Perceptron

2. Let the following be a training set, $\{(x, t)\}$

Let
$$\mathbf{w} = \{w_0, w_1, w_2\} = \{0.1, 0.1, -0.3\}$$

Perceptron learning rule:

$$w_i \leftarrow w_i + \Delta w_i$$

where

$$\Delta w_i = \boldsymbol{\eta} (t^k - y^k) x_i^k$$

(a) What is the accuracy of the perceptron on the training data before training?

Example	Target	Output
0,0	0	1
0,1	1	0
1,1	1	0

Accuracy: 0

Output = 1 if y>0
Output = 0 if y<=0
$$y = w_1x_1 + w_2x_2 + w_0$$

Perceptron

(b). Using the Perceptron learning rule, train the perceptron for one epoch, setting $\eta = 0.2$.

What are the weights after training for one epochs?

Example	Target	Ou	tput
0,0	0	1	
$\Delta w_0 = (.2)$	(-1)(1) =	2	$w_0 =1$
$\Delta w_1 = (.2)$	(-1)(0)=0		$w_1 = .1$
$\Delta w_0 = (.2)$	(-1)(0)=0		$w_2 =3$

New perceptron:

New perceptron:

Example	Target	Output
1,1	1	1

Weights don't change.

Perceptron

(c) What is the accuracy of the perceptron on the training data after training for one epoch? Did the accuracy improve?

Example	Target	Output
0,0	0	1
0,1	1	0
1,1	1	1

Accuracy: 1/3 Yes, it improved.

Apply the Viterbi algorithm to find the student's sleeping history from the following observations:

■ day: 1 : no red eye and not sleeping in class

■ day: 2: no red eye and sleeping in class

■ day: 3: red eye and sleeping in class

Observations: (!R, !C) (!R, C) (R,C)

Classes: S, !S

R= Red eye

!R= No red Eye

C = Sleeping in class

!C = Not sleeping in class

S = Had enough Sleep

!S = Did not have enough Sleep

Apply the Viterbi algorithm to find the student's sleeping history from the following observations:

day: 1 : no red eye and not sleeping in class

■ day: 2 : no red eye and sleeping in class

■ day: 3: red eye and sleeping in class

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

R= Red eye

!R= No red Eye

C = Sleeping in class

!C = Not sleeping in class

S = Had enough Sleep

!S = Did not have enough Sleep

$$P(S|q_0) = 0.6 P(!S|q_0) = 0.4$$

$$P(!S|S) = 0.1$$

$$P(S| !S) = 0.2$$

$$P(!S|!S) = 0.8$$

:	
$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

 $\begin{array}{ll} P(\{R,C\} \mid S) = 0.02 & P(\{R,C\} \mid !S) = 0.28 \\ P(\{R,!C\} \mid S) = 0.08 & P(\{R,!C\} \mid !S) = 0.42 \\ P(\{!R,C\} \mid S) = 0.18 & P(\{!R,C\} \mid !S) = 0.12 \\ P(\{!R,!C\} \mid S) = 0.72 & P(\{!R,!C\} \mid !S) = 0.18 \end{array}$

 $P(S|q_0) = 0.6$ $P(!S|q_0) = 0.4$

$$P(S|S) = 0.9$$

$$P(!S|S)=0.1$$

$$P(S| !S) = 0.2$$

$$P(!S|!S) = 0.8$$

Observations: {!R, !C} {!R, C} {R,C}

 $\{!R, !C\}$

 $\{!R,C\}$

 $\{R,C\}$

Classes: S, !S

!S

S

Input

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

$$P(S|q_0) = 0.6$$

$$P(!S|q_0) = 0.4$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

 $\begin{array}{ll} P(\{R,C\} \mid S) = 0.02 & P(\{R,C\} \mid !S) = 0.28 \\ P(\{R,!C\} \mid S) = 0.08 & P(\{R,!C\} \mid !S) = 0.42 \\ P(\{!R,C\} \mid S) = 0.18 & P(\{!R,C\} \mid !S) = 0.12 \\ P(\{!R,!C\} \mid S) = 0.72 & P(\{!R,!C\} \mid !S) = 0.18 \end{array}$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S)=0.1

P(S| !S) = 0.2

$$P(\{!R, !C\}|S) = P(\{!R, !C\}|S) * P(S|q_0) = 0.012$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

Input

 $\begin{array}{ll} P(\{R,C\} \mid S) = 0.02 & P(\{R,C\} \mid !S) = 0.28 \\ P(\{R,!C\} \mid S) = 0.08 & P(\{R,!C\} \mid !S) = 0.42 \\ P(\{!R,C\} \mid S) = 0.18 & P(\{!R,C\} \mid !S) = 0.12 \\ P(\{!R,!C\} \mid S) = 0.72 & P(\{!R,!C\} \mid !S) = 0.18 \end{array}$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

P(!S|!S) = 0.8

{!R, C}

 $\{R, C\}$

$$P(\{!R, !C\}|S) = P(\{!R, !C\}|S) * P(S|q_0) = 0.432$$

 $\{!R, !C\}$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

P(S|S) = 0.9

P(!S|S)=0.1

P(S| !S) = 0.2

!S	0.072 (q ₀)		
S	0.432 (q ₀)		
Input	{!R, !C}	{!R, C}	{R, C}

$$P(\{!R, !C\}| !S) = P(\{!R, !C\}| !S) * P(!S|q_0) = 0.072$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

$$P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|S)$$

$$P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|!S)$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P({R,!C} !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

$$P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|S) = 0.18 * 0.9 = 0.162$$

$$P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|!S)$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P({R,C} S) = 0.02$ $P({R,!C} S) = 0.08$	$P({R,C} !S) = 0.28$ $P({R,!C} !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

$$P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|S) = 0.18 * 0.9 = 0.162$$

$$P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|!S) = 0.18 * 0.2 = 0.036$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

Input

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

P(!S|!S) = 0.8

$$\begin{array}{ccc}
 & 0.072 & & \\
 & (q_0) & & \\
S & & 0.432 & 0.162 \\
 & (q_0) & & & (S)
\end{array}$$

 $\{!R,C\}$

 $\{R,\,C\}$

 $P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|S) = 0.18 * 0.9 = 0.162$

{!R, !C}

 $P(\{!R, C\}|S) = P(\{!R, C\}|S) * P(S|!S) = 0.18 * 0.2 = 0.036$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P({R,!C} !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

!S	0.072 (q ₀) —	→	
S	0.432 (q ₀)	0.162 (S)	
Input	{!R, !C}	{!R, C}	{R, C}

$$P(\{!R, C\}| !S) = P(\{!R, C\}| !S) * P(!S|S)$$

$$P(\{!R, C\}| !S) = P(\{!R, C\}| !S) * P(!S|!S)$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

!S	0.072 (q ₀) —	→	
S	0.432 (q ₀)	0.162 (S)	
Input	{!R, !C}	{!R, C}	{R, C}

$$P(\{!R, C\}| !S) = P(\{!R, C\}| !S) * P(!S|S) = 0.012$$

$$P(\{!R, C\}| !S) = P(\{!R, C\}| !S) * P(!S|!S) = 0.096$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

P(!S|!S) = 0.8

!S	0.072 (q ₀) ——	0.096 (!S)	
S	0.432 (q ₀)	0.162 (S)	
Input	{!R, !C}	{!R, C}	{R, C}

 $P(\{!R, C\}| !S) = P(\{!R, C\}| !S) * P(!S|S) = 0.012$

 $P(\{!R, C\}| !S) = P(\{!R, C\}| !S) * P(!S|!S) = 0.096$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

!S	0.072 (q ₀)	0.096 (!S)	
S	0.432 (q ₀)	0.162 (S) -	—
Input	{!R, !C}	{!R, C}	{R, C}

$$P({R, C} | S) = P({R, C} | S) * P(S|S)$$

$$P({R, C}|S) = P({R, C}|S) * P(S|S)$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P({R,!C} !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S)=0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S)=0.9

P(!S|S)=0.1

P(S| !S) = 0.2

!S	0.072 (q ₀)	0.096 (!S)	
S	0.432 (q ₀)	0.162 (S)	
Input	{!R, !C}	{!R, C}	{R, C}

$$P({R, C}|S) = P({R, C}|S) * P(S|S) = 0.018$$

$$P({R, C}|S) = P({R, C}|S) * P(S|S)$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

!S	0.072 (q ₀)	0.096 (!S)	
S	0.432 (q ₀)	0.162 (S)	
Input	{!R, !C}	{!R, C}	{R, C}

$$P({R, C} | S) = P({R, C} | S) * P(S|S) = 0.018$$

$$P({R, C}|S) = P({R, C}|S) * P(S|S) = 0.004$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

!S	0.072 (q ₀)	0.096 (!S)	
S	0.432 (q ₀)	0.162 (S)	\rightarrow $\stackrel{0.018}{(S)}$
Input	{!R, !C}	{!R, C}	{R, C}

$$P(\{R, C\}|S) = P(\{R, C\}|S) * P(S|S) = 0.018$$

$$P({R, C}|S) = P({R, C}|S) * P(S|S) = 0.004$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S)=0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

!S	0.072 (q ₀)	0.096 (!S)	→
S	0.432 (q ₀)	0.162 (S)	0.018 (S)
Input	{!R, !C}	{!R, C}	{R, C}

$$P({R, C} | !S) = P({R, C} | !S) * P(!S|S) = 0.028$$

$$P({R, C} | !S) = P({R, C} | !S) * P(!S | !S)$$

Observations: {!R, !C} {!R, C} {R,C}

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

$$P({R, C} | !S) = P({R, C} | !S) * P(!S|S) = 0.028$$

$$P({R, C} | !S) = P({R, C} | !S) * P(!S | !S) = 0.224$$

Observations: $\{!R, !C\}$ $\{!R, C\}$ $\{R,C\}$

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

P(!S|!S) = 0.8

!S	0.072	0.096	0.224
	(q ₀)	(!S)	(!S)
S	0.432	0.162	0.018
	(q ₀)	(S)	(S)
Input	{!R, !C}	{!R, C}	{R, C}

$$P({R, C} | !S) = P({R, C} | !S) * P(!S|S) = 0.028$$

 $P({R, C}| !S) = P({R, C}| !S) * P(!S|!S) = 0.224$

Observations: {!R, !C} {!R, C} {R,C}

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P(\{R,!C\} \mid !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

			!S
!S	$0.072 \ (q_0)$	0.096 (!S)	0.224 (!S)
S	0.432 (q ₀)	0.162 (S)	0.018 (S)
Input	{!R, !C}	{!R, C}	{R, C}

Observations: {!R, !C} {!R, C} {R,C}

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P({R,!C} !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

		!S	!S
!S	0.072	0.096	0.224
	(q ₀)	(!S)	(!S)
S	0.432	0.162	0.018
	(q ₀)	(S)	(S)
Input	{!R, !C}	{!R, C}	{R, C}

Observations: {!R, !C} {!R, C} {R,C}

Classes: S, !S

$P(\{R,C\} \mid S) = 0.02$	$P(\{R,C\} \mid !S) = 0.28$
$P(\{R,!C\} \mid S) = 0.08$	$P({R,!C} !S) = 0.42$
$P(\{!R,C\} \mid S) = 0.18$	$P(\{!R,C\} \mid !S) = 0.12$
$P(\{!R,!C\} \mid S) = 0.72$	$P(\{!R,!C\} \mid !S) = 0.18$

 $P(S|q_0) = 0.6$

 $P(!S|q_0) = 0.4$

P(S|S) = 0.9

P(!S|S) = 0.1

P(S| !S) = 0.2

	!S	!S	!S
!S	0.072	0.096	0.224
	(q ₀)	(!S)	(!S)
S	0.432	0.162	0.018
	(q ₀)	(S)	(S)
Input	{!R, !C}	{!R, C}	{R, C}