CHAPTER - 6 Application of Derivatives

EE24BTECH11061 - Rohith Sai

Exercise: 6.5

5.2) Find the absolute maximum value and the absolute minimum value of the function $f(x) = \sin x + \cos x, x \in [0, \pi]$

Theoretical Solution:

Given the function:

$$f(x) = \sin x + \cos x, \text{ where } x \in [0, \pi]$$
 (1)

To find the critical points, we differentiate f(x) with respect to x:

$$\frac{df}{dx} = \cos x - \sin x \tag{2}$$

1

Setting the derivative equal to zero:

$$\cos x - \sin x = 0 \tag{3}$$

$$\cos x = \sin x \tag{4}$$

This occurs when:

$$x = \frac{\pi}{4} \tag{5}$$

Now, let's evaluate f(x) at the critical point and the boundaries of the interval:

• At x = 0:

$$f(0) = \sin(0) + \cos(0) = 0 + 1 = 1 \tag{6}$$

• At $x = \frac{\pi}{4}$:

$$f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \tag{7}$$

• At $x = \pi$:

$$f(\pi) = \sin(\pi) + \cos(\pi) = 0 - 1 = -1 \tag{8}$$

Therefore, the maximum value of f(x) in the interval $[0, \pi]$ is $\sqrt{2}$, and the minimum value is -1.

Computational Solution (Solved):

To find the maximum and minimum values of the function $f(x) = \sin x + \cos x$ on the interval $x \in [0, \pi]$, we use iterative methods like gradient ascent and gradient descent.

The gradient ascent method is used to find the maximum value of a function by following the direction of the positive gradient. The iterative formula for gradient ascent is given by:

$$x_{n+1} = x_n + \eta \cdot \frac{df}{dx} \tag{9}$$

where x_n is the current value of x, x_{n+1} is the next value of x, η is the learning rate (a small positive number), and $\frac{df}{dx}$ is the derivative of the function at x_n . First, we compute the derivative of f(x):

$$\frac{df}{dx} = \cos x - \sin x \tag{10}$$

To apply gradient ascent, choose an initial point x_0 within the interval $[0, \pi]$, and apply the gradient ascent formula iteratively until convergence. The iteration stops when the gradient becomes zero. We find the maximum at $x = \frac{\pi}{4}$ because the gradient changes sign around this point.

The function value at $x = \frac{\pi}{4}$ is:

$$f\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) = \sqrt{2} \tag{11}$$

Therefore, the absolute maximum value of f(x) is $\sqrt{2}$ at $x = \frac{\pi}{4}$.

The gradient descent method is used to find the minimum value of a function by following the direction of the negative gradient. The iterative formula for gradient descent is given by:

$$x_{n+1} = x_n - \eta \cdot \frac{df}{dx} \tag{12}$$

Starting with an initial point x_0 within the interval $[0, \pi]$, we apply the gradient descent formula iteratively until convergence. The iteration stops when the gradient becomes zero. We find the minimum at $x = \pi$ because the gradient changes sign around this point.

The function value at $x = \pi$ is:

$$f(\pi) = \sin(\pi) + \cos(\pi) = -1 \tag{13}$$

Therefore, the absolute minimum value of f(x) is -1 at $x = \pi$.

The computational results are summarized as follows:

Absolute Maximum:
$$f(x) = \sqrt{2}$$
 at $x = \frac{\pi}{4}$ (14)

Absolute Minimum:
$$f(x) = -1$$
 at $x = \pi$ (15)

The graph of the function $f(x) = \sin x + \cos x$ representing the maximum and minimum values is shown below:

