https://georgehalal.github.io | georgech@stanford.edu | 650.422.9033

FDUCATION

Stanford University Ph.D. Physics

2019-24 | GPA: 4.0/4.0

Lehigh University

B.S. Physics + Minor: APPLIED MATHEMATICS 2015-19 | GPA: 3.97/4.00 Thesis: "Machine Learning Applications for Relativistic Heavy-Ion Collisions"

RELEVANT **COURSEWORK**

Taken

Deep Learning • Machine Learning • Statistical Methods in Astrophysics

Audited

Deep Learning for Computer Vision • Natural Language Processing with Deep Learning • Foundations of Reinforcement Learning • Computer Vision: Foundations & Applications • Design & Analysis of Algorithms • Signal Processing & Linear Systems • Computer Organization & Systems

Coursera

SQL for Data Science • Data Wrangling, Analysis, and AB Testing with SQL

SKILLS

Proficient

Python • SQL • MATLAB • PyTorch • TensorFlow • **MTFX**

Familiar

C/C++ • scikit-learn • pandas • HTML

Tools

Git • Cloud Computing • Vim • Bash/Zsh

RESEARCH EXPERIENCE

Spherical Harmonic Convolutional Hough Transform | Stanford University | 2021-Present

- Developed a computer vision algorithm in Python to model the morphology of interstellar gas
- Achieved 3000x runtime speedup and 5x decrease in memory consumption over the previous algorithm
- GitHub: https://github.com/georgehalal/sphericalrht

Dust Polarization Characterization Through Correlations of CMB & ISM **Datasets** | Stanford University | 2020-Present

 Developed statistical tests in Python and MATLAB for quantifying the dust contribution of different components in a certain sky area and measuring the dust's properties

Bayesian Inference on Vansyngel Model | Stanford University | 2020

- Implemented the Vansyngel model in Python and performed Markov Chain Monte Carlo methods to get the parameters' posteriors
- GitHub: https://github.com/georgehalal/BayesInfer_DustModel

Machine Learning for Stochastic Generation of Observed Galaxy Properties Stanford University | 2020

- Developed a conditional Wasserstein generative adversarial neural network with gradient penalty (cWGAN-GP) in PyTorch to generate observed galaxy properties in wide-field surveys
- GitHub: https://github.com/georgehalal/cWGAN-GP

Machine Learning for Modeling the Transfer Function of Galaxy Detection Stanford University | 2020

• GitHub: https://github.com/georgehalal/DetectNet

Machine Learning for Searching for 2- ν Double- β Decay of 136 Xe to the Excited State of ¹³⁶Ba | Stanford University | 2019

• Developed a Long Short-Term Memory neural network in TensorFlow/Keras in Python to search for this decay in EXO-200 data

Machine Learning for Heavy-Flavor Jet Classification at RHIC | Yale University & Lehigh University | 2019

• Developed a model made of a concatenation of Long Short-Term Memory and fully-connected layers in TensorFlow/Keras to classify charm, bottom, and light jets in heavy-ion collisions

Machine Learning for Collision Geometry Determination with the STAR EPD The Ohio State University & Lehigh University | 2017 - 2018

• Developed a model to identify the collision geometry of nuclei, based on which of the detector tiles are hit during a given collision

PUBLICATIONS

First/Corresponding-Author Publications In Preparation:

- G. Halal, the BICEP/Keck Collaboration, et al. Characterizing Dust Polarization with BICEP/Keck Through Correlations with Neutral Hydrogen. The Astrophysical Journal, in prep.
- G. Halal, S. E. Clark, D. Beck, A. Cukierman, and C. L. Kuo. Dust Filament Morphologies with the Spherical Rolling Hough Transform. The Astrophysical Journal, in prep.

Full Publications List:

https://ui.adsabs.harvard.edu/search/q=%20author%3A%22Hala1%2C%20G