

Trigger Performance Review: Alignment

Jim Pivarski

Texas A&M University

29 April, 2009

- ► Large overlap with physics triggers: single/double muon, minbias
 - turn-on curves are not important for alignment performance; only need a source of tracks
 - from Feb 4 Trigger Review: lean-menu physics triggers satisfy alignment needs
- Specialized alignment triggers:
 - tracker-pointing cosmic rays: visible progress toward implementation
 - 2. BSC beam-halo: see Gaelle's talk
 - 3. CSC beam-halo: see Joe's talk

In this talk:

- Status update on tracker-pointing cosmic ray trigger
- Alignment performance and diagnostic with cosmic rays
- Alignment performance with CSC beam-halo

- ▶ Need to collect cosmic rays during collisions because
 - ▶ non-projective tracks constrain systematic distortions (!)
 - they offer "live" diagnostics, such as track splitting
 - ▶ CRAFT-like runs before and after collisions would have limited applicability: $\mathcal{O}(100~\mu\text{m})$ variations from time-dependent effects (\vec{B} , stress, temperature, humidity...)

Status

- ► L1 emulator (Andrés Osorio)
 - mature in offline testing, code in CVS since January 2009
 - started integrating into CMSSW release with 3_1_0_pre5
- ► HLT_TrackerCosmics (Yohann Tschudi)
 - ▶ still just a pointer to L1, but in the latest menu
 - studying tracker-pointing features of L1; no plots yet
 - developing reconstruction for cosmic rays mixed with minbias

From Andrei Gritsan's Trigger Review talk:

- CRAFT + CRUZET provides very good experience
 - with \sim 4 million selected tracks \Rightarrow $\sim\!$ 30-70 $\mu\mathrm{m}$ precision (rms)
 - non-uniform in ϕ : never enough horizontal cosmics!
 - pixels and endcaps in disadvantage with cosmics

Private estimates:

- \sim 50 Hz based on CRAFT and CSA08 (all muon cosmics)
- ${\sim}5$ Hz in Tracker \leftarrow want to keep all of them
- \sim 1-2 Hz in Tracker after timing in L1 (not known yet)
- How we could use:
 - ${\sim}50k$ events in 24 hours \Rightarrow constraints, large-structure alignment
 - ${\sim}1m$ events in 3 weeks \Rightarrow detailed alignment (with other samples)

"Track splitting" diagnostic

Jim Pivarski

- Mismatch in parameters at origin is purely instrumental
- Only way to measure resolution of all 5 track parameters in data

Rate needed for diagnostics

$$\sigma_{\sigma} = 1\% \sqrt{\frac{15 \times 10^6}{1-2 \text{ Hz} \cdot t}}$$
, or 1–2 days for a 10% measurement

- lacktriangle Only known way to measure μ resolution well above the Z peak
- ► Several hundred GeV: a qualitatively different environment
 - ightharpoonup of nearly straight tracks depends on muon spectrometer
 - muons create showers of delta rays in the tracking chambers
- ▶ Cosmic ray spectrum drops as $E^{-2.7}$

Focus on p > 200 GeV spectrum – expect muon system starts to improve things...

Alignment with beam-halo

Jim Pivarski

- Beam-halo tracks passing through overlap of pairs of CSCs can be used to rapidly align with high precision
- ► Demonstration with 9 minutes of 2008 LHC beam-halo: 270 μm accuracy verified by an independent method (photogrammetry)

- ▶ Used 33,000 HLT_CSCBeamHaloOverlapsRing1 events for the above
- ► For one alignment/day: HLT_CSCBeamHaloOverlapsRing1 at 0.4 Hz, HLT_CSCBeamHaloOverlapsRing2 at 0.8 Hz

Controlling beam-halo rate

Jim Pivarski

- Only tracks that pass through overlaps are strictly needed for alignment, about 5% (from geometry; does not fluctuate)
- Beam-halo rate is higher close to the beamline

- ► Four HLT paths allow for tuning of prescales
 - ▶ HLT_CSCBeamHalo
 - ► HLT_CSCBeamHaloRing2or3
 - HLT_CSCBeamHaloOverlapsRing1
 - ► HLT_CSCBeamHaloOverlapsRing2

set by commissioning studies

2× (twice as many chambers)

0.4 Hz

0.8 Hz

- Existing physics triggers are satisfactory for alignment needs
- CRAFT and beam-halo experiences set estimates for alignment and diagnostic precision with specialized alignment triggers
- ► Cosmic ray rate can't be increased above natural rate: 1–2 Hz
 - all of that will be needed for resolving global distortions
 - in-situ resolution diagnostics can be performed regularly
 - ightharpoonup resolution will require longer accumulation of cosmics
- ▶ Beam-halo rate can potentially be high and unpredictable
 - ▶ only 0.4+0.8 Hz needed to align the muon endcaps
 - trigger paths split by geometry to control fluctuations in rate
- ▶ These are the same triggers that Gaelle and Joe will be covering next...