Foundation of Cryptography (0368-4162-01), Lecture 5 Interactive Proofs and Zero Knowledge

Iftach Haitner, Tel Aviv University

December 4, 2011

Part I

Interactive Proofs

Definition 1 (NP)

 $\mathcal{L} \in NP$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$

Definition 1 (NP)

 $\mathcal{L} \in NP$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$
- Non-interactive proof

Definition 1 (NP)

 $\mathcal{L} \in \text{NP}$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$
- Non-interactive proof
- Interactive proofs?

Definition 1 (NP)

 $\mathcal{L} \in \text{NP}$ iff $\exists \ell \in \text{poly}$ and poly-time algorithm V such that:

- $\forall x \in \mathcal{L} \cap \{0,1\}^n$ there exists $w \in \{0,1\}^{\ell(n)}$ s.t. V(x,w) = 1
- $V(x, \cdot) = 0$ for every $x \notin \mathcal{L}$
- Non-interactive proof
- Interactive proofs?

Interactive algorithm

- Interactive algorithm
- Protocol $\pi = (A, B)$

- Interactive algorithm
- Protocol $\pi = (A, B)$
- RV describing the parties joint output $\langle A(i_A), B(i_B))(i) \rangle$

- Interactive algorithm
- Protocol $\pi = (A, B)$
- RV describing the parties joint output (A(i_A), B(i_B))(i))
- *m*-round algorithm, *m*-round protocol

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness $\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \geq 2/3$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x) \rangle = \texttt{Accept}] \leq 1/3$$

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \geq 2/3$$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P^*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x) \rangle = \texttt{Accept}] \leq 1/3$$

 \bullet IP = PSPACE

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for $\mathcal{L},$ if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}, \Pr[\langle (P, V)(x) \rangle = \texttt{Accept}] \ge 2/3$$

Soundness $\forall x \notin \mathcal{L}$, and *any* algorithm P^*

$$\Pr[\langle (\mathsf{P}^*,\mathsf{V})(x) \rangle = \texttt{Accept}] \leq 1/3$$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P,V)(x) \rangle = \texttt{Accept}] \ge 2/3$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm P*
 $\Pr[\langle (P^*,V)(x) \rangle = \texttt{Accept}] \le 1/3$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.

Definition 2 (Interactive Proof (IP))

A protocol (P, V) is an interactive proof for \mathcal{L} , if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P,V)(x) \rangle = \texttt{Accept}] \ge 2/3$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm P^*
 $\Pr[\langle (P^*,V)(x) \rangle = \texttt{Accept}] \le 1/3$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.
- soundness only against PPT. computationally sound proofs/interactive arguments.

Definition 2 (Interactive Proof (IP))

A protocol (P,V) is an interactive proof for \mathcal{L} , if V is PPT and the following hold:

Completeness
$$\forall x \in \mathcal{L}$$
, $\Pr[\langle (P,V)(x) \rangle = \texttt{Accept}] \ge 2/3$
Soundness $\forall x \notin \mathcal{L}$, and any algorithm P^*
 $\Pr[\langle (P^*,V)(x) \rangle = \texttt{Accept}] \le 1/3$

- \bullet IP = PSPACE
- We typically consider (and achieve) perfect completeness
- Negligible "soundness error" achieved via repetition.
- soundness only against PPT. computationally sound proofs/interactive arguments.
- efficient provers via "auxiliary input"

Section 1

IP for GNI

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0 = ([m], E_0)$ and $G_1 = ([m], E_1)$ are isomorphic, denoted $G_0 \equiv G_1$, if $\exists \pi \in \Pi_m$ such that $(u, v) \in E_0$ iff $(\pi(u), \pi(v)) \in E_1$. GI = $\{(G_0, G_1) : G_0 \equiv G_1\}$.

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. GI = $\{(G_0,G_1)\colon G_0\equiv G_1\}$.

Assume reasonable mapping from graphs to strings

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. GI = $\{(G_0,G_1)\colon G_0\equiv G_1\}$.

- Assume reasonable mapping from graphs to strings
- GI ∈ NP

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. GI = $\{(G_0,G_1)\colon G_0\equiv G_1\}$.

- Assume reasonable mapping from graphs to strings
- GI ∈ NP
- Does GNI = $\{(G_0, G_1): G_0 \not\equiv G_1\} \in NP$?

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. $\mathsf{GI}=\{(G_0,G_1)\colon G_0\equiv G_1\}.$

- Assume reasonable mapping from graphs to strings
- GI ∈ NP
- Does GNI = $\{(G_0, G_1): G_0 \not\equiv G_1\} \in NP$?
- We will show a simple interactive proof for GNI

 Π_m – the set of all permutations from [m] to [m]

Definition 3 (graph isomorphism)

Graphs $G_0=([m],E_0)$ and $G_1=([m],E_1)$ are isomorphic, denoted $G_0\equiv G_1$, if $\exists \pi\in\Pi_m$ such that $(u,v)\in E_0$ iff $(\pi(u),\pi(v))\in E_1$. $GI=\{(G_0,G_1)\colon G_0\equiv G_1\}.$

- Assume reasonable mapping from graphs to strings
- GI ∈ NP
- Does GNI = $\{(G_0, G_1): G_0 \not\equiv G_1\} \in NP$?
- We will show a simple interactive proof for GNI Idea: Beer tasting...

IP for GNI

Protocol 4 ((P, V))

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b) = \{(\pi(u), \pi(v)) : (u, v) \in E_b\}$ to P
- ② P send b' to V (tries to set b' = b)
- \circ V accepts iff b' = b

IP for GNI

Protocol 4 ((P, V))

Common input $G_0 = ([m], E_0), G_1 = ([m], E_1)$

- V chooses $b \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and sends $\pi(E_b) = \{(\pi(u), \pi(v)) : (u, v) \in E_b\}$ to P
- 2 P send b' to V (tries to set b' = b)
- 3 V accepts iff b' = b

Claim 5

The above protocol is IP for GNI, with perfect completeness and soundness error $\frac{1}{2}$.

 Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

$$G_0 \equiv G_1$$
: $\Pr[b' = b] \leq \frac{1}{2}$.

- Graph isomorphism is an equivalence relation (separates the set of all graph pairs into separate subsets)
- $([m], \pi(E_i))$ is a random element in $[G_i]$ the equivalence class of G_i

Hence,

```
G_0 \equiv G_1: \Pr[b' = b] \le \frac{1}{2}.

G_0 \not\equiv G_1: \Pr[b' = b] = 1 (i.e., i can, possibly inefficiently, extracted from \pi(E_i))
```

Part II

Zero knowledge Proofs

The concept of zero knowledge

Proving w/o revealing any addition information.

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?

The concept of zero knowledge

- Proving w/o revealing any addition information.
- What does it mean?
 Simulation paradigm.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V*, \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_c \{S(x)\}_{x \in \mathcal{L}}$.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

Perfect ZK (PZKP)/statistical ZK (SZKP) – the above dist. are identicallly/statistically close, even for *unbounded* V*.

Zero knowledge Proof

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

Perfect ZK (PZKP)/statistical ZK (SZKP) – the above dist. are identicallly/statistically close, even for *unbounded* V*.

ZK is a property of the prover.

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- 2 ZK only required to hold with respect to true statements.

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- 2 ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in BPP$

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in BPP$
- Extension: auxiliary input

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathcal{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- 2 ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- lacktriangle Trivial to achieve for $\mathcal{L} \in \mathsf{BPP}$
- Extension: auxiliary input
- The "standard" NP proof is typically not zero knowledge

Definition 6 (computational ZK)

An interactive proof (P, V) is computational zero-knowledge proof (CZKP) for \mathcal{L} , if \forall PPT V^* , \exists PPT S such that $\{\langle (P, V^*)(x) \rangle\}_{x \in \mathcal{L}} \approx_{\mathbb{C}} \{S(x)\}_{x \in \mathcal{L}}$.

- ZK is a property of the prover.
- ZK only required to hold with respect to true statements.
- wlg. V*'s outputs is its "view".
- **1** Trivial to achieve for $\mathcal{L} \in BPP$
- Extension: auxiliary input
- The "standard" NP proof is typically not zero knowledge
- Next class ZK for all NP

Section 2

ZK Proof for Gl

ZK Proof for Graph Isomorphism

Idea: route finding

ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P, V))

Common input
$$x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$$

P's input a permutation π such that $\pi(E_1) = E_0$

- **1** P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V
- ② V sends b ← {0, 1} to P
- **3** if b = 0, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V
- V accepts iff $\pi''(E_b) = E$

ZK Proof for Graph Isomorphism

Idea: route finding

Protocol 7 ((P, V))

Common input $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

P's input a permutation π such that $\pi(E_1) = E_0$

- **1** P chooses $\pi' \leftarrow \Pi_m$ and sends $E = \pi'(E_0)$ to V
- ② V sends b ← {0,1} to P
- **3** if b = 0, P sets $\pi'' = \pi'$, otherwise, it sends $\pi'' = \pi' \circ \pi$ to V
- V accepts iff $\pi''(E_b) = E$

Claim 8

The above protocol is SZKP for GI, with perfect completeness and soundness $\frac{1}{2}$.

Completeness Clear

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Completeness Clear

Soundness If exist $j \in \{0,1\}$ for which $\nexists \pi' \in \Pi_m$ with $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$. Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\#\pi' \in \Pi_m$ with $\pi'(E_i) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then
$$\pi_0^{-1}(\pi_1(E_1)) = \pi_0$$

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\#\pi' \in \Pi_m$ with $\pi'(E_i) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then $\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in GI$.

Completeness Clear

Soundness If exist $j \in \{0, 1\}$ for which $\nexists \pi' \in \Pi_m$ with

 $\pi'(E_j) = E$, then V rejects w.p. at least $\frac{1}{2}$.

Assuming V rejects w.p. less than $\frac{1}{2}$ and lett π_0 and π_1 be the values guaranteed by the above observation (i.e., mapping E_0 and E_1 to E respectively).

Then
$$\pi_0^{-1}(\pi_1(E_1)) = \pi_0 \implies (G_0, G_1) \in GI$$
.

ZK Idea: for $(G_0, G_1) \in GI$, it is easy to generate a random transcript for Steps 1-2, and to be able to open it with prob $\frac{1}{2}$.

The simulator

For a start we consider a deterministic cheating verifier V^* that never aborts.

The simulator

For a start we consider a deterministic cheating verifier V* that never aborts.

Algorithm 9 (S)

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- Choose $b' \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- Let b be V*'s answer. If b = b', send π to V*, output V*'s output and halt.
 Otherwise, rewind the simulation to its first step.

Abort

The simulator

For a start we consider a deterministic cheating verifier V^* that never aborts.

Algorithm 9 (S)

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- **1** Choose $b' \leftarrow \{0,1\}$ and $\pi \leftarrow \Pi_m$, and "send" $\pi(E_{b'})$ to $V^*(x)$.
- Let b be V*'s answer. If b = b', send π to V*, output V*'s output and halt.
 Otherwise, rewind the simulation to its first step.

Abort

Claim 10

$$\{\langle (P,V^*)(x)\rangle\}_{x\in GI}\approx \{S(x)\}_{x\in GI}$$

Algorithm 11 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

W.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$ and send it to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Algorithm 11 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

W.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$ and send it to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 12

$$S(x) \equiv S'(x)$$
 for any $x \in GI$.

Algorithm 11 (S')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

Do |x| times:

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Let b be V*'s answer.

W.p. $\frac{1}{2}$, find π' such that $E = \pi'(E_b)$ and send it to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 12

$$S(x) \equiv S'(x)$$
 for any $x \in GI$.

Proof: ?

Algorithm 13 (S'')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- **2** Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Algorithm 13 (S")

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Claim 14

 $\forall x \in GI$ it holds that

Algorithm 13 (S'')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Claim 14

 $\forall x \in GI$ it holds that

- 2 $SD(S''(x), S'(x)) \le 2^{-|x|}$.

Algorithm 13 (S'')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Claim 14

 $\forall x \in GI$ it holds that

- 2 $SD(S''(x), S'(x)) \le 2^{-|x|}$.

Proof: ?

Algorithm 13 (S'')

Input: $x = (G_0 = ([m], E_0), G_1 = ([m], E_1))$

- **①** Choose $\pi \leftarrow \Pi_m$ and sends $E = \pi(E_0)$ to $V^*(x)$.
- 2 Find π' such that $E = \pi'(E_b)$, send it to V*, output V*'s output and halt.

Claim 14

 $\forall x \in GI$ it holds that

- 2 $SD(S''(x), S'(x)) \le 2^{-|x|}$.

Proof: ? (1) is clear.

Fix
$$(E, \pi')$$
 and let $\alpha = Pr_{S''}[(E, \pi')]$.

Fix (E, π') and let $\alpha = \Pr_{S''}[(E, \pi')]$. It holds that

$$Pr_{S'}[(E, \pi')] = \alpha \cdot \sum_{i=1}^{|x|} (1 - \frac{1}{2})^{i-1} \cdot \frac{1}{2}$$
$$= (1 - 2^{-|x|}) \cdot \alpha$$

Fix (E, π') and let $\alpha = \Pr_{S''}[(E, \pi')]$. It holds that

$$Pr_{S'}[(E, \pi')] = \alpha \cdot \sum_{i=1}^{|x|} (1 - \frac{1}{2})^{i-1} \cdot \frac{1}{2}$$
$$= (1 - 2^{-|x|}) \cdot \alpha$$

Hence, $SD(S''(x), S'(x)) \le 2^{-|x|} \square$

Randomized verifiers

- Randomized verifiers
- Aborting verifiers

- Randomized verifiers
- Aborting verifiers Normalize aborting probability

- Randomized verifiers
- Aborting verifiers Normalize aborting probability
- Auxiliary input

- Randomized verifiers
- Aborting verifiers Normalize aborting probability
- Auxiliary input
- Negligible soundness error?

- Randomized verifiers
- Aborting verifiers Normalize aborting probability
- Auxiliary input
- Negligible soundness error? Sequentiall/Parallel composition

Remarks

- Randomized verifiers
- Aborting verifiers Normalize aborting probability
- Auxiliary input
- Negligible soundness error? Sequentiall/Parallel composition
- Perfect ZK for "expected time simulators"

Remarks

- Randomized verifiers
- Aborting verifiers Normalize aborting probability
- Auxiliary input
- Negligible soundness error? Sequentiall/Parallel composition
- Perfect ZK for "expected time simulators"
- "Black box" simulation

Section 3

Black-box ZK

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time^a V^* :

$$\{(\mathsf{P}(w_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{\mathcal{C}}\{\mathsf{S}^{\mathsf{V}^*(x,z_x)}(x)\}_{x\in\mathcal{L}}$$

for any $\{(w_x, z_x) \in R_{\mathcal{L}}(x) \times \{0, 1\}^*\}_{x \in \mathcal{L}}$.

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time^a V^* :

$$\{(\mathsf{P}(w_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{\mathcal{C}}\{\mathsf{S}^{\mathsf{V}^*(x,z_x)}(x)\}_{x\in\mathcal{L}}$$

for any $\{(w_x, z_x) \in R_{\mathcal{L}}(x) \times \{0, 1\}^*\}_{x \in \mathcal{L}}$. Prefect and statistical variants are defined analogously.

^aLength of auxiliary input does not count for the running time.

Definition 15 (Black-box simulator)

(P, V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time^a V^* :

$$\{(\mathsf{P}(w_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{\mathsf{C}}\{\mathsf{S}^{\mathsf{V}^*(x,z_x)}(x)\}_{x\in\mathcal{L}}$$

for any $\{(w_x, z_x) \in R_{\mathcal{L}}(x) \times \{0, 1\}^*\}_{x \in \mathcal{L}}$. Prefect and statistical variants are defined analogously.

^aLength of auxiliary input does not count for the running time.

"Most simulators" are black box

Definition 15 (Black-box simulator)

(P,V) is CZKP with black-box simulation for \mathcal{L} , if \exists oracle-aided PPT S s.t. for every deterministic polynomial-time^a V^* :

$$\{(\mathsf{P}(w_x),\mathsf{V}^*(z))(x)\}_{x\in\mathcal{L}}\approx_{\mathsf{C}}\{\mathsf{S}^{\mathsf{V}^*(x,z_x)}(x)\}_{x\in\mathcal{L}}$$

for any
$$\{(w_x, z_x) \in R_{\mathcal{L}}(x) \times \{0, 1\}^*\}_{x \in \mathcal{L}}$$
.

Prefect and statistical variants are defined analogously.

^aLength of auxiliary input does not count for the running time.

- "Most simulators" are black box
- Strictly weaker then general simulation!

Section 4

Zero Knowledge for all NP

CZKP for 3COL

- Assuming that OWFs exists, we give a CZKP for 3COL.
- We show how to transform it for any $\mathcal{L} \in NP$ (using that $3COL \in NPC$).

CZKP for 3COL

- Assuming that OWFs exists, we give a CZKP for 3COL.
- We show how to transform it for any $\mathcal{L} \in NP$ (using that $3\text{COL} \in NPC$).

Definition 16 (3COL)

 $G = (M, E) \in 3COL$, if $\exists \phi : M \mapsto [3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.

CZKP for 3COL

- Assuming that OWFs exists, we give a CZKP for 3COL.
- We show how to transform it for any $\mathcal{L} \in NP$ (using that $3COL \in NPC$).

Definition 16 (3COL)

$$G = (M, E) \in 3$$
COL, if $\exists \phi : M \mapsto [3]$ s.t. $\phi(u) \neq \phi(v)$ for every $(u, v) \in E$.

We use commitment schemes.

The protocol

Let π_3 be the set of all permutations over [3].

The protocol

Let π_3 be the set of all permutations over [3]. We use perfectly binding commitment Com (statistically binding?).

The protocol

Let π_3 be the set of all permutations over [3]. We use perfectly binding commitment Com (statistically binding?).

Protocol 17 ((P, V))

Common input: Graph G = (M, E) with n = |G| P's input: a (valid) coloring ϕ of G

- **1** P chooses $\pi \leftarrow \Pi_3$ and sets $\psi = \pi \circ \phi$
- ② $\forall v \in M$: P commits to $\psi(v)$ using Com(1ⁿ). Let c_v and d_v be the resulting commitment and decommitment.
- **3** V sends $e = (u, v) \leftarrow E$ to P
- **9** P sends $(d_u, \psi(u)), (d_v, \psi(v))$ to V
- V verifies that (1) both decommitments are valid, (2) $\psi(u), \psi(v) \in [3]$ and (3) $\psi(u) \neq \psi(v)$.

Claim 18

The above protocol is a CZKP for 3COL, with perfect completeness and soundness 1/|E|.

Claim 18

The above protocol is a CZKP for 3COL, with perfect completeness and soundness 1/|E|.

Completeness: Clear

Soundness: Let $\{c_v\}_{v \in M}$ be the commitments resulting from

an interaction of V with an arbitrary P*.

Claim 18

The above protocol is a CZKP for 3COL, with perfect completeness and soundness 1/|E|.

Completeness: Clear

Soundness: Let $\{c_v\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary P^* .

Define $\phi \colon M \mapsto [3]$ as follows:

 $\forall v \in M$: let $\phi(v)$ be the (single) value that it is possible to decommit c_v into (if not in [3], set $\phi(v) = 1$).

Claim 18

The above protocol is a CZKP for 3COL, with perfect completeness and soundness 1/|E|.

Completeness: Clear

Soundness: Let $\{c_v\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary P^* .

Define $\phi \colon M \mapsto [3]$ as follows:

 $\forall v \in M$: let $\phi(v)$ be the (single) value that it is possible to decommit c_v into (if not in [3], set $\phi(v) = 1$).

If $G \notin 3COL$, then $\exists (u, v) \in E$ s.t. $\psi(u) = \psi(v)$.

Claim 18

The above protocol is a CZKP for 3COL, with perfect completeness and soundness 1/|E|.

Completeness: Clear

Soundness: Let $\{c_v\}_{v \in M}$ be the commitments resulting from an interaction of V with an arbitrary P^* .

Define $\phi \colon M \mapsto [3]$ as follows:

 $\forall v \in M$: let $\phi(v)$ be the (single) value that it is possible to decommit c_v into (if not in [3], set $\phi(v) = 1$).

If $G \notin 3$ COL, then $\exists (u, v) \in E$ s.t. $\psi(u) = \psi(v)$. Hence V rejects such x w.p. a least 1/|E|

Proving ZK

Fix a deterministic, non-aborting V^{\ast} that gets no auxiliary input.

Proving ZK

Fix a deterministic, non-aborting V* that gets no auxiliary input.

Algorithm 19 (S)

Input: A graph G = (M, E) with n = |G|

Do $n \cdot |E|$ times:

- ① Choose $e' = (u, v) \leftarrow E$. Set $\psi(u) \leftarrow [3]$, $\psi(v) \leftarrow [3] \setminus \{\psi(u)\}$, and $\psi(w) = 1$ for $w \in M \setminus \{u, v\}$
- \bullet $\forall v \in M$: commit to $\psi(v)$ to V^* (resulting in c_v and d_v)
- If e = e', send $(d_u, \psi(u)), (d_v, \psi(v))$ to V*, output V*'s output and halt.

 Otherwise, rewind the simulation to its first step.

Abort

Proving ZK cont.

Claim 20

 $\{(P(w_x), V^*)(x)\}_{x \in 3COL} \approx_c \{S^{V^*(x)}(x)\}_{x \in 3COL}$, for any $\{w_x \in R_{3COL}(x)\}_{x \in 3COL}$.

Consider the following (inefficient simulator)

Algorithm 21 (S')

Input: G = (V, E) with n = |G|

Find (using brute force) a valid coloring ϕ of G

Do $n \cdot |E|$ times

- **①** Act as the honest prover does given private input ϕ
- 2 Let e be the edge sent by V*.

W.p. 1/|E|, S' sends $(\psi(u), d_u), (\psi(v), d_v)$ to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Consider the following (inefficient simulator)

Algorithm 21 (S')

Input: G = (V, E) with n = |G|

Find (using brute force) a valid coloring ϕ of G

Do $n \cdot |E|$ times

- **①** Act as the honest prover does given private input ϕ
- 2 Let e be the edge sent by V*.

W.p. 1/|E|, S' sends $(\psi(u), d_u), (\psi(v), d_v)$ to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 22

$$\{S^{V^*(x)}(x)\}_{x \in 3COL} \approx_c \{S'^{V^*(x)}(x)\}_{x \in 3COL}$$

Algorithm 21 (S')

Input: G = (V, E) with n = |G|

Find (using brute force) a valid coloring ϕ of G

Do $n \cdot |E|$ times

- $oldsymbol{0}$ Act as the honest prover does given private input ϕ
- 2 Let e be the edge sent by V*.

W.p. 1/|E|, S' sends $(\psi(u), d_u), (\psi(v), d_v)$ to V*, output V*'s output and halt.

Otherwise, rewind the simulation to its first step.

Abort

Claim 22

$$\{S^{V^*(x)}(x)\}_{x \in 3COL} \approx_c \{S'^{V^*(x)}(x)\}_{x \in 3COL}$$

Proof: ?

Proving Claim ??

Assume \exists PPT D, $p \in$ poly and an infinite set $\mathcal{I} \subseteq$ 3COL s.t.

$$\left| \Pr[\mathsf{D}(|x|,\mathsf{S}^{\mathsf{V}^*(x)}(x)) = 1] - \Pr[\mathsf{D}(|x|,\mathsf{S}'^{\mathsf{V}^*(x)}(x)) = 1] \right| \ge 1/p(|x|)$$

for all $x \in \mathcal{I}$.

Proving Claim ??

Assume \exists PPT D, $p \in$ poly and an infinite set $\mathcal{I} \subseteq$ 3COL s.t.

$$\left| \Pr[\mathsf{D}(|x|,\mathsf{S}^{\mathsf{V}^*(x)}(x)) = 1] - \Pr[\mathsf{D}(|x|,\mathsf{S'}^{\mathsf{V}^*(x)}(x)) = 1] \right| \ge 1/p(|x|)$$

for all $x \in \mathcal{I}$.

Hence, \exists PPT R* and $b \neq b' \in [3]$ such that

$$\{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(b),\mathsf{R}^*(x))(\mathsf{1}^{|x|})\}_{x\in\mathcal{I}} \not\approx_{c} \{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(b'),\mathsf{R}^*(x))(\mathsf{1}^{|x|})\}_{x\in\mathcal{I}}$$

where S is the sender in Com.

Proving Claim ??

Assume \exists PPT D, $p \in$ poly and an infinite set $\mathcal{I} \subseteq$ 3COL s.t.

$$\left| \Pr[\mathsf{D}(|x|,\mathsf{S}^{\mathsf{V}^*(x)}(x)) = 1] - \Pr[\mathsf{D}(|x|,\mathsf{S}'^{\mathsf{V}^*(x)}(x)) = 1] \right| \ge 1/p(|x|)$$

for all $x \in \mathcal{I}$.

Hence, \exists PPT R* and $b \neq b' \in [3]$ such that

$$\{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(b),\mathsf{R}^*(x))(\mathsf{1}^{|x|})\}_{x\in\mathcal{I}}\not\approx_{c} \{\mathsf{View}_{\mathsf{R}^*}(\mathsf{S}(b'),\mathsf{R}^*(x))(\mathsf{1}^{|x|})\}_{x\in\mathcal{I}}$$

where S is the sender in Com.

We critically used the non-uniform security of Com

S' is a good simulator

Claim 23

 $\{(P(w_x), V^*)(x)\}_{x \in 3COL} \approx_c \{S'^{V^*(x)}(x)\}_{x \in 3COL}, \text{ for any } \{w_x \in R_{GI}(x)\}_{x \in 3COL}.$

S' is a good simulator

Claim 23

$$\begin{aligned} & \left\{ (\mathsf{P}(\textit{w}_{\textit{x}}), \mathsf{V}^*)(\textit{x}) \right\}_{\textit{x} \in \mathsf{3COL}} \approx_{\textit{c}} \left\{ \mathsf{S}'^{\mathsf{V}^*(\textit{x})}(\textit{x}) \right\}_{\textit{x} \in \mathsf{3COL}}, \text{ for any } \\ & \left\{ \textit{w}_{\textit{x}} \in \textit{R}_{\mathsf{GI}}(\textit{x}) \right\}_{\textit{x} \in \mathsf{3COL}}. \end{aligned}$$

Proof: ?

Remarks

Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification

Remarks

Remarks

- Aborting verifiers
- Auxiliary inputs
- Soundness amplification
- Non-uniform hiding guarantee

Extending to all $\mathcal{L} \in NP$

Let (P, V) be a CZKP for 3COL, and let Map_X and Map_W be two poly-time functions s.t.

- $\forall x \in \{0,1\}^*$: $x \in \mathcal{L} \longleftrightarrow \mathsf{Map}_X(x) \in \mathsf{3COL}$,
- $\forall x \in \mathcal{L}$ and $w \in R_L(x)$: $Map_W(x, w) \in R_{3COL}(Map_X(x))$

Extending to all $\mathcal{L} \in NP$

Let (P, V) be a CZKP for 3COL, and let Map_X and Map_W be two poly-time functions s.t.

- $\forall x \in \{0,1\}^*$: $x \in \mathcal{L} \longleftrightarrow \mathsf{Map}_X(x) \in \mathsf{3COL}$,
- $\forall x \in \mathcal{L}$ and $w \in R_L(x)$: $Map_W(x, w) \in R_{3COL}(Map_X(x))$

Protocol 24 ((P_L, V_L))

Common input: $x \in \{0, 1\}^*$

 $P_{\mathcal{L}}$'s input: $w \in R_{\mathcal{L}}(x)$

- The two parties interact in $\langle (P(Map_W(x, w)), V)(Map_X(x)) \rangle$, where $P_{\mathcal{L}}$ and $V_{\mathcal{L}}$ taking the role of P and V respectively.

Extending to all $\mathcal{L} \in NP$ cont.

Claim 25

 $(P_{\mathcal{L}},V_{\mathcal{L}})$ is a CZKP for \mathcal{L} with the same completeness and soundness as (P,V) as for 3COL.

Extending to all $\mathcal{L} \in NP$ cont.

Claim 25

 $(P_{\mathcal{L}},V_{\mathcal{L}})$ is a CZKP for \mathcal{L} with the same completeness and soundness as (P,V) as for 3COL.

Completeness and soundness: Clear.

Extending to all $\mathcal{L} \in NP$ cont.

Claim 25

 $(P_{\mathcal{L}},V_{\mathcal{L}})$ is a CZKP for \mathcal{L} with the same completeness and soundness as (P,V) as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).
 - Define $S_{\mathcal{L}}(x)$ to output $S(Map_X(x))$, while replacing the string $Map_X(x)$ in the output of S with x.

Extending to all $\mathcal{L} \in NP$ cont.

Claim 25

 $(P_{\mathcal{L}},V_{\mathcal{L}})$ is a CZKP for \mathcal{L} with the same completeness and soundness as (P,V) as for 3COL.

- Completeness and soundness: Clear.
- Zero knowledge: Let S (an efficient) ZK simulator for (P, V) (for 3COL).

Define $S_{\mathcal{L}}(x)$ to output $S(Map_X(x))$, while replacing the string $Map_X(x)$ in the output of S with x.

$$\begin{split} &\{(\mathsf{P}(w_{x}),\mathsf{V}^{*})(x)\}_{x\in\mathcal{L}}\not\approx_{c}\{\mathsf{S}^{\mathsf{V}^{*}(x)}_{\mathcal{L}}(x)\}_{x\in\mathcal{L}}\text{ for some }\mathsf{V}^{*}_{\mathcal{L}},\\ &\mathsf{implies}\left\{(\mathsf{P}(\mathsf{Map}_{W}(x,w_{x})),\mathsf{V}^{*})(x)\right\}_{x\in\mathsf{3COL}}\not\approx_{c}\\ &\{\mathsf{S}^{\mathsf{V}^{*}(x)}(x)\}_{x\in\mathsf{3COL}}, \end{split}$$

• $V^*(x)$: find $x^{-1} = \operatorname{Map}_X^{-1}(x)$ and act like $V_{\mathcal{L}}^*(x^{-1})$