K. J. Somaiya College of Engineering, Mumbai-77 (Autonomous College Affiliated to University of Mumbai) Semester: August – November 2020 **In-Semester Examination**

Class: SY

Branch: Computer Semester:III

Full name of the course: Discrete Mathematics **Course Code:2UCC305**

Duration: 1hr.15 min (attempting questions) +15 min (uploading) Max. Marks: 30

Q. No	Questions	Marks
Q1	1. The Cartesian Product B x A is equal to the Cartesian product A x B. Is it	1
	True or False?	
	a. True	
	b. False	
	2. Let C and D be two sets then C – D is equivalent to	1
	a. C' ∩ D	
	b. C'∩ D'	
	c. C ∩ D'	
	d. None of the mentioned	
	3. Let Universal set U is {1, 2, 3, 4, 5, 6, 7, 8},	1
	(Complement of A) A' is $\{2, 5, 6, 7\}$, A \cap B is $\{1, 3, 4\}$	
	then the set B' will surely have of which of the element	
	a. 8	
	b. 7	
	c. 1	
	d. 3	
	4. Relation 'R' is defined on the set of all integers. where (x,y) is in R if and	
	only if xy>=1. So R is	1
	a. Anti symmetric	
	b. Transitive	
	c. Symmetric	
	d. Both Symmetric and transitive	
	5. Negation of proposition $\forall x P(x) \land \exists y q(y) \text{ is } \underline{\hspace{1cm}}$	1
	a. $\exists x \sim p(x) \ V \ \forall y \sim q(y)$	
	b. $\forall x \sim p(x) \ V \ \forall y \sim q(y)$	
	c. $\exists x \sim p(x) \land \forall y \sim q(y)$	
	d. $\forall x \sim p(x) \land \forall y \sim q(y)$	
	6. P1: A V \sim (B Λ C) \rightarrow (A V \sim B) V \sim C Determine the proposition P1 is	1
	a. Contingency	
	b. Contradiction	
	c. Tautology	

	d. None of the above	
	7. Let $A = \{\emptyset, \{\emptyset\}\}$. Determine whether the following statement/s are not	
	correct.	1
		1
	a. $\emptyset \in P(A)$	
	b. $\{\{\emptyset\}\}\in A$	
	c. Ø ⊂ A	
	$d. \{\emptyset\} \in A$	
	8. $(P \vee Q) \wedge (P \rightarrow R) \wedge (Q \rightarrow S)$ is equivalent to	1
	a. $S \rightarrow R$	1
	b. S^R	
	c. S v R	
	d. All of above	
	d. All of above	
	9. A is an ordered collection of objects.	
	a. Relation	1
	b. Function	1
	c. Set	
	d. Proposition	
	-	
	10. What is the cardinality of the set of odd positive integers less than 10?	1
	a. 10	1
	b. 5	
	c. 3	
	d. 20	
Q2	a. Among 50 students in a class, 26 got an A in the first examination and 21	
	a. Among 50 students in a class, 26 got an A in the first examination and 21 got an A in the second examination. If 17 students did not get an A in either	5M
	examination, how many students got an A in both examinations?	
	b. If the number of students who got an A in the first examination is equal to	
	that in the second examination, if the total number of students who got an A	
	in exactly one examination is 40 and if 4 students did not get an A in either	
	examination then determine the number of students who got an A in the	
	first examination only, who got an A in the second examination only and	5M
	who got an A in both the examination?	
Q3 (a)	Let $A = \{1,2,3,4,5\}$. A relation R is defined on A as aRb iff a b. Compute R^2 and	
(a)	R ^{∞} .	5M
	IX .	
	OR	
	Let $A = \{1,2,3,4\}$. Find the transitive closure set by using Warshall's algorithm	5 N /I
	for the relation $R = \{(1,1),(1,4),(2,2),(2,3),(3,2),(3,3),(4,1),(4,4)\}.$	5M
Q.3(b)	Use mathematical induction to show that	
	$1 + 5 + 9 + \dots + (4n - 3) = n (2n - 1)$	
	\mathbf{OR}	5M
	2+5+8++(3n-1)=n(3n+1)/2	