

2021 Synopsys ARC 盃 AloT 設計應用競賽

決賽作品

PCB焊點檢測系統

PCB Solder Joint Inspection System

報告人- 陳亮州

2021-8-9

- 作品概述
- 難點與創新
- 設計與實現
- 總結展望

- 作品概述
- 難點與創新
- 設計與實現
- 總結展望

作品概述

• 動機

- 目前對焊接品質的檢查方法有
- 紅外探測法、X光透視法
 - 精準
 - 造價昂貴
 - 體積龐大
- 目視法
 - 簡單
 - 檢測人員疲勞導致品質下降
- 目標: 低成本高效率的檢測裝置

• 概述

- 我們將藉由鏡頭捕捉PCB上之焊點,透過ARC處理器低功耗的特性,對其進行焊點品質檢測及分類,找出有問題的焊點,將結果呈現予使用者,使用者可以根據檢測結果重新檢查PCB板,藉以提升使用者檢測效率。

圖一、裝置照片

- 作品概述
- 難點與創新
- 設計與實現
- 總結展望

難點與創新

• 難點

- 焊點種類複雜
- 訓練集蒐集困難,小訓練集模型
- 焊點訓練集資料標記繁雜
- 多重焊點瑕疵,如同一焊點具有短路及過多焊錫問題等
- 物件偵測模型通常深度廣度較大,部署困難

創新

- 輕量化裝置
- 容易操作且直覺之環境
- 可以自行選擇是否連結電腦,符合不同使用者的需求
- 使用人工智慧在終端進行推論
- 半自動化方式對PCB板進行檢測

- 作品概述
- 難點與創新
- 設計與實現
- 總結展望

設計與實現 - 模型

- 模型採用剪枝與改進後之darknet yolov3-tiny 轉換爲TensorFlow Lite for Microcontroller
 - Input: (1, 384, 384, 1)
 - Output: (1, 24, 24, 24)
 - 檢測目標:
 - 焊錫過多,焊錫過少,短路
 - 資料集: 取自自行焊接之電木板,增廣後共921 張圖片

• Why relu6?

activation: relu range: (0, ∞)

activation: relu6 range: (0, 6)

- int8 量化
 - 值域範圍:(-128, 127)
 - 限制輸出範圍可以避免離群值導致的誤差

設計與實現 - 模型

 模型採用剪枝與改進後之darknet yolov3-tiny 轉換爲TensorFlow Lite for Microcontroller

- Input: (1, 384, 384, 1)

- Output: (1, 24, 24, 24)

- 檢測目標:

- 焊錫過多,焊錫過少,短路

- 資料集: 取自自行焊接之電木板, 共921張圖片

- 模型表現

- mAP: 80.52%

Poor filled joints AP: 70.73%

- Short joints AP: 87.90%

Excess joints AP: 82.91%

	yolov3-tiny optimized	yolov3-tiny original
權重檔(.weights)大小	604 KB	34.7 MB
mAP (mean average precision)	80.52%	81.41%
輸出層數目	1	2
激活函數 (activation function)	relu6	leaky relu

表一、採用模型與原始yolov3-tiny比較

設計與實現 - 硬體

- 開發板/模組
 - Himax WE-I Plus EVB
 - Arduino Pro Mini
 - ST7735 display
 - Joystick module
- 我們的系統裝置爲工作臺之形式
 - 上方爲人機互動的界面,可以讓使用者即時觀察及操作裝置。
 - 下方爲開發板放置的位置,進行推論以及數據 的處理。
 - 系統可連結電腦,透過我們撰寫的程式即時觀察推論結果,此處軟體留待下文詳述

圖二、裝置接線架構圖

設計與實現 - 硬體 (cont'd)

- 裝置上方
 - 人機互動界面
 - TFT液晶螢幕顯示
 - 提供使用者基本的推論結果
 - 目標電路板是否通過檢測
 - 不良焊點數量
 - 搖桿模組
 - 微調鏡頭截取圖片範圍
 - (384, 384) in (640, 480)

- 可變電阻
 - 調整裝置下方光源
 - 可以降低光線對推論結果的影響

設計與實現 - 硬體 (cont'd)

• 裝置下方

- 開發板及佈線
- Himax WE-I Plus EVB
 - 終端人工智慧推論裝置
 - 電路板圖片拍照及截取
 - 與電腦連接之開發板
 - 傳送圖片推論結果
- Arduino Pro Mini
 - 整合各模組訊號
 - 與WE-I Plus透過GPIO進行溝通
 - 接收WE-I Plus推論結果

Himax WE-I Plus

Arduino Pro Mini

設計與實現-軟體

- 我們的系統包含運行於電腦的軟體,可以幫助使用者快速找到問題焊點,並且標示出來,可以透過我們的系統來快速判讀PCB的狀況
 - 軟體可調整的參數
 - 裝置連接埠
 - 偵測信心閾值
 - IoU (intersection over union) 閾值
 - 根據不同類別有不同框選顏色
 - 偵測時可執行的動作
 - 暫停
 - 儲存圖片
 - 離開程式

設計與實現 - 效率

- 模型量化
 - int8量化
 - 利用 32x32 MAC in ARC processor
- 選用最適資料形態
 - 節省記憶體空間
 - 利用ARC processor SIMD指令加速
- 圖片壓縮
 - 4倍壓縮原圖片
 - 推論所使用圖片大小: (384, 384)原圖
 - 傳輸圖片大小: (192, 192)
- 提高UART傳輸鮑率
 - -921600

原圖畫質

四倍壓縮後畫質

設計與實現 - 效率 (cont'd)

• 運行

- 使用hx_drv_tick檢測運行時間
 - 獲取圖片(包含傳輸圖片): 0.536 sec
 - Invoke模型: 0.575 sec
 - 預測結果(包含傳輸結果): 0.749 sec
 - 每分鐘可偵測之圖片數量:約30.9張
- 功耗 (per frame)
 - Arc processor: 3.04 mW

- 作品概述
- 難點與創新
- 設計與實現
- 總結展望

總結展望

總結

- 快速有效率的找出PCB板上之問題焊點
- 提升電路板之穩定性與功能正確性
- 透過TFT display module以及電腦程式顯示偵測的結果,符合不同使用者的需求
- 透過高效的終端裝置以及方便的使用者環境提升使用意願
- For more details: github.com/OxygenDragon/solder-joint-detection

• 未來展望

- 增加更多訓練資料
- 嘗試連接外接鏡頭模組,拍攝更高解析的彩色照片
- 更進一步提升傳輸速度
- 作品微縮化及提升UI界面
- 部署至工廠之生產線上

Thank You

