ASTR400B Homework 3

Suhani Surana

February 2025

1 Mass Breakdown of the local group

Galaxy Name	Halo Mass $(10^{12} M_{\odot})$	Disk Mass $(10^{12} M_{\odot})$	Bulge Mass $(10^{12} M_{\odot})$	Total Mass $(10^{12} M_{\odot})$	$f_{ m bar}$
MW	1.975	0.075	0.01	2.06	0.0413
M31	1.921	0.12	0.019	2.06	0.067
M33	0.187	0.0093	0	0.1963	0.047

Table 1: Mass Breakdown of the local group

1.1 Calculations

MW (Milky Way)

Total mass:

Total Mass =
$$1.975 + 0.075 + 0.01 = 2.06 \times 10^{12} M_{\odot}$$

Baryon fraction:

$$f_{\text{bar}} = \frac{0.075 + 0.01}{2.06} = \frac{0.085}{2.06} \approx \boxed{0.0413}$$

MW31

Total mass:

Total Mass =
$$1.921 + 0.12 + 0.019 = 2.06 \times 10^{12} M_{\odot}$$

Baryon fraction:

$$f_{\text{bar}} = \frac{0.12 + 0.019}{2.06} = \frac{0.139}{2.06} \approx \boxed{0.067}$$

MW33

Total mass:

Total Mass =
$$0.187 + 0.0093 + 0 = \boxed{0.1963 \times 10^{12} M_{\odot}}$$

Baryon fraction:

$$f_{\text{bar}} = \frac{0.0093 + 0}{0.1963} = \frac{0.0093}{0.1963} \approx \boxed{0.0474}$$

Local Group

Total mass:

Total Mass =
$$2.06 + 2.06 + 0.1963 = \boxed{4.3163 \times 10^{12} M_{\odot}}$$

Baryon fraction:

$$f_{\text{bar}} = \frac{0.085 + 0.139 + 0.0093}{4.3163} = \frac{0.2333}{4.3163} \approx \boxed{0.054}$$

2 Questions

- 1. The total mass is exactly the same. In both of them, halo mass dominates the total mass.
- 2. M31's stellar mass is 1.635 times MW's stellar mass. Thus, M31 would be more luminious as compared to MW.
- 3. MW's dark matter mass is 1.02 times the M31's dark matter mass. This is surprising as M31 has a lot more stellar mass as compared to MW. Thus, it suggests they might have different rates of stellar formation in the past or different magnitudes of feedback processes.
- 4. MW has 4.13~% mass locked up in baryons. M31 has 6.7~% mass locked up in baryons. M33 has 4.74~% mass locked up in baryons. AGM release a lot of gas into the IGM, which could potentially lower this fraction. This could also be due to other feedback processes or missing baryons.