

Hands on Machine Learning

Raghavendra.M.J

Department of ECE, PESU.

Hands on Machine Learning TEXT BOOK AND REFERENCES

ŧ.

TEXT BOOK:

Book Type	Author & Title	Edition	Publisher	Year
Textbook 1	"Hands on Machine learning with scikit learn and scientific Python Toolkits", Tarek Amr	1 st	Packt	2020
Textbook- 2	"Python Machine Learning", Sebastian Raschka, Vahid Mirjalli	3 rd	Packt	2019

UNIT-2 Convolution Neural Networks(CNN) Basics

- > The building blocks of CNNs
- > Understanding CNN and Feature hierarchies

- > CNNs are developed in 1990
- Outstanding Performance in Image Classification
- > It led to lot of development in Computer Vision and Machine Learning
- Why Convolution layers are treated as feature extraction layers?

PES UNIVERSITY ONLINE

- CNN's are able to learn the features automatically from the raw data which is very useful for a particular task
- CNN layers are extract low-level features from the raw data. Then later layers use these features to predict the output
- Feature Hierarchy: Feature hierarchy formed by combining the low level features in a layer-wise fashion to form high level features
- For example edges and blobs in the image are low level features, when we combine these features, it may lead to high level features

ONLINE

- Feature maps: CNN computes feature maps from an input image, where each element comes from a local patch of pixels in the input image
- The local patch of pixels is referred to as the local receptive field.

- > CNNs will usually perform well on image-related tasks and it is due to following two reasons
- > Sparse Connectivity: A single element in the feature map is connected to a small patch of pixels.
- > Parameter-sharing: The same weights are used for different patches of the input image.

- > Typically, CNN's consists of several Convolutional and subsampling layers that are followed by one or more Fully connected layers at the end.
- The Fully connected layers essentially an MLP, where input "i" is connected to every output j with weight W_{ii}
- Subsampling layers are commonly known as Pooling layers.
- Pooling layers do not have any learnable parameters, for instance there are no weights and no bias units.
- > Both Convolutional and fully connected layers have weights and biases.

Courtesy: "Python Machine Learning", Sebastian Raschka, Vahid Mirjalli, 3rd Edition, Packt 2019

THANK YOU

Raghavendra.M.J

Department of ECE

raghavendramj@pes.edu