STA 371G: Statistics and Modeling

Time Series: Fitting a Trend

Mingyuan Zhou McCombs School of Business The University of Texas at Austin

http://mingyuanzhou.github.io/STA371G

Time-series data are simply a collection of observations gathered over time. For example, suppose $y_1 \dots y_T$ are

- Annual GDP.
- Quarterly production levels
- Weekly sales.
- Daily temperature.
- 5 minute Stock returns.

We are usually interested in forecasting with time-series data

- ▶ We might expect what happens at time t to be correlated with what happens at time t-1.
- Why do we study time series?
 - Marketing
 - Finance
 - Accounting
 - Transportation
 - **•** ...

Exchange Rate with Japan: 1980Q1-1995Q4

Leo Burnett U.S. Annual Billings: 1950-1995

U.S. GDP (in 1992 dollars): 1970Q1-1995Q4

Sales for The Gap: 1985Q1-1995Q4

Describe Time Series

Four components of a time series:

- Trend
- Seasonal
- Cyclic
- ► Random (noise)

Time Series with Trend

Time Series with Seasonality

Time Series with Cyclic Component

Time Series with Noise

Accuracy Measure of Time Series Forecasting

Using Y_1, \dots, Y_{t-k} to forecast the future value Y_t :

- \triangleright k-period-ahead forecast: $F_{t-k,t}$
- ▶ Forecast error: $E_{t-k,t} = Y_t F_{t-k,t}$
- ► Mean absolute error: $MAE = \frac{\sum_{t=1}^{T} |E_{t-k,t}|}{T}$
- ► Root mean square error: RMSE= $\frac{\sum_{t=1}^{T} E_{t-k,t}^2}{T}$

Time series forecasting relies on the assumption that historical patterns repeat themselves. It is likely to fail if this assumption is violated.

Example Time Series

Example Time Series

The Run Test (Optional)

Time Series Residuals: 2.2, 9.1, 3.0, -20.1, -2.5, -2, -1, 4.2, 1.1, 1.2, 1.8, 2, 1

Rune test:
$$+ + + - - - - + + + + + +$$

$$N = 13$$
, $N_{+} = 9$, $N_{-} = 4$, $n = 3$

Under the Hypothesis of Randomness, the number of runs n in a sequence of N elements is approximately distributed as

$$n\sim \mathcal{N}(\mu,\sigma^2)$$
, with
$$\mu=rac{2N_+N_-}{N_++N_-}+1$$

$$\sigma^2=rac{(\mu-1)(\mu-2)}{N_--1}$$

If n is significantly larger or smaller than μ , then we may reject the Hypothesis of Randomness.

Suppose we measure temperatures daily for several years.

Which would work better as an estimate for today's temp:

- ▶ The average of the temperatures from the previous year?
- ► The temperature on the previous day?

Example: Length of a bolt...

Suppose you have to check the performance of a machine making bolts... in order to do so you want to predict the length of the next bolt produced...

What is your best guess for the next part?

Example: Beer Production

Now, say you want to predict the monthly U.S. beer production (in millions of barrels).

What about now, what is your best guess for the production in the next month?

Examples: Temperatures

Now you need to predict tomorrow's temperature at O'Hare from (Jan-Feb).

Is this one harder? Our goal in this section is to use regression models to help answer these questions... $_{18}$

Here's a time series plot of US population

What would be a reasonable prediction for US population in October 2015?

The Population numbers are "trending" upwards... What model could capture this trend?

$$P_t = \beta_0 + \beta_1 t + \epsilon_t \qquad \epsilon_t \sim N(0, \sigma^2)$$

This is a regression of Population (y variable) on "time" (x variable). This allows for shifts in the mean of Population as a function of time.

Residuals:

Can we do better?

Here's a time series plot of monthly sales of a company...

What would be a reasonable prediction for Sales 5 months from now?

The sales numbers are "trending" upwards... What model could capture this trend?

$$S_t = \beta_0 + \beta_1 t + \epsilon_t \qquad \epsilon_t \sim N(0, \sigma^2)$$

This is a regression of Sales (y variable) on "time" (x variable). This allows for shifts in the mean of Sales as a function of time.

The data for this regression looks like:

months	(t) Sales
1	69.95
2	59.64
3	61.96
4	61.55
5	45.10
6	77.31
7	49.33
8	65.49
100	140.27

$$S_t = \beta_0 + \beta_1 t + \epsilon_t \qquad \epsilon_t \sim N(0, \sigma^2)$$

Regression Statistics					
Multiple R	0.892				
R Square	0.796				
Adjusted R Square	0.794				
Standard Error	14.737				
Observations	100.000				

	Α	N	0	٧	Ά
--	---	---	---	---	---

	df	SS	MS	F	Significance F
Regression	1.000	82951.076	82951.076	381.944	0.000
Residual	98.000	21283.736	217.181		
Total	99.000	104234.812			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	51.442	2.970	17.323	0.000	45.549	57.335
t	0.998	0.051	19.543	0.000	0.896	1.099

$$S_t = 51.44 + 0.998t \pm 2 * 14.73$$

Plug-in prediction...

Residuals

How should our residuals look? If our model is correct, the trend should have captured the time series structure is sales and what is left, should not be associated with time... i.e., it should be iid normal.

Great! 28

Exponential Trend

Exponential trend model:

$$Y_t = \gamma_0 \exp(\beta_1 t) u_t$$

Linear trend for log(Y):

$$\log(Y_t) = \beta_0 + \beta_1 t + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2)$$

Interpretation: Y_t increases by about $100\beta_1$ percent per unit time, as $e^{\beta_1(t+1)} \approx e^{\beta_1 t} (1+\beta_1)$ if β_1 is close to zero.

Exponential Trend

Exponential Trend

