are given, we obtain a triangular system that determines uniquely the 2m+2 control points b_0, \ldots, b_{2m+1} .

Recall that $C^m([0,1])$ denotes the set of C^m functions f on [0,1], which means that $f, f^{(1)}, \ldots, f^{(m)}$ exist are are continuous on [0,1].

We define the vector space V_N^m as the subspace of $C^m([0,1])$ consisting of all functions f such that

- 1. f(0) = f(1) = 0.
- 2. The restriction of f to $[x_i, x_{i+1}]$ is a polynomial of degree 2m+1, for $i=0,\ldots,N$.

Observe that the functions in V_N^0 are the piecewise affine functions f with f(0) = f(1) = 0; an example is shown in Figure 19.2.

Figure 19.2: A piecewise affine function

This space has dimension N, and a basis consists of the "hat functions" w_i , where the only two nonflat parts of the graph of w_i are the line segments from $(x_{i-1}, 0)$ to $(x_i, 1)$, and from $(x_i, 1)$ to $(x_{i+1}, 0)$, for $i = 1, \ldots, N$, see Figure 19.3.

The basis functions w_i have a small support, which is good because in computing the integrals giving $a(w_i, w_j)$, we find that we get a tridiagonal matrix. They also have the nice property that every function $v \in V_N^0$ has the following expression on the basis (w_i) :

$$v(x) = \sum_{i=1}^{N} v(ih)w_i(x), \quad x \in [0, 1].$$