Math 217 Fall 2025 Quiz 20 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Let $\mathfrak{B} = (v_1, \dots, v_d)$ be a basis for the vector space V. Let $v \in V$. The \mathfrak{B} -coordinates of v are ...

Solution: The unique scalars $a_1, \ldots, a_d \in \mathbb{R}$ such that

$$v = a_1 v_1 + \dots + a_d v_d.$$

(b) Let $\mathfrak{B} = (v_1, \ldots, v_d)$ be a basis for the vector space V. Let $v \in V$. The \mathfrak{B} -coordinate column vector of v is ...

Solution: The column vector formed from the \mathfrak{B} -coordinates of v:

$$[v]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix} \in \mathbb{R}^d, \text{ where } v = a_1 v_1 + \dots + a_d v_d.$$

(c) Let $T: V \to V$ be linear and $\mathfrak{B} = (v_1, \ldots, v_n)$ an ordered basis of V. The matrix of T with respect to \mathfrak{B} is ...

Solution: The $n \times n$ matrix $[T]_{\mathfrak{B}}$ whose j-th column is $[T(v_j)]_{\mathfrak{B}}$; i.e.

$$[T]_{\mathfrak{B}} = \begin{bmatrix} | & | \\ [T(v_1)]_{\mathfrak{B}} & \cdots & [T(v_n)]_{\mathfrak{B}} \\ | & | \end{bmatrix}.$$

2. Suppose V is a vector space and v_1, \ldots, v_m are linearly independent in V. Show that if $v \in V \setminus \text{Span}(v_1, \ldots, v_m)$, then the vectors v, v_1, \ldots, v_m are linearly independent.

Solution: Suppose $a v + \sum_{i=1}^{m} b_i v_i = 0$. If $a \neq 0$, then

$$v = -\frac{1}{a} \sum_{i=1}^{m} b_i v_i \in \operatorname{Span}(v_1, \dots, v_m),$$

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

contradiction. Hence a=0, so $\sum b_i v_i=0$. By linear independence of v_1,\ldots,v_m , we get $b_1=\cdots=b_m=0$. Thus v,v_1,\ldots,v_m are linearly independent.

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose $V = \mathbb{R}^{2\times 2}$ with basis $\mathfrak{B} = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}$. Consider $T : \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ given by T(X) = AX XA where $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$. The matrix of T with respect to \mathfrak{B} is

$$\begin{bmatrix} 0 & 0 & 4 & 0 \\ -4 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 \end{bmatrix}.$$

Solution: FALSE. Let $E_{11}, E_{12}, E_{21}, E_{22}$ be the listed basis. Compute:

$$T(E_{11}) = AE_{11} - E_{11}A = \begin{bmatrix} 0 & -3 \\ 0 & 0 \end{bmatrix} = -3E_{12},$$

$$T(E_{12}) = AE_{12} - E_{12}A = \mathbf{0},$$

$$T(E_{21}) = AE_{21} - E_{21}A = 3E_{11} - 3E_{22},$$

$$T(E_{22}) = AE_{22} - E_{22}A = 3E_{12}.$$

Thus the columns of $[T]_{\mathfrak{B}}$ are

$$\begin{bmatrix} 0 \\ -3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 0 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix},$$

SO

$$[T]_{\mathfrak{B}} = \begin{bmatrix} 0 & 0 & 3 & 0 \\ -3 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 \end{bmatrix},$$

not the given matrix with 4's.

- 4. Let $\mathfrak{B} = (\vec{v}_1, \vec{v}_2)$ with $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.
 - (a) Let \vec{w} be the vector whose \mathfrak{B} -coordinates are $\begin{bmatrix} 2 \\ -1 \end{bmatrix}$. What is $[\vec{w}]_{\mathcal{E}}$?

$$\vec{w} = 2\vec{v}_1 + (-1)\vec{v}_2 = 2\begin{bmatrix} 1\\1 \end{bmatrix} - \begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 3\\1 \end{bmatrix}.$$

Hence $[\vec{w}]_{\mathcal{E}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

(b) Let \vec{v} satisfy $[\vec{v}]_{\mathfrak{B}} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$. Represent \vec{v} in standard coordinates. Find $[\vec{e}_1]_{\mathfrak{B}}$ and $[\vec{e}_2]_{\mathfrak{B}}$.

Solution:

$$\vec{v} = \frac{1}{2}\vec{v}_1 + \frac{1}{2}\vec{v}_2 = \frac{1}{2}\begin{bmatrix} 1\\1 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix} = \vec{e}_2.$$

Let $P = [\vec{v_1} \ \vec{v_2}] = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Then $[\cdot]_{\mathfrak{B}} = P^{-1}[\cdot]_{\mathcal{E}}$ with

$$P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

Hence

$$[\vec{e}_1]_{\mathfrak{B}} = P^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \qquad [\vec{e}_2]_{\mathfrak{B}} = P^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$