Sistemas de Informação

Programação para Servidores

Programação para servidores

Conceitos básicos de rede

Rede computadores

 Redes de computadores são estruturas que conectam dispositivos eletrônicos, como computadores e celulares, permitindo a troca de informações e recursos através de conexões físicas ou sem fio, facilitando a comunicação e o compartilhamento de dados.

Tipos de redes

• LAN (Local Area Network - Rede de Área Local)

- Uma LAN é uma rede que abrange uma área geográfica limitada, como um escritório, uma escola ou uma residência.
- Geralmente, é utilizada para conectar dispositivos em uma proximidade física, permitindo o compartilhamento de recursos como impressoras, arquivos e conexões à internet.
- As LANs são de alta velocidade e têm baixa latência.

Tipos de redes

- MAN (Metropolitan Area Network -Rede de Área Metropolitana)
 - Uma MAN é uma rede intermediária em termos de escala, cobrindo uma cidade ou uma área metropolitana. Ela fornece um alcance maior do que uma LAN tradicional, mas ainda mantendo velocidades relativamente altas.
 - As MANs são usadas, por exemplo, por empresas que possuem várias filiais em uma mesma cidade.

Tipos de redes

- WAN (Wide Area Network Rede de Área Ampla)
 - Uma WAN é uma rede que abrange uma área geográfica maior, frequentemente até mesmo países ou continentes. Ela conecta várias LANs e é usada para comunicação entre locais distantes.
 - A Internet é um exemplo de uma WAN global.
 - Devido às maiores distâncias envolvidas, as WANs geralmente têm velocidades mais baixas em comparação com as LANs.

Programação para servidores

Comunicação entre dispositivos

Comunicação entre dispositivos

- A comunicação entre dispositivos em uma rede de computadores é essencial para permitir o compartilhamento de informações e recursos.
- Ela ocorre seguindo um padrão de troca de dados e mensagens entre os dispositivos conectados.

Emissor e Receptor:

- Dois dispositivos desempenham papéis fundamentais na comunicação: o emissor (ou remetente) e o receptor (ou destinatário).
- O emissor é responsável por enviar informações, enquanto o receptor recebe e interpreta essas informações.

Dados e Mensagens

- Os dados a serem transmitidos são organizados em mensagens, que são pacotes de informações estruturados de acordo com um protocolo específico.
- Um protocolo é um conjunto de regras que define como a comunicação deve ocorrer.

Codificação e Decodificação

- Antes de serem transmitidos, os dados são convertidos em sinais eletrônicos (bits) que podem ser transmitidos pela rede.
- No lado do receptor, esses sinais são decodificados para reconstruir os dados originais.

Transmissão e Recebimento

- Os dispositivos transmitem as mensagens por meio de cabos, fibras ópticas ou ondas de rádio, dependendo do tipo de conexão.
- Os dispositivos receptores recebem essas mensagens e as processam para extrair os dados originais.

Protocolos de Comunicação:

- Para que a comunicação ocorra de maneira eficaz, os dispositivos devem concordar com um conjunto de protocolos.
- Isso inclui protocolos para iniciar, encerrar e verificar a integridade das mensagens.

Encaminhamento:

- Em redes maiores, como a internet, os dados podem passar por vários dispositivos intermediários, como roteadores, para chegar ao destino correto.
- Esses dispositivos intermediários encaminham as mensagens com base em informações de endereço.

Confirmações e Controle de Erros:

- Protocolos de comunicação frequentemente incluem mecanismos para garantir a entrega confiável das mensagens.
- Isso pode envolver confirmações de recebimento e detecção e correção de erros nos dados transmitidos.

Latência e Largura de Banda:

- Durante a comunicação, os dados enfrentam uma pequena quantidade de atraso, chamada de latência.
- A largura de banda refere-se à quantidade de dados que podem ser transmitidos em um período de tempo.
- Ambos são fatores importantes a serem considerados na comunicação.

Comunicação entre dispositivos

 Em resumo, a comunicação entre dispositivos em uma rede é uma combinação complexa de codificação, transmissão, recebimento e protocolos, permitindo que as informações fluam de maneira eficiente e confiável.

Programação para servidores

Protocolos de rede

Definição e importância dos protocolos

- Protocolos de rede são conjuntos de regras e padrões que governam a comunicação entre dispositivos em uma rede.
- Eles estabelecem diretrizes para como os dados devem ser formatados, transmitidos, recebidos e interpretados.
- Os protocolos desempenham um papel fundamental na garantia de que a comunicação entre dispositivos diferentes seja coesa e eficiente.

Protocolo TCP/IP

<u>Transmission Control</u> <u>Protocol/Internet Protocol</u>

 Conjunto de protocolos que serve como base para a internet. Ele divide a comunicação em camadas, incluindo o TCP para garantir a entrega confiável dos dados e o IP para roteamento e endereçamento.

Protocolo HTTP

<u>Hypertext Transfer Protocol</u>

 Usado para transferir recursos, como páginas web, entre um navegador e um servidor. Ele define como as solicitações de conteúdo (requisições) e as respostas (respostas) devem ser formatadas e trocadas.

Protocolo FTP

File Transfer Protocol

 Usado para transferir arquivos entre um cliente e um servidor. Ele permite o upload e o download de arquivos, mantendo a integridade dos dados durante a transferência.

Protocolo SMTP

Simple Mail Transfer Protocol

 Usado para enviar e-mail através da internet. Ele é responsável pela transferência de mensagens de e-mail do cliente de e-mail do remetente para o servidor de email do destinatário.

Protocolo POP3

Post Office Protocol - Version 3

 Protocolo de comunicação utilizado para recuperar e gerenciar e-mails de um servidor de e-mails. Ele é amplamente utilizado por clientes de e-mail para baixar mensagens dos servidores de e-mail para os dispositivos dos usuários.

- Padronização
- Divisão de Tarefas
- Garantia de Integridade
- Interoperabilidade
- Estrutura Hierárquica

Padronização

 Os protocolos estabelecem um conjunto comum de regras que todos os dispositivos na rede seguem, permitindo a comunicação entre diferentes sistemas e fabricantes.

Divisão de Tarefas

- Os protocolos dividem a comunicação em tarefas específicas, como estabelecer uma conexão, enviar dados ou confirmar a recepção.
- Isso simplifica o processo e permite o controle de cada etapa.

Garantia de Integridade

 Protocolos como o TCP verificam se os dados foram entregues corretamente, retransmitindo pacotes se necessário, para garantir que a integridade dos dados seja mantida.

Interoperabilidade

 Através dos protocolos, diferentes tipos de dispositivos podem se comunicar sem problemas, independentemente de suas características técnicas ou sistemas operacionais.

Estrutura Hierárquica

- Alguns protocolos, como o TCP/IP, operam em camadas, dividindo a comunicação em etapas bem definidas.
- Isso permite a modularidade e a flexibilidade no design e na manutenção das redes.

Ou seja...

- Os protocolos de rede são a espinha dorsal da comunicação entre dispositivos em uma rede.
- Eles garantem que a troca de dados ocorra de forma ordenada, confiável e padronizada, permitindo o funcionamento eficiente da internet e de outras redes de computadores.

Programação para servidores

Protocolo TCP

O que é TCP?

- O TCP (Transmission Control Protocol) é um protocolo de transporte amplamente utilizado na comunicação de dados em redes de computadores.
- Ele é projetado para garantir a entrega confiável e ordenada dos dados entre dispositivos, independentemente das condições da rede.
- O TCP é uma parte fundamental da pilha de protocolos TCP/IP, que sustenta a internet e muitas redes locais.

Mecanismos de Controle de Fluxo

- O TCP utiliza mecanismos de controle de fluxo para evitar congestionamento da rede e garantir que o destinatário possa processar os dados recebidos de maneira eficiente.
- Alguns dos principais mecanismos são:
 - 1. Janela Deslizante: O TCP utiliza uma abordagem de janela deslizante para controlar a quantidade de dados que podem ser enviados antes de receber uma confirmação do receptor. Isso evita sobrecarregar o receptor com muitos dados ao mesmo tempo.
 - 2. ACKs (Acknowledgments): O receptor envia confirmações de recebimento (ACKs) para o remetente, indicando que os dados foram recebidos com sucesso. Isso permite ao remetente ajustar a taxa de transmissão com base na capacidade do receptor.

Garantia de Entrega Confiável

O TCP se esforça para garantir a entrega confiável dos dados, mesmo em ambientes de rede instáveis.

Alguns dos mecanismos usados para alcançar essa confiabilidade são:

- 1. Número de Sequência e Confirmações: Cada segmento de dados TCP é numerado sequencialmente. O receptor confirma a recepção dos dados enviando um ACK com o próximo número de sequência esperado.
- 2. Timeouts e Retransmissões: Se o remetente não receber um ACK dentro de um tempo razoável (timeout), ele assume que os dados foram perdidos e reenvia os dados. Isso garante que os dados perdidos sejam recuperados.
- 3. Buffers e Armazenamento Temporário: O receptor utiliza buffers para armazenar temporariamente os dados recebidos antes de serem processados. Isso permite que o receptor gerencie a taxa de recebimento e evite a perda de dados.
- **4. Controle de Congestionamento:** O TCP monitora a quantidade de dados na rede e evita o congestionamento ajustando a taxa de transmissão. Isso evita que muitos dados se acumulem e sobrecarreguem a rede.

Programação para servidores

Protocolo IP

Introdução ao IP (Internet Protocol)

- O IP é um protocolo central na pilha de protocolos TCP/IP que permite a comunicação entre dispositivos em redes de computadores, incluindo a internet.
- Ele desempenha um papel crucial ao atribuir endereços exclusivos a cada dispositivo conectado à rede e ao encaminhar os pacotes de dados entre esses dispositivos.

Função do IP no endereçamento de dispositivos

- O IP é responsável pelo endereçamento dos dispositivos na rede, permitindo a identificação única de cada um.
- Cada dispositivo é atribuído a um endereço <u>IP exclusivo</u>, que é composto por uma série de números.
- Quando os dados são enviados pela rede, eles incluem o endereço IP do destinatário, o que permite que os roteadores encaminhem os pacotes corretamente até o destino.

Tipos de formato

- IPv4
 - Internet Protocol Version 4
- IPv6
 - Internet Protocol Version 6

Diferença entre IPv4 e IPv6

IPv4 (Internet Protocol Version 4):

- Usa um formato de endereço de <u>32</u> bits, representado em quatro conjuntos de números separados por pontos.
- Devido à limitação de espaço de endereço, o IPv4 tem um número limitado de endereços disponíveis.
- Isso levou à escassez de endereços IPv4, o que resultou na adoção de práticas como o uso de endereços IP dinâmicos e a criação de redes privadas.

Diferença entre IPv4 e IPv6

IPv6 (Internet Protocol Version 6):

- Usa um formato de endereço de <u>128</u> <u>bits</u>, representado em oito conjuntos de números hexadecimais separados por dois pontos.
- Fornece um espaço de endereço muito maior, o que permite a criação de um número quase ilimitado de endereços.
- O IPv6 é projetado para substituir gradualmente o IPv4 e resolver a escassez de endereços.

Resumo

O IP é responsável por atribuir endereços únicos a dispositivos na rede e encaminhar os pacotes de dados entre esses dispositivos.

A diferença entre os endereços IPv4 e IPv6 está principalmente no formato dos endereços e na quantidade de endereços disponíveis, com o IPv6 oferecendo uma solução para a crescente demanda de endereços devido à expansão da internet.

Programação para servidores

TCP/IP: Fundamentos e Camadas

TCP/IP - A base da Internet

- O TCP/IP é o conjunto de protocolos que sustenta a internet e possibilita a comunicação entre dispositivos em uma escala global. Ele foi desenvolvido para garantir a troca de dados de forma confiável, eficiente e padronizada.
- O TCP/IP divide as atividades de comunicação em camadas, cada uma com funções específicas para facilitar o fluxo de dados.

TCP/IP – Camada de Aplicação

- É a camada mais próxima dos usuários.
- Lida com a interação entre aplicativos e usuários.
- Na camada de aplicação, o TCP e o IP são usados para encapsular os dados e formatar as mensagens de acordo com os protocolos específicos (HTTP, FTP, etc.)..

Aplicação

TCP/IP - Camada de Transporte

- Gerencia o fluxo de dados entre dispositivos finais. Fornecem mecanismos de controle de fluxo e confiabilidade.
- Na camada de transporte, o TCP é responsável por dividir os dados em pacotes, garantir que todos os pacotes sejam entregues corretamente, retransmitindo se necessário, e ordenar os pacotes na ordem correta.

TCP/IP - Camada de Rede

- Trata do roteamento dos pacotes de dados pela rede.
- Realiza o endereçamento dos pacotes e determina os melhores caminhos para a transmissão.
- Na camada de rede, o IP atribui endereços IP a cada dispositivo, permitindo a identificação única e o roteamento dos pacotes através da rede.

Resumindo...

- O TCP/IP opera de maneira modular, onde cada camada se comunica com as camadas adjacentes por meio de interfaces bem definidas.
- Isso proporciona flexibilidade e facilita a atualização ou substituição de componentes individuais sem afetar o funcionamento global da rede.

Programação para servidores

HTTP e HTTPS

Definição e função do HTTP

- O HTTP (Hypertext Transfer Protocol) é um protocolo de comunicação usado para transferir dados entre um cliente (geralmente um navegador) e um servidor web.
- Ele é a base para a maioria das comunicações na web, permitindo que os navegadores solicitem e recebam recursos, como páginas da web, imagens e vídeos, dos servidores.

Diferenças entre HTTP e HTTPS

HTTP (Hypertext Transfer Protocol):

- As informações são transmitidas em texto simples, o que torna os dados vulneráveis a interceptação.
- Não oferece criptografia ou autenticação de dados, o que significa que terceiros podem potencialmente acessar informações sensíveis.
- É mais rápido em comparação com o HTTPS, pois não envolve o processo de criptografia.

Diferenças entre HTTP e HTTPS

HTTPS (Hypertext Transfer Protocol Secure):

- É uma versão segura do HTTP.
- <u>Utiliza criptografia SSL/TLS</u> para proteger a comunicação entre o cliente e o servidor.
- Garante a confidencialidade dos dados transmitidos, impedindo a interceptação por terceiros mal-intencionados.
- Requer certificados SSL/TLS emitidos por autoridades de certificação para autenticar os servidores e estabelecer uma conexão segura.

Importância da criptografia no HTTPS

- A criptografia no HTTPS desempenha um papel vital na segurança das comunicações online.
- A criptografia SSL/TLS protege os dados transmitidos, codificando-os de forma que só possam ser decifrados pelo destinatário correto.
- Isso é fundamental para a confidencialidade de informações sensíveis, como senhas, informações pessoais e detalhes de pagamento.
- Além da confidencialidade, o HTTPS também fornece autenticação do servidor, garantindo que os usuários estejam se comunicando com o site legítimo.

Programação para servidores

O que é a Internet

Definição

• A internet é uma rede global de computadores interconectados que permite a troca de informações, comunicação e acesso a recursos digitais em todo o mundo. Ela é uma infraestrutura fundamental que transformou a maneira como as pessoas interagem, aprendem, trabalham e se comunicam. A importância da internet está enraizada em sua capacidade de conectar instantaneamente pessoas, organizações e dispositivos em uma escala sem precedentes.

Importância

- Comunicação Global: A internet permite que as pessoas se comuniquem em tempo real, independentemente da distância geográfica.
- Acesso à Informação: Uma fonte vasta de informações. Permite o acesso a enciclopédias online, livros digitais, artigos acadêmicos, notícias e recursos educacionais.
- **Comércio Eletrônico:** Impulsionou o comércio eletrônico, tornando possível comprar e vender produtos e serviços online, abrindo mercados globais para empresas de todos os tamanhos.
- Educação Online: Plataformas de ensino online, cursos em vídeo e tutoriais disponíveis na internet permitem que as pessoas aprendam novas habilidades e se eduquem em uma variedade de assuntos.
- Colaboração e Trabalho Remoto: Viabilizou a colaboração entre pessoas em diferentes partes do mundo, facilitando o trabalho em equipe e o teletrabalho.
- **Entretenimento:** Acesso a streaming de vídeos, músicas, filmes e jogos online oferece entretenimento e diversão.
- Inovação e Desenvolvimento Tecnológico: Ambiente fértil para a criação e desenvolvimento de tecnologias inovadoras, como aplicativos, serviços online e plataformas de mídia social.

Estrutura descentralizada e global

- A estrutura descentralizada da internet significa que não existe uma única entidade que controle toda a rede. Ela é composta por milhões de dispositivos interconectados, incluindo servidores, roteadores, computadores e dispositivos móveis. Isso garante a resiliência da rede, pois mesmo se alguns dispositivos falharem, outros ainda podem se comunicar.
- A natureza global da internet significa que ela transcende fronteiras nacionais e conecta pessoas de diferentes culturas, idiomas e países. Isso tem implicações sociais, econômicas e políticas, influenciando a forma como as informações são compartilhadas e como as sociedades se relacionam.

Programação para servidores

Navegação na Web

Funcionamento Básico de um Navegador

- Um navegador da web é um software que permite aos usuários explorar e interagir com informações na internet.
- Os navegadores exibem conteúdo como páginas da web, imagens, vídeos e outros recursos digitais.
- Eles interpretam a linguagem HTML (Hypertext Markup Language) para renderizar o conteúdo de forma visualmente agradável.

Estrutura de URLs (Uniform Resource Locators)

- Uma URL é um endereço que aponta para um recurso específico na web.
- Ela é composta por vários componentes:
 - 1. Protocolo: Indica como os dados serão transferidos.
 - 2. Domínio: É o nome do site ou servidor.
 - 3. Caminho/Rota: Indica a localização do arquivo ou recurso dentro do servidor.
 - **4. Parâmetros:** São valores opcionais que podem ser passados para a página.
 - **5. Âncora:** Especifica uma posição específica dentro de uma página.

Como os navegadores usam URLs para acessar recursos

- Quando um usuário insere uma URL na barra de endereços do navegador e pressiona Enter, o navegador inicia a solicitação.
- 2. O navegador interpreta o protocolo da URL (por exemplo, "http" ou "https") para determinar como realizar a solicitação.
- 3. O navegador consulta um servidor DNS (Domain Name System) para traduzir o nome do domínio em um endereço IP.
- 4. O navegador estabelece uma conexão com o servidor usando o endereço IP e solicita o recurso especificado na URL.
- 5. O servidor responde com os dados do recurso (por exemplo, a página da web) e o navegador renderiza o conteúdo para exibição ao usuário.

Programação para servidores

Domínios e DNS

Conceito de domínios na Web

Domínios são nomes amigáveis utilizados para identificar recursos na internet, como sites e serviços.

Eles oferecem uma maneira mais fácil para os usuários acessarem recursos em vez de memorizar endereços IP.

Um domínio é dividido em partes separadas por pontos, como "example.com".

Papel do DNS (Domain Name System)

O DNS (Domain Name System) é um sistema que traduz nomes de domínio em endereços IP.

Quando um usuário insere um nome de domínio em um navegador, o DNS converte esse nome em um endereço IP para localizar o servidor que hospeda o recurso.

Hierarquia de domínios

Domínios seguem uma estrutura hierárquica, organizada da direita para a esquerda.

O domínio de nível superior (TLD - Top-Level Domain) fica à direita, seguido pelo domínio de segundo nível, terceiro nível e assim por diante.

Exemplo: "www.example.com":

• TLD: ".com"

Segundo nível: "example"

Terceiro nível: "www"

Programação para servidores

Arquitetura cliente-servidor

O que é um Servidor?

Um servidor é um computador ou sistema que oferece serviços, recursos ou dados para outros dispositivos, conhecidos como clientes.

Exemplos de serviços oferecidos por servidores: hospedagem de sites, armazenamento de arquivos, gerenciamento de bancos de dados, etc...

Arquitetura cliente-servidor

A arquitetura cliente-servidor é um modelo de computação em que os dispositivos são divididos em duas categorias: <u>clientes</u> e <u>servidores</u>.

Os clientes solicitam serviços ou recursos, e os servidores respondem a essas solicitações, fornecendo os serviços ou recursos necessários.

Exemplo: um navegador de web (cliente) solicita uma página de um site (servidor).

Características da arquitetura cliente-servidor

Distribuição de Tarefas

• Os servidores são especializados em oferecer serviços específicos, enquanto os clientes usam esses serviços conforme necessário.

Escalabilidade

• É possível adicionar mais servidores para lidar com um aumento na demanda dos clientes.

Compartilhamento de Recursos

 Vários clientes podem acessar os mesmos recursos fornecidos por um servidor.

Tipos de comunicação cliente-servidor

Comunicação Síncrona:

- O cliente aguarda a resposta imediata do servidor após a solicitação.
- Exemplo: Requisição de uma página da web.

Comunicação Assíncrona:

- O cliente envia a solicitação e continua suas operações, recebendo a resposta posteriormente.
- Exemplo: Envio de e-mails.

Exemplo de arquitetura cliente-servidor

Cenário:

Um aplicativo de streaming de música.

- Os dispositivos dos usuários (clientes) solicitam músicas e playlists.
- Os servidores fornecem as músicas solicitadas aos dispositivos dos usuários.

Vantagens e Desafios

Vantagens:

- Escalabilidade para lidar com grande número de clientes.
- Distribuição eficiente de recursos e tarefas.
- Melhor segurança e gerenciamento de dados.

Desafios:

- Complexidade na gestão de servidores.
- Garantia de desempenho e disponibilidade.
- Gerenciamento de dados sensíveis.

Programação para servidores

Ambientes de Hospedagem

Ambientes de hospedagem

Ambientes de hospedagem são locais onde suas aplicações web são implantadas e executadas.

Eles podem ser <u>locais</u> (on-premises) ou baseados em nuvem.

Vamos comparar essas duas opções para entender as vantagens e desafios de cada uma.

Hospedagem Local (On-Premises)

Nesse modelo, você mantém servidores físicos em sua infraestrutura local.

Vantagens:

- Controle total sobre hardware e software.
- Pode ser mais econômico a longo prazo para empresas maiores.

ON-PREMISE

Hospedagem Local (On-Premises)

Desafios:

- Investimento inicial em hardware e infraestrutura.
- Manutenção constante, incluindo atualizações e reparos.
- Escalabilidade limitada, requerendo planejamento antecipado para picos de tráfego.

ON-PREMISE

Hospedagem em Nuvem

Nesse modelo, você utiliza recursos de infraestrutura fornecidos por provedores de nuvem.

Vantagens:

- Escalabilidade sob demanda: aumentar ou diminuir recursos conforme necessário.
- Menos preocupações com manutenção e atualizações.
- Acesso global, disponível em qualquer lugar com conexão à internet.

Hospedagem em Nuvem

Desafios:

- Dependência do provedor de nuvem.
- Custos podem aumentar com o uso intensivo de recursos.
- Possível preocupação com a segurança de dados sensíveis.

Comparação Geral

	Local	Nuvem
Custos Iniciais	Investimento em hardware	Custos de uso de recursos
Manutenção	Necessidade de manutenção constante	Menos manutenção, fornecida pelo provedor
Escalabilidade	Limitada e requer planejamento	Escalabilidade sob demanda