Package 'CompositeRegressionEstimation'

June 11, 2020

```
Type Package
Title X
Version 1.0
Date 2020-06-11
Author D. Bonnery
Maintainer D. Bonnery <dbonnery@umd.edu>
Imports ggplot2,
     abind,
     optimx,
     Matrix,
     Hmisc,
     MASS,
     filehash
Suggests
Description Data
Remotes DanielBonnery/arrayproduct
Depends arrayproduct,
     sampling,
     abind,
     optimx,
     Hmisc,
     MASS,
     filehash,
     dplyr,
     tidyr,
     forcats,
     plyr
License GPL (>= 2)
LazyLoad yes
LazyData true
RoxygenNote 7.0.2
```

2 add.rg

R topics documented:

ex		32
,	WSrg2	31
	WSrg	
1	WS	. 29
1	W.rec	
1	W.multi.ak	
,	W.ak	
,	var_lin	
,	varAK3rat	
,	varAK3diffrat	. 23
,	varAK3diff	. 23
,	varAK3	. 22
]	MR	21
ţ	factorisedf	20
6	empirical.var	20
(douuble	19
	CPS_X_matrix	
	CPS_X_array	
	CPS_Xplus_matrix	
	 CPS_Xplus_array	
	CPS_K_u	
	CPS_K_e	
	CPS A u	
	CPS A e	
	CPS AK est	
	CPS_AK_coeff.array.fl	
	CPS AK	
	composite	
	CoeffS2	
	CoeffGM.array	
	CoeffGM	
	AK_est	
	AK	
	add.rg3	
	add.rg	

Add a rotation group indicator to all tables of a list when missing.

Description

add.rg

Add a rotation group indicator to all tables of a list when missing.

add.rg3

Usage

```
add.rg(list.tables, id, rg.name)
```

Arguments

list.tables a list of data.frames (order matter)

id a vector of character strings indicating the variable names for the sample unit

primary key.

rg.name a character string

Value

a list of data.frames with a new variable named rg.name

add.rg3 Add a rotation group indicator to a table indicating wheter a unit is

present in the previous and next samples.

Description

Add a rotation group indicator to a table indicating wheter a unit is present in the previous and next samples.

Usage

```
add.rg3(df_1, df0, df1, id, rg.name = "rg")
```

Arguments

df_1 a data frame, the previous table
df0 a data frame, the current table
df1 a data frame, the next table

id a vector of character strings indicating the variable names for the sample unit

primary key.

rg.name a character string

Details

creates a variable named rg.name that takes values 4 for elements present in the current and next tables only, 3 for elements present in the current table only, 2 for elements present in the previous, current and next tables, 1 for elements present in the previous and current tables only.

depends on dplyr, tidyr

Value

a list of data.frames with a new variable named rg.name

4

Examples

```
df <- expand.grid(x= 1:10, y = 1:10)
df_1 <- df[sample(100,25),]
df0 <- df[sample(100,25),]
df1 <- df[sample(100,25),]
id=c("x","y")
add.rg3(df_1,df0,df1,c("x","y"))</pre>
```

ΑK

AK Estimator (recursive version)

Description

Consider a sequence of monthly samples $(S_m)_{m \in \{1, \dots, M\}}$. In the CPS, a sample S_m is the union of 8 rotation groups: $S_m = S_{m,1} \cup S_{m,2} \cup S_{m,3} \cup S_{m,4} \cup S_{m,5} \cup S_{m,6} \cup S_{m,7} \cup S_{m,8}$, where two consecutive samples are always such that $S_{m,2} = S_{m-1,1}, S_{m,3} = S_{m-1,2}, S_{m,4} = S_{m-1,3}, S_{m,6} = S_{m-1,5}, S_{m,7} = S_{m-1,6}, S_{m,8} = S_{m-1,7}$, and one year appart samples are always such that $S_{m,5} = S_{m-1,2}, S_{m,6} = S_{m-1,2}, S_{m,7} = S_{m-1,2}, S_{m,8} = S_{m-1,2,4}$.

The subsamples $S_{m,g}$ are called rotation groups, and rotation patterns different than the CPS rotation pattern are possible.

For each individual k of the sample m, one observes the employment status $Y_{k,m}$ (A binary variable) of individual k at time m, and the survey weight $w_{k,m}$, as well as its "rotation group".

The AK composite estimator is defined in "CPS Technical Paper (2006), [section 10-11]":

For
$$m = 1$$
, $\hat{t}_{Y_{.,1}} = \sum_{k \in S_1} w_{k,m} Y_{k,m}$.

For $m \geq 2$,

$$\hat{t}_{Y_{.,m}} = (1 - K) \times \left(\sum_{k \in S_m} w_{k,m} Y_{k,m} \right) + K \times (\hat{t}_{Y_{.,m-1}} + \Delta_m) + A \times \hat{\beta}_m$$

where

$$\Delta_m = \eta_0 \times \sum_{k \in S_m \cap S_{m-1}} (w_{k,m} Y_{k,m} - w_{k,m-1} Y_{k,m-1})$$

and

$$\hat{\beta}_m = \left(\sum_{k \notin S_m \cap S_{m-1}} w_{k,m} Y_{k,m}\right) - \eta_1 \times \left(\sum_{k \in S_m \cap S_{m-1}} w_{k,m} Y_{k,m}\right)$$

For the CPS, η_0 is the ratio between the number of rotation groups in the sample and the number of overlaping rotation groups between two month, which is a constant $\eta_0 = 4/3$; η_1 is the ratio between the number of non overlaping rotation groups the number of overlaping rotation groups between two month, which is a constant of 1/3.

In the case of the CPS, the rotation group one sample unit belongs to in a particular month is a function of the number of times it has been selected before, including this month, and so the rotation group of an individual in a particular month is called the "month in sample" variable.

AK 5

For the CPS, in month m the overlap $S_{m-1} \cap S_m$ correspond to the individuals in the sample S_m with a value of month in sample equal to 2,3,4, 6,7 or 8. The overlap $S_{m-1} \cap S_m$ correspond to the individuals in the sample S_m with a value of month in sample equal to 2,3,4, 6,7 or 8. as well as individuals in the sample S_{m-1} with a value of month in sample equal to 1,2,3, 5,6 or 7. When parametrising the function, the choice would be group_1=c(1:3,5:7) and group0=c(2:4,6:8).

Computing the estimators recursively is not very efficient. At the end, we get a linear combinaison of month in sample estimates The functions AK3, and WSrg computes the linear combination directly and more efficiently.

Usage

```
AK(
list.tables,
w,
list.y,
id = NULL,
groupvar = NULL,
groups_1 = NULL,
groups0 = NULL,
A = 0,
K = 0,
dft0.y = NULL,
eta0 = 0,
eta1 = 0
)
```

Arguments

list.tables	a list of tables
W	a character string: name of the weights variable (should be the same in all tables)
list.y	a vector of variable names
id	a character string: name of the identifier variable (should be the same in all tables)
groupvar	a character string: name of the rotation group variable (should be the same in all tables)
groups_1	a character string:
groups0	if groupvar is not null, a vector of possible values for L[[groupvar]]
eta0	a numeric value
eta1	a numeric value

Details

the function is based on the more general function CompositeRegressionEstimation::composite

6 AK_est

References

"CPS Technical Paper (2006). Design and Methodology of the Current Population Survey. Technical Report 66, U.S. Census Bureau.", "Gurney, M. and Daly, J. F. (1965). A multivariate approach to estimation in periodic sample surveys. In Proceedings of the Social Statistics Section, American Statistical Association, volume 242, page 257."

See Also

CompositeRegressionEstimation::composite

Examples

```
library(dataCPS)
data(cps200501,cps200502,cps200503,cps200504,
     cps200505, package="dataCPS")
list.tables<-list(cps200501,cps200502,cps200503,cps200504,
                  cps200505)
w="pwsswgt";id=c("hrhhid","pulineno");groupvar=NULL;list.y="pemlr";dft0.y=NULL;
groups_1=NULL;
groups0=NULL;
Coef=c(alpha_1=0,alpha0=1,beta_1=0,beta0=0,gamma_1=0)
AK(list.tables,w=w,list.y="pemlr",id=id,groupvar=groupvar)
## With the default choice of parameters for A,K,eta0,eta1
## the composite is equal to the direct estimator: we check
WS(list.tables = list.tables,weight = w,list.y = list.y)
## Example of use of a group variable.
w="pwsswgt";id=NULL;groupvar="hrmis";list.y="pemlr";dft0.y=NULL;
groups_1=c(1:3,5:7);
groups0=c(2:4,6:8);
Coef=c(alpha0=1,alpha_1=0,beta_1=0,beta0=0,gamma_1=0)
AK(list.tables,w=w,list.y="pemlr",id=id,groupvar="hrmis")
```

AK_est

AK estimation on array of month in sample estimates

Description

AK estimation on array of month in sample estimates

Usage

```
AK_est(
   Y,
   month = names(dimnames(Y))[1],
   group = names(dimnames(Y))[2],
   variable = names(dimnames(Y))[3],
  S,
```

AK_est 7

```
S_1 = S - 1,
a,
k,
groups = dimnames(Y)[[group]],
eta0 = length(groups)/length(S),
eta1 = eta0 - 1
)
```

Arguments

Υ	an array of named dimensions with 3 dimensions: 1 for the month, 1 for the month in sample, 1 for the variable name
month	: name of the month dimension (by default the name of the first dimension of Y names(dimnames(dim(Y)))[1])
group	: name of the group dimenstion of Y (by default the name of the second dimension of Y names($\hbox{dim}(Y)))[2])$
S	a vector of integers, subvector of 1:ngroup, to be passed to W.ak, indicating the rotation group numbers this month that were present the previous months (for CPS, $c(2:4,6:8)$)
а	a numeric value
k	a numeric value
eta0	a numeric value to be passed to W.ak
eta1	a numeric value to be passed to W.ak

Value

an array

```
library(dataCPS)
period=200501:200512
list.tables<-lapply(data(list=paste0("cps",period),package="dataCPS"),get);</pre>
{\tt names(list.tables) < -period}
Y<-WSrg(list.tables,weight="pwsswgt",list.y="pemlr",rg="hrmis")
dimnames(Y);
month="m";
group="mis";
variable="y";
A=W.ak(months = dimnames(Y)[[month]],
       groups = dimnames(Y)[[group]],
       S=c(2:4,6:8),
       a=.5,
       k = .5,
       eta0=4/3,
       eta1=1/3)
ngroup=dim(Y)[group];
eta1=eta0-1;
eta0=ngroup/length(S)
```

8 CoeffGM.array

```
AK_est(Y=Y,

month="m",

group="mis",

S=c(2:4,6:8),

a=.5,

k=.6,

eta0=eta0,

eta1=eta0-1)
```

CoeffGM

Compute Gauss Markov coefficient for CPS, matrix version

Description

Compute Gauss Markov coefficient for CPS, matrix version

Usage

```
CoeffGM(Sigma, nmonth = dim(Sigma)[[1]])
```

Arguments

Sigma

a Variance covariance array

Value

a matrix.

Examples

CoeffGM(var())

CoeffGM.array

Compute the Gauss Markov coefficients for Multivariate Blue

Description

Compute the Gauss Markov coefficients for Multivariate Blue

Usage

```
CoeffGM.array(Sigma, X, Xplus = NULL)
```

CoeffGM.matrix 9

Arguments

```
Sigma a (p_1x...x p_P) x (p_1x...x p_P) array 
X an (p_1x...x p_P) x (n_1 x ...x n_N) array 
Xplus: a general inverse of X (if NULL, it will be computed by the program by Xplus<-MASS::ginv(X2))
```

Value

the coefficients matrix W such that \$WY\$ is the best unbiased linear estimator of β where $E[Y] = X\beta$

Examples

```
beta= matrix(rchisq(12,1),4,3)
dimnames(beta)<-list(m=paste(200501:200504),y=c("e","u","n"))</pre>
X<-CPS_X_array(months=list(m=paste(200501:200504)),
            vars=list(y=c("e","u","n")),
            rgs=list(hrmis=paste(1:8)))
Xplus<-CPS_Xplus_array(months=list(m=paste(200501:200504)),</pre>
            vars=list(y=c("e","u","n")),
            rgs=list(hrmis=paste(1:8)),1/2)
EY<-arrayproduct::"%.%"(
  X,beta,
  I_A=list(c=integer(0),n=c("m","y","hrmis"),p=c("m2","y2")),
  I_B=list(c=integer(0),p=c("m","y"),q=integer(0)))
set.seed(1)
Sigma=rWishart(1,length(EY),diag(length(EY)))
Y<-array(mvrnorm(n = 100, mu = c(EY), Sigma = Sigma[,,1]), c(100, dim(EY)))
dimnames(Y)<-c(list(rep=1:100),dimnames(EY))</pre>
Sigma.A<-array(Sigma,c(dim(EY),dim(EY)))</pre>
dimnames(Sigma.A)<-rep(dimnames(EY),2);</pre>
names(dimnames(Sigma.A))[4:6]<-paste0(names(dimnames(Sigma.A))[4:6],"2")</pre>
W<-CoeffGM.array(Sigma.A,X,Xplus)</pre>
WY<-arrayproduct::"%.%"(
   W,Y,
   I_A=list(c=integer(0),n=c("y2","m2"),p=c("m","y","hrmis")),
   I_B=list(c=integer(0),p=c("m","y","hrmis"),q=c("rep")))
DY<-arrayproduct::"%.%"(
   Xplus, Y,
   I_A=list(c=integer(\emptyset),n=c("y2","m2"),p=c("m","y","hrmis")),
   I_B=list(c=integer(0),p=c("m","y","hrmis"),q=c("rep")))
plot(c(beta),c(apply(DY,1:2,var)),col="red")
plot(c(beta),c(apply(WY,1:2,var)))
```

CoeffGM.matrix

Compute the Gauss Markov coefficients for Multivariate Blue for arrays

10 CoeffS2

Description

Compute the Gauss Markov coefficients for Multivariate Blue for arrays

Usage

```
CoeffGM.matrix(Sigma, X, Xplus = MASS::ginv(X))
```

Arguments

Sigma a p x p matrix X an n x p matrix

Xplus: a general inverse of X array

Value

the coefficients matrix W such that $W\times Y$ is the best unbiased linear estimator of β where $E[Y]=X\times\beta$

Examples

```
A=array(rnorm(prod(2:5)),2:5); M=a2m(A,2); dim(A); dim(M); dim(a2m(A))
```

CoeffS2

Compute the coefficients for Direct

Description

Compute the coefficients for Direct

Usage

```
CoeffS2(nmonth)
```

Arguments

Sigma a p x p matrix
X an n x p matrix
Xplus: a general inverse of X

Value

the coefficients matrix \$W\$ such that \$WY\$ is the best unbiased linear estimator of β where $E[Y] = X\beta$

```
A=array(rnorm(prod(2:5)),2:5); \\ M=a2m(A,2); \\ dim(A); \\ dim(M); \\ dim(a2m(A))
```

composite 11

composite

Linear Composite Estimator from overlap and non overlapping consecutive subsamples direct totals

Description

Consider a sequence of monthly samples $(S_m)_{m \in \{1,\dots,M\}}$. For each individual k of the sample m, one observes the employment status $Y_{k,m}$ (A binary variable) of individual k at time m, and the survey weight $w_{k,m}$. The following program allows to compute recursively for $m=1,\dots,M$ the Census composite estimator of the total of $Y_{...m}$ with coefficients defined recursively as follows:

For
$$m = 1$$
, $\hat{t}_{Y_{.,1}} = \sum_{k \in S_1} w_{k,m} Y_{k,m}$.

For m > 2,

$$\hat{t}_{Y,m} = \begin{bmatrix} \hat{t}_{Y,m-1} \\ \sum_{k \in S_m} w_{k,m} Y_{k,m} \\ \sum_{k \in S_{m-1} \cap S_m} w_{k,m-1} Y_{k,m-1} \\ \sum_{k \in S_{m-1} \cap S_m} w_{k,m} Y_{k,m} \\ \sum_{k \in S_m \setminus S_{m-1}} w_{k,m} Y_{k,m} \end{bmatrix}^{T} \times \begin{bmatrix} \alpha_{(-1)} \\ \alpha_{0} \\ \beta_{(-1)} \\ \beta_{0} \\ \gamma_{0} \end{bmatrix}$$

This function computes the estimators for given values of α, β, γ .

An example of use of such estimate is the Census Bureau AK estimator: it is a special case of this estimator, with the values of α , β , γ that are given as a function of two parameters A and K:

$$\begin{bmatrix} \alpha_{(-1)} \\ \alpha_0 \\ \beta_{(-1)} \\ \beta_0 \\ \gamma_0 \end{bmatrix} = \begin{bmatrix} K \\ 1 - K \\ -4 K/3 \\ (4K - A)/3 \\ A \end{bmatrix}$$

for more references, please refer to the function CompositeRegressionEstimation::AK.

See "CPS Technical Paper (2006). Design and Methodology of the Current Population Survey. Technical Report 66, U.S. Census Bureau."

$$\begin{array}{lll} \hat{t}_{Y_{.,m}} = & K & \times \hat{t}_{Y_{.,m-1}} \\ & + & (1-K) & \times \sum_{k \in S_m} w_{k,m} Y_{k,m} \\ & + & (-4K/3) & \times \sum_{k \in S_{m-1} \cap S_m} w_{k,m-1} Y_{k,m-1} \\ & + & (4K-A)/3 & \times \sum_{k \in S_{m-1} \cap S_m} w_{k,m} Y_{k,m} \\ & + & A & \times \sum_{k \in S_m \backslash S_{m-1}} w_{k,m} Y_{k,m} \end{array}$$

Computing the estimators recursively is not very efficient. At the end, we get a linear combinaison of month in sample estimates The functions AK3, and WSrg computes the linear combination directly and more efficiently.

For the CPS, in month m the overlap $S_{m-1} \cap S_m$ correspond to the individuals in the sample S_m with a value of month in sample equal to 2,3,4, 6,7 or 8. The overlap $S_{m-1} \cap S_m$ correspond to the individuals in the sample S_m with a value of month in sample equal to 2,3,4, 6,7 or 8. as well as individuals in the sample S_{m-1} with a value of month in sample equal to 1,2,3, 5,6 or 7. When parametrising the function, the choice would be group_1=c(1:3,5:7) and group0=c(2:4,6:8).

12 composite

Usage

```
composite(
  list.tables,
  w,
  list.y,
  id = NULL,
  groupvar = NULL,
  groups_1 = NULL,
  groups0 = NULL,
  Coef = c(alpha_1 = 0, alpha0 = 1, beta_1 = 0, beta0 = 0, gamma0 = 0),
  dft0.y = NULL
)
```

Arguments

list.tables	a list of tables
W	a character string: name of the weights variable (should be the same in all tables)
list.y	a vector of variable names
id	a character string: name of the identifier variable (should be the same in all tables)
groupvar	a character string: name of the rotation group variable (should be the same in all tables)
groups_1	a character string:
groups0	if groupvar is not null, a vector of possible values for L[[groupvar]]

See Also

CompositeRegressionEstimation::AK

CPS_AK

CPS_AK

Gives A,K coefficient for unemployed used by the Census

Description

Gives A,K coefficient for unemployed used by the Census

Usage

```
CPS_AK()
```

Value

```
The vector c(a1=CPS_A_u(),a2=CPS_A_e(),a3=0,k1=CPS_K_u(),k2=CPS_K_e(),k3=0)
```

CPS_AK_coeff.array.fl Empirical variance of a collection of arrays.

Description

Empirical variance of a collection of arrays.

Usage

```
CPS_AK_coeff.array.fl(
  nmonth,
  ak = list(c(a_1 = 0, a_2 = 0, a_3 = 0, k_1 = 0, k_2 = 0, k_3 = 0)),
  simplify = TRUE,
  statuslabel = c("0", "1", "_1")
)
```

Arguments

nmonth a strictly positive integer

ak, a list of numeric vectors of length 6.

simplify a boolean

statuslabel : a character vector of dimension 3 indicating the label for unemployed, em-

ployed, not in the labor force.

```
CPS_AK_coeff.array.fl()
```

14 CPS_AK_est

est

Gives the variance of the AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Description

Gives the variance of the AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Usage

```
CPS_AK_est(
    Y,
    month = "m",
    mis = "hrmis",
    y = "employmentstatus",

W = W.multi.ak(months = dimnames(Y)[[month]], groups = dimnames(Y)[[mis]], S = c(2:4, 6:8), S_1 = c(1:3, 5:7), ak = list(u = c(a = CPS_A_u(), k = CPS_K_u()), e = c(a = CPS_A_e(), k = CPS_K_e()), n = c(a = 0, k = 0)))
)
```

Arguments

Y	A named array of dimension nmonth x 3 x 8. mistotals[m,e,g] is the month in sample direct estimate for month m, month in sample rotation group g, and variable e. dimnames(y)[[month]] must necessarily be equal to dimnames(W)["ak"] ("u","e","n" by default)
W	(optional) if already computed, the array W of coefficients W[ak,y2,m2,y1,mis1,m1] such that AK estimate for coefficients ak, month m2 and employment status y2 is sum(W[ak,y2,m2,,,])*Y[,,]) where mistotals[y1,mis1,m1] is direct estimate on mis mis1 for emp stat y1 at month m1.
ak:	an ak coefficients vector or a list of ak coefficients.

Value

The variance of the AK estimators from the A,K coefficients and the variance covariance matrix .

```
library(dataCPS)
period=200501:200512
list.tables<-lapply(data(list=paste0("cps",period),package="dataCPS"),get);
names(list.tables)<-period
Y<-WSrg(list.tables,weight="pwsswgt",list.y="pemlr",rg="hrmis")
dimnames(Y);
Y<-plyr::aaply(Y,1:2,function(x){c(n=sum(x[c(1,6:8)]),u=sum(x[4:5]),e=sum(x[2:3]))})
names(dimnames(Y))[3]<-"y";</pre>
```

CPS_A_e 15

```
dimnames(Y)
month="m";
mis="hrmis";
y="y";
CPS_AK_est(Y,y=y,mis=mis)
```

CPS_A_e

Gives K coefficient for unemployed used by the Census

Description

Gives K coefficient for unemployed used by the Census

Usage

```
CPS_A_e()
```

Value

.4

 $\mathsf{CPS}_\mathsf{A}_\mathsf{u}$

Gives K coefficient for unemployed used by the Census

Description

Gives K coefficient for unemployed used by the Census

Usage

```
CPS_A_u()
```

Value

.3

16 CPS_Xplus_array

CPS_K_e

Gives K coefficient for unemployed used by the Census

Description

Gives K coefficient for unemployed used by the Census

Usage

```
CPS_K_e()
```

Value

.7

CPS_K_u

Gives K coefficient for unemployed used by the Census

Description

Gives K coefficient for unemployed used by the Census

Usage

```
CPS_K_u()
```

Value

.4

CPS_Xplus_array

Compute the Moore penrose general inverse of a the X matrix for CPS, array version

Description

Compute the Moore penrose general inverse of a the X matrix for CPS, array version

Usage

```
CPS_Xplus_array(months, vars, rgs, alpha = 1/length(rgs[[1]]))
```

CPS_Xplus_matrix 17

Arguments

months a named list with one element, this element being a character string vector a named list with one element, this element being a character string vector a named list with one element, this element being a character string vector alpha a numeric value

Value

an array.

Examples

CPS_Xplus_matrix

Compute the Moore penrose general inverse of a the X matrix for CPS

Description

Compute the Moore penrose general inverse of a the X matrix for CPS

Usage

```
CPS_Xplus_matrix(X)
```

Arguments

nmonth an integer, the number of months

nvar an integer, the number of variables

nrg an integer, the number of rotation groups

alpha a coefficient

Value

a matrix.

```
CPS_Xplus_matrix(10)
```

18 CPS_X_matrix

CPS_X_array

Compute X matrix for CPS, array version

Description

Compute X matrix for CPS, array version

Usage

```
CPS_X_array(months, vars, rgs, alpha = 1/length(rgs[[1]]))
```

Arguments

months a named list with one element, this element being a character string vector a named list with one element, this element being a character string vector a named list with one element, this element being a character string vector alpha (default 1/length(rgs[[1]])) a numeric value

Value

an array.

Examples

CPS_X_matrix

X matrix for the simple month in sample model

Description

X matrix for the simple month in sample model

Usage

```
CPS_X_matrix(nmonth, nvar, nrg, alpha = 1)
```

Arguments

nmonth an integer, the number of months

nvar an integer, the number of variables

nrg an integer, the number of rotation groups

alpha=1/nrg a coefficient

double 19

Value

a matrix.

Examples

```
CPS_X_matrix(10,3,8,1/8)
```

douuble

Compute weighted sums

Description

Compute weighted sums

Usage

```
douuble(list.tables, w, id, y)
```

Arguments

list.tables A list of dataframes, order matters.

w either a real number of a character string indicating the name of the weight

variable.

id primary key of the tables, used to merge tables together.

y a string indicating the name of a factor variable common to all tables of list.tables.

Value

a list of three arrays.

```
double(list.tables=lapply(1:10,function(x)\{cbind(id=1:nrow(0range),0range)[sample(nrow(0range),30),]\}), w="ciral color of the color o
```

20 factorisedf

empirical.var

Empirical variance of a collection of arrays.

Description

Empirical variance of a collection of arrays.

Usage

```
empirical.var(A, MARGIN, n)
```

Arguments

A An array of dimension d_1 x ... d_p

MARGIN a vector of integers

n the array of dimension a_1 x ... x a_n $Y[i_1,...,i_n]=sum(W[i_1,...,i_n,...])$

Examples

```
empirical.var()
```

factorisedf

Convert variables to numeric in dataframe.

Description

Convert variables to numeric in dataframe.

Usage

```
factorisedf(dfr, list.y)
```

Arguments

dfr A dataframe

list.y character vector containing the names of the variables to be converted.

Value

a dataframe

```
factorisedf(Orange,names(Orange))
```

MR 21

MR

Regression Composite estimation

Description

Regression Composite estimation

Usage

```
MR(
  list.tables,
 W,
  id,
  list.xMR = NULL,
 list.x1 = NULL,
 list.x2 = NULL,
 list.y = NULL,
 calibmethod = "linear",
 Alpha = 0.75,
  theta = 3/4,
  list.dft.x2 = NULL,
 dft0.xMR = NULL,
 mu0 = NULL,
 Singh = TRUE,
 dispweight = FALSE,
  analyse = FALSE
)
```

Arguments

list.tables	A list of dataframes
W	either a real number of a character string indicating the name of the weight variable.
id	an identifier
list.xMR	list of variables used to compute proxy composite regression variable
list.x1	list of auxiliary variables used in the cablibration, whose calibrated weighted total has to be equal to initially weithed total
list.x2	id list of auxiliary variables used in the cablibration, whose calibrated weighted total has to be equal to values provided by list.dft.x2
Alpha	a vector of alpha values. if alpha="01", this will compute MR3
theta	a numerical value
list.dft.x2	id list of auxiliary variables used in the cablibration, whose calibrated weighted total has to be equal to initially weithed total
mu0	a numerical value

22 varAK3

Singh a boolean dispweight a boolean analyse a boolean

list.y: list of variables whose weighted sum needs to be computed. It can be factor or

character variables.

Value

a dataframe.

Examples

```
\label{list.tables} $$MR(list.tables<-plyn::dlply(CRE_data,.variables=~time), w="Sampling.weight", list.xMR="Status", id="Identifier", list.y=c("Hobby", list.xMR="Status", id="Identifier", list.xMR="Status", id="Identifier", list.xMR="Status", id="Identifier", list.xMR="Status", id="Identifier", list.xMR="Identifier", lis
```

varAK3

Gives the variance of the AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Description

Gives the variance of the AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Usage

```
varAK3(ak, Sigma)
```

Arguments

ak A set of 3 A, K coefficients, of the form c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0).

Sigma An array of dimension 3 x 8 (number of rotation groups) x number of months x

3 x 8 (number of rotation groups) x number of months.

Value

The variance of the AK estimators from the A,K coefficients and the variance covariance matrix .

```
varAK3(ak=c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0), \ Sigma=array(drop(stats::rWishart(1,df=3*10*8,diag(3*10*8))), release (a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0), \ Sigma=array(drop(stats::rWishart(1,df=3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(3*10*8,diag(
```

varAK3diff 23

varAK3diff	Gives the variance of the consecutive differences of AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Description

Gives the variance of the consecutive differences of AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Usage

```
varAK3diff(ak, Sigma)
```

Arguments

ak	A set of 3 A, K coefficients, of the form c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0).
Sigma	An array of dimension 3 x 8 (number of rotation groups) x number of months x 3 x 8 (number of rotation groups) x number of months.

Value

The variance of the consecutive differences of the AK estimators from the A,K coefficients and the variance covariance matrix .

Examples

```
varAK3diff(ak=c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0), Sigma=array(drop(stats::rWishart(1,df=3*10*8,diag(3*10*8)))
add(10, 1)
```

varAK3diffrat	Gives the variance of the unemployment rate estimates derived from AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates
	matrix of the month in sample estimates

Description

Gives the variance of the unemployment rate estimates derived from AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Usage

```
varAK3diffrat(ak, Sigma, Scomppop, what = c(unemployed = "0", employed = "1"))
```

24 varAK3rat

Arguments

ak	A set of 3 A, K coefficients, of the form c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0).
Sigma	An array of dimension 3 x 8 (number of rotation groups) x number of months x
	3 x 8 (number of rotation groups) x number of months.

Scomppop An array of dimension number of months x 3.

Value

The variance of the the unemployment rate estimates derived from the AK estimators from the A,K coefficients and the variance covariance matrix .

Examples

```
varAK3diffrat(ak=c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0), Sigma=array(drop(stats::rWishart(1,df=3*10*8,diag(3*10*6)))
```

Gives the variance of the unemployment rate estimates derived from AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Description

Gives the variance of the unemployment rate estimates derived from AK estimators from the A,K coefficients and the variance covariance matrix of the month in sample estimates

Usage

```
varAK3rat(ak, Sigma, Scomppop, what = c(unemployed = "0", employed = "1"))
```

Arguments

ak A set of 3 A, K coefficients, of the form c(a1=.3,a2=.4,a3=0,k1=.4,k2=.7,k3=0). Sigma

An array of dimension 3 x 8 (number of rotation groups) x number of months x 3 x 8 (number of rotation groups) x number of months.

Scomppop An array of dimension number of months x 3.

Value

The variance of the the unemployment rate estimates derived from the AK estimators from the A,K coefficients and the variance covariance matrix .

var_lin 25

var_lin	Gives the variance of an array Y that is a linear transformation AX of
	an array X from the coefficients of A and $Sigma=Var[X]$

Description

Gives the variance of an array Y that is a linear transformation AX of an array X from the coefficients of A and Sigma=Var[X]

Usage

```
var_lin(A, Sigma)
```

Arguments

```
Sigma An array of dimension b_1 x \dots x b_p x b_1 x \dots x b_p coeff An array of dimension a_1 x \dots x a_n x b_1 x \dots x b_p
```

Value

The variance of the AK estimators from the A,K coefficients and the variance covariance matrix.

Examples

```
 a=c(2,4); b=c(3,10,8); A<-array(rnorm(prod(a)*prod(b)), c(a,b)); \\ dimnames(A)[1:2]<-lapply(a,function(x){letters[1:x]}); names(dimnames(A))[1:2]<-c("d1","d2"); \\ Sigma=array(drop(stats::rWishart(1,df=prod(b),diag(prod(b)))),rep(b,2)); \\ var_lin(A,Sigma)
```

W.ak

general AK weights as a function of a and k parameters.

Description

general AK weights as a function of a and k parameters.

Usage

```
W.ak(
  months,
  groups = 1:8,
  S = c(2:4, 6:8),
  S_1 = S - 1,
  a,
  k,
  eta0 = length(groups)/length(S),
```

26 W.ak

```
eta1 = eta0 - 1,
  rescaled = F
)
```

Arguments

months	an integer, indicating number of months
groups	a vector of character strings or numeric string
S	a vector of integers indicating the indices of the rotation group in the sample that overlap with the previous sample: groups[S] are the overlapping rotation groups
S_1	a vector of integers indicating the indices of the corresponding rotation group of S in the previous month
a	a numeric value
k	a numeric value
rescaled	a boolean (default FALSE) indicating whether these AK coefficient are to be applied to rescaled or not rescaled month in sample weighted sums
nmonth	an integer, indicating number of months
ngroup	a vector of character strings or numeric string

Value

an array of AK coefficients W[m2,m1,mis1] such that Ak estimate for month m2 is sum(W[y2,,])*Y) where Y[m1,mis1] is direct estimate on mis mis1 for emp stat y1 at month m1.

```
library(dataCPS)
period=200501:200512
list.tables<-lapply(data(list=paste0("cps",period),package="dataCPS"),get);</pre>
W<-W.ak(months=1:3,groups=1:8,a=.2,k=.5);dimnames(W)
W<-W.ak(months=2:4,groups=letters[1:8],a=.2,k=.5);dimnames(W);
Y<-WSrg(list.tables,weight="pwsswgt",list.y="pemlr",rg="hrmis")
dimnames(Y);month="m";group="hrmis";variable="y";
months = dimnames(Y)[[month]]
W<-W.ak(months = months,
                groups = dimnames(Y)[[group]],
                S=c(2:4,6:8),
                a=.5, k=.3)
a=.5; k=.3
dimnames(W)
W[1,1,] #should be all 1s
m<-sample(2:length(months),1)</pre>
 if(all(abs(W[m,m,c(1,5)]-(1-k+a))<1e-10)){"this part is fine"}else{"there is a problem"}
 if(all(abs(W[m,m,c(2:4,6:8)]-(1-k+4*k/3-a/3))<1e-10)){"this part is fine"}else{"there is a problem"}
 if(all(abs(W[m,m-1,c(1:3,5:7)]-(k*W[m-1,m-1,c(1:3,5:7)]-4*k/3))<1e-10)){"this part is fine"}else{"there is a pro
if(all(abs(W[m-1,m,c(1:3,5:7)]-(k*W[m-1,m-1,c(1:3,5:7)+1]-4*k/3)) < 1e-10)) \{"this part is fine"\} else \{"there is a part is fine"\}
W[2,1,]
W[2,2,c(1,5)];((1-k)+a) #Should be equal
```

W.multi.ak 27

W.multi.ak

general AK weights as a function of a and k parameters.

Description

general AK weights as a function of a and k parameters.

Usage

```
W.multi.ak(
  months,
  groups,
  S,
  S_1 = S - 1,
  ak,
  eta0 = length(groups)/length(S),
  eta1 = eta0 - 1,
  rescaled = F
)
```

Arguments

S a vector of integers indicating the indices of the rotation group in the sample

ak a list of 2-dimension vectors

nmonth an integer, indicating number of months

ngroups : number of groups

Value

an array of AK coefficients W[m2,m1,mis1] such that Ak estimate for month m2 is sum(W[y2,,])*Y) where Y[m1,mis1] is direct estimate on mis mis1 for emp stat y1 at month m1.

Examples

```
W.multi.ak(months=1:3,groups=1:8,S=c(2:4,6:8),ak=list(c(a=.2,k=.5),c(a=.2,k=.4)))
```

W.rec

general month in sample estimates weights for recursive linear combinaison of mis estimates

Description

general month in sample estimates weights for recursive linear combinaison of mis estimates

28 W.rec

Usage

```
W.rec(
  months,
  groups,
  S = c(2:4, 6:8),
  S_1 = S - 1,
  Coef = c(alpha_1 = 0, alpha0 = 1, beta_1 = 0, beta0 = 0, gamma0 = 0)
)
```

Arguments

months	an integer, indicating number of months
groups	a vector of character strings or numeric string
S	a vector of integers indicating the indices of the rotation group in the sample that overlap with the previous sample: groups[S] are the overlapping rotation groups
S_1	a vector of integers indicating the indices of the corresponding rotation group of \boldsymbol{S} in the previous month
Coef	a named vector of 5 numeric value
nmonth	an integer, indicating number of months
ngroup	a vector of character strings or numeric string

Value

an array of AK coefficients W[m2,m1,mis1] such that Ak estimate for month m2 is sum(W[y2,,])*Y) where Y[m1,mis1] is direct estimate on mis mis1 for emp stat y1 at month m1.

```
alpha0=runif(1);
alpha_1=1-alpha0;
beta0=runif(1)
beta_1=runif(1)
gamma0=runif(1)
W<-W.rec(months=1:3,
                                 groups=1:8,
                                 Coef=c(alpha_1=alpha_1,
                                                            alpha0=alpha0,
                                                            beta0=beta0,
                                                            beta_1=beta_1,
                                                            gamma0=gamma0))
dimnames(W)
if(all(W[1,1,]==1)){"this part is fine"}else{"there is a problem"}
m<-sample(2:3,1)
if(all(abs(W[m,m,c(1,5)]-(alpha0+gamma0))<1e-10)){"this part is fine"}else{"there is a problem"}
if(all(abs(W[m,m,c(2:4,6:8)]-(alpha0+beta0))<1e-10)){\it "this part is fine"}else{\it "there is a problem"}
if(all(abs(W[m,m-1,c(1:3,5:7)]-(alpha_0*W[m-1,m-1,c(1:3,5:7)]+beta_1))<1e-10)){"this part is fine"}else{"there: alpha_0*W[m,m-1,c(1:3,5:7)]+beta_1))<1e-10)}
if(all(abs(W[m,m-1,c(4,8)]-(alpha_0*W[m-1,m-1,c(4,8)]))<1e-10)) \\ \{"this part is fine"\}else\{"there is a problem"\}else"\}else\{"there is a problem"\}else"\}else\{"there is a problem"\}else\{"there is a problem is a prob
W<-W.ak(months=2:4,groups=letters[1:8],a=.2,k=.5);dimnames(W);
```

WS 29

WS

Compute weighted sums

Description

Compute weighted sums

Usage

```
WS(list.tables, weight = 1, list.y = NULL, sep = "_n", dimname1 = "m")
```

Arguments

list.tables A list of dataframes

weight either a real number of a character string indicating the name of the weight

variable.

list.y: list of variables whose weighted sum needs to be computed. It can be factor or

character variables.

Value

a dataframe.

```
WS(plyr::dlply(CRE\_data,.variables=~time), "Sampling.weight", c("Hobby", "Status", "State")); \\WS(plyr::dlply(CRE\_data,.variables=~time), "Sampling.weight", character(0)); \\
```

WSrg

WSrg

Weighted sums by rotation groups

Description

Weighted sums by rotation groups

Usage

```
WSrg(
   list.tables,
   weight = 1,
   list.y = NULL,
   rg = "hrmis",
   rescale = F,
   dimname1 = "m"
)
```

Arguments

```
list.tables a named list of data frames

weight a character string indicating the variable name or a numerical value

list.y a vector of character strings indicating the study variables

rg a character string indicating the name of the rotation group.
```

Value

an array

WSrg2 31

WSrg2

Weighted sums by rotation groups

Description

Weighted sums by rotation groups

Usage

```
WSrg2(list.tables, weight, y, rg = "hrmis", rescale = F, dimname1 = "m")
```

Arguments

list.tables a named list of data frames

weight a character string indicating the variable name or a numerical value

y a character strings indicating one study variable

rg a character string indicating the name of the rotation group.

Value

an array

```
library(dataCPS)
period<-200501:200512
list.tables<-lapply(data(list=paste0("cps",period),package="dataCPS"),get);
names(list.tables)<-period
Y<-WSrg2(list.tables,"pwsswgt",list.y=c("pemlr","pwsswgt"),rg="hrmis")
Y<-WSrg2(list.tables,"pwsswgt",list.y=c("pemlr"),rg="hrmis")</pre>
```

Index

```
add.rg, 2
add.rg3, 3
AK, 4
AK_est, 6
CoeffGM, 8
CoeffGM.array, 8
CoeffGM.matrix, 9
CoeffS2, 10
composite, 11
CPS_A_e, 15
CPS_A_u, 15
CPS_AK, 13
CPS_AK_coeff.array.fl, 13
CPS_AK_est, 14
CPS_K_e, 16
CPS_K_u, 16
\texttt{CPS\_X\_array}, \textcolor{red}{18}
CPS_X_matrix, 18
CPS_Xplus_array, 16
CPS_Xplus_matrix, 17
douuble, 19
empirical.var, 20
factorisedf, 20
MR, 21
var_lin, 25
varAK3, 22
varAK3diff, 23
varAK3diffrat, 23
varAK3rat, 24
W.ak, 25
W.multi.ak, 27
W.rec, 27
WS, 29
WSrg, 30
WSrg2, 31
```