Laboratorio di Analisi Numerica Introduzione a Matlab/Octave

Ángeles Martínez Calomardo amartinez@units.it

Laurea Triennale in Intelligenza Artificiale e Data Analytics A.A. 2021–2022

Matlab

- Prodotto commerciale che fornisce sofisticati strumenti di calcolo.
- È distribuito da The MathWorks (si veda il sito www.mathworks.com).
- La sua principale caratteristica è la manipolazione di matrici, come viene sottolineato dall'acronimo MATLAB che deriva da MATrix LABoratory, vale a dire "laboratorio matriciale".
- Calcolatrice scientifica evoluta.
- Linguaggio di programmazione ad alto livello.

Per avviare Matlab in ambiente Unix basta digitare il comando matlab seguito dal tasto di invio.

Octave

- Anche Octave è un ambiente integrato per il calcolo scientifico e la visualizzazione grafica come Matlab.
- È distribuito gratuitamente dalla GNU (si veda il sito www.octave.org).
- Matlab e Octave presentano delle differenze ma sono sufficientemente compatibili da permettere alla maggior parte di programmi Matlab di essere eseguiti senza modifiche in ambiente Octave e viceversa.

Per avviare Octave in ambiente Unix basta digitare il comando octave seguito dal tasto di invio.

LE INFORMAZIONI CONTENUTE IN QUESTI LUCIDI SONO VALIDE PER ENTRAMBI I PROGRAMMI

Interfaccia grafica di Matlab

L'interfaccia grafica di Matlab è costituita da 4 ambienti:

- Workspace. Una finestra che mostra il contenuto del workspace (variabili memorizzate e loro valore).
- Current directory. Una finestra sulla cartella in cui si sta lavorando, che mostra i files presenti nella cartella stessa.
- Command history. Contiene una lista di tutti i comandi digitati.
- Command window. Finestra nella quale vengono inseriti i comandi.

L'interfaccia grafica di Octave è costituita degli stessi 4 ambienti con nomi diversi:

- Variables' list. Variabili memorizzate e loro valore.
- Navigator. Una finestra sulla cartella in cui si sta lavorando, che mostra i files presenti nella cartella stessa.
- Command List. Contiene una lista di tutti i comandi digitati.
- Octave Terminal. Finestra nella quale vengono inseriti i comandi.

Command window / Octave Terminal

- La Command window/Octave Terminal permette di interagire con l'ambiente di calcolo di Matlab/Octave che si presenta come una linea di comando detta *prompt*.
- Permette di eseguire programmi (script e function) presenti in Matlab/Octave, ma anche programmi costruiti dall'utente usando il linguaggio Matlab/Octave e salvati su un file di testo con estensione .m (m-file).
- Per eseguire uno script costruito dall'utente occorre scrivere dopo il prompt il nome del file senza l'estensione .m.
- Un programma Matlab/Octave non deve essere compilato: premuto il tasto enter le istruzioni vengono interpretate.
- Per essere eseguiti i programmi devono essere presenti nella cartella di lavoro (current directory).
- Per capire qual è la cartella attuale esiste il comando pwd.
- Il comando what lista i file .m presenti nella cartella di lavoro, mentre il comando ls lista tutti i files presenti nella stessa.

Variabili e assegnazione

 In Matlab/Octave non occorre dichiarare le variabili: l'assegnazione coincide con la dichiarazione.

```
a = 2/3

a = 0.66667

b = 3/2

b = 1.5000

a*b

ans = 1
```

- Matlab/Octave crea le variabili a e b nel momento in cui viene loro assegnato un valore. Se il risultato di un'espressione non viene assegnato a nessuna variabile definita dall'utente, viene assegnato alla variabile di default ans.
- I nomi delle variabili possono essere lunghi al massimo 19 caratteri e devono iniziare con un carattere alfabetico (distingue tra maiuscole e minuscole).

Esercizio

Assegnare alla variabile A il valore 1, e scrivere a dopo il prompt. Si osservi che A ed a sono due variabili distinte.

Variabili e assegnazione

- Il comando who permette di sapere quali sono le variabili dell'utente attualmente in memoria.
- Il comando whos ne mostra anche la dimensione e l'occupazione di memoria (numero di bytes).

whos

Variables in the current scope:

Attr Name	Size	Bytes	Class
	====		
А	1×1	8	double
а	1×1	8	double
ans	1×1	8	double
b	1×1	8	double

Total is 4 elements using 32 bytes

- Le variabili possono essere cancellate utilizzando il comando clear.
- ullet Ci sono variabili predefinite come l'unità immaginaria i o il numero π .

Operazioni aritmetiche e funzioni matematiche predefinite

		- 11		•	
+	ad	d١	Ζ	Ю	ne

- sottrazione
- * prodotto
- / divisione
- ∧ elevamento a potenza

Funzione	function MATLAB
sin	sin
cos	cos
tan	tan
arcsin	asin
arccos	acos
arctan	atan
exp	exp
ln	log
\log_2	log2
\log_{10}	log10
.	abs
$\sqrt{\cdot}$	sqrt

L'istruzione format

- Permette di modificare il formato di visualizzazione dei risultati ma non modifica la precisione con cui i calcoli vengono eseguiti.
- Tutti i calcoli vengono effettuati in Matlab/Octave utilizzando i numeri in virgola mobile in doppia precisione, secondo lo standard IEEE-754r.
- I principali formati di visualizzazione dei risultati si ottengono digitando help format.

Dato il numero 1/7, alcuni formati comunemente usati sono

```
format short produce 0.1429

format short e produce 1.4286e-01

format short g produce 0.14286

format long produce 0.142857142857143

format long e produce 1.428571428571428e-01

format long g produce 0.142857142857143
```

 Gli stessi formati sono disponibili in Octave e forniscono risultati con lievi discrepanze.

Matrici e vettori

- Le variabili per Matlab/Octave hanno una struttura di tipo matriciale.
 - Gli scalari sono considerati matrici 1×1 .
 - ▶ I vettori riga sono matrici $1 \times n$.
 - ▶ I vettori colonna sono matrici $n \times 1$.
- Per definire una matrice se ne possono innanzitutto assegnare direttamente gli elementi riga a riga. Ad esempio digitando

$$>> A = [1 2 3; 4 5 6; 7 8 9]$$

si produce

Notiamo che i punto e virgola separano righe diverse.

Matrici e vettori

• L'elemento in riga i e colonna j di A si accede con A(i,j). Per la matrice A dell'esempio precedente

$$>> A(2,3)$$
ans = 6

Esercizio

Costruire una matrice 2×3 con i primi sei numeri interi come coefficienti. Azzerare gli elementi A(1,1) e A(2,2).

Soluzione.

>> A =
$$\begin{bmatrix} 1 & 2 & 3; & 4 & 5 & 6 \end{bmatrix}$$
A =

1 2 3
4 5 6

>> A(1,1) = 0;
>> A(2,2) = 0;
>> A

A =

0 2 3
4 0 6

Estrarre parti di una matrice

Si può fare tramite l'uso del carattere due punti : Ad esempio, per individuare la seconda riga di A, basta scrivere

Per individuare la terza colonna di A si scrive invece

• Per estrarre una intera sottomatrice da una matrice assegnata, basta specificare un insieme di righe e colonne. Esempio:

• Per scrivere una matrice vuota A, invece, si usa l'istruzione $A=[\]$.

Matrici

Matlab allarga una matrice quanto basta per sistemare un elemento dato.

Comandi predefiniti che operano su matrici

• Comandi che generano matrici:

```
rand(m,n) matrice m \times n con coefficienti random.

eye(n) matrice identità di ordine n.

ones(n) matrice di ordine n con coefficienti tutti uguali ad 1.

zeros(n) matrice di ordine n con coefficienti tutti uguali a 0.
```

Altri comandi importanti che operano con matrici:

```
inv(A) calcola l'inversa della matrice A;

[n,m] = size(A) restituisce il numero di righe e di colonne di A;

det(A) calcola il determinante di A.

eig(A) calcola gli autovalori di A.
```

Esercizio

Creare una matrice quadrata A di ordine 4 con tutti gli elementi uguali a 1 e calcolarne il determinante.

Che cosa succede se proviamo a calcolare l'inversa di A?

Comandi predefiniti che operano su matrici

Soluzione dell'esercizio

```
>> A = ones(4)
A =
\gg \det(A)
ans = 0
\gg inv(A)
warning: inverse: matrix singular to machine precision, rcond = 0
ans =
   Inf Inf Inf
                 Inf
   Inf Inf
            Inf
                  Inf
   Inf Inf Inf
                  Inf
   Inf Inf Inf Inf
```

Operazioni tra matrici

• Essendo A,B,C matrici con coefficienti reali ed s uno scalare, si definiscono le operazioni:

```
C = s*A prodotto di una matrice per uno scalare.

C = A^{\circ} trasposizione di una matrice.

C = A+B somma di due matrici di dimensione m \times n.

C = A-B sottrazione di due matrici m \times n.

C = A*B prodotto di A (m righe e n colonne) per B (n righe e p colonne).

C = A*B c_{ij} = a_{ij} \cdot b_{ij} (prodotto di due matrici componente a componente).
```

• Esempio:

Operazioni tra matrici: esempi

Riportiamo un esempio di somma, prodotto, e prodotto componente a componente di due matrici.

>> A =
$$\begin{bmatrix} 4 & -1 & 0; & -1 & 4 & -1; & 0 & -1 & 4 \end{bmatrix};$$

>> B = $\begin{bmatrix} 1 & 2 & 3; & -4 & -5 & -6; & 0 & 1 & 2 \end{bmatrix};$

Il carattere; usato alla fine di qualunque istruzione sopprime l'output a video.

>>
$$C = A.*B$$

 $C = 4$
 $4 -20$
 $4 -20$
 $0 -1$
 8

Vettori

- Matlab/Octave tratta i vettori come casi particolari di matrici.
- Per memorizzare il vettore riga x = [1, 2, 3, 4, 5] occorre digitare

```
x = [1 \ 2 \ 3 \ 4 \ 5];
```

mentre

```
y = [-2; 4; 12];
```

produce il vettore colonna

$$y = -2$$

$$4$$

$$12$$

- zeros(1,n) crea un vettore riga di dimensione n con tutti gli elementi nulli; zeros(n,1) idem per vettori colonna.
- Per creare un vettore riga (colonna) con elementi uguali ad 1 usiamo ones(1,n) (ones(n,1)).

Vettori

• La componente *i*-esima di un vettore si identifica con $\mathbf{x}(\mathbf{i})$. Per esempio la terza componente del precedente vettore y sarà:

 un vettore colonna si trasforma nel corrispondente vettore riga mediante trasposizione:

$$x = [-2; 4; 12]'$$

 $x =$
 -2
 4
 12

- Si può creare un vettore vuoto (cioè con zero componenti) con il comando x = [].
- La norma euclidea di un vettore x si definisce come $||x|| = \sqrt{x^T x}$. In Matlab/Octave si implementa con il comando $\operatorname{norm}(x)$.

Operazioni tra vettori

• Essendo z, u, v vettori (riga o colonna) ed s uno scalare, si definiscono le operazioni:

```
z = s*u prodotto di un vettore per uno scalare.

z = u+v somma di due vettori di dimensione n.

z = u-v sottrazione di due vettori n.

z = u *v z_i = u_i \cdot v_i (prodotto tra due vettori componente a componente).

z = u \cdot v z_i = u_i / v_i (divisione tra due vettori componente a componente).
```

• Il prodotto scalare tra due vettori colonna x e y di dimensione n: $s = x^T y = \sum_{i=1}^n x_i y_i$ si esegue in Matlab/Octave come s = x, *y

Esercizio

Si definisca il vettore colonna u di componenti (1,2) e il vettore colonna v di componenti (3,4); si calcoli u+v, u-v, il prodotto scalare di u per v e il prodotto componente a componente.

Prodotto matrice per vettore

• Se A è una matrice $n \times m$ e u un vettore colonna $m \times 1$, allora A * u è l'usuale prodotto matrice per vettore.

Esercizio

Sia
$$A = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ -1 & 3 & 0 \end{pmatrix}, \ u = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}. \ Calcolare \ w = A \cdot u.$$

Soluzione:

• Se avessimo scritto A * u, avremmo ottenuto un messaggio di errore!

Vettori con elementi equispaziati

Notazione ":"

In Matlab/Octave si possono creare vettori riga con elementi equispaziati con la notazione ":" la cui sintassi è

```
vettore = [inizio:incremento:fine]
```

dove inizio è il primo elemento del vettore, e incremento è un parametro opzionale che indica la spaziatura tra gli elementi (se omesso incremento=1).

Esempio:

```
Crea gli elementi
vettore(i) = inizio + (i-1)*incremento
    fino a quando
    vettore(i) <= fine</pre>
```

```
w = [0:0.2:1]

w = 0.00000 \quad 0.20000 \quad 0.40000 \quad 0.60000 \quad 0.80000 \quad 1.00000
```

Vettori con elementi equispaziati

Comando linspace

Un'alternativa ai due punti è il comando:

```
linspace(inizio,fine,numero di punti)
```

- Il comando linspace genera un vettore riga con un numero prefissato di punti equispaziati compresi tra inizio (primo elemento) e fine (ultimo elemento del vettore).
- Se il numero di punti è omesso se ne creano 100.
- Esempi:

```
>> u = linspace (0,8,5)

u =

0 2 4 6 8

>> v = linspace (-5,5,6)

v =

-5 -3 -1 1 3 5

>> v = linspace (-5,5,5)

v =

-5.00000 -2.50000 0.00000 2.50000 5.00000
```

Vettori con elementi equispaziati

Esercizio

Creare il vettore u di componenti $u_i = -3 + 0.5 \cdot i$, i = 0, ..., 6, utilizzando sia la notazione : che il comando linspace.

Soluzione.

```
>> u = [-3:0.5:0]

u =

-3.00000 -2.50000 -2.00000 -1.50000 -1.00000 -0.50000

0.00000

>> u = linspace(-3,0,7)

u =

-3.00000 -2.50000 -2.00000 -1.50000 -1.00000 -0.50000

0.00000
```

• Un'istruzione Matlab/Octave di uso molto comune è length che calcola il numero di elementi di un vettore.

```
>> length(u)
ans = 7
```

Uso vettoriale delle funzioni elementari

Le funzioni matematiche predefinite in Matlab/Octave sono vettoriali.
 Esempi:

```
>> u = [1:1:6]

u =

1 2 3 4 5 6

>> log(u)

ans =

0.00000 0.69315 1.09861 1.38629 1.60944 1.79176

>> exp(u)

ans =

2.7183 7.3891 20.0855 54.5982 148.4132 403.4288
```

 Per le operazioni prodotto e divisione bisogna usare il punto per lavorare vettorialmente.

```
>> u = -1:0.5:1
             -0.5000
                        0.0000
                                  0.5000
   -1.0000
                                            1.0000
\gg u.^2
ans =
   1.00000
             0.25000
                       0.00000
                                 0.25000
                                           1.00000
>> 1./u
ans =
         -2 Inf
                             1
```

Uso vettoriale delle funzioni elementari

Esercizio

Calcolare il seno e il coseno dei seguenti angoli: $\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$.

Grafica in Matlab/Octave: comando plot

- Il comando plot(x,y) traccia il grafico di una serie di dati contenuti in due vettori x (il vettore delle ascisse) e y (il vettore delle ordinate) di lunghezza n.
- I due vettori x e y devono avere la stessa lunghezza: il grafico viene disegnato unendo tali punti con dei segmenti.
- Si possono utilizzare tanti comandi opzionali con cui modificare le caratteristiche del grafico:
 - aggiungere un titolo (title),
 - inserire etichette sugli assi (xlabel, ylabel)
 - selezionare tipo di linea, colore e spessore, ecc
- L'help plot fornisce tutte le indicazioni a tal proposito.

Grafica in Matlab/Octave: comando plot

Esempio 1

```
x = linspace(1,2,101);

y = (x-1.5).^2;

plot(x,y)
```


Grafica in Matlab/Octave: comando plot

Esempio 2

```
x = linspace(0, 2*pi, 100);
plot(x, sin(x), 'r-');
hold on;
plot(x, cos(x), 'b-');
plot([0 2*pi],[0,0],'k-');
hold off
legend ('sin \times', 'cos \times');
a \times is ([0 \ 2*pi \ -1 \ 1])
                                   0.8
                                                                   sin x
                                                                    cos x
                                   0.6
                                   0.4
                                   0.2
                                   -0.2
                                   -0.4
                                   -0.6
                                   -0.8
                                                  2
```

Grafici in scala semilogaritmica

- In molte aree scientifiche vengono usati grafici in scala semilogaritmica.
- Matlab/Octave fornisce tre comandi a tale proposito:
 - semilogy: equivalente a plot ma con l'asse delle ordinate in scala logaritmica
 - semilogx: idem con l'asse delle ascisse in scala logaritmica
 - loglog: entrambi gli assi in scala logaritmica
- Noi ricorreremo ai grafici in scala semilogaritmica, mediante il comando semilogy, nella realizzazione dei grafici che ci serviranno a studiare gli errori commessi dai metodi numerici.

Grafici in scala semilogaritmica: comando semilogy

- Supponiamo di voler plottare le coppie $(t, 10^{-t})$ per $t = 0, \dots, 15$.
- Il commando plot non mostra adeguatamente la differenza tra i valori poiché hanno ordini di grandezza troppo diversi.
- Questa differenza è invece palese nel grafico ottenuto con semilogy.

Matlab/Octave come linguaggio di programmazione

- Matlab/Octave può essere considerato un linguaggio di programmazione alla stregua di Fortran, di C, ecc.
- Non viene compilato ma interpretato (poco efficiente per calcoli intensivi).
- Un programma Matlab/Octave deve essere salvato in un m-file (file avente estensione .m).
- I programmi Matlab/Octave possono essere di due tipi:
 - ► script
 - ▶ function
- Strutture di programmazione basilari in Matlab/Octave:
 - Istruzione condizionale (if else end)
 - Cicli (for e while)

|| costrutto for

• La sintassi del costrutto for è la seguente:

```
for k = vettore
    istruzioni
end
```

- I comandi che si trovano tra for e end sono eseguiti per tutti i valori di k che sono nell'vettore.
- Esempio: calcolare la somma dei primi 10 numeri interi positivi usando un ciclo for.

```
somm=0;
for n=1:10
somm=somm+n;
end
```

Possiamo usare più cicli for innestati.

Matlab/Octave come linguaggio di programmazione

Operatori logici e di relazione in Matlab/Octave

Operatori logici		Opera	Operatori di relazione		
& & ~	AND OR NOT	== ~= <	uguale diverso minore		
		>	maggiore		
		<=	minore o uguale		
		>=	maggiore o uguale		

- Il valore restituito dagli operatori può essere vero o falso e MATLAB utilliza il numero 1 per indicare il valore vero e 0 per il valore falso.
- Se, ad esempio, poniamo x=5; e y=1 e scriviamo la proposizione x < y,
 MATLAB risponde con ans = 0 indicando che il confronto esprime una condizione falsa.

| costrutto while

• Per il ciclo while la sintassi è data da:

```
while espressione logica
    istruzioni
end
```

- Questo ciclo è usato quando le istruzioni devono essere ripetute fino a quando rimane vera l'espressione logica (numero di volte indeterminato a priori).
- Esempio:

• Il codice precedente calcola il fattoriale di 9!

Esercizio

Calcolare la somma dei primi n numeri interi positivi utilizzando un ciclo while.

Esempio di uso del costrutto while

Per trovare la soluzione dell'equazione $x = \cos x$, scriviamo le istruzioni:

che producono il risultato

```
\times \text{new} = 0.739085136646572
```

|| costrutto if-else-end

```
if espressione logica istruzioni end if a > b maxval = a end
```

```
if espressione logica
    istruzioni
else
    istruzioni
end

if x > 0
    a = sqrt(x)
else
    a = 0
end
```

```
if espressione logica 1
    istruzioni
elseif espressione logica 2
    istruzioni
...
else
    istruzioni
end
```

Esempio di if-else-end e for

Il seguente codice costruisce una matrice

```
\begin{array}{l} \text{for } m = 1 \colon k \\ \text{for } n = 1 \colon k \\ \text{if } m \Longrightarrow n \\ \text{a}(m,n) = 2; \\ \text{elseif abs}(m-n) \Longrightarrow 2 \\ \text{a}(m,n) = 1; \\ \text{else} \\ \text{a}(m,n) = 0; \\ \text{end} \\ \text{end} \\ \end{array}
```

Per k = 5 si avrebbe:

Programmi in Matlab/Octave: script

- È una semplice raccolta di istruzioni o comandi Matlab/Octave senza interfaccia di input/output.
- Ad esempio, l'insieme di istruzioni

```
a=1; b=-3; c = 2;
delta = b^2-4*a*c;
if delta < 0
    disp('radici complesse')
else
    x1 = (-b-sqrt(delta))/(2*a)
    x2 = (-b+sqrt(delta))/(2*a)
end</pre>
```

una volta salvato in un m-file, di nome eq2grado.m diventa uno script.

• Per eseguirlo, è sufficiente scrivere dopo il prompt il nome senza estensione:

```
>> eq2grado
x1 = 1
x2 = 2
```

Programmi in Matlab/Octave: function

- Come lo script si definisce in un m-file, ad esempio nomefun.m
- La sua definizione inizia con la parola chiave function:

```
function[out1, ..., outn] = nomefun(in1, ..., inm)
```

- out1, ···, outn sono i parametri di output (opzionali);
- in1, ···, inm sono i parametri di input.
- Le variabili all'interno della **function** sono locali, il loro valore viene perduto al termine dell'esecuzione.
- Una funzione può esser invocata o da command window o da uno script.
- La <u>function</u> termina o all'ultima sua istruzione oppure quando si incontra per la prima volta il comando <u>return</u>.

Programmi in Matlab/Octave

Esempio

```
function [x1,x2,err] = radici(a,b,c)
err = 0;
delta = b^2-4*a*c;
if delta < 0
    err = 1; x1=0; x2=0;
   return
else
   x1 = (-b-sqrt(delta))/(2*a);
   x2 = (-b+sqrt(delta))/(2*a);
end</pre>
```

```
file radici.m
```

```
a=1; b=-3; c = 2;
[x1,x2,err] = radici(a,b,c)
```

```
file scriptradici.m
```

```
>> scriptradici

x1 = 1

x2 = 2

err = 0
```

```
>> delta error: 'delta' undefined near line 99 column 1
```

Gestione dell'output su video

Comando disp

• Il comando disp serve per visualizzare una stringa di caratteri (testo racchiuso tra apici), o una variabile senza che ne venga visualizzato il nome.

```
>> x=1:2:19;
>> disp(x)
    1     3     5     7     9     11     13     15     17     19

>> disp('Questa e'' una stringa');
Questa e' una stringa
```

- Si possono visualizzare più dati in un unico comando disp:
 - Stringhe e variabili numeriche insieme

```
>> disp(['Convergenza in ',num2str(iter),' iterazioni']);
Convergenza in 23 iterazioni
```

- Il comando num2str converte un numero in una stringa.
 - Più variabili numeriche

```
>> disp([val,err,iter])
2.1099e+00 1.0000e-10 2.3000e+01
```

• L'output del comando disp finisce sempre con un avanzamento di linea.

Gestione dell'output su video

Comando fprintf

 Per visualizzare un insieme di dati di output con un certo formato si usa il comando fprintf con i descrittori di formato:

Descrittore	Significato
%f	formato decimale (virgola fissa)
%e	notazione esponenziale
%i o %d	notazione per interi con segno
%g	la notazione piú compatta tra %f ed %e
%s	stringa di caratteri
\n	avanzamento di linea
\t	tabulazione
\b	backspace

• Tra % e il tipo di formattazione è possibile precisare il numero minimo di caratteri da stampare e il numero di cifre decimali dopo il punto.

Valore	%6.3f	%6.0f	%6.3e	%6.3g	%6.3d	%d
2	2.000	2	2.000e+000	2	002	2
0.02	0.020	2	2.000e-002	0.02	000	0
200	200.000	200	2.000e+002	200	200	200
sqrt(2)	1.414	1	1.414e + 000	1.41	001	1

Come misurare la durata di un programma

- Per confrontare due programmi che risolvono lo stesso problema è utile misurare il tempo **totale** di CPU impiegato per eseguirli.
- In Matlab/Octave questo tempo si misura in secondi con il comando: cputime.

Esempio:

```
>> A = rand(5000); t = cputime; det(A); tfin = cputime; cpu = tfin - t
```

Esercizio

Si crei una matrice quadrata random A di dimensione variabile da n=200 a n=8000 (con passo 200), e un vettore v lungo n. Misurare il tempo di esecuzione del prodotto A*v.

Prodotto matrice vettore

Soluzione

Scriviamo lo script matvet.m

Grafico dei tempi

Usando il comando

otteniamo il grafico del tempo di esecuzione dell'algoritmo in funzione della dimensione della matrice.

Come misurare la durata di un programma (2)

- Per misurare il tempo impiegato da Matlab per eseguire un determinato programma si può usare il comando tic seguito dal comando toc.
- Il tempo misurato è espresso in secondi.

Esempio:

```
>> A = rand(5000); t = tic; det(A); time=toc(t); time = 23.416
```