Path Finder

Write a program to check if a given path is existing in a graph.

Input

- You will receive an integer $-\mathbf{n}$ number of nodes in a graph.
 - The graph nodes are numbered from 0 to **n** 1.
- On the next **n** lines, you will receive a list of children for the nodes 0 ... **n** 1 (separated by a space).
- On the next line you will receive an integer -p number of paths to check.
- On the next **p** lines, you will receive a path of nodes (separated by a space).

Output

For each path print either "yes" – if the path exists, or "no" if the path does not exist.

Constraints

- Path will always contain at least 2 nodes.
- Nodes in the path will always be in the range [0... n 1].

Examples

Input	Output	Comments
7 3 6 4 5	yes no yes	2
1 2 3 0 3 1 5 0 3 1 5 6 0 6 2		3 6
5 3 4 2	no yes no	0 4
1 1 3 0 3 2 1 0 4 1 2 0 4 1 3		3

