Example Theorem Lemma[section] Definition[section] Fact[section] Corollary[section]

An Introduction to Controllability of Nonlinear Systems

Ravi N Banavar¹

¹Systems and Control Engineering, IIT Bombay, India. banavar@iitb.ac.in

January 17, 2012

OUTLINE

Introduction

REACHABILITY, ACCESSIBILITY AND CONTROLLABILITY

Manifolds, vector fields and flows

OPERATIONS ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

OUTLINE

Introduction

REACHABILITY, ACCESSIBILITY AND CONTROLLABILITY

Manifolds, vector fields and flows

OPERATIONS ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

CONTROLLABILITY OF LINEAR SYSTEMS

$$\dot{x} = Ax + Bu \quad x(t) \in \mathbb{R}^n$$

Given a fixed time T and starting from the zero state at time t = 0, can we reach any arbitrary state x_f in time T, using control $\mathrm{u}(\cdot):[0,T]\to\mathbb{R}$ belongs to a class of piecewise continuous functions?

CONTROLLABILITY OF LINEAR SYSTEMS

$$\dot{x} = Ax + Bu \quad x(t) \in \mathbb{R}^n$$

Given a fixed time T and starting from the zero state at time t=0, can we reach any arbitrary state x_f in time T, using control $\mathrm{u}(\cdot):[0,T]\to\mathbb{R}$ belongs to a class of piecewise continuous functions?

A STANDARD TEST FOR LINEAR TIME-INVARIANT SYSTEMS

Rank
$$[B, AB, A^2B, ..., A^{n-1}B] = n$$
?

Yes \Rightarrow the system is controllable.

No \Rightarrow the system is NOT controllable. other notions - stabilizable, uncontrollable subspace, etc.

THE CLASS OF CONTROL SYSTEMS

AFFINE IN THE CONTROL NONLINEAR SYSTEM

$$\dot{x} = f_0(x) + \sum_{i=1}^p f_i(x)u_i \qquad x(t) \in V \subset \mathbb{R}^n, u(t) \in U$$

- $f_0(\cdot)$ termed the drift vector field and $\{f_1(\cdot), f_2(\cdot), \dots, f_p(\cdot), \}$ (control vector fields) are assumed to be smooth in their argument x. They are termed \mathbb{C}^{∞} vector fields.
- A control system is denoted by $\Sigma = (M, \mathfrak{F} = \{f_0, f_1, \dots, f_p\}, U)$ where U denotes the set where the control function u(t) takes values in.

THE CLASS OF CONTROL SYSTEMS

AFFINE IN THE CONTROL NONLINEAR SYSTEM

$$\dot{x} = f_0(x) + \sum_{i=1}^p f_i(x)u_i \qquad x(t) \in V \subset \mathbb{R}^n, u(t) \in U$$

- $f_0(\cdot)$ termed the drift vector field and $\{f_1(\cdot), f_2(\cdot), \dots, f_p(\cdot), \}$ (control vector fields) are assumed to be smooth in their argument x. They are termed \mathbb{C}^{∞} vector fields.
- A control system is denoted by $\Sigma = (M, \mathfrak{F} = \{f_0, f_1, \dots, f_p\}, U)$ where U denotes the set where the control function u(t) takes values in.

CONTROLLABILITY AND NOTATION

Where can I go from x_0 ?

- What are the points in the state-space that I can reach in a finite time T? (reachable set.)
- Does the reachable set contain a neighbourhood? (accessible.)
- Does there exist a small neighbourhood containing my present state in which I can reach every point? (locally controllable.)
- Can I reach all points in the state-space? (global controllability.)

REACHABLE SETS

$$\mathfrak{R}_{\Sigma}(x_0,T) = \{x(T)|x(s) \text{ is a trajectory generated by } u:[0,T] \to U\}$$

$$\mathfrak{R}_{\Sigma}(x_0,\leq T) = \bigcup_{t \in [0,T]} \mathfrak{R}_{\Sigma}(x_0,t) \qquad \qquad \mathfrak{R}_{\Sigma}(x_0) = \bigcup_{t \geq 0} \mathfrak{R}_{\Sigma}(x_0,t)$$

OUTLINE

Introduction

REACHABILITY, ACCESSIBILITY AND CONTROLLABILITY

Manifolds, vector fields and flows

OPERATIONS ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

REACHABLE SETS

FIGURE: $\Re_{\Sigma}(x_0, \leq T)$

ACCESSIBILITY

ACCESSIBLE

 Σ is accessible from x_0 if $\operatorname{int}(\mathfrak{R}_{\Sigma}(x_0)) \neq \emptyset$

Example 1

$$\Sigma = (\mathbb{R} \times \mathbb{R}, \mathfrak{F} = \{f_0, f_1\}, [-1, 1])$$

$$\dot{x}_1 = u \quad \dot{x}_2 = x_1^2$$

Take U = [-1, 1]. Examine accessibility at (0, 0).

ACCESSIBILITY

STRONG ACCESSIBILITY

STRONGLY ACCESSIBLE

 Σ is strongly accessible from x_0 if $\operatorname{int}(\mathfrak{R}_{\Sigma}(x_0,T)) \neq \emptyset$ for each T > 0.

STRONG ACCESSIBILITY

STRONGLY ACCESSIBLE

 Σ is strongly accessible from x_0 if $\operatorname{int}(\mathfrak{R}_{\Sigma}(x_0,T)) \neq \emptyset$ for each T > 0.

Example 2

$$\Sigma = (\mathbb{R} \times \mathbb{R}, \mathfrak{F} = \{f_0, f_1\}, \mathbb{R})$$

$$\dot{x}_1 = u \quad \dot{x}_2 = 1$$

Examine strong accessibility from (0,0) in the previous example.

STRONG ACCESSIBILITY

LOCAL CONTROLLABILITY

LOCALLY CONTROLLABLE

 Σ is locally controllable from x_0 if $x_0 \in \operatorname{int}(\mathfrak{R}_{\Sigma}(x_0))$

FIGURE: $x_0 \in \operatorname{int}(\mathfrak{R}_{\Sigma}(x_0))$

SMALL-TIME LOCAL CONTROLLABILITY

STLC

 Σ is small-time locally controllable from x_0 if there exists T > 0 such that $x_0 \in \operatorname{int}(\mathfrak{R}_{\Sigma}(x_0, \leq t))$ for each $t \in (0, T]$.

SMALL-TIME LOCAL CONTROLLABILITY

STLC

 Σ is small-time locally controllable from x_0 if there exists T>0 such that $x_0\in \operatorname{int}(\mathfrak{R}_\Sigma(x_0,\leq t))$ for each $t\in (0,T]$.

Example 3

$$\Sigma = (\mathbb{R} \times \mathbb{S}^1, \mathfrak{F} = \{f_0, f_1\}, [-1, 1])$$

$$\dot{x}_1 = u \quad \dot{x}_2 = 1$$

SMALL TIME CONTROLLABILITY

SMALL TIME CONTROLLABILITY

GLOBAL CONTROLLABILITY

GLOBAL CONTROLLABILITY

 Σ is globally controllable from x_0 if $(\mathfrak{R}_{\Sigma}(x_0)) = M$

 $^{^1\}mathrm{A.}$ Lewis: A brief on controllability of nonlinear systems, URL: <code>http://www.mast.queensu.ca/</code> and <code>rew/, Dated: 08/07/2002</code>

GLOBAL CONTROLLABILITY

GLOBAL CONTROLLABILITY

 Σ is globally controllable from x_0 if $(\mathfrak{R}_{\Sigma}(x_0)) = M$

The examples in the last few slides were taken from Lewis. ¹

¹A. Lewis: A brief on controllability of nonlinear systems, URL: http://www.mast.queensu.ca/ andrew/, Dated: 08/07/2002

OUTLINE

Introduction

REACHABILITY, ACCESSIBILITY AND CONTROLLABILITY

Manifolds, vector fields and flows

OPERATIONS ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

HIGH SCHOOL PHYSICS

THE CROSS PRODUCT

- Vector space \mathbb{R}^3 and the cross-product operation \times .
 - $a \times (b \times c) = (a \times b) \times c$ associative.
 - $(\alpha_1 a_1 + \alpha_2 a_2) \times b = \alpha_1 (a_1 \times b_1) + \alpha_2 (a_2 \times b_2)$ linearity. (holds in the second argument as well.)
 - $a \times b = -b \times a$ skew-commutative.
 - $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0$ the Jacobi-Lie identity.

Comment: the cross-product of two vectors in \mathbb{R}^3 gave a new direction.

HIGH SCHOOL PHYSICS

THE CROSS PRODUCT

- Vector space \mathbb{R}^3 and the cross-product operation \times .
 - $a \times (b \times c) = (a \times b) \times c$ associative.
 - $(\alpha_1 a_1 + \alpha_2 a_2) \times b = \alpha_1 (a_1 \times b_1) + \alpha_2 (a_2 \times b_2)$ linearity. (holds in the second argument as well.)
 - $a \times b = -b \times a$ skew-commutative.
 - $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0$ the Jacobi-Lie identity.

Comment: the cross-product of two vectors in \mathbb{R}^3 gave a new direction.

AN ALTERNATE NOTATION

$$a \times b \leftrightarrow \hat{a}b$$
 $\hat{a} = \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}$

SMOOTH MANIFOLDS AND DIFFERENTIAL GEOMETRY

- The study of differential geometry in our context is motivated by the need to study dynamical systems that evolve on spaces other than the usual Euclidean space.
- Single pendulum, double pendulum

• Definition

A manifold is a topological space M with the following property. For any $x \in M$, there exists a neighbourhood B of x which is homeomorphic to R^n (for some fixed $n \geq 0$). (We shall need more - "smooth" manifolds)

VECTOR FIELDS

VECTOR FIELDS ON SMOOTH MANIFOLDS

- A vector field on a smooth manifold M is a map \mathbf{X} that assigns to each $p \in M$ a tangent vector $\mathbf{X}(p)$ in $T_p(M)$.
- If this assignment is smooth, the vector field is called **smooth** or \mathbf{C}^{∞} .

VECTOR FIELDS

VECTOR FIELDS ON SMOOTH MANIFOLDS

- A vector field on a smooth manifold M is a map X that assigns to each $p \in M$ a tangent vector X(p) in $T_p(M)$.
- If this assignment is smooth, the vector field is called **smooth** or \mathbf{C}^{∞} .

THE ALGEBRAIC STRUCTURE

- The collection of all C^{∞} vector fields on a manifold M denoted by $\mathcal{X}(M)$ is endowed with an algebraic structure as follows: Let $\mathbf{V}, \mathbf{W} \in \mathcal{X}(X), \ a \in R \ \text{and} \ f \in C^{\infty}(M)$
 - $\mathbf{V} + \mathbf{W}(p) = \mathbf{V}(p) + \mathbf{W}(p) \ (\in \mathcal{X}(M))$
 - $a(\mathbf{V})(p) = a\mathbf{V}(p) \ (\in \mathcal{X}(M))$
 - $(f\mathbf{V})(p) = f(p)\mathbf{V}(p) \ (\in \mathcal{X}(M))$

FLOW OF A VECTOR FIELD

Flow of X(x)

The flow of the vector field X(x), denoted by $\Phi(t, x_0)$, is a mapping from $(-a, a) \times U \to \mathbb{R}^n$ (where $a(>0) \in \mathbb{R}$ and U is an open region in the state-space) and satisfies the differential equation

$$\frac{d\Phi(t, x_0)}{dt} = X(\Phi(t, x_0)) \quad \forall t \in (-a, a), x(0) = x_0 \in U.$$

over the interval (-a, a) and with initial conditions starting in the region U.

FIGURE: Flow of a vector field

Properties of flows

THE GROUP STRUCTURE

Denote

$$\Phi_t(x_0) = \Phi(t, x_0)$$

The set of transformations $\{\Phi_t\}: U \to \mathbb{R}^n$ satisfies the following properties.

- $\Phi_{t+s}x_0 = \Phi_t \circ \Phi_s x_0 \quad \forall t, s, t+s \in (-a,a)$ the group binary operation.)
- $\Phi_0 x_0 = x_0$ (the group identity.)
- For a fixed $t \in (-a, a)$ we have $\Phi_t \Phi_{-t} x_0 = x_0 \Rightarrow [\Phi_t]^{-1} = \Phi_{-t}$ (existence of an inverse.)

THE FLOW OF A LINEAR SYSTEM

THE GROUP PROPERTY

Remark

The three properties mentioned above impart a group structure to the set $\{\Phi_t\}$. This set is called a one-parameter (time) group of diffeomorphisms (Φ_t and its inverse are smooth mappings).

THE FLOW OF A LINEAR SYSTEM

THE GROUP PROPERTY

REMARK

The three properties mentioned above impart a group structure to the set $\{\Phi_t\}$. This set is called a one-parameter (time) group of diffeomorphisms (Φ_t and its inverse are smooth mappings).

LINEAR FLOW

Remark

For a linear system described by

$$\dot{x} = Ax \quad A \in \mathbb{R}^{n \times n}$$

the flow $\Phi_t x_0 = e^{At} x_0$ where $\{e^{At} : t \in (-\infty, \infty)\}$ constitutes the one-parameter group of diffeomorphisms.

Push-forward of vector fields

• Suppose $f: M \to N$ is a diffeomorphism, then the *push-forward* of a vector field X on M by f is the vector field f_*X on N defined by

$$(f_*X)(f(x)) = T_x f(X(x)) \quad \forall x \in M$$

• In coordinates

$$y = f(x)$$
 $(f_*X)(y) = Df(x).X(x) = \frac{dy}{dx} \cdot X(x)$

FIGURE: Push-forward

Pull-back of vector fields

THE PULL-BACK

• Suppose $f: M \to N$ is a diffeomorphism, then the *pull-back* of a vector field Y on N by f is the vector field f^*Y on N defined by

$$f^*Y = (f^{-1})_*Y = Tf^{-1} \circ Y \circ f$$

• In coordinates

$$y = f(x)$$
 $(f_*X)(y) = Df(x).X(x) = \frac{dy}{dx} \cdot X(x)$

FIGURE: Pull-back

OUTLINE

Introduction

REACHABILITY, ACCESSIBILITY AND CONTROLLABILITY

Manifolds, vector fields and flows

OPERATIONS ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

OPERATIONS ON VECTOR FIELDS

THE GRADIENT

Consider a smooth function $g(\cdot): U \to \mathbb{R}$. The gradient of such a function, denoted by ∇g , is defined as

$$\nabla g(x) = \left[\begin{array}{ccc} \frac{\partial g}{\partial x_1} & \cdots & \frac{\partial g}{\partial x_n} \end{array} \right]$$

alternate notation: grad(g).

THE LIE DERIVATIVE OF A FUNCTION

THE LIE DERIVATIVE

The Lie derivative of a function f along X is

$$(\mathcal{L}_X f)(x) = \frac{d}{dt}|_{t=0} f \circ \Phi_t(x) = \frac{d}{dt}|_{t=0} (\Phi_t^* f)(x)$$

In coordinates we have

$$(\mathcal{L}_X f)(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} X(x)$$

THE LIE DERIVATIVE OF A FUNCTION

THE LIE DERIVATIVE

The Lie derivative of a function f along X is

$$(\mathcal{L}_X f)(x) = \frac{d}{dt}|_{t=0} f \circ \Phi_t(x) = \frac{d}{dt}|_{t=0} (\Phi_t^* f)(x)$$

In coordinates we have

$$(\mathcal{L}_X f)(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} X(x)$$

ALTERNATE NOTATION

$$(Xf)(x) = \frac{d}{dt}|_{t=0}f \circ \Phi_t(x) = \lim_{t \to 0} \frac{f(\Phi_t x) - f(x)}{t}$$

THE LIE DERIVATIVE OF A VECTOR FIELD

THE PULL-BACK

The Lie derivative of Y along X is

$$\mathcal{L}_X Y \stackrel{\triangle}{=} \frac{d}{dt}|_{t=0} \Phi_t^* Y$$

where Φ is the flow of X.

Explicitly

$$(\mathcal{L}_X Y)(x) = \frac{d}{dt}|_{t=0} (D\Phi_t(z))^{-1} \cdot Y(\Phi_t(x))$$

OUTLINE

Introduction

REACHABILITY, ACCESSIBILITY AND CONTROLLABILITY

Manifolds, vector fields and flows

OPERATIONS ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

OPERATION ON VECTOR FIELDS

THE JACOBI-LIE BRACKET

The Jacobi-Lie bracket of two vector fields is an operation between two vector fields that yields another vector field. For two vector fields X and Y, both defined from U to \mathbb{R}^n , it is defined as

$$[X,Y] = (\mathcal{L}_X Y) = (DY) \cdot X - (DX) \cdot Y$$

and satisfies the following properties (for any three vector fields X,Y,Z)

- $[\alpha X + \beta Y, Z] = \alpha[X, Z] + \beta[Y, Z]$ linearity in the first argument (also hold for the second argument)
- [X, Y] = -[Y, X] skew-commutative.
- • [X,[Y,Z]] + [Z,[X,Y]] + [Y,[X,Z]] = 0 - the Jacobi-Lie identity

More properties

THE JACOBI-LIE BRACKET

Let X generate $\{\Phi_t\}$ and Y generate $\{\Psi_t\}$. Then [X,Y]=0 if and only if $\Phi_t \circ \Psi_s = \Psi_s \circ \Phi_t$ for all $t \in \mathbb{R}$.

Orbits

A COMPLETE VECTOR FIELD

A vector field X is said to be *complete* if the flow $\Phi_t x_0$ exists for all $x_0 \in M$ and all $t \in \mathbb{R}$.

Orbits

A COMPLETE VECTOR FIELD

A vector field X is said to be *complete* if the flow $\Phi_t x_0$ exists for all $x_0 \in M$ and all $t \in \mathbb{R}$.

ORBITS

An orbit of the family of complete vector fields

$$\mathcal{X} = \{X_i : i = 1, \dots, p\}$$
 through the point $x \in M$ is the set

$$\mathcal{O}_x = \{ (\Phi_{t_k})_{X_k} \circ \cdots (\Phi_{t_1})_{X_1}(x) : (t_1, \dots, t_k) \in \mathbb{R}^k, \{X_1, \dots, X_k\} \in \mathcal{X} \}$$

where k is an arbitrary integer.

REACHABLE SETS AND ORBITS

Reachable set in time T

A reachable set of the family of complete vector fields

$$\mathcal{X} = \{X_i : i = 1, \dots, p\}$$
 from x in exactly time T is

$$\mathfrak{R}_{\mathcal{X}}(x,T) = \{ (\Phi_{t_k})_{X_k} \circ \cdots (\Phi_{t_1})_{X_1}(x) : (t_1,\dots,t_k) \in \mathbb{R}^k_{\geq 0}, t_1 + \dots + t_k = T,$$

$$\{X_1,\dots,X_k\} \in \mathcal{X} \}$$

where k is an arbitrary integer.

REACHABLE SETS AND ORBITS

Reachable set in time T

A reachable set of the family of complete vector fields $\mathcal{X} = \{X_i : i = 1, ..., p\}$ from x in exactly time T is

$$\mathfrak{R}_{\mathcal{X}}(x,T) = \{ (\Phi_{t_k})_{X_k} \circ \cdots (\Phi_{t_1})_{X_1}(x) : (t_1,\dots,t_k) \in \mathbb{R}^k_{\geq 0}, t_1 + \dots + t_k = T,$$

$$\{X_1,\dots,X_k\} \in \mathcal{X} \}$$

where k is an arbitrary integer.

REACHABLE SET

A reachable set of the family of complete vector fields $\mathcal{X} = \{X_i : i = 1, ..., p\}$ from x is

$$\mathfrak{R}_{\mathcal{X}}(x) = \{ (\Phi_{t_k})_{X_k} \circ \cdots (\Phi_{t_1})_{X_1}(x) : (t_1, \dots, t_k) \in \mathbb{R}^k_{\geq 0}, \{X_1, \dots, X_k\} \in \mathcal{X} \}$$

where k is an arbitrary integer.

THE ORBIT THEOREM

THE ORBIT THEOREM

The orbit of the family of vector field \mathcal{X} through each point x of M is a connected submanifold of M.

THE LIE ALGEBRA

THE LIE ALGEBRA

For any family of vector fields \mathcal{X} defined on M, $\text{Lie}(\mathcal{X})$ is the smallest vector subspace S of $\mathbf{C}^{\infty}(M)$ that also satisfies

$$[X,S]\subset S\quad \forall X\in\mathcal{X}$$

THE LIE ALGEBRA

THE LIE ALGEBRA

For any family of vector fields \mathcal{X} defined on M, Lie(\mathcal{X}) is the smallest vector subspace S of $\mathbf{C}^{\infty}(M)$ that also satisfies

$$[X,S]\subset S\quad \forall X\in\mathcal{X}$$

An example

Let Ax be a linear vector field defined on \mathbb{R}^n $(x \in \mathbb{R}^n)$ and $B \in \mathbb{R}^n$ be a constant vector field on \mathbb{R}^n .

$$Lie({Ax, B}) = span{Ax, B, AB, A^2B, ..., A^{n-1}B}$$

At x = 0,

$$Lie_0(\{Ax, B\}) = span\{B, AB, A^2B, \dots, A^{n-1}B\}$$

FROBENIUS' THEOREM

INVOLUTIVITY

A family \mathcal{X} of vector fields is said to be involutive if for any vector fields X and Y in \mathcal{X} ,

$$[X, Y](x) \subset \operatorname{span}{\{\mathcal{X}(x)\}} \quad \forall x \in M.$$

Frobenius' Theorem

Let \mathcal{X} be an involutive family of smooth vector fields for which the dimension of the linear span of $\mathcal{X}(x)$ is constant for all $x \in M$. Then the tangent space at a point x of an orbit of \mathcal{X} is equal to the linear span of $\mathcal{X}(x)$.

References

- Geometric Control Theory, V. Jurdjevic, Cambridge University Press, 1997.
- 2 Finite Dimensional Vector Spaces P. Halmos, Springer, 84
- Nonlinear Systems H. K. Khalil, Prentice Hall, 2002
- Ordinary Differential Equations V. Arnold, Springer, 1992
- Nonlinear Control Systems A. Isidori, Springer, 1989.
- Nonlinear Control Systems H. Neijmier and A. Van der Schaft, Springer, 1992.