DEMANDEST - AI POWERED FOOD DEMAND FORECASTER

PROJECT REPORT

SUBMITTED BY

•	AZEEM AHMED U (TL)	110119104015
•	ABDUL MUIZ (TM-1)	110119104003
•	ASWAD SHERAAZ S(TM-2)	110119104013
•	AHMEDLAMEEN(TM3)	110119104005

IN PARTIAL FULFILLMENT FOR THE AWARD OF THE DEGREE OF

BACHELOR OF ENGINEERING

IN

COMPUTER SCIENCE AND ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ANNA UNIVERSITY: CHENNAI 600 025

JUNE 2022

TABLE OF CONTENT

1. INTRODUCTION

- 1.1Project Overview
- 1.2 Purpose

2. LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4. **REQUIREMENT ANALYSIS**

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5. PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3 User Stories

6. PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule

7. CODING & SOLUTIONING)

7.1 Feature 1

7.2 Feature 2

- 8. **TESTING**
 - 8.1 Test Cases
 - 8.2 User Acceptance Testing
- 9. **RESULTS**
 - 9.1 Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE
- 13. APPENDIX
- 10. ADVANTAGES & DISADVANTAGES
- 11. CONCLUSION
- 12. FUTURE SCOPE 13. APPENDIX

Source Code

GitHub & Project Demo Link

CHAPTER-I INTRODUCTION

1.1 PROJECT OVERVIEW:

A Food Delivery Service Has To Deal With A Lot Of Perishable Raw Materials Which Makes It All, The Most Important Factor For Such A Company Is To Accurately Forecast Daily And Weekly Demand. Too Much Inventory In The Warehouse Means More Risk Of Wastage, And Not Enough Could Lead To Out-of-stocks - And Push Customers To Seek Solutions From Your Competitors. The Replenishment Of Majority Of Raw Materials Is Done On Weekly Basis And Since The Raw Material Is Perishable, The Procurement Planning Is Of Utmost Importance, The Task Is To Predict The Demand For The Next 10 Weeks.

1.2 PURPOSE:

The Main Aim Of This Project Is To Create An Appropriate Machine Learning Model To Forecast The Number Of Orders To Gather Raw Materials For Next Ten Weeks. To Achieve This, We Should Know The Information About Of Fulfilment Center Like Area, City Etc., And Meal Information Like Category Of Food Sub Category Of Food Price Of The Food Or Discount In Particular Week. By Using This Data, We Can Use Any Classification Algorithm To Forecast The Quantity For 10 Weeks. A Web Application Is Built Which Is Integrated With The Model Built.

LITERATURE SURVEY

2.1 EXISTING PROBLEM:

While Satellites And Sensors Are Excellent Tools For Data Collection From Various Angles, Ai Is An Impeccable Tool For The Analysis Of This Massive Information And Making Predictions About What Is Going To Happen And Where That Event Is Most Likely To Occur. In The Same Context, Ai Is Holding The Key To Accurate Flood Forecasting. First Of All, The Data To Train The Ai System Is Gathered Through Past Data Of Rainfall And Flood Simulations

2.2 Litrature Survay:

Title: Enhanced Demand Forecasting System For Food And Raw Materials Using Ensemble Learning

Author: K. Harshini, Padmini Kousalya Madhira, Sutari Chaitra, G. Pradeep Reddy

Year: 2021

Human Needs Have Been Evolving Along With Time. There Has Been A Constant Change In The Way

People Eat Food And Their Taste Pallets, With Cuisines Varying From

Continent To Continent.In The Older Days, people Used To Cook With The Ingredients They Found Around Them And Ended Up With A New Dish. Food Wastage And Raw Materials Deterioration Are The Most Noteworthy Predicaments Faced By Any Food Selling Business. To Avoid Wastage, The Restaurants Should Have Prior Knowledge Of The Amount Of Foodrequired. Several Solutions With The Help Of Ai Have Been Compounded To Solve Thisproblem Of Food Wastage. Nevertheless, Much Of This Research Concentrates On Theprediction Of Sales And Its Accuracy.

It Is Important To Note That Sales Prediction Alonewon't Be Enough To Decrease Food Wastage. Predicting
The Number Of Raw Materials Required Also Plays A Crucial Role In Reducing Food
Wastage. Therefore, In This Paper, A Demand Forecasting System Is Proposed That Predicts The Number
Ofcustomers, Sales For Particular Dishes.

Title: Demand Forecasting In Restaurants Using Machine Learning And Statistical Analysis. **Author:** Takashi Tanizaki,tomohiro Hoshino ,takeshi Shimmura,takeshi Takenaka

Year: 2018

In The Paper, Demand Forecasting In Restaurants Using Machine Learning Is Proposed. Many Researches Have Been Proposed On Demand Forecasting Innovation Utilizing Pos Information. However, in Order To Make Demand Forecasts At A Genuine Store, It Is Important To Lay Out A Store-explicit Demand Forecasting Model In Light Of Different Factors, For Example, The Store Area, The Climate, Occasions And So On .Thus, We Developed An Demand Forecasting Model That Practically Consolidates The Previously Mentioned Information Utilizing Machine Learning. In This Paper ,the Interest Determining Model Utilizing Ai And The Check Consequence Of The Model Utilizing Genuine Store Information Is Examined.

In This Paper, Demand Forecasting Techniques Utilizing Inner Information, For Example, Pos Information And Outside Information In The Omnipresent Climate Like Climate, Occasions, And So On Are Proposed. We Utilize Bayesian Straight Relapse, Helped Choice Tree Relapse, Choice Backwoods Relapse And Stepwise Technique As The Demand Forecasting Strategy. There Was No Huge Distinction In The Determining Rate Utilizing The Strategy For Bayesian, Choice, And Stepwise, And The Forecasting Rate Of Helped Was Somewhat Low. The Figure Rate Of Any Store Surpassed Around 85%.

Title: Food Demand Prediction Using Machine Learning.

Author: K.Aishwarya, Aishwarya.N.Rao, Nikita Kumari, Akshit Mishra, Mrs.Rashmi

Year: 2020

Demand Forecasting Is The Cycle Where Authentic Information Is Utilized To Assess The Amount Of Item Client Will Buy. This Forecast Movement Is Utilized In Many Fields Like Retailing, Food Industry And So On. In Restaurants, Prediction Assume A Crucial Part As A Large Portion Of The Essential Fixings Have Short-time Span Of Usability. The Demand Rely On Numerous Unequivocal And Secret Setting, For Example, Season, Region And So On. In This Paper, Number Of Request Is Utilized To Estimate Supply Of Things, Utilizing Ai With Internal And External Data.In This Paper, Involving Outside And Inward Information For The Expectation Comprising Of Various Variables Like District Id, Week And So On. Food Demand Prediction Is A Significant And Testing Issue.

CHAPERT-III IDEATION & PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS:

EMPATHY MAP CANVAS

Demand forecasting is a key component to every growing online business. Without proper demand forecasting processes in place, it can be nearly impossible to have the right amount of stock on hand at any given time. A food delivery service has to deal with a lot of perishable raw materials which makes it all the more important for such a company to accurately forecast daily and weekly demand.

Too much inventory in the warehouse means more risk of wastage, and not enough could lead to out-of-stocks - and push customers to seek solutions from your competitors. In this challenge, get a taste of demand forecasting challenge using a real datasets.

3.2 IDEATION & BRAINSTROMING:

Ideation Phase Brainstorm & Idea Prioritization Template

Date	19 september 2022	
Team ID	PNT2022TMID23900	
Project Name	DemandEst-Al Powered Food Demand	
	Forecaster.	
Maximum Marks	4 Marks	

Step-1: Team Gathering, Collaboration and Select the Problem Statement

3.3 PROBLEM STATEMENTS:

A client ai A meal delivery company which operates in multiple Cases.they have Various fullfilment center in these cities for dispatching meal orders to their Customers. The client Wants us to help these centers with demand Forcasting for upcoming so that these centers will plan the stock of raw materials accordingly. The replenishment of majority of raw material is done on weekly bases and since the raw material is Persiable, The procurement planning is of utmost importance. Secondly the staffing of centers is Also One area Wherein accurate demand forcast are really Helpful. Given the following information, The task is to predict the demand fir the next 10 weeks (Week-146-155) For the Center-meal combination in the test set:

Problem	I Am	I'm Trying To	But	Because	Which
Statement	(customer)				Makes Me
(ps)					Feel
Ps-1	Meal	Delivery	Cancelled	Scarcity Of	Frustrated
	Delivery Or	Food	The Delivery	Stock Or Raw	
	Service		Service	Material	
	Company				
Ps-2	Meal	Purchase	The Stock	The	Miserable
	Delivery Or	Raw	Either Gets	Company	
	Service	Materials	Wasted Or	Failed To	
	Company		Becomes Out	Predict The	
			Of Stock	Demand	
				Accurately	

Data Dictionary

1. Weekly Demand data (train.csv): Contains the historical demand data for all centers, test.csv contains all the following features except the target variable

Definition
Unique ID
Week No
Unique ID for fulfillment center
Unique ID for Meal
Final price including discount, taxes & delivery charges
Base price of the meal
Emailer sent for promotion of meal
Meal featured at homepage
(Target) Orders Count

2. fulfilment_center_info.csv. Contains information for each fulfilment center

Variable	Definition
center_id	Unique ID for fulfillment center
city_code	Unique code for city
region_code	Unique code for region
center_type	Anonymized center type
op_area	Area of operation (in km^2)

3. meal_info.csv. Contains information for each meal being served

Variable	Definition	
meal_id	Unique ID for the meal	
ratedniv	Type of meal (beverages/snacks/soups)	
cuisine	Meal cuisine (Indian/Italian/)	

PROPOSED SOLUTION TEMPLATE:

Project Design Phase-I Proposed Solution Template

Date 20 October 2022	
Team ID	PNT2022TMID23900
Project Name	Demand Est-Al Powered Food Demand Forecaster
Maximum Marks	2 marks

Proposed solution:

The main aim of this project is to create an appropriate machine learning model to forecast the number of orders to gather raw materials for next ten weeks.

S. No	Parameter	Description
1	Problem statement (problem to be solved)	 Perishable raw materials must be handled daily by a food delivery service provider. Therefore, it is crucial to forecast the number of raw materials required for meal orders.
2	Idea / Solution description	 The main objective of food demand forecaster project is to build a machine learning model which uses classification algorithm to forecast the number of orders to gather raw materials for the next 10 weeks.
		 Appropriate data is gathered from relevant datasets which includes information about food delivery services in any area, meal information, price for each meal and discount of meals in a particular week.
3	Novelty / Uniqueness	 The system automatically updates customer information. Data is evaluated to forecast the raw materials. User friendly interface.
4	Social Impact / Customer Satisfaction	 The amount of food wasted in the food sector will be reduced. Increase in client profits. Decrease raw material waste.
5	Business Model (financial Benefit)	 After examining the food-related data for each location, it will determine which location was most in demand Highly profitable.

		High inventory turnovers can be made with proper analysis.
6	Scalability of Solution	The customer gains advantages from the analysis of industry data. It offers predictions on the day-to-day analysis of the food that is sold.

CHAPTER-IV REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT :

Fr No.	Functional Requirement (epic)	Sub Requirement (story / Subtask)
Fr-1	User Registration	Registration Through Form
		Registration Through Gmail
		Registration Through Linkedin
Fr-2	User Confirmation	Confirmati
		on Via Email
		Confirmati
		on Via Otp
Fr-3	Website Entry	Collecting User Data And
		Storing It In Database
Fr-4	Permissions	Location, Storage, Contacts

4.2 NON-FUNCTIONAL REQUIREMENTS:

FR NO.	NON-FUNCTIONAL	DESCRIPTION
	REQUIREMENT	
NFR-1	USABILITY	THIS PARAMETER
		SPECIFIES HOW DIFFICULT
		IT WILL BE FOR A USER TO
		LEARN AND RUN THE
		SYSTEM. USABILITY MAY
		BE ACCESSED FROM A
		VARIETY OF POINTS.
NFR-2	SECURITY	SECURITY REQUIREMENTS
		ENSURE THAT SOFTWARE
		IS PROTECTED FROM
		UNWANTED SYSTEM
		ACCESS AND THAT IT IS
		SAVED IN DATA.
		RELIABILITY DESCRIBES
		HOW LIKELY IT IS THAT
		THE SOFTWARE WILL
		OPERATE WITHOUT

		FAILURE FOR A PARTICULAR AMOUNT OF TIME.
NFR-3	RELIABILITY	RELIABILITY SUFFERS AS A RESULT OF ERRORS IN THE CODE, HARDWARE FAILURES, AND ISSUES WITH OTHER SYSTEM COMPONENTS.
NFR-4	PERFORMANCE	IT IS A QUALITY ATTRIBUTE THAT DESCRIBES THE SYSTEM'S RESPONSIVENESS TO VARIOUS USER INTERACTIONS WITH IT.

NFR-5	AVAILABILITY	ALL OPERATIONS CAN
	7	BENEFIT FROM SERVICES.
		THE DATA IS EASILY
		ACCESSIBLE HERE. WE CAN
		RECEIVE INFO ANYTIME
		WE NEED IT.
NFR-6	SCALABILITY	SCALABILITY OUTLINES
		HOW THE SYSTEM MUST
		GROW WITHOUT
		COMPROMISING ITS
		PERFORMANCE. THIS
		ENTAILS MORE USERS,
		MORE DATA PROCESSING,
		AND MORE
		TRANSACTIONS. IN THIS
		STRATEGY, CUSTOMERS
		PROFIT FROM EVALUATING
		THEIR INDUSTRY DATA,
		WHICH GIVES
		PREDICTIONS ON DAY-TO-
		DAY ANALYSIS OF FOOD
		SOLD AND REDUCES FOOD
		WASTE BY PROJECTING
		PREDICTIONS ON DAY-TO- DAY ANALYSIS OF FOOD SOLD AND REDUCES FOOD

CHAPTER-V

PROJECT DESIGN

5.1 SOLUTION & TECHNICAL DATA FLOW DIAGRAMS:

PROJECT FLOW AND ARCHITECTURE

TEAM ID	PNT2022TMID23900
PROJECT NAME	AI POWERED FOOD DEMAND
	FORECASTER

AI POWERED FOOD DEMAND FORECASTER

PROJECT FLOW:

A food delivery service has to deal with a lot of perishable raw materials which makes it all, the most important factor for such a company is to accurately forecast daily and weekly demand. Too much inventory in the warehouse means more risk of wastage, and not enough could lead to out-of-stocks - and push customers to seek solutions from your competitors. The replenishment of majority of raw materials is done on weekly basis and since the raw material is perishable, the procurement planning is of utmost importance, the task is to predict the demand for the next 10 weeks.

The main aim of this project is to create an appropriate machine learning model to forecast the number of orders to gather raw materials for next ten weeks. To achieve this, we should know the information about of fulfilment center like area, city etc., and meal information like category of food sub category of food price of the food or discount in particular week. By using this data, we can use any classification algorithm to forecast the quantity for 10 weeks. A web application is built which is integrated with the model built.

TABLE -2 CHARACTERISTIC:

1	Open-source Frameworks	No Open Source Framework	Python Flask
2	Security Implementations	Authentication Using Mail Id And Password	Password Based
	Scalable Architecture	Presentation Tierhtml Application Tierpython Model Predicts The Order Demand Based On The Food Interest And Region Easily Through Online For The Upcoming Weeks.	Ibm Cloud
4	Availability	Data Are Updated Periodically To Predict The Demand	Ibm Watson Studio

5.2 ARCHITECTURE DIAGRAM:

5.3 USER STORIES

SPRINT	FUNCTIONAL REQUIREME NT (EPIC)	USER STORY NUMBER	USER STORY / TASK	POINTS
SPRINT-3	HOME	USN-1	AS A USER, I CAN VISIT FOR THE HOME PAGE OF THE FOOD PREDICTION	5
SPRINT-3		USN-2	AS A USER, I CAN PRESS PREDICTION BUTTON	5

SPRINT-3	UPLOAD	USN-3	AS A USER, I CAN VISIT THE WEB APPLICATION AND ACCESS THE DASHBOARD	5
SPRINT-3		USN-4	AS A USER, I CAN ENTER THE INFORMATION FOR THE FOOD PREDICTION	5
SPRINT-3		USN-5	AS A USER, I CAN VISIT THE WEB APPLICATION AND ACCESS THE DASHBOARD	5
SPRINT	FUNCTION AL REQUIREM ENT	USER STORY NUMBER	USER STORY / TASK	POINTS
	NT (EPIC)			
SPRINT-1	MANAGEM NT	USN-6	AS AN ADMINISTRATOR, I CAN COLLECT NEW DATASETS AND KEEP THE MODEL TRAINED	3
SPRINT-1		USN-7	AS AN ADMINISTRATOR, I CAN UPDATE OTHER FEATURES OF THE APPLICATION	3

SPRINT-1	USN-8	AS AN ADMINISTRATOR, I CAN MAINTAIN THE INFORMATION ABOUT	3
		THE FOOD PREDICTION	
SPRINT-2	USN-9	AS AN ADMINISTRATOR, I CAN USE DIFFERENT ALGORITHM AND CHOOSE BEST ALGORITHM	3
SPRINT 2	USN-10	AS AN ADMINISTRATOR ,I CAN MODEL EVALUATION AND SAVE THE MODEL	3
SPRINT 2	USN-11	AS AN ADMINISTRATOR , I CAN PREDICTION THE VALUE USING THE MODEL	3
SPRINT 4	USN-12	AS AN ADMINISTRATOR , I CAN USE THE REGISTER IBM ACCOUNT	3
SPRINT 4	USN-13	AS AN ADMINISTRATOR, I CAN THE TRAIN THE ML FOR IBM	3

CHAPTER-VI PROJECT PLANNING & SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION:

SPRINT	FUNCTION AL REQUIREM ENT (EPIC)	USER STORY NUMBER	USER STORY / TASK	STORY POINTS	SPRINT
SPRINT-3	HOME	USN-1	AS A USER, I CAN VISIT FOR THE HOME PAGE OF THE FOOD PREDICTION	5	SPRINT-3
SPRINT-3		USN-2	AS A USER, I CAN PRESS PREDICTION BUTTON	5	SPRINT-3
SPRINT-3	UPLOAD	USN-3	AS A USER, I CAN VISIT THE WEB APPLICATION AND ACCESS THE DASHBOARD	5	SPRINT-3
SPRINT-3		USN-4	AS A USER, I CAN ENTER THE INFORMATION FOR THE FOOD PREDICTION	5	SPRINT-3

SPRINT-3		USN-5	AS A USER, I CAN	5	SPRINT-3
			VISIT THE WEB APPLICATION AND ACCESS THE DASHBOARD		
SPRINT	FUNCTIO NAL REQUIRE MENT	USER STORY NUMBER	USER STORY / TASK	STORY POINTS	SPRINT
	NT (EPIC)				
SPRINT-1	MANAG EM NT	USN-6	AS AN ADMINISTRATOR, I CAN COLLECT NEW DATASETS AND KEEP THE MODEL TRAINED	3	SPRINT-1
SPRINT-1		USN-7	AS AN ADMINISTRATOR, I CAN UPDATE OTHER FEATURES OF THE APPLICATION	3	SPRINT-1
SPRINT-1		USN-8	AS AN ADMINISTRATOR, I CAN MAINTAIN THE INFORMATION ABOUT THE FOOD PREDICTION	3	SPRINT-1

SPRINT-2	USN-9	AS AN ADMINISTRATOR, I CAN USE DIFFERENT ALGORITHM AND CHOOSE BEST ALGORITHM	3	SPRINT-2
SPRINT 2	USN-10	AS AN ADMINISTRATOR,I CAN MODEL EVALUATION AND SAVE THE MODEL	3	SPRINT 2
SPRINT 2	USN-11	AS AN ADMINISTRATOR , I CAN PREDICTION THE VALUE USING THE MODEL	3	SPRINT 2
SPRINT 4	USN-12	AS AN ADMINISTRATOR, I CAN USE THE REGISTER IBM ACCOUNT	3	SPRINT 4
SPRINT 4	USN-13	AS AN ADMINISTRATOR, I CAN THE TRAIN THE ML FOR IBM	3	SPRINT 4

6.2 SPRINT DELIVERY SCHEDULE:

Sprint	Total Story Points	Duration	Sprint Start Date	sprint End Date (Planned)	Story Points Completed (as on Planned	Sprint Release Date (Actual)
					End Date)	
Sprint-1	5	6 Days	24 Oct 2022	29 Oct 2022	5	29 Oct 2022
Sprint-2	3	6 Days	31 Oct 2022	05 Nov 2022	3	05 NOV 2022
Sprint-3	3	6 Days	07 Nov 2022	12 Nov 2022	3	12 Nov 2022
Sprint-4	3	6 Days	14 Nov 2022	19 Nov 2022	3	14 Nov 2022

CHAPTER-VII

CODING & SOLUTIONING

7.1 Data Dictionary:

Our base data consists of four csv files containing information about test data, train data and other required information.

- train.csv: Contains information like id, week, center id, meal id, checkout price, base price, emailer for promotion, homepage featured, number of orders. This file is used for training.
 - test.csv: Contains information like id, week, center id, meal id, checkout price, base price, emailer for promotion, homepage featured. This file is used fortesting.
- fulfilment center info.csv: Contains information of each fulfilment center

IMPORT PANDAS AS PD

IMPORT NUMPY AS NP

IMPORT PICKLE

IMPORT OS

FROM FLASK IMPORT FLASK, REQUEST, RENDER_TEMPLATE

APP=FLASK(__NAME__,TEMPLATE_FOLDER="TEMPLATES")

SECONDS IN A DAY = 24 * 60 * 60

SECONDS IN A DAY

APP=FLASK(__NAME__,TEMPLATE_FOLDER="TEMPLATES")

@APP.ROUTE('/', METHODS=['GET'])

DEF INDEX():

RETURN

RENDER_TEMPLATE('\PYTHON

SCRIPTS\TAMLATES\UPLOAD.HTML')

@APP.ROUTE('/HOME', METHODS=['GET'])

DEF ABOUT():

RETURN RENDER_TEMPLATE('\PYTHON SCRIPTS\HOME.HTML')

@APP.ROUTE('/PRED',METHODS=['GET'])

DEF PAGE():

RETURN

RENDER_TEMPLATE('\PYTHON

SCRIPTS\TAMLATES\UPLOAD.HTML')

```
@APP.ROUTE('/PREDICT', METHODS=['GET', 'POST'])
DEF PREDICT():
 PRINT("[INFO] LOADING MODEL...")
                        MODEL
                                            PICKLE.LOAD(OPEN('\PYTHON
SCRIPTS\TAMLATES\FOODDEMAND.PKL', 'RB'))
 INPUT_FEATURES = [FLOAT(X) FOR X IN REQUEST.FORM.VALUES()]
 FEATURES_VALUE = [NP.ARRAY(INPUT_FEATURES)]
 PRINT(FEATURES VALUE)
                    FEATURES_NAME
                                               ['HOMEPAGE_FEATURED',
'EMAILER_FOR_PROMOTION', 'OP_AREA', 'CUISINE',
   'CITY_CODE', 'REGION_CODE', 'CATEGORY']
 PREDICTION = MODEL.PREDICT(FEATURES_VALUE)
 OUTPUT=PREDICTION[0]
 PRINT(OUTPUT)
                            RETURN
                                           RENDER_TEMPLATE('\PYTHON
SCRIPTS\TAMLATES\UPLOAD.HTML', PREDICTION TEXT=OUTPUT)
IF __NAME__ == '__MAIN__':
```

7.3 Data Pre-Processing

APP.RUN(DEBUG=FALSE)

- There are no Missing/Null Values in any of the three datasets.
- Before proceeding with the prediction process, all the three data sheets need tobe merged into a single dataset. Before performing the merging operation, primary feature for combining the datasets needs to be validated.
- The number of Center IDs in train dataset is matching with the number of CenterIDs in the Centers Dataset i.e 77 unique records. Hence, there won't be any missing values while merging the datasets together.

• The number of Meal IDs in train dataset is matching with the number of Meal IDsin the Meals Dataset i.e 51 unique records. Hence, there won't be any missing values while merging the datasets together

IMPORT THE NECESSARY PACKAGES

IMPORT PANDAS AS PD

IMPORT NUMPY AS NP

IMPORT PICKLE

IMPORT OS

IMPORT REQUESTS

NOTE: YOU MUST MANUALLY SET API_KEY BELOW USING INFORMATION RETRIEVED FROM YOUR IBM CLOUD ACCOUNT.

API_KEY = "CF4MPFBOYWXF02SUFXOVZRXMY2MJBG5UG3DZUM9XPB1D" TOKEN_RESPONSE =

REQUESTS.POST('HTTPS://IAM.CLOUD.IBM.COM/IDENTITY/TOKEN', DATA={"APIKEY": API KEY, "GRANT TYPE":

'URN:IBM:PARAMS:OAUTH:GRANT-TYPE:APIKEY'})

MLTOKEN = TOKEN_RESPONSE.JSON()["ACCESS_TOKEN"]

HEADER = {'CONTENT-TYPE': 'APPLICATION/JSON', 'AUTHORIZATION': 'BEARER ' + MLTOKEN}

FROM FLASK IMPORT FLASK, REQUEST, RENDER_TEMPLATE

APP = FLASK(__NAME__, TEMPLATE_FOLDER="/CONTENT/APP.PY")

@APP.ROUTE('/', METHODS=['GET'])

DEF INDEX():

RETURN RENDER_TEMPLATE('/CONTENT/HOME.HTML.HTMLHOME.HTML')

@APP.ROUTE('/HOME', METHODS=['GET'])

DEF ABOUT():

RETURN RENDER_TEMPLATE('/CONTENT/HOME.HTML.HTML')

```
@APP.ROUTE('/PRED', METHODS=['GET'])
DEF PAGE():
  RETURN RENDER_TEMPLATE('/CONTENT/HOME.HTML.HTML')
@APP.ROUTE('/PREDICT', METHODS=['GET', 'POST'])
DEF PREDICT():
  PRINT("[INFO] LOADING MODEL...")
  # MODEL = PICKLE.LOAD(OPEN('FDEMAND.PKL', 'RB'))
  INPUT_FEATURES = [INT(X) FOR X IN REQUEST.FORM.VALUES()]
  PRINT(INPUT_FEATURES)
  FEATURES_VALUE = [[NP.ARRAY(INPUT_FEATURES)]]
  PRINT(FEATURES_VALUE)
PAYLOAD_SCORING = {"INPUT_DATA": [{"FIELD": [['HOMEPAGE_FEATURED',
'EMAILER_FOR_PROMOTION', 'OP_AREA', 'CUISINE',
                        'CITY_CODE', 'REGION_CODE', 'CATEGORY']],
                  "VALUES": [INPUT_FEATURES]}]}
RESPONSE_SCORING = REQUESTS.POST(
    'HTTPS://US-
SOUTH.ML.CLOUD.IBM.COM/ML/V4/DEPLOYMENTS/80AFCAAD-591D-4869-BF54-
17BBB8C70EA3/PREDICTIONS?VERSION=2022-11-14',
    JSON=PAYLOAD_SCORING, HEADERS={'AUTHORIZATION': 'BEARER' +
MLTOKEN})
  PRINT("SCORING RESPONSE")
  PRINT(RESPONSE_SCORING.JSON())
  PREDICTIONS = RESPONSE_SCORING.JSON()
  PRINT(PREDICTIONS)
  PRINT('FINAL PREDICTION RESULT',
PREDICTIONS['PREDICTIONS'][0]['VALUES'][0][0])
  \label{eq:predictions} \textbf{PRED} = \textbf{PREDICTIONS}['\textbf{PREDICTIONS}'][0]['\textbf{VALUES}'][0][0]
  # PREDICTION = MODEL.PREDICT(FEATURES_VALUE)
  # OUTPUT=PREDICTION[0]
  # PRINT(OUTPUT)"
PRINT(PRED)
```

RETURN RENDER_TEMPLATE('UPLOAD.HTML', PREDICTION_TEXT=PRED)

IF __NAME__ == '__MAIN__': APP.RUN(DEBUG=FALSE)

CHAPTER-VIII

TESTING

8.1 TEST CASES:

Testcase	Feature_	Compone	Test_	Steps To	Status	Executed
_id	Туре	nt	Scenario	Execute		Ву

Tc_11	Functional (feedback)	Admin	As A Customer Care Team Member, I Should Be To Get Feedback From The	Step 1: Test Case Id. Step 2: Test Description	Passed	Dhinesh
			Users.	Step 3: Assumptio ns And Preconditio ns.		
				Step 4: Test Data.		
				Step 5: Steps To Be Executed. Step 6:		
				Expected Result.		

		. Step 7:	
		Actual	
		Result And	
		Postconditi	
		ons.	
		. Step 8:	
		Pass/fail.	

8.2 USER ACCEPTANCE TESTING:

User Acceptance Testing (uat), Which Is Performed On Most Uit Projects, Sometimes Called Beta Testing Or End-user Testing, Is A Phase Ofsoftware Developmentin Which The Software Is Tested In The "real World" By The Intended Audience Or Businessrepresentative.

Resolution	Severity1	Severity2	Severity3	Severity4	Subtotal
By Design	10	4	2	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won'tFix	0	0	0	1	1
Totals	24	9	11	26	71

Section	TotalCases	Not Tested	Fail	Pass
PrintEngine	7	0	0	7
ClientApplication	51	0	0	51
Security	2	0	0	2
OutsourceShipping	3	0	0	3
ExceptionReporting	9	0	0	9
FinalReportOutput	4	0	0	4
VersionControl	2	0	0	2

CHAPTER-IX RESULTS

9.1 PERFORMANCE METRICS:

S. NO	PARAME TER	VALUE	SCRENSORT
1	METRICS	REGRESSION MODEL: MAE 89.10334778841495, MSE - 43129.82977026746, RMSLE - 207.67722496765856, R2 SCORE - 0.6946496854280233,	Evaluating the model In [33]: from sklearn.metrics import mean_squared_error In [34]: RMLSE=np.sqrt(mean_squared_error(y_test,pred)) RMLSE Out[34]: 209.71961740201198 In [39]: from sklearn import metrics from sklearn.metrics import mean_absolute_error In [40]: MSE=print(metrics.mean_squared_error(y_test,pred)) MSE 43982.31792324628 In [41]: R2S=print(metrics.r2_score(y_test,pred)) R2S 0.6886142448276894 In [42]: MAE=print(mean_absolute_error(y_test,pred)) 89.10334778841495
2	TUNE THE MODEL	HYPERPARAMETER TUNING - RMSLE- 52.85812511759974 AVG R-SQUARED- 0.123 MSE: -64230.918 TUNE THE MODEL	

CHAPTER-X ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGES:

1.You'll gain valuable insight:

Forecasting gets you into the habit of looking at past and real-time data to predict future demand. And in doing so, you'll be able to anticipate demand fluctuations more effectively. But more than that, it'll give you insight into your company's health and provide you with an opportunity to course-correct or make adjustments.

2. You'll learn from past mistakes

You don't start from scratch after each forecast. Even if your prediction was nowhere close to what ended up coming to pass, it gives you a starting point. It's common to review where and why things didn't happen the way you predicted. Your forecasts should eventually improve. But more than that, you'll get into the habit of reflecting upon past performance as a whole. And selfreflection can be a powerful driver of company growth.

3. It can decrease costs

When done right, anticipating demand will help you tweak your processes to increase efficiency all along the supply chain. Because you're better able to predict what customers will want and when they'll want it, you may also be able to decrease excess inventory levels, thus increasing overall profitability.

10.2 disadvantage of forecasts:

1. Forecasts are never 100% accurate

Let's face it: it's hard to predict the future. Even if you have a great process in place and forecasting experts on your payroll, your forecasts will never be spot on. Some products and markets simply have a high level of volatility. And in general, there is just an endless number of factors that influence demand.

2. It can be time-consuming and resource-intensive

Forecasting involves a lot of data gathering, data organizing, and coordination. Companies typically employ a team of demand planners who are responsible for coming up with the forecast. But in order to do this well, demand planners need substantial input from the sales and marketing teams. In addition, it's not uncommon for processes to be manual and laborintensive, thus taking up a lot of time. Fortunately, if you have the right technology in place, this is much less of an issue.

3. It can also be costly

On a related note, hiring a team of demand planners is a significant investment. When you add to that the cost of using good quality tools, upfront costs can add up. But investing in advanced software, high-quality talent and solid forecasting processes is just that: an investment. We're confident you'll see a return when all of that is done right.

Forecasting is a business practice that every company engages in to one extent or another. And it can be hugely valuable, providing those companies who have implemented a solid forecasting process with a leg up on their competition. What's more, even the disadvantages can be overcome with the right people, technology and processes. So learn how partnering with our Forecast Xperts and implementing our Atlas Suite can make a difference.

CHAPTER- XI CONCLUSION 11. CONCLUSION

As the world's population grows, so does the demand for food, and in recent years the number of people exposed to hunger, and even severe hunger, is increasing daily. Governments and organizations active in the food industry are planning and preparing to prevent potential problems that may arise in the way of food security for future generations. To achieve food security goals, food is mainly supplied through domestic production and import. Therefore, studying a country's potential for food supply is the first step in planning for food security. Food production prediction gives a realistic view to policy makers and activists in the agricultural and food industries for long-term and short-term planning.

Therefore, the present study tried to provide a suitable model with high predictive performance for predicting food production. The present study predicted Iran's agricultural and livestock production for the next ten years. According to the results, it is predicted that in the next ten years, the volume of both agricultural and livestock production in Iran will increase. The findings of this study provide a basis for planning the production volume required for the coming years, planning for budgeting and agricultural subsidies, planning for the active workforce in the agricultural and livestock sectors. In addition, according to forecasts, decision-makers can plan to import needed food production and export surplus domestic production. Using machine learning, researchers have come up with creative and precise solutions to a variety of food and agricultural problems, such as crop yields prediction. However, there is no research to predict food production. The present study used machine learning models to predict agricultural and livestock products in Iran. For this purpose, the performance of two models, MLP and ANFIS, was tested using time series data of agricultural and livestock production in Iran. The results of accuracy metrics revealed that the ANFIS model has higher predictive power than the MLP

model due to its higher predictive accuracy.

CHAPTER-XII FUTURE SCOPE

10.1 FUTURE SCOPE:

Using machine learning, researchers have come up with creative and precise solutions to a variety of food and agricultural problems, such as crop yields prediction. However, there is no research to predict food production.

The present study used machine learning models to predict agricultural and livestock products in Iran. For this purpose, the performance of two models, MLP and ANFIS, was tested using time series data of agricultural and livestock production in Iran.

Therefore, for future research, it is suggested that using the proposed model of the present study to predict food production in different countries and provide appropriate solutions to combat food insecurity. One of the limitations of this study is that forecasts for agricultural and livestock production are based only on time series data while other factors such as climate, government policies, and technological advances are considered constant. Another limitation of this article is the generalization of the finding that the ANFIS model outperforms the MLP model because this finding is limited to the time series data of Iran and the result may differ in data related to another country.

CHAPTER-XII

APPENDIX

Source Code: home.html

```
<!DOCTYPE html>
<html>
<head>
<title>Home</title>
<style>
.navbar
margin: 0px;
padding:20px;
background-color:white;
opacity:0.6;
color:black;
font-family: 'Roboto', sans-serif;
font-style: italic;
border-radius:20px;
font-size:25px;
}
а
color:grey;
float:right;
text-decoration:none;
font-style:normal;
padding-right:20px;
}
a:hover{
background-color:black;
color:white;
border-radius:15px;0
```

```
font-size:30px;
padding-left:10px;
р
color:white;
font-style:italic;
font-size:30px;
}
body
background-image: url("https://img.freepik.com/free-photo/grilled-chicken-rice-spicy-chickpeas-avocado-
cabbage-pepper-buddha-bowl-dark-top-view_127032-1966.jpg?w=2000");
background-size: cover;
}
</style>
</head>
<body>
<div class="navbar">
<a href="/pred">Predict</a>
<a href="/home">Home</a>
<br>
</div>
<br>
<center><b><font color="yellow" size="15" font-family="Comic Sans MS" >Food Demand
Forecasting</font></b></center>
<div>
<br>
<center>
```

A food delivery service has to deal with a lot of perishable raw materials which makes it all, the most important factor for such a company is to accurately forecast daily and weekly demand. Too much inventory in the warehouse means more risk of wastage, and not enough could lead to out-of-stocks - and push customers to

seek solutions from your competitors. The replenishment of majority of raw materials is done on weekly basis and since the raw material is perishable, the procurement planning is of utmost importance, the task is to predict the demand for the next 10 weeks.

</center>
</div>
</body>
</html>

OUTPUT:

upload.html

```
<html lang="en">

<head>

<title>Predict</title>

link href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.min.css" rel="stylesheet">

<style>

.bar

{
```

```
margin: 0px;
  padding:20px;
  background-color:white;
  opacity:0.6;
  color:black;
  font-family: 'Roboto', sans-serif;
  font-style: italic;
  border-radius:20px;
  font-size:25px;
  }
  а
  {
  color:red;
  float:right;
  text-decoration:none;
  font-style:normal;
  padding-right:20px;
  }
  a:hover{
  background-color:black;
  color:white;
  border-radius:15px;0
  font-size:30px;
  padding-left:10px;
  }
  body
 background-image: url("https://images.pexels.com/photos/1640777/pexels-photo-
1640777.jpeg?cs=srgb&dl=pexels-ella-olsson-1640777.jpg&fm=jpg");
  background-size: cover;
```

```
}
р
color:white;
font-style:italic;
font-size:30px;
}
h1,h2
color:0101DF;
}
</style>
</head>
<body>
<div class="bar">
 <a href="/pred">Predict</a>
 <a href="/home">Home</a>
<br>
  </div>
<div class="container">
    <center> <div id="content" style="margin-top:2em">
    <h2><center>Food Demand Forecasting</center></h2>
      <form action="{{ url_for('predict') }}" method="POST">
<select id="homepage_featured" name="homepage_featured">
 <option value="">homepage_featured</option>
  <option value="0">No</option>
```

```
<option value="1">Yes</option>
   </select><br><br>
  <select id="emailer_for_promotion" name="emailer_for_promotion">
   <option value="">emailer_for_promotion</option>
    <option value="0">No</option>
    <option value="1">Yes</option>
   </select><br><br>
  <input class="form-input" type="text" name="op_area" placeholder="Enter the op_area(2-7)"><br><br>
  <select id="cuisine" name="cuisine">
  <option value="">Cuisine</option>
    <option value="0">Continental</option>
    <option value="1">Indian</option>
    <option value="2">Italian</option>
    <option value="3">Thai</option>
   </select><br><br>
   <select id="city_code" name="city_code">
<option value="">City Code</option>
  <option value="590">590</option>
  <option value="526">526</option>
  <option value="638">638</option>
  <option value="others">Others
 </select><br><br>
  <select id="region_code" name="region_code">
```

```
<option value="">Region Code</option>
  <option value="23">23</option>
  <option value="34">34</option>
  <option value="35">35</option>
  <option value="56">56</option>
  <option value="71">71</option>
  <option value="77">77</option>
  <option value="85">85</option>
  <option value="93">93</option>
  </select><br><br>
  <select id="category" name="category">
  <option value="">Category</option>
    <option value="0">Beverages</option>
    <option value="1">Biryani</option>
    <option value="2">Desert</option>
    <option value="3">Extras</option>
    <option value="4">Fish</option>
    <option value="5">Other Snacks</option>
    <option value="6">Pasta</option>
    <option value="7">Pizza</option>
    <option value="8">Rice Bowl</option>
    <option value="9">Salad</option>
    <option value="10">Sandwich</option>
    <option value="11">Seafood</option>
    <option value="12">Soup</option>
    <option value="13">Starters</option>
   </select><br><br>
```

OUTPUT:

app.py

```
import pandas as pd
import numpy as np
import pickle
import os
from flask import Flask, request, render_template
app=Flask(__name___,template_folder="templates")
seconds_in_a_day = 24 * 60 * 60 seconds_in_a_day
app=Flask(__name___,template_folder="templates")
@app.route('/', methods=['GET'])
def index():
  return render_template('\Python Scripts\tamlates\upload.html')
@app.route('/home', methods=['GET'])
def about():
  return render_template('\Python Scripts\home.html')
@app.route('/pred',methods=['GET'])
def page():
  return render_template('\Python Scripts\tamlates\upload.html')
```

```
Case) C: Ubsers VGANESHibourments of python scripts
(base) C: Ubsers VGANESHibourments of python scripts once
(base) C: Ubsers VGANESHibourments of python scripts once
(base) C: Ubsers VGANESHibourments of python scripts once
(base) C: Ubsers VGANESHibourments Vganeshibourments of python scripts once
(base) C: Ubsers VGANESHibourments Vga
```

reference:

- 1. Danso-Amoako, E.; Scholz, M.; Kalimeris, N.; Yang, Q.; Shao, J. Predicting dam failure risk for sustainable flood retention basins: A generic case study for the wider greater manchester area. Comput. Environ. Urban Syst. 2012, 36, 423–433.
- 2. Xie, K.; Ozbay, K.; Zhu, Y.; Yang, H. Evacuation zone modeling under climate change: A datadriven method. J. Infrastruct. Syst. 2017, 23, 04017013.
- 3. Pitt, M. Learning Lessons from the 2007 Floods; Cabinet Office: London, UK, 2008.
- 4. Lohani, A.K.; Goel, N.; Bhatia, K. Improving real time flood forecasting using fuzzy inference system. J. Hydrol. 2014, 509, 25–41.
- 5. Mosavi, A.; Bathla, Y.; Varkonyi-Koczy, A. Predicting the Future Using Web Knowledge: State of the Art Survey. In Recent Advances in Technology Research and Education; Springer: Cham, Switzerland, 2017; pp. 341–349.
- 6. Zhao, M.; Hendon, H.H. Representation and prediction of the indian ocean dipole in the poama seasonal forecast model. Q. J. R. Meteorol. Soc. 2009, 135, 337–352.
- 7. Borah, D.K. Hydrologic procedures of storm event watershed models: A comprehensive review and comparison. Hydrol. Process. 2011, 25, 3472–3489.
- 8. Costabile, P.; Costanzo, C.; Macchione, F. A storm event watershed model for surface runoff based on 2D fully dynamic wave equations. Hydrol. Process. 2013, 27, 554–569.

 ${\bf Git Hub\& Project DemoLink: https://github.com/IBM-EPBL/IBM-Project-18254-1659681931}$

Github Link: https://github.com/IBM-EPBL/IBM-Project-18254-1659681931