DA-IICT, B.Tech, Sem III

8:30-10:00 AM 7th Sep.2019 25 marks

- 1. If \vec{A} and \vec{B} are vectors prove that $\vec{A} \cdot \vec{B}$ transforms as a scalar under rotation. **(5)** (You may use two dimensional case.)
- 2. Find $\vec{\nabla}(\sin(\vec{n}\cdot\vec{r}))$ and $\vec{\nabla}\times(\vec{n}\times\vec{r})$ where \vec{n} is a constant vector. **(5)**
- 3. For any scalar field F
 - (a) Prove that $\vec{\nabla} \times (\vec{\nabla} F) = 0$. **(2)**
 - (b) Using part (a) prove that the line integral $\int_a^b \vec{\nabla} F \cdot d\vec{l}$ is independent of the path taken from point a to point b. **(3)**
- 4. You are given that the volume of a sphere of radius a is $\frac{4}{3}\pi a^3$. Using divergence theorem on the vector field $\vec{A} = \vec{r}$ prove that the surface area of the sphere is $4\pi a^2$ **(5)**
- 5. In the spherical polar coordinate system the relation between x, y, z and r, θ, ϕ is given as $x = r \sin \theta \cos \phi$; $y = r \sin \theta \sin \phi$: $z = r \cos \theta$. Using these find the unit vectors \hat{r} , $\hat{\theta}$ and $\hat{\phi}$ in terms of \hat{i} , \hat{j} , \hat{k} . **(5)**

Gradient, divergence and curl
$$\vec{\nabla} F = \hat{i} \frac{\partial F}{\partial x} + \hat{j} \frac{\partial F}{\partial y} + \hat{k} \frac{\partial F}{\partial z} \qquad \vec{\nabla} \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\vec{\nabla} \times \vec{A} = \hat{i} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{j} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{k} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2}$$