APPUNTI DI GEOMETRIA

MANUEL DEODATO

INDICE

1	Geometria proiettiva			3
	1.1			3
	1.2			
		1.2.1	Trasformazioni proiettive	4
2	Spazi metrici, topologici e applicazioni continue			6
	2.1	Spazi metrici		6
		2.1.1	Insiemi aperti	6
		2.1.2	Continuità in spazi metrici	6
		2.1.3	Distanze equivalenti	7
		2.1.4	Alcuni risultati sulla continuità	9
		2.1.5	Isometrie e omeomorfismi	10
	2.2	2 Spazi topologici		10

1 GEOMETRIA PROIETTIVA

1.1 Gli spazi affini

DEFINIZIONE 1.1 (SOTTOSPAZIO AFFINE). Sia V un \mathbb{K} -spazio vettoriale; un sottoinsieme della forma

$$S = \{x + v \mid v \in W\} = x + W$$

con $x \in V$ punto fissato e $W \subset V$ un sottospazio vettoriale di V è detto sottospazio affine di V.

PROPOSIZIONE 1.1. Due spazi affini x+W e x'+W' coincidono se e solo se W=W' e $x-x'\in W$.

Dimostrazione. Assumendo che W=W' e $x-x'\in W$, allora ogni vettore della forma $x+v,\ v\in W$ si scrive come x'+(x-x'+v), visto che $x-x'+v\in W$; viceversa, ogni vettore di x'+W'=x'+W si può riscrivere in modo analogo, quindi i due spazi coincidono.

Se, invece, si sapesse che i due spazi coincidono, cioè x+W=x'+W', allora W=x'-x+W', quindi $x'-x\in W$ (basta prendere il vettore w=x-x'+0); analogamente, $x'-x\in W'$, quindi W=x'-x+W'=W'.

Nella definizione di S=x+W, quindi, lo spazio W è univocamente determinato da tale definizione, mentre x è un generico punto di S; in particolare, W è detto giacitura di S e si indica con giac S.

DEFINIZIONE 1.2 (DIMENSIONE DI UNO SPAZIO AFFINE). La dimensione di S è la dimensione della sua giacitura W.

Si nota che un sottospazio affine di dimensione 0 è un qualunque punto di V, mentre un sottospazio affine di dimensione 1, o 2 è detto, rispettivamente, retta affine, o piano affine.

1.2 Introduzione agli spazi proiettivi

DEFINIZIONE 1.3 (SPAZIO PROIETTIVO). Sia V uno spazio vettoriale su \mathbb{K} ; il suo spazio proiettivo è dato da:

$$\mathbb{P}(V) = V \setminus \{0\}_{\sim}$$

dove $v \sim w \iff \exists \lambda \in \mathbb{K} : w = \lambda v$.

Dalla definizione, uno spazio proiettivo collassa tutti i vettori di uno spazio vettoriale che appartengono alla stessa retta in un punto. In questo senso, $\mathbb{P}(V)$ è l'insieme delle rette di V.

ESEMPIO 1.1. Si nota che $\mathbb{P}(\{0\}) = \emptyset/\sim \emptyset$, mentre per $v \neq 0$, si ha:

$$\mathbb{P}(\operatorname{Span} v) = \{ \lambda v \mid \lambda \in \mathbb{K} \setminus 0 \} \sim = \{ [v] \}$$

dove [v] rappresenta la classe di equivalenza di v; questo significa che lo spazio proiettivo dello span di un elemento è composto da un solo punto.

DEFINIZIONE 1.4 (DIMENSIONE). La dimensione di uno spazio proiettivo è

$$\dim_{\mathbb{K}} \mathbb{P}(V) = \dim_{\mathbb{K}} V - 1$$

Intuitivamente, questa definizione è dovuta al fatto che gli spazi proiettivi collassano le rette in punti, abbassando di 1 la dimensione dello spazio vettoriale.

DEFINIZIONE 1.5 (PUNTI, RETTE E PIANI PROIETTIVI). Si definisce *punto proiettivo* uno spazio proiettivo di dimensione 0, *retta proiettiva* uno spazio di dimensione 1 e *piano proiettivo* uno spazio di dimensione 2.

DEFINIZIONE 1.6 (SPAZIO PROIETTIVO STANDARD). Sia \mathbb{K} un campo; si definisce lo spazio proiettivo standard come

$$\mathbb{P}(\mathbb{K}^{n+1}) = \mathbb{P}^n(\mathbb{K}) = \mathbb{K}\mathbb{P}^n$$

1.2.1 Trasformazioni proiettive

Analogamente al caso dei gruppi e degli anelli, si studiano quelle mappe che preservano la struttura di spazio proiettivo.

DEFINIZIONE 1.7 (TRASFORMAZIONE PROIETTIVA). Una mappa $f: \mathbb{P}(V) \to \mathbb{P}(W)$ è detta trasformazione proiettiva se $\exists \varphi: V \to W$ applicazione lineare tale che

$$f([v]) = [\varphi(v)]$$

In questa definizione, si dice che f è indotta da φ e, talvolta, si scrive che $f = [\varphi]$.

PROPOSIZIONE 1.2. Se f è una trasformazione proiettiva indotta da φ , allora φ è iniettiva.

Dimostrazione. Per assurdo, $\ker \varphi \neq \{0\}$ e sia $v \in \ker \varphi \setminus \{0\}$; allora f([v]) = [0], ma $[0] \notin \mathbb{P}(W)$ per definizione di spazio proiettivo, quindi f non sarebbe ben definita. \square

PROPOSIZIONE 1.3. Ogni applicazione lineare iniettiva $\varphi:V\to W$ induce una trasformazione proiettiva $f:\mathbb{P}(V)\to\mathbb{P}(W)$ tramite l'associazione $[v]\mapsto [\varphi(v)]$.

Dimostrazione. Se $v \neq 0$, allora $\varphi(v) \neq 0$ perché φ è iniettiva. Se, invece, [v] = [w], allora, per definizione, $\exists \lambda \in \mathbb{K} \setminus \{0\}$

$$[\varphi(v)] = [\varphi(\lambda w)] = [\lambda \varphi(w)] = [\varphi(w)]$$

PROPOSIZIONE 1.4. Tutte le trasformazioni proiettive sono iniettive.

Dimostrazione. Sia f([v]) = f([w]) e sia φ l'applicazione lineare che induce f; allora l'uguaglianza si traduce in $[\varphi(v)] = [\varphi(w)]$, ma per come sono definite queste classi di equivalenza, questo vuol dire che $\varphi(v) = \lambda \varphi(w) = \varphi(\lambda w)$. Essendo φ iniettiva, però, si ottiene che $v = \lambda w$, cioè $[v] = [\lambda w]$.

2 SPAZI METRICI, TOPOLOGICI E APPLICAZIONI CONTINUE

2.1 Spazi metrici

DEFINIZIONE 2.1 (SPAZIO METRICO). Sia X un insieme non vuoto; allora X si dice spazio metrico se può essere equipaggiato con una distanza, ossia una funzione $d: X \times X \to \mathbb{R}$ tale che:

- $d(x,x') \ge 0$ e $d(x,x') = 0 \iff x = x'$;
- d(x, x') = d(x', x);
- $d(x, x'') \le d(x, x') + d(x', x'')$.

Dato uno spazio metrico (X,d_X) e un insieme $Y\subset X$, si può definire un sottospazio di (X,d_X) restringendo la distanza al solo Y:

$$d_Y(y, y') := d_X(y, y'), \forall y, y' \in Y$$

Quindi (Y, d_Y) è a sua volta uno spazio metrico, sottospazio di (X, d_X) , il quale è detto spazio ambiente di Y.

2.1.1 Insiemi aperti

In uno spazio metrico (X, d), si può definire un disco aperto di raggio r e centro x come

$$B_r(x) := \{x' \in X \mid d(x, x') < r\}$$

DEFINIZIONE 2.2 (INSIEME APERTO). Sia (X,d) uno spazio metrico. Un suo sottoinsieme si dice aperto se è generato dall'unione di dischi aperti.

2.1.2 Continuità in spazi metrici

Una funzione $f: \mathbb{R} \to \mathbb{R}$ si dice continua in $x \in \mathbb{R}$ se $\forall \varepsilon$, $\exists \delta(\varepsilon)$ tale che:

$$|f(x) - f(x')| < \varepsilon, \ \forall |x - x'| < \delta(\varepsilon)$$

È possibile generalizzare la definizione a spazi metrici usando la metrica definita su di essi.

DEFINIZIONE 2.3 (CONTINUITÀ IN SPAZI METRICI). Sia $f:X\to Y$ un'applicazione, con $(X,d_X),\ (Y,d_Y)$ spazi metrici. Si dice che f è continua in $x\in X$ se $\forall \varepsilon,\ \exists \delta(\varepsilon)$ tale che:

$$d_Y(f(x), f(x')) < \varepsilon, \ \forall d_X(x, x') < \delta(\varepsilon)$$
 (2.1.1)

Usando la nozione di insieme aperto, è possibile generalizzare ulteriormente la definizione di continuità al solo concetto di apertura di un insieme.

TEOREMA 2.1. Un'applicazione $f: X \to Y$ è continua $\iff \forall A \subset Y$ aperto, l'insieme $f^{-1}(A)$ è aperto.

Dimostrazione. Si dimostrano le due implicazioni.

• (\Rightarrow) Si assume che f sia continua. Si prende $f(x) \in A$, con $A \subset Y$ aperto, per qualche $x \in f^{-1}(A)$. Essendo A aperto $\Rightarrow \exists \varepsilon > 0 : B_{\varepsilon}(f(x)) \subset A$; allo stesso tempo, per continuità di f, dato ε scelto prima, deve esistere $\delta(\varepsilon)$ tale che

$$f(B_{\delta(\varepsilon)}(x)) \subset B_{\varepsilon}(f(x))$$

quindi $B_{\delta(\varepsilon)}(x) \subset f^{-1}(A)$. Valendo $\forall x \in f^{-1}(A) \Rightarrow f^{-1}(A)$ è aperto perché per ogni suo elemento, esiste una palla tutta contenuta al suo interno.

• (\Leftarrow) Si assume che $\forall A \subset Y$ aperto, la funzione f sia tale che l'insieme $f^{-1}(A)$ è aperto. Per $f(x) \in Y$, esiste $B_{\varepsilon}(f(x)) \subset Y$; essendo questo aperto, deve essere aperto anche $f^{-1}[B_{\varepsilon}(f(x))]$. Dunque, dato $x \in f^{-1}[B_{\varepsilon}(f(x))]$, $\exists \delta(\varepsilon) : B_{\delta(\varepsilon)}(x) \subset f^{-1}[B_{\varepsilon}(f(x))]$, quindi vuol dire che $f(B_{\delta(\varepsilon)}(x)) \subset B_{\varepsilon}(f(x))$, ossia:

$$d_Y(f(x), f(x')) < \varepsilon, \ \forall d_X(x, x') < \delta(\varepsilon)$$

Valendo $\forall x \in X$, allora f è continua.

Questo permette di parlare di continuità di applicazioni in insiemi su cui non è definita una distanza, ma solo i sottoinsiemi aperti.

2.1.3 Distanze equivalenti

DEFINIZIONE 2.4 (DISTANZE TOPOLOGICAMENTE EQUIVALENTI). Due distanze d, \overline{d} su X si dicono topologicamente equivalenti se hanno gli stessi insiemi aperti, cioè se generano la stessa topologia.

Se $d(x,y)=r\overline{d}(x,y)$, per r>0, si hanno due distanze equivalenti perché, evidentemente, $\forall \varepsilon>0$:

$$B_{\varepsilon}(x) = \overline{B}_{r\varepsilon}(x)$$

cioè le due distanze d, \overline{d} identificano le stesse palle aperte, quindi gli stessi insiemi aperti. In \mathbb{R}^n , le distanze

$$d_{2}(x, x') = ||x - x'|| \equiv \sqrt{\sum_{i=1}^{n} (x_{i} - x'_{i})^{2}}$$

$$d_{1}(x, x') = \sum_{i=1}^{n} |x - x_{i}|$$

$$d_{\infty}(x, x') = \max_{i} \{|x_{i} - x'_{i}|\}$$
(2.1.2)

sono equivalenti e si ha

$$d_{\infty}(x, x') \le d_2(x, x') \le d_1(x, x') \le nd_{\infty}(x, x')$$
(2.1.3)

Dimostrazione. La prima disuguaglianza è giustificata da:

$$d_2(x,x') = \sqrt{\sum_{i=1}^{n} (x_i - x_i')^2} \ge \sqrt{\max_i \left\{ (x_i - x_i')^2 \right\}} = \max_i \left\{ |x - x_i'| \right\} = d_{\infty}(x,x')$$

La seconda, invece, è vera perché:

$$[d_2(x,x')]^2 = \sum_{i=1}^n (x - x_i')^2 \le \left[\sum_{i=1}^n |x_i - x_i'|\right]^2 = [d_1(x,x')]^2$$

L'ultima disuguaglianza è immediata.

Da questo segue direttamente che¹

$$B_{\varepsilon}^{(\infty)}(x) \supset B_{\varepsilon}^{(2)}(x) \supset B_{\varepsilon}^{(1)}(x) \supset B_{\varepsilon/n}^{(\infty)}(x) \tag{2.1.4}$$

Questo mostra che se A è aperto rispetto ad una distanza, lo è anche rispetto alle altre.

¹Apparentemente, la distanza più grande dovrebbe includere più elementi, quindi i simboli \supset dovrebbero essere dei \subset , invece, avendo fissato il raggio ε , quella che permette di creare la palla più grande è la distanza più piccola perché *avvicina* i punti tra di loro, quindi più elementi rientreranno in tale raggio.

2.1.4 Alcuni risultati sulla continuità

PROPOSIZIONE 2.1. Siano (X, d_X) , (Y, d_Y) due spazi metrici e $f: X \to Y$ un'applicazione. Dato $x \in X$, se esiste costante M > 0 tale che

$$d_Y(f(x'), f(x)) \le Md_X(x', x), \ \forall x' \in X$$

allora f è continua in x.

Dimostrazione. Segue direttamente dal fatto che, per ipotesi, definendo $\delta(\varepsilon) = \varepsilon/M$, si ha $f(D_{\delta(\varepsilon)}(x)) \subset D_{\varepsilon}(f(x))$.

PROPOSIZIONE 2.2. Ogni applicazione lineare $L: \mathbb{R}^n \to \mathbb{R}^m$ è continua rispetto alle distanze euclidee.

Dimostrazione. Si usa Prop. **??** applicato alle distanze $d^{(1)}$, che sono topologicamente equivalenti alle distanze euclidee $d^{(2)}$. Inoltre, visto che ogni applicazione costante è continua, si esclude che L sia nulla. Si denota con $(a_{ij})_{1 \le i \le m, \ 1 \le j \le n}$ la matrice che rappresenta L; se $x, x' \in \mathbb{R}^n$ si ha:

$$\begin{split} d^{(1)}\big(L(x),L(x')\big) &= \left|\sum_{j=1}^n a_{1j}(x_j-x_j')\right| + \dots + \left|\sum_{j=1}^n a_{mj}(x_j-x_j')\right| \\ &\leq \left(\max_j |a_{1j}| + \dots + \max_j |a_{mj}|\right) \sum_{j=1}^n |x_j-x_j'| \leq Mmd^{(1)}(x,x') \end{split}$$

con $M=\max |a_{ij}|$, che è maggiore di 0 perché L è non-nulla. Da Prop. $\ref{eq:constraint}$, segue la tesi.

La precedente proposizione può essere applicata al caso particolare di applicazioni lineari: le **proiezioni**. Una proiezione è generalmente definita come:

$$p_i: \mathbb{R}^n \to \mathbb{R}, \ p_i(x) = x_i \tag{2.1.5}$$

È possibile definire, più in generale, per $1 \le i_1 < i_2 < ... < i_m < n$, la proiezione

$$p_{i_1,...,i_m}: \mathbb{R}^n \to \mathbb{R}^m, \ p_{i_1,...,i_m}(x) = (x_{i_1},...,x_{i_m})$$
 (2.1.6)

che è lineare e, quindi, continua.

2.1.5 Isometrie e omeomorfismi

DEFINIZIONE 2.5 (ISOMETRIA). Dati X, Y spazi metrici, un'applicazione biettiva $f: X \to Y$ è un'isometria se $\forall x, x' \in X$, si ha $d_X(x, x') = d_Y(f(x), f(x'))$.

Da Prop **??**, segue che un'isometria è un'applicazione continua. Se fra due spazi metrici X, Y esiste un'isometria $f: X \to Y$, gli spazi si dicono **isometrici**.

Sono isometrie $\mathrm{Id}:X\to X$, cioè l'applicazione identità, l'inversa di un'isometria e la composizione di isometrie. Questo porta al seguente.

PROPOSIZIONE 2.3. Un'isometria fra due spazi metrici è una relazione di equivalenza.

DEFINIZIONE 2.6 (OMEOMORFISMO). Dati X, Y spazi metrici, un'applicazione biettiva $f: X \to Y$ è un omeomorfismo se la sua inversa e f stessa sono continue.

Ne segue che ogni isometria è un omeomorfismo, ma non è vero il viceversa. Per esempio, definendo $e^x: \mathbb{R} \to (0, +\infty)$, questa ha un'inversa continua $\log(x): (0, +\infty) \to \mathbb{R}$, quindi è un omeomorfismo, ma non è un'isometria perché manda $(-\infty, 0]$ in (0, 1]. Anche gli omemorfismi definiscono una **relazione di equivalenza** tra spazi metrici.

2.2 Spazi topologici

DEFINIZIONE 2.7 (TOPOLOGIA E SPAZIO TOPOLOGICO). Sia X un insieme non-vuoto. Una topologia su X è una famiglia non-vuota τ di sottoinsiemi di X, chiamati insiemi aperti della topologia. Questi soddisfano le seguenti condizioni:

- Ø, X sono aperti;
- l'unione di una qualsiasi famiglia di insiemi aperti è un insieme aperto;
- · l'intersezione di due insiemi aperti è un aperto.

Allora si definisce spazio topologico la coppia (X, τ) , dove X è detto supporto dello spazio topologico e i suoi elementi sono i punti dello spazio.

Dato (X,d) spazio metrico, la famiglia degli insiemi aperti rispetto a d è una topologia su X indotta da d stessa. In \mathbb{R}^n , si definisce **topologia euclidea** (o **naturale**) \mathcal{E} come quella indotta dalla distanza euclidea d_2 . Su \mathbb{C} , la topologia euclidea \mathcal{E} è quella indotta da d(z,w)=|z-w|; questa conclusione si può ottenere identificando \mathbb{C} con \mathbb{R}^2 da $z=x+iy\mapsto (x,y)$ e considerando la distanza euclidea di \mathbb{R}^2 . In modo del tutto

analogo, si identifica \mathbb{C}^n con \mathbb{R}^{2n} e la distanza euclidea di \mathbb{R}^{2n} definisce, su \mathbb{C}^n , una distanza e, quindi, una topologia che è la topologia naturale di \mathbb{C}^n , \mathcal{E} . Su un qualunque insieme non-vuoto X, si possono sempre definire due topologie:

- la topologia banale $\mathcal{B} = \{X, \emptyset\}$, con (X, \mathcal{B}) spazio topologico banale;
- la topologia discreta ottenuta prendendo $\tau = \mathcal{P}(X)$, con $(X, \mathcal{P}(X))$ spazio topologico discreto.

DEFINIZIONE 2.8 (SPAZIO METRIZZABILE). Uno spazio topologico (X, τ) è detto metrizzabile se si può definire una distanza su X che induce la topologia τ .

Sia dato Y sottoinsieme non-vuoto di uno spazio metrizzabile (X,d_X) ; si sa già che d_Y , ottenuta come restrizione di d_X a Y, è una distanza su Y. In questo caso, la topologia indotta da d_Y su Y si dice topologia indotta da X su Y. Allora, se $Y \in Y$: $B_{\varepsilon}^{(Y)}(Y) = B_{\varepsilon}^{(X)}(Y) \cap Y$; questo significa che gli aperti di Y sono della forma Y, con Y aperto di Y.