Safety-Critical Control for Systems with Impulsive Actuators and Dwell-Time Constraints

62nd IEEE Conference on Decision and Control Marina Bay Sands, Singapore, December 13th 2023

Joseph Breeden, Dimitra Panagou

Department of Aerospace Engineering, Department of Robotics University of Michigan, Ann Arbor, MI, USA

Objective

M

- State constrained control for satellites
- Problem setup
 - One controlled satellite needs to navigate in the vicinity of other objects in space
- Control Barrier Functions (CBFs) are a promising solution
- CBFs usually run in continuous time
- Most satellites possess <u>impulsive actuators</u>
- After an impulse, the satellite must wait a specified <u>dwell time</u> before the actuator can be used again
- Also relevant to chemical/population systems

Objective

M

- Safety
 - The controlled spacecraft avoids all other objects in its vicinity
 - Equivalently, the spacecraft stays within a specified safe set
- Convergence
 - The controlled spacecraft reaches a target state
- Both subject to the actuator dynamics
- Real time instead of trajectory planning

Introduction - Control Barrier Functions

CBFs are a tool for set invariance

[1] Chai and Sanfelice, "Forward invariance of sets for hybrid dynamical systems (part ii)," TAC, 2021.

Continuous Time

$$\dot{x} = f(t, x, u)$$

$$S_{\text{safe}}(t) = \{ x \in \mathcal{X} \mid \kappa(t, x) \le 0 \}$$

$$S_{\text{cbf}}(t) = \{ x \in \mathcal{X} \mid h(t, x) < 0 \} \subset S_{\text{safe}}(t)$$

$$\dot{h}(t, x, u) \le \alpha(-h(t, x))$$
 where $\alpha \in \mathcal{K}$

Hvbrid

$$\begin{cases} \dot{x} = f(t, x, u) & (t, x) \in \mathcal{C} \\ x^+ = g(t, x, u) & (t, x) \in \mathcal{D} \end{cases}$$

$$\begin{cases} \dot{h}(t, x, u) \le \alpha(-h(t, x)) & (t, x) \in \mathcal{C} \\ h(t, g(t, x, u)) \le 0 & (t, x) \in \mathcal{D} \end{cases}$$

is sufficient to render state trajectories always inside $\mathcal{S}_{\mathrm{cbf}} \subseteq \mathcal{S}_{\mathrm{safe}}$

• Assume that we already know how to pick $h: \mathcal{T} \times \mathcal{X} \to \mathbb{R}$

Introduction - Control Barrier Functions

Control Barrier Functions (CBFs) are a tool for set invariance

Continuous Time

$$\dot{x} = f(t, x, u)$$

$$S_{\text{safe}}(t) = \{ x \in \mathcal{X} \mid \kappa(t, x) \le 0 \}$$

$$S_{\text{cbf}}(t) = \{ x \in \mathcal{X} \mid h(t, x) \le 0 \} \subseteq S_{\text{safe}}(t)$$

$$\dot{h}(t, x, u) \le \alpha(-h(t, x))$$
 where $\alpha \in \mathcal{K}$

- [2] Breeden, Garg, and Panagou, "Control barrier functions in sampled-data systems," LCSS, 2022.
- [3] Shaw Cortez et al., "Control barrier functions for mechanical systems: Theory and application to robotic grasping," TCST, 2019.
- [4] Yang, Belta, and Tron, "Self-triggered control for safety critical systems using control barrier functions," ACC, 2019.

Sampled-Data

$$\begin{cases} \dot{x} = f(t, x, u) \\ u(t) = \underbrace{u(t_k)}_{u_k}, \forall t \in [t_k, t_k + T) \end{cases}$$

$$h(t_k, x_k) + \dot{h}(t_k, x_k, u_k)T + \epsilon \leq 0$$

where ϵ is a bound on higher

where ϵ is a bound on higher order terms

Impulsive System Definition

- General hybrid system:
- Rule 0: control is applied only via impulses and impulses only occur due to control
- Rule 1: the controller is sampled with fixed period and an impulse can only be applied at the samples

$$\mathcal{D}_0 = \{ t \in \mathcal{T} \mid t = t_0 + k \Delta t, k \in \mathcal{Z}_{\geq 0} \}$$

• Rule 2: the controller can only apply an impulse a minimum dwell time after the last impulse

$$\mathcal{D} = \mathcal{D}_0 \times \{ \sigma \in \mathbb{R}_{\geq 0} \mid \sigma \geq \Delta T \}$$

$$\begin{cases} \dot{x} = f(t, x, u) & (t, x) \in \mathcal{C} \\ x^{+} = g(t, x, u) & (t, x) \in \mathcal{D} \end{cases}$$

$$\begin{cases} \dot{x} = f(t, x) & (t, x) \notin \mathcal{D} \\ x^{+} = g(t, x, u) & (t, x) \in \mathcal{D} \end{cases}$$

$$\begin{cases} \dot{x} = f(t, x) & t \notin \mathcal{D}_0 \\ x^+ = g(t, x, u) & t \in \mathcal{D}_0 \end{cases}$$

$$\begin{cases} \dot{x} = f(t, x) \\ \dot{\sigma} = 1 \end{cases} \qquad (t, \sigma) \notin \mathcal{D}$$

$$\begin{cases} x^{+} = g(t, x, u) \\ \sigma^{+} = \sigma \text{ if } u = 0 \\ \sigma^{+} = 0 \text{ if } u \neq 0 \end{cases} \qquad (t, \sigma) \in \mathcal{D}$$

Impulsive System Definition

$$\mathcal{D}_0 = \{ t \in \mathcal{T} \mid t = t_0 + k\Delta t, k \in \mathcal{Z}_{\geq 0} \}$$

$$\mathcal{D} = \mathcal{D}_0 \times \{ \sigma \in \mathbb{R}_{>0} \mid \sigma \geq \Delta T \}$$

• \mathcal{D} is the set of "impulse opportunities"

$$\begin{cases} \begin{cases} \dot{x} = f(t, x) \\ \dot{\sigma} = 1 \end{cases} & (t, \sigma) \notin \mathcal{D} \\ \begin{cases} x^{+} = g(t, x, u) \\ \sigma^{+} = \sigma \text{ if } u = 0 \\ \sigma^{+} = 0 \text{ if } u \neq 0 \end{cases} & (t, \sigma) \in \mathcal{D} \end{cases}$$

Method: Impulsive Timed Control Barrier Functions

Let p denote the flow of the uncontrolled system

$$p(\tau, t, x) = y(\tau)$$
 where $\dot{y}(s) = f(s, y(s)), y(t) = x$

• Let ψ_h be an upper bound on h over a horizon

$$\psi_h(\tau, t, x) \ge h(s, p(s, t, x)), \ \forall s \in [t, \tau]$$

For example,

$$\psi_h(\tau, t, x) = h(t, x) + \dot{h}(t, x)(\tau - t) + \epsilon$$

where ϵ is a bound on higher order terms

This was $\dot{h}(t_k,x_k,u_k)$ in the sampled-data example

Method: Impulsive Timed Control Barrier Functions

Control Barrier Functions (CBFs) are a tool for set invariance

Continuous Time

$$\dot{x} = f(t, x, u)$$

$$S_{\text{safe}}(t) = \{ x \in \mathcal{X} \mid \kappa(t, x) \le 0 \}$$

$$S_{\mathrm{cbf}}(t) = \{x \in \mathcal{X} \mid h(t, x) \leq 0\} \subseteq S_{\mathrm{safe}}(t)$$

$$\dot{h}(t, x, u) \le \alpha(-h(t, x))$$
 where $\alpha \in \mathcal{K}$

<u>Impulsive</u>

$$\begin{cases} \dot{x} = f(t, x) \\ \dot{\sigma} = 1 \end{cases} \qquad (t, \sigma) \notin \mathcal{D}$$

$$\begin{cases} x^{+} = g(t, x, u) \\ \sigma^{+} = \sigma \text{ if } u = 0 \\ \sigma^{+} = 0 \text{ if } u \neq 0 \end{cases} \qquad (t, \sigma) \in \mathcal{D}$$

$$\begin{cases} \psi_h(t + \Delta t, t, x) \le 0 & u(t, \sigma, x) = 0 \\ \psi_h(t + \Delta T, t, g(t, x, u)) \le 0 \\ & u(t, \sigma, x) \ne 0 \end{cases}$$

$$\forall x \in \mathcal{S}_{cbf}(t), \forall (t, \sigma) \in \mathcal{D}$$

Applying ITCBFs

upper bound

on $\ddot{\kappa}(t,x)$

• Suppose $x=\left|rac{r}{\dot{r}}\right|$ and $\mathcal{S}_{\mathrm{safe}}$ is the set of states outside an obstacle

$$\kappa(t,x) = \rho - ||r - r_0(t)||$$

Choose

$$h(t,x) = \kappa(t,x) + \gamma \dot{\kappa}(t,x)$$

where
$$\dot{\kappa}(t,x)=-rac{(r-r_0)^{\mathrm{T}}(\dot{r}-\dot{r}_0(t))}{\|r-r_0(t)\|}$$
 is affine in \dot{r}

One possible choice of upper bound is

$$\psi_h(t+\delta,t,x) = \max\{h(t,x), \ \kappa(t,x) + (\gamma+\delta)\dot{\kappa}(t,x) + (\frac{1}{2}\delta^2 + \gamma\delta)\ddot{\kappa}_{\max}\}\$$

See paper for details on related Lyapunov functions V for convergence

[5] Nguyen and Sreenath, "Exponential control barrier functions for enforcing high relative-degree safety-critical constraints," ACC, 2016

[6] Breeden and Panagou, "Autonomous spacecraft attitude reorientation using control barrier functions," AIAA JGCD, 2023

Applying ITCBFs

System

$$\dot{x} = \begin{bmatrix} x_3 \\ x_4 \\ \frac{-\mu x_1}{(x_1^2 + x_2^2)^{3/2}} \\ \frac{-\mu x_2}{(x_1^2 + x_2^2)^{3/2}} \end{bmatrix}, \quad x^+ = \begin{bmatrix} x_1 \\ x_2 \\ x_3 + u_1 \\ x_4 + u_2 \end{bmatrix}, \quad \Delta t = 3 \text{ s}$$

5 Obstacles = 5 ITCBFs

is affine in u

Control law is zero if zero is a safe choice

Control law is zero if zero is a safe choice
$$u = \begin{cases} 0 & \psi_v(t+\Delta t, t, x) \leq \gamma_1 V(t, x) \text{ and } \psi_{h_i}(t+\Delta t, t, x) \leq 0, \ \forall i \in \{1, 2, 3, 4, 5\} \\ u^* & \text{else} \end{cases}$$

and otherwise is computed as the quadratic program

$$u^* = \mathop{\arg\min}_{u \in \mathbb{R}^2} u^{\mathrm{T}} u$$
 This condition is affine in u s.t. $\psi_{h_i}(t + \Delta T, t, g(t, x, u)) \leq 0, \ \forall i \in \{1, 2, 3, 4, 5\}$ (and other conditions on V)

Simulation Part I

Results converted to Hill's Frame for visualization

Simulation Part I

Results converted to Hill's Frame for visualization

- The strategy works up to 45 seconds of dwell time
- At 60 seconds, the controller is so conservative that it turns away from the target
- All trajectories used a lot of fuel (about 13x what a path planner achieved under the same constraints and time of convergence)

Extending ITCBFs

- The conservatism of ψ_h is quadratic in ΔT
- Replace ψ_h with n_ψ predictions to reduce

conservatism

$$\psi_{h}^{*}(\tau,t,x) = \begin{bmatrix} \psi_{h}(\tau_{1},t,x) \\ \vdots \\ \psi_{h}(\tau_{j},\tau_{j-1},p(\tau_{j-1},t,x)) \\ \vdots \\ \psi_{h}(\tau_{n_{\psi}},\tau_{n_{\psi}-1},p(\tau_{n_{\psi}-1},t,x)) \end{bmatrix}$$

 $\psi_h(\tau,p(\tau,t,x))$ ψ_h Approximation 15 25 30 Time $\delta = \tau - t$ (seconds) $b_h(\tau, p(\tau, t, x))$ ψ_h^* Approximations where $\tau_j = t + \frac{j}{n_{vl}}(\tau - t)$ 25 Time $\delta = \tau - t$ (seconds)

- Provided Replace ψ_h in the control law with the vector ψ_h^*
 - Analogous to MPC with a control horizon of 1 and a long state horizon
 - The controller is now a nonlinear program instead of quadratic program
 - Assume that this is acceptable because of the long time between actuations

Simulation Part II

• Let $n_{\psi} = 10$

Simulation Part II

- ullet The strategy works up to at least 420 s dwell time for the choice $n_\psi=10$
- The strategy works for longer dwell times at $n_{\psi}=10$ but convergence is slow

- Fuel consumption and time to convergence are nonlinear with dwell time
- The lowest fuel trajectory (of those simulated) was $\Delta T=300~{
 m sec}$, which took 1.4x as much fuel as the path planned trajectory

Animation

Conclusions

- Extended CBFs to <u>impulsive</u> systems with minimum <u>dwell time</u> constraints
- Impulses modeled as hybrid system but invariance conditions more similar to the sampled-data CBF literature
- Larger dwell times generally reduce fuel consumption
 - Not a strict rule
 - Note that we did not set out to minimize fuel
- We derived similar conditions for Lyapunov convergence in the paper
- Future work
 - Consider <u>robustness</u> to disturbances that occur during and/or between impulses
 - Using this technique in conjunction with optimal control methods to minimize fuel

Thank You To Our Sponsors

Safety-Critical Control for Systems with Impulsive Actuators and Dwell-Time Constraints

62nd IEEE Conference on Decision and Control Marina Bay Sands, Singapore, December 13th 2023

Joseph Breeden, Dimitra Panagou

Department of Aerospace Engineering, Department of Robotics University of Michigan, Ann Arbor, MI, USA

