UFRJ / Escola Politécnica / DEL – Primeiro Período de 2016 CPE-723 – Otimização Natural (Parte I - Simulated Annealing)

Prova Parcial – 07 de abril de 2016

Todos os itens da prova têm o mesmo valor: 1.0 ponto cada (total de 10 pontos). Tempo de prova: 2 horas.

1. (Algoritmo de Metropolis) Considere duas variáveis aleatórias X e Y, que têm a seguinte distribuição de probabilidades conjunta:

$$p(x,y)$$
 $X = 1$ $X = 2$ $X = 3$
 $Y = 1$ 0.04 0.12 0.07
 $Y = 2$ 0.09 0.40 0.11
 $Y = 3$ 0.03 0.08 0.06

- a) Calcule os valores de uma possível função energia (ou função custo) para o algoritmo de Metropolis, com T=1, de forma que, quando este for executado a partir de valores iniciais quaisquer para X e Y, assintoticamente gere pares (X,Y) com a distribuição de probabilidades indicada.
- b) Utilizando um pseudo-código, descreva uma implementação do algoritmo de Metropolis para a geração dos pares (X,Y) do item (a).
- c) Indique como o algoritmo pode ser usado para estimar o valor esperado do produto entre X e Y, ou seja, E[XY].
- 2. (Algoritmo de Metropolis) Considere uma execução do algoritmo de Metropolis à temperatura fixa T=1, com estados $[X_1X_2]$ (X_1 e X_2 são variáveis aleatórias binárias) e as duas matrizes de transição dadas a seguir. A matriz \mathbf{M}_1 , à esquerda, modela as probabilidades de transição entre estados no caso em que a perturbação, sempre diferente de zero, é feita sobre X_1 . A matriz \mathbf{M}_2 , à direita, é para o caso em que a perturbação, sempre diferente de zero, é feita sobre X_2 .

\mathbf{M}_1	00	01	11	10	\mathbf{M}_2	00	01	11	10
00	2/3	0	0	1	00	2/3	1	0	0
01	0	2/3	1	0	01	1/3	0	0	0
11	0	1/3	0	0	11	0	0	0	1/3
10	1/3	0	0	0	10	0	0	1	2/3

- a) Considerando J(00) = 1, calcule os valores de J(01), J(11) e J(10) de forma que \mathbf{M}_1 e \mathbf{M}_2 tenham os valores dados acima.
- b) Calcule uma matriz de transição ${\bf M}$ que modele transições de qualquer um dos quatro estados para qualquer um dos quatro estados.
- c) Calcule o vetor invariante da matriz \mathbf{M} do item (b). Verifique que ele é um vetor invariante também de \mathbf{M}_1 e \mathbf{M}_2 , apesar de estas matrizes terem diferentes autovetores correspondentes aos autovalores que têm valor igual a 1.
- 3. (Simulated Annealing) Considere uma função custo dada pela tabela a seguir:

a) Descreva, usando pseudo-código, a implementação do algoritmo S.A. básico aplicado à minimização da função custo acima. Na sua descrição, leve em consideração os seguintes parâmetros: temperatura inicial T_0 , temperatura mínima T_{min} , e o número de iterações N a serem executadas em temperatura fixa.

- b) Calcule as matrizes de transição do processo de Markov que corresponde ao S.A. à temperatura T=10 e à temperatura T=5 (chamadas de \mathbf{M}_{10} e \mathbf{M}_{5}) e os seus respectivos vetores invariantes.
- c) (0.25 ponto extra) Observe o menor dos números em \mathbf{M}_{10} e o menor dos números em \mathbf{M}_{5} . Qual é a relação entre estes números e T, J_{max} , J_{min} e o número de estados possíveis?
- 4. (Deterministic Annealing) Considere um conjunto de dados \mathbf{X} que contém quatro vetores equiprováveis, situados sobre os vértices do quadrado de lado igual a 2, centralizado na origem, e com seus lados paralelos aos eixos x e y. Considere também uma partição suave do espaço \mathbb{R}^2 , baseada em quatro "centróides" \mathbf{y}_1 até \mathbf{y}_4 , conforme a matriz de probabilidades condicionais dada a seguir:

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4
\mathbf{y}_1	0.7	0.1	0.1	0.1
\mathbf{y}_2	0.1	0.7	0.1	0.1
\mathbf{y}_3	0.1	0.1	0.1 0.1 0.7 0.1	0.1
\mathbf{y}_4	0.1	0.1	0.1	0.7

- a) Calcule vetores atualizados para os quatro centróides.
- b) Recalcule as probabilidades condicionais $p(\mathbf{y}_k|\mathbf{x}_n)$, a partir dos centróides obtidos no item (a), e considerando T=1.
- c) (0.25 ponto extra) Calcule os valores de $H(Y|X) = -\sum_x p(x) \sum_y p(y|x) \log p(y|x)$ para as duas matrizes p(y|x): a do enunciado e aquela calculada no item (b), e compare os valores encontrados.

Boa prova!