

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

NOVEMBER 2013

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 15 pages. *Hierdie memorandum bestaan uit 15 bladsye.*

SECTION A/AFDELING A

QUESTION 1/VRAAG 1

1.1	Fractional distillation / Fraksionele distillasie √	(1)
1.2	Dehydration / Dehidratering / Dehidrasie ✓	(1)
1.3	Collision (theory) / Botsings(teorie) ✓	(1)
1.4	Reducing agent / Reduseermiddel ✓	(1)
1.5	<u>Homologous series</u> / <u>Homoloë reeks</u> ✓	(1) [5]
QUEST	ION 2/VRAAG 2	
2.1	C✓✓	(2)
2.2	C✓✓	(2)
2.3	A 🗸 🗸	(2)
2.4	$D\checkmark\checkmark$	(2)
2.5	B✓✓	(2)
2.6	C✓✓	(2)
2.7	A 🗸 🗸	(2)
2.8	$D\checkmark\checkmark$	(2)
2.9	B✓✓	(2)
2.10	C ✓✓	(2) [20]

TOTAL SECTION/TOTAAL AFDELING A:

25

SECTION B/AFDELING B

QUESTION 3/VRAAG 3

3.1

$$3.1.3 \quad \mathsf{F} \checkmark \tag{1}$$

$$3.1.4 \quad \mathsf{F} \checkmark \checkmark \tag{2}$$

3.2

OR/OF

$$4,5$$
-dimethyl ✓ -2-hexene ✓ / $4,5$ -dimetiel ✓ -2-hekseen ✓ (2)

3.2.2 2,3-dibromo-5-methyl heptane
$$\sqrt{\frac{2,3-dibromo-5-metiel}{heptaan}}$$
 (2)

3.2.3 4-methyl√pent-2-yne √ / 4-metielpent-2-yn

OR/OF

3.3

3.3.3 <u>Propanoic acid</u> / <u>Propanoësuur</u> √ (1)

3.3.4 Sulphuric acid / Swawelsuur /
$$H_2SO_4 \checkmark$$
 (1)

[17]

QUESTION 4/VRAAG 4

4.1		
4.1.1	Samples / Contents of bottle / (Type of) compound / functional group / homologous series √ Monsters / Inhoud van bottel / (Tipe) verbinding / funksionele groep / homoloë reeks	(1)
	766NS	(1)
4.1.2	Boiling point / Kookpunt ✓	(1)
4.2	comparable molecular mass. / vergelykbare molekulêre massa. ✓	
	OR/OF under the same conditions / onder dieselfde toestande	(1)
4.3		(4)
4.3.1	Q ✓	(1)
4.3.2	R✓	
\bigcirc		(1)
4.3.3	 R has the <u>highest boiling point</u>. / R het die <u>hoogste kookpunt</u>. ✓ In addition to weak Van der Waals forces, alcohols also have strong <u>hydrogen bonds</u> between molecules. ✓ Bo en behalwe swak Van der Waalskragte, het alkohole ook sterk <u>waterstofbindings</u> tussen molekule. 	(2)

Structure:

<u>Longer chain length</u>. / More C atoms in chain. / Greater molecular size. / Greater molecular mass. / Larger surface area. ✓

• Intermolecular forces:

Stronger or more intermolecular forces /Van der Waals forces / dispersion forces / London forces. ✓

• Energy:

More energy needed to overcome or break intermolecular forces/ Van der . Waals forces / dispersion forces / London forces.√

Hoër as

) • Struktuur:

<u>Langer kettinglengte</u>. / Meer C-atome in kettting. / Groter molekule. / Groter molekulêre massa. / Groter reaksieoppervlakte.

Intermolekulêre kragte:

<u>Sterker of meer intermolekulêre kragte/ Van der Waalskragte/ dispersiekragte/ Londonkragte.</u>

Energie:

Meer energie benodig om intermolekulêre kragte/ Van der Waalskragte/ dispersiekragte / Londonkragte te oorkom of breek.

OR/OF

Higher than ✓

∑• <u>Structure:</u>

Pentane has a shorter chain length. / Less C atoms in chain. / Smaller molecular size. / Smaller molecular mass. / Smaller surface area. ✓

Intermolecular forces:

Weaker or less intermolecular forces / Van der Waals forces / dispersion forces / London forces. ✓

• Energy:

<u>Less energy needed to overcome or break intermolecular forces</u> / Van der Waals forces / dispersion forces / London forces. ✓

Hoër as

Struktuur:

<u>Pentaan het 'n korter kettinglengte</u>. / Minder C-atome in kettting. / Kleiner molekule. / Kleiner molekulêre massa. / Kleiner reaksieoppervlakte.

• Intermolekulêre kragte:

<u>Swakker of minder intermolekulêre kragte/ Van der Waalskragte/</u> dispersiekragte / Londonkragte .

Energie:

Minder energie benodig om intermolekulêre kragte/Van der Waalskragte / dispersiekragte / Londonkragte te oorkom of breek.

(4) [11]

QUESTION 5/VRAAG 5

5.1 Alkenes / Alkene ✓ (1)

5.2

5.2.1
$$C_4H_{10} + C\ell_2 \checkmark \rightarrow C_4H_9C\ell + HC\ell \checkmark$$
 Bal. \checkmark (3)

5.2.2 Halogenation / Substitution / Chlorination ✓

Halogenering / Halogenasie / Substitusie / Chlorinering (1)

5.2.3 Heat **OR** (sun)light (UV) / hf ✓
Hitte **OF** (son)lig (UV) / hf (1)

5.3

5.3.2 But-2-ene / 2-butene $\checkmark\checkmark$ But-2-een / 2-buteen (2)

5.3.3

5.3.4 Hydrogenation / Addition ✓
Hidrogenering / Hidrogenasie / Addisie (1)

[15]

(4)

QUESTION 6/VRAAG 6

-		
6.1 6.1.1	(Type of) catalyst / (Tipe) katalisator ✓	
6.1.2	Rate (of reaction) / (Reaksie)tempo ✓	
6.2	R ✓ Fastest rate. / Steepest (initial) gradient or slope. /Produces oxygen faster/est / reaches completion faster OR fastest OR in a shorter time ✓ Vinnigste tempo. / Steilste (aanvanklike) gradiënt of helling./ Produseer suurstof vinnigste/er/ bereik voltooiing vinnigste OF vinniger OF in 'n korter tyd.✓	
6.3	 A catalyst provides an alternative pathway of lower activation energy. ✓ 'n Katalisator voorsien 'n alternatiewe pad van laer aktiveringsenergie. More molecules have sufficient/enough kinetic energy. / Meer molekule het voldoende/genoeg kinetiese energie. ✓ OR/OF More molecules have kinetic energy equal to or greater than the activation energy. Meer molekule het kinetiese energie gelyk aan of groter as die aktiveringsenergie. More effective collisions per unit time./ Rate of effective collisions increases. Meer effektiewe botsings per eenheidstyd./ Tempo van effektiewe botsings neem toe. ✓/ 	
6.4	Average rate/Gemiddelde tempo = $\frac{\Delta[H_2O_2]}{\Delta t}$ = $\frac{0,0131-0,020}{400-(0)\checkmark}$ = - 1,73 x 10 ⁻⁵ mol·dm ⁻³ ·s ⁻¹ \checkmark OR/OF 1,73 x 10 ⁻⁵ mol·dm ⁻³ ·s ⁻¹	
6.5	Less than / Kleiner as The <u>concentration</u> of hydrogen peroxide <u>decreases</u> as the reaction proceeds. Die konsentrasie van die waterstofperoksied verminder soos wat die reaksie	

verloop.

(2)

6.6 Mark allocation/Puntetoekenning:

- $c = \frac{n}{V} \text{ or/of } n = \frac{m}{M} \text{ or/of } c = \frac{m}{MV} \checkmark$
- Substitute / Vervang (0,0200 0,0106) and/en 50 x 10⁻³ √
- $n(O_2) = \frac{1}{2}n(H_2O_2) \checkmark$
- Using/Gebruik M = 32 in m = nM or/of cMV or/of a ratio calculation / 'n verhouding berekening ✓
- Final answer/*Finale antwoord*: 7,52 x 10⁻³ g / 0,008 g / 0,01 g√

► Final answer/Finale antwoord: 7, OPTION 1/OPSIE 1 $c = \frac{n}{V} \checkmark$ $(0,0200 - 0,0106) = \frac{n}{50 \times 10^{-3}} \checkmark$ $\therefore n = 4,7 \times 10^{-4} \text{ mol}$ $n(O_2) = \frac{1}{2}n(H_2O_2) = \frac{1}{2}(4,7 \times 10^{-4}) \checkmark$ $= 2,35 \times 10^{-4} \text{ mol}$ $n(O_2) = \frac{m}{M}$ $2,35 \times 10^{-4} = \frac{m}{32} \checkmark$ $\therefore m(O_2) = 7,52 \times 10^{-3} \text{ g}$ $= (0,008 \text{ g}) = (0,01 \text{ g}) \checkmark$

OPTION 2/OPSIE 2

$$\Delta c(H_2O_2) = 0.0200 - 0.0106$$

$$= 0.0094$$

$$\Delta c(O_2) = \frac{1}{2}\Delta c(H_2O_2)$$

$$= \frac{1}{2}(0.0094) \checkmark$$

$$= 0.0047$$

$$c = \frac{m}{MV} \checkmark$$

$$\Delta m(O_2) = cMV \checkmark$$

$$= (0.0047)(32) \checkmark (50 \times 10^{-3})$$

$$= 7.52 \times 10^{-3} \text{ g}$$

$$= 0.008 \text{ g}$$

$$= 0.01 \text{ g}\checkmark$$

(5) **[17]**

QUESTION 7/VRAAG 7

7.1 Low / Laag \checkmark Small K_c value. / Klein K_c-waarde. \checkmark K_c is smaller than 1/ K_c is kleiner as 1

(2)

7.2 CALCULATIONS USING NUMBER OF MOLES: BEREKENINGE WAT GETAL MOL GEBRUIK:

Mark allocation/Puntetoekenning:

- USING ratio/GEBRUIK verhouding: N₂: O₂: NO = x : x : 2x √
- Equilibrium/ \overline{E} wewig: $n(N_2)$ = initial/aanvanklik change/verandering Equilibrium/ \overline{E} wewig: $n(O_2)$ = initial/aanvanklik change/verandering
- Equilibrium/Ewewig: n(NO) = initial/aanvanklik + change/verandering
- Divide n(N₂), n(O₂) & n(NO) by 5 dm³. ✓
 Deel n(N₂), n(O₂) & n(NO) deur 5 dm³.
- Correct K_c expression (<u>formulae in square brackets</u>). √
 Korrekte K_c-uitdrukking (<u>formules in vierkanthakies</u>).
- Substitution of concentrations into K_c expression. ✓
 Vervanging van konsentrasies in K_c-uitdrukking.
- Substitution of K_c value. ✓ Vervanging van K_c-waarde .
- Final answer/Finale antwoord: 4,36 x 10⁻³ mol·dm⁻³ √ (0,004 mol·dm⁻³)

OPTION 1/OPSIE 1

	N ₂	O ₂	NO	
Initial quantity (mol) Aanvangshoeveelheid (mol)	2	2	0	
Change (mol) Verandering (mol)	х	х	2x	ratio ✓
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)	2-x	2-x ✓	2x ✓	
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	2 - x 5	2 - x 5	2x 5	Divide by 5 ✓
	$(2v)^2$			_

$$K_{C} = \frac{[NO]^{2}}{[N_{2}][O_{2}]} \checkmark \therefore 1,2 \times 10^{-4} \checkmark = \frac{\left(\frac{2x}{5}\right)^{2}}{\left(\frac{2-x}{5}\right)\left(\frac{2-x}{5}\right)} \checkmark \frac{0,4^{2}}{0,2^{2}}$$

$$\therefore x = 0.0109 \text{ mol}$$

$$\therefore [NO] = \frac{2(0.0109)}{5} = 4.36 \times 10^{-3} \text{ mol·dm}^{-3} \checkmark (0.004 \text{ mol·dm}^{-3})$$

OPTION 2/OPSIE 2

	N ₂	O ₂	NO	
Initial quantity (mol) Aanvangshoeveelheid (mol)	2	2	0	
Change (mol) Verandering (mol)	$\frac{x}{2}$	$\frac{x}{2}$	х	ratio ✓
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)	$2-\frac{x}{2}$	$2-\frac{x}{2}$	x ✓	
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	4 - x 10	4 - x 10	<u>x</u> 5	Divide by 5 ✓
[NIO12			<u> </u>	_

$$K_{C} = \frac{[NO]^{2}}{[N_{2}][O_{2}]}$$

$$\therefore 1,2 \times 10^{-4} \checkmark = \frac{\left(\frac{x}{5}\right)^{2}}{\left(\frac{4-x}{10}\right)\left(\frac{4-x}{10}\right)}$$

$$\therefore x = 0,022 \text{ mol}$$

$$\therefore [NO] = \frac{0,022}{5} = 4,36 \times 10^{-3} \text{ mol·dm}^{-3} \checkmark (0,004 \text{ mol·dm}^{-3})$$

OPTION 3/OPSIE 3

	N ₂	O ₂	NO	
Initial quantity (mol) Aanvangshoeveelheid (mol)	2	2	0	
Change (mol) Verandering (mol)	5x 2	5x 2	5x	ratio √
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)	$2-\frac{5x}{2}$	$2-\frac{5x}{2}$	5x ✓	
Equilibrium concentration / Ewewigskonsentrasie (mol·dm ⁻³)	4 - 5x 10	4 - 5x 10	х	Divide by 5 ✓

$$K_{C} = \frac{[NO]^{2}}{[N_{2}][O_{2}]}$$

$$\therefore 1,2 \times 10^{-4} \checkmark = \frac{(x)^{2}}{\left(\frac{4-5x}{10}\right)\left(\frac{4-5x}{10}\right)} \checkmark$$

 $x = 4.36 \times 10^{-3} \text{ mol} \cdot \text{dm}^{-3} \checkmark (0.004 \text{ mol} \cdot \text{dm}^{-3})$

<u>CALCULATIONS USING CONCENTRATIONS</u> BEREKENINGE WAT KONSENTRASIES GEBRUIK

Mark allocation/Puntetoekenning

- Divide n(N₂) & n(O₂) by 5 dm³. ✓
 Deel n(N₂) & n(O₂) deur 5 dm³.
- <u>USING</u> ratio/<u>GEBRUIK</u> verhouding: N₂: O₂: NO = 1:1:2 √
- Equilibrium/Ewewig: c(N₂) = initial/aanvanklik change/verandering
 Equilibrium/Ewewig: c(O₂) = initial/aanvanklik change/verandering
 Equilibrium/Ewewig: c(NO) = initial/aanvanklik + change/verandering
- Correct K_c expression (<u>formulae in square brackets</u>). ✓
 Korrekte K_c-uitdrukking (<u>formules in vierkanthakies</u>).
- Substitution of concentrations into K_c expression. ✓ *Vervanging van konsentrasies in K_c-uitdrukking.*
- Substitution of K_c value √ Vervanging van K_c-waarde
- Calculate c(NO) i.e. 2 x answer of K_c calculation. ✓ Bereken c(NO) d.i. 2 x antwoord van K_c-berekening.
- Final answer/Finale antwoord: 4,36 x 10⁻³ mol·dm⁻³ (0,004 mol·dm⁻³)

OPTION 3/OPSIE 3

	N ₂	O ₂	NO
Initial concentration (mol·dm ⁻³) Aanvangskonsentrasie (mol·dm ⁻³)	0,4	0,4	0
Change (mol·dm ⁻³) Verandering (mol·dm ⁻³)	х	х	2x
Equilibrium concentration (mol·dm ⁻³) (Ewewigskonsentrasie (mol·dm ⁻³)	0,4-x	0,4-x) ✓	2x√

Divide by 5 ✓ ratio ✓

$$K_{C} = \frac{[NO]^{2}}{[N_{2}][O_{2}]^{2}} \checkmark$$

$$\therefore 1,2 \times 10^{-4} \checkmark = \frac{(2x)^{2}}{(0,4-x)(0,4-x)} \checkmark$$

$$\therefore x = 2,18 \times 10^{-3} \text{ mol·dm}^{-3} (0,00218 \text{ mol·dm}^{-3})$$

$$\therefore [NO] = 2(2,18 \times 10^{-3}) = 4,36 \times 10^{-3} \text{ mol·dm}^{-3} \checkmark (0,004 \text{ mol·dm}^{-3})$$
(8)

7.3

(3)

[15]

7.4 Endothermic / Endotermies ✓
• (An increase in Ko implies)

• (An increase in K_C implies) an increase in concentration of products. ✓ ('n Toename in K_C impliseer)'n toename in die konsentrasie van produkte.

OR/OF

(An increase in K_C implies) that the forward reaction is favoured. ('n Toename in K_c impliseer) dat die voorwaartse reaksie bevoordeel is. OR/OF

(An increase in K_C implies) the equilibrium position shifts to the right. ('n Toename in K_c impliseer) dat die ewewigsposisie na regs geskuif het.

 An increase in temperature favours an endothermic reaction. ✓ 'n Toename in temperatuur bevoordeel die endotermiese reaksie.

QUESTION 8/VRAAG 8

8.1

8.1.1 Au³⁺ / gold(III) ion
$$\checkmark$$
 Au³⁺ / goud(III)-ioon (1)

 $2C\ell^- \rightarrow C\ell_2 + 2e^- \checkmark \checkmark$ 8.1.2

Notes/Aantekeninge
$$2C\ell^{-} = C\ell_{2} + 2e^{-} \quad (\frac{1}{2})$$

$$2C\ell^{-} \leftarrow C\ell_{2} + 2e^{-} \quad (\frac{0}{2})$$

$$C\ell_{2} + 2e^{-} \leftarrow 2C\ell^{-} \quad (\frac{2}{2})$$

$$C\ell_{2} + 2e^{-} = 2C\ell^{-} \quad (\frac{0}{2})$$
(2)

 $Pt(s) | C\ell^{-}(1 \text{ mol·dm}^{-3}) | C\ell_{2}(g) | Au^{3+}(1 \text{ mol·dm}^{-3}) | Au(s)$ 8.1.3

OR/OF

 $Pt(s) | Cl^{-}(aq) | Cl_{2}(g) || Au^{3+} (aq) | Au(s)$

OR/OF

$$Pt \mid C\ell \mid C\ell_2 \mid Au^{3+} \mid Au$$
 (3)

8.2

Option 1/Opsie 1

$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} \checkmark$$

 $0,14 \checkmark = E^{\circ}_{cathode} - (1, 36) \checkmark$
 $E^{\circ}_{cathode} = 1,50 V \checkmark$

Option 2/Opsie 2

Option 2/Opsie 2

$$\sqrt{\frac{2C\ell^{-} \rightarrow C\ell_{2} + 2e^{-}}{Au^{3+} + 3e^{-} \rightarrow Au}} \quad E^{\circ} = -1,36 \checkmark$$

$$E^{\circ} = -1,50 \checkmark$$

$$E^{\circ} = 0,14 \lor \checkmark$$
(4)

Smaller than / Kleiner as ✓ 8.3

Decrease or drop in potential difference or voltage due to internal resistance or "lost volts". ✓

Val of afname in potensiaalverskil of spanning as gevolg van interne weerstand of "velore volts".

(2)[12]

QUESTION 9/VRAAG 9

9.1 The chemical process in which <u>electrical energy is converted to chemical energy.</u>

Die chemiese proses waarin <u>elektriese energie omgeskakel word na chemiese energie</u>.

OR/OF

The use of <u>electrical energy to produce chemical change</u>. $\checkmark \checkmark$ Die gebruik van <u>elektriese energie om chemiese verandering te weeg te</u> bring.

(2)

9.2

9.2.1
$$\operatorname{Cr}^{3+} + 3e^{-} \to \operatorname{Cr}(s) \checkmark \checkmark$$
 (2)

9.2.2 Cr / chromium / chroom \checkmark (1)

9.2.3 Chromium(III) ions / chroom(III)-ione / $Cr^{3+} \checkmark$ (1)

9.3 Mark allocation/Puntetoekenning:

- $n = \frac{m}{M}$ or using ratio / of gebruik van verhouding \checkmark
- Ratio: 1: 3 (1 mole Cr³+ gains 3 mole of electrons) √
 Verhouding 1: 3 (1 mol Cr³+ neem 3 mol elektrone op)
- Using M = 52 in m = nM or in ratio calculation. \checkmark Gebruik M = 52 in m = nM of verhouding berekening.
- Final answer/Finale antwoord: 0,52 g ✓

$$n = \frac{m}{M} \checkmark$$

$$\left(\frac{0,03}{3}\right) \checkmark = \frac{m}{52} \checkmark \quad OR/OF \quad 0,01 \checkmark = \frac{m}{52} \checkmark$$

$$\therefore m = 0,52 \text{ g} \checkmark$$

OR/OF

3 mol e⁻ 52 g
$$\checkmark$$
 Cr
0,03 mol e⁻...... $\left(\frac{0,03}{3}\right)$ \checkmark (52) \checkmark = 0,52 g \checkmark

(4) [10]

QUESTION 10/VRAAG 10

10.1 A solution which conducts electricty through the movement of ions. ✓✓

'n Oplossing wat elektrisiteit gelei deur die beweging van ione. (2)

10.2 Pb(s) +
$$SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^{-} \checkmark \checkmark$$
 (2)

10.3 PbO₂(s) + Pb(s) + 2SO₄²-(aq) + 4H⁺(aq)
$$\checkmark \rightarrow$$
 2PbSO₄(s) + 2H₂O(ℓ) \checkmark bal. \checkmark

OR/OF

$$PbO_2(s) + Pb(s) + 2H_2SO_4(aq) \checkmark \rightarrow 2PbSO_4(s) + 2H_2O(\ell) \checkmark \qquad bal. \checkmark$$
 (3)

10.4

10.4.1 OPTION 1/OPSIE 1

$$Q = I\Delta t$$
 $W = VI\Delta t \checkmark$ $= (7500) \checkmark (3600) \checkmark$ $= 2.7x10^{7} C$ $W = VQ \checkmark$ $= (300) \checkmark (2.7x10^{7})$ $= 8.1 \times 10^{9} \text{ J} \checkmark$ (5)

10.4.2
$$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \checkmark$$

= +1,69 \checkmark - (-0,36) \checkmark
= +2,05 V
No. cells = $\frac{300}{2,05}$
= 146,34 cells/selle

QUESTION 11/VRAAG 11

	TOTAL SECTION B/TOTAAL AFDELING B: GRAND TOTAL/GROOTTOTAAL:	
	 Fertilisers in water leads to excess of nitrates in water ✓ resulting in blue baby syndrome / cancer. ✓ Kunsmis in water lei tot oormaat nitrate in water wat lei tot bloubabasindroom / kanker. 	
11.4	 ANY ONE IENIGE EEN Fertilisers in water leads to eutrophication which can result in less drinking water / starvation due to dying of fish / less water recreation areas. ✓ Kunsmis in water lei tot eutrofisering / eutrofikasie wat minder drinkwater // hongersnood weens visvrektes /minder ontspanningsgebiede tot gevolg kan hê. 	
11.3	The fertiliser <u>contains</u> two primary nutrients <u>N/nitrogen and P/ phosphorous</u> , ✓ whereas the <u>ammonium nitrate</u> contains <u>only N/nitrogen</u> . ✓ Die kunsmis <u>bevat</u> twee primêre nutriente <u>N en P</u> terwyl <u>ammoniumnitraat slegs N</u> bevat.	
11.2.2	$N_2(g) + 3H_2(g) \checkmark = 2NH_3(g) \checkmark$ bal. \checkmark	
11.2 11.2.1	Haber (process)/(proses) ✓	
11.1.3	Potassium / <i>Kalium</i> / K ✓	
11.1.2	Nitrogen / Stikstof / N ✓	
11.1 11.1.1	Phosphorous / Fosfor / P ✓	