UNIVERSIDADE FEDERAL DE PERNAMBUCO

Departamento de Engenharia Mecânica - DMEC EQUIPE MARACATRONICS

SSL VISION

Como instalar e configurar

Recife - PE 25 de Setembro de 2018

Identificação

Projeto: Futebol F180 (Programação)

 $\it Titulo:$ SSL Vision - como instalar e configurar

Data: 25 de Setembro de 2018

Local: Recife - PE

 $Vers\~ao:~1.0$

Equipe Responsável

Natália Souza Soares

Victor Gouveia de Menezes Lyra

Sumário

1	Resu	ımo	3
2	Pré-	requisitos de Software	3
3	Insta	alação	3
4	Configurações		4
	4.1	Inicializando a interface	4
	4.2	Inicializando a captura da imagem	4
		Ajuste do Campo	
	4.4	Ajuste da Câmera	7
	4.5	Inclusão dos Padrões	9
	4.6	Pintura da Bola e dos Padrões	10

1 Resumo

O presente relatório contém uma sequência de ações a serem seguidas para executar a instalação e configuração do SSL-Vision para a realização dos testes com os robôs de maneira mais rápida e eficiente.

2 Pré-requisitos de Software

Além de um sistema operacional com linux, alguns pacotes são necessários para rodar o SSL-Vision. É possível instalar todos esses pacotes de uma vez no (k)ubuntu rodando o script *InstallPackagesUbuntu.sh* [1]. Os pacotes necessários são:

- g++
- QT >= 4.3 com opengl e suporte de rede
- cmake
- Eigen3
- Google protocol buffers (protoc)
- OpenGL
- GLU
- libdc1394 Version >= 2.0
- libjpeg
- libpng
- video for linux 2 (v4l)

3 Instalação

O repositório contendo todos os arquivos necessários para rodar o SSL-Vision pode ser clonado através da seguinte URL: https://github.com/RoboCup-SSL/SSL-Vision.git

4 Configurações

4.1 Inicializando a interface

- Abra o terminal;
- Navege até o diretório onde a pasta do SSL-Vision se encontra;
- Execute o comando \$sudo make;
- Caso não ocorram erros, uma nova pasta chamada ".bin"deve aparecer;
- Execute o comando \$./bin/vision (a interface gráfica do ssl Vision deve se abrir depois disso).

4.2 Inicializando a captura da imagem

Após a abertura da interface do ssl vision (Figura 1), execute os seguintes passos:

- Vá para: Câmera $1 \to \text{Image Capture} \to \text{Capture Control};$
- Mude o "Capture Module" para video 4 Linux (Figura 2);
- Click em "Start"ao lado do "start capture" (Figura 3);

Figura 1: Interface gráfica do SSL-Vison.

Figura 2: Vista da troca de modo de captura da câmera utilizada (câmera 1).

Figura 3: Vista da interface gráfica após o início da captura da imagem.

4.3 Ajuste do Campo

- \bullet Vá para: Vision System \to Robo Cup SSL Multi-Cam \to Global \to Field Configuration;
- Ajuste as dimensões do campo como mostrado na Figura 4;
- Clique em "Update".

Figura 4: Ajuste das dimensões do campo utilizado.

4.4 Ajuste da Câmera

- Vá para: Câmera $1 \rightarrow$ Visualization;
- Altere as configurações de acordo com a Figura 5
- Vá para: Camera
1 \rightarrow Camera Calibrator \rightarrow Câmera Parameters (Figura 6;
- \bullet Ajuste a posição da câmera no campo ("principal point x" e "principal point y");
- Também é possível ajustar a distorção da câmera mexendo na "distortion".

Figura 5: Ajuste das configurações de visualização da câmera.

Figura 6: Ajuste dos parâmetros da câmera em relação ao campo.

4.5 Inclusão dos Padrões

É necessário incluir os padões de cores correspondetes dos jogadores, para que a numeração deles seja reconhecida no "Graphical_Client"após a pintura.

- Dentro da pasta do SSL-Vison, Vá para: patterns \rightarrow teams;
- Copie o endereço para o arquivo "standard2010_16.png" (imagem que está selecionada na Figura 7);
- \bullet Vá para: Vision System \to Robo
Cup SSL Multi-Cam \to Global \to Pattern
 \to Marker Image;
- Cole o endereço copiado em "Marker Image..." como mostrado na Figura 8.

Figura 7: Vista da pasta com as imagens dos padrões de cores dos robôs.

Figura 8: Definição do padrão de cores certo a ser utilizado para identificação dos robôs.

4.6 Pintura da Bola e dos Padrões

É necessário pintar a bola e as cores dos padrões para que estes sejam reconhecidos no "Graphical_Client". Para pintá-los, siga os seguintes passos:

- Clique em "YUV Calibration" na parte direita da interface;
- Enquanto aperta "shift", dê dois cliques no lugar que deseja-se pintar;
- Selecione a cor e pinte onde aparecer um X, como nas Figuras 9 e 10;
- É possível pintar, de maneira mais rápida, segurando "ctrl" enquanto pinta;
- Para apagar, pode-se selecionar a cor "clear" ou segurar "shift" enquanto pinta;
- Após esta etapa, navegue para a pasta do SSL-Vison no terminal e abra o "Graphical_Client", executando o comando \$./bin/graphicalCient, feito isso, verifique se tanto a bola quanto os robôs estão aparecendo como na Figura 11.

Figura 9: Vista da câmera e da pintura da bola.

Figura 10: Vista da câmera e da pintura do padrão correspondente ao jogador 4.

Figura 11: Visualização final no Graphical_Client.

Referências

[1] RoboCup Small Size League Shared Vision System. Em https://github.com/RoboCup-SSL/ssl-vision.