Problema K – KMP

Limite de tempo: 1.5s Limite de memória: 256MB

A KMP (Kodando na Maratona de Programação) é uma start-up formada por ex-maratonistas que apoia eventos de programação em todo o Brasil. Sua ação de apoio mais recente foi um sorteio de prêmios, cujo regulamento foi bastante peculiar: cada participante recebeu um número positivo x_i e foi sorteado um primo p. Todos os participantes cujo número x_i era divisível por p foram contemplados.

Dado sucesso do evento, a empresa quer repetir o sorteio, só que agora os participantes devem ser inscritos em dupla! Cada dupla vai concorrer com o inteiro $y = x_i x_j$, onde x_i e x_j são os inteiros recebidos por cada um dos membros da dupla. Dado sua popularidade, há N participantes querendo formar dupla com o professor Saad, onde cada participante é identificado por um positivo distinto entre 1 e N. Ele recebeu o inteiro x_S e pretende formar dupla com o participante que maximizar a chance de serem contemplados, ou seja, ele quer escolher o k-ésimo participante tal que $\rho(x_S x_k)$ seja o maior possível, onde $\rho(n)$ corresponde ao número de primos distintos que dividem n.

Como o professor Saad está muito ocupado com a organização do evento, ajude-o escrevendo um programa que, dados os valores de N, x_S e os inteiros atribuídos aos participantes, determine o identificador k do participante que Saad deve fazer dupla no sorteio.

Entrada

A primeira linha da entrada contém os inteiros N ($1 \le N \le 5 \times 10^5$) e x_S ($1 \le x_S \le 2 \times 10^7$), separados por um espaço em branco.

A segunda linha da entrada contém N inteiros x_i ($1 \le x_i \le 10^7$), separados por um espaço em branco, indicando o inteiro recebido pelo *i*-ésimo participante.

Saída

Imprima, em uma linha, o identificador k do participante que deve formar dupla com o professor Saad. Se há mais um participante que maximize as chances do professor, imprima o identificador de qualquer um deles.

Exemplo

Entrada	Saída
3 10	3
6 15 21	
7 8	3
1 2 3 4 5 6 7	
3 5	1
2 2 2	

Notas

No primeiro caso, temos que $\rho_1(10 \times 6) = \rho_1(60) = \rho_1(2^2 \times 3 \times 5) = 3$, $\rho_2(10 \times 15) = \rho_2(150) = \rho_2(2 \times 3 \times 5^2) = 3$ e $\rho_3(10 \times 21) = \rho_3(210) = \rho_3(2 \times 3 \times 5 \times 7) = 4$. Portanto o professor Saad deve fazer dupla com o participante 3.

No segundo caso, Saad poderia fazer dupla com os participantes 3, 5 ou 7.

No terceiro caso, observe que os números recebidos pelos participantes não são, necessariamente, distintos.