

Fall 2021 Lab 4: Finite State Machines

Prof. Chun-Yi Lee

Department of Computer Science
National Tsing Hua University

Agenda

- Lab 4 Outline
- Lab 4 Basic Questions
- Lab 4 Advanced Questions

Lab 4 Outline

- Basic questions (1.5%)
 - Individual assignment
 - Due on 11/2/2021 (Thu). In class.
- Advanced questions (5%)
 - Group assignment
 - Demonstration on your FPGA board (In class)
 - Assignment submission (Submit to eeclass)
 - ILMS submission due on 11/11/2021 (Thu). 23:59:59.
 - Source codes and testbenches
 - Lab report in PDF

Lab 4 Rules

- Please note that grading will be based on NCVerilog
- You can use ANY modeling techniques
- If not specifically mentioned, we assume the following SPEC
 - clk is positive edge triggered
 - Synchronously reset the Flip-Flops when rst_n == 1'b0, if there exists one rst_n signal in the specification

Lab 4 Submission Requirements

- Source codes and testbenches
 - Please follow the templates EXACTLY
 - We will test your codes by TAs' testbenches
- Lab 4 report
 - Please submit your report in a single PDF file
 - Please draw the block diagrams and state transition diagrams of your designs
 - Please explain your designs in detail
 - Please list the contributions of each team member clearly
 - Please explain how you test your design
 - What you have learned from Lab 4

Agenda

- Lab 4 Outline
- Lab 4 Basic Questions
- Lab 4 Advanced Questions

Basic Questions

- Individual assignment
- Verilog questions (due on 11/2/2021. In class.)
 - Moore machine
 - Mealy machine
 - Many-to-one linear-feedback shift register
 - One-to-many linear-feedback shift register
- Demonstrate your work by waveforms

- Moore machine
 - Green represents input, while red represents output
 - Output your current state as well
 - When $rst_n == 1'b0$, state = S0

S0: 3'b000 S1: 3'b001 S2: 3'b010 S3: 3'b011 S4: 3'b100 S5: 3'b101

- Mealy machine
 - **Green** represents input, while **red** represents output
 - Output your current state as well
 - When $rst_n == 1'b0$, state = S0

S0: 3'b000 S1: 3'b001 S2: 3'b010 S3: 3'b011 S4: 3'b100 S5: 3'b101

Many-to-one linear-feedback shift register (LFSR)

- When $rst_n == 1'b0$, reset DFF[7:0] to 8'b10111101
- Please draw the state transition diagram of the DFFs in LFSR for the first ten states after rst_n is raised to 1'b1 in your report
- Please describe what happens if we reset the DFFs to 8'd0 in your report

One-to-many linear-feedback shift register (LFSR)

- When RESET == 1'b0, reset DFF[7:0] to 8'b10111101
- Please draw the state transition diagram of the DFFs in LFSR for the first ten states after rst_n is raised to 1'b1 in your report
- Please describe what happens if we reset the DFFs to 8′d0 in your report