

(11)Publication number:

2001-298753

(43) Date of publication of application: 26.10.2001

(51)Int.CI.

H04N 13/00

(21)Application number : 2000-109210

(71)Applicant: SANYO ELECTRIC CO LTD

(22)Date of filing:

11.04.2000

(72)Inventor: YAMASHITA SHIYUUGO

IINUMA TOSHIYA MORI TAKAYUKI

(54) METHOD FOR CONVERTING TWO-DIMENSIONAL VIDEO IMAGE INTO THREE-**DIMENSIONAL VIDEO IMAGE**

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for converting a two-dimensional video image into a three-dimensional video image that can suppress a converted image from being distorted in the case that a distance scale conversion is used to convert a depth estimate amount into a parallax amount. SOLUTION: In the case that a maximum value of a phase difference within adjacent parallax calculation areas is at the outside of a predetermined distortion permissible range, a dynamic range to bring the phase difference within the parallax calculation area into the distortion permissible range is searched, distance scale conversion using the retrieved dynamic range is applied to each depth estimate

value to obtain a tentative target phase amount for each parallax calculation area.

LEGAL STATUS

[Date of request for examination]

06.12.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Based on a two-dimensional video signal, the image characteristic quantity about the distance of an image is extracted to two or more parallax calculation fields of each set up in 1 screen. As opposed to the 1st step and each depth estimate which generate the depth estimate for every parallax calculation field based on the extracted image characteristic quantity By performing distance scale conversion using the dynamic range specified with the predetermined amount of the maximum elutriation, and the predetermined amount of the maximum depth It is based on the 2nd step and the temporary amount of target phases for every parallax calculation field which calculate the temporary amount of target phases for every parallax calculation field. The 3rd step which calculates the maximum of the phase contrast between adjoining parallax calculation fields, The 4th step which judges whether it is in the distortion tolerance where the maximum of the phase contrast between adjoining parallax calculation fields was defined beforehand, When the maximum of the phase contrast between adjoining parallax calculation fields is outside the distortion tolerance appointed beforehand Look for a dynamic range with which the phase contrast between the abovementioned parallax calculation fields becomes in distortion tolerance, and each depth estimate is received. How to change into a 3D scenography the two-dimensional image equipped with the 5th step which shifts to the 3rd step after performing distance scale conversion using the dynamic range for which it looked and calculating the temporary amount of target phases for every parallax calculation field.

[Claim 2] How to change into a 3D scenography the two-dimensional image according to claim 1 characterized by performing distance scale conversion using the dynamic range after amendment to each depth estimate after the ratio of the amount of the maximum elutriation and the amount of the maximum depth which are specified in the 5th step of the above by the dynamic range for which it looked amends a dynamic range so that it may become the ratio defined beforehand.

[Translation done.]

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the approach of changing a two-dimensional image into a 3D scenography.

[0002]

[Description of the Prior Art] As an approach of changing a two-dimensional image into a 3D scenography, these people divide one screen into two or more fields, presume the depth of each field from the image information obtained from each field, and composition, and have already developed the technique (henceforth the CID method) of generating binocular parallax by shifting each pixel in a screen based on this presumed depth (refer to JP,11-8862,A and JP,11-98530,A).

[0003] Moreover, these people are also developing the CID method which improved the already developed CID method further.

[0004] <u>Drawing 1</u> shows the control procedure of the CID method after amelioration (it is not well-known).

[0005] First, one screen is divided into two or more fields, and they are a RF, brightness contrast, and a color (B-Y and R-Y component) from each field. Information is acquired (step 1). And the depth estimate of each field presumed from such information and composition is calculated (step 2). Since distortion is conspicuous in an resolution picture when the calculated depth estimate is only changed into a shift amount, distortion oppression processing is performed (step 3). Distance scale conversion is performed to the depth estimate after distortion oppression processing (step 4). [0006] Distortion oppression processing is explained. By the CID method, 2D image is transformed and a right-and-left image is generated. Since it will become an unnatural image if this deformation becomes large too much, it is controlling by the CID method so that the difference of the amount of phases between adjoining fields becomes below distortion tolerance h supp lev [Pixel] of the resolution picture beforehand defined by the user. That is, they are Mfront and Mrear about the presumed depth. The difference of the amount of phases of the field which adjoins from the amount of phases of each field for which it asked by assigning in between is searched for. Maximum of this difference is made into h dv max [pixel], and it is h dv max. They are Mfront and Mrear until it satisfies the degree type 1, when exceeding distortion tolerance h supp lev [pixel]. 0 [pixel] It is made small in the direction brought close. [0007]

[Equation 1] h_dv_max≤h_supp_lev

[0008] Therefore, h_dv_max h_supp_lev When large, as it is shown in drawing on the right-hand side of drawing 2, it extends far back with the amount front of elutriation phases of a conversion image [Pixel], and it is the amount rear of phases [Pixel]. The amount Mfront of maximum elutriation phases which the user defined beforehand by the linearity operation of the degree type 2 [Pixel] It is made smaller than the amount Mrear of maximum back ball phases [Pixel]. [0009]

[Equation 2]

```
front = Mfront * h_supp_lev / n_dv_max

for h_dv_max > h_supp_lev

rear = Mrear * h_supp_lev / h_dv_max

for h_dv_max > h_supp_lev
```

[0010] On the contrary, h_dv_max h_supp_lev When small, since the distortion of an resolution picture is in tolerance, as shown in the chart on the left of <u>drawing 2</u>, the degree type 3 is realized. [0011]

[Equation 3]

front = Mfront

for $h_{dv_max} \le h_{supp_lev}$

rear = Mrear

for $h_dv_max \le h_supp_lev$

[0012] That is, h_dv_max h_supp_lev When small, it is dynamic range dv_range (=front rear) of the phase of a conversion image. Dynamic range Mdv_range of the phase which the user defined beforehand (=Mfront Mrear) It becomes equal.

[0013] In addition, the distortion oppression processing which oppresses this dynamic range in the system is h_supp_lev in order to mitigate a CPU load. Although carried out by transposing to the unit of the presumed depth, it explained using the system of units of the pixel after [expedient] explaining here.

[0014] The distance scale conversion approach is explained.

[0015] On 2 eye type solid display, it has a relation with nonlinear amount W of parallax and its fusion location (distance from the tubular surface which looks actual) Yp of corresponding points of the image for right eyes (R image), and the image for left eyes (L image).

[0016] That is, when R image and L image which have parallax W [mm] on a display side are observed from the location distance K [mm] Distant from the tubular surface, the distance Yp to the fusion location from a tubular surface [mm] is expressed with the degree type 4. [0017]

[Equation 4] $R_p = KW / (W - 2E)$

[0018] In the above-mentioned formula 4, each variable expresses the following values.

K: distance to the observer from a display tube side [mm] E: One half between eyes Die length [mm] W: The amount of parallax of the corresponding points of the image for left eyes on a display side, and the image for right eyes [mm] Yp: Distance [mm] [0019] from a tubular surface to a fusion location K= 1000mm and 2E=65mm If it carries out and the above-mentioned formula 4 is expressed with a graph, it will become like drawing 3.

[0020] <u>Drawing 3</u> shows producing a spatial distortion only by transposing depth estimate to the unit of a pixel in linearity at the image which carries out the fusion. So, by the distance scale technique, depth estimate is changed into the unit of a pixel in consideration of space distortion. The technique of changing depth estimate into the unit (the amount of parallax) of a pixel in linearity is called pixel scale conversion, and the technique of changing depth estimate into the unit (the amount of parallax) of a pixel in consideration of a fusion location is called distance scale conversion.

[0021] Hereafter, the distance scale conversion technique is explained briefly.

[0022] It is U [mm] about width of face of 1 pixel on now and a display. Parallax W is expressed with the degree type 5, supposing it carries out and the parallax W for alpha pixel has corresponding points.

[0023]

[Equation 5]

[0024] By substituting the above-mentioned formula 5 for the above-mentioned formula 4, as shown in the degree type 6, the relation between a pixel and a fusion location can be found.
[0025]

[Equation 6] $Y_p = K\alpha U / (\alpha U - 2E)$

[0026] Moreover, the top type 6 is transformed and the degree type 7 is obtained. [0027]

[Equation 7] $\alpha = 2E * Y_p / (Y_p - K)U$

[0028] By perfect distance scale conversion, they are amount Ymaxof maximum elutriation' from a tubular surface, and amount Yminof maximum back balls' from a tubular surface. If it specifies, the depth Yp which corresponds if the depth estimate depth (it has the value of 0-100) is decided can be obtained by the simple scale conversion expressed with the degree type 8. [0029]

[Equation 8]

**Pp=(Ymax'-Ymin') \times depth / 100

[0030] And the amount alpha of parallax corresponding to Yp is calculated by the above 7. Thereby, in consideration of space distortion, depth estimate is convertible for the unit of a pixel. [0031] It sets to perfect distance scale conversion, and is 256 steps of amount translation table of parallax W". When using, as it is shown in <u>drawing 4</u>, it is Ymax' - Ymin' first. Between is equally divided into 256 and it asks for amount translation table of parallax W" [pixel] which corresponded for every depth value Yp based on the above-mentioned formula 7.

[0032] In this case, W" [255] becomes the amount of parallax corresponding to Ymax', and W" [0] is Ymin'. It becomes the corresponding amount of parallax. And depth estimate depth If decided, the corresponding amount alpha of parallax can be found from the degree type 9.

[0033]

[Equation 9]

$\alpha = W''[lev]$

[0034] Here, it is lev. The number of stages on the amount translation table of parallax is expressed, and it is given by the degree type 10.

[0035]

[Equation 10] $lev = 255 \times depth / 100$

[0036] So far, although the perfect distance scale conversion technique in 2D / 3D conversion was described, there are two problems shown below in this technique.

[0037] (1) If amount Ymaxof maximum elutriation' is enlarged to the place where depth Yp is saturated, set into a part with the depth value near Ymax', and it is distortion (distortion by R image and the L image itself) by the resolution picture itself. It becomes large.

[0038] (2) When it is going to take the large dynamic range of depth rendering space, it is amount Yminof maximum back balls'. It is made small, and since it does not spread, the field of which it jumps out before a tubular surface decreases extremely.

[0039] In order to avoid the above-mentioned problem, it is necessary to use and change only the field which has depth and the amount of parallax in proportionality to some extent. However, then it becomes almost the same as pixel scale conversion, and is hard to say that perfect distance scale conversion is already useful on the relation which performs complicated processing.

[0040] Then, what was devised is the polygonal-line distance scale conversion introduced to a degree. As polygonal-line distance scale conversion shows to drawing 5, it is the elutriation quantitative ratio C [%]. It introduces, 255*C/100, etc. carry out the part of Ymax'-0, and it is 0 - Ymin'. 255 It asks for the amount translation table of parallax by carrying out {(1-C) /100} division into equal parts.

[0041] That is, distortion by the resolution picture in the part which changes the amount of elutriation before a tubular surface, and serves as the maximum elutriation by controlling the elutriation quantitative ratio C itself can be suppressed. In addition, in polygonal-line distance scale conversion, the formula corresponding to the above-mentioned formula 8 turns into the degree type 11.

[0042]

[Equation 11] $Y_p = Y_{max'} \times \{depth - (100 - C)\} / C$

for depth $\geq (100 - C)$

 $Yp = \{-Ymin' \times depth / (100 - C)\} + Ymin'$

for depth < C

[0043] Moreover, amount translation table of parallax W" The formula corresponding to the abovementioned formula 10 showing a number of stages turns into the degree type 12. [0044]

[Equation 12]

lev = (255 - Diev) x (depth - (100 - C)) / C + Dlev for depth $\geq (100 - C)$

 $lev = Dlev \times depth / (100 - C)$

for depth < (100 - C)

[0045] Here, Dlev is defined by the degree type 13 and expresses the number of stages on the amount translation table of parallax corresponding to a tubular surface. [0046]

[Equation 13] Dlev = (100 - C) × 255 / 100

[0047] In the back, a respectively spatial distortion comes out of polygonal-line distance scale conversion a front [tubular surface] from a tubular surface. Conversely, if it says, a spatial distortion will come out in a tubular surface. A distortion more spatial than the language which obtained this from many viewers "how for it to be visible after tubing presence is different when 3dimensional scenography is seen" is based on the assumption of becoming the most incomprehensible near the tubular surface.

[0048] In addition, the value currently used actually is Ymax', Ymin', and C so that the inclination (step size) of the amount translation table of depth parallax after tubing presence may not be greatly different. It has determined.

[0049] By the way, although the distortion oppression processing using the linearity operation mentioned above is effective in pixel scale conversion, it cannot be said to be an effective means to distance scale conversion. This is depth Yp and the amount W of parallax by distance scale conversion, as shown in drawing 6. [pixel] It is nonlinear and is because depth estimate has the same value, for example, the property in which the amounts of parallax differ greatly before and behind a tubular surface also in "1." In addition, this inclination becomes remarkable in a big screen display. In the polygonal-line distance scale which is the advanced type of a perfect distance scale, the elutriation quantitative ratio C is introduced also in the semantics which eases this property. [0050] However, maximum h dv max [pixel] of the phase contrast between adjoining fields cannot be thoroughly stopped for the elutriation quantitative ratio C in distortion tolerance h supp_lev [pixel] on a controllable polygonal-line distance scale (the principle of the distortion oppression in a pixel scale is faithfully unrealizable). In order to realize the principle of this distortion oppression, it is necessary to perform distortion oppression processing after distance scale conversion.

[Problem(s) to be Solved by the Invention] This invention aims at offering the approach of changing into a 3D scenography the two-dimensional image which can press down distortion of an resolution picture, when changing depth estimate into the amount of parallax using distance scale conversion. [0052]

[Means for Solving the Problem] The approach of changing the two-dimensional image by this invention into a 3D scenography Based on a two-dimensional video signal, the image characteristic quantity about the distance of an image is extracted to two or more parallax calculation fields of each set up in 1 screen. As opposed to the 1st step and each depth estimate which generate the depth estimate for every parallax calculation field based on the extracted image characteristic quantity By performing distance scale conversion using the dynamic range specified with the predetermined amount of the maximum elutriation, and the predetermined amount of the maximum depth It is based on the 2nd step and the temporary amount of target phases for every parallax calculation field which calculate the temporary amount of target phases for every parallax calculation field. The 3rd step which calculates the maximum of the phase contrast between adjoining parallax calculation fields, The 4th step which judges whether it is in the distortion tolerance where the maximum of the phase

contrast between adjoining parallax calculation fields was defined beforehand, and when the maximum of the phase contrast between adjoining parallax calculation fields is outside the distortion tolerance appointed beforehand Look for a dynamic range with which the phase contrast between the above-mentioned parallax calculation fields becomes in distortion tolerance, and each depth estimate is received. After performing distance scale conversion using the dynamic range for which it looked and calculating the temporary amount of target phases for every parallax calculation field, it is characterized by having the 5th step which shifts to the 3rd step. Here, distance scale conversion means the technique of changing depth estimate into the unit (the amount of parallax) of a pixel in consideration of a fusion location. On the other hand, the technique of changing depth estimate into the unit (the amount of parallax) of a pixel in linearity is called pixel scale conversion.

[0053] In the 5th step of the above, after the ratio of the amount of the maximum elutriation and the

[0053] In the 5th step of the above, after the ratio of the amount of the maximum elutriation and the amount of the maximum depth which are specified by the dynamic range for which it looked amends a dynamic range so that it may become the ratio defined beforehand, it may be made to perform distance scale conversion using the dynamic range after amendment to each depth estimate.

[0054]

[Embodiment of the Invention] Hereafter, the gestalt of implementation of this invention is explained with reference to drawing 7 - drawing 10.

[0055] <u>Drawing 7</u> shows the control procedure of the CID method by the gestalt of implementation of this invention.

[0056] First, one screen is divided into two or more fields, and they are a RF, brightness contrast, and a color (B-Y and R-Y component) from each field. Information is acquired (step 11). And the depth estimate of each field presumed from such information and composition is calculated (step 12). The amount of target phases is obtained by performing distance scale conversion and distortion oppression processing to the calculated depth estimate (step 13).

[0057] <u>Drawing 8</u> shows the distance scale conversion of step 13 of <u>drawing 7</u>, and the detail of distortion oppression processing.

[0058] First, Mfront and Mrear Distance scale conversion is performed with the dynamic range specified, and the temporary amount of target phases is obtained (steps 21 and 22). It is based on the obtained temporary amount of target phases, and is maximum h_dv_max of the phase contrast between adjoining fields. [pixel] It computes (step 23).

[0059] maximum h_dv_max of the phase contrast between adjoining fields [pixel] Distortion tolerance h_supp_lev [pixel] it is -- a ****** is judged (step 24). In being in tolerance, let the temporary amount of target phases be a true target phase (step 27).

[0060] When the maximum of the phase contrast between adjoining fields is outside distortion tolerance, the maximum of the phase contrast concerned is h_supp_lev. They are Mfront and Mrear until it becomes below. Optimal front and a rear value are acquired by making small the dynamic range specified gradually (step 25). Hereafter, processing of step 25 is carried out to sequential-search processing for convenience. About the detail of sequential-search processing, it mentions later.

[0061] front calculated by sequential-search processing it becomes the distance ratio specified by [distance ratio with rear] a user -- as -- front the step 22 after changing rear (step 26) -- return -- distance scale conversion is performed further.

[0062] Maximum h_dv_max [pixel] of the phase contrast between adjoining fields is processing of steps 22, 23, 24, 25, and 26 Distortion tolerance h_supp_lev [pixel] The final amount of target phases is repeatedly obtained until it comes inside. In addition, whenever a dynamic range changes in this way, distance scale conversion is performed for realizing to accuracy the principle of the distance scale of making an observer perceive the 3-dimensional scenography which was not influenced by the spatial distortion of a solid display, but followed depth estimate.

[0063] Next, sequential-search processing is explained.

[0064] With a distance scale with nonlinear depth estimate and amount of phases, it is front. In order to enlarge the dynamic range specified with a rear value, the decision of a range is made by sequential-search processing.

[0065] It is amount translation table of parallax W" which it was possible even if calculation of the amount of parallax used the amount transformation of depth parallax (formula 11) in sequential-

search processing, but was beforehand computed as shown below. To use is more efficient. About this approach, it is 0-100. It is surface depth (= 100-C) about the depth estimate of tubular surface level when depth estimate is standardized in between. It explains by carrying out.

[0066] front Amount translation table of parallax W" corresponding to a value and a rear value When the upper number of stages is set to Max lev (= 255 - Dlev) and Min lev (=Dlev -0), respectively, it is a certain depth estimate v depth. Number of stages lev of the amount translation table of parallax It is expressed with the degree type 4. [0067]

```
[Equation 14]
lev=(v_depth - surface_depth)* (Max_lev - Dlev)/(100 - surface_depth) + Dlev
                                               for v_depth > surface_depth
lev = (v_depth - Min_lev )* (Dlev - 0) / (surface_depth - Min_lev)
                                               for v_depth < surface_depth
                                               for v_depth = surface_depth
```

[0068] lev The corresponding amount phase of phases Amount translation table of parallax W" Since it can be found in a meaning, it can express with the degree type 15. [0069]

```
[Equation 15]
phase = W"(lev)
```

lev = Dlev

[0070] The phase contrast of two fields which serve as max of the phase contrast between adjoining fields in sequential-search processing is h supp lev. front which becomes below About a value and a rear value, it is Max lev. Min lev It can be made to be able to change gradually and can be found

[0071] It responds to the relation of the amount of phases which two fields where the phase contrast between adjoining fields serves as max have in sequential-search processing so that clearly from the above-mentioned formula 14, and is optimal front. The retrieval approach of a value and a rear value becomes the following three kinds.

[0072] The 1st case: It is front when both car fields have the amount of phases before a tubular surface. A value is brought close to 0 and it goes. (Max lev is brought close to Dlev).

[0073] The 2nd case: When both car fields have the back amount of phases from a tubular surface, bring a rear value close to 0 and go. (Min lev is brought close to Dlev).

[0074] The 3rd case: When [both] one field has the amount of phases before a tubular surface and another field has the back amount of phases from a tubular surface, bring front and a rear value close to 0, and go (Max lev and Min lev are brought close to Dlev).

[0075] It is Max lev so that the relation of the degree type 16 may be held so that the distance ratio which the user specified beforehand at the time of sequential-search processing may be held in the case of the 3rd case that is,. Min lev It brings close to Dlev. [0076]

```
[Equation 16]
(255 - Dlev): Dlev = (Max_lev - Dlev): (Dlev - Min_lev)
```

[0077] The above-mentioned formula 16 is synonymous with processing of step 26 of drawing 8. In the 1st case and the 2nd case, in order to reduce the amount of operations, modification processing of distance ratio is not performed at the time of sequential-search processing, but step 26 of drawing 8 performs.

[0078] In a distance scale, the technique of this distance ratio maintenance is introduced for holding the depth relation before and behind a tubular surface, even if a dynamic range changes. As shown in drawing 9, when specifically decreasing the distance before a tubular surface 20% in the 1st case, from the tubular surface, a back distance is also decreased 20% and the relation after tubing presence is maintained.

[0079] If this distance ratio maintenance is performed on the amount translation table of parallax, the relation of the elutriation quantitative ratio C is also maintainable. A conversion image without sense of incongruity can be shown to an observer with the inclination which recognizes space with relative

[0080] However, it may be regarded as an image with it better [to open the whole dynamic range depending on the property of an observer's eyes]. In such a case, distance ratio maintenance is not performed in the 1st case and the 2nd case, but only quantitative ratio maintenance is performed. [0081] Drawing 10 shows the case where polygonal-line distance scale conversion of only quantitative ratio maintenance is performed, and the case where processing for distance ratio maintenance is performed further. In the polygonal-line distance scale conversion of only quantitative ratio maintenance, a response of depth estimate and the amount translation table of parallax is taken by separate range conversion bordering on the depth estimate of a tubular surface. In addition, when distance ratio maintenance is carried out, the amount translation table of parallax of depth estimate can respond by one range conversion. In addition, it means that the function lev (phase) in drawing 10 expresses the inverse function of the above-mentioned formula 15, and calculates the number of stages of the amount translation table of parallax from the amount phase of phases [pixel].

[Effect of the Invention] According to this invention, when changing depth estimate into the amount of parallax using distance scale conversion, distortion of an resolution picture can be pressed down.

[Translation done.]

[0082]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the flow chart which shows the control procedure of the CID method which these people already developed.

[Drawing 2] It is a mimetic diagram for explaining distortion oppression processing of step 3 of drawing 1.

[Drawing 3] It is the graph which shows the relation between the amount W of parallax, and its fusion location Yp.

[Drawing 4] It is a graph for explaining perfect distance scale conversion.

[Drawing 5] It is a graph for explaining polygonal-line distance scale conversion.

[Drawing 6] Depth Yp and the amount W of parallax [pixel] Since it is nonlinear, before and behind a tubular surface, the value with the same depth estimate, "1", is a graph to show the property in which the amounts of parallax differ greatly. [for example,]

[Drawing 7] It is the flow chart which shows the control procedure of the CID method by the gestalt of implementation of this invention.

[Drawing 8] It is the flow chart which shows the distance scale conversion of step 13 of drawing 7, and the detail of distortion oppression processing.

[Drawing 9] By introducing the technique of distance ratio maintenance, even if a dynamic range changes, it is the graph which shows that the depth relation before and behind a tubular surface is held.

[Drawing 10] It is the mimetic diagram showing the case where polygonal-line distance scale conversion of only quantitative ratio maintenance is performed, and the case where processing for distance ratio maintenance is performed further.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 7]

[Drawing 10]

[Translation done.]

(19)日本国特許庁 (JP)

四公開特許公報 (4)

(11)特許出願公開番号 特開2001-298753

(P2001-298753A)(43)公開日 平成13年10月26日(2001.10.26)

(51) Int. Cl. 7

H04N 13/00

識別記号

FΙ

テーマコート・ (参考)

H04N 13/00

5C061

審査請求 未請求 請求項の数2 OL (全9頁)

(21)出願番号

特願2000-109210(P2000-109210)

(22)出願日

平成12年4月11日(2000.4.11)

(71)出願人 000001889

三洋電機株式会社

大阪府守口市京阪本通2丁目5番5号

(72)発明者 山下 周悟

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 飯沼 俊哉

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(74)代理人 100086391

弁理士 香山 秀幸

最終頁に続く

(54) 【発明の名称】 2 次元映像を 3 次元映像に変換する方法

(57) 【要約】

この発明は、距離スケール変換を用いて奥行 き推定量を視差量に変換する場合に、変換画像の歪みを 押さえることができる2次元映像を3次元映像に変換す る方法を提供することを目的とする。

【解決手段】 隣接する視差算出領域間での位相差の最 大値が予め定められた歪み許容範囲外である場合には、 上記視差算出領域間での位相差が歪み許容範囲内となる ようなダイナミックレンジを探索し、各奥行き推定値に 対して、探索したダイナミックレンジを用いた距離スケ ール変換を施し、各視差算出領域毎に仮の目標位相量を 求める。

【特許請求の範囲】

【請求項1】 2次元映像信号に基づいて、1画面内に 設定された複数の視差算出領域それぞれに対して映像の 遠近に関する画像特徴量を抽出し、抽出した画像特徴量 に基づいて、各視差算出領域毎の奥行き推定値を生成す る第1ステップ、

各奥行き推定値に対して、所定の最大飛び出し量と所定 の最大奥行き量とによって規定されるダイナミックレン ジを用いた距離スケール変換を施すことにより、各視差 算出領域毎に仮の目標位相量を求める第2ステップ、 各視差算出領域毎の仮の目標位相量に基づいて、隣接す る視差算出領域間での位相差の最大値を求める第3ステ ップ、

隣接する視差算出領域間での位相差の最大値が予め定め られた歪み許容範囲内であるか否かを判定する第4ステ ップ、

隣接する視差算出領域間での位相差の最大値が予め定め られた歪み許容範囲外である場合には、上記視差算出領 域間での位相差が歪み許容範囲内となるようなダイナミ ックレンジを探索し、各奥行き推定値に対して、探索し 20 たダイナミックレンジを用いた距離スケール変換を施 し、各視差算出領域毎に仮の目標位相量を求めた後、第 3ステップに移行する第5ステップ、

を備えている2次元映像を3次元映像に変換する方法。

【請求項2】 上記第5ステップにおいて、探索したダ イナミックレンジによって規定される最大飛び出し量と 最大奥行き量との比が、予め定められた比となるよう に、ダイナミックレンジを補正した後、補正後のダイナ ミックレンジを用いた距離スケール変換を各奥行き推定 値に施すようにしたことを特徴とする請求項1に記載の 30 2次元映像を3次元映像に変換する方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、2次元映像を3 次元映像に変換する方法に関する。

[0002]

【従来の技術】本出願人は、2次元映像を3次元映像に 変換する方法として、一画面を複数の領域に分割し、各 々の領域から得た画像情報及び構図から各領域の奥行き を推定し、この推定した奥行きを基に画面内の各画素を 40 シフトすることによって両眼視差を生成する手法 (以 下、CID法という)を既に開発している(特開平11 -8862号公報、特開平11-98530号公報参

【0003】また、本出願人は、既に開発したCID法 をさらに改良したCID法をも開発している。

【0004】図1は、改良後のCID法(公知ではな い)の制御手順を示している。

【0005】まず、一画面を複数の領域に分割し、各々

分)の情報を得る(ステップ1)。そして、これらの情 報及び構図から推定した各領域の奥行き推定値を求める (ステップ2)。求めた奥行き推定値を単にシフト量に 変換すると変換画像に歪みが目立つため、歪み抑圧処理 を行う(ステップ3)。歪み抑圧処理後の奥行き推定値 に距離スケール変換を施す(ステップ4)。

【0006】歪み抑圧処理について説明する。CID法 では、2 D画像を変形し左右画像を生成する。この変形 が大きくなりすぎると不自然な映像となるため、CID 10 法では、隣接する領域間の位相量の差が、ユーザによっ て予め定められた変換画像の歪み許容範囲h supp le v[Pixel]以下になるよう制御している。すなわち、推定 した奥行きをMfrontとMrear との間に割り当てることに よって求めた各領域の位相量から隣接する領域の位相量 の差を求める。この差の最大値をh __dv_max[pixel]と し、h __dv__max が歪み許容範囲h __supp__lev[pixel] を越える場合は、次式1を満足するまでMfrontとMrear をO[pixel] に近づける方向に小さくする。

[0007]

【数1】

$h_{dv_max} \le h_{supp_lev}$

【0008】従って、h __dv__max がh __supp__lev よ り大きい場合は、図2の右側の図に示すように、変換映 像の飛び出し位相量front[Pixel]と奥まり位相量rear[P ixel]を、次式2の線形演算により、ユーザが予め定め た最大飛び出し位相量Mfront[Pixel] と最大奥まり位相 量Mrear[Pixel]より小さくする。

. [0009]

【数2】

front = Mfront * h_supp_lev / h_dv_max for h_dv_max > h_supp_lev rear = Mrear * h_supp_lev / h_dv_max for h_dv_max > h_supp_lev

【0010】逆に、h __dv__max がh __supp__lev より 小さい場合は、変換画像の歪みは許容範囲内であるか ら、図2の左側の図に示すように、次式3が成り立つ。

[0011]

【数3】

front = Mfrontfor $h_dv_max \le h_supp_lev$ rear = Mrear for $h_dv_max \le h_supp_{ev}$

【0012】つまり、h __dv__max がh __supp__lev よ り小さい場合は、変換映像の位相のダイナミックレンジ dv_range(=front rear) と、ユーザが予め定めた位相 のダイナミックレンジMdv __range(=Mfront Mrear) と は等しくなる。

【0013】なお、実機におけるこのダイナミックレン ジを抑圧する歪み抑圧処理は、CPU負荷を軽減するた めh __supp__lev を推定した奥行きの単位に置き換えて の領域から髙周波、輝度コントラスト、色(B-Y、R-Y 成 50 行っているが、ここでは説明の便宜上、画素の単位系を

10

用いて説明を行った。

【0014】距離スケール変換方法について説明する。 【0015】2眼式立体ディスプレイでは、右眼用画像 (R画像)と左眼用画像(L画像)の対応点の視差量W とその融像位置 (実際に見える管面からの距離) Ypと は、非線形の関係にある。

【0016】すなわち、ディスプレイ面上で視差W[m] を持つR画像およびL画像を管面から距離K[nm]離れた 位置から観察した場合、管面からの融像位置までの距離 Yp[mm]は次式4で表される。

[0017]

【数4】

$Y_P = KW / (W - 2E)$

【0018】上記数式4において、各変数は以下の値を 表す。

K:ディスプレイ管面からの観察者までの距離[mm]

E:眼間の1/2 の長さ [mm]

₩:ディスプレイ面上での左眼用画像と右眼用画像の対 応点の視差量 [mm]

Yp:管面から融像位置までの距離[mm]

【OO19】K=1000mm, 2E=65mm として上記数式4をグ ラフで表すと、図3のようになる。

【0020】図3より、奥行き推定値を線形的に画素の 単位に置き換えただけでは、融像する映像には空間的な 歪みを生じることが分かる。そこで、距離スケール手法 では、空間歪みを考慮して、奥行き推定値を画素の単位 に変換する。奥行き推定値を線形的に画素の単位(視差 量)に変換する手法を画素スケール変換といい、奥行き 推定値を融像位置を考慮して画素の単位(視差量)に変 換する手法を距離スケール変換という。

【0021】以下、距離スケール変換手法について簡単 に説明する。

【0022】今、ディスプレイ上の1画素の幅をU[mm] とし、対応点がα画素分の視差Wがあるとすると、視差 Wは次式5で表される。

[0023]

【数 5 】

$W = \alpha U$

【0024】上記数式5を上記数式4に代入することに より、次式6に示すように、画素と融像位置の関係が求 40 視差量がある程度比例関係にある領域のみ使用して変換 まる。

[0025]

【数 6 】

$Yp = K\alpha U / (\alpha U - 2E)$

【0026】また、上式6を変形し次式7を得る。

[0027]

【数7】

$\alpha = 2E * Yp / \{(Yp - K)U\}$

【0028】完全距離スケール変換では、管面からの最 大飛び出し量Ymax'と管面からの最大奥まり量Ymin'を 50 指定すると、奥行き推定値depth (0~100の値を持 つ) が決まれば対応する奥行きYpは次式8で表される単 純なスケール変換で得ることができる。

[0029]

【数8】

$Yp = (Ymax' - Ymin') \times depth / 100$

【0030】そして、Ypに対応する視差量αは、上記7 により求められる。これにより、空間歪みを考慮して、 奥行き推定値を画素の単位に変換することができる。

【0031】完全距離スケール変換において、256段 の視差量変換テーブルW″を用いる場合は、図4に示す ように、まず、Ymax'~Ymin'の間を256等分し、各 奥行き値Yp毎に対応した視差量変換テーブルW''[pixel] を上記式7に基づいて求める。

【OO32】この場合、W"[255] がYmax' に対応した視 差量となり、W"[0] がYmin'に対応した視差量となる。 そして、奥行き推定値depth が決まれば、対応する視差 量αは次式9より求まる。

[0033]

20 【数9】

$\alpha = W''[lev]$

【0034】ここで、lev は視差量変換テーブル上の段 数を表し、次式10で与えられる。

[0035]

【数10】

$lev = 255 \times depth / 100$

【0036】ここまで、2D/3D変換における完全距 離スケール変換手法について述べたが、この手法には以 30 下に示す2つの問題がある。

【0037】(1) 奥行きYpが飽和する所まで最大飛び 出し量Ymax'を大きくすると、Ymax'近傍の奥行き値を 持つ部分において、変換画像自体の歪み(R画像、L画 像自体の歪み)が大きくなる。

【0038】(2) 奥行き再現空間のダイナミックレン ジを大きく取ろうとすると、最大奥まり量Ymin'を小さ くするしかないので、管面より前に飛び出す領域が極端 に少なくなる。

【0039】上記の問題を回避するためには、奥行きと する必要がある。しかし、それでは画素スケール変換と ほぼ同じになってしまい、複雑な処理を行う関係上、完 全距離スケール変換はもはや有用とは言い難い。

【0040】そこで、考案したのが次に紹介する折れ線 距離スケール変換である。折れ線距離スケール変換で は、図5に示すように、飛び出し量比C[%]を導入し、 Ymax'~0 を255*C/100 等分し、0 ~Ymin' を255 {(1-C)/100)} 等分することで、視差量変換テーブルを求め

【0041】すなわち、飛び出し量比Cを制御すること

6

で、管面より前の飛び出し量を変え、かつ、最大飛び出 しとなる部分での変換画像自体の歪みを抑えることがで きる。なお、折れ線距離スケール変換において上記式8

 $Yp = Ymax' \times \{depth - (100 - C)\} / C$

に対応する式は、次式11となる。 【0042】

【数11】

for depth $\geq (100 - C)$

 $Yp = \{-Ymin' \times depth / (100 - C)\} + Ymin'$

for depth < C

【0043】また、視差量変換テーブルW″の段数を表す上記式10に対応する式は、次式12となる。

【0044】

lev = (255 - Dlev) × {depth - (100 - C)} / C + Dlev

for depth $\geq (100 - C)$

 $lev = Dlev \times depth / (100 - C) \qquad for depth < (100 - C)$

【0045】ここで、Dlevは、次式13で定義され、管面に対応する視差量変換テーブル上の段数を表す。

[0046]

【数13】

$Dlev = (100 - C) \times 255 / 100$

【0047】折れ線距離スケール変換は管面より前と、管面より奥において、それぞれ空間的な歪みが出ないようになっている。逆に言えば、管面において空間的な歪みがでることになる。これは、「立体映像を見た場合、管面前後で見え方が違う。」という多くの視聴者から得20た言葉より、空間的な歪みは管面近傍で最も分かりづらくなるという仮説に基づいている。

【0048】なお、実際に使用している値は、管面前後での奥行き視差量変換テーブルの傾向(ステップ幅)が大きく違わないようYmax',Ymin',Cを決定している。

【0049】ところで、上述した線形演算を用いた歪み 抑圧処理は画素スケール変換には有効であるが、距離スケール変換に対しては有効な手段とは言えない。これ は、図6に示すように、距離スケール変換では、奥行き Ypと視差量W [pixel] とが非線形であり、奥行き推定量 30 が同じ値、たとえば"1"でも管面の前後ではその視差量が大きく異なるという性質を持つためである。なお、この傾向は、大画面ディスプレイにおいて顕著になる。完全距離スケールの改良型である折れ線距離スケールでは、この特性を緩和する意味でも、飛び出し量比Cを導入している。

【0050】しかし、飛び出し量比Cを制御可能な折れ 線距離スケールでも、隣接領域間の位相差の最大値h __ dv_max[pixel]を歪み許容範囲h __supp__lev[pixel]内 に完全に抑えることはできない(画素スケールにおける 40 歪み抑圧の原理を忠実に実現することはできない)。こ の歪み抑圧の原理を実現するためには、歪み抑圧処理を 距離スケール変換後に行う必要がある。

[0051]

【発明が解決しようとする課題】この発明は、距離スケール変換を用いて奥行き推定量を視差量に変換する場合に、変換画像の歪みを押さえることができる2次元映像を3次元映像に変換する方法を提供することを目的とする。

[0052]

【課題を解決するための手段】この発明による2次元映 像を3次元映像に変換する方法は、2次元映像信号に基 づいて、1画面内に設定された複数の視差算出領域それ ぞれに対して映像の遠近に関する画像特徴量を抽出し、 抽出した画像特徴量に基づいて、各視差算出領域毎の奥 行き推定値を生成する第1ステップ、各奥行き推定値に 対して、所定の最大飛び出し量と所定の最大奥行き量と によって規定されるダイナミックレンジを用いた距離ス ケール変換を施すことにより、各視差算出領域毎に仮の 目標位相量を求める第2ステップ、各視差算出領域毎の 仮の目標位相量に基づいて、隣接する視差算出領域間で の位相差の最大値を求める第3ステップ、隣接する視差 算出領域間での位相差の最大値が予め定められた歪み許 容範囲内であるか否かを判定する第4ステップ、ならび に隣接する視差算出領域間での位相差の最大値が予め定 められた歪み許容範囲外である場合には、上記視差算出 領域間での位相差が歪み許容範囲内となるようなダイナ ミックレンジを探索し、各奥行き推定値に対して、探索 したダイナミックレンジを用いた距離スケール変換を施 し、各視差算出領域毎に仮の目標位相量を求めた後、第 3ステップに移行する第5ステップを備えていることを 特徴とする。ここで、距離スケール変換とは、奥行き推 定値を融像位置を考慮して画素の単位(視差量)に変換 する手法をいう。これに対して、奥行き推定値を線形的 に画素の単位(視差量)に変換する手法を画素スケール

【0053】上記第5ステップにおいて、探索したダイナミックレンジによって規定される最大飛び出し量と最大奥行き量との比が、予め定められた比となるように、ダイナミックレンジを補正した後、補正後のダイナミックレンジを用いた距離スケール変換を各奥行き推定値に施すようにしてもよい。

[0054]

【発明の実施の形態】以下、図7~図10を参照して、 この発明の実施の形態について説明する。

【0055】図7は、この発明の実施の形態によるCI D法の制御手順を示している。

【0056】まず、一画面を複数の領域に分割し、各々の領域から髙周波、輝度コントラスト、色(B-Y、R-Y 成50分)の情報を得る(ステップ11)。そして、これらの

10

Я

情報及び構図から推定した各領域の奥行き推定値を求める(ステップ12)。求めた奥行き推定値に対して距離スケール変換および歪み抑圧処理を施すことにより、目標位相量を得る(ステップ13)。

【0057】図8は、図7のステップ13の距離スケール変換および歪み抑圧処理の詳細を示している。

【0058】まず、MfrontとMrear によって規定される ダイナミックレンジで距離スケール変換を施し、仮の目 標位相量を得る(ステップ21、22)。得られた仮の 目標位相量に基づいて、隣接領域間の位相差の最大値h __dv__max [pixel] を算出する(ステップ23)。

【0059】隣接領域間の位相差の最大値h __dv__max [pixel] が歪み許容範囲h __supp__lev [pixel] であるか否かを判定する (ステップ24)。許容範囲内である場合には、仮の目標位相量を真の目標位相とする (ステップ27)。

【0060】隣接領域間の位相差の最大値が歪み許容範囲外である場合には、当該位相差の最大値がh_supp_lev以下になるまで、MfrontとMrearによって規定されるダイナミックレンジを段階的に小さくすることによっ20て最適なfront、rear値を得る(ステップ25)。以下、便宜上、ステップ25の処理を逐次探索処理ということにする。逐次探索処理の詳細については後述する。【0061】逐次探索処理によって求めたfrontとrearとの距離比を、ユーザ指定の距離比になるよう、frontとrearとを変更した後(ステップ26)、ステップ22に戻り、更に距離スケール変換を行う。

【0062】ステップ22、23、24、25、26の

処理を、隣接領域間の位相差の最大値h __dv__max[pixe 1]が歪み許容範囲h __supp__lev [pixel] 内になるまで繰り返し、最終的な目標位相量を得る。なお、このようにダイナミックレンジが変更する都度、距離スケール変換を施すのは、立体ディスプレイの空間的な歪みに左右されず奥行き推定量に従った立体映像を観察者に知覚させるという、距離スケールの原理を正確に実現するためである。

【0063】次に、逐次探索処理について説明する。

【0064】奥行き推定値と位相量とが非線形である距離スケールでは、front とrear値で規定されるダイナミックレンジを大きくするため、レンジの決定は逐次探索処理によって行なわれる。

【0065】逐次探索処理において、視差量の算出は、 奥行き視差量変換式(式11)を用いても可能だが、以 下に示すように予め算出した視差量変換テーブルW″を 用いた方が効率的である。この方法について、0~100 に間に奥行き推定値が規格化された場合の管面レベルの 奥行き推定値をsurface __depth(= 100- C) として、説 明する。

【0066】front 値とrear値に対応する視差量変換テーブルW″上の段数をそれぞれMax_lev (=255~Dle v)、Min _lev (=Dlev ~0)とした場合、ある奥行き推定値v _depth の視差量変換テーブルの段数lev は、次式4で表される。

【0067】 【数14】

lev=(v_depth-surface_depth)* (Max_lev-Dlev)/(100-surface_depth)+ Dlev
for v_depth > surface_depth
lev=(v_depth-Min_lev)* (Dlev-0)/(surface_depth-Min_lev)
for v_depth < surface_depth

lev = Dlev

【0068】lev に対応する位相量phase は、視差量変換テーブルW"により一意で求まるので、次式15で表すことができる。

【0069】 【数15】

phase = W''(lev)

【0070】逐次探索処理では、隣接領域間の位相差の 最大となる2つの領域の位相差がh_supp_lev 以下に なるfront 値とrear値を、Max _lev やMin _lev を徐 々に変化させことによって見つけることができる。

【0071】上記式14から明らかなように、逐次探索処理では、隣接領域間の位相差が最大となる2つの領域が持つ位相量の関係に応じ、最適なfront値とrear値の探索方法は以下の3種類となる。

【0072】第1ケース:両領域が共に管面より前の位相量を持つ場合は、front 値を0に近づけて行く (Max

__lev をDlevに近づけていく)。

for v_depth = surface_depth

【0073】第2ケース:両領域が共に管面より後ろの 位相量を持つ場合は、rear値を0に近づけて行く (Min __lev をDlevに近づけていく)。

【0074】第3ケース:一方の領域が管面より前の位 40 相量を持ち、もう一方の領域が管面より後ろの位相量を 持つ場合は、front, rear値を共に0に近づけて行く(Max _lev, Min _lev をDlevに近づけていく)。

【0075】第3ケースの場合には、逐次探索処理時に、ユーザが予め指定した距離比を保持するように、つまり次式16の関係を保持するように、Max __lev とMin __lev をDlevに近づけていく。

[0076]

【数16】

 $(255 - Dlev): Dlev = (Max_lev - Dlev): (Dlev - Min_lev)$

【0077】上記式16は、図8のステップ26の処理

50

と同義である。第1ケースと第2ケースでは、演算量を 減らすため、距離比の変更処理を逐次探索処理時に行わ ず図8のステップ26で行う。

【0078】距離スケールにおいてこの距離比維持の手 法を導入しているのは、ダイナミックレンジが変わって も管面の前後の奥行き関係を保持するためである。具体 的には、図9に示すように、第1ケースで管面より前の 距離を20%減少させた場合には、管面より後ろの距離 も20%減少させ、管面前後の関係を維持している。

【0079】視差量変換テーブル上でこの距離比維持を 10 行うと、飛び出し量比Cの関係も維持することができ る。これにより、相対的な奥行きで空間を認知する傾向 がある観察者には違和感のない変換映像を提示すること

【0080】しかし、観察者の目の特性によっては、全 体のダイナミックレンジを広げた方が良い映像とみなす 場合がある。このような場合は、第1ケース、第2ケー スにおいて距離比維持を行わず、量比維持のみを行う。

【0081】図10は、量比維持のみの折れ線距離スケ ール変換を行なった場合と、さらに距離比維持のための 20 順を示すフローチャートである。 処理を行なった場合とを示している。量比維持のみの折 れ線距離スケール変換では、管面の奥行き推定値を境に 別個のレンジ変換により奥行き推定値と視差量変換テー ブルの対応を取る。なお、距離比維持をした場合は、奥 行き推定値の視差量変換テーブルは1つのレンジ変換で 対応できる。なお、図10における関数lev(phase)は上 記式15の逆関数を表し、位相量phase[pixel]から視差 量変換テーブルの段数を求めることを意味する。

[0082]

【発明の効果】この発明によれば、距離スケール変換を 用いて奥行き推定量を視差量に変換する場合に、変換画 像の歪みを押さえることができるようになる。

【図面の簡単な説明】

【図1】本出願人が既に開発したCID法の制御処理手 順を示すフローチャートである。

【図2】図1のステップ3の歪み抑圧処理を説明するた めの模式図である。

【図3】視差量Wとその融像位置Ypとの関係を示すグラ フである。

【図4】完全距離スケール変換を説明するためのグラフ である。

【図5】折れ線距離スケール変換を説明するためのグラ フである。

【図6】奥行きYpと視差量W「pixel]とが非線形である ため、奥行き推定量が同じ値、たとえば"1"でも管面 の前後ではその視差量が大きく異なるという性質を示す ためのグラフである。

【図7】この発明の実施の形態によるCID法の制御手

【図8】図7のステップ13の距離スケール変換および 歪み抑圧処理の詳細を示すフローチャートである。

【図9】距離比維持の手法を導入することにより、ダイ ナミックレンジが変わっても管面の前後の奥行き関係が 保持されることを示すグラフである。

【図10】量比維持のみの折れ線距離スケール変換を行 なった場合と、さらに距離比維持のための処理を行なっ た場合とを示す模式図である。

【図10】

フロントページの続き

(72)発明者 森 孝幸 大阪府大東市三洋町1番1号 三洋電子部 品株式会社内 Fターム(参考) 5C061 AA20 AA21 AB08