IT Picard numbers of K3 surfaces

X = algebraic K3 surface / k # field $(geom.int.) <math>w_X = u_X ; H'(X, u_X) = 0.$

X := Xxx k

Gal(E/k)-module shockur of PicX encodes arithmetic on X, eg
Br,X/BroX if X(Ak) + Ø.

Question: What is 12 Pic X =: p(X)?

Recall Pic X = NSX = NmX and $1 \le p(X) \le 20$

§1: rediction rup mod p/specialization.

Good reduction:

Frack=K = R Dedekind domain p nonzero prime X = smooth proper K-variety.

good reduction at 7:

3 smooth proper X -> Spec Ra

s.t. $\chi_{K} = \chi$ as K-schemes

Spec Ra Spec K

4

Specialization integral closure I = RA - R p=chark. X - Spec R smooth (rel. dim 2) proper. ヨ Pic Xx → Pic Xx $\rightarrow SP_{\bar{K},\bar{E}}: NS(\chi_{\bar{K}}) \rightarrow NS(\chi_{\bar{k}})$ injective up to p-tersion.

Conclusion: (K number held)

If $\chi_{\bar{k}}$, $\chi_{\bar{k}}$ are K3 surfaces then $\rho(\chi_{\bar{k}}) \leq \rho(\chi_{\bar{k}})$

§ 2 cycle class map.

X/Fq "nice" q = p' $A \neq p$ prime $\sigma \in Frob \in Gal(F_2/F_2) = :\Gamma$

$$0 \rightarrow \mu_{n} \rightarrow 6_{m} \xrightarrow{1} 6_{m} \rightarrow 0 \quad \text{Kunner}$$
exact on $X_{\text{ét}}$

$$0 \rightarrow \mu_{n} \rightarrow 6_{m} \xrightarrow{1} 6_{m} \rightarrow 0 \quad \text{Kunner}$$

$$0 \rightarrow \mu_{n} \rightarrow 6_{m} \xrightarrow{1} 6_{m} \rightarrow 0 \quad \text{Kunner}$$

$$0 \rightarrow \mu_{n} \rightarrow 6_{m} \xrightarrow{1} 6_{m} \rightarrow 0 \quad \text{Kunner}$$

$$0 \rightarrow \mu_{n} \rightarrow 6_{m} \xrightarrow{1} 6_{m} \rightarrow 0 \quad \text{Kunner}$$

$$S_n: H_{at}^1(X, G_m) \to H_{at}^2(X, M_n)$$

$$Pic X$$

$$\frac{71}{Pic X}$$

$$\frac{1!}{2! mZ(1)}$$

Take lim

PicX -> lim Het (X, Hm) =: Het (X, Zh)

tensor & Qe

c: NS(X) & Qe (1))

Observation:

Some power of 0*ANS(X) are not of 1.

=> ergenvalus of 0*ANS(X) are not of 1.

put together: < # eigenvalues of o*(1) $\rho(\bar{x}) = rkNs(\bar{x})_{\alpha_k}$ on Het (X, Qe)(1) that are rock of unity. Take conjecture: < # eigenvalues of ota H3(x,q) this is an equality (OK if q odd) of the form $\frac{y}{9}$ where y is a root of unity.

Want: charac poly of ot A Het (X, De). Can get: charac poly of (0*) A Het (X, De). X is K3 susface / k # field p prime of good reduction.

Then

$$p(\bar{X}) \le p(\bar{X}_p) \le \# \text{ of eigenvalues of } (\sigma^*)^{-1} \cap_{x} H_{ef}^2(\bar{X}, \Omega_e)$$
of the form $y \cdot q$
where $y = root \text{ of } 1$.

1) this number is even.

Let $\psi_{\varepsilon}(x) = \text{charac poly of } (\sigma^{+})^{-1} \alpha H_{ef}^{2}(\bar{X}, Q_{\varepsilon})$

Linear algebra: 4g(x) can be computed from traces of powers of (0+)-1.

Good news!

Lefschetz trace termula:

Trace $(0^{n-1})^n = \# X_p(\mathbb{F}_{2^n})^{-1} - 2^{2n}$.

a counting points is hard!

Example:
$$\chi \in P(1, 1, 1, 3)$$
 $W^2 = 2y^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$

(an show $p(\bar{X}) \leq 2$
 $\chi \chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi \chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$
 $\chi^2 = 2\chi^2(\chi^2 + 2\chi y + 2y^2)^2 + (2\chi + 2)p_5(\chi y, \frac{2}{2})$

(onguering p(X)=1 (van Luijk) $k=\omega$ for simplicity X: K3 surface p,p' two primes of reduction.

Suppose that $NS(\bar{X}_P) \simeq Z^n$ $NS(\bar{X})$ $NS(\bar{X}_{p'}) \sim Z^n$ Disc $NS(\bar{X}_p) \neq Disc NS(\bar{X}_p)$ is Q^{X}/Q^{X2} $\rho(\bar{X}) \leq n-1$.

To compute Disc NS(Xp) either

- . find explicit generator.
- · use Artin-Tate Grmula (Kloostrman)

Elsenhons-Jahnel: $p \neq 2 \ k = \Omega$. $NS(\bar{X}) \longrightarrow NS(\bar{X}_p)$ has torsion-free cokernel.