CS & I'T

ENGINERING

THEORY OF COMPUTATION

Turing Machine

Lecture No.- 01

Recap of Previous Lecture

Topics to be Covered

Topic

Turing Machine

Topic

?? T.M Gonstruction

Topic

?? TypegofT.M.

Topic: Theory of Computation

De Cidable Problems: Algorithm exist Undecidable Problems: No Algorithm not exist Pclass: O(nk)

Mp Completed

Mp hard >0(2")

- → Turing machine is a mathematical model that represents general purpose computer.
- → The problem, not solved by Turing machine or not soluble by computer also.
- → Hence Turing machine are used to study power of a compiler. Computer

NOTE:

Computer to finite automata, PDA, Turing having additional property they are

- 1. Infinite Length tape: Turing machine is one side closed and one side infinite.
- 2. Turnaround capability: Turing machine to turn left as well as right side. divern
- 3. Read-Write capability: Turing machine can replace reading symbol by other (or same symbol.

Turing Machine =
$$(Q, \Sigma, q_0, F, B, \Gamma, S)$$

Q: Finite number of state

 Σ : I/o alphabet

qo: Initial state only me

F: Set of final states

B: Blank symbol

Γ: Tape alphabet

S: Transition function.

$$\Theta$$
 × Γ \rightarrow Θ × Γ ×{L,R}

S: transition function

QXT-7QXTX{LIR}

$$(9, \times) = (9_2, 7, L)$$

$$(9_{11}, a) = (9_{21}, x, R)$$

Acceptance by final state only

$$|Q| \times |\tau| \rightarrow |Q| \times |\tau| \times \{L, R\}$$

Notaulus:

- ⇒ Transition diagram
- ⇒ Transition Table

Type of Turing Machine

Type of Turing Machine

Acceptance by final state.

Turing machine as a language recognizer-

- By reading the string Turing machine may halt may not halt (gp to infinite loop)
- →/ By reading string 'X' Turing machine halts as final state then X is accepted.
- By reading string 'X' Turing machine halts non-final state then string is regreted. Ye jected.
- By reading string 'X' if Turing machine enters into infinite loop then don't knows about the i/p. don't know accepted (a) rejeted)

(We can not say anything about whether it is accepted or not.)

Construct a Turing machine

$$L = \{a^n/n \ge 1\}$$

(Q) Construct T.M for L= {anbncn/n=1)
Home Walk

{a, aa, aaa }

S:
$$\theta \times \Gamma \rightarrow \theta \times \Gamma \times (L, R)$$

State	a	В
$\rightarrow q_0$	(q, a, R)	В
q_1	(q, a, R)	(q _f , B, R)
q_f	(HALT)	T

$$L = \{a^n b^m / m, n \ge 1\}$$

[MCQ]

#Q. Which of the following statements is false?

- A The halting problem for Turing machine is undecidable
- B Determining whether a context free grammar is ambiguous is undecidable
- Given two arbitrary context free grammars G_1 and G_2 , it is undecidable whether $L(G_1) = L(G_2)$
- Given two regular grammars G_1 and G_2 , it is undecidable whether $L(G_1) = L(G_2)$

2 mins Summary

Topic One

Topic Two

Topic Three

Topic Four

Topic Five

THANK - YOU