Recitation 8

October 3, 2024

1 Recap

1.1 Orthogonal Decomposition Revisited

Given a matrix $A \in \mathbb{R}^{m \times n}$. Any vector $b \in \mathbb{R}^m$ can be uniquely expressed as b = p + e for which $p \in C(A)$ and $e \in N(A^T)$. In particular, p and e are the orthogonal projections of e onto e0 and e1 and e2 are the orthogonal projections of e3 onto e4.

When A is tall $(m \ge n)$ and has linearly independent columns, we can write

$$p = A(A^{T}A)^{-1}A^{T}b$$
 and $e = (I - A(A^{T}A)^{-1}A^{T})b$.

In other words, the projection matrix onto C(A) is $P = A(A^TA)^{-1}A^T$ and onto $N(A^T) = Q = I - P$.

It is a good exercise to verify that such decomposition makes sense; that is to explain why $(A^TA)^{-1}$ exists, $p \in C(A)$, $e \in N(A^T)$, and b = p + e.

1.2 Overdetermined System

Consider the linear system Ax = b, where we have more equations than variables; i.e. A is tall with more rows than columns. The system may not have a solution that satisfies all equations.

Least Squares Approximate Solution: Assume linearly independent columns

1. Orthogonal projection: Project b onto the column space of A, i.e. $p = proj_{C(A)}b = A(A^TA)^{-1}A^Tb$. Then solve $Ax = p \Rightarrow x = (A^TA)^{-1}A^Tb$. This vector minimizes the norm of the residual r = Ax - b.

2. Calculus: Want to find x that minimizes $||Ax-b||^2$. Taking the gradient $\nabla_x ||Ax-b||^2$ and setting it to zero gives $x = (A^T A)^{-1} A^T b$.

There are many approaches to obtain the same result – the least-squares approximate solution $\hat{x} = (A^T A)^{-1} A^T b$. (In optimization, this solution, the minimizer, is often denoted " x_{\star} " or " x^{\star} ". We will use x_{\star} below.)

The matrix $(A^TA)^{-1}A^T$ is sometimes called a "left inverse" of such a tall A, because if you multiply it on the left of A you get $(A^TA)^{-1}A^TA = I$. If A is non-square, however, it is *not* an ordinary matrix inverse because if you multiply it on the right of A you get $P = A(A^TA)^{-1}A^T$, a projection instead of an identity. (In the same way that $Q^TQ = I$ but QQ^T is a projection.)

1.3 Underdetermined System

More variables than equations; i.e. A has more columns than rows. The system has infinitely many solutions, and we need to pick a specific one.

Minimum Norm Solution: Assuming linearly independent rows, a common choice is to pick the "smallest" solution, i.e. we minimize $||x||^2$ subject to the constraint Ax = b. The solution of minimum norm is $x_* = A^T (AA^T)^{-1}b$.

The matrix $A^T(AA^T)^{-1}$ is sometimes called a "**right inverse**" of such a wide A, because if you multiply it on the right of A you get $AA^T(AA^T)^{-1} = I$.

1.4 Regularization

Our goal remains the same: to solve the system Ax = b; however, the solution we want now is the one that minimizes $T(x) := ||Ax - b||^2 + \lambda ||x||^2$ where $\lambda > 0$ is a regularization parameter. The unique optimal solution is given by $x_{\star} = (A^T A + \lambda I)^{-1} A^T b$. It can be shown that the inverse exists for any A (regardless of rank) for any $\lambda > 0$.

(This particular regularization is often called a "ridge" or "Tikhonov" regularization. We will later see that other regularizations are possible too; which regularization is the best depends on the specific application and what is known about the desired solution.)

2 Exercises

You can use Julia to help you with calculations if you want, or leave the answer in a form where you could plug it into Julia.

1. Let's look more closely at the minimum-norm solution $x_{\star} = A^{T}(AA^{T})^{-1}b$ when A is a "wide" matrix with full row rank (underdetermined).

- (a) We already saw that if A has full column rank, then A^TA is invertible. Why does this mean that AA^T is invertible when A has full row rank?
- (b) Show that x_{\star} is a solution to Ax = b.
- (c) x_{\star} is in what subspace of A? Any other solution to Ax = b must be of the form $x = x_{\star} + v$ where v is a vector in what subspace of A? From this, explain why $||x_{\star} + v|| \ge ||x_{\star}||$ for any such v, without using calculus. Hence, x_{\star} is the minimum-norm solution!
- 2. Two points in \mathbb{R}^3 have (x, y, z) coordinates as follows.

$$a = (1, 0, 0), b = (0, 1, 1),$$

- (a) Find the plane z = C + Dx + Ey that gives the best fit to the two points a and b that minimizes $C^2 + D^2 + E^2$.
- (b) What is the least squares error?
- (c) Predict the value of z when (x, y) = (2, -1).
- 3. It was claimed in class that the ridge-regularized least-squares problem, minimizing $||Ax b||^2 + \lambda ||x||^2$ for $\lambda > 0$, is solved by $x_* = (A^T A + \lambda I)^{-1} A^T b$. This can be easily derived without calculus by showing that it is equivalent to an ordinary least-squares problem.
 - (a) $||Ax b||^2 + \lambda ||x||^2 = \left\| \left(\frac{Ax b}{???} \right) \right\|^2$ for what "???"?
 - (b) Hence, $||Ax b||^2 + \lambda ||x||^2 = ||Bx d||^2$ where $B = \begin{pmatrix} A \\ ?? \end{pmatrix}$ and $d = \begin{pmatrix} b \\ ?? \end{pmatrix}$ for what ??'s?.
 - (c) Hence the minimizer is the ordinary least-square solution $x_{\star} = (B^T B)^{-1} B^T d$. Explain why this gives $x_{\star} = (A^T A + \lambda I)^{-1} A^T b$.
 - (d) Optional: Show that $A^TA + \lambda I$ is always invertible. $x^T(A^TA + \lambda I)x = (Ax)^T(Ax) + \lambda x^Tx = ||Ax||^2 + \lambda ||x||^2 \ge 0$, and is only = 0 if x = ??. Why does this imply that $N(A^TA + \lambda I) = \{\vec{0}\}$ (hence invertible since it is square)?
- 4. Consider the function values

$$f(-2) = 0$$
, $f(-1) = 0$, $f(0) = 1$, $f(1) = 0$, $f(2) = 0$.

- (a) Find the straight line f(t) = C + Dt that is closest (in the least squares sense) to these values.
- (b) Find the parabola $f(t) = C + Dt + Et^2$ that is closest (in the least squares sense) to these values. Hint: Write down the system of equations $A\mathbf{x} = \mathbf{b}$ in three unknowns x = (C, D, E) for the parabola f(t) to go through the points.
- (c) Find the closest 4th degree polynomial for these points. What is the least squares error?

3 Solutions

1. Let's look more closely at the minimum-norm solution $x_{\star} = A^{T}(AA^{T})^{-1}b$ when A is a "wide" matrix with full row rank (underdetermined).

- (a) If A has full row rank, then $B = A^T$ has full column rank, and hence $B^T B = AA^T$ is invertible.
- (b) Easy: $Ax_{\star} = AA^{T}(AA^{T})^{-1}b = b$.
- (c) x_{\star} is A^{T} (something), so it is in $C(A^{T})$. Any other solution to Ax = b must be of the form $x = x_{\star} + v$ where v is a vector N(A) (so that $Ax = Ax_{\star} + Av = b$). But these are orthogonal complements, so $x_{\star} \perp v!$ Hence $||x_{\star} + v||^{2} = (x_{\star} + v)^{T}(x_{\star} + v) = ||x_{\star}|| + ||v||^{2} \ge ||x_{\star}||^{2}$ (the cross terms are zero by orthogonality). This is very similar to the derivation from class of the least-square solution to the overdetermined problem!
- 2. (a) We have

$$\underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}}_{A} \underbrace{\begin{pmatrix} C \\ D \\ E \end{pmatrix}}_{y} = \underbrace{\begin{pmatrix} 0 \\ 1 \end{pmatrix}}_{b}$$

and b = (0, 1) we wish to solve Au = b which minimizes $||u||^2$. The solution is $u_{\star} = A^T (AA^T)^{-1}b = (1/3, -1/3, 2/3) = (C, D, E)$. (This a 2 × 2 system of equations: solve $AA^Tv = b$ followed by $u = A^Tv$.)

- (b) least squares error is 0 because the system is underdetermined.
- (c) C + 2D 1E = 1/3 + 2(-1/3) 1(2/3) = -1
- 3. It was claimed in class that the ridge-regularized least-squares problem, minimizing $||Ax b||^2 + \lambda ||x||^2$ for $\lambda > 0$, is solved by $x_* = (A^T A + \lambda I)^{-1} A^T b$. This can be easily derived without calculus by showing that it is equivalent to an ordinary least-squares problem.
 - (a) $||Ax b||^2 + \lambda ||x||^2 = \left\| \begin{pmatrix} Ax b \\ \sqrt{\lambda}x \end{pmatrix} \right\|^2$.
 - (b) Hence, $||Ax b||^2 + \lambda ||x||^2 = ||Bx d||^2$ where $B = \begin{pmatrix} A \\ \sqrt{\lambda}I \end{pmatrix}$ and $d = \begin{pmatrix} b \\ \vec{0} \end{pmatrix}$.
 - (c) $B^T d = A^T x$ (since the other components are zero), and $B^T B = A^T A + \lambda I$, so this gives $x_* = (B^T B)^{-1} B^T d(A^T A + \lambda I)^{-1} A^T b$ as desired.
 - (d) Optional: $x^T(A^TA + \lambda I)x = (Ax)^T(Ax) + \lambda x^Tx = ||Ax||^2 + \lambda ||x||^2 \ge 0$, and is only = 0 if x = 0 (since otherwise the $\lambda ||x||^2$ term is > 0). If $(A^TA + \lambda I)x = \vec{0}$, then $x^T(A^TA + \lambda I)x = 0$, but we just showed that this is true if and only if x = 0. Hence $N(A^TA + \lambda I) = \{\vec{0}\}$ (hence invertible since it is square).
- 4. (a) We want to solve an overdetermined system $A\mathbf{x} = b$ for which

$$A = \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \text{ with variables } \mathbf{x} = \begin{bmatrix} C \\ D \end{bmatrix}.$$

The least square answer is given by

$$\begin{bmatrix} C \\ D \end{bmatrix} = \mathbf{x} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}b = \begin{bmatrix} 1/5 \\ 0 \end{bmatrix}$$

which means the closest line is f(t) = 1/5.

(b) We want to solve an overdetermined system $A\mathbf{x} = b$ for which

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \text{ with variables } \mathbf{x} = \begin{bmatrix} C \\ D \\ E \end{bmatrix}.$$

The least square answer is given by

$$\begin{bmatrix} C \\ D \\ E \end{bmatrix} = \mathbf{x} = (A^{\mathsf{T}} A)^{-1} A^{\mathsf{T}} b = \begin{bmatrix} 17/35 \\ 0 \\ -1/7 \end{bmatrix}$$

which means the closest parabola is $f(t) = \frac{17}{35} - \frac{t^2}{7}$.

(c) Suppose that we want to solve for $f(t) = C + Dt + Et^2 + Ft^3 + Gt^4$. We want to solve an *overdetermined* system $A\mathbf{x} = b$ for which

$$A = \begin{bmatrix} 1 & -2 & 4 & -8 & 16 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \text{ with variables } \mathbf{x} = \begin{bmatrix} C \\ D \\ E \\ F \\ G \end{bmatrix}.$$

We note that A is square and invertible, which means that we can solve x exactly and uniquely. By solving $\mathbf{x} = A^{-1}b$, we derive $\mathbf{x} = \begin{bmatrix} 1 & 0 & -5/4 & 0 & 1/4 \end{bmatrix}^{\mathsf{T}}$ which gives $f(t) = 1 - \frac{5}{4}t^2 + \frac{1}{4}t^4$.

Since the system can be solve to the exact, we must have Ax = b which means that the residual r = Ax - b is zero. The least square error is thus $||r||^2 = 0$.

- (d) Construct the system of equations $A\mathbf{x} = b$ in a similar fashion to previous parts. When the degree is 5, we have 5 equations with 6 variables which make the system *underdetermined*. This means we have infinitely many answers and the smallest answer is given by $\mathbf{x} = A^{\top} (AA^{\top})^{-1} b = \begin{bmatrix} 1 & 0 & -5/4 & 0 & 1/4 & 0 \end{bmatrix}^{\top}$ which gives $f(t) = 1 \frac{5}{4}t^2 + \frac{1}{4}t^4$.
- (e) With degree at least 4, we get the exact fit. On the other hand, the lower the degree is, the more general the best-fit line is. Note that there is no absolute best model/degree for data fitting. In this case, one might argue that linear fitting is the best because every point but f(1) = 1 yields value 0 which may lead us into thinking that f(1) = 1 is an *outlier*. Others may argue that it is absolutely needed to fit every point (or almost every point) onto the line so they tend to choose higher degree fitting. This; however, may lead to the *overfitting* problem.