

# Рабочая тетрадь по Электротехнике

Татарников М.С.

Москва 2023

## Содержание

| 1 | Tex               | хника безопасности                                     | 3               |
|---|-------------------|--------------------------------------------------------|-----------------|
|   | 1.1               | Правила поведения в учебной мастерской:                | 3               |
|   | 1.2               | Правила безопасности в учебной мастерской:             | 3               |
| _ | -                 |                                                        | _               |
| 2 |                   | едение                                                 | 5               |
|   | 2.1               | Электрический ток                                      | 5               |
|   | 2.2               | Сила тока                                              | 5               |
|   | 2.3               | Напряжение                                             | 5               |
|   | 2.4               | эдс                                                    | 5               |
|   | 2.5               | Закон Ома для участка цепи                             | 5               |
|   | 2.6               | Закон Ома для полной цепи                              | 6               |
|   | 2.7               | Мультиметр                                             | 6               |
|   | 2.8               | Схематическое обозначение электронных компонентов      | 7               |
|   | 2.9               | Первая цепь. Измерение силы тока и напряжения          | 7               |
| 3 | Плот              | гочники питания                                        | 8               |
| J | 3.1               | Последовательное подключение батарей                   | 8               |
|   | $\frac{3.1}{3.2}$ |                                                        | 8               |
|   |                   | Параллельное подключение батарей                       | 9               |
|   | 3.3               | Внутреннее сопротивление батареи.                      |                 |
|   | 3.4               | *Порог включения                                       | 10              |
| 4 | Пет               | реключатели. Логические элементы.                      | 11              |
| _ | 4.1               |                                                        | 11              |
|   | 4.2               |                                                        | 11              |
|   | 4.3               |                                                        | 12              |
|   | 4.4               |                                                        | 13              |
|   | 4.5               |                                                        | 13              |
|   | 4.6               |                                                        | 14              |
|   | 4.7               | · · · · · · · · · · · · · · · · · · ·                  | 14              |
|   |                   | y                                                      |                 |
| 5 | Ист               | гочники света. Введение в теорию полупроводников.      | 15              |
|   | 5.1               | PN-переход. Введение                                   | 15              |
|   | 5.2               | Параллельное и последовательное подключение светодиода | 15              |
|   | 5.3               | Подключение светодиода с различным сопротивлением      | 16              |
|   | 5.4               | Поочередное свечение лампы и светодиода                | 17              |
| _ | -                 |                                                        |                 |
| 6 |                   |                                                        | 18              |
|   |                   | Работа и мощность                                      |                 |
|   |                   | •                                                      | 18              |
|   | 6.3               | 1 1 1 1 E                                              | 18              |
|   | 6.4               | Резистор как ограничитель тока                         | 19              |
|   | 6.5               | Реостат как ограничитель тока                          | 19              |
|   | 6.6               |                                                        | 20              |
|   | 6.7               | Двойной делитель напряжения                            | 21              |
| 7 | Coe               | единение элементов. Нелинейные элементы.               | 23              |
| • | 7.1               | Вольт-амперная характеристика (ВАХ)                    | 23              |
|   | 7.2               | Последовательное соединение резисторов                 | 23              |
|   | 7.3               | Параллельное соединение резисторов                     | $\frac{23}{24}$ |
|   | $7.3 \\ 7.4$      | Лампа накаливания как нелинейный элемент               | $\frac{24}{24}$ |
|   | $7.4 \\ 7.5$      |                                                        |                 |
|   |                   |                                                        | 25              |
|   | 7.6               | Диод как нелинейный элемент                            | 26              |
| 8 | Кат               | гушка индуктивности                                    | 28              |
| J | 8.1               | Предисловие                                            | 28              |
|   | J.1               | 8.1.1 Вектор магнитной индукции                        | 28              |
|   |                   | 8.1.2 Поток вектора магнитной индукции                 | 28              |
|   |                   | 8.1.3 Связь между потоком и силой тока                 | 28              |
|   | 8.2               | Катушка индуктивности и индуктивность                  | 28              |
|   | 8.3               | Электромагнитная индукция                              | 29              |
|   | $\circ.0$         | олоктромагитпал ипдукция                               | ∠9              |

|    |       | 8.3.1 Закон Фарадея                                                                                      |    |
|----|-------|----------------------------------------------------------------------------------------------------------|----|
|    | 8.4   | Получение электричества при помощи катушки индуктивности и постоянного магнита                           |    |
|    | 8.5   | Электромагнит                                                                                            |    |
|    | 8.6   | Проверка явления самоиндукции                                                                            | 30 |
| 9  | Эле   | ектродвигатель                                                                                           | 32 |
|    | 9.1   | Устройство двигателя постоянного тока                                                                    | 32 |
|    | 9.2   | Изменение направления и скорости вращения двигателя                                                      | 32 |
|    | 9.3   | Электродвигатель в качестве генератора                                                                   | 33 |
|    | 9.4   | Регулирование частоты вращения двигателя и реверс двигателя                                              | 33 |
|    | 9.5   | Пуск двигателя                                                                                           | 33 |
| 10 | Кон   | иденсаторы                                                                                               | 35 |
|    | 10.1  | Устройство конденсатора                                                                                  | 35 |
|    |       | Время зарядки конденсатора                                                                               | 35 |
|    | 10.3  | Сопротивления конденсатора                                                                               | 37 |
|    |       | Зарядка и разрядка конденсатора                                                                          |    |
|    |       | Параллельное включение конденсаторов                                                                     |    |
|    | 10.6  | Последовательное включение конденсаторов                                                                 | 39 |
| 11 | Тра   | нзисторы                                                                                                 | 40 |
|    | 11.1  | Принцип работы транзистора                                                                               | 40 |
|    | 11.2  | Усиление с помощью PNP-транзистора                                                                       | 40 |
|    | 11.3  | Усиление с помощью NPN-транзистора                                                                       | 40 |
|    | 11.4  | Составной транзистор                                                                                     | 41 |
| 12 | : Гро | мкоговорители и микрофоны                                                                                | 42 |
|    | 12.1  | Устройство микрофона и динамика                                                                          | 42 |
|    | 12.2  | Проверка работоспособности динамика                                                                      | 42 |
|    | 12.3  | Светомузыка                                                                                              | 43 |
| 13 | гоФ   | горезистор                                                                                               | 44 |
|    | 13.1  | Устройство фоторезистора                                                                                 | 44 |
|    | 13.2  | Автоматический уличный фонарь                                                                            | 44 |
|    | 13.3  | Проверка зависимости сопротивления фоторезистора от освещенности                                         | 44 |
| 14 | Дем   | иовариант контрольной работы №1                                                                          | 46 |
| 15 | Дем   | иовариант контрольной работы $N\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 46 |
| 16 | Спи   | исок питературы                                                                                          | 46 |

### 1 Техника безопасности

Учебная мастерская - это учебное помещение, где размещен ручной инструмент, приспособления, станки и верстаки. С их помощью ты моделируешь, конструируешь и изготовляешь различные изделия или изучаешь свойства материалов. Работая в учебных мастерских, помни о следующих требованиях:

### 1.1 Правила поведения в учебной мастерской:

- 1. На урок приходить вовремя.
- 2. В учебную мастерскую входить только со звонком.
- 3. На урок приходить подготовленным: с собой иметь письменные принадлежности, тетрадь, и тд.
- 4. После звонка занять своё рабочее место. Соблюдать дисциплину во время урока.
- 5. Своё рабочее место содержать в чистоте и порядке. Не загромождать проходы сумками и портфелями.
- 6. Соблюдать правила пожарной безопасности.
- 7. Соблюдать правила личной гигиены и санитарные нормы.
- 8. Соблюдать правила поведения в учебной мастерской.
- 9. Соблюдать правила электробезопасности:
  - (а) запрещается самовольно вкл/выкл центральный электрощит;
  - (b) запрещается использовать электроустановки без разрешения учителя;
  - (с) запрещается использовать бытовые электроприборы без разрешения учителя.
- 10. По территории мастерской передвигаться только шагом, не менять рабочее место без разрешения учителя.

### 1.2 Правила безопасности в учебной мастерской:

- 1. Беспрекословно выполнять указания учителя.
- 2. Требования к одежде:
  - (а) одежда должна быть без внешних разрывов;
  - (b) должна быть в прилежном состоянии, иметь все пуговицы и т.д.
- 3. Запрещается носить колющие и режущие предметы в карманах.
- 4. Запрещается передавать колющие и режущие предметы режущей стороной вперёд.
- 5. Во избежание травм запрещается оставлять инструменты на краю верстка.
- 6. Работать только исправным инструментом.
- 7. При нахождении неисправного инструмента немедленно сообщить дежурному или учителю.
- 8. Бережно и аккуратно относиться к инструментам и приспособлениям.
- 9. В случае ранения, а также при недомогании немедленно обращаться за помощью к учителю.
- 10. Запрещается брать голыми руками горячие предметы, оголенные провода, электрические розетки, кабельные соединения.

#### Не знаешь — не лезь.

Каждый, кто хочет приступить к работе с электричеством, обязан знать немного физики, математики и химии, но много техники безопасности, а также много-много всяких мелочей. Все это составляет общую картину мира Электричества, который считается одной из малоизученных сфер науки. Мы не знаем доподлинно обо всех процессах и явлениях, потому что попросту не видим всего, что происходит в электрооборудовании и его частях. Многое принято как должное, или доказано по косвенным признакам и измерениям, ведь мы не может пощупать электрическое поле и увидеть напряжение.

Электричество — это ОЧЕНЬ опасно, но безумно интересно!

## 2 Введение

## 2.1 Электрический ток

| Элек                | трический ток —                                       |
|---------------------|-------------------------------------------------------|
| Услон               | вия возникновения электрического тока:                |
| 1.                  |                                                       |
| 2.                  |                                                       |
| 3.                  |                                                       |
| 2.2                 | Сила тока                                             |
|                     | тока —                                                |
|                     |                                                       |
|                     | Формула силы тока:                                    |
|                     |                                                       |
| 2.3                 | Напряжение                                            |
| Напр                | — — — — — — — — — — — — — — — — — — —                 |
|                     | Формула напряжения:                                   |
| 2.4                 | ЭДС                                                   |
|                     | _ <u></u>                                             |
|                     | чие напряжения от ЭДС:                                |
| 1.                  |                                                       |
| 2.                  |                                                       |
| <b>2.5</b><br>Закон | Закон Ома для участка цепи<br>н Ома для участка цепи— |
|                     |                                                       |

|           | Формула:                                       |
|-----------|------------------------------------------------|
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
| 2.6       | Закон Ома для полной цепи                      |
| 2         | O <del></del>                                  |
| заког     | н Ома для полной цепи —                        |
|           |                                                |
|           | Формула:                                       |
|           | Формула.                                       |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
| 2.7       | Мультиметр                                     |
| Муль      | тиметр —                                       |
| 1,1,5,115 |                                                |
|           |                                                |
|           | Howeneywe away move                            |
|           | Измерение силы тока                            |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           | тиметр подключается —                          |
|           | ы вставляются в клемы при токе порядка 100 мА: |
|           | Черный –                                       |
|           | Красный –                                      |
| При       | гоке порядка $1A$ :                            |
|           | Черный –                                       |
|           | Красный –                                      |
|           | Измерение напряжения                           |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
|           |                                                |
| M         |                                                |
|           | тиметр подключается —                          |
|           | ы вставляются в клемы:                         |
|           | Черный –                                       |
|           | Красный –                                      |

### 2.8 Схематическое обозначение электронных компонентов



## 2.9 Первая цепь. Измерение силы тока и напряжения

- 1. Соберите схему, изображенную на рисунке 1.
- 2. Измерьте силу тока и напряжение на лампе.
- 3. Рассчитайте сопротивление лампы по закону Ома для участка цепи.
- 4. Занесите значения в таблицу 1.
- 5. Предположите и запишите в вывод, что нужно измерить, чтобы рассчитать сопротивление лампы по закону Ома для полной цепи.



Рис. 1: Измерение силы тока и напряжения

Таблица 1: Измерение силы тока и напряжения

| Сила тока I, А | Напряжение U, В | Сопротивление R, Ом |
|----------------|-----------------|---------------------|
|                |                 |                     |
|                |                 |                     |

| Вывод — . |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

## 3 Источники питания

### 3.1 Последовательное подключение батарей.

- 1. Соберите по очереди схемы, изображенные на рисунке 2.
- 2. Сравните яркость лампы во всех трех случаях.
- 3. Укажите направление тока для каждой цепи.
- 4. Измерьте напряжение на лампе, напряжение на батарее, силу тока в цепи в каждом случае и занесите полученные значения в таблицу 2.
- 5. Запишите вывод о полученных результатах.



Рис. 2: Последовательное подключение источников тока.

Таблица 2: Последовательное подключение

| radinique 2. rideite de bareibne e nograno tenne  |  |  |  |  |  |  |  |
|---------------------------------------------------|--|--|--|--|--|--|--|
| Схема   ЭДС Е, В   Сила тока І, А   Напряжение U, |  |  |  |  |  |  |  |
| a.                                                |  |  |  |  |  |  |  |
| б.                                                |  |  |  |  |  |  |  |
| В.                                                |  |  |  |  |  |  |  |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

### 3.2 Параллельное подключение батарей.

- 1. Соберите по очереди схемы, изображенные на рисунке 3.
- 2. Для каждого случая выполните следующее задание.
  - (а) Замкните сначала один ключ, пронаблюдайте яркость лампы.
  - (b) Измерьте силу тока в цепи и напряжение на лампе. Занесите полученные данные в таблицу.
  - (с) Замкните оба ключа, сравните яркость с предыдущим случаем.
  - (d) Измерьте силу тока в цепи и напряжение на лампе. Занесите полученные данные в таблицу 3.
- 3. Запишите вывод о полученных результатах.



Рис. 3: Параллельное подключение источников тока.

Таблица 3: Параллельное подключение источников

| Схема | Положение ключей | Сила тока I, А | Напряжение U, В |
|-------|------------------|----------------|-----------------|
| 2.a.  | замкнут 1 ключ   |                |                 |
| 2.a.  | замкнуто 2 ключа |                |                 |
| 2.6.  | замкнут 1 ключ   |                |                 |
| 2.0.  | замкнут 2 ключа  |                |                 |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

## 3.3 Внутреннее сопротивление батареи.

- 1. Соберите схему, изображенную на рисунке 4.
- 2. Замкните ключ
- 3. Измерьте ЭДС батареи и силу тока в цепи
- 4. Рассчитайте внутреннее сопротивление r по формуле:

$$r = \frac{\mathscr{E}}{I}$$

- 5. Занесите значение в таблицу 4.
- 6. Сделайте вывод о возможности пренебрежения внутреннего сопротивления, по сравнению с резисторами, входящими комплект.



Рис. 4: Внутреннее сопротивление источника.

Таблица 4: Внутреннее сопротивление

| ЭДС б<br>Е, | јатареи<br>, В | Сила тока короткого замыкания $I_{\kappa_3},  {\rm A}$ | Внешнее сопротивление r, Ом |
|-------------|----------------|--------------------------------------------------------|-----------------------------|
|             |                |                                                        |                             |

|    | Вывод —                                                                                               |     |
|----|-------------------------------------------------------------------------------------------------------|-----|
|    |                                                                                                       |     |
| 4  | *Порог включения                                                                                      |     |
| 1. | Придумайте и соберите схему для исследования разной силы тока и напряжения работающей лам             | пы. |
| 2. | Нарисуйте вашу схему в прямоугольнике ниже.                                                           |     |
| 3. | Определите минимальное значение силы тока и напряжения работающей лампы. Занесите значен в таблицу 5. | RNE |
| 4. | Опишите в выводе принцип работы вашей схемы и метод нахождения и расчета значений.                    |     |
|    |                                                                                                       |     |
|    | Рис. 5: Порог включения                                                                               |     |
|    | Таблица 5: Порог включения $I_{min},  \mathrm{A} \mid U_{min},  \mathrm{B}$                           |     |

3.4

## 4 Переключатели. Логические элементы.

## 4.1 Логический элемент "НЕ".

- 1. Соберите схему, изображенную на рисунке 6.
- 2. Заполните таблицу истинности 6, проверьте ее с помощью схемы.



Рис. 6: Логический элемент "НЕ"

Таблица 6: Таблица истинности "НЕ"

| таолица от те | doining norminocin iii |
|---------------|------------------------|
| X             | Y                      |
|               |                        |
|               |                        |

| Вывод — _ |  |  |  |
|-----------|--|--|--|
| -71       |  |  |  |
|           |  |  |  |

## 4.2 Логический элемент "И".

- 1. Соберите схему, изображенную на рисунке 7.
- 2. Измерьте ЭДС источника.
- 3. Измерьте силу тока и напряжение светодиода, занесите значения в таблицу 7.

Таблица 7: Табица истинности "И"

| $X_1$ | $X_2$ | Y | ЭДС батареи $\mathscr{E}, B$ | Сила тока в светодиоде $I$ , м $A$ | Напряжение на светодиоде $U, B$ |
|-------|-------|---|------------------------------|------------------------------------|---------------------------------|
| 0     | 0     |   |                              |                                    |                                 |
| 0     | 1     |   |                              |                                    |                                 |
| 1     | 0     |   |                              |                                    |                                 |
| 1     | 1     |   |                              |                                    |                                 |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |



Рис. 7: Логический элемент "И"

## 4.3 Логический элемент "ИЛИ".

- 1. Соберите схему, изображенную на рисунке 8.
- 2. Измерьте ЭДС источника.
- 3. Измерьте силу тока и напряжение светодиода, занесите значения в таблицу 8.



Рис. 8: Логический элемент "ИЛИ"

Таблица 8: Табица истинности "ИЛИ"

|       |       |   | Сила тока    | Напряжение    |
|-------|-------|---|--------------|---------------|
| $X_1$ | $X_2$ | Y | в светодиоде | на светодиоде |
|       |       |   | I, м $A$     | U, B          |
| 0     | 0     |   |              |               |
| 0     | 1     |   |              |               |
| 1     | 0     |   |              |               |
| 1     | 1     |   |              |               |

| Вывод — . |  |  |  |
|-----------|--|--|--|
| , ,       |  |  |  |
|           |  |  |  |
|           |  |  |  |

## 4.4 Логический элемент "И НЕ".

- 1. Соберите схему, изображенную на рисунке 9.
- 2. Заполните таблицу истинности 9, проверьте ее с помощью схемы.





Рис. 9: Логический элемент "И НЕ"

Таблица 9: Таблица истинности "И НЕ".

| $X_1$ | $X_2$ | Y |
|-------|-------|---|
| 0     | 0     |   |
| 0     | 1     |   |
| 1     | 0     |   |
| 1     | 1     |   |

Вывод — \_\_\_\_\_

## 4.5 Логический элемент "ИЛИ НЕ".

- 1. Соберите схему, изображенную на рисунке 10.
- 2. Заполните таблицу истинности 10, проверьте ее с помощью схемы.





Рис. 10: Логический элемент "ИЛИ НЕ"

Вывод — \_\_\_\_\_

Таблица 10: Таблица истинности "ИЛИ НЕ".

| $X_1$ | $X_2$ | Y |
|-------|-------|---|
| 0     | 0     |   |
| 0     | 1     |   |
| 1     | 0     |   |
| 1     | 1     |   |

### 4.6 Ползунковый переключатель.

- 1. Соберите схему, представленную на рисунке 11.
- 2. Переведите движок переключателя  $K_2$  в нижнее положение. Замкните геркон  $K_1$  и наблюдайте за свечением лампы.
- 3. Переместите движок переключателя  $K_2$  в верхнее положение и пронаблюдайте работу звонка.
- 4. Запишите выводы о предназначениях ползункового переключателя в электротехнических схемах.



Рис. 11: Ползунковый переключатель

|      | Вывод —                                     |
|------|---------------------------------------------|
|      |                                             |
|      |                                             |
|      |                                             |
| 4.7  | Коммутационная схема на двух переключателях |
| Выво | д —                                         |
|      |                                             |
|      |                                             |

| 5     | Источники света. Введение в теорию полупроводников.                                                             |
|-------|-----------------------------------------------------------------------------------------------------------------|
| Лам   | та —                                                                                                            |
|       |                                                                                                                 |
| Дио   | д —                                                                                                             |
|       |                                                                                                                 |
| Све   | годиод —                                                                                                        |
|       |                                                                                                                 |
| Пол   | упроводники —                                                                                                   |
|       |                                                                                                                 |
| 5.1   | PN-переход. Введение                                                                                            |
|       | упроводник N-типа —                                                                                             |
|       |                                                                                                                 |
| Пол   | упроводник Р-типа —                                                                                             |
| Пря   | мое и обратное подключение диода:                                                                               |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
|       |                                                                                                                 |
| Гпат  | вное свойство диода/светодиода —                                                                                |
| 1,101 |                                                                                                                 |
| 5.2   | Параллельное и последовательное подключение светодиода.                                                         |
| 1     | . Соберите по очереди схемы, указанные на рисунке 12.                                                           |
| 2     | . Измерьте ЭДС батареи.                                                                                         |
| 3     | . Укажите направление тока при всех замкнутых кнопках.                                                          |
| 4     | . Замкните ключ К.                                                                                              |
| 5     | . Для каждого случая выполните следующее задание:                                                               |
|       | (a) Поочередно замыкая ключи (только для первого случая), измерьте напряжение и силу тока на каждом светодиоде. |

(b) Поменяйте полярность источника на обратную.

- (с) Выполните пункт (а) еще раз.
- 6. Занесите все результаты в таблицу 11.
- 7. Сделайте выводы по наблюдениям.



Рис. 12: Параллельное и последовательное подключение светодиода

Таблица 11: Прямое и обратное подключение светодиода.

| Подключение     | Полярность | $ЭДС$ батареи $\mathscr{E}$ , $B$ | $U_{\kappa p}, B$ | $U_{\text{жел}}$ , В | $U_{\rm зел}$ , В |
|-----------------|------------|-----------------------------------|-------------------|----------------------|-------------------|
| Параллельно     | Прямая     |                                   |                   |                      |                   |
| параллельно     | Обратная   |                                   |                   |                      |                   |
| Последовательно | Прямая     |                                   |                   |                      |                   |
| последовательно | Обратная   |                                   |                   |                      |                   |

Вывод — \_\_\_\_\_

### 5.3 Подключение светодиода с различным сопротивлением.

- 1. Соберите схему, указанную на рисунке 13.
- 2. При замкнутом ключе измерьте напряжение на каждом светодиоде.
- 3. Занесите результаты в таблицу 12.
- 4. Запишите вывод о зависимости яркости светодиода от номинала сопротивления.



Рис. 13: Подключение светодиода с различным сопротивлением

Таблица 12: Зависимость яркости светодиода от сопротивления.

| Схема        | $U_1$ , B | $U_2$ , B | $U_3$ , B | $U_4$ , B |
|--------------|-----------|-----------|-----------|-----------|
| Ключ замкнут |           |           |           |           |

| Вывод — |  |  |  |
|---------|--|--|--|
| , ,     |  |  |  |
|         |  |  |  |

### 5.4 Поочередное свечение лампы и светодиода.

- 1. Соберите схему, указанную на рисунке 14.
- 2. Замкните ключ К1, пронабдюдайте горение лампы и светодиода.
- 3. Измерьте силу тока и напряжение на лампе и светодиоде. Занесите результаты в таблицу.
- 4. Замкните ключ К1 и К2, пронаблюдайте горение лампы и светодиода.
- 5. Измерьте силу тока и напряжение на лампе и светодиоде. Занесите результаты в таблицу 13.
- 6. Запишите вывод о том, почему в одном случае горит только лампа, а в другом только светодиод.



Рис. 14: Поочередное свечение светодиода и лампы

Таблица 13: Поочередное свечение лампы и светодиода.

| Схема        | Сила тока             | Сила тока                     | Напряжение             | Напряжение                        |
|--------------|-----------------------|-------------------------------|------------------------|-----------------------------------|
|              | в лампе $I_{\pi}$ , А | в светодиоде $I_{\rm cb}$ , А | на лампе $U_{\pi}$ , В | на светодиоде $U_{\rm cb},{ m B}$ |
| К1 замкнут   |                       |                               |                        |                                   |
| К2 разомкнут |                       |                               |                        |                                   |
| К1 замкнут   |                       |                               |                        |                                   |
| К2 замкнут   |                       |                               |                        |                                   |

| Вывод — |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |

# 6 Резисторы, реостаты и потенциометры.

| 6.1    | Работа и мощность                 |
|--------|-----------------------------------|
| Зако   | н Джоуля-Ленца —                  |
|        |                                   |
|        |                                   |
|        | Формула Закона Джоуля-Ленца:      |
|        |                                   |
|        |                                   |
|        |                                   |
| Мощ    | ность —                           |
|        |                                   |
|        | - N                               |
|        | Формула Мощность:                 |
|        |                                   |
|        |                                   |
|        |                                   |
|        |                                   |
| 6.2    | Резистор                          |
| Резис  | стор —                            |
|        |                                   |
|        |                                   |
|        | Формула сопротивления проводника: |
|        |                                   |
|        |                                   |
|        |                                   |
|        |                                   |
| 6.3    | Реостат и потенциометр            |
| Peoc   | Tat —                             |
| 2 000. |                                   |
| Поте   | енциометр —                       |
|        |                                   |
| Разл   | ичия и применение:                |
| 1.     |                                   |
|        |                                   |
| ~      |                                   |
| 2.     |                                   |
|        |                                   |

### 6.4 Резистор как ограничитель тока

- 1. Соберите схему, указанную на рисунке 15. Укажите в ней направление тока при замкнутом выключателе.
- 2. Измерьте значение ЭДС батареи и занесите это значение в таблицу.
- 3. Для каждого сопротивления  $R_1, R_2, R_3$  выполните следующее задание:
  - (a) Измерьте силу тока в цепи  $I_{\text{изм}}$ .
  - (b) Рассчитайте силу тока с помощью закона Ома  $I_{\text{pacy}}$ .
  - (c) Расчитайте, какая мощность рассеивается на резисторе с помощью формулы P = UI.
  - (d) Занесите данные в таблицу 14.
- 4. Запишите выводы о зависимости силы тока в цепи от ее внешнего сопротивления.



Рис. 15: Резистор как ограничитель тока

Таблица 14: Резистор как ограничитель тока

| Tatolinga III I concrep nam or paint mroup roma |                   |                                 |                                |                       |  |  |  |  |
|-------------------------------------------------|-------------------|---------------------------------|--------------------------------|-----------------------|--|--|--|--|
| Crove                                           | ЭДС батареи       | Расчетная сила тока             | Измеренная сила тока           | Мощность              |  |  |  |  |
| Схема                                           | $\mathscr{E}$ , B | в резисторе $I_{\text{расч}}$ , | в резисторе $I_{\text{изм}}$ , | на резисторе $P$ , Вт |  |  |  |  |
| $R_1 = 1 \ kOm$                                 |                   |                                 |                                |                       |  |  |  |  |
| $R_2 = 5.1 \ kOm$                               |                   |                                 |                                |                       |  |  |  |  |
| $R_3 = 56 \ kOm$                                |                   |                                 |                                |                       |  |  |  |  |

| Вывод — |  |  |
|---------|--|--|
| - 7 1   |  |  |
|         |  |  |

#### 6.5 Реостат как ограничитель тока

- 1. Соберите схему, указанную на рисунке 16. Укажите в ней направление тока при замкнутом ключе.
- 2. Выполните следующее задание для реостатов с пределом 1 кОм и 10 кОм:
  - (а) Замкните ключ К.
  - (b) Установите ползунок реостата в крайнее левое положение А.
  - (c) Двигая ползунок реостата из крайнего левого положения A в крайнее правое положение B. Измерьте сопротивление реостата между точками A и C с помощью омметра, а также силу тока в цепи для пяти различных положение движка реостата (включая крайнее левое и крайнее правое).
  - (d) Результаты измерений занесите в таблицу 15

3. Запишите вывод о том, как изменяется сила тока в цепи при движении ползунка реостата из крайнего левого положения A в крайнее правое положение B.



Рис. 16: Реостат как ограничитель тока

Таблица 15: Реостат как ограничитель тока

| №    | Положение движка реостата | Сопротивление  | Сила тока   | Сопротивление  | Сила тока   |
|------|---------------------------|----------------|-------------|----------------|-------------|
| J./~ |                           | реостата, R Ом | в цепи, І А | реостата, R Ом | в цепи, І А |
|      |                           | 1 кОм          |             | 10 кОм         |             |
| 1    | крайнее левое             |                |             |                |             |
| 2    | промежуточное             |                |             |                |             |
| 3    | промежуточное             |                |             |                |             |
| 4    | промежуточное             |                |             |                |             |
| 5    | крайнее правое            |                |             |                |             |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

### 6.6 Реостат как делитель напряжения

- 1. Соберите схему, указанную на рисунке 17.
- 2. Замкните переключатель К. Поставьте движок реостата в крайнее верхнее положение А. Укажите направление силы тока в ней.
- 3. Двигая движок реостата из крайнего верхнего положения в крайнее нижнее, измерьте напряжения на светодиодах для четырех различных положений движка реостата (включая крайнее верхнее и крайнее нижнее).
- 4. Результаты измерений занесите в таблицу 16.
- 5. Какие светодиоды горят и от чего зависит яркость их свечения? Запишите ответ в выводе.
- 6. Запишите вывод о возможности использования реостата в качестве делителя напряжения.



Рис. 17: Делитель напряжения

Таблица 16: Реостат как делитель напряжения

|      | Taevinga 10. 1 eeestat man gevintevib manpinneniin |                    |        |                      |        |  |  |  |
|------|----------------------------------------------------|--------------------|--------|----------------------|--------|--|--|--|
| Nº   | Положение                                          | Красный светодиод  |        | Зеленый светодиод    |        |  |  |  |
| 11/- | движка реостата                                    | Напряжение         | Горит  | Напряжение           | Горит  |  |  |  |
|      |                                                    | $U_{\kappa p}$ , B | да/нет | $U_{\text{зел}}$ , В | да/нет |  |  |  |
| 1    | Крайнее левое                                      |                    |        |                      |        |  |  |  |
| 2    | промежуточное                                      |                    |        |                      |        |  |  |  |
| 3    | промежуточное                                      |                    |        |                      |        |  |  |  |
| 4    | промежуточное                                      | _                  |        |                      |        |  |  |  |
| 5    | Крайнее правое                                     |                    |        |                      |        |  |  |  |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

### 6.7 Двойной делитель напряжения

- 1. Соберите схему, указанную на рисунке 18.
- 2. Замкните выключатель К. Регулируя положения движков реостатов, установите их в таком положении, чтобы горели все светодиоды (при необходимости добавьте 1-2 батарейных отсека).
- 3. Укажите направление токов в схеме.
- 4. Измерьте значения напряжений на светодиодах, а также ЭДС батареи.
- 5. Результаты измерения занесите в таблицу 17.
- 6. Проверьте выполнение равенства  $\mathscr{E} = U_{\rm кp} + U_{\rm жел} + U_{\rm зел}.$
- 7. Запишите вывод о возможности использования реостатов в качестве управляющих элементов по распределению напряжения в нагрузках.



Рис. 18: Двойной делитель напряжения

Таблица 17: Двойной делитель напряжения

| ЭДС батареи | Напряжение                | Напряжение           | Напряжение           |
|-------------|---------------------------|----------------------|----------------------|
| €, B        | $U_{\rm \kappa p},{ m B}$ | $U_{\text{жел}}$ , В | $U_{\text{зел}}$ , В |
|             | 1                         |                      |                      |

| Вывод — . |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

## 7 Соединение элементов. Нелинейные элементы.

| 7.1 | Вольт-амперная | характеристика | (BAX) | J |
|-----|----------------|----------------|-------|---|
|-----|----------------|----------------|-------|---|

| BAX —                 |  |  |
|-----------------------|--|--|
|                       |  |  |
|                       |  |  |
| Линейные элементы —   |  |  |
|                       |  |  |
|                       |  |  |
| Нелинейные элементы — |  |  |
|                       |  |  |
|                       |  |  |

### 7.2 Последовательное соединение резисторов

- 1. Соберите схему, представленную на рисунке 19.
- 2. Выполните следующее задание при замкнутом и разомкнутом ключе К2:
  - (a) Замкните выключатель K1. Горит ли светодиод и почему? Измерьте силу тока в светодиоде. Результаты измерений занесите в таблицу 18.
  - (b) Укажите направление силы тока в схеме.
  - (c) Рассчитайте общее сопротивление цепи, используя измеренные значения ЭДС и силы тока в цепи. Результаты расчетов занесите в таблицу 18. Проверьте выполнение равенства  $R_{\rm oбщ}=R_1+R_2.$
- 3. Запишите выводы о характере зависимости общего сопротивления цепи от сопротивлений ее частей при их последовательном соединении. Запишите также объяснение выполнения/невыполнения равенства в пункте 2c.



Рис. 19: Последовательное соединение резисторов

Таблица 18: Последовательное соединение резисторов

| Схема        | ЭДС батареи<br>&, В | Сила тока<br>в цепи<br><i>I</i> , мА | Напряжение $U_{\text{жел}}, B$ | Сопротивление светодиода $R_{\rm cs}$ , Ом | Горит светодиод?<br>да/нет |
|--------------|---------------------|--------------------------------------|--------------------------------|--------------------------------------------|----------------------------|
| К2 разомкнут |                     |                                      |                                |                                            |                            |
| К2 замкнут   |                     |                                      |                                |                                            |                            |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |

### 7.3 Параллельное соединение резисторов

- 1. Соберите схему, представленную на рисунке 20.
- 2. Выполните следующее задание при замкнутом и разомкнутом ключе  $K_2$ :
  - (a) Замкните выключатель  $K_1$ . Горит ли светодиод и почему? Измерьте силу тока в светодиоде. Результаты измерений занесите в таблицу 19.
  - (b) Укажите направление силы тока в схеме.
  - (c) Рассчитайте общее сопротивление цепи, используя измеренные значения ЭДС и силы тока в цепи. Результаты расчетов занесите в таблицу 19. Проверьте выполнение равенства  $\frac{1}{R_{06\text{III}}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}$ .
- 3. Запишите выводы о характере зависимости общего сопротивления цепи от сопротивлений ее частей при их последовательном соединении. Запишите также объяснение выполнения/невыполнения равенства в пункте 2c.



Рис. 20: Параллельное соединение резисторов

Таблица 19: Параллельное соединение резисторов

| Схема        | ЭДС батареи<br>&, В | Сила тока<br>в цепи<br><i>I</i> , мА | Напряжение $U_{\text{жел}}$ , В | Сопротивление светодиода $R_{\rm cb},  {\rm Om}$ | Горит светодиод?<br>да/нет |
|--------------|---------------------|--------------------------------------|---------------------------------|--------------------------------------------------|----------------------------|
| К2 разомкнут |                     |                                      |                                 |                                                  |                            |
| К2 замкнут   |                     |                                      |                                 |                                                  |                            |

| Вывод — - |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |

#### 7.4 Лампа накаливания как нелинейный элемент

- 1. Соберите схему, представленную на рисунке 21. Укажите направление силы тока в ней при замкнутом ключе К.
- 2. Следуйте этому заданию до тех пор, пока в схеме не окажется 4 батарейных отсека.
  - (а) Измерьте силу тока в лампе и напряжение на ней при замкнутом ключе К. Результаты измерений занесите в таблицу 20.
  - (b) Поменяйте полярность лампы и повторите пункт 2 (При этом значения напряжения и силы тока быть отрицательными).
  - (с) Добавьте в схему еще один батарейный отсек.

- 3. Используя измеренные значения, рассчитайте сопротивление лампы в каждом случае и занесите его значение в таблицу 20.
- 4. Сравните полученные сопротивления лампы в различных опытах. Учитывая, что чем больше напряжение на лампе, тем больше яркость ее свечения, а значит и температура, сделайте предположение о том, как изменяется сопротивление лампы в зависимости от ее температуры? Запишите это в выводе.
- 5. Постройте в масштабе на миллиметровке вольт-амперную характеристику лампы накаливания (график зависимости напряжения на лампе от силы протекающего через нее тока).
- 6. Запишите вывод, в котором укажите: является ли лампа накаливания нелинейным элементом?



Рис. 21: Исследование лампы на нелинейность

Таблица 20: Исследование лампы на нелинейность

| Количество |            | Сила тока | Напряжение на | Сопротивление |
|------------|------------|-----------|---------------|---------------|
| батарейных | Полярность | в лампе   | лампе         | лампы         |
| отсеков    |            | І, мА     | U, B          | R, Ом         |
| 1          | прямая     |           |               |               |
| 1          | обратная   |           |               |               |
| 2          | прямая     |           |               |               |
| 2          | обратная   |           |               |               |
| Q          | прямая     |           |               |               |
| 3          | обратная   |           |               |               |
| 4          | прямая     |           |               |               |
|            | обратная   |           |               |               |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

### 7.5 Звонок как нелинейный элемент

- 1. Соберите схему, представленную на рисунке 22. Укажите направление силы тока в ней при замкнутом ключе К.
- 2. Двигая движок реостата из крайнего верхнего положения в крайнее нижнее, измерьте напряжение на звонке и силу тока в нем для пяти различных положений движка реостата для прямой и обратной полярности (при этом значения напряжения и силы тока быть отрицательными) включения звонка (включая крайнее верхнее и крайнее нижнее). Результаты измерений занесите в таблицу 21.
- 3. Используя измеренные значения, рассчитайте сопротивление звонка в каждом случае и занесите его значение в таблицу 21.
- 4. Сравните полученные сопротивления звонка в различных опытах. Как изменяется сопротивление звонка в зависимости от напряжения на нем и его полярности?

- 5. Постройте в масштабе на миллиметровке вольт-амперную характеристику звонка (график зависимости напряжения на звонке от силы протекающего через нее тока).
- 6. Запишите вывод, в котором укажите: является ли звонок нелинейным элементом?



Рис. 22: Исследование звонка на нелинейность

Таблица 21: Исследование звонка на нелинейность

| Положение |            | Сила тока | Напряжение на | Сопротивление |
|-----------|------------|-----------|---------------|---------------|
| движка    | Полярность | в лампе   | лампе         | лампы         |
| реостата  |            | І, мА     | U, B          | R, Ом         |
| 1         | прямая     |           |               |               |
| 1         | обратная   |           |               |               |
| 2         | прямая     |           |               |               |
| 2         | обратная   |           |               |               |
| 3         | прямая     |           |               |               |
| 3         | обратная   |           |               |               |
| 4         | прямая     |           |               |               |
| 4         | обратная   |           |               |               |
| 5         | прямая     |           |               |               |
|           | обратная   |           |               |               |

| Вывод — |  |  |
|---------|--|--|
|         |  |  |
|         |  |  |

### 7.6 Диод как нелинейный элемент

- 1. Соберите схему, представленную на рисунке 23. Укажите направление силы тока в ней при замкнутом ключе К.
- 2. Двигая движок реостата из крайнего верхнего положения в крайнее нижнее, измерьте напряжение на диоде и силу тока в нем для пяти различных положений движка реостата для прямой и обратной полярности (при этом значения напряжения и силы тока быть отрицательными) включения звонка (включая крайнее верхнее и крайнее нижнее). Результаты измерений занесите в таблицу 22.
- 3. Используя измеренные значения, рассчитайте сопротивление диода в каждом случае и занесите его значение в таблицу 22.
- 4. Сравните полученные сопротивления диода в различных опытах. Как изменяется сопротивление звонка в зависимости от напряжения на нем и его полярности?
- 5. Постройте в масштабе на миллиметровке вольт-амперную характеристику диода (график зависимости напряжения на диоде от силы протекающего через нее тока).
- 6. Запишите вывод, в котором укажите: является ли диод нелинейным элементом?



Рис. 23: Исследование диода на нелинейность

Таблица 22: Исследование диода на нелинейность

| Положение |            | Сила тока | Напряжение на | Сопротивление |
|-----------|------------|-----------|---------------|---------------|
| движка    | Полярность | в лампе   | лампе         | лампы         |
| реостата  |            | І, мА     | U, B          | R, Ом         |
| 1         | прямая     |           |               |               |
| 1         | обратная   |           |               |               |
| 2         | прямая     |           |               |               |
| 2         | обратная   |           |               |               |
| 3         | прямая     |           |               |               |
| 0         | обратная   |           |               |               |
| 4         | прямая     |           |               |               |
| 4         | обратная   |           |               |               |
| 5         | прямая     |           |               |               |
| 9         | обратная   |           |               |               |

| Вывод — |  |  |  |
|---------|--|--|--|
| , ,     |  |  |  |
|         |  |  |  |
|         |  |  |  |

## 8 Катушка индуктивности

## 8.1 Предисловие

| 8.1.1 Вектор магнитной индукции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Вектор магнитной индукции —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Единицы измерения магнитной индукции:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.1.2 Поток вектора магнитной индукции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Поток вектора —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Формула потока вектора магнитной индукции:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Employers volumentally volument |
| Единицы измерения потока:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.1.3 Связь между потоком и силой тока                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Модуль индукции $B$ магнитного поля, создаваемого током в любом замкнутом контуре, пропорционале силе тока. Так как магнитный поток $\Phi$ пропорционален $B$ , то $\Phi \propto B \propto I$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Phi = LI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Где $L$ — коэффициент пропорциональности (индуктивность контура, или коэффициент самоиндукции) между силой тока в проводящем контре и созданным им магнитным потоком, пронизывающим это контур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.2 Катушка индуктивности и индуктивность                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Катушка индуктивности —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Обозначение катушки индуктивности в схемах:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|       | m Mндуктивность —                                                                                                      |
|-------|------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                        |
|       | E-www.wo.wo.wo.wo.ww.                                                                                                  |
|       | Единица измерения индуктивности:                                                                                       |
|       |                                                                                                                        |
|       |                                                                                                                        |
|       |                                                                                                                        |
| 8.3   | Электромагнитная индукция                                                                                              |
| Элек  | тромагнитная индукция —                                                                                                |
|       |                                                                                                                        |
|       |                                                                                                                        |
| 8.3.1 | Закон Фарадея                                                                                                          |
| ЭДС   | индукции —                                                                                                             |
|       |                                                                                                                        |
|       | Закон Фарадея:                                                                                                         |
|       |                                                                                                                        |
|       |                                                                                                                        |
|       |                                                                                                                        |
| 0.4   | П                                                                                                                      |
| 8.4   | Получение электричества при помощи катушки индуктивности и постоянного магнита                                         |
| 1     | Соберите схему, представленную на рисунке 24.                                                                          |
|       |                                                                                                                        |
|       | Установите предел измерения вольтметра 200 мВ.                                                                         |
| 3.    | Перемещайте магнит вдоль катушки и наблюдайте изменение показаний вольтметра. Объясните данное явление.                |
| 4.    | Запишите выводы о том, как зависят показания вольтметра от скорости перемещения магнита и направления его перемещения? |
|       | /7777C)                                                                                                                |
|       | 0000                                                                                                                   |
|       |                                                                                                                        |
|       | V                                                                                                                      |
|       | Рис. 24: Получение электричества при помощи катушки и магнита                                                          |
|       | Вывод —                                                                                                                |
|       |                                                                                                                        |
|       |                                                                                                                        |

### 8.5 Электромагнит

- 1. Соберите схему, представленную на рисунке 25. Укажите направление силы тока в ней с замкнутым выключателем  $_1$ .
- 2. Выполните следующее задание при положении компаса сначала с одной стороны катушки, после с противоположной:
  - (a) Положите магнитную стрелку (иголку) рядом с катушкой индуктивности. Замкните выключатель <sub>1</sub> и наблюдайте за изменением положения магнитной стрелки. Объясните данное явление.
  - (b) При замкнутом выключателе  $_1$  кратковременно зажмите кнопку  $_2$  и наблюдайте за изменением положения магнитной стрелки. Объясните данное явление.
- 3. Запишите выводы о магнитных свойствах катушки индуктивности.



Рис. 25: Получение электричества при помощи катушки и магнита

| Вывод — | - |  |  |  |
|---------|---|--|--|--|
|         |   |  |  |  |
|         |   |  |  |  |
|         |   |  |  |  |

### 8.6 Проверка явления самоиндукции

- 1. Соберите схему, представленную на рисунке 26.
- 2. Зажмите кнопку К. Как горят светодиоды и почему? Укажите направления силы тока в данном случае.
- 3. Отпустите кнопку К. Как горят светодиоды и почему? Укажите направления силы тока в данном случае.
- 4. Запишите выводы о протекании тока при зажатой и отжатой кнопке K, а также о возможности накопления энергии катушкой индуктивности.



Рис. 26: Проверка явления самоиндукции

| Вывод — _ |  |  |  |  |
|-----------|--|--|--|--|
|           |  |  |  |  |
|           |  |  |  |  |
|           |  |  |  |  |

## 9 Электродвигатель

### 9.1 Устройство двигателя постоянного тока



Рис. 27: Принцип работы электродвигателя

### 9.2 Изменение направления и скорости вращения двигателя

- 1. Соберите по очереди схемы, представленные на рисунке 28. Укажите в каждом случае направление силы тока при зажатой кнопке К.
- 2. Для каждой схемы выполните следующее занятие:
  - (а) Установите пропеллер на двигатель. Зажмите кнопку К и наблюдайте за направлением и частотой вращения пропеллера.
  - (b) Разверните двигатель на 180°и повторите пункт 2a.
- 3. Сделайте вывод о зависимости частоты вращения двигателя от приложенного напряжения и о зависимости направления вращения двигателя от направления тока. Запишите выводы.



Рис. 28: Изменение направления и скорости двигателя

### 9.3 Электродвигатель в качестве генератора

- 1. Соберите схему, представленную на рисунке 29.
- 2. Вращайте вал двигателя по/против часовой стрелки с различной частотой и наблюдайте за показаниями вольтметра.
- 3. Запишите выводы о возможности применения электродвигателя в качестве генератора, о зависимости полярности создаваемого ЭДС от направления вращения двигателя, а также о зависимости величины создаваемого ЭДС от скорости вращения двигателя.



Рис. 29: Электродвигатель в качестве генератора

| Вывод — |  |  |  |  |
|---------|--|--|--|--|
|         |  |  |  |  |
|         |  |  |  |  |
|         |  |  |  |  |

### 9.4 Регулирование частоты вращения двигателя и реверс двигателя

- 1. Соберите схему, представленную на рисунке 30. Укажите направление силы тока в цепи при верхнем/среднем/нижнем положении движка реостата.
- 2. Замкните выключатель К. Перемещая движок реостата, наблюдайте за направлением и скоростью вращения электродвигателя.
- 3. Запишите выводы о возможности регулирования направления и частоты вращения двигателя.



Рис. 30: Регулирование частоты вращения двигателя и реверс двигателя

| Вывод — |  |
|---------|--|
|         |  |
|         |  |

### 9.5 Пуск двигателя

1. Соберите схему, представленную на рисунке 31. Укажите направление силы тока в ней при зажатой кнопке К.

- 2. Зажмите кнопку K и наблюдайте за яркостью свечения лампы. Аккуратно и кратковременно (на одну секунду) затормозите вращение двигателя и наблюдайте за яркостью свечения лампы.
- 3. Запишите выводы о зависимости яркости свечения лампы от частоты вращения двигателя.



Рис. 31: Пуск двигателя

| Вывод — |  |  |
|---------|--|--|
| , ,     |  |  |
|         |  |  |

## 10 Конденсаторы

| Конденсатор —                           |
|-----------------------------------------|
|                                         |
|                                         |
|                                         |
| Обозначение конденсатора в схеме:       |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
| Единицы измерения емкости конденсатора: |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |
| Ілоский конденсатор —                   |
|                                         |
|                                         |
| ·                                       |
| Емкость плоского конденсатора:          |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |

## 10.1 Устройство конденсатора



Рис. 32: Устройство конденсатора

## 10.2 Время зарядки конденсатора

Чтобы узнать, за какое время конденсатор заряжается и разряжается, используется одна интересная зависимость. Рассмотрим новую величину, описывающую время заряда конденсатора — постоянная времени. Эта величина обозначается буквой  $\tau$  (тау), и равна она:

$$\tau = RC$$

Ее значение описывает время, за которое конденсатор зарядится на  $\sim 33.3\%$ .

Данная постоянная зависит только от величины и параметров резистора и конденсатора, но не зависит от величины тока, протекающего в цепи, и напряжения на элементах. Ее зависимость выводится из дифференциального уравнения.

Рассмотрим цепь:



Рис. 33: Заряд и разряд конденсатора

Значение тока заряда в этой цепи будет равно:

$$I = C \frac{dU}{dt},$$

при этом сила тока на резисторе из закона Ома равняется:

$$I = \frac{U}{R},$$

где U — напряжение на конденсаторе.

Из первого правила Кирхгофа можно записать следующее выражение:

$$\frac{U}{R} = -C\frac{dU}{dt},$$

Это обычное дифференциальное уравнение с раздедяющимися переменными. Все с U в одну сторону, с t в другую:

$$\frac{dU}{U} = -\frac{dt}{RC},$$

возьмем интеграл:

$$\int \frac{dU}{U} = -\int \frac{dt}{RC},$$

В итоге получаем:

$$\ln U = -\frac{t}{RC} + Const,$$

$$U = e^{-\frac{t}{RC}} \cdot e^{Const}.$$

Эта формула выражает зависимость в цепи напряжения U от времени t, а произведение RC обозначается одной буквой  $\tau$ , тем самым получаем постоянную времени, и можем переписать уравнение:

$$U = e^{-\frac{t}{\tau}} \cdot e^{Const}$$

.

Из эмпирических данных известно, чтобы зарядить или разрядить конденсатор на 99%, что обычно достаточно для прикладных задач, то нужно взять  $\tau$  равное  $\tau=5RC$ .

### 10.3 Сопротивления конденсатора

- 1. Соберите схему, представленную на рисунке 34. Убедитесь в том, что лампа горит.
- 2. Соберите схему 34, представленную на рисунке. Конденсатор в этом случае включен в цепь постоянного тока. Убедитесь в том, что лампа не горит.
- 3. Сделайте вывод о сопротивлении конденсатора, включенного в цепь постоянного тока.





Рис. 34: Сопротивление конденсатора

Вывод — \_\_\_\_\_

### 10.4 Зарядка и разрядка конденсатора

- 1. Соберите схему, представленную на рисунке 35. Укажите направление силы тока в ней при зарядке и разрядке конденсатора.
- 2. Зажмите кнопку  $K_1$ . Засеките время заряда конденсатора по яркости светодиода и по показаниям вольтметра. Результаты измерений занесите в таблицу 23.
- 3. Отпустите кнопку  $K_1$  и замкните выключатель  $K_2$ . Засеките время разрядки конденсатора по показаниям вольтметра. Результаты измерений занесите в таблицу 23.
- 4. Рассчитайте для каждого случая постоянную времени  $\tau$ , и занесите ее в таблицу 23.
- 5. Запишите вывод о времени зарядки и разрядки конденсаторов разной емкости.

Таблица 23: Зарядка и разрядка конденсатора

| №   | Сопротивление |              | Электроемкость | $	au_{ m paзpяд},$ | Время зарядки, с |               | Время разрядки, с |               |
|-----|---------------|--------------|----------------|--------------------|------------------|---------------|-------------------|---------------|
| 1 . | $R_1$ , кОм   | $R_2$ , кОм  | С, мкФ         | c                  | по яркости       | по показаниям | по яркости        | по показаниям |
|     | $n_1$ , KOM   | $1t_2$ , KOM |                |                    | светодиода       | вольтметра    | светодиода        | вольтметра    |
| 1   | 1             | 5,1          | 100            |                    |                  |               |                   |               |
| 2   | 100           | 1000         | 100            |                    |                  |               |                   |               |
| 3   | 100           | 1000         | 10             |                    |                  |               |                   |               |



Рис. 35: Зарядка и разрядка конденсатора

### 10.5 Параллельное включение конденсаторов

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

- 1. Соберите схему, представленную на рисунке 36. Нарисуйте схему и укажите направление силы тока в ней при зарядке и разрядке конденсаторов.
- 2. Выполните следующее задание для всех значений сопротивления резисторов  $R_1$ ,  $R_2$  и электроемкостей конденсаторов  $C_1$ ,  $C_2$ .
  - (a) Рассчитайте постоянную времени  $\tau$ , и занесите ее в таблицу 24.
  - (b) Зажмите кнопку  $K_1$ . Засеките время заряда конденсатора по яркости светодиода и по показаниям вольтметра. Результаты измерений занесите в таблицу 24.
  - (c) Отпустите кнопку  $K_1$  и замкните выключатель  $K_2$ . Засеките время разрядки конденсатора по показаниям вольтметра. Результаты измерений занесите в таблицу 24.
- 3. Запишите выводы об изменении общей электроемкости конденсаторов при их параллельном соединении.



Рис. 36: Параллельное подключение конденсаторов

Вывод — \_\_\_\_\_

Таблица 24: Параллельное подключение конденсаторов

|    | Сопро   | отивление                   | е Электроемкость |                | Электроемкости |            | $	au_{ m paspsg},$ | Время      | н зарядки,    | Время | і зарядки, |
|----|---------|-----------------------------|------------------|----------------|----------------|------------|--------------------|------------|---------------|-------|------------|
| Nº | Compe   | опротивление олектроемкоств |                  | , разряд,<br>С |                | c          |                    | c          |               |       |            |
|    | $R_1$ , | $R_2$ ,                     | $C_1$            | $C_2$ ,        |                | по яркости | по показаниям      | по яркости | по показаниям |       |            |
|    | кОм     | кОм                         | мкФ              | мкФ            |                | светодиода | вольтметра         | светодиода | вольтметра    |       |            |
| 1  | 1       | 5.1                         | 100              | 47             |                |            |                    |            |               |       |            |
| 2  | 10      | 56                          | 100              | 47             |                |            |                    |            |               |       |            |

### 10.6 Последовательное включение конденсаторов

- 1. Соберите схему, представленную на рисунке 37. Нарисуйте схему и укажите направление силы тока в ней при зарядке и разрядке конденсаторов.
- 2. Выполните следующее задание для всех значений сопротивления резисторов  $R_1$ ,  $R_2$  и электроемкостей конденсаторов  $C_1$ ,  $C_2$ .
  - (a) Рассчитайте постоянную времени  $\tau$ , и занесите ее в таблицу 25.
  - (b) Зажмите кнопку  $K_1$ . Засеките время заряда конденсатора по яркости светодиода и по показаниям вольтметра. Результаты измерений занесите в таблицу 25.
  - (c) Отпустите кнопку  $K_1$  и замкните выключатель  $K_2$ . Засеките время разрядки конденсатора по показаниям вольтметра. Результаты измерений занесите в таблицу 25.
- 3. Запишите выводы об изменении общей электроемкости конденсаторов при их последовательном соединении.



Рис. 37: Последовательное подключение конденсаторов

Таблица 25: Последовательное подключение конденсаторов

|   | 1 doving 20. 110000 godarovisino i nogamo i nongenearo pos |                              |                  |                                |                      |                |            |                |            |               |  |  |
|---|------------------------------------------------------------|------------------------------|------------------|--------------------------------|----------------------|----------------|------------|----------------|------------|---------------|--|--|
|   |                                                            | Сопротивление Электроемкость |                  | Сопротивление Электроемкость т |                      | Время зарядки, |            | Время зарядки, |            |               |  |  |
| J | © Comportablication                                        |                              | O)ICKT POCHROCTB |                                | $	au_{ m paзpяд},$ с | c              |            | С              |            | С             |  |  |
|   |                                                            | $R_1$ ,                      | $R_2$ ,          | $C_1$                          | $C_2$ ,              | C              | по яркости | по показаниям  | по яркости | по показаниям |  |  |
|   |                                                            | кОм                          | кОм              | мкФ                            | мкФ                  |                | светодиода | вольтметра     | светодиода | вольтметра    |  |  |
|   | 1                                                          | 1                            | 5.1              | 100                            | 47                   |                |            |                |            |               |  |  |
|   | 2                                                          | 10                           | 56               | 100                            | 47                   |                |            |                |            |               |  |  |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

## 11 Транзисторы

### 11.1 Принцип работы транзистора

### 11.2 Усиление с помощью PNP-транзистора

- 1. Соберите схему, представленную на рисунке 38.
- 2. Установите движок реостата крайнее верхнее положение. Укажите направление тока в ней.
- 3. Замкните выключатель К. Плавно перемещайте движок реостата из крайнего верхнего положения вниз. Для пяти положений движка реостата измерьте токи коллектора и базы. Результаты измерений занесите в таблицу 26.
- 4. Рассчитайте коэффициент усиления PNP-транзистора  $\beta = I_{\kappa}/I_{6}$ , используя измеренные значения тока коллектора и тока базы. Результаты расчетов занесите в таблицу 26.
- 5. Запишите выводы о зависимости коэффициента усиления PNP-транзистора от тока базы.



Рис. 38: PNP-транзистор

Таблица 26: Усиление с помощью PNP-транзистора

| No  | Ток коллектора              | Ток базы                    | Коэффициент усиления |
|-----|-----------------------------|-----------------------------|----------------------|
| 31- | $I_{\mathrm{K}},\mathrm{A}$ | $I_{\mathrm{B}},\mathrm{A}$ | $\beta$              |
| 1   |                             |                             |                      |
| 2   |                             |                             |                      |
| 3   |                             |                             |                      |
| 4   |                             |                             |                      |
| 5   |                             |                             |                      |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

## 11.3 Усиление с помощью NPN-транзистора

- 1. Соберите схему, представленную на рисунке 39.
- 2. Установите движок реостата крайнее верхнее положение. Укажите направление тока в ней.
- 3. Замкните выключатель К. Плавно перемещайте движок реостата из крайнего верхнего положения вниз. Для пяти положений движка реостата измерьте токи коллектора и базы. Результаты измерений занесите в таблицу 27.
- 4. Рассчитайте коэффициент усиления NPN-транзистора  $\beta = I_{\kappa}/I_{6}$ , используя измеренные значения тока коллектора и тока базы. Результаты расчетов занесите в таблицу 27.

5. Запишите выводы о зависимости коэффициента усиления NPN-транзистора от тока базы.



Рис. 39: NPN-транзистор

Таблица 27: Усиление с помощью NPN-транзистора

|     | raceing 211 convenies c noncinguis 112 11 spansiferopa |                             |                      |  |  |  |  |
|-----|--------------------------------------------------------|-----------------------------|----------------------|--|--|--|--|
| №   | Ток коллектора                                         | Ток базы                    | Коэффициент усиления |  |  |  |  |
| 31= | $I_{ m K},{ m A}$                                      | $I_{\mathrm{B}},\mathrm{A}$ | β                    |  |  |  |  |
| 1   |                                                        |                             |                      |  |  |  |  |
| 2   |                                                        |                             |                      |  |  |  |  |
| 3   |                                                        |                             |                      |  |  |  |  |
| 4   |                                                        |                             |                      |  |  |  |  |
| 5   |                                                        |                             |                      |  |  |  |  |

| Вывод — |  |  |
|---------|--|--|
| , ,     |  |  |
|         |  |  |

### 11.4 Составной транзистор

- 1. Соберите схему, представленную на рисунке 40.
- 2. Установите движок реостата крайнее нижнее положение. Укажите направление тока в ней.
- 3. Замкните выключатель К. Плавно перемещайте движок реостата из крайнего нижнего положения вверх. Для пяти положений движка реостата (при которых лампа горит) измерьте токи коллектора и базы. Результаты измерений занесите в таблицу 28.
- 4. Рассчитайте коэффициент усиления составного транзистора, используя измеренные значения тока коллектора и тока базы. Результаты расчетов занесите в таблицу 28.
- 5. Сравните значения коэффициентов усиления PNP и NPN транзисторов со значением коэффициента усиления составного транзистора.
- 6. Запишите выводы о зависимости коэффициента усиления составного транзистора от тока базы, а также результат сравнения из пункта 5.

| Вывод — . |  |  |  |
|-----------|--|--|--|
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |
|           |  |  |  |



Рис. 40: Каскад транзисторов

Таблица 28: Усиление с помощью каскада транзисторов

| No  | Ток коллектора    | Ток базы                    | Коэффициент усиления |
|-----|-------------------|-----------------------------|----------------------|
| JV= | $I_{ m K},{ m A}$ | $I_{\mathrm{B}},\mathrm{A}$ | $\beta$              |
| 1   |                   |                             |                      |
| 2   |                   |                             |                      |
| 3   |                   |                             |                      |
| 4   |                   |                             |                      |
| 5   |                   |                             |                      |

## 12 Громкоговорители и микрофоны

### 12.1 Устройство микрофона и динамика

### 12.2 Проверка работоспособности динамика

- 1. Соберите схему, представленную на рисунке ??. Укажите направление силы тока в ней при зажатой кнопке К.
- 2. Зажмите кнопку К и услышьте звук.
- 3. Подключите в цепь последовательно двигатель, чтобы получилась схема ??. Укажите направление силы тока в ней при зажатой кнопке К.
- 4. Зажмите кнопку К и услышьте звук. ОСТОРОЖНО притормозите двигатель и опишите наблюдения.
- 5. Запишите выводы о работе громкоговорителя в исследуемых схемах.



Рис. 41: Громкоговоритель

Вывод — \_\_\_\_\_



Рис. 42: Светомузыка

### 12.3 Светомузыка

- 1. Соберите схему, представленную на рисунке ??.
- 2. Замкните выключатель К. Установите движок реостата в крайнее нижнее положение. Отрегулируйте реостат: перемещайте движок реостата снизу вверх до тех пор, пока светодиод не начнет светиться (свечение должно быть достаточно тусклым).
- 3. Громко хлопните в ладоши рядом с микрофоном и наблюдайте за свечением светодиода.
- 4. Включите звуковую запись на ваш выбор (желательно с ярко выраженными битами) и поднесите динамик к микрофону. Наблюдайте за свечением светодиода в такт с битами.
- 5. Запишите выводы о принципах работы данной электросхемы.

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |
|         |  |  |  |

## 13 Фоторезистор

### 13.1 Устройство фоторезистора

### 13.2 Автоматический уличный фонарь

- 1. Соберите схему, представленную на рисунке ??.
- 2. Замкните выключатель К. Постепенно заслоните фоторезистор и наблюдайте за яркостью свечения лампы.
- 3. Поменяйте местами резистор и фоторезистор и повторите пункт 2.
- 4. Запишите выводы о возможности применения фоторезистора в конструкции автоматического уличного фонаря.



Рис. 43: Автоматический уличный фонарь

| Вывод — | · |  |  |  |
|---------|---|--|--|--|
|         |   |  |  |  |
|         |   |  |  |  |
|         |   |  |  |  |
|         |   |  |  |  |

### 13.3 Проверка зависимости сопротивления фоторезистора от освещенности

- 1. Соберите схему, представленную на рисунке 44.
- 2. Посветите фонариком на фоторезистор. Подкладывая тетрадные листы между фонариком и фоторезистором, наблюдайте за изменением сопротивления фоторезистора. Результаты измерения сопротивления фоторезистора с помощью омметра занесите в таблицу 29.
- 3. Закройте фоторезистор пальцем и запишите показание фоторезистора в таблицу.
- 4. Запишите выводы о зависимости сопротивления фоторезистора от освещенности и о пропускаемой способности света через палец.



Рис. 44: Зависимость сопротивления

Таблица 29: Зависимость сопротивления фоторезистора от освещенности

| Количество тетрадных листов, шт | Сопротивление фоторезистора, Ом |
|---------------------------------|---------------------------------|
| 0                               |                                 |
| 5                               |                                 |
| 10                              |                                 |
| Полностью закрыт от света       |                                 |
| Палец                           |                                 |

| Вывод — |  |  |  |
|---------|--|--|--|
|         |  |  |  |
|         |  |  |  |

- 14 Демовариант контрольной работы №1
- 15 Демовариант контрольной работы №2
- 16 Список литературы