Astronomisches Institut Abgabetermin: 16. Mai 2025

Universität Bern Betreuer: Linda Geisser, Martin Lasser

ExWi Zi. 204, Zi. 212 linda.geisser@unibe.ch

martin.lasser@unibe.ch Sprechzeiten: Bitte vorbeikommen

Numerische Methoden der Physik

Serie 4 - Nicht-linearer Ausgleich

 β^- -Zerfall

Aufgaben

Prof. Dr. A. Jäggi

Nicht-linearer Ausgleich nach kleinsten Fehlerquadraten

Mit einem β -Spektrometer können β^- -Teilchen mit einem bestimmten Impuls gezählt werden. Aus der gemessenen Stromstärke kann auf den Impuls geschlossen werden. Die Anzahl der detektierten β^- -Teilchen je Zeitintervall entspricht dabei der Zählrate z. In der Datei serie4-observations.obs sind Beobachtungen für einen β^- -Zerfall einer 137 Cäsium Quelle gegeben. Die Datei ist wie folgt aufgebaut:

Das funktionale Modell für eine Zählrate z_i ist mittels

$$\bar{z}_i = \frac{a_1}{\sqrt{2\pi}\sigma_1} \exp\left(\frac{-(I_i - \mu_1)^2}{2\sigma_1^2}\right) + \frac{a_2}{\sqrt{2\pi}\sigma_2} \exp\left(\frac{-(I_i - \mu_2)^2}{2\sigma_2^2}\right) + a_0 \tag{1}$$

gegeben. Implementieren Sie einen iterativen Ausgleich nach kleinsten Fehlerquadraten mit den A-priori-Werten $a_1 = a_2 = 50$, $\mu_1 = 0.3$, $\sigma_1 = \sigma_2 = 0.05$ und $\mu_2 = 0.6$. Die Zählraten z' sind zusammen mit ihren Unsicherheiten Δz als Beobachtungen einzuführen, die gemessene Stromstärke ist dabei als fehlerfrei anzunehmen. Die Iteration ist abzubrechen, wenn die relative Verbesserung der einzelnen Parameter kleiner als $\varepsilon = 10^{-4}$ ist.

Beantworten Sie insbesondere folgende Fragen:

- Stellen Sie die partiellen Ableitungen nach allen unbekannten Parametern händisch auf und geben Sie diese in Ihrer Zusammenfassung an.
- Erklären Sie die Bedeutung des A-posteriori-Gewichtseinheitsfehlers m_0 und geben Sie diesen für jeden Iterationsschritt an. Verwenden Sie das m_0 der letzten Iteration, um einen Signifikanztest mit einem Niveau von $\alpha = 5\%$ durchzuführen. Interpretieren Sie Ihr Ergebnis.
- Geben Sie die Lösung für die geschätzten Parameter und deren Fehler an. Bestimmen Sie auch die Korrelation zwischen den Parametern.
- Bestimmen Sie die ausgeglichenen Beobachtungen und deren Fehler.

- Ermitteln Sie den Wert der ausgeglichenen Beobachtung \bar{z}_1 und ihren Fehler. Welche Zählrate und welcher Fehler sind bei einer Stromstärke von I=0.12 A zu erwarten? Berechnen Sie auch den Fehler des Vorfaktors $\frac{a_1}{\sqrt{2\pi}\sigma_1}$.
- Führen Sie eine Überprüfung Ihres Ergebnisses durch, indem Sie die linearisierten Verbesserungen mit den wahren vergleichen.
- Zur Ausreisserdetektierung könnten die normalisierten Verbesserungen $(\frac{v_i}{\sigma_{v_i}})$ betrachtet werden. Stellen Sie die normalisierten Verbesserungen graphisch dar und geben Sie deren Standardabweichung an.
- Vergessen Sie nicht die korrekten Einheiten anzugeben.

Abgabe

Laden Sie Ihr(e) Skript(e) und die Plots sowie eine ein- bis zweiseitige, ordentlich formatierte Zusammenfassung der Ergebnisse auf $ILIAS \rightarrow Numerische Methoden der Physik \rightarrow Abgaben$ hoch. Verwenden Sie bitte die Skript- und Dateinamen:

```
\label{eq:serie4} \begin{split} & \texttt{serie4} \_< Nachname > .py \\ & \texttt{serie4} \_< Nachname > .pdf \end{split}
```

Abgabetermin ist Freitag, der 16. Mai 2025.