Chapter 2 Exercises

1. Translate the expressions into MATLAB commands and find their values.

(a)
$$5 + 18$$

(f)
$$\frac{\frac{3}{4}+2}{1+2}$$

(j)
$$\sqrt{5+\sqrt{3}}$$

Basics

(b)
$$\frac{32}{7}$$

22

2.7

(g)
$$\sqrt{3^2+4}$$

(J)
$$\sqrt{3} + \sqrt{6}$$

 $\sin^2(\frac{1}{8})$

(c)
$$\frac{4}{5} \times 8$$

(1)
$$-\frac{\sqrt{3}}{2}$$

(d)
$$\frac{3+5\times7}{6}$$
 (e) $\frac{12-7}{4+8}$

(g)
$$\sqrt{3^2 + 4^2}$$

(h) $\frac{\sqrt{2}}{2}$
(i) $\frac{\sqrt{2} - \frac{1}{2}}{3 + \sqrt{3}}$

(m)
$$\ln \left(\pi^4\right)$$

2. Analyze the errors generated by the following expressions. Explain the errors (or lack of error!) and offer possible ways to correct them.

(c)
$$x + 7$$

(b)
$$log(-5)$$

(d)
$$sin(30,45)$$

$$(f) \cos(0.7)$$

3. Use the quadratic formula to find the zeros of the following quadratics:

(a)
$$3x^2 - 6x + 2$$

(c)
$$-6x(2+4x)+3$$

(e)
$$5x^2 - 125$$

(b)
$$x^2 + 7x + 12$$

(c)
$$-6x(2+4x) + 3$$
 (e) $5x^2 - 125$
(d) $\frac{3}{5}x^2 + \frac{\pi}{7} - \sqrt{2}$ (f) $x^2 + 4$

(f)
$$x^2 + 4$$

Recall that

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

4. Create a plot for the following data:

x	-1	1	3	7	9	10
y	12	-4	10	8	5	2

Your plot markers should be red circles with Linewidth of 2. Label the 'x', and 'y' axes.

5. Create a plot for the following data:

x	-1	1	3	7	9	10
$\mathbf{y_1}$	12	-4	10	8	5	2
$\mathbf{y_2}$	-2	0	3	3.5	7	9

The y_1 markers should be blue plus signs and the y_2 markers should be red circles.

- 6. Plot the following functions all on the same figure from x = -6 to x = 6:
 - (a) $f_1(x) = \frac{5}{3}\sin(3x)$
 - (b) $f_2(x) = \frac{1}{4}x 2$
 - (c) $f_3(x) = \cos(\frac{x}{3})$

Search the MATLAB documentation for the legend function, or use help legend at the command prompt, and add a legend to your plot with the labels f_1, f_2, f_3 .

7. Plot the function

$$f(x) = \begin{cases} 3 & x \le 2 \\ 5 - x & 2 < x \le 6 \\ x - 7 & 6 < x \end{cases}$$

from x = 0 to x = 10.

- 8. When creating a plot, for example plot(x,cos(x)), exactly how many points will be in our plot if we use x = [pi: 0.2: 3*pi]?
- 9. Write the commands to recreate the following plot:

10. Drop a bouncy ball from a height h_{drop} and record how high it bounces on the first bounce, h_{bounce} . Repeat for various heights and plot h_{bounce} as a function of h_{drop} . Analyze your data. Make a prediction for a drop height you haven't tried, and then test your prediction.