Speech intelligibility measurement

A latent variable approach on utterances' transcriptions

Jose Rivera¹, Sven de Maeyer², and Steven Gillis³

- Department of Training and Education Sciences, University of Antwerp, Antwerp, Belgium E-mail: JoseManuel.RiveraEspejo@uantwerpen.be (corresponding author)
- Department of Training and Education Sciences,
 University of Antwerp, Antwerp, Belgium
 E-mail: sven.demaeyer@uantwerpen.be
- 3 Computational Linguistics, and Psycholinguistics Research Centre University of Antwerp, Antwerp, Belgium E-mail: steven.gillis@uantwerpen.be

August 4, 2022

Abstract

Contents

1 Ir	ntroduction	4
Bibli	ography	6

List of Figures

List of Tables

1 Introduction

Intelligible speech can be defined as the extent in which the elements in a speaker's acoustic signal, e.g. phonemes or words, can be correctly recovered by a listener [11, 14, 23, 24]. Intelligible spoken language carries an important societal value, as its attainment requires all core components of speech perception, cognitive processing, linguistic knowledge, and articulation to be mastered [11]. In that sense, speech intelligibility is considered a milestone in children's language development, and more practically, it is qualified as the ultimate checkpoint for the success of speech therapy, and the 'gold standard' for assessing the benefit of cochlear implantation [4].

Multiple approaches can be taken to quantify speech intelligibility [1, 2, 10, 13], but among them, objective rating methods on stimuli recovered from spontaneous speech tasks have received recent attention [2, 13]. In objective rating methods, listeners transcribe children's utterances orthographically (or phonetically), and use such information to construct an intelligibility score. The construction of the score can be done in many ways, e.g. counting the number of (un)intelligible syllables or words [10, 15], or calculating the entropy of transcriptions, a measure that expresses the degree of (dis)agreement in the data [2, 21]. In that sense, the method tries to infer intelligibility from the extent in which a set of transcribers, can identify the word contained in an utterance [2].

As the literature suggests, objective rating procedures are thought to produce more valid¹ and reliable² scores than any other available procedure [2, 8], as the method does not hinge in the use or production of a *subjective rating scale*, i.e. a scale based on a personal perception of the child's intelligibility. Moreover, the previous advantages are further emphasized by the greater level of ecological validity of the stimuli, which comes from spontaneous speech tasks rather than contextualized utterances or reading at loud tasks [10, 6].

Although the literature is clear on the benefits of the *objective rating* methods to measure *speech* intelligibility [1, 2, 13], we believe the statistical approaches used to model such data still face three important issues, that comes as a detriment to the sophistication of the measurement procedure.

¹validity is understood as the extent to which scores are appropriate for their intended interpretation and use [16, 22].

²reliability is though as the extend to which a measure would give us the same result over and over again [22], i.e. measure something, free from error, in a consistent way.

Bibliography

- [1] Boonen, N., Kloots, H. and Gillis, S. [2020]. Rating the overall speech quality of hearing-impaired children by means of comparative judgements, *Journal of Communication Disorders* 83: 1675–1687. doi: https://doi.org/10.1016/j.jcomdis.2019.105969.
- [2] Boonen, N., Kloots, H., Nurzia, P. and Gillis, S. [2021]. Spontaneous speech intelligibility: early cochlear implanted children versus their normally hearing peers at seven years of age, *Journal of Child Language* pp. 1–26.

doi: https://doi.org/10.1017/S0305000921000714.

- [3] Boons, T., Brokx, J., Dhooge, I., Frijns, J., Peeraer, L., Vermeulen, A., Wouters, J. and van Wieringen, A. [2012]. Predictors of spoken language development following pediatric cochlear implantation, Ear and Hearing 33(5): 617–639.
 doi: https://doi.org/10.1097/AUD.0b013e3182503e47.
- [4] Chin, S., Bergeson, T. and Phan, J. [2012]. Speech intelligibility and prosody production in children with cochlear implants, *Journal of Communication Disorders* 45: 355–366. doi: https://doi.org/10.1016/j.jcomdis.2012.05.003.
- [5] Cinelli, C., Forney, A. and Pearl, J. [2022]. A crash course in good and bad controls, SSRN.
 doi: http://dx.doi.org/10.2139/ssrn.3689437.
 url: https://ssrn.com/abstract=3689437.
- [6] Ertmer, D. [2011]. Assessing speech intelligibility in children with hearing loss: Toward revitalizing a valuable clinical tool, Language, Speech, and Hearing Services in Schools 42(1): 52–58. doi: https://doi.org/10.1044/0161-1461(2010/09-0081).
- [7] Everitt, B. [1984]. An Introduction to Latent Variable Models, Monographs on Statistics and Applied Probability, Springer Dordrecht.
 doi: https://doi.org/10.1007/978-94-009-5564-6.
- [8] Faes, J., De Maeyer, S. and Gillis, S. [2021]. Speech intelligibility of children with an auditory brainstem implant: a triple-case study, pp. 1–50. (submitted).
- [9] Fagan, M., Eisenberg, L. and Johnson, K. [2020]. Investigating early pre-implant predictors of language and cognitive development in children with cochlear implants, in M. Marschark and H. Knoors (eds), Oxford handbook of deaf studies in learning and cognition, Oxford University Press, pp. 46–95. doi: https://doi.org/10.1093/oxfordhb/9780190054045.013.3.
- [10] Flipsen, P. [2006]. Measuring the intelligibility of conversational speech in children, *Clinical Linguistics & Phonetics* **20**(4): 303–312. doi: https://doi.org/10.1080/02699200400024863.
- [11] Freeman, V., Pisoni, D., Kronenberger, W. and Castellanos, I. [2017]. Speech intelligibility and psychosocial functioning in deaf children and teens with cochlear implants, *Journal of Deaf Studies and Deaf Education* 22(3): 278–289.
 doi: https://doi.org/10.1093/deafed/enx001.
- [12] Gillis, S. [2018]. Speech and language in congenitally deaf children with a cochlear implant, in E. Dattner and D. Ravid (eds), Handbook of Communication Disorders: Theoretical, Empirical, and Applied Linguistic Perspectives, De Gruyter Mouton, chapter 37, pp. 765–792. doi: https://doi.org/10.1515/9781614514909-038.
- [13] Hustad, K., Mahr, T., Natzke, P. and Rathouz, P. [2020]. Development of speech intelligibility between 30 and 47 months in typically developing children: A cross-sectional study of growth, Journal of Speech, Language, and Hearing Research 63(6): 1675–1687. doi: https://doi.org/10.1044/2020_JSLHR 20 00008. url: https://pubs.asha.org/doi/abs/10.1044/2020_JSLHR 20 00008.

- [14] Kent, R., Weismer, G., Kent, J. and Rosenbek, J. [1989]. Toward phonetic intelligibility testing in dysarthria, Journal of Speech and Hearing Disorders 54(4): 482–499. doi: https://doi.org/10.1044/jshd.5404.482.
- [15] Lagerberg, T., Asberg, J., Hartelius, L. and Persson, C. [2014]. Assessment of intelligibility using childrens spontaneous speech: Methodological aspects, *International Journal of Language and Com*munication Disorders 49: 228–239. doi: https://doi.org/10.1111/1460-6984.12067.
- [16] Lesterhuis, M. [2018]. The validity of comparative judgement for assessing text quality: An assessors perspective, PhD thesis, University of Antwerp.
- [17] McElreath, R. [2020]. Statistical Rethinking: A Bayesian Course with Examples in R and STAN, Chapman and Hall/CRC.
- [18] Niparko, J., Tobey, E., Thal, D., Eisenberg, L., Wang, N., Quittner, A. and Fink, N. [2010]. Spoken Language Development in Children Following Cochlear Implantation, JAMA 303(15): 1498–1506. doi: https://doi.org/10.1001/jama.2010.451.
- [19] Pearl, J. [2009]. Causality: Models, Reasoning and Inference, Cambridge University Press.
- [20] Rohrer, J., Schmukle, S. and McElreath, R. [2021]. The only thing that can stop bad causal inference is good causal inference, *PsyArXiv*. **doi:** https://doi.org/10.31234/osf.io/mz5jx.
- [21] Shannon, C. [1948]. A mathematical theory of communication, The Bell System Technical Journal 27(3): 379–423. doi: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
- [22] Trochim, W. [2022]. The research methods knowledge base. url: https://conjointly.com/kb/.
- [23] van Heuven, V. [2008]. Making sense of strange sounds: (mutual) intelligibility of related language varieties. a review, *International Journal of Humanities and Arts Computing* **2**(1-2): 39–62. **doi:** https://doi.org/10.3366/E1753854809000305.
- [24] Whitehill, T. and Chau, C. [2004]. Single-word intelligibility in speakers with repaired cleft palate, Clinical Linguistics and Phonetics 18: 341–355.
 doi: https://doi.org/10.1080/02699200410001663344.
- [25] Wright, B. [2005]. Qualtrics. (Version December 2018). url: www.qualtrics.com.
- [26] Yarkoni, T. [2020]. The generalizability crisis, *The Behavioral and brain sciences* **45**(e1). **doi:** https://doi.org/10.1017/S0140525X20001685.