$$\alpha x_{\xi\xi} + 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = \varphi$$

$$\alpha y_{\xi\xi} + 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = \psi$$

$$\varphi = -J^{-2} (Px_{\xi} + Qx_{\eta})$$

$$\psi = -J^{-2} (Py_{\xi} + Qy_{\eta})$$

$$\alpha = x_{\eta}^{2} + y_{\eta}^{2} = \beta = -(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}) = \gamma = x_{\xi}^{2} + y_{\xi}^{2}$$

得到:

$$\alpha x_{\xi\xi} + 2\beta x_{\xi\eta} + \gamma x_{\eta\eta} = (x_{\eta}^2 + y_{\eta}^2) * x_{\xi\xi} - 2 * (x_{\xi}x_{\eta} + y_{\xi}y_{\eta}) * x_{\xi\eta} + (x_{\xi}^2 + y_{\xi}^2) * x_{\eta\eta} = -J^{-2}(Px_{\xi} + Qx_{\eta}).$$
 $\alpha y_{\xi\xi} + 2\beta y_{\xi\eta} + \gamma y_{\eta\eta} = (x_{\eta}^2 + y_{\eta}^2) * y_{\xi\xi} - 2 * (x_{\xi}x_{\eta} + y_{\xi}y_{\eta}) * y_{\xi\eta} + (x_{\xi}^2 + y_{\xi}^2) * y_{\eta\eta} = -J^{-2}(Py_{\xi} + Qy_{\eta}).$
对于 x 由离散方式:

$$x_{\xi} = \frac{x_{i+1,j} - x_{i-1,j}}{2} \quad x_{\xi\xi} = x_{i+1,j} + x_{i-1,j} - 2x_{i,j}$$

$$x_{\eta} = \frac{x_{i,j+1} - x_{i,j-1}}{2} \quad x_{\eta\eta} = x_{i,j+1} + x_{i,j-1} - 2x_{i,j}$$

$$x_{\xi\eta} = x_{i+1,j} + x_{i-1,j} + x_{i,j+1} + x_{i,j-1} - 4x_{i,j}$$

对于 y 有离散方式 (将上述的 x 替换成 y):

$$y_{\xi} = \frac{y_{i+1,j} - y_{i-1,j}}{2} \quad y_{\xi\xi} = y_{i+1,j} + y_{i-1,j} - 2y_{i,j}$$

$$y_{\eta} = \frac{y_{i,j+1} - y_{i,j-1}}{2} \quad y_{\eta\eta} = y_{i,j+1} + y_{i,j-1} - 2y_{i,j}$$

$$y_{\xi\eta} = y_{i+1,j} + y_{i-1,j} + y_{i,j+1} + y_{i,j-1} - 4y_{i,j}$$

$$\begin{split} & \left(x_{\eta}^{2} + y_{\eta}^{2}\right) * x_{\xi\xi} - 2 * \left(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}\right) * x_{\xi\eta} + \left(x_{\xi}^{2} + y_{\xi}^{2}\right) * x_{\eta\eta} = -\mathsf{J}^{-2}\left(\mathsf{Px}_{\xi} + \mathsf{Q}x_{\eta}\right).$$
 对应离散方程每一项有:
$$\alpha = x_{\eta}^{2} + y_{\eta}^{2} = \left(\frac{x_{i,j+1} - x_{i,j-1}}{2}\right)^{2} + \left(\frac{y_{i,j+1} - y_{i,j-1}}{2}\right)^{2} \\ \beta = -\left(x_{\xi}x_{\eta} + y_{\xi}y_{\eta}\right) = -\left(\frac{x_{i+1,j} - x_{i-1,j}}{2}\right) * \left(\frac{x_{i,j+1} - x_{i,j-1}}{2}\right) - \left(\frac{y_{i+1,j} - y_{i-1,j}}{2}\right) * \left(\frac{y_{i,j+1} - y_{i,j-1}}{2}\right). \\ \gamma = x_{\xi}^{2} + y_{\xi}^{2} = \left(\frac{x_{i+1,j} - x_{i-1,j}}{2}\right)^{2} + \left(\frac{y_{i+1,j} - y_{i-1,j}}{2}\right)^{2} \end{split}$$

原式有:

$$\begin{array}{c} (\stackrel{(\mathcal{C}_{u_1,v_1,v_2,v_3})}{2} + \stackrel{(\mathcal{C}_{u_1,v_2,v_3})}{2} + \stackrel{$$

原式有:

$$(\frac{(\frac{x_{i+1}-x_{i+2})}{2}+\frac{x_{i+1}-x_{i+2}}{2}+\frac{x_{i+1}-x_{i+2}}{2}+\frac{x_{i+2}-x_{i+2}}{2}+\frac{x_{i+2}-x_{i+2}}{2}+\frac{x_{i+1}-x_{i$$

根据等差数列关系,首先生成初始网格边界值,并且再翼型头部附近加密,同时再外计算域加密得到的初始结果如下图所示,加密 所用的等比数列系数通过二分法求解:

采用 LU-SGS 对方程进行迭代求解无源项离散方程, xy 坐标方程形式一致, 仅仅只有坐标形式上的差距, 因此有:

$$D_{i-1,j}y_{i-1,j} + D_{i+1,j}y_{i+1,j} + D_{i,j+1}y_{i,j+1} + D_{i,j-1}y_{i,j-1} + D_{i,j}y_{i,j} = 0$$

$$D_{i,j}\tilde{y}_{i,j} + D_{i-1,j}\tilde{y}_{i-1,j} + D_{i,j-1}\tilde{y}_{i,j-1} = 0$$
上扫方程: $\tilde{y}_{i,j} = -\frac{D_{i-1,j}\tilde{y}_{i-1,j} + D_{i,j-1}\tilde{y}_{i,j-1}}{D_{i,j}}$

$$D_{i,j}y_{i,j} + D_{i+1,j}y_{i+1,j} + D_{i,j+1}y_{i,j+1} = D_{i,j}\tilde{y}_{i,j}$$

下扫方程:
$$y_{i,j} = \frac{D_{i,j}\tilde{y}_{i,j} - D_{i+1,j}y_{i+1,j} - D_{i,j+1}y_{i,j+1}}{D_{i,j}}$$

由于 LU-SGS 只能上下扫一次给出一个近似解,难以用来将求解网格,因此考虑其他迭代方法

$$D_{i-1,j}y_{i-1,j} + D_{i+1,j}y_{i+1,j} + D_{i,j+1}y_{i,j+1} + D_{i,j-1}y_{i,j-1} + D_{i,j}y_{i,j} = 0$$

采用 JKB 迭代法,对方程进行化简可得如下所示的迭代公式

$$y_{i,j} = -\frac{(D_{i-1,j}y_{i-1,j} + D_{i+1,j}y_{i+1,j} + D_{i,j+1}y_{i,j+1} + D_{i,j-1}y_{i,j-1})}{D_{i,j}}.$$

$$x_{i,j} = -\frac{(C_{i-1,j}x_{i-1,j} + C_{i+1,j}x_{i+1,j} + C_{i,j+1}x_{i,j+1} + C_{i,j-1}x_{i,j-1})}{C_{i,j}}.$$

最后得到的结果如下图所示,再尾延部分网格有所弯曲是由上下边界的网格比例不合适导致的,除此之外头部的网格汇聚可能是由于设定网格初始值的时候对外层网格同样也使用了等比数列加密

通过略微调整代码参数还可以得到另类的网格:

