SAKIPOV, Z.B.; TEMIRBAYEV, D.2h.

Relation of the coefficients of turbulent transfer of momentum and heat in a free turbulent jet of liquid metal. Vest.An Kazakh.

SSR 19 no.2: 79-80 F 163.

(MIRA 16:5)

(Liquid metal)

PALATNIK, I. B.; TEMIRBAYEV, D. Zh.

"An investigation of free turbulent jets flowing from a rectangular opening." report submitted for 2nd All-Union Conf on Heat & Mass Transfer, Minsk, 4-12 May 1964.

Power Inst, AS KazSSR.

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4 "APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

L 17782-66 EWT(1)/EWP(m)/EWA(d)/ETC(m)-6/EWA(1) WW

ACCESSION NR: AR5020403 SOURCE CODE: UR/0124/65/000/008/B057/B057

AUTHOR: Palatnik, I.B.; Temirbayev, D.Zh.

ORG: none

TITIE: Diffusion of free turbulent jets flowing from a rectangular nozzle

SOURCE: Ref. zh. Mekhanika, Abs. 8B385

REF SOURCE: Sb. Prob. teploenerg. i prikl. teplofiz. Vyp. 1. Alma-Ata, AN KazSSR, 1964, 18-28

TOPIC TAGS: nozzle flow, annular nozzle, turbulent jet, flow velocity, jet flow

TRANSIATION: The problem of propagation in the motionless atmosphere of a turbulent jet flowing from a rectangular nozzle was examined. Noting the fact that the initial system of equations was not closed and that it contained unknown correlations of velocities and gave only two equations for determining three component velocities, the authors attempted to find the field of the longitudinal component of the velocity, leaving the other two components undetermined. The method used

Card 1/2

L 17782-66 Anglescon NR: AR5020403

was that of the equivalent problem of the thermal conductivity theory, i.e., the con a raion of the system of coordinates was introduced, reducing the equation for determining the longitudinal component of the impulse to the equation of thermal anductivity, in which the functional relation describing this conversion had to edetermined by the test. An experimental study was made also of the expansion of an immersed rectangular jet. During these tests a determination was made of the distribution of the longitudinal component of the impulse in the various lateral profiles of air jets flowing into the motionless air from nozzles with discharge cross sections of 20 x 20, 15 x 30, and 10 x 30 mm and a 39 m/sec velocity. A comparison of the experimental and calculated distributions of the impulse along the axis of the jet made it possible to determine the type of relationship, describing one conversion of the coordinates, for each of the cases studied and also for nozzles with lateral ratios of 1:5 and 1:20; the experiments on the latter were conducted by V.A. Turkus. With the help of these empirical functions and the solution of the thermal conductivity equation of the profile of the longitudinal impulse component in the various lateral profiles of the jet, comparisons were made with the corresponding experimental data. An estimate was given of the distance from the nozzle at which the jet flowing from the rectangular nozzle acquired an axial symmetry. References 13. O.V. Yakovlevskiy.

SUB CODE: 20

Card 2/2 5

EWT(1)/EWP(m)/EPF(c)/EPF(n)-2/EWG(m)L 00565-66

ACCESSION NR: AR5019365

UR/0124/65/000/007/B103/B103

K

SOURCE: Ref. zh. Mekhanika, Abs. 7B736

44,55 AUTHOR: Sakipov, Z.; Temirbayev, D. Zh.

TITLE: Momentum and heat transfer in a free turbulent stream

21,44,55

CITED SOURCE: Sb. Probl. teploenerg. i prikl. teplofiz. Vyp. 1, Alma-Ata, AN KazSSR,

TOPIC TAGS: free turbulent stream, momentum transfer, heat transfer, turbulent jet

TRANSLATION: The authors completed an experimental study of motion and heat exchange in lightly heated turbulent streams of various fluids submerged in an environment with analogous physical properties. The study sought to define the turbulent Pr number for streams of liquids with a physical Pr number in the range of 0.022 (Hg) to 350 (transformer oil). Other experiments involved streams of air and water. Velocity head and temperature at various cross sections of the stream, from 6 to 25 calibers distant from the nozzle, were measured by a Pitot tube and a Nichrome-Constantan thermocouple (the latter alloy contains 55% Co, 45% Ni). Initial measurement data were processed in the form of dimensionless velocity (related to its maximum value um at a given cross section) and dimen-

L 00565-66

ACCESSION NR: AR5019365

sionless excess temperature as functions of the coordinate of similarity $\psi=y/ax$. Also, curves were plotted to show the attenuation of axial velocity and temperature along the stream. It was noted that distributions of velocity and temperature within the studied range of layout parameters do not depend on the physical properties of a liquid. The authors used two methods to define the turbulent Pr numbers \mathcal{O}_{t} for the flows in question: the ratio of characteristic values of depth of the thermal and dynamic layers, and the exponent in relation $\Delta T/\Delta T_{m} = (u/u_{m})\mathcal{O}^{-}T$. Analysis of results obtained in the process led the authors to conclude that the turbulent agitation process does not depend on physical characteristics of the fluid comprising the stream. Specifically, \mathcal{O}_{t} is a hydrodynamic property of a stream and can be considered as within the range of 0.70 - 0.75 for all experimental variants. Analogous values of δ_{t} were cited in reports of other authors studying the propagation of turbulent air streams. Bibl. with 8 titles. O V. Yakovlevskiy

SUB CODE: TD, ME

ENCL: 00

Card 2/2

EWT(1)/EWP(m)/EWT(m)/ETC(f)/EPF(n)-2/EWG(m)/EWA(d)/T/ETC(m)-6/ L 23980-66 WW/DJ/GS SOURCE CODE: UR/0000/65/000/000/0407/0413 20 AUTHOR: Sakipov, Z. B.; Temirbayev, D. Zh. ORG: Power Institute AN KazSSR (Institut energetiki AN KazSSR) 2£1 TITLE: The relationship between the coefficients of turbulent momentum and heat transfer in a free turbulent jet / SOURCE: Teplo- i massoperenos. t. II: Teplo- i massoperenos pri vzaimodeystvii tel s potokemi zhidkostey i gazov (Heat and mass transfer. v. 2: Heat and mass transfer in the interaction of bodies with liquid and gas flows). Minsk, Nauka i tekhnika, 1965, 407-413 TOPIC TAGS: turbulent jet, mass transfer, heat transfer, fluid flow, gas dynamics ABSTRACT: The experimental investigations were carried out on units described previously in the literature. Before the experiments on mercury and oil jets, la series of experiments were made on air and water. Three series of experiments were made on air jets at velocities of 20, 30, and 40 meter/sec, and two series of measurements on water jets at 1.8 and 4 meter/sec. The measurements were made by conventional methods. The average error in determination of the velocity was about Card 1/2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

L 23980-66

ACC NR: AT6006927

5%, and of the temperature about 10% from the maximum values at the axis of the jet. A figure shows the profile of the dimensionless velocity at various cross sections of an axisymmetric jet for verious fluids, including mercury and transformer oil. The experimental results establish the independence of the process of turbulent flow from the physical nature of the liquid jet formed. In addition, it is demonstrated that the turbulent Prandtl number, determined as the ratio of the coefficients of momentum and heat transfer, is purely hydrodynamic characteristic of the jet, and does not depend on the physical constants of the fluid. Orig. art. has: 6 figures.

SUB CODE: 20/ SUBM DATE: 09Nov65/ ORIG REF: 003/ OTH REF: 004

Card 2/2 W

24260-66 ENT(1)/ENP(m)/ENA(d)/ETC(m)-6/ENA(1) WIN SOURCE CODE: UR/0000/65/000/000/0414/0419 ACC NR: AT6006928 BH AUTHOR: Palatnik, I. B.; Temirbayev, D. Zh. ORG: Power Institute, AN KezSSR (Institut energetiki AN KezSSR) TITLE: Free turbulent jets issuing from a rectangular opening SOURCE: Teplo- i massoperenos. t. II: Teplo- i massoperenos pri vzeimodeystvii tel s potokami zhidkostey i gazov (Heat and mass transfer. v. 2: Heat and mass transfer in the interaction of bodies with liquid and gas flows). Minsk, Nauka i tekhnika, 1965, 414-419 TOPIC TAGS: turbulent jet, mess transfer, fluid flow ABSTRACT: For a three-dimensional flow, the field of the longitudinal component of the density of the momentum flux can be described by an equation of the form: $\frac{\partial \rho u^3}{\partial \tau} = \frac{\partial^2 \rho u^2}{\partial r^2} + \frac{\partial^2 \rho u^3}{\partial u^3},$ where T=T (x) is the subject to experimental determination as a function of the longitudinal coordinate x, and x and y are the transverse coordinates. For the case under consideration, this equation must be solved with the following boundary and initial conditions:

L 24260-66

ACC NR: AT6006928 .

$$\begin{aligned}
\tau &= 0, \quad |y| < a \\
x &= 0, \quad |z| < b
\end{aligned} \quad \begin{cases}
\rho u^3 &= \rho u_0^2 = \text{const} \\
y &= 0, \quad |z| < b
\end{cases} \quad \begin{cases}
\rho u^3 &= \rho u_0^2 = \text{const} \\
y &= 0, \quad |z| < \rho u^3, \quad$$

The solution of Eq. (1) with boundary and initial conditions (2), obtained by summation with respect to the initial conditions, has the following form:

$$\frac{\rho u^{2}}{\rho u_{0}^{2}} = \frac{1}{4\pi\tau} \int_{-\alpha}^{\alpha} \int_{-b}^{b} e^{\frac{(\nu-\alpha)^{2}+(z-\beta)^{4}}{4\tau}} d\alpha d\beta, \qquad (3)$$

in which integration with respect took and \$\beta\$ is performed with respect to the eres of the initial cross section of the nozzle. Experimental results lead to the corclusion that application of the method of the equivalent problem of the theory of heat conductivity gives fully satisfactory results and can be recommended for approximate calculation

cord 2/3

L 24260-66 ACC NRi AT6006928									
of processes i jets from a re figures.	involving the ectangular ope	transfer o ening. Ori	f momentum g. art. hes	in the flow of the formulas	f turbulent and 4				
SUB CODE: 20/	/ SUBM DATE:	09Nov65/	ORIG REF:	008					
					·				
				,					
•									
•	•								
	•								

EWILLES, EWILL, Why hit ACC NR. AT6023747 SOURCE CODE: UR/3149/66/000/003/0094/0098 AUTHOR: Palatnik, I. B.; Temirbayev, D. Zh. ORG: none Selection of optimum characteristics of gas turbine combustion TITLE: chamber flame holder SOURCE: Alma-Ata. Kazakhskiy nauchno-issledovatel'skiy institut energetiki. Problemy teploenergetiki i prikladnoy teplofiziki, no. 3, 1966, 94-98 TOPIC TAGS: gas turbine, combustion chamber, combustion chamber flame holder, gas turbine, flame holder ABSTRACT: Experimental results are presented on the selection of certain parameters of a gas turbine combustion chamber flame holder. experiments were conducted to study the problem of hydraulic drag, (particularly pressure drop across the perforations) and nonuniform mixing under variable operating conditions. To determine the effect of a reduction in pressure drop on the quality air-fuel mixing, tests were conducted with \bar{s} parameter variations in the range 0.5 \leq \bar{s} \leq 0.8 (where S is the ratio of the total area of perforations to the flame holder cross section). The obtained results show that the pressure 1/2

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

pitch perfor pressu rectar	is de ration ire dr	fined and op, r	i as to the cound	the rate	ns can stio of er). I rations luce be	the di	tnan stance also f	betwood	where een th that a	the recent t the	elati ter o same	Гa
				•	none/			003				[AS]
					,	ONLU	HER.	003				
	•		•									
									•			
												-
												-
ard	an I	ale	•									

TEMIRI	Taxonomy of the Chirchik Valley vegetation. Vop.biol.i kraev. (MIRA 16:3) med.no.3:9-16 '62. (CHIRCHIK VALLEYPLANT COMMUNITIES)						
					•		
1							
							•

TEMIRBAYEV, N.

Phytocenoses of the Chirchik Valley. Uzb. biol. zhur. 9 no.2: 58-61 '65. (MIRA 18:5)

1. Institut botaniki AN UzSSR.

TEMIRBEKOV, Zh.T.

Study of arbor viruses in East Kazakhstan Province; preliminary report. Zdrav. Kazakh. 22 no.5:55-60 '62. (MIRA 15:6)

l. Iz otdela virusologii (nauchnyy rukovoditel' - prof. Kh.Zh. Zhumatov) Kazakhukogo instituta epidemiologii, mikrobiologii i gigiyeny.

(EAST KAZAKHSTAN PROVINCE--VIRUS RESEARCH)

(ENCEPHALITIS)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMTR SULATOV, Kh.A.

Results of intrapleural talcum introduction in cyanotic congenital heart defects. Vrach. delo no.9:54-56 53.
(MIRA 16:10)

1. Kafedra torakalinoy khirurgii (zav. - chlen-korrespondent AMH SSSR, prof. N.M.Amosov) Kiyevskogo instituta usovershen-stvovaniya vrachey.

(TAIC -- THERAPEUTIC USE) (CYANOSIS)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMIRENKO, T. P.

PA 153114

Nov 49 USSR/Engineering - Analysis, Photoelectric Steel, Silicon in

"Determination of Silicon in Steels by the Photoelectric Method," T. P. Temirenko, Sci Res Tube Inst, 1 p

"Zavod Lab" No 11

Photoelectric method of determining silicon in ordinary carbon and low-alloy steels and in cast iron is used widely in plant laboratories. Explains how method can be simplified without impairing accuracy of results, and without using either perhydrol or hydroxylamine hydrochloride.

153T14

POLYNSKIY, I.T.; TEMIRGALIYEV, S.; MASTITSKIY, Ye.P., kand.tekhn.nauk

Improvement in the insertion of a point in a triangle. Sbor.
nauch. trud. Kaz GMI no.19:40-46 '60. (MIRA 15:3)

(Triangulation)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

10.10 (1995) (1995) [1995] [1995] [1995] [1995] [1995] [1995] [1995] [1995] [1995] [1995] [1995] [1995] [1995]

TEMIRGALEYEVA, R. Sh.

TEMIRGALEYEVA, R. Sh. -- "Effect of Physiological Sleep and Certain Pharmacological Neurotropic Agents on the Heart in Hypertension According to Electrocal diographic Data." Sub 26 Mar 52, Acad Med Sci USSR. (Dissertation for the Degree of Candidate in Medical Sciences.)

SO: Vechernaya Moskva January-December 1952

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

Neft' idet! (Petroleum in flowing!). lit. mapis' A. Lasibova. Poskva, Proficier, 1953. 71 p. (Novatory cots. preisvodstva)

SO: Monthly List of Russian Accessions, Vol. 7, No. 7, Oct. 197h

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

eral lucius d'alexantes en en la company de la company

TEMIRKHANOV, Gadzhi; PANKOVA, V., red.; MALEK, Z., tekhn. red.

[Petroleum is coming] Neft' idet. Moskva, Profizdat, 1953. 69 p. (MIRA 16:7)

1. Burovoy master Stalinskoy kontory bureniya tresta "Stalinneft'", Stalinskiy rayon (for Temirkhanov).

(Azerbaijan--Petroleum production)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

Angiography of the brain using cardiotrast. Vop.neirokhir. 19
no.5:25-28 S-0 '55. (MLRA 8:11)

1. Iz kliniki nervuykh bolezney i neyrokhirurgii Rostovskogona-Domu meditsinskogo instituta.
(ANGIOGRAPHY,
cerebral, with cardiotrast)
(BRAIN, blood supply,
angiography, with cardiotrast)
(CONTRAST, MEDIA,
cardiotrast in cerebral angiography)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

USSR / Human and Animal Morphology (Normal and Pathological). General Problems.

: Ref. Zhur - Biologiya, No. 3, 1959, 12212 Abs Jour

Author : Temirov, E. S. Inst : Rostov n/D. Medical Institute

Title : On the Problem of Surgical Anatomy of the Neuro-

vascular Bundle in the Region of the Carotid

Triangle.

Orig Pub : Tr. Otchetn. nauchn. konferentsii (Rostovsk.-

n/D. med. in-t) za 1936 g. Rostov-na-Donu, 1957,

S

225-228

Abstract

From data of 94 exposed common carotid arteries (CCA) in 88 patients, it was shown that in relation to the trachea and larynx, CCA may occupy lateral (59 cases), anterolateral (23) and posteriolateral (12) positions. The internal jugular

Card 1/2

, in the material payments with the angle of the state of the second of

TEMIROV, E.S.

Transcutaneous angiography of the brain. Vop. neirckhir. 21 no.5: 32-33 N-D 157. (MIRA 11:2)

1. Klinika nervnykh bolesney i neyrokhirurgii Rostovskogo-na-Domi meditsinskogo instituta.

(ANGIOGRAPHY, CEREBRAL trans-cutaneous)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMIROV, E.S.

Automatic syringe for cerebral angiography. Vop.neirokhir.
22 no.1:58-61 Ja-F '58 (MIRA 11:3)

1. Klinika nervnykh bolezney i neyrokhirurgii Rostovskogo-na-Domu meditsinskogo instituta.

(ANGIOGRAPHY, CEREGRAL, apparatus and instruments, automatic syringe (Rus)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

是能够能够**是是是**

TEMIROV, E.S.

Vertebral angiography in the diagnosis of tumors of the posterior segments of the cerebral hemispheres [with summary in English, p. (MIRA 12:2) 54]. Vop.neirokhir. 22 no.6:8-10 N-D '58.

1. Klinika nervnykh bolezney i neyrokhirurgii Rostovskogo meditsinskogo instituta.
(BRAIN NEOPLASMS, diagnosis,

vertebral angiography in tumor of posterior cerebral segments (Rus))

(ANGIOGRAPHY.

vertebral, in cancer of posterior cerebral segments (Rus))

CIA-RDP86-00513R001755220005-4" **APPROVED FOR RELEASE: 07/16/2001**

TEMIROV, E.S.

Corebral angiography with triiotrast. Vest.rent.i rad. 34 no.6: 69-72 N-D 159. (MIRA 13:5)

l. Iz kliniki nervnykh bolezney i neyrokhirurgii (zav. - prof. V.A. Nikol'skiy) Rostovskogo-na-Donu meditsinskogo instituta. (IODIZED OILS) (CEREBRAL ANGIOGRAPHY)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMIROV, E.S.; SHLEPOVA, T.A. (Rostov-na Domu)

Spontaneous recovery from subdural hematomas. Vop.neirokhir. no.5242-45 161. (MIRA 14:11)

1. Klinika nervnykh bolezney i neyrokhirurgii Rostovskogo-na-Domu meditsinskogo instituta,
(DURA MATER-TUMORS) (HEMATOMAS)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

High restriction of the second second

KIPNIS, I.S., inzh.; TEMIROV, M.D., inzh.

Plant experience in contact welding of casings. Sudestroenie 24 no.11:62-63 H '58. (MIRA 12:1) (Blectric welding)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

43296

S/135/62/000/012/008/015 A006/A101

1 2300

2408

AUTHORS:

Temirov, M. D., Ishchenko, V. I., Engineers

TITLE:

Spot-welding of a special aluminum section with a sheet

PERIODICAL: Svarochnoye proizvodstvo, no. 12, 1962, 22 - 23

TEXT: The Central welding laboratory of the Kaliningrad sovnarkhoz has designed special-shaped upper electrodes (2) for spot welding ΠB -221 (PV-221) sections (1) to sheets on MTMI (MTIP) resistance welding machines (Figure 1). The lower electrode(3) is oval-shaped. Conditions for welding AMr 6 (AMg6)-alloy ribs on a MTIP-1000 machine are given. Comparative tests were made with specimens subjected to discontinuous argon-arc and spot welding. Shearing and breaking tests yielded the following results:

Test	Welding method	Rupture load on the weld in kg	Rupture load on a spot in kg
method	Resistance	5,73°	1,141
Shearing	Argon-arc	3,420	
Breaking	Resistance	2,986	597
	Argon-arc	2,220	-

Card 1/2

Spot-welding of a special aluminum...

S/135/62/C00/012/008/015 A006/A101

二月 医多种性性神经性性炎 医二氏性神经炎

The described electrodes were used during one year and showed satisfactory results, i.e. higher efficiency, savings in argon, electrode wire, and tungsten, and reduction of expenses caused by the straightening of assemblies after argon-

Thickness	Welding force				12 8011-
1n mm	in kg	Peaning force in kg	mistormer	Welding time	
2 - 3.5	900	2,100	step	_in sec	
3 - 3.5	1,000	• -	VI	0.4	
m.	•	2,200	ΛΙ	0.5	

There are 2 tables and 5 figures.

Figure 1. Special electrodes for welding PV-type sections to a sheet

Card 2/2

TEMIROV, S.

Honorably welcome the forthcoming Plemm of the Central Committee of the Communist Party of the Soviet Union. Muk.-elev. prom. 25 no.11:32 N '59 (MIRA 13:3)

1. Zamestitel' direktora Sosnovskogo khlebopriyemnogo punkta Semipalatinskoy oblasti. (Semipalatinsk Province--Grain elevators)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

SHAPIRO, Ya.; TEMIROV, T.

Piemann spaces with a reducible isotropy group. Dokl. AN SSSR 157 no.3:539-541 J1 *54. (MIRA 17:7)

l. Gor'kovskiy gosudarstvennyy universitet imeni Lobachevskogo. Predstavleno akademikom A.N. Kolmogorovym.

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

SHAPIRO, Ya.; TETEROV, T.

Hotions in Riemann spaces with a reducible isotropy group. Sib. nat. shur. 6 no.6:1407-1414 H-D *65.

(MIRA 18:12)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMIROV, Yu.K.

Heterogenic peritoneal membrane in the treatment of some corneal injuries. Oft.zhur. 15 no.7:432-438 '60. (MIRA 13:11)

1. Iz glaznogo otdeleniya (zav. - kand.med.nauk S.Ya.Miminoshvili) Sukhumskoy respublikanskoy bol'nitsy imeni prof. A.A.Ostroumova. (CORNEA--WOUNDS AND INJURIES) (PERITONEUM--TRANSPLANTATION)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

了。在新聞傳播的問題當於特別等,第三十三

NIKOL'SKIY, V.A.; TEMIROV, Ye.S.

Chronic subdural hematomas. Vop.neirokhir. 24 no.4:10-15 Je-Ag
(MIRA 13:12)
'60.

(BRAIN-HEMORRHAGE)

"APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755220005-4

CHUDAKOV, Konstantin Petrovich; FEYGIN, Leonid Aleksandrovich; PETROV, Il'ya Vledimirovich; TEMIROV, Yuriy Sergeyevich; PEREVALYUK, M.V., red.izd-va; SHERSTNEVA, N.V., tekhn.red.

[Maintenance of construction machinery] Tekhnicheskoe obsluzhivanie stroitel nykh mashin. [By] K.P.Chudakov i dr. Moskva, Gosstroiizdat, 1963. 259 p. (MIRA 16:12) (Construction equipment—Maintenance and repair)

VASSERMAN, Z.M.; TEMIROVA, B.T.

Blood protein fractions in immunological and drug therapy. Sbor. trud. Uz nauch.-issl. tub. inst. 3:24-31 '57. (MIRA 14:5) (TUBERCULOSIS) (BLOOD PROTEINS)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMIROVA, K. V.

"Lymphohisticcytosis of the Exudate of Cantharidic Blisters as an Index of the Changed Reactivity of an Organism During Certain Internal Diseases." Cand Med Sci, First Leningrad Medical Inst, Leningrad, 1953. (RZhBiol, No6, Nov 54)

Survey of Scientific and Technical Dissertations Defended at USSR Higher Educational Institutions (11)

SO: Sum. No. 521, 2 Jun 55

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMIROVA, K.V., kand.med.nauk; BOYKOVA, N.V., kand.med.nauk (Leningrad)

Thromboartheritis of the small branches of the pulmonary artery. Klin.med. no.4:135-138 162. (MIRA 15:5)

1. Iz kafedry gospital'noy terapii (zav. -- prof. P.K. Bulatov) i kafedry patologicheskoy anatomii (zav. -- prof. M.A. Zakhar'-- yevskaya) I Leningradskogo meditsinskogo instituta imeni akad. I.P. Pavlova.

(PULMONARY EMBOLISM)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

 NA, M.F. Some decorative poppies for gardens and parks of Erivan. Biul. (MIRA 9:8)
Some decorative poppies for gardens and parks of Erivan. Biul. (MLRA 9:8) Bot.sada [Eriv.] no.8:5-16 '49. (ErivanPoppy)

Some features of no.10:65-68 '50.	poppy cultivation in Erivan. (ErivanPoppy)	Biul.Bot. sada [Eriv.] (MLRA 9:8)

ASTVATSATRYAN, Z.A.; TEMIROVA, M.F.

Direct sowing of annual flowers in open ground in Erivan. 1zv.AF Arm. SSR. Biol. i sel'khoz.nauki. 3 no.12:1121-1127 '50. (MLRA 9:8) (Erivan--Floriculture)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

采出的問題實施的對於公司

an remainders and remainders and the remainders and

TRMIROVA, M.F.

ikuningun jau

Some results of the intruduction of flowering plants in the Erivan botanical garden. Izv.AN Arm. SSR. Biol. i sel'khos. nauki. 4 no. 10: 921-933 '51. (MLRA 9:8)

 Botanicheskiy institut i sad Adademii nauk Armyanskoy SSR. (Erivan--Plant introduction)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TENIROVA, M.T.

Propagation of hyacinths in Erivan. Isv.AN Arm. SSR. Biol. 1 sel'khoz. nauki. 5 no.1:113-116 '52. (MIRA 9:8)

1. Botanicheskiy institut i sad Akdademii nauk Armyanskoy SSR. (Erivan--Hyacinths)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

ASTVATSATRYAN, Z.A.; TEMIROVA; M.F.: VARTANYAN, A.K.

A new background plant for bouquets. Izv.AH Arm. SSR. Biol.1 sel'khoz. nauki 6 no.3:35-41 '53. (NLBA 9:8)

1. Botanicheskiy institut Akademii nauk Arm. SSR. (RRIVAN-BRASSICACRAE) (FLOWERS-ARRANGEMENT)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

Perennial flowering plants in commercial floriculture. Biul. Bot.Sada [Briv.] no.13:61-82 '53. (MERA 9:8) (Perenials)

THE BUILDING WEIGHTBERGER AND THE AREA TO SEE THE SECOND

STATE OF THE STATE

TENIROVA, M.F.

Effect of heteroauxin on the rooting of Phlox paniculata L. cuttings. Izv.AN Arm.SSR.Biol.i sel'khoz.nauki 7 no.2:101-102 '54.

1. Botanicheskiy institut Akademii nauk Armyanskoy SSR. (Erivan--Phlox) (Indoleacetic acid) (Growth promoting substances)

Regeneration of prunes and cherries by root suckers. IXV.AH Arm. SSR.Biol.i sel'khoz.nauki 8 no.1:35-38 Ja '55. (NLRA 9:8) (Prune) (Cherry)

TEMIKYALEVA, S.K.

Category : USSR/Electronics - Cathode Ray Tubes

H-6

Abs Jour: Ref Zhur - Fizika, No 2, 1957, No 4304

Author : Artem'ev, N.L., Sokolov, V.K., Temiryazeva, S.K.
Title : Television Transmitting Tube with Photoresistance

Orig Pub : Radiotekhnika i elektronika, 1956, 1, No 2, 245-252

Abstract : Description of the arrangement, of the principle of operation, and

of the characteristics of a transmitting television tube with photoresistance (vidicon) -- LI-LB, operating with fast electrons. The procedure is analyzed for the choice of the operating confidence so

as to insure optimum parameters. Bibliography, 8 titles.

Card : 1/1

TEMISH, S.G.

Safety measures in the testing of one of the sections of the Bukhara--Ural Gas Pipeline. Stroi. trub. 9 no.7:23 51 164. (MIRA 17:11) 1. SU-1 tresta Vostoknefteprovodstroy, Novokuybyshevsk.

CIA-RDP86-00513R001755220005-4" **APPROVED FOR RELEASE: 07/16/2001**

TEMKIN, A.G.

Thermodynamics

Notes on the article of I.I. TSukkerman, "Determination of thermal constants by means of probes." Zhur.tekh.fiz. 22, no. 2, 1952.

9. Monthly List of Russian Accessions, Library of Congress, AUGUST 1952 1953, Uncl.

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMKIN, A. G.

USSR/Engineering - Cooling

Apr 52

"Geometric Criterion of Cooling, " A.G. Temkin

"Zhur Tekh Fiz" Vol XXII, No 4, pp 635-647

Analyzes speed of cooling depending on relation of surface to vol of body. Defines criterion of cooling and the effect of shape on temp of the surface and of the center of the body. Received 15 May 51.

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

Dissertation: "Effect of the Integral Criterion of Shape on the Processed of Heat Conductivity." Cand Tech Sci, Moscow Technological Inst of the Feed Industry, 14 Acr 54. (Vechernyaya Moskva, Moscow, 2 Apr 54)

SO: SUM 243, 19 Oct 1954

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

TEMKIN, A.G.

AID P - 2577

Subject

: USSR/Engineering

Card 1/1

Pub. 110-a - 16/16

Authors

: Gukhman, A. A., Doct., Phys. Math. Sci., Prof. Shumayev, A. I. and A. I. Veynik, Docs. Tech. Sci., Profs. Temkin, A. G., Kand. Tech. Sci.

Blokh, A. G., Kand. Tech. Sci.

Title

: A. F. Chudovskiy Teplo obmen v dispersnykh sredakh

(Heat Exchange in Dispersion media) Gosenergoizdat,

1954. (Book Review)

Periodical

: Teploenergetika, 8, 60-64, Ag 1955

Abstract

The book is an analysis of large-grain dispersion

material. The reviewers consider the book as a timely

contribution to Soviet science, although it is not

devoid of some small errors.

Institution: None

Submitted : No date

attention for the state of ピカイトル Temkin, A. G. Influence of the integral criterion of form 1 - F/W 497-511 (1955) Russian) A certain criterion of form of bodies is defined as E, = St1-4, where S is the area of the surface and V is the volume of a given bounded body. For a cylindrical body with one infinite dimension, a similar criterion is defined as $E_i = pF^{-1}$, where p is the perimeter while F is the area of the cross-section perpendicular to the axis of the body. The rate of cooling of certain bodies is expressed as a function of these criteria. The object of the work is to give a precise meaning to a general law of cooling which states that the rate of cooling of a given body increases with an increase of the ratio of the area of its surface to the volume of the body H. P. Thielman (Ames, Iowa). Temkin, A. G. A theorem on the maximum of a tempereture gradient. Z. Tcho. Fiz. 25, 534 540 (1955). (Russian) This paper is a further development of the ideas presented by the author in the paper reviewed above. It is shown that if the surface of a body is increased without a change in the volume of the toxis, then there taken place as microase of the rate of hear flow tree site to a vision attaneously with a decrease as the specific once it is strongly the surface of the tauty if P. Thurman Amer Iowa).

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

: USSR/Heat Engineering Subject

AID P - 4361

Card 1/1

Pub. 110-a - 6/19

Authors

: Temkin, A. G., Kand. Tech. Sci. and V. N. Fedorov, Eng.

Kuybyshev Institute of Industry

Title

: On computing heat transfer in furnaces

Periodical

: Teploenergetika, 4, 21-22, Ap 1956

Abstract

The computation of a radiant energy absorbing wall in the boiler is explained. A mathematical analysis for the computation of large waterwall boilers is given. Two Russian references, 1950 and 1954.

Institution: None

Submitted : No date

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

Translation from: Referativnyy zhurnal, Mekhanika, 1958, Nr 11, p 111 (USSR) SOV/124-58-11-12703

AUTHOR: Temkin, A.G.

TITLE:

Investigation of the Hydrodynamics of the Flow of Liquids in Conduits of Complex Configuration (Issledovaniye gidrodinamiki techeniya zhidkostey v kanalakh slozhnoy konfiguratsii)

PERIODICAL: Tr. Mosk. tekhnol. in-t pishch. prom-sti, 1957, Nr 8, pp 156-169

ABSTRACT: A solution of the problem of the distribution of velocities and tangential stresses over the cross section of triangular, square, rectangular, and elliptical conduits. The paper may be useful to specialists in chemical technology and heat engineering.

V.S. Muromov

Card 1/1

First interuniversity scientific technical conference on regular thermal conditions. Inzh.-fiz.zhur. 1 no.8:120-122 Ag '58.

(Heat)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

THMKIN, A.G.

Friction characteristics of channels of complex form during turbulent flow. Insh.-fiz.zhur. no.5:23-29 My '58. (MIRA 12:1)

1. Industrial nyy institut, g. Kiybyshev.
(Fluid dynamics) (Heat--Transmission)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

。 (1915年) · 1915年 · 1915年 · 1916年 · 1

24,5100

24 (8) AUTHOR:

Temkin, A. G.

68775

S/170/59/002/12/002/021

B014/B014

TITLE:

The Inertia of Temperature Fields

PERIODICAL:

Inzhenerno-fizicheskiy zhurnal, 1959, Vol 12, Wr 112, pp 11 - 19 (USSR)

ABSTRACT:

In the first part of the present paper the author gives an equation for the temperature field of a finite k-dimensional body and discusses the boundary conditions. Equation (1.7) is obtained for the Laplace representation of temperature. Next, he describes the representation of the temperature field by equation (2.1). In this connection he discusses the expansion of the radial function (2.2) in a series. Furthermore, the expansion of the temperature field in a generalized Maclaurin series is discussed, and equation (3.7) is obtained. For this representation, the author discusses the general formula for the integrals of the radial function, the representation of the temperature field by the radial function (5.1), and its expansion in a sum of two components (5.4). In conclusion, the representation of the temperature field for an arbitrary initial distribution is discussed, and formula (6.8) is written down for this temperature field. There are 7 Soviet references.

Card 1/2

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

The Inertia of Temperature Fields

68775 \$/170/59/002/12/002/021 B014/B014

ASSOCIATION: Institut rybnoy promyshlennosti, &. Kaliningrad (Institute of the Fish Industry, City of Kaliningrad)

Card 2/2

TEMKIN, A.G.

Inertia of temperature fields. Inzh.-fiz.zhur. no.1:68-75 Ja (MIRA 13:4)

1. Institut rybnoy promyshlennosti, g. Kaliningrad. (Heat--Transmission)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

KACHKOVA, M.V.; TEMKIN, A.G.; FEDOROV, V.N.

Storage of moist millet in an inert gas atmosphere. Izv. vys. ucheb. zav.; pishch. tekh. no.3:14-17 '60. (MIRA 14:8)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMKIN, A.G., kand.tekhn.nauk dots.

Temperature field of a plate subjected to variable thermal influence. Izv.vys.ucheb.zav.; energ. 3 no.3:119-127 Mr '60. (MIRA 13:3)

1. Kaliningradskiy tekhnicheskiy institut rybnoy promyshlennosti i khozyaystva. Predstavlena kafedroy sudovykh silovykh ustanovok.

(Heat engineering)
(Heat transmission)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

1862年中国农业活动的公司。对最大

TEMKIN, A.G.

Temperature field of mobile sources of heat. Dokl.AN BSSR 4 no.2:55-57 F 160. (MIRA 13:6)

1. Predstavleno akademikom AN BSSR A.V. Lykovym. (Heat--Radiation and absorption)

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

TEMKIN, A. C.

"Temperature Field Components of Bodies Containing Heat Sources."

Report submitted for the Conference on Heat and Mass Transfer, Minsk, BSSR, June 1961.

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

TEMKIN, A.G., kand.tekhn.nauk, dotsent

Determination of varying external thermal actions by thermal conductivity methods. Izv.vys.ucheb.zav.; energ. 4 no.5:60-71 My 161. (MIRA 14:6)

l. Kaliningradskiy tekhnicheskiy institut rybnoy promyshlennosti i khozyaystva. Predstavlena kafedroy sudovykh silovykh ustanovok. (Heat—Trappmission)

APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4"

"APPROVED FOR RELEASE: 07/16/2001 CIA-RDP86-00513R001755220005-4

TEMKIN, A.G., kand.tekhn.nauk, dotsent

Mean isothermic conditions of a nonstationary field. Izv. vys. ucheb. zav.; energ. 4 no.8:83-91 Ag '61. (MIRA 14:8)

1. Kaliningradskiy tekhnicheskiy institut rybnoy promyshlennosti i khozyaystva. Predstavlena kafedroy sudovykh silovykh ustanovok.

(Heat-Transmission)

27246 s/170/61/004/009/005/013 B104/B125

24,5200

Temkin, A. G.

AUTHOR: TITLE:

Inverse problems of heat conduction of a symmetric field

PERIODICAL:

Inzhenerno-fizicheskiy zhurnal, v. 4, no. 9, 1961, 45-55

TEXT: The temperature field in a k-dimensional body, its surface temperature, and the temperature gradient on its surface can be calculated by measuring the temperature at a point inside the body, provided the temperature field is symmetric. The temperature field of a body having k finite dimensions may be described by the heat-conduction equation $\partial t/\partial H = \partial^2 t/\partial N^2 + (k-1)\partial t/N\partial N$. In the problem raised here, the heat exchange between the body and the ambient, the ambient temperature, and the heat current passing through the surface of the body are unknown. The boundary conditions of this problem, which usually refer to the body's surface, are replaced by a condition at the point where the temperature is measured. From the Laplace representation of the above heat-conduction equation and from the corresponding boundary conditions, it is concluded that the solutions to this heat-conduction equation refer only to points Card 1/3

s/170/61/004/009/005/013 B104/B125

Inverse problems of heat conduction ...

 $N \le N_1$, where N_1 is the point of temperature measurements. The author looks for a method which allows the field to be found also in the range $N > N_1$. For this purpose, it is assumed that the solution can be represented in the form: $t(N;H;k) = t_a(N;H;k) + t_r(N;H;k)$. Here, t_a is the active field, and t is the reactive field. Each of the two fields satisfies the heat-conduction equation and the condition of symmetry. Next, series representations of t_a and t_r are developed, which fulfill these conditions. The heat

conduction is calculated from the equation
$$t(N_{2};\tau;k) = t(N_{1};\tau) + \frac{1}{2k} \left[N_{2}^{2} - N_{1}^{2}\right] \frac{R^{2}}{a} \frac{dt(N_{1};\tau)}{d\tau} + \frac{1}{8k(k+2)} - \frac{N_{2}^{2}N_{1}^{2}}{4k^{2}} + \frac{(k+4)N_{1}^{4}}{8k^{2}(k+2)}\right] \frac{R^{4}}{a^{2}} \frac{d^{2}t(N_{1};\tau)}{d\tau^{2}} + \frac{N_{2}^{6}}{48k(k+2)(k+4)} - \frac{N_{2}^{4}N_{1}^{2}}{16k^{2}(k+2)} + \frac{(k+4)N_{2}^{2}N_{1}^{2}}{16k^{3}(k+2)} - \frac{(k^{2}+12k+48)N_{1}^{6}}{48k^{3}(k+2)(k+4)}\right] \frac{R^{6}}{a^{3}} \frac{d^{2}t(N_{1};\tau)}{d\tau^{2}} + \dots$$

Card 2/3

91

27246 S/170/61/004/009/005/013 B104/B125

治。但是自然的學習問題的學科學的學科學

Inverse problems of heat conduction ...

by measuring the temperature at points N_1 and N_2 . The determination of the heat-exchange coefficient, which depends on the conditions of heat exchange, by temperature measurements inside and outside a body is discussed for two cases: 1) The ambient temperature and its variation in time are known, while the temperature variation in time at the point N of the body is unknown. 2) The temperature at point N₁ of the body and its

variation in time are known, while the variation of the ambient temperature in time is unknown. In these problems, the varying heat-exchange coefficient is determined from the varying value of the Biot number. A. A. Gukhman is mentioned. Sh. N. Plyat is thanked for discussions. There are 9 Soviet references

Tekhnicheskiy institut rybnoy promyshlennosti i khozyaystva, g. Kaliningrad (Technical Institute of the Fishing Industry ASSOCIATION:

and Economy, Kaliningrad)

March 25, 1961 SUBMITTED:

Card 3/3

27554 8/170/61/004/010/008/019 B109/B138

26.5100

AUTHOR:

Temkin, A. G.

TITLE:

Inverse problems of heat conduction of an asymmetrical field

PERIODICAL:

Inzhenerno-fizicheskiy zhurnal, v. 4. no. 10, 1961, 52-63

TEXT: The temperature field of a k-dimensional solid with a cavity is reconstructed according to temperature measurements at two points. The problem is solved for the case of a plate, a hollow cylinder, and a hollow sphere. It is assumed that the temperature at the 2 points N_4 and N_2 is known as $t(N_1,H) = t_1(H)$ and $t(N_2,H) = t_2(H)$. Then, the heat-

conduction equation $\partial t/\partial H = \partial^2 t/\partial N^2 + \frac{k-1}{N} \partial t/\partial N \dots$ (1.3)

will describe the total temperature field of a solid bounded by an inner surface and by an outer surface (N_i and N_e , respectively) ($N_i < N < N_e$). According to A. G. Temkin ("Izv. vyzov, Energetika", No. 5, 1961), the formulation

Card 1/9

Inverse problems of heat conduction.. $\frac{2755h}{5/170/61/004/010/008/019}$ $\frac{t(N, H, k) = \sum_{n=0}^{\infty} t_1^{(n)}(H) P_n(N, N_1, k) + t_2^{(n)}(H) P_n(N, N_2, k)}{t_2^{(n)}(H) P_n(N, N_3, k)}$ $\frac{t(N, H, k) = \sum_{n=0}^{\infty} t_1^{(n)}(H) P_n(N, N_1, k) + t_2^{(n)}(H) P_n(N_2, N_1, k) = P_n(N_1, N_2, k) = 0, \\ \frac{t_2^{(n)}(N_1, N_1, k) = P_0(N_2, N_2, k)}{t_2^{(n)}(N_1, N_1, k)} = \frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_2^{(n)}(N_1, N_1, k)} = \frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_2^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = \frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_2^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_2^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) = t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$ $\frac{t_1^{(n)}(N_1, N_1, k) + t_2^{(n)}(N_1, N_1, k)}{t_1^{(n)}(N_1, N_1, k)}$

Card 3/9

Inverse problems of heat conduction... 8/170/61/004/010/008/019 $P_{0}(v, \Delta, k) = \frac{\int_{\Delta}^{v_{k-1}} dv}{\int_{\Delta}^{v_{k-1}} dv}.$ $P_{n}(v, 1, k) = \int_{\Delta}^{v_{k-1}} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi.$ (1.24), and $P_{n}(v, \Delta, k) = \int_{\Delta}^{v} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \xi^{k-1} P_{n-1}(\xi, \mu, k) d\xi - \frac{\int_{\Delta}^{\eta} \eta^{1-k} d\eta}{\int_{\Delta}^{\eta} \eta^{1-k} d\eta} \int_{\Delta}^{\eta} \eta^{1-k} d\eta \int_{\Delta}^{\eta} \eta^{1-k$

27554 S/170/61/004/010/008/019 B109/B138

Inverse problems of heat conduction ...

Examples: $\frac{1}{N-\frac{1}{N_1}}$ temperature field of a plate. Here, it is convenient to choose $\xi = \frac{1}{N_2-N_1}$, $\xi = 0$ in N_1 , $\xi = 1$ in N_2 . Solution:

$$t_a(\xi,H,1) = \sum_{\mu=0}^{1} \sum_{n=0}^{\infty} t^{(n)}(\mu,H)P_n(\xi,\mu,1), \text{ where}$$

$$P_0(\xi, 0, 1) = -\xi + 1,$$
 (2.10)

$$P_1(\xi,0,1) = -\frac{\xi^2}{16} + \frac{\xi^3}{2} - \frac{\xi}{3}. \tag{2.11}$$

$$P_{1}(\xi, 0, 1) = -\frac{\xi^{8}}{6} + \frac{\xi^{8}}{2} - \frac{\xi}{3}$$

$$P_{2}(\xi, 0, 1) = -\frac{\xi^{5}}{120} - \frac{\xi^{4}}{24} - \frac{\xi^{8}}{18} + \frac{\xi}{45}$$
(2.11)
and

Card 4/9

27554 S/170/61/004/010/008/019 B109/B138

Inverse problems of heat conduction ...

$$P_0(\xi, \Gamma, 1) = \xi,$$

$$P_1(\xi, 1, 1) = \frac{\xi^8}{6} - \frac{\xi}{6}$$

$$P_2(\xi, 1, 1) = \frac{\xi^3}{120} - \frac{\xi^3}{36} + \frac{7}{310} \xi$$

(2.15)

2) Hollow cylinder:

$$t(\nu, H, 2) = \sum_{\mu=1, \Delta} \sum_{n=0}^{\infty} t^{(n)}(\mu, H) P_n(\nu, \mu, 2), \qquad (3.1)$$

$$P_{o}(\nu,1,2) = 1 - \frac{\ln \nu}{\ln \alpha}, P_{o}(\nu,\alpha,2) = \frac{\ln \nu}{\ln \alpha},$$

Card 5/9

2755l₄ 5/170/61/004/010/008/019 B109/B138

Inverse problems of heat conduction...

$$P_{n}(v, \mu, 2) = \int_{0}^{\infty} \frac{d\eta}{\eta} \int_{0}^{\eta} \xi P_{n-1}(\xi, \mu, 2) d\xi - \frac{\ln v}{\ln \Delta} \int_{0}^{\Delta} \frac{d\eta}{\eta} \int_{0}^{\eta} \xi P_{n-1}(\xi, \mu, 2) d\xi.$$
 (3.7)

In order to calculate the heat flow through the inner or outer surface, (3.1) has to be partially differentiated at ν_i or ν_e with respect to .

3) Hollow sphere:

$$t(v, H, 3) = \sum_{\mu=1, \Delta} \sum_{n=0}^{\infty} t^{(n)}(\mu, H) P_n(v, \mu, 3). \tag{4.1}$$

$$P_0(v, 1, 3) = \frac{1}{\Delta - 1} \left[\frac{\Delta}{v} - 1 \right]. \tag{4.9}$$

$$P_0(v, \Delta, 3) = \frac{\Delta}{\Delta - 1} \left[1 - \frac{1}{v} \right]. \tag{4.10}$$

Card 6/9

27554 \$/170/61/004/010/008/019 B109/B138

Inverse problems of heat conduction ...

$$P_{n+1}(\nu, \mu, 3) = \int_{1}^{\infty} \eta^{-2} d\eta \int_{1}^{\eta} P_{n}(\xi, \mu, 3) \xi^{2} d\xi - \frac{\nu - 1}{\Delta - 1} \frac{\Delta}{\nu} \int_{1}^{\Delta} \eta^{-2} d\eta \int_{1}^{\eta} P_{n}(\xi, \mu, 3) \xi^{2} d\xi.$$
 (4.7)

The heat flow is calculated by differentiating (4.1) with respect to ν . The heat-transfer coefficient is determined as follows: If the temperatures at three points (1, Δ , and ν in between) are known, then it is possible to calculate the effect of temperature on the coefficients of thermal conductivity and thermal diffusivity. When a denotes the thermal diffusivity, x is the characteristic length of the solid $x = R_2 - R_1$, and the sign of the differentiation denotes differentiation with respect to time \approx , then, due to

Card 7/9

27554 \$/170/61/004/010/008/019 Inverse problems of heat conduction... B109/B138

$$t(v, \tau, k) = [t_1(\tau)P_0(v, 1, k) + t_2(\tau)P_0(v, \Delta, k)] +$$

$$+\frac{x^2}{a}\left[t_1'(\tau)P_1(\nu, 1, k)+t_2'(\tau)P_1(\nu, \Delta, k)\right]+$$

$$+\frac{x^4}{a^3}\left[t_1^*(\tau)P_8(v,1,k)+t_2^*(\tau)P_8(v,\Delta,k)\right]+...,$$
 (5.1)

the following expression will be valid for small time intervals:

$$a_{\pi} = \frac{x^{2} [t'_{1}(\tau) P_{1}(\nu, 1, k) + t'_{2}(\tau) P_{1}(\nu, \Delta, k)]}{t(\nu, \tau, k) - [t_{1}(\tau) P_{0}(\nu, 1, k) + t_{2}(\tau) P_{0}(\nu, \Delta, k)]};$$
 (5.2)

For a temperature close to the value measured at the intermediate point, a can be calculated from

$$a_{n} = a_{n} \left[0.5 + \sqrt{0.25 + \frac{\left[t_{1}^{"}(\tau) P_{2}(\nu, 1, k) + t_{2}^{"}(\tau) P_{2}(\nu, \Delta, k)\right] x^{2}}{\left[t_{1}^{"}(\tau) P_{1}(\nu, 1, k) + t_{2}^{"}(\tau) P_{1}(\nu, \Delta, k)\right] a_{n}}} \right]. \quad (5.3)$$

Card 8/9