1830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ

«Информатика и системы управления»

КАФЕДРА

«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

По лабораторной работе №3

По курсу: «Анализ алгоритмов»

Тема: «Алгоритмы сортировки»

Студент: Пронин А. С.

Группа: ИУ7-52Б

Преподаватель: Волкова Л. Л.

Оценка:

Москва

Содержание

1	Аналитический раздел		4
	1.1	Сортировка пузырьком	4
	1.2	Сортировка выбором	5
	1.3	Сортировка вставками	5
2	Koı	нструкторский раздел	6
3	Технологический раздел		10
	3.1	Выбор инструментов	10
	3.2	Реализация алгоритмов	11
4	Исследовательский раздел		12
	4.1	Примеры работы программы	12
	4.2	Сравнительный анализ времени выполнения алгоритмов .	13
\mathbf{C}_{1}	писо	к использованных источников	21

Введение

Цель работы — изучение алгоритмов сортировки и оценка их трудоемкости.

Задачи работы:

1 Аналитический раздел

Сортировкой (англ. sorting) называется процесс упорядочивания множества объектов по какому-либо признаку.

Алгоритм сортировки — это алгоритм для упорядочивания элементов в списке.

Существует огромное количество разнообразных алгоритмов сортировки. Они все отличаются трудоемкостью, скоростью работы.

В данной лабораторной работе были выбраны следующие алгоритмы сортировки:

- сортировка пузырьком;
- соритровка выбором;
- сортировка вставками.

1.1 Сортировка пузырьком

Данный алгоритм проходит по массиву слева направо. Если текущий элемент больше следующего, меняем их местами. Делается так, пока массив не будет отсортирован. Важно отметить, что после первой итерации самый большой элемент будет находиться в конце массива, на правильном месте. После двух итераций на правильном месте будут стоять два наибольших элемента, и так далее. Очевидно, не более чем после п итераций массив будет отсортирован. Таким образом, асимптотика в худшем и среднем случае — $O(n^2)$, в лучшем случае — O(n).

1.2 Сортировка выбором

На очередной итерации алгоритма находиться минимум в массиве после текущего элемента и меняется с ним, если надо. Таким образом, после і-ой итерации первые і элементов будут стоять на своих местах. Асимптотика: $O(n^2)$ в лучшем, среднем и худшем случае. Нужно отметить, что эту сортировку можно реализовать двумя способами — сохраняя минимум и его индекс или просто переставляя текущий элемент с рассматриваемым, если они стоят в неправильном порядке. Далее будет реализован и рассмотрен первый способ.

1.3 Сортировка вставками

Создаётся массив, в котором после завершения алгоритма будет лежать ответ. Поочередно вставляются элементы из исходного массива так, чтобы элементы в массиве-ответе всегда были отсортированы. Асимптотика в среднем и худшем случае $-O(n^2)$, в лучшем -O(n). Реализовывать алгоритм удобнее по-другому (создавать новый массив и реально что-то вставлять в него относительно сложно): просто сделаем так, чтобы отсортирован был некоторый префикс исходного массива, вместо вставки будем менять текущий элемент с предыдущим, пока они стоят в неправильном порядке.

2 Конструкторский раздел

В разделе представлены схемы следующих алгоритмов сортировки:

- сортировка пузырьком;
- соритровка выбором;
- сортировка вставками.

Рис. 2.1: Сортировка пузырьком

Рис. 2.2: Сортировка выбором

Рис. 2.3: Сортировка вставками

3 Технологический раздел

В данном разеделе представлены выбор инструментов для реализации и оценки алгоритмов, а также листинги полученного кода.

3.1 Выбор инструментов

Язык программирования (c++), среда разработки (QtCreator), библиотеки (windows.h?), valgrind

По-скольку наиболее освоенным языком для меня является c++, для реалищзации алгоритмов был выбран именно он, т.к. таким образом работа будет проделана наиболее быстро и качественно.

Чтобы оценить время выполнения программы будет замерятся процессорное время, т.к. такиим образом будут получены данные подходящие для целесообразного сравнения алгоритмов. Для замера процессорного времени программы используется функция GetProcessTimes() т.к. я пишу код под Windows. [1]

Кроме этого, необходимо отключить оптимизации компилятора для более честного сравнения алгоритмов. В моём случае это делается с помощтю ключа -O0.

Для оценки памяти, используемой программой был выбран valgrind. Для его функционирования была установлена wsl (Windows Subsystem for Linux) и виртуальная машина с Ubuntu. Для замера максимального кол-ва памяти используемой алгоритмами созданы отдельные файлы, которые выполняют отдельно взятый алгоритм с массивами определённой длины. Затем они компилируется с помощью g++ и получается информация об используемой памяти с помощью valgrind –tool=massif. [2]

3.2 Реализация алгоритмов

На листингах 3.1-3.3 представлены реализации алгоритмов сортировок пузырьком, выбором и вставками.

Листинг 3.1: Реализация алгоритма сортировки пузырьком

```
void BubbleSort(int *1, int *r)

for (int i = 0; i < r-1; i++)

for (int *j = 1; j < r-i; j++)

if (*j > *(j+1))

swap(j, (j+1));

}
```

Листинг 3.2: Реализация алгоритма сортировки выбором

Листинг 3.3: Реализация алгоритма сортировки вставками

```
void InsertionSort(int* 1, int* r)

for (int *i = 1 + 1; i <= r; i++)

int* j = i;

while (j > 1 && *(j - 1) > *j)

swap((j - 1), j);

j--;

}

}

}
```

4 Исследовательский раздел

В данном разделе представлены примеры работы программы и сравнительные анализы реализованных алгоритмов.

4.1 Примеры работы программы

На рисунках 4.1-4.3 представлены результаты работы программы для массивов разных длин заполненных случайными значениями.

```
Array:
46 22
BubbleSort:
22 46
SelectionSort:
22 46
InsertionSort:
22 46
```

Рис. 4.1: Результаты сортировки массива с размером =2

```
Array:
59 34 92 33 4 22 49 38 60 99
BubbleSort:
4 22 33 34 38 49 59 60 92 99
SelectionSort:
4 22 33 34 38 49 59 60 92 99
InsertionSort:
4 22 33 34 38 49 59 60 92 99
```

Рис. 4.2: Результаты сортировки массива с размером = 10

```
Array:
55 31 91 52 25 47 63 3 37 0 41 75 69 71 27 93 96 6 52 85 32 51 5 79 95 13 60 83 98 97
BubbleSort:
0 3 5 6 13 25 27 31 32 37 41 47 51 52 52 55 60 63 69 71 75 79 83 85 91 93 95 96 97 98
SelectionSort:
0 3 5 6 13 25 27 31 32 37 41 47 51 52 52 55 60 63 69 71 75 79 83 85 91 93 95 96 97 98
InsertionSort:
0 3 5 6 13 25 27 31 32 37 41 47 51 52 52 55 60 63 69 71 75 79 83 85 91 93 95 96 97 98
```

Рис. 4.3: Результаты сортировки массива с размером = 30

4.2 Сравнительный анализ времени выполнения алгоритмов

Для сортировки пузырьком наихудшим случаем является массив отсортированный в обратном порядке. Наилучшим случаем является полностью отсортированный массив. На рисунке 4.4 изображены зависимости времени выполнения сортировки от длины массива для произвольного, лучшего и худшего случаев.

Рис. 4.4: Зависимость времени выполнения сортировки пузырьком от длины массива, при разных случаях

Рис. 4.5: Зависимость времени выполнения сортировки выбором от длины массива, при разных случаях

Для сортировки выбором наихудшим случаем является массив отсортированный в обратном порядке. Наилучшим случаем является полностью отсортированный массив. На рисунке 4.5 изображены зависимости времени выполнения сортировки от длины массива для произвольного, лучшего и худшего случаев.

Рис. 4.6: Зависимость времени выполнения сортировки выбором от длины массива, при разных случаях

Для сортировки вставками наихудшим случаем является массив отсортированный в обратном порядке. Наилучшим случаем является полностью отсортированный массив. На рисунке 4.6 изображены зависимости времени выполнения сортировки от длины массива для произвольного, лучшего и худшего случаев.

Рис. 4.7: Зависимость времени выполнения алгоритмов сортировок от длины массива, при произвольном случае

Также приведены графики (рисунки 4.7-4.9) для сравнения алгоритмов соритровок между собой в произвольном, лучшем и худшем случаях.

Рис. 4.8: Зависимость времени выполнения алгоритмов сортировок от длины массива, при лучшем случае

Рис. 4.9: Зависимость времени выполнения алгоритмов сортировок от длины массива, при худшем случае

Заключение

Список использованных источников

- [1] Getprocesstimes function (processthreadsapi.h) [Электронный ресурс].
 // URL: https://docs.microsoft.com/en-us/windows/win32/api/
 processthreadsapi/nf-processthreadsapi-getprocesstimes#
 syntax.
- [2] Massif: a heap profiler [Электронный ресурс]. // URL: https://valgrind.org/docs/manual/ms-manual.html.