

Uzorkovanje signala i i kvantizacija uzoraka

Teorija informacije

Analogni prijenos signala

ograničit ćemo se na skup striktno pojasno ograničenih signala, {x(t)}

$$X(f) = \prod_{n=1}^{\infty} x(t)e^{-j2\pi ft}dt = 0 \text{ zall } f > f_g = 0$$

- pri prijenosu signala koji nije pojasno ograničen nužno je prenositi neprebrojiv skup kontinuiranih vrijednosti tog signala
 - sve vrijednosti signala x(t), $[t_1, t_2]$, $[t_1, t_2]$
 - $[t_1, t_2]$ je promatrani vremenski interval unutar kojeg se odvija prijenos signala x(t)
 - takav prijenos zovemo i analogni prijenos

Teorija informacije 2 od 27 2 od 27

Uzorkovanje

- ako je signal pojasno ograničen, tada je unutar promatranog vremenskog intervala dovoljno prenositi prebrojiv skup njegovih vrijednosti
 - pojasno ograničen signal u kontinuiranom vremenu moguće je jednoznačno specificirati pomoću njegovih vrijednosti uzetih u diskretnim trenucima
 - proces uzimanja uzoraka kontinuiranog signala u diskretnim trenucima naziva se uzorkovanje
 - uzorkovanje se provodi u predajniku, a rekonstrukcija izvornog signala u prijemniku

uzorkovanje je osnova digitalnog prijenosa,

Teorem uzorkovanja u vremenskoj domeni

- za striktno pojasno ograničene signale konačne energije
- Prvi dio teorema odnosi se na predajnik
- Pojasno ograničeni signal konačne energije, x(t), t R, čiji spektar ne sadrži frekvencijske komponente na frekvencijama iznad B Hz
 - -X(f) = 0 za |f| > B
- u potpunosti je i na jednoznačan način opisan pomoću vrijednosti tog signala uzetih u diskretnim vremenskim trenucima

 $T_n = n/(2B)$

Teorem uzorkovanja u vremenskoj domeni (II)

- Drugi dio teorema odnosi se na prijemnik
- Pojasno ograničeni signal x(t) konačne energije čiji spektar ne sadrži frekvencijske komponente na frekvencijama iznad B Hz
 - -X(f) = 0 za |f| > B
- moguće je u potpunosti i na jednoznačan način rekonstruirati na temelju poznavanja njegovih uzoraka uzetih u diskretnim trenucima međusobno razmaknutim za 1/ (2B) sekundi
 - frekvencija 2B uzorak/s Nyquistova frekvencija
 - (1/2B) [s] Nyquistov interval uzorkovanja

Teorija informacije 5 od 27 5 od 27

Frekvencija uzorkovanja

- osnovni problem uzorkovanja odabir adekvatne frekvencije uzorkovanja f_u
 - slijed uzoraka mora jednoznačno definirati izvorni analogni signal
- lacksquare poželjno je da $f_{_{
 m U}}$ bude što manja
 - tada je i broj uzoraka manji
- što su uzorci gušći, to je slijed uzoraka sve bliži originalnom analognom signalu
 - međutim, potrebno prenositi više uzoraka
 - rezultat: neučinkovito korištenje mrežnih resursa

Teorija informacije 6 od 27 6 od 27

Dokaz teorema uzorkovanja

- promatrajmo proizvoljni signal x(t) konačne energije, definiran za svaki t []
- uzorci se uzimaju jednolikom frekvencijom
 - jedan uzorak svakih T_u sekundi
 - nastaje slijed uzoraka $\{x(nT_u)\}$, $n \square$ **Z**
 - T_u nazivamo period uzorkovanja
 - $f_{\rm u} = 1/T_{\rm u}$ je frekvencija uzorkovanja
 - idealno uzorkovanje: trajanje uzimanja uzorka [] t[] 0
- uzorkovani signal \mathbf{x}_{s} slijed Diracovih impulsa

Teorija informacije 7 od 27 7 od 27

Proces uzorkovanja

- a) originalni kontinuirani signal
- b) njegova uzorkovana inačica
- Diracov impuls pomnožen koeficijentom x(nT_{...})
 - aproksimiramo ga pravokutnim impulsom

Svojstva Fourierove transformacije

- prvo svojstvo $\delta(t-nT_0)\bar{\tau}$
 - drugo svojstvo: funkcija $x_{ij}(t)$ je umnožak funkcije x(t) i beskonačnog slijeda Diracovih delta impulsa $I(t - nT_{..})$
 - spektar od x(t) je X(f)
 - spektar od slijeda $I(t nT_{ii})$ prvo svojstvo

$$= f_u \bigoplus_{n=-\mathbb{D}}^{\mathbb{D}} X(\phi) \delta(f - nf_u - \phi) d\phi = f_u \bigoplus_{n=-\mathbb{D}}^{\mathbb{D}} X(f - nf_u),$$

Teorija informacije 9 od 27 9 od 27

Dokaz teorema uzorkovanja (nastavak)

proces jednolikog uzorkovanja kontinuiranog signala konačne energije rezultira periodičkim spektrom čiji je period jednak frekvenciji uzimanja uzoraka

- a) amplitudni spektar signala pojasno ograničenog na pojas frekvencija (-B, B)
- b) amplitudni spektar uzorkovane inačice tog signala uzorkovane frekvencijom $f_{..} = 1/(2B)$

Teorija informacije 10 od 27 10 od 27

Dokaz teorema uzorkovanja (nastavak)

- primijenimo Fourierovu transformaciju na obje strane izraza $_{\delta} = {}^{\shortparallel}_{\mathbf{Y} x(nT_u)} \delta(t-nT_u)$
- iskoristimo svojstvo: $\delta(t-nT_u) \bar{\tau} e^{-j2\pi n f T_u}$
- gornji se izraz naziva diskretna Fourierova transformacija (DFT)
- $X_{\mathbb{Z}}(f)$ je spektar signala $X_{\mathbb{Z}}(t)$

Teorija informacije 11 od 27 11 od 27

Dokaz teorema uzorkovanja (nastavak)

- pretpostavimo
 - X(f) = 0 za |f| > B i $T_{...} = 1/(2B)$
- spektar od $x_{I}(t)$ je dan izrazom f = Y x = X x
- l koristeći izraz $x_{\delta}(t)\bar{\tau}$ $f_{u} \neq X(f-nf_{u})$
- obivamo $X_{\delta}(f) = f_u X(f) + f_u \quad \mathbf{Y} X(f mf_u)$
- ako vrijedi X(f) = 0 za |f| > B i $f_{11} = 2B$ ■ tada je $f_u \neq X(f - mf_u) = 0$

12 od 27 12 od 27

Dokaz teorema uzorkovanja (kraj)

- dakle, vrijedi $X(f) = \frac{1}{2B} X_{\delta}(f), -B \square f B$ 0, inače
- uvrstimo u prethodni izra(z f) = Y x

pa dobivam
$$\mathscr{Y}(f) = 2B \sum_{n=-1}^{1} 2B \sum_{n=-1}^{2} 2B \sum_{n=$$

- ako su x[n/(2B)] poznate za svaki $n \square Z$ tada je X(f) jednoznačno određen DFT-om
- x(t) je inverzna Fourierova transformacija od X(f)

Rekonstrukcija signala

■ Kako iz $\{x[n/(2B)]\}$ dobiti x(t)?

$$x(t) = \sum_{n=-1}^{1} x \sum_{n=-1}^{\infty} \frac{1}{a} \sum_{B=0}^{\infty} e^{j2\pi f} e^{j2\pi f} df$$

$$x(t) = \underset{n=-\square}{\overset{\square}{+}} x \underset{n=-\square}{\overset{\square}{+}} n \underset{n=-\square}{\overset{\square}{+}} (2\pi Bt - n\pi), -\square < t < \square$$

$$x(t) = \underset{n=-\square}{\overset{\square}{+}} x \underset{n=-\square}{\overset{\square}{+}} x \underset{n=-\square}{\overset{\square}{+}} inc(2Bt-n), -\square < t < \square$$

Teorija informacije 14 od 27 14 od 27

Rekonstrukcija signala (II)

Teorija informacije 15 od 27 15 od 27

Poduzorkovanje

u praksi se uvijek odvija poduzorkovanje jer realni signali nisu striktno pojasno ograničeni

ako je pak signal pojasno ograničen, a $f_{\rm u} < 1$

- rezultat poduzorkovanje je preklapanje spektara
 - iz izobličenog spektra nije moguće točno

Kvantizacija uzoraka

- nakon uzorkovanja kvantizacija je sljedeći korak u pretvorbi analognog u digitalni signal
 - analogni signal ima beskonačno mnogo mogućih vrijednosti amplitude
 - nije potrebno prenositi točne vrijednosti uzoraka
 - ljudska osjetila mogu detektirati samo konačne razlike između razina signala
 - originalni analogni signal je moguće aproksimirati signalom sastavljenim od diskretnih amplitudnih razina
 - odabiru se iz konačnog skupa po kriteriju minimalne pogreške u razlici između stvarnih i aproksimiranih vrijednosti signala
 - osnova tzv. impulsno-kodne modulacije (PCM)

Teorija informacije 17 od 27 17 od 27

Matematički model kvantizacije

- amplitudni uzorci $m(nT_u)$ uzeti od m(t) u nT_u , $n \square \mathbf{Z}$ se pretvaraju u diskretne amplitudne razine $v(nT_u)$
 - skupa mogućih razina je konačan
 - T_u je period uzorkovanja signala
 - pretpostavka: kvantizacijski proces je bezmemorijski i trenutan – ne koristi se u naprednijim postupcima
- neka je $m_k < m(nT_u)$ $m_k + 1, k = 1, 2, ..., L$ i
- $m_k < v_k \mid m_k + 1, k = 1, 2, ..., L$
 - L broj stupnjeva amplitude kvantizatora (broj kvantizacijskih razina
- tada kvantizator preslikava $m(nT_{ij}) \rightarrow v_i$

Kvantizator

- m_k razine odlučivanja ili pragovi odluke
- v_k+1-v_k je korak kvantizacije
- v = g(m) kvantizacijska karakteristika
- najčešći slučaj u praksi: $v_k = (m_k + m_k + 1)/2$
- ovisno o veličini koraka kvantizacija
 - jednolika kvantizacija svi koraci jednaki
 - u suprotnom nejednolika kvantizacija

Teorija informacije 19 od 27

Primjer kvantiziranja i jednolika kvantizacija

Teorija informacije 20 od 27

Kvantizacijski šum

- i šum je razlika između $m(nT_u)$ i $v(nT_u)$
- ulaz u kvantizator kontinuirana slučajna varijabla M
- na izlazu kvantizatora diskretna slučajna varijabla V
 - vrijednosti od M i V su m, odnosno v, i vrijedi v = g(m)
- kvantizacijski šum slučajna varijabla Q
 - vrijedi: Q = M V, odnosno q = m v
 - ako je E[M] = 0 i kvantizacijska karakteristika simetrična
 - vrijedi: E[V] = E[Q] = 0
- cilj: odrediti standardnu devijaciju kvantizacijskog šuma

Teorija informacije 21 od 27

Varijanca kvantizacijskog šuma

- pretpostavka:
 - amplitude ulaznog signala mogu poprimati kontinuirane vrijednosti iz intervala (- m_{max} , m_{max})
 - ako su amplitude ulaznog signala izvan tog intervala, nastupa preopterećenje kvantizatora i izobličenje
- korak kvantizacije [] = 2m_{max}/L
- 🛚 dakle, kvantizacijski šum je ograničen: -🛭 /2 🖛 q 🗀 🗀 /2
 - ako je korak kvantizacije dovoljno mali
 - opravdano je pretpostaviti da slučajna varijabla Q ima jednoliku razdiobu $f_o(q) = \Delta, \quad -2 < q \square 2,$

60, inače.

Teorija informacije 22 od 27

Varijanca kvantizacijskog šuma (II)

s obzirom da je E[Q] = 0, vrijedi:

$$\operatorname{var}(Q) = \sigma_Q^2 = \prod_{\Delta} \prod_{\Delta P} q^2 dq = \prod_{12}^{\Delta P}$$

- uzorci se prije prijenosa kodiraju binarnim kodom i prenose binarnim signalom (dvije razine)
- lacktriangleq r označava broj bita za opis svakog uzorka v_{k}
 - mora vrijediti: $L = 2^r$
 - $L > 2^r ne možemo jednoznačno opisati sve uzorke$
 - L < 2^r nepotrebna zalihost u kodiranju

Teorija informacije 23 od 27

Varijanca kvantizacijskog šuma (III)

nadalje, $\Box = 2m_{\text{max}}/2^r$

$$\sigma_Q^2 = \frac{1}{3} m_{\text{max}}^2 2^{-2r}$$

- neka je S srednja signala m(t)
- tada vrijedi:

$$(SN) = \frac{S}{\sigma_Q^2} = 3S \frac{3S}{m_{\text{max}}^2}$$

24 od 27 Teorija informacije

Primjer: kvantizacija sinusnog signala

- sinusni signal amplitude A_m
 - koristi sve razine za rekonstrukciju signala
 - srednja snaga signala na otporniku otpora 1 om

- raspon amplituda na ulazu kvantizatora iznosi 2A_m
- dakle, $m_{\text{max}} = A_{\text{m}}$

L	r	<i>S</i> / <i>N</i> [dB]
32	5	31,8
64	6	37,8
128	7	43,8
256	8	49,8

$$\sigma_Q^2 = \frac{1}{3} A_m^2 2^{-2r}$$

$$(SN) = \frac{A^2}{A_m^2} \frac{2}{2^{-2r} 3} = \frac{3}{2} (2^{2r})$$

$$10\log_{10}(SN) = 1,76+6,02 \square r \text{ [dB]}$$

Teorija informacije 25 od 27

Kodiranje kvantiziranih uzoraka

- kôd pravilo dodjele sljedova simbola diskretnim kvantizacijskim razinama
 - kodna riječ slijed simbola koji se dodjeljuje nekoj kvantizacijskoj razini
 - ako se prilikom kodiranja uzoraka koriste binarni simboli, tada se radi o binarnom kodu
 - pravilo kodiranja ovisi o vrsti komunikacijskog sustava
 - najčešće je određeno odgovarajućim preporukama, odnosno normama
 - primjer: na izlazu kvantizatora 4 kvantizacijske razine (L = 4): -3U, -U, U i 3U, U – napon u voltima
 - nužno koristiti 2 bita po svakoj razini
 - $-3U \rightarrow 11, -U \rightarrow 10, U \rightarrow 00 \text{ i } 3U \rightarrow 01$

Teorija informacije 26 od 27

Unipolarni binarni signal

- uobičajeno pravilo je da se
 - binarnoj nuli pridjeljuje razina 0 [V]
 - binarnoj jedinici razina A [V]
- T trajanje binarnih signalnih elemenata
 - ili trajanje bita, izraženo u sekundama
 - prijenosna brzina R = 1/T [bit/s]

Teorija informacije 27 od 27