

Patent Abstracts of Japan

! **WBLICATION NUMBER**

09279280

PUBLICATION DATE

28-10-97

APPLICATION DATE

12-04-96

APPLICATION NUMBER

08090706

APPLICANT: FURUKAWA ELECTRIC CO LTD:THE;

INVENTOR: OKITA TOMIHARU;

INT.CL.

C22C 21/06

TITLE

ALUMINUM-MAGNESIUM-SILICON ALLOY EXCELLENT IN WELDABILITY

ABSTRACT:

PROBLEM TO BE SOLVED: To produce an Al-Mg-Si alloy material not only having weldability more excellent than that of the conventional Al-Mg-Si alloy, but also having ≥150N/mm² tensile strength and furthermore excellent in corrosion resistance and workability in extrusion, rolling, forging or the like.

SOLUTION: This Al-Mg-Si alloy excellent in weldability has a compsn. contg., by weight, 0.2 to 2.0% Mg, 0.15 to 1.5% Si and 0.03 to 3.0% Sc, contg., at need, at least one kind among the following [group 1], [group 2] and [group 3], and the balance aluminum with inevitable impurities: [group 1]: at least one kind of ≤1.0% Cu and ≤1.0% Ag; [group 2]: at least one kind among ≤0.5% Fe, ≤1.5% Mn, ≤0.6% Cr, ≤0.5% V, ≤1.0% Ni, ≤0.5% V, ≤1.0% Ni, ≤0.5% Mo and ≤2.0% rare earth elements and [group 3] at least one kind among ≤0.2% Ti, ≤0.08% B and ≤0.3% Zr.

COPYRIGHT: (C)1997,JPO

(C) WPI/Derwent

X-Dokumen A

AN - 1998-015156 [02]

AP - JP19960090706 19960412; [Previous Publ. JP9279280]

CPY - SKYA

- FURU

DC - M26

FS - CPI

IC - C22C21/02; C22C21/06

MC - M26-B09 M26-B09M M26-B09S M26-B09X

PA - (SKYA) SKY ALUMINIUM CO LTD

- (FURU) FURUKAWA ELECTRIC CO LTD

PN - JP3594270B2 B2 20041124 DW200477 C22C21/06 024pp

- JP9279280 A 19971028 DW199802 C22C21/06 016pp

PR - JP19960090706 19960412

XA - C1998-005922

XIC - C22C-021/02; C22C-021/06

AB - J09279280 The Al-Mg-Si alloy comprises (by wt.) 0.2-2.0% Mg, 0.15-1.5% Si, 0.03-3.0% Sc, and balance Al and incidental impurities.

- USE - For welded structural members, as rolled material, extruded material and forged material.

- (Dwg.0/1)

IW - ALUMINIUM@ ALLOY IMPROVE WELD MAGNESIUM@ SILICON@ SCANDIUM IKW - ALUMINIUM@ ALLOY IMPROVE WELD MAGNESIUM@ SILICON@ SCANDIUM NC - 001

OPD - 1996-04-12

ORD - 1997-10-28

PAW - (SKYA) SKY ALUMINIUM CO LTD

- (FURU) FURUKAWA ELECTRIC CO LTD

TI - Aluminium@ alloy with improved weldability - includes magnesium@, silicon@ and scandium

[Translator's Note: The proper names with doubtful reading are marked blue in the translation]

(19) Japan Patent Office (JP)

(12) KOKAI TOKKYO KOHO (A)

(11) Unexamined Patent Application Publication No. Tokkai Hei9-279280 (43) Publication date:

Heisei 9 (1997) October 28

(51) Int. Cl.⁶ C22C 21/06

ID No

F1 C22C 21/06 Technical Display

	Examination: Not yet applied for Claims: 8 OL (Total 16 Pages)
(21) Application No.:	(71) Applicant 000005290
Tokugan Hei8-90706	The Furukawa Electric Co., Ltd.
	2-6-1 Marunouchi,
(22) Application Date:	Chiyoda-Ku, Tokyo-To
Heisei 8 (1996) April 12	(72) Inventor OKITA TOMIHARU
•	The Furukawa Electric Co., Ltd.
	2-6-1 Marunouchi,
	Chiyoda-Ku, Tokyo-To

(54) [Title of Invention] Al-Mg-Si system alloy having excellent weldability

(57) [Summary]

[Problem] To develop Al-Mg-Si system alloy material having not only better weldability and corrosion resistance as compared to the existing Al-Mg-Si system alloys but also tensile strength ≥150N/mm² and excellent workability for performing extrusion, rolling, forging, etc.

[Solution] Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc and, if necessary, at least one of the additive elements from the under-mentioned [Group 1], [Group 2] and [Group 3], and the rest Al and inescapable impurities

[Group 1]: At least one selected from ≤1.0wt% Cu and ≤1.0wt% Ag

[Group 2]: At least one selected from ≤ 0.5 wt% Fe, ≤ 1.5 wt% Mn, ≤ 0.6 wt% Cr, ≤ 0.5 wt% V, ≤ 1.0 wt% Ni, ≤ 0.5 wt% Mo and ≤ 2.0 wt% rare earth elements

[Group 3]: At least one selected from ≤0.2wt% Ti, ≤0.08wt% B and ≤0.3wt% Zr [Claims]

[Claim 1] Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc, and the rest Al and inescapable impurities

[Claim 2] Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc and at least one selected from ≤1.0wt% Cu and ≤1.0wt% Ag, and the rest Al and inescapable impurities

[Claim 3] Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and the rest Al and inescapable impurities

[Claim 4] Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤1.0 wt% Cu and ≤1.0 wt% Ag, and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and the rest Al and inescapable impurities

[Claim 5] Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc and at least one selected from ≤0.2wt% Ti, ≤0.08wt% B and ≤0.3wt% Zr, and the rest Al and inescapable impurities

[Claim 6] Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤1.0 wt% Cu and ≤1.0 wt% Ag, and at least one selected from ≤0.2 wt% Ti, ≤0.08 wt% B and ≤0.3 wt% Zr, and the rest Al and inescapable impurities

[Claim 7] Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and at least one selected from ≤0.2 wt% Ti, ≤0.08 wt% B and ≤0.3 wt% Zr, and the rest Al and inescapable impurities

[Claim 8] Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤1.0 wt% Cu and ≤1.0 wt% Ag, and at least one from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and at least one selected from ≤0.2 wt% Ti, ≤0.08 wt% B and ≤0.3 wt% Zr, and the rest Al and inescapable impurities

[Detailed Explanation of the Invention]

[0001]

[Industrial Applications] The invention deals with Al-Mg-Si system Al alloy having medium strength with tensile strength $\geq 150 \text{N/mm}^2$ and usable in welding structures as rolling material, extrusion material and forging material.

[0002]

[Existing Technology] Recently, with the increasing trend of making thinner and lighter parts for buildings, automobiles, ships, aircrafts, etc., the demand of medium-strength easily mouldable Al-Mg-Si system Al alloys having excellent weldability and free from corrosion and stress-corrosion cracks has increased. Conventionally, the Al-Mg-Si system Al alloys such as A6061, A6063, A6N01, etc., of JIS have been considered for such applications.

[0003]

[Problem to be solved by the Invention] When Al-Mg-Si system Al alloys such as A6061, A6063, A6N01, etc., are welded, they become prone to develop welding cracks in the beads and boundary parts and micro-cracks in the part affected by the welding heat. Therefore, improved welding material, improved welding method and the combination thereof were adopted to solve the said problems. For example, when crystal grains of the material are made finer and its structure is made fibrous, formation of the welding cracks and micro-cracks is controlled. Therefore, attempts are being made to solve the said problems by improving the manufacturing process (combination of working and heat treatment) and by improving the welding execution method and welding conditions. However, as the said methods require special manufacturing process, the cost of material production increases and the welding execution and welding management become complicated.

[Steps to solve the Problem]

[0004] Extensive study conducted in view of the above-mentioned scenario revealed that the newly developed Al-Mg-Si system alloy material not only solves the problems of the existing Al-Mg-Si system alloy materials but has tensile strength ≥150N/mm², excellent corrosion resistance, and excellent workability for performing extrusion, rolling, forging, etc.

[0005] Precisely, first claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc, and the rest Al and inescapable impurities.

[0006] Second claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc and at least one selected from ≤1.0wt% Cu and ≤1.0wt% Ag, and the rest Al and inescapable impurities.

[0007] Third claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and the rest Al and inescapable impurities.

[0008] Fourth claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤1.0 wt% Cu and ≤1.0 wt% Ag, and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and the rest Al and inescapable impurities.

[0009] Fifth claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing 0.2~2.0wt% Mg, 0.15~1.5wt% Si and 0.03~3.0wt% Sc and at least one selected from ≤0.2wt% Ti, ≤0.08wt% B and ≤0.3wt% Zr, and the rest Al and inescapable impurities.

[0010] Sixth claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤1.0 wt% Cu and ≤1.0 wt% Ag, and at least one selected from ≤0.2 wt% Ti, ≤0.08 wt% B and ≤0.3 wt% Zr, and the rest Al and inescapable impurities.

[0011] Seventh claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤-0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and at least one selected from ≤0.2 wt% Ti, ≤0.08 wt% B and ≤0.3 wt% Zr, and the rest Al and inescapable impurities.

[0012] Eighth claim of the invention comprises the Al-Mg-Si system alloy having excellent weldability containing $0.2\sim2.0$ wt% Mg, $0.15\sim1.5$ wt% Si and $0.03\sim3.0$ wt% Sc, and at least one selected from ≤1.0 wt% Cu and ≤1.0 wt% Ag, and at least one selected from ≤0.5 wt% Fe, ≤1.5 wt% Mn, ≤0.6 wt% Cr, ≤0.5 wt% V, ≤1.0 wt% Ni, ≤0.5 wt% Mo and ≤2.0 wt% rare earth elements, and at least one from ≤0.2 wt% Ti, ≤0.08 wt% B and ≤0.3 wt% Zr, and the rest Al and inescapable impurities.

[0013]

[Function] Role of the additive elements and reasons for limiting their content to the specified limits in the Al-Mg-Si system alloys having excellent weldability of this invention are explained below.

[0014] In the presence of Si, Mg forms Mg₂Si and provides age hardening. Therefore, Mg is indispensable element for improving strength of the alloy and obtaining tensile strength ≥150N/mm². When Mg content is less than 0.2wt%, adequate strength is not obtained and, when it is more than 2.0wt%, weldability, workability and corrosion resistance of the alloy deteriorate. Therefore, it is desirable to use 0.2~2.0wt% or preferably 0.4~1.6wt% Mg. Si forms Mg₂Si with Mg and provides age hardening. Therefore, Si is indispensable element for improving strength of the alloy and obtaining tensile strength ≥150N/mm². When Si content is less than 0.15wt%, adequate strength is not obtained and, when it is more than 1.5wt%, weldability and corrosion resistance of the alloy deteriorate. Therefore, it is desirable to use 0.15~1.5wt% or preferably 0.2~1.3wt% Si. Sc is indispensable for improving resistance of the alloy to the formation of welding cracks. Sc also improves strength of the alloy. When Sc content is less then 0.03wt%, its effect is inadequate and, when it is more than 3.0wt%, strength and workability of the alloy may deteriorate. Therefore, it is desirable to use 0.03~3.0wt% or preferably 0.1~2.5wt% Sc.

[0015] Cu improves strength of the alloy, but its corrosion resistance and workability deteriorate if the Cu content therein is more than 1.0wt% Therefore, it is desirable to use ≤1.0wt% Cu. When Cu content is less than 0.1wt%, its effect is inadequate. It is most desirable to use 0.10~0.7wt% Cu.

[0016] Ag improves weldability and strength of the alloy. However, when Ag content is more than 1.0wt%, workability and weldability of the alloy deteriorate. Therefore, it is desirable to use ≤1.0wt% Ag. When Ag content is less than 0.03wt%, its effect is inadequate. It is most desirable to use 0.05~0.7wt% Ag.

[0017] Each of Fe, Mn, Cr, V, Ni, Mo and rare earth elements improves weldability and strength of the alloy; one or more of them can be added. Nevertheless, when content of the respective element is more than the specified limit, i.e., more than 0.5wt% Fe, 1.5wt% Mn, 0.6wt% Cr, 0.5wt% V, 1.0wt% Ni, 0.5wt% Mo and 2.0wt% rare earth element, large crystalline mass is formed and mouldability, toughness, workability, weldability, corrosion resistance, etc., of the alloy may deteriorate. Therefore, it is desirable to use ≤0.5wt% Fe, ≤1.5wt% Mn, ≤0.6wt% Cr, ≤0.5wt% V, ≤1.0wt% Ni, ≤0.5wt% Mo and ≤2.0wt% rare earth element. If the content is less than the specified limit, i.e., less than 0.1wt% Fe, 0.01wt% Mn, 0.01wt% Cr, 0.01wt% V, 0.03wt% Ni, 0.01wt% Mo and 0.03wt% rare earth element, the said effect is not obtained. Therefore, it is desirable to use 0.01~0.5wt% Fe, 0.01~1.5wt% Mn, 0.01~0.6wt% Cr, 0.01~0.5wt% V, 0.03~1.0wt% Ni, 0.01~0.5wt% Mo and 0.03~2.0wt% rare earth element or

preferably 0.1~0.48wt% Fe, 0.1~1.0wt% Mn, 0.05~0.4wt% Cr, 0.05~0.3wt% V, 0.1~0.8wt% Ni, 0.03~0.3wt% Mo and 0.05~1.5wt% rare earth element.

[0018] One or more selected from La, Ce, Pr, Nd, Sm, etc., can be used as rare earth element. The content of one rare earth element or total content of 2 or more of them should be 0.03~2.0wt%. The alloy comprising 2 or more rare earth elements, for example, the Mischmetal containing Ce and La as main constituents (normally, 45~50wt% Ce, 2040wt% La and the rest the other elements (Pr, Nd, Sm, etc.) can be used. Each one of the above-mentioned rare earth elements and the Mischmetal produce the same effect. However, as simple rare earth elements are costly, it is economical and advantageous to add them in the form of Mischmetal.

[0019] Ti and B refine the texture and improve weldability of the alloy. However, if the Ti content is more than 0.2wt%, large crystalline mass may be formed and toughness, workability, corrosion resistance of the alloy may deteriorate. On the other hand, if the Ti content is less than 0.005wt%, its effect is inadequate. Therefore, it is desirable to use 0.005~0.2wt% or preferably 0.008~0.1wt% Ti. If the B content is more than 0.08wt%, toughness and workability of the alloy may deteriorate. Moreover, if it is less than 0.0001wt%, the crystal grains refining effect is less. Therefore, it is desirable to use 0.001~0.8wt% or preferably 0.005~0.01wt% B.

[0020] Zr, Ti and B also improve weldability of the alloy. When Zr is added together with Sc, strength of the alloy is also improved. However, if the Zr content is more than 0.3wt%, strength, workability and corrosion resistance deteriorate. Therefore, it is desirable to use ≤ 0.3 wt% Zr. When the Zr content is less than 0.03wt%, its effect is inadequate. Therefore, it is desirable to use $0.03\sim0.3$ wt% or preferably $0.05\sim0.25$ wt% Zr.

[0021] Extrusion material, rolling material and forging material of the alloy of this invention can be produced by using the manufacturing methods and manufacturing conditions used for the production of the conventional Al-Mg-Si system alloys. Alloy of the invention can be used in buildings (pillar, beam, sash, etc.), construction (temporary material, arrows, planks, wale, railing, bridge, etc.), automobiles (planks in railway carriage, extruded shape, car planks, shape material, etc.), containers and pipes (general containers and pipes, containers and pipes for vacuum equipments, etc.), ships (upper structures, bisection, etc.), aircrafts (structural components, etc.), etc. Conventional fusion welding and pressure welding methods, for example, TIG welding, MIG welding, laser welding, electron beam welding, resistance-spot welding, seam welding, stud welding, high frequency welding, ultrasonic wave welding, etc., can be used as welding methods for the alloy of this invention.

[0022]

[Execution Example] Execution example of the invention is explained. Alloys of the compositions given in Tables 1~10 (alloys of the invention Nos.1~145, comparison alloys Nos.146~187 and conventional alloys Nos.188~190) were cast into ingots (9-inch diameter) for extrusion using semi-continuous water-cooled extrusion machine. Each obtained ingot was subjected to homogenisation treatment at 520~540°C for 8~12 hours, heated at 400~470°C and then extruded into 5mm thick and 100mm straight angle material. Extrusion was carried out at the highest extrusion speed (critical extrusion speed) so that no surface defects and cracks developed on the said straight angle material. Extrusion quality of each alloy was evaluated in 3 grades (©, and X). The obtained results are given in Tables 11~17. The evaluation standards are given below.

© • Extrusion speed is more than the critical extrusion speed of A6063 (28m/min).

Extrusion speed is \geq critical extrusion speed of A6061 (18m/min) and \leq critical extrusion speed of A6063 (28m/min).

X > Extrusion speed is less than the critical extrusion speed of A6061 (18m/min).

[0023] After extrusion, each material was subjected to solution annealing at 525°C for 1 hour, hardening and tempering at 200°C for 8 hours. The material obtained in this manner was subjected to tension test, welding crack test, micro-crack test and corrosion resistance test. The obtained results are given in Tables 11~17. The testing methods are given below.

(1) Tension test

(a) Test piece : Test piece No. 5 of JIS Z 2201

(b) Testing method : Test in conformity to JIS Z 2241 using the Amsler universal

testing machine

(c) Observed value : Tensile strength was determined and evaluated by the following

standards

© \rightarrow Tensile strength ≥250N/mm²

Tensile strength 150N/mm² ~ 250N/mm²

X • Tensile strength less than 150N/mm²

[0024]

(2) Welding crack test

(a) Test piece : Fish bone type test piece shown in Fig. 1

(b) Welding : Welding method • • TIG

conditions Solubilizer •• not used

Electrode → → Cerium-containing W, 3.2mm¢

Welding current > > 200A

Arc voltage ••• 20V

Welding speed •• • 30cm/min

Argon gas flow rate ••• 10-litre/min

(c) Crack evaluation

: Crack length was measured and evaluated by the following

standards

© • • Crack length less than 30mm

X Crack length ≥50mm

[0025]

(3) Micro-welding crack test

(a) Test piece : 5mm x 100mm x 100mm sheet

(b) Welding : Welding method • • TIG

conditions Solubilizer - A5356BY, 3.2mm ϕ

Electrode → → → Cerium-containing W, 3.2mm φ

Welding current • • • 200A

Arc voltage ••• 20V

Welding speed • • • 30cm/min

Argon gas flow rate > > 10-litre/min

(c) Crack evaluation : Three sections on the welded part were polished and examined

using metallurgical microscope to find out whether any micro-crack

developed in the part affected by the welding heat or not.

X • One or more micro-cracks develop

[0026]

(4) Corrosion test

(a) Test piece : 5mm x 60mm x 80mm sheet

(b) Testing method : Salt spray test: In conformity to JIS Z 2371

Testing solution: 5% NaCl Spray rate: 1~2ml/80cm²/h Spray temperature: 35°C Testing time: 1000hours

(c) Evaluation

No corrosion

method	X 🗢 🗢	Corrosion takes place
--------	-------	-----------------------

[0027] [Table 1]

Class	No.		(Chemical com	position (wt%	6)	
		Mg	Si	Sc	Cu	Ag	Al
	1	0.2	0.15	0.03			Remainder
	2	1.0	0.15	0.03			Remainder
	3	2.0	0.15	0.03			Remainder
	4	0.2	0.7	0.03			Remainder
	5	1.0	0.7	0.03			Remainder
	6	2.0	0.7	0.03			Remainder
	7	0.2	1.5	0.03			Remainder
	8	1.0	1.5	0.03			Remainder
	9	2.0	1.5	0.03			Remainder
	10	0.2	0.15	1.0			Remainder
Alloys of	1 1	1.0	0.15	1.0			Remainder
this	12	2.0	0.15	1.0			Remainder
invention	13	0.2	0.7	1.0			Remainder
	14	1.0	0.7	1.0			Remainder
	15	2.0	0.7	1.0	i		Remainder
	16	0.2	1.5	1.0			Remainder
	17	1,0	1.5	1.0			Remainder
	18	2.0	1.5	1.0			Remainder
	19	0.2	0.15	3.0			Remainder
	20	1.0	0.15	3.0			Remainder
	21	2.0	0.15	3.0	ļ		Remainder
	22	0.2	0.7	3.0			Remainder
	23	1.0	0.7	3.0		;	Remainder
	24	2.0	0.7	3.0			Remainder
	25	0.2	1.5	3.0			Remainder
	26	1.0	1.5	3.0			Remainder
	27	2.0	1.5	3.0			Remainder
	28	1.0	1.0	1.0	0.1		Remainder
	29	1.0	1.0	1.0	0.5		Remainder
	30	1.0	1.0	1.0	1.0		Remainder
	31	1.0	1.0	1.0		0.05	Remainder
	32	1.0	1.0	1.0		0.5	Remainder
	33	1.0	1.0	1.0		1.0	Remainder
	34	1.0	1.0	1.0	0.1	0.05	Remainder
	35	1.0	1.0	1.0	0.5	0.5	Remainder
	36	1.0	1.0	1.0	1.0	1.0	Remainder

[0028]

[Table 2]

No.			Che	mical co	mpositio	on (wt%))	MM	: Mischr	netal		
ļ	Mg	Si	Sc	Cu	Ag	Fe	Mn	Cr	V	Ni	Mo	MM
37	0.2	0.15	0.03			0.01						
38	1.0	1.0	1.0			0.25]
39	2.0	1.5	3.0			0.5						
40	0.2	0.15	0.03	<u> </u>			0.01					
41	1.0	1.0	1.0				0.5					
42	2.0	1.5	3.0				1.5					
43	0.2	0.15	0.03					0.01				
44	1.0	1.0	1.0					0.3				
45	2.0	1.5	3.0					0.6				
46	0.2	0.15	0.03						0.01			
47	1.0	1.0	1.0						0.2			
48	2.0	1.5	3.0						0.5			
49		0.15	0.03							0.05		
50	1.0	1.0	1.0							0.5		
51	2.0	1.5	3.0							1.0		
52	0.2	0.15	0.03								0.01	
53	1.0	1.0	1.0							1	0.2	
54	2.0	1.5	3.0								0.5	
55	0.2	0.15	0.03									0.05
56	1.0	1.0	1.0									1.0
57	2.0	1.5	3.0									2.0
58	0.2	0.15	0.03	0.1		0.01						,
59	1.0	1.0	1.0	0.5	· 	0.25						
60	2.0	1.5	3.0	1.0		0.5						
61	2.0	1.5	3.0	0.5	0.5	0.25						
62	0.2	0.15	0.03		0.05		0.01					
63	1.0	1.0	1.0		0.5		0.5					
64	2.0	1.5	1 3.0		1.0		1.5					
65	2.0	1.5	3.0	0.5	0.5		0.5					
66	0.2	0.15	0.03	0.1				0.01				
67	1.0	1.0	1.0	0.5				0.3			1	
68	2.0	1.5	3.0	1.0				0.6				
69	2.0	1.5	3.0	0.5	0.5			0.3				
70	0.2	0.15	0.03		0.05				0.01			
71	1.0	1.0	1.0		0.5				0.2			
72	2.0	1.5	3.0		1.0	t 			0.5			
73	2.0	1.5	3.0	0.5	0.5				0.2			

Al: Remainder

[0029]

[Table 3]

No.	-		Chemi	cal comp	osition (wt%)	N	M: Miso	chmetal		
	Mg	Si	Sc	Cu	Ag	Ni	Mo	MM	Ti	В	Zr
74	0.2	0.15	0.03	0.1		0.05				:	
75	1.0	1.0	1.0	0.5	:	0.5					
76	2.0	1.5	3.0	1.0		1.0					
77	2.0	1.5	3.0	0.5	0.5	0.5					
78	0.2	0.15	0.03		0.05		0.01				
79	1.0	1.0	1.0		0.5		0.2				
80	2.0	1.5	3.0		1.0		0.5	.			
81	2.0	1.5	3.0	0.5	0.5		0.2				
82	0.2	0.15	0.03	0.1				0.05			
83	1.0	1.0	1.0	0.5		Ì		1.0			
84	2.0	1.5	3.0	1.0				2.0			
85	2.0	1.5	3.0	0.5	0.5			1.0			
86	0.2	0.15	0.03					j	0.005		
87	1.0	1.0	1.0			į			0.01		
88	2.0	1.5	3.0						0.2		
89	0.2	0.15	0.03						0.005	0.0001	
90	1.0	1.0	1.0						0.01	0.002	
91	2.0	1.5	3.0		<u> </u>				0.2	0.08	i
92	0.2	0.15	0.03								0.03
93	1.0	1.0	1.0								0.13
94	2.0	1.5	3.0								0.25
95	0.2	0.15	0.03	0.1					0.005		
96	1.0	1.0	1.0	0.5			į		0.01		
97	2.0	1.5	3.0	1.0					0.2		i
98	0.2	0.15	0.03		0.05				0.005	0.0001	
99	1.0	1.0	1.0		0.5				0.01	0.002	
100	2.0	1.5	3.0		1.0				0.2	0.08	
101	0.2	0.15	0.03	0.1	0.05						0.03
102	1.0	1.0	1.0	0.5	0.5						0.13
103	2.0	1.5	3.0	1.0	1.0		<u> </u>			<u> </u>	0.25

[Table 4]

Class	No.				Ch	nemical o	composi	tion (wt%	6)		
		Mg	Si	Sc	Fe	Mn	Cr	Ti	В	Zr	Al
	104	0.2	0.15	0.03	0.01			0.005			Remainder
	105	1.0	1.0	1.0	0.25			0.01			Remainder
Alloys of	106	2.0	1.5	3.0	0.5			0.2		<u> </u>	Remainder
this	107	0.2	0.15	0.03		0.01		0.005	0.0001		
invention	108	1.0	1.0	1.0		0.5		0.01	0.002		
	109	2.0	1.5	3.0		1.5	0.01	0.2	0.08	<u>'</u>	
	110	0.2	0.15	0.03			0.3			0.03	Remainder
	111	1.0	1.0	1.0			0.6			0.13	Remainder
	112	2.0	1.5	3.0						0.25	Remainder

Al: Remainder

[0031]

[Table 5]

Class	No.			Chem	ical cor	npositio	on (wt%	5)	M	M: Misch	metal	
		Mg	Si	Sc	V	Ni	Mo	MM	Ti	В	Zr	Al
_	113	0.2	0.15	0.03	0.01				0.005			Remainder
	114	1.0	1.0	1.0	0.2				0.01			Remainder
	115	2.0	1.5	3.0	0.5				0.2			Remainder
Alloys of	116	0.2	0.15	0.03		0.05			0.005	0.0001		Remainder
this	117	1.0	1.0	1.0		0.5			0.01	0.002		Remainder
invention	118	2.0	1,5	3.0		1.0			0.2	0.08		Remainder
	119	0.2	0.15	0.03			0.01				0.03	Remainder
	120	1.0	1.0	1.0			0.2		:		0.13	Remainder
	121	2.0	1,5	3.0			0.5				0.25	Remainder
	122	0.2	0.15	0.03	:			0.05	0.005	0.0001		Remainder
	123	1.0	1.0	1.0				1.0	0.01	0.002		Remainder
	124	2.0	1.5	3.0				2.0	0.2	0.08		Remainder

[0032]

[Table 6]

No.				(Chemical	composi	tion (wt%	6)			
	Mg	Si	Sc	Cu	Ag	Fe	Mn	Cr	Ti	В	Zr
125	0.2	0.15	0.03	0.1		0.01			0.005		
126	1.0	1.0	1.0	0.5		0.25			0.01		
127	2.0	1.5	3.0	1.0		0.5			0.2		
128	0.2	0.15	0.03		0.05		0.01		0.005	0.0001	
129	1.0	1.0	1.0		0.5		0.5		0.01	0.002	
130	2.0	1.5	3.0		1.0		1.5		0.2	0.08	
131	0.2	0.15	0.03	0.1	0.05			0.01			0.03
132	1.0	1.0	1.0	0.5	0.5			0.3			0.13
133	2.0	1.5	3.0	1.0	1.0			0.6			0.25

Class: Alloys of this invention

Al: Remainder

[0033]

[Table 7]

No.			Che	mical co	omposition	on (wt%)	MM	I: Misch	metal		
	Mg	Si	Sc	Cu	Ag	V	Ni	Mo	MM_	Ti	В	Zr_
134	0.2	0.15	0.03	0.1		0.01				0.005		
135	1.0	1.0	1.0	0.5		0.2				0.01		
136	2.0	1.5	3.0	1.0		0.5				0.2		
137	0.2	0.15	0.03	;	0.05		0.05			0.005	0.0001	
138	1.0	1.0	1.0		0.5		0.5			0.01	0.002	
139	2.0	1.5	3.0		1.0		1.0			0.2	0.08	
140	0.2	0.15	0.03	0.1	0.05	İ		0.01				0.03
141	1.0	1.0	1.0	0.5	0.5			0.2				0.13
142	2.0	1.5	3.0	1.0	1.0			0.5				0.25
143	0.2	0.15	0.03	0.1	0.05				0.05	0.005	0.0001	
144	1.0	1.0	1.0	0.5	0.5				1.0	0.01	0.002	
145_	2.0	1.5	3.0	1.0	1.0				2.0	0.2	0.08	<u> </u>
146	0.1	1.0	1.0									
147	3.0	1.0	1.0									
148	1.0	0.1	1.0									
149	1.0	2.0	1.0									
150	1.0	1.0	0.01									
151	1.0	1.0	4.0				_					
152	1.0	1.0	1.0	2.0								
153	1.0	1.0	1.0		2.0				<u> </u>			<u> </u>

Class: Alloys of this invention (Nos.134~145), Comparison alloys (Nos.146~153), Al: Remainder [0034]

[Table 8]

No.		, , , , , , , , , , , , , , , , , , ,	Che	mical co	mpositio	on (wt%)		MM	: Mischr	netal		
	Mg	Si	Sc	Cu	Ag	Fe	Mn	Cr	V	Ni	Mo	MM
154	1.0	1.0	1.0			1.0						
155	1.0	1.0	1.0				2.0					
156	1.0	1.0	1.0					1.0				
157	1.0	1.0	1.0						1.0			
158	1.0	1.0	1.0							2.0		
159	1.0	1.0	1.0		İ						1.0	
160	1.0	1.0	1.0									3.0
161	1.0	1.0	1.0	0.5	0.5	1.0						
162	1.0	1.0	1.0	0.5	0.5		2.0					
163	1.0	1.0	1.0	0.5	0.5			1.0				
164	1.0	1.0	1.0	0.5	0.5				1.0			
165	1.0	1.0	1.0	0.5	0.5			1		2.0		
166	1.0	1.0	1.0	0.5	0.5						1.0	
167	1.0	1.0	1.0	0.5	0.5							3.0

Class: Comparison alloys

Al: Remainder

[0035] [Table 9]

	Al	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder	Remainder		Remainder	Remainder
	Zr			0.35			0.35			0.35			0.35				0.35			0.35	
	В		0.1			0.1			0.1			0.1				0.1			0.1		
	Ti	0.3			0.3			0.3			0.3			0.3	0.3			0.3			0.3
hmetal	MM													1.0							1.0
MM: Mischmetal	Mo												0.1			•				0.1	
M	Ni											0.5							0.5		
(9)	Λ										0.1							0.1			
ion (wt%	Cr									0.2							0.2				
Chemical composition (wt%)	Mn								0.5							0.5					
emical c	Fe				•			0.2		•					0.2						
Ch	Ag				0.5	0.5	0.5								0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Cu				0.5	0.5	0.5						-		5.0	0.5	0.5	0.5	0.5	0.5	0.5
	Sc	0.03	1.0	3.0	0.03	1.0	3.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Si	0.15	1.0	1.5	0.15	1.0	1.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Mg	0.2	1.0	2.0	0.2	1.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
No.		168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187
Class								Comparison	alloys												

[0036]

[Table 10]

	No.		(Chemical co	mposition (w	rt%)	
		Mg	Si	Sc	Cu	Cr	Al
Conventional	188	0.7	0.4				Remainder
alloys	189	1.0	0.6		0.25	0.1	Remainder
	190	0.6	0.7		0.1		Remainder

No. 188 : A6063 No. 189 : A6061 No. 190 : A6N01

[0037] [Table 11]

[Translator's Note: To accommodate English text in the table, the same abbreviations will be introduced and used in all the tables given below.]

[Extr. Prop. = Extrusion property; Tens. Str Prop. = Tensile strength Property; Resit. Wel. Crk. = Resistance to welding cracks; Resit. Mcr-crk = Resistance to micro-cracks; Corr. Resit. = Corrosion resistance; Comb. Eval. = Combined evaluation; Ext. S. = Extrusion speed (m/min); Eval. = Evaluation; TS = Tensile strength (N/mm²); CL = Crack length (mm); POC = Presence of

cracks; CP = Presence of corrosion

No.		Prop.	Τ	tr. Prop.	Resit. W	el. Crk.	Resit. N	Acr-crk.	Corr.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval.
1	75	©	169	M	38		No		No	Z.	Ø
2	42	©	187		41	A	No		No	⊠	Ø
3	30	©	198	A	45		No	A	No	⊠	
4	74	©	206	E	35		No		No		
5	40	©	215		39	函	No		No		
6	29	©	256	©	43		No	A	No	Z Z	
7	72	©	263	©	33		No	A	No		
8	39	©	272	©	37	∞	No		No		
9	28	©	340	©	40	<u>~</u>	No		No		Z.
10	75	©	171	A	33	Z Z	No	₹	No		
11	42	©	190		35	Z.	No	A	No		
12	30	©	199	磁	39		No	A	No		
13	74	©	207		29	©	No	A	No		
14	41	©	217		33	Ø	No	Ø	No		
15	29	©	257	©	37	盛	No	A	No		
16	73	©	265	©	27	©	No	Ø	No		
17	40	©	275	©	32	Ø	No	A	No		
18	28	©	341	©	35	A	No	A	No		
19	74	©	173	A	28	0	No	Z.	No	E	24
20	41	©	192		31		No	A	No	A	A
21	29	©	200	Z.	33	K	No	A	No	A	Ø
22	72	©	209	X	24	©	No	A	No	A	
23	40	©	219	×	30	Ø	No	A	No		
24	28	©	259	©	31	Ø	No	Ø	No	A	盛
25	72	©	268	©	21	©	No	A	No	Z	A
26	39	©	277	©	28	©	No	A	No	A	A
27	27	A	343	©	30	A	No	Ø	No		A
28	38	©	301	©	33	Z	No	Z	No	A	A
29	35	©	329	©	38	E	No	Ø	No	A	A
30	32	©	365	©	40	K	No	A	No	Ø	A
31	39	©	275	©	28	©	No	A	No	A	A
32	37	©	300	©	25	©	No	K	No	A	盛
33	35	©	343	©	21	©	No	K	No	A	
34	37	©	306	©	31	Z.	No	ZÍ.	No	A	~
35	33	©	335	©	36	K	No	A	No	Z Z	A
36	29	©	370	©	37	Ø	No	Ø	No	A	K

Class: Alloys of this invention

[0038] [Table 12]

No.	Extr.	Prop.	Tens. S	tr. Prop.	Resit. V	Vel. Crk.	Resit. N	Acr-crk.	Corr.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval
37	73 -	©	170	Z.	37	Z	No	K	No		
38	38	©	220	Z.	28	©	No	K	No		
39	25	K	345	©	25	©	No	A	No		
40	70	©	198		38	ø.	No	K	No		
41	36	©	295	©	30	Z.	No	K	No		
42	20		358	©	29	©	No	Z.	No		~
43	73	©	199	A	37	A	No	K	No		
44	37	©	312	©	30		No	X	No		
45	24		390	©	28	©	No	K	No		
46	73	©	197	Z.	25	©	No	Z.	No		K
47	37	©	290	©	23	©	No	A	No		
48	25	K	345	©	21	©	No	A	No		K
49	72	©	185	兹	32	X	No		No		**
50	38	©	283	©	34	5 X	No		No		
51	22	K	333	©	38	X	No		No		
52	72	©	188		27	©	No	A	No	A	
53	38	©	290	©	25	©	No		No	K.	K
54	22	Z.	341	©	23	0	No	Z.	No	T T	N.
55	72	0	205	N.	25	0	No	Z.	No	~	K
56	38	©	301	©	20	©	No		No	A	
57	22		355	0	17	0	No	A	No	X	
58	70	0	205		42	<u>K</u>	No	Ø	No	Z.	×
59	35	©	329	©	35		No		No		K
60	21	×	338	©	31	X	No	M	No		Z.
61	20	×	342	©	28	©	No	×	No		
62	67	©	206	X	36	X	No	X	No		
63	33	©	331	©	27	©	No	×	No		
64	19		341	©	23	©	No	×	No	×	
65	18	Z	345	©	25	©	No	A	No		
66	70	©	206	×	40	Ø	No	K	No	×	×
67	34	©	346	©	35		No	函	No	×	×
68	21	A	460	©	32		No	X	No	Z.	
69	20	A	465	©	28	©	No	K	No		
70	70	©	205	M	20	©	No	X	No	A	
71	34	©	330	©	15	©	No	A	No		
72	22		336	©	11	©	No	A	No	M	
73	21		340	©	15	©	No	A	No	A	

[0039]

[Table 13]

No.	Extr.	Prop.	Tens. S	tr. Prop.	Resit. W	el. Crk.	Resit. N	Acr-crk.	Corr.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval
74	69	©	207	Z.	35	₹	No	K	No		A
75	33	©	331	©	41	Zá	No	K	No	K	
76	21	A	337	©	46	Z	No	K	No	Z.	A
77	20	A	342	©	44		No	K	No	A	Z.
78	70	©	206	K	25	©	No	K	No	~	A
79	36	©	332	©	21	©	No	₹	No	~	K
80	20	A	342	©	10	©	No	₹	No	~	~
81	18	<u>a</u>	346	©	15	©	No	X	No	A	
82	69	©	210		22	©	No	K	No	K	A
83	35	©	335	©	18	©	No	×	No	K	
84	20	A	345	©	17	©	No	M	No	Z Z	
85	18	M	350	0	12	©	No	A	No	A	
86	75	©	170	~	35	₹	No	A	No	TX.	
87	40	©	218	~	25	©	No	A	No	~	 ✓
88	26	K	343	©	22	©	No	A	No	~	
89	75	©	171	**	32	75	No		No	**	
90	40	©	218	*	23	©	No	A	No	A	
91	26	K	344	©	20	©	No	×	No	Z Z	
92	75	©	172	*	31	A	No	×	No	K	
93	39	©	219	**	24	©	No	×	No		
94	25	N.	345	©	21	©	No	K	No	A	K
95	72	0	204	*	. 35	A	No	A	No		
96	35	©	330	©	34	×	No		No	- A	
97	21	TX.	340	©	33	N.	No	K	No		
98	73	©	210	X	25	©	No		No		
99	34	©	302	©	20	©	No		No	Z.	
100	23	X	341	©	10	©	No		No		
101	71	©	212	A	30	A	No	M	No	Z.	
102	33	©	332	©	28	©	No	K	No		
103	19	×	345	0	27	©	No		No	A	
104	73	0	171	₹.	32	Z.	No	A	No	A	
105	37	©	222	*	22	©	No		No		Z.
106	25	×	346	©	21	©	No	Z Z	No	X	K

[0040]

[Table 14]

No.	Extr.	Prop.	Tens. S	tr. Prop.	Resit. V	Vel. Crk.	Resit. N	Icr-crk.	Corr.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval
107	71	©	199		35		No	TX.	No	~.	K
108	35	©	297	©	25	©	No	₹	No	**	
109	20	A	360	©	24	©	No	K	No	K	A
110	73	©	200	Zá	32	ZÁ.	No	A	No	A	A
111	36	©	313	©	26	©	No	K	No		A
112	23	磁	391	©	22	©	No		No		A.
113	72	©	198		21	©	No	N.	No		₹
114	37	©	291	©	18	©	No	N.	No	~	~
115	25		246	A	15	©	No	×	No	*	K.
116	71	©	186		28	©	No	A	No		
117	38	©	284	©	30		No	K	No		T
118	21	A	335	©	35	X	No	A	No		X
119	71	©	199	M	25	©	No	X	No	X.	M.
120	37	©	291	©	24	©	No		No	K	R.
121	21	E	343	©	22	©	No	A	No		
122	71	©	207		20	©	No	Z.	No	Z.	A
123	37	©	302	©	15	©	No	M	No	K	N.
124	21	A	357	©	13	©	No		No		₹.
125	70	©	206	X.	40	X	No	A	No		N.
126	35	©	330	©	33	X	No	×	No	K	A
127	20	K	340	©	28	©	No	A	No	M	K
128	66	©	207	K	35	M.	No	M	No	A	K
129	32	©	333	©	22	©	No		No		K
130	19	A	342	©	20	©	No	A	No	A	A
131	69	©	207	X	38	Z.	No	K	No	A	×
132	34	©	346	©	34	X	No		No		SK.
133	20		461	0	30	Z.	No	ZÍ .	No	X	Z.
134	70	0	207	X	19	©	No	ø.	No	Z.	Ø
135	33	©	331	©	10	©	No		No		A
136	20	A	337	©	7	©	No		No	A	K
137	68	©	208	K	33	×	No	Z.	No	Z.	
139	32	©	332	©	39	K	No	A	No	Z.	
139	20	A	338	©	40	A	No	X	No	A	M

[0041] [Table 15]

No.	Extr.	Prop.	Tens. S	tr. Prop.	Resit. W	Vel. Crk.	Resit. N	Icr-crk.	Corr.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval

(1 _				T	1		T
140	69	©	207		23	©	No		No		
141	35	©	333	©	18	©	No		No	*	
142	20		344	©	5	©	No		No		
143	68	(C)	212	T A	20	©	No		No		
144	35	©	336	©	16	©	No		No		Z.
145	18		347	©	12	©	No	X	No	K	A
146	75	0	145	X	64	X	Yes	X	No	S.	X
147	16	X	313	©	43		Yes	X	Yes	X	X
148	50	©	147	X	60	X	No	K	No		X
149	17	X	399	©	40		Yes	X	Yes	X	X
150	43	©	143	X	55	X	Yes	X	No		X
151	17	X	440	©	35		No		Yes	X	X
152	15	X	435	©	65	X	Yes	X	Yes	X	X
153	16	X	430	©	55	X	No		No		X
154	17	X	225	X	25	©	Yes	X	Yes	X	X
155	13	X	300	©	28	©	Yes	X	Yes	X	X
156	15	X	321	©	22	©	Yes	X	Yes	X	X
157	16	X	295	©	20	©	No	×	Yes	X	X
158	14	X	290	©	51	X	Yes	X	Yes	X	X
159	14	X	293	©	22	©	Yes	X	Yes	X	X
160	16	X	310	©	14	©	No	×	Yes	X	X
161	13	X	330	0	27	0	Yes	X	Yes	X	X
162	10	X	333	©	31	X	Yes	X	Yes	X	X
163	11	X	356	©	25	©	Yes	X	Yes	X	X
164	12	X	332	©	25	©	No	×	Yes	X	X
165	10	X	335	©	53	X	Yes	X	Yes	X	X
166	10	X	336	©	23	©	Yes	X	Yes	X	X
167	11	X	338	©	20	©	No	×	Yes	X	X
168	70	0	172	E	34	×	Yes	X	Yes	X	X
169	39	©	219	A	22	©	Yes	X	Yes	X	X
170	26	A	344	©	19	©	Yes	X	Yes	X	X
171	65	©	205	K	33	X	Yes	X	Yes	X	X
172	33	©	332	©	20	©	Yes	X	Yes	X	X
173	20	A	341	©	18	©	Yes	X	Yes	X	X

Class: Alloys of this invention (Nos.140~160), Comparison alloys (Nos.168~173)

[0042] [Table 16]

No.	Extr.	Prop.	Tens. S	tr. Prop.	Resit. V	Vel. Crk.	Resit. N	Acr-crk.	Согт.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval
174	36	©	223		21	©	Yes	X	Yes	X	X
175	33	©	298	©	24	©	Yes	X	Yes	X	X
176	32	©	314	©	24	©	Yes	X	Yes	X	X

177	36	©	292	©	17	©	No	Z.	Yes	X	X
178	35	©	285	©	30		Yes	X	Yes	X	X
179	32	©	292	©	23	©	Yes	X	Yes	X	X
180	30	©	303	©	14	©	No	₹.	Yes	X	X
181	31	©	331	0	20	©	Yes	X	Yes	X	X
182	28	M	335	©	23	©	Yes	X	Yes	X	X
183	27		340	©	22	©	Yes	X	Yes	X	X
184	30	©	332	©	17	©	No		Yes	X	X
185	29	©	335	©	29	©	Yes	X	Yes	X	X
186	29	©	332	©	23	©	Yes	X	Yes	X	X
187	25	A	334	©	13	©	No	R.	Yes	X	X

Class: Comparison alloys

[0043]

[Table 17]

No.	Extr.	Prop.	Tens. S	tr. Prop.	Resit. V	Vel. Crk.	Resit. N	Acr-crk.	Corr.	Resit.	Comb.
	Ext. S	Eval.	TS	Eval.	CL	Eval.	POC	Eval.	CP	Eval.	Eval
188	28	©	230		65	X	Yes	X	No		X
189	18		308	©	50	X	Yes	X	No		X
190	21	A	276	©	56	X	Yes	X	No		X

Class: Conventional alloys

No. 188: A6063 No. 189: A6061

No. 190: A6N01

[0044] It is clear from the data given in Tables $11 \sim 15$ that each of the new alloys Nos.1~145 has excellent extrusion workability, strength, weldability and corrosion resistance. On the other hand, it is clear from the data given in Tables $15 \sim 17$ that the comparison alloys Nos.146 ~ 187 and the conventional alloys Nos.188 ~ 190 are inferior with respect to any of the abovementioned characteristics.

[0045]

[Result of the Invention] The Al alloys of the invention usable in welding structures have excellent weldability and same or better workability, strength, corrosion resistance in comparison to the conventional Al-Mg-Si system alloys and have significant industrial applications.

[Simple Explanation of the Figure]

[Fig. 1] Plane diagram showing shape of the test piece having fish-bone type cracks (after welding)

- 1. The test piece having fish-bone type cracks
- 1a. Welding beads
- 1b. Welding crack
- 1c. Crack length
- 1d. Welding direction

2. Depth of cut

Fig. 1

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-279280

DA

(43)公開日 平成9年(1997)10月28日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C 2 2 C 21/06

C 2 2 C 21/06

審査請求 未請求 請求項の数8 OL (全 16 頁)

(21)出願番号

特願平8-90706

(71)出願人 000005290

古河電気工業株式会社

(22)出願日

平成8年(1996)4月12日

東京都千代田区丸の内2丁目6番1号

(72)発明者 沖田 富晴

東京都千代田区丸の内2丁目6番1号 古

河電気工業株式会社内

(54) 【発明の名称】 溶接性に優れたA1-Mg-S1系合金

(57)【要約】

【課題】 従来のAl-Mg-Si系合金よりも溶接性に優れているのみでなく、150N/mm²以上の引張強さを有し、しかも耐食性、並びに、押出、圧延、鍛造等の加工性にも優れるAl-Mg-Si系合金材料を開発する。

【解決手段】 MgO. 2~2. 0重量%、SiO. 15~1.5重量%、ScO. 03~3. 0重量%を含有し、必要に応じて、下記〔1群〕、〔2群〕、〔3群〕のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなる溶接性に優れたAl-Mg-Si系合金。

〔1群〕: Cu1.0重量%以下、Ag1.0重量%以下のうち少なくとも1種

〔2群〕: Fe O. 5重量%以下、Mn 1. 5重量%以下、Cr O. 6重量%以下、VO. 5重量%以下、 N i 1. 0重量%以下、Mo O. 5重量%以下、希土類元素2. 0重量%以下のうち少なくとも1種

〔3群〕: Ti 0.2重量%以下、B 0.08重量%以下、Zr 0.3重量%以下のうち少なくとも1種

【特許請求の範囲】

【請求項1】 Mg0. 2~2. 0重量%、Si0. 15~1.5重量%、Sc0. 03~3. 0重量%を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金。 【請求項2】 Mg0. 2~2. 0重量%、Si0. 15~1.5重量%、Sc0. 03~3. 0重量%を含有し、かつ、Cu1. 0重量%以下、Ag1. 0重量%以下のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金。

【請求項3】 Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Fe0.5重量%以下、Mn1.5重量%以下、Cr0.6重量%以下、V0.5重量%以下、Ni1.0重量%以下、Mo0.5重量%以下、希土類元素2.0重量%以下のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたA1-Mg-Si系合金。

【請求項4】 MgO. 2~2. 0重量%、SiO. 15~1.5重量%、ScO. 03~3. 0重量%を含有し、Cul. 0重量%以下、Agl. 0重量%以下のうち少なくとも1種を含有し、かつ、FeO. 5重量%以下、Mnl. 5重量%以下、CrO. 6重量%以下、VO. 5重量%以下、Nil. 0重量%以下、MoO. 5重量%以下、希土類元素2. 0重量%以下のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金。

【請求項5】 Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Ti0.2重量%以下、B0.08重量%以下、Zr0.3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金。【請求項6】 Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Cu1.0重量%以下、Ag1.0重量%以下のうち少なくとも1種を含有し、かつ、Ti0.2重量%以下、B0.08重量%以下、Zr0.3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金。

【請求項7】 MgO. 2~2. 0重量%、SiO. 15~1.5重量%、ScO. 03~3. 0重量%を含有し、FeO. 5重量%以下、Mn1. 5重量%以下、CrO. 6重量%以下、VO. 5重量%以下、 Ni1. 0重量%以下、MoO. 5重量%以下、希土類元素2. 0重量%以下のうち少なくとも1種を含有し、かつ、TiO. 2重量%以下、BO. 08重量%以下、ZrO.

3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたA1-Mg-Si系合金。

【請求項8】 MgO. 2~2. 0重量%、SiO. 15~1.5重量%、ScO. 03~3. 0重量%を含有し、Cul. 0重量%以下、Agl. 0重量%以下のうち少なくとも1種を含有し、かつ、FeO. 5重量%以下、Mnl. 5重量%以下、CrO. 6重量%以下、VO. 5重量%以下、Nil. 0重量%以下、MoO. 5重量%以下、希土類元素2. 0重量%以下のうち少なくとも1種を含有し、かつ、TiO. 2重量%以下、BO. 08重量%以下、ZrO. 3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-MgーSi系合金。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、圧延材、押出材、鍛造材として溶接構造材に用いられる150N/mm²以上の引張強さを有する中強度A1-Mg-Si系アルミニウム合金に関するものである。

[0002]

【従来の技術】近年、建築、車両、船舶、航空機等においては、益々薄肉軽量化が進み、成形しやすく、耐食性、応力腐食割れの心配がなく、しかも溶接性の優れた中強度アルミニウム合金の要求が高まって来ている。従来、これらの用途に対するアルミニウム合金としては、JISのA6061、A6063、A6N01等のA1ーMg-Si系合金が考えられてきた。

[0003]

【発明が解決しようとする課題】しかし、A6061、A6063、A6N01等のA1-Mg-Si系合金は、溶接するとビード部や境界部に溶接割れが発生しやすく、また、溶接熱影響部にミクロ割れが起こりやすい等の問題があった。そのため、溶接材料、溶接方法の改善、およびそれらの組み合わせによって、上記問題を解決する方法が採られてきた。例えば、材料の結晶粒を微細にしたり、繊維状組織にすると溶接割れやミクロ割れが改善できることから、材料の製造工程の改善(加工と熱処理の組み合わせ)によって解決しようとしたり、溶接施工方法や溶接条件で解決しようとする試みがなされてきている。しかしながら、このような方法は、特別な製造工程をとる為、材料製造コストが上昇し、又、溶接施工や溶接管理が煩雑になる等の問題があった。

【課題を解決するための手段】

【0004】本発明は、上記の点に鑑み種々検討の結果、従来のAl-Mg-Si系合金材料における、溶接割れやミクロ割れの問題を解決するのみでなく、150N/mm²以上の引張強さを有し、しかも耐食性、並びに、押出、圧延、鍛造等の加工性に優れるAl-Mg-

Si系合金材料を開発したものである。

e i i

【0005】即ち、本願請求項1の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたA1-Mg-Si系合金である。

【0006】また、本願請求項2の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Cu1.0重量%以下、Ag1.0重量%以下のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金である。

【0007】また、本願請求項3の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Fe0.5重量%以下、Mn1.5重量%以下、Cr0.6重量%以下、V0.5重量%以下、Ni1.0重量%以下、Mo0.5重量%以下、希土類元素2.0重量%以下のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金である。

【0008】また、本願請求項4の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、Cu1.0重量%以下、Ag1.0重量%以下のうち少なくとも1種を含有し、かつ、Fe0.5重量%以下、Mn1.5重量%以下、Cr0.6重量%以下、V0.5重量%以下、Ni1.0重量%以下、Mo0.5重量%以下、希土類元素2.0重量%以下のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたAl-Mg-Si系合金である。【0009】また、本願請求項5の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Ti0.2重量%以下、B0.08重量%以下、Zr0.3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよ

【0010】また、本願請求項6の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、かつ、Cu1.0重量%以下、Ag1.0重量%以下のうち少なくとも1種を含有し、かつ、Ti0.2重量%以下、B0.08重量%以下、Zr0.3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたA1-Mg-Si系合金である。

び不可避不純物からなることを特徴とする溶接性に優れ

たAI-Mg-Si系合金である。

【0011】また、本願請求項7の発明は、MgO. 2 ~2. 0重量%、SiO. 15~1. 5重量%、 Sc 0.03~3.0重量%を含有し、Fe0.5重量%以下、Mn1.5重量%以下、Cr0.6重量%以下、V0.5重量%以下、Ni1.0重量%以下、Mo0.5重量%以下、希土類元素2.0重量%以下のうち少なくとも1種を含有し、かつ、Ti0.2重量%以下、B0.08重量%以下、Zr0.3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたA1-MgーSi系合金である。

【0012】また、本願請求項8の発明は、Mg0.2~2.0重量%、Si0.15~1.5重量%、Sc0.03~3.0重量%を含有し、Cu1.0重量%以下、Ag1.0重量%以下のうち少なくとも1種を含有し、かつ、Fe0.5重量%以下、Mn1.5重量%以下、Cr0.6重量%以下、V0.5重量%以下、Ni1.0重量%以下、Mo0.5重量%以下、希土類元素2.0重量%以下のうち少なくとも1種を含有し、かつ、Ti0.2重量%以下、B0.08重量%以下、Zr0.3重量%以下のうち少なくとも1種を含み、残部アルミニウムおよび不可避不純物からなることを特徴とする溶接性に優れたA1-Mg-Si系合金である。【0013】

【作用】以下、本願発明の溶接性に優れたA1-Mg-Si系アルミニウム合金について、添加元素の役割とそ

Si系アルミニウム合金について、添加元素の役割とその含有量の限定理由を説明する。

【0014】MgはSiの存在でMg2Siを形成し、時効硬化性を保有する。故にMgは本合金の強度向上に寄与し、150N/mm²以上の引張強さを得るためには不可欠な元素である。Mgが0.2重量%未満では十分な強度が得られず、2.0重量%を越えると溶接性、加工性、耐食性が劣化する。従って、Mgは0.2~2.0重量%とするが、最も好ましい範囲は0.4~1.6重量%である。Siは、MgとMg2Siを形成し、時効硬化性を保有する。故にSiは本合金の強度向上に寄与し、150N/mm²以上の引張強さを得るためには不可欠な元素である。Siが0.15重量%未満では十分な強度が得られず、1.5重量%を越えると溶接性、耐食性が劣化する。従って、Siは0.15~1.5重量%とするが、最も好ましい範囲は0.2~1.3重量%である。Scは、本合金の耐溶接割れ性を

1.3重量%である。Scは、本合金の耐溶接割れ性を改善するためには不可欠な元素である。また、Scは強度向上にも寄与する。Scが0.03重量%未満ではその効果が少なく、3.0重量%を越えて含有させると強度、加工性を劣化させる危険がある。従って、Scは0.03~3.0とするが、最も好ましい範囲は、0.1~2.5重量%である。

【0015】Cuは強度を向上させる効果があるが1. 0重量%を越えると耐食性、溶接性が劣化する。従って、Cuは1.0重量%以下とする。Cuは0.1重量%未満ではその効果が少ない。Cuの最も好ましい範囲 は、0.10~0.7重量%である。

あるが1.0重量%を越えると加工性、溶接性が劣化す る。従って、Agは1.0重量%以下とする。Agは O. 03重量%未満ではその効果が少ない。Agの最も 好ましい範囲は、0.05~0.7重量%である。 【0017】Fe、Mn、Cr、V、Ni、Mo及び希 土類元素は、それぞれ溶接性や強度の改善をはかる効果 があり、1種または2種以上添加する。しかし、Fe: O. 5重量%、Mn:1. 5重量%、Cr:O. 6重量 °n、V:0.5重量%、Ni:1.0重量%、Mo: ①. 5重量%、希土類元素: 2. 0重量%を越えて含有 されると巨大晶出物が発生し、成形性、靱性、加工性、 溶接性、耐食性等を劣化させる危険がある。従って、F e: O. 5重量%以下、Mn: 1. 5重量%以下、C r:0.6重量%以下、V:0.5重量%以下、Ni: 1. 0重量%以下、Mo:0.5重量%以下、希土類元 素: 2. 0重量%以下とする。但し、含有量が Fe: 0.01重量%未満、Mn:0.01重量%未満、C r:0.01重量%未満、V:0.01重量%未満、N i:0.03重量%未満、Mo:0.01重量%未満、 希土類元素: 0.03重量%未満では上記効果が無い。 従って、Feは0.01~0.5重量%、Mnは0.0 1~1.5重量%、Crは0.01~0.6重量%、V は0.01~0.5重量%、Niは0.03~1.0重 量%、Moは0.01~0.5重量%、希土類元素0. 03~2.0重量%が望ましいが、最も好ましい範囲 は、Fe: 0.1~0.48重量%、Mn: 0.1~ 1.0重量%、Cr:0.05~0.4重量%、V: 0.05~0.3重量%、Ni:0.1~0.8重量 %、Mo:0.03~0.3重量%、希土類元素:0.

【0016】Agは溶接性及び強度を向上させる効果が

【0018】尚、希土類元素としては、La、Ce、Pr、Nd、Sm等のうち1種または2種以上を用いることができ、これらのうちのいずれか1種の量、あるいは2種以上の合計量が0.03~2.0重量%の範囲内であればよい。これらのうち2種類以上を含む合金としては、例えばCe、Laを主成分とするミッシュメタル(通常Ce45~50重量%、La20~40重量%、残部その他の希土類元素(Pr、Nd、Sm等)からなる)を用いることができる。上記希土類元素のうちのいずれか1種、あるいはミッシュメタルは、いずれも同等の効果を示すが、希土類元素単体では高価であり、ミッシュメタルとして添加する方が経済的に有利である。

【0019】Ti、及びBは、組織を微細化し、溶接性を向上させる元素である。しかし、Tiは、0.2重量%を越えると巨大化合物が発生し、靱性、加工性、耐食性が劣化する危険性がある。また、Tiは0.005重量%未満ではその効果が少ない。従って、Tiは、0.05~0.2重量%が望ましいが、最も好ましい範囲

は、0.008~0.1重量%である。Bは、0.08 重量%を越えて含有されると、靱性、加工性を劣化させ る危険がある。また、Bは0.0001重量%未満では 結晶粒微細化の効果が少ない。従って、Bは、0.00 01~0.08重量%が望ましいが、最も好ましい範囲 は0.0005~0.01重量%である。

【0020】Zrは、Ti, Bと同様に溶接性を向上させる元素である。更に、ZrはScと一緒に添加することによって強度を向上させる効果も有する。しかし、Zrが0.3重量%を越えると強度、加工性、耐食性が劣化する。従って、Zrは0.3重量%以下とする。また、Zrは、0.03重量%未満ではその効果が少ないので、0.03~0.3重量%添加するのが望ましいが、最も好ましい範囲は、0.05~0.25重量%である。

【0021】本発明合金の、押出材、圧延材、鍛造材は、従来のA1-Mg-Si系合金材の製造工程、製造条件で製造できる。また、本発明合金の用途としては、建築(柱、梁、サッシ等)、土木(仮設材、矢板、はらおこし、高欄、橋梁等)、車両(鉄道車輌用板・押出形材、自動車用板・形材等)、容器・配管(一般容器配管、真空機器容器配管等)、船舶(上部構造、パイセクション等)、航空機(構造部品、その他)等が考えられる。尚、本発明合金の溶接方法としては、従来からアルミニウム合金の溶接に用いられている、ティグ溶接、ミグ溶接、レーザー溶接、電子ビーム溶接、抵抗スポット溶接、シーム溶接、スタッド溶接、高周波溶接、超音波溶接等の融接、及び圧接方法が適している。

[0022]

【実施例】次に本発明の一実施例について説明する。表1~表10に示す組成の合金(本発明合金No.1~145、比較合金No.146~187、および従来合金No.188~190)を半連続水冷鋳造装置を用いて、押出用鋳塊(9インチ径)に鋳造した。この鋳塊を520~540℃で8~12時間均質化処理した後、400~470℃に加熱し、それぞれ厚さ5mm、幅100mmの平角材に押出した。押出加工するに際して、前記平角材が表面欠陥や割れ発生が無く押出し得る最高押出速度(限界押出速度)をもって、各合金の押出性の良否を◎、○、×の3段階で評価し、その結果を表11~表17に示した。評価基準は下記の通りである。

- ◎・・押出速度がA6063の限界押出速度(28m/min)を越える。
- 〇・・押出速度がA6061の限界押出速度(18m/min)以上で、A6063の限界押出速度以下。
- ×・・押出速度がA6061の限界押出速度未満。

【0023】各々の材料は押出後、525℃で1時間の溶体化処理後焼入し、200℃で8時間の焼戻し処理を行った。このようにして製造した材料について、引張試験、溶接割れ試験、及びミクロ割れ試験、腐食試験を行

05~1.5重量%である。

い、その結果を表11~表17に併記した。なお、試験 方法は下記に示す通りである。

(1) 引張試験

(a)試験片 : JIS Z 2201の5号試験片

(b)試験方法 : アムスラー万能試験機を用いて、JIS Z 2241

に基づき試験する。

(c) 測定値:引張強さを測定し、次の基準で判定する。

◎・・引張強さ250N/mm²以上

〇・・引張強さ150N/mm² 以上で250N/mm² 未満

×・・引張強さ150N/mm² 未満

[0024]

(2)溶接割れ試験

(a)試験片:図1に示す、フィッシュボーン形試験片

(b)溶接条件 :溶接方法···TIG

溶加材・・・・使用せず

電極棒・・・・セリウム入りW、3.2mmø

溶接電流・・・200A アーク電圧・・20V

溶接速度···30cm/min

アルゴンガス流量····10リットル/min

(c)割れ評価 :割れ長さを測定し、次の基準で判定する。

◎・・・ 割れ長さ30mm未満

〇・・・ 割れ長さ30mm以上、50m未満

×・・・ 割れ長さ50mm以上

[0025]

(3)ミクロ溶接割れ試験

(a) 試験片 : 板厚5mm×幅100mm×長さ100mm

(b)溶接条件:溶接方法···TIG

溶加材・・・・A5356BY、3.2mmφ 電極棒・・・・セリウム入りW、3.2mmφ

溶接電流・・・220Aアーク電圧・・20V

溶接速度···30cm/min

アルゴンガス流量···10リットル/min

(c)割れ評価:溶接部の3カ所の断面を研磨し、金属顕微鏡で観察し

溶接熱影響部におけるミクロ割れ発生の有無を調べる

〇・・・ ミクロ割れの発生無し×・・・ ミクロ割れ1個以上発生

[0026]

(4)腐食試験

(a)試験片 : 板厚5mm×幅60mm×長さ80mm

(b)試験方法 :塩水噴霧試験:JIS Z 2371に準拠

試験液 : 5%NaCl

噴霧量 : 1~2ml/80cm²/時間

噴霧温度 :35℃

試験時間 :1000時間

(c)評価方法 : 〇・・・ 腐食発生せず

×・・・ 腐食発生

【0027】 【表1】

Menocin, in Annanci

		化	学员	立 分	(1	重量%)	
分類	No.	Mg	Si	Sc	Cu	Ag	A 1
本発明合	123456789	0.2 1.0 2.0 0.2 1.0 2.0 0.2 1.0 2.0	0. 15 0. 15 0. 15 0. 7 0. 7 1. 5 1. 5	0. 03 0. 03 0. 03 0. 03 0. 03 0. 03 0. 03 0. 03			残残残残残残残残残
金	1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.15 0.15 0.15 0.7 0.7 0.7 1.5 1.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0			残残残残残残残残残
	1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 7	0.2 L0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	0. 15 0. 15 0. 15 0. 7 0. 7 0. 7 1. 5 1. 5	000000000 33333333333			残残残残残残残残
	2 2 9 0 1 2 3 3 4 5 6 3 3 6	1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0	1.0 1.0 1.0 1.0 1.0 1.0 1.0	1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0	0.1 0.5 1.0 0.1 0.5 1.0	0.05 0.5 1.0 0.05 0.5 1.0	残残残残残残残残

【0028】 【表2】

יאוכטיטיטואי - יום

ANNOTOTOTO A I .

No.			化	学点	衣 分	(1	重量%))	M. M	: ミッ:	シュメ	タル
140.	Mg	Si	Sc	Cu	Ag	Fe	Mn	Сr	V	Ni	Мо	MM
37 38 39 40 41 42 43 44 5	0.2 1.0 2.0 0.2 1.0 2.0 2.0 2.0	0. 15 1. 0 1. 5 0. 15 1. 0 1. 5 1. 0 1. 5	0.03 1.0 3.0 0.03 1.0 3.0 0.03 1.0 3.0			0.01 0.25 0.5	0. 01 0. 5 1. 5	0. 01 0. 3 0. 6				
46748901233554	0.2 1.0 2.0 0.2 1.0 2.0 2.0 2.0	0. 15 1. 0 1. 5 0. 15 1. 0 1. 5 0. 15 1. 0 1. 5	0.03 1.0 3.0 0.03 1.0 3.0 0.03 1.0 3.0	•					0. 01 0. 2 0. 5	0.05 0.5 1.0	0. 01 0. 2 0. 5	
5 5 5 6 5 7	0.2 L0 2.0	0. 15 1. 0 1. 5	0.03 1.0 3.0									0.05 1.0 2.0
55666666666666666666666666666666666666	0.2 1.0 2.0 2.0 2.0 2.0 2.0 2.0	0. 15 1. 0 1. 5 1. 5 0. 15 1. 5 1. 5	0.03 1.0 3.0 3.0 0.0 1.3 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	0.1 0.5 1.0 0.5	0.5 0.05 0.5 0.0 0.5	0.01 0.25 0.5 0.25	0.01 0.5 1.5 0.5					
6 6 6 7 6 8 6 9 7 0 7 1 7 2 7 3	0.2 1.0 2.0 2.0 0.2 1.0 2.0 2.0	0. 15 1. 0 1. 5 1. 5 0. 15 1. 0 1. 5 1. 5	0.03 1.0 3.0 3.0 0.03 1.0 3.0 3.0	0. 1 0. 5 1. 0 0. 5	0.5 0.05 0.5 1.0 0.5			0.01 0.3 0.6 0.3	0. 01 0. 2 0. 5 0. 2			

分類:本発明合金

Al:残

[0029]

分類	No.				化	学员	支 分	(1	重量%))		WW	:ミッ	シュメ	タル		
אפרניכ	110.	Mg	Si	Sc	Cu	Ag	Fe	Mn	C r	V	Ni	Мо	мм	Ti	В	Zr	Al
比較合	168 169 170 171 172 173	0.2 1.0 2.0 0.2 1.0 2.0	0. 15 1. 0 1. 5 0. 15 1. 0 1. 5	0.03 1.0 3.0 0.03 1.0 3.0	0.5 0.5 0.5	0.5 0.5 0.5				·				0.3	0. 1	0.35	残残残残残残
金	174 175 176 177 178 179 180	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0			0.2	0.5	0.2	0. 1	0.5	0.1	1. 0	0.3 0.3 0.3	0. 1	0.35 0.35	残残残残残残残
	181 182 183 184 185 186 187	1. 0 1. 0 1. 0 1. 0 1. 0 1. 0	1. 0 1. 0 1. 0 1. 0 1. 0 1. 0	1.0 1.0 1.0 1.0 1.0 1.0	0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.2	0.5	0. 2	0.1	0. 5	0.1	1. 0	0.3 0.3 0.3	0. 1 0. 1	0. 35 0. 35	残残残残 残残

[0036]

【表10】

【0037】 【表11】

	No.		化学成分 (重量%)								
	140.	Mg	Si	Sc	Cu	Сг	AL				
従来	188	0.7	0.4				残				
従来合金	189	1.0	0.6		0. 25	0. 1	残				
377	190	0.6	0.7		0. 1		残				

No. 188:A6063 No. 189:A6061 No. 188;A6N01

No	押业性	1	引題制	生	耐溶接制	h性	耐えかい		耐蝕	生	総合
	押山速度 (m/min)	評価	引張強さ(NM)	評価	割れ長さ(血)	評価	割の有無	評価	廃食 の 有無	評価	総合諸垣
123456789	7437409298 743742732	000000000	1689656320 189656320 222223	000000000	815593370 344334334	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
10 11 12 13 14 15 16 17 18	7437429308 2742742	000000000	170997775551 1997775551 2222223	000000000	35999977~ND	000000000	無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
19 20 20 20 20 20 20 20 20 20 20 20 20 20	7419208297 42742732	000000000	17909999873 12222223	00000000	813401180 233223222	000000000	 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	000000000	単無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
82282828282828	852975739	000000000	33355503650 3332333333333333333333333333333333333	000000000	380851167 3342223333	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無	000000000	000000000

分類: 本部門合金

[0038]

No	押山性		引張特	生	耐容接割	九性	耐きか割れ性	-	耐食	生	総合
710	押 Li速度 (m/min)	評価	引展強さ (N/mm²)	評価	割れ長さ (mm)	評価	割れの有無	評価	腐食の有無	評価	総合評価
33334444444444444444444444444444444444	7385060374 732732732	000000000	005858920 7249959-9 123123133	00000000	785809708	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
46 47 48 49 55 55 55 55 55	732732732	000000000	7055533801 123123123	00000000	53-2487-53	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
55 56 57	72 38 22	000	205 301 355	000	25 20 17	000	無し無し	000	無ししし	000	000
සසපපපපසස	705107398 1818	0000000	233346 233345 23333333333333333333333333333333	00000000	25186735 2323222	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	00000000	00000000
666889777273	70 34 21 20 73 22 1	00000000	2346055060 44603334	00000000	40 33 32 22 11 15	0000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	00000000	00000000

分類: 本発明合金

[0039]

מו ליוואטאועויי

【表13】

No	押址性		引張特	生	耐容接割	姓	耐えかい割れ性	2	耐食	生	総合
140	押让速度 (m/min)	評価	引起強さ	評価	割れ長さ(皿)	路坦	割な	評価	験の有無	評価	総合評価
74 75 76 77 78 79 80 81	93-00608 6300730-	00000000	71726226 03340344 233323333	00000000	34445105 115	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	00000000	00000000
8888	9508 18	0000	210 335 345 350	0000	22 18 17 12	0000	無しししし	0000	無無無無	0000	0000
88888888	506506595 742742732	000000000	783184295 723723123 723123	00000000	5522300141	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
55658885188 55188	~3073073H	000000000	23341021225 2332233233233	000000000	543500087	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
104 105 106	73 37 25	000	171 222 346	000	32 22 21	000	無し無し	000	無し無し	000	000

分類:本発明合金

[0040]

【表14】

No	押业性		引張特	生	耐浴接款	性	耐シの割れ性		耐食	生	総
	押出速度(四/min)	評価	が過じている。	評価	割れ長さ(一)	評価	割の有無	評価	腐食の有無	評価	総合評価
107 108 109 110 111 112	730363 732732	000000	970031 996019 123233	000000	554262 322322	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	無無無無無無無無無無無無	000000	000000
113 114 115 116 117 118	72 37 25 73 21 21	000000	9816 9946 1845 22183 33	000000	2112805 211233	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	000000
119 120 121 122 123 124	7 1 3 7 2 1 7 1 3 7 2 1	000000	199 1993 207 307 357	000000	254220 222213	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	000000
25 25 25 25 25 25 25 25 25 25 25 25 25 2	732631632 6329940	00000000	206 33407 33427 3461 461	00000000	038520840 4323223333	00000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000000	000000000
134 135 136 137 138 139	7 0 3 3 2 0 6 8 3 2 2 0	000000	207 331 337 208 338	00000	19 10 7 33 39 40	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	000000

分類: 本発明合金

[0041]

【表15】

No	押出性	·	引張特	生	耐溶接刺	性	耐ミクロ		耐食	生	総合
	押出速度 (m/min)	評価	引起途(火加²)	評価	割れ長さ(m)	評価	割かの有無	評価	魔の有無	計画	総合評価
140 141 142 143 144 145	950 6326 31 1	000000	207 3344 2136 347	000000	23 18 50 12 12	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無無	000000	000000
146 147 148 149 150 151	7560737 15147	$\times 0 \times 0 \times 0$	145 313 147 399 143 440	0×0×0×	6430055 646453	OxOxOx	有有無有有無	$0 \times \times 0 \times \times$	無有無有無有無有	OXOXOX	××××××
152 153	15 16	×	435 430	00	65 55	×	有り無し	×O	有り無し	×O	××
154 155 156 157 158 159 160	173156 144 16	×××××××	2015030 23229930 2322223	0000000	5820124 2222521	00000×00	有有有無有有無	××××××	有有有有有有有有	× × × × × × ×	××××××
161 162 163 164 166 167	130 112 100 111	××××××	099621568 999599999	0000000	7155330 2322522	@0\@\ @0\@\ 	有有有無有有無	$0 \times \times 0 \times \times 0$	有有有有有有有	× × × × × × ×	× × × × × × ×
168 169 170 171 172 173	796530 2632	000000	172 219 344 205 332 341	000000	34 22 133 28	000000	有有有有有有	×××××	有有有有有有有	× × × × ×	× × × ×

分類: 本発明合金(No. 140~160)、 比較合金(No. 168~173)

[0042]

【表16】

No	押业性	押出性		引張特性		耐溶等的性		2	耐食	生	総合
140	押比速度 (m/min)	評価	引展強さ(火金)	評価	割れ長さ(m)	評価	割かり	評価	腐食の有無	評価	総合評価
174 175 176 177 178 179 180		0000000	3842523 29-9890 2232223	000000	224 247 227 321 4	0000000	有有有無有有無	O××O×××	有有有有有有有	×××××××	×××××××
181 182 183 184 185 186 187	3223222	000000	1502524 333333333	0000000	0327933 1221	0000000	有有有無有有無	×××0××0	有有有有有有有	× × × × × × ×	××××××

分類:比較合金

No	押业性		引張特	生	耐溶接刺	力性	耐えか	ב	耐食	生	総
	押出速度 (m/min)	計周	の変数である。	評価	割り長さ。評して、一個		割かり有無	評価	腐食の有無	評価	総合評価
188	28	0	230	0	65	×	有り	×	無し	0	×
189	18	0	308	0	50	×	有り	×	無し	0	×
190	21	0	276	0	56	×	有り	×	無し	0	×

分類: 從來合金

No. 188:A6063 No. 189:A6061 No. 190:A6N01

【0044】表11~15から明らかなように、本発明合金No.1~145はいずれも、押出加工性、強度、溶接性、耐食性の全てにおいて優れている。一方、表15~17から明らかなように、比較合金No.146~187、および従来合金No.188~190は、上記特性の内のいずれかにおいて劣っている。

[0045]

【発明の効果】以上のように、本発明の溶接構造用アルミニウム合金は、従来のAl-Mg-Si系合金よりも溶接性に優れており、しかも、加工性、強度、耐食性等も、従来のAl-Mg-Si系合金と同等、又はそれ以

上であって、工業上顕著な効果を奏する。

【図面の簡単な説明】

【図1】フィッシュボーン形割れ試験片の形状(溶接後)を示す平面説明図。

1・・・フィッシュボーン形割れ試験片

1 a・・・溶接ビード

1 b · · · 溶接割れ

1 c・・・割れ長さ

1 d・・・溶接方向

2・・・・切り込み

【図1】

