goal: mothematical model for control systems with random dynamics

Neuro-Dynamic Programming

Dimitri P. Bertsekas and John N. Tsitsiklis

chapter 2

Reinforcement Learning

An Introduction

because p is uniquely defermed from {p(x)}xex

Richard S. Sutton and Andrew G. Barto

Chapter 3

• to generalize from deterministic to stochastic dynamics, we replace $x^+ = F(x,u)$ with $x^+ \sim P(x,u)$ where $x \in X$, $u \in U$, $P: X \times U \rightarrow A(X)$: $(x,u) \mapsto P(x,u)$ so P(x,u) is a function $P(x,u): 2^X \rightarrow [0,1]$ Call (measurable) solvets of X * coverts from prior between apply:

- when $|X| < \infty$ there's no problem defining $P \in A(X)$

learning Page

 $- ww /x = \infty$

because p is uniquely determined from Equix)) xex need to be careful about "measurability" (we'll only consider Gaussians on X=1Rd)

-> what is the state of x+ ~ P(x, w)?

- the state is not a single XEX x instead, the state is a probability distribution PEA(X) or since this stachastic process has a state that evolves in time, it is referred to as Markovian:

def: Markon process (MP) / stochastic difference equation (SDE) specified by (X,U,P) where X,U are sets and $P: X \times U \rightarrow \Delta(X)$ - if $U = \emptyset$ (or if $u: X \rightarrow \Delta(u)$ is given) random / stochastic control policy this is termed Markon Chain (MC)

learning Page 2