Revision Notes on Alcohols, Phenols and Ether:

Alcohols

Preparation of Alcohols:

- By hydrolysis of haloalkanes : R-X+aq. $KOH \rightarrow ROH+KX$
- By reduction of Carbonyl compounds

O
$$\parallel$$
 $R - C - OR' \xrightarrow{4[H]} R - CH_2OH + R'OH$

CH₃CH₂COOCH₃ CH₂CH₂CH₂CH₂CH+CH₃OH

• By the action of Grignard's Reagent on aldehydes, ketones and esters

- By Aliphatic Primary Amines: $RCH_2NH_2 + HNO_2 \rightarrow RCH_2OH + N_2 + H_2O$
- Hydration of alkenes:

$$\mathsf{CH}_2 = \mathsf{CHR} + \underset{\mathsf{Concentrated}}{\mathsf{H}_2} \mathsf{SO}_4 \xrightarrow{\quad \mathsf{Boil} \quad } \mathsf{CH}_3 - \mathsf{CH}(\mathsf{R}) \mathsf{OH}$$

• Oxymercuration-demercuration:

$$H_3C$$
 H_3C
 CH_2
 H_3C
 CH_3
 H_3C
 CH_3

Markonikov's Addition

• Hydroboration-oxidation:

$$H_3C$$
 $\xrightarrow{B_2H_6/THF/H_2O_2}$ H_3C OH

 CH_2 Anti Markonikov's Addition

• Hydroxylation of alkenes:

Physical Properties of Alcohol:

- Lower alcohols are liquid at room temperature while higher ones are solid.
- High boiling point due to presence of intermolecular hydrogen bonding. Order of Boiling Point: primary > secondary > tertiary
- Solubility in water decreases with increase in molecular mass due to decrease in extent of intermolecular hydrogen bonding.

Chemical Properties of Alcohol:

- Alcohol's reaction with metal: ROH + Na \rightarrow 2RO^+Na^- + H_2
- Formation of Halides:

 - ROH + SOCl₂/PCl₃/PCl₅□ RCl
 - ∘ ROH+HX□ RX
 - ROH+ NaBr,H₂SO₄□R-Br
 - ROH+ Zn+HCI□R-CI
 - R₂C-OH alcohol + HCI□ R₂CCI
- Reaction with HNO₃: R-OH + HO-NO₂ R-O-NO₂
- Reaction with carboxylic acid (Esterification): R-OH +R'-COOH +H⁺ R'-COOR
- Reaction with Grignard reagent: R'OH + RMgX □ RH + R'OMgX
- Reduction of alcohol: ROH + 2HI + Red P□ RH +I₂+H₂O
- **Dehydration of Alcohol:** Dehydration of alcohols takes place in acidic medium. Intra-molecular dehydration leads to the formation of alkene while inter molecular dehydration which forms ether. Ease of dehydration: 3° > 2° > 1
- Satyzeff's Rule: Elimination through b carbon containing minimum b hydrogen

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} - \overset{\bullet}{\text{C}} - \text{CH}_{2} - \overset{\bullet}{\text{O}} - \text{H} + \text{H}^{+} \xrightarrow{\text{conc. H}_{2} \text{SO}_{4}} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} - \overset{\bullet}{\text{C}} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{3} - \overset{\bullet}{\text{C}} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{3} - \overset{\bullet}{\text{C}} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} - \overset{\bullet}{\text{C}} = \text{CH}_{2} - \text{CH}_{3} \\ \end{array}$$

Oxidation of Alcohol:

 RCH_2 -OH + [O] \square RCHO \square RCOOH RCH₂-OH + [O] +PCC \square RCHO

• **Haloform Reaction:** Compound containing CH₃CO- group (or compound on oxidation gives CH₃CO – group) which is attached with a C or H, in presence of halogen and mild alkali gives haloform.CH₃-CH₂-COCH₂-CH₃, CH₃-CO-Cl, CH₃COOH will not respond to haloform reaction wile CH₃CH₂OH will respond to haloform Reaction.

$$CH_3CH_2OH \xrightarrow{CL+NaOH} CHCl_3$$

Test for Alcohols:

1. Lucas Test:

Alcohols + ZnCl₂ + HCl

- 1º Alcohol: RCH₂OH + ZnCl₂ +HCl 🛘 No reaction at room temperature
- 2^0 Alcohol: R₂CHOH + ZnCl₂ +HCl \square R₂CHCl White turbidity after 5-10 min.
- 3^0 Alcohol: R₃CHOH + ZnCl₂ +HCl \square R₃CHCl white turbidity instantaneously.

2. Victor Meyer Test

Nitrolic acid on treatment with alkali gives colouration

2° alcohol:

$$\begin{array}{c} R \\ R \\ \end{array} \begin{array}{c} CHNO_2 \\ R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} HNO_2 \\ R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} CHNO_2 \\ R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} CHNO_2 \\ R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} CHNO_2 \\ R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} CHNO_2 \\ R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} CHNO_2 \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} R \\ \end{array} \begin{array}{c} CHNO_2 \\ \end{array} \begin{array}{c} R \\$$

(Pseudonitri 3° alcohol:
$$R_3C - OH \xrightarrow{P/I_2} R_3C - I \xrightarrow{AgNO_2} R_3C - NO_2$$

$$\downarrow HNO_2$$
No reaction
(colour less)

Phenols:

Preparation:

a. Hydrolysis of chlorobenzene: (Dow's process)

b. Alkali fusion of Sodium benzene sulfonate

$$\begin{array}{c|c} SO_3Na & ONa \\ \hline & NaOH \\ \hline & 350^{\circ}C \end{array}$$

c. From Cummene Hydroperoxide

$$\begin{array}{c} \text{CH}_{3} \\ \text{COMMene} \\ \text{CH}_{3} \\ \text{COMMEND} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{COMMEND} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{$$

d. Aromatic Nucleophilic Substitution of Nitro Aryl Halides

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N

 e. Distillation of phenolic acids with soda-lime produces phenols, e.g. sodium salicylate gives phenol.

Physical Properties of Phenols

- Phenol is a colorless, toxic, corrosive, needle shaped solid.
- Phenol soon liquifies due to high hygroscopic nature.
- Phenol is less soluble in water, but readily soluble in organic solvents.
- Simplest phenols, because of hydrogen bonding have quite high boiling points.
- o-nitrophenol is, steam volatile and also is less soluble in water because of intramolecular hydrogen bonding

Chemical Properties of Phenols

a) Formation of Esters

Phenyl esters (RCOOAr) are not formed directly from RCOOH. Instead, acid chlorides or anhydrides are reacted with ArOH in the presence of strong base

$$(CH_3CO)_2O + C_6H_5OH + NaOH \square CH_3COOC_6H_5 + CH_3COONa + H_2O$$

Phenyl acetate

$$C_6H_5COCI + C_6H_5OH + NaOH \square C_6H_5COOC_6H_5 + Na^+CI^- + H_2O$$

Phenyl benzoate

b) Displacement of OH group: ArOH + Zn $\xrightarrow{\Delta}$ ArH + ZnO (poor yields)

c) Hydrogenation

cyclohexanol

d) Oxidation to Quionones

$$\begin{array}{c|c}
OH & O \\
\hline
O_2 & \\
\hline
or CrO_3 & \\
\hline
\end{array}$$
phenol

benzo-1,4-quinone

e) Electrophilic SubstitutionThe —OH and even more so the —O(phenoxide) are strongly activating ortho ,para - directing

Special mild conditions are needed to achieve electrophilic monosubstituion in phenols because their high reactivity favors both polysubstitution and oxidation

f) Halogenation

(goes via ArO; no monobromophenols)

$$\begin{array}{c} \text{OH} \\ & \xrightarrow{\text{Br}_2/\text{CS}_2} \\ & \text{0^{\circ}\text{C}} \end{array} \qquad \begin{array}{c} \text{OH} \\ & \text{Br} \\ \text{2-bromophenol} \end{array}$$

h) Nitrosation

i) Nitration

$$\begin{array}{c} \text{OH} \\ \text{HNO}_{2} \\ \text{ON} \end{array} \xrightarrow{\text{dil.HNO}_{2}} \begin{array}{c} \text{OH} \\ \text{NO}_{2} \\ \end{array}$$

j) Sulfonation

PhOH
$$\xrightarrow{H_2SO_4}$$
 (rate-controlled)

PhOH $\xrightarrow{H_2SO_4}$ (rate-controlled)

PhOH $\xrightarrow{H_2SO_4}$ (eqbm-controlled)

k) Diazonium salt coupling to form azophenols

Coupling (G in ArG is an electron - releasing group)

$$ArN_2^+ + C_6H_5G \longrightarrow p-G - C_6H_4 - N = N - Ar(G = OH, NR_2, NHR, NH_2)$$

I) Mercuration

$$C_{\theta}H_{\delta}OH \xrightarrow{Hg(OAc)_{2}} o\text{-and } p\text{-}C_{\theta}H_{4} \xrightarrow{NaCl} o\text{-and } p\text{-}C_{\theta}H_{4} \xrightarrow{Kl} o\text{-and } p\text{-}C_{\theta}H_{4}$$

m) Ring alkylation

$$C_6H_5OH + \begin{cases} CH_3CH = CH_2 & H_2SO_4 \\ (CH_3)_2CHOH & Or HF \end{cases}$$
 o- and p-C₆H₄ + H₂O CH(CH₃)₂

RX and AlCl3 give poor yields because AlCl3 coordinates with O.

n) Kolbe synthesis of phenolic carboxylic acids

$$C_0H_0ONa + O = C = O$$

$$C_0H_0ONa + O = C = O$$

$$C_0H_0OH$$

$$COONa$$

$$Sodium salicylate Salicylic acid$$

Phenoxide carbanion adds at the electrophilic carbon of CO₂, para product is also possible.

o) Reimer – Tiemann synthesis of phenolic aldehydes

The electrophile is the dichlorocarbene, CCl₂, formation of carbene is an example of α -elimination. $\overline{O}H + HCCl_3 \xrightarrow{-HCl} \overline{C}Cl_2$

p) Synthesis of (a) aspirin (acetylsalicylic acid) (b) oil of wintergreen (methyl salicylate)

a) OH OCOCH₃

$$\xrightarrow{1. CO_2. KOH} COOH$$

$$\xrightarrow{2. H_3O^+} OH OCOCH_3$$

$$\xrightarrow{Ao_2O} COOH$$

Ethers:

Physical Properties of Ethers

- **Physical state, colour and odour**: Dimethyl ether and ethyl methyl ether is gas at ordinary temperature while the other lower homologues of ethers are colourless liquid with characteristic 'ether smell'.
- **Dipole nature**: Ethers have a tetrahedral geometry i.e., oxygen is sp³ hybridized. The C— O—C angle in ethers is 110°. Because of the greater electronegativity of oxygen than carbon, the C—O bonds are slightly polar and are inclined to each other at an angle of 110°, resulting in a net dipole moment.

Bond angle of ether is greater than that of tetrahedral bond angle of 109°28'.

• **Solubility and boiling point:** Due to the formation of less degree of hydrogen bonding, ethers have lower boiling point than their corresponding isomeric alcohols and are slightly soluble in water.

Preparation of Ethers:

a) From alcohols:

$$CH_3CH_2OH \xrightarrow{H_2SO_4} CH_3CH_2 - O - CH_2CH_3$$

Ether

Order of dehydration of alcohol leading to formation of ethers: 1° > 2° > 3°

$$CH_3CH_2OH + CH_2N_2 \xrightarrow{HBF_4} CH_3CH_2 - O - CH_3 + N_2$$

b) Williamson's synthesis:

$$R-X + Na^{+}O-R' \square R-O-R' + Na^{+}X^{-}$$

In case of tertiary substrate elimination occurs giving alkenes.

From alkenes:.

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

From Grignard reagent: Treating a - halo ethers with suitable Grignard reagents.

$$CH_3$$
—O— $CH_2CI + CH_3MgI \xrightarrow{Dry} CH_3$ —O— $CH_2CH_3 + Mg$

On standing in contact with air, most aliphatic ethers are converted slowly into unstable peroxides. The presence of peroxides is indicated by formation of a red colour when the ether is shaken with an aqueous solution of ferrous ammonium sulfate and potassium thiocyanate

Peroxide + Fe²⁺
$$\rightarrow$$
 Fe³⁺ $\xrightarrow{SCN^-}$ Fe(SCN)_n(3-n)-(n =1to6)
Red

f) Halogenation of ethers:

g) Ethers as base:

?

$$CH_3CH_2- {\displaystyle \mathop{O}_{-}} CH_2CH_3 + H - Br \rightarrow CH_3CH_2 - {\displaystyle \mathop{O}_{-}} CH_2CH_3Br^-$$

h) Reaction With Cold conc. HI/HBr:

$$R\longrightarrow O\longrightarrow R'+Cold\ HI\longrightarrow R-OH+R'I\ (R'< R)$$

i) Hot conc. HI/HBr:

$$R\longrightarrow O\longrightarrow R'+Hot HI\longrightarrow RI+R'I+H_2O$$

i) Reaction with acid chlorides and anhydrides:

$$C_2H_5 - O - C_2H_5 \ + \ CH_3COCl \xrightarrow[Anhy\ ZnCl_2]{\Delta} C_2H_5Cl \ + \ CH_3COOC_2H_5$$

j) Electrophilic substitution reactions

Expoxides or Oxiranes:

Preparation

a) Oxidation of ethylene:

H₂C=CH₂ + O₂
$$\xrightarrow{Ag_2O}$$
 H₂C—CH₂ O

b) Expoxidation:

$$RHC=CHR+C_{\epsilon}H_{\epsilon}C-O-OH\xrightarrow{exp\ oxidation}RHC-CHR+C_{\epsilon}H_{\epsilon}-C-OH$$

Acid catalysed ring opening

Base catalysed ring opening: