Problema 9

Elías López Rivera ¹

¹ Universidad Nacional Autónoma de México Facultad de ciencias

26 de enero de 2025

1. Enunciado

Sea $(a_n)_{n\in\mathbb{N}}$, una sucesión de terminos positivos y acotada. **Demuestre** que:

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} = \sup\{a_n : n \in \mathbb{N}\}$$

2. Solución

Definimos $A := \{a_n : n \in \mathbb{N}\}$, es claro que: $a_n < \sup A, \forall n \in \{1, 2, ..., n\}$, debido a que $(a_n)_{n \in \mathbb{N}}$, es de terminos positivos $a_n^n < (\sup a)^n$ se sigue que:

$$a_1^n < (\sup A)^n$$

$$a_1^n + a_2^n < (\sup A)^n + a_2^n < 2(\sup A)^n$$

$$a_1^n + a_2^n < 2(\sup A)$$

Repitiendo el proceso n-1 veces:

$$a_1^n + a_2^n + \dots + a_n^n < n(\sup A)^n$$

 $\sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} < \sqrt[n]{n} \sup A$

Sea $I_n := \{a_k : 1 \le k \le n\}$, al ser un conjunto finito, existe $\max I_n$, a su vez $\max I_n = a_i$, para algún $i \in \{1, 2,, n\}$ por tanto:

$$(\max I_n)^n < a_1^n + a_2^n + \dots + a_i^n \dots + a_n^n \implies \max I_n < \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n}$$

Problema 9 2 SOLUCIÓN

Obtenemos que:

$$\max I_n < \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} < \sqrt[n]{n} \sup A$$

La desigualdad se conserva para el límite

$$\lim_{n \to \infty} \max I_n < \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} < \lim_{n \to \infty} \sqrt[n]{n} \sup A$$

Reduciendo la parte derecha, a través del teorema de álgebra de límites:

$$\lim_{n\to\infty} \max I_n < \lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} < \sup A$$

Analizando , lím $\max I_n$, podemos afirmar que $I_n \subseteq I_{n+1}$ de donde se sigue que $\max I_{n+1} \ge \max I_n$, por tando la sucesión $x_n := \max I_n \ \forall n \in \mathbb{N}$, es monótona creciente y claramente acotada, se sigue que converge a su supremo, se concluye:

$$\sup\{\max I_n : n \in \mathbb{N}\} < \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} < \sup A$$

Definamos $X := \{ max I_n : n \in \mathbb{N} \}$, es claro que $Sup X \geq a_n$, $\forall n \in \mathbb{N}$, se sigue que $sup A \leq sup X$ Demostremos que sup A = sup X:

i)

Sí
$$\sup A < \sup X \implies \sup X - \sup A > 0$$

$$\exists x_k \in X : \sup X - \sup X + \sup A < x_k \implies \sup A < x_k$$

Pero $x_k = a_i$, para algún $i \in \{1, 2, ..., k\}$ por tanto la conclusión $\sup A < x_k = a_i$, es una contradicción. Se sigue que $\sup A = \sup X$

ii)

Notemos que $X \subseteq A$, lo cual implica que $\sup A > x \ \forall x \in X$, en otras palabras $\sup A$ es cota superior del conjunto X de donde se sigue $\sup X \le \sup A$, se concluye $\sup A = \sup X$

Problema 9 2 SOLUCIÓN

así que:

$$\sup A < \lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \ldots + a_n^n} < \sup A$$

Y por teorema squeeze:

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} = \sup A$$