MA 519: Homework 12

Max Jeter, Carlos Salinas November 17, 2016

Problem 12.1 (Handout 15, # 10)

Consider the experiment of picking one word at random from the sentence

All is well in the newell family

Let X be the length of the word selected and Y the number of Ls in it. Find in a tabular form the joint PMF of (X,Y), their marginal PMFs, means, and variances, and the correlation between X and Y.

Problem 12.2 (Handout 15, # 11)

Consider the joint PMF p(x, y) = cxy, $1 \le x \le 3$, $1 \le y \le 3$.

- (a) Find the normalizing constant c.
- (b) Are X and Y independent? Prove your claim.
- (c) Find the expectations of X, Y, and XY.

Problem 12.3 (Handout 15, # 12)

A fair die is rolled twice. Let X be the maximum and Y the minimum of the two rolls. By using the joint PMF of X and Y worked out in the text, find the PMF of $\frac{X}{Y}$, and hence the mean of $\frac{X}{Y}$.

Problem 12.4 (Handout 15, # 13)

Two random variables have the joint PMF $p(x, x+1) = \frac{1}{n+1}$, x = 0, ..., n. Answer the following question with as little calculation as possible.

- (a) Are X and Y independent?
- (b) What is the variance of Y X?
- (c) What is Var(Y | X = 1)?

Problem 12.5 (Handout 15, # 14)

(Binomial Conditional Distribution). Suppose X and Y are independent random variables, and $X \sim \text{Bin}(m, p)$, $Y \sim \text{Bin}(n, p)$. Show that the conditional distribution of X given by X + Y = t is a hypergeometric distribution; identify the parameters of this hypergeometric distribution.

Problem 12.6 (Handout 15, # 15)

Suppose a fair die is rolled twice. Let X and Y be the two rolls. Find the following with as little calculation as possible.

- (a) E(X + Y | Y = y). (b) E(XY | Y = y).
- (c) $Var(X^2Y | Y = y)$.
- (d) $\rho_{X+Y,X-Y}$.

Problem 12.7 (Handout 15, # 16)

(A Standard Deviation Inequality). Let X and Y be two random variables. Show that $\sigma_{X+Y} \leq \sigma_X + \sigma_Y$.

SOLUTION. Suppose σ_X and σ_Y exist and are finite. Then the second moments of both X and Y exist and are finite. Therefore, by Minkowski's inequality, we have

$$E(|X+Y|^2) \le E(X^2) + E(Y^2) + 2[E(X^2)E(Y^2)]^{\frac{1}{2}}$$

Problem 12.8 (Handout 15, # 17)

Seven balls are distributed randomly in seven cells. Let X_k be the number of cells containing exactly k balls. Using the probabilities tabulated in II, 5, write down the joint distribution of X_2, X_3 .

Problem 12.9 (Handout 15, # 18)

Two ideal dice are thrown. Let X be the score on the first die and Y be the larger of two scores.

- (a) Write down the joint distribution of X and Y.
- (b) Find the means, the variances, and the covariance.

Problem 12.10 (Handout 15, # 19)

Let X_1 and X_2 be independent and have the common geometric distribution $\{q^kp\}$ (as in problem 4). Show without calculations that the *conditional distribution of* X_1 *given* $X_1 + X_2$ is uniform, that is,

$$P(X_1 = k \mid X_1 + X_2 = n) = \frac{1}{n+1}, \quad k = 0, \dots, n.$$
 (12.1)

Solution.

Problem 12.11 (Handout 15, # 20)

If two random variables X and Y assume only two values each, and if Cov(X,Y)=0, then X and Y are independent.