Família PCM

Comunicações I

Thadeu L. B. Dias

UFRJ

ToC

1. Processo PCM

2. Processos estocásticos

Recap

Figure 1: PCM feedforward.

No PCM básico, cada amostra é quantizada independentemente, sempre com o mesmo quantizador, levando à uma taxa de bits

$$R_b = f_s \cdot R,\tag{1}$$

onde 2^R é o número de níveis do quantizador.

Otimização da taxa/distorção

Pergunta: É possível montar um esquema melhor no sentido taxa/distorção?

- 1. Reduzir taxa mantendo a distorção?
- 2. Reduzir distorção mantendo taxa?

Processos estocásticos

Propriedades de um processo estocástico

Suponha que $X(t), t \in \mathbb{R}$ um processo estocástico. Se

$$\mathbb{E}[X(t)] = \mu_X(t) = \mu_X \quad \forall t, \mathbf{e}$$

$$\mathbb{E}[(X(t) - \mu_X(t))(X(t+\tau) - \mu_X(t+\tau))] = C_{XX}(t,t+\tau) = C_{XX}(\tau) \quad \forall t,$$
 então o processo $X(t)$ é fracamente estacionário.

Densidade espectral de potência

Como podemos dizer se um processo aleatório é do tipo passa-baixas, passa-faixas, etc?

Por exemplo, dado um sinal x(t) (determinístico), podemos nos fazer a pergunta: qual a potência média frequência f em x(t)?

Formalmente, para responder essa pergunta podemos pensar na seguinte forma:

- 1. Janelar o sinal x(t), formando o sinal finito $x_T(t) = x(t)\Pi(\frac{t}{T})$.
- 2. Computar a transformada de fourier de $x_T(t)$, $X_T(f)$.
- 3. Computamos a densidade de potência na frequência f,

$$S_x(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2.$$

5

Vamos extender a noção da densidade espectral para um ensemble de processos estocásticos.

$$S_{XX}(f) = \lim_{T \to \infty} \frac{1}{T} \mathbb{E}[|\hat{X}_T(f)|^2]$$

$$= \dots \left[\left(\int_{\langle T \rangle} X_T(t_1) e^{-j2\pi f t_1} dt_1 \right) \left(\int_{\langle T \rangle} X_T^*(t_2) e^{j2\pi f t_2} dt_2 \right) \right]$$

$$= \dots \int_{\langle T \rangle} \int_{\langle T \rangle} \mathbb{E}[X_T(t_1) X_T(t_2)] e^{-j2\pi f (t_1 - t_2)} dt_1 dt_2$$

$$= \dots \int_{\langle T \rangle} \int_{\langle T \rangle} R_{XX}(t_1, t_2) e^{-j2\pi f (t_1 - t_2)} dt_1 dt_2.$$

Agora, se X(t) é WSS, então $R_{XX}(t_1,t_2)=R_{XX}(t_1-t_2)$. Fazendo a seguinte mudança de variáveis:

$$\tau = t_1 - t_2,$$

temos

$$S_{XX}(f) = \dots \int_{\langle T \rangle} dt_2 \int_{\langle T \rangle + t_2} R_{XX}(\tau) e^{-j2\pi f \tau} d\tau$$

No limite quando $T \to \infty$, a segunda integral não depende de t_2 , enquanto o primeiro termo tende a T:

$$= \lim_{T \to \infty} \frac{1}{T} T \int_{\langle T \rangle + t_2} R_{XX}(\tau) e^{-j2\pi f \tau} d\tau$$

$$= \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f \tau} d\tau$$

$$S_{XX}(f) = \mathcal{F}\{R_{XX}(\tau)\}!!!$$

Propriedades da PSD

Sabendo que para um processo WSS, a autocorrelação e PSD formam um par fourier, podemos fazer as seguintes observações:

$$\int_{-\infty}^{+\infty} S_{XX}(f) df = R_{XX}(0) = \mu_X^2 + \sigma_X^2 = \bar{P}_X.$$

- Se Y = X(t) * h(t), então $S_{YY}(f) = S_{XX}(f) |H(f)|^2$.
- $R_{XX}(au)$ passa-baixas (no tempo) $\iff S_{XX}(f)$ passa-baixas (na frequência).

8

Exemplo

Abaixo estão exibidos o par autocorrelação-DSP para um determinado processo aleatório:

Aplicação no contexto PCM

Suponha que temos um processo estocástico discreto M[n], de média 0, que desejamos quantizar. Suponha que é um processo passa-baixas, com função de autocorrelação do tipo

$$R_{MM}[k] = \sigma_M^2 0.95^{|k|}.$$

- 1. Qual a potência média de M[n]?
- 2. Qual a potência média de dM[n] = M[n] M[n-1]?

A potência média de M[n] é claramente σ_M^2 . Para dM[n],

$$P_{dM} = \mathbb{E}[(M[n] - M[n-1])^2]$$

$$= \mathbb{E}[M^2[n] - 2M[n]M[n-1] + M^2[n-1]]$$

$$= \sigma_M^2 - 2R_{MM}[1] + \sigma_M^2$$

$$= 2\sigma_M^2 - 2(\sigma_M^2 \cdot 0.95)$$

$$= 0.1\sigma_M^2!$$

Ou seja, o sinal dM[n] é mais concentrado em torno do zero que M[n]!

Podemos então usar as técnicas de quantização robusta para obter melhores figuras de taxa/distorção!

PCM diferencial feedforward

Figure 2: codificador e decodificador do DPCM feedforward.

O sinal quantizado e transmitido é $dM_q[n]=[M[n]-M[n-1]]_q$. O sinal decodificado é $\hat{M}[n]=\hat{M}[n-1]+dM_q[n]$. O estado inicial pode ser fixado como $M[-1]=\hat{M}[-1]=0$, por exemplo.

...mas isso não funciona. Consegue perceber o erro?

Acumulação de erro do feedforward

O problema real é que a saída do decodificador não tem acesso a M[n-1], apenas a $\hat{M}[n-1]$, e isso faz toda a diferença. Observe: O sinal quantizado $dM_q[n]$ é, na verdade, $dM[n]+E_q[n]$, onde $E_q[n]$ é o erro de quantização.

Isso significa que no receptor,

$$\hat{M}[n] = \sum_{n'=0}^{n} dM[n'] + E_q[n']$$
$$= M[n] + \sum_{n'} E_q[n'].$$

O termo residual é literalmente um acúmulo de erro! Como podemos evitar isso?

DPCM feedback

Naturalmente, o problema acontece quando a diferença no codificador é entre duas amostras do sinal original, enquanto no decodificador as somas são entre versões quantizadas. A solução é usar, no codificador, a diferença entre M[n] e $M_a[n-1]$!

Figure 3: codificador e decodificador do DPCM feedback.

Erro no DPCM feedback

Agora, o valor transmitido é $dM_q[n]=M[n]-M_q[n-1]+E_q[n]$, e ao mesmo tempo, $M_q[n]=M_q[n-1]+dM_q[n]$. O resultado é

$$\begin{split} M_q[n] &= dM_q[n] + M_q[n-1] \\ M_q[n] &= M[n] - M_q[n-1] + E_q[n] - M_q[n-1] \\ M_q[n] &= M[n] + E_q[n], \end{split}$$

Ou seja, o erro não se acumula!

Estruturas de feedback em comunicações

Na realidade, a estrutura de feedback não é usada apenas no DPCM. Como veremos em breve, a idéia é sempre a mesma:

- Se realiza uma operação com um dado novo baseado em um ESTADO.
- 2. O resultado da operação é transmitido.
- 3. Baseado na informação TRANSMITIDA, se atualiza o ESTADO.

Isso permite que o receptor atualize o seu estado de forma síncrona ao estado do transmissor, onde o transmissor apenas usa informações que o receptor poderia ter.

Isso é usado em várias técnicas de comunicação, tanto em codificação (PCM, LPDPCM) quanto em compressão (LZ, CBP).

No próximo capítulo

Para sinais 'lentos', de fato, podemos usar um simples atraso como contexto, e transmitimos a diferença entre o atraso e o sinal.

Será possivel comparar a amostra atual com algo melhor que um atraso? Uma *predição*?