Name :	
Roll No.:	
Invigilator's Signature :	

2013

STATISTICS, NUMERICAL METHODS & ALGORITHMS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

			(1414	itipic Ci	loice Typ	՝	CSLIC	ліз ,			
1.				correct	alternativ	ves	for	any			
	follo	wing	:						10	× 1 =	10
	i)	New	ton-I	Raphson	method is	also	knov	wn as	meth	od o	f
		a)	stra	ight line		b)	tang	gent			
		c)	nori	mal		d)	non	e of th	iese.		
	ii)	Ord	er of	the term	h in the e	rror	term	of tra	apezo	idal	rule
		is of	f orde	er							
		a)	1			b)	2				
		c)	3			d)	4.				

4340 [Turn over

iii) The value of $\Delta^2 \left(ax^2 + bx + c\right)$ is

	a)	2 an + b		b)	2 an
	c)	$2 an^2$		d)	none of these.
iv)	The	e number of signi	ficant di	gits i	in 1·00234 is
	a)	3		b)	4
	c)	5		d)	6.
v)	If y	$y_0 = 2, y_1 = 4, y_2$	$_{2}$ = 8, y_{2}	1 = 3	32, then y_3 is equal to
	a)	5		b)	6
	c)	15		d)	none of these.
vi)	Wh	ich of the followir	ng metho	ods i	s an iterative method ?
	a)	Gauss Eliminat	tion metl	hod	
	b)	Gauss-Jordan	method		
	c)	Gauss-Jacobi n	nethod		
	d)	Crout's method	l.		
vii) The	e order of conver	gence of	f Ne	wton-Raphson methods
	is				
	a)	1		b)	2
	c)	2		d)	4.
4340			2		

	viii)	The	relation between	shift op	erator E and forward				
		difference operator Δ is given by							
		a)	$\Delta = 1 + E$	b)	$E = 1 + \Delta$				
		c)	$E = \Delta$	d)	$E=\Delta+2.$				
	ix)	The	first order of for	rward di	fference of a constant				
		func	ction is						
		a)	0	b)	1				
		c)	4	d)	3.				
	x)	Lagr	ange's interpolation	n formula	is used for				
		a)	Equally space poin	nt b)	Unequally space point				
		c)	Both (a) & (b)	d)	None of these.				
	xi)	The	equation $x^x + x -$	1 = 0 is a	ı				
		a)	algebraic equation						
		b)	transcendental equ	uation					
		c)	both (a) & (b)						
		d)	none of these.						
	xii)	Orde	er of h in the error	r express	ion of Simpson's 1/3rd				
		rule	is						
		a)	2	b)	4				
		c)	3	d)	5				
4340)		3	3	[Turn over				

xiii) The degree of interpolation polynomial of a function whose values are known at 8 points is

a) 5

b) 6

c) 7

d) 8.

xiv) The number of significant digits in 0.00303 is

a) 6

b) 5

c) 3

d) 2

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. Find the missing terms of the following table :

<i>X</i> :	45	50	55	60	65
f(X):	3	?	2	?	4

3. Solve the system of equation by LU method:

$$3x + 4y + 7z = 8$$

$$x + 2y + 3z = 6$$

$$x + 5y + 9z = 9$$

- 4. Find the real root of equation $x^3 x 1 = 0$ by the method of bisection.
- 5. Compute by Newton-Raphson method the positive root of equation $3x^2 + 2x = 9$ correct to four significant figures.
- 6. Compute the value of y at x = 1.3 using Runge-Kutta method of fourth order by solving the differential equation.

$$\frac{dy}{dx} = x^2 + y^2$$
, with $x_0 = 1$, $y_0 = 0$ and step size $h = 0.3$.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Use Newton's divided difference formula to find f (8) and f (15) from the following table :

<i>x</i> :	4	5	7	10	11	13
f(x):	48	100	294	900	1210	2028

b) Find the value of fifth root of 255.

7 + 8

- 8. a) From Gauss-Legendre quadrature formula establish trapezoidal rule of integration.
 - b) By using Simpson's one third rule calculate

$$\int_{0}^{1} \left(x^{3} - x\right) dx$$
. Compute relative error. 7 + 8

9. a) Solve the system of equation by Inverse Matrix method:

$$x + y + z = 3$$

$$2x - y + 3z = 16$$

$$3x + y - z = -3$$
.

- b) Find by Taylor's series method the value of y at x = 0.1 and x = 0.2 to 5 places of decimal from $\frac{dy}{dx} = x^2y 1, y(0) = 1.$ 7 + 8
- 10. a) Compute y(0.2) from the equation $\frac{dy}{dx} = x y, \ y(0) = 1 \text{ taking } h = 0.1 \text{ by Rune-Kutta}$ method correct to four decimal places.
 - b) Solve by Gauss elimination method.

$$x - y - z = 1$$

$$2x - 3y + z = 1$$

$$3x + y - z = 2$$
. $7 + 8$

4340 6

- 11. a) Find a real root of the equation $f(x) = \log x \cos x$ using bisection method up to 3 decimal places.
 - b) Solve the system of equation by Gauss elimination method:

$$x + 3y + 2z = 5$$

$$2x - y + z = -1$$

$$x + 2y + 3z = 2$$

7 + 8