Σ_n and Π_n

Recall that a set $A \subset \mathbb{N}_0$ is enumerable if and only if there exists a decidable set $B \subset \mathbb{N}_0 \times \mathbb{N}_0$ such that A is the projection of B. Let's identify sets and predicates so that we can say that a property A(x) of natural numbers is enumerable if and only if it can be represented in the form

$$A(x) \Leftrightarrow \exists y B(x,y)$$

where B(x, y) is some decidable property.

Q: What can be said about other combinations of quantifiers?

Q: What properties are representable in the form

$$A(x) \Leftrightarrow \exists y \exists z C(x, y, z)$$

where C is some decidable property?

We can replace consecutive quantifiers by using one with computable numbering of pairs:

$$C''(x, \sigma(y, z)) \Leftrightarrow C(x, y, z) \text{ and } A(x) \Leftrightarrow \exists w C''(x, w).$$

Q: What properties can be represented in the form

$$A(x) \Leftrightarrow \forall y B(x, y)$$

where B(x, y) is a decidable property.

A: The properties with enumerable negations:

$$\neg A(x) \Leftrightarrow \neg \forall y B(x, y)$$

 $\Leftrightarrow \exists y (\neg B(x, y))$

We are implicitly using the fact that decidability is preserved under negation.

We now progress to a general definition:

Definition 1. A property A belongs to the class Σ_n if it can be represented in the form

$$A(x) \Rightarrow \exists y_1 \forall y_2 \exists y_3 \cdots B(x_1, y_1, y_2, \dots, y_n)$$

with n alternating quantifiers and B is a decidable property.

If the n alternating quantifiers starts with \forall , then we obtain the definition of the class Π_n .

Theorem 1. (a) The class Σ_n and Π_n does not change if we allow groups of quantifiers of the same type instead of a single quantifier.

(b) If a predicate belongs to Σ_n then its negation belongs to Π_n and vice versa.

Theorem 2. (a) The intersection and union of two sets of the class Σ_n belongs to Σ_n .

(b) The intersection and union of two sets of the class Π_n belong to Π_n .

Example 1.

$$A(x) \Leftrightarrow \exists y \forall z B(x, y, z)$$

$$C(x) \Leftrightarrow \exists u \forall v D(x, u, v)$$

Then

$$A(x) \wedge C(x) \Leftrightarrow \exists y \exists u \forall z \forall v [B(x, y, z) \wedge D(x, u, v)]$$

The property is decidable and we can complie the quantifiers to get it to belong to Σ_n .

Theorem 3. The classes Σ_n and Π_n are "hereditary downward" with respect to m-reducibility in the following way:

If $A \leq_m B$ and $B \in \Sigma_n$ then $A \in \Sigma_n$ or $B \in \Pi_n$ then $A \in \Pi_n$.

Unviersal Sets in Σ_n and Π_n

Goal: Show that the classes Σ_n and Π_n are distinct for different n.

How? We find a universal set for Σ_n and show that it cannot belong to Σ_k for any k < n.

Theorem 4. For any n, the class Σ_n contains a set universal for this class. The complement of this set will be universal for the class Π_n .

Theorem 5. Universal Σ_n -sets do not belong to the class Π_n . Similarly universal Π_n -sets do not belong to Σ_n .

Remark 1. The hierarchy is strict.