

Acknowledgements:

Lauren Rueda, Project Coach EJ Gabriel, Instron Tech Ellie Cruse and Zachary Norris, CNC Machinists Troy Cracroft, JETSEAL Contact

Background

Section View of Solar Turbines' Current Combustor Liner Seal ("Fishmouth" Seal)

The current sealing method leaks cooling air into the combustion chamber due to gaps from manufacturing inconsistencies and thermal expansion of the two sealing surfaces. The project goal is to design an improved mechanical seal between internal combustion gases and external cooling air at the combustion liner to turbine nozzle interface. This seal must function through the entirety of the turbine's operation, including a cold no-load and hot full-load operation, and be designed to be assembled and serviced within current Solar Turbines' practices.

Design Specifications

List of Product Requirements per Solar Turbines' Needs

Spec.		
No.	Description	Requirement/Target F
1	Size	Nominal 37-inch seal diameter
		30,000 hours of continuous operation (60,000
2	Lifespan	ideal)
3	Cycles	5000 thermal cycles
4	Material Temperature Rating	1200°F
5	Sealing	No leakage at an external pressure of 13.8 psi
6	Serviceable	Accessible during field maintenance
7	Assembly	Capable of attaching to turbine in standard assembly process
8	Part Count	2-part count seal system
9	Safety Factor	0.85 S _v of any material
J	Jaiety ractor	0.65 5 _y of any material
10	Axial Thermal Expansion	0.034 inches decompression at full-load
		0 inches relative to E-seal end of combustor
11	Radial Thermal Expansion	liner and nozzle supports

Design

E-Seal Implemented into the Combustor Liner Assembly

To meet the design specifications, the team designed the new sealing mechanism using an Inconel 718 E-Seal with multiple convolutions. The E-Seal is supported on either side by custom supports also manufactured from Inconel. Each support uses the current mounting method.

Improved Combustion Liner Seal

Max Case - Mason Jones - Jacob Matties - Christopher Ng Spring 2024

Analysis FEA.

FEA of the Combustor Liner Support

Thermal Creep Hand Calculation for Extended Life

Material	Mitigation	Peak Average Stress (Ksi)	Hours to 0.1% Creep*	
Haynes 230	Reduced Load	6.91	74900	

Due to the size and applicable testing feasible for the project, a significant amount of design verification was done through analysis before developing a functional prototype.

The team conducted FEA on the redesigned components and surrounding regions to ensure they could withstand the high temperature and loads in the turbine. Hand calculations were performed to ensure the design met the fatigue and creep failure requirements, and check

Thermal Creep Hand Calculation Results

Material	Part	Peak Average Stress (Ksi)	Hours to 0.1% Creep*		
Alloy 718	Liner Support	2.1	4.86E+11		
Alloy 718	Nozzle support	3.9	1.65E+11		
HastX	Combustion Liner	7.3	1.92E+06		
Haynes 230	Combustion Liner	8.2	12000		

E-Seal Groove

Manufactured Prototype

Final Assembly of the Prototype

Section View Showcasing the Internal Design of the Prototype

The prototype manufactured for testing was a small-scale fixture with geometry following the seal manufacturer's guidelines. The small-scale model was chosen for manufacturing feasibility and sized by a small representative seal donated by JETSEAL. The objective of the prototype was to simulate leak environments to evaluate typical leak rates and potential issues.

A prototype for the sealing mechanism was CNC machined

out of 17-4 stainless steel. Various fixtures were manually

machined out of aluminum and steel as necessary.

Tapping Holes in the Top Plate

The Bottom Plate of the Prototype In the CNC Machine

Solar Turbines

A Caterpillar Company

Sponsor: Hamid Bagheri

Mentors: Matt Ostiguy, Andrew Rutland

Testing

- 1. Pre-Cycled Pressure Decay
- 2. Load Frame Cycle
- 3. Post-Cycled Pressure Decay

Cyclic Load Frame Testing Setup Results

Pressure Testing Setup with 0.025" No-Load and 0.050" Full-Load Shims

Leak Test Pressure Decay: Full Load, Post-Sand, Pre-Cycle

	Thur I Thur 2	mar 3	mars				
Test Scenario	Leak Rate at 13.8 psig [sccs]	35 F	Pre-Sand Pre-Cycle Pre-Sand Pre-Cycle Post-Sand Pre-Cycl Post-Sand Pre-Cycl	e Full Load le No Load le Full Load	Operating Pres	ssure: 13.76 psid	
JETSEAL Specified	0.01	30 - F	Post-Cycle Pre-Insp Post-Cycle Pre-Insp Post-Cycle Post-Ins Post-Cycle Post-Ins	pect Full Load pect No Load			
Pre-Cycling No-Load	0.5	Leak Rate [sccs air]					
Pre-Cycling Full-Load	3.0	15 - 10 -					
Post-Cycling No-Load	2.0	5 -					. — —
Post-Cycling Full-Load	10.0	0	5	10 Pressure Difference	15 Across Seal [p	20 sid]	

Conclusion

A manufacturing method that leaves a circular lay surface finish is very critical. It is also highly recommended to follow specifications set by the manufacturer of the seal, as well as source a coated seal to loosen surface finish requirements. To meet lifetime length requirements, a support material matching the hardness of the seal material is necessary. If a turbine is disassembled, a new seal should be installed.

Manufacturing