Week 8 Summary: Neural Networks

6:02 PM Sunday, 21 June 2020

Week 8: Neural Networks

(Regularisation isn't in the totorial)

Neural Networks

This is 'our model "structure" (as far as you are concerned it is only a Set of hyperparameters that need to be optimised)

*Some online sources will give good advice on how to pick # of nodes & layers. *How the nodes Combine & Interact is also beyond this unit.

Then what 🕦 we cover ?

1) Model structure to mathematical formula

(2) "gist" intuitive some of how they work.

NEURAL NETWORK

Number of nodes in Inputs (number of predictors) second layer weights firt layer's weights First Layer Constant second layer constant)

* Activation functions

Network Architecture

Network Architecture

Activation functions (u= pot E; p; x;)

Logistic Gaussian Radial Hyperbolic Tongent
$$f(u) = \frac{1}{1 + e^{-u}} \qquad f(u) = \frac{1}{12\pi} e^{-\frac{u^2}{2}} \qquad f(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$
1 output nocle
$$(0,1)$$

On the Scatter plot

FEEDBACK MECHANISM

OF EPOCHS

The weights of the model are trained according to a Seedback mechanism

The loss function (cross entropy/ RSS/ect) measures model performance

The Optimiser decides how the loss function is used to update the weights

Batch Size is the number of sample fed into the model at a time Phatch size - I computation, A stable estimates

Epoch refers to how many iterations through the entite training data.

PROS VS CONS

o Capture Complex
relationship between outputs and Inputs.

Ont work well when PTN (or close to) & Can potentially overfit

o Computationally expensive