Relatório - Trabalho Prático nº1 - Agentes Racionais

Departamento de Engenharia Informática e de Sistemas (DEIS)

Tomás Ferreira (2021130424), Pedro Paiva (2021134625)

<u>Introdução</u>

Este trabalho resume-se em conceber, implementar e analisar comportamentos racionais para agentes reativos, sendo estes agentes os *Basic* e os *Expert*. Foi-nos facultado um modelo inicial com recursos limitados que deve ser aprimorado de forma a atingir um modelo de agentes original, e com resultados interessantes.

Modelo Base

O modelo base, foi nos fornecido pelos docentes da disciplina, que contêm apenas o mínimo necessário para efetuar a simulação. Os dois tipos de agentes são inicializados e movimentam-se de forma aleatória cujo objetivo principal é garantir a sobrevivência o maior tempo possível. No ambiente existe um número variado de células que oferecem vantagens ou desvantagens aos agentes, onde estes competem entre si.

Para obter valores de controlo, fizemos a experiência com as seguintes configurações:

- Nº de agentes *Basic*: 30;
- Nº de agentes *Expert*: 5;
- Alimento Amarelo a variar entre 0, 2, 5%;
- Alimento Verde a variar entre 0, 7, 15%;
- Nº de Abrigos a variar entre 1, 5, 10;
- Nº de Armadilhas a variar entre 0, 1, 2%;

Todas as simulações acabam com um cenário algo semelhante, agentes Basic mortos, ou seja, considerámos o Modelo base pouco complexo e pouco competitivo.

Alterações ao modelo base

Foram criados alguns procedimentos e estratégias de forma a criar um ambiente mais competitivo e duradouro:

1. Move-Basics

 Modificamos esta função e os agentes Basic passam a percecionar as mesmas células que os agentes Expert.

2. Alimento-Laranja

- Este procedimento aparece a cada 7 ticks e termina no tick 200.
- Aos agentes Basic fornecem 100 de energia e aos agentes Expert, se o XP for maior ou igual a 50, não causa dano, se o XP for menor que 50 e a energia maior ou igual a 100, perde 100 % de energia e se o XP for menor que 50 e a energia menor que 100, morre.

3. Agent Regen

Foi criado um agente que denominamos de *Regen*, se os Basic percecionarem este agente e se a sua energia for inferior a 20, o agente *Regen* restaura a energia aos *Basic* por completo. Se os *Expert* percecionarem os *Regen*, e a sua energia for inferior a 20, o agente *Regen* restaura 25 de energia aos *Expert*.

4. Reproduz

Se a energia dos Basic for superior a 110, vai reproduzir um novo agente do mesmo tipo, com 80 de energia, e consequentemente o agente perde 25 de energia.

Estudo Experimental

Modelo base

Hipótese 1 - Sobrevivência dos Basics sem Experts no ambiente

A primeira hipótese foi baseada no facto de, neste modelo, os Basic serem agentes pouco favorecidos e os Experts demasiado beneficiados, por isso, decidimos retirar os Expert do ambiente para estudar a influência dos Expert nos Basic. Chegámos à conclusão que os Expert, têm pouca influência na sobrevivência dos Basic e que à medida que aumentamos o número de células do ambiente (alimento, armadilhas) o número de ticks aumenta, ou seja, os Basic acabam por sobreviver mais tempo.

Dados de En	Dados de Entrada I							Médias				
Basics	Experts	-	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks		
30	0		0%	0%	0%	1	0	-	100%	147,6		
30	0		2%	7%	1%	5	0	-	100%	205,8		
30	0		5%	15%	2%	10	0	-	100%	250,33		

<u>Hipótese 2 - Sobrevivência dos Experts com um elevado número (95%)</u> de Basics no ambiente

Nesta hipótese, tentámos aumentar exponencialmente o número de agentes Basic no ambiente, com o objetivo de tentar contrariar os resultados anteriormente obtidos. Concluímos que se denota um crescimento pouco significativo dos Basic e um decréscimo pouco acentuado dos Expert no fim da simulação.

Dados de En	Dados de Entrada							Médias				
Basics	Experts	-	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks		
95	5		0%	0%	0%	1	0	4,866666667	0	500		
95	5		2%	7%	1%	5	0	4,866666667	0	500		
95	5		5%	15%	2%	10	0,133333333	4,466666667	0	500		

Hipótese 3 - Sobrevivência dos agentes sem armadilhas

Ao longo das experiências anteriores, reparámos que o maior inimigo dos Basic eram na verdade as Armadilhas, visto que estas acabavam por matar o agente, se tivessem uma energia inferior a 100. Por isso, decidimos fazer a simulação sem qualquer tipo de Armadilhas. Apesar dos Basic, continuarem em extrema desvantagem, conseguimos concluir que a média de agentes Basic vivos, aumentou ligeiramente.

Dados de En	Dados de Entrada							Médias				
Basics	Experts	-	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks		
30	5		0%	0%	0%	1	0	4,733333333	0	500		
30	5		2%	7%	0%	5	0	4,933333333	0	500		
30	5		5%	15%	0%	10	0,266666667	5	0	500		

Modelo Melhorado

Hipótese 1 - Sobrevivência dos Basics sem Experts no ambiente

As alterações no modelo base, foram efetuadas para aumentar o desempenho dos agentes Basic. Voltámos a testar esta hipótese para verificar se as mudanças foram bem efetuadas e se conseguimos tornar o agente mais desafiante. Concluímos que com a ajuda do alimento laranja e os Agentes Regen, os Basic sobreviveram mais tempo, com uma média de 500 ticks, e a média de agentes vivos aumentou drasticamente.

Dados de En	Dados de Entrada							Médias				
Basics	Experts	Regens	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks		
30	0	0	0%	0%	0%	1	1,066666667	0	0	500		
30	0	2	2%	7%	1%	5	2,466666667	0	0	500		
30	0	5	5%	15%	2%	10	412,7333333	0	0	500		

<u>Hipótese 2 - Sobrevivência dos Experts com um elevado número (95%)</u> <u>de Basics no ambiente</u>

Ao contrário da experiência do modelo base, o número de agentes Basic aumentou e reparámos que os Expert tiveram uma ligeira queda, fruto da maior competitividade entre os dois agentes.

Dados de Entrada							Médias				
Basics	Experts	Regens	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks	
95	5	0	0%	0%	0%	1	0	4,933333333	0	500	
95	5	2	2%	7%	1%	5	0,133333333	4,8	0	500	
95	5	5	5%	15%	2%	10	9.133333333	4.8	0	500	

<u>Hipótese 3 - Sobrevivência dos agentes sem armadilhas</u>

Voltámos a testar esta hipótese, mas agora com novas alterações, onde diminuímos o dano das armadilhas ao agente Basic e acrescentámos, como referido anteriormente, o alimento laranja e o agente Regen. Concluímos que houve, novamente, um aumento de agentes Basic vivos no final da simulação.

Dados de Entrada							Médias				
Basics	Experts	Regens	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks	
30	5	0	0%	0%	0%	1	0	5	0	500	
30	5	2	2%	7%	0%	5	0,533333333	5	0	500	
30	5	5	5%	15%	0%	10	10	5	0	500	

Hipótese 4 - Sobrevivência de um maior número de experts

Por fim, decidimos testar uma hipótese nova para verificar se as alterações com o objetivo de tornar o agente Basic mais competitivo, foram bem-sucedidas. Concluímos que conseguimos tornar o agente mais competitivo e mesmo um número inferior deste agente, acaba por conseguir "vencer" o agente Expert.

Dados de Ent	Dados de Entrada							Médias				
Basics	Experts	Regens	Alimento Amarelo	Alimento Verde	Armadilhas	Abrigos	Basics Vivos	Experts Vivos	Repetições com Extinção	Ticks		
4	5	0	0%	0%	0%	1	0	3,666666667	0	500		
4	5	2	2%	7%	0%	5	1,733333333	4,133333333	0	500		
4	5	5	5%	15%	0%	10	27,8	4,066666667	0	500		

Conclusão

Neste trabalho, abordámos o tema da implementação e teste de comportamentos de agentes reativos. No modelo base, reparámos que os basics eram extremamente desfavorecidos e tentámos, no modelo melhorado, criar um ambiente mais competitivo e fazer com que houvesse um maior equilíbrio entre os vários agentes.