Functional Dependencies - summary

pm jat @ daiict

Functional Dependencies - summary

- A dependencies among attributes in database
 - Comes from semantics of attributes
 - FDs capture database constraints
 - Basically mapping from attribute(s) to attribute(s)
 - FDs are used for detecting "redundancies in a relations"
- Understood as
 - Function: $f: x \rightarrow y$
 - In FDs function is lookup function rather than computation function that might the case in math
 - Lookup: SELECT distinct Y FROM R WHERE X=xval;

Functional Dependencies - summary

Suppose there is a relation r, and

```
t1 \in rt2 \in r
```

• Then if we have t1[X] = t2[X] and then we also have t1[Y] = t2[Y], then we say that there is a FD $X \rightarrow Y!$

Key Defined in terms of FDs

 Key is set of attributes that irreducibly determines rest of attributes of a relation.

A relation can have multiple keys

FD Inference Rules

- From a given sett of FDs, other FDs can be implied or inferred.
- There are certain inference rules that can be used for computing inferred or implied FDs.
- Following are three basic inference rules, known as "Armstrong's axioms"-
 - (1) Reflexive Rule: if $Y \subseteq X$ then $X \rightarrow Y$; basically trivial FD rule.
 - (2) Augmentation Rule: $\{X \rightarrow Y\} \models XZ \rightarrow YZ$
 - (3) Transitive Rule: $\{X \rightarrow Y, Y \rightarrow Z\} \models X \rightarrow Z$
- Three more rules, derived from "Armstrong's axioms"-
 - (4) Union Rule: $\{X \rightarrow Y, X \rightarrow Z\} \models X \rightarrow YZ$
 - (5) Decomposition Rule: $\{X \rightarrow YZ\} \models X \rightarrow Y$, and $X \rightarrow Z$
 - (6) Pseudo-transitivity Rule: If $X \to Y$ and $WY \to Z$, then $WX \to Z$

Where do we use inference rules

- Determining if a FD is implied from a given FD set
- Computation of closure F⁺ of F
- Determining if two FD sets are equivalent
- Computing minimal FD set

Some terms

- F⁺, closure of FD set F is set of all FDs that are inferred from F.
- A FD set G said to cover another FD set F, if closure of both are same.
- Two FD set F and G are said to be equivalent when the cover each other.
- F_{min} (for FD set F) is a minimal subset of F that still equivalent to F.
 - Minimal FD set is also referred as "canonical cover" in some texts.
- Attribute closure: X⁺ of attribute X is set of all attributes that are functionally determined by X.

Computation of Attribute Closure

```
Given
F = {
      AB \rightarrow C
      BC \rightarrow AD,
      D \rightarrow E
      CF \rightarrow B
Compute {A,B}+ using this Algorithm
```

```
Input: X, F
Output: X<sup>+</sup>
X^{+} := X;
repeat
oldX^+ := X^+
for each fd YZ in F do
if X<sup>+</sup> is superset of Y then
          X^{+} := X^{+}U Z;
until (X^+= old X^+);
```


Computation of Minimal FD set

- Drop all trivial FDs
- Write the FDs in following (canonical) form-
 - Have only one attribute in right hand side and
 - Make left side "irreducible"
- Remove redundant FDs if any (i.e. No inferred FDs)
 - Should be easy to notice duplicate and trivial FD when written in canonical form
 - See if there are any transitively inferred FDs
 - See still there are some inferred FDs; remove them.


```
studid → name
```

studid→ cpi

studid→ progid

studid → pname

studid → intake

studid→ did

studid → dname

progid → pname

progid → did

progid → intake

progid → dname

did → dname

studid → name

studid→ cpi

studid→ progid

studid→ pname

studid → intake

studid → did

studid → dname

progid → pname

progid → did

progid → intake

progid → dname

did → dname

studid → name

studid→ cpi

studid → progid

progid → pname

progid→ did

progid → intake

did → dname

• $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$

• $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$

• $F = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$

$A \rightarrow C$	$A \rightarrow C$	$A \rightarrow C$	$A \rightarrow C$	
$AC \rightarrow D$	$AC \rightarrow D$	$A \rightarrow D$	$A \rightarrow D$	$A \rightarrow CD$
$E \rightarrow AD$	$E \rightarrow A$	$E \rightarrow A$	$E \rightarrow A$	$E \rightarrow AH$
$E \rightarrow H$	$E \rightarrow D$	$E \rightarrow D$	$E \rightarrow H$	
	$E \rightarrow H$	$E \rightarrow H$		

• $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$

$$\begin{array}{c|ccccc} AB \rightarrow C & AB \rightarrow C & A \rightarrow C \\ AB \rightarrow D & AB \rightarrow D & AB \rightarrow D \\ A \rightarrow E & A \rightarrow E & A \rightarrow E \\ E \rightarrow C & E \rightarrow C & E \rightarrow C \\ A \rightarrow C & A \rightarrow C & E \rightarrow C \end{array}$$

Computation of Key

- For a relation R, and given set of FDs F, you can compute key for R as following-
 - Pick one possible minimum set of attributes, X, and compute closure, if closure includes all attributes of R, then X is key.
 - Ensure X is minimal, if so, it is Key; X is minimal if closure of none of its subset contains all attributes of relation R.
 - A relation might have multiple key, you should also see if there is some other attribute(s) Y, is a key.