Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

3.1 SYMBOL TABLES

- APH
- elementary implementations
- ordered operations

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

Trace of linked-list ST implementation for standard indexing client

Elementary ST implementations: summary

ST implementation	guara	ıntee	avera	key		
	search	insert	search hit	insert	interface	
sequential search (unordered list)	N	N	N / 2	N	equals()	

Challenge. Efficient implementations of both search and insert.

Binary search in an ordered array

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k?


```
10 hi m
0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X
loop exits with 10 > hi: return 7
```

Binary search: Java implementation

```
public Value get(Key key)
   if (isEmpty()) return null;
   int i = rank(key);
   if (i < N && keys[i].compareTo(key) == 0) return vals[i];
   else return null;
                                           number of keys < key
private int rank(Key key)
   int lo = 0, hi = N-1;
  while (lo <= hi)
   {
       int mid = 10 + (hi - 10) / 2;
       int cmp = key.compareTo(keys[mid]);
       if (cmp < 0) hi = mid - 1;
       else if (cmp > 0) lo = mid + 1;
       else if (cmp == 0) return mid;
  return lo;
```

Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

		keys[]									vals[]											
key	value	0	1	2	3	4	5	6	7	8	9	N	0	1	2	3	4	5	6	7	8	9
S	0	S										1	0									
Ε	1	Ε	S			0	ntrie	c in 1	red			2	1	0					itries ved to			_
Α	2	Α	Ε	S			vere i					3	2	1	0			, 1110	veu i	ine	rigili	
R	3	A	Е	R	S							4	2	1	3	0						
C	4	A	C	Ε	R	S			en	tries	in gra	_{1y} 5	2	4	1	3	0					
Н	5	A	C	Ε	Н	R	S		- d	id no	ot mov	re 6	2	4	1	5	3	0			ntrie ed val	s are
Ε	6	Α	C	Е	Н	R	S					6	2	4	6	5	3	0	CII	unge	a vai	MCS
X	7	Α	C	Е	Н	R	S	X				7	2	4	6	5	3	0	7			
Α	8	Α	C	Е	Н	R	S	X				7	(8)	4	6	5	3	0	7			
M	9	Α	C	Е	Н	M	R	S	Χ			8	8	4	6	5	9	3	0	7		
Р	10	Α	C	Е	Н	M	P	R	S	X		9	8	4	6	5	9	10	3	0	7	
L	11	Α	C	Е	Н	L	М	Р	R	S	X	10	8	4	6	5	11	9	10	3	0	7
Ε	12	А	C	Е	Н	L	M	Р	R	S	X	10	8	4 (12)	5	11	9	10	3	0	7
		Α	C	Ε	Н	L	M	Р	R	S	Χ		8	4	12	5	11	9	10	3	0	7

Elementary ST implementations: summary

ST implementation	guara	ıntee	avera	key	
31 implementation	search	insert	interface		
sequential search (unordered list)	N	N	N/2	N	equals()
binary search (ordered array)	log N	N	log N	(N/2)	compareTo()

Challenge. Efficient implementations of both search and insert.