

Lecture XVIII

Encoders-decoders and structure-property relationships

Kevin M. Roccapriore, Sergei Kalinin

August 04, 2023

Center for Nanophase Materials Sciences Oak Ridge National Laboratory

ORNL is managed by UT-Battelle LLC for the US Department of Energy

A system to realize structure-property relationships Complex nanoparticle assemblies

- Self-assembled monolayer of **metal oxide nanoparticles** (**F**,**Sn** co-doped indium oxide)
- Sn tunes the plasmon resonance by supply of additional e^- (F concentration fixed)
- Variety of geometric configurations also present

Electron energy loss spectroscopy (EELS)

- Can consider to be another signal in the form of a 1D spectrum
- Collect EEL spectrum in an (x,y) grid: EELS imaging
- To better visualize / understand these 3D signals, can integrate specific spectral bands, or dimensionally reduce (PCA, NMF) them
- Applications in plasmonics & nanophotonics

Plasmonic response in complex geometries

Plasmonic response in complex geometries NMF

- Great way to explore system
- Visualization of hyperspectral data

- Multiple modes per pixel
- Non-physical extraction
- No relationship between geometry established

Separating effects: pixel labeling

Nonlinear ML methods: Multilayer Perceptron, Autoencoder network

- Can separate effects
- Knows no physics
- No relationship between geometry established

Structure-property correlations:

Autoencoder neural network

im2spec: Latent space visualization and error mapping

Encoder-decoder neural networks: Predictions

- # spectral channels
 - can we describe spectra by simpler means?
 - (for future thoughts...)

Limitations

- System-dependent (currently fails to generalize)
- Requires pre-acquired training data
- Working with as-fabricated systems

- **Library** of geometric-plasmonic relationships
- Towards solution of inverse design in nanophotonics and other fields

Structure-property correlations:

Autoencoder neural network

spec2im: Latent space visualization and error mapping

Encoder-decoder neural networks: Predictions

"spec2im"

- After training, predict the spectral response of a geometric arrangement that the network has never encountered
- 2L and 10L refers to number of latent dimensions chosen
- # spectral channels
 - can we describe spectra by simpler means?
 - (for future thoughts...)

Limitations

- System-dependent (currently fails to generalize)
- Requires pre-acquired training data
- Working with as-fabricated systems

In summary:

Correlative structure property relationships

> We can **learn the relationship** between <u>local geometry</u> and <u>plasmonic response</u>

- We operate with complete (preacquired)
 3D data
- Random particle geometries

In summary:

Correlative structure property relationships (Visualizing)

Can we engineer the ones that exhibit spectral properties we desire? under certain conditions, yes!

- High current density (~10⁶ A/cm²)
- 60 200 kV beam energies
- Monitor plasmonic responses dynamically (EELS)

 Build a library of structure-property relationships to guide inverse design?

Going forward

- Increased geometric variation, fields of view...
- Moving beyond the as-fabricated particle restrictions:
 Designing and testing other geometries
- "inverse problem"

- Automated experiments (on the fly)!
 - deep kernel learning
- Colab!

im2spec paper link for STEM-EELS

https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202100181

Encoder-decoder neural networks: Geometric Predictions 2L Prediction

- Predict the geometric arrangement given a spectrum that the network has never encountered
- 2L and 10L refers to number of latent dimensions chosen

Encoder-decoder neural networks: Spectral Predictions

- After training, predict the spectral response of a geometric arrangement that the network has never encountered
- 2L and 10L refers to number of latent dimensions chosen

Electron beam modification of plasmon response

Space

Scalebars 20 nm

Energy

Material system: doped indium oxide

- Self assembled monolayer
- co-doped with F and Sn
- **Sn** tunes (during synthesis) the plasmon resonance by supply of additional e^-
- Supported on silicon nitride membrane

Structure-property correlations:

Autoencoder neural network

- 0.40

- 0.30

- 0.20