Report: Predict Bike Sharing Demand with AutoGluon Solution
Lamiaa Hassan Mohammed Zain

Initial Training

What did you realize when you tried to submit your predictions? What changes were needed to the output of the predictor to submit your results?

TODO: Predictions needed to be greater than or equal to 0. That's why clipping the predictions to have the lower boundary of zero was done. Also rounding the target 'count'

What was the top ranked model that performed?

Exploratory data analysis and feature creation
What did the exploratory analysis find and how did you add additional
features?

TODO:

- It was found that people rented pikes more from Jan to Feb 2011 and from Sep to Oct 2012. People tend to rent more during the following hours (1-2.5 am, 7-9 am, 1-4 pm, 9-11 pm).
- There was a strong correlation between Season and month, hence the season column was dropped from the training and testing datasets.
- Features like the weather were categorized.

How much better did your model preform after adding additional features and why do you think that is?

TODO: From public score of 1.8, it was improved to be 0.57651.

- This was mainly because of the drop of the correlated column and
- because of the better representation of the datetime column where new features of hour, month and day were used and datetime column was dropped.

Hyper parameter tuning

How much better did your model preform after trying different hyper
parameters?

 $\underline{\text{TODO}}$: It was slightly improved from 0.57651 to 0.55532 as appeared in Kaggle public score.

If you were given more time with this dataset, where do you think you
would spend more time?

TODO: I would do data normalization and more feature engineering with EDA.

Create a table with the models you ran, the hyperparameters modified,
and the kaggle score.
|model|hpo1|hpo2|hpo3|score|

|model|hpo1|hpo2|hpo3|score|
|--|--|--|--|
|initial|?|?|?|?|
|add_features|?|?|?|?|
|hpo|?|?|?|?|

TODO:

model	Нуро1	Нуро2	Нуро3	Нуро4	score
initial	default	default	default		1.81023
add_featur	default	default			0.57651
es					
hpo	"'GBM':{'num_boos t_round':100,'num _leaves': ag.space.Int(lowe r=26, upper=66, default=36),'obje ctive':'huber','n u _iterations':200}	'KNN':{'n_n eighbors':4 ,'weights': 'distance', 'algorithm' :'brute'}	{'objective	'RF': {'n_estimators ':200,'criteri on':['gini','e ntropy','log_l oss']}	0.55532

Create a line plot showing the top model score for the three (or more) training runs during the project.

TODO: Replace the image below with your own.

Create a line plot showing the top kaggle score for the three (or more) prediction submissions during the project.

 $\underline{\textbf{TODO}}\colon$ Replace the image below with your own.

Summary

TODO:

In this project, we have obtained/explored following steps in the ML Lifecycle.

- Problem: Better utilization of the data generated by the systems in the bike sharing industry as well as exogenous information are keys to take business advantages for firms.
- Business Objective: Predict bike sharing demand provided data related to different factors provided.
- Obtain Data Data is obtained from the "Bike Sharing Demand" kaggle competition.
- Analyze Data Data is described, visualized and modified mainly using Pandas, Matplotlib and Seabon library.
- Build Model Built models using Autogluon AutomML library. Initially created model without any preprocessing. Later, built models creating new features and tuning hyper parameters.

• Test Model Models are tested by submitting the predictions to Kaggle and compared the models based on the scroe obtained.