Frequency Synthesis

Patricia Desgreys

ICS905 - FARE

M2 « Integration Circuits & Systems »

IP Paris – TELECOM Paris

COMELEC – LTCI

19, place Marguerite Perey 91120 Palaiseau

http://www.comelec.enst.fr/

Summary

- Digital Transceiver RF Front-end
- RF oscillators
- PLLs
- Indirect frequency synthesis

Transceiver chain

D IP PARIS

Single-Side Band Transceiver

RF frequency synthesis: RF oscillator, PLL

D PARIS

$$f_{LO} = f_0 + k f_{ch}$$

Chanel selection

Mixer converts signal band around carrier frequency down to DC (baseband)

Key functions

Almost all the functions are implemented in digital signals:

- Coding/decoding
- Modulation/demodulation (amplitude, frequency or phase)
- Pulses shaping (raised cosine filtering)

A few analog functions remain unavoidable:

- LNA, Mixers
- Power amplifiers
- Filters
- ADC & DAC
- RF oscillators
- PLLs
- Frequency synthesizers

Frequency synthesizer

The "black box" view of a frequency synthesizer is a block getting a very stable reference frequency (usually provided by quartz oscillator) and delivering a set of frequencies between F_{min} and F_{max} with a resolution of Δf :

The frequency range $[F_{min}, F_{max}]$ and the resolution Δf are synthesizer fundamental specifications which depend on the application.

Main specifications

- Frequency range
- Resolution
- Accuracy
- Settling time
- Reference frequency
- Spurs
- Power consumption
- Temperature stability
- Phase noise

Summary

Digital Transceiver RF Font-end

RF oscillators

PLLs

• Indirect frequency synthesis

RF oscillators - Introduction

An oscillator must provide a self-sustaining periodic signal

$$V_{s} = \frac{H(j\omega)}{1 - G(j\omega)H(j\omega)}V_{e}$$

Positive feedback system

Barkhausen criterion
$$\begin{cases} |G(j\omega_0)| |H(j\omega_0)| = 1 \\ \arg\{G(j\omega_0)H(j\omega_0)\} = 0 \end{cases}$$

RF oscillators – Output waveform

Mixer good behavior is favored if the waveform of the local oscillator (LO) exhibits abrupt transitions and if the duty cycle is equal to 50%

Input stage of an active CMOS mixer

Ideal waveform = Square wave signal

with a large amplitude sinusoid

- Large amplitude wave
- Differential topology for duty cycle of 50%

RF oscillators – Frequency selection

The system oscillations frequency is determined by the characteristics of the selective circuit.

Frequency selective network or resonator

Direct return from collector to emitter

Colpitts oscillator

RF oscillators – LC Architecture

Colpitts oscillator

Pros: High quality factor

One single inductor

Cons: Large ratio C_1/C_2

One terminal output

CMOS differential architecture

Pros: High quality factor

Differential output

Cons: Matching of the two LC cells

Voltage Controlled RF oscillators (VCO)

Need to obtain an adjustable frequency RF oscillation for channel selection : $f_{LO} = f_0 + k f_{ch}$

Frequency value controlled by a voltage

$$C_{\text{var}}(V_{com}) = \frac{C_0}{\left(1 - \frac{V_{com}}{V_{diff}}\right)^{\frac{1}{2}}}$$

Use of a varicap diode in the LC cell

Voltage Controlled RF oscillators (VCO)

VCO mathematical model

$$\omega_{LO} = \omega_{FR} + K_{VCO}V_{com} = \frac{d\Phi}{dt}$$

$$X(t) = V_{LO}\cos(\Phi) = V_{LO}\cos(\omega_{FR}t + K_{VCO}\int V_{com}dt)$$

ullet If the control voltage is constant, the frequency is shifted by $K_{VCO}V_{com}$

$$\begin{split} V_{com} &= V_0 \\ X\left(t\right) &= V_{LO}\cos\left(\left(\omega_{FR} + K_{VCO}V_0\right)t + \phi_0\right) \end{split}$$

The VCO is a frequency modulator

$$V_{com} = V_m \cos(\omega_m t)$$

$$X(t) = V_{LO} \cos \left(\omega_{FR} t + \frac{K_{VCO}}{\omega_m} V_m \sin(\omega_m t) \right)$$
 Rejection of the control voltage HF components

RF oscillators – Phase noise

- Origin: internal noise of components constituting the oscillator example: amplifier thermal noise (use of a single transistor to minimize)
- Main effect : Random deviation of output wave frequency

$$X(t) = V_{LO} \cos(\omega_{LO}t + \Phi_n(t))$$

$$Si \quad |\Phi_n(t)| << 1 \quad , \quad X(t) \approx V_{LO} \left\{ \cos(\omega_{LO}t) - \Phi_n(t) \sin(\omega_{LO}t) \right\}$$

Frequency domain characterization for RF applications :

Spectral characterization

• Thus, because of the different noise sources (thermal, 1/f...) the Power Spectral Density (PSD) spreads around f_0

Example (DECT standard): -97dBc/Hz @ 1,8 MHz

Phase noise and Jitter

- Phase noise and jitter are two manifestations of an unique phenomena: random fluctuations of the oscillator period.
- Phase noise is associated to spectral representation whereas jitter is associated to time representation of these fluctuations

Phase noise – Reciprocal mixing

Addition of noise during down-conversion to reception

Phase noise – Specification example

Real spectrum of the transmitter

Adding noise during up-conversion to transmission

Calculation of a phase noise specification for the RF oscillator:

Bandwidth of interest : $f_H - f_L = 30 \text{ kHz}$

Assumption : $S_n(\Delta f)$ is constant in this band

$$S_n(\Delta f) = S_0 \quad [dBc/Hz]$$

What is the maximum value of S_0 that guarantees an SNR in the channel of interest greater than 15 dB?

Summary

- Digital Transceiver RF Font-end
- RF oscillators
- PLLs
 - Indirect frequency synthesis

PLL – Presentation

Basic Phase Locked Loop

PLL waveforms

The loop is locked when $\Delta\Phi$ is constant, which corresponds to the equality of the input and output frequencies.

$$\begin{aligned} \omega_{y} &= \omega_{FR} + K_{VCO} V_{com} = \omega_{x} \\ \Delta \Phi &= \frac{V_{com}}{K_{DP}} = \frac{\omega_{x} - \omega_{FR}}{K_{DP} \cdot K_{VCO}} \end{aligned}$$

The frequency are exactly equal!

PLL – Dynamic behavior

Closed loop transfer function:
$$H(p) = \frac{\Phi_y(p)}{\Phi_x(p)} = \frac{K G_{LPF}(p)}{p + K G_{LPF}(p)}$$
 avec $K = K_{DP}K_{VCO}$

with first order low-pass filter: $G_{LPF}(p) = \frac{1}{1 + \frac{p}{\omega_{LPF}}}$, we obtain a classical second order system:

Charge Pump PLL

Architecture with 3-state phase/frequency detector and charge pump circuit

$$I_1 = I_2 = I$$

Waveforms in CPPLL with $\omega_x > \omega_y$ in closed loop :

$$V_{out}$$
 cons $\tan t$
 $\omega_y = \omega_{FR} + K_{VCO}V_{out} = \omega_x$
 $\Delta \Phi = \Phi_x - \Phi_y = 0$
 $Q_X = Q_Y = 0$

Charge Pump PLL

Assuming that the bandwidth of the loop is much lower than the input frequency:

Main difference: two poles at zero in open loop

Pros:

- Maximum extension of the capture range,
- Increase of the locking speed,
- Zero static phase error (if ideal circuits).

Cons:

 V_{out} C_{P}

Instability issue

CPPLL – Input phase noise filtering

Transfer function of a second-order CPPLL with a stabilization zero:

avec
$$\begin{cases} \omega_n^2 = K = K_{PFD} K_{VCO} \\ \omega_z = \frac{1}{RC_p} \end{cases}$$

$$\Phi_{x} = \phi_{0} + \Phi_{n}(t)$$

 $\Phi_x = \phi_0 + \Phi_n(t)$ $\Phi_n(t)$: phase noise

$$\Phi_y = \phi_0 + \Phi_{out}\left(t\right)$$

- Slow variations of the phase noise are reproduced at the output.
- HF noise is eliminated at the output.

CPPLL – VCO phase noise filtering

$$\frac{\Phi_{y}(p)}{\Phi_{VCO}(p)} = \frac{p^{2}}{p^{2} + 2\zeta\omega_{n}p + \omega_{n}^{2}}$$

- $\Phi_{VCO} = \Phi_n(t)$
- $\Phi_n(t)$: phase noise

- $\Phi_{y} = \Phi_{out}\left(t\right)$
 - The transfer function is a highpass filtering
 - An increase in the bandwidth of the PLL decreases the phase noise of the VCO

PLL – Applications

RF signal demodulation

$$a(t) = \cos(\omega_m t)$$

$$x(t) = V_x \cos\left(\omega_{FR}t + \frac{m}{\omega_m}\sin(\omega_m t)\right)$$

The frequency are exactly equal:

$$\omega_{y} = \omega_{x}$$

$$\omega_{FR} + K_{VCO}V_{com} = \omega_{FR} + m\cos(\omega_{m}t)$$

Important: Loop bandwidth large enough!

Phase-locked loop for FM demodulator

PLL – Applications

RF signal demodulation

Phase-locked loop for AM coherent demodulator

PLL – Applications

Clock recovery

PLL - Conclusion

Phase locked loops are key elements in digital communications systems. Their design and optimization are complex (trade-off between speed, precision, stability).

Main features are:

- Locking and Capture Ranges
- Agility (locking speed)
- Phase noise
- Bandwidth
- Settling time

Major application for the RF front end

RF frequency synthesis: RF oscillator, PLL

$$f_{LO} = f_0 + k f_{ch}$$
 Channel selection

Summary

- Digital Transceiver RF Font-end
- RF oscillators
- PLLs
- Indirect frequency synthesis

Frequency multiplication

$$\frac{y}{x} = \frac{H}{1 + \beta H} = \frac{1}{\beta}$$

Basic loop system

Frequency multiplier

Integer Modulus Synthesizer

$$\begin{split} f_{out} &= M f_{r\acute{e}f} = f_0 + k f_{ch} \\ M_L &\leq M \leq M_H \\ f_0 &= M_L f_{r\acute{e}f} \\ f_{ch} &= f_{r\acute{e}f} \end{split}$$

The reference input frequency must be equal to the channel spacing.

Frequency divider by pulse counting

One output cycle occurs at the end of (N + 1) * S + N * (P-S) input cycles.

$$f_2 = \frac{f_1}{NP + S}$$

Integer Modulus Synthesizer

- Main advantage: architecture simplicity
- Implementation in RF system :

Band counter, channel counter, PFD, charge pump

Main drawback:

The reference frequency has a small value. The bandwidth of PLLs is limited to 1/10 of **TELECOM** the input frequency to ensure stability

VCO prescaler

a single die in deeply submicronic CMOS technology

The bandwidth of the loop is limited!

ex : GSM inter-channel spacing : 200kHz Settling time 100 µs or more

Fractional Modulus Synthesizer

Number of pulses during the time (A+B)T_{out}:

$$A/(N+1) + B/N$$

'Average' or equivalent frequency of y(t):

$$\begin{array}{l} \left(A/(N+1) + B/N\right) \ / \ \left((A+B) \ T_{out}\right) \\ = f_{out} \ / \ M \end{array}$$

Use of a two-modulus frequency divider

Locked loop:

$$f_{réf} = f_{out} / M$$

 $f_{out} = M * f_{réf}$

$$M = \frac{A+B}{\frac{A}{N+1} + \frac{B}{N}}$$

$$N < M < N+1$$

Fractional Modulus Synthesizer

EXAMPLE:

Let's Consider a synthesizer for which the reference frequency is provided by a 1MHz oscillator. The expected output frequency is:

$$f_{out} = f_0 + k f_{ch}$$

with $f_0=10$ MHz and $f_{ch}=100$ kHz for k=0, 1, 2, ... 9, 10.

What is the value of N?

What are the minimum possible values for A and B to address the different channels?

