AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application.

- 1. (Previously Presented) An isolated or purified antiviral protein comprising the amino acid sequence of SEQ ID NO: 1.
- 2. (Currently Amended) An isolated or purified antiviral protein consisting essentially of the amino acid sequence of SEQ ID NO: 1, an amino acid sequence that is about 90% or more identical to SEQ ID NO: 1, 1 or an amino acid sequence that is about 90% or more homologous to SEQ ID NO: 1, or an antiviral fragment of any of the foregoing, which has been isolated or purified from *Scytonema varium*.
 - 3. (Canceled)
- 4. (Previously Presented) A fusion protein comprising the isolated or purified antiviral protein of claim 1.
 - 5. (Original) The fusion protein of claim 4, which comprises albumin.
 - 6. (Canceled)
 - 7. (Canceled)
- 8. (Previously Presented) A conjugate comprising the isolated or purified antiviral protein of claim 1 and at least one effector component.
- 9. (Original) The conjugate of claim 8, wherein the at least one effector component can be the same or different and is selected from the group consisting of polyethylene glycol, dextran, a toxin, an immunological reagent, an antiviral agent, and a solid support matrix.
 - 10. (Canceled)
 - 11. (Canceled)

- 12. (Previously Presented) A composition comprising (i) at least one isolated or purified antiviral protein of claim 1, a fusion protein thereof, and a conjugate thereof and (ii) a carrier, excipient or adjuvant therefor.
- 13. (Previously Presented) The composition of claim 12, wherein (i) the composition is present in an antiviral effective amount and (ii) the composition is pharmaceutically acceptable.
 - 14. (Canceled)
 - 15. (Canceled)
- 16. (Previously Presented) An isolated or purified nucleic acid comprising a nucleotide sequence encoding the protein of claim 1, optionally in the form of a vector.
 - 17. (Canceled)
 - 18. (Canceled)
- 19. (Previously Presented) An isolated or purified nucleic acid comprising a nucleotide sequence encoding the fusion protein of claim 4, optionally in the form of a vector.
 - 20. (Canceled)
- 21. (Previously Presented) An isolated cell comprising the isolated or purified nucleic acid of claim 16.
 - 22. (Original) The isolated cell of claim 21, which is a bacterium or a yeast.
 - 23. (Original) The isolated cell of claim 22, wherein the bacterium is lactobacillus.
 - 24. (Canceled)
 - 25. (Canceled)
 - 26. (Canceled)

- 27. (Original) An isolated cell comprising the isolated or purified nucleic acid of claim 19.
 - 28. (Original) The isolated cell of claim 27, which is a bacterium or a yeast.
 - 29. (Original) The isolated cell of claim 28, wherein the bacterium is a lactobacillus.
 - 30. (Canceled)
 - 31. (Canceled)
 - 32. (Canceled)
- 33. (Previously Presented) A composition comprising (i) the isolated or purified nucleic acid of claim 16, optionally as part of an encoded fusion protein, and (ii) a carrier, excipient or adjuvant therefor.
- 34. (Original) The composition of claim 33, wherein (i) is present in an antiviral effective amount and the composition is pharmaceutically acceptable.
 - 35. (Canceled)
 - 36. (Canceled)
- 37. (Previously Presented) A method of inhibiting a viral infection of a host, which method comprises administering a viral infection-inhibiting amount of at least one of the following:
 - i. an isolated or purified antiviral protein of claim 1,
 - ii. a fusion protein of (i),
 - iii. a conjugate comprising (i) and at least one effector component,
 - iv. a composition comprising one or more of (i)-(iii),
- v. an isolated or purified nucleic acid comprising a nucleotide sequence encoding the amino acid sequence of claim 1, optionally in the form of a vector,
- vi. an isolated or purified nucleic acid comprising a nucleotide sequence encoding a fusion protein of (v), optionally in the form of a vector,
 - vii. a composition comprising one or more of (v)-(vi), and

an isolated cell comprising (v) or (vi),

wherein the viral infection is caused by a virus having a glycoprotein comprising a high-mannose oligosaccharide as a coat protein,

which method optionally further comprises the prior, simultaneous or subsequent administration, by the same route or a different route, of an antiviral agent or another agent that is efficacious in inhibiting the viral infection,

whereupon the viral infection is inhibited.

38. (Canceled)

- 39. (Previously Presented) The method of claim 37, wherein the virus is an immunodeficiency virus.
- 40. (Original) The method of claim 37, wherein the host is a human and the immunodeficiency virus is human immunodeficiency virus (HIV).
- 41. (Previously Presented) The method of claim 37, wherein the fusion protein comprises albumin.
- 42. (Previously Presented) The method of claim 37, wherein the at least one effector component can be the same or different and is selected from the group consisting of polyethylene glycol, dextran, a toxin, an immunological reagent, an antiviral agent, and a solid support matrix.
- 43. (Previously Presented) The method of claim 37, wherein the isolated cell is a cell from the host, which had been previously isolated and contacted with (v) or (vi).
- 44. (Previously Presented) The method of claim 37, wherein the isolated cell is a cell from a homologous host.
- 45. (Previously Presented) The method of claim 37, wherein the isolated cell is a nonpathogenic bacterium or a yeast.
- 46. (Original) The method of claim 45, wherein the nonpathogenic bacterium is a lactobacillus.

- 47. (Previously Presented) A method of inhibiting a virus in a biological sample or in/on an inanimate object, which method comprises contacting the biological sample or the inanimate object with a viral-inhibiting amount of at least one of the following:
 - i. an isolated or purified antiviral protein of claim 1,
 - ii. a fusion protein of (i),
 - iii. a conjugate comprising (i) and at least one effector component,
 - iv. a composition comprising one or more of (i)-(iii),

wherein the viral infection is caused by a virus having a glycoprotein comprising a high-mannose oligosaccharide as a coat protein,

which method optionally further comprises the prior, simultaneous or subsequent contacting, in the same manner or in a different manner, of the biological sample or inanimate object with an antiviral agent or another agent that is efficacious in inhibiting the virus,

whereupon the virus is inhibited.

- 48. (Original) The method of claim 47, wherein the biological sample is blood, a blood product, cells, a tissue, an organ, sperm, a vaccine formulation, or a bodily fluid.
- 49. (Original) The method of claim 47, wherein the inanimate object is a solution, a medical supply, or a medical equipment.
- 50. (Previously Presented) The method of claim 47, wherein the fusion protein comprises albumin.
- 51. (Previously Presented) The method of claim 47, wherein the at least one effector component can be the same or different and is selected from the group consisting of polyethylene glycol, dextran, a toxin, an immunological reagent, an antiviral agent, and a solid support matrix.
 - 52. (Canceled)
 - 53. (Canceled)
 - 54. (Canceled)
 - 55. (Previously Presented) A composition comprising the antibody of claim 53.

63. (Canceled)

- 64. (Previously Presented) The method of claim 39, wherein the fusion protein comprises albumin.
- 65. (Previously Presented) The method of claim 39, wherein the at least one effector component can be the same or different and is selected from the group consisting of polyethylene glycol, dextran, a toxin, an immunological reagent, an antiviral agent, and a solid support matrix.
- 66. (Previously Presented) The method of claim 39, wherein the isolated cell is a cell from the host, which had been previously isolated and contacted with (v) or (vi).
- 67. (Previously Presented) The method of claim 39, wherein the isolated cell is a cell from a homologous host.
- 68. (Previously Presented) The method of claim 39, wherein the isolated cell is a nonpathogenic bacterium or a yeast.
- 69. (Previously Presented) The method of claim 40, wherein the fusion protein comprises albumin.

- 70. (Previously Presented) The method of claim 40, wherein the at least one effector component can be the same or different and is selected from the group consisting of polyethylene glycol, dextran, a toxin, an immunological reagent, an antiviral agent, and a solid support matrix.
- 71. (Previously Presented) The method of claim 40, wherein the isolated cell is a cell from the host, which had been previously isolated and contacted with (v) or (vi).
- 72. (Previously Presented) The method of claim 40, wherein the isolated cell is a cell from a homologous host.
- 73. (Previously Presented) The method of claim 40, wherein the isolated cell is a nonpathogenic bacterium or a yeast.
- 74. (Previously Presented) The method of claim 37, wherein the viral infection is an influenza infection.
- 75. (Previously Presented) The method of claim 37, wherein the viral infection is an Ebola infection.
 - 76. (Previously Presented) The method of claim 37, wherein the host is an avian host.
- 77. (Previously Presented) The method of claim 37, wherein at least one of (i)-(vii) is administered nasally, by inhalation, or by parenteral administration.