1. Find the probability mass function (pmf) for a random variable with the following moment generating function (mgf),

$$M(t) = \frac{1}{2}e^{-t} + \frac{1}{4} + \frac{1}{5}e^{t} + \frac{1}{20}e^{5t}$$

- 2. Complete the following integrals to obtain simplified functions of *t*, and determine the range of *t* for which each of these integrals is defined:
 - a. $M(t) = \int_0^1 e^{xt} dx$
 - b. $M(t) = \int_0^\infty e^{x(t-1)} dx$
 - c. Determine the probability density functions (pdfs) corresponding to the moment generating functions in parts a) and b).
- 3. Consider the following joint probability distribution p(x, y) for random variables X and Y:

x \	0	1	2	
0	0.10	0.15	0.05	0.30
1	0.10	0.20	0.40	0.70
	0.20	0.35	0.45	

- a. Find P(X = Y)
- b. Find P(Y > 0 | X > 0)
- c. Find E(X + Y)
- d. Find E(Y|X=1)
- 4. Suppose X and Y are jointly distributed random variables with density,

$$f_{XY}(x, y) = C, 0 < x < y < 1$$

- a. Sketch the support for X and Y.
- b. Find C.
- c. Find $P\left(X > \frac{Y}{2}\right)$.
- 5. Let $f_{X,Y}(x,y) = e^{-x-y}$, $0 < x < \infty$, $0 < y < \infty$ be the pdf of X and Y.
 - a. Let Z = X + Y. Compute $P(Z \le 0)$.

- b. Find the pdf of Z.
- c. Find $M_{X,Y}(t_x, t_y)$.
- 6. Consider the joint pdf,

$$f_{XY}(x, y) = C, 0 < x < y < 2x, x + y < 1$$

- a. Sketch the support for X and Y.
- b. Find C.
- c. Find $P\left(X+Y>\frac{1}{2}\right)$.
- 7. Reconsider the pdf in problem 6.
 - a. Find the marginal distribution for X, $f_X(x)$.
 - b. Find the marginal distribution for Y, $f_Y(y)$.
 - c. Are X and Y independent?
- 8. Let (X, Y) be jointly distributed random variables supported on (0, 0), (1, 1), (1, 0), (1, -1) with probabilities 0.5, 0.125, 0.25 and 0.125 respectively.
 - a. Compute E(Y|X=0) and E(Y|X=1)
 - b. Compute the correlation between X and Y.
 - c. Determine whether X and Y are independent or not.
- 9. Let X and Y be independent random variables each with mean = 0 and variance =1.
 - a. Find Cov(2X + 3Y, X Y)
 - b. Find an expression for $E(X + Y \mid X)$ (this is a random variable)
 - c. Show that $E(X+Y)=E\big(E(X+Y|X)\big)=E(E(X+Y|Y))$
- 10. Let X be a random variable such that P(X > 0) = 1 and $\mu = E(X)$ exists and is finite. Show that $(X \ge 2\mu) \le \frac{1}{2}$.

Extra problems for Graduate Students registered for 4 hours:

11. Use Markov's theorem to show,

$$P\left[\frac{(x-\mu)^4}{\sigma^4} \ge d^4\right] \le \frac{\kappa}{d^4}$$

where $\kappa = \frac{E[(x-\mu)^4]}{\sigma^4}$ is a measure of kurtosis (see 1.9.15).

- 12. Use Jensen's inequality to prove that if the fourth moment is finite then the first and second moments are also finite:
 - a. $[E(X)]^4 \le E(X^4)$
 - b. $[E(X^2)]^2 \le E(X^4)$