1. Identify the species present in aqueous solution of Potash alum upon dissociation.

Ans: Potash alum is $K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$, it's a double salt and not a complex, so it will dissociate in solution into it's component ions: K^+ , Al^{3+} , SO_4^{2-} .

2. Predict the type(s) of isomerism shown by the following complexes. Also draw the structures or formula of the possible isomers.

(a) CrCl₃.6H₂O

(b) [Co(NH₃)₄(NO₂)Cl]Cl

(c) $[Pt(NH_3)(py)(Cl)(Br)]$

(py = pyridine)

(d) $[Co(en)_3]Cl_3$ (en =

ethylenediamine)

(e) $[Pt(NH_3)_4][PtCl_6]$

(f) $[Rh(PPh_3)_2(CO)(NCS)_2]$

(g) [Cr(NH₃)₆][Cr(SCN)₆]

Ans: (a) CrCl₃.6H₂O show hydrate isomerism; i.e., [Cr(H₂O)₆]Cl₃ (violet),

[CrCl(H₂O)₅]Cl₂·H₂O (blue-green), [CrCl₂(H₂O)₄]Cl·2H₂O (dark green).

- (b) Ionization isomerism: [Co(NH₃)₄(NO₂)Cl]Cl and [Co(NH₃)₄Cl₂]NO₂
- (c) Shows geometrical isomers (*cis*-, *trans*-) due to square planar geometry, total three isomers are possible.
- (d) Two optical isomers can exist (Λ and Δ forms).
- (e) Coordination isomerism where Pt is in two different oxidation states.

 $[Pt^{II}(NH_3)_4][Pt^{IV}Cl_6]$ and $[Pt^{II}(NH_3)_4Cl_2][Pt^{IV}Cl_4]$

- (f) Linkage isomerism: [Rh(PPh₃)₂(CO)(NCS-N)₂] and [Rh(PPh₃)₂(CO)(NCS-S)₂]
- (g) Coordination isomerism: [Cr(NH₃)₆][Cr(SCN)₆] and

 $[Cr(SCN)_2(NH_3)_4][Cr(SCN)_4(NH_3)_2]$

3. Draw the possible coordination modes of glycine to a metal ion?

4. Suggest a simple analytical test to distinguish between the hydrate isomers of CrCl₃·6H₂O Three possible hydrate isomers are [CrCl₂(H₂O)₄]Cl·2H₂O, [CrCl(H₂O)₅]Cl₂·H₂O, [Cr(H₂O)₆]Cl₃.

Ans: The complexes can be distinguished by precipitation of the free chloride ion as AgCl using aqueous silver nitrate (by measuring weight of the AgCl precipitate, gravimetry).

5. Draw the geometrical isomers of $[Co(NH_3)_3Cl_3]$ and $[Co(dien)_2]^{3+}$ and appropriately designate them.

Note: Fac (facial) isomers have three identical ligands on one triangular face; mer (meridional) isomers have three identical ligands in a plane bisecting the molecule.

6. Draw the possible stereoisomers for MA₂B₂C₂. Which one of these have enantiomer.

7. Apply the concept of crystal field theory to a set of p-orbitals for a specific interaction along Z-axis. Draw the splitting diagram with labelling and energy values.

- **8.** Consider the coordination complexes (a) NaFeCl₄ and (b) $K_4[Fe(CN)_6]$, and answer the following questions. Atomic number of Fe = 26.
 - (a) Show the crystal field splitting diagram with appropriate labelling and filling up of the electrons in these orbitals.
 - (b) Calculate the Crystal Field Stabilization Energy (CFSE) for both the compounds (you may ignore the pairing energy).
 - (c) Calculate the spin only magnetic moments for both the complexes.

Ans. Na[FeCl₄]: structure of [FeCl₄]⁻ is tetrahedral and Fe³⁺ is $3d^5$ system. [Fe(CN)₆]⁴⁻ is octahedral and Fe²⁺ is a $3d^6$ system.

(a)

- (b) CFSE for $[FeCl_4]^- = (2 \times 0.6)$ $(3 \times 0.4)\Delta_t = 0$; $[Fe(CN)_6]^{4-} = (6 \times 0.4)\Delta_o = 2.4\Delta_o$
- (c) $\mu_{s.o.} = [\mathbf{n}(\mathbf{n}+\mathbf{2})]^{1/2}$ (n = number of unpaired electrons).

So, for $[FeCl_4]^-$, n = 5, $\mu_{s.o.} = [5(5+2)]^{1/2} = \sqrt{35} = 5.92$ B.M.

For $[Fe(CN)_6]^{4-}$, n = 0, $\mu_{s.o.} = 0$ B.M.

- 9. Which of the following complexes will have larger crystal field splitting (Δ) in the given series? Give exact explanation for your choice.
 - (i) $[\text{Co(en)}_3]^{3+}$, $[\text{Ir(en)}_3]^{3+}$, $[\text{Rh(en)}_3]^{3+}$: $[\text{Ir}^{3+}]$ having larger size 5d-orbitals and thus stronger interaction alongwith being larger metal ion, ligands experience less steric crowding and
 - (ii) $[Cr(H_2O)_6]^{3+}$, $[Cr(H_2O)_6]^{2+}$, $[Cr(NH_3)_6]^{3+}$, $[Cr(CN)_6]^{3-}$: CN^- is strong-field ligand than NH_3 or H_2O .
 - (iii) $[CoF_6]^{3-}$, $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$: order of ligand strength: $F^- < H_2O < NH_3$
 - (iv) $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{4-}$, $[FeCl_4]^{2-}$: CN^- is strong-field ligand than NH_3 or Cl^- .
- 10. The complexes [NiCl₂(PPh₃)₂] and [PdCl₂(PPh₃)₂] are paramagnetic and diamagnetic respectively. Predict their structures from this observation.

 Ni^{2+} is $3d^8$ system. Here, C.N. = 4, either tetrahedral or square planar geometry possible.

In tetrahedral geometry: Configuration = $e^4t_2^4$, 2 unpaired electrons and paramagnetic ($\mu_{s.o.} = 2.84$ μ_B). Thus [NiCl₂(PPh₃)₂] is tetrahedral.

[PdCl₂(PPh₃)₂]: Pd²⁺ is 4d⁸, prefer square planar geometry, electron configuration: $(d_{xz}, d_{yz})^4 (d_z^2)^2 (d_{xy})^2$, no unpaired electrons and diamagnetic ($\mu_{s.o.} = 0.0 \mu_B$) and having square planar structure.