Edge-Weighted Hypergraph Transversals & Contextuality

Thomas C. Fraser^{1,2,*}

¹Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5

²University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1

(Dated: August 24, 2017)

1

1

1

1

2

2

2

3 3

3

3

3

3

3

3

3

3

3

3

3

3

This is the abstract.

I Introduction

CONTENTS

	merodaetion
	A. Applications
II.	Marginal Satisfiability
	A. Definitions
	B. Linearity
	C. Marginal Polytopes
	D. Logical Contextuality
III.	An Observation
	A. An Antecedent Hierarchy
	B. Irreducibility
	C. Marginal Symmetries
	D. Curated Inequalities
	E. Targeted Searches
	F. Relaxations
IV.	Edge-Weighted Hypergraph Transervals
	A. Preliminaries
	B. Hypergraph Transversals
	C. Adding Weights
V.	Conclusions
	Acknowledgments
	References

I. INTRODUCTION

A. Applications

II. MARGINAL SATISFIABILITY

A. Definitions

To every random variable v there corresponds a prescribed set of **outcomes** \mathcal{O}_v and a set of **events over** v denoted $\Omega(v)$ corresponding to the set of all functions of

the form $\omega: \{v\} \to \mathcal{O}_v$. Evidently, $\Omega(v)$ and \mathcal{O}_v are isomorphic structures and their distinction can be confounding. There is rarely any harm in referring synonymously to either as outcomes. Nonetheless, a sheaf-theoretic treatment of contextuality [1] demands the distinction. Specifically for this work, the distinction becomes essential for the exploitation of marginal symmetries in Section III C. As a natural generalization we define the event over a collection of random variables $V = \{v_1, \ldots, v_n\}$ in a parallel manner:

$$\Omega(V) \equiv \{\omega : V \to \mathcal{O}_V \mid \forall v \in V, \omega(v) \in \mathcal{O}_v\}$$

Furthermore, the **domain** $\mathcal{D}(\omega)$ of an event ω is the set of random variables it valuates, i.e. if $\omega \in \Omega(V)$ then $\mathcal{D}(\omega) = V$.

For every $V' \subset V$ and $\omega \in \Omega(V)$, the **restriction of** ω **onto** V' (denoted $\omega|_{V'}$) corresponds to the unique event in $\Omega(V')$ that agrees with ω for all valuations of variables in V', i.e. $\forall v' \in V' : \omega|_{V'}(v') = \omega(v')$. Using this notational framework, a probability distribution or simply **distribution** p_V is a probability measure on $\Omega(V)$, assigning to each $\omega \in \Omega(V)$ a real number $\mathsf{p}_V(\omega) \in [0,1]$ such that $\sum_{\omega \in \Omega(V)} \mathsf{p}_V(\omega) = 1$. The set of all distributions over $\Omega(V)$ is denoted \mathcal{P}_V . Moreover, given $\mathsf{p}_V \in \mathcal{P}_V$ and $V' \subset V$, there is an induced distribution $\mathsf{p}_V|_{V'} \in \mathcal{P}_{V'}$ obtained by $marginalizing \mathsf{p}_V$:

$$\mathsf{p}_{V}|_{V'}(\omega') = \sum_{\substack{\omega \in \Omega(V) \\ \omega|_{V'} = \omega'}} \mathsf{p}_{V}(\omega) \tag{1}$$

Presently, the reader is equipped with sufficient notation and terminology to comprehend the **marginal** (satisfiability) problem: given a collection of m distributions $\{p_{V_1}, \ldots, p_{V_m}\}$, does there exist a distribution $p_{\Lambda} \in \mathcal{P}_{\Lambda}$ where $\Lambda \equiv \bigcup_{i=1}^m V_m$ such that $\forall i : p_{\Lambda}|_{V_i} = p_{V_i}$?

To facilitate further discussion of this problem, several pieces of nomenclature will be introduced. First, the set $\mathcal{V} = \{V_1, \dots, V_m\}$ is called the **marginal scenario** while its elements are called the **marginal contexts**. The collection of distributions $\mathbf{p}_{*\mathcal{V}} \equiv \{\mathbf{p}_{V_1}, \dots, \mathbf{p}_{V_m}\}^2$ is called the **marginal model** [2]³. The distribution \mathbf{p}_{Λ} , if it exists,

^{*} tcfraser@tcfraser.com

1 Throughout this document, it is assumed that a

¹ Throughout this document, it is assumed that all random variables are discrete and have finite cardinality.

 $^{^2}$ The subscript * preceding $_*\mathcal V$ is added for clarity; $\mathsf p_*_{\mathcal V}$ is not a distribution but a set of distributions over $\mathcal V.$ The $_*\mathcal V$ convention is adopted throughout this report.

³ In [1], p_*v is instead called an *empirical model*.

is termed the **joint distribution**. Strictly speaking, as defined by [2], a marginal scenario forms an abstract simplicial complex, meaning it satisfies the supplementary required that all subsets of contexts are also contexts, i.e. $\forall V \in \mathcal{V}: V' \subset V \Longrightarrow V' \in \mathcal{V}$. Throughout this section, we exclusively consider (without loss of generality) maximal marginal scenarios, restricting our focus to the contexts which are contained in no others. Finally, a marginal model $\mathbf{p}_{*\mathcal{V}}$ is said to be **contextual**, and will be denoted $\mathbf{p}_{*\mathcal{V}} \in \mathcal{C} \subseteq \mathcal{P}_{*\mathcal{V}}$ if it does not admit a joint a distribution and **non-contextual** otherwise $(\mathbf{p}_{*\mathcal{V}} \notin \mathcal{C})$. Equipped with additional terminology and notation, the marginal problem now reads: given $\mathbf{p}_{*\mathcal{V}}$, is $\mathbf{p}_{*\mathcal{V}} \in \mathcal{C}$ or not?

B. Linearity

An essential feature of the marginal problem is linearity; the marginalization of p_{Λ} onto the marginal contexts $\{p_{\Lambda}|_{V} \mid V \in \mathcal{V}\}$ is a linear transformation, requiring only the summations pursuant to Eq. (1). Consequently, it is advantageous to consider the statement of the marginal problem as a matrix multiplication. To this end, for each marginal scenario \mathcal{V} we define a bitwise matrix \mathcal{M} called the **incidence matrix** which implements this mapping. The columns of \mathcal{M} are indexed by *joint events* $j \in \Omega(\Lambda)$ and the rows are indexed by *marginal events* $m \in \Omega(V)$ for some $V \in \mathcal{V}$. By deliberate abuse of notation, we will denote the set of all marginal events as $\Omega({}_*\mathcal{V})$ and is defined as the following disjoint union:

$$\Omega({}_{\!*}\!\mathcal{V}) \equiv \coprod_{V \in \mathcal{V}} \Omega(V)$$

The $|\Omega(\mathcal{V})| \times |\Omega(\Lambda)|$ matrix \mathcal{M} is then defined elementwise for $m \in \Omega(\mathcal{V})$ and $j \in \Omega(\Lambda)$:

$$\mathcal{M}_j^m = \begin{cases} 1 & j|_{\mathcal{D}(m)} = m \\ 0 & \text{otherwise} \end{cases}$$

Conceptually, the entries of this matrix are populated with ones whenever the marginal event (row) m is the restriction of some joint event (column) j. For a given marginal scenario \mathcal{V} , \mathcal{M} represents the tuple of restriction maps $\mathcal{M}: \Omega(\Lambda) \to \prod_{V \in \mathcal{V}} \Omega(V) :: j \mapsto \{j|_V \mid V \in \mathcal{V}\}$ [1].

To illustrate this concretely, consider the following example. Let Λ be 3 binary variables $\{a, b, c\}$ and \mathcal{V} be the marginal scenario $\mathcal{V} = \{\{a, b\}, \{b, c\}, \{a, c\}\}$. The

incidence matrix for \mathcal{V} becomes:

$(a,b,c) \mapsto$	(0,0,0)	(0,0,1)	(0,1,0)	(0,1,1)	(1,0,0)	(1,0,1)	(1,1,0)	(1,1,1)
$(a\mapsto 0,b\mapsto 0)$	1	1	0	0	0	0	0	0 \
$(a \mapsto 0, b \mapsto 1)$	0	0	1	1	0	0	0	0
$(a \mapsto 1, b \mapsto 0)$	0	0	0	0	1	1	0	0
$(a \mapsto 1, b \mapsto 1)$	0	0	0	0	0	0	1	1
$(b \mapsto 0, c \mapsto 0)$	1	0	0	0	1	0	0	0
$(b \mapsto 0, c \mapsto 1)$	0	1	0	0	0	1	0	0
$(b \mapsto 1, c \mapsto 0)$	0	0	1	0	0	0	1	0
$(b \mapsto 1, c \mapsto 1)$	0	0	0	1	0	0	0	1
$(a \mapsto 0, c \mapsto 0)$	1	0	1	0	0	0	0	0
$(a \mapsto 0, c \mapsto 1)$	0	1	0	1	0	0	0	0
$(a \mapsto 1, c \mapsto 0)$	0	0	0	0	1	0	1	0
$(a\mapsto 1, c\mapsto 1)$	0	0	0	0	0	1	0	1 /
`								(2)

In addition, for any joint distribution $\mathbf{p}_{\Lambda} \in \mathcal{P}_{\Lambda}$ we associate a joint distribution vector \mathbf{p}_{Λ} (identically denoted) indexed by $j \in \Omega(\Lambda)$, i.e. $\mathbf{p}_{\Lambda}^{j} \equiv \mathbf{p}_{\Lambda}(j)$. Analogously, for each marginal model $\mathbf{p}_{*\mathcal{V}} \in \mathcal{P}_{*\mathcal{V}}$ there is an associated marginal distribution vector $\mathbf{p}_{*\mathcal{V}}$ indexed by $m \in \Omega({}_{*\mathcal{V}})$ such that $\mathbf{p}_{*\mathcal{V}}^{m} \equiv \mathbf{p}_{\mathcal{D}(m)}(m)$. Using these vectors, the marginal problem becomes the following linear program: given a marginal distribution vector $\mathbf{p}_{*\mathcal{V}}$, does there exist a joint distribution vector $\mathbf{p}_{\Lambda} \succeq 0$ such that Eq. (3) holds?

$$\mathbf{p}_{*\mathcal{V}} = \mathcal{M} \cdot \mathbf{p}_{\Lambda} \iff \mathbf{p}_{*\mathcal{V}}^{m} = \sum_{j \in \Omega(\Lambda)} \mathcal{M}_{j}^{m} \mathbf{p}_{\Lambda}^{j}$$
 (3)

C. Marginal Polytopes

D. Logical Contextuality

Let $a \in \Omega({}_{*}\mathcal{V})$ be any marginal event and $C = \{c_1, \ldots, c_n\} \subseteq \Omega({}_{*}\mathcal{V})$ be a subset of marginal events such that the following logical implication holds for all marginal models $\mathbf{p}_{.\mathcal{V}} \in \mathcal{P}_{.\mathcal{V}}$:

$$a \implies c_1 \vee \dots \vee c_n = \bigvee_{c \in C} c$$
 (4)

Which can be dictated: whenever the event a occurs, at least one event in C occurs. In accordance with the logical form of Eq. (4), a will be referred to as the **antecedent** and C as the **consequent set**. To clarify, a marginal model $p_{*V} \in \mathcal{P}_{*V}$ satisfies Eq. (4) if there always at least one $c \in C$ that is possible $(p_{*V}^c) > 0$ whenever a is possible. A marginal model violates Eq. (4) whenever none of events in c are possible while a remains possible. Marginal models that violate logical statements such as Eq. (4) are known as **Hardy Paradoxes** [3–5]. Motivated by a greater sense of robustness compared to possibilistic constraints, the concept of witnessing quantum contextuality on a logical level has be analyzed thoroughly for decades [6, 7].

III. AN OBSERVATION

- A. An Antecedent Hierarchy
 - B. Irreducibility
 - C. Marginal Symmetries
 - D. Curated Inequalities
 - E. Targeted Searches
 - F. Relaxations

IV. EDGE-WEIGHTED HYPERGRAPH TRANSERVALS

- A. Preliminaries
- B. Hypergraph Transversals
 - C. Adding Weights
 - V. CONCLUSIONS
 - ACKNOWLEDGMENTS

- S. Abramsky and A. Brandenburger, "The Sheaf-Theoretic Structure Of Non-Locality and Contextuality," New J. Phys 13, 113036 (2011).
- [2] T. Fritz and R. Chaves, "Entropic Inequalities and Marginal Problems," IEEE Trans. Info. Theor. 59, 803 (2011).
- [3] E. Wolfe, R. W. Spekkens, and T. Fritz, "The Inflation Technique for Causal Inference with Latent Variables," (2016), arXiv:1609.00672.
- [4] S. Mansfield and T. Fritz, "Hardy's Non-locality Paradox and Possibilistic Conditions for Non-locality," Found.

Phys. **42**, 709 (2011).

- [5] L. Mančinska and S. Wehner, "A unified view on Hardy's paradox and the Clauser–Horne–Shimony–Holt inequality," J. Phys. A 47, 424027 (2014).
- [6] S. Abramsky and L. Hardy, "Logical Bell inequalities," Phys. Rev. A 85, 062114 (2012).
- [7] D. M. Greenberger, "Bell's theorem without inequalities," Am. J. Phys. 58, 1131 (1990).