Optimization Methods for Machine Learning

Haimonti Dutta

Department of Management Science and Systems, UB.

Email: haimonti@buffalo.edu

Acknowledgements

- ► **Slides:** Materials in the slides are obtained from several sources including:
 - Convex Optimization Algorithms. D. P. Bertsekas. Athena Scientific.
 - Optimization Methods for Large Scale Machine Learning. L. Bottou, F. E. Curtis and J. Nocedal.
 - Optimization for Machine Learning. S. Sra, S. Nowozin, and S. J. Wright.
 - The Interplay of Optimization and Machine Learning Research. K. P. Bennett and E. P. Hernández.

Acknowledgements

▶ **Discussions** Many people have advised and provided insightful comments including Hillol Kargupta, (late) David Waltz, Ashwin Srinivasan and many others.

Apologies

- If I do not get around to covering your favorite topic in optimization, or did not include it in the bibliography (drop me an email).
- I will not get around to covering many topics including theory of convex optimization, non-convex optimization methods and much more.

Resources

The following things are available from a github repository: https://github.com/Haimonti/optML

- Slides for this talk
- Sample R code

If you use the R-code for your work, please cite the above repository!

Drop me an email, so I can update the list of projects using the code.

Outline

Machine Learning Case Studies

Iterative Gradient Descent Methods

Gradient Projection Methods

Polyhedral Approximation Techniques

Other Uses of Optimization in Machine Learning

Case Study 1: Text Classification

- Optical Character Recognition (OCR) electronic translation of handwritten, typewritten or printed text into machine translated images
- ▶ Wide applications in banking, healthcare, digital libraries, handwriting recognition, etc. [SBB12]
- Results in very large text databases

Example: Digital Humanities [DPL+11]

To which category does this news article belong?

Example: Analyzing Social Media Data

RT @PatrickMeier: Fox News contributor tweets that all Muslims (1,600,000,000 people) should be killed in response to #BostonMarathon

#NPR now reporting that the families of the MUSLIM terrorists that killed children at the #BostonMarathon are victims. Freaking Idiots

Hostile Intent: Yes / No?

Text Classification and Convex Optimization

In statistical Machine Learning

- ▶ Collection of a sizable set of examples $\{(x_1, y_1), \dots, (x_n, y_n)\}$
- x_i represents features of the text document (e.g. words it includes)
- ▶ $y_i = \pm 1$ is a scalar quantity, called *label* and indicates whether document belongs to a certain class (or topic of interest)
- ▶ **Goal:** Construct a prediction function h; measure its performance by counting how often the program prediction $h(x_i)$ differs from the correct prediction y_i

Search for a prediction function that *minimizes* the frequency of observed misclassifications

Empirical Risk Minimization

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h(x_i) \neq y_i]$$
 where
$$\mathbb{1}(A) = \begin{cases} 1, & \text{if } A = \text{true,} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Rote Learning

Suppose we learnt a function that does the following:

$$h^{rote}(x) = \begin{cases} y_i, & \text{if } x = x_i \text{ for some } i \in \{1, \dots, n\} \\ \pm 1, & \text{arbitrarily otherwise} \end{cases}$$
 (2)

This clearly minimizes the function. But provides no performance guarantees on unseen examples! We want a prediction function that *generalizes* the concepts learnt from examples.

Choice of prediction functions

- How can one choose amongst a carefully selected class of prediction functions (perhaps satisfying certain smoothness conditions and enjoying a convenient parametric representation)?
- ▶ Identify a small subset of viable candidates by minimizing R_n and attempting to choose an optimal h
- Impractical in large scale settings
- ▶ In practice employ a continuous approximation through a loss function that measures a cost for predicting h when the true label is y

Text Classification - Revisited

- Usual Approach: Represent the text document using a bag of words representation
- Very large, sparse representation e.g. RCV1 uses a vocabulary d=47,152 words to represent news stories which are less than 1000 words.

Text Classification - Revisited

- Consider linear discriminant functions
 - ▶ Prediction functions of the form $h(x; w, \tau) = w^T x \tau$
 - ▶ Parameterized by $w \in R^d$ and $\tau \in R$
 - Measures of classifier performance: Compromise between Precision P(y=1|h(x)=1) and Recall P(h(x)=1|y=1)
 - Measure accuracy by counting the number of times the sign function matches the correct label.
 - Recall, the sign function is defined as follows:

$$sgn(x) = \begin{cases} -1, & \text{if } x < 0, \\ 0, & \text{if } x = 0, \\ +1, & \text{if } x > 0. \end{cases}$$
 (3)

- ► Sgn(x) is a discontinuous function!
- Solution: Use continuous functions loss functions such as log loss. log(h, y) = log(1 + exp(-hy)). Add a regularization term to generalize.

Optimization problem formulation

$$min_{(w,\tau)\in R^d\times R} \frac{1}{n} \sum_{i=1}^n \underbrace{\ell(h(x_i; w, \tau), y_i)}_{\text{loss function}} + \underbrace{\frac{\lambda}{2} \parallel w \parallel_2^2}_{\text{regularization term}}$$

Categories of Optimization Methods

Optimization methods for machine learning fall into two categories:

- Batch
- Stochastic

Batch Methods

- ► Minimize R_n
- ▶ Start with an initial $w_1 \in R^d$
- Compute the gradient using the formula: $w_{k+1} = w_k \alpha_k \nabla R_n(w_k) = w_k \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(w_k)$
- ▶ Also called batch gradient or full gradient method.

Outline

Machine Learning Case Studies

Iterative Gradient Descent Methods

Gradient Descent Newton's Method

newton's Method

Variants - Gradient Descent

Conjugate Gradient Method

Stochastic Gradient Descent

Gradient Projection Methods

Polyhedral Approximation Techniques

Other Uses of Optimization in Machine Learning

Why use iterative algorithms?

Iterative algorithms can be used for minimizing a function $f: R^d \to R$ over a set X. They can generate a sequence $\{x_k\}$ which will hopefully converge to an optimal solution.

Iterative Descent Algorithms

- ▶ Generate sequences $\{x_k\}$ according to $x_{k+1} = G_k(x_k)$, where $G_k(x_k) : R^d \to R^d$
- ▶ Algorithms depend on k and a starting point x_0
- G_k may depend on previous iterates x_{k-1}, x_{k-2}, \cdots
- Convergence of the algorithm (and the generated sequence) to a desired point is crucial.
- ► Study the rate of convergence of the algorithm how fast do we reach the desired solution i.e. how many iterations?

Stationary Iterative Algorithm

If G_k does not depend on k, we have $x_{k+1} = G_k(x_k)$ Find a solution of the equation x = G(x).

An example - Gradient Iteration

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

- ▶ Assume there is a differential function $f: \mathbb{R}^n \to \mathbb{R}$.
- ▶ To find the unconstrained minima, optimality condition is $\nabla f(x) = 0$.
- ightharpoonup lpha : Positive step size parameter. Ensures that iteration makes progress towards the solution set of the problem.

Let us find the minimum of a parabola

Problem 1: Find x that is minimum of $f(x) = 1.2(x-2)^2 + 3.2$ or, said another way, find $arg min_x f(x)$.

Solution: Take derivative, set it to 0 and solve for x!

$$f(x) = 1.2(x - 2)^{2} + 3.2$$

$$\frac{df(x)}{dx} = 1.2(2)(x - 2) = 2.4(x - 2)$$

$$\frac{df(x)}{dx} = 0 = 2.4(x - 2)$$

$$x = 2$$

More on gradient descent

- If we cannot find the derivative $\frac{df(x)}{dx}$ directly, how do we solve the problem?
- ▶ Start at some *x* value, use derivative at that value to tell which way to move, and repeat. Gradient descent.
- ightharpoonup α is the factor of derivative to control how far to go.
- $\frac{df(x)}{dx} = 2.4(x-2)$
- ▶ Suppose, x(0) = 0
- ▶ In the k^{th} iteration, $x_{k+1} = x_k \alpha 2.4(x-2)$

Two main ideas of iterative algorithms

- ► Iterative Descent
- Approximation

Iterative Descent

- ▶ The generated sequence $\{x_k\}$ is feasible i.e. $\{x_k\} \subset X$ and satisfies $\Phi(x_{k+1}) < \Phi(x_k)$, if and only if x_k is not optimal
- Φ is a merit function that measures the progress of the algorithm towards optimality.
- It is minimized only at optimal points i.e. arg $min_{x \in X} \Phi(x) = argmin_{x \in X} f(x)$
- ► Example: $\Phi(x) = f(x)$ and $\Phi(x) = \inf_{x^* \in X^*} ||x x^*||$, X^* is the set of optimal points.

Approximation

- ▶ The generated sequence $\{x_k\}$ need not be feasible
- ▶ Obtained by solving at each *k* an approximation of the original minimization problem
- ▶ $x_{k+1} \in argmin_{x \in X_k} F_k(x)$ where $F_k(x)$ is a function that approximates f and X_k approximates X

Another Method: Newton's method

An iterative method for finding successively better approximations to the roots of a differentiable function.

Newton's method: The Algorithm

- Assume there is a function $f(x), x \in R$. The (first) derivative of f(x) is f'(x) and the second derivative is given by f''(x).
- Let x_0 be an initial guess for the root of the function f.
- x^* is called the **stationary point** of f(x).
- ► Taylor expansion $f(x_k) = f(x_k + \triangle x) \approx f(x_k) + f'(x_k) \triangle x + \frac{1}{2} f''(x_k) \triangle x^2$
- ▶ We want to find $\triangle x$ such that $(x_k + \triangle x)$ is a stationary point.
- Set the derivative of the Taylor expansion to zero i.e. $\frac{d}{d\triangle x}(f(x_k) + f'(x_k)\triangle x + \frac{1}{2}f''(x_k)\triangle x^2) = f'(x_k) + f''(x_k)\triangle x = 0$
- ► Choose $\triangle x = -\frac{f'(x_k)}{f''(x_k)}$

If we choose $x_{k+1} = x_k + \triangle x = x_k - \frac{f'(x_k)}{f''(x_k)}$ we will be closer to the stationary point.

 For a parabola, can get there much faster if we also know the second derivative, which is what?

$$\frac{df(x)}{dx} = f' = 2.4(x - 2)$$
$$\frac{d^2f(x)}{dx^2} = f'' = 2.4$$

 and use Newton's method (see the Wikipedia entry for "Newton's method")

$$x(n) = x(n-1) - \frac{f'}{f''}$$

$$x(n) = x(n-1) - \frac{2.4(x-2)}{2.4}$$

$$x(n) = x(n-1) - (x-2)$$

$$x(n) = x(n-1) - (x-2)$$
Newton's Gradient Descent

More on Gradient Descent

- ▶ If the function is not a parabola, what can we do? Cannot solve directly for x. Can still do gradient descent. Can we always use Newton's method?
- ▶ No. The Hessian (second derivative) may be hard to compute.
- ▶ If not a parabola the second derivative information may lead you very far away. When?

Approximating the second gradient

 Say we have picked a direction, p, to go. Rather than compute the second derivative in that direction, we can approximate it using two first derivative values.

$$f''(x)p \approx \frac{f'(x+\alpha p)-f'(x)}{\alpha}$$
 for $0 < \alpha << 1$

 In practice, Moller found he had to modify this by adding λp where λ is set to a value for which the resulting approximated second derivative is well behaved.

$$f''(x)p \approx \frac{f'(x+\alpha p)-f'(x)}{\alpha} + \lambda p$$
, for $0 < \alpha << 1$

This gives us a way to scale the step size.

R Code - Gradient Descent

```
aradDescent
                                                                                                    <sections>
1 #create some values
2 xs <- sea(0,4,len=20)
4 #define the function we want to optimize
5 f<- function(x)</p>
6 W {
        1.2 * (x-2)^2 + 3.2
8 A 3
10 #Plot the function
11 plot(xs, f(xs), type="l", xlab="x",ylab=expression(1.2 * (x-2)^2 + 3.2))
13 #Calculate the aradient of the function
14 arad <- function(x)
15 ₩ {
        1.2*2*(x-2)
17 ▲
18
19 #Closed form solution
20 lines(c(2,2), c(3,8), col="red",ltv=2)
text(2.1, 7, "Closed Form Solution", col="red", pos=4)
23 #Implementation of aradient descent
24 #Initialize the first guess
25 x<-0.1
26 #store initial x values
27 xtrace<-x
28 #store the v-values
29 ftrace<-f(x)
30 # The learning rate alpha
31 alp <- 0.6
32 for (step in 1: 100)
33 ₩ €
34
        #gradient descent step
35
      x \leftarrow x - alp * arad(x)
        xtrace <- c(xtrace,x)
36
37
       ftrace <- c(ftrace, f(x))
38 ▲ }
39 lines(xtrace, ftrace, type = "b", col="blue")
40 text(0.5, 6, "Gradient Descent", col = "blue", pos=4)
41 #print final value of x
42 print(x)
43
```

Solutions: $\alpha = 0.6$

Minima at x=2

Solutions: $\alpha = 0.8$

Minima at x=1.999545

Solutions: $\alpha = 0.001$

Minima at x=0.5058381

Homework

Can you modify the R-code for gradient descent to now perform Newton's Method? Report your result.

Variants of iterative descent algorithms - Scaling

- ▶ To improve the rate of convergence of steepest descent method, *scale* the gradient $\nabla f(x_k)$
- ▶ Multiply with a positive definite symmetric matrix D_k
- ▶ Use $d_k = -D_k \nabla f(x_k)$

$$x_{k+1} = x_k - \alpha_k D_k \nabla f(x_k)$$

Variants of iterative descent algorithms - Extrapolation

- Gradient Method with momentum
- Extrapolate along the direction of the difference of the preceding two iterates
- ▶ Heavy Ball Method: If α_k and β_k are constant
 - ▶ With a momentum term, the steepest descent method is less prone to being stuck in a *local* minima
 - Works very well with cost functions that are alternatively very steep and very flat along the path of the algorithm.

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k D_k \nabla f(x_k) + \beta_k (x_k - x_{k-1}) \\ \beta \text{ is a scalar in [0,1)} \\ x_{-1} &= x_0 \end{aligned}$$

Heavy Ball Method

Nesterov's Method

- Two step process
 - Step 1: Extrapolation: $y_k = x_k + \beta_k(x_k x_{k-1}), \beta \to 1$
 - ► Step 2: Gradient Estimation using constant step size: $x_{k+1} = y_k \alpha \nabla f(y_k)$
- Optimal iteration complexity properties.
- ▶ Comparison to Heavy Ball Method: (1) it reverses order of gradient calculation and extrapolation. (2) Uses $\nabla f(y_k)$ instead of $\nabla f(x_k)$

Conjugate Gradient Method

- Interesting connection between extrapolation method and conjugate gradient method
- ▶ If α_k and β_k in an iteration of extrapolation method are chosen optimally for each k, extrapolation reduces to conjugate gradient.

$$(\alpha_k, \beta_k) \in \operatorname{argmin}_{\alpha, \beta \in R} f(x_k - \alpha_k D_k \nabla f(x_k) + \beta_k (x_k - x_{k-1}), k = 0, 1 \cdots$$

Conjugate Gradient Method

- Suppose we want to solve the following system of linear equations Ax = b
- ▶ A is a symmetric $d \times d$ matrix
- ▶ A is positive definite $x^T A x > 0$ for all non-zero vectors $x \in R^d$
- Conjugate Gradient can be used to solve the problem!
- ▶ It extends to a method for minimizing quadratic functions, which can be used to generalize minimization of arbitrary functions $f: R^d \to R$.

Definition - Conjugate Vectors

- ► Two vectors are conjugate if and only if they are orthogonal with respect to this inner product.
- ► Two non-zero vectors u and v are conjugate if $u^T A v = 0$
 - ▶ if u is conjugate to v, then v is conjugate to u.
- Suppose that $P = p_1, p_2, \dots p_d$ is a set of d mutually conjugate vectors, then P forms a basis for R^d
- Solution x^* of Ax = b can be expressed in terms of this basis set.
- $x^* = \sum_{i=1}^n \alpha_i p_i$

CG for quadratic functions

- Suppose we have some quadratic function $f(x) = \frac{1}{2}x^TAx + b^Tx + c$, with $x \in R^d$, $A \in R^{d \times d}$, $b \in R^d$, $c \in R$.
- ▶ Taking gradient of f, $\nabla f(x) = Ax + b$.
- ▶ If we evaluate $-\nabla f(x)$ at any given location, it will give us a vector pointing towards the direction of steepest descent.

A Proposition

- ▶ Pick some initial x₀
- ▶ Compute the gradient $-\nabla f(x_0)$
- ▶ Move in that direction by some step size α
- \blacktriangleright Unlike normal gradient descent, we do not have a fixed step size α

Perform a line search in order to find the best α

▶ This α is the value of α which brings us to the minimum of f(x) if we are constrained to move in the direction given by $d_0 = -\nabla f(x_0)$.

Compute α

$$g(\alpha) = f(x_0 + \alpha d_0)$$

= $\frac{1}{2}(x_0 + \alpha d_0)^T A(x_0 + \alpha d_0) + b^T(x_0 + \alpha d_0) + c$

- ▶ Minimum of this function can be found by $g'(\alpha) = 0$.
- ▶ Solve for α . $\alpha = -\frac{d_i^T(Ax_i+b)}{d_i^TAd_i}$

An important observation

- ▶ If this were simple gradient descent, we would compute the gradient at each next point and move in that direction.
- ▶ By moving α_0 in direction d_0 and then α_1 in direction d_1 , can we ruin all the work done to find the optimal α ?
- ► Rectify this, by requiring that our directions be *conjugate* to one another.

Which direction to move?

- ▶ We have already moved in the direction $d_0 = -\nabla f(x_0)$.
- ▶ Find direction d_1 conjugate to d_0 . How?
- ▶ Compute d_1 at x_1 . Subtract anything that would counter-act the previous direction.
- ▶ $d_1 = -\nabla f(x_0) + \beta_0 d_0$. What is β_0 ?
- ▶ Since d_0 and d_1 are conjugate, $d_1^T A d_0 = 0$

$$\beta_0 = \frac{\nabla f(x_1)^T A d_0}{d_0^T A d_0}.$$

Choosing this β gives us a direction conjugate to all previous directions.

Iterating this will keep giving us conjugate directions.

Stochastic Gradient Descent

- ► Minimize R_n
- ▶ Start with an initial $w_1 \in R^d$
- ► Compute the gradient using the formula: $w_{k+1} = w_k \nabla f_{i_k}(w_k)$
- ▶ Index i_k is chosen randomly from $1, 2, \dots, n$
- Each iteration of this method is computationally cheap gradient is estimated on only ONE sample!

Comments on the Stochastic Gradient Descent

- $\{w_k\}$ is a stochastic process whose behavior is determined by the random sequence $\{i_k\}$
- ▶ Each direction $-\nabla f_{i_k}(w_k)$ might not be a descent direction from w_k
- ▶ In expectation, if the above is a descent direction, then the sequence can be guided towards the minimizer of R_n

Outline

Machine Learning Case Studies

Iterative Gradient Descent Methods

Gradient Projection Methods
Coordinate Descent

Polyhedral Approximation Techniques

Other Uses of Optimization in Machine Learning

The Projection Method

- A variant of the gradient descent method, also called gradient projection method.
- ▶ P_X () denotes a projection on X, $\alpha_k > 0$ is the step size.

$$x_{k+1} = P_X(x_k - \alpha_k \nabla f(x_k))$$

Drawbacks of the Projection Method

- ▶ It's rate of convergence is often similar to steepest descent and therefore often slow.
 - Can be overcome by scaling techniques.
- ▶ Depending on the nature of *X*, the projection operation may involve substantial overhead.

Coordinate Descent

Is it possible to find a descent approach where the gradient and the Hessian of the function will not be estimated?

The Intuition

- Iterative Method
- ▶ Obtain an iterate as follows: Fix components of variable *x* at their values at current iteration
- Approximately minimize the objective with respect to remaining components.
- ► Each subproblem is a lower dimensional minimization problem
- ► Can be solved more easily than the overall problem.

▶ Set $k \rightarrow 0$

- ▶ Set $k \rightarrow 0$
- ▶ Choose $x^0 \in R^n$

- \triangleright Set $k \to 0$
- ▶ Choose $x^0 \in R^n$
- repeat
 - ▶ Choose index $i \in \{1, 2, \dots, n\}$
 - ▶ Optimize the *i*th coordinate

$$x_i^{k+1} \to \operatorname{argmin}_{\xi \in R} f(\underbrace{x_1^{k+1}, \cdots x_{i-1}^{k+1}}, \underbrace{\xi}_{\text{current solution}}, \underbrace{x_{i+1}^{k}, \cdots x_n^{k}}_{\text{todo}})$$

 $k \rightarrow k+1$

- ▶ Set $k \rightarrow 0$
- ▶ Choose $x^0 \in R^n$
- repeat
 - ▶ Choose index $i \in \{1, 2, \dots, n\}$
 - Optimize the i^{th} coordinate $x_i^{k+1} \to \operatorname{argmin}_{\xi \in R} f(\underbrace{x_1^{k+1}, \cdots x_{i-1}^{k+1}}, \underbrace{\xi}_{\text{current solution}}, \underbrace{x_{i+1}^{k}, \cdots x_{n}^{k}}_{\text{todo}})$
 - $k \rightarrow k + 1$
- Decide when/how to stop.

- \triangleright Set $k \to 0$
- ► Choose $x^0 \in \mathbb{R}^n$
- repeat
 - ▶ Choose index $i \in \{1, 2, \dots, n\}$
 - ▶ Optimize the *i*th coordinate

$$x_{i}^{k+1} \rightarrow \operatorname{argmin}_{\xi \in R} f(\underbrace{x_{1}^{k+1}, \cdots x_{i-1}^{k+1}}_{\text{done}}, \underbrace{\xi}_{\text{current solution}}, \underbrace{x_{i+1}^{k}, \cdots x_{n}^{k}}_{\text{todo}})$$

- $k \rightarrow k+1$
- Decide when/how to stop.
- ▶ Return x^k

Which index should be chosen?

- ▶ Gauss Southwell: If the function is differentiable, at iteration k, pick the index that minimizes $[\nabla f(x_k)]_i$
- Derivative Free Rules:
 - ▶ Cyclic Order: $1, 2, \dots, n, 1, \dots$
 - ▶ Almost Cyclic: Each coordinate $1 \le i \le n$ will be picked at least once every B iterations, $B \ge n$.
 - ▶ Double Sweep: $1, \dots, n, n, \dots, 1$, repeat.
 - ▶ Cyclic with permutation: Random order each cycle.
 - Random Sampling: Pick a random index at each iteration.

Block Coordinate Descent

```
minimize f(x) subject to x \in X where f: R^n \to R is a differentiable function X is a Cartesian product of closed convex sets X_1, X_2, \cdots, X_m X = X_1 \times X_2 \times \cdots \times X_m
```

Block Coordinate Descent

- ▶ The vector x is partitioned as $x = (x^1, x^2, \dots, x^m)$, where each x^i belongs to R^{n_i}
- ▶ The constraint $x \in X$ is equivalent to $x^i \in X_i, i = 1, \dots, m$
- ▶ When $n_i = 1$ for all i, x^i s are scalars.
- ► Minimize with respect to a single component x^i at each iteration with all the other components fixed.

Block Coordinate Descent

$$\begin{aligned} x_k &= (x_k^1, \cdots, x_k^m) \\ x_{k+1} &= (x_{k+1}^1, \cdots, x_{k+1}^m) \\ x_{k+1}^i &\in \text{arg min} f(x_{k+1}^1, \cdots, x_{k+1}^{i-1}, \xi, x_k^{i+1}, \cdots, x_k^m), i = 1, \cdots, m \end{aligned}$$

- At each iteration the cost is minimized with respect to each of the "block coordinate" vectors xⁱ taken one at a time in cyclic order.
- Makes sense only if the minimization can be performed fairly easily.
- ▶ When x^i is scalar this is straightforward.

Outline

Machine Learning Case Studies

Iterative Gradient Descent Methods

Gradient Projection Methods

Polyhedral Approximation Techniques
Cutting Plane Methods

Other Uses of Optimization in Machine Learning

A Little Digression - Subgradients of convex functions

Definition: A vector $g \in R^d$ is a *subgradient* of $f : R^d \to R$ at $x \in \text{dom } f$ if for all $z \in \text{dom } f$ $f(z) \ge f(x) + g^T(z - x)$

- ▶ If *f* is convex and differentiable, then its gradient at *x* is a subgradient.
- ► BUT, sub gradients exist even for non-differentiable functions.

Subgradients - An illustration

Figure: At x_1 the convex function f is differentiable, and g_1 (which is the derivative of f at x_1) is the unique sub gradient at x_1 . At the point x_2 , f is not differentiable. At this point, f has many sub gradients: two sub gradients - g_2 and g_3 are shown here.

Figure adapted from https://see.stanford.edu/materials/lsocoee364b/01-subgradients_notes.pdf

Subgradients - An Example

Absolute Value: Consider f(z)=|z|. For x<0 the sub gradient is unique $\partial f=-1$. Similarly, for x>0 we have $\partial f=1$. What happens at x=0?

At x=0, the sub differential is defined by the inequality $|z| \ge gz$ for all z, which is satisfied if and only if $g \in [-1,1]$. Therefore, we have $\partial f(0) = [-1,1]$.

Figure: The absolute value function (left) and its sub differential $\partial f(x)$ as a function of x (right).

Polyhedral Approximation

• Generate a sequence x_k by solving at each k an approximate problem

$$x_{k+1} \in \underset{x \in X_k}{\operatorname{argmin}} F_k(x)$$

where,

- \triangleright F_k is a polyhedral function that approximates f
- X_k is a polyhedral set that approximates X
- Assumption: The polyhedral structure of the problem is easier to solve than the original.

First Order Taylor Approximation

For any x and x' we have $f(x) \ge f(x') + \langle x - x', \nabla f(x') \rangle$

Cutting Plane Methods or Localization Methods

Cutting planes [SZV09, TVSL10] are hyperplanes that separate the current point from the optimal points.

Figure: The inequality $a^Tx \leq b$ defines a cutting plane at the the query point x, for the target set X. To find a point in a target set we need only search the lightly shaded half-space; the unshaded half-space $\{z|a^Tz>b\}$ cannot contain any point in the target set.

An Intuition

- ▶ In cutting plane methods, we do not have direct access to any description of the target set *X* except through an oracle.
- Query oracle at point $x \in R^d$
- ▶ Oracle returns the following information: Either $x \in X$, in which case we are done.
- OR Return a separating hyperplane between x and X
- ► The separating hyperplane is also called a CUT. It eliminates a half space from our search.

Neutral and Deep Cuts

- ▶ **Neutral Cut:** When the cutting plane $a^Tz = b$ contains the query point x, it is a neutral cut.
- ▶ **Deep Cut:** When $a^Tx > b$, i.e. x lies in the interior of the half space that is being cut from consideration, the cutting plane is called a deep cut.

Figure: (Left) A neutral cut. (Right) A deep cut.

Why use Cutting Plane Methods?

- Cutting-plane methods do not require differentiability of the objective and constraint functions. Each iteration requires the computation of a sub gradient of the objective or constraint functions.
- Cutting-plane methods can exploit certain types of structure in large and complex problems.
- Cutting-plane methods do not require evaluation of the objective and all the constraint functions at each iteration. This can make cutting-plane methods useful for problems with a very large number of constraints.

The Goal

- ▶ Find a point in a convex set (also called a **target** set) $X \subseteq R^d$
- ► Target set *X* can be taken as the set of optimal points for the problem
- ▶ Goal: Find an optimal point for the optimization problem

The set-up

- ▶ Solve the optimization problem min $\{f(x)|x \in X\}$ where $X \subseteq R^d$ is a convex set, $f: R^d \to R$ is a convex function and a minimum exists.
- ► Set *X* can be accessed by a *separation oracle*
- Given â ∈ X, the separation oracle says either (1) â ∈ X or (2) Return a hyperplane, cutting plane ⟨a, x⟩ ≤ b that separates â from X

▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$

- ▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$
- loop

- ▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$
- ► loop
- ▶ Let $x_t \in \operatorname{argmin}_{x \in X_t} f(x)$

- ▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$
- ► loop
- ▶ Let $x_t \in \operatorname{argmin}_{x \in X_t} f(x)$
- ▶ If $x_t \in X$ then stop. Else find a cutting plane $\langle a, x \rangle \leq b$ separating x_t from X

- ▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$
- ► loop
- ▶ Let $x_t \in \operatorname{argmin}_{x \in X_t} f(x)$
- ▶ If $x_t \in X$ then stop. Else find a cutting plane $\langle a, x \rangle \leq b$ separating x_t from X
- $X_{t+1} \to X_t \cap \{x | \langle a, x \rangle \leq b\}$

- ▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$
- ► loop
- ▶ Let $x_t \in \operatorname{argmin}_{x \in X_t} f(x)$
- ▶ If $x_t \in X$ then stop. Else find a cutting plane $\langle a, x \rangle \leq b$ separating x_t from X
- $X_{t+1} \to X_t \cap \{x | \langle a, x \rangle \leq b\}$
- $ightharpoonup t \leftarrow t + 1$

- ▶ Initialization: $t \leftarrow 0, X_0 \supseteq X$
- loop
- ▶ Let $x_t \in \operatorname{argmin}_{x \in X_t} f(x)$
- ▶ If $x_t \in X$ then stop. Else find a cutting plane $\langle a, x \rangle \leq b$ separating x_t from X
- $X_{t+1} \to X_t \cap \{x | \langle a, x \rangle \leq b\}$
- $ightharpoonup t \leftarrow t+1$
- end loop

The Trick

Approximate X well by a convex polyhedron but only *near the optimum*. This is best seen if X is already a convex polyhedron, described by a set of linear inequalities. At optimum only some of the inequalities are active. Remove all inactive inequalities - Problem unaffected!

Outline

Machine Learning Case Studies

Iterative Gradient Descent Methods

Gradient Projection Methods

Polyhedral Approximation Techniques

Other Uses of Optimization in Machine Learning

Other Uses of Optimization

- Support Vector Machine (SVM) formulations for classification, regression, ranking, and novelty detection require the solutions of large dense QPs or LPs.
- Belief Propagation
- Large scale Multi-Kernel Learning
- Ranking Algorithms that exploit structure
- Max Margin Methods for Structured Output

Conclusion

- Several iterative descent techniques (including gradient descent, newton method, conjugate gradient method, SGD, coordinate descent and others)
- Examined polyhedral approximation using cutting plane methods
- Some implementations of the above techniques are available from the github repo.
- ► The MOSEK interface to R and RMOSEK package has some nice implementations of these techniques
- ► We did not cover many things convex optimization in active learning, non-convex optimization, and a lot more!

Some Useful References

- Software
 - The RMOSEK Package: http://rmosek.r-forge.r-project.org/
 - CVX: Matlab software for disciplined convex optimization http://cvxr.com/cvx/
 - CPLEX: https://www-01.ibm.com/software/commerce/ optimization/cplex-optimizer/
- ► MOOC on Convex Optimization: https://lagunita.stanford.edu/courses/ Engineering/CVX101/Winter2014/about

Interested in Convex Optimization Methods for ML?

If you are a

- ► Ph.D. student interested in applying convex optimization to your application
- Interested in collaborating on research please visit www.buffalo.edu/~haimonti

Please drop me an email: haimonti@buffalo.edu

References

 $[\mathsf{DPL}^+11]$ Haimonti Dutta, Rebecca J Passonneau, Austin Lee, Axinia Radeva, Boyi Xie, and David Waltz.

Learning parameters of the k-means algorithm from subjective human annotation.

In Twenty-Fourth International FLAIRS Conference, 2011.

[SBB12] Amarjot Singh, Ketan Bacchuwar, and Akshay Bhasin. A survey of ocr applications. International Journal of Machine Learning and Computing, 2(3):314–318, 2012.

[SZV09] Ankan Saha, Xinhua Zhang, and S. V. N. Vishwanathan. Lower bounds for BMRM and faster rates for training svms. CoRR, abs/0909.1334, 2009.

[TVSL10] Choon Hui Teo, S.V.N. Vishwanthan, Alex J. Smola, and Quoc V. Le. Bundle methods for regularized risk minimization. J. Mach. Learn. Res., 11:311–365, March 2010.