

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO MESTRADO EM ENGENHARIA MECÂNICA

PROF.: Dr. Clovis Sperb de Barcellos

Estudo do Comportamento Dinâmico de um Veículo de Passageiros em Manobras de *Handling*

ALUNO: Luiz Fernando B. Máximo

AGRADECIMENTOS

Ao Prof. Dr. Clovis Sperb de Barcellos pela orientação deste trabalho e a disponibilidade ao longo do curso;

Ao Prof. Dr. Marcelo Becker pela contribuição na revisão do texto;

À Fiat Automóveis S.A. e ao setor de Experimentação de Veículos;

Ao Eng. Marco Fábio Inglese;

À FIEMG / SENAI;

Aos professores do curso de Mestrado que contribuíram para a minha formação;

Ao Eng. Yuri Augusto Ribeiro Garcia;

Aos colegas e funcionários do mestrado.

RESUMO

O presente trabalho de pesquisa tem como objetivos o estudo e a compreensão dos fenômenos reais e físicos associados ao comportamento dinâmico de um automóvel em marcha, relacionando a movimentação do veículo e suas reações durante a realização de manobras de mudança de direção com o esterçamento do volante, em função da alteração das características técnicas de componentes isolados e agrupados. O trabalho é composto de três etapas. Na primeira, é feita uma revisão bibliográfica na qual são estudadas as características técnicas e influência dos componentes e sistemas de suspensões dianteira e traseira, direção e pneus. Na segunda estão descritos as características da instrumentação utilizada nos testes experimentais em pista plana de asfalto a velocidades constantes, os procedimentos experimentais, bem como os resultados analíticos e gráficos das provas com os vários componentes. Na terceira etapa e como objetivo final, é feita a análise conjunta dos resultados das provas de modo a conhecer as tendências de comportamento durante manobras de handling, confrontando também os dados encontrados com aqueles disponíveis na literatura técnica. Com estes dados pode-se escolher com mais facilidade os componentes que devem ser alterados para se obter um melhor desempenho dinâmico.

ABSTRACT

The objectives of the research were the comprehension of the real and physical phenomena associated with the dynamic behavior of a moving passenger vehicle, and its effects on handling qualities, data acquisition and analysis of car mobility data, the practical training with instrumentation and, finally, make a tendency analysis of the handling behavior on a ride test, based on a modification of the mechanical characteristics of suspension components. The work was comprised of a theoretical study phase, an experimental acquisition, and analysis of handling. First, the theoretical study was based on a literature review concerning suspension, steering systems, and tires. During the experimental work acquisition data was performed changing the characteristics of springs, anti-roll bars (stabilizer), and shock absorbers. To reach the final objective, the individual responses of changing parts was analysed. The resulting analysis is important to reduce the development time on the final ride and handling tests, and show the main points that must be change to obtain the best dynamic performance on handling maneuvers.

SUMÁRIO

	Pág
Lista de figuras	X
Lista de tabelas	XV
Nomenclatura	xvi
Abreviaturas	xxi
Capítulo 1 - INTRODUÇÃO	1
1.1 – Generalidades	1
1.2 – Handling e Conforto	2
1.3 – Objetivos e Escopo	4
Capítulo 2 - REVISÃO BIBLIOGRÁFICA	6
2.1 – Sistemas de Suspensão	6
2.1.1 – Suspensão Dianteira MacPherson	7
2.1.2 – Suspensão Traseira de Braços Long. e Travessa	10
2.1.3 – Molas	14
2.1.4 – Amortecedores Telescópicos	16
2.1.5 – Barras Estabilizadoras	19
2.1.6 – Batentes de Fim de Curso	21
2.2 – Sistemas de direção	23
2.2.1 – Generalidades	23
2.3 – Pneus	26
2.3.1 – Introdução	26

2.3.2 – Construção	31
2.4 – Cinemática das Suspensões	33
2.4.1 – Introdução	33
2.4.2 – Características dos Eixos	33
2.4.3 – Efeitos Anti-mergulho e Anti-Levantamento	48
2.5 - Comportamento em Manobras e Curvas	49
2.5.1 – Introdução	49
2.5.2 – Geometria de Ackerman	49
2.5.3 – Comportamento em Altas Velocidades	51
2.5.4 – Efeitos da Suspensão sobre a Resposta em Curvas	59
2.5.5 – Método Experimental de Medição de Sub-esterço	65
2.6 – Avaliação Dinâmica de Comportamento	67
2.6.1 – Relação Veículo / Motorista e Testes	67
2.6.2 – Respostas a Perturbações Constantes	68
2.6.3 – Respostas a Perturbações Variáveis	69
Capítulo 3 - METODOLOGIA DAS PROVAS	73
3.1 – Instrumentos Utilizados	73
3.1.1 – Correvit	73
3.1.2 – Volante Dinamométrico	76
3.1.3 – Acelerômetros	77
3.1.4 – Transdutores de Curso	78
3.1.5 – Sistema de Aquisição e Armazenamento de Dados	81
3.1.6 – Computador e Software	82
3.2 – Parâmetros Analisados nas Aquisições de Dados	82

3.2.1 – Parâmetros de Controle	82
3.2.2 – Parâmetros de Resultados	82
3.3 – Diagrama do Aparato Experimental	83
Capítulo 4 – DESENVOLVIMENTO EXPERIMENTAL	84
4.1 – Controle do Veículo e Manobras	84
4.2 – Procedimentos Experimentais e Simplificações	86
4.3 – Componentes Substituídos	88
4.3.1 – Curvas dos Amortecedores de Testes	89
4.4 – Levantamento Experimental dos Ângulos do Volante e Rodas	90
4.5 – Levantamento Exp. da Variação de Convergência Dianteira	91
Capítulo 5 - RESULTADOS E DISCUSSÕES	93
5.1 – Gráficos de Controle das Manobras	93
5.1.1 – Controle do Ângulo de Volante e Veloc. longitudinal	93
5.1.2 - Controle da Velocidade de giro do Volante e Ac. Vertical	94
5.2 – Resultados das Provas a 60 e 120 Km/h	95
5.2.1 – Análise de Resultados das Molas	95
5.2.2 – Análise de Resultados das Barras Estabilizadoras	100
5.2.3 – Análise de resultados dos Amortecedores	104
5.3 – Avaliação Global dos resultados	108
Capítulo 6 – CONCLUSÕES	111
6.1 – Análise de Comportamento do handling	111
6.2 – Sugestões para trabalhos futuros	113
Referências bibliográficas	116
Apêndice A – Cálculo do Centro de Gravidade e Massa	119

Apêndice B – Geometria das suspensões para Efeitos "Anti"	122
B.1 – Geometria das Suspensões para 100% "Anti-Mergulho"	122
B.2 – Ângulos de Geometria do Veículo de Testes	122
B.3 – Efeito Anti-Levantamento da Suspensão Dianteira	124
B.4 – Efeito Anti-Abaixamento da Suspensão Traseira	125
Apêndice C – Frequências Naturais das Suspensões	126
C.1 – Características de Amortecimento	126
C.2 – Características do Veículo de Testes	128
C.2.1 – Frequência natural não amortecida da suspensão	130
Apêndice D – Equipamento para Testes e Medição Dinâmica	132
D.1 – Sensores de Medição de Movimento e Atitudes	132
Apêndice E – Gráficos Completos de Referência	134
Anexo A – Tabela com Dados de Ângulo Volante e Ângulo das Rodas	137
Anexo B – Tabela com Dados Registrados em Prova a 60 Km/h	138

LISTA DE FIGURAS

		Pág.
Figura 1.1	Sistema de eixos coordenados do veículo conforme ISO 4130	
	e DIN 70000.	4
Figura 2.1	Esquema simplificado de uma suspensão de veículo	7
Figura 2.2	Fixação superior da suspensão dianteira McPherson. O rolamento permite o movimento de rotação, enquanto a borracha absorve impactos e filtra vibrações	8
Figura 2.3	Vista em corte de uma suspensão dianteira McPherson, dotada de eixo motriz.	9
Figura 2.4	Esquema de forças atuantes na suspensão	10
Figura 2.5	Conjunto da suspensão traseira com braços combinados e barra transversal ou travessa. Detalhe da bucha de borracha montada na articulação de fixação no chassis	11
Figura 2.6	Sob influência de esforços laterais, o eixo traseiro pode assumir um ângulo Δr , provocando sobre-esterço	12
Figura 2.7	Configurações de posicionamento da travessa na suspensão traseira.	13
Figura 2.8	Exemplo de curvas de amortecedores	17
Figura 2.9	Desenho esquemático do princípio de funcionamento do amortecedor de duplo tubo:.	19
Figura 2.10	Barra estabilizadora montada sobre uma suspensão dianteira McPherson.	20
Figura 2.11	Detalhe construtivo e curva de um batente de elastômero com função de mola suplementar.	22

Figura 2.12	Geometria básica para a realização de curvas proposta por Ackerman.	23
Figura 2.13	Esquema de funcionamento do sistema de direção. 3- braços da direção esquerdo e direitos; 7- terminais esféricos de ligação do tirante da caixa ao braço; 8- caixa de direção do tipo pinhão e cremalheira.	24
Figura 2.14	Esquema dos componentes do sistema de direção hidráulica.	25
Figura 2.15	Construção dos três principais tipos de pneus empregados atualmente.	27
Figura 2.16	Deformação na região de contato durante uma frenagem	28
Figura 2.17	Deformação do pneu sob atuação de força lateral	29
Figura 2.18	Pneu radial e principais componentes	30
Figura 2.19	Modelo mecânico do comportamento da borracha do pneu dependente da Frequência.	32
Figura 2.20	Representação esquemática do passo do veículo L, e das bitola dianteiras e traseiras $t_{\rm f}$ e $t_{\rm r}$.	34
Figura 2.21	Definições dos centros e eixo de rolamento	36
Figura 2.22	Alturas do centro de rolamento h _r de suspensão MacPherson em duas bitolas de comprimentos diferentes	36
Figura 2.23	Alturas do centro de rolamento h _r de suspensão traseira com braços longitudinais e travessa.	37
Figura 2.24	Ângulo de <i>camber</i> em relação a terra. Convencionado positivo quando a parte superior do plano da roda está para fora da linha vertical.	38
Figura 2.25	Estudos mostram que camber positivo entre 5' e 10', proporcionam maior durabilidade do pneu. Valores positivos aceleram desgaste do lado externo, e negativos do lado interno.	39

Figura 2.26	Curva de variação do ângulo de <i>camber</i> das rodas dianteiras de veículos com suspensão MacPherson (BMW), e o de duplo leque do Honda Accord.	40
Figura 2.27	A convergência total das rodas é a diferença entre as medidas b e c . Também pode ser identificada pelo ângulo da roda	41
Figura 2.28	A resistência ao rolamento provoca uma força longitudinal FR, em sentido contrário ao movimento e efeito divergente	41
Figura 2.29	Nos veículos de tração dianteira, a força de tração provoca aumento de convergência.	42
Figura 2.30	Variação de convergência das rodas dianteiras de um veículo GM Corsa, em função do curso da suspensão. Verifica-se a característica de sub-esterço em <i>roll</i> .	43
Figura 2.31	Alteração de convergência das rodas traseiras para reduzir sobre-esterço. Em desacelerações ou curvas, sob efeito de cargas laterais, a roda externa aumenta a convergência e a interna diminui.	44
Figura 2.32	Representação do ângulo de <i>caster</i> , e <i>caster</i> à terra cinemático representado pelo segmento de reta KN projetada no solo.	45
Figura 2.33	Influência do ângulo de <i>caster</i> no torque de auto-alinhamento durante a realização de curvas.	46
Figura 2.34	Quando o veículo está carregado, a traseira se abaixa mudando a inclinação da dianteira. O ângulo de caster aumenta do mesmo valor de $\Delta\theta$.	47
Figura 2.35	Suspensão MacPherson mostrando o aumento do ângulo de caster de $\Delta \tau$ em função da compressão da suspensão	47
Figura 2.36	Geometria de Ackerman para realização de curvas	50
Figura 2.37	Variação dos ângulos de esterçamento com o sistema de	
	braços em forma trapezoidal	51
Figura 2.38	Propriedades das forças dos pneus em curva	52

Figura 2.39	Modelo de duas rodas para representação de curvas	53
Figura 2.40	Variação dos ângulos de esterçamento em função da velocidade.	62
Figura 2.41	Ganho da velocidade de rotação (Yaw velocity) em função da velocidade.	58
Figura 2.42	Linha representativa do esterçamento neutro no veículo	59
Figura 2.43	Análise de forças em veículo simplificado durante a curva	60
Figura 2.44	Alteração de camber em curva de um veículo	62
Figura 2.45	Exemplo genérico do gradiente de sub-esterço em raio constante.	66
Figura 2.46	Movimentos possíveis após um deslocamento	70
Figura 2.47	Relação de amplificação em função da relação de frequências.	71
Figura 2.48	Velocidade de rotação r em função do tempo para comandos do volante	72
Figura 3.1	Desenho esquemático do sensor ótico V1	73
Figura 3.2	Esquema do princípio físico utilizado pelo sensor V1	74
Figura 3.3	Lâmpada V1 do Correvit instalada na traseira do veículo	75
Figura 3.4	Foto com detalhe do volante dinamométrico instalado no veículo.	76
Figura 3.5	Diagrama de bloco do volante	77
Figura 3.6	Desenho esquemático cotado do acelerômetro B12 / 200	78
Figura 3.7	Foto do detalhe construtivo interno do transdutor de curso	79
Figura 3.8	Desenho esquemático cotado do transdutor de curso	79

Figura 3.9	Vistas lateral e frontal do veículo com a instrumentação	80
Figura 3.10	Desenho esquemático de ligação do Spider ao computador e impressora.	81
Figura 3.11	Diagrama de bloco do aparato experimental	83
Figura 4.1	Esquema representativo da manobra executada	86
Figura 4.2	Gráfico do curso dos transdutores das rodas dianteiras em função do ângulo de esterçamento.	87
Figura 4.3	Gráfico dos curvas dos amortecedores dianteiros utilizados	89
Figura 4.4	Gráfico dos curvas dos amortecedores traseiros utilizados	89
Figura 4.5	Gráfico dos ângulos de volante e rodas em manobra estática.	91
Figura 4.6	Gráfico de variação de convergência das rodas dianteiras do veículo de testes.	92
Figura 5.1	Gráfico de controle das manobras de esterçamento do volante a 60 Km/h.	93
Figura 5.2	Gráfico de controle das manobras de esterçamento do volante a 120 Km/h.	94
Figura 5.3	Gráfico de controle das manobras de velocidade de giro do volante a 60 e 120 Km/h.	95
Figura 5.4	Gráficos de comportamento dos ângulos de rolamento lateral a 60 e 120 Km/h, sob influência das molas.	96
Figura 5.5	Gráficos de retardo de resposta à mudança de direção a 60 e 120 Km/h, sob influência das molas.	97
Figura 5.6	Gráficos de comportamento dos ângulos de inclinação longitudinal (Pitch) a 60 e 120 Km/h, sob influência das molas.	98
Figura 5.7	Gráficos de comportamento das acelerações laterais a 60 e 120 Km/h, sob influência das molas.	99

Figura 5.8	Gráficos de comportamento dos ângulos de rolamento laterais a 60 e 120 Km/h, sob influência das barras	100
Figura 5.9	Gráficos de retardo de resposta à mudança de direção a 60 e 120 Km/h, sob influência das barras.	101
Figura 5.10	Gráficos de comportamento dos ângulos de inclinação longitudinal (Pitch) a 60 e 120 Km/h, sob influência das barras.	102
Figura 5.11	Gráficos de comportamento das acelerações laterais a 60 e 120 Km/h, sob influência das barras.	103
Figura 5.12	Gráficos de comportamento dos ângulos de rolamento laterais a 60 e 120 Km/h, sob influência dos amortecedores	104
Figura 5.13	Gráficos de retardo de resposta à mudança de direção a 60 e 120 Km/h, sob influência dos amortecedores	105
Figura 5.14	Gráficos de comportamento dos ângulos de inclinação longitudinal (Pitch) a 60 e 120 Km/h, sob influência dos amortecedores.	106
Figura 5.15	Gráficos de comportamento das acelerações laterais a 60 e 120 Km/h, sob influência dos amortecedores.	107
Figura A-1	Esquema representativo para pesagem do veículo sobre plano horizontal.	119
Figura A-2	Esquema representativo para pesagem do veículo sobre plano inclinado.	120
Figura A-3	Esquema representativo das coordenadas do centro de gravidade e massa.	121
Figura B-1	Esquema representativo para condições de "Anti-Mergulho"	122
Figura B-2	Efeitos de "Anti-Mergulho" durante frenagens	123
Figura B-3	Efeito de "Anti-Levantamento" da suspensão dianteira durante aceleração.	124

Figura B-4	Efeito de "Anti-Abaixamento" da suspensão traseira durante aceleração.	125
Figura C-1	Sistema massa-mola com amortecimento	126
Figura C-2	Modelo de amortecimento incluindo massas suspensa e não suspensa, suspensão do veículo e pneu	127
Figura C-3	Acelerações verticais do modelo para conforto	128
Figura C-4	Relação geométrica de instalação da suspensão traseira	131
Figura D-1	Desenho esquemático do sensor de atitudes VG600AA	133
Figura E-1	Gráfico completo com dados de uma prova com veículo de referência a 60 Km/h.	135
Figura E-2	Gráfico completo com dados de uma prova com veículo de referência a 120 Km/h.	136

LISTA DE TABELAS

		Pág.
Tabela 4.1	Pesos e alturas do veículo de testes	84
Tabela 4.2	Valores de alinhamento da suspensão do veículo	85
Tabela 4.3	Configurações de Suspensões Testadas. As propostas variam do veículo de referência pelos componentes indicados em negrito.	
		88
Tabela 5.1	Dados de pesquisa dos tempos de crescimento da Aceleração	
	Lateral até a estabilização.	110
Tabela C-1	Características do veículo de testes para cálculo de	
	frequências.	129
Tabela C-2	Frequências da suspensão do veículo	130
Tabela A-1	Tabela dos ângulos de volante e rodas dianteiras, durante	
	manobra estática.	137
Tabela B-1	Dados registrados durante uma prova a 60 Km/h	139

NOMENCLATURA

A_y	Aceleração lateral no eixo y (m/s²)
A_z	Aceleração lateral no eixo z (m/s²)
В	Distância do eixo dianteiro ao centro de gravidade (m)
С	Distância do centro de gravidade ao eixo traseiro (m)
Ct	Coeficiente de amortecimento do pneu (Ns/m)
Cs	Coeficiente de amortecimento da suspensão (Ns/m)
$C\alpha$	Coeficiente de rididez de curva (N/rad)
$C_{a\!f}$	Rigidez de curva do pneu dianteiro (N/rad ou N/grau)
C_{ar}	Rigidez de curva do pneu traseiro (N/rad ou N/grau)
D	Diâmetro do arame da mola da suspensão (mm)
D	Distância lateral entre eixo da direção e centro de apoio do pneu ao solo (m)
D	Diâmetro do pneu (m)
De	Diâmetro médio da espira de uma mola de suspensão (mm)
Е	Distância entre o centro de massa e a linha de esterço neutro (m)
F	Magnitude da força aplicada sobre uma mola de suspensão (N)
F1	Força externa aplicada sobre um sistema massa-mola (N)
Fa	Força de tração na direção x (N)
F_R	Força de resistência ao rolamento (N)
F_{xt}	Força total na direção x (N)
F.,	Forca na direção y ou forca lateral (N)

 F_{7} Força na direção z ou força vertical (N) F_{vf} Força lateral (eixo Y) aplicada ao eixo dianteiro (N) Força lateral (eixo Y) aplicada ao eixo traseiro (N) F_{vr} G Aceleração (g) G Módulo de cisalhamento do aço (N/mm²) Н Altura relativa entre centro das rodas dianteiras e traseiras com veículo no plano inclinado (m) H_R Altura do centro de rolamento da suspensão (m) Altura do centro de gravidade (m) Hcg Altura do centro de gravidade em relação ao piso do veículo (m) H'cg H₁ Altura do centro de gravidade da massa suspensa acima do eixo de rotação lateral (m) Momento de inércia das rodas (Kg.m²) I_{w} Momento de inércia do veículo em torno do eixo x (Kg.m²) I_{xx} Momento de inércia do veículo em torno do eixo y (Kg.m²) I_{yy} Momento de inércia do veículo em torno do eixo z (Kg.m²) I_{zz} K Raio de giração (m) Coeficiente de sub-esterço (rad/ms⁻² ou graus/g) K Ks Rigidez de uma mola de suspensão (N/m) Kt1 Rigidez vertical de um pneu (N/m) Kt2 Rigidez vertical da banda de rodagem de um pneu (N/m) Coef. de sub-esterço devido ao camber das rodas (rad/ms⁻²) K_{camber} K_{llt} Coef. de sub-esterço devido à transferência de cargas laterais nos eixos (rad/ms⁻²)

 K_{lfcs} Coef. de sub-esterço devido às deformações elásticas das suspensões (rad/ms⁻²) K_{roll} Coef. de sub-esterço devido ao rolamento lateral (rad/ms⁻²) $K_{\alpha t}$ Coef. de sub-esterço devido à força lateral gerada nos pneus dianteiros (rad/ms⁻²) $\mathsf{K}f$ Rigidez de rotação lateral da suspensão (N/m) L Distância entre eixos do veículo (m) Lf Distância do eixo dianteiro ao centro de gravidade Lr Distância do eixo traseiro ao centro de gravidade MfMomento de rotação lateral (rolling moment) Ν Força normal (N) Ne Número de espiras ativas de uma mola de suspensão NSP Ponto neutro de esterçamento de direção Ρ Velocidade de rotação lateral em torno ao eixo x do veículo (rad/s) Q Velocidade de elevação (pitch) em torno ao eixo y do veículo (rad/s) R Velocidade de rotação (yaw) em torno ao eixo z do veículo (rad/s) Rdin Raio dinâmico do pneu (m) $R_{\tau,k}$ Caster à terra (mm) R_{Λ} Convergência total das rodas direcionais dianteiras (mm) R Raio da curva (m) RR Rigidez total de uma suspensão incluindo molas e pneus (N/m) S Relação entre distância entre eixos e comprimento total do veículo Т Tempo transcorrido (s)

 T_{f} Bitola das rodas dianteiras (m) T_{r} Bitola das rodas traseiras (m) T_{sf} Torque de inclinação lateral da suspensão dianteira (roll torque) T_{sr} Torque de inclinação lateral da suspensão traseira (*roll torque*) V Velocidade longitudinal do veículo (m/s) Eixo longitudinal do veículo Χ Χ Eixo longitudinal de percurso do veículo X_{m} Deflexão de uma mola de suspensão (mm) Eixo transversal do veículo У Υ Eixo transversal de percurso do veículo Comprimento da seção transversal do pneu (mm) W W Massa total do veículo (Kg) W_{ϵ} Massa total sobre o eixo dianteiro (Kg) Massa total sobre o eixo traseiro (Kg) $W_{\cdot \cdot}$ Z Eixo vertical do veículo α Fator de amortecimento (s^{-1}) Ângulo formado entre a direção de deslocamento e eixo de orientação do α pneu (rad) Ângulo de deslizamento da roda dianteira (rad) a_{f} Ângulo de deslizamento da roda traseira (rad) \boldsymbol{a}_{r} Inclinação longitudinal do veículo para pesagem em balança $\alpha_{\text{veic.}}$ d Ângulo de esterçamento (rad)

- d_i Ângulo de esterçamento da roda interna durante a curva (rad)
- d_{o} Ângulo de esterçamento da roda externa durante a curva (rad)
- Δ_{f} Ângulo de convergência de uma das rodas dianteiras (rad)
- Δ Ângulo de variação de convergência do eixo traseiro (rad)
- $\mathbf{e}_{_f} =$ Coeficiente de esterço devido ao rolamento susp. diant. (graus/grau)
- $e_{\rm f} = {\rm Coeficiente}$ de esterço devido ao rolamento susp. tras. (graus/grau)
- q Ângulo de elevação rotacional pitch (rad)
- f Ângulo de inclinação lateral roll (rad)
- μ Coeficiente de atrito
- τ Ângulo de caster (rad)
- **g** Ângulo de *camber* (rad)
- γ_b Camber da roda em relação à terra (rad)
- $\gamma_{
 m g}$ Camber da roda em relação à carroceira do veículo (rad)
- ω Velocidade angular do pneu (rad/s)
- ω_n Frequência natural não amortecida do sistema de suspensão (rad/s)
- ω_d Frequência natural amortecida do sistema de suspensão (rad/s)
- ω_f Frequência forçada do sistema de suspensão (rad/s)
- Fração da força de frenagem total desenvolvida nas rodas dianteiras
- z s Relação de amortecimento da suspensão

ABREVIATURAS

- ABNT Associação Brasileira de Normas Técnicas
- ISO International Organization for Standardisation
- SAE Society of Automotive Engineers
- DIN Deutsches Institut für Normung