Walking

Modeling of Human Movement MCEN 4228/5228 Fall 2021

Walking

- Center of Mass
- Walking Kinematics
- Walking Kinetics
- Walking Energetics

Center of mass (C.O.M.)

- A point about which all of the mass of an object is evenly distributed.
- Whole body can be represented by single point mass at C.O.M.

C.O.M. in standing person

A crude method for finding C.O.M.

C.O.M. position can move.

C.O.M. of whole body: depends on the configuration of the body segments.

From Enoka 2.11

Neuromechanics of Human Movement

C.O.M. position depends on the distribution of body weight among and within the body segments

- Segmental analysis
 - head
 - trunk
 - upper arm
 - fore arm
 - hand
 - thigh
 - shank
 - foot

Enoka 2.13

Table 2.1 Regression Equations Estimating Body Segment Weights and Locations of the Center of Mass

Segment	Weight (N)	CM location (%)	Proximal end of segment
Head	0.032 F _w + 18.70	66.3	Vertex
Trunk	$0.532 F_{\rm w} - 6.93$	52.2	C1
Upper arm	$0.022 F_{\rm w} + 4.76$	50.7	Shoulder joint
Forearm	$0.013 F_w + 2.41$	41.7	Elbow joint
Hand	$0.005 F_{\rm w} + 0.75$	51.5	Wrist joint
Thigh	$0.127 F_{\rm w} - 14.82$	39.8	Hip joint
Shank	$0.044 F_{\rm w} - 1.75$	41.3	Knee joint
Foot	$0.009 F_w + 2.48$	40.0	Heel

Note. Body segment weights are estimated from total-body weight (F_w) , and the segmental center-of-mass (CM) locations are expressed as a percentage of segment length as measured from the proximal end of the segment.

Enoka Table 2.1

^{© 2008} Human Kinetics

Segment mass

- Table 2.1 in Enoka weights of segments and the position of the C.O.M. of segments.
- Example: thigh

Thigh weight = 0.127*BW - 14.8
Thigh weight and BW are in Newtons

If person weighs 700N, then Thigh weight = 74.08 N

Where is the C.O.M. of the thigh?

C.O.M. is ~ 40% of the distance from the proximal to the distal end of thigh

Proximal: Closer to trunk.

Distal: Further from trunk

C.O.M. can be located outside the body

How do we calculate the C.O.M. of more than one segment/object?

$$X_{COM} = \Sigma m_i x_i / \Sigma m_i$$

$$Y_{COM} = \Sigma m_i y_i / \Sigma m_i$$

$$X_{COM} = m_1 x_1 + m_2 x_2 + m_3 x_3$$

$$m_1 + m_2 + m_3$$

$$Y_{COM} = m_1 y_1 + m_2 y_2 + m_3 y_3$$

$$m_1 + m_2 + m_3$$

C.O.M. and the brain

Lift 1 Lift 10

Lift 1 Lift 10

C.O.M and the brain

- Must know C.O.M. location for accurate object manipulation.
- Can observe initial learning over just a few tries.
- Robust learning over a timescale of years
 - Adults are better than children at estimating an object's center of mass

Walking

- Center of Mass
- Walking Kinematics
- Walking Kinetics
- Walking Energetics

Walking gait cycle

Kinematic terms for gait analysis

Stride: One complete cycle from an event (e.g., right foot touch-down) to the next time that event occurs.

Stance phase: Time when a limb is in contact with the ground.

Kinematic terms for gait analysis

<u>Double support</u>: Time when 2 limbs are in contact with the ground.

Both support stance Single limb support stance Single limb

Right | limb

Stance phase

Swing phase

Double support Walk Stride time **Stance** time Left Right

Speed = SF * SL

Speed (m/s) = SF (strides/s) * SL (m/strides) stride frequency: number of strides per second stride length: distance covered by one stride

Can increase speed by increasing SF, SL or both

Walking kinematics

- Components of a stride
- Vertical displacement of the body
- Horizontal velocity of the body

Walk

- Leg is straighter.

Walking kinematics

- Components of a stride
- Vertical displacement of the body
- Horizontal velocity of the body

Walking

- Center of Mass
- Walking Kinematics
- Walking Kinetics
- Walking Energetics

Walking Kinetics

- Measurement of ground reaction forces
- Analysis of ground reaction forces
- Walking GRFs

Measurement of ground reaction force

Static: a <u>bathroom scale</u> can be used.

 Dynamic (e.g., jump): a <u>force platform</u> should be used.

Force platform

- Can measure forces very quickly (e.g., every 0.0001 s).
- Can measure the forces in three dimensions
 - Vertical: F_{g,y}
 - Horizontal: F_{g,x}
 - Lateral: F_{g,z}

Sign convention for $F_{g,y}$

F_{g,y}
 Upward is positive
 Locomotion, jumping, etc.:
 F_{g,y} > 0
 F_{g,y} < 0: not normally possible need suction cup shoes</p>

Sign conventions

• Positive $F_{g,x}$: oriented in the direction of motion or toward anterior side.

Analysis of ground reaction forces

 Can be used to calculate the acceleration of the C.O.M.

$$\Sigma F_y = ma_y$$

 $F_{g,y} - mg = ma_y$
 $F_{g,y} = ma_y + mg$

Analysis of ground reaction forces

 Can be used to calculate the acceleration of the C.O.M.

$$\Sigma F_x = ma_x$$

$$F_{g,x} = ma_x$$

Analysis of ground reaction forces

 Can be used to calculate the acceleration of the C.O.M.

$$\Sigma F_y = ma_y$$

$$F_{g,y}$$
 - $mg = ma_y$

$$F_{g,y} = ma_y + mg$$

$$\Sigma F_x = ma_x$$

$$F_{g,x} = ma_x$$

Walking

- Center of Mass
- Walking Kinematics
- Walking Kinetics
- Walking Energetics

Mechanical energy in level walking

Some kinetic energy
Some gravitational potential energy
Little work done against aerodynamic drag
Unless slipping, no work done against friction
Not much bouncing (elastic energy)

Calculating mechanical energy

- Obtain acceleration from force plate recording
- Integrate acceleration once and twice to estimate center of mass velocity and position.
- Kinetic Energy (f = forward):

$$E_{\rm kf} = \frac{1}{2} m_{\rm body} v_{\rm COM,f}^2 = \frac{1}{2} m_{\rm body} \left(\int a_{\rm COM,f}(t) \, dt \right)^2$$

Potential Energy (v = vertical):

$$E_{pg} = m_{body} g r_{COM,v} = m_{body} g \iint a_{COM,v}(t) d^2 t$$

Mechanical energy fluctuations in level walking

Average KE constant (average v_x constant) Average GPE constant (average r_y constant) HOWEVER

KE and GPE fluctuate within each stance

Walk

v_x decreases r_v increases

v_x increases r_y decreases

Walk: inverted pendulum

- 1st half of stance: decrease v_x & increase r_y
 - KE converted to PE
- 2nd half of stance: increase v_x & decrease r_y
 - GPE converted to KE
- KE & GPE "out of phase"
- Energy exchange: as much as 95%recovered during single stance phase

Walk: inverted pendulum

- 1st half of stance: decrease v_x & increase r_y
 - $-E_{k,t}$ converted to $E_{p,g}$
- 2nd half of stance: increase v_x & decrease r_y
 - $-E_{p,g}$ converted to $E_{k,t}$
- KE & GPE "out of phase"
- Energy exchange: as much as 95%recovered during single stance phase
- But, energy is lost with each step as collision

Inverted pendulum model for walking

C.O.M.

Leg

Preferred walking speed and energetics

Ralston (1958)