Corso di Compressione Dati

Crusher Simulator: simulatore del framework CRUSHER per la generazioni di algoritmi

Studenti:

Egidio Giacoia Raffaele D'Arco Sabato De Gregorio

Professore: Bruno Carpentieri **Anno Accademico**: 2018-2019

Contesto

Le **applicazioni scientifiche** producono, memorizzano e trasferiscono grandi mole di dati in **virgola mobile**

La compressione gioca un ruolo fondamentale in questo contesto per ridurre la quantità di dati

Molti utenti utilizzano framework come **HDF5** per la gestione dei dati:

 selezione di filtri di compressione da applicare su un insieme di dati

Problema

La selezione del filtro di compressione da applicare avviene in base:

- alla **precisione** (singola o doppia) dei dati in virgola mobile
- devono essere **lossless** per non avere perdita di informazione

Soluzione

Un **unico** algoritmo che comprime in modo lossless e ottimale i dati in virgola mobile, **indipendentemente** dalla **precisione** utilizzata

SPDP
Single Precision
Double Precision

Framework CRUSHER

Obiettivi del lavoro svolto

★ Simulare il framework CRUSHER

Crusher Simulator

★ Aggiunte altre componenti per tentare di aumentare il rapporto di compressione

★ Test e confronto con l'algoritmo SPDP

Indice

- → Crusher Simulator
 - Componenti utilizzate
 - Modalità di interazione
 - Reporting Structure
 - Demo
- → Metodologie
 - Datasets e HW utilizzato
 - Metodi di misurazione delle performance
- → Risultati Sperimentali
 - ◆ Algoritmi ottenuti
 - ◆ Confronto con SPDP
- → Sviluppi Futuri

Crusher Simulator

Componenti utilizzate, modalità di interazione, Reporting Structure e Demo

Crusher Simulator

Il tool Crusher Simulator simula la logica del framework CRUSHER

Pato un set di dati, tramite una ricerca esaustiva è in grado di identificare delle componenti algoritmiche predeterminate all'interno di uno spazio di ricerca e le concatena, dando in output l'algoritmo migliore

```
Universita degli Studi di Salerno
                                   Egidio Giacoia, Raffaele D'Arco, Sabato De Gregorio
Usage: python CruscherSimulator.py encode [file_input_to_compress] [file_output_compressed] [#_of_components_for_chain]
Usage: python CruscherSimulator.py decode [file input to decompress] [file output decompressed]
Usage: python CruscherSimulator.py verify [file 1] [file 2]
```

Crusher Simulator - Layout

La cartella principale è **Crusher_Simulator** in cui all'interno troviamo:

test_file	11/06/2019 15:05	Cartella di file	
components	11/06/2019 16:47	Cartella di file	
l tmp	11/06/2019 17:39	Cartella di file	
CrusherSimulator.py	11/06/2019 16:56	Python File	25 KB
file_compresso.crusher	11/06/2019 17:40	File CRUSHER	1 KB
report.log	11/06/2019 17:40	Documento di testo	17 KB

Il contenuto di tmp e report.log viene sovrascritto ad ogni esecuzione del tool

Componenti Algoritmiche

Crusher Simulator ha a disposizione **7** componenti:

- 4 shifters non modificano la dimensione dei blocchi di dati
 - ROTATE, BWT, DIM [SPDP], LNVs [SPDP]
- 3 riduttori comprimono la lunghezza di un blocco di dati
 - O RLE, HUFFMAN, LZ [SPDP]

Ciascun componente prende in input una sequenza di valori (una matrice), la trasforma e dà in output la sequenza trasformata

Ogni componente include un componente inverso corrispondente che esegue la trasformazione inversa dei dati

Componenti Algoritmiche - Spazio di ricerca

Per facilitare la scelta del migliore algoritmo:

 le catene di componenti possono essere composte da un numero variabile di componenti, ma non si ripetono nella catena

```
#_shifters! #_compressors = #_combinations

(#_shifters - #_of_components_for_chain-1)!

#_shifters = 4
#_compressors = 3
#_of_components_for_chain = 4

#_of_components_for_chain = 4
```

Modalità di interazione

Crusher Simulator ha 3 modalità di interazione:

Encode Mode

Effettua la **compressione lossless** di un file dato in input utilizzando le componenti disponibili

- 1) **Ricerca** esaustiva andando a concatenare un certo # di componenti
- 2) **Determina** il miglior algoritmo tra quelli candidati (miglior compression ratio)
- 3) Output il file compresso (formato .cruscher)
- 4) Generazione file report.log

Modalità di interazione

Crusher Simulator ha 3 modalità di interazione:

Decode Mode

Effettua la **decompressione** di un file dato in input (formato .cruscher)

- 1) Lettura dal <<footer>> del file compresso l'ordine delle componenti
- 2) Applicazione ordine inverso delle componenti
- 3) Output il file decompresso
- 4) Generazione file report.log

Modalità di interazione

Crusher Simulator ha 3 modalità di interazione:

Verify Mode

Verifica se due file dati in input hanno la stessa firma hash

o la funzione di hashing utilizzata è MD5

Reporting Structure

Crusher Simulator al termine delle modalità di encode mode o decode mode) genera un file **report.log** che contiene:

parametri sul relativo processo per le varie combinazioni testate

(encode mode)

Compression Ratio

- Space Savings
- Time Execution

```
**************
////////////////// *******
Compressed File Size: 869184 - 848.81 KB
Compression Ratio: 2.81447886754
Space Savings: 0.644694436496
Time Execution (seconds): 8.22936201096
(+) Trying: <<ROTATE - DIM - BWT - HUFFMAN>> (2/72)
Compressed File Size: 1017451 - 993 6 KB
Compression Ratio: 2.40434183071
Space Savings: 0.584085762171
Time Execution (seconds): 8.21213507652
[+] Trying: <<ROTATE - DIM - BWT - LZ>> (3/72)
Compressed File Size: 1222514 - 1.17 MB
Compression Ratio: 2.00104047888
Space Savings: 0.500259984466
Time Execution (seconds): 8.15405988693
```

Reporting Structure

Crusher Simulator al termine delle modalità di encode mode o decode mode genera un file **report.log** che contiene:

- parametri sul relativo processo sulla miglior combinazione risultante
 - Input & Output file size
 - Compression Ratio
 - Space Savings
 - Time Execution
 - Numero di componenti usate
 - Numero di combinazioni effettuate
 - Miglior combinazione trovata

```
= ./test_file/num_plasma.trace.fpg - [e2lc99705679dbff23fbcd9f4af0e583 (md5)]
      Compressed File Name
                              = num plasma compr.crusher - [189ef36accb7f5120cb15f5f7bd23c2f (md5)]
      Input File Size
                              = 2446300 - 2.33 MB
      Compressed File Size
                              = 249304 - 243.46 KB
      Compression Ratio
                              = 9.81251805025
                              = 0.898089359441
      Space Savings
      Time Execution(seconds) = 0.0737779140472
      # of Components_Chain = 4
      # of Combination Tested = 72
     See report.log for a complete view
485 All files in two and report will be deleted each time the program is run
```


Crusher Simulator in Action

N.B. La fase di compressione è estremamente onerosa in termini di tempo di esecuzione e risorse di sistema (decine di GB per file di input di dimensioni circa 150 MB)

Metodologia

Datasets, HW utilizzato, metodi di misurazione delle performance

Misurazioni

Le misure prese in considerazione sono:

- rapporto di compressione: dato dalla divisione tra la size del file non compresso e la taglia del file compresso
- tempo di esecuzione

Datasets

Sono stati utilizzati 11 dataset FPC a doppia precisione

I dataset rappresentano:

- Misurazioni da strumenti scientifici (obs)
- Simulazioni numeriche (num)
- Messaggi numerici (msg)

Hardware utilizzato

- I test sono stati condotti su una macchina AWS
 con le seguenti caratteristiche
 - o 1 x CPU Intel Xeon E5-2676 v3
 - 2 core @2.4GHz, formati nel seguente modo:
 - Cache L1 da 32Kb separate
 - Cache L2 da 256Kb unificata
 - Cache L3 da 30MB
- Memoria host da 8GB
- OS utilizzato: Ubuntu 18.04

Risultati Sperimentali

Analisi della struttura degli algoritmi ottenuti e confronto con SPDP

CrusherSimulator - Rapporto di compressione

FILE	TAGLIA INIZIALE	TAGLIA COMPRESSA	COMPRESSION RATIO	SPDP (IvI9) COMPRESSION RATIO	COMPONENTI
obs_error	56.28(MB)	36.99(MB)	1.60	1.61	DIM-LNVS-ROTATE-LZ
obs_info	18.05 (MB)	9.29 (MB)	1.94	1.95	ROTATE-DIM-LNVS-LZ
obs_spitzer	189 (MB)	174.45(MB)	1.08	0.98	DIM-ROTATE-BWT-HUFFMAN
obs_temp	38.08 (MB)	36.65 (MB)	1.04	1.03	ROTATE-DIM-LNVS-LZ
num_plasma	33.46 (MB)	982.48 (KB)	34.878	33.17	LNVS-ROTATE-DIM-LZ
num_comet	102.38 (MB)	86.42 (MB)	1.18	1.16	ROTATE-DIM-BWT-LZ
num brain	135.27 (MB)	114.21 (MB)	1.18	1.20	DIM-ROTATE-LNVS-LZ
num_control	152.12 (MB)	144.72 (MB)	1.05	1.01	DIM-BWT-ROTATE-HUFFMAN
msg_bt	197.57(MB)	196.44(MB)	1.00	1.33	BWT-LNVS-ROTATE-HUFFMAN
msg_lu	185.13(MB)	149.32(MB)	1.23	1.26	DIM-ROTATE-LNVS-LZ
msg_sweep3d	119.91(MB)	42.22(MB)	2.84	3.01	DIM-ROTATE-LNVS-LZ

CrusherSimulator - Tempo di esecuzione

Dataset	Tempo di esecuzione (in secondi)		
obs_error	0,62		
obs_info	0.19		
obs_spitzer	31,36		
obs_temp	0,53		
num plasma	0,32		
num_comet	131,85		
num_brain	2,09		
num_control	30,90		
msg_bt	30,49		
msg_lu	2,40		
msg_sweep3d	1,20		

Sviluppi Futuri

Migliorie e nuovi campi

Sviluppi futuri

• Approccio su altri **domini** (file di immagini per esempio)

 Aggiungere nuove combinazioni al tool Crusher Simulator in modo da ripetere l'uso di una componente e vedere se si hanno miglioramenti nel rapporto di compressione

 Studiare altri compressori, come Zstd, ed estrarne i componenti chiave in modo da poter sintetizzare algoritmi ancora migliori

