Making JavaScript WARC

David Calano
CS 895 - Web Archiving Forensics
Week 5
September 26, 2022

Invasion of the Byte Snatchers!

- Median of 44% bytes devoted to JS (2020)
- 4x increase in JavaScript utilization
- Trend towards complexity
- Significant portion of JavaScript is irrelevant to web archiving

Figure 1: Across the landing pages of 300 sites, distribution of fraction of bytes on the page accounted for by JavaScript.

https://www.usenix.org/system/files/osdi22-goel.pdf

What's the Problem?

https://goelayu.github.io/files/jawa-poster.pdf

What Can a "JavaScript-Aware Web Archive" Do For You?

- Lower storage and data costs
- Reduced overhead
- Increased archival capacity
- Future proofing
- Increased visual fidelity

https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_goel.pdf

WARC VS Jawa

https://wiki.archivematica.org/Significant characteristics of websites

	Cra	awl index				
	Key	Value				
IA	URL	List of (content hash, WARC file ID) tuples				
Jawa	(URL, content hash)	List of (start byte offset, end byte offset, WARC file ID) tuples				
	Serv	ving index				
	Kev	Value				

Serving index						
	Key	Value				
IA	(URL, timestamp)	(WARC file ID, byte offset)				
Jawa	(URL, timestamp)	List of (WARC file ID, byte off- set) tuples				

Table 2: Comparison of indices maintained by IA and Jawa. https://www.usenix.org/system/files/osdi22-goel.pdf

WARC

- Stores deduplicated files for each page snapshot
- File URLs rewritten
- Deterministic content extraction

Jawa

- JavaScript stored in partitioned byte offsets
- JavaScript served from compiled partitions
- Index I/O efficiency improvements
- Non-deterministic content extraction

Datasets

Corpus_{3K}

- 300 random websites sampled across 3
 Alexa top site rank stratifications
- Single snapshot selected from Sept. 2021
- 1 landing page, 9 internal pages

Corpus_{1M}

 3,500 snapshots for each Internet Archive page selected from Sep. 2020

The Past and Present Web

https://www.usenix.org/sites/default/files/conference/protected-files/osdi22_slides_goel.pdf

Client-side Variance

Improve fidelity: Fix sources of JavaScript variation

					-		
Randomness (da	Client characteristics						
Insight	So	lution	Insight	Solution			
1-1 mapping between diverged URLs	Use server-side matching techniques	a.com/b.js?ts=5467 a.com/b.js?ts=8967	Key contributor to URL divergence.	Enforce same values across loads		Crawling device Replay device	APIs: - User-agent - Screen size - Operating system - Geolocation

https://goelayu.github.io/files/jawa-poster.pdf

Prune the Trees, Not the Forest

https://goelayu.github.io/files/jawa-poster.pdf

Testing

- ArchiveBox used as basis for testing
 - Proprietary Internet Archive code and headless Chrome engine
- Custom crawler to inject blocking and code analysis capabilities
- Decreased I/O calls due to filtering
- No performance impact from DRP APIs

Figure 9: Comparison of crawling throughput, normalized to that offered by ArchiveBox.

https://www.usenix.org/system/files/osdi22-goel.pdf

Code Reduction

(a) JavaScript resources

(b) All resources

Figure 7: Total storage necessary to store corpus of 1 million page snapshots.

https://www.usenix.org/system/files/osdi22-goel.pdf

Pros and Cons

- Amazing promise
- Great presentation and ephemera
- Modular design
- Large sampling
- Reproducible results
- Open code and data

- Adoption
- Integration
- Small sampling
- No improvements with regard to assets
- Static filter list
- Shifting landscape

Link rot on project page

Takeaways

- JavaScript must ultimately be addressed in web archives
 - Largest issues related to non-deterministic nature
- Non-breaking improvements can presently be implemented
- Huge potential for cost and overhead savings

