How many trailing zeros in n!

Greatest dividing exponent and its properties is the topic of the problem in this note.

Problem

Write a program that calculates for an arbitrary positive integer n how many trailing zeros there are in n!.

Let's first try to figure out for any natural number n what the number of trailing zeros is. A useful concept here is the greatest dividing exponent 1 :

Definition 1.1. The greatest dividing exponent gde(n,b) of a base b with respect to a number n is the largest integer value of k such that $b^k \mid n$, where $b^k \leq n$.

Lemma 1.2.

$$gde(n, ab) = min(gde(n, a), gde(n, b)), with (a, b) = 1$$

Proof. Assume $gde(n,a) \le gde(n,b)$. Then $a^{gde(n,a)} \mid n$ and $b^{gde(n,a)} \mid n$, with $(a^{gde(n,a)},b^{gde(n,a)}) = 1$, so $(ab)^{gde(n,a)} \mid n$. By definition of gde we then have $gde(n,a) \le gde(n,ab)$.

We also have $(ab)^{gde(n,ab)} \mid n$, so $a^{gde(n,ab)} \mid n$. By definition of gde we then have $gde(n,a) \ge gde(n,ab)$.

It follows that
$$gde(n, a) = gde(n, ab)$$
.

It's clear that the number of trailing zeros of n equals gde(n, 10). From lemma 1.2 we are looking for min(gde(n!, 2), gde(n!, 5)).

Lemma 1.3.

$$gde(n!,p) = \sum_{k=1}^{\lfloor log_p n \rfloor} \left\lfloor \frac{n}{p^k} \right\rfloor$$
, for a prime $p \leq n$

¹ Eric W. Weisstein. Greatest dividing exponent. From MathWorld—A Wolfram Web Resource. URL http://mathworld.wolfram.com/GreatestDividingExponent.html

Proof. We define the following subsets of $\{1, ..., n\}$:

$$M_p^k = \{i : 1 \le i \le n : p^k \mid i\}$$

For $k > \lfloor log_p n \rfloor$ the sets M_p^k are empty, so we only consider $k \leq \lfloor log_p n \rfloor$. Each member of one set M_p^k contributes k to gde(n!,p), so the whole set contributes $k | M_p^k |$. From $p^k | i$ it follows that also $p^{k-1} | i$, so $M_p^k \subseteq M_p^{k-1}$ for $k = 2, \ldots, \lfloor log_p n \rfloor$. Being careful not to count the contributions more than once we get:

$$gde(n!,p) = \sum_{k=1}^{\lfloor log_p n \rfloor} |M_p^k|$$

With $|M_p^k| = \left\lfloor \frac{n}{p^k} \right\rfloor$ we conclude the proof.

Lemma 1.4.

$$gde(n!,2) \ge gde(n!,5)$$
 for any $n \ge 1$

Proof. Plugging in the expression of *gde* from lemma 1.3 into the claim of this lemma we get:

$$gde(n!,2) \ge gde(n!,5) \Leftrightarrow \sum_{k=1}^{\lfloor log_2n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor \ge \sum_{k=1}^{\lfloor log_5n \rfloor} \left\lfloor \frac{n}{5^k} \right\rfloor$$

We establish:

$$log_2 n \ge log_5 n \Leftrightarrow log_2 n \ge log_2 n \ log_5 2$$

 $\Leftrightarrow 1 \ge log_5 2$, which is true

For each $1 \le k \le \lfloor log_5 n \rfloor$ we have:

$$\left\lfloor \frac{n}{2^k} \right\rfloor \ge \left\lfloor \frac{n}{5^k} \right\rfloor$$

and for $|log_5 n| + 1 \le k \le |log_2 n|$ we have:

$$\left|\frac{n}{2^k}\right| > 0$$

Adding up the inequalities establishes the claim.

From the three lemmas we found that:

(number of trailing zeros in
$$n!$$
) = $gde(n!, 10)$
= $min(gde(n!, 2), gde(n!, 5))$
= $gde(n!, 5)$
= $\sum_{k=1}^{\lfloor log_5 n \rfloor} \left\lfloor \frac{n}{5^k} \right\rfloor$

so our program needs to calculate the expression:

$$\sum_{k=1}^{\lfloor \log_5 n \rfloor} \left\lfloor \frac{n}{5^k} \right\rfloor$$

The following small Haskell function does it:

Listing 1.1: Haskell code

```
gdefac :: Int -> Int
gdefac n = fst (until ((x, y) \rightarrow y == o)
                     (\(x, y) \rightarrow let
                                    y' = div y 5
                                  in (x + y', y')
                     (o, n))
```

It works on tuples of numbers. It keeps dividing the second number in the tuple by 5 until zero and adding the division results together into the first number of the tuple. In the end it returns the first number in the tuple.

Bibliography

Eric W. Weisstein. Greatest dividing exponent. From MathWorld— A Wolfram Web Resource. URL http://mathworld.wolfram.com/GreatestDividingExponent.html.