清华大学 2023 级研究生招生机试

时间: 2023 年 3 月 19 日 18:00 ~ 21:30

题目名称	公司	任务调度	集合
题目类型	传统型	传统型	传统型
输入	标准输入	标准输入	标准输入
输出	标准输出	标准输出	标准输出
每个测试点时限	1.0 秒	3.0 秒	4.0 秒
内存限制	512 MiB	512 MiB	1024 MiB
子任务数目	10	20	11
测试点是否等分	是	是	否

公司 (company)

【题目描述】

给定一个有 n 个雇员的初创公司,雇员从 1 到 n 编号,编号为 i 的人有一个固定的薪资 a_i 。最初所有人都不知道公司里其他员工的薪资。

某一天由于公司数据库发生问题,泄露了 m 条数据,导致有一部分人知道了其他部分人的薪资。其中对于编号为 i 的雇员,设他所了解到的人的平均薪资为 v_i (如果有多条重复的数据,那么也会被计算多次),如果 $a_i < v_i$ 那么他就会萌生想要离职的想法。

当然如果一个人不了解其他人的薪资,那么他也就不会萌生想要离职的想法。

给定所有 n 个人的薪资 a_i ,以及 m 个数对 (x_i, y_i) 表示编号为 x_i 的雇员知道了编号为 y_i 的雇员的薪资,问会有多少雇员萌生离职的想法。

【输入格式】

从标准输入读入数据。

输入的第一行包含两个正整数 n, m, 分别表示公司的人数和泄露的数据条数。

输入的第二行包含 n 个正整数 a_i ,依次表示 n 个人的薪资。

接下来 m 行,每行包含两个正整数 (x_i, y_i) 表示编号为 x_i 的雇员知道了编号为 y_i 的雇员的薪资。

【输出格式】

输出到标准输出。

输出一个正整数表示对应的答案。

【样例1输入】

```
      1
      4
      4

      2
      10
      20
      30
      40

      3
      3
      2

      4
      3
      4

      5
      3
      4

      6
      1
      2
```

【样例1输出】

1 2

【样例1解释】

编号为1和3的雇员都会萌生离职的想法。

【数据范围】

本题共 10 个测试点,每个测试点 10 分。

对于所有的数据, 保证: $3 \le n \le 10^5$, $1 \le m \le 2 \times 10^5$, $1 \le a_i \le 10^5$, $1 \le x_i, y_i \le n$.

对于编号为 $1 \sim 3$ 的测试点,保证: $n, m \leq 100$ 。

对于编号为 $4 \sim 6$ 的测试点,保证: $y_i = x_i + 1$ 。

对于编号为7~10的测试点,无额外保证。

任务调度 (turntable)

【题目描述】

任务调度是计算机系统中一项重要的工作。今天你的任务,就是模拟一个计算机系统模型的任务调度过程,并给出相应操作的执行结果。

在这个模型中,不同任务按照一定顺序到来,等待被执行。任务处理机制需要维护任务的等待情况,并在相应的时机选择相应的任务进行执行。

不同的任务之间以编号进行区分,为方便起见,按照任务到来的顺序,由先到后编号为 1,2,3...。每个任务都拥有一个重要程度 a_i ,所有任务的重要程度两两不同。

在一般情况下,处理任务应当按照任务到来的先后顺序依次处理,也就是说任务等 特应当形成一个队列。但考虑到不同任务的重要程度不同,这一原则可能被打破。具体 而言,有如下几种操作:

 $1 a_i$: 一个新的任务到来,其编号为先前出现过的最大任务编号 +1,其重要程度为 a_i ,在任务等待队列中被安排至队列末尾。考虑到计算机内存限制,同一时刻正在等待 的任务数量不能超过 m,因此如果当前已经有 m 个任务在等待,则这一操作将出现错误。

 $2 a_i x_i$: 一个新的任务到来,其编号为先前出现过的最大任务编号 +1,其重要程度为 a_i ,在任务等待队列中被安排至任务编号为 x_i 的任务前面并紧挨任务 x_i 的位置。如果当前已有 m 个任务在等待,或任务 x_i 当前不在等待队列中,这一操作将出现错误。

- 3: 任务处理机制将处理当前排在等待队列队首的任务,并将其从等待队列中移除。 若当前等待队列为空,这一操作将出现错误。
- 4: 任务处理机制将处理当前等待队列中重要程度最大的任务,并将其从等待队列中移除。若当前等待队列为空,这一操作将出现错误。

除上述提到的错误情况外,操作均可以成功执行。

最开始,任务等待队列为空,接下来你需要处理 n 个操作,每个操作形如上述几种之一。对于每个操作,你需要正确判断是否会出现错误,如果出现错误,需要输出一个 ERR ,并不予以执行(但对于操作 1 和 2 而言,仍会占用一个新的任务编号);如果可以成功执行,则需要输出一个正整数,表示这次操作涉及到的任务编号,在操作 1 和 2 中表示新到来的任务编号,操作 3 和 4 中表示被处理的任务编号。

【输入格式】

从标准输入读入数据。

输入的第一行包含两个正整数 n, m,分别表示需要执行的操作个数和队伍的最大容量。

接下来 n 行,每行按上述格式描述一个操作。

【输出格式】

输出到标准输出。

输出 n 行,每行表示对应操作执行的结果,格式如上所述。

【样例1输入】

```
12 3
1
2 1 2
  1 6
3
  2 1 2
5 2 7 3
6 1 5
  3
7
8
9 1 8
10 2 4 3
11 4
12 4
13 4
```

【样例1输出】

```
1
1
  2
2
3 3
  ERR
  ERR
6 1
  3
7
  6
8
9 ERR
10
  2
11
  ERR
12
```

【样例1解释】

第 4,5 次操作均因等待队列已满而出现错误,第 9 次操作因 x_i 不存在于等待队列中而出现错误,第 12 次操作因等待队列为空而出现错误。

【子任务】

对于全部的数据,保证: $1 \le n, m \le 5 \times 10^5$, $1 \le a_i, x_i \le n$, 所有 a_i 两两不同。

测试点编号	$n \leq$	$m \leq$	特殊条件
$1 \sim 2$	200	200	
$3 \sim 5$	3000	500	无
$6 \sim 7$	5×10^5	100	
$8 \sim 10$		5×10^5	没有操作2和4
11 ~ 13			没有操作 4
$14 \sim 16$			没有操作 2
$17 \sim 20$			无

集合(set)

【题目描述】

给定一棵 n 个点的有根树 T,树的节点从 $1 \subseteq n$ 标号,1 为根。每个点有两个整数 权值 a_i,b_i 。

称一个点集 S 是好的当且仅当其满足以下条件:

- $\forall u, v \in S$ 满足 $u \neq v$ 的祖先, $\exists x \notin S, y \in S$,使得
 - -x 在 u 到 v 的路径上;
 - $-b_y \leq b_x \circ$

给出 q 组询问,每组询问给出正整数 c,d,找到一个好的点集 S 最大化 $c \times (\sum_{u \in S} a_u) + d \times (\min_{u \in S} b_u)$ 。你只需要给出这个最大值。当 S 为空时,认为 $\min_{u \in S} b_u = 0$ 。

【输入格式】

从标准输入读入数据。

第一行两个整数 n,q,描述树的节点数和询问次数。

接下来 n-1 行,每行两个整数 u,v,描述树的一条边。

接下来 n 行, 第 i 行两个整数 a_i, b_i , 描述节点 i 的权值。

接下来 q 行,每行两个整数 c,d,描述一组询问。

【输出格式】

输出到标准输出。

对于每组询问输出一行一个整数表示答案。

【样例1输入】

```
1 3 4
2 1 2
3 1 3
4 1 -2
5 -2 1
6 -5 2
7 1 1
8 1 3
9 3 1
10 1 10
```

【样例1输出】

1 0

2 1

3 **1**

4 15

【样例1解释】

四组询问选择的集合依次是 Ø, {2}, {1}, {3}。

【子任务】

对于所有测试数据,

- $1 \le n, q \le 3 \times 10^5$;
- $1 \le u \ne v \le n$, 保证给出的 n-1 条边构成一棵树;
- $-10^4 \le a_i \le 10^4$, $-10^9 \le b_i \le 10^9$;
- $1 \le c, d \le 10^8$ °

子任务编号	$n \leq$	$q \leq$	特殊性质	分值
1	5	5		
2	10	10	无	5
3	300	300		5
4	3000	3000		9
5		3×10^5		13
6	7×10^4 3×10^5	200	$\forall 1 \leq i \leq n-1$, i 和 $i+1$ 有一条边	14
7		3×10^5		7
8				6
9	7×10^4 3×10^5	200	无	15
10		3×10^5		13
11				10