Reading an r-file material model in SW4 using a parallel file system

USGS workshop, Menlo Park, CA

N. Anders Petersson, Bjorn Sjogreen

USGS Bay Area Material Model

Oct-tree variable resolution cell-centered data structure

- Proj4 cartographic mapping (lon,lat,depth)-> (x,y,z)
- cencalvm: Point-wise query functions in C++
- R-file binary format developed in 2014

- centered data
- Read (Nc x Ni x Nj x Nk) blocks of data

In SW4, only a subset of MPI-tasks read the r-file from the parallel file system

- Each MPI-task owns a "pencil" of grid points
- Each MPI-task requests a subset of the material model from a Parallel_IO object
- Only a subset of MPI-tasks read from the parallel system (8-128 readers)
- Material data is distributed by MPI

Grid point values by tri-linear interpolation

Example in 2D, 6x6 matrix on 9 MPI-tasks

(1,1) (1,2)	(1,3)	٥		(1,6)
(2,1) (2,2)	0	0	0	3 •
(3,1) o	0 5	0	0	o 6
(4,1) o	0	0	0	0
(5,1) o	0	0	0	o 9
(6,1) (6,2)	٥	0	o	(6,6)

On disk in column order: (1,1), (2,1), (3,1)... (6,1), (1,2), (2,2), ... (6,6).

Let 2 MPI-tasks be designated IO processors

(1,1)	(1,2)	(1,3)	o	o	(1,6)
(2,1)	(2,2)	o	0	0	0
(3,1)	0	o	0	o	o
(4,1)	0	o	0	o	o
(5,1)	0	o	o	o	o
(6,1)	(6,2)	o	0	o	(6, 6)
	1			2	

Designated I/O processors

Each IO-processor reads data into a buffer and sends the requested subsets with MPI

Summary

- R-file format holds the same data as the USGS e-tree format
- Each MPI-task requests a subset of the material model
- 8-128 I/O processors read data from the parallel file system
- ~5min to read and initialize 60 billion grid point model on 2,048 nodes (131,072 MPI-tasks, 64 readers)
- Parallel IO routines originally developed for CFD applications:
 - B.Sjogreen, H.C.Yee, M.J.Djomehri, A.Lazanoff, and W.D.Henshaw
 (2010) "Parallel performance of ADPDIS3D A high order multiblock overlapping grid solver for hypersonic turbulence", in "Parallel Computational Fluid Dynamics", R.Biswas ed., DEStech Publications.

