Федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э.БАУМАНА» (МГТУ им. Н.Э. Баумана)

Разработка web-ориентированного программного обеспечения, реализующего автоматизированное построение динамических графических пользовательских интерфейсов

Студент: Василян А.Р.

Научный руководитель: к.ф.-м.н. Соколов А.П.

Содержание доклада

- 1. Введение
- 2. Постановка задачи
- 3. Программная реализация
- 4. Тестирование
- 5. Заключение

Графический пользовательский интерфейс

Интерфейс¹— это совокупность средств, методов и правил взаимодействия, управления, контроля и т.д. между элементами системы.

Пользовательский интерфейс 1 — это разновидность интерфейсов, в котором одна сторона представлена человеком-пользователем, другая — машиной-устройством.

Графический пользовательский интерфейс¹ (GUI) — это разновидность пользовательского интерфейса, в котором элементы интерфейса, представленные пользователю на дисплее, исполнены в виде графических изображений.

jLabel1	jTextField1	
jLabel2	jTextField2	
jLabel3	jTextField3	
	jButton2 jButton	1

Рис. 1. Пример GUI

Цель и задачи работы

Цель: разработать web-ориентированное программное обеспечение, обеспечивающее автоматизацию построения динамических пользовательских интерфейсов.

Задачи:

- Рассмотреть существующие подходы разработки графического пользовательского интерфейса.
- Разработать тестовое web-приложение и запустить его на тестовом сервере.
- Разработать программное обеспечение для генерации интерфейса.
- Запустить разработанное web-приложение с использованием сгенерированного интерфейса.

Подходы к разработке пользовательских интерфейсов

На основе пользовательских целей¹.

Методы взаимодействия человека и ЭВМ:

- Ограничительный. Пользователь должен иметь необходимые знания для того, чтобы самому планировать ход выполнения своего задания, используя предоставляемые ему операции.
- 2. Направляющий. Каждая из целей соответствует определенному пользовательскому заданию, которое может выполнить ЭВМ, взаимодействуя с пользователем.

Методический подход², который разделен на 4 составных элемента.

- Мониторинг действий оператора.
- Применение типовой системы показателей качества.
- Программирование и документирование пользовательского интерфейса.
- Интерпретация сценария воздействия пользователя в стандартные программные процедуры.

Так же существует метод построение пользовательского интерфейса с использованием интерактивного машинного обучения³.

Санковский Ю.Е. Метод построения оконного интерфейса пользователя на основе моделирования пользовательских целей. 1998
 Казаков Г.В., Коранов В.В., Чемирисов В.В., Уваров А.В. Методический подход к созданию универеального пользовательского интерфейса с использованием интерактивного машинного обучения. 2020.
 Оркин В.А., Сараджишвили С.Э. Построение пользовательского интерфейса с использованием интерактивного машинного обучения. 2020.

Подходы к разработке пользовательских интерфейсов

На рис. 2 представлен примеры ограничительного и направляющего интерфейсов. В случае ограничительного чтобы найти среднее арифметическое, пользователю необходимо знать, как его вычислять, и самому планировать порядок операций (сложения и деления).

В случае направляющего пользователю уже дана операция, вычисляющая среднее арифметическое. Пользователю после её выбора потребуется только отвечать на запросы входных данных.

Рис. 2. Примеры ограничительного и направляющего метода

Постановка задачи

Построение графического пользовательского интерфейса осуществляется в результате интерпретации описания элементов интерфейса на предметно-ориентированных языках (Domain-Specific Language, DSL).

В рамках проекта был выбран aINI из-за несложного синтаксиса.

Рис. 3. Схема базового принципа генерации GUI на основе DSL

Назначение разрабатываемого ПО

Разрабатываемое программное обеспечение является основой для построения графических подсистем программных наборов комплексов. TO есть функциональности, обшение которые позволяют производить между аппаратурой посредством графического ввода-вывода И пользователем представления информации.

Автоматизированные решения прикладных задач часто представляют собой программное обеспечение, включающее в свой состав графический пользовательский интерфейс (рис.4).

Рис. 4. Пример GUI для определения входных данных

Особенности генерации GUI на основе aINI

В разработке программы для генерации HTML-файла на основе aINI-кода использовалась библиотека pyparsing 1 .

Ниже рассмотрено распознавание строки aINI на примере элемента поля ввода. Строка поля ввода распознаётся программой согласно шаблону:

```
variable + '=' + word_num + '//' + rus_eng_word_num
```

где viriable – слово, в котором допускаются буквы латинского алфавита, цифры и символ " ",

word_num – слово, в котором допускаются цифры и буквы латинского алфавита, rus_eng_word_num – слово или несколько слов, в которых допускаются буквы русского и латинского алфавита и цифры.

Пример строки, соответствующей этому шаблону, представлен на листинге 1.

х=12//Параметр Х

Листинг 1. Пример описания поля ввода в формате aINI

Особенности генерации GUI на основе aINI

В зависимости от того, какая строка распознана, вызывается соответствующая функция, генерирующая HTML-код элемента интерфейса.

На основе выделенных синим цветом данных из представленного aINI-кода (листинг 2) будет записан HTML-код элемента поля ввода (листинг 3), а на рисунке 5 представлено это поле ввода на странице.

Листинг 2. Пример описания поля ввода в формате aINI

10

Листинг 3. Сгенерированный HTML-код элемента интерфейса

Параметр Х

12

Рис. 5. Пример сгенерированного поля ввода

Разработка тестового web-приложения

Разработано и запущено на тестовом сервере МГТУ web-приложение, которое будет использовать сгенерированный интерфейс для получения данных от пользователя.

Во время разработки использовались: Django¹, Docker², Nginx³. Django был выбран ввиду его доступности, оперативности, переносимости (работает на многих платформах) и безопасности.

The install worked successfully! Congratulations!

You are seeing this page because DEBUG=True is in your settings file and you have not configured any URLs.

Рис. 7. Приветственное окно Django

^[1] Django — это Python web-фреймворк, с помощью которого можно вести разработку web-приложения.

^[2] Docker — программное обеспечение, применяемое для разработки web-приложений в средах с поддержкой контейнеризации.

^[3] Nginx — web-сервер и почтовый прокси-сервер.

Особенности генерации интерфейса с применением Django

urlpatterns (листинг 4) – список всех URL, которые обрабатываются web-приложением.

menu (листинг 5) — функция-представления, которая сопоставлена с адресом URL с помощью функции path() и которая обрабатывает запрос по этому адресу.

Листинг 4. Содержимое файла urls.py

В функции menu используется HTML файл (menu.html), который был сгенерирован с помощью преобразователя данных в формате aINI в HTML-код.

Листинг 5. Функция-представления gui в views.py

Примеры генерации GUI на основе aINI

```
F1 = [input1]//Test1
F2 = [input2]//Test2
F3 = [input3]//Test3
```

Листинг 6. config файл

13

Рис. 8. Результат генерации (Меню)

Примеры генерации GUI на основе aINI

```
[sec1]//Вкладка 1
x=25//Параметр X
y=@y@//Параметр Y
box1=[0]{0|1}//Флажок 1
box2=[1]{0|1}//Флажок 2
[sec2]/Вкладка 2
q=ABC//Параметр Q
box3=[0]{0|1}//Флажок 3
ParametersFile=[file]//Выберите требуемый файл
//МГТУ им. Н. Э. Баумана
[https://bmstu.ru]//Дополнительная информация
```

Листинг. 7. Входные данные в формате aINI

Вкладка 1 Вкладка 2	Вкладка 1 Вкладка 2
Параметр X 25 Параметр Y □ Фланок 1 ☑ Фланок 2	Параметр Q ВВС Флакок 3 Выберите требуемый файл Выберите файл (Файл не выбран МГТУ им. Н. Э. Баумана Дополнительная инфоомация
Отправить	Отправить
Назад	Назад

Рис. 9. Результат генерации (страница с полями ввода)

Выводы

- 1. Разработано программное обеспечение для преобразования файлов в формате aINI в файлы формата HTML и генерации дополнительного Python-кода.
- 2. В рамках Django было разработано web-приложение, использующее сгенерированный интерфейс.
- 3. Автоматизированное построение GUI на основе данных в формате с простым синтаксисом (например, aINI) позволяет быстро создавать графические формы ввода.
- 4. Разработанное программное обеспечение, в том числе удобно тем, что формат ввода и вывода стандартизированы, что обеспечивает доступность результата генерации автору исходного файла в формате aINI.

Дальнейшие перспективы развития

16

- 1. Разработанное программное обеспечение имеет смысл внедрить в инструментарий некоторой системы для упрощения разработки интерфейса.
- 2. Добавление большего числа элементов, возможных для генерации.
- 3. Добавление возможности редактировать стили (внешний вид) элементов через описание на aINI.

Спасибо за внимание

Разработка web-ориентированного программного обеспечения, реализующего автоматизированное построение динамических графических пользовательских интерфейсов

Студент: Научный руководитель: Василян А.Р. Соколов А.П.

Москва, 2023