Predicting Falcon 9 First Stage Landing Success: A Data Science Approach to Cost Optimization in SpaceX Launches

Ghada ALamoudi 11/20/2024

© IBM Corporation. All rights reserved.

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
 - Visualization Charts
 - Dashboard
- Discussion
 - Findings & Implications
- Conclusion
- Appendix

EXECUTIVE SUMMARY

• **Objective**: Predict if Falcon 9's first stage will land using machine learning.

• Data:

- Cleaned and standardized.
- Split into training (80%) and test (20%) data.
- Models Tested: Logistic Regression, SVM, Decision Tree, KNN.
- Best Model:
 - Logistic Regression: 83.33% accuracy.
 - **Best Hyperparameters**: C=0.01, penalty=12, solver=1bfgs.
- Conclusion:
 - Logistic Regression performed best, but false positives remain.

INTRODUCTION

- **Objective**: Predict if Falcon 9's first stage will land successfully to assess launch costs.
- Importance: Accurate predictions help SpaceX and competitors optimize pricing and improve efficiency.
- Approach: Use machine learning models (Logistic Regression, SVM, Decision Trees, KNN) to classify landing success.
- **Data**: Historical rocket launch data including mission details and outcomes.

METHODOLOGY

- Data Preprocessing:
- Standardized the dataset to scale the features.
- Split the data into training (80%) and testing (20%) sets.
- Model Selection:
- Used Logistic Regression, Support Vector Machines (SVM), Decision Trees, and K-Nearest Neighbors (KNN) for classification.
- Hyperparameter Tuning:
- Applied GridSearchCV to identify the best hyperparameters for each model.
- Model Evaluation:
- Used accuracy and confusion matrix to evaluate performance on test data.

RESULTS

Model	Best Hyperparameters	Test Accuracy	Key Observation			
Logistic Regression	C=0.01, penalty='l2', solver='lbfgs'	83.33%	High accuracy with some false positives.			
Support Vector Machines	C=1.0, gamma=0.0316, kernel='sigmoid	84.82%	Performed well but with slightly higher complexity.			
Decision Tree Classifier	Multiple parameter optimizations	93.33%	High accuracy, but prone to overfitting.			
K-Nearest Neighbors	n_neighbors=5, algorithm='auto', p=2	76.67%	Lower accuracy compared to other models.			

Conclusion:

• Decision Tree Classifier performed the best with 93.33% accuracy.

Data Collection & Wrangling : Key Findings

- Data Sources: Combined dataset_part_2.csv and dataset_part_3.csv.
- **Data Cleaning**: Verified no missing values; ensured data consistency.
- Feature Preparation: Standardized numerical features (e.g., Payload Mass) and encoded categorical variables.
- Target Variable: Created Class column (1 = Landed, 0 = Not Landed).
- Data Split: Divided into 80% training and 20% testing sets.

SQL Analysis: Key Findings

- Launch Success Rate: Queried data to calculate the proportion of successful landings.
- Feature Impact: Identified factors like Booster Version and Launch Site influencing outcomes.
- Launch Site Comparison: SQL queries revealed variations in success rates across launch sites.
- **Payload Analysis**: Filtered payload ranges and their impact on landing success.

SQL provided insights into patterns and relationships, forming the basis for machine learning predictions.

Exploratory Data Analysis (EDA) with Visualizations

Correlation Analysis:

Heatmap visualizations highlighted relationships between features such as Payload Mass and success rate.

Landing Outcomes:

Bar plots displayed the distribution of successful and unsuccessful landings across launch sites.

Payload Distribution:

Histograms showed payload mass ranges for successful vs. unsuccessful landings.

Temporal Trends:

Line charts analyzed trends over time, linking launch dates to landing success.

Feature Insights:

Scatter plots provided insights into Payload Mass and booster version impacts.

Visualizations revealed crucial patterns, guiding feature selection for machine learning.

Interactive Visualization and Dashboard

cess Launches By Site

Interactive Maps:

Visualized launch sites and their success rates using interactive maps (e.g., Folium) for better spatial analysis.

Success Rate Filters:

Dashboards included filters for booster versions, launch sites, and payload mass ranges to explore success patterns dynamically.

• Customizable Graphs:

Users could switch between bar charts, scatter plots, and line graphs to analyze trends interactively.

Payload and Outcome Correlation:

Interactive scatter plots allowed users to investigate the relationship between payload mass and success probability.

Real-Time Insights:

Dashboards enabled users to explore the dataset dynamically, gaining actionable insights for predictive modeling.

This feature significantly enhanced exploratory analysis, making data insights more accessible and user-friendly.

Interactive Visualization with Folium

- •Mapped all SpaceX launch sites with interactive markers for success/failure rates.
- •Integrated hover tooltips showing payload mass and mission outcomes.
- •Added dynamic layers to categorize launches by outcome.
- •Enabled zoom and navigation for spatial pattern analysis.

Machine Learning Predictions Lab

❖ Data Preprocessing:

- &. Standardized the dataset using consistency.
- &. Split data into training (80%) and test (20%) sets.
- **❖ Model Training**:
- &. Used Logistic Regression, Support Vector Machines (SVM), Decision Trees, and K-Nearest Neighbors (KNN).
- GridSearchCV : for optimal model configurations.
- **Best Model Performance:**
- &. Logistic Regression achieved the best accuracy on test data (83.33%).
- &. Confusion matrix analysis highlighted minimal false positives and high true positive rates.
- Insights:
- &. Predictive models effectively classify whether the first stage will land, assisting in cost-saving strategies.

DASHBOARD

https://github.com/Ghadaala

Ghada ALabdullah Ghadaala

Assignment: Exploring and Preparing Data

https://github.com/Ghadaala/Assignment-Exploring-and-Preparing-Data

Assignment: SQL Notebook for Peer Assignment

https://github.com/Ghadaala/Assignment-SQL-Notebook-for-Peer-Assignment/blob/main/jupyter-labs-eda-sql-coursera_sqllite%20(1).ipynb

Interactive Visual Analytics with Folium

https://github.com/Ghadaala/Hands-on-Lab-Interactive-Visual-Analytics-with-Folium/blob/main/lab_jupyter_launch_site_location.ipynb

Data wrangling

https://github.com/Ghadaala/-Data-wrangling/blob/main/labs-jupyter-spacex-Data%20wrangling.jpynb

Web scraping Falcon 9 and Falcon Heavy Launches Records from Wikipedia

https://github.com/Ghadaala/-Data-wrangling/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb

Collecting the data

https://github.com/Ghadaala/Collecting-the-data/blob/main/jupyter-labs-spacex-data-collection-api%20(1).ipynb

DISCUSSION

OVERALL FINDINGS & IMPLICATIONS

Findings

- Decision Tree Classifier: Best performer with 93.33% accuracy.
- Logistic Regression: Reliable with 83.33% accuracy.
- **SVM**: Competitive at **84.82%** accuracy but resource-heavy.
- KNN: Least effective at 76.67% accuracy

Implications

- Cost Prediction: Supports pricing strategies for rocket launches.
- Model Choice: Decision Tree is ideal for accuracy; Logistic Regression for simplicity.
- Business Impact: Enhances decision-making for space providers and clients.

CONCLUSION

- Best Model: Decision Tree with 93.33% accuracy.
- **Key Insight**: Models can predict rocket landing reliability, aiding cost efficiency.
- **Business Impact**: Supports competitive bidding and strategic decision-making.
- Future Direction: Explore more data and model refinements.

APPENDIX

- Sample SQL queries or Python code snippet
- > References to any external sources or datasets used.
- videos that can help explain key points in project

> Sample SQL queries or Python code snippet

Edit View Run Kernel Tabs C Task 1 Q Filter files by name Display the names of the unique launch sites in the space mission / module_2 / SQLLIte / Name Last Modified [76]: # Run this if you're using SQLAlchemy connection Image: Ima 2 days ago %sql SELECT DISTINCT "Launch Site" FROM SPACEXTABLE; my_data1.db 2 days ago your_datab... 3 days ago * sqlite:///my data1.db sqlite:///your_database.db Done. [76]: Launch Site CCAFS LC-40 VAFB SLC-4E KSC LC-39A CCAFS SLC-40

References to any datasets used.

		~):[X	•		_	-	-				14				0	-	0
	Α	В	D	D D	E Collecte	F	G	H	0-1451	J D	K	L L = dl =- eD=	M	N DIC	0	P	Q
		Date 6/4/2010		PayloadMa	LEO	LaunchSite		_	GridFins FALSE	Reused FALSE	Legs FALSE	LandingPa		ReusedCo	B0003	Longitude	28.56186
	_	######################################		525		CCSFS SLC				FALSE	FALSE		1		B0005		28.56186
		3/1/2013		677		CCSFS SLC				FALSE	FALSE		1		B0005 B0007		28.56186
		3/1/2013 ########		500		VAFB SLC 4					FALSE						
		########		3170		CCSFS SLC				FALSE FALSE	FALSE		1		B1003 B1004		34.63209 28.56186
		1/6/2014				CCSFS SLC			FALSE	FALSE	FALSE		1	-	B1004 B1005		28.56186
		########		3325 2296		CCSFS SLC				FALSE	TRUE				B1005 B1006		28.56186
		########		1316		CCSFS SLC				FALSE	TRUE		1		B1006 B1007		28.56186
		8/5/2014		4535		CCSFS SLC				FALSE	FALSE		1		B1007 B1008		28.56186
)		9/7/2014		4535		CCSFS SLC				FALSE	FALSE		1		B1008		28.56186
<u> </u>		########		2216		CCSFS SLC			FALSE	FALSE	FALSE		1		B1011		28.56186
3		########		2395		CCSFS SLC			TRUE	FALSE	TRUE	5e9e30323	1		B1010		28.56186
4		########			ES-L1	CCSFS SLC				FALSE	TRUE	363630320	1		B1012		28.56186
5		########		1898		CCSFS SLC				FALSE	TRUE	5e9e30323	1	-	B1015		28.56186
5		########		4707		CCSFS SLC			FALSE	FALSE	FALSE	363600320	1		B1015		28.56186
7		########		2477		CCSFS SLC				FALSE	TRUE	5e9e30323	1		B1018		28.56186
3		########		2034		CCSFS SLC		1		FALSE	TRUE	5e9e30320	1	_	B1010		28.56186
9		########		553		VAFB SLC 4				FALSE	TRUE	5e9e30333	1		B1013		34.63209
	19			5271		CCSFS SLC				FALSE	TRUE	5e9e30323	1		B1017		28.56186
	20			3136		CCSFS SLC		1		FALSE	TRUE	5e9e30320	2		B1021		28.56186
2	21			4696		CCSFS SLC		1	TRUE	FALSE	TRUE	5e9e30320	2		B1022		28.56186
3		#######		3100		CCSFS SLC		1		FALSE	TRUE	5e9e30320	2		B1023		28.56186
1		########		2257		CCSFS SLC		1		FALSE	TRUE	5e9e30323	2		B1025		28.56186
		########		4600		CCSFS SLC		1		FALSE	TRUE	5e9e30323	2		B1026		28.56186
5		9/1/2016		5500		CCSFS SLC				FALSE	TRUE	5e9e30320	3		B1028		28.56186

https://cf-coursesdata.s3.us.cloud-objectstorage.appdomain.cloud/IBM-DS0321EN-SkillsNetwork/labs/module_2/data /Spacex.csv

videos that can help explain key points in project

