2018 ISL A1

Tristan Shin

19 July 2019

Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$ satisfying

$$f(x^2 f(y)^2) = f(x)^2 f(y)$$

for all $x, y \in \mathbb{Q}_{>0}$.

The solution is $f \equiv 1$. This clearly works.

Let P(x,y) denote the assertion that

$$f(x^2 f(y)^2) = f(x)^2 f(y)$$

for specific $x, y \in \mathbb{Q}_{>0}$.

 $P(\frac{1}{f(1)},1)$ implies that $f\left(\frac{1}{f(1)}\right)=1$. $P(1,\frac{1}{f(1)})$ implies that f(1)=1. Now, P(f(x),1) and P(1,x) imply that

 $f(f(x))^2 = f(f(x)^2) = f(x)$

for all $x \in \mathbb{Q}_{>0}$.

Fix $x \in \mathbb{Q}_{>0}$ and assume that $f(x) \neq 1$. Consider the set

$$S_x = \{ n \in \mathbb{N} \mid f(x) = f^{n+1}(x)^{2^n} \}.$$

Observe that

- S_x is non-empty since $f(x) = f^2(x)^2$ so $1 \in S_x$.
- S_x is finite, otherwise f(x) is a 2^n th power for arbitrarily large $n \in \mathbb{N}$ which is impossible unless f(x) = 1.

Thus there is a maximum element N of S_x . But then

$$f^{N+2}(x)^{2^{N+1}} = f\left(f^{N+1}(x)\right)^{2^{N+1}} = f\left(f^{N+1}(x)^{2^N}\right)^2 = f(f(x))^2 = f(x)$$

so $N+1 \in S_x$, contradiction. Thus f(x)=1 as desired.