

IP Group

Cadence Tensilica Processor and DSP IP Business

TENSILICA® CUSTOMERS

Processors

DSP LICENSING REVENUE

TENSILICA LICENSEES

LEADING AUDIO DSP IP

GLOBAL ECOSYSTEM

SEMICONDUCTORS

(~16X in <4 years)

- AlexNet (2012)
- Inception (2015)
- ResNet (2015)

NETWORK	MACS/IMAGE
ALEXNET	724,406,816
INCEPTION V3	5,713,232,480
RESNET-101	7,570,194,432
RESNET-152	11,282,415,616

Network Architectures Changing Regularly

- AlexNet (bigger convolution); Inception V3 and ResNet (smaller convolution)
- Linear network vs. branch

New Applications and Markets

 Automotive, server, home (voice-activated digital assistants), mobile, surveillance

How do you pick an inference hardware platform today (2017) for a product shipping in 2019-2020+? How do you achieve low-power efficiency yet be flexible?

o w P o w e r

Neural Network Workloads Vary by End Market

Processing Power

Pick the right inference platform for the market—One size does NOT fit all!

Up to 10TMAC/sec **Automotive (towards autonomous)**

Runs multiple NNs all the time

1TMAC/sec

Surveillance / Automotive (semi-autonomous)

Runs few NNs all the time

<200 **GMAC/sec** Mobile, AR/VR

Runs a NN once in a while

Current Alternatives for Implementing NNs in Embedded Systems

	CPUs	GPUs	Neural Network Hardware Accelerators	Imaging / Vision DSP (such as: Tensilica® Vision P6 DSP)
Ease of Development	Easy, pure SW, good tools, off-the-shelf IP	Easy, pure SW, good tools, off-the-shelf IP	Difficult, HW fixed at tapeout, SW must be partitioned between programmable core (CPU, GPU or DSP) and accelerator	Easy, pure SW, good tools, off-the-shelf IP
Power Efficiency	Poor	Better than CPU, but still poor	Great for the offloaded layers, not all layers offloaded, adds significant data movement overhead	Up to 10X better than GPU
Future Proofing	Yes, always reprogrammable	Yes, always reprogrammable	No, high risk since as NNs evolve, current accelerator choices will become a poor fit for future NN styles	Yes, always reprogrammable
Max NN Performance per Core (TMAC/s)	<200GFLOP	~200GFLOP	Up to 1TMAC	200-250GMAC

NN Accelerators: How They Work and Known Limitations

Numerous, power- and time-consuming data movements

MEM MEM MEM MEM Sonstant data shuffling **Imaging HW NN** DSP, CPU ACC or GPU AXI

- Designed to offload/accelerate only convolution layers
- All other NN layers are run on an imaging DSP, control CPU or GPU
- Both <u>DSP</u>/CPU/GPU and NN accelerators are busy while running NN
- Excessive data movement between two processing elements
- Scales badly to get 2X NN performance requires 2x (DSP + ACC)

Tensilica® Vision C5 DSP for Neural Networks

Complete, standalone DSP that runs all layers of NN (convolution, fully connected, normalization, pooling...)

Building a DSP for changing NN field – general purpose and programmable

Not a "hardware accelerator" paired with a vision DSP, rather a dedicated, NN-optimized DSP

Architected for multi-processor design – scales to multi-TMAC/sec solution

Same proven software tool set as Vision P5/P6 DSP

Tensilica® Vision C5 DSP for Neural Networks

Tensilica® Vision C5 DSP for Neural Networks

**16nm

Optimization for Sparsity – Coefficient Compression & Support for on the fly Decompression

Achieve 60% memory storage reduction @75% sparsity

Effects of Compression Methods

- Compress Coefficient offline to save bandwidth
- Vision C5 support on the fly decompression

Tensilica® Vision C5 DSP vs NN Accelerator

Vision C5 DSP

A complete processor that stands on its own: **Accelerates all NN layers**

Flexible and future-proof solution:

- Supports variable kernel sizes, depths, input dimensions
- Supports different compression/ decompression techniques
- Support for new layers can be added as they evolve

Main vision/imaging DSP free to run other applications while NN DSP runs NN

Simple (single-processing) programming model for NN

No need to move data between NN DSP and main vision/imaging DSP

NN Accelerator

Built to accelerate only NN convolution functions

HW accelerators are mostly designed based on current needs and hence provide a rigid and not future-proof solution

While running NN, main vision/imaging DSP cannot run other applications

Complicated **multi-processor** programming model

Need to move data between NN DSP and main vision/imaging DSP (wastes power)

Tensilica® Vision C5 DSP vs NN Accelerator

Tensilica® Vision C5 DSP Architected for Multi-Processor

- Builds upon >17yrs of Xtensa® multi-processor experience
- Allows multi-TMAC/s solution
- Shared memory architecture
- Interrupts and queues for synchronization
- Automated creation of multi-processor SystemC[®] model
- Synchronous multi-processor debugging

Multi-core with shared memory I/F and queue/interrupts to synchronize

Scale Vision Sub-system Heterogeous Multi-core

Flexibility to customize MP cluster under the same programming model

Multi-core NN Load Partition Example

Split load across layer/batch/kernel

- L and B loops are distributed across MP cores
- N is split into two loops, NU, NV and N = NU*NV
 - NU is distributed across cores
 - NV is handled by vectored SIMD

Cores are designated to certain layers and batches. Most efficient if layers can be loadbalanced, no overlap in weight coefficients across cores.

Vision C5 DSP vs Commercially Available GPUs

AlexNet
Performance up to
6X* faster

Inception V3
Performance up to
9X** faster

Note:

Faster is measure of cycle count requirements

* AlexNet data with 8 batch

** Inception V3 data with single batch

Automated Software Flow for Various NN Frameworks

Xtensa Neural Network Compiler (XNNC)

- Push button solution to generate code for NN from Caffe or TensorFlow
- ➤ Hand optimized library to get maximum performance for each CNN functions

Vision C5 DSP – Preferred Solution for NNs in Embedded Systems

	CPUs	GPUs	Neural Network Hardware Accelerators	Imaging/Vision DSP (such as: Tensilica® Vision P6 DSP)	Vision C5 DSP
Ease of Development	Easy, pure SW, good tools, off- the-shelf IP	Easy, pure SW, good tools, off- the-shelf IP	Difficult, HW fixed at tapeout, SW must be partitioned between programmable core (CPU, GPU or DSP) and accelerator	Easy, pure SW, good tools, off-the-shelf IP	Easy. Pure SW. Good tools
Power Efficiency	Poor	Better than CPU, but still poor	Great for the offloaded layers, not all layers offloaded, adds significant data movement overhead	Up to 10X better than GPU	Optimized for NN. No wasted HW. No wasted data movement
Future Proofing	Yes, always reprogrammable	Yes, always reprogrammable	No, high risk since as NNs evolve, current accelerator choices will become a poor fit for future NN styles	Yes, always reprogrammable	Yes. Always reprogrammable
Max NN Performance per Core (TMAC/s)	<200GFLOP	~200GFLOP	Up to 1TMAC	200-250GMAC	1TMAC

Vision DSP Partner Ecosystem (Public)

- WDR (wide dynamic range)
- Super video image stabilization

- Face and voice authentication
- Face detection

- Super-resolution zoom, HDR
- Camera processing

- Live Beautify
- HDR / Low-light Enhance
- Facial Recognition
- Dual-camera Solutions

Cadence Chair of OpenVX WG at Khronos Group

- ADAS suite
- Fog removal, object detection
- System integrator

- CNN neural networking
- Imaging algorithm expertise

- Imaging and vision experts
- Low light enhancement
- Advanced noise reduction
- Face detection

Tensilica® Vision C5 and Vision P6 DSPs:

Cadence Addressing All Market Segments

Processing Power

Up to 10TMAC/sec

1TMAC/sec

<200 GMAC/sec **Automotive (towards autonomous)**

Multiple Vision C5 DSPs

Runs multiple NNs all the time

Surveillance / Automotive (semi-autonomous)

Vision C5 DSP

Vision P6 DSP

© 2017 Cadence Design Systems, Inc. All rights reserved.

Runs a couple of NNs all the time

Mobile

Runs a NN once in a while

Summary

Cadence® Tensilica® Vision C5 DSP for neural networks

- Not an "accelerator"—industry's complete DSP designed for CNN to run all neural network layers
- 1 TeraMAC/sec computational capacity in less than 1mm²
- General purpose and programmable to meet evolving requirements
- Optimized for vision, radar/lidar and fused-sensor applications with high-availability (always-on) neural network (NN) computational needs
- Architected for multi-processor design—scales to multi-TMAC/sec solution
- Targeted at surveillance, automotive, drone and mobile/wearable markets

cadence®

© 2017 Cadence Design Systems, Inc. All rights reserved worldwide. Cadence, the Cadence logo, and the other Cadence marks found at www.cadence.com/go/trademarks are trademarks or registered trademarks of Cadence Design Systems, Inc. All other trademarks are the property of their respective owners.