

Fachbereich Informatik
Dr. Marco Hülsmann

Numerische Mathematik 1 Übungsblatt 3, WS 2019/20

Aufgabe 1 (Tridiagonalmatrix)

Erzeugen Sie mithilfe eines octave-Skripts eine 10×10 -Tridiagonalmatrix F der folgenden Gestalt:

$$F = \begin{pmatrix} 4 & -1 & 0 & \cdots & 0 \\ -1 & 4 & -1 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & -1 & 4 & -1 \\ 0 & \cdots & 0 & -1 & 4 \end{pmatrix}$$

Bestimmen Sie die Spalten- und Zeilensummen sowie die Summe aller Einträge der gesamten Matrix. Lösen Sie das lineare Gleichungssystem Fx=b, mit

$$b = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^{10},$$

und überprüfen Sie die Richtigkeit der Lösung, indem Sie das Matrix-Vektor-Produkt Fx bilden! Verwenden Sie möglichst viele in *octave* eingebaute Funktionen!

Aufgabe 2 (Matrixnormen und Operatornormen)

a) Wiederholung aus der Linearen Algebra:

Eine Matrix $A \in \mathbb{R}^n$ heißt positiv definit, falls

$$\forall_{x \in \mathbb{R}^n, x \neq 0} \langle x, Ax \rangle > 0$$

Zeigen Sie, daß eine symmetrische Matrix genau dann positiv definit ist, wenn alle Eigenwerte echt positiv sind.

b) Berechnen Sie die Zeilensummen-, Spaltensummen-, Frobenius-Norm und Spektralnorm der folgenden Matrix:

$$A = \left(\begin{array}{cc} -7.2 & 0.4 \\ -4.6 & 7.2 \end{array}\right)$$

Berechnen Sie möglichst effizient die Spektralnorm von

$$B = \left(\begin{array}{cc} 2 & 1\\ 1 & 2 \end{array}\right)$$

Überprüfen Sie Ihre Rechnungen mithilfe von octave!

c) Zeigen Sie, daß die Zeilensummennorm die zur Maximumsnorm zugehörige Operatornorm ist!

Hinweis: Sie dürfen folgende Resultate aus der Linearen Algebra verwenden:

Eine symmetrische Matrix besitzt reelle Eigenwerte sowie eine Orthonormalbasis aus Eigenvektoren, d.h., die Basisvektoren sind paarweise orthogonal und haben Länge 1.

Sind $v_1,...,v_n\in\mathbb{R}^n,n\in\mathbb{N}$, orthonormal, so folgt für die Koeffizienten $\alpha_1,...,\alpha_n\in\mathbb{R}$ einer

Linearkombination
$$\sum_{i=1}^{n} \alpha_i v_i = x \in \mathbb{R}^n$$
: $\alpha_i = \langle x, v_i \rangle, i = 1, ..., n$..

Sie dürfen weiterhin ohne Beweis verwenden, daß $\langle Ax,Ax\rangle=\langle A^TA,x\rangle$ für $A\in\mathbb{R}^{n\times n}$ und $x\in\mathbb{R}^n$ gilt.

Aufgabe 3* (Matrixnormen und Operatornormen, freiwillige Hausübung!)

Zeigen Sie:

- (i) Die Spaltensummennorm ist die zur 1-Norm zugehörige Operatornorm.
- (ii) Die Frobenius-Norm ist zur euklidischen Norm passend.
- (iii) Die Spektralnorm ist die zur euklidischen Norm zugehörige Operatornorm.

Die Übungsaufgaben werden in der Übung am Donnerstag, 24. Oktober 2019, besprochen.

2