Chamblandes 2009 — Problème 6

1.
$$h = c_0 \cdot \sin(60^\circ) = \frac{\sqrt{3}}{2} c_0$$

 $1 = \text{aire } T_0 = \frac{1}{2} \cdot c_0 \cdot \frac{\sqrt{3}}{2} c_0 = \frac{\sqrt{3}}{4} c_0^2$
 $c_0^2 = \frac{4}{\sqrt{3}}$ d'où $c_0 = \frac{2}{4\sqrt{3}} \approx 1,52$

2. (a)
$$c_1 = \frac{2}{3} c_0 = \frac{2}{3} \cdot \frac{2}{\sqrt[4]{3}} = \frac{4}{3\sqrt[4]{3}} \approx 1,013$$

 $c_2 = \frac{2}{3} c_1 = \frac{2}{3} \cdot \frac{4}{3\sqrt[4]{3}} = \frac{8}{9\sqrt[4]{3}} \approx 0,675$
 $c_3 = \frac{2}{3} c_2 = \frac{2}{3} \cdot \frac{8}{9\sqrt[4]{3}} = \frac{16}{27\sqrt[4]{3}} \approx 0,45$
 $c_4 = \frac{2}{3} c_3 = \frac{2}{3} \cdot \frac{16}{27\sqrt[4]{3}} = \frac{32}{81\sqrt[4]{3}} \approx 0,3$

(b)
$$c_n = \frac{2}{3} c_{n-1}$$
 équivaut à $\frac{c_n}{c_{n-1}} = \frac{2}{3}$

En d'autres termes, la suite $(c_n)_{n\geqslant 0}$ est une suite géométrique de premier terme $c_0 = \frac{2}{\sqrt[4]{3}}$ et de raison $r = \frac{2}{3}$.

Il en résulte que $c_n = c_0 \cdot r^n = \frac{2}{\sqrt[4]{3}} \cdot \left(\frac{2}{3}\right)^n = \frac{2^{n+1}}{3^n \sqrt[4]{3}}$

3.
$$a_n = \text{aire } T_n = \frac{1}{2} c_n \cdot c_n \cdot \sin(60^\circ) = \frac{1}{2} \cdot \frac{2^{n+1}}{3^n \sqrt[4]{3}} \cdot \frac{2^{n+1}}{3^n \sqrt[4]{3}} \cdot \frac{\sqrt{3}}{2} = \left(\frac{1}{2} \cdot \frac{\sqrt{3}}{2}\right) \left(\frac{2^{n+1}}{3^n \sqrt[4]{3}}\right)^2$$
$$= \frac{\sqrt{3}}{4} \cdot \frac{(2^2)^{n+1}}{(3^2)^n \sqrt{3}} = \frac{\sqrt{3}}{4} \cdot \frac{4^{n+1}}{9^n \sqrt{3}} = \frac{\sqrt{3}}{4} \cdot \frac{4 \cdot 4^n}{9^n \sqrt{3}} = \frac{4^n}{9^n} = \left(\frac{4}{9}\right)^n$$

En particulier $a_1 = \frac{4}{9}$, $a_2 = \frac{16}{81}$, $a_3 = \frac{64}{729}$ et $a_4 = \frac{256}{6561}$.

Plus généralement, la suite $(a_n)_{n\geqslant 0}$ est une suite géométrique de premier terme $a_0=1$ et de raison $r=\frac{4}{9}$.

4. aire grisée = aire
$$T_0 + 3 \cdot (\text{aire } T_1 + \text{aire } T_2 + \text{aire } T_3 + \text{aire } T_4 + \dots)$$

= $a_0 + 3 \cdot (a_1 + a_2 + a_3 + a_4 + \dots)$
= $a_0 + 3 \cdot \lim_{n \to +\infty} a_1 \cdot \frac{1 - r^n}{1 - r}$
= $1 + 3 \cdot \lim_{n \to +\infty} \frac{4}{9} \cdot \frac{1 - \left(\frac{4}{9}\right)^n}{1 - \frac{4}{9}} = 1 + 3 \cdot \frac{4}{9} \cdot \frac{1}{1 - \frac{4}{9}} = 1 + 3 \cdot \frac{4}{9} \cdot \frac{9}{5} = \frac{17}{5} = 3,4$