Grupos Topológicos

Gleberson Gregorio da Silva Antunes - UEFS

glebersonset@gmail.com

1 Introdução

Seja (G, \cdot) um grupo e τ_G uma topologia em G. Naturalmente, podemos nos perguntar se a operação \cdot e a inversão do grupo sempre vão ser compatíveis com a topologia, isto é, se são funções contínuas. A resposta é: Nem sempre. Nosso objetivo é apresentar algumas definições e resultados básicos a respeito de Grupos Topológicos.

2 Definição e exemplos

Definição 1. Seja (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções:

$$i: G \longrightarrow G$$
 $: G \times G \longrightarrow G$ $x \longmapsto x^{-1}$ $(x,y) \longmapsto xy$

chamadas de **inversão** e **operação** de G, respectivamente, são contínuas quando $G \times G$ é munido com a topologia produto.

Exemplo 1. Considere o grupo (\mathbb{K}_4, \cdot) e $\tau = \{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. O trio $(\mathbb{K}_4, \cdot, \tau)$ é um grupo topológico.

Exemplo 2. Considere o grupo (\mathbb{Q}_8, \cdot) e N = {1, -1}. A topologia τ gerada pela base $\mathcal{B} = \{Nx : x \in \mathbb{Q}_8\}$ é tal que $(\mathbb{Q}_8, \cdot, \tau)$ é um grupo topológico.

Exemplo 3. Considere o grupo ($GL_n(\mathbb{R})$, ·) munido com a topologia induzida por \mathbb{R}^{n^2} .

Definição 2. Seja X um conjunto. Uma família não-vazia \mathcal{F} de subconjuntos de X é chamada de **filtro** se satisfaz as seguintes condições:

- $(1) \emptyset \notin \mathcal{F}.$
- (2) Se A, B $\in \mathcal{F}$ então A \cap B $\in \mathcal{F}$.
- (3) Se $A \in \mathcal{F}$ e $A \subset B$, então $B \in \mathcal{F}$.

Definição 3. Seja X um conjunto. Uma família não-vazia \mathcal{B} de subconjuntos de X é chamada de **base de um filtro** se satisfaz as seguintes condições:

- $(1) \emptyset \notin \mathcal{B}.$
- (2) Se B_1 , $B_2 \in \mathcal{B}$ então existe $B_3 \in \mathcal{B}$ tal que $B_3 \subset B_1 \cap B_2$.

O filtro gerado por \mathcal{B} é a família:

$$\mathcal{F} = \{ \mathbf{U} \subset \mathbf{X} : \exists \mathbf{B} \in \beta, \mathbf{B} \subset \mathbf{U} \}.$$

Exemplo 4. Seja (G, \cdot) um grupo. O conjunto \mathcal{B} formado por todos os subgrupos normais de (G, \cdot) com indíce finito formam uma base de um filtro.

Definição 4 . Seja (G, \cdot, τ_G) um grupo topológico e $g \in G$. Chamamos de filtro de todas as vizinhanças de g o conjunto:

$$\mathcal{V}(g) := \{ U \subset G : g \in N_q \subset U, N_q \in \tau_G \}.$$

formado por todas as vizinhanças de g

3 Principais Teoremas

Teorema 1. Seja (G, \cdot) um grupo e τ_G uma topologia em G. Então, (G, \cdot, τ_G) é um grupo topológico se, e somente se, a função

$$f: G \times G \longrightarrow G$$

 $(x,y) \longmapsto xy^{-1}$

é contínua, onde G × G está munido da topologia produto.

Teorema 2. Seja (G, \cdot, τ_G) um grupo topológico e $\mathcal{V}(1)$ o filtro de todas as vizinhanças de 1_G nessa mesma topologia. Então:

(1) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V \cdot V \subset U$.

- (2) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V^{-1} \subset U$.
- (3) Para cada $U \in \mathcal{V}(1)$, existe $V \in \mathcal{V}(1)$ tal que $V \cdot V^{-1} \subset U$.
- (4) Para cada $U \in \mathcal{V}(1)$ e $a \in G$, existe $V \in \mathcal{V}(1)$ tal que $aVa^{-1} \subset U$.

Teorema 3. Seja (G, \cdot) um grupo e \mathcal{V} um filtro que satisfaz as condições do Teorema 2. Então, existe uma única topologia τ em G que torna (G, \cdot, τ) um grupo topológico e que faz \mathcal{V} coincidir com $\mathcal{V}(1)$, o filtro de todas as vizinhanças de 1_G .

4 Topologias pró-finitas

Daremos agora, alguns exemplos de topologias cuja a base do filtro de vizinhanças do elemento neutro é formada por subgrupos normais. Seja (G,\cdot) um grupo e p um número primo.

Exemplo 6. A **topologia pró-finita** com \mathcal{B} , a família formada por todos subgrupos normais de indíce finito, em G.

Exemplo 7. A topologia pró-p-finita com \mathcal{P} , a família formada por todos subgrupos normais cujo indíce é finito e é uma potência de p, em G.

Exemplo 8. A **topologia pró-contável** com \mathcal{H} , a família formada por todos subgrupos normais de indíce enumerável, em G.

5 Subgrupos e grupo quociente topológico

Definição 5. Seja (G, \cdot, τ_G) um grupo topológico e $H \le G$. O trio (H, \cdot, τ_H) é chamado de **subgrupo topológico** quando H está munido da topologia induzida por G.

Teorema 4. Seja (G, \cdot, τ_G) um grupo topológico e $H \leq G$. Então:

- (1) H é aberto se, e somente se, $int(H) \neq \emptyset$.
- (2) Se H é aberto então H é fechado.
- (3) Se H é fechado e tem indíce finito então H é aberto.
- (4) Se H é aberto e (G, τ_G) é compacto então H tem índice finito.
- (5) $\bar{H} \leq G$.

Definição 6. Seja (G, \cdot, τ_G) um grupo topológico e N \leq G. O trio $(G/N, \cdot, \tau_{G/N})$ é chamado de **grupo topológico quociente** quando G/N é munido da topologia quociente.

Teorema 5. Sejam (G, \cdot, τ_G) e (H, \circ, τ_H) grupos topológicos, $f: G \longrightarrow H$ um epimorfismo contínuo e $q: G \longrightarrow G/Kerf$ o homomorfismo canônico. Então, existe um único isomorfismo $f_1: G/Kerf \longrightarrow H$ contínuo tal que $f = f_1 \circ q$.

6 Conclusão

Os resultados apresentados até agora são básicos porém já dispomos de ferramentas para estudar tópicos mais avançados, como por exemplo, invariantes topológicos como a conexidade, conexidade por caminhos e compacidade, axiomas de separação e aplicar em grupos topológicos.

Referências

- [1] DIKRANJAN, Dikran. **Introduction to topological groups**. preparation, http://users. dimi. uniud. it/ dikran. dikranjan/ITG. pdf, 2013.
- [2] KUMAR, A. Muneesh; GNANACHANDRA, P. Exploratory results on finite topological groups. JP Journal of Geometry and Topology, v. 24, n. 1-2, p. 1-15, 2020.
- [3] MEZABARBA, Renan Maneli. **Fundamentos de Topologia Geral**. [S. 1.: s. n.], 2022. 599 p. Disponível em: https://sites.google.com/view/rmmezabarba/home?authuser=0. Acesso em: 10 set. 2022.
- [4] MUNKRES, James R. **Topology**. Upper Saddle River: Prentice Hall, 2000.

Agradecimentos

Agradeço ao Professor Dr. Kisnney Emiliano de Almeida, meu orientador, pelo seu apoio, dedicação e disposição para a realização deste trabalho. Agradeço também a FAPESB pelo apoio financeiro concedido a mim.