1. Considere una carga lineal ubicada en el eje z de la siguiente forma

$$\lambda(z) = \begin{cases} \lambda_0 & \text{para} & 0 < z < l \\ -\lambda_0 & \text{para} & -l < z < 0 \end{cases}$$

- (a) 20% Determine el potencial eléctrico para z > l, extrapole el potencial para todo el espacio haciendo uso de los polinomios de Legendre.
- (b) 20% Encuentre el campo eléctrico E_{θ} para $\theta=\pi/2$ en función de r.
- (c) 5% Calcule el momento dipolar de la distribución de carga y compare con el resultado del potencial

- (a) 20% (Muestre) que una solución particular es $\psi(\rho,\phi,t) = J_n(k\rho)e^{in\phi}e^{i\omega t}$, encuentre los posibles valores de k y ω compatibles con la condición de borde libre.
- (b) 15% ¿Cuáles son las 3 primeras frecuencias normales de oscilación?
 (c) 20% Si en t = 0 se golpea el borde del disco en reposo con un golpe seco modelado como un delta de Dirac $\dot{\psi} = C\delta(\rho - a)\delta(\phi)$, ¿cuál es la solución particular que satisface estas condiciones iniciales (junto con las de borde)?
- (d) 5% Cuál es la relación de amplitudes en el borde entre las 2 primeras frecuencias.

The course of
$$\int_{-\frac{\pi}{2}}^{2} \frac{1}{2^{2}} \frac{1}{2^{2$$

		0			
<u>b)</u>	3 frec - (W11 = B11 \frac{v}{a} = 1.84	1212	$J_0'(x)^a \qquad J_1'(x)$	$J_2'(x)$ $J_3'(x)$	TRES PRIMEROS VALORES.
	$W_{21} = \beta_{21} \frac{v}{v} = 3.05$	42 5 2	3.8317 (1.8412 7.0156 5.3314	3.0542 4.2012 6.7061 8.0152	2 - CEILO) JOMANO DEL LIDIO.
	$W_{31} = \beta_{31} \frac{v}{a} = 4.20$	15 h	10.1735 8.5363	9.9695 11.3459 G &1-2	DE JA (ARFKAN
	· 6	٥	β ₁₁ = 1 β ₂₁ = 3 β ₃₁ =	,0912 3,0542	
			B31 =	4.2012	
			,		

$$\psi = C\delta(\rho - a)\delta(\phi) \implies \text{COUPLICIONES IN ICLATES} \begin{cases} \psi |_{t=0} = 0 \implies T(t) \sim \{e^{i\omega t}, e^{-i\omega t}\} \Rightarrow \text{Senw t} \\ \frac{\partial \psi}{\partial t}|_{t=0} = e^{-\delta(\rho - a)\delta(\rho)} \implies \frac{\partial \psi}{\partial$$

 $\int_{0}^{a} J_{n}(\beta nm \beta a) J_{n}(\beta nm \beta a) \beta d\rho$ $= N_{nm} \delta mm i$ $\int_{0}^{a} CoN N_{nm} = \alpha^{2} (1 - n^{2}\beta_{nm}^{2}) J_{n}^{2}(\beta nm \beta m)$

$$A_{nm} = \frac{c}{2\pi v} \frac{1}{(\beta_{nm} - n^2/\beta_{nm}) J_n(\beta_{nm})} *$$

 $\frac{d}{d} = \frac{A_{11} J_{1}(\beta_{11})}{A_{21} J_{2}(\beta_{21})} = \frac{(\beta_{21} - 4/\beta_{21})}{(\beta_{11} - 1/\beta_{11})} = \frac{3.05 + 2 - \frac{4}{3.05 + 2}}{1.8412 - \frac{1}{1.8412}} = \frac{1.3439}{1.8412 - \frac{1}{1.8412}} = \frac{1.3439}{1.8412 - \frac{1}{1.8412}}$