1.1.4 Измерение интенсивности радиационного фона

Анна Назарчук Б02-109

1 Аннотация

В работе измеряется интенсивность радиационного фона, большую часть которого составляет поток космических частиц. Он изменяется со временем случайным образом и фиксируется при помощи счетчика Гейгера-Мюллера (СТС-6). Применяются методы обработки экспериментальных данных для изучение статистических закономерностей при измерении интенсивности радиационного фона.

2 Теоретические сведения

Регистрация частиц однородна по времени и каждое последующее событие не зависит от предыдущего, поэтому количество отсчетов в одном опыте подчиняются распределнию Пуассона, которое при больших ислах стремится к нормальному. Стандартная ошибка отдельного измерения через измеренное значение n:

$$\sigma = \sqrt{n} \tag{1}$$

Отсюда следует, что результат измерений с высокой точностью записывается так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измерениях среднее значение числа частиц за одно измерений равно:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

Стандартную ошибку измерения можно оценить по формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}$$
 (4)

Ближе всего к значению $\sigma_{\text{отд}}$ лежит величина $\sqrt{\overline{n}}$, то есть:

$$\sigma_{\text{отд}} \approx \sqrt{\overline{n}}$$
 (5)

Величина \overline{n} не вполне точно совпадает с истинным значением n_0 и является случайной величиной. Стандартная ошибка отклонения \overline{n} от n_0 может быть определена так:

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}$$
 (6)

Относительная ошибка отдельного измерения (ожидаемое отличие любого из n_i от n_0):

$$\varepsilon_{\text{отд}} = \frac{\sigma_{\text{отд}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогично определяется относительная ошибка в определении среднего по всем измерениям значения \overline{n} :

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} = \frac{\sigma_{\text{отд}}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}$$
(8)

3 Оборудование

Космические лучи обнаруживают с помощью ионизации, которую они производят, используя счетчик Гейгера-Мюллера. Схема его подключения приведена на рисунке 1. Счетчик представляет собой наполненный гахом сосуд с двумя электродами. Частицы космических лчей ионизируют газ, выбивают электроны из стенок сосуда. Те, сталкиваясь с молекулами газа, выбивают из них электроны. Таким образом, получается лавина электронов, следовательно, через счетчик резко увеличивается ток.

Погрешность измерения потока частиц с помощью счетчика Гейгера-Мюллера мала по сравнению с изменениями самого потока, то есть его флуктуациями.

Рис. 1: Схема включения счетчика

Таблица 1: Число срабатываний счетчика за 20 с

№ опыта :	1	2	3	4	5	6	7	8	9	10
0:	27	29	24	32	30	35	20	24	27	22
10:	30	29	31	19	25	26	31	20	28	33
20:	18	35	22	30	32	35	27	25	25	18
30:	39	26	30	42	24	37	31	27	32	25
40 :	26	25	22	34	29	24	24	31	28	29
50:	31	31	27	28	18	33	21	28	27	21
60:	32	21	42	19	33	27	31	27	23	26
70:	28	26	29	25	39	33	36	26	18	29
80:	25	27	34	27	25	26	36	21	34	29
90:	20	32	31	27	17	30	24	25	22	28
100:	25	33	40	31	28	30	27	33	26	27
110:	26	23	25	31	30	37	28	29	28	21
120:	23	33	29	31	23	29	30	27	17	31
130:	24	29	20	28	40	20	25	29	31	32
140:	30	15	24	29	28	26	36	24	20	31
150:	27	20	27	32	25	34	34	32	28	34
160:	31	24	20	25	17	31	33	21	33	26
170:	28	24	34	34	26	25	27	16	20	27
180:	34	27	22	23	32	26	25	25	30	18
190:	35	27	31	38	31	27	25	25	42	38

4 Результаты измерений и обработка данных

Результаты измерения числа частиц представлены в таблице 1. Распределение числа срабатываний счетчика для 10 с и 40 с представлено в таблицах 2 и 3 соответсвенно.

Представим результаты распределений в виде гистограммы, гистограмма распределения для $\tau=40$ с обозначена синим цветом (рис. 2)

Определим среднее число частиц за 10 и 40 с, $N_{10}=400,\ N_{40}=100$:

$$\overline{n_{10}} = \frac{1}{N_{10}} \sum_{i=1}^{N_{10}} n_i = \frac{5557}{400} = 13.893$$

$$\overline{n_{40}} = \frac{1}{N_{40}} \sum_{i=1}^{N_{40}} n_i = \frac{5557}{100} = 55.57$$

Таблица 2: Данные для построения гистограммы распределения числа срабатываний счетчика за 10 с

срабатывании счетчика за то с						
Число импульсов n_i	4	5	6	7	8	
Число случаев	1	1	1	8	14	
Доля случаев w_n	0.0025	0.0025	0.0025	0.002	0.035	
Число импульсов n_i	9	10	11	12	13	
Число случаев	23	28	43	30	35	
Доля случаев w_n	0.0575	0.07	0.1075	0.075	0.0875	
Число импульсов n_i	14	15	16	17	18	
Число случаев	48	42	32	31	20	
Доля случаев w_n	0.12	0.105	0.08	0.0775	0.05	
Число импульсов n_i	19	20	21	22	23	
Число случаев	11	13	7	7	1	
Доля случаев w_n	0.0275	0.0325	0.0175	0.0175	0.0025	
Число импульсов n_i	24	25	26	27	28	
Число случаев	0	1	2	0	1	
Доля случаев w_n	0	0.0025	0.005	0	0.0025	

Таблица 3: Данные для построения гистограммы распределения числа срабатываний счетчика за $40~\mathrm{c}$

Число импульсов n_i	43	44	45	47	48	49	50
Число случаев	2	1	3	4	5	6	4
Доля случаев w_n	0.02	0.01	0.03	0.04	0.05	0.06	0.04
Число импульсов n_i	51	52	53	54	55	56	57
Число случаев	7	6	6	5	3	5	5
Доля случаев w_n	0.07	0.06	0.06	0.05	0.03	0.05	0.05
Число импульсов n_i	58	59	60	61	62	63	65
Число случаев	7	4	5	5	4	2	2
Доля случаев w_n	0.07	0.04	0.05	0.05	0.04	0.02	0.02
Число импульсов n_i	66	67	68	69	71	72	80
Число случаев	1	2	1	1	1	2	1
=							

Рис. 2: Гистограммы для $\tau=10$ с и $\tau=40$ с

Найдем среднеквадратичную ошибку отдельного измерения за 10 и 40 с по формуле 4:

$$\sigma_{\text{отд10}} = \sqrt{\frac{1}{N_{10}} \sum_{i=1}^{N_{10}} (n_i - \overline{n_{10}})^2} = 3.78$$

$$\sigma_{\text{отд40}} = \sqrt{\frac{1}{N_{40}} \sum_{i=1}^{N_{40}} (n_i - \overline{n_{40}})^2} = 7.001$$

Убедимся в справедливости формулы 5:

$$3.78 \approx \sqrt{13.893} = 3.73$$

$$7.001 \approx \sqrt{55.57} = 7.45$$

Определим долю случаев, когда отклонения от среднего значения не превышают $\sigma_{\text{отд}10}$, $2\sigma_{\text{отд}10}$ и сравним с теоритическими значениями:

Определим аналогичную долю случаев для $t=40\ \mathrm{c}$ и сравним с теоритическими значениями:

Найдем среднеквадратичное отклонение для средних значений по формуле **6**:

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_{\text{отд10}} = \pm 3.78$	261	65	68
$\pm 2\sigma_{\text{отд10}} = \pm 7.56$	385	96	95

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_{\text{отд10}} = \pm 7.001$	72	72	68
$\pm 2\sigma_{\text{отд10}} = \pm 14.002$	96	96	95

$$\sigma_{\overline{n_{10}}} = \frac{1}{N_{10}} \sqrt{\sum_{i=1}^{N_{10}} (n_i - \overline{n_{10}})^2} = \frac{\sigma_{\text{отд10}}}{\sqrt{N_{10}}} = 0.19$$

$$\sigma_{\overline{n_{40}}} = \frac{1}{N_{40}} \sqrt{\sum_{i=1}^{N_{40}} (n_i - \overline{n_{40}})^2} = \frac{\sigma_{\text{отд,40}}}{\sqrt{N_{40}}} = 0.7$$

И получим окончательный результат для n_{10} и n_{40} :

$$n_{10} = \overline{n_{10}} \pm \sigma_{\overline{n_{10}}} = 13.893 \pm 0.19$$

$$n_{40} = \overline{n_{40}} \pm \sigma_{\overline{n_{40}}} = 55.57 \pm 0.7$$

5 Вывод

Получены случайно изменяющиеся со временем данные об интенсивности потока космических частиц. Применены методы обработки данных для изучения статистических закономерностей при измерении интенсивности радиационного фона.