Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2015/2016 Corso di Laurea in Ingegneria Fisica – Corso di Metodi Analitici e Statistici per l'Ingegneria Fisica Secondo appello di Metodi Analitici (7-7-16) – Prof. I. FRAGALÀ

I. ANALISI COMPLESSA.

- (i) Siano $f_i: \mathbb{C} \to \mathbb{C}$, i = 1, 2 due funzioni olomorfe su $\mathbb{C} \setminus \{0\}$. Stabilire, motivando la risposta, se sono vere le seguenti affermazioni:
 - (a) $\operatorname{Res}(f_1 + f_2, 0) = \operatorname{Res}(f_1, 0) + \operatorname{Res}(f_2, 0);$
 - (b) $\operatorname{Res}(f_1 f_2, 0) = \operatorname{Res}(f_1, 0) \operatorname{Res}(f_2, 0)$.
- (ii) Calcolare Res(f, 0), dove

$$f(z) = \frac{1}{z} + \frac{1}{\cosh z} + e^{-\frac{1}{z^4}}$$
.

(iii) Sia f la funzione al punto (ii), e sia γ la curva parametrizzata da $r(t)=(1+\cos t,2+\sin t)$, per $t\in[0,2\pi]$. Calcolare $\int_{\gamma}f(z)\,dz$.

Soluzione.

- (i) Poiché lo sviluppo di Taylor della funzione somma f_1+f_2 è dato dalla somma degli sviluppi di Taylor di f_1 e di f_2 , l'affermazione (a) è vera. Invece la (b) è falsa: si consideri ad esempio il caso in cui $f_1(z)=f_2(z)=\frac{1}{z}$: si ha $\operatorname{Res}(f_1,0)=\operatorname{Res}(f_2,0)=1$, mentre $\operatorname{Res}(f_1f_2,0)=0$.
- (ii) Applicando la proprietá (a) stabilita al punto (i), possiamo calcolare il residuo in f come la somma dei residui dei suoi tre addendi. Poiché il secondo e il terzo addendo sono funzioni pari, il loro residuo è nullo. Pertanto $\operatorname{Res}(f,0) = \operatorname{Res}(\frac{1}{z},0) = 1$.
- (iii) La curva γ è una circonferenza di centro (1,2) e raggio 1. In particolare, l'indice di γ rispetto all'origine è nullo, e pertanto per il teorema dei residui (tenuto conto che la funzione f è olomorfa su tutto $\mathbb C$ tranne che nell'origine), si ha $\int_{\gamma} f(z) \, dz = 0$.

II. ANALISI FUNZIONALE.

Sia V lo spazio vettoriale delle funzioni $f: \mathbb{R} \to \mathbb{R}$ tali che $\int_{\mathbb{R}} f^2(x) \, dx < +\infty$ e $\int_{\mathbb{R}} (x^2 f^2(x)) \, dx < +\infty$. Si consideri su V il prodotto scalare $\langle f, g \rangle := \int_{\mathbb{R}} f(x) g(x) \, dx + \int_{\mathbb{R}} x^2 f(x) g(x) \, dx$, che induce su V la norma $||f||_V := \langle f, f \rangle^{1/2}$. Sia $T: V \to \mathbb{R}$ l'operatore lineare definito da

$$T(f) := \int_{\mathbb{R}} f \, dx \,.$$

- (i) Dimostrare che T è limitato.
- (ii) Calcolare la norma di T.

Soluzione.

(i) Per ogni $f \in V$, usando in particolare la disuguaglianza di Hölder, si ha

$$|T(f)|_{\mathbb{R}} = \left| \int_{\mathbb{R}} f(x) \, dx \right| \le \int_{\mathbb{R}} |f(x)| \, dx = \int_{\mathbb{R}} \sqrt{1 + x^2} \frac{|f(x)|}{\sqrt{1 + x^2}} \, dx$$

$$\le \left\{ \int_{\mathbb{R}} (1 + x^2) |f(x)|^2 \, dx \right\}^{1/2} \left\{ \int_{\mathbb{R}} \frac{1}{1 + x^2} \, dx \right\}^{1/2}$$

$$= \sqrt{\pi} ||f||_{V}.$$

Questo mostra che T è limitato, con $||T|| \leq \sqrt{\pi}$.

(ii) Si consideri la funzione $\varphi(x):=\frac{1}{1+x^2}.$ Si osservi che $\varphi\in V,$ in quanto

$$\int_{\mathbb{R}} \varphi^2(x) \, dx = \int_{\mathbb{R}} \frac{1}{(1+x^2)^2} \, dx < +\infty \,, \qquad \int_{\mathbb{R}} x^2 \varphi^2(x) \, dx = \int_{\mathbb{R}} \frac{x^2}{(1+x^2)^2} \, dx < +\infty \,.$$

Si ha

$$|T(\varphi)| = \int_{\mathbb{R}} \frac{1}{1+x^2} \, dx = \pi \qquad \|\varphi\|_V = \Big\{ \int_{\mathbb{R}} \frac{1+x^2}{(1+x^2)^2} \Big\}^{1/2} = \sqrt{\pi} \, .$$

Poiché $|T(\varphi)| = \sqrt{\pi} ||\varphi||_V$, concludiamo che $||T|| = \sqrt{\pi}$.

III. SERIE/TRASFORMATA DI FOURIER.

- (i) Enunciare il Teorema di Riemann-Lebesgue.
- (ii) Calcolare, per ogni y > 0,

$$g(y) := \int_{\mathbb{R}} \frac{e^{-ix \log y}}{x^2 + 1} dx.$$

(iii) Stabilire per quali valori di $k \in \mathbb{N}$ si ha $g \in C^k(\mathbb{R}_+)$. Per tali valori di k, calcolare $||g||_{C^k(\mathbb{R}_+)} := \sum_{\alpha=0}^k \sup_{x \in \mathbb{R}_+} |D^{\alpha}g(x)|$.

Soluzione.

- (i) Si vedano le slides del corso o uno dei testi consigliati.
- (ii) Posto $f(x) := \frac{1}{1+x^2}$, si ha che $g(y) = \hat{f}(\log y)$. Poiché è noto che $\hat{f}(\xi) = \pi e^{-|\xi|}$, deduciamo che

$$g(y) = \pi e^{-|\log y|} = \begin{cases} \pi e^{-\log y} = \frac{\pi}{y} & \text{se } y \ge 1\\ \pi e^{\log y} = \pi y & \text{se } y \in (0, 1]. \end{cases}$$

(iii) Per il teorema di Riemann-Lebesgue e la continuità della funzione $y\mapsto \log y$, nonché dall'espressione esplicita di g ricavata al punto (ii), abbiamo che $g\in C^0(\mathbb{R}_+)$. Inoltre, poiché g è crescente se e solo se $y\in (0,1)$, si ha $\|g\|_{C^0(\mathbb{R}_+)}=|g(1)|=\pi$.

Dall'espressione esplicita di g ricavata al punto (ii), vediamo che $\lim_{y\to 1^+} g'(y) = -\pi \neq \pi = \lim_{y\to 1^-} g'(y)$. Pertanto $g \notin C^1(\mathbb{R}_+)$ (e quindi $g \notin C^k(\mathbb{R}_+)$ per ogni $k \geq 1$).