

Chapitre 2 Polynômes du second degré

Table des matières

1	Factorisation des polynômes du second degré	2
2	Racines d'un polynôme du second degré	2
3	Signe d'un polynôme du second degré	5
4	Variations d'un polynôme du second degré	6
5	Complément sur les équations de degré supérieur	8
	5.1 Équations de degré 3	8
	5.2 Équations de degré 4	9

1 Factorisation des polynômes du second degré

Dans tout ce chapitre, a, b et c désignent des réels avec $a \neq 0$.

Définition 1

On appelle **discriminant** du polynôme $ax^2 + bx + c$ le nombre réel Δ défini par :

$$\Delta = b^2 - 4ac$$

Propriété 1 – (admise)

On considère le polynôme du second degré $ax^2 + bx + c$ (avec $a, b, c \in \mathbb{R}$ et $a \neq 0$).

• Si
$$\Delta > 0$$
, en posant $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$, on a :

Pour tout
$$x \in \mathbb{R}$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

• Si
$$\Delta = 0$$
, en posant $x_0 = -\frac{b}{2a}$, on a :

Pour tout
$$x \in \mathbb{R}$$
, $ax^2 + bx + c = a(x - x_0)^2$.

• Si $\Delta < 0$, $ax^2 + bx + c$ n'est pas factorisable comme produit de deux polynômes de degré 1.

2 Racines d'un polynôme du second degré

Définition 2

Les solutions de l'équation $ax^2 + bx + c = 0$ sont appelées les **racines** du polyôme $ax^2 + bx + c$.

Propriété 2

On considère l'équation $ax^2 + bx + c = 0$ (avec $a, b, c \in \mathbb{R}$ et $a \neq 0$) où l'inconnue est $x \in \mathbb{R}$.

- Si $\Delta>0,$ alors l'équation admet deux solutions réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, alors l'équation admet une unique solution réelle : $x_0 = \frac{-b}{2a}$.
- Si $\Delta < 0$, alors l'équation n'admet aucune solution réelle.

Démonstration.

Soient $a, b, c \in \mathbb{R}$ avec $a \neq 0$.

Soit $x \in \mathbb{R}$. D'après la démonstration de la propriété 2 :

• Si $\Delta > 0$,

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}).$$

avec
$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.
En utilisant la règle du produit nul :

$$ax^{2} + bx + c = 0 \iff a(x - x_{1})(x - x_{2}) = 0$$

 $\iff x - x_{1} = 0 \text{ ou } x - x_{2} = 0.$
 $\iff x = x_{1} \text{ ou } x = x_{2}.$
 $\iff x = \frac{-b - \sqrt{\Delta}}{2a} \text{ ou } x = \frac{-b + \sqrt{\Delta}}{2a}.$

• Si $\Delta = 0$,

$$ax^2 + bx + c = a(x - x_0)^2$$
.

avec
$$x_0 = \frac{-b}{2a}$$
.

avec $x_0 = \frac{-b}{2a}$. En utilisant la règle du produit nul :

$$ax^{2} + bx + c = 0 \iff a(x - x_{0})^{2} = 0$$

$$\iff x - x_{0} = 0$$

$$\iff x = \frac{-b}{2a}$$

• On admettra que si $\Delta < 0$, l'équation $ax^2 + bx + c = 0$ n'admet pas de solution.

Exemple.

Résoudre l'équation $x^2 + x - 1 = 0$.

Solution:

 $\Delta = b^2 - 4ac = 1^2 - 4 \times 1 \times (-1) = 5$. Ainsi, l'équation admet deux solutions :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-1 + \sqrt{5}}{2}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-1 - \sqrt{5}}{2}$$

Propriété 3 – Relations coefficients/racines

Si le polynôme $ax^2 + bx + c$ admet deux racines x_1 et x_2 (avec éventuellement $x_1 = x_2$), alors

$$\begin{cases} x_1 + x_2 &= -\frac{b}{a} \\ \text{et} \\ x_1 x_2 &= \frac{c}{a} \end{cases}$$

Démonstration.

Soit $f(x) = ax^2 + bx + c$.

Comme x_1 et x_2 sont les racines de f, on sait que f se factorise de la façon suivante : $f(x) = a(x - x_1)(x - x_2)$.

En développant, on obtient

$$f(x) = a(x^2 - x_1x - x_2x + x_1x_2)$$

= $ax^2 - a(x_1 + x_2)x + ax_1x_2$.

Ainsi, en identifiant les coefficients, on obtient

$$\begin{cases}
-a(x_1 + x_2) &= b \\
et \\
ax_1x_2 &= c
\end{cases}$$

Par conséquent,

$$\begin{cases} x_1 + x_2 &= -\frac{b}{a} \\ \text{et} \\ x_1 x_2 &= \frac{c}{a} \end{cases}$$

Exemple.

Résoudre l'équation $x^2 - 6x + 5 = 0$ en commençant par remarquer que 1 est une racine « évidente ».

Solution:

1 est une racine évidente car $1^2 - 6 \times 1 + 5 = 0$.

Comme on sait que le produit des racines $x_1 \times x_2 = 5$, on en déduit que $x_2 = \frac{5}{x_1} = 5$ est la deuxième racine.

3 Signe d'un polynôme du second degré

Propriété 4

Le tableau de signe de $ax^2 + bx + c$ dépend du signe de a et de Δ :

	a > 0	a < 0			
$\Delta > 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\Delta = 0$	$ \begin{array}{c cccc} x & -\infty & x_0 & +\infty \\ \hline f(x) & + & 0 & + \end{array} $	$ \begin{array}{c cccc} x & -\infty & x_0 & +\infty \\ \hline f(x) & -0 & - \end{array} $			
$\Delta < 0$	$ \begin{array}{c cc} x & -\infty & +\infty \\ \hline f(x) & + \end{array} $	$ \begin{array}{c ccc} x & -\infty & +\infty \\ \hline f(x) & - & \\ \end{array} $			

Démonstration.

La démonstration découle directement de la factorisation des polynômes (propriété 2).

Par exemple, dans le cas où $\Delta > 0$ et a > 0:

pour tout $x \in \mathbb{R}$, $ax^2 + bx + c = a(x - x_1)(x - x_2)$.

On peut donc établir le tableau de signes suivant :

x	$-\infty$		x_1		x_2		$+\infty$
a		+		+		+	
$x - x_1$		_	0	+		+	
$x-x_2$		_		_	0	+	
$a(x-x_1)(x-x_2)$		+	0	_	0	+	

Les autres cas se traitent de la même manière.

Exemple.

Résoudre l'inéquation $2x^2 - 5x + 1 < 0$.

Solution:

On cherche les racines de $2x^2 - 5x + 1$:

$$\Delta = (-5)^2 - 4 \times 2 \times 1 = 17 > 0.$$

Ainsi, les deux racines sont

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{5 - \sqrt{17}}{4}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{5 + \sqrt{17}}{4}$

Par ailleurs, comme a = 2 > 0, le tableau de signe du polynôme est le suivant :

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		+	0	_	0	+	

On en déduit que l'ensemble des solutions est $S = \left[\frac{5 - \sqrt{17}}{4}; \frac{5 + \sqrt{17}}{4} \right]$.

Variations d'un polynôme du second degré 4

Propriété 5 – (admise)

Soit f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ (avec $a \neq 0$). On pose $\alpha = -\frac{b}{2a}$.

• Si a > 0, le tableau de variations de f est :

• Si a < 0, le tableau de variations de f est :

x	$-\infty$	$\alpha + \infty$
f(x)		$f(\alpha)$

Exemple.

Soit f définie sur \mathbb{R} par $f(x) = x^2 - 3x + 4$. Déterminer les variations de f.

Solution:

On a
$$\alpha = -\frac{b}{2a} = -\frac{-3}{2 \times 1} = \frac{3}{2}$$
.

De plus,
$$f(\alpha) = \left(\frac{3}{2}\right)^2 - 3 \times \left(\frac{3}{2}\right) + 4 = \frac{7}{4}$$
.
Ainsi, comme $a = 1 > 0$, le tableau de variations de f est :

x	$-\infty$	$\frac{3}{2}$	$+\infty$
f(x)		$\frac{7}{4}$	

Définition 3

Le point de coordonnées $(\alpha; f(\alpha))$ est appelé le **sommet** de la parabole représentative de la fonction f.

Exemple.

Si f est définie sur \mathbb{R} par $f(x) = x^2 - 3x + 4$, le point $M\left(\frac{3}{2}; \frac{7}{4}\right)$ est le sommet de la parabole.

Remarque.

On peut résumer la situation des racines et du signe d'un polynôme du second degré par le tableau suivant :

5 Complément sur les équations de degré supérieur

5.1 Équations de degré 3

La résolution générale des équations de degré 3 n'est pas au programme de première. En revanche, il est possible de résoudre une équation de degré 3 lorsqu'on connaît déjà une des solutions.

Méthode – Résoudre une équation de degré 3 de la forme $ax^3 + bx^2 + cx + d$

- Déterminer une racine « évidente » x_1 .
- Chercher des réels u, v, w tels que

$$ax^{3} + bx^{2} + cx + d = (x - x_{1})(ux^{2} + vx + w)$$

- Pour trouver u, v, w, développer le produit et on identifie les coefficients termes à termes des deux polynômes.
- Finir la résolution en résolvant $ux^2 + vx + w = 0$.

Exemple.

Résoudre l'équation (E) : $x^3 + 4x^2 - 5 = 0$.

Solution:

1 est une racine évidente.

On va donc factoriser l'équation par (x-1), c'est-à-dire qu'on cherche $u, v, w \in \mathbb{R}$ tels que

$$x^{3} + x^{2} - 2 = (x - 1)(ux^{2} + vx + w).$$

Or,

$$(x-1)(ux^{2} + vx + w) = ux^{3} + vx^{2} + wx - ux^{2} - vx - w$$
$$= ux^{3} + (v-u)x^{2} + (w-v)x - w$$

En identifiant les coefficients, on obtient le système suivant :

$$\begin{cases} u = 1 \\ v - u = 4 \\ w - v = 0 \\ -w = -5 \end{cases}$$

En résolvant le système, on trouve : u = 1, v = 5 et w = 5.

Ainsi, pour tout $x \in \mathbb{R}$, $x^3 + x^2 - 2 = (x - 1)(x^2 + 5x + 5)$. On a donc

$$x^{3} + x^{2} - 2 = 0 \iff (x - 1)(x^{2} + 5x + 5) = 0$$

 $\iff x - 1 = 0 \text{ ou } x^{2} + 5x + 5 = 0$

On calcule le discriminant de $x^2 + 5x + 5$: $\Delta = 5$.

Les deux solutions de $x^2 + 5x + 5 = 0$ sont donc $x_1 = \frac{-5 + \sqrt{5}}{2}$ et $x_2 = \frac{-5 - \sqrt{5}}{2}$.

Finalement, l'ensemble des solutions de (E) est :

$$S = \left\{1; \frac{-5 + \sqrt{5}}{2}; \frac{-5 - \sqrt{5}}{2}\right\}.$$

5.2 Équations de degré 4

La résolution générale des équations de degré 4 n'est pas au programme de première. En revanche, il est possible de résoudre une équation dans un cas particulier : celui d'une équation bicarrée.

Méthode – Résoudre une équation de degré 4 de la forme $x^4 + bx^2 + c$

- Poser $y = x^2$
- Résoudre l'équation $ay^2 + by + c = 0$
- En déduire les racines de l'équation bicarrée.

Exemple.

Résoudre l'équation (E) : $x^4 - x^2 - 2 = 0$.

Solution:

Soit $x \in \mathbb{R}$. On pose $y = x^2$.

On a l'équivalence :

$$x^4 - x^2 - 1 = 0 \iff y^2 - y - 1 = 0$$

On résout l'équation $y^2 - y - 1 = 0$:

 $\Delta=5.$ L'équation admet deux solutions : $y_1=\frac{1+\sqrt{5}}{2}$ et $y_2=\frac{1-\sqrt{5}}{2}.$ Ainsi,

$$x^{4} - x^{2} - 1 = 0 \iff \begin{cases} x^{2} = \frac{1 + \sqrt{5}}{2} \\ \text{ou} \\ x^{2} = \frac{1 - \sqrt{5}}{2} \end{cases} \text{ (impossible)}$$

$$\iff x^2 = \frac{1 + \sqrt{5}}{2}$$

$$\iff \begin{cases} x = \sqrt{\frac{1+\sqrt{5}}{2}} \\ \text{ou} \\ x = -\sqrt{\frac{1+\sqrt{5}}{2}} \end{cases}$$

Finalement, l'ensemble des solutions de (E) est $S = \left\{ \sqrt{\frac{1+\sqrt{5}}{2}}; -\sqrt{\frac{1+\sqrt{5}}{2}} \right\}$.

Savoir-faire du chapitre

- Résoudre une équation du second degré en diversifiant les stratégies : discriminant, identités remarquables, racines évidentes, formule de la somme et du produit des racines.
- Factoriser une fonction polynôme du second degré.
- Déterminer le signe d'une fonction polynôme du second degré.
- Déterminer les variations d'une fonction polynôme du second degré.
- Résoudre une équation de degré 3 lorsque l'on connaît une racine évidente.
- Résoudre une équation bicarrée (de degré 4).
- Déterminer une fonction polynôme du second degré passant par trois points donnés du plan.

 $\begin{array}{c} {\bf QCM} \\ {\bf d'entrainement} \end{array}$

