Solve the GPE in a 1D parabolic trap

Ashton Bradley

April 12, 2019

1 Introduction

In this simple example we find a ground state of the Gross-Pitaevskii equation in a harmonic trap.

The mean field order parameter evolves according to

$$i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left(-\frac{\hbar^2 \partial_x^2}{2m} + V(x,t) + g|\psi(x,t)|^2\right)\psi(x,t)$$

2 Loading the package

```
First, we load some useful packages.
```

```
using Plots, LaTeXStrings, Pkg, Revise gr(legend=false,titlefontsize=12,size=(500,300),transpose=true,colorbar=false);
```

Now load FourierGPE

using FourierGPE

Let's define a convenient plot function

```
function showpsi(x, \( \psi \)
    p1 = plot(x,abs2.(\( \psi \)))
    xlabel!(L"x/a_x");ylabel!(L"\\psi|^2")
    p2 = plot(x,angle.(\( \psi \)))
    xlabel!(L"x/a_x");ylabel!(L"\\textrm{\phase}(\\psi)")
    p = plot(\( \psi \), \( \psi \) zize=(600,400))
    return p
end

showpsi (generic function with 1 method)
```

3 User parameters

We reserve a place for user parameters.

3.1 Declaring the potential

Let's define the trapping potential.

```
import FourierGPE.V
V(x,t) = 0.5*x^2
V (generic function with 3 methods)
```

We only require that it is a scalar function because alter we will evaluate it using a broad-casted dot-call.

4 Initial condition

Let's define a useful Thomas-Fermi wavefunction

```
\psi 0(x,\mu,g) = \operatorname{sqrt}(\mu/g) * \operatorname{sqrt}(\max(1.0-V(x,0.0)/\mu,0.0) + \operatorname{im}*0.0)  x = X[1]; The initial state is now created as \psi i = \psi 0.(x,\mu,g) \psi i : += (\operatorname{randn}(N...) \mid > \operatorname{complex}) \phi i = \operatorname{kspace}(\psi i, \operatorname{sim}) \operatorname{Opack!} \sin = \phi i;
```

5 Evolution in k-space

```
The FFTW library is used to evolve the Gross-Pitaevskii equation in k-space sol = runsim(sim.\phi i, sim);
0.566155 seconds (1.42 M allocations: 68.902 MiB, 5.42% gc time)
```

Here we save the entire solution as a single variable sol.

Let's have a look at the final state and verify we have a ground state

```
\phi g = sol[end]

\psi g = xspace(\phi g, sim)

showpsi(x, \psi g)
```


The initial Thomas-Fermi state has been evolved for a default time $t=2/\gamma$ which is a characteristic damping time for the dissipative system with dimensionless damping γ . The solution will approach the ground state satisfying $L\psi_0 = \mu\psi_0$ on a timescale of order $1/\gamma$. The figure shows a smooth density profile and a completely homogeneous phase profile over the region of finite atomic density, as required for the ground state.

5.1 Default simulation parameters

The default parameters are given in the declaration of Sim, which allows parameter interdependence. The struct Sim is declared as:

```
@with_kw mutable struct Sim{D} <: Simulation{D} @deftype Float64
    L::NTuple{D,Float64}
    N::NTuple{D,Int64}
    \mu = 15.0
    g = 0.1
    \gamma = 0.5; @assert \gamma >= 0.0
    ti = 0.0
    tf = 2/\gamma
    Nt::Int64 = 200
    t::LinRange{Float64} = LinRange(ti,tf,Nt)
    \phii::Array{Complex{Float64},D} = zeros(N...) |> complex
    params::UserParams # optional parameters
```

```
T::TransformLibrary{D} = Transforms{D}()
X::NTuple{D,Array{Float64,1}} = xvecs(L...,N...)
K::NTuple{D,Array{Float64,1}} = kvecs(L...,N...)
espec::Array{Complex{Float64},D} = k2(L...,N...)
end
```

where we see a set of default parameters, and then some useful transform fields built using the parameters. Note that the transforms have to be built after building X,K.

6 Imprinting a dark soliton

We found a ground state by imaginary time propagation. Now we can impose a phase and density imprint consistent with a dark soliton. We will use the solution for the homogeneous system, which will be a reasonable approximation if we impose it on a smooth background solution.

- 6.1 Dark soliton in homogneous system
- 6.2 Dark soliton in a harmonic trap