2장 - 개략적인 규모 추정

:**≡** Tags

• 시스템 설계 면접을 볼 때, 때로는 시스템 용량이나 성능 요구사항을 개략적으로 추정해 보라는 요구를 받게 된다.

2의 제곱수

- 데이터 볼륨의 단위를 2의 제곱수로 표현하면 어떻게 되는지를 우선적으로 알아야 한다.
- 최소 단위는 1바이트고, 8비트로 구성된다. ASCII 문자 하나가 차지하는 메모리 크기가 1바이트다.

2의 x 제곱	근사치	이름	축약형
10	1천(thousand)	1킬로바이트(Kilobyte)	1KB
20	1백만(million)	1메가바이트(Megabyte)	1MB
30	10억(billion)	1기가바이트(Gigabyte)	1GB
40	1조(trillion)	1테라바이트(Terabyte)	1TB
50	1000조(quadrillion)	1페타바이트(Petabyte)	1PB

H 2-1

모든 프로그래머가 알아야 하는 응답지연

• 구글의 제프 딘은 2010년에 통상적인 컴퓨터에서 구현된 연산들의 응답지연값을 공개한 바 있다.

연산명	시간	
L1 캐시 참조	0.5ns	
분기 예측 오류(branch mispredict)	5ns	
L2 캐시 참조	7ns	
뮤텍스(mutex) 락/언락	100ns	
주 메모리 참조	100ns	
Zippy로 1 KB 압축	10,000ns = 10μs	
1 Gbps 네트워크로 2 KB 전송	20,000ns = 10μs	
메모리에서 1 MB 순차적으로 read	250,000ns = 250μs	
같은 데이터 센터 내에서의 메시지 왕복 지연시간	500,000ns = 500μs	
디스크 탐색(seek)	10,000,000ns = 10ms	
네트워크에서 1 MB 순차적으로 read	10,000,000ns = 10ms	
디스크에서 1 MB 순차적으로 read	30,000,000ns = 30ms	
한 패킷의 CA(캘리포니아)로부터 네덜란드까지의 왕복 지연시간	150,000,000ns = 150ms	

ns = nanosecond(나노초), μ s = microsecond(마이크로초), ms = millisecond(밀리초) 1나노초 = 10^{-9} 초 1마이크로초 = 10^{-6} 초 = 1,000나노초 1밀리초 = 10^{-3} 초 = 1,000 μ s = 1,000 μ

丑 2-2

- 메모리는 빠르지만 디스크는 아직도 느리다.
- 디스크 탐색(seek)은 가능한 피하라.
- 단순한 압축 알고리즘은 빠르다.
- 데이터를 인터넷으로 전송하기 전에 가능하면 압축하라.
- 데이터 센터는 보통 여러 지역(region)에 분산되어 있고, 센터들 간에 데이터를 주고받는 데는 시 간이 걸린다.

가용성에 관계된 수치들

- 고가용성(High Availability)은 시스템이 오랜 시간 동안 지속적으로 중단 없이 운영될 수 있는 능력을 지칭하는 용어다.
- SLA(Service Level Agreement)는 서비스 사업자(Service Provider)가 보편적으로 사용하는 용어로, 서비스 사업자와 고객 사이에 맺어진 합의를 의미한다.

가용률	하루당 장애시간	주당 장애시간	개월당 장애시간	연간 장애시간
99%	14.40분	1.68시간	7.31시간	3.65일
99.9%	1.44분	10.08분	43.83분	8.77시간
99.99%	8.64초	1.01분	4.38분	52.60분
99.999%	864.00밀리초	6.05초	26.30초	5.26분
99.9999%	86.40밀리초	604.80밀리초	2.63초	31.56초

丑 2-3

트위터 사용자 QPS와 저장소 요구량 추정

가정

- 월간 능동 사용자(monthly active user)는 3억(300million) 명이다.
- 50%의 사용자가 트위터를 매일 사용한다.
- 평균적으로 각 사용자는 매일 2건의 트윗을 올린다
- 미디어를 포함하는 트윗은 10% 정도다.
- 데이터는 5년간 보관된다.

추정

QPS(Query Per Second) 추정치

- 일간 능동 사용자(Daily Active User, DAU)=3억×50%=1.5억(150million)
- QPS=1.5억×2 트윗/24시간/3600초=약 3500
- 최대 QPS(Peek QPS)=2×QPS=약 7000

미디어 저장을 위한 저장소 요구량

- 평균 트윗 크기
 - · tweet_id에 64바이트
 - 텍스트에 140바이트
 - 미디어에 1MB
- 미디어 저장소 요구량: 1.5억×2×10%×1 MB=30TB/일
- 5년간 미디어를 보관하기 위한 저장소 요구량: 30TB×365×5=약 55PB
- 최대 Peek QPS 약 7000

팁

- <u>근사치를 활용하여 계산하라</u>: 면접장에서 복잡한 계산하는 것은 어려운 일이다. 계산의 값은 정확한 것을 확인하려는 목적이 아니다. 근사치로 시간을 절약해야한다.
- 가정(assumption)들은 적어 두라. 나중에 살펴보도록
- 단위(unit)를 붙여라 5라고만 적으면 5KB인지 5MB인지 알 수 없다.
- 개략적으로 추정 문제는 QPS, 최대 QPS, 저장소 요구량, 캐시 요구량, 서버 수 등을 추정하는 것이다.