Feuille d'exercice n° 22 : EV de dimension finie - correction

Exercice 1

1) On a une famille de $5 > \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , donc $(v_1, v_2, v_3, v_4, v_5)$ est liée.

 v_1 et v_2 sont deux vecteurs non colinéaires, donc (v_1, v_2) est libre.

Soit $a, b \in \mathbb{R}$, en considérant le système $av_1 + bv_2 = v_3$, en considérant la première ligne on obtient a = 1, et avec la deuxième ligne b = -1. Les autres lignes sont incompatibles. Ainsi, la famille (v_1, v_2, v_3) est libre.

De même, avec $a, b, c \in \mathbb{R}$, on voit que le système $av_1 + bv_2 + cv_3 = v_4$ n'a pas de solution. Ainsi, la famille (v_1, v_2, v_3, v_4) est libre.

C'est une famille libre de $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , (v_1, v_2, v_3, v_4) est donc une base de \mathbb{R}^4 .

Notamment, comme sur-famille d'une famille génératrice, $(v_1, v_2, v_3, v_4, v_5)$ engendre \mathbb{R}^5 .

2) On a une famille de $3 < \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , donc (v_1, v_2, v_3) n'est pas génératrice. v_1 et v_2 sont deux vecteurs non colinéaires, donc (v_1, v_2) est libre.

Soit $a, b \in \mathbb{R}$, en considérant le système $av_1 + bv_2 = v_3$, en considérant la première ligne on obtient a = 3, et avec la deuxième ligne b = -2. Les autres lignes sont incompatibles. Ainsi, la famille (v_1, v_2, v_3) est libre.

On observe (après résolution de système) que $e_1 = (1,0,0,0)$ n'est pas combinaison linéaire de (v_1,v_2,v_3) , donc (v_1,v_2,v_3,e_1) est une famille libre $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , c'est donc une base de \mathbb{R}^4 .

3) On a une famille de $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 .

 v_1 et v_2 sont deux vecteurs non colinéaires, donc (v_1, v_2) est libre.

Comme dans l'exercice précédent, on observe que $v_4 = 3v_1 - 2v_1$. De même, $v_3 = 2v_1 - 3v_2$. Ainsi, (v_1, v_2, v_3, v_4) est liée. D'après la première remarque, ce n'est pas une famille génératrice de \mathbb{R}^4 .

Avec $e_1 = (1, 0, 0, 0)$ et $e_2 = (0, 1, 0, 0)$, on observe que e_1 n'est pas combinaison linéaire de (v_1, v_2) et que e_2 n'est pas combinaison linéaire de (v_1, v_2, e_1) . Ainsi, (v_1, v_2, e_1, e_2) est une famille libre, elle comporte $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , donc c'est une base de \mathbb{R}^4 .

Exercice 2

- 1) Comme $P \mapsto P(0)$ et $P \mapsto P'$ sont linéaires, φ est linéaire. De plus, on sait que pour tout $P \in \mathbb{K}[X]$ et tout $a \in \mathbb{K}$, il existe un unique $Q \in \mathbb{K}[X]$ tel que Q(0) = a et Q' = P (pour le redémontrer, écrivez P puis Q sous forme développée-réduite). Ainsi, φ est bijective, donc est bien un isomorphisme de $\mathbb{K}[X]$.
- 2) Supposons que $\mathbb{K}[X]$ soit de dimension finie, notée d. Alors $\mathbb{K}[X]$ serait isomorphe à $\mathbb{K} \times \mathbb{K}[X]$, qui est de dimension d+1. On aurait d=d+1, ce qui est impossible.

Exercice 3

1) Soit $x, y, z, a, b \in \mathbb{R}$. On écrit

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = a \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + b \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \Leftrightarrow \begin{cases} x = 3a + 2b \\ y = a + b \\ z = 2a + 3b \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 3y = -b \\ y = a + b \quad L_1 \leftarrow L_1 - 3L_2, \ L_3 \leftarrow L_3 - 2L_2 \\ -2y + z = b \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 3y = -b \\ y = a + b \quad L_3 \leftarrow L_3 + L_1 \\ x - 5y + z = 0 \end{cases}$$

Ce système (en a, b) admet une solution si et seulement si la dernière ligne est vérifiée. Une équation cartésienne de F est donc x - 5y + z = 0.

2) Soit $x, y, z \in \mathbb{R}$. On observe que $(x, y, z) \in G$ si et seulement si (x, y, z) est colinéaire à (1, 2, 3), donc si et seulement si y = 2x et z = 3x.

Une représentation cartésienne de G est donc le système 2x - y = 0, 3x - z = 0.

3) Soit $x, y, z, t, a, b, c \in \mathbb{R}$. On écrit comme dans la première question le système (en a, b, c):

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} + b \begin{pmatrix} 4 \\ -1 \\ 2 \\ 0 \end{pmatrix} + c \begin{pmatrix} 2 \\ 1 \\ -3 \\ 0 \end{pmatrix}$$

Ce système (en a, b, c) admet une solution si et seulement si la dernière ligne est vérifiée. Une équation cartésienne de H est donc t=0.

Exercice 4

- 1) On a une famille de n + 1 = dim(R_n[X]) vecteurs dans R_n[X]. Il suffit donc de montrer que cette famille est libre. s
 Soit λ₀,...,λ_n ∈ R tels que ∑_{k=0}ⁿ λ_kP_k = 0. Supposons que les λ_k ne sont pas tous nuls, on peut donc considérer le plus grand entier m tel que λ_m ≠ 0. On aurait alors P_m = -1/λ_m ∑_{k=0}^{m-1} λ_kP_k ∈ R_{m-1}[X]. Ceci contredit le fait que deg(P_m) = m. Ainsi, (P₀,...,P_n) est une base de K_n[X].
- 2) On montre que cette famille est libre et engendre $\mathbb{R}[X]$. Soit $(\lambda_i)_{i\in\mathbb{N}}$ une suite de scalaires à support fini telle que $\sum_{i\in\mathbb{N}} \lambda_i P_i = 0$. Comme cette suite est à support fini, elle est nulle à partir d'un rang $n\in\mathbb{N}$. On peut donc écrire $\sum_{i=0}^n \lambda_i P_i = 0$. Par la question précédente, si $0 \le i \le n$, $\lambda_i = 0$. Ainsi, $\forall i \in \mathbb{N}$, $\lambda_i = 0$, donc $(P_i)_{i\in\mathbb{N}}$ est libre. Soit $P \in \mathbb{R}[X]$, notons $n = \max(0, \deg(P))$. On a alors par la question précédente $P \in \mathbb{R}[X] = \operatorname{Vect}(P_0, \dots, P_n) \subset \operatorname{Vect}(P_i, i \in \mathbb{N})$. Ainsi, $(P_i)_{i\in\mathbb{N}}$ engendre $\mathbb{R}[X]$. Ainsi, $(P_i)_{i\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.

Exercice 5

Par la formule de Taylor, cette famille est génératrice, avec coordonnée sur $(X-a)^i$ égale à $\frac{P^{(i)}(a)}{i!}$ et cette famille est libre car les polynômes sont de degrés distincts 2 à 2.

Exercice 6 On peut prendre $(1, Q, X^2, P)$.

Ces polynômes sont de degrés distincts deux à deux, donc forment une famille libre. C'est une famille libre de $4 = \dim(\mathbb{R}_3[X])$ vecteurs de $\mathbb{R}_3[X]$, donc c'est une base de $\mathbb{R}_3[X]$.

Exercice 7

- 1) v_1 et v_2 sont deux vecteurs non colinéaires, donc forment une famille libre. En résolvant le système $v_3 = av_1 + bv_2$, qui n'a pas de solution, on obtient que la famille (v_1, v_2, v_3) est libre. On observe ensuite que $v_4 = 3v_1 + 2v_2$ et $v_5 = -3v_1 + v_2$. Ainsi, (v_1, v_2, v_3) est une base de F.
- 2) Comme F est de dimension 3 et \mathbb{R}^4 de dimension 4, il suffit de compléter (v_1, v_2, v_3) avec un vecteur pour former une base de \mathbb{R}^4 . On voit par exemple que $e_1 = (1, 0, 0, 0)$ convient $(e_1 \notin F)$. Ainsi, $\text{Vect}(e_1)$ est un supplémentaire de F.

Exercice 8

- 1) On a toujours $\dim f(F) \leqslant \dim F$: en effet, si l'on considère $h = f|_F^{\operatorname{Im} F}: F \to \operatorname{Im} F$ et qu'on lui applique le théorème du rang, nous avons : $\dim F = \dim \operatorname{Ker} h + \operatorname{rg} h = \dim \operatorname{Ker} h + \dim h(F) = \dim \operatorname{Ker} h + f(F) \geqslant f(F)$. De plus, par hypothèse, $F \subset f(F)$ donc $\dim F \leqslant f(F)$. Par conséquent $\dim f(F) = \dim F$.
- 2) Reprenons la relation précédente : $\dim F = \dim \operatorname{Ker} h + \dim f(F)$. Si f est injective, par restriction h aussi. Donc $\dim F = \dim f(F)$.

 Autre méthode : de manière générale, si $\mathscr B$ est une base de F, alors $f(\mathscr B)$ est une famille génératrice de f(F). Mais ici, comme f est injective, c'est aussi une famille libre, donc c'est une base de f(F). Puisque $\operatorname{Card} \mathscr B = \operatorname{Card} f(\mathscr B)$, alors $\dim F = \dim f(F)$.

Exercice 9 • Si l'on a **1**), par le théorème du rang on a aussi $\operatorname{rg} f = \operatorname{rg} f^2$. Or l'inclusion $\operatorname{Im} f^2 \subset \operatorname{Im} f$ est toujours vérifiée, d'où l'égalité $\operatorname{Im} f^2 = \operatorname{Im} f$, et l'on a **2**).

- Si l'on a 2), on a de même 1).
- Si l'on a 1) et 2), soit $x \in \text{Ker } f \cap \text{Im } f$. Alors on écrit x = f(y). Donc $0 = f(x) = f^2(y)$. Ainsi $y \in \text{Ker } f^2$, mais puisque $\text{Ker } f^2 = \text{Ker } f$, alors $y \in \text{Ker } f$ et donc x = f(y) = 0. Cela assure que E = Ker f + Im f. Mais avec le théorème du rang, dim $E = \dim \text{Ker } f + \dim \text{Im } f$, et donc on a 3).
- Si l'on a 3), soit $x \in \text{Ker } f^2$, alors f(f(x)) = 0 donc $f(x) \in \text{Ker } f$. Mais bien sûr $f(x) \in \text{Im } f$, donc $f(x) \in \text{Ker } f \cap \text{Im } f = \{0\}$. Ainsi f(x) = 0 et $x \in \text{Ker } f$, ce qui donne $\text{Ker } f^2 \subset \text{Ker } f$. Comme l'inclusion $\text{Ker } f \subset \text{Ker } f^2$ est toujours vérifiée, on a bien 1).

Toutes les équivalences voulues sont bien démontrées.

Exercice 10 Appliquons l'inégalité de Grassmann à l'égalité $\operatorname{Im} f + \operatorname{Im} g = E : \dim \operatorname{Im} f + \dim \operatorname{Im} g \geqslant \dim E$, soit $\operatorname{rg} f + \operatorname{rg} g \geqslant n$.

De la même manière, dim Ker $f + \dim \text{Ker } g \ge n$.

Sommons ces deux inégalités :

$$\operatorname{rg} f + \operatorname{rg} g + \dim \operatorname{Ker} f + \dim \operatorname{Ker} g \geqslant 2n.$$

Or par le théorème du rang, rg f + dim Ker f = n, rg g + dim Ker g = n, ce qui, dans l'inégalité précédente donne $2n \ge 2n$. Ainsi, si l'une des deux premières inégalités est stricte, nous avons 2n > 2n, ce qui est absurde.

Donc $\operatorname{rg} f + \operatorname{rg} g = n = \dim E$ et $\dim \operatorname{Ker} f + \dim \operatorname{Ker} g = n = \dim E$, et donc les sommes $\operatorname{Im} f + \operatorname{Im} g = E$ et $\operatorname{Ker} f + \operatorname{Ker} g = E$ sont directes.

Exercice 11

1) Démontrons d'abord que $\operatorname{Im}(u+v) \subset \operatorname{Im} u + \operatorname{Im} v$. Soit $y \in \operatorname{Im}(u+v)$ Il existe alors $x \in E$ tel que y = (u+v)(x) = u(x) + v(x), qui appartient bien à $\operatorname{Im} u + \operatorname{Im} v$.

Remarque : attention, l'inclusion réciproque est fausse ! Essayez de le démontrer, et remarquez à quel endroit vous êtes bloqués. Cherchez un contre-exemple.

Il suffit alors de passer à la dimension dans cette inclusion, en appliquant l'inégalité de Grassmann : $\operatorname{rg}(u+v) \leq \dim(\operatorname{Im} u + \operatorname{Im} v) \leq \operatorname{rg} u + \operatorname{rg} v$.

Reremarque : cette inégalité est simple à mémoriser, elle est du type « inégalité triangulaire ».

2) L'inégalité demandée est encore du type « inégalité triangulaire » : c'est l'analogue de l'inégalité de gauche de $||a|-|b|| \le |a+b| \le |a|+|b|$ (pour $a,b \in \mathbb{C}$ par exemple), celle de droite ayant été démontrée à la première question. Or pour des complexes, nous savons démontrer l'inégalité de gauche en utilisant celle de droite. Appliquons ici la même méthode : remarquons que u=(u+v)+(-v), et appliquons le résultat de la première question : rg $u=\mathrm{rg}((u+v)+(-v)) \le \mathrm{rg}(u+v)+\mathrm{rg}(-v)$. Il suffit alors de remarquer $\mathrm{Im}(-v)=\mathrm{Im}(v)$ (exercice facile laissé au lecteur, qui doit quand même s'assurer qu'il sait le faire !). Donc $\mathrm{rg}\,u-\mathrm{rg}\,v \le \mathrm{rg}(u+v)$. En écrivant de même que v=(u+v)+(-u), nous avons $\mathrm{rg}\,v-\mathrm{rg}\,u \le \mathrm{rg}(u+v)$. Ces deux dernière inégalités donnent bien $|\mathrm{rg}\,u-\mathrm{rg}\,v| \le \mathrm{rg}(u+v)$.

Exercice 12 Par commodité, posons $E_{-1} = E_{n+1} = \{0\}$, $f_{-1} : \begin{cases} \{0\} \rightarrow E_1 \\ 0 \rightarrow 0 \end{cases}$ et $f_n : \begin{cases} E_n \rightarrow \{0\} \\ x \mapsto 0 \end{cases}$. Nous remarquons alors que nous avons aussi $\operatorname{Im} f_{j-1} = \operatorname{Ker} f_j$ pour j = 0, puisque f_0 est injective, donc $\operatorname{Im} f_{-1} = \{0\} = \operatorname{Ker} f_0$. Et nous l'avons aussi pour j = n+1 puisque f_{n-1} est surjective, donc $\operatorname{Im} f_{n-1} = E_n = \operatorname{Ker} f_n$. Soit $j \in [0, n]$. Par le théorème du rang, $\alpha_j = \operatorname{rg} f_j + \operatorname{rg} f_{j-1}$, donc par sommation télescopique :

$$\sum_{j=0}^{n} (-1)^{j} \alpha_{j} = \sum_{j=0}^{n} (-1)^{j} (\operatorname{rg} f_{j} + \operatorname{rg} f_{j-1}) = \sum_{j=0}^{n} (-1)^{j} \operatorname{rg} f_{j} - (-1)^{j-1} \operatorname{rg} f_{j-1} = (-1)^{n} \operatorname{rg} f_{n} - \operatorname{rg} f_{n-1} = 0 - 0 = 0.$$

Exercice 13 Commençons par remarquer que pour tout polynôme P, $\deg P'' \leqslant \deg P' \leqslant \deg P$. Ainsi, si $\deg P \leqslant n$, $\deg(P+P'+P'') \leqslant \deg P \leqslant n$: f est donc bien une application $\deg R_n[X]$ dans lui-même. L'application $P \mapsto P'$ étant linéaire, par composition $P \mapsto P''$ aussi, et donc par combinaison linéaire, f est linéaire.

- 1) Soit $P \in \text{Ker } f$. Alors P + P' + P'' = 0. Si P n'est pas nul, alors $\deg P'' \leqslant \deg P' < \deg P$. Nous savons alors que dans ces conditions, $\deg(P + P' + P'') = \deg P$, car si $\deg P = n$, P comporte un terme de degré n, mais pas P' ni P''. Le monôme dominant de P est donc celui de P + P' + P''. Donc ici, si $\deg P \geqslant 0$, $\deg(P + P' + P'') \geqslant 0$ ce qui est absurde car P + P' + P'' = 0. Ainsi P = 0 et $\ker f = \{0\}$: f est injective. Puisque f est un endomorhisme en dimension finie, son injectivité implique sa bijectivité.
- 2) Soit $Q \in \mathbb{R}[X]$. Notons n le degré de Q (si $Q \neq 0$). $Q \in \mathbb{R}_n[X]$, donc, f étant bijective, Q admet un antécédent par f, i... $\exists P \in \mathbb{R}_n[X]$ tel que P + P' + P'' = Q. Ceci prouve que Q admet un antécédent par φ . Or φ est clairement linéaire et injective (mêmes raisons que f), donc φ est un isomorphisme de $\mathbb{R}[X]$.

Exercice 14 \Leftarrow : avec le théorème du rang, dim $E = \operatorname{rg} f + \dim \operatorname{Ker} f = 2\operatorname{Im} f$.

 \Rightarrow : si n=2p, soit (e_1,\cdots,e_{2p}) une base de E. Rappelons que pour tout choix d'une famille (f_1,\cdots,f_{2p}) de vecteurs de E, il existe un unique $f\in\mathcal{L}(E)$ telle que pour tout $i\in [1,2p]$, $f(e_i)=f_i$. Considérons ici la famille $(f_1,\cdots,f_{2p})=(e_{p+1},e_{p+2},\cdots,e_{2p},0,0,\cdots,0)$, où pour tout i de 1 à p, $f_i=e_{i+p}$, et pour tout $i\geqslant p+1$, $f_i=0$.

On considère alors l'endomorphisme f tel que pour tout $1 \le i \le 2p$, $f(e_i) = f_i$.

Alors Im $f = \text{Vect}(f(e_1), \dots, f(e_n)) = \text{Vect}(e_{p+1}, e_{p+2}, \dots, e_{2p}, 0, 0, \dots, 0) = \text{Vect}(e_{p+1}, e_{p+2}, \dots, e_{2p})$. En particulier, cette famille étant libre, rg f = p.

Mais aussi, pour tout $i \ge p+1$, $e_i \in \operatorname{Ker} f$, donc $\operatorname{Im} f = \operatorname{Vect}(e_{p+1}, e_{p+2}, \cdots, e_{2p}) \subset \operatorname{Ker} f$. Or avec le théorème de rang, dim $\operatorname{Ker} f = \dim E - \operatorname{rg} f = p = \operatorname{rg} f$: $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont inclus l'un dans l'autre et ont même dimension, donc ils sont égaux.

Exercice 15

1) Condition nécessaire : Supposons qu'il existe $u \in \mathcal{L}(E)$ tel que Ker u = F et Im u = G. Avec $n = \dim E$, par le théorème du rang dim Ker $u + \dim \operatorname{Im} u = \dim E$, donc dim $E = \dim F + \dim G$ est une conditon nécessaire.

Condition sufisante : Réciproquement, en posant $p = \dim F$, $q = \dim G$, supposons que p+q = n. Nous allons construire u convenable en la définissant sur une base judicieusement choisie de E.

Soit (f_1, \cdots, f_p) une base de F, que l'on complète par $(f_{p+1}, \cdots, f_{p+q})$ en une base de E: cette base servira de base « de départ » pour u.

Soit (g_1, \dots, g_q) une base de G, on considère la famille « à l'arrivée » $(0, \dots, 0, g_1, \dots, g_q)$, dont les p premiers vecteures sont nuls. Notons cette famille (k_1, \dots, k_n) .

On sait alors qu'il existe un unique endomorpisme u tel que pour tout $i \in [1, n]$, $u(f_i) = k_i$.

Alors: Im $u = \text{Vect}(u(f_1), \dots, u(f_n)) = \text{Vect}(0, \dots, 0, g_1, \dots, g_q) = \text{Vect}(g_1, \dots, g_q) = G$.

En particulier, $\operatorname{rg} u = \dim G = q$.

Or pour tout i de 1 à p, $f_i \in \text{Ker } u$ donc $F = \text{Vect}(f_1, \dots, f_p) \subset \text{Ker } u$. Or avec le théorème du rang, $\dim \operatorname{Ker} u = \dim E - \operatorname{rg} u = n - q = p = \dim F$. Donc $F = \operatorname{Ker} u$: la condition était bien suffisante.

2) Une base de F est $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, que l'on compléte en la base de \mathbb{R}^3 $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$,

notée (f_1, f_2, f_3) . Posons $g_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$. Cherchons l'expression de l'endomorpisme u tel que $u(f_1) = \frac{1}{2}$

 $u(f_2) = 0$ et $u(f_3) = g_1$.

Soit $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Décomposons-le dans la base (f_1, f_2, f_3) . Une résolution de système linéaire sans surprise

donne $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = zf_1 + (y+z)f_2 + (x+y+z)f_3$. Ainsi $u \begin{pmatrix} x \\ y \\ z \end{pmatrix} = zu(f_1) + (y+z)u(f_2) + (x+y+z)u(f_3) = zu(f_1) + (y+z)u(f_2) + (y+z)u(f_3) = zu(f_3) + (y+z)u(f_3) + (y+z)u(f_3) = zu(f_3) + (y+z)u(f_3) + (y+z)u(f_3) + (y+z)u(f_3) = zu(f_3) + (y+z)u(f_3) + (y$

 $(x+y+z)g_1.$ Une application u telle que $\operatorname{Ker} u = F$ et $\operatorname{Im} u = G$ est donc u: $\begin{cases} \mathbb{R}^3 & \to \mathbb{R}^3 \\ \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto (x+y+z) \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}.$

• Soit $n \in \mathbb{N}$ et $y \in \text{Im } f^{n+1}$. Il existe donc $x \in E$ tel que $y = f^{n+1}(x) = f^n(f(x))$, donc Exercice 16 $y \in \operatorname{Im} f^n$. Ainsi $\operatorname{Im} f^{n+1} \subset \operatorname{Im} f^n$ donc $\operatorname{rg} f^{n+1} \leqslant \operatorname{rg} f^n$, et la suite $(\operatorname{rg}(f^n))_{n \in \mathbb{N}}$ est décroissante.

• Soit $n_0 \in \mathbb{N}$ tel que rg $f^{n_0} = \operatorname{rg} f^{n_0+1}$. Posons l'hypothèse de récurrence suivante : pour tout $k \in \mathbb{N}$, (H_k) : « $\operatorname{rg} f^{n_0} = \operatorname{rg} f^{n_0+k}$ ».

 (H_0) est évidemment vraie, et (H_1) l'est par hypothèse.

Soit $k \in \mathbb{N}$ tel que (H_k) est vraie. Nous savons déjà que $\operatorname{Im} f^{n_0+k+1} \subset \operatorname{Im} f^{n_0+k} \subset \operatorname{Im} f^{n_0}$. Mais avec (H_k) , la dernière inclusion assure que, par égalité de leur dimension, $\operatorname{Im} f^{n_0+k} = \operatorname{Im} f^{n_0}$. Montrons que $\operatorname{Im} f^{n_0+k+1} \supset \operatorname{Im} f^{n_0+k} \subset \operatorname{Im} f^{n_0}.$

Soit $y \in \text{Im } f^{n_0+k}$. Alors il existe $x \in E$ tel $y = f^{n_0+k}(x) = f^k(f^{n_0}(x))$. Alors $f^{n_0}(x) \in \text{Im } f^{n_0}$. Mais comme $\operatorname{rg} f^{n_0} = \operatorname{rg} f^{n_0+1}$, par le même raisonnement que précédemment nous avons aussi $\operatorname{Im} f^{n_0} = \operatorname{Im} f^{n_0+1}$. Donc $f^{n_0}(x) \in \text{Im } f^{n_0+1}$, et il existe $t \in E$ tel que $f^{n_0}(x) = f^{n_0+1}(t)$, et donc $y \in \text{Im } f^{n_0+k+1}(t)$. Ainsi, par double inclusion, Im $f^{n_0+k+1} = \text{Im } f^{n_0+k} = \text{Im } f^{n_0}$, et en passant aux dimensions, (H_{k+1}) est vraie.

• Supposons maintenant que la suite $(\operatorname{rg}(f^n))_{n\in\mathbb{N}}$ est strictement décroissante du rang 0 jusqu'au rang $n+1: n=\operatorname{rg} f^0 > \operatorname{rg} f > \cdots > \operatorname{rg} f^{n+1}$. Alors $0=n-(n+1) \geqslant \operatorname{rg} f^{n+1}$, ce qui est absurde. Il existe donc $p \leq n$ tel que rg $f^p = \operatorname{rg} f^{p+1}$. Avec le paragraphe précédent, nous avons donc le résultat voulu : $\operatorname{rg} f^n = \operatorname{rg} f^{n+1}$.

Exercice 17 Puisque $F \not\subset H$, il existe $x \in F \backslash H$. Donc $x \neq 0$, et comme $x \not\in H$, $\mathrm{Vect}(x)$ et H sont en somme directe. Mais comme dim $H + \dim \operatorname{Vect}(x) = (\dim E - 1) + 1 = \dim E$, alors $H \oplus \operatorname{Vect}(x) = E$. Mais $x \in F$, donc $E = H \oplus \operatorname{Vect}(x) \subset H + F \subset E$, donc H + F = E.

Avec la formule de Grassmann, $\dim F \cap H = -\dim E + \dim H + \dim F = -\dim E + \dim E - 1 + \dim F$ et donc dim $F \cap H = \dim F - 1$.

Exercice 18

- 1) Puisque $a \notin H$, alors pour tout $\lambda \in \mathbb{K}^*$, $\lambda a \notin H$, donc $\mathrm{Vect}(a) \cap H = \{0\}$. Ainsi H et $\mathrm{Vect}(a)$ sont en somme directe. Mais $a \neq 0$ donc dim $\mathrm{Vect}(a) = 1$, et ainsi dim $\mathrm{Vect}(a) + \dim H = 1 + \dim E 1 = \dim E$: H et $\mathrm{Vect}(a)$ sont donc supplémentaires.
- 2) Montrons que le résultat est encore vrai.

Soit H un hyperplan de E, alors il existe une droite vectorielle supplémentaire de H: il existe $b \in E$, $b \neq 0$, tel que $H \oplus \operatorname{Vect}(b) = E$.

Soit $a \notin H$. Montrons que $H \oplus \text{Vect}(a) = E$.

Déjà, comme à la question précédente, il est facile de montrer que $H \cap \text{Vect}(a) = \{0\}$.

Montrons enfin que $E = H + \operatorname{Vect}(a)$. Soit $x \in E$. Puisque $E = H + \operatorname{Vect}(b)$, il existe $h \in H$ et $\mu \in \mathbb{K}$ tel que $x = \mu.b + h$. Mais de la même manière, il existe $\lambda \in \mathbb{K}$ et $h' \in H$ tel que $a = \lambda.b + h'$. Et comme $a \notin H$, $\lambda \neq 0$, donc $b = \frac{1}{\lambda}(a - h')$. Alors $x = \frac{\mu}{\lambda}(a - h') + h = \left[\frac{\mu}{\lambda}a\right] + \left[-\frac{\mu}{\lambda}.h' + h\right]$. Le premier membre de cette somme est un vecteur de $\operatorname{Vect}(a)$, le second est un vecteur de H. Ceci

premier membre de cette somme est un vecteur de Vect(a), le second est un vecteur de H. prouve que E = H + Vect(a).

Finalement, nous avons bien $H \oplus \text{Vect}(a) = E$.

Exercice 19 Soit $\varphi: \left\{ egin{array}{l} \mathbb{K}_n[X] & \to & \mathbb{K} \\ P & \mapsto & P(\alpha) \end{array} \right.$ Cette application est une forme linéaire, et son noyau est exactement H. De plus elle est non nulle car par exemple $\varphi(1)=1$. Ainsi H est bien un hyperplan. Puisque $\dim \mathbb{K}_n[X]=n+1$, il suffit de donner une famille libre de n vecteurs de H pour en avoir une base $: (X^k(X-\alpha))_{0 \leqslant k \leqslant n-1}$ convient car elle est échelonnée et donc libre.

Exercice 20 • Méthode géométrique : le cours assure que si φ et ψ n'ont pas le même noyau, elles ne sont pas proportionnelles. Donc comme aucune des deux n'est nulle, elles ne sont pas liées. Ici le vecteur $\begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ appartient à $\operatorname{Ker} \varphi$, mais pas à $\operatorname{Ker} \psi$.

• Méthode algébrique : soit $a, b \in \mathbb{K}$ tels que $a\varphi + b\psi = 0$. Alors $0 = a\varphi \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + b\psi \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} = 4b$,

donc b = 0. Il reste $a\varphi = 0$ donc $0 = a\varphi\begin{pmatrix} 2\\1\\0 \end{pmatrix} = 4a$, donc a = 0 aussi, et la famille (φ, ψ) est libre.