номер, то есть будет установлено взаимно однозначное соответствие между всеми натуральными и всеми рациональными числами.

Теорема 1.4. Любое подмножество счетного множества конечно или счетно.

Доказательство. Пусть A — счетное множество, а B — его подмножество. Занумеруем элементы множества A : $a_1,...,a_n,...$ Пусть $a_{n_1},a_{n_2},...$ — те из них, которые входят в B. Если среди чисел $n_1,n_2,...$ есть наибольшее, то B конечно, в противном случае B счетно, поскольку его элементы $a_{n_1},a_{n_2},...$ занумерованы числами 1,2,....

Теорема 1.5. Любое бесконечное множество содержит счетное подмножество.

Доказательство. Пусть M — бесконечное множество. Выберем в нем произвольный элемент a_1 . Поскольку M бесконечно, в нем найдется элемент a_2 , отличный от a_1 , затем найдется элемент a_3 , отличный от a_1 и от a_2 и т.д. Продолжая этот процесс (который не может оборваться из-за «нехватки» элементов, ибо M бесконечно), мы получаем счетное подмножество $A = \{a_1, ..., a_n, ...\}$ множества M.

Бесконечное множество, не являющееся счетным, называется несчетным множеством.

Теорема 1.6. Множество действительных чисел, заключенных между нулем и единицей, несчетно.

Доказательство. Предположим, что указанное множество является счетным, то есть имеет место взаимно однозначное соответствие между множеством натуральных чисел $\mathbb N$ и числами

$$\alpha_1 = 0, a_{11}a_{12}a_{13}...a_{1n}...,$$

 $\alpha_2 = 0, \alpha_{21} a_{22} a_{23} \dots a_{2n} \dots,$

 $\alpha_3 = 0, a_{31}a_{32}a_{33}...a_{3n}...$

 $\alpha_n = 0, a_{n1}a_{n2}a_{n3} \dots a_{nn} \dots,$

Здесь a_{ik} – k-я десятичная цифра числа α_i . Построим дробь

 $\beta = 0, b_1 b_2 b_3 ... b_n ...,$

где

$$b_i = \begin{cases} 2, \text{ если } a_{ii} = 1, \\ 1, \text{ если } a_{ii} \neq 1. \end{cases}$$

Имеем $\beta \neq \alpha_1$, $\beta \neq \alpha_2$ и т.д. Таким образом, никакое счетное множество действительных чисел, лежащих на отрезке [0,1], не исчерпывает этого отрезка.

§ 1.5 Эквивалентность множеств. Мощность

Определение 1.5. Множества M и N называются эквивалентными, если между их элементами можно установить взаимно однозначное соответствие.

Введенное отношение является отношением эквивалентности, поэтому будем записывать $M \sim N$. Понятие эквивалентности применимо как к конечным, так и к бес-

Понятие эквивалентности применимо как к конечным, так и к бесконечным множествам. Два конечных множества эквивалентны между собой тогда и только тогда, когда число элементов у них одинаково. Определение счетного множества можно теперь сформулировать следующим образом: множество называется счетным, если оно эквивалентно множеству натуральных чисел.

Заметим, что множество всех точек интервала (0,1) эквивалентно множеству всех точек на прямой. Соответствие можно установить, например, с помощью функции

$$y = \frac{1}{\pi} \arctan x + \frac{1}{2}.$$

Определение 1.6. Множество M называется бесконечным, если оно эквивалентно некоторому своему собственному подмножеству.

Отношение эквивалентности разбивает совокупность всех множеств на классы. Класс, которому принадлежит множество M, называется мощностью (кардинальным числом) множества M и обозначается card M. Если $M \sim N$, то чишут card M=card N.

Говорят, что мощность множества M не больше мощности множества N, и пишут $\operatorname{card} M \leq \operatorname{card} N$, если M эквивалентно некоторому подмножеству множества N.

Для конечных множеств понятие мощности совпадает с привычным понятием числа элементов множества. Мощность множества натуральных чисел (то есть любого счетного множества) обозначается

B

символом \aleph_0 (читается: «алеф нуль»), то есть сагд $\mathbb{N}=\aleph_0$. Про множества, эквивалентные множеству всех действительных чисел отрезка [0,1], говорят, что они имеют мощность континуума. Эта мощность обозначается символом \mathfrak{C} (или символом \mathfrak{R}).

Таким образом, счетные множества — это «самые маленькие» из бесконечных множеств; существуют также и бесконечные множества, бесконечность которых имеет более «высокий порядок», — это множества мощности континуума. А существуют ли мощности, превосходящие мощность континуума? Вообще, существует ли какая-нибудь «наивысшая» мощность или нет? Оказывается, верна следующая теорема.

Теорема 1.7 (Кантор). Пусть M – заданное множество, $\mathcal{P}(M)$ – множество всех его подмножеств. Тогда $\operatorname{card} M < \operatorname{card} \mathcal{P}(M)$.

Доказательство. Если M — пустое множество, то множество $\mathcal{P}(M)$ будет содержать один элемент, то есть $\operatorname{card} \mathcal{P}(M) = 1 > 0 = \operatorname{card} M$. Поэтому в дальнейшем будем считать, что $M \neq \emptyset$.

Пусть M_1 — множество всех одноэлементных подмножеств множества M. Отметим, что $M_1 \sim M$ (взаимно однозначное соответствие устанавливается по следующему правилу: каждому элементу $x \in M$ ставится в соответствие одноэлементное подмножество $\{x\} \in M_1$). Таким образом, card $M \leq \operatorname{card} \mathcal{P}(M)$, поскольку $\mathcal{P}(M)$ содержит M_1 .

Для доказательства теоремы теперь достаточно установить, что card $M \neq \operatorname{card} \mathcal{P}(M)$.

Предположим, что сагд $M = {\rm card}\, \mathfrak{F}(M)$, то есть существует взаимно однозначное соответствие $f:M\to \mathfrak{F}(M)$. Рассмотрим множество $A=\{x\in M:x\not\in f(x)\}$ тех элементов $x\in M$, которые не содержатся в сопоставленном им множестве $f(x)\in \mathfrak{P}(M)$. Поскольку $A\in \mathfrak{P}(M)$, то найдется элемент $a\in M$ такой, что f(a)=A. Для элемента $a\in M$ невозможно ни соотношение $a\in A$ (по определению A), ни соотношение $a\not\in A$ (тоже по определению A), то есть мы вступаем в противоречие с законом исключенного третьего.

§ 1.6 Определение множества действительных чисел

Определение 1.7. Множество \mathbb{R} называется множеством действительных (вещественных) чисел, а его элементы – действительными

(вещественными) числами, если выполнен следующий комплекс условий, называемый аксиоматикой вещественных чисел:

Exist

(I) Аксиомы сложения

Для любой упорядоченной пары действительных чисел a и bсумма $(a+b) \in \mathbb{R}$, так что при этом имеют место следующие свойства.

 I_3 . $\exists 0: a+0=a \quad \forall a \in \mathbb{R},$

 I_4 . $\forall a \in \mathbb{R} \exists -a : a + (-a) = 0$.

(II) Аксиомы умножения

Для любой упорядоченной пары действительных чисел a и b \exists ! произведение $ab \in \mathbb{R}$, так что при этом имеют место следующие свой-

 II_1 . $ab = ba \quad \forall a, b \in \mathbb{R}$ (коммутативность),

 II_2 . $a(bc) = (ab)c \quad \forall a, b, c \in \mathbb{R}$ (ассоциативность),

 $II_3. \exists 1: a \cdot 1 = a \quad \forall a \in \mathbb{R},$

 $II_4. \ \forall a \in \mathbb{R} \setminus \{0\} \ \exists a^{-1}: \ a \cdot a^{-1} = 1.$

(III) Связь сложения и умножения

 $(a+b)c = ac + bc \quad \forall a, b, c \in \mathbb{R}$ (дистрибутивность).

(IV) Аксиомы порядка

Для элементов \mathbb{R} определено отношение \leq , удовлетворяющее следующим аксиомам:

 $IV_1. \ a \leq a \quad \forall a \in \mathbb{R} \quad (\text{рефлексивность}),$

 IV_2 . если $a \le b$ и $b \le a$, то a = b (антисимметричность),

 IV_3 . если $a \le b$ и $b \le c$, то $a \le c$ (транзитивность),

 $IV_4. \ \forall a, b \in \mathbb{R} \quad a \leq b$ или $b \leq a$.

(V) Связь сложения и отношения порядка

Если $a \leq b$, то $a + c \leq b + c \quad \forall c \in \mathbb{R}$.

(VI) Связь умножения и отношения порядка

Если $0 \le a$ и $0 \le b$, то $0 \le ab$.

(VII) Аксиома полноты (непрерывности)

Если A и B - непустые подмножества $\mathbb R$ такие, что

$$\underbrace{a \leq b} \forall \, a \in A, \ \forall \, b \in B,$$

TO

 $\exists c \in \mathbb{R} : a \le c \le b \ \forall a \in A, \ \forall b \in B.$

§ 1.7 Важнейшие классы действительных чисел

 $\mathbb{N} = \{1, 2, 3, \ldots\}$ – множество натуральных чисел.

Определение 1.8. Объединение множества натуральных чисел, множества чисел, противоположных натуральным числам, и нуля называется множеством целых чисел и обозначается \mathbb{Z} .

Определение 1.9. Числа вида $m\cdot n^{-1},$ где $m\in\mathbb{Z},$ $n\in\mathbb{Z}\setminus\{0\},$ называются рациональными числами.

Множество рациональных чисел обозначается \mathbb{Q} .

Определение 1.10. Действительные числа, не являющиеся рациональными, называются иррациональными.

Теорема 1.8. *Не существует рационального числа, квадрат которого равен двум.*

Доказательство. Предположим противное: пусть существует дробь $\frac{p}{q}$ такая, что $\frac{p^2}{q^2}=2$. Будем считать эту дробь несократимой. Тогда $p^2=2q^2$, оледовательно, p^2 , а значит, и p делится на 2. P=2 Но если p=2r, то $2r^2=q^2$ и по той же причине q должно делиться на 2, что противоречит несократимости дроби $\frac{p}{q}$.

42-2-g2

Расширенное множество действительных чисел

Множество $\overline{\mathbb{R}}=\mathbb{R}\cup\{+\infty\}\cup\{-\infty\}$ называется расширенным множеством действительных чисел.

Будем считать, что

$$-\infty < +\infty$$
,

$$(+\infty) + (+\infty) = +\infty, \quad (-\infty) + (-\infty) = -\infty,$$
$$(+\infty) - (-\infty) = +\infty, \quad (-\infty) - (+\infty) = -\infty,$$
$$(+\infty)(+\infty) = (-\infty)(-\infty) = +\infty,$$
$$(+\infty)(-\infty) = (-\infty)(+\infty) = -\infty.$$

Отметим, что операции

$$(+\infty)+(-\infty), \ \frac{+\infty}{+\infty}, \ \frac{-\infty}{-\infty}, \ \frac{+\infty}{-\infty}, \ \frac{-\infty}{+\infty}$$

являются неопределенными.

Если $a \in \mathbb{R}$, то

$$a+(+\infty)=+\infty+a=+\infty,\quad -\infty+a=a+(-\infty)=-\infty;$$
 для $a>0$
$$a(+\infty)=(+\infty)a=+\infty,\quad a(-\infty)=(-\infty)a=-\infty;$$
 для $a<0$
$$a(+\infty)=(+\infty)a=-\infty,\quad a(-\infty)=(-\infty)a=+\infty.$$

Числовые промежутки

Конечные промежутки

```
(a,b) = \{x \in \mathbb{R}: \ a < x < b\} — интервал, (a,b] = \{x \in \mathbb{R}: \ a < x \leq b\} — полуинтервал, содержащий точку b, [a,b) = \{x \in \mathbb{R}: \ a \leq x < b\} — полуинтервал, содержащий точку a, [a,b] = \{x \in \mathbb{R}: \ a \leq x \leq b\} — отрезок.
```

Бесконечные промежутки

$$\begin{array}{ll} (a,+\infty)=\{x\in\mathbb{R}:\;x>a\}, & [a,+\infty)=\{x\in\mathbb{R}:\;x\geq a\},\\ (-\infty,b)=\{x\in\mathbb{R}:\;x< b\}, & (-\infty,b]=\{x\in\mathbb{R}:\;x\leq b\}. \end{array}$$

§ 1.8 Ограниченные и неограниченные множества

Определение 1.11. Множество $X \subset \mathbb{R}$ называется ограниченным сверху, если $\exists c \in \mathbb{R} : x \leq c \ \forall x \in X$. Число c называется верхней гранью (мажорантой) множества X.

Определение 1.12. Множество $X \subset \mathbb{R}$ называется ограниченным снизу, если $\exists c \in \mathbb{R}: c \leq x \ \forall x \in X$. Число c называется нижней гранью (минорантой) множества X.

Определение 1.13. Множество, ограниченное и сверху и снизу, называется ограниченным множеством.

Определение 1.14. Множество, не являющееся ограниченным, называется неограниченным.

Определение 1.15. Элемент $a \in X$ называется наибольшим (максимальным), если $x \leq a \ \forall x \in X$.

Обозначают $a = \max X$ или $a = \max_{x \in X} x$.

Определение 1.16. Элемент $a \in X$ называется наименьшим (минимальным), если $a \leq x \ \forall x \in X$.

Обозначают $a = \min X$ или $a = \min x$.

Определение 1.17. Наименьшая из мажорант множества X называется его точной верхней гранью и обозначается $\sup X$ или $\sup x$.

Определение 1.18. Действительное число a называется точной верхней гранью множества $X \subset \mathbb{R}$, если

1. $x \le a \ \forall x \in X$,

 $2. \ \forall \varepsilon > 0 \ \exists x' \in X : \ x' > a - \varepsilon.$

Определение 1.19. Наибольшая из минорант множества X называется его точной нижней гранью и обозначается $\inf X$ или $\inf_{x \in X} x$

Определение 1.20. Действительное число a называется точной нижней гранью множества $X \subset \mathbb{R}$, если

1. $x \ge a \ \forall x \in X$,

Теорема 1.9. Пусть X – ограниченное сверху непустое числовое множество. Тогда \exists $\sup X$.

 \mathcal{A} оказательство. Пусть Y – множество всех мажорант множества X. $Y \neq \varnothing$, так как по условию теоремы множество X ограничено сверху. Имеем $x \leq y \ \forall x \in X, \ \forall y \in Y,$ так как y – верхняя грань множества X. Тогда в силу аксиомы полноты существует $a \in \mathbb{R}$ такое, что $x \leq a \leq y \;\; \forall \, x \in X, \; \forall \, y \in Y.$ Число a, таким образом, является мажорантой X и минорантой Y. Как мажоранта X, число a является элементом Y, но как миноранта Y число a является минимальным элементом множества Y. Итак, $a = \min Y = \sup X$. Единственность числа а следует из аксиом порядка.

ynp. 97, 92

Аналогично доказывается существование и единственность нижней грани у ограниченного снизу числового множества, то есть имеет место следующая теорема.

Теорема 1.10. Пусть X – ограниченное снизу непустое числовое множество. Тогда \exists ! inf X.

§ 1.9 Основные леммы, связанные с полнотой множества действительных чисел

Определение 1.21. Система отрезков

$$[a_1,b_1],\,[a_2,b_2],\ldots,\,[a_n,b_n],\ldots,\,a_n\in\mathbb{R},\,\,b_n\in\mathbb{R},\,\,n=1,2,\ldots,$$

называется системой вложенных отрезков, если

$$a_1 \le a_2 \le \dots \le a_n \le \dots \le b_n \le \dots \le b_2 \le b_1,$$
 (1.5)

то есть если каждый следующий отрезок $[a_{n+1},b_{n+1}]$ содержится в предыдущем $[a_n,b_n]$:

$$[a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\supset\ldots$$

Определение 1.22. Пусть задана система отрезков $[a_n,b_n],\ a_n\in\mathbb{R},\ b_n\in\mathbb{R},\ n=1,2,....$ Будем говорить, что длина b_n-a_n отрезков этой системы стремится к нулю, если для каждого числа $\varepsilon>0$ существует такой номер $N=N(\varepsilon)$, что для всех номеров n>N выполняется неравенство

$$b_n - a_n < \varepsilon. \tag{1.6}$$

Лемма 1.1 (принцип Коши–Кантора). Для всякой системы $[a_n, b_n]$, $n = 1, 2, \ldots$, вложенных отрезков, длины которых стремятся к нулю, существует единственная точка c, принадлежащая всем отрезкам данной системы.

Доказательство. Пусть задана система вложенных отрезков $[a_n,b_n],\ n=1,2,....$ Обозначим через A множество всех левых концов отрезков этой системы, а через B – множество их правых концов, то есть $A=\{a_n,\ n\in\mathbb{N}\},\ B=\{b_n,\ n\in\mathbb{N}\}.$

Покажем, что

$$a_m \le b_n \ \forall m, n \in \mathbb{N}.$$
 (1.7)

am = En + MinEIN

Действительно, если $n \geq m$, то из неравенств (1.5) следует, что $a_m \leq$ $a_n \le b_n$, а если n < m, то $a_m \le b_m \le b_n$.

Поэтому из неравенств (1.7), в силу аксиомы полноты, следует, что существует такое число c, что $a_m \le c \le b_n \ \forall m,n \in \mathbb{N},$ в частности, $a_n \le c \le b_n, \ n = 1, 2,$ Это и означает, что число c принадлежит всем отрезкам $[a_n, b_n]$.

Докажем единственность точки пересечения. Допустим обратное: пусть существуют точки c_1 и c_2 , принадлежащие всем отрезкам рассматриваемой системы, то есть

$$c_1 \in [a_n, b_n], c_2 \in [a_n, b_n], n = 1, 2, \dots$$

Тогда

$$|c_1-c_2| \leq b_n - a_n \quad \forall n \in \mathbb{N}, \quad \forall n \in \mathbb{N}$$

следовательно, в силу условий (1.6), для любого $\varepsilon > 0$ справедливо

нерав**е**нство

$$|c_1 - c_2| < \varepsilon.$$
 $\forall \varepsilon > \bigcirc$ (1.8)

Так как ε – произвольное положительное число, то неравенство (1.8) может иметь место только тогда, когда $c_1 = c_2$ (если бы $c_1 \neq c_2$, то, например, при $\varepsilon = \frac{1}{2}|c_1 - c_2|$ неравенство (1.8) было бы противоречиво). Это означает, что существует единственное число c, принадлежащее всем отрезкам $[a_n, b_n]$.

Говорят, что система $S = \{X_{\alpha}\}$ множеств Определение 1.23. $X_{\alpha}, \alpha \in \mathfrak{A}$, покрывает множество Y, если $\forall y \in Y \exists X_{\alpha} \in S : y \in X_{\alpha}$.

Если подсистема S_1 покрытия S сама образует покрытие множества Y, то она называется подпокрытием этого множества.

Лемма 1.2 (принцип Гейне-Бореля-Лебега). *Из любой системы ин*тервалов, покрывающей отрезок, можно выделить конечное подпокрытие этого отрезка.

 \mathcal{A} оказательство. Пусть S — система интервалов, покравающая отрезок $[a,b]=I_1$. Предположим, что отрезок N не допускает покрытия конечным набором интервалов системы S. Поделив I_1 пополам, получим, что по крайней мере одна из его половинок, которую обозначим через I_2 , тоже не допускает консчного покрытия. С отрезком I_2 проделаем ту же процедуру деления пополам, получим отрезок I_3 и т.д. Таким образом, возникает последовательность $I_1 \supset I_2 \supset ... \supset I_n \supset ...$ вложенных отрезков, не допускающих конечного покрытия интервалами системы S.

Поскольку джина отрезка, полученного на n-м шаге, по построению равна $|I_n|=|I_1|\cdot 2^{-n}$, то в последовательности $\{I_n\}$ есть отрезки сколь угодно малой джины. По лемме о вложенных отрезках существует точка c, принадлежащая всем отрезкам $I_n, n \in \mathbb{N}$. Поскольку $c \in I_1 = [a,b]$, то найдется интервал $(\alpha,\beta) \in S$, содержащий точку c, то есть $\alpha < c < \beta$. Пусть $\varepsilon = \min\{c - \alpha, \beta - c\}$. Найдем в построенной последовательности такой отрезок I_n , что $|I_n| < \varepsilon$. Поскольку $c \in I_n$ и $|I_n| < \varepsilon$, заключаем, что $I_n \subset (\alpha,\beta)$. Но это противоречит тому, что отрезок I_n нельзя покрыть конечным набором интервалов системы S.

Глава 2

Предел

последовательности

§ 2.1 Определение предела числовой последовательности. Переход к пределу в неравенствах

Определение 2.1. Отображение $f: \mathbb{N} \to \mathbb{R}$ называется числовой последовательностью. Элемент f(n) обозначается через x_n и называется n-м членом последовательности $f: \mathbb{N} \to \mathbb{R}$, а сама последовательность обозначается через $\{x_n\}$.

Определение 2.2. Окрестностью точки $a \in \mathbb{R}$ называется любой интервал, содержащий эту точку.

Определение 2.3. Числовая последовательность $\{x_n\}$ называется ограниченной, если $\exists \, c \geq 0 : |x_n| \leq c \, \, \forall n \in \mathbb{N}.$

Определение 2.4. Число a называется пределом числовой последовательности $\{x_n\}$, если

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N \ \rightarrow |x_n - a| < \varepsilon.$$

Сформулированное условие равносильно тому, что вне любой окрестности точки a содержится лишь конечное множество членов рассматриваемой последовательности.

Записывают $a = \lim_{n \to \infty} x_n$ или $x_n \to a$ при $n \to \infty$.

Определение 2.5. Если числовая последовательность имеет предел, то она называется сходящейся.

 $X_{1} = \frac{1}{1}$ $X_{2} = \frac{1}{9}$

