数分例题整理

目 录		§ 3.1 函数极限	3
第一部分 实数基本定理与极限	1	第二部分 微分与积分	4
第一章 实数的定义 § 1.1 自然数与其定义	1	第四章函数微分、导数相关定理§ 4.1导数基本性质与中值定理§ 4.2Taylor 公式	4 4 4
一、 自然数的定义	1 1 1	一、 推导与证明§ 4.3 凸函数与 Lipschitz 条件一、 凸函数与二阶导的	4 5
第二章 数列极限与相关计算 § 2.1 数列极限与相关计算	2 2	关系	6 7 8
第三章 函数极限、连续相关定理	3	四、 相关不等式	10

第一部分 实数基本定理与极限

第一章 实数的定义

§ 1.1 自然数与其定义

一、自然数的定义

定义 1.1.1 (Peano 公理) (略)

定义 1.1.2 (自然数加法与乘法) 自然数加法定义为映射 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, 满足以下性质:

- a + b = b + a
- a + 1 = S(a)
- a + S(b) = S(a+b)

自然数的乘法定义为映射 $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, 满足以下性质:

- $a \cdot b = b \cdot a$
- $a \cdot 1 = a$
- $a \cdot S(b) = a + (a \cdot b)$

定义 1.1.3 (自然数的大小关系) a < b 当且仅当存在 $c \in \mathbb{N}, b = a + c$.

§ 1.2 实数的定义

(略)

§ 1.3 实数基本定理

例 1.3.1 证明: ℝ 不可列.

证明 使用闭区间套定理.

反证法. 假设 \mathbb{R} 可列, 记 $\mathbb{R} = \{x_1, x_2, \cdots, x_n, \cdots\}$.

- (1) 取 $[a_1, b_1]$ 使得 $x_1 \notin [a_1, b_1]$.
- (2) 三分 $[a_1, b_1]$ 得三个小区间, 三者必有其一不含 x_2 . 记为 $[a_2, b_2]$:

由此得到一个闭区间套 $\{[a_n,b_n]\}_{n=1}^{\infty}$. 由闭区间套定理, $\exists \xi \in \mathbb{R}, \forall n \in \mathbb{N}, \xi \in [a_n,b_n]$. 但对 $\forall k \in \mathbb{N}, x_k \notin [a_k,b_k]$, 所以 $x_k \notin \bigcap_{n=1}^{\infty} [a_n,b_n]$. 故 $\mathbb{R} \cap \left(\bigcap_{n=1}^{\infty} [a_n,b_n]\right) = \emptyset$, 矛盾!

第二章 数列极限与相关计算

§ 2.1 数列极限与相关计算

例 2.1.1 证明: $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

证明 令 $\sqrt[n]{n} = 1 + y_n$, 有

$$n = (1 + y_n)^n > 1 + \frac{n(n-1)}{2}y_n.$$

故

$$\left|\sqrt[n]{n}-1\right|=|y_n|<\sqrt{\frac{2}{n}}, \forall n\in\mathbb{N}.$$

对任意 $\varepsilon > 0$,取 $N = \left[\frac{2}{\varepsilon^2}\right] + 1$,则对 n < N 有 $\left|\sqrt[n]{n} - 1\right| < \varepsilon$

例 2.1.2 判断以下命题是否正确. 若正确, 给出证明; 若不正确, 给出反例:

数列 a_n 收敛的充要条件是,对任意正正数 p, 都有 $\lim_{n\to\infty} |a_n - a_{n+p}| = 0$.

解 反例如下: 令 $a_n = \sqrt{n}$, 则 $\forall p > 0$

$$|a_{n+p} - a_n| = \frac{p}{\sqrt{n+p} + \sqrt{n}} \to 0,$$

但显然该数列不收敛.

例 2.1.3 求极限: $\lim_{n\to\infty}\sin\left(\sqrt{4n^2+n}\pi\right)$. 解

$$\sin\left(\sqrt{4n^2 + n}\pi\right) = \sin\left(\left(\sqrt{4n^2 + n} - 2n\right)\pi\right)$$

$$= \sin\left(\frac{n}{\sqrt{4n^2 + n} + 2n}\pi\right)$$

$$= \sin\left(\frac{1}{\sqrt{4 + \frac{1}{n}} + 2}\pi\right)$$

所以

$$\lim_{n\to\infty}\sin\left(\sqrt{4n^2+n}\pi\right)=\sin\frac{\pi}{4}=\frac{\sqrt{2}}{2}$$

第三章 函数极限、连续相关定理

§ 3.1 函数极限

定理 3.1.1 单调函数任意一点左右极限均存在

证明 不妨 f(x) 在 (a,b) 上单增,对任意 $x_0 \in (a,b)$, $\{f(x)|x \in (a,x_0)\}$ 有上确界 α .

对任意 $x \in (a, x_0), f(x) \leq \alpha$, 但 $\forall \varepsilon > 0, \exists x' \in (a, x_0), f(x') > \alpha$. 由 f(x) 单调性, $\forall x \in (x', x_0), -\varepsilon < f(x') \leq f(x) - \alpha \leq 0$, 即 $\lim_{x \to x_0^-} f(x) = \alpha$.

右极限同理.

§ 3.2 连续函数与间断

引理 3.2.1 (单调函数的不连续点) 单调函数的不连续点必然是跳跃间断点

证明 由定理3.1.1即得

定理 3.2.1 单调函数至多有可列个间断点

证明 由单调性及间断点的性质, $\lim_{x \to x_0^-} f(x) < f(x_0) < \lim_{x \to x_0^+} f(x)$.

由有理数的稠密性,在每个间断点 x_0 的区间(由单调性,它们两两不交)

 $\left(\lim_{x\to x_0^-} f(x), \lim_{x\to x_0^+} f(x)\right)$, 必存在一个有理数,用这个有理数代表这个区间. 则这些有理数与这些间断点一一对应.

因此间断点至多有可列个.

例 3.2.1 $f: \mathbb{R} \to \mathbb{R}$ 是一个连续函数. 定义 $L(f) = \{x \in \mathbb{R} | f(x) = 0\}$. 证明: 若 L(f) 非空,则 L(f) 是一个闭集. (闭集是包含所有聚点的集合)

第二部分 微分与积分

第四章 函数微分、导数相关定理

§ 4.1 导数基本性质与中值定理

§ 4.2 Taylor 公式

一、推导与证明

引理 **4.2.1** 若 $r(x_0) = r'(x_0) = r''(x_0) = \cdots = r^{(n)}(x_0) = 0$,则 $r(x) = o((x - x_0)^n)$ $(x \to x_0)$.

证明 对 n 归纳.

 $\stackrel{\text{def}}{=} n = 1 \text{ pd}, \quad r(x) = r(x_0) + r'(x_0)(x - x_0) + o(x - x_0) = o(x - x_0)$

假设当 $n \ge 1$ 有 $r^{(n)}(x) = o((x - x_0)^n)$ 成立.

则当n+1时,由 Lagrange 中值定理,

$$r(x) = r(x_0) + r'(x_0 + \theta(x - x_0)) \cdot (x - x_0) = r'(x_0 + \theta(x - x_0)) \cdot (x - x_0)$$

当 $x \to x_0$ 时,

$$r'(x_0 + \theta(x - x_0)) \cdot (x - x_0) = o((x - x_0)^n) \cdot (x - x_0) = o((x - x_0)^{n+1})$$

目、录

由归纳原理,原命题成立.

定理 **4.2.1** (带 Lagrange 余项的泰勒公式) 设 f(x) 在 [a,b] 上 n 阶可导,在 (a,b) 上 有 n+1 阶导. 设 x_0 为 [a,b] 内一点,则对任意 $x \in [a,b]$ 存在 $\theta \in (0,1)$,使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \cdots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + \frac{1}{(n+1)!}f^{(n+1)}(x_0 + \theta(x - x_0))(x - x_0)^{(n+1)}$$

证明 令 $r(x) = f(x) - f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n$,有 $r(x_0) = r'(x_0) = r''(x_0) = \dots = r^{(n)}(x_0) = 0$. 由 Cauchy 中值定理,

$$\frac{r(x)}{(x-x_0)^{n+1}} = \frac{r(x) - r(x_0)}{(x-x_0)^{n+1} - (x_0 - x_0)^{n+1}}
= \frac{r'(\xi_1) - r'(x_0)}{(n+1)((\xi_1 - x_0)^n - (x_0 - x_0)^n)} \qquad \xi_1 \in (x_0, x) \vec{\mathbb{D}}(x, x_0)
= \frac{r''(\xi_2) - r''(x_0)}{(n+1) \cdot n \cdot ((\xi - x_0)^{(n-1)} - (x_0 - x_0)^{(n-1)})} \qquad \xi_1 \in (x_0, \xi_1) \vec{\mathbb{D}}(x, \xi_1)
= \cdots
= \frac{1}{(n+1)!} \cdot \frac{r^{(n)}(\xi_n)}{\xi_n - x_0} \qquad \xi_n \in (x_0, \xi_{n-1}) \vec{\mathbb{D}}(\xi_{n-1}, x_0)
= \frac{1}{(n+1)!} r^{(n+1)}(\xi) \qquad \xi \in (x_0, \xi_n) \vec{\mathbb{D}}(\xi_n, x_0)
= \frac{1}{(n+1)!} f^{(n+1)}(\xi)$$

因此
$$r(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) (x - x_0)^{n+1}$$

§ 4.3 凸函数与 Lipschitz 条件

目录

一、凸函数与二阶导的关系

定义 **4.3.1** (凸函数) 对某函数 f(x) 定义域的任意区间 [a,b] ,有任意 $\lambda \in [0,1]$,满足

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则成 f(x) 为其定义区间上的下凸函数

定理 **4.3.1** f(x) 在区间 I 上二阶可导,则 $\forall x \in I, f''(x) \ge 0$ 是 f(x) 在 I 上下凸的 充要条件.

证明 充分性:

任取 $x_1, x_2 \in I$,不妨设 $x_1 < x_2$ 。任取 $\lambda \in (0,1)$,根据 Lagrange 中值定理

$$\lambda f(x_1) + (1 - \lambda)f(x_2) - f(\lambda x_1 + (1 - \lambda)x_2)$$

$$= -\lambda \left(f(\lambda x_1 + (1 - \lambda)x_2) - f(x_1) \right) + (1 - \lambda)\left(f(x_2) - f(\lambda x_1 + (1 - \lambda)x_2) \right)$$

$$= -\lambda f'(\xi_1) \cdot (1 - \lambda)(x_2 - x_1) + (1 - \lambda)f'(\xi_2) \cdot \lambda(x_2 - x_1)$$

$$(x_1 < \xi_1 < \lambda x_1 + (1 - \lambda)x_2 < \xi_2 < x_2)$$

$$= \lambda (1 - \lambda)f''(\xi)(x_2 - x_1)(\xi_2 - \xi_1) \quad (\xi_1 \le \xi \le \xi_2)$$

$$\geqslant 0$$

必要性: 假设 f(x) 是 I 上的下凸函数,且处处二阶可导。取 $x_0 \in I$,则 $\forall \Delta x > 0$,有

$$\frac{f(x_0 + \Delta x) + f(x_0 - \Delta x) - 2f(x_0)}{\Delta x^2} \ge 0 \qquad \left(x_0 = \frac{1}{2}(x_0 - \Delta x) + \frac{1}{2}(x_0 + \Delta x)\right)$$

目录

另一方面,根据带 Peano 余项的 Taylor 公式,

$$\frac{f(x_0 + \Delta x) + f(x_0 - \Delta x) - 2f(x_0)}{\Delta x^2}$$

$$= \frac{1}{\Delta x^2} \left(f(x_0) + f'(x_0) \Delta x + \frac{1}{2} f''(x_0) \Delta x^2 + o(\Delta x^2) + f(x_0) + f'(x_0) (-\Delta x) + \frac{1}{2} f''(x_0) (-\Delta x)^2 + o(\Delta x^2) - 2f(x_0) \right)$$

$$= f''(x_0) + \frac{o(\Delta x^2)}{\Delta x^2} \quad (\Delta x \to 0)$$

$$= f(x_0)$$

$$\geqslant 0$$

二、Lipschitz 条件

定义 **4.3.2** (局部 Lipschitz 函数) 对任意 $x_0 \in D_f$, 存在邻域 $(x_0 - \delta, x_0 + \delta)$, 与常数 $C(\delta, C$ 均依赖于 x_0), 使得

$$\forall x, x' \in (x_0 - \delta, x_0 + \delta) \cap D_f : |f(x) - f(x')| \le C |x - x'|$$

则称 f(x) 为局部 Lipschitz 函数.

定义 4.3.3 (Lipschitz 函数) 若存在常数 C, 使得

$$\forall x, x' \in D_f: |f(x) - f(x')| \leqslant C|x - x'|$$

则称 f(x) 为 **Lipschitz** 函数.

又由限覆盖定理,闭区间上的局部 Lipschitz 函数是 Lipschitz 函数.

定理 4.3.2 Lipschitz 函数是连续函数.

三、开区间上的凸函数

引理 **4.3.1** f(x) 是 (a,b) 上的下凸函数当且仅当任意 $(x_1,x_2)\subseteq (a,b)$,任意 $x\in (x_1,x_2)$,有

$$\frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_2) - f(x)}{x_2 - x}$$

证明 由
$$x = \frac{x_2 - x}{x_2 - x_1} x_1 + \frac{x - x_1}{x_2 - x_1} x_2$$
, 有

$$f(x)$$
是下凸函数 $\Leftrightarrow f(x) \leqslant \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2)$ ($\forall a < x_1 < x < x_2 < b$) $\Leftrightarrow \frac{f(x) - f(x_1)}{x - x_1} \leqslant \frac{f(x_2) - f(x_1)}{x_2 - x_1}$

另一边同理.

引理 4.3.2 闭区间上的下凸函数有界.

证明 设闭区间 [a,b], 任取 $x \in [a,b]$, $\exists \lambda \in (0,1), x = \lambda a + (1-\lambda)b, f(x) \leqslant \lambda f(a) + (1-\lambda)f(b) \leqslant \max\{f(a),f(b)\}.$

又将 f(x) 连续延拓到 $[c,d] \supseteq [a,b]$ 上且保证其在 [c,d] 上下凸,有 f(x) 在 [c,d] 上有上界.

由于
$$f(a) \leq \lambda_1 f(x) + (1 - \lambda_1) f(c)$$
,有 $f(x) \geq \frac{1}{\lambda_1} f(a) - \left(\frac{1}{\lambda_1} - 1\right) f(c)$.
同理 $f(x) \geq \frac{1}{\lambda_2} f(b) - \left(\frac{1}{\lambda_2} - 1\right) f(d)$. 即 $f(x)$ 有下界.

定理 4.3.3 开区间上的凸函数必为连续函数.

证明 对任意 $\varepsilon > 0$, 任意 $x_0 \in (a,b)$, 存在 $\delta > 0$, $[x_0 - 2\delta, x_0 + 2\delta] \subseteq (a,b)$. 任取 $x > y \in (x_0 - \delta, x_0 + \delta)$, $x = \lambda(x_0 + 2\delta) + (1 - \lambda)y$, $\lambda \in (0,1)$. 由凸函数性质, $f(x) \leq \lambda f(x_0 + 2\delta) + (1 - \lambda)f(y) \Leftrightarrow f(x) - f(y) \leq \lambda [f(x_0 + 2\delta) - f(y)]$. 由引理 3.3.2,|f(x)| < M, $\exists M > 0$. 故 $|f(y) - f(x)| \leq \lambda [f(x_0 + 2\delta) - f(y)] \leq 2\lambda M$. 又由 $x = \lambda(x_0 + 2\delta) + (1 - \lambda)y \Rightarrow |x - y| = \lambda(x_0 + 2\delta - y) > \lambda \delta$, 故 $2\lambda M < \frac{|x - y|}{\delta}$. 代入有 $|f(x) - f(y)| < \frac{|x - y|}{\delta}$, 满足 局部 Lipschitz 性质,因此 f(x) 连续.

定理 4.3.4 开区间上的凸函数必为 Lipschitz 函数.

例 4.3.1 设函数 f(x) 是 (a,b) 上的下凸函数,证明:

- (1) 在每个 $x \in (a,b)$, $f'_{-}(x)$ 与 $f'_{+}(x)$ 均存在,且 $f'_{-}(x) \leqslant f'_{+}(x)$.
- (2) 若 $a < x_1 < x_2 < b$, 则有 $f'_+(x_1) \leq f'_-(x_2)$.
- (3) f(x) 不可导的点至多有可列个.

证明

- (1) 取 $x_0 \in (a,b)$, 由**引理4.3.1**, $\frac{f(x_0) f(x_0 \Delta x)}{\Delta x} \geqslant \frac{f(x_0) f(x_0 2\Delta x_0)}{2\Delta x}$, 表明 $F_-(\Delta x) = \frac{f(x_0) f(x_0 \Delta x)}{\Delta x}$ 关于 Δx 单减. 又取定 $x' > x_0, F_-(\Delta x) \leqslant \frac{f(x') f(x_0)}{x' x_0}, F_-(\Delta x)$ 在 $\Delta x \to 0^+$ 时单调递增且 有上界,故极限存在,即 $f'_-(x_0) = \lim_{\Delta x \to 0} F_-(\Delta x)$ 存在. 同理 $f'_+(x_0)$ 也存在. $f'_-(x_0) = \lim_{x \to x_0^-} \frac{f(x_0) f(x)}{x_0 x} \leqslant \lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} = f'_+(x_0)$ (由引理4.3.1)
- (2) 任取 $x \in (x_1, x_2)$,

 有 $f'_+(x_1) = \lim_{x \to x_1^+} \frac{f(x) f(x_1)}{x x_1} \leqslant \frac{f(x) f(x_1)}{x x_1} \leqslant \frac{f(x_2) f(x)}{x_2 x} \leqslant \lim_{x \to x_2^-} \frac{f(x_2) f(x)}{x_2 x} = f'_-(x_2)$
- (3) 由 (2) 知,如果存在一点 $x_0 \in (a,b)$,使得 $f'_{-}(x_0) < f'_{+}(x_0)$,则开区间 $(f'_{-}(x_0), f'_{+}(x_0))$ 中不含 $f'_{-}(x), f'_{+}(x)$, $\forall x \in (a,b)$ 的所有值. 假设有两点 $x_1 < x_2$,有 $f'_{-}(x_i) < f'_{+}(x_i)$, $i \in \{1,2\}$. 则易得 $f'_{-}(x_1) < f'_{+}(x_1) \leqslant f'_{-}(x_2) < f'_{+}(x_2)$. 由引理3.2.1,同理有这样的 x_0 有可列个.

四、相关不等式

定理 **4.3.5** (Young 不等式) p, q 不等于 0 或 $1, \frac{1}{p} + \frac{1}{q} = 1$, 则对任意正数 a, b, 有

$$ab \leqslant \frac{1}{p}a^p + \frac{1}{q}b^q \quad p > 1$$

$$ab \geqslant \frac{1}{p}a^p + \frac{1}{q}b^q \quad p < 1$$

证明 求导即可.

定理 **4.3.6** (Hölder 不等式) p,q 不等于 0 或 $1, \frac{1}{p} + \frac{1}{q} = 1$,则对任意正数数列 $\{a_k\}_{k=1}^n, \{b_k\}_{k=1}^n,$ 有

$$\sum_{i=1}^{n} a_i b_i \leqslant \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}} \quad p > 1$$

$$\sum_{i=1}^{n} a_i b_i \geqslant \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}} \quad p < 1$$

p>1 时,对 $\forall i\in\{1,2,\cdots,n\}$, 由 Young 不等式,

$$\frac{a_i b_i}{A^{\frac{1}{p}} B^{\frac{1}{q}}} \leqslant \frac{1}{p} \frac{a_i^p}{A} + \frac{1}{q} \frac{b_i^p}{B}$$

故

$$\frac{1}{A^{\frac{1}{p}}B^{\frac{1}{q}}} \sum_{i=1}^{n} a_i b_i \leqslant \frac{1}{p} + \frac{1}{q} = 1$$

即

$$\sum_{i=1}^{n} a_i b_i \leqslant A^{\frac{1}{p}} B^{\frac{1}{q}} = \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_i^q\right)^{\frac{1}{q}}$$

证明 (用 Jesen 不等式的证明) p > 1 时, $f(x) = x^p$ 为下凸函数. 由于 $q = \frac{p}{p-1}$,把 $x_i y_i$ 分解为

$$x_i y_i = y_i^q \left(\sum_{i=1}^n y_i^q\right)^{-1} \cdot x_i y_i^{1-q} \left(\sum_{i=1}^n y_i^q\right)^{-1}$$

注意到

$$\sum_{i=1}^{n} \left(y_i^q \left(\sum_{i=1}^{n} y_i^q \right)^{-1} \right) = 1$$

由 Jesen 不等式,

$$\left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{p} = \left\{\sum_{i=1}^{n} \left[y_{i}^{q} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{-1} \cdot x_{i} y_{i}^{1-q} \left(\sum_{i=1}^{n} y_{i}^{q}\right)\right]\right\}^{p}$$

$$\leq \sum_{i=1}^{n} y_{i}^{q} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{-1} \cdot x_{i}^{p} y_{i}^{p-pq} \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{p}$$

$$= \left(\sum_{i=1}^{n} x_{i}^{p}\right) \cdot \left(\sum_{i=1}^{n} y_{i}^{q}\right)^{p-1}$$

因此,

$$\sum_{i=1}^{n} x_{i} y_{i} = \left(\sum_{i=1}^{n} a_{i}^{p}\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} b_{i}^{q}\right)^{\frac{1}{q}}$$

第五章 函数不定积分、定积分相关定理

§ 5.1 不定积分

(全是计算题)

§ 5.2 定积分