CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 32

Posted Friday 21 March 2014. Due 1pm Friday 28 March 2014.

32. [25 points]

Determine whether or not each of the following mappings is a bilinear form on the real vector space \mathcal{V} .

(a)
$$B(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $B(u,v) = \int_0^1 u(x)v'(x) dx$ where $\mathcal{V} = C^1[0,1]$.

(b)
$$B(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $B(u,v) = \int_0^1 |u(x)| |v(x)| \, dx$ where $\mathcal{V} = C[0,1]$.

(c)
$$B(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $B(u,v) = \int_0^1 u(x)|v(x)| dx$ where $\mathcal{V} = C[0,1]$.

(d)
$$B(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $B(u,v) = \int_0^1 u(x) + v(x) dx$ where $\mathcal{V} = C[0,1]$.

(e)
$$B(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$$
 defined by $B(u,v) = \int_{-1}^{1} xu(x)v(x) dx$ where $\mathcal{V} = C[-1,1]$.