· DATA-240 Doda mining - Fall 2024

HW-I

Playag Nikul Ruxani (017416737)

Justion 1

a							
/	dot a	seb 1	1	0		4	. 4
	2	y	(2-元)	(4-4)	(n-n) * (y-)	7)°
	10	8.04	1	0290		. 5 39	
	8	6.95	'	0.303). 550	
	13	7.58	16	0.006	E	0.316	
	9	8.81	0	1.714	Č	0. 000	
	1.1	8.33	4	0.687		1.658	
	14	9.96	25	6.047		12,295	
	6	7.24	.9	0.068		0.783	
	4	4.26	25	10.503		16.204	
	12	10.84	व	11.149		10.017	
	7	4.82	4	7.187		0.361	
	5	5.68.	16	3.315		7.283	1
Z	2=9	=7.5	E(n-2)	Z(y-q	,	(九一天)2	
			= 110	= 41.272	— s	(y-y2-	,
						55.010	
	え=9,	J = 7.		n = 11		1 - 1 - 4- L	
	var (n)	= \(\int \) (1	(- m) =	110	=		
	wd (n) = 5	= 111 =	3.3166			
	var (y) , E(,	$\left(\frac{1}{1} - \frac{1}{1}\right)^2 =$	41.272	= 4.	1272	
	std Cy	$\int = \sqrt{\gamma}$	= 12195	10 - 20	315		

we lation
$$(x,y) = \sum (x_i - \overline{x})(y_i - \overline{y})$$

$$\sqrt{\sum (x_i - \overline{x})^2(y_i - \overline{y})^2}$$

$$= 55.01$$

$$\sqrt{110 \times 41.272}$$

$$= 0.8164$$

data set 2

$$\bar{n} = 9$$
; $\bar{y} = 7.5$; $n = 11$
 $var(n) = \frac{E(n-n)^2}{n-1} = \frac{110}{10} = 11$
 $sbd(n) = \sqrt{11} = 3.3166$
 $var(y) = \frac{E(y-y)^2}{n-1} = \frac{41.276}{10} = 4.1276$
 $sbd(y) = \sqrt{4.1276} = 2.0315$

Lowerlation $(n,y) = \sum (n_i - \overline{n})(y_i - \overline{y})$ $\sqrt{\sum (n_i - \overline{n})^2 (y_i - \overline{y})^2}$

$$= 54.999 = 0.8162$$

$$\sqrt{110} \times 41.276$$

data set 3

K	7.46	$(x-\bar{x})^2$	$(y-\overline{4})^2$	(2-2) × (4-4)	
10	7.46	1	$(y-\overline{y})^2$	- 0.04	
8	6.77	1	0.533	0.73	
13	12.74	16	27.457	20.96	
9	7.11	0	0.152	0.00	
1/	7.8-1	4	0.096	0.62	
14	8.84	25	1.798	6.70	
6	80.0	q	2.016	4.26	
4	5.30	25	4.4 52	10.55	
12	8.15	9	0.422	1.96	
7	6.42	4	1.166	Q.16	
5	5.73	16	3.133	7.08	
E 7=9	4=7.5	E(n-n)	= (y-y)2	€ (n-n)* (y-4))
	,	= 110	= 41.226	= 54.97	
	2=9,	9 = 7.5			
	wax(n)	= E(n-	$n)^2 = 110 =$: 11	
		2-1	10		
	std (n)) = 5 = 5	$J_{11} \leq 3.3$	166	

 $war(y) = \frac{E(y-y)}{10} = \frac{41.226}{10} = 4.1226$ $std(y) = \sqrt{3} = \sqrt{4.1226} = 2.0304$

boure latero (n,y) = E(n;-n)(y;-y)

	$\overline{\lambda}$	Ty	val(k)		-as - (y) collag
data 1	9	7. 5	11	4.1272	3.3166 2.0315 0.816
daba 2	9	7.5	U i	4.1276	3.3161 2.0515 00.0
daba 3	9	7.5	11	4.1226	3.3166 2.030 5 0.816

De from the above part we can see that all the walve are nearly some so lets calculate median f I GR and then find Dubliners.

Data set 1

$$g_1 = 5.68 + 6.95 = 6.315$$

$$\mathcal{G}_{2} = \frac{8.33 + 8.81}{2} = 8.57$$

$$I g R = g_3 - g_1$$

= 8.57 - 6.315 = 2.255

Nower bound =
$$g_1 - 1.5 \times 18R$$
 upper bound = $g_3 + 1.5 \cdot 18R$ = $6.315 - 1.5 \times 2.255$ = $8.57 + 1.5 \times 2.255$ = 11.9525

[29375, 11.9525]

⇒ Do there are no oubliners for this dalaset.

Data set 2

y(Localed) = 3.1, 4.74, 6.13, 7.26, 8.18, 8.74, 8.77, 9.13, 9.14, 9.26.

Lower bound = 9-15xIQR me adin (P2) = 8.14 $g_1 = \frac{6.13 + 7.86}{2} = 6.695$ upper bound = 8 2+ 1.5 × I DR

 $8_3 = 8.77 + 9.13 = 8.95$ = 8.95 + 1.5 × 2.255

IRR = 83 - 8,

= 12.3325 [3.3125, 12.3395]

= 6.6.95 - 1.5 x 2.455

= 3.3125

80 thou is one oubliner which is 3.1

Data Lt 3

y(portlud) = 5.39, 5.73, 6.08, 6.42, 6.77, (7.11), 7.46, 7.81, 8.15 8.84, 12.74

meadian
$$(8,) = 7.11$$

 $8_1 = 6.08 + 6.42$
 $= 6.15$
 $8_1 = 7.81 + 8.15$

$$9_3 = \frac{7.81 + 8.15}{2}$$
= 7.98

80 there is one out liner -> 12.74

⇒ Di milaci lus

Yearn sere find part of calculations we can see that on y war (w) var (y), o (a) o (y) collary) is same upto 3 decimal places.

⇒ Differenes

Locom the second pull we can say that

	Meadian	I8K	Out liner s	8,	82
DI	7. 58	2.255		6.315	8.57
22	8.14	2.255	L(3.1)	6.195	8.95
D3	7.11	1.75	1-(12.74)	6.25	7.98.

280 (4) - 40) = 1 = (4) - 40 (4) = 40 $\Rightarrow \frac{1}{10} \left[(7.46 - 7.5) (9.14 - 7.5) + (6.71 - 7.5) (8.14 - 7.5) + (7.11 - 7.5) (8.14 - 7.5) + (7.11 - 7.5) (8.17 - 7.9) + (7.81 - 7.5) (8.14 - 7.5) + (8.84 - 7.5) (8.1 - 7.9) + (6.08 - 7.6) (6.15 - 7.25) + (6.39 - 7.6) (3.1 - 7.6) + (8.15 - 7.6) (9.13 - 7.5) + (6.42 - 7.5) (7.26 - 7.5) + (6.73 - 7.5) (4.74 - 7.5) \right]$

LOU (42, 45) = 2.425

$$bov(y, y_3) = \frac{12(y_3 - y_3)(y_1 - y_3)}{x-1}(y_1 - y_3)(y_1 - y_3)$$

$$\Rightarrow \frac{1}{x-1}[(8.04 - 7.5)(9.14 - 7.5) + (6.96 - 7.5)(8.14 - 7.5)$$

$$+ (7.58 - 7.5)(8.14 - 7.5) + (8.81 - 7.5)(8.17 - 7.6)$$

$$+ (8.53 - 7.5)(9.26 - 7.6) + (9.96 - 7.5)(8.1 - 7.5)$$

$$+ (8.53 - 7.5)(9.26 - 7.6) + (31 - 7.6)(4.26 - 7.5)$$

$$+ (4.84 - 7.5)(6.13 - 7.6) + (4.82 - 7.6)(1.26 - 7.5)$$

$$+ (10.84 - 7.5)(9.13' - 7.6) + (4.82 - 7.6)(1.26 - 7.5)$$

$$+ (5.68 - 7.5)(4.14 - 7.5)$$

=> 600 (y, 1/5) = 3.951.

800(4,4) = 100 = (4) = 4.127 800(4,4) = 100(4) = 4.127 800(4,4) = 100(4) = 4.1276

$$bov(y_i,y_j) = \begin{bmatrix} 4.127 & 1.933 & 3.09 & 5 \\ 1.933 & 4.122 & 2.425 \\ 3.095 & 2.425 & 4.127 \end{bmatrix}$$

1000 (y; yz) = 4.126 1.935 36095 4.182

2.425

Jues tion 2

$$= \frac{(2\times3) + (2\times3) + (2\times3) + (2\times3)}{\sqrt{16} \times \sqrt{36}}$$

$$\Rightarrow \text{bovalation} = \underbrace{\Xi(n_i - \bar{n})(y_i - \bar{y})}_{\sqrt{\Xi(n_i - \bar{n})^2 (y_i - \bar{y})^2}}$$

as the values are same so, both numerators of denominator are o.

$$\sqrt{(2-3)^2+(2-3)^2+(2-3)^2+(2-3)^2}$$

b)
$$x = (0,1,01) + y = (1,0,1,0)$$

 $\Rightarrow bosine Similarity = \frac{x.y}{||x||||y||}$

$$= \frac{(0 \times 1) + (1 \times 0) + (0 \times 1) + (1 \times 0)}{\sqrt{2}} = 0$$

$$\Rightarrow boundion = x = E(x_i - \bar{x})(y_i - \bar{y})$$

$$\sqrt{E(x_i - \bar{n})^2(y_i - \bar{y})^2}$$

$$\bar{\chi} = \frac{0 + 1 + 0 + 1}{4} = 0.5$$
; $\bar{\eta} = \frac{1 + 0 + 1 + 0}{4} = 0.5$

$$= (x_{i}^{-1}x)^{2} + (1-0.5)^{2} + (0-0.5)^{2} + (1-0.5)^{2}$$

$$= 1$$

$$= (y_1 - \bar{y})^2 = (1 - 0.5)^2 + (0 - 0.5)^2 + (0 - 0.5)^2$$

$$= -2 - 1 + 0 + 0 + 0 + 3$$

$$\sqrt{18} \times \sqrt{4}$$

$$\bar{\chi} = 0$$
, $\bar{\chi} = -0.333$

$$= (y_1 - y_1)^2 + (1 - 0.333)^2 + (-1 - 0.333)^2 + (-1 - 0.333)^2 + (0.333)^2 + (-1 - 0.333)^2 + (-1 - 0.333)^2 + (-1 - 0.333)^2$$

$$\geq (n_i - n)(y_i - y) = \frac{-4}{3} - \frac{4}{3} + \frac{2}{3} + \frac{6}{3} = 0$$

$$\sqrt{(3)^2+(-2)^2+(1)^4+(2)^2+0+(-2)^2}$$

$$\sqrt{9+4+1+4+0+4} = \sqrt{22} = 4.69$$

$$\Rightarrow \text{facord dimilarity} = \frac{|n n y|}{|n v y|} \frac{\text{converting the drivary.}}{|n v y|} \frac{1}{|n v v|} \frac{1}{|n v v|}$$

Juestion 3

hamming distance => the no. of position at which the coverponding values are different

De hamming distance = 3

John Sim lanty =
$$\frac{9}{91+91+8}$$
 $\frac{1}{20}$ $\frac{1}{20}$

The face and measure is similar to orine measure because both i grove 0-0.

On other hand SHC = hamming dis. is 0 SHC is extention of hamming disbance