IIMT2641 Assignment 3

Sibo Ding

Spring 2023

https://rpubs.com/aashish/ClimateChangeDataAnalysis

Load the Data

```
climate_change <- read.csv("ClimateChange.csv")</pre>
head(climate_change) # First 6 rows
##
    Year Month
                  MEI
                         C02
                                 CH4
                                         N2O CFC.11 CFC.12
                                                                   TSI
Aerosols
## 1 1983
              5 2.556 345.96 1638.59 303.677 191.324 350.113 1366.102
0.0863
## 2 1983
              6 2.167 345.52 1633.71 303.746 192.057 351.848 1366.121
0.0794
              7 1.741 344.15 1633.22 303.795 192.818 353.725 1366.285
## 3 1983
0.0731
              8 1.130 342.25 1631.35 303.839 193.602 355.633 1366.420
## 4 1983
0.0673
## 5 1983
              9 0.428 340.17 1648.40 303.901 194.392 357.465 1366.234
0.0619
## 6 1983
             10 0.002 340.30 1663.79 303.970 195.171 359.174 1366.059
0.0569
##
      Temp
## 1 0.109
## 2 0.118
## 3 0.137
## 4 0.176
## 5 0.149
## 6 0.093
dim(climate_change) # Number of observations and variables
## [1] 308 11
names(climate_change) # Names of variables
## [1] "Year"
                   "Month"
                                                     "CH4"
                                                                "N20"
                              "MEI"
  [7] "CFC.11"
                              "TSI"
                                          "Aerosols" "Temp"
                   "CFC.12"
```

Train-test Split

```
climate_train <- climate_change |> subset(Year <= 2006)
climate_test <- climate_change |> subset(Year > 2006)
```

Build Linear Regression Model

```
climate_reg1 <- lm(Temp ~ . - Year - Month, data = climate_train)</pre>
summary(climate_reg1)
##
## Call:
## lm(formula = Temp ~ . - Year - Month, data = climate_train)
##
## Residuals:
##
       Min
                 10
                     Median
                                  3Q
                                         Max
## -0.25888 -0.05913 -0.00082 0.05649
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## MEI
               6.421e-02 6.470e-03 9.923 < 2e-16 ***
## CO2
              6.457e-03 2.285e-03 2.826 0.00505 **
## CH4
               1.240e-04 5.158e-04 0.240 0.81015
## N20
              -1.653e-02 8.565e-03 -1.930 0.05467 .
## CFC.11
             -6.631e-03 1.626e-03 -4.078 5.96e-05 ***
              3.808e-03 1.014e-03
                                   3.757 0.00021 ***
## CFC.12
## TSI
              9.314e-02 1.475e-02 6.313 1.10e-09 ***
             -1.538e+00 2.133e-01 -7.210 5.41e-12 ***
## Aerosols
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09171 on 275 degrees of freedom
## Multiple R-squared: 0.7509, Adjusted R-squared: 0.7436
## F-statistic: 103.6 on 8 and 275 DF, p-value: < 2.2e-16
# R^2
summary(climate_reg1)$r.squared
## [1] 0.7508933
# Significant independent variables (with p < 0.05)
# Note: `Intercept` is not an independent variable
which(summary(climate_reg1)$coefficients[, 4] < 0.05)</pre>
## (Intercept)
                     MEI
                                 C02
                                         CFC.11
                                                     CFC.12
TSI
                       2
                                   3
                                                          7
##
                                              6
8
##
     Aerosols
            9
##
```

The coefficients of N2O and CFC.11 are negative probably because they are correlated with other variables within or beyond the model.

Correlation

```
cor(climate_train)
```

##	Year	Month	n MEI	CO2	
CH4	4 0000000	0 007044060			
## Year	1.00000000	-0.02/9419602	2 -0.0369876842	2 0.98274939	
0.91565945 ## Month	-0.02794196	1.0000000000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 -0.10673246	
0.01856866	-0.02/54150	1.000000000	0.000004030.	7 -0.10073240	
## MEI	-0.03698768	0.0008846905	1.000000000	0 -0.04114717 -	
0.03341930					
## CO2	0.98274939	-0.1067324607	7 -0.041147165	1 1.00000000	
0.87727963					
## CH4	0.91565945	0.0185686624	-0.033419301	4 0.87727963	
1.00000000	0 00004500	0 042624520	0 050040775	- 0 07674000	
## N2O 0.89983864	0.99384523	0.0136315303	-0.050819775	5 0.97671982	
## CFC.11	0 560106/3	-0.0131112236	0.069000438	7 0.51405975	
0.77990402	0.50510045	-0.0131112230	0.009000438	0.31403973	
## CFC.12	0.89701166	0.0006751102	0.0082855443	3 0.85268963	
0.96361625					
## TSI	0.17030201	-0.0346061935	-0.154491922	7 0.17742893	
0.24552844					
## Aerosols	-0.34524670	0.0148895406	0.340237787	l -0.35615480 -	
0.26780919	0 70670744	0 0000567444	0 470470754	0 70050004	
## Temp 0.70325502	0.78679714	-0.0998567411	0.172470751	2 0.78852921	
##	N20	CFC.11	CFC.12	TSI	
Aerosols	NZO	CI C.11	CI C.12	131	
## Year	0.99384523	0.56910643	0.8970116635	0.17030201 -	
0.34524670					
## Month	0.01363153	-0.01311122	0.0006751102	-0.03460619	
0.01488954					
## MEI	-0.05081978	0.06900044	0.0082855443	-0.15449192	
0.34023779	0.07671000	0 51405075	0.0526006272	0 17742002	
## CO2 0.35615480	0.97671982	0.51405975	0.8526896272	0.17742893 -	
## CH4	0.89983864	0.77990402	0.9636162478	0.24552844 -	
0.26780919	0.03303001	0.77330102	0.3030102170	0.21332011	
## N2O	1.00000000	0.52247732	0.8679307757	0.19975668 -	
0.33705457					
## CFC.11	0.52247732	1.00000000	0.8689851828	0.27204596 -	
0.04392120					
## CFC.12	0.86793078	0.86898518	1.0000000000	0.25530281 -	
0.22513124	0 10075660	0 27204506	0 2552020120	1 0000000	
## TSI 0.05211651	0.19975668	0.27204596	0.2553028138	1.00000000	
## Aerosols	-0 33705457	-0.04392120 -	.0 2251312440	0.05211651	
1.00000000	0.55705457	J.U-JJZIZU -	0.2291912770	0.00211001	
## Temp	0.77863893	0.40771029	0.6875575483	0.24338269 -	
0.38491375					
##	Temp				
## Year	0.78679714				

```
-0.09985674
## Month
## MEI
             0.17247075
## CO2
             0.78852921
## CH4
             0.70325502
## N20
             0.77863893
## CFC.11
             0.40771029
## CFC.12
             0.68755755
## TSI
             0.24338269
## Aerosols -0.38491375
## Temp
             1.00000000
# `N2O` is highly correlated with
which(cor(climate_train)["N20", ] > 0.7)
##
                    CH4
     Year
             C02
                           N20 CFC.12
                                        Temp
##
                      5
        1
                             6
                                          11
# Note: `Temp` is the dependent variable
# `CFC.11` is highly correlated with
which(cor(climate_train)["CFC.11", ] > 0.7)
      CH4 CFC.11 CFC.12
##
        5 7 8
```

Simplify the Model

```
climate_reg2 <- lm(Temp ~ MEI + TSI + Aerosols + N2O,</pre>
                   data = climate_train)
summary(climate_reg2)
##
## Call:
## lm(formula = Temp ~ MEI + TSI + Aerosols + N2O, data =
climate train)
##
## Residuals:
                  10
                       Median
                                    30
                                            Max
## -0.27916 -0.05975 -0.00595 0.05672 0.34195
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.162e+02 2.022e+01 -5.747 2.37e-08 ***
## MEI
                                       9.649 < 2e-16 ***
                6.419e-02 6.652e-03
## TSI
                7.949e-02 1.487e-02
                                       5.344 1.89e-07 ***
## Aerosols
               -1.702e+00 2.180e-01 -7.806 1.19e-13 ***
                2.532e-02 1.311e-03 19.307 < 2e-16 ***
## N20
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.09547 on 279 degrees of freedom
```

```
## Multiple R-squared: 0.7261, Adjusted R-squared: 0.7222
## F-statistic: 184.9 on 4 and 279 DF, p-value: < 2.2e-16
# The sign of `N2O` flips.
c("Previous" = climate reg1$coefficients["N20"],
  "Simplified" = climate reg2$coefficients["N20"])
     Previous.N2O Simplified.N2O
##
##
      -0.01652800
                      0.02531975
# The R^2 is lower in the simplified model.
c("Previous R^2" = summary(climate_reg1)$r.squared,
  "Simplified R^2" = summary(climate_reg2)$r.squared)
##
     Previous R^2 Simplified R^2
##
        0.7508933
                       0.7261321
# Significant independent variables (with p < 0.05)
# Note: `Intercept` is not an independent variable
which(summary(climate_reg2)$coefficients[, 4] < 0.05)</pre>
## (Intercept)
                       MEI
                                    TSI
                                                            N20
                                           Aerosols
##
                         2
                                      3
                                                  4
```

A higher proportion of independent variables is significant at 5% (4 out of 4 vs. 6 out of 8).

Out-of-sample R^2

```
climate_predict <- predict(climate_reg2, newdata = climate_test)

SSE <- sum((climate_test$Temp - climate_predict)^2)
SST <- sum((climate_test$Temp - mean(climate_train$Temp))^2)
1 - SSE/SST
## [1] 0.4967795</pre>
```