

«Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	ИНФОРМАТИК	СА И СИСТЕМЫ УП	РАВЛЕНИЯ
КАФЕДРА _	КОМПЬЮТ	ЕРНЫЕ СИСТЕМЫ	и СЕТИ
	ОТ	ньт	
	01	ЧЕТ	
	по лабораторно	й работе № 1	
Дисциплина: <u>С</u>	хемотехника		
Название: Иссп	едование дешифрато	nor	
11u3bume: 11cos	одованно дошнфраго	pob	
Студент	<u>ИУ6-42Б</u> (Группа)	<u>27.04.24</u> (Подпись, дата)	А. П. Плютто (И. О. Фамилия)
	(1 <i>py</i> 1111 <i>a)</i>	(подпись, дага)	(II. O. VUMPIIMA)
Преподаватель		27.04.24	В. Д. Шульман
		(Подпись, дата)	(И. О. Фамилия)

Содержание

1. Задание	3
2. Задание 1: Синтез линейного DC 3-8	4
2.1. Таблица переходов	4
2.2. Формулы	4
2.3. Схема	5
2.4. Временная диаграмма	5
2.5. Практические и теоретические задержки	6
2.6. Вывод	6
3. Задание 2: Синтез пирамидального DC 3-8	7
3.1. Таблица переходов	7
3.2. Формулы	7
3.3. Схема	8
3.4. Временная диаграмма	8
3.5. Практические и теоретические задержки	9
3.6. Вывод	9
4. Задание 3: Наращивание сложного DC 5-32 на DC 2-4	10
4.1. Таблица переходов	10
4.2. Формулы	10
4.3. Схема	
4.4. Временная диаграмма	13
4.5. Практическая и теоретические задержки	13
4.6. Вывод	
5. Задание 4: Синтез шифратора CD 8-3	14
5.1. Таблица переходов	14
5.2. Формулы	14
5.3. Схема	15
5.4. Временная диаграмма	15
5.5. Практические и теоретические задержки	16
5.6. Вывод	
6. Задание 5: Наращивание сложного шифратора 64-6 на CD 8-3	17
6.1. Таблица переходов	17
6.2. Формулы	
6.3. Схема	
6.4. Временная диаграмма	
6.5. Практические и теоретические задержки	
6.6. Вывол	20

1. Задание

- 1. Синтез линейного DC 3-8
- 2. Синтез пирамидального DC 3-8
- 3. Наращивание сложного DC 5-32 на DC 2-4
- 4. Синтез шифратора CD 8-3
- 5. Наращивание сложного шифратора 64-6 на CD 8-3

Для Всех заданий требуется:

- 1. Построить таблицу переходов
- 2. Выписать формулы согласно методики построения
- 3. Построить схему в Multisim
- 4. Проверить по таблице переходов что она правильно работает
- 5. Нарисовать схему (элементы по ГОСТ)
- 6. Снять временную диаграмму
- 7. Высчитать практическую и теоретическую задержку
- 8. Написать вывод по заданию

2. Задание 1: Синтез линейного DC 3-8

2.1. Таблица переходов

E_n	x_4	x_2	x_1	y_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7
0	X	X	X	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

$$y_0 = \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1 \, E_n$$
 $y_1 = \bar{x}_4 \, \bar{x}_2 \, x_1 E_n$
 $y_2 = \bar{x}_4 \, x_2 \, \bar{x}_1 \, E_n$
 $y_3 = \bar{x}_4 \, x_2 x_1 E_n$
 $y_4 = x_4 \, \bar{x}_2 \, \bar{x}_1 \, E_n$
 $y_5 = x_4 \, \bar{x}_2 \, x_1 E_n$
 $y_6 = x_4 x_2 \, \bar{x}_1 \, E_n$
 $y_7 = x_4 x_2 x_1 E_n$

Рисунок 1 — Схема дешифратора 8-3

2.4. Временная диаграмма

Рисунок 2 — Временная диаграмма дешифратора 8-3

2.5. Практические и теоретические задержки

Практические задержки стремятся к нулю.

Теоретически задержки могут быть на инверторе и конъюнкторе.

$$t_{7404{
m N}}=12$$
 нс
$$t_{74{
m ALS}21{
m AM}}=9.5 \,\,{
m Hc}$$
 $T=t_{
m MHB}+t_{
m KOH}=12+9.5=21.5 \,\,{
m Hc}$

2.6. Вывод

При выполнении здания 1 была построена схема дешифратора DC 3-8 по таблице истинности в среде Multisim, была изучена временная диаграмма и посчитаны задержки.

3. Задание 2: Синтез пирамидального DC 3-8

3.1. Таблица переходов

E_n	x_4	x_2	x_1	y_0	y_1	y_2	y_3	y_4	y_5	y_6	y_7
0	X	X	X	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

$$y_0 = (\bar{x}_4 \, \bar{x}_2 \, E_n) \, \bar{x}_1$$

$$y_1 = (\bar{x}_4 \, \bar{x}_2 \, E_n) x_1$$

$$y_2 = (\bar{x}_4 \, x_2 E_n) \, \bar{x}_1$$

$$y_3 = (\bar{x}_4 \, x_2 E_n) x_1$$

$$y_4 = (x_4 \, \bar{x}_2 \, E_n) \, \bar{x}_1$$

$$y_5 = (x_4 \, \bar{x}_2 \, E_n) x_1$$

$$y_6 = (x_4 x_2 E_n) \, \bar{x}_1$$

$$y_7 = (x_4 x_2 E_n) x_1$$

Рисунок 3 — Схема пирамидального дешифратора 3-8

3.4. Временная диаграмма

Рисунок 4 — Временная диаграмма пирамидального дешифратора 3-8

3.5. Практические и теоретические задержки

Практические задержки стремятся к нулю.

Теоретически задержки могут возникать из-за конъюнкторов и инверторов.

$$t_{7404\rm N}=12~\rm Hc$$

$$t_{74\rm ALS11AM}=6.5~\rm Hc$$

$$t_{7408\rm N}=18~\rm Hc$$

$$T=t_{\rm MHB}+t_{\rm KoH3}+t_{\rm KOH2}=12+6.5+18=36.5~\rm Hc$$

3.6. Вывод

При выполнении задания 2 был изучен пирамидальный дешифратор, посчитаны задержки и выявлены отличия от линейного дешифратора.

4. Задание 3: Наращивание сложного DC 5-32 на DC 2-4

4.1. Таблица переходов

E_n	x_{16}	x_8	x_4	x_2	x_1	y_0	y_1	y_2	y_3	y_4	y_5	y_6		y_{30}	y_{31}
0	X	X	X	x	X	1	0	0	0	0	0	0	•••	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0		0	0
1	0	0	0	0	1	0	0	1	0	0	0	0		0	0
1	0	0	0	1	0	0	0	0	1	0	0	0		0	0
1	0	0	0	1	1	0	0	0	0	1	0	0		0	0
1	0	0	1	0	0	0	0	0	0	0	1	0		0	0
1	0	0	1	0	1	0	0	0	0	0	0	1		0	0
1	1	1	1	1	0	0	0	0	0	0	0	0		1	0
1	1	1	1	1	1	0	0	0	0	0	0	0		0	1

$$y_0 = \bar{x}_{16} \, \bar{x}_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_1 = \bar{x}_{16} \, \bar{x}_8 \, \bar{x}_4 \, \bar{x}_2 \, x_1$$

$$y_2 = \bar{x}_{16} \, \bar{x}_8 \, \bar{x}_4 \, x_2 \, \bar{x}_1$$

$$y_3 = \bar{x}_{16} \, \bar{x}_8 \, \bar{x}_4 \, x_2 \, \bar{x}_1$$

$$y_4 = \bar{x}_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_5 = \bar{x}_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_6 = \bar{x}_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_7 = \bar{x}_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_8 = \bar{x}_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_9 = \bar{x}_{16} \, x_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_{10} = \bar{x}_{16} \, x_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_{11} = \bar{x}_{16} \, x_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_{12} = \bar{x}_{16} \, x_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_{13} = \bar{x}_{16} \, x_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_{14} = \bar{x}_{16} \, x_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$$

$$y_{15} = \bar{x}_{16} \, x_8 \, x_4 \, x_2 \, \bar{x}_1$$

 $y_{16} = x_{16} \, \bar{x}_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$ $y_{17} = x_{16} \, \bar{x}_8 \, \bar{x}_4 \, \bar{x}_2 \, x_1$ $y_{18} = x_{16} \, \bar{x}_8 \, \bar{x}_4 \, x_2 \, \bar{x}_1$ $y_{19} = x_{16} \, \bar{x}_8 \, \bar{x}_4 \, x_2 x_1$ $y_{20} = x_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, \bar{x}_1$ $y_{21} = x_{16} \, \bar{x}_8 \, x_4 \, \bar{x}_2 \, x_1$ $y_{22} = x_{16} \, \bar{x}_8 \, x_4 x_2 \, \bar{x}_1$ $y_{23} = x_{16} \, \bar{x}_8 \, x_4 x_2 x_1$ $y_{24} = x_{16} x_8 \, \bar{x}_4 \, \bar{x}_2 \, \bar{x}_1$ $y_{25} = x_{16} x_8 \, \bar{x}_4 \, \bar{x}_2 \, x_1$ $y_{26} = x_{16} x_8 \, \bar{x}_4 \, x_2 \, \bar{x}_1$ $y_{27} = x_{16}x_8 \, \bar{x}_4 \, x_2 x_1$ $y_{28} = x_{16} x_8 x_4 \, \bar{x}_2 \, \bar{x}_1$ $y_{29} = x_{16} x_8 x_4 \, \bar{x}_2 \, x_1$ $y_{30} = x_{16} x_8 x_4 x_2 \, \bar{x}_1$ $y_{31} = x_{16} x_8 x_4 x_2 x_1$

Рисунок 5 — Схема дешифратора 5-32

4.4. Временная диаграмма

Рисунок 6 — Временная диаграмма нескольких выходов дешифратора 5-32

4.5. Практическая и теоретические задержки

Практические задержки стремятся к нулю.

Теоретически задержки могут возникать в дешифраторах и инверторах.

$$t_{74
m LS139D} = 22$$
 нс
$$t_{7404
m N} = 12 \
m Hc$$
 $T = 3*t_{
m деш} + 2*t_{
m {\tiny MHB}} = 3*22 + 2*12 = 90$ нс

4.6. Вывод

Были изучены принципы синтеза сложного дешифратора на основе простого.

5. Задание 4: Синтез шифратора CD 8-3

5.1. Таблица переходов

x_0	x_1	x_2	x_3	x_4	x_5	x_6	x_7	y_4	y_2	y_1
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

$$y_4 = x_4 \vee x_5 \vee x_6 \vee x_7$$

$$y_2 = x_2 \vee x_3 \vee x_6 \vee x_7$$

$$y_1 = x_1 \vee x_3 \vee x_5 \vee x_7$$

Рисунок 7 — Схема шифратора 8-3

5.4. Временная диаграмма

Рисунок 8 — Временная диаграмма шифратора 8-3

5.5. Практические и теоретические задержки

Практические задержки стремятся к нулю.

Теоретически задержки могут возникать только на дизъюнкторах.

$$t_{
m 74S32D} = 10$$
 нс

$$T=2*t_{\scriptscriptstyle
m IM3}=20$$
 нс

5.6. Вывод

Был изучен принцип шифратора, построена схема CD 8-3 и посчитаны его задержки.

6. Задание 5: Наращивание сложного шифратора 64-6 на CD 8-3

6.1. Таблица переходов

x_0	x_1	x_2	x_3	x_4	x_5	x_6		x_{62}	x_{63}	y_{32}	y_{16}	y_8	y_4	y_2	y_1
1	0	0	0	0	0	0	•••	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0		0	0	0	0	0	0	0	1
0	0	1	0	0	0	0		0	0	0	0	0	0	1	0
0	0	0	1	0	0	0		0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	•••	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0		0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	•••	0	0	0	0	0	1	1	0
		•••	•••			•••		•••						•••	
0	0	0	0	0	0	0	•••	1	0	1	1	1	1	1	0
0	0	0	0	0	0	0		0	1	1	1	1	1	1	1

$$y_{6} = x_{32} \lor x_{33} \lor x_{34} \lor x_{35} \lor x_{36} \lor x_{37} \lor \\ \lor x_{38} \lor x_{39} \lor x_{40} \lor x_{41} \lor x_{42} \lor \\ \lor x_{43} \lor x_{44} \lor x_{45} \lor x_{46} \lor x_{47} \lor \\ \lor x_{48} \lor x_{49} \lor x_{50} \lor x_{51} \lor x_{52} \lor \\ \lor x_{53} \lor x_{54} \lor x_{55} \lor x_{56} \lor x_{57} \lor \\ \lor x_{58} \lor x_{59} \lor x_{60} \lor x_{61} \lor x_{62} \lor x_{63} \\ y_{5} = x_{16} \lor x_{17} \lor x_{18} \lor x_{19} \lor x_{20} \lor x_{21} \lor \\ \lor x_{22} \lor x_{23} \lor x_{24} \lor x_{25} \lor x_{26} \lor \\ \lor x_{27} \lor x_{28} \lor x_{29} \lor x_{30} \lor x_{31} \lor \\ \lor x_{48} \lor x_{49} \lor x_{50} \lor x_{51} \lor x_{52} \lor \\ \lor x_{53} \lor x_{54} \lor x_{55} \lor x_{56} \lor x_{57} \lor \\ \lor x_{58} \lor x_{59} \lor x_{60} \lor x_{61} \lor x_{62} \lor x_{63} \\ \end{cases}$$

$$y_{4} = x_{8} \lor x_{9} \lor x_{10} \lor x_{11} \lor x_{12} \lor x_{13} \lor \\ \lor x_{14} \lor x_{15} \lor x_{24} \lor x_{25} \lor x_{26} \lor \\ \lor x_{27} \lor x_{28} \lor x_{29} \lor x_{30} \lor x_{31} \lor \\ \lor x_{40} \lor x_{41} \lor x_{42} \lor x_{43} \lor x_{44} \lor \\ \lor x_{45} \lor x_{46} \lor x_{47} \lor x_{56} \lor x_{57} \lor \\ \lor x_{58} \lor x_{59} \lor x_{60} \lor x_{61} \lor x_{62} \lor x_{63} \\ y_{3} = x_{4} \lor x_{5} \lor x_{6} \lor x_{7} \lor x_{12} \lor x_{13} \lor \\ \lor x_{14} \lor x_{15} \lor x_{20} \lor x_{21} \lor x_{22} \lor \\ \lor x_{23} \lor x_{28} \lor x_{29} \lor x_{30} \lor x_{31} \lor \\ \lor x_{45} \lor x_{46} \lor x_{47} \lor x_{52} \lor x_{53} \lor \\ \lor x_{54} \lor x_{55} \lor x_{60} \lor x_{61} \lor x_{62} \lor x_{63} \\ y_{2} = x_{2} \lor x_{3} \lor x_{6} \lor x_{7} \lor x_{10} \lor x_{11} \lor \\ \lor x_{14} \lor x_{15} \lor x_{18} \lor x_{19} \lor x_{22} \lor \\ \lor x_{23} \lor x_{26} \lor x_{27} \lor x_{30} \lor x_{31} \lor \\ \lor x_{14} \lor x_{15} \lor x_{18} \lor x_{19} \lor x_{22} \lor \\ \lor x_{23} \lor x_{26} \lor x_{27} \lor x_{30} \lor x_{31} \lor \\ \lor x_{34} \lor x_{35} \lor x_{38} \lor x_{39} \lor x_{42} \lor \\ \lor x_{43} \lor x_{46} \lor x_{47} \lor x_{50} \lor x_{51} \lor \\ \lor x_{54} \lor x_{55} \lor x_{58} \lor x_{59} \lor x_{62} \lor x_{63} \\ y_{1} = x_{1} \lor x_{3} \lor x_{5} \lor x_{7} \lor x_{9} \lor x_{11} \lor \\ \lor x_{13} \lor x_{15} \lor x_{17} \lor x_{19} \lor x_{21} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{31} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{21} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{21} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{21} \lor \\ \lor x_{23} \lor x_{25} \lor x_{27} \lor x_{29} \lor x_{21} \lor \\ \lor x_{25} \lor x_{27}$$

Рисунок 9 — Схема шифратора 64-6

6.4. Временная диаграмма

Рисунок 10 — Временная диаграмма для нескольких входов шифратора 64-6

6.5. Практические и теоретические задержки

Практические задержки стремятся к нулю.

Теоретически задержки могут возникать на инверторах и шифраторах.

$$t_{74
m LS04N}=12$$
 нс
$$t_{74148
m N}=22$$
 нс
$$T=2*t_{
m MHB}+2*t_{
m min\phi}=2*12+2*22=68$$
 нс

6.6. Вывод

Был получен шифратор 64-6 на основе простейшего шифратора, посчитаны задержки.