Homework III Advanced Topics in Optimization

Basil R. Yap

2018 February 16

1 Question 1

system description: $1|prec|h_{\max}$

jobs	1	2	3	4	5	6	7
p_j	4	8	12	7	6	9	9
$h_j(C_j)$	$3C_1$	77	C_3^2	$1.5C_{4}$	$70 + \sqrt{C_5}$	$1.6C_{6}$	$1.4C_{7}$

$$1 \to 7 \to 6$$
$$5 \to 7$$
$$5 \to 4$$

Set
$$J = \emptyset$$
, $J^c = \{1, 2, \dots, 7\}$, $J' = \{2, 3, 4, 6\}$

$$h_{j*}\left(\sum_{k\in J^c} p_k\right) = \min_{j\in J'} \left(h_j\left(\sum_{k\in J^c} p_k\right)\right)$$

$$\sum_{k \in J^c} p_k = 55$$

$$h_2\left(\sum_{k \in J^c} p_k\right) = 77$$

$$h_3\left(\sum_{k \in J^c} p_k\right) = (55)^2$$

$$= 3025$$

$$h_4\left(\sum_{k \in J^c} p_k\right) = 1.5 \times 55$$

$$= 82.5$$

$$h_6\left(\sum_{k \in J^c} p_k\right) = 1.6 \times 55$$

$$= 88$$

$$\min_{j \in J'} \left(h_j\left(\sum_{k \in J^c} p_k\right)\right) = 77$$

$$J = \{2\}, J^c = \{1, 3, 4, 5, 6, 7\}, J' = \{3, 4, 6\}$$

$$\sum_{k \in J^c} p_k = 47$$

$$h_3 \left(\sum_{k \in J^c} p_k \right) = (47)^2$$

$$= 2209$$

$$h_4 \left(\sum_{k \in J^c} p_k \right) = 1.5 \times 47$$

$$= 70.5$$

$$h_6 \left(\sum_{k \in J^c} p_k \right) = 1.6 \times 47$$

$$= 75.2$$

$$\min_{j \in J'} \left(h_j \left(\sum_{k \in J^c} p_k \right) \right) = 70.5$$

$$J = \{2, 4\}, \ J^c = \{1, 3, 5, 6, 7\}, \ J' = \{3, 6\}$$

$$\sum_{k \in J^c} p_k = 40$$

$$h_3 \left(\sum_{k \in J^c} p_k \right) = (40)^2$$

$$= 1600$$

$$h_6 \left(\sum_{k \in J^c} p_k \right) = 1.6 \times 40$$

$$= 64$$

$$\min_{j \in J'} \left(h_j \left(\sum_{k \in J^c} p_k \right) \right) = 64$$

$$J = \{2, 4, 6\}, \ J^c = \{1, 3, 5, 7\}, \ J' = \{3, 7\}$$

$$\sum_{k \in J^c} p_k = 31$$

$$h_3 \left(\sum_{k \in J^c} p_k \right) = (31)^2$$

$$= 961$$

$$h_7 \left(\sum_{k \in J^c} p_k \right) = 1.4 \times 31$$

$$= 43.4$$

$$\min_{j \in J'} \left(h_j \left(\sum_{k \in J^c} p_k \right) \right) = 43.4$$

$$J = \{2, 4, 6, 7\}, \ J^c = \{1, 3, 5\}, \ J' = \{1, 3, 5\}$$

 $\sum_{k \in J^c} p_k = 22$

$$h_1\left(\sum_{k\in J^c} p_k\right) = 3 \times 22$$

$$= 66$$

$$h_3\left(\sum_{k\in J^c} p_k\right) = (22)^2$$

$$= 484$$

$$h_5\left(\sum_{k\in J^c} p_k\right) = 70 + \sqrt{22}$$

$$= 74.69$$

$$\min_{j\in J'} \left(h_j\left(\sum_{k\in J^c} p_k\right)\right) = 66$$

$$J = \{2, 4, 6, 7, 1\}, \ J^c = \{3, 5\}, \ J' = \{3, 5\}$$

$$\sum_{k\in J^c} p_k = 18$$

$$h_3\left(\sum_{k\in J^c} p_k\right) = (18)^2$$

$$= 324$$

$$h_5\left(\sum_{k\in J^c} p_k\right) = 70 + \sqrt{18}$$

$$= 74.24$$

$$\min_{j\in J'} \left(h_j\left(\sum_{k\in J^c} p_k\right)\right) = 74.24$$

$$J = \{2, 4, 6, 7, 1, 5, 3\}, \ J^c = \emptyset, \ J' = \emptyset$$

2 Question 2

system description: $1||\sum T_i|$

job	s 1		2	3	4	5	6	7	8
p_j	6	,	18	12	10	10	11	5	7
d_j	8	;	42	44	24	26	26	70	75

Lemma 3.4.1. If $p_j \leq p_k$ and $d_j \leq d_k$, then there exists an optimal sequence in which job j is scheduled before job k.

$$\begin{array}{l} 1 \rightarrow 2, 3, 4, 5, 6, 8 \quad (7) \\ 2 \rightarrow \quad (3, 7, 8) \\ 3 \rightarrow \quad (2, 7, 8) \ 4 \rightarrow 2, 3, 5, 6 \quad (7, 8) \\ 5 \rightarrow 2, 3, 6 \quad (7, 8) \\ 6 \rightarrow 2, 3 \quad (7, 8) \\ 7 \rightarrow 8 \quad (1, 2, 3, 4, 5, 6) \\ 8 \rightarrow \quad (2, 3, 4, 5, 6) \end{array}$$

$$V(\emptyset, t) = 0$$

$$V(\{j\}, t) = \max(0, t + p_j - d_j)$$

```
\begin{split} &V(J(j,l,k),t)\\ &= \min_{\delta} \left( V(J(j,k'+\delta,k'),t) + \max(0,C_{k'}(\delta)-d_{k'}) + V(J(k'+\delta+1,l,k'),C_{k'}(\delta)) \right)\\ &\text{Where } p_{k'} = \max\left( p_{j'}|j' \in J(j,l,k1) \right)\\ &V(\{1,\cdots,8\},0) = \end{split}
```

3 Question 3

Consider the problem $1|prec|\max(h_1(S_1),\cdots,h_n(S_n))$, where S_j denotes the starting time of job j. The cost function h_j , $j=1,\cdots,n$ is decreasing. Unforced idleness of the machine is not allowed.Describe a dynamic programming type algorithm for this problem similar to the one in Section 3.2. Why does one have to use here forward dynamic programming instead of backward dynamic programming? placeholder

4 Question 4

system description: $P_m||C_{\max}|$

$$C_{\max}(LS) \le \left(2 - \frac{1}{m}\right) C_{\max}^*$$

Find an example of an ordering of jobs such that the inequality holds with equality.

Given m identical machines in parallel.

Consider m-1 job with arbitrarily long processing time, such that $p_i = C_{\max}^* \forall i$ Consider single jobs j and k with processing times $\frac{m-1}{m}C_{\max}^*$ and $\frac{1}{m}C_{\max}^*$ respectively.

Therefore, the trivial optimal makespan is C_{\max}^*

Now consider a list such that job j and k are not processed by the same machine under the LS algorithm.

The resulting makespan would be an equivalence of $C_{\max}^* + \frac{m-1}{m} C_{\max}^* = \left(2 - \frac{1}{m}\right) C_{\max}^*$.

5 Question 5

- (a)
- (b)
- (c)