INFO251 - Applied Machine Learning

Lab 6 Suraj R. Nair

Quiz 1 Review

Regression

- When comparing two regression models, the model that produces the higher R2 will provide less biased estimates of the causal impact of the independent variables on the dependent variable:
 - True
 - False

Regression

- When comparing two regression models, the model that produces the higher R2 will provide less biased estimates of the causal impact of the independent variables on the dependent variable:
 - True
 - False

Difference-in-difference

- The key identifying assumption is
 - A. Outcomes in the control and treatment group would have been the same in the absence of treatment
 - B. Trends in the control and treatment group would have been the same in the absence of treatment
 - C. Outcomes pre- and post-treatment would have been the same in the absence of treatment
 - D. Outcomes pre-treatment would have been the same in the absence of treatment

Difference-in-difference

- The key identifying assumption is
 - A. Outcomes in the control and treatment group would have been the same in the absence of treatment
 - B. Trends in the control and treatment group would have been the same in the absence of treatment
 - C. Outcomes pre- and post-treatment would have been the same in the absence of treatment
 - D. Outcomes pre-treatment would have been the same in the absence of treatment

Regularization

Match the penalty (Lasso, Ridge, ElasticNet) to the coefficient plot

Regularization

- A Lasso
- B ElasticNet
- C Ridge

Decision Boundaries

- Which of the following algorithms recovers non-linear decision boundaries:
 - K-nearest neighbors (K = 5)
 - SVM
 - Logistic Regression
 - Logistic Regression with lasso regularization

Decision Boundaries

- Which of the following algorithms recovers non-linear decision boundaries:
 - K-nearest neighbors (K = 5)
 - SVM
 - Logistic Regression
 - Logistic Regression with lasso regularization

Gradient Descent

- You are trying to find the parameters for a multivariate linear regression using gradient descent. The algorithm is initialized at some random starting point. However, it is taking very long to converge (> 10,000 iterations). What could be the reason(s)?
 - Step size is too small
 - Step size is too large
 - Data may not have been scaled
 - All of the above

Gradient Descent

- You are trying to find the parameters for a multivariate linear regression using gradient descent. The algorithm is initialized at some random starting point. However, it is taking very long to converge (> 10,000 iterations). What could be the reason(s)?
 - Step size is too small
 - Step size is too large
 - Data may not have been scaled
 - All of the above

Mean Squared Error

- Suppose you build a linear regression model which predicts y = f(x). Which of these two cases has a higher MSE?
 - A
 - B

Mean Squared Error

- Suppose you build a linear regression model which predicts y = f(x). Which of these two cases has a higher MSE?
 - A
 - B
 - MSE for A: 4 / 10
 - MSE for B: 8 / 10

