Lecture 8

Normal Random Variables

Text: Chapter 4

STAT 8010 Statistical Methods I February 3, 2020

> Whitney Huang Clemson University

Agenda

- **1** Normal Density Curves
- Standard Normal
- Sums of Normal Random Variables

Notes

Notes

Probability Density Curve for Normal Random Variable

Notes _____

Normal Density Curves

Different μ but same σ^2

Notes			

Normal Density Curves Cont'd

Same μ but different σ^2

Notes			
	_		

Normal Density Curves

- \bullet The parameter μ determines the center of the distribution
- \bullet The parameter σ^2 determines the spread of the distribution
- Also called bell-shaped distribution

Normal Random Variables	
Normal Density Curves	

Notes				

Characteristics of Normal Random Variables

Let X be a Normal r.v.

• The support for $X: (-\infty, \infty)$

• Parameters: μ : mean and σ^2 : variance

• The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$

• The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table

• The expected value: $\mathbb{E}[X] = \mu$

• The variance: $Var(X) = \sigma^2$

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

• Normal random variable X with mean μ and standard deviation σ can convert to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

- \bullet The cdf of the standard normal, denoted by $\Phi(z),$ can be found from the standard normal table
- \bullet The probability $\mathbb{P}(a \leq X \leq b)$ where $X \sim N(\mu, \sigma^2)$ can be compute

$$\begin{split} \mathbb{P} \big(a \leq X \leq b \big) &= \mathbb{P} \big(\frac{a - \mu}{\sigma} \leq Z \leq \frac{b - \mu}{\sigma} \big) \\ &= \Phi \big(\frac{b - \mu}{\sigma} \big) - \Phi \big(\frac{a - \mu}{\sigma} \big) \end{split}$$

...

Notes

Notes

Standard Normal (Z) Table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	0.9554									
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
10	0.0712	0.0710	0.0726	0.0722	0.0729	0.0744	0.0750	h 0756	0.0761	0.0767

Notes			

Standard Normal (Z) Table Cont'd

Notes

Standard Normal (Z) Table Cont'd

Normal Random Variables
Standard Normal
8.11

Notes			

Properties of Φ

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$
- $\mathbb{P}(Z > z) = 1 \Phi(z) = \Phi(-z)$

Normal Random Variables
CLEMS N
Standard Normal

Notes			

The Empirical Rules

The Empirical Rules provide a quick way to approximate certain probabilities for the Normal Distribution as the following table:

Interval	Percentage with interval
$\mu \pm \sigma$	68%
$\mu \pm 2\sigma$	95%
$\mu \pm 3\sigma$	99.7%

Example

Let us examine Z. Find the following probabilities with respect to Z:

② Z is between −2 and 2 inclusive

Z is less than .5

Notes

Notes

Example Cont'd

Solution.

3 $\mathbb{P}(Z < .5) = \Phi(.5) = .6915$ **...**

Notes

Example

Suppose a STAT-8020 exam score follows a normal distribution with mean 78 and variance 36. Let X to denote the exam score, answer the following questions:

- What is the probability that a randomly chosen test taker got a score greater than 84?
- Suppose the passing score for this exam is 75. What is the probability that a randomly chosen test taker got a score greater than 84 given that she/he pass the exam?
- Using the empirical rule to find the 84_{th} percentile.

Notes

Example

Find the following percentile with respect to Z

- 10_{th} percentile
- 55_{th} percentile
- 90_{th} percentile

Notes

Example Cont'd

Solution.

- $Oldsymbol{0}$ $Z_{10} = -1.28$ $Oldsymbol{0}$
- 2 $Z_{55} = 0.13$

Notes			

Example

Let *X* be Normal with a mean of 20 and a variance of 49. Find the following probabilities and percentile:

X is between 15 and 23

X is more than 30

X is more than 12 knowing it is less than 20

What is the value that is smaller than 20% of the distribution?

Normal Random Variables					
CLEMSEN					
Normal Density Curves					
Standard Normal					
Sums of Normal Random Variables					

Notes

Example Cont'd

Solution.

② $\mathbb{P}(X > 30) = 1 - \mathbb{P}(X \le 30) = 1 - \Phi(\frac{30-20}{7}) = 1 - .9236 = .0764$ ①

③ $Z_{80} = 0.84 \Rightarrow X_{80} = \mu + Z_{80} \times \sigma = 20 + 0.84 \times \sqrt{49} = 25.88$ **③**

Curves

Standard Normal

Sums of Normal

. . . .

Notes

Sums of Normal Random Variables

If X_i $1 \leq i \leq n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

ullet This can be applied for any integer n

Normal Density Curves Standard Normal Sums of Normal Random Variables Notes

Example

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k=1, 2, and 3 respectively. Find the following distributions:

②
$$X_1 + 2X_2 - 3X_3$$
 •

Notes

Notes

Example Cont'd

Solution.

②
$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$
 ①

Notes			