Теория функции комплексного переменного

Конспект по 2 курсу специальности «прикладная математика» (лектор А. А. Леваков)

Содержание

1	Комплексные числа.	3
2	Комплексные функции.	6
3	Предел функции комплексного переменного. Непрерывные функции комплексного переменного.	9
4	Дифференцирование комплексных функций.	13
5	Сопряженно-гармонические функции.	16
6	Кривые.	17
7	Интегрируемые функции комплексного переменного.	19
8	Геометрический смысл модуля и аргумента производкой комплексной функции.	20
9	Интегральная теорема Коши.	22
10	Следствия из интегральной теоремы Коши.	23
11	Первообразная. Интеграл с переменным верхним пределом.	25

1 Комплексные числа.

• Под **множеством комплесных чисел** $\mathbb C$ понимают множество упорядоченных пар (a,b) вещественных чисел таких, что на этом множестве введены 3 операции

1.
$$(a_1, b_1) = (a_2, b_2) \iff a_1 = a_2, b_1 = b_2;$$

2.
$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2);$$

3.
$$(a_1, b_1) \cdot (a_2, b_2) = (a_1a_2 - b_1b_2, a_1b_2 + a_2b_1);$$

Комплексное число обычно обозначается символом z.

Между множеством комплесных чисел и множеством точек ДПСК существует взаимнооднозначное соответствие.

• Плоскость с выбранной на ней ДПСК, на которой изображаются комплексные числа, называется комплексной плоскостью.

Также существует взаимнооднозначное соответствие между множеством комплексных чисел и множеством векторов.

• Точки, соответствующие комплексным числам (a,0) лежат на оси x. Тогда (a,0)=a, а ось x называется вещественной.

На множестве комплексных чисел $(0,1)\cdot(0,1)=(-1,0)=-1$. То есть среди комплексных чисел есть такое число (0,1)=i, что $i^2=1$.

• Точки, соответствующие комплексным числам (0,b) лежат на оси у. Тогда (0,b)=bi, а ось у называется **мнимой**.

Возьмем произвольное комплексное число (a, b).

$$(a,b) = (a,0) + (b,0) = a + (b,0) \cdot (0,1) = a + bi.$$

Следовательно, любое комплексное число можно записать в виде z = a + bi.

• Такая форма записи комплексного числа называется **алгебраической формой за**nucu.

Как правило, будем записывать комплексные числа в алгебраической форме.

ullet Число $\sqrt{a^2+b^2}=|z|$ называется **модулем** комплексного числа.

Геометрически это расстояние от начала координат до точки, соответствующей комплексному числу.

3

• Угол, который образует вектор к числу z с осью x называется **аргументом** комплексного числа u обозначается $\varphi = \arg(z)$.

Причем, если вращение вектора от оси x против часовой стрелки, то аргумент считаем положительным. Иначе отрицательным.

Если ϕ — аргумент, то числа $\phi + 2\pi k$, $k \in \mathbb{Z}$ также являются аргументами (то есть аргумент определен неоднозначно). Обозначаем

- $Arg(z) = \varphi + 2\pi k$ все значения аргумента;
- $arg(z) = \varphi$ одно значение аргумента.

Чаще всего $\varphi \in (-\pi; \pi]$. Но иногда удобно считать, что $\varphi \in [0; 2\pi)$.

• Это фиксированное значение аргумента называется главным значением аргумента комплексного числа.

Таким образом, $a = |z| \cos \varphi$, $b = |z| \sin \varphi$. Тогда можно записать

$$z = a + bi = |z| \cdot (\cos \varphi + i \sin \varphi).$$

• Такая форма записи комплексного числа называется **тригонометрической формой** записи.

Введем функцию $e^{i\phi}$ опеределенную на множестве $\mathbb R$ и принимающую значения в множестве $\mathbb C$ по формуле

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
.

Используя эту функцию, можем записать комплексное число в виде

$$z = a + bi = |z| \cdot e^{i\varphi}$$
.

• Такая форма записи комплексного числа называется **экспоненциальной формой за**писи.

Покажем, что функция $e^{i\phi}$ обладает свойствами экспоненты:

1.
$$e^{i\varphi_1} \cdot e^{i\varphi_2} = e^{i(\varphi_1 + \varphi_2)}$$
.

$$\begin{split} e^{i\phi_1} \cdot e^{i\phi_2} &= (\cos\phi_1, \sin\phi_1) \cdot (\cos\phi_2, \sin\phi_2) = \\ &= (\cos\phi_1\cos\phi_2 - \sin\phi_1\sin\phi_2, \ \cos\phi_1\sin\phi_2 + \sin\phi_1\cos\phi_2) = \\ &= (\cos(\phi_1 + \phi_2), \ \sin(\phi_1 + \phi_2)) = e^{i\phi_1 + \phi_2}. \end{split}$$

2.
$$\frac{e^{i\varphi_1}}{e^{i\varphi_2}} = e^{i(\varphi_1 - \varphi_2)}$$
.

 \boxtimes

3.
$$(e^{i\varphi})^n = e^{in\varphi}, n \in \mathbb{N}$$
.

Возьмем комплексную плоскость и обозначим на ней 2 комплексных числа и соответствующие им радиус-векторы. Построим параллелограмм на этих векторах и возьмем его диагональ. Комплексное число, соответствующее этой диагонали, имеет вид $z_3=(a_1+a_2,b_1+b_2)$, то есть является суммой комплексных чисел z_1 и z_2 .

Разность комплексных чисел $z_1 - z_2 = z_1 + (-z_2)$ определяется вектором, который является второй диагональю параллеограмма построенного на векторах z_1 и z_2 .

Из графиков следует свойство

$$||z_1| - |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|.$$

Из свойств комплексных чисел

$$z_1 \cdot z_2 = |z_1| \cdot e^{i\varphi_1} \cdot |z_2| \cdot e^{i\varphi_2} = |z_1| \cdot |z_2| \cdot e^{i(\varphi_1 + \varphi_2)}.$$

$$\frac{z_1}{z_2} = \frac{|z_1| \cdot e^{i\varphi_1}}{|z_2| \cdot e^{i\varphi_2}} = \frac{|z_1|}{|z_2|} \cdot e^{i(\varphi_1 - \varphi_2)}.$$

Отсюда вытекает, что

1.
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
, $\arg(z_1 \cdot z_2) = \arg(z_1) + \arg(z_2)$.

2.
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$.

• Если число z = a + bi - комплексное число, то число $\overline{z} = a - bi$ называется **сопря- женным** к комплексному числу z.

Тогда $z\cdot \overline{z}=a^2+b^2=|z|^2.$ Из свойств множества комплексных чисел

$$z_1 = z_2 \iff a_1 = a_2, \ b_1 = b_2.$$

В экспоненциальной форме

$$|z_1| \cdot e^{i\varphi_1} = |z_2| \cdot e^{i\varphi_2} \iff |z_1| = |z_2|, \arg(z_1) = \arg(z_2) + 2\pi k, \ k \in \mathbb{Z}.$$

• Корнем n-ой степени комплексного числа z называется такое число ζ , что $\zeta^n=z$. Обозначение: $\sqrt[n]{z}$.

Пусть $z=|z|\cdot e^{i\varphi},\; \zeta=|\zeta|\cdot e^{i\varphi_1}.$ Тогда

$$(|\zeta| \cdot e^{i\varphi_1})^n = |z| \cdot e^{i\varphi}.$$

$$|\zeta|^n \cdot e^{in\varphi_1} = |z| \cdot e^{i\varphi}.$$

Тогда получаем

$$|\zeta|^n = |z| \Rightarrow |\zeta| = |z|^{\frac{1}{n}}.$$

$$n\varphi_1 = \varphi + 2\pi k, \ k \in \mathbb{Z} \Rightarrow \varphi_1 = \frac{\varphi + 2\pi k}{n}.$$

Значит

$$\zeta = |z|^{\frac{1}{n}} \cdot e^{i\frac{\varphi + 2\pi k}{n}}.$$

При k=0 получаем z_0 ,

$$k=1\rightarrow z_1$$

$$k=2 \rightarrow z_2$$

. . .

$$k=n-1 \rightarrow z_{n-1}$$

$$k=n \rightarrow z_0$$
.

Следовательно, корень n-ой степени из любого ненулевого комплексного числа имеет ровно n различных значений. То есть $\sqrt[n]{z}=\zeta_k$ и

$$\zeta_k = |z|^{\frac{1}{n}} \cdot e^{i\frac{(\arg z + 2\pi k)}{n}}, \quad k = 0, 1, \dots, n - 1.$$

2 Комплексные функции.

Пусть $D \subseteq \mathbb{R}$, $f: D \to \mathbb{C}$.

• Функция $w=f(t),\,t\in D\in\mathbb{R}$ называется комплекснозначной функцией.

Запишем в алгебраической форме:

$$w = u(t) + i \cdot v(t), \quad \text{Re}(w) = u(t) \in \mathbb{R}, \text{ Im}(w) = v(t) \in \mathbb{R}.$$

Производная и интеграл для таких функций определяются аналогично вещественным функциям:

$$w(t)' = u' + i \cdot v'.$$

$$\int_{a}^{b} w(t)dt = \int_{a}^{b} u(t)dt + i \cdot \int_{a}^{b} v(t)dt.$$

Рассмотрим функцию $w=e^{it},\,t\in[0;2\pi)$. Ее можно представить как $e^{it}=\cos t+i\cdot\sin t$. Тогда производная от этой функции равна

$$(e^{it})' = -\sin t + i \cdot \cos t = i \cdot (\cos t + i \cdot \sin t) = ie^{it}.$$

Пусть $f: D \to \mathbb{C}, D \in \mathbb{C}$.

ullet Функция $w=f(z),\,z\in D\in\mathbb{C}$ называется комплексной функцией.

Это же определение можно сформулировать иначе.

• Пусть заданы множества $D \in \mathbb{C}$ и $L \in \mathbb{C}$ и правило $D \xrightarrow{f} L$, которое каждому значению $z \in D$ ставит в соответствие одно или несколько значений $w \in L$. Это мы и будем понимать под комплексной функцией..

Функцию, ставящую в соответствие одно значение, будем называть **однозначной**. Аналогично, если два значения, то **двузначной**. Если неизвестно сколько значений, то **многозначной**.

Например, графически двузначная функция будет изображаться таким образом

Рассмотрим примеры комлексных функций:

- 1. w = az + b, $a, b \in \mathbb{C}$ линейная функция;
- 2. $w = az^2 + bz + c$, $a, b, c \in \mathbb{C} \kappa вадратичная функция;$
- 3. $w = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0, \forall a_i \in \mathbb{C}, n \in \mathbb{N}$ **полином n-ой степени**;

Каждый полином n-ой степени имеет ровно n корней с учетом кратности.

4. $w = \sqrt{z}$;

Решением этой функции является множество таких $\zeta^2=z$, где

$$\zeta = |z|^{\frac{1}{2}} e^{i\frac{\arg z + 2\pi k}{2}}, \quad k = 0, 1.$$

Тогда $\zeta_1=|z|^{\frac{1}{2}}e^{i\frac{\arg z}{2}},$ $\zeta_2=-|z|^{\frac{1}{2}}e^{i\frac{\arg z}{2}}.$ Следовательно, $w=\sqrt{z}$ — двузначная функция.

Графически это можно изобразить как

Функции $w_1=|z|^{\frac{1}{2}}e^{i\frac{\arg z}{2}},\ w_2=-|z|^{\frac{1}{2}}e^{i\frac{\arg z}{2}}$ являются однозначными. Их также называют **ветвями** двузначной функции $w=\sqrt{z}$.

5. $w = e^z -$ комплексная экспонента;

$$e^z = e^{x+iy} = e^x(\cos y + i \cdot \sin y) = e^x \cos y + i \cdot e^x \sin y,$$

то есть $\operatorname{Re}(e^z) = e^x \cos y$, $\operatorname{Im}(e^x) = e^x \sin y$. Если z = x, $e^z = e^x$.

Рассмотрим уравнение $w_0 = e^z$, $w_0 \neq 0$.

$$\begin{array}{ccc} w_0 = |w_0| \cdot e^{i \arg w_0}, & |w_0| = e^x, \\ e^z = e^x \cdot e^{iy} = e^x \cdot e^{i \arg z}; & \Longrightarrow & y = \arg z + 2\pi k, \ k \in \mathbb{Z}. \end{array}$$

Отсюда $x=\ln |w_0|,\ y=\arg z+2\pi k,\ k\in\mathbb{Z}.$ Тогда множество решений уравнения $w_0=e^z$ имеет вид

$$z = \ln|w_0| + i \cdot (\arg z + 2\pi k).$$

6. $w = \operatorname{Ln} z = \ln |z| + i \cdot (\arg z + 2\pi k), k \in \mathbb{Z} -$ комплексный логарифм;

Если z=x>0, то при k=0 получим $\ln z=\ln |z|+i\arg z$ — главное значение (ветвь) $\operatorname{Ln} z$. Эта функция совпадает с вещественной $\ln x$.

Из двух предудыщих рассмотренных функций вытекает, что во множестве комплексных чисел уравнение $e^z = -1$ имеет множество решений $\operatorname{Ln}(-1) = i \cdot (\pi + 2\pi k), k \in \mathbb{Z}$.

7. $w=z^{\alpha}, \ \alpha \in \mathbb{C}$ — степенная функция с любым показателем;

Причем $z^{\alpha} = e^{\alpha \ln z}$ при $z \neq 0$.

8. $w = \sin z$, $w = \cos z$ — комплексные синунс и косинус соответственно;

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

8

Проверим, что при z = x получим $\sin z = \sin x$:

$$\sin z = \frac{e^{ix} - e^{-ix}}{2i} = \frac{\cos x + i \sin x - \cos x + i \sin x}{2i} = \sin x.$$

Комплексные синус и косинус являются 2π -периодическими функциями.

Все формулы для вещественных синуса и косинуса выполняются и для комплексных. Например,

$$\cos^2 z + \sin^2 z = \left(\frac{e^{iz} + e^{-iz}}{2}\right)^2 + \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^2 = \frac{e^{2iz} + e^{-2iz} + 2}{4} + \frac{e^{2iz} + e^{-2iz} - 2}{-4} = 1.$$

Аналогично доказываются

 $\cos^2 z - \sin^2 z = \cos 2z$, $2\sin z \cos z = \sin 2z$, $\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \sin z_2 \cos z_1$ и так далее.

Пример. Найдем, чему равно z в уравнении $\cos z = A$.

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = [e^{iz} = t] = \frac{t + \frac{1}{t}}{2} = A \quad \Rightarrow \quad t^2 - 2At + 1 = 0.$$

Отсюда

$$t = \frac{2A + \sqrt{4A^2 - 4}}{2} = A + \sqrt{A^2 - 1}.$$

Тогда

$$e^{iz} = A + \sqrt{A^2 - 1}.$$

Следовательно,

$$iz = \operatorname{Ln}(A + \sqrt{A^2 - 1}) \quad \Rightarrow \quad z = -i\operatorname{Ln}(A + \sqrt{A^2 - 1}).$$

Функция

$$w=-i\cdot {\rm Ln}(z+\sqrt{z^2-1})={
m Arccos}\,z$$
 — комплексный арккосинус.

Аналогично можно вывести функцию

$$w=-i\cdot \operatorname{Ln}(iz+\sqrt{1-z^2})=\operatorname{Arcsin} z$$
 — комплексный арксинус.

3 Предел функции комплексного переменного. Непрерывные функции комплексного переменного.

- Последовательность (z_n) , где все члены $z_n \in \mathbb{C}$ называется **комплексной последова-** тельностью.
- Число $a \in \mathbb{C}$ называется **пределом последовательности** (z_n) , если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta(\varepsilon) \Rightarrow |z_n - a| \leqslant \varepsilon.$$

Геометрически это множество точек плоскости таких, что $|z-a|=\varepsilon$ (расстояние от точки z до точки a), то есть это окружность радиуса ε с центром с точке a. Обозначается $C(a,\varepsilon)$.

Если $|z-a|\leqslant \varepsilon$, то это круг с границей радиуса ε с центром с точке a. Обозначается $\overline{B}(a,\varepsilon)$.

Если $|z - a| < \varepsilon$, то это круг без границы радиуса ε с центром с точке a. Обозначается $B(a, \varepsilon)$.

 $B(a,\varepsilon)$ — ε -окрестность точки a. $\overline{B}(a,\varepsilon)$ — замкнутая ε -окрестность точки a.

Таким образом, число $a\in\mathbb{C}$ — предел последовательности, если $\forall \varepsilon>0$ $\exists \delta(\varepsilon)>0$ такое, что все члены последовательности z_n с номерами \geqslant чем $\delta(\varepsilon)$ лежат в замкнутой ε -окрестности числа a.

Говорят, что $(z_n) \underset{n \to \infty}{\longrightarrow} \infty$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall \geqslant \delta(\varepsilon) \Rightarrow |z_n| \geqslant \varepsilon,$$

то есть если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ такое, что все члены последовательности z лежат вне ε -окрестности числа a, или $z_n \notin B(a, \varepsilon)$.

Дополним множество комплексных чисел $\mathbb C$ еще одним числом $z=\infty.$

• Множество комплексных чисел, дополненных числом $z=\infty$, называется расширенным множествомком-плексных чисел.

Множество таких z, что $|z| > \varepsilon$ изображается графически (рис. слева)

и называется окрестностью бесконечности.

• Комлексная плоскость, дополненная точкой $z = \infty$, называется **расширенной ком- плексной плоскостью**.

Рассмотрим (z_n) , где все члены записываются в алгебраической форме: $z_n = x_n + i \cdot y_n$, $x_n, y_n \in \mathbb{R}$.

Теорема.
$$z_n \xrightarrow[n\to\infty]{} a = a_1 + i \cdot a_2 \iff x_n \xrightarrow[n\to\infty]{} a_1, \ y_n \xrightarrow[n\to\infty]{} a_2.$$

 \spadesuit \Rightarrow) $z_n \xrightarrow[n \to \infty]{} a$, это значит, что

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta(\varepsilon) \Rightarrow |z_n - a| \leqslant \varepsilon.$$

Так как

то есть
$$|z|>y,\,|z|>x,$$
 то
$$|x_n-a_1|\leqslant |z_n-a|\leqslant \varepsilon,$$

$$|y_n-a_2|\leqslant |z_n-a|\leqslant \varepsilon.$$
 Это означает, что $x_n \underset{n\to\infty}{\longrightarrow} a_1$ $y_n \underset{n\to\infty}{\longrightarrow} a_2$.

 \boxtimes

$$\Leftarrow$$
) $x_n \xrightarrow[n \to \infty]{} a_1$, это значит, что $y_n \xrightarrow[n \to \infty]{} a_2$,

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta_1(\varepsilon) \Rightarrow |x_n - a_1| \leqslant \varepsilon,$$

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \forall n \geqslant \delta_2(\varepsilon) \Rightarrow |y_n - a_2| \leqslant \varepsilon.$$

Тогда

$$|z_n - a| = \sqrt{(x_n - a_1)^2 + (y_n - a_2)^2} \leqslant \sqrt{2}\varepsilon, \quad \forall n \geqslant \max\{\delta_1(\varepsilon), \delta_2(\varepsilon)\},$$

а это и есть $z_n \underset{n \to \infty}{\longrightarrow} a$ по M-лемме для последовательностей.

Замечание. Если члены последовательности записаны в экспоненциальной форме $z_n = \rho_n e^{i\phi_n}$, то $z_n \underset{n \to \infty}{\longrightarrow} a = \rho e^{i\phi_0} \not\Leftrightarrow \rho_n \underset{n \to \infty}{\longrightarrow} \rho$, $\phi_n \underset{n \to \infty}{\longrightarrow} \phi_0$, так как ϕ_n определено неоднозначно. Выполняется только

$$\rho_n \xrightarrow[n \to \infty]{} \rho, \ \varphi_n \xrightarrow[n \to \infty]{} \varphi_0 \Longrightarrow z_n \xrightarrow[n \to \infty]{} a = \rho e^{i\varphi_0}.$$

Рассмотрим функцию $w=f(z),\,z\in D\subseteq\mathbb{C}.$ Любую функцию можно записать как

$$w = f(z) = f(x + i \cdot y) = u(x, y) + i \cdot v(x, y), \quad u(x, y) \in \text{Re}(f(z)), v(x, y) \in \text{Im}(f(z)),$$

где u(x,y) и v(x,y) — вещественные $\Phi 2\Pi$.

Пусть точка z_0 — вутрення точка множества D.

- ullet Множество $D \setminus \{z_0\}$ называется **проколотой окрестностью** точки z_0 .
- Число $A \in \mathbb{C}$ называется **пределом функции** f(z) при $z \to z_0$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall z : 0 < |z - z_0| \leqslant \delta(\varepsilon) \Rightarrow |f(z) - A| \leqslant \varepsilon.$$

То есть $\forall \varepsilon > 0 \; \exists \delta(\varepsilon) > 0$ такое, что для всех z из проколотой δ-окрестности точки z_0 функция f(z) принимает значения в ε -окрестности числа A. Пишут $\lim_{z \to z_0} f(z) = A$, или $f(z) \underset{z \to z_0}{\longrightarrow} A$.

Когда мы говорим о пределе функции, мы рассматриваем лишь однозначные функции.

Число A может быть и ∞ . Пусть $A=\infty$, тогда $f\underset{z\to\infty}{\longrightarrow}\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall z : |z| \geqslant \delta(\varepsilon) \Rightarrow |f(z)| \geqslant \varepsilon.$$

Теорема.
$$f(z) \underset{z \to z_0}{\longrightarrow} A = B + i \cdot D \Longleftrightarrow u(x,y) \underset{\substack{x \to x_0 \\ y \to y_0}}{\longrightarrow} B, \ v(x,y) \underset{\substack{x \to x_0 \\ y \to y_0}}{\longrightarrow} D.$$

Пусть z_0 — предельная точка множества D, а w = f(z).

ullet Число A- предел функции f(z) при $z o z_0$ вдоль множества D, если

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall z \in D \setminus \{z_0\} : 0 < |z - z_0| \leqslant \delta(\varepsilon) \Rightarrow |f(z) - A| \leqslant \varepsilon.$$

Тогда пишут $\lim_{\substack{z \to z_0 \\ z \in D}} f(z) = A.$

Свойства предела функции:

- 1. Единственность. Предел функции, если он существует, определен однозначно.
- 2. Если $f(z) \underset{z \to z_0}{\longrightarrow} A \in \mathbb{C}$, то функция ограничена в некоторой проколотой окрестности точки z_0 .
- 3. Если $\lim_{z\to z_0} f(z) = A$, $\lim_{z\to z_0} f(z) = B$, $A,B\in\mathbb{C}$, то

(a)
$$\lim_{z \to z_0} \left(f(z) + g(z) \right) = \lim_{z \to z_0} f(z) + \lim_{z \to z_0} g(z);$$

(b)
$$\lim_{z \to z_0} \left(f(z) \cdot g(z) \right) = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z);$$

(c)
$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}, ecnu \lim_{z \to z_0} g(z) \neq 0.$$

Пишем $f(z) \underset{z \to z_0}{\sim} g(z)$, если $\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1$.

Пишем
$$f(z) = o(g(z))$$
, если $\lim_{z \to z_0} \frac{f(z)}{g(z)} = 0$.

При вычислении пределов функцию можно также заменить на эквивалентную ей.

Рассмотрим функцию w = f(z) определенную в окрестности точки $z_0 \in D$ (внутренняя точка).

• Функцию f(z) называют **непрерывной в точке** z_0 , если

$$\lim_{z \to z_0} f(z) = f(z_0).$$

• Если точка $z_0 \in D$ является предельной, то при $\lim_{z \to z_0} f(z) = f(z_0)$ функция f непрерывна в точке z_0 вдоль множества D.

Любую функцию можно записать в виде

$$w = f(z) = u(x, y) + i \cdot v(x, y).$$

Функция f(z) непрерывна в точке $z_0 \iff u(x,y), v(x,y)$ непрерывны в точке (x_0,y_0) , где $x_0 + i \cdot y_0 = z_0$ (следует из определения).

Свойства непрерывных функций:

- 1. (a) f(z) + g(z) непрерывна;
 - (b) $f(z) \cdot g(z)$ непрерывна;
 - (c) $\frac{f(z)}{g(z)}$ непрерывна $(g(z) \neq 0)$,

если функции f(z) и g(z) непрерывны в точке z.

- 2. Если w = F(z), $z = \varphi(\zeta)$, причем $\varphi(\zeta)$ непрерывна в точке ζ_0 , а F(z) непрерывна в точке $z_0 = \varphi(\zeta_0)$, то $F(\varphi(\zeta))$ непрерывна в точке ζ_0 (композиция непрерывных функций является функцией непрерывной).
- 3. (Теорема Кантора.)

Непрерывная на компакте D функция w = f(z) равномерно непрерывна, то есть

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0, \ \forall z', z'' \in D : |z' - z''| \leqslant \delta(\varepsilon) \Rightarrow |f(z') - f(z'')| \leqslant \varepsilon.$$

4 Дифференцирование комплексных функций.

Пусть w = f(z) определена в окрестности точки z_0 . Построим приращение

$$\Delta f = f(z_0 + \Delta z) - f(z_0).$$

• Производной комплексной функции называется предел (если он конечен)

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(z_0) = f'(z)|_{z=z_0}.$$

Тогда будем говорить, что комплексная функция имеет конечную производную.

ullet Функцию w=f(z) называют **дифференцируемой** в точке z_0 , если $\exists A \in \mathbb{C}$:

$$\Delta f = A \cdot \Delta z + o(\Delta z).$$

Первый критерий дифференцируемости функции. Фукнция f(z) дифференцируема в точке $z_0 \iff$ она имеет конечную производную в этой точке $f'(z_0)$.

 \spadesuit \Rightarrow) Поскольку $\Delta f = A \cdot \Delta z + o(\Delta z)$, то

$$\frac{\Delta f}{\Delta z} = A + \frac{o(\Delta z)}{\Delta z}.$$

Переходим к пределу при $\Delta z \to 0$:

$$\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = A \Rightarrow f'(z_0) = A.$$

 \Leftarrow) $\lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z} = f'(z_0)$. Отсюда

$$\lim_{\Delta z \to 0} \left(\frac{\Delta f}{\Delta z} - f'(z_0) \right) = 0;$$

$$\frac{\Delta f}{\Delta z} - f'(z_0) = o(1);$$

$$\Delta f = f'(z_0) \cdot \Delta z + \Delta z \cdot o(1) = f'(z_0) \cdot \Delta z + o(\Delta z),$$

то есть функция дифференцируема в точке z_0 .

Замечание. $o(\Delta z) = o(|\Delta z|)$, докажем это.

$$o(\Delta z) = \alpha(\Delta z) \Rightarrow \lim_{\Delta z \to 0} \frac{\alpha(\Delta z)}{\Delta z} = 0;$$
 (*)

 \boxtimes

$$o(|\Delta z|) = \alpha(|\Delta z|) \Rightarrow \lim_{\Delta z \to 0} \frac{\alpha(|\Delta z|)}{|\Delta z|} = 0.$$
 (**)

Тогда

$$\lim_{\Delta z \to 0} \frac{\alpha(\Delta z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\alpha(\Delta z)}{\Delta z} \cdot \frac{\Delta z}{|\Delta z|} = 0.$$

Соответственно, если выполняется (*), то выполняется u (**), u наоборот. Из этого следует, что дифференциал можно также записать в виде

$$\Delta f = A \cdot \Delta z + o(|\Delta z|).$$

Второй критерий дифференцируемости функции. Функция $f(z) = u(x,y) + i \cdot v(x,y)$ дифференцируема в точке $z_0 = x_0 + i \cdot y_0 \iff$

- 1. функции u(x,y), v(x,y) дифференцируемы в точке (x_0,y_0) ;
- 2. выполняются условия Коши-Римана: в точке (x_0, y_0)

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Причем

$$f'(z)|_{z=z_0} = \frac{\partial u}{\partial x}\Big|_{(x_0,y_0)} + i \cdot \frac{\partial v}{\partial x}\Big|_{(x_0,y_0)}.$$

 $\spadesuit \Rightarrow$) $\Delta f = A \cdot \Delta z + o(\Delta z)$, где

$$A = B_1 + i \cdot B_2,$$

$$\Delta f = \Delta u + i \cdot \Delta v,$$

$$\Delta z = \Delta x + i \cdot \Delta y,$$

$$o(\Delta z) = \varepsilon_1 + i \cdot \varepsilon_2.$$

Тогда

$$\Delta f = \Delta u + i \cdot \Delta v = (B_1 + i \cdot B_2)(\Delta x + i \cdot \Delta y) + \varepsilon_1 + i \cdot \varepsilon_2.$$

Отсюда

$$\Delta u = B_1 \Delta x - B_2 \Delta y + \varepsilon_1, \quad \Delta v = B_2 \Delta x + B_1 \Delta y + \varepsilon_2;$$

причем $|\varepsilon_1| \leq |o(\Delta z)|, |\varepsilon_1| = o(|\Delta z|) = o(\sqrt{(\Delta x)^2 + (\Delta y)^2})$. Аналогично $|\varepsilon_2| = o(\sqrt{(\Delta x)^2 + (\Delta y)^2})$. Подставим и получим

$$\Delta u = B_1 \Delta x - B_2 \Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}), \quad \Delta v = B_2 \Delta x + B_1 \Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$$

Вспомним, что

Функция f(x,y) называется дифференцируемой в точке (x_0,y_0) , если $\exists A,D\in\mathbb{R}$:

$$\Delta f = A \cdot \Delta x + D \cdot \Delta y + o(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

причем $A = f'_x$, $D = f'_y$.

Тогда u(x,y) является дифференцируемой в точке (x_0,y_0) и

$$\frac{\partial u}{\partial x} = B_1, \quad \frac{\partial u}{\partial y} = -B_2.$$

Но v(x,y) также является дифференцируемой в точке (x_0,y_0) и

$$\frac{\partial v}{\partial x} = B_2, \quad \frac{\partial v}{\partial y} = B_1.$$

Следовательно,

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

 \Leftarrow) Для доказательства все рассуждения проведем в обратном порядке. Так как u(x,y) и v(x,y) дифференцируемы в точке (x_0,y_0) , то в этой точке

$$\Delta u = \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + o_1(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

$$\frac{\partial v}{\partial y} \Delta y + o_1(\sqrt{(\Delta x)^2 + (\Delta y)^2}),$$

$$\Delta v = \frac{\partial v}{\partial x} \Delta x + \frac{\partial v}{\partial y} \Delta y + o_2(\sqrt{(\Delta x)^2 + (\Delta y)^2}).$$

Тогда

$$\Delta f = \left(\frac{\partial u}{\partial x} \Delta x + i \cdot \frac{\partial v}{\partial x} \Delta x\right) + \left(-\frac{\partial v}{\partial x} \Delta y + i \cdot \frac{\partial u}{\partial x} \Delta y\right) + \underbrace{o_1(\sqrt{(\Delta x)^2 + (\Delta y)^2}) + o_2(\sqrt{(\Delta x)^2 + (\Delta y)^2})}_{o(\Delta z)} = \underbrace{\frac{\partial u}{\partial x} \left(\Delta x + i \cdot \Delta y\right)}_{\Delta z} + i \cdot \frac{\partial v}{\partial x} \underbrace{\left(\Delta x + i \cdot \Delta y\right)}_{\Delta z} + o(\Delta z) = \left(\frac{\partial u}{\partial x} + i \cdot \frac{\partial v}{\partial x}\right) \cdot \Delta z + o(\Delta z).$$

Следовательно, f(z) дифференцируема в точке z_0 , а

$$f'(z_0) = \frac{\partial u}{\partial x}\Big|_{(x_0, y_0)} + i \cdot \frac{\partial v}{\partial x}\Big|_{(x_0, y_0)}.$$

Все производные от комплексных функций определяются аналогично вещественным функциям.

• Функция называется **дифференцируемой в области** D, если она дифференцируема в каждой точке этой области.

Свойства производных комплексных функций:

- 1. Пусть f(z) и g(z) функции дифференцируемые в точке z_0 . Тогда
 - (a) $(f(z) \pm g(z))' = f'(z) \pm g'(z);$
 - (b) $(f(g) \cdot g(z))' = f'(z) \cdot g(z) + f(z) \cdot g'(z);$

(c)
$$\left(\frac{f(z)}{g(z)}\right)' = \frac{f'(z) \cdot g(z) - f(z) \cdot g'(z)}{g^2(z)}$$
, если $g(z_0) \neq 0$.

Все эти функции дифференцируемые в точке z_0 .

2. Если функция w = f(z) дифференцируема в точке z_0 , а $z = h(\zeta)$ дифференцируема в точке ζ_0 , причем $h(\zeta_0) = z_0$, то

$$(f(h(\zeta)))'\Big|_{\zeta_0} = f'(z_0) \cdot h'(\zeta_0).$$

Так как производная и первый критерий дифференцирования совпадают с соответствующими утверждениями для вещественных функций, то и доказательства данных свойств совпадают с доказательствами соответствующих свойств для вещественных функций.

5 Сопряженно-гармонические функции.

Рассмотрим соотношение для вещественной функции u = u(x, y)

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y} = 0. {1}$$

 \square

- Уравнение (1) называется **уравнением Лапласа** для функции u(x,y).
- Любая функция определенная в некоторой области и удовлетворяющая уравнению Лапласа в этой области называется **гармонической** функцией.

Рассмотрим функцию w = f(z) дифференцируемую в области D. Тогда $f(z) = u(x,y) + i \cdot v(x,y)$ и выполняются условия Коши-Римана

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Позже будет показано, что дифференцируемая в области функция является дважды непрерывно дифференцируемой. Из этого вытекает, что функции u(x,y) и v(x,y) дважды непрерывно дифференцируемы в области D. Получим

$$u''_{xy} = v''_{y^2}, \quad u''_{yx} = -v''_{x^2}.$$

По теореме о смешанных производных $u''_{xy} = u''_{yx}$. Следовательно,

$$v_{y^2}'' = -v_{x^2}'' \Rightarrow v_{x^2}'' + v_{y^2}'' = 0,$$

то есть функция v(x,y) гармоническая. Аналогично получим, что функция u(x,y) также является гармонической. То есть, если комплекнова функция дифференцируема, то вещественная и мнимая части этой функции — гармонические функции.

• Пара гармонический функций u(x,y) и v(x,y) в области D называется сопряженно-гармонической, если u(x,y) и v(x,y) — вещественная и мнимая части дифференцируемой в области D функции $f(z) = u(x,y) + i \cdot v(x,y)$.

Зная одну из двух сопряженно-гармонических функций, всегда можно найти вторую.

Используя теорему о независимости КРИ-2 от пути интегрирования, покажем, что выражение

$$-\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy$$

удовлетворяет условию Эйлера. Примем $P(x,y) = -u'_y$, $Q(x,y) = u'_x$. Тогда

$$P'_y = -u''_{y^2}, \quad Q'x = u''_{x^2}.$$

А условие

$$-u_{y^2}'' = u_{x^2}''$$

выполняется, так как функция u(x,y) удовлетворяет уравнению Лапласа. Следовательно, $\exists v(x,y) = -\frac{\partial u}{\partial v} dx + \frac{\partial u}{\partial x} dy \text{ такая, что } v_x' = -u_y', \ v_y' = u_x'.$

6 Кривые.

Пусть задана непрерывная комплекснозначная функция $z=z(t),\,t\in[a,b].$ Тогда можно выделить вещественную и мнимую части

$$z(t) = x(t) + i \cdot y(t).$$

• Множество точек комплексной плоскости с координатами z(t) при $t \in [a,b]$ называется кривой, а уравнение z = z(t) называется комплекснозначным параметрическим уравнением кривой.

Рассмотрим луч, выходящий из начала координат.

Покажем, что это кривая и найдем ее комплекснозначное параметрическое уравнение. Пусть $\varphi \in (0; \frac{\pi}{2})$ и параметрическое уравнение

$$\begin{cases} x = t, \\ y = \operatorname{tg} \varphi \cdot t; \end{cases} \quad t \in [0; +\infty)$$

Тогда параметрическое комплекснозначное уравнение имеет вид

$$z = t + i \cdot \operatorname{tg} \varphi \cdot t$$
 или $z = t \cdot (\cos \varphi + i \cdot \sin \varphi), \quad t \in [0; +\infty).$

Рассмотрим окружность радиуса R с центром в начале координат.

Ее параметрическое уравнение имеет вид

$$\begin{cases} x = R \cdot \cos \varphi, \\ y = R \cdot \sin \varphi; \end{cases} \qquad \varphi \in [0; 2\pi].$$

Параметрическое комплекснозначное уравнение в таком случае имеет вид

$$z(\varphi) = R \cdot (\cos \varphi + i \cdot \sin \varphi) = Re^{i\varphi}, \quad \varphi \in [0; 2\pi].$$

• Кривая называется гладкой, если функция z(t) непрерывно дифференцируема на [a,b] $u \mid \dot{z}(t) \mid \neq 0 \ \forall t \in [a,b].$

Кривую без точек самопересечения будем называть простой. Длина простой гладкой кривой определяется формулой

дл.
$$l = \int\limits_a^b |\dot{z}(t)| dt.$$

Пусть задана гладкая кривая

$$l: z = z(t) = x(t) + i \cdot y(t), \ t \in [a, b].$$

И пусть эта кривая ориентирована. К этой кривой проведена касательная через точку M_0 и параллельный ей вектор a, причем, так как $\dot{z}(t)=\dot{x}(t)+i\cdot\dot{y}(t)$, его координаты $a(\dot{x}(t),\dot{y}(t))$. Тогда угол $\phi=\arg\dot{z}(t)$ — это угол между касательной (вектором a) и осью x.

7 Интегрируемые функции комплексного переменного.

Пусть l — гладкая кривая, имеющая комплекснозначное параметрическое уравнение

$$z = z(t) = x(t) + i \cdot y(t), \ t \in [a, b].$$

И пусть на кривой l задана функция однозначная f(z).

• Тогда интеграл от комплекснозначной функции

$$\int_{a}^{b} f(z(t)) \cdot \dot{z}(t)dt := \int_{b}^{b} f(z)dz$$

называется интегралом от комплексной функции $f(z) = u(x,y) + i \cdot v(x,y)$.

Следовательно,

$$\int_{a}^{b} f(z(t)) \cdot \dot{z}(t) dt = \int_{a}^{b} \left(u(x(t), y(t)) + i \cdot v(x(t, y(t))) \right) \cdot \left(\dot{x}(t) + i \cdot \dot{y}(t) \right) dt =$$

$$= \int_{a}^{b} (u\dot{x} - v\dot{y}) dt + i \cdot \int_{a}^{b} (u\dot{y} + v\dot{x}) dt = \int_{l}^{b} u dx - v dy + i \cdot \int_{l}^{l} v dx + u dy.$$

Отсюда

$$\int_{I} f(z)dz = \int_{I} udx - vdy + i \cdot \int_{I} vdx + udy.$$

Свойства интеграла комплексного переменного:

1. Линейность.

$$\int_{l} (\alpha f(z) + \beta g(z)) dz = \alpha \int_{l} f(z) dz + \beta \int_{l} g(z) dz.$$

2. Адиитивность.

Есди кривая l кусочно-гладкая состоящая из кривых $l_{i-1} l_i$, то по определению

$$\int_{l} f(z)dz := \sum_{i} \int_{\substack{l: \ \ l: \ \ }} f(z)dz.$$

Если кривая l состоит из кривых $l_{j-1} \stackrel{\frown}{l_j}, j = \overline{1,m},$ то по определению

$$\int_{l} f(z)dz := \sum_{i} \int_{\substack{l_{i-1}l_{i}}} f(z)dz.$$

3. Рассмотрим кусочно-гладкий путь $l: z = z(t), t \in [a,b]$. Тогда будем обозначать его через l^+ . В свою очередь, путь $l^-: z = z(a+b-t), t \in [a,b]$ будем называть противоположно ориентированным по отношению к исходному пути.

При замене ориентации пути на противоположную интеграл комплексного переменного меняет знак.

$$\int_{I^{+}} f(z)dz = -\int_{I^{-}} f(z)dz.$$

4. Оценки интеграла комплексного переменного.

(a)
$$\left| \int_{l} f(z)dz \right| \leqslant \int_{l} |f(z)|ds$$
 — КРИ-1.

$$\begin{split} \Big| \int\limits_l f(z)dz \Big| &= \Big| \int\limits_a^b f(z(t))\dot{z}(t)dz \Big| \leqslant \Big| \int\limits_a^b |f(z(t))| \cdot |\dot{z}(t)|dz \Big| = \\ &= \int\limits_a^b |u(x(t),y(t)) + i \cdot v(x(t),y(t))| \cdot \sqrt{\dot{x}^2 + \dot{y}^2} dt = \\ &= \left[\text{сведение KPИ-1 к определенному интегралу} \right] = \int\limits_l |f(z)| dz. \end{split}$$

 \boxtimes

(b)
$$\left| \int_{l} f(z)dz \right| \leqslant M \cdot \text{дл.}l$$
, где $M = \sup_{z \in l} |f(z)|$.
 $\bullet \left| \int_{l} f(z)dz \right| \leqslant M \cdot \int_{l} ds = M \cdot \text{дл.}l$

8 Геометрический смысл модуля и аргумента производкой комплексной функции.

Рассмотрим функцию w=f(z) такую, что $f'(z_0)=\lim_{\Delta z\to 0}\frac{\Delta f}{\Delta z}$. И рассмотрим гладкую кривую $l:z=z(t),\,t\in[a,b]$. Образом этой кривой будет кривая $L:w=f(z(t)),\,t\in[a,b]$.

Обозначим $\phi = \arg \dot{z}(t_0)$, где $t_0 \in [a,b]$, угол между касательной к кривой в точке $z_0 = z(t_0)$ и осью x. Найдем угол ψ (угол между касательной к образу кривой в точке $w_0 = f(z(t_0))$). Так как

$$\left(f(z(t)) \right)' \Big|_{t=t_0} = f'(z_0) \cdot z'(t_0),$$

TO

$$\psi = \arg(f'(z_0) \cdot z'(t_0)) = \arg z'(t_0) + \arg f'(z_0) = \varphi + \arg f'(z_0).$$

То есть ψ — это угол, на который повернулась касательная к кривой при переходе к образу (при условии, что $f'(z_0) \neq 0$).

Если функция f(z) дифференцируема в точке z_0 и $f'(z_0) \neq 0$, то при действии функции углы между кривыми сохраняются.

Рассмотрим окружность

Причем $|z-z_0| = |\Delta z|$ — точки, лежащие на окружности. Тогда

$$\frac{\Delta f}{\Delta z} = f'(z_0) + o(1), \quad f'(z_0) = \lim_{\Delta z \to 0} \frac{\Delta f}{\Delta z}.$$

Тогда при действии функции f(z) образом окружности будет замкнутая кривая, которая необязательно является окружностью.

При этом

$$|\Delta f| \approx |f'(z_0)| \cdot |\Delta z|.$$

Тогда с точностью до o(1) получится окружность радиуса $\rho \cdot |f'(z_0)|$, однако при действии функции окружность изменится.

• Предел $\lim_{\Delta z \to 0} \frac{|\Delta f|}{|\Delta z|}$ называется коэффициентом растяжения плоскости в точке z_0 при действии функции w = f(z).

Следовательно, $|f'(z_0)|$ — коэффициент растяжения плоскости в точке z_0 при действии функции w = f(z).

Пусть D — область в плоскости z, а K — образ этой области при действии функции $w=f(z)=u(x,y)+i\cdot v(x,y),\,(x,y)\in D.$

Предположим, что отображение $\begin{cases} u = u(x,y), \\ v = v(x,y) \end{cases}$ — диффеоморфное отображение области D и области K. Тогда пл. $K = \iint\limits_D |\mathcal{I}| dx dy$, где \mathcal{I} — якобиан

$$\mathcal{I} = egin{bmatrix} u_x' & u_y' \ v_x' & v_y' \end{bmatrix}.$$

Пусть w = f(z) — функция дифференцируема в некоторой области $D_1 \supseteq D$ и $f'(z) \neq 0$ $\forall z \in D_1$. Так как функция дифференцируема, то выполняются условия Коши-Римана, то есть $u'_x = v'_y$, $u'_y = -v'_x$. Таким образом,

$$\mathcal{I} = u'_x v'_y - u'_y v'_x = (u'_x)^2 + (v'_x)^2 = [f'(z) = u'_x + i \cdot v'_x] = |f'(z)|^2.$$

Тогда

пл.
$$K = \iint_D |f'(z)|^2 dx dy$$
.

9 Интегральная теорема Коши.

Теорема. Если функция w = f(z) дифференцируема в односвязной области D, то \forall замкнутой кусочно-гладкой кривой l лежащей в области D

$$\int_{I} f(z)dz = 0.$$

• Если функция $f(z) = u(x,y) + i \cdot v(x,y)$ дифференцируема, то она непрерывно дифференцируема в области D (доказательство этого утверждения приведем позже). То есть функции u(x,y), v(x,y) непрерывно дифференцируемы в области D. Тогда

$$\int\limits_l f(z)dz = \int\limits_l (udx+vdy)+i\cdot\int\limits_l (vdx+udy) =$$
 = [по теореме о независимости КРИ-2 от пути интегрирования] = 0.

Проверим выполнение условий примененной теоремы:

$$-\frac{\partial v}{\partial x} = \frac{\partial u}{\partial y}, \quad \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x},$$

а это условия Коши-Римана. По второму критерию дифференцируемости они выполняются, следовательно, выполняется теорема о независимости КРИ-2 от пути интегрирования. \boxtimes

10 Следствия из интегральной теоремы Коши.

Следствия.

1. Если функция w = f(z) дифференцируема в односвязной области D, то интеграл $\int\limits_{z} f(z)dz$ не зависит от формы кривой, лежащей в области D.

Какую бы кривую мы не вызяли, интегралы по l_1 и по l_2 будут совпадать.

2. Если кривая l_1 получена из кривой l_0 путем непрерывной деформации, не выводящей из области D, и начало и конец этих кривых совпадают, а функция w=f(z) дифференцируема в этой области, то

$$\int_{l_1} f(z)dz = \int_{l_0} f(z)dz.$$

Причем область необязательно односвязная.

23

lacktriangle Всегда можно выбрать область D_1 , которая односвязная и лежит в области D, такую, что l_1 и l_0 лежат в области D_1 . Тогда получаем утверждение из следствия 1.

• Неодносвязная область, ограниченная простой кусочно-гладкой кривой l_0 и простыми непересекающимися кусочно-гладкими кривыми l_1, l_2, \ldots, l_k , лежащими внутри кривой l_0 и ориентированными так, чтобы область оставалась слева, называется стандартной многосвязной областью.

 \boxtimes

3. Если функция w = f(z) дифференцируемая в некоторой области D, содержит стандартную многосвязную область, то

$$\int_{l_0} f(z)dz + \sum_{i=1}^k \int_{l_i} f(z)dz = 0.$$

lack Проведем разрезы, соединяющие кривую l_0 с кривыми l_1, l_2, \dots, l_k .

Рассмотрим кривую Γ , образовавшуюся из кривых $l_0, l_1, \gamma_{11}, \gamma_{21}, \ldots, l_k, \gamma_{k1}, \gamma_{k1}$, и область ограниченную кривой Γ . Эта область односвязная. Функция w=f(z) будем дифференцируема в этой области. Тогда по интегральной теореме Коши

$$\int_{\Gamma} f(z)dz = 0 = \int_{l_0} f(z)dz + \int_{l_1} f(z)dz + \dots + \int_{l_k} f(z)dz + \int_{\gamma_{11}} f(z)dz + \int_{\gamma_{12}} f(z)dz + \dots + \int_{\gamma_{k1}} f(z)dz + \int_{\gamma_{k2}} f(z)dz = \int_{l_0} f(z)dz + \sum_{i=1}^k \int_{l_i} f(z)dz.$$

Замечание. Если в следствии 3 все кривые считать ориентированными так, что

указанная область D, ограниченная этими кривыми, остается слева, то

$$\int_{l_0} f(z)dz = \sum_{i=1}^k \int_{l_i} f(z)dz.$$

4. Если функция w = f(z) дифференцируема в области D, а l_0 и $l_1 - d$ ве замкнутые кусочно-гладкие простые непересекающиеся кривые ориентированные так, что области ограниченные этими кривыми остаются слева, такие, что множество, лежащее между этими кривыми принадлежит области D, то

$$\int_{l_0} f(z)dz = \int_{l_1} f(z)dz.$$

♦ Вытекает из замечания к следствию 3.

 \boxtimes

Также последнее следствие можно сформулировать следующим образом. Интеграл от дифференцируемой в области функции не меняется при деформации кривой, невыводящей кривую из области D.

11 Первообразная. Интеграл с переменным верхним пределом.

Пусть функция w=f(z) задана в области $D\subseteq\mathbb{C}.$

ullet Функция F(z) заданная в области D называется **первообразной** для функции f(z), если

$$F'(z) = f(z), \quad \forall z \in D.$$

Если функция f(z) задана в области D и интеграл $\int\limits_l f(z)dz$ не зависит от формы кривой, лежащей в области D, то можно построить однозначную функцию $F(z)=\int\limits_{z_0}^z f(\zeta)d\zeta$, где

 z_0 — некоторая фиксированная точка из D, а z — произвольная точка из D ($\int\limits_{z_0}^z f(\zeta) d\zeta$ — интеграл по кривой, соединяющей точки z_0 и z).

Функция

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$

называется интегралом с переменным верхним пределом.

Теорема (о первообразной). Если функция f(z) дифференцируема в односвязной области D, то функция $F(z) = \int\limits_{z_0}^z f(\zeta) d\zeta$ является первообразной в области D для функции f(z).

lacktriangle Возможность построения однозначной функции F(z) вытекает из следствия 1 интегральной теоремы Коши. Необходимо доказать, что $\forall z \in D \ F'(z) = f(z)$. Возьмем точки $z, z + \Delta z \in D$. Тогда

$$F'(z) = \lim_{\Delta z \to 0} \frac{\Delta F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta - \int\limits_{z_0}^{z} f(\zeta) d\zeta}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z} = \lim_{\Delta z \to 0} \frac{\int\limits_{z_0}^{z + \Delta z} f(\zeta) d\zeta}{\Delta z}$$

$$F'(z) - f(z) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta - f(z) \right) = \lim_{\Delta z \to 0} \left(\frac{1}{\Delta z} \int_{z}^{z + \Delta z} f(\zeta) d\zeta - \frac{f(z)}{\Delta z} \int_{z}^{z + \Delta z} d\zeta \right) = \lim_{\Delta z \to 0} \frac{1}{\Delta z} \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta = \left[\frac{1}{|\Delta z|} \cdot \left| \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta \right| \leqslant \left[\frac{1}{|\Delta z|} \cdot \left| \int_{z}^{z + \Delta z} \left(f(\zeta) - f(z) \right) d\zeta \right| \right]$$

функция дифференцируема, следовательно, непрерывна в точке z, то есть

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 \ \forall \zeta : |\zeta - z| \leqslant \delta(\varepsilon) \Rightarrow |f(\zeta - f(z))| \leqslant \varepsilon \Big] \leqslant \frac{1}{\Delta z} \varepsilon \cdot |\Delta z| = \varepsilon \Big] = 0.$$

Замечание. Если $F_1(z)$ и $F_2(z)$ — две первообразные для функции f(z) в односвязной области D, то $F_1(z)-F_2(z)=C\in\mathbb{C}.$

Теорема (формула Ньютона-Лейбница). Если f(z) дифференцируема в односвязной области D, то

$$\int_{z_0}^{z_1} f(\zeta)d\zeta = G(z)\Big|_{z_0}^{z_1},$$

где G(z) — некоторая первообразная для функции f(z).

♦ Пусть

$$\int_{z_0}^{z} f(\zeta)d\zeta = F(z).$$

26

Полагаем в этом равенстве $z=z_1$. Тогда

$$\int_{z_0}^{z_1} f(\zeta)d\zeta = F(z_1) = F(z_1) - F(z_0) = G(z)\Big|_{z_0}^{z_1}.$$

Формула интегрирования по частям. Если $u(z),\,v(z)-\partial$ ве непрерывно дифференцируемые в односвязной области D функции, то

$$\int_{z_0}^{z_1} u(z)dv(z) = u(z) \cdot v(z) \Big|_{z_0}^{z_1} - \int_{z_0}^{z_1} v(z)du(z).$$