

Бакалаврская работа студента 418 группы физического факультета Московского государственного университета имени М. В. Ломоносова

РАСПРЕДЕЛЕНИЕ ВТОРИЧНЫХ ЧАСТИЦ В ТКАНЕЭКВИВАЛЕНТНЫХ МАТЕРИАЛАХ

Маракулин Андрей Павлович

Дата: 31.05.2022

Научный руководитель: Черняев Александр Петрович

Научный консультант: Щербаков Алексей Александрович

Актуальность работы

- В медицине основным объектом является живая ткань, поэтому необходимо точно рассчитывать дозы облучения, распределения по объёму и другие параметры, чтобы здоровые ткани получали наименьшую дозу
- Модели для этой задачи сложны, расчёты ресурсозатратны, а натурные эксперименты иногда невозможны
- В качестве самого частого тканеэквивалентного материала используют воду, однако и используют другие тканеэквивалентные материалы
- Другие тканеэквивалентные материалы могут существенно отличаться от воды
- Возникает необходимость изучать распределения доз в тканеэквивалентных материалах отдельно

Цели и задачи работы

Цель работы:

• Оценить и рассчитать, насколько сильно распределения вторичных частиц отличаются от соответствующих распределений в воде

Задачи работы:

- Выбрать медицинский ускоритель для моделирования
- Создать модель фантома тканеэквивалентного материала

Для выбранных фантомов требуется:

- Построить количественные распределения вторичных частиц
- Построить глубинные распределения дозы вторичных частиц
- Сравнить полученные результаты

Модель ускорителя

В качестве модели ускорителя была выбрана модель головки ускорителя Varian Clinac 2100C

Геометрия модели головки ускорителя

Спектр ускорителя

Пространственное распределение спектра ускорителя

Распределения энергии частиц в спектре ускорителя

Спектр ускорителя

Частицы	Процент от	Средняя	Процент	
	общего числа	энергия на 1	переносимой	
	частиц, %	частицу, МэВ	энергии типом	
			частиц	
Гамма-кванты	87.16	3.31	95.42	
Электроны	10.03	1.21	4.015	
Позитроны	0.36	2.79	0.33	
Нейтроны	1.02	0.43	0.14	
Протоны	0.52	0.023	0.004	
Другие	1,94	-	0.096	
частицы				

Количественно-энергетические характеристики спектра пучка

Оптимизированная модель

Вид оптимизированной модели, где единственный объект - фантом

Распределение вторичных частиц в воде

Частицы	Процент от общего		
	числа частиц, %		
Электроны	95,38		
Гамма-кванты	2,52		
Позитроны	1,95		
Протоны	0,076		
Другие частицы	0,074		

Глубинное дозовое распределение вторичных частиц в воде

Отдельные вторичные частицы в воде

Сумма вкладов электронов, позитронов и фотонов обуславливает 95,5% дозы вторичных частиц

Глубинное дозовое распределение вторичных частиц в воде

Тканеэквивалентные материалы

В качестве тканеэквивалентных материалов, для которых требовалось рассчитать распределения вторичных частиц были выбраны:

- 1. Полистирол (C_8H_8)
- 2. Парафин ($C_{18}H_{38}$)
- 3. Акрил $(C_5H_8O_2)$
- 4. Тканеэквивалентный пластик А-150

Выбор был обусловлен частотой использования материалов в исследованиях, посвящённых изучению ионизирующего излучения в тканеэквивалентных материалах

Распределение дозы в материалах

Глубинное распределение дозы вторичных частиц для разных тканеэквивалентных материалов

Соотношения доз в материалах

Отношение дозы от вторичных частиц в материале к дозе в воде

Материал	Доза в материале к дозе в воде		
Полистирол	0,9659		
Парафин	0.8990		
Акрил	1.1090		
Тканеэквивалентный пластик	1.1195		

Соотношения доз в материалах

Отношения полной дозы (от первичных и вторичных частиц) в материале к дозе к воде.

Материал	Отношение общей дозы к дозе в воде
Полистирол	0,9662
Парафин	0.9039
Акрил	1.1035
Тканеэквивалентный пластик	1.1169

Вклад в дозу вторичных частиц

Вклады в дозу для различных типов вторичных частиц, нормированные на вклад этого же типа частицы в воде

Материал	Гамма-кванты	Электроны	Позитроны
Вода	1.00	1	1
Полистирол	0.59	0.97	0.80
Парафин	0.45	0.91	0.66
Акрил	0.96	1.11	0.98
Тканеэквивалентный	2.05	1.13	0.97
пластик			

Вклад вторичных электронов

Распределение дозы от вторичных электронов от глубины для различных материалов

Вклад вторичных гамма-квантов

Распределение дозы от вторичных гамма-квантов от глубины для различных материалов.

Результаты

- Было выяснено, что наиболее близкие к воде распределения оказались у полистирола для полной дозы, дозы от вторичных частиц и дозе от электронов.
- Для вторичных гамма-квантов и вторичных позитронов с водой лучше согласуется акрил.
- Тканеэквивалентный пластик имеет существенные отклонения от воды по вторичным гамма-квантам и вторичным электронам.

Результаты

Сводная таблица степени схожести тканеэквивалентных материалов с водой

	Критерий				
	Полная доза (перв. + втор.)	Доза от вторичных частиц	Доза от вторичных электронов	Доза от вторичных гамма-квантов	Доза от вторичных позитронов
Материалы по степени схожести, чем меньше % различия, тем более схожий материал с водой по выбранному критерию	Полистирол (-3,50%)	Полистирол (-3,53%)	Полистирол (-3,09%)	Акрил (-4,17%)	Акрил (-2,04)
	Акрил (+10,35%)	Акрил (+10,9%)	Парафин (-9,89%)	Полистирол (-69%)	Тканэкв. пластик (-3,09%)
	Парафин (-10,63%)	Парафин (-11,23%)	Акрил (+11%)	Тканэкв. пластик (+105%)	Полистирол (-25%)
	Тканэкв. пластик (+11,69%)	Тканэкв. пластик (+11,95%)	Тканэкв. пластик (+13%)	Парафин (-122%)	Парафин (-51%)

Бакалаврская работа студента 418 группы физического факультета Московского государственного университета имени М. В. Ломоносова

РАСПРЕДЕЛЕНИЕ ВТОРИЧНЫХ ЧАСТИЦ В ТКАНЕЭКВИВАЛЕНТНЫХ МАТЕРИАЛАХ

Маракулин Андрей Павлович

Дата: 31.05.2022

Научный руководитель: Черняев Александр Петрович

Научный консультант: Щербаков Алексей Александрович