Introduction to Power Electronics

ECEN 2060 Spring 2008

References:

- ECEN4797/5797 Intro to Power Electronics ece.colorado.edu/~ecen5797
- Textbook: R.W.Erickson, D.Maksimovic, Fundamentals of Power Electronics, 2nd ed., Springer 2000, http://ece.colorado.edu/~pwrelect/book/SecEd.html

Example: Grid-Connected PV System

One possible grid-connected PV system architecture

Functions of the power electronics converter

- Operate PV array at the maximum power point (MPP) under all conditions
- Generate AC output current in phase with the AC utility grid voltage
- Achieve power conversion efficiency close to 100%

$$\eta_{converter} = \frac{P_{ac}}{P_{PV}} = \frac{V_{RMS}I_{RMS}}{V_{PV}I_{PV}}$$

• Provide energy storage to balance the difference between P_{PV} and $p_{ac}(t)$

Desirable features

- Minimum weight, size, cost
- High reliability

Power electronics converter

One possible realization:

Class objectives: introduction to circuits and control of a DC-DC converter and a single-phase DC-AC inverter

Introduction to electronic power conversion

Four types of power electronics converters

Dc-dc conversion: Change and control voltage magnitude Ac-dc rectification: Possibly control dc voltage, ac current

Dc-ac inversion: Produce sinusoid of controllable

magnitude and frequency

Ac-ac cycloconversion: Change and control voltage magnitude

and frequency

- · Control is invariably required
- In the PV system, for example:
 - Control input voltage of the DC-DC input voltage to operate PV at MPP
 - Control shape of the DC-AC output current to follow a sinusoidal reference
 - Control current amplitude to balance the input and output power

High efficiency is essential

$$\eta = \frac{P_{out}}{P_{in}}$$

$$P_{loss} = P_{in} - P_{out} = P_{out} \left(\frac{1}{\eta} - 1 \right)$$

High efficiency leads to low power loss within converter

Small size and reliable operation is then feasible

Efficiency is a good measure of converter performance

Circuit components for efficient electronic power conversion?

Ideal switch

Switch closed: v(t) = 0

Switch open: i(t) = 0

In either event: p(t) = v(t) i(t) = 0

Ideal switch consumes zero power

Power semiconductor devices (e.g. MOSFETs, diodes) operate as near-ideal power switches:

- When a power switch is ON, the voltage drop across it is relatively small
- When a power switch is OFF, the switch current is very close to zero

Capacitor

For periodic $v_C(t)$, $i_C(t)$:

No losses (average capacitor power = 0)

$$P_C = \frac{1}{T} \int_0^T p_C(t) dt = \frac{C}{T} \int_{v_C(0)}^{v_C(T)} v_C(t) dv_C = \frac{C}{2T} \left(v_C^2(T) - v_C^2(0) \right) = 0$$

Capacitor charge balance (average capacitor current = 0)

$$I_C = \frac{1}{T} \int_0^T i_C(t) dt = \frac{C}{T} \int_{v_C(0)}^{v_C(T)} dv_C = \frac{C}{T} (v_C(T) - v_C(0)) = 0$$

Inductor

$$v_{L} = L \frac{di_{L}}{dt} + \begin{cases} i_{L} \\ v_{L} \end{cases}$$

$$p_{L}(t) = v_{L}(t)i_{L}(t) - \begin{cases} i_{L} \\ v_{L} \end{cases}$$

For periodic $v_L(t)$, $i_L(t)$:

No losses (average inductor power = 0)

$$P_{L} = \frac{1}{T} \int_{0}^{T} p_{L}(t)dt = \frac{L}{T} \int_{i_{L}(0)}^{i_{L}(T)} i_{L}(t)di_{L} = \frac{L}{2T} (i_{L}^{2}(T) - i_{L}^{2}(0)) = 0$$

Inductor volt-second balance (average inductor voltage = 0)

$$V_{L} = \frac{1}{T} \int_{0}^{T} v_{L}(t)dt = \frac{L}{T} \int_{i_{L}(0)}^{i_{L}(T)} di_{L} = \frac{L}{T} (i_{L}(T) - i_{L}(0)) = 0$$

Circuit components for efficient electronic power conversion

Power electronics converters are circuits consisting of semiconductor devices operated as (near-ideal) switches, capacitors and magnetic components (inductors, transformers)

Boost (step-up) DC-DC converter

 T_s = switching period

 $f_s = 1/T_s = \text{switching frequency}$

D =switch duty ratio (or duty cycle), $0 \le D \le 1$

Boost converter circuit

Power MOSFET and diode operate as near-ideal switches

Power MOSFETs and diodes

Characteristics of several commercial power MOSFETs

Part number	Rated max voltage	Rated av g currer	R_{on}	Q_{g} (typical)
IRFZ48	60V	50A	0.018Ω	110nC
IRF510	100V	5.6A	0.54Ω	8.3nC
IRF540	100V	28A	0.077Ω	72nC
APT10M25BNR	100V	75A Lo	w on- 0.025Ω	171nC
IRF740	400V		sistance 0.55Ω	63nC
MTM15N40E	400V	_{15A} im	plies $\log_{0.3\Omega}$	110nC
APT5025BN	500V	23A .	nduction 0.25Ω	83nC
APT1001RBNR	1000V	11A	1.0Ω	150nC

Fast switching enables high switching frequencies, e.g. 100's of kHz to MHz

Part number	Rated max voltage	Rated avg current	$V_{\scriptscriptstyle F}$ (typical)	$t_r(max)$			
Ultra-fast recovery rectifiers							
MUR815	150V	8A	0.975V	35ns			
MUR1560	600V	15A	1.2V	60ns			
RHRU100120	1200V	100A	2.6V	60ns			
Schottky rectifiers							
MBR6030L	30V	60A	0.48V				
444CNQ045	45V	440A	0.69V				
30CPQ150	150V	30A	1.19V				

Characteristics of several commercial switching power diodes

Voltage, current and frequency ratings of power semiconductor devices

MOSFET: Metal Oxide Semiconductor Field Effect Transistor

IGBT: Insulated Gate Bipolar Transistor

SCR (or Thyristor): Silicon Controlled Rectifier

GTO: Gate Turn Off thyristor

Boost converter analysis

Position 1

Inductor voltage and capacitor current

$$v_L = V_g$$
$$i_C = -v / R$$

Small ripple approximation:

$$v_L = V_g$$
$$i_C = -V/R$$

Position 2

Inductor voltage and capacitor current

$$v_L = V_g - v$$
$$i_C = i_L - v / R$$

Small ripple approximation:

$$v_L = V_g - V$$
$$i_C = I - V / R$$

Inductor voltage and capacitor current waveforms

D' = 1-D

Periodic steady-state operation

- Inductor volt-second balance: average inductor voltage = 0
- Capacitor charge balance: average capacitor current = 0

Inductor volt-second balance

Net volt-seconds applied to inductor over one switching period:

$$\int_0^{T_s} v_L(t) \ dt = (V_g) \ DT_s + (V_g - V) \ D'T_s$$

Equate to zero and collect terms:

$$V_{g}(D+D')-VD'=0$$

Solve for V:

$$V = \frac{V_g}{D'}$$

The voltage conversion ratio is therefore

$$M(D) = \frac{V}{V_g} = \frac{1}{D'} = \frac{1}{1 - D}$$

Boost DC voltage conversion ratio $M = V_{out}/V_g$

Boost DC-DC converter steps-up a DC input voltage by a ratio *M* which is electronically adjustable by changing the switch duty ratio *D*

Simulink model

Input voltage V_g = 100 V Inductance L = 200 μ H Capacitance C = 10 μ F Load resistance R = 100 Ω Switch duty cycle D = 0.5 Output voltage V_{out} = 200 V Input current I_g = I_L = 4 A Power P = 400 W Switching frequency f_s = 100 kHz Switching period T_s = 10 μ s

Averaged (DC) model

No losses:

$$V_{out} = \frac{1}{1 - D} V_g \qquad I_g = \frac{1}{1 - D} I_{out}$$

$$V_g I_g = V_{out} I_{out}$$

Ideal boost DC-DC converter works as an *ideal DC* transformer with an electronically adjustable step-up ratio

$$V_{out} \qquad n = M(D) = \frac{1}{1 - D}$$

Modeling of losses

- Losses in switched-mode power converters:
 - Conduction losses, due to voltage drops across inductor winding resistance, and across power semiconductor switches when ON
 - Conduction losses depend strongly on the output power
 - Switching losses, due to energy lost during ON/OFF transitions
 - Switching losses are not strongly dependent on output power; a portion of switching loss remains even at zero output power
 - Switching losses are proportional to the switching frequency
 - Other losses, including:
 - Losses in magnetic cores
 - Power needed to operate control circuitry

Switching waveforms and switching losses

Switching power loss = Transition energy loss * Switching frequency

Switching waveforms and switching losses

Switching power loss = Transition energy loss * Switching frequency

Averaged (DC) model with losses

- Small R_L models <u>conduction losses</u> due to inductor winding resistance and power switch resistances
- Small I_{sw} models <u>switching</u> and other load-independent losses
- Efficiency with losses, when the load current I_{out} is known:

$$\eta = \frac{1}{1 + \frac{R_L}{(1 - D)^2} \frac{(I_{out} + I_{sw})^2}{V_{out}I_{out}} + \frac{I_{sw}}{I_{out}}}$$

Example: efficiency for various R_L

Assume:

Resistive load

$$R = V_{out}/I_{out}$$

•
$$I_{sw} = 0$$

$$\eta = \frac{1}{1 + \frac{R_L}{(1 - D)^2} \frac{1}{R}}$$

Note that it is more difficult to achieve high efficiency if a large step-up ratio is required (i.e. if duty-ratio *D* is close to 1)

Single-phase DC-AC grid-connected inverter

- Switches in position 1 during DT_s , in position 2 during $(1-D)T_s$
- Switching frequency f_s is much greater than the AC line frequency (60 Hz or 50 Hz)
- By controlling the switch duty ratio D, it is possible to generate a sinusoidal AC current i_{ac} (+ small switching ripple) in phase with the AC line voltage, as long as the input DC voltage V_{DC} is sufficiently high, i.e. as long as V_{DC} is greater than the peak AC line voltage

Position 1

$$v_L = V_{DC} - v_{ac}$$
 $i_L = i_{ac}$
 $i_{in} = i_L$

Position 2

$$v_{L} = -V_{DC} - v_{ac}$$

$$i_{L} = i_{ac}$$

$$i_{in} = -i_{L}$$

Inductor volt-second balance

- Note that switching frequency $f_s >>$ ac line frequency
- Over a switching period, $v_{ac}(t) \approx \text{const.}$

$$v_{L} = \begin{cases} +V_{DC} - v_{ac}, & 0 \le t \le DT_{s} \\ -V_{DC} - v_{ac}, & DT_{s} < t \le T_{s} \end{cases}$$

$$V_{L} = \frac{1}{T_{s}} \int_{0}^{T_{s}} v_{L}(t)dt = D(V_{DC} - v_{ac}) + (1 - D)(-V_{DC} - v_{ac}) = (2D - 1)V_{DC} - v_{ac} = 0$$

$$M(D) = \frac{v_{ac}}{V_{DC}} = 2D - 1$$

$$-1 \le M(D) \le 1$$

 $V_{\rm DC}$ must be greater than the peak of $v_{\rm ac}$

Control of AC line current

Control objectives:

- $i_{ac} = I_M \sin(\omega t)$, in phase with AC line voltage $v_{ac}(t)$
- Amplitude I_M (or RMS value) adjustable to control power delivered to the AC line

$$v_{ac}(t) = \sqrt{2}V_{RMS}\sin(\omega t)$$

$$i_{ac}(t) = \sqrt{2}I_{RMS}\sin(\omega t)$$

$$p_{ac}(t) = v_{ac}i_{ac} = V_{RMS}I_{RMS}(1 - \cos(2\omega t))$$

$$P_{ac} = V_{RMS}I_{RMS}$$

A simple current controller

$$i_{ref} = I_{Mref} \sin(\omega t)$$

 $i_L < i_{ref} - \Delta i/2$: position 1

 $i_L > i_{ref} + \Delta i/2$: position 2

 i_L is always within $\Delta i/2$ of i_{ref}

Simulink model

dcac_switching.mdl

Waveforms $v_{ac}(t)$, $i_{ac}(t)$, $i_{in}(t)$, and switch control over one AC line period (1/60 s)

Input voltage

$$V_{DC} = 200 \text{ V}$$

Inductance L = 2 mH

AC: 120Vrms, 60Hz

$$I_{Mref} = 3\sqrt{2} = 4.2 \text{ A}$$

$$\Delta i_I = 1 \text{ A}$$

$$P_{ac} = 360 \text{ W}$$

With this simple controller, switching frequency is variable

Averaged DC-AC inverter model with losses

- Small R_L models inductor winding resistance and power switch resistances
- Small I_{sw} models switching and other losses

DC-AC inverter efficiency example

- Inverter efficiency of about 95% is typical
- At high power levels, conduction losses due to R_L dominate
- At low power levels, efficiency drops due to switching and other fixed losses

Input voltage $V_{DC} = 200 \text{ V}$

AC: 120Vrms, 60Hz

$$R_L = 0.8 \Omega$$

 $I_{sw} = 50 \text{ mA}$

 $P_{ac} = 0 \text{ to } 600 \text{ W}$

