Economía Política

Unidad 4. No taxation without representation. Partidos, votantes y competencia electoral

Sebastián Freille

sfreille@unc.edu.ar Licenciatura en Economía FCF-UNC Economía Política

Politicians neither love nor hate. Interest, not sentiment, governs them.

[Fourth Earl of Chesterfield (1748)]

Section 1

Democracia representativa

Democracia representativa

- Democracia representativa y competencia electoral
- Políticos como representantes
- Modelos de competencia electoral

Democracia representativa

- En la práctica, la democracia directa es inviable para estructurar y organizar las decisiones colectivas
- ullet Cuando la *polity* es grande \longrightarrow se deben elegir representantes
- Principales aspectos relevantes
 - Conducta de representantes pre- y post- campaña
 - Conducta de votantes ante oferta electoral
 - Características de los resultados de política

Votantes y representantes

- Caracterizamos a los votantes en función de maximizar su utilidad que depnde de la canasta de bienes que consume
- Caracterizamos a los representantes en función de. . .
 - ullet ... intereses \longrightarrow ¿pero cuáles?
 - Punto ideal de política
 - Ideología
 - Ganar votos

Modelo de localización

- En 1929, Hotelling observó que las empresas competidoras solían imitar la calidad de los bienes y la localización. ¿Por qué teniendo un enorme mercado geográfico para localizarse se establecen tan cerca (por qué imitaban calidad del producto)?
- Ejemplo

 vendedores de helados en una playa. ¿Donde deben localizarse a lo largo de una playa de 1km si los individuos están distribuidos uniformemente?
- Esto se observa en la vida real → heladeras en supermercados; negocios en una misma cuadra/zona.

MCE: Downs

- Supuestos contextuales:
 - Cada candidato político busca ganar para obtener ingreso, prestigio y poder que viene con el cargo
 - El candidato ganador tiene control completo de sus acciones hasta la próxima eleccion
 - Poderes económicos del gobierno ilimitados –dentro del marco democrático. El único límite es político — no puede restringir la libertad política
 - Cada agente en el modelo –votante, candidato o coalicion- es racional en todo momento

- Basado en esto desarrolló el modelo espacial de competencia electoral
- Continuo ideológico unidimensional [0, 100], entre economía completamente socializada (0) y economía totalmente privada (100).
 - Supuesto

 — todo puede reducirse a la ideología

 —unidimensional.

Los partidos políticos en una democracia formulan la política estrictamente como un medio para obtener votos (y ganar elecciones). Para Downs los partidos políticos no son mas que comerciantes vendiendo *políticas* por *votos*.

- Supuestos claves sobre candidatos:
 - Cumplen sus promesas –se resuelve el equilibrio político (modelo no dinámico)
 - ullet Son "oportunistas" \longrightarrow sólo les interesa las rentas del poder, no las políticas implementadas
- Sólo relevante en contexto pre-electoral
 - Tenga en cuenta que en la práctica pre-electoral y post-electoral están vinculados
- Foco nuevamente es el conflicto entre preferencias

- Dos candidatos, A y B, cada uno oportunista. Ganar elección brinda R
- Cada candidato anuncia q_A y q_B para maximizar su fn. objetivo:

$$p_p.R$$
 (1)

- donde p_p es la probabilidad de ganar la elección para el candidato $P \in A, B$. Esta depende de la política anunciada
- Una vez resuelta elección, candidato implementa política anunciada

- Suponga que $p_A(q_A, q_B)$ es la prob. que A gane la elección cuando se anuncian (q_A, q_B) y $p_B(q_A, q_B) = 1 (q_A, q_B)$ es la prob. que B gane
- Entonces:
 - $p_A(q_A, q_B) = 1$ si mayoría prefiere q_A a q_B
 - $p_A(q_A, q_B) = 0$ si mayoría prefiere q_B a q_A
- Preferencias son unimodales y vector de política unidimensional

• El equilibrio queda descripto por las preferencias del mediano, $V^M(q)$

$$p_{A}(q_{A}, q_{B}) = \begin{cases} 1 & si & V_{M}(q_{A}) > V_{M}(q_{B}) \\ \frac{1}{2} & si & V_{M}(q_{A}) = V_{M}(q_{B}) \\ 0 & si & V_{M}(q_{A}) < V_{M}(q_{B}) \end{cases}$$
(2)

• Candidatos enfrentan el siguiente problema de decidir

$$A: \max_{q_A} p_A(q_A, q_B).R \tag{3}$$

$$B: \max_{q_B} 1 - p_A(q_A, q_B).R \tag{4}$$

(5)

- En equilibrio, ambos candidatos **convergen** y eligen (anuncian) la política preferida por el mediano, q_M^* .
 - Demostración por contradicción

- ullet Supong candidatos eligen otras, $q_A < q_B < q_M^*$
 - ullet Mediano y todos a su derecha prefieren q_B
- Misma política, $q_A = q_B$
- ullet Una a cada lado $(V^M(q_A)=V^M(q_A))$
 - $q_A \leq q_M^* \leq q_B$
 - $q_A \geq q_M^* \geq q_B$
- ullet En cualquier caso, si $q_P
 eq q_M^*$
 - Cualquier partido tiene incentivo para acercarse mas a mediano
 - Desviaciones cesan cuando se está en q_M^*

Figure 1: Utilidad de un individuo con posición ideal x^* como funcion de x

Figure 2: Decidiendo qué política fijar

- Ciudadanos cuyas posición favorita es $\frac{1}{2}(x_1 + x_2)$ dividen sus votos por igual entre x_1 y x_2 .
- Jugadores son los candidatos, acciones el conjunto de posiciones posibles y los payoffs son n > k > 0

MCE Downs: Aplicación

- Resultado Downs → válido con 2 (dos) partidos
 - En democracia multipartido no aplica
- Suponga:
 - Sea Q = [0,1] unidimensional de política
 - A, B y C compiten por un mismo cargo. Si empatan, sorteo
 - Candidatos anuncian pol $(q_A, q_B, q_C) = (\frac{1}{11}, \frac{6}{11}, \frac{9}{11})$ simultánea y no cooperativa
 - Población compuesta por $N \in 1,...,11$ votantes con preferencias unimodales

$$u_i(q) = -|q - q^i|$$
 donde $q^i = \frac{i}{11}$ (6)

MCE Downs: Aplicación (cont.)

- Si todos $i \in N$ votan en forma sincera, A obtiene 3 votos, B 4 votos, y C 4 votos por lo que B y C tienen 1/2 probabilidad de ganar
- i = 1 prefiere política anunciada por B por lo que su mejor respuesta es votar por B –dado que el resto de votantes vota sinceramente!
- Dado que no se puede asumir votación sincera con 3 o mas candidatos, el problema se vuelve bastante mas complejo

MCE Downs: Interpretación

- Note que Downs no requiere que candidatos siempre vayan al centro
- Si los votantes se distribuyen uniformemente a lo largo del eje
 x y el candidato A originalmente se ubica en A (25) y y el
 andidato B se ubica en B (75), a ambos les conviene moverse
 hacia 50.
- Si la distribución de votantes cambia, los partidos: a) tiende a ir a los extremos; b) tenderan a posicionarse alrededor de nucleos de votantes

Figure 3: Distribución unimodal de preferencias

Figure 4: Distribución bimodal de preferencias

Figure 5: Distribución multimodal de preferencias

- Si votantes polarizados, cambio en identidad del ganador implica cambio en la política. Si continuidad → oposición busca desestabilizar; si alternancia → inestabilidad
- Si distribución multimodal → sistema multi-partido. Cada partido se posiciona en una moda. Mayor rango de opciones, mayor rol de ideología y menor coherencia → gobierno de coaliciones

MCE Downs: Evidencia

Thus politicians in our model never seek office as a means of carrying out particular policies: their only goal is to reap the rewards of holding office *per se*. They treat policies purely as a means to the attainment of their private ends, which they can reach only by being elected.

[Anthony Downs, An economic theory of democracy]]

Ley 1. Los sistemas de votación por mayoría en una elección conducen a un sistema bipartidista

Ley 2. Los sistemas de votación por representación proporcional conducen a un sistema multipartidista.

Ley 3. Los sistemas de votación por mayoría en 2 vueltas llevan a un sistema multipartido con tendencia a formar coaliciones

Table 1: Número efectivo de partidos

Country	no. of elections	ENP	Sistema
Canada	21	3.07	mayoría
UK	17	2.37	mayoría
US	17	1.99	mayoría
Australia	27	2.60	2da vuelta
France	14	4.31	2da vuelta
Argentina	4	4.47	PR
Brazil	7	9.33	PR

- Si se cumple Downs, se esperaría un bajo grado de polarización en las plataformas políticas de la vida real.
- Datos del Comparative Manifesto Dataset (2015), polarización medida en escala I-D.
- ullet Disponibilidad del "RiLe Index" [Laver and Budge (1992)] \longrightarrow indice que mide la posición izquierda-derecha de los partidos
- Varía entre -100 y 100 y se construye como rile = R L donde R es la suma (porcentajes) de variables de derecha y L la suma de (porcentajes) de variables de izquierda.

left	right
103 Anti-Imperialism	104 Military: Positive
105 Military: Negative	201 Freedom and Human Rights
106 Peace	203 Constitutionalism: Positive
107 Internationalism: Positive	305 Political Authority
202 Democracy	401 Free Market Economy
403 Market Regulation	402 Incentives: Positive
404 Economic Planning	407 Protectionism: Negative
406 Protectionism: Positive	414 Economic Orthodoxy
412 Controlled Economy	505 Welfare State Limitation
413 Nationalisation	601 National Way of Life: Positive
504 Welfare State Expansion	603 Traditional Morality: Positive
506 Education Expansion	605 Law and Order: Positive
701 Labour Groups: Positive	606 Civic Mindedness: Positive

Figure 6: Variables que definen el RiLe Index

Country	no. Elections	polarization
Canada	21	0.10
UK	17	0.15
US	17	0.08
Australia	27	0.16
France	14	0.21

Figure 7: Polarización partidaria (RiLe Index) - USA

Figure 8: Polarización partidaria (RiLe Index) - Alemania

Figure 9: Polarización partidaria (RiLe Index) - South Africa

- No sólo puede observarse polarización en relacióna propuestas y plataformas partidarias
- También en cierto modo la polarización puede observarse en los recintos legislativos
 - Representantes electos son tanto ejecutivos como legislativos
- Primer gráfico usa datos de Voteview. El grafo de redes de un paper [Andris et al (2015)] que estudia cooperación entre legisladores, tanto intra- como inter-partido

Figure 10: Polarización legislativa en cámara baja (House) - USA

Figure 11: Polarización legislativa en cámara alta (Senate) - USA

MCE Downs: Evidencia (cont.)

MCE Downs: Ejemplo

Economía Política Votación probabilística (MVP)

Section 2

Votación probabilística (MVP)

Votación probabilística (MVP)

- Problemas de MCE Downs
- Votación probabilísta: incorporando dimensiones
- Rol e importancia del votante swing

TVM: Realismo y ajuste

- Sabemos que el TVM es útil pero en muchas ocasiones supuestos no aplicables
- ullet Tema clave \longrightarrow multidimensional de decisiones políticas
 - El modelo de votación probabilística (MVP) permite relajar algunos supuestos e incorporar más realismo

MVP: Intuición y supuestos

Recordemos que

$$p_{A}^{i}(q_{A}, q_{B}) = \begin{cases} 1 & si \quad V^{i}(q_{A}) > V^{i}(q_{B}) \\ \frac{1}{2} & si \quad V^{i}(q_{A}) = V^{i}(q_{B}) \\ 0 & si \quad V^{i}(q_{A}) < V^{i}(q_{B}) \end{cases}$$
(7)

- Es decir, prob de que i vote por A cuando plataformas son (q_A, q_B) no es continua –saltos discretos
 - Fn objetivo de candidatos discontinuas en espacio de políticas

MVP: Intuición y supuestos (cont.)

- Por esto, candidatos incentivo a proponer nuevas q_i repetidamente
 - Proceso continúa ad-infinitum si: 1) preferencias no son de pico único; 2) mnaipulación de agenda y voto estratégico
- El MVP suaviza estas funciones discontinuas aún con espacios de po´litica multidimensionales

MVP: Intuición y supuestos (cont.)

- Diferentes motivaciones ("microfundamentos") para el MVP
- Individuos motivados por dos dimensiones:
 - Políticas -q_i
 - 2 Ideología $-\sigma^{ij}$
- NOTA: Segunda dimensión No necesariamente debe ser "ideología" en sentido estricto
 - Puede ser cualquier elemento que haga que un votante tenga una *tendencia* a votar por tal o cual candidato

MVP: Modelo básico

- Sociedad compuesta por número J de grupos diferentes. Población total normalizada a 1. Cada grupo tiene una cantidad/fracción α_j de individuos tal que $\sum_{j=1}^{J} \alpha_j = 1$
- Individuos dentro de cada grupo son iguales con excepción de su preferencia "ideológica"
- Dos candidatos A y B compiten ofreciendo políticas contenido en el vector q.

MVP: Modelo básico (cont.)

- Sea π_P^j la fracción de votantes en grupo j que vota por P con $P \in A, B$.
 - Proporción de votos π_P que espera obtener:

$$\pi_P = \sum_{j=1}^J \alpha_j \pi_P^j \tag{8}$$

- En MCE Downs, forma de cada π_P^j se parece a anterior fórmula con saltos de continuidad
 - **1** Si es *unidimensional*, gana q_m
 - Si es multidimensional, ciclos interminables (medianos en varias dimensiones)

MVP: Preferencias

• Cada i en j tiene las preferencias

$$V^{ij} = V^{j}(\mathbf{q}) + \sigma^{ij}(P) \tag{9}$$

- donde $V^j(\mathbf{q})$ es utilidad indirecta de individuos de grupo j y $\sigma^{ij}(P)$ captura beneficios para votante que, indirectamente de política elegida, recibe el votante i en grupo j si gana P
- Sea $p_A^{ij}(\mathbf{q}_A, \mathbf{q}_B)$ la *prob* que i de j vote por A::

$$p_A^{ij}(\mathbf{q}_A, \mathbf{q}_B) = \begin{cases} 1 & si \quad V^j(\mathbf{q}_A) + \sigma^{ij}(A) > V^j(\mathbf{q}_B) + \sigma^{ij}(B) \\ \frac{1}{2} & si \quad V^j(\mathbf{q}_A) + \sigma^{ij}(A) = V^j(\mathbf{q}_B) + \sigma^{ij}(B) \\ 0 & si \quad V^j(\mathbf{q}_A) + \sigma^{ij}(A) < V^j(\mathbf{q}_B) + \sigma^{ij}(B) \end{cases}$$
(10)

- Definamos $\sigma^{ij} = \sigma^{ij}(B) \sigma^{ij}(A)$ como la **preferencia** ideológica relativa por B
- Entonces:

$$p^{ij}(\mathbf{q}_A, \mathbf{q}_B) = \begin{cases} 1 & si \quad V^j(\mathbf{q}_A) - V^j(\mathbf{q}_B) \ge \sigma^{ij} \\ \frac{1}{2} & si \quad V^j(\mathbf{q}_A) - V^j(\mathbf{q}_B) = \sigma^{ij} \\ 0 & si \quad V^j(\mathbf{q}_A) - V^j(\mathbf{q}_B) \le \sigma^{ij} \end{cases}$$
(11)

- Votante *i* sólo votará por *A* si los beneficios económicos que recibe *compensan* su preferencia ideológica
- Fn objetivo de políticos se vuelve continua por incertidumbre sobre distribución de preferencias ideológicas

- Distribución de σ^j dada por F^j definida para cada grupo j sobre intervalo $(-\infty, \infty)$ con fn de densidad f^i
- ullet Fracción de votantes en grupo j que votarán por A es

$$\pi_A^j = F^j(V^j(\mathbf{q}_A) - V^j(\mathbf{q}_b)) = \int_{-\infty}^{(V^j(\mathbf{q}_A) - V^j(\mathbf{q}_b))} f(\sigma^{ij}) d\sigma^{ij}$$
(12)

- Punto \longrightarrow para cada j un individuo i con σ^{ij} crítico, σ^{j*} igual a $V^j(\mathbf{q}_A)-V^j(\mathbf{q}_b)$ que divide a la población entre los votan por A y los que votan por B
 - Indiferente entre A y B \longrightarrow swing voter

Figure 13: Distribución de sesgos ideológicos

 Agregamos para cada grupo de votantes, fracción de votos que recibe A:

$$\pi_{A} = \sum_{j=1}^{J} \alpha^{j} \pi_{A}^{j} = \sum_{j=1}^{J} \alpha^{j} F^{j} (V^{j}(\mathbf{q}_{A}) - V^{j}(\mathbf{q}_{b}))$$
 (13)

- Recuerde:
 - **1** Al candidato sólo le interesa ganar (maximizar π_P)
 - Anuncio de políticas simultáneo(compromiso perfect0)
- Debemos encontrar fn de reacción para candidato (a través de CPO)

• Funciones de reacción de candidatos son simétricas:

$$0 = \sum_{j=1}^{J} \alpha^{j} f^{j} (V^{j}(\mathbf{q}_{A}) - V^{j}(\mathbf{q}_{b})) \frac{\partial (V^{j}(\mathbf{q}(A)))}{\partial (\mathbf{q}(A))}$$
(14)

$$0 = \sum_{j=1}^{J} \alpha^{j} f^{j} (V^{j}(\mathbf{q}_{A}) - V^{j}(\mathbf{q}_{b})) \frac{\partial (V^{j}(\mathbf{q}(B)))}{\partial (\mathbf{q}(B))}$$
(15)

- Por esta razón, la política elegida por cada candidato... es la misma!
 - Resultado de convergencia donde $\mathbf{q}_A = \mathbf{q}_B = \mathbf{q}$:

$$0 = \sum_{j=1}^{J} \alpha^{j} f^{j}(0) \frac{\partial V^{j}(\mathbf{q})}{\partial \mathbf{q}}$$
 (17)

 Note que la anterior solución equivale a solucionar un problema de maximización de fn de bienestar social ponderada

$$\Omega = \sum_{j=1}^{J} \omega^{j} V^{j}(\mathbf{q})$$
 (18)

- donde el peso ω^j es $\alpha^j f^j(0)$ con $f^j(0)$ la densidad del "sesgo ideológico" para cada uno de los grupos en el punto en el que ambos candidatos ofrecen la misma política
- Todos tienen un voto pero...
 - algunos más poderosos que otros: 1) grupos más numerosos, α^j mayor; 2) grupos menos ideológicos, $f^j(0)$

Figure 14: Distribución de sesgos ideológicos