Sprawozdanie 2

Rozkład LU macierzy trójdiagonalnej - rozwiązanie równania Poissona w jednym wymiarze

1. Wstęp teoretyczny

Macierz trójdiagonalna – macierz kwadratowa, której wszystkie elementy są zerowe poza diagonalą i wstęgą wokół niej. W danej macierzy $n_x n$ elementy $a_{i,j}$ są niezerowe, gdy $i-k_1 \le j \le i+k_2$, przy czym $k_{1,2} \ge 0$ określają szerokość pasma. Macierz $A_{6,6}$ o szerokość pasma 3 wygląda następująco:

pasma. Macierz
$$A_{6,6}$$
 o szerokosci pasma 3 wy
$$\begin{bmatrix} a_{1,1} & a_{1,2} & 0 & 0 & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & 0 & 0 & 0 \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & 0 & 0 \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} & 0 \\ 0 & 0 & 0 & a_{5,4} & a_{5,5} & a_{5,6} \\ 0 & 0 & 0 & 0 & a_{6,5} & a_{6,6} \end{bmatrix}$$

Równanie różniczkowe Poissona – niejednorodne równanie różniczkowe cząstkowe liniowe drugiego rzędu typu eliptycznego. Równanie to ma postać:

$$\nabla^2 v = f$$

gdzie funkcję f zmiennych traktujemy jako znaną.

2. Problem

Naszym zadaniem było rozwiązanie równania Poissona, które miało postać:

$$\nabla^2 V(x) = -\rho(x)$$

w przedziale $x \in [-X_b, X_b]$ z warunkiem brzegowym $V(-X_b) = V(X_b) = 0$ dla rozkładu gestości:

$$\rho(x) = \begin{cases} 0, & x \in [-X_b, -X_a) \\ +1, & x \in [-X_a, 0) \\ 0, & x = 0 \\ -1, & x \in (0, X_a] \\ 0, & x \in (X_a, X_b] \end{cases}$$

W kolejnym kroku mieliśmy **zdyskretyzować rownania**. W tym celu wprowadziliśmy siatkę z węzłami, ustaliliśmy stałe X_a =0.5 oraz X_b =2, zdefiniowaliśmy h=2 X_b /(N-I) jako odległość między węzłami, ilość węzłów N zdefiniowano 50. x_i otrzymaliśmy z wzoru x_i = - X_b +h*(i-I), i=1,2,...,N. Drugą pochodną w równaniu Poissona zastępiliśmy ilorazem różnicowym zdefiniowanym na siatce:

$$\nabla^2 V = \frac{d^2 V}{dx^2} = \frac{V_{i-1} - 2V_i + V_{i+1}}{h^2} = -\rho_i$$

co pozwoliło nam na zgenerowanie układu równań mającego następującą postać:

$$\begin{bmatrix} d_1 & c_1 & 0 & 0 & 0 & 0 \\ a_2 & d_2 & c_2 & 0 & 0 & 0 \\ 0 & a_3 & d_3 & c_3 & 0 & 0 \\ & & \ddots & \ddots & \ddots & \\ 0 & 0 & 0 & a_{n-1} & d_{n-1} & c_{n-1} \\ 0 & 0 & 0 & 0 & a_n & d_n \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ \vdots \\ V_{n-1} \\ V_n \end{bmatrix} = \begin{bmatrix} -\rho_1 \\ -\rho_2 \\ -\rho_3 \\ \vdots \\ -\rho_{n-1} \\ -\rho_n \end{bmatrix}$$

gdzie: $d_i = -2/h^2$, $a_i = c_i = 1/h^2$.

Wprowadziliśmy **warunki brzegowe** dla pierwszego i ostatniego równań. W pierwszym równaniu: $d_1=1$, $c_1=0$, $\rho_1=0$. W ostatnim: $d_n=1$, $a_n=0$, $\rho_n=0$.

Do rozwiązania układu zastosowaliśmy **rozkład LU** (opisany w Sprawozdaniu 1) dla macierzy trójdiagonalnej. Dla macierzy L oraz U elementy liczyliśmy korzystając z poniższych wzorów:

$$u_1 = d_1$$

 $l_i = a_i/u_{i-1}, i = 2, 3, ..., N$
 $u_i = d_i - l_i \cdot c_{i-1}, i = 2, 3, ..., N$

Rozwiązanie uzyskiwaliśmy dwuetapowo. W pierwszym etapie rozwiązywaliśmy układ *Ly=b*:

$$y_1 = d_1$$

$$y_i = b_i - l_i \cdot y_{i-1}$$

gdzie b_i są elementami wektora wyrazów wolnych. Następnie rozwiązaliśmy drugi układ Uv=y:

$$v_n = y_n/u_n$$

 $v_i = (y_i - c_i \cdot v_{i+1})/u_i, i = n - 1, n - 2, ..., 1$

W ostatnim kroku wyprowadziliśmy wartości teoretyczne z poniższego rozkładu:

$$V(x) = \begin{cases} \frac{\frac{x}{16} + \frac{1}{8}, & x \in [-X_b, -X_a] \\ -\frac{x^2}{2} - \frac{7}{16}x, & x \in [-X_a, 0] \\ \frac{x^2}{2} - \frac{7}{16}x, & x \in [0, X_a] \\ \frac{x}{16} - \frac{1}{8} & x \in [X_a, X_b] \end{cases}$$

Zapisaliśmy siatkę *x*, wyliczony oraz uzyskany teoretycznie wektor do pliku w trzech kolumnach, co pozwoliło nam na **uzyskanie wykresu** gnuplot, który będzie przedsawiony w wynikach.

We własnym zakresie skompilowałem nasz program z iloścą węzłów N = 500. Zrobiłem to w celu sprawdzenia teorii, że im większe będzie N, tym bardziej dokładne wartości dostaniemy dla v numerycznego.

3. Wyniki

1) Wartości wyliczone w zadaniu dla N = 50:

X	V(x)	V(x)(teor.)
-2	0	0
-1.918	0.004896	0.005102
-1.837	0.009792	0.0102
-1.755	0.01469	0.01531
-1.673	0.01958	0.02041
-1.592	0.02448	0.02551
-1.51	0.02938	0.03061
-1.429	0.03427	0.03571
-1.347	0.03917	0.04082
-1.265	0.04406	0.04592
-1.184	0.04896	0.05102
-1.102	0.05386	0.05612
-1.02	0.05875	0.06122
-0.9388	0.06365	0.06633
-0.8571	0.06854	0.07143
-0.7755	0.07344	0.07653
-0.6939	0.07833	0.08163
-0.6122	0.08323	0.08673
-0.5306	0.08813	0.09184
-0.449	0.09302	0.09564
-0.3673	0.09125	0.09324
-0.2857	0.08282	0.08418
-0.2041	0.06773	0.06846
-0.1224	0.04597	0.04607

-0.04082	0.01754	0.01702
0.04082	-0.01754	-0.01702
0.1224	-0.04597	-0.04607
0.2041	-0.06773	-0.06846
0.2857	-0.08282	-0.08418
0.3673	-0.09125	-0.09324
0.449	-0.09302	-0.09564
0.5306	-0.08813	-0.09184
0.6122	-0.08323	-0.08673
0.6939	-0.07833	-0.08163
0.7755	-0.07344	-0.07653
0.8571	-0.06854	-0.07143
0.9388	-0.06365	-0.06633
1.02	-0.05875	-0.06122
1.102	-0.05386	-0.05612
1.184	-0.04896	-0.05102
1.265	-0.04406	-0.04592
1.347	-0.03917	-0.04082
1.429	-0.03427	-0.03571
1.51	-0.02938	-0.03061
1.592	-0.02448	-0.02551
1.673	-0.01958	-0.02041
1.755	-0.01469	-0.01531
1.837	-0.009792	-0.0102
1.918	-0.004896	-0.005102
2	0	-2.776e-17

2) Wykres zależności v od x:

Rysunek 1: Wykres zależności v numer. od x (—) oraz v teor. od x (—) przy N = 50.

Rysunek 2: Wykres zależności v numer. od x (—) oraz v teor. od x (—) przy N = 500.

4. Wnioski

Po przeanalizowaniu wyników można stwierdzić, że rozwiązywanie równań Poissona metodą polegającą na rozkładzie LU daje bardzo dokładne wyniki. Na rysunkach 1 oraz 2 są przedstawione wukresy zależności v numer. oraz v teor. od x dla N=50 i N=500 odpowiednio. Jak widać, dokładność obliczeń zależy od ilości węzłów N. Im większe jest N, tym dokładniejsze wyniki możemy uzyskać. Ale wtedy jesteśmy w stanie zaobserwować wzrost złożoności czasowej programu.