論理回路

問題 1. 4 ビットの二進数 $A_3A_2A_1A_0(A_3$ が最上位ビット, A_0 が最下位ビット)に 1 加えた数($A_3A_2A_1A_0+1$) を 5 ビット二進数 $B_4B_3B_2B_1B_0(B_4$ が最上位ビット, B_0 が最下位ビット)とする. 入力 A_0 , A_1 , A_2 , A_3 に対して, B_0 , B_1 , B_2 , B_3 , B_4 を出力する回路を以下のように表し, 1 インクリメンタ(1inc)と呼ぶこととする. B_0 , B_1 , B_2 , B_3 , B_4 のそれぞれを A_0 , A_1 , A_2 , A_3 の積和形式の論理式で表せ. 必要に応じてカルノー図を用いて簡単化すること.

問題 2. 問題 1 の 1 インクリメンタ(linc)を用いる以下の問いに答えよ.

- (1) 4 ビットの二進数 C₃C₂C₁C₀ に二進数 10(十進数で 2)を加えた数(C₃C₂C₁C₀+10)を 5 ビット二進数 D₄D₃D₂D₁D₀ (D₄ が最上位ビット, D₀ が最下位ビット)とする. 1 インクリメンタ(linc)1 個を用いて,入力 C₀, C₁, C₂, C₃ に対して,D₀, D₁, D₂, D₃, D₄ を出力する回路(2 インクリメンタ)を構成せよ. linc 以外の論理素子(AND, OR, NOT など)は用いないこと.
- (2) ネガティブエッジトリガ D-FF(フリップフロップ)を 4 個と 1 インクリメンタ(linc)を 1 個用いた以下の回路について、CK からクロックパルスを 20 個与えたときの出力 X_0 , X_1 , X_2 , X_3 , X_4 の変化を解答用紙に与えられたタイムチャートで示せ、ただし、D-FF の初期状態はすべて 0 (Q の初期出力はすべて 0)とする.

