

HGURE P 10.10-11

Electric fence for repelling sharks.

№-11.01 Ч зя∪эн

P10.11-5 Find the Thévenin equivalent circuit for the circuit shown in Figure P 10.11-5 using the mesh current method.

 $V_0 = 3.71 / 16^{\circ}$ $\Omega_0 = 247 / 16^{\circ}$

FIGURE P 10.11-5

P 10.11-6 A pocket-sized mini-disk CD player system has an amplifier circuit shown in Figure P 10.11-6 with a signal $v_s=10\cos{(\omega t+53.1^\circ)}$ at $\omega=10,000$ rad/s. Determine the Thévenin equivalent at the output terminals a-b.

9-11.01 Н 20.11-6

P10.11-7 An AM radio receiver uses the parallel RLC circuit shown in Figure P 10.11-7. Determine the frequency, f_0 , at which the admittance Y is a pure conductance. The AM radio will receive the signal broadcast at the frequency f_0 . What is will receive the signal broadcast at the frequency f_0 . What is

the "number" of this station on the AM radio dial? Answer: $f_0 = 800\,$ Hz, which corresponds to 80 on the AM radio dial.

Section 10.11 Superposition, Thévenin and Norton Equivalents, and Source Transformations P10.11-1 For the circuit of Figure P 10.11-1, find i(t) when $v_1 = 12\cos (4000t + 45^\circ)$ V and $v_2 = 5\cos 3000t$ V.

HGURE P 10.11-1

P10.11-2 Determine i(t) of the circuit of Figure P 10.11-2. Hint: Replace the voltage source by a series combination of a dc voltage and a sinusoidal voltage source. Answer: $i(t) = 0.166 \cos(4t - 135^\circ) + 0.5 \text{ mA}$

FIGURE P 10.11-2

P10.11-3 Determine i(t) for the circuit of Figure P 10.11-3. Answer: $i(t) = 1.9 \cos(4t + 26.6^{\circ}) + 0.8 \cos(3t + 166^{\circ})$ A

нсике Р 10.11-3

P10.11-4 Determine the Thévenin equivalent circuit for the circuit shown in Figure P 10.11-4 when $v_s = 5 \cos (4000t - 30^\circ)$. Answer: $V_t = 5.7 / (-21.9^\circ)$. $\Omega_s = 2.5 / (-21.9^\circ)$.