

Introduction

Combinational logic Circuit

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Encode

Encoder:

- '2n' inputs to 'n' outputs.
- It has no select lines.
- Usually single input is assumed to be high. If more than one input is high, then Priority Encoder is used.
- Used in many applications such as memory system, code conversion, implementation of function.

Encoder Example

4:2 Encoder:

Dr. Yash Agrawal @ DA-HCT Gandhinagar

Dr. Yash Agrawal @ DA-HCT Gandhinagar

4:2 Encoder

First Step:

Truth Table Formation

4:2 Encoder

Second Step:

Determining Boolean Expression

Input of Encoder Output of Encoder

					l
I_3	\mathbf{I}_2	I_i	$\mathbf{I_0}$	Yı	Y ₀
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

$$\begin{array}{c} Y_0 = I_1 + I_3 \\ \\ Y_1 = I_2 + I_3 \end{array}$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

=

Dr. Yash Agrawal @ DA-IICT Gandhinagar

4:2 Encoder

Third Step:

Realization of Boolean Expression by Logic Gates

$$\mathbf{Y}_0 = \mathbf{I}_1 + \mathbf{I}_3$$

$$\mathbf{Y}_1 = \mathbf{I}_2 + \mathbf{I}_3$$

 $I_1 \longrightarrow Y_0 = I_1 + I_3$ $I_3 \longrightarrow Y_0 = I_1 + I_3$

$$Y_1 = I_2 + I_3$$

4:2 Encoder

What if more than one input is High...?

4:2 **Priority** Encoder

The ambiguity for cases when inputs are High for more than at one place can be solved by assigning priority (P).

First Step:

Truth Table Formation

Inj	out of	Encod	Output of Encoder				
I_3	I_2	I_1	I_0	P	Y ₁ Y ₀		
0	0	0	0	0	X	X	
0	0	0	1	1	0	0	
0	0	1	х	1	0	1	
0	1	х	X	1	1	0	
1	x	х	X	1	1	1	

Dr. Yash Agrawal @ DA-IICT Gandhinagar

0

4:2 **Priority** Encoder

Second Step:

Determining Boolean Expression (For this K-map can be used)

K-map and Boolean Expression determination for Y_0

I_1	I _{0 00}	01	11	10
I_3I_2	x m0	ml	1 m3	1
01	m4	m5	m7	m6
11	1 m12	1 m13	1 m15	1 m14
10	1 m8	1 m9	1 mll	1 ml

$$Y_0 = I_2'I_1 + I_3$$

In	out of	Encod	Output of Encoder				
I ₃	\mathbf{I}_2	I _i	I ₀	P	Yı	Y ₀	
0	0	0	0	0	x	x	
0	0	0	1	1	0	0	
0	0	0 1		1	0	1	
0	0 1		x	1	1	0	
1	x	x	x	1	1	1	

Dr. Yash Agrawal @ DA-IICT Gandhinagar

•

4:2 **Priority** Encoder

Second Step:

Determining Boolean Expression

(For this K-map can be used)

K-map and Boolean Expression determination for Y₁

$$\mathbf{Y}_1 = \mathbf{I}_2 + \mathbf{I}_3$$

4:2 **Priority** Encoder

Second Step:

Determining Boolean Expression

(For this K-map can be used)

K-map and Boolean Expression determination for P

$$\mathbf{P} = \mathbf{I}_0 + \mathbf{I}_1 + \mathbf{I}_2 + \mathbf{I}_3$$

Inj	out of	Encod	Output of Encoder							
I_3	\mathbf{I}_2	I ₁	\mathbf{I}_{0}	P	Yı	Y ₀				
0	0	0	0	0	x	x				
0	0	0	1	1	0	0				
0	0	1	x	1	0	1				
0	1	x	x	1	1	0				
1	x	x	x	1	1	1				

Third Step:

Realization of Boolean Expression by Logic Gates

$$Y_0 = I_2'I_1 + I_3$$

$$\mathbf{Y}_1 = \mathbf{I}_2 + \mathbf{I}_3 \qquad \qquad \Box \rangle$$

$$P = I_0 + I_1 + I_2 + I_3$$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-HCT Gandhinagar

Encoder Example

8:3 Encoder:

Input $(2^3=8)$

First Step:

Truth Table Formation

_		I	Output of Encoder								
I ₇	I_6	I_5	I_4	I_3	I_2	I_1	$\mathbf{I_0}$		Y ₁	$\mathbf{Y_0}$	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

Second Step:

Determining Boolean Expression

_		Ir	Output of End							
\mathbf{I}_7	I ₆	I,	\mathbf{I}_4	I_3	\mathbf{I}_2	Iı	\mathbf{I}_0	\mathbf{Y}_2	Yı	Y ₀
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	<u> </u>
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$Y_0 = I_1 + I_3 + I_5 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_2 = I_3 + I_5 + I_7 + I_8$$

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

8:3 Encode

Third Step: Realization

Realization of Boolean Expression by Logic Gates

$$Y_0 = I_1 + I_3 + I_5 + I_7$$

$$Y_1 = I_2 + I_3 + I_6 + I_7$$

$$Y_2 = I_4 + I_5 + I_6 + I_7$$

$$I_4$$
 I_5
 I_6
 I_7
 $Y_2 = I_4 + I_5 + I_6 + I_7$

Numerical

1. Implement Octal to Binary Encoder using 8:3 Encoder. It should able to convert from $(0)_8$ to $(7)_8$.

For example: $(4)_8 = (100)_2$

Dr. Yash Agrawal @ DA-IICT Gandhinagar

Dr. Yash Agrawal @ DA-IICT Gandhinagar

.

Numerica

Octal Number

Implementation of Octal to Binary Encoder using 8:3 Encoder.

\	Input L								Output			
Oct	I ₇	I_6	I_5	I ₄	I_3	$\mathbf{I_2}$	I ₁	I_0	Y ₂	\mathbf{Y}_1	$\mathbf{Y_0}$	
0	0	0	0	0	0	0	0	1	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	1	
2	0	0	0	0	0	1	0	0	0	1	0	
3	0	0	0	0	1	0	0	0	0	1	1	
4	0	0	0	1	0	0	0	0	1	0	0	
5	0	0	1	0	0	0	0	0	1	0	1	
6	0	1	0	0	0	0	0	0	1	1	0	
7	1	0	0	0	0	0	0	0	1	1	1	

Numerica

Implementation of Octal to Binary Encoder using 8:3 Encoder.

Assignment-5

1. Realize 8:3 Priority Encoder.

Dr. Yash Agrawal @ DA-IICT Gandhinagar

2

