Log Set

Problem

The *power set* of a set S is the set of all subsets of S (including the empty set and S itself). It's easy to go from a set to a power set, but in this problem, we'll go in the other direction!

We've started with a set of (not necessarily unique) integers S, found its power set, and then replaced every element in the power set with the sum of elements of that element, forming a new set S'. For example, if $S = \{-1, 1\}$, then the power set of S is $\{\{\}, \{-1\}, \{1\}, \{-1, 1\}\}\}$, and so S' = $\{0, -1, 1, 0\}$. S' is allowed to contain duplicates, so if S has N elements, then S' always has exactly 2^N elements.

Given a description of the elements in S' and their frequencies, can you determine our original S? It is guaranteed that S exists. If there are multiple possible sets S that could have produced S', we guarantee that our original set S was the *earliest* one of those possibilities. To determine whether a set S_1 is earlier than a different set S_2 of the same length, sort each set into nondecreasing order and then examine the leftmost position at which the sets differ. S_1 is earlier iff the element at that position in S_2 .

Input

The first line of the input gives the number of test cases, **T**. **T** test cases follow. Each consists of one line with an integer **P**, followed by two more lines, each of which has **P** space-separated integers. The first of those lines will have all of the different elements E_1 , E_2 , ..., E_p that appear in S', sorted in ascending order. The second of those lines will have the number of times F_1 , F_2 , ..., F_p that each of those values appears in S'. That is, for any i, the element E_i appears F_i times in S'.

Output

For each test case, output one line containing "Case #x: ", where x is the test case number (starting from 1), followed by the elements of our original set S, separated by spaces, in nondecreasing order. (You will be listing the elements of S directly, and not providing two lists of elements and frequencies as we do for S'.)

Limits

Memory limit: 1 GB. 1 ≤ \mathbf{T} ≤ 100. 1 ≤ \mathbf{P} ≤ 10000. $\mathbf{F}_{\mathbf{i}}$ ≥ 1.

Small dataset

Time limit: 240 seconds. S will contain between 1 and 20 elements. $0 \le \text{each } E_i \le 10^8$.

Large dataset

Time limit: 480 seconds. S will contain between 1 and 60 elements. $-10^{10} \le \text{each } E_i \le 10^{10}$.

Sample

```
Sample Input

5
8
0 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1 1
4
0 1 2 3
1 3 3 1
4
0 1 3 4
4 4 4 4 4
3
-1 0 1
1 2 1
5
-2 -1 0 1 2
1 2 2 2 1
```

```
Sample Output

Case #1: 1 2 4
Case #2: 1 1 1
Case #3: 0 0 1 3
Case #4: -1 1
Case #5: -2 1 1
```

Note that Cases #4 and #5 are not within the limits for the Small dataset.

In Case #4, $S = \{-1, 1\}$ is the only possible set that satisfies the conditions. (Its subsets are $\{\}$, $\{-1\}$, $\{1\}$, and $\{-1, 1\}$. Those have sums 0, -1, 1, and 0, respectively, so S' has one copy of -1, two copies of 0, and one copy of 1, which matches the specifications in the input.)

For Case #5, note that $S = \{-1, -1, 2\}$ also produces the same $S' = \{-2, -1, -1, 0, 0, 1, 1, 2\}$, but $S = \{-2, 1, 1\}$ is earlier than $\{-1, -1, 2\}$, since at the first point of difference, -2 < -1. So -1 -1 2 would **not** be an acceptable answer. 1 -2 1 would also be unacceptable, even though it is the correct set, because the elements are not listed in nondecreasing order.