ECE 2031 Project Proposal

Team 101 – Caleb Song, Harsha Tambareni, Maya Rajan, Michael Probst, Sarah Copenhaver

Design Problem

- Create an IO peripheral from SCOMP that will interact with the SRAM chip on the DE2 board.
 - Read/write capabilities
- Balance ease of use and speed to make the most effective peripheral

Design Problem: Inferences

- The memory will likely be used for a storing data from a source like sonar
- Interface must excel in continuous reads and writes

Design Solution Overview

- Our solution may contain an option to specify in input data for how many reads or writes will occur
- Streamlined VHDL implementation of SRAM will make timing improvements via state machines and signal concatenations

Technical Approach: State Machine

Inputs:

- io_data from decoder
- io_write from scomp
- enables from decoder

Moore outputs:

- sram_dq to sram
- sram_address to sram
- OE, and WE to sram
- io_data to scomp

Pros and Cons of State Machine

Pros:

- Provides control over timing to meet requirements
- Utilizes simpler design than combinational logic
- Enables reuse of signals to decrease delays
- Allows user to execute sequential reads or writes

Cons:

- Takes time to transition between states
- Requires many additional enable and internal signals

Sequential Read/Write

- Prepares the next write address after the current read/write
- Reduces the number of instructions required to read/write
- Requires fewer steps in the assembly code

Sequential Write Example

- The data line is driven by the accumulator from the Simple Computer
- Write Enable is asserted (active low)
- Address is <u>automatically</u> incremented during an extra state
- SRAM is prepared to receive the next instruction

Technical Aspects: Signal Concatenation

Reducing the amount of LOADI instructions by combining values in the IO_DATA input

	IO_DATA: [16 bits]			
Decoder Address #1: 0x10	Empty Space: [153]			CTRL value: [20]
Decoder Address #2: 0x13	Empty Space: [155]		High Address: [43]	CTRL value: [20]
Decoder Address #3: 0x14	High Address: [1514]	Sequential Increment Value: [133]		CTRL value: [20]
Decoder Address #4: 0x15	High Address: [1514]	Sequential Increment Value: [130]		

Technical Aspects: Reduced Cycling

- The improved SRAM we are creating has reduced logical dependence over time
 - Utilization of organized states reduces the need for redundant information to be passed through logic gates (each of which can take up to a half of a clock cycle)

Timeline

Division of Labor

- Roles are assigned generally, with specific goals for each role set at every meeting
- Team members work on one of the following:
 - Main VHDL code efficiency
 - Exploration of alternative efficiency improvement methods
 - Project assignments
 - Code organization/readability

VHDL State Machine (Lead)

VHDL State Machine (Check) Signal
Concatenation
Research and
Development

Proposal Presentation (Lead) Proposal Presentation (Check)

Contingency Plan and Final Thoughts

- In the case our idea does not work, we will implement our existing VHDL
 - Simulation proof of the sequential write capability working
- Basic write and sequential write capability that is ~2x faster than SLOW_SRAM.
- In the case read cannot be implemented, we will have to use the logic diagram to VHDL method for SRAM reads

