# Numerik 1

Prof. Schaedle

April 27, 2019

# I Numerische Integration

# 1 Einführung

### Problem 1.1.

Gegeben  $f:[a,b]\to\mathbb{N}$  mit  $a,b\in\mathbb{R}$ . Berechne  $\int_a^b f(x)dx$ 

# Beispiel 1.2.

1. Archimedes (282-212 v.Chr.): Fläche unter einer Parabel



 $A_{Parabel} = A_{Trapez} + \frac{4}{3}A_{Dreieck}$ 

2. Leibniz + Newton ( 1670):

$$\int_{a}^{b} f(x)dx = F(b) - F(a),$$

wobei  $\frac{d}{dx}F(x) = f(x)$ 

3. Riemann ( 1850):

$$\int_{a}^{b} f(x)dx = \lim_{|\Delta| \to \infty} \sum_{j=1}^{n} f(\xi_{j})(x_{j} - x_{j-1}),$$

wobei  $\Delta = (x_0, ..., x_n)$  Gitter Zerlegung von [a, b],  $a = x_0 < ... < x_n = b$ ,  $\xi_j \in [x_{j-1}, x_j]$  und  $|\Delta| := \max_{j=1,...n} |x_j - x_{j-1}|$ . Das Riemannintegral existiert, falls:

$$\forall \varepsilon > 0 \exists \delta > 0 : |\Delta| < \delta \Rightarrow |\int_a^b f(X) dx - \sum_{j=1}^n f(\xi_j) (x_j - x_{j-1})| < \varepsilon$$

# Bemerkung 1.3 (Approximation von Integralen).

1. (linke) Rechtecksregel:

$$\int_{x_{j-1}}^{x_{j-1}+h} f(x)dx \approx hf(x_{j-1})$$

$$\int_{a}^{b} f(x)dx = \sum_{j=1}^{n} \int_{x_{j-1}}^{x_{j}} f(x)dx \approx \sum_{j=1}^{n} f(x_{j-1})(x_{j} - x_{j-1})$$

2. Mittelpunktsregel:

$$\int_{x_j}^{x_j+h} f(x)dx \approx f\left(\frac{x_j+x_j+h}{2}\right)h$$

$$\int_a^b f(x)dx \approx \sum_{j=1}^n f\left(\frac{x_{j-1}+x_j}{2}\right)(x_j-x_{j-1})$$

Da mit Hilfe der Transformationsformel sich jedes Integral  $\int_{x_{j-1}}^{x_j}$  auf ein Integral  $\int_a^b$  transformieren lässt, betrachten wir ohne Einschränkungen Integrale von 0 bis 1. Nutze dazu die Abb.  $[a,b] \to [x_{j-1},x_j], t \mapsto x_{j-1} + t(x_j - x_{j-1}).$ 

$$\int_{x_{j-1}}^{x_j} f(x)dx = \int_0^1 \underbrace{f(x_{j-1} + t(x_j - x_{j-1}))}_{:=g_{j-1}(t)} (x_j - x_{j-1})dt = \int_0^1 g_{j-1}(t)(x_j - x_{j-1})dt$$

# Definition 1.4 (Quadraturformel).

Eine s-stufige Quadraturformel zur Approximation von  $\int_0^1 g(t)dt$  mit Knoten  $c_i$  und Gewichten  $b_i$  für i = 1, ...s ist gegeben durch

$$\sum_{i=1}^{s} b_i g(c_i) \left( \approx \int_0^1 g(t) dt \right)$$

#### Beispiel 1.5.

1. Rechtecksregel:  $s = 1, b_1 = 1, c_1 = 0$ 

$$\int_0^1 g(t) \approx b_1 g(c_1) = g(0)$$

2. Mittelpunktsregel:  $s = 1, b_1 = 1, c_1 = \frac{1}{2}$ 

$$\int_0^1 g(t) \approx g(\frac{1}{2})$$

3. Trapezregel:  $s = 2, b_1 = b_2 = \frac{1}{2}, c_1 = 0, c_2 = 1$ 

$$\int_0^1 g(t) \approx \frac{1}{2}g(0) + \frac{1}{2}g(1)$$

4. Simpsonregel:  $s = 3, b_1 = \frac{1}{6}, b_2 = \frac{2}{3}, b_3 = \frac{1}{6}, c_1 = 0, c_2 = \frac{1}{2}, c_3 = 1$ 

$$\int_{0}^{1} g(t) \approx \frac{1}{6} \left( g(0) + 4g\left(\frac{1}{2}\right) + g(1) \right)$$

**Herleitung:** Man legt eine Parabel p durch die Punkte  $(0, g(0)), (\frac{1}{2}, g(\frac{1}{2})), (1, g(1))$  und integriert p von 0 bis 1.

$$p(t) = g(0)(1-t)2(\frac{1}{2}-t) + g(\frac{1}{2})(1-t)4t + g(1)(\frac{1}{2}-t)2t$$

$$\Rightarrow \int_0^1 p(t)dt = \frac{1}{6}g(0) + \frac{2}{3}g(\frac{1}{2}) + \frac{1}{6}g(1)$$

5. "pulcherrima et utilissima regula" von Newton:

$$\int_0^1 g(t)dt \approx \frac{1}{8} \left( g(0) + 3g(\frac{1}{3}) + 3g(\frac{2}{3}) + g(1) \right)$$

Bemerkung 1.6 (Monte-Carlo Integration).

1. Eindimensionale Monte-Carlo Integration: Sei  $a, b \in \mathbb{R}$ , a < b. Wählt man N unabhängige gleichverteilte Punkte  $x_i$  in [a, b] so gilt die Approximation:

$$\int_{a}^{b} f(x)dx \approx \frac{1}{N} \sum_{j=1}^{N} (b-a)f(x_{j})$$

Nach dem Gesetz der großen Zahlen konvergiert dieser Ausdruck, falls

$$\int_{a}^{b} |f(x)| dx < \infty, \int_{a}^{b} f^{2}(x) dx < \infty$$

2. Mehrdimensionale Monte-Carlo Integration: Sei  $W = \bigotimes_{i=1}^{d} [a_i, b_i]$  ein d-dimensionaler Quader. Wählt man in W unabh. gleichvert. Zufallsvektoren  $x_i$  in W, so ist

$$\int_{W} f(x)dx \approx \frac{1}{N} Vol(W) \sum_{i=1}^{N} f(x_i),$$

wobei  $f: \mathbb{R}^d \to \mathbb{R}$ .

**Achtung:** Dieses gewöhnliche MC-Verfahren konvergiert sehr langsam. Verbesserungen sind z.B.: Importance sampling, Control variates, Antithetic variates und statified sampling.

# 2 Ordnung von Quadraturformeln

### Definition 2.1.

Eine Quadraturformel (QF) mit Gewichten und Knoten  $(b_i, c_i)_{i=1}^s$  hat **Ordnung p**, falls sie exakt ist für alle Polynome von  $Grad \leq p-1$ .  $\mathcal{P}$ : Menge aller Polynome

$$\left\{ \sum_{i=0}^{n} a_i * X^i, a_i \in \mathbb{R}(\mathbb{C}) \right\}$$

deg(q): Grad des Polynoms

#### Satz 2.2.

Ein QF  $(b_i, c_i)_{i=1}^s$  für [0, 1] hat Ordnung p genau dann, wenn

$$\sum_{i=1}^{s} b_i c_i^{q-1} = \frac{1}{q}$$

 $f\ddot{u}r \ q = 1, ..., p$ 

Beweis.

"  $\Rightarrow$  "

QF hat Ordnung p $\Rightarrow$ QF ist exakt für  $g(t)=t^{q-1}$  für q=1,..,p auf [0,1]  $\Rightarrow$ 

$$\sum b_i c_i^{q-1} = \int_0^1 t^{q-1} dt = \left[ \frac{t^q}{q} \right]_{t=0}^1 = \frac{1}{q}$$

 $"\Leftarrow"$ 

Jedes Polynom von Grad p-1 lässt sich als Linearkombination von  $1, t, t^2, ..., t^{p-1}$ . Die Behauptung folgt aus der Linearität in g von

$$\int_0^1 g(t)dt$$

und

$$\int_0^1 g(t)dt$$

$$\sum_{i=1}^s b_i g(c_i)$$

Beispiel 2.3.

1. Rechtecksregel: p = 1

2. Mittelpunktsregel: p=2

3. Trapezregel: p=2

4. Simpsonregel:  $p \geq 3$  nach Konstruktion q = 4:  $1/6 * 0^3 + 4/6 * (1/2)^3 + 1/6 * 1^3 = 1/4 = 1/4$ q = 5:  $1/6 * 0^4 + 4/6 * (1/2)^4 + 1/6 * 1^4 = 5/24 \neq 1/5$ Damit ist die Ordnung 4!

5. "pulcherina et utilissima": Übung

Bemerkung 2.4.

Zu vergebenen paarweise verschiedenen Knoten  $c_1, ..., c_s$  lässt sich aus (\*) für p = s ein lineares Gleichungssystem für die Gewichte  $b_1, ..., b_s$  aufstellen.

$$\begin{bmatrix}
1 & 1 & \dots & 1 \\
c_1 & c_2 & \dots & c_s \\
\dots & \dots & \dots & \dots \\
c_1^{s-1} & c_2^{s-1} & \dots & c_s^{s-1}
\end{bmatrix} * \begin{bmatrix}
b_1 \\
b_2 \\
\dots \\
b_s
\end{bmatrix} = \begin{bmatrix}
1 \\
1/2 \\
\dots \\
1/s
\end{bmatrix}$$

Falls die Vandermonde-Matrix V invertierbar ist, so lassen sich die Gewichte  $b_1, ..., b_s$  bestimmen, sodass die QF  $(b_i, c_i)_{i=1}^s$  mindestens Ordnung s hat.

# Definition 2.5.

Eine QF heißt symmetrisch, falls für i = 1, ..., s

1. 
$$c_i = 1 - c_{s+1-i}$$

2. 
$$b_i = b_{s+1-i}$$

### Beispiel 2.6.

MP, TP, Simpson,...

#### Satz 2.7.

Die maximal erreichbare Ordnung einer symmetrischen QF ist gerade.

Beweis. Sei die QF  $(b_i, c_i)_{i=1}^s$  exakt for Polynome vom Grad  $\leq 2m-2$  (für  $m \in \mathbb{N}$ ), (dann ist die Ordnung  $\geq 2m - 1$ ).

$$\forall g \in \mathcal{P} : deg(g) \leq 2m - 2 \Rightarrow \sum_{i=1}^{s} b_i g(c_i) = \int_0^1 g(t) dt$$

Sei  $f \in \mathcal{P}$  mit deg(f) = 2m - 1.

Wir zeigen QF ist exakt für f.

$$f(t) = ct^{2m-1} + g(t)$$

für  $g \in \mathcal{P}$  mit  $deg(g) \leq 2m - 2$  mit  $c \neq 0$ . Trick:  $f(t) = c(t - \frac{1}{2})^{2m-1} + \tilde{g}(t)$  mit  $\tilde{g} \in \mathcal{P}$  und  $deg(\tilde{g}) \leq 2m - 2$ 

1. Für  $\tilde{g}$  ist die QF exakt

2.

$$\int_0^1 (t - \frac{1}{2})^{2m-1} dt = \left[ \frac{1}{2m-2} (t - \frac{1}{2})^{2m-2} \right]_0^1 = 0$$
$$\sum_{i=1}^s b_i (c_i - \frac{1}{2})^{2m-1}$$

Symmetrie  $\Rightarrow$ 

$$= \sum_{i=1}^{s} b_{s+1-i} \left(\frac{1}{2} - c_{s+1-i}\right)^{2m-1}$$

Definiere j := s + 1 - i

$$= \sum_{i=1}^{s} b_i \frac{1}{2} - c_i)^{2m-1} = -\sum_{i=1}^{s} b_i (c_i - \frac{1}{2})^{2m-1}$$

$$\Rightarrow 2 * \sum_{i=1}^{s} b_i (c_i - \frac{1}{2})^{2m-1} = 0$$

$$\Rightarrow \sum_{i=1}^{s} b_i (c_i - \frac{1}{2})^{2m-1} = 0$$

$$\sum_{i=1}^{s} b_i f(c_i) = c \sum_{i=1}^{s} b_i (c_i - \frac{1}{2})^{2m-1} + \sum_{i=1}^{s} b_i \tilde{g}(c_i)$$

$$= c \int_0^1 (t - \frac{1}{2})^{2m-1} dt + \int_0^1 \tilde{g}(t) dt = \int_0^1 f(t) dt$$

 $\Rightarrow$  QF hat mind. Ordnung 2m.

Satz 2.8.

Sind Knoten  $c_1 < c_2 < ... < c_s$  ( $c_i \in \mathbb{R}, i = 1, ...s$ ) gegeben, so existieren eindeutig bestimmte Gewichte  $b_1, ..., b_s$  derart, dass die QF  $(b_i, c_i)_{i=1}^s$  die maximale Ordnung  $p \ge s$  hat.

Es gilt

$$b_i = \int_0^1 l_i(t)dt$$

mit

$$l_i(t) = \frac{\prod_{j=1, j \neq i}^{s} (t - c_j)}{\prod_{j=1, j \neq i}^{s} (c_i - c_j)}$$

Bemerkung/Definition

 $l_i$  ist das i-te Lagrangepolynom zu den Knoten  $c_i,...,c_s$ . Es gilt  $deg(l_i)=s-1$ 

$$l_i(c_j) = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Beweis. von 2.8

1. Hat die QF die Ordnung  $p \geq s$ , so ist wegen  $deg(l_i) = s - 1$ :

$$\int_0^1 l_i(t)dt = \sum_{j=1}^s b_j l_i(c_j) = b_i$$

2. Zu den Knoten  $c_i, ... c_s$  definiere  $b_i$  wie angegeben. Die QF ist dann exakt für alle Polynome von Grad  $\leq s-1$ , da die  $l_1, ..., l_s$  linear unabhängig sind und eine Basis des Vektorraums der Polynome von Grad  $\leq s-1$  bilden.

3 Quadraturfehler

Allgemeine Voraussetzung  $f:[a,b]\to\mathbb{R}$  sei hinreichend oft differenzierbar (f ist eine glatte Funktion)

Definition 3.1.

Der Fehler bei der Approximation des Integrals durch die QF ist

$$err = \int_{a}^{b} f(x)dx = \sum_{j=0}^{n-1} h_{j+1} \sum_{i=1}^{s} b_{i} f(x_{j} + h_{j+1}c_{i})$$

 $mit \ h_{j+1} = x_{j+1} - x_j$ 

$$= \sum_{j=0}^{n-1} \int_{x_j}^{x_{j+1}} f(x_j + \tau) d\tau - h_{j+1} \sum_{i=1}^{s} b_i f(x_j + h_{j+1} c_i)$$

$$= \sum_{j=0}^{n-1} h_{j+1} \int_0^1 g_j(\xi) d\xi - h_{j+1} \sum_{i=1}^s b_i g_j(c_i)$$

 $mit \ g_j(\xi) = f(x_j + \xi h_{j+1}).$ 

Der Quadraturfehler auf Teilintervallen  $[x_j, x_j + h_{j+1}]$  ist

$$E(f, x_j, h_{j+1}) = \int_{x_j}^{x_{j+1}} f(x)dx - h_{j+1} \sum_{i=1}^s b_i f(x_j + c_i h_{j+1})$$
$$= h_{j+1} \left( \int_0^1 g_j(\xi)d\xi - \sum_{i=1}^s b_i g_j(c_i) \right)$$

### **3.2** (Fehlerabschätzung - 1. Versuch).

Falls f auf  $[x_0, x_0 + h]$  glatt genug ist und die QF Ordnung p hat, aber nicht Ordnung p+1, so erhält man durch Taylorentwicklung um  $x_0$  von  $f(x_0+\xi h) = g_0(\xi)$  und  $f(x_0 + c_i h)$ :

$$E(f, x_0, h) = \sum_{k \ge 0} \frac{h^{k+1}}{k!} \left( \int_0^1 t^k dt - \sum_{i=1}^s b_i c_i^k \right) f^{(k)}(x_0)$$

$$= \frac{h^{p+1}}{p!} \left( \frac{1}{p+1} - \sum_{i=1}^s b_i c_i^p \right) f^{(p)}(x_0) + \underbrace{\mathcal{O}(h^{p+2})}_{Tauler restalied}$$

Die Konstante  $C = \frac{1}{p!} \left( \frac{1}{p+1} - \sum_{i=1}^{s} b_i c_i^p \right)$  heißt Fehlerkonstante.

Ist h klein genug, sodass das Taylorrestglied im Vergleich zu  $h^{p+1}Cf^{(p)}(x_0)$  vernachlässigbar ist, so gilt:

$$err = \sum_{j=0}^{n-1} E(f, x_j, h),$$

 $mit \ x_j = x_0 + jh$ 

$$\approx Ch^p \sum_{j=0}^{n-1} hf^{(p)}(x_j)$$

$$\approx Ch^p \int_a^b f^{(p)}(x) dx$$

$$= Ch^p \left( f^{(p-1)}(b) - f^{(p-1)}(a) \right)$$

# **3.3** (Rigorose Fehlerabschätzung).

#### Satz 1:

Sei  $f:[a,b] \to \mathbb{R}$  k-mal stetig differenzierbar  $(f \in C^k([a,b]))$  und habe die QF Ordnung p, so gilt für h < b - a und  $k \le p$ 

$$E(f, x_0, h) = h^{k+1} \int_0^1 K_k(\tau) f^{(k)}(x_0 + \tau k) d\tau,$$

wobei der Peanokern  $K_k(\tau)$  durch

$$K_k(\tau) := \frac{(1-\tau)^k}{k!} - \sum_{i=1}^s b_i \frac{(c_i - \tau)_+^{k-1}}{(k-1)!},$$

$$mit (\sigma)_{+}^{k-1} = \begin{cases} \sigma^{k-1} & \sigma > 0 \\ 0 & sonst \end{cases}$$
, gegeben ist.

Beweis. Taylorentwicklung mit Integralrestglied und Transformation

$$f(x_0 + th) = \sum_{j=0}^{k-1} \frac{(th)^j}{j!} f^{(j)}(x_0) + h^k \int_0^t \frac{(t-\tau)^{k-1}}{(k-1)!} f^{(k)}(x_0 + \tau h) d\tau$$

eingesetzt in (\*) und die Verwendung von

$$\int_0^{c_i} (c_i - \tau)^{k-1} g(\tau) d\tau = \int_0^1 (c_i - \tau)_+^{k-1} g(\tau) d\tau$$

liefern

$$E(f, x_0, h) = h \int_0^1 \left( \sum_{j=0}^{k-1} \frac{(th)^j}{j!} f^{(j)}(x_0) + h^k \int_0^t \frac{(t-\tau)^{k-1}}{(k-1)!} f^{(k)}(x_0 + \tau h) d\tau \right) dt - h \sum_{i=1}^s b_i \left( \sum_{j=0}^{k-1} \frac{(c_i h)^j}{j!} f^{(j)}(x_0) + h^k \int_0^{c_i} \frac{(c_i - \tau)^{k-1}}{(k-1)!} f^{(k)}(x_0 + c_i h) d\tau \right)$$

$$\underbrace{=}_{k \le p} hh^k \left[ \int_0^1 \int_0^t \frac{(t-\tau)^{k-1}}{(k-1)!} f^{(k)}(x_0 + \tau h) d\tau dt - \sum_{i=1}^s \int_0^1 \frac{(c_i - \tau)_{+}^{k-1}}{(k-1)!} f^{(k)}(x_0 + \tau h) d\tau \right]$$

$$= hh^{k} \left[ \int_{0}^{1} \int_{0}^{1} \frac{(t-\tau)_{+}^{k-1}}{(k-1)!} f^{(k)}(x_{0}+\tau h) d\tau dt - \sum_{i=1}^{s} b_{i} \int_{0}^{1} \frac{(c_{i}-\tau)_{+}^{k-1}}{(k-1)!} f^{(k)}(x_{0}+\tau h) d\tau \right]$$

$$= h^{k+1} \int_{0}^{1} \left( \int_{0}^{1} \frac{(t-\tau)_{+}^{k-1}}{(k-1)!} dt - \frac{(c_{i}-\tau)_{+}^{k-1}}{(k-1)!} \right) f^{(k)}(x_{0}+\tau h) d\tau$$

$$= h^{k+1} \int_{0}^{1} K_{k}(\tau) f^{(k)}(x_{0}+\tau h) d\tau$$

, da

$$\int_0^1 \frac{(t-\tau)_+^{k-1}}{(k-1)!} dt = \int_0^1 \frac{(t-\tau)^{k-1}}{(k-1)!} = \left[ \frac{1}{k!} (t-\tau)^k \right]_{t-\tau}^1 = \frac{1}{k!} (1-\tau)^k$$

# Satz 2: (Eigenschaften des Peanokerns)

Für eine QF der Ordnung p gilt für  $k \leq p$   $(k, p \in \mathbb{N})$ 

1. 
$$K'_k(\tau) = -K_{k-1}(\tau)$$
 für  $k \ge 2$  und  $\tau \ne c_i$  falls  $k = 2$ 

2. 
$$K_k(1) = 0$$
 für  $k \ge 1$ , falls  $c_i \le 1$  für  $i = 1, ..., s$ 

3. 
$$K_k(0) = 0$$
 für  $k \ge 2$ , falls  $c_i \le 1$  für  $i = 1, ..., s$ 

4. 
$$\int_0^1 K_p(\tau) = \frac{1}{p!} \left( \frac{1}{p-1} - \sum_{i=1}^s b_i c_i^p \right) =: C \text{ (Fehlerkonstante } C \text{ aus } (3.2))$$

5.  $K_1(\tau)$  ist stückweise linear mit Steigung -1 und Sprüngen der Höhe  $b_i$  an den Stellen  $c_i$ 

Beweis. Eventuell Übungsaufgabe

# Beispiel:

Mittelpunktsregel:

$$K_{1}(\tau) = \frac{(1-\tau)^{1}}{1!} - 1\frac{(\frac{1}{2}-\tau)^{1}_{+}}{0!}$$

$$= 1 - \tau - \left(\frac{1}{2} - \tau\right)^{0}_{+}$$

$$= \begin{cases} 1 - \tau - 1 & \tau < \frac{1}{2} \\ 1 - \tau & \tau \ge \frac{1}{2} \end{cases}$$

$$K_{2}(\tau) = \frac{(1-\tau)^{2}}{2!} - 1\frac{(\frac{1}{2}-\tau)^{1}_{+}}{1!}$$

$$= \frac{1}{2}(1-\tau)^{2} - \left(\frac{1}{2} - \tau\right)^{1}_{+}$$

$$= \begin{cases} \frac{\tau^{2}}{2} & \tau < \frac{1}{2} \\ \frac{1}{2}(1-\tau)^{2} & \tau \ge \frac{1}{2} \end{cases}$$

#### Satz 3:

Sei  $f \in C^k([a,b])$  und habe die QF  $(b_i, c_i)_{i=1}^s$ , Ordnung  $p \geq k$ , so gilt für den Fehler err aus (3.1)

$$|err| \le h^k(b-a) \int_0^1 |K_k(\tau)| d\tau \max_{x \in [a,b]} |f^{(k)}(x)|$$

 $mit h = \max_{j=1,..,n} h_j$ 

Beweis. Mit Satz 1 gilt

$$|E(f, x_j, h_{j+1})| \le h_{j+1}^{k+1} \int_0^1 |K_k(\tau)| |f^{(k)}(x_j + \tau h_{j+1})| d\tau$$

$$\le h_{j+1}^{k+1} \int_0^1 |K_k(\tau)| d\tau \max_{x \in [x_j, x_j + h_{j+1}]} |f^{(k)}(x)|$$

$$|err| = |\sum_{i=0}^{n-1} E(f, x_j, h_{j+1})|$$

Für

$$\leq \sum_{j=0}^{n-1} |E(f, x_j, h_{j+1})|$$

$$\leq \sum_{j=0}^{n-1} h_{j+1} \underbrace{h_{j+1}^k}_{\leq h^k} \int_0^1 |K_k(\tau)| d\tau \underbrace{\max_{x \in [x_j, x_{j+1}]} |f^{(k)}(x)|}_{\leq \max_{x \in [a,b]|f^{(k)}(x)|}}$$

Be is piele

 $F\ddot{u}r$  die Mittelpunktsregel (maximale Ordnung = 2) erhält man

$$|err| \le h^2(b-a) \frac{1}{24} \max_{x \in [a,b]} |f^{(2)}(x)|$$

 $F\ddot{u}r$  die Trapezregel (maximale Ordnung = 2)

$$|err| \le h^2(b-a) \frac{1}{12} \max_{x \in [a,b]} |f^{(2)}(x)|$$

Für die Simpsonregel (maximale Ordnung = 4)

$$|err| \le h^4(b-a) \frac{1}{2880} \max_{x \in [a,b]} |f^{(4)}(x)|$$

 $\rightarrow \ Der \ Fehler \ wird \ klein, \ falls \ h \ klein \ und \ die \ Ordnung \ p \ groß \ wird.$ 

# 4 Quadratur mit hoher Ordnung

 $c_1 < ... < c_s$  Knoten gegeben. Aus §2 wissen wir: Es gibt Gewichte  $b_1, ..., b_s$ , sodass  $p \le s$ . Fragen:

- Kann man  $c_j$  so wählen, dass p > s?
- Wenn ja, wie?
- Wie groß kann p maximal werden?

<u>Ziel:</u> QF mit Ordnung p = s + m für  $m \in \mathbb{N}, m > 1$  Sei  $g \in \mathcal{P}_{s+m-1}$  (Polynome von Grad  $\leq s + m - 1$ ).

g soll durch die QF exakt integriert werden.

<u>Idee:</u> Dividiere g durch  $M(t) = \prod_{i=1}^{s} (t - c_i)$  "Knotenpolynom" deg(M) = s

g(t) = M(t)h(t) + r(t) mit Rest  $r, deg(r) \le s-1$  und  $deg(h) \le m-1$  Dann gilt einerseits

$$\int_{0}^{1} g(t)dt = \int_{0}^{1} M(t)h(t)dt + \int_{0}^{1} r(t)dt$$

und andererseits

$$\sum_{i=1}^{s} b_{i}g(c_{i}) = \sum_{i=1}^{s} b_{i} \underbrace{M(c_{i})}_{=0} h(c_{i}) + \sum_{i=1}^{s} b_{i}r(c_{i})$$
$$= 0 + \int_{0}^{1} r(t)dt,$$

da  $p \leq s$ 

Damit ist gezeigt:

#### Satz 4.1.

Sei  $(b_i, c_i)_{i=1}^s$  der Ordnung  $p \geq s$ . Äquivalent sind:

- 1. QF hat  $Ordnung \ s + m$
- 2.  $\forall h \in (P)_{m-1} : \int_0^1 M(t)h(t)dt = 0$

### Korollar 4.2.

Die Ordnung einer s-stufigen QF ist höchstens 2s

Beweis (indirekt). Annahme: p > 2s

$$(4.1) \Rightarrow \forall h \in \mathcal{P}_s : \int_0^1 M(t)h(t)dt = 0$$

Setze h = M, dann ist

$$\int_0^1 M(t)^2 dt = 0$$

- 4.3 (Beispiele/Korollare).
  - 1. Jede 3-stufige QF mit Ordnung  $\geq 4$  muss

$$\int_0^1 (t - c_1)(t - c_2)(t - c_3)dt = 0$$

$$\int_0^1 t^3 + t^2(-c_1 - c_2 - c_3) + t(c_1c_2 + c_2c_3 + c_1c_3) - c_1c_2c_3dt$$

$$= \frac{1}{4} + \frac{1}{3}(-c_1 - c_2 - c_3) + \frac{1}{2}(c_1c_2 + c_2c_3 + c_1c_3) - c_1c_2c_3$$

erfüllen, dh

$$c_3 = \frac{\frac{1}{4} - (c_1 + c_2)\frac{1}{3} + c_1c_2\frac{1}{2}}{\frac{1}{3} - (c_2 + c_1)\frac{1}{2} + c_1c_2}$$

2. Zur Berechnung der Knoten einer 3-stufigen QF der Ordnung 6 verwenden wir (4.2) mit  $h(t) = 1, t, t^2$ 

$$\int_0^1 M(t)h(t) = 0$$

$$h(t) = 1 \to c_1 c_2 c_3 - \frac{1}{2} (c_1 c_2 + c_2 c_3 + c_1 c_3) + \frac{1}{3} (c_1 + c_2 + c_3) = \frac{1}{4}$$

$$h(t) = t \to \frac{1}{2}c_1c_2c_3 - \frac{1}{3}(c_1c_2 + c_2c_3 + c_1c_3) + \frac{1}{4}(c_1 + c_2 + c_3) = \frac{1}{5}$$

$$h(t) = t^2 \to \frac{1}{3}c_1c_2c_3 - \frac{1}{4}(c_1c_2 + c_2c_3 + c_1c_3) + \frac{1}{5}(c_1 + c_2 + c_3) = \frac{1}{6}$$

nichtlineares Gleichungssystem in  $c_1, c_2, c_3$ Trick:

$$\sigma_1 = c_1 + c_2 + c_3$$

$$\sigma_2 = c_1 c_2 + c_1 c_3 + c_2 c_3$$
$$\sigma_2 = c_1 c_2 c_3$$

Das sind die Koeffizienten von M(t) in der Monombasis.  $M(t) = (t - c_1)(t - c_2)(t - c_3) = t^3 - \sigma_1 t^2 + \sigma_2 t - \sigma_3$ und das Gleichungssystem ist linear in  $\sigma_1, \sigma_2, \sigma_3$ mit Lösung  $\sigma_1 = \frac{3}{2}, \sigma_2 = \frac{3}{5}, \sigma_3 = \frac{1}{20}$ und damit ist  $M(t) = t^3 - \frac{3}{2}t^2 + \frac{3}{5}t - \frac{1}{20}$   $= (t - \frac{1}{2})(t - \frac{5 - \sqrt{15}}{10})(t - \frac{5 + \sqrt{15}}{10})$ Glücklicherweise sind die Wurzeln von M(t) in [0, 1]. Damit lassen

sich die Gewichte mit (2.4) berechnen und wir erhalten

$$\int_0^1 g(t)dt = \frac{5}{18}g\left(\frac{5-\sqrt{15}}{10}\right) + \frac{8}{18}g\left(\frac{1}{2}\right) + \frac{5}{18}g\left(\frac{5+\sqrt{15}}{10}\right)$$

Ziel: Konstruktion von QF der Ordnung 2s mit Hilfe von orthogonalen Polynomen.

#### 5 Orthogonalpolynome

Bedingung 2. in Satz (4.1)

$$\forall h \in \mathcal{P}_{m-1} : \int_0^1 M(t)h(t) = 0$$

kann als Orthogonalitätsbedingung bzgl. eines Skalarprodukts  $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ auf dem Vektorraum  $L^2([0,1])$  oder C([0,1]) aufgefasst werden. Erinnerung:

$$\mathcal{P}_s := \left\{ \sum_{j=0}^s \alpha_j X^j, \alpha_j \in \mathbb{R} \right\}$$

ist ein  $\mathbb{R}$ -VR mit  $dim(\mathcal{P}_s) = s + 1$  und Basis  $\{1, X, X^2, ..., X^s\}$ 

$$\langle \cdot, \cdot \rangle : C([0,1]) \times C([0,1]) \to \mathbb{R}, (f,g) \mapsto \int_0^1 f(t)g(t)dt$$
 ist

- 1. symmetrisch  $\langle f, g \rangle = \langle g, f \rangle$
- 2. linear  $\langle \alpha f + q, h \rangle = \alpha \langle f, h \rangle + \langle q, h \rangle$

3. positiv definit  $\langle f, f \rangle \geq 0$  und  $\langle f, f \rangle = 0 \Rightarrow f = 0$ 

Wie in der linearen Algebra definieren wir f steht senkrecht auf g:  $f \perp g \Leftrightarrow$  $\langle f, g \rangle = 0$ 

#### Satz 5.1.

QF hat die Ordnung  $s + m \Leftrightarrow M$  ist orthogonal auf allen Polynome in  $\mathcal{P}_{m-1}$ 

#### Definition 5.2.

Für eine Gewichtsfunktion  $\omega:(a,b)\to\mathbb{R}$  mit

- 1.  $\omega$  stetig
- 2.  $\forall x \in (a, b) : \omega(x) > 0$
- 3.  $\forall k \in \mathbb{N} : \int_a^b \omega(x) |x|^k dx < \infty$

definieren wir auf den Vektorraum

$$V = \left\{ f : [a, b] \to \mathbb{R} : f \text{ stetig und } \int_a^b f(x)^2 \omega(x) dx < \infty \right\}$$

 $das\ gewichtete\ Skalarprodukt$ 

$$\langle f, g \rangle_{\omega} := \int_{a}^{b} \omega(x) f(x) g(x) dx$$

$$f\ddot{u}r \ f, g \in V$$
$$f \perp_{\omega} g :\Leftrightarrow \langle f, g, \rangle_{\omega} = 0$$

#### Satz 5.3.

Es existiert eine eindeutige Folge von Polynomen  $p_0, p_1, \dots$  mit

- 1.  $deq(p_k) = k$
- 2.  $\forall q \in \mathcal{P}_{k-1} : p_k \perp q \text{ für } k > 1$
- 3.  $p_k(x) = x^k + r \text{ mit } deg(r) \le k 1 \text{ "Normierung"}$

Diese Polynome lassen sich rekursiv berechnen durch

$$p_{k+1}(x) := (x - \beta_{k+1})p_k(x) - \gamma_{k+1}^2 p_{k-1}(x) \text{ für } k \ge 2$$

$$p_0(x) := 1, p_1(x) := x$$

$$\rho_{k+1} := \frac{\langle p_k, p_k \rangle}{\langle p_k, p_k \rangle}$$

$$\beta_{k+1} := \frac{\langle xp_k, p_k \rangle}{\langle p_k, p_k \rangle}$$

$$\gamma_{k+1}^2 := \frac{\langle p_k, p_k \rangle}{\langle p_{k-1}, p_{k-1} \rangle}$$

Beweis. (vgl. Gram-Schmidt Orthogonalisierung LinA) Sei  $p_0,...,p_k$ bereits bekannt. Zur Konstruktion von  $p_{k+1}$  setzen wir

$$p_{k+1}(x) = xp_k(x) + \sum_{j=0}^{k} \alpha_j p_j(x)$$

(damit ist 3. erfüllt)

Zur Bestimmung der  $\alpha_i$ :

1. 
$$0 = \langle p_{k+1}, p_k \rangle = \langle x p_k, p_k \rangle + \alpha_k \langle p_k, p_k \rangle + \sum_{j=0}^{k-1} \alpha_j \underbrace{\langle p_j, p_k \rangle}_{=0}$$
  

$$\Rightarrow \alpha_k = -\frac{\langle x p_k, p_k \rangle}{\langle p_k, p_k \rangle} =: -\beta_{k+1}$$

2.

$$0 = \langle p_{k+1}, p_{k-1} \rangle = \langle x p_k, p_{k-1} \rangle + 0 + \alpha_{k-1} \langle p_{k-1}, p_{k-1} \rangle + 0$$
$$= \langle p_k, x p_{k-1} \rangle + \alpha_{k-1} \langle p_{k-1}, p_{k-1} \rangle$$

Aufgrund von 3.  $\Rightarrow$ 

$$xp_{k-1} = p_k + r$$

 $mit \ deg(r) \le k-1$ 

$$\Rightarrow \langle p_k, x p_{k-1} \rangle = \langle p_k, p_k \rangle + \underbrace{\langle p_k, r \rangle}_{=0}$$

$$\Rightarrow \alpha_{k-1} = -\frac{\langle p_k, p_k \rangle}{\langle p_{k-1}, p_{k-1} \rangle} =: -\gamma_{k+1}^2$$

3. Für  $j \le k - 2$ :

$$0 = \langle p_{k+1}, p_j \rangle = \langle x p_k, p_j \rangle + \alpha_j \langle p_j, p_j \rangle$$
$$= \underbrace{\langle p_k, x p_j \rangle}_{=0} + \alpha_j \underbrace{\langle p_j, p_j \rangle}_{\neq 0}$$

 $\langle p_k, xp_j \rangle = 0$  gilt, da  $deg(xp_j) \le k + 1$ Insgesamt haben wir

$$p_{k+1}(x) = xp_k(x) - \beta_{k+1}p_k(x) - \gamma_{k+1}^2 p_{k-1}(x)$$

Für eine QF maximaler Ordnung müssen nach Satz (4.1) die Knoten  $c_i$ , i = 1, ..., s so gewählt werden, dass

$$M(t) = \prod_{i=1}^{s} (t - c_i)$$

das Orthogonalpolynom vom Grad s bezüglich des Skalarprodukts mit  $\omega(x) \equiv 1$  auf [0,1] ist.

 $\frac{\text{Frage:}}{\text{Ja}}$  Sind die Wurzeln der Orthogonalpolynome aus (5.3) reell? (Spoiler:

#### Satz 5.4.

Sei  $p_k$  das Orthogonalpolynom wie in (5.3) definiert (bzgl.  $\langle f, g \rangle = \int_a^b f(x)g(x)\omega(x)dx$ ). Alle Wurzeln von  $p_k$  sind einfach und liegen im offenen Intervall (a, b).

Beweis. Seie  $x_1, ..., x_r$  jene Wurzeln in  $p_k$ , die reell sind, in (a, b) liegen und bei denen  $p_k$  das Vorzeichen wechselt (Wurzeln mit ungerader Vielfachheit). Klar ist:  $r \leq k$ .

Sei

$$g(x) = \prod_{j=1}^{r} (x - x_j)$$

Dann ist

$$\langle p_k, g \rangle = \int_a^b \underbrace{p_k(x) g(x)}_{\text{Wechselt das Vorzeichen in (a,b) nicht}} \omega(x) dx \neq 0$$

Andererseits ist  $p_k$  orthogonal zu allen Polynomen vom Grad  $\leq k-1$   $\Rightarrow r = deg(g) \geq k$   $\Rightarrow r = k$ 

Beispiel 5.5 (Orthogonale Polynome).

Bezeichnung (a,b) w(x) Name

$$\begin{array}{lllll} P_k & (-1,1) & 1 & Legendre polynome \\ T_k & (-1,1) & (1-x^2)^{-1/2} & Tschebyscheff-Polynome \\ P_k^{(\alpha,\beta)} & (-1,1) & (1-x)^{\alpha}(1-x)^{\beta} & Jacobi-Polynome \ \alpha,\beta > -1 \\ L_k^{(\alpha)} & (0,\infty) & x^{\alpha}e^{-x} & Laguere-Polynome \\ M_k & (-\infty,\infty) & e^{-x^2} & Harmite polynome \end{array}$$

<u>Bemerkung:</u> Teilweise sind andere Normierungen üblich  $P_k(1) = 1$ ,  $T_k(x) = 2^{k-1}x^k + \dots$ , ...

# 6 Ein adaptives Programm

Gegeben sei eine QF mit  $(b_i, c_i)_{i=1}^s$  mit Ordnung p = 2s (die höchste Ordnung, die es gibt) z.B. s = 15

<u>Ziel:</u> Ein Computerprogramm adagaussqf(f, a, b, Tol), welches für eine Funktion f auf dem Interval [a,b] eine Approximation an  $\int_a^b f(x)dx$  berechnet, sodass der Fehler  $\leq$  Tol ist (für viele Funktionen).

Konstruiere eine Zerlegung  $\Delta = \{a = x_0 < ... < x_n = b\}$  des Intervalls, sodass für die Approximation

$$I_{\Delta} := \sum_{j=0}^{n-1} h_{j+1} \sum_{i=1}^{s} b_i f(x_i + c_i h_{j+1})$$

gilt

$$|I_{\Delta} - \int_{a}^{b} f(x)dx| \le Tol \int_{a}^{b} |f(x)|dx$$

Schwierigkeiten:

- a) Schätzung des Fehlers
- b) Wahl der Zerlegung des Intervalls

# 6.1 (Zerlegung des Intervalls).

Für ein Teilintervall  $[x_j, x_{j+1}]$  von [a, b] lassen sich

$$res[x_j, x_{j+1}] := h_{j+1} \sum_{i=1}^{s} b_i f(x_j + c_i h_{j+1})$$

und

$$resabs[x_j, x_{j+1}] := h_{j+1} \sum_{i=1}^{s} |b_i f(x_j + c_i h_{j+1})|$$

berechnen.

Angenommen wir können eine Schätzung des Fehlers  $err[x,x_{j+1}]$  berechnen mit

$$err[x, x_{j+1}] \approx res[x, x_{j+1}] - \int_{x_j}^{x_{j+1}} f(x) dx,$$

dann bietet sich zur folgendes Verfahren zur Konstruktion einer Zerlegung an:

- 1. Berechne res[a, b], resabs[a, b] und err[a, b]. if  $|err[a, b]| \leq Tol \, resabs[a, b]$  return res[a, b] else
- 2. Zerlege[a,b] in

$$I_0 = \left[ a, \frac{b-a}{2} \right]$$

und

$$I_1 = \left\lceil \frac{b-a}{2}, b \right\rceil$$

und berechne

 $res I_0$ ,  $resabs I_0$ ,  $err I_0$  und  $res I_1$ ,  $resabs I_1$ ,  $err I_1$ 

n=2.

3. Falls

$$\sum_{j=0}^{n-1} |err \, I_j| \leq Tol \, \sum_{j=0}^{n-1} resabs \, I_j$$

return

$$\sum_{i=0}^{n-1} res I_j$$

sonst:

Unterteile das Intervall  $I_k$ , in dem der Fehler maximal ist in zwei Teil-intervalle  $I_k$  und  $I_n$  und berechne:

 $res I_k$ ,  $resabs I_k$ ,  $err I_k$  und  $res I_n$ ,  $resabs I_n$ ,  $err I_n$ 

n = n + 1Gehe zu 3)

**6.2** (Schätzung des Fehlers).

Ziel: Berechne Approximation an

$$\int_{x_j}^{x_{x+1}} f(x)dx - h_{j+1} \sum_{i=1}^{s} b_i f(x_j + h_{j+1}c_i)$$

ohne zusätzliche Funktionsauswertungen.

<u>Idee:</u> Konstruiere eingebettete QF, d.h. QF zu den selben Knoten  $c_i$  mit Gewichten  $b_i$  und Ordnung  $\hat{p} < p$ 

<u>Bemerkung:</u> Falls p = 2s ist, so gilt  $\hat{p} \leq s - 1$  (wäre  $\hat{p} \geq s$ , so wäre nach (2.8)  $\hat{b}_i < b_i$ ).

Eine Approximation des Fehlers für die eingebettete QF ist durch

$$diff[x_j, x_{j+1}] = h_{j+1} \sum_{i=1}^{s} b_i f(x_j + c_i h_{j+1}) - h_{j+1} \sum_{i=1}^{s} \hat{b}_i f(x_j + c_i h_{j+1})$$
$$= h_{j+1} \sum_{i=1}^{s} (b_i - \hat{b}_i) f(x_j + c_i h_{j+1})$$

gegeben. Es gilt

$$\begin{aligned} diff[x_{j}, x_{j+1}] &= h_{j+1} \sum_{i=1}^{s} b_{i} f(x_{j} + c_{i} h_{j+1}) - \int_{x_{j}}^{x_{j+1}} f(x) dx \\ &- \left( h_{j+1} \sum_{i=1}^{s} \hat{b}_{i} f(x_{j} + c_{i} h_{j+1}) - \int_{x_{j}}^{x_{j+1}} f(x) dx \right) \\ &= Fehler \ der \ QF \ (b_{i}, c_{i})_{i=1}^{s} - Fehler \ der \ QF \ (\hat{b}_{i}, c_{i})_{i=1}^{s} \\ &= C_{1} h_{j+1}^{p+1} + C_{2} h_{j+1}^{p+1} \end{aligned}$$

Falls  $h_{j+1}$  klein ist, ist  $C_1 h_{j+1}^{p+1} << C_2 h_{j+1}^{\hat{p}+1}$ . Drei Möglichkeiten den Fehler zu schätzen:

- I)  $err[x_j, x_{j+1}] \approx diff[x_j, x_{j+1}]$ . Sehr pessimistisch
- II)  $err[x_j, x_{j+1}] \approx (diff[x_j, x_{j+1}])^2$ , falls p = 2s und  $\hat{p} = s 1$ . Wenig  $verl\ddot{a}sslich$
- III) Verwende dritte eingebettete QF

$$(\hat{b}_i, c_i)$$
 der Ordnung 6  
 $zu$   $(b_i, c_i)$  der Ordnung 30 = 2s,  $s = 15$   
 $und$   $(\hat{b}_i, c_i)$  der Ordnung 14  
 $d\hat{i}ff = h_{i+1} \sum_{i=1}^{s} (b_i - \hat{b}_i) f(x_i + c_i h_{i+1}) \approx C_3 h^7$ 

$$err [x_j, x_{j+1}] = diff [x_j, x_{j+1}] \left(\frac{diff}{\hat{diff}}\right)^2$$
$$= C_2 \frac{C_2^2}{C_3^2} h_{j+1}^{15} \left(\frac{h_{j+1}^{15}}{h_{j+1}^7}\right) = C h_{j+1}^{31}$$

#### 7 Gauß- und Lobatto Quadraturformeln

<u>Ziel:</u> Konstruktion einer s-stufigen QF der Ordnung p = 2s.

Für  $M(t) = CP_s(2t-1)$ , wobei  $P_s$  das Legendrepolynom vom Grad s ist (siehe (5.5)),  $C \in \mathbb{R}$ , erhalten wir mit (5.4) und (4.1):

#### Satz 7.1.

Für jedes  $s \in \mathbb{N}$  gibt es eine eindeutige QF der Ordnung p = 2s, die sogenannte Gauß-QF. Ihre Knoten sind die Wurzeln von  $P_s(2t-1)$ , ihre Gewichte sind durch (2.8) gegeben.

# Beispiele:

s = 1 Mittelpunktsregel

$$s = 2$$
  $c_{1,2} = \frac{1}{2} \mp \frac{\sqrt{3}}{6}, b_1 = \frac{1}{2} = b_2$   
 $s = 3$  (4.3) 2)

$$s = 3 \quad (4.3) \ 2$$

7.2 (Bezeichnung der Knoten der Gauß-QF).

Details: Siehe Homepage (Ubungsaufgabe).

Idee: Die Wurzeln der Polynome, die durch Rekursion (5.3) erzeugt werden, sind die Eigenwerte einer symmetrischen Tridiagonalmatrix (Matrix: Siehe Homepage).

In Numerik II lernen Sie Verfahren kennen, um die Eigenwerte zu berechnen.

# 7.3 (Lobatto Quadraturformeln).

Ein Vorteil der Simpsonquadraturformel war, dass  $c_1 = 0$  und  $c_s = 1$  gilt. Damit muss man den Integranten in  $x_i$  nur einmal auswerten. Zur Konstruktion einer s-stufigen QF der Ordnung p = 2s - 2 mit  $c_1 = 0$  und  $c_s = 1$ setzt man

$$M(t) = P_s(2t - 1) - P_{s-2}(2t - 1)$$

Da die Legendre-Polynome folgende Rekursion erfüllen

$$P_0(x) = 1 \quad P_1(x) = x$$

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

ist

$$P_s(1) = 1$$
 und  $P_s(-1) = (-1)^s$ 

und damit

$$M(0) = 0 = M(1)$$

Die restlichen Nullstellen (oder Wurzeln) von M(t) sind reell, einfach und liegen in (0,1), wie man analog zu (5.4) zeigt. Damit gilt:

**Satz** Für  $s \in \mathbb{N}$ ,  $s \geq 2$  gibt es eine eindeutige s-stufige QF der Ordnung 2s - 2 mit  $c_1 = 0$  und  $c_s = 1$ 

# II Interpolation und Approximation

**Problemstellung A** Zu gegebenen  $(x_0, y_0), ..., (x_n, y_n)$  berechne Polynom p vom Grad  $\leq n$  mit

$$p(x_j) = y_j, \quad j = 0, ..., n$$

**Problemstellung B**  $f:[a,b]\to\mathbb{R}$  gegeben. Finde einfach auszuwertende Funktion  $p:[a,b]\to\mathbb{R}$ , etwa ein Polynom, stückweises Polynom, rationale Funktion, sodass f-p klein ist.

- i) f(x) = p(x) für endlich viele vorgegebene Punkte x
- ii)  $\int_a^b (f(x) p(x))^2 dx$  soll minimal sein.
- iii)  $\max_{x \in [a,b]} |f(x) p(x)|$  soll minimal sein.

# 8 Newtonsche Interpolationsformel

### Beispiel 8.1.

n=1:

 $(x_0, y_0), (x_1, y_1), p \in \mathcal{P}_1$  das beide Punkte verbindet.

$$p(x) = y_0 + (x - x_0) \frac{y_1 - y_0}{x_1 - x_0}$$

n=2:

$$(x_0, y_0), (x_1, y_1), (x_2, y_2)$$

$$p(x) = y_0 + (x - x_0)\frac{y_1 - y_0}{x_1 - x_0} + a(x - x_0)(x - x_1)$$

Bestimme a so, dass  $p(x_2) = y_2$ 

$$y_2 \stackrel{!}{=} y_0 + (x - x_0) \frac{y_1 - y_0}{x_1 - x_0} + a(x - x_0)(x - x_1)$$

$$a(x_2 - x_0)(x_2 - x_1) = y_2 - y_0 - (x_2 - x_1) \frac{y_1 - y_0}{x_1 - x_0} - y_1 + y_0$$

$$\Rightarrow a = \frac{1}{x_2 - x_0} \left( \frac{y_2 - y_1}{x_2 - x_1} - \frac{y_1 - y_0}{x_1 - x_0} \right)$$

# **Definition 8.2** (dividiente Differenzen).

 $F\ddot{u}r(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$  mit paarweise verschiedenen Stützstellen  $x_j$  definieren wir

$$\begin{split} y[x_j] &:= y_j \quad \left(=\delta^0 y[x_j]\right) \\ \delta y[x_j, x_{j+1}] &:= \frac{y_{j+1} - y_j}{x_{j+1} - x_j} = \frac{\delta^0 y[x_{j+1}] - \delta^0 y[x_j]}{x_{j+1} - x_j} \\ \delta^2 y[x_j, x_{j+1}, x_{j+2}] &:= \frac{\delta y[x_{j+1}, x_{j+2}] - \delta y[x_j, x_{j+1}]}{x_{j+2} - x_j} \\ \delta^k y[x_j, x_{j+1}, ..., x_{j+k}] &:= \frac{1}{x_{j+k} - x_j} \left(\delta^{k-1} y[x_{j+1}, ..., x_{j+k}] - \delta^{k-1} y[x_j, ..., x_{j+k-1}]\right) \end{split}$$

#### Schema:

#### Bemerkung 8.3.

Falls die  $x_i$  äquidistant, dh  $x_i = x_0 + ih$  so ist:

$$\delta y[x_i, x_{i+1}] = \frac{y_{i+1} - y_i}{h} =: \frac{1}{h} \Delta y_i$$

$$\delta^2 y[x_i, x_{i+1}, x_{i+2}] = \frac{\frac{1}{h} \Delta y_{i+1} - \frac{1}{h} \Delta y_i}{2h} = \frac{1}{2h^2} \Delta^2 y_i$$

$$\delta^k y[x_i, ..., x_{i+k}] = \frac{1}{k! h^k} \Delta^k y_i$$

### Satz 8.4 (Newtonsche Interpolationsformel).

Zu paarweise verschiedenen reellen  $x_i$ , i = 0, ..., n existiert ein eindeutiges Polynom  $p \in \mathcal{P}_n$  durch die Punkte  $(x_i, y_i)$ , i = 0, ..., n  $(d.h. p(x_i) = y_i$  für i = 1, ..., n). Es lässt sich berechnen durch:

$$p(x) = y[x_0] + (x - x_0)\delta y[x_0, x_1] + \dots + (x - x_0)(x - x_1)\dots(x - x_{n-1})\delta^n y[x_0, \dots, x_n]$$
$$= \sum_{i=0}^n \prod_{j=0}^{i-1} (x - x_j)\delta^i y[x_0, \dots, x_i]$$

Beweis. (Induktion)

**IA** n = 1 (und n = 2) vgl. Beispiel (1.1)

IS  $n-1 \rightarrow n$ 

 $p_0(x) = y[x_0] + (x - x_0)\delta y[x_1, x_0] + ... + (x - x_0)...(x - x_{n-2})\delta^{n-1}y[x_0, ..., x_{n-1}]$  ist das eindeutige interpolierende Polynom mit

$$\deg(p_0) \le n - 1$$

zu  $(x_0, y_0), (x_1, y_1), ..., (x_{n-1}, y_{n-1}).$ Für den Ansatz

$$p(x) = p_0(x) + a(x - x_0)(x - x_1)...(x - x_{n-1})$$

ergibt die Forderung  $p(x_n) = y_n$ 

$$a = \frac{y_n - p_0(x_n)}{(x_n - x_0)(x_n - x_1)...(x_n - x_{n-1})}$$

Da a eindeutig ist, ist p eindeutig.

Es bleibt zu zeigen:  $a = \delta^n y[x_0, ..., x_n]$ 

Sei dazu ein Polynom  $p_1(x)$ , welches durch  $(x_1, y_1), ..., (x_n, y_n)$  läuft, mit  $\deg(p_1) \leq n - 1$ . Nach Induktionsannahme gilt

$$p_1(x) = y[x_1] + (x - x_1)\delta^1 y[x_1, x_2] + \dots + (x - x_1)\dots(x - x_{n-1})\delta^{n-1} y[x_1, \dots, x_n]$$
  
=  $x^{n-1}\delta^{n-1} y[x_1, \dots, x_n] + r$ 

mit  $deg(r) \le n - 2$ . Setze Polynom

$$p(x) := \frac{x_n - x}{x_n - x_0} p_0(x) + \frac{x - x_0}{x_n - x_0} p_1(x)$$

mit  $deg(p) \le n$  durch  $(x_0, y_0), ..., (x_n, y_n)$ . Das gilt, da:

$$p(x_0) = p_0(x_0) = y_0$$
  
 $p(x_n) = p_1(x_n) = y_n$ 

Für i = 1, ..., n - 1:

$$p(x_i) = \frac{x_n - x_i}{x_n - x_0} \underbrace{p_0(x_i)}_{y_i} + \frac{x_i - x_0}{x_n - x_0} \underbrace{p_1(x_i)}_{y_i} = y_i$$

Andererseits:

$$p(x) = ax^n + r$$
 mit  $deg(r) \le n - 1$ 

Koeffizientenvergleich:

$$a = -\frac{1}{x_n - x_0} \delta^{n-1} y[x_0, ..., x_{n-1}] + \frac{1}{x_n - x_0} \delta^{n-1} y[x_1, ..., x_n]$$
  
=  $\delta^n y[x_0, ..., x_n]$ 

8.5 (Hornerschema).

 $Zur\ Auswertung\ des\ Interpolationspolynom\ p\ an\ der\ Stelle\ x\ verwendet\ man$ 

$$p(x) = y[x_0] + (x - x_0) \left( \delta y[x_0, x_1] + (x - x_1) \left( \delta^2 y[x_0, x_1, x_2] + (x - x_2) \left( \dots \left( \delta^n y[x_0, \dots, x_n] \right) \right) \right) \right)$$

Algorithmus:

$$\overline{s = \delta y^n[x_0, ..., x_n]}$$
for  $k = n - 1, ..., 0$ :

$$s = \delta^k y[x_0, ..., x_k] + (x - x_k)s$$

### Beispiel 8.6.

$$i \quad x_i \quad y_i$$

Das Interpolationspolynom ist also

$$p(x) = 0 + (x+1) * 1 - \frac{1}{3}(x+1)(x) + \frac{1}{4}(x+1)x(x-2) + (x+1)x(x-2)(x-3) \left( -\frac{13}{120} \right)$$

bzw. nach Hornerschema

$$p(x) = 0 + (x+1)\left(1 + x\left(-\frac{1}{3} + (x-2)\left(\frac{1}{4} + (x-3)\left(-\frac{13}{120}\right)\right)\right)\right)$$

Werte p(x) an der Stelle 1 aus:

$$-\frac{13}{120} * (-2) = \frac{26}{120}$$

$$\left(\frac{1}{4} + \frac{26}{120}\right)(-1) = -\frac{56}{120} = -\frac{7}{15}$$

$$\left(-\frac{7}{15} - \frac{1}{3}\right)1 = -\frac{12}{15} = -\frac{4}{5}$$

$$\left(-\frac{4}{5} + 1\right)2 = \frac{2}{5} = p(1)$$

# 9 Fehler bei der Polynominterpolation

<u>Problem:</u>  $f: [a,b] \to \mathbb{R}$  werde interpoliert in Stützstellen  $x_0, ..., x_n \in [a,b]$  durch  $p \in \mathcal{P}_n$  mit  $p(x_i) = f(x_i)$  für i = 0, ..., n Wie groß ist der Fehler f(x) - p(x)?

#### Satz 9.1.

Sei  $f:[a,b] \to \mathbb{R}$  (n+1)-mal stetig differenzierbar,  $p \in \mathcal{P}_n$  mit  $p(x_i) = f(x_i)$  (i = 0,...,n) das Interpolationspolynom zu paarweise verschiedenen Stützstellen  $x_i \in [a,b]$  (i = 0,...,n). Dann gilt:

$$\forall x \in [a, b] \exists \xi = \xi(x) \in (a, b) : f(x) - p(x) = \prod_{i=0}^{n} (x - x_i) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

Beweis. Siehe 
$$(9.4)$$

Beispiel 9.2 (Berechnung von Logarithmentafeln: Briggs, 17. Jhd).

$$f(x) = log_{10}(x), \quad x \in [55, 58]$$

Wähle Stützstellen:

$$x_0 = 55$$
,  $x_1 = 56$ ,  $x_2 = 57$ ,  $x_3 = 58$ 

Berechne Näherung an  $log_{10}(56.5)$ ,  $falls log_{10}(55)$ ,  $log_{10}(56)$ ,  $log_{10}(57)$  und  $log_{10}(58)$  bereits bekannt sind.

 $\rightsquigarrow$  Interpolations polynom p:

$$log_{10}(65.5) = 1.752048448$$

$$p(56.5) = 1.752048445$$

$$f'(x) = \frac{1}{ln(10)x}$$

$$f''(x) = -\frac{1}{ln(10)x^2}$$

$$f^{(3)}(x) = \frac{2}{ln(10)x^3}$$

$$f^{(4)}(x) = -\frac{6}{ln(10)x^4}$$

 $F\ddot{u}r \ x \in [55, 58]:$ 

$$|f^{(4)}(x)| \le \frac{6}{55^4 ln(10)} \Rightarrow$$

$$|log_{10}(56.5) - p(56.5)| \le 1.5 * 0.5 * 0.5 * 1.5 * \frac{6}{55^4 ln(10)\frac{1}{4!}}$$
  
 $\approx 6.7 * 10^{-9}$ 

Für den Beweis von (9.1) wird folgendes Lemma benötigt:

#### Lemma 9.3.

Sei  $f \in C^n([a,b])$  und sei für paarweise verschiedene  $x_i \in [a,b]$  (i = 0,...,n)  $y_i := f(x_i)$ . Dann existiert  $\xi \in (\min_i(x_i), \max_i(x_i))$ , sodass

$$\delta^n y[x_0, ..., x_n] = \frac{f^{(n)}(\xi)}{n!} \quad (x_0 < x_1 < ... < x_n)$$

Beweis. Sei p ein Interpolationspolynom zu  $(x_i, y_i)_{i=0}^n$ . Setzt man d := p - f, so gilt  $d(x_i) = 0$  für i = 0, ..., n.

n-maliges anwenden des Mittelwertsatzes liefert paarweise verschiedene  $\xi_i$ , (i = 0, ..., n - 1) mit  $d'(\xi_i) = 0$  für  $\xi_i \in (\min_j(x_j), \max_j(x_j))$ .

Dasselbe Argument angewandt auf d' liefert  $\eta_0, ..., \eta_{n-2}$  mit  $d''(\eta_i) = 0$  für i = 0, ..., n-2.

Wiederhole dies bis:

Es existiert  $\rho_0$  mit  $d^{(n)}(\rho_0) = 0$ 

$$\Rightarrow f^{(n)}(\rho_0) = p^{(n)}(\rho_0) = n! \delta^n y[x_0, ..., x_n],$$
  
da  $\delta^n y[x_0, ..., x_n]$  der Koeffizient von  $x^n$  in  $p$  ist.

# Bemerkung.

 $F\ddot{u}r n = 1$  ist Lemma (9.3) der Mittelwertsatz (oder Satz von Rolle) aus Ana I:

$$\exists \xi : \frac{f(x_1) - f(x_2)}{x_1 - x_2} = f'(\xi)$$

**9.4** (Beweis von (9.1)). Sei  $\bar{x} \in [a, b]$  beliebig.

- **1. Fall**  $\bar{x} = x_i$  für ein  $i \in \{0, ..., n\}$ , so ist wegen  $p(x_i) f(x_i) = 0$  nichts zu zeigen.
- **2. Fall**  $\bar{x} \neq x_i$  für alle  $i \in \{0, ..., n\}$ . Sei  $\bar{p}$  das Interpolationspolynom mit  $deg(\bar{p}) \leq n+1$  zu  $(x_i, f(x_i))_{i=0}^n$  und  $(\bar{x}, f(\bar{x}))$ . Die Newton'sche Interpolationsformel liefert dann

$$\bar{p}(x) = p(x) + \prod_{i=0}^{n} (x - x_i) \delta^{n+1} y[x_0, ..., x_n, \bar{x}]$$

$$= p(x) + \prod_{i=0}^{n} (x - x_i) \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

 $F\ddot{u}r \ x = \bar{x} \ gilt \ \bar{p}(\bar{x}) = f(\bar{x}). \ Damit \ ist \ Satz \ (9.1) \ f\ddot{u}r \ x \in [a,b] \ gezeigt.$ 

Fragen:

• Für welche Wahl der Stützstellen  $x_i$  (i=0,...,n, n fest) ist

$$\max_{x \in [a,b]} |\prod_{i=0}^{n} (x - x_i)|$$

minimal? (Siehe Abschnitt 10)

• Wie wirken sich Fehler in den Funktionsauswertungen (etwa Messfehler oder Rechenfehler) auf das Interpolationspolynom aus?

Satz 9.5 (Lagrange Interpolationsformel).

Das Interpolationspolynom p zu  $(x_i, y_i)_{i=0}^n$  ist gegeben durch

$$p(x) = \sum_{i=0}^{n} y_i l_i(x)$$

mit

$$l_i(x) = \frac{\prod_{j=0, j \neq i}^{n} (x - x_j)}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)}$$

Beweis. 
$$deg(l_i) = n$$
,  $l_i(x_j) = \begin{cases} 1 & \text{für } j = i \\ 0 & \text{sonst} \end{cases}$   
 $\Rightarrow p(x_j) = \sum_{i=0}^n y_i l_i(x_j) = y_j$ 

### Bemerkung.

Lagranges und Newtons Interpolationsformeln liefern beide das gleiche Polynom nur in unterschiedlichen Darstellungen.

Definition 9.6.

$$\Lambda_n := \max_{x \in [a,b]} \sum_{i=0}^n |l_i(x)|$$

heißt die **Lebesgue Konstante** zu den Stützstellen  $x_i$ , i = 0, ..., n auf dem Intervall [a, b].

Damit gilt:

# Satz 9.7.

Sei p das Interpolationspolynom (vom Grad  $\leq n$ ) zu  $(x_i, y_i)_{i=0}^n$  und  $\tilde{p}$  das Interpolationspolynom zu  $(x_i, \tilde{y}_i)_{i=0}^n$ , so gilt:

$$\max_{x \in [a,b]} |p(x) - \tilde{p}(x)| \le \Lambda_n \max_{i=0,\dots,n} |y_i - \tilde{y}_i|$$

Beweis. klar  $\Box$ 

# Beispiel 9.8.

• Für äquidistante Stützstellen  $x_i = a + i \frac{b-a}{n} \ (i = 0, ..., n)$  ist

$$\Lambda_{10} \approx 40$$

$$\Lambda_{20} \approx 3 * 10^{4}$$

$$\Lambda_{40} \approx 10^{10}$$

$$\Lambda_{n} \approx \frac{2^{n}}{ln(n) * e * n} \quad \text{für } n \to \infty$$

 $\Rightarrow$  Vorsicht bei Polynominterpolation mit vielen äquidistanten Stützstellen! In §10 werden wir Stützstellen kennenlernen mit  $\Lambda_n \leq 4$  für  $n \leq 100$ .