Chapter 25 Applications linéaires

Exercice 1 (25.1)

Soit E l'espace vectoriel des fonctions continues de \mathbb{R} dans \mathbb{R} . À toute application $f \in E$, on associe l'application A(f) définie par

 $x \mapsto \int_0^x f(t) dt$.

- 1. Justifier que A est une application de E à valeurs dans E.
- **2.** Montre que *A* est linéaire.

Exercice 2 (25.1)

Vérifier la linéarité des applications suivantes.

1.
$$f_1: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (x, y)$

2.
$$f_2: \mathscr{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$$
 . $\phi \mapsto \phi(0)$

$$\begin{array}{cccc} \mathbf{3.} & f_3: & \mathbb{C} & \to & \mathbb{R} \\ & z & \mapsto & \Re e(z) \end{array}.$$

4.
$$f_4: \mathbb{R}[X] \to \mathbb{R}[X]$$
.

$$\mathbf{4.} \ f_4: \ \mathbb{R}[X] \to \mathbb{R}[X] \ .$$

$$P \mapsto X^2 P'$$

$$\mathbf{5.} \ f_5: \ \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}} \ .$$

$$(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$$

Exercice 3 (25.1)

Montrer que l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ appartient à $GL(\mathbb{R}^2)$. Préciser f^{-1} . Vérifier $(x, y) \mapsto (x + 3y, 4x - 2y)$

que f^{-1} est effectivement linéaire.

Exercice 4 (25.1)

Soient E un K-espace vectoriel et $f \in \mathbf{L}(E)$ vérifiant

$$(f - \mathrm{Id}_E) \circ (f + 2 \, \mathrm{Id}_E) = 0. \tag{1}$$

Montrer que f est bijective.

Exercice 5 (25.2)

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si cellesci sont injectives ou surjectives.

- **1.** $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x, y) = (y 3x, 5x + 2y, x + y).
- **2.** $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par f(x, y, z) = (x + y + z, x + 3y + 2z, 3x + y + 2z).
- 3. $f: \mathbb{R}^3 \to \mathbb{R}^4$ définie par f(x, y, z) = (2x y + z, 3x + y z, x 3y + 3z, 2x + 4y 4z).

Exercice 6 (25.2)

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si cellesci sont injectives ou surjectives.

- 1. $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X]$ définie par f(P) = X(P'(X+1) P'(1)).
- 2. $f: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par f(P) = P XP' P(0).

Exercice 7 (25.2)

Montrer que les applications suivantes sont linéaires, préciser leur noyau et leur image, préciser aussi si cellesci sont injectives ou surjectives.

- 1. $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (2x + y z, x + y).
- **2.** $M: \mathbb{R}[X] \to \mathbb{R}[X]$ définie par M(P) = XP.
- 3. $\phi: \mathscr{C}^1(\mathbb{R}, \mathbb{K}) \to \mathscr{C}(\mathbb{R}, \mathbb{K})$ définie par $\phi(f) = f' f$.
- **4.** $T: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}$ définie par $T((u_n)_{n \in \mathbb{N}}) = (u_{n+1})_{n \in \mathbb{N}}$.
- 5. $f: \mathbb{C} \to \mathbb{R}$ définie par $f(z) = \mathfrak{T}\mathfrak{m}(z) \mathfrak{R}\mathfrak{e}(z)$.

Exercice 8 (25.2)

Soit
$$\phi$$
: $\mathbb{R}_3[X] \rightarrow \mathbb{R}^3$
 $P \mapsto (P(0), P'(1), P(2))$

- 1. Prouver que ϕ est linéaire.
- **2.** Déterminer le noyau de ϕ .
- 3. Déterminer l'image de ϕ .
- **4.** L'application ϕ est-elle injective? est-elle surjective?

Exercice 9 (25.2)

Soit
$$\phi$$
: $\mathbb{R}_2[X] \rightarrow \mathbb{R}^4$
 $P \mapsto (P(0), P(1), P(2), P(3))$

- 1. Prouver que ϕ est linéaire.
- **2.** Déterminer le noyau de ϕ .
- 3. Soit $y = (y_1, y_2, y_3, y_4) \in \mathbb{R}^4$. Déterminer une condition nécessaire et suffisante sur y pour avoir $y \in \text{Im}(\phi)$.
- **4.** L'application ϕ est-elle injective? est-elle surjective?

Exercice 10 (25.2)

On désigne par $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ et on considère l'application ϕ définie sur E par

$$\forall f \in E, \phi(f) = f'(1).$$

- 1. Démontrer que ϕ est une forme linéaire sur E.
- **2.** En déduire que $F = \{ f \in E \mid f'(1) = 0 \}$ est un sous-espace vectoriel de E.

Exercice 11 (25.2)

Soient E, F, G trois \mathbb{K} -espace vectoriel, $f \in L(E, F)$ et $g \in L(F, G)$.

- **1.** Montrer que $g \circ f = 0$ si et seulement si Im $f \subset \ker g$.
- **2.** Montrer que ker $f \subset \ker g \circ f$.
- **3.** Montrer que $\operatorname{Im} g \circ f \subset \operatorname{Im} g$.

Exercice 12 (25.2)

Soient E un K-espace vectoriel et $f \in \mathbf{L}(E)$. On note $f^2 = f \circ f$.

Montrer que ker $f \subset \ker f^2$ et $\operatorname{Im} f^2 \subset \operatorname{Im} f$.

Exercice 13 (25.2)

Soient E un K-espace vectoriel et $f \in \mathbf{L}(E)$. On note $f^2 = f \circ f$.

Montrer que ker $f = \ker f^2$ si et seulement si ker $f \cap \operatorname{Im} f = \{ 0_E \}.$

Exercice 14 (25.2)

Soit E un \mathbb{K} -espace vectoriel et u et v deux endomorphismes de E qui commutent.

Montrer que ker u et $\operatorname{Im} u$ sont stables par v.

Exercice 15 (25.2)

Soient E un espace vectoriel sur un corps \mathbb{K} et $u \in \mathbf{L}(E)$.

1. Montrer que $(\ker u^k)_{k\in\mathbb{N}}$ est une suite croissante et $(\operatorname{Im} u^k)_{k\in\mathbb{N}}$ est une suite décroissante, c'est-à-dire

$$\forall k \in \mathbb{N}, \ker u^k \subset \ker u^{k+1} \text{ et } \operatorname{Im} u^{k+1} \subset \operatorname{Im} u^k.$$

2. On suppose qu'il existe un entier naturel d tel que ker $u^d = \ker u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \ker u^{k+1} = \ker u^k.$$

3. Démontrer que, p étant un entier strictement positif, on a

$$\ker u^p = \ker u^{p+1} \iff \ker u^p \cap \operatorname{Im} u^p = \left\{ \ 0_E \ \right\}.$$

4. On suppose qu'il existe un entier naturel d tel que $\operatorname{Im} u^d = \operatorname{Im} u^{d+1}$. Montrer

$$\forall k \in \mathbb{N}, k \ge d \implies \operatorname{Im} u^{k+1} = \operatorname{Im} u^k.$$

Exercice 16 (25.2)

Soit f une application linéaire d'un espace vectoriel E vers un espaces vectoriels F. Montrer que pour tout partie A de E,

$$f(\operatorname{Vect}(A)) = \operatorname{Vect}(f(A))$$
.

Exercice 17 (25.2)

Déterminer le noyau et l'image de l'application linéaire

$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x + y - z, x - y + 2z)$

Est-elle injective ? Surjective ?

Exercice 18 (25.2)

Soit
$$\theta$$
: $\mathbb{R}_2[X] \rightarrow \mathbb{R}^3$
 $P \mapsto (P(0), P(1), P(2))$

- **1.** Prouver que $\theta \in L(\mathbb{R}_2[X], \mathbb{R}^3)$.
- **2.** Montrer que θ est injective.
- 3. Montrer que θ est surjective.

Exercice 19 (25.2)

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si elles sont injectives, surjectives, bijectives.

1.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$
.
 $(x, y, z) \mapsto (x, y)$

$$(x, y, z) \mapsto (x, y)$$

2.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$
 . $(x, y, z) \mapsto (x + 2y + z, x - z)$

3.
$$u: \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

 $(x, y, z) \mapsto (x - y, y + z, x + y + z)$

4.
$$u: \mathcal{F}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$$

 $f \mapsto f(0)$

5.
$$u : \mathbb{C} \to \mathbb{R}$$
.
 $z \mapsto \Re e(z)$

6.
$$u: \mathbb{R}[X] \to \mathbb{R}$$
. $P \mapsto P(0)$

7.
$$u : \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$
.
 $P \mapsto X^2 P'$

8.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$$
. $(u_n)_{n \in \mathbb{N}} \mapsto u_3$

9.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
. $(u_n)_{n \in \mathbb{N}} \mapsto (u_{n+1})_{n \in \mathbb{N}}$.

10.
$$f: \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}$$
.
 $(u_n)_{n \in \mathbb{N}} \mapsto (u_{2n})_{n \in \mathbb{N}}$.

Exercice 20 (25.3)

Vérifier que les applications suivantes sont \mathbb{R} -linéaires et déterminer dans chaque cas l'image et le noyau. En déduire si u est injective, surjective, bijective.

1.
$$u: \mathbb{R}[X] \to \mathbb{R}[X]$$
.

2.
$$u: \mathbb{R}_3[X] \rightarrow \mathbb{R}_3[X]$$
.
 $P \mapsto P'$

3.
$$u : \mathbb{R}[X] \to \mathbb{R}^3$$

 $P \mapsto (P(-1), P(0), P(1))$

4.
$$u: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$$

 $P \mapsto P - (X - 2)P'$

Exercice 21 (25.3)

On définit sur le \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} deux applications A et B par

$$A(P(X)) = P'(X) \qquad \text{et} \qquad B(P(X)) = XP(X).$$

Démontrer les assertion suivantes.

- **1.** A et B sont des endomorphismes de $\mathbb{R}[X]$.
- **2.** Im $A = \mathbb{R}[X]$ et ker $A \neq \{0\}$.
- 3. $\ker B = \{0\} \text{ et } B \text{ n'a pas d'application réciproque.}$
- **4.** $A \circ B B \circ A = \operatorname{Id}_{\mathbb{R}[X]}$.
- **5.** Pour tout $k \in \mathbb{N}^*$, $A^k \circ B B \circ A^k = kA^{k-1}$.