전자서명에서의 은닉채널

Covert Channel in Digital Signature

https://www.youtube.com/watch?v=rDdCOYsUSBs

- 전자서명
 - 공개키 암호화 방식을 이용한 메시지 인증 방식

실 문서와 개체를 결합

디지털 데이터와 개체를 결합

- 메시지 인증
 - 개인키를 가진 서명자가 서명을 했음을 확신
- 데이터 무결성
 - 데이터가 수정될 경우 해시를 통해 탐지할 수 있음
- 부인 방지
 - 개인키는 유일하므로 서명 또한 유일하게 생성

• 서명 후 암호화, 암호화 후 서명

전자서명 표준 DSS

Digital Signature Standard (DSS)

- NIST가 공표한 전자서명 표준
- 버전
 - FIPS 186 (May 1994)
 - FIPS 186-1 (December 1998)
 - FIPS 186-2 (January 2000)
 - FIPS 186-3 (June 2009)
 - FIPS 186-4 (July 2013)
- 차이점
 - 난수발생기, 해시함수(FIPS 180), 매개변수

매개변수

p : prime modulus.

q : prime divisor.

g : generator of a subgroup of order q.

x : private key

y : public key

k : secret number (unique)

KeyGen

```
해시 함수 선택
L, N 선택 (L은 p의 길이, N은 q의 길이)
N-비트 소수 q
L-비트 소수 p (p-1은 q의 멱승)
h 선택 {2 ~ p-2}
g = h^{(p-1)/q} \bmod p
→p, q, g 공유
x 선택 {1 ~ q-1}
y = g^x \mod p
```

Signing

q 보다 작은 난수 k 선택

$$r = (g^k \bmod p) \bmod q$$

$$s = (k^{-1}(H(m) + xr)) \bmod q$$

서명값 (r, s)

Verifying

```
r, s가 q보다 작은지 확인 w = s^{-1} \mod q u1 = H(m) \cdot w \mod q u2 = r \cdot w \mod q v = (g^{u1}g^{u2} \mod p) \mod q
```

 $valid\ if\ v = r$

```
HBBK \Rightarrow S = K^{-1}(H(m)+xr) \mod g

(F,S) \therefore K = H(m)\cdot S^{-1} + x\cdot r\cdot S^{-1} \mod g \in W = S^{-1} \mod g
                    = H(m)·w + oc.r.w mod g
            > r = (gh modp) mod g
                    = (qH(m)·w. ga.r.w) modpmodg = y
                   = gH(m)w. gr.w modp modg
                    = qui, yuz modp moda
```

은닉채널이란?

• 다른 사람은 확인할 수 없는, 수신자와 송신자만이 알 수 있는 숨겨진 채널

DSS 상에서의 은닉채널

- Simons에 의해 고안
- 2 가지 형태
 - Broadband
 - 수신자가 송신자의 비밀키를 필요로 함
 - Narrowband
 - 더 적은 비트를 사용
 - 수신자가 송신자의 비밀키를 필요로하지 않음

Broadband

• 난수 k를 공유하려는 비밀로 사용 k < N bit

• 서명자의 개인키를 알아야 함

$$L = 1024, N = 160$$

$$L = 2048, N = 224$$

$$L = 2048, N = 256$$

$$L = 3072, N = 256$$

Broadband

전송되는 메시지로부터 H(m) 계산 서명 S로 부터 S^{-1} mod q 계산 r 대입

x 대입

Narrowband

- 새로운 소수 P를 공유
- 난수 k modulus P 를 이용한 규칙 F 생성
- F의 결과에 따른 비밀 비트 공유
- 한 가지 예를 들어, $x^2 = k \bmod P$ 가 해를 가지면 1 해를 가지지 않으면 0을 의미하는 규칙 F를 생각해 볼 수 있음

은닉채널 예제

In code based crypto *McEliece*

구조 설명

- KeyGen.
 - 비밀키
 - S(K x K)
 - G(K x N)
 - P(N x N)
 - 공개키
 - G' = SGP

구조 설명

- Enc.
 - 평문 m에 대해 오류 벡터 e생성
 - 암호문 c = **m**G' + **e**
- Dec.
 - $c' = cP^{-1}$
 - m' 계산 (c' = m' + e'를 만족) (디코딩 알고리즘 사용)
 - $m = m'S^{-1}G^{-1}$

인증

- 설정
 - $S \subset V_k$, V_{n_1}
 - 선택한 k, n_1 에 대해 가능한 모든 $k \times n_1$ 표준 생성 행렬의 집합에서 선택된 하나의 표준 생성 행렬 G_i
 - 선형 부호 C에 따른 S, G, P
- 송신자, 수신자, 감시자
 - S, G, P 공유
- 송신자, 수신자
 - G_i 공유

인증

- 송신자
 - S에서 **s**선택
 - G_i 를 이용하여 다음과 같이 대응되는 \mathbf{x} 계산

$$S \to V_{n_1}$$
$$s \to x = sG_i$$

- 오류 벡터 e 선택
- x, e, S, G, P를 이용하여 m 계산

$$V_{n_1} \rightarrow V_n$$

 $x \rightarrow xG' + e$

• m 전송

인증

- 수신자
 - x 계산 (McEliece)
 - 처음 k개 요소를 갖는 벡터를 상태 \mathbf{s} 로 두고 \mathbf{s} G_i 를 계산하여 \mathbf{x} 와 비교 함으로써 검증

은닉채널

$$S \to V_{n_1}$$
$$s \to x = sG_i$$

- $\mathbf{x} = \mathbf{s}G_i (n_1 k)bit$
- 송신자는 x' = x + n 계산 (n → k-bit 0 + secret bit)
- 수신자는 x' 를 계산
- 수신자는 x' 의 상위 k-bit로 부터 x 를 계산
- 수신자는 secret bit가 포함된 n 을 계산

- X 10101110**01**
- N 000000011
- X' 10101110**10**