Introduction to Statistics Note

2024 Spring Semester

21 CST H3Art

Chapter 7: Inference for Distributions

7.1 Inference for the Mean of a Population

When the sampling distribution of \bar{x} is close to Normal, we can find probabilities involving \bar{x} by standardizing:

$$z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}}$$

When we don't know σ , we can estimate it using the sample standard deviation s_x , our statistic has a new distribution called a **t distribution**.

$$t = rac{ar{x} - \mu}{s_x/\sqrt{n}}$$

There is a different t distribution for each sample size, specified by its **degrees of freedom** (自由度) (**df**), the one-sample t statistic has the **t distribution** with degrees of freedom df = n-1.

The One-Sample t Interval for a Population Mean:

Choose an SRS of size n from a population having unknown mean . A level C confidence interval for μ is:

$$ar{x}\pm t imes rac{s_x}{\sqrt{n}}$$

where t is the **critical value** for the t(n-1) distribution.

The margin of error is:

$$t imes rac{s_x}{\sqrt{n}}$$

The One-sample t Test:

Choose an SRS of size n from a large population that contains an unknown mean μ . To test the hypothesis $H_0: \mu = \mu_0$, compute the one-sample t statistic:

Matched Pairs t Procedures:

To compare the responses to the two treatments in a matchedpairs design, find the difference between the responses within each pair. Then apply the one-sample t procedures to these differences.

7.2 Comparing Two Means

When data come from two random samples or two groups in a randomized experiment, the statistic $\bar{x_1} - \bar{x_2}$ is our best guess for the value of $\mu_1 - \mu_2$.

When the two samples are independent of each other, the **standard deviation** of the statistic $\bar{x_1} - \bar{x_2}$ is:

$$s_{ar{x_1}-ar{x_2}} = \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

We standardize the observed difference to obtain a t statistic:

$$t = rac{\left(ar{x_1} - ar{x_2}
ight) - \left(\mu_1 - \mu_2
ight)}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

When the Random, Normal, and Independent conditions are met, a level C confidence interval for $(\mu_1 - \mu_2)$ is:

$$(ar{x_1} - ar{x_2}) \pm t imes \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

where t is the critical value at confidence level C for the t distribution with degrees of freedom either gotten from technology or equal to the smaller of $n_1 - 1$ and $n_2 - 1$.

Approximate Distribution of the Two-Sample t Statistic:

The distribution of the two-sample t statistic is very close to the t distribution with degrees of freedom given by:

$$df = rac{\left(rac{s_1^2}{n_1} + rac{s_2^2}{n_2}
ight)^2}{\left(rac{1}{n_1-1} imes rac{s_1^2}{n_1}
ight)^2 + \left(rac{1}{n_2-1} imes rac{s_2^2}{n_2}
ight)^2}$$

This approximation is accurate when both sample sizes are 5 or larger.

Pooled Two-Sample Procedures:

degrees of freedom: $n_1 + n_2 - 2$

Suppose both populations are Normal and they have the same standard deviations. The pooled estimator of σ^2 is:

$$s_p^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}$$

A level C confidence interval for $\mu_1 - \mu_2$ is:

$$(ar{x_1}-ar{x_2})\pm t imes s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}$$

where the degrees of freedom for t are n_1+n_2-2

To test the hypothesis $H_0: \mu_1=\mu_2$ against a **one-sided** or a **two-sided** alternative, compute the pooled two-sample t statistic for the $t(n_1+n_2-2)$ distribution.

$$t = rac{ar{x_1} - ar{x_2}}{s_p \sqrt{rac{1}{n_1} + rac{1}{n_2}}}$$