ADVANCED CALCULUS MA11003

SECTION 11, 12, & 15CD

Dr. Jitendra Kumar

Professor
Department of Mathematics
Indian Institute of Technology Kharagpur
West Bengal 721302, India

Webpage: http://www.facweb.iitkgp.ac.in/~jkumar/

Concepts Covered

Differential Calculus

Functions of Several Variables

- **☐** Differentiation of Composite Functions
- ☐ Differentiation of a Function Defined Implicitly

Differentiation of Composite Functions

For the case z = f(x)

Recall:

For the case z = f(x, y)

$$x = \phi(u, v), \qquad y = \psi(u, v)$$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$$

For the case
$$z = f(x)$$

$$x = \phi(u, v)$$

$$\frac{\partial z}{\partial u} = \frac{dz}{dx} \frac{\partial x}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{dz}{dx} \frac{\partial x}{\partial v}$$

$$x = \phi(u, v, w)$$

$$\frac{\partial z}{\partial u} = \frac{dz}{dx} \frac{\partial x}{\partial u}$$

$$\frac{\partial z}{\partial v} = \frac{dz}{dx} \frac{\partial x}{\partial v}$$

$$\frac{\partial z}{\partial w} = \frac{dz}{dx} \frac{\partial x}{\partial w}$$

Example: Find $\partial z/\partial u$ and $\partial z/\partial v$ if $z=\tan^{-1}x$ and $x=e^u+\ln v$

$$\frac{\partial z}{\partial u} = \frac{dz}{dx}\frac{\partial x}{\partial u} = \frac{1}{1+x^2}e^u = \frac{1}{1+(e^u+\ln v)^2}e^u$$

$$\frac{\partial z}{\partial v} = \frac{dz}{dx}\frac{\partial x}{\partial v} = \frac{1}{1+x^2}\frac{1}{v} = \frac{1}{1+(e^u+\ln v)^2}\frac{1}{v}$$

Derivative of a function defined implicitly

Case – I : Functions of single variable

Let the function y of x be defined as F(x, y) = 0

Let
$$z = F(x, y) = 0$$

$$\frac{dz}{dx} = \frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0 \qquad \Longrightarrow \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{\partial F}{\partial x} / \frac{\partial F}{\partial y}; \qquad \frac{\partial F}{\partial y} \neq 0$$

Case – II : Functions of two Variables

Let the function z of x & y be defined as F(x, y, z) = 0

Differentiating F with respect to x

$$\Rightarrow \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0$$

$$\Rightarrow \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0 \qquad \text{OR} \quad \frac{\partial z}{\partial x} = -\frac{\partial F}{\partial x} / \frac{\partial F}{\partial z}; \quad \frac{\partial F}{\partial z} \neq 0$$

Differentiating *F* with respect to *y*

$$\Rightarrow \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = 0$$

$$\Rightarrow \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial y} = 0 \qquad \text{OR} \qquad \frac{\partial z}{\partial y} = -\frac{\partial F}{\partial y} / \frac{\partial F}{\partial z}; \quad \frac{\partial F}{\partial z} \neq 0$$

Example: Find $\partial z/\partial x$ and $\partial z/\partial y$ of $x^2+y^2+z^2-c=0$

Differentiating with respect to *x*

$$2x + 2z \frac{\partial z}{\partial x} = 0 \implies \frac{\partial z}{\partial x} = -\frac{x}{z}$$

Differentiating with respect to y

$$2y + 2z \frac{\partial z}{\partial y} = 0 \implies \frac{\partial z}{\partial y} = -\frac{y}{z}$$

Thank Ofour