Nr zadania:	Opis	Ćwiczenie nr:
11/50	Dla radiolokatora naziemnego zaproponować filtrację Kalman'a umożliwiającą estymację pozycji śledzonego obiektu. Należy zdefiniować parametry filtra Kalama': macierze stanu, obserwacji, kowariancji błędu wektora stanu, kowariancji błędu pomiaru, kowariancji błędu estymaty, oraz początkowe wartości wektora stanu i macierzy kowariancji błędu estynaty,	6: 2/2a

Kinemtyka śledzenia obiektu (radiolokacja). Mamy radio lokator który śledzi cel. Tu jest przejście od innego układu współrzędnych – biegunowego.

Wektor stanu

 $\mathbf{x} = [x \quad y \quad z \quad v_x \quad v_y \quad v_z]$ - równanie stanu jest identyczne jak poprzednio, tylko w poprzednim zadaniu były przyspieszenia i prędkości tutaj mamy położenie i prędkości. Zakładamy, że mierzymy prędkość. Zależność między położeniami, a prędkościami to jest pierwsza pochodna, więc dokładnie dostajemy taką macierz x, y, z oraz vx, vy, vz – dokładnie takie same zależności.

Zmiana położenia

$$x(k+1) = x(k) + v_x(k)\Delta t$$

Równania ruchu								Macierz stanu								
$\int x(k+1)^{-1}$		Γ1	0	0	Δt	0	0	$\int x(k)$		<u>[1</u>	0	0	Δt	0	0	
y(k+1)		0	1	0	0	Δt	0	y(k)		0	1	0	0	Δt	0	
z(k+1)		0	0	1	0	0	Δt	z(k)	$\mathbf{F} =$	0	0	1	0	0	Δt	
$v_x(k+1)$	_	0	0	0	1	0	0	$v_x(k)$	r =	0	0	0	1	0	0	
$v_y(k+1)$		0	0	0	0	1	0	$v_{y}(k)$		0	0	0	0	1	0	
$v_z(k+1)$		0	0	0	0	0	1	$\left[v_{z}(k)\right]$		0	0	0	0	0	1	

Pomiary w układzie sferycznym

r - odległość od obserwatora, $^{\varPsi}$ - kąt azymutu, θ - kąt elewacji

Wektor obserwacji $\mathbf{z} = \begin{bmatrix} r & \theta & \psi \end{bmatrix}$

 $x = r\cos\theta\cos\psi$, $y = r\cos\theta\sin\psi$, $z = r\sin\theta$

Nasz punkt który leci z pewnymi prędkościami w 3 osiach vx, vy, vz.

W równaniach mamy x, y, z więc trzeba się pozbyć r teta psi, porządkujemy i wychodzi macierz H.

Natomiast radiolokator działa trochę inaczej. Mierzy odległość do obiektu "r" kąt pochylenia "teta" czyli elewacji anteny oraz azymutu "psi". Trzeba powiązać te trzy elementy z trzema składowymi x, y, z. Są to równania nie liniowe więc trzeba zastosować rozszerzony filtr Kalmana (czyli liczymy pochodne).

Nieliniowe równania obserwacji	Postać wektorowa nieliniowych równań ruchu					
$r = \sqrt{x^2 + y^2 + z^2}$						
$\theta = \arcsin\left(\frac{z}{r}\right),$ $\psi = \arcsin\left(\frac{y}{\sqrt{x^2 + y^2}}\right)$	$\mathbf{z} = \begin{bmatrix} r \\ \theta \\ \varphi \end{bmatrix} = \begin{bmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arcsin\left(\frac{z}{r}\right) \\ (y) \end{bmatrix}$					
(\forall \tau \tau \tau \tau \tau \tau \tau \tau	$\left[\arcsin\left(\frac{y}{\sqrt{x^2+y^2}}\right)\right]$					

Zlinearyzowane równania obserwacji

z = Hx

$$\mathbf{H} = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2 + z^2}} & \frac{y}{\sqrt{x^2 + y^2 + z^2}} & \frac{z}{\sqrt{x^2 + y^2 + z^2}} & 0 & 0 & 0 \\ \frac{-xz}{\sqrt{x^2 + y^2}(x^2 + y^2 + z^2)} & \frac{-yz}{\sqrt{x^2 + y^2}(x^2 + y^2 + z^2)} & \frac{\sqrt{x^2 + y^2}}{(x^2 + y^2 + z^2)} & 0 & 0 & 0 \\ \frac{-y}{(x^2 + y^2)} & \frac{x}{(x^2 + y^2)} & 0 & 0 & 0 & 0 \end{bmatrix}$$

Tu trzeba mieć po prostu świadomość jak to robić.