Multigrid for solving complex-valued Helmholtz problems

Isidoor Pinillo Esquivel

November 9, 2023

1 Failure of the Multigrid method for Helmholtz problems: analysis

1.1 Discretization

(a)

$$10 \le \lambda \text{ \#gridpoints} \Leftrightarrow$$

$$10 \le \frac{2\pi}{\sqrt{|\sigma|}} \frac{1}{h^d} \Leftrightarrow$$

$$\sqrt{|\sigma|} h^d \le \frac{2\pi}{10} \approx 0.625.$$

(b)

roosterpunten =
$$\frac{10\sqrt{600}}{2\pi}$$
.

1.2 1D model problem

(a)

To proof: $H^{2h} \neq I_h^{2h} H^h I_{2h}^h$.

$$H^{2h} = H_n = A_n + \sigma i d_n$$

$$H^h = H_{2n} = A_{2n} + \sigma i d_{2n}$$

Assume that $A_n = I_h^{2h} A_{2n} I_{2h}^h = R_{2n} A_{2n} I_n$. By linearity it is sufficient to proof:

$$\sigma i d_n \neq \sigma R_{2n} i d_{2n} I_n \Leftrightarrow$$

$$i d_n \neq R_{2n} I_n \Leftarrow$$

$$(i d_n)_{00} = 1 \neq \frac{3}{4} = (R_{2n} I_n)_{00}$$

First equivalence follows from $\sigma \neq 0$. The assumption and the last inequality depends on the definition of restriction and interpolation. (b) See code/main.ipynb for code and plots.

(c)

There exists a closed formula for eigenvalues and eigenvectors of tridiagonal toeplitz matrix. It is just tedious to use. Alternatively the eigenvalues and eigenvectors can be derived from the Poisson problem ($\sigma = 0$) because

$$Av = \lambda v \Rightarrow$$

$$(A + \sigma id)v = Av + \sigma v$$

$$= (\lambda + \sigma)v$$

i.e. eigenvectors stay the same and eigenvalues get shifted by σ .

(d)

See code/main.ipynb for the plot. $\sigma = 0$ is the boundary where H goes from indefinite to definite.

1.3 LFA analysis of the ω -Jacobi smoother

(a)

For grid points without a neighboring boundary point there H acts like following stencil:

$$H_n = n^2[-1 \quad 2 + \frac{\sigma}{n^2} \quad -1].$$

So R_{ω} works element wise the following way on the error:

$$e_j^{m+1} = (1 - \omega)e_j^m + \frac{\omega n^2}{2n^2 + \sigma}(e_{j-1}^m + e_{j+1}^m). \tag{1}$$

Very similar to the analysis for the Poisson equation. Note that we haven't used that σ is real. Doing the LFA substitution $e_i^{(m)} = \mathcal{A}(m)e^{ij\theta}$:

$$A(m+1) = A(m) \left(1 - \omega + \frac{\omega n^2}{2n^2 + \sigma} (e^{-i\theta} + e^{i\theta}) \right)$$
$$= A(m) \left(1 - \omega + 2\cos(\theta) \frac{\omega n^2}{2n^2 + \sigma} \right)$$

The factor in behind of A(m) is the amplification factor $G(\theta)$.

(b)

 $\sigma = 0$ reduces back to the LFA we did for the Poisson equation. $\theta \approx 0 \Rightarrow \cos(\theta) \approx 1 + O\left(\frac{1}{n^2}\right) \Rightarrow G(\theta) \approx 1 - O\left(\frac{1}{n^2}\right)$ so smooth modes are preserved for big n. (c) See code/main.ipynb for the plot.

(d)

Maximum of $G(\theta)$ is achieved at $\theta = 0$ because $G(\theta)$ is just an increasing function of $\cos(\theta)$. This means that $\rho = 1 - \omega + 2\frac{\omega n^2}{2n^2 + \sigma} \approx 1.05$ which suggests that weighted jacobi wouldn't converge.

- 1.4 Spectral analysis of the two-grid correction scheme
- 2 Solving the complex-valued Helmholtz problem using Multigrid
- 2.1 1D model problem
- 2.2 LFA analysis of the ω -Jacobi smoother
- 2.3 Spectral analysis of the two-grid correction scheme
- 2.4 2D model problem
- 2.5 Aggressive coarsening
- 3 Multigrid as a preconditioner for Krylov subspace methods
- 3.1 MG-GMRES for the indefinite Helmholtz problem