1| + |-2| = 3$

【错因分析】错误的理解复数 z = a + bi 的模 |z| = |a| + |b|.

【正解】 $\sqrt{5}$

【详解】

zi = 2 - i, $|zi| = |2 - i| \Rightarrow |z| |i| = \sqrt{5} \Rightarrow |z| = \sqrt{5}$.

另解: $z\mathbf{i} = 2 - \mathbf{i} \Rightarrow z = \frac{2 - \mathbf{i}}{\mathbf{i}} = -1 - 2\mathbf{i} \Rightarrow |z| = \sqrt{5}$.

故答案为: √5

【动手实战】

1. (北京师大附中高二期末)已知复数 $z = \frac{2}{1+i}$,则 $|z| = _____.$

【答案】 $\sqrt{2}$

【详解】

$$\pm z = \frac{2}{1+i}$$
, $= \frac{2}{1+i} = \frac{2(1-i)}{1+i(1-i)} = 1-i$,

所以 $|z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$,

故答案为: √2

易错点 4. 误把复数当实数代入计算

例题 1. (全国·高一课时练习)已知 $z \in \mathbf{C}$,且 $|z-2-2i| = \sqrt{13}$,(i 为虚数单位),则 $|z|_{\max} = \underline{\hspace{1cm}}$

【常见错解】因为 $|z-2-2i| = \sqrt{13}$,所以 $(z-2)^2 + 4 = 13$ 解得: z = 5或z = -1,所以 $|z|_{\text{max}} = 5$.

【错因分析】本题是极易出错的题目,本题中,由题意知 $z \in \mathbb{C}$,而错解中,把 z 直接当实数参与了复数模的运算,而造成错解,特别题型同学们,当题意出现 $z \in \mathbb{C}$,应首先设出复数 z 的代数形式: z = a + bi,再代入运算求解.

【正解】设z = a + bi 由题意 $|z-2-2i| = \sqrt{13}$, 得到 $|a+bi-2-2i| = \sqrt{13}$ 得到:

 $(a-2)^2 + (b-2)^2 = 13$ 表示以C(2,2)为圆心, $r = \sqrt{13}$ 为半径的圆,

则圆心 C 到点 O(0,0) 的距离 $= d = \sqrt{4+4} = 2\sqrt{2}$,

则 $|z|_{\text{max}}$ 的最大值为 $d+r=2\sqrt{2}+\sqrt{13}$.

故答案为: $d+r=2\sqrt{2}+\sqrt{13}$.

【动手实战】

1. (全国·高三专题练习)设 a ∈ C, a ≠ 0, 化简: $\frac{a-i}{1+ai}$ = _____.

【答案】一i

【详解】

$$\frac{a-i}{1+ai} = \frac{(a-i)(1-ai)}{(1+ai)(1-ai)} = \frac{a-a^2i-i-a}{1+a^2} = \frac{-(1+a^2)i}{1+a^2} = -i,$$

故答案为:一i.

2. (全国·高三专题练习)设 $z \in C$,且 $\frac{z-2}{z+2} = i$,其中 i 为虚数单位,则 $\frac{3-4i}{z}$ 的模为

【答案】 5 2.2.5

【详解】

由题意,由 $\frac{z-2}{z+2}$ =i,可得z-2=i(z+2)

$$\frac{1-i}{1-i} = \frac{2(1+i)(1+i)}{(1-i)(1+i)} = 2i$$

$$\frac{3-4i}{z} = \frac{3-4i}{2i} = \frac{(3-4i)\cdot(-i)}{2i\cdot(-i)} = -2 - \frac{3}{2i}$$

$$\frac{|3-4i|}{z} = \sqrt{\frac{2^2+(\frac{3}{2})^2}{2}} = \frac{5}{2}$$

<u>故答案为: 5</u>

3. (全国·高二课时练习)设 $a,b \in C$,则"a-b>0"是"a>b"的 条件.

【答案】必要不充分

【详解】

当a=1+i,b=i时,满足 a-b>0,得不到a>b,故不充分;

所以"a-b>0"是"a>b"的必要不充分条件,

故答案为: 必要不充分

易错点 5. 忽视了 $i^2 = -1$,习惯性的认为平方是正数

例题 1. (黑龙江·哈尔滨德强学校高三期末(理))复数 $\frac{2+i}{2i-1}$ 的共轭复数是_____.

【常见错解】由题意得,
$$\frac{2+i}{2i-1} = \frac{(2+i)(2i+1)}{(2i-1)(2i+1)} = \frac{2i^2+2+5i}{4i^2-1} = \frac{4+5i}{3}$$
,所以 $\frac{2+i}{2i-1}$ 的共轭复数

为
$$\frac{4-5i}{3}$$

【错因分析】本题错解在于把 $i^2 = 1$ 代入计算了。

【正解】i

【详解】

由题意得,
$$\frac{2+i}{2i-1} = \frac{(2+i)(2i+1)}{(2i-1)(2i+1)} = \frac{5i}{-5} = -i$$
,

所以其共轭复数为i.

故答案为·i

【动手实战】

1. (北京密云·高三期末)在复平面内,复数 $\frac{3+i}{2-i}$ 对应的点为Z,则点Z的坐标为_____.

【答案】(1,1)

【详解】

$$\frac{3+i}{2-i} = \frac{(3+i)(2+i)}{(2-i)(2+i)} = \frac{5+5i}{5} = 1+i,$$

Z(1,1).

故答案为: (1,1).

2. (天津红桥·高三期中) 若 i 是虚数单位,则 $\frac{1+2i}{2+i}$ 的虚部为______.

【答案】 $\frac{3}{5}$ ## 0.6

【详解】

$$\frac{1+2i}{2+i} = \frac{(1+2i)(2-i)}{(2+i)(2-i)} = \frac{4+3i}{5},$$

<u>所以虚部为 3</u>.

故答案为: $\frac{3}{5}$ ## 0.6.

3. (天津实验中学高三阶段练习)已知复数 $z = \frac{2+i}{1-i}$,则复数z的虚部为_____

【答案】 $\frac{3}{2}$ ##1.5

【详解】

解:
$$z = \frac{2+i}{1-i} = \frac{(2+i)(1+i)}{(1-i)(1+i)} = \frac{1+3i}{2} = \frac{1}{2} + \frac{3}{2}i$$

所以复数z的虚部为2

<u>故答案为: 5</u>

易错点 6. 复数三角形式的标准形式理解错误

例题 1. (全国·高一课时练习)下列各式中已表示成三角形式的复数是().

A.
$$\sqrt{2}\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$$

B.
$$\sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

c.
$$\sqrt{2} \left(\sin \frac{\pi}{6} + i \cos \frac{\pi}{6} \right)$$

D.
$$-\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

【常见错解】C

【错因分析】忽略了复数三角表示的标准形式: $r(\cos\theta + i\sin\theta)$, 考生往往只注意到 $r \ge 0$, 没有注意其它要求,复数三角形式的特点口诀: "模非负,角相同,余弦前,加号连"

【正解】B

复数的三角表示为: $z=r(\cos\alpha+i\sin\alpha)$, 其中 $r \ge 0$,B 选项满足.

故选: B.

【动手实战】

1. (全国·高一课时练习)复数-sin30°-icos30°的三角形式为(

A. $\sin 30^{\circ} + i \sin 30^{\circ}$

B. $\cos 240^{\circ} + i \sin 240^{\circ}$

C. $\cos 30^{\circ} + i \sin 30^{\circ}$

D. $\sin 240^{\circ} + i \cos 240^{\circ}$

【答案】B

【详解】

由诱导公式可知 $-\sin 30^\circ = -\sin(90^\circ - 60^\circ) = -\cos 60^\circ = \cos(180^\circ + 60^\circ) = \cos 240$,

$$-\cos 30^{\circ} = -\cos (90^{\circ} - 60^{\circ}) = -\sin 60^{\circ} = \sin (180^{\circ} + 60^{\circ}) = \sin 240^{\circ}$$

因此, $-\sin 30^{\circ} - i\cos 30^{\circ} = \cos 240^{\circ} + i\sin 240^{\circ}$.

故选: B.

2. (上海·高一课时练习) 复数 $z = -3\left(\cos\frac{\pi}{5} - i\sin\frac{\pi}{5}\right)$ 的三角形式为 (

A. $3 \left[\cos \left(-\frac{\pi}{5} \right) + i \sin \left(-\frac{\pi}{5} \right) \right]$

B. $3\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$

 $C. \quad 3\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$

D. $3\left(\cos\frac{6\pi}{5} - i\sin\frac{6\pi}{5}\right)$

【答案】C

【详解】

因为|z|=3, 辐角主值为 $\frac{4\pi}{5}$, 所以 $z=-3\left(\cos\frac{\pi}{5}-i\sin\frac{\pi}{5}\right)=3\left(\cos\frac{4\pi}{5}+i\sin\frac{4\pi}{5}\right)$

故选: C.

3. (上海·高一单元测试)复数 $z = i \sin 10^\circ$ 的三角形式为()

A. $\cos 10^{\circ} + i \sin 10^{\circ}$

B. isin10°

C. $\sin 10^{\circ} (\cos 90^{\circ} + i \sin 90^{\circ})$

D. $\sin 10^{\circ} (\cos 0^{\circ} + i \sin 0^{\circ})$

【答案】C

【详解】

因为 $z = i \sin 10^{\circ}$,所以 $|z| = \sin 10^{\circ}$,辐角为90°,所以复数 $z = i \sin 10^{\circ}$ 的三角形式为

 $\sin 10^{\circ} (\cos 90^{\circ} + i \sin 90^{\circ})$,

故选: C.

易错点 7. 忽视复数 $z = r(\cos\theta + i\sin\theta)$ 在复平面的位置而求错 $\arg z$.

例题 1. (全国·高一课时练习)设 $z_1 = -1 + \sqrt{3}i$, $z_2 = \left(\frac{1}{2}z_1\right)^2$, 则 $\arg z_2 = ($

A. $\frac{\pi}{3}$ B. $\frac{4}{3}\pi$ C. $\frac{11}{6}\pi$ D. $\frac{5}{3}\pi$

【常见错解】A $z_2 = \frac{1}{4}z_1^2 = \frac{1}{4}\left(-1+\sqrt{3}i\right)^2 = -\frac{1}{2}-\frac{\sqrt{3}}{2}i$, $\tan\theta = \frac{b}{a} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}$,所以 $\arg z_2 = \frac{\pi}{3}$.

【错因分析】本题在求辐角的主值时,直接利用公式 $\tan \theta = \frac{b}{a} = \sqrt{3}$,忽略了,复数对

应的点 $\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$ 在第三象限,而造成错解.

【正解】B

【详解】

 $\underline{z_2 = \frac{1}{4}z_1^2 = \frac{1}{4}\left(-1 + \sqrt{3}i\right)^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i, \underline{2}$ 复数对应的点是 $\left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$, 位于第三象限,且

 $\tan \theta = \frac{b}{\pi} = \sqrt{3}$, fill $\arg z_2 = \frac{4\pi}{3}$.

<u>故选: B</u>

【动手实战】

1. (福建安溪·高三期中)任意复数z=a+bi(a、 $b \in R$, i为虚数单位)都可以写成 $z = r(\cos\theta + i\sin\theta)$ 的形式,其中 $r = \sqrt{a^2 + b^2}(0 \le \theta < 2\pi)$ 该形式为复数的三角形式,其中 θ

称为复数的辐角主值.若复数 $z = \frac{\sqrt{3}}{2} + \frac{1}{2}i$,则 z 的辐角主值为(

A. $\frac{\pi}{6}$ B. $\frac{\pi}{3}$ C. $\frac{2\pi}{3}$

D. $\frac{5\pi}{6}$

故选: A.

2. (山西怀仁·高一期中)已知复数 $z = \frac{\sqrt{3}}{2}i - \frac{1}{2}$.则 $\arg z = ($

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.} \quad \frac{5\pi}{6}$$

D.
$$\frac{2\pi}{3}$$

【答案】D

【详解】

由 $z = \frac{\sqrt{3}}{2}i - \frac{1}{2}$. 设复数的辐角为 θ ,

$$\frac{\sqrt{3}}{2} \tan \theta = \frac{-\sqrt{3}}{2} = -\sqrt{3},$$

$$-\frac{1}{2}$$

又复数在复平面内对应的点为 $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, 在第二象限,

所以
$$\theta = \frac{2\pi}{3}$$
,即 $\arg z = \frac{2\pi}{3}$.

<u>故选: D</u>

3. (重庆巴蜀中学高一期中)复数 $z = \sin 50^\circ - i \cos 50^\circ$ 的辐角主值是()

【答案】D

【详解】

 $z = \sin 50^{\circ} - i \cos 50^{\circ} = \cos(90^{\circ} - 50^{\circ}) - i \sin(90^{\circ} - 50^{\circ}) = \cos 40^{\circ} - i \sin 40^{\circ}$

$$= \cos(360^{\circ} - 40^{\circ}) + i\sin(360^{\circ} - 40^{\circ}) = \cos 320^{\circ} + i\sin 320^{\circ}$$

因此,复数z的辐角主值为320°.

<u>故选: D.</u>

易错点 8. 忽视复数 z = a + bi 在复平面的位置在转化为复数三角形式 时出错.

例题 1. (上海市延安中学高一期末) $-1-\sqrt{3}$ i的三角形式是(

A.
$$2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

B.
$$2\left[\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right]$$

$$\text{C.} \quad 2\left(\sin\frac{7\pi}{6} + i\cos\frac{7\pi}{6}\right)$$

$$\text{D.} \quad 2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

D.
$$2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right)$$

【常见错解】错解 1: 选 A,由 $-1-\sqrt{3}$ i 得: r=2, $\tan\theta = \frac{b}{a} = \frac{-\sqrt{3}}{-1} = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3}$,根据复

数三角形式的标准形式得: $z = r(\cos\alpha + i\sin\alpha)$, 所以 $-1 - \sqrt{3}i$ 的三角形式是 $2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$;

错解 2: 选 D-1-
$$\sqrt{3}i = 2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{7\pi}{6} + i\sin\frac{7\pi}{6}\right).$$

【错因分析】错解 1 中忽略了复数 $-1-\sqrt{3}$ i 对应点 $Z(-1,-\sqrt{3})$ 在第三象限,所以由

 $\tan \theta = \frac{b}{a} = \frac{-\sqrt{3}}{-1} = \sqrt{3} \Rightarrow \theta = \frac{4\pi}{3}$, 错解 1 错在忽视了复数对应点的位置; 错解

 $2-1-\sqrt{3}i=2\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right)=2\left(\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}\right)$, 记错了常见角三角函数值, 注意 $\cos\frac{7\pi}{6}=-\frac{\sqrt{3}}{2}$,

$$\sin\frac{7\pi}{6} = -\frac{1}{2}.$$

【正解】B

【详解】

解:
$$-1-\sqrt{3}i = 2\left(-\frac{1}{2}-\frac{\sqrt{3}}{2}i\right) = 2\left[\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right]$$
.

<u>故选: B.</u>

【动手实战】

1. (全国·高一课时练习)下列表示复数1+i的三角形式中① $\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$;

$$2\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right) + i\sin\frac{\pi}{4}\right]; \quad 3\sqrt{2}\left(\cos\frac{9\pi}{4} + i\sin\frac{9\pi}{4}\right); \quad 4\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{3\pi}{4}\right); \quad \text{Eighth}$$

是 ()

- A. 1 B. 2
- C. 3

【答案】B

【详解】

解: $r = \sqrt{1^2 + 1^2} = \sqrt{2}$, $\cos \theta = \frac{\sqrt{2}}{2}$, $\sin \theta = \frac{\sqrt{2}}{2}$, ∴辐角主值为 $\frac{\pi}{4}$,

$$\therefore 1+i=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)=\sqrt{2}\left(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\right),$$

故(1)(3)的表示是正确的,(2)(4)的表示不正确,

2. (全国·高一课时练习)复数 $\frac{\sqrt{3}}{2} + \frac{1}{2}i$ 化成三角形式,正确的是(

A.
$$\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$

B.
$$\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$$

$$C. \quad \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}$$

D.
$$\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}$$

【答案】B

【详解】

解: 因为 $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$, $\sin \frac{\pi}{6} = \frac{1}{2}$

FIFUL $\frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$

故选: B

3. (上海·高一课时练习)复数-1+√3i的三角形式是

A.
$$2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

B.
$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

$$\mathsf{c.} \quad 2\bigg(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}\bigg)$$

D.
$$2\left(\cos\frac{11\pi}{6} + i\sin\frac{11\pi}{6}\right)$$

【答案】A

【详解】

解法一: 设复数的三角形式为 $z = r(\cos\theta + i\sin\theta)$,则 $r = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$, $\tan\theta = -\sqrt{3}$,可

取 $\theta = \arg z = \frac{2\pi}{3}$,从而复数 $-1 + \sqrt{3}i$ 的三角形式为 $2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$.

解法二:
$$-1+\sqrt{3}i = \sqrt{(-1)^2+(\sqrt{3})^2} \times \left[\frac{-1}{\sqrt{(-1)^2+(\sqrt{3})^2}} + \frac{\sqrt{3}}{\sqrt{(-1)^2+(\sqrt{3})^2}} \right]$$

$$2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = 2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$$

故选: A

4. (陕西·西安市第八十九中学高二阶段练习(文))设复数 $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ (i 是虚数单位),

$$\iiint z + 2z^2 + 3z^3 + 4z^4 + 5z^5 + 6z^6 = ($$

- A. 6*z*
- B. $6z^{2}$
- C. $6\overline{z}$
- D. -6z

【答案】C

【详解】

解: 由题意知 $z^2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$, $z^3 = -1$, $z^4 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$, $z^5 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$, $z^6 = 1$,

...原式 =
$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + (-1 + \sqrt{3}i) + (-3) + (-2 - 2\sqrt{3}i) + \left(\frac{5}{2} - \frac{5\sqrt{3}}{2}i\right) + 6$$

$$= 3 - 3\sqrt{3}i = 6\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = 6\overline{z}$$

故选: C

易错点 9. 复数三角形式的除法没化标准就代入除法运算法则

1. (湖南·高一课时练习) 计算:

 $8(\cos 240^{\circ} + i \sin 240^{\circ}) \div 2(\cos 150^{\circ} - i \sin 150^{\circ})$.

【常见错解】
$$8(\cos 240^\circ + i \sin 240^\circ) \div 2(\cos 150^\circ - i \sin 150^\circ) = \frac{4(\cos 240^\circ + i \sin 240^\circ)}{\cos 150^\circ + i \sin 150^\circ}$$

 $= 4(\cos 90^{\circ} + i \sin 90^{\circ}) = 4i$

【错因分析】本题错解在于分母复数的三角形式没有化成标准形式: 2(cos150°-isin150°),

所以首先要将该式化成标准式为: 2(cos(-150°)+isin(-150°)),特别注意复数三角形式的标准形式特点: "模非负,角相同,余弦前,加号连"

【正解】 $2\sqrt{3} + 2i$.

$$8(\cos 240^{\circ} + i \sin 240^{\circ}) \div 2(\cos 150^{\circ} - i \sin 150^{\circ}) = \frac{4(\cos 240^{\circ} + i \sin 240^{\circ})}{\cos(-150^{\circ}) + i \sin(-150^{\circ})}$$

$$= 4(\cos 390^{\circ} + i \sin 390^{\circ}) = 4(\cos 30^{\circ} + i \sin 30^{\circ}) = 2\sqrt{3} + 2i.$$

【动手实战】

1. (全国·高一课时练习) 计算:

$$(1)3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \times 2\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$$

$$(2) \left[\sqrt{6} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \right] \div \left[\sqrt{3} \left(\cos \frac{\pi}{6} - i \sin \frac{\pi}{6} \right) \right]$$

$$(3)\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \times \left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)$$

$$(4)(1-i)\div\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$$

【答案】(1)6(2)
$$\sqrt{2}i$$
(3) i (4) $\frac{\sqrt{3}-1}{2}-\frac{\sqrt{3}+1}{2}i$

(1)

$$3\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \times 2\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right) = 6\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \times \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$

$$= 6 \left(\cos \left(\frac{\pi}{6} - \frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} - \frac{\pi}{6} \right) \right) = 6$$

(2)

$$\left[\sqrt{6}\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)\right] \div \left[\sqrt{3}\left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right)\right]$$

$$= \sqrt{2} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right) \div \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right) = \sqrt{2} \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right) = \sqrt{2}.$$

(3)

$$\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) \times \left(\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right) = \left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right) \times \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$$

$$=\cos\frac{\pi}{2} + i\sin\frac{\pi}{2} - i$$

(4)

$$\frac{(1-i)\div\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)}{6} = \sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+\sin\left(-\frac{\pi}{4}\right)\right)\div\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)}{6}$$

$$= \sqrt{2} \left(\cos \left(-\frac{\pi}{4} - \frac{\pi}{6} \right) + \sin \left(-\frac{\pi}{4} - \frac{\pi}{6} \right) \right)$$

$$= \sqrt{2} \left[\left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2} \right) - \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} \right) | i | = \frac{\sqrt{3} - 1}{2} - \frac{\sqrt{3} + 1}{2} .$$

好学熊资料库