Answersheet: Calculus

- 1. To evaluate the integral $\int_0^1 x^2 e^x dx$ using integration by parts, we follow these steps:
 - 1. Identify parts for integration by parts formula: $\int u \, dv = uv \int v \, du$.
 - 2. Let $u = x^2$ and $dv = e^x dx$.
 - 3. Compute du and v:
 - du = 2x dx
 - $v = \int e^x dx = e^x$
 - 4. Apply the integration by parts formula: $\int_0^1 x^2 e^x \, dx = \left. x^2 e^x \right|_0^1 \int_0^1 2x e^x \, dx$
 - 5. Evaluate the boundary term: $x^2e^x\Big|_0^1=1^2e^1-0^2e^0=e-0=e$
 - 6. Evaluate the remaining integral using integration by parts again:
 - Let u = 2x and $dv = e^x dx$.
 - Compute du and v:
 - du = 2 dx
 - $v = e^x$
 - Apply the integration by parts formula: $\int_0^1 2x e^x \, dx = \left. 2x e^x \right|_0^1 \int_0^1 2e^x \, dx$
 - Evaluate the boundary term: $2xe^x|_0^1=2\cdot 1\cdot e^1-2\cdot 0\cdot e^0=2e-0=2e$
 - Evaluate the remaining integral: $\int_0^1 2e^x \, dx = 2 \int_0^1 e^x \, dx = 2 \left. e^x \right|_0^1 = 2(e-1)$

7. Combine the results:
$$\int_0^1 x^2 e^x \, dx = e - (2e-2) = e - 2e + 2 = -e + 2$$

8. The final answer is:

$$\int_0^1 x^2 e^x \, dx = 2 - e$$

- 2. To find the limit $\lim_{x\to 0} \frac{\sin(3x)}{x}$, we can use the standard limit result $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$. Follow these steps:
 - 1. Rewrite the limit in a form that uses the standard result:

$$\lim_{x o 0}rac{\sin(3x)}{x}=\lim_{x o 0}rac{\sin(3x)}{3x}\cdot 3$$

- 2. Recognize that $\lim_{x \to 0} \frac{\sin(3x)}{3x} = 1$ because it matches the standard limit form with 3x in place of x.
- 3. Therefore, the limit becomes:

$$\lim_{x o 0}rac{\sin(3x)}{x}=3\cdot 1=3$$

4. The final answer is:
$$\lim_{x\to 0} \frac{\sin(3x)}{x} = 3$$
.

- 3. To determine the derivative of the function $f(x) = x^x$, we use logarithmic differentiation. Follow these steps:
 - 1. Take the natural logarithm of both sides: $\ln(f(x)) = \ln(x^x)$
 - 2. Simplify the right-hand side using logarithm properties: $\ln(f(x)) = x \ln(x)$
 - 3. Differentiate both sides with respect to x: $\frac{d}{dx}[\ln(f(x))] = \frac{d}{dx}[x\ln(x)]$
 - 4. Apply the chain rule to the left-hand side and the product rule to the right-hand side: $\frac{1}{f(x)}f'(x) = \ln(x) + 1$
 - 5. Solve for f'(x): $f'(x) = f(x)(\ln(x) + 1)$
 - 6. Substitute back $f(x) = x^x$: $f'(x) = x^x(\ln(x) + 1)$
 - 7. The final answer is: $f'(x) = x^x(\ln(x) + 1).$
- 4. To evaluate the limit $\lim_{x\to\infty} \frac{2x^3-x+1}{x^3+3x^2}$, we follow these steps:
 - 1. Divide the numerator and the denominator by the highest power of x in the denominator, which is x^3 :

$$\lim_{x o\infty}rac{2x^3-x+1}{x^3+3x^2}=\lim_{x o\infty}rac{rac{2x^3}{x^3}-rac{x}{x^3}+rac{1}{x^3}}{rac{x^3}{x^3}+rac{3x^2}{x^3}}$$

- 2. Simplify each term: $\lim_{x \to \infty} \frac{2 - \frac{1}{x^2} + \frac{1}{x^3}}{1 + \frac{3}{x^3}}$
- 3. As x approaches infinity, the terms $\frac{1}{x^2}$, $\frac{1}{x^3}$, and $\frac{3}{x}$ approach 0: $\lim_{x\to\infty}\frac{2-0+0}{1+0}=\frac{2}{1}=2$
- 4. The final answer is: $\lim_{x\to\infty} \frac{2x^3-x+1}{x^3+3x^2} = 2.$
- 5. To find the second derivative of the function $f(x) = \ln(x^2 + 1)$, we follow these steps:
 - 1. Find the first derivative using the chain rule:

$$f'(x)=rac{d}{dx}[\ln(x^2+1)]=rac{1}{x^2+1}\cdotrac{d}{dx}[x^2+1]=rac{1}{x^2+1}\cdot 2x=rac{2x}{x^2+1}$$

2. Find the second derivative using the quotient rule:

$$f''(x) = rac{d}{dx} \left(rac{2x}{x^2+1}
ight)$$

- 3. Apply the quotient rule: $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$ where u = 2x and $v = x^2 + 1$:
 - u' = 2
 - ullet v'=2x
 - $f''(x) = rac{(2)(x^2+1)-(2x)(2x)}{(x^2+1)^2}$

4. Simplify the expression:
$$f''(x)=\frac{2x^2+2-4x^2}{(x^2+1)^2}=\frac{2-2x^2}{(x^2+1)^2}=\frac{2(1-x^2)}{(x^2+1)^2}$$

5. The final answer is:

$$f''(x) = rac{2(1-x^2)}{(x^2+1)^2}.$$