

Evaluation Metrics for Supervised ML Models

Hands-on: Classification Metrics

Learning Objectives

By the end of this lesson, students will be able to:

- Compute key classification metrics such as accuracy, precision, recall, and F1-score.
- Interpret these metrics to assess the performance of a classification model.
- Apply Python's sklearn.metrics module to evaluate a machine learning model.

Understanding Classification Metrics

Classification models predict **categorical outcomes** (e.g., "spam" vs. "not spam"). Different metrics help us understand how well a model performs:

Metric	Formula	Best Use Case
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$	Works well when classes are balanced.
Precision	$rac{TP}{TP+FP}$	Important when false positives are costly (e.g., fraud detection).
Recall	$rac{TP}{TP+FN}$	Important when missing positives is costly (e.g., disease detection).
F1-score	$2\times \frac{\text{Precision}\times \text{Recall}}{\text{Precision}+\text{Recall}}$	Best when both precision and recall are important.

Where:

- TP (True Positive) = Correct positive predictions.
- TN (True Negative) = Correct negative predictions.
- FP (False Positive) = Incorrectly predicted as positive.
- FN (False Negative) = Incorrectly predicted as negative.

Hands-On: Computing Classification Metrics in Python

We will use **scikit-learn** to evaluate a simple classification model.

Step 1: Import Libraries

Copy
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_sco

Step 2: Create Sample Predictions

Copy

```
# True labels (actual outcomes)
y_true = np.array([1, 0, 1, 1, 0, 1, 0, 0, 1, 0])
```

```
# Model's predicted labels
y_pred = np.array([1, 0, 1, 0, 0, 1, 1, 0, 1, 0])
```

Step 3: Calculate Key Metrics

```
accuracy = accuracy_score(y_true, y_pred)

precision = precision_score(y_true, y_pred)

recall = recall_score(y_true, y_pred)

f1 = f1_score(y_true, y_pred)

print(f"Accuracy: {accuracy:.2f}")

print(f"Precision: {precision:.2f}")

print(f"Recall: {recall:.2f}")

print(f"F1-score: {f1:.2f}")
```

Step 4: Get a Full Report

```
Copy
print("\nClassification Report:\n")
print(classification_report(y_true, y_pred))
```

Try It Yourself!

Modify y_true and y_pred to see how different predictions affect the metrics.

- What happens when all predictions are correct?
- What happens when the model predicts only one class?

Key Takeaways

Accuracy is not always reliable when dealing with imbalanced datasets.

- Precision and recall offer deeper insights into model behavior.
- **F1-score** balances precision and recall when both are equally important.

Next Steps: Now that we've covered classification, let's move to evaluating regression models.

< Previous

© 2025 General Assembly Attributions

Next >