STATUS PERKEMBANGAN SEPEDA LISTRIK DAN MOTOR LISTRIK DI INDONESIA

I Pt Agus Surya Adi P¹, I Nyoman Satya Kumara², I Gusti Agung Pt Raka Agung²

Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana Jl. Raya Kampus UNUD, Kampus Bukit Jimbaran, Badung, Bali agussurya45@gmail.com¹, satya.kumara@unud.ac.id², rakaagung@unud.ac.id²

ABSTRAK

Perkembangan kendaraan listrik di Indonesia dimulai sejak tahun 1997 oleh Lembaga Ilmu Pengetahuan Indonesia (LIPI) namun sejak tahun 2013 mengalami pelambatan. Peraturan Presiden No. 55/2019 kembali menguatkan perkembangan kendaraan listrik di Indonesia yang kemudian didukung oleh beberapa peraturan lainnya. Saat ini perkembangan bidang kendaraan listrik baik dari sisi riset dan industri atau produk komersial sudah semakin membaik. Paper ini meninjau status terkini dari sepeda listrik dan motor listrik di Indonesia yang dijual secara komersial. Penelitian dilakukan dengan melakukan survei online selama tahun 2020-2021 yang menghasilkan basis data sepeda listrik dan motor listrik. Saat ini, sudah terdapat 64 buah sepeda listrik dan 44 buah sepeda motor listrik. Kendaraan ini menggunakan dua dan tiga roda dengan sistem penggerak *elektrik* berkapasitas antara 180 W sd 4200 W. Jenis motor yang digunakan sebagian besar atau sekitar 87% BLDC. Sepeda/motor listrik ini memiliki kecepatan antara 20 km/jam sd 70 km/jam dengan kapasitas baterai antara 5,2 Ah sd 70 Ah sehingga memiliki jarak tempuh berkisar antara 15 km sd 200km. Informasi yang disajikan akan membantu pemangku kepentingan untuk mendapatkan gambaran cepat tentang perkembangan sepeda/motor listrik di dalam negeri dan sebagai benchmark perancangan sepeda/motor listrik untuk memenuhi kebutuhan dalam negeri.

Kata kunci: Kendaraan Listrik, Sepeda Listrik, Motor Listrik

ABSTRACT

The development of electric vehicles in Indonesia began in 1997 by the Indonesian Institute of Sciences (LIPI) but since 2013 has slowed down. Presidential Regulation 55/2019 strengthens the development of electric vehicles in Indonesia which followed by several supporting regulations. Currently, the development of electric vehicles, both in terms of research and industry or commercial products, is getting better. This paper reviews the current status of electric bicycles and electric motorcycles in Indonesia which are commercially available. The research was conducted by through online survey during 2020-2021 which produced a database of electric bicycles/motorcycles. Currently, there are 64 electric bicycles and 44 electric motorcycles. These vehicles use either two or three wheels with electric drive capacity between 180 W to 4200 W. The most common electric motor used is BLDC at 87%. The electric bike/motorcycle has speed ranges between 20 km/h to 70 km/h with battery capacity of 5,2 Ah to 70 Ah with milage ranging from 15 km to 200 km. The information presented will help stakeholders to get a quick overview of the development of electric bicycles/motorcycles in the country and serves as benchmark for developing electric bicycles or motor to meet domestic needs.

Key Words: Electric Vehicles, Electric bike, Electric motorcycle

1. PENDAHULUAN

Perkembangan kendaraan listrik di Indonesia mulai menguat kembali setelah diterbitkannya Peraturan Presiden Republik Indonesia Nomor 55 Tahun 2019 tentang percepatan program kendaraan bermotor listrik berbasis baterai (*Battery Electric Vehicle*) [1]. Kemajuan ini bisa dilihat

2020 bahwa pada tahun sudah diproduksinya beberapa kendaraan listrik khususnya sepeda motor listrik oleh industri Kementerian Perindustrian menargetkan produksi kendaraan bermotor listrik berbasis baterai (KBLBB) mencapai 400 ribu unit untuk roda empat dan 1,76 juta unit untuk roda dua pada tahun 2025. Sementara pada tahun 2030 produksi kendaraan listrik ditargetkan meningkat menjadi 600 ribu unit untuk roda empat dan 2.45 juta unit untuk roda dua. Program ini diharapkan dapat menurunkan emisi gas rumah kaca sebesar 29% pada tahun 2030 [2].

Kementerian Perhubungan telah roadmap mempersiapkan untuk mempercepat penggunaan kendaraan listrik untuk kendaraan umum maupun kendaraan pribadi berbasis baterai. Kementerian Perhubungan merencanakan penggunaan kendaraan listrik pada tiga provinsi sebagai percontohan yaitu DKI Jakarta, Jawa Barat, dan Bali [3].

Secara kronologis, perkembangan kendaraan listrik di Indonesia dimulai oleh lembaga riset sejak tahun 1997 oleh Lembaga Ilmu Pengetahuan Indoneisa (LIPI) di mana mesin penggerak sebuah diganti mobil konvensional dengan penggerak bertenaga motor listrik. Pada tahun 2005 hasil penelitian dari LIPI tersebut diserahkan kepada Presiden Republik Indonesia. Susilo Bambana Yudoyono. Hasil dari penelitian oleh LIPI dari tahun 2005 sampai tahun 2013 antara lain adalah retrofit mobil konvensional menjadi mobil listrik type minibus dan sedan listrik, mobil listrik hibrid tipe city car, bus mikro listrik, dan mobil meeting eksekutif listrik [4].

Peran dari beberapa perusahaan dalam mengembangkan kendaraan listrik di Indonesia dimulai pada tahun 2005 seperti sepeda motor listrik Yohanta yang diproduksi di Surabaya. Pada tahun 2007, sepeda motor listrik Betrix yang merupakan kerja sama dengan Jepang dan Taiwan untuk menghasilkan sepeda motor listrik yang menggunakan komponen dalam negeri dan juga komponen impor [4].

Perguruan tinggi di Indonesia yang bernaung pada Kementerian Pendidikan dan Kebudayaan membentuk Tim Mobil Listrik Nasional (Molina) yang terdiri dari beberapa perguruan tinggi yaitu Universitas Indonesia (UI), Institut Teknologi Bandung (ITB), Universitas Gadiah Mada (UGM), Universitas Sebelas Maret (UNS), dan Institut Teknologi Sepuluh Nopember Surabaya (ITS). Pada 2009 UNS bersama Kementerian Pendidikan dan Kebudayaan mengembangkan mobil listrik yang diberi nama Molina. UGM melakukan penelitian mobil listrik pada tahun 2010 dan 2011 prototipe mobil berpenumpang 6 orang yang diberi nama eSemar berpenumpang 4 orang yang diberi nama Generasi 2.2 dan 2.3. Pada tahun 2014 UGM membuat prototipe trolley bus [4].

Pada tahun 2012 Menteri Badan Usaha Negara (BUMN), Dahlan Iskan meminta Ricky Elson mengembangkan buatan Indonesia mobil listrik menghasilkan mobil listrik bernama Selo dan Tucuxi yang dipamerkan saat KTT APEC di Bali tahun 2013 [5]. Setelah tahun 2013 perkembangan kendaraan listrik di Indonesia mulai menghilang di pemberitaan dan pada periode awal dari tahun 1997 sampai 2013 tidak terlalu berkembang walaupun sudah dikenalkan oleh beberapa perusahaan, lembaga penelitian, dan tinggi. Penyebab perguruan kurang berkembangnya kendaraan listrik pada periode awal belum adanya peraturan untuk kendaraan listrik hingga pada tahun 2019 Presiden Joko Widodo menerbitkan Peraturan Presiden Republik Indonesia Nomor 55 Tahun 2019 yang menjadi acuan dari beberapa peraturan untuk memajukan perkembangan kendaraan listrik Indonesia.

Kedepannya kendaraan listrik di Indonesia akan semakin berkembang dengan adanya beberapa dukungan dari pemerintah yang menerbitkan beberapa peraturan-peraturan yang terdiri Peraturan Pemerintah Nomor 73 tahun 2019 tentang pajak kendaraan menjadi emisi gas buang, Peraturan Menteri Perhubungan Nomor 45 Tahun 2020 tentang motor listrik dan kecepatan maksimal, Peraturan Menteri Perhubungan Nomor 65 Tahun 2020 tentang komponen pengemudian listrik dan besar daya motor, Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 13 Tahun 2020

tentang infrastruktur pengisian kendaraan listrik, Peraturan Menteri Perindustrian Nomor 27 Tahun 2020 tentang spesifikasi dan peta jalan, dan Peraturan Menteri Perindustrian Nomor 28 Tahun 2020 tentang kendaraan listrik keadaan terurai lengkap dan terurai tidak lengkap [6]. Beberapa peraturan yang dibuat adalah keseriusan pemerintah memajukan kendaraan listrik yang kedepannya akan semakin banyak bermunculan pemangku kepentingan dalam bidang kendaraan listrik seperti pabrik, bengkel, retail, wirausaha, dan lain-lain yang mendukung berkembangnya kendaraan listrik Indonesia.

Paper ini meninjau perkembangan dari sepeda dan motor listrik di Indonesia yang tersedia secara komersil dan sudah tersedia untuk dibeli oleh masyarakat. Informasi yang disajikan diharapkan akan membantu pemangku kepentingan seperti pemerintah pusat, pemerintah daerah, peneliti, mahasiswa, serta siapa saja yang tertarik untuk mendukung bidang kendaraan listrik di Indonesia.

2. KAJIAN PUSTAKA

a. Sistem Pengemudian Elektrik

Pengemudian elektrik (electric drive) merupakan suatu bidang yang mencakup semua bentuk penggunaan motor listrik sebagai sumber energi mekanik [9]. Sebuah sistem pengemudian elektrik terdiri dari motor listrik, konverter daya, dan perangkat pengatur. Gambar menunjukkan skematik sistem pengemudian elektrik sepeda/ sepeda motor listrik. Acuan atau referensi adalah yang diinginkan oleh kondisi operasi misalnya kecepatan pengendara kendaraan, kondisi percepatan/ perlambatan maupun berhenti. Sumber daya adalah sumber energi yang akan digunakan untuk menggerakkan kendaraan yang dalam hal ini adalah baterai. Lalu, kontroler adalah komponen yang fungsinya sebagai pengatur agar kondisi operasi yang diinginkan dapat tercapai yang secara sederhana bisa diartikan sebagai pengatur daya listrik dicatu ke motor sehingga motor akan beroperasi untuk mencapai kondisi operasi yang diinginkan. Pada aplikasi sepeda maupun sepeda motor listrik komponen kontroler dan konverter daya dibangun dalam satu unit sehingga lebih kompak dan aman. Motor listrik adalah mesin yang merubah energi listrik yang tersimpan pada baterai menjadi energi mekanik/kinetik. Sekarang ini motor listrik yang umum digunakan adalah motor DC tanpa sikat yang disebut dengan brushless DC (BLDC). Sistem umpan balik digunakan untuk aplikasi vana membutuhkan pengaturan kecepatan yang presisi. untuk sepeda/motor listrik Sedangkan umumnya tidak menggunakan umpan balik. Kondisi operasi kendaraan dilihat dari kecepatan (km/jam), kondisi baterai (dalam persen) biasanya ditampilkan dalam layar monitor kecil yang berfungsi sebagai indikator bagi pengendara sehingga bisa mengendalikan/mengoperasikan kendaraan dengan baik [8]. Berikut skematik pengemudian elektrik pada Gambar 1.

Gambar 1. Skematik Pengemudian Elektrik[8]

Secara lebih detil rangkaian kelistrikan dari suatu sepeda/motor listrik dengan menggunakan motor penggerak motor BLDC ditunjukkan pada Gambar 2.

Gambar 2. Wiring Diagram Sepeda/Motor Listrik

b. Teknologi Baterai

Baterai adalah sebuah sel listrik di mana didalamnya berlangsung proses elektrokimia yang reversible (dapat berkebalikan) dengan efisiensinya yang elektrokimia tinggi. Reaksi reversibel adalah di dalam baterai dapat berlangsung proses pengubahan kimia menjadi tenaga pengosongan) listrik (proses sebaliknya [7].

Berdasarkan pada proses yang terjadi jenis baterai dibagi menjadi primary battery adalah baterai yang hanya dapat digunakan sekali saja seperti baterai zinc-carbon (seng-karbon), baterai alkaline (alkali), baterai lithium, dan baterai silver oxide. Secondary battery adalah baterai yang dapat digunakan dan diisi ulang beberapa kali seperti baterai lithium ion (Li-ion), baterai lithium polymer (Li-Po), baterai lead acid (Accu), baterai dry cell, baterai graphene [1]. Gambar 3 merupakan jenisjenis baterai.

Gambar 3. Primary dan Secondary Battery

Society of Automotive Engineers (SAE) International menetapkan persyaratan fisik, kelistrikan, komunikasi dan kinerja umum untuk sistem pengisian daya kendaraan listrik sebagai bagian dari standar SAE_J1772. Charging level, yaitu AC level 1 tegangan 120 V 1 fasa maksimal arus 12 – 16 A, AC level 2 tegangan 208 – 240 V 1 fasa arus 12 – 80 A, DC level 1 daya maksimal 40 kW dengan tegangan 50 – 1000 VDC dan maksimal arus 80 A, dan DC level 2 daya 100 kW tegangan 50 – 1000 VDC arus keluaran 200 A [11].

c. Konverter Daya

Konverter daya merupakan suatu rangkaian elektronika daya yang berfungsi untuk mengubah sistem tegangan yang bermagnitudo dan frekuensi yang sesuai

dengan kebutuhan motor untuk mencapai kondisi operasi. Topologi konverter yang digunakan merupakan konverter satu level dengan konfigurasi *H-bridge*. Topologi konverter juga dapat dibuat menjadi lebih baik menggunakan topologi *multilevel* sehingga dapat membuat *power quality* (THD) yang lebih baik, EMC yang baik, *switching losses* yang rendah, dan kemampuan tegangan operasi yang makin tinggi [8].

d. Kontroler

Kontroler merupakan perangkat yang berfungsi untuk mengendalikan motor listrik sehingga dicapai kondisi yang diinginkan pengguna. Perangkat kontroler ini bisa diimplementasikan dalam perangkat yang disebut industrial control untuk aplikasi yang tidak memerlukan respon cepat dan akurat. Pada perangkat yang memerlukan spesifikasi tinggi memerlukan perangkat pengaturan yang berbasis prosesor sinyal. Seiring dengan perkembangan teknologi mikroelektronika telah memungkinkan penggunaan prosesor sinyal digital dalam kontroler motor listrik, dengan sistem berbasis prosesor digital bisa menghasilkan pengemudian elektrik yang berunjuk kerja tinggi (high performance), ekonomis dan compliance terhadap berbagai standar [8].

e. Motor Brushless Direct Current

Motor brushless direct current (BLDC) merupakan motor sinkron dimana medan magnet pada rotor dan statornya berputar difrekuensi yang sama. Prinsip kerja motor BLDC adalah dengan gaya tarik antara dua dengan kutub magnet yang Kontruksi dari motor BLDC terdiri dari stator yang merupakan magnet permanen dan rotor merupakan belitan kawat email sehingga kutub magnet dapat berubah tergantung polaritas arus belitan rotor yang diberikan [10]. Berikut Gambar merupakan motor BLDC.

Gambar 4. Motor Brushless Direct Current[10]

3. METODOLOGI PENELITIAN

Tahap pertama melakukan survei online spesifikasi sepeda listrik dan motor listrik yang masuk ke Indonesia pada situs resmi dari produsen sepeda listrik dan motor listrik. Tahap kedua melakukan survei online spesifikasi sepeda listrik dan motor listrik yang masuk ke Indonesia pada marketplace yang menjual sepeda listrik dan motor listrik. Tahap ketiga mengolah data yang didapat berupa negara produsen, tipe kendaraan, jenis baterai, kapasitas baterai, pengisian baterai, jarak tempuh, maksimal kecepatan, jenis motor, daya motor, torsi motor, tegangan motor dan beban maksimal berikutnya data tersebut dianalisis. Tahap terakhir menghasilkan paper status perkembangan sepeda listrik dan motor listrik di Indonesia. Berikut merupakan blok diagram penelitian pada Gambar 5.

Gambar 5. Blok Diagram Penelitian

4. HASIL DAN PEMBAHASAN

Penelitian ini telah meninjau perkembangan sepeda listrik dan motor listrik di Indonesia. Survei online yang dilakukan tahun 2021 menghasilkan database sepeda listrik dan motor listrik sebanyak 110 buah yang diperoleh dari spesifikasi teknis kendaraan vang dipublikasi oleh pabrik/karoseri. Data base listrik dan motor listrik diharapkan dapat membantu pemangku kepentingan untuk memahami kondisi sektor ini dan mendukung perkembangan kendaraan listrik di Indonesia. Bahwa perkembangan kendaraan listrik masih pada tahap awal sehingga peran semua pemangku kepentingan menjadi sangat penting. Pemerinah pusat dan daerah dalam mendukung industri kendaraan listrik dapat menyiapkan peraturan perundangundangan baik fisikal maupun nonfisikal untuk mempercepat elektrifikasi sektor transportasi. Komunitas dan peneliti kendaraan listrik dapat melihat bagaimana spesifikasi teknis sepeda listrik dan motor listrik yang sudah dikembangkan oleh pabrik yang kemudian bisa dijadikan sebagai benchmark atau pembanding dalam merancang sepeda listrik dan motor listrik agar memiliki kapasistas dan unjuk kerja yang sesuai dengan kebutuhan serta tetap ekonomis. Basis data ini ditunjukkan pada Tabel 1, Tabel 2, dan Tabel 3.

Tabel 1. Data Perkembangan Sepeda Listrik dan Motor Listrik di Indonesia

No	Kendaraan	Negara	Tino	Jenis	Kapasitas	Pengisian	Jarak	Maksimal	Jenis	Daya	Torsi	Tegangan	Beban
NO	Kendaraan	Produsen	Tipe	Baterai	Baterai	Baterai	Tempuh	Kecepatan	Motor	Motor	Motor	Motor	Maksimal
1	GESITS	Indonesia	Motor Listrik	Li-Ion	72V/20Ah	3 sd 4 jam	50 km	70 km/h	BLDC	2000W	30Nm	72V	120Kg
2	United T1800	Indonesia	Motor Listrik	Li-Ion	60V/28Ah	2 sd 3 jam	65 km	70 km/h	BLDC	1800W	27Nm	60V	150Kg
3	VIAR Q1	Indonesia	Motor Listrik	Li-Ion	60V/23Ah	4 sd 5 jam	60 km	60 km/h	BLDC	800W		60V	
4	VIAR CARAKA	Indonesia	Sepeda Listrik	Graphene	48V/12Ah	4 sd 5 jam	55 km	30 km/h	BLDC	400W		48V	
5	VIAR Orion	Indonesia	Sepeda Listrik	Li-Ion	36V/10.4Ah	4 sd 5 jam	50 km	25 km/h	BLDC	250W		36V	
6	VIAR UNO	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah	6 jam	50 km	30 km/h	BLDC	400W		48V	
7	VIAR PANAMA	Indonesia	Sepeda Listrik	Li-Ion	24V/7.8Ah	3 sd 4 jam	30 km	25 km/h	BLDC	200W		24V	
8	VIAR AKASHA	Indonesia	Sepeda Listrik	Lead Acid	48V/20Ah	6 jam	70 km	35 km/h	BLDC	500W		48V	
9	BF Goodrich BF-V7	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	6 sd 8 jam	55 km	45 km/h	BLDC	1000W		60V	
10	BF Goodrich BF-A	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	6 sd 8 jam	55 km	45 km/h	BLDC	1000W		60V	
11	BF Goodrich BF-BEE	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	6 sd 8 jam	55 km	45 km/h	BLDC	1000W		60V	
12	BF Goodrich BF-CG	Indonesia	Motor Listrik	Lead Acid	72V/20Ah	6 sd 8 jam	60 km	58 km/h	BLDC	2000W		72V	
13	BF Goodrich BF-IGOR	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	6 sd 8 jam	55 km	45 km/h	BLDC	1000W		60V	
14	BF Goodrich BF-Q7	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	6 sd 8 jam	55 km	45 km/h	BLDC	1000W		60V	
15	BF Goodrich BF-QQ	Indonesia	Motor Listrik	Lead Acid	72V/20Ah	6 sd 8 jam	52 km	50 km/h	BLDC	1500W		72V	
16	BF Goodrich BF- S	Indonesia	Motor Listrik	Li-Ion	60V/20Ah	6 sd 8 jam	55 km	55 km/h	BLDC	1000W		60V	
17	BF Goodrich BF-V150F	Indonesia	Motor Listrik Roda 3	DRY	60V/45Ah	6 sd 8 jam	60 km	25 km/h	BLDC	1000W		60V	500Kg
18	BF Goodrich BF-BOX	Indonesia	Motor Listrik Roda 3	DRY	60V/32Ah	6 sd 8 jam	90 km	25 km/h	BLDC	1000W		60V	300Kg
19	BF Goodrich BF-V150W	Indonesia	Motor Listrik Roda 3	DRY	72V/45Ah	6 sd 8 jam	65 km	28 km/h	BLDC	1000W		72V	500Kg
20	BF Goodrich BF-V120	Indonesia	Motor Listrik Roda 3	DRY	60V/32Ah	6 sd 8 jam	60 km	25 km/h	BLDC	1000W		60V	250Kg

Tabel 2. Data Perkembangan Sepeda Listrik dan Motor Listrik di Indonesia

_		<u> </u>	ala i elkellibal	.94 00	P 0 0 0 = 10				ui iii				
No	Kendaraan	Negara	Time	Jenis	Kapasitas	Pengisian	Jarak	Maksimal	Jenis	Daya	Torsi	Tegangan	Beban
INO	Kendaraan	Produsen	Tipe	Baterai	Baterai	Baterai	Tempuh	Kecepatan	Motor	Motor	Motor	Motor	Maksimal
21	Selis Mandalika	Indonesia	Sepeda Listrik	Lead Acid	36V/12Ah	6 jam	30 km	30 km/h	BLDC	350W		36V	150Kg
_											-		
22	Selis Hornet	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah	6 jam	30 km	35 km/h	BLDC	350W		48V	150Kg
23	Selis Murai	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah	6 jam	30 km	35 km/h	BLDC	500W		48V	150Kg
24	Selis Trike	Indonesia	Sepeda Listrik Roda 3	Lead Acid	36V/12Ah	6 jam	25 km	25 km/h	BLDC	350W		36V	150Kg
25	Selis EOI	Indonesia	Sepeda Listrik	Li-Ion	36V/5.2Ah	3 jam	15 km	20 km/h	BLDC	180W		36V	100Kg
26	Selis IOI	Indonesia	Sepeda Listrik	Li-Ion	48V/7Ah	4 jam	50 km	25 km/h	BLDC	250W		48V	120Kg
			*										
27	Selis Roadmaster	Indonesia	Sepeda Listrik	Li-Ion	36V/10Ah	5 jam	35 km	25 km/h	BLDC	250W		36V	125Kg
28	Selis SOI	Indonesia	Sepeda Listrik	Li-Ion	36V/7.8Ah	4 jam	35 km	25 km/h	BLDC	250W		36V	100Kg
29	Selis Storm	Indonesia	Sepeda Listrik	Li-Ion	36V/10.4Ah	5 jam	70 km	45 km/h	BLDC	200W		36V	125Kg
30	Selis Tornado	Indonesia	Sepeda Listrik	Li-Ion	36V/10.4Ah	5 jam	80 km	25 km/h	BLDC	250W		36V	125Kg
			*										
31	Selis Agats	Indonesia	Motor Listrik	Lead Acid	72V/20Ah	7 jam	50 km	60 km/h	BLDC	2000W		72V	200Kg
32	Selis E-max	Indonesia	Motor Listrik	Li-Ion	60V/25Ah	5 jam	120 km	50 km/h	BLDC	1200W		60V	225Kg
33	Selis E-max SLA	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	7 jam	40 km	50 km/h	BLDC	1200W		60V	200Kg
34	Selis Eagle Prix	Indonesia	Motor Listrik	Lead Acid	48V/20Ah	7 jam	35 km	40 km/h	BLDC	800W		48V	150Kg
											-		
35	Selis New Balis	Indonesia	Motor Listrik Roda 3	Lead Acid	60V/45Ah	7 jam	50 km	45 km/h	BLDC	1500W		60V	300Kg
36	ECGO 2	Indonesia	Motor Listrik	Li-Ion	48V/25Ah	5 jam	80 km	60 km/h	BLDC	1000W		48V	
37	HONDA PCX	Jepang	Motor Listrik	Li-Ion	50.4V/20.8A1	4 jam	69 km	40 km/h	BLDC	4200W	18Nm	50.4V	
38	UWINFLY GT2	China	Motor Listrik	Lead Acid	72V/20Ah	3 sd 4 jam	70 km	55 km/h		1000W		72V	150Kg
39										2000W	1		
	UWINFLY N9	China	Motor Listrik	Lead Acid	72V/32Ah	3 sd 4 jam	100 km	65 km/h				72V	150Kg
40	UWINFLY LS1	China	Motor Listrik	Lead Acid	60V/20Ah	3 sd 4 jam	50 km	55 km/h		800W		60V	150Kg
41	UWINFLY Red Fish	China	Sepeda Listrik	Lead Acid	48V/12Ah	3 sd 4 jam	40 km	30 km/h		350W		48V	100Kg
42	UWINFLY Dragon fly	China	Sepeda Listrik	Lead Acid	48V/12Ah	3 sd 4 jam	40 km	30 km/h		350W		48V	100Kg
43			•						-		!	48V	ŭ
	UWINFLY Butterfly	China	Sepeda Listrik	Lead Acid	48V/12Ah	3 sd 4 jam	40 km	30 km/h		350W	-		100Kg
44	UWINFLY LB1	China	Sepeda Listrik	Li-Ion	48V/15Ah	3 sd 4 jam	50 km	25 km/h		350W		48V	100Kg
45	UWINFLY LB2	China	Sepeda Listrik	Li-Ion	48V/15Ah	3 sd 4 jam	50 km	25 km/h		350W		48V	100Kg
46	UWINFLY LB3	China	Sepeda Listrik	Li-Ion	48V/15Ah	3 sd 4 jam	50 km	25 km/h		350W		48V	100Kg
47	NIU NQi GT/S	USA	Motor Listrik	Li-Ion	60V/35Ah		140 km	70 km/h	BLDC	3500W	 	60V	269Kg
						5 jam							
48	NIU MQi GT	USA	Motor Listrik	Li-Ion	48V/31Ah	5 jam	80 km	70 km/h	BLDC	3500W		60V	269Kg
49	NIU MQi Sport S Range	USA	Motor Listrik	Li-Ion	48V/31Ah	7 jam	75 km	45 km/h	BLDC	1400W		48V	221Kg
50	NIU MQi Sport E Range	USA	Motor Listrik	Li-Ion	48V/42Ah	9 jam	100 km	45 km/h	BLDC	1400W		48V	221Kg
51	NIU UQi GT S Range	USA		Li-Ion	48V/31Ah		75 km	45 km/h	BLDC	1200W		48V	227Kg
_			Motor Listrik			7 jam							
52	NIU UQi GT E Range	USA	Motor Listrik	Li-Ion	48V/42Ah	9 jam	95 km	45 km/h	BLDC	1200W		48V	227Kg
53	NIU NQi Sport S Range	USA	Motor Listrik	Li-Ion	60V/26Ah	7 jam	50 km	45 km/h	BLDC	1800W		60V	269Kg
54	NIU NQi Sport E Range	USA	Motor Listrik	Li-Ion	60V/35Ah	9 jam	70 km	45 km/h	BLDC	1800W		60V	269Kg
55	NIU NLite	USA	Motor Listrik	Li-Ion	60V/26Ah	7 jam	75 km	45 km/h	BLDC	1200W		60V	
56	NIU Uqi M	USA	Sepeda Listrik	Li-Ion	48V/16Ah	5 jam	30 km	32 km/h	BLDC	400W		48V	
57	NIU NGT	USA	Motor Listrik	Li-Ion	60V/70Ah	7 jam	140 km	70 km/h	BLDC	3000W		60V	
58	NIU GOVA 03	USA	Motor Listrik	Li-Ion	60V/40Ah	7 jam	75 km	60 km/h	BLDC	2700W		60V	
59	RAKATA S9	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	5 jam	60 km	45 km/h	BLDC	800W		60V	
60				Li-Ion	60V/20Ah		60 km	55 km/h	BLDC	1750W	-	60V	
-	RAKATA X5	Indonesia	Motor Listrik			5 jam							
61	ELVINDO ARJUNA	Indonesia	Motor Listrik	Li-Ion	60V/20Ah	3 jam	65 km	60 km/h	BLDC	1000W		60V	
62	ELVINDO RAMA	Indonesia	Motor Listrik	Li-Ion	60V/20Ah	3 jam	65 km	60 km/h	BLDC	1000W		60V	
63	ELVINDO SHINTA	Indonesia	Motor Listrik	Li-Ion	48V/20Ah	3 jam	60 km	60 km/h	BLDC	1000W		48V	
64	Antelope Genius	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah	4 sd 6 jam	45 km	45 km/h	BLDC	350W		48V	
	-												10077
65	Antelope Discovery	Indonesia	Sepeda Listrik	Lead Acid	48V/20Ah	4 sd 6 jam	40 km	40 km/h	BLDC	500W		48V	120Kg
66	Antelope City Rider	Indonesia	Sepeda Listrik	Lead Acid	48V/20Ah	4 sd 6 jam	40 km	35 km/h	BLDC	350W	<u> </u>	48V	120Kg
67	Antelope Phantom	Indonesia	Motor Listrik	Lead Acid	72V/20Ah	6 sd 8 jam	70 km	50 km/h	BLDC	2000W		72V	
68	Antelope Mountain	Indonesia	Sepeda Listrik	Li-Ion	48V/12Ah	6 sd 8 jam	55 km	55 km/h	BLDC	700W		48V	
69	•	Indonesia	Motor Listrik	Lead Acid	60V/20Ah	6 sd 8 jam	70 km	70 km/h	BLDC	1000W	 	60V	
	Antelope Falcon												
70		Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah		40 km	35 km/h	BLDC	350W		48V	
71	Antelope Shield	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah	4 sd 6 jam	40 km	35 km/h	BLDC	350W	<u></u>	48V	120Kg
72	Antelope Warrior	Indonesia	Motor Listrik	Lead Acid	60V/20Ah		70 km	60 km/h	BLDC	800W		60V	
73	Antelope Wind	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah		45 km	45 km/h	BLDC	350W		48V	
					36V/10Ah			35 km/h	BLDC	250W		36V	
74	Antelope Flash	Indonesia	Sepeda Listrik	Li-Ion		_	40 km		DLDC		-		2007-
75	INDOBIKE Akasia	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah		40 km	45 km/h		500W		48V	200Kg
76	INDOBIKE Akasia	Indonesia	Sepeda Listrik Roda 4	Lead Acid	48V/12Ah	6 sd 8 jam	40 km	45 km/h	l	500W		48V	200Kg
77	INDOBIKE Cherry	Indonesia	Sepeda Listrik	Lead Acid	36V/12Ah	6 sd 8 jam	35 km	28 km/h		350W		36V	150Kg
78	INDOBIKE Tulip	Indonesia	Sepeda Listrik	Lead Acid	48V/12Ah		40 km	45 km/h		500W	1	48V	200Kg
	•										1		
79	INDOBIKE Viola	Indonesia	Sepeda Listrik	Lead Acid	36V/12Ah	6 sd 8 jam	35 km	28 km/h		350W		36V	150Kg
80	Lankeleisi QF600	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 8 jam	25 km	30 km/h	BLDC	400W	<u></u>	48V	150Kg
81	Lankeleisi G100	China	Sepeda Listrik	Li-Ion	36V/8.7Ah	5 sd 8 jam	30 km	30 km/h	BLDC	400W		36V	180Kg
82	Lankeleisi G300	China	Sepeda Listrik	Li-Ion	48V/10Ah		40 km	35 km/h	BLDC	400W		48V	180Kg
-											1		
83	Lankeleisi X2000	China	Sepeda Listrik	Li-Ion	48V/10Ah		50 km	30 km/h	BLDC	1000W		48V	180Kg
84	Lankeleisi XT750	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 7 jam	50 km	30 km/h	BLDC	400W		48V	180Kg
85	Lankeleisi G550	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 7 jam	60 km	35 km/h	BLDC	400W	1	48V	150Kg
86	Lankeleisi G660	China	Sepeda Listrik	Li-Ion	48V/8.7Ah	,	35 km	30 km/h	BLDC	400W		48V	180Kg
87		China	Sepeda Listrik	Li-Ion	48V/10Ah		45 km	30 km/h	BLDC	250W		48V	150Kg
-	Lankeleisi T8										!		
88	Lankeleisi MX3.8	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 7 jam	40 km	30 km/h	BLDC	250W		48V	150Kg
89	Lankeleisi XC4000	China	Sepeda Listrik	Li-Ion	36V/16Ah	3 sd 6 jam	52 km	42 km/h	BLDC	500W	<u></u>	36V	180Kg
90	Lankeleisi S600	China	Sepeda Listrik	Li-Ion	36V/6.8Ah		60 km	30 km/h	BLDC			36V	150Kg
						J							

	rabor of Bata i officialisating an expedia Elettik dari Meter Elettik di indenedia												
No	Kendaraan	Negara	Tipe	Jenis	Kapasitas	Pengisian	Jarak	Maksimal	Jenis	Daya	Torsi	Tegangan	Beban
NO	Kendaraan	Produsen	1 ipe	Baterai	Baterai	Baterai	Tempuh	Kecepatan	Motor	Motor	Motor	Motor	Maksimal
91	Lankeleisi RS600	China	Sepeda Listrik	Li-Ion	36V/10Ah	5 sd 8 jam	35 km	30 km/h	BLDC	250W		36V	150Kg
92	Lankeleisi G650	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 8 jam	60 km	35 km/h	BLDC	400W		48V	150Kg
93	Lankeleisi XT600	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 8 jam	50 km	35 km/h	BLDC	400W		48V	150Kg
94	Fiido D4S	China	Sepeda Listrik	Li-Ion	36V/10Ah	7 jam	80 km	25 km/h	BLDC	250W		36V	120Kg
95	Fiido M1	China	Sepeda Listrik	Li-Ion	36V/12.5Ah	9 jam	100 km	30 km/h	BLDC	250W		36V	120Kg
96	Fiido D11	China	Sepeda Listrik	Li-Ion	36V/11.6Ah	7 jam	100 km	25 km/h	BLDC	250W		36V	120Kg
97	Fiido D2S	China	Sepeda Listrik	Li-Ion	36V/7.8Ah	5 jam	60 km	25 km/h	BLDC	250W		36V	120Kg
98	Fiido L3	China	Sepeda Listrik	Li-Ion	48V/23.2Ah	9 jam	200 km	25 km/h	BLDC	350W		48V	120Kg
99	Fiido D3S	China	Sepeda Listrik	Li-Ion	36V/7.8Ah	5 jam	60 km	25 km/h	BLDC	250W		36V	120Kg
100	Fiido M1 Pro	China	Sepeda Listrik	Li-Ion	48V/12.8Ah	9 jam	130 km	40 km/h	BLDC	500W		48V	120Kg
101	Rayvolt CRUZER V3	Spanyol	Sepeda Listrik	Li-Ion	48V/21Ah	3 jam	80 km	25 km/h	BLDC	250W	100Nm	48V	
102	Rayvolt TORINO	Spanyol	Sepeda Listrik	Li-Ion	48V/21Ah	3 jam	80 km	25 km/h	BLDC	250W	100Nm	48V	
103	Rayvolt Ambassador	Spanyol	Sepeda Listrik	Li-Ion	48V/10.5Ah	2.5 jam	60 km	25 km/h	BLDC	250W	50Nm	48V	
104	Rayvolt Beachin	Spanyol	Sepeda Listrik	Li-Ion	36V/16Ah	4 jam	60 km	25 km/h	BLDC	250W	40Nm	36V	
105	Rayvolt Clubman	Spanyol	Sepeda Listrik	Li-Ion	36V/16Ah	4 jam	60 km	25 km/h	BLDC	250W	40Nm	36V	
106	Xiaomi Himo C26	China	Sepeda Listrik	Li-Ion	48V/10Ah	5 sd 6 jam	55 km	25 km/h	BLDC	250W		48V	100Kg
107	Xiaomi Himo C20	China	Sepeda Listrik	Li-Ion	36V/10Ah	6 jam	80 km	25 km/h	BLDC	250W		36V	
108	Xiaomi Himo Z16	China	Sepeda Listrik	Li-Ion	36V/10Ah	4 sd 6 jam	80 km	25 km/h	BLDC	250W		36V	105Kg
109	Xiaomi Himo C16	China	Sepeda Listrik	Li-Ion	48V/12Ah	5 sd 6 jam	55 km	25 km/h	BLDC	250W		48V	
110	Xiaomi Qicycle EF1	China	Sepeda Listrik	Li-Ion	42V/5.8Ah	3 jam	45 km	20 km/h	BLDC	250W		42V	

Tabel 3. Data Perkembangan Sepeda Listrik dan Motor Listrik di Indonesia

a. Tipe Sepeda Listrik dan Motor Listrik

Tipe sepeda listrik dan motor listrik yang beredar di pasar Indonesia sebagian besar adalah kendaraan roda dua.. Gambar 6 menunjukkan ketersediaan tipe sepeda dan motor listrik di Indonesia berdasarkan jumlah rodanya.

Gambar 6. Tipe Sepeda Listrik dan Motor Listrik

Pada Gambar 6 dapat dilihat jumlah sepeda listrik roda 2 sebanyak 64 buah (58%), motor listrik roda 2 sebanyak 39 buah (35%), motor listrik roda 3 sebanyak 5 buah (5%), sepeda listrik roda 3 sebanyak 1 buah (1%), dan sepeda listrik roda 4 sebanyak 1 buah (1%). Dapat dilihat bahwa kendaraan sepeda listrik roda 2 paling banyak tersedia baik melalui impor maupun produksi dalam negeri. Hal ini kemungkinan besar karena produsen/karoseri lokal sudah memahami bahwa penggunaan sepeda roda dua sudah motor sangat memasyarakat di Indonesia sebagai sarana transportasi yang murah, praktis, dan bisa

digunakan di mana saja. Dengan demikian tentu ini merupakan segmen pasar yang sangat potensial untuk segera beralih dari kendaraan konvensional ke kendaraan bertenaga listrik. Jumlah pemakai kendaraan roda dua yang sudah mencapai 120 juta pada tahun 2018 [15]. Berikut merupakan gambar tipe-tipe kendaraan pada Gambar 7.

Gambar 7. Sepeda Listrik dan Motor Listrik [16], [18], [20]

b. Negara Produsen

Produsen sepeda listrik dan motor listrik yang beredar di pasar Indonesia sebagian besar adalah industri lokal. Gambar 8 merupakan grafik dari negara produsen sepeda listrik dan motor listrik di Indonesia.

Gambar 8. Data Negara Produsen

Pada Gambar 8 dapat dilihat negara produsen sepeda listrik dan sepeda motor listrik dari Indonesia sebanyak 57 buah (52%), Jepang sebanyak 1 buah (1%), China sebanyak 35 buah (32%), USA sebanyak 12 buah (11%), dan Spanyol sebanyak 5 buah (5%). Hal ini menunjukan bahwa Indonesia sudah siap untuk memproduksi kendaraan listrik sendiri untuk memenuhi kebutuhan sepeda listrik atau sepeda motor listrik yang ditargetkan mencapai 1,76 juta unit pada tahun 2025 [2]. Tentu untuk mencapai kapasitas tersebut perlu dikembangkan ekosistem sepeda listrik atau sepeda motor listrik yang makin luas.

c. Jenis Baterai

Jenis baterai yang digunakan untuk sepeda listrik dan sepeda motor listrik yang beredar di pasar Indonesia sebagian besar lithium ion. Gambar 9 merupakan grafik dari jenis baterai sepeda listrik dan sepeda motor listrik di Indonesia berdasarkan teknologinya.

Gambar 9. Jenis Baterai

Pada Gambar 9 dapat dilihat jenis baterai lithium ion sebanyak 67 buah (61%), lead acid sebanyak 38 buah (35%), dry cell sebanyak 4 buah (4%), dan graphene sebanyak 1 (1%). Baterai lithium ion banyak digunakan pada sepeda listrik dan sepeda motor listrik karena ukuran yang kecil sehingga dapat dirangkai banyak baterai sehingga dapat menambah kapasitas dan kehilangan energi yang lambat saat tidak digunakan. Lead acid memiliki ukuran yang relatif besar dan dari segi harga lebih murah. Dry cell memiliki kapasitas yang kecil dengan harga yang Graphene menerapkan cukup mahal. teknologi sistem pengisian baterai yang lebih cepat dengan berat yang lebih ringan, graphene kurang diminati karena teknologi ini masih dikembangkan.

Dari statistik menunjukan bahwa ke depan kebutuhan baterai berbasis lithium-ion akan meningkat. Rencana pemerintah untuk membangun industri baterai dengan membangun PT Industri Baterai Indonesia yang merupakan konsorsium nasional antara Mining and Industry Indonesia (MIND ID), PT Pertamina (Persero), PT PLN (Persero), PT Aneka Tambang Tbk (Antam) dan juga bermitra dengan industri baterai luar negeri yaitu konsorsium LG vang terdiri dari LG Energy Solution, LG Chem, LG Internasional, POSCO, dan Huayou Holding ini merupakan langkah sangat strategis untuk mendukuna perkembangan kendaraan listrik nasional [14]. Sehingga kebutuhan baterai untuk kendaraan listrik nasional akan bisa terpenuhi dan harga yang lebih ekonomis.

d. Waktu Pengisian

Waktu pengisian dari baterai sepeda listrik dan sepeda motor listrik yang beredar di pasar Indonesia sebagian besar membutuhkan waktu 6 jam sampai dengan 8 jam. Gambar 10 merupakan grafik dari lama waktu pengisian baterai sepeda listrik dan sepeda motor listrik di Indonesia.

Gambar 10. Waktu Pengisian Baterai

Pada Gambar 10 dapat dilihat lama waktu pengisian baterai sepeda listrik dan sepeda motor listrik sebagian besar membutuhkan waktu 6 sampai 8 jam sebanyak 21 buah dengan kapasitas baterai 12 Ah, 20 Ah, 32 Ah, dan 45 Ah. Waktu pengisian baterai paling lama adalah 9 jam dengan kapasitas baterai 12.5 Ah, 12.8 Ah, 23.2 Ah, 35Ah, dan 42Ah. Waktu pengisian baterai paling cepat 2 sampai 3 jam dengan kapasitas baterai 28 Ah. Sehingga kondisi ini cukup baik dilihat dari kapasitas listrik rumah di Indonesia yang menggunakan sambungan daya listrik 900 dan 1300 VA. Lama waktu dari pengisian baterai bergantung pada besar arus listrik di mana metode fast charging memerlukan pengisian maksimal 40% dari arus dan metode slow kapasitas baterai memerlukan arus pengisian minimal 10% dari kapasitas baterai [12].

e. Jarak Tempuh

Gambar 11 menunjukkan jumlah kendaraan yang tersedia berdasarkan jarak tempuh maksimal untuk sekali pengisian baterai secara penuh.

Gambar 11. Jarak Tempuh

Pada Gambar 11 dapat dilihat jarak tempuh dari sepeda listrik dan sepeda motor listrik sebagian besar sampai 60 km sebanyak 15 buah dengan rincian pada Tabel 4.

Tabel 4. Data Jarak Tempuh 60 km

Jarak Tempuh	Kapasitas Baterai	Daya Motor	Kendaraan Listrik
_	60V/23Ah	800W	VIAR Q1
	72V/20Ah	2000W	BF Goodrich BF-CG
	60V45Ah	1000W	BF Goodrich BF-VOLTEC 150F
	60V32Ah	1000W	BF Goodrich BF-VOLTEC V120
	60V/20Ah	W008	RAKATA S9
	60V/20Ah	1750W	RAKATA X5
60 km	48V/20Ah	1000W	ELVINDO SHINTA
OO KIII	48V10Ah	400W	Lankeleisi G550
	36V/6.8Ah	250W	Lankeleisi S600
	48V/10Ah	400W	Lankeleisi G650
	36V/7.8Ah	250W	Fiido D2S dan D3S
	48V/10.5Ah	250W	Rayvolt Ambassador
	36V/16Ah	250W	Rayvolt Beachin dan Clubman

Jarak tempuh 60 km merupakan jarak yang cukup ideal atau kombinasi yang optimal antara ukuran baterai dan unjuk kerja kendaraan sehingga bisa menjadi pilihan bagi pengguna yang radius jelajahnya sekitar 2 x 30 km untuk pergi dan pulang. Faktor inilah yang kemungkinan yang menyebabkan banyak produsen mendesain kendaraan dengan jarak tempuh 60 km.

Jarak tempuh paling jauh adalah 200 km dengan kapasitas baterai 48 V/23.2 Ah dengan daya motor 350 W. Jarak tempuh paling dekat adalah 15 km dengan kapasitas baterai 36 V/5.2 Ah dengan daya motor 180 W. Jarak tempuh kendaraan listrik bergantung pada besar kapasitas baterai dan besar daya motor penggerak yang digunakan. Jarak tempuh berdasarkan tipe dan jumlah roda dari sepeda/motor listrik dapat dilihat pada Tabel 5.

Tabel 5. Jarak Tempuh Tipe Kendaraan Listrik

Tipe Kendaraan Listrik	Jarak Tempuh
Sepeda Listrik Roda 2	200 km
Sepeda Listrik Roda 3	25 km
Sepeda Listrik Roda 4	45 km
Motor Listrik Roda 2	140 km
Motor Listrik Roda 3	90 km

f. Jenis Motor

Jenis motor penggerak sepeda listrik dan sepeda motor listrik yang beredar di pasar Indonesia sebagian besar jenis *Brushless Direct Current* (BLDC). Gambar 12 merupakan grafik dari jenis motor penggerak sepeda listrik dan sepeda motor listrik di Indonesia.

Gambar 12. Jenis Motor Penggerak

Pada Gambar 12 dapat dilihat jumlah jenis motor BLDC sebanyak 96 buah (87%) dan tidak diketahui jenis motornya sebanyak 14 buah (13%). Jenis motor penggerak sepeda listrik dan sepeda motor listrik yang beredar di Indonesia sebagian besar jenis BLDC dikarenakan jenis motor BLDC memiliki torsi yang lebih besar dan memiliki efisiensi yang tinggi [13].

g. Kapasitas Motor

Kapasitas motor penggerak sepeda listrik dan sepeda motor listrik yang beredar di pasar Indonesia sebagian besar 250 W. Gambar 13 merupakan grafik dari kapasitas motor penggerak sepeda dan motor listrik di Indonesia.

Gambar 13. Kapasitas Daya Motor Penggerak

Pada Gambar 13 dapat dilihat kapasitas motor penggerak dari sepeda listrik dan sepeda motor listrik sebagian besar sampai 250 W sebanyak 25 buah dengan jenis motor BLDC. Kapasitas motor penggerak paling besar adalah 4200 W sedangkan paling kecil adalah 180 W. Penggunaan motor penggerak yang berdaya tinggi masih sedikit karena motor daya tinggi masih fase pengenalan sehingga harganya masih terbilang tinggi dan juga untuk fasilitas pengisian listrik di rumah tangga masih pada kisaran 900 VA sd 1300 VA sehingga menjadi pertimbangan dalam penggunaan kapasitas motor. Kapasitas motor yang terbesar sepeda listrik dan sepeda motor listrik berdasarkan tipe dan jumlah roda dari sepeda listrik dan sepeda motor listrik dapat dilihat pada Tabel 6.

Tabel 6. Kapasitas Motor Tipe Kendaraan Listrik

Tipe Kendaraan Listrik	Kapasitas Motor
Sepeda Listrik Roda 2	1000W
Sepeda Listrik Roda 3	350W
Sepeda Listrik Roda 4	500W
Motor Listrik Roda 2	4200W
Motor Listrik Roda 3	1500W

h. Kecepatan Maksimal

Kecepatan maksimal sepeda listrik dan sepeda motor listrik yang beredar di pasar Indonesia sebagian besar 25 km/jam. Gambar 14 merupakan grafik dari kecepatan maksimal sepeda listrik dan sepeda motor listrik di Indonesia.

Gambar 14. Kecepatan Maksimal

Pada Gambar 14 dapat dilihat kecepatan maksimal dari sepeda listrik dan sepeda motor listrik sebagian besar sampai 25 km/jam sebanyak 27 buah. Kecepatan maksimal adalah 70 km/jam. Kecepatan minimal adalah 20 km/jam. Kecepatan kendaraan listrik bergantung pada medan yang dilalui dan berat beban pengguna maupun kendaraan tersebut. Kecepatan maksimal berdasarkan tipe dan jumlah roda dari sepeda listrik dan sepeda motor listrik dapat dilihat pada Tabel 7.

Tabel 7. Kecepatan Tipe Kendaraan Listrik

rabor recoparan ripo recidandan zionin							
Tipe Kendaraan Listrik	Kecepatan						
Sepeda Listrik Roda 2	55 km/h						
Sepeda Listrik Roda 3	25 km/h						
Sepeda Listrik Roda 4	45 km/h						
Motor Listrik Roda 2	70 km/h						
Motor Listrik Roda 3	45 m/h						

5. KESIMPULAN

Penelitian ini telah meninjau secara sistematis perkembangan sepeda dan motor listrik di Indonesia. Survei online yang dilakukan pada tahun 2021 menghasilkan data base sepeda listrik dan sepeda motor listrik sebanyak 110 buah.

Tipe sepeda listrik dan sepeda motor listrik yang beredar di Indonesia 58% adalah kendaraan roda 2 yang sebagian besar atau 57% sudah diproduksi di dalam negeri yang membuktikan kemampuan industri dalam negeri sudah meningkat baik dalam kemampuan desain maupun komersialisasi kendaraan listrik. **Jenis** baterai yang digunakan untuk sepeda listrik dan sepeda motor listrik sebagian besar lithium ion sebanyak 61%. Jarak tempuh dari sepeda listrik dan sepeda motor listrik vang sebagian besar sampai 60 km sebanyak 14%. Jenis motor listrik penggerak sebagian besar adalah Brushless Direct Current (BLDC) sebanyak dengan kapasitas daya penggerak antara 180 W sd 4200 W. Kecepatan maksimal sepeda listrik dan sepeda motor listrik yang sebagian besar 25 km/jam sebanyak 25%.

Paper ini diharapkan dapat menjadi acuan cepat untuk memahami perkembangan kendaraan listrik di Indonesia dan sekaligus berfungsi sebagai pembanding spesifikasi teknis dan unjuk kerja sepeda listrik dan sepeda motor listrik bagi para peneliti dan *inventor* kendaraan listrik di tanah air.

6. DAFTAR PUSTAKA

- [1] Wijaya, A, M, N., Kumara, S, N, I., Partha, I, G, C., Divayana, Y. 2021. Perkembangan Baterai dan Charger untuk Mendukung Pemasyarakatan Sepeda Listrik di Indonesia. *Jurnal* SPEKTRUM. 08.
- [2] Fea. 2021. "Target Produksi Mobil dan Motor Listrik 2 Juta Unit pada 2025". CNN Indonesia, 23 Februari.
- [3] Antara. 2021. "Kemenhub Siapkan Roadmap Penggunaan Kendaraan Listrik". *Medcom.id*, 19 Mei.
- [4] Subekti, Arief, Ridwan., Sudibyo, Henny., Susanti, Vita. 2014. *Peluang* dan Tantangan Pengembangan Mobil Listrik Nasional. Jakarta:LIPI.

- [5] Hidayati, Nita. 2019. "Mengenal Mobil Listrik dan Kemunculan di Dunia". *Beritabaik.id*, 1 Januari.
- [6] Fea, 2020. "7 Regulasi yang Bikin Kendaraan Listrik Ngebut di Indonesia". CNN Indonesia, 22 Oktober.
- [7] Afif, Thowil, Muhammad., Pratiwi, Putri, Ayu, Ilham. 2015. Analisis Perbandingan Baterai Lithium-Ion, Lithium-Polymer, Lead Acid, dan Nickel-Metal Hydride Pada Penggunaan Mobil Listrik-Review. Jurnal Rekayasa Mesin. 06:95-99.
- [8] Kumara, S, Nyoman. 2008. Konverter Daya Untuk Pengemudian Elektrik:Discrete Atau Module. Teknologi Elektro. 07:2.
- [9] Kumara, S, Nyoman. 2008. Pengemudian Elektrik Sebagai Tenaga Penggerak:Sistem Dengan Motor Nano-Scale Sampai Megawatt. Teknologi Elektro.07:2.
- [10] Wibowo, Yunus, Chandra., Riyadi, Slamet. 2018. Analisa Pembebanan Pada Motor Brushless DC (BLDC). SNIKO.
- [11] QNOVO. 2015. "Can I fast charge my tesla or EV?". QNOVO, 12 Oktober.
- [12] Susanti, Indah., Rumiasih., RS, Carlos. 2019. Analisa Penentuan Kapasitas Baterai dan Pengisian Pada Mobil Listrik. ELEKTRA. 29-37.
- [13] Husaini, Nur, Achmad. 2015. Prinsip Kerja Motor Brushless DC. https://www.insinyoer.com/prinsipkerja-motor-brushless-dc-bldcmotor/4/. Diakses tanggal 30 Mei 2021.
- [14] Kurniawan, Ruly. 2021. "Pabrik Baterai di Indonesia Diklaim Siap Bangun". *Kompas.com*, 25 Mei.
- [15] Badan Pusat Statistik. 2018. Perkembangan jumlah kendaraaan. https://www.bps.go.id/indicator.html. Diakses tanggal 30 Mei 2021.