

Méthodes et outils projet

Formation

PLAN DE COURS

Chapitre 1 : Le phasing

Chapitre 2 : Initialisation du projet

Chapitre 3 : Définition du périmètre

Chapitre 4 : Découpage

Chapitre 5: Gestion des risques

Chapitre 6 : Planification

Image par Freepik

Chapitre 1 : Le phasing

Le Phasing dans la gestion de projet informatique

- Découpage logique du projet en étapes successives
- Chaque phase produit un ou plusieurs livrables
- Permet de :
 - Mieux planifier et contrôler le projet
 - Faciliter la communication entre les acteurs
 - Réduire les risques

Les objectifs du phasing

- Structurer la démarche projet
- Donner de la visibilité à l'équipe et aux parties prenantes
- Identifier les points de validation (jalons)
- Préparer la planification et le suivi

Les grandes phases d'un projet

Le phasing

- Chaque phase se conclut par un jalon décisionnel qui décide de la suite
- Les instances de pilotage valident l'avancement
- Permet de maîtriser coûts, délais, qualité

Facteurs clés

- Phasing clairement défini et partagé
- Livrables intermédiaires validés
- Implication des parties prenantes
- Documentation claire
- Communication fluide entre MOA et MOE

MOE et MOA dans un projet

- Maîtrise d'ouvrage (MOA) : définir les besoins et les objectifs métier du système, définir la direction du projet, son périmètre. (Partie client)
- Maîtrise d'oeuvre (MOE) : concevoir, développer et mettre en oeuvre la solution technique

Chapitre 2: initialisation du projet

Rôle de la phase d'initialisation

- Première étape concrète du cycle de vie du projet
- Vise à valider la faisabilité et à poser le cadre du projet
- Principales actions :
 - Identifier les besoins et objectifs
 - Définir les acteurs et rôles
 - Évaluer les contraintes et risques initiaux
 - Produire la charte de projet

Objectifs de l'initialisation

- Clarifier le pourquoi du projet
- 2. Aligner les attentes des parties prenantes
- 3. Identifier les ressources et moyens disponibles
- 4. Produire un document de cadrage (charte) validé par le sponsor

Livrables attendus

Livrable	Contenu	Utilité
Charte de projet	Objectifs, périmètre initial, acteurs, budget, planning préliminaire	contrat entre MOA et MOE
Expression des besoins	Liste des exigences du client/utilisateur	Base pour le périmètre et la planification
Analyse de faisabilité	Étude technique, financière, organisationnelle	Vérifie la viabilité du projet

Collecte des exigences

- Comprendre ce que veut vraiment le client/utilisateur
- 2 types d'exigences :
 - Fonctionnelles : ce que le système doit faire
 - Non-fonctionnelles : performances, sécurité, ergonomie
- Une exigence doit être claire, mesurable, testable

Comment collecter les exigences

- Entretiens individuels (discussion avec les utilisateurs)
- Ateliers (réunions collaboratives)
- Questionnaires (information ciblée)
- Observations / analyse (via le travail réel ou des rapports existants)

Catégorisation et priorisation

Catégoriser :

- Trier les exigences selon leur nature et importance
- Must / Should / Could / Won't (Méthode MoSCoW)

Prioriser:

- Selon la valeur métier et le coût de mise en œuvre
- Utiliser des matrices (effort/valeur)

Catégoriser : classification F/NF/TC

F – Fonctionnelle	Ce que le système doit faire (fonctions, traitements, comportements attendus)	Authentification utilisateur, génération de rapports, envoi de notifications
NF - Non-Fonctionnelle	Qualités attendues du système, contraintes techniques, ergonomiques ou sécuritaires	Temps de réponse < 2 secondes, conformité RGPD
TC – Technique / Contrainte	Exigences liées à l'environnement technique, aux normes ou à l'infrastructure	Base de données SQL, intégration avec l'ERP existant, hébergement cloud

Prioriser: méthode MoSCoW

M - Must have	Indispensable	Fonctionnalité critique sans laquelle le projet échoue
S - Should have	Important	Fonction souhaitée pour la version initiale mais non bloquante
C - Could have	Confort	Fonction optionnelle si le temps/budget le permet
W - Won't have	Exclu ou différé	Fonction volontairement mise de côté pour une version ultérieure

Risques liés à une mauvaise initialisation

- Mauvaise compréhension du besoin
- Manque d'adhésion des parties prenantes
- Sous-estimation du budget ou du délai
- Livrables non conformes aux attentes

Exercices

Chapitre 3 : définition du périmètre

Rôle de la définition du périmètre

- Précise ce qui sera livré (et ce qui ne le sera pas)
- Sert de base au découpage et à la planification
- Permet de limiter les dérives et clarifier les attentes
- Si le périmètre est mal défini des dépassements sont assurés

Objectif de cette phase

- Décrire la solution envisagée
- Délimiter le champ d'action du projet
- Identifier les livrables majeurs
- Déterminer les exclusions et hypothèses
- Formaliser un document de périmètre validé par les parties prenantes

Périmètre du projet vs périmètre de la solution

Aspect	Périmètre du projet	Périmètre de la solution
Définition	Ensemble des activités à réaliser	Ensemble des fonctionnalités / composants livrés
Exemple	Développement, tests, formation, déploiement	Logiciel de gestion des stocks, interface web, autre module
Responsabilité	Chef de projet	Équipe fonctionnelle et/ou technique

Exploiter la charte de projet

- La charte de projet, issue de l'initialisation, fournit :
 - Les objectifs et indicateurs de réussite
 - Les acteurs et parties prenantes
 Les contraintes (budget, délai, ressources)
 - Le contexte et les dépendances

C'est un point de départ pour cadrer le périmètre

Périmètre : différents livrables

- Documentaire (Cahier des charges fonctionnel, plan de tests)
- Technique (Application développée, base de données, interface)
- Organisationnel (Formation, documentation utilisateur...)
- Communication (supports de présentation, fiches projet...)

Périmètre : définir les exclusions

- Exclure les parties non couvertes de manière à éviter les malentendus
- "Ce projet ne couvre pas ... "
- Exemples :
 - Le développement mobile est hors périmètre
 - La migration des données historiques et à la charge du client

Exemple d'outils pour définir le périmètre

- Cahier des charges (besoins et attentes)
- WBS préliminaire (aperçu du découpage)
- Matrice
- Carte mentale

Exercices

Chapitre 4 : découpage

Rôle du découpage

- Transformer les livrables du périmètre en éléments concrets et pilotables
- Organiser le travail de manière logique
- Faciliter la planification et le suivi
- Clarifier les responsabilités
- Identifier les dépendances

Pourquoi découper

- 1. Pour rendre le projet compréhensible et structuré
- 2. Pour estimer coûts, durées et ressources
- 3. Pour déléguer et suivre plus facilement
- 4. Pour identifier les points de contrôle (jalons)
- 5. Pour éviter les oublis ou redondances

Les trois types de découpage

Туре	Signification	Objectif
WBS	Découpage du travail à réaliser	Vue activités / tâches
PBS	Découpage du produit / livrables	Vue résultats attendus
OBS	Découper par organisation / responsabilités	Vue acteurs / ressources

Le WBS (Work Breakdown Structure)

- Structure hiérarchique du travail à accomplir
- Chaque niveau correspond à un degré de détail
- Le dernier niveau (work package) = unité de travail mesurable
 - 1. Développement du site e-commerce
 - 1.1 Analyse des besoins
 - 1.2 Conception
 - 1.3 Développement
 - 1.3.1 Front-end
 - 1.3.2 Back-end
 - 1.4 Tests
 - 1.5 Déploiement

Le PBS (Product Breakdown Structure)

- Structure des livrables du projet
- Chaque élément représente un composant de la solution finale

- 1. Application e-commerce
 - 1.1 Interface utilisateur
 - 1.2 Base de données produits
 - 1.3 Module de paiement
 - 1.4 Tableau de bord administrateur

Le OBS (Organizational Breakdown Structure)

- Structure hiérarchique des acteurs impliqués
- Permet de relier chaque lot de travail à une équipe ou un rôle
 - 1. Direction de projet
 - 1.1 Chef de projet
 - 1.2 PMO
 - 2. Équipe technique
 - 2.1 Développeur front-end
 - 2.2 Développeur back-end
 - 3. Équipe fonctionnelle
 - 3.1 Analyste métier
 - 3.2 Testeur utilisateur

Lucidchart

Méthodologie de découpage

- 1. Lister les livrables issus du périmètre en arborescence (PBS)
- 2. Identifier les activités nécessaires à chaque livrable
- 3. Regrouper les activités par lots logiques
- 4. Créer la structure hiérarchique (WBS)
- 5. Associer des responsables (OBS)

Coordination et matrice RACI

- Responsible : réalise l'action
- Accountable : porte la responsabilité finale
- Consulted : donne une expertise
- Informed : est tenu informé

Coordination et matrice RACI : exemple

Activité	Chef de projet	Dév	Testeur	Client
Cahier des charges	A		С	С
Développement du module	I	R		
Test de validation	I	С	R	С
Recette finale	Α	I	С	R

Exercices

Chapitre 5 : gestion des risques

Qu'est ce qu'un risque

- Événement incertain pouvant avoir un impact positif ou négatif sur le projet.
- Risque négatif : menace (ex. retard, panne, bug critique)
- Risque positif : opportunité (ex. gain de productivité, nouvelle technologie efficace)
- Peut concerner : le planning, le budget, la qualité, les ressources, ou la technique

Pourquoi gérer les risques ?

- Anticiper les problèmes avant qu'ils ne surviennent
- Réduire les incertitudes et les effets de surprise
- Sécuriser les coûts, délais et la qualité
- Faciliter la prise de décision (pilotage par le risque)

Analyse et positionnement du risque

- Objectif : évaluer la gravité de chaque risque
- Probabilité : chances que le risque se produise
- Impact : niveau de conséquence sur le projet
- Criticité = P × I

Impact / probabilité	Faible	Moyenne	Forte
Faible	Vert	Jaune	Orange
Moyen	Jaune	Orange	Rouge
Fort	Orange	Rouge	Rouge (très)

Traitement du risque

• Définir une stratégie adaptée à chaque risque

Stratégie	Description	Exemple
Éviter	Supprimer la cause du risque	Ne pas utiliser une techno instable
Réduire	Diminuer la probabilité ou l'impact	Ajouter des tests automatisés
Transférer	Déléguer à un tiers	Sous-traiter ou assurer le risque
Accepter	Assumer le risque avec plan B	Prévoir une marge de planning

Plan d'action associé

Pour chaque risque majeur :

- Identifier un responsable du risque
- Décrire les actions préventives
- Prévoir les actions correctives
- Suivre l'évolution

Risque	Responsable	Action préventive	Plan B
Retard de développement	Chef de projet	Ajuster la charge, réunions hebdo	Ajout d'un renfort technique

Exercices

Chapitre 6: planification

Pourquoi planifier

- Donner une vision temporelle claire du projet
- Assurer la cohérence entre les tâches, ressources et livrables
- Permettre le suivi de l'avancement
- Identifier les dérives de délai ou de charge

Les types de planification

- Planification prévisionnelle : plan initial validé avant lancement (cadre de référence)
- Planification réelle : plan réajusté selon l'avancement réel (suivi et pilotage)
- Replanification : ajustement après dérive ou imprévu (maintenir la maîtrise du projet)

Étapes de la planification

- Identifier les tâches issues du WBS
- Déterminer leur durée estimée
- 3. Identifier les dépendances entre tâches
- 4. Affecter les ressources humaines et matérielles
- 5. Déterminer les jalons (points de validation)
- 6. Établir le planning global (Gantt / PERT)

Focus sur Gantt

- Outil visuel de planification et de suivi
- Chaque tâche = une barre horizontale
- Axe horizontal = temps
- Axe vertical = tâches / lots de travail
- Permet de visualiser :
 - Début et fin de chaque tâche
 - Chevauchements et dépendances
 - État d'avancement
- ganttproject

Planification prévisionnelle versus réelle

- Attention aux chemins critiques :
 - l'ensemble des tâches sans marge
 - Si une tâche critique est retardée c'est tout le projet qui l'est

- Les risques identifiés influent la planification :
 - Marges de sécurité (temps, budget)
 - Scénarios alternatifs (plans B)
 - Jalons de contrôle supplémentaires

Exercices

TP: Validation des acquis