LunAl

IA para detección de melanomas

Contenido

- Motivación y Contexto
- Objetivo del Proyecto
- Estado de la Competencia
- Metodología
- Disponibilidad de Datasets
- Dificultades Previstas
- Actualizaciones Futuras

Motivación y Contexto

¿Por qué debemos revisar nuestra piel?

El cáncer de piel es el tipo de cáncer más común, generalmente causado por la exposición a los rayos ultravioleta (UV). El melanoma es un tipo de cáncer de piel que se origina cuando los melanocitos (las células que dan a la piel su color bronceado o marrón) comienzan a crecer fuera de control.

El melanoma es mucho menos frecuente que otros tipos de cánceres de piel, pero es más peligroso porque es mucho más probable que se propague a otras partes del cuerpo si no se descubre y se trata a tiempo.

Motivación y Contexto

Problema actual

En muchos países, incluyendo regiones de Latinoamérica, existe baja disponibilidad de dermatólogos en relación con la población. Ademas de esto, los usuarios comunes no siempre consultan a tiempo porque subestiman los cambios en su piel.

Oportunidad

Con el crecimiento de la inteligencia artificial y la disponibilidad de datasets dermatológicos, es posible entrenar modelos que apoyen el diagnóstico médico. Esta sería una excelente herramienta preventiva la cual ayude a fomentar consultas medicas en etapas tempranas de un posible cáncer de piel.

Objetivo del Proyecto

El objetivo principal de este proyecto es desarrollar un sistema de inteligencia artificial capaz de analizar imágenes de la piel y detectar posibles melanomas u otros lunares malignos con un alto grado de precisión.

¡IMPORTANTE! Este sistema se plantea como una herramienta de **apoyo**, no como un reemplazo de los especialistas.

En este sentido, el proyecto busca:

- 1) Incrementar la detección temprana de melanomas.
- 2) Democratizar el acceso a la salud.
- 3) Reducir costos y tiempos de diagnóstico.

Estado de la Competencia

Existen diversas aplicaciones o softwares médicos de inteligencia artificial que detectan con eficacia los melanomas en la piel. Algunos ejemplos pueden ser **DermAssist** (Google Health) o **SkinVision** (App móvil).

Analizando el mercado detectamos ciertas limitaciones las cuales pueden ser que muchos sistemas son comerciales y no de libre acceso, se requiere equipamiento especial (lupas dermatoscópicas, cámaras específicas) y algunos no tienen suficiente transparencia en los modelos ni en el manejo de datos.

Con el fin de aprovechar la mas reciente evidencia científica y el avance de la IA, queremos diseñar un sistema que combine **precisión**, **accesibilidad** y **transparencia**, con enfoque en la detección temprana y apoyo médico.

Metodología

Flujo de trabajo (pipeline):

- Recolección de datos = Uso de datasets públicos o de acceso por petición.
- Preprocesamiento de imágenes = Normalización por tamaño y color. Posible filtrado de imágenes por ruido o mejora de contraste.
- Selección del modelo de ML = Uso de Redes Neuronales Convolucionales, probadas como muy efectivas en estas implementaciones.
- Entrenamiento del modelo = División del dataset en datasets mas pequeños (entrenamiento y prueba).
- **Evaluación y validación** = Validación utilizando el dataset de prueba y otros subconjuntos de datos adicionales. Posterior comparación de resultados. Análisis de falsos positivos y falsos negativos.
- Implementación y despliegue = Desarrollo del front-end y back-end para pruebas. El resultado podría clasificarse según las posibilidades de que sea benigno o maligno. Dependiendo el resultado se recomendará la consulta con un especialista.

Disponibilidad de Datasets

Fuentes de los datasets encontrados hasta el momento:

- International Skin Imaging Collaboration Archive (https://api.isic-archive.com/collections/249/)
- Melanoma Skin Cancer Dataset of 10000 Images (https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer-dataset-of-10000-images)
- Skin_Cancer Image Dataset with 5000 Images (https://www.kaggle.com/datasets/ayushi10kumari/skin-cancer-image-dataset)
- Melanoma Cancer Image Dataset with 13900 high-resolution images (https://www.kaggle.com/datasets/bhaveshmittal/melanoma-cancer-dataset)
- Melanoma Dataset from National Cancer Institute (https://cdas.cancer.gov/datasets/plco/11/)

Dificultades Previstas

- Variabilidad de imágenes: las fotos pueden tener diferente iluminación, ángulo, calidad o resolución, lo que afecta el rendimiento del modelo.
- **Necesidad de gran poder computaciona**l: debido a la gran cantidad de imágenes a procesar, entrenar redes neuronales profundas exige muchos recursos de GPU.
- Posibles sesgos del dataset: si el modelo se entrena con imágenes de un solo grupo poblacional, puede fallar en pieles con distinta pigmentación.
- **Responsabilidad en diagnósticos**: la IA es apoyo, no reemplazo del dermatólogo, importante aclarar límites de uso.

Actualizaciones Futuras

Gracias a las características del campo en que implementamos nuestra IA, podemos pensar en expandir, mejorar e integrar actualizaciones a largo plazo. Algunas de estas pueden ser el entrenamiento de **nuevos y mas amplios datasets**, **optimizar** la red neuronal con **arquitecturas mas modernas**, ampliar la detección a otros tipos de **lesiones cutáneas**, **colaborar con hospitales y clínicas** para ejecutar pruebas piloto, etc.