Проект по курсу "Численные методы в физике космической плазмы" на тему

# "Моделирование движения заряженных частиц в электромагнитном поле. Сравнение прямых и параллельных вычислений".

Московский Физико-Технический Институт Физтех-школа физики и исследований им. Ландау Студент 782 группы: Сатыбалдиев М.Н. Преподаватель: Попов В.Ю. Декабрь 2020

## Введение

В данной работе рассмотрено моделирование движения заряженных частиц в однородном электромагнитном поле. Также были сравнены времена линейных, многопроцессорных и многопоточных вычислений на языке программирования Python.

# Динамика частицы

Уравнение движения частицы массы m заряда q в электромагнитном поле  $\vec{E}, \vec{H}$  выглядит следующим образом:

$$\begin{cases} \frac{d\vec{V}}{dt} = \frac{q}{m}(\vec{E} + \vec{V} \times \vec{B}), \\ \vec{V} = \frac{d\vec{R}}{dt}, \end{cases}$$
(1)

где  $\vec{R}$  - радиус-вектор частицы,  $\vec{V}$  - ее скорость.

Будем рассматривать движение в однородном поле с  $\vec{E} = \begin{pmatrix} E \\ 0 \\ 0 \end{pmatrix}$  и  $\vec{H} = \begin{pmatrix} H \\ 0 \\ 0 \end{pmatrix}$ .

В таком поле будет наблюдаться ускорение частицы вдоль оси x и вращение в плоскости yz с частотой  $\Omega_c = \frac{qH}{m}$ .

## Разностная схема

Для решения задачи была использована схема с перешагиванием(Leap-Frog Method):

$$\begin{cases} \vec{R}_{n} = \vec{R}_{n-1} + \vec{V}_{n-\frac{1}{2}} \Delta t \\ \vec{V}_{n+\frac{1}{2}} = \vec{V}_{n-\frac{1}{2}} + \frac{q}{m} (\vec{E}_{n-\frac{1}{2}} + \vec{V}_{n-\frac{1}{2}} \times \vec{H}_{n-\frac{1}{2}}) \Delta t \end{cases}$$
 (2)

В упрощенном виде[2] второе уравнение принимает вид:

$$\vec{V}_{n+\frac{1}{2}} = \vec{V}_{n-\frac{1}{2}}(1 - \frac{1}{2}\Omega_c^2 \Delta t^2) + \frac{q\Delta t}{m}(\vec{E} + \vec{V}_{n-\frac{1}{2}} \times \vec{H}) + \frac{q^2 \Delta t^2}{2m^2}(\vec{E} \times \vec{H}) + \frac{q^2 \Delta t^2}{2m^2}(\vec{V}_{n-\frac{1}{2} \cdot H})\vec{H} \quad (3)$$

Данная схема является обратимой по времени и обладает точностью порядка  $\mathcal{O}\left(\Delta t^{3}\right)$ .

# Проверка обратимости

Наглядным методом проверки правильности работы метода является обращение времени. Пусть для некоторой частицы было сделано N шагов вычислений. Тогда новая частица с начальной координатой, равной конечной координате первой, и противоположно направленной скоростью через N шагов должна оказаться в начальной точке первой частицы.





Рис. 1: Красная линия - прямое во времени движение частицы, синее - обратное.

Рис. 2: Траектории 100 частиц.

# Параллельные вычисления

В рассматриваемой модели не учитывались взаимные взаимодейсвия частиц, поэтому данная задача позволяет проводить параллельные вычисления, причем асинхронно.

Для распараллеливания использовалась стандартная библиотека Python concurrent.futures. В частности использовались ProcessPoolExecutor и ThreadPoolExecutor ([3]).

ProcessPoolExecutor используется для мультипроцессорных вычислений. То есть выполнение программы происходит на нескольких ядрах процессора параллельно. ThreadPoolExecutor разделяет задачу в одном процессе на несколько потоков, которые выполняются параллельно.

Ожидается, что время работы программы значительно уменьшится при мультипроцессорных вычислениях траекторий множества частиц.

Ниже представлены графики со сравнением времени выполнения от числа частиц и шагов (вычисления производились на комьютере с 8 Гб ОЗУ и процессором Intel 2.4 GHz Core i5), таблицы со значениями см. в приложении.



Рис. 3: Время выполнения в зависимости от числа частиц и шагов.



Рис. 4: В логарифмическом масштабе.

Видно, что при большом числе частиц и шагов multiprocessing обладает большим преимуществом. Multithreading же наоборот работает медленно. Это связано с особенностями языка программирования Python (язык интерпретируемый, а не компилируемый), а именно с GIL (Global interpreter lock).

## Итоги

В этой работе была реализована Leap-Frog схема решения уравнений движения заряженной частицы в поле, была добавлена параллельность вычислений в нескольких процессах и потоках.

Также было показано преимущество параллельных расчетов в данной задаче. Программа позволяет проводить расчеты не только в однородных полях, но и в неоднородных по пространству и времени.

# Приложение

Таблица 1: 100 шагов

| Число частиц | Прямой метод         | Multiprocessing      | Multithreading       |
|--------------|----------------------|----------------------|----------------------|
| 1            | 0.010246038436889648 | 0.039484262466430664 | 0.012104988098144531 |
| 5            | 0.06265115737915039  | 0.04951333999633789  | 0.06361007690429688  |
| 10           | 0.11876821517944336  | 0.08832788467407227  | 0.12803888320922852  |
| 100          | 0.9815783500671387   | 0.7908670902252197   | 1.1305022239685059   |
| 1000         | 10.849240064620972   | 23.966799020767212   | 11.323905229568481   |

## Таблица 2: 1000 шагов

| Число частиц | Прямой метод        | Multiprocessing     | Multithreading      |
|--------------|---------------------|---------------------|---------------------|
| 1            | 0.13631820678710938 | 0.13383698463439941 | 0.10383796691894531 |
| 5            | 0.5069730281829834  | 0.3759758472442627  | 0.5637118816375732  |
| 10           | 1.028635025024414   | 0.7111492156982422  | 1.1619477272033691  |
| 100          | 10.129580020904541  | 5.422935962677002   | 12.259056806564331  |
| 1000         | 107.75596189498901  | 75.05907106399536   | 121.37761974334717  |

Таблица 3: 10000 шагов

| Число частиц | Прямой метод       | Multiprocessing    | Multithreading     |
|--------------|--------------------|--------------------|--------------------|
| 1            | 1.6266069412231445 | 1.7235348224639893 | 1.6336078643798828 |
| 5            | 6.512508153915405  | 3.5230300426483154 | 5.875111818313599  |
| 10           | 10.42299222946167  | 6.53804087638855   | 18.918434858322144 |
| 100          | 111.57286214828491 | 70.47390985488892  | 122.56676697731018 |
| 1000         | 1206.1796510219574 | 582.7200920581818  | 1337.8531761169434 |

#### Ссылки:

Код программы: https://github.com/maksatsat/particles-in-field Обратимость по времени https://youtu.be/NS46SsDaTAk Траектории 100 частиц https://youtu.be/z-mA1n3T\_Z4 Движение 1000 частиц https://youtu.be/hF5w0CX8xbc

#### Литература

- [1] S. Fatemi Computing, Visualising and Analyzing Ion Trajectories (2009)
- [2] Ledvina et. al. Modeling and Simulating Flowing Plasmas and Related Phenomena (2008)
- [3] https://docs.python.org/3/library/concurrent.futures.html