Import Section

In [9]:

```
Powersave-Tweaks import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import stemgraphic as stg import statistics
```

Problem 17

Part A

There is most likely another statistical software package that is not being accounted for here. We can look at a nice punnet square to help with the rest of the problems

Table	Α	A'	Total
В	0	0.5	0.5
В'	0.3	0.2	0.5
Total	0.3	0.7	1

Part B

$$P(A') = 1 - P(A) = 1 - 0.3 = 0.7$$

Part C

Because P(A) and P(B) are mutually exclusive, we know that $P(A \cup B) = P(A) + P(B) = 0.3 + 0.5 = 0.8$

Part D

By Demorgans we can do the following. $P(A \cup B)' = P(A' \cap B')$ Thus we are looking for P(C') where $P(C) = P(A \cup B)$. As a result, $(P(C') = 1 - P(C) = 1 - 0.8 \rightarrow P(A' \cap B') = 0.2$

Problem 26

Part A

$$P(A_1) = 1 - P(A_1') = 1 - 0.12 = 0.88$$

Part B

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2) \rightarrow P(A_1 \cap A_2) = P(A_1) + P(A_2) - P(A_1 \cup A_2)$$

= 0.12 + 0.07 - 0.13 \rightarrow P(A_1 \cap A_2) = 0.06

Part C

Trying to solve
$$P(A_1 \cap A_2 \cap A_3')$$
 $P(A_1 \cap A_2 \cap A_3') + P(A_1 \cap A_2 \cap A_3') + P(A_1 \cap A_2 \cap A_3) = P(A_1 \cap A_2) \rightarrow P(A_1 \cap A_2 \cap A_3') = P(A_1 \cap A_2) - P(A_1 \cap A_2 \cap A_3') = 0.06 - 0.01 \rightarrow P(A_1 \cap A_2 \cap A_3') = 0.05$

Part D

This means we need to find the probably of at least 1 part functioning properly. This also can be expressed as $P(D)=1-P(A_1\cap A_2\cap A_3)$. $P(D)=1-0.01\to P(D)=0.99$

Problem 56

Prove that For any events A and B with P(B)>0 that $P(A|B)+P(A^{\prime}|B)=1$

We know that
$$P(A|B)=\frac{P(A\cap B)}{P(B)}$$
 and $P(A'|B)=\frac{P(A'\cap B)}{P(B)}$. Therefore $P(A|B)+P(A'|B)=\frac{P(A\cap B)}{P(B)}+\frac{P(A'\cap B)}{P(B)}=\frac{P(A'\cap B)+P(A'\cap B)}{P(B)}$. We also know that $P(A\cap B)+P(A'\cap B)=P(B)$, so it follows that $P(A|B)+P(A'|B)=\frac{P(B)}{P(B)}$ and that for $P(B)>0$ to avoid divergence, $P(A|B)+P(A'|B)=1$

Problem 59

$$P(A_1) = 0.40, P(A_2) = 0.35, P(A_3) = 0.25, P(B|A_1) = 0.3, P(B|A_2) = 0.6, P(B|A_3) = 0.5$$

Part A

We can determine this by what we know about conditional probability.

$$P(B|A_2) = rac{P(A_2 \cap B)}{P(A_2)}
ightarrow P(A_2 \cap B) = P(A_2)P(B|A_2) = 0.35*0.6
ightarrow (A_2 \cap B) = 0.21$$

Part B

For this we must use our answer to Part A. We are trying to find P(B) This can be accomplished by finding $P(A_1\cap B)$ and $P(A_3\cap B)$

Building off of the logic described in Part A $P(A_1 \cap B) = P(A_1)P(B|A_1) = 0.4*0.3 = 0.12$

$$P(A_3 \cap B) = P(A_3)P(B|A_3) = 0.25 * 0.5 = 0.125$$

We know that

$$P(A_1 \cap B) + P(A_2 \cap B) + P(A_3 \cap B) = p(B) \rightarrow P(B) = 0.21 + 0.12 + 0.125 = 0.455$$

Part C

We now must find $P(A_1|B)$, $P(A_2|B)$, and $P(A_3|B)$.

$$P(A_1|B) = \frac{P(A_1 \cap B)}{P(B)} = \frac{0.12}{0.455} = 0.264$$

$$P(A_2|B) = rac{P(A_2 \cap B)}{P(B)} = rac{0.21}{0.455} = 0.462$$

$$P(A_3|B) = \frac{P(A_3 \cap B)}{P(B)} = \frac{0.125}{0.455} = 0.275$$

 $P(A) = 0.75, P(B|A) = 0.9, P(B|A') = 0.8, P(C|A \cap B) = 0.8, P(C|A \cap B') = 0.6,$ $P(C|A' \cap B) = 0.7, P(C|A' \cap B') = 0.3$

Problem 63

Part A

Below I have drawn a 3 segment tree for all possible branches.

Part B

Compute $P(A \cap B \cap C)$

$$P(C|A \cap B) = \frac{P(A \cap B \cap C)}{P(A \cap B)} \to P(B|A) = \frac{P(A \cap B)}{P(A)} \to P(A \cap B) = P(B|A) * P(A) = 0.9 * 0.75$$
$$= 0.675 \to P(A \cap B \cap C) = P(C|A \cap B) * P(A \cap B) = 0.8 * 0.675 = 0.54$$

Part C

Compute $P('A \cap B \cap C)$ and then add that to what was found in Part C.

$$P(C|A'\cap B) = \frac{P(A'\cap B\cap C)}{P(A'\cap B)} \to P(B|A') = \frac{P(A'\cap B)}{P(A')} \to P(A'\cap B) = P(B|A') * P(A') = 0.8$$

$$* 0.25 = 0.2 \to P(A'\cap B\cap C) = P(C|A'\cap B) * P(A'\cap B) = 0.7 * 0.2 = 0.14$$

$$P(B\cap C) = P('A\cap B\cap C) + P(A\cap B\cap C) = 0.14 + 0.54 = 0.68$$

Part D

To find P(C) we must find $P(B'\cap C)$ which means determing $P(A\cap B'\cap C)$ and $P(A'\cap B'\cap C)$.

First we find $P(A \cap B' \cap C)$

$$P(C|A \cap B') = \frac{P(A \cap B' \cap C)}{P(A \cap B')} \to P(B'|A) = \frac{P(A \cap B')}{P(A)} \to P(A \cap B') = P(B'|A) * P(A) = 0.1$$

$$* 0.75 = 0.075 \to P(A \cap B' \cap C) = P(C|A \cap B') * P(A \cap B') = 0.6 * 0.075 = 0.045$$

Second we find $P(A'\cap B'\cap C)$

$$P(C|A'\cap B') = rac{P(A'\cap B'\cap C)}{P(A'\cap B')} o P(B'|A') = rac{P(A'\cap B')}{P(A')} o P(A'\cap B') = P(B'|A') * P(A') = 0.2$$

 $*0.25 = 0.05 o P(A'\cap B'\cap C) = P(C|A'\cap B') * P(A'\cap B') = 0.3 * 0.05 = 0.015$

Finally we add these to get $P(B'\cap C)$

$$P(B'\cap C) = P(A\cap B'\cap C) + P(A'\cap B'\cap C) = 0.045 + 0.015 = 0.06$$

$$P(C) = P(B' \cap C) + P(B \cap C) = 0.06 + 0.68 = 0.74$$

Part E

$$P(A|B \cap C) = \frac{P(A \cap B \cap C)}{P(B \cap C)} = \frac{0.54}{0.68} = 0.794$$

In []: