Class: Nine

Section: Zinnia

Subject - Mathematics

Exercise-1

21. If n = 2x - 1, where $x \in N$. Prove that n^2 when divided by 8 gives 1 as remainder.

Given,

n = 2x - 1; where $x \in N$

Since, (x - 1) and x are two consecutive natural numbers, one of them must be even number.

Hence x(x-1) is divisible by 2

So, 4x(x-1) is divisible by $4 \times 2 = 8$.

Therefore, if we divided 4x(x-1) + 1 by 8 then as a result the remainder will be 1. Again,

If n = 1

Then $n^2 = 1$, the remainder is 1 when divided by 8.

 \therefore n^2 is divided by 8 every time the remainder is 1.

[Proved]

Extra. If n=2x-1, where $x\in Z$. Prove that n^2 when divided by 8 gives 1 as remainder.

Given,

n = 2x - 1; where $x \in Z$

$$n^{2} = (2x - 1)^{2}$$

$$= 4x^{2} - 4x + 1$$

$$= 4x(x - 1) + 1$$

Since, (x - 1) and x are two consecutive integer numbers, one of them must be even number.

Hence x(x-1) is divisible by 2

So, 4x(x-1) is divisible by $4 \times 2 = 8$.

Therefore, if we divided 4x(x-1) + 1 by 8 then as a result the remainder will be 1.

 \therefore n^2 is divided by 8 every time the remainder is 1.

[Proved]

Extra: Show that, if the square of an odd natural number is divided by $8\,$ then in each case the remainder will be $\,1\,$.

If n is an odd natural number,

$$n = 2x - 1$$
; where $x \in N$

In this case,

$$n^{2} = (2x - 1)^{2}$$
$$= 4x^{2} - 4x + 1$$
$$= 4x(x - 1) + 1$$

Since, (x - 1) and x are two consecutive natural numbers, one of them must be even number.

Hence x(x-1) is divisible by 2

So, 4x(x-1) is divisible by $4 \times 2 = 8$.

Therefore, if we divided 4x(x-1) + 1 by 8 then as a result the remainder will be 1.

Again,

If n = 1

Then $n^2 = 1$, the remainder is 1 when divided by 8.

Therefore, when the square of an odd natural number is divided by 8 then in each case the remainder will be 1.

[Showed]