Logistic regression assumptions and diagnostics

Plan going forward

Motivating example: Dengue data

Data: Data on 5720 Vietnamese children, admitted to the hospital with possible dengue fever. Variables include:

- Sex: patient's sex (female or male)
- Age: patient's age (in years)
- WBC: white blood cell count
- PLT: platelet count
- other diagnostic variables...
- Dengue: whether the patient has dengue (0 = no, 1 = yes)

Previously: Logistic regression model

$$Y_i = ext{dengue status} \ (0 = ext{negative}, 1 = ext{positive})$$
 $Y_i \sim Bernoulli(p_i)$ $\logigg(rac{p_i}{1-p_i}igg) = eta_0 + eta_1 WBC_i$

What assumptions does this logistic regression model make? How should we assess these assumptions? Discuss with your neighbor for 2--3 minutes, then we will discuss as a group.

Don't use usual residuals for logistic regression

Fitted model:
$$\log \left(\frac{\hat{p}_i}{1 - \hat{p}_i} \right) = 1.737 - 0.361~WBC_i$$

Residuals $Y_i - \hat{p}_i$:

Assessing shape with empirical logit plots

Example: Putting data. Interested in the relationship between the length of a putt, and whether it was made:

$$Y_i \sim Bernoulli(p_i)$$

$$\logigg(rac{p_i}{1-p_i}igg) = eta_0 + eta_1 \ Length_i$$

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134

Empirical logits

Step 1: estimate the probability of success for each length of putt

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Probability of success \hat{p}	0.832	0.739	0.565	0.488	0.328

Empirical logits

Step 2: convert empirical probabilities to empirical log odds

Length	3	4	5	6	7
Number of successes	84	88	61	61	44
Number of failures	17	31	47	64	90
Total	101	119	108	125	134
Probability of success \hat{p}	0.832	0.739	0.565	0.488	0.328
Odds $rac{\hat{p}}{1-\hat{p}}$	4.941	2.839	1.298	0.953	0.489
$\operatorname{Log-odds} \log \left(\frac{\hat{p}}{1 - \hat{p}} \right)$	1.60	1.04	0.26	-0.05	-0.72

Empirical logits

Step 3: plot empirical log-odds against predictor, and add a least-squares line

Does it seem reasonable that the log-odds are a linear function of length?

Back to the dengue data...

WBC	0.90	1.15	1.23	1.25	1.54	1.58	•••
Dengue = 0	0	0	0	0	0	0	•••
Dengue = 1	1	2	1	1	3	1	•••

What problem do I run into?

Binned empirical logit plots

Binned empirical logit plots

Does it seem reasonable that the log-odds are a linear function of WBC?

Trying some transformations

Why residuals in linear regression are nice

Quantile residuals for logistic regression

Class activity

https://sta711-s23.github.io/class_activities/ca_lecture_9.html