Function Approximation

Gradient Descent and Linear Models

Marius Lindauer

Winter Term 2021

Overview

► Represent a (state-action/state) value function with a parameterized function instead of a table

Which function approximator

Function Approximators

- Many possible function approximators including
 - linear combinations of features
 - Neural networks
 - Decision trees
 - Nearest neighbors
 - ► Fourier / wavelet bases
- ► Focus on differentiable function approximators
- Let's start with linear feature representations

Recap: Gradient Descent

- lacktriangle Consider a function $J(\vec{w})$ that is differentiable function of a parameter vector \vec{w}
- ▶ Goal is to find parameter \vec{w} that minimizes J
- ightharpoonup The gradient of $J(\vec{w})$ is

$$\nabla J(\vec{w}) = \left[\frac{\partial J}{\vec{w}_1} \dots \frac{\partial J}{\vec{w}_n} \right]$$

$$\vec{w}_t = \vec{w}_{t-1} - \alpha \nabla_w J(\vec{w})$$

where α is the learning rate.

Value Function Approximation for Policy Evaluation with an Oracle

- lacktriangle First assume we could query any state s and an oracle would return the true value for $V^\pi(s)$
- lacktriangle The objective was to find the best approximate representation of V^π given a particular parameterized function

Stochastic Gradient Descent

- ▶ Goal: Find the parameter vector \vec{w} that minimizes the loss between a true value function $V^{\pi}(s)$ and its approximation $\hat{V}^{\pi}(s;\vec{w})$ as represented with a particular function class parameterized by \vec{w} .
- Generally use mean squared error and define the loss as

$$J(\vec{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}^{\pi}(s;\vec{w}))^2]$$

Use gradient descent to find a local minimum

$$\Delta \vec{w} = -\frac{1}{2} \alpha \nabla_{\vec{w} J(\vec{w})}$$

► Stochastic gradient descent (SGD) uses a finite number of samples to compute an approximate gradient:

$$\begin{split} & \nabla_{\vec{w}J(\vec{w}) = \nabla_{\vec{w}} \mathbb{E}_{\pi}[V^{\pi}(s) - \hat{V}^{\pi}(s;\vec{w})]^2} \\ &= \mathbb{E}_{\pi}[2(V^{\pi}(s) - \hat{V}^{\pi}(s;\vec{w}))\nabla_{\vec{w}\hat{V}(s;\vec{w})]} \end{split}$$

Model Free VFA Policy Evaluation

- In practice, we don't actually have access to an oracle to tell true $V^{\pi}(s)$ for any state s
- Now consider how to do model-free value function approximation for prediction / evaluation / policy evaluation without a model

Model Free VFA Prediction / Policy Evaluation

- ► Recall model-free policy evaluation
 - ▶ Following a fixed policy π (or had access to prior data)
 - Goal is to estimate V^{π} and/or Q^{π}
- lacktriangle Maintained a lookup table to store estimates V^π and/or Q^π
- Updated these estimates after each episode (Monte Carlo methods) or after each step (TD methods)
- New: in value function approximation, change the estimate update step to include fitting the function approximator

Model Free VFA Prediction / Policy Evaluation

lacktriangle Use a feature vector to represent a state s

$$\vec{x}(s) = \begin{pmatrix} \vec{x}_1(s) \\ \vec{x}_2(s) \\ \dots \\ \vec{x}_n(s) \end{pmatrix}$$

► For table lookups, we have not really needed that because we only needed to know which table entry to look up

Linear Value Function Approximation for Prediction With An Oracle

Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}^{\pi}(s; \vec{w}) = \sum_{j=1}^{n} \vec{x}_{j}(s) \vec{w}_{j} = \vec{x}(s)^{T} \vec{w}$$

Objective function is

$$J(\vec{w}) = \mathbb{E}[(V^\pi(s) - \hat{V}^\pi(s; \vec{w}))^2]$$

► Recall weight update:

$$\Delta \vec{w} = -\frac{1}{2} \alpha \nabla_{\vec{w}} J(\vec{w})$$

▶ Update (- step size \times prediction error \times feature value)

$$\Delta \vec{w} = -\frac{1}{2}\alpha(2(V^\pi(s) - \vec{x}(s)^T\vec{w}))\vec{x}(s)$$