Localizations of Models of dependent type theory

Author: Matteo Durante Advisor: Hoang-Kim Nguyen

Regensburg University

July 7, 2022

Objective

A modern proof of the following theorem.

Theorem (Kapulkin 2015)

Given a dependent type theory T with Σ -, Id- and Π -types, the ∞ -localization of its syntactic category Syn(T) is a locally cartesian closed ∞ -category.

What

A theory of computations and a foundation of mathematics.

What

A theory of computations and a foundation of mathematics.

Objects

Dependent types A over contexts $\Gamma = (x_0 : A_0, \dots, x_n : A_n)$ and their terms x : A.

What

A theory of computations and a foundation of mathematics.

Objects

Dependent types A over contexts $\Gamma = (x_0 : A_0, \dots, x_n : A_n)$ and their terms x : A.

Structural rules

How to work with variables.

What

A theory of computations and a foundation of mathematics.

Objects

Dependent types A over contexts $\Gamma = (x_0 : A_0, \dots, x_n : A_n)$ and their terms x : A.

Structural rules

How to work with variables.

Logical rules

Construct new types and their terms from old, carry out computations. They provide Σ -types $\Sigma(A,B)$, Π -types $\Pi(A,B)$, Id -types Id_A , natural-numbers-type Nat ...

Models

Idea

To reason about a theory we can look at its interpretations.

Models

Idea

To reason about a theory we can look at its interpretations.

Problem

Providing a model of dependent type theory is hard.

Models

Idea

To reason about a theory we can look at its interpretations.

Problem

Providing a model of dependent type theory is hard.

Solution

Defining a class of algebraic models.

Modeling structural rules

Definition (contextual categories)

A category C with:

- **1** a grading on objects (or *contexts*) Ob C = $\coprod_{n \in \mathbb{N}} Ob_n C$;
- 2 a unique and terminal object in Ob₀ C, the *empty context*;
- **3** a map $\operatorname{ft}_n \colon \operatorname{Ob}_{n+1} \mathsf{C} \to \operatorname{Ob}_n \mathsf{C}$ for each $n \in \mathbb{N}$;
- **1** basic dependent projections $p_A : \Gamma.A \to \operatorname{ft}_n(\Gamma.A) = \Gamma$;
- a functorial choice of pullback squares

$$\begin{array}{ccc}
\Delta.f^*A \xrightarrow{q(f,A)} \Gamma.A \\
\downarrow p_A \\
\Delta \xrightarrow{f} & \Gamma
\end{array}$$

Example

Construction (syntactic category of a type theory Syn(T))

A category Syn(T) where:

- **1** *n*-objects are contexts $[x_0 : A_0, \ldots, x_n : A_n]$;
- 2 the empty context is [];
- **3** morphisms $[x_0 : A_0, ..., x_n : A_n]$ → $[y_0 : B_0, ..., y_m : B_m]$ are tuples of terms $(f_0 : B_0, ..., f_m : B_m)$ derivable from $x_0 : A_0, ..., x_n : A_n$;
- composition is given by subsitution;
- **1** a basic projection is a tuple $(x_0 : A_0, \ldots, x_n : A_n)$;
- pullback squares are given by context substitution.

Modeling logical rules

Extra structure

Id-types require from $\Gamma.A$ an Id-object $\Gamma.A.A.$ Id_A...

Π-types require from Γ.A.B a Π-object Γ.Π(A, B), an evaluation map $\operatorname{app}_{A,B} : \Gamma.\Pi(A,B).A \to \Gamma.A.B$, $(f,a) \mapsto (a,\operatorname{app}(f,a))...$

Modeling logical rules

Extra structure

Id-types require from $\Gamma.A$ an Id-object $\Gamma.A.A.$ Id_A...

Π-types require from Γ.A.B a Π-object Γ.Π(A, B), an evaluation map $\operatorname{app}_{A.B} : \Gamma.\Pi(A, B).A \to \Gamma.A.B$, $(f, a) \mapsto (a, \operatorname{app}(f, a))...$

Example

If T has some logical rules, then Syn(T) has the corresponding logical structures.

Bi-invertibility

Definition (bi-invertible map)

A map $f: \Gamma \to \Delta$ in a contextual category with Id-structure C for which we can provide:

- **1** maps $g_1: \Delta \to \Gamma$, $\eta: \Gamma \to \Gamma.(1_{\Gamma}, g_1 \cdot f)^* \operatorname{Id}_{\Gamma}$;
- $② \ \textit{maps} \ \textit{g}_2 \colon \Delta \to \Gamma \text{, } \epsilon \colon \Delta \to \Delta. (1_{\Delta}, f \cdot \textit{g}_2)^* \, \mathsf{Id}_{\Delta}.$

Bi-invertibility

Definition (bi-invertible map)

A map $f: \Gamma \to \Delta$ in a contextual category with Id-structure C for which we can provide:

- **1** maps $g_1: \Delta \to \Gamma$, $\eta: \Gamma \to \Gamma.(1_{\Gamma}, g_1 \cdot f)^* \operatorname{Id}_{\Gamma}$;
- $② \ \textit{maps} \ \textit{g}_2 \colon \Delta \to \Gamma \text{, } \epsilon \colon \Delta \to \Delta. (1_{\Delta}, f \cdot \textit{g}_2)^* \operatorname{Id}_{\Delta}.$

Question

What if we localize at bi-invertible maps?

Fibrational structure

Definition (∞ -categories with weak equivalences and fibrations)

A triple (C, W, Fib) where:

...a weakening of the definition of fibration categories, with $\ensuremath{\mathbb{C}}$ an $\infty\text{-category}.$

Fibrational structure

Definition (∞ -categories with weak equivalences and fibrations)

A triple (C, W, Fib) where:

...a weakening of the definition of fibration categories, with ${\mathfrak C}$ an ∞ -category.

Theorem (Avigad-Kapulkin-Lumsdaine 2013)

A contextual category with Σ - and Id-structures defines a fibration category, where weak equivalences are bi-invertible maps and fibrations are maps isomorphic to compositions of basic dependent projections $p_A \colon \Gamma.A \to \Gamma$.

Localizing fibrational categories

Proposition (Cisinski)

The localization at weak equivalences of an ∞ -category with weak equivalences and fibrations $\mathfrak C$ is a finitely complete ∞ -category.

Localizing fibrational categories

Proposition (Cisinski)

The localization at weak equivalences of an ∞ -category with weak equivalences and fibrations $\mathfrak C$ is a finitely complete ∞ -category.

Construction (fibrant slice C(x))

Given a fibrant object x in \mathbb{C} , lift the fibrational structure through $\mathbb{C}/x \to \mathbb{C}$ and then take the subcategory of fibrant objects of \mathbb{C}/x .

Localizing fibrational categories

Proposition (Cisinski)

The localization at weak equivalences of an ∞ -category with weak equivalences and fibrations $\mathfrak C$ is a finitely complete ∞ -category.

Construction (fibrant slice C(x))

Given a fibrant object x in \mathbb{C} , lift the fibrational structure through $\mathbb{C}/x \to \mathbb{C}$ and then take the subcategory of fibrant objects of \mathbb{C}/x .

Proposition (Cisinski)

Given an ∞ -category with weak equivalences and fibrations \mathbb{C} , if for every fibration $f: x \to y$ between fibrant objects the pullback functor between fibrant slices $f^*: \mathbb{C}(y) \to \mathbb{C}(x)$ has a right adjoint preserving trivial fibrations, then $L(\mathbb{C})$ is locally cartesian closed.

Localizations of models are cartesian closed

Theorem (Kapulkin 2015)

Given a dependent type theory T with Σ -, Id- and Π -types, the localization of its syntactic category Syn(T) is a locally cartesian closed ∞ -category.

Localizations of models are cartesian closed

Theorem (Kapulkin 2015)

Given a dependent type theory T with Σ -, Id- and Π -types, the localization of its syntactic category Syn(T) is a locally cartesian closed ∞ -category.

Proof.

For any basic dependent projection $p_A \colon \Gamma.A \to \Gamma$, there exists a right adjoint to $p_A^* \colon \operatorname{Syn}(\mathbf{T})(\Gamma) \to \operatorname{Syn}(\mathbf{T})(\Gamma.A)$ given by

$$(p_A)_*(\Gamma.A.\Theta) = \Gamma.\Pi(A,\Theta)$$

with counit induced by $app_{A,\Theta}$. It preserves the fibrational structure.

Thank you for your attention!

Why is dependent type theory cool?

- Closely linked to computations and computer science, makes proof assistants possible.
- Enough by itself as a foundation, unlike set theory or propositional calculus.
- Opening a second of the sec
- Better treatment of equality.
- Makes "fully faithful + essentially surjective = equivalence" independent from the axiom of choice.
- **1** Homotopical interpretation in ∞ -groupoids.

Internal languages conjecture

Conjecture (Kapulkin-Lumsdaine 2016)

The horizontal maps, given by simplicial localization, induce equivalences of ∞ -categories.

$$\begin{array}{ccc} \mathsf{CxlCat}_{\Sigma,1,\mathsf{Id},\Pi} & \longrightarrow \mathsf{LCCC}_{\infty} \\ & & & \downarrow \\ & & & \downarrow \\ \mathsf{CxlCat}_{\Sigma,1,\mathsf{Id}} & \longrightarrow \mathsf{Lex}_{\infty} \end{array}$$

A proof by Nguyen-Uemura has recently become available on arxiv. One hopes to extend this to an equivalence between $CxlCat_{HoTT}$ and $ElTopos_{\infty}$.