Teknik Komunikasi Data Digital

Transmisi Asinkron dan Sinkron

- Masalah waktu membutuhkan mekanisme untuk menyamakan antara transmiter dan receiver
- Dua salusi
 - Asinkronisasi
 - Sinkronisasi

Asinkron

- Data ditransmisikan dalam karakter setiap waktu
 - 5 to 8 bits
- Timing (waktu) hanya memerlukan pertahanan dalam tiap karakter
- Sinkronisasi ulang tiap karakter

Asinkron diagram

Sinkron

- Pada aliran yang tetap, interval diantara karakter adalah sama (panjang elemen stop)
- Dalam keadaan tidak lancar, receiver mengecek untuk transisi 1 ke 0
- Saat 7 interval sample berikutnya (panjang karakter)
- Melihat untuk 1 ke 0 untuk karakter berikutnya
- Simple
- Murah
- Overhead pada 2 atau 3 bit per karakter (~20%)
- Baik untuk data dengan jarak yang panjang (keyboard)

Sinkron-level bit

- Block pada transmisi data tanpa start atau stop bits
- Clock harus sama (sinkron)
- Dapat menggunakan jalur clock yang terpisah
 - Baik untuk jarak dekat
 - Perusakan subjek
- Meletakkan sinyal clock dalam data

Sinkron-level block

- Membutuhkan petunjuk saat start dan end pada block
- Menggunakan preamble dan postamble
- Yaitu series pada karakter SYN (hex 16)
- Yaitu block pada 11111111 patterns ending dalam 11111110
- Lebih efisien (Overhead lebih kecil) daripada asinkron

Sinkron (diagram)

8-bit		Data Field	Control 8-bit
flag	fields	Dutin Freid	fields flag

Tipe-tipe error

- Error terjadi ketika ada perubahan diantara transmitter dan receiver
- Error single bit
 - Diantara satu bit
 - Bit yang berdekatan tidak efektif
 - White noise
- Burst errors
- Panjang B
- Impulse noise
- Memudar dalam wireless
- Efek lebih besar saat kecepatan data tinggi

Proses Pendeteksian Error

Pendeteksian Error

- Bit tambahan yang dibuat oleh transmitter untuk mendeteksi error code
- Parity
- Nilai dari Parity bit merupakan karakter even (even parity) atau odd (odd parity) dalam satu angka
- Even number dari bit error berarti tidak terdeteksi

Cyclic Redundancy Check

- Untuk block pada transmitter k bit transmitter membangkitkan n bit sequence
- Transmit k+n bits yang tepat membagi menjadi beberapa angka
- Receiver membagi frame dengan angka
 - Jika tidak ada peringatan, diasumsikan tidak ada error

Koreksi Error

- Koreksi pada pendeteksian error memerlukan block data yang dikirimkan kembali
- Tidak ada yang tepat untuk aplikasi wireless
 - Kecepartan bit error tinggi
 - Lebih banyak pengiriman ulang
- Waktu tunggu perambatan lebih lama dibandingkan pengiriman frame
- Diperlukan koreksi error untuk penerimaan bit dalam basic

Diagram Proses Koreksi Error

Proses Koreksi Error

- Tiap k bit block mapped untuk n bit block (n>k)
- Codeword dikirim
- Diterima bit string yang sama untuk pengiriman tetapi masih ada error
- Diterima codeword lalu dirubah ke FEC decoder
 - Jika ada error, dikeluarkan data block original
 - Beberapa error dapat dideteksi dan dikoreksi
 - Beberapa error dapat dideteksi tetapi tidak dapat dikoreksi
 - Beberapa error tidak dapat dideteksi
 - Hasil yang tidak dikoreksi dari FEC

Bekerja pada Koreksi Error

- Membuat redundancy untuk pengiriman pesan
- Dapat menarik kesimpulan pada level kecepatan error
- E.g. koreksi code block error
 - Secara umum membuat (n-k) bits menjadi end pada block
 - Meberikan n bit block (codeword)
 - Semua original k bits termasuk dalam codeword
 - Beberapa pemetaan FEC k bit input kedalam n bit code word seperti original k bits tidak terlihat

Konfigurasi Saluran

Topology

- Fisik menyusun stasiun dalam media
- Point to point
- Multi point
 - Komputer dan terminals, local area network

Half duplex

- Hanya satu stasiun yang mungkin dikirimkan dalam satu waktu
- Membutuhkan satu data path

Full duplex

- Simultan antara dua stasiun saat pengiriman dan penerimaan
- Membutuhkan dua data paths (atau echo canceling)

Konfigurasi Tradisional

Interfacing

- Peralatan pemrosesan data (atau perlengkapan terminal data, DTE) tidak selalu termasuk fasilitas pengiriman data
- Dibutuhkan interface yang disebut data circuit terminating equipment (DCE)
 - e.g. modem, NIC
- Pengiriman DCE bit dalam media
- Komunikasi data DCE kontrol info dengan DTE
 - Dilakukan pertukaran circuit
 - Dibutuhkan standar interface yang bersih

Interfacing Komunikasi Data

(a) Generic interface to transmission medium

Karakteristik Interface

- Mechanical
 - Connection plugs
- Electrical
 - Voltage, timing, encoding
- Fungsi
 - Data, control, timing, grounding
- Procedur
 - Sequence of events

Spesifikasi Fungsi

- Kategori grup circuit
 - Data
 - Control
 - Timing
 - Ground
- Satu circuit dalam tiap arah
 - Full duplex
- Dua circuit data kedua
 - Mengijinkan halt atau flow control dalam operasi half duplex

Link Video Penjelasan

https://drive.google.com/file/d/1ob7H11mk5FgJ95 Q29wJgFkDjdFr0L_Mx/view?usp=sharing

Terimakasih