Introduction to Algorithms 6.046J/18.401J

Lecture 24
Prof. Piotr Indyk

Dealing with Hard Problems

- What to do if:
 - Divide and conquer
 - Dynamic programming
 - Greedy
 - Linear Programming/Network Flows

— . . .

does not give a polynomial time algorithm?

Dealing with Hard Problems

- Solution I: Ignore the problem
 - Can't do it! There are thousands of problems for which we do not know polynomial time algorithms
 - For example:
 - Traveling Salesman Problem (TSP)
 - Set Cover

Traveling Salesman Problem

- Traveling Salesman Problem (TSP)
 - Input: undirected graph with lengths on edges
 - Output: shortest cycle that visits each vertex exactly once
- Best known algorithm:
 O(n 2ⁿ) time.

Set Covering

- Set Cover:
 - Input: subsets $S_1...S_n$ of X, $\bigcup_i S_i = X$, |X| = m
 - Output: $C \subseteq \{1...n\}$, such that $\bigcup_{i \in C} S_i = X$, and |C| minimal
- Best known algorithm:
 O(2ⁿ m) time(?)

Bank robbery problem:

- X={plan, shoot, safe, drive, scary}
- Sets:
 - $-S_{Joe} = \{plan, safe\}$
 - S_{Jim}={shoot, scary, drive}

—

Dealing with Hard Problems

- Exponential time algorithms for small inputs. E.g., $(100/99)^n$ time is not bad for n < 1000.
- Polynomial time algorithms for some (e.g., average-case) inputs
- Polynomial time algorithms for all inputs, but which return approximate solutions

Approximation Algorithms

- An algorithm A is ρ-approximate, if, on any input of size n:
 - The cost C_A of the solution produced by the algorithm, and
 - The cost C_{OPT} of the optimal solution are such that $C_A \le \rho C_{OPT}$
- We will see:
 - 2-approximation algorithm for TSP in the plane
 - ln(m)-approximation algorithm for Set Cover

Comments on Approximation

- " $C_A \le \rho C_{OPT}$ " makes sense only for minimization problems
- For maximization problems, replace by ${}^{\circ}C_A \ge 1/\rho C_{OPT}$
- Additive approximation " $C_A \le \rho + C_{OPT}$ " also makes sense, although difficult to achieve

2-approximation for TSP

- Compute MST T
 - An edge between any pair of points
 - Weight = distance between endpoints
- Compute a tree-walk W of T
 - Each edge visited twice
- Convert W into a cycle C using shortcuts

2-approximation: Proof

- Let C_{OPT} be the optimal cycle
- $Cost(T) \le Cost(C_{OPT})$
 - Removing an edge from C gives a spanning tree, T is a spanning tree of minimum cost
- Cost(W) = 2 Cost(T)
 - Each edge visited twice
- $Cost(C) \le Cost(W)$
 - Triangle inequality
- \Rightarrow Cost(C) \leq 2 Cost(C_{OPT})

Approximation for Set Cover

Greedy algorithm:

- Initialize C=Ø
- Repeat until all elements are covered:
 - Choose S_i which contains largest number of yet-not-covered elements
 - Add i to C
 - Mark all elements in S_i as covered

Greedy Algorithm: Example

- $X=\{1,2,3,4,5,6\}$
- Sets:

$$-S_1 = \{1,2\}$$

$$-S_2 = \{3,4\}$$

$$-S_3 = \{5,6\}$$

$$-S_4=\{1,3,5\}$$

- Algorithm picks $C=\{4,1,2,3\}$
- Not optimal!

In(m)-approximation

- Notation:
 - $-C_{OPT} = optimal cover$
 - $-k=|C_{OPT}|$
- Fact: At any iteration of the algorithm, there exists S_j which contains at $\geq 1/k$ fraction of yet-not-covered elements
- Proof: by contradiction.
 - If all sets cover $\leq 1/k$ fraction of yet-not-covered elements, there is no way to cover them using k sets
 - But C_{OPT} does that !
- Therefore, at each iteration greedy covers $\geq 1/k$ fraction of yet-not-covered elements

ln(m)-approximation

- Let u_i be the number of yet-not-covered elements at the end of step i=0,1,2,...
- We have

$$u_{i+1} \leq u_i (1-1/k)$$

$$u_0 = m$$

• Therefore, after $t=k \ln m$ steps, we have

$$u_t \le u_0 (1-1/k)^t \le m (1-1/k)^{k \ln m} \le m 1/e^{\ln m} = 1$$

- I.e., all elements are covered by the k ln m sets chosen by greedy algorithm
- Opt size is $k \Rightarrow$ greedy is ln(m)-approximate

Approximation Algorithms

- Very rich area
 - Algorithms use greedy, linear programming, dynamic programming
 - E.g., 1.01-approximate TSP in the plane
 - Sometimes can show that approximating a problem is as hard as finding exact solution!
 - E.g., 0.99 ln(m)-approximate Set Cover