

Regression

- In classification, class values or labels are categories {Play Golf, Don't Play Golf}
- In regression, the class attribute takes real values

Regression finds the relation between y and the vector $(x_1, x_2, ..., x_m)$

Linear Regression

In linear regression, we assume the relation between the class attribute y and feature set x to be linear: y = mx + b

$$y=\sum_{i=0}^n x_iw_i$$
 $x_0=1$

where \vec{w} represents the vector of regression coefficients

- Regression can be solved by estimating *the* weights from the training data
 - Least squares is often used to solve the problem

Solving Linear Regression Problems

- Regression can be solved by estimating *the* weights from the training data
 - "Least squares" is a popular method to solve regression problems

$$\epsilon^2 = ||\epsilon^2|| = ||Y - XW||^2$$

Least Squares

Find W such that it minimizes $\|Y - XW\|^2$ for regressors X and labels Y

$$\min ||Y - XW||^{2}$$

$$\frac{\partial}{\partial W} ||Y - XW||^{2} = 0$$

$$||X||^{2} = X^{T}X \Rightarrow \frac{\partial}{\partial W} (Y - XW)^{T} (Y - XW) = 0$$

$$\frac{\partial}{\partial W} (Y^{T} - W^{T}X^{T}) (Y - XW) = 0$$

$$\frac{\partial}{\partial W} (Y^{T}Y - Y^{T}XW - W^{T}X^{T}Y + W^{T}X^{T}XW) = 0$$

$$-2X^{T}Y + 2X^{T}XW = 0$$

$$2X^{T}Y = 2X^{T}XW$$

$$W = (X^{T}X)^{-1}X^{T}Y$$

Evaluating Supervised Learning

- To evaluate we use a training-testing framework
 - A training dataset (i.e., the labels are known) is used to train a model
 - the model is evaluated on a test dataset.
- Since the correct labels of the test dataset are unknown, in practice, the training set is divided into two parts:
 - one used for training and
 - the other used for testing.
- When testing, the labels from this test set are removed. After these labels are predicted using the model, the predicted labels are compared with the masked labels (ground truth).

Evaluating Supervised Learning

K-Fold Cross Validation

- Shuffle the data.
- Divide the training set into k equally sized sets.
- Run the algorithm *k* times.
- The average performance of the algorithm over *k* rounds measures the performance of the algorithm.

Evaluating Classification

- As the class labels are discrete, we can measure the accuracy by dividing number of correctly predicted labels
 (C) by the total number of predictions (N)
 - Accuracy = C/N
 - Error rate = 1 Accuracy

		Actual		
		Yes	No	
Pre	Yes	True Pos.	False Pos.	
dic				
ted	No	False Neg.	True Neg.	

$$P = \frac{TP}{TP + FP}$$

$$R = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2PR}{TP + FN}$$

Evaluating Regression Performance

- The labels cannot be predicted *exactly*.
- It is needed to set a margin to accept or reject the predictions
 - For example, when the observed temperature is 71 any prediction within 71±0.5 can be considered correct
- RMSE:

$$\sqrt{\frac{\sum_{t=1}^{n}(\hat{y}_t - y_t)^2}{n}}$$

Unsupervised Learning

Unsupervised Learning

Unsupervised division of instances into groups of similar objects

- Clustering is a form of unsupervised learning
 - The clustering algorithms do not have examples showing how the samples should be grouped together (unlabeled data)
- Clustering algorithms group together similar items

Measuring Distance/Similarity in Clustering Algorithms

- The goal of clustering:
 - to group together similar items
- Instances are put into different clusters based on the distance to other instances
- Any clustering algorithm requires a distance measure

The most popular (dis)similarity measure for continuous features are *Euclidean Distance*

Similarity Measures: More Definitions

Measure Name	Formula	Туре	Description
Mahalanobis	$d(X,Y) = \sqrt{(X-Y)^T Co^{-1}(X-Y)}$	Dissimilarity	X, Y are features vectors and Co is the Covariance matrix of the dataset
Manhattan	$d(X,Y) = \sum_{i} x_i - y_i $	Dissimilarity	X, Y are features vectors
L_p -norm	$d(X,Y) = \left(\sum_{i} x_{i} - y_{i} ^{n}\right)^{\frac{1}{n}}$	Dissimilarity	X, Y are features vectors
Cosine	$c(X,Y) = \frac{X.Y}{ X Y }$	Similarity	X, Y are features vectors and '.' represents the inner product

Once a distance measure is selected, instances are grouped using it.

Clustering

- Clusters are usually represented by compact and abstract notations.
- "Cluster centroids" are one common example of this abstract notation.
- Partitional Algorithms
 - Partition the dataset into a set of clusters
 - Each instance is assigned to a cluster exactly once and no instance remains unassigned to clusters.
 - k-Means

k-Means Example

k-Means Example

k-Means

The algorithm is the most commonly used clustering algorithm.

Algorithm 2 *K*-Means Algorithm

Require: A Dataset of Real-Value Attributes, *K* (number of Clusters)

- 1: **return** A Clustering of Data into K Clusters
- 2: Consider *K* random points in the data space as the initial cluster centroids.
- 3: while centroids have not converged do
- Assign each data point to the cluster which has the closest cluster centroid.
- 5: If all data points have been assigned then recalculate the cluster centroids by averaging datapoints inside each cluster
- 6: end while

When do we stop?

- Note that this procedure is repeated until convergence.
- The most common criterion to determine convergence is to check whether centroids are no longer changing.
- This is equivalent to clustering assignments of the data instances stabilizing.
- In practice, the algorithm execution can be stopped when the Euclidean distance between the centroids in two consecutive steps is bounded above by some small positive

When do we stop?

k-Means

• As an alternative, k-means implementations try to minimize an objective function. A well-known objective function in these implementations is the squared distance error:

$$\sum_{i=1}^{k} \sum_{j=1}^{n(i)} \|x_j^i - c_i\|^2,$$

- where x_j^i is the jth instance of cluster i, n(i) is the number of instances in cluster i, and ci is the centroid of cluster i.
- The process stops when the difference between the objective function values of two consecutive iterations of the k-means algorithm is bounded by some small value.

Finding "k"

Elbow Method

k-Means

- Finding the global optimum of the *k* partitions is computationally expensive (NP-hard).
- This is equivalent to finding the optimal centroids that minimize the objective function
- However, there are efficient heuristic algorithms that are commonly employed and converge quickly to an optimum that might not be global.
 - running k-means multiple times and selecting the clustering assignment that is observed most often or is more desirable based on an objective function, such as the squared error.

K-Means Example

ID	Feature 1	Feature 2
1	3.0	3.5
2	4.5	4.6
3	3.8	4.7
4	4.3	5.7
5	3.2	2.3
6	3.0	1.9

K = 2
Starting centroids
= {1, 6}

K-Means Example

Evaluation with Ground Truth

When ground truth is available, the evaluator has prior knowledge of what a clustering should be

- That is, we know the correct clustering assignments.
- We will discuss these methods in community analysis chapter

Evaluating the Clusterings

When we are given objects of two different kinds, the perfect clustering would be that objects of the same type are clustered together.

- Evaluation with ground truth
- Evaluation without ground truth

Evaluation without Ground Truth

Cohesiveness

- In clustering, we are interested in clusters that exhibit cohesiveness.
- In cohesive clusters, instances inside the clusters are close to each other.

Separateness

 We are also interested in clusterings of the data that generates clusters that are well separated from one another

Cohesiveness

Cohesiveness

- In statistical terms, this is equivalent to having a small standard deviation, i.e., being close to the mean value.
- In clustering, this translates to being close to the centroid of the cluster

$$cohesiveness = \sum_{i=1}^{k} \sum_{j=1}^{n(i)} dist(x_{j}^{i}, c_{i})^{2}$$

$$x_{1}^{1} \qquad x_{2}^{1} \qquad x_{2}^{2} \qquad x_{2}^{2}$$

$$-10 \quad -7.5 \quad -5 \quad 0 \quad +5 \quad +7.5 \quad +10$$

 $cohesiveness = |-10 - (-7.5)|^2 + |-5 - (-7.5)|^2 + |5 - 7.5|^2 + |10 - 7.5|^2 = 25. (5.59)$

Separateness

Separateness

- We are also interested in clusterings with clusters that are well separated from one another.
- In statistics, separateness can be measured by standard deviation.
- Standard deviation is maximized when instances are far from the mean.
- In clustering terms, this is equivalent to cluster centroids being far from the mean of the entire dataset

$$separateness = \sum_{i=1}^{\kappa} dist(c, c_i)^2$$

Separateness Example

$$separateness = |-7.5 - 0|^2 + |7.5 - 0|^2 = 112.5.$$

• In general we are interested in clusters that are both cohesive and separate -> Silhouette index

Silhouette Index

- The silhouette index combines both cohesiveness and separateness.
- It compares the average distance value between instances in the same cluster and the average distance value between instances in different clusters.
- In a well-clustered dataset, the average distance between instances in the same cluster is small (<u>cohesiveness</u>) and the average distance between instances in different clusters is large (<u>separateness</u>).

Silhouette Index

- For any instance x that is a member of cluster C
- Compute the within-cluster average distance

$$a(x) = \frac{1}{|C| - 1} \sum_{y \in C, y \neq x} ||x - y||^2.$$

 Compute the average distance between x and instances in cluster G that is closest to x in terms of the average distance between x and members of G

$$b(x) = \min_{G \neq C} \frac{1}{|G|} \sum_{y \in G} ||x - y||^2.$$

Silhouette Index

 Clearly we are interested in clusterings where a(x)<b(x)

$$s(x) = \frac{b(x) - a(x)}{\max(b(x), a(x))},$$

silhouette = $\frac{1}{n} \sum_{x} s(x)$.

- Silhouette can take values between [-1,1]
- The best case happens when for all x,

$$- a(x) = 0, b(x) > a(x)$$

Silhouette Index - Example

$$a(x) = \frac{1}{|C| - 1} \sum_{y \in C, y \neq x} ||x - y||^2.$$

$$b(x) = \min_{G \neq C} \frac{1}{|G|} \sum_{y \in G} ||x - y||^2.$$

$$s(x) = \frac{b(x) - a(x)}{\max(b(x), a(x))},$$

$$silhouette = \frac{1}{n} \sum_{x} s(x).$$

Silhouette Index - Example

$$s(x_1^1) = \frac{312.5 - 25}{312.5} = 0.92$$

$$a(x_2^1) = |-5 - (-10)|^2 = 25$$

$$b(x_2^1) = \frac{1}{2}(|-5 - 5|^2 + |-5 - 10|^2) = 162.5$$

$$s(x_2^1) = \frac{162.5 - 25}{162.5} = 0.84$$

$$a(x_1^2) = |5 - 10|^2 = 25$$

$$b(x_1^2) = \frac{1}{2}(|5 - (-10)|^2 + |5 - (-5)|^2) = 162.5$$

$$s(x_1^2) = \frac{162.5 - 25}{162.5} = 0.84$$

$$a(x_2^2) = |10 - 5|^2 = 25$$

$$b(x_2^2) = \frac{1}{2}(|10 - (-5)|^2 + |10 - (-10)|^2) = 312.5$$

$$s(x_2^2) = \frac{312.5 - 25}{312.5} = 0.92.$$

