Computer Networks

Ch.4 Wireless and Mobile Networks

(bruno.quoitin@umons.ac.be)

Important note: These slides are based on the instructors material provided by **J.F. Kurose** and **K.W. Ross** (c) 1996-2009.

Chapter 6: Wireless and Mobile Networks

Background

- # wireless (mobile) phone subscribers now exceed wired phone subscribers! (since ~2003)⁽¹⁾
- computer nets: laptops, smartphones, Internet-enabled phones promise anytime untethered Internet access

Two important (but different) challenges

- Wireless: communication over wireless link
- Mobility: handling the mobile user who changes point of attachment to network

Chapter 6 outline

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - Spread spectrum
- 6.3 IEEE 802.11
 wireless LANs ("wi-fi")
- 6.4 Cellular Internet Access
 - * architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles: addressing and routing to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols

6.9 Summary

Elements of a wireless network (1/5)

Elements of a wireless network (2/5)

Ne sais pas utiliser CSMA/CD (=> revoir !) car Ne sais pas détecter de collision.

CSMA/CA utiliser pour éviter les collisions!

Elements of a wireless network (3/5)

Various data rates and transmission distances of selected wireless link standards

handoff: passage d'une station à une autre: court moment ou la communication est interrompue.

Elements of a wireless network (4/5)

Elements of a wireless network (5/5)

Ad hoc Mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves (mesh routing)

Wireless network taxonomy

	Single	Multiple
Infrastructure (e.g., APs)	hop host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	hops host may have to relay through several wireless nodes to connect to larger Internet: mesh net
No infrastructure (Ad-Hoc)	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach another wireless node MANET, VANET

MANET: Mobile Ad hoc NETwork VANET: Vehicular Ad hoc NETwork

Radiofrequency (RF) communications

Basic principles

- ElectroMagnetic (EM) wave
- Radio frequencies span from 3kHz to 300GHz
- Propagation speed = speed of light c (~3.10⁸ m/s) in vacuum⁽¹⁾
- Wavelength λ = length of one period of the signal

$$\lambda = c T = \frac{c}{f}$$

where T is the period (s) and f is the frequency (Hz)

Radiofrequency (RF) communications

Radio spectrum classification(1)

 Different frequencies → different propagation properties. In particular, VHF band and up, propagation ~ line-of-sight⁽²⁾

Abbreviation	Frequencies	Wavelength
VLF (Very Low Frequencies)	3-30kHz	10-100km
LF (Low Frequencies)	30-300kHz	1-10km
MF (Medium Frequencies)	0.3-3MHz	0.1-1km
HF (High Frequencies)	3-30MHz	10-100m
VHF (Very High Frequencies)	30-300MHz	1-10m
UHF (Ultra High Frequencies)	0.3-3GHz	0.1-1m
SHF (Super High Frequencies)	3-30GHz	1-10cm
EHF (Extremely High Frequencies)	30-300GHz	1-10mm

^{(1) &}lt;u>Source</u>: The ARRL Handbook of Radio Communications, 2011

Radiofrequency (RF) communications

Radio spectrum regulation

- The whole radio spectrum cannot be used freely. It is a finite resource shared by users worldwide.
- Parts allocated to specific users (e.g. military) or services (e.g. FM radio, television, aicraft control, ...)
- Some bands can be used freely provided power is within limits.
 - Industrial, Scientific and Medical (ISM) bands.
 - Some of then used for Wi-Fi (e.g. bands around 2.4 and 5 GHz)
- See regulation authorities for exact allocation
 - European Telecommunications Standards Institute (ETSI) and European Conference on Postal and Telecommunications Administration (CEPT)
 - Belgian Institutes for Postal services and Telecommunications (BIPT/IBPT)

Wireless Link Characteristics (1/12)

Differences from wired link

- Decreased signal strength
 - radio signal attenuates as it propagates through matter (path loss)
- Interference from other sources
 - standardized wireless network frequencies (e.g., 2.4) GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
- Multipath propagation
 - radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2/12)

- Wireless transmission range factors
 - Transmission power: Measured in Watts or in dBm.
 - Receiver sensitivity: Minimum received power (in Watts or dBm) that allows reception with a reasonable BER(1).

 Antenna gain : antenna does not radiate EM power uniformly in every direction (see e.g. radiation pattern of YAGI antenna)

Radiation pattern of a YAGI antenna

Note: there are regulatory limits on Tx power (e.g. ETSI limits the Tx power

to 100mW or 20dBm in Europe for the 2.4GHz ISM band)

6: Wireless and Mobile Networks 6-15

huh? deciBels, you said???

Introduction to deciBels (dB)

- Used to express a ratio logarithmically
- ratio of amplitudes, powers, currents, ...
- Bel: unit used in acoustics that represents a ratio of 10
- deciBel = 1/10th of a Bel
- Different versions for power/amplitude⁽¹⁾
 - Power ratio in dB = $10 \log(P_1/P_2)$
 - Amplitude ratio in dB = $20 \log(A_1/A_2)$
- Why use logarithmic ratios?
 - smaller numbers for large ratios
 - logarithmic ratios can be added : log(a.b) = log(a) + log(b)
- Absolute powers in dBm
 - 10 log₁₀(power in milliWatts)

deciBels (dB)

Examples - Ratios between two powers

- What are the ratios of powers $P_1 = 100 \text{ W}$ and $P_2 = 10 \text{ W}$ expressed in dB?
 - $P_1/P_2 = 10 \rightarrow \text{Ratio}_{dB} = 10 \log_{10}(P_1/P_2) = 10 \log_{10}(10) = 10 \text{ dB}$
 - $P_2/P_1 = 0.1 \rightarrow \text{Ratio}_{dB} = 10 \log_{10}(P_2/P_1) = 10 \log_{10}(0.1) = -10 \text{ dB}$
- What is the gain G of an antenna rated 6 dBi⁽¹⁾?
 - $G_{dB} = 6 \text{ dBi} = 10 \log_{10}(G)$
 - $G = 10^{6/10} = 3.98$

$$6 = 10 \log(G)$$

deciBels (dB)

Power ratios

P_2/P_1	dB
10	10
4	6
2	3
1	0
0.5	-3
0.25	-6
0.1	-10

Amplitude ratios

A_2/A_1	dB
10	20
4	12
2	6
1.414	3
1	0
0.707	-3
0.5	-6
0.25	-12
0.1	-20

6: Wireless and Mobile Networks

deciBels (dB)

- Examples Powers in dBm
 - If a receiver sensitivity is equal to -80 dBM, what is the minimum power in Watts that it must receive?
 - $-80 \text{ dBm} = 10 \log_{10}(P \text{ in mW})$
 - $P = 10^{(-80/10)} \text{ mW} = 10^{-11} \text{ W}$
 - Express a power of 0.05 mW in dBm
 - $10 \log_{10}(0.05) = -13 \text{ dBm}$

Wireless Link Characteristics (3/12)

Free space transmission equation

- Question: given transmitted power P_{t} , what is the amount of power P_r received?
- Friis transmission equation

$$P_r = G_t G_r P_t \cdot \left(\frac{\lambda}{4\pi d}\right)^2$$

- where
 - G_r and G_r are the transmitter and receiver antenna gains, respectively
 - λ is the signal wavelength
 - d is the distance between the transmitter and receiver antennas

Wireless Link Characteristics (4/12)

- Free space transmission equation
 - Explanation for Friis equation. Two reasons.
 - (1) Spreading of signal
 - Omnidirectional point source antenna (isotropic antenna) → radio signal propagates uniformly in all directions
 - Power at distance d from source is equal to power at source divided by area of sphere of radius dLa puissance reçue baisse de manière

$$S = P_t \cdot \frac{1}{4\pi d^2} \checkmark$$

• Non-isotropic antennas can radiate energy non uniformly \rightarrow gain G, of antenna in a specific direction

ldistance

quadratique avec l'augmentation de la

Wireless Link Characteristics (5/12)

Free space transmission equation

Explanation for Friis equation. Two reasons.

(2) Antenna aperture

- Area that captures electromagnetic signal energy (similar to a camera aperture). Indication of how well an antenna will "pick up" received signal.
- Depends on the signal's wavelength (λ)

$$P_r = S \cdot \frac{\lambda^2}{4\pi} = S \cdot \frac{c^2}{4\pi f^2}$$

- Non isotropic antenna can do better
 - \rightarrow receiving gain G_{r}

Ne pas connaître la

formule

Wireless Link Characteristics (6/12)

Free space path loss equation

- Friis equation often expressed as path loss equation.
- Expresses attenuation/loss factor of signal power with distance
 - assuming unity antennae gains ($G_r = G_r = 1$)

$$L = \frac{P_t}{P_r} = \frac{1}{\left(\frac{\lambda}{4\pi d}\right)^2} = \left(\frac{4\pi d}{\lambda}\right)^2$$

• As the wavelength is related to frequency by $\lambda = \frac{c}{f}$, it can also be written

$$L = \left(\frac{4\pi d f}{c}\right)^2$$

Pass loss (L) often expressed in deciBels...

Wireless Link Characteristics (7/12)

- Free space path loss equation
 - The path loss equation

$$L = \left(\frac{4\pi d f}{c}\right)^2$$

can be rewritten in a logarithmic form (in dB)

$$L_{dB} = 10.\log_{10}\left(\frac{P_t}{P_r}\right) = 10.\log_{10}\left(\left(\frac{4\pi df}{c}\right)^2\right)$$

$$= 20\log_{10}(d) + 20\log_{10}(f) + C_1$$

$$= 20\log_{10}(d) + C_2 \longrightarrow \text{if fixed frequency}$$

Wireless Link Characteristics (8/12)

Example

- Frequency 2.4 GHz
- Distances 10 m and 100 m
- What are the attenuations in dB?
- For convenience, frequency is often expressed in MHz and distance in kilometers. In this case, the path loss can be obtained with

$$L_{dB} = 20 \log_{10}(d) + 20 \log_{10}(f) + 32.45 dB$$

- L(10 m) = 60 dB
- L(100 m) = 80 dB

$$32.45 \, dB = 10. \log_{10} \left[\left(\frac{10^9}{c}, \frac{4.\pi}{c} \right)^2 \right]$$

where factor 109 comes from the conversions from km and MHz

Wireless Link Characteristics (9/12)

Free space path loss equation

 A generalized version of the path loss equation is used for non-free space propagation (to take into account fading)

$$L_{dB} = 10. \gamma. \log_{10}(d) + C$$

• The value of γ (*loss factor*) depends on the environment. It usually ranges from 2 to 6.

Environment	Path loss exponent (γ)
Free space	2
Urban area	2.7 to 3.5
Suburban area	3 to 5
Indoor (line-of-sight)	1.6 to 1.8 car signal rebond

murs proches

6: Wireless and Mobile Networks

Simple Path Loss Model

$$L_{dB} = 10 \gamma \log_{10}(d) + C$$

Note: here, $C = 10 \log_{10} \left(\left(\frac{4 pi f}{c} \right)^2 \right)$

6: Wireless and Mobile Networks

Wireless Link Characteristics (10/12)

SNR: signal-to-noise ratio

 larger SNR - easier to extract signal from noise (a "good thing")

SNR versus BER tradeoffs

- given physical layer: increase power → increase SNR → decrease BER
- given SNR: choose physical fait varies son layer that meets BER encodage en requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

BPSK (1 Mbps)

Wireless Link Characteristics (11/12)

Multi-path propagation

 Receiver gets signal composed of direct path signal + reflected components

Source: National Instruments, Testing Wireless Receivers with Recorded RF Spectrum http://zone.ni.com/devzone/cda/pub/p/id/197

Wireless Link Characteristics (12/12)

Multi-path propagation

delay spread: delay between arrival of first and last

Wireless network characteristics (1/2)

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

Wireless network characteristics (2/2)

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Exposed terminal problem

- B and C hear each other
- A can't hear C
- D can't hear B
- B and C not willing to send simultaneously to A and D respectively (due so CSMA)

Chapter 6 outline

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - Spread spectrum
- 6.3 IEEE 802.11 wireless LANs ("wi-fi")
- 6.4 cellular Internet access
 - * architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles: addressing and routing to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols

6.9 Summary

Spread Spectrum

Introduction

- Initially developped for "military and intelligence requirements" [Stallings 2011]
- Spread signal over larger bandwidth thanks to spreading code (usually pseudorandom)
 - jamming and interference more complex
 - hiding signal: receiver must know spreading code
 - multiplex several communications (CDMA)
- Different techniques
 - Frequency-Hopping Spread Spectrum (FHSS)
 - Direct Sequence Spread Spectrum (DSSS)
- Today, used in several wireless broadcast channels standards (cellular, satellite, etc)

Spread Spectrum

Frequency-Hopping Spread Spectrum (FHSS)

Principle

- 2^k channels of different frequencies allocated (bandwidth of each channel = bandwidth of signal to send)
- one channel used at a time for a fixed duration
- current channel dictated by spreading code (receiver must use same channel sequence)

Frequency-Hopping Spread Spectrum (FHSS)

<u>Direct Sequence Spread Spectrum</u> (DSSS)

Principle

- each bit b_i in input data represented by sequence of N bits in translated signal, using a spreading code
- combination of input signal and spreading code usually done with XOR
- consequence: bandwidth of transmitted signal N times larger than input signal (spreading)
- Encoding: signal = data bit stream encoded with chipping sequence
- Decoding: dot-product of signal and chipping sequence

<u>Direct Sequence Spread Spectrum</u> (DSSS)

phase shifts.

Code Division Multiple Access (CDMA)

Introduction

- Same principle as DSSS... but used to <u>multiplex</u> several communications on the same channel
- Each user assigned a unique N-bits code (or chipping sequence)
- Codes <u>orthogonal⁽¹⁾</u> to each other, i.e. their dot product is null
- Example : a and b are orthogonal codes
 - a = 1,1,1,-1,1,-1,-1
 - b = 1,-1,1,1,1,-1,1,1

$$a \cdot b = \sum_{i=1}^{M} a_i b_i$$

$$= 1 + (-1) + 1 + (-1) + 1 + 1 + (-1) + (-1)$$

$$= 0$$

CDMA - Example

Addition de produits divisé par le nombre de chips

CDMA - Example

sent signal = sum of all senders' signals

 $Z_{i,m}^* = \sum_{s=1}^N Z_{i,m}^s$

Les chips impliquent une fréquence supérieure!
(0 et 1 = une période normale; avec les chips, c'est le nombre de chips * le 0 et le nombre de chips * 1 qui va définir la période)
Dans ce cas : fréquence

max = 8 fois celle des 0

et 1 "normaux"

(1) Note: you can check that those codes are orthogonal (their dot product is null).

Generating orthogonal codes

Walsh codes

generated using Hadamard matrices, defined recursively as

$$W_1 = \begin{pmatrix} 1 \end{pmatrix} \qquad W_{2n} = \begin{pmatrix} W_n & W_n \\ W_n & \overline{W}_n \end{pmatrix}$$

leading to

Check that rows in $W_{_{A}}$ are orthogonal

$$(1,1,1,1)\cdot(1,-1,1,-1)=1+(-1)+1+(-1)=0$$

 $(1,1,1,1)\cdot(1,1,-1,-1)=1+1+(-1)+(-1)=0$

Orthogonal Frequency Division Multiplexing (OFDM)

Principles

- multi-carrier modulation
- similar to FDM... but all channels used by the same source
- some of the bits send on each channel
- better bandwidth usage than traditional FDM as channels are more tightly packed
- bitrate on each channel = 1/N of total bitrate (if N channels) → more robust to multi-path propagation and inter-symbol interference (ISI)
- orthogonality in the OFDM context has a different meaning: it is related to proper channel frequency spacing.

Chapter 6 outline

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - Spread spectrum
- 6.3 IEEE 802.11 wireless LANs ("wi-fi")
- 6.4 cellular Internet access
 - * architecture
 - standards (e.g., GSM)

Mobility

- 6.5 Principles: addressing and routing to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols

6.9 Summary

IEEE 802.11 (Wireless LAN)

Version	Year	PHY	Frequency range (GHz)	Peak rate (Mbps)
802.11 (legacy)	1997	FHSS ⁽¹⁾ /DSSS	2.4-2.485	2
802.11b	1999	DSSS	2.4-2.485	11
802.11a	1999	OFDM ⁽²⁾	5.1-5.8	54
802.11g	2003	OFDM	2.4-2.485	54
802.11n	2009	OFDM	2.4-2.485 5.1-5.8	600
802.11ac	2013	OFDM	5.1-5.8	~7000

- all use CSMA/CA for multiple access
- all have infrastructure and ad-hoc network versions

802.11 LAN architecture

- Wireless host communicates with base station
 - base station = access point (AP)

AP + stations connectées = BSS

- Basic Service Set (BSS) (aka "cell")
 - in <u>infrastructure mode</u>, contains wireless hosts and access point
 - in ad hoc mode (IBSS -Independent BSS), contains hosts only

802.11 Channels

802.11b

 2.4GHz-2.485GHz spectrum divided into 11 22MHz channels at different frequencies (13 channels allowed in Europe)

- AP admin must choose
 - frequency (channel) for AP
 - interference possible: channel can be same as or overlap with that chosen by neighboring AP!
 6: Wireless and Mobile Networks
 6-48

802.11 Channels

802.11b

 2.4GHz-2.485GHz spectrum divided into 11 22MHz channels at different frequencies (13 channels allowed in Europe)

main lobe has ~22MHz bandwidth

Interference exists even between the less overlapping channels

802.11 Association

Wifi jungle

- Several APs available at a single location
- Each AP should have a unique Service Set Identifier (SSID) assigned by AP admin
- Host's NIC must associate with a single AP, i.e. create a "virtual wire" with AP
 - * scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - * selects AP to associate with
 - may perform authentication
 - * Host will then typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

Passive Scanning

- (1) Beacon frames periodically sent from APs (contains SSID + MAC address)
- (2) Association Request frame sent: H1 to selected AP
- (3) Association Response frame sent: selected AP to H1

Active Scanning

- (1) **Probe Request** frame broadcast from H1
- (2) **Probe Response** frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent: selected AP to H1

```
IEEE 802.11 Beacon frame
    Type/Subtype: Beacon frame (0x08)
    [...]
    Destination address: Broadcast (ff:ff:ff:ff:ff)
    Source address: 5c:33:8e:17:dd:39 (5c:33:8e:17:dd:39)
   BSS Id: 5c:33:8e:17:dd:39 (5c:33:8e:17:dd:39)
    Frame check sequence: 0x4fb89df2 [correct]
IEEE 802.11 wireless LAN management frame
    Fixed parameters (12 bytes)
        Timestamp: 0x000000C3695C3181
        Beacon Interval: 0.102400 [Seconds]
        Capability Information: 0x0431
        [...]
    Tagged parameters (117 bytes)
        SSID parameter set
                                                           Set of Basic Rates
            Tag Number: 0 (SSID parameter set)
                                                           Thoses rates are mandatory
            Tag length: 6
                                                           for joining this BSS
            Tag interpretation:
                VBNET2: "VBNET2"
        Supported Rates: 1.0(B) 2.0(B) 5.5(B) 11.0(B) 6.0 9.0 12.0 18.0
            Tag Number: 1 (Supported Rates)
            Tag length: 8
            Tag interpretation:
                Supported rates:
                    1.0(B) 2.0(B) 5.5(B) 11.0(B) 6.0 9.0 12.0 18.0 [Mbit/sec]
        Extended Supported Rates: 24.0 36.0 48.0 54.0
            Tag Number: 50 (Extended Supported Rates)
            Tag length: 4
            Tag interpretation:
                Supported rates:
                    24.0 36.0 48.0 54.0 [Mbit/sec]
                                                   6: Wireless and Mobile Networks 6-52
        [...]
```

802.11: passive/active scanning

Which AP to select?

- Selection algorithm not specified in 802.11 standard
 - left to the implementor
- Some possible hints
 - NIC provides indication of Received Signal Strength (RSS) that can be used to pick the strongest AP
 - Some APs might need authentication (not open)
 - Some APs might be more loaded than others
 - Several APs might be using the same channel (leading to interference and reduced bandwidth)

802.11 Multiple Access

Challenges for the MAC

- RF Link Quality
 - On a wired network, it was reasonable to assume a transmitted frame will be received. Not true for wireless links \rightarrow use of positive ACKs
- Collision detection impossible
 - CSMA/CD cannot be applied: an RF transceiver is either in transmit or receive state (half-duplex), not both at the same time → avoid collisions: CSMA/CA (Collision Avoidance)
- Hidden node problem
 - ullet Reservation mechanism to prevent collisions o use of special RTS/CTS frames (resp. Request/Clear To Send)

802.11 ACK frames & retransmissions

Positive ACKs

- Sender operation
 - send frame
 - wait for ACK
 - if (no ACK within timeout)
 then retransmit frame
- Receiver operation
 - if (CRC of received frame = OK)
 then wait SIFS
 send ACK frame

ACK timeout value

- depends on PHY layer
- timeout \approx SIFS + 2 * T_{prop}

Pas connaître

16us for 802.11a 10us for 802.11b/g 10/16us for 802.11n 2.4/5GHz $2T_{prop} \le 1$ us

802.11 ACK frames & retransmissions

Duplicate frames

- It is possible that the same frame is received more than once due to retransmissions (e.g. due to lost ACKs)
- To filter duplicate frames, a 12-bits Sequence Control field is incorporated in the frame header.

802.11 Multiple Access

Access Modes

- Distributed Coordination Function (DCF)
 - Basic CSMA/CA mechanism: check link is clear before transmitting (CSMA). To avoid collisions, stations use a random backoff after each frame. Can optionally rely on RTS/CTS exchanges.
- Point Coordination Function (PCF)
 - Contention-free service, only available in infrastructure mode (AP = coordinator). Use of PIFS to gain priority channel access.
- Hybrid Coordination Function (HCF)
 - Half-way between DCF and PCF for applications that need better than best-effort but not with the constraints of PCF.

802.11 MAC Protocol: DCF (1/4)

Sender operation

- 1. if sense channel idle(1) for DIFS then
 - transmit entire frame (no collision detection)
- 2. if sense channel busy then
 - defer frame transmission
 - wait random time : start random backoff timer
 - timer counts down while channel idle (frozen when channel busy)
 - transmit when timer expires
 - if no ACK, increase random backoff window, repeat step 2

DIFS (Distributed InterFrame Space)

34us for 802.11a 50us for 802.11b 28us for 802.11g

28/34us for 802.11n 2.4/5GHz

6: Wireless and Mobile Networks 6-58

802.11 MAC Protocol: DCF (2/4)

Exponential backoff

- Principle: after DIFS, transmission slot is picked randomly within a contention window (CW). The size of CW increases exponentially (doubles) with the number of retransmissions.
- Default CW size = 31 slots of 20us (802.11b). Can go up to 1023 slots.

Lorsqu'on a un slot libre, on le "réserve"

802.11 MAC Protocol: DCF (3/4)

<u>Note</u>: in the above illustration, the boundaries of the SIFS, DIFS and backoff slots are perfectly aligned. However, in practice, due to the propagation delay, they are not: nodes do not sense the channel idle at the same time.

802.11 MAC Protocol: DCF (4/4)

Different Inter-Frame Spaces (IFS)

- SIFS (Short IFS)
 - mainly time to change the transceiver state from Rx to $Tx^{(1)}$.
- DIFS (Distributed IFS)⁽²⁾
 - SIFS to prioritize shorter frames (ACK, CTS).
 - DIFS = SIFS + 2*slotTime
- PIFS (PCF IFS)
 - defined such as SIFS < PIFS < DIFS
 - PIFS = SIFS + slotTime

Slot time

9us for 802.11a 20us for 802.11b 9/20us for 802.11g 9/20us for 802.11n

⁽¹⁾ aRxTxTurnaroundTime, typically 2-5us, depending on PHY

802.11 RTS / CTS mechanism (1/3)

A RTS B CTS_A

Si pas de CTS, C ne pourrait ne pas être au courant que A a demandé RTS

Observation

 long frames = higher probability of collision in presence of hidden terminals

Idea: allow sender to "reserve" channel rather than random access of data frames → avoid collisions of long data frames

- 1. Sender first transmits Request-To-Send (RTS) frame using CSMA. RTS frames may collide with each other (but they're short)
- 2. BS broadcasts *Clear-To-Send* (CTS) in response to RTS frame. CTS frame heard by all nodes in BSS. Other stations defer transmissions
- 3. Sender transmits data frame
- 4. Receiver Acks data frame

802.11 RTS / CTS mechanism (2/3)

Network Allocation Vector (NAV)

- Carrier sensing (CCA) can be performed by listening to the physical medium. However, CCA cannot detect when the channel is busy due to a hidden node.
- A virtual carrier-sensing mechanism is added: Network Allocation Vector explicitly transmitted within frames. Defines how long the channel will be busy for the current operation.
- NAV announced in RTS frames and repeated in CTS frames → hidden terminals can learn how long the channel will be busy.

802.11 RTS / CTS mechanism (3/3)

802.11 General frame format (1/3)

Principle

 PLCP⁽¹⁾ sublayer used to synchronize receiver + allow for compatibility with older versions (specify e.g. MAC frame rate)

PLCP frame format shown for 802.11b with long preamble (other

formats exist)

6-65

utilisé entre autre pour synchroniser les horloges

802.11 General frame format (2/3)

Principle

802.11 General frame format (3/3)

Addressing

A frame can contain up to 4 addresses!

Frame	Dur.	Addr.1	Addr.2 Ad	Addr 2	Seq.	Addr.4	QoS	HT	Frame	ECS
control	I/D	Addi. i		Auui.3	num.		control	control	body	FUS

 The meaning and use of addresses varies among the MAC frame types.

MAC ACK frame

Frame	Dur.	Addr 1	dr.1 Addr.2	Addr.3	Seq.	Addr 4	QoS	HT	Frame	ECS
control	I/D	Auui. i			num.	Auui.4	control	control	body	1 03

MAC DATA frame

802.11 DATA frame format

Addressing

 Depending on the ToDS and FromDS flags in the Frame Control field, the following uses are possible

	ToDS	FromDS	Addr.1	Addr.2	Addr.3	Addr.4
Ad-hoc	0	0	RA=DA	TA=SA	BSSID ⁽²⁾	N/A
Infrastructure	1	0	RA=BSSID	TA=SA	DA	N/A
	0	1	RA=DA	TA=BSSID	SA	N/A
WDS ⁽¹⁾	1	1	RA	TA	DA	SA

- where the addresses are as follows
 - TA / RA = station that physically transmits / receives
 - SA/DA = initial source / final destination
 - BSSID = identifier of BSS (Access Point)

802.11 Frame: addressing (1/5)

 $H1 \rightarrow H2$ Ad-hoc mode
(no Access Point)

802.11 frame

FC.ToDS=0

FC.FromDS=0

Address 1 (receiver) = **H2**

Address 2 (transmitter) = H1

Address $3 = BSSID^{(1)}$

Address 4 not used

802.11 Frame: addressing (2/5)

 $H1 \rightarrow H2$ infrastructure mode

802.11 frame

FC.ToDS=1

FC.FromDS=0

Address 1 (receiver) = **AP** (BSSID)

Address 2 (transmitter) = H1

Address 3 = **H2**

Address 4 not used

802.11 Frame: addressing (3/5)

 $H1 \rightarrow H2$ infrastructure mode

802.11 frame

FC.ToDS=0

FC.FromDS=1

Address 1 (receiver) = **H2**

Address 2 (transmitter) = AP (BSSID)

Address 3 = H1

Address 4 not used

6: Wireless and Mobile Networks

802.11 Frame: addressing (4/5)

802.11 frame

FC.ToDS=1

FC.FromDS=0

Address 1 (receiver) = **AP** (BSSID)

Address 2 (transmitter) = H1

Address 3 = R1

Address 4 not used

802.3 frame

Destination address = R1
Source address = H1

802.11 Frame: addressing (5/5)

(1) 802.11 frame

FC.ToDS=1

FC.FromDS=0

Address 1 (receiver) = **AP1** (BSSID)

Address 2 (transmitter) = H1

Address 3 = H3

Address 4 not used

(3) 802.11 frame

FC.ToDS=0

FC.FromDS=1

Address 1 (receiver) = H3

Address 2 (transmitter) = AP2 (BSSID)

6-74

Address 3 = H1

Address 4 not used

(2) 802.11 frame

FC.ToDS=1

FC.FromDS=1

Address 1 (receiver) = AP2 (BSSID)

Address 2 (transmitter) = **AP1** (BSSID)

Address 3 = H3

Address 4 = H1

6: Wireless and Mobile Networks

ARP / IP datagram in 802.11 frame

LLC encapsulation

- Network layer packets cannot be directly carried in the payload as can be the case with Ethernet (802.3)
- Instead, they are first encapsulated in a 802.2 LLC SNAP⁽¹⁾ frame.

Performance of 802.11

What data rate can be achieved?

- Consider 802.11a which can provide a theoretical rate of 54 Mbps.
- Station A sends a 1500 bytes frame to station B. There is no collision.
- What parameters are needed?
 - SIFS = 16 us : DIFS = 34 us
 - 802.11a preamble (PLCP) size = 20 us
 - ACK frame size = 14 bytes
- Total transmission time ~ 314 us
 - \rightarrow achieved data rate \sim 38 Mbps (\sim 71% of theoretical)
- What is the IP data rate (think of 802.2 encap.)?
- What if RTS/CTS frames are used?

802.11: mobility within same subnet

- H1 remains in same IP subnet: IP address can remain same
- switch: which AP is associated with H1?
 - * self-learning: switch will see frame from H1 and "remember" which switch port can be used to reach H1

802.11: advanced capabilities

Rate Adaptation

- base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies
- rate adaptation algorithm not part of standard

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BFR

802.11: advanced capabilities

Power Management

- node-to-AP: "I am going to sleep until next beacon frame"
 - * AP knows not to transmit frames to this node
 - * node wakes up before next beacon frame
- beacon frame: contains list of mobiles with AP-to-mobile frames waiting to be sent
 - * node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

802.11: additional references

- IEEE, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE 5td 802.11-2012 (revision of IEEE Std 802.11-1999)
- Matthew S. Gast, 802.11 Wireless Networks: The Definitive Guide, 2nd edition, O'Reilly, 2005

802.11n

Enhanced throughput

- Multiple-Input / Multiple-Output (MIMO)
 - Multiple antennas and associated RF chains
- Wider channel
 - 802.11a/g use 20MHz channels and 48 data subcarriers (OFDM)
 - 802.11n uses 4 additional data subcarriers
 → ~8% bandwidth improvement
 - 802.11n can optionally use a 40MHz channel (disabled by default) → 2 adjacent channels → less "pilot" subcarriers → ~120% bandwidth improvement
- Changes at the MAC layer
 - Frame bursting (and cumulative ACKs)
 - Frame aggregation
 - MAC header compression

802.15 : WPAN

- WPAN Wireless Personal Area Network
 - typ. < 10 m diameter
 - most known = Bluetooth (802.15.1)
 - replacement for cables (mouse, keyboard, headphones)
 - ad hoc: no infrastructure
 - master/slaves : slaves request permission to send; master grants requests
 - 2.4-2.5 GHz radio band
 - up to 721 kbps (v1.1)

- Master device
- Slave device
- Parked device (inactive)

802.15.1 - Bluetooth

Considéré comme du bruit sur un réseau 802.11

- Frequency-hopping (FHSS⁽¹⁾)
 - Single carrier frequency changes along time (according to a pseudo-random pattern)
 - ISM band (2.402-2.480 GHz) partitioned in 79 channels of 1MHz
 - Change channel about 320-1600 times/second
 - Hopping pattern derived from the master's 48-bits channel ID, along a pseudo-random sequence
 - FHSS makes sniffing Bluetooth harder, but doable
 → see e.g. project "Ubertooth One" by Michael Ossmann

802.16: WiMAX

- Like 802.11 & cellular base station model
 - * transmissions to/from base station by hosts with omnidirectional antenna
 - base station-to-base station backhaul with pointto-point antenna
- unlike 802.11
 - range ~ 6 miles ("city rather than coffee shop")
 - ★ ~14 Mbps

802.16: WiMAX: downlink, uplink scheduling

- Transmission super-frame
 - * down-link subframe: base station to node
 - uplink subframe : node to base station

 WiMAX standard provides mechanism for scheduling, but not scheduling algorithm

Chapter 6 outline

6.1 Introduction

Wireless

- 6.2 Wireless links, characteristics
 - * Spread spectrum
- 6.3 IEEE 802.11
 wireless LANs ("wi-fi")
- 6.4 Cellular Internet
 Access
 - * architecture
 - * standards (e.g., GSM)

Mobility

- 6.5 Principles: addressing and routing to mobile users
- 6.6 Mobile IP
- 6.7 Handling mobility in cellular networks
- 6.8 Mobility and higherlayer protocols

6.9 Summary

Pas vu au cours

Components of cellular network architecture

connects cells to wide area net cell manages call setup (more later!) covers geographical handles mobility (more later!) region base transceiver station (BTS) analogous to 802.11 AP Mobile □ *mobile users* attach Switching to network through Center Public telephone BTS network, and □ air-interface: Internet physical and link layer Mobile protocol between Switching mobile and BTS Center wired network BSC □ Base Station Controller (not shown) channel allocation, paging, handoff 6: Wireless and Mobile Networks

Cellular networks: the first hop

Sharing mobile-to-BTS radio spectrum: 2 techniques

- divide spectrum in frequency channels
- divide each channel into time slots (GSM)

0 200kHz frequency[<] bands

CDMA

IS-95 CDMA, CDMA 2000

Cellular standards: brief survey

16 systems

analog voice (FDMA)

2G systems

- voice channels
- IS-136 TDMA: combined FDMA/TDMA (north america)
- GSM (global system for mobile communications): combined FDMA/TDMA
 - most widely deployed (> 80% of mobiles)
- IS-95 CDMA: code division multiple access

Don't drown in a bowl of alphabet soup: use this for reference only

<u>Cellular standards: brief survey</u>

2.5G systems

- voice and data channels
- 26 extensions for those who can't wait for 36 services
- GPRS: General Packet Radio Service
 - * evolved from GSM
 - data sent on multiple channels (if available)
 - data rates up to 115 kbps
- EDGE: Enhanced Data rates for Global Evolution
 - also evolved from GSM, using enhanced modulation
 - data rates up to 384 kbps
- CDMA-2000 (phase 1)
 - data rates up to 144kbps
 - * evolved from IS-95

<u>Cellular standards: brief survey</u>

36 systems

- voice/data
- UMTS: Universal Mobile Telecommunications Service
 - * data service = HSDPA/HSUPA (High Speed Uplink/Downlink packet Access), up to 3 Mbps
- CDMA-2000 : CDMA in TDMA slots
 - * data service = 1xEVDO (1xEvolution Data Optimized), up to 14 Mbps

46 systems

- LTE: Long-Term Evolution
 - bitrate depends on modulation technique and use of multiple streams (MIMO), can reach several 100Mbps

.... more (and more interesting) cellular topics due to mobility (stay tuned for details) 6: Wireless and Mobile Networks 6-91