Lipschitz Lifelong Reinforcement Learning

Erwan Lecarpentier 1 David Abel 2 Kavosh Asadi 2 Yuu Jinnai 2 Emmanuel Rachelson 1 Michael L. Littman 2 1 ISAE-SUPAERO, Université de Toulouse, 2 Brown University

erwan.lecarpentier@isae-supaero.fr

July 10, 2019

Figure: Reinforcement Learning framework

Markov Decision Process (MDP)

Markov Decision Process (MDP)

An MDP is a 4-tuple $\{S, A, T, R\}$:

 $ightharpoonup \mathcal{S}$ is a state space;

(x, y)

Markov Decision Process (MDP)

- \triangleright S is a state space;
- \blacktriangleright \mathcal{A} is an action space;

$$(x,y)$$

$$\{\uparrow,\to,\downarrow,\leftarrow\}$$

Markov Decision Process (MDP)

- S is a state space;
- $ightharpoonup \mathcal{A}$ is an action space;
- $T_{s,s'}^a = \Pr(s' \mid s,a);$

$$(x,y)$$

$$\{\uparrow, \to, \downarrow, \leftarrow\}$$

$$T_{\bullet}^{\leftarrow} = 0.9, T_{\bullet}^{\uparrow} = 0.1$$

Markov Decision Process (MDP)

- S is a state space;
- ► A is an action space;
- $T_{s,s'}^a = \Pr(s' \mid s,a);$
- $ightharpoonup R_s^a$ is a reward function;

$$(x,y)$$
$$\{\uparrow,\to,\downarrow,\leftarrow\}$$

$$T_{\blacksquare,\blacksquare}^{\leftarrow} = 0.9, T_{\blacksquare,\blacksquare}^{\uparrow} = 0.1$$

$$R^{\downarrow}_{\blacksquare}=1, R^{\leftarrow}_{\blacksquare}=0$$

What is "solving an MDP"?

What is "solving an MDP"?

Definition 1

Policy: $\pi: s \mapsto a$

What is "solving an MDP"?

Definition 1

Policy: $\pi: s \mapsto a$

Definition 2

Value function:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, s_{t+1} \sim T_{s_t,\cdot}^{a_t}, a_t = \pi(s_t)
ight]$$

What is "solving an MDP"?

Definition 1

Policy: $\pi: s \mapsto a$

Definition 2

Value function:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, s_{t+1} \sim T_{s_t,\cdot}^{a_t}, a_t = \pi(s_t)
ight]$$

Definition 3

Optimal policy: $\pi^* = \arg \max_{\pi} V^{\pi}(s), \forall s \in \mathcal{S}$

Some more definitions:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, s_{t+1} \sim T_{s_t,\cdot}^{a_t}, a_t = \pi(s_t)
ight]$$

Definition 4

Q-Value function:

$$Q^{\pi}(s, \mathbf{a}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{\mathbf{a}_t} \mid s_0 = s, \mathbf{a}_0 = \mathbf{a}, s_{t+1} \sim T_{s_t, \cdot}^{\mathbf{a}_t}, \mathbf{a}_t = \pi(s_t)\right]$$

Some more definitions:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, s_{t+1} \sim T_{s_t,\cdot}^{a_t}, a_t = \pi(s_t)
ight]$$

Definition 4

Q-Value function:

$$Q^{\pi}(s, \mathbf{a}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{s_t}^{a_t} \mid s_0 = s, \mathbf{a}_0 = \mathbf{a}, s_{t+1} \sim T_{s_t, \cdot}^{a_t}, a_t = \pi(s_t)\right]$$

Definition 5

Optimal value functions:

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$
 $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$

Machine Learning big picture

Supervised Learning

$$\hat{F}(x_i) = \hat{y_i}$$

Unsupervised Learning

$$\hat{F}(x_i)$$

Reinforcement Learning

Optimality Bellman equation:

$$\hat{Q}(s_i, a_i) = R_{s_i}^{a_i} + \gamma \mathbb{E}_{s' \sim T_{s_i'}^{a_i}} \left[\max_{a'} \hat{Q}(s', a') \right]$$

▶ Optimistic initialization: $\hat{R}_s^a = R_{\text{max}}, \hat{T}_{s,s}^a = 1, \forall s, a \in \mathcal{S} \times \mathcal{A};$

- ▶ Optimistic initialization: $\hat{R}_s^a = R_{\text{max}}, \hat{T}_{s,s}^a = 1, \forall s, a \in \mathcal{S} \times \mathcal{A};$
- ▶ Learn the true model online $(\hat{R}, \hat{T}) \rightarrow (R, T)$;

- ▶ Optimistic initialization: $\hat{R}_s^a = R_{\text{max}}, \hat{T}_{s,s}^a = 1, \forall s, a \in \mathcal{S} \times \mathcal{A};$
- ▶ Learn the true model online $(\hat{R}, \hat{T}) \rightarrow (R, T)$;
- ▶ Find an ϵ -optimal policy with high probability in polynomial time;

- ▶ Optimistic initialization: $\hat{R}_{s}^{a} = R_{\text{max}}, \hat{T}_{s,s}^{a} = 1, \forall s, a \in \mathcal{S} \times \mathcal{A};$
- ▶ Learn the true model online $(\hat{R}, \hat{T}) \rightarrow (R, T)$;
- ▶ Find an ϵ -optimal policy with high probability in polynomial time;
- ► One of the only algorithms with a guaranteed convergence rate.

Lifelong Reinforcement Learning

Transfer

How can we leverage the knowledge acquired during interactions with previous MDPs to speed-up the resolution of the current task?

Take home message

Contributions

- ► Theoretical study of the Lipschitz Continuity of V* and Q* in the MDP space;
- ► Proposal of a **practical**, **non-negative**, **transfer method** based on a local distance between MDPs;
- ► Proposal and study of a **PAC-MDP algorithm** applying this transfer method in the Lifelong RL setting.

Notation

$$M = \langle \mathcal{S}, \mathcal{A}, R, T \rangle$$
 new MDP

$$ar{\textit{M}} = \langle \mathcal{S}, \mathcal{A}, ar{\textit{R}}, ar{\textit{T}}
angle$$
 explored MDP

The closer two MDPs, the closer their optimal value functions.

Can we do value transfer with that?

ldea

The closer two MDPs, the closer their optimal value functions.

Can we do value transfer with that?

$$|Q_M^*(s,a) - Q_{ar{M}}^*(s,a)| \leq d_{\mathcal{M}}(M,ar{M})$$
 \downarrow

$$Q_M^*(s,a) \leq U(s,a)$$
 $U(s,a) := Q_{ar{M}}^*(s,a) + d_{\mathcal{M}}(M,ar{M})$

$$M = \langle S, A, R, T \rangle \in \mathcal{M}$$

 $s, a \in S \times A$

$$M = \langle S, A, R, T \rangle \in \mathcal{M}$$

 $s, a \in S \times A$

$$M = \langle S, A, R, T \rangle \in \mathcal{M}$$

 $s, a \in S \times A$

$$M = \langle S, A, R, T \rangle \in \mathcal{M}$$

 $s, a \in S \times A$

Local model pseudo-metric

Definition 1 Local pseudo-metric between two models

For two MDPs $M = \langle \mathcal{S}, \mathcal{A}, R, T \rangle$ and $\overline{M} = \langle \mathcal{S}, \mathcal{A}, \overline{R}, \overline{T} \rangle$, we define the distance between their models at $(s, a) \in \mathcal{S} \times \mathcal{A}$ as:

$$D_f\left(\langle R,T\rangle,\langle \bar{R},\bar{T}\rangle\right)(s,a) = |R_s^a - \bar{R}_s^a| + \sum_{s'} f(s')|T_{ss'}^a - \bar{T}_{ss'}^a|$$

defined for any function $f:\mathcal{S} o \mathbb{R}^+$

Local continuity

Theorem 1 Local continuity

For any two MDPs M and \bar{M} , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$|Q_M^*(s,a) - Q_{\bar{M}}^*(s,a)| \leq d_M^{\bar{M}}(s,a)$$

where $d_M^{\bar{M}}$ is defined with the following fixed-point equation:

$$d_{M}^{\bar{M}}(s,a) = D_{\gamma V_{\bar{M}}^{*}}\left(\langle R,T\rangle, \langle \bar{R},\bar{T}\rangle\right)(s,a) + \gamma \sum_{s'} T_{ss'}^{a} \max_{a'} d_{M}^{\bar{M}}(s',a')$$

Local continuity

Theorem 1 Local continuity

For any two MDPs M and \bar{M} , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$|Q_M^*(s,a) - Q_{\bar{M}}^*(s,a)| \leq d_M^{\bar{M}}(s,a)$$

where d_M^M is defined with the following fixed-point equation:

$$d_{M}^{\bar{M}}(s,a) = D_{\gamma V_{\bar{M}}^*}\left(\langle R,T\rangle, \langle \bar{R},\bar{T}\rangle\right)(s,a) + \gamma \sum_{s'} T_{ss'}^a \max_{a'} d_{M}^{\bar{M}}(s',a')$$

Remarks:

- 1. Selected $f: s \mapsto \gamma V_{\bar{M}}^*(s)$ for the local model pseudo-metric
- 2. Local Lipschitz continuity of the optimal Q-function
- 3. $d_M^M(s, a)$ is asymmetric
- 4. $d_M^{\bar{M}}(s,a)$ can be computed with dynamic programming

Global continuity

Corollary 1 Global continuity

For any two MDPs M and \bar{M} , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$|Q_M^*(s,a)-Q_{\bar{M}}^*(s,a)|\leq d_M^{\bar{M}}$$

$$d_{M}^{ar{M}}:=rac{1}{1-\gamma}\max_{s,a}\left[D_{\gamma}_{V_{ar{M}}^{*}}\left(\langle R,T
angle,\langlear{R},ar{T}
angle
ight)\left(s,a
ight)
ight]$$

Global continuity

Corollary 1 Global continuity

For any two MDPs M and \bar{M} , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$,

$$|Q_M^*(s,a)-Q_{\bar{M}}^*(s,a)|\leq d_M^{\bar{M}}$$

$$d_{M}^{ar{M}}:=rac{1}{1-\gamma}\max_{s,a}\left[D_{\gamma V_{ar{M}}^{st}}\left(\langle R,T
angle,\langlear{R},ar{T}
angle
ight)\left(s,a
ight)
ight]$$

Remarks:

- 1. Global Lipschitz continuity of the optimal Q-function
- 2. Little practical use because learning the maximum local model pseudo-metric is as difficult as learning the new MDP M.

Lipschitz bound

Definition 2: Lipschitz bound

Given two MDPs M and \bar{M} , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$, the **Lipschitz** bound on Q_M^* induced by $Q_{\bar{M}}^*$ is defined by:

$$U_{ar{M}}(s,a) := Q_{ar{M}}^*(s,a) + \min \left[d_M^{ar{M}}(s,a), d_{ar{M}}^M(s,a) \right]$$

Lipschitz bound

Definition 2: Lipschitz bound

Given two MDPs M and \bar{M} , for all $(s, a) \in \mathcal{S} \times \mathcal{A}$, the **Lipschitz** bound on Q_M^* induced by $Q_{\bar{M}}^*$ is defined by:

$$U_{ar{M}}(s,a) := Q_{ar{M}}^*(s,a) + \min \left[d_M^{ar{M}}(s,a), d_{ar{M}}^M(s,a)
ight]$$

Obviously we have:

$$Q_M^*(s,a) \leq U_{\bar{M}}(s,a)$$

How to upper-bound $U_{\bar{M}}(s,a)$?

Lipschitz bound:

$$U_{\bar{M}}(s,a) = Q_{\bar{M}}^*(s,a) + \min \left[d_{M}^{\bar{M}}(s,a), d_{\bar{M}}^{\bar{M}}(s,a) \right]$$
$$d_{M}^{\bar{M}}(s,a) = D_{\gamma V_{\bar{M}}^*} \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s,a) + \gamma \sum_{s'} T_{ss'}^a \max_{a'} d_{M}^{\bar{M}}(s',a')$$

Lipschitz bound:

$$U_{\bar{M}}(s,a) = Q_{\bar{M}}^*(s,a) + \min \left[d_{M}^{\bar{M}}(s,a), d_{\bar{M}}^{\bar{M}}(s,a) \right]$$
$$d_{M}^{\bar{M}}(s,a) = D_{\gamma} V_{\bar{M}}^* \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s,a) + \gamma \sum_{s'} T_{ss'}^a \max_{a'} d_{M}^{\bar{M}}(s',a')$$

► Known upper-bound

Lipschitz bound:

$$U_{\bar{M}}(s,a) = Q_{\bar{M}}^*(s,a) + \min \left[d_{M}^{\bar{M}}(s,a), d_{\bar{M}}^{\bar{M}}(s,a) \right]$$
$$d_{M}^{\bar{M}}(s,a) = D_{\gamma V_{\bar{M}}^*} \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s,a) + \gamma \sum_{s'} T_{ss'}^a \max_{a'} d_{M}^{\bar{M}}(s',a')$$

- Known upper-bound
- Maximization over the unknown model(s)

Lipschitz bound:

$$U_{\bar{M}}(s,a) = Q_{\bar{M}}^*(s,a) + \min \left[d_{M}^{\bar{M}}(s,a), d_{\bar{M}}^{\bar{M}}(s,a) \right]$$

$$d_{M}^{\bar{M}}(s,a) = D_{\gamma V_{\bar{M}}^*} \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s,a) + \gamma \sum_{s'} T_{ss'}^a \max_{a'} d_{M}^{\bar{M}}(s',a')$$

- Known upper-bound
- Maximization over the unknown model(s)
- ► Maximize over s' if unknown

Lipschitz bound:

$$U_{\bar{M}}(s,a) = Q_{\bar{M}}^*(s,a) + \min \left[d_{M}^{\bar{M}}(s,a), d_{\bar{M}}^{\bar{M}}(s,a) \right]$$
$$d_{M}^{\bar{M}}(s,a) = D_{\gamma V_{\bar{M}}^*} \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s,a) + \gamma \sum_{s'} T_{ss'}^a \max_{a'} d_{M}^{\bar{M}}(s',a')$$

- Known upper-bound
- Maximization over the unknown model(s)
- ► Maximize over s' if unknown

Notation: from now on $U_{\bar{M}}(s,a)$ refers to the upper-bound on the Lipschitz upper-bound.

Improved upper-bound

Notation: K := set of known state-action pairs in current MDP.

Improved upper-bound

Notation: K := set of known state-action pairs in current MDP.

Definition 3 Improved upper-bound

Given a set of Lipschitz bounds $\{U_{\bar{M}_1},U_{\bar{M}_2},\cdots\}$, the improved upper-bound on the R-MAX bound is defined by:

$$U(s,a) = \begin{cases} R_s^a + \gamma \sum_{s'} T_{ss'}^a \max_{a'} U(s',a') & \text{if } (s,a) \in K \\ \min \left[\frac{R_{\max}}{1-\gamma}, U_{\bar{M}_1}(s,a), U_{\bar{M}_2}(s,a), \cdots \right] & \text{else} \end{cases}$$
(1)

Improved upper-bound

Notation: K := set of known state-action pairs in current MDP.

Definition 3 Improved upper-bound

Given a set of Lipschitz bounds $\{U_{\bar{M}_1},U_{\bar{M}_2},\cdots\}$, the improved upper-bound on the R-MAX bound is defined by:

$$U(s,a) = \begin{cases} R_s^a + \gamma \sum_{s'} T_{ss'}^a \max_{a'} U(s',a') & \text{if } (s,a) \in K \\ \min \left[\frac{R_{\max}}{1-\gamma}, U_{\bar{M}_1}(s,a), U_{\bar{M}_2}(s,a), \cdots \right] & \text{else} \end{cases}$$
(1)

Remarks:

- 1. Can be computed with dynamic programming
- Influence of the Lipschitz bounds is propagated even for known state-action pairs.

Lipschitz R-MAX algorithm

Algorithm 1 Lipschitz R-MAX algorithm

```
for each sampled MDP do
  for t = 1, 2, \cdots do
    s current state
    a = \arg \max_{a'} U(s, a')
    Observe reward r and next state s'
    if enough observations for (s, a) then
       Update model at (s, a)
       for each known MDP \bar{M} do
         Update U_{\bar{M}} # Dynamic Programming
       Update U with Equation 1 # Dynamic Programming
  Save learned model
```

Lipschitz R-MAX algorithm

R-MAX:

Lipschitz R-MAX:

Lipschitz R-MAX analysis

Property 1 Sample complexity

With probability $1-\delta$, Lipschitz R-MAX algorithm achieves an ϵ -optimal return in the MDP M for all but

$$\mathcal{O}\left(\frac{|\{s, a \in \mathcal{S} \times \mathcal{A} \mid \frac{\textit{U}(s, a)}{\textit{V}_{\textit{M}}^{s}(s) - \epsilon\}|}{\epsilon^{3}(1 - \gamma)^{3}}\right)$$

time-steps, with U defined in Equation 1.

Lipschitz R-MAX analysis

Property 1 Sample complexity

With probability $1-\delta$, Lipschitz R-MAX algorithm achieves an ϵ -optimal return in the MDP M for all but

$$\mathcal{O}\left(\frac{|\{s, a \in \mathcal{S} \times \mathcal{A} \mid \frac{U(s, a)}{\varepsilon^3 (1 - \gamma)^3} \geq V_M^*(s) - \epsilon\}|}{\epsilon^3 (1 - \gamma)^3}\right)$$

time-steps, with U defined in Equation 1.

Property 2 Computational complexity

The total computation complexity of Lipschitz R-MAX is

$$\mathcal{O}\left(B + \frac{S^2A^2(S + \ln(A))(\textit{N} + 1)}{(1 - \gamma)}\ln\frac{1}{\epsilon(1 - \gamma)}\right)$$

with B the number of time steps, ϵ the precision of the value iteration algorithm and N the memory size.

Improving Lipschitz R-MAX

 $\begin{array}{c} \textbf{Issue:} \text{ upper-bounds on local distances} \\ D_{\gamma V_{\bar{M}}^*}\left(\langle R,T\rangle,\langle \bar{R},\bar{T}\rangle\right)(s,a) \text{ can lead to poor Lipschitz} \\ \text{ upper-bounds } U_{\bar{M}}. \end{array}$

Improving Lipschitz R-MAX

1) Assuming close models

Maximum model distance Hypothesis

$$D_{\mathsf{max}} \triangleq \max_{s, a, M, \bar{M} \in \mathcal{S} \times \mathcal{A} \times \mathcal{M}^2} \left(D_{\gamma V_{\bar{M}}^*} \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s, a) \right)$$

Improving Lipschitz R-MAX

1) Assuming close models

Maximum model distance Hypothesis

$$D_{\mathsf{max}} \triangleq \max_{s, a, M, \bar{M} \in \mathcal{S} \times \mathcal{A} \times \mathcal{M}^2} \left(D_{\gamma V_{\bar{M}}^*} \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s, a) \right)$$

2) Evaluating the local distances

Theorem 2 Maximum local distance estimation

Introduce the following local model distance estimator:

$$\hat{D}_{\mathsf{max}}(s, a) \triangleq \max_{M, \bar{M} \in \hat{\mathcal{M}}^2} (D_{\gamma} V_{\bar{M}}^* \left(\langle R, T \rangle, \langle \bar{R}, \bar{T} \rangle \right) (s, a))$$

After sampling m MDPs, the probability of successful estimation is:

$$Pr(\hat{D}_{max}(s, a) \ge D_{max}(s, a)) \ge 1 - 2(1 - p_{min})^m + (1 - 2p_{min})^m$$

where $p_{\min} = \min_{M \in \mathcal{M}} Pr(M)$ is a lower bound on the sampling probability of an MDP.

Experiments

Figure: 1D corridor, reward is sampled in [0.8, 1]

Experiments

Figure: Maze A), slip probability is sampled in [0, 0.1]

Experiments

Figure: Maze B), activated walls are either the green or the orange ones.

Conclusion

Contributions

- ► Theoretical study of the Lipschitz Continuity of V* and Q* in the MDP space;
- ► Proposal of a **practical**, **non-negative**, **transfer method** based on a local distance between MDPs;
- ► Proposal and study of a **PAC-MDP algorithm** applying this transfer method in the Lifelong RL setting.