Exercice 3. Méthode des différences finies pour une équation différentielle d'ordre 2.

Soit α un réel strictement positif donné. On définit pour $n \geq 2$ la matrice tridiagonale $A_{n,\alpha}$ de taille $n \times n$ par :

$$A_{n,\alpha} = \begin{pmatrix} 1 & -\alpha & 0 & \dots & 0 & 0 \\ -\alpha & 1 & -\alpha & 0 & \dots & 0 \\ 0 & -\alpha & 1 & -\alpha & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & -\alpha & 1 & -\alpha \\ 0 & 0 & \dots & 0 & -\alpha & 1 \end{pmatrix}.$$

- (1) Soit $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur propre de $A_{n,\alpha}$ pour une valeur propre
 - λ , et soit $i_0 \in \{1, \ldots, n\}$ tel que $|x_{i_0}| = \max_{1 \le i \le n} |x_i|$
 - a) Montrer que si $i_0 = 1$ ou $i_0 = n$, alors $|1 \lambda| \le \alpha$ (indication : écrire la ligne i_0 de l'équation vectorielle $A_{n,\alpha}X = \lambda X$).
 - b) Montrer que si $1 < i_0 < n$, alors $|1 \lambda| \le 2\alpha$.
 - c) En déduire que si $\alpha < \frac{1}{2}$, la matrice $A_{n,\alpha}$ est symétrique définie positive.
- (2) Soit u une fonction de classe C^4 sur [0, 1].
 - a) Montrer que pour tout $x \in]0,1[$,

$$\lim_{h \to 0} \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} = u''(x).$$

b) En utilisant l'inégalité de Taylor-Lagrange, montrer de plus que pour tout $x \in]0,1[$, et tout h>0 tel que $]x-h,x+h[\subset]0,1[$,

$$\left| u''(x) - \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} \right| \le \frac{Mh^2}{12},$$

où
$$M = \sup_{x \in [0,1]} |u^{(4)}(x)|.$$

Dans la suite de l'exercice, on se donne $\omega > 0$, a_0 et a_1 deux réels, et g une fonction de [0,1] dans \mathbb{R} de classe C^2 . On cherche à résoudre de manière numérique l'équation différentielle suivante :

(1)
$$\begin{cases} u''(x) - \omega^2 u(x) = g(x) & \text{pour tout } x \in [0, 1] \\ u(0) = a_0 \\ u(1) = a_1 \end{cases}$$

On subdivise l'intervalle [0,1] en n+1 intervalles de longeur h=1/(n+1). On pose $x_k=k/(n+1)$, et on veut alors approcher par la méthode des différences finies les valeurs $u(x_k)$, pour u solution de l'équation, par des valeurs discrètes u_k pour k allant de 0 à n+1.

- (3) À l'aide de l'estimateur de la dérivée seconde suggéré par la question 2a), déterminer quel système d'équations doit être vérifié par les u_k pour approcher l'équation différentielle (1). Quelles valeurs doit on prendre pour u_0 et u_{n+1} ?
- (4) On pose $U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$. Montrer que le système d'équations de la question précédente peut s'écrire de manière matricielle sous la forme $A_{n,\alpha}U = B$, pour une valeur de α et un vecteur B que l'on précisera en fonction de ω , h, a_0 , a_1 et des valeurs de g aux points x_k .
- (5) Justifier que le système $A_{n,\alpha}U = B$ admet une unique solution.
- (6) Si l'on veut résoudre ce système de manière numérique, quelle décomposition propre aux matrices symétriques définies positives peut-on utiliser?

 Quelle est la complexité de cette décomposition? On ne demande ici pas de démonstration.
- (7) Application numérique : on choisit $\omega = 3$, n = 2, $a_0 = 0$, $a_1 = 1$, et la fonction g définie par $g(x) = \frac{3}{x+1}$.

Que valent dans ce cas α et B? Calculer alors les valeurs u_1 et u_2 approchant la solution u aux points $\frac{1}{3}$, $\frac{2}{3}$.