Stewart Section 11-8 Complete Homework Solutions.

$$\sum_{n=1}^{\infty} \left(-1\right)^n \cdot n \cdot x^n$$

$$\lim_{n \to \infty} \sqrt[n]{\left(-1\right)^n \cdot n \cdot x^n} = \lim_{n \to \infty} \sqrt[n]{n \cdot |x|^n}$$

$$= \lim_{n \to \infty} \left[\sqrt[n]{n} \cdot \sqrt[n]{|x|^n} \right]$$

$$= |x|$$

The series will converge so long as |x| < 1

Therefore the series is centered at x = 0 and has a radius of convergence = 1.

If $x = -1$	If $x=1$
$\sum_{n=1}^{\infty} (-1)^n \cdot n \cdot (-1)^n = \sum_{n=1}^{\infty} (-1)^{2n} \cdot n$	$\sum_{n=1}^{\infty} \left(-1\right)^n \cdot n \cdot \left(1\right)^n = \sum_{n=1}^{\infty} \left(-1\right)^n \cdot n$
$= \sum_{n=1}^{\infty} \left[\left(-1 \right)^{2} \right]^{n} \cdot n$ $= \sum_{n=1}^{\infty} n$ \downarrow	Since $\lim_{n\to\infty} (-1)^n \cdot n \neq 0$, the limit of the n^{th} term test, $\sum_{n=1}^{\infty} (-1)^n \cdot n \cdot (1)^n$ does not converge.
∞	

Therefore the interval of convergence is -1 < x < 1.

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \cdot x^n}{\sqrt[3]{n}}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{\left(-1\right)^n \cdot x^n}{\sqrt[3]{n}}} = \lim_{n \to \infty} \sqrt[n]{\frac{\left|x\right|^n}{\sqrt[3]{n}}}$$

$$= \lim_{n \to \infty} \frac{\left|x\right|}{1}$$

$$= \left|x\right|$$

The series will converge so long as |x| < 1

Therefore the series is centered at x = 0 and has radius of convergence = 1

If $x = -1$	If $x = 1$
$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n} \cdot \left(-1\right)^{n}}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^{2n}}{\sqrt[3]{n}}$	$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n} \cdot \left(1\right)^{n}}{\sqrt[3]{n}} = \sum_{n=1}^{\infty} \left(-1\right)^{n} \cdot \frac{1}{\sqrt[3]{n}}$
$= \sum_{n=1}^{\infty} \frac{\left[\left(-1 \right)^{2} \right]^{n}}{\sqrt[3]{n}}$ $= \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ $= \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{3}}}$ This is a divergent <i>p</i> -series.	This is an alternating series with $\lim_{n\to\infty} \frac{1}{\sqrt[3]{n}} = 0$. Therefore the series converges by the alternating series test.

Therefore the interval of convergence is $-1 < x \le 1$

$$\sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{x^n}{2n-1}} = \lim_{n \to \infty} \sqrt[n]{\frac{|x|^n}{2n-1}}$$
$$= \lim_{n \to \infty} \frac{\sqrt[n]{|x|^n}}{\sqrt[n]{2n-1}}$$
$$= |x|$$

Therefore the series will converge so long as |x| < 1

The series is centered at x = 0 and has radius of convergence = 1

If $x = -1$	If $x = 1$
$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{2n-1} = \sum_{n=1}^{\infty} \left(-1\right)^n \cdot \frac{1}{2n-1}$	$\sum_{n=1}^{\infty} \frac{\left(1\right)^n}{2n-1} = \sum_{n=1}^{\infty} \frac{1}{2n-1}$
This is an alternating series with	Since
$\lim_{n\to\infty} \frac{1}{2n-1} = 0$, therefore the series converges	$\frac{1}{2n} < \frac{1}{2n-1}$
by the alternating series test.	$\sum_{n=1}^{\infty} \frac{1}{2n} < \sum_{n=1}^{\infty} \frac{1}{2n-1}$
	And $\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \cdot \left[\sum_{n=1}^{\infty} \frac{1}{n} \right]$
	Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series,
	$\sum_{n=1}^{\infty} \frac{(1)^n}{2n-1}$ diverges by the direct comparison
	test.

Therefore the interval of convergence is $-1 \le x < 1$

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \cdot x^n}{n^2}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{\left(-1\right)^n \cdot x^n}{n^2}} = \lim_{n \to \infty} \sqrt[n]{\frac{\left|x\right|^n}{n^2}}$$
$$= \lim_{n \to \infty} \sqrt[n]{\frac{\left|x\right|^n}{n^2}}$$
$$= \left|x\right|$$

This series will converge so long as |x| < 1

Therefore the series is centered at x = 0 and has a radius of convergence = 1

If $x = -1$	If $x=1$
$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n} \cdot \left(-1\right)^{n}}{n^{2}} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^{2n}}{n^{2}}$	$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot (1)^n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{n^2}$
$=\sum_{n=1}^{\infty} \frac{\left[\left(-1\right)^{2}\right]^{n}}{n^{2}}$	This is an alternating series with $\lim_{n\to\infty} \frac{1}{n^2} = 0$. Therefore by the alternating series test,
$=\sum_{n=1}^{\infty}\frac{1}{n^2}$	$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \cdot \left(1\right)^n}{n^2} \text{ converges.}$
This is a convergent <i>p</i> -series	

Therefore the interval of convergence is $-1 \le x \le 1$.

$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$\lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^{n+1}}{x^n} \cdot \frac{n!}{(n+1)!} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^n \cdot x}{x^n} \cdot \frac{n!}{(n+1) \cdot [n!]} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x}{n+1} \right|$$

$$= 0$$

This series will converge for all values of x.

This series is centered at x = 0 and has a radius of convergence of ∞ .

$$\sum_{n=1}^{\infty} n^n \cdot x^n$$

$$\lim_{n \to \infty} \sqrt[n]{n^n \cdot x^n} = \lim_{n \to \infty} \sqrt[n]{n^n} \cdot \sqrt[n]{|x|^n}$$
$$= n \cdot |x|$$

This series will converge only if x = 0.

This series is centered at x = 0 and has a radius of convergence of 0.

#9

$$\sum_{n=1}^{\infty} \left(-1\right)^n \cdot \frac{n^2 \cdot x^n}{2^n}$$

$$\lim_{n \to \infty} \sqrt[n]{\left(-1\right)^n \cdot \frac{n^2 \cdot x^n}{2^n}} = \lim_{n \to \infty} \sqrt[n]{\frac{n^2 \cdot |x|^n}{2^n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{n^2} \cdot \sqrt[n]{|x|^n}}{\sqrt[n]{2^n}} t$$

$$= \frac{|x|}{2}$$

This series will converge so long as

$$\frac{|x|}{2} < 1$$

$$|x| < 2$$

Therefore this series is centered at x = 0 and has a radius of convergence = 2.

If $x = -2$	If $x = 2$
$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2 \cdot (-2)^n}{2^n} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{n^2 \cdot (-1)^n (2)^n}{2^n}$	$\sum_{n=1}^{\infty} \left(-1\right)^{n} \cdot \frac{n^{2} \cdot \left(2\right)^{n}}{2^{n}} = \sum_{n=1}^{\infty} \left(-1\right)^{n} \cdot n^{2}$
$=\sum_{n=1}^{\infty}\left(-1\right)^{2n}\cdot\frac{n^{2}\left(2\right)^{n}}{2^{n}}$	Since $\lim_{n\to\infty} (-1)^n \cdot n^2 \neq 0$, this series will not
_	converge the limit of the n^{th} term test.
$=\sum_{n=1}^{\infty}\left[\left(-1\right)^{2}\right]^{n}\cdot\frac{n^{2}2^{n}}{2^{n}}$	
$=\sum_{n=1}^{\infty}n^2$	
Since $\lim_{n\to\infty} n^2 \neq 0$, this series will not converge	
the limit of the n^{th} term test.	

Therefore the interval of convergence is -2 < x < 2.

$$\sum_{n=1}^{\infty} \frac{10^n \cdot x^n}{n^3}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{10^n \cdot x^n}{n^3}} = \lim_{n \to \infty} \sqrt[n]{\frac{10^n \cdot |x|^n}{n^3}}$$
$$= \lim_{n \to \infty} \frac{\sqrt[n]{10^n} \cdot \sqrt[n]{|x|^n}}{\sqrt[n]{n^3}}$$
$$= 10 \cdot |x|$$

This series will converge so long as

$$10 \cdot |x| < 1$$
$$|x| < \frac{1}{10}$$

Therefore this series is centered at x = 0 and has radius of convergence $= \frac{1}{10}$

If $x = -\frac{1}{10}$	If $x = \frac{1}{10}$
$\sum_{n=1}^{\infty} \frac{10^{n} \cdot \left(-\frac{1}{10}\right)^{n}}{n^{3}} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n}}{n^{3}}$ $= \sum_{n=1}^{\infty} \left(-1\right)^{n} \cdot \frac{1}{n^{3}}$	$\sum_{n=1}^{\infty} \frac{10^n \cdot \left(\frac{1}{10}\right)^n}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^3}$ This is a convergent <i>p</i> -series.
This is an alternating series with $\lim_{n\to\infty} \frac{1}{n^3} = 0$, therefore the series converges by the alternating series test.	

Therefore the interval of convergence is $-\frac{1}{10} \le x \le \frac{1}{10}$.

$$\sum_{n=1}^{\infty} \frac{\left(-3\right)^n}{n\sqrt{n}} \cdot x^n$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{(-3)^n}{n\sqrt{n}} \cdot x^n} = \lim_{n \to \infty} \sqrt[n]{\frac{3^n}{n\sqrt{n}} \cdot |x|^n}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{3^n}}{\sqrt[n]{n}} \cdot \sqrt[n]{|x|^n}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{3^n}}{\sqrt[n]{n}} \cdot \sqrt[n]{|x|^n}$$

$$= \frac{3}{1 \cdot 1} \cdot |x|$$

$$= 3|x|$$

This series will converge so long as

$$3|x| < 1$$
$$|x| < \frac{1}{3}$$

The series is centered at x = 0 and has radius of convergence $= \frac{1}{3}$

If $x = -\frac{1}{3}$	If $x = \frac{1}{3}$	
$\sum_{n=1}^{\infty} \frac{\left(-3\right)^n}{n\sqrt{n}} \cdot \left(-\frac{1}{3}\right)^n = \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{\left(-3\right)^n}{n\sqrt{n}} \cdot \left(\frac{1}{3}\right)^n = \sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n\sqrt{n}}$	
$=\sum_{n=1}^{\infty}\frac{1}{n^{\frac{3}{2}}}$	$=\sum_{n=1}^{\infty} \left(-1\right)^n \cdot \frac{1}{n\sqrt{n}}$	
This series is a convergent <i>p</i> -series.	This series is alternating with $\lim_{n\to\infty} \frac{1}{n\sqrt{n}} = 0$	
	therefore this series converges by the alternating series test.	

The interval of convergence is

$$-\frac{1}{3} \le x \le \frac{1}{3}$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n \cdot 3^n}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{x^n}{n \cdot 3^n}} = \lim_{n \to \infty} \sqrt[n]{\frac{|x|^n}{n \cdot 3^n}}$$
$$= \lim_{n \to \infty} \frac{\sqrt[n]{|x|^n}}{\sqrt[n]{n} \cdot \sqrt[n]{3^n}}$$
$$= \frac{|x|}{3}$$

This series will converge if

$$\frac{|x|}{3} < 1$$

$$|x| < 3$$

Therefore the series is centered at x = 0 and has radius of convergence = 3

If $x = -3$	If $x = 3$
$\sum_{n=1}^{\infty} \frac{(-3)^n}{n \cdot 3^n} = \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 3^n}{n \cdot 3^n}$	$\sum_{n=1}^{\infty} \frac{\left(3\right)^n}{n \cdot 3^n} = \sum_{n=1}^{\infty} \frac{1}{n}$
$=\sum_{n=1}^{\infty}\frac{\left(-1\right)^n}{n}$	This is the harmonic series, which diverges.
$=\sum_{n=1}^{\infty}\left(-1\right)^{n}\cdot\frac{1}{n}$	
This is an alternating series with $\lim_{n\to\infty} \frac{1}{n} = 0$,	
therefore the series converges by the	
alternating series test.	

The interval of convergence is $-3 \le x < 1$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{x^n}{4^n \cdot \ln(n)}$$

$$\lim_{n \to \infty} \sqrt[n]{\left(-1\right)^n \cdot \frac{x^n}{4^n \cdot \ln(n)}} = \lim_{n \to \infty} \sqrt[n]{\frac{|x|^n}{4^n \cdot \ln(n)}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{|x|^n}}{\sqrt[n]{4^n} \cdot \sqrt[n]{\ln(n)}}$$

This series will converge so long as

$$\frac{|x|}{4} < 1$$

$$|x| < 4$$

The series is centered at x = 0 and has radius of convergence = 4

If $x = -4$	If $x = 4$
$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(-4)^n}{4^n \cdot \ln(n)} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{(-1)^n \cdot 4^n}{4^n \cdot \ln(n)}$	$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(4)^n}{4^n \cdot \ln(n)} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{\ln(n)}$
$= \sum_{n=1}^{\infty} (-1)^{2n} \cdot \frac{4^n}{4^n \cdot \ln(n)}$ $= \sum_{n=1}^{\infty} \left[(-1)^2 \right]^n \cdot \frac{1}{\ln(n)}$	This series is an alternating series with $\lim_{n\to\infty} \frac{1}{\ln(n)} = 0$, therefore by the alternating series test the series converges.
$= \sum_{n=1}^{\infty} \frac{1}{\ln(n)}$	series test the series converges.
Since	
$\frac{1}{n} < \frac{1}{\ln(n)}$	
$\sum_{n=1}^{\infty} \frac{1}{n} < \sum_{n=1}^{\infty} \frac{1}{\ln(n)}$	
And $\sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series,	
$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(-4)^n}{4^n \cdot \ln(n)} \text{ diverges by the direct}$	
comparison test.	

The interval of convergence is $-4 < x \le 4$.

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}$$

$$\lim_{n \to \infty} \frac{\left| \frac{(-1)^{n+1} \cdot \frac{x^{2(n+1)+1}}{(2(n+1)+1)!}}{(-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}} \right| = \lim_{n \to \infty} \frac{\frac{x^{2(n+1)+1}}{(2(n+1)+1)!}}{\frac{x^{2n+1}}{(2n+1)!}}$$

$$= \lim_{n \to \infty} \left| \frac{x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(2n+1)!}{(2n+3)!} \cdot \frac{x^{2n+3}}{x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(2n+1)!}{(2n+3)(2n+2) \left[(2n+1)! \right]} \cdot \frac{x^{2n+1} \cdot x^2}{x^{2n+1}} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x^2}{(2n+3)(2n+2)} \right|$$

This series will converge for all values of x.

This series is centered at x = 0 and has a radius of convergence of ∞ .

$$\sum_{n=1}^{\infty} \frac{\left(x-2\right)^n}{n^2+1}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{(x-2)^n}{n^2 + 1}} = \lim_{n \to \infty} \sqrt[n]{\frac{|x-2|^n}{n^2 + 1}}$$
$$= \lim_{n \to \infty} \sqrt[n]{\frac{|x-2|^n}{n^2 + 1}}$$
$$= |x-2|$$

This series will converge if |x-2| < 1

The series is centered at x = 2 and the radius of convergence is 1

$$|x-2| < 1$$

-1 < $x-2 < 1$
1 < $x < 3$

If $x = 1$	If $x = 3$
$\sum_{n=1}^{\infty} \frac{\left(1-2\right)^n}{n^2+1} = \sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n^2+1}$	$\sum_{n=1}^{\infty} \frac{\left(3-2\right)^n}{n^2+1} = \sum_{n=1}^{\infty} \frac{\left(1\right)^n}{n^2+1}$
$=\sum_{n=1}^{\infty}\left(-1\right)^{n}\cdot\frac{1}{n^{2}+1}$	$=\sum_{n=1}^{\infty}\frac{1}{n^2+1}$
This is an alternating series with	Since
$\lim_{n\to\infty}\frac{1}{n^2+1}=0$, therefore by the alternating	$\frac{1}{n^2+1} < \frac{1}{n^2}$
series test, this series converges.	$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} < \sum_{n=1}^{\infty} \frac{1}{n^2}$
	And $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent <i>p</i> -series,
	$\sum_{n=1}^{\infty} \frac{(3-2)^n}{n^2+1}$ converges by the direct
	comparison test.

The interval of convergence is $1 \le x \le 3$.

$$\sum_{n=1}^{\infty} \left(-1\right)^n \cdot \frac{\left(x-3\right)^n}{2n+1}$$

$$\lim_{n \to \infty} \sqrt[n]{\left(-1\right)^n \cdot \frac{\left(x-3\right)^n}{2n+1}} = \lim_{n \to \infty} \sqrt[n]{\frac{\left|x-3\right|^n}{2n+1}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{\left|x-3\right|^n}}{\sqrt[n]{2n+1}}$$

$$= \left|x-3\right|$$

This series will converge if |x-3| < 1

The series is centered at x = 3 and the radius of convergence is 1

$$|x-3| < 1$$

$$-1 < x-3 < 1$$

$$2 < x < 4$$

If
$$x=2$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(2-3)^n}{2n+1} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{(-1)^n}{2n+1}$$

$$= \sum_{n=1}^{\infty} (-1)^{2n} \cdot \frac{1}{2n+1}$$

$$= \sum_{n=1}^{\infty} (-1)^{2n} \cdot \frac{1}{2n+1}$$
This is an alternating series with $\lim_{n \to \infty} \frac{1}{2n+1} = 0$, therefore by the alternating series test
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(4-3)^n}{2n+1} = 0$$
and
$$\lim_{n \to \infty} \frac{1}{2n+1} = \lim_{n \to \infty} \frac{1}{2n}$$
and
$$\lim_{n \to \infty} \frac{\left(\frac{1}{2n}\right)}{\left[\frac{1}{2n+1}\right]} = \lim_{n \to \infty} \frac{\left(\frac{1}{2n}\right)}{\left[\frac{1}{2n}\right]} = 1$$
Since
$$\sum_{n=1}^{\infty} \frac{1}{2n} = \frac{1}{2} \cdot \left[\sum_{n=1}^{\infty} \frac{1}{n}\right]$$
 is a multiple of the divergent harmonic series, by the limit comparison test
$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(2-3)^n}{2n+1} = 0$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(4-3)^n}{2n+1} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{2n+1} = 0$$

$$\sum_{n=1}^{\infty} (-1)^n \cdot \frac{(4-3)^n}{2n+1} = 0$$

The interval of convergence is $2 < x \le 4$.

$$\sum_{n=1}^{\infty} \frac{3^n \cdot (x+4)^n}{\sqrt{n}}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{3^n \cdot (x+4)^n}{\sqrt{n}}} = \lim_{n \to \infty} \sqrt[n]{\frac{3^n \cdot |x+4|^n}{\sqrt{n}}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{3^n} \cdot \sqrt[n]{|x+4|^n}}{\sqrt[n]{\sqrt{n}}}$$

$$= \frac{3 \cdot |x+4|}{1}$$

$$= 3 \cdot |x+4|$$

This series will converge if

$$3 \cdot \left| x + 4 \right| < 1$$

$$\left| x + 4 \right| < \frac{1}{3}$$

The series is centered at x = -4 and has radius of convergence $= \frac{1}{3}$

$$|x+4| < \frac{1}{3}$$

$$-\frac{1}{3} < x+4 < \frac{1}{3}$$

$$-\frac{13}{3} < x < -\frac{11}{3}$$

If $x = -\frac{13}{3}$	If $x = -\frac{11}{3}$
$\sum_{n=1}^{\infty} \frac{3^n \cdot \left(-\frac{13}{3} + 4\right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n \cdot \left(-\frac{1}{3}\right)^n}{\sqrt{n}}$	$\sum_{n=1}^{\infty} \frac{3^n \cdot \left(-\frac{11}{3} + 4\right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{3^n \cdot \left(\frac{1}{3}\right)^n}{\sqrt{n}}$
$=\sum_{n=1}^{\infty}\frac{\left(-1\right)^n}{\sqrt{n}}$	$=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$
$=\sum_{n=1}^{\infty}\left(-1\right)^{n}\cdot\frac{1}{\sqrt{n}}$	$=\sum_{n=1}^{\infty}\frac{1}{n^{\frac{1}{2}}}$
Since this is an alternating series with $\lim_{n\to\infty}\frac{1}{\sqrt{n}}0$, by the	This is a divergent <i>p</i> -series
alternating series test, the series converges.	

The interval of convergence is $-\frac{13}{3} \le x < \frac{11}{3}$

$$\sum_{n=1}^{\infty} \frac{n}{4^n} \cdot (x+1)^n$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{n}{4^n} \cdot (x+1)^n} = \lim_{n \to \infty} \sqrt[n]{\frac{n}{4^n} \cdot |x+1|^n}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{n}}{\sqrt[n]{4^n}} \cdot \sqrt[n]{|x+1|^n}$$

$$= \frac{1}{4} \cdot |x+1|$$

The series will converge when

$$\frac{1}{4} \cdot |x+1| < 1$$
$$|x+1| < 4$$

The series is centered at x = 0 and the radius of convergence is 4

$$|x+1| < 4$$

$$-4 < x+1 < 4$$

$$-5 < x < 3$$

If
$$x = -5$$

If $x = 3$

$$\sum_{n=1}^{\infty} \frac{n}{4^n} \cdot (-5+1)^n = \sum_{n=1}^{\infty} \frac{n}{4^n} \cdot (-4)^n$$

$$= \sum_{n=1}^{\infty} \frac{n}{4^n} \cdot (-1)^n \cdot 4^n$$

$$= \sum_{n=1}^{\infty} (-1)^n \cdot n$$
Since the series is alternating and $\lim_{n \to \infty} n \neq 0$, the series does not converge by the alternating series test.

Since $\lim_{n \to \infty} n \neq 0$, the series does not converge by the limit of the n th term test.

The interval of convergence is -5 < x < 3

$$\sum_{n=1}^{\infty} \frac{\left(x-2\right)^n}{n^n}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{(x-2)^n}{n^n}} = \lim_{n \to \infty} \sqrt[n]{\frac{|x-2|^n}{n^n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{|x-2|^n}}{\sqrt[n]{n^n}}$$

$$= \lim_{n \to \infty} \frac{|x-2|}{n}$$

$$= 0$$

Therefore the series converges for all real numbers

The series is centered at x = 2 and has radius of convergence ∞

$$\sum_{n=1}^{\infty} \frac{\left(2x-1\right)^n}{5^n \cdot \sqrt{n}}$$

$$\lim_{n \to \infty} \sqrt[n]{\frac{(2x-1)^n}{5^n \cdot \sqrt{n}}} = \lim_{n \to \infty} \sqrt[n]{\frac{|2x-1|^n}{5^n \cdot \sqrt{n}}}$$
$$= \lim_{n \to \infty} \frac{\sqrt[n]{|2x-1|^n}}{\sqrt[n]{5^n} \cdot \sqrt[n]{\sqrt{n}}}$$
$$= \frac{|2x-1|}{5}$$

The series will converge when

$$\frac{\left|2x-1\right|}{5} < 1$$

$$\left|2x-1\right| < 5$$

The series is centered at $x = \frac{1}{2}$ and has radius of convergence of 5

$$|2x-1| < 5$$

 $-5 < 2x-1 < 5$
 $-4 < 2x < 6$
 $-2 < x < 3$

If
$$x = -2$$

$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \cdot \sqrt{n}} = \sum_{n=1}^{\infty} \frac{(2(-2)-1)^n}{5^n \cdot \sqrt{n}}$$

$$= \sum_{n=1}^{\infty} \frac{(-5)^n}{5^n \cdot \sqrt{n}}$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 5^n}{5^n \cdot \sqrt{n}}$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^n \cdot 5^n}{5^n \cdot \sqrt{n}}$$
This is an alternating series with $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$,

The interval of convergence is $-2 \le x < 3$.

by the alternating series test the series

converges.