- 1. (15 поена) Посматрајмо низ $\{a_n\}_{n\in\mathbb{N}}$ дат са $a_{n+1}=\sqrt{\frac{1+a_n}{1-a_n}}-1$ за свако $n\geq 1$, при чему је $a_1\in (-1,0).$
 - (a) Израчунати $\lim_{n\to+\infty} a_n$.
 - (б) Израчунати $\lim_{n\to+\infty} na_n$.
 - (в) Да ли низ $\{a_n\}_{n\in\mathbb{N}}$ конвергира ако је $a_1=\frac{1}{2}$?
- **2.** (15 поена)
 - (a) Одредити константе $a,b,c,d\in\mathbb{R}$ тако да важи $\operatorname{tg} x=a+bx+cx^2+dx^3+o(x^3)$ кад $x\to 0.$
 - (б) Израчунати $\lim_{x\to 0} \frac{\operatorname{tg}(\operatorname{tg} x) \sin(\sin x)}{\operatorname{tg} x \sin x}$.
- **3.** (20 поена) Дата је функција $f(x) = \arctan \frac{x+1}{2x-3} \frac{x}{2}$.
 - (a) Испитати ток и скицирати график функције f.
 - (б) Под којим углом график функције f улази у тачку са x-координатом $\frac{3}{2}$ са десне стране?
 - (в) Одредити број решења једначине f(x) = a у зависности од реалног параметра a.
- **4.** (10 поена) Нека је функција $f:(0,+\infty)\to\mathbb{R}$ диференцијабилна и f(1)=7, f(4)=6, f(9)=5, f(16)=3. Доказати да постоји $c\in(0,+\infty)$ за које важи $\frac{f(c)}{2\sqrt{c}}=-\sqrt{c}f'(c).$

(Писмени испит укупно вреди 60 поена. Време за рад је 3 сата.)