TraininG towards a society of data-saVvy inforMation prOfessionals to enable open leadership INnovation

Performance Comparison of Ad-hoc Retrieval Models over Full-text vs. Titles of Documents

Ahmed Saleh, Tilman Beck, Lukas Galke, Ansgar Scherp

ICADL 2018, Hamilton, New Zealand, 21 November 2018

www.moving-project.eu

Motivations

Question: Can titles be sufficient for information retrieval task?

Previous Studies [1]

Authors	Title [Year]	Contribution:
Barker, Frances H and Veal, Douglas C and Wyatt, Barry K	Comparative Efficiency Of Searching Titles, Abstracts, and Index Terms In a Free-Text Database [1972].	Showed that Keywords can be searched more quickly than title material. The addition of keywords to titles increases search time by 12%, while the addition of digests increases it by 20%.
Lin, Jimmy	Is searching full text more effective than searching abstracts? [2009]	Lin used the MEDLINE test collection and two ranking models: BM25 and a modified TF-IDF in order to compare titles' retrieval vs. abstracts' retrieval.
Hemminger, Bradley M and Saelim, Billy and Sullivan, Patrick F and Vision, Todd J	Comparison of full-text searching to metadata searching for genes in two biomedical literature cohorts [2007]	 Comparing full-text searching to metadata (titles + abstract). The authors used only an exact matching retrieval model to search for a small number of gene names in their study.

Overview

Query Normalization

Preparing the query for semantics/statistic IR model.

Overall (recap)

Compared models

- According to Croft et. Al [1], there are four main categories of ranking models:
 - Set theoretic models or Boolean models.
 - Vector space models(VSR), e. g., <u>TF-IDF</u>.
 - Probabilistic models (PM), e. g., <u>BM25</u>.
 - Feature-based retrieval, e. g., <u>L2R</u>.

- Furthermore, there are recent advances in Deep Learning that provide neural network IR models capable of capturing the semantics of words.
 - E.g. DSSM (Deep Structured Semantic Models) [2].

PM & VSR Models

- Term Frequency Inverse Documents Frequency (TF-IDF):
 - TF (w, d): is the number of occurrences of word w in documents d.
 - IDF: words that occur in a lot of documents are discounted (assuming they carry less discriminative information).
- Okapi BM25:
 - Another retrieval model which utilizes the IDF weighting for ranking the documents.
- CF-IDF is TF-IDF extension that counts concepts (e.g. STW) instead of terms
 - STW is the economics thesaurus provides a vocabulary of more than 6,000 economics' subjects
 - Developed and maintained by an editorial board of domain experts at ZBW
- HCF-IDF (Hierarchical CF-IDF)
 - Extract concepts which are not mentioned directly.

L2R models

- Learning to Rank (L2R) is a family of machine learning techniques that aim at optimizing a loss function regarding a ranking of items.
 - L2R Features represents the relation between doc and query
 - L2R Features are Mostly are numbers (formulas, frequencies, ...) For Example:

```
aid:1
                    1:0.000000
                                        2:0.000000
                                                     3:0.000000
                                                                   4:0.000000
                                                                                5:0.000000 #docid=30
            aid:1
                    1:0.031310
                                        2:0.666667
                                                     3:4.00000
                                                                   4:0.166667
                                                                                5:0.033206 #docid=20
1
            qid:1
                    1:0.078682
                                        2:0.166667
                                                     3:7.00000
                                                                   4:0.333333
                                                                                5:0.080022 #docid=15
```

- L2R models fall into three categories:
 - **Pointwise models:** relevancy degree is generated for every single document regardless of the other documents in the results list of the query.
 - Pairwise models: considers only one pair of documents at a time (e.g. LambdaMart).
 - **Listwise models:** the input consists of the entire list of documents associated with a query (e.g. Coordinate Ascent)

Semantic Models (SM)

- Deep Semantic Similarity model (DSSM)[4]:
 - The model uses a multilayer feed-forward neural network to map both the query and the title of a webpage to a common low-dimensional vector space.
 - The similarity between the query-document pairs is computed using cosine similarity.

Figure 1: Illustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections. The final layer's neural activities in this DNN form the feature in the semantic space.

Convolutional Deep Semantic Similarity (C-DSSM)[5]

Overall (recap)

Datasets (1)

 The datasets are composed to two types: Labeled and Unlabeled.

 Labeled datasets: a document is given a binary classification as either relevant or non-relevant.

• Unlabeled datasets: a hierarchical domain-specific thesaurus that provides topics (or concepts) of the libraries' domain is included. we consider the document as relevant to a concept if and only if it is annotated with the corresponding concept.

Datasets (2)

- The datasets are composed to two types: Labeled and Unlabeled.
- We used the following datasets:

		# of docume nts	# of querie s	More information
Labeled	NTCIR-2 ¹	322,059	49	consists of rel. Judgments of 66,729 pairs
Datasets	TREC ²	507,011	50	consists of rel. Judgments of 72,270 pairs
Unlabeled Datasets	EconBiz ³	288,344	6,204	Economics' scientific publications
	IREON ⁴	27,575	7,912	Politics' scientific publications
	PubMed ⁵	646,655	28,470	Bio-medical' scientific publications

http://research.nii.ac.jp/ntcir/permission/perm-en.html#ntcir-2

² https://trec.nist.gov/data/intro_eng.html

³ <u>https://www.econbiz.de/</u>

⁴ https://www.ireon-portal.de/

⁵ https://www.ncbi.nlm.nih.gov/pubmed/

Comparison Results - labeled datasets

With manual annotations as gold-standard.

Dataset:

		# of documents	# of queries
Labeled Datasets	NTCIR-2	322,059	66,729
	TREC	507,011	72,270

Queries:

short queries from the same dataset.

29 features for L2R:

- MK + Modified LETOR + Word2Vec + Ranking models.
- The metric nDCG compares the top documents (DCG), with the gold standard and is computed as follows:
 - $nDCG_k = \frac{DCG_k}{IDCG_k}$ where $DCG_k = \text{rel}_1 + \sum_{i=2}^k \frac{\text{rel}_i}{Log(i)}$
 - D is a set of documents, rel(d) is a function that returns one if the document is rated relevant, otherwise zero, and $IDCG_k$ is the optimal ranking.

Comparison Results - labeled datasets

Family	Method	NTCIR	NTCIR-2		EC
		Titles	Full-text	Titles	Full-text
	TF-IDF	0.19	0.18	0.21	0.39
VSM	CF-IDF	0.05	0.05	0.12	0.13
	HCF-IDF	0.23	0.24	0.10	0.12
PM	BM25	0.24	0.32	0.23	0.41
PIVI	BM25CT	0.24	0.31	0.20	0.405
	L2R – LambdaMART	0.25	0.30	0.22	0.39
	L2R - RankNet	0.28	0.29	0.13	0.10
L2R - FFS	L2R - RankBoost	0.26	0.32	0.21	0.34
LZK - FF3	L2R – AdaRank	0.21	0.31	0.19	0.22
	L2R – ListNet	0.21	0.24	0.15	0.07
	L2R - Coord. Ascent	0.29	0.33	0.22	0.39
SM	DSSM	0.33	0.26	0.18	0.23
SIVI	C-DSSM	0.32	0.32	0.18	0.20
	L2R – LambdaMART	0.20	0.15	0.16	0.33
	L2R - RankNet	0.28	0.15	0.05	0.046
L2R – BFS	L2R - RankBoost	0.26	0.25	0.13	0.38
LZR - DF3	L2R – AdaRank	0.29	0.37	0.18	0.37
	L2R – ListNet	0.29	0.37	0.29	0.37
	L2R - Coord. Ascent	0.29	0.37	0.29	0.38

Comparison Results - unlabeled datasets

Dataset:

		# of documents	# of queries
Unlabeled	EconBiz	288,344	6,204
Datasets	IREON	27,575	7,912
	PubMed	646,655	28,470

- Gold-standard: Domain experts annotations.
- Queries:
 - ZBW's economics thesaurus.
 - FIV politics thesaurus.
 - MeSH labels, medical thesaurus.

Titles vs full text on unlabeled datasets

Family	Method	EconBiz		IREON		PubMed	
		Titles	Full-text	Titles	Full-text		
	TF-IDF	0.26	0.22	0.661	0.36	0.80	0.54
VSM	CF-IDF	0.13	0.19	0.44	0.32	0.66	0.49
	HCF-IDF	0.25	0.20	0.659	0.37	0.80	0.54
PM	BM25	0.25	0.20	0.662	0.37	0.80	0.55
PIVI	BM25CT	0.27	0.19	0.660	0.37	0.81	0.56
	L2R – LambdaMART	0.67	0.68	0.83	0.69	0.67	0.67
	L2R – RankNet	0.28	0.10	0.20	0.21	0.30	0.30
L2R - FFS	L2R – RankBoost	0.52	0.69	0.80	0.59	0.70	0.79
LZK - FF3	L2R – AdaRank	0.50	0.67	0.79	0.65	0.56	0.52
	L2R – ListNet	0.28	0.10	0.20	0.20	0.30	0.30
	L2R - Coord. Ascent	0.57	0.80	0.95	0.77	0.81	0.80
SM	DSSM	0.29	0.33	0.41	0.39	0.34	0.33
SIVI	C-DSSM	0.29	0.34	0.42	0.44	0.32	0.35
	L2R – LambdaMART	0.56	0.63	0.70	0.65	0.42	0.65
	L2R – RankNet	0.28	0.10	0.26	0.41	0.59	0.63
L2R – BFS	L2R – RankBoost	0.52	0.10	0.80	0.47	0.30	0.72
LZK - BF3	L2R – AdaRank	0.48	0.49	0.94	0.41	0.59	0.79
	L2R – ListNet	0.28	0.28	0.94	0.41	0.39	0.49
	L2R - Coord. Ascent	0.53	0.10	0.94	0.69	0.59	0.78

Titles vs full text -results

• Aggregating the best nDCG values overall datasets and configurations. The best full-text-based retrieval models attains only 3% more than The best titles-based retrieval models.

Replicate experiment results

Source code is available¹.

¹ https://bitbucket.org/a_saleh/icadl2018/src

MOVING Platform

URL: http://platform.moving-project.eu

Conclusions:

- We conducted a study to compare title-based with full-text-based adhoc retrieval.
- We compared different retrieval models of different families (probabilistic models, vector space, learning to rank models and semantic models).
- We used five datasets, out of which three datasets are obtained from digital libraries: Econbiz, PubMed and IREON, and two standard test collections
- Our experiments show that title-based ad-hoc retrieval models can provide close, and sometimes even better, results compared to the full-text ad-hoc retrieval.

Project consortium and funding agency

MOVING is funded by the EU Horizon 2020 Programme under the project number INSO-4-2015: 693092

Thank you for your attention!

Any questions?

References:

- 1. Croft, W. Bruce, Donald Metzler, and Trevor Strohman. *Search engines: Information retrieval in practice*. Vol. 283. Reading: Addison-Wesley, 2010.
- Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrough data." Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013.
- Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrough data." Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013.
- 4. Shen, Yelong, et al. "Learning semantic representations using convolutional neural networks for web search." Proceedings of the 23rd International Conference on World Wide Web. ACM, 2014.

L2R models

Main L2R models:

- LambdaMart (Pairwise):
 - Combines LambdaRank, a neural network pairwise L2R approach, and Multiple Additive Regression Trees (MART), which uses gradient boosted decision trees for prediction.
 - When comparing a pair of documents, the gradient of the cost function indicates in which direction a document should move in a ranked list.

- Coordinate Ascent (Listwise):
 - Optimization technique for unconstrained optimization problems
 - Scoring function is comprised of a linear combination of the features.
 - Optimizes the objective function by iteratively choosing one dimension (or feature) to search for, and fix all other dimensions

L2R features

- Represents the relation between doc and query
- Mostly are numbers (formulas, frequencies, ...)

•	e.g. 0	qid:1	1:0.000000	2:0.000000	3:0.000000	4:0.000000	5:0.000000 # docid=30
	1	qid:1	1:0.031310	2:0.666667	3:4.00000	4:0.166667	5:0.033206 #docid=20
	1	qid:1	1:0.078682	2:0.166667	3:7.00000	4:0.333333	5:0.080022 #docid=15

Metzler and Kanungo - MK Set	Sentence length, Exact match, Term overlap, Synonym overlap, Language Model with Dirichlet smoothing
Modified LETOR	Covered query term number, IDF, Sum/Min/Max/Mean/Variance of TF, Sum/Min/Max/Mean/Variance of length normalized TF, Sum/Min/Max/Mean/Variance of TF-IDF, Language model absolute discounting smoothing, Language model with Bayesian smoothing using Dirichlet priors, Language model with Jelinekmercer smoothing
Ranking model features	TF-IDF, BM25, CF-IDF, HCF-IDF, Word2Vec

L2R Best Feature Set (BFS)

- A good IR system can retrieve the most important documents in a fast and scalable way using only a limited amount of information about the query and documents.
- Goal: find a meaningful subset of features which can still produce sound results.
 - Correlation-based Feature Selection algorithm (CFS)
 - The CFS algorithm computes a score for a subset S of the 29 features containing k features using the following equation

$$score_{CFS(S)} = \frac{k \cdot \overline{r_{gf}}}{\sqrt{k + k(k-1)\overline{r_{ff}}}}$$

- Where r_{gf} is average gold standard g feature f correlation
- The formula denotes higher scores to the subsets which have a low 'feature-feature' correlations and high 'gold standard-feature' correlations.
- We calculated $score_CFS(S)$ for all feature subsets of sizes $|S| = \{1, ..., 29\}$, which equals $2^{29} 1 = 536, 870, 911$ possible subsets.

L2R Best Feature Set (BFS)

The large table that includes the best featuresets.

Dataset	Content	Best Feature Set (BFS)	#	$Score_{CFS(s)}$
NTCIR-2	Full-Text	BM25, Exact match	2	0.20
NICIR-2	Titles	BM25, Exact match	2	0.15
	Full-Text	BM25, Exact match, Sum of length normalized TF	3	0.28
TREC	Titles	BM25, Language model with Dirichlet smoothing, Minimum of TF-IDF, Term overlap, Word2vec	5	0.13
	Full-Text	Language model with absolute discounting smoothing, Language model with bayesian smoothing using Dirichlet priors, Min TF-IDF, Var TF-IDF	4	0.41
EconBiz	Titles	BM25, Exact match, Language model, Synonym overlap, Term overlap, Covered query term number, Max TF-IDF, Mean length norm TF, Mean TF, Mean TF-IDF, Min length norm TF, Min TF-IDF, Sum length norm TF, Sum TF, Sum TFIDF	16	0.71
Politics	Full-Text	Language model with Dirichlet smoothing, Language model with absolute discounting smoothing, Language model with Jelinek-Mercer smoothing, Max TF-IDF, Mean TF-IDF, Min TF-IDF, Sum TF, Sum TF-IDF, Var TF-IDF	9	0.41
	Titles	BM25	1	0.54
DubMod	Full-Text	Language model with Jelinek-Mercer smoothing, Mean TF-IDF	2	0.46
PubMed	Titles	Language model with absolute discounting smoothing, IDF	2	0.44