Analyse II Résumé: Courbes paramétrées de \mathbb{R}^n .

Définitions et résultats.

1. Soit $I \subset \mathbb{R}$ un intervalle ouvert non-vide. Alors une courbe paramétrée est une application $\bar{f}: I \to \mathbb{R}^n$

$$\bar{f}(t) = (f_1(t), f_2(t), \dots f_n(t))$$

telle que les f_i sont des fonctions continues sur I.

2. La courbe $\bar{f}: I \to \mathbb{R}^n$ est dérivable en $t_0 \in I$ s'il existe un vecteur $\bar{f}'(t_0) \in \mathbb{R}^n$ tel que

$$\lim_{t \to t_0} || \frac{\bar{f}(t) - \bar{f}(t_0)}{t - t_0} - \bar{f}'(t_0) || = 0.$$

Alors $\bar{f}'(t_0)$ est appelé le vecteur tangent de \bar{f} en $t_0 \in I$. La vitesse est définie comme $||\bar{f}'(t_0)||$.

- 3. La courbe $\bar{f}: I \to \mathbb{R}^n$ est dérivable en $t_0 \in I$ si et seulement si chaque composante $f_i: I \to \mathbb{R}$ est une fonction dérivable en $t_0 \in I$. En particulière, on a $\bar{f}'(t_0) = (f'_1(t_0), f'_2(t_0), \dots f'_n(t_0))$.
- 4. La courbe $\bar{f}(t)$ est de classe C^k sur I si toutes les dérivées $f_j^{(m)}(t)$, $m = 1, \ldots k$, $j = 1, \ldots n$ existent et sont continues sur I.
- 5. Soit $\bar{f}(t)$ une courbe de classe C^1 sur I. On dit que $\bar{x} \in \bar{f}(I)$ est un point singulier si $\bar{f}(t_0) = \bar{x}$ et $\bar{f}'(t_0) = 0$. Sinon, $\bar{x} \in \bar{f}(I)$ est un point régulier. Si $\bar{f}'(t) \neq 0$ pour tout $t \in I$, alors $\bar{f}(t)$ est une courbe régulière.
- 6. Un point $\bar{x} \in \bar{f}(I)$ est simple si l'ensemble $\{t \in I : \bar{f}(t) = \bar{x}\}$ contient un seul élément. Si $\bar{f}: I \to \mathbb{R}^n$ est injective, la courbe est simple.
- 7. Soit une courbe $\bar{f}: I \to \mathbb{R}^n$ de classe C^1 , et $[a,b] \subset I$, a < b. La longueur de l'arc de la courbe $f: [a,b] \to \mathbb{R}^n$ est définie par

$$L_{[a,b]}(\bar{f}) = \int_a^b ||\bar{f}'(t)|| dt.$$