GRAM: Generative Recommendation via Semantic-aware Multi-granular Late Fusion

Sunkyung Lee¹, Minjin Choi², Eunseong Choi¹, Hye-young Kim¹, Jongwuk Lee¹

Sungkyunkwan University (SKKU), Republic of Korea¹, Samsung Research, Republic of Korea²

Generative Recommendation

It aims to directly generate a **target item identifier (ID)** from user history.

- It can directly leverage the extensive knowledge of LLMs by formulating recommendations into a text-to-text generation task.
- Typically, users are represented by concatenating item IDs into a sequence.

Model input (User sequence)

Generative model (LLMs)

(Target item ID)

Takeaways ?

- ✓ A novel generative recommender for translating item relationships into LLM's vocabulary and processing rich metadata efficiently
- Semantic-to-lexical translation for encoding implicit item relationships into LLM vocabulary
- Multi-granular late fusion for efficiently processing rich item information without quadratic complexity

Research Question

How can LLMs effectively **understand** and **utilize** rich item information for recommendation?

Limitations of Existing Methods

Existing works use rich item metadata only for constructing short item IDs. This causes valuable item information to be lost during prediction.

User sequence

1}; {5-3-2}; {2-4-1}?

(a) Prediction **only with IDs** (existing works)

Item ID construction

Information loss when constructing IDs

coconut rich oil

What would the user purchase after {coconut rich oil}; {fresh cocoa butter}; {daily aloe lotion}?

[Item 1] coconut rich oil formulated with organic coconut oil ... protect the skin's moisture

barrier ...

[Item 2] fresh cocoa butter grown on small farm in ... organic, pure, protective, raw cacao for ...

organic protection lotion

(b) Prediction with textual metadata (ours)

Key Challenges

Challenge 1: Capturing Item Relationships

- LLMs often struggle with recommendation-specific semantics.
 - Hierarchical semantics: "lipstick" and "mascara" belong to "cosmetics"
 - Collaborative semantics: users who bought item A also tend to buy item B

Challenge 2: Handling Rich Item Information

- Items contain rich yet lengthy metadata (titles, categories, descriptions).
- Transformer's quadratic complexity leads to computational bottleneck.

Challenge 1: Illustration of the hierarchy when autoregressively decoding IDs

Challenge 2: Schematic diagrams of early fusion and late fusion

GRAM: Generative Recommender via Semantic-Aware Multi-granular Late Fusion

(1) Semantic-to-Lexical Translation: Encoding item relationships in LLM vocabulary

- (1.1) Hierarchical Semantics: Hierarchically cluster item embeddings \rightarrow Map them to LLM tokens \rightarrow Create IDs that similar items share prefixes
- (1.2) Collaborative Semantics: Extract top-k similar items using CF model \rightarrow Convert them into textual attributes

(2) Multi-granular Late Fusion: Efficiently processing rich metadata

- (2.1) Multi-granular Encoder: Separately encode coarse-grained user prompts for whole user preferences and fine-grained item prompts for detailed attributes
- (2.2) Late Fusion Decoder: Integrate prompts at decoding via cross-attention, generating target item IDs based on rich information

Experimental Results

- GRAM achieves state-of-the-art performance over traditional and generative methods in benchmark datasets. (Amazon Beauty, Toys, Sports, and Yelp datasets)
- All components of GRAM contribute to performance, with collaborative semantics and item prompts showing the most significant improvements.

Model	Beauty					
Model	R@5	N@5	R@10	N@10		
SASRec	0.0323	0.0200	0.0475	0.0249		
FDSA	<u>0.0570</u>	<u>0.0412</u>	<u>0.0777</u>	<u>0.0478</u>		
S³Rec	0.0377	0.0235	0.0627	0.0315		
P5-SID	0.0465	0.0329	0.0638	0.0384		
TIGER	0.0352	0.0236	0.0533	0.0294		
IDGenRec	0.0463	0.0328	0.0665	0.0393		
LETTER	0.0364	0.0243	0.0560	0.0306		
ELMRec	0.0372	0.0267	0.0506	0.0310		
LC-Rec	0.0503	0.0352	0.0715	0.0420		
GRAM	0.0641	0.0451	0.0890	0.0531		
Gain (%)	12.4*	9.5*	14.5*	11.0*		

Model	Beauty	
Model	R@5	N@5
GRAM	0.0641	0.0451
w/o hierarchy	0.0605	0.0438
w/o CF (a_{CF})	0.0567	0.0396
w/o user prompt (T_u)	0.0634	0.0443
w/o item prompt (T_i)	0.0582	0.0404
w/o linking (a_{ID})	0.0628	0.0441
w/o position (P)	0.0563	0.0395

'*' indicates statistical significance (p < 0.05) by a paired t-test. Please refer to the paper for the full results.

	0.10	В	eauty	0.05	
(beal)	0.08			0.04	
!				0.03	
_	0.06			0.02	TIGER P5-SemID IDGenRec
lega l	۱ ا			0.01	P5-SID LC-Rec GRAM
Ä	0.02	Head	Tail	0.00	Head and Tail denote user groups where the target item is in the top 20% and bottom 80% of popularity, respectively.

GRAM effectively handles tail items through rich textual understanding, showing up to 42.6% gain in R@5 compared to generative recommendation models.