Spartan6 - DSP48A1

By: Shahd Gamal Mahmoud

Table of Contents

1.	RTL Code	2
>	BLOCK (REG + MUX)	2
>	Design DSP	3
2.	Testbench Code	5
3.	Do File	8
4.	QuestaSim Snippets	9
>	· Waves	9
5.	Constraint File	10
6.	Elaboration	11
>	Schematic Snippets	11
>	Messages (No Errors or Warnings)	11
7.	Synthesis	12
>	Schematic Snippets	12
>	Messages (No Errors)	12
>	Utilization report	13
>	Time report	13
8.	Implementation	14
>	Device Snippets	14
>	Messages (No Errors)	14
>	Utilization report	15
>	Time report	15
9.	Linting	16
>	Lint Checks (No Errors or Warnings)	16

1. RTL Code

➤ BLOCK (REG + MUX)

```
module REG_MUX_pair (BLOCK_IN, SEL, CLK, RST, CE, BLOCK_OUT);
     parameter RSTTYPE = "SYNC";
     parameter WIDTH = 18;
    input SEL,CLK,RST,CE;
    input [WIDTH-1:0] BLOCK_IN;
    output [WIDTH-1:0] BLOCK_OUT;
             [WIDTH-1:0] REG OUT;
     reg
     generate
         if (RSTTYPE == "SYNC") begin
11
             always @(posedge CLK) begin
12
                 if (RST) begin
                      REG_OUT <= 0;</pre>
                 end
15
                 else if (CE) begin
                      REG OUT <= BLOCK IN;
17
                 end
18
             end
19
         end
         else if (RSTTYPE == "ASYNC") begin
21
             always @(posedge CLK or posedge RST) begin
22
                 if (RST) begin
23
                      REG_OUT <= 0;</pre>
                 end
25
                 else if (CE) begin
                      REG OUT <= BLOCK IN;
                 end
27
             end
29
         end
     endgenerate
31
32
     assign BLOCK_OUT = (SEL)? REG_OUT : BLOCK_IN ;
     endmodule
34
```

> Design DSP

```
`timescale 1ns/1ps
      module DSP48A1 #(
           // Parameterized pipeline register enables (1 = register enabled, 0 = bypassed)
          parameter AOREG = 0,
          parameter A1REG = 1,
          parameter CREG = 1,
          parameter DREG = 1,
          parameter MREG = 1,
          parameter PREG = 1,
          parameter CARRYINREG = 1,
          parameter CARRYOUTREG = 1,
          parameter OPMODEREG = 1,
          // Functional parameters controlling carry selection and input mode
          parameter CARRYINSEL = "OPMODE5", // Controls carry input selection
parameter B_INPUT = "DIRECT", // Selects direct B input or cascade from BCIN
parameter RSTTYPE = "SYNC" // Determines reset type (SYNC/ASYNC)
          // Data inputs
           input [17:0] A, B, D,
           input [47:0] C,
           input [47:0] PCIN,
           input [17:0] BCIN,
           input [7:0] OPMODE,
          // Data outputs
          output [35:0] M,
          output [47:0] P,
          output [17:0] BCOUT,
          output [47:0] PCOUT,
           // Clock, carry input, and control signals
           input CLK,
           input CEA, CEB, CEC, CECARRYIN, CED, CEM, CEOPMODE, CEP,
           input RSTA, RSTB, RSTC, RSTCARRYIN, RSTD, RSTM, RSTOPMODE, RSTP,
           // Carry outputs
      );
43
44
```

```
// Register OPMODE control signals

REG_MUX_pair #(.wIDTH(8), .RSTTYPE(RSTTYPE)) OPMODE_BLOCK (.BLOCK_IN(OPMODE), .SEL(OPMODEREG), .CLK(CLK), .RST(RSTOPMODE), .CE(CEOPMODE), .BLOCK_OUT(OPMODE_BLOCK_OUT));
// Pre-Adder operation based on OPMODE[6] assign PREADDER_OUT = (OPMODE_BLOCK_OUT[6]) ? (D_BLOCK_OUT - BO_BLOCK_OUT) : (D_BLOCK_OUT + BO_BLOCK_OUT);
REG_MUX_pair #(.WIDTH(18), .RSTTYPE(RSTTYPE)) B1_BLOCK (.BLOCK_IN(PREADDER_MUX_OUT), .SEL(B1REG), .CLK(CLK), .RST(RSTB), .CE(CEB), .BLOCK_OUT(B1_BLOCK_OUT));
REG_MUX_pair #(.WIDTH(18), .RSTTYPE(RSTTYPE)) A1_BLOCK (.BLOCK_IN(A0_BLOCK_OUT), .SEL(A1REG), .CLK(CLK), .RST(RSTA), .CE(CEA), .BLOCK_OUT(A1_BLOCK_OUT));
wire [35:0] MUL_OUT, MUL_BLOCK_OUT; wire CARRY_MUX_OUT, CIN;
// Cascade output assignment
assign BCOUT = B1 BLOCK OUT;
// Select carry input source
assign CARRY_MUX_OUT = (CARRYINSEL == "OPMODE5") ? OPMODE_BLOCK_OUT[5] : (CARRYINSEL == "CARRYIN") ? CARRYIN : 1'b0;
      genvar i;
for(i = 0;i<36;i=i+1)
    buf(M[i],MUL_BLOCK_OUT[i]);</pre>
// Register multiplication output and carry input

REG_MUX_pair #(.WIDTH(36), .RSTTYPE(RSTTYPE)) MUL_BLOCK (.BLOCK_IN(MUL_OUT), .SEL(MREG), .CLK(CLK), .RST(RSTM), .CE(CEM), .BLOCK_OUT(MUL_BLOCK_OUT));

REG_MUX_pair #(.WIDTH(1), .RSTTYPE(RSTTYPE)) CYI_BLOCK (.BLOCK_IN(CARRY_MUX_OUT), .SEL(CARRYINREG), .CLK(CLK), .RST(RSTCARRYIN), .CE(CECARRYIN), .BLOCK_OUT(CIN));
 wire [47:0] MUXX_OUT, D_A_B_CONCAT, MUXZ_OUT, POSTADDER_SUM;
wire POSTADDER_COUT;
 // Concatenation of inputs for post-adder
assign D_A_B_CONCAT = {D[11:0], A[17:0], B[17:0]};
// Final addition/subtraction with carry-in
assign {POSTADDERCOUT, POSTADDER_SUM} = (OPMODE_BLOCK_OUT[7]) ?
    (MUXZ_OUT - (MUXX_OUT + CIN)) : (MUXZ_OUT + MUXX_OUT + CIN);
 // Megastering Initial outputs

REG_MUX_pair #(.WIDTH(1), .RSTTYPE(RSTTYPE)) CYO_BLOCK (.BLOCK_IN(POSTADDERCOUT), .SEL(CARRYOUTREG), .CLK(CLK), .RST(RSTCARRYIN), .CE(CECARRYIN), .BLOCK_OUT(CARRYOUT));

REG_MUX_pair #(.WIDTH(48), .RSTTYPE(RSTTYPE)) P_BLOCK (.BLOCK_IN(POSTADDER_SUM), .SEL(PREG), .CLK(CLK), .RST(RSTP), .CE(CEP), .BLOCK_OUT(P));
```

2. Testbench Code

timescale 1ns/1ps

```
module DSP48A1_tb();
 parameter AOREG = 0 ;
 parameter BOREG = 0;
 parameter B1REG = 1 ;
 parameter CREG = 1;
parameter DREG = 1;
 parameter PREG = 1;
 parameter OPMODEREG = 1;
parameter CARRYINSEL = "OPMODE5"; // Determines carry input selection
 parameter B_INPUT = "DIRECT"; // Specifies whether B input is direct or cascaded parameter RSTTYPE = "SYNC"; // Specifies whether resets are synchronous or asynchronous
  // Signal Declarations
  reg [47:0] C, PCIN;
  reg [17:0] BCIN;
 reg [7:0] OPMODE;
reg RSTA, RSTB, RSTM, RSTP, RSTC, RSTD, RSTCARRYIN, RSTOPMODE;
 wire [17:0] BCOUT;
  wire [47:0] PCOUT, P;
 wire [35:0] M;
DSP48A1 #(
      .CREG(CREG), .DREG(DREG), .MREG(MREG), .PREG(PREG), .CARRYINREG(CARRYINREG), .CARRYOUTREG(CARRYOUTREG), .OPMODEREG(OPMODEREG), .CARRYINSEL(CARRYINSEL), .B_INPUT(B_INPUT), .RSTTYPE(RSTTYPE)
      .A(A), .B(B), .D(D), .C(C), .CLK(CLK), .CARRYIN(CARRYIN), .OPMODE(OPMODE), .BCIN(BCIN), .RSTA(RSTA), .RSTB(RSTB), .RSTM(RSTM), .RSTP(RSTP), .RSTC(RSTC), .RSTD(RSTD), .RSTCARRYIN(RSTCARRYIN), .RSTOPMODE(RSTOPMODE),
      .BCOUT(BCOUT), .PCOUT(PCOUT), .P(P), .M(M), .CARRYOUT(CARRYOUT), .CARRYOUTF(CARRYOUTF)
      forever #1 CLK = ~CLK; // Generates a clock signal with a period of 2 ns
```

```
// Test Stimulus Generator
     // Initialize and assert reset signals
     CEA = 1; CEB = 1; CEM = 1; CEP = 1;
CEC = 1; CED = 1; CECARRYIN = 1; CEOPMODE = 1;
A = 0; B = 0; C = 0; D = 0;
CARRYIN = 0; BCIN = 0; PCIN = 0;
     OPMODE = 8'b00000000;
     repeat(5) @(negedge CLK);
     A = 80; B = 10; C = 10; D = 10; CARRYIN = 0; OPMODE = 8'b01010100; // A - B - D - C
     repeat(5) @(negedge CLK);
     repeat(5) @(negedge CLK);
     OPMODE = 8'b10001101; // A + B + D + CARRYIN
     repeat(5) @(negedge CLK);
```

```
// Test Case 5: Chained operations with different OPMODE values

A = 50; B = 25; C = 200; D = 10; CARRYIN = 0;

OPMODE = 8'b01111111; // Complex operation
repeat(5) @(negedge CLK);

// Test Case 6: Cascade input (BCIN) handling

A = 60; B = 30; C = 100; D = 10; CARRYIN = 0; BCIN = 10;

OPMODE = 8'b11000010; // Perform operation using BCIN
repeat(5) @(negedge CLK);

// Test Case 7: Complex operation using all inputs

A = 70; B = 40; C = 150; D = 20; CARRYIN = 1;

OPMODE = 8'b10101010; // Another complex operation
repeat(5) @(negedge CLK);

// Test Case 8: Another OPMODE setting with all inputs

A = 80; B = 50; C = 175; D = 25; CARRYIN = 0;

OPMODE = 8'b00011000; // Another operation mode
repeat(5) @(negedge CLK);

// Test Case 9: Overflow scenario (max values)

A = 18'h3FFFF; B = 18'h3FFFF; C = 48'hFFFFFFFFFFFFFFFFFFF; D = 18'h3FFFF;
CARRYIN = 1;
OPMODE = 8'b100000000; // Checking max value addition
repeat(5) @(negedge CLK);
```

```
// Test Case 10: Zero Inputs (A, B, C, D all zero)
OPMODE = 8'b00001111; // Testing zero addition
repeat(5) @(negedge CLK);
// Test Case 11: Negative values (2's complement simulation)
OPMODE = 8'b11100001; // Negative accumulation
repeat(5) @(negedge CLK);
// Test Case 12: Carry propagation
A = 50; B = 25; C = 200; D = 10; CARRYIN = 1;
OPMODE = 8'b10001101; // Carry should propagate
repeat(5) @(negedge CLK);
// Test Case 13: Cascade input (BCIN) handling
A = 60; B = 30; C = 100; D = 10; CARRYIN = 0; BCIN = 10;
OPMODE = 8'b11000010; // Perform operation using BCIN
repeat(5) @(negedge CLK);
// Test Case 14: Different shift and accumulation
OPMODE = 8'b10101010; // Shift-accumulate
repeat(5) @(negedge CLK);
```

3. Do File

6 #quit -sim

```
vlib work
vlog reg_mux_pair.v DSP.v DSP_tb.v
vsim -voptargs=+acc work.DSP_tb
add wave *
run -all
```

4. QuestaSim Snippets

➤ Waves

5. Constraint File

6. Elaboration

➤ Schematic Snippets

Messages (No Errors or Warnings)

7. Synthesis

Schematic Snippets

Messages (No Errors)

➤ Utilization report

Name	Slice LUTs (134600)	Slice Registers (269200)	DSP s (740	Bonded IOB (500)	BUFGCTRL (32)	
∨ N DSP48A1	230	143	1	327	1	
P_BLOCK (REG_MUX_pairparameterized0_3)	0	48	0	0	0	
OPMODE_BLOCK (REG_MUX_pairparameterized1)	228	8	0	0	0	
D_BLOCK (REG_MUX_pair_2)	0	18	0	0	0	
C_BLOCK (REG_MUX_pairparameterized0)	0	48	0	0	0	
CYO_BLOCK (REG_MUX_pairparameterized3_1)	0	1	0	0	0	
CYI_BLOCK (REG_MUX_pairparameterized3)	1	1	0	0	0	
■ B1_BLOCK (REG_MUX_pair_0)	0	18	0	0	0	
A1_BLOCK (REG_MUX_pair)	0	1	0	0	0	

> Time report

etup		Hold		Pulse Width			
etup		nou		ruise vviuui			
Worst Negative Slack (WNS):	5.168 ns	Worst Hold Slack (WHS):	0.182 ns	Worst Pulse Width Slack (WPWS):	4.500 ns		
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0		
Total Number of Endpoints:	106	Total Number of Endpoints:	106	Total Number of Endpoints:	145		

8. Implementation

➤ Device Snippets

➤ Messages (No Errors)

➤ Utilization report

Name 1	Slice LUTs (133800)	Slice Registers (267600)	F7 Muxes (66900)	F8 Muxes (33450)	Slice (3345 0)	LUT as Logic (133800)	LUT as Memory (46200)	LUT Flip Flop Pairs (133800)	Block RAM Tile (365)	DSP s (740	Bonded IOB (500)	BUFGCTRL (32)	BSCANE2 (4)
N DSP48A1	2701	4208	97	11	1362	2227	474	1583	8	1	327	2	1
A1_BLOCK (REG_MU	0	1	0	0	1	0	0	0	0	0	0	0	0
B1_BLOCK (REG_MU	0	18	0	0	6	0	0	0	0	0	0	0	0
C_BLOCK (REG_MUX	0	48	0	0	18	0	0	0	0	0	0	0	0
CYI_BLOCK (REG_MU	1	1	0	0	1	1	0	1	0	0	0	0	0
CYO_BLOCK (REG_M	0	1	0	0	1	0	0	0	0	0	0	0	0
D_BLOCK (REG_MUX	0	18	0	0	10	0	0	0	0	0	0	0	0
> 1 dbg_hub (dbg_hub)	475	727	0	0	236	451	24	306	0	0	0	1	1
■ OPMODE_BLOCK (RE	228	8	0	0	74	228	0	0	0	0	0	0	0
P_BLOCK (REG_MUX	0	48	0	0	12	0	0	0	0	0	0	0	0
> # u_ila_0 (u_ila_0)	1996	3338	97	11	1054	1546	450	1220	8	0	0	0	0

> Time report

etup		Hold		Pulse Width			
Worst Negative Slack (WNS):	2.623 ns	Worst Hold Slack (WHS):	0.060 ns	Worst Pulse Width Slack (WPWS):	3.950 ns		
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0		
Total Number of Endpoints:	8069	Total Number of Endpoints:	8053	Total Number of Endpoints:	5119		

9. Linting

➤ Lint Checks (No Errors or Warnings)

