Nom	Formulation mathématique	Illustration	Notes
$\begin{array}{c} \text{KB} \\ \text{d\'eduit } f \end{array}$	$\mathcal{M}(\mathrm{KB})\cap\mathcal{M}(f)=\mathcal{M}(\mathrm{KB})$	$\mathcal{M}(f)$ $\mathcal{M}(KB)$	- f n'apporte aucune nouvelle information - Aussi écrit KB $\models f$
$\begin{array}{c} \text{KB} \\ \text{contredit } f \end{array}$	$\mathcal{M}(\mathrm{KB})\cap\mathcal{M}(f)=arnothing$	$\mathcal{M}(f)$ $\mathcal{M}(KB)$	- Aucun modèle ne satisfait les contraintes après l'ajout de f - Équivalent à KB $\models \neg f$
f est contingent à KB	$\mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) \neq \emptyset$ et $\mathcal{M}(\mathrm{KB}) \cap \mathcal{M}(f) \neq \mathcal{M}(\mathrm{KB})$	$\mathcal{M}(f)$ $\mathcal{M}(KB)$	- f ne contredit pas KB - f ajoute une quantité d'information non triviale à KB

□ Vérification de modèles – Un algorithme de vérification de modèles (model checking en anglais) prend comme argument une base de connaissance KB et nous renseigne si celle-ci est satisfaisable ou pas.

Remarque : DPLL et WalkSat sont des exemples populaires d'algorithmes de vérification de modèles.

 \square Règle d'inférence – Une règle d'inférence de prémisses $f_1,...,f_k$ et de conclusion g s'écrit :

$$\boxed{\frac{f_1,...,f_k}{g}}$$

- □ Algorithme de chaînage avant Partant d'un ensemble de règles d'inférence Rules, l'algorithme de chaînage avant (en anglais forward inference algorithm) parcourt tous les $f_1,...,f_k$ et ajoute g à la base de connaissance KB si une règle parvient à une telle conclusion. Cette démarche est répétée jusqu'à ce qu'aucun autre ajout ne puisse être fait à KB.
- \Box Dérivation On dit que KB dérive f (noté KB \vdash f) par le biais des règles Rules soit si f est déjà dans KB ou si elle se fait ajouter pendant l'application du chaînage avant utilisant les règles Rules.
- \square Propriétés des règles d'inférence Un ensemble de règles d'inférence Rules peut avoir les propriétés suivantes :

Name	Formulation mathématique	Notes	
Validité	$\{f: KB \vdash f\} \subseteq \{f: KB \models f\}$	- Les formules inférées sont déduites par KB - Peut être vérifiée une règle à la fois - "Rien que la vérité"	
Complétude	$\{f: KB \vdash f\} \supseteq \{f: KB \models f\}$	- Les formules déduites par KB sont soit déjà dans la base de connaissance, soit inférées de celle-ci - "La vérité dans sa totalité"	

Printemps 2019