Chapitre 3

LANGAGES ET GRAMMAIRES

1. INTRODUCTION

- Au-delà de la classe des langages rationnels, il existe bien d'autres familles de langages, qui valent également la peine d'être explorées.
- Les langages réguliers s'expriment à l'aide d'ERs. Mais la plupart du temps, les langages ne sont pas réguliers. On a besoin d'un outil plus puissant que les ERs : les grammaires.
- Tout langage de programmation possède des règles qui indiquent la structure syntaxique d'un programme bien formé.
- La syntaxe d'un langage peut être décrite par une grammaire.
- Chomsky identifie une hiérarchie de familles de grammaires de complexité croissante, chaque famille correspondant à une contrainte particulière sur la forme des règles de récriture.
- Nous nous intéressons, ici, en particulier aux grammaires hors contextes.

2. GRAMMAIRES

Exemple 1: Dans le langage naturel, une phrase est composée d'un sujet d'un verbe suivi d'un complément :

L'étudiant subit un cours

Exemple 2: Une expression conditionnelle en C:

if (EXPRESSION) INSTRUCTION

Il faut définir ce qu'est une EXPRESSION et ce qu'est une INSTRUCTION

- Une grammaire est un ensemble de règles permettant de dire si un mot c.-à-d. une suite de symboles est correcte ou non, comme dire aussi si une phrase c.-à-d. une suite de mots est correcte ou non.
- Une grammaire est la donnée de G=(VT, VN, S, P) où
 - V_T est un ensemble non vide de symboles **terminaux** (alphabet terminal, Ex : le, la, if,...)
 - V_N est un ensemble non vide de symboles non-terminaux avec VT∩VN=Ø (symboles qu'il faut encore définir, Ex : PHRASE, SUJET, ARTICLE, COULEUR,...)
 - S est un symbole initial ∈ VN appelé **axiome** (Ex. : PHRASE)
 - P est un ensemble de **règles de production** (règles de réécriture)
- Une règle de production $\alpha \rightarrow \beta$ précise que la séquence de symboles α : partie gauche de la production ($\alpha \in (V_TUV_N)^+$) peut être remplacée par la séquence de symboles β : partie droite de la production ($\beta \in (V_TUV_N)^*$).

Exemple 3:

Symboles terminaux (alphabet) : $V_T = \{a,b\}$ Symboles non

terminaux : $V_N = \{S\}$

Axiome: S

Règles de production:

$$\begin{cases} S \rightarrow \varepsilon \\ \\ S \rightarrow aS \end{cases} \Leftrightarrow S \rightarrow \varepsilon |aSb|$$

Exemple 4:

 $G=(V_T, V_N, S, P)$ avec

V_T={il, elle, parle, est, devient, court, reste, sympa, vite}

V_N={PHRASE, PRONOM, VERBRE, COMPLEMENT, VERBETAT, VERBACTION}

S=PHRASE

 $P=\{PHRASE \rightarrow PRONOM VERBE COMPLEMENT PRONOM \}$

 \rightarrow il | elle

VERBE → VERBETAT | VERBACTION

VERBETAT \rightarrow est | devient | reste

VERBACTION → parle | court COMPLEMENT → sympa | vite }

NB:

• S. non-terminaux : Lettres capitales (A, B,...,Z)

• S. terminaux : Lettres minuscules du début de l'alphabet (a,b,...),

• Chaîne de S. terminaux : Lettres minuscules de la fin de l'alphabet (t,...,z),

• Chaîne de S. terminaux et non-terminaux :Lettres grecques $(\alpha, \beta, ...)$

3. ARBRE DE DÉRIVATION

- On appelle **dérivation** l'application d'une ou plusieurs règles à partir d'un mot de $\left(V_TUV_N\right)^+$
- \rightarrow dérivation obtenue par application d'une seule règle de production
- * \rightarrow dérivation obtenue par application de *n* règles de production avec $n \ge 0$

Exemple 1: Sur la grammaire de l'exemple 1

$$\begin{cases} S \to \ \epsilon \\ S \to \ aSb \end{cases}$$

 $aSb \rightarrow aaSbb$

 $S \rightarrow^* ab$ $S \rightarrow aSb \rightarrow ab$

 $S \rightarrow^* aaabbb \rightarrow aaaSbb \rightarrow aaaSbb \rightarrow aaabbb$

Exemple 2: Sur la grammaire de l'exemple 2

PHRASE → PRONOM VERBE COMPLEMENT

PHRASE $\xrightarrow{*}$ elle VERBETAT sympa

PHRASE $\stackrel{*}{\longrightarrow}$ elleparle vite

PHRASE $\xrightarrow{*}$ elle court sympa

NB:

On peut générer des phrases syntaxiquement correctes mais qui n'ont pas de sens. C'est l'analyse sémantique qui permettra d'éliminer ce problème.

• Étant donné une grammaire G, on **note L(G) le langage généré par G** et défini par {w ∈ (V_T)*/S →* w}

Exemple 1:

La grammaire de l'exemple 1 nous donne $L(G)=\{a^nb^n, n\geq 0\}=\{\epsilon, ab, aabb, aaabb, ...\}$

- On appelle arbre de dérivation (arbre syntaxique) tout arbre tel que
 - La racine est l'axiome,
 - Les nœuds sont les symboles non terminaux,
 - Les fils d'un nœud α sont $\beta_0,..., \beta_n$ ssi $\alpha \to \beta_0,..., \beta_n$ est une règle de production

Exemple: Soit la grammaire suivante:

$$P = \begin{cases} S \rightarrow aTb \mid c \\ T \rightarrow cSS \mid S \end{cases}$$

Un arbre de dérivation pour le mot accacbb est :

• **Dérivations gauches** : réécrite le symbole non-terminal le plus à gauche à chaque étape

$$S \rightarrow aTb \rightarrow acSSb \rightarrow accSb \rightarrow accaSbb \rightarrow accaSbb \rightarrow accacbb$$

• **Dérivations droites** : réécrite le symbole non-terminal le plus à droite à chaque étape

$$S \rightarrow aTb \rightarrow acSSb \rightarrow acSaTbb \rightarrow acSaSbb \rightarrow acSacbb \rightarrow accacbb$$

Ces deux suites différentes de dérivations donnent le même arbre de dérivation.

• Une grammaire est dite **ambiguë** s'il existe un mot de L(G) ayant plusieurs arbres syntaxiques.

Exemple:

Cette grammaire est ambiguë car le mot m :

possède deux arbres syntaxiques différents (avec les mêmes feuilles dans le même ordre).

4. ANALYSE DESCENDANTE

<u>Principe</u>: construire l'arbre de dérivation du haut (la racine : axiome de départ) vers le bas (les feuilles : ULs).

Exemple 1:

$$\begin{cases} S \rightarrow aSbT|cT|d \\ T \rightarrow aT|bS|c \end{cases}$$
 avec le mot w=accbbadbc

Chaque règle commence par un terminal différent \rightarrow On sait immédiatement laquelle prendre.

Exemple 2:

En lisant le c, on ne sait pas s'il faut prendre la règle $A \rightarrow cd$ ou $A \rightarrow c$.

\rightarrow 2 possibilités :

- _ Lire aussi la lettre suivante : **b**
- Donner la possibilité de faire des retours en arrière.

Exemple 3:

$$S \rightarrow aSb \mid aSc \mid d$$
 avec le mot w=aaaaaaadbbcbbbc

Pour savoir quelle règle utiliser, il faut connaître aussi la dernière lettre du mot.

Exemple 4:

$$\begin{cases}
E \rightarrow TE' \\
E' \rightarrow +TE' \mid -TE' \mid \epsilon \\
T \rightarrow FT' \qquad \text{avec le mot w} = 3*4+10*(5+11)/34+12 \\
T' \rightarrow *FT' \mid /FT' \mid \epsilon \\
F \rightarrow (E) \mid nb
\end{cases}$$

→ Avoir une table qui nous dit : quand je lis tel caractère et que j'en suis à dériver tel symbole non-terminal, alors j'applique telle règle : **Table d'analyse**

4.1. TABLE D'ANALYSE LL(1)

• Pour construire une table d'analyse, on a besoin des ensembles **PREMIER** et **SUIVANT.**

4.1.1. Calcul de PREMIER

 $\forall \alpha$, terminal ou non-terminal, PREMIER(α)={a, a \in VT / $\exists \alpha \rightarrow * a\beta$ }

- 1) Si X est un non-terminal et $X \to Y_1Y_2...Y_n$ est une production avec Y_1 symbole terminal ou non_terminal, alors
 - a) ajouter les éléments du PREMIER(Y1) sauf ϵ dans PREMIER(X)
- b) si \exists j ($j \in \{2,...,n\}$)/ \forall i=1...j-1 on a $\epsilon \in PREMIER(Y_i)$, alors ajouter les éléments de PREMIER(Yj) sauf ϵ dans PREMIER(X)
 - c) si \forall i=1...n $\epsilon \in PREMIER(Y_i)$, alors ajouter ϵ dans PREMIER(X)
- 2) Si X est un non terminal et $X \rightarrow \varepsilon$ est une production, alors ajouter ε dans PREMIER(X)
- 3) Si X est un terminal alors PREMIER $(X)=\{X\}$

Recommencer jusqu'à ce qu'on n'ajoute rien de nouveau dans les ensembles PREMIER

Exemple:

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid -TE' \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid /FT' \mid \varepsilon$$

$$FREMIER(E) = PREMIER(T) = \{(,nb\} \}$$

$$PREMIER(E') = \{+,-,\varepsilon\} \}$$

$$PREMIER(T) = PREMIER(F) = \{(,nb\} \}$$

$$1)a)$$

$$1)a)$$

$$1)a)$$

$$PREMIER(T') = \{*,/,\varepsilon\} \}$$

$$PREMIER(T') = \{*,/,\varepsilon\} \}$$

$$PREMIER(T') = \{(,nb\} \}$$

$$1)a) - 3) - 2)$$

$$PREMIER(F) = \{(,nb\} \}$$

$$1)a)$$

4.1.2. Calcul de SUIVANT

 $\forall A$, non-terminal, SUIVANT(A)={a, a \in VT / S \rightarrow * $\alpha Aa\beta$ }

- 1) Ajouter \$ à SUIVANT(S) où S est l'axiome de départ de la grammaire
- 2) \forall A \rightarrow α B β où B est un non terminal, ajouter PREMIER(β) à SUIVANT(B), sauf ϵ
- 3) \forall A \rightarrow α B, ajouter SUIVANT(A) à SUIVANT(B)
- 4) \forall A \rightarrow α B β avec $\varepsilon \in PREMIER(\beta)$, alors ajouter SUIVANT(A) à suivant (B)

Recommencer à partir de l'étape 3) jusqu'à ce qu'on n'ajoute rien de nouveau dans les ensembles SUIVANT

Exemple:

a)
$$E \rightarrow TE'$$
 SUIVANT(E)={\$,)}
 1)a)-2)e)

 b) $E' \rightarrow +TE' \mid -TE' \mid \varepsilon$
 SUIVANT(E')={\$,)}
 3)a)b)

 c) $T \rightarrow FT'$
 SUIVANT(T)={+,-,), \$}
 2)b)-4)b)

 d) $T' \rightarrow *FT' \mid /FT' \mid \varepsilon$
 SUIVANT(T')={+,-,), \$}
 3)c)

 e) $F \rightarrow (E) \mid nb$
 SUIVANT(F)={*,/,+,-,\$}
 2)d)-3)c)

4.1.3. Construction de la table LL

Pour chaque production $A \rightarrow \alpha$ faire

- 1) \forall $\mathbf{a} \in \mathbf{PREMIER}(\alpha)$ ($\mathbf{a}\neq \epsilon$), rajouter $A \rightarrow \alpha$ dans la case M[A,a]
- 2) si $\varepsilon \in PREMIER(\alpha)$, alors \forall b $\in SUIVANT(A)$, ajouter $A \rightarrow \alpha$ dans M[A,b]

Chaque case M[A,a] vide est une erreur de syntaxe

Exemple:

PRODUCTIONS	PREMIERS	SUIVANTS
E→TE'	{(,nb}	{\$,) }
Ε'→+ΤΕ' -ΤΕ' ε	{+,-,ε}	{\$,) }
T→FT'	{(,nb}	{+,-,), \$}
T' → * FT' / FT' ε	{* , /,ε}	{+,-,),\$}
$F \rightarrow (E) \mid nb$	{(,nb}	{*,/,,),+,-,\$}

	nb	+	-	*	/	(\$)
E	E→TE'					E→TE'		
E '		E'→+TE'	E' →- TE'				E' →ε	Ε'→ε
T	T→FT'					T→FT'		
T '		T'→ε	T'→ε	T'→*FT'	T'→/FT'		T'→ε	T'→ε
F	F→nb					F→(E)		

4.2. ANALYSEUR SYNTAXIQUE

Algorithme

Données : mot *m* terminé par \$, table d'analyse *M*

 $: S-*\rightarrow m?$ Résultat

Initialisation de la pile P: pointeur ps sur la $1^{\text{ère}}$ lettre de m

 \mathbf{S} \$

Répéter

X: sommet de P

a: lettre pointée par ps

si X est un non-terminal alors

 $\underline{\mathbf{si}} M[X,a] = X \rightarrow Y_1 \dots Y_n$

alors

enlever X de Pmettre Y_n puis $Y_{n-1}...Y_1$ dans Pémettre en sortie la production

 $X \rightarrow Y_1 \dots Y_n$

sinon case vide dans la table

<u>Finsi</u>

Exemple: m=3+4*5

 $E \rightarrow TE'$ $F \rightarrow (E) \mid nb$

E' \rightarrow +TE' | -TE' | ϵ T' \rightarrow FT' | /FT' | ϵ

SE $3+4*5\$$ $3+4*5\$$ SE'T'F SE'T'S SE'T'3 SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T' SE'T'S SE'T
ACCEPTER (analyse syntaxique réussie)

Arbre syntaxique:

4.3. GRAMMAIRE LL(1)

- On appelle **grammaire LL(1)** une grammaire pour laquelle la tabled'analyse décrite précédemment n'a aucune case définie de façon multiple.
- LL(1):
 - L (Left to Right scanning) : parcours d'entrée de gauche à droite
 - L (Left most derivation): utilisation des dérivations à gauche
 - 1 : un seul symbole de prévision est nécessaire pour la prise d'une décision d'action d'analyse

Exemple 1: Grammaire non factorisée à gauche

	a	c
S	$S \rightarrow aAb$	
A		A→cd
		A→c

Exemple 2 : Grammaire récursive à gauche

$$\begin{cases}
S \rightarrow aTbbbb \\
T \rightarrow Tb \mid \epsilon
\end{cases}$$

• Une grammaire ambiguë ou récursive à gauche ou non factorisée n'est pas LL(1)

4.4. RÉCURSIVITÉ À GAUCHE

• Une grammaire est immédiatement récursive à gauche si elle contient un nonterminal A / \exists A \rightarrow A α où α est une chaîne quelconque.

Exemple: Grammaire

$$\begin{cases} S \rightarrow ScA \mid B \\ A \rightarrow Aa \mid \varepsilon \\ B \rightarrow Bb \mid d \mid e \end{cases}$$

• Élimination de la récursivité à gauche immédiate :

Remplacer toute règle de la forme $A \rightarrow A \alpha \mid \beta$ par

- $A \rightarrow \beta A$
- $A' \rightarrow \alpha A' \mid \epsilon$

La grammaire ainsi obtenue reconnaît le même langage que la grammaire initiale.

Exemple: Grammaire'

- Mot: dbbcaa:
 - Grammaire:

$$S \rightarrow ScA \rightarrow BcA \rightarrow BbcA \rightarrow BbbcA \rightarrow dbbcAc \rightarrow dbbcAaa \rightarrow dbbcaa$$

- Grammaire':

$$S \rightarrow BS' \rightarrow dB'S' \rightarrow dbB'S' \rightarrow dbbS' \rightarrow dbbS' \rightarrow dbbcAS' \rightarrow dbbcA'S' \rightarrow dbbcaaA'$$

$$S' \rightarrow dbbcaaS' \rightarrow dbbcaa$$

• Une grammaire est **récursive à gauche** si elle contient un non-terminal A / \exists A-+ \rightarrow A α où α est une chaîne quelconque.

Exemple:

$$\begin{cases} S \rightarrow Aa \mid b & S : n'est pas immédiatement récursif à \\ A \rightarrow Ac \mid Sd \mid c & gauche mais récursif à gauche : S \rightarrow Aa \rightarrow Sda \end{cases}$$

• Élimination de la récursivité à gauche :

Ordonner les non-terminaux
$$A_1, A_2, ..., A_n$$

Pour $i=1$ à n faire

Pour $j=1$ à $i-1$ faire

Remplacer $A_i \rightarrow A_j \alpha$ où $A_j \rightarrow \beta_1 |\beta_2| ... |\beta_p$ par

 $A_i \rightarrow \beta_1 \alpha |\beta_2 \alpha| ... |\beta_p \alpha$

Finpour

Éliminer les récursivités à gauche immédiates des productions Ai

Finpour

La grammaire ainsi obtenue reconnaît le même langage que la grammaire initiale.

Exemple:

$$\begin{cases} S \rightarrow Aa \mid b \\ A \rightarrow Ac \mid Sd \mid c \end{cases}$$

On ordonne S, A

i=1 pas de récursivité immédiate dans $S \rightarrow Aa \mid b$

i=2 et j=1 on obtient $A \rightarrow Ac \mid Aad \mid bd \mid c$

$$A \rightarrow bdA' | cA'$$

 $A' \rightarrow cA' | adA' | \epsilon$

Grammaire obtenue:

$$\begin{cases} S \rightarrow Aa \mid b \\ A \rightarrow bdA' \mid cA' \\ A' \rightarrow cA' \mid adA' \mid \epsilon \end{cases}$$

Exemple:

$$\begin{cases}
S \rightarrow Sa \mid TSc|d \\
T \rightarrow TbT| \epsilon
\end{cases}
\Rightarrow
\begin{cases}
S \rightarrow TScS' \mid dS' \\
S' \rightarrow aS' \mid \epsilon \\
T \rightarrow T' \\
T' \rightarrow bTT' \mid \epsilon
\end{cases}$$

Or on'a S \rightarrow TScS' \rightarrow T'ScS' \rightarrow ScS' (encore récursif à gauche) \Rightarrow l'algorithme ne marche pas toujours lorsque on'a une règle : T \rightarrow ϵ

5.5. GRAMMAIRE PROPRE

- Une grammaire est dite **propre** si elle ne contient aucune production $A \rightarrow \epsilon$
- Rendre une grammaire propre : remplacer A par ϵ dans toute production dans laquelle A apparaît dans sa partie droite

Exemple:

$$\begin{array}{c|c}
\hline
S \to aTb \mid aU \\
T \to bTaTA \mid \varepsilon \\
U \to aU \mid b
\end{array}$$

$$\Rightarrow \begin{array}{c}
S \to aTb \mid ab|aU \\
T \to bTaTA \mid baTA|bTaA|baA \\
U \to aU \mid b$$

5.6. FACTORISATION À GAUCHE

Exemple:

$$\begin{cases}
S \rightarrow \mathbf{aEbS} \mid \mathbf{aEbS} \in \mathbb{B} | \mathbf{aEbS} \in \mathbb{B} \\
E \rightarrow \mathbf{bcB} \mid \mathbf{bca} \\
B \rightarrow \mathbf{ba}
\end{cases}$$

• L'idée : pour développer un non-terminal A quand il n'est pas évident de choisir quelle production prendre, on doit réécrire les productions de façon à différer la décision jusqu'à ce que suffisamment de texte ait été lu pour faire le bon choix.

• Factorisation à gauche :

- Pour chaque **non-terminal A**, trouver le plus long préfixe α commun à deux de ses alternatives ou plus.
- Si $\alpha \neq \epsilon$ remplacer $A \rightarrow \alpha \beta 1 |... |\alpha \beta n| |\lambda 1|... |\lambda p|$ (où les λi ne commencent pas par α) par

- Recommencer jusqu'à ne plus en trouver

$$\begin{cases}
S \rightarrow \mathbf{aEbS} \mid \mathbf{aEbSeB} \mid \mathbf{a} \\
E \rightarrow \mathbf{bcB} \mid \mathbf{bca} \\
B \rightarrow \mathbf{ba}
\end{cases}
\Rightarrow
\begin{cases}
S \rightarrow \mathbf{aEbSS'} \mid \mathbf{a} \\
S' \rightarrow \mathbf{eB} \mid \mathbf{c} \\
E \rightarrow \mathbf{bcE'} \\
E' \rightarrow \mathbf{B} \mid \mathbf{a} \\
B \rightarrow \mathbf{ba}
\end{cases}$$

Conclusion:

- Si la grammaire est LL(1), l'analyse syntaxique peut se faire par l'analyse descendante.
- Étant donné une grammaire :
 - 1) La rendre non ambiguë
 - 2) Éliminer la récursivité à gauche si nécessaire
 - 3) La factoriser à gauche si nécessaire
 - 4) Construire la table d'analyse
 - 5) Espérer que ça soit LL(1)
- Contre exemple :

La grammaire suivante n'est pas LL(1) or elle n'est pas récursive à gauche, elle est factorisée à gauche et elle n'est pas ambiguë :

$$\begin{cases} S \rightarrow aTb | \varepsilon \\ T \rightarrow cSa|d \end{cases}$$

• **Remarque :** Il y a un autre type d'analyse qui est l'analyse ascendante. Cette méthode permet d'analyser plus de grammaires que la méthode descendante (car il y a plus de grammaires LR que LL(1)). Dans cette méthode, il n'a strictement aucune importance que la grammaire soit récursive à gauche.