Peer-to-Peer Systems and Applications

Lecture 8: P2P Video Streaming

Chapter 11:

Part IV. Peer-to-Peer-Based Applications

*Original slides provided by Osama Abboud and Julius Rückert (Technische Universität Darmstadt)

0. Lecture Overview

- 1. Introduction to Video Streaming
 - 1. What is Streaming?
 - 2. Live vs. on-Demand Streaming
 - 3. Content Dissemination
 - 4. Summary
- 2. P2P Streaming Concepts
 - 1. Topologies and Coordination
 - 2. Examples: PPLive, BitTorrent Live, Transit
- 3. Advanced Video Streaming Concepts
 - 1. Adaptive P2P Streaming using H.264 SVC
 - 2. Case Study: P2PStream
 - 3. Quality of Service vs. Quality of Experience
- 4. References

1. Introduction to Video Streaming

What is Streaming, Live vs. on-Demand Streaming, Content Dissemination, Summary

1.1. What is Video Streaming?

- Main characteristics
 - Playback of video while it is transferred
 - Short waiting time before playback can start
- File sharing in contrast
 - Complete transfer of (video) file necessary for playback
 - Long waiting time before playback start possible
- Two main application scenarios

1.1. What is Video Streaming?

- General properties of streaming process
 - Buffer is used to account for jitter and bandwidth fluctuations
 - Buffer size: usually several seconds of video
 - For fluid playback, download rate must be higher than video bit rate
 - In case of buffer underrun, two strategies:
 - Pause playback (also called playback stalling)
 - Proceed with playback (e.g. by skipping frames)
 - → Degraded video quality (type of degradation highly depends on video codec)

1.2. Live Streaming

- Traditional TV broadcasting scenario
 - Content provider distributes video to many receivers
 - Objective: deliver stream as "live" as possible
 - Live: as fast and synchronized as possible
- Content is often generated while streamed
 - Limited possibility to preload video data
 - Example: broadcasting of a soccer game

Image Source: http://www.focus.de/fotos/der-australier-garcia-r-kommt-frei-zum-schuss-philipp-lahm-l-und_mid_676372.html

1.2. Live Streaming

- Playback synchronization (being "live")
 - Hard to achieve in reality
 - Metric: playback lag
 - Time between availability of video chunk and actual playback at client
 - Depends on characteristics of network, client, and video player
 - Transmission delay
 - Jitter
 - Packet losses
 - Client connectivity
 - Playback strategy
 - Clients never completely in sync
- Playback policy on missing data
 - Typically rather skip missing data
 - Pausing would increase playback lag

1.2. Video-on-Demand Streaming

- Pre-generated content
 - Provider holds complete video files
 - Preloading of data possible
- Videos are streamed anytime and anywhere
 - Users stream video independent of each other
 - Typically few concurrent users for a single video
- Popular examples
 - YouTube, Vimeo (free, more short videos)

Netflix, Maxdome (paid, movie length, country-specific)

1.2. Video-on-Demand Streaming

- No playback synchronization
 - Clients naturally differ in playback
 - Synchronization not required
- Playback policy on missing data
 - Typically rather stall than skip data
 - Being "live" is not important

1.3. Content Dissemination

- Streaming source
 - Single entity (e.g. server, server farm, cloud service, single peer)
 - Stores and/or broadcasts content
 - Multiple sources are also possible, e.g. group video conference
 - Not considered here
- Multiple clients retrieve content over the network
- Possible ways to deliver content
 - > IP unicast
 - IP broadcast
 - IP multicast
 - Overlay multicast

1.3. IP Unicast/Broadcast/Multicast

Unicast

- Point-to-point communication
- Data delivered from sender to specific receiver
- Streaming: replicated unicast necessary to send N copies
- Problem: High bandwidth demands at sender

Broadcast

- Point-to-multipoint transmission
- Indiscriminate transmission of data
- Associated with traditional radio / TV transmission
- Every connected receiver gets the data
- Only scalable in small networks

Multicast

- Multipoint-to-multipoint transmission
- Data replicated at IP level by routers
- Cleanest solution from conceptual point
- Can be an efficient solution for managed networks
 - e.g. IPTV offered by Internet Service Provider
- Not deployed/usable at Internet-scale
 - Scalability: violates stateless principle of IP routers

John F. Buford, Networking and Applications

1.3. Overlay Multicast

- Thus, is IP unicast the only feasible solution?
 - It is actually used for most streaming services today
 - Problem: It does not scale well with the number of clients
 - Required bandwidth at central entity and transmission:
 - E.g. HD video (1080p) bit rate: 3300 kbps,
 1 Gbps server bandwidth
 - \rightarrow max. number of clients = $\left| \frac{1Gbps}{3300 \, kbps} \right| = 303 \text{ clients}$
 - Solution is very costly for streaming provider and transport networks
- Alternative: overlay multicast / streaming overlays
 - Idea: Leverage distributed nature of Internet
 - Streaming source distributes video to a few clients or other servers
 - They contribute upload bandwidth to serve others
 - Goal: Offloading of streaming source
 - Load distributed using peer-to-peer mechanisms

1.3. Overlay Multicast Types

Managed overlays: Content Delivery Networks (CDNs)

- Overlay between managed server machines (CDN nodes)
- Clients are served by CDN nodes nearby in a client-server fashion
- Approach can be classified as a proxy-based overlay
 - CDN nodes act as proxies at the edge of the overlay
 - Overlay delivery transparent to clients
- > Example for CDN network: Network of Akamai Inc. with
 - > 200k CDN nodes deployed world-wide [SKL+14], [NSS10]

Unmanaged: Fully P2P-based approaches

- > Clients become peers and contribute upload bandwidth to serve others
- Clients are active part of overlay
 - Run P2P multicast software
 - Overlay delivery not transparent to clients
- Example: PPLive, BTLive, Hive Streaming, Tribler, CoolStreaming, ...

Hybrid approaches exist

- Combination of both approaches possible and rational
- Example: Akamai NetSession [ZCL+13]

1.4. Summary

- Live streaming
 - Clients have nearly same playback positions
 - Suitable for multicast
- Video-on-Demand (VoD)
 - Watch while download
 - Start playback after short delay
 - Avoid playback stalling
 - Diverse playback positions
 - Multicast not applicable
- File sharing
 - No watch-while-download
 - Low quality requirements (download time)
 - "Random" download order possible

Time constraints

2. P2P Streaming Concepts

Topologies and Coordination, Examples: PPLive, BTLive, Transit

Single Tree

- Peers form a hierarchical topology
- Playback lag depends on height of tree
- Video data is "pushed" down the tree
 - Receiving video chunks from parent
 - Forwarding chunks to all children

- Data paths are stable (assuming no node failures)
- Here: push-based coordination very efficient

Pros:

Minimal overhead for transmission coordination (push-based)

Cons:

- Maintenance of topology induces overhead
 - Tree should be as balanced as possible
 - Peer churn can disconnect complete sub-trees
- Resource utilization and fairness
 - Only a few peers (inner nodes) can contribute upload bandwidth
 - Peers at the edge (leaf nodes) only consume

Multi Tree

- Peers form n independent tree topologies
 - Each peer is part of all topologies
 - A peer has an inner node position in at least one tree
- Video stream is divided in n sub-streams
 - Each sub-stream is disseminated by one of the trees
 - Client receives all n sub-streams and merges them
- Coordination of transfer: push-based
- More resilient against peer churn
 - Failure of peer in best case only requires a sub-tree to be repaired (reason: inner-tree position in sub-tree)

Pros:

- Minimal overhead for transmission coordination (push-based)
- All peers can contribute
 - Contribution can be adapted to peer resources:
 High capacity peer can have more inner node positions

Cons:

- > Still: overhead for maintenance of topology
 - Balancing of trees

Mesh

- Peers form a (random) mesh (no parent-child relations)
 - A tracker holds information on available peers
 - Peers can retrieve new neighbors at tracker if needed
- Video is divided into chunks/blocks
- Peers exchange block maps, indicating data availability
- Blocks explicitly requested from neighbors (pull-based)
 - No stable data paths (in comparison to tree)

Pros:

- Very robust against node failure
- Minimal maintenance overhead

Cons:

- Coordination overhead due to pull transmission
- Increased playback lag due to block maps exchange

- Hybrid Tree/Mesh Systems
 - Use advantages of both approaches
 - Example:
 - Form highly efficient tree between stable peers ("backbone")
 - Form mesh between unstable peers and attach to tree

Pros:

- Fast dissemination of new chunks/blocks using tree
- Can achieve good balance between overhead and stability

Cons:

Stable peers need to be identified

2.2. Example 1: PPLive

- Most popular P2P live streaming system
 - > 400,000 daily average users in 2006 (mostly from China)
- Live streams or movies according to schedule
- Free to use but proprietary implementation
- Important Properties
 - Mesh-/pull approach with tracker for neighbor discovery and monitoring
 - One overlay per channel
 - Each peer is connected to a large set of neighbors (60-100)
 - Video blocks are advertised to neighbors
 - Missing blocks are requested from other peers
 - Only if block not available from other peers, request from broadcasting source
 - Blocks are discarded shortly after being played
 - Up to 1 minute delay difference between users possible

Source: http://www.download.ba/program-image/pplive.jpg

Sources: [PKV+10, S07, VGL07]

Peer-to-Peer Systems and Applications | Lecture 8: P2P Video Streaming

20

- Novel P2P live streaming system
 - US patent filed by Bram Cohen, the inventor of BitTorrent [Co12]
 - Goal: Use BitTorrent concepts to allow anyone to provide own live streams
- BitTorrent Live: Public Beta
 - Ran by BitTorrent Inc. from March 2013 to February 2014
 - In this time: frequent updates were released and protocol was refined
 - Announcement in February 2014: the first version based on the protocol to be published as mobile application
- Details on system described in [RKH14]

Image Source: http://live.bittorrent.com/

- Use of a tracker for peer discovery
 - Initially contacted by joining peers
 - Provides peers with a list of connected peers
 - Peers exchange peer lists to discover neighbors

Joining

- Tracker recommends the peer the clubs to join (to allow for load balancing between clubs)
- Peer selects club and contact peers from tracker list (Using simple ping/pong messages)
- Receiving peer answers with a list of other peers in the club and the number of its current up-/download connections
- Joining peer randomly selects peers to connect to (among the peers with the lowest observed load)

- Peers organize in so called "clubs"
 - Source divides video stream in substreams
 - Each substream is distributed via its own club
 - Peers are member of a fixed number of clubs (e.g. 2), source is member of all clubs
 - Peers help distributing the substream within the club
 - Non-members of a club connect to members as leafs

Controlled flooding inside club (mesh): push-based with announcement of chunk arrival to club members

More details on BitTorrent Live:

[RKH14] Rückert, Knierim, Hausheer:

IEEE P2P, 2014.

Content distribution

- Source injects video blocks into clubs
- Peer receives block for own club
 - Notify download neighbors inside club about block arrival
 - Flood/push new block to all upload neighbors inside club that did not send notification about block arrival
 - Push new block to upload neighbors outside the own club

Image Source: [Co13]

TRANSIT [WRR+14]:

- Hybrid mesh/pull, multi-tree/push P2P live streaming system
- Used to study overlay mechanism tradeoffs in quickly changing environments
- Enable transitions between mechanisms

System features

- Supports single-/multi-layer videos
- Two-layer mechanism separation
 - Neighborhood management
 - Scheduling of stream delivery

[WRR+14] Wichtlhuber, Richerzhagen, Rückert, Hausheer: In: IFIP Networking, 2014.

- Key properties of TRANSIT
 - Separation into scheduling layer and neighborhood layer
 - Multiple mechanisms on each of the layers
 - Well-defined protocol between mechanisms of same layer
 - Neighborhood connections offered using service interface to scheduling layer

- Flows: multi-tree/push
 - Goal: Fast diffusion of new/recent blocks
 - Negotiated with unlimited lifetime
 - No retransmissions of lost blocks
 - Trees originating from the source
- Requests: mesh/pull
 - Goal: Use to retrieve missing blocks and before flows established
 - Address (multiple) individual blocks
 - Requires exchange of buffermaps

- Flows and requests allow to use the best of the two worlds
 - Any combination of push- and pull-based scheduling mechanism
 - Scheduling directly determines the active overlay topology
 - Neighborhood layer provides basic connections to scheduling
 - Ratio between flows and requests based on current conditions
 - Preference towards multi-tree/push delivery in stable conditions
 - Mesh/pull assures delivery of missing blocks and initial delivery

- Study of system characteristics
 - Here: focus on very dynamic scenario (i.e. flash crowd event)
 - High and stable playback performance
 - Startup delay for joining peers
 - Number and length of stalling events
 - Overhead near level of pure tree-based approach
 - Bandwidth and message overhead

[WRR+14] Wichtlhuber, Richerzhagen, Rückert, Hausheer: In: IFIP Networking, 2014.

- Importance of the streaming topology
 - Typically, flows rather stable and account for >80% of data delivery
 - Optimizing the multi-tree structure of flows allows to further increase system performance
 - How should it be optimized?
 - Reduce flow tree heights
 - Balancing trees
 - Result: more balanced responsibility and avoidance of high dependency on individual peers

[RRL+15] Rückert, Richerzhagen, Lidanski, Steinmetz, Hausheer: In: IFIP Networking, 2015.

3. Advanced Video Streaming Concepts

Adaptive Streaming using H.264 SVC, Case Study: P2PStream Quality of Service vs. Quality of Experience

3.1. Adaptive P2P Streaming Scalable Video Coding (SVC)

- Extension of the video standard H.264/AVC
 - Referred to as H.264/SVC
 - Extension to H.265 also exists: SHVC

- Video quality scalable by retrieving a sub-stream of the video
- Allows controlled quality adaptation
- Scalable in three dimensions
 - Video resolution (spatial)
 - Frame rate (temporal)
 - Image quality (quality)

Picture source: http://www.hhi.fraunhofer.de/en/departments/image-processing/ image-communication/video-coding/svc-scalable-extension-of-h264avc/

3.1. Adaptive P2P Streaming The SVC Cube Model

- Layer described by triple (d,t,q)
 - > (0,0,0) Base layer
 - (2,2,2) In this case full quality
 - Layers depend on all lower layers
 - (1,1,0) for example depends on
 - (0,0,0), (0,1,0), (1,0,0)

3.1. Adaptive P2P Streaming

3.2. Adaptive P2P Streaming Case Study: P2PStream

- Video-on-Demand (VoD) streaming system
 - Clients not synchronized
 - Potential number of clients much smaller than for live systems
- P2PStream: System features
 - Mesh-/pull-based
 - Entities:
 - Tracker
 - Content delivery servers
 - Clients / Peers
 - Heterogeneous clients
 - Quality adaptation using SVC

3.2. P2PStream: The P2P VoD System Design

- Multi-source download
 - Mesh-based pull approach
 - Tracker with contact information of the peers
- Peer-assisted architecture
 - Peers exchange video data
 - Content delivery servers provide minimum QoS
- Video streaming
 - Video divided into pieces (time domain)
 - Pieces divided into blocks (SVC cube model)

3.2. P2PStream: Scheduling Strategy

- Stream divided into three regions:
 - Playing window
 - High priority set
 - Low priority set
- How to choose blocks inside buffering window?
 - Mathematical modeling of block priority Priority = -A t - B(a S + b T + c SNR)
 - Decreases with t (later blocks less important)
 - High for base layer, decreases with layer

3.2. P2PStream: Adaptation Steps

3.2. P2PStream: How does it work?

3.2. P2PStream: Progressive Quality Adaptation (PQA)

- Goal
 - Adapt to dynamic network resources
 - Anticipate possible stalls and avoid them

3.2. Impact of Adaptation on Playback Delay

3.2. Impact of Adaptation Interval on Playback Delay

Increasing adaptation interval → larger playback delay

3.2. Impact of Adaptation Interval on Video Quality

Adaptation maintains good SVC quality with low layer oscillations

3.3. QoS vs. QoE

- Quality of Service (QoS)
 - Metrics: e.g. throughput, bandwidth, delay, packet loss
 - Describe technical aspects of service
 - Problem: No direct correlation to user experience
 - E.g. same packet loss rate can result in different video qualities
- Quality of Experience (QoE)
 - Central question: What is the user experience during video streaming?
 - Aspects: video quality, stalling, change of quality
 - But also: environment, light conditions, distance to screen

3.3. Quality of Experience (QoE)

- Objective: Quantification of user experience
- Subjective QoE
 - Based on user studies
 - Only statistical results
 - Standardized testing procedures (e.g. by ITU)
 - Users rate quality on 5-point scale (excellent to bad)
 - Result: Mean Opinion Score (MOS)

Source: http://mmspg.epfl.ch/3diqa [Accessed Feb. 2., 2012]

- Objective QoE
 - Modeling characteristics of the human visual system
 - Estimation of quality perceived by end-user
 - Subjective tests used as benchmark
 - Example: VQM [PW04]

3.3. Video Quality Metric (VQM)

Properties

- State-of-the-Art objective QoE metric
- Usable with a wide range of video codecs, qualities, and bit rates
- Quality score: 0 1
 - 0 no perceived impairment
 - 1 maximum perceived impairment

Independent Evaluation

- By the Video Quality Expert Group (VQEG)
- Strong correlation with subjective test results

Standardization

- Part of ITU recommendation (ITU-T J.144)
- Standardized by ANSI (ANSI T1.801.03-2003)

Extract of the results from evaluation by the VQEG (NTSC - 480i - 640x480) [PW04]

4. References

- [AZPS11] O. Abboud, T. Zinner, K. Pussep, R. Steinmetz: On the Impact of Quality Adaptation in SVC-based P2P Video-on-Demand Systems. In ACM Multimedia Systems, 2011.
- ❖ [Co12] B. Cohen: Peer-to-Peer Live Streaming. US Patent Application, 2013.
 Available online: http://de.scribd.com/doc/132418122/bittorrent-live-patent
- [NSS10] E. Nygren, R. K. Sitaraman, J Sun: The Akamai Network: A Platform for High-performance Internet Applications. In: ACM SIGOPS Operating Systems Review 44(3) (2010).
- [PKV+10] Piatek et al.: Contracts: Practical contribution incentives for P2P live streaming.
 In Proceedings of the USENIX Conference on Networked Systems Design and Implementation, 2010.
- PW04] M. H. Pinson, S. Wolf: A new Standardized Method for Objectively Measuring Video Quality. In IEEE Transactions on Broadcasting, 50(3):312 – 322, 2004.
- [RKH14] J. Rückert, T. Knierim, D. Hausheer: Clubbing with the Peers: A Measurement Study of BitTorrent Live. In: IEEE International Conference on Peer-to-Peer Computing (P2P), 2014.
- [RRI+15] J, Rückert, B. Richerzhagen, E. Lidanski, R. Steinmetz, D. Hausheer: TopT: Supporting Flash Crowd Events in Hybrid Overlay-based Live Streaming. In: IFIP Networking, 2015.
- [S07] Sentinelli et al.: Will IPTV ride the peer-to-peer stream? In *IEEE Communications Magazine*, 45(6), 86-92, 2007.
- [SKL+14] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, M. Jain: Overlay Networks: An Akamai Perspective. In: Advanced Content Delivery, Streaming, and Cloud Services. John Wiley & Sons, 2014
- [VGL07] Vu, et al.: Mapping the PPLive Network: Studying the Impacts of Media Streaming on P2P Overlays, 2007.
- [WRR+14] M. Wichtlhuber, B. Richerzhagen, J. Rückert, D. Hausheer: TRANSIT: Supporting Transitions in Peer-to-Peer Live Video Streaming. IFIP Networking, 2014.
- [ZCL+08] G. Zhai, J. Cai, W. Lin, X. Yang, W. Zhang: Three Dimensional Scalable Video Adaptation via User-End Perceptual Quality Assessment. In *IEEE Transactions on Broadcasting*, 54(3):719 –727, 2008.
- [ZCL+13] M. Zhao, A. Chen, Y. Lin, A. Haeberlen, et al.: Peer-Assisted Content Distribution in Akamai NetSession.
 In ACM IMC 2013.