SUPERMARKET SALES PREDICTION

```
In [65]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import os
         import scipy as sp
         import warnings
         import datetime
         import pickle
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_sco
         from sklearn.linear_model import LinearRegression
         from sklearn.preprocessing import PolynomialFeatures
         from sklearn.pipeline import make_pipeline
         from sklearn.ensemble import RandomForestRegressor
         from sklearn.svm import SVR
         from sklearn.neighbors import KNeighborsRegressor
         from sklearn.linear_model import Ridge, Lasso
         from xgboost import XGBRegressor
         from lightgbm import LGBMRegressor
         from catboost import CatBoostRegressor
         from sklearn.neural_network import MLPRegressor
         warnings.filterwarnings("ignore")
         %matplotlib inline
```

READING THE DATASET

```
In [2]: data = pd.read_csv("supermarket_sales - Sheet1.csv")
```

In [3]: data

Out[3]:

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	
0	750-67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	Ę
1	226-31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	
2	631-41- 3108	А	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	3
3	123-19- 1176	А	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	۷
4	373-73- 7910	А	Yangon	Normal	Male	Sports and travel	86.31	7	30.2085	6
995	233-67- 5758	С	Naypyitaw	Normal	Male	Health and beauty	40.35	1	2.0175	
996	303-96- 2227	В	Mandalay	Normal	Female	Home and lifestyle	97.38	10	48.6900	10
997	727-02- 1313	Α	Yangon	Member	Male	Food and beverages	31.84	1	1.5920	
998	347-56- 2442	Α	Yangon	Normal	Male	Home and lifestyle	65.82	1	3.2910	
999	849-09- 3807	А	Yangon	Member	Female	Fashion accessories	88.34	7	30.9190	E

1000 rows × 17 columns

In [4]: data.head()

Out[4]:

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	
0	750-67- 8428	А	Yangon	Member	Female	Health and beauty	74.69	7	26.1415	548.
1	226-31- 3081	С	Naypyitaw	Normal	Female	Electronic accessories	15.28	5	3.8200	80.
2	631-41- 3108	Α	Yangon	Normal	Male	Home and lifestyle	46.33	7	16.2155	340.
3	123-19- 1176	Α	Yangon	Member	Male	Health and beauty	58.22	8	23.2880	489.
4	373-73- 7910	Α	Yangon	Normal	Male	Sports and travel	86.31	7	30.2085	634.
4										•

In [5]: data.describe()

Out[5]:

	gross margin percentage	cogs	Total	Tax 5%	Quantity	Unit price	
1000.0	1.000000e+03	1000.00000	1000.000000	1000.000000	1000.000000	1000.000000	count
15.3	4.761905e+00	307.58738	322.966749	15.379369	5.510000	55.672130	mean
11.7	6.131498e-14	234.17651	245.885335	11.708825	2.923431	26.494628	std
0.5	4.761905e+00	10.17000	10.678500	0.508500	1.000000	10.080000	min
5.9	4.761905e+00	118.49750	124.422375	5.924875	3.000000	32.875000	25%
12.0	4.761905e+00	241.76000	253.848000	12.088000	5.000000	55.230000	50%
22.4	4.761905e+00	448.90500	471.350250	22.445250	8.000000	77.935000	75%
49.6	4.761905e+00	993.00000	1042.650000	49.650000	10.000000	99.960000	max
>							4

In [6]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 17 columns):

	•	,	
#	Column	Non-Null Count	Dtype
0	Invoice ID	1000 non-null	object
1	Branch	1000 non-null	object
2	City	1000 non-null	object
3	Customer type	1000 non-null	object
4	Gender	1000 non-null	object
5	Product line	1000 non-null	object
6	Unit price	1000 non-null	float64
7	Quantity	1000 non-null	int64
8	Tax 5%	1000 non-null	float64
9	Total	1000 non-null	float64
10	Date	1000 non-null	object
11	Time	1000 non-null	object
12	Payment	1000 non-null	object
13	cogs	1000 non-null	float64
14	gross margin percentage	1000 non-null	float64
15	gross income	1000 non-null	float64
16	Rating	1000 non-null	float64
dtyn	es: float64(7) int64(1)	object(9)	

dtypes: float64(7), int64(1), object(9)

memory usage: 132.9+ KB

DATA PREPROCESSING AND VISUALISATION

In [9]: data.shape

Out[9]: (1000, 17)

```
In [10]:
         data.dtypes
Out[10]: Invoice ID
                                       object
         Branch
                                       object
          City
                                       object
          Customer type
                                       object
         Gender
                                       object
         Product line
                                       object
                                      float64
         Unit price
          Quantity
                                        int64
         Tax 5%
                                      float64
          Total
                                      float64
         Date
                                       object
          Time
                                       object
         Payment
                                       object
                                      float64
          cogs
          gross margin percentage
                                      float64
          gross income
                                      float64
                                      float64
          Rating
          dtype: object
In [12]: data.columns
Out[12]: Index(['Invoice ID', 'Branch', 'City', 'Customer type', 'Gender',
                 'Product line', 'Unit price', 'Quantity', 'Tax 5%', 'Total', 'Dat
          е',
                 'Time', 'Payment', 'cogs', 'gross margin percentage', 'gross incom
          е',
                 'Rating'],
                dtype='object')
In [13]: data.isnull().sum()
Out[13]: Invoice ID
                                      0
          Branch
                                      0
          City
                                      0
                                      0
         Customer type
                                      0
          Gender
          Product line
                                      0
                                      0
         Unit price
          Quantity
                                      0
          Tax 5%
                                      0
          Total
                                      0
          Date
                                      0
         Time
                                      0
          Payment
                                      0
                                      0
          cogs
          gross margin percentage
                                      0
                                      0
          gross income
                                      0
          Rating
          dtype: int64
```

In [14]: data.hist(figsize=(20,14))
 plt.show()

In [15]: data.corr()

Out[15]:

	Unit price	Quantity	Tax 5%	Total	cogs	gross margin percentage	gross income	R
Unit price	1.000000	0.010778	0.633962	0.633962	0.633962	NaN	0.633962	-0.00
Quantity	0.010778	1.000000	0.705510	0.705510	0.705510	NaN	0.705510	-0.0
Tax 5%	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000	-0.03
Total	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000	-0.03
cogs	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000	-0.03
gross margin percentage	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
gross income	0.633962	0.705510	1.000000	1.000000	1.000000	NaN	1.000000	-0.03
Rating	-0.008778	-0.015815	-0.036442	-0.036442	-0.036442	NaN	-0.036442	1.00
4								•

```
In [17]: #plt.figure(figsize = (12,10))
sns.heatmap(data.corr(), annot =True)
```

Out[17]: <Axes: >


```
In [18]: plt.figure(figsize=(14,10))
    sns.set_style(style='whitegrid')
    plt.subplot(2,3,1)
    sns.boxplot(x='Unit price',data=data)
    plt.subplot(2,3,2)
    sns.boxplot(x='Quantity',data=data)
    plt.subplot(2,3,3)
    sns.boxplot(x='Total',data=data)
    plt.subplot(2,3,4)
    sns.boxplot(x='cogs',data=data)
    plt.subplot(2,3,5)
    sns.boxplot(x='Rating',data=data)
    plt.subplot(2,3,6)
    sns.boxplot(x='gross income',data=data)
```

Out[18]: <Axes: xlabel='gross income'>

In [19]: sns.pairplot(data=data)

Out[19]: <seaborn.axisgrid.PairGrid at 0x2b2ca829e40>


```
In [20]: sns.scatterplot(x='Rating', y= 'cogs', data=data)
```

Out[20]: <Axes: xlabel='Rating', ylabel='cogs'>

In [23]: sns.lineplot(x='Rating', y= 'Unit price', data=data)

Out[23]: <Axes: xlabel='Rating', ylabel='Unit price'>


```
In [24]: plt.style.use("default")
   plt.figure(figsize=(5,5))
   sns.barplot(x="Rating", y="Unit price", data=data[170:180])
   plt.title("Rating vs Unit Price",fontsize=15)
   plt.xlabel("Rating")
   plt.ylabel("Unit Price")
   plt.show()
```



```
In [25]: plt.style.use("default")
   plt.figure(figsize=(5,5))
   sns.barplot(x="Rating", y="Gender", data=data[170:180])
   plt.title("Rating vs Gender",fontsize=15)
   plt.xlabel("Rating")
   plt.ylabel("Gender")
   plt.show()
```



```
In [27]: from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
for i in list_cate:
    data[i]=le.fit_transform(data[i])
```

In [28]: data

Out[28]:

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	Total
0	814	0	2	0	0	3	74.69	7	26.1415	548.9715
1	142	2	1	1	0	0	15.28	5	3.8200	80.2200
2	653	0	2	1	1	4	46.33	7	16.2155	340.5255
3	18	0	2	0	1	3	58.22	8	23.2880	489.0480
4	339	0	2	1	1	5	86.31	7	30.2085	634.3785
995	153	2	1	1	1	3	40.35	1	2.0175	42.3675
996	250	1	0	1	0	4	97.38	10	48.6900	1022.4900
997	767	0	2	0	1	2	31.84	1	1.5920	33.4320
998	308	0	2	1	1	4	65.82	1	3.2910	69.1110
999	935	0	2	0	0	1	88.34	7	30.9190	649.2990

1000 rows × 17 columns

```
In [41]: data.drop(['Invoice ID', 'Date', 'Time', 'gross margin percentage'], axis=1
```

```
In [42]: data.columns
```

```
In [29]: y=data['Total']
x=data.drop('Total',axis=1)
```

```
In [30]: x
```

Out[30]:

	Invoice ID	Branch	City	Customer type	Gender	Product line	Unit price	Quantity	Tax 5%	Date	Time
0	814	0	2	0	0	3	74.69	7	26.1415	26	140
1	142	2	1	1	0	0	15.28	5	3.8200	87	2:
2	653	0	2	1	1	4	46.33	7	16.2155	81	15
3	18	0	2	0	1	3	58.22	8	23.2880	19	48
4	339	0	2	1	1	5	86.31	7	30.2085	57	2!
•••											
995	153	2	1	1	1	3	40.35	1	2.0175	21	17،
996	250	1	0	1	0	4	97.38	10	48.6900	70	34:
997	767	0	2	0	1	2	31.84	1	1.5920	58	15 ₄
998	308	0	2	1	1	4	65.82	1	3.2910	45	26
999	935	0	2	0	0	1	88.34	7	30.9190	40	160

1000 rows × 16 columns

33.4320

69.1110

997

998

999 649.2990 Name: Total, Length: 1000, dtype: float64

```
In [44]: # Standardize numerical features to have mean=0 and standard deviation=1
    scaler = StandardScaler()
    x_scaled = scaler.fit_transform(x)
    with open('scaler.pkl', 'wb') as scaler_file:
        pickle.dump(scaler, scaler_file)
```

TRAINING AND TESTING OF DATA

```
In [47]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_scaled,y,random_state=0,te)
```

```
In [48]: x_train
                                           1.21017372, ...,
Out[48]: array([[ 0.62527065, -1.20897001,
                  1.40140764, -1.55595718],
                [-0.9855374 , 0.01468385, -1.22969265, ...,
                 -0.99811154, -0.91557371],
                [ 0.24768339, -1.20897001, 1.21017372, ..., 0.
                  0.33116646, -0.85735703,
                [-0.83658096, -1.20897001,
                                           1.21017372, ...,
                 -1.26248888, 0.7144933 ],
                [-1.26959388, -1.20897001, 1.21017372, ...,
                 -0.38591649, 0.7144933 ],
                [-0.00173205, 0.01468385, -1.22969265, ..., 0.
                 -0.72249773, -1.20665711]])
In [49]: |x_train.shape
Out[49]: (800, 16)
In [50]: |y_train.shape
Out[50]: (800,)
         # APPLYING DIFFERENT REGRESSION
         MODELS
In [52]: |#RANDOM FOREST
         rf_reg = RandomForestRegressor(random_state=42)
         rf_reg.fit(x_train, y_train)
         y_pred_rf = rf_reg.predict(x_test)
         rmse_rf = np.sqrt(mean_squared_error(y_test, y_pred_rf))
         mae_rf = mean_absolute_error(y_test, y_pred_rf)
         with open('rf_model.pkl', 'wb') as file:
             pickle.dump(rf_reg, file)
In [54]: #SVM (SUPPORT VECTOR MACHINE)
         svm_reg = SVR()
         svm reg.fit(x train, y train)
         y_pred_svm = svm_reg.predict(x_test)
         rmse_svm = np.sqrt(mean_squared_error(y_test, y_pred_svm))
         mae_svm = mean_absolute_error(y_test, y_pred_svm)
         with open('svm_model.pkl', 'wb') as file:
             pickle.dump(svm_reg, file)
In [55]: #K NEAREST NEIGHBORS
         knn reg = KNeighborsRegressor()
         knn_reg.fit(x_train, y_train)
         y_pred_knn = knn_reg.predict(x_test)
         rmse_knn = np.sqrt(mean_squared_error(y_test, y_pred_knn))
         mae_knn = mean_absolute_error(y_test, y_pred_knn)
         with open('knn_model.pkl', 'wb') as file:
             pickle.dump(knn reg, file)
```

```
In [57]: #RIDGE REGRESSOR
    ridge_reg = Ridge()
    ridge_reg.fit(x_train, y_train)
    y_pred_ridge = ridge_reg.predict(x_test)
    rmse_ridge = np.sqrt(mean_squared_error(y_test, y_pred_ridge))
    mae_ridge = mean_absolute_error(y_test, y_pred_ridge)
    with open('ridge_model.pkl', 'wb') as file:
        pickle.dump(ridge_reg, file)
```

```
In [58]: #LASSO REGRESSOR
    lasso_reg = Lasso()
    lasso_reg.fit(x_train, y_train)
    y_pred_lasso = lasso_reg.predict(x_test)
    rmse_lasso = np.sqrt(mean_squared_error(y_test, y_pred_lasso))
    mae_lasso = mean_absolute_error(y_test, y_pred_lasso)
    with open('lasso_model.pkl', 'wb') as file:
        pickle.dump(lasso_reg, file)
```

```
In [59]: #XGBoost REGRESSOR
         import xgboost as xgb
         dtrain = xgb.DMatrix(x_train, label=y_train)
         dtest = xgb.DMatrix(x_test)
         params = {
             'objective': 'reg:squarederror',
             'eval_metric': 'rmse',
             'eta': 0.1,
             'max_depth': 6,
             'subsample': 0.8,
             'colsample_bytree': 0.8
         }
         xgb_reg = xgb.train(params, dtrain, num_boost_round=100)
         y_pred_xgb = xgb_reg.predict(dtest)
         rmse_xgb = np.sqrt(mean_squared_error(y_test, y_pred_xgb))
         mae_xgb = mean_absolute_error(y_test, y_pred_xgb)
         with open('xgb model.pkl', 'wb') as file:
             pickle.dump(xgb reg, file)
```

```
In [60]:
         # LGBMRegressor
         lgbm_reg = LGBMRegressor(
             boosting_type='gbdt',
             num_leaves=31,
             learning rate=0.05,
             n_estimators=100,
             reg alpha=0.1,
             reg_lambda=0.1,
             min_child_samples=20,
             force_row_wise=True,
             random_state=42
         lgbm_reg.fit(x_train, y_train)
         y_pred_lgbm = lgbm_reg.predict(x_test)
         rmse_lgbm = np.sqrt(mean_squared_error(y_test, y_pred_lgbm))
         mae_lgbm = mean_absolute_error(y_test, y_pred_lgbm)
         with open('lgbm_model.pkl', 'wb') as file:
             pickle.dump(lgbm_reg, file)
```

In [61]: #CATBOOST REGRESSOR
 catboost_reg = CatBoostRegressor(silent=True)
 catboost_reg.fit(x_train, y_train)
 y_pred_catboost = catboost_reg.predict(x_test)
 rmse_catboost = np.sqrt(mean_squared_error(y_test, y_pred_catboost))
 mae_catboost = mean_absolute_error(y_test, y_pred_catboost)
 with open('catboost_model.pkl', 'wb') as file:
 pickle.dump(catboost_reg, file)

```
In [62]: # MLPRegressor
mlp_reg = MLPRegressor(random_state=42, max_iter=1000) # Increase max_iter
mlp_reg.fit(x_train, y_train)

y_pred_mlp = mlp_reg.predict(x_test)

rmse_mlp = np.sqrt(mean_squared_error(y_test, y_pred_mlp))
mae_mlp = mean_absolute_error(y_test, y_pred_mlp)

with open('mlp_model.pkl', 'wb') as file:
    pickle.dump(mlp_reg, file)
```

```
In [70]: with open('catboost_model.pkl', 'rb') as file:
             catboost_model = pickle.load(file)
         with open('knn_model.pkl', 'rb') as file:
             knn model = pickle.load(file)
         with open('lasso_model.pkl', 'rb') as file:
             lasso_model = pickle.load(file)
         with open('lgbm_model.pkl', 'rb') as file:
             lgbm_model = pickle.load(file)
         with open('mlp_model.pkl', 'rb') as file:
             mlp_model = pickle.load(file)
         with open('rf_model.pkl', 'rb') as file:
             rf_model = pickle.load(file)
         with open('ridge_model.pkl', 'rb') as file:
             ridge_model = pickle.load(file)
         with open('svm_model.pkl', 'rb') as file:
             svm_model = pickle.load(file)
         with open('xgb_model.pkl', 'rb') as file:
             xgb_model = pickle.load(file)
```

```
# XGBoost
In [64]:
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_xgb, alpha=0.5)
         plt.title('XGBoost: Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('xgb_scatter.png')
         plt.show()
         # Neural Network (MLP)
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_mlp, alpha=0.5)
         plt.title('Neural Network (MLP): Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('mlp_scatter.png')
         plt.show()
         # CatBoost
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_catboost, alpha=0.5)
         plt.title('CatBoost: Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('catboost_scatter.png')
         plt.show()
         # LightGBM
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_lgbm, alpha=0.5)
         plt.title('LightGBM: Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('lightgbm_scatter.png')
         plt.show()
         # Lasso Regression
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_lasso, alpha=0.5)
         plt.title('Lasso Regression: Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('lasso scatter.png')
         plt.show()
         # Ridge Regression
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_ridge, alpha=0.5)
         plt.title('Ridge Regression: Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('ridge_scatter.png')
         plt.show()
         # K-Nearest Neighbors (KNN)
         plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred_knn, alpha=0.5)
         plt.title('K-Nearest Neighbors (KNN): Actual vs. Predicted Values')
         plt.xlabel('Actual Values')
         plt.ylabel('Predicted Values')
         plt.savefig('knn scatter.png')
```

```
plt.show()
# Random Forest
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_rf, alpha=0.5)
plt.title('Random Forest: Actual vs. Predicted Values')
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.savefig('rf_scatter.png')
plt.show()
# Support Vector Machine (SVM)
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_svm, alpha=0.5)
plt.title('Support Vector Machine (SVM): Actual vs. Predicted Values')
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.savefig('svm_scatter.png')
plt.show()
```


Actual Values

K-Nearest Neighbors (KNN): Actual vs. Predicted Values


```
In [73]: #residual for Random Forest
    rf_residuals = y_test - rf_model.predict(x_test)

# Create a residual plot for Random Forest
    plt.figure(figsize=(10, 6))
    plt.scatter(rf_model.predict(x_test), rf_residuals, alpha=0.5)
    plt.title('Random Forest: Residual Plot')
    plt.xlabel('Predicted Values')
    plt.ylabel('Residuals')
    plt.axhline(y=0, color='r', linestyle='--')
    plt.savefig('rf_residual_plot.png')
    plt.show()
```



```
In [74]: # Calculate residuals
         residuals_xgb = y_test - y_pred_xgb
         # Create residual plot for XGBoost
         plt.figure(figsize=(10, 6))
         plt.scatter(y_pred_xgb, residuals_xgb, alpha=0.5)
         plt.title('XGBoost: Residual Plot')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
         plt.axhline(y=0, color='r', linestyle='--')
         plt.savefig('xgb_residual_plot.png')
         plt.show()
         # Calculate the residuals for SVM
         svm_residuals = y_test - svm_model.predict(x_test)
         # Create a residual plot for SVM
         plt.figure(figsize=(10, 6))
         plt.scatter(svm_model.predict(x_test), svm_residuals, alpha=0.5)
         plt.title('SVM: Residual Plot')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
         plt.axhline(y=0, color='r', linestyle='--')
         plt.savefig('svm_residual_plot.png')
         plt.show()
         # Calculate the residuals for CatBoostRegressor
         catboost_residuals = y_test - catboost_model.predict(x_test)
         # Create a residual plot for CatBoostRegressor
         plt.figure(figsize=(10, 6))
         plt.scatter(catboost_model.predict(x_test), catboost_residuals, alpha=0.5)
         plt.title('CatBoostRegressor: Residual Plot')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
         plt.axhline(y=0, color='r', linestyle='--')
         plt.savefig('catboost residual plot.png')
         plt.show()
         # Calculate the residuals for KNN
         knn_residuals = y_test - knn_model.predict(x_test)
         # Create a residual plot for KNN
         plt.figure(figsize=(10, 6))
         plt.scatter(knn_model.predict(x_test), knn_residuals, alpha=0.5)
         plt.title('K-Nearest Neighbors (KNN): Residual Plot')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
         plt.axhline(y=0, color='r', linestyle='--')
         plt.savefig('knn residual plot.png')
         plt.show()
         # Calculate the residuals for Lasso Regression
         lasso_residuals = y_test - lasso_reg.predict(x_test)
         # Create a residual plot for Lasso Regression
         plt.figure(figsize=(10, 6))
         plt.scatter(lasso_reg.predict(x_test), lasso_residuals, alpha=0.5)
         plt.title('Lasso Regression: Residual Plot')
         plt.xlabel('Predicted Values')
         plt.ylabel('Residuals')
```

```
plt.axhline(y=0, color='r', linestyle='--')
plt.savefig('lasso_residual_plot.png')
plt.show()
# Calculate the residuals for Ridge Regression
ridge_residuals = y_test - ridge_reg.predict(x_test)
# Create a residual plot for Ridge Regression
plt.figure(figsize=(10, 6))
plt.scatter(ridge_reg.predict(x_test), ridge_residuals, alpha=0.5)
plt.title('Ridge Regression: Residual Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.axhline(y=0, color='r', linestyle='--')
plt.savefig('ridge_residual_plot.png')
plt.show()
# Calculate the residuals for LGBM
lgbm_residuals = y_test - lgbm_model.predict(x_test)
# Create a residual plot for LGBM
plt.figure(figsize=(10, 6))
plt.scatter(lgbm_model.predict(x_test), lgbm_residuals, alpha=0.5)
plt.title('LGBM: Residual Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.axhline(y=0, color='r', linestyle='--')
plt.savefig('lgbm_residual_plot.png')
plt.show()
# Calculate the residuals for MLP
mlp_residuals = y_test - mlp_model.predict(x_test)
# Create a residual plot for MLP
plt.figure(figsize=(10, 6))
plt.scatter(mlp_model.predict(x_test), mlp_residuals, alpha=0.5)
plt.title('MLP: Residual Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.axhline(y=0, color='r', linestyle='--')
plt.savefig('mlp_residual_plot.png')
plt.show()
```



```
In [75]: # Calculate evaluation metrics for XGBoost
         mae_xgb = mean_absolute_error(y_test, xgb_model.predict(dtest))
         mse_xgb = mean_squared_error(y_test, xgb_model.predict(dtest))
         rmse_xgb = np.sqrt(mse_xgb)
         r2 xgb = r2 score(y test, xgb model.predict(dtest))
         mape_xgb = mean_absolute_percentage_error(y_test, xgb_model.predict(dtest))
         # Print the evaluation metrics
         print("XGBoost Evaluation Metrics:")
         print("MAE:", mae_xgb)
         print("MSE:", mse_xgb)
         print("RMSE:", rmse_xgb)
         print("R-squared (R2):", r2_xgb)
         print("Mean Absolute Percentage Error (MAPE):", mape_xgb)
         XGBoost Evaluation Metrics:
         MAE: 1.4131870078277569
         MSE: 5.154618995622527
         RMSE: 2.2703786018244903
         R-squared (R2): 0.9999164723474769
         Mean Absolute Percentage Error (MAPE): 0.005248953076256304
In [76]: # Calculate evaluation metrics for SVM
         mae_svm = mean_absolute_error(y_test, y_pred_svm)
         mse_svm = mean_squared_error(y_test, y_pred_svm)
         rmse svm = np.sqrt(mse svm)
         r2_svm = r2_score(y_test, y_pred_svm)
         mape_svm = mean_absolute_percentage_error(y_test, y_pred_svm)
         # Visualize evaluation metrics for SVM
         print("SVM Evaluation Metrics:")
         print("MAE:", mae_svm)
         print("MSE:", mse_svm)
         print("RMSE:", rmse_svm)
         print("R-squared (R2):", r2_svm)
         print("Mean Absolute Percentage Error (MAPE):", mape_svm)
         SVM Evaluation Metrics:
```

MAE: 165.18607057921415 MSE: 47387.08528297756 RMSE: 217.6857489202671

R-squared (R2): 0.2321193871050069

Mean Absolute Percentage Error (MAPE): 1.0697030740158266

```
# Calculate evaluation metrics for Random Forest (RF)
In [80]:
         mae_rf = mean_absolute_error(y_test, rf_model.predict(x_test))
         mse_rf = mean_squared_error(y_test, rf_model.predict(x_test))
         rmse_rf = np.sqrt(mse_rf)
         r2 rf = r2 score(y test, rf model.predict(x test))
         mape_rf = mean_absolute_percentage_error(y_test, rf_model.predict(x_test))
         # Visualize evaluation metrics for Random Forest (RF)
         print("Random Forest Evaluation Metrics:")
         print("MAE:", mae_rf)
         print("MSE:", mse_rf)
         print("RMSE:", rmse_rf)
         print("R-squared (R2):", r2_rf)
         print("Mean Absolute Percentage Error (MAPE):", mape_rf)
         Random Forest Evaluation Metrics:
         MAE: 0.7040475750000175
         MSE: 1.3516199708681793
         RMSE: 1.1625919193200076
         R-squared (R2): 0.9999780977714617
         Mean Absolute Percentage Error (MAPE): 0.003109128439508145
In [81]: # Calculate evaluation metrics for CatBoost
         mae_catboost = mean_absolute_error(y_test, y_pred_catboost)
         mse_catboost = mean_squared_error(y_test, y_pred_catboost)
         rmse catboost = np.sqrt(mse catboost)
         r2_catboost = r2_score(y_test, y_pred_catboost)
         mape_catboost = mean_absolute_percentage_error(y_test, y_pred_catboost)
         # Visualize evaluation metrics for CatBoost
         print("CatBoost Evaluation Metrics:")
         print("MAE:", mae_catboost)
         print("MSE:", mse_catboost)
         print("RMSE:", rmse_catboost)
         print("R-squared (R2):", r2_catboost)
```

CatBoost Evaluation Metrics:

MAE: 3.9546272154640456 MSE: 40.80205393405753 RMSE: 6.3876485449700136

R-squared (R2): 0.9993388260536565

Mean Absolute Percentage Error (MAPE): 0.01760047557351702

print("Mean Absolute Percentage Error (MAPE):", mape_catboost)

```
In [82]: # Calculate evaluation metrics for KNN
         mae_knn = mean_absolute_error(y_test, y_pred_knn)
         mse_knn = mean_squared_error(y_test, y_pred_knn)
         rmse_knn = np.sqrt(mse_knn)
         r2 knn = r2 score(y test, y pred knn)
         mape_knn = mean_absolute_percentage_error(y_test, y_pred_knn)
         # Visualize evaluation metrics for KNN
         print("K-Nearest Neighbors (KNN) Evaluation Metrics:")
         print("MAE:", mae_knn)
         print("MSE:", mse_knn)
         print("RMSE:", rmse_knn)
         print("R-squared (R2):", r2_knn)
         print("Mean Absolute Percentage Error (MAPE):", mape_knn)
         K-Nearest Neighbors (KNN) Evaluation Metrics:
         MAE: 47.181036000000006
         MSE: 3448.8318857265003
         RMSE: 58.7267561314815
         R-squared (R2): 0.944113651929236
         Mean Absolute Percentage Error (MAPE): 0.34691360363662793
In [84]: # Calculate evaluation metrics for Lasso Regression
         mae_lasso = mean_absolute_error(y_test, lasso_model.predict(x_test))
         mse_lasso = mean_squared_error(y_test, lasso_model.predict(x_test))
         rmse lasso = np.sqrt(mse lasso)
         r2_lasso = r2_score(y_test, lasso_model.predict(x_test))
         mape_lasso = mean_absolute_percentage_error(y_test, lasso_model.predict(x t
         # Visualize evaluation metrics for Lasso Regression
         print("Lasso Regression Evaluation Metrics:")
         print("MAE:", mae_lasso)
         print("MSE:", mse_lasso)
         print("RMSE:", rmse_lasso)
         print("R-squared (R2):", r2_lasso)
         print("Mean Absolute Percentage Error (MAPE):", mape_lasso)
         Lasso Regression Evaluation Metrics:
         MAE: 0.8553919428444834
         MSE: 1.033261304084367
         RMSE: 1.0164946158659016
         R-squared (R2): 0.9999832565915645
```

Mean Absolute Percentage Error (MAPE): 0.006878252525142297

```
# Calculate evaluation metrics for Ridge Regression
In [88]:
         mae_ridge = mean_absolute_error(y_test, ridge_model.predict(x_test))
         mse_ridge = mean_squared_error(y_test, ridge_model.predict(x_test))
         rmse_ridge = np.sqrt(mse_ridge)
         r2 ridge = r2 score(y test, ridge model.predict(x test))
         mape_ridge = mean_absolute_percentage_error(y_test, ridge_model.predict(x_t
         # Visualize evaluation metrics for Ridge Regression
         print("Ridge Regression Evaluation Metrics:")
         print("MAE:", mae_ridge)
         print("MSE:", mse_ridge)
         print("RMSE:", rmse_ridge)
         print("R-squared (R2):", r2_ridge)
         print("Mean Absolute Percentage Error (MAPE):", mape_ridge)
         Ridge Regression Evaluation Metrics:
         MAE: 0.23688310875410384
         MSE: 0.09603003200073414
         RMSE: 0.30988712783969286
         R-squared (R2): 0.999998443888258
         Mean Absolute Percentage Error (MAPE): 0.0023361201349130153
In [89]: # Calculate evaluation metrics for LightGBM
         mae_lgbm = mean_absolute_error(y_test, y_pred_lgbm)
         mse_lgbm = mean_squared_error(y_test, y_pred_lgbm)
         rmse lgbm = np.sqrt(mse lgbm)
         r2_lgbm = r2_score(y_test, y_pred_lgbm)
         mape_lgbm = mean_absolute_percentage_error(y_test, y_pred_lgbm)
         # Visualize evaluation metrics for LightGBM
         print("LightGBM Evaluation Metrics:")
         print("MAE:", mae_lgbm)
         print("MSE:", mse_lgbm)
         print("RMSE:", rmse_lgbm)
         print("R-squared (R2):", r2_lgbm)
         print("Mean Absolute Percentage Error (MAPE):", mape_lgbm)
         LightGBM Evaluation Metrics:
         MAE: 2.2632124741712465
         MSE: 30.46984162129385
         RMSE: 5.51994942198693
         R-squared (R2): 0.9995062536444423
```

Mean Absolute Percentage Error (MAPE): 0.01166156974797193

```
In [90]: # Calculate evaluation metrics for MLP
    mae_mlp = mean_absolute_error(y_test, y_pred_mlp)
    mse_mlp = mean_squared_error(y_test, y_pred_mlp)
    rmse_mlp = np.sqrt(mse_mlp)
    r2_mlp = r2_score(y_test, y_pred_mlp)
    mape_mlp = mean_absolute_percentage_error(y_test, y_pred_mlp)

# Print the evaluation metrics for MLP
print("MLP Evaluation Metrics:")
print("MAE:", mae_mlp)
print("MSE:", mse_mlp)
print("RMSE:", rmse_mlp)
print("R-squared (R2):", r2_mlp)
print("Mean Absolute Percentage Error (MAPE):", mape_mlp)
```

MLP Evaluation Metrics: MAE: 14.960868503002555 MSE: 336.6331041502919 RMSE: 18.34756398409042

R-squared (R2): 0.9945450530921655

Mean Absolute Percentage Error (MAPE): 0.1148976107717506

PLOTTING FOR REGRESSORS

```
In [91]: # Plot histogram of residuals for XGBoost
plt.figure(figsize=(12, 5))
plt.hist(residuals_xgb, bins=30, edgecolor='k')
plt.title('XGBoost Residuals Histogram')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.savefig('xgb_residuals_histogram.png')
plt.show()
```

```
In [92]:
        # Plot histograms of residuals for SVM
         plt.figure(figsize=(10, 5))
         plt.hist(svm_residuals, bins=30, edgecolor='k')
         plt.title('SVM Residuals Histogram')
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.tight_layout()
         # Save the histogram as an image
         plt.savefig('svm_residuals_histogram.png')
         plt.show()
         # Plot histogram of residuals for RF
         plt.figure(figsize=(12, 6))
         plt.hist(rf_residuals, bins=30, edgecolor='k')
         plt.title('Random Forest Residuals Histogram')
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.savefig('rf_residuals_histogram.png') # Save the histogram as an image
         plt.show()
         # Plot histogram of residuals for CatBoost
         plt.figure(figsize=(12, 5))
         plt.hist(catboost_residuals, bins=30, edgecolor='k')
         plt.title('CatBoost Residuals Histogram')
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.savefig('catboost_residuals_histogram.png')
         plt.show()
         # Plot histogram of residuals for KNN
         plt.figure(figsize=(10, 6))
         plt.hist(knn_residuals, bins=30, edgecolor='k')
         plt.title('KNN Residuals Histogram')
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.savefig('knn residuals histogram.png')
         plt.show()
         # Plot histogram of residuals for Lasso
         plt.figure(figsize=(10, 6))
         plt.hist(lasso_residuals, bins=30, edgecolor='k')
         plt.title('Lasso Residuals Histogram')
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.savefig('lasso_residuals_histogram.png')
         plt.show()
         # Plot histogram of residuals for Ridge Regression
         plt.figure(figsize=(10, 6))
         plt.hist(ridge_residuals, bins=30, edgecolor='k')
         plt.title('Ridge Regression Residuals Histogram')
         plt.xlabel('Residuals')
         plt.ylabel('Frequency')
         plt.savefig('ridge residuals histogram.png')
         plt.show()
         # Plot histogram of residuals for LightGBM (lqbm)
         plt.figure(figsize=(10, 6))
         plt.hist(lgbm_residuals, bins=30, edgecolor='k')
         plt.title('LightGBM Residuals Histogram')
```

```
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.savefig('lgbm_residuals_histogram.png')
plt.show()

# Plot histogram of residuals for MLP
plt.figure(figsize=(10, 6))
plt.hist(mlp_residuals, bins=30, edgecolor='k')
plt.title('MLP Residuals Histogram')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.savefig('mlp_residuals_histogram.png')
plt.show()
```


In [93]: # Print RMSE and MAE for each model and compare their performance
 print("Random Forest - RMSE:", rmse_rf, "MAE:", mae_rf)
 print("Support Vector Machine - RMSE:", rmse_svm, "MAE:", mae_svm)
 print("K-Nearest Neighbors - RMSE:", rmse_knn, "MAE:", mae_knn)
 print("Ridge Regression - RMSE:", rmse_ridge, "MAE:", mae_ridge)
 print("Lasso Regression - RMSE:", rmse_lasso, "MAE:", mae_lasso)
 print("XGBoost - RMSE:", rmse_xgb, "MAE:", mae_xgb)
 print("LightGBM - RMSE:", rmse_lgbm, "MAE:", mae_lgbm)
 print("CatBoost - RMSE:", rmse_catboost, "MAE:", mae_catboost)
 print("Neural Network (MLP) - RMSE:", rmse_mlp, "MAE:", mae_mlp)

Select the model with the Lowest RMSE or MAE as your final model.

Random Forest - RMSE: 1.1625919193200076 MAE: 0.7040475750000175
Support Vector Machine - RMSE: 217.6857489202671 MAE: 165.18607057921415
K-Nearest Neighbors - RMSE: 58.7267561314815 MAE: 47.181036000000006
Ridge Regression - RMSE: 0.30988712783969286 MAE: 0.23688310875410384
Lasso Regression - RMSE: 1.0164946158659016 MAE: 0.8553919428444834
XGBoost - RMSE: 2.2703786018244903 MAE: 1.4131870078277569
LightGBM - RMSE: 5.51994942198693 MAE: 2.2632124741712465
CatBoost - RMSE: 6.3876485449700136 MAE: 3.9546272154640456
Neural Network (MLP) - RMSE: 18.34756398409042 MAE: 14.960868503002555

```
# Create a list of models and their RMSE and MAE values
In [94]:
         models = ['Ridge Regression', 'Random Forest', 'Lasso Regression', 'K-Neare
         rmse_values = [0.297, 1.206, 1.062, 76.373, 3.154, 5.702, 6.192, 12.675, 23
         mae_values = [0.221, 0.720, 0.871, 60.986, 1.756, 2.832, 3.655, 9.828, 178.
         # Rank the models based on RMSE and MAE
         rmse_ranking = sorted(range(len(rmse_values)), key=lambda i: rmse_values[i]
         mae_ranking = sorted(range(len(mae_values)), key=lambda i: mae_values[i])
         # Print the ranked models
         print("Ranked Models based on RMSE:")
         for i, idx in enumerate(rmse_ranking, start=1):
             print(f"{i}. {models[idx]} - RMSE: {rmse_values[idx]:.3f}")
         print("\nRanked Models based on MAE:")
         for i, idx in enumerate(mae_ranking, start=1):
             print(f"{i}. {models[idx]} - MAE: {mae_values[idx]:.3f}")
         Ranked Models based on RMSE:
         1. Ridge Regression - RMSE: 0.297
         2. Lasso Regression - RMSE: 1.062
         3. Random Forest - RMSE: 1.206
```

- 4. XGBoost RMSE: 3.154
- 5. LightGBM RMSE: 5.702
- 6. CatBoost RMSE: 6.192
- 7. Neural Network (MLP) RMSE: 12.675
- 8. K-Nearest Neighbors RMSE: 76.373
- 9. Support Vector Machine RMSE: 236.023

Ranked Models based on MAE:

- 1. Ridge Regression MAE: 0.221
- 2. Random Forest MAE: 0.720
- 3. Lasso Regression MAE: 0.871
- 4. XGBoost MAE: 1.756
- 5. LightGBM MAE: 2.832
- 6. CatBoost MAE: 3.655
- 7. Neural Network (MLP) MAE: 9.828
- 8. K-Nearest Neighbors MAE: 60.986
- 9. Support Vector Machine MAE: 178.053

```
# List of model names
In [95]:
         models = ['Random Forest', 'Support Vector Machine', 'K-Nearest Neighbors',
         # RMSE and MAE values for each model
         rmse_values = [1.206, 236.023, 76.373, 0.297, 1.062, 3.154, 5.702, 6.192, 1
         mae_values = [0.720, 178.053, 60.986, 0.221, 0.871, 1.756, 2.832, 3.655, 9.
         # Create bar plot for RMSE
         plt.figure(figsize=(12, 6))
         plt.barh(models, rmse_values, color='skyblue')
         plt.xlabel('RMSE Values')
         plt.title('Comparison of RMSE Values for Different Models')
         plt.gca().invert_yaxis() # Invert the y-axis to display the best model on
         plt.savefig('Comparison of RMSE Values for Different Models.png')
         plt.show()
         # Create bar plot for MAE
         plt.figure(figsize=(12, 6))
         plt.barh(models, mae_values, color='lightcoral')
         plt.xlabel('MAE Values')
         plt.title('Comparison of MAE Values for Different Models')
         plt.gca().invert_yaxis() # Invert the y-axis to display the best model on
         plt.savefig('Comparison of MAE Values for Different Models.png')
         plt.show()
```


11/29/23. 9:56 AM

In []: