1- Etude de (u_n)

La différence de deux termes consécutifs de la suite $(u_n)_{n\in\mathbb{N}}$ donne :

$$u_{n+1} - u_n = \left(-32 \cdot (n+1) + 102\right) - \left(-32 \cdot n + 102\right)$$
$$= -32 \cdot n - 32 + 102 + 32 \cdot n - 102$$

Puisque, on a:

= -32

$$u_{n+1} - u_n < 0$$
 pour tout $n \in \mathbb{N}$,

La différences de deux termes quelconques de la suite est négatif. On en déduit que la suite (u_n) est décroissante sur \mathbb{N} .

2- Etude de (v_n)

La différence de deux termes consécutifs de la suite $(v_n)_{n\in\mathbb{N}^*}$ donne :

$$v_{n+1} - v_n = \sqrt{2(n+1)-1} - \sqrt{2n-1}$$

2/3

2- Etude de (v_n)

La différence de deux termes consécutifs de la suite $(v_n)_{n\in\mathbb{N}^*}$ donne :

$$v_{n+1} - v_n = \sqrt{2(n+1)-1} - \sqrt{2n-1}$$

$$= \frac{\left(\sqrt{2(n+1)-1} - \sqrt{2n-1}\right)\left(\sqrt{2(n+1)-1} + \sqrt{2n-1}\right)}{\sqrt{2(n+1)-1} + \sqrt{2n-1}}$$

$$= \frac{\left(2(n+1)-1\right) - \left(2n-1\right)}{\sqrt{2(n+1)-1} + \sqrt{2n-1}}$$

$$= \frac{2(n+1)-1-2n+1}{\sqrt{2(n+1)-1} + \sqrt{2n+1}}$$

$$= \frac{2}{\sqrt{2(n+1)-1} + \sqrt{2n+1}} > 0$$

La suite (v_n) est une suite croissante sur \mathbb{N} puisque la différence de deux termes consécutifs est toujours positif.

3- Etude de (w_n)

Etudions la différence $w_{n+1} - w_n$:

$$w_{n+1} - w_n = \left(2(n+1) - \frac{25}{n+1}\right) - \left(2n - \frac{25}{n}\right)$$

$$=2n+2-\frac{25}{n+1}-2n+\frac{25}{n}$$

$$=2+\frac{25}{n}-\frac{25}{n+1}$$

$$=2+\frac{25(n+1)}{n(n+1)}-\frac{25n}{n(n+1)}$$

$$=2+\frac{25(n+1)-25n}{n(n+1)}$$

$$=2+\frac{25}{n(n+1)}>0$$

La différence de deux termes de la suite (w_n) étant positif sur \mathbb{N} , on en déduit la croissance de cette suite.

イロトイ御トイミトイミト ミ か900