

Areas of Parallelograms and Triangles Ex 15.3 Q3

Answer:

Given:

- (1) PQRS is a trapezium in which SR||PQ.
- (2) PT = 5 cm.
- (3) QT = 8 cm.
- (4) RQ = 17 cm.

To Calculate: Area of trapezium PQRS.

Calculation:

In triangle

$$RQ^2 = TQ^2 + RT^2$$

$$17^2 = 8^2 + RT^2$$

$$RT^2 = 17^2 - 8^2$$

$$=289-64$$

$$= 225$$

$$RT = 15 \text{ cm}$$

We know that Area of a triangle = $\frac{1}{2}$ base × height So

Area of
$$\triangle QTR = \frac{1}{2} base \times height$$

= $\frac{1}{2} (8 \times 15)$
= $\frac{1}{2} (120)$
= 60 cm^2

No area of rectangle PTRS

Area (
$$\square$$
PTRS) = base × height
= 8×15
= 120 cm²

Therefore area of trapezium PQRS is

$$=$$
 Area (Δ QRT) + Area (PTRS)

$$=60+120$$

$$=180 \text{ cm}^2$$

Hence the answer is Area of a trapezium PQRS = 180 cm²

Areas of Parallelograms and Triangles Ex 15.3 Q4 Answer:

Given: In figure:

$$(2) AC = BC,$$

$$(3) OA = 012 cm,$$

(4)
$$OC = 6.5$$
 cm.

To find: Area of △AOB

Calculation:

It is given that AC = BC where C is the mid point of AB

We know that the mid point of hypotenuse of right triangle is equidistant from the vertices Therefore

$$CA = BC = OC$$

$$\Rightarrow$$
 CA = BC = 6.5

$$\Rightarrow$$
 AB = 2 · 6.5 = 13 cm

Now inn triangle OAB use Pythagoras Theorem

$$AB^2 = OB^2 + OA^2$$

 $13^2 = OB^2 + 12^2$
 $OB^2 = 13^2 - 12^2$
 $OB^2 = 169 - 144$
 $OB^2 = 25$
 $OB = 5 \text{ cm}$

So area of triangle OAB

$$= \frac{1}{2} \times \text{base} \times \text{height}$$

$$= \frac{1}{2} \times 12 \times 5$$

$$= \frac{1}{2} \times 60$$
30 cm²

Hence area of triangle is $\Delta AOB = 30 \text{ cm}^2$

****** END *******