

Electrónica Geral

José Gerald

Mestrado em Engenharia Aeroespacial Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia Aeroespacial

> MEAer: 1º ano, 1º semestre LEFT: 3º ano, 1º semestre LEAer: 3º ano, 1º semestre

> > 2021/2022

Capítulo 5
Conversores A/D e D/A

1. Introdução aos conversores de dados

1.1. Processamento digital de sinais

No passado o processamento dos sinais era realizado de forma analógica, ficando altamente limitada a capacidade de se realizarem funções complexas.

Actualmente o processamento dos sinais realiza-se de forma digital, requerendo para o efeito a utilização de conversores analógico digital (A/D ou ADC) e conversores digital-analógico (D/A ou DAC)

1.2. Amostragem de sinais analógicos

O princípio subjacente ao processamento de sinais digitais é o da **amostragem** de um sinal analógico

Circuito de amostragem

Sample-and-hold (S/H) que consiste num interruptor analógico (por exemplo um transístor MOSFET, um condensador de armazenamento e eventualmente um buffer /amplificador de ganho unitário)

Sample & Hold

1. Introdução aos conversores de dados (cont.)

1.3. Quantificação de sinais

Por exemplo um sinal analógico variando entre 0 e 10V, digitalizado para uma palavra digital de 4 bits

Um número binário representado por 4 dígitos pode apresentar 16 valores diferentes, ou seja, de 0 a 15

A resolução da conversão será de
$$\frac{10V}{15} = \frac{2}{3}V = 0.667V$$

A conversão de valores analógicos que estão ente os valores da tabela, é feita em função de qual dos valores da tabela está mais próximo do valor analógico

A este processo chama-se <u>quantificação</u> correspondendo ao aparecimento dos respectivos <u>erros de quantificação</u>

Valor analógico (V)	Representação binária	
0.000	0000	
0.667	0001	
1.333	0010	
2.000	0011	
2.667	0100	
3.333	0101	
4.000	0110	
4.667	0111	
5.333	1000	
6.000	1001	
6.667	1010	
7.333	1011	
8.000	1100	
8.667	1101	
9.333	1110	
10.000	1111	

Quanto maior for o número de bits do quantificador menor será o erro de quantificação mas requer um circuito mais complexo

1.4. Blocos funcionais dos conversores A/D e D/A

Um conversor A/D (ADC) de N bits tem na entrada um sinal analógico e apresenta à sua saída um sinal digital de N bits

Um conversor D/A (DAC) de N bits tem na sua entrada um sinal digital de N bits, produzindo à sua saída o respectivo sinal analógico

2. Circuitos conversores D/A

2.1. Circuito básico utilizando resistências com pesos binários ponderados

Sendo:

 $b_1, b_2, ..., b_N$ os coeficientes dos bits que valem 0 ou 1

b₁ é o bit de maior peso (MSB - Most Significant Bit)

b_N é o bit de menor peso (LSB - Least Significant Bit)

S₁, S₂, ..., S_N são interruptores em que para S_i está na posição 1 quando b_i=0 e na posição 2 quando b_i=1

A precisão do DAC depende de forma crítica de:

- Precisão de V_{REF}
- 2. Precisão das resistências com pesos binários ponderados (R, 2R, 4R, ..., 2^(N-1)R)
- 3. Perfeição dos interruptores

NOTA: A <u>desvantagem</u> do circuito utilizando resistências com pesos binários ponderados é a de que <u>para um número elevado de bits (N>4)</u> a dispersão de valores entre a resistência mínima e máxima é muito elevada, conduzindo à dificuldade na manutenção das tolerâncias das resistências

2.2. Circuito em escada R-2R

Verifica-se que a resistência à direita de qualquer nó vale sempre 2R, pelo que as correntes vão-se sempre dividindo por 2:

$$I_{1} = 2I_{2} = 4I_{3} = \cdots = 2^{N-1}I_{N}$$

$$i_{0} = I_{1}b_{1} + I_{2}b_{2} + \cdots + I_{N}b_{N}$$

$$= I_{1}b_{1} + \frac{I_{1}}{2}b_{2} + \cdots + \frac{I_{1}}{2^{N-1}}b_{N} \qquad com \quad I_{1} = \frac{V_{REF}}{2R}$$

$$= \frac{V_{REF}}{R} \left[\frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{b_N}{2^N} \right] \qquad i_0 = \frac{V_{REF}}{R} D$$

$$= \frac{V_{REF}}{R} \left[\frac{b_1}{2^1} + \frac{b_2}{2^2} + \cdots + \frac{b_N}{2^N} \right]$$

$$v_0 = -R_f i_0 = -\frac{R_f}{R} V_{REF} D$$

NOTA: A vantagem do circuito em escada R-2R é o facto de utilizar uma baixa dispersão de valores de resistências (R e 2R), assegurando uma uniformidade nas suas tolerâncias

 $v_0 = -V_{REF} D$

2.3. Circuito com divisor de tensão

Seguidor de tensão: $v_A = v_x$

$$v_{x} = \begin{cases} 0 & b_{1} = 0 & b_{2} = 0 & b_{3} = 0 \\ (1/8) V_{R} & b_{1} = 0 & b_{2} = 0 & b_{3} = 1 \\ (2/8) V_{R} & b_{1} = 0 & b_{2} = 1 & b_{3} = 0 \\ (3/8) V_{R} & b_{1} = 0 & b_{2} = 1 & b_{3} = 1 \\ (4/8) V_{R} & b_{1} = 1 & b_{2} = 0 & b_{3} = 1 \\ (5/8) V_{R} & b_{1} = 1 & b_{2} = 0 & b_{3} = 1 \\ (6/8) V_{R} & b_{1} = 1 & b_{2} = 1 & b_{3} = 0 \\ (7/8) V_{R} & b_{1} = 1 & b_{2} = 1 & b_{3} = 1 \end{cases}$$

 $\begin{cases} b_3 \text{ tem um peso de } V_R/8 = V_R/2^3 \\ b_2 \text{ tem um peso de } V_R/4 = V_R/2^2 \\ b_1 \text{ tem um peso de } V_R/2 \end{cases}$

$$v_A = V_R \left[\frac{b_1}{2} + \frac{b_2}{2^2} + \frac{b_3}{2^3} \right]$$

$$v_A = V_R D$$

3. Circuitos conversores A/D

3.1. Conversor com realimentação

A figura representa um conversor A/D com realimentação simples que emprega:

• Comparador diferencial (ex. AMPOP):

$$up/down = \begin{cases} "1" & se \quad v_A > v_0 \\ "0" & se \quad v_A < v_0 \end{cases}$$

- Contador para cima/baixo (up/down). Conta para cima "up" quando up/down=1 e conta para baixo "down" quando up/down=0
- Conversor D/A (DAC)
- Sinal de relógio (clock)

O circuito funciona da seguinte forma:

- Inicialmente o contador está a zero (saída do Contador = 000...0)
- A tensão de saída do DAC será v₀=0
- Sendo v_A>v₀ up/down="1"
- Após o próximo clock o contador avançará (saída do Contador = 000...1) e v₀ aumenta em conformidade
- Por cada clock o contador avança até que up/down="0", parando nesse momento a contagem
- Á saída do contador estará a palavra digital correspondente à entrada analógica (v_A)

NOTA: O conversor é lento se iniciar a partir de zero, podendo ser necessários até 2^N-1 ciclos de relógio, embora possa <u>acompanhar rapidamente pequenas mudanças do sinal</u>

3.2. Conversor de dupla rampa

Modo de operação:

- Considera-se o sinal de entrada v_A<0
- Antes de se iniciar o ciclo de conversão o interruptor S₂ é fechado descarregando o condensador C, colocando v₁=0
- O ciclo de conversão inicia-se com a abertura de S2 e ligando a entrada do integrador a v_A através de S₁
- Como v_∆ é negativo:

$$I = \frac{V_A}{R} < 0 \qquad v_1 = -\frac{I}{C}t = -\frac{V_A}{RC}t$$

Esta integração é feita por um período de tempo fixo T₁, correspondendo a uma contagem de n_{RFF} ciclos de relógio:

$$T_1 = n_{REF}T \qquad n_{REF} = 2^N$$

Comparator Control Counter Output logic Start/Stop O- \mathcal{L} Clock

Sendo T o período do clock e N o nº de bits do conversor

Findo o período T₁ a tensão v₁ vale $v_1(T_1) = V_{PEAK} = -\frac{v_A T_1}{PC}$

$$v_1(T_1) = V_{PEAK} = -\frac{v_A T_1}{RC}$$

Nessa altura S_1 muda de posição passando-se a integrar a tensão $V_{REF} > 0$ $I = \frac{V_{REF}}{R} > 0$ $v_1 = -\frac{I}{C}t = -\frac{V_{REF}}{RC}t$

$$V = \frac{V_{REF}}{R} > 0 \qquad v_1 = -\frac{I}{C}t = -\frac{V_{REF}}{RC}t$$

O contador inicia também a contagem e quando v₁=0 passou-se o tempo T₂ e foram contados n impulsos

$$V_{PEAK} = \frac{V_{REF}T_2}{RC} \qquad \Rightarrow \qquad T_2 = T_1 \left| \frac{v_A}{V_{DEF}} \right| \qquad \Rightarrow \qquad n = n_{REF} \left| \frac{v_A}{V_{DEF}} \right| \qquad n = 2^N \left| \frac{v_A}{V_{DEF}} \right|$$

$$n = 2^{N} \left| \frac{v_A}{V_{REF}} \right|$$

3.2. Conversor de dupla rampa (cont.)

Tempo de conversão (t_c):

entre

$$2^{N}T = 2 \times 2^{N}T = 2^{N+1}T$$

$$t_{c_{MAX}} = 2^{N+1}T$$

 $n_{REF}=2^{N}$ ciclos de relógio $n=2^{N}$ v_{A}/v_{REF} ciclos de relógio

NOTA: O conversor é lento, embora sendo <u>muito popular para alta resolução</u> (12 a 14 bit) e tenha <u>alta precisão</u>, pois as características são independentes da precisão de R e C

3.3. Conversor paralelo ou flash

NOTA: O conversor é muito rápido, embora sendo <u>muito complexo</u> especialmente para conversão com muitos bits

3.3. Conversor paralelo ou flash (cont.)

Exemplo para um conversor de 3 bits:

	Priority encoder	
V _i /V _{REF}	Entrada (b7,b6,,b0)	Saída (D ₂ D ₁ D ₀)
[0, 1/8[0000 0000	000
[1/8, 2/8[0000 0010	001
[2/8, 3/8[0000 0110	010
[3/8, 4/8[0000 1110	011
[4/8, 5/8[0001 1110	100
[5/8, 6/8[0011 1110	101
[6/8, 7/8[0111 1110	110
[7/8, 8/8[1111 1110	111

3.4. Conversor de redistribuição de carga

Circuito desenvolvido especialmente para realização em tecnologia CMOS e utiliza:

- Um array de condensadores com pesos binários ponderados
- Um comparador de tensão
- · Interruptores analógicos
- Lógica de controlo (não representada na figura)

O condensador $C_T = C/2^N$ tem a função de terminação do array, de tal forma que a capacidade total é 2C:

$$C_{TOTAL} = \left(C + \frac{C}{2} + \frac{C}{2^{2}} + \frac{C}{2^{3}} + \dots + \frac{C}{2^{N}}\right) + \frac{C}{2^{N}} = C\left[\left(\frac{1}{2^{0}} + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + \frac{1}{2^{N}}\right) + \frac{1}{2^{N}}\right] = 2C$$

$$\sum_{i=0}^{N} \frac{1}{2^{i}} = 2 - \frac{1}{2^{N}}$$

3.4. Conversor de redistribuição de carga (cont.)

Operação dividida em 3 fases:

FASE 1 - Amostragem

- Comutador S_A para cima amostragem de v_A
- Comutador S_B fechado, anulando-se a tensão no terminal + do AMPOP (v₀=0)
- Interruptores S₁S₂...S_T ligados para a direita (todos os condensadores ligados a S_A)

A tensão v_A vai aparecer aos terminais de cada condensador carregando-se uma carga total: Q_{TOTAL} =2 Cv_A

FASE 2 – Fase de segurar ("hold")

- Comutador S₁ para baixo preparação
- Comutador S_B aberto
- Interruptores S₁S₂...S_T ligados para a esquerda (todos os condensadores ligados à massa)

Cada condensador estava carregado com uma tensão v_A , assim v_0 =- v_A , permanecendo constante a carga nos condensadores: Q_{TOTAL} =2 Cv_A

FASE 3 – Redistribuição de carga

- Comutador S_A para baixo amostragem de v_{REF}
- Comutador S_R aberto
- Posição de cada interruptor Si determinada por aproximações sucessivas:
 - Inicialmente S₁ é ligado a V_{REF} e os restantes interruptores são ligados à massa
 - Conforme v₀>0 ou v₀<0 obtido no comparador de tensão assim ficará b_i=0 ou b_i=1
 - o Segue-se para o bit seguinte

3.4. Conversor de redistribuição de carga (cont.)

Representação do procedimento:

$$b_1 = 1 \quad \begin{cases} v_x < 0 \quad \Rightarrow \quad b_1 = 1 \\ v_x > 0 \quad \Rightarrow \quad b_1 = 0 \end{cases} \qquad b_2 = 1 \quad \begin{cases} v_x < 0 \quad \Rightarrow \quad b_2 = 1 \\ v_x > 0 \quad \Rightarrow \quad b_2 = 0 \end{cases} \qquad b_3 = 1 \quad \begin{cases} \cdots \\ \cdots \end{cases}$$

A conservação da carga no conjunto de armaduras ligadas no comparador traduz-se por:

$$\left(v_0 - V_{REF} \right) \left(b_1 C + b_2 \frac{C}{2} + b_3 \frac{C}{4} + \cdots + b_N \frac{C}{2^{N-1}} \right) + v_0 \left(\overline{b_1} C + \overline{b_2} \frac{C}{2} + \overline{b_3} \frac{C}{4} + \cdots + \overline{b_N} \frac{C}{2^{N-1}} + \frac{C}{2^{N-1}} \right) = -2CV_A$$

$$\Rightarrow v_0 = -v_A + V_{REF} \left(\frac{b_1}{2} + \frac{b_2}{2^2} + \cdots + \frac{b_N}{2^N} \right)$$

b₁ na distribuição de carga introduz um incremento de V_{RFF}/2

b₂ na distribuição de carga introduz um incremento de V_{REF}/4

. . .

 b_N na distribuição de carga introduz um incremento de $V_{REF}/2^N$

NOTA: A <u>precisão do conversor é independente das capacidades parasitas</u>. Relativamente às capacidades parasitas da placa de baixo dos condensadores para a massa, por estas placas estarem ligadas ou à massa ou a V_{REF} e assim a carga das capacidades parasitas não se distribuir no array de condensadores. Quanto às capacidades parasitas da placa de cima, por as tensões inicial e final da placa superior dos condensadores ser zero

3.5. Conversor $\Sigma - \Delta$ (Sigma-Delta)

Ref: Maxim Integrated Application Note 1870, Jan 2003, http://www.maximintegrated.com/app-notes/index.mvp/id/1870.

Considere-se a saída de um ADC clássico correspondente a um sinal sinusoidal analógico amostrado a uma frequência Fs (≥ 2 vezes a frequência do sinal). O sinal de saída apresenta (dentro da banda base) um tom à frequência da sinusóide e um ruído de fundo (*noise floor*) que corresponde ao erro de quantificação do ADC, que é aleatório com valores até ±LSB (ver figura).

Se dividirmos a amplitude da fundamental pelo valor RMS da soma das componentes de ruído temos a SNR. Para um ADC de N bits esta SNR vem:

Desta forma, cada bit a mais no ADC aumenta a precisão do resultado em cerca de 6 dB.

3.5. Conversor $\Sigma - \Delta$ (cont.)

Considere-se agora uma sobreamostragem com frequência de amostragem kFs. Embora a SNR seja a mesma, o espectro do sinal de saída de um ADC clássico em banda base apresenta a mesma fundamental na frequência da sinusóide mas o ruído de quantificação encontra-se espalhado por uma banda k vezes maior, como ilustra a figura da esquerda.

Os ADCs $\Sigma-\Delta$ tiram partido deste facto e usam um filtro passa-baixo à saída para eliminar a maior parte do ruído, como ilustra a figura da direita em cima. A SNR para um ADC clássico de 1 bit é 7,78 dB (6,02+1,76); por cada factor de k=4 a SNR aumenta de 6dB, o que é equivalente a 1 bit adicional; Assim, para obter 16-bits de resolução seria necessário uma sobreamostrgem de 4^{15} vezes, o que não é realizável! Mas a arquitectura dos ADCs $\Sigma-\Delta$ também realizam uma formatação passa-alto no espectro de saída do ruído, conseguindo afinal mais de 6dB de ganho por cada factor de 4 na sobreamostragem, como ilustra a figura da direita em baixo. Ainda devido ao filtro passa-baixo este ganho aumenta mais ainda: por exemplo, para um filtro de 1^{12} ordem o aumento é de 9dB por cada duplicação da sobreamostragem. Assim, a SNR aumenta consideravelmente e permite a estes ADCs alcançar uma elevada gama dinâmica usando um ADC de baixa resolução.

3.5. Conversor $\Sigma - \Delta$ (cont.)

À saída do filtro passa-baixo, por via deste e da sobreamostragem, a banda do sinal verifica claramente o critério de Nyquist, podendo-se reduzir agora a frequência de amostragem para os valores originais (ou mais reduzidos) via decimação. Se fôr usado um factor M (factor de decimação), o que corresponde a validar uma amostra em M onde M é qualquer valor inteiro desde que a banda do sinal ainda verifique o critério de Nyquist, o resultado encontra-se ilustrado na figura.

3.5. Conversor $\Sigma - \Delta$ (cont.)

O funcionamento do conversor $\Sigma - \Delta$ pode ser compreendido da seguinte forma:

O bloco integrador tem um ganho infinito em DC (T(s)=1/sRC). A única forma de o integrador fornecer um sinal finito é ter à sua entrada um sinal de valor médio (portanto, DC) nulo. Mas isto significa que se considerarmos o sinal de entrada constante (ou de variação lenta) que o sinal X_5 apresenta um valor médio igual ao sinal a digitalizar. O sinal X_5 é composto por uma sucessão de zeros e uns provenientes do DAC controlado pelo comparador. Quanto maior for o sinal de entrada mais percentagens de uns (face aos zeros) estarão a ser gerados pelo sistema realimentado, pois é necessário um valor médio mais elevado nesta trama de bits.

Após o modulador aplica-se um filtro passa-baixo e um decimador. A percentagem de uns por amostra é então passada para uma palavra de código binário.

3.6. Conversor em pipeline

O ADC em pipeline é actualmente o ADC mais popular para ritmos de amostragem de poucos Msps até Gsps e mais. A resolução vai de 8 bits a 16 bits (para os ADC mais lentos).

Exemplo de 12 bits

- 1. A entrada é amostrada e mantida constante por um S&H enquanto o ADC quantifica o sinal em 3 bits no andar 1.
- 2. O erro remanescente é amplificado e aplicado ao andar 2 para codificação em mais 3 bits.
- 3. Este processo repete-se ao longo dos andares até aos últimos 4 LSBs.
- 4. Enquanto um andar está a processar o remanescente de uma amostra, o andar anterior está já a processar a amostra seguinte.

O sinal fica codificado em 16 bits dos quais, com precisão mais elevada se aproveitam pelo menos 12 bits.

A lógica de controlo associa os bits codificados conforme a amostra a que dizem respeito