# CSE4261: Neural Network and Deep Learning

Lecture: 08.07.2025



Sangeeta Biswas, Ph.D.
Associate Professor,
University of Rajshahi, Rajshahi-6205, Bangladesh

# U-Net Segmenter [2015]



Code: <a href="https://keras.io/examples/vision/oxford">https://keras.io/examples/vision/oxford</a> pets image segmentation/

## Autoencoder



Code: <a href="https://blog.keras.io/building-autoencoders-in-keras.html">https://blog.keras.io/building-autoencoders-in-keras.html</a>

https://keras.io/examples/vision/autoencoder/

# Denoising-Autoencoder



Code: <a href="https://blog.keras.io/building-autoencoders-in-keras.html">https://blog.keras.io/building-autoencoders-in-keras.html</a>
<a href="https://keras.io/examples/vision/autoencoder/">https://keras.io/examples/vision/autoencoder/</a>

# Variational Autoencoder (VAE)

- It is an autoencoder based generative model.
- It is used to generate new data in the form of variations of the input data it is trained on.
- Latent vectors are assumed to follow normal distribution



## How to Generate a Random Variable

#### A. Normal Distribution:

- a. known as a Gaussian distribution
- is a type of probability distribution that is symmetrical and bell-shaped when graphed.

#### B. Standard Normal Distribution:

- a. a normal distribution having mean of 0 and standard deviation of 1.
- C. Steps of Generating Random Variable following Normal Distribution
  - a. Generate a random variable, say  $\varepsilon$ , from a standard normal distribution.
  - b. Then, transform  $\varepsilon$  by multiplying it by the desired standard deviation (say,  $\sigma$ ) and adding the desired mean (say  $\mu$ ).
  - c.  $Z = \mu + \sigma \odot \varepsilon$

#### **Normal Distribution Formula**

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$\mu = \text{mean of } x$$

$$\sigma$$
 = standard deviation of x

$$\pi \approx 3.14159 \dots$$

$$e \approx 2.71828 ...$$

## VAE

Proposed Kingma and Willing 2013



## Loss of VAE



Minimize 2: 
$$\frac{1}{2}\sum_{i=1}^{N}(\exp(\sigma_i) - (1+\sigma_i) + \mu_i^2)$$

Code: <a href="https://keras.io/examples/generative/vae/">https://keras.io/examples/generative/vae/</a>