I, Jaivardhan Tamminana, was responsible for leading the machine learning model development in the "Metro Line Prediction using Machine Learning" project, contributing significantly to the system's technical foundation and predictive capabilities.

My core responsibilities included:

• Model Research, Evaluation, and Finalization

- o Independently researched and evaluated multiple algorithms, including Random Forest Classifier (RFC), XGBoost, and RBF-SVM.
- Conducted iterative testing using cross-validation and precision-recall analysis.
- Finalized Random Forest as the optimal model for its predictive stability and robustness on the project's feature set.

• Model Optimization

- Fine-tuned hyperparameters of Random Forest and XGBoost using grid search and randomized search strategies.
- Balanced predictive accuracy with computational efficiency for scalable deployment.

• Dataset Curation and Feature Engineering

- Collaborated with Soumesh and Vinothkumar, who led the data collection process by sourcing district-level data from government portals and open datasets.
- Computed population density as a derived feature using district-level population and area metrics.
- Applied Recursive Feature Elimination with Cross-Validation (RFECV) to select the five most informative features.
- Addressed class imbalance using SMOTETomek resampling and data augmentation techniques.

• Model Handoff for System Integration

o Validated the predictive model and coordinated with Soumesh for the handoff of the machine learning pipeline for API and front-end integration.

My contributions formed the core predictive engine of the application, ensuring technical soundness, scalability, and practical utility.