The code takes a positive integer N_i as input and computes the upper bound

$$\mathbb{E}_i(N_t') \le \min_{J \in \{1, \dots, N_i\}} \left(J + (N_i - J) \left(1 - \mathbb{P}_i(\hat{A}_i^J \in C_i^J) \right) \right)$$

for the conditional expectation $\mathbb{E}_i(N_t')$ of the number N_t' of shots in the ith round of the outer loop in the Accelerated Quantum Amplitude Estimation (AQAE) algorithm, that is, Algorithm 2 in the paper Accelerated Quantum Amplitude Estimation without QFT by Alet Roux and Tomasz Zastawniak. This is used in the paper obtain an upper bound for the expectation $\mathbb{E}(M)$ of the quantic computational complexity M of the AQAE algorithm.

The function $PCi(E_N_i,N)$ computes the conditional probability

$$\mathbb{P}_i(\hat{A}_i^J \in C_i^J) = \mathbb{P}_i(E_i^N \le e(\hat{A}_i^N))$$

for given values of E_i^N and N, where \hat{A}_i^J , C_i^J , and $e(\hat{A}_i^N)$ are defined in the paper.

The function $PCi(E_N_i,N)$ uses repeatedly the formula

$$\mathbb{P}(X \in [a, b]) = \mathbb{P}(X \le b) - \mathbb{P}(X < a)$$

$$= \mathbb{P}(X \le \lfloor b \rfloor) - \mathbb{P}(X \le \lceil a \rceil - 1)$$

$$= F_X(\lfloor b \rfloor) - F_X(\lceil a \rceil - 1),$$

where X is a random variable with the binomial distribution B(N,p), N is a positive integer, $p \in (0,1)$, $a,b \in [0,N]$, $\lceil a \rceil$ is the ceiling of a (that is, the smallest integer greater than or equal to a), $\lfloor b \rfloor$ is the floor of b (that is, the largest integer smaller than or equal to b), and $F_X(x) = \mathbb{P}(X \leq x)$ is the cumulative distribution function of X.