

I SANMACZ

- 309 & 313 PRATAP CHAMBERS, GURUDWARA ROAD, KAROL BAGH, DELHI - 110005 PH.: 28757911, 28757630, 32917966
- ➤ SAI SANMACS PLAZA, PLOT NO. 6A, COMMUNITY CENTER, DDA, SECTOR 8, ROHINI, DELHI 110085 PH.: 32458354, 32522575

e-mail: info@sanmacs.com

website: www.sanmacs.com TEST CODE: MTPO - III

HINTS AND SOLUTIONS

1. (a) Total out comes = 36Doublets = 6 i.e. (1, 1), (2, 2), --, (6, 6)

 \therefore No. of cases where one die > other die = 30

$$\Rightarrow$$
 Prob. = $\frac{30}{36} = \frac{5}{6}$

2. (d) |x| + |y| = 1 has possible equations

(i)
$$x + y = 1$$
, $x > 0$, $y > 0$

(ii)
$$-x + y = 1$$
, $x < 0$, $y > 0$

(iii)
$$-x - y = 1$$
, $x < 0$, $y < 0$

(iv)
$$x - y = 1$$
, $x > 0$, $y < 0$

Area enclosed by these lines is

- \therefore A = 1/2 BD*AC = 2 sq. units
- **3.** (b) Let's suppose first digit = '2'. So, remaining two digits on addition gives 4. Possibilities of those two digits are (0, 4), (1, 3), (2, 2), (3, 1), (4, 0)
- \Rightarrow 5 possible numbers starting with '2' ---- (1)

Similarly, 5 numbers with '2' at second place ---- (2)

5 numbers with '2' at last place ----- (3)

- \therefore Total number of trials = $3 \times 5 = 15$
- **4. (b)** Equation of tangent to $y^2 = 16x$ is $m^2 x my + 4 = 0$

Passes through $(-4, 5) \Longrightarrow -4m^2 -5m + 4 = 0$: $m_1 + m_2 = \frac{-5}{4}$

- **5.** (d) 26 ways of selecting a block of 5 days in a period of 30 days i.e. I block 1–5, II block 5-10, -----, 26^{th} block 26-30 and ways of arranging films among themselves =5! $\dot{}$ Total no. of arrangements = $26 \times 5!$ = 3120
- **6. (b)** Let $\tan A = x$, $\tan B = y$, $\tan C = z$ $\therefore x + y + z = 4$ and find minimum value of $x^2 + y^2 + z^2$ Let P(x, y, z) be any point. On the plane surface x + y + z = 4
- the plane surface x + y + z = 4 $\therefore OP^2 = x^2 + y^2 + z^2$ is least if OP is least i.e. If OP is the length of \perp^r from origin O to the plane. Here $OP = \frac{4}{\sqrt{3}}$
- $\therefore OP^2 = \frac{16}{3} = \text{minimum value of } x^2 + y^2 + z^2.$
- 7. (a) Let x, y be the number of Rs.5 and Rs.10 notes.

$$5x + 10y = 500 \implies y = \frac{100 - x}{2}$$
, we should have only even

integral value of x, so that y too is integer.

$$\therefore x = 0, 2, 4, ----, 100 \Rightarrow 51$$
 possibilities.

8. (a)
$$|z| = 5$$
 is a circle with center $(0, 0)$, radius 5

$$|z-10| = |z-8|$$
 is a line $x = 9$ and so do not intersect. Hence

no sol. satisfying equations.

9. (c) Because M and K are two sport athletes.

Te \rightarrow G \mathcal{H} J \mathcal{K} L \mathcal{M} \mathcal{N} \mathcal{O}

Fo \rightarrow H M O

 $Ba \rightarrow K N$

- \Rightarrow [G,J,L] are only single game players.
- 10. (c) HK, KM can't be together : (a),(b),(d) violated
- 11. (a) all other choices violate that two sport athletes should not sit together
- **12. (b)** N is a two sport athlete
- **13. (b)** LOTUS
- **14.** (b) By 2P.M. the angle between the hr. & min. hand = 60° The min. hand goes ahead of the hr. hand = 5.5° per min.

Total degree by which min. hand has to go ahead of hr. hand $=90^{\circ}+60^{\circ}=150^{\circ}$ Thus, Time req. for it =150*(10/55) –

15. (c)
$$2x + 3 = 1$$
, $2x + 3 = 17 \implies x = -1$, $x = 7$

16. (c)
$$\lim_{n \to 100} \frac{u_n + 1}{u_n} = |x - 3| \implies \sum u_n \text{ cgt. If } |x - 3| < 1$$

 \Rightarrow 2< x <4

- 17. (d) Ellipse is a curve, square is a polygon
- **18.** (c) Order is stronger in implication than request Dictate is stronger in implication than suggest

19. (b)
$$a < b < c \Rightarrow \frac{1}{a} > \frac{1}{b} > \frac{1}{c}$$

Multiply by $a \ b \ c \implies ab < ac < bc$

20. (c)
$$\log 2 = \log k - \log 2 \implies k = 4$$

21. (a)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = 1$$
, $\forall \theta$

- · No Solution except (0, 0)
- **22.** (c) |x-k|+|x-L|, where L > K has L K as least value
- |x-2|+|x-3| has least value 3-2=1

23. (b)
$$X \sim B(6, P) : P(X = r) = {}^{6}C_{r} q^{6-r} p^{r}$$

Now, 8 P (X = 2) = 3 P (X = 3)
$$\Rightarrow \frac{q}{p} = \frac{1}{2}$$
 Also, $p + q = 1$
 $\therefore p = 2/3$

24. (d)
$$a(x^3 - y^3) + b(x^2 - y^2) + c(x - y) = 0$$
 where $x = \cos \theta$, $y = \sin \theta$.: $(x - y) \left[a(x^2 + xy + y^2) + b(x + y) + c \right] = 0 \Rightarrow x = y$ or $\cos \theta = \sin \theta \Rightarrow \theta = \pi/4$

27. (d)
$$\sin^{-1} y = A + x$$

differentiating
$$\frac{dy}{dx} = \sqrt{1 - y^2} \implies \left(\frac{dy}{dx}\right)^2 = 1 - y^2$$

28. (a)
$$2! (n-1)! = 5x (3! (n-2)!) \implies n = 16$$

29. (c)
$$(x^2 + 3)^{10} = a_0 x^{20} + a_1 x^{18} + ... + a_{10} x^2 + 3^{10}$$

 $x = 1 \Rightarrow 4^{10} = (a_0 + a_1 + ... + a_{10}) + 3^{10}$

$$\Rightarrow a_0 + a_1 + \dots + a_{10} = 4^{10} - 3^{10}$$

30. (a)
$$(x-2)^2 + (y-2)^2 = 25$$

$$\therefore x = 2 + 5\cos\theta, \ \ y = 2 + 5\sin\theta$$

$$\Rightarrow x + y = 4 + 5(\cos\theta + \sin\theta) = 4 + 5\sqrt{2} \sin(\theta + 45^\circ)$$

Max.
$$x + y = 4 + 5\sqrt{2}$$

31. (b)
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{3i} + \overrightarrow{j} + \overrightarrow{k}$$
 and

$$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD} = \overrightarrow{3i} + \overrightarrow{j} + \overrightarrow{k}$$
 $\therefore \cos \theta = \frac{-9 - 1 + 1}{\sqrt{11}\sqrt{11}} = \frac{-9}{11} \text{ If } \theta$

were acute angle then $11 \cos \theta = 9$

32. (d) Scalar triple product of i + j, j + k, $k + i = 2 \neq 0$ \therefore vectors are non-planar, so not a Δ .

33. (d)
$$e^x > 0 \ \forall x : e^x + 1 > 1$$
, $\frac{1}{e^x + 1} < 1 \Rightarrow \frac{-2}{e^x + 1} > -2$

$$\Rightarrow 1 - \frac{2}{e^x + 1} > -1 \Rightarrow \frac{e^x - 1}{e^x + 1} > -1 \therefore (-1, \infty)$$

34. (d)
$$1 + \cos 3x$$
 : $D^5(y) = D^5(1) + D^5(\cos 3x)$

$$=0+3^5 \cos\left(\frac{5\pi}{2}+3x\right)=3^5 \cos\left(3\pi\right)$$
, at $x=\pi/6=-3^5$

35. (c)
$$(\cos \theta - \lambda)^2 + \sin^2 \theta = 0$$

$$\Rightarrow (\lambda - \cos \theta)^2 = -\sin^2 \theta = i^2 \sin^2 \theta$$

$$\Rightarrow \lambda = \cos \theta + i \sin \theta$$

36. (b) A.
$$M > G.M$$

$$\Rightarrow \left(\frac{\alpha}{\beta} + \frac{\beta}{\gamma} + \frac{\gamma}{\alpha}\right) / 3 > \sqrt[3]{\frac{\alpha}{\beta} \cdot \frac{\beta}{\gamma} + \frac{\gamma}{\alpha}}$$

37. (c)
$$f(n) = \sqrt{n+1} - \sqrt{n}$$

$$f'(n) = \frac{1}{2\sqrt{n+1}\sqrt{n}} \left(\sqrt{n} - \sqrt{n+1}\right) < 0$$

 \Rightarrow f'(n) is decreasing f n of n hence f(n) decreases as n increases.

38. (d) $p^2 = q^2 + r^2 \Rightarrow p$, q, r are the sides of a rt. angled Δ and in Δ . Sum of lengths of two sides > third side

39. (a)
$$-6x-1>27 \implies x < \frac{-14}{3}$$

 \therefore greatest integral value of x is -5

40. (b) 'Direct' is to Order while others involve giving a choice to act.

41. (d)
$$Un = \frac{1.3.5. - - - - (2n-1)}{2.4.6. - - - (2n)} \left(\frac{1}{3}\right)^n$$

$$\frac{Un+1}{Un} = \frac{2n+1}{(2n+2)} \frac{1}{3} Lt \frac{Un+1}{Un} = \frac{1}{3} < 1$$

 \therefore series $\sum Un$ is cgt.

Hence its *n*th $\rightarrow 0$ as $n \rightarrow \infty$

42. (b) z = 7 : x y multiplied by 7 = x y multiplied by z = 315 Also, $315 \div 7 = 45 = x y : x = 4$

43. (b)
$$\alpha + \beta = 5$$
, $\alpha - \beta = 3$ $\alpha = 4$, $\beta = 1$

$$\Rightarrow p = \alpha * \beta = 4$$

44. (a)

45. (c) In backward sequence (Z to A)

G= 20th, R = 9th, I = 18th, D = 23th $\cdot \cdot$ avg. = 17.5 Similarly,

F, U, N, D = 15.75
$$\left(= \frac{21+6+13+23}{4} \right)$$

46. (d)
$$e^{2x} - 2 = e^x = 2, -1$$

$$e^x = 2$$
 (: - 1 not possible) $\Rightarrow x = \log_e 2$

47. (d) *a*o (e (x)) =
$$a(x) = \frac{1}{1-x} \neq e(x)$$

48. (b) A =
$$\int_{1}^{2} x dy = \int_{1}^{2} \log y \, dy \, (\because y = e^{x})$$

$$= \log 4 - 1$$

49. (a) $S = 1 + x + x^2 + \dots$ where x = (0.2) a converge if |x| < 1 i.e. $(0.2) a < 1 \implies a < 5$

50. **(d)** Let f(x) = ax + b and $f(x + 1) = f(x - 1) \Rightarrow 2a = 0$ or a = 0 : f(x) = b = constant

51. (b) Let
$$S = 1 + \cos \alpha + \cos 2\alpha + \dots = \frac{1}{1 - \cos \alpha} = 2$$

$$\Rightarrow \cos \alpha = \frac{1}{2} : 1 + \sin^2 \alpha + \sin^4 \alpha + \dots = \frac{1}{1 - \sin^2 \alpha} = 4$$

52. (a)
$$P(B/\overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{11}{20}$$

$$\therefore$$
 P (A \cap B) = $\frac{1}{30} \Rightarrow$ A \cap B \neq \phi \infty A and B not mutually

exclusive. Also, P (A). P (B) = $2/15 \neq P (A \cap B)$

⇒ A and B are not independent

53. (d)
$$\overrightarrow{a} * (\overrightarrow{c} + \overrightarrow{b}) = (\overrightarrow{b} + \overrightarrow{c}) * (\overrightarrow{b} + \overrightarrow{c}) = 0$$

54. (c) New A.M. =
$$2\bar{x} + \frac{20}{8} = 2*30 + 2.5 = 62.5$$

55. (a)
$$G.M < A.M. \implies G.M < 4$$

56. (b)
$$n! = \left(\frac{n+1}{3!}\right) \Rightarrow n = 5$$

57. (d) Let
$$Z = \frac{1 + 2\omega + 3\omega^2}{\omega + 2\omega^2 + 3} = \frac{1 + 2\omega + 3\omega^2}{\omega + 2\omega^2 + 3} = \frac{1}{\omega} = \omega^2$$

58. (c)
$$Lt \frac{x^3 + x^2 - 4x - 4}{x - 2}$$

 $Lt (x+1)(x+2) = 12$

$$Lt_{x\to 2}(x+1)(x+2) = 12$$

f(x) is continuous at x = 2 provides f(2) = 12 i.e. a = 12

60. (c) Pulpit is a place where minister does his job also; Bench is a place where judge does his job.

- 73. (a) the symbol inside circle changes alternatively. Arrow moves clock wise vert. to horz. and vice versa; vert. outside and horz. inside
- 74. (d) Cross moves clockwise, outer most object goes to inner most, second to outmost object goes to outermost, innermost to second most place. 75. (c)
- 76. (a) Two and three elements disappear in alternate steps and the elements get inverted in each step.
- 77. (b)

78. (c) L (K J) I (H) G (FE) D (C) B (AZ) Y

- i.e. Letters are in Z to A sequence and number of letters skipped between consecutive positions is alternatively two and one
- 79. (b) Let 5 be one of two nos. The product end with zero if number is 2 or 4 or 6 or 8
- \Rightarrow 4 pairs of nos. Whose products end with zero.

80. (a)
$$\sin 4x$$
 has period $\frac{2\pi}{4} = \frac{\pi}{2}$

81. (c) A (B+I) = I
$$\Rightarrow$$
 A⁻¹ = B+I

83. (a) From figure

$$BP = QC = x : BC = 3x \text{ and } x^2 + = 40. \text{ Now}$$

$$A = \frac{1}{2} 3x \sin 45^{\circ} 3x \cos 45^{\circ} \left(a = \frac{1}{2} bh \right) = \frac{9x^2}{4} = 90cm^2$$

84. **(b)**
$$Z = 4 + iy$$
, $|Z| = 5 \implies y = +3$

$$\theta = \tan^{-1}\left(\frac{3}{4}\right)$$
 (only available choice)

85. (d)
$$\left(\frac{4}{9}\right)^x + 4\left(\frac{6}{9}\right)^x = 5 \Rightarrow \left(\frac{2}{3}\right)^{2x} + 4\left(\frac{2}{3}\right)^x = 5$$

$$\Rightarrow p^2 + 4p = -5 = 0, p = \left(\frac{2}{3}\right)^x \Rightarrow p = 1(-5 \text{ not possible}) \Rightarrow x = 0$$

86. (b) The center of the circle (2,0) & r = 3 units.

Thus, Volume generated by sphere of radius as 3 is $=\frac{4\pi}{3}(3)^3$ $= 36 \,\pi$

87. (c) Let volume V of cube = a^3 , a is side.

If Volume is
$$8V = 8a^3 \Rightarrow \text{side} = 2a$$

Surface areas of cubes = $6a^2$, $24a^2$ respectively

.. Time req. to paint II cube = 4t hrs.

88. (d) Let C. P. of 1 mango =
$$Rs.1$$

 \therefore Investment = Rs.100

For 20% profit, he has to sell = 90 mangoes for Rs.120

$$\therefore$$
 C.P: S.P of 1 mango = 1: $\frac{120}{90}$ = 3:4

89. (a)

$$X = XB - XP + XQ - XA = 6 - 4 + 8 - 3 = 7$$

Explanation: The given information can be condensed as follows:

[A, B, C, D are the men and R, S, T, U are the women]

(i) Mrs. C>S (ii) Mrs. D>U (iii) U is A's sister

(iv) R<S.T.U (v) C was not present at U's

wedding After using (i) to (v) the \vee in CT is allowed. Thus,

DT is X. Henck, DS. Also, A and so, BU

✓: Maritial Relation WIFE **×**: Non existence

		R	S	T	U
		✓ By			≭ By
	A	elemination			(iii)
					✓
Ħ	В				By
HUSBAND					elemina
D D					tion
A		x By (i)	≭ By	✓ By	×
Ñ	C	and (iv)	(i)	eleminati	
Ď				on	
_		⊁ By (ii)	✓ By	*	≭ By
	D	and (iv)	elemination		(ii)

- ✓: Existence of maritial Relation
- **x**: Non-Existence
- **90. (c)** ∴ Rekha is youngest women and wife of Arun.
- 91. (a) Uma is Arun's sister and Badri's wife. Thus Arun is Prem's Uncle and Rekha (Arun's wife) is Prem's aunt.
- 92. (d) R<U \Rightarrow A<B \cdot B $\not<$ A

while in (a) C>Mrs. C>S; (b) R<S,T,U< husbands

- (c) R < S \Rightarrow R!s husband < S's husband \Rightarrow A < D
- 93. (b) A-27, B-29, C-31, D-33, R-28. The ages of other woman 30, 32, 34 Mrs. C>S \Rightarrow T>S, Mrs. D>U \Rightarrow S>U \Rightarrow T>S>U

94. (b) A person can't be frd. Of himself $(\neq R)$ If A is a frd. Of B \Rightarrow B is a frd. Of A (=S) If A is frd. Of B, B is frd. Of C \Rightarrow A is frd. of C (\neq T) 95. (c)

96. (d)

Draw L3 parallel L1 & L2 $\therefore \alpha + \alpha_1 = 180^{\circ}$ $\beta_1 + \gamma = 180^{\circ}$ (sum of angles on the same side of transversal is 180) $1 \Rightarrow \alpha + (\alpha_1 + \beta_1) + \gamma = 360^{\circ}$

$$1 \Rightarrow \alpha + (\alpha_1 + \beta_1) + \gamma = 360^\circ$$

$$\Rightarrow \alpha + \beta + \gamma = 360^{\circ}$$

97. (b) No. of man hrs. req. to complete the job = $10 \times 10 \times 10 = 1000$

No. of man hrs. made available = $2 \times 5 \times 8 = 80$

$$\therefore$$
 % of work completed = $\frac{80}{1000} \times 100 = 8\%$

98. (b) n (T
$$\cap$$
 F) = x (say) :: n (T \cup F)' = x
Only T=20 only F=15

- Only T=20, only F=15
- 20 + x + 15 + x = 35 + 2x, which is odd · Ans. = 37, only odd choice available.
- **99.** (c) Let external angle = x : internal = 4x

$$4x + x = 180^{\circ} \implies x = 36^{\circ}$$
 : no. of sides $= \frac{360}{36} = 10$

100. (c) $\overrightarrow{n_1}, \overrightarrow{n_2}$ are normals to two given planes $\overrightarrow{n_1} \times \overrightarrow{n_2}$ is

parallel to both planes

$$\vec{n_1} \times \vec{n_2} = (\vec{i} + 1\vec{j} + \vec{k}) * (2\vec{i} + \vec{j} + 2\vec{k}) = 3\vec{i} - 3\vec{k}$$

$$d.r$$
's $(1, 0, -1)$

