



## **FCC TEST REPORT**

Product : 2018 XPS CONTROLLER

Trade mark : N/A

Model/Type reference : 2018 XPS CONTROLLER

Serial Number : N/A

Report Number : EED32K00129402

FCC ID : XRZ2018XPS

Date of Issue : Jun. 08, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

#### Prepared for:

# KidsRock Limited Unit 08A, 25/F Gammon House, 12 Harcourt Road, Admiralty Hong Kong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by:

ever

Peter (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

Reum for

Jun. 08, 2018

Tom-chen

Tom chen (Project Engineer)

Sheek, Luc

Sheek Luo (Lab supervisor)

Check No.:3096311087







Report Seal







2

Report No. : EED32K00129402

## Version





Page 2 of 31

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | Jun. 08, 2018 | Original    |
|             |               |             |
|             | 100           | / h / h / h |













































































Page 3 of 31

#### **Test Summary** 3

| Test Item                                                         | Test Requirement                                      | Test method      | Result |
|-------------------------------------------------------------------|-------------------------------------------------------|------------------|--------|
| Antenna Requirement                                               | 47 CFR Part 15 Subpart C Section<br>15.203            | ANSI C63.10-2013 | PASS   |
| AC Power Line Conducted Emission                                  | 47 CFR Part 15 Subpart C Section<br>15.207            | ANSI C63.10-2013 | N/A    |
| Field Strength of the<br>Fundamental Signal                       | 47 CFR Part 15 Subpart C Section<br>15.249 (a)        | ANSI C63.10-2013 | PASS   |
| Spurious Emissions                                                | 47 CFR Part 15 Subpart C Section<br>15.249 (a)/15.209 | ANSI C63.10-2013 | PASS   |
| Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15 Subpart C Section<br>15.249(a)/15.205  | ANSI C63.10-2013 | PASS   |
| 20dB Occupied<br>Bandwidth                                        | 47 CFR Part 15 Subpart C Section<br>15.215 (c)        | ANSI C63.10-2013 | PASS   |





#### 4 **Contents**

















































## Page 5 of 31

#### **General Information** 5

## 5.1 Client Information

| Applicant:               | KidsRock Limited                                                          |
|--------------------------|---------------------------------------------------------------------------|
| Address of Applicant:    | Unit 08A, 25/F Gammon House, 12 Harcourt Road, Admiralty Hong Kong, China |
| Manufacturer:            | KidsRock Limited                                                          |
| Address of Manufacturer: | Unit 08A, 25/F Gammon House, 12 Harcourt Road, Admiralty Hong Kong, China |
| Factory:                 | Dongguan City Haichuang Toys Co. Ltd                                      |
| Address of Factory:      | Huangcao Industrial Area, Caole Village, Xiegang Town, Dongguan City      |

## 5.2 General Description of EUT

| Product Name:                    | 2018 XPS CONTROLLER           |     |
|----------------------------------|-------------------------------|-----|
| Model No.(EUT):                  | 2018 XPS CONTROLLER           |     |
| Trade Mark:                      | N/A                           |     |
| EUT Supports Radios application: | 2410 MHz~2475 MHz             | (3) |
| Power Supply:                    | DC 6V (4xAA alkaline battery) |     |

## 5.3 Product Specification subjective to this standard

| Frequency Range:      | 2410 MHz~2475 MHz             |     |
|-----------------------|-------------------------------|-----|
| Modulation Type:      | GFSK                          |     |
| Number of Channels:   | 25(declared by the client)    |     |
| Sample Type:          | Portable production           |     |
| Test Power Grade:     | N/A(manufacturer declare )    | (4) |
| Test Software of EUT: | N/A(manufacturer declare )    | 10  |
| Antenna Type:         | integral antenna              |     |
| Antenna Gain:         | 2.54dBi                       |     |
| Test voltage:         | DC 6V                         |     |
| Sample Received Date: | May 25, 2018                  |     |
| Sample tested Date:   | May 25, 2018 to Jun. 05, 2018 |     |



































#### 5.4 Test Environment and Mode

| Operating E | nvironment: |                                                                         |              |
|-------------|-------------|-------------------------------------------------------------------------|--------------|
| Temperature | e:          | 23 °C                                                                   | 1            |
| Humidity:   |             | 51 % RH                                                                 | /            |
| Atmospheric | Pressure:   | 1010 mbar                                                               |              |
| Test mode:  |             |                                                                         |              |
| TX mode:    |             | The EUT transmitted the continuous modulation test signal at channel(s) | the specific |

## 5.5 Description of Support Units

The EUT has been tested independently.

### 5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted. FCC Designation No.: CN1164 IC-Registration No.: 7408A

#### 5.7 Deviation from Standards

None.

#### 5.8 Abnormalities from Standard Conditions

None.

## 5.9 Other Information Requested by the Customer

None.

## 5.10 Measurement Uncertainty (95% confidence levels, k=2)

| No. | ltem                            | Measurement Uncertainty |
|-----|---------------------------------|-------------------------|
| 1   | Radio Frequency                 | 7.9 x 10 <sup>-8</sup>  |
| 2   | DE nower conducted              | 0.31dB (30MHz-1GHz)     |
| 2   | RF power, conducted             | 0.57dB (1GHz-18GHz)     |
| 2   | Dedicted Courieus emission test | 4.5dB (30MHz-1GHz)      |
| 3   | Radiated Spurious emission test | 4.8dB (1GHz-12.75GHz)   |
| 4   | Conduction engineer             | 3.6dB (9kHz to 150kHz)  |
| 4   | Conduction emission             | 3.2dB (150kHz to 30MHz) |
| 5   | Temperature test                | 0.64°C                  |
| 6   | Humidity test                   | 2.8%                    |
| 7   | DC power voltages               | 0.025%                  |



Page 6 of 31



Report No. : EED32K00129402 **6 Equipment List** 





| 3M Semi/full-anechoic Chamber       |              |                              |                  |                               |                                      |  |  |
|-------------------------------------|--------------|------------------------------|------------------|-------------------------------|--------------------------------------|--|--|
| Equipment                           | Manufacturer | Model No.                    | Serial<br>Number | Cal. date<br>(mm-dd-<br>yyyy) | Cal. Due<br>date<br>(mm-dd-<br>yyyy) |  |  |
| 3M Chamber & Accessory<br>Equipment | TDK          | SAC-3                        |                  | 06-04-2016                    | 06-03-2019                           |  |  |
| TRILOG Broadband<br>Antenna         | SCHWARZBECK  | VULB9163                     | 9163-484         | 06-05-2018                    | 06-04-2019                           |  |  |
| Preamplifier                        | JS Tonscend  | EMC051845SE                  | 980380           | 01-19-2018                    | 01-18-2019                           |  |  |
| Horn Antenna                        | ETS-LINDGREN | 3117                         | 00057407         | 07-20-2015                    | 07-18-2018                           |  |  |
| Loop Antenna                        | ETS          | 6502                         | 00071730         | 06-22-2017                    | 06-21-2019                           |  |  |
| Spectrum Analyzer                   | R&S          | FSP40                        | 100416           | 06-13-2017                    | 06-12-2018                           |  |  |
| Receiver                            | R&S          | ESCI                         | 100435           | 06-14-2017                    | 06-13-2018                           |  |  |
| LISN                                | schwarzbeck  | NNBM8125                     | 81251547         | 05-11-2018                    | 05-10-2019                           |  |  |
| LISN                                | schwarzbeck  | NNBM8125                     | 81251548         | 05-11-2018                    | 05-10-2019                           |  |  |
| Signal Generator                    | Agilent      | E4438C                       | MY4509574<br>4   | 03-13-2018                    | 03-12-2019                           |  |  |
| Signal Generator                    | Keysight     | E8257D                       | MY5340110<br>6   | 03-13-2018                    | 03-12-2019                           |  |  |
| Temperature/ Humidity Indicator     | TAYLOR       | 1451                         | 1905             | 05-02-2018                    | 05-01-2019                           |  |  |
| Communication test set              | Agilent      | E5515C                       | GB4705053<br>4   | 03-16-2018                    | 03-15-2019                           |  |  |
| Cable line                          | Fulai(7M)    | SF106                        | 5219/6A          | 01-10-2018                    | 01-09-2019                           |  |  |
| Cable line                          | Fulai(6M)    | SF106                        | 5220/6A          | 01-10-2018                    | 01-09-2019                           |  |  |
| Cable line                          | Fulai(3M)    | SF106                        | 5216/6A          | 01-10-2018                    | 01-09-2019                           |  |  |
| Cable line                          | Fulai(3M)    | SF106                        | 5217/6A          | 01-10-2018                    | 01-09-2019                           |  |  |
| Communication test set              | R&S          | CMW500                       | 152394           | 03-16-2018                    | 03-15-2019                           |  |  |
| High-pass filter                    | Sinoscite    | FL3CX03WG18NM1<br>2-0398-002 |                  | 01-10-2018                    | 01-09-2019                           |  |  |
| band rejection filter               | Sinoscite    | FL5CX01CA09CL12<br>-0395-001 | <u> </u>         | 01-10-2018                    | 01-09-2019                           |  |  |
| band rejection filter               | Sinoscite    | FL5CX01CA08CL12<br>-0393-001 | / <u></u>        | 01-10-2018                    | 01-09-2019                           |  |  |
| band rejection filter               | Sinoscite    | FL5CX02CA04CL12<br>-0396-002 |                  | 01-10-2018                    | 01-09-2019                           |  |  |
| band rejection filter               | Sinoscite    | FL5CX02CA03CL12<br>-0394-001 | (3               | 01-10-2018                    | 01-09-2019                           |  |  |





## 7 Test results and Measurement Data

## 7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

**EUT Antenna:** 



The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.54dBi





## Page 9 of 31

## 7.2 Radiated Spurious Emissions

Test Requirement: 47 CFR Part 15C Section 15.249 and 15.209

Test Method: ANSI C63.10

Test Site: Measurement Distance: 3m (Semi-Anechoic Chamber)

| Frequency         | Detector   | RBW    | VBW    | Remark     |
|-------------------|------------|--------|--------|------------|
| 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |
| 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |
| 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
| 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |
| 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |
| 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |
| 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |
| Al 4011-          | Peak       | 1MHz   | 3MHz   | Peak       |
| Above 1GHz        | Peak       | 1MHz   | 10Hz   | Average    |

Receiver Setup:

#### Test Setup:



Antenna Tower

Controller

Test Receiver

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Figure 3. Above 1GHz

















Page 10 of 31

#### **Test Procedure:**

#### Below 1GHz test procedure as below:

The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.

The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre( Above 18GHz the distance is 1 meter and table is 1.5 metre).

Test the EUT in the lowest channel ,middle channel, the Highest channel

The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

| Frequency         | Field strength    | Limit    | Remark     | Measurement  |
|-------------------|-------------------|----------|------------|--------------|
| rrequericy        | (microvolt/meter) | (dBµV/m) | Remark     | distance (m) |
| 0.009MHz-0.490MHz | 2400/F(kHz)       | -        | -          | 300          |
| 0.490MHz-1.705MHz | 24000/F(kHz)      | -        | -          | 30           |
| 1.705MHz-30MHz    | 30                |          | -          | 30           |
| 30MHz-88MHz       | 100               | 40.0     | Quasi-peak | 3            |
| 88MHz-216MHz      | 150               | 43.5     | Quasi-peak | 3            |
| 216MHz-960MHz     | 200               | 46.0     | Quasi-peak | 3            |
| 960MHz-1GHz       | 500               | 54.0     | Quasi-peak | 3            |
| Above 1GHz        | 500               | 54.0     | Average    | 3            |

Limit:

(Spurious Emissions)

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

#### Limit:

(Field strength of the fundamental signal)

| Frequency         | Limit (dBµV/m @3m) | Remark        |
|-------------------|--------------------|---------------|
| 2400MHz-2483.5MHz | 94.0               | Average Value |
|                   | 114.0              | Peak Value    |

Test Setup:

Test Mode: TX mode

Instruments Used: Refer to section 6 for details

Test Results: Pass













**Measurement Data** 

Field Strength Of The Fundamental Signal

#### Peak value:

| i can value.       |                             |                       |                        |                         |                   |                   |                       |        |                    |
|--------------------|-----------------------------|-----------------------|------------------------|-------------------------|-------------------|-------------------|-----------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBuV) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Over<br>Limit<br>(dB) | Result | Antenna<br>Polaxis |
| 2410               | 32.58                       | 3.08                  | 44.05                  | 90.99                   | 82.60             | 114               | -31.40                | Pass   | Н                  |
| 2410               | 32.58                       | 3.08                  | 44.05                  | 90.99                   | 82.60             | 114               | -31.40                | Pass   | V                  |
| 2442               | 32.64                       | 3.10                  | 44.05                  | 92.99                   | 84.60             | 114               | -31.40                | Pass   | ( H )              |
| 2442               | 32.64                       | 3.10                  | 44.05                  | 91.99                   | 83.60             | 114               | -31.40                | Pass   | V                  |
| 2475               | 32.7                        | 3.11                  | 44.13                  | 98.00                   | 89.68             | 114               | -24.32                | Pass   | Н                  |
| 2475               | 32.7                        | 3.11                  | 44.13                  | 101.00                  | 92.68             | 114               | -21.32                | Pass   | V                  |

Page 11 of 31

**Remark:** As shown in this section, for field strength of the fundamental signal measurements, RBW and VBW set 10MHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above. So, only the peak measurements were shown in the report.





Spurious Emissions

## 30MHz~1GHz Test mode: Transmitting

QP value:



|      |         | Ant    | Cable       | Kead  |        | Limit  | Over        |            |        |
|------|---------|--------|-------------|-------|--------|--------|-------------|------------|--------|
|      | Frea    | Factor | Loss        | Level | Level  | Line   | Limit       | Pol/Phase  | Remark |
|      |         |        |             |       |        |        |             |            |        |
|      |         |        | <del></del> |       |        |        | <del></del> |            |        |
|      | MHz     | dB/m   | dB          | dBuV  | dBuV/m | dBuV/m | dB          |            |        |
|      |         |        |             |       |        |        |             |            |        |
| 1    | //3 659 | 14.11  | 0 07        | 5 64  | 10 22  | 10 00  | _20 18      | Horizontal | OP     |
| 1    | 45.055  | 14.11  | 0.07        | 3.04  | 19.02  | 40.00  | -20.10      | HOPIZOHCAI | ٧r     |
| 2    | 107.510 | 11.84  | 0.59        | 6.60  | 19.03  | 43.50  | -24.47      | Horizontal | QP     |
| 3    | 255.623 | 12.70  | 1.31        | 5.68  | 19.69  | 46.00  | -26.31      | Horizontal | OP     |
| _    |         |        |             |       |        |        |             |            | •      |
| 4    | 425.028 | 15.72  | 1.40        | 7.14  | 24.26  | 46.00  | -21.74      | Horizontal | QP     |
| 5    | 580.703 | 18.36  | 1.72        | 8.03  | 28.11  | 46.00  | -17.89      | Horizontal | OP     |
| 6    |         |        |             |       |        |        |             |            | -      |
| 6 pp | 000.000 | 21.56  | 2.46        | 7.49  | 21.51  | 40.00  | -14.49      | Horizontal | QP .   |
|      |         |        |             |       |        |        |             |            |        |











Page 12 of 31

























Page 13 of 31



|      | Freq    |       | Cable<br>Loss |       | Level  |        |        | Pol/Phase | Remark |
|------|---------|-------|---------------|-------|--------|--------|--------|-----------|--------|
| _    | MHz     | dB/m  | dB            | dBuV  | dBuV/m | dBuV/m | dB     |           |        |
| 1    | 31.955  | 12.32 | 0.08          | 10.29 | 22.69  | 40.00  | -17.31 | Vertical  | QP     |
| 2    | 104.170 | 12.13 | 0.59          | 14.49 | 27.21  | 43.50  | -16.29 | Vertical  | QP     |
| 3    | 202.810 | 11.57 | 1.12          | 14.34 | 27.03  | 43.50  | -16.47 | Vertical  | QP     |
| 4    | 230.099 | 12.19 | 1.25          | 12.03 | 25.47  | 46.00  | -20.53 | Vertical  | QP     |
| 5    | 301.422 | 13.43 | 1.08          | 10.44 | 24.95  | 46.00  | -21.05 | Vertical  | QP     |
| 6 рр | 724.261 | 19.30 | 2.26          | 14.44 | 36.00  | 46.00  | -10.00 | Vertical  | QP     |













































Page 14 of 31

## Above 1GHz

| Test m             | ode:                        | Transn             | nitting                | Test c                  | hannel:           |                        | Lowest(241         | 3MHz)  |                    |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1273.572           | 30.40                       | 1.97               | 44.28                  | 48.10                   | 36.19             | 74.00                  | -37.81             | Pass   | Н                  |
| 1823.477           | 31.43                       | 2.66               | 43.66                  | 47.44                   | 37.87             | 74.00                  | -36.13             | Pass   | Н                  |
| 4820.000           | 34.72                       | 6.01               | 44.60                  | 48.28                   | 44.41             | 74.00                  | -29.59             | Pass   | H                  |
| 5821.207           | 35.77                       | 7.26               | 44.52                  | 48.69                   | 47.20             | 74.00                  | -26.80             | Pass   | H                  |
| 7230.000           | 36.42                       | 6.95               | 44.79                  | 52.04                   | 50.62             | 74.00                  | -23.38             | Pass   | Ę                  |
| 9640.000           | 37.92                       | 7.01               | 45.57                  | 46.54                   | 45.90             | 74.00                  | -28.10             | Pass   | Н                  |
| 1273.572           | 30.40                       | 1.97               | 44.28                  | 47.74                   | 35.83             | 74.00                  | -38.17             | Pass   | V                  |
| 1768.619           | 31.35                       | 2.60               | 43.71                  | 47.59                   | 37.83             | 74.00                  | -36.17             | Pass   | V                  |
| 4820.000           | 34.72                       | 6.01               | 44.60                  | 51.71                   | 47.84             | 74.00                  | -26.16             | Pass   | V                  |
| 6001.768           | 35.90                       | 7.44               | 44.50                  | 48.79                   | 47.63             | 74.00                  | -26.37             | Pass   | V                  |
| 7230.000           | 36.42                       | 6.95               | 44.79                  | 50.05                   | 48.63             | 74.00                  | -25.37             | Pass   | V                  |
| 9640.000           | 37.92                       | 7.01               | 45.57                  | 46.08                   | 45.44             | 74.00                  | -28.56             | Pass   | V                  |

| Test m             | ode:                        | Transn             | nitting                | Test c                  | hannel:           |                        | Middle (244        | 3MHz)  | ·                  |
|--------------------|-----------------------------|--------------------|------------------------|-------------------------|-------------------|------------------------|--------------------|--------|--------------------|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss (dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit (dB) | Result | Antenna<br>Polaxis |
| 1267.104           | 30.38                       | 1.96               | 44.29                  | 48.48                   | 36.53             | 74.00                  | -37.47             | Pass   | Н                  |
| 1557.252           | 30.98                       | 2.36               | 43.93                  | 48.15                   | 37.56             | 74.00                  | -36.44             | Pass   | Н                  |
| 4884.000           | 34.86                       | 6.14               | 44.60                  | 51.39                   | 47.79             | 74.00                  | -26.21             | Pass   | Н                  |
| 5850.919           | 35.79                       | 7.29               | 44.51                  | 49.09                   | 47.66             | 74.00                  | -26.34             | Pass   | Н                  |
| 7326.000           | 36.43                       | 6.85               | 44.87                  | 46.95                   | 45.36             | 74.00                  | -28.64             | Pass   | Н                  |
| 9768.000           | 38.05                       | 7.12               | 45.54                  | 46.88                   | 46.51             | 74.00                  | -27.49             | Pass   | Н                  |
| 1286.606           | 30.43                       | 1.99               | 44.26                  | 48.23                   | 36.39             | 74.00                  | -37.61             | Pass   | V                  |
| 1565.200           | 30.99                       | 2.37               | 43.92                  | 47.60                   | 37.04             | 74.00                  | -36.96             | Pass   | V                  |
| 4884.000           | 34.86                       | 6.14               | 44.60                  | 49.06                   | 45.46             | 74.00                  | -28.54             | Pass   | V                  |
| 6764.538           | 36.29                       | 7.25               | 44.58                  | 48.28                   | 47.24             | 74.00                  | -26.76             | Pass   | V                  |
| 7326.000           | 36.43                       | 6.85               | 44.87                  | 48.16                   | 46.57             | 74.00                  | -27.43             | Pass   | V                  |
| 9768.000           | 38.05                       | 7.12               | 45.54                  | 51.04                   | 50.67             | 74.00                  | -23.33             | Pass   | V                  |









| Test m             | ode:                        | Transı                | mitting                | Test                    | channel:          | I                      | Highest(2             | 470MHz) | 70MHz)             |  |  |  |
|--------------------|-----------------------------|-----------------------|------------------------|-------------------------|-------------------|------------------------|-----------------------|---------|--------------------|--|--|--|
| Frequency<br>(MHz) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Gain<br>(dB) | Read<br>Level<br>(dBµV) | Level<br>(dBµV/m) | Limit Line<br>(dBµV/m) | Over<br>Limit<br>(dB) | Result  | Antenna<br>Polaxis |  |  |  |
| 1270.334           | 30.39                       | 1.97                  | 44.29                  | 47.57                   | 35.64             | 74.00                  | -38.36                | Pass    | Н                  |  |  |  |
| 1805.005           | 31.40                       | 2.64                  | 43.68                  | 47.61                   | 37.97             | 74.00                  | -36.03                | Pass    | Н                  |  |  |  |
| 4950.000           | 35.00                       | 6.27                  | 44.60                  | 50.36                   | 47.03             | 74.00                  | -26.97                | Pass    | Н                  |  |  |  |
| 6032.401           | 35.92                       | 7.43                  | 44.50                  | 48.94                   | 47.79             | 74.00                  | -26.21                | Pass    | (A)                |  |  |  |
| 7425.000           | 36.44                       | 6.74                  | 44.95                  | 46.89                   | 45.12             | 74.00                  | -28.88                | Pass    | (CH)               |  |  |  |
| 9900.000           | 38.20                       | 7.24                  | 45.52                  | 49.21                   | 49.13             | 74.00                  | -24.87                | Pass    | Н                  |  |  |  |
| 1296.469           | 30.45                       | 2.01                  | 44.25                  | 47.76                   | 35.97             | 74.00                  | -38.03                | Pass    | V                  |  |  |  |
| 1800.416           | 31.40                       | 2.64                  | 43.68                  | 47.73                   | 38.09             | 74.00                  | -35.91                | Pass    | V                  |  |  |  |
| 4950.000           | 35.00                       | 6.27                  | 44.60                  | 50.73                   | 47.40             | 74.00                  | -26.60                | Pass    | V                  |  |  |  |
| 6764.538           | 36.29                       | 7.25                  | 44.58                  | 48.48                   | 47.44             | 74.00                  | -26.56                | Pass    | V                  |  |  |  |
| 7425.000           | 36.44                       | 6.74                  | 44.95                  | 47.94                   | 46.17             | 74.00                  | -27.83                | Pass    | V                  |  |  |  |
| 9900.000           | 38.20                       | 7.24                  | 45.52                  | 47.71                   | 47.63             | 74.00                  | -26.37                | Pass    | V                  |  |  |  |

#### Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
  - Final Test Level =Receiver Reading Correct Factor
  - Correct Factor = Preamplifier Factor Antenna Factor Cable Factor
- 2) Scan from the test data, The average value is lower than limit, and The below the limit need not be reported, so only the peak value had been displayed the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.





Page 16 of 31

### 7.3 Restricted bands around fundamental frequency

**Test Requirement:** 

47 CFR Part 15C Section 15.209 and 15.205

**Test Method:** 

ANSI C63.10

Test Site:

Measurement Distance: 3m (Semi-Anechoic Chamber)

Limit(band edge):

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

| Frequency     | Limit (dBµV/m @3m) | Remark           |
|---------------|--------------------|------------------|
| 30MHz-88MHz   | 40.0               | Quasi-peak Value |
| 88MHz-216MHz  | 43.5               | Quasi-peak Value |
| 216MHz-960MHz | 46.0               | Quasi-peak Value |
| 960MHz-1GHz   | 54.0               | Quasi-peak Value |
| Above 1GHz    | 54.0               | Average Value    |
| Above IGHZ    | 74.0               | Peak Value       |

#### **Test Setup:**





Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

#### Test Procedure:

#### Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

#### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel, the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for



Page 17 of 31

Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

Test Mode: TX mode

**Instruments Used:** Refer to section 6 for details

Test Results: Pass

Test plot as follows:

| Test mode: |
|------------|
|------------|



|      | Freq     |       |      | Preamp<br>Factor |       |                |        |        | Pol/Phase | Remark |
|------|----------|-------|------|------------------|-------|----------------|--------|--------|-----------|--------|
|      | MHz      | dB/m  | dB   | dB               | dBuV  | dBu <b>V/m</b> | dBuV/m | dB     |           |        |
| 1    | 2390.000 | 32.53 | 3.07 | 44.03            | 60.84 | 52.41          | 74.00  | -21.59 | Vertical  | Peak   |
| 2 pp | 2400.000 | 32.55 | 3.07 | 44.04            | 66.36 | 57.94          | 74.00  | -16.06 | Vertical  | Peak   |
| 3    | 2411.062 | 32.58 | 3.08 | 44.05            | 90.99 | 82.60          | 114.00 | -31.40 | Vertical  | Peak   |

| Ī | Toot mode: | Transmitting | Toot obonnol: | Lowoot | Domorki | Dook | Harizantal |
|---|------------|--------------|---------------|--------|---------|------|------------|
| ı | Test mode: | Transmitting | Test channel: | Lowest | Remark: | Peak | Horizontal |



|      | Freq     |       |      | Preamp<br>Factor |       |        |        |        | Pol/Phase  | Remark |
|------|----------|-------|------|------------------|-------|--------|--------|--------|------------|--------|
|      | MHz      | dB/m  | dB   | dB               | dBuV  | dBuV/m | dBuV/m | dB     |            |        |
| 1    | 2390.000 | 32.53 | 3.07 | 44.03            | 63.77 | 55.34  | 74.00  | -18.66 | Horizontal | Peak   |
| 2 pp | 2400.000 | 32.55 | 3.07 | 44.04            | 69.38 | 60.96  | 74.00  | -13.04 | Horizontal | Peak   |
| 3    | 2411.583 | 32.58 | 3.08 | 44.05            | 90.99 | 82.60  | 114.00 | -31.40 | Horizontal | Peak   |



Test mode:

Report No.: EED32K00129402





Test mode: Transmitting Test channel: Lowest Remark: Horizontal Average

















2475.391

Page 19 of 31



92.68 114.00 -21.32 Vertical





Page 20 of 31





| Freq |      |    | Preamp<br>Factor |      |        |        |    | Pol/Phase            | Remark |   |
|------|------|----|------------------|------|--------|--------|----|----------------------|--------|---|
| MHz  | dB/m | dB | dB               | dBuV | dBuV/m | dBuV/m | dB |                      | -      | _ |
|      |      |    |                  |      |        |        |    | Vertical<br>Vertical |        |   |





|  | Freq |      |    | Preamp<br>Factor |      |        |        | Over<br>Limit | Pol/Phase  | Remark |
|--|------|------|----|------------------|------|--------|--------|---------------|------------|--------|
|  | MHz  | dB/m | dB | dB               | dBuV | dBuV/m | dBuV/m | dB            |            |        |
|  |      |      |    |                  |      |        |        |               | Horizontal |        |

#### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor



Page 21 of 31

#### 7.4 20dB Bandwidth

**Test Requirement:** 47 CFR Part 15C Section 15.215

**Test Method:** ANSI C63.10



**Ground Reference Plane** 

Limit: N/A

**Test Mode:** TX mode

**Instruments Used:** Refer to section 6 for details

**Test Results:** Pass

#### **Measurement Data**

**Test Setup:** 

| Test Channel | 20dB bandwidth (MHz) | Results |
|--------------|----------------------|---------|
| Lowest       | 6.80                 | Pass    |
| Middle       | 5.92                 | Pass    |
| Highest      | 4.32                 | Pass    |











Page 22 of 31



Date: 5.JUN.2018 10:57:07

Test channel: Middle



Date: 5.JUN.2018 11:04:46















Page 23 of 31





Report No. : EED32K00129402 Page 24 of 31

## **APPENDIX 1 PHOTOGRAPHS OF TEST SETUP**

**Test Model No.: 2018 XPS Controller** 



Radiated spurious emission Test Setup-1(Below 1GHz)



Radiated spurious emission Test Setup-1(Below 30M)









Page 25 of 31



Radiated spurious emission Test Setup-2(Above 1GHz)





























































## **APPENDIX 2 PHOTOGRAPHS OF EUT**

Test Model No.: 2018 XPS Controller



View of Product-1



View of Product-2

















View of Product-3



View of Product-4

















View of Product-5



View of Product-6



















View of Product-7



View of Product-8

















View of Product-9



View of Product-10

## \*\*\* End of Report \*\*\*

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

































































































