Azzolini Riccardo 2020-03-20

Conseguenza logica: alcuni teoremi

1 Proprietà della conseguenza logica

Teorema: $\Delta \models A$ se e solo se $\Delta \cup \{\neg A\}$ è insoddisfacibile.

Dimostrazione: Si assume $\Delta \models A$. Per definizione, ciò è vero se e solo se

$$\widetilde{\forall} v \colon v \not\models \Delta \text{ o } v \models A$$

che equivale a

$$\widetilde{\forall} v \colon v \not\models \Delta \text{ o } v \not\models \neg A$$

(perché, in una valutazione, A è vera se e solo se $\neg A$ è falsa, per la definizione del valore di verità della negazione), e questo è a sua volta equivalente a

$$\widetilde{\forall} v \colon v \not\models \Delta \cup \{\neg A\}$$

perché:

- se v non verifica Δ , c'è almeno una formula in Δ che non viene soddisfatta, ed essa sarà presente anche in $\Delta \cup \{\neg A\}$;
- se v non verifica $\neg A$, allora $\Delta \cup \{\neg A\}$ contiene una formula $(\neg A, \text{ appunto})$ che non è soddisfatta da v.

Infine, $\widetilde{\forall}v:v\not\models\Delta\cup\{\neg A\}$ è la definizione di insod disfacibilità: $\Delta\cup\{\neg A\}$ è insod disfacibile.

In sintesi, la dimostrazione è:

$$\begin{array}{l} \Delta \models A \text{ sse } \widetilde{\forall} v \colon v \not\models \Delta \text{ o } v \models A \\ \\ \text{sse } \widetilde{\forall} v \colon v \not\models \Delta \text{ o } v \not\models \neg A \\ \\ \text{sse } \widetilde{\forall} v \colon v \not\models \Delta \cup \{\neg A\} \\ \\ \text{sse } \Delta \cup \{\neg A\} \text{ è insoddisfacibile} \end{array}$$

Nota: La notazione $\widetilde{\forall}$ viene usata come simbolo del meta-linguaggio, per abbreviare la frase in linguaggio naturale "per ogni". Analogamente, verrà usato $\widetilde{\exists}$ per abbreviare "esiste". Questa notazione permetterà di evitare le ambiguità quando, più avanti, \forall e \exists (senza la tilde) verranno introdotti come simboli del linguaggio della logica del primo ordine.

1.1 Caso particolare

Nel caso in cui $\Delta = \emptyset$, la definizione di conseguenza logica diventa: A è una conseguenza logica di \emptyset se, per ogni valutazione v tale che $v \models \emptyset$, si ha $v \models A$.

 $v \models \varnothing$ è vero se, per ogni formula A in \varnothing , $v \models A$. Siccome non c'è alcuna formula $A \in \varnothing$ da considerare, $v \models \varnothing$ è vero indipendentemente dalla scelta di v. Allora, tornando alla definizione di conseguenza logica, la condizione "tale che $v \models \varnothing$ " si elimina, in quanto sempre verificata: A è una conseguenza logica di \varnothing se, per ogni valutazione v, $v \models A$, cioè se A è una tautologia. Si ottiene così il seguente corollario del teorema precedente:

 $Corollario: ^{1} A$ è una tautologia se e solo se $\neg A$ è insoddisfacibile.

2 Teorema di deduzione (semantica)

Teorema: $\Delta, A \models B$ se e solo se $\Delta \models A \rightarrow B$.

Nota: Per semplificare la notazione, alla sinistra del simbolo di conseguenza logica si scrive Δ , A per indicare l'insieme $\Delta \cup \{A\}$.

Dimostrazione: Si studiano separatamente le due direzioni del "se e solo se":

• $\Delta, A \models B \implies \Delta \models A \rightarrow B$

Si considera una valutazione $v : v \models \Delta$. Ci sono due casi possibili: o $v \models A$, o altrimenti $v \not\models A$.

- Se $v \models A$, la valutazione v verifica sia Δ che A, e allora, dall'ipotesi Δ , $A \models B$, si deduce che $v \models B$. Quindi, essendo verificati sia A che B, è vera anche l'implicazione $A \to B$, cioè $v \models A \to B$.
- Se, invece, $v \not\models A$, si ha immediatamente $v \models A \rightarrow B$, per la definizione di validità dell'implicazione (un'implicazione è sempre vera se l'antecedente è falso).
- $\Delta \models A \rightarrow B \implies \Delta, A \models B$

La dimostrazione di questa direzione del "se e solo se" viene eseguita tramite la contronominale (che è equivalente):

$$\Delta, A \not\models B \implies \Delta \not\models A \to B$$

Come primo passo, si assume $\Delta, A \not\models B$. Per definizione, questo significa che

$$\widetilde{\exists} v \colon v \models \Delta \in v \models A \in v \not\models B$$

¹Normalmente, in matematica, un risultato ottenuto come caso particolare di un altro viene chiamato appunto "corollario".

Se A è vera e B falsa, allora è falsa anche l'implicazione $A \to B$,

$$\widetilde{\exists} v \colon v \models \Delta \in v \not\models A \to B$$

e questo significa che $\Delta \not\models A \to B$.

2.1 Proprietà utile

Proposizione: $\Delta, A \models B \rightarrow C$ se e solo se $\Delta \models A \land B \rightarrow C$.

Dimostrazione: Si dimostra la forma equivalente

$$\Delta, A \not\models B \to C \text{ sse } \Delta \not\models A \land B \to C$$

$$\begin{array}{c} \Delta, A \not\models B \to C \text{ sse } \widetilde{\exists} v \colon v \models \Delta \neq v \models A \neq v \not\models B \to C \\ \\ \text{sse } \widetilde{\exists} v \colon v \models \Delta \neq v \models A \neq v \not\models B \neq v \not\models C \\ \\ \text{sse } \widetilde{\exists} v \colon v \models \Delta \neq v \not\models A \land B \neq v \not\models C \\ \\ \text{sse } \widetilde{\exists} v \colon v \models \Delta \neq v \not\models A \land B \to C \\ \\ \text{sse } \Delta \not\models A \land B \to C \end{array}$$

2.2 Alcune considerazioni

Sia $\Delta = \{A_1, \dots, A_n\}$ un insieme finito di formule, tali che $A_1, \dots, A_n \models B$. Applicando iterativamente il teorema di deduzione, si ottiene:

$$A_{1}, \dots, A_{n-1} \models A_{n} \to B$$

$$A_{1}, \dots, A_{n-2} \models A_{n-1} \to (A_{n} \to B)$$

$$A_{1}, \dots, A_{n-3} \models A_{n-2} \to (A_{n-1} \to (A_{n} \to B))$$

$$\vdots$$

$$\models A_{1} \to (A_{2} \to \dots (A_{n-1} \to (A_{n} \to B)) \dots)$$

Poi, utilizzando la proprietà

$$\Delta, A \models B \rightarrow C \text{ sse } \Delta \models A \land B \rightarrow C$$

le formule ottenute dalle applicazioni del teorema di deduzione possono essere riscritte usando la congiunzione invece di una catena di implicazioni:

$$A_{1}, \dots, A_{n-1} \models A_{n} \to B$$

$$A_{1}, \dots, A_{n-2} \models A_{n-1} \land A_{n} \to B$$

$$A_{1}, \dots, A_{n-3} \models A_{n-2} \land A_{n-1} \land A_{n} \to B$$

$$\vdots$$

$$\models A_{1} \land A_{2} \land \dots \land A_{n-1} \land A_{n} \to B$$

Quindi, se $A_1, \ldots, A_n \models B$, si hanno le seguenti tautologie:

$$\models A_1 \to (A_2 \to \cdots (A_{n-1} \to (A_n \to B)) \cdots)$$

$$\models A_1 \land A_2 \land \cdots \land A_{n-1} \land A_n \to B$$

Introducendo la notazione

$$\bigwedge \Delta = A_1 \wedge \dots \wedge A_n$$

(che si legge "e grande di delta") per indicare la congiunzione delle formule appartenenti all'insieme finito $\Delta = \{A_1, \dots, A_n\}$, si può scrivere in modo più compatto che:

$$\Delta \models B \text{ sse } \models \bigwedge \Delta \to B$$