

APARNA B. S

Department of Science and Humanities

U

Class Content

- Integral test
- The p-series test
- Examples

Integral Test

TEST (Integral Test)

the series
$$\sum_{i=1}^{\infty} a_i$$
 converges iff the improper integral $\int_1^{\infty} f(x) dx < \infty$.

the series
$$\sum_{i=1}^{\infty} a_i$$
 diverges iff the improper integral $\int_1^{\infty} f(x) dx = \infty$.

Integral Test

TEST (Integral Test)

the series
$$\sum_{i=1}^{\infty} a_i$$
 converges iff the improper integral $\int_1^{\infty} f(x) dx < \infty$.

the series
$$\sum_{i=1}^{\infty} a_i$$
 diverges iff the improper integral $\int_1^{\infty} f(x) dx = \infty$.

Integral Test

TEST (Integral Test)

the series
$$\sum_{i=1}^{\infty} a_i$$
 converges iff the improper integral $\int_1^{\infty} f(x) dx < \infty$.

the series
$$\sum_{i=1}^{\infty} a_i$$
 diverges iff the improper integral $\int_1^{\infty} f(x) dx = \infty$.

PES UNIVERSITY ONLINE

Integral Test

TEST (Integral Test)

the series
$$\sum_{i=1}^{\infty} a_i$$
 converges iff the improper integral $\int_1^{\infty} f(x) dx < \infty$.

the series
$$\sum_{i=1}^{\infty} a_i$$
 diverges iff the improper integral $\int_1^{\infty} f(x) dx = \infty$.

PES UNIVERSITY ONLINE

Integral Test

Example : Use the Integral Test to determine the set of all possible values of p>0 such that $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges.

Proof: By Integral test, $\sum_{n=0}^{\infty} a_n$ converges iff $\int_{1}^{\infty} f(x) dx < \infty$.

$$a_n = \frac{1}{n^p} = f(n)$$

$$\int_1^\infty f(x) dx = \int_1^\infty \frac{1}{x^p} dx$$

$$= \frac{x^{-p+1}}{-p+1} \bigg\}_{x=\infty}^{x=\infty}.$$

PES UNIVERSITY ONLINE

Integral Test

Example : Use the Integral Test to determine the set of all possible values of p>0 such that $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges.

Proof: By Integral test, $\sum_{n=0}^{\infty} a_n$ converges iff $\int_{1}^{\infty} f(x) dx < \infty$.

$$a_n = \frac{1}{n^p} = f(n)$$

$$\int_1^\infty f(x) dx = \int_1^\infty \frac{1}{x^p} dx$$

$$= \frac{x^{-p+1}}{-p+1} \bigg\}_{x=\infty}^{x=\infty}.$$

PES UNIVERSITY ONLINE

Integral Test

Example : Use the Integral Test to determine the set of all possible values of p>0 such that $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges.

Proof: By Integral test, $\sum_{n=0}^{\infty} a_n$ converges iff $\int_{1}^{\infty} f(x) dx < \infty$.

$$a_n = \frac{1}{n^p} = f(n)$$

$$\int_1^\infty f(x) dx = \int_1^\infty \frac{1}{x^p} dx$$

$$= \frac{x^{-p+1}}{-p+1} \bigg\}_{x=\infty}^{x=\infty}.$$

PES UNIVERSITY ONLINE

Integral Test

Example : Use the Integral Test to determine the set of all possible values of p>0 such that $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges.

Proof: By Integral test,
$$\sum_{n=0}^{\infty} a_n$$
 converges iff $\int_{1}^{\infty} f(x) dx < \infty$.

$$a_n = \frac{1}{n^p} = f(n)$$

$$\int_1^\infty f(x) dx = \int_1^\infty \frac{1}{x^p} dx$$

$$= \frac{x^{-p+1}}{-p+1} \bigg\}_{x=\infty}^{x=\infty}.$$

PES UNIVERSITY ONLINE

Integral Test

Upper limit is zero if $1 - p < 0 \Leftrightarrow p > 1$

Upper limit is
$$\infty$$
 if $1 - p > 0 \Leftrightarrow p < 1$

When
$$p=1$$
 , $\int_1^\infty \frac{1}{x} = \log(x) \Biggr\}_{x=1}^{x=\infty} = \infty$

Therefore,
$$\int_1^\infty \frac{1}{x^p} = 0 - \frac{1}{1-p} = \frac{1}{p-1}$$
.
So the p - series is convergent whenever $p > 1$.

When
$$p < 1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.
So the p - series is divergent whenever $p < 1$.

When
$$p = 1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.

So the p - series is divergent whenever
$$p = 1$$
.

PES UNIVERSITY ONLINE

Integral Test

Upper limit is zero if $1 - p < 0 \Leftrightarrow p > 1$

Upper limit is
$$\infty$$
 if $1 - p > 0 \Leftrightarrow p < 1$

When
$$p=1$$
 , $\int_1^\infty \frac{1}{x} = \log(x) \Biggr\}_{x=1}^{x=\infty} = \infty$

Therefore,
$$\int_1^\infty \frac{1}{x^p} = 0 - \frac{1}{1-p} = \frac{1}{p-1}$$
.
So the p - series is convergent whenever $p > 1$.

When
$$p < 1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.
So the p - series is divergent whenever $p < 1$.

When
$$p = 1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.

So the p - series is divergent whenever
$$p = 1$$
.

PES UNIVERSITY ONLINE

Integral Test

Upper limit is zero if $1 - p < 0 \Leftrightarrow p > 1$

Upper limit is
$$\infty$$
 if $1 - p > 0 \Leftrightarrow p < 1$

When
$$p=1$$
 , $\int_1^\infty \frac{1}{x} = \log(x) \Biggr\}_{x=1}^{x=\infty} = \infty$

Therefore,
$$\int_1^\infty \frac{1}{x^p} = 0 - \frac{1}{1-p} = \frac{1}{p-1}$$
.
So the p - series is convergent whenever $p > 1$.

When
$$p < 1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.
So the p - series is divergent whenever $p < 1$.

When
$$p = 1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.

So the p - series is divergent whenever p = 1.

PES UNIVERSITY ONLINE

Integral Test

Upper limit is zero if
$$1 - p < 0 \Leftrightarrow p > 1$$

Upper limit is
$$\infty$$
 if $1 - p > 0 \Leftrightarrow p < 1$

When
$$p=1$$
 , $\int_1^\infty \frac{1}{x} = \log(x) \Biggr\}_{x=1}^{x=\infty} = \infty$

Therefore,
$$\int_1^\infty \frac{1}{x^p} = 0 - \frac{1}{1-p} = \frac{1}{p-1}$$
.
So the p - series is convergent whenever $p > 1$.

When
$$p < 1$$
, $\int_{1}^{\infty} \frac{1}{x^{p}} = \infty$.
So the p - series is divergent whenever $p < 1$.

When
$$p=1$$
, $\int_1^\infty \frac{1}{x^p} = \infty$.

So the p - series is divergent whenever
$$p = 1$$
.

PES UNIVERSITY ON LINE

The p - series

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}},$$

The series
$$\sum_{p=1}^{n=\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

- 1. Converges if p > 1
- 2. Diverges if $p \le 1$.

PES UNIVERSITY ON LINE

The p - series

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}},$$

The series
$$\sum_{p=1}^{n=\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

- 1. Converges if p > 1
- 2. Diverges if $p \le 1$.

PES UNIVERSITY ON LINE

The p - series

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}},$$

The series
$$\sum_{p=1}^{n=\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

- 1. Converges if p > 1
- 2. Diverges if $p \le 1$.

PES UNIVERSITY ONLINE

The p - series

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

The series
$$\sum_{p=1}^{n=\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

- 1. Converges if p > 1
- 2. Diverges if $p \le 1$.

PES UNIVERSITY ONLINE

Examples

1. Use Integral test to test the convergence or divergence of the series:

$$\sum_{1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \text{ to } \infty$$

To do so, we determine the convergence or divergence of the integral, $\int_{-\infty}^{\infty} \frac{1}{x^2}$.

$$\int_{x=1}^{\infty} \frac{1}{x^2} = 1.$$
 which is convergent.

Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is also convergent.

REMARK

PES UNIVERSITY ONLINE

Examples

1. Use Integral test to test the convergence or divergence of the series:

$$\sum_{1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \text{ to } \infty$$

To do so, we determine the convergence or divergence of the integral, $\int_{-\infty}^{\infty} \frac{1}{x^2}$.

$$\int_{x=1}^{\infty} \frac{1}{x^2} = 1.$$
 which is convergent.

Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is also convergent.

REMARK

PES UNIVERSITY ONLINE

Examples

1. Use Integral test to test the convergence or divergence of the series:

$$\sum_{1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \text{ to } \infty$$

To do so, we determine the convergence or divergence of the integral, $\int_{-\infty}^{\infty} \frac{1}{x^2}$.

$$\int_{x=1}^{\infty} \frac{1}{x^2} = 1.$$
 which is convergent.

Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is also convergent.

REMARK

PES UNIVERSITY ONLINE

Examples

1. Use Integral test to test the convergence or divergence of the series:

$$\sum_{1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \text{ to } \infty$$

To do so, we determine the convergence or divergence of the integral, $\int_{x=1}^{\infty} \frac{1}{x^2}$.

$$\int_{x=1}^{\infty} \frac{1}{x^2} = 1.$$
 which is convergent.

Hence the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is also convergent.

REMARK

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=0}^{\infty} \frac{8tan^{-1}n}{1+n^2}$ converges or diverges.

Solution: Choose
$$f(x) = \frac{8tan^{-1}x}{1+x^2}$$

Subustituting
$$y = tan^{-1}x$$
 we get, $\int_{x=1}^{\infty} \frac{8tan^{-1}x}{1+x^2} = \int_{\pi/4}^{\pi/2} 8y dy$

$$=4\left\{\frac{\pi^2}{4}-\frac{\pi^2}{16}\right\}=\frac{3\pi^2}{4}$$
. Therefore, the series converges by Integral test.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=0}^{\infty} \frac{8tan^{-1}n}{1+n^2}$ converges or diverges.

Solution: Choose
$$f(x) = \frac{8tan^{-1}x}{1+x^2}$$

Subustituting
$$y = tan^{-1}x$$
 we get, $\int_{x=1}^{\infty} \frac{8tan^{-1}x}{1+x^2} = \int_{\pi/4}^{\pi/2} 8y dy$

$$=4\left\{\frac{\pi^2}{4}-\frac{\pi^2}{16}\right\}=\frac{3\pi^2}{4}$$
. Therefore, the series converges by Integral test.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=0}^{\infty} \frac{8tan^{-1}n}{1+n^2}$ converges or diverges.

Solution: Choose
$$f(x) = \frac{8tan^{-1}x}{1+x^2}$$

Subustituting
$$y = tan^{-1}x$$
 we get, $\int_{x=1}^{\infty} \frac{8tan^{-1}x}{1+x^2} = \int_{\pi/4}^{\pi/2} 8y dy$

$$=4\left\{\frac{\pi^2}{4}-\frac{\pi^2}{16}\right\}=\frac{3\pi^2}{4}$$
. Therefore, the series converges by Integral test.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=0}^{\infty} \frac{8tan^{-1}n}{1+n^2}$ converges or diverges.

Solution: Choose
$$f(x) = \frac{8tan^{-1}x}{1+x^2}$$

Subustituting
$$y = tan^{-1}x$$
 we get, $\int_{x=1}^{\infty} \frac{8tan^{-1}x}{1+x^2} = \int_{\pi/4}^{\pi/2} 8y dy$

$$=4\left\{\frac{\pi^2}{4}-\frac{\pi^2}{16}\right\}=\frac{3\pi^2}{4}$$
. Therefore, the series converges by Integral test.

PES UNIVERSITY ON LINE

- ▶ 1. The series $\sum \frac{1}{\sqrt{n}}$ is divergent as $n = \frac{1}{2} < 1$.
- ▶ 2. The series $\sum \frac{1}{n\sqrt{n}}$ is convergent as $n = \frac{3}{2} > 1$.
- ▶ 3. The series $\sum_{n=0}^{\infty} \frac{1}{n}$ is divergent as n=1.

PES UNIVERSITY ON LINE

- ▶ 1. The series $\sum \frac{1}{\sqrt{n}}$ is divergent as $n = \frac{1}{2} < 1$.
- ▶ 2. The series $\sum \frac{1}{n\sqrt{n}}$ is convergent as $n = \frac{3}{2} > 1$.
- ▶ 3. The series $\sum_{n=0}^{\infty} \frac{1}{n}$ is divergent as n=1.

PES UNIVERSITY ON LINE

- ▶ 1. The series $\sum \frac{1}{\sqrt{n}}$ is divergent as $n = \frac{1}{2} < 1$.
- ▶ 2. The series $\sum \frac{1}{n\sqrt{n}}$ is convergent as $n = \frac{3}{2} > 1$.
- ▶ 3. The series $\sum_{n=0}^{\infty} \frac{1}{n}$ is divergent as n=1.

PES UNIVERSITY

- ▶ 1. The series $\sum \frac{1}{\sqrt{n}}$ is divergent as $n = \frac{1}{2} < 1$.
- ▶ 2. The series $\sum \frac{1}{n\sqrt{n}}$ is convergent as $n = \frac{3}{2} > 1$.
- ▶ 3. The series $\sum \frac{1}{n}$ is divergent as n = 1.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ converges or diverges.

Solution: This is a p - series, with $p=\pi>1$.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ converges or diverges.

Solution: This is a p - series, with $p=\pi>1$.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ converges or diverges.

Solution: This is a p - series, with $p=\pi>1$.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{\pi}}$ converges or diverges.

Solution: This is a p - series, with $p=\pi>1$.

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{2}{3+5n}$ converges or diverges.

Solution: Here,
$$a_n = \frac{2}{3+5n} > \frac{2}{3+5(n+1)}$$
.

So the terms of the series are decreaisng. f_{∞}^{∞}

$$\int_{x=1}^{\infty} \frac{2}{3+5x}$$

$$= \lim_{t \to \infty} \int_{x=1}^{t} \frac{2}{3+5x} dx = \lim_{t \to \infty} \frac{2}{5} \ln(3+5x) \bigg\}_{0}^{t} = \infty$$

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{2}{3+5n}$ converges or diverges.

Solution: Here,
$$a_n = \frac{2}{3+5n} > \frac{2}{3+5(n+1)}$$
.

So the terms of the series are decreaisng. f_{∞}^{∞}

$$\int_{x=1}^{\infty} \frac{2}{3+5x}$$

$$= \lim_{t \to \infty} \int_{x=1}^{t} \frac{2}{3+5x} dx = \lim_{t \to \infty} \frac{2}{5} \ln(3+5x) \bigg\}_{0}^{t} = \infty$$

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{2}{3+5n}$ converges or diverges.

Solution: Here,
$$a_n = \frac{2}{3+5n} > \frac{2}{3+5(n+1)}$$
.

So the terms of the series are decreaisng. f_{∞}^{∞}

$$\int_{x=1}^{\infty} \frac{2}{3+5x}$$

$$= \lim_{t \to \infty} \int_{x=1}^{t} \frac{2}{3+5x} dx = \lim_{t \to \infty} \frac{2}{5} \ln(3+5x) \bigg\}_{0}^{t} = \infty$$

PES UNIVERSITY ONLINE

Examples

Determine if the series $\sum_{n=1}^{\infty} \frac{2}{3+5n}$ converges or diverges.

Solution: Here,
$$a_n = \frac{2}{3+5n} > \frac{2}{3+5(n+1)}$$
.

So the terms of the series are decreaisng. t^{∞}

$$\begin{split} &\int_{x=1}^{\infty} \frac{2}{3+5x} \\ &= \lim_{t \to \infty} \int_{x=1}^{t} \frac{2}{3+5x} dx = \lim_{t \to \infty} \frac{2}{5} \ln(3+5x) \bigg\}_{0}^{t} = \infty \end{split}$$

Troblems

Dest the convergence of the series: $\sum_{n=1}^{\infty} \frac{1}{2n+3}$ integral test. , wring Cauchy's

Soln: Here
$$n^{th}$$
 term, $\alpha_n = \frac{1}{2n+3} = f(n)$

=> f(x) = 1. For x>1, f(x) > 0 and f(x) is a monote decreasing function. Hence. Cauchy's integral test is applicable. a monotonically

Let
$$I_n = \int_{-2\pi+3}^{n} f(x) dx = \int_{-2\pi+3}^{n} \frac{dx}{2\pi+3} = \frac{1}{2} \log(2\pi+3) \int_{-2\pi+3}^{n} \frac{dx}{2\pi+3}$$

=
$$\frac{1}{2} \left[\log (2n+3) - \log 5 \right]$$
. $\int_{1}^{\infty} f(a) da = \lim_{n \to \infty} \int_{1}^{\infty} f(a) da = \lim_{n \to \infty} f(a) da = \lim_{n \to \infty}$

Problems

$$= \underbrace{1}_{N-1} \underbrace{1}_{\infty} \left[\underbrace{\log (2n+3) - \log 5}_{\infty} \right] = \infty$$

... I fea) de diverges and, hence, by Integral test,

∑ q_n es a divergent series.

2)
$$\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n^2-1}}$$
; $a_n = f(n)$, valid for $n > 2$

.3.
$$f(x) = \frac{1}{2\sqrt{n^2-1}}$$
 $j \propto > 2$

Problems

for 27,2, f(x) is +re and decreasing. ... Cauchy's integral test is applicable. By Cauchy's integral test, $\int f(a) dx = \int \frac{1}{2\sqrt{\chi^2 - 1}} dx \text{ and } \sum_{n=2}^{\infty} a_n \text{ converges or }$ diverges together. det $J_{n} = \int_{1}^{n} f(a) da = \int_{1}^{n} \frac{da}{\sqrt{a^{2}-1}} = \int_{1}^{\infty} \frac{da}{\sqrt{a^{2}-1}} = \int_$

Problems

=
$$\frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$$
, finete quantity.

... By integral teet; $\gtrsim 9n$ is convergent.

3)
$$\sum_{n=1}^{\infty} n \cdot e^{-n^2} = \sum_{n=1}^{\infty} f(n)$$
; $f(n) = x \cdot e^{-x^2}$

for x>,1, fla) es positive and decrearing function.

i, By Cauchy's integral test, I fla) da & \(\sum_{n} \) an converge

or diverge together.

Pro blems

Let
$$\int_{n} = \int_{n}^{\infty} \int_{n}^{\infty} da = \int_{n}^{\infty} \int_{n}^{\infty} e^{-\frac{\pi}{2}} da = -\frac{1}{2} \int_{e}^{\infty} e^{-\frac{\pi}{2}} (-2x) dx$$

$$= -\frac{1}{2} \int_{-1}^{\infty} e^{\frac{\pi}{2}} dt, \quad \text{Here } t = -\frac{\pi}{2}.$$

$$= -\frac{1}{2} \left[e^{\frac{\pi}{2}} \right]_{-1}^{\infty} = -\frac{1}{2} \left[e^{-\frac{\pi}{2}} \right]_{-1}^{\infty} = \frac{1}{2} \left[e^{-\frac{\pi}{2}} \right]_{-1}^{\infty}$$

$$= -\frac{1}{2} \left[e^{\frac{\pi}{2}} \right]_{-1}^{\infty} \int_{n}^{\infty} \int_{n}^{\infty} \int_{n}^{\infty} e^{-\frac{\pi}{2}} dx = \int_{n}^{\infty} \int_{n}^{\infty} e^{-\frac{\pi}{2}} dx = \int_{n}^{\infty} \int_{n}^{$$

THANK YOU

Aparna B. S

Department of Science and Humanities

aparnabs@pes.edu