1. Least squares estimation

```
(a)
i
```

```
i
data = read.table('project4_data.txt')
time = 1:100
quad_mdl = lm(data$V1 ~ time + I(time^2))
coef(quad_mdl)
##
     (Intercept)
                          time
                                   I(time^2)
## -0.4147689817 -0.0332342602 0.0006186195
ii
plot(data$V1, type = 'l', col = 'lightgreen',
     xlab = 't', ylab = expression(X[t]),
     main = 'Quadtratic model and data versus time')
points(data$V1, pch = 20, col = 'lightgreen')
lines(fitted(quad_mdl), col = 'red')
```

Quadtratic model and data versus time


```
plot(resid(quad_mdl), type = 'o', col = 'lightgreen',
     xlab = 't', ylab = 'Residuals',
     main = 'Residuals versus time (quadratic)')
```

Residuals versus time (quadratic)

iv

The residuals show trend.

```
(b)
```

```
cubic_mdl = lm(data$V1 ~ time + I(time^2) + I(time^3))
coef(cubic_mdl)
##
     (Intercept)
                                   I(time^2)
                                                  I(time^3)
                          time
    0.7760731619 -0.1712975472 0.0040190825 -0.0000224453
ii
plot(data$V1, type = 'l', col = 'lightgreen',
    xlab = 't', ylab = expression(X[t]),
```

```
main = 'Cubic model and data versus time')
points(data$V1, pch = 20, col = 'lightgreen')
lines(fitted(cubic_mdl), col = 'red')
```

Cubic model and data versus time

iii

Residuals versus time (cubic)

iv

The residuals do not show trend.

(c)

Cubic trend model is better.

2. Moving average

(a)

The data and the averaged values with q = 2 versus time


```
(b)
```

Residuals versus time (moving average)

(c)

The residuals do not show trend.

3. Differencing

```
(a)
```

i

First differenced data versus time

ii

I do not think the plot of first order differencing show evidence of trend.

iii

```
time = 2:100
quad_1stdiff = lm(diff(data$V1) ~ time + I(time^2))
coef(quad_1stdiff)

## (Intercept) time I(time^2)
## -0.2075238107 0.0095749939 -0.0000811257
```

First differenced data and fitted quadratic model versus time

This suggest that the first order differencing have trend.

Second differenced data versus time

ii

I do not think the plot of second order differencing show evidence of trend.

```
iii
```

Second differenced data and fitted quadratic model versus time

This suggest that the second order differencing does not have trend.