Résumé

Mots clés : Analyse de données textuelles, extraction de connaissances jurisprudentielles, analyse descriptive de corpus

Abstract

In this dissertation, we investigate the application of some text mining methods to support descriptive and predictive analysis of the jurisprudence. **Keywords**: textual data analysis, jurisprudential knowledge extraction, descriptive analytics of corpora

Table des matières

Rés	sum	é	i
$\mathbf{A}\mathbf{b}$	stra	${f ct}$	ii
Tal	ole d	les matières	iii
\mathbf{Lis}^{\cdot}	te d	es figures	ix
\mathbf{Lis}^{\cdot}	te d	es tableaux	xi
Int	rodı	action générale	1
	i	Contexte et motivations	1
	ii	Objectifs	4 8 10 11
	iii	Méthodologie	12
	iv	Résultats	12
	V	Structure de la thèse	14
\mathbf{Ch}	apit	re 1 Analyse automatique de corpus judiciaires	15
	1.1	Introduction	15
	1.2	Annotation et extraction d'information	19
	1.3	Classification des jugements	20
	1.4	Similarité entre décisions judiciaires	22

TABLE DES MATIÈRES İV

1.5	Concl	usion		24
Chapit	re 2 A	Annotati	on des sections et entités juridiques	26
2.1	Introd	luction .		26
2.2	Extra	ction d'int	formation par étiquetage de séquence	29
	2.2.1	Les mod	èles graphiques probabilistes HMM et CRF	32
		2.2.1.1	Les modèles cachés de Markov (HMM)	32
		2.2.1.2	Les champs conditionnels aléatoires (CRF)	33
	2.2.2	Représei	ntation des segments atomiques	35
	2.2.3	Schéma	d'étiquetage	37
2.3	Archit	ecture pr	oposée	38
	2.3.1	Définitio	on de descripteurs candidats	40
		2.3.1.1	Descripteurs pour la détection des sections	40
		2.3.1.2	Descripteurs pour la détection d'entités	41
	2.3.2	Sélection	des descripteurs	43
		2.3.2.1	Sélection pour le modèle CRF	43
		2.3.2.2	Sélection pour le modèle HMM	45
2.4	Expér	imentatio	ns et discussions	45
	2.4.1	Conditio	ons d'expérimentations	45
		2.4.1.1	Annotation des données de référence	45
		2.4.1.2	Mesures d'évaluation	46
		2.4.1.3	Outils logiciels	48
	2.4.2	Sélection	n du schéma d'étiquetage	49
	2.4.3	Sélection	des descripteurs	49
	2.4.4	Evaluati	on détaillée pour chaque classe	52
	2.4.5	Discussion	ons	53
		2.4.5.1	Confusion de classes	53
		2.4.5.2	Redondance des mentions d'entités	54
		2.4.5.3	Impact de la quantité d'exemples annotés	55
		2.4.5.4	Descripteurs manuels vs. réseau de neurones.	57

TABLE DES MATIÈRES V

2.5	Concl	usion	58
Chapit	re 3 I	Extraction des données concernant les demandes	
	ϵ	et leurs résultats correspondants	60
3.1	Introd	$egin{array}{cccccccccccccccccccccccccccccccccccc$	60
	3.1.1	Données cibles à extraire	61
		3.1.1.1 Catégorie de demande	61
		3.1.1.2 Quantum demandé	61
		3.1.1.3 Sens du résultat	62
		3.1.1.4 Quantum obtenu ou résultat	62
	3.1.2	Expression, défis et indicateurs d'extraction	63
	3.1.3	Formulation du problème	64
3.2	Travai	ux connexes	65
	3.2.1	Problèmes analogues : extraction d'éléments structurés	65
	3.2.2	Approches d'extraction d'éléments structurés	66
	3.2.3	Extraction de la terminologie d'un domaine	68
		3.2.3.1 Métriques non-supervisées	69
		3.2.3.2 Métriques supervisées	70
		3.2.3.3 Discussions	73
3.3	Métho	ode	73
	3.3.1	Détection des catégories par classification des documents	73
	3.3.2	Extraction basée sur la proximité entre sommes d'ar-	
		gent et les termes-clés	75
		3.3.2.1 Pré-traitement	76
		3.3.2.2 Apprentissage des termes-clés d'une catégorie	76
	3.3.3	Application de l'extraction à de nouveaux documents .	77
3.4	Résult	ats expérimentaux	78
	3.4.1	Données d'évaluation	78
	3.4.2	Métriques d'évaluation	79
	3.4.3	Détection des catégories par classification	81

TABLE DES MATIÈRES VI

	3.4.4	Extracti	on de données des paires demandes-résultats		82
	3.4.5	Analyse	des erreurs		84
3.5	Concl	usion			86
Chapit	re 4 I	dentifica	ation du sens du résultat par classifica-		
	t	ion des	${f documents}$		87
4.1	Introd	luction .			87
4.2	Classi	fication d	e documents	•	89
	4.2.1	Algorith	mes traditionnels de classification de données	•	89
		4.2.1.1	Le Bayésien naïf (NB)		89
		4.2.1.2	Machine à vecteurs de support (SVM)		90
		4.2.1.3	k-plus-proches-voisins (kNN)	•	92
		4.2.1.4	Arbre de décision		93
		4.2.1.5	Analyses discriminantes linéaires et quadra-		
			tiques	•	96
	4.2.2	Algorith	mes dédiés aux textes		98
		4.2.2.1	NBSVM		98
		4.2.2.2	FastText		98
	4.2.3	Techniqu	ues d'amélioration de l'efficacité		99
4.3	Applie	cation de	l'analyse PLS à la classification des textes	•	99
	4.3.1	L'opérat	seur Gini covariance		100
	4.3.2	Gini-PL	S		101
	4.3.3	Régressi	ons Gini-PLS généralisée		105
		4.3.3.1	L'algorithme Gini-PLS généralisé		106
		4.3.3.2	L'algorithme LOGIT-Gini-PLS généralisé .	•	108
4.4	Expér	imentatio	ns et résultats		109
	4.4.1	Protocol	le d'évaluation	•	109
	4.4.2	Classific	ation de l'ensemble du document		111

TABLE DES MATIÈRES VII

	4.4.3	Réduction du document aux régions comprenant le vo-
		cabulaire de la catégorie
4.5	6 Concl	usion
Chapi	tre 5	Modélisation des Circonstances Factuelles 115
5.1	Intro	duction
5.2	2 Regro	supement non-supervisé de documents
	5.2.1	Choix de l'algorithme de clustering
		5.2.1.1 Partitionnement disjoint 117
		5.2.1.2 Regroupement avec chevauchements 119
		5.2.1.3 Limites des algorithmes de clustering 121
	5.2.2	Métrique de similarité ou de dis-similarité 121
	5.2.3	Déterminer le nombre approprié de clusters (validation) 124
	5.2.4	Initialisation des centroïdes
	5.2.5	Définir une représentation appropriée pour les textes . 126
	5.2.6	Labeliser les clusters
	5.2.7	Evaluation du clustering généré
		5.2.7.1 Métriques supervisées
		5.2.7.2 Métriques non-supervisées
5.3	8 Méthe	odes proposées
	5.3.1	K-médoïdes et « Word Mover's Distance » 127
	5.3.2	Apprentissage d'une métrique fondée la modification
		du document
5.4	l Expér	rimentations et interprétation des résultats
	5.4.1	Configuration
	5.4.2	Annotations de données d'évaluation
		5.4.2.1 Prétraitement
	5.4.3	Apprentissage de la métrique
	5.4.4	Comparaison d'approches

TABLE DES MATIÈRES	viii

5.5 Conclusion
Chapitre 6 Démonstrateur d'analyse descriptive 133
6.1 Objectif et Cas d'Utilisation
6.2 Description du Pipeline
6.3 Illustration d'analyses descriptives
6.3.1 Implémentation du système
6.3.2 Données
6.3.2.1 Distribution de la base dans l'espace et dans
le temps
6.3.3 Analyse du sens du résultat
6.3.3.1 Evolution dans le temps
6.3.3.2 Différence dans l'espace
6.3.4 Analyse des quanta
6.3.4.1 Evolution dans le temps
6.3.4.2 Différence dans l'espace
6.3.4.3
6.4 Conclusion
Conclusion 135
F.5 Evaluation des Contributions
F.6 Critique du travail
F.7 Travaux futurs de recherche
F.8 Perspectives du domaine
Bibliographie 136
Dipuographiie 190

Liste des figures

1	Exemples de critères des moteurs de recherche juridique	3
2	Organisation des institutions judiciaires françaises	4
3	La demande au centre de la compréhension des décisions	6
4	Chaîne d'analyse du corpus jurisprudentiel à mettre en œuvre	8
2.1	Illustration des schémas d'étiquetage IO, BIO, IEO, BIEO	37
2.2	Application des modèles entraînés pour l'étiquetage de sec-	
	tions et entités	39
2.3	Entrainement des modèles	40
2.4	Matrice de confusion entre méta-données d'entête avec le mo-	
	dèle CRF	54
2.5	Matrice de confusion entre lignes des sections avec le modèle	
	CRF	55
2.6	Courbes d'apprentissages aux niveaux élément et entité	56
3.1	Enoncés simples, ou comprenant des références et des agréga-	
	tions (extraits de la décision $14/01082$ de la cour d'appel de	
	Saint-Denis (Réunion))	61
3.2	Illustration de la proximité des quantas et termes-clés	75
3.3	Répartitions des demandes dans les documents annotées	79
4.1	Répartition des sens de résultat dans les données annotées	88
4.2	Hyperplan optimale et marge maximale d'un SVM	91
4.3	Répartition des documents à une demande de la catégorie	
	considérée	110

Liste des tableaux

1	Nombre de décisions prononcées en France par an de 2013 à	
	2017	9
2.1	Exemples d'entités et statistiques sur la base d'exemples an-	
	notés manuellement	27
2.2	Mots représentatifs des 10 premiers thèmes sur les 100 inférés	48
2.3	Comparaison des schémas d'étiquetage	50
2.4	Performances des sous-ensembles sélectionnés de descripteurs.	51
2.5	Précision, Rappel, F1-mesures pour chaque type d'entité et	
	section au niveau atomique	53
2.6	Précision, Rappel, F1-mesures pour chaque type d'entité et	
	section au niveau entité	53
2.7	Comparaison entre le CRF avec des descripteurs définis ma-	
	nuellement et le BiLSTM-CRF au niveau entité	57
3.1	Exemples de catégories de demandes	62
3.2	Exemples d'analogie entre relations, évènements et demandes .	66
3.3	Notation utilisée pour formuler les métriques	69
3.4	Métriques locales	74
3.5	Mots introduisant les énoncés de demandes et de résultats	76
3.6	Extrait du tableau d'annotations manuelles des demandes	79
3.7	Résultats d'une 5-fold validation croisée pour la détection de	
	catégories	81
3.8	$F1_{c,(q_d,s_r,q_r),D_c}$ moyenne pour une 5-fold validation croisée pour	
	chaque métrique de sélection de termes pour un seuil égal à 0.5	82

LISTE DES TABLEAUX XÌ

3.9	Résultats détaillés pour l'extraction des données avec sélection
	automatique de la méthode d'extraction des termes-clés 83
3.10	Types et taux d'erreurs (pourcentage en moyenne sur les 6
	catégories de demandes)
3.11	Taux de quanta demandés (q_d) mentionnés dans les documents
	annotés
3.12	Taux de quanta accordés (q_r) mentionnés dans les documents
	annotés
3.13	Premiers termes sélectionnés lors de la première itération de
	la validation croisée
4.1	Valeurs utilisées pour les méta-paramètres des algorithmes de
	classification
4.2	Comparaison des algorithmes sur une représentation globale
	des documents pour la détection du sens du résultat
4.3	Détails des résultats de FastText et NBSVM
4.4	Détection du sens du résultat : Comparaison des réductions
	du document

Introduction générale

i Contexte et motivations

Une décision jurisprudentielle peut être définie soit comme le résultat rendu par les juges à l'issue d'un procès, soit comme un document décrivant une affaire judiciaire. Un tel document rapporte, notamment, les faits, les procédures judiciaires antérieures, le verdict des juges, et certaines explications associées. Dans cette thèse, nous désignons par « décision » le document, et par « résultat » la conclusion, ou réponse finale des juges. Une jurisprudence ¹ est un ensemble de décisions rendues par les tribunaux; elle représente la manière dont ces derniers interprètent les lois pour résoudre un problème juridique donné (type de contentieux). Les juristes doivent alors collecter ces documents, les sélectionner, et les analyser afin de mener, par exemple, des recherches empiriques en droit [??]. Les avocats exploitent aussi les décisions passées pour anticiper les résultats des juges. Ils peuvent ainsi mieux conseiller leurs clients sur le risque judiciaire que ces derniers encourent, et sur la stratégie à adopter pour un type de contentieux.

Cette activité de collecte et d'analyse centrale pour de nombreux métiers du droit est aujourd'hui généralement effectuée de manière manuelle. Elles est par conséquent sujette à plusieurs difficultés notamment liées à l'accès et à l'exhaustivité des documents traités dans un contexte d'étude spécifique. Il faut ici notamment souligner que les documents sont dispersés dans les nombreux tribunaux, et que les procédures administratives ne facilitent pas toujours leur accès du fait de la nécessité de préserver la confi-

^{1.} http://www.toupie.org/Dictionnaire/Jurisprudence.htm

dentialité des parties. En effet, les décisions n'étant la plupart du temps pas anonymisées, elles restent alors inaccessibles aux juristes qui en font la demande. Un certain nombre de documents sont néanmoins accessibles sur internet grâce à des sites de publication de données ouvertes gouvernementales, comme http://data.gouv.fr en France, https://www.judiciary.uk en Grande Bretagne, http://www.scotusblog.com/aux Etats-Unis, et https: //www.scc-csc.ca/ au Canada. Ces sites publient régulièrement des décisions récemment prononcées. Il existe aussi des moteurs de recherche juridiques qui permettent de retrouver des décisions intéressantes. Cependant, qu'ils soient payants (LexisNexis², Dalloz³, Lamyline⁴,...) ou gratuits (Can-LII⁵, Légifrance⁶, ...), les critères de recherche offerts par leurs moteurs de recherche d'information limitent grandement la pertinence des résultats pouvant être obtenus. En effet, il ne s'agit en général que de combinaisons de mots-clés et autres métadonnées (date, type de juridiction, ...), ou d'expressions régulières, comme l'illustre la Figure 1. Ces critères n'appréhendent pas la sémantique juridique, et ne permettent pas la plupart du temps aux juristes, sinon difficilement, la constitution d'échantillons pertinents pour leurs études.

Plus de 4 millions de décisions sont prononcées en France par an d'après les chiffres du ministère français de la justice (Tableau 1). Dans ce contexte, l'exhaustivité, ou tout au moins la représentativité d'une analyse menée de manière traditionnelle, manuellement, est aussi fortement limitée du fait de l'énorme volume de documents existants. Au regard de la croissance rapide du nombres de décisions accumulées chaque année, on imagine facilement que même une étude sur une question très précise nécessite la constitution laborieuse d'un large corpus de décisions. Par ailleurs, il peut s'avérer très

^{2.} https://www.lexisnexis.fr/

^{3.} http://www.dalloz.fr

^{4.} http://lamyline.lamy.fr

^{5.} https://www.canlii.org

^{6.} https://www.legifrance.gouv.fr

(a) Formulaire de Dalloz

(b) Formulaire de LexisNexis

Figure 1 – Exemples de critères des moteurs de recherche juridique

pénible de lire les décisions pour en identifier les données d'intérêt. Les documents sont très souvent longs et complexes dans leur style de rédaction. Par exemple, les phrases comprennent très souvent plusieurs clauses discutant d'aspects différents. On y retrouve aussi des références à des jugements antérieurs, et des omissions.

Il est évident qu'une automatisation du traitement des corpus de décisions s'impose pour répondre aux diverses difficultés d'accès, de volumétrie, et de complexité liées à la compréhension des décisions. L'automatisation ferait gagner du temps aux juristes lors de tâches de traitement préalables à leur raisonnement d'experts, tout en leur fournissant une vue pertinente de la jurisprudence. D'autre part, ? fait remarquer que la justice est complexe dans son organisation (Figure 2) et son fonctionnement, et que son langage est pratiquement incompréhensible. Il est donc presque impossible pour les "profanes" d'estimer leurs droits et le risque judiciaire qu'ils encourent dans leur quotidien sans consulter un initié du droit. L'automatisation de l'analyse jurisprudentielle pourrait ainsi améliorer l'accessibilité du droit dans ce cas. L'exigence pour le profane étant l'exacte pertinence des ressources, leur accessibilité, et l'intuitivité du processus de leur exploitation [?]. Le traitement automatique de la jurisprudence constituerait alors une aide précieuse non

seulement pour les professionnels du droit, mais aussi pour les particuliers et les entreprises soucieux de voir l'issue de leur affaire leur être favorable. Par exemple, en comparant le montant qu'on peut espérer d'une juridiction et le coût d'un procès, on peut plus aisément se décider entre un arrangement à l'amiable et la poursuite du litige en justice [?].

 $Source: \verb|http://www.justice.gouv.fr/organisation-de-la-justice-10031/|$

Figure 2 – Organisation des institutions judiciaires françaises

ii Objectifs

Ce mémoire propose des stratégies et modèles visant à automatiser l'extraction d'information à partir des décisions françaises. Le but est de faciliter la constitution et l'analyse descriptive de corpus de décisions de justice. L'approche traditionnelle d'analyse d'un contentieux [?] consiste à :

1. Choisir un échantillon représentatif : collection des décisions suivant des contraintes définies : période précise, couverture géographique, types d'affaires, etc.

- 2. **Sélectionner les décisions** : élimination des décisions qui ne correspondent pas au type de demande d'intérêt.
- 3. Élaborer la grille d'analyse : création d'un modèle de grille qui permettra d'enregistrer les informations potentiellement importantes. Chaque ligne de la grille correspond à une demande, et les colonnes font référence aux différents types d'informations qu'il est possible d'extraire sur une demande. Ces variables vont de la procédure suivie, aux solutions proposées, en passant par la nature de l'affaire. Les champs à remplir ne sont pas connus à l'avance; ce n'est généralement qu'au cours de la lecture des décisions que l'on distingue les informations pertinentes pour l'étude.
- 4. L'analyse des décisions et l'interprétation des informations : saisie des décisions et calculs statistiques dans un logiciel tableur.

? évoque principalement le problème de la différence entre l'état capté de la jurisprudence et son état présent. D'une part en effet, les longs délais de travail sont caractéristiques de ces études. Nous avons pour exemple, l'étude menée par l'équipe de ? pour l'analyse empirique des déterminants de la fixation de pensions alimentaires pour enfant lors de divorce. Cette analyse a duré 9 mois pour l'extraction manuelle des informations et la modélisation par régression de la relation entre les déterminants extraits et les pensions alimentaires accordées. D'autre part, il est impossible d'observer l'évolution des pratiques judiciaires dans le temps et dans l'espace du fait de la faible taille de l'échantillon choisi. Notre principal objectif est donc de proposer des solutions pour un traitement rapide et efficace d'une grande masse de décisions.

La problématique de notre étude est de « capter automatiquement la sémantique d'un corpus jurisprudentiel pour comprendre la prise

de décision des juges sachant que l'interprétation subjective des règles juridiques rend l'application de la loi non déterministe ». Cette question intéresse des entreprises telles que LexisNexis, et plusieurs startups à l'exemple de Predictice ⁷ et CASE LAW ANALYTICS ⁸. Afin d'y répondre, nous nous intéressons aux concepts manipulés par les experts, au centre desquels nous retrouvons les demandes des parties (prétentions) qui feront l'objet d'une décision. En effet, l'analyse sémantique d'un corpus jurisprudentiel vise la plupart du temps à identifier des connaissances sur les nombreuses demandes présentent dans les décisions. Ces demandes sont associées à plusieurs concepts importants qui enrichissent la compréhension de la décision (Figure 3).

Figure 3 – La demande au centre de la compréhension des décisions

Une demande peut ainsi être caractérisée par :

— le résultat associé qui est décrit par une polarité (« accepte » ou « rejette »), souvent lié à un quantum accordé, par exemple 5000 euros de

^{7.} http://predictice.com

^{8.} http://caselawanalytics.com

- dommages et intérêts ou 2 mois d'emprisonnement;
- le fondement ou la norme juridique qui est la règle qui est associée et qui légitime la prétention ou le résultat;
- l'objet qui représente ce qui a été demandé (par ex. dommages et intérêts);
- les circonstances factuelles dans lesquelles sont formulées les demandes ; elles décrivent les types de faits caractérisant ainsi les types de contentieux ou d'affaires ;
- les divers arguments apportés par les parties (resp. les juges) pour justifier leurs requêtes (resp. leurs solutions).

Ces concepts descriptifs d'une demande couvrent très souvent l'essentiel de l'information pertinente pour les experts.

Les travaux de cette thèse s'inscrivent dans un projet qui vise, entre autres, à automatiser l'extraction de l'ensemble de ces informations et de les structurer afin d'enrichir une base de connaissances contenant des informations détaillées de la jurisprudence française. Une telle base permettrait notamment de mener des études sur différents critères comme la juridiction, le type de demande, ou encore les circonstances du litiges, dans différents contextes de prise de décision juridique. Elle aurait aussi tout naturellement une importance certaine pour l'étude de la définition de modèles prédictifs variés, e.g. de l'application du droit, par exemple pour la prédiction des types de demandes à effectuer dans le cadre d'un litige.

Le projet comprend deux phases principales : une phase d'indexation des connaissances de la masse des décisions, suivie d'une phase d'analyse prédictive. La phase d'indexation doit déjà permettre de réaliser automatiquement, de manière exhaustive, des analyses descriptives. Ces dernières consistent, par exemple, à comparer le nombre d'acceptations à la fréquence des rejets. Par conséquent, le système doit apprendre à reconnaître dans les décisions, les informations pertinentes sur les prétention et résultats associés. La phase d'analyse consiste à regrouper des paquets de décisions similaires

Figure 4 – Chaîne d'analyse du corpus jurisprudentiel à mettre en œuvre

(même résultat sur la même prétention dans les circonstances similaires), pour découvrir les facteurs influençant le sens du résultat (par ex. le fait que « le revenu de l'époux soit le plus élevé du foyer » encourage les juges à accorder la pension alimentaire à l'épouse). En effet, c'est la connaissance de ces factuels circonstanciels démunis de toute teneur juridique qui permet à l'expert de pouvoir anticiper les décisions judiciaires.

La chaîne de traitement à mettre en œuvre se compose de quatre étapes principales qui s'enchaînent comme le présente la figure 4. Notre étude s'intéresse donc aux problématiques liées la constitution de la base de connaissance et à son exploitation dans un contexte d'analyses descriptives. Celles-ci sont décrites dans la suite.

ii.a Collecte, gestion et pré-traitement des documents

Le volume de décisions prononcées croît très rapidement (Tableau 1).

Il est donc nécessaire de trouver des moyens pour collecter le maximum de documents bruts non-structurés, les pré-traiter, et organiser leur gestion afin de les indexer en local pour faciliter leur traitement. Les décisions de

Justice	2013	2014	2015	2016	2017
civile	2 761 554	$2\ 618\ 374$	2 674 878	$2\ 630\ 085$	2 609 394
pénale	1 303 469	1 203 339	1 206 477	1 200 575	1 180 949
administrative	221 882	230 477	228 876	231 909	242 882

Source: http://www.justice.gouv.fr/statistiques-10054/chiffres-cles-de-la-justice-10303/

Tableau 1 – Nombre de décisions prononcées en France par an de 2013 à 2017

cours d'appel de justice civile sont les plus accessibles à partir des moteurs de recherche juridique (LexisNexis, Dalloz, LamyLine, Legifrance, etc.) et de la grande base de données JuriCa de la Cour de cassation. Cependant, l'accès à ces décisions est généralement payant et le nombre de documents simultanément téléchargeables est très faible sur les sites payants (généralement 10 à 20 décisions au maximum à la fois). De plus, le nombre de téléchargements par jour est limité. La base JuriCa est la plus grosse base de décisions de cours d'appel en France. Elle est gérée par la Cour de cassation. L'accès à cette base est offert par le Service de Documentation, des Etudes et du Rapport ⁹ (SDER). L'accès est payant pour les professionnels et gratuit pour les universités et centres de recherche en partenariat avec le SDER. Légifrance, le moteur de recherche du ministère de la justice, fournit quant à lui un accès public et gratuit à un nombre considérable de documents. Les décisions y sont identifiées à l'aide de numéros consécutifs et accessibles à partir d'un service web. Ce dernier a l'avantage de proposer des décisions de tous les ordres et de tous les degrés. Cependant, les décisions des juridictions du premier degré (appelées jugements) restent plus rares sur internet et principalement disponibles auprès des tribunaux. La disponibilité des décisions du second degré ou d'appel (appelées arrêts) en justice civile est l'une des raisons pour lesquelles notre étude s'est portée sur celles-ci.

Les décisions existent sous divers formats PDF, DOC, DOCX, RTF, TXT, XML, etc. Il arrive parfois qu'un fichier téléchargé comprenne plusieurs dé-

^{9.} https://www.courdecassation.fr/institution_1/composition_56/etudes_rapport_28.html

cisions (sur LexisNexis par exemple). Nous avons par conséquent préféré convertir tous les documents au format plein texte pour homogénéiser les traitements. Par ailleurs, les décisions sont collectées à partir de diverses sources pouvant contenir des documents identiques. Il se pose donc un problème d'identification unique des décisions pour éviter des redondances. Pour cela, nous avons défini une convention de nommage des fichiers. Ce dernier repose sur 3 informations : le type de juridiction (tribunal, cour d'appel, ...), la ville, et le numéro R.G. (registre général) qui est l'identifiant unique de la décision au sein de la juridiction. Par exemple, le numéro « CAREN1606137 » identifie la décision de numéro R.G. « 16/06137 » de la cour d'appel (« CA ») de la ville de Rennes (« REN »). Ces 3 informations sont présentes dans les premières lignes de la décision, et sont facilement identifiables à l'aide d'une routine à base de règles simples. D'autre part, certains moteurs de recherche ne fournissent souvent qu'un résumé au lieu du contenu original des décisions. Il est important de supprimer ces fichiers du corpus.

ii.b Extraction de connaissances

Les problématiques d'extraction de connaissances constitue la pierre angulaire de cette thèse car les informations sur les demandes, les parties, les juges, les juridictions et les faits conditionnent la qualité des prévisions du sens du résultat pour un type de demande considéré. La difficulté découle de l'état non-structuré des documents, et de la complexité et la spécificité du langage employé. L'extraction des connaissances nécessite de mettre en œuvre des techniques de fouille de textes adaptées à la nature des éléments à identifier. Nous avons ainsi abordé l'annotation des références de l'affaire (juridiction, ville, participants, juges, date, numéro R.G., normes citées, ...), l'extraction des demandes et résultats correspondants, et l'identification des circonstances factuelles.

Les métadonnées de référence sont des segments de texte qu'on peut directement localiser dans le document. Leur reconnaissance est donc semblable

à celle des entités nommées. C'est une problématique intensivement étudiée en traitement automatique du langage naturel [?] dans plusieurs travaux et compétitions, aussi bien pour des entités communes [??], que pour des entités spécifiques à un domaine [???], et dans diverses langues [???].

Le problème d'extraction des demandes et de la réponse correspondante des juges consiste à reconnaître pour chaque prétention : son objet, son fondement, le quantum demandé, le sens du résultat, et le quantum accordé. La paire demande-résultat s'apparente donc à des entités structurées comme les évènements ? qui sont décrits par un type, un terme-clé, des participants, un temps, une polarité.

Le problème d'identification des circonstances factuelles consiste à constituer des regroupements de décisions mentionnant une certaine catégorie de demande (objet+fondement). Le but est, comme indiqué précédemment, de repérer les différentes situations dans lesquelles cette catégorie de demande est formulée. Chacun des groupes représente donc une situation particulière partagée par les membres du groupe mais bien distinctes de celles reflétées par les autres groupes. Ce problème évoque des problématiques de similarité entre texte, de regroupement non supervisé (clustering), et de « modélisation thématique » (topic modeling). La similarité pourra faire l'objet, dans un travail futur, d'identification des raisons

A l'issue du processus d'extraction, les données extraites sont destinées à enrichir progressivement une base de connaissances. La structuration des données au sein d'une base facilite les diverses analyses automatiques applicables aux décisions et demandes judiciaires.

ii.c Analyse descriptive

L'analyse descriptive exploite l'ensemble des connaissances extraites et organisées pour répondre aux diverses questions que l'on pourrait se poser sur l'application de la loi. Il est intéressant par exemple de comparer les fréquences de résultats positifs et négatifs pour une catégorie de prétention

III. MÉTHODOLOGIE 12

donnée dans une situation précise. Les quanta extraits servent à visualiser les différences entre les montants accordés et réclamés. D'autres analyses plus complexes permettraient d'étudier l'évolution dans le temps et les différences dans l'espace de l'opinion des juges.

iii Méthodologie

Comme illustrées précédemment (§ ii.b), les problématiques propres aux textes juridiques trouvent généralement des analogies avec les problèmes d'analyse de données textuelles. Ainsi, les méthodes issues de l'énorme progrès réalisé dans ce domaine sont applicables aux textes juridiques. Cependant, quelques adaptations sont généralement nécessaires pour obtenir des résultats de bonne qualité hors des domaines pour lesquels ces approches ont été développées [?]. De plus, la recherche en fouille de textes est souvent réalisée sur des échantillons qui ne reflètent pas toujours la complexité des données réelles. Effectuant l'une des premières études d'analyse sémantique des décisions françaises, nous avons axé notre travail sur le rapprochement des problèmes liés à l'analyse des décisions jurisprudentielles à ceux généralement traités en analyse de textes. Il s'agit ensuite d'établir des protocoles d'évaluation et d'annotation manuelle de données. Selon les problématiques identifiées et les protocoles d'évaluations définis, des méthodes adaptées ont été proposées et expérimentées sur les données réelles annotées par des experts.

iv Résultats

Une chaîne de traitement pour le sectionnement et l'annotation des métadonnées est proposée. L'applicabilité de deux modèles probabilistes, les champs aléatoires conditionnels ou CRF (conditional random fields) et les modèles cachés de Markov ou HMM (hidden Markov Model), est étudiée

IV. RÉSULTATS 13

en considérant plusieurs aspects de la conception des systèmes d'extraction d'entités nommées. Le sectionnement a pour but d'organiser l'extraction des informations qui sont réparties dans des sections selon leur nature.

Par la suite, nous proposons une méthode d'extraction des demandes et résultats en fonction des catégories présentes dans la décision. L'approche consiste en effet à identifier dans un premier temps les catégories présentes (objet+fondement) par classification supervisée. Un vocabulaire d'expression des demandes et résultats est exploité pour identifier les passages. Puis à l'aide de termes propres à chacune des catégories identifiées, les trois attributs (quantum demandé, sens du résultat, quantum accordé) des paires demanderésultat sont reconnus.

Par ailleurs, nous analysons l'extraction particulière du sens du résultat par classification binaire des documents. L'objectif est de s'affranchir de l'identification préalable de l'expression des demandes et résultats. En effet, les décisions comprenant des demandes d'une catégorie donnée semblent ne contenir, dans une forte proportion, qu'une seule demande. Nous pensons qu'il n'est par conséquent pas nécessaire d'identifier l'expression de cette dernière pour en déterminer le sens. A partir d'une représentation adéquate du contenu de la décision, il est possible de classer cette dernière à l'aide d'un modèle de classification supervisée de documents.

L'identification des circonstances factuelles, quant à elle, est modélisée comme une tâche de regroupement non supervisée des décisions. Nous proposons dans ce cas une méthode d'apprentissage d'une métrique de dissimilarité sémantique entre textes, à l'aide d'un modèle adéquat de régression. Nous analysons différents modèles de régression. La métrique apprise a été comparée à d'autres distances établies en recherche d'information.

v Structure de la thèse

La thèse est organisée en 6 chapitres. Le chapitre 1 positionne nos travaux par rapport à ceux qui ont été réalisés précédemment sur des problématiques proches. Le chapitre 2 présente les architectures et modèles proposés pour la structuration des décisions et la reconnaissance des entités juridiques; il discute notamment des différents résultats empiriques obtenus par application des modèles CRF et HMM. Ensuite, le chapitre 3 détaille le problème d'extraction des paires demande-résultat, puis présente notre méthode et les résultats obtenus sue cette tâche. Le chapitre 4 traite de l'extraction du sens du résultat par classification directe des décisions, cela en comparant différents algorithmes et méthodes de représentation des textes. Le chapitre 5 présente notre approche d'apprentissage de la métrique de similarité textuelle, et la compare à des métriques établies en recherche d'information sur le problème d'identification des circonstances factuelles. Enfin, le chapitre 6 présente les résultats de scénarios d'analyses descriptives pour illustrer l'exploitation potentielle de nos propositions sur des corpus de décisions de grande taille.

Chapitre 1

Analyse automatique de corpus judiciaires

L'étude bibliographique de ce chapitre est focalisée sur l'application de techniques d'analyse de données textuelles judiciaires. Une synthèse bibliographique plus technique sur les algorithmes de fouille de texte est détaillée dans les chapitres qui traitent, dans la suite, des méthodes que nous avons mises en œuvre. Plus précisément, suivant la structure du présent chapitre, il s'agit des chapitres 2 et 3 pour l'extraction d'information, du chapitre 4 pour la classification des documents, et du chapitre 5 pour la similarité entre documents.

1.1 Introduction

Les deux grands paradigmes de jugement se distinguent par l'importance qu'ils accordent aux règles juridiques [?]. D'une part, les adeptes du Formalisme Juridique, plus pertinent dans le droit civil, considèrent que toutes les considérations normatives ont été incorporées dans les lois par leurs auteurs. D'autre part, l'école du Réalisme Juridique, plus proche du « Common Law », permet un pouvoir discrétionnaire entre les jugements en raisonnant selon le cas. Les premières tentatives d'anticipation des comportements judiciaires s'appuyaient sur une formalisation des lois. Il en est né le « droit computationnel », qui est une sous-discipline de l'« informatique juridique 1 ».

^{1.} Application des techniques modernes de l'informatique à l'environnement juridique, et par conséquent aux organisations liées au droit

1.1. Introduction 16

Il s'intéresse, en effet, au raisonnement juridique automatique axé sur la représentation sémantique riche et plus formelle de la loi, des régulations, et modalités de contrat [?]. Il vise à réduire la taille et la complexité de la loi pour la rendre plus accessible. Plus précisément, le « droit computationnel » propose des systèmes répondant à différentes questions, comme « Quel montant de taxe dois-je payer cette année? » (planification juridique), « Cette régulation contient-elle des règles en contradiction » (analyse réglementaire), « L'entreprise respecte-t-elle la loi?" (vérification de la conformité) [?]. Les techniques pro Formalisme Juridique étaient déjà critiquées au début des années 60, parce qu'excessivement focalisées sur les règles juridiques qui ne représentent qu'une partie de l'institution juridique [?]. Pour analyser le comportement judiciaire, plusieurs variables plus ou moins contrôlables, comme le temps, le lieu et les circonstances, doivent aussi être prises en compte [?]. Etant donné que les juristes s'appuient sur la recherche de précédents, ? conseille de se concentrer sur les motifs réguliers que comprennent les données pour réaliser des analyses quantitatives. Il est possible d'exploiter la masse de décisions pour identifier de telles régularités car une collection suffisante d'une certaine forme de données révèle des motifs qui une fois observés sont projetables dans le futur [?]. Il s'agit donc de raisonnements à base de cas qui se distinguent du raisonnement à base de règles.

Les premiers outils automatiques d'anticipation des décisions étaient généralement des systèmes experts juridiques. Ces derniers résonnent sur de nouvelles affaires en imitant la prise de décision humaine par la logique en général et souvent par analogie. Ils s'appuient sur un raisonnement à base de règles c'est-à-dire à partir d'une représentation formelle des connaissances des experts ou du domaine. En droit, il s'agit de la connaissance qu'a l'expert des normes juridiques et de l'ordre des questions à traiter lors du raisonnement sur un cas (appris par expérience). Le modèle explicite de domaine nécessaire ici se trouve dans une base de connaissances où les normes juridiques sont représentées sous forme de « SI ... ALORS ... », et les faits sont générale-

1.1. Introduction 17

ment représentés dans la logique des prédicats. Un système expert juridique doit s'appuyer sur une base de connaissances juridiques exhaustive et disposer d'un moteur d'inférence capable de trouver les règles pertinentes et le moyen efficace, par déduction, de les appliquer afin d'obtenir la solution du cas d'étude aussi rapidement que possible. Les systèmes experts ont échoué dans leur tentative de prédire les décisions de justice [?]. La première raison découle de ce que ? a appelé le « goulot d'acquisition de connaissances » c'est-à-dire le problème d'obtention des connaissances spécifiques à un domaine d'expertise sous la forme de règles suffisamment générales. L'autre raison tient à l'interprétation ouverte du droit et à la complexité de la formalisation applicable sans tenir compte des particularités de l'affaire.

Contrairement au raisonnement à base de règles, le raisonnement à base de cas concerne une recherche de solution, une classification ou toute autre inférence pour un cas courant à partir de l'analyse d'anciens cas et de leurs solutions [?]. Un tel système juridique résout les nouveaux cas en rapprochant les cas déjà réglés et en adaptant leurs décisions [?]. Le raisonnement fondé sur des cas connaît un succès croissant dans la prédiction de l'issue d'affaires davantage aux États-Unis qu'ailleurs. Pour exemple, ? entraînent des forêts aléatoires sur les cas de 1946-1953 pour prédire si la Cour Suprême des États-Unis infirmera ou confirmera une décision de juridiction inférieure. Ils ont réussi à atteindre 69,7% des décisions finales pour 7 700 cas des années 1953-2013; des résultats qu'ils ont légèrement améliorés plus récemment en augmentant le nombre d'arbres et la quantité de données [?]. Toujours pour la prédiction des décisions de la Cour Suprême des Etats-Unis, ? utilisent des techniques de traitement automatique du langage naturel (TALN) et extraient automatiquement moins de caractéristiques que [?] à partir des décisions d'appel de la Cour Fiscale Allemande (11 contre 244). Ils obtiennent des valeurs de f1-mesures entre 0,53 et 0,58 (validation croisée à 10 itérations) pour la prédiction de la confirmation ou l'infirmation d'un jugement en appel avec un classifieur bayésien naïf. D'autre part,? ont obtenu une précision de 1.1. Introduction 18

91,8% en tentant de prédire la partie (plaignant/défendeur) qui sera favorisée à l'issue d'affaires d'appropriation illicite de secrets commerciaux. Contrairement à [?] qui catégorisent les caractéristiques de valeurs prédéfinies pour caractériser la décision débattue, les tribunaux et les juges (opinions politiques, origine de l'affaire, identifiant du juge, raison et sens du dispositif de la cour inférieure), ? identifient, par classification, des facteurs pouvant influencer la décision. Les valeurs des caractéristiques de ces différents travaux sont prédéfinies et très limitées, et ne reflètent pas, par conséquent, la grande diversité de catégories qu'on peut retrouver dans les décisions.

Notre objectif est d'alimenter les analyses quantitatives de corpus jurisprudentiels en proposant des méthode d'extraction de connaissances pertinentes telles que les références des affaires (juge, date, juridiction, etc.), les règles juridiques associées, les demandes de parties, les réponses des tribunaux, et les liens entre ces données. Les juges apportent une réponse à chaque demande, et par conséquent une partie peut voir toutes ses demandes soit acceptées ou rejetées, soit l'une d'entres elles partiellement accordée. Un juriste sera donc plus intéressé à formuler et défendre les demandes qui ont de meilleures chances d'être acceptées pour un type de contentieux précis plutôt que de prévoir une victoire du procès. C'est la raison pour laquelle notre analyse se situe à un niveau de granularité plus fin (la demande), contrairement aux travaux sur la prédiction qui traitent d'un résultat global sur la décision (par ex. confirmer/infirmer ou gagner/perdre). Un des postulats considéré dans cette thèse est que l'identification de ces diverses connaissances est possible par l'analyse sémantique des textes judiciaires grâce aux méthodes du TALN. Cependant, l'application de ces techniques exigent certaines adaptations pour surmonter les divers défis décrits par ? : textes très longs et en grande quantité, corpus régulièrement mis à jour, influence subjective de facteurs sociaux et d'opinions politiques, couvertures de problématiques économiques, sociales, politiques très variées, langage complexe, etc. . Dans la suite de ce chapitre, nous passons en revue des travaux qui ont été menés

dans ce sens pour traiter de problématiques proches des nôtres, en particulier celles décrites précédemment dans l'introduction (Section § ii.b).

1.2 Annotation et extraction d'information

L'annotation consiste à enrichir les documents pour les préparer à d'autres analyses, faciliter la recherche d'affaires pertinentes, et faire la lumière sur des connaissances linguistiques sous-jacentes au raisonnement juridique. Les éléments annotés peuvent être de très courts segments de texte mentionnant des entités juridiques [??] comme la date, le lieu (juridiction), les noms de juges, des citations de loi. L'annotation de passages plus longs consiste à identifier des instances de concepts juridiques plus complexes comme les faits [???], les définitions [??], des citations de principes juridiques [?], ou des arguments [?].

Différentes méthodes ont été expérimentées pour la reconnaissance d'information dans les documents judiciaires. La plupart reposent sur des techniques d'apprentissage automatique supervisé qui permettent d'enraîner des modèles sur la base de données annotées, i.e. résultats attendus pour un ensemble d'exemples. C'est le cas des modèles probabilistes HMM et CRF que nous étudions dans le chapitre 2. Ces modèles peuvent être combinés à d'autres approches dans un système global. En effet, après avoir segmenté les documents à l'aide d'un modèle CRF, ? ont par exemple combiné plusieurs approches pour reconnaître des entités dans les décisions de la Cour Suprême des Etats-Unis. Ils ont défini manuellement des détecteurs distincts à base de règles pour identifier séparément la juridiction (zone géographique), le type de document, et les noms des juges, en plus de l'introduction d'une recherche lexicale pour détecter la cour, ainsi qu'un classifieur entraîné pour reconnaître le titre. Ces différents détecteurs ont atteint des performances prometteuses, mais avec des rappels limités entre 72% et 87%. Suivant la complexité des éléments à extraire, un système peut exploiter un lexique pour

les motifs simples et non-systématiques (indicateurs de mentions de résultats ou de parties) et des règles pour des motifs plus complexes et systématiques (e.g., noms de juges, énoncés de décisions) [???]. ? ont par ailleurs utilisé un modèle CRF et des réseaux de neurones sur des jugements de la Cour Européenne des Droits de l'Homme (comment seb : pourquoi faire?). Les basses performances qu'ils rapportent illustrent bien la difficulté de la détection d'entités juridiques. Plus récemment encore, ? obtiennent de bons résultats en combinant l'extraction d'entités non-juridiques par CRF à celle des relations entre ces dernières par une grammaire GATE JAPE [?] sur des décisions du Luxembourg rédigées en français. (comment seb : ici aussi préciser la finalité du système et ajouter ses performances)

Pour la détection des arguments, par contre, ? proposent une classification binaire des phrases : argumentative / non argumentative. Ils comparent notamment le classifieur bayésien multinomial et le classifieur d'entropie maximum tout en explorant plusieurs caractéristiques textuelles. ? proposent, pour la même tâche, une approche d'extraction basée sur une formalisation de la structure des arguments dans les jugements par une grammaire sans contexte.

1.3 Classification des jugements

La classification permet d'organiser un corpus en rangeant les documents dans des catégories généralement prédéfinies par des experts. A l'aide d'une technique de classification? identifient par exemple s'il y a eu une violation d'un article donné de la convention des droits de l'homme sur les jugements de la Court Européenne des Droits de l'Hommes (ECHR). Avec un SVM (Machine à Vecteurs de Support) et une représentation vectorielle basée sur les plus fréquents n-grammes et le cluster de leur vecteur de plongement sémantique (word2vec), ils obtiennent une précision moyenne de 79% sur les 3

^{2.} HUDOC ECHR Database: http://hudoc.echr.coe.int

articles qu'ils ont manipulés. (comment seb : je ne comprends pas "et le cluster de leur vecteur" à reprendre, ne pas hésiter à détailler un peu plus) Notons tout de même la sélection particulière des régions du documents à partir desquelles sont extraits les n-grammes (circonstances, faits, lois, ...). Cette sélection est un ajustement de la représentation des textes qui paraît nécessaire pour obtenir de bons résultats. La structuration préalable des documents est ainsi utile pour réduire le bruit qui occupe généralement plus d'espace que les passages ou éléments d'intérêt. ? étendent ces travaux dans neuf articles qui démontrent empiriquement, entre autres, la possibilité de prédire la violation des articles sur des périodes futures à celles couvertes par les données utilisées lors des phases d'entraînement. ? traitent, d'autre part, l'identification des résultats dans des arrêts 3 de la Court Française de Cassation. Après un essai avec un SVM [?], ils améliorent les résultats à l'aide d'un classifieur ensembliste de SVM à moyenne de probabilités (comment seb: à détailler), parvenant ainsi à des f1-mesures de plus de 95%. Par ailleurs, ? entraînent un classifieur (les plus-proches-voisins) pour un ensemble de 27 facteurs prédéfinis pour savoir s'il s'applique à la décision. (comment seb : détailler quelques exemples de facteurs, 'pour savoir s'il s'applique à la décision' tu veux dire pour savoir s'ils sont pertinents pour la prédiction de la décision?) La partie remportant le procès est par la suite prédite par un algorithme séquentiel qui compare les parties (plaignant et défendeur) suivant le niveau de préférence des questions juridiques dégagées par les facteurs observés dans la base d'entraînement. D'autres catégorisations, comme la formation judiciaire ou la période du prononcé (comment seb : prononcé?) [??], sont toutes aussi utiles pour faciliter la recherche d'information. La classification peut aussi être utilisée à des fins d'évaluation sur d'autres problématiques comme la similarité [?].

^{3.} Documents de https://www.legifrance.gouv.fr

1.4 Similarité entre décisions judiciaires

La similarité entre textes est indispensable pour des applications qui nécessitent de rapprocher quantitativement des textes traitant de sujets similaires, et resp. éloigner ceux dont les sujets sont différents. La mesure de similarité doit être définie de sorte à rapprocher ou éloigner les documents suivant l'aspect sémantique qu'on veut révéler. ? arrivent à exploiter les citations de lois et précédents, car les jugements du « Common Law » citent des décisions d'affaires similaires antérieures. Ils analysent le réseaux de citations d'un corpus de 597 documents, à l'aide de règles d'association générées par l'algorithme Apriori pour regrouper les jugements susceptibles d'être cités ensemble (comment seb : donner des informations et une citation sur cet algo). Ils démontrent au travers de scénarios (pas d'évaluation statistique) que les documents qui sont fréquemment cités ensemble sont similaires, et cette relation permet par transitivité de retrouver les documents pertinents dans une base de données. Certaines métriques traditionnelles, comme la distance cosinus [?], ont été utilisées sur les décisions judiciaires mais sans toujours rencontrer un réel succès (comment seb : appuyer le propos à l'aide de la littérature, ref sur des performances, et citation de chiffre). La raison peut venir notamment de la représentation des textes qui doit accentuer l'aspect sous-jacent de la tâche d'appréciation de la similarité visée. ? proposent d'améliorer la comparaison en utilisant une forme de connaissance a priori définie dans des modèles de type ontologie. Ils proposent notamment d'aligner le document sur une ontologie des concepts et relations du corpus judiciaire. L'idée est de calculer la similarité sur un résumé du texte qui compacte le texte uniquement sur les aspects pertinents. Cette méthode permet ainsi de mieux capter la sémantique des jugements, d'avoir une meilleure précision, et de réduire la complexité temporelle inhérente à l'exploitation de long document notamment lors de l'utilisation de la « distance du déménageur de mot » ou WMD (Word Mover's Distance) de ?. L'amélioration a été observée sur une tâche de classification avec des jugements Chinois relatifs aux crimes de la circulation routière dans quatre catégories correspondantes à des sentences d'emprisonnement (précision de 90.3% et 92.3% pour le résumé contre 84.8% et 82.4% resp. pour le document original).

Toujours dans l'objectif d'une représentation pertinente des textes, ? proposent quatre méthodes propres aux décisions judiciaires pour l'estimation de la similarité entre deux jugements x et y de la Cour Suprême indienne (Inde) :

- 1. all-term cosine similarity : le cosinus de similarité entre les représentations TF-IDF de x et y (term frequency - inverse document frequency) dont tous les termes présents dans les jugements sont les dimensions.
- 2. legal-term cosine similarity : le cosinus de similarité des termes juridiques en réduisant les dimensions précédentes uniquement aux termes apparaissant dans un dictionnaire juridique.
- 3. bibliographic coupling similarity: la similarité de couplage bibliographique égal au nombre de citations de jugements partagées entre x et y.
- 4. co-citation similarity: la similarité de co-citation qui est le nombre de citations de x et y dans un même jugement.

La similarité étudiée ici est basée sur trois critères : la similarité sur la question discutée, la similarité sur les faits sous-jacents, et l'utilité du document pour les avocats cherchant des documents similaires à une décisions données. Malgré qu'ils aient interprété les résultats sur de très faibles proportions des données utilisées (5/2430 et 18/2430), il en ressort que le cosinus de similarité avec les termes juridiques et le couplage bibliographique correspondent aux valeurs de similarité des experts, contrairement à la similarité basée sur tous les termes du corpus ou sur la co-citation. ? compare aussi la similarité cosinus sur trois représentations différentes des affaires dans

1.5. CONCLUSION 24

le cadre de la campagne de recherche d'affaires antérieures pertinentes IR-LeD@FIRE2017: (i) TF-IDF des concepts (noms), (ii) TF-IDF des concepts et relations (verbes), (iii) et la moyenne des Word2Vec [?] des concepts et relations. Au regard des performances obtenues (précision@10 et rappel@10), la première représentation semble mieux capter la similarité par rapport à l'utilisation des verbes et de la représentation distribuée. (comment seb : fournir les performances)

En synthèse, la similarité entre documents est utilisée pour répondre à plusieurs tâches, comme par exemple, la recherche de décisions similaires [?], le regroupement non-supervisé de jugements [?] et la classification supervisée de ces derniers [?]. Ces diverses applications définissent aussi la sémantique juridique liée à la notion de similarité. Parmi les questions liées à la conception d'une mesure de la similarité entre documents, on distingue : la sémantique experte qui fonde cette similarité, sa métrique de mesure, la représentation des documents, le contexte d'exploitation et les métriques d'évaluation. Les diverses études menées sur la similarité démontrent l'importance de l'abstraction des textes par les concepts soit via l'alignement du document avec une ontologie, soit via la sélection de termes clés.

1.5 Conclusion

En résumé, les travaux portant sur l'analyse automatique des décisions ont donné des résultats encourageant grâce aux éléments spécifiques aux affaires et généralement contenus dans les documents correspondants. Ces éléments peuvent être extraits des décisions grâce aux techniques de TALN et de fouille de texte. L'analyse des données textuelles juridiques a pour but la structuration des documents, l'extraction d'information, et l'organisation sémantique de corpus. Le domaine est très actif depuis déjà plusieurs décennies, au point où des librairies de développement, spécifiques au domaine, commencent à voir le jour [?]. La revue littéraire fait remarquer que

1.5. CONCLUSION 25

le concepteur investit un minimum d'ingénierie d'adaptation que ce soit pour la définition des caractéristiques pertinentes pour les modèles à apprentissage automatique, soit pour définir les règles pour les méthodes à base de règles ou à base de grammaire. Notons aussi l'effort d'évaluation quantitative avec la participation d'experts pour l'annotation d'exemples de référence même pour des tâches qui peuvent paraître subjectives comme la mesure de similarité.

Chapitre 2

Annotation des sections et entités juridiques

2.1 Introduction

Ce chapitre traite de la détection de sections et d'entités dans les décisions jurisprudentielles françaises. Bien que ces dernières ne soient pas structurées, leur contenu est organisé en sections dont les principales sont : l'entête, le corps, et le dispositif. Chacune d'entre elles décrit des informations spécifiques de l'affaire :

- l'entête contient de nombreuses métadonnées de référence comme la date, le lieu, les participants, etc.
- le corps détaille les faits, les procédures antérieures, les conclusions des parties et le raisonnement des juges;
- le dispositif est la synthèse du résultat final c'est-à-dire qu'on y retrouve les réponses aux demandes des parties.

Certaines informations spécifiques se retrouvent très souvent dans une même section, e.g. métadonnées (localisation, date), prétentions des parties, décisions finales. Compte tenu de la répartition standard de certaines informations, certaines tâches d'extraction d'information peuvent être abordées comme des traitements spécifiques à appliquer à certaines sections. Ce chapitre traite dans un premier temps des modèles utilisés pour appliquer cette phase de segmentation des décisions en sections. Par la suite, les entités, et données sur les demandes et résultats, pourront plus facilement être ex-

2.1. Introduction 27

traites. Nous nous focaliserons en particulier ici sur la détection d'entités telles que la date à laquelle le jugement a été prononcé, le type de juridiction, sa localisation (ville), les noms des juges, des parties, et les règles de loi citées (normes). La Table 2.1 liste les différentes entités ciblées et fournit des exemples illustrant leurs occurrences dans les décisions avec lesquelles nous avons travaillé.

Entités	Label	Exemples	$\# \mathrm{mentions}^a$		
			\mathbf{M} édiane b	\mathbf{Total}^c	
Numéro de re-	rg	« 10/02324 », « 60/JAF/09 »	3	1318	
gistre général					
(R.G.)					
Ville	ville	« NÎMES », « Agen », « Toulouse »	3	1304	
Juridiction	juridiction	« COUR D'APPEL »	3	1308	
Formation	formation	« 1re chambre », « Chambre écono-	2	1245	
		mique »			
Date de prononcé	date	« 01 MARS 2012 », « 15/04/2014 »	3	1590	
Appelant	appelant	«SARL K.», «Syndicat», «Mme	2	1336	
		X »			
Intimé	intime	- // -	3	1933	
Intervenant	intervenant	- // -	0	51	
Avocat	avocat	« Me Dominique A., avocat au barreau	3	2313	
		de Papeete »			
Juge	juge	« Monsieur André R. », « Mme BOUS-	4	2089	
		QUEL»			
Fonction de juge	fonction	« Conseiller », « Président »	4	2062	
Norme norme		« l' article 700 NCPC », « articles 901	12	7641	
		et 903 »			
Non-entité	O	mot ne faisant partie d'aucune men-	-	-	
		tion d'entité			

a nombre de mentions d'entités dans le corpus annoté pour les expérimentations

Remplacer la médiane par le mode (i.e. le nombre ou l'intervalle le plus fréquent)

Tableau 2.1 – Exemples d'entités et statistiques sur la base d'exemples annotés manuellement

On pourrait s'attendre à ce qu'une institution comme la justice respecte un modèle strict et commun à tous les tribunaux pour la rédaction des décisions pour permettre de facilement pouvoir les lire et les analyser. Malheureusement, même si les décisions décrivent des informations de même nature, le modèle employé semble varier entre les juridictions. C'est ce qu'on

 $[^]b$ nombre médian de mentions par document dans le corpus annoté

 $^{^{}c}$ nombre total d'occurrences dans le corpus annoté

^{*} Les statistiques sur les sommes d'argent ne concernent que 100 documents annotés (max=106, min=1, moyenne=17.77), contre 500 documents pour les autres entités.

2.1. INTRODUCTION 28

remarque déjà au niveau de la transition entre sections. Au vu de leur rôle, il est évident que les sections devraient être séparées par des marqueurs bien précis. Une approche intuitive de sectionnement consisterait par conséquent à définir un algorithme capable de reconnaître automatiquement ces marqueurs de transition par l'utilisation d'expressions régulières. Cependant, les marqueurs retrouvés ne sont généralement pas standards. Les indicateurs de transitions sont en effet souvent différents d'une décision à l'autre ; ils peuvent correspondre à être des titres ou des motifs à base de symboles (astérisques, tirets, etc.). Il arrive même parfois que la transition soit implicite et que l'on ne s'en rende compte que par la forme ou le contenu des lignes, au cours de la lecture. Même les marqueurs explicites sont hétérogènes. Lors de l'emploi de titres par exemple, la transition de l'entête à l'exposé du litige peut être indiquée par des titres comme « Exposé », « FAITS ET PROCÉDURES », « Exposé de l'affaire », « Exposé des faits », etc. Quant au dispositif, il est introduit généralement par l'expression « PAR CES MOTIFS » avec souvent quelques variantes qui peuvent être très simples (par exemple « Par Ces Motifs ») ou exceptionnelles (par exemple « P A R C E S M O T I F S:»). Dans certaines décisions, cette expression est remplacée par d'autres expressions comme « DECISION », « DISPOSITIF », « LA COUR », etc. Par ailleurs, lors de l'utilisation de symboles, il arrive qu'un même motif sépare différentes sections et même des paragraphes dans une même section. Des différences similaires apparaissent aussi pour les entités. Les noms de parties sont généralement placés après un mot particulier comme « APPELANTS » ou « DEMANDEUR » pour les demandeurs (appelants en juridiction de 2e degré), « INTIMES » ou « DEFENDEUR » pour les défendeurs (ou intimés), et « INTERVENANTS » pour les intervenants. Les noms des individus, sociétés et lieux commencent par une lettre majuscule, et sont entièrement en majuscule. Cependant, certains mots communs peuvent apparaître aussi en majuscule (par ex. APPELANTS, DÉBATS, ORDONNANCE DE CLÔ-TURE). Les entités peuvent contenir des chiffres (identifiant, dates, ...), des caractères spéciaux (« / », « - »), des initiales (par ex. « A. ») ou abréviations. Dans l'entête, les entités apparaissent généralement dans le même ordre (par ex. les appelants avant les intimés, les intimés avant les intervenants). Cependant, on rencontre une multitude de types d'entités dans l'entête, contrairement aux autres sections où seules les normes nous intéressent. De plus, le texte est mieux structuré dans l'entête que dans les autres sections.

Notre étude consiste à analyser l'application du Modèle Caché de Markov (HMM) et des Champs Aléatoires Conditionnels (CRF) aux problèmes de sectionnement et reconnaissance d'entités juridiques. Ces deux tâches sont ainsi représentées sous la forme d'un problème d'étiquetage de séquences. L'idée est de découper un texte en segments atomiques distincts (token) qui peuvent être des mots, des phrases, des paragraphes, etc. Le texte est ainsi représenté sous forme de séquences et chaque objet d'intérêt (section ou entité) comprend un ou plusieurs segments. Un label est défini pour chaque type d'entité (par ex. PER pour les noms de personnes).

2.2 Extraction d'information par étiquetage de séquence

? distinguent quatre catégories d'approches d'extraction d'information :

— Les systèmes à recherche lexicale sont conçus sur la base d'une liste d'entités préalablement connues, et leurs synonymes dans le domaine d'intérêt. Par exemple, dans le domaine juridique, un lexique pourrait contenir les identifiants de règles juridiques et les noms des juges. La liste des entités peut être fournie par des experts ou apprise à partir d'un ensemble de données annotées manuellement (phase d'apprentissage). Cependant, il s'avère très difficile de maintenir une telle liste car le domaine change régulièrement (nouvelles lois par ex.). De plus, les mentions d'entités peuvent avoir plusieurs variantes. Par exemple, la même règle juridique « Article 700 du code de procédure

civile » peut être citée seule et en entier (« article 700 du code de procédure civile »), ou abrégée (« article 700 CPC »), ou encore avec d'autres règles (« articles 700 et 699 du code de procédure civile »). De plus, ces approches sont sujettes aux problèmes d'ambiguïté, par exemple lorsque différentes entités comprennent les mêmes mots. Ces problèmes ont largement limité ces premiers systèmes [?].

— Les systèmes à base de règles décrivent la variété des mentions d'entités en fonction de la régularité du contexte, de la structure et du lexique. Il existe plusieurs plateformes et langages permettant de formaliser l'écriture des règles. Par exemple, dans le formalisme JAPE de Gate, ? détecte les énoncés de décisions à l'aide d'une règle qui sélectionne les phrases contenant un terme de jugement (affirm, grant, etc.) et suivies d'un nom de juge:

```
Rule: DecisionStatement
Priority: 10
(
{Sentence contains JudgementTerm}
):termtemp
{JudgeName}
->
```

:termtemp.DecisionStatement = {rule = "DecisionStatement"}. Ces systèmes présentent l'avantage de reposer sur des expressions déclaratives qui facilitent la maintenance (erreurs facile à tracer et à expliquer) et l'expression directe des connaissances du domaine en règles [?]. Bien que parfois suffisant pour traiter des corpus modestes et spécialisés, ces systèmes sont très souvent limités en pratique. La définition manuelle de règles exige notamment des efforts considérables, en particulier pour le traitement de grands corpus. Par ailleurs, un ensemble donné de règles est difficilement réutilisable dans d'autres domaines ou sur des données n'intégrant pas exactement les subtilités

linguistiques exprimées par les règles. Quelques approches adaptatives ont néanmoins été conçues pour surmonter ces limites tout en bénéficiant toujours de la facilité à expliquer le comportement des systèmes à base de règles [??].

- Les systèmes statistiques adaptent les modèles statistiques de langage, issus typiquement des méthodes de compression de texte, pour détecter les entités. Par exemple, ? ont adapté le schéma de compression appelé « Prédiction par Correspondance Partielle ». (comment seb : ajouter des infos pour distinguer ces sytèmes des approches à base de machine learning)
- Les systèmes basés sur l'apprentissage automatique exécutent des classifieurs multi-classes sur des segments de texte. Par exemple, un algorithme traditionnel de classification comme le modèle bayésien naïf peut être entraîné pour détecter les noms de gènes en classifiant les mots d'un article scientifique [?]. Par ailleurs, les algorithmes d'étiquetage de séquences tels que le CRF classifient les mots tout en modélisant les transitions entre les labels [?]. Dans ce registre, les architectures d'apprentissage profond réalisent actuellement les meilleures performances sur de multiples tâches d'extraction d'information en général et de reconnaissance d'entités nommées en particulier [?].

Certains travaux ont combiné différentes approches pour extraire les entités à partir de documents juridiques, par exemple, par la description de l'information contextuelle en utilisant des règles pour répondre au problème d'ambiguïté des méthodes à recherche lexicale [??]. Mais les systèmes basés sur l'apprentissage automatique sont les plus efficaces actuellement pour l'extraction d'information, en particulier les modèles graphiques probabilistes.

Trois principaux aspects doivent être traités lors de la conception des systèmes à étiquetage de séquence : la sélection du modèle d'étiquetage, l'ingénierie des caractéristiques des segments à labelliser, et le choix d'une représentation de segment (encore appelé schéma d'étiquetage).

2.2.1 Les modèles graphiques probabilistes HMM et CRF

Nous avons choisi d'analyser l'application des modèles CRF et HMM car les comparaisons avec d'autres approches démontrent bien que les modèles probabilistes obtiennent les meilleurs résultats lors de l'extraction d'information dans les documents juridiques. Par exemple, dans ?, le modèle HMM a été comparé à l'Algorithme de Perceptron à Marges Inégales (PAUM) de ? pour reconnaître les institutions et références d'autres décisions de justice, ainsi que les citations d'actes juridiques (loi, contrat, etc.) dans les décisions judiciaires de la République Tchèque. Les deux modèles ont donné de bonnes performances avec des scores F1 de 89% et 97% pour le HMM utilisant les trigrammes comme descripteurs de mots, et des scores F1 de 87% et 97% pour le PAUM en utilisant des 5-grammes de lemmes et les rôles grammaticaux (Part-Of-Speech tag) comme descripteurs.

Considérons un texte T comme étant une séquence d'observations $t_{1:n}$, avec chaque t_i étant un segment de texte (mot, ligne, phrase, etc.). En considérant une collection de labels, l'étiquetage de T consiste à affecter les labels appropriés à chaque t_i . La segmentation de T est un étiquetage particulier qui implique de découper T en des groupes qui ne se chevauchent pas (des partitions). Les tâches de sectionnement et d'annotation des entités, prises séparément, sont des problèmes de segmentation.

2.2.1.1 Les modèles cachés de Markov (HMM)

Un modèle HMM 1 est une machine à états finis définie par un ensemble d'états $\{s_1, s_2, ..., s_m\}$. Un modèle HMM a pour fonction d'affecter une probabilité jointe $P(T, L) = \prod_i P(l_i|l_{i-1})P(T|l_i)$ à des paires de séquences d'observations $T = t_{1:n}$ et de séquences de labels $L = l_{1:n}$. Étant donné qu'un HMM

^{1. ?} fournit plus de détails sur le modèle HMM

est un modèle génératif, chaque label l_i correspond à l'état s_j dans lequel la machine a généré l'observation t_i . Il y a autant de labels candidats que d'états. Le processus d'étiquetage de T consiste à déterminer la séquence de labels L^* qui maximise la probabilité jointe $(L^* = \arg \max_L P(T, L))$. Une évaluation de toutes les séquences possibles de labels est nécessaire pour déterminer L^* . Pour éviter la complexité exponentielle $O(m^n)$ d'une telle approche, n étant la longueur de la séquence et m le nombre de labels candidats, l'algorithme de décodage Viterbi [?], basé sur de la programmation dynamique, permet d'obtenir une estimation de L^* . Cet algorithme utilise des paramètres estimés par apprentissage sur un corpus de textes annotés manuellement :

- un ensemble d'états $\{s_1, s_2, ..., s_m\}$ et un alphabet ou vocabulaire $\{o_1, o_2, ..., o_k\}$;
- la probabilité que s_j génère la première observation $\pi(s_j), \forall j \in [1..m]$;
- la distribution de probabilité de transition $P(s_i|s_j), \forall i, j \in [1..m]$;
- la distribution de probabilité d'émission $P(o_i|s_j), \forall i \in [1..k], \forall j \in [1..m]$.

Les probabilités de transition et d'émission peuvent être inférées en utilisant une méthode de maximum de vraisemblance comme l'algorithme d'espérance maximale. L'algorithme Baum-Welch [?] en est une spécification conçue spécialement pour le HMM.

L'avantage du HMM réside dans sa simplicité et sa vitesse d'entraînement. Cependant, il est difficile de représenter les segments à l'aide de multiples descripteurs distincts. Il est tout aussi difficile de modéliser la dépendance entre des observations distantes parce que l'hypothèse d'indépendance entre observations est très restrictive (i.e. l'état courant dépend uniquement des état précédents et de l'observation courante).

2.2.1.2 Les champs conditionnels aléatoires (CRF)

Même si l'algorithme Viterbi est aussi utilisé pour appliquer le modèle CRF à l'étiquetage de séquences, la structure du CRF diffère de celle du

HMM. Au lieu de maximiser la probabilité jointe P(L,T) comme le HMM, un modèle CRF [?] cherche la séquence de labels L^* qui maximise la probabilité conditionnelle suivante :

$$P(L|T) = \frac{1}{Z} \exp\left(\sum_{i=1}^{n} \sum_{j=1}^{F} \lambda_{j} f_{j}(l_{i-1}, l_{i}, t_{1:n}, i)\right)$$

où
$$Z = \sum_{l_{1:n} \in L(T)} \exp\left(\sum_{i=1}^n \sum_{j=1}^F \lambda_j f_j(l_{i-1}, l_i, t_{1:n}, i)\right)$$
 est le facteur de normalisation, L(T) étant l'ensemble des séquences possibles de labels pour T .

Les fonctions potentielles $f(\cdot)$ sont les caractéristiques utilisées par les modèles CRF. Deux types de fonctions caractéristiques sont définies : les caractéristiques de transition qui dépendent des labels aux positions courantes et précédentes $(l_{i-1}$ et l_i resp.) et de T; et les caractéristiques d'état qui sont des fonctions de l'état courant l_i et de la séquence T. Ces fonctions $f(\cdot)$ sont définies à l'aide de fonctions à valeurs binaires ou réelles b(T,i) qui combinent les descripteurs d'une position i dans T [?]. Pour labelliser les références aux règles de loi par exemple, un CRF pourrait inclure par exemple les fonctions potentielles pour étiqueter « 700 » dans ce contexte « ... l'article 700 du code de procédure civile ... » :

$$f_1(l_{i-1}, l_i, t_{1:n}, i) = \begin{cases} b_1(T, i) & \text{si } l_{i-1} = \text{NORME} \land l_i = \text{NORME} \\ 0 & \text{sinon} \end{cases}$$

$$f_2(l_{i-1}, l_i, t_{1:n}, i) = \begin{cases} b_2(T, i) & \text{si } l_i = \text{NORME} \\ 0 & \text{sinon} \end{cases}$$

avec

$$b_1(T,i) = \begin{cases} 1 & \text{si } (t_{i-1} = \text{article}) \land (POS_{i-1} = \text{NOM}) \\ & \land (NP1_{i-1} = < \text{unknown} >) \land (NS1_{i-1} = @\text{card}@) \\ 0 & \text{sinon} \end{cases}$$

$$b_2(T,i) = \begin{cases} 1 & \text{si } (t_i = 700) \land (POS_i = \text{NUM}) \land (NP1_i = \text{article}) \land (NS1_i = \text{code}) \\ 0 & \text{sinon} \end{cases}$$

 t_i étant une observation dans T, POS étant le rôle grammatical de t_i (NUM = valeur numérique, NOM = nom), et NP1 et NS1 sont les lemmes des mots avant et après t_i , respectivement. Les symboles $\langle unknown \rangle$ et @ card@ encodent les lemmes inconnus et ceux des nombres respectivement. Pouvant être activées au même moment, les fonctions f_1 et f_2 définissent des descripteurs se chevauchant. Avec plusieurs fonctions activées, la croyance dans le fait que $l_i = NORME$ est renforcée par la somme $\lambda_1 + \lambda_2$ des poids affectés respectivement à f_1 et f_2 [?]. Un modèle CRF active une fonction f_j lorsque ses conditions sont satisfaites (celles activant $b_j(T,\cdot)$) et $\lambda_j > 0$. Les diverses fonctions pondérées f_j sont définies par des descripteurs caractérisant les segments, et les labels des données d'entraînement. La phase d'apprentissage consiste principalement à estimer le vecteur de paramètres $\lambda = (\lambda_1, ..., \lambda_F)$ à partir de textes annotés manuellement $\{(T_1, L_1), ..., (T_M, L_M)\}, T_k$ étant un texte et L_k la séquence de labels correspondants. La valeur optimale de λ est celle qui maximise la fonction objectif $\sum_{k=1}^{M} \log P(L_k|T_k)$ sur les données d'entraînement. En général, outre le maximum de vraisemblance, cette optimisation est résolue à l'aide de l'algorithme de descente de gradient dont l'exécution peut être accélérée à l'aide de l'algorithme L-BFGS de ?.

2.2.2 Représentation des segments atomiques

La représentation des segments à labelliser occupe une place importante pour l'obtention de bons résultats avec les modèles décrits précédemment. Elle consiste généralement à décrire la forme et le contexte de chaque segment en lui assignant des attributs [??]. Ils peuvent être booléens (« le mot est il en majuscule ? »), numériques (nombre de caractères du mot), nominaux (par ex. le rôle grammatical d'un mot), ou définis par des expressions régulières (par ex. pour les numéros R.G. on peut avoir dd/ddddd où d désigne

un chiffre). Ces descripteurs mettent en évidence des régularités relatives à l'occurrence des entités. Par exemple, préciser qu'un mot débute par une lettre majuscule permet d'indiquer les noms propres. La définition de tels descripteurs consiste ainsi à fournir au modèle des indices l'aidant à mieux distinguer les différents types d'entités.

Etant donné que les descripteurs dépendent généralement de l'intuition du concepteur du système d'étiquetage, il est difficile mais nécessaire d'identifier des descripteurs appropriés. Après avoir défini des candidats, il n'est pas sûr qu'en les combinant tous ensemble, on obtienne les meilleures performances. Une sélection de caractéristiques peut alors s'avérer nécessaire. Cette sélection peut améliorer les performances d'étiquetage, et accélérer l'extraction des descripteurs, l'entraînement du modèle ainsi que son application à de nouveaux textes [?]. Elle peut aussi fournir une meilleure compréhension du comportement des modèles entraînés [?]. Deux principales approches se distinguent. D'une part, les méthodes « filtrantes » (filters), comme l'information mutuelle, comparent individuellement les descripteurs à l'aide de scores qui ne sont pas nécessairement basés sur la performance. D'autre part, les méthodes « enveloppantes » (wrappers) comparent des sous-ensembles de descripteurs sur la base des performances d'évaluation qu'elles permettent d'obtenir (par exemple la F1-mesure obtenue sur un ensemble d'exemples). Même si les méthodes filtrantes sont plus rapides, elles sont en général moins performantes car elles ne permettent pas d'éviter les redondances, et ne prennent pas en compte l'effet de la combinaison de caractéristiques.

La définition manuelle des caractéristiques suivie de la sélection est souvent qualifiée de méthode forcée car elle dépend fortement de la capacité du concepteur du système à identifier les descripteurs appropriés. Les réseaux de neurones permettent d'apprendre des caractéristiques grâce à des méthodes de plongement sémantique telles que Word2Vec [?] et Glove [?]. Deux architectures de réseaux de neurones réalisent actuellement les meilleures performances en matière de détection d'entités nommées. Il s'agit du mo-

dèle BiLSTM-CRF de ? et du LSTM-CNN-CRF de ?. On pourrait résumer ces architectures en trois phases. Dans un premier temps, les segments de textes (mots) ont une représentation vectorielle concaténant 2 vecteurs de plongement sémantique : l'un issu de l'apprentissage morphologique du mot à partir de ses caractères, et l'autre issu de l'apprentissage du contexte général d'occurrence du mot. Lors de la seconde phase, deux couches de cellules LSTM enchaînées permettent de modéliser le contexte à droite et à gauche de chaque mot du texte labellisé. La dernière phase détermine la séquence de labels la plus probable pour le texte à l'aide d'une implémentation neuronale du modèle CRF. Le CRF reçoit en entrée la concaténation des contextes à droite et à gauche des mots. schémas du biLSTM

2.2.3 Schéma d'étiquetage

Nous traitons d'entités dont les occurrences comprennent un ou plusieurs éléments atomiques. Pour améliorer les résultats d'un modèle d'étiquetage, certaines parties des entités peuvent être mises en évidence à travers une représentation appropriée de segments. La figure 2.1 illustre l'utilisation la différence entre des schémas appelés IO, BIO, IEO et BIEO, sur un extrait de décision de justice pour l'annotation du nom d'un juge et de sa fonction :

	composée	de	Madame	Martine	JEAN	,	$Pr\'esident$	de	chambre	,	de
IO	0	O	I-JUGE	I-JUGE	I-JUGE	O	I-FONCTION	I-FONCTION	I-FONCTION	O	О
BIO	0	О	B-JUGE	I-JUGE	I-JUGE	О	B-FONCTION	I-FONCTION	I-FONCTION	О	О
IEO	0	О	I-JUGE	I-JUGE	E-JUGE	О	I-FONCTION	I-FONCTION	E-FONCTION	О	О
BIEO	0	O	B-JUGE	I-JUGE	E-JUGE	O	B-FONCTION	I-FONCTION	E-FONCTION	O	O

Figure 2.1 – Illustration des schémas d'étiquetage IO, BIO, IEO, BIEO

Nous comparons dans cette étude quelques schémas d'étiquetage dont certains sont décrits par ?. Le principe de ces schémas est d'étiqueter différemment des segments atomiques d'entités en fonction de la position de ses segments dans l'entités. Pour cela, le label associé à l'entité est préfixé de l'une des lettres suivantes :

```
B: début (beginning);
I: intérieur (inside);
E (ou L, ou M): fin (end ou last ou middle);
S (ou U, ou W): singleton ou entité à segment unique (single ou unit ou whole);
O: hors de toute entité (outside).
```

Le schéma IO utilisé par défaut ne met l'accent sur aucune partie et affecte le même label à tous les segments d'une même entité. D'autres schémas distinguent soit le premier élément (BIO), soit le dernier (IEO), soit les deux (BIEO). Les schémas IEO et BIO ont des variantes IEO1, BIO1, IOE2, et BIO2. Les modèles IOE2, et BIO2 utilisent resp. les préfixes E- et B- pour étiqueter les entités à mot unique, contrairement à IEO1 et BIO1 qui utilisent plutôt le préfixe I- dans ce cas. Le modèle BIEO est souvent étendu sous la forme BIESO (ou BILOU) dans le cas où on souhaite distinguer les entités à un seul segment (par ex. ville ou numéro R.G.). Il est possible d'aller plus loin en mettant l'accent sur les mots avant (O-JUGE) et après (JUGE-O) l'entité (JUGE par exemple) et en indiquant le début (BOS-O, begininning of sentence) et la fin (O-EOS, end of sentence) du texte ou de la phrase. Le format ainsi obtenu est appelé BMEWO+ [?].

Un autre intérêt des schémas plus complexes que IO est de pouvoir distinguer des entités du même type qui se suivent sans être explicitement séparées (par exemple, des appelants mentionnés sur des lignes consécutives). Cet aspect est notamment important dans les décisions de justice par exemple lorsque des noms de parties sont listés dans la section ENTETE en n'étant séparés que d'un simple retour à la ligne.

2.3 Architecture proposée

Nous proposons de travailler uniquement avec le contenu textuel des documents. Ce contenu est extrait des documents téléchargés en éliminant les

Après la collecte et le prétraitement des documents, l'étiqueteur de ligne est d'abord appliqué pour détecter les sections, puis les étiqueteurs d'entités peuvent être appliqués simultanément dans les sections.

Figure 2.2 – Application des modèles entraînés pour l'étiquetage de sections et entités.

éléments inutiles, principalement des espaces vides. Ces éléments sont typiques des documents formatés (.rtf, .doc(x), .pdf). Ils ne fournissent pas une indication standard sur le début des sections. Le choix de ne pas exploiter le formatage des documents permet d'avoir à gérer un nombre plus faible de diversités entre les textes tout en appliquant le même processus de traitement à tout document indépendamment de son format d'origine. Une simple architecture d'étiquetage de sections et d'entités juridiques a été conçue avec cette uniformisation des documents comme point d'entrée (Figure 2.2). Ainsi, les documents sont collectés puis pré-traités suivant leur format d'origine (extraction du texte et séparation des décisions apparaissant dans le même document). Ensuite, après le sectionnement des décisions, les entités sont identifiées dans les différentes sections. Par ailleurs, comme segment atomique à étiqueter nous avons choisi les lignes pour la détection des sections, et les mots pour les entités.

Les modèles HMM et CRF étant tous les deux supervisés, ils doivent

Figure 2.3 – Entrainement des modèles.

être entraînés sur des exemples manuellement annotés pour estimer leurs paramètres. Nous proposons de sélectionner le schéma d'étiquetage et les sous-ensembles minimaux de caractéristiques manuellement définies, avant d'entraîner les modèles HMM et CRF (Figure 2.3).

2.3.1 Définition de descripteurs candidats

2.3.1.1 Descripteurs pour la détection des sections

Nous considérons donc la ligne comme élément à étiqueter lors du sectionnement. Nous n'avons pas travaillé au niveau des mots afin d'éviter que des mots de la même ligne ne soient classés dans des sections différentes. L'étiquetage des phrases a aussi été évité car en découpant les documents en phrases telles qu'elles sont entendues en français, on a généralement des segments qui s'étendent d'une section à une autre (absence de ponctuation). De plus, l'entête en particulier a plus l'apparence d'un formulaire.

Plusieurs critères peuvent être utilisés pour différencier les sections, à savoir : la longueur des lignes (plus longues dans le corps, plus courtes dans l'en-tête), les premiers termes de certaines lignes (typiques de chaque section) et le nombre total de lignes. Un HMM n'adapte qu'un descripteur assimilé à l'élément à étiqueter. D'autres descripteurs peuvent être la position de

l'élément à étiqueter (numéro de ligne) ou le début de la ligne. Le descripteur capturant la longueur de ligne peut être absolu (nombre exact de mots dans la ligne), ou relatif (une catégorie de la longueur). Sur la base des quantiles de la distribution des longueurs de lignes sur un ensemble de décisions, nous avons défini trois catégories : LQ1 ($longueur \leq 5$), LQ2 ($5 < longueur \leq 12$) et LQ2 ($12 < longueur \leq 14$). Nous avons également catégorisé les parties de documents afin de capturer une position de ligne relative.

Lors de l'extraction des caractéristiques, le document est considéré comme divisé en N parties (10 dans nos expériences). La position relative d'une ligne est donc le numéro de la partie contenant la ligne particulière. En résumé, les caractéristiques sont décrites comme suit (avec leurs étiquettes entre parenthèses) :

- forme de la ligne : la ligne entière, ses premiers mots (t0, t1, t2), sa longueur absolue (absLength) et sa longueur relative (relLength);
- contexte de ligne : le numéro de ligne (absNum) et le numéro de la partie de document contenant la ligne (relNum), les deux premiers mots des lignes précédente (p0, p1) et suivantes (n0, n1), ainsi que leurs longueurs absolues et relatives (pLength, pRelLength, nLength, nRelLength).

2.3.1.2 Descripteurs pour la détection d'entités

La détection d'entités consiste à entraîner soit un modèle CRF, soit un modèle HMM pour étiqueter les différents segments de texte (mot, ponctuation, numéro, identifiant) suivant qu'ils appartiennent ou non à la mention d'une entité. Les deux modèles nécessitent des caractéristiques, dont certaines peuvent être définies sur la base de régularités directement observables dans les textes. Il est également possible d'obtenir des descripteurs à partir du résultat d'autres tâches d'analyse de texte.

Sur la base des observations de décision, nous avons défini la morphologie des mots pour les normes et méta-données d'entête :

- forme du mot : le mot (token), son lemme (lemma_W0), « commencet-il par une lettre majuscule? » (startsWithCAP), « est-il entièrement en majuscule? » (isAllCAP), « est-ce une initiale solitaire? » comme par exemple « B. » (isLONELYINITIAL), « contient-il un caractère de ponctuation? » (PUN-IN), « n'est-ce qu'une ponctuation? » (isALLPUN), « contient-il un caractère numérique? » (DIGIT-IN), « ne contient-il que des chiffres? » (isALLDIGIT);
- contexte de mot : les mots précédents (w-2, w-1) et suivants (w1, w2) et leurs lemmes (lemmaW_i). La lemmatisation homogénéise les variantes du même mot. Les mots adjacents sont choisis pour indiquer les termes couramment utilisés pour introduire des entités.

Plus particulièrement pour les méta-données d'entête, nous avons défini des descripteurs supplémentaires pour capter le contexte du mot : numéro de ligne (lineNum), position de l'élément dans la ligne (numInLine), « le document contient-il le mot clé intervenant? » (intervenantInText), le texte vient-il après le mot clé « APPELANT » (isAfterAPPELANT), « INTIME » (isAfterINTIME), « INTERVENANT » (isAfterINTERVENANT). Nous avons également pris en compte les dernières lignes, où le mot était précédemment rencontré dans le texte (lastSeenAt), ainsi que le nombre de fois où il a été trouvé (nbTimesPrevSeen), car les noms des parties sont souvent répétés à des emplacements différents. Nous avons également défini une caractéristique spéciale pour les normes : « le mot est-il un mot clé de règles juridiques ? » (isKEYWORD). Pour ce dernier descripteur, nous avons établi une courte liste de mots-clés généralement utilisés pour citer des règles juridiques (article, code, loi, contrat, décret, convention, civil, pénal, etc.).

Nous avons étendu ces caractéristiques avec les rôles grammaticaux (*Part-of-Speech* et les modèles thématiques (*topic model*).

Rôles grammaticaux : certaines entités ont tendance à contenir des rôles grammaticaux particuliers. Par exemple, les noms d'individus sont composés de noms propres (Chang et Sung, 2005). Nous avons extrait le rôle

grammatical du mot courant (POS) ainsi que celui de ses voisins (POSW-2, POSW-1, POSW1, POSW2).

Modèles thématiques: comme ? et ?, nous utilisons des associations mot-thème pour décrire les mots. Il s'agit de modéliser un ensemble de N thèmes et d'utiliser leurs identifiants comme descripteurs. Il serait peut-être intéressant d'utiliser la probabilité déduite du modèle thématique, mais l'inférence sous-jacente au modèle LDA [?] n'est pas déterministe (la distribution de probabilité change pour le même mot entre différentes inférences). Néanmoins, l'ordre des sujets ne changeant pas de manière significative, nous avons utilisé l'identifiant du thème le plus pertinent pour le mot (topic0) ainsi que ceux de ses voisins (w-2topic0, w-1topic0, w1topic0, w2topic0).

2.3.2 Sélection des descripteurs

2.3.2.1 Sélection pour le modèle CRF

Nous avons étudié deux approches enveloppantes qui semblent toujours converger et qui ne nécessitent pas de définir manuellement la taille du sous-ensemble cible.

```
Algorithme 1 : Recherche bidirectionnelle BDS
```

```
{\bf Donn\'ees} : Données annotées, X liste de tous les descripteurs candidats
```

Résultat : Sous-ensemble optimal de descripteurs

- 1 Démarrer la SFS avec $Y_{F_0} = \emptyset$;
- **2** Démarrer la SBS avec $Y_{B_0} = X$;
- **3** k = 0;
- 4 tant que $Y_{F_k} \neq Y_{B_k}$ faire

5
$$x^{+} = \underset{x \in Y_{B_{k}} \setminus Y_{F_{k}}}{\operatorname{argmax}} F1(Y_{F_{k}} + x); Y_{F_{k+1}} = Y_{F_{k}} + x^{+} //SFS;$$
6 $x^{-} = \underset{x \in Y_{B_{k}} \setminus Y_{F_{k+1}}}{\operatorname{argmax}} F1(Y_{F_{k}} - x); Y_{B_{k+1}} = Y_{B_{k}} - x^{-} //SBS;$
7 $k = k + 1;$

s retourner Y_{F_k} ;

La première méthode, qui est la recherche bidirectionnelle (BDS) de ?,

combine la sélection séquentielle en avant (SFS) et la sélection séquentielle en arrière (SBS) en parallèle (Algorithme 1). La SFS recherche un sousensemble optimal, en commençant par un ensemble vide et en ajoutant le descripteur qui améliore le mieux l'efficacité du sous-ensemble sélectionné. Le critère d'efficacité dans notre cas est défini par la F1-mesure (Eq. ??). Contrairement à la SFS, la SBS commence par l'ensemble des candidats et supprime successivement les plus mauvais descripteurs. Une caractéristique ne peut être ajoutée dans $Y_{F_{k+1}}$ que si elle est présente dans Y_{B_k} .

Algorithme 2 : Sélection séquentielle avant à flottement

Données : Données annotées, X liste de tous les descripteurs candidats

Résultat : Sous-ensemble optimal de descripteurs

```
Y_0 = \emptyset;
 2 k = 0;
 3 répéter
          x^{+} = \underset{x \notin Y_{k}}{\operatorname{argmax}} F1(Y_{k} + x); Y_{k} = Y_{k} + x^{+};

x^{-} = \underset{x \in Y_{k}}{\operatorname{argmax}} F1(Y_{k} - x);
 5
          si F1(Y_k - x^-) > F1(Y_k) alors
 6
                Y_{k+1} = Y_k - x^-;
 7
                X = X - x^{-};
k = k + 1;
                Rentrer à 5;
10
11
           sinon
                Rentrer à 4;
12
13 jusqu'à X = \emptyset ou X = Y_k;
14 retourner Y_k;
```

La seconde méthode, qui est l'algorithme de sélection séquentielle avant à flottement SFFS de ?, étend la SFS en surmontant son incapacité à réévaluer l'utilité d'un descripteur après son rejet. En effet, le SFFS effectue des tests

en arrière à chaque itération (Algorithme 2).

2.3.2.2 Sélection pour le modèle HMM

Pour sélectionner les meilleurs descripteurs pour les modèles HMM, nous avons testé individuellement les différents candidats. La caractéristique donnant le meilleur résultat sur l'ensemble de données annotées est sélectionnée.

2.4 Expérimentations et discussions

L'objectif de cette section est de discuter des différents aspects liés à la performance des modèles CRF et HMM. Il est question de discuter l'effet des descripteurs candidats définis, de comparer des algorithmes de sélection de caractéristiques et des schémas d'étiquetage. Nous discutons par la suite l'origine des erreurs (confusion, nombre d'exemples d'entraînement), et comparons les descripteurs définis manuellement par rapport à l'utilisation de réseaux de neurones.

2.4.1 Conditions d'expérimentations

2.4.1.1 Annotation des données de référence

Pour évaluer les méthodes de TAL, ? suggère de choisir un jeu d'exemples suffisant en assurant au mieux l'équilibre dans la variété des données et la représentativité du langage. Nous avons essayé de suivre cette recommandation en sélectionnant aléatoirement des décisions à annoter. Au total, 503 documents ont été rassemblés et annotés manuellement à l'aide de la plateforme GATE Developer ². Cet outil permet de marquer les passages à annoter en les surlignant à l'aide du pointeur de la souris ; ce qui allège l'annotation manuelle. Des balises XML sont rajoutées autour des passages sélectionnés, en arrière plan dans le document.

 $^{2. \} https://gate.ac.uk/family/developer.html\\$

Chaque document annoté comprend en moyenne 262,257 lignes et 3955,215 mots. Les deux dernières colonnes du Tableau 2.1 présentent la distribution des entités labellisées dans le jeu de données. En se basant sur un sousensemble de 13 documents labellisés par 2 annotateurs différents, nous avons calculé des taux d'accord inter-annotateur en utilisant la statistique Kappa de Cohen. Ces mesures d'accord inter-annotateur ont été calculées au niveau des caractères parce que certains mots peuvent être coupés par des annotations incorrectes (par ex. <juridiction> cour d'appe </juridiction> l contre <juridiction> cour d'appel </juridiction>), ou bien les annotateurs pourraient ne pas être d'accord si une apostrophe doit être inclue ou pas dans l'annotation (par ex. l'<norme>article 700 contre <norme>l'article 700). Les taux de Kappa de 0,705 et 0,974 ont été obtenus pour l'annotation des entités et des sections respectivement. D'après la catégorisation de ?, le niveau d'accord observé est substantiel pour les entités (0,61 – 0,80) et presque parfait pour les sections (0,81 – 0,99).

2.4.1.2 Mesures d'évaluation

Nous avons utilisé la précision, le rappel et la F1-mesure comme mesures d'évaluation car elles sont généralement utilisées comme références en extraction d'information. La F1-mesure se calcule à l'aide de la formule suivante :

$$F1 = 2 \times \frac{Precision \times Rappel}{Precision + Rappel}.$$

L'évaluation peut être faite au niveau des segments atomiques ou des entités selon que l'on soit plus intéressé respectivement par l'étiquetage du maximum de segments atomiques ou par la labellisation complète d'un maximum d'entités.

Evaluation au niveau atomique (token-level) : cette évaluation mesure la capacité d'un modèle à labelliser les segments atomiques des entités. Les valeurs de précision et rappel sont calculées sur les données de test pour

chaque label l comme suit :

 $Precision_l = \frac{\text{nombre de segments correctement labelisés par le modèle avec } l}{\text{nombre de segments labelisés par le modèle avec } l}$

 $Rappel_l = \frac{\text{nombre de segments correctement labelisés par le modèle avec } l}{\text{nombre de segments manuellement labelisés avec } l}$

Evaluation au niveau entité (entity-level) : cette évaluation mesure le taux d'entités parfaitement identifiées c'est-à-dire seulement celles dont les segments atomiques ont été tous correctement labellisés. Les valeurs de précision et rappel sont calculés sur les données de test pour chaque classe d'entité e comme suit :

 $Precision_e = \frac{\text{nombre d'entit\'es de type } e \text{ parfaitement d\'etect\'ees par le mod\`ele}}{\text{nombre d'entit\'es d\'etect\'ees et classifi\'ees } e \text{ par le mod\`ele}}$

 $Rappel_e = \frac{\text{nombre d'entit\'es de type } e \text{ parfaitement d\'etect\'ees par le mod\`ele}}{\text{nombre d'entit\'ees manuellement classifi\'ees } e}$

Evaluation globale (overall-level): l'évaluation globale donne les performances générales d'un modèle sans distinction des classes ou labels. Elle est réalisée aux deux niveaux décrits précédemment mais indépendamment du label d'élément ou du type d'entité. La précision et le rappel sont calculées au niveau des entités comme suit :

 $Precision = \frac{\text{nombre d'entit\'es correctement labellis\'es par le mod\`ele}}{\text{nombre d'entit\'es labellis\'es par le mod\`ele}}$

 $Rappel = \frac{\text{nombre d'entit\'es correctement labellis\'ees par le mod\`ele}}{\text{nombre d'entit\'ees manuellement labellis\'ees}}.$

Ces métriques sont calculées de la même façon au niveau atomique.

2.4.1.3 Outils logiciels

Nous avons utilisé les modèles HMM et CRF tels qu'implémentés dans la librairie Mallet [?]. Les modèles étudiés ont été entraînés par la méthode d'espérance maximale pour ceux basés sur le HMM, et par la méthode L-BFGS pour ceux basés sur le CRF. Le découpage des textes en mots (tokenisation), la lemmatisation, et l'annotation des rôles grammaticaux (Part-of-Speech tagging) ont été effectués à l'aide de la fonctionnalité d'annotation de textes français de TreeTagger [?]. L'implémentation dans Mallet du LDA [?] a permis d'inférer 100 thèmes à partir d'un corpus lemmatisé d'environ 6k documents. Le tableau 2.2 présente des mots représentatifs trouvés dans les premiers thèmes inférés. L'extraction des autres descripteurs a été implémentée pour cette expérimentation.

Id thème	Mots représentatifs
0	préjudice dommage somme subir réparation titre faute payer intérêt responsabilité
1	société salarié groupe mirabeau pouvoir demande article licenciement cour titre
2	harcèlement travail salarié moral employeur fait attestation faire santé agissements
3	vente acte prix vendeur acquéreur notaire condition clause vendre immeuble
4	travail poste reclassement employeur médecin licenciement salarié inaptitude visite
5	monsieur nîmes avocat appel barreau arrêt madame disposition prononcer président
6	mademoiselle madame non mesure décision tutelle surendettement comparant
7	transport marchandise jeune sed éducateur bateau navire transporteur responsabilité
8	congé salarié conversion emploi plan convention employeur sauvegarde reclassement
9	marque site contrefaçon sous droit auteur joseph produit propriété photographie
10	pierre patrick bordeaux bruno catherine civil article corinne cour avocat

Tableau 2.2 – Mots représentatifs des 10 premiers thèmes sur les 100 inférés

Les valeurs de précision, rappel, et F1-mesure ont été calculées à l'aide du script d'évaluation de la campagne CoNLL-2002⁴. Elles sont indiquées en pourcentage dans les tableaux de résultats d'évaluation des sections suivantes.

^{3.} http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger

^{4.} http://www.cnts.ua.ac.be/conll2002/ner/bin/conlleval.txt

2.4.2 Sélection du schéma d'étiquetage

Dans le but d'évaluer comment la représentation de segment affecte les performances, nous avons implémenté quatre représentations (IO, IEO2, BIO2, BIEO). Nous avons réalisé un simple découpage des données en deux ensembles : 25% pour l'entraînement et 75% pour les tests. Les performances reportées dans le Tableau 2.3 sont les performances globales sur la base de test. Seul l'élément (mot/ligne) est utilisé comme descripteur. La durée d'entraînement est très longue, particulièrement pour la détection d'entités dans l'entête avec le CRF. Il semble évident que cette durée croisse proportion-nellement avec le nombre de labels candidats de la section et la complexité du schéma d'étiquetage. En effet, BIEO exige beaucoup plus de temps, et IO exige le temps d'entraînement le plus bas, et le schéma IOE semble être plus rapide que BIO même s'ils ont le même nombre de labels. Nous remarquons aussi que les représentations complexes n'améliorent pas significativement les résultats par rapport au simple IO qui demande pourtant beaucoup moins de temps.

2.4.3 Sélection des descripteurs

Pour comparer les méthodes BDS et SFFS, nous exploitons le schéma IO. Durant nos expérimentations, la méthode SFFS a exécuté 185 entraînements pour le modèle CRF d'identification des sections. La méthode BDS quant à elle a duré plus de 15h pour 600 itérations d'entraînement-test. Malgré la sauvegarde des scores F1 pour éviter d'exécuter plusieurs fois l'entraînement pour les mêmes sous-ensembles de descripteurs, le processus de sélection est toujours resté très long pour les deux algorithmes. Nous avons testé individuellement chacun des descripteurs candidats pour les modèles HMM. Les résultats sont reportés dans le Tableau 2.4.

Le résultat le plus remarquable est la forte réduction du nombre de descripteurs par les algorithmes. En général, la moitié est éliminée par la sélec-

Tâche	Modèle	Nivea	u atomiqu	e^a	Nive	au entité'	$\mathrm{Dur\acute{e}}^b$	Schéma	
		Précision	Rappel	F1	Précision	Recall	F1	Duree	
		91.75	91.75	91.75	64.49	56.55	60.26	4.685	IO
	CRF	88.95	88.95	88.95	48.12	38.26	42.63	11.877	IEO2
	CILI	87.09	87.09	87.09	46.79	37.20	41.45	12.256	BIO2
Sections		86.00	86.00	86.00	58.98	41.86	48.97	35.981	BIEO
Sections		32.64	32.64	32.64	22.16	18.91	20.41	6.564	IO
	HMM	32.92	32.92	32.92	17.73	16.09	16.87	7.827	IEO2
	11 IVI IVI	32.39	32.39	32.39	31.93	26.65	29.05	8.391	BIO2
		33.06	33.06	33.06	32.47	27.53	29.80	8.7	BIEO
		86.86	78.96	82.73	80.84	65.17	72.17	70.525	IO
	CRF	87.77	79.65	83.51	82.46	65.19	72.82	228.751	IEO2
		87.41	78.14	82.51	81.66	66.80	73.49	230.865	BIO2
Entités d	l'ont ôt o	87.72	79.55	83.44	84.38	68.35	75.53	475.249	BIEO
Ellitics	НММ	79.12	67.75	73.00	61.48	35.05	44.64	6.345	IO
		78.82	68.69	73.40	66.63	40.16	50.11	8.298	IEO2
		80.68	67.48	73.49	70.37	45.32	55.14	7.908	BIO2
		80.05	69.01	74.12	74.73	50.77	60.46	9.973	BIEO
		95.60	92.96	94.26	88.06	83.50	85.72	28	IO
	CRF	95.40	93.18	94.27	88.75	85.65	87.17	32.136	IEO2
	CILI	95.20	93.30	94.24	85.65	83.13	84.37	50.769	BIO2
Normes		95.46	91.57	93.47	88.83	84.71	86.72	50.566	BIEO
Normes		89.83	88.78	89.30	73.74	75.02	74.37	41.389	IO
	HMM	88.20	89.23	88.71	78.01	81.27	79.61	44.086	IEO2
	11 IVI IVI	89.25	87.83	88.53	73.89	76.63	75.24	46.634	BIO2
		87.39	88.10	87.74	77.76	82.35	79.99	45.52	BIEO

Tableau 2.3 – Comparaison des schémas d'étiquetage.

tion BDS, tandis que la méthode SFFS élimine beaucoup plus de candidats (par exemple en ne sélectionnant que 4 descripteurs parmi les 14 candidats définis pour l'annotation des normes).

Par ailleurs, les algorithmes de sélection forment des combinaisons inattendues. Par exemple, dans le cas de la détection de section, la ligne suivante semble être beaucoup plus indicatrice que la première. Il est aussi intéressant de noter que les descripteurs basés sur notre observation apparaissent dans les sous-ensembles sélectionnés (par ex. isAfterIntervenant, isKEYWORD). Remarquons aussi que la longueur absolue des lignes (absLength) joue un rôle important dans l'identification des sections vu qu'il a été sélectionné à la fois pour le CRF et le HMM (sélection BDS). Avec ces sous-ensembles sélec-

 $[^]a$ Résultats sur une simple division du jeu de données en 25% pour l'entraı̂nement et 75% pour les tests (entraı̂nement limité à 100 itérations au max)

 $[\]stackrel{b}{b}$ Durée d'entraînement en secondes avant l'arrêt de l'entraînement

Tâche	Modèle	$\operatorname{niveau} \ \operatorname{atomique}^a$			nive	eau entité ^a	Sous-ensemble	
		Précision	Rappel	F1	Précision	Rappel	F1	sélectionné
		99.31	99.31	99.31	90.28	90.68	90.48	BDS^{b1}
	CRF	99.55	99.55	99.55	85.69	85.84	85.76	$SFFS^{b2}$
	Chr	99.36	99.36	99.36	88.16	88.39	88.27	$TOUS^{b0}$
Sections		91.75	91.75	91.75	64.49	56.55	60.26	token
		90.99	90.99	90.99	4.18	3.63	3.89	absLength
	HMM	86.97	86.97	86.97	4.08	3.30	3.65	relLength
		37.59	37.59	37.59	18.81	18.81	18.81	token
		94.00	91.42	92.69	92.26	88.76	90.47	BDS^{c1}
	CRF	94.10	91.93	93.00	92.64	88.96	90.76	$SFFS^{c2}$
		94.20	91.86	93.02	93.05	89.59	91.28	$TOUS^{c0}$
Entités d	entête	86.86	78.96	82.73	80.84	65.17	72.17	token
		76.90	80.41	78.61	62.66	52.16	56.93	token
	HMM	66.48	69.67	68.04	39.34	28.36	32.96	lemma W0
		39.63	37.50	38.54	15.49	5.35	7.95	\overline{POS}
		95.91	96.72	96.31	91.14	90.45	90.80	BDS^{d1}
	$_{ m CRF}$	95.68	95.45	95.57	90.34	88.27	89.29	$SFFS^{d2}$
Normes	Onr	95.07	96.69	95.87	90.87	90.64	90.76	$TOUS^{d0}$
normes		95.60	92.96	94.26	88.06	83.50	85.72	token
	TIMA	89.21	94.25	91.66	72.67	77.28	74.90	token
	HMM	90.31	92.81	91.54	69.24	69.46	69.35	$lemma_W0$

 $[^]a$ Résultats sur un simple découpage des données de 25% pour l'entraînement, 75% pour le test avec 100 itérations d'entraînement au maximum pour le CRF, et 80% pour l'entraînement et 20% pour le test avec 50 itérations au maximum pour l'entraînement du HMM

Tableau 2.4 – Performances des sous-ensembles sélectionnés de descripteurs.

tionnés, les modèles sont plus performants que lorsqu'ils exploitent seulement le segment ou l'ensemble tout entier des candidats. Cette amélioration des

^{b0} Tous les candidats définis pour les sections (16 descripteurs): { relNum, relLength, pRelLength, absLength, t0, t1, t2, absNum, pLength, nRelLength, n0, nLength, p0, p1, n1, token }

b1 Selection par BDS pour les sections (07 descripteurs): {p0, n0, relNum, absLength, t0, t1, t2} b2 Selection par SFFS pour les sections (06 descripteurs): { n0, nRelLength, relNum, t0, t1, t2 }

co Tous les candidats définis pour les méta-données d'entête (34 descripteurs) : { isLONELYINITIAL, isALLCAP, isALLDIGIT, DIGIT-IN, intervenantInText, lineNum, lastSeenAt, nbTimesPrev-Seen, isAfterAPPELANT, isAfterINTIME, isAfterINTERVENANT, startsWithCAP, PUN-IN, isALL-PUN, POSW2, w2topic0, numInLine, POSW-1, lemmaW2, lemmaW-2, POSW-2, w-2topic0, POSW1, w1topic0, token, POS, lemma W0, topic0, w2, w-1topic0, lemmaW-1, w-1, w1, lemmaW1 }

^{c1} Selection par BDS pour les méta-données d'entête (17 descripteurs) : { POSW1, isAfterAP-PELANT, numInLine, w-2topic0, POSW2, isAfterINTERVENANT, isAfterINTIME, POSW-2, isLONE-LYINITIAL, token, lemma_W0, lemmaW-2, isALLPUN, w-1, w1, w2, isALLCAP }

^{c2} Selection par SFFS pour les entités d'entête (10 descripteurs) : { numInLine, w-2topic0, lemmaW-2, isAfterINTERVENANT, isAfterINTIME, w-1, w1, w2, isALLCAP, token }

do Tous les candidats définis pour les normes (28 descripteurs): { isALLPUN, isALLDIGIT, DIGIT-IN, isKEYWORD, POSW2, w2topic0, PUN-IN, POSW-1, isLONELYINITIAL, startsWithCAP, isALLCAP, lemmaW-2, POSW-2, w-2topic0, POS, topic0, POSW1, w1topic0, w2, lemmaW2, token, lemma W0, w-2, w-1topic0, w-1, lemmaW-1, w1, lemmaW1 }

d1 Selection par BDS pour les normes (14 descripteurs): { POSW1, w-2topic0, isKEYWORD, lemmaW2, DIGIT-IN, token, lemmaW1, lemmaW-2, POS, isALLPUN, w-1, w2, PUN-IN, w-2 }

d2 Selection par SFFS pour les normes (04 descripteurs) : {POSW1, lemmaW-2, w-1, DIGIT-IN}

résultats n'est pas très importante au regard de la longue durée d'exécution des algorithmes. Ainsi, un algorithme plus rapide et plus efficace devrait être utilisé.

2.4.4 Evaluation détaillée pour chaque classe

Nous discutons ici la capacité des modèles à identifier individuellement chaque type d'entité et de section. Les expérimentations ont été réalisées avec tous les descripteurs pour les modèles CRF. Seuls absLength et token ont été utilisés comme descripteurs dans les modèles HMM pour l'identification des sections et des entités respectivement. Le schéma d'étiquetage est IO. Le nombre d'itérations maximal a été fixé à 500 pour assurer la convergence lors de l'entraînement même si les modèles HMM ne convergeaient jamais après 500 itérations. Les Tableaux 2.5 et 2.6 présentent les résultats d'une validation croisée à 5 itérations, respectivement aux niveaux atomique et entité.

D'un point de vue général (évaluation globale), les modèles HMM se comportent assez bien au niveau élément avec un seul descripteur, particulièrement pour l'identification des sections et des normes. Le modèle HMM est capable de labelliser les normes car plusieurs d'entre elles sont répétées entre les décisions. De plus, la citation des normes est quasi standard (article [IDENTIFIANT] [TEXTE D'ORIGINE]). Le modèle HMM n'est cependant pas aussi efficace pour détecter entièrement les mots des entités d'où le faible score enregistré au niveau entité. Quant aux modèles CRF, leurs résultats sont très bons sur toutes les tâches et à tous les niveaux d'évaluation malgré quelques limites observées sur l'identification des parties.

		HMM		CRF			
	Precision	Rappel	F1	Precision	Rappel	F1	
I-corps	92.46	95.25	93.83	99.57	99.69	99.63	
I-dispositif	53.44	48.46	50.83	98.63	97.59	98.11	
I-entete	97.91	91.93	94.83	99.51	99.55	99.53	
Evaluation globale	90.63	90.63	90.63	99.48	99.48	99.48	
I-appelant	34.46	16.87	22.65	84.34	76.27	80.1	
I-avocat	85.17	98.75	91.46	98.02	98.15	98.09	
I-date	75.67	72.45	74.02	98	96.6	97.3	
I-fonction	88.81	64.46	74.7	95.23	95.13	95.18	
I-formation	79.38	94.38	86.23	98.8	99.45	99.12	
I-intervenant	82.07	38.04	51.98	83.38	68.26	75.07	
I-intime	50.4	68.09	57.93	82.54	83.33	82.93	
I-juge	73.4	88.73	80.34	97.55	97.23	97.39	
I-juridiction	85.15	98.37	91.28	98.91	99.69	99.3	
I-rg	68.53	22.14	33.47	97.81	97.44	97.62	
I-ville	91.5	82.41	86.72	98.94	99.15	99.04	
Evaluation globale	76.21	82.26	79.12	95.13	94.51	94.82	
I-norme	88.23	93.7	90.89	97.14	96.09	96.62	

Tableau 2.5 – Précision, Rappel, F1-mesures pour chaque type d'entité et section au niveau atomique.

		HMM		CRF			
	Precision	Rappel	F1	Precision	Rappel	F1	
corps	0.99	0.99	0.99	89.57	90.1	89.83	
dispositif	12.05	7.33	9.11	98.02	97.82	97.92	
entete	10.47	10.5	10.48	92.11	92.48	92.29	
Evaluation globale	7.22	6.27	6.71	93.22	93.47	93.34	
appelant	17.84	5.6	8.52	84.05	77.29	80.53	
avocat	44.29	39.15	41.56	90.97	90.3	90.63	
date	66.87	62.15	64.43	97.96	96.6	97.27	
fonction	89.84	64.13	74.84	96.89	96.94	96.92	
formation	61.5	65.86	63.61	98.4	98.95	98.68	
intervenant	14.29	4	6.25	62.5	40	48.78	
intime	30.28	27.47	28.8	79.31	78.93	79.12	
juge	73.54	83.21	78.07	96.58	96.35	96.47	
juridiction	81.31	87.66	84.37	98.86	99.54	99.2	
rg	68.53	22.41	33.77	97.57	98.02	97.79	
ville	89.52	84.7	87.05	98.85	99.15	99	
Evaluation globale	64.59	54.56	59.15	93.77	92.93	93.35	
norme	71.94	78.45	75.05	92.66	91.38	92.01	

Tableau 2.6 – Précision, Rappel, F1-mesures pour chaque type d'entité et section au niveau entité.

2.4.5 Discussions

2.4.5.1 Confusion de classes

Certaines erreurs sont probablement dues à la proximité des entités de types différents. D'après la matrice de confusion des méta-données d'entête

(Figure 2.4), les *intervenants* sont parfois classifiés comme *appelant*, *intimé* ou *avocat* probablement parce qu'il s'agit d'entités mentionnées les unes à la suite des autres dans l'entête (les *intervenants* sont mentionnés juste après les *avocats* des *intimés*). De plus, les intervenants apparaissent dans une très faible proportion de documents annotés. Par ailleurs, une quantité considérable d'appelants sont aussi classifiés comme *intimés*.

Figure 2.4 – Matrice de confusion entre méta-données d'entête avec le modèle CRF

La proximité crée aussi des confusions entre les sections CORPS et DIS-POSITIF qui se suivent (Figure 2.5).

2.4.5.2 Redondance des mentions d'entités

Il est aussi intéressant de remarquer que certaines entités sont répétées dans le document. Par exemple, les noms des parties apparaissent précédem-

Figure 2.5 – Matrice de confusion entre lignes des sections avec le modèle CRF

ment à une mention qui donne plus de détails. Certaines normes sont aussi citées plusieurs fois et en alternant souvent les formes abrégées et longues (par exemple, la juridiction, la date, les normes). Bien que les mentions répétées ne soient pas identiques, de telles redondances aident à réduire le risque de manquer une entité. Cet aspect peut être exploité afin de combler l'imperfection des modèles.

2.4.5.3 Impact de la quantité d'exemples annotés

Des expérimentations ont été menées pour évaluer la manière dont les modèles s'améliorent lorsqu'on augmente le nombre de données d'entraînement. Pour cela, nous avons évalué différentes tailles de la base d'entraînement. Les données ont été divisées en 75% - 25% pour resp. l'entraînement et le test. 20 fractions de l'ensemble d'entraînement ont été utilisées (de 5% à 100%). A chaque session entraînement-test, le même jeu de test a été employé pour les différentes fractions de l'ensemble d'entraînement. Les courbes d'apprentissage des modèles CRF et HMM sont représentées resp. sur les Figures 2.6a et 2.6b. Il est évident que les scores F1 croissent avec le nombre de données d'entraînement pour les CRF et HMM, mais cette amélioration devient très

Figure 2.6 – Courbes d'apprentissages aux niveaux élément et entité

faible au-delà de 60% de données d'entraînement quelle que soit la tâche. Il est possible que les exemples ajoutés à partir de là partagent la même structure que celle de ceux qui ont été ajoutés auparavant. Ainsi, cette étude doit être étendue à la sélection des exemples les plus utiles. ? ont démontré les avantages des algorithmes de sélection d'exemples combinés à celle des caractéristiques pour la classification. Les mêmes méthodes sont probablement applicables à l'étiquetage de séquences.

2.4.5.4	Descripteurs	manuels vs	s. réseau	de neurones
---------	--------------	------------	-----------	-------------

	CRF + d	escripteu	rs manuels	BiLSTM-CRF			
	Precision	Rappel	F1	Precision	Rappel	F1	
appelant	82.49	69.42	74.72	80.26	71.53	75.04	
avocat	90.15	89.02	89.56	84.93	87.88	86.36	
date	95.34	91.46	93.12	95.04	90.79	92.63	
fonction	95.87	95.08	95.44	92.69	93.48	93.03	
formation	96.91	91.31	93.7	91.05	89.47	89.84	
intervenant	51.42	32.71	36.8	31.48	20	23.11	
intime	76.01	79.15	77.22	67.7	75.43	70.83	
juge	95.67	94.07	94.84	95.44	95.56	95.46	
juridiction	98.55	98.25	98.33	97.95	99.22	98.57	
rg	95.46	95.29	95.27	91.13	97.26	93.92	
ville	98.33	93.01	94.71	91.43	95.34	93.3	
norme	91.08	90.27	90.67	91.43	92.65	92.03	
Evaluation globale	92.2	90.09	91.12	89.21	90.43	89.81	

Tableau 2.7 – Comparaison entre le CRF avec des descripteurs définis manuellement et le BiLSTM-CRF au niveau entité.

L'ingénierie manuelle des caractéristiques est difficile car arbitraire. Nous avons comparé les performances de nos descripteurs avec celles des réseaux de neurones qui apprennent une représentation des segments. Pour cela nous avons choisi le BiLSTM-CRF de ? qui fait partie des meilleures approches récentes. La comparaison a été effectuée pour la détection des entités avec le schéma d'étiquetage BIEO et une validation croisée à 9 itérations. Le BiLSTM-CRF prend en entrée les plongements sémantiques Word2Vec des mots. Pour cela, nous avons entraîné des vecteurs de mots à partir d'un corpus jurisprudentiel de plus de 800K documents provenant de www.legifrance. gouv.fr avec l'implémentation 5 de ?. Les vecteurs obtenus ont une dimension de 300. Etant donné que les décisions sont des documents particulièrement longs, leur contenu a été découpé en des morceaux de texte dont la taille n'excède pas 300 mots. Les résultats obtenus par le BiLSTM-CRF sont assez proches de ceux que nous observons avec les descripteurs manuellement définis (Tableau 2.7). Etant donné que ces derniers permettent de mieux détecter certaines entités comme les intervenants, les avocats ou les

^{5.} https://code.google.com/archive/p/word2vec/

2.5. CONCLUSION 58

numéro R.G., et vice-versa pour les *normes* ou les *appelants* chez le BiLSTM-CRF, une combinaison des deux types de descripteurs pourrait améliorer les résultats actuels.

2.5 Conclusion

L'application des modèles HMM et CRF dans le but de détecter des sections et des entités dans les décisions de justice est une tâche difficile. Ce chapitre a examiné les effets de divers aspects de la conception sur la qualité des résultats. En résumé, malgré une importante réduction du nombre de descripteurs, l'amélioration des résultats semble être insignifiante lorsque l'on sélectionne séparément la représentation du segment et le sous-ensemble de caractéristiques. Cependant, opter pour la bonne configuration en évaluant les approches de sélection combinées avec diverses représentations de segment pourrait peut-être offrir de meilleurs résultats. En raison de la longue durée de recherche du sous-ensemble optimal de descripteurs, il serait préférable d'utiliser un algorithme de sélection beaucoup plus rapide que les méthodes BDS et SFFS que nous avons expérimentées. De plus, même si les résultats s'améliorent avec la l'augmentation de la taille de l'échantillon d'apprentissage, la mesure globale F1 semble néanmoins atteindre une limite très rapidement. Etant donné que certaines entités ne sont pas très bien détectées, il peut être avantageux d'ajouter des exemples appropriés afin de traiter ces problèmes spécifiques.

L'application des modèles pose deux difficultés majeures : l'annotation d'un nombre suffisant d'exemples et la définition de caractéristiques discriminantes. Les efforts d'annotation peuvent être réduits avec un système automatique à faible performance d'étiquetage. Il suffirait alors de vérifier manuellement ces annotations afin de corriger les erreurs commises par le système sur de nouvelles décisions à l'aide d'un outil d'aide à l'annotation. En ce qui concerne la définition des caractéristiques, dans la mesure où notre

2.5. CONCLUSION 59

approche actuelle est réalisée manuellement par l'analyse de quelques documents, il est possible que de tels descripteurs ne s'adaptent pas parfaitement à un nouvel ensemble de données (différents pays, différentes langues, différentes juridictions). Pour éviter les énormes efforts requis pour définir les fonctionnalités manuellement, il serait préférable d'utiliser des descripteurs appris automatiquement à partir de corpus étiquetés ou non, comme des mots incorporés.

Il serait intéressant de poursuivre les travaux proposés sur la tâche de reconnaissance d'entités nommées. L'étude de modèles couplant les approches
à descripteurs définis manuellement (e.g., CRF), avec des approches sans définition manuelle (de type apprentissage profond e.g., BiLSTM CRF) semble
particulièrement intéressante. Une étude comparative approfondie des limitations des deux approches serait alors souhaitable. Bien que les approches à
base d'apprentissage profond apparaissent (légèrement) moins performantes
dans nos tests, l'étude de ces approches prometteuse est bien entendu à recommander. Des travaux de l'impact des techniques d'embedding (plongement sémantique) sur la performance de ces systèmes méritent notamment
d'être menées.

Pour l'indexation des décisions dans une base de connaissances, il est aussi important de définir des méthodes de désambiguïsation et de résolution pour les entités à occurrences multiples, en plus de la correspondance des entités extraites avec des entités de référence, comme l'ont expérimenté ? et ?. Ces travaux peuvent être poursuivis par d'autres applications telles que l'anonymisation automatique qui aiderait à publier plus rapidement l'énorme volume de décisions prononcées régulièrement.

Chapitre 3

Extraction des données concernant les demandes et leurs résultats correspondants

3.1 Introduction

Au cœur de l'analyse des décisions de justice se trouve le concept de demande. Il s'agit d'une réclamation ou requête effectuée par une ou plusieurs parties aux juges. Une partie peut demander des dommages-intérêts en réparation d'un préjudice subi ou à l'issu d'un divorce, des indemnités auxquelles elle pense avoir droit, ou encore une étude d'expert, etc. Les demandes sont fondamentales car l'argumentation au cours d'une affaire a deux buts : faire accepter ses demandes, et faire rejeter celles de la partie adverse. L'extraction des demandes et des résultats correspondants, dans un corpus, permet ainsi de récolter des données informant de la manière dont sont jugés des types de demandes d'intérêt. Les informations qui nous intéressent sont la catégorie de la demande, le quantum (montant) demandé, le sens du résultat (par ex. la demande a-t-elle été acceptée ou rejetée?), et le quantum obtenu (décidé par les juges). Pour pouvoir extraire les demandes et les résultats, il est nécessaire de comprendre comment ceux-ci sont exprimés et co-référencés dans les décisions jurisprudentielles. Leur énoncé peut comporter des expressions plus ou moins complexes, dont souvent des références à des jugements antérieurs, des agrégations ou des restrictions (Figure 3.1).

3.1. INTRODUCTION 61

```
Jennifer M., Catherine M. et Sandra M. ... demandent à la Cour de :
- les recevoir régulièrement appelantes incidentes du jugement du 23/05/2014;
- infirmer le dit jugement en toutes ses dispositions; ...
Statuant à nouveau ...
- les condamner au paiement d'une somme de 3 000,00 € pour procédure abusive et aux entiers dépens;
```

(a) Exemples d'énoncés de demandes

```
La cour, ...
CONFIRME le jugement entreprise en toutes ses dispositions.
Y ajoutant
CONSTATE que Amélanie Gitane P. épouse M. est défaillante à rapporter la preuve d'une occupation trentenaire lui permettant d'invoquer la prescription acquisitive de la parcelle BH 377 située [...].
DEBOUTE Amélanie Gitane P. épouse M. de sa demande en dommages et intérêts.
CONDAMNE Amélanie Gitane P. épouse M. aux dépens d'appel.
DIT n'y avoir lieu à l'application de l'article 700 du Code de Procédure Civile.
```

(b) Exemple d'énoncés de résultats

Figure 3.1 – Enoncés simples, ou comprenant des références et des agrégations (extraits de la décision 14/01082 de la cour d'appel de Saint-Denis (Réunion))

3.1.1 Données cibles à extraire

3.1.1.1 Catégorie de demande

Une catégorie c de demande regroupe les prétentions qui sont de même nature par le fait qu'elles partagent deux aspects : l'objet demandé (par ex. dommages-intérêts, amende civile, déclaration de créance) et le fondement c'est-à-dire les règles ou normes ou principes juridiques qui fondent la demande (par ex. article 700 du code de procédure civile). Des noms particuliers sont utilisés pour identifier les catégories (Tableau 3.1).

3.1.1.2 Quantum demandé

Le quantum demandé quantifie l'objet de la demande. Nous le notons q_d . Par exemple, dans l'exemple de la Figure 3.1a, "3000 \in " est le quantum demandé au titre des dommages-intérêts pour procédure abusive. Bien que cette étude ne porte que sur des sommes d'argent, le quantum peut être d'une autre nature comme par exemple une période dans le temps (garde d'enfant, ou emprisonnement, etc.). Toutes les catégories demandes n'ont

3.1. INTRODUCTION 62

Label	Expression nominative	Objet	Fondement
acpa	amende civile pour abus de procédure	amende civile	Articles 32-1 code de procédure
			civile + 559 code de procédure
			civile
concdel	dommages-intérêts pour concurrence	dommages-	Article 1382 du code civil
	déloyale	intérêts	
danais	dommages-intérêts pour abus de pro-	dommages-	Articles 32-1 code de procédure
	cédure	intérêts	civile + 1382 code de procédure
			civile
dcppc	déclaration de créance au passif de la	déclaration de	L622-24 code de commerce
	procédure collective	créance	
doris	dommages-intérêts pour trouble de	dommages-	principe de responsabilité pour
	voisinage	intérêts	trouble anormal de voisinage
styx	frais irrépétibles	dommages-	Article 700 du code de procé-
		intérêts	dure civile

Les labels ont été définis particulièrement pour cette étude, et par conséquent, ils n'existent pas dans le langage juridique.

Tableau 3.1 – Exemples de catégories de demandes

pas de quantum (par ex. une demande de divorce) et seul le sens du résultat sera la donnée à extraire dans ce cas.

3.1.1.3 Sens du résultat

Le sens du résultat est l'interprétation de la décision des juges sur une demande. Nous le notons s_r . En général, le sens peut être positif si la demande a été acceptée, et négatif si elle a été rejetée. Il arrive aussi que le résultat soit reporté à un jugement futur; il s'agit dans ce cas d'un sursis à statuer.

3.1.1.4 Quantum obtenu ou résultat

Le quantum obtenu quantifie le résultat ou la décision des juges. Nous le notons q_r . Il peut être inférieur ou égal au quantum demandé. Si la demande est rejetée, q_r est évidemment nul même si cela n'est pas explicitement mentionné dans le document. Il doit être de la même nature que le quantum demandé (somme d'argent ou durée).

3.1. Introduction 63

3.1.2 Expression, défis et indicateurs d'extraction

Les demandes sont, en général, décrites à la fin de la section d'exposé des faits, procédures, moyens et prétentions des parties (section Litige). Elles rentrent donc dans les "moyens et prétentions des parties" qui regroupent les demandes et les arguments des parties. Quant aux résultats, ils sont décrits dans la section Dispositif et dans la section Motifs (raisonnement des juges). Les demandes sont exprimées en paragraphe où chaque paragraphe correspond soit à une partie, soit à un groupe de partie partageant les mêmes demandes (par ex. des époux). Le paragraphe est parfois organisé en liste dont chaque élément exprime une ou plusieurs demandes, ou fait référence à un jugement antérieur. Les résultats ont aussi la forme de liste dans la section Dispositif. Par contre, dans les motifs de la décision, les raisonnements sont organisés en paragraphes, et ordonnés catégorie après catégorie. Le résultat est donné à la fin du groupe de paragraphes associé à la catégorie.

Cette pseudo-structure n'est pas standard et impose de nombreux défis à relever. En effet, une décision jurisprudentielle porte sur plusieurs demandes de catégories différentes ou similaires. Il est important de faire correspondre un quantum demandé extrait au sens et quantum du résultat qui font référence à la même demande. La séparation des demandes et des résultats rend difficile cette mise en correspondance. Ce problème peut aussi être causé par la redondance des quanta; par exemple, les résultats exprimés dans les Motifs sont résumés dans le Dispositif. D'autre part, les références aux jugements antérieurs exigent de résoudre des références aux résultats de jugements antérieurs qui sont, généralement, rappelés dans le même document. Notons aussi que les difficultés liées aux agrégations (par ex. "infirmer ... en toutes ces dispositions") et aux restrictions/sélections (par ex. "infirme le jugement ... sauf en ce qu'il a condamné M. A. ...") devraient être résolues. Par ailleurs, les catégories de demandes sont nombreuses ¹ mais ne sont pas toutes présentes à la fois dans les décisions. Tous ces aspects rendent difficile l'annotation

^{1.} plus de 500 selon la nomenclature des affaires civiles NAC+

3.1. Introduction 64

manuelle des données de référence et la modélisation d'une approche d'extraction adéquate. Cependant, nous avons remarqué quelques indicateurs qui pourraient être utiles.

On pourrait au préalable annoter les candidats potentiels de quanta. Nous nous sommes intéressés aux demandes dont les quanta sont des sommes d'argent. Les mentions de somme d'argent sont généralement de la forme « [valeur] [monnaie] » (par ex. 3000 €, 15 503 676 francs, un euro, 339.000 XPF). Des centimes apparaissent parfois (par ex. dix huit euros et soixante quatorze centimes, 26'977 € 19). Ainsi, il est possible d'annoter les sommes d'argent à l'aide d'une expression régulière. Même s'il est difficile de reconnaître des sommes d'argent écrites en lettre, il faut remarquer que l'équivalent en chiffre est généralement mentionné tout près (par ex. neuf mille cinq cent soixante six euros et quatre vingt sept centimes (9566,87 €)).

La terminologie utilisée est aussi un bon indicateur pour reconnaître des demandes et des résultats. En effet, le vocabulaire utilisé est très souvent propre aux catégories de demandes. Par exemple le dernier élément de la Figure 3.1a comprend le terme "pour procédure abusive" qui est près d'une somme d'argent $(3000 \in)$; il est donc probable que ce type de terme assez particulier soit un bon indicateur de la position des quanta. Par ailleurs, des verbes particuliers sont utilisés pour exprimer les demandes et résultats : infirmer, confirmer, constater, débouter, dire, ...

3.1.3 Formulation du problème

Nous avons tenu compte de deux principaux aspects du problème :

- 1. Une décision comprend plusieurs demandes de catégories similaires ou différentes ;
- 2. Il existe un grand nombre de catégories (500+); ce qui rend difficile l'annotation d'exemples de référence pour couvrir toutes ces catégories.

Nous avons par conséquent opter pour une extraction par catégorie. L'idée est de pouvoir ajouter progressivement de nouvelles catégories. Une exécution du système d'extraction permet ainsi d'extraire les demandes d'une seule catégorie. Le problème est décomposé en deux principales tâches :

Tâche 1 : Détecter les catégories présentes dans le document pour appliquer l'extraction uniquement à ces catégories ;

Tâche 2 : Pour chaque catégorie c identifiée, extraire les demandes :

- 1. identification des valeurs d'attributs : quanta demandés (q_d) , quanta obtenus (q_r) , et sens du résultat (s_r) ;
- 2. mise en correspondance des attributs pour former les triplets (q_d, s_r, q_r) correspondants aux paires demande-résultat d'une catégorie c.

3.2 Travaux connexes

Chacune des tâches précédentes se rapproche d'une tâche couramment traitée en fouille de texte. En effet, la détection de catégories dans les décisions peut être modélisée comme un problème de classification de document. La tâche d'extraction se rapproche plus quant à elle des problématiques comme l'extraction d'évènements, le remplissage de champs, ou encore l'extraction de relations et la résolution de référencement.

3.2.1 Problèmes analogues : extraction d'éléments structurés

Les demandes ressemblent aux structures telles que les relations ou les évènements. En effet, les champs définis par ?, pour les relations, et ? pour les évènements, se rapprochent de ceux visés lors de l'extraction des demandes comme l'illustre le Tableau 3.2. Plus précisément, une catégorie de demandes correspond à un type d'évènement ou de relation entre deux entités. Les arguments qui participent à l'évènement « demande » ou à la relation

« demande-résultat » sont le quantum demandé et le quantum résultat. Le sens du résultat représente la classe de la structure « demande ».

	Relation [?]	Événement [?]	Analogie chez les de-
			mandes
Type	Org-Aff.Student-	Die	Catégorie="Dommages-
	Alum		intérêts pour procédure
			abusive"
Passage	Card graduated from	"Il est mort hier d'une insuf-	(Figure 3.1)
(extend)	$the \ \ University \ \ of$	fisance rénale."	
	$South \ Carolina$		
Déclencheur	=	"mort"	"procédure abusive"
(trigger)			
Participants	Arg1="Card"	Victim-Arg="il"	Quantum-
ou Argu-	Arg2="the University	Time-Arg="hier"	demandé="3000€"
ments	of South Carolina"		Quantum-obtenu="0 €"
(argu-			
ments)			
Classes	Asserted	Polarity=POSITIVE,	Sens-résult at = "Rejet é"
(attri-		Tense = PAST	
butes,			
classes)			

Tableau 3.2 – Exemples d'analogie entre relations, évènements et demandes

3.2.2 Approches d'extraction d'éléments structurés

L'extraction d'éléments structurés repose généralement sur une approche modulaire du problème qui le décompose en tâches plus simples. D'une part, on dispose de l'identification des déclencheurs ² et des arguments. D'autre part, une mise en correspondance relie les arguments et déclencheurs qui participent à la même relation ou au même évènement. Les classes peuvent être déterminées par classification du passage associé. Cette décomposition a permis à de nombreuses méthodes de voir le jour.

L'approche traditionnelle consiste en une chaîne de traitement enchaînant des modules adaptés chacun à une tâche simple. La sortie d'une étape est l'entrée de la suivante. C'est ainsi que ? définit un enchaînement de modèles de classification (k-plus-proches-voisins [?] vs. classificateur d'entropie maximum [?]), pour extraire des champs d'évènements dans le corpus d'ACE [?].

^{2.} terme-clé indiquant la présence d'un évènement [?].

Bien que les différents modules soient plus faciles à développer, ce type d'architecture souffre de l'accumulation et la propagation d'erreurs d'une étape à la suivante, ainsi que de la non exploitation de l'interdépendance entre les tâches. Par conséquent, l'inférence jointe des champs est préconisée. Celle-ci peut-être réalisés par une modélisation graphique probabiliste ou neuronale. Par exemple, pour l'extraction d'évènement, ? estiment la probabilité conditionnelle jointe du type d'entité t_i , les rôles des arguments r_i et les types d'entités qui remplissent ces rôles a. : $p_{\theta}(t_i, r_i, a. | i, N_i, x)$, i étant un déclencheur candidat, N_i l'ensemble des entités candidates qui sont des potentiels arguments pour i, et x est le document. Par ailleurs, ? illustrent l'utilisation des réseaux de neurones profonds avec une couche pour la prédiction du déclencheur, une autre pour le rôle des arguments, et la dernière encode la dépendance entre les labels de déclencheurs et les rôles d'arguments. [PERFORMANCE DE LEUR METHODE]

L'annotation d'? est un marquage des champs dans le texte, et par conséquent, la position ou l'occurrence des champs est indiquée (« annotation au niveau du segment de mot »). Comme dans notre cas, les données peuvent être annotées dans un tableau, hors des textes d'où elles sont issues, il est donc nécessaire de retrouver leur position sans supervision. ? proposent dans cette logique une architecture de réseaux de neurones point-à-point qu'ils ont expérimentés sur des corpus de requêtes de recherche de restaurant et films [?] ou de réservation de billets d'avion [?]. Ils se sont intéressés au problème de remplissage de champs en apprenant la correspondance entre les textes et les valeurs de sorties. Leur modèle est basé sur les réseaux de pointeurs [?] qui sont des modèles séquence-à-séquence avec attention, dans lesquels la sortie est une position de la séquence d'entrée. Le modèle proposé consiste en un encodeur de la phrase et des contextes, plusieurs décodeurs (un pour chaque champ). L'application de cette architecture à l'extraction des demandes serait confrontée à deux obstacles majeurs auxquels il faut répondre au préalable. Premièrement, les décisions judiciaires ont des conte3.2. TRAVAUX CONNEXES 68

nus de plusieurs centaines à plusieurs milliers de lignes contrairement aux requêtes manipulées par ? dont la plus longue ne comprend que quelques dizaines de mots. La complexité des architectures neuronales de TALN augmente rapidement en espace et par conséquent en temps, avec la longueur des documents manipulés en entier. Deuxièmement, nous disposons de très peu de données annotées; entre 23 et 198 documents annotés dans notre cas contre plusieurs milliers pour les expérimentations de ?.

L'avantage de l'utilisation des réseaux de neurones vient de leur capacité à apprendre automatiquement des caractéristiques pertinentes contrairement aux modèles probabilistes qui exigent très souvent une ingénierie manuelle des caractéristiques. Par contre, il est beaucoup plus facile d'utiliser les modèles probabilistes sur des corpus de faible taille et de longs textes comme c'est le cas pour notre problème.

3.2.3 Extraction de la terminologie d'un domaine

L'identification des attributs peut être facilitée grâce à leur proximité avec des termes-clés caractéristiques des catégories de demandes au même titre que les « déclencheurs » aident à identifier les évènements. Ne disposant pas au préalable de la liste des termes pertinents pour l'extraction des demandes, il est possible de les apprendre. Il existe à cet effet plusieurs métriques statistiques de pondération de termes généralement employées en recherche d'information et en classification de texte comme méthodes de sélection de caractéristiques. Ces métriques sont qualifiées de poids globaux car calculées à partir des occurrences dans un corpus, à la différence des poids locaux (Tableau 3.4) calculés à partir des occurrences dans un document. Quelques métriques sont formulées ici en utilisant les notations du Tableau 3.3 définies pour une base d'apprentissage.

Notation	Description
\overline{t}	un terme
d	un document
t	longueur de t (nombre de mots)
c	la catégorie (domaine ciblé)
\overline{c}	la classe complémentaire ou négative
D	ensemble global des documents de taille $ D $
D_c	ensemble des documents de c de taille $ D_c $
$D_{\overline{c}}$	ensemble des documents de \overline{c} de taille $ D_{\overline{c}} $
N_t	nombre de documents contenant t
$N_{\overline{t}}$	nombre de documents ne contenant pas t
$N_{t,c}$	nombre de documents de c contenant $t=a$
$N_{\overline{t},c}$	nombre de documents de c ne contenant pas t
$N_{t,\overline{c}}$	nombre de documents de \overline{c} contenant t
$N_{\overline{t},\overline{c}}$	nombre de documents de \overline{c} ne contenant pas t
$DF_{t c}$	proportion de documents contenant t dans le corpus de c
	$(DF_{t c} = \frac{N_{t,c}}{ D_c })$
$DF_{c t}$	proportion de documents appartenant à c dans l'ensemble de
	ceux qui contiennent t

Tableau 3.3 – Notation utilisée pour formuler les métriques

3.2.3.1 Métriques non-supervisées

Les métriques non-supervisées affectent un score à un terme en rapport avec l'importance de ce dernier dans le corpus global D. Parmi ces métriques, on retrouve par exemple la fréquence inverse de document (inverse document frequency) idf [?] et ses variantes pidf [?] et bidf [?] accordent plus d'importance aux termes rares. Elles considèrent en fait qu'un terme rare est plus efficace pour la distinction entre des documents. Par conséquent, elles sont efficaces en recherche d'information mais moins indiquées en classification de texte où le but est plutôt de séparer des catégories [?]. Elles se formulent

comme suit:

$$idf(t) = \log_2\left(\frac{N}{N_t}\right), pidf(t) = \log_2\left(\frac{N}{N_t} - 1\right), bidf(t) = \log_2\left(\frac{N_{\overline{t}} + 0.5}{N_t + 0.5}\right)$$

Il est possible de prendre explicitement en compte le fait que les termes peuvent comprendre plusieurs mots (n-grammes) et avoir des tailles différentes (nombre de mots). La C-value [?], par exemple, distingue la fréquence du terme et de ses sous-termes (termes imbriqués) par la formule :

$$\text{C-value}(t) = \begin{cases} \log_2(|t|) \cdot (N_t - \frac{1}{|T_t|} \cdot \sum_{b \in T_t} N_b), & \text{si } t \text{ est imbriqu\'e} \\ \log_2(|t|) \cdot N_t, & \text{sinon}, \end{cases}$$

 T_t étant l'ensemble des termes candidats qui contiennent t.

3.2.3.2 Métriques supervisées

Les métriques supervisées mesurent l'information contenue dans les labels des documents de la base d'apprentissage. Pour un terme t, elles expriment généralement la différence de proportion qui existe entre les occurrences de t dans D_c et ses occurrences dans $D_{\bar{c}}$. Elles sont ainsi mieux adaptées à la distinction entre catégories. Parmi les nombreuses métriques existantes, nous avons expérimenté les suivantes :

La différence de fréquence Δ_{DF} consiste simplement à calculer la différence entre les proportions de documents contenant t respectivement dans c et \overline{c} :

$$\Delta_{DF}(t,c) = DF_{t|c} - DF_{t|\overline{c}}$$

Le gain d'information ig [?] estime la quantité d'information apportée par la présence ou l'absence d'un terme t sur l'appartenance d'un

document à une classe c:

$$ig(t,c) = \frac{\frac{N_{t,c}}{N} * \log_2\left(\frac{N_{t,c}N}{N_t}\right) + \frac{N_{\bar{t},c}}{N} * \log_2\left(\frac{N_{\bar{t},c}N}{N_{\bar{t}}|D_c|}\right)}{+ \frac{N_{t,\bar{c}}}{N} * \log_2\left(\frac{N_{t,\bar{c}}N}{N_t|D_c|}\right) + \frac{N_{\bar{t},\bar{c}}}{N} * \log_2\left(\frac{N_{\bar{t},\bar{c}}N}{N_{\bar{t}}|D_c|}\right)}$$

La fréquence de pertinence rf [?] a comme intuition de considérer que plus la fréquence d'un terme t est élevée dans D_c relativement à sa fréquence dans $D_{\overline{c}}$, plus il contribue à distinguer les documents de c de ceux de \overline{c} . Elle est calculée par la formule :

$$rf(t,c) = \log\left(2 + \frac{N_{t,c}}{max(1, N_{t,\overline{c}})}\right)$$

Le coefficient du χ^2 [?] estime le manque d'indépendance entre t et c. Par conséquent, une grande valeur de $\chi^2(t,c)$ indique une relation étroite entre t et c. Elle est calculée par la formule :

$$\chi^{2}(t,c) = \frac{N((N_{t,c}N_{\bar{t},\bar{c}}) - (N_{t,\bar{c}}N_{\bar{t},c}))^{2}}{N_{t}N_{\bar{t}}|D_{c}||D_{\bar{c}}|}$$

Le coefficient de correlation ngl de Ng, Goh et Low [?] est la racine carré positive du χ^2 [?] :

$$ngl(t,c) = \frac{\sqrt{N}((N_{t,c}N_{\bar{t},\bar{c}}) - (N_{t,\bar{c}}N_{\bar{t},c}))}{\sqrt{N_tN_{\bar{t}}|D_c||D_{\bar{c}}|}}.$$

L'intuition est de ne regarder que les termes qui proviennent de D_c et qui indiquent l'appartenance à c.

Le coefficient gss de Galavotti, Sebastiani, et Simi [?] est une fonction simplifiée du ngl [?] :

$$gss(t,c) = (N_{t,c}N_{\bar{t},\bar{c}}) - (N_{t,\bar{c}}N_{\bar{t},c}).$$

Le facteur N a été éliminé car il est le même pour tous les termes. Le facteur $\sqrt{N_t N_{\bar{t}}}$ est supprimé car il accentue les termes extrêmement rares qui ne sont pas efficaces pour la classification de textes. Le facteur $\sqrt{|D_c||D_{\bar{c}}|}$ est éliminé car il accentue les catégories extrêmement rares, ce qui tend à réduire l'efficacité micro-moyennée (efficacité calculée globalement sur le corpus de test sans distinction à priori du label des éléments).

Le test de Marascuilo (mar) qui se calcule par la formule :

$$mar(t,c) = \frac{\begin{pmatrix} (N_{t,c} - N_t N_{t,c}/N)^2 \\ + (N_{t,\bar{c}} - N_t |D_{\bar{c}}|/N)^2 \\ + (N_{\bar{t},c} - |D_c|N_{\bar{t}}/N)^2 \\ + (N_{\bar{t},} - N_{\bar{t}} |D_{\bar{c}}|/N)^2 \end{pmatrix}}{N}$$

Le test de Marascuilo est un test de proportion multivariée. Nous proposons de l'utiliser pour tester la présence d'un terme t dans différents corpus. Autrement dit, il s'agit de tester l'homogénéité des textes du corpus contenant c. Lorsque $mar(t,c) \geq 3.84$ on accepte l'hypothèse selon laquelle la proportion de textes pour lesquels t prédit c est significative pour un risque d'erreur de 5%.

Le « delta lissé d'idf » , dsidf [?], est une version lissée du delta idf (didf) de ? $(didf(t,c) = \log_2\left(\frac{|D_{\overline{c}}|N_{t,c}}{|D_c|N_{t,\overline{c}}}\right)$). dsidf se formule comme suit :

$$dsidf(t,c) = \log_2\left(\frac{|D_{\overline{c}}|(N_{t,c} + 0.5)}{|D_c|(N_{t,\overline{c}} + 0.5)}\right)$$

Le delta BM25 d'idf, dbidf [?], est une autre variante plus sophisti-

quée du didf qui se calcule comme suit :

$$dbidf(t,c) = \log_2 \left(\frac{(|D_{\overline{c}}| - N_{t,\overline{c}} + 0.5)|(N_{t,c} + 0.5)}{(|D_c| - N_{t,c} + 0.5)(N_{t,\overline{c}} + 0.5)} \right)$$

3.2.3.3 Discussions

A l'exception de la C-value, ces métriques ne tiennent pas explicitement compte de la taille des termes dans les situations où on souhaiterait manipuler des termes de tailles différentes. [?] propose que soit affecté à un n-gramme t le poids $\left(\frac{N_t}{N}\right)^{0.27}*|t|^{0.09}$, une formule obtenue empiriquement pour l'identification du langage d'un document. Par ailleurs, la méthode C-value [?] propose un produit similaire avec le logarithme de la longueur à la place des puissances. Il est par conséquent évident que le produit lissé de la longueur du terme (puissance ou logarithme) avec les métriques décrites précédemment, permet de booster les longs termes qui, bien que rares, sont très souvent plus pertinents que certains termes plus courts. Aussi, le temps pour calculer ces différentes métriques devient rapidement long, surtout pour des n-grammes de mots de n variés. Pour compter rapidement les occurrences des n-grammes des corpus, nous avons utilisé la librairie SML 3 ? lors des expérimentations.

3.3 Méthode

3.3.1 Détection des catégories par classification des documents

Étant donné l'ensemble $D_{\overline{c}}$ des documents ne comprenant aucune demande de la catégorie d'intérêt c, nous proposons de modéliser la tâche de détection des catégories en une tâche de classification de documents. Pour chaque catégorie c, un modèle de classification binaire est entraîné pour dé-

^{3.} http://www.semantic-measures-library.org/sml/index.php?q=lib

terminer si un document d contient une demande de la catégorie c. Nous avons particulièrement expérimenté quatre algorithmes traditionnellement utilisés comme approches de base. Il s'agit du Bayésien Naïf , de l'arbre de décision C4.5, des k-plus-proches-voisins [?], de la machine à vecteurs de support (SVM). Ces algorithmes sont décrits en détail dans le chapitre 4 qui est axé sur la classification des documents. Les labels utilisés correspondent aux catégories d'intérêt. Par exemple, un document sera labellisé danais s'il contient des demandes de dommages-intérêts pour abus de procédure, et nodanais sinon. Chaque document d est représenté sous une forme vectorielle du type TF-IDF ($term\ frequency$ - $inverse\ document\ frequency$) proposé par ? dont chaque dimension k est identifiée par un terme t_k . Le poids $w(t_k,d)$ affecté à ce dernier est le produit normalisé d'un poids global $g(t_k)$ au corpus du mot et d'un poids local $l(t_k,d)$ de t_k dans le document d: $w(t_k,d) = l(t,d) \times g(t) \times nf(d)$, où nf est un facteur de normalisation tel que la norme cosinus $cos(d) = \sqrt{\sum_k (w(t_k,d))^2}$ qui est généralement utilisée.

Description	Formule
Décompte brute du terme [?]	tf(t,d) = nombre d'occurrences de t dans d
Présence du terme [?]	$tp(t,d) = \begin{cases} 1 & \text{, si } tf(t,d) > 0 \\ 0 & \text{, sinon} \end{cases}$
Normalisation logarithmique	$logtf(t,d) = 1 + \log\left(tf(t,d)\right)$
Fréquence augmentée et normalisée du terme [?]	$atf(t,d) = k + (1-k) \frac{tf(t,d)}{\max_{t \in T} tf(t,d)}$
Normalisation basée sur la fréquence moyenne du terme [?] (avg représente la moyenne)	$logave(t,d) = \frac{1 + \log t f(t,d)}{1 + \log \arg t f(t,d)}$ $t \in T$

Tableau 3.4 – Métriques locales

Etant donné le grand nombre de métriques de pondération existantes, la métrique choisie est celle qui fournit la meilleure performance sur les données d'apprentissage.

3.3.2 Extraction basée sur la proximité entre sommes d'argent et les termes-clés

Diverses approches d'extractions d'informations existent (section § 3.2.2). Il parait important de proposer dans un premier temps une approche basique explorant la solvabilité du problème du fait de ses multiples spécificités dont l'annotation d'une seule catégorie dans un document qui en contient plusieurs, l'annotation dans un tableau et donc à l'extérieur du document, la très faible quantité des données annotées, la multiplicité des demandes et des catégories dans un même document. Par conséquent, nous proposons ici une chaîne d'extraction à base de termes-clés, applicable pour chaque catégorie de demande. Il s'agit d'une approche qui tente de reproduire une lecture naïve du document en se basant sur des expressions couramment employées pour énoncer les demandes et résultats. La méthode consiste en deux phases dont une phase d'apprentissage des termes-clés de la catégorie, à proximité desquels seront identifiés les attributs durant la phase d'application comme l'illustre la Figure 3.2. On remarque en effet que, naïvement, le seul fait que 1500 euros soit aussi proche des termes-clés amende civile et pour procédure abusive signifie bien qu'il s'agit du quantum demandé comme amende civile pour procédure abusive.

```
" ...
- débouter M. S. de ...
- le condamner à payer une amende civile de 1.500 euros pour procédure abusive ...
- le condamner à payer la somme ..."
```

(a) Extrait original d'un énoncé de demande avant marquage

```
" ...
- débouter M. S. de ...
- le <demande categorie="acpa"> condamner à payer une <terme-clef categorie="acpa">amende civile</terme-clef> de <argent> 1.500 euros </argent> <terme-clef categorie="acpa"> pour procédure abusive</terme-clef> ...
- le</demande> condamner à payer la somme ..."
```

(b) Énoncé, sommes d'argent, et termes-clés marqués

Figure 3.2 – Illustration de la proximité des quantas et termes-clés

3.3.2.1 Pré-traitement

Le pré-traitement est nécessaire pour :

1. sectionner le document comme décrit au chapitre 2 en sections Entête, Litige, Motifs, Dispositif;

- 2. annoter les sommes d'argent (en chiffre) à l'aide de l'expression régulière « [0-9] ([0-9] | [',.] | \s)*\s*([Ee] uro[s] {0,1} | franc[s] {0,1}
 |€|F|XPF|CFP|EUR|EUROS|[i])(| \$) »;
- 3. annoter les énoncés de demandes et de résultats respectivement dans les sections Litige et Dispositif. Pour cela, les mots introductifs du tableau 3.5 sont employés car ils indiquent le début d'un énoncé indépendamment de la catégorie.

3	outer	11110	co	lonno	rágul	tot	
a	outer	une	CO.	юшпе	resu	llat	a

Demande	Résultat (organisé par polarité ou sens)					
	accepte	sursis à statuer	rejette			
accorder, admettre, admission, allouer, condamnation, condamner, fixer, laisser, prononcer, ramener, surseoir	accorde, accordons, admet, admettons, alloue, allouons, condamne, condamnons, déclare, déclarons, fixe, fixons, laisse, laissons, prononce, prononçons	réserve, réservons, sursoit, sursoyons	déboute, déboutons, rejette, rejetons			

Tableau 3.5 – Mots introduisant les énoncés de demandes et de résultats

La recherche de passages à l'aide listes de termes est une technique souvent utilisée dans les décisions de justice, à l'exemple de ? qui utilise des termes similaires à ceux du Tableau 3.5 pour annoter les énoncés de résultats (toute phrase contenant un terme de jugement) : affirm, grant, deny, reverse, overturn, remand, ...

3.3.2.2 Apprentissage des termes-clés d'une catégorie

Les termes-clés sont identifiés à l'aide de méthodes statistiques d'extraction ou sélection de terminologie. La base d'apprentissage comprend les cor-

pus D_c et $D_{\overline{c}}$ dont les documents ont été pré-traités. Le processus d'apprentissage des termes se déroule comme suit :

- 1. restreindre le contenu de chaque document de D_c à la concaténation des énoncés de demande et résultats contenant des sommes d'argent de valeur égale à celle des quanta annotés.
- 2. restreindre le contenu de chaque document de $D_{\overline{c}}$ à la concaténation des énoncés de demande et résultats contenant des sommes d'argent.
- 3. à l'aide d'une métrique global g, calculer le score des termes du corpus $D_c \cup D_{\overline{c}}$. Ce score est le produit g' de g avec le logarithme de la longueur du terme, pour booster les termes longs : $g'(t,c) = \log_2(|t|) \times g(t,c)$.
- 4. normaliser les scores en appliquant à chaque score original (g'(t,c)) la formule $g'_{norm}(t,c) = \frac{\max\limits_{t_k}(g'(t_k,c)) g'(t,c)}{\max\limits_{t_k}(g'(t_k,c)) \min\limits_{t_k}(g'(t_k,c))}$.
- 5. trier par ordre décroissant des termes;
- 6. sélectionner les premiers termes qui obtiennent les performances optimales sur la base d'apprentissage.

3.3.3 Application de l'extraction à de nouveaux documents

A l'aide des termes-clés appris, l'extraction des données de couples demandesrésultats se déroule comme suit :

- 1. reconnaître et marquer les occurrences des termes dans le document;
- 2. extraire les quanta demandés (q_d) et résultats (q_r) à proximité des termes-clés respectivement dans les énoncés de demande et résultat qui contiennent des sommes d'argent et un terme-clé;
- 3. le mot introductif de l'énoncé résultat indique le sens du résultat (s_r) tel que catégorisé dans le Tableau 3.5;
- 4. relier les attributs (q_d, s_r, q_r) correspondant à une même pair demanderésultat :

- (a) former les paires (énoncé de demande, énoncé de résultat) similaire (nous utilisons la métrique de « la plus longue sous-séquence commune » [?])
- (b) pour chaque paire d'énoncés formée, relier les quanta demandés et quanta résultats par ordre d'occurrence similaire.

3.4 Résultats expérimentaux

Nous analysons ici la capacité de l'approche proposée à reconnaître efficacement les catégories de demandes présentes dans les documents, et à extraire les valeurs des attributs des différentes paires demandes-résultats qui y sont exprimées. Il y est discuté les données et métriques d'évaluation employées, ainsi que des résultats expérimentaux observés avec des exemples annotés pour les six catégories du Tableau 3.1.

3.4.1 Données d'évaluation

L'annotation manuelle d'exemples s'effectue pour une catégorie à la fois afin que la tâche soit plus facile pour les experts. Le protocole d'annotation se déroule en étapes :

- 1. définir une catégorie c par son objet et sa norme juridique;
- 2. former un corpus D_c de documents contenant des demandes de c, et un autre $D_{\overline{c}}$ de documents n'en contenant pas ;
- 3. extraire toutes les demandes de catégories c mentionnées dans D_c , pour annoter les données des paires demande-résultat dans un tableau comme celui illustré par le Tableau 3.6;

Toutes les demandes du corpus $D_c \cup D_{\overline{c}}$ annoté manuellement, sont considérées inscrites dans le tableau des annotations manuelles. La répartition des documents d'évaluation est donnée par l'histogramme de la Figure 3.3.

	Α	В	С	D	F H			N	
1	IDENT	FICATION DE L	A DECISION	DESCRI	DESCRIPTION DE LA PRETENTION DESCRIPTION DU RESULTAT				
2	Type	Ressort	RG .	OBJET	NORME	RESULTAT	QUANTUM RESULTAT (obtenu)		
441	CA	Lyon	14/06911	dommages-intérêts	700 Code de Procédure Civile	3,500.00 €	rejette	0.00 €	
442	CA	Lyon	14/06911	dommages-intérêts	700 Code de Procédure Civile	2,000.00 €	accepte	1,500.00 €	

Les noms des champs sont sur les 2 premières lignes et les demandes sont données en exemple pour la catégorie dommages-intérêts sur le fondement de l'article 700 du code de procédure civile (décision 14/06911 de la cour d'appel de Lyon).

Tableau 3.6 – Extrait du tableau d'annotations manuelles des demandes.

Figure 3.3 – Répartitions des demandes dans les documents annotées.

Il faut aussi noter que bien que l'annotation manuelle des demandes et résultats soit réalisée dans un tableau (annotation externe au contenu), elle reste une tâche très difficile. Le très faible nombre de documents annotés manuellement en témoigne. Le nombre maximum de documents annotés pour une catégorie est seulement de 198 (barres vertes de danais).

3.4.2 Métriques d'évaluation

Reconnaissance de catégories par classification La classification des documents est évaluée en utilisant les métriques précision (P), rappel (P),

f1-mesure (F1) calculées à l'aide des nombres de vrais positifs (TP), faux positifs (FP), faux négatifs (FN) comme suit :

$$P = \frac{TP}{TP + FP}; R = \frac{TP}{TP + FN}; F1 = 2 \times \frac{P \times R}{P + R}$$

Extraction des attributs des paires demande-résultat Nous évaluons les approches proposées sur l'extraction de 3 données : le quantum demandé q_d , le sens du résultat s_r et le quantum obtenu q_r . Une demande est donc un triplet (q_d, s_r, q_r) . Il est possible d'évaluer le système pour un sous-ensemble x de ce triplet sur les demandes extraites d'un corpus annotées D de test. Nous utilisons les métriques traditionnellement employées en extraction d'information : la précision (Eq. 3.4.1), le rappel (Eq. 3.4.2), et la F1-mesure (Eq. 3.4.3).

$$Precision_{c,x,D} = \frac{TP_{c,x,D}}{TP_{c,x,D} + FP_{c,x,D}}$$
(3.4.1)

$$Rappel_{c,x,D} = \frac{TP_{c,x,D}}{TP_{c,x,D} + FN_{c,x,D}}$$
(3.4.2)

$$F1_{c,x,D} = 2 \times \frac{Precision_{c,x,D} \times Rappel_{c,x,D}}{Precision_{c,x,D} + Rappel_{c,x,D}}$$
(3.4.3)

Ces mesures sont définies à partir des nombres de vrais positifs (TP), faux positifs (FP) et faux négatifs (FN). Au niveau d'un document d:

- le nombre de vrais positifs $TP_{c,x,d}$ est le nombre de demandes extraites de d par le système, qui sont effectivement de la catégorie c;
- le nombre de faux positifs $FP_{c,x,d}$ est le nombre de demandes extraites de d par le système, mais qui ne sont pas des demandes de c (demandes en trop);
- le nombre de faux négatifs $FP_{c,x,d}$ est le nombre de demandes annotées comme étant de c mais qui n'ont pas pu être extraites par le système (demandes manquées).

Au niveau d'un corpus d'évaluation D, ces métriques sont sommées :

$$TP_{c,x,D} = \sum_{d \in D} TP_{c,x,d}; FP_{c,x,D} = \sum_{d \in D} FP_{c,x,d}; FN_{c,x,D} = \sum_{d \in D} FN_{c,x,d}$$

.

Une donnée observée (par exemple « 3 000 € ») est bien extraite automatiquement si sa valeur (le nombre 3000) correspond à celle du quantum annoté dans le tableau. Nous considérons que les unités monétaires, entre les quanta extraits et ceux manuellement annotés, sont égales.

3.4.3 Détection des catégories par classification

Les implémentations de la bibliothèque Weka [?] ont permis d'utiliser plusieurs modèles de classification : le modèle Bayésien naïf (NB), l'arbre de décision C4.5 (implémenté sous l'appelation J48), les k-plus-proches-voisins (KNN), et le SVM. A chaque entraînement, s'exécute une sélection de modèle par validation croisée sur les données d'entraînement. Elle a pour but de sélectionner la métrique locale et la métrique globale appropriée. Les résultats obtenus par 5-folds validation croisée sont présentés sur le tableau 3.7.

		NB			J48			KNN			SVM	
	P	R	F1									
асра	1.0	1.0	1.0	0.996	0.955	0.972	1.0	1.0	1.0	0.996	0.955	0.972
$\operatorname{concdel}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.995	0.967	0.979
$_{ m danais}$	0.988	0.989	0.988	0.996	0.995	0.995	0.995	0.995	0.995	0.993	0.993	0.993
$_{ m dcppc}$	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
doris	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
styx	1.0	1.0	1.0	0.984	0.983	0.983	1.0	1.0	1.0	1.0	1.0	1.0

(P= Précision, R=Rappel, F1 = F1-mesure)

Tableau 3.7 – Résultats d'une 5-fold validation croisée pour la détection de catégories

D'après les résultats, la tâche 1 est relativement aisée pour les algorithmes traditionnels qui détectent parfaitement la présence ou non d'une catégorie dans les documents. Par conséquent, pour toute catégorie c, les résultats de

l'extraction, dans la suite, ne sont discutés que pour les documents de c, car, grâce à l'efficacité de la phase de classification, aucun document de \bar{c} ne sera traité par la phase d'extraction.

3.4.4 Extraction de données des paires demandes-résultats

Les scores des termes-clés candidats étant normalisés, si on sélectionne les termes dont les scores sont supérieurs à un seuil fixé, on remarque que chaque métrique d'extraction a un niveau d'efficacité différent entre les catégories de demande (Tableau 3.8 avec 0.5 comme seuil fixé).

	acpa	concdel	danais	dcppc	doris	styx	Moyenne
bidf	37.33	32.73	23.96	20.46	8.08	28.43	25.17
χ^2	54.55	25.88	43.97	28.35	13.11	52.73	36.43
dbidf	37.58	24.63	56.25	29.06	11.58	52.73	35.31
Δ_{DF}	54.55	25.55	48.16	28.1	19.64	52.73	38.12
dsidf	37.58	25.25	56.42	26.05	8.72	53.46	34.58
gss	54.55	25.11	48.16	28.1	19.64	52.73	38.05
idf	38.78	32.73	22.31	20.53	8.27	25.22	24.64
ig	4	12.4	45.21	14.99	16.74	51.13	24.08
marascuilo	54.55	23.65	43.97	26.67	17.91	52.73	36.58
ngl	42.02	23.97	52.31	27.21	13.29	53.2	35.33
pidf	26.19	33.71	21.83	20.46	8.76	27.68	23.11
rf	41.11	33.09	55.72	28.56	14.93	51.23	37.44

Tableau $3.8 - F1_{c,(q_d,s_r,q_r),D_c}$ moyenne pour une 5-fold validation croisée pour chaque métrique de sélection de termes pour un seuil égal à 0.5

Par conséquent, la métrique et le seuil doivent être bien sélectionnés en fonction de la catégorie de demandes traitée. En choisissant, pour ces métaparamètres, les valeurs qui donnent les meilleurs performances d'extraction sur la base d'apprentissage, les résultats suivants sont observés (Tableau 3.9).

Ces résultats détaillés font remarquer que les attributs, pris individuellement, présentent d'assez bonnes performances. Cependant, la mise en correspondance des attributs (triplet (q_d, s_r, q_r)) peine toujours à montrer des performances du même rang. On remarque néanmoins que les mesures-F1 (q_d, s_r, q_r) sont proches de celles des attributs qui présentent le plus de difficulté. L'échec de l'extraction de ces attributs est une des principales causes

			Do	nnées d'	entraîne	ment		Donnée	es de tes	t
c	Données	$ V_c $	Р	R	F1	$\% \mathrm{Docs}$	Р	R	F1	%Docs
	q_d	1	86.4	56.37	68.13	56.37	68.33	54	58.99	46
	q_r	1	100	65.09	78.74	65.09	93.33	63	71.43	55
acpa	s_r	1	100	65.09	78.74	65.09	93.33	63	71.43	55
	(s_r,q_r)	1	100	65.09	78.74	65.09	93.33	63	71.43	55
	(q_d, s_r, q_r)	1	86.4	56.37	68.13	56.37	68.33	54	58.99	46
	q_d	26	49.33	44.02	45.31	24.17	73.2	29.72	33.29	26.67
	q_r	26	48.3	42.66	44.1	22.5	75.73	28.89	34.3	26.67
concdel	s_r	26	46.52	40.89	42.36	22.5	74.93	26.39	33.09	26.67
	(s_r, q_r)	26	46.52	40.89	42.36	22.5	74.93	26.39	33.09	26.67
	(q_d, s_r, q_r)	26	42.43	37.41	38.68	20.83	68.27	23.06	28.65	23.33
	q_d	37	77.71	48.71	59.68	37.3	79.25	47.5	59	37.3
	q_r	37	77.68	48.71	59.67	37.03	77.78	46.46	57.79	36.22
danais	s_r	37	77.05	48.33	59.19	37.03	77.78	46.46	57.79	36.22
	(s_r,q_r)	37	77.05	48.33	59.19	37.03	77.78	46.46	57.79	36.22
	(q_d, s_r, q_r)	37	74.45	46.65	57.16	35.81	74.41	44.38	55.23	34.59
	q_d	35	45.71	36.64	40.66	34.05	44.64	40.73	41.75	31.4
	q_r	35	78.99	63.21	70.2	59.33	75.48	64.51	68.41	53.82
dcppc	s_r	35	84.73	67.85	75.33	63.24	81.21	69.14	73.51	57.43
	(s_r,q_r)	35	78.99	63.21	70.2	59.33	75.48	64.51	68.41	53.82
	(q_d, s_r, q_r)	35	34.2	27.39	30.41	28.03	31.66	28.55	29.41	25.37
	q_d	8	31.98	35.76	32.94	7.75	37.48	35.9	36.63	7.12
	q_r	8	35.73	39.72	36.69	8.63	39.43	38.47	38.89	7.12
doris	s_r	8	35.06	39.56	36.24	9.06	42.91	41.44	42.12	8.94
	(s_r, q_r)	8	32.61	36.16	33.45	8.2	38.14	37.04	37.54	7.12
	(q_d, s_r, q_r)	8	24.48	27.16	25.13	5.61	29.7	28.53	29.08	7.12
	q_d	4	69.34	59.55	64.04	33.5	69.3	59.49	63.61	32
	q_r	4	75.87	65.17	70.08	31.5	74.86	64.08	68.63	28
styx	s_r	4	75.87	65.17	70.08	31.5	74.86	64.08	68.63	28
	(s_r, q_r)	4	75.87	65.17	70.08	31.5	74.86	64.08	68.63	28
	(q_d, s_r, q_r)	4	57.61	49.44	53.19	25.5	57.24	48.36	52.08	24

P: précision, R: rappel, F1: F1-mesure

% Docs : proportion de documents dont l'ensemble des données extraites est égale à l'attendu (documents parfaitement traités)

 $\left|V_{c}\right|$: nombre moyen de termes-clés identifiés pour la catégorie c

Tableau 3.9 – Résultats détaillés pour l'extraction des données avec sélection automatique de la méthode d'extraction des termes-clés

des performances observées pour la liaison des attributs de paires similaires demande-résultat. Par ailleurs, les données sur le résultat, s_r et q_r , sont en générale plus faciles à extraire que le quantum demandé q_d . Il est aussi bien de noter qu'une plus grande quantité d'exemples annotés de documents ne semble pas être la garantie d'une meilleure extraction. On remarque en effet que les meilleures performances sont obtenues pour la catégorie disposant du plus faible nombre d'exemples annotés (acpa) avec en moyenne un seul terme-clé appris.

3.4.5 Analyse des erreurs

En extraction d'éléments structurés, on retrouve trois types d'erreurs [?] : les données manquées (faux négatifs), les données en plus des attendues (faux positifs), et les mauvaises classifications (confusions). La confusion n'est pas discutée ici car les annotations ne sont faites que pour une seule classe.

Etant donné que la précision est en général supérieure au rappel, il est certain que les erreurs sont majoritairement dues aux données manquées comme le confirme le Tableau 3.10.

	Données d'e	entraînement	Données de test		
	%erreurs FP	%erreurs FN	%erreurs FP	%erreurs FN	
q_d	36.90	63.10	36.52	63.48	
q_r	32.30	67.70	34.32	65.68	
s_r	31.72	68.28	34.11	65.89	
(s_r, q_r)	32.32	67.68	34.39	65.61	
(q_d, s_r, q_r)	37.77	62.23	37.72	62.28	

Tableau 3.10 – Types et taux d'erreurs (pourcentage en moyenne sur les 6 catégories de demandes)

Trois raisons peuvent expliquer le fait que peu de données attendues soient extraites. Premièrement, certaines valeurs d'attributs ne sont pas mentionnées dans les sections Litige et Dispositif utilisées (pourcentage inférieurs à 100 dans les Tableaux 3.11 et 3.12 comme par exemple les quanta résultat de doris plus présents dans la section Motifs que dans le Dispositif).

	$\#q_d$	$\#q_d \neq NUL$	# dans doc.	# dans Litige	# dans Motifs	# dans Dispositif
асра	23	16	16 (100%)	16 (100%)	9 (56.25%)	5 (31.25%)
concdel	58	56	55 (98.21%)	55 (98.21%)	7 (12.5%)	2 (3.57%)
danais	208	182	182 (100%)	179(100%)	39 (21.43%)	23 (12.64%)
dcppc	126	126	122 (96.83%)	109 (86.51%)	71 (56.35%)	65 (51.59%)
doris	94	83	83 (100%)	82 (98.80%)	21 (25.30)%	6 (7.23%)
styx	89	86	86 (100%)	86 (100%)	12 (13.95%)	9 (10.47%)

Les pourcentages ne sont calculés que pour les valeurs non nulles

Tableau 3.11 – Taux de quanta demandés (q_d) mentionnés dans les documents annotés

Deuxièmement, la sélection des termes-clés n'est pas parfaite (Tableau 3.13). D'une part, l'ensemble sélectionné ne couvre pas toutes les situa-

	$\# q_r$	$\# q_r \neq NUL$	# dans doc.	# dans Litige	# dans Motifs	# dans Dispositif
acpa	23	6	6 (100%)	3 (50%)	6 (100%)	5 (83.33%)
concdel	58	8	8 (100%)	2 (25%)	8 (100%)	6 (75%)
danais	208	23	23 (100%)	15 (65.22%)	22 (95.65%)	20 (86.96%)
dcppc	126	76	75 (98.68%)	55 (72.37%)	56 (73.68%)	64 (84.21%)
doris	94	44	44 (100%)	28 (63.64%)	40 (90.91)%	24 (54.55%)
styx	89	30	29 (96.67%)	16 (53.33%)	22 (73.33%)	29 (96.67%)

Les pourcentages ne sont calculés que pour les valeurs non nulles

Tableau 3.12 – Taux de quanta accordés (q_r) mentionnés dans les documents annotés

tions d'expression de la catégorie (par exemple, pour la catégorie styx, le terme « frais irrépétibles » est souvent utilisés à la place de « article 700 du code de procédure civile », mais dans très peu d'exemples annotés). D'autre part, certains termes sont trop spécifiques à la base d'apprentissage (par exemple, pour la catégorie concdel, des sommes d'argent et autres termes comme « condamner in solidum les sociétés » apparaissent dans la liste).

Catégorie	Termes-clés appris
acpa	amende civile
concdel	titre de la concurrence déloyale, somme de 15000 euros à titre, réparation de son
	préjudice financier, payer la somme de 15000euros, condamner in solidum les sociétés,
	agissements constitutifs de concurrence déloyale
danais	dommages et intérêts pour procédure, 32-1 du code de procédure, intérêts pour pro-
	cédure abusive, titre de dommages-intérêts pour procédure, intérêts pour procédure,
	article 32-1 du code, dommages-intérêts pour procédure abusive
dcppc	admet la créance déclarée, admet la créance, passif de la procédure collective, passif de
	la procédure, hauteur de la somme, créance déclarée, titre chirographaire, admission
	de la créance, rejette la créance,
doris	préjudices, abusive, condamner solidairement, solidairement, réparation du préjudice,
	réparation, titre de dommages et intérêts, dommages, titre de dommages, dommages
	et intérêts, titre de dommages-intérêts, payer aux époux, jouissance
styx	700 du code de procédure, article 700 du code, 700 du code, article 700, 700

Les termes candidats sont des n-grammes de taille variant d'1 à 5 mots consécutifs

Tableau 3.13 – Premiers termes sélectionnés lors de la première itération de la validation croisée

Troisièmement, les expérimentations ont été réalisées sur des décisions d'appel mais les énoncés, de demande et résultat renvoyant aux décisions de jugements antérieurs, ne sont pas encore traités dans l'approche. Ces références aux décisions antérieures représentent une part importante des demandes discutées dans les décisions d'appel. Il est donc nécessaire de les

3.5. CONCLUSION 86

intégrer explicitement dans le processus d'extraction, pour compléter les données extraites.

3.5 Conclusion

Ce chapitre décrit le problème d'extraction de données pertinentes relatives aux paires demande-résultat mentionnées dans les décisions de justice. Les divers défis relatifs à la tâche y sont discutés en remarquant des analogies avec d'autres tâches classiques de la fouille de données textuelles. Il a été démontré la solvabilité du problème par la proposition et l'expérimentation d'une approche d'extraction basée sur l'apprentissage de la terminologie des catégories de demande et autres connaissances du domaine judiciaire telles que les motifs d'énoncés de demandes et de résultat, ainsi que leur position conventionnelle dans les documents. Les expérimentations démontrent que l'approche permet d'extraire plus ou moins bien des demandes selon la catégorie traitée. A cause de la forte dépendance aux subtilités de rédaction des décisions judiciaires, la méthode rencontre des limites qui ne peuvent être surmontées qu'en rendant la méthode beaucoup plus complexe qu'elle ne l'est déjà. Des approches d'apprentissage automatique sont recommandées comme perspectives. Elles devront être capables d'apprendre l'emplacement des données à extraire de manière semi-supervisée à l'aide de faibles quantités de documents annotés de grande taille.

Chapitre 4

Identification du sens du résultat par classification des documents

4.1 Introduction

Comme le précédent, ce chapitre est relatif à l'extraction de données sur les demandes et résultats correspondants. Cependant, il est question ici d'extraire uniquement le sens du résultat d'une demande connaissant sa catégorie. Cette étude est intéressante parce que le problème devient plus simple. En se passant de la localisation précise de l'énoncé du résultat, l'extraction du sens du résultat peut être formulée comme une tâche de classification de documents. Nous modélisons la tâche comme un problème de classification binaire consistant à entrainer un algorithme à reconnaitre si la demande a été rejetée (sens = rejette) ou acceptée (sens = accepte). Cette modélisation est proposée sur une restriction du problème définie par les postulats 4.1.1 et 4.1.2 suivants.

Postulat 4.1.1 Pour toute catégorie de demande C, les documents ne contenant qu'une demande de catégorie C sont majoritaires.

Ce postulat est légitime car les statistiques sur les données labellisées de la Figure 3.3 montre bien que dans chaque catégorie, les décisions contiennent en majorité une demande. On remarque néanmoins l'exception de la catégorie STYX (dommage-intérêt sur l'article 700 CPC), où dans la majorité des

4.1. Introduction 88

Figure 4.1 – Répartition des sens de résultat dans les données annotées.

documents, on a plutôt 2 demandes. Cette exception peut se justifier par le fait que chaque partie fait généralement ce type de demande car elle porte sur le remboursement des frais de justice. Ce postulat présente cependant un inconvénient dû au fait que la majorité des demandes se trouvent dans des décisions à plus d'une demande. Il est donc possible de manquer un grand nombre de demandes.

Postulat 4.1.2 Le sens du résultat est généralement binaire : accepte ou rejette.

Ce postulat est justifié car le sens d'un résultat est pratiquement toujours une de ces deux valeurs (Figure 4.1). Les autres sens ne sont pas considérés car ils sont très rares.

Cette étude porte sur l'analyse de l'impact de différents aspects techniques généralement impliqués dans la classification de texte qui consistent en générale à une combinaison de représentation des documents et d'algorithme de classification. Cette analyse permettra de savoir s'il existe une certaine configuration permettant de déterminer le sens du résultat à une demande sans nécessairement l'avoir identifiée précisément dans le document.

4.2 Classification de documents

La classification de texte permet d'organiser des documents dans des groupes prédéfinis. Elle reçoit depuis longtemps beaucoup d'attentions. Deux choix techniques influencent principalement les performances : la représentation des textes et l'algorithme de classification. Dans la suite, la variable à prédire est notée y, et la base d'apprentissage comprend les échantillons $S = \{(x_i, y_i)_{i=1..n}\}.$

4.2.1 Algorithmes traditionnels de classification de données

Bien que la classification de documents voit se développer récemment des algorithmes propres aux textes, un grand nombre de méthodes ont été développées précédemment autour. Ces méthodes sont généralement basée sur une représentation des textes dans un espace vectoriel \mathcal{X} d'entrée et délimitent une frontière entre les classes dans un espace multidimensionnel. Les notations du Tableau 3.3 sont utilisés dans cette section.

4.2.1.1 Le Bayésien naïf (NB)

Le classifieur naïf bayésien [?] est un modèle à densité qui estiment la probabilité qu'un texte appartienne à une classe à l'aide du théorème de Bayes [?] :

$$probabilité a posteriori = \frac{probabilité conditionnelle \cdot probabilité a priori}{\text{\'evidence}}$$

$$(4.2.1)$$

La probabilité a posteriori peut être interprétée pour la classification de document par la question "Quelle est la probabilité que le document d soit de la classe $y = c \in \mathbb{C}$?". La réponse à cette question se formalise comme suit :

$$\mathbb{P}(y = c|d) = \frac{\mathbb{P}(d|c)\mathbb{P}(c)}{\mathbb{P}(d)}, \forall c \in C$$

ou plus simplement $\mathbb{P}(y=c|d)=\mathbb{P}(c)\mathbb{P}(d|c)$ car $\mathbb{P}(d)$ ne change pas en fonction de la classe et peut donc être ignorée [?]. d est catégorisé dans la classe c pour laquelle $\mathbb{P}(c|d)$ est maximale :

$$y = \operatorname*{argmax} \mathbb{P}(c|d).$$

La phase d'entrainement, appliqué à des exemples déjà labellisés, permet d'estimer les paramètres $\mathbb{P}(c)$ te $\mathbb{P}(d|c)$ qui servent à calculer $\mathbb{P}(c|d)$.

 $\mathbb{P}(c)$ est estimé par la proportion de documents classés dans c parmi les exemples d'apprentissage : $\mathbb{P}(c_j) = \frac{N_c}{N}, \forall c \in C$.

 $\mathbb{P}(c|d)$ est estimé grâce l'hypothèse 4.2.1 d'indépendance conditionnelle des descripteurs (termes). Une hypothèse naïve dont la violation, par les données réelles, n'empêche pas le NB de bien fonctionner [?].

Hypothèse 4.2.1 (indépendance conditionnelle des descripteurs) [Un modèle naïf bayésien étant de type génératif], la position de chaque mot dans le texte est générée indépendamment de tout autre mot étant connue la catégorie du texte.

Si l'ensemble des termes de d est $\{t_1, \ldots, t_K\}$, alors grâce à l'hypothèse 4.2.1, $\mathbb{P}(d|c) = \mathbb{P}(t_1, \ldots, t_K|c) = \prod_{k=1}^K \mathbb{P}(t_k|c)$, et pour un terme t_k , la probabilité conditionnelle $\mathbb{P}(t_k|c)$ est la proportion d'exemples de c qui contiennent $t_k : \mathbb{P}(t_k|c) = \frac{N_{t_k,c}}{|D_c|}, \forall k \in \{1,\ldots,K\}$.

4.2.1.2 Machine à vecteurs de support (SVM)

La classification binaire par une machine à vecteurs de support (SVM) [?] affecte à tout objet entré x la classe y qui correspond au coté d'un hyperplan, séparant les exemples d'entraînement des classes candidates, où x se trouve.

La phase d'apprentissage consiste à déterminer l'hyperplan optimal $w^T x + b = 0$ i.e. dont la marge ¹ est maximale (Figure 4.2 ²).

Figure 4.2 – Hyperplan optimale et marge maximale d'un SVM.

Le vecteur w des poids des caractéristiques et le biais b sont déterminés par le problème d'optimisation du « SVM à marges molles » de ? :

$$\min_{w,b} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} \xi_i$$

s.c. $y_i(w^T + b) \ge 1 - \xi_i, \xi_i \ge 0.$

où C est la constante de régularisation pour éviter un sur-apprentissage ou le sous-apprentissage, les ξ_i sont des variables ressort (slack variables) qui permettent à des points de se retrouver dans la marge.

La classification par SVM ne s'applique que lorsque les exemples d'apprentissage des classes sont linéairement séparables. Cependant, ils ne le sont pas toujours dans l'espace \mathcal{X} . Ainsi, une fonction « noyau » (kernel) $K: \mathcal{X} \longrightarrow \mathcal{F}$ doit être choisie pour transformer chaque donnée entrée x de l'espace original \mathcal{X} vers un nouvel espace \mathcal{F} dite de caractéristiques dans lequel les classes sont linéairement séparables. Par conséquent, la fonction de

^{1.} La plus petite distance entre les échantillons d'apprentissage et l'hyperplan séparateur

^{2.} http://web.mit.edu/6.034/wwwbob/svm-notes-long-08.pdf

classification s'écrit

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i) + b$$

où les α_i sont les coefficients de la combinaison linéaire des exemples d'apprentissage égale à w ($w = \sum_{i=1}^{n} \alpha_i x_i$) [?]. Parmi les multiples formes qu'il peut prendre, le noyau peut être, par exemple, soit linéaire($K(x, x_i) = x^T x_i + c$), soit polynomial ($K(x, x_i) = (\gamma x^T x_i + c)^d$), soit Gaussien ou RBF 3 ($K(x, x_i) = \exp -\gamma ||x - x_i||$), soit une sigmoïde ($K(x, x_i) = \tanh(\gamma x^T x_i + c)$) [?].

4.2.1.3 k-plus-proches-voisins (kNN)

L'algorithme k-plus-proches-voisins est un algorithme très simple qui consiste à affecter à un nouvel objet la classe majoritaire y' parmi ceux des k points d'exemples d'entrainement $\{(x_i,y_i)\}_{1:k}$, les plus proches du point x' de cet objet selon la métrique d choisie. Ainsi, trois éléments clés influencent l'efficacité de la classification :

- 1. les données d'entrainement dont le nombre s'il est très grand peut rendre chère le processus de classification, car la distance du nouvel objet à chaque point annoté, est calculée;
- 2. le nombre de voisins (c'est-à-dire la valeur de k) qui ne doit être ni très petit (sensibilité aux bruits / outliers), ni très grand (risque d'avoir dans le voisinage beaucoup de points d'une autre classe). La sensibilité au nombre de voisins peut être atténuée en pondérant les points par leur distance à l'objet à classer. Il a été proposé plusieurs variante de cette stratégie de « vote pondéré par la distance », comme par exemple :

^{3.} radial base function

$$-y' = \underset{c}{\operatorname{argmax}} \sum_{(x_i, y_i)} \frac{1}{Dis(x', x_i)^2} \times I(c = y_i) \ [?]$$

$$\text{où } I(c = y_i) = \begin{cases} 1 & \text{si } c \text{ est \'egal \`a } y_i \\ 0 & \text{sinon} \end{cases}$$

$$-y' = \underset{c}{\operatorname{argmax}} \sum_{(x_i, y_i)} w_i \times I(c = y_i) \ [?]$$

$$\text{avec } w_i = \begin{cases} \frac{Dis(x, d_k) - Dis(x, d_i)}{Dis(x, d_k) - Dis(x, d_i)} & \text{si } Dis(x, d_k) \neq Dis(x, d_1) \\ 1 & \text{sinon} \end{cases}$$

3. la métrique de calcul de distance qui doit être adéquate pour le type de donnée et la tâche, comme par exemple, la distance cosinus qui est préférable à la distance euclidienne pour la classification de documents, la deuxième métrique se dégradant lorsque le nombre d'attributs augmente.

4.2.1.4 Arbre de décision

Un arbre de décision est structure arborescente utilisée en fouille de données pour associer un label prédéfini à des objets (classification), ou prédire la valeur d'une variable continue (régression). Il comprend des noeuds internes qui correspondent chacun à un test sur la valeur d'un attribut (test uni-varié), des arêtes correspondant à une sortie du test, et enfin des feuilles ou noeuds terminaux qui correspondent chacune à une prédiction. La classification d'un nouvel objet x faire passer successivement les tests en fonction des valeurs des attributs de x, de la racine jusqu'à une feuille dont le label

est retourné comme classe de x (Algorithme 3).

Algorithme 3 : Classification d'un objet à l'aide d'un arbre de décision

La construction de l'arbre (phase d'apprentissage) consiste à générer une hiérarchie de tests, aussi courte que possible, qui divise successivement l'ensemble S d'exemples d'apprentissage en sous-ensembles disjoints de plus en plus pures ⁴. L'arbre est construite de la racine aux feuilles en divisant les données d'entraînement S_t à chaque nœud (t) de sorte à minimiser le degré d'impureté des sous-ensemble d'exemples S_{t_i} dans les nœuds fils (t_i) . Le critère de coupe est généralement défini à partir d'une métrique d'impureté comme par exemple :

- l'entropie de la distribution des classes dans S_t : $h_C(S_t) = -\sum_{c \in C} \left[p(c|S_t) \log_2 p(c|S_t) \right];$
- l'indice de Gini mesurant la divergence entre les distributions de probabilité des valeurs de la variable prédite : $g_C(S_t) = 1 \sum_{c \in C} [p(c|S_t)]^2$;
- l'erreur de classification définie par : $e_C(S_t) = 1 \max_{c \in C} [p(c|S_t)]$.

Pour ces métriques, $p(c|S_t)$ représente la proportion d'exemples du nœud t appartenant à c, et S_t représente . Parmi les critères de séparation les plus populaires associés à ces métriques d'impureté, on retrouve :

— le gain d'information apporté par le test t portant sur l'attribut a (qui divise S_t en des sous-ensembles S_{t_i}) utilisant l'entropie comme métrique d'impureté, et est définie par la différence entre l'entropie de

^{4.} homogénéité des labels

t et l'entropie moyenne des fils de t:

$$ig(S_t, a) = h_C(S_t) - i(S_t, t, a) = h_C(S_t) - \sum_{S_{t,i}} \frac{|S_{t_i}|}{|S_t|} \cdot h_C(S_{t_i});$$

— le rapport des gains, qui corrige le gain d'information, biaisé en faveur des tests ayant un grand nombre d'alternatives (sorties du nœud), en prenant en compte l'information intrinsèque $h_t(S_t)$ de la séparation de S_t suivant le test t en sous-ensembles S_{t_i} :

$$gr(S_t, t, a) = \frac{ig(S_t, t, a)}{h_t(S_t)} \text{ avec } h_t(S_t) = \sum_i \frac{|S_{t_i}|}{|S_t|} \log_2 \left(\frac{|S_{t_i}|}{|S_t|}\right)$$

— le critère binaire de "doublage" (twoing criteria) qui ne s'emploie que pour les arbres binaires :

$$tc(t) = \frac{P(S_{t_R}|S_t)P(S_{t_L}|S_t)}{4} \left[\sum_{c \in C} |p(c|t_L) - p(c|t_R)| \right]^2 \text{ où } P(S_{t_R}|S_t) \text{ et } P(S_{t_L}|S_t)$$
 sont les proportions de S_t qui vont respectivement dans les fils t_R et t_L après séparation suivant le test t .

Les variables nominales peuvent être divisées soit en utilisant autant de partitions que de valeurs distinctes (partition multiple), soit uniquement en des partitions binaires suivant des tests booléens (partition binaire) nécessitant de rechercher la division optimale. Les variables numériques sont divisées quant à elles soit suivant par discrétisation de leur domaine les transformant en variables catégoriques ordinales, soit en recherchant la meilleure division binaire parmi toutes les séparations possibles.

La construction de l'arbre est une division récursive qui peut continuer tant qu'il est possible d'améliorer la pureté des nœuds, ce qui peut engendrer un arbre très grand résultant en un sur-apprentissage 5 , et une forte complexité temporelle et spatiale lors de la prédiction. Pour s'arrêter plus tôt ("pré-élagage"), plusieurs conditions sont possibles comme par exemple, l'atteinte par la taille des données ($|S_t|$) d'un seuil minimum, ou l'atteinte par l'arbre d'une profondeur maximale, ou l'amélioration du critère de division

^{5.} Un modèle trop précis a un très faible taux d'erreur sur les données d'entraînement (erreur d'apprentissage) mais un fort taux d'erreur pour les données de test (erreur de test).

est très faible, etc. Le post-élagage ⁶ est appliqué après construction de l'arbre toujours dans le but de minimiser le sur-apprentissage et la complexité. Le post-élagage peut consister par exemple, soit à simplement et rapidement éliminer successivement les feuilles si cela ne fait pas croître le taux d'erreur sur S (« élagage basé sur la réduction du taux d'erreur »), et remplacer chaque nœud par sa classe majoritaire, soit à éliminer successivement les sous-arbres qui minimisent $\frac{erreur(elagage(A,A'),S)-erreur(A,S)}{\|feuille(A)\|-\|feuille(elagage(A,A'))\|}$ (« stratégie coût-complexité »).

Les algorithmes de construction d'arbres diffèrent ainsi par leur critère de séparation, leur stratégie d'élagage, et leur capacité à gérer les types d'attributs, les valeurs manquantes et extrêmes. ? comparent ainsi les deux algorithmes CART (critère de « doublabe », élagage coût-complexité) et C4.5 (rapport des gains, élagage à réduction d'erreur).

4.2.1.5 Analyses discriminantes linéaires et quadratiques

L'analyse discriminante comprend l'ensemble des méthodes déterminant les combinaisons linéaires de variables qui permettent de séparer le mieux possible K catégories ou variables qualitatives. Les analyses linéaires et quadratiques sont des méthodes probabilistes basées sur la probabilité conditionnelle d'appartenance d'un objet X à une classe y_k :

$$P(Y = y_k | X) = \frac{P(Y = y_k)P(X|Y = y_k)}{P(X)} = \frac{P(Y = y_k)P(X|Y = y_k)}{\sum_{j=1}^{K} P(Y = y_j)P(X|Y = y_j)}.$$

La classe de X est donc $y_{k*} = \underset{k}{\operatorname{argmax}} P(Y = y_k | X) = P(Y = y_k) P(X | Y = y_k)$ car le dénominateur est le même pour toutes les classes. Dans cette expression, $P(Y = y_k)$ est la proportion d'exemples de classes y_k dans l'ensemble des données d'apprentissage. Il ne reste donc qu'à déterminer $P(X | Y = y_k)$, pour trouver y. Deux hypothèses simplifient les calculs :

^{6.} Suppression de sous-arbres superflus ou en trop après génération de l'arbre.

1. l'hypothèse de normalité statuant que la probabilité conditionnelle P(X|Y) suit une loi normale multidimensionnelle :

$$P(X|Y = y_k) = \frac{1}{\sqrt{2\pi det(\sum_k)}} e^{-\frac{1}{2}(X - \mu_k)\sum_k^{-1}(X - \mu_k)'}$$

 μ_k étant le centre de gravité conditionnelle, et \sum_k la matrice de variance covariance conditionnelle;

2. l'hypothèse d'homoscédasticité statuant que les matrices de variance co-variance conditionnelles sont identiques i.e. :

$$\forall j, k \in \{1, ..., K\}, \sum_{j} = \sum_{k} = \sum_{j} ...$$

L'analyse discriminante linéaire (LDA) est définie par une simplification de $P(X|y_k)$ sous ces deux hypothèses. En effet, grâce à la proportionnalité de la probabilité conditionnelle à :ln $[P(X|y_k)] \propto -\frac{1}{2}(X-\mu_k) \sum^{-1}(X-\mu_k)'$, on déduit une fonction discriminante (ou de classement) linéaire proportionnelle à $P(y_k|X)$:

$$d(y_k, X) = \ln \left[P(Y = y_k) \right] + \mu_k \sum_{k=1}^{-1} X' - \frac{1}{2} \mu_k \sum_{k=1}^{-1} \mu'_k.$$

Ainsi $y_{k*} = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} d(y_k, X).$

L'analyse discriminante quadratique (QDA) considère l'hétéroscédasticité (i.e. $\exists k \neq j, \sum_k \neq \sum_j$), et donc ne s'appuie que sur la 1e hypothèse (multinormalité). Dans ce cas, on obtient une règle quadratique de classification $k* = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} Q_k(X)$ où :

$$Q_k(X) = (x - \mu_k)' \sum_{k=0}^{-1} (x - \mu_k) - 2\ln(\pi_k) + \ln(\det(\sum_{k=0}^{-1} x_k))$$

est la fonction quadratique de classement de la classe k.

4.2.2 Algorithmes dédiés aux textes

Les algorithmes dédiés aux textes intègrent leur propre représentation de document, contrairement aux algorithmes opérant sur dans des espaces vectorielles aux axes et poids paramétrables à volonté comme le SVM. Actuellement, les algorithmes NBSVM [?] et FastText [?] sont les plus populaires pour la classification de documents avec une très bonne précision pour l'analyse de sentiments.

4.2.2.1 NBSVM

Le NBSVM [?] est un classifieur binaire (deux labels $\{-1;1\}$) dont le principe consiste à transformer les poids $f^{(k)}$ caractéristiques V des textes $x^{(k)}$, réduites à leur simple présence $\widehat{f}^{(k)}$ en réalisant leur produit élément à élément $(\widetilde{f}^{(k)} = r \circ \widehat{f}^{(k)})$ avec le vecteur de poids r du classifieurs bayésien multinomial (calculé avec le vecteur présence de caractéristique) : $r = \log\left(\frac{p/||p||_1}{q/||q||_1}\right)$ avec $p = \alpha + \sum_{k:y^{(k)}=1} f^{(k)}$, $q = \alpha + \sum_{k:y^{(k)}=-1} f^{(k)}$. L'ensemble des caractéristiques V est constitué de n-grammes de mots. Le nouveau vecteur issu de ce produit représente le texte $(x^{(k)} = \widetilde{f}^{(k)})$ en entrée d'un SVM classique. La classe de $x^{(k)}$ est prédite par : $y^{(k)} = sign(\mathbf{w}^T x^{(k)} + b)$, \mathbf{w} et b étant appris lors de l'entraînement du SVM. Une interpolation entre le bayésien multinomial et le SVM est nécessaire pour assurer la robustesse du NBSVM et des performances excellentes pour toute tâche de classification de documents ; les poids \mathbf{w} sont réajustés par le model $\mathbf{w}' = (1-\beta)\overline{w} + \beta\mathbf{w}$, où $\overline{w} = ||\mathbf{w}||_1/|V|$ et $\beta \in [0;1]$.

4.2.2.2 FastText

FastText [?], quant à lui, est un modèle de réseau de neurones dont l'architecture est semblable à celle de la variante CBOW de la méthode de plongement sémantique Word2Vec dans laquelle le mot du milieu a été remplacé

par le label de la classe du texte et au dessus de laquelle la fonction softmax $f(z) = \begin{bmatrix} \frac{e^{z_j}}{K} \\ \sum\limits_{k=1}^{K} e^{z_k} \end{bmatrix}_{\forall j \in \{1,\dots,K\}} \text{ est rajoutée pour réaliser la classification à partir de la représentation distribuée du texte. La phase d'entraînement consiste à minimiser la fonction objectif <math>-\frac{1}{N}y_n \cdot \sum\limits_{n=1}^{N} y_n \cdot \log f(B \cdot A \cdot x_n)$ qui estime la distribution de probabilité des classes.

4.2.3 Techniques d'amélioration de l'efficacité

La faible quantité [?] et le déséquilibre des données sont susceptibles d'être des obstacles à l'entraînement des modèles de classification. De nombreuses techniques permettent néanmoins d'optimiser l'apprentissage en fonction des données. La sélection de modèle consiste à choisir les meilleures valeurs des hyper-paramètres (par exemple C et γ chez le SVM) en testant différentes combinaisons de valeurs candidates sur une fraction de la base d'entraînement (base de développement). La combinaison de classifieurs est aussi une méthode très étudiée [???] notamment par l'exemple des forêts aléatoires [?], ou de SVM ensembliste ($Ensemble\ SVM$) [?]. Par ailleurs, La représentation vectorielle des textes résulte généralement en des vecteurs de haute dimension dont les coordonnées sont en majorité nulle, colinéaire, ou plus efficaces si combinées. Par conséquent, les techniques de réduction ou transformation des dimensions, comme les analyses discriminantes, permet de d'obtenir des vecteurs plus efficaces pour la classification.

4.3 Application de l'analyse PLS à la classification des textes

La méthode ou l'analyse du moindre carré partiel PLS [?] explique la dépendance entre une ou plusieurs variables Y (dite dépendantes) et des variables $X = x_1, x_2, ..., x_p$ (dites explicatives ou indépendantes). Elle consiste

principalement à transformer les variables explicatives en un nombre réduit de composantes principales orthogonales $t_1, t_2, ..., t_h$. Il s'agit donc d'une méthode de réduction de dimension au même titre que l'analyse de composantes principale, l'analyse discriminante linéaire (LDA), et l'analyse discriminante quadratique (QDA). Les composantes t_h sont construites par étapes en applicant l'algorithme du PLS de façon récurrente sur les données mal prédites (résidus). Plus précisément, à chaque itération h, la composante t_h est calculée par la formule $t_h = w_{h1}x_1 + \cdots + w_{hj}x_j + \cdots + w_{hp}x_p$ dont les coefficients w_{hj} sont à estimer. L'analyse PLS présente plusieurs avantages [?] dont la robustesse au problème de haute-dimension 7 comme on peut l'observer dans nos données (faible quantité de données annotées), et aussi prend en compte la multicolinéarité qui peut exister entre les variables explicatives, notamment quand celles-ci sont associées aux mots/termes souvent cooccurrents de nos documents. Cette méthode est étendue et appliquée avec succès pour divers problèmes de régression ? ou de classification de données vectorielles en général [???], et de textes en particulier [?]. Nous nous sommes intéressés particulièrement à deux extensions : la régression Gini-PLS [?] dont l'intérêt est de réduire la sensibilité aux valeurs aberrantes des variables, et la méthode Logit-PLS [?] combinant la régression logistique et la PLS. Une combinaison de ces deux approches (Logit-Gini-PLS) est décrite dans la suite de cette section (Section $\S 4.3.3.2$).

4.3.1 L'opérateur Gini covariance

Soit \bar{x}_k la moyenne arithmétique de la variable x_k . L'opérateur de Gini covariance proposé par ?, encore appelé opérateur co-Gini est donné par :

$$cog(x_{\ell}, x_k) := cov(x_{\ell}, F(x_k)) = \frac{1}{N} \sum_{i=1}^{N} (x_{i\ell} - \bar{x}_{\ell}) (\hat{F}(x_{ik}) - \bar{F}_{x_k}), \quad (4.3.1)$$

^{7.} Lorsque le nombre de variables explicatives est très grand devant le nombre d'observations.

où $\hat{F}(x_k)$ est la fonction de répartition de x_k , \bar{F}_{x_k} sa moyenne, avec $\ell \neq k = 1, \ldots, K$. Lorsque $k = \ell$ le co-Gini mesure la variabilité entre une variable et elle-même (l'équivalent de la variance mesurée sur la norme ℓ_2). Le co-Gini est une mesure basée sur la distance de Manhattan (distance de métrique ℓ_1), en effet :

$$\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} |x_{ik} - x_{jk}| = 4\cos(x_k, x_k).$$

D'autre part, lorsque $k \neq \ell$, le co-Gini produit une mesure de la variabilité jointe entre deux variables. Puisque le co-Gini n'est pas symétrique :

$$cog(x_k, x_\ell) := cov(x_k, F(x_\ell)) = \frac{1}{N} \sum_{i=1}^{N} (x_{ik} - \bar{x_k})(\hat{F}(x_{i\ell}) - \bar{F}_{x_\ell}).$$

Définissons les rangs croissants d'une variable alétoire afin de fournir un estimateur de F,

$$R_{\uparrow}(x_{i\ell}) := N\hat{F}(x_{i\ell}) = \begin{cases} \#\{x \le x_{i\ell}\} & \text{si aucune observation similaire} \\ \frac{\sum_{i=1}^{p} \#\{x \le x_{i\ell}\}}{p} & \text{s'il existe } p \text{ valeurs similaires } x_{i\ell}. \end{cases}$$

Alors, un estimateur du co-Gini est donné par,

$$\widehat{\operatorname{cog}}(x_{\ell}, x_{k}) := \frac{1}{N} \sum_{i=1}^{N} (x_{i\ell} - \bar{x_{\ell}}) (R_{\uparrow}(x_{ik}) - \bar{R}_{\uparrow x_{k}}), \ \forall k, \ell = 1, \dots, K, \ (4.3.2)$$

avec $\bar{R}_{\uparrow_{x_k}}$ la moyenne arithmétique du vecteur rang de la variable x_k .

4.3.2 Gini-PLS

Le premier algorithme Gini-PLS a été proposé par ?. Nous le décrivons dans les lignes qui suivent. Il s'agit d'une méthode de compression avec débruitage qui consiste à réduire les dimensions de l'espace généré par X afin de trouver des composantes principales débruitées, dans le même esprit qu'une

ACP débruitée, néanmoins l'approche est supervisée dans la mesure où une variable cible y est prise en compte dans le changement d'espace. Le sous-espace formé par les composantes principales $\{t_1, t_2, \cdots\}$ est construit de telle sorte que le lien entre les variables explicatives $X = [x_1, x_2, \cdots]$ et la cible y est maximisé. |X| = p, nombre de variables explicitives.

• Étape 1 : La régression Gini permet de concevoir un nouveau type de lien entre la variable expliquée et les variables explicatives tout en évitant l'influence des valeurs aberrantes. Ceci est permis grâce notamment à l'opérateur co-Gini dans lequel le rôle de la variable explicative est remplacé par celui de son vecteur rang dans un espace muni d'une métrique ℓ_1 . Ainsi, il est possible de créer un nouveau vecteur de poids w_1 qui renforce le lien (co-Gini) entre la variable expliquée y et les régresseurs X dans le cadre d'une régression (linéaire ou non linéaire).

La solution du programme,

$$\max \cos(y, Xw_1)$$
, s.c. $||w_1|| = 1$, est

$$w_{1j} = \frac{\cos(y, x_j)}{\sqrt{\sum_{j=1}^p \cos^2(y, x_j)}}, \ \forall j = 1..., p.$$

La pondération est équivalente à :

$$w_{1j} = \frac{\text{cov}(y, R(x_j))}{\sqrt{\sum_{j=1}^{p} \text{cov}^2(y, R(x_j))}}, \ \forall j = 1 \dots, p.$$

Comme dans la régression PLS, on régresse y sur la composante t_1 qui est construite de la manière suivante :

$$t_1 = \sum_{j=1}^p w_{1j} x_j \implies y = \hat{c}_1 t_1 + \hat{\varepsilon}_1 .$$

• Étape 2 : On régresse le vecteur rang de chaque régreseur $R(x_i)$ sur

la composante t_1 par moindres carrés ordinaires afin de récupérer les résidus $\hat{U}_{(1)j}$:

$$R(x_j) = \hat{\beta}t_1 + \hat{U}_{(1)j} , \ \forall j = 1, \cdots, p .$$

On construit le nouveau vecteur de pondération en utilisant les rangs des résidus des régressions partielles :

$$\max \cos(\hat{\varepsilon}_1, \hat{U}_{(1)}w_2)$$
, s.c. $||w_2|| = 1 \implies w_{2j} = \frac{\cos(\hat{\varepsilon}_1, \hat{U}_{(1)j})}{\sqrt{\sum_{j=1}^p \cos^2(\hat{\varepsilon}_1, \hat{U}_{(1)j})}}$.

On utilise à présent les composantes t_1 et t_2 pour établir un lien entre y et les régresseurs x_j :

$$t_2 = \sum_{j=1}^p w_{2j} \hat{U}_{(1)j} \implies y = \hat{c}_1 t_1 + \hat{c}_2 t_2 + \hat{\varepsilon}_2.$$

La validation croisée permet de savoir si t_2 est significative.

• Étape 3 : Les régressions partielles sont réitérées en rajoutant l'influence de t_2 :

$$R(x_j) = \beta t_1 + \gamma t_2 + \hat{U}_{(2)j}, \ \forall j = 1, \dots, p.$$

D'où, après maximisation:

$$w_{3j} = \frac{\cos(\hat{\varepsilon}_2, \hat{U}_{(2)j})}{\sqrt{\sum_{j=1}^{p} \cos^2(\hat{\varepsilon}_2, \hat{U}_{(2)j})}},$$

$$t_3 = \sum_{j=1}^{p} w_{3j} \cdot \hat{U}_{(2)j} \implies y = \alpha_2 + c_1 t_1 + c_2 t_2 + c_3 t_3 + \varepsilon_3$$
.

La procédure s'arrête lorsque la validation croisée indique que la composante t_l n'est pas significative. L'algorithme Gini-PLS1 est valable si toutes les

composantes t_h et t_l sont orthogonales, $\forall h \neq l$.

La validation croisée permet de trouver le nombre optimal h > 1 de composantes à retenir. Pour tester une composante t_h , on calcule la prédiction du modèle avec h composantes comprenant l'observation i, \hat{y}_{h_i} , puis sans l'observation i, $\hat{y}_{h_{(-i)}}$. L'opération est répétée pour tout i variant de 1 à n: on enlève à chaque fois l'observation i et on ré-estime le modèle. Pour mesurer la robustesse du modèle, on mesure l'écart entre la variable prédite et la variable observée :

$$PRESS_h = \sum_{i} \left(y_i - \hat{y}_{h_{(-i)}} \right)^2.$$

La somme des carrés résiduels obtenue avec le modèle à (h-1) composantes est :

$$RSS_{h-1} = \sum (y_i - \hat{y}_{(h-1)_i})^2$$
.

Le critère RSS_h (Residual Sum of Squares) du modèle à h composante et $PRESS_h$ (PRedicted Error Sum of Squares) sont comparés. Leur ratio permet afin de savoir si le modèle avec la composante t_h améliore la prédictibilité du modèle. La statistique suivante est alors calculée :

$$Q_h^2 = 1 - \frac{PRESS_h}{RSS_{h-1}} \ .$$

La composante t_h est retenue si : $\sqrt{PRESS_h} \leq 0,95\sqrt{RSS_h}$. Autrement dit, lorsque $Q_h^2 \geq 0,0975 = (1-0,95^2)$, la nouvelle composante t_h est significative, elle améliore la prévision de la variable y. Pour la significativité de de la première composante t_1 , on utilise :

$$RSS_0 = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
.

^{8.} Les observations peuvent être éliminées bloc par bloc au lieu de l'être une à une, *Cf.* Tenenhaus (1998), p. 77.

4.3.3 Régressions Gini-PLS généralisée

? ont récemment généralisé l'opérateur co-Gini afin d'imposer plus ou moins de poids en queue de distribution. Notons $r_k = (R_{\downarrow}(x_{1k}), \ldots, R_{\downarrow}(x_{Nk}))$ le vecteur rang décroissant de la variable x_k , autrement dit, le vecteur qui assigne le rang le plus petit (1) à l'observation dont la valeur est la plus importante (et positive) x_{ik} :

$$R_{\downarrow}(x_{ik}) := \begin{cases} N+1 - \#\{x \le x_{ik}\} & \text{pas d'observation similaire} \\ N+1 - \frac{\sum_{i=1}^{p} \#\{x \le x_{ik}\}}{p} & \text{si } p \text{ observations similaires } x_{ik}. \end{cases}$$

L'opérateur co-Gini est généralisé grâce au paramètre ν :

$$\widehat{\cos}_{\nu}(x_{\ell}, x_k) := -\nu \widehat{\cot}(x_{\ell}, r_k^{\nu-1}); \ \nu > 1.$$
 (4.3.3)

Afin de bien comprendre le rôle de l'opérateur co-Gini, revenons sur la mesure du coefficient de corrélation linéaire généralisé au sens de Gini :

$$GC_{\nu}(x_{\ell}, x_{k}) := \frac{-\nu \widehat{\text{cov}}(x_{\ell}, r_{k}^{\nu-1})}{-\nu \widehat{\text{cov}}(x_{\ell}, r_{\ell}^{\nu-1})} \; ; \; GC_{\nu}(x_{k}, x_{\ell}) := \frac{-\nu \widehat{\text{cov}}(x_{k}, r_{\ell}^{\nu-1})}{-\nu \widehat{\text{cov}}(x_{k}, r_{k}^{\nu-1})}.$$

Property 1 - ?:

- (i) $GC_{\nu}(x_{\ell}, x_{k}) \leq 1$.
- (ii) Si les variables x_{ℓ} et x_k sont indépendantes, pour tout $k \neq \ell$, alors $GC_{\nu}(x_{\ell}, x_k) = GC_{\nu}(x_k, x_{\ell}) = 0$.
- (iii) Une transformation monotone des données φ n'affecte pas le coefficient de corrélation, $GC_{\nu}(x_{\ell}, \varphi(x_{k})) = GC_{\nu}(x_{\ell}, x_{k})$.
- (iv) Pour une transformation linéaire φ , $GC_{\nu}(\varphi(x_{\ell}), x_{k}) = GC_{\nu}(x_{\ell}, x_{k})$ [comme le coefficient de corrélation de Pearson].
- (v) Si x_k et x_ℓ sont deux variables échangeables à une transformation linéaire près, alors $GC_{\nu}(x_\ell, x_k) = GC_{\nu}(x_k, x_\ell)$.

Le rôle de l'opérateur co-Gini peut être expliqué de la manière suivante.

Lorsque $\nu \to 1$, la variabilité des variables est atténuée de telle sorte que $\cos_{\nu}(x_k, x_\ell)$ tend vers zéro (même si les variables x_k et x_ℓ sont fortement corrélées). Au contraire, si $\nu \to \infty$ alors $\cos_{\nu}(x_k, x_\ell)$ permet de se focaliser sur les queues de distribution x_ℓ . Comme le montrent ?, l'emploi de l'opérateur co-Gini atténue la présence de valeurs extrêmes, du fait que le vecteur rang agit comme un instrument dans la régression de y sur X (régression par variables instrumentales).

Ainsi, en proposant une régression Gini-PLS basée sur le paramètre ν , nous pouvons calibrer la puissance du débruitage grâce à l'opérateur co-Gini qui va localiser le bruit dans la distribution. Cette régression Gini-PLS généralisée devient une régression Gini-PLS régularisée où le paramètre ν joue le rôle de paramètre de régularisation.

4.3.3.1 L'algorithme Gini-PLS généralisé

Dans ce qui suit nous généralisons la régression Gini-PLS de ? avec renforcement du pouvoir de débruitage par l'intermédiaire du paramètre nu.

La première étape consiste à trouver des poids de débruitage associés à chaque variable x_k afin d'en déduire la première composante t_1 (ou première variable latente). Cette opération est bouclée jusqu'à la composante t_{h^*} , où h^* est le nombre optimal de variable latentes. Ainsi, le modèle est estimé :

$$y = \sum_{h=1}^{h^*} c_h t_h + \varepsilon_h. \tag{4.3.4}$$

La statistique VIP_{hj} est mesurée afin de sélectionner la variable x_j qui a l'impact significatif le plus important sur \hat{y} . Les variables les plus significatives sont celles dont $VIP_{hj} > 1$ avec :

$$VIP_{hj} := \sqrt{\frac{p \sum_{\ell=1}^{h} Rd(y; t_{\ell}) w_{\ell j}^{2}}{Rd(y; t_{1}, \dots, t_{h})}}$$

et

$$Rd(y; t_1, \dots, t_h) := \frac{1}{p} \sum_{\ell=1}^h \operatorname{cor}^2(y, t_\ell) =: \sum_{\ell=1}^h Rd(y; t_\ell).$$

où $cor^2(y, t_\ell)$ est le coefficient de corrélation de Pearson entre y et la composante t_ℓ . Cette information est rétro-propagée dans le modèle (une seule fois) afin d'obtenir les variables latentes t_{h^*} et leurs coefficients estimés \hat{c}_{h^*} sur les données d'entrainement. La variable cible y est ensuite prédite grâce à (4.3.4). Cette prévision est comparée aux modèles standards SVM, LOGIT, Bayes et LDA lorsque les données tests sont projetées dans le sous-espace $\{t_1, \ldots, t_{h^*}\}$.

Algorithme 4 : Gini-PLS Généralisé

```
Résultat : Prédiction du juge y = 0; 1
 1 répéter
 2
          répéter
                \max \operatorname{cog}_{\nu}(y,w_hX)s.t. \|w_h\|=1 \Longrightarrow \operatorname{poids}\, w_h de X ;
                MCO équation : y = \sum_h c_h t_h + \varepsilon_h ;
                MCO équation : R(x_j) = \sum_h \beta_h t_h + \epsilon_k \ \forall k = 1, \dots, K ;
 6
                X := (\hat{\epsilon}_1, \dots, \hat{\epsilon}_K) \ y := \hat{\epsilon}_h \ ;
          jusqu'à h = 10 [h = h + 1];
 7
          Mesurer VIP_{kh}, Q_h^2;
          Sélectionner le nombre optimal de composantes h^*;
10 jusqu'à \nu = 14 \ [\nu = \nu + 2];
11 Déduire le paramètre optimal \nu^* qui minimise l'erreur ;
12 retourner Prédiction \hat{y} avec Gini-PLS (h^*, \nu^*);
13 retourner Prédiction \hat{y} avec SVM, LOGIT, Bayes, LDA sur les composantes (t_1, \dots, t_{h^*});
```

4.3.3.2 L'algorithme LOGIT-Gini-PLS généralisé

Comme nous le constatons dans l'algorithme Gini-PLS généralisé que nous avons proposé dans le section précédente, les poids w_j proviennent de l'opérateur co-Gini appliqué à une variable booléenne $y \in \{0;1\}$. Afin de trouver les poids w_j qui maximisent le lien entre les variables x_j et la variable cible y, nous proposons d'utiliser la régression LOGIT, autrement dit, une sigmoïde qui est bien adapté à des variables boléennes. Ainsi, dans chaque étape de la régression Gini-PLS nous remplaçons la maximisation du co-Gini par la mesure de la probabilité conditionnelle suivante :

$$\mathbb{P}(y_i = 1/X = X_i) = \frac{\exp\{X_i\beta\}}{1 + \exp\{X_i\beta\}}$$
 (LOGIT)

où X_i est la *i*-ème ligne de la matrice X (observation des caractéristiques/dimensions de la décision juridique i). L'estimation du vecteur β se fait maximum de vraisemblance. On en déduit alors les pondérations w_i :

$$w_j = \frac{\beta_j}{\|\beta\|}$$

L'algorithme LOGIT-Gini-PLS généralise est donc le suivant :

Algorithme 5 : LOGIT-Gini-PLS Généralisé

```
Résultat : Prédiction du juge y=0;1

1 répéter

2 | répéter

3 | LOGIT équation : \Longrightarrow poids w_j de X;

4 | MCO équation : y=\sum_h c_h t_h + \varepsilon_h;

5 | X:=(\hat{e}_1,\dots,\hat{e}_K) y:=\hat{e}_h;

6 | jusqu'à h=10 [h=h+1];

7 | Mesurer VIP_{kh}, Q_h^2;

8 | Sélectionner le nombre optimal de composantes h^*;

9 jusqu'à \nu=14 [\nu=\nu+2];

10 Déduire le paramètre optimal \nu^* qui minimise l'erreur;

11 retourner Prédiction \hat{y} avec Gini-PLS (h^*, \nu^*);

12 retourner Prédiction \hat{y} avec SVM, LOGIT, Bayes, LDA sur les composantes (t_1,\dots,t_{h^*});
```

4.4 Expérimentations et résultats

Nous discutons ici les performances de divers algorithmes populaires et l'impact de la quantité et du déséquilibre des données, de l'heuristique la restriction explicite des documents aux passages relatifs à la catégorie de demandes, ainsi que leur capacité à faire abstraction des autres demandes du document. Ces expériences visent aussi à comparer l'efficacité du Gini-Logit-PLS par rapport à d'autres analyses discriminantes, . Comme ?, différentes combinaisons d'algorithmes de classification et méthodes de pondération sont comparées; ce qui représente un total de 8 algorithmes x 11 métriques globales x 5 métriques locales = 440 configurations (+ 2 i.e. Fast-Text et NBSVM). La méthode Gini-Logit-PLS réalisant une projection dans un espace de petite dimension, elle a été comparée aussi à d'autres méthode de réduction de dimension.

4.4.1 Protocole d'évaluation

Deux métriques d'évaluation sont utilisées : la précision et la F1-mesure. Pour tenir compte du déséquilibre entre les classes, la moyenne macro est préférée. Il s'agit de l'agrégation de la contribution individuelle de chaque classe : $F1_{macro} = \frac{2 \times P_{macro} \times R_{macro}}{P_{macro} + R_{macro}}$, où les macro-moyennes de la précision (P_{macro}) et du rappel (R_{macro}) sont calculées en fonction des nombres moyens de vrais positifs (\overline{TP}) , faux positifs (\overline{FP}) , et faux négatifs (\overline{FN}) comme suit $[?]: P_{macro} = \frac{\overline{TP}}{\overline{TP} + \overline{FP}}, R_{macro} = \frac{\overline{TP}}{\overline{TP} + \overline{FN}}$.

Les données utilisées sont une restriction, des données du chapitre précédent, aux documents n'ayant qu'une seule demande annotée pour chacune des catégories de demande. Le déséquilibre entre les classes est illustrée par la figure 4.3. En effet, les demandes sont en majorité rejetées pour les catégories ACPA, CONCDEL, DANAIS et STYX. Le contraire est observé pour DCPPC, et le rapport est légèrement équilibré pour DORIS.

Figure 4.3 – Répartition des documents à une demande de la catégorie considérée.

L'efficacité des algorithmes dépend souvent des valeurs de méta-paramètres dont il faut déterminer des valeurs optimales. Scikit-learn implémente deux stratégie de recherche des ces valeurs : RandomSearch et GridSearch. Malgré la rapidité de la méthode RandomSearch, elle est non déterministe et les valeurs qu'elle trouve donnent une prédiction moins précise que les valeurs

par défaut. Idem pour la méthode GridSearch, qui est très lente en plus, et donc non pratique face au grand nombre de configurations à évaluer. Par conséquent, les valeurs utilisées pour les expérimentations sont les valeurs par défaut définies par Scikit-learn (Tableau 4.1).

algorithmes	hy per-para mèt res
SVM	$C = 1.0; \gamma = \frac{1}{n_features*var(X)}; noyau = RBF \text{ (fonction de base radiale)}$
KNN	k = 5, weights = 'uniform', algorithm = 'auto'
LDA	$solver = 'svd', n_components = 10^9$
QDA	
Arbre	critère de séparation='gini'
NBSVM	ngram = 123, linearSVM,
Fast Text	-minCount=5, -wordNgrams=1, -lr=0.05,
Gini-PLS	$h = n_components = 10 = 10$
Logit-PLS	$h = n_components = 10 = 10$
Gini-Logit-PLS	$h=n_components=10=10; \nu=14$

Tableau 4.1 – Valeurs utilisées pour les méta-paramètres des algorithmes de classification.

4.4.2 Classification de l'ensemble du document

En représentant l'ensemble du document à l'aide de diverses représentations vectorielles, les algorithmes sont comparés avec les représentations qui leurs sont optimales. On remarque d'après les résultats du Tableau 4.2, les arbres sont en moyenne meilleurs sur l'ensemble des catégories même si en moyenne la F1-mesure moyenne est limité à 0.668. Les résultats des extensions du PLS ne sont pas très éloignée de ceux des arbres avec des différences de F1 à moins de 0.1 (si on choisi le bon schéma de "vectorisation").

ajouteries ri ou e	rreur de rejette e	i de accej	pre						
mettre aussi en ava	ant les analyses d	iscrimina:	ntes comi	ne réducteur :	de dimens	sion et comme	classifieurs		
Vecteur	algorit hme	F1	min	Cat. min	max	Cat. max	F1 - 1erF1	max - min	rang
GSS*TF	Arbre	0.668	0.5	doris	0.92	dcppc	0	0.42	1
AVG-G*TF	LogitPLS	0.648	0.518	danais	0.781	dcppc	0.02	0.263	13
AVG-G*TF	StandardPLS	0.636	0.49	danais	0.836	dcppc	0.032	0.346	24
DELTADF*TF	GiniPLS	0.586	0.411	danais	0.837	dcppc	0.082	0.426	169
DELTADF*TF	GiniLogitPLS	0.578	0.225	styx	0.772	dcppc	0.09	0.547	220
-	NBSVM	0.494	0.4	styx	0.834	dcppc	0.174	0.434	
_	FastText	0.412	0.343	doris	0.47	danais	0.256	0.127	

Tableau 4.2 – Comparaison des algorithmes sur une représentation globale des documents pour la détection du sens du résultat.

Les scores F1 moyens des algorithmes NBSVM et FastText n'excédent en général pas 0.5 malgré qu'ils soient spécialement conçus pour les textes. Soit ils sont très sensibles au déséquilibre des données entre les catégories (plus de rejets que d'acceptations), soit il est plus difficile de détecter l'acceptation des demandes. En effet, ces algorithmes classent tous les données de test avec le label (sens) majoritaire i.e. le rejet, et par conséquence, ils ne détectent quasiment pas d'acceptation de demande. Le cas des catégories DORIS et DCPPC pour le NBSVM ($F1_{macro} = 0.834$) tend à démontrer la forte sensibilité aux cas négatifs de ces algorithmes puisque même avec presque autant de labels "accepte" que "rejette", la F1-mesure de "rejette" est toujours supérieure à celle de "accepte" (Tableau 4.3).

Cat. Dmd.	Algo.	Préc.	Préc. équi.	err-0	err-1	f1-0	f1-1	$F1_{macro}$
dcppc	nbsvm	0.875	0.812	0.375	0	0.752	0.916	0.834
danais	fasttext	0.888	0.5	0	1	0.941	0	0.47
danais	nbsvm	0.888	0.5	0	1	0.941	0	0.47
concdel	fasttext	0.775	0.5	0	1	0.853	0	0.437
concdel	nbsvm	0.775	0.5	0	1	0.873	0	0.437
acpa	fasttext	0.745	0.5	0	1	0.853	0	0.426
acpa	nbsvm	0.745	0.5	0	1	0.853	0	0.426
doris	nbsvm	0.5	0.492	0.85	0.167	0.174	0.63	0.402
dcppc	fasttext	0.667	0.5	1	0	0.8	0	0.4
styx	fasttext	0.667	0.5	1	0	0.8	0	0.4
styx	nbsvm	0.667	0.5	0	1	0.8	0	0.4
doris	fasttext	0.523	0.5	1	0	0	0.686	0.343

0 == 'accepte'; 1 == 'rejette'

Tableau 4.3 – Détails des résultats de FastText et NBSVM.

4.4.3 Réduction du document aux régions comprenant le vocabulaire de la catégorie

Etant donné que les décisions portent sur plusieurs catégories de demande, nous avons expérimenté la restriction du document aux passages comprenant du vocabulaire de la catégorie d'intérêt : demande, résultat, résultat antérieur (resultat_a), paragraphes dans les motifs (motifs). Les combinaisons passages-représentation vectorielle-algorithme sont comparées dans le

4.5. CONCLUSION 113

Tableau 4.4. Les résultats s'améliorent énormément avec les réductions, sauf pour la catégorie DORIS. La meilleure restriction combine les passages comprenant le vocabulaire de la catégorie dans la section Litige (demande et résultat antérieur), dans la section Motifs (contexte), et dans la section Dispositif (résultat).

Cat. Dmd	zone	Vecteur (pondération)	classifieur	F1
acpa	demande resultat a resultat context	DBIDF*TF	Tree	0.846
	litige motifs dispositif	DELTADF*TF	StandardPLS	0.697
	litige motifs dispositif	AVERAGEGlobals*TF	LogitPLS	0.683
concdel	litige motifs dispositif	GSS*TF	Tree	0.798
	motifs	IDF*TF	GiniLogitPLS	0.703
	context	DBIDF*LOGAVE	StandardPLS	0.657
	demande resultat a resultat context	CHI2*AVERAGELocals	Tree	0.813
danais	demande resultat a resultat context	AVERAGEGlobals*ATF	LogitPLS	0.721
	demande_resultat_a_resultat_context	AVERAGEGlobals*ATF	StandardPLS	0.695
deppe	demande resultat a resultat context	CHI2*TF	Tree	0.985
	demande resultat a resultat context	CHI2*TF	LogitPLS	0.94
	litige motifs dispositif	MARASCUILO*TP	StandardPLS	0.934
doris	litige motifs dispositif	DSIDF*TP	GiniPLS	0.806
	litige motifs dispositif	DSIDF*TP	GiniLogitPLS	0.806
	litige motifs dispositif	IG*ATF	StandardPLS	0.772
styx	motifs	DSIDF*TF	Tree	1
	demande_resultat_a_resultat_context	DSIDF*LOGAVE	GiniLogitPLS	0.917
	litige_motifs_dispositif	RF*TF	GiniPLS	0.833

Tableau 4.4 – Détection du sens du résultat : Comparaison des réductions du document.

4.5 Conclusion

L'étude de ce chapitre tente de simplifier l'extraction du sens du résultat rendu par les juges sur une demande du catégorie donnée. Elle a consisté à formuler le problème comme une tâche de classification de documents. On évite ainsi de passer par la détection ad-hoc ¹⁰ des passages et données à l'aide de termes-clés qui est un inconvénient de la méthode à règles du chapitre précédent car elle n'est peut-être pas généralisable à tout type de décisions (i.e. il pourrait être nécessaire d'établir de nouvelles listes de mots-clés pour d'autres domaines). 10 algorithmes de classification on été expérimentés sur 55 méthodes représentations vectorielles de texte. Nous avons remarqué

^{10.} i.e. spécialement conçu pour nos données.

4.5. CONCLUSION 114

que les résultats de classification sont principalement influencés par 3 caractéristiques de nos données. En premier le très faible nombre d'exemples d'entrainement rend défavorise certains algorithmes (outliers), comme par exemple FastText qui nécessite plusieurs milliers d'exemples pour mettre à jour????le pas du gradient??? (learning rate). En second, le fort déséquilibre entre les classes ("accepte" vs. "rejette") rend difficile la reconnaissance de la classe minoritaire qui est généralement la classe "accepte". Le fort gap entre les erreurs sur "rejette" et celles sur "accepte", ainsi que les bons résultats obtenus sur DCPPC en sont la preuve. Et en dernier, la présence d'autres catégories de demande dans le document dégrade l'efficacité de classification parce que les algorithmes ne parviennent pas seul à retrouver les éléments en rapport direct avec la catégorie choisie. Ceci est démontré par l'impact positif de la restriction du contenu à classer à certains passages particuliers, même si la restriction adéquate est fonction de la catégorie.

Au final, les arbres de décision sont adaptés pour la tâche, mais l'usage du Gini-PLS et du Gini-Logit-PLS permet d'obtenir des performances pas très éloignées de celles des arbres.??? comparaison avec d'autres analyses discriminantes???. Il serait intéressant de combiner ces variantes de l'analyse PLS, à d'autres comme le Sparse-PLS qui pourrait peut-être aider à résoudre le problème de vecteur/matrices creuse dont sont victime les représentations vectorielles de texte. Il existe aussi un grand nombre d'architecture neuronale pour la classification de document. Aussi, il existe un très grand nombre de métrique de pondération de terme pour la représentation des textes, mais aucune ne semble s'adapter à toutes les catégories. Par conséquent, une étude sur l'usage des représentation par plongement sémantique comme Word2vec ou sent2vec ou doc2vec serait intéressante.

Chapitre 5

Modélisation des Circonstances Factuelles

5.1 Introduction

Les circonstances factuelles sont les types de faits ou contextes possibles dans lesquels une catégorie de demande peut être formulée. Les analyses descriptives ou prédictives ne prennent sens que lorsqu'elles sont appliquées à un ensemble de décisions aux circonstances similaires. Par exemple, il serait imprudent de considérer toutes les décisions pour prédire les chances d'acceptation d'une demande de dommages-intérêts fondée sur l'« article 700 du code de procédure civile » en cas de trouble de voisinage. Les taux d'acceptation ou de rejet peuvent être différents entre des affaires de licenciement et celles portant sur les troubles anormaux du voisinage, et même plus spécifiquement entre les troubles de voisinage entre particulier et entreprises (par exemple: chantier de construction), ou simplement entre particuliers (par exemple: troubles sonores). Il serait préférable de travailler uniquement avec des décisions similaires à la situation d'intérêt. L'identification des circonstances factuelles devient donc indispensable. Malheureusement, les faits et leur catégorisation sont extrêmement diversifiés et indénombrables. Annoter manuellement des échantillons de décisions est impossible pour chaque circonstance potentielle afin de résoudre ce problème par classification supervisée. Il est donc plus intéressant d'adopter une approche non-supervisée capable modéliser les circonstances factuelles à partir d'un corpus de documents d'une même catégorie de demande. Plus précisément, l'objectif est donc de regrouper ensemble les décisions qui traitent de problèmes similaires. La tâche peut être formulée comme une tâche de regroupement non-supervisé (clustering). Les objectifs de ce chapitre sont d'expérimenter des algorithmes de clustrering et des métriques de similarité, et de démontrer que l'apprentissage d'une distance de similarité entre documents d'une même catégorie de demande permet d'obtenir un meilleur clustering.

5.2 Regroupement non-supervisé de documents

Cette section fait une synthèse bibliographique des différents aspects rentrant dans la conception d'un modèle de *clustering*. Elle aborde principalement le choix de l'algorithme, la définition d'une mésure de similarité adéquate, la représentation des documents, la détermination du nombre de *clusters*, l'affectation de labels aux *clusters*, et l'évaluation du regroupement généré.

5.2.1 Choix de l'algorithme de clustering

Le clustering de documents est une tâche dont l'objectif est d'identifier, sans supervision 1 , une structure pertinente (pour le domaine expert) dans un ensemble $D = \{d_1, \ldots, d_N\}$ de N documents non annotés en construisant des groupes représentants des catégories inconnues au départ. Ces groupes, appelés clusters, peuvent être disjoints ou à chevauchements, et plates ou hiérarchiques suivant les contraintes du domaine expert. L'algorithme à utiliser dépend généralement de la forme qu'on souhaite donner à l'organisation.

^{1.} Sans exemples annotés.

5.2.1.1 Partitionnement disjoint

Pour réaliser des partitions distinctes ² (hard clustering), des algorithmes tels que celui des K-moyennes [?] et celui des K-medoïdes [?] seront préférés [?]. Ces deux algorithmes fonctionnent de manière similaire, et nécessitent que le nombre K de clusters soient prédéfini. Ils commencent par une définition aléatoire de K centres initiaux de clusters (centroïdes) et l'affectation des différents documents au cluster dont le centre est le plus proche. S'en suit une boucle dans laquelle le centroïde est recalculé (le point à distance totale minimale avec les membres du cluster) et les documents sont réaffectés chacun au cluster dont le centroïde est le plus proche. L'algorithme s'arrête si aucune amélioration n'est plus observée, ce qui se traduit soit par l'atteinte d'une valeur minimale prédéfinie de l'erreur de clustering³ ou d'une mesure d'évaluation non supervisée (§ 5.2.7.2). La différence entre l'algorithmes des K-moyennes et celui des K-medoïdes tient principalement au fait que les centroïdes du premier ne sont pas nécessairement des points (documents) de l'ensemble d'origine, mais des points moyennes des représentations vectorielles des membres du cluster, contrairement à l'algorithme des K-medoïdes qui ne considère que les documents originaux qui ont une distance minimale à tous les documents dans leur cluster. Cette différence donne l'avantage au K-medoïdes de ne pas dépendre d'une représentation vectorielle nécessaire au calcul de la moyenne, mais elle a aussi l'inconvénient d'augmenter sa complexité en temps car il faut calculer et stocker la distance entre toutes les paires de documents. Il existe plusieurs autres algorithmes de clustering disjoint dont le principe de fonctionnement est différent de celui des K-moyennes. Par exemple, l'algorithme DBSCAN (Density-based spatial clustering of applications with noise) [?] ne prend pas en paramètre le nombre de clusters à construire. Il est défini sur le concept de régions de densité caractérisées par la distance minimale ϵ autorisée entre deux points

^{2.} Chaque document n'appartient qu'à un seul cluster.

^{3.} Somme des distances au carré entre les points et leur centre respectif.

d'une même région, et le nombre maximal de points qui doivent être dans le voisinage de rayon ϵ d'un point pour que ce voisinage soit une région de densité (le point central est appelé "point noyau" (core point). Le principe du DBSCAN est de construire les clusters successivement en reliant les régions (voisinages) dont les noyaux sont à distance plus ou moins inférieure à ϵ . Les points qui sont seul dans leur cluster sont qualifiés d'outliers. En outre, le clustering spectral est une autre méthode efficace de regroupement qui effectue préalablement une réduction de dimensions à l'aide du spectre de la matrice de similarité $M \in \mathbb{R}^{N \times N}$ des données avant d'appliquer un algorithme traditionnel comme celui des K-moyennes. Les dimensions du nouvel espace sont définies par les vecteurs propres de la matrice Laplacienne L de M [??] qui peut être normalisée ($L = T^{-1/2}(T-S)T-1/2$) ou pas (L = T-M), T étant la matrice diagonale déduite de M i.e. $T_{ii} = \sum_i M_{ij}$.

Il est aussi possible d'utiliser les arbres de décision pour améliorer les résultats des K-moyennes. En effet, les forêts aléatoires [?] permettent d'estimer la similarité entre deux points. Le principe consiste à générer un ensemble de n points synthétiques, et d'entraîner une forêt aléatoire à une classification binaire supervisée avec les points originaux considérés dans la classe des "originaux" et les données synthétiques dans la seconde classe des "synthétiques" [?]. Une forêt aléatoire étant un ensemble d'arbres de décision (classification) construit sur des parties de l'ensemble d'apprentissage duquel on a retiré une ou plusieurs variables prédictives, la similarité entre 2 points est la proportion d'arbres dans lesquels ces points se trouvent dans le même nœud feuille. Cette métrique "apprise" peut-être par la suite utilisée dans un algorithme de clustering classique comme les K-moyennes.

L'application de ces différents algorithmes aux documents n'est généralement basé que sur les statistiques d'occurrence des termes, et par conséquent les thématiques abordées dans les documents ne sont pas bien prise en compte, surtout que l'élimination des « mots vides » (stop words) peut laisser

^{4.} M_{ij} est la mesure de la similarité entre les points (documents) d_i et d_j du corpus D.

les deux documents sans sinon très peu de mots en commun ?. ? démontrent empiriquement que l'intégration de la modélisation thématique (topic modeling) au clustering de documents améliore significativement les résultats. Cette intégration des modèles thématiques dans le clustering de documents peut être réalisée de multiples façons, mais deux méthodes semblent être les plus efficaces :

- 1. l'intégration naïve [?] qui consiste à inférer K thèmes à l'aide d'un algorithme comme le PLSA (aAnalyse sémantique probabiliste latente) [?] ou le LDA (allocation de Dirichlet latente)[?], puis de considérer pour chaque document le thème $j \in [1..K]$ qui a la probabilité θ_j la plus élevé dans ce document suivant la distribution θ de probabilité des thèmes dans ce document ; le thème choisi j représente le cluster du document ;
- 2. le modèle thématique multi-grain de clustering (multi-grain clustering topic model) ou MGCTM proposé par ?, dont l'objectif est d'inférer de manière jointe les clusters et le modèle thématique.

FONCTIONNEMENT DU LDA et du MGCTM.

5.2.1.2 Regroupement avec chevauchements

Lorsque des chevauchements sont observables entre clusters (un document peut faire partie de plusieurs groupes à la fois), chaque objet peut être affecté partiellement à chaque cluster grâce à la notion de degré d'appartenance (membership degree) entre un point $x_i \in X$ et le cluster $j \in [1..K]$ estimé par une fonction u_{ij} [?]. Il est par conséquent préférable d'employer des algorithmes de partitionnement "mou" comme l'algorithme flou des c-moyennes (FCM) [??], ou le fuzzy c-Medoids (FDMdd) [?], ou la version améliorée IFKM (improved fuzzy K-medoids)[?]. FONCTIONNEMENT DE CES DEUX ALGO. Le principe des algorithmes de clustering flou consiste en deux étapes principales [?] :

Lorsque des chevauchements sont observables entre clusters (un document peut faire partie de plusieurs groupes à la fois), chaque objet peut être affecté partiellement à chaque cluster grâce à la notion de degré d'appartenance (membership degree) entre en jeu [?]. Il est par conséquent préférable d'employer des algorithmes de partitionnement "mou" comme l'algorithme flou des c-moyennes (fuzzy c-means) [??], ou le fuzzy c-medoid [?]. FONCTIONNEMENT DE CES DEUX ALGO. Le principe des algorithmes de clustering flou consiste en deux étapes principales [?]:

1. l'estimation des degrés d'appartenance de chaque instance $x_i \in X$ à chaque cluster $j \in [1..K]$ de centroïde z_j réalisée par la minimisation de la fonction objective $P(X,Z) = \sum_{i=1}^n \sum_{j=1}^k \left[u_{ij}r(x_i,z_j)\right]$ [?] améliorée par ? en :

$$P(X,Z) = \sum_{i=1}^{n} \sum_{j=1}^{K} [u_{ij}r(x_i, z_j)] + \lambda \sum_{i=1}^{n} \sum_{j=1}^{K} [u_{ij}\log_2(u_{ij})]$$

$$s.c. \sum_{j=1}^{k} u_{ij} = 1$$

$$0 \le u_{ij} < 1$$

dont la valeur approximative généralement utilisée de la solution est

$$u_{ij} = \frac{\exp\left(\frac{-r(x_i, z_j)}{\lambda}\right)}{\sum_{l=1}^k \exp\left(\frac{-r(x_l, z_j)}{\lambda}\right)},$$

 $r(x_i, z_j)$ étant la mesure de dis-similarité (distance) entre x_i et z_j ;

2. la détermination des nouveaux centres de clusters qui s'effectue toujours par la moyenne des membres du cluster chez le fuzzy c-means, mais par le choix de l'objet x_q qui optimise la somme des distances de cet objet aux autres membres pondérée chacune par le degré d'appartenance de ces autres membres :

$$\forall j \in [[1; k]], q = \underset{1 \le l < s_j}{\operatorname{argmin}} \sum_{l=1}^{s_j} [u_{lj} r(x_l, z_j)]$$

 s_j étant le nombre de membres du cluster j.

Ainsi l'objectif de l'entrainement des algorithmes de clustering flou est double : déterminer les valeurs optimales du vecteur U des degrés d'appartenance et de l'ensemble Z des centroïdes.

Les regroupements avec chevauchement sont intéressants dans notre cas parce qu'il n'est pas exclu qu'une décision traite de plusieurs circonstances factuelles. A COMPLETER!!!!!!!!!!

5.2.1.3 Limites des algorithmes de clustering

nombre prédéfini de clusters, initialisation aléatoire des centroïdes menant à des clusters différents entre plusieurs exécution [?]. Nous noterons aussi la dépendance à la métrique de similarité.

5.2.2 Métrique de similarité ou de dis-similarité

Une métrique de (dis)similarité est une fonction réelle d'une paire de éléments x et x' d'un ensemble \mathcal{X} . Une métrique de dis-similarité mesure le degré de différence entre x et x' généralement estimée par une fonction distance Dis qui satisfait aux propriétés suivantes $\forall x, x', x'' \in \mathcal{X}$ [?]:

- 1. $Dis(x, x') \ge 0$ ("non-négativité")
- 2. $Dis(x, x') = 0 \Leftrightarrow x = y$ (identité discernable)
- 3. Dis(x, x') = Dis(x', x) (symétrie)
- 4. $Dis(x, x'') \leq Dis(x, x') + Dis(x', x'')$ (inégalité triangulaire)

La similarité est donc calculée par Sim(x, x') = 1 - Dis(x, x'), la distance représentant la dis-similarité.

Il existe de nombreuses métriques de similarité généralement expérimentées pour le clustering de textes [?] :

- les distances de Minkowski de forme générale $Dis(x, x') = ||x x'||_{Lp} = \sqrt[p]{\sum |x_i y_i|^p}$, dont font partie la distance euclidenne (p = 2) et la distance de Manhattan (p = 1);
- la distance cosinus : $Dis(x, x') = \sqrt{1 \frac{x^T x'}{\|x\| \|x'\|}}$
- le coefficient similarité de Jaccard : $Sim(x, x') = \frac{x^T x'}{\|x\|^2 \|x\|^2 x^T x'}$ désignant l'ensemble des termes de x dans le cas où x est un document ;
- Le coefficient similarité de Dice : $Sim(x,x') = \frac{2\cdot |tok(x)\cap tok(x')|}{|tok(x)|+|tok(x')|}$
- Le coefficient de correlation de Pearson : pour $TF_x = \sum_{i=1}^m w_x, i, \forall x \in \mathcal{X}$,

$$Sim(x, x') = \frac{\sum_{i=1w_x, iw'_x, i-TF_xTF'_x}^{m}}{\sqrt{[m\sum_{i=1}^{m} w_x^2, i-TF_x^2][m\sum_{i=1}^{m} w_x^2, i-TF_x^2]}};$$

- distance de la divergence moyenne de Kullback-Leibler Dis(x, x') = ?
- Okapi BM25 est une métrique de similarité généralement utilisée en recherche d'information; les résultats de ce chapitre ont été obtenu avec une version adaptée pour les long documents, la BM25L de ? qui démontrent que la version originale n'est pas robuste lorsque les documents sont longs :

$$Sim(x, x') = \sum_{i=1}^{n} \left(\frac{n_i(k_1 + 1)}{n_i + k_1(1 - b + b\frac{|D|}{|D|})} \cdot \log \frac{N - n_i + 0.5}{n_i + 0.5} \right)$$

corriger avec la formule de BM25L et vérifier la symétrie du BM25

- TF-IDF?
- BoW?
- Componential Counting Grid?
- -- mSDA?
- LDA?
- LSI?

— « La distance du déplaceur de mot » (word mover's distance - WMD) [?] est une méthode dont l'objectif est similaire au notre, i.e. inclure la similarité sémantique entre les paires de mots de deux documents dans l'estimation de la distance entre ces derniers. En effet, elle est la solution optimale du problème de transport suivant ⁵:

$$Dis(d, d') = \min_{T>0} \sum_{i,j=1}^{n} T_{ij}c(i, j)$$
s.c.
$$\sum_{j=1}^{n} T_{ij} = d_i, \forall i \in 1, \dots, n$$

$$\sum_{i=1}^{n} T_{ij} = d'_j, \forall j \in 1, \dots, n$$

n est le nombre de mots considérés; T est une matrice dont T_{ij} est interprété comme étant la quantité du mot i de d qui est va ("voyage") au mot j dans d'; c(i,j) est la distance euclidienne entre les vecteurs des mots i et j; d_i et d'_j sont les composantes aux mots i et j resp. des vecteurs normalisés sac-de-mots de d et d' reesp. i.e. $d_i = \frac{compte(i,d)}{\sum\limits_{k=1}^{n} compte(k,d)}$, où compte(i,d) est le nombre d'occurrences du mot i dans d.

Par contre, les métriques apprises sont définies à partir de connaissances des données labellisées. Ces métriques sont apprises pour répondre à la difficulté d'identifier la métrique statique appropriée pour un problème. L'apprentissage exploite un corpus préalablement annoté. L'apprentissage peut être supervisé si l'annotation du corpus consiste soit en classifiant des documents [?], soit en affectant des mesures de similarité à des paires de documents [?]. Un apprentissage semi-supervisé typique utilise des données annotées par jugements relatifs sur des pairs ou triplets de documents. Les contraintes de couples consistent en deux ensembles, l'un comprenant des couples de

^{5.} Valeur minimale du cout cumulatif pondéré nécessaire pour déplacer tous les mots de d à d' i.e. transformer d en d'.

^{6.} Organisation des documents d'entraînement en des groupes aux labels prédéfinis.

documents qui doivent être similaires, et l'autre contenant des couples de documents dis-similaires. Les contraintes de triplets consistent à définir pour un triplet de documents (x_1, x_2, x_3) une comparaison de degré de similarité entre les paires (par exemple, x_1 est plus similaire à x_2 qu'à x_3). La métrique apprise est néanmoins une véritable métrique à valeur réelle positive écrite sous la forme d'une distance de Mahalanobis $f(x,y) = \sqrt{(x-y)^T M^{-1}(x-y)}$ (où M est la matrice à apprendre).

L'apprentissage expérimenté dans ce chapitre est supervisé, même s'il utilise des données synthétiques. Nous supposons étant donné que les documents du corpus à *clusteriser* sont tous de la même catégorie de demande, la différence entre les clusters et leur homogénéité se remarquera au niveau des faits. Par cette hypothèse, il reste un risque que d'autres types de regroupements se forment comme par exemple suivant d'autres catégories de demande co-occurrentes. Parmi les divers algorithmes réalisant un apprentissage supervisé, notons par exemple :

- Les plus-proches-voisins-dans-la-large-marge (LMNN) [?] plus adapté à l'annotation par classification :
- L'analyse des composants du voisinage (NCA) [?];
- L'apprentissage de métrique pour la régression noyau (MLKR) [?];
- L'analyse discriminante locale de Fisher (LFDA) [??]

5.2.3 Déterminer le nombre approprié de clusters (validation)

faire un tableau des indices comme dans l'article, et comparer les combinaison indices-algo-distance

Au delà de l'algorithme à utiliser, le nombre K approprié de clusters doit être déterminé mais pas prédéfini, puisqu'il est difficile de savoir à l'avance le nombre de groupes, le clustering permettant de proposer automatiquement un regroupement. Une méthode très connue est celle du « coude » (ou « genou ») [?], qui est basé sur le principe de base des algorithmes de

partitionnement (e.g. K-moyennes) i.e. minimiser le critère d'inertie⁷.

$$J(K) = \sum_{j=1}^{K} \sum_{x_i \in C_j} ||x_i - \overline{x_j}||^2$$

 C_j : ensemble des objets du cluster j

 $\overline{x_i}$: échantillons moyens du cluster j

La méthode du coude consiste à essayer différentes valeurs consécutive de K (de K_{min} à K_{max}) puis de choisir celle qui correspond au coude de la courbe du critère d'inertie J(K). Le choix de ce coude est visuel et peut être ambigu (plusieurs valeurs de K sur le coude par exemple).

La méthode de la silhouette moyenne [?] est une alternative qui consiste à choisir comme valeur optimale de K, celle qui maximise le critère de la largeur moyenne de la silhouette : $S(k) = \frac{1}{K} \sum_{i=1}^{N} s(d_i)$. La largeur $s(d_i)$ de la silhouette est un indice qui compare la ressemblance d'un document d_i aux autres membres de son cluster C_t par rapport à ceux d'autres clusters $C_l, l \neq t$:

$$s(d_i) = \frac{b(d_i) - a(d_i)}{\max\{a(d_i), b(d_i)\}}$$

où
$$a(d_i) = \frac{1}{|C_t|} \sum_{j=1}^{|C_t|} Dis(d_i, d_j)$$
, et $b(d_i) = \min_{l \neq t} \frac{1}{|C_l|} \sum_{j=1}^{|C_l|} Dis(d_i, d_j)$.

K a une valeur optimale lorsque la largeur moyenne S(k) atteint sa valeur maximale.

Salvador et Chan (2004) propose d'utiliser l'intersection des deux lignes approximant la courbe. Mais plus récemment, Zhang et al. (2016) trouvent que cette approche n'est pas appropriée pour les cas où le graphe d'évaluation n'est ni lisse, ni monotone. Ils proposent d'exploiter la courbure du graphe i.e. la valeur dont un objet géométrique s'écarte d'être plat ou droit dans le cas d'une ligne.

^{7.} la variance intra-cluster qui est la somme au carré des erreurs (distance d'un membre au centre).

Etant donné le grand nombre de méthodes existantes [??], la majorité des votes peut être appliquée pour choisir le bon K^8 .

5.2.4 Initialisation des centroïdes

5.2.5 Définir une représentation appropriée pour les textes

https://arxiv.org/pdf/1509.01626.pdf http://ad-publications.informatik.uni-freiburg.de/theses/Bachelor_ Jon_Ezeiza_2017_presentation.pdf

5.2.6 Labeliser les clusters

5.2.7 Evaluation du clustering généré

L'évaluation des résultats peut être supervisée ou non selon que l'on dispose ou pas respectivement d'exemples de données annotés avec les groupes attendus.

5.2.7.1 Métriques supervisées

Même s'il existe un très grand nombre de mesures d'évaluation de la qualité du clustering [?], très peu sont couramment utilisées. Il s'agit pour l'évaluation supervisée de l'information mutuelle normalisée (NMI) [], l'indice ajusté de Rand (ajusted Rand index - ARI) [], et la précision du clustering (ACC) []. Ces métriques doivent être utilisées ensemble pour compenser les limites de chacune d'elles [?]. Pour l'évaluation non-supervisée, la pureté, l'erreur et la silhouette sont les métriques généralement utilisées.

 $^{8. \ \}texttt{https://www.datanovia.com/en/lessons/determining-the-optimal-number-of-clusters-3-must-knowlessons/determining-number-of-clusters-3-must-knowlessons/determining-number-of-clusters-3-must-knowlessons/determining-number-of-clusters-3-must-knowlessons/determining-number-of-clusters-3-must-knowlessons/de$

5.2.7.2 Métriques non-supervisées

5.3 Méthodes proposées

5.3.1 K-médoïdes et « Word Mover's Distance »

Les approches de clustering sont généralement appliquées à une représentation vectorielle des objets. Particulièrement la méthodes des K-moyennes qui met à jour le centroïde en faisant la moyenne des menbres de son cluster. Cependant, ? ont proposé récemment la distance du déplaceur de mot (word mover's distance - WMD), une métrique non-supervisée qui permet à la méthode des K plus proches voisins (KNN) d'obtenir des performances sans précédents. De plus, l'algorithme de clustering K-médoïdes [?], similaire aux K-moyennes, choisi comme centroïde le membre du cluster qui minimise la distance aux restes des membres; ce qui n'impose pas de représentation vectorielle. Ainsi, nous pouvons utiliser la métrique WMD dans l'algorithme des K-médoïdes. Tout en nous appuyant sur un algorithme établi de clustering, nous évitons aussi la recherche de la meilleure représentation vectorielle qui influence souvent les performances du clustering.

 $Algorithme: \verb|http://isiarticles.com/bundles/Article/pre/pdf/79087. \\ pdf$

Un des désavantage de l'algorithme des K-médoïdes est son long temps de calcul dû à???. Nous avons, par conséquent, remplacé la distance euclidienne par la WMD dans la version plus rapide de? avec nombre de clusters prédéfinis, et celle de? qui intègre une optimisation du nombre de clusters.

5.3.2 Apprentissage d'une métrique fondée la modification du document

Les algorithmes de clustering et de classification s'appuient généralement sur une représentation vectorielle à partir de laquelle une valeur de similarité est calculée de manière non supervisée et avec une formule mathématique statique. Dans le cas des textes, Il n'est pas toujours évident de définir la représentation vectorielle associée à une sémantique précise et objective. De plus il existe un large éventail de schémas de représentations vectorielles. Elles vont des représentations très ad-hoc du type TF-IDF, au représentations apprises comme le doc2vec et en passant par les agrégations pondérées de modèles distribués de mots (word2vec par ex.).

L'idée dans notre approche est de proposée une formulation de la similarité entre deux documents qui est basée sur le degré de perturbation observé entre documents. Cette fonction de similarité est apprise à partir d'une base synthétique d'entraînement de similarité entre paire de texte.

Postulat 5.3.1 La distance entre deux documents est une fonction du degré de perturbation permettant de transformer un document en l'autre.

La similarité est définie en fonction de la notion de perturbation du contenu d'un texte (Postulat 5.3.1) : après une légère perturbation, un texte reste assez similaire à l'original; et après une forte perturbation, le texte sera très différent de l'identique. la similarité (resp. la distance) décroît (resp. croit inversement) donc avec l'intensité de la perturbation. Nous définissons une densité de probabilité de perturbation $P \in [0;1]$ associée à la probabilité de modifier un mot (suppression / remplacement par un mot très différent).

Considérons que pour tout texte x, W_x désigne l'ensemble des mots dans x. Nous définissons un patron de métriques :

$$d: C \times C \to \mathbb{R}$$

$$x, y \mapsto d(x, y) = f(P_{x,y})$$
(5.3.1)

C est le corpus. $P_{x,y}$ est l'ensemble des modifications de x nécessaire pour obtenir y i.e. les paires (w_x, w_y) telles que $w_x \in W_x$ a été remplacé par $w_y \in W_y$. d désigne la métrique. Un simple estimateur de d peut être de

considérer le taux de mots modifiés dans x:

$$\widetilde{d}(x,y) = \frac{\|P_{x,y}\|}{\|W_x\|}$$
 (5.3.2)

Un tel modèle ne considère ni l'ordre des mots, ni celui des phrases, ni la différence d'importance entre les mots, la complexité de la modification (une substitution est plus complexe qu'une suppression ou une insertion), ni le degré sémantique des perturbations. ce dernier peut être estimé en lissant le taux de perturbation à l'aide de la distance sémantique entre les mots substitués (le vecteur représentant le mot vide étant le vecteur nul par ex.):

$$\widetilde{d}(x,y) = \frac{\sum_{(w_x,w_y)\in P_{x,y}} d_w(w_x, w_y)}{\|W_x\|}$$
(5.3.3)

 d_w désignant la distance sémantique entre les mots. Ainsi, les substitutions sont pondérées par la distance cosinus entre les vecteurs des mots échangés.

Il est difficile de calculer de telle distance sur un grand corpus étant donné la longueur de notre document. Nous ne pouvons que l'estimer. Pour cela, nous générons un jeu artificiel de données pour l'entraînement d'un modèle régressif d'estimation de la métrique entre deux textes x et y. En effet, nous partons d'un ensemble C de documents et pour chacun de ces documents, noté x, nous générons aléatoirement une valeur seuil de probabilité de perturbation en deça duquel un mot de x est modifié. Par la suite, le texte y, résultant de la modification de x, est généré en modifiant les mots de x:

Algorithme 7: modifie

Données: un mot w, le vocabulaire W

Résultat: un mot w'

1 w' = un mot différent de w choisi aléatoirement dans W;

2 retourner w'

Après avoir généré l'ensemble $B = \{(d_i, d'_i, s(d_i, d'_i))\}$ de données artificielle d'entraînement, on entraîne un modèle régressif pour prédire la simi-

Algorithme 6 : Génère une perturbation de x

```
Données : texte x, valeur seuil de probabilité p
   Résultat: y, d(x, y)
 1 y = [];
 P_{x,y} = \emptyset;
 з pour w_x in x faire
        v = random(0, 1);
        \mathbf{si} \ v 
            w_y + = modifie(w_x); // Algorithme 7;
 6
 7
            P_{x,y} = P_{x,y} \cup \{(w_x, w_y)\};
 8
        sinon
            y+=w;
10
       \widetilde{d}(x,y) = \frac{\sum\limits_{(w_x,w_y)\in P_{x,y}} d_w(w_x,w_y)}{card(W_x)}
11
12 retourner y, d(x, y);
```

larité entre 2 documents en fonction de leur représentation vectorielle. Ce modèle régressif peut être utilisé comme métrique de similarité dans un algorithme de clustering comme l'algorithme des K-moyennes.

Issues:

- les docs sont généralement de tailles différentes, ne faudrait il pas intégrer une perturbation ajout de mots? combiner les modifications par suppression et par substitution
- il faudrait intégrer la composante taille du document : agréger sur le nombre minimal de phrases des paires de documents
- comment assurer les propriétés d'une fonction similarité? par exemple si aucune perturbation n'est opérée, alors la similarité est maximale et si tous les mots sont modifiés alors la similarité est minimale : agrégation par soustraction des vecteurs du couple de docs. plus deux doc seront similaire, plus le vecteur de leur paire tendra vers le nul
- Ne faudrait il pas prendre en compte un poids pour les mots, car peutêtre la modification de certains mots ne devrait pas avoir le même

impact sur la similarité ou le taux de perturbation que celle d'autres mots : lissage par la somme des distance des vecteurs de mots substitués Eq. 5.3.3

— ne faudrait il pas intégré une métrique proche de la tâche : la ressemblance n'est pas forcément globale à tous le corps du document mais plus à certaines régions; donc un document auquel on rajoute quelques phrases ne devrait pas voir son sens trop changer : peut-être agréger les distances minimales entre les paires de phrases

5.4 Expérimentations et interprétation des résultats

5.4.1 Configuration

5.4.2 Annotations de données d'évaluation

Pour l'évaluation supervisée, nous disposons d'une base annotée sur la catégorie de demande "dommage-intérêts / action en responsabilité civile professionnelle contre les avocats" qui concerne les contentieux impliquant des avocats. L'expert annotateur a identifié quatre cas différents (a, b, c, d) décrits en annexe. En gros :

- pour le cas a) il s'agit d'un avocat qui est négligent et envoie son assignation de manière tardive (champ sémantique : retard/délai/prescription)
- pour le cas b) il s'agit d'un avocat qui n'a pas donné un conseil opportun, qui n'a pas soulevé le bon argument
- pour le cas c) un avocat qui n'a pas rédigé un acte valide ou réussi à obtenir un avantage fiscal (champ sémantique : rédacteur d'actes)
- pour le cas d) il s'agit d'un avocat attaqué par son adversaire et non pas par son propre client.

Le dataset comprend 81 documents répartis dans 4 groupes avec 6 docu-

5.5. CONCLUSION 132

ments appartenant chacun à 2 groupes.

Pour l'évaluation non supervisée, les 6 catégories de demande utilisée pour l'extraction de demandes sont utilisés en plus.

5.4.2.1 Prétraitement

Suppression des $stop\ words$ car il sont généralement indépendant de toute catégorie

5.4.3 Apprentissage de la métrique

Matrices de (dis)similarité pour chaque distance

5.4.4 Comparaison d'approches

Comparer la vectorisation du document sur tout son contenu vs. sur la restriction aux énoncés de demande de la catégorie (du type "constater", "dire et juger") vs restriction aux conclusions (le raisonnement des parties décrits les circonstances factuelles) + motifs sur la catégorie

avec choix du nombre de clusters

5.5 Conclusion

jhk lk lkjkl

Chapitre 6

Démonstrateur d'analyse descriptive

kjjkb,n kjgkj

- 6.1 Objectif et Cas d'Utilisation
- 6.2 Description du Pipeline

6.3 Illustration d'analyses descriptives

bkjbj

jbkj

6.3.1 Implémentation du système

bkjbj;

- 6.3.2 Données
- 6.3.2.1 Distribution de la base dans l'espace et dans le temps

Données de la base CAP (64733 docs de la période 1997-2018 CA et 1er jugements) + scrapping de LegiFrance (?cour d'appel + ? 1er jugements) +

6.4. CONCLUSION 134

(300k Tribunal de commerce de paris)

6.3.3 Analyse du sens du résultat

;bkjkl

- 6.3.3.1 Evolution dans le temps
- 6.3.3.2 Différence dans l'espace

6.3.4 Analyse des quanta

,bkjlihio

- 6.3.4.1 Evolution dans le temps
- 6.3.4.2 Différence dans l'espace
- 6.3.4.3 Quantum demandé vs. quantum accordé

6.4 Conclusion

hgfgh lkhk

Conclusions Générales

F.5 Evaluation des Contributions

Introduction de nouvelles tâches d'extraction d'information motivées par des applications au monde réel.

relier les obstacles rencontrés par les juristes à la qualité des résultats obtenus. (eg. la classification est assez précise pour retrouver rapidement des décisions en fonction des catégories de demande)

Ouverture de la réflexion sur la nécessité ou pas de définir des approches propres NLP au domaine juridique.

Annotation manuelle de données modélisation expérimentation

F.6 Critique du travail

Quelle représentativité ont les données utilisées dans les expérimentations

F.7 Travaux futurs de recherche

F.8 Perspectives du domaine

Le conflit entre la qualité des données et l'automatisation est important. ? montrent par exemple qu'il est possible en un temps raisonnable d'annoter manuellement un nombre considérable de texte. Il se pose alors la question de savoir à quel point l'exhaustivité est-elle nécessaire pour contraindre les experts à supporter la marge d'erreurs infligée par les outils d'extraction automatique.

Premier pas pour d'autres voies de recherche : legal / norm Citation network analysis, Anonymisation, analyse des arguments (raison influençant le sens d'un résultat,

Cas d'utilisation : exhaustivité, rapidité, et perspectives multiples dans l'analyse des décisions, aide à la décision, assistance à l'enseignement du droit

Critiques : fiabilité des analyses descriptives (biais des données : nombre et type de documents analysés, biais d'erreur des modèles : faux négatifs (données manquées), faux positifs (données en trop), quelles marges d'erreur tolérées)