

# **STD5NM60 STB8NM60 - STP8NM60**

N-channel 650 V@Tjmax, 0.9 Ω, 8 A MDmesh™ Power MOSFET TO-220, TO-220FP, D<sup>2</sup>PAK, DPAK, IPAK

#### **Features**

| Туре       | V <sub>DSS</sub> | R <sub>DS(on)</sub> | I <sub>D</sub>     | Pw    |
|------------|------------------|---------------------|--------------------|-------|
| STD5NM60   | 650 V            | <1Ω                 | 5 A                | 96 W  |
| STD5NM60-1 | 650 V            | < 1 Ω               | 5 A                | 96 W  |
| STB8NM60   | 650 V            | < 1 Ω               | 5 A                | 100 W |
| STP8NM60   | 650 V            | < 1 Ω               | 8 A                | 100 W |
| STP8NM60FP | 650 V            | < 1 Ω               | 8 A <sup>(1)</sup> | 30 W  |

- 100% avalanche tested
- HIgh dv/dt and avalanche capabilities
- Low input capacitance and gate charge
- Low gate input resistance



■ Switching applications

## **Description**

The MDmesh™ is a new revolutionary Power MOSFET technology that associates the multiple drain process with the company's PowerMESH™ horizontal layout. The resulting product has an outstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the company's proprietary strip technique yields overall dynamic performance that is significantly better than that of similar competition's products.



Figure 1. Internal schematic diagram



Table 1. Device summary

| Order codes | Marking  | Package            | Packaging   |
|-------------|----------|--------------------|-------------|
| STD5NM60-1  | D5NM60   | IPAK               | Tube        |
| STD5NM60T4  | D5NM60   | DPAK               | Tape & reel |
| STB8NM60T4  | B8NM60   | D <sup>2</sup> PAK | Tape & reel |
| STP8NM60    | P8NM60   | TO-220             | Tube        |
| STP8NM60FP  | P8NM60FP | TO-220FP           | Tube        |

October 2008 Rev 17 1/18

# 1 Electrical ratings

Table 1. Absolute maximum ratings

|                                    |                                                                                                             |                              | Value             |                    |      |
|------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|--------------------|------|
| Symbol                             | Parameter                                                                                                   | TO-220<br>D <sup>2</sup> PAK | TO-220FP          | IPAK<br>DPAK       | Unit |
| V <sub>GS</sub>                    | Gate-source voltage                                                                                         |                              | ± 30              |                    | V    |
| I <sub>D</sub>                     | Drain current (continuous) at T <sub>C</sub> = 25 °C                                                        | 8                            | 8 <sup>(1)</sup>  | 5                  | Α    |
| I <sub>D</sub>                     | Drain current (continuous) at T <sub>C</sub> =100 °C                                                        | 5                            | 5 <sup>(1)</sup>  | 3.1 <sup>(1)</sup> | Α    |
| I <sub>DM</sub> <sup>(2)</sup>     | Drain current (pulsed)                                                                                      | 32                           | 32 <sup>(1)</sup> | 20 (1)             | Α    |
| P <sub>TOT</sub>                   | Total dissipation at T <sub>C</sub> = 25 °C                                                                 | 100                          | 30                | 96                 | W    |
|                                    | Derating factor                                                                                             | 0.8                          | 0.24              | 0.0.4              | W/°C |
| dv/dt <sup>(3)</sup>               | Peak diode recovery voltage slope                                                                           |                              | 15                |                    | V/ns |
| V <sub>ISO</sub>                   | Insulation withstand voltage (RMS) from all three leads to external heat sink (t=1 s;T <sub>C</sub> =25 °C) |                              | 2500              |                    | V    |
| T <sub>J</sub><br>T <sub>stg</sub> | Operating junction temperature Storage temperature                                                          |                              | -55 to 150        |                    | °C   |

<sup>1.</sup> Limited only by maximum temperature allowed

Table 2. Thermal resistance

|                       |                                                |                 | Value        |          |      |
|-----------------------|------------------------------------------------|-----------------|--------------|----------|------|
| Symbol                | Parameter                                      | TO-220<br>D²PAK | IPAK<br>DPAK | TO-220FP | Unit |
| R <sub>thj-case</sub> | Thermal resistance junction-case max           | 1.25            | 1.25 1.3 4.1 |          |      |
| R <sub>thj-a</sub>    | Thermal resistance junction-ambient max        |                 | 62.5         |          | °C/W |
| T <sub>I</sub>        | Maximum lead temperature for soldering purpose | 300             |              | °C       |      |

Table 3. Avalanche data

| Symbol          | Parameter                                                                                                  | Value | Unit |
|-----------------|------------------------------------------------------------------------------------------------------------|-------|------|
| I <sub>AS</sub> | Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)                            | 2.5   | Α    |
| E <sub>AS</sub> | Single pulse avalanche energy (starting Tj=25 °C, I <sub>D</sub> =I <sub>AS</sub> , V <sub>DD</sub> =50 V) | 200   | mJ   |

<sup>2.</sup> Pulse width limited by safe operating area

<sup>3.</sup>  $I_{SD} \leq$  5 A, di/dt  $\leq$  400 A/ $\mu$ s,  $V_{DD}$  = 80% $V_{(BR)DSS}$ 

## 2 Electrical characteristics

(T<sub>CASE</sub> = 25 °C unless otherwise specified)

Table 4. On/off states

| Symbol               | Parameter                                                                    | Test conditions                                | Min. | Тур. | Max.    | Unit                     |
|----------------------|------------------------------------------------------------------------------|------------------------------------------------|------|------|---------|--------------------------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage $I_D = 250 \mu A, V_{GS} = 0$                 |                                                | 600  |      |         | V                        |
| I <sub>DSS</sub>     | Zero gate voltage drain $V_{DS}$ = max rating, $V_{DS}$ = max rating @125 °C |                                                |      |      | 1<br>10 | μ <b>Α</b><br>μ <b>Α</b> |
| I <sub>GSS</sub>     | Gate body leakage current (V <sub>DS</sub> = 0)                              | $V_{GS} = \pm 20 \text{ V}$                    |      |      | ±100    | nA                       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                                                       | $V_{DS} = V_{GS}, I_D = 250 \mu A$             | 3    | 4    | 5       | V                        |
| R <sub>DS(on)</sub>  | Static drain-source on resistance                                            | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 2.5 A |      | 0.9  | 1       | Ω                        |

Table 5. Dynamic

| Symbol                                                   | Parameter                                                         | Parameter Test conditions                                            |  | Тур.             | Max. | Unit           |
|----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|--|------------------|------|----------------|
| 9 <sub>fs</sub>                                          | Forward transconductance                                          | $V_{DS} = I_{D(on)} x R_{DS(on)max},$ $I_{D} = 2.5 A$                |  | 2.4              |      | S              |
| C <sub>iss</sub><br>C <sub>oss</sub><br>C <sub>rss</sub> | Input capacitance Output capacitance Reverse transfer capacitance | V <sub>DS</sub> = 25 V, f=1 MHz,<br>V <sub>GS</sub> =0               |  | 400<br>100<br>10 |      | pF<br>pF<br>pF |
| C <sub>oss eq</sub> <sup>(1)</sup> .                     | Equivalent output capacitance                                     | V <sub>GS</sub> =0, V <sub>DS</sub> =0 to 480 V                      |  | 50               |      | pF             |
| $egin{array}{c} Q_{ m g} \ Q_{ m gd} \end{array}$        | Total gate charge<br>Gate-source charge<br>Gate-drain charge      | $V_{DD}$ = 400 V, $I_{D}$ = 5 A<br>$V_{GS}$ =10 V<br>(see Figure 12) |  | 13<br>5<br>6     | 18   | nC<br>nC<br>nC |

C<sub>oss eq.</sub> is defined as a constant equivalent capacitance giving the same charging time as C<sub>oss</sub> when V<sub>DS</sub> increases from 0 to 80% V<sub>DSS</sub>

Table 6. Switching times

| Symbol                                                               | Parameter                                                           | Test conditions                                                                            | Min. | Тур.                 | Max. | Unit                 |
|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|----------------------|------|----------------------|
| t <sub>d(on)</sub> t <sub>r</sub> t <sub>d(off)</sub> t <sub>f</sub> | Turn-on delay time<br>Rise time<br>Turn-off delay time<br>Fall time | $V_{DD}$ = 300 V, $I_{D}$ = 2.5 A, $R_{G}$ = 4.7 $\Omega$ , $V_{GS}$ =10 V (see Figure 17) |      | 14<br>10<br>23<br>10 |      | ns<br>ns<br>ns<br>ns |
| t <sub>r(Voff)</sub> t <sub>f</sub> t <sub>c</sub>                   | Off-voltage rise time Fall time Cross-over time                     | $V_{DD}$ = 480 V, $I_{D}$ = 5 A, $R_{G}$ = 4.7 $\Omega$ , $V_{GS}$ =10 V                   |      | 7<br>10<br>17        |      | ns<br>ns<br>ns       |

Table 7. Source drain diode

| Symbol                                                 | Parameter Test conditions                                              |                                                                                                        | Min. | Тур.                | Max. | Unit          |
|--------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------|---------------------|------|---------------|
| I <sub>SD</sub>                                        | Source-drain current                                                   |                                                                                                        |      |                     | 8    | Α             |
| I <sub>SDM</sub> <sup>(1)</sup>                        | Source-drain current (pulsed)                                          |                                                                                                        |      |                     | 32   | Α             |
| V <sub>SD</sub> <sup>(2)</sup>                         | Forward on voltage                                                     | Forward on voltage I <sub>SD</sub> = 5A, V <sub>GS</sub> =0                                            |      |                     | 1.5  | V             |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>BBM</sub> | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD} = 5 \text{ A}, V_{DD} = 100 \text{ V}$<br>di/dt = 100 A/ $\mu$ s,<br>(see Figure 22)           |      | 300<br>1.95<br>13   |      | ns<br>μC<br>Α |
| t <sub>rr</sub><br>Q <sub>rr</sub><br>I <sub>RRM</sub> | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_{SD} = 5 \text{ A}, V_{DD} = 100 \text{ V}$<br>di/dt = 100 A/ $\mu$ s,<br>Tj=150 °C (see Figure 22) |      | 445<br>3.00<br>13.5 |      | ns<br>μC<br>A |

<sup>1.</sup> Pulse width limited by safe operating area

<sup>2.</sup> Pulsed: pulse duration=300µs, duty cycle 1.5%

 $I_D(A)$ 

10<sup>1</sup>

10

Thermal impedance for TO-220/

## 2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for TO-220/ Figure 3. D<sup>2</sup>PAK



Figure 4. Safe operating area for TO-220FP

Figure 5. Thermal impedance for TO-220FP



Figure 6. Safe operating area for DPAK/IPAK Figure 7. Thermal impedance for DPAK/IPAK



Figure 8. Output characteristics

Figure 9. Transfer characteristics





Figure 10. Transconductance

Figure 11. Static drain-source on resistance





Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations





5/

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature temperature





Figure 16. Source-drain diode forward characteristics



## 3 Test circuit

Figure 17. Switching times test circuit for resistive load

Figure 18. Gate charge test circuit



Figure 19. Test circuit for inductive load switching and diode recovery times

Figure 20. Unclamped inductive load test circuit



Figure 21. Unclamped inductive waveform

Figure 22. Switching time waveform



# 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <a href="https://www.st.com">www.st.com</a>

9/18

#### TO-220 mechanical data

| Dim |       | mm    |       |       | inch  |       |
|-----|-------|-------|-------|-------|-------|-------|
| Dim | Min   | Тур   | Max   | Min   | Тур   | Max   |
| А   | 4.40  |       | 4.60  | 0.173 |       | 0.181 |
| b   | 0.61  |       | 0.88  | 0.024 |       | 0.034 |
| b1  | 1.14  |       | 1.70  | 0.044 |       | 0.066 |
| С   | 0.48  |       | 0.70  | 0.019 |       | 0.027 |
| D   | 15.25 |       | 15.75 | 0.6   |       | 0.62  |
| D1  |       | 1.27  |       |       | 0.050 |       |
| E   | 10    |       | 10.40 | 0.393 |       | 0.409 |
| е   | 2.40  |       | 2.70  | 0.094 |       | 0.106 |
| e1  | 4.95  |       | 5.15  | 0.194 |       | 0.202 |
| F   | 1.23  |       | 1.32  | 0.048 |       | 0.051 |
| H1  | 6.20  |       | 6.60  | 0.244 |       | 0.256 |
| J1  | 2.40  |       | 2.72  | 0.094 |       | 0.107 |
| L   | 13    |       | 14    | 0.511 |       | 0.551 |
| L1  | 3.50  |       | 3.93  | 0.137 |       | 0.154 |
| L20 |       | 16.40 |       |       | 0.645 |       |
| L30 |       | 28.90 |       |       | 1.137 |       |
| Ø₽  | 3.75  |       | 3.85  | 0.147 |       | 0.151 |
| Q   | 2.65  |       | 2.95  | 0.104 |       | 0.116 |



### **TO-220FP MECHANICAL DATA**

| DIM. |      | mm. |      |       | inch  |       |
|------|------|-----|------|-------|-------|-------|
| DIM. | MIN. | TYP | MAX. | MIN.  | TYP.  | MAX.  |
| Α    | 4.4  |     | 4.6  | 0.173 |       | 0.181 |
| В    | 2.5  |     | 2.7  | 0.098 |       | 0.106 |
| D    | 2.5  |     | 2.75 | 0.098 |       | 0.108 |
| Е    | 0.45 |     | 0.7  | 0.017 |       | 0.027 |
| F    | 0.75 |     | 1    | 0.030 |       | 0.039 |
| F1   | 1.15 |     | 1.7  | 0.045 |       | 0.067 |
| F2   | 1.15 |     | 1.7  | 0.045 |       | 0.067 |
| G    | 4.95 |     | 5.2  | 0.195 |       | 0.204 |
| G1   | 2.4  |     | 2.7  | 0.094 |       | 0.106 |
| Н    | 10   |     | 10.4 | 0.393 |       | 0.409 |
| L2   |      | 16  |      |       | 0.630 |       |
| L3   | 28.6 |     | 30.6 | 1.126 |       | 1.204 |
| L4   | 9.8  |     | 10.6 | .0385 |       | 0.417 |
| L5   | 2.9  |     | 3.6  | 0.114 |       | 0.141 |
| L6   | 15.9 |     | 16.4 | 0.626 |       | 0.645 |
| L7   | 9    |     | 9.3  | 0.354 |       | 0.366 |
| Ø    | 3    |     | 3.2  | 0.118 |       | 0.126 |



#### D<sup>2</sup>PAK (TO-263) mechanical data

| Di  |      | mm   |       |       | inch  |       |
|-----|------|------|-------|-------|-------|-------|
| Dim | Min  | Тур  | Max   | Min   | Тур   | Max   |
| Α   | 4.40 |      | 4.60  | 0.173 |       | 0.181 |
| A1  | 0.03 |      | 0.23  | 0.001 |       | 0.009 |
| b   | 0.70 |      | 0.93  | 0.027 |       | 0.037 |
| b2  | 1.14 |      | 1.70  | 0.045 |       | 0.067 |
| С   | 0.45 |      | 0.60  | 0.017 |       | 0.024 |
| c2  | 1.23 |      | 1.36  | 0.048 |       | 0.053 |
| D   | 8.95 |      | 9.35  | 0.352 |       | 0.368 |
| D1  | 7.50 |      |       | 0.295 |       |       |
| Е   | 10   |      | 10.40 | 0.394 |       | 0.409 |
| E1  | 8.50 |      |       | 0.334 |       |       |
| е   |      | 2.54 |       |       | 0.1   |       |
| e1  | 4.88 |      | 5.28  | 0.192 |       | 0.208 |
| Н   | 15   |      | 15.85 | 0.590 |       | 0.624 |
| J1  | 2.49 |      | 2.69  | 0.099 |       | 0.106 |
| L   | 2.29 |      | 2.79  | 0.090 |       | 0.110 |
| L1  | 1.27 |      | 1.40  | 0.05  |       | 0.055 |
| L2  | 1.30 |      | 1.75  | 0.051 |       | 0.069 |
| R   |      | 0.4  | İ     |       | 0.016 |       |
| V2  | 0°   |      | 8°    | 0°    |       | 8°    |



## TO-251 (IPAK) mechanical data

| DIM  | mm.  |       |      |  |
|------|------|-------|------|--|
| DIM. | min. | typ   | max. |  |
| Α    | 2.20 |       | 2.40 |  |
| A1   | 0.90 |       | 1.10 |  |
| b    | 0.64 |       | 0.90 |  |
| b2   |      |       | 0.95 |  |
| b4   | 5.20 |       | 5.40 |  |
| С    | 0.45 |       | 0.60 |  |
| c2   | 0.48 |       | 0.60 |  |
| D    | 6.00 |       | 6.20 |  |
| Е    | 6.40 |       | 6.60 |  |
| е    |      | 2.28  |      |  |
| e1   | 4.40 |       | 4.60 |  |
| Н    |      | 16.10 |      |  |
| L    | 9.00 |       | 9.40 |  |
| (L1) | 0.80 |       | 1.20 |  |
| L2   |      | 0.80  |      |  |
| V1   |      | 10 °  |      |  |



## TO-252 (DPAK) mechanical data

| DIM.   | mm.  |      |       |  |
|--------|------|------|-------|--|
| DIIVI. | min. | typ  | max.  |  |
| A      | 2.20 |      | 2.40  |  |
| A1     | 0.90 |      | 1.10  |  |
| A2     | 0.03 |      | 0.23  |  |
| b      | 0.64 |      | 0.90  |  |
| b4     | 5.20 |      | 5.40  |  |
| С      | 0.45 |      | 0.60  |  |
| c2     | 0.48 |      | 0.60  |  |
| D      | 6.00 |      | 6.20  |  |
| D1     |      | 5.10 |       |  |
| E      | 6.40 |      | 6.60  |  |
| E1     |      | 4.70 |       |  |
| е      |      | 2.28 |       |  |
| e1     | 4.40 |      | 4.60  |  |
| Н      | 9.35 |      | 10.10 |  |
| L      | 1    |      |       |  |
| L1     |      | 2.80 |       |  |
| L2     |      | 0.80 |       |  |
| L4     | 0.60 |      | 1     |  |
| R      |      | 0.20 |       |  |
| V2     | 0 °  |      | 8 °   |  |



#### Packaging mechanical data 5

#### D<sup>2</sup>PAK FOOTPRINT



#### **TAPE AND REEL SHIPMENT**



#### **DPAK FOOTPRINT**



#### TAPE AND REEL SHIPMENT



# 6 Revision history

Table 8. Document revision history

| Date        | Revision | Changes                                                    |
|-------------|----------|------------------------------------------------------------|
| 14-Apr-2004 | 11       | Title changed                                              |
| 11-Apr-2005 | 12       | Inserted D <sup>2</sup> PAK                                |
| 21-Feb-2006 | 13       | New template                                               |
| 08-Sep-2006 | 14       | Modified order codes                                       |
| 14-Sep-2006 | 15       | Corrected Figure 6.: Safe operating area for DPAK/IPAK     |
| 09-Jul-2007 | 16       | Qrr value in Table 7.: Source drain diode has been updated |
| 01-Oct-2008 | 17       | 4: Package mechanical data updated                         |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## STMicroelectronics:

STD5NM60-1 STP8NM60 STP8NM60FP STB8NM60T4 STD5NM60T4