Blei las Jimenez

Exercise 6

Lowe Know that the minimum of f(x) in x0+ (21,..., th) is xx. [1]

to the also know that, in general, dim $\angle z_1,...,z_k \rangle = K$ (i.e.) if $z^j \neq 0 \ \forall_f \rangle$ [2]

Lythern, if $\langle \{ \}_{k}^{1}, ..., \{ \}_{k} \rangle = \langle V_{i}^{i}, ..., V_{i}^{k-1} \}$, the exercise will be done. Assume that $T_{K} = \langle V_{0}, ..., V_{i}^{k-1} \rangle$ and $S_{K} = \langle \{ \}_{i}^{1}, ..., \{ \}_{i}^{K} \}$. They tell us that $J_{K} = J_{K} + J_{K}$

Lo We will use hypotesis induction, using $\nabla f = Ax - b$

1) First case, K=1: 1=-Vo = - 7f(x0)

① Second case, K = 2: $2^2 = -\nabla f(x_1) + \lambda_1 z_1 = b - Ax_1 + \lambda_2 z_2$ if $x_2 = x_0 + d_1 z_2$, then; $= b - Ax_0 + (x_1 - d_1 A) z_1 =$

(+1- NO) = - OF(x0) + X1 V0 + + A A · V0 = (12-1) · V0 + 41 V1 & T2]

linear oursitection

continuer

Lo let's suppose it's true for k=1,2,... k-1. Then we prove it for k:

Lo We houre:

Lot ben

conditional of Av_0 , $Av_{\kappa-2}$, = $v_1,...,v_{\kappa-4}$ =) (2) $\in T_{\kappa}$

 $(t) = \forall f(x^{k-2}) = -2^{k-4} + \lambda_{k-2} \mathbf{Z}^{k-2}$ $\text{Lo Hypoteris induction: } t^{k-2} \text{ is conditioned of } V_0, \dots, V^{k-2}$ $\text{Lotherefore: } T_{k-2} \notin T_k$

$$=) \begin{cases} \mathcal{J}_{K} \in T_{K} =) \\ \mathcal{J}_{K} = T_{K} \end{cases}$$

$$(H.I) \qquad \qquad \uparrow \text{"iuside"}$$