SUNDSTRAND AVIATION
DIVISION OF SUNDSTRAND CORPORATION
ROCKFORD, ILLINOIS

ATR 2001

June 1971

AN EXPERIMENTAL STUDY OF NOTICES AND SPECIFIC HEAT RATIO EFFECTS ON OFF-DESIGN PERFORMANCE OF PARTIAL ADMISSION TURBINES

PREPARED BY

R. S. PETERSON S. C. PASKEVICH

FOR THE OFFICE OF NAVAL RESEARCH WASHINGTON, D.C.

FINAL REPORT UNDER
CONTRACT NO NW0014-68-C-0496

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

Approved for public release;
Distribution Unlimited

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Security Classification							
DOCUMENT CONT	ROL DATA - R & D						
(Security classification of title, body of abstract and indexing a	mnotation must be entered when the	overali report is classified)					
1. ORIGINATING ACTIVITY (Corporate author)	1. ORIGINATING ACTIVITY (Corporate author)						
Sundstrand Aviation, Div. of Sundst	rand Corp	assified.					
4747 Harrison Avenue	26. GROUP	*1.53 2 .					
Rockford, Illinois Ell01							
3. REPORT TITLE							
Experimental study of nozzles and s		effects on off					
design performance of partial admis	ssion turbines.						
4. OESCRIPTIVE NOTES (Type of report and inclusive dates)							
Final Report							
S. AUTHOR(S) (First name, middle initial, last name)							
Peterson, Robert S.							
Paskevich, Steven C.							
		····					
6. REPORT DATE	74. TOTAL NO. OF PAGES	76. NO. OF REFS					
14 June 1971	234 Pages	0					
84. CONTRACT OR GRANT NO.	SE. ORIGINATOR'S REPORT NUM	BER(S)					
N00014-68-C-0406							
8. PROJECT NO.	ATR 2001						
c.	9b. OTHER REPORT NO(5) (Any o. this report)	net numbers that may be assigned					
d.	None						
10. DISTRIBUTION STATEMENT							
"Qualified requestors may obtain copies of	this report from DDC	v i					
11- SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTI	WITE					
III JOPP GEMENTANT NOTES							
Namo	Head, Power Brand Material Science						
None							
L	Office of Naval						
13. ABSTRACT	Washington, D.C.	20360					
A. The ?							

The report covers experimental work performed to determine the effect of nozzle divergence angle, specific heat ratio and plug nozzle configuration on turbine nozzle performance. Off design performance was the primary area of investigation. The effect of nozzle divergence angle was investigated with conical and contoured nozzles for two Mach numbers over a range of speed and pressure ratios. The performance of selected plug nozzle geometries was measured over a range of speed and pressure ratios. The influence on performance of the gas specific heat ratios was experimentally determined by testing the same nozzle with gases of different specific heat ratios. The reduced experimental data is presented in tabular form as well as graphic presentation in several formats.

DD FORM 1473

Security Classification

14. KEY WORDS		LINK A		LIN	LINKB		LINK C	
- KEY		RULE	WT	ROLE	WT	ROLE	WT	
Fluid Mechanics								
Nozzle Performance						i		
Experimental Data								
•								
							•	
	AND ON the ME NEW YORK I HANDS AND A COUNTY OF THE OWNER OWNER OF THE OWNER O				_			
•								
	····	-					i	
•								
f.								
e e e e e e e e e e e e e e e e e e e						1		
	as a line of the second				}		•	
	at a second at				•	}	•	
						<u> </u>		
<u> </u>	and of the							
t i e	jan sangan ay nigiriya ni najama	.: 5				-211		
* ***								
·								
	•							
	•							
	•	l		1		i i		
		İ	1	i				
					·			
				! 				
				1				
					·			
					·			
					·			
					·			

Security Classification

SUNDSTRAND AVIATION DIVISION OF SUNDSTRAND CORPORATION ROCKFORD, ILLINOIS

ATR 2001

June 1971

AN EXPERIMENTAL STUDY OF NOZZLES AND SPECIFIC HEAT RATIO EFFECTS ON OFF-DESIGN PERFORMANCE OF PARTIAL ADMISSION TURBINES

PREPARED BY

R. S. PETERSON S. C. PASKEVICH

Details of Eustrations in this document may be better studied on microfiche

FOR THE
OFFICE OF NAVAL RESEARCH
WASHINGTON, D.C.

FINAL REPORT UNDER CONTRACT NO. N0014-68-C-0406

DIVISION OF SUNDSTRAND CORPORATION ROCKFORD, ILLINOIS

EMEI	NEER				DT
CHGI	MEEN	טחו	п	EPO	n.

REPORT NO. ATR 2001
DATE June 14, 1971
REVISION DATE

TITLE

AN EXPERIMENTAL STUDY OF NOZULES AND SPECIFIC HEAT RATIO EFFECTS ON OFF-DESIGN PERFORMANCE OF PARTIAL ADMISSION TURBINES

INTERNAL APPROVAL AND CLASSIFICATION Trum B C. bashard 16 June 1971 DISTRIBUTION ONLY CHIEF DEVELOPMENT ENGINEER DATE DATE CONTROLLED 27 Co. K 17 Ti 6 km DISTRIBUTION CHIEF DEVELOPMENT ENGINEER (SEE EN 10.07) DATE DATE DISTRIBUTION CHIEF DEVELOPMENT ENGINEER PROHIBITED DATE DATE MILITARY CONTRACT No. DATE WITNESSED BY ME OR BY ONE UNDER-QAR DCASO ROCKFORD DATE MGR. QUALITY CONTROL DATE MY SUPERVISION

Form P 5160H

Rockford, Illinois

ATR 2001

PAGE

i

TABLE OF CONTENTS

		Page
	SUMMARY	Vi
	INTRODUCTION	1
1.0	EXPERIMENTAL APPARATUS, TEST TECHNIQUES AND DATA REDUCTION	2
2.0	EXPERIMENTAL RESULTS AND DISCUSSION	20
3.0	CONCLUSIONS	60
4.0	RECOMMENDATIONS	60
5.0	SYMBOLS	61
6.0	LIST OF REFERENCES	62
7.0	APPENDICES	
	A - Graphs of Individual Test Results Including Empirical Data Points	63
	B - List of Data Points	137
	C - Turbine Test Schematic Diagram	231
	D - Sample Data Shoet	222

ATR 2001

Rockford, Illinois

PAGE ii

LIST OF ILLUSTRATIONS

Figures		Page
1	TURBINE TEST CHAMBER AND APPARATUS	12
2	INSIDE OF TEST CHAMBER WITH RIG	13
3	TURBINE TEST RIG	14
4	TURBINE TEST RIG - DIAGRAM	15
5	TEST RIG AND COMPONENTS	16
6	CONICAL NOZZLES TESTED	17
7	PLUG NOZZLES TESTED	18
8	CONICAL NOZZLE EXIT AND ROTOR OUTLINE	10

PAGE iii

Figure

TURBINE EFFICIENCY VS VELOCITY RATIO SUMMARIES:

				Page
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P.R. = 25 P.R. = 20 P.R. = 17 P.R. = 15 P.R. = 12 P.R. = 200 P.R. = 150 P.R. = 100 P.R. = 50 P.R. = 25	Y = 1.4 Y = 1.4	ac = 7° - 15° ac = 7° - 15°	22 23 24 25 26 27 28 29 30
			$ac = 7^{\circ} - 15^{\circ}$	31

TURBINE EFFICIENCY VS NOZZLE DIVERGENCE SUMMARILS:

19 20 21 22 23 24 25 26 27	$M_D = 2.5$ $M_D = 4.0$ $M_D = 4.0$ $M_D = 4.0$ $M_D = 4.0$	P.R. = 25 P.R. = 20 P.R. = 17 P.R. = 15 P.R. = 12 P.R. = 200 P.R. = 150 P.R. = 100 P.R. = 50	Y = 1.4 Y = 1.4	$u/c_{0} = .14$ $u/c_{0} = .14$ $u/c_{0} = .14$ $v/c_{0} = .14$ $u/c_{0} = .14$ $u/c_{0} = .14$ $u/c_{0} = .14$ $u/c_{0} = .14$	32 33 34 35 36 37 38
	$M_{\rm D} = 4.0$ $M_{\rm D} = 4.0$	P.R. = 50 P.R. = 25	Y = 1.4 $Y = 1.4$ $Y = 1.4$	$u/c_0 = .14$ $u/c_0 = .14$ $u/c_0 = .14$	39 40 41

ATR 2001

Rockford, Illinois

PAGE iv

Figure

	TURBINE EFFICIENCY	VS VELOCITY F	ATIO SUMMARIES	S:
				Page
29	$M_D = 2.5$ P.R. = 12-25		$\alpha_{\rm C} = 15^{\circ}$	42
30	$M_D = 2.5$ P.R. = 12-25		$\alpha_{\rm C} = 13^{\circ}$	43
31	$M_D = 2.5$ P.R. = 12-25	v = 1 4	$\alpha_{\rm C} = 11^{\circ}$	
32	$M_D = 2.5$ P.R. = 12-25	$\gamma = 1.4$	$a_{\rm C} = 9^{\circ}$	44
33	$M_D = 2.5$ P.R. = 12-25			45
34	$M_D = 4.0$ P.R. = 25-200		$\alpha_{\rm C} = 7^{\circ}$	4€
35	$M_D = 4.0$ P.R. = 25-200		$\alpha_{\rm C} = 15^{\circ}$	47
36	$M_D = 4.0$ P.R. = 25-200		$\alpha_{\rm C} = 13^{\circ}$	48
37	$M_D = 4.0$ P.R. = 25-200		$\alpha_{\rm C} = 11^{\circ}$	60
38	$M_D = 4.0$ P.R. = 25-200	•	$\alpha_{\mathbf{C}} = 9^{\bullet}$	50
39			$ac = 7^{\bullet}$	51
	Plug P.R. = 25 Nozzles	$\gamma = 1.4$	$M_D = 2.5$	52
40	Plug P.R. = 20 Nozzles	$\gamma = 1.4$	$M_D = 2.5$	53
41	Plug P.R. = 17 Nozzles	$\gamma = 1.4$	$M_D = 2.5$	54
42	Plug P.R. = 15 Nozzles	$\gamma = 1.4$	$M_D = 2.5$	55
43	Plug P.R. = 12 Nozzles	$\gamma = 1.4$	$M_D = 2.5$	56
44	Specific	1 10		
	Heat Summary	$\gamma = 1.18 -$	$\alpha_{\mathbf{C}} = 11^{\bullet}$	57
45	$M_D = 2.82 P_R. = 17-35$	$ \begin{array}{r} 1.68 \\ \gamma = 1.68 \end{array} $	as = 11°	50
			-0 - 11	58
46	TURBINE TEST SCHEMATIC DI	AGRAM		232

ATR 2001

Rockford, Illinois

PAGE

v

LIST OF TABLES

		Page
I	LIST OF DATA GROUPS	8
II	LIST OF NOZZLE DESIGNATIONS	10
111	TURBINE AND NOZZLE DATA COMMON TO ALL TEST CONFIGURATIONS	11
IV	NOMINAL TEST CONDITIONS	59
v	SAMPLE DATA SHEET	234

Rockford, Illanois

PAGE VI

SUMPATT

In attaining optimum turbine performance, the nozzle is the single most influential component. Small, high specific energy turbines, generally operating at high pressure ratios, require supersonic converging-diverging nozzles for high efficiency. Such nozzles, however, yield poor performance at off-design pressure ratios. The object of this study was to obtain design information to improve performance.

I comprehensive experimental program was undertaken to optimize morale divergence and evaluate plug nozales and the off-design effects of specific heat ratio. No real analysis work was to be performed under this contract with discussion and presentation sufficient only to serve as a quide to use of the report.

Notice performance was evaluated from test measurements of a complete turbine-notice system. All notices were tested on nitrogen and in Phase III, the notice which had shown the best performance on nitrogen was tested with Argon (v=1.68) and Freon 13 (v=1.18) to evaluate the effects of specific heat ratio. All testing was done with the same rotor. A total of eleven different notices were tested; straight conical designs with the same design Mach Number (2.5) and area ratio, but different divergence angles downstream of the throat $(7^{\circ}$ to 15° half angle), a similar program with mottles of design mach no. = 4, two annular throat plug notices and a 2 dimensional "half plug" design.

hesults show that an optimum nozzle divergence exists but not for all conditions. The ll and l3 half angle nozzles maintain a consistent advantage in peak efficiency and range capability (minimum variation in efficiency during off-design pressure ratio operation), but only with the lower design pressure ratio nozzles tested (Mp = 2.5). We such clear advantage appeared in the results of the Mp = 4.0 nozzles tested; the performance of all divergence angles seemed to merge into one band of width on the same order as the scatter although the narrow (7°) nozzle displayed a small advantage in peak efficiency.

Plug mozzles exhibited no significant performance advantage over straight conical designs - their range (efficiency variation) appears marginally better in a few cases but the peak efficiency is consistently lower than the pocrest conical design tested in the mach 2.5 series, and this more than makes up for it.

ATE 2001

Rockford, Illinois

PAGE vii

The effect of specific heat ratio seems to be a small reduction of peak efficiency and improved range (less efficiency variation over a range of pressure ratios).

Off-design speed effects as revealed by the shape of the u/C_O - n_T curve (pointed vs wide) appeared small throughout the study.

ATR 2001

Rockford, Illinois

PAGE

INTRODUCTION

Many military turbine applications require operation over a wide range of pressure ratios. Such applications would include any underwater device operating at varying depth and aero-space vehicles such as missiles aircraft and space vehicles that operate from sea level to outer space. This off-design regime often accounts for a significant portion of the mission profile.

Nozzle and rotor performance has a large effect on the ultimate obtainable turbine efficiency with the nozzle being much the more important, hence under a previous contract (N00014-66-C-0204) Sundstrand conducted a turbine off-design performance study, reported on in Reference 1; Sundstrand AER 486, dated April 1967, "Effect of Nozzle Geometry on Off-Design Performance of Partial Admission Impulse Turbines".

The present study extends the work done under the previous contract although primarily an experimental program whereas the previous one was principally analytical in nature.

The objectives of this study were to (I) experimentally optimize the divergence angle of straight conical supersonic turbine nozzles, (II) determine what, if any, off-design advantage can be gained with plug nozzles, (III) determine the effect of specific heat ratio on off-design performance.

PAGE

2

1.0 EXPERIMENTAL APPARATUS, TEST TECHNIQUES AND DATA REDUCTION

This study was made using a test dynamometer designed and built by Sundstrand. The test apparatus and techniques were developed over a number of years while performing various turbine research and development studies.

1.1 TURBINE TEST DYNAMOMETER

The turbine test facility is illustrated in Figure 1 and is specifically designed to evaluate the effects of turbine geometry on performance. Rapid changes in rotors, nozzles, and rotor tip and side clearances are easily made. Shaft power is determined by a torque arm force measurement, the load being applied by an electrical homopolar dynamometer. Turbine bearing losses are included in the torque arm measurement since the entire rotating group is supported by special low friction ball bearings. The dynamometer is shown in Figures 2, 3 and 4. Typical test hardware is shown in Figure 5.

The facility is capable of testing turbines at pressure ratios up to 2500. The entire test unit is located in a vacuum chamber during tests such that exhaust pressures as low as 0.25 psia are possible. The maximum test turbine speed is 40,000 rpm. Turbine diameters up to approximately 7 inches can be accommodated. Output shaft power levels of up to 20 hp can be absorbed by the electrical load bank.

Tests to obtain turbine efficiency as a function of turbine geometry, pressure ratio, speed, and Reynolds number can be conducted.

Testing shows an average scatter of 5% in the turbine efficiency data (about 3 points). This scatter appears to be random, yielding an accurate and reliable mean when curve fitting techniques are used with large quantities of data, as in this present study. The nozzle flow rate is measured by an orifice plate flowmeter showing scatter in the flow data of .75%. Instrumentation to obtain complete pressure and temperature data throughout the turbine can be employed.

All tests were made with the shrouded turbine wheel and turbine exhaust housing shown in Figure 5. During all tests the radial tip clearance was .050 inch; the axial clearance between the nozzle and the wheel was .035 inch. Table III presents geometric parameters that were common during all tests and Table IV summarizes test conditions.

1.2 TURBINE NOZZLE TEST CONFIGURATIONS

Three types of nozzles were studied; straight conical, axi symetric plug nozzles (two styles), and a 2-dimensional or "half plug" design.

1.2.1 Conical Nozzles

All conical nozzles are in the same nozzle plate and were tested individually with the remainder plugged. The plate includes two sets of five nozzles of different design conditions ($M_D=2.5$, $A/A^*=2.63$, and $M_D=4.0$, $A/A^*=10.72$) with divergence half angles α_C from 7° to 15° in each set. The exit diameter of all conical nozzles is .282 inch. The relationship between nozzle exit and blades is shown in Figure 8. The conical nozzles are quite simple in design and are stacked with dimensions tabulated in Figure 6.

The conical nozzles were selected as the basis of comparison in this study since they are the most common type used in partial admission turbines.

1.2.2 Plug Nozzles

The plug nozzles are illustrated in Figure 7. The annular throat nozzles ("A" and "B") were designed per the procedure of Rao (Reference 2) and both have an exit diameter of .280. The 2-dimensional half plug (c) was also designed per his procedure, with an exit height of .280 and a throat height of .162. The design mach number of all plug nozzles was 2.5, for easy comparison with the MD = 2.5 conicals.

All plug nozzles were machined in the same plate with their centerlines tangent to a common pitch diameter of 5.96 inch as were the conicals.

Rockford, Illinois

PAGE

1.3 TEST TECHNIQUES

A test run was made by pressurizing the turbine inlet to a prescribed value (not greater than 240 psia) and adjusting the turbine back pressure to the prescribed level to obtain the desired pressure ratio. Data was then taken at 6 or 7 turbine speeds from 7000 to 35000 rpm. The speed was controlled by adjustment of the homopolar alternator load resistance (coarse adjustment) and the field voltage (fine adjustment). After the speed range was covered by increasing speed, the points were retaken as it was decreased back to the starting speed in order to minimize effects of mechanical hysteresis, resulting in 11 to 14 points per test run. the back pressure was adjusted to the next prescribed pressure ratio and the speed points repeated. At 5 pressure ratios per nozzle this resulted in approximately 55 to 65 data points per nozzle test and a program total of over 700.

The turbine pressure ratio was evaluated by measuring the pressure in the turbine nozzle plenum chamber, which the nozzle plate seats against, and pressure in the exhaust duct just downstream of the turbine. The turbine flow rate was measured by an orifice meter in the inlet line leading to the turbine plenum. At each data point conditions were allowed to stabilize before recording the data and then proceeding to the next point. Approximately three minutes of run time were required at each data point. With one exception, all pressures (and torque, which was reflected as a differential pressure) were detected with pressure transducers and recorded automatically on a strip chart. The orifice plate pressure was read on a Bourdon pressure gage and written manually on the chart and orifice plate AP was detected with a Bailey pressure transmitter and recorded on the strip chart. All temperatures were measured with copper constantan thermocouples and recorded on the Speed was measured with a magnetic pickup and recorded manually from an electronic counter.

The torque readout device was calibrated before and after each run by the application of dead weight to the torque arm. If significant variations in the pre- and post-calibration points occurred, the data was discarded and a rerun made.

The data were recorded and later reduced by a computer program to obtain the desired performance parameters. The flow rate was determined from the orifice measurements as well as the perfect gas choked flow equation. In this manner the flow discharge coefficient was obtained; if an unexplainable variation in this coefficient was found the data was discarded as unreliable and the test was rerun.

Form G7625

Rockford, Illinois

PAGE

1.4 DATA REDUCTION PROCEDURES

The data was reduced utilizing an IBM 1130 computer. The data reduction program (Sundstrand E2) includes curve fits of compressibility factor and ratio of specific heats for nitrogen, obtained from Reference 4. These properties are calculated as functions of local static temperature and pressure, and can be input when a gas other than nitrogen is used as the test fluid.

This program calculates the turbine gas flow from both the orifice measurements and from the perfect gas relationship for choked nozzles. Comparison of these two values yields the nozzle discharge coefficient. The turbine efficiency is then calculated based upon (1) the measured torque, speed, and orifice flow rate values and (2) the measured temperature difference. The second calculation is for a comparison only, since no attempt to obtain an adiabatic process was made. Other parameters such as the specific speed, specific diameter, torque coefficient, shaft horsepower, adiabatic head, velocity ratio, and wheel tip speed are also calculated.

The reduced turbine efficiency data is estimated to have an accuracy of 5%. This is considered acceptable in light of the fact is appears random with no systematic errors, strongly suggesting that the mean value is a valid representation of the true efficiency with the large quantities of data available.

To reduce the effect of irregular or scattered data points a least squares curve fit program was written and the data processed and cross plotted. An indication of the validity of this procedure is that the resulting computer plots agree in almost all predominant trends and values with some 25 manual summary plots made while data was being collected, and where the two disagree the computer plots appear the more reasonable.

LEAST SQUARES DATA SMOOTHING PROGRAM

The output of program E-2 was used in the least squares program to arrive at a smoothed data representation. To further reduce the effect of scatter, sets of data points were grouped together.

The general equation of the surface took the form:

$$\eta_{T} = A_1 + A_2 \left(\frac{u}{C_0}\right) + A_3 \left(\frac{u}{C_0}\right)^2 + A_4 \left(\frac{u}{C_0}\right)^3$$

+ A₅ x + A₆ x² + A₇ x³ + A₈(
$$\frac{u}{Co}$$
) x
+ A₉($\frac{u}{Co}$)² x + A₁₀ ($\frac{u}{Co}$) x²

For most groups of data (Groups I-V, and IX-XIII) the variable X represented nozzle half angle. For all other groups the variable X represented pressure ratio. Data groups XV-XVIII included only the first four terms of the general equation, and since only (3) mach 4.0 nozzles were tested the seventh term was omitted for all mach 4.0 data groups.

A listing of all data groups is shown on Table I.

These least square equations were used to form the smooth curves appearing on all computer made plots in this report. The plots were made on a "CAL COMP" plotter controlled by a subroutine called GRAF on Sundstrand's IBM 1130.

Empirical data points were omitted from the summary plots to illustrate trends more clearly. Instead, for reference they are shown on plots in Appendix A and listed in Appendix B.

It should be remembered when studying any one data set and curve, that the shape and position of the curve has been influenced by other data in that group not shown on the plot.

ATR 2001

Rockford, Illinois

PAGE

DATA LISTING

Appendix B contains a listing of all data points, a comparison of the empirical and smoothed data, and a rough measure of scatter for each point.

Scatter Percent Eff.

= (Empirical Data Point -Smoothed Data Point) x 100.

Scatter Percent Val.

= (Scatter Percent Eff.)/(Empirical Data Point)

Table II explains the exact interpretation of the titles appearing under the heading nozzle designation.

TABLE I
LIST OF DATA GROUPS

GROUP	NOZZLE DESIGNATIONS	APPROXIMATE	
_		PRESSURF RATIO	TEST GAS
I	Mach 2.5, 15° Half Angle	25:1	
	Mach 2.5, 13° Haif Angle	25:1	Kitrogen
	mach 2.5, 11° Half angle	25:1	Nitrogen
	mach 2.5. 9º Half Anglo	25:1	Nitrogen
	Mach 2.5, 7° Half Angle	25:1	Nitrogen
II		23.1	Eitrogen
11	Mach 2.5, 15° Half Angle	20:1	W. 2 4
	mach 2.5, 13° Half Angle	20:1	Nitrogen
	Mach 2.5, II Half Apale	20:1	Kitrogen
	mach 2.5, 9º Half Angle	20:1	Nitrogen
	Mach 2.5, 7° Half Angle	20:1	Nitrogen
III			Nitrogen
111	Mach 2.5, 15° Half Angle	17:1	Nihma
	Mach 2.5. It bale and	17:1	Nitrogen
	MACH Zab. II Walf Nami	17:1 Design	Nitrogen
	Mach 2.5, 9° Half Angle	17:1	Nitrogen
	Mach 2.5, 9° Half Angle Mach 2.5, 7° Falf Angle	17:1	Nitrogen
IY			Nitrogen
19	Mach 2.5, 15° Half Angle	15:1	W
	MdCn 2.5. I W Ralf Angle	15:1	Nitrogen
	Mach 2.5. IIV Wale apple	15:1	Nitrogen
	Mach 2.5, 5° Half Angle	15:1	Nitrogen
	Mach 2.5, 7º Half Angle	15:1	Nitrogen
V			Nitrogen
•	Mach 2.5, 15° Half Angle	12:1	Witzeren
	FIGURE 2.5. IN Half Angle	12:1	Nitrogen
	Mach 2.5, 11 Half Angle	12:1	Nitrogen
	Mach 2.5, 9 Half Angle	12:1	Nitrogen Nitrogen
	Mach 2.5, 7º Half Angle	12:1	Nitrogen
VI	Diam Nama		nicrogen
• •	Plug Nozzle 'A'	25:1	Nitrogen
	Plug Nozzle 'A'	20:1	Nitrogen
	Plug Nozzle 'A!	17:1 Design	Nitrogen
	Plug Nozzle 'A'	15:1	Nitrogen
	Plug Nozzle 'A'	12:1	Nitrogen
VII	Plug Nozzle 'B'		teroden
	Plug Nozzle 'B'	25:1	Nitrogen
	Plug Nozzle 'B'	20:1	Nitrogen
	Plug Nozzle 'B'	17:1 Design	Nitrogen
	Plug Nozzle 'B'	15:3	Nitrogen
	3 MOSTE D.	12:1	Nitrogen
			Terogen

TABLE I (CONTINUED)

0

GROUP	NOTZLE DESIGNATIONS	APPROXIMATE PRESSURE RATIO	TEST GAS
VIII	Plug Nozzle 'C'	25:1	Witroger
	Plug Nozzle 'C'	20:1	Kitroger
	Plug Nozzle 'C'	17:1	Kitroger
	Plug Nozzle 'C'	15:3	Kitrogen
	Plug Fozzle 'C'	12:1	Kitroger
IX	Mach 4.0, 15° Falf Angle	200:1	Kitroger
	Mach 4.0, 11° Half Angle	200:1	Eitrogen
	Mach 4.0, 7° Half Angle	200:1	Fitroger
¥	Mach 4.0, 15° Half Angle	150:1	Mitrogen
	Mach 4.0, 11° Half Angle	150:1 Design	Kitroger
	Mach 4.0, 7° Half Angle	150:1	Fitroger
XI	Mach 4.0, 15° Half Angle	100:1	Fitroger
	Mach 4.0, 11° Half Angle	100:1	Mitroger
	Mach 4.0, 7° Ealf Angle	100:1	Titrogen
XII	Mach 4.0, 15° Ealf Angle	50:1	Kitrogen
	Mach 4.0, 11° Ealf Angle	50:1	Mitroget
	Mach 4.0, 7° Half Angle	50:1	Titroger
XIII	Mach 4.0, 15° Palf Angle	25:1	Kitroges
	Mach 4.0, 11° Half Angle	25:1	Witroger.
	Mach 4.0, 7° Half Angle	25:1	Mitrogen
VIX	Kach 2.5, 11° Half Angle	35:1	Freen
	Mach 2.5, 11° Half Angle	28:1	Argon
	Mach 2.5, 11° Half Angle	25:1 Design	Argon
	Mach 2.5, 11° Balf Angle	21:1	Argon
	Mach 2.5, 11° Falf Angle	17:1	Argon
χV	Mach 4.0, 11° Falf Angle	80:1	Nitrogen
IVX	Mach 4.0, 11° Half Angle	60:1	Witrogen
XVII	Mach 4.0, 11° Half Angle	40:1	Witrogen
XVIII	Mach 2.5, 11° Half Angle	13:1 Design	Freom 13

TABLE II LIST OF NOZZLE DESIGNATIONS

NOZZLE DESIGNATION	INTERPRETATION
2.57	Mach 2.5 Nozzle, 7° Half Angle Nitrogen Test
2.59	Mach 2.5 Nozzle, 9° Half Angle Nitrogen Test
2.511	Mach 2.5 Nozzle, 11° Half Angle Nitrogen Test
2.513	Mach 2.5 Nozzle, 13° Half Angle Nitrogen Test
2.515	Mach 2.5 Nozzle, 15° Half Angle Nitrogen Test
4.7	Mach 4.0 Nozzle, 7° Half Angle Nitrogen Test
4.11	Mach 4.0 Nozzle, 11° Half Angle Nitrogen Test
4.15	Mach 4.0 Nozzle, 15° Half Angle Nitrogen Test
Plug 'A'	Plug Nozzle 'A", Nitrogen Test (See Figure 7)
Plug 'B'	Plug Nozzle 'B', Nitrogen Test (See Figure 7)
Plug 'C'	Plug Nozzle 'C', Nitrogen Test (See Figure 7)
Argon 2.511	Mach 2.5 Nozzle, 11° Half Angle Argon Test
Freon 2.511	Mach 2.5 Nozzle, 11° Half Angle Freon Test

TABLE III

TURBINE AND NOZZLE DATA COMMON TO ALL TEST COMPIGURATIONS*

Mozzle:	
Nozzle Angle	16*
Exit Diameter	.28 inch
Pitch Diameter	5.96 inches
Rumber of Nozzles	1.0
Roter:	
Pitch Diameter	5.78 inches
Blade Angles (inlet and exit)	25*
Blade Height	0.42 inch
Blade Chord	0.3 inch 115
Clearances:	
Rotor Tip Radial	.050 inch
Nozzle To Rotor	0.035 inch
Rotor To Exhaust Bousing	.060 inch
Gas Conditions	
Inlet Temperature	Approx. 20-60°F
Inlet Pressure	Up To 240 psia

^{*}Unless exception noted

C

- FIGURE 1 TURBINE TEST CHAMBER AND APPARATUS.

- FIGURE 2 INSIDE OF TEST - CHAMBER WITH RIG INSTALLED

C

FIGURE 3 TURBINE TEST RIG

C

X = 1.4 Design Mach No.	Divergence Angle	Dim. A	Dim. B	Dim. C
2.5	140	.173	.4439 -	.282
2,5	18°	.173	.3441	.282
2.5	220	.173	.2804	.282
2.5	26°	.173	.2361	.282
2.5	30 °	.173	.2034	.282
4.0	140	.086	.7982	.282
4.0	18°	.086	့ ဗ်188	.282
4.0	22°	.086	.5042	.282
4.0	26°	.086	.4245	.282
4.0	30°	.086	.3657	.282
)		(i

Dim C = Constant permits identical nozzle height/blade height ratio for both expansion ratios.

Figure 6 Conical Nozzles Tested

PLUG NOZZLE C - 2 DIMENSIONAL HALF PLUG

FIGURE 7 - PLUG NOZZLES TESTED

Figure 8.

CONICAL NOZZLE EXIT AND ROTOR OUT LINE - LOOKING THROUGH ROTOR BLADES

Rockford, Illinois

2.0 EXPERIMENTAL RESULTS AND DISCUSSION

The work of this program can be divided into three phases or subprograms:

Phase I Nozzle divergence angle evaluations - 7° to 15° half angle. (Figure 6). Five nozzles of design mach no = 2. and three of Mp = 4.0 were tested.

Phase II Evaluation of performance of three styles of plug nozzles (Figure 7):

Plug Nozzle "A" - Pointed Plug Plug Nozzle "B" - Blunt Plug

Plug Nozzle "C" - 2-dimensional Half Plug

Phase III Tests to determine the effect of specific heat ratio on performance. Tests were made at $\gamma = 1.18, 1.40, 1.68$.

Nominal test conditions are listed in Table IV.

BASIS OF COMPARISON

In this study the measure of nozzle influence on performance is variation of turbine efficiency over a span of off-design pressure ratios ("Range"; good range indicates small variation). Other measures such as hydraulic efficiency, nozzle coefficient, etc. could have been chosen. Although not always strictly correct because of small variations in per unit losses, efficiency is in most cases a valid index. It is usually plotted against velocity ratio (u/C_0) but sometimes against other parameters.

RESULTS OF DIVERGENCE TESTS

The results of Phase I (divergence) testing are summarized in Figures 9 to 38.

M_D = 2.5 nozzle results are shown in Figures 9 to 13, 19-23, and 29-33. They show peak efficiency is maximized at divergence angles of 11° to 13° (half angle) with 11° predominating above design pressure ratio and 13° below. The difference is not great, however. This is illustrated clearly in the basic plots of Figures 9-13 and in the efficiency vs divergence cross plots of Figures 19 to 23.

Plots summarizing efficiency vs velocity ratio at pressure ratios above and below design for different nozzles (Figures 29 to 33) clearly show off-design efficiency trends and suggest range is best with either small (7°) or large (15°) half angles, dropping slightly in between. However, the peak efficiency of intermediate angles is significantly greater than the extremes and more than makes up a small deficiency in range.

The tests at design mach no. = 4.0 (for v=1.4), shown in Figures 14 to 18, reveal no such optimum divergence. The performance of all nozzles is very similar; essentially independent of divergence on or off design. All curves of any given pressure ratio are closely bunched, and all efficiency vs divergence angle curves (Figures 24-28) are essentially flat, indicating no real optimum. The 7° nozzle shows some advantage in peak efficiency but this is slight and may not be significant. The summaries (Figures 34 to 38) indicate a similar conclusion; little variation in off-design performance from angle to angle. Though somewhat obscured by different losses it appears the range capability of the $h_0 = 4.0$ nozzles is not so great as the mach 2.5's, at least not as good as the best ones.

The $M_D = 4.0$ nozzles were tested at a LP (P_O-P_e) four times greater than the $M_D = 2.5$'s and may account for some of the similarity in performance shown by all mach 1.0 nozzles.

PLUG NOZZLES

The results of Phase II tests are summarized in Figures 39 to 43. The two best conical worzles are shown on the same plot for comparison. These tests, particularly plug nozzle C, show greater than average scatter, but the conclusions are obvious and not affected. Peak efficiency and range are inferior to all Mp = 2.5 conical nozzles tested. Direct comparison is valid here because test conditions were identical.

An interesting observation is that plug nozzles "E" (blunt plug) and "C" (half plug) exhibit a very low discharge coefficient of .60 to .63, suggesting severe contraction exists in this type design as in sharp edged orifices.

SPECIFIC HEAT RATIO

The results of Phase III (specific heat) tests are summarized in Figures 44 and 45. Pigure 44 shows performance with 11° half angle and specific heat ratios from 1.18 (Frech 13) to 1.68 (Argon), with each at its own design condition. It suggests a maximum in efficiency occurs, probably 41 $\gamma = 1.4$, with efficiency dropping off above and below. The Argon and Nitrogen summary plots (Figures 45 and 31) show substantially better range for the Argon ($\gamma = 1.68$) than Nitrogen ($\gamma = 1.4$), suggesting that off-design performance improves with increased specific heat ratio. Peak efficiency is less in most cases although not enough to overcome the range advantage shown by the higher specific heat ratio gas.

SUMMARY PLOT, MACH 2.5, PR. RATIO = 20.

SUMMERY PLET, MACHES, P. RA

1.000

FIGURE 12

TURBINE EFFICIENCY VS

VELOCITY RATIO AT 15:1 P.R. WITH NOZZLE DIVERGENCE AS PARAMETER

 $M_0 = 2.5$

P.R.p = 17 y = 1.4

13°
11°
7°
25°

.0.000

1.000

JE TITY RATI

SIMMERY PLET, MACHERE, PR. PATTE = 15

SIMMER PLETS WITH EVERY FUTTILE LES

SIMBY P. 17, M.H. 4.0. T. R. R. 111:201:

SUMMERY PLDT: WACH 4:0, PR. RATIO=150.

SLMMARY PLOT: MADH 4:0, PR: RATIO=100.

- 14 - 14 - 1

ATR 2001

ATR 2001

Rockford, Illinois

PAGE 59

TO THE PROPERTY OF THE PROPERT

TABLE IV

NOMINAL TEST CONDITIONS

Nozzle/Test	Nozzle Inlet	Exhaust Pressure		Inlet
(See Table II)	Pressure psia	psia	P.R.	Temp. F
2.57	60	2.4	25	1
2.59	60	3.0 0 8	20	T
2.511	60	3.0 % N 3.5 % Z	17 des.	
2.513	60	4 6 24	15	1
2.515	60	A11 0.5	12	20-70
Plug A	60	E 21		1
Plug B	60			7
Plug C	60	₩. Y	-	•
4.7	240	1.2 8 8	200 150 des.	4
4.11	240	2.4 %	100	20-70
4.15	240	811 811 Each	50 25	İ
	98	2.8	35	L
	: :98	3.5	28	Ī
Argon 2.511	98	3.9	25 des.	0-60
-	98	4.6	21	i
	98	5.8	17	*
Freon 2.511	91	7,1	12.8 de	s.38-50

(

3.0 CONCLUSIONS

1

- 1) Turbines with low mach number supersonic nozzles should use nozzle half angles of about 12° to optimize performance.
- 2) Performance with high design mach number nozzles appears essentially independent of nozzle divergence.
- 3) Plug and contoured nozzles should be used with caution in turbines: Testing of three types showed no performance advantages.
- 4) Off-design performance improves with increased specific heat ratio.
- 5) Peak efficiency appears to exhibit a maximum as a function of specific heat ratio (at $\gamma = 1.4$) although this effect is small.

4.0 RECOMMENDATIONS

Since this effort was primarily an experimental study the discussion and conclusions are on the order of obvious observations. The large quantity of data were organized in only an elementary way and a thorough theoretical analysis and interpretation of it would be a significant contribution to the advancement of turbine performance and design.

C

Rockford, Illinois

5.0	SYMBOLS		
	A	nozzle area	in. ²
	c_D	nozzle discharge coefficient	W-measured W-theoretica)
	co	isentropic spouting velocity	ft/acc
	$\mathbf{b_e}$	diameter of nozzle exit	in.
	D*	diameter of nozzle throat	in.
	M	mach number	
	P	static pressure	psia
	PT	tctal pressure	psia
	PR	total to static pressure ratio	
	υ	turbine tip speed	ft/sec
	W	nozzle weight flow	lb/sec
	ac	nozzle cone half angle	degrees
	Υ	gas ratio of specific heats	
	nt	turbine efficiency	
	SUBSCRIPTS		
	0	nozzle entrance	
	*	nozzle throat	
	e	nozzle exit plane	
	D	design	

PAGE 62

6.0 LIST OF REFERENCES

- Barber, R. E. and Schultheiss, M. J.,
 "The Effect of Nozzle Geometry on Off-Design
 Performance of Partial Admission Impulse Turbines",
 Sundstrand Aviation AER 486, April 1967.
- 2. Rao, G. V. R., "Approximation of Optimum Thrust Nozzle Contours", Jet Propulsion Vol. 30, June 1960.
- Carnahan, B., Luter, H. A. and Wilkes, J. O., "Applied Numerical Analysis", John Wiley and Sons, 1969.
- 4. "Tables of Thermal Properties of Gases", National Bureau of Standards, Circular 564, 1955.
- 5. El Dupont De Nemours & Co., "Freon 13 Thermodynamic Properties"; Pressure Enthalpy Diagram for Freon 13; "Transport Properties of Freon Flour-ocarbons".

SINDSTRAND AVIATION

ATR 2001

Rockford, Illinois

PAGE 63

APPENDIX A

GRAPHS OF INDIVIDUAL TEST RESULTS WITH EMPIRICAL DATA POINTS

C

f@s _ s.F = "

24. 11

(

Charles of the same

N/2 ---

10.00

•

48- 31-3

1

(

(

(

. .

FREDN, PR. RATIO=13, HALF ANGLE=11

SUNDSTRAND AVIATION

Rockford, Illinois

ATR 2001

PAGE 137

APPENDIX B

LIST OF DATA POINTS

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.515	0.190600	0.464000	0.090819
24.660003		0.463091	0.195731
2.515	0.255000	0.519000	1.207018
24.660003	೧۹ ⊕ ∞ ⊕ ⊕ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	0.531070	2.325661
2.515	0.322000	0.563000	1.095366
24.660003	41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.552046	1.945589
2.515	0.391000	0.504000	2.280843
24.660003	~~~~~~~	0.526808	4.525483
2.515	0.440000	0-492000	1.063806
24.660003		0.481361	2.162207
2.515	0.196000	0.496000	2.471137
23.680000	****	0.471288	4.982131
2.515	0.262000	0.538000	0.312376
23.680000	# W # # # # # @ # # # = #	0.534876	0.580624
2.515	0.326000	0.549000	0.287044
23.680000		0.551870	0.522849
2.515	Ú.3 96000	0.548000	2.480865
23.560001		0.523191	4.527125
2.515	0.439000	0.476000	0.650864
23.560001		0.482508	1.367363

THE NUMBER OF DATA POINTS IS 10
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.194
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.313

D. N.R. NOZZLE RESEARCH PROGRAM

MOZZLE DESTGMATION	VELOCITY RATEO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE	**********	SM20THED DATA POINT	SCATTER PER CENT VAL,
2.515	0.204000	0.461000	1-116198
19.476601		0.449838	2.421255
2.515	3.271000	0.519000	0.609932
17.630001	********	g. 5250 79	1.175302
2.515	0.332000	0.565000	2-113438
19.310001		0.543565	3.740598
2.515	0.404-200	0.516000	0.560343
19.240001		0.510396	1.085936
2.515	3.440000	0.460000	1.293379
19.180000		0.472933	2.811694

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.138
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.246

O.N.R. NOZZI E RESEARCH PROGRAM

MOZZLE DESIGNATION	VSLOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.515	0.192000	0.471000	0.381523
16.910003	•••••••••	0.467134	0.810028
2.515	0.263900	0.534900	0.248885
16.910003	******	0.536488	0.466077
2.515	0.331000	0.531000	0.164985
16.810001	*******	0.529350	0.310707
2.515	0.394000	0.502000	2.049082
16.910003		0.481509	4.081837
2.515	0.450000	0.414000	0.885683
16.910003		0.422855	2.139331

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 0.746
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 1.561

D.H.R. NOZZLE RESEARCH PRUGRAM

NOZZLE DESIGNATION	VELOCITY RATIC	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT YAL,
2.515	0.203000	0.516000	5.277378
14.800001		G.463326	10.227478
2.515	0.270000	0.521060	0.166738
14.800001		0.522687	0.323970
2.515	0.335000	0.453000	6.419540
14.920000	*********	0.517195	14.171171
2.515	0.405000	0.450060	0.410604
15.030000		0.445894	0.912454
2.515	0.444000	0.406000	2.761865
14.800001		0.378381	6.802623

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 3.007
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 6.487

J.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURF RATIO		DAHTOOMS THICS ATAC	SCATTER PER CENT VAL,
2.515	0.207000	0.472000	2.650094
11.820061		C.445499	5.614606
2.513	6.276009	0.479050	3.793821
11.820001		0.516038	7.732492
2.515	0c346000	0.449000	3.238106
11.920001		0.481361	7.211818
2.515	0.415000	0.362090	0.044900
11.820001		0.361551	0.124033

THE NUMBER OF DATA POINTS IS 4
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.170

D.N.R. NOZZLE RESEARCH PROGRAM

MOZZLE DESIGNATION	/ELDCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		DEHTOOMS THIGG ATAD	SCATTER PER CENT VAL.
2.513	0.124609	0.359000	0.998467
24.730003		G.365984	2.761246
2.513	0.193000	C.423000	1.256388
24.730003	`}	0.4955/3	2.970185
2.513	0.18900G	0.489050	1.560145
24.730003	******	0.503602	3.197620
2-513	0.219000	0.541000	0.724554
24.730603	*****	0.340245	1.339287
2-513	0.251000	0.568000	1,610732
24.730003	**************************************	0.584107	2.835798
2,513	0.288020	0.596000	1.485979
24.730003	***************************************	0.610859	2.493254
2.513	0.319000	0.624000	0.252664
24.730003	2 9 426664264	0.621473	0+04910
2.513	0.3-8000	0.610000	1.193952
24.730003	~ **** * * * * * * * * * * * * * * * *	0.621939	1.957299
2.513	0.384000	0.606000	0.416278
24.730003		0.610132	0.586928
2.513	9.418000	₽ . 55900G	2.786291
24.750003	# ഇ കാ ൽ ക ർഗം <i>ഉ</i> ഗകുക്കവ	0.536862	4.984420

THE NUMBER OF DATA POINTS IS 10
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.228
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.365

O.N.R. NOZZLE RESEARCH PROGRAM

		The state of the s	•
NOTANDIES!	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2,513	0.129000	0.378000	0.460422
39-78(1902		0.382604	1.218047
2.313	0.161000	0.442000	1.620376
19.70002		0.458203	3.666009
2.513	0.196000	0.515000	0.895905
19.786002		0.523959	1.739622
2.513	J.231000	0.593000	2.027011
19.780002		0.572729	3.418231
2 613	0.262000	0.589000	1.332517
19.786002		0.602326	2.262507
2.513	0.293000	0.586000	3.367209
19.780002		0.619672	3.746091
2.513	0.331000	0.644000	1.903784
19.780002		0.624952	2.956187
2,513	0.363000	0.588000	2.840948
19.780002		0.616409	4.831545
2.513	0.395000	9.573000	2.355421
19~780002	,,	0.596554	4.110682
2.513	0.431000	0.582000	2.060306
19.790002	~~~~~~~	0.561396	3.540045
2,513	G-465G00	0.511000	0.541424
19.780002		0.516414	1.059540
THE MUMORO OF -			

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.764
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.140

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.513	0.136000	0.432000	2.987462
16.490001		0.402125	6.915422
2.513	0.171000	0.462000	3.519731
16.490001		0.697107	7.598986
2.513	0.200000	0.541000	1.275992
16.490001		0.553759	2.358582
2.513	0.234000	0.566000	3.162575
16.490001		0.597625	5,587588
2.513	0.269000	0.656000	3.538561
16.496001	04/4 000000	0.620614	5.394148
2.512	0.304000	0.636000	1.137769
16.490001		0.624622	1.788945
2.513	0.337000	0.612000	0.220036
16.490001		0.614200	0.359536
2.513	0.371000	0.587000	0.524652
16.490001	******	0.592246	0.893785
2.513	0.405000	0.531000	3.112650
16.490001	**********	0.562126	5.861866
2.513	0.438000	0.514000	1.415662
16.490001		0.528156	2.754245

THE NUMBER OF DATA POINTS IS 10
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.088
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.951

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SLATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.513	0.132000	0.404000	2.205318
14.960001		0.426053	5.458708
2.513	0.170000	0.493000	1.667517
14.960001		0.509675	3.382388
2.513	0.203000	0.536000	2.881014
14.840000		0.564810	5.375028
2.513	0.240000	0.612000	0.408184
14.840000		0.607918	0.666968
2.513	0.260000	0.619000	0.421035
14.960001		0.623210	0.680186
2.513	0.273000	0.650000	1.979816
14.960001		0.630201	3.045871
2.513	0.307000	0.636000	0.174152
14.960001		0.637741	0.273825
2.513	0.339000	0.625000	0.600087
14.960001		0.631000	04960140
2.513	0.377000	0.596000	1.017964
14.960001		0.606179	1.707993
2.513	0.406000	0.571000	0.437700
14.960001		0.575377	0.766551
2.513	0.449000	0.506000	0.555145
14.960001		0.511551	1.097126

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.122
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.128

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2.513	0.138000	0.405000	1.085239
11.970001		0.394147	2-679604
2.513	0.172000	0.487000	0.407379
11-970001		0.491073	0.836508
2.513	0.209000	0.558000	0.474858
12.070001		0.563251	0.836018
2.513	0.249000	0.594000	1.150679
12.070061		0.605506	1.937171
2.513	0.278000	0.643000	2.808022
12.070001		0.614919	4.357065
2.513	0.317000	0.627000	2.481270
12.076001		0.662187	3.957368
2.513	0.351000	0.569000	0.073862
12.070001		0.569738	0.129816
2.513	0.386000	0.556000	3.795147
12.070001		0.516046	6.825804
2.513	0.428000	0.501000	6.604076
12.070001		0.434959	13.181789
2.513	0.462000	0.362000	0.839769
12.070001		0.353602	2.319806

THE NUMBER OF DATA POINTS IS 10
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.972
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.707

O-N.R. NOZZLE RESEARCH PROGRAM

Ĺ

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.511	0.127000	0.370000	0.371420
25-000003		0.366285	1.003839
2.511	0.188000	0.541000	3.841484
25.000003		0.502585	7.190710
2.511	0.157000	0-453000	1.355666
25.000003		0.439443	2.992640
2.511	0.222000	0.583000	2.537203
25.080001		0.557628	4.351978
2.511	0.255000	0.584000	1.319372
24.870002		0.597193	2.259200
2.511	0.281000	0.632000	1.301360
25.210002		0.618986	2.059114
2.511	0.317000	0.660000	2.413666
23.250003		0.635863	3.657070
2.511	0.353000	0.598000	3.971648
22.730003	\$4 6 6 6 W 4 7 8 6 6 6	0.637715	6.641553
2.511	0.288000	0.634000	1.053345
24.689000		0.623466	1.661427
2.511	0.322000	0.639000	0.199115
24.580001	****	0.637008	0.311604
2.513	0.358000	0.636000	0.081145
24.080001	**********	0.636811	0.127587

O.N.R. MOZZLE RESEARCH PROGRAM

MOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VALL.
2.511	ā. 393000	0.683000	5.488360
23.800003		0.628116	8.035667
2.511	9-418000	0.625000	2.150857
23.600002	***********	0.604491	3.435874

THE NUMBER OF DATA POINTS IS 13

THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.006

THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.356

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SHOOTHED DATA POINT	SCATTER PER CENT VAL,
2.511	0.387000	0.652000	3.877270
22.370002		0.613227	5.946734
2.511	9.424900	0.631000	5.231548
22.200000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.578684	8.290285
2.511	U.446000	0.574000	2.232778
21.960002		0.551672	3.889858
2.511	0.132000	0.436000	2.201760
19.660003	******	0.413982	5.049908
2.511	0.165000	0.460000	2.814639
19.730003	****	0.488146	6.118780
2.511	0.198000	0.554000	().723362
19.830001	*****	0.546766	1.305707
2.511	0.233000	0.648000	5.536938
19.900001	****	0.592630	8.544658
2.511	0.264000	0.600000	1.980567
19.830001	~~~	0.619805	3.300945
2.511	0.295000	0.628000	0.687360
19.830001		0.634873	1.094523
2.511	0.331000	0.672000	3.415453
19.630001	***	0.637845	5.082521
2.511	0.394000	0.589000	1.877045
19.630001		0.607770	3.186834

O.N.R. HOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.511	0.432000	0.587000	1.759374
19.630001		0.569406	2.997231
2.511	0.462000	0.504000	2.512324
19.250003		0.529123	4.984770

THE NUMBER OF DATA POINTS IS 13
.ME AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.680
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.599

Ocher. NOZZLE RESEARCH PROGRAM

NGZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PREJSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2.511	0.134000	0.363000	2.336228
17.140003		0.386362	6.435890
2.511	0.167000	0.474000	0.721204
17.050003		0.481212	1.521528
2.511	0.201000	0.574000	2.287065
17.050003		0.551129	3.984436
2.511	0.234000	0.668000	7.295239
17.000003		0.595047	10.921016
2.511	0.267000	0.588000	3.037953
17.140003		0.618379	5.166588
2.511	0.301000	0.588000	3.602445
16.860000		0.624024	6.126608
2,511	0.332000	v.644000	2.837849
17.000003		0.615621	4.406598
2.511	0.367000	0.564000	2.978086
16.810001		0.593780	5.280296
2.511	0.402000	0.617000	5.475259
16.870002		0.562247	8.874002
2.511	0.436000	0.508000	1.769340
16.750003		0.525693	3.482953
2.511	0.471000	0.536000	5.057186
16.660003		0.485428	9.435049

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 3.399
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.966

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SMSOTHED DATA POINT	SCATTER PER CENT VAL.
2.511	0.135000	9.446000	2.376252
14.870000		0.422237	5,327919
2.511	0.168000	0.480000	0.924533
15.870000		0.489245	1.926111
2.511	0.203000	0.545000	0.108611
15.230001		0.543913	0.199287
2.511	9.238000	0.627000	4.474688
15.150001		0.582253	7.136663
2.511	0.274000	0.598000	0.724959
15.030000		0.605249	1.212306
2.511	0.305000	0.569000	4.315960
15.110000		0.612159	7.585168
2.511	0.337000	0.627000	1.978123
14.920000	### ## ## ## ## ## ## ## ## ## ## ## ##	0.607218	3.154901
2.511	0.376600	0.660000	7.476736
15.000001		0.585232	11.328388
2.511	0.410000	0.577000	2.467048
15.000001		0.552329	4.275648
2.511	0.439000	0 « 530000	1.543593
15.000001	***	0.514564	2.912440
2.511	0.477000	0.421000	3.112632
15.070001		0.452126	7.393425

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.682
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.768

D.W.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Daia point	SCATTER PER CENT EFF.
PRESSURE RATIO	***********	SHOOTHED DATA POINT	SCATTER PER CENT VAL,
2.511	0.139000	0.365000	2.793737
12.000001		0.392907	7.645856
2.511	0.175000	0.467000	1.129633
11.940000		0.478296	2.418915
2.511	0.211000	0.565000	3.091228
12.000001		0.534087	5,471200
2.511	0.237000	0.503000	5.448008
12.100000		0.557480	10.831031
2.511	0.279000	0.567600	0.115907
12.040000		0.568159	0.204421
2.511	0.318000	0.538000	1.331329
11.900001		0.551313	2.474590
2.511	0.354000	0.519000	0.309634
11.900001		0.515903	0.596597
2.511	0.385000	0.468000	0.423467
11.900001		0.472234	0.904844
2.511	0.421000	0.289000	11.958862
12.000001		0.408588	41.380149
2.511	0.458000	0.302000	2.937353
11,940000		0.331373	9,726335
2.511	0.492000	0.230000	2.233228
11.950000		0.252332	9.709686

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.888
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 8.305

O.N.R. NOZZLE RESEARCH PROGRAM

(

NOZZLE DESIGNATION	VELGCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	\$\tag{\psi} \tag{\psi} \tag{\psi} \tag{\psi} \tag{\psi} \tag{\psi} \tag{\psi} \tag{\psi} \tag{\psi}	SMOUTHED DATA POINT	SCATTER PER CENT VAL,
2,59	0.191300	0.44900C	3.536767
25,370002	~~~~	0.484367	7.876987
2.5 3	0.256000	0.556000	2.023733
24.850002	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.576237	3,639807
₹•5 9	0.312000	0.617000	0.395596
25.080001	<u> </u>	0.613044	0.641160
2.59	0.385000	0.542000	5.779684
25.080001	~ ************************************	0.5997?6	10.663623
2.59	0.450000	0.528000	0.905478
25.080001		0.537054	1.714920

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.528
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.907

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2.59	0.197000	0.540000	1.697480
20.230003		0.523025	3.143483
2.59	0.263000	0.580000	1.301777
20.230003	****	0.593017	2.24444
2.59	0.328000	0.565000	4.370964
20.400001		0.608709	7.736219
2.59	0.396000	0.559000	1.465440
20.400001	200020000	0.573654	2.621538
2,59	0.434000	0.513000	2.008426
20.400001		0.533084	3.915061

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.168
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.932

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
2.59	0.199000	0.524000	1.095748
16,900001	**********	0.513042	2.091122
2.59	0.265000	0.584000	0.353264
16.900001		0.580467	0.604905
2.59	0.332000	0.565000	0.892090
16.670002		0.573920	1.578922
2.59	0.400000	0.480000	3.543263
16.850002	************	0.515432	7.381799
2.59	0.443000	0.437000	2.619391
16.530002		0.463193	5.994031

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.700
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.530

O.N.R. NOZZLE RESEARCH PROGRAM

CARRY OF THE PARTY

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	***************************************	SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2.59	0.205000	0.475000	2.501100
14.550001		0.500011	5.265474
2.59	0.271000	0.543000	0.142324
14.420000	7000000000	0.544423	0.262106
2.59	0.340000	0.557000	1.869201
14.240001		0.538308	3.355838
2.59	0.413000	0.449000	2.910608
14.300001		0.478106	6.482423
2.59	0.451000	0.388000	3.857440
14.050001		0.426574	9.941856

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.256
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.061

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	YELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA PUINT	SCATTER PER CENT VAL,
2.59	0.210000	0.512000	3.137570
11.340000		0.480624	6.128067
2.59	0.279000	0.534000	3.261185
11.340000		0.501388	6-107089
2.59	0.354000	0.422000	2.433574
11.230001		0.446335	5.766763
2.59	0.418000	0.434000	8.092798
12.230001		0.353072	18.646999
2.59	0.443000	0.354000	4.545605
12.140001		0.308543	12.840692

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 4.294
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 9.897

U.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
2.57	0.196000	0.472000	1.077711
24.870002		0.461222	∠.283286
2.57	0.251000	0.530000	0.471222
25.910003	***************************************	0.534712	0.889099
2.57	0.318000	0.572000	0.339651
25.700000		0.568603	0.593795
2.57	0.378000	0.568000	1.862168
25.290000	***************	0.549378	3.278465
2.57	0.449000	0.471000	0.184631
25.290000		0.469153	0.391998

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 0.787
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 1.487

NOZZLE DESIGNATION	VELOCITY RATIO	SATA POINT	SCATTER PER CENT ENF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2.57	0.195000	0.461000	2.000297
20.360000		0.481803	4.512577
2.57	0.263000	8.563000	1.256859
20.400001		0.550431	2.232432
2.57	0.328630	0.585000	2.257013
20.230003		0.562429	3.854143
2.57	0.397900	0.529000	9.5 293 11
20.560001		0.52310e	1.114009
2.57	0.461000	8.442999	3.144159
20.560001		0.443461	8.530657

THE NUMBER OF DATA POINTS !S 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.265
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.405

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data point	SCATTER PER CEN1 EFF.
PRESSURE RATIO	****	SMOOTHED DATA POINT	SCATTER PER CENT VAL.
2.57	0.200000	0.493000	0.445854
17.480003	の 色 	0.497458	0.904370
2.57	0.270000	0.552000	0.493061
17.620002	4.4 <u>0.400000000000000000000000000000000</u>	0.556930	0.893227
2.57	0.334000	0.548000	1.014173
17.480003		0.537858	1.850630
2.57	0.846000	0.483000	0.051182
17.62300?		0.483511	0.105967
2.57	0.470000	0.380000	1.446962
17.620002		0.365530	3.607796

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 0.890
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 1.512

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE NATIO		SMOOTHED CATA POINT	SCATTER PER CENT VAL.
2.57	0.203000	0.542000	1.803934
15.300001		0.523960	3.328293
2.57	0.274000	0.544000	0.394892
15.620000		0.547948	0.725905
2.57	0.341000	0.489000	3.472388
15.420000	*********	0.523723	7.100998
2.57	0.409000	0.472000	1.523089
15.420000		0.456769	3.226884
2.57	0.478000	0.374000	2.455646
15.420000	~ ~~~~~~	0.349443	6.565898

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.929
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.189

O.N.R. NOZZLE RESEAPCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOGTHED DATA POINT	SCATTER PER CENT VAL.
2.57	0.208000	0.543000	1.122284
12.210001		0.531777	2.066821
2.57	0.279000	0.521000	1.877308
12.340000	******	0.539773	3.603279
2.57	0.348900	0.464000	2.495688
12.340000		0.488956	5.378633
2.57	0.423000	0.376000	1.437229
12.360000	***********	0.350372	3.822417
2.57	0.458000	0.341000	0.551337
12.210001	*****	0.335486	1.616824

C

THE NUMBER OF DATA POINTS IS 5
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.496
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.297

O.N.R. NOZZLE RESEARCH PROGRAM

C

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	
4.15	0.112000	0.286000	0.027829
208.900030		0.285721	0.097305
4.15	9.167000	0.40000	0.374382
208.000030	*********	0.403743	0.935956
4.15	0.221000	0.480000	0.840860
208.000030	******	0.488408	1.751793
4.15	0.111000	0.291000	0.774049
209.000030	*********	0.283259	2.659965
4.15	0.167000	0.393000	1.074385
209.000030	*********	J.403743	2.733806
4.15	0.224000	0.481000	1.126533
208.000030	*********	0.492265	2.342066
4.15	0.289000	0.564000	0.836074
298.000030		0.555639	1.482461
4.15	J.339000	0.385000	0.475204
296.000030	*******	0.580247	9.8:2314
4-15	0.39200 0	0.604000	1.770770
217.000030	****	0.586292	2.931739
4.15	9.421000	0.582000	0.014567
217.090030		0.591854	9.925029
4.15	\$.397000	0.580000	0.58 9: 45
216.000036		0.585896	1.0.5629

O.N.R. MOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	•••••	SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.15	0.342000	0.582000	0.088405
216.000030	++	0.581115	0.151899
4.15	0.284000	0.525000	2.707541
216.000030	******	0.552075	5.157221
4.15	0.230000	0.497000	0.272238
216.000030	*******	G.499722	0.547763
4.15	0.175000	0.447000	2.883470
216.000030	*********	0.418165	6.450716
4.15	0.113000	0.289000	0.082784
216.000030	*****	0.288172	0.286452

C

THE NUMBER OF DATA POINTS IS 16 THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 0.871

THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 1.836

O.M.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	•••••	C3HTDOM2 THIO9 ATAD	SCATTER PER GENT YAL,
4.15	0.116000	0.301000	0.317458
141-400024		0.304144	1.044744
4.15	0.175000	0.441000	2.961587
141.400024		0.420384	4.474801
4.15	0.229000	0.487000	0.741279
136.500030	*****	0.494412	1.522133
4.15	0.290000	0.526000	1.910031
140.600018		0.545100	3.631236
4.15	0.349000	0.550000	1.518821
140.800018		0.565:88	2.761494
4.15	0.407000	0.567000	0.558006
132.590030	*********	0.561419	0.984139
4.15	0.350000	0.573000	0.757126
136.509030		0.565306	1.342269
4.15	0.292000	0.580000	3.377753
140.800018	****	0.546222	5.823765
4.15	0.231000	0.+53000	4.360563
135.300024		0.496605	9.625967
4.:5	0.177000	0.461900	3.734463
135.900024		0.423655	8.190790
4.15	9.119999	0.295090	1.501076
147.100005		0.311010	5.427377

THE NUMBER OF DATA POINTS IS 11

6

THE AVERAGE ERHOR IN PER CENT EFFICIENCY IS 1.904

THE AVERAGE EPROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.085

O.N.R. NOZZI, E RESEARCH PROGRAM

€.

NG!ZLE DESIGNATION	VELOCITY CATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
4.15	0.119003	0.296900	G.620871
95.400009		0.302208	2.097540
4.15	0.173099	0.319000	8.012140
47.500015		0.399121	25-116428
4.15	0.234000	0.532000	5.195057
95.400009		0.480049	9.765146
4.15	0.297000	0.547090	2.408433
95.000015		0.522915	4.402986
4.15	0.356000	0.545090	2.790964
93.090015		0.517090	5.121035
4.15	0.398000	0.465000	1.638734
¥3.090015		9.431397	3.524160
4.15	0.353900	0.500000	1.858783
94.600006		0.51858?	3.717566
4.15	0.277500	6.593000	1.991576
93.400009		0.522915	3.959384
4.15	0.234000	0.474363	0.104939
94.630006		0.450049	0.51305.
4.15	3.175.009	0.404009	0.17927±
94.500906		9.402297	0.4214#1
4.15	0.119690	6.337099	3.6768?9
73.200F12		1.300731	19.939625

THE NUMBER OF DATA POINTS IS 11
THE RYSRAGS ECROS IN PER CENT OF EMPIRICAL DATA VALUE IS 6.295

O.N.R. NOZZŁE RESEARCH PROGRAM

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO			PER CENT VAL.
N#110		5414 70141	TEN GENT THEY
4.15	0-120000	0.294000	1.473248
47.200004	*********	0.308732	5.011048
4.15	0.190000	0.400000	0.446838
47.100006		0.395531	1.117095
4.15	0.2440(=0	0.391000	1.253372
47.000907		0.403533	3.205556
4.15	0.309000	0.3570GC	0.441426
46.900001		0.361414	1.236467
4.15	0.370000	0.280000	0.594943
÷5.900001		0.285940	2.121585
4.15	0.348099	9.315600	0.017482
45.900001		0.315174	0.055322
4.15	5.305000	0.361500	0.4325G3
46.509953		\$.3 65 325	1.198070
4.15	#.245000	0.425050	2.272552
44.300003		9.403274	5.334630
4.15	9-186000	0.415000	2.493227
46.300003		9.393067	5.964657
4.15	5.122000	0.303000	0.959563
45.899005		S. 312595	3.166875

THE NUMBER OF DATA POINTS ID TO THE ALERAGE ERROR IN PER CENT EFFICIENCY IS 1.038

INC. A YEAR GE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.841

(

MOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
4.15	0.127000	0.273000	0.000321
	****		*****
23.000003		0.272996	C.001178
4.15	0.195000	0.344000	0.000774
22 00000			
22.900001		0.343992	0.002252

THE NUMBER OF DATA POINTS IS 2
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 0.000
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 0.001

U.N.R. NOZZLE RESEARCH PROGRAM

 \mathbf{C}

NOZZLE DESIGNATION	VELOCITY CITAR		SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED	SCATTER PER CENT VAL.
4.11	0.107000	0.282000	1.958072
197.00G030		0.301580	6.943520
4.11	0.165000	0.413090	0.640213
198.700012		0.419402	1.550153
4.11	0.225000	0.485000	1.922172
197.000030	•••••	0.504221	3.963242
4.11	0.282000	0.573000	1-945114
197.000030	*****	0.553548	3.394615
4.11	0.340000	0.559000	1.714730
199.500030		0.578147	3.067496
4.11	0.401000	0.578000	0.410723
199.500030		0.573892	0.710594
4.11	0.401000	0.549000	2.489281
199.500030	******	0.573892	4.534210
~.11	0.342600	0.582000	0.552570
199.700012	*****	9.576474	0.949434
4.11	0.284000	9.578000	2.322936
197.800018	******	0.554770	4.018920
4.11	0.227900	0.533000	2.655351
199.500030	••••	0.506446	4.981897
5.11	0.155000	0.418000	1.629358
195.700012	**********	0.401706	3.897987

4.11	0.115000	0.312000	0.306403
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
00555405		*********	*******
NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
4.0334.5		5maia 16 44	

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.383

C. N. P. MOILLE RESERVED MEDICALE

C

MOLILE DESIGNATION	AFFECTIAL	EMPLATE POINT	MATTER MA CHAI LIFE.
PRESSURE RATIO	(Artificial de la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale de la cale	SMOUTHED DATA POINT	SEATTER PER CENT MAL.
4.11	5.111000	5.29000C	3.984233
149.600006		0.299842	3.343924
4.11	0.144000	0.40100	9-2-111-
149.600004	The contraction of the contracti	0.403611	9.451142
4-11	0.231000	9.494560	1.974901
149.690005		0.483231	2.179961
4.11	9.258000	0.516090	5.300133
145.300018		0.519-01	0.501653
÷:11	0-348000	0.555000	2.42549
149.c00006		9.526745	5.390969
4.11	0.493900	0	2.269727
149.500006		9.510697	4.651060
4.11	0.419000	0.507000	0.460P75
149.600006		0.502391	9.909023
4.11	0.405000	0.489000	2.074301
149,500006		0.509743	4. *41925
4-11	0.397000	0.537000	2.358618
149.600006		0.513411	4.3925£;
4.11	0.335000	0.542000	1-455149
149.600006	******	0.527448	2.684761
4.11	0.294000	0.492030	2.908444
147.700012		0.521084	5.911473

The state of the s

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
*****	######################################	*****	
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
4.11	G.234000	0.476000	0.986832

149.600306		0.485868	2.073177
4.11	J.173000	0-424000	0.966328
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	
149.600006		0.414336	2.279076
4.11	0.118000	0.322000	0.696498
150-200012		0.315035	2.163038

THE NUMBER OF DATA POINTS IS 14
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.943

Can.

VELOCITY	EMPIRICAL	SCATTER
RATIO	DATA POINT	PER CENT EFF.
	SMOOTHED	SCATTER
	DATA POINT	PER CENT VAL,
0.234000	0.475000	0.986832
	0.485868	2.073177
0.173000	0.424000	0.966328
	0.414336	2.279076
0.118000	0.322000	0.696498
	0.315035	2.163038
	0.234000 0.173000	RATIO DATA POINT  SMOOTHED DATA POINT  0.234000 0.475000  0.485868  0.173000 0.424000  0.414336

THE NUMBER OF DATA POINTS IS 14
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.401
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.943

O.N.R. NOZZLE RESEARCH PROGRAM

C

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.11	0.351000	0.518000	0.819242
100.500015		0.526192	1.581548
4.11	≎≟296000	0.506000	1.933098
100.100006		0.525331	820352
4.11	0.232000	0.499000	2.451856
100.500015		0.478381	<b>41</b> 3197 ₀
4.11	0.176000	0.385000	1.930701
100.500015		0.404307	5.014810
4.11	0.120000	0.293000	1.352310
100.500015		0.306523	4.615393
4.11	0.113000	0.300000	0.703013
99.700012		0.292969	2.343377
4.11	0.168000	0.411000	1.936835
99.700012		0.391631	4.712494
4.11	0.231000	0.500000	2.269423
99.700012		0.477305	4.538846
4.11	0.289000	0.501000	2.144420
99.700012		0.522444	4.280281
4-11	0.348000	0.517000	1.020241
95.700012		0.527202	1.973386
4.11	0.411000	0.491000	1.342273
99.700012		0.477577	2.733753

NOZZLE	VETOCITA	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIG		DATA POINT	PER CENT VAL,
4.11	0.426000	0.464000	0.759470
100.100006		0.456405	1.636790
4.11	0.411000	0.479000	0.142270
96.120010		0.477577	0.297015
20. TSAATA		0.411711	0.231013

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.416
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.206

O.N.R. NOZZLE RESEARCH PROGRAM

NGZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.11	0.115000	0.271000	2.286502
80.100006		0.248134	8.437280
4.11	0.173000	0.316000	1.103657
77.200012		0.304963	3.492587
4.11	0.237000	0.368000	2.394062
72.500015	******	0.344059	6.505604
4.11	0.310000	0.317000	3.104883
76.500015		0.348048	9.794586
4,11	0.352000	0.345000	1.885903
74.200012		0.326141	5.466385
4.11	0.420000	0.233000	1.291632
76.900009		0.245916	5.543488
4.11	0.408000	0.276000	1.155573
79.100006		0.26444	4.186860
4.11	0.354000	0.328000	0.339782
74.200012		0.324602	1.035921
4.11	0.314000	0.344000	0.278616
76.900009		0.346786	0.809930
4.11	0.238000	0.338000	0.643116
77.200012		0.344431	1.902710
4.11	0.179000	0.298000	1.179933
74.800003		0.309799	3.959508

(

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
KATIO		DATA POINT	PER CENT VAL.
4-11	0.120000	0.227000	2.667051
74.800003		0.253670	11.749126
. 4.00000		01277010	116142160

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.527
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.24G

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.11	0.121000	0.245000	2.045956
59.800003		0.224540	8.350843
4.11	0.179000	0.289000	2,309406
59.800003	*****	0.312094	7.991024
4.11	0.242000	0.374000	3.489309
59.800003		0.339106	9.329706
4.11	0.303000	0.304000	0.905364
59.800003		0.313053	2.978174
4.11	0.365000	0.268000	1.824370
59.800003		0.249756	6.807352
4.11	0.420000	0.165000	1.031234
59.800003		0.175312	6.249908
4.11	0.429000	0.170000	C. 769722
59.800003		0.162302	4.527779
4.11	0.363000	0.243000	0.921547
59.800003		0.252215	3.792377
4.11	0.299000	0.301000	1.503062
59.800003		0.316030	4.993562
4.11	0.237000	0.338000	0.117814
59.800003		0.339178	0.348563
4.11	0.182000	0.316000	0.113433
59.800003		0.314865	0.358967

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
~~~~~~			
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
4.11	0.121000	0.210000	1.454043
59.800003		0.224540	6.924016

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.373
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.221

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	***********	SMOOTHED DATA POINT	SCATTER PER CENT VAL
4.11	0.124000	0.324000	1.556653
50.100006		0.308433	4.804485
4.11	0.184000	0.302000	9.773004
50.100006		0.399730	32.360939
4.11	0.247000	0.401000	2.226770
50.100006		0.423267	5.553043
4.11	0.305000	0.339000	5.464679
49.900001		0.393646	16.119998
4.11	0.371000	0.305000	1.224780
49.900001		0.317247	4.015673
4.11	0.426000	0.242000	0.980717
50.100006		0.232192	4.052550
4.11	0.442000	0.202000	0.353980
49.900001		0.205539	1.752376
4.11	0.429000	0.243000	1.576388
49.900001		0.227236	6.487194
4.11	0.369000	0.317000	0.305581
49.900001		0.320055	0.963978
4.11	0.303000	0.438000	4.266232
49.900001		0.395337	9.740257
4.11	0.242000	0.482000	5.827659
49.900001		0.423723	12.090580

C

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
4.11	0.184000	0.421000	2.126992
50.100006		0.399730	5.052238
4.11	0.123000	0.337000	3.074205
50.300003		0.306257	9.122272

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.981
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 8.624

D.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIG		SMOOTHED DATA POINT	SCATTER PER CENT VAL:
4.11	0.123000	0.249000	0.567817
39.900001		0.243321	2.280392
4.11	0.189000	0.291000	1.092630
39.900001		0.280073	3.754745
4.11	0.247000	0.304000	3.844291
39.900001		0.265557	12.645696
4.11	0.306000	0.207000	0.370919
39.900001		0.210709	1.791882
4.11	0.371000	0.123000	1.388141
39.900001		0.109118	11.285703
4.11	0.426000	0.000000	0.601351
39.900001		-0.006013	0.601351
4.11	0.378000	0.072000	2.385756
39.900001		0.095857	33.135505
4.11	0.308000	0.209000	0.080266
39.900001		0.208197	0.384050
4.11	0.249000	0.247000	1.733345
39.900001		0.264333	7.017591
4.11	0.185000	0.248000	3.151962
39.900001	888848888	0.279519	12.709524
4.11	0.123000	0.244000	0.067818
39.900001		0.243321	0.277943

THE NUMBER OF DATA POINTS \$3 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.389
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 7.807

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER
4.11	0.128000	0.253000	0.670069
25.200000		0.259700	2.648496
4.11	0.192000	0.332000	1.819664
24.900001	,	0.313803	5.480917
4.11	0.256000	0.263000	1.012605
25.200000		0.273126	3.850211
4.11	0.297000	0.179600	1.292356
25.200000		0.191923	7.219870
4.12	0.314000	0.140000	0.474229
25.200000		0.144742	3.387353
4.11	0.322000	0.119000	0.070174
25.100002		0.119701	0.589697
4.11	0.336000	0.078000	0.657673
25.200000		0.071423	8.431707
4.11	0.288000	0.229000	1.535990
24.900001		0.213640	6.707384
4.11	0.258000	0.271000	0.079822
25.000003		0.270201	0.294548
4-11	0.193000	0.305000	0.892663
24.900001		0.313926	2.926764
4.11	0.128000	0.263000	0.329929
25.000003		0.259700	1.254485

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 0.803
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.890

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data puint	SCATTER PER CENT EFF.
PRESSURE RATIO	A	SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.7	0.175000	0.461000	3.085804
203.200012		0.430141	6.6937\8
4.7	0.114000	0.323000	1.559639
199.800018		0.307403	4.828604

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.288
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.782

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.7	0.116000	0.315000	0.145942
153.700012		0.316459	0.463307
4.7	0.175000	0.413690	2.531719
153.700012		0.438317	6.130071
4.7	0.231000	0.498000	1.968461
152.100006	**********	0.517684	2,952734
4.7	0.293000	0.565000	0.384855
150.200012		0.568848	0.681159
4.7	0.349000	0.538000	4.792440
152.400024		0.585924	5.907880
4.7	0.408000	0.514000	6.419397
152.100006		0.578194	12.489101
4.7	0.438000	0.554000	1.149404
152.400024		0.565494	2.074737
4.7	0.408000	0.565000	8.680606
152.400024		0.578194	13.053543
4.7	0.349000	0.615000	2.907550
152.400024		0.585924	4.727725
4.7	0.291000	0.588000	2.024853
155.400024		0.567751	3.443628
4.7	0.235000	0.531000	0.889897
152.400024	*******	0.522101	1.675889

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
152.400024	0.175000	0.462000	2.368217
4.7		0.428317	5.126141
160.200012	0.116000	0.322006	C.554055
130.200012		0.316459	1.720447

THE NUMBER OF DATA PUINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.678
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.957

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA PUINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
4.7	0.118000	0.331000	0.209218
100.100006		0.333092	0.632079
4.7	0.175000	0.395000	3.140968
191.000015		0.426409	7.951818
4.7	0.237000	0.483000	1.915711
99.900009		0.502157	3.966276
4.7	0.294000	0.549000	0.854468
100.100006		0.540455	1.556409
4.7	0.357000	0.533000	0.602245
101.000015		0.539022	1.129916
4.7	0.412000	0.482000	1.091420
100.100006	******	0.492914	2.264358
4.7	0.412000	0.498000	0.508576
100.100006		0.492914	1.021238
4.7	0.359000	0.544000	0.587725
99.300003		0.538122	1.080378
4.7	0.297000	0.551000	0.950169
100.100006		0.541498	1.724445
4.7	0.18000	0.476000	4.237342
100.300003	****	0.433626	8.901981
4.7	0.120000	0.335000	0.166773
100.300003	****	0.336667	0.497832

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.296
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 2.793

The state of the s

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED Data Point	SCATTER PER CENT VAL.
4.7	0.123000	0.345000	0.877082
50.300003		0.336229	2.542268
4.7	0.186000	0.365000	6.587649
50.500007		0.430876	18.048355
4.7	0.245090	0.443000	0.515461
50,300003		0.448154	1.163548
4.7	0.306000	0.372000	3.708797
50.20004		0.409088	9.969886
4.7	0.371000	0.283000	3.699714
50.300003		0.319997	13.073194
4.7	0.428990	0.201000	1.500275
50.800003		0.216002	7.464058
4.7	0.433000	0.220000	1.383292
50.800003		0.206167	6.287694
4.7	0.365000	0.342000	1.221227
50.300003	***	0.329787	3.570841
4.7	0.305000	0.467000	5.791199
50.500007		0.409088	12.400856
4.7	0.247000	0.502000	5.407494
50.300003		0.447925	10.771900
4.7	0.185000	0.444000	1.397150
50.200004		0.430028	3.146736

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
	0/000000000	*******	
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
4.7	0.123000	0.336000	0.022917
50.200004		0.336229	0.068208

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.676
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 7.375

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
4.7	0.128000	0.274000	1.261413
25.000003		0.286614	4.603697
4.7	0.194000	0.310000	3.245861
25.100002		0.342468	10.473749
4.7	0.255000	0.294060	1.774305
25.100002		0.311743	6.035052
4.7	0.322000	0.165000	0.963401
25.200000		0.174634	5.838799
4.7	0 - 337000	0.153000	2.517599
25.100002		0.127824	16.454895
4.7	0.321000	0.145000	3.253743
25.100002		0.177537	22.439609
4.7	J.256000	0.364000	5.347783
25.100002		0.310522	14.691711
4.7	0.194000	0.349000	0.653141
25.100002		0.342468	1.871466
4.7	0.129000	0.308000	1.990872
25.100002		0.288091	6.463872

THE NUMBER OF DATA POINTS IS 9
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.334
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 9.874

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data point	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'A'	0.194000	0.469000	1.522112
23.720001		0.453778	3. 45441
PLUG 'A'	0.191000	0.484000	3.433180
23.470001		0.449668	7.093347
PLUG 'A'	0.190000	0.458000	0.973266
23.400001		0.448267	2.125036
PLUG 'A'	0.259000	0.526000	0.598847
23.580001		0.520011	1.138494
PLUG 'A'	0.259000	0.525000	0.495266
23.540000		0.520047	0.943365
PLUG *A*	0.322000	0.568090	3.363895
24.250003		0.534361	5.922351
PLUG 'A'	0.324000	0.574000	3.973877
24.550003	**********	0.534261	6.923132
PLUG 'A'	0.390000	0.505000	0.034439
24.850002		0.505344	0.068197
PLUG 'A'	0.390000	0.511000	0.624299
24.480003		0.504757	1.221720
PLUG 'A'	0.456000	0.447000	0.827282
24.290000		0.438727	1.850744
PLUG 'A'	0.457000	0.466000	2.843857
24.310001	a d a d a a d a a a a a	0.437561	6.102698

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RAVIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
PLUG 'A'	0.389000	0.582000	7.105677
24.110000		0.504943	13.239995
PLUG 'A'	0.325000	0.488000	4.596287
24.210002		0.533962	9.418621
PLUG 'A'	0.260000	0.565000	4.470742
24.830001		0.520292	7.912817
PLUG 'A'	0.195000	0.505000	5.003578
24.000003	***********	0.454964	9.908075
PLUG 'A'	0.130000	0.296000	3.352022
24.480003		0.329520	11.224401
PLUG 'A'	0.129000	0.331000	0.389099
24.530002		0.327109	1.175526
PLUG 'A'	0.127000	0.322000	0.028473
24.660003		0.322284	0.088425
PLUG 'A'	0.126000	0.320000	0.019997
24.660003	********	0.319800	0.062491
PLUG !A!	0.192000	0.467000	1.660502
24.580001		0.450394	3.555679
PLUG "A"	0.191000	0.446000	0.290006
24.580001		0.448900	0.650238
PLUG 'A'	0.257000	0.515000	0.337910
24.450000		0.518379	0.656137

O.N.R. NOZZLE RESEARCH PROGRAM

C

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'A'	0.257000	0.516000	0.240528
24.660003		0.518405	0.466140
PLUG !A!	0.325000	0.489000	4.507041
24.450000		0.534070	9.216854
PLUG 'A'	0.324000	0.489000	4.533053
24.660003	## ## ## ## ## ## ## ## ## ## ## ## ##	0.534330	9.270048
PLUG "A"	0.389000	0.511000	0.52 52
24.660003		0.505771	1.023193
PLUG 'A'	0.390000	0.505000	0.006961
24.680000	*****	0.505069	0.013785
PLUG TAT	0.458000	0.421000	1.671159
24.760002		0.437711	3.969500
PLUG 'A'	0.445000	0.450000	0.231963
24.470001		0.452319	0.515474
PLUG VA!	0.383000	0.516000	0.614619
24.560001		0.509853	1.191123
PLUG 'A'	0.326000	0.539000	0.506401
24.470001		0.533936	0.939519
PLUG 'A'	0.258000	0.519000	0.000250
24.370002		0.519002	0.000482
PLUG SAS	0.196000	0.449000	0.723064
24.370002		0.456230	1.610387

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'A'	0.129000	0.339000	1.186532
24.570003	ul	0.327134	3.500093
PLUG 'A'	0.124000	0.332000	1.736718
24.450000		0.314632	5.231081
PLUG 'A'	0.191000	0.428000	2.092606
24.250003		0.448926	4.,889266
PLUG "A"	0.254000	0.507000	0.949645
24.740001		0.516496	1.873067
PLUG .A.	0.323060	0.536000	0.172448
24.330001		0.534275	0.321731
PLUG 'A'	0.384000	0.527000	1.787507
24.530002	~~~~~~~	0.509124	3.391855
PLUG 'A'	0.449006	0.430000	1.873964
24.850002	~ ~ ~ # ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.448739	4.358057
PLUG %A*	0.448000	0.429000	2.001017
24.530002		0.449010	4.664376
PLUG SA	0.389000	0.523000	1.719701
24.680000		0.505802	3.288148
PLUG A.	0.256000	0.539000	2.124917
24.530002		0.517750	3.942333
PLUG 'A'	0.194000	0.405000	4.833120
24.450000		0.453331	11.933630

THE NUMBER OF DATA POINTS IS 44
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.831
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.869

L

・ 1000mm 10000mm 1000mm 1000mm 1000mm 1000mm 1000mm 10000mm 10000mm 10000mm 1

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	"ELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'A'	0.131000	0.341090	0.361967
20.160003		0.344619	1.061487
PLUG 'A'	0.199000	0.445000	2.438575
20.430000	****	0.469385	5.479944
PLUG 'A'	0.265000	0.549000	2.108252
20.060001		0.327917	3.840163
PLUG 'A'	0.332000	0.477000	5.374253
20.330001	*******	0.530742	11.266777
PLUG 'A'	0.402000	0.574000	9.159368
20.060001		0.482406	15.957088
PLUG !A	0.464000	0.388000	1.731258
20.060001		0.405312	4.462007
PLUG !A	0.465000	0.393000	1.120615
20.100002		0.404206	2.851438
PLUG 'A'	0.401000	0.539000	5.538088
20.100002		0.483619	10.274747
PLUG "A"	0.332000	0.476000	5.457426
20.230003		0.530574	11.465181
PLUG "A"	0.264000	0.468000	5.941206
20.130001	*********	0.527412	12.694885
PLUG 'A'	0.199000	0.504000	3.323591
20.00003		0.470764	6.594427

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'A'	0.132000	0.377000	2.920168
20.000003		0.347798	7.745805
PLUG 'A'	0.130000	0.373000	3.132599
20.270000	************	0.341674	8.398391
PLUG 'A'	0.130000	0.344000	0.097137
20.000003		0.343028	0.282377
PLUG "A"	0.196000	0-461090	0.407439
20.500003		0.465074	0.883816
PLUG 'A'	0.132000	0.329000	2.117413
19.530002		0.350174	6.435906
PLUG !A	0.328000	0.584000	5.358148
19.530002	••••	0.530418	9.174911
PLUG 'A'	0.198000	0.450000	2.101832
19.490001	*******	0.471018	4.670739
PLUG "A"	0.400000	0.478000	0.329911
19.530002		0.481299	0.690191
PLUG *A*	0.456000	0.406000	0.616729
19.550003		0.412167	1.519037
PLUG 'A'	0.401000	0.461000	1.842957
19.400001	● 郑● 桥 □ ● ● • • ●	0.479429	3.997739
FLUG 'A'	0.329000	0.516000	1.374972
19.400001		0.529749	2.664674

O.N.R. NOZZLE RESEARCH PROGRAM

C

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG "A"	0.265000	0.517000	1.132023
19.400001		0.528320	2.189600
PLUG 'A'	0.130000	û.366000	1.954347
19.330001		0.346456	5.339746
PLUG !A	0.263000	0.593000	6.559122
19.560001		0.527408	11.060915
PLUG 'A'	0.198000	0.453000	1.828706
19.400001		0.471287	4.036880

THE NUMBER OF DATA POINTS IS 26
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.858
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.963

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	*********	SMOOTHED DATA POINT	
PLUG 'A'	0.132000	0.350000	1.091307
17.280002		0.360913	3.118021
PLUG "A"	0.201000	0.499009	1.965391
17.280002		0.479345	3.938661
PLUG 'A'	0.268060	0.529000	0.319147
16.980003	~~~~~~~~~~	0.525808	0.603302
PLUG "A"	0.336000	0.458000	5.755139
17.170002		0.515551	12.565807
PLUG "A"	0.406000	0.459000	0.577128
17.220001		0.453228	1.257359
PLUG A	0.480000	0.326000	1.191914
17.040000	T # = 0 0 0 0 0 0 0 0 0	0.337919	3.656178
PLUG 'A'	0.472000	0.363000	0.662118
17.280002		0.356378	1.824017
PLUG 'A'	0.408000	0.453000	0.899112
16.720001	****	0.444008	1.984795
PLUG *A*	0.337000	0.547000	3,254867
17.100002	ு இல்ல கிக்கி விரி வைக்க	0.514451	5.950397
PLUG 'A'	0.268000	0.483000	4.280847
16.980003		C.525808	8.863037
PLUG 'A'	0.203000	0.535000	5.324441
17.140003	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.481755	9.952228

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY KATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		OHTOOMS TALCY ATAC	SCATTER PER CENT VAL,
PLUG 'A'	0.134000	0.359000	0.698167
17.140003		0.365981	1.944755
PLUG 'A'	0.129090	0.358000	0.225794
16.850002		0.355742	0.630710
PLUG 'A'	0.196000	0.456000	1.755070
16.850002		0.473550	3.848839
PLUG 'A'	0.261000	0.514000	1.012695
17.080001	***	0.524127	1.970223
PLUG 'A'	0.329000	0.489000	2.841163
16.940002	 	0.517411	5+810149
PLUG 'A'	0.396000	0.454000	1.053422
17.180000	ಎ ಡೌ ಸಾ ಪ್ ಸು ಫು ಎ ಫು ಸಾ ಫು ಸು ಸು	0.464534	2.320314
PLUG 'Ā'	0.464000	0.341000	2.719653
17.180000	● ∅ ♀ 辛 ● ♥ ⊕ ♠ ● ● ●	0.368196	7.975522
PLUG 'A'	0.462000	0.350000	1.730555
16.940002		0.367305	4.94444
PLUG 'A'	0.399000	0.451000	0.745005
16.970001		0.458460	1.654114
PLUG "A"	0.331000	0.499000	1.959336
17.230003		0.518593	3.926525
PLUG "A"	0.265000	0.507000	1.911366
17.330001		0.526113	3.769953

THE NUMBER OF DATA POINTS IS 22
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.204

O.N.R. NOZZLE RESEARCH PROGRAM

* day

40774.5	UEL DE 1911	5MD 61644	8647786
NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG "A"	0.137000	0.373000	0.461655
14.870000		0.377616	1.237683
PLUG 'A'	0.137000	0.384000	0.638342
14.870000	.	0.377616	1.662348
PLUG LA*	0.138000	0.376000	0.360971
15.020006	\$\frac{1}{2} \text{in 1.2} as as, as as as as as as as	0.379609	0.960031
PLUG 'A'	0.206000	0.520000	3.854447
15.000001		0.481455	7.412399
PLUG 'A'	0.275000	0.₹55000	4.244709
14.810001		0.512552	7.648125
PLUG 'A'	0.344000	0.485000	0.169694
14.810001		0.483303	0.349885
PLUG 'A'	0.412000	0.463000	5.315703
15.070001		0.409843	11.480999
PLUG 'A'	0.480000	0.33000ú	3.250551
15.260000	************	0.297494	9.850156
PLUG 'A'	0.414000	0.442000	3.655714
15.000001	***************************************	0.495442	8.270847
PLUG 'A'	0.343000	0.479000	1.058453
15.180000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.489584	2.209714
PLUG 'A'	0.207000	0.501000	1.858461
15.000001	-4-4	0.482415	3.709503

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
PLUG A	0.140000	0.342000	44172021
14.760000		0.383720	12.198894

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.420
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.582

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO		SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'A'	0.139000	0.372000	0.010406
11.960001		0.371895	0.027975
PLUG 'A'	0.211000	0.471000	1.130092
12.000001		0.459699	2.399346
PLUG 'A'	n.280000	0.490000	2.006334
12.000001		0.469936	4.094559
PLUG 'A'	0.351000	0.411000	0.767797
12.100000		0.418677	1.868120
PLUG 'A'	0.423000	0.250000	5.592239
12.020000		0.305922	22.368957
PLUG 'A'	0.491000	0.154000	
11.940000		0.156431	1.578613
PLUG 'A'	0.422000	0.353000	4.520828
12.020000		0.307791	12.806877
PLUG !A!	0.350000	0.374000	4.361433
12.020000		0.417614	11.661584
PLUG "A"	0.211000	0.471000	1.130092
12.000001		0.459699	2.399346
PLUG 141	0.140000	0.365000	0.914609
12.020000	*************************************	0.374146	2.505779

THE NUMBER OF DATA POINTS IS 10
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.067
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 6.171

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data point	SCATTER PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
PLUG 'B'	0.125000	0.345000	1.333141
24.950000		0.358331	3.864178
PLUG '8'	0.189000	0.469000	1.109820
24.850002		0.480098	2.366355
PLUG 'B'	0.256000	0.574000	4.051411
24.870002		0.533485	7.058208
PLUG 'B'	0.316000	0.518000	0.539076
24.850002		0.523390	1.040688
PLUG 'B'	0.393000	0.455000	1.084596
24.950000	*****	0.444154	2.383727
PLUG 'B'	0.456000	0.351000	1.752341
25.060001		0.333476	4.992424
PLUG '8'	0.453000	0.325000	1.024371
24.750003		0.335243	3.151912
PLUG *B*	0.390000	0.488000	3.946513
24.950000		0.448534	8.087118
PLUG '.B'	0.323000	0.509000	0.908124
24.750003		0.518081	1.784134
PLUG 38	0.318000	0.521000	0.392043
25.120002		0.524920	0.752483
PLUG 'B'	0.253000	0.595000	6.312991
24.790000		0.531870	10.610069

(

NOZZLE Designation	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
			SCATTER
PRESSURE RATIO		SMOOTHED DATA POINT	PER CENT VAL,
PLUG 'B'	0.192000	0.509000	2.595603
24.750003		0.483043	5.099418
PLUG 'B'	0.130000	0.387000	1.881230
24.750003		0.368187	4.861060

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.071
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.311

C

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIU		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'B'	0.130000	0.392000	4.378623
20.350002		0.348213	11.169956
PLUG 'B'	0.197000	0.488000	1.588589
20.400001		0.472114	3.255305
PLUG 'B"	0.254000	0.51500U	0.290215
20.160003	****	0.512097	0.563524
PLUG 'B'	0.324000	0.501000	1.263445
20.100002		0.488365	2.521848
PLUG 'B'	0.392000	0.400000	0.237554
20.44000?	*****	0.402375	0.593885
PLUG 'B'	0.455000	0.248000	1.836320
20.060001		0.266363	7.404519
PLUG "B"	0.456000	0.299000	3.189665
20.260002		0.267103	10.667778
PLUG .B.	0.40000	0.439000	5.765301
19.800003		0.381347	13.132806
PLUG 'B'	0.326000	0.484000	0.315880
20, 200000		0.487158	0.652646
PLUG *B*	0.265000	0.481000	3.174210
19.830001		0.512742	6.599189
PLUG !B!	0.194000	0.470000	0.160455
20.400001		0.468395	0.341395

NOZZLE Designation	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
***********	-4-4-4-4-4-		
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
PLUG 'B'	0.129000	0.345000	0-106358
20.000003		0.346063	0.308285

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.858
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.767

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SHOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG '8'	0.130000	0.327000	2.909088
16.550003		0.356090	8.896295
PLUG '8'	0.201000	0.472000	0.439053
16.730003		0.476390	0.930198
PLUG 'B'	0.270000	0.422000	7.801348
16.630001		0.500013	18.486606
PLUG 'B'	0.330000	0.393000	6.875635
17.270000	***	0.461756	17.495258
PLUG '8'	0.400000	0.316000	1.857513
16.640003	*****	0.334575	5.878207
PLUG 'B'	0.468000	0.207000	2.532193
17.520000		0.181678	12.232816
PLUG 'B'	0.401000	0.334000	0.398695
16.520000	@ ^1 @ @ @ @ @ @ @ @ @ @	0.330013	1.193699
PLUG 'B'	0.334000	0.513000	6.379097
16.590000		0.449208	12.434890
PLUG 'B'	0.267000	0.551000	5.020010
16.640003	* * * * * * * * * * * * * * * * * * * *	6.500800	9.110727
PLUG ".B"	0.202000	0.492000	1.496321
16.540000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.477036	3.041303
PEUG 'B'	0.132000	0.372000	1.112526
16.570003		0.360874	2.990663

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 3.347
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 8.426

O.N.R. NOZZLE RESEARCH PROGRAM

NUZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
PLUG 'B'	0.133000	0.395000	3.083402
14.920000		0.364166	7.806080
PLUG *B*	0.202000	0.491090	2.013522
14.850000	**********	0.470864	4.100860
PLUG .B.	0.266000	0.505000	1.765382
15.070001		0.487346	3.495806
PLUG 'B'	0.334000	0.450000	2.744418
14.850000		0.422555	6.098707
PLUG *B*	0.405000	0.284000	0.113880
14.910001		0.282861	0.400988
PLUG *B*	0.447000	0.140000	2.910027
14.940000		0.169100	20.785907
PLUG *8*	0.402000	0.317000	2.977103
14.800001		0.287229	9.391492
PLUG *8*	0.334000	0.423000	0.229418
15.000001	** **	0.425294	0.542360
PŁUG *B*	0.272000	0.472000	1.248479
14.960001		0.484484	2.645082
PLUG !B!	0.202000	0.476000	0.496524
14.880001		0.471034	1.049119
PLUG 'B'	0.136000	0.375000	0.415414
14.850000		0.370845	1.107772

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.636
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.219

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
PRESSURE RATIO		SHOOTHED DATA POINT	SCATTER PER CENT VAL,
PLUG 181	0.139000	0.361000	0.161898
12.040000		0.362618	0.448471
PLUG *8*	0.208000	0.444000	0.066715
11.970001		0.443332	0.150260
PLUG '8'	0.278000	0.459000	3.138119
12.000001		0.427618	6.836860
PLUG 'B'	0.345000	0.336000	0.542932
12.040000	*********	0.330570	1.615871
PLUG 'B'	0.399000	0.184000	1.552516
12.040000		0.199525	8.437589
PLUG 181	0.347000	0.334000	0.749468
12.040000	2	0.326505	2.243918
PLUG '8'	0.278000	0.429000	0.037205
12.070001		0.429372	0.086725
PLUG 'B'	0.210000	0.424000	2.071047
12.000001		0.444710	4.884545
PLUG '8'	0.140000	0.356000	0.834715
12.020000		0.364347	2.344706

THE NUMBER OF DATA POINTS IS 9
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.017
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.005

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER
PLUG 'C'	0.129000	0.460000	10.589921
24.580001		0.354100	23.021568
PLUG 'C'	0.253000	0.706000	14.959146
24.910003		0.556408	21.188591
PLUG 'C'	0.385000	0.665000	17.418785
25.310001		0.490812	26.193660
PLUG 'C'	0.454000	0.423000	8.479583
24.700000		0.338204	20.046295
PLUG 'C'	0.384000	0.599000	10.888463
25.230003		0.490115	18.177734
PLUG 'C'	0.253000	0.654000	7.278371
25.820003	~~~~~~~	0.581216	11.329009
PLUG 'C'	0.126000	0.386000	2.622807
25.230003		0.359771	6.794837
PLUG .C.	0.126000	0.339000	1.101422
24.800003		0.350014	3.249033
PLUG 'C'	0.190000	0.462000	3.002083
24.880001		0.492020	6.498017
PLUG .C.	0.254000	0.524000	3.892970
25.160003		0.562929	7.429333
PLUG 'C'	0.315000	0.494000	6.174255
25.000003		0.555742	12.498493

O.N.R. NOZZLE RESEARCH PROGRAM

(

NOZZLE DESIGNATION	VELOCITY COLTAR	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
PLUG 'C'	0.381000	0.447000	4.571336
25.160003		0.492713	10.226703
PLUG 'C'	0.446000	0.322000	5.980683
25.590000	***********	0.381806	18.573551
PLUG 'C'	0.446000	0.332000	4.496091
25.430000		0.376960	13.542444
PLUG 'C'	0.383000	0.456000	3.729129
25.290000		0.493291	8.177915
PLUG 'C'	0.320000	0.508000	4.689133
25.080001		0.554891	9.230579
PLUG "C"	0.257000	0.535000	2.524257
25.000003	***********	0.550242	4.718237
PLUG *C*	0.192006	0.453000	5.122066
25.260002	*******	C.504220	11.306983
PLUG *C	0.129000	0.333000	3.224855
25.110000		0.365248	9.684253

THE NUMBER OF DATA POINTS IS 19
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 6.355
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 12.720

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED	SCATTER PER CENT VAL.
PLUG 'C'	0.130000	0.346000	0.212663
19.930000		0.348126	0.614634
PLUG .C	0.198000	0.456000	1.954239
19.970001		0.475542	4.285614
PLUG 'C'	0.263000	0.485000	3.262659
20.000003		0.517626	6.727152
PLUG *C*	0.326000	0.463000	2.858704
20.159001		0.491587	6.174307
PL=G +C+	0.395000	0.383000	0.769657
19.730003	00 e0	0.390696	2.009548
PLUG "C"	0.454000	0.248000	1.356163
20.150001	***	0.261561	5.468401
PLUG 'C'	0.394000	0.384000	1.087337
19.970001	*****	0.394873	2.831609
PLUG .C.	0.329000	0.436000	5.280167
20.150001	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.488001	12.110475
PLUG 'C'	0.262000	0.531000	1.347244
20.060001	*************************************	0.517527	2,537182
PLUG 'C'	0.196000	0.478000	0.509590
20.000003	का का का का का अंश का का का का का का का	0.472904	1.066087
PLUG 'C'	0.132000	0.357000	0.500071
20.060001		0.351999	1.400759

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.739
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.111

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMFIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	200000000000000000000000000000000000000	DATTOCMS THIOG ATAD	SCATTER PER CENT VAL.
PLUG "C"	0.133000	0.465000	7.796574
16.910003		0.388034	16,730846
PLUG 'C'	0.265000	0.739000	22.361507
16.910003		0.515385	30.259143
PLUG 'C'	0.404000	0.369000	3.257489
17.000003		0.336425	8.827886
PLUG *C*	0.438000	0.338000	8.656908
17.000003		0.251430	25.612152
PLUG "C"	0.405000	0.382000	4.551387
17.130001		0.336486	11.914627
PLUG 'C'	0.200000	0.654000	16.088707
16.880001		0.493112	24.600467
PLUG *C*	0.271000	0.642330	12.855411
16.840000		0.513445	20.024005
PLUG 'C'	0.198000	0.470000	2.003950
17.210002		0.490039	4.263723
PLUG *C*	0.131000	0.357000	2.166325
17.370002		0.378663	6.068137
PLUG !C!	0.266000	0.485000	3.102642
17.160003	***	0.516026	6.397201
PLUG *C*	0.331000	0.450000	1.830017
17.170002		0.468300	4.066706

O.N.R. NOZZLE RESEARCH PROGRAM

(

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
PLUG °C°	0.398000	0.334000	1.982045
17.230003		0.353820	5.934268
PLUG 'C'	0.455000	0.211000	0.234463
17.170002	李明明 李明 李明 李 李 李 	0.213344	1.111202
PLUG "C"	0.399000	0.352000	0.086802
17.200000		0.351132	0.246597
PLUG 'C'	0.332000	0.446000	2.095282
17.160003		0.466952	4.697942
PLUG 'C'	0.265000	0.477000	3.951013
17.260002		0.516510	8.283046
PLUG 'C'	0.197000	0.477000	1.117140
17.410003	***	0.488171	2.342012
PLUG 'C'	0.134000	0.351000	3.588658
17.240001		0.386886	10.224100

THE NUMBER OF DATA POINTS IS 18
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 5.429
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 10.644

O.N.R. NOTZLE RESEARCH PROGRAM

A THE TOTAL TOTA

NOZZLE DESIGNATION	VELOCITY OITAR	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
PLUG 'C'	0.133000	0.361000	4.082983
15.000001		0.401829	11.310205
PLUG 'C'	0.204000	0.426000	6.755239
14.790000		0.493552	15.857368
PLUG 'C'	0-272000	0.470000	2.655023
15.000901		0.496550	5.648985
PLUG 'C'	0.3410C0	0.400000	1.743388
14.900001		0.417433	4.358470
PLUG 'C'	0.403000	0.246000	4.133994
14.900001		0.287339	16.804851
PLUG .C.	0.428000	0.185000	3.524923
14.900001	7	0.220249	19.053646
PLUG 'C'	0.404000	0.264000	2.144837
14.920000		0.285%+8	8.124385
PLUG 'C'	0.341000	0.408000	0.990551
14.920000	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.417905	2.427823
PLUG 'C'	0.271000	0.478000	1.992607
15.060001	*******	0.497926	4.168634
PLUG "C"	0.201000	0.440000	5.307341
15.050001	*******	0.493073	12.062139
PLUG 'C'	0.135000	0.372000	3.441351
14.780000	~ # # # # # # # # # # # # # # # # # # #	0.406413	9.250946

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 3.342
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 9.915

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER GENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'C'	0.137000	0.467000	7.735431
11.960001		0.389645	16.564094
PLUG 'C'	0.366000	0.235000	0.893777
11.800001		0.243937	3.803309
PLUG •C°	0.344000	0.387000	9.034675
11.830001	******	0.296653	23.345413
PLUG 'C'	0.284000	0.393000	0.597596
11.840000		0.398975	1.520601
PLUG "C"	0.141000	0.478000	8.390171
11.890001	4444444	0.394098	17.552658
PLUG "C"	0.135000	0.349000	3.574800
11.860000		0.384748	10.242982
PLUG 'C'	0.208000	0.448000	0.641673
11.810001	~~~~~	0.441583	1.432307
PLUG .C.	0.281000	0.376000	2.699619
i1.850000		0.402996	7.179839
PLUG 'C'	0.346000	9.298000	0.515157
11.840000	44040444	0.292848	1.728714
PLUG 'C'	0.384000	0.204000	0.577893
11.820001	~404-46444	0.198221	2.832813
PLUG 'C'	0.350000	0.282000	0.089669
11.820001		0.282896	0.317976

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
PLUG 'C'	0.280000	0.369000	3.386760
11.620001		0.402867	9.178213
PLUG .C.	0.208000	0.433000	0.858324
11.810001	***************************************	0.441583	1.982274
PLUG 'C'	0.141000	0.332000	6.109506
11.840000		0.393095	18.402130

THE NUMBER OF DATA POINTS IS 14
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 3.221
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 8.291

O.N.R. NOZZLE RESEARCH PROGRAM

(

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO			PER CENT VAL.
W. CO			
ARGON 2.511	0.107000	0.297000	1.607114
34.570007		0.313071	5.411159
ARGON 2.511	0.175000	0.443000	1.428288
34.470001		0.457282	3.224127
ARGON 2.511	0.241000	0.531000	3.009033
34.470001		0.561090	5.666730
ARGON 2.511	0.308000	0.602000	1.759469
34.360000	****	0.619594	2.922707
ARGON 2.511	0.376000	0.560000	5.960489
34.290001	*********	0.619604	10.643732
ARGON 2.511	0.450000	0.537000	0.146019
34.290001		0.538460	0.271917
ARGON 2.511	0.451000	0.503000	3.372335
34.290001		0.536723	6.704445
ARGGN 2.511	0:379000	0.581000	3.641820
34.470001	****	0.617418	6.268193
ARGON 2.511	0.320000	0.698000	7.294810
34.030006		0.625051	10.451017
ARGON 2.511	0.248000	0.542000	2.757549
34.470001		0.569575	5.087730
ARGON 2.511	0.184000	0.447000	2.665943
33.850006		0.473659	5.964078

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA PUINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL,
ARGON 2.511	0.119000	0.323000	1.761663
34.470001		0.340616	5.454066

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.950
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.672

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
06210441104	KATIU	UNIA PUINI	FER UENI EFF
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL,
ARGON 2.511	0.118000	0.318000	0.915259
30.090000	************	0.327152	2.878173
ARGON 2.511	0-187000	0.503000	3.430015
27.510002		0.468699	6.819116
ARGON 2.511	0.258000	0.484000	8.923114
26.800003		0.573231	18.436187
ARGON 2.511	0.330000	0.612000	1.305246
28.470001		0.625052	2.132755
ARGON 2.511	0.394000	0.612000	1.077425
27.260002		0.601225	1.760499
ARGON 2.511	0.462000	0.501000	0.867414
28.050003		0.509674	1.731366
ARGON 2.511	0.461000	0.492000	1.308751
26.910003		0.505087	2.660063
ARGON 2.511	0.396000	0.644000	3.907847
28.610000		0.604921	6.068087
ARGON 2.511	0.329000	0.635000	1.363229
27.310001		0.621367	2.146818
ARGON 2.511	0.250000	0.529000	3.810275
28.080001		0.567102	7.202789
ARGON 2.511	0.189000	0.483000	1.022172
27.690002		0.472778	2.116298

NOZZLE	VELOCITY	EMPIRICAL	SCATTER
DESIGNATION	RATIO	DATA POINT	PER CENT EFF.
PRESSURE		SMOOTHED	SCATTER
RATIO		DATA POINT	PER CENT VAL.
ARGON 2.511	0.120000	0.329000	0.327789
27.690002		0.325722	0.996321

THE NUMBER OF DATA POINTS IS 12
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.354
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.579

1 4 4

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
ARGON 2.511	0,120000	0.328000	0.710207
24.570003		0.320897	2.165266
ARGON 2+511	0.189000	0.511000	4.398156
24.570003	************	0.467018	8.606960
ARGON 2.511	0.262000	0.515000	5.680085
24.620002	********	0.571800	11.029291
ARGON 2.511	0.330000	0.549000	6.216026
24.570003		0.611160	11.322452
ARGON 2.511	0.396000	0.561000	2.353096
24.450000	2000000000	0.584531	4.194467
ARGUN 2.511	0.466000	0.443000	3.680545
24.880001		0.479805	8.308729
ARGON 24511	0.495000	0.389000	1.642686
24.570003		0.405426	4.222844
ARGON 2.511	0.467000	0.521000	4.596043
24.5/0003		0.475039	8.821580
ARGON 2.511	0.397000	0.608000	2.367985
24.570003		0.584320	3.894713
ARGON 2.511	0.327900	0.615000	0.424456
24.570003	-4	0.610755	0.690173
ARGON 2.511	0.261000	0.603000	3.265953
24.450000	v 0 = 0 = 0 = 0 = 0	0.570340	5.416175

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
ARGON 2.511 24.370002	0.191000	0.410000	6.036174
ARGON 2.511	0 131000	0.470361	14.722377
24.450000	0.121000	0.260000	6.321710

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 3.668
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 8.285

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
ARGON 2.511	0.116000	0.312000	0.244516
21.120002		0.314445	0.783705
ARGON 2.511	0.182000	0.460000	0.670397
21.180000		0.453296	1.457385
ARGON 2.511	0.254000	0.579000	2.255894
29.870002		0.556431	3.897917
ARGON 2.511	0.324000	0.570000	2 * 749586
21.320003	********	0.597495	4.823836
ARGON 2.511	0.388000	0.554000	1.848554
21.360900		0.572485	3.336741
ARGON 2.511	0.464000	0.468000	1.812249
21.130001	# 40 4 4 4 4 1 4	0.449877	3.872328
ARGON 2:511	0.487000	0.351000	4.318983
21.360000		0.394189	12.304794
ARGON 2.511	0.460000	0.477000	1.584267
21.360000		0.461157	3,321316
ARGON 2.511	0.390000	3 2550000	2.063429
21.360000		0.570634	3.751690
ARGGN 2.51.	0.326900	0.623000	2.500188
21.410003		0.597998	4.013144
ARGON 2.511	0.256000	0.605000	4.590523
21.430000	0044J.700000	0.559094	7.587642

NOZZLE DESIGNATION	VELOCITY RATIO	EMPTRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO	**********	SMOOTHED DATA POINT	SCATTER PER LENT VAL,
ARGON 2.511	0.186000	0.458000	0.228595
21.410003		0.460285	0.499117
ARGON 2.511	0.118000	0.338000	1.958525
21.430000		0.318414	5.794453

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.063
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 4.264

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.		
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.		
ARGON 2.511	0.123000	0.337000	1.418161		
17.120002		0.351181	4.208194		
ARGON 2.511	0.192000	0.467000	1.524383		
17.120002	# 40 40 40 40 40 40 40 40 40	0.482243	3.264203		
ARGON 2.511	0.264000	0.527000	3.934562		
17.150001	***************************************	0.566345	7.465963		
ARGON 2.511	0.331000	0.569000	1.623404		
17.200000		0.585234	2.853083		
ARGON 2.511	0.404000	0.461000	6.535507		
16.960002		0.526355	14.176805		
ARGON 2.511	0.476000	0.405000	2.874029		
17.000003		0.376259	7.096367		
ARGON 2.511	0.504000	0.295000	0.862121		
16.710002		0.286378	2.922446		
ARGON 2.511	0.478000	0.339000	2.892905		
16.750003	****	0.367929	8.533645		
ARGON 2.511	0.40000	0.562000	3.152978		
16.710002		0.530470	5.610282		
ARGON 2.511	RGON 2-511 0-330000		6.208992		
16.890003	***************************************	0.584910	9.596588		
ARGON 2.511	0.262000	0.551000	1.413095		
17.000003		0.565131	2.564600		

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL Data Point	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL.
ARGON 2.511	0.194000	0.510000	2.256346
16.730003		0.487436	4.424207
ARGON 2.511	0.121000	0.343000	0.565761
16.890003		0.348657	1.649450

THE PARTY OF THE P

THE NUMBER OF DATA POINTS IS 13
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 2.712
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 5.720

O.N.R. NOZZLE RESEARCH PROGRAM

NOZZLE DESIGNATION	VELOCITY RATIO	EMPIRICAL DATA POINT	SCATTER PER CENT EFF.
PRESSURE RATIO		SMOOTHED DATA POINT	SCATTER PER CENT VAL,
FREON 2.511	0.128000	0.357000	1.383626
13.100000		0.370836	3.875704
FREON 2.511	0.193000	0<.92000	0.930023
13.000001		0.501300	1.890291
FREON 2.511	u.304000	0.579000	0.662744
12.890001		0.585627	1.144635
FREON 2.511	0.344000	0.561000	1.005268
12.890001		0.571052	1.791921
FREON 2.511	0.408500	0.480000	1.497721
12.950000		0.494977	3.120254
FREON 2.511	0.485000	0.298000	1.939237
13.000001		0.317392	6.507508
FREON 2.511	0.478000	0.359000	2.131051
13.050001		0.337689	5.936075
FREUN 2.511	0.405000	0.518000	1.719379
13.200000		0.500806	3.319266
FREON 2.511	0.312000	0.596000	1.133156
13.200000		0.584668	1.901268
FREON 2.511	0.192000	0.512000	1.226508
13.500001		0.499734	2.395524
FREON 2.51)	0.126000	0.378000	1.208842
13.620000		0.365911	3.197994

THE NUMBER OF DATA POINTS IS 11
THE AVERAGE ERROR IN PER CENT EFFICIENCY IS 1.348
THE AVERAGE ERROR IN PER CENT OF EMPIRICAL DATA VALUE IS 3.189

1 - 23 - 5

SUNDSTRAND AVIATION

Rockford, Illinois

ATR 2001

PAGE 231

APPENDIX C

TURBINE TEST SCHEMATIC DIAGRAM

(:·

TURBINE AND ABSORPTION DINO

Figure 46. TURBINE TEST SCHEMATIC DIAGRAM

SUNDSTRAND AVIATION

Rockford, Illinois

ATR 2001

AGE 233

APPENDIX D

SAMPLE DATA SHEET

Table V
Sample Data Sheet

				1 13				2.511			AR.	29.4
		Ro	11	284	171	0	RIFIC	PLA	TË.	96		<u> </u>
ATA PR T	NS	NS	TTE	PTI	Ta	TVI	TI	PTE	PVI	PTI	641	APYP
COK		KrM	of	1216	PSID.	oF	of	PSIA	9514	PSIA	PSIA	INA 20
33 12.8 <i>]</i> 02 34 <i>12.8</i> 92.	0 1K 62	5130	79.		105.		1	i	232,	92.9	246.4	41.0
35 12.8 680	S PASS	17030	16		95. 73.		48	7.1	235	92.4	249.4	39.7
36 17.8 56.6	5 135,650	15500	-5		625				242	91.4	256.4	38.2
37 12.8 1/0.8	516× 738	16140.	0.	762	48.	68	38.	7.0	750	90.5	260.4	37.8
39 12.8 21.2	111111	197.00	17	740	30	7/	20	7	201	0 0	10.1	
39 12.8 25.0 40 12.8 44.1	0 HK 627	18810.	27.	77.0	34	85	40.	7.0	255	91.4	269.4	390.69
128 44.1	2 333	15775	/3.	78.0	, 51.	94.	42.	7.0	25%	92.4	272.4	40.21
16.8 167.	413	12390.	16.	78.	72.	107.	4.4.	7.0	262.	92.4	276.4	41.4
2 12.8 7 1.3	5K	1680.	78,		97.			1	265	94.4	279.4	43.01
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	169	30 /0.	56,	• /.	108.	135.	52,	7.0	269.	95.4	283.4	44.0 1
						!	į					
	874/1	11/6.	15/sec	F116/30	P	2	i			٠		
	. Dhis	A	₩ .	i W Ohis	Super	عور	P.R.	2/2	7/	U	Co	4/0
3 20.3	4	.,,		1717.6	30/13		13.10			129.3	1008.3	128
20.1	68.2-48.1	.16	0885	1383.9	681.3		13.0		İ	194.3	1003.3	193
19.8	67.3-475	185	2830	13586	786.7		12.89		İ	303.2	995.8	304
19.5	66.7-17.2	./60	1863	1309.2	734.6		12.89	,561		340.2	912.2	.344
8 191	6.5-4.7	165 .0	052	1317.0	633.35		12.95				995.8	
19.6	68-472	172	1077	24	291.7	1	13.00	,291			975.8	
	7.2-175	175 1	852	305.4	1776		13.05	519			990.8	
30.06	75-174	177 1.0	859 11	336.4	797.4		13.20				1000,8	
2 20.16	8.0-477	180 1	1868	357.3	695.18	į į	3.50	512	ļ	193.5	1003.3	192
20.3	26-483 .	185,0	1978	367.7	517.27		13.50 13.62	1378			108.3	
'				į								
			}	1	İ				ĺ	4		
		į	ļ	i			İ				-	
			Í		İ					1		İ
			1	į					ĺ			
				:								
			i								İ	

Sundstrand Aviation

division of Sundstrand Corporation

4747 HARRISON AVENUE . ROCKFORD, ILLINO:S 61101 . (815) 398-5800 . TWX 910-631-4255 . TELEX 257-440

July 14, 1971 L7-0NR-190

ONR

Chief of Naval Research Department of the Navy Washington, D.C. 20360

RECEIVED NATIONAL TECHNICAL

SEP 7 19/1

Attention: Mr. J. R. Patton, .r., Code 473

INFORMATION SEKVICE

Subject:

Contract No. 00014-68-C-0406

"Final Technical Report on an Analytical and Experimental Research Program to Optimize Turbine Nozzle for Off Design Performance of

Partial Admission Turbines"

Sundstrand Letter L6-ONR-184, dated 6/24/71

Same Subject

Gentlemen:

Please find enclosed two (2) sets of illustrations, photos, etc. to replace the Xerox copies as transmitted with the original reports per the reference letter.

Very truly yours,

SUNDSTRAND AVIATION

Division of Sundstrand Corporation

J. G. Buell

Contract Program Manager

JGB:dlr

Enclosure

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va. 22151

FIGURE 1 TURBINE TEST CHAMBER AND APPARATUS.

FIGURE 2 INSIDE OF TEST — CHAMBER WITH RIG INSTALLED —

FIGURE 3 TURBINE TEST RIG

