

Detecting botnets hidden in DNS over HTTPS traffic: An Autoencoder approach

by: **Aman Kumar Gupta**

X397J446

EECS Department

Advisor:

Dr. Sergio A. Salinas Monroy EECS Department

Contents

- General statistics
- Botnet Architecture
- Previous works on DGA Detection
- DoH traffic detection using Autoencoders
- Previous works on DoH detection
- Our Proposed Solution
- Future Works
- Conclusion

Number of infected devices has increased continuously over the previous years

 7.7 million IoT devices are connected to the Internet

- Only 1 out of 20 are secured.
- Mirai infected 300,000 devices by 2016.
- 913% increase in the number of Emotet samples in 2019.

C&C Servers identified over the years

 17,602 C&C servers were discovered in 2019

Botnet Architecture

- Bots
- Botmaster
- Binary-download server
- Command and Control server (C&C server)
- Target
- What does a Botnet Attack look like?

Botnet Architecture

Bot Recruitment

Botmaster spreads the botnet malware

Bots download malware from server

Bots report status back to the C&C server.

Botnet Infection phase

Botnet Attacks

- Botmaster selects a target.
- Botmaster sends instructions to bots via the C&C server

Bots execute the instructions.

 Target unable to provide service to actual users.

Botnet Attack phase

Communications between bots and C&C server

Methods of communication between C&C and the bots

Single static IP/domain

List of static IPs/domains

Pseudo-Randomly generated domains (DGAs)

C&C Server running on a static IP/domain

Domain hardcoded in the malware code

Single point of failure

Easily to detect

C&C Server running on a list of IPs/domains

 Domain list hardcoded in the malware code

Single point of failure

Easily to detect and shutdown

C&C Server running on a list of IPs/domains

C&C Server running on Pseudo-Random domains

- Domain Generation Algorithm (DGA) built into the malware code
 - Same seed as the C&C server.

Hard to detect

 Requires reverse engineering the malware and DGA

C&C Server running on Pseudo-Random domains

How can we detect botnets?

C&C's domain identified by DNS lookups performed by the bots.

DNS server replies with an NX domain response for unregistered domains.

- NX domains can be identified by checking the type of DNS reply.
- Key is to detect DGA URLs, or DNS queries for those URLs and block them.

Real world botnet take downs

Citadel

- 1000 domains seized
- 11 million victim computers
- Cause of a \$500 million loss
- Taken down June 2013

ZeroAccess

- 2 million victim computers
- Cause of a \$2.7 million loss
- Taken down Dec 2013

Necurs

- Identified domains 25 months in the future
- Blacklisted domains

A screenshot of the Web-based Citadel botnet control panel.

Previous works on **DGA Detection**

- Mac, et al. **DGA botnet detection using supervised learning methods.** Proceedings of the Eighth International Symposium on Information and Communication Technology. 2017.
 - Uses Hidden Markov Models, LSTMs, and Support Vector Machines
- Woodbridge, et al. **Predicting domain generation algorithms with long short-term memory networks**. *arXiv preprint arXiv:1611.00791 (2016)*.
 - Ability to detect DGA and botnet families from the URL
- Tran, et al. A LSTM based framework for handling multiclass imbalance in DGA botnet detection.
 Neurocomputing 275 (2018): 2401-2413.
 - Ability to detect DGA and botnet families from the URL
 - Improves upon the previous paper's class imbalance
- Sidi, et al. **Helix: DGA Domain Embeddings for Tracking and Exploring Botnets**. *Proceedings of the 29th ACM International Conference on Information & Knowledge Management. 2020.*
 - Uses Autoencoder
 - Capable of detecting DGAs and botnet families.
 - Also, able to track botnet campaigns across network data
 - Currently in use by a major ISP

Preliminary work by A. Gupta

Malicious URL detection (Mal-U-Detect)

- LSTM & CNN architectures to detect malicious DGAs.
- Improved upon the Predicting Domain Generation Algorithms with Long Short-Term Memory Networks experiment by Woodbridge et al.
- Training time for CNN model over 50 epochs is ~60 minutes
 - Dataset size 1.3 million records
- 98.2% accuracy.

DoH traffic detection using Autoencoders

DNS over HTTPS makes it impossible to observe the NXDOMAIN responses.

- DNS
- HTTPS
- DNS over HTTPS

DNS

Domain Name System

DNS lookup

16

HTTPS

How does HTTPS work?

- TLS handshake between the browser (client) and the server.
- After handshake, secure
 HTTPS connection
 established.

DNS over HTTPS

What is DoH?

 DNS over HTTPS encrypts DNS traffic

Real world example of botnet using DoH

 First Botnet detected Godlua's Linux variant detected using DoH for infection

Godlua botnet execution process

Botnets using DoH to avoid detection

- SysAdmin only observes encrypted data.
- New ML solutions would need to rely on network traffic characteristics (explain)
 - Packet length
 - Bytes sent out
 - Average packet size, etc., ...

Previous works on DoH detection

- No existing works on detecting DGAs over DoH
- Vekshin, Dmitrii and et al. Doh insight: Detecting dns over https by machine learning.
 - Created a dataset with 940882 records
 - The authors successfully classified HTTPS and DoH traffic:
 - K-Nearest Neighbors
 - Decision Tree
 - Random Forest
 - Naïve Bayes
 - Ada-boosted Decision Tree
 - They were able to achieve 99.6% classification accuracy.

Our proposed solution

- We propose to use Autoencoder for DGA detection
 - Unsupervised Learning
- Attempt DoH vs HTTPS classification since DGA datasets don't exist.

Autoencoders

- Neural Network trained to produce copy of input.
- Hidden layer encodes the input to a smaller encoding called **code**.
- Encodings are used to recreated the input data.

How does this project use an Autoencoder model?

-5 hidden layers

- Each encoder and decoder has:
 - Dense function
 - Batch Normalization
 - Leaky ReLU function

- Inputs

- 24 variables (time, av_pkt_size_in, av_pkt_size_out, etc....)
- Encoder Output
 - 3 variables "code"
- KMeans used for clustering.

Hardware/Software architecture

- Google Colab research environment
 - 2 Intel(R) Xeon(R) CPUs
 - Clocked at 2.30 GHz
 - 13 GBs RAM
- Running code in a Python notebook
 - Epochs: 50
 - Batch size: 32
- Average run time per epoch is 54 seconds

Data set being used

- From Doh insight: Detecting dns over https by machine learning experiment
- Extracted network flow characteristics from PCAP files
 - Bytes outgoing
 - Bytes incoming
 - Packets outgoing
 - Packets incoming
 - Packet bursts ...

Full architecture

- We tested different variations for the Autoencoder
- 2 Neurons & 3 Loss Functions
- Mean Squared Error
 - Accuracy of autoencoder model: 91.79%

N=131724	Pred DoH	Pred HTTPS
Actual DoH	4777	310
Actual HTTPS	36429	90208

Clustering – Ground Truth

- Mean Squared Logarithmic Error (2 Neurons)
- Accuracy of Autoencoder model: 90.84%

N=131724	Pred DoH	Pred HTTPS
Actual DoH	4561	107752
Actual HTTPS	526	18885

- Binary Cross Entropy (2 Neurons)
- Accuracy of Autoencoder model: 83.14%

N=131724	Pred DoH	Pred HTTPS
Actual DoH	321	4766
Actual HTTPS	98980	27657

Loss/Val.Loss VS Epochs

- 3 Neurons & 3 Loss Functions
- Mean Squared Error
 - Accuracy of autoencoder model: 91.79%

N=131724	Pred DoH	Pred HTTPS
Actual DoH	123	4964
Actual HTTPS	18954	107683

Loss/Val.Loss VS Epochs

Clustering – Ground Truth

Clustering – KMeans

- Mean Squared Logarithmic Error (3 Neurons)
- Accuracy of Autoencoder model: 92.79%

N=131724	Pred DoH	Pred HTTPS
Actual DoH	180	4907
Actual HTTPS	20100	106537

Clustering – KMeans

Final Results

- Binary cross entropy loss function with 3 neurons.
- 50 epochs

- Accuracy: 98.93%

Confusion matrix

N=131724	Predicted=DoH	Predicted=HTTPS
Actual=DoH	4535	863
Actual=HTTPS	552	125774

PRECISION: 0.84	RECALL: 0.89	FSCORE: 0.87	

Final Results

Clustering results in 3D

Future works

- Collect and create data for botnets using DoH
- Apply the Autoencoder to the collected data

Conclusions

- Tracking botnets using DGA on DoH traffic
- Since data doesn't exist it's a difficult task

Questions?

Thank you!

