MACS 201: Hilbert spaces and probability

1 Hilbert spaces

Def. Let \mathcal{H} be a complex linear space. An **inner-product** on \mathcal{H} is a function $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbf{C}$ which satisfies the following properties :

- (i) $\forall (x, y) \in \mathcal{H} \times \mathcal{H}, \langle x \mid y \rangle = \overline{\langle y \mid x \rangle},$
- (ii) $\forall x, y, z \in \mathcal{H} \forall (\alpha, \beta) \in \mathbf{C} \times \mathbf{C}, \langle \alpha x + \beta y \mid z \rangle = \alpha \langle x \mid z \rangle + \beta \langle y \mid z \rangle$,
- (iii) $\forall x \in \mathcal{H}, (\langle x \mid x \rangle = 0) \iff (x = 0)$

Then $\|\cdot\|: x \mapsto \sqrt{\langle x \mid x \rangle} \geqslant 0$ defines a norm on \mathcal{H} . Both are continuous.

Th. For all $x, y \in \mathcal{H}$, we have:

- a) Cauchy-Schwarz inequality: $|\langle x \mid y \rangle| \leq ||x|| \cdot ||y||$,
- b) triangular inequality: $|||x|| ||y|| \le ||x y|| \le ||x|| + ||y||$,
- c) Parallelogram inequality: $||x + y||^2 + ||x y||^2 = 2 ||x||^2 + 2 ||y||^2$.

Def. An inner-product space \mathcal{H} is called an Hilbert space if it is complete.

Prop. For all measured space $(\Omega, \mathcal{F}, \mu)$, the space $L^2(\Omega, \mathcal{F}, \mu)$ endowed with $\langle f \mid g \rangle = \int f \bar{g} \, d\mu$ is a Hilbert space.

Def. Two vectors $x, y \in \mathcal{H}$ are orthogonal if $\langle x \mid y \rangle = 0$ which we denoted by $x \perp y$. If \mathcal{S} is a subspace of \mathcal{H} , we write $x \perp \mathcal{S}$ if $\forall s \in \mathcal{S}, x \perp s$. Also we write $\mathcal{S} \perp \mathcal{T}$ if all vectors in \mathcal{S} are orthogonal to \mathcal{T} .

Not. If $\mathcal{H} = \mathcal{A} + \mathcal{B}$ and $\mathcal{A} \perp \mathcal{B}$ we will denote $\mathcal{H} = \mathcal{A} \stackrel{\perp}{\oplus} \mathcal{B}$.

Def. Let \mathcal{E} be a subset of an Hilbert space \mathcal{H} . The orthogonal set of \mathcal{E} is defined as $\mathcal{E} = \{x \in \mathcal{H} \mid \forall y \in \mathcal{E}, \langle x \mid y \rangle = 0\}$.

Th. If \mathcal{E} is a subset of an Hilbert space \mathcal{H} , then \mathcal{E}^{\perp} is closed.

Def. Let E be a subset of \mathcal{H} . It is an orthogonal set if for all $(x,y) \in E \times E, x \neq y, x \perp y$. If moreover $\forall x \in E, ||x|| = 1$, we say that E is orthonormal.

2 Probability

Th $(\pi - \lambda \text{ theorem})$. If $A \subset C$ with A a π -system and C a λ -system, then $\sigma(A) = C$.

Th. Let C be a π -system on Ω and $\mathcal{F} = \sigma(C)$ the smallest σ -field containing C. Then a probability measure μ on (Ω, \mathcal{F}) is uniquely characterized by $\mu(A)$ on $A \in C$.

Def. Let $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ and \mathcal{G} a sub- σ -field of \mathcal{F} .