# Invertible Generative Modeling using Liner Rational Splines

HADI M. DOLATABADI, SARAH ERFANI AND CHRISTOPHER LECKIE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS, THE UNIVERSITY OF MELBOURNE



#### ABSTRACT

- Normalizing flows: modeling arbitrary distributions through invertible mappings
- Motivation: investigating other families of invertible functions useful for flow-based modeling
- **Proposal**: monotonic linear rational splines
- Key features:
  - 1. Closed-form inverse
  - 2. Same family of inverse and forward mappings

### NORMALIZING FLOWS

#### Change-of-variables formula:

- Random vector  $\mathbf{Z} \sim p_{\mathbf{Z}}(\mathbf{z})$
- Invertible and differentiable function  $f(\cdot)$
- Random vector  $\mathbf{X} = \mathbf{f}(\mathbf{Z})$

$$p_{\mathbf{X}}(\mathbf{x}) = p_{\mathbf{Z}}(\mathbf{z}) \left| \det \left( \nabla_{\mathbf{z}} \mathbf{f}(\mathbf{z}) \right) \right|^{-1}$$

#### Normalizing flows:

- Z: simple base random variable (e.g. standard normal)
- $f_{\theta}(\cdot)$ : composition of invertible neural nets

$$\mathbf{f}_{\boldsymbol{\theta}}\left(\cdot\right) = \left(\mathbf{f}_{K} \circ \mathbf{f}_{K-1} \circ \mathbf{f}_{2} \circ \mathbf{f}_{1}\right)\left(\cdot\right)$$

- Fitting  $f_{\theta}(\cdot)$  to observations through MLE
- Desirable properties of  $f_{\theta}(\cdot)$ :
  - 1. Tractable  $|\det(\nabla_{\mathbf{z}}\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{z}))|$
  - 2. Easily invertible

#### REFERENCES

- [1] Dinh et al. Density estimation using Real NVP. 2017.
- [2] Fuhr and Kallay. Monotone linear rational spline interpolation. 1992.
- Durkan et al. Neural spline flows. 2019.

#### COUPLING LAYERS



- ullet  $\mathbf{g}_{oldsymbol{ heta}}(\cdot)$ 
  - 1. Invertible
  - 2. Element-wise and differentiable

# LINEAR RATIONAL SPLINE FLOW

- Linear rational splines (LRS): piece-wise functions of the form (ax + b)/(cx + d)
- Proposed method:
  - 1. Find  $\theta$ ={knot locations, derivative at knot points,  $\lambda$ 's (curvature parameters)}
  - 2. Use the algorithm of [2] for monotonic LRS interpolation and determine the invertible transformation  $g_{\theta}(\cdot)$ .



- Pros & Cons:
  - + Closed-form inverse.
  - + Inverse and forward functions are both LRS.
  - Slightly (<1%) more number of parameters compared to [3].

### SYNTHETIC DENSITY ESTIMATION



# DENSITY ESTIMATION OF REAL-WORLD DATA

| MODEL      | POWER           | GAS              | HEPMASS           | MINIBOONE         | BSDS300           |
|------------|-----------------|------------------|-------------------|-------------------|-------------------|
| FFJORD     | 0.46            | 8.59             | -14.92            | -10.43            | 157.40            |
| Glow       | $0.42 \pm 0.01$ | $12.24 \pm 0.03$ | $-16.99 \pm 0.02$ | $-10.55 \pm 0.45$ | $156.95 \pm 0.28$ |
| Q-NSF (C)  | $0.64 \pm 0.01$ | $12.80 \pm 0.02$ | $-15.35 \pm 0.02$ | $-9.35 \pm 0.44$  | $157.65 \pm 0.28$ |
| RQ-NSF (C) | $0.64 \pm 0.01$ | $13.09 \pm 0.02$ | $-14.75 \pm 0.03$ | $-9.67 \pm 0.47$  | $157.54 \pm 0.28$ |
| Ours (C)   | $0.65 \pm 0.01$ | $12.99 \pm 0.02$ | $-14.64 \pm 0.03$ | $-9.65 \pm 0.48$  | $157.70 \pm 0.28$ |

### MNIST IMAGE GENERATION







#### IMAGE MODELING

| MODEL          | CIFAR-10 | <b>IMAGENET 64</b> |
|----------------|----------|--------------------|
| Real NVP       | 3.49     | 3.98               |
| Glow           | 3.35     | 3.81               |
| Residual Flows | 3.28     | 3.75               |
| RQ-NSF (C)     | 3.38     | 3.82               |
| Ours (C)       | 3.38     | 3.82               |

ImageNet-64

#### 9535373139

**MNIST** 

#### CONCLUSION

- LRS: a family of splines, useful in NF modeling
- LRS Flows: closed-form inverse, efficient sampling, competitor of complex existing methods

### CONTACT INFORMATION



Web hmdolatabadi.github.io Repo. github.com/hmdolatabadi/LRS\_NF