PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-198112

(43) Date of publication of application: 24.07.2001

(51)Int.Cl.

A61B 5/145

A61B 5/00

G01N 21/17

(21)Application number: 2000-011641 (71)Applicant: HITACHI MEDICAL CORP

(22)Date of filing: 20.01.2000 (72)Inventor: KAWASAKI SHINGO

ICHIKAWA TOKIYOSHI

(54) ORGANISMIC LIGHT MEASURING DEVICE

(57) Abstract:

relationship with a region by displaying the information obtained by measuring the organismic light on a shape

image obtained by the other image diagnostic system.

SOLUTION: This organismic light measuring device is provided with a signal processing part 30 for making topography for showing organismic information on the inside of a subject to be tested 9 by using a quantity of light detected by a light detecting part 20 with every detecting position, and a signal processing means arranges and displays the topography on shape image data on the basis of coordinate data by inputting three-dimensional shape image data on the subject made by the other image diagnostic system 40 and the coordinate data on a light irradiating position and a light detecting position measured by a three-dimensional position detector.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-198112

(P2001 - 198112A)

(43)公開日 平成13年7月24日(2001.7.24)

(51) Int.Cl. ⁷		戲別記号	FΙ		Ť	-7]-ド(参考)
A 6 1 B	5/145		A 6 1 B	5/00	D	2G059
	5/00		C 0 1 N	21/17	6 2 5	4 C 0 3 8
G01N	21/17	6 2 5	A 6 1 B	5/14	3 1 0	

寒杏諸少 未諸少 諸少項の数4 () (全 9 頁)

		台江明水	木明水 明水坝の数4 しし (主 9 貝)
(21)出廢番号	特願2000-11641(P2000-11641)	(71)出願人	000153498
			株式会社日立メディコ
(22) 出願日	平成12年1月20日(2000.1.20)	- 4	東京都千代田区内神田 1 丁目 1 番14号
		(72)発明者	川崎、真護
			東京都千代田区内神田 1 丁目 1 番14号 株
			式会社日立メディコ内
		(72)発明者	市川祝義
			東京都千代田区内神田1丁目1番14号 株
			式会社日立メディコ内
		(74)代理人	
		(12) [4-17]	弁理士 多田 公子 (外1名)
			NAT AM WI OLIM
			最終質に続く

(54) 【発明の名称】 生体光計測装置

(57)【要約】

【課題】生体光計測において得られた情報を、他の画像 診断装置によって得られた形態画像上に表示することに より、生体光計測によって得られる情報、例えば脳のへ モグロビン変化や局所的な脳内出血等を部位との関係で 正確に把握できるようにすること。

【解決手段】生体光計測装置は、光検出部20で検出さ れた検出位置毎の光量を用いて被検体内部9の生体情報 を表すトポグラフィを作成する信号処理部30を備え、 信号処理手段は、他の画像診断装置40で作成された被 検体の3次元形態画像データと、3次元位置検出器によ って測定された光照射位置及び光検出位置の座標データ とを入力し、座標データに基づきトポグラフィを形態画 像データ上に配置し、表示する。

【特許請求の範囲】

【請求項1】複数の光照射位置から被検体に対し光を照射する光照射手段と、前記複数の光照射位置から照射され被検体内部を通過した光を、前記複数の光照射位置近傍に設置された複数の検出位置で検出する光検出手段と、前記光検出手段で検出された検出位置毎の光量を用いて前記被検体内部の生体情報を表すトポグラフィを作成する信号処理手段とを備えた生体光計測装置において、

前記信号処理手段は、他の画像診断装置で作成された前記被検体の形態画像データを入力する手段と、前記光照射位置及び光検出位置と被検体に設けられた基準点との位置関係を表す座標データを入力する手段と、前記座標データに基づき前記光照射位置及び光検出位置を前記形態画像データ上に配置し、表示する手段とを備えたことを特徴とする生体光計測装置。

【請求項2】前記形態画像データは3次元データであり、前記光照射位置及び光検出位置の位置情報は、3次元位置検出装置によって計測された3次元座標データであることを特徴とする請求項1記載の生体光計測装置。 【請求項3】前記信号処理手段は、前記座標データに基づき3次元トポグラフィを作成し、前記3次元トポグラフィを作成し、前記3次元トポグラフィを3次元形態画像上に配置することを特徴とする請求項2記載の生体光計測装置。

【請求項4】前記信号処理手段は、3次元形態画像において被検体表面から所定の深さの内部に前記トポグラフィを配置することを特徴とする請求項3記載の生体光計測装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、光を用いて生体内部の血行やヘモグロビン変化等の情報を計測する生体光計測装置に関し、特に形態画像との合成画像表示機能を備えた生体光計測装置に関する。

[0002]

【従来の技術】生体内部の血液循環・血行動態やヘモグロビン変化を、簡便且つ非侵襲的に計測できる装置として、可視から赤外領域の波長の光を生体に照射し、生体から反射された光を検出することにより生体内部を計測する装置が提案されている(例えば特開昭57-115232号あるいは特開昭63-275323号)。

【0003】この生体光計測装置を臨床に応用することによって、例えば頭部を計測対象とする場合、脳のへモグロビン変化の活性化状態及び局所的な脳内出血を測定することが可能であり、また脳内のヘモグロビン変化に関連した、運動、感覚さらには思考に及ぶ高次脳機能等を計測することも可能である。例えば、Eiji Watanabe (MEDIX VOL30)によって、てんかん発作時の局所脳血流変化(てんかん焦点)を光計測装置(光トポグラフィ装置)で捉えることが報告されている。

【0004】このような計測においては、数値やグラフよりも画像として計測し表示することにより、その効果は飛躍的に増大する。例えば、局所的なヘモグロビンの変化部位を検出しようとする場合、ヘモグロビン変化量を部位との関連で画像として計測及び表示することが不可欠である。

[0005]

【発明が解決しようとする課題】しかし従来の光計測装置では、脳の局所的なヘモグロビン変化を、光照射器、光検出器の配列を示す2次元平面上に表示しており、これら光照射器および光検出器との被検体頭部と位置関係が明らかでないため、ヘモグロビン変化が脳のどの領域において生じているのかを特定するのが困難であった。従って例えば前掲のてんかん焦点の測定結果を臨床応用する場合にも、外科手術において切除する脳部位の特定が困難であった。

【0006】そこで本発明は、被検体を光計測する際の 光照射器、光検出器の装着位置を明らかにし、光計測に よって得られた情報を、MR、CTなどの形態画像上に 正確な位置関係のもとに画像化することが可能な光計測 装置を提供することを目的とする。

[0007]

【課題を解決するための手段】上記目的を達成する本発明の生体光計測装置は、複数の光照射位置から被検体に対し光を照射する光照射手段と、前記複数の光照射位置から照射され被検体内部を通過した光を、前記複数の光照射位置近傍に設置された複数の検出位置で検出する光検出手段と、前記光検出手段で検出された検出位置毎の光量を用いて前記被検体内部の生体情報を表すトボグラフィを作成する信号処理手段とを備えた生体光計測装置において、前記信号処理手段は、他の画像診断装置で作成された前記被検体の形態画像データを入力する手段と、前記光照射位置及び光検出位置と被検体に設けられた基準点との位置関係を表す位置情報を入力する手段と、前記位置情報に基づき光照射位置及び光検出位置を前記形態画像データ上に配置し、表示する手段とを備えている。

【0008】本発明の生体光計測装置において、形態画像データは、例えば、X線CT装置やMRI装置などによって予め計測したものであり、この際、被検体上に少なくとも1の基準点を設定し、この基準点のデータを含むことが好ましい。また位置情報は、例えば、機械式或いは磁気勾配型等の3次元位置検出装置によって計測した3次元座標データであり、光照射位置、光検出位置及び前記基準点の位置情報を含む。

【0009】信号処理手段は、形態画像上の基準点と、 基準点の座標データとを一致させることにより、光照射 位置及び光検出位置を形態画像データ上に配置し、また トポグラフィを形態画像データ上に配置することができ る。 【0010】上記構成の生体光計測装置により、局所的な血流やヘモグロビン変化を生じている部位を形態画像上で確認することができる。従って、例えばてんかん手術などでは、局所的なヘモグロビン変化が生じている焦点部位を形態画像上で確認しながら、焦点部位だけを正確に除去することができる。これにより、脳の損傷を最小限に抑えることができ、必要以上の身体機能麻痺の危険を回避できる。

【0011】また本発明の生体光計測装置において信号処理手段は、好適には、トポグラフィを形態画像上に配置するに際し、トポグラフィが3次元形態画像において被検体表面から所定の深さの内部に位置するように配置する。これにより光計測している部位の位置、例えば脳表上の位置を正確に表示することができる。

[0012]

【発明の実施の形態】以下、本発明の生体光計測装置の 実施形態を図面を参照して詳細に説明する。

【0013】図1は、本発明の生体光計測装置の一実施 形態を示す構成図で、この光計測装置は、主として被検 体9に光を照射するための光照射部10と、被検体9を 透過した光を検出する光検出部20と、光照射部10及 び光検出部20の駆動を制御するとともに光検出部20 が検出した光量に基づき被検体9の生体情報を表すトポ グラフィを作成する信号処理部30とを備えている。

【0014】光照射部10は、複数の光モジュール2からなる光源部1と、光モジュール2が発光する光を変調するための発振部3と、各光モジュール2に接続された光ファイバ4とを備えている。本実施例では、光源部1は4個の光モジュール2を備え、各光モジュールはそれぞれ2種の異なる波長の光を発光する場合を説明するが、光モジュールの数およびそれが発光する光の種類(数)はこれらに限定されない。

【0015】光源部1の詳細を図2に示す。図示するように個々の光モジュール2は、二個の半導体レーザ11 a、11bの駆動回路12a、12bとを備える。半導体レーザ11a、11bは、可視から赤外の波長領域の異なる波長の光を照射する。波長は測定する対象によって異なるが、例えばへモグロビン変化を測定する場合、780nm及び830nmの二波長の光を放射する。尚、光源部1は、半導体レーザの代りに発光ダイオードを用いることも可能である。

【0016】発振部3は、光モジュール2の半導体レーザの数に対応して、発振周波数の異なる8個の発振器で構成される。

【0017】半導体レーザ駆動回路12a、12bでは、 半導体レーザ11a、11bに対して直流バイアス電流を 印加すると共に、発振器によりそれぞれ異なる周波数f1 a、f1bを印加することで、半導体レーザ11a、11bか ら放射される光に変調を与える。変調は、正弦波による アナログ変調を用いても、それぞれ異なる時間間隔の矩 形波によるデジタル変調を用いてもよい。

【0018】半導体レーザ11a、11bが放射する光は、それぞれ半導体レーザ11a、11bに接続された集光レンズ5により光ファイバ6に個々に導入される。個々の光ファイバ6に導入された二波長の光は、名光モジュールごとに光ファイバ結合器7により1本の光ファイバ、即ち照射用光ファイバ4内に導入される。

【0019】一端が光ファイバ結合器7に接続された照射用光ファイバ4の他端は、後述する検出部20の検出用光ファイバ8とともに、所定の配置となるように図示しない装着具に固定され、被検体に装着される。これら光ファイバの端面は被検体表面上に軽く接触しており、照射用光ファイバ4の他端から被検体9の表面上の異なる4個所の照射位置から照射され、被検体から反射された光を、被検体表面上の5個所の検出位置に配置された検出用光ファイバ8で検出するようになっている。装着具に装着された光ファイバの端部はプローブと呼ばれる。また光ファイバを被検体に装着するための装着具は、ベルト状やヘルメット状など検査対象に応じて種々の形状とすることができ、例えば特開平9-149903号に記載されているような生体光計測装置において公知のものを用いることができる。

【0020】図3に照射位置および検出位置の配置の一例を示す。図示する例では、4本の照射用光ファイバ4に対応して4つの照射位置R1~R4が示され、これら照射位置R1~R4は、検出位置D1~D5と交互に正方格子上に配置されている。この時、隣接する照射位置と検出位置との中点を計測位置とすると、この場合、隣接する照射位置と検出位置との組合せが12通り存在するため、計測位置数すなわち計測チャンネルが12個となる。

【0021】隣接する照射位置と検出位置の間隔は特に限定されず、計測部位等に応じて適宜変化させることができるが、3cmに設定した場合に各検出位置で検出された光は、皮膚、頭蓋骨を通過して大脳の情報を有していることが報告されている(例えばピィー・ダブル・マコーミック(P.W. McCormic)他による「赤外光の大脳内部の浸透(Intracerebral penetration of infrared light)、(1992年、ジャーナルオブニューロサージェリ、第76巻、第315~318頁))。従って上述した照射検出位置の配置で12計測チャンネルを設定することにより、全体として6cm×6cmの領域における大脳の計測が可能となる。

【0022】尚、図示する実施例では、簡単のために計 測チャンネルが12の場合を示しているが、格子状に配 置する光照射位置及び光検出位置の数をさらに増加させ ることにより、計測チャンネルをさらに増加させて、計 測領域を拡大することも可能である。他の実施例とし て、図4に24チャンネル計測における光照射・検出配 置を、図5に40チャンネルの同配置を示す。

【0023】図6は検出部20の詳細を示す図である。

検出部20は、光検出器21と検出回路22からなる。 図には、各検出位置に対応する複数(ここでは5本)の 検出用光ファイバ8のうちの1本が接続された検出部の みを示しているが、各検出位置に対応する複数(ここで は5本)の検出用光ファイバ8にそれぞれ光検出器21 と検出回路22からなる検出部20が接続されている。 【0024】各光検出器21は、光信号を電気信号に変 換するもので、検出用光ファイバに入射した光を、その 光量に比例した電気信号に変換し、検出回路22に送 る。このような光検出器21として、例えばフォトダイ オードや光電子増倍管が用いられる。特に高感度な光計 測が実現できるアバランシェフォトダイオードが望まし い。

【0025】検出回路22は、変調信号を選択的に検出 する回路、例えば複数のロックインアンプ23-1、23 -2 と増幅器24及びスイッチ25から構成されるロ ックインアンプモジュールからなり、照射位置かつ波長 に対応した変調信号を選択的に検出する。例えば図3の 検出位置D1の検出回路の場合、それと隣接する照射位置 R1~R4から照射される各二波長の光に対応する変調周波 数fla、flb、f2a、f2b、f3a、f3b、f4a及びf4bの8個の 信号を検出するために、これら変調周波数を参照信号と して用いる8個のロックインアンプ23-1~23-8を備 える。ロックインアンプ23-1は変調周波数f1aの参照 信号を用いて、照射位置R1から照射された波長780nm、 変調周波数flaの光を選択的に検出する。同様にロック インアンプ23-2は変調周波数f1bの参照信号を用い て、照射位置R1から照射された波長830nm、変調周波数f 1bの光を選択的に検出する。これにより検出位置D1と照 射位置R1との間の計測位置について二波長の光に対応す る2つの信号を取り出すことができる。検出位置D1と照 射位置R2~R4との間の計測位置についても同様にロック インアンプ23-3~23-8から取り出すことができる。 【0026】検出位置D2~D5の場合には、隣接する照射 位置は2つしかないので、ロックインアンプ23の数は 二波長対応して4個でよく、4個のロックインアンプに よって検出位置と2つの照射位置との間の2つの計測位 置についてそれぞれ2つの信号を取り出す。従って、図 3に示す照射・検出位置配列の場合には、全体で24個 のロックインアンプによって12の計測位置についてそ れぞれ2系統の信号を取り出すことができる。

【0027】ロックインアンプ23の出力は、アナログデジタル変換器26によりそれぞれデジタル信号に変換されて、信号処理部30に送られる。この実施例では、アナログ変調の場合に対応する変調信号検出回路としてロックインアンプを示しているが、デジタル変調を用いた場合には、変調信号検出としてデジタルフィルターもしくはデジタルシグナルプロセッサを用いる。

【0028】信号処理部30は、図1に示すように上述した光照射部10及び光検出部20を制御する制御部3

1と、光検出部20で計測した信号やその計算結果等を記録する記録部32と、予め記憶されたヘモグロビンの検量線等を用いてデジタル変換された計測信号を計算しトポグラフィを作成する処理部33と、トポグラフィ等を表示する表示部34を備え、更にMRIやX線CT装置などの画像診断装置41及び3次元位置検出装置42からのデータを入力する入力部40が備えられている。画像診断装置41から形態画像データおよび3次元位置検出装置42からの3次元座標データは、直接或いは記録媒体を介して入力部40に転送される。

【0029】尚、各計測位置ごとに二波長の検出光量を用いて、脳活動に伴う酸素化ヘモグロビン濃度変化、改らにはこれらヘモグロビン濃度総量としての全ヘモグロビン濃度変化を計算し、それをトポグラフィ画像として表示部に表示する手法は、例えば特開平9-19408号やアツシ・マキ(Atsushi Maki)他による「無侵襲近赤外光トポグラフィによるヒト脳活動の時空間解析(Spatial and temporal analysis of human motor activity using noninvasiveNIR topo graphy)」、1995年及びメディカルフィジックス、第22巻、第1997-2005頁に記載されている。本発明でも計測信号の計算には、これらの方法を採用することができる。

【0030】形態画像データは、本発明の生体光計測装 置による計測に先立って同じ被検体をMRIやX線CT 装置など画像診断装置41で撮影することにより得たも のであり、被検体上に設定された特定の基準点、好まし くは3点以上の基準点のデータを含む。このような基準 点は、被検体に所定の基準点マーカを貼りつけた状態で 撮影することにより設定することができる。基準点マー カとしては、例えばCTでは金属球や金属箔等のX線を 吸収材料からなる小片を用いることができ、またMRI では核磁気共鳴において測定対象核種(典型的には水 素)と異なる挙動を示す物質、例えば脂溶性薬を充填し たカプセル等を用いることができる。このように画像デ ータに基準点を含ませることにより、後述する3次元座 標データとの位置合せが可能となり、また生体光計測で 得られるトポグラフィを形態画像上に配置することが可 能となる。基準点マーカを付ける位置は特に限定されな いが、被検体の計測部位近傍に、例えば脳計測の場合、 左耳位置、右耳位置、鼻のくぼみ位置(ナジオン)の3 点に貼りつける。

【0031】3次元位置検出装置42は、被検体が生体 光計測装置の装着具(光照射用ファイバと光検出用ファ イバを固定した装着具)を装着し且つ上述した基準点マ ーカを付けた状態で、各プローブの位置(光照射位置、 光検出位置)および基準点マーカ貼りつけ位置を検出 し、3次元座標データとして出力する。このような3次 元位置検出装置42として、機械式、磁気勾配型、光学 式などがあり、いずれを採用してもよい。 【0032】処理部20は、これら形態画像データおよび座標データを入力し、形態画像データ上の基準点に、基準点の座標データとが合致するように、光照射位置および光検出位置の座標を拡大或いは縮尺する。

【0033】次に以上のような構成の生体光計測装置を 用いた生体光計測の実施例を図7を参照して説明する。 この実施例では頭部を計測部位とし、脳表のヘモグロビン変化を計測し、3次元トポグラフィを作成する場合を 説明する。

【0034】まず生体光計測に先立って、MR、CT装置等により被検体の3次元画像を作成する。この際、被検体の計測部位近傍の3点に基準点マーカを付けて撮影する(ステップ701、702)。作成された3次元画像データは、入力部40から信号処理部30の記録部32に転送される。

【0035】次に基準点マーカを付けた被検体の頭部に、生体光計測用の装着具を装着し、3次元位置検出装置で基準点の位置、光照射位置及び光検出位置を実空間座標を測定する(ステップで3、704)。3次元位置検出装置で測定した3次元座標データは、入力部40から信号処理部30の記録部32に転送される。

【0036】処理部33は、3次元画像上の基準点に、 3次元位置検出装置で測定した基準点の実空間座標を拡大、縮小、距離補正を行ないながら合わせ込む(705)。次いで合わせ込まれた基準点の距離補正率に基づき、光照射位置および光検出位置の実空間座標の距離補正を行ない、画像データ上に描画する(706)。

【0037】この状態で被検体の生体光計測を開始する (707)。即ち、光照射位置からそれぞれ所定の変調周 波数で変調された二波長の光を照射するとともに、隣接 する光検出位置において、被検体を透過した光を検出す る。これによって光照射位置と光検出位置との間の計測 位置毎に透過光量に対応する信号が得られる。信号処理 部30はこの光量から予め記録されたヘモグロビン検量 線を用いて計測位置毎のヘモグロビン変化を求め、図8 の上部に示すような等量線(量が等しい点をつないて線 で表示したグラフ)或いは階調表示又は色調表示したも のを作成する。計測位置を2次元的に配列した平面にこ の等量線或いは階調表示(色調表示)を描画したものが トポグラフィ81であり、これは従来の生体光計測におい て作成するものと同様である。尚、図8において82、 84は光照射位置、83は光検出位置をそれぞれ示して いる。

【0038】次に信号処理部30は、この2次元トポグラフィを3次元トポグラフィとするために、2次元トポグラフィ画像の距離補正を行なう。距離補正とは、距離が遠い場合には2次元トポグラフィ画像の信号値が低いため、信号を増大する大きな重みのDを掛合わせ、距離が小さい場合には信号値が高いため、信号を減少させる小さな重みのDをかけ合せる処理であり、これにより距

離補正の行われた正確なトポグラフィ画像を作成する。 ここで2次元トポグラフィ画像データHbは、光照射位 置および光検出位置間の距離を一定値c(例えば30mm) として計算表示されたものであるので、この処理では、 3次元位置検出器で測定された正確な光照射位置および 光検出位置間の距離 dを用いて、次式により距離補正された新データHb'を求める。

 $[0039]Hb'=Hb\times D$

式中、D (Distance) はD=d/cを表す。

【0040】このように距離補正された2次元トポグラフィをステップ706で描画した光照射位置および光検出位置に合わせることにより、3次元トポグラフィが描画できる(708)。この際、必要に応じてスプライン補間等を行なう。

【0041】ステップ708で作成された3次元トポグラフィは、計測表面、即ち頭表面に沿ったものであるが、既に述べたように、各検出位置で検出された光は、皮膚、頭蓋骨を通過して大脳の情報を有するものであり、脳表の情報として表示されることが好ましい。このためステップ709では、ステップ708で得られた3次元トポグラフィを頭表の法線方向に所定の深さに落とし込むという処理を行なう。この頭表から脳表までの距離は、その被検体の画像データから算出してもよいし、経験的に知られた値を用いることも可能である。

【0042】ステップ709で行なう処理を図8に示す。 図8の下側の図面は被検体の頭部85と大脳86を横から見た状態を模式的に示しており、ステップ708で得られたトポグラフィは被検体の頭表87に描画されているが、これを図中矢印で示す法線方向に移動することにより脳表88上にトポグラフィを描画する。このように3次元トポグラフィと形態画像を合成したものを表示する(710)。

【0043】以上の生体光計測において得られる画像の一例を図9に示す。ここでは形態画像として、脳のみを3次元画像表示し、頭部形状は表示を見やすくする意味で3次元フレーム表示しているが、もちろん頭部形状を含む全体を3次元表示してもよい。

【0044】この実施例は左脳と右脳に図3に示す配置のプローブを装着した場合を示しており、各プローブの光照射位置91と光検出位置92が表示され、これに対応する脳表93の位置にステップ709の処理で得られた3次元トポグラフィ94、94が表示される。図中、95は光照射位置91と光検出位置92の画像上の位置を合わせるための基準点であり、この例では左耳位置、右耳位置、鼻のくぼみ位置(ナジオン)の3点である。

【0045】このような画像により、各プローブ(光照射/光検出位置)の正確な装着位置を知ることができるとともに、脳のどの領域において局所的なヘモグロビン変化が生じているのかを正確に知ることができる。

【0046】以上、被検体の頭部の光計測を例にして本

発明の光生体計測装置の動作を説明したが、本発明はこれら実施例に限定されるものではなく、種々の変更が可能である。例えば図7に示すフローにおいて、光計測のステップ707から画像表示までのステップ710を繰り返し行ない、時系列的に連続する画像を得るようにしてもよい。この場合、特定の計測部位についてヘモグロビン変化を形態画像とは別にグラフ或いは数値で表示することも可能である。

【0047】また形態画像の表示方法としては、所定の軸の回りに画像を回転したり、所望の部位を拡大する機能を持たせることも可能である。さらに計測対象は頭部に限らず他の部位、さらには生体以外にも適用することが可能である。

【0048】本発明は、3次元形態画像上にトポグラフィを表示することが最も効果的であるが、2次元形態画像にトポグラフィを表示することも本発明の範囲に含まれる。

[0049]

【発明の効果】本発明の生体光計測装置によれば、3次元トポグラフィを作成し、これを被検体の3次元画像上に表示可能にしたので、生体光計測によって得られる情報、例えば局所的なヘモグロビン変化を、それが生じている部位との関係で正確に知ることができる。

【図面の簡単な説明】

【図1】本発明の生体光計測装置の実施形態を示すブロ

ック図。

【図2】図1の生体光計測装置の光照射部の詳細を示す 図。

【図3】光照射位置および検出位置の配置の一実施例を示す図。

【図4】光照射位置および検出位置の配置の他の実施例を示す図。

【図5】4光照射位置および検出位置の配置のさらに他の実施例を示す図。

【図6】図1の生体光計測装置の光検出部の詳細を示す図。

【図7】本発明の生体光計測装置の処理の一実施例を示すフロー図。

【図8】図7の処理において作成されるトポグラフィおよび画像処理を説明する図。

【図9】本発明の生体光計測装置で表示される画像の一例を示す図。

【符号の説明】

- 10 光照射部
- 20 光検出部
- 30 信号処理部
- 40 入力部
- 41 画像診断装置
- 42 3次元位置検出装置

【図1】

【図2】

【図8】

【図9】

!(9) 001-198112 (P2001-198112A)

フロントページの続き

F ターム(参考) 2G059 BB12 CC18 EE02 EE11 FF01 GG01 GG02 GG03 JJ17 KK01 KK02 KK04 4C038 KK01 KL05 KL07 KM01 KX01