235

10.
$$\mathbf{v} = (1, -\sqrt{3})$$

11.
$$\mathbf{v} = \left(\frac{1}{2}, -2\right)$$

12.
$$\mathbf{v} = (-5, 1)$$

13.
$$\mathbf{v} = (1, 2)$$

9.
$$\mathbf{v} = (3, -8)$$
 10. $\mathbf{v} = (1, -\sqrt{3})$ 11. $\mathbf{v} = \left(\frac{1}{2}, -2\right)$ 12. $\mathbf{v} = (-5, 1)$ 13. $\mathbf{v} = (1, 2)$ 14. $\mathbf{v} = \left(-\frac{4}{7}, -\frac{4}{14}\right)$ 15. $\mathbf{v} = (10, 10)$ 16. $\mathbf{v} = (-7, 10)$

15.
$$\mathbf{v} = (10, 10)$$

16.
$$\mathbf{v} = (-7, 10)$$

17.
$$\mathbf{v} = (10, 0)$$

18.
$$\mathbf{v} = (6, -8)$$
 19. $\mathbf{v} = (\pi, 0)$

19.
$$\mathbf{v} = (\pi, 0)$$

- **20.** Sea $\mathbf{u} = (2, 3)$ y $\mathbf{v} = (-5, 4)$. Encuentre: a) $3\mathbf{u}$; b) $\mathbf{u} + \mathbf{v}$; c) $\mathbf{v} \mathbf{u}$; d) $2\mathbf{u} 7\mathbf{v}$. Bosqueje estos vectores.
- **21.** Sea $\mathbf{u} = -2\mathbf{i} + \mathbf{j} \mathbf{y} \mathbf{v} = 4\mathbf{i} + 5\mathbf{j}$. Encuentre: a) $\mathbf{u} + \mathbf{v}$; b) $\mathbf{u} \mathbf{v}$; c) $\mathbf{v} \mathbf{u}$; d) $-2\mathbf{u} + 3\mathbf{v}$; e) $2\mathbf{u} - 3\mathbf{v}$; f) $\mathbf{u} + 2\mathbf{v}$. Bosqueje estos vectores.
- **22.** Sea $\mathbf{v} = -\mathbf{i} 5\mathbf{j}$ y $\mathbf{v} = -4\mathbf{i} + 6\mathbf{j}$. Encuentre: a) $\mathbf{u} + \mathbf{v}$; b) $\mathbf{u} \mathbf{v}$; c) $3\mathbf{u}$; d) $-7\mathbf{v}$; e) $8\mathbf{u} 3\mathbf{v}$; f) $4\mathbf{v} - 6\mathbf{u}$. Bosqueje estos vectores.
- 23. Demuestre que el vector $\frac{3}{5}$, $\frac{4}{5}$ es un vector unitario.
- 24. Muestre que los vectores i y j son vectores unitarios.
- 25. Demuestre que el vector $\mathbf{i}\sqrt{\frac{5}{5}} \mathbf{j}\sqrt{\frac{2}{5}}$ es un vector unitario.
- **26.** Demuestre que si $\mathbf{v} = a\mathbf{i} + b\mathbf{j} \neq 0$, entonces $\mathbf{u} = \frac{a}{\sqrt{a^2 + b^2}}\mathbf{i} + \frac{b}{\sqrt{a^2 + b^2}}\mathbf{j}$ es un vector unitario que tiene la misma dirección que v.

De los problemas 27 al 34 encuentre un vector unitario que tenga la misma dirección que el vector dado.

27.
$$v = 2i + 6j$$

28.
$$v = 4i - 6j$$

29.
$$v = 6i - i$$

28.
$$v = 4i - 6j$$
 29. $v = 6i - j$ 30. $v = 3i - 10j$

31.
$$\mathbf{v} = \frac{5}{3}\mathbf{i} + \frac{5}{2}\mathbf{j}$$

31.
$$\mathbf{v} = \frac{5}{3}\mathbf{i} + \frac{5}{2}\mathbf{j}$$
 32. $\mathbf{v} = a\mathbf{i} + a\mathbf{j}$; $a \neq 0$

33.
$$v = 7i + 9j$$

34.
$$v = -5i$$

- 35. Si $\mathbf{v} = a\mathbf{i} + b\mathbf{j}$, demuestre que $\frac{a}{\sqrt{a^2 + b^2}} = \cos\theta$ y $\frac{b}{\sqrt{a^2 + b^2}} = \sin\theta$, donde θ es la dirección de \mathbf{v} .
- **36.** Si $\mathbf{v} = 2\mathbf{i} 3\mathbf{j}$, encuentre sen θ y cos θ .
- 37. Si $\mathbf{v} = 4\mathbf{i} 3\mathbf{j}$, encuentre sen θ y cos θ .

Un vector v tiene dirección opuesta a la del vector u si la dirección de v es igual a la dirección de u más π radianes. De los problemas 38 al 45 encuentre un vector unitario v que tenga dirección opuesta a la dirección del vector dado u.

38.
$$u = -3i - 5j$$

39.
$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$$

40.
$$\mathbf{u} = 2\mathbf{i} + \frac{1}{8}\mathbf{j}$$

39.
$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$$
 40. $\mathbf{u} = 2\mathbf{i} + \frac{1}{8}\mathbf{j}$ **41.** $\mathbf{u} = 3\mathbf{i} - 7\mathbf{u}$

42.
$$\mathbf{u} = -2\mathbf{i} + 3\mathbf{j}$$

43.
$$\mathbf{v} = -8\mathbf{i} - 3\mathbf{j}$$

44.
$$\mathbf{u} = 4\mathbf{i} - 10\mathbf{j}$$

43.
$$\mathbf{v} = -8\mathbf{i} - 3\mathbf{j}$$
 44. $\mathbf{u} = 4\mathbf{i} - 10\mathbf{j}$ **45.** $\mathbf{u} = -5\mathbf{i} - 10\mathbf{j}$

- **46.** Sea $\mathbf{v} = -4\mathbf{i} + 2\mathbf{j}$ y $\mathbf{v} = -\mathbf{i} + 2\mathbf{j}$. Encuentre un vector unitario que tenga la misma dirección que: a) $\mathbf{u} + \mathbf{v}$; b) $2\mathbf{u} - 3\mathbf{v}$; c) $3\mathbf{u} + 8\mathbf{v}$.
- 47. Sea P = (c, d) y Q = (c + a, d + b). Muestre que la magnitud de \overrightarrow{PQ} es $\sqrt{a^2 + b^2}$.
- **48.** Demuestre que la dirección de \overrightarrow{PQ} en el problema 47 es la misma que la dirección del vector (a, b). [Sugerencia: Si R = (a, b), demuestre que la recta que pasa por los puntos P y Q es paralela a la recta que pasa por los puntos 0 y R.]

De los problemas 49 al 56 encuentre un vector v que tenga la magnitud y dirección dadas.

49.
$$|\mathbf{v}| = 1, \theta = \pi$$

50.
$$|\mathbf{v}| = 1, \ \theta = -\frac{\pi}{3}$$
 51. $|\mathbf{v}| = 8, \ \theta = \frac{\pi}{3}$

51.
$$|\mathbf{v}| = 8, \theta = \frac{\pi}{3}$$