

虚拟化发展趋势及架构创新

吴 斌 华为虚拟化首席架构师

目录

- **◆ openEuler虚拟化现状及规划**
- ◆ 业界虚拟化技术发展趋势
- ◆ 虚拟化未来架构创新机会

传统虚拟化现状及规划

■ 过去三年,Virt SIG围绕高性能、高可靠、高安全等方面落地竞争力特性15+。<mark>未来将围绕三热、DPU卸载、下一代芯片软硬协同</mark>等 方向,与社区伙伴一起将业界前沿技术和创新方向在社区生根发芽。

StratoVirt虚拟化现状及规划

打造安全轻量极速的虚拟化运行时,一套架构支持Serverless、容器和虚机的全场景形态

目录

- ◆ openEuler虚拟化现状及规划
- ◆ 业界虚拟化技术发展趋势
- ◆ 虚拟化未来架构创新机会

智能化: AI大模型等应用促使虚拟化基础设施革新

AI成功的关键要素是算法、算力和数据,其中**算力有效性直接决定了大模型训推的时间(性能),**业界整体的**有效算力利用率**偏低,未能充分发挥出硬件理论算力,诉求虚拟化基础设施变革。

- GPT-3模型训练的利用率为46.2%,意味着**不可并行(隐藏)的通信时间**开销占比仍约**50%**,是影响算力充分发挥的关键因素
- GPT-3模型推理利用率仅为21.3%,Nvidia通过MIG能力提供vGPU设备给多个虚机/容器使用,提升整体算力利用率

训练场景: 需要高带宽、低时延、尽可能少的通信开销

推理场景: 算力利用率低, 需单卡算力复用

轻量化: 更轻量极速的虚拟化运行时是业界热点

虚拟化运行时边界上移,挑战极致轻量

业界虚拟化运行时对比分析

传统应用	云原生应用	函数应用	
中间件	中间件	中间件	
语言运行时	语言运行时	语言运行时	
os	OS	OS	
虚拟化	虚拟化	虚拟化	
硬件	硬件	硬件	
虚拟机	容器	语言运行时 (如WASM等)	

运行时分类	虚拟化形态	启动时长	性能损耗	底噪开销	安全隔离
QEMU	普通虚拟机	秒级	5%-10%	G级	高
StratoVirt	MicroVM	毫秒级	<5%	M级	高
Container	容器	毫秒级	<5%	M级	中
WASM	语言运行时	百微妙级	20%+	百KB级	低

安全化: 机密云基础设施给客户不同场景提供安全保障

通用场景: Azure机密虚机

◆ Azure为机密计算 laaS 工作负载提供不同的虚拟机,对应不同的安全边界,客户可以根据所需的安全状况选择最适合的虚拟机

AI场景: Nvidia机密计算方案

◆ Azure与Nvidia结合构建GPU机密计算产品,具备在CPU和GPU上TEE 之间建立安全可信通道的能力,能够大幅度提升AI和ML等数据计算密集 型工作负载在TEE中的执行效率

融合化: 机器人、车机等场景诉求一芯多域

当前方案

人形机器人

问题

- ▶ 特种机器人:跨芯片交互,无法满足端 到端时延保障
- ▶ 服务机器人: 多芯片集成, 硬件成本高
- ▶ 缺少面向全场景的操作系统端到端解决 方案(实时+非实时);

目标方案

诉求

> 混合部署:

提供融合虚拟化,支持OpenHarmony和openEuler混合部署;

> 实时能力:

融合虚拟化技术需满足硬实时诉求;

> 统一解决方案:

提供面向服务机器人、能源、港口等统一 操作系统方案;

价值

- ▶ **成本:** openEuler与OpenHarmony共芯片部署,满足us级低时延要求,降低机器人成本;
- ▶ 生态: 打造自主可控的全场景操作系统解决方案,推广欧拉技术生态;
- ▶ **产业**: 软件先行, 联合伙伴加速上海海思芯片、Atlas模组在行业场景应用;

目录

- ◆ openEuler虚拟化现状及规划
- ◆ 业界虚拟化技术发展趋势
- ◆ 虚拟化未来架构创新机会

整体设想: 从"一虚多"演化到"多虚多"

- 性能零损耗 (软硬协同<10%)
- 资源零预留 (DPU卸截)
- 特性零丢失、业务零波动

数据中心场景打破资源边界终端场景应用性能反超原生

■ 超越原生: 融合端云多资源

■ 跨<mark>越</mark>边界:融合异构多算力

■ 横越生态:融合应用多生态

面向异构紧耦合资源打造极致性价比虚拟化运行时

"多虚一"架构向上呈现统一的资源池抽象 支撑单个虚拟机运行传统单体应用

业界ScaleMP "多虚一" 架构方案

业界TidalScale "多虚一" 架构方案

"多虚多"架构方案示意图

OpenEuler