

Algoritmos Bio-inspirados

Conceitos e Aplicações em Aprendizado de Máquina

Gisele L. Pappa

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais
glpappa@dcc.ufmg.br

Organização do Curso

Parte 1: Introdução a Algoritmos Bio-inspirados

Parte 2: Introdução a Aprendizado de Máquina

Parte 3: Aplicações de Algoritmos
 Evolucionários em Aprendizado de Máquina

Parte 1: Introdução a Algoritmos Bio-inspirados (ou Computação Natural)

O que é Computação Natural?

- Natureza utilizada como fonte de inspiração ou metáfora para desenvolvimento de novas técnicas computacionais utilizadas para resolver problemas complexos
- Metáforas
 - Não necessariamente incluem todos os detalhes do sistema natural
 - Simplificações são necessárias

Computação Evolucionária • Inteligência Coletiva • Redes Neurais Artif. Computação inspirada • Sistemas Imunológicos Artif. na natureza • Sistemas Endócrinos Artif. Computação Simulação e emulação Natural de fenômenos naturais Computação utilizando Computação Quântica Computação baseada em DNA meios (materiais) naturais

O que é Computação Natural?

- Métodos estocásticos (não-determinístico)
- Não garantem que a solução ótima será encontrada, mas sim a quase-ótima.
- Grande maioria dos métodos apresenta uma maneira declarativa de resolver um problema (o quê fazer), em contraste com métodos procedurais (como fazer)

Computação Evolucionária

Computação Evolucionária (CE)

- Métodos inspirados na teoria da evolução de Darwin, propostos pela primeira vez em 1958
- Anos 60
 - Algoritmos Genéticos (e Programação Evolucionária) vs
 Estratégias Evolutivas
- 1992
 - Programação Genética
- Anos 90 essas técnicas foram combinadas com o nome Computação Evolucionária

Onde se usa CE?

- Muitas aplicações para listar
 - Engenharia
 - Design de circuitos
 - Modelos financeiros
 - Jogos
 - Bioinformática
 - Modelagem
- Capazes de gerar resultados competitivos com aqueles encontrados por humanos.

Independência de Aplicação

- O que faz EAs serem robustos para os mais diversos tipos de aplicações?
 - O algoritmo em si é o mesmo para qualquer problema
 - Existem 3 componentes importantes que devem ser definidos de acordo com o problema em mãos:
 - Representação dos indivíduos
 - Função de aptidão (fitness)
 - •Operadores genéticos novos operadores podem ser definidos especificamente para o problema

Motivação para utilizar CE?

- Oferecem soluções robustas e adaptativas
- Processamento paralelo implícito
- Inteligência de máquinas
 - Possibilita incorporar conhecimento ao método sem explicitamente programá-lo
- Necessidade de validar teorias e conceitos da biologia evolucionária
- Busca global

O que é evolução?

- Mudança das características (genéticas) de uma população de uma geração para a próxima
 - Mutação dos genes
 - Recombinação dos genes dos pais
- Seleção natural é seu principal agente causador

O que é evolução?

Good things come for those who wait?

http://www.youtube.com/watch?v=1t4sdgvy-pk

Biologia Evolucionária (1)

• Estruturas básicas:

Biologia Evolucionária (2)

Cromossomos

- Carregam informações hereditárias de um organismo
- Podem ser dividido em genes
 - Um gene é uma região do DNA que controla uma característica hereditária

Genótipo

Material genético contido em uma célula ou organismo

Fenótipo

 Características físicas ou bioquímicas de um organismo que podem ser observadas, e que são determinadas tanto pelo genótipo quanto por influências do meio

Fitness

Probabilidade de reprodução de um indivíduo

Da biologia para computação

Idéias Básicas

- AE é um procedimento interativo que evolui uma população de indivíduos
- Cada indivíduo representa uma solução candidata para um dado problema
- Exemplo: Problema do Caxeiro Viajante

Computação Evolucionária

- Historicamente, diferentes tipos de AEs têm sido associadas a diferentes tipos de representação
 - Vetores de bits : Algoritmos Genéticos
 - Vetores de números reais : Estratégias Evolucionárias
 - Máquinas de estado finito: Programação Evolucionária
 - Árvores: Programação Genética
- Foco do curso: algoritmos genéticos e programação genética

Algoritmos Genéticos

Algoritmos Genéticos

- Técnica mais dissiminada em EA
- Introduzida por Holland em 1975, e desenvolvida por um de seus estudantes, Goldberg
- Indivíduos são strings binárias

 Qual seria a representação para o problema do caxeiro?

Algoritmos Genéticos

- Cromossomo (indivíduo) tem tamanho fixo
 - Genes normalmente tem tamanho fixo
- Existe um mapeamento do genótipo para o fenótipo

Genótipo versus Fenótipo

Espaço de Soluções

• Em alguns algoritmos evolucionários não existe distinção entre genótipo e fenótipo

Algoritmo Genético

Exemplo – *OneMax*

- Objetivo: Maximizar o número de 1s em um string de bits de tamanho n
 - Definição de parâmetros
 - N = 8 e tamanho da população = 4

Indivíduo A B C D

Algoritmo Genético

Seleção Proporcional a Fitness (Roleta Russa)

$$\overline{f} = \frac{1}{N} \sum_{i=1}^{N} f_i$$

Fitness f_i

Indivíduo j pode ser selecionado com a probabilidade

$$p_{j} = \frac{f_{j}}{\sum_{i=1}^{N} f_{i}}$$

Seleção Proporcional a Fitness (Roleta)

Indivíduo	String	Fitness
Α	00000110	2
В	11101110	6
С	00100000	1
D	00110100	3
		4.0

Seleção Proporcional a Fitness (Roleta)

• Rodo a roleta
$$r \in \left[0, \sum_{j=1}^{N} f_i\right]$$

Seleção por Torneio

- Um subconjunto de k indivíduos é retirado aleatoriamente da população
- O melhor indivíduo desse subconjunto de acordo com a fitness (o vencedor
 - do torneio) é selecionado
 - -k = tamanho do torneio

- Quanto maior o valor de k, maior a pressão seletiva
- Tornou-se um dos métodos mais comuns, com k = 2

Algoritmo Genético

Operadores Genéticos

- Cruzamento de um ponto (de acordo com probabilidade definidas pelo usuário)
 - Padrão para GAs
 - Probabilidades altas (70-99%)
 - Ponto de cruzamento é escolhido aleatoriamente

Pais	Filhos
B 1 1101110	E 0 1101110
C 0 0100000	F 10100000

Operadores Genéticos

- Outro tipo de crossover: Crossover Uniforme
 - Cada gene é trocado de acordo com uma probabilidade p_c

Pais	Filhos	
B 110110	E 01101110	
C 0 01 0 000 0	F 10100000	

Operadores Genéticos

Mutação

- Baixa probabilidade –em sistemas naturais os efeitos da mutação podem ser destrutivos
- Calcula a probabilidade de trocar cada um dos genes (bits) do cromossomo ou escolhe um ponto de troca. A troca ocorre com um novo elemento aleatório

Pai 1 1101110 Filho 11100110

Algoritmo Genético

Substituição da população atual pela nova

	Indivíduo	String	Fitness
População atual	Α	00000110	2
	В	11101110	6
	С	00100000	1
	D	00110100	3

Nova
população

Indivíduo	String	Fitness
E	01001110	4
F	10100000	2
G	11101110	6
Н	00110100	3

Algoritmo Genético

Papel dos operadores na Evolução

- Seleção
 - Guia o algoritmo para áreas promissoras do espaço de busca
- Cruzamento
 - Muda o contexto de informação útil já disponível
- Mutação
 - Introduz inovação
- Conflito entre o papel da seleção e do cruzamento e mutação?????
 - Buscar encontrar o melhor equilíbrio

Exercício 1

 Como você modelaria um GA para resolver o problema do Caxeiro Viajante?

Pontos Importantes:

- •Representação dos indivíduos
- •Fitness
- Operadores

- Criada com o objetivo de evoluir programas
- Lista de 36 (re-)invenções que são competitivas com as soluções propostas por humanos
 - 2 geraram patentes

www.genetic-programming.org

- Principais características
 - Um indivíduo é uma solução candidata contendo funções e operadores, e não apenas "dados" (variáveis /constantes)
 - Normalmente indivíduos tem tamanhos e formas variadas
 - Na teoria, um indivíduo é uma "receita" para resolver um dado problema, ao invés de uma solução para uma dada instância de um problema

GA vs. GP

- Ex: otimização de funções vs. aproximação de funções
 - Dada uma função complexa, por exemplo sin(x) 0.1 x + 2, podemos usar um GA para encontrar o valor ótimo da função
 - Dado um conjunto de dados, contento pares <x, f(x)>, podemos utilizar GP para encontrar uma função g(x) que se aproxime da função desconhecida f(x) (regressão simbólica)
- Considere o problema do caxeiro viajante
 - Em um GA um indivíduo é uma sequencia de cidades
 - Em GP um algoritmo deveria ser um "algoritmo" para resolver qualquer instância do problema, dado qualquer conjunto de cidades

Otimização versus Aproximação de funções

Exemplo de aplicação de um GA:

Encontre os máximos ou mínimos da função

$$f(x) = sin(x) - 0.1 x + 2$$

Exemplo de aplicação de um GP:

Encontre a função (programa) que produz os pontos dados na tabela a seguir:

х	saída
-10	3.6
-8	2.1
-6	2.7
-4	2.6
•	
•	

Programação Genética (GP)

- 2 componentes básicos:
 - Conjunto de terminais variáveis e constantes
 - Conjunto de funções funções apropriadas para resolver o problema em questão
- Tipos de representação:
 - Representação linear
 - Representação por árvores (mais comum)
 - Representação por grafos

Conjunto de Funções

- Propriedades desejadas
 - Suficiência: o poder de expressão é suficiente para representar uma solução candidata para o problema em questão
 - Fechamento (Closure): uma função deve aceitar como entrada qualquer saída produzida por qualquer outro elemento do conjunto de funções ou do conjunto de terminais
 - Parcimônia: idealmente, conter apenas funções necessárias para resolver o problema em questão (propriedade não necessária, mas desejada)

Conjunto de Funções

- Como encontrar um equilíbrio entre poder de expressão e parcimônia?
 - Sugestão [Banzhaf et al. 1998, p. 111]:
 FS = {+, -, x, /, OR, AND, XOR}

Componentes básicos de um GP

- Focaremos na representação por árvore
 - Nós internos: funções ou operadores
 - Nós folhas: variáveis ou constantes

Exemplos de Indivíduos

- Conjunto de funções: $F = \{+, -, \times, \div\}$
- Conjunto de terminais: $T = \{A, B, X, Y\}$

Indivíduo 1: $(+ (- X Y) (\times A B))$

Indivíduo 2: $(\div (\times (-X Y) B) B)$

• Crossover: troca sub-árvores

• Mutação de um ponto

Mutação de expansão

Mutação de redução

Diferenças "Padrão" entre GA e GP

Algoritmos Genéticos (GA)

- Representação do indivíduo é, originalmente, um vetor binário. Atualmente vários tipos de representação são permitidas
- Principal operador: cruzamento (altas probabilidades)
- Operador secundário: mutação (baixa probabilidade)

Programação Genética (GP)

- Representação: utilizada não apenas dados, mas também funções
- Objetivo original é evoluir programas ao invés de soluções para uma instância particular do problema
- Acredita-se que cruzamento pode ter efeito destrutivo

Parâmetros Necessários

- Tamanho da população
- Número de gerações
- Probabilidades de cruzamento
 - Se uniforme, probabilidade de trocar gene (0.5)
- Probabilidades de mutação
- Se seleção por torneio k
- Número de indivíduos do elitismo

Avaliando a *Performance* de um EA

- Nunca tire conclusões a partir de uma execução
 - Rode o GA várias vezes
 - Para problemas simples idealmente pelo menos 30
- Utilize medidas estatística (médias, medianas, desvio padrão, etc)
- Salve o maior número de informações possíveis sobre sua população
 - Média, Melhor e Pior fitness a cada geração
 - Diversidade, etc
- Desenhe gráficos para acompanhar o progresso dessas variáveis
- Compare com um algoritmo de busca aleatória

Design de antenas para missões da NASA [Hornby et al 2006]

- NASA vem utilizando AEs para evoluir antenas (design) com as mais diversas finalidades desde 1990.
- Exemplo: antenas para o programa ST5, que visa lançar 3 micro-satélites (53cm x 28cm e 25kg)
- Cada satélite possui 2 antenas, centralizadas nas partes de cima e de baixo
- Desenvolveram um EA para evoluir antena considerando especificações da órbita dos micro-satélites

Objetivo:

- Desenhar uma antena de 4 braços, separados por um ângulo de 90 graus
- A antena deve ter um voltage standing wave ratio (VSWR) menor que 1.2 na frequência transmissora (8470 MHz) e menor que 1.5 na frequência receptora (7209.

Exemplo de antena desenvolvida

- Representação do Indivíduo
 - Representa um braço, e na hora da avaliação o AE cria uma antena completa com 4 braços idênticos
 - Representado por uma árvore, onde cada nó corresponde a um operador construtor de antena.
 A antena é criada executando os operadores em cada nó da árvore, começando pelo nó raiz
- Operadores construtores de antena :
 - forward(length, radius)
 - rotate-x(angle) / rotate-y(angle) /rotate-z(angle)

- Fitness
 - Fitness calculada em função do VSWR
- Órbita inicial foi modificada, e uma nova antena com apenas um braço requerida
- Objetivo:
 - Desenhar uma antena de 1 braço

 Apenas modificando a fitness do EA inicial e as restrições de design da antena, cientistas consiguiram desenvolver uma nova antena

Nova Antena

- Em comparação com técnicas tradicionais de design de antenas, a antena evoluída apresenta vantagens em termos de
 - gasto de energia,
 - tempo de fabricação
 - complexidade
 - performance
- Comparação com uma antena especialmente fabricada para missão por humanos (QHA):
 - 2 QHAs: 38% de eficiência
 - 1 QHA com uma antena evoluída: 80% de eficiência
 - 2 antenas evoluídas: 93% de eficiência

Parte 2: Aprendizado de Máquina e Mineração de Dados

Qual a diferença entre aprendizado de máquina e mineração de dados?

- Extração de padrões interessantes ou conhecimento de um grande volume de dados
- Também conhecido como KDD (Knowledge Discovery in Databases)
- O que é um padrão interessante?
 - Não-trivial
 - Implícito
 - Anteriormente desconhecido
 - Útil

Se (<u>sexo</u> paciente == feminino) então grávida

• Para a comunidade business intelligence

• Para as comunidades de aprendizado de máquina e estatística

Mineração de Dados

- Por quê estudar?
 - Crescimento explosivo na quantidade de dados coletados e disponíveis
- De onde vêm esses dados?
 - Negócios: Web, comércio eletrônico, mercado de ações
 - Ciência: Bioinformática, sensoramento remoto, simulações
 - Sociedade: redes sociais, câmeras digitais, notícias

Search Trends

Tip: Use commas to compare multiple search terms.

Examples

4. sotu

red hat, debian, gentoo, slackware comic books, graphic novels sudoku

mariners.com, seahawks.com, sonics.com bbc.co.uk weddingchannel.com

Hot Searches (USA)

1. state of the union 6. maurice sendak

o. <u>maanee senae</u>

2. prince fields Google Trends sopa Tip: Use commas to compare multiple search terms.

3. jorge posad Tip: Use commas to compare multiple search terms

5. state of the - Scale is based on the average worldwide traffic of sopa in all years. Learn more

- An improvement to our geographical assignment was applied retroactively from 1/1/2011. Learn more

Searches Websites

A SOPA DE FIDEO CON POLLO

Kansas.com - Feb 23 2005

B SOPA Drama: Google, Facebook Oppose Stop Online Piracy Act in Congress

All years

Slate - Nov 17 2011

SOPA and PIPA

Search Trends

All regions

YouTube - Jan 18 2012

More news results »

Início

Enfermidades

Painel do Twitter

A dengue é um dos principais problemas de saúde pública no mundo. A Organização Mundial da Saúde (OMS) estima que entre 50 a 100 milhões de pessoas se infectem anualmente, em mais de 100 países, de todos os continentes, exceto a Europa. Cerca de 550 mil doentes necessitam de hospitalização e 20 mil morrem em conseqüência da dengue.

Noticias do Observatório

Nova versão do Observatório da Web - Monitoração da Dengue

O Observatório da Web - Monitoração da Dengue passou por algumas mudanças no seu layout para padronização com novos observatórios que serão lançados no futuro. **Leia mais**

Como esta análise é construída?

Como esta análise é construída?

Destaques no Twitter (hoje)

tweets veia mais

66 [Contigo!] Restart participa de campanha contra dengue em Rio Das Ostras:

Santa Maria, Rio Grande do Sul, BR

66 [Contigo!] Restart participa de campanha contra dengue em Rio Das Ostras: http://t.co/jwMvQ48a

Tatuí, Sao Paulo, BR

Sumário

- O que é mineração de dados?
- Visão Geral de Mineração de Dados
 - Tipo de conhecimento a ser extraído
 - Tipo dos dados a serem minerados
 - Tipos das técnicas a serem utilizadas
 - Aplicações consideradas
- Conhecendo seus dados
- Pré-processamento
- Classificação
- Avaliação dos Algoritmos de Classificação

Visão Geral de Mineração de Dados

1. Tipo de conhecimento a ser minerado

- Mineração de padrões frequentes, Classificação, Agrupamento, etc
- Preditivo ou descritivo

2. Tipo dos dados a serem minerados

Relacionais, sequências, temporais, espaciais, streams, textos, grafos, etc

3. Técnicas a serem utilizadas

 Estatística, aprendizado de máquina, visualização, reconhecimento de padrões, etc

4. Aplicações consideradas

 Web mining, bio-data mining, análise de fraudes, análise de tendências no mercado financeiro, etc

Tipo de conhecimento a ser minerado

- Mineração de padrões ou itens frequentes
 - Que itens são frequentemente comprados juntos no Wallmart?
- Tarefa de Associação
 - Fraldas -> cerveja [0.5%, 75%] (suporte,confiança)
- Problemas:
 - Como encontrar padrões de forma eficiente em grandes bases?
 - Como usar esses padrões nas tarefas de classificação e agrupamento?

Tipo de conhecimento a ser minerado

- Aprendizado supervisionado
 - Rótulo das classes conhecido no conjunto de treinamento
- Classificação e Previsão
 - Construir modelos baseados em um conjunto de treinamento
 - Descrever ou distinguir classes para previsões futuras
- Métodos comuns
 - Árvores de decisão, regras de associação, redes
 Bayesianas, SVM, regressão logística, redes neurais, algoritmos evolucionários, etc

Tipo de conhecimento a ser minerado

- Aprendizado não-supervisionado
 - Agrupamento
- Agrupar dados similares criando categorias (ou grupos)
- Princípio: maximizar a similaridade intercategoria e minimizar a similaridade intracategoria

Tipo dos dados a serem minerados

- Bases de dados relacionais ou transacionais
- Bases de dados avançadas:
 - Multimídia Imagens ou vídeos
 - Séries temporais
 - Dados espaciais ou espaço-temporais
 - Texto
 - Web
- Bases de dados representadas por grafos
 - Compostos químicos e redes sociais

Maiores desafios da área

- Mineração dados heterogêneos
- Lidar com dados de alta dimensão
- Lidar com dados incompletos, incertos e com ruído
- Incorporar exceções e conhecimento a priori sobre os problemas sendo resolvidos
- Eficiência e escalabilidade dos algoritmos

Conhecendo seus Dados: Foco em Dados Estruturados

Instâncias

- Bases de dados são compostas por instâncias
- Uma instância representa uma entidade no mundo real
 - Ex: consumidores, pacientes, proteínas
- Instâncias são descritas por um conjunto de atributos
- Numa base de dados, linhas representam instâncias e colunas atributos

Atributos

- Também conhecidos como dimensões, características, variáveis
 - Ex: nome, endereço, telefone
- Tipos de atributos:
 - Nominais: categorias, estados
 - Ex: cor do cabelo: {loiro, ruivo, preto, branco, castanho}
 - Ordinais: a ordem importa, mas o valor que representada cada categoria não é conhecido
 - Ex: altura: {baixo, médio, alto, muito alto}
 - Numéricos
 - Ex: salário, temperatura
- Atributo discreto (número finito de estados) versus contínuo (normalmente representado por um número real)

Estatísticas básicas sobre os dados

- Tendência central, variação e espalhamento (spread)
- Dispersão dos dados
 - Média, mínimo e máximo
 - Exemplo: problema de 2 classes

Pré-Processamento: Visa aumentar a qualidade dos dados

Principais tarefas de pré-processamento

- Limpeza de dados
 - Tratar dados faltantes (missing values), resolver inconsistências, identificar e remover outliers
- Integração de dados
- Redução de dados
 - Redução de dimensionalidade, numerosidade e compressão de dados
- Transformação e discretização de dados
 - Normalização de dados

Redução de Dados

- Obter uma representação reduzida dos dados que, quando analisada, leve aos mesmos resultados obtidos com os dados completos
- Por quê?
 - Bases de dados são normalmente imensas, acarretando alto custo computacional
- Estratégias:
 - Redução de dimensionalidade
 - Redução de dados (numerosidade)
 - Compressão de dados

Redução de Dimensionalidade

- Evita a maldição da dimensionalidade
 - Quanto mais dados, mais esparsa a base de dados e mais difícil de aprender
- Ajuda a reduzir o número de atributos irrelevantes e remover ruído
- Reduz o tempo necessário para a mineração
- Facilita a visualização dos dados

Redução de Dimensionalidade

Técnicas:

- Transformadas Wavelet
- PCA (Principal Component Analysis)
- Métodos supervisionados e não lineares, como seleção de atributos
- Seleção de atributos
 - Dados normalmente não são criados para serem minerados
 - Remove atributos irrelevantes para o processo, tais como identificadores

Seleção de Atributos

- Dados K atributos, existem 2^K combinações possíveis
- Utilização de heurísticas para seleção:
 - O melhor atributo é selecionado através de testes de significância assumindo independência entre eles
 - Seleção Greedy
 - Seleciona o melhor atributo
 - Seleciona o segundo melhor condicionado ao primeiro, e assim por diante
 - Eliminação Greedy
 - Elimina o pior atributo a cada iteração
 - Seleção baseada em busca em largura
 - Seleciona sempre os *n* melhores, ao invés do melhor
 - Algoritmos evolucionários

Referências e Links

- Hornby et al, Automated antenna design with evolutionary algorithms, AIAA Space, 2006
- M. Mitchell, Genetic Algorithms: An Overview, Complexity, 1 (1) 31-39, 1995.
- A Field Guide to Genetic Programming, Livro online, <u>http://www.gp-field-guide.org.uk/</u>

http://www.aridolan.com/ga/gaa/SingleVarMin.html — minimizar a função http://alphard.ethz.ch/gerber/approx/default.html http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/