作业

Homework6

庄镇华 502022370071

A Game Theory Homework Assignment

❷ 题目一

试求解如下非完美信息扩展式博弈的所有序贯均衡(sequential equilibrium)。

图 1: 博弈树

解答: 设行为策略 $\beta = (\beta_1, \beta_2) = (z, y; x)$, 其中 $\beta_1(\{GC\})(Sell) = z$, $\beta_1(\{BC\})(Sell) = y$, $\beta_2(\{(GC, Sell), (BC, Sell)\})(Yes) = x$; 信念 $\mu(\{(GC, Sell), (BC, Sell)\})(GC, Sell) = \mu$ 。 根据一致性可知, $\mu = \frac{0.5z}{0.5z + 0.5y} = \frac{z}{z + y}$

• 消费者:

采取 Yes 行为的收益: $1000\mu - 2000(1-\mu) = 3000\mu - 2000$

采取 No 行为的收益: 0

如果 $\mu < 2/3$, 选择 No, x = 0; 如果 $\mu > 2/3$, 选择 Yes, 且 x = 1; 如果 $\mu = 2/3$, $x \in [0,1]$ 。

• GC 卖家:

采取 Sell 行为的收益: 2000x

采取 Keep 行为的收益: 0

如果 x > 0, 选择 Sell, z = 1; 如果 x = 0, $z \in [0,1]$ 。

• BC 卖家:

采取 Sell 行为的收益: 1000x - 1000(1-x) = 2000x - 1000

采取 Keep 行为的收益: 0

如果 x > 1/2, 选择 Sell, y = 1; 如果 x < 1/2, 选择 Keep, y = 0; 如果 x = 1/2, $y \in [0,1]$ 。

综上所述,当 x=0 时,需要满足 $z\in[0,1]$,y=0, $\frac{z}{z+0}<2/3$,显然不成立;当 x=1 时,需要满足 z=1,y=1, $\frac{1}{1+1}>2/3$,显然不成立;当 $x\in(0,1)$ 时,需要满足 $\frac{z}{z+y}=2/3,z=1$,则 y=1/2,z=1/2,因此最终的序贯均衡为 z=1/2,z=1/2,z=1/2。

❷ 题目二

试求解如下非完美信息扩展式博弈(Extensive Game with Imperfrect Information)的纳什均衡。

图 2: 博弈树

解答: 每个玩家的纯策略为: 1 玩家 $\{C,D\}$, 2 玩家 $\{c,d\}$, 3 玩家 $\{L,R\}$ 。将扩展式博弈转化为策略式博弈,诱导收益矩阵如下:

玩家 3 选择 L:

	c	d
С	1, 1, 1*	4*, 4*, 0
D	3*, 3*, 2*	3, 3*, 2*

玩家 3 选择 R:

	c	d
С	1*, 1*, 1*	0*, 0, 1*
D	0, 0*, 0	0*, 0*, 0

根据诱导收益矩阵,可以得到纳什均衡: (D,c,L), (C,c,R)。

❷ 题目三

试求解如下非完美信息扩展式博弈的子博弈完美纳什均衡 (SPNE)。

图 3: 博弈树

解答: 使用后向归纳法求解子博弈完美,其步骤为 1. 从最末端的非叶子结点开始 (从最后的子博弈开始),计算纳什均衡 (此时对于这个非叶子结点的玩家,相当于寻找他的最优收益),用这个收益,替代这个子博弈根结点。2. 重复第 1 步,直到根节点。

该博弈树的子博弈划分如图4所示:

图 4: 子博弈划分

左子博弈树的诱导收益矩阵为:

	A	В
E	16*,0	0,16*
F	0,16*	16*,0

其没有纯策略纳什均衡,因此求解混合策略纳什均衡,设玩家 1 选择 E 的概率为 π_1 ,选择 F 的概率为 π_2 ,玩家 2 选择 A 的概率为 π_1 ,选择 B 的概率为 π_2 。则固定玩家 1,玩家 2 选择 A、B 的期望收益分别为 $16(1-\pi_1),16\pi$,令两者相等,得 $\pi_1=1/2$,同理,固定玩家 2,玩家 1 选择 E、F 的期望收益分别为 $16\pi_2,16(1-\pi_2)$,令两者相等,得 $\pi_2=1/2$,因此混合策略纳什均衡为 ((1/2,1/2),(1/2,1/2)),期望收益为 (8,8)。

右子博弈树的诱导收益矩阵为:

	С	D
G	16*,2	6*,3*
Н	2,8	5,12*

易知其纯策略纳什均衡为 (G,D),期望收益为 (6,3),且不存在混合策略纳什均衡。因此子博弈完美要求玩家 1 在根节点处选择 M。进而得到子博弈完美纳什均衡 ((M,(1/2,1/2),G),((1/2,1/2),D))。

❷ 题目四

试求解如下非完美信息扩展式博弈的序贯均衡(sequential equilibrium)。

图 5: 博弈树

解答: 设行为策略 $\beta=(\beta_1,\beta_2)=(x_1,x_2;y)$,其中 $\beta_1(\emptyset)(L)=x_1$, $\beta_1(\emptyset)(M)=x_2$, $\beta_2(\{M,R\})(a)=y$;信念 $\mu(\{M,R\})(M)=\mu$ 。 根据一致性可知, $\mu=\frac{x_2}{1-x_1}$ 。

• 玩家 1:

采取 L 行为的收益: 2 采取 M 行为的收益: 3y 采取 R 行为的收益: 1-y

• 玩家 2:

采取 a 行为的收益: $\mu + 2(1 - \mu) = 2 - \mu$ 采取 r 行为的收益: $2\mu + 1 - \mu = 1 + \mu$

如果 $\mu < 1/2$, 选择 a, y = 1; 如果 $\mu > 1/2$, 选择 r, y = 0; 如果 $\mu = 1/2$, $y \in [0,1]$ 。

综上所述, 当 μ < 1/2 时, 需要满足 y = 1, 此时玩家 1 会采取 M 行为, $\frac{x_2}{1-x_1} = \frac{1}{1-0} < 1/2$ 显然不成立;

当 $\mu > 1/2$ 时,需要满足 y = 0,此时玩家 1 会采取 L 行为,得到序贯均衡 L,其均衡评估为 $x_1 = 1$, $x_2 = 0$,y = 0, $\mu > 1/2$;

当 $\mu=1/2$ 时,需要满足 $\frac{x_2}{1-x_1}=1/2$,即 $x_2=x_3$,则要么 3y=1-y=2(无法满足),要么 3y<2 且 1-y<2 且 3y=1-y,得到 y<2/3,y=1/4,此时玩家 1 会采取 L 行为,得到序贯均衡 L,其均衡评估为 $x_1=1$, $x_2=0$,y=1/4, $\mu=1/2$ 。