CYN. CAPÍTULO IV: RELACIONES DE ORDEN PRIMER CURSO DE MATEMÁTICAS, 2017-18

José García-Cuerva

Universidad Autónoma de Madrid

14 de marzo de 2017

- RELACIONES BINARIAS
- RELACIONES DE ORDEN
 - Ejemplos de relaciones de orden
 - Orden total
 - Máximo y mínimo
 - Elementos maximales y minimales
 - Cotas superiores e inferiores, supremo e ínfimo
 - Buen orden
- 3 El lema de Zorn
- 4 EL PRINCIPIO DE LA BUENA ORDENACIÓN
- 5 EQUIVALENCIA ENTRE EL LEMA DE ZORN, EL TEOREMA DE ZERMELO Y EL AXIOMA DE ELECCIÓN
 - Prueba del lema de Zorn a partir del axioma de elección

RELACIONES BINARIAS. PROPIEDADES

DEFINICIÓN

Una relación binaria en el conjunto X es una relación de X en X, es decir, un subconjunto \mathcal{R} de $X \times X$. Ponemos $x\mathcal{R}y$ si $(x,y) \in \mathcal{R}$.

PROPIEDADES

Sea \mathcal{R} una relación binaria en X, es decir, $\mathcal{R} \subset X \times X$.

- Se dice que \mathcal{R} es REFLEXIVA si $\forall x \in X, \ x\mathcal{R}x$, o, en otras palabras, si $\mathcal{R} \supset \Delta = \{(x, x) : \ x \in X\}$, la "diagonal" de $X \times X$.
- Se dice que \mathcal{R} es SIMÉTRICA si $x\mathcal{R}y \Rightarrow y\mathcal{R}x$, o, en otras palabras, si $\mathcal{R}^{-1} \subset \mathcal{R}$, que equivale a $\mathcal{R}^{-1} = \mathcal{R}$ $(\mathcal{R}^{-1} \subset \mathcal{R} \Rightarrow \mathcal{R} = (\mathcal{R}^{-1})^{-1} \subset \mathcal{R}^{-1})$
- Se dice que \mathcal{R} es ANTISIMÉTRICA si $x\mathcal{R}y \wedge y\mathcal{R}x \Rightarrow x = y$, es decir, si $\mathcal{R} \cap \mathcal{R}^{-1} \subset \Delta$.
- Se dice que $\mathcal R$ es TRANSITIVA si $x\mathcal Ry \wedge y\mathcal Rz \Rightarrow x\mathcal Rz$, es decir, si $\mathcal R^2 \subset \mathcal R$.

RELACIONES DE ORDEN

DEFINICIÓN

Una relación de orden en el conjunto X es una relación binaria en X que sea REFLEXIVA, ANTISIMÉTRICA y TRANSITIVA.

PROPOSICIÓN

 $\mathcal{R} \subset X \times X$ es una relación de orden $\Leftrightarrow \mathcal{R} \cap \mathcal{R}^{-1} = \Delta \wedge \mathcal{R}^2 = \mathcal{R}$.

DEMOSTRACIÓN

Si \mathcal{R} es una relación de orden, será antisimétrica, luego $\mathcal{R} \cap \mathcal{R}^{-1} \subset \Delta$. Además, como \mathcal{R} es reflexiva, $\Delta \subset \mathcal{R}$ y $\Delta = \Delta^{-1} \subset \mathcal{R}^{-1}$. En definitiva $\Delta \subset \mathcal{R} \cap \mathcal{R}^{-1}$, y tenemos $\mathcal{R} \cap \mathcal{R}^{-1} = \Delta$. Por otro lado, como \mathcal{R} es transitiva, $\mathcal{R}^2 \subset \mathcal{R}$. Pero, como \mathcal{R} es reflexiva, $(x,y) \in \mathcal{R} \Rightarrow (x,x) \in \mathcal{R} \wedge (x,y) \in \mathcal{R} \Rightarrow (x,y) \in \mathcal{R}^2$. Así pues, $\mathcal{R}^2 = \mathcal{R}$. El recíproco es inmediato pues $\mathcal{R} \cap \mathcal{R}^{-1} = \Delta \wedge \mathcal{R}^2 = \mathcal{R} \Rightarrow \Delta \subset \mathcal{R} \wedge \mathcal{R} \cap \mathcal{R}^{-1} \subset \Delta \wedge \mathcal{R}^2 \subset \mathcal{R}$

EJEMPLOS DE RELACIONES DE ORDEN

- **③** Si *U* es un conjunto, consideramos la relación de inclusión en el conjunto $X = \mathcal{P}(U)$, dada por $A\mathcal{R}B \Leftrightarrow A \subset B$, $A, B \in X = \mathcal{P}(U)$.
- ② En $X=\mathbb{R}$, se define el orden habitual partiendo de la descomposición $\mathbb{R}=\mathbb{R}_-\uplus\{0\}\uplus\mathbb{R}_+$, donde \mathbb{R}_+ denota el conjunto de los números reales positivos y $\mathbb{R}_-=-\mathbb{R}_+$ el de los negativos. Se define $a\mathcal{R}b\Leftrightarrow a\leq b\Leftrightarrow b-a\in\mathbb{R}_+\uplus\{0\},\ a,b\in\mathbb{R}$.
- **③** En $X = \mathbb{Z}$ se define la relación de divisibilidad del modo siguiente: $a\mathcal{R}b \Leftrightarrow a|b$ (se dice que "a divide a b") $\Leftrightarrow b = ca$ para algún $c \in \mathbb{Z}$.
- En $X = \mathbb{R}^2$, se define el orden "lexicográfico" u orden del diccionario de la forma siguiente:

$$(x_1, x_2)\mathcal{R}(y_1, y_2) \Leftrightarrow x_1 < y_1 \lor (x_1 = y_1 \land x_2 \le y_2); \ (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$$

⑤ Si (X, \mathcal{R}) es un conjunto ordenado y $A \subset X$, se define la restricción $\mathcal{R}|_A$ de \mathcal{R} a A como $a\mathcal{R}|_A b \Leftrightarrow a\mathcal{R}b, \ a,b \in A$. Desde luego $(A, \mathcal{R}|_A)$ es un conjunto ordenado.

ORDEN TOTAL

DEFINICIÓN

Sea X un conjunto y sea $\mathcal R$ una relación de orden en X. A veces diremos, en este caso, que el par $(X,\mathcal R)$ es un conjunto ordenado. Diremos que $\mathcal R$ es una relación de orden total o lineal y también que $(X,\mathcal R)$ es un conjunto totalmente ordenado o linealmente ordenado si $\forall x,y\in X,\ x\mathcal R y\ \lor\ y\mathcal R x,$ o, en otras palabras, si $\mathcal R\cup\mathcal R^{-1}=X\times X.$

De los 4 ejemplos de relaciones de orden que dimos en la página anterior, sólo el 2º y el 4º son totales. En efecto

- En cuanto haya, al menos, dos elementos distintos $a, b \in U$, la relación de inclusión en $\mathcal{P}(U)$ no es un orden total, ya que $\{a\} \not\subset \{b\}$ y $\{b\} \not\subset \{a\}$
- Tampoco es un orden total la relación de divisibilidad de los enteros (no. 3). Por ejemplo 3 // 5 ∧ 5 // 3.

MÁXIMO Y MÍNIMO

DEFINICIÓN

Sea (X, \mathcal{R}) un conjunto ordenado. Entonces

- Se dice que $a \in X$ es máximo si $\forall x \in X, x \mathcal{R} a$.
- Dado $A \subset X$, se dice que $a \in A$ es máximo de A si $\forall b \in A$, bRa.
- Se dice que $b \in X$ es mínimo si $\forall x \in X, b\mathcal{R}x$.
- Dado $A \subset X$, se dice que $b \in A$ es mínimo de A si $\forall a \in A$, bRa.

Máximo de $A \subset X$ es lo mismo que máximo del conjunto ordenado $(A, \mathcal{R}|_A)$, donde $\mathcal{R}|_A$ es la restricción de \mathcal{R} a A, que es una relación de orden en A. Lo mismo puede decirse del mínimo de $A \subset X$.

PROPOSICIÓN

Si hay máximo, es único. Y lo mismo sucede para el mínimo.

DEMOSTRACIÓN

 $a \text{ máximo} \land a' \text{ máximo} \Rightarrow a' \mathcal{R} a \land a \mathcal{R} a' \Rightarrow a = a'.$

ELEMENTOS MAXIMALES Y MINIMALES

DEFINICIÓN

Sea (X, \mathcal{R}) un conjunto ordenado. Entonces

- Se dice que $a \in X$ es un elemento maximal si $\exists x \in X \ni a \in X \land a \neq x$, en otras palabras, si $a \in X, x \in X \Rightarrow x = a$.
- Se dice que $b \in X$ es un elemento minimal si $\exists x \in X \ni x \mathcal{R}b \land b \neq x$, en otras palabras, si $x\mathcal{R}b, x \in X \Rightarrow x = b$.

PROPOSICIÓN

- Cuando hay máximo, éste es el único elemento maximal.
- Cuando hay mínimo, éste es el único elemento minimal.

DEMOSTRACIÓN

Si a es máximo y $x \in X$, se tiene que $x\mathcal{R}a$. Entonces, $a\mathcal{R}x \Rightarrow x = a$, de modo que a es maximal. Por otro lado, si a' es maximal, se tiene que, por ser a máximo, $a'\mathcal{R}a$ y, entonces, por ser a' maximal, a' = a.

EJEMPLOS

- Sea $X = \mathbb{N}_{30} = \{1, 2, 3, \cdots, 30\}$ con la relación de divisibilidad, es decir: $x\mathcal{R}y \Leftrightarrow x|y$. En el conjunto ordenado (X,\mathcal{R}) tenemos que:
 - No hay máximo.
 - Son maximales 16, 17, 18, · · · , 30, quince elementos en total.
 - Hay mínimo, el 1.
- Sea $X = \{2, 3, 4, 6, 8, 12\}$ también con la relación de divisibilidad. Entonces, en (X, \mathcal{R})
 - No hay ni mínimo ni máximo.
 - Son minimales el 2 y el 3.
 - Son maximales el 8 y el 12.
- § Sea X la colección de todos los subconjuntos PROPIOS de $\{1,2,3\}$ con la relación de inclusión, es decir: $X = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}\}$. En este conjunto ordenado
 - ∅ es el mínimo.
 - No hay máximo. Y
 - {1,2}, {2,3} y {1,3} son los elementos maximales.

COTAS SUPERIORES E INFERIORES, SUPREMO E ÍNFIMO

DEFINICIÓN

Sea (X, \mathcal{R}) un conjunto ordenado y sea $A \subset X$.

- Se dice que $a \in X$ es COTA SUPERIOR de A si $\forall x \in A$, $x \mathcal{R} a$.
- Se dice que $b \in X$ es COTA INFERIOR de A si $\forall x \in A, \ b\mathcal{R}x$.
- Si el conjunto de todas las cotas superiores de A tiene un mínimo, a éste se le llama COTA SUPERIOR MÍNIMA o SUPREMO, que se denota por sup(A) (en inglés l.u.b., o sea, "least upper bound"). Naturalmente, como es el mínimo de un conjunto, si el supremo existe, es único.
- Si el conjunto de todas las cotas inferiores de A tiene un máximo, a éste se le llama COTA INFERIOR MÁXIMA o ÍNFIMO, que se denota por inf(A) (en inglés g.l.b., o sea, "greatest lower bound"). Naturalmente, como es el máximo de un conjunto, si el ínfimo existe, es único.

EJEMPLOS

- Sea $X = \mathcal{P}(U)$ para algún conjunto U. En X consideramos la relación de inclusión. Entonces para $A \subset \mathcal{P}(U), \ A \neq \emptyset$, claramente
 - $sup(A) = \bigcup_{A \in A} A$.
 - $inf(A) = \bigcap_{A \in A}^{A \in A} A$.
 - ¿Que ocurre si $\mathcal{A} = \emptyset$? Desde luego, $sup(\emptyset) = \emptyset$ y $inf(\emptyset) = X$. Parece razonable definir $\bigcup_{A \in \emptyset} A = \emptyset$ y $\bigcap_{A \in \emptyset} A = X$.
- En N con la relación de divisibilidad, cualquier conjunto finito {a₁, a₂, ···, aₙ} tiene supremo e ínfimo. Las cotas superiores son los múltiplos comunes. Siempre hay, al menos, uno: a₁a₂···aₙ. Entre todos hay uno mínimo, el mínimo común múltiplo (m.c.m.). Así pues: sup({a₁, a₂, ···, aₙ}) = m.c.m.(a₁, a₂, ···, aₙ). Las cotas inferiores son los divisores comunes. Siempre hay, al menos, uno que es el 1. Y el conjunto de cotas inferiores tiene siempre un máximo, que es el máximo común divisor (m.c.d.). Así pues: inf({a₁, a₂, ···, aₙ}) = m.c.d.(a₁, a₂, ···, aₙ).

MÁS EJEMPLOS

- En (\mathbb{R}, \leq) , sea A =]0, 1[. El conjunto de las cotas superiores de Aes $[1, \rightarrow [$, que tiene un mínimo que es 1, de modo que sup(A) = 1. El conjunto de las cotas inferiores de A es $] \leftarrow 0$, que tiene un máximo que es 0, con lo que inf(A) = 0. Sabéis (Cálculo I) que si un conjunto $E \neq \emptyset$ de números reales es acotado superiormente, o sea, si tiene alguna cota superior, entonces tiene supremo y si es acotado inferiormente, entonces tiene ínfimo. Esta es una propiedad fundamental de los números reales que se conoce como principio del supremo y equivale a la completitud.
- Sea $(\mathbb{R}^2, \mathcal{R})$, donde \mathcal{R} denota el orden lexicográfico. El conjunto $A = \{(x,y) \in \mathbb{R}^2 : 0 < x < 1 \ \land \ 0 < y < 1\}$ tiene como cotas superiores todos los puntos del conjunto $\{(x,y) \in \mathbb{R}^2 : x \ge 1\}$ Pero este conjunto no tiene mínimo. Así A es un conjunto acotado superiormente que no tiene supremo.

CYN. CAP. IV. 10 MAT-2017-18

BUEN ORDEN

DEFINICIÓN

Sea (X,\mathcal{R}) un conjunto ordendo. Se dice que la relación \mathcal{R} es un buen orden o que (X,\mathcal{R}) es un conjunto bien ordenado si $\forall A\subset X\ni A\neq\emptyset$, A tiene mínimo o, como se dice también, "primer elemento".

PROPOSICIÓN

BUEN ORDEN ⇒ ORDEN TOTAL; pero el recíproco NO ES CIERTO.

DEMOSTRACIÓN

Sea (X,\mathcal{R}) un conjunto bien ordenado. Sean $x,y\in X$. Por ser \mathcal{R} un buen orden, el conjunto $\{x,y\}$ ha de tener mínimo. Si es x, será $x\mathcal{R}y$ y si es y, será $y\mathcal{R}x$. En definitiva, (X,\mathcal{R}) es totalmente ordenado. Para ver que el recíproco no es cierto, podemos considerar el orden usual de los enteros. Este orden es total; pero no es un buen orden. Por ejemplo, el conjunto total \mathbb{Z} carece de primer elemento.

EL LEMA DE ZORN

DEFINICIÓN

Sea (X, \mathcal{R}) un conjunto ordenado.

- Se llama CADENA a cualquier subconjunto ordenado $(A, \mathcal{R}_A), \ A \subset X$, tal que la restricción \mathcal{R}_A del orden \mathcal{R} a A es un ORDEN TOTAL. Así que "cadena" será una forma rápida de decir "subconjunto totalmente ordenado".
- Diremos que el conjunto ordenado (X, \mathcal{R}) es INDUCTIVO si en X toda cadena tiene alguna cota superior.

LEMA DE ZORN

Sea $X \neq \emptyset$ un CONJUNTO ORDENADO INDUCTIVO. Entonces, X tiene algún ELEMENTO MAXIMAL.

Al final de este capítulo veremos que el lema de Zorn es equivalente al axioma de elección. Pero antes, vamos a dar algunos ejemplos de la utilización del Lema de Zorn.

APLICACIONES DEL LEMA DE ZORN I

PROPOSICIÓN

Si S es un conjunto que tiene, al menos, dos elementos, entonces $\exists f: S \to S$ biyectiva tal que $f(x) \neq x \ \forall x \in S$.

DEMOSTRACIÓN

Sea $X = \{(A, f) \ni \emptyset \neq A \subset S \land f : A \rightarrow A \text{ biyectiva } \ni f(x) \neq x \forall x \in A\}.$ En X definimos la relación $(A, f) \prec (B, g) \Leftrightarrow A \subset B \land g$ extiende f. (X, \prec) es ordenado inductivo. En efecto, si $\{(A_\alpha, f_\alpha)\}_\alpha$ es una cadena, se obtiene una cota superior considerando $A = \bigcup A_{\alpha}$ y $h : A \rightarrow A$ dada por $h(a) = f_{\alpha}(a)$ si $a \in A_{\alpha}$. ¿Por qué está h bien definida? Aplicando el Lema de Zorn, se obtiene que hay algún elemento maximal $(A, f) \in X$. $S \setminus A$ no puede tener más de un elemento, porque si disponemos de dos elementos distintos para añadir a A obteniendo B, es fácil encontrar $(B,g) \in X \ni (A,f) \prec (B,g)$. Así A = S o $S = A \cup \{a\}$ y, en ambos casos, tenemos $f: S \rightarrow S$ como queríamos.

APLICACIONES DEL LEMA DE ZORN II

PROPOSICIÓN

Sea E espacio vectorial sobre \mathbb{K} . Sea $\mathcal{Y}\subset\mathcal{P}(E)$ la colección formada por todos los conjuntos de elementos linealmente independientes. Entonces, para $S\in\mathcal{Y},$

S es base $\Leftrightarrow S$ es maximal en el conjunto ordenado (\mathcal{Y}, \subset) .

DEMOSTRACIÓN

Si S es base y $x \in E \setminus S$, como $x = \sum_{j=1}^n \lambda_j s_j, \ \lambda_j \in \mathbb{K}, s_j \in S, \ S \cup \{x\}$ ya no es un conjunto de elementos linealmente independientes. Recíprocamente, si S es maximal y $x \in E \setminus S, \ S \cup \{x\}$ ya no es un conjunto de elementos linealmente independientes y eso conduce a una expresión de x como combinación lineal de elementos de S, de modo que S es un sistema de generadores linealmente independientes, es decir, una base.

En el capítulo anterior vimos que todo espacio vectorial finitamente generado tiene base. Ahora extendemos el resultado a cualquier espacio vectorial con ayuda del Lema de Zorn.

TEOREMA

Todo espacio vectorial tiene alguna base.

DEMOSTRACIÓN

Sea E un \mathbb{K} -espacio vectorial. Hay que demostrar que el conjunto \mathcal{Y} formado por todos los conjuntos de elementos linealmente independientes de E tiene un elemento maximal respecto a la relación de orden de inclusión. El lema de Zorn nos asegura la existencia de dicho elemento maximal si probamos que (\mathcal{Y}, \subset) es un conjunto no vacío, ordenado inductivo. Desde luego $\mathcal{Y} \neq \emptyset$, ya que para cualquier $x \in E \setminus \{0\}, \{x\} \in \mathcal{Y}$. Para ver que (\mathcal{Y}, \subset) es inductivo, consideramos una cadena $\{S_{\alpha}\}_{\alpha} \subset \mathcal{Y}$ y hemos de ver que dicha cadena tiene alguna cota superior. Todo lo que tenemos que hacer es darnos cuenta de que $S = \bigcup S_{\alpha} \in \mathcal{Y}$. Pero esto es consecuencia de ser $\{S_{\alpha}\}_{\alpha}$ cadena.

EL PRINCIPIO DE LA BUENA ORDENACIÓN DE ZERMELO

TEOREMA DE ZERMELO

Todo conjunto $X \neq \emptyset$ admite un buen orden.

DEMOSTRACIÓN

Dado $X \neq \emptyset$, sea $\mathcal{X} = \{(A, \mathcal{R}) : \emptyset \neq A \subset X \land \mathcal{R} \text{ buen orden en } A\}.$ $\mathcal{X} \neq \emptyset$ ¿Por qué? Definimos para $(A, \mathcal{R}), (B, \mathcal{S}) \in \mathcal{X}$ $(A, \mathcal{R}) \prec (B, \mathcal{S}) \Leftrightarrow A \subset B \land \mathcal{S}|_A = \mathcal{R}, \land (x \in A \land y \in B \setminus A) \Rightarrow x\mathcal{S}y. \prec es$ un orden en $\mathcal{X}(fácil)$. Veamos que (\mathcal{X}, \prec) es inductivo. Sea $\mathcal{K} = \{(A_{\alpha}, \mathcal{R}_{\alpha})\}_{\alpha} \subset \mathcal{X}$ una cadena. Sea $A = \bigcup A_{\alpha}$. Dados $a, a' \in A, \exists \alpha \ni a, a' \in A_{\alpha}$. Definimos $a\mathcal{R}a' \Leftrightarrow a\mathcal{R}_{\alpha}a'$. $i\mathcal{R}$ está bien definida y es un orden en A por ser \mathcal{K} cadena! Queda ver que es un buen orden. $\emptyset \neq B \subset A \Rightarrow \exists \alpha \ni B \cap A_{\alpha} \neq \emptyset$. Sea b el mínimo de $B \cap A_{\alpha}$ en \mathcal{R}_{α} . Entonces b es el mínimo de B en (A, \mathcal{R}) ¿Por qué? Desde luego (A, \mathcal{R}) es cota superior de \mathcal{K} . El lema de Zorn garantiza que existe un elemento maximal (C, \mathcal{U}) en \mathcal{X} y, claramente, C = X.

L. de Zorn⇔ Teor. de Zermelo⇔ A. de elección

RECORDEMOS EL AXIOMA DE ELECCIÓN

Para cada conjunto $X \neq \emptyset$ existe una FUNCIÓN DE ELECCIÓN $\varphi : \mathcal{P}(X) \setminus \{\emptyset\} \to X$, tal que $\forall A \in \mathcal{P}(X) \setminus \{\emptyset\}, \ \varphi(A) \in A$.

TEOREMA

Son equivalentes: El Lema de Zorn (ZO), el Principio de la buena ordenación (Teor. de Zermelo)(BO) y el Axioma de elección (AE).

DEMOSTRACIÓN

Hemos visto (ZO) \Rightarrow (BO). Veamos (BO) \Rightarrow (AE). Sea $X \neq \emptyset$. Suponiendo(BO), construimos una función de elección haciendo

$$\begin{array}{ccc} \mathcal{P}(X) \setminus \{\emptyset\} & \stackrel{\varphi}{\rightarrow} & X \\ A & \mapsto & \varphi(A) = \min(A). \end{array}$$

Queda por ver (AE) \Rightarrow (ZO), que es la parte más delicada.

A. DE ELECCIÓN \Rightarrow L. DE ZORN

DEFINICIÓN

Sea X un conjunto y sea $\mathcal{F}\subset\mathcal{P}(X)$ una familia no vacía de subconjuntos de X. Dada $\psi:\mathcal{P}(X)\to X$, se dice que \mathcal{F} es una torre para ψ (ψ -torre), si se cumplen las tres condiciones siguientes:

- $\emptyset \in \mathcal{F}$,
- Si $\{A_{\alpha} \ : \ \alpha \in J\} \subset \mathcal{F}$ es una cadena, entonces $\bigcup_{\alpha \in J} A_{\alpha} \in \mathcal{F}$ y
- Si $A \in \mathcal{F}$, entonces $A \cup \{\psi(A)\} \in \mathcal{F}$.

PROPOSICIÓN

$$\{\mathcal{F}_{\beta}\}_{\beta\in I}$$
 familia de ψ -torres, $\Rightarrow \bigcap_{\beta\in I}\mathcal{F}_{\beta}$ es ψ -torre.

COROLARIO

Toda ψ —torre contiene una (sub-) ψ —torre mínima, la intersección de todas las (sub-) ψ —torres.

LEMA BÁSICO

Si \mathcal{F} es una ψ -torre, entonces existe algún $A \in \mathcal{F}$ tal que $\psi(A) \in A$.

```
Lo demostramos después. Ahora lo suponemos y probamos (ZO). Sea (X, \prec) ordenado inductivo.
Veamos (AE) ⇒ \existsel. maximal en X. Sea \mathcal{F} = \{A \text{ cadena de } X\} \cup \{\emptyset\}.
\forall A, cadena, sea a_A cota superior (!aquí usamos (AE)!)y sea
T_A = \{x \in X : (a_A \underset{\perp}{\prec} x)\}. Veremos (por contradicción) que
\exists A \text{ cadena } \ni T_A = \emptyset. Para dicha A, a_A es maximal en X. Si
\forall A, T_A \neq \emptyset, \exists c : \mathcal{P}(X) \rightarrow X \ni \forall A \text{ cadena}, c(A) \in T_A. \text{ (jusamos (AE))}
otra vez!) \mathcal{F} es una c—torre (\emptyset \in \mathcal{F}. Si \{A_{\alpha}\}_{\alpha \in J} es cadena en \mathcal{F},
vemos que \bigcup A_{\alpha} \in \mathcal{F} pues si a, b \in \bigcup A_{\alpha},
\exists \alpha, \beta \in J, \ni a \in A_{\alpha}, b \in A_{\beta}. \{A_{\alpha}\}_{\alpha \in J} \text{ cadena de } \mathcal{F}, \Rightarrow, \text{ digamos,}
A_{\alpha} \supset A_{\beta}. Así a, b \in A_{\alpha} y a \prec b \lor b \prec a con lo que \bigcup A_{\alpha} \in \mathcal{F}.
Finalmente, si A \in \mathcal{F} veamos que A \cup \{c(A)\} \in \mathcal{F}. Pero
a \in A \Rightarrow a \prec a_A \prec c(A).) Ahora, usando el lema, \exists A \in \mathcal{F} tal que
c(A) \in A. Como a_A es cota superior de A, c(A) \prec a_A. Pero a_A \prec c(A)
Esta contradicción demuestra que algún T_A = \emptyset, c. q. d..
```

Demostración del Lema básico

El lema básico dice que si \mathcal{F} es una ψ -torre, entonces $\exists A \in \mathcal{F} \ni \psi(A) \in A$. Sabemos que \mathcal{F} tiene una (sub)- ψ -torre mínima \mathcal{M} . Lo que vamos a ver es que

PROPOSICIÓN

 \mathcal{M} es una cadena respecto a la inclusión.

Veamos por qué, una vez que hayamos probado la Proposición, el lema básico se sigue fácilmente. Basta tomar $A = \bigcup\limits_{M \in \mathcal{M}} M$. Por ser \mathcal{M} ψ —torre y cadena, la segunda propiedad de las torres nos da que $A \in \mathcal{M}$. Además, la tercera propiedad de las torres implica que $A \cup \{\psi(A)\} \in \mathcal{M}$. Pero entonces, $A \cup \{\psi(A)\} \subset A$, de donde $\psi(A) \in A$, que es lo que queríamos demostrar. Ahora sólo queda probar la Proposición.

DEMOSTRACIÓN DE LA PROPOSICIÓN

DEFINICIÓN

 $M \in \mathcal{M}$ se llamará conjunto medio si $\forall M' \in \mathcal{M}, M' \subset M \lor M \subset M'$.

 \mathcal{M} cadena $\Leftrightarrow \forall M \in \mathcal{M}$ es conj. medio. Probamos esto en dos pasos.

PRIMER PASO

 $M \in \mathcal{M}$ conjunto medio $\Rightarrow \forall M' \in \mathcal{M}, M' \subset M \lor M \cup \{\psi(M)\} \subset M'$.

DEMOSTRACIÓN

Sea $\mathcal{G}_M = \{M' \in \mathcal{M} \ni M' \subset M \lor M \cup \{\psi(M)\} \subset M'\}$. Veremos que \mathcal{G}_M es ψ -torre. Pero $\mathcal{G}_M \subset \mathcal{M}$ y \mathcal{M} es mínima. Así pues, $\mathcal{G}_M = \mathcal{M}$ y habríamos terminado. $\emptyset \in \mathcal{G}_M$ pues $\emptyset \subset M$. Si $\{M_\alpha\}_\alpha \subset \mathcal{G}_M$ es una cadena, $\forall \alpha, M_{\alpha} \subset M \vee \exists \alpha \ni M \cup \{\psi(M)\} \subset M_{\alpha}$. Así pues $\bigcup M_{\alpha} \subset M \vee M \cup \{\psi(M)\} \subset \bigcup M_{\alpha}$, e. d., $\bigcup M_{\alpha} \in \mathcal{G}_{M}$. Finalmente, sea $M' \in \mathcal{G}_M$. Si $M \cup \{\psi(M)\} \subset M'$, entonces $M \cup \{\psi(M)\} \subset M' \cup \{\psi(M')\}$. En caso contrario será $M' \subset M$. Como M es conj. medio, $M' \cup \{\psi(M')\} \subset M \vee M \subset M' \cup \{\psi(M')\}$. En el primer caso, ya tendríamos que M' $cup\{\psi(M')\}\in \mathcal{G}_M$. Veamos que pasa en el segundo caso. Tenemos $M' \subset M \subset M' \cup \{\psi(M')\}$. Se sigue que, o bien es M = M' o bien $M = M' \cup \{\psi(M')\}$. Si se da la primera alternativa, resulta $M \cup \{\psi(M)\} \subset M' \cup \{\psi(M')\}$ y si se da la segunda, $M' \cup \{\psi(M')\} \subset M$. En todo caso $M' \cup \{\psi(M')\} \in \mathcal{G}_M$. Esto termina la demostración de que \mathcal{G}_M es ψ -torre y el paso I está completo.

PASO II

Cada $M \in \mathcal{M}$ es un elemento medio.

DEMOSTRACIÓN

Para demostrar II consideramos $\mathcal{G}=\{M\in\mathcal{M}:M \text{ es medio}\}.$ Probaremos que \mathcal{G} es $\psi-$ torre y así tendremos que $\mathcal{G}=\mathcal{M},$ lo que completará la demostración.

Desde luego, $\emptyset \in \mathcal{G}$. Sea $\{M_{\alpha}\}_{\alpha}$ una cadena en \mathcal{G} . Si $M \in \mathcal{M}$, como cada M_{α} es medio, o bien $\forall \alpha, M_{\alpha} \subset M$, o bien $\exists \alpha$ tal que $M \subset M_{\alpha}$. Entonces. o bien $\bigcup M_{\alpha} \subset M$, o bien $M \subset \bigcup M_{\alpha}$. Así pues, $\bigcup M_{\alpha} \in \mathcal{G}$.

Finalmente, sea $M \in \mathcal{G}$. Hemos de ver que $M \cup \{\psi(M)\} \in \mathcal{G}$, o sea, que $M \cup \{\psi(M)\}$ es medio. Tomemos $M' \in \mathcal{M}$. Como M es medio, el paso I nos dice que, o bien $M' \subset M$, (y, por lo tanto, $M' \subset M \cup \{\psi(M)\}$) o bien $M \cup \{\psi(M)\} \subset M'$. Así queda visto que $M \cup \{\psi(M)\}$ es medio.