Lab 7

Alexander Hernandez

09/15/2022

1) National HighWay System Designation Act

```
speed_file = file.choose()
speed_data = read.table(speed_file, sep='\t', header=TRUE)
```

a) Print the first 5 lines of the data

```
speed_data[1:5,]
```

```
STATE INCREASE FATALITIESCHANGE
##
## 1
                                            -29.0
                Alaska
                              No
           Connecticut
                              No
                                             -4.4
## 3 Dist. of Columbia
                              No
                                            -80.0
                                            -25.0
                Hawaii
                              No
## 5
               Indiana
                              No
                                             -13.2
```

b) Draw the histogram of the %changes fatalities from 95-96

```
hist(speed_data$FATALITIESCHANGE,
    main="States with Percentage Change of Interstate Fatlities from 1995-1996",
    xlab="Percentage Change", ylab="Frequency",
    xlim=range(-80,80))
```

States with Percentage Change of Interstate Fatlities from 1995–199

c) Compare speed limit and fatalities with side by side boxplots

Speed limit and Traffic Fatalities

2) Crime Rates for 50 States in 2005

 ${\it \# http://datasets.flowing} {\it data.com/crimeRatesByState2005.tsv}$

a) Import the dataset in R and name it 'crime'

crime = read.table('http://datasets.flowingdata.com/crimeRatesByState2005.tsv', sep='\t', header=TRUE)

b) How many variables are included in the data

ncol(crime)

[1] 9

c + d) Use code below to draw bubble plots + Add the name of the states using code

bubble_plot = symbols(crime\$murder, crime\$burglary, circles=crime\$population)
text(crime\$murder, crime\$burglary, crime\$state, cex=0.5, bg="red")

3) Hepatitis

 ${\it \# https://archive.ics.uci.edu/ml/machine-learning-databases/hepatitis/hepatitis.data}$

a) Import the data in R

hepatitis = read.table("https://archive.ics.uci.edu/ml/machine-learning-databases/hepatitis/hepatitis.d

b) Replace missing values ('?') with 'NA'

```
new_hepatitis = hepatitis
new_hepatitis[new_hepatitis == '?'] = NA
```

c) How many observations contain missing information?

```
sum(is.na(new_hepatitis))
```

[1] 167

4) Generate 100 random numbers from a normal distribution with mean 40 and SD 5

```
rnorm(100, mean=40, sd=5)

## [1] 41.49080 35.80519 43.14826 44.09761 36.35183 34.84727 34.66580 37.36804

## [9] 40.34184 40.71316 37.32997 40.28572 37.55897 45.04279 43.83132 33.07987

## [17] 42.46501 44.63032 57.79478 39.54829 41.31933 39.03895 41.27547 38.16106

## [25] 43.04461 32.44658 36.36906 43.42939 38.50250 42.92974 35.93219 39.01516

## [33] 40.05770 36.24910 41.18493 45.13307 42.07047 35.55047 33.09669 36.10549

## [41] 39.79083 45.77575 52.46373 36.08617 40.23949 29.38989 37.12836 38.01926

## [49] 40.84117 39.24300 34.52713 43.31179 49.55410 39.44867 38.61474 44.09888

## [57] 41.00362 36.81348 49.50893 35.10663 37.91504 34.70159 38.03975 34.94875

## [65] 43.76638 41.47861 46.42036 37.40654 36.88277 36.95302 43.13234 37.94150

## [73] 41.72921 35.79486 32.71174 45.49792 40.55618 39.65094 43.90598 44.20186

## [81] 44.89596 41.66720 43.86840 39.75766 39.71557 36.99728 37.96472 41.28260

## [89] 40.85498 42.41273 38.08200 42.90719 44.57369 47.40352 40.26088 36.55597

## [97] 41.04387 38.46741 38.13044 47.76598
```

5) Manuscript Data - Import to R without saving and determine dims

```
dim(read.table("http://lib.stat.cmu.edu/jcgs/tu",skip=3, header=TRUE))
## [1] 136 7
```