

Materials: Metals and Non-Metals

Elements can be divided into metals and non-metals on the basis of their physical and chemical properties.

Physical Properties of Metals and Non-metals

Physical Property	Metals	Non-metals
Malleability	Metals are malleable. The property which allows metals to be hammered into thin sheets is called malleability. Example: Aluminium metal can be hammered into a thin aluminium foil.	 Non-metals are not malleable. Example: Carbon (i.e. coal) breaks into smaller pieces when hammered. The property due to which non-metals break on hammering them is called brittleness.
Ductility	 Metals are ductile, i.e. they can be drawn into thin wires. The property which allows the metals to be drawn into wires is called ductility. 	 Non-metals are not ductile, i.e. they cannot be drawn into wires. Sulphur and phosphorus break into pieces on stretching and do not form wires.
Conductivity	 Metals are good conductors of heat and electricity. Copper, silver, gold, aluminium and iron are good conductors of heat and electricity. 	Non-metals are poor conductors of heat and electricity, i.e. they do not allow heat and electricity to pass through them.
Sonority	Metals are sonorous, i.e. they produce a ringing sound when struck (sonorous means capable of producing a ringing sound).	Solid non-metals do not make a ringing sound when we strike them. Thus, we can say that non-metals are not sonorous.

Lustre	Metals have a shiny	Non-metals are dull and not
	appearance. So, we can say	lustrous.
	that metals are lustrous or	
	shiny.	

Chemical Properties of Metals and Non-metals

Reaction with Oxygen

- The metal oxides are basic in nature.
- The basic metal oxides turn red litmus blue.

Example:

Magnesium burns in air and combines with the oxygen of the air to form magnesium oxide.

$$Mg + O_2 \rightarrow MgO$$
 (Basic oxide)

Magnesium oxide dissolves partially in water to form magnesium hydroxide. It is a base and turns red litmus blue.

$$MgO + H_2O \rightarrow Mg(OH)_2$$
(Base)

- Non-metal oxides are acidic in nature.
- Acidic non-metal oxides turn blue litmus red.

Example:

Sulphur burns in air and combines with the oxygen of the air to form sulphur dioxide.

$$S + O_2 \rightarrow SO_2$$

 $SO_2 + H_2O \rightarrow H_2SO_3$ (Sulphurous acid)

Reaction with Water

Metals react with water to form metal hydroxide along with the evolution of hydrogen gas.
 Example: Sodium reacts violently with cold water to form sodium hydroxide solution along with the evolution of hydrogen gas.

Na +
$$H_2O \rightarrow NaOH + H_2$$

Because sodium reacts vigorously with oxygen and water producing a lot of heat, it is stored in kerosene.

Non-metals do not react with water though they may be very reactive in the air.

Reaction with Acids

Most metals react with dilute acids to form salts and hydrogen gas.
 Example:

Magnesium reacts with dilute hydrochloric acid to form magnesium chloride and hydrogen gas.

Mg + 2HCl
$$\rightarrow$$
 MgCl₂ + H₂

- Hydrogen gas burns with a pop sound when a lighted matchstick is brought near the mouth of the test tube.
- Metals such as copper, silver and gold do not react with dilute acids.
- Non-metals do not react with dilute acids to form salts and hydrogen gas.

Reaction with Bases

- Metals react with bases to form salts and hydrogen gas.
- Aluminium and zinc are the two common metals which react with bases to produce hydrogen gas.

$$AI + 2NaOH \rightarrow Na_2AIO_2 + H_2$$

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

Reactions of non-metals with bases are complex.

Displacement Reactions

A more reactive metal displaces a less reactive metal from its salt solution.

Example: Reaction of iron metal with copper sulphate solution

$$CuSO_4 + Fe \rightarrow FeSO_4 + Cu$$

In this reaction, a more reactive iron displaces a less reactive copper from its salt solution, i.e. copper sulphate. A less reactive metal cannot displace a more reactive metal from its salt solution.

Example: Reaction of iron metal with zinc sulphate solution

Iron metal is less reactive than zinc metal. So, a less reactive iron metal cannot displace a more reactive zinc metal from zinc sulphate solution.

Uses of Metals

- Aluminium metal in the form of alloys is used to make aeroplanes.
- Zinc metal is used for galvanising iron to protect it from rusting.
- Silver and gold metals are used to make jewellery.

Uses of Non-Metals

- Oxygen is a non-metal which is used by plants and animals for breathing.
- Nitrogen is a non-metal which is used in the manufacture of fertilisers to enhance the growth of plants.
- Chlorine is a non-metal which is used in the water purification process.
- Sulphur is a non-metal which is used in the vulcanisation of rubber.

