Gromov-Witten theory and mirror symmetry

Jinghao Yu

December 15, 2022

Contents

1	Gromov-Witten invariants		2
	1.1	String, dilaton, divisor equations	3
	1.2	Kontsevich's approach	4
	1.3	Tangent-obstruction sequence	6
	1.4	Aspinwall Morrison formula; Faber Pandaripande formula	9
2	Quantum Cohomology 1		
	2.1	quantum product	11
	2.2	quantum differential equation	13
3	Mirror Symmetry 1		
	3.1	Fano case	17
	3.2	Calabi-Yau case	23

Chapter 1

Gromov-Witten invariants

Let $\overline{\mathcal{M}}_{g,n}$ denote the moduli space (Deligne-Mumford stack) of genus g curves with n marked points, and let $\overline{C}_{g,n}$ be the universal family of $\overline{\mathcal{M}}_{g,n}$. The dimension of $\overline{\mathcal{M}}_{g,n}$ is 3g-3+n. Let $\overline{\mathcal{M}}_{g,n}(X,\beta)$ be the moduli space of $[f:C\to X,1,\ldots,n]$: a map from the genus g curve C to the variety X modulo the automorphism of C.

The virtual fundamental class of $\overline{\mathcal{M}}_{g,n}(X,\beta)$ is a cohomological class in $H^*(\overline{\mathcal{M}}_{g,n}(X,\beta);\mathbb{Q})$. It plays the role as classical fundamental class in algebraic topology. The virtual dimension of $\overline{\mathcal{M}}_{g,n}(X,\beta)$ is

$$\operatorname{vdim} \overline{\mathcal{M}}_{g,n}(X,\beta) = \int_{\beta} c_1(T_X) + (\dim X - 3)(1 - g) + n.$$

Roughly speaking, Gromov-Witten invariants is the number of algebraic curves (resp. pseduo-holomorphic curves) of a algebraic variety X (resp. complex manifold) passing through specific subvarieties (resp. submanifolds) of fixed degree (homology class of the curves) and genus.

Definition 1.0.1 (Gromov-Witten invariants). Let $\gamma_1, \ldots, \gamma_n \in H^*(X; \mathbb{Q})$ and let $\beta \in H_2(X; \mathbb{Q})$. Let $ev_i : [\overline{\mathcal{M}}_{g,n}(X,\beta)]^{vir} \to X$ be the ith evaluation map

$$ev_i([f:C\to X,1,\dots,n])=f(i).$$

The Gromov-Witten invariant of genus g degree β curves is

$$\langle \gamma_1 \dots \gamma_n \rangle_{g,n,\beta} = \int_{[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{vir}} ev_1^*(\gamma_1) \cup \dots \cup ev_n^*(\gamma_n).$$

There is a generalization of Gromov-Witten, called gravitational descendent invariants

Definition 1.0.2 (descendent invariants). Let $a_0, \ldots, a_n \in \mathbb{N}$, and let ψ_i be the ith tautological class of $\overline{\mathcal{M}}_{g,n}(X,\beta)$, then the descendent invariant are defined by

$$\langle \tau_{a_1}(\gamma_1) \dots \tau_{a_n}(\gamma_n) \rangle_{g,n,\beta} = \int_{[\overline{\mathcal{M}}_{a_n}(X,\beta)]^{vir}} ev_1^*(\gamma_1) \psi_1^{a_1} \cup \dots \cup ev_n^*(\gamma_n) \psi_n^{a_n}.$$

1.1 String, dilaton, divisor equations

Here are several fundamental relations among these invariants.

I. The string equation. Let $T_0 \in H^*(X; \mathbb{Q})$ be the unit:

$$\langle \tau_{a_1}(\gamma_1) \dots \tau_{a_n}(\gamma_n) T_0 \rangle_{g,\beta} =$$

$$\sum_{i=1}^n \langle \tau_{a_1}(\gamma_1) \dots \tau_{a_{i-1}}(\gamma_{i-1}) \tau_{a_{i-1}}(\gamma_i) \tau_{a_{i+1}}(\gamma_{i+1}) \dots \tau_{a_n}(\gamma_n) \rangle_{g,\beta}$$

II. The dilaton equation.

$$\langle \tau_{a_1}(\gamma_1) \dots \tau_{a_n}(\gamma_n) \tau_1(T_0) \rangle_{g,\beta} = (2g - 2 + n) \langle \tau_{a_1}(\gamma_1) \dots \tau_{a_n}(\gamma_n) \rangle_{g,\beta}.$$

III. divisor equation: Let $\gamma \in H^2(X; \mathbb{Q})$. Then

$$\langle \tau_{a_1}(\gamma_1) \dots \tau_{a_n}(\gamma_n) \gamma \rangle_{g,\beta} = \left(\int_{\beta} \gamma \right) \langle \tau_{a_1}(\gamma_1) \dots \tau_{a_n}(\gamma_n) \rangle_{g,\beta}$$

$$+ \sum_{i=1}^{n} \langle \tau_{a_1}(\gamma_1) \dots \tau_{a_{i-1}}(\gamma_{i-1}) \tau_{a_i-1}(\gamma_i \cup \gamma) \tau_{a_{i+1}}(\gamma_{i+1}) \dots \tau_{a_n}(\gamma_n) \rangle_{g,\beta}$$

If X is a point, these equation specialized to be equations for $\overline{\mathcal{M}}_{g,n}$:

(i) string equation:

$$\int_{\overline{\mathcal{M}}_{g,n+1}} \psi_1^{\beta_1} \dots \psi_n^{\beta_n} = \sum_{i=1}^n \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{\beta_1} \dots \psi_i^{\beta_i-1} \dots \psi_n^{\beta_n}$$

(ii) dilaton equation:

$$\int_{\overline{\mathcal{M}}_{g,n+1}} \psi_1^{\beta_1} \cdots \psi_n^{\beta_n} \psi_{n+1} = (2g+2-n) \sum_{i=1}^n \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{\beta_1} \cdots \psi_i^{\beta_i-1} \cdots \psi_n^{\beta_n}$$

if 2g + 2 - n > 0.

Example 1.1.1. The ψ class is trivial in $\overline{\mathcal{M}}_{0,3}$ is trivial. By string equation, if $\beta_1 + \cdots + \beta_n = n - 3$, then

$$\int_{\overline{M}_{0,n}} \psi_1^{\beta_1} \dots \psi_n^{\beta_n} = \binom{n-3}{\beta_1, \dots, \beta_n}$$

1.2 Kontsevich's approach

Atiyah-Bott localization formula tells us: if there is a torus action $\mathbb{T} = (\mathbb{C}^*)^n$ on X, then the fixed points of torus action could tells us some properties of X.

By the classifying space theory, $B\mathbb{T} = (\mathbb{C}P^{\infty})^{\times n}$, so $H^*(B\mathbb{T}) = \mathbb{Q}[\lambda_1, \dots, \lambda_n]$. Let $\mathcal{R}_{\mathbb{T}} = \mathbb{Q}(\lambda_1, \dots, \lambda_n)$. Let $X_{\mathbb{T}} = E\mathbb{T} \times_{\mathbb{T}} X$, the equivariant cohomology of X is defined by

$$H_{\mathbb{T}}^*(X) := H^*(X_{\mathbb{T}}) = H^*(E\mathbb{T} \times_{\mathbb{T}} X),$$

so naturally, $H^*_{\mathbb{T}}(X)$ is a $H^*_{\mathbb{T}}(pt) = H^*(B\mathbb{T})$ -module. The localization of $H^*_{\mathbb{T}}(X)$ means $H^*_{\mathbb{T}}(X) \otimes \mathcal{R}_{\mathbb{T}}$.

Theorem (Atiyah-Bott). Let $X^{\mathbb{T}}$ be fixed locus of \mathbb{T} , let Z_j be a connection component of $X^{\mathbb{T}}$, and let N_j be the normal bundle of Z_j in X. Let $i_j: Z_j \to X$ and let $i_j: H^*_{\mathbb{T}}(Z_j) \to H^*_{\mathbb{T}}(X)$ be the pushforward defined by the Gysin map. Let $\alpha \in H^*_{\mathbb{T}}(X) \otimes \mathcal{R}_{\mathbb{T}}$, we have

$$\alpha = \sum_{j} \frac{i_{j!} i_{j}^{*} \alpha}{Euler_{\mathbb{T}}(N_{j})},$$

In particular,

$$\int_{X_{\mathbb{T}}} \alpha = \sum_{j} \int_{(Z_{j})_{\mathbb{T}}} \frac{i_{j}^{*} \alpha}{Euler_{\mathbb{T}}(N_{j})}.$$

Kontsevich's approach is to apply Atiyah-Bott localization formula in $[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{vir}$ so that we can simplify the computation. We can lift the \mathbb{T} action on X to $[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{vir}$ in the following way: let $t\in\mathbb{T}$, $[f:C\to X,1,\ldots,n]\in[\overline{\mathcal{M}}_{g,n}(X,\beta)]^{vir}$, $x\in X$

$$(t \cdot f)(x) = f(t \cdot x).$$

In special, we will consider $\overline{\mathcal{M}}_{g,n}(\mathbb{P}^r,d)$ in this section. As claimed before, we need to find $[f:C\to X,1,\ldots,n]\in\overline{\mathcal{M}}_{g,n}(\mathbb{P}^r,d)^{\mathbb{T}}$. The fixed points of \mathbb{P}^r is

$${q_i = [0:0:\cdots:1:0:\cdots:0]}_{0 \le i \le r}.$$

The coordinate curve l_{ij} connecting q_i, q_j has one dimensional degree of freedom \mathbb{C}^* (as an invariant component). The curve $C \in \overline{C}_{g,n}$ is stable (i.e. $\operatorname{Aut}(C) < \infty$) if and only if 2g - 2 + n > 0. If a components C' of C is mapped to l_{ij} , then C' has two points mapped to q_i, q_j respectively (equivalent to with two marked points in

Figure 1.1: $f(C_i) = q_i$, $f(C') = l_{ij}$, $f(C_j) = q_j$

C'), so $2g-2+2 \le 0$ implies g=0, i.e. $C' \cong \mathbb{P}^1$ (see Fig 1.1). Meanwhile, $f|_{C'}$ must be uniformly ramified, so $f|_{C'}(z)=z^e$, $\forall z\in C'\cong \mathbb{P}^1$, for some $e\in \mathbb{N}^*$.

It is convenient to use a decorated graph $\vec{\Gamma} = (\Gamma, \vec{f}, \vec{d}, \vec{g}, \vec{s})$ (graph, maps, degrees, genus, marked points) to represent $[f: C \to X, 1, \dots, n] \in \overline{\mathcal{M}}_{g,n}(\mathbb{P}^r, d)^{\mathbb{T}}$. Let val(v), the valence of v, be the number of edges connecting vertex v, and let $n(v) = |s_v| + val(v)$. The stable map $[f: C \to X, 1, \dots, n]$ with fixed graph $\vec{\Gamma} = (\Gamma, \vec{f}, \vec{d}, \vec{g}, \vec{s})$ defines a substack

$$\overline{\mathcal{M}}_{\vec{\Gamma}} \subset \overline{\mathcal{M}}_{g,n}(\mathbb{P}^r,d).$$

On the other sides, consider

$$\varphi_{\vec{\Gamma}}: \prod_{\dim C_{\nu}=1} \overline{M}_{g_{\nu},n(\nu)} \to \overline{\mathcal{M}}_{\vec{\Gamma}}.$$

If v, v' are connected by an edge e, then let $C_v, C_{v'}$ connected by a $C_e \cong \mathbb{P}^1$ associated with a degree d_e map to \mathbb{P}^r . Let \overline{M}_{Γ} be the product of above C_v, C_e . There is a group \mathbb{A}_{Γ} acting on \overline{M}_{Γ} . The group \mathbb{A}_{Γ} is defined by:

$$1 \to \prod_{edges} \mathbb{Z}/(d_e) \to \mathbb{A}_{\Gamma} \to Aut(\Gamma) \to 1.$$

and

$$\overline{\mathcal{M}}_{\vec{\Gamma}} = \overline{M}_{\Gamma}/\mathbb{A}_{\Gamma}.$$

Therefore, we know the \mathbb{T} -fixed locus of $\overline{\mathcal{M}}_{g,n}(\mathbb{P}^r,d)$ is $\overline{\mathcal{M}}_{\vec{\Gamma}}$. Let N_{Γ} be the normal bundle of $\overline{\mathcal{M}}_{\vec{\Gamma}}$ in $\overline{\mathcal{M}}_{g,n}(\mathbb{P}^r,d)$. Then there is an explicit formula for the equivariant Euler class. Before doing that, we define some necessary notations. A flag F is a pair (v,e) such that e is an edge containing the vertex v. We put i(F) = v, j(F) the vertex of e different from v. Let

$$\omega_F = \frac{\lambda_{i(F)} - \lambda_{j(F)}}{d_e} \in H^2_{\mathbb{T}}(pt) = \mathbb{Q}[\lambda_0, \dots, \lambda_r],$$

which is the weight of \mathbb{T} -action on $T_{q_{i_v}}C_e$.

Theorem 1.2.1 ($Euler_{\mathbb{T}}(N_{\Gamma})$). $Euler_{\mathbb{T}}(N_{\Gamma}) = e_{\Gamma}^F e_{\Gamma}^{\nu} e_{\Gamma}^e$, where

$$e_{\Gamma}^{F} = \prod_{n(i(F))\geq 3} (\omega_{F} - \psi_{F}) / \prod_{j\neq i(F)} (\lambda_{i(F)} - \lambda_{j}),$$

$$e_{\Gamma}^{v} = \prod_{v} \prod_{j\neq i_{v}} (\lambda_{i_{v}} - \lambda_{j}) \prod_{val(v)=2, s_{v}=\emptyset} (\omega_{F_{1}(v)} + \omega_{F_{2}(v)}) / \prod_{val(v)=1, s_{v}=\emptyset} \omega_{F(v)}$$

$$e_{\Gamma}^{e} = \prod_{e} \frac{(-1)^{d_{e}} (d_{e}!)^{2} (\lambda_{i} - \lambda_{j})^{2d_{e}}}{d_{e}^{2d_{e}}} \prod_{a+b=d_{e}, k\neq i, j} (\frac{a\lambda_{i} + b\lambda_{j}}{d_{e}} - \lambda_{k})$$

The proof is partially discussed in section 1.2.

1.3 Tangent-obstruction sequence

Consider
$$[f: C \to X, 1, ..., n] \in \overline{\mathcal{M}}_{\vec{\Gamma}}, \vec{\Gamma} = (\Gamma, \vec{f}, \vec{d}, \vec{g}, \vec{s})$$
. We put $V^1(\Gamma) := \{v \in V(\Gamma) : g_v = 0, val(v) = 1, |s_v| = 0\}$ $V^2(\Gamma) := \{v \in V(\Gamma) : g_v = 0, val(v) = 2, |s_v| = 0\}$ $V^{1,1}(\Gamma) := \{v \in V(\Gamma) : g_v = 0, val(v) = 1, |s_v| = 1\}$ $V^s(\Gamma) := \{v \in V(\Gamma) : 2g_v - 2 + val(v) + |s_v| > 0\}$ $V^s(\Gamma) := \{v \in V(\Gamma) : 2g_v - 2 + val(v) + |s_v| > 0\}$

The tangent-obstruction sequence is

$$0 \to Aut(C, 1, ..., n)$$

$$\to Def(f) \to Def(C, 1, ..., n, f) \to Def(C, 1, ..., n)$$

$$\to Ob(f) \to Ob(C, 1, ..., n, f) \to 0,$$

$$0 \to Hom(\Omega_C(p_1 + \dots + p_n), O_C)$$

$$\to H^0(C, f^*T_X) \to T^1 \to Ext^1(\Omega_C(p_1 + \dots + p_n), O_C)$$

$$\to H^1(C, f^*T_X) \to T^2 \to 0.$$

For simplicity:

$$0 \to B_1 \to B_2 \to T^1 \to B_4 \to B_5 \to T^2 \to 0.$$

The $N^{vir} = T^{1,m} - T^{2,m}$ (m means moving part).

$$Euler_{\mathbb{T}}(N^{vir}) = \frac{Euler_{\mathbb{T}}(B_2^m)Euler_{\mathbb{T}}(B_4^m)}{Euler_{\mathbb{T}}(B_1^m)Euler_{\mathbb{T}}(B_5^m)}.$$

(1) $Euler_{\mathbb{T}}(B_2^m)/Euler_{\mathbb{T}}(B_5^m)$. The normalization sequence of C is:

$$0 \to O_C \to \bigoplus_{v \in V^s(\Gamma)} O_{C_v} \oplus \bigoplus_{e \in E(\Gamma)} O_{C_e}$$
$$\to \bigoplus_{v \in V^2(\Gamma)} O_{y_v} \oplus \bigoplus_{(e,v) \in F^s(\Gamma)} O_{y(e,v)} \to 0.$$

Take $\otimes f^*T_X$:

$$0 \to H^{0}(C, f^{*}T_{X}) \to \bigoplus_{v \in V^{s}(\Gamma)} H^{0}(C_{v}, f^{*}T_{X}) \oplus \bigoplus_{e \in E(\Gamma)} H^{0}(C_{e}, f^{*}T_{X})$$

$$\to \bigoplus_{v \in V^{2}(\Gamma)} T_{f(y_{v})}X \oplus \bigoplus_{(e,v) \in F^{s}(\Gamma)} T_{f(y(e,v))}X$$

$$\to H^{1}(C, f^{*}T_{X}) \to \bigoplus_{v \in V^{s}(\Gamma)} H^{1}(C_{v}, f^{*}T_{X}) \oplus \bigoplus_{e \in E(\Gamma)} H^{1}(C_{e}, f^{*}T_{X}) \to 0.$$

$$H^{0}(C_{v}, f^{*}T_{X}) = T_{f(C_{v})}X,$$

$$H^{1}(C_{v}, f^{*}T_{X}) = H^{1}(C_{v}, O_{C_{v}}) \otimes T_{f(C_{v})}X \cong H^{0}(C_{v}, \omega_{C_{v}})^{\vee} \otimes T_{f(C_{v})}X$$

Here $H^0(C_v, \omega_{C_v})$ is Hodge bundle \mathbb{E} . By splitting principle, assume $\mathbb{E} = L_1 \oplus \cdots \oplus L_g$, then

$$e(\mathbb{E}^{\vee} \otimes \mathbb{C}_{1}) = \prod_{i=1}^{g} c_{1}(L_{i}^{\vee} \otimes \mathbb{C}_{1}) = \prod_{i=1}^{g} (c_{1}(L_{i}^{\vee}) + c_{1}(\mathbb{C}_{1}))$$

$$= \prod_{i=1}^{g} (-c_{1}(L_{i}) + u) = \sum_{k=1}^{g} (-1)^{k} c_{k}(\mathbb{E}) u^{g-k} = \sum_{k=1}^{g} (-1)^{k} \lambda_{k} u^{g-k} =: \Lambda_{g}^{\vee}(u)$$

- $(2) \ Euler_{\mathbb{T}}(B_4^m)/Euler_{\mathbb{T}}(B_1^m).$
- (2.1) $B_1 = Aut(C, 1, ..., n) = Hom(\Omega_C(p_1 + ... + p_n), O_C)$: We should classify what is moving and what is fixed. Basically, we have

$$B_1^m = \bigoplus_{v \in V^1(\Gamma), (e,v) \in F(\Gamma)} T_{y(e,v)} C_e.$$

Figure 1.2: automorphism of (C, 1, ..., n)

(2.2) $B_4 = Def(C, 1, ..., n) = Ext^1(\Omega_C(p_1 + ... + p_n), O_C)$: \mathbb{P}^1 has just 1 complex structure, so we consider $g(C) \ge 1$. If we don't change node q, C will

Figure 1.3: deformation of (C, 1, ..., n)

stay in the same class in $\overline{\mathcal{M}}_{g,n}$. Hence we must resolve the node, and geometrically, resolution depends on $T_qC_v\otimes T_qC_e$. So basically we have

$$B_4^m = \bigoplus_{v \in V^2(\Gamma), E_v = (e,e')} T_{y_v} C_e \otimes T_{y_v} C_{e'} \oplus \bigoplus_{(e,v) \in F^s(\Gamma)} T_{y(e,v)} C_v \otimes T_{y(e,v)} C_e$$

Returning to the special case $X = \mathbb{P}^r$, we can get the theorem 1.1.1.

1.4 Aspinwall Morrison formula; Faber Pandaripande formula

In this section, we will use Kontsevich's approach to compute the multiple cover contribution of rigidly embedding curves \mathbb{P}^1 in a Calabi-Yau threefold X.

The geometry picture is this. The normal bundle N of $\mathbb{P}^1 \subset X$ is rank 2 and splits on \mathbb{P}^1 . Because X is Calabi-Yau and $c_1(\mathbb{P}^1)=2$, the normal bundle is of degree 2. Embedded \mathbb{P}^1 's in a Calabi-Yau threefold (not necessary lines) with normal bundle $O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(-1)$ are called rigid. The degree 2 Gromov-Witten invariant of a generic quintic has two contributions:

- (1) rigid conics curves in *X*;
- (2) lines with double cover, so this part is related to $\overline{\mathcal{M}}_0(\mathbb{P}^1,2)$.

We want to compute the contribution of part (2). This problem finally leads to:

$$N_{g,d} = \int_{\overline{\mathcal{M}}_{g,0}(\mathbb{P}^1,d)} e(R^1 \pi_* f^* N),$$

where

$$\begin{array}{ccc} \overline{C}_{g,0}(\mathbb{P}^1,d) & \xrightarrow{f} \mathbb{P}^1 \\ & \downarrow^{\pi} & \text{and } N = O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(-1). \\ \overline{\mathcal{M}}_{g,0}(\mathbb{P}^1,d) & \end{array}$$

The decorated graphs $\vec{\Gamma} = (\Gamma, \vec{f}, \vec{d}, \vec{g}, \vec{s})$ in $\overline{\mathcal{M}}_{g,0}(\mathbb{P}^1, d)^{\mathbb{T}}$ are of the type in Figure 1.4. We can choose different lifts on $O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(-1)$ so that only $\vec{\Gamma} = (\Gamma, \vec{f}, \vec{d}, \vec{g}, \vec{s})$ with 1 edge contributing $N_{g,d}$.

(1) g = 0 (Aspinwall Morrison formula): $N_{0,d} = 1/d^3$;

Figure 1.4: $\overline{\mathcal{M}}_{g,0}(\mathbb{P}^1,d)^{\mathbb{T}}$

(2) $g \ge 1$ (Faber-Pandharipande):

$$\begin{split} N_{g,d} &= \sum_{g_1 + g_2 = g} \frac{1}{d} \int_{\overline{M}_{g_1,1}} \lambda_{g_1} \psi^{2g_1 - 2} d^{2g_1 - 1} \\ &\times \int_{\overline{M}_{g_2,1}} \lambda_{g_2} \psi^{2g_2 - 2} d^{2g_2 - 1} = \sum_{g_1 + g_2 = g} b_{g_1} b_{g_2} d^{2g - 3} \\ b_0 &= 1; b_g = \int_{\overline{M}_{g,1}} \lambda_{g_2} \psi^{2g - 2} \quad (g > 0) \\ &\sum_{g = 0}^{\infty} b_g t^{2g} = \frac{t/2}{\sin t/2}. \end{split}$$

Then use the Laurent series of $\cot t$, we have

$$\begin{split} N_{1,d} &= \frac{1}{12d}, \\ N_{g,d} &= d^{2g-3} \frac{|B_{2g}|}{2g \cdot (2g-2)!} = |\chi(\mathcal{M}_g)| \frac{d^{2g-3}}{(2g-3)!}, \quad g \geq 2, \end{split}$$

where B_g is the Bernoulli number in $\frac{x}{e^x-1}$.

Chapter 2

Quantum Cohomology

2.1 quantum product

The quantum cohomology is a variation of classical cohomology. Let $T_0 = 1, T_1, \ldots, T_p, T_{p+1}, \ldots, T_m \in H^*(X)$ be a basis of $H^*(X)$ as a \mathbb{Q} -vector space $(T_1, \ldots, T_p \in H^2(X))$. Let $\beta \in H_2(X), \gamma = \sum_{i=0}^m t_i T_i$, we define quantum potential as

$$F_0^X(t_0, \dots, t_m) = \sum_{n,\beta} \frac{1}{n!} \langle \gamma^n \rangle_{0,n,\beta}^X Q^{\beta}$$

$$= \frac{1}{6} \int_X (\sum_{i=0}^m t_i T_i)^3 + \sum_{\beta=0,n\geq 4} \langle T_0^{n_0} \dots T_m^{n_m} \rangle_{0,n,0} \prod_{i=1}^m \frac{t_i^{n_i}}{n_i!}$$

$$+ \sum_{\beta>0,n} Q^{\beta} \langle T_0^{n_0} \dots T_m^{n_m} \rangle_{0,n,\beta} \prod_{i=p+1}^m \frac{t_i^{n_i}}{n_i!}.$$

By string equations and divisor equations,

$$F_0^X(t_0, \dots, t_m) = \frac{1}{6} \int_X \left(\sum_{i=0}^m t_i T_i \right)^3 + \sum_{\beta = 0, n \ge 4} \langle T_1^{n_1} \dots T_m^{n_m} \rangle_{0, n, 0} \prod_{i=1}^m \frac{t_i^{n_i}}{n_i!} + \sum_{\beta > 0, n} Q^{\beta} q_1^{\int_{\beta} T_1} \dots q_p^{\int_{\beta} T_p} \langle T_{p+1}^{n_{p+1}} \dots T_m^{n_m} \rangle_{0, n, \beta} \prod_{i=p+1}^m \frac{t_i^{n_i}}{n_i!},$$

where $q_i = e^{t_i}$.

$$F_{ijk} := \frac{\partial^3 F_0^X}{\partial t_i \partial t_j \partial t_k} = \sum_{n,\beta} \frac{1}{n!} \langle T_i T_j T_k \gamma^n \rangle_{0,n+3,\beta}^X Q^{\beta}$$

$$= \int_{X} T_{i}T_{j}T_{k} + \sum_{\beta=0,n\geq 1} \langle T_{i}T_{j}T_{k}T_{1}^{n_{1}} \dots T_{m}^{n_{m}} \rangle_{0,n+3,0} \prod_{i=1}^{m} \frac{t_{i}^{n_{i}}}{n_{i}!}$$

$$+ \sum_{\beta>0,n} Q^{\beta}q_{1}^{\int_{\beta}T_{1}} \dots q_{p}^{\int_{\beta}T_{p}} \langle T_{i}T_{j}T_{k}T_{p+1}^{n_{p+1}} \dots T_{m}^{n_{m}} \rangle_{0,n+3,\beta} \prod_{i=p+1}^{m} \frac{t_{i}^{n_{i}}}{n_{i}!}, \quad q_{i} = e^{t_{i}}.$$

Let $g_{ij} = (T_i, T_j)$ means the Poincare pair of T_i, T_j . The big quantum product is defined as

$$(T_i *_t T_j, T_k) := F_{ijk},$$

in other words,

$$T_i *_t T_j = \sum_{e,f} F_{ije} g^{ef} T_f.$$

It is known that the quantum product is a generalization of intersection theory: given T_i, T_j, T_k , they contribute to the quantum product if there exists \mathbb{P}^1 touching their Poincare dual classes at the same time. Extend the t_i in quantum multiplication linearly, then the $\mathbb{Q}[[t_0, \ldots, t_m]]$ -module $H^*(X) \otimes_{\mathbb{Q}} \mathbb{Q}[[t_0, \ldots, t_m]]$ is the big quantum cohomology QH(X).

The associativity of quantum product is formulated as WDVV equation:

$$F_{ija}g^{ab}F_{bkl} = F_{ila}g^{ab}F_{bjk}.$$

It is proved by a forgetful map $\pi: \overline{\mathcal{M}}_{0,4}(X,\beta) \to \overline{\mathcal{M}}_{0,4}$. One should notice that $\overline{\mathcal{M}}_{0,4} \cong \mathbb{P}^1$, so the boundary divisor $D(12|34) \sim D(13|24)$ and

$$\int_{[\overline{\mathcal{M}}_{0,4}(X,\beta)]^{vir}\cap\pi^*D(12|34)} ev_1^*(T_i)ev_2^*(T_j)ev_3^*(T_k)ev_4^*(T_l) \prod_{i=5}^{n+4} ev_i^*(\gamma)$$

$$= \int_{[\overline{\mathcal{M}}_{0,4}(X,\beta)]^{vir} \cap \pi^*D(13|24)} ev_1^*(T_i) ev_2^*(T_j) ev_3^*(T_k) ev_4^*(T_l) \prod_{i=5}^{n+4} ev_i^*(\gamma).$$

A useful trick is to separate $[\overline{\mathcal{M}}_{0,4}(X,\beta)]^{vir} \cap \pi^*D(12|34)$ by

$$\coprod_{n_1+n_2=n,\beta_1+\beta_2=\beta} [\overline{\mathcal{M}}_{0,n_1+3}(X,\beta_1) \times \overline{\mathcal{M}}_{0,n_2+3}(X,\beta_2)]^{vir} \cap (ev \times ev)^*[\Delta],$$

$$PD[\Delta] = g^{ab}T_a \otimes T_b$$

then we get

$$\sum_{n_1+n_2=n} \sum_{\beta_1+\beta_2=\beta} \langle T_i T_j T_a \gamma^{n_1} \rangle_{0,n_1+3,\beta_1} g^{ab} \langle T_b T_k T_l \gamma^{n_2} \rangle_{0,n_2+3,\beta_2}$$

$$= \sum_{n_1+n_2=n} \sum_{\beta_1+\beta_2=\beta} \langle T_i T_k T_a \gamma^{n_1} \rangle_{0,n_1+3,\beta_1} g^{ab} \langle T_b T_j T_l \gamma^{n_2} \rangle_{0,n_2+3,\beta_2}.$$

This is the essential part in the proof of associativity of quantum product.

Remark 2.1.1. It deserves to notice that the quantum product is defined by rational curves, so its usage mainly concentrates in genus 0 GW-invariants. The difficulty to define quantum product via higher genus curves is that there is no so good associativity as the genus 0 case. It must be a good work if we can find a way to give a quantum product via higher genus curves with associativity like now.

The small quantum product is defined by

$$T_i *_{s} T_j = T_i *_{t} T_j |_{t_{p+1} = \dots = t_m = 0}, 0 \le i, j \le m.$$

Precisely, let

$$\overline{F}_{ijk} = F_{ijk}|_{t_{p+1} = \dots = t_m = 0} = \int_X T_i T_j T_k + \sum_{\beta > 0} Q^{\beta} q_1^{\int_{\beta} T_1} \dots q_p^{\int_{\beta} T_p} \langle T_i T_j T_k \rangle_{0,3,\beta},$$

then

$$T_i *_{s} T_i = \overline{F}_{ije} g^{ef} T_f, \quad 1 \le e, f \le m.$$

Extend q_i linearly, the $\mathbb{Q}[[q_1,\ldots,q_p]]$ -module $H^*(X)\otimes_{\mathbb{Q}}\mathbb{Q}[[q_1,\ldots,q_p]]$ is defined as the small quantum cohomology $QH^s(X)$.

Example 2.1.2.
$$QH^{s}(\mathbb{P}^{m}) = \mathbb{Q}[H, q]/(H^{m+1} - q)$$
, where $H \in H^{2}(\mathbb{P}^{m}, \mathbb{Q})$, $q = e^{t_{1}}$.

2.2 quantum differential equation

We can view the vector space H(X) as a Riemannian manifold M with standard flat metric g_{ij} given by Poincare pairing. The quantum product $*_t$ could be use to define a connection (called Dubrovin connection, or Givental connection) ∇^z , which is different from the Levi-Civita connection induced by its Riemannian metric.

14

Definition 2.2.1. (Dubrovin connection) Let $X, Y \in \Gamma(M, TM)$, ∇ be the Levi-Civita connection w.r.t g. The Dubrovin connection ∇^z is defined by

$$\nabla_X^z Y := \nabla_X Y - \frac{1}{z} X *_t Y.$$

The WDVV equation shows ∇^z is flat. i.e. $Rm^z = 0$.

Definition 2.2.2 (quantum differential equation). Let $\sigma \in \Gamma(M, TM)$, the equation $\nabla^z \sigma = 0$ is the quantum differential equation. The fundamental solution of quantum differential equation is $(m+1)\times(m+1)$ matrix s(z,t) $(t=(t_0,\ldots,t_m))=(a_{ij})$, such that each column defines a solution

$$\sigma_j(t) = \sum_{i=0}^m a_{ij}(t) \frac{\partial}{\partial t_i}.$$

Now we want to find the solution of quantum differential equation. Let $(S(z)T_a, T_b) = g_{ab} + \langle \langle \frac{T_a}{z-\varphi_1}, T_b \rangle \rangle_{0,2}$, where

$$\langle\langle\frac{T_a}{z-\psi_1},T_b\rangle\rangle_{0,2}=\sum_{n\geq 0,\beta,\atop (n,\beta)\neq(0,0)}\frac{1}{n!}\langle\frac{T_a}{z-\psi_1}T_b\gamma^n\rangle_{0,n+2,\beta}.$$

Proposition 2.2.3. The $S_a = (S(z)T_a, T_b)g^{bc}\partial_c$ is a flat section with respect to ∇^z .

This proposition is proven with the help of topological recursion relation.

Theorem 2.2.4 (topological recursion relation). Let $\gamma_i \in H^*(X)$,

$$\langle \tau_{a_1+1}(\gamma_1)\tau_{a_2}(\gamma_2)\tau_{a_3}(\gamma_3)\prod_{i=4}^n \tau_{a_i}(\gamma_i)\rangle_{0,n,\beta}$$

$$= \sum_{A \cup B = \{4, \dots, n\} \atop \beta = \beta_1 + \beta_2} \sum_{a,b=0}^{m} \langle \tau_{a_1}(\gamma_1) \prod_{i \in A} \tau_{a_i}(\gamma_i) T_a \rangle_{0,|A|+2,\beta_1} g^{ab} \langle T_b \tau_{a_2}(\gamma_2) \tau_{a_3}(\gamma_3) \prod_{j \in B} \tau_{a_j}(\gamma_j) T_a \rangle_{0,|B|+3,\beta_2}$$

Proof. Consider the forgetful map

$$\pi: \overline{\mathcal{M}}_{0,n}(X,\beta) \to \overline{\mathcal{M}}_{0,3}:$$

$$[f: C \to X, 1, \dots, n] \mapsto [C, 1, 2, 3].$$

15

Let \mathbb{L}_1 , \mathbb{L}'_1 be the tautological line bundles

$$\begin{array}{ccc}
\mathbb{L}_1 & & \mathbb{L}'_1 \\
\downarrow & & \downarrow \\
\overline{\mathcal{M}}_{0,n}(X,\beta) & \xrightarrow{\pi} & \overline{\mathcal{M}}_{0,3}
\end{array}$$

There is

$$\mathbb{L}_1 \cong \pi^* \mathbb{L}'_1 \otimes (\sum_{\substack{\beta_1 + \beta_2 = \beta \\ A \cup B = \{4, \dots, n\}}} D(1, A, \beta_1 | 2, 3, B, \beta_2)),$$

$$D(1, A, \beta_1 | 2, 3, B, \beta_2) \xrightarrow{P} \overline{\mathcal{M}}_{0, |B|+3}(X, \beta_2)$$

$$\downarrow \qquad \qquad \downarrow^{ev_{node}}$$

$$\overline{\mathcal{M}}_{0, |A|+2}(X, \beta_1) \xrightarrow{ev_{node}} X.$$

Because $\overline{\mathcal{M}}_{0,3}$ is a point, \mathbb{L}'_1 is trivial and

$$\psi_1 = \sum_{\substack{\beta_1 + \beta_2 = \beta \\ A \cup B = \{4, \dots, n\}}} [D(1, A, \beta_1 | 2, 3, B, \beta_2)].$$

Take this formula into LHS, we get the recursion relation.

The fundamental solution of small quantum differential equation directly relates to the definition of J-function in mirror symmetry. It is given by

$$\tilde{S}(z) = S(z)|_{t_{p+1},\dots,t_m=0}.$$

Specifically, let $\gamma = \sum_{i=0}^{p} t_i T_i = t_0 T_0 + \gamma_1$ and $\gamma_1 = \sum_{i=1}^{p} t_i T_i$, then

$$(\tilde{S}(z)T_a, T_b) = g_{ab} + \sum_{\substack{n \ge 0, \beta \\ (n, \beta) \neq (0, 0)}} \frac{1}{n!} \langle \frac{T_a}{z - \psi_1} T_b \gamma^n \rangle_{0, n+2, \beta}.$$

By string equations and divisor equations, γ can be put out of the bracket, and finally we get

$$(\tilde{S}(z)T_a, T_b) = \int_X e^{\gamma/z} T_a T_b + \sum_{\beta > 0} \langle \frac{e^{\gamma/z} T_a}{z - \psi_1} T_b \rangle_{0,2,\beta} e^{\int_{\beta} \gamma_1}.$$

Chapter 3

Mirror Symmetry

I plan to follow Givental's approach to give a proof of genus 0 mirror symmetry of hypersurfaces in \mathbb{P}^n . The key character of Givental's approach is that it uses J-function and I-function to show the mirror symmetry relation. The J-function is defined as follows, which describes the A-model information.

Definition 3.0.1. For a complex manifold X, the J^X is

$$(T_a, J^X) := (\tilde{S}(z)T_a, 1) = \int_X e^{\gamma/z} T_a + \sum_{\beta > 0} \langle \frac{e^{\gamma/z} T_a}{z - \psi_1} 1 \rangle_{0, 2, \beta} e^{\int_{\beta} \gamma_1}.$$

 J^X is a $H^*(X)$ -value function:

$$J^{X}(t_0, t_1, \dots, t_p, z) = (T_a, J^{X})g^{ab}T_b$$

$$= e^{(t_0 + \gamma_1)/z} \left(1 + \sum_{\beta \neq 0} \sum_{a=0}^{m} q^{\beta} \langle \frac{T_a}{z - \psi_1} 1 \rangle_{0,\beta} T^a \right),$$

where $q^{\beta}=e^{\int_{\beta}\gamma_1}$. In this chapter, X is a hypersurface of degree l in \mathbb{P}^m . We assume $l\leq m+1$ so X is either Fano or Calabi-Yau.

At first, J^X could be pushforwarded to $\underline{i_*J}^X$ as a $H^*(\mathbb{P}^m)$ -valued function. Let $i: X \hookrightarrow \mathbb{P}^m$. It induces $i: \overline{\mathcal{M}}_{0,n}(X,d) \to \overline{\mathcal{M}}_{0,n}(\mathbb{P}^m,d)$. Consider

$$\overline{C}_{0,n}(\mathbb{P}^m,d) \xrightarrow{F} \mathbb{P}^m$$

$$\downarrow^{\pi}$$

$$\overline{\mathcal{M}}_{0,n}(\mathbb{P}^m,d)$$

Let $E_d := \pi_* F^* O(l)$ be the obstruction bundle over $\overline{\mathcal{M}}_{0,n}(\mathbb{P}^m, d)$. The following theorem shows the relationship of virtual fundamental classes:

Theorem 3.0.2.

$$i_*[\overline{\mathcal{M}}_{0,n}(X,d)]^{vir} = e(\pi_*F^*O(l)) \cap [\overline{\mathcal{M}}_{0,n}(\mathbb{P}^m,d)]^{vir}.$$
 Let $ev_1: \overline{\mathcal{M}}_{0,2}(X,\beta) \to X$

Proposition 3.0.3.

$$\begin{split} J^X &= e^{\gamma/z} \left(1 + \sum_{\beta > 0} e^{\int_{\beta} \gamma_1} (ev_1)_* \left(\frac{1}{z - \psi_1} \right) \right), \\ J^{\mathbb{P}^m, O(l)}(t_0, t_1, z) &:= i_* J^X = e^{(t_0 + t_1 H)/z} \left(e(O(l)) + \sum_{d > 0} e^{dt_1} (ev_1)_* \left(\frac{e(E_d)}{z - \psi_1} \right) \right), \end{split}$$

where $H \in H^2(\mathbb{P}^m, \mathbb{Q})$ is the generator of $H^2(\mathbb{P}^m, \mathbb{Q})$, $\gamma = t_0 + t_1 H$.

Let
$$0 \to E'_d \to E_d \to ev_1^*O(l) \to 0$$
, then

$$J^{\mathbb{P}^m,O(l)}(t_0,t_1,z) = e^{(t_0+t_1H)/z}lH\left(1+\sum_{d>0}e^{dt_1}(ev_1)_*\left(\frac{e(E_d')}{z-\psi_1}\right)\right)$$

The I-function is

$$I^{\mathbb{P}^m,O(l)}(t_0,t_1,z):=e^{(t_0+t_1H)/z}lH\left(1+\sum_{d=1}^\infty e^{dt_1}\frac{\prod_{a=1}^{dl}(lH+az)}{\prod_{a=1}^d(H+az)^{m+1}}\right).$$

3.1 Fano case

The equivariant cohomology of \mathbb{P}^m with respect to $\mathbb{T} = (\mathbb{C}^*)^{m+1}$ is

$$H_{\mathbb{T}}^*(\mathbb{P}^m;\mathbb{Q}) = \mathbb{Q}[H,\lambda_0,\ldots,\lambda_m]/\prod_{i=0}^m (H-\lambda_i).$$

The classes $\phi_i = \prod_{j \neq i} (H - \lambda_j)$, are a basis of $H^*_{\mathbb{T}}(\mathbb{P}^m; \mathbb{Q})$. Moreover, for $f(H, \lambda) \in H^*_{\mathbb{T}}(\mathbb{P}^m; \mathbb{Q})$, $(\phi_i, f(H, \lambda)) = f(\lambda_i, \lambda)$. Lifting J-function and I-function to the equivariant classes $H^*_{\mathbb{T}}(\mathbb{P}^m)$ and define

$$\widetilde{J}^{\mathbb{P}^m,O(l)} := e^{(t_0 + t_1 H)/z} l H \left(1 + \sum_{d > 0} e^{dt_1} (ev_1)_* \left(\frac{e_{\mathbb{T}}(E_d')}{z - \psi_1} \right) \right);$$

$$\widetilde{I}^{\mathbb{P}^m,O(l)} := e^{(t_0 + t_1 H)/z} lH \left(1 + \sum_{d=1}^{\infty} e^{dt_1} \frac{\prod_{r=1}^{ld} (lH + rz)}{\prod_{k=0}^{m} \prod_{r=1}^{d} (H - \lambda_k + rz)} \right).$$

If we can show the relationship of \widetilde{J} and \widetilde{I} , then take $\lambda \to 0$, we get a relation between J and I. Let $q = e^{t_1}$ and define

$$\begin{split} S(q,z,\lambda) &= 1 + \sum_{d>0} q^d (ev_1)_* \left(\frac{e_{\mathbb{T}}(E_d')}{z - \psi_1} \right); \\ \Psi(q,z,\lambda) &= 1 + \sum_{d=1}^{\infty} e^{dt_1} \frac{\prod_{r=1}^{ld} (lH + rz)}{\prod_{k=0}^{m} \prod_{r=1}^{d} (H - \lambda_k + rz)}; \\ S_i(q,z,\lambda) &:= (\phi_i, S(q,z,\lambda)) = 1 + \sum_{d>0} q^d \int_{\overline{\mathcal{M}}_{0,2}(\mathbb{P}^m,d)} \frac{e_{\mathbb{T}}(E_d') ev_1^*(\phi_i)}{z - \psi_1}; \\ \Psi_i(q,z,\lambda) &:= (\phi_i, \Psi(q,z,\lambda)) = 1 + \sum_{d=1}^{\infty} q^d \frac{\prod_{r=1}^{dl} (l\lambda_i + rz)}{\prod_{k=0}^{m} \prod_{r=1}^{d} (\lambda_i - \lambda_k + rz)}. \end{split}$$

The first step is to use localization formula to compute S_i . We can classify the fixed locus $\overline{\mathcal{M}}_{0,2}(\mathbb{P}^m,d)^{\mathbb{T}}$ into three classes:

 G_d^1 : the first mark point x_1 is mapped to p_j $(j \neq i)$;

 G_d^2 : the first mark point x_1 is mapped to p_i and the irreducible component C_v is stable (i.e. not a point);

 G_d^3 : the first mark point x_1 is mapped to p_i and the irreducible component C_v is a single point.

In G_d^1 case, $\operatorname{ev}_1^*(\phi_i)|_{F_\Gamma} = 0$, so only the latter two cases contribute S_i . It can be expressed as

$$S_i(q, z, \lambda) = 1 + \sum_{\Gamma \in G_d^2 \cup G_d^3} \operatorname{Cont}_{\Gamma}(S_i(q, z, \lambda));$$

$$\operatorname{Cont}_{\Gamma}(S_{i}(q, z, \lambda)) = \sum_{d>1} q^{d} \int_{F_{\Gamma}} \frac{e_{\mathbb{T}}(E'_{d}) \operatorname{ev}_{1}^{*}(\phi_{i})}{(z - \psi_{1}) e_{\mathbb{T}}(N_{\Gamma}^{\operatorname{vir}})}$$

The following lemma is important in recursion formula of $S_i(q, z, \lambda)$.

Lemma 3.1.1. (1) $S_i(q, z, \lambda) \in \mathbb{Q}(\lambda, z)[[q]];$

(2) Let $S_i(q, z, \lambda) = 1 + \sum_{d>0} q^d \xi_{id}(z, \lambda)$. Then $\xi_{id}(z, \lambda)$ are regular at $z = \frac{\lambda_i - \lambda_j}{n}$ for all $i \neq j$ and $n \geq 1$.

We will compute the contribution of G_d^2 and G_d^3 respectively.

Theorem 3.1.2. Let $C_i(q, z, \lambda) = \sum_{\Gamma \in G_d^2} Cont_{\Gamma}(S_i(qz^{m+1-l}, z, \lambda))$

then
$$C_i(q, z, \lambda) = \begin{cases} 0, & l < m \\ -1 + \exp(-m!q + \frac{(m\lambda_i)^m}{\prod_{j \neq i} (\lambda_i - \lambda_j)} q), & l = m. \end{cases}$$

As for $\Gamma \in G_d^3$, we can split Γ into Γ_0 and Γ_c .

Figure 3.1: $\Gamma \in G_d^3$

Theorem 3.1.3. Let $\Gamma \in G_d^3$ such that degree of C_{ij} d_0 and $d_c > 0$, then

$$Cont_{\Gamma}S_{i}(q, z, \lambda) = q^{d_{0}} \frac{C_{i}^{j}}{d_{0}z + \lambda_{i} - \lambda_{j}} (d_{0}, \lambda) Cont_{\Gamma_{c}}S_{j}(q, \frac{\lambda_{j} - \lambda_{i}}{d_{0}}, \lambda),$$

$$C_{i}^{j}(d, \lambda) = \frac{\prod_{r=1}^{ld} (l\lambda_{i} + r\frac{\lambda_{j} - \lambda_{i}}{d})}{\prod_{k=0}^{m} \prod_{r=1, (k,r) \neq (j,d)}^{d} (\lambda_{i} - \lambda_{k} + r\frac{\lambda_{j} - \lambda_{i}}{d})}.$$

Proof. Consider the diagram as Fig 3.1, we have $F_{\Gamma} = F_{\Gamma_0} \times F_{\Gamma_c}$. Let $\pi_0 : F_{\Gamma} \to F_{\Gamma_0}$ and let $\pi_c : F_{\Gamma} \to F_{\Gamma_c}$

$$\begin{split} E'_{d_0+d_c}|_{F_{\Gamma}} &= \pi_0^* E'_{d_0} \oplus \pi_c^* E'_{d_0}; \\ \frac{N_{F_{\Gamma}}}{T_{p_i} \mathbb{P}^m} &= \frac{N_{F_{\Gamma_0}}}{T_{p_i} \mathbb{P}^m} \oplus \frac{N_{F_{\Gamma_c}}}{T_{p_j} \mathbb{P}^m} \oplus \pi_0^* \mathbb{L}_2^{\vee} \otimes \pi_c^* \mathbb{L}_1^{\vee}; \\ e_{\mathbb{T}}(E'_{d_0}) &= \prod_{r=1}^{ld_0} (l\lambda_i + r \frac{\lambda_j - \lambda_i}{d_0}) \end{split}$$

$$\operatorname{ev}_{1}^{*}\phi_{i} = \prod_{j \neq i} (\lambda_{i} - \lambda_{j}), \quad c_{1}(\mathbb{L}_{2}^{\vee}) = \frac{\lambda_{j} - \lambda_{i}}{d_{0}};$$

$$e_{\mathbb{T}}(N_{\Gamma_{0}}) = (-1)^{d_{0}} \prod_{r=1}^{d_{0}} (r\frac{\lambda_{j} - \lambda_{i}}{d_{0}})^{2} \prod_{r=0}^{d_{0}} \prod_{k \neq i, j} (\lambda_{i} - \lambda_{k} + r\frac{\lambda_{j} - \lambda_{i}}{d_{0}}).$$

Hence,

$$q^{d_0+d_c} \int_{F_{\Gamma}} \frac{e_{\mathbb{T}}(E'_{d_0+d_c}) e_{\mathbb{T}}^* \phi_i}{(z-\psi)e_{\mathbb{T}}(N_{F_{\Gamma}})} = q^{d_0+d_c} \frac{C_i^J(d_0,\lambda)}{d_0z+\lambda_i-\lambda_j} \int_{F_{\Gamma}} \frac{e_{\mathbb{T}}(E'_{d_c}) e_{\mathbb{T}}^* \phi_i}{(z-\psi)e_{\mathbb{T}}(N_{F_{\Gamma}})} \Big|_{z=\frac{\lambda_j-\lambda_i}{d_0}},$$

$$C_i^J(d_0,\lambda) = \frac{e_{\mathbb{T}}(E'_{d_0}) e_{\mathbb{T}}^* \phi_i}{e_{\mathbb{T}}(N_{\Gamma_0})} = \frac{\prod_{r=1}^{ld_0} (l\lambda_i + r\frac{\lambda_j-\lambda_i}{d_0}) \prod_{k\neq i} (\lambda_i - \lambda_k)}{(-1)^{d_0} \prod_{r=1}^{d_0} (r\frac{\lambda_j-\lambda_i}{d_0})^2 \prod_{r=0}^{d_0} \prod_{k\neq i,j} (\lambda_i - \lambda_k + r\frac{\lambda_j-\lambda_i}{d_0})}$$

$$= \frac{(\lambda_i - \lambda_j) \prod_{r=1}^{ld_0} (l\lambda_i + r\frac{\lambda_j-\lambda_i}{d_0})}{(-1)^{d_0} \prod_{r=1}^{d_0} (r\frac{\lambda_j-\lambda_i}{d_0})^2 \prod_{r=1}^{d_0} \prod_{k\neq i,j} (\lambda_i - \lambda_k + r\frac{\lambda_j-\lambda_i}{d_0})}$$

$$= \frac{\prod_{k=0}^{ld_0} (l\lambda_i + r\frac{\lambda_j-\lambda_i}{d_0})}{\prod_{k=0}^{ld_0} \prod_{r=1,(k,r)\neq(j,d_0)}^{d_0} (\lambda_i - \lambda_k + r\frac{\lambda_j-\lambda_i}{d_0})}.$$

Finally,

$$\operatorname{Cont}_{\Gamma} S_{i}(q, z, \lambda) = \sum_{d_{c} > 0} q^{d_{0} + d_{c}} \int_{F_{\Gamma_{c}}} \frac{e_{\mathbb{T}}(E'_{d_{0} + d_{c}}) \operatorname{ev}_{1}^{*} \phi_{i}}{(z - \psi_{1}) e_{\mathbb{T}}(N_{F_{\Gamma}})}$$

$$= q^{d_{0}} \frac{C_{i}^{j}(d_{0}, \lambda)}{d_{0}z + \lambda_{i} - \lambda_{j}} \sum_{d_{c} > 0} q^{d_{c}} \int_{F_{\Gamma_{c}}} \frac{e_{\mathbb{T}}(E'_{d_{c}}) \operatorname{ev}_{1}^{*} \phi_{i}}{(z - \psi_{1}) e_{\mathbb{T}}(N_{F_{\Gamma}})} \Big|_{z = \frac{\lambda_{j} - \lambda_{i}}{d_{0}}}$$

$$= q^{d_{0}} \frac{C_{i}^{j}(d_{0}, \lambda)}{d_{0}z + \lambda_{i} - \lambda_{j}} \operatorname{Cont}_{\Gamma_{c}} S_{j}(q, \frac{\lambda_{j} - \lambda_{i}}{d_{0}}, \lambda). \quad \square$$

Remark 3.1.4. $S_j(q, \frac{\lambda_j - \lambda_i}{d_0}, \lambda)$ is well-defined by Lemma 3.1.1.

Theorem 3.1.5. The function S_i satisfies the following recursion formula:

$$S_{i}(qz^{m+1-l}, z, \lambda) = 1 + C_{i}(q, z, \lambda) + \sum_{j \neq i} \sum_{d > 0} q^{d} z^{(m+1-l)d} \frac{C_{i}^{j}(d, \lambda)}{dz + \lambda_{i} - \lambda_{j}} S_{j}(qz^{m+1-l}, \frac{\lambda_{j} - \lambda_{i}}{d}, \lambda).$$

Proof. It directly follows from Theorem 3.1.2 and 3.1.3 and

$$S_i(qz^{m+1-l}, z, \lambda) = 1 + \sum_{\Gamma \in G_d^2 \cup G_d^3} \operatorname{Cont}_{\Gamma} S_i(qz^{m+1-l}, z, \lambda) \qquad \Box$$

The second step is to check Ψ_i satisfies the same recursion relation.

Proposition 3.1.6. For l < m, Ψ_i has the recursion relation

$$\Psi_i(qz^{m+1-l}, z, \lambda) = 1 + \sum_{j \neq i} \sum_{d>0} q^d z^{(m+1-l)d} \frac{C_i^j(d, \lambda)}{dz + \lambda_i - \lambda_j} \Psi_j(qz^{m+1-l}, \frac{\lambda_j - \lambda_i}{d}, \lambda);$$

for l = m, they differ a function depending on q, λ .

Proof. The hint is to view the formula as meoromorphic functions and analyse the simple poles.

deg d part of LHS =
$$z^{(m+1-l)d} \frac{\prod_{r=1}^{dl} (l\lambda_i + rz)}{\prod_{k=0}^{m} \prod_{r=1}^{d} (\lambda_i - \lambda_k + rz)}$$

has simple poles at $z = \frac{\lambda_j - \lambda_i}{e}$ with $j \neq i, 1 \leq e \leq d$. The residue is

$$\operatorname{Res}_{z} \operatorname{LHS} = \left(\frac{\lambda_{j} - \lambda_{i}}{e}\right)^{(m+1-l)d} \frac{\prod_{r=1}^{dl} (l\lambda_{i} + r\frac{\lambda_{j} - \lambda_{i}}{e})}{e \prod_{k=0}^{m} \prod_{r=1, (k,r) \neq (j,e)}^{d} (\lambda_{i} - \lambda_{k} + r\frac{\lambda_{j} - \lambda_{i}}{e})}.$$

$$\deg d \text{ part of RHS} = z^{(m+1-l)d} \sum_{j \neq i} \left(\frac{C_i^j(d,\lambda)}{dz + \lambda_i - \lambda_j} + \sum_{e=1}^{d-1} \frac{C_i^j(e,\lambda)}{ez + \lambda_i - \lambda_j} \frac{\prod_{r=1}^{l(d-e)} (l\lambda_j + r\frac{\lambda_j - \lambda_i}{e})}{\prod_{r=1}^{m} (\lambda_i - \lambda_k + r\frac{\lambda_j - \lambda_i}{e})} \right)$$

The simple poles are also $z = \frac{\lambda_j - \lambda_i}{e}$ with $j \neq i, 1 \leq e \leq d$.

$$e=d: \mathrm{Res}_z \ \mathrm{RHS} = (\frac{\lambda_j - \lambda_i}{d})^{(m+1-l)d} C_i^j(d,\lambda)/d = \mathrm{Res}_z \ \mathrm{LHS}$$

e < d:

$$\operatorname{Res}_{z} \operatorname{RHS} = \left(\frac{\lambda_{j} - \lambda_{i}}{e}\right)^{(m+1-l)d} \frac{\prod_{r=1}^{le} (l\lambda_{i} + r\frac{\lambda_{j} - \lambda_{i}}{e})}{e \prod_{k=0}^{m} \prod_{r=1,(k,r) \neq (j,e)}^{e} (\lambda_{i} - \lambda_{k} + r\frac{\lambda_{j} - \lambda_{i}}{e})}$$

$$\times \frac{\prod_{r=1}^{l(d-e)} (l\lambda_j + r\frac{\lambda_j - \lambda_i}{e})}{\prod_{k=0}^{m} \prod_{r=1}^{d-e} (\lambda_j - \lambda_k + r\frac{\lambda_j - \lambda_i}{e})}$$

 $= Res_7 LHS.$

For numerator, let s = le + r, $1 \le r \le l(d - e)$, $le + 1 \le s \le ld$,

$$l\lambda_{j} + r\frac{\lambda_{j} - \lambda_{i}}{e} = \frac{le + r}{e}\lambda_{j} - r\frac{\lambda_{i}}{e} = l\lambda_{i} + s\frac{\lambda_{j} - \lambda_{i}}{e};$$

for denominator, let s = e + r, $1 \le r \le d - e$, $e + 1 \le s \le d$, then

$$\lambda_{j} - \lambda_{k} + r \frac{\lambda_{j} - \lambda_{i}}{e} = \frac{e + r}{e} \lambda_{j} - \lambda_{k} - \frac{r}{e} \lambda_{i} = \lambda_{i} - \lambda_{k} + s \frac{\lambda_{j} - \lambda_{i}}{e};$$

$$\operatorname{Res}_{z} \operatorname{RHS} = \left(\frac{\lambda_{j} - \lambda_{i}}{e}\right)^{(m+1-l)d} \frac{\prod_{r=1}^{dl} (l\lambda_{i} + rz)}{e \prod_{k=0}^{m} \prod_{r=1,(k,r)\neq(j,e)}^{d} (\lambda_{i} - \lambda_{j} + r \frac{\lambda_{j} - \lambda_{i}}{e})}$$

If l < m, we find out that LHS=RHS=0 at z = 0, so we have done.

As a result, we show a mirror symmetry of l < m case:

Theorem 3.1.7 (Mirror symmetry for l < m). If l < m, then $S_i(q, z, \lambda) = \Psi_i(q, z, \lambda)$. As a corollary,

$$J^{\mathbb{P}^m,O(l)}(t_0,t_1,z) = I^{\mathbb{P}^m,O(l)}(t_0,t_1,z).$$

We need another recursion relation to prove l = m case

Proposition 3.1.8. Ψ_i has the recursion relation

$$e^{-m!q}\Psi_{i}(qz,z,\lambda) = 1 + C_{i}(q,z,\lambda)$$

$$+ \sum_{j\neq i} \sum_{d>0} q^{d}z^{d} \frac{C_{i}^{j}(d,\lambda)}{dz + \lambda_{i} - \lambda_{j}} e^{-m!q} \Psi_{j}(qz, \frac{\lambda_{j} - \lambda_{i}}{d}, \lambda),$$

$$C_{i}(q,z,\lambda) = -1 + \exp(-m!q + \frac{(m\lambda_{i})^{m}}{\prod_{j\neq i}(\lambda_{i} - \lambda_{j})}q)$$

Proof. It is equivalent to proof

$$\Psi_{i}(qz, z, \lambda) = \exp\left(\frac{(m\lambda_{i})^{m}}{\prod_{j \neq i} (\lambda_{i} - \lambda_{j})} q\right)$$

$$+ \sum_{i \neq i} \sum_{d > 0} q^{d} z^{d} \frac{C_{i}^{j}(d, \lambda)}{dz + \lambda_{i} - \lambda_{j}} \Psi_{j}(qz, \frac{\lambda_{j} - \lambda_{i}}{d}, \lambda),$$

Similar to the proof of Prop 3.1.6.

$$\deg d \text{ part of LHS} = \frac{\prod_{r=1}^{dl} (l\lambda_i + rz)}{d! \prod_{k=0, k \neq i}^{m} \prod_{r=1}^{d} (\lambda_i - \lambda_k + rz)}$$

$$\deg d \text{ part of RHS} = \frac{(m\lambda_i)^{md}}{d! \prod_{j \neq i} (\lambda_i - \lambda_j)^d} + \sum_{j \neq i} z^d \left(\frac{C_i^j(d, \lambda)}{dz + \lambda_i - \lambda_j} \right)$$
$$+ \sum_{e=1}^{d-1} \frac{C_i^j(e, \lambda)}{ez + \lambda_i - \lambda_j} \frac{\prod_{r=1}^{m(d-e)} (m\lambda_j + r\frac{\lambda_j - \lambda_i}{e})}{\prod_{k=0}^{m} \prod_{r=1}^{d-e} (\lambda_j - \lambda_k + r\frac{\lambda_j - \lambda_i}{e})} \right)$$

As Prop 3.1.6, they have same simple poles and residue numbers. Take z = 0,

deg d part of LHS(z = 0) =
$$\frac{(m\lambda_i)^{md}}{d! \prod_{i \neq i} (\lambda_i - \lambda_i)^d} = \text{deg } d \text{ part of LHS}(z = 0).$$

Hence two formulas identify.

Remark 3.1.9. $\exp(\frac{(m\lambda_i)^m}{\prod_{j\neq i}(\lambda_i-\lambda_j)}q)$ is the function depending on q,λ in Prop 3.1.6.

Theorem 3.1.10 (Mirror symmetry for l=m). For l=m, $e^{m!q/z}S_i(q,z,\lambda)=\Psi_i(q,z,\lambda)$. As a corollary, $e^{m!q/z}S(q,z,\lambda)=\Psi(q,z,\lambda)$ and

$$J^{\mathbb{P}^m,O(l)}(t_0+m!e^{t_1},t_1,z)=I^{\mathbb{P}^m,O(l)}(t_0,t_1,z).$$

3.2 Calabi-Yau case

Bibliography

- [1] David A. Cox and Sheldon Katz. *Mirror symmetry and algebraic geometry*, volume 68 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 1999.
- [2] W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In *Algebraic geometry—Santa Cruz 1995*, volume 62 of *Proc. Sympos. Pure Math.*, pages 45–96. Amer. Math. Soc., Providence, RI, 1997.
- [3] Alexander Givental. A mirror theorem for toric complete intersections. In *Topological field theory, primitive forms and related topics (Kyoto, 1996)*, volume 160 of *Progr. Math.*, pages 141–175. Birkhäuser Boston, Boston, MA, 1998.
- [4] T. Graber and R. Pandharipande. Localization of virtual classes. *Invent. Math.*, 135(2):487–518, 1999.
- [5] Kentaro Hori, Sheldon Katz, Albrecht Klemm, Rahul Pandharipande, Richard Thomas, Cumrun Vafa, Ravi Vakil, and Eric Zaslow. *Mirror symmetry*, volume 1 of *Clay Mathematics Monographs*. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2003. With a preface by Vafa.
- [6] Maxim Kontsevich. Enumeration of rational curves via torus actions. In *The moduli space of curves (Texel Island, 1994)*, volume 129 of *Progr. Math.*, pages 335–368. Birkhäuser Boston, Boston, MA, 1995.
- [7] Jun Li and Gang Tian. Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties. *J. Amer. Math. Soc.*, 11(1):119–174, 1998.
- [8] Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. Mirror principle. I [MR1621573 (99e:14062)]. In Surveys in differential geometry: differen-

BIBLIOGRAPHY 25

- tial geometry inspired by string theory, volume 5 of Surv. Differ. Geom., pages 405–454. Int. Press, Boston, MA, 1999.
- [9] Chiu-Chu Melissa Liu. Localization in Gromov-Witten theory and orbifold Gromov-Witten theory. In *Handbook of moduli. Vol. II*, volume 25 of *Adv. Lect. Math. (ALM)*, pages 353–425. Int. Press, Somerville, MA, 2013.
- [10] Rahul Pandharipande. Rational curves on hypersurfaces (after A. Givental). Number 252, pages Exp. No. 848, 5, 307–340. 1998. Séminaire Bourbaki. Vol. 1997/98.
- [11] Aleksey Zinger. Notes on mirror symmetry. 2011.
- [12] Zhengyu Zong. Gw theory and mirror symmetry. 2016.