Домашнее задание 5

(1) (а) Сколькими способами можно раскрасить вершин тетраэдра в три цвета, с точностью до вращений?

Пронумеруем вершины тетраэдра: A-1, B-2, C-3, D-4. Группа вращений тетраэдра состоит из поворотов относительно оси, проходящей через вершину и центр противоположной грани - 8(4) поворота в 2 стороны), поворотов относительно оси, соединяющей середины противоположных ребер - 3 и тождественного преобразования - 1. Всего 12.

Тождественные : 3^4 , повороты относительно, оси, проходящей через вершину: $8 \cdot 3^2$, повороты относительно оси, соединыющей середины: $3 \cdot 3^2$. Найдем количество орбит по лемме Бернсайда: $(3^4 + 3^2 \cdot 8 + 3 \cdot 3^2)/12 = 15$.

Ответ: 15.

(b) Сколькими способами можно раскрасить ребра куба в три цвета, с точностью до вращений?

Аналогично первому пункту промумеруем все ребра куба от 1 до 12. Группа вращений куба состоит из поворотов относительно оси, проходящей через центр грани - 3 оси и 3 поворота для каждой ($\pi/2,\pi,3\pi/2$), то есть 9 поворотов; 4 симметрии относительно главных диагоналей (по 2 поворота относительно каждой); повороты относительно осей, соединяющих середины противоположных ребер - 6 и тождественное преобразование. Всего в группе 24 элемента.

Посчитаем количество орбит: тождественных перестановок 3^{12} , поворотов относительно оси, проходящей через центр грани : на $\pi/2$ и $-\pi/2$ по $3\cdot 3^3$, то есть $3^3\cdot 6$, на $3\pi/2:3^4\cdot 3$. Поворотов, относительно главной диагонали - $8\cdot 3^4$ (показано на рисунке 1, куда переходят вершины при повороте). Повороты относительно оси, соединяющей противоположные ребра: 2 ребра переходят сами в себя (те, через которые проходит ось), остальные составляют пары, получаем $2\cdot 3\cdot 3\cdot 3^5=6\cdot 3^7$. По лемме Бернсайда найдем число орбит: $\frac{3^7+3^4\cdot 2+3^4\cdot 8+3^{12}+6\cdot 3^7}{24}=\frac{547560}{24}=22815$

Рис. 1

(2) Пусть циклы перестановки σ в цикловом разложении имеют длины $l_1, l_2 ... l_k$

(а) Найдите количество сопряженных с ней перестановок.

Перестановки сопряжены тогда и только тогда, когда они имеют одинаковое цикловое разложение \Rightarrow перестановка π , сопряженная с исходной должна содержать циклы такой же длины. В первый цикл длины l_1 можем "набрать" элементы $\frac{(n)\dots(n-l_1+1)}{l_1}$ способами, во второй длины l_2 : $\frac{(n-l_1)\dots(n-l_1-l_2+1)}{l_2}$. И так далее. В итоге получаем, что сопряженных перестановок $\frac{n!}{l_1-l_2}$

(b) Найдите количествоэлементов в нормализаторе этой перестановки.

В предыдущем домашнем задании доказано, что индекс группы по нормализатору элемента равен количеству элементов в классе эквивалентности, содержащим этот элемент. То есть |G:N(a)|=|A| (A - класс эквивалентности, содержащий а). Получаем: $|A|=\frac{n!}{\frac{n!}{n!}}=l_1...l_k$

- (c) Докажите, что в S_{11} все перестановки порядка 11 сопряжены. Число 11 простое, следовательно, все перестановки из этой группы имеют в цикловом разложении только один цикл длины 11, следовательно, все перестановки из этой группы сопряжены.
- (3) (a) Для каких простых чисел р остаток -1 является квадратичным вычетом по модулю р?

 $a^{\frac{(p-1)}{2}}\equiv 1 \ mod \ p\Rightarrow -1$ - квадратичный вычет, если p=4k+1, где k - натуральное число.

- (b) Является ли 25000000 квадратичным вычетом по модулю $67^{66^{65\cdots}}$? Восспользуемся символом Лежандра: $(25000000, 67^{66^{65\cdots}}) = 1, \frac{25000000}{67^{66^{65\cdots}}} = (\frac{5000}{67^{66^{65\cdots}}})^2 = 1 \Rightarrow$ да. Ответ: да.
- (c) Является ли 998 квадратичным вычетом по модулю 199? $(\frac{998}{199}) = (\frac{2}{199})(\frac{499}{199}) = (\frac{101}{199})(-1)^{(199^2-1)/8} = (\frac{199}{101})(-1)^{(99)(50)} = (\frac{98}{199}) = (\frac{2}{199})(\frac{7}{199})^2 = (-1)^{(199^2-1)/2} = 1 \Rightarrow$ да. Ответ: да.
- (4) Даны натуральные числа a и n такие, что (a,n)=1 и $a^{n-1}\neq 1 \mod n$. Докажите, что тогда по краней мере для половины чисел b из промежутка $1\leqslant b< n$ выполнено $b^{n-1}\neq 1 \mod n$. Сначала рассмотрим такие b из данного промежутка, что $(b,n)>1\Rightarrow b^{n-1}=qn+1$. Но тогда $b^{n-1}\neq 1 \mod n\Rightarrow$ для всех b из промежутка не взаимопростых с n выполнено нужное утверждение. Всего таких b: $n-1-\varphi(n)$.

Теперь рассмотрим b, такие что (b,n)=1. Множество таких элементов с операцией умножения составляют мультипликативную группу вычетов по модулю n. Построим следующий гомоморфизм: $\varphi:x\to x^{n-1}$. $Ker(\varphi)=(x|x^{n-1}=1)$. Индекс группы Z_n^* по ядру гомоморфизм как минимум 2, так как точно найдется элемент, не содержащийся в ядре. Следовательно, мощность группы без ядра гомоморфизма $\geqslant \frac{\varphi(n)}{2}$. Следовательно, $k_b\geqslant n-1-\varphi(n)+\frac{\varphi(n)}{2}=n-1-\frac{\varphi(n)}{2}$, где k_b количество элементов b, удовлетворяющих условию. Так как $(n-1)\geqslant \varphi(n)\Rightarrow n-1-\frac{\varphi(n)}{2}>(n-1)/2$. Следовательно, по краней мере для половины чисел b из промежутка $1\leqslant b< n$ выполнено $b^{n-1}\not=1$ mod n. Доказано.

- (5) (а) Доказать, что если x нечетно, то при n>2 выполнено $x^{2^{n-2}}\equiv 1 \mod 2^n$. $\varphi(2^n)=2^{n-1}$ $(x,2^n)=1$. По теореме Эйлера: $x^{2^{n-1}}=(x^{2^{n-2}})^2\equiv 1 \mod 2^n\Rightarrow (x^{2^{n-2}})\equiv 1 \mod 2^n$ или $(x^{2^{n-2}})\equiv (-1) \mod 2^n$. Если n>2, то $4|2^n$. Посмотрим, какие остатки может давать полный квадрат при делении на $4\colon 0$ и 1. $(x^{2^{n-2}})$ при n>2 является квадратом, следовательно, $(x^{2^{n-2}})\equiv 2^n \mod 2^n$. Что и требовалось доказать.
 - (b) Доказать, что мультипликативная группа по модулю 2^n не циклическая. По теорема Гаусса первообразные корни существуют только по следующим модулям: $2, 4, p^n, 2 \cdot p^n, p$ простое нечетное. Следовательно, в мультипликативной группе по модулю 2^n нет первообразного, следовательно, она не является циклической, так как нет порождающего элемента.
- (6) (a) **Доказательство**:

 $1)\Rightarrow \Pi$ усть g - первообразный, следовательно, $Z_n^*=< g>\Rightarrow ord(g)= \varphi(n)\Rightarrow g^{\varphi(n)/p_i}\neq 1\ mod\ n,$ что и требовалось доказать.

 $(2) \leftarrow g \in Z_n^*, n = p_1^{l_1}...p_k^{l_k}, g^{\frac{\varphi(n)}{p_i}} \neq 1$. Докажем, что g - первообразный.

Группа является конечной, следовательно, каждый элемент имеет конечный порядок. Пусть ord(g) = f. $f \neq .$ Так как порядок элемента делит порядок группы, следовательно, $f|\varphi(n)$. Но по условию g ни в какой степени вида $\varphi(n)/p_i$ не дает единичный элемент, следовательно, $f = \varphi(n)$.

(b) **Найти первообразный по модулю** 31.

$$\varphi(31) = 30 = 3 \cdot 2 \cdot 5.3^6 = 729 \neq 1 \bmod 31$$

$$3^{15} = 14348907 \neq 1 \bmod 31$$

$$3^{10} = 59049 \neq 1 \bmod 31 \Rightarrow Z_{31}^* = <3>.$$

- (c) Найти количество первообразных группы Z_{31}^* .
 - 1)Докажем, что в группе Z_p^* ровно $\varphi(\varphi(p))$ первообразных корней и все первообразные степени наименьшего первообразного корня. Для это докажем, что g^l первообразный тогда и только тогда, когда (l,p-1)=1.

 $< g> = Z_p^*$. Пусть g^l - первообразный и $(l, \varphi(p)) = k \neq 1$.

 $g^{l\cdot \varphi(p)}=e\Rightarrow q< \varphi(p)\hookrightarrow g^q=e$ - противоречие, так как $ord(g)=\varphi(p).$ Всего возможных l - $\varphi(\varphi(p)).$

2) Пусть $(l, \varphi(p)) = 1$ и g - первообразный. Докажем, что g^l - первообразный.

Группа Z_p^* - циклическая, следовательно в ней $\varphi(\varphi(p))$ первообразных корней. Но в пункте 1) мы доказати, что элементов вида g^l , где g первообразный, (l,p-1) ровно $\varphi(\varphi(p))$ и все они являются первообразными. Следовательно, только элементы такого вида являются первообразными в группе

В группе Z_{31}^* первообразные: $3^1, 3^7, 3^{11}, 3^{13}, 3^{17}, 3^{19}, 3^{23}, 3^{29}$.

(7) (а) Сопряжены ли перестановки?

Очевидно, нет, так как имеют разное цикловое разложение.

(b) Сопряжены ли перестановки?

Да, так как имеют одинаковое цикловое разложение.

a = (147)(5)(236)

b = (145)(627)(3)

Перестановки сопряжены посредством элемента g: $\begin{pmatrix} 1 & 3 & 5 & 4 & 7 & 2 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$ = (1)(32675)(4) Найдем количество таких элементов: (5) однозначно ставим в соответсвие (3) (так как единствен-

Найдем количество таких элементов: (5) однозначно ставим в соответсвие (3) (так как единственные простые циклы длины 1), для 1 выбираем из 6 элементов, затем из 3. В итоге получаем: $3 \cdot 6 = 18$.

Ответ: 18.