

Team 4 - Downstream

Gabriel Cretin - Hélène Kabbech - Tom Gutman - Flora Mikaeloff - Arnold-Franz Ake

Gabriel Cretin
Git Master
Extreme coder

Hélène Kabbech Manager Extreme coder

Tom Gutman
Bibliography
Biologist

Flora Mikaeloff
Bibliography
Biologist

Arnold-Franz Ake Code Review Coder

Meet-U 2019 project

Structural prediction of a protein query from its amino acids sequence

Query sequence

ENVIREEA...RYCATEDGIT

3D structure 7

HOMSTRAD

Programming Tools and Strategy

Programming Tools

Cluster processing

PEP8 Code Quality Checker

OOP Python 3 and Modules

Documentation

Pull request, Issues, Project management

Strategy Implemented scores

Alignment score from upstream team

+_

Threading Score

Modeller Score Co-Evolution Score

Secondary Structure Score Solvent Accessibility Score

Blosum Score

the query sequence threaded against templates structures DOPE energy of the refined model based on alignment of query and template Adequation score of evolutionary predictions between query and template structure

Adequation score between predicted and assigned secondary structures of query and template Adequation score comparing buried/exposed residues between refined model and template Score based on the comparison between query and template's likely mutations using BLOSUM62

Normalization [0 - 1]

Machine Learning Score

Combination of scores, weighted by machine learning (Logistic Regression)

Pipeline Downstream

Pipeline Downstream

Benchmarking Results

Enrichment plots

ORION Foldrecs

Upstream team Foldrecs

With upstream team Foldrecs

Machine learning: less specific, more sensitive detection!

Mysterious Sequence Results

Teams which found similar

class SCOP ids

3/9

1/9

0/9

1/9

3/5

2/9

0/9

3/9

1/9

1/9

14

Mysterious Sequences	Downstream
Mysterious sequences	Top 1 Template found
trQ6HKV8 Damien REMY	hormone
trQ6HLB4 Damien REMY	fkbp

feuA Hugues Herrmann

G1G14-4353 Hugues Herrmann

recN Nicolas Methais (gaps removed)

G1G14-3311 Mathieu Legras

scdA Marie Merle

hmp SELVAM Marie-Jeanne Lucie

mfd SELVAM Marie-Jeanne Lucie (too long)

celB Dylan MOUTACHI

arcD Dylan MOUTACHI

eam	FOLD

SCOP id

a.26.1.1

d.26.1.1

e.1.1.1

b.74.1.1

a.103.1.1

a.99.1.1

d.117.1.1

f.24.1.1

c.32.1.1

c.82.1.1

Mysterious Sequences	Downstream	FOLD

serpin

cah

citrate_synt

DNA photolyase

tms

COX1

tubulin

aldedh

Discussion & Conclusion

Discussion & Conclusion

Fold-U

Program able to generate N structural models based on :

- Protein threading
- Additional scoring: Sequence - and structure- based features
- Machine learning :
 Less specific but more sensitive Fold detection

Discussion & Conclusion

- Optimized and clear code
- Machine learning
- Interesting and relevant results
- Troubles with co-evolution and solvent accessibility scores
- Machine learning: Can be improved using more data

Perspectives

Tweak scores parameters

Changing the algorithm of solvent accessibility

Improvement of machine learning

Add other scoring functions

Annexes

Scores