Name – Rahul Ranjan Singh Roll No. – 102203140 Batch – 2CO4

Submission Date – 14, June 2024 Submission to – ELC Faculty

No. of Neighbours(N) and Training-Testing Split(Train:Test)

1. N = 2 and Train:Test = 60:40 Accuracy Score = 0.9542857142857143

Confusion Matrix [[1612 0 1867 18 1652 18 1733 2] 0 1594 17] 3 1418 5] 13 1574 0 1684 19] 53 12 13 1388 10] 8 1510]]

2. N = 2 and Train:Test = 70:30 Accuracy Score = 0.9565079365079365

Confusion Matrix

_	0 07 2									
[[1230	0	2	0	0	1	2	0	0	1]
[0	1367	0	0	0	0	0	1	1	1]
[7	9	1211	5	1	0	1	14	2	2]
[1	4	12	1322	1	13	0	8	6	2]
[2	13	1	0	1181	0	4	3	0	11]
[5	0	1	43	4	1066	9	1	0	3]
[16	0	0	0	2	10	1188	0	0	0]
[0	22	8	0	4	1	0	1276	0	15]
[10	10	10	41	13	38	3	6	1058	8]
[7	5	1	14	42	5	0	52	8	1153]]

3. N = 2 and Train:Test = 75:25 Accuracy Score = 0.9583809523809523

Confusion Matrix

		011 1.100								
[[1	017	0	2	0	0	1	2	0	0	0]
[0	1128	0	0	0	0	0	0	1	1]
[7	9	1023	4	1	0	0	8	0	1]
[0	3	10	1089	1	12	0	6	5	2]
[2	12	1	0	982	0	3	3	0	11]
[3	0	1	35	4	878	9	1	0	3]
[13	2	0	0	2	5	986	0	0	0]
[0	17	5	0	3	1	0	1066	0	11]
[8	7	10	30	11	32	2	4	903	6]
[6	5	1	11	36	5	0	33	7	991]]

4. N = 2 and Train:Test = 80:20 Accuracy Score = 0.9577380952380953

Confusion Matrix

```
0
                                       01
[[817
       0
                        1
                           2
                               0
   0 897
                0
                    0
                        0
                             0
                                 0
                                     1
                                         11
            0
   7
       8 830
                3
                    1
                        0
                             0
                                 8
                                     0
                                         1]
       3
            8 879
                       10
                                     5
                                         1]
   0
                    1
                            0
                                 6
   2
      11
                0 763
                        0
                             1
                                 3
                                     0 101
            1
               27
                    3 7 1 9
                             7
   2
       0
            0
                                     0
                                         3]
       3
            0
                0
                    2
                        3 789
                                 0
                                         0]
[ 11
                                     0
   0
      13
            3
                0
                    3
                        0
                            0 852
                                     0
                                         9]
   5
       6
            7
               25
                    6 23
                             2
                                 4 707
                                         4]
       5
              10
                  30
                        5
                            0 24
                                     7 792]]
```

5. N = 2 and Train:Test = 90:10 Accuracy Score = 0.9611904761904762

Confusion Matrix

```
0
                                        0]
[[389]
       0
                    0
                        0
                            0
                                    0
   0 456
            0
                    0
                        0
                                0
                                    0
                                        1]
               0
                            0
   4
       2 429
               0
                    1
                        0
                                4
                                    0
                                        0]
       3
            3 421
                        3
                                2
                                    2
   0
                    0
                            0
                                        0]
       5
               0 397
                        0
                            0
                                0
                                    0
   0
           0
                                        5]
       0
           0 11
                    2 359
                            5
                                    0
                                        11
       0
           0
               0
                   0
                        2 420
                                0
                                    0
                                        01
       5
           2
   0
               0
                    3
                        0
                            0 406
                                    0
                                        51
       2
                    3
                            2
   3
           1 13
                      11
                                1 370
                                        3]
       3
           0
                6
                  14
                            0 12
   1
                        4
                                    4 390]]
```

6. N = 2 and Train:Test = 95:5 Accuracy Score = 0.9578061015839865

Confusion Matrix

7. N = 4 and Train: Test = 60:40

Accuracy Score = 0.9613095238095238

Confusion Matrix [[1609 1] 0 1865 20 1641 8 1733 0 20 8 14 7] 0 1590 26] 1 1423 16 11] 6 1591 0] 0 1689 0 20] 8 1434 14]

6 1575]]

8. N = 4 and Train: Test = 70:30

Accuracy Score = 0.964047619047619

Cor	ıfusi	ion N	<u> Iatrix</u>							
[[12	228	0	2	0	0	1	3	0	0	2]
[0	1365	0	0	0	0	1	2	1	1]
[4	12	1206	3	1	0	2	19	3	2]
[1	6	6	1320	0	16	1	7	10	2]
[1	12	0	0	1179	0	3	1	0	19]
[4	3	0	28	1	1075	14	1	1	5]
[9	0	0	0	0	4	1202	0	1	0]
[1	20	3	0	2	0	0	1283	0	17]
[6	9	6	24	9	29	3	6	1094	11]
[7	3	2	17	24	5	0	31	3	1195]]

9. N = 4 and Train: Test = 75:25

Accuracy Score = 0.9640952380952381

Confusion Matrix [[1015 2] 0 1126 1] 12 1019 6 1086 3] 0 980 19] 1 888 4] 6 995 0] 0 1067 15] 5 931 8] 3 1016]]

10. N = 4 and Train:Test = 80:20

Accuracy Score = 0.9635714285714285

Confusion Matrix

[[8	15	0	1	0	0	1	2	0	0	2]
[0	896	0	0	0	0	0	1	1	1]
[4	9	830	1	1	0	0	9	2	2]
[0	4	4	879	0	11	1	5	8	1]
[0	10	0	0	759	0	2	1	0	19]
[3	1	0	16	1	724	11	1	1	4]
[4	1	0	0	1	4	798	0	0	0]
[0	12	2	0	2	0	0	854	0	10]
[3	5	4	9	5	24	1	4	729	5]
[6	3	0	13	20	6	0	18	3	810]]

11. N = 4 and Train:Test = 90:10

Accuracy Score = 0.9657142857142857

Confusion Matrix

[[3	88	0	0	0	0	0	0	0	0	1]
[0	456	0	0	0	0	0	0	0	1]
[3		430	0	0	0	0	6	0	0]
[0	3	3	419	0	3	0	2	4	0]
[0	4	0	0	395	0	1	0	0	7]
[2	0	0	5	1	361	7	1	0	3]
[2	0	0	0	0	3	423	0	0	0]
[0	5	1	0	2	0	0	408	0	5]
[3	2	1	5	3	12	1	3	376	3]
[1	2	0	8	8	6	0	8	1	400]]

12. N = 4 and Train:Test = 95:5

Accuracy Score = 0.9619047619047619

Confusion Matrix

[[2	209	0	0	0	0	0	0	0	0	1]
[0.2	215	0	0	0	0	0	0	0	0]
[2	1	205	0	0	0	0	3	0	0]
[0	1	2	206	0	2	0	2	2	0]
[0	1	0	0	185	0	_		0	4]
[1	0	0	2	1	189	5	1	0	2]
[1	0	0	0	0	0	211		0	0]
[0	5	1	0	2	0	0	211	0	3]
[1	0	1	4	2	6	1	1	207	0]
[0	2	0	4	6	3	0	3	1	182]]

13. N = 5 and Train:Test = 60:40

Accuracy Score = 0.9616071428571429

\mathbf{C}	<u>onfus</u>	<u>ion N</u>	<u> 1atrix</u>							
[[1605	0	2	0	0	2	7	1	0	0]
[0	1863	0	0	0	0	3	2	1	2]
[8	22	1631	8	3	0	4	28	6	3]
[2	8	10	1722	0	30	2	9	13	7]
[3	18	0	0	1579	0	4	1	0	37]
[5	4	1	29	3	1433	21	1	1	8]
[11	2	0	0	0	6	1591	0	2	0]
[1	30	3	4	0	0	0	1690	0	24]
[12	17	8	28	9	37	7	6	1446	18]
[8	10	2	17	23	6	1	28	6	1595]]

14. N = 5 and Train: Test = 70:30

Accuracy Score = 0.9635714285714285

Cor	ıfus	ion N	<u> Iatrix</u>							
[[12	225	0	2	0	0	1	6	1	0	1]
[0	1365	0	0	0	0	1	2	1	1]
[4	14	1197	7	2	1	2	20	3	2]
[1	5	7	1315	0	19	0	9	10	3]
[2	10	0	0	1172	0	3	1	0	27]
[3	3	0	26	3	1073	18	1	1	4]
[7	1	0	0	0	4	1204	0	0	0]
[1	19	3	0	1	0	0	1281	0	21]
[7	10	5	18	10	26	4	2	1101	14]
[7	8	1	15	16	4	0	21	7	1208]]

15. N = 5 and Train: Test = 75:25

Accuracy Score = 0.9638095238095238

Confusion Matrix [[1013 0] 0 1126 1] 12 1014 1] 5 1082 4] 0 974 26] 3 884 14 3] 5 998 0] 0 1067 17] 1 932 10] 11 16 4 1030]]

16. N = 5 and Train:Test = 80:20

Accuracy Score = 0.9636904761904762

Confusion Matrix

```
[[815]
                   0
                           3
                                      0]
   0 896
                                      1]
           0
               0
                   0
                       0
       9 827
                           0 13
   4
                       1
                                      2]
       3
           3 874
                   0 16
                           0
   1
                                      2]
       8
           0
              0 758
                       0
                           2
                                  0 21]
       2
                   3 722 13
                                      2]
           0 16
                              0
      1
           0
                       3 799
                              0
                                  0
                                      0]
               0
                  1
           2
                           0 853
   0 11
               0
                   1
                       0
                                  0 13]
       5
           4 10
                   7
                     20
                           2
   5
                               2 727
                                      7]
       6
           1 11 13
                       3
                           0 12
                                   3 824]]
```

17. N = 5 and Train: Test = 90:10

Accuracy Score = 0.9657142857142857

Confusion Matrix

[[3	88	0	0	0	0	0	0	1	0	0]
[0	456	0	0	0	0	0	0	0	1]
[3	2	425	0	2	0	0	8	1	0]
[1	3	2	418	0	4	0	3	2	1]
[0	3	0	0	392	0	0	0	0	12]
[1	0	0	5	1		9	1	1	2]
[2	0	0	0	0	2	424	0	0	0]
[0	4	1	0	1	0	0	408	0	7]
[3	1	0	5	4	11	0	1	380	4]
[1	3	0	8	6	3	0	6	2	405]]

18. N = 5 and Train:Test = 95.5

Accuracy Score = 0.9647619047619047

Confusion Matrix

```
[[209
       0
           0
               0
                   0
                       0
                           0
                               1
                                   0
                                       0]
   0 215
           0
               0
                   0
                       0
                           0
                               0
                                   0
                                       0]
       1 203
                              3
   2
               0
                   1
                       0
                          0
                                  1
                                       0]
   1
       1
           1 206
                   0
                                  1
                                       1]
              0 185
   0
       0
           0
                                       5]
       0
               2
                   1 190
                                       11
   0
           0
           0
              0
                   0
                       0 211
                               0
                                       0]
           1
   0
               0
                  1
                       0
                          0 212
                                   0
                                       4]
       0
           0
               3
                   3
                       7
                               0 208
                                       1]
                           0
                   3
   0
           0
               5
                       1
                           0
                               1
                                   2 187]]
```

19. N = 6 and Train:Test = 60:40

Confusion Matrix [[1606 0] 0 1864 27 1628 11 1727 10] 0 1579 32] 5 1429 5 1592 0] 0 1686 19]

8 1450

17]

3 1580]]

20. N = 6 and Train: Test = 70:30

Accuracy Score = 0.9618253968253968

Confusion Matrix [[1225 1] 0 1365 15 1197 2] 7 1315 4] 0 1173 24] 2 1070 5] 3 1199 0] 0 1278 18] 4 1094 14] 4 1203]]

21. N = 6 and Train:Test = 75:25

Accuracy Score = 0.9616190476190476

Confusion Matrix [[1013 1] 0 1127 1] 13 1015 1] 6 1083 3] 0 974 24] 2 881 4] 2 995 0] 0 1065 15] 2 923 5 1021]]

22. N = 6 and Train:Test = 80:20

```
[[815
                0
                      2 1
                                1]
  0 896
         0
               0
                                11
            0
     12 825
                   0
                     0 10
                                2]
      5
                                2]
         4 874
               0 14
                             6
      9
           0 759
                            0 20]
         0
         0 20
               2 718 12
                                3]
                  1 798
     1
         0 0
               0
                        0
                                0]
 0 15
           0
               1
                   0
                     0 852 0 10]
         3 13
               7 18
                      4
                         2 723
                                6]
        1 10 16
                  4
                      0 14 4 818]]
```

23. N = 6 and Train:Test = 90:10

Accuracy Score = 0.9628571428571429

Confusion Matrix

[[3	88	0	0	0	0	0	0	1	0	0]
[0	456	0	0	0	0	0	0	0	1]
	3	2	426	0	1	1	0	8	0	0]
[1	3	2	419	0	3	0	3	2	1]
[1	3	0	0	395	0	_		0	8]
[1	0	0	11	1	353	9	2	1	2]
[3	0	0	0	0	2	423	0	0	0]
[0	7	1	0	2	0	0	405	0	6]
[3	1	0	8	5	10	3	1	375	3]
Γ	1	3	0	7	8	3	0	7	1	40411

24. N = 6 and Train: Test = 95:5

Accuracy Score = 0.96

Confusion Matrix

[[2	09	0	0	0	0	0	0	1	0	0]
[0 2	215	0	0	0	0	0	0	0	0]
[2	2 2	203	0	0	1	0	3	0	0]
[1	1	1 2	205	0	2	0	3	1	1]
[0	0	0		187	0	0	0	0	3]
[0	0	0	5	1	185	6	2	1	1]
[1	0	0	0	0	0	211	0	0	0]
[0	6	1	0	2	0	0	209	0	4]
[1	0	0	4	4	7	0	0	206	1]
[0	2	0	4	4	2	0	2	1	186]]

25. N = 7 and Train:Test = 60:40

[[1600	1	2	0	0	3	10	1	0	0]
[0	1862	1	0	1	0	3	1	1	2]
[9	27	1618	9	2	1	5	34	5	3]
[2	11	9	1717	2	28	1	11	14	8]
[3	24	0	0	1563	0	4	1	0	47]
[4	5	2	25	3	1428	25	1	2	11]
[9	1	0	0	0	5	1594	0	3	0]
[1	34	3	1	1	0	0	1682	1	29]
[11	18	8	30	12	24	8	7	1450	20]
[9	13	1	20	25	5	1	29	3	1590]]

26. N = 7 and Train:Test = 70:30

Accuracy Score = 0.9625396825396826

Confusion Matrix

[[]]	1222	0	2	0	0	2	8	1	0	1]
[0	1364	1	0	0	0	1	2	1	1]
[4	14	1192	5	1	0	3	27	4	2]
[2	7	6	1311	1	17	1	10	10	4]
[2	13	0	0	1167	0	3	1	0	29]
[3	3	0	18	1	1079	20	1	0	7]
[8	1	0	0	0	4	1201	0	2	0]
[1	23	3	0	1	0	0	1271	0	27]
[7	10	4	15	11	20	7	4	1106	13]
[7	7	1	18	14	3	0	18	4	1215]]

27. N = 7 and Train:Test = 75:25

Accuracy Score = 0.9614285714285714

Confusion Matrix

00111	· CO	1011 112								
[[101	11	0	2	0	0	1	6	1	0	1]
[0	1125	1	0	0	0	1	1	1	1]
[4	14	1007	2	1	0	2	18	4	1]
[1	6	5	1081	0	15	1	6	9	4]
[1	12	0	0	971	0	3	1	0	26]
[3	3	0	17	1	887	16	1	1	5]
[5	2	0	0	0	4	996	0	1	0]
[1	19	2	0	1	0	0	1058	0	22]
[7	9	4	13	10	19	7	3	930	11]
[7	7	1	14	14	3	0	18	2	1029]]

28. N = 7 and Train:Test = 80:20

```
[[814
               0
                      3 1
                                1]
  0 895
         1
            0
               0
                        1
                                11
                             1
                     1 13
  4
    12 820
                  0
                                2]
      5
         3 873
               0 15
                                2]
      9
                        1 0 20]
            0 758 0
         0
      2
         0 4
               1 721 14
                                5]
        0 \quad 0
               1
                   2 798
     1
                         0 1
                                0]
[ 0 15
         2 0
                   0
                     0 847 0 15]
         2 11
               7 14
                      6
                         2 727
                                7]
 7 6 1 11 14
                   2
                      0 14
                             2 822]]
```

29. N = 7 and Train:Test = 90:10

Accuracy Score = 0.9647619047619047

Confusion Matrix

[[3	87	0	0	0	0	0	1	1	0	0]
[0 4	456	0	0	0	0	0	0	0	1]
[3	2	425	0	1	0	0	9	1	0]
[1	3	2	418	0	3	0	3	2	2]
[0	2	0	0	392	0	1	0	0	12]
[1	1	0	4	1	361	9	0	1	2]
[2	0	0	0	0	2	424	0	0	0]
[0	7	1	0	1	0	0	404	0	8]
[3	2	0	5			3	1	378	6]
ſ	1	3	0	6	6	2	0	7	2	40711

30. N = 7 and Train: Test = 95.5

Accuracy Score = 0.9619047619047619

Confusion Matrix

Compositive and the contract of the contract o										
[[2	80	0	0	0	0	0	1	1	0	0]
[0^2	215	0	0	0	0	0	0	0	0]
[2	2 2	01	0	1	0	0	4	1	0]
[1	1	1 2	205	0	2	0	3	1	1]
[0	0	0	0	186	0	0	0	0	4]
[0	1	0	1	0	190	6	0	1	2]
[1	0	0	0	0	0	211	0	0	0]
[0	6	1	0	1	0	0	209	0	5]
[1	1	0	4	3	5	0	0	207	2]
[0	2	0	4	3	1	0	2	1	188]]

31. N = 10 and Train:Test = 60:40

Confusion Matrix [[1602 0] 0 1863 30 1616 8] 9 1719 0 1571 36] 5 1433 4 1592 0] 0 1685 24]

9 1433

26]

7 1578]]

32. N = 10 and Train: Test = 70:30

Accuracy Score = 0.9595238095238096

Confusion Matrix [[1223 0 1366 15 1187 8 1312 4] 0 1165 27] 2 1078 7] 3 1198 0] 0 1270 3 1091 16] 3 1200]]

33. N = 10 and Train: Test = 75:25

Accuracy Score = 0.9591428571428572

Confusion Matrix [[1011 0] 0 1127 1] 16 1003 1] 6 1080 4] 0 971 25] 2 884 4] 3 994 0] 0 1061 17] 2 918 15] 2 1022]]

34. N = 10 and Train:Test = 80:20

```
[[814
       0
                  0
                      1
                          4
                             1
                                  0
                                     0]
   0 896
                  0
                      0
                             1
          0
              0
                          0
                                  1
                                     1]
   4 11 818
                  2
                      0
                          1 15
                                     1]
      6
   1
           4 872
                  1 12
                          1
                                 6
                                     2]
              0 756
   0 10
          0
                      0
                          3
                                 0 21]
   2
      2
          0 16
                  2 719 15
                                     4]
          0
              0
                  1
                      2 797
                              0
                                     0]
   0 16
          2
              0
                  0
                          0 849
                                 0 13]
                      0
   5
           2 13
                  7
                    15
                          7
                              2718 11]
           1 12 14
                      3
                          0 19
                                 2 814]]
```

35. N = 10 and Train:Test = 90:10

Accuracy Score = 0.9623809523809523

Confusion Matrix

[[3	86	0	0	0	0	0	2	1	0	0]
[0 4	156	0	0	0	0	0	0	0	1]
[3	4	425	0	1	0	0	8	0	0]
[1	4	2	415	0	5	0	4	2	1]
[0	3	0	0	394	0	1	0	0	9]
[1	1	0	6	1	358	10	1	0	2]
[2	0	0	0	0	1	424	0	1	0]
[0	8	1	0	0	0	0	407	0	5]
[3	2	0	7	3	10	4	1	372	7]
[1	3	0	8	6	3	0	7	1	405]]

36. N = 10 and Train: Test = 95:5

Accuracy Score = 0.9604761904761905

Confusion Matrix

```
0]
[[208
       0
                   0
                       0
                           1
                               1
                                   0
           0
               0
   0 215
           0
                   0
                       0
                          0
                              0
                                   0
                                       0]
               0
   2
       2 203
               0
                   0
                       0
                          0
                              4
                                   0
                                      0]
                              3
       2
           1 204
                   0
                       2
                           0
                                   1
                                       1]
   1
              0 187
                              0
                                   0
   0
       0
           0
                       0
                           0
                                       3]
   0
       1
           0
               3
                   1 187
                                       1]
       0
           0
                   0
                       0 211
                              0
              0
                                      0]
               0
                  0
                           0 212
                                   0
                                       3]
   0
                       0
       0
           0
               5
                   3
                       7
                           1
                               0 203
                                       31
   1
           0
                       1
   0
                           0
                               2
                                   1 187]]
```

Conclusion

The performance of the KNN model depends significantly on two things that are:-

- 1. Training-Testing split The more data available for training, the better the KNN model can learn the patterns in the data. However, if the training set is too large relative to the testing set, we might not get a good accuracy score, which suggests our model does not learn on the data.csv file. If the training set is too small, the KNN model might not learn the underlying patterns well, leading to poor performance. A small training set can lead to a high-variance model, where the model's performance can vary significantly with different training data. An ample training set with a tiny testing set can lead to a high-bias estimate of model performance, where the performance on the testing set may not be representative of the performance of test data of the data.csv file.
- 2. The value of K in K nearest-neighbours As the Training-Testing split is the basic standard, we should remember that the K value plays a minor role here. If the k value is small, it becomes sensitive to might the nearest neighbours but can also predict wrong if the closest neighbour is a wrong case. If the k value is large, it favours the majority labels in the dataset, becoming highly biased.