CS 584-04: Machine Learning

Autumn 2019 Assignment 4

Question 1 (50 points)

In 2014, Allstate provided the data on Kaggle.com for the Allstate Purchase Prediction Challenge which is open. The data contain transaction history for customers that ended up purchasing a policy. For each Customer ID, you are given their quote history and the coverage options they purchased.

The data is available on the Blackboard as Purchase_Likelihood.csv. It contains 665,249 observations on 97,009 unique Customer ID. You will build a multinomial logistic model with the following specifications.

- 1. The nominal target variable is A which have these categories 0, 1, and 2
- 2. The nominal features are (categories are inside the parentheses):
 - a. group size. How many people will be covered under the policy (1, 2, 3 or 4)?
 - b. **homeowner**. Whether the customer owns a home or not (0 = No, 1 = Yes)?
 - c. married_couple. Does the customer group contain a married couple (0 = No, 1 = Yes)?
- 3. Include the Intercept term in the model
- 4. Enter the five model effects in this order: group_size, homeowner, married_couple, group_size * homeowner, and homeowner * married_couple (No forward or backward selection)
- 5. The optimization method is Newton
- 6. The maximum number of iterations is 100
- 7. The tolerance level is 1e-8.
- 8. Use the sympy.Matrix().rref() method to identify the non-aliased parameters

Please answer the following questions based on your model.

a) (5 points) List the aliased parameters that you found in your model.

Δnc

Aliased (or redundancy) indicates that a column in the design matrix is linearly dependent on other columns. In other words, that column can be expressed as a linear combination of the other columns.

```
Aliased parameters in the model
group_size_4
homeowner_1
married_couple_1
group_size_1 * homeowner_1
group_size_2 * homeowner_1
group_size_3 * homeowner_1
group_size_4 * homeowner_0
group_size_4 * homeowner_1
homeowner_0 * married_couple_1
homeowner_1 * married_couple_0
homeowner_1 * married_couple_1
```

b) (5 points) How many degrees of freedom do you have in your model?

Ans: The degree of freedom $df = m_1 - m_0$

Where m₁: the number of free parameters of model 1

i.e. (Intercept + group_size + homeowner + married_couple + group_size*homeowner + homeowner*married_couple)

m₀: the number of free parameters of model 0

i.e. (Intercept + group_size + homeowner + married_couple + group_size*homeowner)
The degree of freedom of model = 2

c) (10 points) After entering a model effect, calculate the Deviance test statistic, its degrees of freedom, and its significance value between the current model and the previous model. List your Deviance test results by the model effects in a table.

Ans:

Predictors in MNL model	Chi-Square Statistics	Degree of Freedom	Significance
Intercept + group_size	987.576600526 2267	6	4.3478703890271 17e-210
Intercept + group_size + homeowner	5867.78150035 3245	2	0
Intercept + group_size + homeowner + married_couple	84.5780023841 653	2	4.3064572175342 88e-19
Intercept + group_size + homeowner + married_couple + group_size*homeowner	254.078125363 2158	6	5.5121059691980 56e-52
Intercept + group_size + homeowner + married_couple + group_size*homeowner + homeowner*married_couple	70.8422767701 5588	2	4.1380435464863 7e-16

d) (5 points) Calculate the Feature Importance Index as the negative base-10 logarithm of the significance value. List your indices by the model effects.

Ans:

Predictors	Feature Importance Index
Intercept + group_size	209.36172341080683
Intercept + group_size + homeowner	Undefined
Intercept + group_size + homeowner +	18.36587986292153
married_couple	
Intercept + group_size + homeowner + married_c	51.25868244179064
ouple + GroupSize*Homeowner	

e) (10 points) For each of the sixteen possible value combinations of the three features, calculate the predicted probabilities for A = 0, 1, 2 based on the multinomial logistic model. List your answers in a table with proper labelling.

Ans:

	Group_size	Homeowner	married_couple	A=0	A=1	A=2
0	1	0	0	0.259651	0.589175	0.151174
1	1	0	1	0.260092	0.592106	0.147802
2	1	1	0	0.183602	0.682030	0.134368
3	1	1	1	0.154023	0.709918	0.138059
4	2	0	0	0.221936	0.621105	0.156959
5	2	0	1	0.222321	0.624216	0.153463
6	2	1	0	0.202510	0.659773	0.137718
7	2	1	1	0.170552	0.689450	0.139999
8	3	0	0	0.239570	0.604616	0.155814
9	3	3 0	1	0.239992	0.607660	0.152348
10	3	1	0	0.301140	0.531297	0.167563
11	3	1	1	0.259017	0.567017	0.173966
12	4	0	0	0.194485	0.669686	0.135829
13	4	0	1	0.194692	0.672592	0.132716
14	4	1	0	0.387719	0.484974	0.127308
15	4	1	1	0.339172	0.526404	0.134424

f) (5 points) Based on your model, what values of group_size, homeowner, and married_couple will maximize the odds value Prob(A=1) / Prob(A = 0)? What is that maximum odd value? Ans:

For the values Group_size = 1, homeowner = 1, married_couple = 1, we get the maximum odd value for Prob(A=1) / Prob(A=0).

Maximum odd value is: 4.609169

g) (5 points) Based on your model, what is the odds ratio for group_size = 3 versus group_size = 1, and A = 2 versus A = 0? Mathematically, the odds ratio is (Prob(A=2)/Prob(A=0) | group_size = 3) / ((Prob(A=2)/Prob(A=0) | group_size = 1).

Ans:

Taking A=0 as reference target category

 $Log e((Prob(A=2)/Prob(A=0) \mid group_size = 3)) - log e((Prob(A=2)/Prob(A=0) \mid group_size = 1))$

= Parameter of (group_size = 3 | A=2) – Parameter of (group_size = 1 | A=2)

= 0.527471 - 0.801493

= -0.274022

Taking exponent of the previous value: exp(-0.274022) = 0.76031534813

h) (5 points) Based on your model, what is the odds ratio for homeowner = 1 versus homeowner = 0, and A = 0 versus A = 1? Mathematically, the odds ratio is $(Prob(A=0)/Prob(A=1) \mid homeowner = 1) / ((Prob(A=0)/Prob(A=1) \mid homeowner = 0).$

Ans:

```
 (\operatorname{Prob}(A=0)/\operatorname{Prob}(A=1) \mid \operatorname{homeowner} = 1) / ((\operatorname{Prob}(A=0)/\operatorname{Prob}(A=1) \mid \operatorname{homeowner} = 0) \\ = \operatorname{Log} (\operatorname{Prob}(A=0)/\operatorname{Prob}(A=1) \mid \operatorname{homeowner} = 1) - \operatorname{log}((\operatorname{Prob}(A=0)/\operatorname{Prob}(A=1) \mid \operatorname{homeowner} = 0) \\ = (0.800157 - 1.505554 * g1 - 1.164638 * g2 - 0.654639 * g3 + 0.212483 (1-m) \\ = \operatorname{Exp} (\operatorname{Prob}(A=0)/\operatorname{Prob}(A=1) \mid \operatorname{homeowner} = 1) - \operatorname{log}((\operatorname{Prob}(A=0)/\operatorname{Prob}(A=1) \mid \operatorname{homeowner} = 0) \\ \operatorname{Here} \text{ the odds ratio depends on values of group\_size and married\_couple.} \\ \operatorname{So, g1, g2,g3,m take values of (0 or 1)}
```

Question 2 (50 points)

You are asked to build a Naïve Bayes model using the same Purchase_Likelihood.csv. The model specifications are:

- 1. No smoothing is needed. Therefore, the Laplace/Lidstone alpha is zero
- 2. The nominal target variable is **A** which have these categories 0, 1, and 2
- 3. The nominal features are (categories are inside the parentheses):
 - a. **group_size**. How many people will be covered under the policy (1, 2, 3 or 4)?
 - b. **homeowner**. Whether the customer owns a home or not (0 = No, 1 = Yes)?
 - c. married couple. Does the customer group contain a married couple (0 = No, 1 = Yes)?

Please answer the following questions based on your model.

a) (5 points) Show in a table the frequency counts and the Class Probabilities of the target variable.

Ans: class probability can be defined as follows,

```
Class Probability of specific class = \frac{number\ of\ instances\ of\ specific\ class}{total\ number\ of\ instances\ in\ dataset}
```

For given dataset class probabilities of target variables are as follows,

	Α	Count	Class probabilities of target variable
0	0	143691	0.215996
1	1	426067	0.640462
2	2	95491	0.143542

b) (5 points) Show the crosstabulation table of the target variable by the feature group_size. The table contains the frequency counts.

Ans:

There 3 possible values of target variable A=[0,1,2] and 4 possible values of feature group_size [1,2,3,4]. So, it will form a frequency table of dimension 3*4 which is as follows,

Frequency Ta	ble:			
group_size	1	2	3	4
A				
0	115460	25728	2282	221
1	329552	91065	5069	381
2	74293	19600	1505	93

c) (5 points) Show the crosstabulation table of the target variable by the feature homeowner. The table contains the frequency counts.

Ans:

There 3 possible values of target variable A=[0,1,2] and 2 possible values of feature Homeowner [0,1]. So, it will form a frequency table of dimension 3*2 which is as follows,

```
Frequency Table:
homeowner 0 1
A 0 78659 65032
1 183130 242937
2 46734 48757
```

d) (5 points) Show the crosstabulation table of the target variable by the feature married_couple. The table contains the frequency counts.

Ans:

There 3 possible values of target variable A=[0,1,2] and 2 possible values of feature married couple [0,1]. So, it will form a frequency table of dimension 3*2 which is as follows,

```
Frequency Table:

married_couple 0 1

A

0 117110 26581

1 333272 92795

2 75310 20181
```

e) (10 points) Calculate the Cramer's V statistics for the above three crosstabulations tables. Based on these Cramer's V statistics, which feature has the largest association with the target A?

Ans:

Cramer's V is a statistic used to measure the strength of association between two nominal variables, and it take values from 0 to 1. Values close to 0 indicate a weak association between the variables and values close to 1 indicate a strong association between the variables. In this example we are using cramer's V statistics to measure association between target A and features.

				Significance			
homeowner							
married_couple	Chi-square	699.285	2	1.41953e-152	CramerV	0.0324216	
group_size	Chi-square	977.276	6	7.34301e-208	CramerV	0.027102	

Features	Cramer's V Statistics Value		
HomeOwner Programme	<mark>0.0970864</mark>		
Married_couple	0.0324216		
Group_size	0.027102		

From above table we can say that homeowner has largest Cramer's V Statistics value so has largest association with target variable A.

f) (5 points) Based on the assumptions of the Naïve Bayes model, express the joint probability Prob(A = a, group_size = g, homeowner = h, married_couple = m) as a product of the appropriate probabilities.

Ans:

Joint Probability(A = a, group_size = g, homeowner = h, married_couple = m)

```
= Prob(A=a) * Prob(group_size = g | A = a) * Prob(homeowner = h | A = a) * Prob(married_couple = m | A = a)
```

g) (10 points) For each of the sixteen possible value combinations of the three features, calculate the predicted probabilities for A = 0, 1, 2 based on the Naïve Bayes model. List your answers in a table with proper labelling.

Ans:

	Group_size	Homeowner	married_couple	A=0	A=1	A=2
0	1	0	0	0.269722	0.580133	0.150145
1	1	0	1	0.232789	0.614219	0.152992
2	1	1	0	0.194038	0.669659	0.136303
3	1	1	1	0.164935	0.698278	0.138787
4	2	0	0	0.231143	0.616518	0.152338
5	2	0	1	0.198016	0.647907	0.154078
6	2	1	0	0.163628	0.700288	0.138085
7	2	1	1	0.138274	0.725955	0.135771
8	3	0	0	0.308219	0.515924	0.175856
9	3	0	1	0.268311	0.550951	0.180738
10	3	1	0	0.226972	0.609612	0.163416
11	3	1	1	0.194370	0.640410	0.165221
12	4	0	0	0.375490	0.487810	0.136700
13	4	0	1	0.330743	0.527098	0.142158
14	4	1	0	0.282173	0.588196	0.129631
15	4	1	1	0.243930	0.623766	0.132304

h) (5 points) Based on your model, what values of group_size, homeowner, and married_couple will maximize the odds value Prob(A=1) / Prob(A = 0)? What is that maximum odd value?

Ans:

```
maximum=[]
for i in range(len(naive_bayes_probabilities)):
    temp=naive_bayes_probabilities[i][1]/naive_bayes_probabilities[i][0]
    maximum.append([temp])
print(np.array(maximum).max())

5.250112589270714

max_val = np.array(maximum).max()
index = np.where(maximum == max_val)[0][0]

print("The maximum value occurs when group_size, homeowner, married_couple values are: ",combinations[index])
print("The maximum value is: ", max_val)

The maximum value occurs when group_size, homeowner, married_couple values are: (2, 1, 1)
The maximum value is: 5.250112589270714

maximize the odds value for Prob(A=1) / Prob(A = 0) → 5.250112589270714

occurs when,
(group_size=2, homeowner=1, married_couple=1)
```