

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI DEPARTMENT OF MECHANICAL ENGINEERING Guwahati – 781 039, Assam, India

BY

Nishant Nanasaheb Jagtap

234103329

(j.nishant@iitg.ac.in)

ME 670 Advance Computational Fluid Dynamics (Advance CFD)

<u>Assignment – 3</u>

Guided By Prof. Atul Soti April 2024

Table of Contents

Lexicographic Ordering Details	3
Discretized Equation	3
ILU & SIP Equations	4
Results	5
1.0 Number of Iterations	5
2.0 Iterations vs Residual	6
3.0 Conjugate Gradient Method	6
4.0 Jacobi - Pre Conditioner Conjugate Gradient Method	8
5.0 ILU - Pre Conditioner Conjugate Gradient Method	10
6.0 SIP - Pre Conditioner Conjugate Gradient Method	12
7.0 L and U matrices coming from ILU and SIP $$ factorization	13
ILU	13
SIP	14

Conjugate Gradient Method (CG) & Pre-Conjugate Gradient Method (PCG)

The discretized equations detail and the boundary condition implementation detail are explained in Code and exactly similar to analysis done in class

Lexicographic Ordering Details

Discretized Equation

$$\frac{\partial T^{2}}{\partial x^{2}} + \frac{\partial T^{2}}{\partial y^{2}} = 0$$

$$\frac{T_{i+1,j} - 2 * T_{i,j} + T_{i-1,j}}{(\Delta x)^{2}} + \frac{T_{i,j+1} - 2 * T_{i,j} + T_{i,j-1}}{(\Delta y)^{2}} = 0$$

$$N_{i} = 128 \; ; \quad N_{j} = 128$$

$$i = 1 \text{ to } N_{i} \; ; \quad j = 1 \text{ to } N_{j}$$

$$N = N_i * N_j = 16384$$

ILU & SIP Equations

$$\begin{array}{c|c} & & & \\ L_W^n = \begin{pmatrix} 0 & 1 \leq n \leq N_j \\ A_N^n & 1 + N_j \leq n \leq N \end{pmatrix} & L_S^n = \begin{pmatrix} 0 & n = 1 \\ A_S^n & 2 \leq n \leq N \end{pmatrix} \\ \\ L_\omega^n = \begin{pmatrix} A_P^n & n = 1 \\ A_P^n - L_S^n U_N^{n-1} & 2 \leq n \leq N_j \\ A_P^n - L_S^n U_N^{n-1} - L_W^n U_E^{n-N_j} & 1 + N_j \leq n \leq N \end{pmatrix} \\ \\ U_N^n = \begin{pmatrix} A_N^n / L_P^n & 1 \leq n \leq N - 1 \\ 0 & n = N \end{pmatrix} & U_E^n = \begin{pmatrix} A_E^n / L_P^n & 1 \leq n \leq N - N_j \\ 0 & 1 + N - N_j \leq n \leq N \end{pmatrix}$$

$$\begin{vmatrix}
\mathbf{L}_{W}^{n} & \mathbf{I} \leq \mathbf{N} \leq \mathbf{N}_{j} \\
= \begin{cases}
0 & 1 \leq n \leq N_{j} \\
A_{W}^{n} & 1 + N_{j} \leq n \leq \mathbf{N}
\end{cases}$$

$$\mathbf{L}_{S}^{n} = \begin{cases}
0 & n = 1 \\
A_{S}^{n} & 2 \leq n \leq \mathbf{N}
\end{cases}$$

$$\mathbf{L}_{S}^{n} = \begin{cases}
A_{S}^{n} & n = 1 \\
A_{S}^{n} = \mathbf{L}_{S}^{n} = \mathbf{N}_{j} & 2 \leq n \leq \mathbf{N}
\end{cases}$$

$$\mathbf{L}_{W}^{n} = \begin{cases}
A_{P}^{n} - \mathbf{L}_{S}^{n} = \mathbf{N}_{S}^{n-1} - \alpha \mathbf{U}_{E}^{n-1} & 2 \leq n \leq \mathbf{N}
\end{cases}$$

$$\mathbf{L}_{W}^{n} = \begin{cases}
A_{P}^{n} - \mathbf{L}_{S}^{n} = \mathbf{U}_{N}^{n-1} - \alpha \mathbf{U}_{E}^{n-1} & 2 \leq n \leq \mathbf{N}
\end{cases}$$

$$\mathbf{U}_{N}^{n} = \begin{cases}
A_{N}^{n} - \alpha \mathbf{L}_{W}^{n} = \mathbf{U}_{N}^{n-1} & \mathbf{U}_{N}^{n-1} & 1 \leq n \leq \mathbf{N} - 1 \\
A_{N}^{n} = \mathbf{U}_{N}^{n} & 1 \leq n \leq \mathbf{N}
\end{cases}$$

$$\mathbf{U}_{E}^{n} = \begin{cases}
A_{E}^{n} - \alpha \mathbf{L}_{S}^{n} = \mathbf{U}_{E}^{n-1} & 1 \leq n \leq \mathbf{N} - \mathbf{N}_{j} \\
0 & 1 + \mathbf{N} - \mathbf{N}_{j} \leq n \leq \mathbf{N}
\end{cases}$$

Results

Find All the Results & Comparisons in attached files

1.0 Number of Iterations

Method	Iterations
Conjugate Gradient Method	<u>319</u>
Jacobi - Pre Conditioner	318
Conjugate Gradient Method	<u>516</u>
ILU - Pre Conditioner Conjugate	106
Gradient Method	<u>106</u>
SIP - Pre Conditioner Conjugate	98
Gradient Method	<u> 20</u>

2.0 **Iterations vs Residual**

Iterations vs residual

3.0 Conjugate Gradient Method

Temperature variation with x along midvertical plane y = 0.5

Temperature variation with y along midvertical plane x = 0.5

4.0 Jacobi- Pre Conditioner Conjugate Gradient Method

Temperature variation with x along midvertical plane y = 0.5

Temperature variation with y along midvertical plane x = 0.5

5.0 <u>ILU- Pre Conditioner Conjugate Gradient Method</u>

Temperature variation with x along midvertical plane y = 0.5

Temperature variation with y along midvertical plane x = 0.5

6.0 SIP- Pre Conditioner Conjugate Gradient Method

Temperature variation with x along midvertical plane y = 0.5

Temperature variation with y along midvertical plane x = 0.5

7.0 $\underline{\textit{L}}$ and $\underline{\textit{U}}$ matrices coming from ILU and SIP factorization ILU

Ni = 4 , Nj = 4 , N = 16						
Point(n)	L_W	L_S	L_P	U_N	U_E	
1	0	0	-6	-0.16667	-0.16667	
2	0	1	-4.83333	-0.2069	-0.2069	
3	0	1	-4.7931	-0.20863	-0.20863	
4	0	1	-5.79137	0	-0.17267	
5	1	0	-4.83333	-0.2069	-0.2069	
6	1	1	-3.58621	-0.27885	-0.27885	
7	1	1	-3.51252	-0.2847	-0.2847	
8	1	1	-4.54263	0	-0.22014	
9	1	0	-4.7931	-0.20863	-0.20863	
10	1	1	-3.51252	-0.2847	-0.2847	
11	1	1	-3.43061	-0.29149	-0.29149	
12	1	1	-4.48837	0	-0.2228	

13	1	0	-5.79137	-0.17267	0	
14	1	1	-4.54263	-0.22014	0	
15	1	1	-4.48837	-0.2228	0	
16	1	1	-5.5544	0	0	

SIP

NII — 1	, Nj = 4 , N = 16	
111 - 4	, INI - 4 , IN - 10	
	, , ,	

Point(n)	L_W	L_S	L_P	U_N	U_E
1	0	0	-6	-0.16667	-0.16667
2	0	1.090909	-4.90909	-0.2037	-0.22222
3	0	1.125	-4.89583	-0.20426	-0.22979
4	0	1.129808	-5.89904	0	-0.19152
5	1.090909	0	-4.90909	-0.22222	-0.2037
6	1.113402	1.113402	-3.73196	-0.29834	-0.29834
7	1.113744	1.175325	-3.6825	-0.30244	-0.31917
8	1	1.189885	-4.63849	0	-0.25652
9	1.125	0	-4.89583	-0.22979	-0.20426
10	1.175325	1.113744	-3.6825	-0.31917	-0.30244
11	1.178164	1.178164	-3.60427	-0.32688	-0.32688
12	1	1.195372	-4.5481	0	-0.26283
13	1.129808	0	-5.89904	-0.19152	0
14	1.189885	1	-4.63849	-0.25652	0
15	1.195372	1	-4.5481	-0.26283	0
16	1	1	-5.47434	0	0