Homework 3 - Deadline 25/9/2020

Problem 3.1

Suppose a particle moving in a straight line over a set of 5 points (see the figure). The particle starts in the middle (X(0) = c), and in each step it moves to the right with probability p and to the left with probability q = 1 - p.

$$a$$
 b c d e

- 3.1.A Build a tree with the possible outcomes of X(0), X(1), X(2), and compute the joint probabilities P(X(0), X(1), X(2)).
- 3.1.B Compute the probabilities P(X(2) = i), $i = \{a, b, c, d, e\}$.

Problem 3.2

Suppose a particle moving in a straight line over a set of 5 points. In each step it moves to the right with probability p and to the left with probability q.

$$a$$
 b c d e

Assume the following behavior in the boundary points (a and e):

- (a) In a returns to b with probability p or remains with probability (1-p). In e returns to d with probability (1-p) or remains with probability p.
- (b) Return with probability 1 to the previous state.
- (c) Remain with probability 1.

For the previous chains:

- 3.2.A Draw the state transition diagram.
- 3.2.B Construct the transition matrix, P.

Problem 3.3

Modify the MC of the problem 3.2 such that the particle remains two steps in the boundary points and returns to the previous point in the 3-th step. That is, in the boundary points, the particle returns to the previous point in 3 steps with probability 1.

- 3.3.A Say why this chain with 5 states cannot be a Markov chain.
- 3.3.B Show that it is possible to find a Markov chain if more that 5 states are allowed. Construct the transition matrix of the Markov chain.

Problem 3.4

- 3.4.A Formulate the game of problem 1.6.B using a DTMC: define the states, transition diagram, compute the one step transition probabilities, transition probability matrix \mathbf{P} , and the initial distribution $\pi(0)$.
- 3.4.B Let X(n) be the state of the chain at step n in the previous item. Let 2 be the state "obtain 2 dice equal, 1 different". Compute $\pi_2(\infty) = P(X(\infty) = 2)$ using the law of total probability.
- 3.4.C Compute the expected benefit of the player using the DTMC.