

Universidad Simon Bolivar Curso: CI2526 / Estructuras Discretas 2 Trimestre: Abril-Julio, 2021 Segundo Parcial

Resumen de Axiomas, Teoremas y Definiciones.

Definición de Relación Reflexiva.

R es reflexiva en
$$A \equiv \forall a \in A \ ((a, a) \in R)$$

Definición de Relación Simètrica.

$$R$$
 es simètrica en $A \equiv \forall a, b \in A \ ((a, b) \in R \implies (b, a) \in R)$

Definición de Relación Antisimètrica.

$$R$$
 es antisimètrica en $A \equiv \forall a, b \in A \ ((a,b) \in R \land (b,a) \in R \implies a = b)$

Definición de Relación Transitiva.

$$R$$
 es transitiva en $A \equiv \forall a, b, c \in A \ ((a, b) \in R \land (b, c) \in R \implies (a, c) \in R)$

Definición de Restricciones. Para denotar al subconjunto de R cuyas primeras coordenadas están en el conjunto C se usa la notación $R|_{izq}(C)$. Esto es

$$R|_{izq}(C) \equiv \{(a,b) \in R : a \in C\}$$

Para denotar al subconjunto de R cuyas segundas coordenadas están en el conjunto C se usa la notación $R|_{der}(C)$. Esto es

$$R|_{der}(C) \equiv \{(a,b) \in R : b \in C\}$$

Definición de dominio de una relación. El dominio de una relación R es

$$Dom(R) = \{x | (\exists y | (x, y) \in R)\}$$

Definición de rango de una relación. El rango de una relación R es

$$Rgo(R) = \{y | (\exists x | (x, y) \in R)\}$$

Definición de composición de relaciones. La composición de dos relaciones R y S es

$$R \circ S = \{(a,c) | (\exists b | : (a,b) \in S \land (b,c) \in R) \}$$

Clausura reflexiva r(R). Dada una relación R de A en A, se define la clausura reflexiva de R como la menor relación reflexiva de A en A que contiene a R. Equivalentemente, la clausura reflexiva de R, r(R), se define como la relación de A en A que satisface las siguientes propiedades:

- (I) r(R) es reflexiva.
- (II) $R \subseteq r(R)$
- (III) Si R' es reflexiva y R \subseteq R', entonces r(R) \subseteq R'

Clausura simétrica s(R). Dada una relación R de A en A, se define la clausura simétrica de R como la menor relación simétrica de A en A que contiene a R. Equivalentemente, la clausura simétrica de R, s(R), se define como la relación de A en A que satisface las siguientes propiedades:

- (I) s(R) es simètrica.
- (II) $R \subseteq s(R)$
- (III) Si R' es simètrica y R \subseteq R', entonces s(R) \subseteq R'

Clausura transitiva t(R). Dada una relación R de A en A, se define la clausura transitiva de R como la menor relación transitiva de A en A que contiene a R. Equivalentemente, la clausura transitiva de R, t(R), se define como la relación de A en A que satisface las siguientes propiedades:

- (I) t(R) es transitiva.
- (II) $R \subseteq t(R)$
- (III) Si R' es transitiva y R \subseteq R', entonces t(R) \subseteq R'

Relación Identidad de A. Dado un conjunto A se define la relación Identidad de A como

$$Id_A = \{(x, x) : x \in A\}$$

Propiedades de Clausuras:

- (I) $r(R) = R \cup Id_A$
- (II) $s(R) = R \cup R^{-1}$

$$(III) \ \ t(R) = \bigcup_{i \ge 1} R^i$$

(III)
$$t(R) = \bigcup_{i \ge 1} R^i$$

(IV) $t(R) = \bigcup_{i=1}^{n-1} R^i$

- (V) Sean R y S relaciones sobre A tales que R \subseteq S. Entonces, $r(R) \subseteq r(S)$
- (VI) Sean R y S relaciones sobre A tales que R \subseteq S. Entonces, $s(R) \subseteq s(S)$
- (VII) Sean R_1 y R_2 relaciones sobre A, entonces $r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$

Teorema 5.8: Si R es una relacion sobre A, A tiene n elementos y M es la matriz asociada a R, entonces

- 1. R es reflexiva si y sòlo si $I_n \le M$.
- 2. R es simètrica si y sòlo si $M = M^t$.
- 3. R es antisimètrica si y sòlo si $M \wedge M^t \leq I_n$.
- 4. R es transitiva si y sòlo si $M^2 \le M$.

Tambièn se puede usar la matriz asociada a una relación para hallar sus clausuras reflexiva, simètrica y transitiva. Ello se formaliza en el siguiente teorema.

Teorema 5.9: Si R es una relacion sobre A, A tiene n elementos y M_R es la matriz asociada a R, entonces las matrices asociadas a las clausuras se hallan como sigue:

- 1. Reflexiva: $M_{r(R)} = I_n \vee M_R$.
- 2. Simètrica: $M_{s(R)} = M_R \vee M_R^t$.
- 3. Transitiva: $M_{t(R)} = \bigvee_{i=1}^{n-1} M_R^i$.

Relación de equivalencia. Una relación en un conjunto A se llama relación de equivalencia si es

- 1. Reflexiva.
- 2. Simètrica.
- 3. Transitiva.

Clase de equivalencia. Si R es una relación de equivalencia sobre un conjunto A y x es un elemento de A se define la clase de equivalencia de x como el conjunto de los elementos de A que están relacionados mediante R con x:

$$R[x] = \{ y \in A : xRy \}$$

Cuando R se sobreentiende simplemente se usa la notación [x] para la clase de equivalencia de x

Conjunto cociente. Al conjunto de las clases de equivalencia en las cuales una relación de equivalencia R sobre un conjunto A parte al conjunto se denomina conjunto cociente de A con respecto a R y se denota por

$$A/R = \{R[x] : x \in A\}$$

Relación de orden parcial. Una relación en un conjunto A se llama relación de orden parcial si es

- 1. Reflexiva.
- 2. Antisimètrica.
- 3. Transitiva.

Definiciones:

```
Sea f una funcion de A en B, f: A \to B. Entonces, f es Inyectiva \equiv (f(a) = f(b) \Longrightarrow a = b). f es Sobreyectiva \equiv (\forall b \in B) \ (\exists a \in A) \ (f(a) = b). f es Sobreyectiva \equiv b \in B \Longrightarrow (\exists a \in A) \ (f(a) = b). f es Biyectiva \equiv f es Inyectiva y Sobreyectiva.
```

Imagen de un conjunto. Dada una función $f:A\to B$ y $A'\subseteq A$, se define la imagen de A' mediante f como el conjunto de los elementos de B que son imágenes de algún elemento de A'. Simbólicamente:

$$f(A') = \{ y \in B : \exists x \in A' \ (f(x) = y) \}$$

Imagen inversa o preimagen. Dada una función $f: A \to B$ y $B' \subseteq B$, se define la imagen inversa, o preimagen, de B' mediante f como el conjunto de los elementos de A cuyas imágenes mediante f pertenecen a B'. Simbólicamente:

$$f^{-1}(B') = \{ x \in A : f(x) \in B' \}$$