DEPARTMENT OF PHYSICS INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

PH1020 Physics II

Problem Set 6

April 2024

1. Show that the magnetic dipole moment a particle of mass m and charge q moving with velocity \mathbf{u} is given by

$$\mathbf{m} = \frac{q}{2m} \; \mathbf{L} \; ,$$

where $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is the (orbital) angular momentum of the particle. Thus a moving charge can be treated as a magnetic dipole located at the instantaneous position of the charge.

- 2. An infinitely long cylinder of radius a has its axis along the z-axis. Its magnetization is given in cylindrical polar coordinates by $\mathbf{M} = M_0 (\varrho/a)^2 \hat{e}_{\varphi}$, where M_0 is a constant. Find \mathbf{J}_b and \mathbf{K}_b as well as \mathbf{B} and \mathbf{H} both inside and outside the cylinder.
- 3. Consider a toroid in which a wedge-shaped region of small angle ψ is absent, as shown in the figure. A steady current I flows in it. The inner radius of the toroid is R, and the total number of turns in it is N. Assume that the magnetic field \mathbf{B} in the air gap is still along \hat{e}_{ϕ} . Find \mathbf{H} in the toroid given that the core of the toroid is a LIH magnetic material with magnetic susceptibility χ_m .

Figure 1: Top view of the toroid

4. An infinite planar magnetic sheet of thickness d having a nonuniform permeability given by $\mu(z) = \mu_0 [1 + (z/d)]^2$ occupies the region $0 \le z \le d$. There is vacuum on either side of the sheet. A magnetic field $\mathbf{B} = B_0 \,\hat{e}_y$ (where B_0 is a constant) is applied in the entire space. The sheet has no free current on it. Find the magnetization surface current densities at z = 0 and z = d, and also the magnetization volume current density as a function of z.