A NOTE ON LATIN SQUARES WITH RESTRICTED SUPPORT

Roland HÄGGKVIST

Matematiska Institutionen, Stockholms Universitet, Box 6701, 113 85 Stockholm, Sweden

The purpose of this note is to give a simple theorem which hopefully will inspire some reader to more profound explorations. First we give some definitions. A partial $n \times n$ column-latin square L on $1, 2, \ldots, n$ is an $n \times n$ array filled with the symbols $1, 2, \ldots, n$ in such a way that every cell contains at most one symbol, and every symbol occurs at most once in every column. The array L is a latin square if, in addition, every symbol occurs exactly once in every row and column.

Theorem. Let $n = 2^k$ and let L be a partial $n \times n$ column-latin square on $1, 2, \ldots, n$ with empty last column. Then there exists an $n \times n$ latin square A on the same symbols which differs from L in every cell.

Proof. We use induction on k. The theorem is obviously true when k=0. Assume that the theorem has been proved for order m and let n=2m. By rearranging rows if necessary (and filling in some empty cells perhaps), we may assume that the mth column of L has the entries $1, 2, \ldots, 2m$ in that order. If we suppress the symbols $1, 2, \ldots, m$ in the upper left $m \times m$ quadrant B and the lower right $m \times m$ quadrant E in E, we find ourselves with a pair of partial column-latin squares E and E on E and E either. Similarly, by suppressing the symbols E and E either. Similarly, by suppressing the symbols E and E and E either. Similarly, by suppressing the symbols E and E either. Similarly, by suppressing the symbols E and E either. Similarly, by suppressing the symbols E and E either symbols E and E either either either E and lower left E and E on the symbols E and applying the theorem, we find a pair of latin squares E and E on the symbols E and E entries in common with E and E entries in common with E and E entries E and E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries in common with E and E entries E and E entries empty expression in the upper right entries E entries empty expression in the upper right entries in the upper right entries empty entries

The theorem is not valid for every n as seen by example below.

$$L = 3 \quad 2 \quad *$$
 $2 \quad 3 \quad *$

However, this is likely to be the only exception. In general perhaps the following is true for some positive constant c, which could be as large as $\frac{1}{3}$, say.

Conjecture. Let L be an $n \times n$ array of m-sets from a set of symbols $1, 2, \ldots, n$ where every symbol is used at most $m \le cn$ times in each row and column. Then there exists an $n \times n$ latin square A on $1, 2, \ldots n$ with entries in the complement of L.

A positive answer could have some impact on the following question.

Dinitz' problem.

Given an $m \times m$ array of m-sets, is it always possible to choose one element from each set, keeping the chosen elements distinct in every row and column?

For some related material see the references.

References

- [1] B. Bollobás and A.J. Harris, List-colourings of graphs, Graphs and Combinatorics 1 (1985) 115-127.
- [2] A.G. Chetwynd and R. Häggkvist, A note on list-colourings, to appear in J. Graph Theory.
- [3] R. Häggkvist, Towards a solution of the Dinitz problem?, this volume, 247–251.