课堂笔记

May. 22, 2020

课程内容 A list of properties of conditional expectations

Martingale, filtration, optional time

Discrete stochastic integral

Exercise $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$ $\mathcal{G} \subseteq \mathcal{F}$. If Y is any version of $E(X|\mathcal{G})$ then EY = EX

Proof By definition

Linearity $E(a_1X_1 + a_2X_2|\mathcal{G}) = a_1E(X_1|\mathcal{G}) + a_2E(X_2|\mathcal{G})$ 证明方法: 回到随机变量 $X_1|\mathcal{G}, X_2|\mathcal{G}$,利用线性性。

全期望公式(Tower property) If \mathcal{H} is a sub- σ -algebra of \mathcal{G} , then $E[E[X|\mathcal{G}]|\mathcal{H}] = E[X|\mathcal{H}]$

$$\begin{split} \mathbf{Proof} \quad & \text{Y:a version of } E(X|\mathcal{G}) \\ & \text{Z: a version of } E(Y|\mathcal{H}) \\ & \int_{H} Z dP = \int_{H} Y dP = \int_{H} X dP, \forall H \in \mathcal{H} \end{split}$$

Taking out what is known $X \in \mathcal{L}^1(\Omega, \mathcal{F}, P), \mathcal{G} \subseteq \mathcal{F}.$ If Z is \mathcal{G} – measurable and bounded, then

$$E[ZX|\mathcal{G}] = ZE[X|\mathcal{G}], a.s.$$

Proof $Z = I_U \to Z \in SF^+ \to Z \in (mG)^+ \text{(standard machine)}$

Independence If \mathcal{H} is independent of $\sigma(X,\mathcal{G})$, then $E[X|\sigma(\mathcal{G},\mathcal{H})] = E[X|\mathcal{G}], a.s.$

Proof 在 $\forall W \in \sigma(\mathcal{G}, \mathcal{H})$ 上面一样,可以用在 $\pi - system$ 上面一样来延拓。

Chapter 10. Martingale

Filtration (Ω, \mathcal{F}, P) and $\{\mathcal{F}_n\}_{n\geq 0}$ with $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}$ $\mathcal{F}_{\infty} = \lim \mathcal{F}_n = \bigcup \mathcal{F}_n$

Adapted A process $X = (X_n : n \ge 0)$ is adapted to the filtration (\mathcal{F}_n) if for each n, X_n is \mathcal{F}_n -measurable.

Martingale A process X is a martingale relative to $(\Omega, \mathcal{F}, (\mathcal{F}_n), P)$ if

- (1) X is adapted
- (2) $E(|X_n) < \infty$
- $(3)E[X_n|\mathcal{F}_{n-1}] = X_{n-1}$

X:每个单位赌注值多少钱

第三条等价于 $E[X_n - X_{n-1} | \mathcal{F}_{n-1}] = 0$

Doob-martingale(An Example) $\xi \in \mathcal{L}^1(\Omega, \mathcal{F}, P)$

通过对一列 \mathcal{F}_n 的观察,得到最佳的逼近:

$$M_n = E(\xi|\mathcal{F}_n)$$

$$E(M_n|\mathcal{F}_{n-1}) = E(E(\xi|\mathcal{F}_n)|\mathcal{F}_{n-1}) \stackrel{\text{Tower}}{=} E(\xi|\mathcal{F}_{n-1}) \stackrel{\text{def}}{=} M_{n-1}$$

赌博过程 过程 $C=(C_n:n\geq 1)$ is previsible if C_n is \mathcal{F}_{n-1} measurable. $\int_0^n CdX=\sum_{1\leq k\leq n}C_k(X_k-X_{k-1})$

$$C_{i}X_{i}|_{0}^{n}$$

$$= \int_{0}^{n} CdX + \int_{0}^{n} XdC$$

$$= \sum_{1 \le k \le n} C_{k}(X_{k} - X_{k-1}) + \sum_{i=0}^{n-1} X_{i}(C_{i+1} - C_{i})$$

定义 $(C \cdot X)$, $(C \cdot X) = \int_0^n C dX$ If C is a bounded previsible process and X is a martingale, then $(C \cdot X)$ is a martingale null at 0.