Evaluating the wild Brauer group

Rachel Newton

King's College London

International Seminar on Automorphic Forms February 2024

Local-global principles

This talk is about joint work with Martin Bright.

Set-up:

- L number field
- \bullet X/L smooth, projective, geometrically irreducible variety

$$X(L) \subset X(\mathbb{A}_L) = \prod_{v \text{ place of } L} X(L_v)$$

SO

$$X(L) \neq \emptyset \Longrightarrow X(\mathbb{A}_L) \neq \emptyset.$$

- If ' ' holds in a family of varieties, we say the Hasse principle holds for that family.
- If $\overline{X(L)} = X(\mathbb{A}_L)$, we say weak approximation holds.

Rachel Newton

Brauer-Manin obstruction

Definition 1

The Brauer group of X is Br $X = \mathrm{H}^2_{\mathrm{\acute{e}t}}(X,\mathbb{G}_m)$.

Let $P_{\nu} \in X(L_{\nu})$. Then evaluation at P_{ν} gives a map

$$\operatorname{\mathsf{Br}} X o \operatorname{\mathsf{Br}} L_{\mathsf{v}}$$
 $\mathcal{A} \mapsto \mathcal{A}(P_{\mathsf{v}}).$

For finite v, the Hasse invariant gives a canonical isomorphism

$$\operatorname{inv}_{v}:\operatorname{Br} L_{v}\to \mathbb{Q}/\mathbb{Z}.$$

We also have $\operatorname{Br} \mathbb{C} = 0$ and $\operatorname{Br} \mathbb{R} = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$.

Brauer-Manin obstruction

Theorem 2 (Manin, 1970)

Summing up the invariants gives a pairing

$$X(\mathbb{A}_L) \times \operatorname{Br} X \longrightarrow \mathbb{Q}/\mathbb{Z}$$

$$((P_{\nu})_{\nu}, A) \longmapsto \sum_{\nu} \operatorname{inv}_{\nu} A(P_{\nu})$$

such that $\overline{X(L)} \subset X(\mathbb{A}_L)^{\operatorname{Br} X} := adelic points orthogonal to \operatorname{Br} X$.

- If $X(\mathbb{A}_L) \neq \emptyset$ but $X(\mathbb{A}_L)^{\operatorname{Br} X} = \emptyset$ then $X(L) = \emptyset$ and we say there's a Brauer–Manin obstruction to the Hasse principle.
- If $X(\mathbb{A}_L)^{\operatorname{Br} X} \neq X(\mathbb{A}_L)$ then $\overline{X(L)} \neq X(\mathbb{A}_L)$ and we say there's a Brauer–Manin obstruction to weak approximation.

Brauer-Manin obstruction

Suppose $X(\mathbb{A}_L) \neq \emptyset$.

Let $X(\mathbb{A}_L)^{\mathcal{A}}$ denote the set of adelic points orthogonal to $\mathcal{A} \in \operatorname{Br} X[n]$.

Observations:

- If $|\mathcal{A}|: X(L_v) \to \operatorname{Br} L_v[n]$ is non-constant for some v then $X(\mathbb{A}_L)^{\mathcal{A}} \neq X(\mathbb{A}_L)$, i.e. \mathcal{A} obstructs weak approximation.
 - Proof: Let $(P_w)_w \in X(\mathbb{A}_L)$. If $\sum_w \operatorname{inv}_w \mathcal{A}(P_w) = 0$ then replace P_v with some Q_v such that $\operatorname{inv}_v \mathcal{A}(Q_v) \neq \operatorname{inv}_v \mathcal{A}(P_v)$. \square
- If $|\mathcal{A}|: X(L_v) \to \operatorname{Br} L_v[n] = \frac{1}{n}\mathbb{Z}/\mathbb{Z}$ is surjective for some finite v then $X(\mathbb{A}_L)^{\mathcal{A}} \neq \emptyset$, i.e. \mathcal{A} does not obstruct the Hasse principle.

Notation and assumptions:

- S set containing the Archimedean primes of L and the primes of bad reduction for X
- Pic \bar{X} torsion-free

Question (Swinnerton-Dyer)

Is there an open and closed set $Z \subset \prod_{v \in S} X(L_v)$ such that

$$X(\mathbb{A}_L)^{\operatorname{Br} X} = Z \times \prod_{v \notin S} X(L_v)$$
?

Are the evaluation maps $|A|: X(L_{\nu}) \to \operatorname{Br} L_{\nu}$ constant for all $\nu \notin S$?

Does the Brauer-Manin obstruction involve only Archimedean primes and primes of bad reduction?

Why the assumption on $\operatorname{Pic} \bar{X}$?

Non-example

 E/\mathbb{Q} elliptic curve with $\# \coprod (E) < \infty$ and $E(\mathbb{Q}) = \{\mathcal{O}_E\}$. Then

$$E(\mathbb{A}_{\mathbb{Q}})^{\operatorname{Br} E} = E(\mathbb{R})^{0} \times \prod_{P} \{\mathcal{O}_{E}\}$$

where $E(\mathbb{R})^0$ is the connected component of the identity in $E(\mathbb{R})$.

Theorem 3 (Colliot-Thélène and Skorobogatov, 2013)

If $\operatorname{Pic} \bar{X}$ is torsion free and $\operatorname{Im}(\operatorname{Br} X \to \operatorname{Br} \bar{X})$ is finite then the only primes that can play a rôle in the Brauer–Manin obstruction are:

- Archimedean primes;
- primes of bad reduction;
- primes dividing $\#\operatorname{Im}(\operatorname{Br} X \to \operatorname{Br} \bar{X})$.

Theorem 4 (Bright-N., 2023)

If $H^0(X, \Omega_X^2) \neq 0$ then every prime of good ordinary reduction is involved in a Brauer–Manin obstruction over some finite extension of L.

More precisely: Suppose $\mathrm{H}^0(X,\Omega_X^2)\neq 0$. Let $\mathfrak{p}\mid p$ be a prime of good ordinary reduction. Then $\exists \ L'/L$ finite, a prime $\mathfrak{p}'\mid \mathfrak{p}$, and $\mathcal{A}\in \operatorname{Br} X_{L'}\{p\}$ such that

$$|\mathcal{A}|: X(L'_{\mathfrak{p}'}) o \operatorname{Br} L'_{\mathfrak{p}'}$$

is non-constant. In particular, ${\mathcal A}$ obstructs weak approximation on $X_{L'}$.

Theorem 5 (Margherita Pagano, 2022)

Let X/\mathbb{Q} be given by

$$X: x^3y + y^3z + z^3w + w^3x + xyzw = 0$$

and let
$$A = \left(\frac{z^3 + w^2x + xyz}{x^3}, \frac{-z}{x}\right) \in \operatorname{Br} X$$
. Then:

- 2 is a prime of good reduction for X, and
- $|\mathcal{A}|: X(\mathbb{Q}_2) \to \frac{1}{2}\mathbb{Z}/\mathbb{Z}$ is not constant.

Why assume $H^0(X, \Omega_X^2) \neq 0$?

Hodge theory:

$$\mathrm{H}^2(X(\mathbb{C}),\mathbb{C})=\mathrm{H}^{0,2}(X(\mathbb{C}))\oplus\mathrm{H}^{1,1}(X(\mathbb{C}))\oplus\mathrm{H}^{2,0}(X(\mathbb{C}))$$

where
$$\mathrm{H}^{p,q}(X(\mathbb{C})) \cong \mathrm{H}^q(X_{\mathbb{C}},\Omega^p)$$
.

Let
$$b_2=\dim \mathrm{H}^2(X(\mathbb{C}),\mathbb{C})$$
 and $\rho=\operatorname{rk} \operatorname{NS} X_{\mathbb{C}} \leq \dim \mathrm{H}^{1,1}(X(\mathbb{C})).$

Then
$$\mathrm{H}^0(X,\Omega^2_X) \neq 0 \implies b_2 - \rho > 0$$
.

Grothendieck: $(\mathbb{Q}/\mathbb{Z})^{b_2-\rho} \hookrightarrow \operatorname{Br} \bar{X}$.

So $\exists L'/L$ finite such that the transcendental Brauer group $Im(Br X_{L'} \to Br \bar{X})$ is non-trivial.

On the other hand, if the transcendental Brauer group is trivial, then Theorem 3 (Colliot-Thélène and Skorobogatov) shows that the answer to Swinnerton-Dyer's question is yes.

Question

Suppose $\operatorname{Pic} \bar{X}$ is torsion-free. Is there a finite set S of primes that can be involved in the Brauer–Manin obstruction for X/L? Can we describe S?

Theorem 6 (Bright-N., 2023)

Assume $\operatorname{Pic} \bar{X}$ is torsion-free. Then \exists a finite set of primes S such that, for all $A \in \operatorname{Br} X$ and all $\mathfrak{p} \notin S$, $|A| : X(L_{\mathfrak{p}}) \to \operatorname{Br} L_{\mathfrak{p}}$ is constant. The set S can be taken to consist of:

- Archimedean primes;
- 2 primes of bad reduction;
- **3** primes \mathfrak{p} satisfying $e_{\mathfrak{p}} \geq p-1$, where $\mathfrak{p} \mid p$ and $e_{\mathfrak{p}}$ is the absolute ramification index;
- primes $\mathfrak p$ for which $H^0(\mathcal X(\mathfrak p),\Omega^1)\neq 0$, where $\mathcal X(\mathfrak p)$ is the special fibre.

Corollary 7

Let X/\mathbb{Q} be a K3 surface. Let $S = \{\infty, 2\} \cup \{primes \ of \ bad \ reduction\}$. Then, for all $A \in \operatorname{Br} X$ and all $\mathfrak{p} \notin S$, $|A| : X(L_{\mathfrak{p}}) \to \operatorname{Br} L_{\mathfrak{p}}$ is constant.

Proof.

For all odd primes p, $e_p = 1 .$

If p is a good prime then the special fibre $\mathcal{X}(p)$ is also a K3 surface and hence $\mathrm{H}^0(\mathcal{X}(p),\Omega^1)=0$.

Note: in Theorem 6 we do not require the transcendental Brauer group to be finite.

Question: Can the transcendental Brauer group of X be infinite?

Answer: No, if X is an abelian variety or K3 surface (Skorobogatov–Zarhin, 2008). Unknown in general.

The local picture

From now on:

- k p-adic field
- \bullet π uniformiser
- F residue field
- X/k smooth geometrically irreducible variety
- $\mathcal{X}/\mathcal{O}_k$ smooth model
- ullet $Y=\mathcal{X} imes_{\mathcal{O}_k}\mathbb{F}$ special fibre, assumed geometrically irreducible

The evaluation filtration

Suppose $Q \in X(k)$ extends to $\mathcal{X}(\mathcal{O}_k)$ and let $Q_0 \in Y(\mathbb{F})$ be its reduction. Then the following diagram commutes

$$\begin{array}{ccc} \mathcal{A} & & \operatorname{Br} X(p') \stackrel{\partial}{\longrightarrow} \operatorname{H}^1(Y, \mathbb{Q}/\mathbb{Z})(p') \\ \downarrow & & \downarrow Q_0^* & & \downarrow Q_0^* \\ \mathcal{A}(Q) & & \operatorname{Br} k(p') \stackrel{\partial}{\longrightarrow} \operatorname{H}^1(\mathbb{F}, \mathbb{Q}/\mathbb{Z})(p') \end{array}$$

where $\operatorname{Br} X(p')$ denotes the prime-to-p torsion and ∂ denotes the residue map.

Key point: If $A \in \operatorname{Br} X(p')$ then A(Q) only depends on Q_0 .

This is **not true** for $A \in Br X[p]$.

The evaluation filtration

Classifying elements of $\operatorname{Br} X$ according to the π -adic accuracy needed to evaluate them yields a filtration on $\operatorname{Br} X$ called the evaluation filtration.

Definition 8 (Evaluation filtration)

For $n \ge -1$, Ev_n Br X consists of elements whose evaluation factors through $\mathcal{X}(\mathcal{O}_k) \to \mathcal{X}(\mathcal{O}_k/\pi^{n+1})$.

Kato's filtration by Swan conductor

Now let $K = \operatorname{Frac}(\operatorname{henselisation}(\mathcal{O}_{\mathcal{X},Y})).$

$$\operatorname{Br} X \hookrightarrow \operatorname{Br}(k(X)) \to \operatorname{Br} K$$

Kato defined a filtration fil_n on Br K called the filtration by Swan conductor.

Kato's filtration by Swan conductor

Proposition 9 (Kato)

$$\operatorname{fil}_0\operatorname{Br} K=\ker(\operatorname{Br} K\to\operatorname{Br} K^{nr}).$$

There is a residue map ∂ : fil₀ Br $K[n] \to \mathrm{H}^1_{\mathrm{\acute{e}t}}(F,\mathbb{Z}/n\mathbb{Z})$, where F is the residue field of K, which is the function field of Y.

The refined Swan conductor

Theorem 10 (Kato)

For $n \ge 1$, \exists an injective homomorphism

$$\operatorname{rsw}_n : \frac{\operatorname{fil}_n \operatorname{Br} K}{\operatorname{fil}_{n-1} \operatorname{Br} K} \hookrightarrow \Omega_F^2 \oplus \Omega_F^1$$
$$\mathcal{A} \mapsto (\alpha, \beta) =: \operatorname{rsw}_n(\mathcal{A}) \quad \text{``refined Swan conductor''}.$$

The refined Swan conductor

If $\zeta_p \in K$ then film $\operatorname{Br} K[p]$ is generated by cyclic algebras of the form

$$(1+x\pi^{e'-n},y)_p$$

where $x \in \mathcal{O}_K, y \in K^{\times}$ and $e' = \frac{pe}{p-1}$ where $e = \operatorname{ord}_K(p)$.

In this case for 0 < n < e' and $p \nmid n$,

$$(1+x\pi^{e'-n},y)_p \longleftrightarrow \bar{x}\frac{d\bar{y}}{\bar{y}}$$

$$\xrightarrow{\mathsf{fil}_n\,\mathsf{Br}\,K} \xleftarrow{\quad\cong\quad} \Omega^1_F \xrightarrow{\mathsf{rsw}_n} \Omega^2_F \oplus \Omega^1_F$$

$$\gamma \longmapsto (d\gamma, n\gamma).$$

Comparison of filtrations

Recall:

$$\operatorname{Br} X \hookrightarrow \operatorname{Br}(k(X)) \to \operatorname{Br} K$$

so fil_n gives a filtration on Br X.

Theorem 11 (Bright-N., 2023)

- For $n \ge 1$, $\operatorname{Ev}_n \operatorname{Br} X = \{ \mathcal{A} \in \operatorname{fil}_{n+1} \operatorname{Br} X \mid \operatorname{rsw}_{n+1}(\mathcal{A}) \in \Omega^2_F \oplus 0 \};$
- $\operatorname{Ev_0}\operatorname{Br} X=\operatorname{fil_0}\operatorname{Br} X;$
- $\bullet \ \operatorname{Ev}_{-1}\operatorname{Br} X=\{\mathcal{A}\in\operatorname{fil_0}\operatorname{Br} X\mid \partial\mathcal{A}\in\operatorname{H}^1(\mathbb{F},\mathbb{Q}/\mathbb{Z})\}.$

Comparison of filtrations

Claim:

 $\operatorname{fil}_n\operatorname{Br} X\subset\{\mathcal{A}\in\operatorname{fil}_{n+1}\operatorname{Br} X\mid\operatorname{rsw}_{n+1}(\mathcal{A})\in\Omega^2_F\oplus 0\}$, with equality if $p\nmid n+1$.

Proof of Claim:

$$\mathsf{rsw}_{n+1}: \frac{\mathsf{fil}_{n+1}\,\mathsf{Br}\,X}{\mathsf{fil}_n\,\mathsf{Br}\,X} \hookrightarrow \Omega^2_F \oplus \Omega^1_F.$$

- Let $\mathcal{A} \in \operatorname{fil}_{n+1} \operatorname{Br} X$. Then $\mathcal{A} \in \operatorname{fil}_n \operatorname{Br} X \iff \operatorname{rsw}_{n+1}(\mathcal{A}) = (0,0)$. So $\operatorname{fil}_n \operatorname{Br} X \subset \{\mathcal{A} \in \operatorname{fil}_{n+1} \operatorname{Br} X \mid \operatorname{rsw}_{n+1}(\mathcal{A}) \in \Omega_F^2 \oplus 0\}$.
- Let $rsw_{n+1}(A) = (\alpha, \beta)$. If $p \nmid n+1$ then $\beta = 0 \implies \alpha = 0$.

Variation of wild evaluation maps on *p*-adic discs

Definition 12

For
$$P \in \mathcal{X}(\mathcal{O}_k)$$
, let $B(P, n) = \{Q \in \mathcal{X}(\mathcal{O}_k) \mid Q \equiv P \pmod{\pi^n}\}$.

Theorem 13 (Bright-N., 2023)

Let $P \in \mathcal{X}(\mathcal{O}_k)$. Let $\mathcal{A} \in \operatorname{fil}_n \operatorname{Br} X$ with $\operatorname{rsw}_n(\mathcal{A}) = (\alpha, \beta) \in \Omega_F^2 \oplus \Omega_F^1$. Then:

- |A| varies linearly on B(P, n), controlled by β_{P_0} ;
- if $\beta = 0$ then $|\mathcal{A}|$ is constant on B(P, n) and varies quadratically on larger discs, controlled by α_{P_0} .

Variation of wild evaluation maps on p-adic discs

More precisely, for

$$B(P, n) \ni Q = P + \pi^n \underline{v}$$

write

$$[\overrightarrow{PQ}]_n := \underline{v} \pmod{\pi} \in T_{P_0}Y.$$

Then for $Q \in B(P, n)$,

$$\operatorname{inv} \mathcal{A}(Q) = \operatorname{inv} \mathcal{A}(P) + \operatorname{Tr}_{\mathbb{F}/\mathbb{F}_p} \beta_{P_0}([\overrightarrow{PQ}]_n).$$

In particular, if $\beta_{P_0} \neq 0$, and $A \in \operatorname{Br} X[p]$ then |A| maps B(P, n) surjectively to $\operatorname{Br} k[p]$.

Applications to the Brauer-Manin obstruction

Recall:

Theorem 6 (Bright-N., 2023)

Assume $\operatorname{Pic} \bar{X}$ is finitely generated and torsion-free. Then \exists a finite set of places S such that, for all $A \in \operatorname{Br} X$ and all $\mathfrak{p} \notin S$, $|A| : X(L_{\mathfrak{p}}) \to \operatorname{Br} L_{\mathfrak{p}}$ is constant. The set S can be taken to consist of:

- Archimedean places;
- places of bad reduction ;
- **3** places \mathfrak{p} satisfying $e_{\mathfrak{p}} \geq p-1$, where $\mathfrak{p} \mid p$ and $e_{\mathfrak{p}}$ is the absolute ramification index;
- places $\mathfrak p$ for which $H^0(\mathcal X(\mathfrak p),\Omega^1)\neq 0$, where $\mathcal X(\mathfrak p)$ is the special fibre.

Idea of the proof of Theorem 6

Let $\mathfrak{p} \notin S$. Let $X_{\mathfrak{p}} = X \times_L L_{\mathfrak{p}}$.

Aim: show that $\operatorname{Br} X_{\mathfrak{p}} = \operatorname{Ev}_{-1} \operatorname{Br} X_{\mathfrak{p}}$.

Step 1: show that $\operatorname{Br} X_{\mathfrak{p}} = \operatorname{fil}_0 \operatorname{Br} X_{\mathfrak{p}}$.

Step 2: show that $\operatorname{fil}_0\operatorname{Br} X_{\mathfrak{p}}=\operatorname{Ev}_{-1}\operatorname{Br} X_{\mathfrak{p}}.$

Idea of the proof of Theorem 6

Step 1: show that $\operatorname{Br} X_{\mathfrak{p}} = \operatorname{fil}_0 \operatorname{Br} X_{\mathfrak{p}}$.

Sketch of Step 1: Let $A \in \operatorname{fil}_n \operatorname{Br} X_{\mathfrak{p}}$, $n \geq 1$. Write $\operatorname{rsw}_n(A) = (\alpha, \beta)$. Need to show $\operatorname{rsw}_n(A) = (0, 0)$.

Fact: $\beta \in H^0(\mathcal{X}(\mathfrak{p}), \Omega^1)$.

- Now $H^0(\mathcal{X}(\mathfrak{p}), \Omega^1) = 0$, since $\mathfrak{p} \notin S$. So $\beta = 0$. Remains to show $\alpha = 0$.
- If $p \nmid n$ then $\beta = 0 \implies \alpha = 0$. \odot
- Since $\mathfrak{p} \notin S$, we have $e < p-1 \implies e' = \frac{pe}{p-1} < p$. Thus, $p \nmid n \ \forall n \leq e'$.
- Remaining case: n > e' and $p \mid n$. In this case, $pA \in \operatorname{fil}_{n-e}\operatorname{Br} X_{\mathfrak{p}}$ and $\operatorname{rsw}_{n-e}(pA) = (\frac{p}{\pi^e}\alpha, \frac{p}{\pi^e}\beta)$. Since $p \nmid n-e$ and $\beta = 0$, we get $\alpha = 0$.

Idea of the proof of Theorem 6

Step 2: show that $\operatorname{fil}_0\operatorname{Br} X_{\mathfrak{p}}=\operatorname{Ev}_{-1}\operatorname{Br} X_{\mathfrak{p}}.$

Sketch of Step 2:Colliot-Thélène-Skorobogatov: $\operatorname{Br} X_{\mathfrak{p}}(p') \subset \operatorname{Ev}_{-1} \operatorname{Br} X_{\mathfrak{p}}.$

Remains to deal with $A \in fil_0 \operatorname{Br} X_{\mathfrak{p}}[p^r]$.

 $|\mathcal{A}|$ factors through ∂ : fil₀ Br $X_{\mathfrak{p}} \to \mathrm{H}^1(Y, \mathbb{Z}/p^r)$.

The Hochschild-Serre spectral sequence gives a short exact sequence

$$0 \to \mathrm{H}^1(\mathbb{F}, \mathbb{Z}/p^r) \to \mathrm{H}^1(Y, \mathbb{Z}/p^r) \to \mathrm{H}^1(\bar{Y}, \mathbb{Z}/p^r).$$

Since $\operatorname{Pic} \bar{X}$ is torsion-free, $\operatorname{H}^1(\bar{X},\mathbb{Z}/p^r)=0$.

With some work, this implies that $\mathrm{H}^1(\bar{Y},\mathbb{Z}/p^r)=0$ and hence $\mathrm{H}^1(\mathbb{F},\mathbb{Z}/p^r)=\mathrm{H}^1(Y,\mathbb{Z}/p^r)$. \square