MIMM4750G Metabarcoding

What's metabarcoding?

- So far we've talked about applications of NGS that focus on a single species (bacteria or virus).
- The massive throughput of NGS platforms allows us to target multiple species, or perform untargeted sequencing.
- A key challenge to untargeted sequencing is amplification.
- Amplification requires primers, but primers are usually specific to a particular sequence.

Untargeted sequencing

- If we can't use template-specific primers, what can we do?
- Find a conserved region shared across all, if not most species, for amplification: but the region in between should be nonconserved!
- Random priming suppliers will generate short oligos of arbitrary sequence.
- Both amplification and priming can lead to biases.

Metabarcoding

- Not the same as "barcoding" as a step in next-generation sequencing to identify templates from different samples.
- AKA targeted metagenomics, amplicon-based metagenomics, and metagenetics.
- A genetic marker (short region of the genome) that should uniquely identify a species.
- It should be universal: found in all organisms in a large taxonomic group.
- There should be alternating regions of high and low sequence conservation.

16S RNA

- 16S ribosomal RNA is a component of 30S small subunit of prokaryotic ribosome
- Use of 16S for phylogenetics proposed by Carl Woese and George Fox in 1977.
- Presently the gold standard for metabarcoding studies of bacterial microbiomes.

3d animation of 30S small ribosomal subunit (PDB 1FKA).

Variable regions of 16S

Image credit: Jethro Johnson, https://www.pacb.com/wp-content/uploads/Jethro-Johnson-PacBio-East-Coast-UGM-2017.pdf

Taxonomic binning

- With the sequence barcode, you now need to look up the species (or higher taxonomic level).
- Not all 16S sequences in Genbank are classified.
- Some sequences are chimeric (PCR artefacts that combine two or more templates).
- Multiple databases maintained by different groups might not agree on the same sequence.

Taxonomic databases

Database	URL	# Records	Last update
NCBI RefSeq	https://www.ncbi.nlm.nih.gov/refseq/	21,073	2019-03-12
SILVA	https://www.arb-silva.de/	1,928,733	2017-12
RDP	https://rdp.cme.msu.edu/	3,356,809	2016-09
Greengenes	http://greengenes.lbl.gov	1,262,986	2015-05

Who do you believe?

I found 249,490 identical sequences with conflicting annotations in SILVA v128 and Greengenes v13.5 at ranks up to phylum (7,804 conflicts), indicating that the annotation error rate in these databases is ~17%.

Robert C. Edgar (developer of MUSCLE), 2018. Taxonomy annotation and guide tree errors in 16S rRNA databases, PeerJ: 5030.

 Some sequences actually from organelles (e.g., mitochondria) or eukaryotes (e.g., protists; Lesack and Birol 2018).

Denoising

- DADA2 uses a probability model to assign reads to cluster given the sequencing error rate.
 - 1. For every pair of sequences, check k-mer distance
 - 2. If close enough, do sequence alignment.
 - 3. Calibrates error model for different nucleotide substitutions, given quality score.
 - 4. Calculates probability of read abundance given error model.
- See also Deblur

Chimera detection

- UCHIME, Robert Edgar
- Splits query sequence into four parts
- Each part is mapped to a reference database assumed to be chimera-free.
- Retrieves two potential "parent" sequences.

OTU clustering

- Operational taxonomic units
- Separate within-species variation from among-species variation.
- 97% sequence identity clustering has become standard.

Taxonomic assignment (binning)

- BLAST remember BLAST?
- USEARCH (R.Edgar again) highly optimized k-mer search for a small number of good hits.
- Closed source, feature-limited distribution.
- Measure the intersection for the sets of all 8-mers in query sequence and database sequence:

$$U_i = |W(Q) \cap W(T_i)|$$

Naive Bayes classifier

- RDP Classifier
- Open source, implemented in Java
- Also extracts 8-mers from query and database sequences.
- ullet The probability that a member of genus G contains word w_i is

$$P(w_i|G) = rac{n_G(w_i) + P(w_i)}{N_G + 1}$$

where n_G is the number of sequences in G with word w_i , N is the total size of G, and $P(w_i)$ is the prior probability (the overall frequency of w_i).

Phylogenetic placement

- Place a new sequence in a fixed reference tree
- Much faster than regenerating the entire tree!
- Uses a model of evolution, better measure of distance.
- Used to estimate that about 1% of 16S rRNA databases are misclassified.
- pplacer
- EPA part of RAxML

Pipelines

- A pipeline or workflow is a collection of programs and scripts used to process data in a fixed sequence.
- Pipelines for metabarcoding have become extremely popular.
- mothur open source C++, all in-house programs
- QIIME Python scripts that wrap around a collection of third-party programs.

Further reading

- Taxonomy annotation and guide tree errors in 16S rRNA databases
- Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era
- Denoising the Denoisers: an independent evaluation of microbiome sequence error-correction approaches