

Course Methods test 2 Year 12

Student name: Teacher name:	
Task type:	Response
Time allowed for this task:40 mins	
Number of questions:8	
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	41 marks
Task weighting:	_10%
Formula sheet provided: Yes	
Note: All part questions worth more than 2 marks require working to obtain full marks.	

Q1 (3 & 3 = 6 marks) (3.2.9)

Determine y in terms of x for the following. Show all working.

a)
$$\frac{dy}{dx} = 15x^2 + 14x$$
 and $y = 13$ when $x = 1$.

$$\frac{dy}{dx} = 15x^2 + 14x$$

$$y = 5x^3 + 7x^2 + C$$

$$13 = 5 + 7 + C$$

$$C = 1$$

$$y = 5x^3 + 7x^2 + 1$$

Specific behaviours

- ✓ anti-diffs terms
- ✓ introduces an unknown constant and subs to solve
- ✓ states value of constant

b)
$$\frac{dy}{dx} = 10(2x+1)^4$$
 and $y = 10$ when $x = -1$.

$$\frac{dy}{dx} = 10(2x+1)^4$$

$$y = \frac{10(2x+1)^5}{2(5)} + C = (2x+1)^5 + C$$

$$10 = (-1)^5 + C$$

$$C = 11$$

$$y = (2x+1)^5 + 11$$

Specific behaviours

- ✓ anti-diffs terms
- ✓ introduces an unknown constant and subs to solve
- ✓ states value of constant

Q2 (3 & 2 = 5 marks) (3.2.22, 3.2.5)

A car travels in a straight line from the origin, initially at rest, with constant acceleration $\frac{4\cos(3t)m}{s^2}$ with *t* time in seconds.

a) Determine the distance from the origin at

Solution

$$a = 4\cos(3t)$$

$$v = \frac{4}{3}\sin(3t) + c$$

$$t = 0, v = 0$$

$$0 = 0 + c$$

$$c = 0$$

$$x = \frac{-4}{9}\cos(3t) + k$$

$$t = 0, x = 0$$

$$0 = \frac{-4}{9} + k$$

$$k = \frac{4}{9}$$

$$k = \frac{4}{9}$$

$$x = \frac{-4}{9}\cos(3t) + \frac{4}{9}$$

$$t = \frac{\pi}{3}$$

$$t = \frac{\pi}{3}$$

$$x = \frac{4}{9} + \frac{4}{9} = \frac{8}{9}m$$

Specific behaviours

- ✓ integrates to find v and shows solving for constant with subs
- \checkmark states the correct rule for x
- ✓ states exact value for x at required time, no need for units
- b) What is the velocity of the car at

Solution

$$v = \frac{4}{3}\sin(3t)$$

$$t = \frac{\pi}{3}$$

$$v = 0$$
Specific behaviours

✓ subs into v
✓ states velocity, no need for units

Q3 (2 marks) (3.2.19)

Determine the exact area between $y = x^3 + x^2 - 37x + 35$ and the x axis from x = -10 to x = 10.

Q4 (2, 2 & 3 = 7 marks) (3.2.18)

A factory produces electric vehicles. The total number, $\,E$, that the company has produced $\,^t$ months after production commenced is such that:

$$\frac{dP}{dt} = 450 - \frac{800}{(t+5)^3}$$

Determine the number produced in

a) The first 6 months

Solution

b) The third month

Determine the minimum number of months required to produce:

c) 10000 vehicles.

Q5 (5 & 3 = 8 marks) (3.2.20)

a) On the axes below, sketch the following graphs: $y = x^3 + 2x^2$ and $y = 5x - 2x^2$. Indicate on your sketch coordinates (one decimal place) of any stationary points and label their nature and of any points where the graphs intersect each other.

NOTE: follow through does not apply if mistake makes easier!

b) Determine the exact area between $y = x^3 + 2x^2$ and $y = 5x - 2x^2$.

Q6 (2 & 2 = 4 marks) (3.1.3, 3.1.4)

The number of kangaroos, N in a particular site that have developed disease W are increasing such $\frac{dN}{dN} = 0.08N$

that dt with t the time in years. There are initially 2300 kangaroos.

a) Determine the number of kangaroos with disease W in 5 years' time.

Solution

b) Determine the time taken (years in one decimal place) to triple the number with the disease.

Q7 (4 marks) (3.2.16)

Consider the function $G(x) = \int_{0}^{x} f(t)dt$ such that $G''(x) = \frac{3}{4x^{\frac{5}{2}}}$ and $G(4) = \frac{79}{2}$

Determine the rule for the function f(x).

Solution
$$G(x) = \int_{0}^{x} f(t)dt$$

$$G'(x) = f(x)$$

$$G''(x) = f'(x)$$

$$f'(x) = \frac{3}{4}x^{\frac{-5}{2}}$$

$$f(x) = \frac{-2}{3}\left(\frac{3}{4}\right)x^{\frac{-3}{2}} + c = \frac{-1}{2}x^{\frac{-3}{2}} + c$$

$$\int_{0}^{x} f(t)dt = \frac{79}{2} = \left[x^{\frac{-1}{2}} + cx\right]_{1}^{4} = \left(\frac{1}{2} + 4c\right) - (1+c) = 3c - \frac{1}{2}$$

$$c = \frac{40}{3}$$

$$f(x) = \frac{-1}{2x^{\frac{3}{2}}} + \frac{40}{3}$$

Specific behaviours

- ✓ uses fundamental theorem to express G'' = f'
- \checkmark integrates to express f in terms of x and a constant
- ✓ uses definite integral to set up equation for constant
- \checkmark solves for constant and express f in terms of x in full.

Q8 (5 marks) (3.1.15)

Consider the function $f(x) = ax^3 + bx^2 + cx + d$ where a, b, c & d are constants.

Below is a graph of f(x) y y = f(x) y = f(x)

There is an x intercept at x = -4, y intercept at y = 24 and $\int_{4}^{8} f(x) dx = \frac{368}{3}$.

There is an inflection point at

Determine the exact values of a, b, c & d.

Eq 1 times 2

$$0 = -128a + 32b - 8c + 48$$

$$\frac{-368}{3} = 64a - \frac{64}{3}b + 8c - 96$$

$$add$$

$$\frac{-368}{3} = -64a + \frac{32}{3}b - 48$$

$$a = -b$$

$$\frac{-368}{3} = 64b + \frac{32}{3}b - 48$$

$$\left(\frac{-368}{3} + 48\right) = \frac{224}{3}b$$

$$\frac{-224}{3} = \frac{224}{3}b$$

$$b = -1$$

$$a = 1$$

$$a = 1, b = -1, c = -14 & d = 24$$

Specific behaviours

- ✓ solves for d
- ✓ derives a = -b using inflection point
- ✓ sets up linear equation using x intercept
- ✓ uses definite integral and then integrates and sets ups a linear equation for unknowns
- ✓ states values for all 4 unknowns

NOTE: follow through does not apply if mistake makes easier!