

Module : Data Mining

Faculté des Sciences Exactes

TD/TP_N°: ■ ■ □

Exercice 1: On dispose d'une table de données de villes Algerienne. On souhaite compléter automatiquement cette base avec de nouvelles villes.

Ville	Pays	Distance jusqu'à Davos
Berne	Suisse	180 km
Innsbruck	Autriche	130 km
Milan	Italie	150 km
Munich	Allemagne	200 km
Stuttgart	Allemagne	225 km
Turin	Italie	250 km
Zurich	Suisse	115 km

En appliquant l'algorithme des K plus proches voisins, quel sera le pays prédit pour la ville de Davos ?

- A: Allemagne
- B : Autriche
- C: Italie
- D: Suisse

Exercice 2: Soit les points de coordonnées suivantes :

A(1, 6), B(2, 6), C(3, 1), D(4, 2), E(6, 0), F(7, 5), G(7, 3), H(10, 3) En utilisant <u>la distance euclidienne</u>, quels sont les deux plus proches voisins du point P(5, 5)?

Exercice 3: la figure uivante presente des données sur des individus d'une population décrits selon deux attributs : attribut 1 et attribut 2. La classe d'un individu peut être : C1, ou C2, ... ou C6.

- On veut classer un nouvel individu U ayant comme attributs (1, 4) en utilisant la méthode KNN.

Quelle sera la classe de U si on choisit k=3. Justifiez.

Exercice 4: Dans une étude industrielle, on a étudié 2 caractères X1 et X2 sur 6 individus $\omega_1, \ldots, \omega_6$. Les données recueillies sont :

Groupe A					
ω_1	ω_2	ω_3			
(0,0)	(1, 1)	(2, 2)			

Groupe B					
ω_4	ω_5	ω_6			
(6,6)	(5.5, 7)	(6.5, 5)			

Déterminer le groupe d'appartenance d'un individu $\omega*$ vérifiant X1 = 4 et X2 = 4 avec la méthode des k plus proches voisins (kNN) pour k = 3.

Faire un dessin.

Module : Data Mining

Faculté des Sciences Exactes

TD/TP_N°: ■ ■ □

Exercice 5: Un parti cherche à comprendre la composition des votants pour son candidat. Il fait donc appel à vos services pour identifier les différents profils des votants.

On a par exemple les deux votants suivants :

• V1 : {F; 43; NON; 55.000; 14%; CONTRE}

• V2 : {M ; 38 ; NON ; 28.000 ; 14% ; POUR}

les attributs correspondent à :

• sexe : {F ; M}

• âge : {min : 18 ; max : 102 ; std : 30 ; moy : 50}

• propriétaire : {OUI, NON}

• salaire annuel imposable : {min : 412 ; max : 350.000 ; std : 30.000

; moy : 32.000}

• taux d'imposition : {0% ; 14% ; 30% ; 41% ; 45%}

opinion : {POUR, CONTRE, NSP}

Quel serai leprofile du votant :

• V3 : {F; 33; OUI; 35.000; 14%}

Exercice 6: Déterminer le groupe d'appartenance du produit numero 10

N° du produit	Forme	Taille	Couleur	Prix	Classe	
1 Rond 2 Carré		Petit Bleu		50.3	Oui	
		Grand	Rouge	25.3	Non	
4 Carré		Petit	Bleu	76.9	Oui	
5 Rond		Grand	Bleu	55	Oui	
6 Carré		Moyen	Blanc	92	Non	
9 Carré		Petit	Rouge	66	Oui	
10 Rond		Petit	Rouge	98,3	?	

Exercice 7: Déterminer le groupe d'appartenance des numero 12 13 14

Numéro	NP	PL (H/S)	TR(H/S)	Créatif	Equipe	Sujet DR	classe
1	INT	1.2	7.5	Oui	Oui	Oui	Bon
2	NULL	8.2	4.8	Non	Oui	Oui	Mauvais
3	AVAN	2.23	4.2	Non	Non	Non	Mauvais
4	DEBU	6.3	9.45	Oui	Oui	Non	Bon
5	DEBU	1.1	6.1	Non	Oui	Non	Mauvais
6	INT	1	3.43	Non	Non	Oui	Mauvais
7	NULL	5.39	9.16	Oui	Oui	Non	Mauvais
8	AVAN	4.2	6	Oui	Oui	Non	Bon
9	INT	0.6	7.4	Non	Non	Oui	Mauvais
10 .	NULL	0.3	2.5	Non	Oui	Oui	Bon
11	AVAN	12	13.26	Non	Non	Non	Bon

Base d'apprentissage

2.5

8.55

DEBU

AVAN

INT

0.3

4.2

1.26 3.4 Oui Non NON

Oui

Oui