THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA

Department of Electrical and Computer Engineering

ELEC 318 Electromagnetic Fields

HW #6, due March 12th, 2015

Reading Assignment: Chapter 5 (all)

Written Assignment:

- 1. A square conducting loop with sides 40 cm long lies in the z = 0 plane and carries a current of 8 A in the counterclockwise direction (viewed from above).
 - Determine the magnetic field intensity at the center of the loop.
- 2. The z = 0 plane carries a surface current of $10 \hat{\mathbf{x}}$ A/m, while a thin filament situated at y = 0, z = 6 m carries a current *I* in the +x direction.
 - Solve for I such that the magnetic field intensity at (0, 0, 3 m) is zero.
- 3. An infinitely-long cylindrical conductor of radius a is placed along the z axis.
 - The current density in the conductor is $\frac{J_0}{r}\hat{\mathbf{z}}$ (where J_0 is a constant).
 - Determine the magnetic field intensity everywhere.
- 4. A magnetic flux density in space is $4\hat{\mathbf{x}} 8\hat{\mathbf{z}}$ Wb/m².
 - Determine the force that this flux density exerts on a 20-cm-long conductor on the *y* axis carrying a current of 2 A in the –*y* direction.
- 5. A conducting triangular loop carrying a current of 2 A is located close to an infinitely long, straight conductor carrying a current of 5 A, as shown in the figure. ($\mu = \mu_0$)
 - Determine... (a) the force on side 1 of the triangular loop, and
 - (b) the total force on the loop,
 - ...due to the infinitely-long current-carrying conductor, only.

