

$$\underline{x} \in \mathbb{R}^n$$

 \dot{x}_{2}

line segment
$$\{x/x=\alpha x_1+(-\alpha)x_2, \alpha \in (0,1)\}$$

joining $x_1,x_2 \in \mathbb{R}^{n}$

Line passing
$$\underline{x}, \underline{x}_2 \in \mathbb{R}^n$$

line segment $\underline{x} = \alpha \underline{x}_1 + (1-\alpha)\underline{x}_2$ $\alpha \in (0,1)$
 $\underline{x} = \alpha \underline{x}_1 + (1-\alpha)\underline{x}_2$ $\alpha \in (0,1)$

line 1

linear comb

$$\left\{ \frac{\alpha}{\alpha} \middle| \frac{\alpha}{\alpha} = \sum_{i=1}^{n} \alpha_i \alpha_i, \alpha_{i,30}, \Sigma \alpha_{i-1} \right\}$$

Convex set if $\chi x, \zeta x \in A$, $x = ux, + (1-u)x_2$ $y \propto \varepsilon(0,1)$ then if $x \in S$ $y \propto A$ is convex set

Convex sets

Non convex sets

* Ray is convex set $\underline{x} = \underline{x}_0 + \underline{d} \cdot \underline{\alpha} \quad \alpha > 0$ $\underline{x}_1 \cdot \underline{\xi} \cdot \underline{x}_2 \in A$

$$\frac{\chi}{1-\lambda} = \frac{\chi_0 + d\alpha_1}{\chi_2 = \chi_0 + d\alpha_2}$$

$$\frac{\lambda x_1 + (1-\lambda) x_2}{= x_0 + d()} = x_0 + d(\lambda x_1 + (1-\lambda) x_2)$$

$$= x_0 + d() \geq 0$$

$$\in A$$

- * Union of convex sets may or may not be convex.
- * Intersection of convex sets is also convex.

Hyperplane

H'= $\{x \mid a'x > c\}$ half space

H= $\{x \mid a'x > c\}$ half space

H= $\{x \mid a'x = c\}$ Hyperplane

H= $\{x \mid a'x = c\}$ Hyperplane

H= $\{x \mid a'x = c\}$ Negative closed half space

 $H_0 = \left(\frac{\pi}{2} / a^{\frac{\pi}{2}} < c\right)$ -ve open half space

Hyperplane
$$H = \{ \frac{x}{a} | \frac{a}{a} = c \}$$

let
$$\underline{x}_{1}, \underline{x}_{2} \in H \Rightarrow \underline{a}_{1}, \underline{x}_{1} \in C$$
 & $\underline{a}_{1}, \underline{x}_{2} \in C$

$$\frac{\alpha'(\alpha x_1 + (1-\alpha)x_2)}{\alpha'(\alpha x_1 + (1-\alpha)x_2)} = \alpha \alpha' x_1 + (1-\alpha)\alpha' x_2$$

$$= \alpha c + (1-\alpha)c$$

$$= c$$

 $\Rightarrow \alpha x_1 + (r-\alpha) x_2 \in H$

=) Hyperplane is convex set

Ht, HT, Ht, HT all are convex sets