

附錄 A Y - △互換法公式之證明

- 1. 由上圖之圖(a)知:
 - (1) Y型之 $A \cdot B$ 兩點間的電阻為: $R_{AB(Y)} = R_a + R_b$
 - (2) Y型之B、C兩點間的電阻爲: $R_{BC(Y)} = R_b + R_c$
 - (3) Y型之 $C \cdot A$ 兩點間的電阻爲: $R_{CA(Y)} = R_c + R_a$
- 2. 由上圖之圖(b)知:
 - (1) Δ 型之A、B兩點間的電阻為: $R_{AB(\Delta)} = (R_3) \pm (R_1 + R_2) = \frac{R_3(R_1 + R_2)}{R_3 + (R_1 + R_2)}$
 - (2) Δ 型之B、C 兩點間的電阻為: $R_{BC(\Delta)} = (R_1) \pm (R_2 + R_3) = \frac{R_1(R_2 + R_3)}{R_1 + (R_2 + R_3)}$
 - (3) Δ 型之C、A 兩點間的電阻為: $R_{CA(\Delta)} = (R_2) \pm (R_3 + R_1) = \frac{R_2(R_3 + R_1)}{R_2 + (R_3 + R_1)}$

3. 如果圖(a)與圖(b)互為等效電路,則

(1)
$$R_{AB(Y)} = R_{AB(\Delta)} \implies R_a + R_b = \frac{R_3(R_1 + R_2)}{R_1 + R_2 + R_3}$$
 (a)

(2)
$$R_{BC(Y)} = R_{BC(\Delta)} \implies R_b + R_c = \frac{R_1(R_2 + R_3)}{R_1 + R_2 + R_3}$$
 (b)

(3)
$$R_{CA(Y)} = R_{CA(\Delta)} \Rightarrow R_c + R_a = \frac{R_2(R_3 + R_1)}{R_1 + R_2 + R_2}$$
 ©

 $(a)+(b)+(c)) \div 2$ 得:

$$R_a + R_b + R_c = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1 + R_2 + R_3}$$
 (d)

※ efg三式即是Δ型化成Y型公式

e×f+f×g+g×e得:

※ ①①®三式即是Y型化成Δ型公式

附錄 B 網路分析進階

利用電壓源電流源轉換及串並聯電路之應用來解析網路。

電壓源電路與電流源電路之轉換

電壓源與電流源互換時,電壓源需有一電阻與之串聯,而電流源需有一 電阻與之並聯,否則不能互換。

1. 電壓源電路轉換成電流源電路(以下分別就(a)、(b)、(c)、(d)四種情況討論):

(a)

例:試將下圖之電壓源電路轉換成電流源電路。

例:試將下圖之電壓源電路轉換成電流源電路。

例:試將下圖之電壓源電路轉換成電流源電路。

結論: 1. 電流源的並聯電阻 = 電壓源的串聯電阻。($R_i = R_e$)

- 2. 電流源的額定電流 $I = \frac{E}{R_e}$ 。
- 3. 電流源箭號所指的一端爲電壓源之正極。
- 4. 電壓源必須有一電阻與之串聯才能變換成電流源電路。

附錄 B 網路分析進階

2. 電流源電路轉換成電壓源電路(以下分別就(a)、(b)、(c)、(d)四種情況討論):

例:試將下圖之電流源電路轉換成電壓源電路。

例:試將下圖之電流源電路轉換成電壓源電路。

例:試將下圖之電流源電路轉換成電壓源電路。

結論:1. 電壓源的串聯電阻=電流源的串聯電阻。($R_e = R_i$)

- 2. 電壓源的額定電壓 $E = IR_i$ 。
- 3. 電壓正極端爲電流源箭號所指的一端。
- 4. 電流源必須有一電阻與之並聯才能變換成電壓源電路。

電壓源電路之組合

- 電壓源串聯組合:若電源是由數個電壓源串聯組成時,通過各電壓源 的電流均相等,而串聯等效電壓為各電壓源電壓之和。(極性相同 的相加,極性相反的相減)。如下圖解說:
 - (a) 若電壓源無串聯電阻時:

例:試將下圖電壓源串聯組合化爲單一等效電壓源電路。

(b) 若電壓源有串聯電阻時:

例:試將下圖電壓源、電阻串聯組合化爲單一等效電壓源電路。

2. **電壓源並聯組合**:其電源的電動勢必須相同且特性亦相同之電壓源才可並聯;若將電動勢與其特性均不相同者相並聯,則兩者將有短路環流而導致燒毀電源。

(a) 若電壓源無串聯電阻時:額定值相同的才可並聯;不同者,不可並聯。(如下圖例)

例:試將下圖電壓源並聯組合化爲單一等效電壓源。

(b) 若電壓源有串聯電阻時: (如下圖)

例:試將下圖電壓源、電阻並聯組合,化爲單一等效電壓源電路。

電流源電路之組合

1. 電流源串聯組合:

(a) 若電流源無並聯電阻時:額定值相同的才可串聯;不同者,不可串聯。(如下圖例)

例:試將下圖電流源串聯組合化爲單一等效電流源。

(b) 若電流源有並聯電阻時:其額定値不同的電流源亦可以串聯。 (如下圖)

例:試將下圖電流源、電阻串聯組合化爲單一等效電流源電路。

- 2. **電流源並聯組合**:網路若由數個電流源並聯時,可將電流同方向者相加,電流反方向者相減,合併成一個電流源。
 - (a) 若電流源無並聯電阻時:如下圖

例:試將下圖電流源並聯組合化爲單一等效電流源。

(b) 若電流源有並聯電阻時:如下圖

例 1: 試將下圖電流源、電阻並聯組合化為單一等效電流源電路。

例 2: 試將下圖電流源、電阻並聯組合化成單一等效電流源電路。

電阻串並聯電路之應用

$$I = I_1 = I_2 + I_3$$

 $E = V_{ab} + V_{bc} = V_1 + V_2 = V_1 + V_3$ (: $V_{bc} = V_2 = V_3$)
 $R = R_1 \not = (R_2 \not = R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_2}$

於圖(a)中:

電阻並聯分流法:

$$I_{2} = \frac{R_{3}}{R_{2} + R_{3}} I = \frac{R_{3}}{R_{2} + R_{3}} I_{1}$$

$$I_{3} = \frac{R_{2}}{R_{2} + R_{3}} I = \frac{R_{2}}{R_{2} + R_{3}} I_{1}$$

於圖(b)中:

電阻串聯分壓法:

實例解析網路分析

範例 B-2

如下圖所示,求I=?

【解】

$$I_1 + I_2$$

$$= 20 \text{ A}$$

$$\frac{2 \times 2}{2 + 2} = 1 \Omega \quad 15 \Omega$$

$$\frac{2 \times 2}{d} \quad 2 \Omega$$

$$E \stackrel{1\Omega}{=} 20V \qquad 15\Omega$$

$$E = (20A)(1\Omega) = 20V$$

$$\therefore I = \frac{20V}{1\Omega + 2\Omega + 15\Omega + 2\Omega} = 1A$$

範例 B-3

如下圖所示,依戴維寧定律求其等效電壓 E_{Th} 及等效電阻 R_{Th} 分別為多少?

$$E_{Th} = 60V - 15V = 45V$$

$$R_{Th} = 4.8\Omega + 5.2\Omega + 10\Omega = 20\Omega$$

附錄 C 密爾門定理

若網路是由數個電壓源各串聯一個電阻所組成的並聯電路,最適合用密爾門定理(Millman's theorem)解題,其方法如下:

1. 若電路如下圖所示,則

- ※ 若電路中有相反方向的電壓源時,則 E代入負值。
- 2. 應用密爾門定理解戴維寧等效電路:

圖(b)中, V_{ab} 、 E_{Tb} 、 R_{Tb} 及之解分別為

範例 C-1

如下圖所示,流經12Ω電阻之電流為多少?

【解】
$$V_{ab} = \frac{\frac{-6V}{3\Omega} + \frac{12V}{2\Omega} + \frac{-4V}{4\Omega}}{\frac{1}{3\Omega} + \frac{1}{2\Omega} + \frac{1}{4\Omega} + \frac{1}{12\Omega}} = \frac{\frac{(-24 + 72 - 12)V}{12\Omega}}{\frac{4 + 6 + 3 + 1}{12\Omega}} = \frac{36V}{14} = \frac{18}{7}V$$

$$I = \frac{\frac{18}{7}V}{12\Omega} = \frac{3}{14}A$$

範例 C-2

如下圖中,欲使 R_L 處有最大功率輸出,則 R_L 及 $P_{L\text{max}}$ 各為何值?

【解】

$$\begin{split} E_{Th} &= V_{ab} = \frac{\frac{12V}{4\Omega} + \frac{10V}{2\Omega} + \frac{10V}{5\Omega} + \frac{8V}{4\Omega}}{\frac{1}{4\Omega} + \frac{1}{2\Omega} + \frac{1}{5\Omega} + \frac{1}{4\Omega}} = \frac{\frac{(60 + 100 + 40 + 40)V}{20\Omega}}{\frac{5 + 10 + 4 + 5}{20\Omega}} \\ &= \frac{240V}{24} = 10 \text{ V} \\ R_{Th} &= \frac{1}{\frac{1}{4\Omega} + \frac{1}{2\Omega} + \frac{1}{5\Omega} + \frac{1}{4\Omega}} = \frac{1}{\frac{24}{20\Omega}} = \frac{20\Omega}{24} = \frac{5}{6}\Omega \\ R_{L} &= R_{Th} = \frac{5}{6}\Omega \text{ 可獲得最大功率} \\ P_{L\text{max}} &= \frac{E_{Th}^{-2}}{4R_{Th}} = \frac{(10V)^2}{4(\frac{5}{6}\Omega)} = 30 \text{ W} \end{split}$$

附錄 D 認識行列式

行列式的定義

2.
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - ceg - afh - bdi$$

利用行列式解聯立方程式

● 二元一次方程式

解聯立方程式:
$$\begin{cases} ax + by = c & \text{...} \\ dx + ey = f & \text{...} \end{cases}$$
 ②
$$\ddot{E} \Delta = \begin{vmatrix} a & b \\ d & e \end{vmatrix} \quad (將 x 與 y 之係數順序列出行列式)$$

$$\Delta_1 = \begin{vmatrix} c & b \\ f & e \end{vmatrix} \quad (將常數項取代 x 之係數)$$

$$\Delta_2 = \begin{vmatrix} a & c \\ d & f \end{vmatrix} \quad (將常數項取代 y 之係數)$$

則解爲:

$$x = \frac{\Delta_1}{\Delta} = \frac{ce - bf}{ae - bd}$$
 $y = \frac{\Delta_2}{\Delta} = \frac{af - cd}{ae - bd}$ (D-1)

三元一次方程式

解聯立方程式:
$$\begin{cases} a_1x + b_1y + c_1z = d_1 & \text{①} \\ a_2x + b_2y + c_2z = d_2 & \text{②} \\ a_3x + b_3y + c_3z = d_3 & \text{③} \end{cases}$$

若
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
, $\Delta_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end{vmatrix}$

則解爲:

$$x = \frac{\Delta_1}{\Delta}$$
 $y = \frac{\Delta_2}{\Delta}$ $z = \frac{\Delta_3}{\Delta}$ (D-2)

上述的求解方法,我們稱爲克拉瑪法則(Cramer's rule)。

範例 D-1

試以行列式解下列方程式之 $I_1 \times I_2$? $\begin{cases} 2I_1 + I_2 &= 4 \\ 4I_1 + 3I_2 &= 2 \end{cases}$

$$\begin{cases} 2I_1 + I_2 = 4 \\ 4I_1 + 3I_2 = 2 \end{cases}$$

【解】
$$\Delta = \begin{vmatrix} 2 & 1 \\ 4 & 3 \end{vmatrix} = 6 - 4 = 2$$

$$\Delta_1 = \begin{vmatrix} 4 & 1 \\ 2 & 3 \end{vmatrix} = 12 - 2 = 10 \qquad \Delta_2 = \begin{vmatrix} 2 & 4 \\ 4 & 2 \end{vmatrix} = 4 - 16 = -12$$

$$\therefore I_1 = \frac{\Delta_1}{\Delta} = \frac{10}{2} = 5 \qquad I_2 = \frac{\Delta_2}{\Delta} = \frac{-12}{2} = -6$$

附錄 E 常用符號之單位與縮寫

名稱	符號	單位	縮寫
電荷	Q,q	庫侖	С
電壓	V	伏特	V
電流	I	安培	A
能量、功	W	焦耳	J
功率	P	瓦特	W
電阻	<i>R</i> , <i>r</i>	歐姆	Ω
電導	G	姆歐、西門子	σ,s
電容	C	法拉	F
電感	L	亨利	Н
電通量	Ψ	庫侖	С
電通密度	D	庫侖/平方公尺	C/m ²
電場強度	Е	伏特/公尺、牛頓/庫侖	V/m, N/C
介電係數	ε	法拉/公尺	F/m
磁通量	φ	韋伯	Wb
磁通密度	В	韋伯/平方公尺、特斯拉	Wb/m ² , T
磁場強度	Н	安匝/公尺、牛頓/韋伯	A-t/m, N/Wb
導磁係數	μ	亨利/公尺	H/m
磁動勢	F	安培-匝(安培)₺	A-t (A)
磁阻	R	安培 - 匝/韋伯	A - t/Wb

註: 匝數也可視為無單位。

附錄 F 希臘字母及其代表資料

大寫字母	小寫字母	讀法	通常用以代表之量
A	α	Alpha	角度;電阻温度係數(小寫字母)
В	β	Beta	角度;磁通密度;係數
Γ	γ	Gamma	電導係數 (小寫字母)
Δ	δ	Delta	變動;密度;係數行列式 (大寫字母)
Е	ε	Epsilon	對數之基數;介電係數(小寫字母);電場強度 (大寫字母)
Z	ξ	Zeta	係數
Н	η	Eta	磁滞係數;效率(小寫字母)
Θ	θ	Theta	温度;相位角
I	1	Iota	
K	к	Kappa	介質常數
Λ	λ	Lambda	波長 (小寫字母)
M	μ	Mu	導磁係數;微(百萬分之一);放大因數(小寫字母)
N	ν	Nu	磁阻係數;頻率
Ξ	ξ	Xi	輸出係數
0	0	Omicron	
П	π	Pi	圓周÷直徑≅3.1416
P	ρ	Rho	電阻係數 (小寫字母)
Σ	σ	Sigma	總和(大寫字母);表面密度;電導係數(小寫字母)
T	τ	Tau	時間常數;時間相位
Y	υ	Upsilon	位移
Φ	φ, φ	Phi	磁通量;角
X	χ	Chi	
Ψ	Ψ	Psi	電通量(電力線);角
Ω	ω	Omega	歐姆(大寫字母);角速度(小寫字母);立體角

附錄 G 索引

二劃		自感應 self induction	231
八隅體規則 octet rule	6	七劃	
四劃		束縛電子 bound electron	5
元素 element	2	串聯電路 series circuit	77
化合物 compound	2	克希荷夫電壓定律	
分子 molecule	2	Kirchhoff's voltage law, KVL	88
中子 neutron	3	克希荷夫電流定律	0.4
水泥電阻器 cement resistor	54	Kirchhoff's current law, KCL	94
支路 branch	94	亨利 henry	228
分流器 shunt	108	抗流線圏 choke	229
介電質 dielectric	192	克拉瑪法則 Cramer's rule	292
介電係數;電容率 permittivity	198	八劃	
介電常數 dielectric constant	198	姆歐 mho	45
介質強度 dielectric strength	218	固定電阻器 fixed value resistor	53
互感 mutual inductance	230	金屬膜電阻器 metal film resistor	54
互感應 mutual induction	231	並聯電路 parallel circuit	82
		法拉 farad	193
五劃		固定電容器 fixed-value capacitor	194
正離子 positive ion	5	放電 discharging	205
半導體 semiconductor	6	法拉第電磁感應定律	203
功率 power	29	Faraday's law of electromagnetic inducti	on 261
瓦特 watt	29		
仟瓦·小時 kWh	31	九劃	
可變電阻器 variable value resistor	53	軌域 orbital	4
卡路里;卡 calorie, cal	68	負離子 negative ion	5
可變電容器 variable-value capacitor	195	美國電子工業協會	
充電 charging	204	Electronic Industries Association, EIA	50
→ 妻Ⅱ		厚膜電阻器 thick film resistor	54
六劃		英熱單位 British Thermal Unit, BTU	68
自由電子 free electron	5	負載 load	74
伏特 volt	20	重疊定理 superposition theorem	136
安培 ampere	25	相對電容率 relative permittivity	198
西門子 siemens	45	相對導磁係數 relative permeability	245
自感 self inductance	230		

基本電學 I

十劃		電離;游離 ionization	5
原子 atom	2	電壓 voltage	19
原子核 atomic nucleus	3	電位 electric potential	19
能量層 energy shell	4	電位能 potential energy	20
能量 energy	10	零電位 zero potential	21
能量守恆 conservation of energy	10	電位差 electric potential difference	21
效率 efficiency	12	電動勢 electromotive force, emf	21
庫侖 coulomb	16	電壓降 voltage drop	22
庫侖定律 Coulomb's law	16	電流 current	24
馬力 horsepower	30	電子伏特 electron Volt, eV	31
氧化金屬電阻器 metal oxide resistor	54	電路 electric circuit	35
迴路 loop	88	電路圖 circuit diagram	35
迴路電流法 loop current method	175	電阻 resistance	44
高斯定律 Gauss's law	219	電導 conductance	44
同分人件 Guuss s Iuw	217	電阻係數 resistivity	45
十一劃		圓密爾 cmil	45
上 陰離子 anion	5	電導係數 conductivity	47
國際單位制 International System of Uni	ts 8	電位計 potentiometer	56
密爾 mil	45	電阻溫度係數	
推論絕對溫度		temperature coefficient of resistance	61
inferred absolute temperature	63	電源 power supply	74
通路;閉路 closed circuit	75	節點 node	94
接合點 junction	94	電流表 ammeter	102
密爾門定理 Millman's theorem	288	電壓表 voltmeter	107
1		電壓源 voltage source	111
十二劃		電流源 current source	111
陽離子 cation	5	過載 overload	164
絕緣體 insulator	6	節點電壓法 node voltage method	168
單位 unit	7	電容 capacitance	192
焦耳 joule	11	電容器 capacitor	192
焦耳定律 Joule's law	67	電場 electric field	209
短路 short circuit	76	電力線 electric line of force	210
惠斯登電橋 Wheatstone bridge	122	電場強度 electric intensity	211
— +ı		電通量 electric flux	213
十三劃		電通密度 electric flux density	213
電 electricity	2	電位梯度 potential gradient	217
電子 electron	3	極化 polarization	218

附錄 G 索引

電感器 inductor	228	十六劃	
電感 inductance	228	靜電效應 electrostatic effect	14
電磁感應 electromagnetic induction	260	靜電荷 static charge	14
感應電動勢 induced voltage	261	靜電感應 electrostatic induction	15
感應電流 induced current	261	靜電力 electrostatic force	16
楞次定律 Lenz's law	263	諾頓定理 Norton's theorem	149
十四劃		十七劃	
爾格 erg	11	戴維寧定理 Thevenin's theorem	142
端電壓 terminal voltage	21	栽种学是在 Thevenin's theorem	142
漂移速度 drift velocity	26	十八劃	
碳質電阻器 carbon composition resistor	54	斷路;開路 open circuit	75
碳膜電阻器 carbon film resistor	54	The task of	
網路 network	74	十九劃	
網目 mesh	181	離子 ion	5
磁通鏈 flux linkage	230		
磁 magnetism	242	二十二劃	
磁場 magnetic field	242	變阻器 rheostat	56
磁力線 magnetic line of force	243		
磁通量 magnetic flux	243		
磁極 magnetic pole	243		
磁通密度 magnetic flux density	244		
磁阻 reluctance	244		
磁場強度 magnetic intensity	247		
磁路 magnetic circuit	248		
磁動勢 magnetomotive force, mmf	248		
磁化力 magnetizing force	250		
十五劃			
質子 proton	3		
價電子 valence electron	5		
導體 conductor	6		
歐姆 ohm	45		
線繞電阻器 wire-wound resistor	54		
歐姆定律 Ohm's law	57		
熱功當量 heat equivalent of work	68		
導線 wire	74		
導磁係數;磁導率 permeability	244		

