1. Basic ODEs

- (a) separatable: $y' = \frac{F(x)}{G(y)}$ $\Rightarrow \frac{dy}{dx} = \frac{F(x)}{G(y)} \Rightarrow \int G(y) dy = \int F(x) dx$
- (b) Linear: y' + p(x)y = q(x)Integrating Factor: $e^{\int p(x)dx}$ $\Rightarrow (e^{\int p(x)dx}y)' = e^{\int p(x)dx}q(x)$ $\Rightarrow e^{\int p(x)dx}y = \int e^{\int p(x)dx}q(x)dx$
- (c) ay'' + by' + cy = 0 (constant coefficient) characteristc EQ: $ar^2 + br + c = 0$ $\Delta > 0$, $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$ $\Delta = 0, y = C_1 e^{rx} + C_2 x e^{rx}$ $\Delta > 0, r = p \pm qi : y = e^{ax} [c_1 cos(bx) + c_2 sin(bx)]$

2. Fourier Series

Given F(x), $x \in [-L, L]$ write F(x) in a series:

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(\frac{n\pi x}{L}) + \sum_{n=1}^{\infty} b_n sin(\frac{n\pi x}{L})$$

where a_n , b_n are constants.

(a) Orthogonality Relations

$$\int_{-L}^{L} sin(\frac{n\pi x}{L})cos(\frac{m\pi x}{L}) = 0$$

$$\int_{-L}^{L} cos(\frac{n\pi x}{L})cos(\frac{m\pi x}{L}) = 0 (m \neq n), L(m = n)$$

$$\int_{-L}^{L} sin(\frac{n\pi x}{L})sin(\frac{m\pi x}{L}) = 0 (m \neq n), L(m = n)$$

- (b) $a_n = \frac{1}{L} \int_{-L}^{L} F(x) cos(\frac{n\pi x}{L}) dx$ $b_n = \frac{1}{L} \int_{-L}^{L} F(x) sin(\frac{n\pi x}{L}) dx, n \in [0, \infty], n \in \mathbf{Z}$
- (c) Convergece Statement of F.S. F.S. convergence to the "periodic extension" of F(x)whever F(x) is continous and to the average of $\frac{f(x^+)+f(x^-)}{2}$ at every point.
- (d) F.S.S and F.C.S of F(x) on [0,L]: F.C.S = $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$, $a_n = \frac{2}{L} \int_0^L F(x) \cos \left(\frac{n\pi x}{L}\right) dx$ F.S.S = $\sum_{n=1}^{\infty} b_n sin \frac{n\pi x}{L}$, $a_n = \frac{2}{L} \int_0^L F(x) cos(\frac{n\pi x}{L}) dx$ F.C.S \rightarrow even extension, F.S.S \rightarrow odd extension

3. Sturm-Liouville Problem

(a) Basic Examples of S-L BVP

 $f'' + \lambda f = 0, 0 \le x \le L$ and Boundary conditions Def: value λ for which the equation with the given boundary ends: has non-trival solution is called eigen value, the corresponding solution is called eigeon functions of the given S-L BVP.

First, general solutions:

$$\lambda = 0, f(x) = \alpha x + \beta$$

 $\lambda > 0, f(x) = C_1 cos(\sqrt{\lambda}x) + C_2 sin(\sqrt{\lambda}x)$
 $\lambda < 0, f(x) = C_1 cosh(ax) + C_2 sinh(ax), a^2 = -\lambda, a > 0$
Then, impose the boundary in each case.

i. Boundary COND: f(0) = 0, f(L) = 0e-values: $\lambda_n = \frac{n^2 \pi^2}{L^2}$, n = 1, 2, 3e-functions: $f_n \sim sin(\frac{n\pi x}{L})$

- ii. Boundary COND: f'(0) = 0, f'(L) = 0e-values: $\lambda_n = \frac{n^2 \pi^2}{L^2}$, n = 0, 1, 2, 3e-functions: $f_n \sim cos(\frac{n\pi x}{I})$
- iii. Boundary COND: f(0) = 0, f'(L) = 0e-values: $\lambda_n = (\frac{(2n-1)\pi}{2L})^2, n = 1, 2, 3$ e-functions: $f_n \sim sin(\frac{(2n-1)\pi}{2L}x)$
- iv. Boundary COND: f'(0) = 0, f(L) = 0e-values: $\lambda_n = (\frac{(2n-1)\pi}{2L})^2, n = 1, 2, 3$ e-functions: $f_n \sim cos(\frac{(2n-1)\pi}{2I}x)$
- (b) Regular S-L Problems

EQ:
$$(pf')' + qf + \lambda \sigma f = 0, a < x < b$$

Boundary: $k_1 f(a) + k_2 f'(a) = 0, k_3 f(b) + k_4 f'(b) = 0$

$$g(x) \sim \sum_{n=1}^{\infty} a_n f_n(x)$$

$$a_n = \frac{\int_a^b g(x) f_n(x) \sigma(x) dx}{\int_a^b \sigma(x) f_n^2(x) dx}$$

- 4. Heat and Wave Equation
 - (a) Heat Equation

 $\mu_t = k\mu_{xx}$, $\mu(x, t) = X(x)T(t)$ (usually k = 1)

$$Let \frac{T'}{kT} = \frac{kX''}{x} = -\lambda$$

For second EQ, T ~ $e^{-k\lambda t}$

For first EQ, we apply S-L BVP problem

$$\mu(x,t) = \sum_{n=1}^{\infty} c_n f_n e^{-\lambda_n t}$$

Usually, we find the bound. cond. in the 4 fourier series probs.

e.g. bond cond 1:

$$\begin{array}{l} \lambda_n = (\frac{n\pi}{L})^2, \, f_n \sim sin(\frac{n\pi x}{L}) \\ \mu(x,0) = g(x) = \sum_{n=1}^{\infty} c_n sin(\frac{n\pi x}{L}) \end{array}$$

Fouries formal solution: $\mu(x,t) = \sum_{n=1}^{\infty} c_n sin(\frac{n\pi x}{L})e^{-\frac{n^2\pi^2}{L^2}t}$ **note**: in bond cond 2, n starts from 0. calculate case 0 seperately.

(b) Wave Equation

where Equation
$$\mu_{tt} = C^2 \mu_{xx}, \mu(x,t) = X(x)T(t)$$

$$XT'' = C^2 X''T$$

$$\text{Let } \frac{T''}{c^2T} = \frac{X''}{x} = -\lambda$$
We get $X'' + \lambda x = 0$, $T'' = -\lambda c^2 T$

Let
$$\frac{T''}{c^2T} = \frac{X''}{x} = -\lambda$$

We get
$$X'' + \lambda x = 0$$
, $T'' = -\lambda c^2 T$

$$\mu(x,t) = \sum_{n=1}^{\infty} (b_{1,n} \cos \frac{n\pi ct}{L} + b_{2,n} \sin \frac{n\pi ct}{L}) \sin \frac{n\pi x}{L}$$

i.
$$\mu(x,0) = f(x)$$

 $f(x) = \sum_{n=0}^{\infty} h_{n-n} \sin n$

$$f(x) = \sum_{n=1}^{\infty} b_{1,n} \sin \frac{n\pi x}{L}$$

$$b_{1,n} = \frac{\int_{0}^{L} f(x) \sin \frac{n\pi x}{L} dx}{\int_{0}^{L} \sin^{2} \frac{n\pi x}{L}}$$

ii.
$$\mu_t(x, 0) = g(x)$$

$$g(x) = \sum_{n=1}^{\infty} \frac{n\pi c}{L} b_{2,n} \sin \frac{n\pi x}{L}$$

$$\frac{n\pi c}{L} b_{2,n} = \frac{\int_{0}^{L} g(x) \sin \frac{n\pi x}{L} dx}{\int_{0}^{L} \sin^{2} \frac{n\pi x}{L}}$$

$$\frac{n\pi c}{L}b_{2,n} = \frac{\int_{0}^{L} g(x)\sin\frac{n\pi x}{L}}{\int_{0}^{L} \sin^{2}\frac{n\pi x}{L}}$$