Hardware Trojan Detection

Maximilian Heim

University Albstadt-Sigmaringen

June 19, 2022

- Introduction
 - Hardware Trojans
- 2 Destruktive Detektion
- 3 Nicht-Destruktive Detektion
- Fazit

Was sind Hardware Trojaner?

- Bösartige Modifikation eines Integrierten Schaltkreises
- Trigger (Time bombs, cominational...)
- Payload (Denial of service, keys...)

Figure: Theoretischer Aufbau eines HW Trojaners

Destruktives Reverse Engineering

- Entfernen der Oberfläche
- Visuelle Inspektion
- Vergleich mit Golden Sample
- Vorteile:
 - 100 % Erkennungsrate
- Nachteile:
 - Testet nur einen Chip
 - ② Destruktiv
 - Zeitaufwändig
- Jedoch: Sinnvoll in Kombination mit anderen Verfahren

Funktionstests

- Beobachten der Ausgabe bei bestimmten Eingängen
- Vergleich mit Golden Sample
- Problem: Großer Trojan Space
- Vorteile:
 - Sehr einfacher Testaufbau
 - 2 Bei bekannten Testvektoren \rightarrow 100 % Erkennungsrate
 - 4 Hunderte IC's können parallel getestet werden
- Nachteile:
 - Je nach Komplexität des IC's sehr zeitaufwändig/unmöglich

Funktionstests: Statistischer Ansatz

- R.S. Chakraborty et al, "MERO: A Statistical Approach for Hardware Trojan Detection"
- https://link.springer.com/content/pdf/10.1007/ 978-3-642-04138-9_28.pdf
- Netzliste → Testvektoren
- Vektoren werden N mal getestet (Kombinatorisch-sequentielle HW Trojaner)
- Reduktion der Testzeit um 85 %

Seitenkanaltest

- Beobachten der Leistungsaufnahme/Pfadverzögerung
- Vergleich mit Golden Sample
- Vorteile:
 - Erkennung ohne Aktivierung
 - Sehr einfacher Testaufbau
 - Mohe Erkennungsrate
 - 4 Hunderte IC's können parallel getestet werden
- Nachteile:
 - Produktionsvariationen
 - 2 Bei sehr kleinen Trojanern kann die Leakage sehr klein werden

Seitenkanaltest: Fingerprinting

- D. Agrawal et al, "Trojan Detection using IC Fingerprinting"
- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp= &arnumber=4223234
 - Auswahl zufälliger Schaltkreise
 - 2 Aufnahme von Power Traces
 - Fingerprint erzeugen
 - Destruktives Reverse Engineering der Chips
 - 5 Vergleiche Fingerprints von zu testenden Chips mit Referenz

Fazit

- Destruktive Detektion ungeeignet f
 ür Testen von ICs die verwendet werden sollen
- Gegenüberstellung von Funktionstests und Seitenkanaltests:

	Funktionstests	Seitenkanaltests
Pros	 Effektiv für kleine Trojaner Produktionstoleranz unabhängig 	1.Effektiv für große Tro- janer 2. einfache Testerzeugung
Cons	1. Testerzeugung komplex	 Anfällig für Produktionstoleranzen Detektion von kleinen Trojanern schwierig

ullet Wie man sieht: Die Verfahren ergänzen sich o Kombination beider Verfahren

Quellen

- https:/d/dl.acm.org/doi/pdf/10.1145/2906147
- https://ieeexplore.ieee.org/stamp/stamp.jsp?tp= &arnumber=5340158
- https://www.fkie.fraunhofer.de/content/dam/fkie/ de/documents/HWT-Bericht/HWT-Bericht_Cover.pdf
- https://en.wikipedia.org/wiki/Hardware_Trojan

