SEIBERG-WITTEN EQUATIONS, FINITE DIMENSIONAL APPROXIMATION

LECTURE: LEON LIU

Contents

1.	Proof of main theorem	1
2.	Seiberg-Witten theory	1
2.1	. Setup	1
3.	Gauge fixing	3

1. Proof of main theorem

Recall last time we discusses the SES

$$0 \to \ker \mu \to \Theta_3^{H,\mu} \xrightarrow{\mu} \mathbb{Z}/2\mathbb{Z} \to 0$$
.

Then we have that μ not splitting is equivalent to the statement that for all $Y \mathbb{Z}HS$ (with $\mu(Y) = 1$) we have $[2Y] \neq 0$ (or equivalently $Y \nsim -Y$).

To prove this we will invent an invariant β which takes some integral homology sphere and gives us a number. It has the following properties:

- (1) $Y_1 \sim Y_2 \text{ implies } \beta(Y_1) = \beta(Y_2).$
- (2) β is the integral lift of the Rocklin invariant: $\mu(Y) = \beta(Y) \pmod{2}$.
- (3) $\beta(-Y) = -\beta(Y)$.

Warning 1. β is not a group homomorphism.

Proof. If
$$Y \sim -Y$$
 then $\beta(Y) = \beta(-Y) = -\beta(-Y)$ so $\beta(Y) = 0$ which implies $\mu(Y) = 0$.

Some lectures down the road we will get some gadget $SWF^{pin(2),*}(Y)$ which will lead to β .

2. Seiberg-Witten theory

2.1. **Setup.** Let Y be an $\mathbb{Z}HS$ and g some Riemannian metric. This will have a (unique) spin^c structure. I.e. we have S a spinor bundle, rank 2 Hermitian and

$$\rho: T^*Y \simeq TY \to \mathfrak{su}(S)$$
.

Date: September 27, 2019; Notes by Jackson Van Dyke. All errors introduced are my own.

 $TY = \langle e_1, e_2, e_3 \rangle$ is trivializable so S is the trivial rank 2 bundle and ρ explicitly sends:

$$\rho(e_1) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

$$\rho(e_2) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\rho(e_3) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

This is some kind of gauge theory so we need to specify our fields. Define \mathcal{A} to be the space of U(1) connections. Since we are doing abelian gauge theory we should think of \mathcal{A} as 1-forms on Y with imaginary coefficients: $\mathcal{A} = \Omega^1(Y; i\mathbb{R})$. A spinor is a section $\varphi \in \Gamma(S)$. Then define

$$\partial \varphi := \sum \rho(e_i) \frac{\partial \varphi}{\partial x_i}.$$

We should think of $\varphi \otimes \varphi^* \in \text{End}(S)$. Then in order to land in $\mathfrak{sl}(S)$ we take the traceless part:

$$(\varphi \otimes \varphi^*)_0 \in \mathfrak{sl}(S)$$
.

So we can take

$$\rho\left(\left(\rho\otimes\varphi^*\right)_0\right)\in\Omega^1\left(Y;i\mathbb{R}\right).$$

Now we can state the actual SW equations. Define

$$\mathcal{C} := \Omega^{1}(Y; i\mathbb{R}) \times \Gamma(S) \ni (a, \varphi) .$$

Now define:

$$\widetilde{\mathrm{SW}}:\mathcal{C}
ightarrow \mathcal{C}$$

to map:

$$(a,\varphi)\mapsto\left(\star\,da\,-2\rho^{-1}\left(\left(\varphi\otimes\varphi^*\right)_0\right),\partial\!\!\!/\varphi+a\varphi\right)\;.$$

Remark 1. This is a Gauge theory, so we should think of $\tilde{SW} = \nabla CSD$ where CSD is the Chern-Simons-Dirac functional given by:

$$\mathrm{CSD}\left(a,\varphi\right) = \frac{1}{2} \left(\int_{Y} \left\langle \varphi, \left(\varphi + \rho\left(a\right) \right) \varphi \right\rangle d \, \mathrm{Vol} - \int_{Y} a \wedge \, da \, \right) \; .$$

This is a functional on an infinite-dimensional space so we will be completing some sort of infinite-dimensional Morse theory in this setting, i.e. Floer homology.

We now define the Gauge group to be:

$$\mathcal{G} = \mathcal{C}^{\infty} (Y, U(1)) .$$

For $U \in \mathcal{G}$ we have the action

$$U \cdot (a, \varphi) = (a - U^{-1} dU, U \cdot \varphi) .$$

Because Y has trivial fundamental group we can write $U = e^{\xi}$ where $\xi : Y \to i\mathbb{R}$. Therefore we can rewrite the action to be:

$$U_{\xi}(a,\varphi) = \left(a - d\xi, e^{\xi} \cdot \varphi\right) .$$

As it turns out we have

$$U_*\widetilde{SW} = \widetilde{SW}$$
.

FIGURE 1. The space \mathcal{C} with the orbit of some point under the action of \mathcal{G} pictured as the vertical lines. The red horizontal line is a choice of section V, i.e. a choice of representatives.

3. Gauge fixing

We now describe the process of gauge fixing. For a point in our \mathcal{C} we get an orbit of \mathcal{G} , and then Gauge fixing is a choice of a section V as in fig. 1. We will choose the Coulomb gauge, i.e. just some particular V.

Recall for $U\in G$, $a\in\mathcal{A}$ we have $U\cdot a=a-U\cdot dU=a-d\xi$. As it turns out we can write $\mathcal{G}=\mathcal{G}_0\times S^1$ where

$$\mathcal{G}_0 := \left\{ U = e^{\xi} \left| \int_{Y} \xi = 0 \right. \right\} .$$

In general this integral won't be 0, so we write:

$$\xi' = \xi - \frac{\int \xi}{\operatorname{Vol} Y} \ .$$

Then we get that U_{ξ} corresponds to

$$\left(e^{\xi'}, e^{\int \xi/\operatorname{Vol} Y}\right) \in \mathcal{G}_0 \times S^1$$
.

For $a \in \mathcal{A}$ we write $[a] \in \mathcal{A}/\mathcal{G}_0$. To understand this we do a bit of Hodge theory.

$$\mathcal{A} = \Omega^{1}(Y; i\mathbb{R}) = d\Omega^{0} \oplus d^{*}(\Omega^{2}) = \ker d \oplus \ker d^{*}.$$

From this point of view we write

$$a = da_0 + d^*a_2 .$$

Formally we have that for any $a \in \mathcal{A}$ there exists a unique b such that [b] = [a] and $b \in \ker d^*$.

Then our choice of section is given by:

$$\mathcal{C} \supset V := \{(a, \varphi) \in \mathcal{C} \mid d^*a = 0\}$$
.

Then what we have shown is that

$$\mathcal{C}/\mathcal{G}_0 = V$$
.

Explicitly this map is:

$$C \xrightarrow{\pi} V$$

$$(da_0 + d^*a_2, \varphi) \longmapsto (d^*a_2, e^{a_0}\varphi)$$

Remark 2. The point of this is that we went from studying \mathcal{C}/\mathcal{G} to studying V/S^1 .

Now we might be worried about $\widetilde{\mathrm{SW}}\big|_V:V\to\mathcal{C}$ not landing in V. So we will do the obvious thing and post-compose with the projection. Really we should take some kind of tangential projection. For $(a,\varphi)\in V$ we define

$$\pi_{(a,\varphi)}: T_{(a,\varphi)}\mathcal{C} \to T_{(a,\varphi)}V$$
.

So now we define our real SW: $V \to V$ to be given by:

$$SW(a,\varphi) = \pi_{(a,\varphi)} \circ \widetilde{SW}$$
.

So we have an honest vector field on an (infinite-dimensional) space and we will study the flow-lines.

Lemma 1. We can split SW = l + c such that l is a linear first order elliptic operator and c is quadratic.

Explicitly these will be given by:

$$V \longrightarrow V$$

$$(a,\varphi) \longmapsto (\star da, \partial \varphi)$$

$$V \xrightarrow{c} V$$

$$(a,\varphi) \longmapsto \pi_{(a,\varphi)} \circ \left(-2\rho^{-1}\left((\varphi \otimes \varphi^*)_0\right), a \cdot \varphi\right) .$$

So via gauge fixing we sent \widetilde{SW} to SW on V modulo S^1 . So we have an S^1 action, but in fact we actually have a pin $(2) = U(1) \cup j \cdot U(1) \subset \mathbb{H}$ action where $j^2 = -1$ and ij = -j. So to get a pin (2) action we just need to specify the action of j:

$$j(a,\varphi) = (-a,\varphi j)$$
.

for
$$\varphi \in S = \mathbb{C}^2 = \mathbb{H}$$
.

Looking ahead, we need a finite dimensional approximation to do Morse theory which we will talk about next week.