

Gazi Üniversitesi Teknoloji Fakültesi Bilgisayar Mühendisliği Bölümü

Sayısal Elektronik Devreler Laboratuvarı Ödevi

-Ders notunda verilen uygulamalar

Hazırlayan Özgür Sadık Utku 181816072

11.HAFTA

11.1 Moore Makinaları

```
23 - module ozgur_Moore(din,clk,reset,y);
24 input din,clk,reset;
25 ; output reg y;
26 parameter S0=3'b000, S1=3'b001, S2=3'b010, S3=3'b011,
27
      S4=3'b100,S5=3'b101,S6=3'b110,S7=3'b111;
28 reg [2:0] gelecekDurum;
29 🖨 always @(posedge clk)
30 🖯 begin
31 🤤 if (reset)
32 😑
       begin
33
       gelecekDurum=S0;
34
       y=0;
       end
35 🖨
36 ¦
37 ⊡
        else
       begin
       case(gelecekDurum)
38 🖨
39 🖨
          S0:begin
            y=0;
40
41 🖨
            if(din==0)
42
            gelecekDurum=S1;
            else
44 🗀
            gelecekDurum=S0;
45 🗀
            end
46 🖯
            S1:begin
           y=0;
48 🖨
            if(din==0)
49
50
            gelecekDurum=S2;
            else
51 🗀
            gelecekDurum=S3;
52 🖒
            end
53 🖯
            S2:begin
54
            y=0;
55 🖨
            if(din==0)
56
            gelecekDurum=S4;
57
            else
58 🗀
            gelecekDurum=S3;
59 🖒
            end
60 🖯
            S3:begin
61
            y=0;
62 🖨
            if(din==0)
63
            gelecekDurum=S5;
64
            else
            gelecekDurum=S0;
65 🗀
66 🖒
            end
67 🖯
            S4:begin
```

```
68
             y=0;
69 🖯
             if(din==0)
70
             gelecekDurum=S4;
71 ;
             else
72 🗅
73 🖨
             gelecekDurum=S6;
             end
74 🖯
             S5:begin
75
             y=0;
76 🖯
             if(din==0)
77 :
             gelecekDurum=S2;
78
             else
79 🖨
             gelecekDurum=S7;
80 🖨
             end
81 🖯
             S6:begin
             y=0;
82
83 🖯
             if(din==0)
84
             gelecekDurum=S5;
85 :
             else
86 🖨
             gelecekDurum=S0;
             end
             S7:begin
             y=1;
90 🖯
             if(din==0)
91
             gelecekDurum=S5;
92 :
             else
93 🖒
             gelecekDurum=S0;
94 🗀
             end
95 🗁
         endcase
96 🖨
         end
97 🗀 end
98 endmodule
```


Şematik

IP Bloğu

Similasyon Sonucu

11.2 Mealy Makinaları

```
22 ;
23  module ozgur_Mealy(din,clk,reset,y);
24
      input din,clk,reset;
     output reg y;
parameter S0=3'b000,S1=3'b001,S2=3'b010,S3=3'b011,
S4=3'b100,S5=3'b101;
25
26
28 reg [2:0] gelecekDurum;
29 always @(posedge clk)
30 begin
         egin
if(reset)
begin
gelecekDurum=S0;
y=0;
end
else
case/ar-
31 (<del>-</del>)
32 (<del>-</del>)
33
35 (=)
36 --
37 (=)
38 (=)
39 (=)
           case(gelecekDurum)
                S0:begin
                           if(din==0)
40 Ö
                           begin
41
                           gelecekDurum=S1;
                           y=0;
43 🖨
                           end
44
                           else
45 🖨
                           begin
46
                           gelecekDurum=S0;
47
                           y=0;
48 🗀
                           end
49 🗀
                           end
50 🖨
                 S1:begin
51 🖯
                          if(din==0)
52 🖨
                          begin
53
                           gelecekDurum=S3;
54
                          y=0;
55 🗀
                           end
56
                           else
57 🖨
                           begin
58 :
                           gelecekDurum=S2;
                           y=0;
60 🖨
                           end
61 🖨
                           end
62 🖯
                 S2:begin
63 E
                           if(din==0)
64 🖨
                           begin
65
                           gelecekDurum=S5;
66
                           v=0;
67 🗀
                           end
```

```
68
                    else
69 🖯
                    begin
70 :
                    gelecekDurum=S0;
71
                    y=0;
72 🗀
                    end
73 🖨
                    end
74 🖯
            S3:begin
75 🖨
                    if(din==0)
76 🖯
                    begin
77 :
                    gelecekDurum=S4;
78
                    y=0;
79 🖨
                    end
80 !
                    else
81 🖯
                   begin
82
                    gelecekDurum=S2;
83 ;
                    y=0;
84 🖒
                    end
85 🖨
                    end
86 🖨
            S4:begin
87 🖨
                    if(din==0)
88 🖯
                    begin
89
                    gelecekDurum=S4;
90 ;
                    y=0;
91 🖨
                     end
 92 ;
                     else
 93 🖯
                     begin
 94
                     gelecekDurum=S2;
 95
                     y=1;
 96 🖨
                     end
97 A
                     end
 98 🖨
              S5:begin
 99 🖯
                     if (din==0)
100 🖨
                    begin
101
                     gelecekDurum=S3;
102
                     y=0;
103 🖨
                     end
104 :
                     else
105 🖨
                     begin
106 :
                     gelecekDurum=S2;
107
                     y=0;
108
                     end
109 🖨
                     end
110 🖨
         endcase
111 @ end
112 endmodule
```


Şematik

IP Bloğu

Similasyon Sonucu

12.HAFTA

12.1 FIFO(First In First Out)

```
23 
module ozgur_FIFO(Clk,dataIn,RD,WR,EN,
24 dataOut,Rst,bos,dolu);
    input Clk, RD, WR, EN, Rst;
25
26 | output bos,dolu;
27 input [31:0] dataIn;
28 | output reg [31:0] dataOut;
29 reg[2:0] Sayac=0;
30 | reg [31:0] FIFO [0:7];
31 reg [2:0] okumaSayaci=0, yazmaSayaci=0;
32 | assign bos = (Sayac==0) ? 1'b1:1'b0;
33 assign dolu =(Sayac==8) ? 1'b1:1'b0;
34 🖨 always@(posedge Clk)
35 🖯 begin
36  if (EN==0);
37 ⊖ else begin
38 🖨 if(Rst) begin
39    okumaSayaci=0;
40    yazmaSayaci=0;
40 ; yazmaSayaci=0;
41 \stackrel{\frown}{\ominus} end
42 - else if (RD==1'bl && Sayac!=0) begin
43 dataOut=FIFO[okumaSayaci];
44 okumaSayaci=okumaSayaci+1;
```

```
45 🗎 end
46 else if (WR==1'bl && Sayac<8) begin
47 | FIFO[yazmaSayaci] = dataIn;
48 | yazmaSayaci= yazmaSayaci+1;
49 end
50 @ else;
51 🖨 end
52 - if (yazmaSayaci==8)
53 yazmaSayaci=0;
54 - else if(okumaSayaci==8)
55 okumaSayaci=0;
56 else;
57 - if(okumaSayaci>yazmaSayaci) begin
58 Sayac=okumaSayaci-yazmaSayaci;
59 @ end
60 else if (yazmaSayaci>okumaSayaci)
61 Sayac=yazmaSayaci-okumaSayaci;
62 	☐ else;
63 🖨 end
64 @ endmodule
```


Şematik

IP Bloğu

Similasyon Sonucu

13.HAFTA

13.1 Trafik İşığı

```
23 - module ozgur_trafik_isigi(light_highway, light_farm, C, clk, rst_n);
24 parameter HGRE_FRED=2'b00, // Highway green and farm red
25
      HYEL_FRED = 2'b01, // Highway yellow and farm red
26
        HRED_FGRE=2'bl0,// Highway red and farm green
27
       HRED_FYEL=2'bl1;// Highway red and farm yellow
28 : input C, // sensor
29 i
      clk, // clock = 50 MHz
       rst_n; // reset active low
30
31
     output reg[2:0] light_highway, light_farm; // output of lights
32 1
     // fpga4student.com FPGA projects, VHDL projects, Verilog projects
    reg[27:0] count=0,count_delay=0;
34 ;
     reg delay10s=0, delay3s1=0,delay3s2=0,RED_count_en=0,YELLOW_count_en1=0,YELLOW_count_en2=0;
     wire clk_enable; // clock enable signal for 1s
36
    reg[1:0] state, next_state;
37
     // next state
38 🖨 always @(posedge clk or negedge rst_n)
39 🖯 begin
40 - if (~rst_n)
41
     state <= 2'b00;
    else
43  state <= next_state;
44 🗀 end
```

```
45 // FSM
46 □ always @(*)
47 🖯 begin
48 - case (state)
49 - HGRE FRED: begin // Green on highway and red on farm way
    RED_count_en=0;
     YELLOW_count_en1=0;
51
    YELLOW_count_en2=0;
52 '
53 | light highway = 3'b001;
54
    light_farm = 3'bl00;
55 = if(C) next_state = HYEL_FRED;
56 - // if sensor detects vehicles on farm road,
57 @ // turn highway to yellow -> green
58 else next_state =HGRE_FRED;
59 end
60 - HYEL FRED: begin// yellow on highway and red on farm way
61
     light_highway = 3'b010;
     light_farm = 3'bl00;
62
63
     RED_count_en=0;
64 YELLOW_count_enl=1;
    YELLOW_count_en2=0;
67 : // yellow for 3s, then red
68 else next_state = HYEL_FRED;
70 HRED_FGRE: begin// red on highway and green on farm way
    light_highway = 3'bl00;
72
     light_farm = 3'b001;
73 | RED_count_en=1;
74
     YELLOW count en1=0;
75 YELLOW_count_en2=0;
76 - if(delay10s) next state = HRED FYEL;
77 // red in 10s then turn to yello -> green again for high way
78 else next state =HRED FGRE;
79 🖨 end
80 - HRED_FYEL:begin// red on highway and yellow on farm way
81 | light_highway = 3'bl00;
     light farm = 3'b010;
82 :
    RED count en=0;
84 :
    YELLOW count enl=0;
    YELLOW_count_en2=1;
86  if(delay3s2) next_state = HGRE_FRED;
87 ! // turn green for highway, red for farm road
88 else next_state =HRED_FYEL;
89 🗀 end
90 | default: next_state = HGRE_FRED;
```

```
91 endcase
 92 (-) end
 93 🗇 // fpga4student.com FPGA projects, VHDL projects, Verilog projects
 94 A // create red and yellow delay counts
 95 always @(posedge clk)
 96 Degin
 97 - if(clk_enable==1) begin
 98 if (RED_count_en||YELLOW_count_en1||YELLOW_count_en2)
99 🗀
      count delay <=count delay + 1;
if ((count_delay == 9) &&RED_count_en)
101 🖯
      begin
102
       delay10s=1;
103 '
       delay3s1=0;
104
       delay3s2=0;
       count_delay<=0;
105
106 🗀
      end
107 🖨
       else if((count delay == 2)&&YELLOW count enl)
108 □ begin
109
       delay10s=0;
110 !
       delay3s1=1;
       delay3s2=0;
111
112
       count delay<=0;
      end
113 🗀
114 = else if((count_delay == 2)&&YELLOW_count_en2)
115 🖯 begin
     delay10s=0;
116
117 :
       delay3s1=0;
118
       delay3s2=1;
       count_delay<=0;
119
120 ← end
121
       else
122 🖯 begin
123
      delay10s=0;
       delay3s1=0;
125
       delay3s2=0;
126 🖨 end
127 @ end
128 🖨 end
129 // create 1s clock enable
130 🖯 always @(posedge clk)
131 🖯 begin
132 | count <=count + 1;
      //if(count == 50000000) // 50,000,000 for 50 MHz clock running on real FPGA
134 □ if(count == 3) // for testbench
135 count <= 0;
136 🗀 end
137 assign clk enable = count==3 ? 1: 0; // 50,000,000 for 50MHz running on FPGA
138 @ endmodule
```


Şematik

IP Bloğu

Similasyon Sonucu

15.HAFTA

IP Bloğu

IP Nasıl Kaydedilir

Yeni IP paketi oluşturulur.

Next diyerek devam edilir.

Package your current project seçilir ve next diyerek devam edilir

Include xci files seçeneği seçilir ve next diyerek devam edilir.

Finish butonuna basılarak IP oluşturulması tamamlanır.

Açılan pencerede "Review and Package" bölümünden "Package IP" yapılır ve kaydedilir.

