

Safe screening an introduction and perspectives

Clément Elvira

CentraleSupélec, SCEE group 9 décembre 2021

Joint work with...

Context and motivations

Inverse / Learning problems with linear models

Given

- Observation $\mathbf{y} \in \mathbb{R}^m$
- Linear model $\mathbf{M}: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

Typical case: $m \ll n$

Goal: recover / find \mathbf{x}_0 such that $\mathbf{y} \simeq \mathbf{M} \mathbf{x}_0$

 $\underset{\mathbf{x}\in\mathbb{R}^n}{\operatorname{arg\,min}} \ L(\mathbf{y},\mathbf{M}\mathbf{x})$

Inverse / Learning problems with linear models

Given

- Observation $\mathbf{y} \in \mathbb{R}^m$
- Linear model $\mathbf{M} \colon \mathbb{R}^n \longrightarrow \mathbb{R}^m$

Typical case: $m \ll n$

Goal: recover / find \mathbf{x}_0 such that $\mathbf{y} \simeq \mathbf{M} \mathbf{x}_0$

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{arg min}} \ L(\mathbf{y}, \mathbf{M}\mathbf{x}) \stackrel{\text{e.g.}}{=} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2$$

Example 1: Hyperspectral unmixing

Courtesy of J. Bioucas-Dias

- ullet ${f y}\equiv$ one pixel
- \bullet $\mathbf{x} \equiv Proportions$
- **M** ≡ Elementary spectrum

Example 2: Mixture model fitting

Courtesy of scikit-learn

- $\mathbf{y} \equiv \mathsf{Samples}$
- x ≡ Proportions
- ullet M \equiv Gaussian curves with various parameterization

Inverse / Learning problems with linear models

Given

- Observation $\mathbf{y} \in \mathbb{R}^m$
- Linear model $\mathbf{M}: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

Typical case: $m \ll n$

Goal: recover / find \mathbf{x}_0 such that $\mathbf{y} \simeq \mathbf{M} \mathbf{x}_0$

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\text{arg min}} \ L(\mathbf{y}, \mathbf{M}\mathbf{x}) \stackrel{\text{e.g.}}{=} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2$$

Infinite number of solutions 🙀

→ ill posed problem

Penalized problem

Penalized problem

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{y}, \mathbf{M}\mathbf{x}) + R_{\mathrm{eg}}(\mathbf{x})$$

The choice of R_{eg} should

- reduce the number of solutions
- promote solutions with desirable properties
- allow for fast algorithms

Penalized problem

Penalized problem

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{y}, \mathbf{M}\mathbf{x}) + R_{\mathrm{eg}}(\mathbf{x})$$

The choice of R_{eg} should

- reduce the number of solutions
- promote solutions with desirable properties
- allow for **fast** algorithms

Popular choice of $R_{\rm eg} \longrightarrow {\bf convex}$ function

Example of regularizers

$$R_{\text{eg}}(\mathbf{x}) = \lambda \|\mathbf{x}\|_1$$

 \Rightarrow sparsity

$$R_{\text{eg}}(\mathbf{x}) = \lambda \|\mathbf{x}\|_2^2$$

 \Rightarrow energy

$$R_{\rm eg}(\mathbf{x}) = \lambda \|\mathbf{x}\|_{\infty}$$

 \Rightarrow amplitude

Of particular interest: the Lasso problem 1/3

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1 = P_{\lambda}(\mathbf{x})$$

known to promote "sparse" solutions

Of particular interest: the Lasso problem 1/3

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1 = P_{\lambda}(\mathbf{x})$$

known to promote "sparse" solutions

Sparsity & the Lasso (fuzzy version)

Foucart and Rauhut, 2013

 \mathbf{x}^* has (at most) m nonzero entries

- slightly more subtle if multiple minimizers
- \longrightarrow Solutions are sparse (recall $m \ll n$)

Of particular interest: the Lasso problem 2/3

Typical solver (e.g. Ista Beck and Teboulle, 2009)

Starting from $\mathbf{x}^{(0)}$, repeat

- 1. Evaluate residual error $\mathbf{r}^{(t)} = \mathbf{y} \mathbf{M}\mathbf{x}^{(t)}$
- 2. Evaluate "residual correlations" $\mathbf{M}^{\mathsf{T}}\mathbf{r}^{(t)}$
- 3. Update $\mathbf{x}^{(t)}$ according to some rule

Of particular interest: the Lasso problem 2/3

Typical solver (e.g. Ista Beck and Teboulle, 2009)

Starting from $\mathbf{x}^{(0)}$, repeat

Complexity

1. Evaluate residual error $\mathbf{r}^{(t)} = \mathbf{y} - \mathbf{M}\mathbf{x}^{(t)}$

 $\mathcal{O}(mn)$

2. Evaluate "residual correlations" $\mathbf{M}^{\mathsf{T}}\mathbf{r}^{(t)}$

 $\mathcal{O}(mn)$

3. Update $\mathbf{x}^{(t)}$ according to some rule

TBD

Findings:

- Scale (at least) linearly with *n*
- Many calculations are useless especially since x* is m-sparse

Of particular interest: the Lasso problem 2/3

Typical solver (e.g. Ista Beck and Teboulle, 2009)

Starting from $\mathbf{x}^{(0)}$, repeat

Complexity

1. Evaluate residual error $\mathbf{r}^{(t)} = \mathbf{y} - \mathbf{M}\mathbf{x}^{(t)}$

 $\mathcal{O}(mn)$

2. Evaluate "residual correlations" $\mathbf{M}^{\mathsf{T}}\mathbf{r}^{(t)}$

 $\mathcal{O}(mn)$

3. Update $\mathbf{x}^{(t)}$ according to some rule

TBD

Findings:

- Scale (at least) linearly with n
- Many calculations are useless 😡 especially since \mathbf{x}^* is m-sparse

• Shall we remove "useless" columns of M?

Column elimination as dimensionality reduction

Properties and the solution of M: no impact on the solution?

Fact

If
$$\mathbf{x}^{\star}(\ell) = 0$$
 for all $\ell \in \mathcal{S}$

Solving the Lasso

$$\begin{cases} \mathbf{s}^{\star} \in \mathop{\arg\min}_{\mathbf{s} \in \mathbb{R}^{n-\mathsf{card}(\mathcal{S})}} \frac{1}{2} \|\mathbf{y} - \mathbf{M}_{\setminus \mathcal{S}} \mathbf{s}\|_{2}^{2} + \lambda \|\mathbf{s}\|_{1} \\ \mathbf{x}^{\star}_{\setminus \mathcal{S}} = \mathbf{s}^{\star} \\ \mathbf{x}^{\star}_{\mathcal{S}} = 0 \end{cases}$$

Column elimination as dimensionality reduction

🧡 Removing "useless" columns of **M**: no impact on the solution ? 💛

Fact

If
$$\mathbf{x}^{\star}(\ell) = 0$$
 for all $\ell \in \mathcal{S}$

Solving the Lasso

$$\begin{cases} \mathbf{s}^{\star} \in \mathop{\arg\min}_{\mathbf{s} \in \mathbb{R}^{n-\mathsf{card}(\mathcal{S})}} \frac{1}{2} \|\mathbf{y} - \mathbf{M}_{\setminus \mathcal{S}} \mathbf{s}\|_{2}^{2} + \lambda \|\mathbf{s}\|_{1} \\ \mathbf{x}_{\setminus \mathcal{S}}^{\star} = \mathbf{s}^{\star} \\ \mathbf{x}_{\mathcal{S}}^{\star} = 0 \end{cases}$$

📂 Equivalent lower-dimensional Lasso problem 🎉

Of particular interest: the Lasso problem 3/3

(m, n) = (100, 150), "Gaussian dictionary", 20 repetitions

Of particular interest: the Lasso problem 3/3

(m, n) = (100, 150), "Gaussian dictionary", 20 repetitions

Towards safe screening

- Design of screening tests to detect zero entries in x*
 Introduced by El ghaoui et al in 2013
- The tests must be "safe" In contract with strong screening
- The test must be computationally **cheap**Recall that we want to accelerate a solver

Safe screening for Lasso 101

- Say one has already found x*
- Denote $\mathbf{r}^* = \mathbf{y} \mathbf{M}\mathbf{x}^*$ the residual error
- Let \mathbf{m}_ℓ be an unused atom

(i.e.,
$$\mathbf{x}^*(\ell) = 0$$
)

- Say one has already found x*
- Denote $\mathbf{r}^* = \mathbf{y} \mathbf{M}\mathbf{x}^*$ the residual error
- Let \mathbf{m}_ℓ be an unused atom

(i.e.,
$$\mathbf{x}^*(\ell) = 0$$
)

$$P_{\lambda}(\mathbf{x}^{\star} + \mathbf{x}_{\ell}\mathbf{m}_{\ell}) = \frac{1}{2}\|\mathbf{r}^{\star} - \mathbf{x}_{\ell}\mathbf{m}_{\ell}\|_{2}^{2} + \lambda\|\mathbf{x}^{\star}\|_{1} + \lambda|\mathbf{x}_{\ell}|$$

- Say one has already found x*
- Denote $\mathbf{r}^* = \mathbf{y} \mathbf{M}\mathbf{x}^*$ the residual error
- Let \mathbf{m}_ℓ be an unused atom

(i.e.,
$$\mathbf{x}^*(\ell) = 0$$
)

$$P_{\lambda}(\mathbf{x}^{\star} + x_{\ell}\mathbf{m}_{\ell}) = \frac{1}{2} \|\mathbf{r}^{\star} - x_{\ell}\mathbf{m}_{\ell}\|_{2}^{2} + \lambda \|\mathbf{x}^{\star}\|_{1} + \lambda |x_{\ell}|$$
$$= P_{\lambda}(\mathbf{x}^{\star}) + \frac{1}{2}x_{\ell}^{2} - \langle \mathbf{r}^{\star}, \mathbf{m}_{\ell} \rangle x_{\ell} + \lambda |x_{\ell}|$$

- Say one has already found x*
- Denote $\mathbf{r}^* = \mathbf{y} \mathbf{M}\mathbf{x}^*$ the residual error
- Let \mathbf{m}_ℓ be an unused atom

(i.e.,
$$\mathbf{x}^{\star}(\ell) = 0$$
)

$$P_{\lambda}(\mathbf{x}^{\star} + x_{\ell}\mathbf{m}_{\ell}) = \frac{1}{2}\|\mathbf{r}^{\star} - x_{\ell}\mathbf{m}_{\ell}\|_{2}^{2} + \lambda\|\mathbf{x}^{\star}\|_{1} + \lambda|x_{\ell}|$$
$$= P_{\lambda}(\mathbf{x}^{\star}) + \frac{1}{2}x_{\ell}^{2} - \langle\mathbf{r}^{\star}, \mathbf{m}_{\ell}\rangle x_{\ell} + \lambda|x_{\ell}|$$

Tempting conclusion

$$|\langle \mathbf{r}^{\star}, \mathbf{m}_{\ell} \rangle| < \lambda \implies \mathbf{x}^{\star}(\ell) = 0$$
?

Outline

1. Screening rule even when \mathbf{x}^* has not been identified?

2. Mathematically grounded framework?

Suitable framework: Fenchel-Rockafellar duality - 1/2

Primal optimization problem (the Lasso)

Find
$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} \ P_{\lambda}(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Suitable framework: Fenchel-Rockafellar duality - 1/2

Primal optimization problem (the Lasso)

Find
$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} P_{\lambda}(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Dual optimization problem

Find
$$\mathbf{r}^* = \underset{\mathbf{r} \in \mathbb{R}^m}{\operatorname{arg max}} D(\mathbf{r}) = \frac{1}{2} \|\mathbf{y}\|_2^2 - \frac{1}{2} \|\mathbf{y} - \mathbf{r}\|_2^2$$

Such that

$$|\langle \mathbf{r}, \mathbf{m}_i \rangle| \le \lambda \qquad \forall j = 1 \dots, n$$

Denote \mathcal{R} the constrained set

Strong duality:
$$GAP(\mathbf{x}^*, \mathbf{r}^*) = P_{\lambda}(\mathbf{x}^*) - D(\mathbf{r}^*) = 0$$

Suitable framework: Fenchel-Rockafellar duality - 1/2

Primal optimization problem (the Lasso)

Find
$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^n} P_{\lambda}(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Dual optimization problem

Find
$$\mathbf{r}^{\star} = \operatorname*{arg\,min}_{\mathbf{r} \in \mathbb{R}^m} \|\mathbf{y} - \mathbf{r}\|_2^2$$

Such that

$$|\langle \mathbf{r}, \mathbf{m}_i \rangle| \le \lambda \qquad \forall j = 1 \dots, n$$

Denote R the constrained set

Strong duality:
$$GAP(\mathbf{x}^*, \mathbf{r}^*) = P_{\lambda}(\mathbf{x}^*) - D(\mathbf{r}^*) = 0$$

Suitable framework: Fenchel-Rockafellar duality - 2/2

Primal dual link

if $(\mathbf{x}^*, \mathbf{r}^*)$ is a couple of primal / dual solutions then

$$\mathbf{r}^{\star} = \mathbf{y} - \mathbf{M} \mathbf{x}^{\star}$$

Primal dual link

if $(\mathbf{x}^*, \mathbf{r}^*)$ is a couple of primal / dual solutions then

$$\mathbf{r}^* = \mathbf{y} - \mathbf{M}\mathbf{x}^*$$

Optimality condition

(Fermat's rule)

 (x^*, r^*) is a couple of primal / dual solutions if and only if

$$\nabla P_{\lambda}(\mathbf{x}^{\star}) = \mathbf{0}_n$$

Primal dual link

if $(\mathbf{x}^*, \mathbf{r}^*)$ is a couple of primal / dual solutions then

$$\mathbf{r}^{\star} = \mathbf{y} - \mathbf{M} \mathbf{x}^{\star}$$

Optimality condition

(Fermat's rule)

 (x^*, r^*) is a couple of primal / dual solutions if and only if

$$\nabla P_{\lambda}(\mathbf{x}^{\star}) \equiv \mathbf{0}_{n}$$
 (not differentiable)

Primal dual link

if $(\mathbf{x}^*, \mathbf{r}^*)$ is a couple of primal / dual solutions then

$$\mathbf{r}^{\star} = \mathbf{y} - \mathbf{M} \mathbf{x}^{\star}$$

Optimality condition

(Fermat's rule)

 (x^*, r^*) is a couple of primal / dual solutions if and only if

$$\mathbf{0}_n \in \partial P_{\lambda}(\mathbf{x}^*)$$

Primal dual link

if $(\mathbf{x}^*, \mathbf{r}^*)$ is a couple of primal / dual solutions then

$$\mathbf{r}^* = \mathbf{y} - \mathbf{M}\mathbf{x}^*$$

Optimality condition

(Fermat's rule)

 (x^*, r^*) is a couple of primal / dual solutions if and only if

$$\langle \mathbf{r}^{\star}, \mathbf{m}_{j} \rangle = \operatorname{sign} (\mathbf{x}^{\star}(j)) \lambda$$

 $sign(0) \in [-1, 1]$

ullet Consider the case where $oldsymbol{y} \in \mathcal{R}$

That is
$$|\langle \mathbf{y}, \mathbf{m}_j \rangle| \leq \lambda$$
 $(\forall j = 1, ..., n)$

ullet Consider the case where $oldsymbol{y} \in \mathcal{R}$

That is
$$|\langle \mathbf{y}, \mathbf{m}_j \rangle| \leq \lambda$$
 $(\forall j = 1, ..., n)$

• Hence $(\mathbf{0}_n, \mathbf{y})$ satisfies the Fermat's rule (CNS)

Rappel

$$\langle \mathbf{r}^\star, \mathbf{m}_j \rangle = \mathrm{sign} \left(\mathbf{x}^\star(j) \right) \lambda$$

$$\mathrm{sign}(0) \in [-1, 1]$$

ullet Consider the case where $oldsymbol{y} \in \mathcal{R}$

That is
$$|\langle \mathbf{y}, \mathbf{m}_j \rangle| \leq \lambda$$
 $(\forall j = 1, ..., n)$

- Hence $(\mathbf{0}_n, \mathbf{y})$ satisfies the Fermat's rule (CNS)
- Conclusion: $\mathbf{0}_n$ is a minimizer!

ullet Consider the case where $oldsymbol{y} \in \mathcal{R}$

That is
$$|\langle \mathbf{y}, \mathbf{m}_j \rangle| \leq \lambda$$
 $(\forall j = 1, ..., n)$

- Hence $(\mathbf{0}_n, \mathbf{y})$ satisfies the Fermat's rule (CNS)
- Conclusion: $\mathbf{0}_n$ is a minimizer!

"All-zero" safe screening rule

$$\|\mathbf{M}^{\mathsf{T}}\mathbf{y}\|_{\infty} \leq \lambda \quad \Longrightarrow \quad \mathbf{x}^{\star}(\ell) = 0 \quad \forall \ell = 1, ..., n$$

Practical interest?

Geometric interpretation vs Fermat's rule

Rule (simplified)

$$|\langle \mathbf{r}^{\star}, \mathbf{m}_{j} \rangle| \leq \lambda$$

Or

$$|\langle \mathbf{r}^{\star}, \mathbf{m}_{j} \rangle| = \lambda$$

Safe screening rule (the real one)

• Finding: $\mathbf{x}^{\star}(\ell) \neq 0 \Longrightarrow |\langle \mathbf{r}^{\star}, \mathbf{m}_{\ell} \rangle| = \lambda$

Safe screening rule El Ghaoui et al. (2012)

$$|\langle \mathbf{r}^{\star}, \mathbf{m}_{\ell}
angle| < \lambda \quad \Longrightarrow \quad \mathbf{x}^{\star}(\ell) = 0$$

Safe screening rule (the real one)

• Finding: $\mathbf{x}^*(\ell) \neq 0 \Longrightarrow |\langle \mathbf{r}^*, \mathbf{m}_{\ell} \rangle| = \lambda$

Safe screening rule El Ghaoui et al. (2012)

$$|\langle \mathbf{r}^{\star}, \mathbf{m}_{\ell}
angle| < \lambda \quad \Longrightarrow \quad \mathbf{x}^{\star}(\ell) = 0$$

- Nothing else than a contraposition
- Not a heuristic! (hence the S-word)
- Independent from the minimizer x*
- Computationally simple only involves one inner product 6

 $Bad\ news:$ Finding r^{\star} is as difficult as finding x^{\star}

Bad news: Finding \mathbf{r}^{\star} is as difficult as finding \mathbf{x}^{\star}

Idea: perform the test without computing \mathbf{r}^{\star}

Bad news: Finding \mathbf{r}^{\star} is as difficult as finding \mathbf{x}^{\star}

Idea: perform the test without computing \mathbf{r}^*

Notion of "safe region" El Ghaoui et al. (2012)

A set $\mathcal{R}_s \subset \mathbb{R}^m$ is a <u>Safe region</u> iff $\mathbf{r}^\star \in \mathcal{R}_s$

Bad news: Finding \mathbf{r}^* is as difficult as finding \mathbf{x}^*

Idea: perform the test without computing \mathbf{r}^*

Notion of "safe region" El Ghaoui et al. (2012)

A set $\mathcal{R}_s \subset \mathbb{R}^m$ is a <u>Safe region</u> iff $\mathbf{r}^\star \in \mathcal{R}_s$

$$\label{eq:max_reg} \begin{array}{ll} \max_{\mathbf{r} \in \mathcal{R}_s} \ |\langle \mathbf{r}, \mathbf{m}_\ell \rangle| < \lambda & \Longrightarrow \ |\langle \mathbf{r}^\star, \mathbf{m}_\ell \rangle| < \lambda \\ & \Longrightarrow \ \mathbf{x}^\star(\ell) = \mathbf{0} \end{array}$$

Bad news: Finding \mathbf{r}^{\star} is as difficult as finding \mathbf{x}^{\star}

Idea: perform the test without computing \mathbf{r}^*

Notion of "safe region" El Ghaoui et al. (2012)

A set $\mathcal{R}_s \subset \mathbb{R}^m$ is a <u>Safe region</u> iff $\mathbf{r}^\star \in \mathcal{R}_s$

$$\label{eq:max_reg} \begin{array}{ll} \max_{\mathbf{r} \in \mathcal{R}_s} \ |\langle \mathbf{r}, \mathbf{m}_\ell \rangle| < \lambda & \implies \ |\langle \mathbf{r}^\star, \mathbf{m}_\ell \rangle| < \lambda \\ \\ \implies \ \mathbf{x}^\star(\ell) = \mathbf{0} \end{array}$$

Today's example: safe sphere

$$\mathcal{S} = \mathcal{B}(\mathbf{c}, r)$$
 and $\max_{\mathbf{r} \in \mathcal{B}(\mathbf{c}, r)} |\langle \mathbf{r}, \mathbf{m}_{\ell} \rangle| = |\langle \mathbf{c}, \mathbf{m}_{\ell} \rangle| + r \|\mathbf{m}_{\ell}\|_2$

Closed-form expression!

Goal

Find \mathbf{c} and r such that $\mathbf{r}^{\star} \in \mathcal{B}(\mathbf{c}, r)$

Dual problem

Find
$$\mathbf{r}^* = \underset{\mathbf{r} \in \mathcal{R}}{\operatorname{arg \, min}} \|\mathbf{y} - \mathbf{r}\|_2^2$$

 \longrightarrow **Projection** onto the convex set $\mathcal{R}!$

Dual problem

Find
$$\mathbf{r}^* = \underset{\mathbf{r} \in \mathcal{R}}{\operatorname{arg min}} \|\mathbf{y} - \mathbf{r}\|_2^2$$

 \longrightarrow **Projection** onto the convex set $\mathcal{R}!$

If one knows some $\mathbf{r}_0 \in \mathcal{R}$, then by definition

$$\| {f y} - {f r}^{\star} \|_2^2 \le \| {f y} - {f r}_0 \|_2^2$$

 \Longrightarrow \mathbf{r}^{\star} belongs to a **Sphere**!

Goal

Find **c** and *r* such that $\mathbf{r}^* \in \mathcal{B}(\mathbf{c}, r)$

$$\underline{\text{ST 1:}} \text{ Choose } \textbf{r}_0 \in \mathcal{R} \text{ (e.g. } \textbf{0}_{\textit{m}})$$

$$\mathbf{c} = \mathbf{y}$$
$$r = \|\mathbf{y} - \mathbf{r}_0\|_2$$

typical use: done once for all before runtime

Goal

Find **c** and *r* such that $\mathbf{r}^* \in \mathcal{B}(\mathbf{c}, r)$

ST 1: Choose $\mathbf{r}_0 \in \mathcal{R}$ (e.g. $\mathbf{0}_m$)

$$\mathbf{c} = \mathbf{y}$$

$$r = \|\mathbf{y} - \mathbf{r}_0\|_2$$

typical use: done once for all before runtime

GAP sphere: Choose $\mathbf{x}_0 \in \mathbb{R}^n$ [Fercog et al, 2015]

$$\mathbf{c} = \Phi_{\mathcal{R}}(\mathbf{y} - \mathbf{M}\mathbf{x}_0)$$
 $r = \sqrt{2 \text{GAP}(\mathbf{x}_0, \mathbf{c})}$

$$r = \sqrt{2 \text{GAP}(\mathbf{x}_0, \mathbf{c})}$$

typical use:

- Dynamically: $\mathbf{x}_0 = \mathbf{x}^{(t)}$
- radius tends to 0

Visualizing the GAP sphere

Visualizing the GAP sphere

Visualizing the GAP sphere

Numerical illustration

(m, n) = (100, 150), "Gaussian dictionary", 20 repetitions

Numerical illustration

(m, n) = (100, 150), "Gaussian dictionary", 20 repetitions

Other geometries for safe regions (e.g. dome region)
 trade-off performance / complexity
 Zhen et al, 2017

- Other geometries for safe regions (e.g. dome region)
 trade-off performance / complexity
 Zhen et al, 2017
- **Beyond** the Lasso: *Ndiaye, 2018, Fraga-Dantas et al., 2021* sparse promoting convex optimization

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg \, min}} \ f(\mathbf{M}\mathbf{x}) + \Omega(\mathbf{x})$$

- Other geometries for **safe regions** (e.g. dome region) trade-off performance / complexity Zhen et al, 2017
- **Beyond** the Lasso: *Ndiaye, 2018, Fraga-Dantas et al., 2021* sparse promoting convex optimization

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg \, min}} \ f(\mathbf{M}\mathbf{x}) + \Omega(\mathbf{x})$$

Accelerating "Greedy algorithm" (e.g. conditional gradient method)
 Reduce searching set
 Sun and bach, 2020

- Other geometries for safe regions (e.g. dome region)
 trade-off performance / complexity
 Zhen et al, 2017
- **Beyond** the Lasso: *Ndiaye, 2018, Fraga-Dantas et al., 2021* sparse promoting convex optimization

$$\underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{arg \, min}} \ f(\mathbf{M}\mathbf{x}) + \Omega(\mathbf{x})$$

- Accelerating "Greedy algorithm" (e.g. conditional gradient method)
 Reduce searching set
 Sun and bach, 2020
- Machine learning: screening data point

 e.g., in SVM, not all points are relevant for evaluating the separating hyperplane

Beyond safe screening

Unconventional 1: Nonnegative least squares

Relevant in many signal processing applications

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \ \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 \quad \text{s.t.} \quad \mathbf{x} \in \mathbb{R}^n_+$$

- Known to promote sparsity (Night sky theorem Byrne (2009))
- Explicit regularization (not a norm)

Unconventional 1: Nonnegative least squares

Relevant in many signal processing applications

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \ \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 \quad \text{s.t.} \quad \mathbf{x} \in \mathbb{R}^n_+$$

- Known to promote sparsity (Night sky theorem Byrne (2009))
- Explicit regularization (not a norm)
- Main difficulty & contribution: design of feasible dual points

The mapping $\Phi \colon \mathbb{R}^m \longrightarrow \mathcal{R}$ in the previous slide

In preparation

Unconventional 2: Slope

Recent surge of interest for the SLOPE¹ problem

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \ \tfrac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \sum_{j=1}^n \gamma_j |\mathbf{x}|_{[j]}$$

Bogdan et al. (2015), Figueiredo and Nowak (2016), Su and Candès (2019),...

- $\gamma_1 \geq \cdots \geq \gamma_n$
- $|\mathbf{x}|_{[j]}$: j largest entry of \mathbf{x} (in absolute value)
- Includes the Lasso as a special case
- Desirable statistical properties, may promote sparsity / clustering of the coefficients (see references above)

¹Also known as OSCAR / OWL regression

- Does not fit existing frameworks due to the sorting operation
- Sorting makes screening even more desirable $O(n \log n)$

- Does not fit existing frameworks due to the sorting operation
- Sorting makes screening even more desirable $O(n \log n)$

Theorem [Elvira et Herzet, 2021]

$$\forall q \in \{1, \dots, n\}$$
 Then

$$\forall q \in \{1, \dots, n\} : \left| \mathbf{m}_{\ell}^{\mathsf{T}} \mathbf{c} \right| + \sum_{k=p_q}^{q-1} \left| \mathbf{M}_{\backslash \ell}^{\mathsf{T}} \mathbf{c} \right|_{[k]} < B_{q, p_q} \implies \mathbf{x}^{\star}(\ell) = 0$$

• Requires verifying *n* inequalities for a **single** entry

- Does not fit existing frameworks due to the sorting operation
- Sorting makes screening even more desirable $O(n \log n)$

Theorem [Elvira et Herzet, 2021]

 $\forall q \in \{1, ..., n\} \text{ let } p_q \in \{1, ..., q\}. \text{ Then}$

$$\forall q \in \{1, \dots, n\}: \ \left|\mathbf{m}_{\ell}^{\mathsf{T}}\mathbf{c}\right| + \sum_{k=p_q}^{q-1} \left|\mathbf{M}_{\backslash \ell}^{\mathsf{T}}\mathbf{c}\right|_{[k]} < B_{q, p_q} \implies \mathbf{x}^{\star}(\ell) = 0$$

- Requires verifying *n* inequalities for a **single** entry
- Defines a family of n! different tests \nearrow \bigcirc

- Does not fit existing frameworks due to the sorting operation
- Sorting makes screening even more desirable $O(n \log n)$

Theorem [Elvira et Herzet, 2021]

 $\forall q \in \{1, ..., n\} \text{ let } p_q \in \{1, ..., q\}. \text{ Then }$

$$\forall q \in \{1, \dots, n\}: \ \left| \mathbf{m}_{\ell}^{\mathsf{T}} \mathbf{c} \right| + \sum_{k=p_q}^{q-1} \left| \mathbf{M}_{\backslash \ell}^{\mathsf{T}} \mathbf{c} \right|_{[k]} < B_{q, p_q} \implies \mathbf{x}^{\star}(\ell) = 0$$

- Requires verifying n inequalities for a single entry
- Defines a family of n! different tests 🧱 😱
- Contribution: one method in $\mathcal{O}(n\log(n))$ to perform them all \mathcal{O}

https://arxiv.org/abs/2110.11784

Unconventional 3: ℓ_0 -problem \odot

Relevant in some applications

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0$$

- Known to promote sparsity
- Not convex .

Unconventional 3: ℓ_0 -problem \odot

Relevant in some applications

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0$$

- Known to promote sparsity
- Not convex 4
- Contribution: New framework for safe screening
 - --- Focus on a specific solver: Branch and bounds
 - \longrightarrow Safe screening for B&B: take decision on sub-nodes at ${\color{blue}\textbf{no computational cost}}$
 - → Outperforms state-of-the-art commercial solvers

Curious? see preprint and code at https://arxiv.org/abs/2110.07308

- Using the knowledge of the position of 0 delight
- What about the knowledge of nonzero entries

Using the knowledge of the position of 0

What about the knowledge of nonzero entries

Say that one can **ensure** that $\mathbf{x}^{\star}(\ell) > 0$. Then

Solving the Lasso

$$\iff$$

$$\operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \tfrac{1}{2} \Big\| \mathbf{y} - \mathbf{M}_{\backslash \ell} \mathbf{x}_{\backslash \ell} - \mathbf{m}_{\ell} \mathbf{x}_{\ell} \Big\|_2^2 + \lambda \| \mathbf{x}_{\backslash \ell} \|_1 + \lambda \mathbf{x}_{\ell}$$

Using the knowledge of the position of 0

Say that one can **ensure** that $\mathbf{x}^{\star}(\ell) > 0$. Then

Solving the Lasso

$$\iff$$

$$\mathop{\arg\min}_{\mathbf{x}_{\backslash \ell} \in \mathbb{R}^{n-1}} \mathop{\arg\min}_{\mathbf{x}_{\ell} \in \mathbb{R}} \frac{1}{2} \Big\| \mathbf{y} - \mathbf{M}_{\backslash \ell} \mathbf{x}_{\backslash \ell} - \mathbf{m}_{\ell} \mathbf{x}_{\ell} \Big\|_2^2 + \lambda \| \mathbf{x}_{\backslash \ell} \|_1 + \lambda \mathbf{x}_{\ell}$$

ullet Using the knowledge of the position of 0 \ddots

What about the knowledge of nonzero entries

Say that one can **ensure** that $\mathbf{x}^{\star}(\ell) > 0$. Then

Solving the Lasso

$$\begin{cases} \mathbf{x}_{\backslash \ell}^{\star} \in \arg\min_{\mathbf{x}_{\backslash \ell} \in \mathbb{R}^{n-1}} \frac{1}{2} \left\| \widetilde{\mathbf{y}} - \widetilde{\mathbf{M}} \mathbf{x}_{\backslash \ell} \right\|_{2}^{2} + \widetilde{\lambda} \| \mathbf{x}_{\backslash \ell} \|_{1} \\ x_{\ell}^{\star} = \mathbf{m}_{\ell}^{\mathsf{T}} (\mathbf{y} - \mathbf{M}_{\backslash \ell} \mathbf{x}_{\backslash \ell}^{\star}) - \lambda \end{cases}$$

ullet Using the knowledge of the position of 0 \ddots

What about the knowledge of nonzero entries

Say that one can **ensure** that $\mathbf{x}^{\star}(\ell) > 0$. Then

Solving the Lasso

$$\begin{cases} \mathbf{x}_{\backslash \ell}^{\star} \in \arg\min_{\mathbf{x}_{\backslash \ell} \in \mathbb{R}^{n-1}} \frac{1}{2} \left\| \widetilde{\mathbf{y}} - \widetilde{\mathbf{M}} \mathbf{x}_{\backslash \ell} \right\|_{2}^{2} + \widetilde{\lambda} \| \mathbf{x}_{\backslash \ell} \|_{1} \\ x_{\ell}^{\star} = \mathbf{m}_{\ell}^{\mathsf{T}} (\mathbf{y} - \mathbf{M}_{\backslash \ell} \mathbf{x}_{\backslash \ell}^{\star}) - \lambda \end{cases}$$

We end up with a **lower dimensional** Lasso problem

Tests, details and derivation available in https://arxiv.org/abs/2110.07281

Screening beyond sparsity 2: Safe squeezing

So called "anti-sparse" problem

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_{\infty}$$

- Known to promote solutions with saturated entries (i.e., equal to $\pm \alpha$)
- Under mild assumptions, most entries are saturated

Elvira and Herzet (2020)

Screening beyond sparsity 2: Safe squeezing

So called "anti-sparse" problem

$$\mathbf{x}^{\star} \in \operatorname*{arg\,min}_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \|\mathbf{y} - \mathbf{M}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_{\infty}$$

- Known to promote solutions with saturated entries (*i.e.*, equal to $\pm \alpha$)
- Under mild assumptions, most entries are saturated
 Elvira and Herzet (2020)
- Contribution: A test to detect saturated entries

 Same nature as screening test
- Main difficulty: Resulting lower dimensional optimization problem is of different nature

Interested? paper and code available at https://doi.org/10.1109/tsp.2020.2995192

Conclusion

Foundation: safe screening for "standard" sparse problem

- Rationale: It leads to an equivalent low dimensional problem
- Ideal test: leverage convex optimization to detect zero entries
- ullet Impact: \searrow computational complexity \nearrow convergence properties
- In practice: plug and play tests with low computational cost

Conclusion

Foundation: safe screening for "standard" sparse problem

- Rationale: It leads to an equivalent low dimensional problem
- Ideal test: leverage convex optimization to detect zero entries
- ullet Impact: \searrow computational complexity \nearrow convergence properties
- In practice: plug and play tests with low computational cost

Opening Pandora's box

- Extension to unconventional problems
 - → new families of convex regularizers
 - \longrightarrow **non-convex** problems
- Not only zero entries can be detected!

Merci de votre attention!

stay tuned!
https://c-elvira.github.io