PROBLEMAS DE MATEMÁTICA DISCRETA

Lista 2 - Indução, Teorema Fundamental da Aritmética

- 2.1 Use o crivo de Erastótenes para listar todos os números primos entre 1 e 200.
- 2.2 Determine o conjunto $A=\{4m+7n\,|\,m,n\in\mathbb{N}\}$ mostrando, em particular, que se $a\geq 29$, então $a\in A$.
- 2.3 Sejam $a_1, \dots, a_n \in \mathbb{N}$ e $d = \mathsf{mdc}(a_1, \dots, a_n)$. Prove que existem inteiros $x_1, \dots, x_n \in \mathbb{Z}$ tais que

$$d = x_1 a_1 + \dots + x_n a_n.$$

- 2.4 Determine uma fórmula para a soma dos primeiros n cubos, $1^3 + 2^3 + \cdots + n^3 = \sum_{k=1}^n k^3$, em função de $n \in \mathbb{N}$, e por indução.
- 2.5 Seja $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ o coeficiente binomial, com $n\geq k\geq 0$ inteiros. Mostre, por indução, a igualdade:

$$\binom{2n}{n} = \frac{2^n}{n!} \prod_{k=1}^n (2k-1).$$

- 2.6 Seja P um polígono convexo (pode assumir que é regular todos os lados iguais, e vértices à mesma distância do centro). Uma diagonal de P é um segmento de recta que une dois vértices não consecutivos. Mostre que, se P tem n lados, $n \geq 3$, o número de diagonais de P é $\frac{1}{2}n(n-3)$.
- 2.7 Mostre que, se $n \ge 2$ e n não é primo então existe um primo p que divide n e tal que $p^2 \le n$. Use este resultado para mostrar que 467 é primo.
- 2.8 Um número $n \in \mathbb{N}$ chama-se perfeito se n é igual à soma de todos os seus divisores distintos de n (por exemplo 6 é perfeito porque 6 = 1 + 2 + 3).
 - (a) Dê um exemplo de um número perfeito distinto de 6.
 - (b) Mostre que, se p é primo e 2^p-1 também, então $2^{p-1}(2^p-1)$ é um número perfeito
- 2.9 Seja $\Delta(n)$ a cardinalidade do conjunto dos divisores positivos de n. Por exemplo, $\Delta(6)=4$, uma vez que $\mathrm{Div}(6)=\{1,2,3,6\}$. Seja $n=p_1^{k_1}\cdots p_r^{k_r}$ a factorização de n em primos distintos. Prove que $\Delta(n)=(k_1+1)\cdots(k_r+1)$.
- 2.10 Com a mesma notação do problema anterior, prove que $\Delta(n)$ é impar se e só se n é um quadrado, isto é existe $m \in \mathbb{N}$ tal que $m^2 = n$.

- 2.11 Considere a factorização de $n \in \mathbb{N}$ em primos não necessáriamente distintos, e seja p o menor primo que divide n. Mostre que o número de factores é, no máximo, $\log_p n$.
- 2.12 Prove que se $n \in \mathbb{N}$ não é um quadrado, então \sqrt{n} é um número irracional.
- 2.13 Um triplo pitagórico é $(x,y,z)\in\mathbb{N}^3$ de tal forma que $x^2+y^2=z^2.$

não ambos ímpares.

- (a) Mostre que, se n>m>0 são primos entre si, e não ambos ímpares, então $(n^2-m^2,\,2nm,\,n^2+m^2)$ é um triplo pitagórico, e que $\mathrm{mdc}(n^2-m^2,\,2nm,\,n^2+m^2)=1$.
- (b) Prove que todos os triplos pitagóricos são múltiplos da forma indicada na alínea (a), ou seja, da forma $(a(n^2-m^2),\,2amn,\,a(n^2+m^2))$ com $a,m,n\in\mathbb{N}$ e n>m>0
- 2.14 Seja $\phi(n)$ a função de Euler, e $\Delta(n)$ a cardinalidade do conjunto dos divisores de n. Mostre que $\Delta(n) + \phi(n) \leq n + 1$. Para que valores de n há igualdade?