

Mining Security Assessment in an Underground Environment using a Novel Face Recognition Method with Improved Multiscale Neural Network

Xinhua Liu¹, Peng Qi¹, Patrick Siarry², Dezheng Hua¹, Z. Ma³, Xiaoqiang Guo¹, Orest Kochan⁴, Z. Li^{5*}

1. School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China

2. University Paris-Est Créteil Val de Marne, 61 Av. du General de Gaulle, 94010, Creteil, France

3. Sustainable Buildings Research Centre, University of Wollongong, 2522, Australia

4. Department of Telecommunications, Lviv Polytechnic National University, Bandery 12, 79013 Lviv, Ukraine
5. Faculty of Mechanics, Lviv Institute of Technology, 15-758 Lviv, Ukraine

5. Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland

* Corresponding author.

Abstract: Overstaffing production in underground coal mining is not convenient for daily management, and incomplete information of coal miners hinders the rescue process of firefighters during mine accidents. To address this safety sustainability issue, a novel face recognition method based on an improved multiscale neural network is proposed in this paper. A new depthwise separable (DS)-inception block is designed and a joint supervised loss function based on center loss theory is developed to construct a new multiscale model. The miners can be recognized in the harsh underground environment during the life rescue. Experimental results show that the accuracy, recall and F1-score indexes of the proposed method for the miner face recognition in the underground mining environment are 97.26%, 94.17% and 95.42%, respectively. Transfer model with joint supervised loss can effectively improve the recognition accuracy by about 0.5~1.5%. In addition, the average recognition accuracy of the proposed face recognition method achieves to 91.34% and the miss detection rate is less than 5% in the dugout tunnel of coal mine.

Keywords: Mining Security; Coal safety assessment; Artificial neural network; Transfer learning

1. Introduction

With the rapid improvement of coal mine informationization [1, 2], deep learning recognition technology [3, 4] has drawn considerable attention in underground mining safety assessment.

Compared with the traditional miner management system [5, 6], the underground coal mine face recognition system [7] can provide timely, comprehensive and reliable miner identification information to the daily personnel management agencies of the mine, and provide the rescuers with the identity and regional location information of the trapped miners in the event of a mining accident.

It plays an important role in curbing underground overcrowding production, strengthening mine management [8] and emergency rescue. However, the environment of underground coal mine not only has poor lighting conditions, but also the coal mining process is accompanied by a large amount

35 of dust, steam and coal ash, which make face recognition much more difficult in underground coal
36 mine. To this avail, this paper aims to present an optimized face recognition algorithm to improve the
37 accuracy of face recognition system in underground coal mine.

38 The traditional representation method for obscured face recognition is the sparse representation
39 method. Sparse representation classification [9] (SRC) represents high-dimensional image in a low-
40 dimensional space and expects to use the minimum number of training samples while arriving at the
41 minimum fitting error. He et al. [10] proposed a sparse representation algorithm based on the
42 maximum entropy criterion, which can effectively cope with non-gaussian errors and outliers. Aiming
43 to encode more structure information and discriminative information, Zheng et al. [11] integrated the
44 adaptive learning weights into group sparse representation classifier (GSRC). A nuclear norm based
45 matrix regression (NMR) method was proposed by Chen et al. [12] to alleviate the influence of
46 contiguous occlusion on face recognition problems. However, the ability of traditional face
47 recognition method to extract face features is limited, especially when there is occlusion in the face
48 images, the occlusion features are mixed with normal features, which greatly reduces the
49 effectiveness of face recognition. As a result, it is urgent to improve the accuracy rate of face
50 recognition algorithms.

51 With the development of deep learning [13, 14], the deepening of the network model has greatly
52 improved its feature extraction capability. Wieczorek et al. [15] proposed a face detection model in
53 risk situations based on lightweight convolution neural network. Combining the two tasks of directly
54 extracting age-invariant features and synthesizing face features, Zhao et al. [16] proposed a deep age-
55 invariant model (AIM) for face recognition in the wild. Based on single end-to-end deep neural
56 network with strong anti-occlusion ability, a novel face recognition method was proposed by Qiu et
57 al. [17] to discover the corrupted features and clean them. Aiming to further mitigate the resolution
58 discrepancy due to the resolution limitations, Gao et al. [18] proposed a hierarchical deep CNN
59 feature set-based representation learning for face recognition. However, the current researches on
60 occluded face recognition mainly focus on the occlusion of specific regions [19-21], including eyes
61 and mouth. Moreover, many studies found that most face recognition models can not achieve best
62 results on all face datasets.

63 In recent years, the progress of deep learning has greatly promoted the improvement of the
64 adaptability of face recognition model. In order to alleviate the poor generalization of face recognition
65 model, transfer learning [22] is applied to the training process of neural network. Cai et al. [23]

66 proposed a new generative adversarial network (OA-GAN) for natural face de-occlusion without an
67 occlusion mask to overcome face natural occlusion tasks. For mitigating the negative effects of mask
68 on face recognition, a new method was proposed by Zhang et al. [24] to improve the performance of
69 masked face recognition. Shukla et al. [25] proposed a transfer learning using MobileNet V2 to solve
70 the problem of face masked identification and verification. In order to effectively recognize face
71 image taken in unrestricted environment, Tang et al. [26] proposed a face recognition algorithm based
72 on depth map transfer learning. However, the current public face dataset lacks face samples from coal
73 mine environment. Therefore, it is necessary to produce a miner face dataset to fine-tune the transfer
74 model.

75 In this paper, an improved face recognition method for underground coal dust occlusion based
76 on transfer learning is proposed to solve the problem of random coal dust obscuration. Firstly, a novel
77 DS-inception block is designed to reduce the amount of model parameters, and this work establishes
78 a multiscale neural network named DSR-inception. Moreover, a joint supervised loss function based
79 on center loss and softmax loss is proposed to adapt to face recognition classification task. In addition,
80 experimental results show that the face recognition performance indexes of the proposed network in
81 the homemade miner face dataset, such as accuracy, recall and F1-score, are superior to those of other
82 classical face recognition models, and transfer model with joint supervised loss function can achieve
83 the higher recognition accuracy. Lastly, the validity of the proposed face recognition algorithm is
84 verified by industrial test in the dugout tunnel of coal mine.

85 The remainder of this paper is organized as follows. In section 2, the proposed improved
86 algorithm and model architecture are introduced. In section 3, comparative experiments of model
87 transfer strategy are carried out and the effectiveness of the improved algorithm is verified in the self-
88 made miner face dataset. In section 4, a face recognition system is built and occluded face recognition
89 experiment is carried out in underground coal mine. Conclusions and future works are summarized
90 in section 5.

91 **2. The proposed method**

92 **2.1 Transfer learning**

93 Transfer learning uses the network trained by related tasks to apply to other tasks, which solves
94 the problem of insufficient generalization ability of traditional machine learning. In the transfer
95 learning, the domain D can be expressed by Equation (1):

$$D = \{x, P(X)\} \quad (1)$$

96 where x is the feature space, X is the sample data point and $X = \{x_1, x_2, \dots, x_n\}$, x_i is the feature vector,
 97 $P(X)$ is the marginal probability.

98 The task T can be expressed by Equation (2):

$$T = \{\gamma, P(\gamma | X)\} \quad (2)$$

99 where γ is the feature space and $P(\gamma | X)$ is the objective function.

100 Based on the above two equations, transfer learning can be defined as: utilizing the knowledge
 101 of an existing task T_s in an existing domain D_s to solve the learning task T_t in the target domain D_t
 102 and achieve a better conditional probability distribution $P(D_t | X_T)$ of the target domain.

103 2.2 Inception block and depthwise seperable convolution

104 As shown in Appendix 1, inception block [27] is the basic convolutional block in GoogleNet
 105 [28], which is expanded in width by splitting the traditional convolutional kernel into different sized
 106 convolutional kernels. Inception block is able to split the single size convolutional kernel into
 107 convolutional kernels of different sizes, which enables the network to extract the features of the image
 108 more fully and take up less computational resources. **The feature maps F' obtained after inception**
 109 **block can be mathematically expressed by Equation (3)-(7):**

$$F_1 = \text{ReLU}(\text{conv}(F, k_{1 \times 1}) + b_1) \quad (3)$$

$$F_2 = \text{ReLU}(\text{conv}(\text{ReLU}(\text{conv}(F, k_{1 \times 1}) + b_{21}), k_{3 \times 3}) + b_{22}) \quad (4)$$

$$F_3 = \text{ReLU}(\text{conv}(\text{ReLU}(\text{conv}(F, k_{1 \times 1}) + b_{31}), k_{5 \times 5}) + b_{32}) \quad (5)$$

$$F_4 = \text{ReLU}(\text{conv}(\text{MaxPool}(F, k_{3 \times 3}), k_{1 \times 1}) + b_4) \quad (6)$$

$$F' = \text{Concat}(F_1, F_2, F_3, F_4) \quad (7)$$

110 **where F_1, F_2, F_3 and F_4 are respectively the feature maps obtained after four branches, $k_{i \times i}$ is the**
 111 **convolution kernels of size $i \times i$, and b_i is the bias.**

112 Depthwise seperable convolution kernel [29] is a combination of two types of convolution
 113 kernels, including depthwise convolution kernel and pointwise convolution kernel. When the
 114 traditional convolution kernel convolves the image, channel and spatial information of the image are
 115 fused together. While depthwise separable convolution isolates the channel information from the
 116 spatial information and processes them separately in turn before fusion.

117 The depthwise seperable convolution is performed by depth and point channel convolution in
 118 two steps. In the depthwise convolution part, the convolution operation is performed on each channel
 119 of the image, which uses a single-layer planar convolution kernel to obtain the result of the planar

120 convolution layer. In the pointwise convolution part, the result of the planar convolution layer
 121 operation is stitched, and then the convolution calculation is performed on the feature map using a
 122 1×1 point convolution kernel.

123 The output feature map for conventional convolution assuming stride one and padding can be
 124 expressed by Equation (8):

$$G_{k,l,n} = \sum_{i,j,m} K_{i,j,m,n} \cdot F_{k+i-1,l+j-1,m} \quad (8)$$

125 where G is the output feature map, F is the input feature map, K is the conventional convolution
 126 kernel, and the cost of conventional convolutions can be expressed by Equation (9):

$$Cost = D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F \quad (9)$$

127 where $D_K \times D_K$ is the spatial dimension of the kernel, M is the number of input channels, N is the
 128 number of output channels, and $D_F \times D_F$ is the size of feature map.

129 The output feature map of depthwise seperable convolution with the same parameters can be
 130 expressed by Equation (10):

$$\hat{G}_{k,l,m} = \sum_{i,j} \hat{K}_{i,j,m} \cdot F_{k+i-1,l+j-1,m} \quad (10)$$

131 where \hat{G} is the output feature map, \hat{F} is the input feature map, \hat{K} is the depthwise seperable
 132 convolution kernel, and the cost of depthwise seperable convolutions can be expressed by Equation
 133 (11):

$$\hat{Cost} = D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F \quad (11)$$

134 which is the sum of the depthwise convolution and 1×1 pointwise convolution. By replacing
 135 traditional convolution with depthwise seperable convolution can reduce the size and computational
 136 effort of the network model, and the value can be expressed by Equation (12):

$$\frac{\hat{Cost}}{Cost} = \frac{D_K \cdot D_K \cdot M \cdot D_F \cdot D_F + M \cdot N \cdot D_F \cdot D_F}{D_K \cdot D_K \cdot M \cdot N \cdot D_F \cdot D_F} = \frac{1}{N} + \frac{1}{D_K^2} \quad (12)$$

137 2.3 Improved DS-Inception block

138 In this paper, the depthwise seperable convolution is fused into the inception block, and the
 139 traditional convolution kernel is replaced by the depthwise seperable convolution kernel. The
 140 improved convolution block is called as DS-Inception, and the specific design structure is shown in
 141 Appendix 2. The feature maps F' obtained after DS-Inception block can be mathematically expressed
 142 by Equation (13)-(18):

$$F_1 = ReLU(conv(F, k_{1x1}) + b_1) \quad (13)$$

$$F_2 = ReLU(Dw(ReLU(conv(F, k_{1x1}) + b_2), k_{3x3})) \quad (14)$$

$$F_3 = \text{ReLU}(\text{Dw}(\text{ReLU}(\text{conv}(F, k_{1\times 1}) + b_3), k_{5\times 5})) \quad (15)$$

$$F_4 = \text{ReLU}(\text{conv}(\text{MaxPool}(F, k_{3\times 3}), k_{1\times 1}) + b_4) \quad (16)$$

$$F_5 = \text{ReLU}(\text{conv}(F, k_{1\times 1}) + b_5) \quad (17)$$

$$F' = \text{Add}(\text{Concat}(F_1, F_2, F_3, F_4), F_5) \quad (18)$$

143 where F_1, F_2, F_3, F_4 and F_5 are respectively the feature maps obtained from the five branches, $k_{i\times i}$ is
 144 the convolution kernels of size $i\times i$, and b_i is the bias.

145 The depthwise seperable convolution substitution is carried out for the large convolution kernel
 146 in inception block, and the residual structure is introduced into this block. Many studies have shown
 147 that the residual structure [30] can effectively restrain the gradient dispersion of the network and
 148 accelerate the convergence speed of the model. The parameters of the improved inception block are
 149 greatly reduced compared with the original structure block. The number of channels of each branch
 150 convolution kernel is K and the number of channels of the input layer is N ; so, the number of
 151 parameters of the original block is $4NK + 34K^2$ and the number for the improved block is $4NK + 34K$
 152 + $2K^2$, which is $32K^2 - 34K$ fewer than the original block.

153 2.4 Improved multiscale neural network

154 In this paper, referring to VGG-16 architecture, a multiscale convolutional neural network model
 155 based on the DS-Inception block is designed, called as DSR-inception network (see Figure 1). The
 156 proposed network mainly includes pooling module and convolution module which consists of DS-
 157 inception block, relu activation function and batch normalization. The five traditional convolutional
 158 modules of VGG-16 are replaced with the proposed convolutional modules to significantly reduce
 159 the number of model parameters. The ReLU activation function is assigned to neurons in all
 160 convolutional and fully connected layer, whereas the Sigmoid activation function is applied to
 161 neurons in the last layer for outputting the classification results. There is a max-pooling layer with a
 162 size of 2×2 and a stride of 2 behind each continuous convolutional layer to aggregate the transmitted
 163 information. The number of filters in the network increases as its depth increases, allowing for the
 164 learning of more detailed information from the input image.

Figure 1. Framework of DSR-Inception network.

As it is the processing flow of the designed network model is illustrated in Figure 2. First, the face image of size $224 \times 224 \times 3$ is input to the network through two branches. One branch passes through DS-inception block, each branch of this convolution block uses 16 convolution kernels for convolution operation. After passing through the module, the feature map of size $224 \times 224 \times 64$ is output. The other branch adjusts the number of channels through the residual block. The corresponding element values of the feature map of the two branches are summed, and then the feature map is input into relu activation function, batch normalization and pooling layer. After five times of the above operation, the face features in the image are fully extracted, and the feature map of size $7 \times 7 \times 1024$ is obtained. Next, the feature map is input into global average pooling layer and dropout layer, and recognized result is output by the sigmoid classifier.

Figure 2. Processing flow of DSR-Inception network.

179 The designed multiscale neural network contains convolutional kernels of different sizes to
180 extract features of different dimensions, so the problem about low accuracy in facial feature extracted
181 with a single scale network can be solved. Moreover, the residual structure is added to accelerate the
182 convergence speed of network training and prevent overfitting.

183 2.5 Joint supervised loss function

184 The essence of the optimization process in the classification problem is the process of

185 minimizing the objective function. Softmax loss function is commonly used in the problem of image
 186 multiclassification, which is defined as shown in Equation (19) below.

$$L_s = -\frac{1}{m} \sum_{i=1}^m \log \frac{e^{W_{yi}^T x_i + b_{yi}}}{\sum_{j=1}^n e^{W_{yj}^T x_i + b_{yj}}} \quad (19)$$

187 Softmax loss function has good differentiability but lacks discriminative power. The redundancy
 188 of inter-class features is high in face recognition tasks, and it may lead to a greater difference between
 189 faces of the same person.

190 Center loss function [31] is a clustering algorithm that causes each class to cluster to a center,
 191 which is equivalent to attaching a strong constraint to each class. It is defined in Equation (20).

$$L_c = \frac{1}{2} \sum_{i=1}^m \|x_i - c_{yi}\|_2^2 \quad (20)$$

192 The joint supervised loss function consists of softmax loss function and center loss function,
 193 which is a powerful tool used in facial recognition technology for optimizing classification accuracy
 194 and feature center clustering simultaneously, and the schematic of the function is shown in Appendix
 195 3. The softmax loss function aims to maximize the accuracy of face classification by minimizing the
 196 difference between the model's output probability distribution and the true label. On the other hand,
 197 the center loss function seeks to cluster feature vectors of the same category close to a center point
 198 while separating those of different categories to enhance the identification of identity information.
 199 Furthermore, the center loss function incorporates a weight parameter λ , which helps regulate the
 200 influence and update speed of the center point. Equation (21) shows the joint supervised loss function.

$$L = L_s + \lambda L_c = -\sum_{i=1}^m \log \frac{e^{W_{yi}^T x_i + b_{yi}}}{\sum_{j=1}^n e^{W_{yj}^T x_i + b_{yj}}} + \frac{\lambda}{2} \sum_{i=1}^m \|x_i - c_{yi}\|_2^2 \quad (21)$$

201 where m, n are respectively the number of samples and categories, x_i is the feature of image, y_i is the
 202 label of category, W_j is the weight of fully connected layer, b is the bias, c_{yi} is the center of the
 203 classification, λ is the equilibrium coefficient and $\lambda \in (0, 0.1)$, and the value of λ is 0.01 in this paper.
 204

205 3. Experimental results and analysis

206 3.1 Experimental platform

207 The model is trained in the GPU environment, and the environment configuration is shown in
 208 Table 1 below.

209 Table 1. Training environment configuration.

Name	Parameter
------	-----------

CPU	Intel Core i9-10980XE
Hard Disc	2T
GPU	NVIDIA RTX A4000
Memory	16G
Deep learning framework	TensorFlow2.6.0
Operating system	Window10
Programming language	Python3.7
Cuda	10.0

210 3.2 Dataset

211 The pre-training dataset selected in this paper is the CelebA face dataset, the face data in this
 212 dataset is given in terms of face attributes for classification, and each face picture is given with face
 213 frame marker points. Appendix 4 shows a portion of the face images in the dataset.

214 The homemade miner face dataset is named MF dataset. The MF dataset contains 40 people with
 215 21 pictures each, including 7 pictures each of no coal ash obscuration, light coal ash obscuration and
 216 heavy coal ash obscuration, for a total of 840 pictures. Table 2 shows an example of face data for the
 217 same person.

218 Table 2. Sample face data from the same person.

Attribute	front 0°	right 15°	right 45°	left 15°	left 45°	up 15°	down 15°
without obscuration							
light obscuration							
heavy obscuration							

219 3.3 Contrast experiment

220 In this paper, stochastic gradient descent (SGD) is chosen as the optimizer of training, the
 221 remaining hyperparameters, including batch size, initial learning rate a_0 , natural decay index β and
 222 epoch, are set to 64, 0.01, 0.05 and 150, respectively. Inceptionv1, VGG-16 and Resnet18 are selected
 223 as the comparison network models and trained on the CelebA face dataset. The accuracy and loss of
 224 models during training are shown in Appendix 5, which shows that the proposed DSR-inception
 225 network has better advantages in terms of convergence speed and correctness compared with other
 226 network models.

Table 3. Design of different transfer learning schemes.

Number	Transfer strategy	Train sample	Test sample
a	without retraining		
b	freeze the weight of Conv1 and retrain the rest		
c	freeze the weight of Conv1~2 and retrain the rest		
d	freeze the weight of Conv1~3 and retrain the rest	14000	4000
e	freeze the weight of Conv1~4 and retrain the rest		
f	freeze the weight of all convolution layer		

228 The specific transfer strategy is shown in Table 3 and the comparison data after the experiments
 229 are shown in Appendix 6. The effect of transfer learning is best when the module weights of Conv1~3
 230 are frozen and the rest are retrained.

231 The CelebA face dataset is selected for model pre-training, of which 14,000 are used for training
 232 and 4,000 are used for testing. The specific experimental results are shown in Table 4. It can be seen
 233 that the proposed model has a higher accuracy and recall rate than other network models. Moreover,
 234 the size of the proposed model is only 46.56M, and the average time spent for testing each face image
 235 is 258ms.

236 Table 4. Experimental comparison of different network.

Model \ Metrics	Precision	Recall	F1-score	Memory (M)	Test time (ms/pic)
Inceptionv1	95.34%	90.86%	93.05%	189	547
VGG-16	91.53%	88.39%	89.93%	526	625
Resnet18	94.82%	89.73%	92.21%	246	443
Proposed	97.26%	94.17%	95.42%	46.56	258

237 The MF dataset is selected for model fine-tuning, and introducing the improved loss function as
 238 a variable is tested for comparison. The experimental results are shown in Appendix 7. **From the**
 239 **average results of 20 groups of experiments**, it can be seen that the F1-score of the model with joint
 240 supervised loss function is about 0.5%~1.5% higher than before, which verifies the effectiveness of
 241 joint supervised loss function.

242 This paper also compared the proposed model with some new mainstream methods on CelebA
 243 face dataset, and the experimental results are shown in Table 5.

244 Table 5 Comparison between proposed model and state-of-the-art methods.

Model	Accuracy (%)
SNNBFR [32]	93.54

OPFaceNet [33]	96.83
IFDM [34]	95.64
LCSR [35]	96.50
MFR [36]	96.78
MMPCANet [37]	97.18
Proposed	97.26

245 As can be seen from Table 5, the performance of the method presented in this paper exceeds that
 246 of most existing methods. Compared with the other methods, the detection accuracy of the proposed
 247 method is higher, indicating that the detection accuracy of the occluded face can be improved
 248 effectively by fusing the multi-scale features of the face.

249 **4. Application of proposed approach in underground coal mine**

250 In order to further verify the feasibility of the proposed face recognition system in underground
 251 coal mines, the face recognition system is set up in the tunneling tunnel. The mining monitoring
 252 camera KBA18W is selected to obtain images, and the signal is transmitted through the underground
 253 wireless router. The LED light source is used as auxiliary lighting equipment and the industrial test
 254 site equipment is set up as shown in Figure 3(a).

255

256

(a) Industrial test scene

257

258

259

260

261

262

263

264

265

(b) Running interface of face recognition system

Figure 3. Field testing.

Before the industrial test, the face data of the staff members, a total of 6 people, is registered into the system. The system display interface is shown in Figure 3(b).

A 60-hour working period is selected to verify the feasibility of the system, and the recognition results of the face recognition system are counted to verify the recognition rate of the system. The system recognition results are shown in Table 6.

Table 6. Industrial test result.

	XW-01	XW-02	XW-03	XW-04	XW-05	XW-06	Average
Number of faces	296	320	453	416	380	374	-
Precision	89.73%	90.94%	91.34%	92.86%	91.04%	92.16%	91.34%
Loss	6.42%	4.84%	3.81%	3.57%	3.92%	3.12%	4.28%

266

The average recognition accuracy of the proposed face recognition system in the dugout tunnel of coal mine reaches 91.34% and the miss detection rate is less than 5%. The results of the industrial test show that the system meets the design requirements.

269

5. Conclusions and future work

270

271

272

273

274

275

In this paper, an improved face recognition method for underground coal mine based on transfer learning is proposed to solve the problem of random coal dust obscuration. A novel DS-inception block is designed to reduce the amount of model parameters, and a joint supervised loss function based on center loss and softmax loss is proposed to adapt to face recognition classification task. Compared with the other classical models such as Inceptionv1, VGG-16 and Resnet-18, the various evaluation indicators of the proposed multiscale neural network, including accuracy, recall and F1-

score, achieve 97.26%, 94.17% and 95.42%, respectively. In order to better adapt to the face recognition task in coal mine, a miner face dataset is made to fine-tune the transfer model, and the transfer model incorporating joint supervised loss can effectively improve the face recognition accuracy by about 0.5~1.5%. In addition, the average recognition accuracy of the designed face recognition system in the dugout tunnel of coal mine reaches 91.34%, and the miss detection rate is less than 5%.

This paper verifies the effectiveness of the proposed face recognition method in underground coal mine. However, this work has not yet considered the face recognition under the change of large angle posture, and further research on face recognition under different postures is needed in the future.

Acknowledgements

The research leading to these results has received funding from the Norwegian Financial Mechanism 2014-2021 under Project Contract No 2020/37/K/ST8/02748.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Data Availability

All data that produce the results in this work can be requested from the corresponding author.

292

References

- 294 [1] X. P. Yuan, "Development of the large-scale coal base and the modern mine in China: The
295 present situation and future tasks," in *1st International Conference on Energy and*
296 *Environmental Protection (ICEEP 2012)*, Hohhot, PEOPLES R CHINA, Jun 23-24 2012, vol.
297 524-527, in Advanced Materials Research, 2012, pp. 3066-3069, doi:
298 10.4028/www.scientific.net/AMR.524-527.3066. [Online]. Available: <Go to
299 ISI>://WOS:000313544101199
- 300 [2] A. X. Zhao, "The Analysis of Coal Safety Production Monitoring Data Based on Deep
301 Learning," in *13th International Conference on Natural Computation, Fuzzy Systems and*
302 *Knowledge Discovery (ICNC-FSKD)*, Guilin, PEOPLES R CHINA, Jul 29-31 2017, 2017, pp.
303 1053-1057. [Online]. Available: <Go to ISI>://WOS:000437355301017. [Online]. Available:
304 <Go to ISI>://WOS:000437355301017
- 305 [3] Z. Y. Liu, A. Wang, and L. Li, "DEEP LEARNING OF UNDERGROUND COGNITIVE
306 RADIO MODULATION RECOGNITION TECHNOLOGY USING FOR COAL MINING,"
307 *Fresenius Environmental Bulletin*, vol. 31, no. 10, pp. 9890-9900, 2022. [Online]. Available:
308 <Go to ISI>://WOS:000883305600001.
- 309 [4] X. C. Guo, M. Liu, and D. E. P. Inc, "Research on the Face Image Detection in Coal Mine
310 Environment," in *International Conference on Electronic, Information Technology and*

311 *Intellectualization (ICEITI)*, Guangzhou, PEOPLES R CHINA, Jun 18-19 2016, 2016, pp.
312 375-379. [Online]. Available: <Go to ISI>://WOS:000385265600055. [Online]. Available:
313 <Go to ISI>://WOS:000385265600055

314 [5] Y. F. Li, H. J. Chen, and J. P. Li, "STUDY ON INFORMATION MANAGEMENT SYSTEM
315 AND ITS APPLICATION IN COLLIERY ENTERPRISES," in *13th International*
316 *Conference on Enterprise Information Systems (ICEIS 2011)*, Beijing Jiaotong Univ, Sch
317 Econ & Management, Beijing, PEOPLES R CHINA, Jun 08-11 2011, 2011, pp. 589-592.
318 [Online]. Available: <Go to ISI>://WOS:000393449200089. [Online]. Available: <Go to
319 ISI>://WOS:000393449200089

320 [6] Q. Zhang, "RFID-Based Coal Mine Personnel Management System Development," in
321 *International Conference on Energy, Environment and Materials Engineering (EEME)*,
322 Shenzhen, PEOPLES R CHINA, Feb 22-23 2014, 2014, pp. 962-965. [Online]. Available:
323 <Go to ISI>://WOS:000351909800181. [Online]. Available: <Go to
324 ISI>://WOS:000351909800181

325 [7] H. Yang and X. F. Han, "Face Recognition Attendance System Based on Real-Time Video
326 Processing," *Ieee Access*, vol. 8, pp. 159143-159150, 2020, doi:
327 10.1109/access.2020.3007205.

328 [8] K. Yu, L. J. Zhou, P. P. Liu, J. Chen, D. J. Miao, and J. S. Wang, "Research on a Risk Early
329 Warning Mathematical Model Based on Data Mining in China's Coal Mine Management,"
330 *Mathematics*, vol. 10, no. 21, Nov 2022, Art no. 4028, doi: 10.3390/math10214028.

331 [9] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust Face Recognition via Sparse
332 Representation," *Ieee Transactions on Pattern Analysis and Machine Intelligence*, vol. 31, no.
333 2, pp. 210-227, Feb 2009, doi: 10.1109/tpami.2008.79.

334 [10] R. He, W. S. Zheng, and B. G. Hu, "Maximum Correntropy Criterion for Robust Face
335 Recognition," *Ieee Transactions on Pattern Analysis and Machine Intelligence*, vol. 33, no. 8,
336 pp. 1561-1576, Aug 2011, doi: 10.1109/tpami.2010.220.

337 [11] J. W. Zheng, P. Yang, S. Y. Chen, G. J. Shen, and W. L. Wang, "Iterative Re-Constrained Group
338 Sparse Face Recognition With Adaptive Weights Learning," *Ieee Transactions on Image
339 Processing*, vol. 26, no. 5, pp. 2408-2423, May 2017, doi: 10.1109/tip.2017.2681841.

340 [12] Z. Chen, X. J. Wu, and J. Kittler, "A sparse regularized nuclear norm based matrix regression
341 for face recognition with contiguous occlusion," *Pattern Recognition Letters*, vol. 125, pp.
342 494-499, Jul 2019, doi: 10.1016/j.patrec.2019.05.018.

343 [13] K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, and Ieee, "Deep Residual Learning for Image
344 Recognition," in *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
345 Seattle, WA, Jun 27-30 2016, in IEEE Conference on Computer Vision and Pattern
346 Recognition, 2016, pp. 770-778, doi: 10.1109/cvpr.2016.90. [Online]. Available: <Go to
347 ISI>://WOS:000400012300083

348 [14] M. Ye, J. B. Shen, G. J. Lin, T. Xiang, L. Shao, and S. C. H. Hoi, "Deep Learning for Person
349 Re-Identification: A Survey and Outlook," *Ieee Transactions on Pattern Analysis and
350 Machine Intelligence*, vol. 44, no. 6, pp. 2872-2893, Jun 2022, doi:
351 10.1109/tpami.2021.3054775.

352 [15] M. Wieczorek, J. Silka, M. Wozniak, S. Garg, and M. M. Hassan, "Lightweight Convolutional
353 Neural Network Model for Human Face Detection in Risk Situations," *Ieee Transactions on
354 Industrial Informatics*, vol. 18, no. 7, pp. 4820-4829, Jul 2022, doi: 10.1109/tni.2021.3129629.

355 [16] J. Zhao, S. C. Yan, and J. S. Feng, "Towards Age-Invariant Face Recognition," *Ieee
356 Transactions on Pattern Analysis and Machine Intelligence*, vol. 44, no. 1, pp. 474-487, Jan

357 2022, doi: 10.1109/tpami.2020.3011426.

358 [17] H. B. Qiu, D. H. Gong, Z. F. Li, W. Liu, and D. C. Tao, "End2End Occluded Face Recognition
359 by Masking Corrupted Features," *Ieee Transactions on Pattern Analysis and Machine
360 Intelligence*, vol. 44, no. 10, pp. 6939-6952, Oct 2022, doi: 10.1109/tpami.2021.3098962.

361 [18] G. W. Gao, Y. Yu, J. Yang, G. J. Qi, and M. Yang, "Hierarchical Deep CNN Feature Set-Based
362 Representation Learning for Robust Cross-Resolution Face Recognition," *Ieee Transactions
363 on Circuits and Systems for Video Technology*, vol. 32, no. 5, pp. 2550-2560, May 2022, doi:
364 10.1109/tcsvt.2020.3042178.

365 [19] Y. Li, J. B. Zeng, S. G. Shan, and X. L. Chen, "Occlusion Aware Facial Expression
366 Recognition Using CNN With Attention Mechanism," *Ieee Transactions on Image Processing*,
367 vol. 28, no. 5, pp. 2439-2450, May 2019, doi: 10.1109/tip.2018.2886767.

368 [20] D. Zeng, R. Veldhuis, and L. Spreeuwiers, "A survey of face recognition techniques under
369 occlusion," *Iet Biometrics*, vol. 10, no. 6, pp. 581-606, Nov 2021, doi: 10.1049/bme2.12029.

370 [21] A. Alzu'bi, F. Albalas, T. Al-Hadhrami, L. B. Younis, and A. Bashayreh, "Masked Face
371 Recognition Using Deep Learning: A Review," *Electronics*, vol. 10, no. 21, Nov 2021, Art no.
372 2666, doi: 10.3390/electronics10212666.

373 [22] F. Z. Zhuang *et al.*, "A Comprehensive Survey on Transfer Learning," *Proceedings of the Ieee*,
374 vol. 109, no. 1, pp. 43-76, Jan 2021, doi: 10.1109/jproc.2020.3004555.

375 [23] J. C. Cai, H. Han, J. Y. Cui, J. Chen, L. Liu, and S. K. Zhou, "Semi-Supervised Natural Face
376 De-Occlusion," *Ieee Transactions on Information Forensics and Security*, vol. 16, pp. 1044-
377 1057, 2021, doi: 10.1109/tifs.2020.3023793.

378 [24] M. Zhang, R. J. Liu, D. Deguchi, and H. Murase, "Masked Face Recognition With Mask
379 Transfer and Self-Attention Under the COVID-19 Pandemic," *Ieee Access*, vol. 10, pp. 20527-
380 20538, 2022, doi: 10.1109/access.2022.3150345.

381 [25] R. K. Shukla and A. K. Tiwari, "Masked Face Recognition Using MobileNet V2 with Transfer
382 Learning," *Computer Systems Science and Engineering*, vol. 45, no. 1, pp. 293-309, 2023, doi:
383 10.32604/csse.2023.027986.

384 [26] D. J. Tang and J. L. Hao, "A deep map transfer learning method for face recognition in an
385 unrestricted smart city environment," *Sustainable Energy Technologies and Assessments*, vol.
386 52, Aug 2022, Art no. 102207, doi: 10.1016/j.seta.2022.102207.

387 [27] X. Jin *et al.*, "Deep Image Aesthetics Classification using Inception Modules and Fine-tuning
388 Connected Layer," in *8th International Conference on Wireless Communications and Signal
389 Processing (WCSP)*, Yangzhou, PEOPLES R CHINA, Oct 13-15 2016, in *International
390 Conference on Wireless Communications and Signal Processing*, 2016. [Online]. Available:
391 <Go to ISI>://WOS:000391540800129. [Online]. Available: <Go to
392 ISI>://WOS:000391540800129

393 [28] J. W. Li, G. Song, and M. H. Zhang, "Occluded offline handwritten Chinese character
394 recognition using deep convolutional generative adversarial network and improved
395 GoogLeNet," *Neural Computing & Applications*, vol. 32, no. 9, pp. 4805-4819, May 2020,
396 doi: 10.1007/s00521-018-3854-x.

397 [29] J. H. Wei, Y. Zhou, W. Xie, J. W. Yu, W. S. Li, and Ieee, "Compression algorithm for live face
398 recognition model based on depth-separable convolution," in *33rd Chinese Control and
399 Decision Conference (CCDC)*, Kunming, PEOPLES R CHINA, May 22-24 2021, in *Chinese
400 Control and Decision Conference*, 2021, pp. 1624-1628, doi:
401 10.1109/ccdc52312.2021.9602667. [Online]. Available: <Go to
402 ISI>://WOS:000824370101149

403 [30] H. L. Yu *et al.*, "Apple leaf disease recognition method with improved residual network,"
404 *Multimedia Tools and Applications*, vol. 81, no. 6, pp. 7759-7782, Mar 2022, doi:
405 10.1007/s11042-022-11915-2.

406 [31] Z. J. Hu *et al.*, "Dual Distance Center Loss: The Improved Center Loss That Can Run Without
407 the Combination of Softmax Loss, an Application for Vehicle Re-Identification and Person
408 Re-Identification," *Ieee Transactions on Computational Social Systems*, vol. 9, no. 5, pp.
409 1345-1358, Oct 2022, doi: 10.1109/tcss.2021.3127561.

410 [32] R. Chatterjee, S. Roy, and S. Roy, "A Siamese Neural Network-Based Face Recognition from
411 Masked Faces," in *1st International Conference on Advanced Network Technologies and*
412 *Intelligent Computing (ANTIC)*, Electr Network, Dec 17-18 2021, vol. 1534, in
413 Communications in Computer and Information Science, 2022, pp. 517-529, doi: 10.1007/978-
414 3-030-96040-7_40. [Online]. Available: <Go to ISI>://WOS:000772182600040

415 [33] G. Lokku, G. H. Reddy, and M. N. G. Prasad, "OPFaceNet: OPtimized Face Recognition
416 Network for noise and occlusion affected face images using Hyperparameters tuned
417 Convolutional Neural Network," *Applied Soft Computing*, vol. 117, Mar 2022, Art no. 108365,
418 doi: 10.1016/j.asoc.2021.108365.

419 [34] D. Mamieva, A. B. Abdusalomov, M. Mukhiddinov, and T. K. Whangbo, "Improved Face
420 Detection Method via Learning Small Faces on Hard Images Based on a Deep Learning
421 Approach," *Sensors*, vol. 23, no. 1, Jan 2023, Art no. 502, doi: 10.3390/s23010502.

422 [35] J. X. Mi, Q. Huang, and L. F. Zhou, "Local spatial continuity steered sparse representation for
423 occluded face recognition," *Multimedia Tools and Applications*, vol. 81, no. 18, pp. 25147-
424 25170, Jul 2022, doi: 10.1007/s11042-022-12427-9.

425 [36] S. Mishra and H. Reza, "A Face Recognition Method Using Deep Learning to Identify Mask
426 and Unmask Objects," in *IEEE World AI IoT Congress (AIIoT)*, Seattle, WA, Jun 06-09 2022,
427 2022, pp. 91-99, doi: 10.1109/aiiot54504.2022.9817324. [Online]. Available: <Go to
428 ISI>://WOS:000848394800015

429 [37] Z. W. Wang, Y. J. Zhang, C. C. Pan, and Z. W. Cui, "MMPCANet: An Improved PCANet for
430 Occluded Face Recognition," *Applied Sciences-Basel*, vol. 12, no. 6, Mar 2022, Art no. 3144,
431 doi: 10.3390/app12063144.

432