The Memory Hierarchy

- Topics
 - Storage technologies and trends
 - Locality of reference
 - Caching in the memory hierarchy

class12.ppt

Random-Access Memory (RAM)

- Key features
 - RAM is packaged as a chip.
 - Basic storage unit is a cell (one bit per cell).
 - Multiple RAM chips form a memory.
- Static RAM (SRAM)
 - Each cell stores bit with a six-transistor circuit.
 - Retains value indefinitely, as long as it is kept powered.
 - Relatively insensitive to disturbances such as electrical noise.
 - Faster and more expensive than DRAM.
- Dynamic RAM (DRAM)
 - Each cell stores bit with a capacitor and transistor.
 - Value must be refreshed every 10-100 ms.
 - Sensitive to disturbances.
 - Slower and cheaper than SRAM.

SRAM vs DRAM Summary

	Tran. per bit	Access time	Persist?	Sensitive?	Cost	Applications
SRAM	6	1X	Yes	No	100x	cache memories
DRAM	1	10X	No	Yes	1X	Main memories, frame buffers

Conventional DRAM Organization d x w DRAM: - dw total bits organized as d supercells of size w bits 16 x 8 DRAM chip 2 bits addr rows memory supercell controller (2,1) (to CPU) 8 bits data internal row buffer

Enhanced DRAMs

- All enhanced DRAMs are built around the conventional DRAM core.
 - Fast page mode DRAM (FPM DRAM)
 - Access contents of row with [RAS, CAS, CAS, CAS, CAS] instead of [(RAS,CAS), (RAS,CAS), (RAS,CAS), (RAS,CAS)].
 - Extended data out DRAM (EDO DRAM)
 - · Enhanced FPM DRAM with more closely spaced CAS signals.
 - Synchronous DRAM (SDRAM)
 - Driven with rising clock edge instead of asynchronous control signals.
 - Double data-rate synchronous DRAM (DDR SDRAM)
 - Enhancement of SDRAM that uses both clock edges as control signals.
 - Video RAM (VRAM)
 - · Like FPM DRAM, but output is produced by shifting row buffer
 - Dual ported (allows concurrent reads and writes)

Nonvolatile Memories

- · DRAM and SRAM are volatile memories
 - Lose information if powered off.
- Nonvolatile memories retain value even if powered off.
 - Generic name is read-only memory (ROM).
 - Misleading because some ROMs can be read and modified.
- Types of ROMs
 - Programmable ROM (PROM)
 - Eraseable programmable ROM (EPROM)
 - Electrically eraseable PROM (EEPROM)
 - Flash memory
- Firmware
 - Program stored in a ROM
 - Boot time code, BIOS (basic input/ouput system)
 - · graphics cards, disk controllers.

Typical Bus Structure Connecting CPU and Memory

- A bus is a collection of parallel wires that carry address, data, and control signals.
- Buses are typically shared by multiple devices.

Memory Read Transaction (1)

• CPU places address A on the memory bus.

Memory Read Transaction (2)

 Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

Memory Read Transaction (3)

• CPU reads word x from the bus and copies it into register %eax.

Memory Write Transaction (1)

 CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

Memory Write Transaction (2)

• CPU places data word y on the bus.

Memory Write Transaction (3)

 Main memory reads data word y from the bus and stores it at address A.

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

Disk Geometry (Muliple-Platter View)

· Aligned tracks form a cylinder.

Disk Capacity

- Capacity: maximum number of bits that can be stored.
 - Vendors express capacity in units of gigabytes (GB), where 1 GB = 10^9.
- · Capacity is determined by these technology factors:
 - Recording density (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
 - Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
 - Areal density (bits/in2): product of recording and track density.

Computing Disk Capacity

- Capacity = (# bytes/sector) x (avg. # sectors/track) x
- (# tracks/surface) x (# surfaces/platter) x (# platters/disk)
- Example:
 - 512 bytes/sector
 - 300 sectors/track (on average)
 - 20,000 tracks/surface
 - 2 surfaces/platter
 - 5 platters/disk
- Capacity = 512 x 300 x 20000 x 2 x 5
- = 30.720.000.000
- = 30.72 GB

The disk surface spins at a fixed rotational rate The read/write head is attached to the end of the arm and flies over the disk surface on a thin cushion of air. By moving radially, the arm can position the read/write head over any track.

Disk Access Time

- · Average time to access some target sector approximated by :
 - Taccess = Tavg seek + Tavg rotation + Tavg transfer
- Seek time (Tavg seek)
 - Time to position heads over cylinder containing target sector.
 - Typical Tavg seek = 9 ms
- Rotational latency (Tavg rotation)
 - Time waiting for first bit of target sector to pass under r/w head.
 - Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
- · Transfer time (Tavg transfer)
 - Time to read the bits in the target sector.
 - Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min.

Disk Access Time Example

- · Given:
 - Rotational rate = 7,200 RPM
 - Average seek time = 9 ms.
 - Avg # sectors/track = 400.
- Derived
 - Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms.
 - Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.02 ms
 - Taccess = 9 ms + 4 ms + 0.02 ms
- · Important points:
 - Access time dominated by seek time and rotational latency.
 - First bit in a sector is the most expensive, the rest are free.
 - SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - · Disk is about 40,000 times slower than SRAM,
 - · 2,500 times slower then DRAM.

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

