Heaps

Announcements

Please take a few minutes to fill in the teacher evaluation

You should have received a link invitation to your hunter email address

Smartphone: www.hunter.cuny.edu/mobilete

Computer: www.hunter.cuny.edu/te

Login using your Hunter netID

Thank you!!!

Heap

A Heap is a complete binary tree that is either

- Empty or
- Its root contains a value ≥ (or ≤) both of its children and has heaps as subtrees

Heap

A special binary tree:

- Ordered in a <u>weaker sense</u>
- Always a **complete** binary tree

MaxHeap 10

How would you implement it???

How would you implement it???

Insight: it is always complete

MaxHeap

Priority Queue

? ? 5

10

Retrieve

Can only retrieve max/min item

Stored at root

O(1)

Remove max/min item (the root)

Must retain Heap

- Heap ordering property
- Complete

What element do we remove?

What node do we remove?

What element do we remove?

Remove this node form complete tree

heapRebuild

heapRebuild

1 9 6 2 3

```
items_[i] left_child = items_[2 * i + 1]
items_[i] right_child = items_[ 2 * i + 2]
```



```
items_[i] left_child = items_[2 * i + 1]
items_[i] right_child = items_[ 2 * i + 2]
24
```



```
items_[i] left_child = items_[2 * i + 1]
items_[i] right_child = items_[ 2 * i + 2]
```


	1	9	6	2	3
	1	9	6	2	3
* i + 11	9	1	6	2	3

```
items_[i] left_child = items_[2
items_[i] right_child = items_[ 2 * i + 2]
```

Remove heapRebuild Trickle down by swapping Complete Compare left and 9 right Trickle down by swapping Compare left and right 9 Heap! 9 6 2 3 9 6 2 9 6 3 9 3 6 2 27

Remove heapRebuild Trickle down by swapping Complete Compare left and 9 right Trickle down by swapping Compare left and right 9 Heap! 9 6 2 3 9 6 6 9 3 O(logn) 9 3 6 28

Add

Where do we add?

10 9 6 2 3

10 9 6 2 3 15

items_[i] left_child = items_[2 * i + 1]
31

10 9 6 2 3 15

10	9	6	2	3	15
10	9	15	2	3	6

10	9	6	2	3	15
10	9	15	2	3	6

10	9	6	2	3	15
10	9	15	2	3	6

9 10

Λ	
	U

10	9	6	2	3	15
10	9	15	2	3	6
15	9	10	2	3	6

items_[i] parent = items_[(i-1)//2]

10	9	6	2	3	15
10	9	15	2	3	6
15	9	10	2	3	6

items_[i] parent = items_[(i-1)//2]

6 3 5 9 2 10


```
6 3 5 9 2 10
```

```
for(int i=(itemCount/2)-1; i >=0; i-)
{
    heapRebuild(index);
}
```



```
for(int i=(itemCount/2)-1; i >=0; i-)
{
   heapRebuild(index);
}
```



```
for(int i=(itemCount/2)-1; i >=0; i-)
{
    heapRebuild(index);
}
```



```
for(int i=(itemCount/2)-1; i >=0; i-)
{
   heapRebuild(index);
}
```



```
for(int i=(itemCount/2)-1; i >=0; i-)
{
   heapRebuild(index);
}
```



```
for(int i=(itemCount/2)-1; i >=0; i-)
{
    heapRebuild(index);
}
```



```
for(int i=(itemCount/2)-1; i >=0; i-)
{
   heapRebuild(index);
}
```


n/2 calls to heapRebuild = O(n) n/2 swaps = O(log n)

```
for(int i=(itemCount/2)-1; i >=0; i-)
{
   heapRebuild(index);
}
```

Given an unsorted array:

- heapCreate
- last = n 2
- repeat:
 - swap items[0] with items[last+1]
 - last--
 - rebuildHeap

Given an unsorted array:

- heapCreate
- last = n 2
- repeat:
 - swap items[0] with items[last+1]
 - last--
 - rebuildHeap

Sorted

Heapsort Analysis

- 1. heapCreate -> O(n)
- 2. heapRebuild -> O(logn) repeated for each of the n sorted items

$$O(n \log n) + O(n \log n) = O(n \log n)$$

Like MergeSort but no extra space needed!