COMPARISON OF CLASSIFICATION ALGORITHMS TO PREDICT THE SUCCESS OR FAILURE OF A STARTUP

PRESENTED BY
HARSHITHA MOHANRAJ
RADHIKA
FNU MARIA POULOSE
SAMIKSHA TALWEKAR

he most reliable way to predic he future is to create it.

Abraham Lincoln

MOTIVATION AND PROJECT BACKGROUND

PROBLEM STATEMENT: To predict the success or failure of a startup which allows investors to identify companies with the potential for rapid growth, allowing them to stay one step ahead of the competition.

SOLUTION: Creating a ML model using supervised algorithms to classify the startups as acquired or closed using the important features which impact the growth of the startups

Significance to the real world

- Predicting a startup's success allows investors to identify companies with the potential for rapid growth, allowing them to stay one step ahead.
- Startups play a significant role in economic growth. They bring new ideas, stimulate innovation, and create jobs, thereby moving the economy forward. Startups have grown at an exponential rate in recent years.
- Success prediction also helps audiences who want to implement their business idea and need guidance for estimating their idea's success, thus encouraging them to pursue the idea.
- There will be an increase in good ideas coming into the market, thus giving founders and investors the tools, methods, and advice that will give them a competitive advantage

TITLE OF THE PAPER	GOAL OF THE PAPER	ALGORITHMS USED	CONCLUSIONS/RESULTS
Learning Performance for Decision Support in	To predict the startup failure using the feature like IPO achieved in which stage of progress ,based on funding and the startup founder's data	Random Forests, Extremely	Gradient Tree Boosting worked well when compared with the other algorithms and achieved a 82% accuracy
Web-based Startup Success Prediction	To predict whether a company that has already received initial (seed or angel) funding will attract a second round of investment.		company mentions on the Web yields a significant performance boost, gain insights into both the types of useful signals that can be found on the Internet and the market mechanisms that underpin the funding process
of Startup Companies	Prediction of success of a startup using the ML models and then applying various evaluation metrics to find the best model		Random Forest got 89% accuracy ,f1-score of 0.93

INNOVATION

For a specific data set, a single method might not produce the ideal prediction. Machine learning algorithms have their limitations, and it might be difficult to create a model with high accuracy. We can increase the accuracy overall if we create and merge numerous models. This is done using ensemble modeling and we implemented in our model.

PROJECT MANAGEMENT

TRELLO BOARD TO PLAN THE PROJECT, SCHEDULE THE TASKS, ASSIGNEE MEMBERS FOR EACH TASKS AND KEEP TRACK OF THE PROGRESS

https://trello.com/invite/b/X96SsSxf/ATTId27cfa2bcda58f1e0e09fbc175ea27210BC03265/data245-project

DATA COLLECTION

LOADING THE DATASET **RAW DATASET** df=pd.read_csv("startup.csv") df 1001 CA 32.901049 -117.192656 c:65620 CA 37.320309 -122.050040 95014 c:42668 Cupertino c:42668 Francisco CA 94105 c:65806 557 0 ... c:31549 CA 37.408261 -122.015920 94089 c:31549 Sunnyvale Medical CA 37.556732 -122.288378 Clara CA Technologies 923 rows x 49 columns

DATA SOURCE:

CSV dataset from Kaggle

FEATURE NAMES

Location details, type of industry, name of the companies, about the venture capitalists, is it in the top 500 companies or not and many more.

NUMBER OF ROWS AND COLUMNS IN TRAINING DATASET:

923 rows and 49 columns

NUMBER OF CLASSES OR OUTCOMES:

2 Classes -Acquired and Closed

DATA PREPROCESSING

- The status column is the target column where there are two classes acquired and closed.
- Converted the categorical value to numerical value where the acquired is replaced as 1 and closed is replaced as 0 for the purpose of modeling.

Data Cleaning

- Checking duplicate values: Removing all the duplicate values in the dataset as they have so much impact on the generation of the model.
- Replacing negative values: Some columns like last_year_fundings have negative values and cause error in the model generation.


```
Removing negalive values

[69] startup_df=startup_df.drop(startup_df.seg_first_funding_year<0].index)
startup_df=startup_df.drop(startup_df[startup_df.seg_last_funding_year<0].index)
startup_df=startup_df.drop(startup_df.seg_first_milestone_year<0].index)
startup_df=startup_df.drop(startup_df.seg_last_milestone_year<0].index)
```

DATA PREPROCESSING(CONT.)

REMOVING THE IRRELEVANT COLUMNS: id, object_id, unnamed columns were identified during analysis.

REPLACING NAN VALUES WITH ZERO: column/rows which are not required while computation Hence, to carry out any operations we convert it into a numeric value such as 0 or any other values relevant.

REPLACING NAN VALUES WITH MEDIAN VALUE: Some columns factors majorly in computation and having insignificant values can hamper the modelling. Therefore, the Nan values are replaced by the median values.

DATA PREPROCESSING

Handling Outliers: During data analysis, we identified outliers using box plots, one of the effective methods to spot outliers is to visualize on the graph. Use those data points and by using data scaling, we spread the data points accordingly.

To remove bias towards a certain feature having higher magnitude and smoothing the flow of gradient descent.

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS

EXPLORATORY DATA ANALYSIS


```
Creating new column has_investor: It would help us understand the credibility of the startup

**Startup_df['has_Investor'] = np.where((startup_df['has_VC'] == 1) | (startup_df['has_angel'] == 1), 1, 0)

**Description of the startup_df.head()

**Description of the startup_df['has_now_to_las_roundb | has_roundb | has_
```

. 0		up_df[' <mark>has_Round</mark> / up_df.head()	ABCD'] = np.where((start	up_df	['has_ro	undA'] ==	1) (startu	p_df['has_r	oundB'] == 1) (startuj	p_df['has_roundC']	== 1) (s	tartup_	df['has_roundD'
C →	ıg_at	last_funding_at	age_first_funding_year		has_VC	has_angel	has_roundA	has_roundB	has_roundC	has_roundD	avg_participants	is_top500	status	has_RoundABCD
	/2009	1/1/2010	2.2493		0	1	0	0	0	0	1.0000	0	1	0
	1/2005	12/28/2009	5.1260		1	0	0	1	1	1	4.7500	1	1	1
)/2010	3/30/2010	1.0329		0	0	1	0	0	0	4.0000	1	1	1
	'/2005	4/25/2007	3.1315		0	0	0	1	1	1	3.3333	1	1	1
	/2010	4/1/2012	0.0000	***	1	1	0	0	0	0	1.0000	1	0	0

	Using	g a column inv	alid start up	to discard it a	s an in	put to the mo	del									
√ Os	_	startup_df[startup_df.	_	artup'] = n	.wher	e((startup_	df['has_Rour	ndABCD'] ==	0) & (s	startup_df['ha	s_VC'] ==	0) & (st	artup_df['has_	angel'] == 0)	1, 0)	
	C ,	_funding_at	age_first_	_funding_yea	r	has_roundE	has_round	C has_round	dD avg_r	participants	is_top500	status	has_RoundABCD	has_Investor	has_Seed	invalid_startup
		1/1/2010		2.249	3	() (0	0	1.0000	0	1	0	1	1	0
		12/28/2009		5.126	0	1	1	1	1	4.7500	1	1	1	1	0	0
		3/30/2010		1.032	9	C) ()	0	4.0000	1	1	1	0	0	0

FEATURE ENGINEERING

Created a few new columns by combining multiple columns into one.

FEATURE ENGINEERING

• Scaling the data: To remove bias towards a certain feature having higher magnitude and smoothing the flow of gradient descent.

```
from sklearn.preprocessing import StandardScaler

scale= StandardScaler()
scaled_data = scale.fit_transform(X)
```

y = startup_df['status']

```
print("The Shape of the X Train :", X_train.shape)
print("The Shape of the X test :", X_test.shape)
print("The Shape of the y Train :", y_train.shape)
print("The Shape of the y test :", y_test.shape)

The Shape of the X Train : (672, 35)
The Shape of the X test : (168, 35)
The Shape of the y Train : (672,)
The Shape of the y test : (168,)
```

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42)
```

SPLITTING THE DATA

The dataset is split as 80% training and 20% testing sets.

MODELLING

We have used Classification algorithms of machine learning to predict the success of a startup.

Classifications Models used:

- -SVM
- -Random Forest classifier
- -Logistic Regression
- -Decision Tree Classifier
- -Gradient Boosting Classifier
- -KNN(K-nearest neighbors)
- -Ensemble modelling

SVM

- Support Vector
 Machine classification
 calculations for two-group
 classification issues
- In SVC method (where n is the number of feature you have), we plot each data item as an individual point in space with the value of each feature being a coordinate

print("Accuracy:",accuracy_score(y_test, y_pred_sv))
Accuracy: 0.70833333333333334

Accuracy	70.83
roc_auc	0.689
Precision Score	0.79
Recall Score	0.99
F1 score	0.829

Random Forest classifier

- Random Forest is used for classification, and it is based on the concept of gathering learning, which could be a handle of combining numerous classifiers to unravel a complex issue.
- This also help to avoid overfitting.

print("Accuracy:",accuracy_score(y_test, y_pred_rf))
Accuracy: 0.875

Accuracy	87.5
roc_auc	0.791
Precision Score	0.855
Recall Score	0.991
F1 score	0.929
Cohen kappa score	0.644

Logistic Regression

 One of the prominent Machine Learning algorithms for predicting a categorical dependent variable from a set of independent variables.

print("Accuracy:",accuracy_score(y_test, y_pred_lr))
Accuracy: 0.708333333333334

Accuracy	70.8
roc_auc	0.5
Precision Score	0.708
Recall Score	1.0
F1 score	0.829

Decision Tree Classifier

 Decision tree classifier for a record we tend to begin from the basis of the tree. we tend to compare the values of the basis attribute with the record's attribute.

print("Accuracy:",accuracy_score(y_test, y_pred_clf))
Accuracy: 0.7321428571428571

Accuracy	73.2
roc_auc	0.654
Precision Score	0.793
Recall Score	0.84
F1 score	0.806
Cohen kappa score	0.23

Gradient Boosting Classifier

- This classifier is built on forward stage-wise fashion and is used when the target column is binary.
- This helps us minimize bias error of the model

print("Accuracy:",accuracy_score(y_test, y_pred_clf))
Accuracy: 0.7321428571428571

Accuracy	73.21
roc_auc	0.654
Precision Score	0.793
Recall Score	0.84
F1 score	0.852
Cohen kappa score	0.42

KNN(K-nearest neighbors)

KNN is one of the classification predictive algorithm fairs across all parameters of considerations. It is commonly used for its easy of interpretation and low calculation time.

0.6369047619047619 [[34 15] [46 73]]								
	precision	recall	f1-score	support				
0 1	0.42 0.83	0.69 0.61	0.53 0.71	49 119				
accuracy macro avg weighted avg	0.63 0.71	0.65 0.64	0.64 0.62 0.65	168 168 168				

Accuracy	63.6
Roc_auc	0.65
Precision Score	0.82
Recall Score	0.61
F1 score	0.706
Cohen kappa score	0.25

Model Comparison

	SVM	Random Forest Classifier	Logistic Regression	Decision Tree Classifier	Gradient Boosting Classifier	KNN(K- nearest neighbors)
Accuracy	70.83	87.5	70.8	73.2	77.21	63.6
roc_auc	0.5	0.791	0.5	0.654	0.694	0.65
Precision Score	0.70	0.855	0.708	0.793	0.81	0.82
Recall Score	1.0	0.991	1.0	0.82	0.89	0.61
Cohen kappa score	0	0.644	0	0.23	0.42	0.25
F1 score	0.829	0.929	0.829	0.806	0.852	0.705

Ensemble Modelling

6.57893353912 The accuracy		ble method recall f		38095238095 support	
0 1	0.77 0.82	0.49 0.94	0.60 0.87	49 119	
accuracy macro avg weighted avg	0.80 0.80	0.72 0.81	0.81 0.74 0.79	168 168 168	

Models used for Ensembing:
Logistic regression
Random forest classifier
Gradient boosting classifier
SVC

Conclusion

- We were able to successfully build a machine learning model that predicts the success/failure of a startup
- Random forest classifier outperformed other models. With an accuracy of 87.5 %, AUC of 79%, Precision score of 85%, Recall score 99%, and Cohen kappa score 64%.
- We have come to an assumption that if anyone want best result from it, they should take the Random forest classifier as it has the highest accuracy rate.
- SVM and Logistic regression gave us a recall of 1 which means these model can be used for the dataset when we want most accurate prediction

Future Work

As a future work, we will implement more machine learning models for model training and hyper tune the models to show better accuracy

Create an Interactive user interface that allows the user to gain additional information about companies in each state.

LESSONS LEARNED

Analyzing the outliers helped us to show better accuracy and recall score.

Model's performance is not just calculated with the accuracy ,but other metrics like recall, precision, Cohen kappa score plays a major role

Random Forest Regressor is a better classification algorithm for such kinds of dataset

When we need the data to be more accurate, we need to use SVM or Logistic Regression algorithms

Ensemble modelling gave us better accuracy than individual models

TECHNICAL DIFFICULTY

- Interactive user interface visualization should have been implemented for users to easily make use of this prediction problem. But since our project is not focused on front end part.
 We were not able to do it.
- We were focused on models relevant to our coursework. May be other models might give a better prediction compared to the models we used.
- Volume of the dataset is very less, we felt we could have achieved better accuracy when there is more data.
- Due to time constraint, we were unable to implement hyper parameter tuning for all the models, but we tried to alter the parameters while doing modelling .Hyperparameter tuning might give a better accuracy for models.

LINKS

GITHUB REPOSITORY LINK - PAIR PROGRAMMING

https://github.com/samiksha9797/ML Project

OVERLEAF LATEX LINK-

https://www.overleaf.com/read/mkvmxfwyhfdd

REFERENCE

- Corea, F., Jimenez-Diaz, G., & Recio-Garcia, J. A. (2019b). Assessment of Machine Learning Performance for Decision Support in Venture Capital Investments. IEEE Access, 7, 124233-124243. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8821312
- Roizner, M., Rumyantsev, A., Ozornin, D., Serdyukov, P., & de Rijke, M. (2018, October 17). Web-based Startup Success Prediction. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. https://doi.org/10.1145/3269206.3272011
- Jinze Li. 2021. Prediction of the Success of Startup Companies Based on Support Vector Machine and Random Forset. In 2020 2nd International Workshop on Artificial Intelligence and Education (WAIE 2020). Association for Computing Machinery, New York, NY, USA, 5–11. https://doi.org/10.1145/3447490.3447492
- Das, S., Sciro, D., & Raza, H. (2021, November). CapitalVX: A machine learning model for startup selection and exit prediction. The Journal of Finance and Data Science, 7, 94–114. https://doi.org/10.1016/j.jfds.2021.04.001
- A. Krishna, A. Agrawal and A. Choudhary, "Predicting the Outcome of Startups: Less Failure, More Success," 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), 2016, pp. 798-805, https://doi:10.1109/ICDMW.2016.0118
- Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, ``Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740--741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982]
- M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.

THANK YOU

Q & A TIME