ES 200 ENVIRONMENTAL STUDIES

Module-C

Anthropogenic effects on ecosystem, water quality & health, water & wastewater treatment

Lecture-6

Amritanshu Shriwastav CESE, IIT Bombay amritan@iitb.ac.in

Learning Objectives

Conventional Municipal Wastewater Treatment System

 Conventional municipal wastewater collection, treatment, and discharge

Water Use

Municipal Wastewater Generation

- Approximately 80% of the water used is converted to wastewater during municipal applications.
- > WW generation is not uniform. It encounters daily and seasonal variations.
- These variations along with the increase due to populations are to be accounted for in planning and design of collection and treatment systems.
- > The design period of 30 years is usually specified for collection and treatment systems (meaning a system should be able to handle the amount of WW generated after 30 years from the date of commissioning).

Municipal Wastewater Generation

Typical Contributions into Domestic Wastewater

Item	Range of values contributed in wastes (g/capita per day
Biochemical oxygen demand, 5 days, 20°C (BOD ₅)	45–54
Chemical oxygen demand	$1.6-1.9 \times BOD_5$
Total organic carbon	$0.6-1.0 \times BOD_5$
Total solids	170-220
Suspended solids	70–145
Grit (inorganic, 0.2 mm and above)	5–15
Grease	10-30
Alkalinity (as calcium carbonate, CaCO ₃)	20-30
Chlorides	4-8
Total nitrogen N	6–12
Organic nitrogen	$\sim 0.4 \times \text{total N}$
Free ammonia	$\sim 0.6 \times \text{total N}$
Nitrite	
Nitrate	$0.0-0.5 \times \text{total N}$
Total phosphorus, P	0.6-4.5
Organic phosphorus	~ 0.3 × total P
Inorganic (ortho- and polyphosphates)	$\sim 0.7 \times \text{total P}$
Potassium (as potassium oxide K ₂ O)	2.0-6.0
Micro-organisms present in wastewater	(per 100 ml wastewater)
Total bacteria	$10^9 - 10^{10}$
Coliforms	$10^9 - 10^{10}$
Faecal Streptococci	$10^5 - 10^6$
Salmonella typhosa	$10^{1}-10^{4}$
Protozoan cysts	Upto 10 ³
Helminthic eggs	Upto 10 ³
Virus (plaque forming units)	$10^2 - 10^4$

Arceivala and Asolekar, 2007

Municipal Wastewater Collection and Transport

https://www.conshohockensa.com/media/3358/ Sewer-System-Diagram.jpg

- Critical for Centralized Treatment
- Usually sewerage costs account for about 80% of the total cost, while treatment may account for only 20% of the total cost.

Arceivala and Asolekar, 2007

Composition of Municipal Wastewater (Sewage)

- Large solid objects (animal/vegetable matter, paper, plastic etc.)
- Inorganic solids (sand, silt, clay): (a) > 0.2mm (Grit), (b) FSS, (c)/FDS
- Organic solids: (a) VSS, (b) VDS (may include nutrients, oil, grease etc)
- Nutrients
- Pathogens
- Micropollutants

Preliminary Treatment

Removal of large objects by physical separation

Removal of inorganic particles (dia. > 0.2 mm, sp.gr. = 2.65) by settling

Pumping of the sewage to the plant level

Flow regulation

Preliminary Treatment: Bar Rack/Screen

o.in/imgres?imgurl=htt p%3A%2F%2Ffsinet.fsid. cvut.cz%2Fcz%2FU218% 2Fpeoples%2Fhoffman %2FPREDMETY%2FCOV P%2FCOV%2FFoto-COV%2FKralupy15-COV%2520rucni%2520 cesle.jpg&imgrefurl=htt p%3A%2F%2Fecompen dium.sswm.info%2Fsani tationtechnologies%2Fpretreatmenttechnologies&docid=s Z czDlJtDnhlM&tbnid= Oxa5CwnAl7odZM%3A &vet=10ahUKEwiWmbT yplHWAhUMn5QKHUA **OB2YQMwiDASgGMAY** ..i&w=2272&h=1704&cli

b&bih=947&biw=1920& q=bar%20screen&ved =0ahUKEwiWmbTypIH WAhUMn5QKHUAOB2Y QMwiDASgGMAY&iact =mrc&uact=8

Lecture 6: ES 200 Module C

Preliminary Treatment: Grit Chamber

http://legacy.chemgym.net/environmental_chemistry/topic 5b/images/grit chamber.gif

Preliminary Treatment: Sump Well

Preliminary Treatment: Equalization Tank

https://image.slideshare cdn.com/l-8equalizationandpropor tioning-150311205130conversion-gate01/95/l-8-equalization-andproportioning-17-638.jpg?cb=1426107930

Primary Treatment

w.ewisa.coo.za/eWIS
AWaterworks/misc/eWISAFactSheets/Images/wwt_images/s/scumba

- Oil, grease removed by skimming at the top (scum removal)
- \sim ~35% BOD₅ removal
- ~65% TSS removal
- After primary sedimentation:
 Organic (~ 1.2 60 μm);
 inorganic (~1.2 20 μm) in
 addition to all dissolved remain
 in WW
- 1° sludge: ~2% solids by wt.

Inflow

Effluent

Secondary Treatment

After primary treatment, most of the inorganic suspended solids, and sufficient organic suspended solids are removed.

WW still contains:

- Dissolved organic matter + Remaining suspended organic matter
- Dissolved inorganic matter
- Nutrients ?
- Micropollutants
- Pathogens

Food for microorganisms

Secondary Treatment: Activated Sludge Process

http://techalive.m tu.edu/meec/mo dule21/images/W astewaterAeratio n.jpg

- Removal of remaining dissolved and suspended organic material
- Almost all suspended solids (organic + inorganic)
 are removed in 2° sedimentation
- 2° sludge: ~1.5% solids by wt.

17

Conventional Municipal Wastewater Treatment

Secondary Treatment: Activated Sludge Process

http://www.aquagerobic.com/default/cache/file/6F1E8BB G-FEC3-434F-AAC584B784B93CB8.jpg

https://5.imimg.com/data5/MS/JN/MY-3569866/secondary-clarifier-500x500.jpg

Tertiary Treatment

After Secondary Treatment, WW still contains:

- Dissolved inorganic matter
- Nutrients (N, P)
- Micropollutants
- Pathogens

Tertiary Treatment: Nitrogen Removal

- ✓ In municipal sewage, N is predominantly present as NH₃/NH₄⁺.
- Y The conventional treatment tries to convert the N present into N_2 gas and bubble it out of the WW.
- Such conversion is a complex process and is achieved in distinct steps.
- First, all NH₃/NH₄⁺ is oxidized to NO₂⁻ with distinct group of nitrifying bacteria (viz. Nitrosomonas) under aerobic condition.
- ✓ Second, NO₂- is oxidized to NO₃- by another group of nitrifying bacteria (viz. Nitrobacter) under aerobic condition.
- ✓ Lastly, NO_3^- is reduced to N_2 gas by denitrifying bacteria under anoxic condition, which is removed from the WW by aeration.

Tertiary Treatment: Phosphorus Removal

- ✓ In municipal sewage, P is predominantly present as orthophosphate.
- Since P can not be converted to gaseous form, it is converted to solid phase for removal.
- Some chemicals (viz. Lime $Ca(OH)_2$) are added to form precipitate of Phosphate.
- Such precipitates are then allowed to settle at the bottom of a settling tank, and the clear (treated) sewage is collected from the top.

Tertiary Treatment

Disinfection

Free Chlorine Disinfection: Break Point Chlorination

- 6-log (99.9999%) pathogen removal
- 4-log (99.99%) virus removal
- 3-log (99.9%) cyst removal (parasite ova and others)

Sludge Handling

- 1° and 2° sludge is thickened to ~4% solids by wt. in thickener
- After thickening anaerobic digestion for ~40 days
- Considerable reduction in volume of sludge to be handled
- After digestion, remaining solids are dried and disposed

Anaerobic Digester

http://static.wixstati c.com/media/ca4 d30_7761324d88054 9deb6c19026a5bd6 679.png/v1/fill/w_62 0,h_445/ca4d30_77 61324d880549deb6 c19026a5bd6679.p

Lecture 6: ES 200 Module C

Reading Assignment

What are the limitations of different unit processes in such treatment?

Next Lecture:

Alternate Water & Wastewater Treatment