Gridlocked Opinions:

A Tagging Scheme Unravelling Targets, Holders, Expressions, and Polarities

SemEval 2022 Task 10: Structured Sentiment Analysis

(holder, target, expression, polarity)

"The room was great, but I prefer the penthouse"

("-", room, "was great", "Positive") ("I", "penthouse", "prefer", "Positive")

SemEval 2022 Task 10: Structured Sentiment Analysis (continued)

- Objective: Propose a simplified architecture to predict all possible quadruples of holder, target, expression and polarity.
- Methodology
 - Reviewed Sem-Eval 2022 submissions to find opportunities for improvement
 - Prior research in this topic considered solutions based on Sequence Labelling and Dependency Graph Parsing
 - Evaluated on "Sentiment Graph F₁" scores
 - Used provided baseline models: Dependency Graph Parsing and Sequence-Labeling pipeline
 - Modified the Grid Tagging Scheme solution from ISCAS team and assessed the performance of our solution

Grid Tagging Scheme (GTS)

 We extended GTS with additional tags to extract holders, implicit holders and targets

Tags

Meaning

[CLS]	Fantastic	food	and	breathtaking	view	
Implicit Holder	Positive	0	0	Positive	0	[CLS]
	Expression	Positive	0	0	0	Fantastic
		Target	0	0	0	food
			0	0	0	and
				Expression	Positive	breathtaking
					Target	view

Architecture / Proposed Solution

OpenER_{EN} / OpenER_{ES} Datasets

- Annotated hotel reviews in English and Spanish
- Opinions with Missing Holder and Missing Targets
- Pronounced positive skew in distribution of tokens per review

	Datasets	# of Reviews	# of Holders	# of Targets	# of Expressions	# of Polarities
OpenER-EN	Train	1,744	266	2,679	2,884	2,884
	Dev	249	49	371	400	400
OpenER-ES	Train	1,438	176	2,748	3,042	3,042
	Dev	206	23	363	387	387

Experiment Design and Results

- Experimented "all-in-one" GTS with different pre-trained BERT variant models
- Models trained on NVIDIA A10 GPU (24 GB PCIE)
- Training times in excess of 8 hours
- Best models are all-Roberta-large and XLM-Roberta

Results:

- Best Test Sentiment F₁ score of **0.66** and
 0.61 for EN and ES, respectively
- Compelling Performance compared to provided baseline and ISCAS teams
- Addtl hyper-parameter tuning could tighten gap between ISCAS and "all-in-one" model

Dataset		Language Model	F ₁ Score	Precision	Recall
	Dev	BERT large uncased	0.66	0.67	0.65
OpenER-EN	Test		0.62	0.65	0.59
Ones ED EN	Dev	BERT_review	0.65	0.69	0.62
OpenER-EN	Test		0.63	0.66	0.6
OnenED EN	Dev	all-RoBERTa-large-v1	0.66	0.7	0.62
OpenER-EN	Test		0.66	0.68	0.64
OpenER-ES	Dev	XLM_RoBERTa_large	0.67	0.74	0.62
Openex-ES	Test		0.61	0.71	0.54
OpenER-ES	Dev	RoBERTa-large-bne	0.61	0.64	0.58
Openek-ES	Test		0.58	0.62	0.54
OpenED ES	Dev	distilbert-base	0.48	0.63	0.48
OpenER-ES	Test	-multilingual-cased	0.37	0.58	0.28

Model	OpenER-EN	OpenER-ES	
Graph Baseline	0.521	0.495	
Seq Baseline	0.329	0.24	
ISCAS GTS	0.71	0.669	
Our results	0.66	0.61	

Example of Incorrect extraction

Label:

Prediction:

- The model correctly classified the target but struggled on the span start/end. i.e "24 hr bar" vs "bar"
- Predicted target is still useful for sentiment analysis
- Limitation:
 - Token length (24) > median token length/review (18)
 - Models trained on deeper networks (# hops) might help to disentangle longer and more complex reviews

Conclusion

- Experimented "all-in-one" Grid Tagging Scheme with different BERT variant models
 - o all-Roberta-large and XLM-Roberta produced best results for EN, ES datasets
- Produced Compelling Results
 - \circ F₁ scores of 0.66 and 0.61 for OpeNER-EN and OpeNER-ES dataset, respectively
 - Considerably outperformed Dep Graph and Sequence baseline models
 - Only slightly underperformed original ISCAS submission despite significantly fewer computing/resource demands
- Performance gains could be realized with additional hyper parameter tuning.