Exercise 1

a)

Further let $H = \emptyset$ and $H' = \{\alpha\}$. A node contains the shorthand notation of for example "0 0" to denote that TS_1 and TS_2 (in the second case TS_2 and TS_3) are in state t_0 . Analogously for "0 0 0" and TS_1, TS_2 and TS_3 . Then we can construct $TS_4 := (TS_1||_H TS_2)||_{H'} TS_3$ as:

Now we construct $TS_4' := TS_1||_H(TS_2||_{H'}TS_3)$:

As we can see $TS_4 \neq TS'_4$ and therefore in general the handshaking $||_H$ is not associative.

b)

In order two proof that the bijection f_{\approx} preserves the stated transition relation, we consider 3 base cases:

Aaron Grabowy: 345766 Timo Bergerbusch: 344408 Felix Linhart: 318801

i) $\alpha \in Act_1 \setminus (Act_2 \cup Act_3)$

If α is neither contained in Act_2 nor Act_3 then for every state $\langle \langle s_1, s_2 \rangle s_3 \rangle$ and every transition $(s_1, \alpha, s'_1) \in \to_1$ there exists a transition

$$(\langle\langle s_1, s_2\rangle, s_3\rangle, \alpha, \langle\langle s_1', s_2\rangle, s_3\rangle) \in \to_L$$

Since $\alpha \notin Act_2 \cup Act_3$ the respective states do not change. The handshaking of TS_2 and TS_3 does not have any impact on the usage of α . So there are also the transitions

$$(\langle s_1, \langle s_2, s_3 \rangle), \alpha, \langle s_1', \langle s_2, s_3 \rangle)) \in \to_R$$

$$\Leftrightarrow (f_{\approx}(\langle \langle s_1, s_2 \rangle, s_3 \rangle), \alpha, f_{\approx}(\langle \langle s_1', s_2 \rangle, s_3 \rangle)) \in \to_R$$

ii) $\alpha \in (Act_1 \cap Act_2) \setminus Act_3$

 $\alpha \notin Act_3$ means, that we have to distinguish three further cases based on the current state $\langle \langle s_1, s_2 \rangle s_3 \rangle$:

1. $(s_1, \alpha, s_1') \in \to_1 \text{ and } (s_2, \alpha, s_2') \in \to_2$:

Since both current states s_1 and s_2 have an available α transition the handshaking of these two would create a state $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s'_2 \rangle$. Since $\alpha \notin Act_3$ the handshaking with TS_3 then only creates a crossproduct of all such $\langle s_1, s_2 \rangle$ states with some state $s_3 \in S_3$. This would infer that

$$(\langle\langle s_1, s_2\rangle s_3\rangle, \alpha, \langle\langle s_1', s_2'\rangle s_3\rangle) \in \to_L$$

If we first compute the handshaking $TS_2||TS_3|$ we would get states, where all transitions using α only change the state of TS_2 . Performing the second handshake would synchronize the transitioning of TS_1 and TS_2 using α while still not changing s_3 . So we get

$$(\langle s_1, \langle s_2, s_3 \rangle), \alpha, \langle s_1', \langle s_2', s_3 \rangle)) \in \to_R$$

$$\Leftrightarrow (f_{\approx}(\langle \langle s_1, s_2 \rangle, s_3 \rangle), \alpha, f_{\approx}(\langle \langle s_1', s_2' \rangle, s_3 \rangle)) \in \to_R$$

2. $(s_1, \alpha, s_1') \in \to_1 \text{ and } (s_2, \alpha, s_2') \notin \to_2$:

This would infer that we can not use any transition containing α , since both TS_1 and TS_2 would need to use an α transition. Since TS_2 , which is in state s_2 has no possible transition for α , TS_1 is not allowed to move.

So for such a state $\langle s_1, s_2 \rangle \in (TS_1||TS_2)$ there exists no α transition. Also synchronising over TS_3 does not change anything about the α transitions. Therefore

$$(\langle\langle s_1, s_2\rangle s_3\rangle, \alpha, \langle\langle s_1', s_2'\rangle s_3\rangle) \notin \to_L$$

In order to fulfil the condition we now show that also the right side does not have such a transition.

Felix Linhart: 318801

Model Checking Exercise Sheet 2

Performing the handshake of $TS_2||TS_3|$ would create the states $\langle s_2, s_3 \rangle$. Since per assumption s_2 does not have a α transition also $\langle s_2, s_3 \rangle$ does not have one. Now also synchronising TS_1 can not add a α transition, since it would have to synchronise with TS_2 and therefore s_2 must have an α transition. This is not the case. So

$$(\langle s_1, \langle s_2, s_3 \rangle), \alpha, \langle s_1', \langle s_2', s_3 \rangle)) \notin \to_R$$

$$\Leftrightarrow (f_{\approx}(\langle \langle s_1, s_2 \rangle, s_3 \rangle), \alpha, f_{\approx}(\langle \langle s_1', s_2' \rangle, s_3 \rangle)) \notin \to_R$$

- 3. $(s_1, \alpha, s_1') \notin \to_1$ and $(s_2, \alpha, s_2') \in \to_2$: This case is completely analogue to the second case.
- iii) $\alpha \in Act_1 \cap Act_2 \cap Act_3$
 - 1. $(s_1, \alpha, s'_1) \in \to_1$ and $(s_2, \alpha, s'_2) \in \to_2$ and (s_3, α, s'_3) : First performing the $TS_1||TS_2$ handshake we receive states $\langle s_1, s_2 \rangle$ with $\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s'_2 \rangle$. Afterwards synchronizing with TS_3 means that every such mentioned state would also change s_3 to s'_3 , since they synchronize over α . So:

$$(\langle\langle s_1, s_2\rangle s_3\rangle, \alpha, \langle\langle s_1', s_2'\rangle s_3'\rangle) \in \to_L$$

Completely analogously we can first compute $TS_2||TS_3|$ and then $TS_1||(TS_2||TS_3)$. This will yield the same result and thus:

$$(\langle s_1, \langle s_2, s_3 \rangle), \alpha, \langle s_1', \langle s_2', s_3' \rangle \rangle) \in \to_R$$

$$\Leftrightarrow (f_{\approx}(\langle \langle s_1, s_2 \rangle, s_3 \rangle), \alpha, f_{\approx}(\langle \langle s_1', s_2' \rangle, s_3' \rangle)) \in \to_R$$

2. If any state $s_i \in \{s_1, s_2, s_3\}$ does not have an α transition we can, analogously to case ii.2) deduce, that there can not be an α transition for such a state $\langle \langle s_1, s_2 \rangle s_3 \rangle$ in \to_L since this would need all s_i 's to have an α transition.

Also we can directly infer that the same holds for $f_{\approx}(\langle \langle s_1, s_2 \rangle s_3 \rangle) = \langle s_1 \langle s_2, s_3 \rangle \rangle$ for the exact same reason.

This finally concludes in

$$l) \xrightarrow{\alpha}_L (l') \Rightarrow f_{\approx}(l) \xrightarrow{\alpha}_R (l')$$

c)

First we build $TS_4 := TS_1 || TS_2$:

Now we have to build $TS_4||TS_3$:

Exercise 2

a)

The SOS-rules for LIFO channels with capacity 0 are the same as for FIFO channels with capacity 0.

The SOS-rules for LIFO communication, for a channel c with $cap(c) \ge 1$:

$$\frac{l_i \stackrel{c?x}{\hookrightarrow}_i l_i' \wedge \xi(c) = v_1 \dots v_{k-1}, v_k \wedge k \ge 1}{\langle l_1, \dots, l_i, \dots, l_n, \eta, \xi \rangle \xrightarrow{\tau} \langle l_1, \dots, l_i', \dots, l_n, \eta', \xi' \rangle}$$

Aaron Grabowy: 345766 Timo Bergerbusch: 344408 Felix Linhart: 318801

where
$$\eta' = \eta[x := v_k]$$
 and $\xi' = \xi[c := v_1 \dots v_{k-1}]$

for receiving and

$$\frac{l_i \stackrel{c!v}{\hookrightarrow}_i l_i' \wedge \xi(c) = v_1 \dots v_k \wedge k < cap(c)}{\langle l_1, \dots, l_i, \dots, l_n, \eta, \xi \rangle \xrightarrow{\tau} \langle l_1, \dots, l_i', \dots, l_n, \eta, \xi' \rangle}$$
where $\xi' = \xi[c := v_1 \dots v_k v]$

for sending.

b)

Let M be a Turing machine, which simulates the LIFO channel system. Then we can construct a Turning machine M', which works like the following: simulate non-deterministically M and accept if M reaches state F.

Then M' accepts if F is reached at some point and rejects if F is not reached. So we can guarantee the reachability of F iff M' accepts. **Contradiction**

Reduction by subprogram technique:

Assuming there exists an algorithm A that decides the given problem. For a given Turing machine $T = (Q, \Sigma, \Gamma, \delta, q_0, F_T)$ the following LIFO channel system is created, which simulates the behavior of T:

There is one process P and two LIFO channels c_L and c_R . Both channels start and end at P, forming a loop. (If this is not allowed this can be simulated by an additional process and an additional channel with capacity 0 for each loop channel. P sends a synchronized message to the other process. The other process directly pushes the message on top of the LIFO stack.)

The states and the transitioning between states of P are the same as for the TM T. Moreover there is an additional accepting state F_P . Only reading to and writing from the tape has to be modeled differently:

The symbol inside the current cell is stored in a variable x. x initially has the value of the empty cell (\Box) , as the tape is empty in the beginning.

Whenever T moves left, the written new cell value is pushed to c_R , so that the tape content on the right side of T is stored in c_R . The top of c_L is popped and used as the new value of x (reading from left side). If c_L is empty, x is filled with the blank symbol \square . When T moves right, P behaves analogously, only left and right are switched.

If T halts (this can be checked for the current configuration as the tape symbol and current state are available), P moves to the accepting state F_P .

In F_P the channels are emptied and x is set to \square .

The algorithm A is now used to determine whether the state $F = (F_P, \eta_F, \xi_F)$ with $\eta_F(x) = \Box$ and $\xi_F(c_L) = \xi_F(c_R) = \varepsilon$ can be reached.

Due to the construction above, this state can be reached iff T can reach a configuration in which it halts. Therefore, this solves the halting problem for Turing machines.

Exercise 3

Remarks:

- In the following, calculations with i and j are in \mathbb{F}_n . For exercise b), where n=3, this means that for i=2 it holds $i+1=2+1=3\equiv_3 0$.
- We define the channel system C to have a channel capacity of 0 in order to model it as synchronous message passing. So in the following we don't write it as c!x and c?y to send and receive from a channel but model it as synchronous messages.
- Since no variables are used we omit the variable evaluation η . Since all channels have capacity 0 we omit the channel evaluation ξ .

a)

We model each philosopher by a program graph \mathcal{P}_i and each fork by a program graph \mathcal{F}_i , $0 \le i < n$. We use the following actions to synchronize the program graphs:

- $request_{i,j}$: Requesting the fork j based on the philosopher \mathcal{P}_i 's perspective ($j = i \Rightarrow$ right fork; $j = i-1 \Rightarrow$ left fork). This means we use the channel to the fork's program graph, which has a capacity of 0, to to synchronize two program graphs. Also note that we use i, j modulo n. So that the philosopher \mathcal{P}_0 s left fork is the same as \mathcal{P}_{n-1} s right fork.
- $release_{i,j}$: Releasing the fork j which is currently used by philosopher \mathcal{P}_i with the same scheme as above.

So the program graph \mathcal{P}_i looks like the following:

A fork \mathcal{F}_i has the following program graph:

b)

The program graph can be simplified using the stated properties. The simplified program graph of philosopher \mathcal{P}_i then follows with:

The program graphs \mathcal{F}_i stay the same.

The complete channel system looks like the following:

We can then construct the $TS(\mathcal{C}) = \mathcal{P}_0 \mid_{H} \mathcal{F}_0 \mid_{H} \mathcal{P}_1 \mid_{H} \mathcal{F}_1 \mid_{H} \mathcal{P}_2 \mid_{H} \mathcal{F}_2$ where $H = \{request_{i,j}, release_{i,j} \mid i, j \in [0, 1, 2], i = j \lor j = i - 1\}$

We use the following simplifications to construct the transition system:

- We use t, w, e, and r as a shorthand for the states thinking, waiting for right fork, eating, and returning left fork, respectively.

 We use req and rel as a shorthand for the actions request and release.
- The states of the Forks \mathcal{F}_i can be derived from the states of the philosophers: \mathcal{F}_i is in the state used as left fork iff \mathcal{P}_{i+1} is in the state w or e. \mathcal{F}_i is in the state used as right fork iff \mathcal{P}_i is in the state e or r. \mathcal{F}_i is in the state available otherwise.
- These simplifications lead to triples as states, where the *i*-th entry represents the state of philosopher \mathcal{P}_i .

• The rotational symmetry of the system allows us to consider the following states as equal under isomorphisms:

$$(x, y, z), (y, z, x), \text{ and } (z, x, y) \text{ for } x, y, z \in \{t, w, e, r\}.$$

This is used by blue colored edges.

This yields the following transition system:

c)

Yes. If every philosopher would block his/her left fork and wait for the right fork to be freed in order to get into the *eating* phase we observe a deadlock. This state is marked in orange.