16 既約多項式

前回同様 K は \mathbb{Q} , \mathbb{R} , \mathbb{C} のいずれかとし, 多項式環 K[X] を考える.

多項式 $f(X) \in K[X]$ が次の (i)(ii) を満たすとき, f(X) は既約であるという:

- (i) $\deg f(X) \ge 1$,
- (ii) $g(X), h(X) \in K[X]$ が f(X) = g(X)h(X) を満たすなら $\deg g(X) = 0$ または $\deg h(X) = 0$ のいずれかである.

また, K[X] のイデアル I が素イデアルであるとは, 次の (i), (ii) を満たすことをいう:

- (i) $I \neq K[X]$,
- (ii) $g(X), h(X) \in K[X]$ かつ $g(X)h(X) \in I$ ならば必ず $g(X) \in I$ または $h(X) \in I$ が成り立つ.

問題 16.1 多項式 $f(X) \in K[X]$ (ただし $\deg f(X) \ge 1$) について、次の (a),(b) が同値であることを示せ.

- (a) f(X) は既約多項式である.
- (b) f(X) で生成されるイデアル I(f(X)) は素イデアルである.

問題 ${\bf 16.2}$ (1) $f(X)\in K[X],$ $2\leq \deg f(X)\leq 3$ とする. このとき f(X) が既約多項式であるための必要十分条件は、すべての $a\in K$ に対し $f(a)\neq 0$ となることであることを示せ.

(2) $K=\mathbb{R}$ のとき、すべての $a\in\mathbb{R}$ に対し $f(a)\neq 0$ となるが、定数 $(\deg f(X)=0)$ でも既約多項式でもないような $f(X)\in\mathbb{R}[X]$ の例を挙げよ.

問題 16.3 (教科書の問題 2.21 の類題) 実数 $\alpha, \beta \in \mathbb{R}$ を

$$\alpha^3 = -2 + \sqrt{3}, \quad \beta^3 = -2 - \sqrt{3}$$

を満たすようにとる (それぞれ唯一つ存在する). このとき $f(X)=X^3-3X+4\in\mathbb{R}[X]$ について、次に答えて f(X) が $\mathbb{R}[X]$ において既約でないことを確かめよ.

- (1) $f(\alpha + \beta) = 0$ であることを示せ.
- $f(X) = (X a)(X^2 + bX + c)$ を満たす実数 a, b, c を求めよ.

問題 ${\bf 16.4}$ 多項式 $f(X) \in K[X]$ について, f(X) が既約多項式であることと f(X+1) が既約多項式であることとは同値であることを示せ.

 $^{^{1}}$ ホームページ http://www.math.tsukuba.ac.jp/ $^{\sim}$ amano/lec2012-2/e-algebra-ex/index.html