华东师范大学期中考试试卷 2019 —2020 学年第一学期

课程名称	你 :	操作系统							
学生姓名	宫:					学	号:		
专业	业: 年级/班级:								
课程性质:公共必修、公共选修、 <u>专业必修</u> 、专业选修									
	1 1	[11	四	五	六	七	八	总分	阅卷人签名

一、判断题(20分,每小题4分)

判断下列每句话是否正确, 如错误请说明理由。

1. 时间片轮转调度算法、短进程优先调度算法、先来先服务调度算法,及高响应比优先调度算法都没有综合考虑进程等待时间和执行时间。 (X)

答案: 错。高响应比优先调度算法综合考虑进程等待时间和执行时间

- 2. 多级反馈队列的调度中就绪队列按时间片的大小划分。 (对)
- 2. 多级反馈队列中,进程可以在不同队列中移动(√)
- 3. 在生产者-消费者问题中,生产者进程和消费者进程只要解决互斥访问的问题即可。

答案:错。当 buffer 为空时,只有等待生成者进程完成一个产品生成后,消费者才可以 消费。因此,还要解决进程间同步的问题。

4. 进程执行的相对速度与资源无关。(X)

答案:错。 进程执行的相对速度与资源有关,例如一个进程执行时需要的资源不能满足要求时,只好等待该资源。

5. 在多处理器系统中,通过关中断的方式可以解决进程间互斥访问的问题。 答案: 错。在多处理器系统中,关中断不能保重临界区的互斥访问。 5.在微内核(micro-kernel)结构的操作系统中,虚拟内存(virtual memory)管理是在微内 核内部的。 错。只有 CPU 调度和进程间通信是必须在微内核内部。 二、不定项选择题(20分,每小题4分) 每题有一个或多个答案, 答错、少选、多选均不给分。 1. 当 CPU 执行操作系统代码时, 处理器处于 (D) A. 执行态 B. 用户态 C. 就绪态 D. 内核态 2. UNIX 操作系统是典型的 (**B**) A. 多道批处理系统 B. 分时系统 C. 实时系统 D. 分布式系统 3. 以关于线程,以下说法正确的是 (A, B, C) A. 用户态线程(无核心态线程或LWP)阻塞,可能会阻塞线程 B. 多处理器环境下,线程间同步不能使用关中断实现 C. 线程控制块中包含 CPU 寄存器状态 D. 在支持核心态线程的系统中, CPU 调度的单位仍然是进程 4. 一个正在运行的进程, 当所分配的时间片用完后, 将其挂在(C)。 A. 等待队列 B. 运行队列 C. 就绪队列 D. 任意一个队列 5. 若 P、V 操作的信号量 S 初值为 2,当前值为-1,则表示有 (**B**)等

5. 若 P、V 操作的信号量 S 初值为 2, 当前值为 - 1, 则表示有 (**B**)等 待进程。

A. 0 个 B. 1 个 C. 2 个 D. 3 个

三、辨析题(20分,每小题5分)

分别解释以下每组的两个名词, 并列举它们的区别和联系

- 1. 进程和管程
- 2. 多级反馈队列调度与 FCFS
- 3. 死锁 (deadlock) 与饥饿 (starvation)

死锁: 多个进程循环等待对方,都无法继续执行

饥饿:某个或某些进程由于无法得到资源长时间无法执行

死锁必然发生饥饿,但是饥饿不一定发生死锁

4. 互斥量和信号量

【】参考】1) 互斥量用于线程的互斥,信号量用于线程的同步。

这是互斥量和信号量的根本区别,也就是互斥和同步之间的区别。

互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无 法限制访问者对资源的访问顺序,即访问是无序的。

同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。 在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源

2) 互斥量值只能为 0/1, 信号量值可以为非负整数。

也就是说,一个互斥量只能用于一个资源的互斥访问,它不能实现多个资源的多线程互斥问题。信号量可以实现多个同类资源的多线程互斥和同步。当信号量为单值信号量是,也可以完成一个资源的互斥访问。

3) 互斥量的加锁和解锁必须由同一线程分别对应使用,信号量可以由一个线程释放,另一个线程得到。

四、综合题 (40分)

1. 四个进程需要运行的时间(单位:毫秒)和到达顺序如下:(10分)

进程	需要 CPU 时间₽	优先级₽
P1	9	3
P2	2	1
Р3	3	2
P4	2	4

- a) 请利用甘特图展示四个进程分别在 FCFS、SJF、RR 和非抢占优先级四种调度算法下的执行过程。
- b) 请计算每个进程在 a) 中提到的四种调度算法下的等待时间。
- c) 请问 a) 中哪种调度算法使得平均等待时间最少?

<mark>进程</mark> ↩	FCFS.	SJF₽	<mark>RR</mark> ₽	<mark>优先级调度</mark> ₽
<mark>P1</mark> ₽	<mark>0</mark> ₽	<mark>7</mark> ₽	<mark>6</mark> ₽	<mark>5</mark> .
<mark>P2</mark> ₽	<mark>9</mark> ₽	<mark>0</mark> ₽	<mark>4</mark> ₽	<mark>0</mark> ₽
P3₽	<mark>11</mark> ₽	<mark>4</mark> ₽	<mark>7</mark> ₽	<mark>2</mark> ↔
<mark>P4</mark> ₽	<mark>14</mark> ₽	<mark>2</mark> ₽	<mark>6</mark> ₽	<mark>14</mark> ₽
<mark>平均</mark> ₽	<mark>8.5</mark> ₽	<mark>3.25</mark> ₽	<mark>5.6</mark> ₽	<mark>5.2</mark> ₽

(c) SJF 调度算法使得平均等待时间最少。

2. 请举例详细说明什么是进程之间的同步和互斥, 为什么中断不适合在多处理器系统中 实现原语的同步?(10分)

参考答案:

互斥:是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无 法限制访问者对资源的访问顺序,即访问是无序的。

同步:是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。 在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源

在实际的多道程序系统中,这种连续循环浪费了 CPU 时间。操作中信号量整数值的修改应 当不可被分割地执行,且不能被中断,运行在处理器上的是内核级线程 而用户级程序所对 应的内核线程是需要进行调度的,所以不确保禁止中断实现同步原语的方法有效。

3. "生产者-消费者"问题演变 2 (既有同步,也有互斥):一个缓冲区,多个生产者,多个消费者,生产者不断地生产,消费者不断地消费。只有缓冲区为空时生产者才能放产品,只有缓冲区有数据,消费者才能取产品。用 PV 操作写出相应的代码段。(10分)

答案:缓冲区变成临界资源,不允许多个进程同时操作缓冲区,既不允许多个生产者同时放产品,也不允许多个消费者同时取产品。那么需要增加信号量mutex实现对缓冲区的互斥访问,初值为1.

full 和 empty 范围分别变成[-n,1]和[-m,1], 其中 n 是消费者进程数量, m 是生产者进程数量。

```
Semaphore mutex=1,empty=1,full=0;
main()
{
// begin
Producer();
```

```
Consumer();
  end
Producer()
   While(true)
       wait(empty);
        wait(mutex)
        putdata;
        signal (mutex)
        signal(full);
}
Consumer()
   While(true)
        wait(full);
        wait(mutex)
      getdata;
        signal (mutex)
        signal(empty);
```

4. 举例说明什么是多级反馈队列调度算法,其有哪些优点,根据例子具体详细说明。(10分)

参考答案:多级反馈队列调度算法是一种性能较好的作业低级调度策略,能够满足各类用户的需要。对于分时交互型短作业,系统通常可在第一队列(高优先级队列)规定的时间片内让其完成工作,使终端型用户都感到满意;对短的批处理作业,通常,只需在第一或第一、第二队列(中优先级队列)中各执行一个时间片就能完成工作,周转时间仍然很短;对长的批处理作业,它将依次在第一、第二、……,各个队列中获得时间片并运行,决不会出现得不到处理的情况。此系统模拟了多级反馈队列调度算法及其实现。