## Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра прикладной математики

# ОТЧЕТ ПО НИП \_ Конечноэлементное моделирование напряжённо-деформированного состояния конструкций\_\_ \_\_\_ при механических и немеханических воздействиях \_\_\_\_ (тема НИП в соответствии с индивидуальным планом)

Проверил:

Направление подготовки: 09.06.01 Информатика и вычислительная техника (профиль: "Математическое моделирование, численные методы и комплексы программ")

| АспирантИс       | ламов Д. Р<br>(Ф.И.О.) | Научный руководите  | ель Персова М. Г<br>(Ф.И.О.)    |
|------------------|------------------------|---------------------|---------------------------------|
| Год подготовки _ | 2                      | Балл:, EO<br>Оценка | CTS,                            |
| Факультет ФПМИ   |                        | '                   | », «удовлетворительно», «неуд.» |
| подпись          |                        | подпись             |                                 |
| «»               | 2019 г.                | «»                  | 2019 г.                         |

Выполнил:

## Оглавление

|      | Аннотация                                                      | 3     |
|------|----------------------------------------------------------------|-------|
|      | 1. Цели и задачи НИП                                           | 4     |
|      | 2. Ресурсы для проведения исследования                         | 5     |
|      | 3. Тесты                                                       | 6     |
|      | 3.1. Термоупругость                                            | 6     |
|      | 3.2. Установившаяся ползучесть полого шара                     | 12    |
|      | 3.3. Вдавливание жёсткого цилиндра в упругое полупространство. | 19    |
|      | 4. Способы оптимизации технологического процесса для регулиро  | вания |
| оста | аточных напряжений                                             | 24    |
|      | 5. Поликарбонат                                                | 25    |
|      | Заключение                                                     | 26    |
|      | Список литературы                                              | 27    |

#### Аннотация

Научно-исследовательская практика по теме «Конечноэлементное моделирование напряжённо-деформированного состояния конструкций при механических и немеханических воздействиях» проводилась с целью реализации численны схем термомеханики. Сформулированы цели и задачи, выполнена реализация и проверена на модельных задачах.

#### 1. Цели и задачи НИП

Целью научно-исследовательской практики является реализация МКЭ для решения контактных задач термомеханики.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Реализовать в виде ПО численные схемы
- 2. Верифицировать код программы

#### 2. Ресурсы для проведения исследования

Для выполнения целей и задачь были использованы численные схемы, вычислительная техника и набор модельных задачь для верификации ПО. В качестве вычислительной техники был использован вычислительный комплекс (настольный компьютер), укомплектованный следующим аппаратным обеспечением:

- 1. Процессор Intel® Core™2 Duo E7200 (литография 45 нм, частота 2,53 GHz, ядер 2, кэш-память 3 MB L2)
- 2. Две платы оперативной памяти по 2 Гбайт DDR2

и программным обеспечением:

- 1. Операционная система Kubuntu 18.04 x86\_64
- 2. Компилятор дсс 7.4.0
- 3. Кроссплатформенный фреймворк Qt 5.12.3
- 4. IDE Qt Creator 4.9.1 (Community)
- 5. Программа для построения графиков Gnuplot 5.2

#### 3. Тесты

#### 3.1. Термоупругость

Расмотрим термомеханическое нагружение полого шара, модуль Юнга которого зависит от температуры, с различной очерёдностью:

- I) нагружение  $\rightarrow$  <u>нагрев</u>  $\rightarrow$  разгрузка  $\rightarrow$  <u>охлаждение</u>
- II) нагружение и нагрев  $\rightarrow$  разгрузка и охлаждение

Подчёркнуты стадии, в процессе которых изменение параметров упругости приводит к изменению НДС. Стадия охлаждения в случае I тоже включена изза наличия погрешности (т.е. ненулевых напряжений после механической разгрузки).

Механическая нагрузка прикладывается к внутренней стороне полого шара. Температура меняется в результате решения стационарной задачи теплопроводности с краевыми условиями 1-го рода на границах полого шара. Параметры приведены в таблице 1. Численные результаты приведены в таблицах 2, 3. В результате нагружения и разгрузки должны получаться нулевые напряжения.

Таблица 1 – Параметры

|         | <u>;                                    </u>                      |                                     |
|---------|-------------------------------------------------------------------|-------------------------------------|
| $r_i$   | внутренний радиус                                                 | 1 м                                 |
| $r_o$   | внешний радиус                                                    | 4 м                                 |
| α       | коэффициент температурного расширения                             | 0                                   |
| $\nu$   | коэффициент Пуассона                                              | 0.3                                 |
| E       | модуль Юнга (в 10 раз уменьшается при нагревании на 100 градусов) | $10^{10} - 9 \cdot 10^7 \cdot T$ Па |
| $P_{i}$ | давление с внутренней стороны                                     | 01000 H                             |
| $T_{i}$ | температура внутренней стороны                                    | 01000 °C                            |
| $T_o$   | температура внешней стороны                                       | 010 °C                              |

Таблица 2 — численный результат I (нагружение  $\rightarrow$  нагрев  $\rightarrow$  разгрузка  $\rightarrow$  охлаждение)

| схема                         |                         | без коррекции погрешности |       | с коррекцией погрешности |       |
|-------------------------------|-------------------------|---------------------------|-------|--------------------------|-------|
| $N_{arphi}\!	imes\!N_{	heta}$ | разбиения<br>сферы      | 8x8                       | 16x16 | 8x8                      | 16x16 |
| $N_r$                         | разбиения вдоль радиуса | 32                        | 64    | 32                       | 64    |

| $\max\left(\left \sigma_{_{\varphi}}\right \right),N_{_{\mathit{Steps}}}=1$ | 2.299432e+00 | 1.483850e+00 | 1.519932e+00 | 7.873760e-01 |
|-----------------------------------------------------------------------------|--------------|--------------|--------------|--------------|
| $\max( \sigma_{r} ), N_{Steps} = 1$                                         | 1.777558e+00 | 1.184448e+00 | 1.074119e+00 | 6.592418e-01 |
| $\max\left(\left \sigma_{_{\varphi}}\right \right), N_{_{Steps}}=4$         | 2.200828e+00 | 1.436845e+00 | 3.713633e-01 | 2.026500e-01 |
| $\max( \sigma_{r} ), N_{Steps} = 4$                                         | 1.835724e+00 | 1.114914e+00 | 1.813595e-01 | 2.123229e-01 |
| $\max( \sigma_{_{\varphi}} ), N_{_{Steps}} = 16$                            | 2.293349e+00 | 1.398160e+00 | 2.143717e-01 | 8.194470e-02 |
| $\max( \sigma_{r} ), N_{Steps} = 16$                                        | 1.863825e+00 | 9.881973e-01 | 8.732157e-02 | 4.788488e-02 |

Таблица 3 – численный результат II (нагружение и нагрев → разгрузка и охлаждение)

| схема                                                                    |                         | без коррекции погрешности |              | с коррекцией погрешности |              |
|--------------------------------------------------------------------------|-------------------------|---------------------------|--------------|--------------------------|--------------|
| $N_{arphi}\!	imes\!N_{	heta}$                                            | разбиения<br>сферы      | 8x8                       | 16x16        | 8x8                      | 16x16        |
| $N_r$                                                                    | разбиения вдоль радиуса | 32                        | 64           | 32                       | 64           |
| $\max\left(\left \sigma_{_{arphi}}\right  ight),N_{_{\mathit{Steps}}}=1$ |                         | 4.794265e+00              | 2.463341e+00 | 1.846751e+00             | 1.015657e+00 |
| $\max( \sigma_{r} ), N_{Steps} = 1$                                      |                         | 4.571552e+00              | 1.808815e+00 | 1.394077e+00             | 8.897855e-01 |
| $\max(\left \sigma_{_{\varphi}}\right ), N_{_{Steps}}=4$                 |                         | 1.190440e+00              | 5.746421e-01 | 4.068187e-01             | 2.345288e-01 |
| $\max( \sigma_{r} ), N_{Steps} = 4$                                      |                         | 1.130000e+00              | 4.096602e-01 | 2.238758e-01             | 2.315202e-01 |
| $\max(\left \sigma_{_{\varphi}}\right ), N_{_{Steps}} = 16$              |                         | 2.925938e-01              | 1.360488e-01 | 2.920198e-01             | 1.009813e-01 |
| $\max( \sigma_{r} ), N_{Steps} = 16$                                     |                         | 2.774133e-01              | 9.577898e-02 | 1.317406e-01             | 7.963563e-02 |

На рисунках 1-3 изображены распределения температур и напряжений после каждой из 4-х стадий нагружения/разгрузки в случае I (нагружение  $\rightarrow$  нагрев  $\rightarrow$  разгрузка  $\rightarrow$  охлаждение) при  $N_{\varphi} \times N_{\theta} = 16 \times 16, N_{r} = 64, N_{Steps} = 16,$  если использовать схему с коррекцией. Сплошной линией изображено точное решение. Пунктирной линией изображено точное решение в случае без изменения температуры.



Рисунок 1. Температура Т





Рисунок 2. Напряжения  $\sigma_{_{\varphi}}$ 



Рисунок 3. Напряжения  $\sigma_{r}$ 

На рисунках 4-6 изображены распределения температур и напряжений после каждой из 2-х стадий нагружения/разгрузки в случае II (нагружение и нагрев  $\rightarrow$  разгрузка и охлаждение) при  $N_{\varphi} \times N_{\theta} = 16 \times 16, N_r = 64, N_{Steps} = 16$ , если использовать схему с коррекцией. Сплошной линией изображено точное решение. Пунктирной линией изображено точное решение в случае без изменения температуры.



Рисунок 4. Температура Т



Рисунок 5. Напряжения  $\sigma_{\alpha}$ 



Рисунок 6. Напряжения  $\sigma_{\parallel}$ 

Эталонное решение (нагрев  $\to$  нагружение  $\to$  разгрузка  $\to$  охлаждение) приведено на рисунке 7 (после разгрузки и после охлаждения  $|\sigma_{_{\varphi}}|, |\sigma_{_{r}}| < 10^{-5}$ ).



Рисунок 7. Напряжения  $\sigma_r$ 

Таким образом, в данном тесте, решение схемой с коррекцией после разгрузки ближе к нулю, чем решение схемой без коррекции.

Результаты после разгрузки в тесте "нагрев  $\to$  охлаждение  $\to$  коррекция", с (ненулевым) коэффициентом температурного расширения  $\alpha = 10^{-5}$ , аналогичны.

#### 3.2. Установившаяся ползучесть полого шара

Рассмотрим нагружение полого шара, с внутренним радиусом  $r_i$  и внешним радиусом  $r_o$ , внутренним давлением  $P_i$  и внешним давлением  $P_o$ . При быстром деформировании материал принимается упругим и его поведение определяется модулем Юнга E и коэффициентом Пуассона  $\nu$ ; при медленном деформировании деформация ползучести определяется законом Нортона

$$\dot{\varepsilon}^c = B\tilde{\sigma}^n \tag{3.1}$$

или соответствующей функцией ползучести

$$\Phi(\tilde{\sigma},t) = B\tilde{\sigma}^n t, \tag{3.2}$$

тогда аналитическое решение в случае установившейся ползучести, т.е. при  $t \to \infty$  (или при достаточно большом t, когда процесс становится стационарным), принимает вид [1,2]

$$\sigma_{r} = \frac{P_{i} - P_{o}}{k^{\frac{-3}{n}} - 1} R^{\frac{-3}{n}} - \frac{P_{i}k^{\frac{-3}{n}} - P_{o}}{k^{\frac{-3}{n}} - 1},$$

$$\sigma_{\varphi} = \frac{(P_{i} - P_{o})(2n - 3)}{2n\left(k^{\frac{-3}{n}} - 1\right)} R^{\frac{-3}{n}} - \frac{P_{i}k^{\frac{-3}{n}} - P_{o}}{k^{\frac{-3}{n}} - 1},$$
(3.3)

где обозначено

$$R = \frac{r}{r_i}, k = \frac{r_o}{r_i}.$$
 (3.4)

Сравнение численных решений для различных продолжительностей ползучести (при постоянной нагрузке) методом начальных напряжений с изменением матрицы ОС и аналитического решения при установившейся ползучести, с коэффициентами из таблицы 4, приведено на рисунках 9–14. На

первых 2-х графиках сплошная линия — точное решение при установившейся ползучести, пунктирная линия — упругое решение.

Таблица 4 – Параметры

| таолица 4                       | – Параметры                                                                                                      |                      |                                                                                                                                        |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| $r_i$                           | внутренний радиус                                                                                                |                      | 1 м                                                                                                                                    |  |
| $r_{o}$                         | внешний радиус                                                                                                   |                      | 4 м                                                                                                                                    |  |
| E                               | модуль Юнга                                                                                                      |                      | 10 <sup>10</sup> Па                                                                                                                    |  |
| ν                               | коэффициент Пуассон                                                                                              |                      | 0.3                                                                                                                                    |  |
| Φ                               |                                                                                                                  |                      | $ \frac{e^{n}t, B = 1 \cdot 10^{-14}, n = 2,}{\left(\left(\frac{\varepsilon}{Bt}\right)^{\frac{1}{n}}, 3G \cdot \varepsilon\right)}. $ |  |
| $P_{i}$                         | давление с внутренней                                                                                            | стороны              | 1⋅10 <sup>5</sup> H                                                                                                                    |  |
| $P_o$                           | давление с внешней стороны                                                                                       |                      | 0 H                                                                                                                                    |  |
| $N_{\varphi} \times N_{\theta}$ | разбиения сферы                                                                                                  |                      | 8x8                                                                                                                                    |  |
| $N_r$                           | разбиения полого шара вдоль радиуса                                                                              |                      | 32                                                                                                                                     |  |
| $k_R$                           | коэффициент сгущения к полости                                                                                   |                      | 1+1/16                                                                                                                                 |  |
| $t_{ m el}$                     | длительность нагруже                                                                                             | 1·10 <sup>-7</sup> ч |                                                                                                                                        |  |
| $N_{ m el}$                     | количество временных слоёв нагружения                                                                            |                      | 1                                                                                                                                      |  |
| $t_{\rm creep}$                 | продолжительность ползучести                                                                                     |                      | меняется                                                                                                                               |  |
| $N_{\text{creep}}$              | количество временных слоёв ползучести                                                                            |                      | $10 \cdot t_{\text{creep}}$                                                                                                            |  |
| $\Delta_arepsilon^{Limit}$      | параметр завершения итераций $\left(\max\left(\Delta_{\varepsilon}\right) < \Delta_{\varepsilon}^{Limit}\right)$ |                      | $10^{-14}$                                                                                                                             |  |



Рисунок 8.  $\Phi(\varepsilon, t)$  при t = 1, t = 2, t = 3, t = 4, t = 5.



Рисунок 10.  $t_{\text{creep}} = 0.3, N_{\text{creep}} = 3$  .



Рисунок 11.  $t_{\text{creep}} = 1, N_{\text{creep}} = 10$ .



Рисунок 12.  $t_{\text{creep}} = 10, N_{\text{creep}} = 100$ .



Рисунок 13.  $t_{\text{creep}} = 100, N_{\text{creep}} = 1000.$ 



Рисунок 14.  $t_{\text{creep}} = 1000, N_{\text{creep}} = 10000$ .

#### 3.3. Вдавливание жёсткого цилиндра в упругое полупространство

Рассмотрим контакт между абсолютно жёстким цилиндром и упругим полупространством (рисунок 15).



Рисунок 15. d=1.0, N=20, steps=16, с коррекцией. Слева эквивалентные напряжения, справа эквивалентные упругие деформации.

Пусть R — радиус цилиндра, d — глубина вдавливания цилиндра в полупространство, E — модуль упругости,  $\mu$  — коэффициент Пуассона, L — длина цилиндра, тогда [3,4]

$$E^{*} = \frac{2E}{1 - \mu^{2}}, R^{*} = R,$$

$$P_{\text{max}} = \frac{1}{4}E^{*}\sqrt{\frac{d}{R^{*}}},$$

$$P = P_{\text{max}}\sqrt{1 - \frac{x^{2}}{dR^{*}}},$$

$$a = \sqrt{dR^{*}},$$

$$F_{n} = \frac{\pi}{8}E^{*}Ld,$$
(3.5)

где  $E^*$  — комбинированная жёсткость,  $R^*$  — комбинированный радиус,  $P_{\max}$  — максимальное давление, x — расстояние от центра зоны контакта по горизонтали, a — полуширина области контакта,  $F_n$  — вертикальная составляющая суммарной силы реакции опоры.

Параметры заданы в таблице 5, результаты отображены в таблице 6 и на рисунках 16-20. Поскольку в этом тесте поверхность подвижна, то в алгоритме поиск пересечения с поверхностью  $intersectionPoint(\mathbf{r}_1,\mathbf{r}_2)$  заменён на поиск ближайшей точки  $nearestPoint(\mathbf{r})$ . Поверхность задаётся аналитически. Первыми краевыми условиями ограничены перемещения по оси z во всех узлах сетки, по оси y на нижней границе и по оси x в плоскости x=0. Сетка построента аналогично [3].

Таблица 5 – Параметры.

| тислици в ттириметры        | *                                |                                                                                                                                                                          |
|-----------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $L_x \times L_y \times L_z$ | размеры<br>параллелепипеда       | 20×20×1                                                                                                                                                                  |
| R                           | радиус цилиндра                  | 5                                                                                                                                                                        |
| $L(=L_z)$                   | длина цилиндра                   | 1                                                                                                                                                                        |
| E                           | модуль Юнга                      | 10 <sup>10</sup> Па                                                                                                                                                      |
| μ                           | коэффициент<br>Пуассона          | 0.3                                                                                                                                                                      |
| К                           | коэффициент контактной жёсткости | 10 <sup>10</sup> Н/м (константа)                                                                                                                                         |
|                             | условия завершения<br>итераций   | $\left \Delta \mathbf{F}_{k+1} - \Delta \mathbf{F}_{k}\right  / \left \mathbf{F}\right  < 10^{-10},$ $\left \mathbf{r}_{k+1}^{*} - \mathbf{r}_{k}^{*}\right  < 10^{-14}$ |

Таблица 5 — Численные результаты. d — глубина вдавливания, N — подробность разбиения сетки, steps — количество шагов сдвига цилиндра. "С коррекцией" означает, что после каждого шага добавляется шаг без смещения цилиндра для коррекции баланса сил и напряжений.

| •                                         | $F_n^{\it Numb}$ — вертикальная составляющая суммарной силы | $d^{Numb} = \frac{8F_n^{Numb}}{\pi E^* L}$ |
|-------------------------------------------|-------------------------------------------------------------|--------------------------------------------|
| d = 0.5, N = 20, steps = 4,               | реакции опоры, Н<br>2.262733e+09                            | 0.2621711                                  |
| с коррекцией                              | Z.202133CT09                                                | 0.2021/11                                  |
| d = 0.5, N = 20, steps = 4, без коррекции | 2.259888e+09                                                | 0.2618415                                  |
| d = 0.5, N = 20, steps = 8, с коррекцией  | 2.262828e+09                                                | 0.2621821                                  |

| d = 0.5, N = 20, steps = 8, без коррекции         | 2.260196e+09 | 0.2618771 |
|---------------------------------------------------|--------------|-----------|
| d = 0.5, N = 40, steps = 8, с коррекцией          | 2.263364e+09 | 0.2622442 |
|                                                   |              |           |
| d = 1.0, N = 20, steps = 8, с коррекцией          | 5.111560e+09 | 0.5922499 |
| d = 1.0, $N$ = 20, $steps$ = 8, без коррекции     | 5.091652e+09 | 0.5899432 |
| d = 1.0, N = 20, steps = 16, с коррекцией         | 5.114002e+09 | 0.5925329 |
| d = 1.0, $N$ = 20, $steps$ = 16,<br>без коррекции | 5.093665e+09 | 0.5901765 |

На рисунках 16-20 сплошной линией изображён график давления P(d, x) из (3.5), в котором параметром является исходная глубина вдавливания цилиндра d. Во всех тестах расстояния от контактных узлов до поверхности цилиндра не превосходит  $10^{-13}$ .

Жирной линией изображён график давления  $P(d^{\textit{Numb}}(F_n^{\textit{Numb}}), x)$ , в котором вместо настоящей глубины вдавливания цилиндра принято значение, вычисленное по формуле

$$d^{Numb} = \frac{8F_n^{Numb}}{\pi E^* L} \tag{3.6}$$

где сила  $F_n^{Numb}$  вычислена <u>исходя из численного решения</u>, как вертикальная компонента суммы сил реакций опоры в контактных узлах.



Рисунок 16. d = 0.5, N = 20, steps = 8, с коррекцией



Рисунок 17. d = 0.5, N = 20, steps = 8, без коррекции



Рисунок 18. d = 0.5, N = 40, steps = 8, с коррекцией (более подробная сетка)



Рисунок 19. d = 1.0, N = 20, steps = 16, с коррекцией



Рисунок 20. d = 1.0, N = 20, steps = 16, без коррекции

# 4. Способы оптимизации технологического процесса для регулирования остаточных напряжений

В [5] предлагаются следующие способы:

- кратковременный неравномерный нагрев готового изделия
- приложение на стадии охлаждения изделия переменной во времени внешней нагрузки (силовой, кинематической)

В [6] показано, что зависимости упругих модулей от температуры могут слабо влиять на остаточные напряжения. (Рассматривается задача о локальном нагреве круглой пластины, изготовленной из идеального упругопластического материала. Предел текучести и упругие модули полагаются зависимыми от температуры.)

Существуют методы определения остаточных напряжении, например, поляризационно-оптический метод фотоупругости и фотопластичности.

#### 5. Поликарбонат

В [7, 8] даны кривые ползучести и релаксации поликарбоната.

В [9] поликарбонат рассматривается как упруго-пластический материал и приведены зависимости параметров материала от температуры

**Figure 6.** Thermal dependencies of polycarbonate material properties (COMSOL Multiphysics 3.5a material library).



которые взяты из [10].

В [10] версии 5.4 зависимости параметров материала от температуры представлены в аналитическом виде и даны ссылки на источники, но нет кривых ползучести.

## Заключение

Численные схемы реализованы. Тестирование реализации показало адекватные результаты.

#### Список литературы

- Nejad M. Z. et al. A new analytical solution for creep stresses in thick-walled spherical pressure vessels //Journal of Basic and Applied Scientific Research.
   − 2011. T. 1. №. 11. C. 2162-2166.
- 2) Сапунов В. Т. Основы теории пластичности и ползучести: учебное пособие //М.: МИФИ. 2008.
- 3) Konter A. Advanced finite element contact benchmarks. Nafems, 2006.
- 4) Попов В. Механика контактного взаимодействия и физика трения. От нанотрибологии до динамики землетрясений. Litres, 2017.
- 5) Матвеенко В. П. и др. Термомеханика полимерных материалов в условиях релаксационного перехода //М.: Физматлит. 2009. Т. 176.
- б) Буренин А. А., Ткачева А. В., Щербатюк Г. А. К использованию кусочно-линейных пластических потенциалов в нестационарной теории температурных напряжений //Вестник Самарского государственного технического университета. Серия Физико-математические науки. 2018. Т. 22. №. 1.
- 7) Cao K., Wang Y., Wang Y. Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates //International Journal of Solids and Structures. − 2014. − T. 51. − №. 13. − C. 2539-2548.
- 8) Abu-Abdeen M. The unusual effect of temperature on stress relaxation and mechanical creep of polycarbonate at low strain and stress levels //Materials & Design. – 2012. – T. 34. – C. 469-473.
- Narijauskaitė B. et al. Polycarbonate as an elasto-plastic material model for simulation of the microstructure hot imprint process //Sensors. – 2013. – T. 13. – №. 9. – C. 11229-11242.
- 10) COMSOL Multiphysics material library