Université de Carthage Ecole Supérieure de la Statistique et de l'Analyse de l'Information

Examen de Data Mining

3 ème année du cycle de formation d'ingénieurs

Durée de l'épreuve : 1 heure 30 - Documents non autorisés Nombre de pages : 4 - Date de l'épreuve : 16 février 2021

Exercice 1: On a effectué une enquête sur la relation des consommateurs vis-àvis des magasins Champion. Un questionnaire a ainsi été administré à un échantillon représentatif de 60 clients. Le questionnaire qui a été administré dans le cadre de cette enquête est présenté à l'Annexe 1. Nous avons appelé donnees_champion le data frame contenant les réponses à ce questionnaire. Dans la suite, à la question numéro i on associe la variable statistique notée Q_i .

Partie I

On a effectué une classification hiérarchique des 60 clients sur les 8 items $(Q_{1.a}, ..., Q_{1.h})$ de la première question. La hiérarchie issue de cette classification est présentée à l'Annexe 2.

- 1) Déterminer, en justifiant votre réponse, la meilleure partition à retenir de cette hiérarchie.
- 2) Nous nous intéressons à la partition en 4 classes issue de cette hiérarchie. En utilisant la fonction catdes nous avons obtenu la description donnée ci-dessous des 4 classes obtenues. Commenter ces résultats.

Description of each cluster by quantitative variables

\$'1'							
v.test Mean in categor	ry Overall mean sd in category Overall sd p.value						
Q1c -3.195348 2.4347							
Q1d -5.256365 2.0000							
41d ~5.250505 2.0000	0,11,000						
\$'2'							
	ry Overall mean sd in category Overall sd p.value						
v.test mean in catego	- ,						
Q1d 2.723147 3.0555	56 2.650000 0.6211300 0.7488881 0.0064663311						
Q1b 2.589630 3.0555	56 2.700000 0.5241101 0.6904105 0.0096079183						
Q1e -2.183443 2.1666	67 2.516667 0.7637626 0.8060535 0.0290032251						
Q1h -3.880884 1.6111							
WIII -3.000004 1.0111	2.100000 0.10.1000 0.000						
\$'3'							
· ·							
v.test Mean in categor	y Overall mean sd in category Overall sd p.value						
Q1e 4.642291 3.85714							
Q1c 2.122919 3.28571							
WIC 2.122310 0.200,1	1 21 00000						

```
$'4'
v.test Mean in category Overall mean sd in category Overall sd p.value
Q1h 5.093603 3.166667 2.183333 0.3726780 0.7414325 3.513213e-07
Q1e -2.461742 2.000000 2.516667 0.4082483 0.8060535 1.382640e-02
```

3) Si on voulait effectuer une classification en utilisant l'ensemble des variables décrivant les individus, quelle serait la démarche à suivre.

Partie II

On voudrait expliquer la variable Q_4 , appelée dans la suite satisfaction, par les variables sexe, $csp, Q_{1.a}, \ldots, Q_{1.h}$ à l'aide d'un arbre de décision. Les résultats obtenus sont présentés ci-dessous :

```
> arbre.full <- rpart(satisfaction~ ., data = donnees_champion, method = "class",
minsplit=10, cp =0.056)
> print(arbre.full)
n= 60

node), split, n, loss, yval, (yprob)
    * denotes terminal node

1) root 60 27 0 (0.5500000 0.4500000)
    2) Q1a< 3.5 56 23 0 (0.5892857 0.4107143)
    4) Q1e< 1.5 5 0 0 (1.0000000 0.0000000) *
    5) Q1e>=1.5 51 23 0 (0.5490196 0.4509804)
    10) Q1d>=3.5 7 1 0 (0.8571429 0.1428571) *
    11) Q1d< 3.5 44 22 0 (0.5000000 0.5000000)
    22) Q1d< 2.5 24 9 0 (0.6250000 0.3750000) *
    23) Q1d>=2.5 20 7 1 (0.3500000 0.6500000) *
    3) Q1a>=3.5 4 0 1 (0.0000000 1.0000000) *
```

4) Commenter la commande

```
arbre.full <- rpart(satisfaction~ ., data = donnees_champion, method = "class",
minsplit=10, cp =0.056)}</pre>
```

- 5) Déterminer les règles issues de cet arbre.
- 6) Commenter ces règles.

Exercice 2 : On considère le tableau de données ci-dessous contenant les valeurs observées de deux variables quantitatives X^1 et X^2 , et d'une variable qualitative Y possédant les deux modalités notées A et B, sur un échantillon I de dix individus notés P_1, \ldots, P_{10} . Chaque individu est muni du poids 1/10.

Par la suite, on applique une analyse discriminante à ces données afin d'expliquer Y en fonction de X^1 et X^2 .

ĺ	*******	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}
	X^1	0	0	1	1	2	2	1	0	2	1
Ì	X^2	0	0	1	1	2	2	0	1	1	2
	Y	A	A	В	В	A	A	Α	В	A	В

- 1) On a effectué l'AFD linéaire du tableau de données. Combien d'axes factoriels discriminants (non triviaux) existe-t-il?
- 2) Quelle est la commande de R qui permet d'appliquer une AFD linéaire aux données. On précisera les arguments nécessaires pour cette fonction.
- 3) Les probabilités *a posteriori* et les scores des individus donnéees par l'AFD linéaire du tableau de données sont données ci-dessous :

\$posterior

ΦÞc	SPETTOT	
_	A	В
1	0.65555784	0.34444216
2	0.65555784	0.34444216
3	0.65555784	0.34444216
4	0.65555784	0.34444216
5	0.65555784	0.34444216
6	0.65555784	0.34444216
7	0.97070777	0.02929223
8	0.09853739	0.90146261
9	0.97070777	0.02929223
10	0.09853739	0.90146261

\$x

	LD1
1	-6.661338e-16
2	-6.661338e-16
3	0.000000e+00
4	0.000000e+00
5	6.661338e-16
6	6.661338e-16
7	-1.851640e+00
8	1.851640e+00
9	-1.851640e+00
10	1.851640e+00

Construire la matrice de confusion puis calculer les taux d'erreurs dans chaque classe ainsi que le taux d'erreur global.

4) Indiquer la commande de R qui permet d'appliquer une AFD quadratique aux données.

${\bf Annexe}\ 1: {\bf Question naire}$

1. Veuillez cocher la case qui correspond le plus à votre jugement :

	1	2	3	4	5
1.a La modernité de l'equipement					
et le mobilier du magasin					
1.b L'attractivité et le design du magasin					į.
1.c La propreté des différents services					
offerts dans le magasin					
1.d La disponibilité des marchandises à temps					
pour la clientèle					
1.e La disponibilité du personnel à répondre					
aux questions					
1.f Votre degré de confiance à l'égard du personnel					
1.g La variété des marchandises		<u> </u>			
1.h La qualité du service après vente					

- où (1) = mauvais(e), (2) = moyen(ne), (3) = normal(e), (4) = acceptable
- et (5) = excellent(e)
- 2. Catégorie socioprofessionnelle :
 Retraité ... Cadre ... Ouvrier ... Profession libérale ...
- 3. Sexe: Homme ... Femme ...
- 4. Etes-vous satisfait de Champion ? Oui ... Non ...

Annexe 2

