Criptografia 101

Eduardo Mendes github.com/z4r4tu5tr4

z4r4tu5tr4@babbge: screenfetch

Nome: Eduardo Mendes

Instituição: Fatec Americana

Uptime: 12097080s

Email: mendexeduardo@gmail.com

git: github.com/z4r4tu5tr4

- Teoria da "comunicação"
- Cifras de rotação
- Sistemas distribuídos
- Cifras assimétricas
- Cifras simétricas
- Hash

Teoria da "comunicação"

O básico e simples

Como funciona a comunicação verbal? [0]

Como funciona a comunicação verbal? [1]

Como funciona a comunicação verbal? [2]

Como funciona a comunicação verbal? [3]

E a comunicação escrita? [0]

E a comunicação escrita? [1]

E a comunicação escrita? [2]

Transporte de informação [0]

Transporte de informação [1]

Transporte de informação [2]

Cifras de rotação

O começo de tudo

Cifra de rotação [0]

Cifra de rotação [1]

$$f(x) = (x + 3) \mod 26$$

Cifra de rotação [2]

Cifra de rotação [3]

$$E_n(x) = (n + x) \mod 26$$

$$D_n(x) = (n - x) \mod 26$$

Cifra de rotação [4]

Cifra de rotação [5]

```
from string import ascii_uppercase as alphabet

func = lambda l: alphabet[(alphabet.find(l.upper()) + 13) % 26]
```

Sistemas distribuídos

A parte que nos interessa

Sistemas distribuídos [0]

Sistemas distribuídos [0]

Cifras assimétricas

Criptografia na internet

Criptografia de chave pública [0]

Criptografia de chave pública [2] - RSA

Criptografia de chave pública [3] - RSA

Criptografia de chave pública [4] - RSA

$$c = m^e \pmod{N}$$

$$d = c^e \pmod{N}$$

Cifras simétricas

Criptografando arquivos ou dispositivos

Cifra simétrica [0]

Cifra simétrica [1]

Algorítimos

- AES O padrão usado hoje em dia
- 3DES Caindo em desuso
- Twofish O mais poderoso

Um algorítimo genérico [0]

Um algorítimo genérico [1]

$$E = 1000101$$

F = 1000110

Criptografado

$$E+F = 0000011$$

1000101 1000110

0000011

Um algorítimo genérico [2]

$$d = 1100100$$

u = 1110101

Criptografado

E+F = 0000011

d+u = 1100100

1100100 1110101

0040004

0010001

Um algorítimo genérico [3]

Char	Ascii	bin
A	65	1000001
В	66	1000010
X	3	0000011

 $A \times B = X = 00000011$

 $X \times A = B = 1000010$

 $X \times B = A = 1000001$

A = 1000001

B = 1000010

X = 00000011

A = 1000001

X = 00000011

B = 1000010

B = 1000010

X = 00000011

A = 1000001

Hash

A parte mais importante de um banco de dados

Diagrama de classe

Registro	
Patrick Estrela	
99.999.999-x	
123.456.789-11	
P_atrick	
lulamolusco	

Problemas

- Qualquer administrador do banco pode saber todas as senhas
- Qualquer ataque de força bruta pode acessar nosso sistema
- Caso o sistema seja invadido todos os seus usuários estarão comprometidos

Senha x Hash

Eduardo(MD5):

ba3615ba56f5b0b7c6a206fba90d8e4a

Eduardo (sha1):

c6793f32da227a30f87d8deeeb8dd70dc0ada615

Eduardo(sha256):

bdf58324e184b654bbbe386a3500f09937f1aad5e44edd80d61421c6ffd4aa6c

Eduardo(sha512):

fb409b32edce08f78b1c0bca70b7d524e75e951b2ece4aaa6ac61c359efb53e10 0d2a2e2c7d03566f9084f0e16f2228d90095acaae79f3eae79766833e7a69df

Como funciona um Hash? [0]

XOXO

Duvidas?

mendesxeduardo@gmail.com