LIMITES, CONTINUITÉ

www.eleves.ens.fr/home/yhuang

15.1 IMC

15.1.1 IMC 2009, 1

Soient f et g deux fonctions réelles telles que $f(r) \leq g(r)$ pour tout nombre rationnel r. Est-ce que $f(x) \leq g(x)$ pour tout $x \in \mathbb{R}$ si on suppose de plus que:

- 1) f et q sont croissante.
- 2) f et g sont continues.

15.1.2 IMC 2011, 1

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. On dit qu'un point x est "sombre" s'il existe une point $y \in \mathbb{R}, y > x$ tel que f(y) > f(x). Soient a < b deux nombres réels, et supposons que:

- 1) Tous les points dans l'intervalle a, b sont sombres;
- 2) a et b ne sont pas sombres.

Montrer que f(a) = f(b).

15.1.3 IMC 2006, 2

Prérequis: une fonction 1-lipschizienne est continue.

Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que pour tout couple réel (a, b), l'image de f([a, b]) soit un intervalle fermé de longueur b - a.

15.2 Une famille de fonctions continues

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction croissante telle que $x \mapsto \frac{f(x)}{x}$ soit décroissante. Montrer que f est continue.

15.2.1 Si f^n admet un point fixe...

Soit f une fonction réelle continue telle que f^n admette un point fixe. Montrer que f admet un point fixe.

15.3 Fonction dilatante

On dit qu'une fonction $f: \mathbb{R} \to \mathbb{R}$ est dilatante si $\forall (x,y) \in \mathbb{R}^2$, $|f(x) - f(y)| \ge |x - y|$.

- 1. Donner un exmple de fonction dilatante non monotone.
- Dans la suite, on suppose de plus que f est continue.
- 2. Montrer que f est strictement monotone, puis f est bijective.

- **3.** On suppose qu'il existe un intervalle réel [a,b] stable par f. Montrer que f admet un point fixe. Si f est croissante, montrer que f est identité sur [a,b].
- 4. Soit A l'ensemble des points fixes de f. Montrer que si A est un intervalle fermé ou vide. Supposons A non vide. On se donne ensuite une suite réelle $(x_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N}, x_{n+1}=$ $f^{-1}(x_n)$. Montrer que (x_n) est constante ou elle converge vers une extrémité de A.

Fonction continue de [0,1] dans [0,1]15.4

Montrer qu'une fonction continue f de [0,1] dans [0,1] admet un point fixe.

Les deux questions suivantes sont indépendantes.

Montrer que si f, g sont deux telles fonctions telles que $f \circ g = g \circ f$, alors il existe un point $x \in [0, 1]$ tel que f(x) = g(x).

Montrer qu'il exite une suite $(u_n)_{n\in\mathbb{N}}$ telle que $f(u_n)=u_n^n$. Si on suppose de plus que f est strictement décroissante, montrer que $\forall n \geq 1, u_n$ est unique et limite de $\lim_{n \to \infty} u_n = 1$.

Conjugaison des homéomorphismes de [0,1] dans [0,1] (X-ENS) 15.5

Soit G l'ensemble des homómorphismes de [0,1] sur [0,1]. Soit f (resp. g) un élément de G tels que les seuls points fixes pour f (resp. g) sont $\{0,1\}$. Montrer que f et g sont conjugués dans G, i.e. il existe un élément h de G tel que $f \circ h = h \circ g$.

Module de continuité¹

On note $\omega_f(\delta) = \sup\{|f(x) - f(y)|, |x - y| \le \delta\}$ si f est une fonction continue sur l'intervalle [a, b]. Montrer que ω_f est une fonction continue.

Nombres de rotation du tore (X-ENS)

- 0) Montrer qu'une application continue de \mathbb{R} vers \mathbb{Z} est constante.
- Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue croissante, telle que $\forall x \in \mathbb{R}, f(x+1) = f(x) + 1$. On va montrer que $\frac{f^n(x)}{n}$ admet une limite indépendante de x. α) Soit $(x,y)\in\mathbb{R}^2$. Montrer qu'il existe $k\in\mathbb{N}$ tel que $\forall n\in\mathbb{N},\, |f^n(x)-f^n(y)|\leq k$.
- β) Montrer que pour tout $(n,m) \in \mathbb{N}^2$, $f^n(0) + f^m(0) 1 \le f^{n+m}(0) \le f^n(0) + f^m(0) + 1$.
- γ) Vérifier que la limite de la suite $(u_n(0))_{n\in\mathbb{N}}$ existe et appartient à [f(0)-1,f(0)+1]. Conclure.

15.8 Courbe de Peano

¹Un peu de connaissance sur l'uniforme continuité aidera à mieux comprendre la situation.