Roll	No.:	

National Institute of Technology, Delhi

Name of the Examination: B. Tech

Branch

: ECE

Semester

: 111

Title of the Course

: Digital Electronics

Course Code : ECB 202

Time: 2Hours

Maximum Marks: 25

Note:

- Questions are printed on BOTH sides. Answers should be CLEAR, TO THE POINT AND LEGIBLE.
- All parts of a single question must be answered together and in the same sequence as given in question paper. ELSE QUESTION SHALL NOT BE EVALUATED.
- All questions are compulsory.
- Q1Simplify the following Boolean expressions using K-map

 (1×3)

- (a) $F(x, y, z) = \sum_{x \in S} (0.1.5.7)$
- (b) F(w, x, y, z) = x'z + w'xy' + w(x'y + xy')
- (c) $F(A, B, C, D) = \sum (0,2,4,5,6,7,8,10,13,15)$
- Find all the prime implicants for the following Boolean functions, and determine which are essential Q_2
 - (a) $F(w, x, y, z) = \sum (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$

(b) $F(A, B, C, D) = \sum (0, 2, 3, 5, 7, 8, 10, 11, 14, 15)$

- (2)
- Q_3 Simplify the following Boolean expressions to (1) sum of products and (2) products of sums

(a)
$$x'z' + y'z' + yz' + xy$$

(2) (2)

 (1×4)

(b)
$$(A + C' + D')(A' + B' + D')(A' + B + D')(A' + B + C')$$

- Q4 Solve the following questions
 - (a) Subtract the decimal number 72532 from 3250 using 10's complement and interpret the result.
 - (b) Assume the Binary numbers X = 1010100 and Y = 1000011. Perform the operation X-Y and Y-X using 1's complement method with necessary interpretation of the results.
 - (c) Express the following numbers (16.5)₁₆ and (26.24)₈ in decimal.
 - (d) Find the minimum decimal equivalent of number (11C)_r.
- Q5(a) In the circuit shown below, find out the logic level of inputs A, B and C to get the output X as logic 1. **(2)**

(b) If
$$A \oplus B = C$$
, then show that $A \oplus C = B$ and $B \oplus C = A$.

(2)

Q6	(a) Simplify the	k-map into	minimal su	ım of product
----	------------------	------------	------------	---------------

\ wx						
yz\	00	01	11	10		
00	0	Х	0	0		
01	0	Х	1	1		
11	1	1	1	1		
10	0	Χ	0	0		

(b) Simplify the k-map into minimal sum of product

\ wx							
01	11	10					
X	0	X					
1	Х	1					
Х	1	Х					
1	Х	0					
	X 1 X	X 0 1 X X 1	X 0 X 1 X 1 X 1 X 1 X 1 X 1 X				

Q 7 Implement the XOR function using NAND gate.

(2)

(2)

(2)