Home ► Electrical Engineering ► Engr 17 F16 Tatro ► Homework ► Homework 6 - Chap 4

Started on Sunday, 9 October 2016, 12:43 PM

State Finished

Completed on Sunday, 9 October 2016, 1:20 PM

Time taken 36 mins 53 secs

Grade 90.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

P4.09_9ed

Use the node-voltage method to find \boldsymbol{v}_0 in this circuit.

$$v_0 = 4$$

Numeric Answers

$$v_0 = 4 \text{ V}$$

Correct

Correct

Mark 10.00 out of 10.00

AP4.06_9ed

Use the node-voltage method to find v_I in the circuit shown

$$V_1 = \boxed{48}$$

Numeric Answers

$$v_1 = 48 \text{ V}$$

Correct

Correct

Mark 10.00 out of 10.00

AP4.13_9ed

Find the power absorbed/delivered by the 2 A current source in this circuit.

$$P_{2A} = \boxed{-70}$$
 W

"+" = absorbed and "-" = delivered

Numeric Answer

$$P_{2A} = -70 \text{ W}$$

Correct

Correct

Mark 10.00 out of 10.00

AP4.02_9ed

Use the node-voltage method to find v in the circuit shown

Numeric Answers

v= 15 V

Correct

Correct

Mark 10.00 out of 10.00

P4.08_9ed

Use the node-voltage method to find \boldsymbol{v}_1 and \boldsymbol{v}_2 in this circuit.

Numeric Answers

$$v_1 = 120 \text{ V}$$
 $v_2 = 96 \text{ V}$

Correct

Correct

Mark 10.00 out of 10.00

P4.05_6ed

Use the node-voltage method.

a) Find v0 in this circuit.

$$v_0 = 10$$

b) Find the power absorbed/delivered by the 3A current source.

$$P_{3A} = \begin{bmatrix} 30 \end{bmatrix} \checkmark W$$

Numeric Answer

a)
$$v_0 = 10 \text{ V}$$

b)
$$P_{2A} = 30 \text{ Watts}$$

Correct

Incorrect

Mark 0.00 out of 10.00

P4.02_6ed

Use the node-voltage method.

a) Find the voltage \boldsymbol{v}_0 across the 2A current source in this circuit.

b) Find the power absorbed/delivered by the 2A current source.

$$P_{2A} = 20$$
 × W

Numeric Answer

a)
$$v_0 = 20 \text{ V}$$

b)
$$P_{2A} = 40 \text{ Watts}$$

Incorrect

Correct

Mark 10.00 out of 10.00

AP4.01_9ed

For this circuit, use the node-voltage method to find v1, v2, and i1.

Numeric Answers

$$v_1 = 60 \text{ V}$$

$$v_2 = 10 \text{ V}$$

$$v_2 = 10 \text{ V}$$

 $i_1 = 10 \text{ A}$

Correct

Correct

Mark 10.00 out of 10.00

P4.17_10ed

a) Use the node-voltage method to find v0 in the circuit shown

$$v_0 = \boxed{50}$$

b) Find the power absorbed/delivered by the dependent source P_{ds}.

$$P_{ds} = 31.875$$
 \checkmark W

c) Find the power absorbed/delivered by the independent sources.

$$P_{80V} = -120$$
 V

Numeric Answers

a)
$$v_0 = 50 \text{ V}$$

b)
$$P_{ds} = 31.875W$$
 absorbing

c)
$$P_{3A} = -150W$$
 delivering $P_{80V} = -120W$ delivering

Correct

Correct

Mark 10.00 out of 10.00

P4.20_10ed

a) Use the node-voltage method to find v0 in the circuit shown

$$v_0 = \boxed{10}$$

b) Find the power absorbed/delivered by the dependent source.

$$P_{ds} = \boxed{-0.4}$$

Numeric Answers

a)
$$v_0 = 10 \text{ V}$$

b)
$$P_{ds} = -0.4W$$
 delivering

Correct