Planche 1

Questions de cours

Question P3 : Établir l'équation différentielle d'un système masse-ressort horizontal. Identifier la pulsation propre.

Exercice: Masse accrochée à un ressort - Oscillations avec décollement

Un petit anneau de masse m, assimilé à un point matériel M, est posé sur un support circulaire de rayon r. Ce support est relié à l'axe central par une tige rigide horizontale. L'ensemble tourne autour de l'axe vertical à vitesse angulaire ω constante. On note θ l'angle entre la verticale descendante et la position de l'anneau sur le cercle. Les frottements sont inexistants.

Partie A : Équilibre et stabilité

- 1. Appliquer la deuxième loi de Newton dans le référentiel tournant et établir l'équation différentielle du mouvement de l'anneau : $\ddot{\theta} = \frac{g}{r} \sin \theta \frac{\omega^2}{r} \sin \theta \cos \theta$.
- 2. Déterminer les positions d'équilibre θ_e en fonction de ω , g et r. Discuter de l'existence et de la stabilité des positions d'équilibre selon la valeur de ω .
- 3. Pour quelle valeur critique ω_c de la vitesse de rotation y a-t-il bifurcation?

Partie B : Condition de décollement

- 4. L'anneau est lâché depuis $\theta_0 = 0$ sans vitesse initiale. Établir l'expression de la réaction normale $N(\theta)$ du support sur l'anneau en utilisant l'intégrale première du mouvement.
- 5. Pour quelle valeur minimale ω_{min} de la vitesse de rotation l'anneau reste-t-il toujours en contact avec le support?
- 6. Si $\omega = \omega_{min}/2$, déterminer l'angle de décollement θ_d .