...d. graft, greet, gre

Abstract of the Disclosure

A capillary 1 is moved to a position above a vessel 17 having a solution 15 stored therein. Then, the vessel 17 is raised while the inside of a tube 5 is opened to an ambient 5 pressure until one end 1a of the capillary 1 is dipped into the solution 15. The solution 15 is introduced into the capillary 1 by means of capillarity. Next, the vessel 17 is lowered, to thereby removing the end 1a of the capillary 1 from the solution 15 stored in the vessel 17. Subsequently, the capillary 1 is moved to a position above a vessel 19 to which the solution 15 is to be transferred. Then, the tube 5 is connected to a pressure mechanism, thereby pressurizing the inside of the capillary 1 from another end 1b thereof. The solution 15 in the capillary 1 is then discharged to the vessel 15. 19.