L3 A, intégration: M363

- I - Exercices préliminaires

Exercice 1 Soient A, B deux parties de X. Exprimer $\mathbf{1}_{X\setminus A}$, $\mathbf{1}_{A\cap B}$, $\mathbf{1}_{AUB}$, $\mathbf{1}_{B\setminus A}$, $\mathbf{1}_{A\Delta B}$, en fonction de $\mathbf{1}_A$ et $\mathbf{1}_B$.

Plus généralement, pour toute suite finie $(A_k)_{1 \leq k \leq n}$ de parties de X, exprimer $\mathbf{1}_{\substack{n \\ k=1}}^n A_k$ et $\mathbf{1}_{\substack{n \\ k=1}}^n A_k$ en fonction des $\mathbf{1}_{A_k}$.

Exercice 2 Montrer que l'application qui associe à une partie A de X sa fonction caractéristique $\mathbf{1}_A$ réalise une bijection de $\mathcal{P}(X)$ sur $\{0,1\}^X$ (ensemble des applications de X dans $\{0,1\}$). Préciser son inverse.

Exercice 3 Montrer qu'il n'existe pas de bijection de X sur $\mathcal{P}(X)$ (théorème de Cantor). On en déduit en particulier que $\mathcal{P}(\mathbb{N})$ et $\{0,1\}^{\mathbb{N}}$ ne sont pas dénombrables.

Exercice 4 Soit σ une bijection de \mathbb{N} dans \mathbb{N} et $\sum u_n$ une série réelle absolument convergente.

Montrer que la série $\sum u_{\sigma(n)}$ converge absolument avec $\sum_{n=0}^{+\infty} u_{\sigma(n)} = \sum_{n=0}^{+\infty} u_n$ (cela justifie l'écriture

 $\sum_{n\in\mathbb{N}} u_n$ dans le cas d'une série absolument convergente, ce qui est le cas pour une série à termes positifs convergente, ce qui est utilisé implicitement dans la définition d'une mesure).

Exercice 5 La longueur d'un intervalle réel I est définie par :

$$\ell\left(I\right) = \sup\left(I\right) - \inf\left(I\right) \in \left[0, +\infty\right] = \mathbb{R}^+ \cup \left\{+\infty\right\}$$

1. Soient I=[a,b] un intervalle fermé, borné et $(I_k)_{1\leq k\leq n}$ une famille finie d'intervalles telle que :

$$I \subset \bigcup_{k=1}^{n} I_k$$

Montrer que:

$$\ell\left(I\right) \le \sum_{k=1}^{n} \ell\left(I_{k}\right)$$

2. Soient I = [a, b] un intervalle fermé, borné et $(I_n)_{n \in \mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

3. Soient I un intervalle et $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles telle que :

$$I \subset \bigcup_{n \in \mathbb{N}} I_n$$

Montrer que :

$$\ell\left(I\right) \leq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

4. Soit $(I_n)_{n\in\mathbb{N}}$ une suite d'intervalles deux à deux disjoints inclus dans un intervalle I. Montrer que :

$$\ell\left(I\right) \geq \sum_{n \in \mathbb{N}} \ell\left(I_n\right)$$

Exercice 6 Pour tous réels a < b, on désigne par $C^0([a,b],\mathbb{R})$ l'espace des fonctions continues de [a,b] dans \mathbb{R} .

1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante dans $C^0([a,b],\mathbb{R})$ qui converge simplement vers une fonction $f\in C^0([a,b],\mathbb{R})$.

Montrer que la convergence est uniforme sur [a,b] (théorème de Dini). On donnera deux

démonstrations de ce résultat, l'une utilisant la caractérisation des compacts de Bolzano-Weierstrass et l'autre utilisant celle de Borel-Lebesgue.

- 2. Le résultat précédent est-il encore vrai dans $C^0(I,\mathbb{R})$ si on ne suppose plus l'intervalle I compact?
- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $C^0([a,b],\mathbb{R}^+)$ telle que la série de fonctions $\sum f_n$ converge simplement vers une fonction $f \in C^0([a,b],\mathbb{R})$.

 Montrer que:

$$\int_{a}^{b} f(t) dt = \sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt$$

4. On désigne par A la famille des parties de \mathbb{R}^2 de la forme :

$$A(f,g) = \{(x,y) \in [a,b] \times \mathbb{R} \mid f(x) \le y \le g(x)\}$$

où f, g sont dans $C^{0}([a, b], \mathbb{R})$ telles que $f \leq g$ et on note :

$$\mu\left(A\left(f,g\right)\right) = \int_{a}^{b} \left(g\left(t\right) - f\left(t\right)\right) dt$$

Montrer que cette application μ est σ -additive sur \mathcal{A} .

Exercice 7 Soit A une tribu sur X. Montrer que :

- 1. $X \in \mathcal{A}$;
- 2. $si\ A, B\ sont\ dans\ A$, $alors\ A \cup B$, $A \cap B$, $A \setminus B\ et\ A \triangle B\ sont\ dans\ A$;
- 3. si $(A_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathcal{A} alors $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{A}$ (\mathcal{A} est stable par intersection dénombrable).

Exercice 8 Soient (X, \mathcal{A}, μ) un espace mesuré et $(A_k)_{1 \leq k \leq n}$ est une suite d'éléments de \mathcal{A} telle que $\mu\left(\bigcup_{k=1}^{n} A_k\right) < +\infty$. Montrer que :

$$\mu\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} (-1)^{k-1} \mu_{k,n}$$

où on a noté pour $1 \le k \le n$:

$$\mu_{k,n} = \sum_{1 \le i_1 < \dots < i_k \le n} \mu\left(A_{i_1} \cap \dots \cap A_{i_k}\right) = \sum_{\substack{I \subset \{1,\dots,n\} \\ \text{card}(I) = k}} \mu\left(\bigcap_{i \in I} A_i\right)$$

(formule de Poincaré).

Exercice 9

1. Montrer que, pour tout $x \in X$, l'application :

$$\delta_x: \mathcal{P}(X) \rightarrow \{0,1\}$$

$$A \mapsto \mathbf{1}_A(x)$$

est une mesure finie sur $\mathcal{P}(X)$ (mesure de Dirac en x).

2. Soit $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ une suite de réels positifs ou nuls indexée par (n,m) dans \mathbb{N}^2 . On suppose que, pour tout $n\in\mathbb{N}$, la série $\sum_{m\in\mathbb{N}}u_{n,m}$ est convergente de somme S_n et que la série $\sum S_n$ est convergente de somme S.

Montrer que pour tout $m \in \mathbb{N}$, la série $\sum_{n \in \mathbb{N}} u_{n,m}$ est convergente de somme T_m et que la série

 $\sum T_m$ est convergente, soit :

$$\sum_{n=0}^{+\infty} \left(\sum_{m=0}^{+\infty} u_{n,m} \right) = \sum_{m=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,m} \right)$$

(en fait cette égalité valable dans $\mathbb{R}^+ \cup \{+\infty\}$ pour toute suite double $(u_{n,m})_{(n,m)\in\mathbb{N}^2}$ de réels positifs).

3. On suppose que $X = \{x_n \mid n \in \mathbb{N}\}$ est un ensemble dénombrable. Montrer que pour toute suite $(p_n)_{n \in \mathbb{N}}$ de réels positifs ou nuls tels que la série $\sum p_n$ soit convergente, l'application :

$$\mu: \mathcal{P}(X) \to \mathbb{R}^+$$

$$A \mapsto \sum_{n=0}^{+\infty} p_n \delta_{x_n}(A) \tag{1}$$

est une mesure finie sur $\mathcal{P}(X)$.

4. Montrer que toute mesure finie μ sur $\mathcal{P}(X)$ peut s'exprimer sous la forme (1) (pour X dénombrable, toute mesure finie est une série pondérée de masses de Dirac).

Exercice 10 Soient A une partie de P(X) telle que :

- $-\emptyset\in\mathcal{A}$:
- $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A} \ (\mathcal{A} \ est \ stable \ par \ passage \ au \ complémentaire);$
- $\forall (A, B) \in \mathcal{A}^2, A \cap B \in \mathcal{A} \ (A \ est \ stable \ par \ intersection \ finie);$

 $(A \text{ est une algèbre de Boole}) \text{ et } \mu : A \to [0, +\infty] \text{ une application telle que } :$

- $-\mu\left(\emptyset\right)=0;$
- μ est σ -additive (i. e. $\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)=\sum_{n\in\mathbb{N}}\mu\left(A_n\right)$ pour toute suite $\left(A_n\right)_{n\in\mathbb{N}}$ d'éléments de \mathcal{A} deux à deux disjoints telle que $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$).
- 1. Montrer que, pour toute suite finie $(A_k)_{1 \le k \le n}$ d'éléments de \mathcal{A} , on a $\bigcap_{k=1}^n A_k \in \mathcal{A}$, $\bigcup_{k=1}^n A_k \in \mathcal{A}$ et $A_n \setminus \bigcup_{k=1}^{n-1} A_k \in \mathcal{A}$ (dans le cas où $n \ge 2$).
- 2. Montrer que μ est croissante
- 3. Soient $A \in \mathcal{A}$ et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que $A \subset \bigcup_{n \in \mathbb{N}} A_n$. Montrer que :

$$\mu\left(A\right) \le \sum_{n \in \mathbb{N}} \mu\left(A_n\right)$$

Exercice 11 Soit A une σ -algèbre sur X supposée dénombrable (i. e. en bijection avec une partie, finie ou infinie, de \mathbb{N}). Pour tout $x \in X$, on note :

$$A\left(x\right) = \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A$$

 $(atome \ de \ x).$

- 1. Montrer que, pour tout $x \in X$, A(x) est le plus petit élément de A qui contient x.
- 2. Soient x, y dans X. Montrer que si $y \in A(x)$, on a alors A(x) = A(y).
- 3. Montrer que, pour tous x, y dans X, on a $A(x) \cap A(y) = \emptyset$ ou A(x) = A(y).
- 4. En désignant par $(x_i)_{i\in I}$ la famille des éléments de X telle que les $A(x_i)$ soient deux à deux disjoints, montrer que cette famille est dénombrable et que pour tout $A \in \mathcal{A}$, on a une partition $A = \bigcup_{j \in J} A(x_j)$, où J est une partie de I.
- 5. En déduire que A est finie, son cardinal étant une puissance de 2.

Exercice 12 Soit X un ensemble dénombrable. Quelle est la σ -algèbre engendrée par les singletons de X?

Exercice 13 Soit X un ensemble non dénombrable.

1. Quelle est la σ -algèbre \mathcal{A} engendrée par les singletons de X?

2. Montrer que l'application :

$$\begin{array}{cccc} \mu: & \mathcal{A} & \to & \{0,1\} \\ & A & \mapsto & \left\{ \begin{array}{l} 0 \ si \ A \ est \ d\'{e}nombrable} \\ 1 \ si \ X \setminus A \ est \ d\'{e}nombrable} \end{array} \right. \end{array}$$

est une mesure sur (X, A).

Exercice 14 Soit (X, \mathcal{A}, μ) un espace mesuré.

1. Montrer que si A, B sont des éléments de A tels que $A \subset B$ et $\mu(B) < +\infty$, on a alors :

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

- 2. Soient $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'éléments de \mathcal{A} et $A=\bigcup_{n\in\mathbb{N}}A_n$. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en croissant vers $\mu(A)$.
- 3. Soient $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'éléments de \mathcal{A} et $A=\bigcap_{n\in\mathbb{N}}A_n$. En supposant qu'il existe $n_0\in\mathbb{N}$ tel que $\mu(A_{n_0})<+\infty$, montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en décroissant vers $\mu(A)$.

Exercice 15 Soient μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ F(x) = \mu([x, +\infty[)$$

1. Montrer que F est décroissante avec, pour tout réel x :

$$\lim_{\substack{t \to x \\ t < x}} F\left(t\right) = F\left(x\right), \ \lim_{\substack{t \to x \\ t > x}} F\left(t\right) = F\left(x\right) - \mu\left(\left\{x\right\}\right)$$

et:

$$\lim_{t \to -\infty} F\left(t\right) = \mu\left(\mathbb{R}\right), \ \lim_{t \to +\infty} F\left(t\right) = 0$$

2. Montrer que l'ensemble :

$$\mathcal{D} = \{ x \in \mathbb{R} \mid \mu(\{x\}) > 0 \}$$

est dénombrable.

Exercice 16 La mesure ℓ des intervalles réels se prolonge de manière unique en une mesure sur la tribu $\mathcal{B}(\mathbb{R})$ des boréliens, cette mesure étant invariante par translation. C'est la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Nous allons vérifier que cette mesure ne peut pas se prolonger en une mesure invariante par translation $sur \mathcal{P}(\mathbb{R})$.

On désigne par C le groupe quotient \mathbb{R}/\mathbb{Q} .

- 1. Vérifier que, pour toute classe d'équivalence $c \in C$, on peut trouver un représentant x dans [0,1[.
 - Pour tout $c \in \mathcal{C}$, on se fixe un représentant x_c de c dans [0,1[(axiome du choix) et on désigne par A l'ensemble de tous ces réels x_c .
- 2. Montrer que les translatés r+A, où r décrit $[-1,1]\cap \mathbb{Q}$, sont deux à deux disjoints et que :

$$[0,1] \subset \bigcup_{r \in [-1,1] \cap \mathbb{Q}} (r+A) \subset [-1,2]$$

- 3. En déduire que A n'est pas borélien et que ℓ ne peut pas se prolonger en une mesure invariante par translation sur $\mathcal{P}(\mathbb{R})$.
- 4. Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ non mesurable (\mathbb{R} étant muni de la tribu de Borel) telle que |f| soit mesurable.

Exercice 17 Soit (X, A, μ) un espace mesuré.

1. Montrer que si A, B sont des éléments de A tels que $A \subset B$ et $\mu(B) < +\infty$, on a alors :

$$\mu(B \setminus A) = \mu(B) - \mu(A)$$

- 2. Soient $(A_n)_{n\in\mathbb{N}}$ une suite croissante d'éléments de \mathcal{A} et $A=\bigcup_{n\in\mathbb{N}}A_n$. Montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en croissant vers $\mu(A)$.
- 3. Soient $(A_n)_{n\in\mathbb{N}}$ une suite décroissante d'éléments de \mathcal{A} et $A=\bigcap_{n\in\mathbb{N}}A_n$. En supposant qu'il existe $n_0\in\mathbb{N}$ tel que $\mu(A_{n_0})<+\infty$, montrer que la suite $(\mu(A_n))_{n\in\mathbb{N}}$ converge en décroissant vers $\mu(A)$.

Exercice 18 Soient μ une mesure finie sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ et F la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ F(x) = \mu([x, +\infty[)$$

1. Montrer que F est décroissante avec, pour tout réel x :

$$\lim_{\substack{t \to x \\ t < x}} F\left(t\right) = F\left(x\right), \ \lim_{\substack{t \to x \\ t > x}} F\left(t\right) = F\left(x\right) - \mu\left(\left\{x\right\}\right)$$

et:

$$\lim_{t \to -\infty} F(t) = \mu(\mathbb{R}), \ \lim_{t \to +\infty} F(t) = 0$$

2. Montrer que l'ensemble :

$$\mathcal{D} = \{ x \in \mathbb{R} \mid \mu(\{x\}) > 0 \}$$

est dénombrable.

- III - Fonctions mesurables

Exercice 19 \mathbb{R} est muni de la tribu de Borel.

Soit $f : \mathbb{R} \to \mathbb{R}$. Montrer que f est mesurable si, et seulement si, la restriction de f à tout segment [a,b] est mesurable.

Exercice 20 Soient E un espace vectoriel normé et a < b deux réels.

Une fonction $f:[a,b] \to E$ est dite réglée si elle admet une limite à droite en tout point de [a,b[et une limite à gauche en tout point de [a,b[et

On notera $f(x^-)$ [resp. $f(x^+)$] la limite à gauche [resp. à droite] en $x \in [a, b]$ [resp. en $x \in [a, b]$].

- 1. Montrer qu'une fonction réglée est bornée.
- 2. Montrer qu'une limite uniforme de fonctions réglées de [a, b] dans E est réglée.
- 3. Soit $f:[a,b] \to E$ une fonction réglée et $\varepsilon > 0$. On note :

$$E_{\varepsilon} = \left\{ x \in \left[a, b \right] \mid il \text{ existe } \varphi \text{ en escaliers sur } \left[a, x \right] \text{ telle que } \sup_{t \in \left[a, x \right]} \left\| f \left(t \right) - \varphi \left(t \right) \right\| < \varepsilon \right\}$$

Montrer que $E_x \neq \emptyset$, puis que $b = \max(E_{\varepsilon})$.

- 4. Montrer qu'une fonction $f:[a,b] \to E$ est réglée si, et seulement si, elle est limite uniforme sur [a,b] d'une suite de fonctions en escaliers.
- 5. Montrer qu'une fonction réglée $f:[a,b] \to E$ est borélienne et qu'elle est continue sur [a,b] privé d'un ensemble D dénombrable (éventuellement vide).
- 6. La fonction $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$ est-elle réglée?
- 7. En désignant par E (t) la partie entière d'un réel t, montrer que la fonction f définie sur [0, 1] par :

$$f\left(x\right) = \sum_{n=1}^{+\infty} \frac{E\left(nx\right)}{2^{n}}$$

est réglée, puis calculer $\int_0^1 f(x) dx$ (il s'agit d'une intégrale de Riemann).

Exercice 21 [a, b] est un intervalle fermé borné fixé avec a < b réels.

1. Montrer que les fonctions en escaliers positives sur [a,b] sont exactement les fonctions du type :

$$\varphi = \sum_{k=1}^{n} a_k \mathbf{1}_{I_k}$$

où $n \in \mathbb{N}^*$, les a_k sont des réels positifs ou nuls et les I_k sont des intervalles contenus dans [a,b].

- 2. Montrer que si $(\varphi_k)_{1 \le k \le n}$ est une suite finie de fonctions en escaliers sur [a,b], alors la fonction $\varphi = \max_{1 \le k \le n} \varphi_k$ est aussi en escaliers.
- 3. Soit f une fonction réglée définie sur [a, b] et à valeurs positives.
 - (a) Montrer qu'il existe une suite $(\varphi_n)_{n\in\mathbb{N}}$ de fonctions en escaliers qui converge uniformément vers f sur [a,b] et telle que :

$$\forall n \in \mathbb{N}, \ \forall x \in [a, b], \ \varphi_n(x) \le f(x)$$

(b) On désigne par $(\psi_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [a,b] par $\psi_0=0$ et pour tout $n\geq 1$:

$$\psi_n = \max\left(0, \varphi_1, \cdots, \varphi_n\right)$$

Monter que $(\psi_n)_{n\in\mathbb{N}}$ est une suite croissante de fonctions en escaliers qui converge uniformément vers f sur [a,b].

- (c) Montrer qu'il existe une suite $(f_n)_{n\in\mathbb{N}}$ de fonctions en escaliers à valeurs positives telle que la série $\sum f_n$ converge uniformément vers f sur [a,b].
- 4. Montrer que les fonctions réglées à valeurs positives sur [a, b] sont exactement les fonctions de la forme :

$$f = \sum_{n=0}^{+\infty} a_n \mathbf{1}_{I_n}$$

où les $(a_n)_{n\in\mathbb{N}}$ est une suite de réels positifs ou nuls, $(I_n)_{n\in\mathbb{N}}$ est une suite d'intervalles contenus dans [a,b] et la série considérée converge uniformément sur [a,b].

Exercice 22 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Montrer que sa dérivée f' est borélienne.

Exercice 23

- 1. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de \mathbb{R} dans \mathbb{R} . L'ensemble des réels x tels que la suite $(f_n(x))_{n\in\mathbb{N}}$ soit convergente est-il ouvert? fermé?
- 2. Soient (X, A) un espace mesurable et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions mesurables de X dans \mathbb{R} $(\mathbb{R}$ étant muni de la tribu borélienne). Montrer que l'ensemble des éléments x de X tels que la suite $(f_n(x))_{n \in \mathbb{N}}$ soit convergente est mesurable.