

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

TECHNICAL SCIENCES: P1
TEGNIESE WETENSKAPPE: V1

NOVEMBER 2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 12 pages. Hierdie nasienriglyne bestaan uit 12 bladsye.

[20]

QUESTION 1/VRAAG 1

1.1 D $\checkmark\checkmark$ (2)

1.2 C $\checkmark\checkmark$ (2)

1.3 B $\checkmark\checkmark$ (2)

1.4 A ✓✓ (2)

1.5 B $\checkmark\checkmark$ (2)

1.6 C $\checkmark\checkmark$ (2)

1.7 D √√ (2)

1.8 A $\checkmark\checkmark$ (2)

1.9 C ✓✓ (2)

1.10 D √√ (2)

QUESTION 2/VRAAG 2

2.1 An object will <u>remain at rest or continue moving at a constant velocity (or at constant speed in a straight line)</u> ✓ <u>unless acted upon by a non-zero external resultant force.</u> ✓/'n Voorwerp sal <u>in sy toestand van rus of uniforme beweging volhard tensy 'n nie-nul resulterende krag daarop inwerk.</u> (2)

2.2.1 **OPTION 1/OPSIE 1 OPTION 2/OPSIE 2** $F_{y}= 60.\sin 30^{\circ} \checkmark \qquad F_{y}= 60.\cos 60^{\circ} \checkmark$ $= 30 \text{ N} \checkmark \qquad = 30 \text{ N} \checkmark \qquad (2)$

(4)

(3)

2.2.2	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
	Apply positive marking from 2.2.1	Apply positive marking from 2.2.1
	Positiewe nasien vanaf 2.2.1	Positiewe nasien vanaf 2.2.1
	$f_k = \mu_k N \checkmark$	
	✓ .	$N = mg - F_y$
	$= 0.13 [(6x9.8) - 60.Sin30^{\circ}] \checkmark$	$N = (6x9.8) - 60.Sin30^{\circ}$
		= 58,8 - 30
	= 3,74 N (to the right) √/na regs	= 28,8 N
	NOTE: Credit if 60.Sin30° is expressed as 30	$f_k = \mu_k N \checkmark$
	LET WEL: Gee die punt indien	$= 0.13 \times 28.84$
	<u>60.Sin30°</u> aangedui word as 30	= 3,74 N (to the right) √/na regs
		NOTE: Credit if 28,8N is expressed
		as 58,8 - 30
		LET WEL: Gee die punt indien
		28,8N aangedui is as 58,8 - 30.

2.2.3 **OPTION 1/OPSIE 1 OPTION 2/OPSIE 2** $F_x = 60.Cos30^{\circ} \checkmark$ $F_x = 60. Sin 60^{\circ} \checkmark$ = 51,96 N√ = 51.96 N√ (2)

Positive marking from 2.2.2 and 2.2.3/Positiewe nasien vanaf 2.2.2 en 2.2.3

2.3
$$F_{\text{net}} = \text{ma}$$

 $F_x + \text{fk} = \text{ma}$ \rightarrow any one /enige een $60\text{Cos}30^\circ + (-3.74)\checkmark = 6.a$

$$a = 8.04 \text{ m.s}^{-2} \text{ to the left} \sqrt{/na \text{ links}}$$
 (4)

2.4 Decrease \checkmark The vertical component (F_y) will increase and thus the normal force will decrease. ✓✓

OR

The force will tend to lift the object from the surface and thus decrease the friction.

Afneem

Die vertikale komponent (F_v) sal toeneem en dus sal die normaalkrag afneem.

OF

Die krag sal neig om die voorwerp van die oppervlak te lig en dus die wrywing laat afneem.

2.5.1 When object **A** exerts a force on object **B**, object **B** simultaneously exerts an oppositely directed force of equal magnitude on object A. <

> Wanneer voorwerp A 'n krag op voorwerp B uitoefen, sal voorwerp B tegelykertyd 'n teenoorgesteld gerigte krag met 'n gelyke grootte uitoefen op voorwerp A.

NOTE:Credit one mark if any of the key words is ommitted (1/2) LET WEL: Gee een punt indien enige van die sleutelwoorde weggelaat is

(1/2).(2) 2.5.2

ACCEPTABLE LABELS:/ AANVAARBARE BYSKRIFTE:	NOTES:/NOTAS:
N/F _N : Normal/Normaal F _g /w: Force due to gravity/Weight/ Gravitasiekrag/Gewig F/F _A /F _{car} : Applied force/ Toegepaste krag f _k /F _f /f: frictional force/ wrywingskrag	One mark for each force represented by an arrow with a correct label. Een punt vir elke krag voorgestel deur 'n pyl met korrekte byskrif. Penalise (once) for each of the following:/Penaliseer (een keer) vir elk van die volgende: No arrows/Geen pyltjies nie There is no dot/Geen kol nie Gap between the line and the dot/Spasie tussen lyn en kol Dotted lines are used/Stippellyne gebruik A force diagram is given/Kragtediagram gegee Extra force is given/ Ekstra kragte gegee word

(4) [**23**]

QUESTION 3/VRAAG 3

- 3.1.1 <u>Product</u> of the <u>mass</u> of an object and its <u>velocity</u>. ✓✓/<u>Produk</u> van die <u>massa</u> van 'n voorwerp en die <u>snelheid</u> daarvan. (2)
- 3.1.2 $p_L = mv\sqrt{ }$ = 5800 x 1,5 $\sqrt{ }$ = 8700 kg.m.s⁻¹ west $\sqrt{ }$ /wes (3)
- 3.1.3 Apply positive marking from 3.1.2 Positiewe nasien vanaf 3.1.2

$$\sum_{c} p_{before} = \sum_{c} p_{after}$$

$$m_L v_L + m_W v_W = m_C v_C$$

$$m_L v_L + m_W v_W = (m_L + m_W) v_C$$

$$\frac{5800 \times 1.5 + 2500 \times 0}{\cdot \cdot \cdot v_C} = \frac{8300 \times v_C}{\cdot \cdot \cdot v_C}$$

$$\therefore v_C = 1.05 \text{ m.s}^{-1} \checkmark \text{ west} \checkmark / wes$$
(5)

3.1.4 During elastic collision, the <u>total kinetic energy is conserved</u> and the total linear momentum is conserved $\checkmark \checkmark$ and during inelastic collision, <u>total kinetic</u> energy is not conserved and the total linear momentum is conserved. $\checkmark \checkmark$

Accept/Aanvaar: $\sum p_{before/voor} = \sum p_{after/na}$ and $\sum Ek_{\underline{before/voor}} = \sum Ek_{\underline{after/na}}$ $\sum p_{before/voor} = \sum p_{after/na}$ and $\sum Ek_{\underline{before/voor}} \neq \sum Ek_{\underline{after/na}}$

NOTE: Do not penalise if total linear momentum is ommitted

: Penalise one mark if the word 'total' is ommitted for elastic and

inelastic collision

Tydens elastiese botsing, bly die <u>totale kinetiese energie behoue</u> en die die totale lineêre momentum bly behoue en tydens onelastiese botsing <u>bly die totale kinetiese energie nie behoue nie</u> en die totale lineêre momentum bly behoue.

LET WEL: Moenie penaliseer as die totale line

ere momentum weggelaat is nie.

Penaliseer met een punt indien die woord "totale" weggelaat is vir elastiese en onelastiese botsings

(4)

- If the vehicle collides or come to a standstill, the driver and passengers would contiue moving at the initial velocity. ✓
 - Safety belts will then <u>prevent them from moving forward</u>
 √ and hurting themselves and others or even going through the windscreen.
 - As die voertuig bots of tot stilstand kom, sal die bestuurder en passasiers aanhou om teen die aanvanklike snelheid te beweeg.
 - Veiligheidsgordels sal dan <u>voorkom dat hulle vorentoe beweeg</u> en hulleself en ander beseer of selfs om deur die windskerm te gaan.

3.2.2	OPT	ION	IOPSI	IF 1

Let the direction towards the wall be positive/Laat die rigting na die muur positief wees

 $F_{net}\Delta t = Impulse$ $\int any one/enige een$

Impulse = $0 - 24300 \checkmark$

Impulse = -24300

Impulse = 24300 kg.ms⁻¹√(away from the wall/weg van die

muur.)

OPTION/OPSIE 2

Let the direction towards the wall be negative/Laat die rigting na die muur negatief wees

 $F_{ne}t\Delta t = Impulse$ | \checkmark any one/ $Impulse = \Delta p$ | $enige\ een$

Impulse = $0 - (-24300) \checkmark$

Impulse = 24300 kg.ms⁻¹ ✓ (away from the wall/weg van die muur.)

(3)

Positive marking from 3.2.2/Positiewe nasien vanaf 3.2.2

3.2.3 $F_{net}\Delta t = Impulse \sqrt{}$

 $F_{\text{net}} \times 1,2 = 24300 \checkmark$

 $F_{net} = 20 \ 250 \ N$

Force exerted by impulse/Krag deur impuls uitgeoefen = 20 250 N√

The wall can withstand 80 000 N, so it will withstand the impact of the test. ✓/ Die muur kan 80 000 N weerstaan, so dit sal die impak van die toets weerstaan.

NOTE: If F_{net} is more than 80 000N then it will NOT withstand the impact of the test (resulting from positive marking).

LET WEL:Indien F_{net} meer as 80 000 N is, sal dit nie die impak van die toets weerstaan nie (resultaat van positiewe nasien).

(4) [**23**]

QUESTION 4/VRAAG 4

4.1.1 The <u>product</u> of the <u>force applied</u> on an object and the <u>displacement</u> in the direction of the force. $\checkmark\checkmark$

Die <u>produk</u> van die <u>krag</u> wat op 'n voorwerp <u>uitgeoefen</u> word en die <u>verplasing</u> in die rigting van die krag.

(2)

4.1.2 $W = F_A \Delta x \cos\theta \sqrt{ }$

 $W = \underline{60 \times 8 \times \cos 25}^{\circ} \checkmark$

(3)

4.2.1 The <u>total</u> mechanical energy ✓ of <u>an isolated system is constant.</u> ✓ **OR**

The <u>sum of the gravitational potential energy and kinetic energy</u> ✓ in <u>an</u> isolated system remains constant. ✓

Die totale meganiese energie van 'n geïsoleerde stelsel is konstant.

OF

Die <u>som</u> van die gravistasie- potensiële energie en kinetiese energie in <u>'n</u> geïsoleerde stelsel bly konstant.

(2)

4.2.2 $E_p = mgh \checkmark$

 $E_p = 75 \times 9.8 \times 12 \checkmark$

 $E_p = 8820 \text{ J} \checkmark$

 $(Accept/Aanvaar : 8,820 \text{ kJ}/8,82 \times 10^3 \text{ J})$ (3)

4.2.3 $E_{K} = \frac{1}{2} m v^{2} \checkmark$ $= 0.5 \times 75 \times 3^{2} \checkmark$ $= 337.5 J \checkmark$ (3)

Positive marking from 4.2.3/Positiewe nasien vanaf 4.2.3.

4.3
$$M_{E} top = E_{ktop} + E_{ptop} \checkmark$$

$$11500 = 337.5 + E_{ptop} \checkmark$$

$$E_{ptop} = 11 162.5 J$$

$$E_{pbefore} = E_{ptop} - E_{pground}$$

$$= 11 162.5 - 8820 \checkmark$$

$$= 2342.5 J \checkmark$$

QUESTION 5/VRAAG 5

5.1.1	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
	Area / Oppervlakte = $\frac{\pi D^2}{4}$	Area/Oppervlakte = πr^2 Area/Oppervlakte = $\pi (1,25 \times 10^{-3})^2$
	$= \frac{\pi (2.5 \times 10^{-3})^{2}}{4}$ $= 4.908 \times 10^{-6} \text{ m}^{2}$ $\sigma = \frac{F}{A}$ $= \frac{16}{4.908 \times 10^{-6}}$	$= 4,908 \times 10^{-6} \text{ m}^{2}$ $\sigma = \frac{F}{A} \checkmark$ $= \frac{16}{4,908 \times 10^{-6}}$ $= 3,26 \times 10^{6} \text{ Pa}\checkmark$
	= 3,26 x 10 ⁶ Pa√	
	OPTION 3/OPSIE 3	OPTION 4/OPSIE 4
	$\sigma = \frac{F}{A} \checkmark$	$\sigma = \frac{F}{A} \checkmark$
	$\sigma = \left[\frac{16}{\pi \left(\frac{2,5 \times 10^{-3}}{2} \right)^{2}} \right] \checkmark$	$\sigma = \left[\frac{16}{\pi (1,25 \times 10^{-3})^2 \checkmark} \right] \checkmark$ = 3,26 x 10 ⁶ Pa \(\checkmark \)
	= 3,26 x 10 ⁶ Pa√	

(4)

(4) [**17**] NSC/NSS- Marking guidelines/*Nasienriglyne*

5.1.2	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
	$\varepsilon = \frac{\Delta \ell}{L} \checkmark$	$\varepsilon = \frac{\Delta \ell}{L} \checkmark$
	$\varepsilon = \frac{0.5}{3 \times 10^3} \checkmark$	$\varepsilon = \frac{5 \times 10^{-4}}{3} \checkmark$
	$\varepsilon = 1,666 \times 10^{-4} \checkmark$	$_{\rm \epsilon}$ = 1,666 x 10 ⁻⁴ \checkmark
	NOTE: Penalise if the unit is given. LET WEL: Penaliseer indien die eenheid gegee is.	NOTE: Penalise if the unit is given. LET WEL: Penaliseer indien die eenheid gegee is.

Positive marking from 5.1.1 and 5.1.2./Positiewe nasien vanaf 5.1.1 en 5.1.2.

5.1.3
$$K = \frac{\sigma}{\epsilon}$$

$$K = \frac{3,26 \times 10^{6}}{1,666 \times 10^{-4}} \checkmark$$

$$K = 1,956 \times 10^{10} \text{ Pa} \checkmark$$
(3)

5.2.1 Pressure at a particular point is the thrust acting on the unit area around that point. ✓✓

NOTE: Do not penalise if force is used instead of thrust

Druk by 'n spesifieke punt is die stukrag wat op die eenheid-oppervlakte rondom daardie punt inwerk

LET WEL: Moenie penaliseer as krag gebruik is in plaas van stukrag nie

5.2.2
$$P = \frac{F}{A} \checkmark$$

$$P = \frac{26}{7,855 \times 10^{-5}} \checkmark$$

$$P = 3,3099 \times 10^{5} \text{ Pa} \checkmark$$

5.2.3 OPTION 1/OPSIE 1 OPTION 2/OPSIE 2

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$
Positive marking from 5.2.2/
Positiewe nasien vanaf 5.2.2.
$$P = \frac{F_2}{A_2}$$

$$A_2 = 3,861 \times 10^{-3} \text{ m}^2$$

$$A_2 = 3,861 \times 10^{-3} \text{ m}^2$$

$$A_3 = 3,861 \times 10^{-3} \text{ m}^2$$

$$A_4 = 3,861 \times 10^{-3} \text{ m}^2$$

(3) [**18**]

(3)

(2)

(3)

6.1	The <u>bending</u> of light when it passes from one medium to another (of different optical densities). ✓ ✓ Die <u>buiging/breking</u> van lig wanneer dit van een medium na die volgende	
	deurgaan.	(2)
6.2	Critical angle√/Kritieke hoek/Grenshoek	(1)
6.3	90°✓	(1)
6.4	Medium 1√/Medium1 Light ray QS bends away from the normal.√/Ligstraal QS buig weg vanaf die normaal.	(2)
6.5	QR✓	(1)
6.6	The light must travel from a more optically dense to a less optically dense medium.√ The incident angle should be greater than the critical angle. ✓	
	Die lig moet van 'n meer opties digte na 'n minder opties digte medium beweeg Die invalshoek moet groter as die kritieke hoek/grenshoek wees.	(2) [9]
QUEST	ION 7/VRAAG 7	
7.1.1	The phenomenon whereby white light break up (spread out) into its component colours.	(2)
	Die verskynsel waar <u>wit lig opbreek (uitsprei) in sy komponentkleure.</u>	(2)
7.1.2	3. yellow√ <i> geel</i> 6. Indigo√	(2)
7.1.3	Refraction √/Refraksie/Breking	(1)
7.1.4	When the wavelength increases the speed of the waves will also increase. ✓✓ Accept: Wavelength is directly proportional to the speed of the wave.	
	Wanneer die golflengte toeneem, sal die spoed van die golwe ook toeneem. Aanvaar : Golflengte is direk eweredig aan die spoed van die golf.	(2)
7.2.1	A succession/repetition of pulses \(\sqrt{/Opeenvolging/herhaling van pulse } \) OR/OF A disturbance that transfers energy through matter or space. \('n \) Versteuring	
	wat energie deur materie of ruimte oordra.	(2)

- 7.2.2 • can propogate in a vacuum√/kan in 'n vakuum voortplant
 - move at the speed of light (3 x 10⁸ m.s⁻¹) √/beweeg teen die spoed van lig $(3 \times 10^8 \text{ m.s}^{-1})$
 - transfer energy/dra energie oor
 - have a dual nature (particle and wave) nature/het 'n tweeledige aard (deeltjie en golf)
 - can be polarized / kan gepolariseer word. twee)

(any two/enige

7.2.3	Radio-	Micro-	Infrared/	Visible	Ultraviolet /	X-rays/	Gamma	//
	wave/	wave/	Infrarooi	light/	Ultraviolet	X-strale	rays/	, ,
	Radio-	Mikro-		Sigbare-			Gamma-	
	golwe	golwe		lig			strale	

NOTE/LET WEL: 2 or zero/2 of nul.

(2)

(2)

[13]

QUESTION 8/VRAAG 8

8.1 Capacitance is the amount of charge a capacitor can store ✓ per volt. ✓ Kapasitansie is die hoeveelheid lading wat 'n kapasitor per volt kan stoor. (2)

8.2.1
$$C = \frac{\varepsilon_o A}{d}$$

$$=\frac{(8,85\times10^{-12})(2)}{6\times10^{-3}}$$

$$= 2,95 \times 10^{-9} \text{ F} \checkmark$$
 (3)

Positive marking from 8.2.1/Positiewe nasien vanaf 8.2.1.

$$8.2.2 \qquad C = \frac{Q}{V} \quad \checkmark$$

$$2,95 \times 10^{-9} = \frac{Q}{120}$$

$$Q = 3.54 \times 10^{-7} C \checkmark$$

(3)

QUESTION 9/VRAAG 9

9.1 It is the <u>rate</u> at which <u>electrical energy is converted</u> in an electric circuit. $\checkmark\checkmark$ Dit is die <u>tempo</u> waarteen <u>elektriese energie</u> <u>omgeskakel word in 'n elektriese stroombaan</u>.

(2)

9.2	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2	OPTION 3/OPSIE 3
	\sim V ²	P = VI	P = VI
	P = 	60 =220 x I	60 =220 x l
		I = 0,2727 A	I = 0,2727 A
	$60 = \frac{(220^2)}{5}$	\	$P = I^2 R \checkmark$
	R R	$R = \frac{V}{I} \checkmark$	60 = (0,2727) ² R ✓
	R = 806,67 Ω ✓	$R = \frac{220}{0.2727}$	R = 806,83 Ω ✓
		R= 806,75 Ω ✓	
	Range/ <i>Gebied</i> : 806,67-806,83	Range/ <i>Gebied</i> :	Range/ <i>Gebied</i> : 806,67-806,83
		806,67- 806,83	233,31

(3)

9.3	OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
	$R_T = R_1 + R_2$	$R_T = R_1 + R_2$
	$R_T = 3 + 5 \checkmark$	= 3 + 5 √
	$R_T = 8 \Omega$	= 8, Ω
		J
	$R = \frac{V}{V}$	$V = 5/8^{4} \checkmark \times 3 \checkmark$
	\	= 1,875 V√
	$8 = \frac{3}{4}$	
	1	NOTE: Maximum mark is 4/5
	I = 0.375 A	LET WEL:Maksimum punte is 4/5
	V = IR ₩	
	$= 0.375 \times 5 \checkmark$	
	= 1,875 V ✓	

(5)

[10]

QUESTION 10/VRAAG 10

10.1.1 Electromagnetic induction√/Elektromagnetiese induksie

(1)

10.1.2 When the speed at which the magnet is moved in and out of the coil is increased the <u>rate of change in the magnetic flux increases</u>/ The rate of change of magnetic flux is directly proportional to the induced emf. ✓ The induced emf/ the extent of <u>deflection of the needle increase with the increase in change of the magnetic flux.</u> ✓

Wanneer die spoed waarteen die magneet in en uit die spoel beweeg vermeerder word, sal die <u>tempo van verandering in die magnetiese vloed vermeerder</u>. Die geïnduseerde emk/die mate van <u>defleksie van die naald vermeerder</u> met die toename in die verandering van die magnetiese vloed.

(2)

10.1.3 Alternating current√/Wisselendestroom

ODTION ALODOLE A

(1)

- 10.2.1 The primary voltage is higher (220 V) than the secondary voltage (24 V) \checkmark
 - More windings on primary than on secondary coil√

OR

- The secondary voltage is lower (24 V) than the primary voltage (220 V)
- The windings on the secondary coil are fewer than that of the primary coil.
- Die primêre spanning is hoër (220 V) as die sekondêre spanning (24 V)
- Meer windings op primêr as op sekondêre spoel

OF

- Die sekondêre spanning is laer (24 V) as die primêre spanning (220 V)
- Die windings op die sekondêre spoel is minder as dié op die primêre spoel.

ODTION MODOLE O

10.2.2

OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
$\frac{V_s}{V_s} = \frac{N_s}{V_s}$	Ratio: Vs : Vp
$V_P = N_P$	24 : 220√
$\frac{24}{300} = \frac{480}{N}$	∴ Ns : Np
220 N_p $N_p = 4400 \text{ windings} \checkmark$	480 : 4400 windings√
14p = 4400 Willamgs	NOTE N
	NOTE: Maximum mark is 2/3 (for
	OPTION 2)
	LET WEL:Maksimum punte is 2/3
	(vir OPSIE2)

(3)

TOTAL/TOTAAL: 150