- G non-empty $\implies \exists H \subseteq G \text{ with } \delta(H) \geq \frac{1}{2}\bar{d}(G).$
- Havel-Hakimi: (d_1, d_2, \cdots, d_n) is graphic iff $(d_2 1, \cdots, d_{d_1+1} 1, d_{d_1+2}, \cdots, d_n)$ is graphic.
- Erdos-Gallai: non-increasing sequence (d_1, d_2, \cdots, d_n) is graphic iff $\sum_{i=1}^n d_i$ is even and $\sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^n \min\{d_i, k\}$ for all k.
- G contains a cycle \implies $2 \operatorname{diam}(G) + 1 \ge \operatorname{girth}(G)$.
- $\delta(G) \ge k-1 \implies G$ contains a subgraph isomorphic to any order-k tree.
- Matching: $\nu(G) \leq \frac{|V(G)|}{2}$; Vtx cover: $\tau(G) \geq \nu(G)$.
- Clique: $\omega(G)$; Independence: $\alpha(G) = |V(G)| \tau(G)$.
- Kneser graph: KG(n,k), vertices are $\mathcal{P}([n])$ and edges exist between disjoint subsets.
- # pairwise intersecting subsets in $KG(n,k) \leq C_{k-1}^{n-1}$.
- Matching is maximum iff no augmenting path.
- König's Thm: $\tau(G) = \nu(G)$ for bipartite G.
- Hall's Thm: bipartite G contains a matching perfect to A iff $\forall S \subseteq A, |N_G(S)| \ge |S|$.
- d-regular bipartite graphs can be decomposed into d perfect matchings.
- $\alpha(L(G)) = \nu(G)$.
- Tutte's Thm: G has a perfect matching iff $\forall U \subseteq V(G)$, $o(G-U) \leq |U|$.
- Petersen's Thm: connected 3-regular graph with no cut edge contains a perfect matching.
- Connectivity: $\kappa(G) \leq \kappa'(G) \leq \delta(G)$.
- $\kappa(G) \ge 2 \implies G$ contains a cycle.
- Mader's Thm: $\bar{d}(G) \ge 4k \implies G$ contains a k-connected subgraph.
- Block: maximal connected cut-vertex-free subgraph. Distinct blocks share at most 1 vertex and no edge is in different blocks.
- Block graph: bipartite on cut vertices and blocks and tree for connected G.

- Ear decomposition: G is 2-connected iff it can be constructed by appending H-paths to a cycle.
- Menger's Thm: min size of separating sets for $(A, B) = \max \#$ of vertex-disjoint A-B paths.
 - 1. Local: min # vtxs separating $a, b = \max \#$ internally vertex-disjoint a-b paths; min # edges separating $a, b = \max \#$ edge-disjoint a-b.
 - 2. Global: k-connected iff $\forall u, v, \exists k$ internally vertex-disjoint u-v paths. k-edge-connected iff $\forall u, v, \exists k$ edge-disjoint u-v paths.
- Colour: $\omega(G), \frac{v(G)}{\alpha(G)} \le \chi(G) \le \frac{1}{2} + \sqrt{2e(G) + \frac{1}{4}}, \Delta(G) 1, \delta(H) + 1 \le 1 + \max_{H \subseteq G} \delta(H); \chi'(G) = \chi(L(G)).$
- k-critical $\Longrightarrow \delta(G) \ge k 1$.
- Brook's Thm: connected graph not isomorphic to K_n or odd cycle: $\chi(G) \leq \Delta(G)$.
- k-constructible: $G \cong K_k$; $\exists k$ -constructible H with $x,y \in V(H)$ and $xy \notin E(H)$ s.t. $G \cong (H+xy)/xy$; $\exists k$ -constructible H_1, H_2 with $V(H_1) \cap V(H_2) = \{x\}$ and $y_1x \in E(H_1), y_2x \in E(H_2)$ s.t. $G \cong H_1 \cup H_2 y_1x y_2x + y_1y_2$.
- Hajós's Thm: $\chi(G) \ge k$ iff $\exists k$ -constructible subgraph.
- k-critical $\implies k$ -constructible.
- $\chi'(K_n) \ge \begin{cases} n-1 & \text{if } n \text{ even} \\ n & \text{otherwise} \end{cases}, \Delta(G).$
- $\chi'(G) \ge \Delta(G)$, bipartite $\chi'(G) = \Delta(G)$ (König).
- Vizing's Thm: $(I)\Delta(G) \le \chi'(G) \le \Delta(G) + 1$ (II).
- **Perfect graph:** $\chi = \omega$ for all induced subgraphs. E.g. $K_n, \overline{K_n}$, (for bip) non-empty $G, \overline{G}, L(G)$.
- Weak perfect graph: perfect iff complement is perfect.
- Strong perfect graph: perfect iff no odd hole nor antihole.
- Euler's Formula: $n m + \ell = 2$.
- Planar graph of order ≥ 3 has $\leq (3v(G) 6)$ edges.
- Fáry's Thm: planar G can be draw with straight lines.
- H topological minor of G if G has a subdivision of H.

- *H* is **minor** of *G* if it can be obtained by deleting edges, deleting vertices or contracting edges.
- Minor with $\Delta \geq 3$ is topological minor.
- Branching sets: partition $\mathcal{V} := \{V_1, V_2, \cdots, V_n\}$ s.t. $\forall V_x \in \mathcal{V},$
 - 1. $x \in V(G)$,
 - 2. $G[V_x]$ is connected, and
 - 3. $\exists V_y \in \mathcal{V} \{V_x\}$ s.t. $\exists uv \in E(G)$ with $u \in V_x$ and $v \in V_y$.
- Wagner's Thm: planar iff K_5 and $K_{3,3}$ are not minor.
- Kuratowski's Thm: planar iff contain no subdivision of K_5 nor $K_{3,3}$.
- Hanani-Tutte Thm: planar iff has drawing where all pairs of edges cross even number of times.
- Geometric dual: $|V(G^*)| = |\mathcal{F}(G)|, |E(G^*)| = |E(G)|, |\mathcal{F}(G^*)| = |V(G)|.$
- $S \subseteq E(G)$ induces a cycle iff S^* induces a min edge cut.
- Abstract dual: \exists bijection $f: E(G) \to E(G^*)$ s.t. $\forall S \subseteq E(G), S$ induces a cycle iff $S^* := f(S)$ is a min edge cut.
- Whitney's Thm: A graph is planar if and only if it has an abstract dual.
- Four-colour Thm: planar $\chi \leq 4$.
- Grötzsch's Thm: triangle-free planar $\chi \leq 3$.
- Eulerian circuit: uses all edges exactly once.
- Connected multigraph is Eulerian iff every vtx has an even degree.
- 2k vertices with odd degrees \implies min # trails to decompose G is max $\{k,1\}$.
- K_n , $K_{m,n}$, Q^d and platonic graphs are Hamiltonian. Petersen is not, but is hypo-Hamiltonian.
- G is Hamiltonian \implies # CCs in $G X \le |X|$.
- Dirac's Thm: G with order ≥ 3 and $\delta(G) \geq \frac{n}{2}$ is Ham.
- *n*-vertex Hamiltonian graph contains a path of length $\geq \min\{n-1, 2\delta(G)\}.$
- graph without any path of length k, then $e(G) \leq \frac{k-1}{2}n$.
- Ore's Thm: graph of order ≥ 3 is Hamiltonian if $\forall u \not\sim v, d_G(u) + d_G(v) \geq n$.

- Hamiltonian closure: connect all non-adjacent vertices with degree sum $\geq n$.
- Hamiltonian iff closure is Hamiltonian.
- Chvátal-Erdös Thm: G with order ≥ 3 is Hamiltonian if $\kappa(G) \geq \alpha(G)$.
- 2-connected k-regular graphs of order $\leq 3k$ are Ham.
- Robinson-Wormald Thm: almost all regular graphs are Hamiltonian.
- Smith's Thm: d-regular graph where d is odd, $\forall e$, \exists even # Hamiltonian cycles containing e.
- Every cubic Hamiltonian graph contains at least 3 Hamiltonian cycles.
- Hamiltonian sequence: all degree sequences elementwise at least *a* produce Hamiltonian graphs.
- Chvátal's Thm: if $n \geq 3$, a non-decreasing integer sequence (a_1, a_2, \dots, a_n) is Hamiltonian iff $\forall i < \frac{n}{2}, a_i \leq i \implies a_{n-i} \geq n-i$.
- An integer sequence $\{a_i\}_{i=1}^n := (a_1, a_2, \cdots, a_n)$ is path-Hamiltonian iff for every $i \leq \frac{n}{2}$, $a_i < i$ implies $a_{n+1-i} \geq n-i$.
- Vertex-transitive graph: $\forall v_1, v_2 \in V(G)$, \exists isomorphism $f: V(G) \to V(G)$ s.t. $f(v_1) = v_2$.
- Babai's Thm: Every connected vertex-transitive graph G contains a cycle of length at least $\sqrt{3n}$.
- Oriented graph: digraph with no bi-directional edges.
- $\sum_{v \in V(D)} d^+(v) = \sum_{v \in V(D)} d^-(v) = e(D)$
- Eulerian iff $d^+(v) = d^-(v)$ for all v.
- Kernel: $S \subseteq V(D)$ s.t. $\forall u, v \in S, uv, vu \notin E(D)$ and $\forall w \in V(D) S, \exists w' \in S \text{ with } ww' \in E(D).$
- Directed odd cycles have no kernel.
- Richardson's Thm: directed-odd-cycle-free graph has a kernel.
- Every tournament has a Hamiltonian path. Acyclic tournament is called transitive.
- A digraph is acyclic iff it has a topological ordering.

- A tournament contains a unique Hamiltonian path iff it's transitive.
- A non-transitive tournament contains a directed triangle.
- **King:** a vertex in a tournament s.t. every other vertex can reach it by a path of length at most 2.
- Landau's Thm: Every tournament has a king.
- Quasi-kernel: a set of "king"s.
- Chvátal-Lovász Thm: Every digraph has a quasikernel.
- K_n : $\nu = \left\lfloor \frac{n}{2} \right\rfloor, \tau = n 1, \alpha = 1, \kappa = \kappa' = n 1, \chi = n$.
- C_n : $\nu = \alpha = \lfloor \frac{n}{2} \rfloor, \tau = \lceil \frac{n}{2} \rceil, \kappa = \kappa' = 2, \chi = 2 \text{ if } n|2 \text{ else } 3.$
- P_n : $\nu = \alpha = \left\lfloor \frac{n+1}{2} \right\rfloor, \tau = \left\lceil \frac{n}{2} \right\rceil, \kappa = \kappa' = 1.$
- $K_{m,n}$: $\nu = \tau = \kappa = \kappa' = \min\{m, n\}, \alpha = \max\{m, n\}.$
- Q^d : $\nu = \tau = 2^{d-1}, \alpha = 2^{d-1}, \kappa = \kappa' = d$.
- Petersen graph: $\nu = 5, \tau = 6, \alpha = 4, \chi = 3.$