第三章: 语法分析

LL(1)语法分析

1. LL(1)语法分析原理

- ◆ 基本思想 从左到右扫描,按最左推导的方式推出输入流
- ◆ LL(1)文法定义:

对于文法G中任一非终极符A,其任意两个产生式A→α和A→β,都要满足下面条件:

Predict($A \rightarrow \alpha$) \cap Predict($A \rightarrow \beta$) = \angle

1. LL(1)语法分析原理

- □语法分析的动作
- ※ 匹配 分析栈第一个符号是V_T时,与输入流中的第一个符号进行匹配
- ◈ 成功
- ※ 出错、失败

1. LL(1)语法分析原理

2. LL(1)分析表的构造

- □构造的目的是为了让分析更方便
- □ 结构: T: V_N × V_T → P∪{Error}

具体: T(A,t)=A→a 若t∈Predict(A→a)

T(A,t)=Error 否则

特殊的: #作为一个终极符

2. LL(1)分析表的构造

```
[1] E \rightarrow TE'
                    {i,(}
                   |{+}
[2] E' \rightarrow +TE'
                    \{\#,\}
(3) E'→ε
                    {i,(}
[4] T \rightarrow FT'
                    |{*}
(5) T' \rightarrow *FT'
                    |{+,#,)}
(6) T'→ε
[7] F \rightarrow (E)
                    |{i} く ファね
[8] F \rightarrow i
```

	{i,(} {+}		i	+	*	()	#
【3】E'→ε	{#,)}	Ε	1			1		
【4】 T→FT' 【5】 T'→*FT'	{i,(} {*}	E'		2			3	3
【6】T'→ε	{+,#,)}	Т	4			4		
【7】F→(E) 【8】F→i	{(} {i} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T'		6	5		6	6
トニャットトランシミ	First:	F	8	# .	د لم	7		

3.1 驱动程序的设计

- □ 分析的初始格局 (S#, a₁...a_n#)
- □ 一般格局(X₁...X_m#, a_i...a_n#)
- 设存在格局为(X₁...X_m#, a₁...a_n#)
- 参若 X₁∈V_T& X₁=a₁则有(X₂...X_m#, a₂...a_n#)
- *若 X₁∈V_N则查表,若T(X₁,a₁)=X₁→α,格局为 (αX₂...X_m#, a₁...a_n#) ,若T(X₁,a₁)=error,则报
- ❖若格局为(#, #),则分析成功
- *其他情况报错

E# TE'#

FT'E'#

<u>i</u>T'E'# T'E'#

E'#

+T E'# T E'#

FT'E'#

i T' E'#

T' E'#

*FT' E'#

FT' E'#

iT' E'#

T' E'#

E'#

#

i + i * i # (i)

i + i * i # 🔱

i + i * i # 🚫 🖯

i +i*i#/\\

+ i * i #()

+i * i #

+i * i #

i*i#

i* i#

i* i#

* i #

* i #

i #

i#

#

#

T[E ,i] = [1] T [T ,i] = [4]

T[F,i]=[8]

Match

T[T',+] = [6]

T[E',+]=[2]

Match

T [T,i] =[4]

T[F,i] = [8]

Match

T[T',*]=[5]

Match

T[F,i] = [8]

Match

T[T',#] = [6]

T[E', #] = [3]

ok

3.2 注意的一些问题

- □错误的处理
- □ LL(1)方法对文法的限制

假如不满足限定:

- *进行文法等价变换,使其满足我们的限定
- * 不是所有的文法都适用于该方法,有时进行文法等价变换会破坏其可读性
- □ 通常来说,对于高级语言的语法分析也足够用了。

判断是否为LL(1)文法

2.S→(S|S'
S'→(S')|
$$\varepsilon$$

Predict(
$$S \rightarrow (SS') = \{(\} Predict(S \rightarrow \epsilon) = \{), \#\}$$

Predict($S' \rightarrow \epsilon$)= $\{\}$
Predict($S' \rightarrow \epsilon$)= $\{\}, \#\}$

Predict(S
$$\rightarrow$$
(S)={(}
Predict(S \rightarrow S')={(,#}
Predict(S' \rightarrow (S'))={(}
Predict(S' \rightarrow ϵ)={(,),#}

构造LL(1)分析表

 $S \rightarrow aBc[1]$

 $S \rightarrow bAB[2]$

 $A \rightarrow aAb[3]$

 $A \rightarrow b[4]$

 $B \rightarrow b[5]$

B→ε[6]