TRCDEVARCH, Device Architecture Register

The TRCDEVARCH characteristics are:

Purpose

Provides discovery information for the component.

For additional information, see the CoreSight Architecture Specification.

Configuration

AArch64 System register TRCDEVARCH bits [31:0] are architecturally mapped to External register TRCDEVARCH[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_SR is implemented. Otherwise, direct accesses to TRCDEVARCH are undefined.

Attributes

TRCDEVARCH is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53	52	51 50 49 48 47 46	45 44	43 42 41	40 39 3	38 37	363	35 34	433	32
RES0										
ARCHITECT	PRESENT	REVISION ARCH	IVER		ARC	HPA	\RT			
31 30 29 28 27 26 25 24 23 22 21	20	19 18 17 16 15 14	13 12	1110 9	8 7	6 5	4	3 2	1	0

Bits [63:32]

Reserved, res0.

ARCHITECT, bits [31:21]

Architect. Defines the architect of the component. Bits [31:28] are the JEP106 continuation code (JEP106 bank ID, minus 1) and bits [27:21] are the JEP106 ID code.

ARCHITECT	Meaning
0b01000111011	JEP106 continuation
	code 0x4, ID code 0x3B.
	Arm Limited.

Other values are defined by the JEDEC JEP106 standard.

This field reads as 0x23B.

PRESENT, bit [20]

DEVARCH Present. Defines that the DEVARCH register is present.

PRESENT	Meaning
0b0	Device Architecture
	information not present.
0b1	Device Architecture
	information present.

This field reads as 1.

REVISION, bits [19:16]

Revision. Defines the architecture revision of the component.

REVISION	Meaning		
0b0000	ETEv1.0, FEAT_ETE.		
0b0001	ETEv1.1, FEAT_ETEv1p1.		
0b0010	ETEv1.2, FEAT_ETEv1p2.		
0b0011	ETEv1.3, FEAT_ETEv1p3.		

All other values are reserved.

ARCHVER, bits [15:12]

Architecture Version. Defines the architecture version of the component.

ARCHVER	Meaning		
0b0101	ETEv1.		

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHVER is ARCHID[15:12].

This field reads as 0x5.

ARCHPART, bits [11:0]

Architecture Part. Defines the architecture of the component.

ARCHPART	Meaning
0xA13	Arm PE trace
	architecture.

ARCHVER and ARCHPART are also defined as a single field, ARCHID, so that ARCHPART is ARCHID[11:0].

Accessing TRCDEVARCH

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCDEVARCH

op0	op1	op1 CRn CRm		op2	
0b10	0b001	0b0111	0b1111	0b110	

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRCID == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCDEVARCH;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TRCDEVARCH;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
```

X[t, 64] = TRCDEVARCH;

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.