

大学基础物理实验报告 《测定空气比热容比》

姓	名:	蒋丰毅
学	院:	软件学院
学	号:	2211082
分	组:	C 组 10 号
实验时间:		2023.3.16

测定空气比热容比

[实验目的要求]

- 1. 学习测定空气比定压热容与比定容热容之比的一种方法。
- 2. 观察热学过程中状态变化及基本物理规律。
- 3. 学习用传感器精确测定气体压强和温度的原理与方法。

[实验仪器用具]

FD-NCD- 空气比热容比测定仪,由机箱(含数字电压表二只)、储气瓶、传感器两只(电流型集成温度传感器 AD590 和扩散硅压力传感器各一只)等组成。

[实验原理简述]

物质的比热容分为压力恒定时的比定压比热容 c_p , 体积一定时的比定容比热容 c_V , 二者又称为主比热容,由于本实验实际过程中所设计的温度返回不大,二者近似为常量。固体,液体和气体的膨胀系数依次增大:对于气体而言,因膨胀而对外界做的功就不能忽略不计,故 c_p 与 c_V 必须严格区别。

理想气体存在方程: $c_p - c_V = R/M$,由此引出一个重要的物理量 γ :

$$\gamma = \frac{c_p}{c_V} = 1 + \frac{R}{Mc_V}$$

其中 R 为气体普适常量,M 表示气体的摩尔质量, γ 称为气体的主比热容之比。

预测量 γ 值,需要三个状态。状态 I: 以比大气压 p_a 稍高的压力 p_1 ,向玻璃容器压入适量气体,并以与外部温度 T_e 相等之时单位质量的气体体积作为 V_1 。状态 II: 急速打开放气活塞,使压强降至大气压 p_a ,由于是绝热膨胀, $T_2 < T_e$. 状态 III: 关闭活塞后若再放置一段时间,系统将从外界吸收热量,且温度重新升高至 T_e ,由于体积不变,压力随之增加为 p_2 .

状态 I \rightarrow II 的变化是绝热的,故满足泊松公式

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$$

而状态 III 与 I 是等温的,故玻意耳 定律成立

图 1: p-V图

由前两个式子消去 V1, V2, 并求解得。

$$\gamma = \frac{\ln p_1 - \ln p_a}{\ln p_1 - \ln p_2} = \frac{\ln (p_1/p_a)}{\ln (p_1/p_2)} \tag{1}$$

若以 p'_1 和 p'_2 分别表示 p_1 与 p_a 及 p_2 与 p_a 的压力差,则有

$$p_1 = p_a + p_1' p_2 = p_a + p_2'$$

将此式带入到 (1) 式, 注意到 $p_a\gg p_1'>p_2'$

$$\ln p_1 - \ln p_a = \ln \frac{p_1}{p_a} = \ln \left(1 + \frac{p_1'}{p_a} \right) \approx \frac{p_1'}{p_a}$$

以及

$$\ln p_1 - \ln p_2 = (\ln p_1 - \ln p_a) - (\ln p_2 - \ln p_a) \approx \frac{p_1'}{p_a} - \frac{p_2'}{p_a}$$

故

$$\gamma = \frac{p_1'}{p_1' - p_2'} \tag{2}$$

故只需测得 p'_1 以及 p'_2 ,即可通过 (2) 式求出空气的比热容比。

[实验步骤]

- 1. 开启玻璃瓶的两个活塞并开启电子仪器的电源,使用调零旋钮将测定气压的表示数调整为 0mV, 预热 20 分钟。
- 2. 关闭出气活塞,使用橡皮球往玻璃瓶中压入大约 120mV 气体后, 关闭进气活塞,等待直到电压表示数稳定,记录此时电压表的示数为 p_1' ,温度表的示数为 T_1 。
- 3. 打开出气活塞,待放气声音停止后立即关闭,等待直到电压表的示数稳定,记录电压表示数为 p_2' ,温度表示数为 T_2 。
 - 4. 重新打开两个活塞, 重复步骤 1 和 2.

[数据处理]

重复十次实验,对每组实验求得的 γ 取平均值。求得 $\overline{\gamma}=1.31$,计算与理论值 1.402 的相对误差

$$E_x = \frac{1.402 - 1.310}{1.402} = 6.5\%$$

[注意事项]

- 1. 旋转活塞时应慢, 防止活塞被折断。
- 2. 压入气体时若太多,则仪器不密封造成的误差会增大,若太少,则实验效果不明显,以使电压表示数为 120mV 最佳。
 - 3. 打开放气活塞待声音消失后应当立刻关上活塞,否则实验结果偏小。

					• • • • • • • • • • • • • • • • • • • •			
i	p' ₁ /mV	T_{1i}/mV	p' ₂ /mV	T_{2i}/mV	$(p_1'-p_2')/\text{mV}$	$\gamma = \frac{p_1'}{p_1' - p_2'}$		
1	110.4	1453.3	27.3	1453.1	83,1	1,328		
2	113.3	1454.0	27.6	1453.8	85.7	11322.		
3	110.3	1454.8	25.1	1454.6	85.2	1,294		
4	110.3	1454.2	- 25.4	1464.9	84.9	1,299.		
5	107.6	1450.1	125.7	145t 3	81.9	1.313		
6	168.9	1450.8	25.2	したなり	83.7	1.301		
7	110.7	1456 1	25.9	1455.8	84.9	1303		
8.	111,4	1456,4	26.	41456.0	85.0	1.318		
9	108.2	1456.	2 h2 9	1456.4	82.2	1316		
10	110.8	1457.1	26.2	145 1	84.6	1001310		
1100 1457 3th 2 1456 Ch 62 8 113 11.								
2. ~ 的理论值为 1. 402 则实验的相对误差为多少。 865 1.3、8								

1. 将实测数据及计算结果填入下表: $T_c = 1452 \div p_n = 0$ $N_0 \cup 1$

图 2: 数据表格

[考察题与思考题]

考察题第四题

由于打入的气体不均匀,仪器测量的下半部分压强比较大,若读取的时间间隔太小, p_1' 的值会偏大;由于释放完气体需要等待一段时间气体吸热压强增大,故读取时间过快的话, p_2' 会偏小。

如果时间间隔很长,由于不可能做到百分之一百密封,故 p_1' p_2' 都会偏小,对实验有影响但影响未知。

思考题第三题

是室内空气。应该没有影响。