Máster Universitario en Computación Paralela y Distribuida Algoritmos Matriciales Paralelos en Ingeniería

Tema 4.

Cálculo de valores propios generalizados: el Algoritmo iterativo QZ

Bibliografía:

"Matrix Computations". G.Golub & C. Van Loan. Baltimore; London: Johns Hopkins University Press, 1996 (u otra edición del libro)

Lecturas recomendadas:

"Matrix Computations". G.Golub & C. Van Loan.

Capítulo 7. Punto 7.7

El problema generalizado de valores propios

Definiciones y conceptos básicos

Sean $A \in C^{n \times n}$, $B \in C^{n \times n}$, $\lambda \in C$. $A - \lambda B \in C^{n \times n}$ se denomina *pencil*

Valores propios del *pencil* $A - \lambda B$: $\lambda(A, B) = \{z \in C : \det(A - zB) = 0\}$

Si $\lambda \in \lambda(A, B)$ y $Ax = \lambda Bx$, con $x \neq 0$, entonces se dice que x es un vector propio de $A - \lambda B$

Si rank(B) = n, $A - \lambda B$ tiene n valores propios

Si rank(B) < n, $\lambda(A, B)$ puede ser finito, vacío o infinito

Si
$$0 \neq \lambda \in \lambda(A, B)$$
 entonces $\frac{1}{\lambda} \in \lambda(B, A)$

Si B es no singular $\lambda(A, B) = \lambda(B^{-1}A, I) = \lambda(B^{-1}A)$

• Proposición: Descomposición Generalizada de Schur

Sean $A \in C^{n \times n}$, $B \in C^{n \times n}$.

Existen matrices unitarias Q y Z tales que $Q^HAZ = T$ y $Q^HBZ = S$ son triangulares superiores.

Si existe algún k tal que t_{kk} y s_{kk} son ambos cero, entonces $\lambda(A,B) = C$.

Si no: $\lambda(A, B) = \{t_{ii} / s_{ii} : s_{ii} \neq 0\}$

• Proposición: Descomposición Real Generalizada de Schur

Sean $A \in \mathfrak{R}^{n \times n}$, $B \in \mathfrak{R}^{n \times n}$.

Existen matrices ortogonales Q y Z tales que $Q^TAZ = T$ es cuasi-triangular superior y $Q^TBZ = S$ es triangular superior.

B =

-2

1

4

6

3 -1

2

>> eig(C)

ans =

-3.6644

0.7568

-0.6924

Ejemplo

>> [AA,BB,Q,Z]=qz(A,B)

$$AA =$$

$$BB =$$

$$Q =$$

$$-0.9149 -0.3308 -0.2315$$

-3.6644

0.7568

-0.6924

El algoritmo QZ: caso real. Ideas y funcionamiento

Idea básica para el cálculo de valores y vectores propios

Transformación que conserva los autovalores

Transformación que conserva los autovalores

 \boldsymbol{A}

 \rightarrow

Forma condensada

Forma canónica

Idea básica del algoritmo QZ:

- 1. Reducción simultánea (en un número finito de pasos) de la matriz A a la forma de Hessenberg superior y de la B a la forma triangular superior.
- 2. Deflactar el problema, si es posible
- 3. Reducción simultánea, mediante un proceso iterativo, de la matriz A, en forma de Hessenberg superior, y de la matriz B, en forma triangular superior, a la forma triangular superior

Paso 1

$$Q^T \mid B \mid Z =$$

Paso 2

Paso 3

$$Q^T$$
 A $Z=$ T

$$Q^T$$
 B $Z=$ S

1. Reducción simultánea (en un número finito de pasos) de la matriz A a la forma de Hessenberg superior y de la B a la forma triangular superior.

1.1 Calcular U tal que U^TB sea triangular superior y construir U^TB y U^TA

1.2 Reducir a la forma de Hessenberg superior manteniendo la estructura triangular superior de B y los valores propios generalizados del par (A,B)

1.2 Reducir a la forma de Hessenberg superior manteniendo la estructura triangular superior de B y los valores propios generalizados del par (A,B)

$$B = BZ_{45} = \begin{cases} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \end{cases}$$

$$B = Q^{T}_{34}B = \begin{cases} x & x & x & x \\ 0 & x & x & x \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \end{cases}$$

1.2 Reducir a la forma de Hessenberg superior manteniendo la estructura triangular superior de B y los valores propios generalizados del par (A,B)

$$A = Q^{T}_{45}A = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & x & x & x \end{bmatrix}$$

$$B = Q^{T}_{23}B = \begin{bmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & x & x \end{bmatrix}$$

$$A = AZ_{45} = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \end{bmatrix}$$

$$B = BZ_{45} = \begin{bmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & 0 & x \end{bmatrix}$$

$$A = Q^{T}_{34}A = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ 0 & 0 & \mathbf{x} & \mathbf{x} & \mathbf{x} \end{bmatrix}$$

$$B = Q^{T}_{34}B = \begin{bmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ 0 & 0 & 0 & 0 & \mathbf{x} \end{bmatrix}$$

1.2 Reducir a la forma de Hessenberg superior manteniendo la estructura triangular superior de B y los valores propios generalizados del par (A,B)

$$A = AZ_{34} = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & x & x & x \end{bmatrix}$$

$$B = BZ_{34} = \begin{bmatrix} x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x \\ 0 & 0 & 0 & 0 & x \end{bmatrix}$$

$$B = BZ_{34} = \begin{cases} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \end{cases}$$

$$B = Q^{T}_{34}B = \begin{cases} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \end{cases}$$

$$B = BZ_{45} = \begin{cases} x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \\ 0 & 0 & 0 & x \\ 0 & 0 & 0 & 0 \end{cases}$$

Algoritmo: Reducción a las formas Hessenberg-Triangular

```
Entradas: A \in \Re^{n \times n}, B \in \Re^{n \times n}
Salidas: A = Q^T A Z \in \Re^{n \times n}, Hessenberg superior, y B = Q^T B Z \in \Re^{n \times n}, triangular superior
Calcular Q ortogonal tal que Q^TB sea triangular superior.
B = Q^T B; \quad A = Q^T A;
Para i = 1, 2, ..., n - 2
     Para i = n, n - 1, ..., j + 2
          %% Anular los elementos de A
           [c,s] = Givens(A(i-1,j),A(i,j))
           A(i-1:i, j:n) = AplicaRotacionPorFilas(A(i-1:i, j:n), c, s)
           B(i-1:i,i-1:n) = AplicaRotacionPorFilas(B(i-1:i,i-1:n),c,s)
           %% Anular los elementos de B
           [c,s] = Givens(B(i,i-1),B(i,i));
           B(1:i,i-1:i) = AplicaRotacionPorColumnas(B(1:i,i-1:i),c,s)
           A(1:n,i-1:i) = AplicaRotacionPorColumnas(A(1:n,i-1:i),c,s)
     Finpara
Finpara
```

2. Deflactar el problema, si es posible

2.1 Matriz de Hessenberg no es irreducida

y $A - \lambda B$ se convierte en $(A_{11} - \lambda B_{11})$ y $(A_{22} - \lambda B_{22})$

2.2 Matriz triangular superior no es singular

Se puede reducir al primer caso mediante transformaciones de Givens aplicadas de forma bilateral.

2.2 Deflactar el problema, si matriz triangular superior no es singular

$$A = Q^{T}_{34}A = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \end{bmatrix}$$

$$B = BZ_{23} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} \end{bmatrix}$$

$$\mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{x} & \mathbf{x} \end{bmatrix}$$

$$A = Q^{T}_{45}A = \begin{bmatrix} x & x & x & x & x \\ x & x & x & x & x \\ 0 & x & x & x & x \\ 0 & 0 & x & x & x \\ 0 & 0 & x & x & x \end{bmatrix}$$

2.2 Deflactar el problema, si matriz triangular superior no es singular

Y el problema se ha transformado al caso ya resuelto en que la Matriz de Hessenberg no es irreducida

3. Reducción simultánea, mediante un proceso iterativo, de la matriz A, en forma de Hessenberg superior, y de la matriz B, en forma triangular superior, a la forma triangular superior

- En esta etapa se parte de matrices A, Hessenberg superior irreducida, y B, triangular superior.
- Idea básica:

Aplicar el algoritmo iterativo QR (un paso de Francis) a la matriz AB^{-1} (Hessenberg superior) sin llegar a formar nunca explícitamente AB^{-1}

- Se aplica un procedimiento de tipo $Q^TAZ \rightarrow A'$ y $Q^TBZ \rightarrow B'$ que reduzca A y B a la forma triangular superior.
- En cada paso se verifica $A'B'^{-1} = (Q^TAZ)(Q^TBZ)^{-1} = Q^TAZZ^TB^{-1}Q = Q^T(AB^{-1})Q$, siendo Q la matriz con la que hay que iterar en el paso de Francis del algoritmo iterativo QR
- En lugar de calcular explícitamente la Q, se busca una matriz $P/Pe_1=Qe_1$, y luego se reduce la matriz $P^T(AB^{-1})P$ a la forma de Hessenberg superior mediante transformaciones ortogonales.
- El teorema de la Q implícita garantiza que el resultado así obtenido es $Q^T(AB^{-1})Q$
- Se puede probar que en el límite las matrices A y B tienden a la forma triangular superior.

3. Reducción simultánea, mediante un proceso iterativo, de la matriz A, en forma de Hessenberg superior, y de la matriz B, en forma triangular superior, a la forma triangular superior

Funcionamiento del algoritmo

Functionamiento del algoritmo
$$Sea M = AB^{-1} \in \Re^{n \times n}, \text{ y sean } a \text{ y } b \text{ los valores propios de } \begin{bmatrix} M_{n-1,n-1} & M_{n-1,n} \\ M_{n,n-1} & M_{n,n} \end{bmatrix} \qquad Sea v = (M - aI)(M - bI)e_1 = \begin{bmatrix} \alpha \\ \beta \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Obsérvese que v puede calcularse en O(1) sin formar explícitamente las matrices $M \vee (M - aI)(M - bI)$

Sea P_0 una matriz de Householder tal que $P_0v = ke_1$

Obsévese que $(P_0A)(P_0B)^{-1} = P_0(AB^{-1})P_0^{T}$

3. Reducción simultánea, mediante un proceso iterativo, de la matriz A, en forma de Hessenberg superior, y de la matriz B, en forma triangular superior, a la forma triangular superior

• Ahora basta con restaurar las matrices A y B a la forma Hessenberg-Triangular mediante transformaciones ortogonales. Con ello que AB^{-1} tiene de nuevo la forma de Hessenberg superior:

Mediante dos transformaciones de Householder, Z_1 y Z_2 devolver a B la forma triangular. Las transformaciones hay que aplicarlas también a A:

Mediante una transformación de Householder, P_1 devolver a la primera columna de A la forma de Hessenberg superior. La transformación hay que aplicarlas también a B:

Se continua así hasta devolver a la matriz *A* la forma de Hessenberg superior y a *B* la forma triangular superior.

Algorithm 7.7.2 (The QZ Step) Given an unreduced upper Hessenberg matrix $A \in \mathbb{R}^{n \times n}$ and a nonsingular upper triangular matrix $B \in \mathbb{R}^{n \times n}$, the following algorithm overwrites A with the upper Hessenberg matrix Q^TAZ and B with the upper triangular matrix Q^TBZ where Q and Z are orthogonal and Q has the same first column as the orthogonal similarity transformation in Algorithm 7.5.1 when it is applied to AB^{-1}

```
Let M = AB^{-1} and compute (M - aI)(M - bI)e_1 = (x, y, z, 0, ..., 0)^T
       where a and b are the eigenvalues of M's lower 2-by-2.
for k = 1:n-2
       Find Householder Q_k so Q_k | x y z|^T = [*00]^T
       A = \operatorname{diag}(I_{k-1}, Q_k, I_{n-k-2})A
       B = \operatorname{diag}(I_{k-1}, Q_k, I_{n-k-2})B
       Find Householder Z_{k1} so
                \begin{bmatrix} b_{k+2,k} & b_{k+2,k+1} & b_{k+2,k+2} \end{bmatrix} Z_{k1} = \begin{bmatrix} 0 & 0 & * \end{bmatrix}.
       A = A \operatorname{diag}(I_{k-1}, Z_{k1}, I_{n-k-2})
       B = B \operatorname{diag}(I_{k-1}, Z_{k1}, I_{n-k-2})
       Find Householder Z_{k2} so
                \begin{bmatrix} b_{k+1,k} & b_{k+1,k+1} \end{bmatrix} Z_{k2} = \begin{bmatrix} 0 & * \end{bmatrix}.
       A = A \operatorname{diag}(I_{k-1}, Z_{k2}, I_{n-k-1})
       B = B \operatorname{diag}(I_{k-1}, Z_{k2}, I_{n-k-1})
       x = a_{k+1,k}; y = a_{k+1,k}
       if k < n-2
               z=a_{k+3,k}
        end
end
Find Householder Q_{n-1} so Q_{n-1} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} * \\ 0 \end{bmatrix}
A = \operatorname{diag}(I_{n-2}, Q_{n-1})A
B = \operatorname{diag}(I_{n-2}, Q_{n-1})B
Find Householder Z_{n-1} so
        \begin{bmatrix} b_{n,n-1} & b_{nn} & | Z_{n-1} = [0 *] \end{bmatrix}
A = A \operatorname{diag}(I_{n-2}, Z_{n-1})
B = B \operatorname{diag}(I_{n-2}, Z_{n-1})
```

This algorithm requires $22n^2$ flops. Q and Z can be accumulated for an additional $8n^2$ flops and $13n^2$ flops, respectively.

Algoritmo iterativo QZ (completo)

Calcular p mínimo y q máximo para que

 A_{22} sea Hessenberg superior irreducida y B_{22} sea triangular superior

 A_{33} esté en forma quasi-triangular

Mientras q < n

- 1. Aplicar un paso básico del Algoritmo Iterativo QZ a A_{22} y B_{22}
- 2. Recalcular p y q