Please mute your mic upon entering the room

July 23, 2022 (Saturday) 10:00 am – 1:00 pm by Dr Guang Ouyang, Assistant Professor, Faculty of Education, The University of Hong Kong

July 23, 2022 (Saturday) 10:00 am – 1:00 pm by Dr Guang Ouyang, Assistant Professor, Faculty of Education, The University of Hong Kong

Outline

- EEG Basics (1.5 hours)
 - Basic concepts of AI and its application on EEG (0.5 hours)
 - Details and tips about the competition event (0.5 hours)
 - Q&A (0.5 hours)

EEG (Electroencephalography)

Features of EEG data on a coarse level

How to extract information related to cognitive activity?

Other (newer) views: embodied cognition, grounded cognition, sensorimotor contingency, etc

Perturb and observe method

Change in timing (reflects cognitive processing speed)

onset

Stimulus

onset

Change in amplitude (reflects cognitive effort)

Using ERP method to link mind and brain

Example: The brain responds differently to faces and cars

How ERP components reflect cognitive activity?

ERP (Event-related Potential)

Limitation of ERP method

Outline

EEG Basics (1.5 hours)

- Basic concepts of AI and its application on EEG (0.5 hours)
 - Details and tips about the competition event (0.5 hours)
 - Q&A (0.5 hours)

What is Al?

Artificial intelligence

- have learning ability
- constantly evolving and improving
- often not fully understood (even by the developer)
- often not fully predictable

algorithms

Learning and recognition

Learning and recognition

Machine learning

Learning

Training

Recognition

Prediction, classification, Etc

Machine learning

Demonstration

→ Take hours to train

Max pooling

alexnet

→ Take minutes to train

Max

pooling

128

192 128 2048 dense

192 128 Max 2048 2048 2048

output

input

Code available:

Outline

- EEG Basics (1.5 hours)
- Basic concepts of AI and its application on EEG (0.5 hours)

- Details and tips about the competition event (0.5 hours)
- Q&A (0.5 hours)

Dataset for the competition

Dataset for the competition 24 channels (electrodes) 10 24 channels 15 (electrodes) 20 -200 ms 0 ms 3000 ms label data • 3d array (24*801*7800, 1d vector (7800*1) electrodes*time points*samples) Value: 1-26, representing the Each sample is a 2d matrix index of alphabets (24*801, electrodes*time points) 7800 data sample (300*26) Each alphabet has 300 samples

Alphabet-specificity of brain response patterns (ERP)

Tips and requirement

- Self-customized convolutional neural network (no necessarily use the alexnet)
- Self-customized recurrent neural network
- Established nets (e.g., Alexnet); image size mis-match issue
- **Lowest chance 3.8%** (Don't hesitate to submit your application when you achieve a slightly better accuracy, e.g., 8%, 10%, 15%, 30%; you may still get the awards; you never know)
- Try to extract information in different frequency bands (1-50 Hz), e.g., using wavelet transformation
- You may try to extract complex (high-order features), e.g., entropy, etc.
- The accuracy must be on test data (minimum percentage: 10%)

More details about the competition, data, and tips:

https://github.com/guangouyang/EEG AI competition/blob/main/competition.pdf

Gold HKD 5000 + a certificate

Silver HKD 2000 + a certificate

Bronze HKD 1000 + a certificate

- ❖ Based on the accuracy your classifier achieves (on test data, minimum percentage: 10%)
- ❖ Submit your demo before September 30, 2022 (Friday) (original code and full instruction for implementing the code; if the instruction is not clear, we may require an interview)
- **❖** Must be undergraduate students from universities in Hong Kong
- **❖** Participate individually or team up with others (max. 3)

Outline

- EEG Basics (1.5 hours)
- Basic concepts of AI and its application on EEG (0.5 hours)
- Details and tips about the competition event (0.5 hours)

Q&A (0.5 hours)