Dispositivi e Tecnologie Elettroniche

Il transistore bipolare

Struttura di principio

Il transistore bipolare è fondamentalmente composto da due giunzioni pn, realizzate sul medesimo substrato a formare una struttura npn oppure pnp.

Regioni di funzionamento

Variando le polarità applicate alle due giunzioni, si può polarizzare il transistor in una delle quattro possibili regioni di funzionamento

Effetto transistore

- In regione <u>attiva diretta</u>, la giunzione B-E è polarizzata direttamente:
 - ullet l'emettitore inietta elettroni nella base, di larghezza W_B ,
 - ullet alcuni elettroni si ricombinano nella base (la corrente I_B rifornisce la base delle lacune necessarie,
 - se W_B è piccola, la maggior parte degli elettroni attraversa tutta la base.
- La giunzione B-C è polarizzata inversamente:
 - ullet gli elettroni che raggiungono la giunzione BC sono accelerati attraverso la giunzione e raccolti sul collettore.

Distribuzione della carica

Per trovare l'andamento del potenziale e il diagramma a bande, si risolve l'equazione di Poisson, assumendo per le due giunzioni il completo svuotamento.

$$\frac{\partial^2 \phi}{\partial x^2} = -\frac{\rho(x)}{\epsilon_S}$$

Campo elettrico

$$\frac{\partial \phi}{\partial x} = -\mathcal{E} \qquad \longrightarrow \qquad \frac{\partial \mathcal{E}}{\partial x} = \frac{\rho(x)}{\epsilon_S}$$

Potenziale elettrico

$$\frac{\partial \phi}{\partial x} = -\mathcal{E}$$

$$\Phi_E = \frac{qN_E x_{nE}}{2\epsilon_s} \left(x_{nE} + x_{pE} \right) \qquad \Phi_C = \frac{qN_B x_{pC}}{2\epsilon_s} \left(x_{nC} + x_{pC} \right)$$

Diagramma a bande

Energia potenziale per gli elettroni: $E=-q\phi$

Correnti di emettitore

- Corrente di emettitore $I_E = -I_{En} I_{Ep}$
 - \bullet I_{En} è dovuta agli elettroni iniettati dall'emettitore nella base,
 - ullet I_{Ep} è dovuta alle lacune iniettate dalla base nell'emettitore
 - Se $N_E >> N_B$, allora $I_{En} >> I_{Ep}$ e $I_{En} = \gamma I_E$, con $\gamma \approx 1$
 - γ è l'efficienza di emettitore

Correnti di collettore

- Corrente di collettore $I_C = I_{Cn} + I_{Co}$
 - \bullet I_{Cn} è dovuta agli elettroni che attraversano la base
 - I_{Co} è la corrente inversa della giunzione B-C
 - Se $W_B << L_n$, dove L_n è la lunghezza di diffusione degli elettroni nella base, allora $I_C \approx I_{Cn} = -\alpha_T I_{En}$, con $\alpha_T \approx 1$
 - α_T è il fattore di trasporto.

Correnti di base

Corrente di base

$$I_B = -I_E - I_C = I_{En} + I_{Ep} - I_{Cn} - I_{Co}$$

- ullet I_{Ep} è dovuta alle lacune iniettate dalla base nell'emettitore
- I_{Co} è la corrente inversa della giunzione B-C
- $I_{En} I_{Cn}$ è la corrente di ricombinazione in base

Correnti di base (II)

- Trascurando I_{Co} , si ha $I_C = -\alpha_T I_{En} = -\alpha_T \gamma I_E$, ovvero $I_C = -\alpha_F I_E$, con $\alpha_F = \alpha_T \cdot \gamma$
- Dalla legge di Kirchoff, si ha

$$I_B=-I_E-I_C=rac{1}{lpha_F}I_C-I_C$$
, da cui $I_C=rac{lpha_F}{1-lpha_F}I_B=eta_FI_B$

- Poiché α_F è prossimo a 1, β_F può essere un guadagno molto elevato.
- $\blacksquare \beta_F$ è difficile da controllare tecnologicamente:

$$\frac{\Delta \beta_F}{\beta_F} = \frac{1}{1 - \alpha_F} \frac{\Delta \alpha_F}{\alpha_F}$$

Flusso di elettroni in base

- Nella regione quasi neutra della base, $\mathcal{E} \approx 0$ e gli elettroni la attraversano solo per diffusione.
- La concentrazione degli elettroni in base si trova risolvendo l'equazione di continuità, che nel caso stazionario con $\mathcal{E} \approx 0$ si scrive

$$\frac{\partial n_p}{\partial t} = \frac{\partial}{\partial x} J_n + G_n - R_n \quad 0 = D_{nB} \frac{\partial^2 n_p}{\partial x^2} - \frac{n_p - n_{p0}}{\tau_n}$$

La soluzione generale è

$$n_p(x) - n_{p0} = K_1 e^{-\frac{x}{L_{nB}}} + K_2 e^{\frac{x}{L_{nB}}}$$

dove L_{nB} è la lunghezza di diffusione degli elettroni in base.

Flusso di elettroni in base (II)

• Poiché la base è corta, $x << L_{nB}$ e quindi $n_p(x)$ si può approssimare come

$$n_p(x) - n_{p0} \approx K_1 \left(1 - \frac{x}{L_{nB}} \right) + K_2 \left(1 + \frac{x}{L_{nB}} \right)$$

$$= C_1 + C_2 \frac{x}{L_{nB}}$$

• Le condizioni al contorno sono imposte alle giunzioni B-E

$$(x = 0)$$
 e B-C $(x = x_B)$

$$n_p(x=0) = n_{p0}e^{\frac{V_{BE}}{V_T}} \qquad n_p(x=x_B) \approx 0$$

• Si ha
$$C_1 = n_p(0) - n_{p0}$$
 $C_1 + C_2 \frac{x_B}{L_{nB}} = 0$

• da cui
$$n_p(x) - n_{p0} \approx (n_p(0) - n_{p0}) \left(1 - \frac{x}{x_B}\right)$$

Flusso di elettroni in base (III)

• Si calcola la corrente di diffusione degli elettroni in base (regione attiva diretta)

$$I_{nE} = qAD_{nB} \frac{dn_p(x)}{dx} = -\frac{qAD_{nB}}{x_B} (n_p(0) - n_{p0})$$

$$= -\frac{qAD_{nB}}{x_B} n_{p0} \left(e^{\frac{V_{BE}}{V_T}} - 1 \right) = -\frac{qAD_{nB}n_i^2}{x_B N_B} \left(e^{\frac{V_{BE}}{V_T}} - 1 \right)$$

• Adottare un basso livello di drogaggio della base è una buona strategia per ottenere elevate correnti.

Efficienza di emettitore

- $\blacksquare I_{En} = -\gamma I_{E}$
- lacktriangle $\dot{\mathbf{E}}$ il fattore dominante che limita il guadagno eta_F del transistor
- Nel caso di emettitore lungo ($x_E >> L_{pE}$)

$$I_{Ep} = \frac{qAn_i^2 D_{pE}}{N_E L_{pE}} \left(e^{\frac{V_{BE}}{V_T}} - 1 \right)$$

Nel caso di emettitore corto ($x_E << L_{pE}$)

$$I_{Ep} = \frac{qAn_i^2D_{pE}}{N_E x_E} \left(e^{\frac{V_{BE}}{V_T}} - 1\right)$$

Efficienza di emettitore (II)

- **Definizione:** $\gamma = \frac{I_{nE}}{I_E} = \frac{I_{nE}}{I_{nE} + I_{pE}} = \frac{1}{1 + I_{pE}/I_{nE}}$
- sostituendo si ha

$$\gamma = \frac{1}{1 + \frac{qAn_i^2 D_{pE}}{N_E L_{pE}} \frac{N_B x_B}{qAn_i^2 D_{nB}}} = \frac{1}{1 + \frac{N_B x_B D_{pE}}{N_E L_{pE} D_{nB}}}$$

nel caso $x_E >> L_{pE}$, e

$$\gamma = \frac{1}{1 + \frac{N_B x_B D_{pE}}{N_E x_E D_{nB}}}$$

nel caso $x_E << L_{pE}$

Per i transistori integrati, $\gamma > 0,98$.

Efficienza di emettitore (III)

- Per massimizzare γ si richiede di
 - scegliere $N_E >> N_B$
 - ullet scegliere x_E grande o ridurre la ricombinazione di lacune nell'emettitore
 - scegliere x_B piccolo
- Esempio: con $x_E \approx W_E = 1 \ \mu \text{m}$, $x_B \approx W_B = 5 \ \mu \text{m}$, $\mu_{nB} = 1500 \ \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$, $\mu_{pE} = 500 \ \text{cm}^2 \text{V}^{-1} \text{s}^{-1}$, $\tau_n = \tau_p = 10 \ \mu \text{s}$, si ha

$$\gamma = 0,9983$$
 per $N_E = 10^{18}$ cm⁻³, $N_B = 10^{15}$ cm⁻³ $\gamma = 0,8571$ per $N_E = 10^{17}$ cm⁻³, $N_B = 10^{16}$ cm⁻³

Corrente di ricombinazione

- Parte degli elettroni iniettati dall'emettitore si ricombina nella regione neutra della base.
- La carica associata agli elettroni in eccesso nella base è

$$Q_B = q \int_0^{x_B} (n_p(x) - n_{p0}) dx = \frac{qx_B}{2} (n_p(0) - n_{p0})$$

La corrente di ricombinazione si ottiene come rapporto tra Q_B e il tempo di vita medio τ_n

$$J_r = \frac{Q_B}{\tau_n} = \frac{qx_B}{2\tau_n} (n_p(0) - n_{p0}) \approx \frac{qx_B}{2\tau_n} n_{p0} e^{\frac{V_{BE}}{V_T}}$$

Fattore di trasporto

- $\alpha_T = -\frac{I_{Cn}}{I_{En}} = \frac{I_{En} I_r}{I_{En}} = 1 \frac{I_r}{I_{En}}$
- \blacksquare Sostituendo le espressioni di J_r e I_{En} si ha

$$\alpha_{T} = 1 - A \frac{qx_{B}}{2\tau_{n}} n_{p0} e^{\frac{V_{BE}}{V_{T}}} \cdot \frac{N_{B}x_{B}}{qAn_{i}^{2}D_{nB}} e^{-V_{BE}/V_{T}}$$

$$= 1 - \frac{x_{B}n_{i}^{2}}{2\tau_{n}N_{B}} \cdot \frac{N_{B}x_{B}}{n_{i}^{2}D_{nB}} = 1 - \frac{x_{B}^{2}}{2\tau_{n}D_{nB}} = 1 - \frac{x_{B}^{2}}{2L_{nB}^{2}}$$

- Per i BJT moderni, $x_B < 1 \ \mu \text{m}$ e $L_{nB} > 30 \ \mu \text{m}$, e quindi $\alpha_T > 0,9994$ (non è un fattore limitante)
- Con $\alpha_T = 0,9994$ e $\gamma = 0,9983$, si ha $\alpha_F = 0,9977$ e $\beta_F = 433$

Caratteristica del transistore

- <u>Emettitore comune</u>: la coppia B-E forma la maglia di ingresso, mentre la coppia B-C forma quella di uscita
- Il comportamento statico è descritto la due caratteristiche

$$V_{BE} = V_{BE} (I_B, V_{CE})$$
 $I_C = I_C (I_B, V_{CE})$

Caratteristica del transistore (II)

• Base comune: si usano le caratteristiche

$$V_{BE} = V_{BE} \left(I_E, V_{BC} \right)$$
 $I_C = I_C \left(I_E, V_{BC} \right)$

Deviazioni dal BJT ideale

- Modulazione della lunghezza di base (effetto Early)
 - se $|V_{BC}|$ cresce (polarizzazione inversa), \rightarrow la regione di svuotamento aumenta e quindi la larghezza della regione quasi neutra della base, x_B si riduce, con 2 conseguenze:
 - 1. si riduce il tasso di ricombinazione, cioè aumenta α_T
 - 2. aumenta l'iniezione dei portatori minoritari in base, ovvero aumenta γ
 - \blacksquare A parità di I_B , la corrente I_C cresce con $|V_{BC}|$

Effetto Early

- La tensione di Early V_A misura la dipendenza di x_B dalla tensione V_{BC} : V_A piccolo implica forte modulazione della lunghezza di base
- Il modello adottato in regione attiva diretta è del tipo

$$I_C = \beta_F I_B \left(1 + \frac{V_{CE}}{V_A} \right)$$

Meccanismi di breakdown

Alla giunzione B-C, polarizzata inversamente, si possono avere due fenomeni di breakdown:

- 1 Perforazione diretta, quando la regione di svuotamento della giunzione B-C cresce fino a occupare tutta la base. Poiché la relazione tra livelli di drogaggio e ampiezze delle regioni svuotate è $\frac{x_p}{x_n} = \frac{N_d}{N_a}$, la perforazione diretta si combatte adottando $N_B \gg N_C$
- 2 Breakdown a valanga, quando la polarizzazione inversa della giunzione B-C è tale da indurre un campo elettrico superiore a quello di innesco dell'effetto valanga.

$$\mathcal{E}_{cri} = \sqrt{\frac{2qN_{eq} \left(\phi_i - V_{brekdown}\right)}{\epsilon_s}} \approx \sqrt{\frac{2qN_C \left(\phi_i - V_{breakdown}\right)}{\epsilon_s}}$$

Variazione di β

- In un modello del I ordine, α_T e γ sono indipendenti da V_{BE} e da I_C , cioè β è una costante ($\beta = I_C/I_B$).
- A bassi livelli di corrente, la generazione e ricombinazione alla giunzione B-E induce un aumento di $I_B \to \beta$ diminuisce
- Ad alti livelli di corrente, la carica associata agli elettroni che attraversano la giunzione B-C non è più trascurabile e induce la riduzione della regione di svuotamento $\rightarrow x_B$ aumenta $\rightarrow \beta$ diminuisce (Kirk effect).

Limitazioni in frequenza

■ Tempo di transito in base : è il rapporto tra la carica in eccesso nella base e la corrente che la attraversa

$$\tau_B = \frac{Q_B}{I_C} \propto x_B^2$$

tempi associati alle capacità di emettitore, $Q_B = \frac{\partial Q_B}{\partial Q_B}$

$$C_{BE} = \left| \frac{\partial Q_B}{\partial V_{BE}} \right|$$
 e collettore (C_{BC})

tempo di transito nella regione di svuotamento al collettore

Questi tempi si sommano e determinano la frequenza di taglio, al di sopra della quale $\beta < 1$ e il BJT non è più utile come amplificatore.

Modello di Ebers-Moll

modello approssimato usabile in tutte le regioni di funzionamento.

$$I_F = I_{ES} \left(e^{\frac{V_{BE}}{V_T}} - 1 \right) \qquad I_R = I_{CS} \left(e^{\frac{V_{BC}}{V_T}} - 1 \right)$$

$$I_E = -I_F + \alpha_R I_R \quad I_C = -I_R + \alpha_F I_F \quad I_B = I_F \left(1 - \alpha_F \right) + I_R \left(1 - \alpha_R \right)$$

Modello semplificato in r.a.d.

• Poiché $V_{BC} < 0$, si ha $I_R \approx 0$ e le correnti di collettore e base si possono scrivere

$$I_Cpprox lpha_FI_F \qquad I_Bpprox I_F\left(1-lpha_F
ight)$$
 quindi $I_C=rac{lpha_F}{1-lpha_F}I_B=eta_FI_B$

• La giunzione B-E è polarizzata direttamente, quindi si può modellizzare in prima approssimazione con un generatore di tensione di valore pari a $V_{BE}=0,7~{
m V}$

Modello semplificato

- In regione attiva inversa, $V_{BE} < 0$ e $V_{BC} > 0, 7$, ma le prestazioni sono peggiori perché non è $N_C \gg N_B$.
- In regione di saturazione, entrambe le giunzioni sono polarizzate direttamente, con in genere $V_{BE}>0,7$ V: per esempio, con $V_{BE}=0,8$ V e $V_{CE}=0,2$ V, si ha $V_{BC}=0,6$ V.
- In interdizione, le due giunzioni sono polarizzate inversamente e non si hanno correnti.

Modello per piccolo segnale

• In condizioni di piccolo segnale, tensioni e correnti si possono esprimere nella forma

$$i_C(t) = I_C + i_c(t)$$
 $v_{BC}(t) = V_{BC} + v_{bc}(t)$
 $i_E(t) = I_E + i_e(t)$ $v_{BE}(t) = V_{BE} + v_{be}(t)$
 $i_B(t) = I_B + i_b(t)$ $v_{CE}(t) = V_{CE} + v_{ce}(t)$

• Dal modello di Ebers-Moll in regione attiva diretta si ha

$$i_C = \alpha_F I_{ES} e^{\frac{v_{BE}}{V_T}}$$
 $i_B = (1 - \alpha_F) I_{ES} e^{\frac{v_{BE}}{V_T}}$

• Nella configurazione a emettitore comune, le correnti di base e collettore si esprimono in funzione delle tensioni v_{BE} e v_{CE} :

$$i_C = i_C (v_{BE}, v_{CE})$$
 $i_B = i_B (v_{BE}, v_{CE})$

$$\mathbf{e} \ v_{CE} = v_{BE} - v_{BC}$$

Modello per piccolo segnale (II)

• In condizioni di piccolo segnale, le espressioni delle correnti si possono sviluppare al primo ordine intorno al punto di polarizzazione:

$$i_{C} = i_{C} (V_{BE}, V_{CE}) + v_{be} \cdot \frac{\partial i_{C}}{\partial v_{BE}} \Big|_{V_{BE}, V_{CE}} + v_{ce} \cdot \frac{\partial i_{C}}{\partial v_{CE}} \Big|_{V_{BE}, V_{CE}}$$

$$i_{B} = i_{B} (V_{BE}, V_{CE}) + v_{be} \cdot \frac{\partial i_{B}}{\partial v_{BE}} \Big|_{V_{BE}, V_{CE}} + v_{ce} \cdot \frac{\partial i_{B}}{\partial v_{CE}} \Big|_{V_{BE}, V_{CE}}$$

• Si ha, per i coefficienti

$$\frac{\partial i_C}{\partial v_{BE}}\Big|_{V_{BE}, V_{CE}} = \frac{\alpha_F I_{ES}}{V_T} e^{\frac{V_{BE}}{V_T}} \frac{I_C}{V_T} = \frac{\beta_0 I_B}{V_T} \qquad \frac{\partial i_C}{\partial v_{CE}} = 0$$

$$\frac{\partial i_B}{\partial v_{BE}}\Big|_{V_{BE}, V_{CE}} = \frac{(1 - \alpha_F) I_{ES}}{V_T} e^{\frac{V_{BE}}{V_T}} = \frac{I_B}{V_T} = \frac{I_C}{\beta_0 V_T} \qquad \frac{\partial i_B}{\partial v_{CE}} = 0$$

Modello per piccolo segnale (III)

• Il modello di Ebers-Moll non tiene conto dell'effetto Early; assumendo $\frac{\Delta i_C}{\Delta v_{CE}} = \frac{I_C}{V_A}$ e $\Delta i_B = -\frac{\Delta i_C}{\beta_E}$ si ottiene in forma approssimata

$$\left. \frac{\partial i_C}{\partial v_{CE}} \right|_{V_{BE}, V_{CE}} = \frac{I_C}{V_A} \qquad \left. \frac{\partial i_B}{\partial v_{CE}} \right|_{V_{BE}, V_{CE}} = -\frac{I_C}{\beta_0 V_A} \approx 0$$

dove β_0 è il guadagno di corrente per piccolo segnale a emettitore comune (numericamente $\beta_F \approx \beta_0$)

• I quattro coefficienti trovati sono gli elementi di una matrice che descrive il comportamento in condizioni di piccolo segnale

$$\begin{aligned} i_b &= y_{11}v_{be} + y_{12}v_{ce} \\ i_c &= y_{21}v_{be} + y_{22}v_{ce} \end{aligned} \qquad \begin{aligned} y_{11} &= \frac{\partial i_B}{\partial v_{BE}}\Big|_{V_{BE},V_{CE}} \end{aligned} \qquad \begin{aligned} y_{12} &= \frac{\partial i_B}{\partial v_{CE}}\Big|_{V_{BE},V_{CE}} \\ y_{21} &= \frac{\partial i_C}{\partial v_{BE}}\Big|_{V_{BE},V_{CE}} \end{aligned} \qquad \begin{aligned} y_{22} &= \frac{\partial i_C}{\partial v_{CE}}\Big|_{V_{BE},V_{CE}} \end{aligned}$$

Modello ibrido a π

- $1/y_{11}=r_\pi$ ha il significato di resistenza differenziale di ingresso
- $1/y_{12} = r_{\mu} \approx 0$ è una resistenza differenziale B-C
- $y_{21} = g_m$ è la transconduttanza
- $1/y_{22} = r_0$ è la resistenza differenziale di uscita
- ullet spesso il modello è completato con la resistenza di base r_b

Modello a parametri h

Un altro modello per piccolo segnale si ottiene, assegnate la corrente di base e la tensione C-E, mediante i parametri h

$$h_{ie} = \frac{\partial v_{BE}}{\partial i_B} \bigg|_{I_B, V_{CE}} \quad h_{re} = \frac{\partial v_{BE}}{\partial v_{CE}} \bigg|_{I_B, V_{CE}}$$

$$h_{fe} = \frac{\partial i_C}{\partial i_B} \bigg|_{I_B, V_{CE}} \quad h_{oe} = \frac{\partial i_C}{\partial v_{CE}} \bigg|_{I_B, V_{CE}}$$

 $\blacksquare h_{ie}$ è la resistenza differenziale di ingresso con uscita in c.c., mentre h_{oe} è la conduttanza di uscita a ingresso aperto

Modello a parametri h (II)

- h_{fe} è il guadagno di corrente con uscita in c.c., h_{re} è il rapporto inverso delle tensioni con ingresso aperto.
- Il modello circuitale è

• Se h_{re} è trascurabile, il modello a parametri h coincide con quello ibrido a π e $h_{ie}=r_{be}$, $h_{oe}=1/e_{ce}$, $h_{fe}=\beta$.

Comportamento in frequenza

• Si aggiungono le capacità delle giunzioni per estendere il modello equivalente a frequenze più elevate

- La capacità prevalente è solitamente C_{be} , capacità di diffusione proporzionale alla corrente di base; C_{bc} è invece una capacità di svuotamento.
- A frequenza elevate, le due capacità tendono a cortocircuitare le giunzioni e quindi il guadagno diminuisce.

Frequenza di taglio

 Valutiamo il guadagno di corrente di corto circuito al variare della frequenza:

$$v_{be} = i_b \left(r_{\pi} / / \frac{1}{j\omega C_{be}} / / \frac{1}{j\omega C_{bc}} \right) = i_b \frac{r_{\pi}}{1 + j\omega r_{\pi} (C_{be} + C_{bc})}$$

$$\frac{i_c}{i_b} = \beta(\omega) = \frac{g_m r_{\pi}}{1 + j\omega r_{\pi} (C_{be} + C_{bc})} \qquad \beta(f) = \frac{\beta_0}{1 + j\frac{f}{f_0}}$$

dove
$$\beta_0 = g_m r_\pi$$
 e $f_0 = \frac{1}{2\pi r_\pi (C_{be} + C_{bc})}$ (freq. di taglio a 3 dB)

Frequenza di taglio (II)

• A frequenza $f \gg f_0$ il guadagno può essere espresso come

$$\beta(f) \approx -j\beta_0 \frac{f_0}{f}$$

• Si definisce frequenza di taglio f_T il valore di f per il quale il modulo di $\beta(f)$ si riduce a 1

$$|\beta(f)| = 1 \to f_T = \beta_0 f_0 = \frac{\beta_0}{2\pi r_\pi (C_{be} + C_{bc})} = \frac{g_m}{2\pi (C_{be} + C_{bc})}$$

 f_T è pari al prodotto della banda del transistore e del guadagno in continua

Tecnologia del BJT

Diffused junction isolation

(Source: W. Maly, Atlas of IC Tech.)

Tecnologia del BJT (II)

• Il transistore è verticale: lo "scaling" delle dimensioni laterali non migliora il dispositivo intrinseco, ma aumenta la densità e riduce capacità e resistenze parassite.

parametro	1980	1985	1990
larghezza di emettitore (μ m)	3	1,5	0,8
larghezza di base (μ m)	0,3	0,15	0,07
f_T (GHz)	1	10	30
ECL gate delay (ps)	500	100	30

- Nei BJT moderni
 - 1. isolamento a ossido (maggiore densità di integrazione)
 - 2. emettitore in polisilicio (mobilità ridotta e quindi minore diffusione da base a emettitore)