PSY 369: Psycholinguistics

Language Comprehension
Word recognition & speech recognition

- How do we retrieve the linguistic information from Long-term memory?
 - How is the information organized/stored?
 - What factors are involved in retrieving information from the lexicon?
 - Models of lexical access

- How do we retrieve the linguistic information from Long-term memory?
 - How is the information organized/stored?
 - What factors are involved in retrieving information from the lexicon?
 - Models of lexical access

Models of lexical access

- Serial comparison models
 - Search model (Forster, 1976, 1979, 1987, 1989)
- Parallel comparison models
 - Logogen model (Morton, 1969)
 - Cohort model (Marslen-Wilson, 1987, 1990)
- Connectionist models
 - Interactive Activation Model (McClelland and Rumelhart, 1981)

Search model (e.g., Forster, 1976)

- Access of the lexicon is considered autonomous, independent of other systems involved in processing language
 - A complete perceptual representation of the perceived stimulus is constructed
 - The representation is compared with representations in access files
 - Three access files:
 - Orthographic
 - Phonological
 - Syntactic/semantic (for language production)
 - Access files are organized in a series of bins (first syllable or letters)
 - Position within the bins is organized by lexical frequency
 - Access files have "pointers" to meaning information in semantic memory

Search model (e.g., Forster, 1976)

Search model (e.g., Forster, 1976)

- Search model (Forster, 1976, 1979, 1987, 1989)
 - Frequency effects
 - Bin organization
 - Repetition priming effects
 - Temporary reordering of bins in response to recent encounter
 - Semantic priming effects
 - Accounted for by cross referencing in the lexicon
 - Context effects
 - Search is considered to be autonomous, un affected by context (so context effects are "post-access")

Logogen model (Morton 1969)

- The lexical entry for each word comes with a logogen
 - Logogens specify word's attributes
 - e.g., semantic, orthographic, phonological

- Activated in two ways
 - By sensory input
 - By contextual information
- Access (recognition) when reach threshold
 - Different thresholds depending on different factors
 - e.g., frequency
 - Access makes information associated with word available

Logogen model (Morton 1969)

Interactive Activation Model (IAM)

Proposed to account for Word Superiority effect

McClelland and Rumelhart, (1981)

The Word-Superiority Effect (Reicher, 1969)

Until the participant hits some start key

4

The Word-Superiority Effect (Reicher, 1969)

COURSE

Presented briefly ... say 25 ms

The Word-Superiority Effect (Reicher, 1969)

U &&&& A

Mask presented with alternatives above and below the target letter ... participants must pick one as the letter they believe was presented in that position.

The Word-Superiority Effect (Reicher, 1969)

Why is identification better when a letter is presented in a word?

Also goes by the name: Interactive Activation and Competition Model (IAC)

Interactive Activation Model (IAM)

Previous models posed a **bottom-up** flow of information (from features to letters to words).

IAM also poses a *top-down* flow of information

Nodes:

- (visual) feature
- (positional) letter
- word detectors
 - Inhibitory and excitatory connections between them.

McClelland and Rumelhart, (1981)

Interactive Activation Model (IAM)

- Inhibitory connections within levels
 - If the first letter of a word is "a", it isn't "b" or "c" or ...
- Inhibitory and excitatory connections between levels (bottom-up and top-down)
 - If the first letter is "a" the word could be "apple" or "ant" or, but not "book" or "church" or.....
 - If there is growing evidence that the word is "apple" that evidence confirms that the first letter is "a", and not "b".....

McClelland and Rumelhart, (1981)

IAM & the word superiority effect

- The model processes at the word and letter levels simultaneously
 - Letters in words benefit from bottom-up and top-down activation
 - But letters alone receive only bottom-up activation.

McClelland and Rumelhart, (1981)

Cohort model (Marslen-Wilson & Welch, 1978)

- Specifically for auditory word recognition (covered in chapter 9 of textbook)
 - Speakers can recognize a word very rapidly
 - Usually within 200-250 msec
 - Recognition point (uniqueness point)
 - Point at which a word is unambiguously different from other words and can be recognized (strong emphasis on word onsets)
 - Three stages of word recognition
 - 1) activate a set of possible candidates
 - 2) narrow the search to one candidate
 - 3) integrate single candidate into semantic and syntactic context

Cohort model

Prior context: "I took the car for a ..."

/s//sp/ /spi/ /spin/ soap spinach spinach spinach psychologist spin spin spit spin spin spit spit spank sun spank

time

- Each model can account for major findings (e.g., frequency, semantic priming, context), but they do so in different ways.
 - Search model is serial, bottom-up, and autonomous
 - Logogen is parallel and interactive (information flows up and down)
 - AIM is both bottom-up and top-down, uses facilitation and inhibition
 - Cohort is bottom-up but parallel initially, but then interactive at a later stage

Different signals

Visual word recognition

Where are you going

- Some parallel input
- Orthography
 - Letters
- Clear delineation
- Difficult to learn

Speech Perception

- Serial input
- Phonetics/Phonology
 - Acoustic features
- Usually no delineation
- "Easy" to learn

Different signals

Visual word recognition

Where are you going

- Some parallel input
- Orthography
 - Letters
- Clear delineation
- Difficult to learn

Speech Perception

- Serial input
- Phonetics/Phonology
 - Acoustic features
- Usually no delineation
- "Easy" to learn

Speech perception

- Articulatory phonetics
 - Production based
 - Place and manner of articulation

- Acoustic phonetics
 - Based on the acoustic signal
 - Formants, transitions, co-articulation, etc.

- Acoustic cues are extracted and stored in sensory memory and then mapped onto linguistic information
 - Air is pushed into the larynx across the vocal cords and into the mouth nose, different types of sounds are produced.
 - The different qualities of the sounds are represented in formants
 - The formants and other features are mapped onto phonemes

Acoustic features

Spectrogram

- Time on the x-axis
- Frequency (pressure funder which the air is pushed) on the y-axis
- Amplitude is represented by the darkness of the lines

time

Acoustic features

- Acoustic features
 - Formants bands of resonant frequencies
 - Formant transitions up or down movement of formants
 - Steady states flat formant patterns
 - Bursts sudden release of air
 - Voice onset time (VOT) when the voicing begins relative to the onset of the phoneme

Formants in a wide-band spectrogram

- Formants bands of resonant frequencies
 - Formant transitions up or down movement of formants
 - Steady states flat formant patterns

Formants in a wide-band spectrogram

Bursts – sudden release of air

Voice-Onset Time (VOT)

Categorical Perception

- <u>Categorical Perception</u> is the perception of different sensory phenomena as being qualitatively, or categorically, different.
- Liberman et al (1957)
 - Used the speech synthesizer to create a series of syllables panning categories /b/, /d/, /g/ (followed by /a/)
 - Was done by manipulating the F2 formant
 - Stimuli formed a physical continuum
 - Result, people didn't "hear" a continuum, instead classified them into three categories

Categorical Perception

- Liberman et al (1957)
 - 1. Set up a continuum of sounds between two categories

Categorical Perception

- Liberman et al (1957)
 - 2. Run an identification experiment

Hard Problems in Speech Perception

Wave form

- <u>Linearity</u> (parallel transmission): Acoustic features often spread themselves out over other sounds
 - Where does show start and money end?

Wave form

Invariance:

- One phoneme should have a one waveform
 - But, the /i/ ('ee') in 'money' and 'me' are different
- There aren't invariant cues for phonetic segments
 - Although the search continues

Demo's and info

Hard Problems in Speech Perception

Wave form

- <u>Co-articulation</u>: the influence of the articulation (pronunciation) of one phoneme on that of another phoneme.
 - Essentially, producing more than one speech sound at once

Trading relations

- Most phonetic distinctions have more than one acoustic cue as a result of the particular articulatory gesture that gives the distinction.
 - slit—split the /p/ relies on silence and rising formant, different mixtures of these can result in the same perception
- Perception must establish some "trade-off" between the different cues.

Hard Problems in Speech Perception

- The McGurk effect: McGurk and MacDonald (1976)
 - Showed people a video where the audio and the video don't match
 - Think "dubbed movie"
- McGurk effect
- McGurk effect2
- visual /ga/ with auditory /ba/ often hear /da/
- Implications
 - phoneme perception is an active process
 - influenced by both audio and visual information

- A. Liberman (and others, initially proposed in late 50's)
 - Direct translation of acoustic speech into articulatorally defined categories
 - Holds that speech perception and motor control involved linked (or the same) neural processes
 - Theory held that categorical perception was a direct reflection of articulatory organization
 - Categories with discrete gestures (e.g., consonants) will be perceived categorically
 - Categories with continuous gestures (e.g., vowels) will be perceived continuously
 - There is a speech perception module that operates independently of general auditory perception

Frontal slices showing differential activation elicited during lip and tongue movements (Left), syllable articulation including [p] and [t] (Center), and listening to syllables including [p] and [t] (Right)

Pulvermüller F et al. PNAS 2006;103:7865-7870

Motor theory of speech perception

- Some problems for MT
 - Categorical perception found in non-speech sounds (e.g., music)
 - Categorical perception for speech sounds in non-humans
 - Chinchillas can be trained to show categorical perception of /t/ and /d/ consonant-vowel syllables (Kuhl & Miller, 1975)

- Direct Realist Theory (C. Fowler and others)
 - Similar to Motor theory, articulation representations are key, but here they are directly perceived
 - Perceiving speech is part of a more general perception of gestures that involves the motor system
- General Auditory Approach (e.g., Diehl, Massaro)
 - Do not invoke special mechanisms for speech perception, instead rely on more general mechanisms of audition and perception

- For nice reviews see:
 - Diehl, Lotto, & Holt (2003)
 - Galantucci, Fowler, Turvey (2006)

Top-down effects on Speech Perception

- Phoneme restoration effect
- Sentence context effects

Listen to a sentence which contained a word from which a phoneme was deleted and replaced with another noise (e.g., a cough)

The state governors met with their respective legi*latures convening in the capital city.

* /s/ deleted and replaced with a cough

Typical results:

Participants heard the word normally, despite the missing phoneme

Usually failed to identify which phoneme was missing

Interpretation

We can use top-down knowledge to "fill in" the missing information

Further experiments (Warren and Warren, 1970):

What if the missing phoneme was ambiguous

The *eel was on the axle.

The *eel was on the shoe.

The *eel was on the orange.

The *eel was on the table.

Results:

Participants heard the contextually appropriate word normally, despite the missing phoneme

- Possible loci of phoneme restoration effects
 - Perceptual loci of effect.
 - Lexical or sentential context influences the way in which the word is initially perceived.
 - Post-perceptual loci of effect.
 - Lexical or sentential context influences decisions about the nature of the missing phoneme information.

Shillcock (1990): hear a sentence, make a lexical decision to a word that pops up on computer screen (cross-modal priming)

Hear:

The scientist made a new discovery last year.

NUDIST

4

Cross-modal priming

Shillcock (1990): hear a sentence, make a lexical decision to a word that pops up on computer screen (cross-modal priming)

Hear:

The scientist made a novel discovery last year.

NUDIST

Cross-modal priming

Shillcock (1990): hear a sentence, make a lexical decision to a word that pops up on computer screen (cross-modal priming)

Hear:

The scientist made a novel discovery last year.

The scientist made a new discovery last year. faster

Cross-modal priming

Shillcock (1990): hear a sentence, make a lexical decision to a word that pops up on computer screen (cross-modal priming)

Hear:

The scientist made a novel discovery last year.

The scientist made a new discovery last year. faster

NUDIST gets primed by segmentation error Although no conscious report of hearing "nudist"

Prosody and intonation

- English:
 - Speech is divided into phrases.
 - Word stress is meaningful in English.
 - Stressed syllables are aligned in a fairly regular rhythm, while unstressed syllables take very little time.
 - Every phrase has a focus.
 - An extended flat or low-rising intonation at the end of a phrase can indicate that a speaker intends to continue to speak.
 - A falling intonation sounds more final.

- Prosodic factors (supra segmentals)
 - Stress
 - Emphasis on syllables in sentences
 - Rate
 - Speed of articulation
 - Intonation
 - Use of pitch to signify different meanings across sentences

- Stress effects
 - On meaning
 - "black bird" versus "blackbird"
 - Top-down effects on perception
 - Better anticipation of upcoming segments when syllable is stressed

- Rate effects
 - How fast you speak has an impact on the speech sounds
 - Faster talking shorter vowels, shorter VOT
 - Normalization
 - Taking speed and speaker information into account
 - Rate normalization
 - Speaker normalization