Denoising y Señales

Demián Wassermann

Departamento de Radiología

Harvard Medical School & Brigham and Women's Hospital

Esquema del Circuito

Esquema del Circuito

Artefactos

Problemas de Corriente Continua

Homogeneidad del Campo Magnético de Base

Campo de Vista (Wraparound)

Movimiento (flujo sanguíneo)

Desplazamiento Químico

Homogeneidad de Radiofreceuencias

Movimiento

Distintas Disciplinas

- Estimación del Ruido y Eliminación
- Detección Automática de Estructuras
- Registración
- Reconstrucción
- Realidad Aumentada

Distintas Disciplinas Estimación de Ruido y Limpiado

Ecuación Rectora P(R|I) = P(R)P(I|R)/P(I)

Solución Buscada: R tal que P(RII) sea máximo

Conexión con Optimización

$$E(R;I) = -\log P(R) - \log P(I|R) + \log(P(I))$$

Limpiado

 $\overline{E(L;I)} = Regularidad(L) + Similaridad(I,L)$

Limpiado

 $\overline{E(L)} = Similaridad(I,L) + Regularidad(L)$

$$E(L) = \beta \int ||L(x) - I(x)||_2^2 dx + (1 - \beta) \int ||\nabla L(x)||_2^2 dx$$

$$L(x) = \int I(\xi)w(\xi, x)dx$$

$$w(\xi, x) = \frac{1}{z} e^{-\frac{1}{2} \frac{(x-\xi)^2}{\sigma^2}} \qquad z = \int e^{-\frac{1}{2} \frac{(x-\xi)^2}{\sigma^2}} dx$$

Limpiado

$$E(L) = \beta \int ||L(x) - I(x)||_2^2 dx + (1 - \beta) \int ||\nabla L(x)||_2^2 dx$$

Resolución Directa

$$2\beta(L(x) - I(x)) - (1 - \beta)\nabla \cdot \left(\frac{\nabla L(x)}{|\nabla L(x)|}\right) = 0$$

[Buades et al 2005]

Resolución Indirecta

$$L(x) = \int I(\xi)w(\xi, x)dx$$

$$w(\xi, x) = \frac{1}{z}e^{-\frac{1}{2}\frac{(x-\xi)^2}{\sigma^2}} \qquad z = \int e^{-\frac{1}{2}\frac{(x-\xi)^2}{\sigma^2}}dx$$

Sistemas de Coordenadas Del Sujeto al Voxel

$$RAS = \begin{cases} \text{from left towards right} \\ \text{from posterior towards anterior} \\ \text{from inferior towards superior} \end{cases}$$

$$LPS = \begin{cases} \text{from right towards left} \\ \text{from anterior towards posterior} \\ \text{from inferior towards superior} \end{cases}$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{pmatrix} \begin{pmatrix} i \\ j \\ k \end{pmatrix} + \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix}$$

Representaciones de la Señal (O transformada de Fourier)

Imágnes de Wikipedia

$$f(x) = \sum_{k} c_k(\cos(kx) + \sin(kx))$$

Bases de Senos y Cosenos

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

$$sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

$$\cos x + i\sin x = e^{ix} = 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} \cdots$$

Representaciones de la Señal (O transformada de Fourier)

$$f(x) = \sum_{k} c_k e^{ikx}$$

Representaciones de la Señal (O transformada de Fourier)

Teorema de Nyquist-Shannon

Si una función x(t) no contiene frecuencias más altas que B hz, ésta se encuentra completamente determinada por sus valores muestreados a un intervalo de 1/(2B) segundos.

Si el teorema no se cumple tenemos "aliasing": Varias señales se vuelven indistinguibles al muestrear una señal continua.

Teorema de Nyquist-Shannon

Si el teorema no se cumple tenemos "aliasing": Varias señales se vuelven indistinguibles al muestrear una señal continua.

