Theoretical Machine Learning

Lectured by Zhihua Zhang

LATEXed by Chengxin Gong

April 24, 2024

Contents

2	Statistical Decision Theory	2
3	Markov Decision Process	3
4	Statistical Learning Theory	6
5	Uniform Laws of Large Numbers	g
6	Least Square Estimates: Consistency and Convergence Rate	13

1 Introduction

Outline 1.1 (Main tasks in machine learning) Generation, prediction, decision. Generation: $X_1, \dots, X_n \sim F$, infer and analyse F, unsupervised learning, e.g. GAN, GPT, \dots Prediction: data pairs $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)})$, input variables $X^{(i)} \in \mathbb{R}^d$, $f: \mathcal{X} \to \mathcal{Y}, x \in \mathcal{X}, y \in \mathcal{Y}$, ascribe, supervised learning. Decision: Reinforcement learning, Agent \leftarrow action, state, reward \rightarrow environment.

Outline 1.2 (Methods for solving tasks) Parameterized/Non-parameterized, frequency(MLE)/Bayesian.

Outline 1.3 (Modeling error) Supervised: Fix $X = (X_1, \dots, X_d)^T \in \mathbb{R}^d$, for regression $Y \in \mathbb{R}$, for classificataion $Y \in \{0,1\}$ (also $\{-1,1\},\{1,\dots,M\},\{0,1\}^M$). Random design for X (known as generative models): $Y^{(i)} = g(X^{(i)},Z^{(i)})$. Fixed design for X (known as discriminative models): $Y^{(i)} = g(x^{(i)},Z^{(i)})$. Unsupervised: X = g(Z) (e.g. factor model: $X = AZ + \varepsilon, Z \in \mathcal{N}(0,1), \varepsilon \sim \mathcal{N}(0,\Sigma)$).

2 Statistical Decision Theory

Definition 2.1 (Basic concepts) Consider a state space Ω , data space \mathcal{D} , model $\mathcal{P} = \{p(\theta, x)\}$, action space \mathscr{A} . Loss function: $\mathcal{L}: \Omega \times \mathscr{A} \to [-\infty, +\infty]$, measurable, nonnegative. A measurable function $\delta: \mathcal{D} \to \mathscr{A}$ is called a nonrandomized decision rule. Risk function is defined as $\mathcal{R}(\theta, \delta) = \int \mathcal{L}(\theta, \delta(x)) dP_{\theta}(x) = \mathbb{E}_{\theta} \mathcal{L}(\theta, \delta(X))$. Randomized decision: for each X = x, $\delta(x)$ is a probability distribution: $[A|X = x] \sim \delta_x$. Risk function for $\delta: \mathcal{R}(\theta, \delta) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A|X) = \int \int \mathcal{L}(\theta, a) d\delta_x(a) dP_{\theta}(x)$.

Example 2.1 (Parameter estimation) $\theta \in \Omega, \mathscr{A} = \Omega, \mathcal{L}(\theta, a) = \|\theta - a\|_p^p (p \ge 1) \stackrel{\text{or}}{=} \int \log \frac{P_{\theta}(x)}{P_a(x)} P_{\theta}(x) dm(x)$ (KL divergence). $\mathcal{R} = \text{Var}(a) + \text{bias}^2(a)$. Bregmass loss: $\phi : \mathbb{R}^d \to \mathbb{R}$ describe any strictly convex differentiable function. Then $\mathcal{L}_{\phi}(\theta, a) = \phi(a) - \phi(\theta) - (\phi - a)^T \nabla \phi(a)$.

Example 2.2 (Testing) $\mathscr{A} = \{0,1\}$ with action "0" associated with accepting $H_0: \theta \in \Omega_0$ and "1": $H_1: \theta \in \Omega_1$. δ_x is a Bernolli distribution. $\mathcal{L}(\theta, a) = I\{a = 1, \theta \in \Omega_0\} + I\{a = 0, \theta \in \Omega_1\}$. Risk $\mathcal{R}(\theta, \delta) = \mathbb{P}_{\theta}(A = 1)1_{\theta \in \Omega_0} + \mathbb{P}_{\theta}(A = 0)1_{\theta \in \Omega_1}$.

Definition 2.2 (Admissibility) A decision rule δ is called inadmissible if a competing rule δ^* such that $\mathcal{R}(\theta, \delta^*) \leq \mathcal{R}(\theta, \delta)$ for all $\theta \in \Omega$ and $\mathcal{R}(\theta, \delta^*) < \mathcal{R}(\theta, \delta)$ for at least one $\theta \in \Omega$. Otherwise, δ is admissible.

Definition 2.3 (Bayes rule) The maximum risk $\tilde{\mathcal{R}}(\delta) = \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$ and the Bayes risk $r(\Lambda, \delta) = \int \mathcal{R}(\theta, \delta) d\Lambda(\theta) = \int \mathcal{L}(\theta, \delta) d\mathbb{P}(x, \theta)$ ($\Lambda(\theta)$ is a prior). A decision rule that minimizes the Bayes risk is called a Bayes rule, that is, $\hat{\delta} : r(\Lambda, \hat{\delta}) = \inf_{\delta} r(\Lambda, \delta)$. Minimax rule $\delta^* : \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta^*) = \inf_{\delta} \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$.

Theorem 2.1 If risk functions for all decision rules are continuous in θ , if δ is Bayesian for Λ and has finite integrated risk $r(\Lambda, \delta) < \infty$, and if the support of Λ is the whole state space Ω , then δ is admissible.

Property 2.1 $p(\theta|x) = \frac{p_{\theta}(x)\lambda(\theta)}{\int p_{\theta}(x)\lambda(\theta)d\theta} := \frac{p_{\theta}(x)\lambda(\theta)}{m(x)}$. Define the posterior risk of δ : $r(\delta|X=x) = \int \mathcal{L}(\theta,\delta(x))d\mathbb{P}(\theta|x)$. The Bayes risk $r(\Lambda,\delta)$ satisfies that $r(\Lambda,\delta) = \int r(\delta|x)dM(x)$. Let $\hat{\delta}(x)$ be the value of δ that minimizes $r(\delta|x)$. Then $\hat{\delta}$ is the Bayes rule.

Example 2.3 (Application to supervised learning: regression) $(X,Y) \in \mathcal{X} \times \mathcal{Y}, f: \mathcal{X} \to \mathcal{Y}, \mathscr{A} = \Omega = \mathcal{Y}, \mathcal{D} = \mathcal{X}, \delta = f, \mathcal{L}(Y, f(X)) = \|Y - f(X)\|_p^p, p \ge 1$, risk $R_f = \iint \mathcal{L}(y, f(x)) d\mathbb{P}(x, y) = \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{E}[\mathbb{E}\mathcal{L}(Y, f(X))] = \mathbb{E}[\mathbb{E}\mathcal{L}(Y, f(X))]$. When p = 2, $r(f|X = x) = \int \mathcal{L}(y, f(x)) d\mathbb{P}(y|x) = \int |y - f(x)|^2 d\mathbb{P}(y|x)$. Regression function is $g(x) := \int y d\mathbb{P}(y|x) \Rightarrow R_f = \mathbb{E}|Y - f(X)|^2 = \mathbb{E}|Y - g(X) + g(X) - f(X)|^2 = \mathbb{E}|Y - g(X)|^2 + \mathbb{E}|g(X) - f(X)|^2 \ge \mathbb{E}|Y - g(X)|^2$.

Example 2.4 (Application to supervised learning: pattern classification) $Y \in \{0,1\}, p_0 = P(Y=0), p_1 = \mathbb{P}(Y=1) = 1 - p_0, \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{P}(Y \neq f(X)).$ The Bayesian predictor is given by $f(x) = 1_{\{\mathbb{P}(Y=1|X=x) \geq \frac{\mathcal{L}(1,0) - \mathcal{L}(0,0)}{\mathcal{L}(0,1) - \mathcal{L}(1,1)}\mathbb{P}(Y=0|X=x)\}}$.

MARKOV DECISION PROCESS

Property 2.2 (Continuation) $\mathbb{P}(Y = 1|X = x) = \mathbb{E}(Y|X = x) := g(x), f(x) = 1_{\{g(x) \geq \frac{1}{2}\}}.$ Then $0 \leq \mathbb{P}(\hat{f}(X) \neq Y) - \mathbb{P}(f(X) \neq Y) \leq 2\int_{\mathcal{X}} |\hat{g}(x) - g(x)| \mu(\mathrm{d}x) \leq 2(\int_{\mathcal{X}} |\hat{g}(x) - g(x)|^2 \mu(dx))^{\frac{1}{2}}.$ In Example 2.4, $f(x) = 1_{\{\frac{p(x|y=1)}{p(x|y=0)} \geq \frac{p_0(\mathcal{L}(0,1) - \mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0) - \mathcal{L}(1,1))}\}}$, which takes the same form as the likelihood ratio test (LRT): Likelihood $L(X) := \frac{p(X|Y=1)}{p(X|Y=0)}$ and $f(x) = 1_{\{L(x) \geq \eta\}}.$

Definition 2.4 (Confusion table) Ture Positive Rate: TPR = $\mathbb{P}(\hat{Y} = 1|Y = 1)$; False Negative Rate: FNR = 1 – TPR, type II error; False Positive Rate: FPR = $\mathbb{P}(\hat{Y} = 1|Y = 0)$, type I error; True Negative Rate: TNR = 1 – FPR. Precision: $\mathbb{P}(Y = 1|\hat{Y} = 1) = \frac{p_1 \text{TPR}}{p_0 \text{FPR} + p_1 \text{TPR}}$. F_1 -score: F_1 is the harmonic mean of precision and recall, which can be written as $F_1 = \frac{2\text{TPR}}{1 + \text{TPR} + \frac{p_0}{1 + \text{TPR}} + \frac{p_0}{1 + \text{TPR}}}$.

Theorem 2.2 (N-P lemma) Optimization: maximize TPR subject to FPR $\leq \alpha, \alpha \in [0, 1]$. Randomized rule: Q return 1 with probability Q(x) and 0 with probability 1 - Q(x). Maximize $\mathbb{E}[Q(x)|Y = 1]$ subject to $\mathbb{E}[Q(x)|Y = 0] \leq \alpha$. Suppose the likelihood functions p(x|y) are continuous. Then the optimal predictor is a deterministic LRT.

Proof Let η be the threshold for an LRT such that the predictor $Q_{\eta}(x) = 1\{\alpha(x) \geq \eta\}$ has FPR = α . Such an LRT exists because likelihood functions are continuous. Let β denote the TPR of Q_{η} . Prove that Q_{η} is optimal for risk minimization problem corresponding to the loss functions $\mathcal{L}(0,1) = \eta \frac{p_1}{p_0}$, $\mathcal{L}(1,0) = 1$, $\mathcal{L}(1,1) = \mathcal{L}(0,0) = 0$ since $\frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))} = \frac{p_0\mathcal{L}(0,1)}{p_1\mathcal{L}(1,0)} = \eta$. Under these loss functions, the risk of Bayes predictor for Q is $\mathcal{R}_Q = p_0 \text{FPR}(Q)\mathcal{L}(0,1) + p_1(1-\text{TPR}(Q))\mathcal{L}(1,0) = p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q))$. Now let Q be any other rule with $\text{FPR}(Q) \leq \alpha$, $\mathcal{R}_{Q_{\eta}} = p_1\eta\alpha + p_1(1-\beta) \leq p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q)) \leq p_1\eta\alpha + p_1(1-\text{TPR}(Q)) \Rightarrow \text{TPR}(Q) \leq \beta$.

Definition 2.5 (ROC (Receiver operating character) curve) y-axis is TPR and x-axis is FPR.

Proposition 2.1 (1) The points (0,0) and (1,1) are on the ROC curve; (2) The ROC must lie above the main diagnal; (3) The ROC curve is concave.

Proof We only prove (2). Fix $\alpha \in (0,1)$ and consider a randomized rate TPR = FPR = α , $Q(x) \equiv \alpha$; (3): Consider two rules (FPR(η_1), TPR(η_1)) and (FPR(η_2), TPR(η_2)). Flip a biased coin and use the first rule with probability t and the second rule with probability 1-t. Then this yields a randomized rule with (FPR, TPR) = $(t\text{FPR}(\eta_1) + (1-t)\text{FPR}(\eta_2), t\text{TPR}(\eta_1) + (1-t)\text{FPR}(\eta_2)$). Fixing FPR $\leq t\text{FPR}(\eta_1) + (1-t)\text{FPR}(\eta_2)$, TPR $\geq t\text{TPR}(\eta_1) + (1-t)\text{TPR}(\eta_2)$.

3 Markov Decision Process

Definition 3.2 (Decision rules) Prescribe a procedure for action selection in each state at a specified decision epoch. Four cases: (1) Markovian and Deterministic (MD): $\delta_t : \mathcal{S} \to \mathcal{A}$; (2) M and Randomized (MR): $\delta_t : \mathcal{S} \to \Delta(\mathcal{A})(q_{\delta_t(s)}(a))$; (3) History-dependent and D (HD): $h_t = (s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t) = (h_{t-1}, a_{t-1}, s_t), \mathcal{H}_1 = \mathcal{S}, \mathcal{H}_2 = \mathcal{S} \times \mathcal{A} \times \mathcal{S}, \dots, \delta_t : \mathcal{H}_t \to \mathcal{A}$; (4) HR: $\delta_t : \mathcal{H}_t \times \Delta(\mathcal{A})$. A policy $\pi = (\delta_1, \delta_2, \dots, \delta_{N-1})$ is stationary if $\delta_1 = \delta_2 = \dots = \delta$ for $t \in T$.

Definition 3.3 Let $\pi = (\delta_1, \cdots, \delta_{N-1})$ in HR and $R_t := r_t(X_t, Y_t)$ denote the random reward, $R_N := r_N(X_N)$, $R := (R_1, \cdots, R_N)$. The expected total reward $U_N^{\pi}(s) := \mathbb{E}^{\pi} \{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) | X_1 = s \}$. Assume $|r_t(s, a)| \le M < \infty$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Optimal policy: $U_N^{\pi^*}(s) \ge U_N^{\pi}(s)$, $s \in \mathcal{S}$. ε -optimal policy: $U_N^{\pi^*}(s) + \varepsilon > U_N^{\pi}(s)$, $s \in \mathcal{S}$. The value of the MDP: $U_N^{*}(s) = \sup_{\pi \in \mathcal{D}^{\text{HR}}} U_N^{\pi}(s)$, $s \in \mathcal{S}$.

Property 3.1 (Finite-Horizon Policy Evaluation) $V_t^{\pi}(h_t) = \mathbb{E}^{\pi} \{ \sum_{k=t}^{N-1} r_k(X_k, Y_k) + r_N(X_N) | h_t \}, V_N^{\pi}(h_N) = r_N(s), \pi \in \mathcal{D}^{HD}$. By the formula of total expectation,

$$V_t^{\pi}(h_t) = r_t(s_t, \delta_t(h_t)) + \mathbb{E}_{h_t}^{\pi} V_{t+1}^{\pi}(h_t, \delta_t(h_t), X_{t+1}) = r_t(s_t, \delta_t(h_t)) + \sum_{j \in S} V_{t+1}^{\pi}(h_t, \delta_t(h_t), j) p(j|s_t, \delta_t(h_t)).$$

Consider randomness, i.e. $\pi \in \mathcal{D}^{HR}$,

$$V_t^{\pi}(h_t) = \sum_{a \in \mathcal{A}} q_{\delta_t(h_t)}(a) \{ r_t(s_t, a) + \sum_{j \in \mathcal{S}} V_{t+1}^{\pi}(h_t, a, j) p(j|s_t, a) \}.$$

Computational complexity: let $K = |\mathcal{S}|, L = |\mathcal{A}|$, at decision epoch t, $K^{t+1}L^t$ histories, $K^2 \sum_{i=0}^{N-1} (KL)^i$ multiplications. If $\pi \in \mathcal{D}^{MD}$,

$$V_t^{\pi}(s_t) = r_t(s_t, \delta_t(s_t)) + \sum_{j \in S} V_{t+1}^{\pi}(j) p(j|s_t, \delta_t(s_t)),$$

only $(N-1)K^2$ multiplications. On the other hand, given π , this yields a valid and accurate calculation method for $U_N^{\pi}(s)$.

Theorem 3.1 (The Bellman Equations) Let $V_t^*(h_t) = \sup_{\pi \in \mathcal{D}^{HR}} V_t^{\pi}(h_t)$. The optimality equations:

$$V_t(h_t) = \sup_{a \in \mathcal{A}} \{ r_t(s_t, a) + \sum_{j \in \mathcal{S}} V_{t+1}(h_t, a, j) p_t(j|s_t, a) \} \text{ for } t = 1, 2, \cdots, N-1 \text{ and } h_t = (h_{t-1}, a_{t-1}, s_t) \in \mathcal{H}_t.$$

For $t = N, V_N(h_N) = r_N(s_N)$. Suppose V_t is a solution and V_N satisfies $V_N(h_N) = r_N(s_N)$. Then $V_t(h_t) = V_t^*(h_t)$ for all $h_t \in \mathcal{H}_t, t = 1, \dots, N$ and $V_t(s_1) = V_t^*(s_1) = U_N^*(s_1)$ for all $s_1 \in \mathcal{S}$.

Proof We divide the proof into two parts.

Step 1: Prove $V_n(h_n) \geq V_n^*(h_n)$ for all $h_n \in \mathcal{H}_n$. By induction: For t = N, $V_N(h_N) = r_N(s_N) = V_N^*(h_N)$ for all h_t, π . Now assume that $V_t(h_t) \geq V_t^*(h_t)$ for all $h_t \in \mathcal{H}_t$ for $t = n + 1, \dots, N$. Let $\pi' = (\delta'_1, \dots, \delta'_{N-1})$ be an arbitrary policy in \mathcal{D}^{HR} . On the one hand, for t = n, it is trivial that

$$V_n(h_n) = \sup_{a \in \mathcal{A}} \{ r_n(s_t, a_t) + \sum_{j \in \mathcal{S}} p(j|s_n, a) V_{n+1}(h_n, a, j) \} \ge \sup_{a \in \mathcal{A}} \{ r_n(s_n, a) + \sum_{j \in \mathcal{S}} p_n(j|s_n, a) V_{n+1}^*(h_n, a, j) \}$$

$$\ge \sup_{a \in \mathcal{A}} \{ r_n(s_n, a) + \sum_{j \in \mathcal{S}} p_n(j|s_n, a) V_{n+1}^{\pi'}(h_n, a, j) \} \ge V_n^{\pi'}(h_n).$$

Step 2: Prove that for any $\varepsilon > 0$, there exists a $\pi \in \mathcal{D}^{HD}$ such that

$$V_n^{\pi'}(h_n) + (N-n)\varepsilon \ge V_n(h_n) \Rightarrow V_n^*(h_n) + (N-n)\varepsilon \ge V_n^{\pi'}(h_n) + (N-n)\varepsilon \ge V_n(h_n) \ge V_n^*(h_n).$$

Construct a policy $\pi' = (\delta'_1, \dots, \delta'_{N-1})$ by choosing $\delta'_n(h_n)$ to satisfy

$$r_n(s_n, \delta'_n(h_n)) + \sum_{j \in \mathcal{S}} p_n(j|s_n, \delta'_n(h_n)) V_{n+1}(h_n, \delta'_n(h_n)) + \varepsilon \ge V_n(h_n).$$

By induction: For t = N, $V_N^{\pi'}(h_N) = V_N(h_N)$. Assume $V_t^{\pi'}(h_t) + (N-t)\varepsilon \ge V_t(h_t)$ for $t = n+1, \dots, N$. For t = n,

$$V_n^{\pi'}(h_n) = r_n(s_n, \pi'_n(h_n)) + \sum_{j \in \mathcal{S}} p_n(j|s_n, \delta_n^{\pi'}(h_n)) V_{n+1}^{\pi'}(h_n, \delta_n^{\pi'}(h_n), j) \ge V_n(h_n) - (N-n)\varepsilon.$$

Remark 3.1 The equations yield that $\delta_t^*(h_t) \in \arg\max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(s_t, a) V_{t+1}^*(h_t, a, j)\}$, which means it is HD, i.e. $U_N^*(s) = \sup_{\pi \in \mathcal{D}^{\text{HD}}} U_N^{\pi}(s) \stackrel{?}{=} \sup_{\pi \in \mathcal{D}^{\text{MD}}} U_N^{\pi}(s)$. We will answer "?" in the following theorem.

Theorem 3.2 Let $V_t^*, t = 1, \dots, N$ be solutions of Bellman Equations. Then (a) For each $t = 1, \dots, N, V_t^*(h_t)$ depends on h_t only through s_t ; (b) For any $\varepsilon > 0$, there exists an ε -optimal policy which is D and M; (c) Maximum can be achieved, it is optimal, which is MD.

Proof We only prove (a). By induction, $V_N^*(h_N) = V_N^*(h_{N-1}, a_{N-1}, s) = r_N(s)$ for all $h_{N-1} \in \mathcal{H}_{N-1}$. Assume (a) is valid for $t = n + 1, \dots, N$. Then $V_n^*(h_n) = \sup_{a \in \mathcal{A}} \{ r_t(s_t, a) + \sum_{i \in \mathcal{S}} p_t(j|s_t, a) V_{t+1}^*(j) \} = V_n^*(s_t)$.

Definition 3.4 (Backward Indcution (Dynamic Programming) Algorithm) 1. Set t = N and $V_N^*(s_N) = r_N(s_N)$ for all $s_N \in \mathcal{S}$; 2. Substitute t - 1 for t and compute $V_t^*(s_t)$ for each $s_t \in \mathcal{S}$ according to

$$V_t^*(s_t) = \max_{a \in \mathcal{A}} \{ r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(j|s_t, a) V_{t+1}^*(s_t) \},$$

and set $\mathcal{A}_{s_t} = \arg\max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(j|s_t, a)V_{t+1}^*(s_t)\}$; 3. If t = 1, stop. Otherwise return to Step 2.

Remark 3.2 (1) At time t, specialized S_t and A_s , special structure for r_t and p_t ; (2) K = |S| and L = |A|, at eact t, only $(N-1)LK^2$ multiplications, ease computation and storage cost (because there are $(L^K)^{N-1}$ DM policies).

Definition 3.5 (Infinite-Horizon MDPs) Assumptions: Stationary reward and transition probabilities, i.e. $r_t(s, a) \equiv r(s, a), p_t(j|s, a) \equiv p(j|s, a)$; Bounded rewards, i.e. $|r(s, a)| \leq M < \infty$ for all $a \in \mathcal{A}$ and $s \in \mathcal{S}$; Discounting coefficient $\lambda, 0 \leq \lambda < 1$; Discrete state space \mathcal{S} . The expected total reward of policy $\pi = (\delta_1, \delta_2, \cdots) \in \mathcal{D}^{HR}$:

$$U^{\pi}(s) = \lim_{N \to +\infty} \mathbb{E}_{s}^{\pi} \{ \sum_{t=1}^{N} \lambda^{t-1} r(X_{t}, Y_{t}) \} = \mathbb{E}_{s}^{\pi} \{ \sum_{t=1}^{+\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \}.$$

We say that a policy π^* is optimal when $U^{\pi^*}(s) \geq U^{\pi}(s)$ for each $s \in \mathcal{S}$ and all $\pi \in \mathcal{D}^{HR}$. Define the value of the MDP $U^*(s) = \sup_{\pi \in \mathcal{D}^{HR}} U^{\pi}(s)$. Let $U^{\pi}_{\nu}(s)$ denote the expected reward obtained by using π when the horizon ν is random. Then $U^{\pi}_{\nu}(s) = \mathbb{E}^{\pi}_{s} \{\mathbb{E}_{\nu \sim P} \sum_{t=1}^{\nu} r(X_{t}, Y_{t})\}$.

Theorem 3.3 Suppose ν has a GD(λ), i.e. $\mathbb{P}(\nu = n) = \lambda^{n-1}(1 - \lambda)$. Then $U^{\pi}(s) = U^{\pi}_{\nu}(s)$ for all $s \in \mathcal{S}$.

Proof
$$\mathbb{E}^{\pi}_{\nu}(s) = \mathbb{E}^{\pi}_{s} \{ \sum_{n=1}^{+\infty} \sum_{t=1}^{n} r(X_{t}, Y_{t})(1-\lambda)\lambda^{n-1} \} = \mathbb{E}^{\pi}_{s} \{ \sum_{t=1}^{+\infty} \sum_{n=t}^{+\infty} r(X_{t}, Y_{t})(1-\lambda)\lambda^{n-1} \} = \mathbb{E}^{\pi}_{s} \{ \sum_{t=1}^{+\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \}.$$

Theorem 3.4 Suppose $\pi \in \mathcal{D}^{HR}$, then for each $s \in \mathcal{S}$, there exists a $\pi' \in \mathcal{D}^{MR}$ for which $U^{\pi'}(s) = U^{\pi}(s)$.

Proof Note that

$$U^{\pi}(s) = \mathbb{E}_{s}^{\pi} \left\{ \sum_{t=1}^{+\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \right\} = \sum_{t=1}^{+\infty} \sum_{j \in S} \sum_{a \in A} \lambda^{t-1} r(j, a) p^{\pi}(X_{t} = j, Y_{t} = a | X_{1} = s).$$

Fixing $s \in \mathcal{S}$, we only need to check

$$p^{\pi}(X_t = j, Y_t = a | X_1 = s) = p^{\pi'}(X_t = j, Y_t = a | X_1 = s).$$

For each $j \in \mathcal{S}$ and $a \in \mathcal{A}$, define the randomized Markov decision rule δ'_t by

$$q_{\delta'_t(i)}(a) = p^{\pi}(Y_t = a | X_t = j, X_1 = s).$$

Then

$$p^{\pi'}(Y_t = a|X_t = j) = p^{\pi}(Y_t = a|X_t = j, X_1 = s).$$

Assume the conclusion holds for $t = 0, 1, \dots, n - 1$. Then

$$p^{\pi'}(X_n = j, Y_n = a | X_1 = s) = p^{\pi'}(Y_n = a | X_n = j, X_1 = s)p^{\pi'}(X_n = j | X_1 = s)$$
$$= p^{\pi}(Y_n = a | X_n = j, X_1 = s)p^{\pi'}(X_n = j | X_1 = s).$$

Then by induction assumption,

$$p^{\pi}(X_n = j | X_1 = s) = \sum_{k \in \mathcal{S}} \sum_{a \in \mathcal{A}} p^{\pi}(X_{n-1} = k, Y_{n-1} = a | X_1 = s) p(j | k, a)$$

$$= \sum_{k \in \mathcal{S}} \sum_{a \in \mathcal{A}} p^{\pi'}(X_{n-1} = k, Y_{n-1} = a | X_1 = s) p(j | k, a) = p^{\pi'}(X_n = j | X_1 = s)$$

Proposition 3.1 (Vector expression for MDP) Let δ be MD, define $r_{\delta}(s)$ and $p_{\delta}(j|s)$ by

$$r_{\delta}(s) := r(s, \delta(s)), p_{\delta}(j|s) := p(j|s, \delta(s)).$$

Denote $r_{\delta} = (r_{\delta}(1), \cdots, r_{\delta}(|\mathcal{S}|))^T \in \mathbb{R}^{|\mathcal{S}|}, p_{\delta} = (p_{\delta})_{(s,j)} = p(j|s, \delta(s)).$ For MR δ , define

$$r_{\delta}(s) = \sum_{a \in \mathcal{A}} q_{\delta(s)}(a) r(s, a), p_{\delta}(j|s) = \sum_{a \in \mathcal{A}} q_{\delta(s)}(a) p(j|s, a).$$

The (s,j)-th component of the t-step transition probability matrix p_{π}^{t} satisfies

$$p_{\pi}^{t}(j|s) = [p_{\delta_{1}}p_{\delta_{2}}\cdots p_{\delta_{t}}](j|s) = p^{\pi}(X_{t+1} = j|X_{1} = s)$$

$$\mathbb{E}_{s}^{\pi}g(X_{t}) = \sum_{j\in\mathcal{S}}p_{\pi}^{t-1}(j|s)g(j) = (p_{\pi}^{t}g)_{s}$$

$$U^{\pi} = \sum_{t=1}^{+\infty}\lambda^{t-1}p_{\pi}^{t-1}r_{\delta_{t}} = r_{\delta_{1}} + \lambda p_{\delta_{1}}(r_{\delta_{1}} + \lambda p_{\delta_{2}}r_{\delta_{2}} + \cdots) = r_{\delta_{1}} + \lambda p_{\delta_{1}}U^{\pi_{1}}.$$

When π is stationary, $U = r_{\delta} + \lambda p_{\delta}U$.

Theorem 3.5 Define $\mathscr{L}U = \sup_{d \in \mathcal{D}^{\text{MD}}} \{ r_d + \lambda p_d U \}$. Suppose there exists a $U \in \mathcal{U}$ for which (a) $U \geq \mathscr{L}U$, then $U \geq U^*$; (b) $U \leq \mathscr{L}U$, then $U \leq U^*$; (c) $U = \mathscr{L}U$, then $U = U^*$.

Proof (a) By the given conditions,

$$U \ge \sup_{\delta \in \mathcal{D}^{MR}} \{ r_d + \lambda p_d U \} \ge r_{\delta_1} + \lambda p_{\delta_1} U \ge r_{\delta_1} + \lambda p_{\delta_1} (r_{\delta_2} + \lambda p_{\delta_2} U)$$

$$\ge r_{\delta_1} + \lambda p_{\delta_1} r_{\delta_2} + \dots + \lambda^{n-1} p_{\delta_1} p_{\delta_2} \dots p_{\delta_{n-1}} r_{\delta_n} + \lambda^n p_{\pi}^n U$$

$$\Rightarrow U - U^{\pi} \ge \lambda^n p_{\pi}^n U - \sum_{k=n}^{+\infty} \lambda^k p_{\pi}^k r_{\delta_{k+1}} \ge 0.$$

(b)
$$U \leq \mathscr{L}U \Rightarrow U \leq r_d + \lambda p_d U + \varepsilon 1 \Rightarrow (I - \lambda p_d)U \leq r_d + \varepsilon 1 \Rightarrow U \leq (I - \lambda p_d)^{-1}(r_d + \varepsilon 1) = U^{\pi} + \varepsilon(1 - \lambda)^{-1}1_{|\mathcal{S}|}$$
.

(c) Omitted.

Theorem 3.6 If $0 \le \lambda < 1$, \mathcal{L} is a contraction mapping on \mathcal{U} .

Proof Let u and v in \mathcal{U} . For each $s \in \mathcal{S}$, assume $\mathcal{L}v(s) \geq \mathcal{L}u(s)$ and let $a_s^* = \arg\max_{a \in \mathcal{A}} \{r(s, a) + \sum_{j \in \mathcal{S}} \lambda p(j|s, a)v(j)\}$. Then

$$0 \le \mathcal{L}v(s) - \mathcal{L}u(s) \le r(s, a_s^*) + \sum_{j \in \mathcal{S}} \lambda p(j|s, a_j^*)v(j) - r(s, a_j^*) - \sum_{j \in \mathcal{S}} \lambda p(j|s, a_s^*)u(j)$$

$$= \lambda \sum_{j \in \mathcal{S}} p(j|s, a_s^*)(v(j) - u(j)) \le \lambda \sum_{j \in \mathcal{S}} p(j|s, a_s^*)||u - v|| = \lambda ||u - v||.$$

4 Statistical Learning Theory

Definition 4.1 (Basic concepts) $(X,Y) \sim P \in \mathcal{P}$, definite $(X_1,Y_1), \dots, (X_n,Y_n)$ i.i.d., $\mathcal{D}_n = \{(X_1,Y_1), \dots, (X_n,Y_n)\}$, risk $\mathcal{R}_n(f) = \mathbb{E}_{(X,Y)\in\mathcal{D}_n}l(X,Y)$. An algorithm A is a mapping from \mathcal{D}_n to a function $\mathcal{X} \to \mathcal{Y}$. Excess risk: $\mathcal{R}_P(A(\mathcal{D}_n)) - \mathcal{R}_P^*$. Expected error: $\mathbb{E}[\mathcal{R}_P(A(\mathcal{D}_n))]$. An algorithm is called consistent in expectation for P iff $\mathbb{E}[\mathcal{R}_P(A(\mathcal{D}_n))] - \mathcal{R}_P^* \to 0$. PAC (probability approximately correct): for a given $\delta \in (0,1)$ and $\varepsilon > 0$, $\mathbb{P}(\mathcal{R}_P(A(\mathcal{D}_n))) - \mathcal{R}_P^* \le \varepsilon) \ge 1 - \delta$.

Definition 4.2 (Consistency) $g(x) = \mathbb{E}[Y|X=x], g_n(x,\mathcal{D}_n) = g_n(x), \mathbb{E}\{|g_n(X)-Y|^2|\mathcal{D}_n\} = \int_{\mathbb{R}^d} |g_n(x)-g(x)|^2 \mu(\mathrm{d}x) + \mathbb{E}|g(X)-Y|^2$. A sequence of regression function estimates $\{g_n\}$ is called (a) weakly consistent for a certain distribution of (X,Y) if $\lim_{n\to+\infty} \mathbb{E}\{\int [g_n(x)-g(x)]\mu(\mathrm{d}x)\} = 0$; (b) strongly consistent for a certain distribution if $\lim_{n\to+\infty} \int [g_n(x)-g(x)]^2 \mu(\mathrm{d}x) = 0$ with probability 1; (c) weakly universally consistent if for all distributions of (X,Y) with $\mathbb{E}[Y^2] < \infty$, \cdots ; (d) strongly universally consistent \cdots .

Definition 4.3 (Penalized model) $g_n = \arg\min_{f} \{ \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 + J_n(f) \}$. Penalized term for f:

$$J_n(f) = \lambda_n \int |f''(t)|^2 dt \text{ or } J_{n,k}(f) = \lambda_n \int \sum_{t_1, \dots, t_k \in \{1, \dots, d\}} \left| \frac{\partial f^k}{\partial x_{t_1} \dots \partial x_{t_d}} \right|^2 dt, \dots$$

Proposition 4.1 (Curse of dimensionality) Let X, X_1, \dots, X_n i.i.d. \mathbb{R}^d uniformly distributed in $[0,1]^d$.

$$d_{\infty}(d,n) = \mathbb{E}\{\min_{i=1,\dots,n} \|X - X_i\|_{\infty}\} = \int_{0}^{\infty} \mathbb{P}\{\min_{i=1,\dots,n} \|X - X_i\|_{\infty} > t\} dt$$
$$= \int_{0}^{\infty} (1 - \mathbb{P}\{\min_{i=1,\dots,n} \|X - X_i\|_{\infty} < t\}) dt.$$

Since $\mathbb{P}\{\min_i \|X - X_i\|_{\infty} < t\} \le n\mathbb{P}(\|X - X_1\|_{\infty} \le t) \le n(2t)^d$, $d_{\infty}(d, n) \ge \frac{d}{2(d+1)}n^{-\frac{1}{d}}$.

Theorem 4.1 (No-Free lunch theorem) Let $\{a_n\}$ be a sequence of positive numbers converging to 0. For every sequence of regression estimates, there exists a distribution of (X,Y) such that X is uniformly distributed on [0,1], Y = g(X), g is ± 1 valued, and $\limsup_{n \to +\infty} \frac{\mathbb{E}\|g_n - g\|^2}{a_n} \geq 1$.

Proof Let $\{p_j\}$ be a probability distribution and let $A = \{A_j\}$ be a partition of [0,1] such that A_j is an interval of length p_j . Consider regression function indexed by a parameter $c = (c_1, c_2, \cdots)$ with $c_j \in \{\pm 1\}$. Define $g^{(c)} : [0,1] \to \{-1,1\}$ by $g^{(c)}(x) = c_j$ iff $x \in A_j$ and $Y = g^{(c)}(X)$. For $x \in A_j$, define $\bar{g}_n(x) = \frac{1}{p_j} \int_{A_j} g_n(z) \mu(\mathrm{d}z)$ to be the projection of g_n on A. Then

$$\int_{A_j} |g_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x) = \int_{A_j} |g_n(x) - \bar{g}_n(x)|^2 \mu(\mathrm{d}x) + \int_A |\bar{g}_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x)$$

$$\geq \int_A |\bar{g}_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x).$$

Set $\hat{c}_{nj} = \begin{cases} 1 & \text{if } \int_{A_j} g_n(z)\mu(\mathrm{d}z) \geq 0 \\ -1 & \text{otherwise} \end{cases}$. For $x \in A_j$, if $\hat{c}_{nj} = 1$ and $c_j = -1$, then $\bar{g}_n(x) \geq 0$ and $g^{(c)}(x) = -1$, implying $|\bar{g}_n(x) - g^{(c)}(x)| \geq 1$; if $\hat{c}_{nj} = -1$ and $c_j = 1$, then $\bar{g}_n(x) < 0$ and $g^{(c)}(x) = 1$, also implying $|\bar{g}_n(x) - g^{(c)}(x)|^2 \geq 1$. Therefore,

$$\int_{A} |\bar{g}_{n}(x) - g^{(c)}(x)|^{2} \mu(\mathrm{d}x) \ge 1_{\{\hat{c}_{nj} \neq c_{j}\}} \int_{A_{j}} 1\mu(\mathrm{d}x) \ge 1_{\{\hat{c}_{nj} \neq c_{j}\}} p_{j} \ge 1_{\{\hat{c}_{nj} \neq c_{j}\}} 1_{\{\mu_{n}(A_{j}) = 0\}} p_{j}$$

$$\Rightarrow \mathbb{E} \left\{ \int |g_{n}(x) - g^{(c)}(x)|^{2} \mu(\mathrm{d}x) \right\} \ge \sum_{j=1}^{+\infty} \mathbb{P}(\hat{c}_{nj} \neq c_{j}, \mu_{n}(A_{j}) = 0) p_{j} := R_{n}(c).$$

Now we randomize c. Let C_1, C_2, \cdots be a sequence of i.i.d. random variables independent of X_1, X_2, \cdots which satisfy $\mathbb{P}(c_1 = 1) = \mathbb{P}(c_1 = -1) = \frac{1}{2}$. Thus

$$\mathbb{E}R_{n}(C) = \sum_{j=1}^{+\infty} \mathbb{E}\mathbb{P}(\hat{C}_{nj} \neq C_{j}, \mu_{n}(A_{j}) = 0) p_{j} \stackrel{\text{total expectation}}{=} \sum_{j=1}^{+\infty} \mathbb{E}\{1_{\{\mu_{n}(A_{j})=0\}}\mathbb{P}(\hat{C}_{nj} \neq C_{j} | X_{1}, \cdots, X_{n})\} p_{j}$$

$$= \frac{1}{2} \sum_{j=1}^{+\infty} \mathbb{P}(\mu_{n}(A_{j}) = 0) p_{j} = \frac{1}{2} \sum_{j=1}^{+\infty} (1 - p_{j})^{n} p_{j}.$$

On the other hand,

$$R_n(c) \le \sum_{j=1}^{+\infty} \mathbb{P}(\mu_n(A_j) = 0) p_j = \sum_{j=1}^{+\infty} (1 - p_j)^n p_j \Rightarrow \frac{R_n(c)}{\mathbb{E}R_n(C)} \le 2.$$

By Fatou's lemma,

$$\mathbb{E}\left\{\limsup_{n\to+\infty}\frac{R_n(C)}{\mathbb{E}R_n(C)}\right\} \ge \limsup_{n\to+\infty}\left\{\frac{R_n(C)}{\mathbb{E}R_n(C)}\right\} = 1,$$

which implies that there exists $c \in C$ such that

$$\limsup_{n \to +\infty} \frac{R_n(C)}{\mathbb{E}R_n(C)} \ge 1 \Rightarrow \limsup_{n \to +\infty} \frac{\mathbb{E}\{\int |g_n(x) - g(x)|^2 \mu(\mathrm{d}x)\}}{\frac{1}{2} \sum_{j=1}^{+\infty} (1 - p_j)^n p_j} \ge 1.$$

Let $\{a_n\}$ be a sequence of positive numbers converging to 0 with $\frac{1}{2} \geq a_1 \geq a_2 \geq \cdots$, then there exists a probability $\{p_j\}$ such that $\sum_{i=1}^{+\infty} (1-p_j)^n p_j \geq a_n, \forall n$.

STATISTICAL LEARNING THEORY

Definition 4.4 (Minimax lower bounds) (a) The sequence of positive numbers a_n is called the lower minimax rate of convergence for the \mathcal{P} if $\liminf_{n\to+\infty} \inf_{g_n} \sup_{P\in\mathcal{P}} \frac{\mathbb{E}\|g_n-g\|^2}{a_n} = c_1 > 0$. (b) a_n is called optimal rate of convergence for the class

 \mathcal{P} if it is a lower minimax rate of convergence and there is an estimate g_n such that $\limsup_{n\to+\infty}\sup_{P\in\mathcal{P}}\frac{\mathbb{E}\|g_n-g\|^2}{a_n}=c_n<\infty$.

Definition 4.5 (Smoothness) Let $q = k + \beta$ for some $k \in \mathbb{N}$ and $0 < \beta \le 1$ and let $\rho > 0$. A function $f : \mathbb{R}^d \to \mathbb{R}$ is called (q, ρ) -smooth if for every $\alpha = (\alpha_1, \cdots, \alpha_d), \alpha_i \in \mathbb{N}, \sum_{i=1}^d \alpha_i = k$, the partial derivative $\frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}$ exists and satisfies $\left| \frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}(x) - \frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}(z) \right| \le \rho \|x - z\|^{\beta}$. Let $\mathscr{F}^{(q,\rho)}$ be the set of all (q, ρ) -smooth functions f. Let $\mathscr{P}^{(q,\rho)}$ be the class of distributions (X,Y) such that (i) X is uniformly distributed on $[0,1]^d$; (ii) Y = g(X) + N, where $X \perp \!\!\!\perp N$, and N is standard normal; (iii) $g \in \mathscr{F}^{q,\rho}$.

Lemma 4.1 Let u be an l-dimensional real vector, let C be a zero means random variables takeing values in $\{-1,1\}$ and let N be an l-dimensional standard normal independent of C. Set Z = Cu + N. Then the error probability of the Bayesian decision for C based on Z is $\mathcal{R}^* = \min_{g:\mathbb{R}^l \to \mathbb{R}} \mathbb{P}(g(Z) \neq C) = \Phi(-\|u\|)$.

Proof $\mathbb{P}(C=1) = \mathbb{P}(C=-1) = \frac{1}{2}, \mathbb{P}(Z|C=1) = \mathcal{N}(u,I), \mathbb{P}(Z|C=-1) = \mathcal{N}(-u,I).$ By the Bayes formula,

$$\mathbb{P}(C=1|Z=z) = \frac{\mathbb{P}(C=1)\mathbb{P}(Z|C=1)}{\mathbb{P}(C=1)\mathbb{P}(Z|C=1) + \mathbb{P}(C=-1)\mathbb{P}(Z|C=-1)} = \frac{1}{1 + \exp\left(\frac{\|Z-u\|^2}{2} - \frac{\|Z+u\|^2}{2}\right)} = \frac{1}{1 + \exp(-2Z^Tu)}.$$

Therefore, the optimal Bayes decision is $g^*(Z) = \operatorname{sgn}(Z^T u)$, and the risk is

$$\mathcal{R}^* = \mathbb{P}(g^*(Z) \neq C) = \mathbb{P}(Z^T u < 0, C = 1) + \mathbb{P}(Z^T u > 0, C = -1)$$

$$= \mathbb{P}(\|u\|^2 + u^T N < 0, C = 1) + \mathbb{P}(-\|u\|^2 + u^T N > 0, C = -1)$$

$$= \frac{1}{2} \mathbb{P}(u^T N \le -\|u\|^2) + \frac{1}{2} \mathbb{P}(u^T N > \|u\|^2) = \Phi(-\|u\|).$$

Theorem 4.2 For the class $\mathcal{P}^{(q,\rho)}$, the sequence $a_n = n^{-\frac{2q}{2q+d}}$ is a lower minimax rate of convergence. In particular,

$$\liminf_{n \to \infty} \inf_{g_n} \sup_{P_{(X,Y)} \in \mathcal{P}^{(q,\rho)}} \frac{\mathbb{E} \|g_n - g\|^2}{\rho^{\frac{2d}{2q+d}} n^{-\frac{2q}{2q+d}}} \ge c_1 > 0.$$

Proof Step 1: Construct an auxiliary function $g^{(c)}(x)$. Set $M_n = \lceil (\rho^2 n)^{\frac{1}{2q+d}} \rceil$. Partition $[0,1]^d$ into M_n^d cubes $\{A_{n,j}\}$ of side length $\frac{1}{M_n}$ and with centers $\{a_{n,j}\}$. Choose a function $\bar{f}: \mathbb{R}^d \to \mathbb{R}$ such that the support of \bar{f} is a subset of $[-\frac{1}{2},\frac{1}{2}]^d$, $\int \bar{f}^2(x)\mathrm{d}x > 0$ and $\bar{f} \in \mathscr{F}^{(q,2^{\beta-1})}$. Define $f: \mathbb{R}^d \to \mathbb{R}$ by $f = \rho \bar{f}$. Let $c_n = (c_{n,1},\cdots,c_{n,M_n^d}) \in \mathcal{C}_n$ take values in $\{\pm 1\}$. Define $g^{(c_n)}(x) = \sum_{j=1}^{M_n^d} c_{n,j} f_{n,j}(x)$ where $f_{n_j}(x) = M_n^{-q} f(M_n(x-a_{n,j}))$.

Step 2: Show that $g^{(c_n)} \in \mathscr{F}^{(q,\rho)}$. Let $\alpha = (\alpha_1, \dots, \alpha_d), \alpha_i \in \mathbb{N}, \sum_{j=1}^d \alpha_j = k \text{ and } D^{\alpha} = \frac{\partial^k}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$. If $x, z \in A_{n,j}$,

$$|D^{\alpha}g^{c_n}(x) - D^{\alpha}g^{(c_n)}(z)| = |c_{n,k}||D^{\alpha}f_{n,j}(x) - D^{\alpha}f_{n,j}(z)| \le \rho||x - z||^{\beta}.$$

If $x \in A_{n,i}$, $z \in A_{n,j}$, choose \bar{x}, \bar{z} on the line between x and z such that \bar{x} is on the boundary of $A_{n,i}$ and \bar{z} is on the boundary of $A_{n,j}$. Then

$$|D^{\alpha}g^{(c_{n})}(x) - D^{\alpha}g^{(c_{n})}(z)| \leq |c_{n,i}D^{\alpha}f_{n,i}(x)| + |c_{n,j}D^{\alpha}f_{n,j}(z)|$$

$$= |c_{n,i}||D^{\alpha}f_{n,i}(x) - D^{\alpha}f_{n,i}(\bar{x})| + |c_{n,j}||D^{\alpha}f_{n,j}(z) - D^{\alpha}f_{n,j}(\bar{z})|$$

$$\leq \rho 2^{\beta-1}(||x - \bar{x}||^{\beta} + ||z - \bar{z}||^{\beta}) = \rho 2^{\beta} \left(\frac{||x - \bar{x}||^{\beta}}{2} + \frac{||z - \bar{z}||^{\beta}}{2}\right)$$

$$\leq \rho 2^{\beta} \left(\frac{||x - \bar{x}||}{2} + \frac{||z - \bar{z}||}{2}\right)^{\beta} \leq \rho ||x - z||^{\beta}.$$

Step 3: Prove that

$$\liminf_{n \to +\infty} \inf_{g_n} \sup_{Y = g^{(c)}(X) + N, c \in \mathcal{C}_n} \frac{M_n^{2q}}{\rho^2} \mathbb{E} \|g_n - g^{(c)}\|^2 > 0.$$

 $\{f_{n,j}\}$ forms a set of orthogonal basis. Let g_n be an arbitrary estimate, and the projection \bar{g}_n of g_n to $\{g^{(c)}:c\in\mathcal{C}_n\}$ is given by $\bar{g}_n=\sum_{j=1}^{M_n}\tilde{c}_{n,j}f_{n,j}(x)$. Then

$$||g_n - g^{(c)}||^2 = ||g_n - \bar{g}_n||^2 + ||g_n - g^{(c)}||^2 \ge ||\bar{g}_n - g^{(c)}||^2 = \sum_{j=1}^{M_n^d} \int_{A_{n,j}} (\tilde{c}_{n,j} f_{n,j}(x) - c_{n,j} f_{n,j}(x))^2 dx$$

$$= \sum_{j=1}^{M_n^d} \int_{A_{n,j}} (\tilde{c}_{n,j} - c_{n,k})^2 f_{n,j}^2(x) dx = \int f^2(x) dx \sum_{j=1}^{M_n^d} (\tilde{c}_{n,j} - c_{n,j})^2 \frac{1}{M_n^{2q+d}}.$$

Define $\bar{c}_{n,j} = \operatorname{sgn}(\tilde{c}_{n,j})$, then

$$|\tilde{c}_{n,j} - c_{n,j}| \ge \frac{|\bar{c}_{n,j} - c_{n,j}|}{2} \Rightarrow ||g_n - g^{(c)}||^2 \ge \int f^2(x) dx \frac{1}{4} \frac{1}{M_n^{2q+d}} \sum_{i=1}^{M_n^d} (\bar{c}_{n,j} - c_{n,j})^2 = \frac{\rho^2}{M_n^{2q}} \int \bar{f}^2(x) dx \frac{1}{M_n^d} \sum_{j=1}^{M_n^d} 1_{\{\bar{c}_{n,j} \neq c_{n,j}\}}.$$

Step 4: Prove that

$$\liminf_{n \to +\infty} \inf_{\bar{c}_n} \sup_{c_n} \frac{1}{M_n^d} \sum_{i=1}^{M_n^d} \mathbb{P}(\bar{c}_{n,j} \neq c_{n,j}) > 0.$$

Now we randomize c_n . Let $c_{n,1}, \dots, c_{n,M_n^d}$ be i.i.d. random variables independent of $(X_1, N_1), \dots, (X_n, N_n)$, $\mathbb{P}(C_{n,1} = 1) = \mathbb{P}(C_{n,1} = -1) = \frac{1}{2}$. $\bar{c}_{n,j}$ can be interpreted as a decision on $C_{n,j}$ using \mathcal{D}_n . Let $\bar{C}_{n,j} = 1$ if $\mathbb{P}(\bar{C}_{n,j} = 1 | \mathcal{D}_n) \geq \frac{1}{2}$. Therefore,

$$\inf_{\bar{c}_n} \sup_{c_n} \frac{1}{M_n^d} \sum_{j=1}^{M_n^d} \mathbb{P}(\bar{c}_{n,j} \neq c_{n,j}) \ge \inf_{\bar{c}_n} \frac{1}{M_n^d} \sum_{j=1}^{M_n^d} \mathbb{P}(\bar{c}_{n,j} \neq C_{n,j}) \ge \frac{1}{M_n^d} \sum_{j=1}^{M_n^d} \mathbb{P}(\bar{C}_{n,j} \neq C_{n,j})$$

$$= \mathbb{P}(\bar{C}_{n,1} \neq C_{n,1}) = \mathbb{E}\{\mathbb{P}(\bar{C}_{n,1} \neq C_{n,1} | X_1, \dots, X_n)\}.$$

Let X_{i_1}, \dots, X_{i_t} be those $X_i \in A_{n,1}, (Y_{i,1}, \dots, Y_{i_t}) = C_{n,1}(f_{n,1}(X_{i_1}), \dots, f_{n,1}(X_{i_t})) + (N_{i_1}, \dots, N_{i_t})$. By lemma 4.1,

$$\mathbb{E}\{\mathbb{P}(\bar{C}_{n,1} \neq C_{n,1} | X_1, \cdots, X_n)\} = \mathbb{E}\Phi\left(-\sqrt{\sum_{r=1}^t f_{n,1}^2(X_{i_r})}\right) = \mathbb{E}\Phi\left(-\sqrt{\sum_{i=1}^n f_{n,1}^2(X_i)}\right)$$

$$\geq \Phi\left(-\sqrt{\mathbb{E}\sum_{i=1}^n f_{n,1}^2(X_i)}\right) \geq \Phi\left(-\sqrt{\int f^2(x) \mathrm{d}x}\right) > 0.$$

5 Uniform Laws of Large Numbers

Definition 5.1 (Background) Set $Z = (X, Y), Z_i = (X_i, Y_i), g_f(x, y) = |f(x) - y|^2$ for $f \in \mathscr{F}_n, G_n = \{g_f : f \in \mathscr{F}_n\},$ consider the limit $\lim_{n \to +\infty} \sup_{g \in \mathscr{G}_n} \left| \frac{1}{n} \sum_{i=1}^n g(Z_i) - \mathbb{E}g(Z) \right|.$

$$\text{Lemma 5.1 (Hoeffding's inequality)} \ g: \mathbb{R}^d \to [0,B], \begin{cases} \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n g(Z_i) - \mathbb{E}\{g(Z)\}\right| > \varepsilon\right) \leq 2e^{-\frac{2n\varepsilon^2}{B^2}} \\ \mathbb{P}\left(\sup_{g \in \mathscr{G}_n}\left|\frac{1}{n}\sum_{i=1}^n g(Z_i) - \mathbb{E}\{g(Z)\}\right| > \varepsilon\right) \leq 2|\mathscr{G}_n|e^{-\frac{2n\varepsilon^2}{B^2}} \end{cases} . \ \text{For } \left(\sup_{g \in \mathscr{G}_n}\left|\frac{1}{n}\sum_{i=1}^n g(Z_i) - \mathbb{E}\{g(Z)\}\right| > \varepsilon\right) \leq 2|\mathscr{G}_n|e^{-\frac{2n\varepsilon^2}{B^2}} \end{cases} .$$

finite class \mathscr{G} satisfying $\sum_{n=1}^{+\infty} |\mathscr{G}_n| e^{-\frac{2n\varepsilon^2}{B^2}} < \infty$ for all $\varepsilon > 0$, by Borel-Cantelli lemma,

$$\mathbb{P}\left(\sup_{g\in\mathcal{G}_n}\left|\frac{1}{n}\sum_{i=1}^ng(Z_i)-\mathbb{E}\{g(Z)\}\right|>\varepsilon\text{ i.o.}\right)=0$$

Definition 5.2 (Covering number) Let $\varepsilon > 0$ and \mathscr{G} be a set of functions $\mathbb{R}^d \to \mathbb{R}$. Every finite collection of functions $g_1, \dots, g_N : \mathbb{R}^d \to \mathbb{R}$ with the property that for every $g \in \mathscr{G}$ there is a $j = j(g) \in [N]$ such that $||g - g_j||_{\infty} < \varepsilon$ is called an ε -cover of \mathscr{G} w.r.t. $||\cdot||_{\infty}$. Let $\mathscr{N}(\varepsilon, \mathscr{G}, ||\cdot||_{\infty})$ or $\mathscr{N}_{\infty}(\varepsilon, \mathscr{G})$ be the smallest ε -cover of \mathscr{G} w.r.t. $||\cdot||_{\infty}$.

Theorem 5.1 For $n \in \mathbb{N}$, let \mathscr{G}_n be a set of functions $g: \mathbb{R}^d \to [0, B]$ and let $\varepsilon > 0$. Then

$$\mathbb{P}\left(\sup_{g\in\mathscr{G}_n}\left|\frac{1}{n}\sum_{i=1}^ng(Z_i)-\mathbb{E}\{g(Z)\}\right|>\varepsilon\right)\leq 2\mathscr{N}_\infty\left(\frac{\varepsilon}{3},\mathscr{G}_n\right)\exp\left(-\frac{2n\varepsilon^2}{9B^2}\right).$$

Proof Let $\mathscr{G}_{n,\frac{\varepsilon}{3}}$ be an $\frac{\varepsilon}{3}$ -cover of \mathscr{G}_n w.r.t. $\|\cdot\|_{\infty}$ of minimal cardinality. Fix $g \in \mathscr{G}_n$, there exists $\bar{g} \in \mathscr{G}_{n,\frac{\varepsilon}{3}}$ such that $\|g - \bar{g}\|_{\infty} < \frac{\varepsilon}{3}$. Then

$$\left| \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \mathbb{E}g(Z) \right| \leq \left| \frac{1}{n} \sum_{i=1}^{n} (g(Z_i) - \bar{g}(Z_i)) \right| + \left| \frac{1}{n} \sum_{i=1}^{n} \bar{g}(Z_i) - \mathbb{E}\{\bar{g}(Z)\} \right| + |\mathbb{E}\bar{g}(Z) - \mathbb{E}g(Z)|$$

$$\leq \frac{2\varepsilon}{3} + \left| \frac{1}{n} \sum_{i=1}^{n} \bar{g}(Z_i) - \mathbb{E}\{\bar{g}(Z)\} \right|,$$

$$\Rightarrow \mathbb{P}\left(\sup_{g \in \mathscr{G}_n} \left| \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \mathbb{E}\{g(Z)\} \right| > \varepsilon \right) \leq \mathbb{P}\left(\sup_{g \in \mathscr{G}_{n, \frac{\varepsilon}{3}}} \left| \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \mathbb{E}\{g(Z)\} \right| > \frac{\varepsilon}{3} \right)$$

Then use Hoeffding's inequality.

Definition 5.3 Let $\varepsilon > 0$, \mathscr{G} be a set of functions $\mathbb{R}^d \to \mathbb{R}$, $1 \le p < \infty$, and ν be a probability measure on \mathbb{R}^d . (a) Every finite collection of functions $g_1, \dots, g_N : \mathbb{R}^d \to \mathbb{R}$ with the property that for every $g \in \mathscr{G}$ there is a $j = j(g) \in [N]$ such that $\|g - g_j\|_{L_p(\nu)} < \varepsilon$ is called a ε -cover of \mathscr{G} . Similarly define $\mathscr{N}(\varepsilon, \mathscr{G}, \|\cdot\|_{L_p(\nu)})$. (b) Let $Z^{1:n} = (Z_1, \dots, Z_n) \subset \mathbb{R}^d$ and ν_n be the corresponding empirical measure, then $\|f\|_{L_p(\nu_n)} := \left\{\frac{1}{n}\sum_{i=1}^n |f(Z_i)|^p\right\}^{\frac{1}{p}}$ and similarly define $\mathscr{N}_p(\varepsilon, \mathscr{G}, Z^{1:n})$.

П

Definition 5.4 (Packing number) (a) Every finite collection of functions $g_1, \dots, g_N \in \mathcal{G}$ with $||g_j - g_k||_{L_p(\nu)} \ge \varepsilon$ for all $1 \le j < k \le N$ is called ε -packing of \mathcal{G} with $||\cdot||_{L_p(\nu)}$. The largest ε -packing is denoted as $\mathcal{M}(\varepsilon, \mathcal{G}, ||\cdot||_{L_p(\nu)})$. Similarly define $\mathcal{M}(\varepsilon, \mathcal{G}, Z^{1:n})$.

Property 5.1 (Covering number v.s. packing number)

$$\mathcal{M}(2\varepsilon,\mathcal{G},\|\cdot\|_{L_p(\nu)}) \leq \mathcal{N}(\varepsilon,\mathcal{G},\|\cdot\|_{L_p(\nu)}) \leq \mathcal{M}(\varepsilon,\mathcal{G},\|\cdot\|_{L_p(\nu)}),$$
$$\mathcal{M}(2\varepsilon,\mathcal{G},Z^{1:n}) \leq \mathcal{N}(\varepsilon,\mathcal{G},Z^{1:n}) \leq \mathcal{M}(\varepsilon,\mathcal{G},Z^{1:n}).$$

Theorem 5.2 Let \mathscr{F} be a set of functions $\mathbb{R}^d \to \mathbb{R}$. Assume that \mathscr{F} is a linear vector space of dimension D. Then for arbitrary R > 0, $\varepsilon > 0$, and $z_1, \dots, z_n \in \mathbb{R}^d$,

$$\mathcal{N}_2\left(\varepsilon, \left\{f \in \mathcal{F} : \frac{1}{n} \sum_{i=1}^n |f(z_i)|^2 \le R^2\right\}, Z^{1:n}\right) \le \left(\frac{4R+\varepsilon}{\varepsilon}\right)^D.$$

Definition 5.5 Let \mathscr{A} be a class of subsets of \mathbb{R}^d and $n \in \mathbb{N}$. For $z_1, \dots, z_n \in \mathbb{R}^d$, define $s(\mathscr{A}, \{z_1, \dots, z_n\}) = |\{A \cap \{z_1, \dots, z_n\} : A \in \mathscr{A}\}|$.

Definition 5.6 Let \mathscr{G} be a subset of \mathbb{R}^d of size n. We say \mathscr{A} shatters \mathscr{G} if $s(\mathscr{A},\mathscr{G})=2^n$. The nth shatter coefficient of \mathscr{A} is $S(\mathscr{A},n)=\max_{\{z_1,\dots,z_n\}\subset\mathbb{R}^d}s(\mathscr{A},\{z_1,\dots,z_n\})$, the maximum number of different subsets of n points that can be picked out by set from \mathscr{A} .

Definition 5.7 (VC dimension) Let \mathscr{A} be a class of subsets of \mathbb{R}^d with $\mathscr{A} \neq \emptyset$. The VC dimension $V_{\mathscr{A}}$ of \mathscr{A} is defined by $V_{\mathscr{A}} = \sup\{n \in \mathbb{N}, S(\mathscr{A}, n) = 2^n\}$.

Proposition 5.1 $S(\mathcal{A}, n) \leq \sum_{i=0}^{V_{\mathcal{A}}} \binom{n}{i}$.

Theorem 5.3 Let \mathscr{G} be a set of functions $g: \mathbb{R}^d \to [0, B]$. For any $n \in \mathbb{N}$ and $\varepsilon > 0$,

$$\mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^ng(Z)-\mathbb{E}[g(Z)]\right|>\varepsilon\right\}\leq 8\mathbb{E}\mathscr{N}_1(\frac{\varepsilon}{8},\mathscr{G},Z^{1:n})\exp\left(-\frac{n\varepsilon^2}{128B^2}\right).$$

Proof Step 1: Symmetrization. Let $Z^{1:n}$ be i.i.d. samples from the same distribution and independent of $Z^{1:n}$ and $g^* \in \mathscr{G}$ be a function such that $\left| \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \mathbb{E}g(Z) \right| > \varepsilon$ if there exists such one. Otherwise, let g^* be an arbitrary

function in
$$\mathscr{G}$$
. $g^*(z)$ depends on $Z^{1:n}$ and $\mathbb{P}\left\{\left|\mathbb{E}[g^*(Z)|Z^{1:n}] - \frac{1}{n}\sum_{i=1}^n g^*(Z_i')\right| > \frac{\varepsilon}{2}\left|Z^{1:n}\right\} \le \frac{\operatorname{Var}(g^*(Z)|Z^{1:n})}{n(\frac{\varepsilon}{2})^2} \le \frac{B^2/4}{n\varepsilon^2/4} = \frac{B^2}{n\varepsilon^2} \le \frac{1}{2} \text{ holds for } n \ge \frac{2B^2}{\varepsilon^2}.$ Thus we have

$$\frac{D}{n\varepsilon^2} \le \frac{1}{2}$$
 holds for $n \ge \frac{2D}{\varepsilon^2}$. Thus we have

$$\mathbb{P}\left\{\sup_{g\in\mathcal{G}}\left|\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})-\frac{1}{n}\sum_{i=1}^{n}g(Z_{i}')\right|>\frac{\varepsilon}{2}\right\}\geq \mathbb{P}\left\{\left|\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i})-\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i}')\right|>\frac{\varepsilon}{2}\right\} \\
\geq \mathbb{P}\left\{\left|\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i})-\mathbb{E}[g^{*}(Z)|Z^{1:n}]\right|>\varepsilon,\left|\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i}')-\mathbb{E}[g^{*}(Z)|Z^{1:n}]\right|\leq\frac{\varepsilon}{2}\right\} \\
= \mathbb{E}\left\{1_{\left\{\left|\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i})-\mathbb{E}[g^{*}(Z)|Z^{1:n}]\right|>\varepsilon\right\}}\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i}')-\mathbb{E}[g^{*}(Z)|Z^{1:n}]\right|\leq\frac{\varepsilon}{2}\right|Z^{1:n}\right)\right\} \\
\geq \frac{1}{2}\mathbb{P}\left\{\left|\frac{1}{n}\sum_{i=1}^{n}g^{*}(Z_{i})-\mathbb{E}[g^{*}(Z)|Z^{1:n}]\right|>\varepsilon\right\}$$

Therefore,
$$2\mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^ng(Z_i)-\frac{1}{n}\sum_{i=1}^ng(Z_i')\right|>\frac{\varepsilon}{2}\right\}\geq\mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^ng(Z_i)-\mathbb{E}[g(Z)]\right|>\varepsilon\right\}.$$
 Step 2: Introduction of additive randomness by random signs. Let U_1,\cdots,U_n be independent and uniformly

distributed over $\{-1,1\}$ and independent $Z^{1:n}$ and $Z'^{1:n}$.

$$\mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^{n}[g(Z_{i})-g(Z_{i}')]\right| > \frac{\varepsilon}{2}\right\} = \mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}[g(Z_{i})-g(Z_{i}')]\right| > \frac{\varepsilon}{2}\right\} \\
\leq \mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}g(Z_{i})\right| > \frac{\varepsilon}{4}\right\} + \mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}U_{i}g(Z_{i}')\right| > \frac{\varepsilon}{4}\right\} \\
= 2\mathbb{P}\left\{\sup_{g\in\mathscr{G}}\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}g(Z_{i})\right| > \frac{\varepsilon}{4}\right\}$$

Step 3: Conditioning and introduction of a covering on $Z^{1:n}$. Let $\mathscr{G}_{\frac{\varepsilon}{8}}$ be an L_1 $\frac{\varepsilon}{8}$ -cover of \mathscr{G} in $Z^{1:n}$. Fix $g \in \mathscr{G}$, then there exists $\bar{g} \in \mathscr{G}_{\frac{\varepsilon}{8}}$ s.t. $\frac{1}{n} \sum_{i=1}^{n} |g(Z_i) - \bar{g}(Z_i)| < \frac{\varepsilon}{8}$. $\left| \frac{1}{n} \sum_{i=1}^{n} U_i g(Z_i) \right| = \left| \frac{1}{n} \sum_{i=1}^{n} U_i \bar{g}(Z_i) + \frac{1}{n} \sum_{i=1}^{n} U_i [g(Z_i) - \bar{g}(Z_i)] \right| \le 1$

$$\left| \frac{1}{n} \sum_{i=1}^{n} U_i \bar{g}(Z_i) \right| + \frac{\varepsilon}{8}$$
. Thus

$$\mathbb{P}\left\{\exists g \in \mathscr{G}: \left|\frac{1}{n}\sum_{i=1}^n U_i g(Z_i)\right| > \frac{\varepsilon}{4}\right\} \leq \mathbb{P}\left\{\exists g \in \mathscr{G}_{\frac{\varepsilon}{8}}: \left|\frac{1}{n}\sum_{i=1}^n U_i \bar{g}(Z_i)\right| > \frac{\varepsilon}{8}\right\} \leq |\mathscr{G}_{\frac{\varepsilon}{8}}| \max_{g \in \mathscr{G}_{\frac{\varepsilon}{8}}} \mathbb{P}\left\{\left|\frac{1}{n}\sum_{i=1}^n U_i g(Z_i)\right| > \frac{\varepsilon}{8}\right\}$$

Step 4: Application of Hoeffding's inequality: $|U_i g(Z_i)| \le B \Rightarrow \mathbb{P}\left\{\left|\frac{1}{n}\sum_{i=1}^n U_i g(Z_i)\right| > \frac{\varepsilon}{8}\right\} \le 2\exp\left(-\frac{2n(\frac{\varepsilon}{8})^2}{(2B)^2}\right) = 0$ $2\exp\left(-\frac{n\varepsilon^2}{128B^2}\right).$

Theorem 5.4 Let \mathscr{G} be a class of functions $g: \mathbb{R}^d \to [0, B]$ with $V_{\mathscr{G}^+} \geq 2$ where $\mathscr{G}^+ := \{(z, t) \in \mathbb{R}^d \times \mathbb{R} : t \leq g(z), g \in \mathbb{R}^d$ \mathscr{G} }. Let $p \geq 1$, ν be a probability measure on \mathbb{R}^d and $0 < \varepsilon < \frac{B}{4}$. Then

$$\mathcal{M}(\varepsilon, \mathcal{G}, \|\cdot\|_{L_p(\nu)}) \le 3\left(\frac{2eB^p}{\varepsilon^p}\log\frac{3eB^p}{\varepsilon^p}\right)^{V_{\mathcal{G}^+}}.$$

Proof Step 1: Set p=1. Relate $\mathscr{M}(\varepsilon,\mathscr{G},\|\cdot\|_{L_p(\nu)})$ to a shatter coefficient of \mathscr{G}^+ . Set $m=\mathscr{M}(\varepsilon,\mathscr{G},\|\cdot\|_{L_p(\nu)})$ and let $\bar{\mathscr{G}} = \{g_1, \cdots, g_m\}$ be a ε -packing of \mathscr{G} w.r.t. $\|\cdot\|_{L_p(\nu)}$. Let $Q_1, \cdots, Q_K \in \mathbb{R}^d$ be K independent r.v.'s with common ν . Generate K independent r.v.'s T_1, \dots, T_K uniformly distributed on [0, B]. Denote $R_i = (Q_i, T_i), i = 1, \dots, K, \mathscr{G}_f = (Q_i, T_i), i = 1, \dots, K, \mathcal{G}_f = (Q_i, T_i$ $\{(x,t):t\leq f(x)\}\ \text{for}\ f:\mathbb{R}^d\to[0,B].$ Then

$$S(\mathcal{G}^+,K) = \max_{\{z_1,\cdots,z_K\} \in \mathbb{R}^d \times \mathbb{R}} s(\mathcal{G}^+,\{z_1,\cdots,z_K\}) \ge \mathbb{E}s(\mathcal{G}_+,\{R_1,\cdots,R_K\}) \ge \mathbb{E}s(\{\mathcal{G}_f: f \in \mathcal{G}\},\{R_1,\cdots,R_K\})$$

$$\geq \mathbb{E}s(\{\mathscr{G}_f: f \in \mathscr{G}, \mathscr{G}_f \cap R^{1:K} \neq \mathscr{G}_g \cap R^{1:K} \text{ for all } g \in \bar{\mathscr{G}}, g \neq f\}, R^{1:K})$$

$$= \mathbb{E}\left\{\sum_{f \in \bar{\mathscr{G}}} 1_{\{\mathscr{G}_f \cap R^{1:K} \neq \mathscr{G}_g \cap R^{1:K} \text{ for all } g \in \mathscr{G}, g \neq f\}}\right\} = \sum_{f \in \bar{\mathscr{G}}} \mathbb{P}(\mathscr{G}_f \cap R^{1:K} \neq \mathscr{G}_g \cap R^{1:K} \text{ for all } g \in \mathscr{G}, g \neq f)$$

$$= \sum_{f \in \bar{\mathscr{G}}} \left(1 - \mathbb{P}(\exists g \in \bar{\mathscr{G}}, g \neq f, \mathscr{G}_f \cap R^{1:K} = \mathscr{G}_g \cap R^{1:K})\right) \geq \sum_{f \in \bar{\mathscr{G}}} \left(1 - m \max_{g \in \bar{\mathscr{G}}, g \neq f} \mathbb{P}(\mathscr{G}_f \cap R^{1:K} = \mathscr{G}_g \cap R^{1:K})\right).$$

For $f, g \in \mathcal{G}, f \neq g$,

$$\mathbb{P}(\mathscr{G}_f \cap R^{1:K} = \mathscr{G}_g \cap R^{1:K}) = \mathbb{P}(\mathscr{G}_f \cap \{R_1\}) = \mathscr{G}_g \cap \{R_1\})^K,$$

and

$$\begin{split} \mathbb{P}(\mathscr{G}_f \cap \{R_1\} &= \mathscr{G}_g \cap \{R_1\}) = 1 - \mathbb{P}(\mathscr{G}_f \cap \{R_1\} \neq \mathscr{G}_g \cap \{R_1\}) = 1 - \mathbb{E}[\mathbb{P}(\mathscr{G}_f \cap \{R_1\} \neq \mathscr{G}_g \cap \{R_1\} | Q_1)] \\ &= 1 - \mathbb{E}[\mathbb{P}(f(Q_1) < T \leq g(Q_1) \text{ or } g(Q_1) < T \leq f(Q_1) | Q_1)] = 1 - \mathbb{E}\left[\frac{|f(Q_1) - g(Q_1)|}{B}\right] \\ &= 1 - \frac{1}{B} \int |f(x) - g(x)| \nu(\mathrm{d}x) \leq 1 - \frac{\varepsilon}{B} \Rightarrow \mathbb{P}(\mathscr{G}_f \cap \{R_1\} = \mathscr{G}_g \cap \{R_1\})^K \leq \left(1 - \frac{\varepsilon}{B}\right)^K \leq \exp\left(-\frac{\varepsilon K}{B}\right) \\ \Rightarrow S(\mathscr{G}^+, K) \geq m \left(1 - m \exp\left(-\frac{\varepsilon K}{B}\right)\right). \end{split}$$

Set $K = \left| \frac{B}{\varepsilon} \log(2m) \right|$. Then

$$1 - m \exp\left(-\frac{\varepsilon K}{B}\right) \ge 1 - m \exp\left(-\frac{\varepsilon}{B}\left(\frac{B}{\varepsilon}\log(2m) - 1\right)\right) = 1 - \frac{1}{2}\exp\left(\frac{\varepsilon}{B}\right) \ge 1 - \frac{1}{2}\exp\left(\frac{1}{4}\right) \ge \frac{1}{3} \Rightarrow m \le 3S(\mathscr{G}_+, K).$$

Step 2: Relate $S(\mathcal{G}_+, K)$ to $V_{\mathcal{G}_+}$. Set $K = \lfloor \frac{B}{\varepsilon} \log(2\mathcal{M}(\varepsilon, \mathcal{G}, \|\cdot\|_{L_p(\nu)})) \rfloor \leq V_{\mathcal{G}_+} \Rightarrow \mathcal{M}(\varepsilon, \mathcal{G}, \|)\cdot\|_{L_p(\nu)} \leq \frac{e}{2} \exp(V_{\mathcal{G}_+}) \leq 3 \left(\frac{2eB}{\varepsilon} \log \frac{3eB}{\varepsilon}\right)^{V_{\mathcal{G}_+}}$. In the case $K > V_{\mathcal{G}_+}$, use the following lemma:

 $\text{Lemma 5.2 Let } \mathscr{A} \in \mathbb{R}^d \text{ and } V_\mathscr{A} < \infty. \text{ Then } \forall n \in \mathbb{N}, S(\mathscr{A}, n) \leq (n+1)^{V_\mathscr{A}} \text{ and } \forall n \geq V_\mathscr{A}, S(\mathscr{A}, n) \leq (\frac{en}{V_\mathscr{A}})^{V_\mathscr{A}}.$

$$\text{Then } \mathscr{M}(\varepsilon,\mathscr{G},\|\cdot\|_{L_p(\nu)}) \leq 3 \left(\frac{eK}{V_{\mathscr{G}_+}}\right)^{V_{\mathscr{G}_+}} \leq 3 \left(\frac{eB}{\varepsilon V_{\mathscr{G}_+}} \log(2\mathscr{M}(\varepsilon,\mathscr{G},\|\cdot\|_{L_p(\nu)}))\right)^{V_{\mathscr{G}_+}}.$$

Step 3: Setting $a = \frac{eB}{\varepsilon}$ and $b = V_{\mathcal{G}_+}$, $\mathcal{M}(\varepsilon, \mathcal{G}, \|\cdot\|_{L_p(\nu)}) := x \leq 3(\frac{a}{b}\log(2x))^b \Rightarrow x \leq 3(2a\log(3a))^b$.

Step 4: Let $1 . Then for any <math>g_j, g_k \in \mathcal{G}$,

$$\|g_j - g_k\|_{L_p(\nu)}^p \le B^{p-1} \|g_j - g_k\|_{L_1(\nu)} \Rightarrow \mathcal{M}(\varepsilon, \mathcal{G}, \|\cdot\|_{L_p(\nu)}) \le \mathcal{M}\left(\frac{\varepsilon^p}{B^{p-1}}, \mathcal{G}, \|\cdot\|_{L_p(\nu)}\right).$$

Theorem 5.5 (ULLN) Let \mathscr{G} be a class of functions $g: \mathbb{R}^d \to \mathbb{R}$ and $G: \mathbb{R}^d \to \mathbb{R}$, $G(x) = \sup_{g \in \mathscr{G}} |g(x)|$ be an envelope of \mathscr{G} . Assume $\mathbb{E}G(Z) < \infty$ and $V_{\mathscr{G}^+} < \infty$. Then

$$\sup_{g \in \mathscr{G}} \left| \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \mathbb{E}g(Z) \right| \to 0 \text{ a.s. as } n \to +\infty$$

Proof For L > 0, set $\mathscr{G}_L := \{g \cdot 1_{\{G \leq L\}} : g \in \mathscr{G}\}$. For $g \in \mathscr{G}$,

$$\left| \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) - \mathbb{E}g(Z) \right| \leq \left| \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) - \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) 1_{\{G(Z_{i}) \leq L\}} \right| + \left| \mathbb{E}\{g(Z) 1_{G(Z) \leq L}\} - \mathbb{E}\{g(Z) 1_{G(Z) \leq L}\} \right| + \left| \mathbb{E}\{g(Z) 1_{G(Z) \leq L}\} - \mathbb{E}\{g(Z)\} \right|$$

$$= \left| \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) 1_{\{G(Z_{i}) > L\}} \right| + \mathbb{E}[g(Z) | 1_{\{G(Z) > L\}} + \left| \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) 1_{\{G(Z_{i}) \leq L\}} - \mathbb{E}\{g(Z) 1_{G(Z) \leq L}\} \right|$$

Since
$$\mathbb{P}(\sup_{g \in \mathscr{G}_L} \left| \frac{1}{n} \sum_{i=1}^n g(Z_i) - \mathbb{E}g(Z) \right| > \varepsilon) \le 8\mathbb{E}\left\{ \mathscr{M}_1(\frac{\varepsilon}{8}, \mathscr{G}_L, Z^{1:n}) \exp\left(-\frac{n\varepsilon^2}{128(2L)^2}\right) \right\}$$
, use the B-C lemma.

6 Least Square Estimates: Consistency and Convergence Rate

Definition 6.1 (Notation) $\mathbb{E}\{(m(X)-Y)^2\}=\inf_f \mathbb{E}\{(f(X)-Y)^2\} \Rightarrow m(X)=\mathbb{E}[Y|X]$. Define

$$m_n = \arg\min_{f \in \mathscr{F}_n} \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2, m^* = \arg\min_{f \in \mathscr{F}_n} \mathbb{E}\{(f(X) - Y)^2\}.$$

Theorem 6.1 Let \mathscr{F}_n be a class of functions $f: \mathbb{R}^d \to \mathbb{R}$ depending on the data $\mathcal{D}_n = \{(X_1, Y_1), \cdots, (X_n, Y_n)\}$. Then

$$\int |m_n(x) - m(x)|^2 \nu(\mathrm{d}x) \le 2 \sup_{f \in \mathscr{F}_n} \left| \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 - \mathbb{E}\{(f(X) - Y)^2\} \right| + \inf_{f \in \mathscr{F}_n} \int |f(x) - m(x)|^2 \nu(\mathrm{d}x).$$

Proof We do the following decomposition:

$$\int |m_n(x) - m(x)|^2 \nu(\mathrm{d}x) = \mathbb{E}[|m_n(X) - Y|^2 | \mathcal{D}_n] - \mathbb{E}[|m(X) - Y|^2]$$

$$= \left\{ \mathbb{E}[|m_n(X) - Y|^2 | \mathcal{D}_n] - \inf_{f \in \mathscr{F}_n} \mathbb{E}|f(X) - Y|^2 \right\} + \left\{ \inf_{f \in \mathscr{F}_n} \mathbb{E}|f(X) - Y|^2 - \mathbb{E}|m(X) - Y|^2 \right\}$$

$$:= I_1 + I_2.$$

$$I_1 \le 2 \sup_{f \in \mathscr{F}_n} \left| \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 - \mathbb{E}|f(X) - Y|^2 \right|. \quad I_2 = \inf_{f \in \mathscr{F}_n} \int (f(x) - m(x))^2 \nu(\mathrm{d}x).$$

Proposition 6.1 (Method of Sieves) Let $\psi_1, \psi_2, \cdots, \mathbb{R}^d \to \mathbb{R}$ be bounded functions such that $|\psi_j(x)| \leq 1$. Assume the set of functions $\bigcup_{k=1}^{+\infty} \{\sum_{j=1}^k a_j \psi_j(x) : a_1, \cdots, a_k \in \mathbb{R}\}$ is dense in $L_2(\mu)$ for any probability measure μ on \mathbb{R}^d . Define the regression function estimate m_n as a function minimizing the empirical L_2 risk $\frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2$ over the function form $f(x) = \sum_{j=1}^{k_n} a_j \psi_j(x)$ with $\sum_{j=1}^{k_n} |a_j| \leq \beta_n$. If $\mathbb{E}(Y^2) < \infty$ and k_n and β_n satisfy $k_n \to \infty$, $\beta_n \to \infty$, $\frac{k_n \beta_n^4 \log \beta_n}{n} \to 0$ and $\frac{\beta_n^4}{n^{1-\delta}} \to 0$ for some $\delta > 0$, then $\int (m_n(x) - m(x))^2 \mu(\mathrm{d}x) \to 0$ with probability 1.

Proposition 6.2 Consider $\mathscr{F}_n = \left\{\sum_{j=1}^{k_n} a_j \psi_j(x) : \sum_{j=1}^{k_n} |a_j| \le \beta_n\right\}$ and $\widetilde{\mathscr{F}}_n = \left\{\sum_{j=1}^{k_n} a_j \psi_j(x) : a_j \in \mathbb{R}\right\}$. Step 1: derive \widetilde{m}_n by using $\widetilde{\mathscr{F}}_n$. Step 2: Trancation of \widetilde{m}_n , $m_n(x) = T_{\beta_n} \widetilde{m}_n(x)$ where $T_L u = \left\{\begin{array}{l} u, & \text{if } |u| \le L \\ L \operatorname{sgn}(u), & \text{otherwise} \end{array}\right\}$. (a) If $\mathbb{E}(Y^2) < \infty$ and k_n and β_n satisfy $k_n \to \infty$, $\beta_n \to \infty$, $\frac{k_n \beta_n^4 \log \beta_n}{n} \to 0$, then $\mathbb{E}\left\{\int (m_n(x) - m(x))^2 \mu(\mathrm{d}x)\right\} \to 0$. (b) If adding the extra condition $\frac{\beta_n^4}{n^{1-\delta}} \to 0$ for some $\delta > 0$, then $\int (m_n(x) - m(x))^2 \mu(\mathrm{d}x) \to 0$ a.s.

Proposition 6.3 Let $\widetilde{F}_n = \widetilde{F}_n(\mathcal{D}_n)$ be a class of functions $f: \mathbb{R}^d \to \mathbb{R}$. If $|Y| \leq \beta_n$ a.s., then

$$\int (m_n(x) - m(x))^2 \mu(\mathrm{d}x) \le 2 \sup_{f \in T_{\beta_n} \widetilde{F}_n} \left| \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2 - \mathbb{E}|f(X) - Y|^2 \right| + \inf_{f \in \widetilde{F}_n, ||f||_{\infty} \le \beta_n} \int |f(x) - m(x)|^2 \mu(\mathrm{d}x)$$

Theorem 6.2 Let $\widetilde{\mathscr{F}}_n = \widetilde{\mathscr{F}}_n(\mathcal{D}_n)$ be a class of functions $f: \mathbb{R}^d \to \mathbb{R}$ and $Y_L = T_L Y, Y_{i,L} = T_L Y_i$. (a) If

$$\lim_{n \to +\infty} \beta_n = \infty, \lim_{n \to +\infty} \inf_{f \in \widetilde{F}_n, ||f||_{\infty} \le \beta_n} \int |f(x) - m(x)|^2 \mu(\mathrm{d}x) = 0 \text{ a.s.},$$

$$\lim_{n \to +\infty} \sup_{f \in T_{\beta_n}, \widetilde{F}_n} \left| \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_{i,L}|^2 - \mathbb{E}(f(X) - Y_L)^2 \right| = 0 \text{ a.s. for all } L > 0,$$

then $\lim_{n\to+\infty}\int |m_n(x)-m(x)|^2\mu(\mathrm{d}x)=0$ a.s. (b) If $\beta_n\to+\infty,\mathbb{E}\{\sim\}\to 0,\mathbb{E}\{\sim\}\to 0$, then $\mathbb{E}\{\sim\}\to 0$.

Definition 6.2 (Piecewise polynomial partition estimate) $\mathcal{P}_n = \{A_{n,1}, A_{n,2}, \cdots\}$ be a partition of \mathbb{R}^d ,

$$\hat{m}_n(x) := \frac{\sum_{i=1}^n Y_i I_{\{X_i \in A_n(x)\}}}{\sum_{i=1}^n I_{\{X_i \in A_n(x)\}}}$$
13

where $A_n(x)$ denotes the cell $A_{n,j} \in \mathcal{P}_n$ which contains x.

Theorem 6.3 Let \mathscr{F} be a class of function $f:\mathbb{R}^d\to\mathbb{R}$ bounded in abolute value by B. Let $\varepsilon>0$. Then

$$\mathbb{P}\{\exists f \in \mathscr{F} \text{ s.t.} ||f||_2 - 2||f||_n > \varepsilon\} \leq \mathbb{E}\mathscr{N}_2\left(\frac{\sqrt{2}}{24}\varepsilon, \mathscr{F}, X^{1:2n}\right) \exp\left(-\frac{n\varepsilon^2}{288B^2}\right)$$

where $||f||_n^2 = \frac{1}{n} \sum_{i=1}^n |f(X_i)|^2$.

Proof Step 1: Replace $L_2(\mu)$ norm by the empirical norm. Let $\widetilde{X}^{1:n} = (X_{n+1}, \cdots, X_{2n})$ be a ghost sample of i.i.d. r.v.'s as X and independent of $X^{1:n}$. Define $||f||_{n'}^2 = \frac{1}{n} \sum_{i=n+1}^{2n} |f(X_i)|^2$. Let f^* be a function $f \in \mathscr{F}$ such that $||f||_2 - 2||f||_n > \varepsilon$ if there exists any such function, and let f^* be an arbitrary function in \mathscr{F} if such a function does not exist. Then

$$\begin{split} \mathbb{P}\{2\|f^*\|_{n'} + \frac{\varepsilon}{2} > \|f^*\|_2 |X^{1:n}\} &\geq \mathbb{P}\{4\|f^*\|_{n'}^2 + \frac{\varepsilon^2}{4} > \|f^*\|_2^2 |X^{1:n}\} = 1 - \mathbb{P}\{4\|f^*\|_{n'}^2 + \frac{\varepsilon^2}{4} \leq \|f^*\|_2^2 |X^{1:n}\} \\ &= 1 - \mathbb{P}\{3\|f^*\|_2^2 + \frac{\varepsilon^2}{4} \leq 4(\|f^*\|_2^2 - \|f^*\|_{n'}^2) |X^{1:n}\} \geq 1 - \frac{16 \mathrm{Var}\left(\frac{1}{n} \sum_{i=n+1}^{2n} |f^*(X_i)|^2 \middle| X^{1:n}\right)}{(3\|f^*\|_2^2 + \frac{\varepsilon^2}{4})^2} \\ &\geq 1 - \frac{\frac{16}{n}B^2 \|f^*\|_2^2}{(3\|f^*\|_2^2 + \frac{\varepsilon^2}{4})^2} \geq 1 - \frac{\frac{16}{3}\frac{B^2}{n}}{3\|f^*\|_2^2 + \frac{\varepsilon^2}{4}} \geq 1 - \frac{64}{3\varepsilon^2}\frac{B^2}{n} \geq \frac{2}{3} \text{ for } n \geq \frac{64B^2}{\varepsilon^2}. \end{split}$$

Therefore,

$$\begin{split} \mathbb{P}\{\exists f \in \mathscr{F} : \|f\|_{n'} - \|f\|_n > \frac{\varepsilon}{4}\} &\geq \mathbb{P}\{2\|f^*\|_{n'} - 2\|f^*\|_n > \frac{\varepsilon}{2}\} \geq \mathbb{P}\{2\|f^*\|_{n'} + \frac{\varepsilon}{2} - 2\|f^*\|_n > \varepsilon, 2\|f^*\|_{n'} + \frac{\varepsilon}{2} > \|f^*\|_2\} \\ &\geq \mathbb{P}\{\|f^*\|_2 - 2\|f^*\|_n > \varepsilon, 2\|f^*\|_{n'} + \frac{\varepsilon}{2} > \|f^*\|_2\} \\ &= \mathbb{E}\{1_{\{\|f^*\|_2 - 2\|f^*\|_n > \varepsilon\}} \mathbb{P}\{2\|f^*\|_{n'} + \frac{\varepsilon}{2} > \|f^*\|_2 |X^{1:n}\}\} \\ &\geq \frac{2}{3} \mathbb{P}\{\|f^*\|_2 - 2\|f^*\|_n > \varepsilon\} = \frac{2}{3} \mathbb{P}\{\exists f \in \mathscr{F} : \|f\|_2 - 2\|f\|_n > \varepsilon\}. \end{split}$$

This proves $\mathbb{P}\{\exists f \in \mathscr{F}: \|f\|_2 - 2\|f\|_n > \varepsilon\} \leq \frac{3}{2}\mathbb{P}\{\exists f \in \mathscr{F}: \|f\|_{n'} - \|f\|_n > \frac{\varepsilon}{4}\}.$

Step 2: Introduction of additional randomness. Let U_1, \dots, U_n be independent and uniformly distributed on

$$\{-1,1\} \text{ and independent of } X_1,\cdots,X_{2n}. \text{ Set } Z_i = \begin{cases} X_{i+n} & \text{if } U_i=1\\ X_i & \text{if } U_i=-1 \end{cases} \text{ and } Z_{i+n} = \begin{cases} X_i & \text{if } U_i=1\\ X_{i+n} & \text{if } U_i=-1 \end{cases}. \text{ Then } X_i = X_i$$

$$\mathbb{P}\left\{\exists f \in \mathscr{F} : \|f\|_{n'} - \|f\|_{n} > \frac{\varepsilon}{4}\right\} = \mathbb{P}\left\{\exists f \in \mathscr{F} : \left(\frac{1}{n} \sum_{i=n+1}^{2n} |f(X_{i})|^{2}\right)^{\frac{1}{2}} - \left(\frac{1}{n} \sum_{i=1}^{n} |f(X_{i})|^{2}\right)^{\frac{1}{2}} > \frac{\varepsilon}{4}\right\} \\
= \mathbb{P}\left\{\exists f \in \mathscr{F} : \left(\frac{1}{n} \sum_{i=n+1}^{2n} |f(Z_{i})|^{2}\right)^{\frac{1}{2}} - \left(\frac{1}{n} \sum_{i=1}^{n} |f(Z_{i})|^{2}\right)^{\frac{1}{2}} > \frac{\varepsilon}{4}\right\}$$

Step 3: Conditioning and introduction of a covery. Let $\mathscr{G} = \{g_j : j = 1, \dots, \mathscr{N}_2(\frac{\sqrt{2}}{24}\varepsilon, \mathscr{F}, X^{1:2n})\}$ be a $\frac{\sqrt{2}}{24}\varepsilon$ -cover of \mathscr{F} w.r.t. $\|\cdot\|_{2n}$ of minimal size. $\|f\|_{2n}^2 = \frac{1}{2n}\sum_{i=1}^{2n}|f(X_i)|^2$. Fix $f \in \mathscr{F}$, $\|f-g\|_{2n} \leq \frac{\sqrt{2}}{24}\varepsilon$. Then

$$\left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |f(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=1}^{n} |f(Z_i)|^2 \right\}^{\frac{1}{2}} \\
= \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |f(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} + \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} + \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} \\
\leq \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |f(Z_i) - g(Z_i)|^2 \right\}^{\frac{1}{2}} + \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} + \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} \\
\leq 2\sqrt{2} ||f - g||_{2n} + \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} \\
\leq \frac{\varepsilon}{6} + \left\{ \frac{1}{n} \sum_{i=n+1}^{2n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} - \left\{ \frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right\}^{\frac{1}{2}} \\
= \frac{14}{n} \left[\frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right]^{\frac{1}{2}} + \left[\frac{1}{n} \sum_{i=1}^{n} |g(Z_i)|^2 \right]^{\frac{1}{2}}$$

In this way,

$$\mathbb{P}\left\{\exists f \in \mathscr{F} : \left(\frac{1}{n} \sum_{i=n+1}^{2n} |f(Z_{i})|^{2}\right)^{\frac{1}{2}} - \left(\frac{1}{n} \sum_{i=1}^{n} |f(Z_{i})|^{2}\right)^{\frac{1}{2}} > \frac{\varepsilon}{4} \left|X^{1:2n}\right\} \\
\leq \mathbb{P}\left\{\exists g \in \mathscr{G} : \left(\frac{1}{n} \sum_{i=n+1}^{2n} |g(Z_{i})|^{2}\right)^{\frac{1}{2}} - \left(\frac{1}{n} \sum_{i=1}^{n} |g(Z_{i})|^{2}\right)^{\frac{1}{2}} > \frac{\varepsilon}{12} \left|X^{1:2n}\right\} \\
\leq |\mathscr{G}| \max_{g \in \mathscr{G}} \mathbb{P}\left\{\left(\frac{1}{n} \sum_{i=n+1}^{2n} \left|g(Z_{i})|^{2}\right)^{\frac{1}{2}} - \left(\frac{1}{n} \sum_{i=1}^{n} |g(Z_{i})|^{2}\right)^{\frac{1}{2}} > \frac{\varepsilon}{12} \left|X^{1:2n}\right\} \right\}$$

Step 4: Application of Hoeffding's inequality.

$$\left(\frac{1}{n}\sum_{i=n+1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}} - \left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}} \leq \left|\frac{\frac{1}{n}\sum_{i=n+1}^{2n}|g(Z_{i})|^{2} - \frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=n+1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}} + \left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right| \\
\leq \frac{\left|\frac{1}{n}\sum_{i=n+1}^{2n}|g(Z_{i})|^{2} - \frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}} = \frac{\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i})|^{2} - \frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i+n})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right| \\
\leq \frac{\left|\frac{1}{n}\sum_{i=n+1}^{2n}|g(Z_{i})|^{2} - \frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}} = \frac{\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i})|^{2} - \frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i+n})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right| \\
\leq \frac{\left|\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}} = \frac{\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i})|^{2} - \frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i+n})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right| \\
\leq \frac{\left|\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}} = \frac{\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right| \\
\leq \frac{\left|\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}} = \frac{\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right| \\
\leq \frac{\left|\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}} = \frac{\left|\frac{1}{n}\sum_{i=1}^{n}U_{i}|g(X_{i})|^{2}}{\left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}\right|}{\left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}}$$

Then

$$\mathbb{P}\left\{\left(\frac{1}{n}\sum_{i=n+1}^{2n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}-\left(\frac{1}{n}\sum_{i=1}^{n}|g(Z_{i})|^{2}\right)^{\frac{1}{2}}>\frac{\varepsilon}{12}|X^{1:2n}\}\right\}\leq2\exp\left(-\frac{2n^{2}\frac{\varepsilon^{2}}{144}\left(\frac{1}{n}\sum_{i=1}^{2n}|g(X_{i})|^{2}\right)}{\sum_{i=1}^{n}4(|g(X_{i})|^{2}-|g(X_{i+n})|^{2})^{2}}\right) \\
\leq2\exp\left(-\frac{2n^{2}\frac{\varepsilon^{2}}{144}\left(\frac{1}{n}\sum_{i=1}^{2n}|g(X_{i})|^{2}\right)}{\sum_{i=1}^{n}4B^{2}(|g(X_{i})|^{2}+|g(X_{i+n})|^{2})}\right) \\
=\exp\left(-\frac{n\varepsilon^{2}}{288B^{2}}\right).$$

Theorem 6.4 Assume $\sigma^2 = \sup_{x \in \mathbb{R}^d} \operatorname{Var}(Y|X=x) < \infty$. Let $k_n = k_n(x_1, \dots, x_n)$ be the vector space dimension of \mathscr{F}_n . Then

$$\mathbb{E}\{\|\widetilde{m}_n - m\|_n^2 | X^{1:n}\} \le \frac{\sigma^2 k_n}{n} + \min_{f \in \mathscr{F}_n} \|f - m\|_n^2.$$

Proof Denote $\mathbb{E}^*\{\cdot\} = \mathbb{E}\{\cdot|X^{1:n}\}$. Then

$$\mathbb{E}^{*} \left\{ \| \widetilde{m}_{n} - m \|_{n}^{2} \right\} = \mathbb{E}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} |\widetilde{m}_{n}(X_{i}) - m(X_{i})|^{2} \right\}$$

$$= \mathbb{E}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} |\widetilde{m}_{n}(X_{i}) - \mathbb{E}^{*}(\widetilde{m}_{n}(X_{i})) + \mathbb{E}^{*}(\widetilde{m}_{n}(X_{i})) - m(X_{i})|^{2} \right\}$$

$$= \mathbb{E}^{*} \left\{ \frac{1}{n} \sum_{i=1}^{n} |\widetilde{m}_{n}(X_{i}) - \mathbb{E}^{*}(\widetilde{m}_{n}(X_{i}))|^{2} \right\} + \mathbb{E}^{*} \left\{ |\mathbb{E}^{*}(\widetilde{m}_{n}(X_{i})) - m(X_{i})|^{2} \right\}$$

$$= \mathbb{E}^{*} \left\{ \|\widetilde{m}_{n} - \mathbb{E}^{*}(\widetilde{m}_{n})\|_{n}^{2} \right\} + \|\mathbb{E}^{*}(\widetilde{m}_{n}) - m\|_{n}^{2}.$$

Write that $\widetilde{m}_n = \sum_{j=1}^{k_n} a_j f_{j,n}$ where $f_{1,n}, \dots, f_{k_n,n}$ is a basis of \mathscr{F}_n , and $a = (a_j)_{j=1,\dots,k_n}$ satisfies that $\frac{1}{n} B^T B a = \frac{1}{n} B^T Y$, $B = (f_{j,n}(X_i))_{1 \le i \le n, 1 \le j \le k_n}$ and $Y = (Y_1, \dots, Y_n)^T$. Then

$$\mathbb{E}^*\{\widetilde{m}_n\} = \sum_{j=1}^{k_n} \mathbb{E}^*\{a_j\} f_{j,n} \text{ and } \frac{1}{n} B^T B \mathbb{E}^* a = \frac{1}{n} B^T \mathbb{E}^* Y = \frac{1}{n} B^T (m(X_1), \dots, m(X_n))^T$$

$$\Rightarrow \|\mathbb{E}^*(\widetilde{m}_n) - m\|_n^2 = \min_{f \in \mathscr{F}_-} \|f - m\|_n^2.$$

Choose a complete orthogonormal system f_1, \dots, f_k in \mathscr{F}_n w.r.t. the empirical scalar proudct $\langle \cdot, \cdot \rangle_n$ where $\langle f, g \rangle_n = \frac{1}{n} \sum_{i=1}^n f(X_i) g(X_i), k \leq k_n$. We remind our readers that such a system depends on X_1, \dots, X_n . Then, on $\{X_1, \dots, X_n\}$, span $\{f_1, \dots, f_k\} \subset \mathscr{F}_n$, $\widetilde{m}_n(x) = f(x)^T \frac{1}{n} B^T Y$ where $B = (f_j(X_i))_{1 \leq j \leq n, 1 \leq j \leq k}, B^T B = I$. Therefore,

$$\mathbb{E}^*\{|\widetilde{m}_n(x) - \mathbb{E}^*(\widetilde{m}_n(x))|^2\} = \mathbb{E}^*\{|f(x)^T \frac{1}{n} B^T Y - f(x)^T \frac{1}{n} B^T (m(X_1), \cdots, m(X_n))^T|^2\}$$

$$= f(x)^T \frac{1}{n} B^T (\mathbb{E}^*\{(Y_i - m(X_i))(Y_j - m(X_j))^T\}) \frac{1}{n} Bf(x)$$

$$\Rightarrow \mathbb{E}^*\{\|\widetilde{m}_n - \mathbb{E}^*(\widetilde{m}_n)\|_n^2\} \le \frac{1}{n^2} f^T B^T \sigma^2 IBf = \frac{\sigma^2}{n} \sum_{j=1}^k \|f_j\|_n^2 = \frac{\sigma^2}{n} k \le \frac{\sigma^2}{n} k_n.$$

Theorem 6.5 Assume $\sigma^2 = \sup_{x \in \mathbb{R}^d} \operatorname{Var}(Y|X=x) < \infty$ and $||m||_{\infty} = \sup_{x \in \mathbb{R}^d} |m(x)| \le L \in \mathbb{R}_+, m_n(\cdot) = T_L \widetilde{m}_n(\cdot)$. Then

$$\mathbb{E} \int |m_n(x) - m(x)|^2 \mu(\mathrm{d}x) \le C \cdot \max\{\sigma^2, L^2\} \frac{\log(n) + 1}{n} k_n + 8 \inf_{f \in \mathscr{F}_n} \int |f(x) - m(x)|^2 \mu(\mathrm{d}x).$$

Proof First we note that

$$\int |m_n(x) - m(x)|^2 \mu(\mathrm{d}x) = (\|m_n - m\|_2 - 2\|m_n - m\|_n + 2\|m_n - m\|_n)^2$$

$$\leq (\max\{\|m_n - m\|_2 - 2\|m_n - m\|_n, 0\} + 2\|m_n - m\|_n)^2$$

$$\leq 2(\max\{\|m_n - m\|_2 - 2\|m_n - m\|_n, 0\})^2 + 8\|m_n - m\|_n^2.$$

On the one hand,

$$\begin{split} \mathbb{E}\{8\|m_n - m\|_n^2\} &\leq 8\mathbb{E}\{\mathbb{E}\{\|\widetilde{m}_n - m\|_n^2 | X_1, \cdots, X_n\}\} \\ &\leq 8\sigma^2 \frac{k_n}{n} + 8\mathbb{E}\{\min_{f \in \mathscr{F}_n} \|f - m\|_n^2\} \\ &\leq 8\sigma^2 \frac{k_n}{n} + 8\inf_{f \in \mathscr{F}_n} \mathbb{E}\|f - m\|_n^2. \end{split}$$

On the other hand,

$$\begin{split} \mathbb{P}\left(2 \max\{\|m_n - m\|_2 - 2\|m_n - m\|_n, 0\} > u\right) &\leq \mathbb{P}\left(\exists f \in T_L \mathscr{F}_n : \|f - m\|_2 - 2\|f - m\|_n > \sqrt{\frac{u}{2}}\right) \\ &\leq 3 \mathbb{E} \mathscr{N}_2\left(\frac{\sqrt{u}}{24}, \mathscr{F}_n, X^{1:2n}\right) \exp\left(-\frac{nu}{576(2L)^2}\right) \\ &\leq 9(12en)^{2(k_n + 1)} \exp\left(-\frac{nu}{2304L^2}\right) \\ \Rightarrow \mathbb{E}(2 \max\{\|m_n - m\|_2 - 2\|m_n - m\|_n, 0\}) &\leq u + \int_u^{\infty} \mathbb{P}(2 \max\{\|m_n - m\|_2 - 2\|m_n - m\|_n, 0\} > t) \mathrm{d}t \\ &\left(\mathrm{take}\ u \geq \frac{576L^2}{n}\right) \leq CL^2 \frac{\log(n) + 1}{n} k_n. \end{split}$$

Combine these two bounds together.

Property 6.1 (Nonlinear LSE) $|Y| \le L \le \beta_n$ a.s., $m_n(\cdot) = T_{\beta_n} \widetilde{m}_n(\cdot), \widetilde{m}_n(\cdot) = \arg\min_{f \in \mathscr{F}_n} \frac{1}{n} \sum_{i=1}^n |f(X_i) - Y_i|^2$. We do the following decomposition:

$$\int |m_n(x) - m(x)|^2 \mu(\mathrm{d}x) = \left\{ \mathbb{E}\{|m_n(X) - Y|^2 | \mathcal{D}_n\} - \mathbb{E}|m(X) - Y|^2 - \frac{2}{n} \sum_{i=1}^n \left[|m_n(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2\right] \right\} + \frac{2}{n} \sum_{i=1}^n \left[|m_n(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2\right].$$

On the one hand,

$$\mathbb{E}\left\{\frac{1}{n}\sum_{i=1}^{n}[|m_n(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2]\right\} \le \mathbb{E}\left\{\frac{1}{n}\sum_{i=1}^{n}|\widetilde{m}_n(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2\right\}$$

$$\leq \mathbb{E}\left\{\inf_{f\in\mathscr{F}_n}\frac{1}{n}\sum_{i=1}^n\left[|f(X_i)-Y_i|^2-|m(X_i)-Y_i|^2\right]\right\}$$

$$\leq \inf_{f\in\mathscr{F}_n}\mathbb{E}\left\{\frac{1}{n}\sum_{i=1}^n\left[|f(X_i)-Y_i|^2-|m(X_i)-Y_i|^2\right]\right\}$$

$$= \inf_{f\in\mathscr{F}_n}\left\{\mathbb{E}|f(X)-Y|^2-\mathbb{E}|m(X)-Y|^2\right\}$$

$$= \inf_{f\in\mathscr{F}_n}\int |f(x)-m(x)|^2\mu(\mathrm{d}x)$$

On the other hand,

$$\mathbb{P}\left\{\mathbb{E}[|m_{n}(X) - Y|^{2}|\mathcal{D}_{n}] - \mathbb{E}|m(X) - Y|^{2} - \frac{2}{n}\sum_{i=1}^{n}\left[|m_{n}(X_{i}) - Y_{i}|^{2} - |m(X_{i}) - Y_{i}|^{2}\right] > \varepsilon\right\}$$

$$= \mathbb{P}\left\{\mathbb{E}[|m_{n}(X) - Y|^{2}|\mathcal{D}_{n}] - \mathbb{E}|m(X) - Y|^{2} - \frac{1}{n}\sum_{i=1}^{n}\left[|m_{n}(X_{i}) - Y_{i}|^{2} - |m(X_{i}) - Y_{i}|^{2}\right] > \frac{\varepsilon}{2} + \frac{1}{2}\left[\mathbb{E}[|m_{n}(X) - Y|^{2}|\mathcal{D}_{n}] - \mathbb{E}|m(X) - Y|^{2}\right]\right\}$$

$$\leq \mathbb{P}\left\{\exists f \in T_{\beta_{n}}\mathscr{F}_{n} : \mathbb{E}|f(X) - Y|^{2} - \mathbb{E}|m(X) - Y|^{2} - \frac{1}{n}\sum_{i=1}^{n}\left[|f(X_{i}) - Y_{i}|^{2} - |m(X_{i}) - Y_{i}|^{2}\right] > \frac{\varepsilon}{2} + \frac{1}{2}\left[\mathbb{E}|f(X) - Y|^{2} - \mathbb{E}|m(X) - Y|^{2}\right]\right\}.$$

Set $Z = (X, Y), Z_i = (X_i, Y_i), g(Z) = |f(X) - Y|^2 - |m(X) - Y|^2$. We can rewrite the above equation as

$$\mathbb{P}\left\{\mathbb{E}g(Z) - \frac{1}{n}\sum_{i=1}^{n}g(Z_i) > \frac{\varepsilon}{2} + \frac{1}{2}\mathbb{E}g(Z)\right\}.$$

Since $|g(Z)| = |(f(X) + m(X) - 2Y)(f(X) - m(X))| \le 4\beta_n |f(X) - m(X)|, \sigma^2 := \text{Var}(g(Z)) \le \mathbb{E}g(Z)^2 \le 16\beta_n^2 \mathbb{E}|f(X) - m(X)|^2 = 16\beta_n^2 (\mathbb{E}|f(X) - Y|^2 - \mathbb{E}|m(X) - Y|^2),$ the above equation is upper-bounded by

$$\mathbb{P}\left\{\mathbb{E}g(Z) - \frac{1}{n}\sum_{i=1}^{n}g(Z_{i}) > \frac{\varepsilon}{2} + \frac{1}{2}\frac{\operatorname{Var}(g(Z))}{16\beta_{n}^{2}}\right\} \stackrel{\text{Berstein's inequality}}{\leq} \exp\left(-\frac{n\left[\frac{\varepsilon}{2} + \frac{\sigma^{2}}{32\beta_{n}^{2}}\right]^{2}}{2\sigma^{2} + 2\frac{8\beta_{n}^{2}}{3}\left[\frac{\varepsilon}{2} + \frac{\sigma^{2}}{32\beta_{n}^{2}}\right]}\right) \leq \exp\left(-\frac{1}{128 + \frac{32}{3}}\frac{n\varepsilon}{\beta_{n}^{2}}\right).$$

Theorem 6.6 Let $n \in \mathbb{N}$ and $1 \le L < \infty$. Assume $|Y| \le L$ a.s. Let estimate m_n be defined by minimization of the empirical l_2 risk over a set of functions \mathscr{F}_n and truncation at L. Then one has

$$\mathbb{E} \int |m_n(x) - m(x)|^2 \mu(\mathrm{d}x) \le \frac{c_1}{n} + \frac{(c_2 + c_3 \log n) V_{\mathscr{F}_n^+}}{n} + 2 \inf_{f \in \mathscr{F}_n} \int |f(x) - m(x)|^2 \mu(\mathrm{d}x)$$

Proof Lemma 6.1 Assume $|Y| \leq B$ a.s. and $B \geq 1$. Let \mathscr{F} be a set of functions $f : \mathbb{R}^d \to \mathbb{R}$ and let $|f(x)| \leq B$. Then for any $n \geq 1$,

$$\mathbb{P}\bigg\{\exists f \in \mathscr{F} : \mathbb{E}|f(X) - Y|^2 - \mathbb{E}|m(X) - Y|^2 - \frac{1}{n} \sum_{i=1}^n \left[|f(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2\right]$$

$$\geq \varepsilon(\alpha + \beta + \mathbb{E}|f(X) - Y|^2 - \mathbb{E}|m(X) - Y|^2)\bigg\}$$

$$\leq 14 \sup_{X^{1:n}} \mathcal{N}_1\left(\frac{\beta\varepsilon}{20B}, \mathscr{F}, X^{1:n}\right) \exp\left(-\frac{\varepsilon^2(1-\varepsilon)\alpha n}{214(1+\varepsilon)B^2}\right).$$

Now let's return to the original theorem.

$$\int |m_n(x) - m(x)|^2 \mu(\mathrm{d}x) = \left\{ \mathbb{E}[|m_n(X) - Y|^2 | \mathcal{D}_n] - \mathbb{E}[|m(X) - Y|^2] - 2\left(\frac{1}{n}\sum_{i=1}^n |m_n(X_i) - Y_i|^2 - \frac{1}{n}\sum_{i=1}^n |m(X_i) - Y_i|^2\right) \right\}
+ 2\left\{ \frac{1}{n}\sum_{i=1}^n |m_n(X_i) - Y_i|^2 - \frac{1}{n}\sum_{i=1}^n |m(X_i) - Y_i|^2 \right\}
:= T_{1,n} + T_{2,n}.$$

Since

$$\mathbb{E}(T_{2,n}) \leq 2 \inf_{f \in \mathscr{F}_n} \int |f(x) - m(x)|^2 \mu(\mathrm{d}x), \\ \mathbb{E}(T_{1,n}) = \int_0^\infty \mathbb{P}(T_{1,n} > t) \mathrm{d}t \leq \varepsilon + \int_\varepsilon^\infty \mathbb{P}(T_{1,n} > t) \mathrm{d}t$$

and

$$\begin{split} \mathbb{P}(T_{1,n} > t) &= \mathbb{P}\bigg\{\mathbb{E}[|m_n(X) - Y|^2 | \mathcal{D}_n] - \mathbb{E}[|m(X) - Y|^2] - \frac{1}{n} \sum_{i=1}^n [|m_n(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2] \\ &\geq \frac{1}{2} \left(\frac{t}{2} + \frac{t}{2} + \mathbb{E}[|m_n(X) - Y|^2 | \mathcal{D}_n] - \mathbb{E}[|m(X) - Y|^2]\right) \bigg\} \\ &\leq \mathbb{P}\bigg\{\exists f \in T_L \mathscr{F}_n : \mathbb{E}|f(X) - Y|^2 - \mathbb{E}|m(X) - Y|^2 - \frac{1}{n} \sum_{i=1}^n [|f(X_i) - Y_i|^2 - |m(X_i) - Y_i|^2] \\ &\geq \frac{1}{2} \left(\frac{t}{2} + \frac{t}{2} + \mathbb{E}|f(X) - Y|^2 - \mathbb{E}|m(X) - Y|^2\right) \bigg\} \\ &\leq 14 \sup_{X^{1:n}} \mathscr{N}_1 \left(\frac{1}{80Ln}, T_L \mathscr{F}_n, X^{1:n}\right) \exp\left(-\frac{nt}{24 \cdot 214L^4}\right) \leq 3(480eL^2n)^{2V_{(T_L \mathscr{F}_n)^+}} \exp\left(-\frac{nt}{24 \cdot 214L^4}\right). \end{split}$$

Plug this bound into the integral in the previous expectation bound,

$$\mathbb{E}(T_{1,n}) \le \varepsilon + \frac{24 \cdot 214L^4}{n} 42(480eL^2n)^{2V_{\mathscr{F}_n^+}} \exp\left(-\frac{n\varepsilon}{24 \cdot 214L^4}\right). \quad \Box$$

П

Lemma 6.2 Let V_1, \dots, V_n i.i.d. r.v.'s, $0 \le V_i \le \beta, 0 < \alpha < 1$ and $\nu > 0$. Then

$$\mathbb{P}\left\{\frac{\left|\frac{1}{n}\sum_{i=1}^{n}V_{i}-\mathbb{E}V_{1}\right|}{\nu+\frac{1}{n}\sum_{i=1}^{n}V_{i}+\mathbb{E}V_{1}}>\alpha\right\}\leq\mathbb{P}\left\{\frac{\left|\frac{1}{n}\sum_{i=1}^{n}V_{i}-\mathbb{E}V_{1}\right|}{\nu+\mathbb{E}V_{1}}>\alpha\right\}<\frac{\beta}{4\alpha^{2}\nu n}.$$

Proof Use Chebyshev's inequality.

Theorem 6.7 Let $B \ge 1$ and G be a set of functions $g: \mathbb{R}^d \to [0, B]$. Let Z_1, \dots, Z_n be i.i.d. \mathbb{R}^d -valued r.v.'s. Assume $\alpha > 0, 0 < \varepsilon < 1$ and $n \ge 1$. Then

$$\mathbb{P}\left\{\sup_{g\in\mathcal{G}}\frac{\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})-\mathbb{E}g(Z)}{\alpha+\frac{1}{n}\sum_{i=1}^{n}g(Z_{i})+\mathbb{E}g(Z)}>\varepsilon\right\}\leq 4\mathbb{E}\mathcal{N}_{1}\left(\frac{2\varepsilon}{5},G,Z^{1:n}\right)\exp\left(-\frac{3\varepsilon^{2}\alpha n}{40B}\right)$$

Proof Step 1: Replace the expectation with empirical mean. Ghost sample $Z'_{1:n} = (Z'_1, \dots, Z'_n)$ i.i.d. Let g^* be a function $g \in \mathscr{G}$ such that

$$\frac{1}{n}\sum_{i=1}^{n}g(Z_{i}) - \mathbb{E}g(Z) > \varepsilon \left(\alpha + \frac{1}{n}\sum_{i=1}^{n}g(Z_{i}) + \mathbb{E}g(Z)\right)$$

if there exists any such function. Otherwise, let g^* be an arbitrary function in G. g^* depends on $Z^{1:n}$. Since

$$\frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \mathbb{E}g(Z) > \varepsilon \left(\alpha + \frac{1}{n} \sum_{i=1}^{n} g(Z_i) + \mathbb{E}g(Z) \right) \text{ and } \frac{1}{n} \sum_{i=1}^{n} g(Z_i') - \mathbb{E}g(Z) \le \frac{\varepsilon}{4} \left(\alpha + \frac{1}{n} \sum_{i=1}^{n} g(Z_i') + \mathbb{E}g(Z) \right)$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \frac{1}{n} \sum_{i=1}^{n} g(Z_i') > \frac{3}{4} \varepsilon \alpha + \frac{\varepsilon}{n} \sum_{i=1}^{n} g(Z_i) - \frac{\varepsilon}{n} \sum_{i=1}^{n} g(Z_i') + \frac{3\varepsilon}{4} \mathbb{E}g(Z)$$

$$\Leftrightarrow \left(1 - \frac{5}{8} \varepsilon \right) \left(\frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \frac{1}{n} \sum_{i=1}^{n} g(Z_i') \right) > \frac{3}{8} \varepsilon \left(2\alpha + \frac{1}{n} \sum_{i=1}^{n} g(Z_i) + \frac{1}{n} \sum_{i=1}^{n} g(Z_i') \right) + \frac{3\varepsilon}{4} \mathbb{E}g(Z)$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} g(Z_i) - \frac{1}{n} \sum_{i=1}^{n} g(Z_i') > \frac{3\varepsilon}{8} \left(2\alpha + \frac{1}{n} \sum_{i=1}^{n} g(Z_i) + \frac{1}{n} \sum_{i=1}^{n} g(Z_i') \right),$$

Therefore,

$$\mathbb{P}\left\{\exists g \in \mathscr{G} : \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) - \frac{1}{n} \sum_{i=1}^{n} g(Z'_{i}) > \frac{3}{8} \varepsilon \left(2\alpha + \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) + \frac{1}{n} \sum_{i=1}^{n} g(Z'_{i})\right)\right\} \\
\geq \mathbb{P}\left\{\frac{1}{n} \sum_{i=1}^{n} g^{*}(Z_{i}) - \frac{1}{n} \sum_{i=1}^{n} g^{*}(Z'_{i}) > \frac{3\varepsilon}{8} \left(2\alpha + \frac{1}{n} \sum_{i=1}^{n} g^{*}(Z_{i}) + \frac{1}{n} \sum_{i=1}^{n} g^{*}(Z'_{i})\right)\right\} \\
\geq \mathbb{P}\left\{\right\}$$