WP-CT				
WiSe 22				

Praktikum Aufgabenblatt 3 Whitebox Coverage (3.1)

Prof. Dr. B. Buth 15.11.2022

1 Dynamischer Test: White-Box

1.1 Code-Überdeckung

Gegeben sei der folgende abstrakte Code einer (nicht notwendigerweise sinnvollen) Methode als Pseudocode

```
h(7,10, true)
       public int h (int x, y; boolean b1) ₹
         int res = 10;
         boolean b2 = false;
          for (i = 1; i < 5; i=i+2){
            if (x < y) <mark>{</mark>
              i = i + 5;
             res = res + x;
            else {
   9
             res = 0;
  10
  11
            <u>if (res < 10)</u> {
12
             res = res + 1;
  13
  14
             b2 = true;
  15
 - 16
                                                (17610) // false
          if ((res < 10) and b1 and b2) {
 17
          res = res * res;
  18
 19
         else {
   20
            println{''ELSE-Teil''};
 21
  22
           res = 1;
 - 23
         println(''final result:'' res);
24
 25
         return res;
— 26
```

Bearbeiten Sie die folgenden Teilaufgaben

 $ootnotesize{WP-CT}{WiSe 22}$

Praktikum Aufgabenblatt 3 Whitebox Coverage (3.1) Prof. Dr. B. Buth 15.11.2022

a) Bestimmen Sie zunächst den Kontrollflussgraphen für Methode h.

- b) Bestimmen Sie die Anweisungsüberdeckung zu folgendem Testfall:
 - TF 1: x == 7; y = 10; b1 == true (Aufruf von h (7,10, true)))

	Folge der durchlaufenen Zeilen (Zeilennr)	
TF 1		
Anzahl Anweisungen gesamt in h	19	
Anweisungsüberdeckung durch TF 1 als Bruch	19/22 = 86%	

Anmerkung: bei den Anweisungen zählen der Methodenkopf (Startknoten) und die schließende Klammer des Rumpfs (Endknoten) auch als je 1 Anweisung.

c) Geben Sie weitere Testfälle die zusammen mit TF 1 eine 100% -ige Entscheidungsüberdeckung sicherzustellen.

	x	У	b1	durchlaufene Folge von Zeilen
TFZ 1	0	0	+	11213141518 10112113119 15116117118119121,25126 rer=1
TFZ 2	0	0	P	16,16,17, 21,22,23,24,25,26
TFZ 3	10	5	f	Siehe TF-Z1
TFZ 4	10	5	Т	side TFZ2
TFZ 5	1	0	P	1-8, 12, 15, 10, 17, 10, 21 - 26

Anmerkung: unter Umständen werden auch weniger als die vorgesehenen Testfälle reichen.

WP-CT WiSe 22

Praktikum Aufgabenblatt 3 Whitebox Coverage (3.1)

Prof. Dr. B. Buth 15.11.2022

d) Ist Ihrer Meinung nach eine 100 %ige Pfadüberdeckung (gegenüber den Pfaden im Kontrollflussgraphen) für diesen Code erreichbar? Begründen Sie Ihre Aussage.

100 % möglich? (Ja / Nein):

Begründung:

Durch die else Zverige in 5 ml 19

gibt es immer Pfode die nicht ausgefihrt
worder könnsen wenn (x c y) == true /folse

und (veg <10) & b1 (2 b2 == + /folse).

We Entschoidet man sich für bestimmte Parameter

Sindlie anderen Pfode durch die ifelse Bedinger

unerreichbar wähnd der Lastreit