How to Maximize a Likelihood Function ECON 60303

Bill Evans Spring 2011

Problem setup

 $f(y_i | x_i, \hat{\beta})$ is a pdf that describes the data generating process There are n observations in the sample

$$x_i$$
 is $(1 \times j)$

$$\hat{\beta}$$
 is (k x 1)

Log likelihood function $\ell = \sum_{i=1}^{n} \ln f(y_i \mid x_i, \hat{\beta})$

Gradient (k x 1):
$$g = \frac{\partial \ell}{\partial \hat{\beta}} cc = g'(-H^{-1})g$$

Hessian (k x k):
$$H = \frac{\partial^2 \ell}{\partial \hat{\beta} \partial \hat{\beta}'}$$

$$Cov(\hat{\beta}) = -H^{-1}$$

Convergence criteria: $cc = g'(-H^{-1})g$

Quasi-Newton search method:

Let $\hat{\beta}_t$ be the t'th iteration of search algorithm.

Corresponding values for the other parameters are g_t , $(-H_t)^{-1}$

Initially fix $\lambda=1$

$$\hat{\beta}_{t+1} = \hat{\beta}_t + \lambda (-H_t)^{-1} g_t$$

Basic Algorithm:

- 1. Obtain starting values $\hat{\beta}_o$
- 2. Calculate g_o , $(-H_0)^{-1}$
- 3. Update $\hat{\beta}_1 = \hat{\beta}_o + \lambda (-H_o)^{-1} g_o$
- 4. Is $\ell(\hat{\beta}_1) > \ell(\hat{\beta}_0)$
- 5. If no, cut λ in half and go 3
- 6. If yes, calculate g_o , $(-H_0)^{-1}$
- 7. Has model converged?
- 8. If no, go to 3 and update beta
- 9. If yes, printout results

Flow Chart for MLE Search Routine Quasi-Newton Method

