CPSC 532W Homework 6

Naomi Graham

March 25, 2021

All the code can be found on: https://github.com/n6graham/cpsc532_hw6.

1 Program 1

Program 1							
Number of particles	Z (evidence)	Mean	Variance				
1	1	3	nan				
10	1	99.1000	7639.2109				
100	1	80.4600	8960.1699				
1000	1	101.5100	10413.6953				
10 000	1	99.5248	9983.4941				
100 000	1	99.4249	10061.4521				

2 Program 2

Program 2							
Number of particles	Z (evidence)	Mean	Variance				
1	3.5531e-10	2.3191	nan				
10	0.0016	6.8162	2.5264e-13				
100	0.0007	8.7266	0.3422				
1000	0.0002	6.8198	0.4003				
10 000	0.0002	7.2663	0.9606				
100 000	0.0003	7.2832	0.8407				

7.5

10.0

5.0

500

3 Program 3

Program 3										
N	Z	Mean				Variance				
1	5.54e-23	$ \begin{pmatrix} 1.0 & 2.0 \\ 1.0 & 0.0 \\ 2.0 & 0.0 \\ 2.0 & 0.0 \end{pmatrix} $	2.0 2.0	1.0 2.0 2.0	$ \begin{array}{c c} 2.0 \\ 2.0 \\ 2.0 \end{array} $	$\begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	$\begin{pmatrix} 0.0 \\ 0.0 \\ 0.0 \end{pmatrix}$
10	5.11e-20	$ \begin{pmatrix} 2.0 & 0.0 \\ 0.6 & 1.3 \\ 2.0 & 2.0 \\ 0.0 & 2.0 \\ 2.0 & 1.0 \end{pmatrix} $	1.0 2.0 2.0	1.7 1.0 2.0	$ \begin{array}{c} 1.0 \\ 0.0 \\ 2.0 \end{array} $	$ \begin{pmatrix} 0.8 \\ 0.0 \\ 0.0 \\ 0.0 \end{pmatrix} $	0.6 0.0 0.0 0.0	0.6 0.0 0.0	0.2 0.0 0.0	0.0
100	3.26e-20	$ \begin{pmatrix} 1.6 & 1.6 \\ 1.3 & 1.6 \\ 0.5 & 1.6 \\ 1.6 & 0.6 \end{pmatrix} $	1.7 1.6	1.8 1.8 1.7	$ \begin{array}{c} 1.0 \\ 1.6 \\ 1.8 \end{array} $	$\begin{pmatrix} 0.6 \\ 0.8 \\ 0.8 \\ 0.2 \end{pmatrix}$	0.6 0.5 0.2 0.5	0.2 0.5 0.2	0.3 0.1 0.2	$\begin{pmatrix} 0.0 \\ 0.7 \\ 0.2 \end{pmatrix}$
1000	5.98e-20	$ \begin{array}{c cccc} \hline & 1.5 & 1.6 \\ & 1.5 & 1.8 \\ & 0.1 & 1.6 \\ & 1.5 & 1.0 \end{array} $	1.8 1.7	1.7 1.7 1.8	1.0 1.1 1.9	$ \begin{pmatrix} 0.7 \\ 0.6 \\ 0.2 \\ 0.4 \end{pmatrix} $	0.6 0.3 0.5 0.7	0.4 0.2 0.4	0.4 0.3 0.2	0.0 1.0 0.1
10 000	5.98e-20	$ \begin{array}{c cccc} \hline 1.5 & 1.6 \\ 1.5 & 1.8 \\ 0.1 & 1.6 \\ 1.5 & 1.0 \end{array} $	1.8 1.7	1.7 1.7 1.8	1.0 1.1 1.9	$ \begin{pmatrix} 0.7 \\ 0.6 \\ 0.2 \\ 0.4 \end{pmatrix} $	0.6 0.3 0.5 0.7	0.4 0.2 0.4	0.4 0.3 0.2	0.0 1.0 0.1
100 000)()(

4 Program 3

5 Snippets of code

In SMC.py, I filled in resample-particles.

```
def resample_particles(particles, log_weights):
          inds = []
2
          d = dist. Categorical (logits=torch.tensor(log_weights))
4
          for i in range(len(particles)):
              inds.append(d.sample())
          new_particles = [ particles[i] for i in inds ]
          new_weights = torch.logsumexp(torch.tensor(log_weights),0)
11
          logL = torch.log(torch.tensor(len(log_weights), dtype=float))
14
          logZ = new_weights - logL
15
16
          return logZ, new_particles
18
```

I modified SMC to get the particles and weights, and check the addresses are all the same.

```
if 'done' in res[2]: #this checks if the calculation is done
                       particles[i] = res[0]
                       if i == 0:
                           done = True # and enforces everything to be the same
     as the first particle
                           address = ',
                       else:
6
                           if not done:
                               raise RuntimeError('Failed SMC, finished one
     calculation before the other')
                   else:
                       address = res[2]['alpha']
10
                       particles [i]=res
11
                       weights [i] = res[2]['logW']
12
                       assert address == particles[0][2]['alpha']
14
```

Inside evaluator.py I modified sigma for the 'observe' case.