```
In [2]: import datetime
import numpy as np
import pandas as pd
%matplotlib inline
from matplotlib import pyplot as plt
import pandas_datareader.data as web
import fix_yahoo_finance as yf
import seaborn as sns
In [3]: #download stock price for HMC, RACE, TM, GM, F from 1 Jan 2017 to 1 Oc
start_date = datetime.datetime(2017, 1, 1)
```

end_date = datetime.datetime(2022, 10, 1)

Datasets

Honda Motors(HMC)

```
In [4]: #download stock prices
hmc = yf.download('HMC', start_date, end_date)
hmc.head()
```

[********** 100%********* 1 of 1 completed

Out[4]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03 00:00:00-05:00	29.480000	29.610001	29.420000	29.610001	25.722599	864500
2017-01-04 00:00:00-05:00	30.209999	30.670000	30.209999	30.660000	26.634747	705500
2017-01-05 00:00:00-05:00	30.620001	30.780001	30.580000	30.660000	26.634747	482600
2017-01-06 00:00:00-05:00	30.350000	30.580000	30.240000	30.469999	26.469692	493600
2017-01-09 00:00:00-05:00	30.370001	30.500000	30.299999	30.430000	26.434942	585200

In [5]: #add a column called 'Log_return' which is the log of the price close
hmc['Log_return'] = np.log(hmc['Close']/hmc['Open'])
hmc.reset_index(inplace = True)
hmc.head()

Out[5]:

	Date	Open	High	Low	Close	Adj Close	Volume	Log_return
0	2017-01-03 00:00:00- 05:00	29.480000	29.610001	29.420000	29.610001	25.722599	864500	0.004400
1	2017-01-04 00:00:00- 05:00	30.209999	30.670000	30.209999	30.660000	26.634747	705500	0.014786
2	2017-01-05 00:00:00- 05:00	30.620001	30.780001	30.580000	30.660000	26.634747	482600	0.001305
3	2017-01-06 00:00:00- 05:00	30.350000	30.580000	30.240000	30.469999	26.469692	493600	0.003946
4	2017-01-09 00:00:00- 05:00	30.370001	30.500000	30.299999	30.430000	26.434942	585200	0.001974

Toyota Motors(TM)

```
In [6]: #same passages of HMC dataset done here
tm = yf.download('TM', start_date, end_date)
tm.head()
```

[********** 100%********* 1 of 1 completed

Out[6]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03 00:00:00- 05:00	118.169998	118.669998	117.830002	118.550003	118.550003	204000
2017-01-04 00:00:00- 05:00	120.269997	121.290001	120.139999	121.190002	121.190002	250600
2017-01-05 00:00:00- 05:00	121.190002	121.389999	120.320000	120.440002	120.440002	525900
2017-01-06 00:00:00- 05:00	119.839996	120.230003	119.410004	120.129997	120.129997	171600
2017-01-09 00:00:00- 05:00	119.480003	119.959999	119.470001	119.739998	119.739998	135800

```
In [7]: #same passages of HMC dataset done here
    tm['Log_return'] = np.log(tm['Close']/tm['Open'])
    tm.reset_index(inplace = True)
    tm.head()
```

Out[7]:

	Date	Open	High	Low	Close	Adj Close	Volume	Log_return
0	2017-01- 03 00:00:00- 05:00	118.169998	118.669998	117.830002	118.550003	118.550003	204000	0.003211
1	2017-01- 04 00:00:00- 05:00	120.269997	121.290001	120.139999	121.190002	121.190002	250600	0.007620
2	2017-01- 05 00:00:00- 05:00	121.190002	121.389999	120.320000	120.440002	120.440002	525900	-0.006208
3	2017-01- 06 00:00:00- 05:00	119.839996	120.230003	119.410004	120.129997	120.129997	171600	0.002417
4	2017-01- 09 00:00:00- 05:00	119.480003	119.959999	119.470001	119.739998	119.739998	135800	0.002174

Ferrari(RACE)

```
In [8]: #same passages of HMC dataset done here
race = yf.download('RACE', start_date, end_date)
race.head()
```

[********** 100%********* 1 of 1 completed

Out[8]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03 00:00:00-05:00	59.160000	59.259998	58.349998	58.939999	55.978436	546700
2017-01-04 00:00:00-05:00	58.840000	59.480000	58.790001	59.410000	56.424824	373000
2017-01-05 00:00:00-05:00	59.439999	59.880001	59.341000	59.360001	56.377335	304800
2017-01-06 00:00:00-05:00	58.970001	59.160000	58.810001	58.939999	55.978436	280500
2017-01-09 00:00:00-05:00	57.770000	58.500000	57.560001	58.279999	55.351601	409300

```
In [9]: #same passages of HMC dataset done here
    race['Log_return'] = np.log(race['Close']/race['Open'])
    race.reset_index(inplace = True)
    race.head()
```

Out[9]:

	Date	Open	High	Low	Close	Adj Close	Volume	Log_return
0	2017-01-03 00:00:00- 05:00	59.160000	59.259998	58.349998	58.939999	55.978436	546700	-0.003726
1	2017-01-04 00:00:00- 05:00	58.840000	59.480000	58.790001	59.410000	56.424824	373000	0.009641
2	2017-01-05 00:00:00- 05:00	59.439999	59.880001	59.341000	59.360001	56.377335	304800	-0.001347
3	2017-01-06 00:00:00- 05:00	58.970001	59.160000	58.810001	58.939999	55.978436	280500	-0.000509
4	2017-01-09 00:00:00- 05:00	57.770000	58.500000	57.560001	58.279999	55.351601	409300	0.008789

General Motors (GM)

```
In [10]: #same passages of HMC dataset done here
gm = yf.download('GM', start_date, end_date)
gm.head()
```

[********** 100%********* 1 of 1 completed

Out[10]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03 00:00:00-05:00	34.980000	35.570000	34.840000	35.150002	30.369265	10904900
2017-01-04 00:00:00-05:00	35.599998	37.240002	35.470001	37.090000	32.045403	23388500
2017-01-05 00:00:00-05:00	37.009998	37.049999	36.070000	36.389999	31.440619	15636700
2017-01-06 00:00:00-05:00	36.410000	36.549999	35.930000	35.990002	31.095022	13240100
2017-01-09 00:00:00-05:00	36.119999	36.529999	35.860001	36.009998	31.112295	15204500

```
In [11]: #same passages of HMC dataset done here
    gm['Log_return'] = np.log(gm['Close']/gm['Open'])
    gm.reset_index(inplace = True)
    gm.head()
```

Out[11]:

	Date	Open	High	Low	Close	Adj Close	Volume	Log_return
0	2017-01-03 00:00:00- 05:00	34.980000	35.570000	34.840000	35.150002	30.369265	10904900	0.004848
1	2017-01-04 00:00:00- 05:00	35.599998	37.240002	35.470001	37.090000	32.045403	23388500	0.041002
2	2017-01-05 00:00:00- 05:00	37.009998	37.049999	36.070000	36.389999	31.440619	15636700	-0.016894
3	2017-01-06 00:00:00- 05:00	36.410000	36.549999	35.930000	35.990002	31.095022	13240100	-0.011602
4	2017-01-09 00:00:00- 05:00	36.119999	36.529999	35.860001	36.009998	31.112295	15204500	-0.003050

Ford Motors(F)

```
In [12]: #same passages of HMC dataset done here
f = yf.download('F', start_date, end_date)
f.head()
```

Out[12]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2017-01-03 00:00:00-05:00	12.20	12.60	12.13	12.59	8.943367	40510800
2017-01-04 00:00:00-05:00	12.77	13.27	12.74	13.17	9.355372	77638100
2017-01-05 00:00:00-05:00	13.21	13.22	12.63	12.77	9.071233	75628400
2017-01-06 00:00:00-05:00	12.80	12.84	12.64	12.76	9.064129	40315900
2017-01-09 00:00:00-05:00	12.79	12.86	12.63	12.63	8.971783	39438400

```
In [13]: #same passages of HMC dataset done here
    f['Log_return'] = np.log(f['Close']/f['Open'])
    f.reset_index(inplace = True)
    f.head()
```

Out[13]:

	Date	Open	High	Low	Close	Adj Close	Volume	Log_return
0	2017-01-03 00:00:00-05:00	12.20	12.60	12.13	12.59	8.943367	40510800	0.031467
1	2017-01-04 00:00:00-05:00	12.77	13.27	12.74	13.17	9.355372	77638100	0.030843
2	2017-01-05 00:00:00-05:00	13.21	13.22	12.63	12.77	9.071233	75628400	-0.033875
3	2017-01-06 00:00:00-05:00	12.80	12.84	12.64	12.76	9.064129	40315900	-0.003130
4	2017-01-09 00:00:00-05:00	12.79	12.86	12.63	12.63	8.971783	39438400	-0.012589

Functions

This section contains all the methods used to write the report and that animates the Dashboard in the next section.

All the methods will be called by the Dashboard

Mean and Standard Deviation Log Returns

```
In [14]: #calculat mean and standard deviation of the Log return column for ead
         print('-'*30)
         print("HMC:")
         stats = hmc['Log_return'].agg(['mean', 'std'])
         print(stats)
         print('-'*30)
         print("TM:")
         stats = tm['Log_return'].agg(['mean', 'std'])
         print(stats)
         print('-'*30)
         print("RACE:")
         stats = race['Log_return'].agg(['mean', 'std'])
         print(stats)
         print('-'*30)
         print("GM:")
         stats = gm['Log_return'].agg(['mean', 'std'])
         print(stats)
         print('-'*30)
         print("F:")
         stats = f['Log_return'].agg(['mean', 'std'])
         print(stats)
         print('-'*30)
```

```
HMC:
mean -0.000436
std
     0.007819
Name: Log_return, dtype: float64
TM:
mean -0.000441
std
      0.007016
Name: Log_return, dtype: float64
RACE:
mean 0.000022
std 0.012751
Name: Log_return, dtype: float64
GM:
mean -0.000860
std
     0.018137
Name: Log_return, dtype: float64
F:
mean -0.001121
std 0.018446
Name: Log return, dtype: float64
```

Confidence Intervals

```
In [15]:
         import math
         import statistics
         from scipy.stats import norm
         def create_interval_mean(alpha, dataset, Type):
             #this function receives an alpha, a dataset of a stock and a Type
             #and gives back the confidence interval for the mean of a particul
             sample_mean = dataset.mean()
             percentile='' #it refers to alpha percentile
             n = len(dataset)
             #3 cases must be analyzed, because the computatation of the alpha
             if Type == 'Two sided':
                 percentile = (100 - alpha/2)/100
                 little_t = norm.ppf(percentile) #alpha percentile;
                 #theoretically we should have used the t-student distribution,
                 #so using a normal distribution, the computation will be more
                 s = math.sqrt(statistics.variance(dataset)) #standard deviatid
                 return (round(sample_mean - little_t*s/math.sqrt(n), 10), roun
             if Type == 'Lower one sided':
                 #in this case we want an upper bound for the mean
                 percentile = (100 - alpha)/100
                 little t = norm.ppf(percentile)
                 s = math.sqrt(statistics.variance(dataset))
                 return ('-\infty', round(sample mean + little t*s/math.sgrt(n),10))
             if Type == 'Upper one sided':
                 #in this case we want a lower bound for the mean
                 percentile = alpha/100
                 little_t = norm.ppf(percentile)
                 s = math.sqrt(statistics.variance(dataset))
                 #print(f'little t: {little t}')
                 return (round(sample_mean + little_t*s/math.sqrt(n), 10), '+∞'
             return ('','') #we will never be here
```

```
In [16]: from scipy.stats import chi2
         #this function receives an alpha, a dataset of a stock and a Type of i
         #and gives back the confidence interval for the variance of a particul
         def create_interval_variance(alpha, dataset, Type):
             n = len(dataset)
             df=n-1 #degree of freedom
             s_squared = statistics.variance(dataset) #estimation sample varian
             if Type == 'Two sided':
                 percentile_low = (alpha/2)/100
                 percentile high = (100 - alpha/2)/100
                 p_lower = chi2.ppf(percentile_low, df)
                 p_higher = chi2.ppf(percentile_high, df)
                 return (round(df*s_squared/p_higher, 10), round(df*s_squared/p
             if Type == 'Lower one sided':
                 #in this case we want an upper bound for the variance
                 percentile_high = (100 - alpha)/100
                 p_higher = chi2.ppf(percentile_high, df)
                 return ('-∞', round(df*s_squared/p_higher, 10)) #confidence in
             if Type == 'Upper one sided':
                 #in this case we want a lower bound for the variance
                 percentile low = alpha/100
                 p_lower = chi2.ppf(percentile_low, df)
                 return (round(df*s squared/p lower, 10), '+∞')
             return ('','') #we will never be here
```

```
In [17]: import math
         import statistics
         from scipy.stats import t
         from scipy.stats import chi2
         #this function calls in a proper manner the create_interval_mean(alpha
         #create_interval_variance(alpha, dataset, Type) functions, and properl
         def confidence_intervals(Ticker, Confidence_level, Type):
             alpha = 100 - Confidence_level
             if alpha == 0:
                 s1 = f"{Ticker} mean interval at {Confidence_level}% level of
                 s2 = f"{Ticker} variance interval at {Confidence level}% level
                 return s1, s2
             if Ticker == 'GM':
                 dataset = gm['Log_return']
             if Ticker == 'F':
                 dataset = f['Log_return']
             if Ticker == 'HMC':
                 dataset = hmc['Log_return']
             if Ticker == 'TM':
                 dataset = tm['Log return']
             if Ticker == 'RACE':
                 dataset = race['Log_return']
             mean_interval = create_interval_mean(alpha, dataset, Type)
             var_interval = create_interval_variance(alpha, dataset, Type)
             s1 = f"{Ticker} mean interval at {Confidence_level}% level of conf
             s2 = f"{Ticker} variance interval at {Confidence level}% level of
             return s1, s2
```

Equal mean Test

```
In [18]: from scipy.stats import norm

#this function tests the h0 hypotesis that mean sample 1 is equal to m
#it receives:
# - dataset sample 1
# - dataset sample 2
# - an alpha
# - h1: mu1!=mu2 or mu1>mu2 or mu1<mu2

def test_equal_mean(dataset1, dataset2, alpha, h1):
    #calculate the sample means
    mean1 = dataset1.mean()</pre>
```

```
mean2 = dataset2.mean()
#estiate the variances
s1_squared = statistics.variance(dataset1)
s2_squared = statistics.variance(dataset2)
#compute the lenght of each sample
n = len(dataset1)
m = len(dataset2)
#calculate the t-statistic --> no assumption of equal variance
t_stat = (mean1 - mean2)/math.sqrt(s1_squared/n + s2_squared/m)
#different cases if test bilateral or unilateral
if h1 == 'mu1 != mu2':
    p_value = norm.sf(abs(t_stat))*2
    perc = norm.ppf((alpha/2)/100) #little z percentile, n and m v
    p_value_perc = norm.sf(abs(perc))*2
    if p_value<p_value_perc: #Rejection Region</pre>
        return [False, t_stat, perc, -perc, p_value] #we return al
    else:
        return [True, t_stat, perc, -perc, p_value] #Acceptance re
if h1 == 'mu1 > mu2':
    p_value = norm.sf(t_stat)
    perc = -norm.ppf(alpha/100) #in this case we don't divide alph
    p_value_perc = norm.sf(abs(perc))
    if p value < p value perc: #if the p value of our test statist
        return [False, t_stat, perc, perc, p_value]
    else: #else we can NOT reject h0
        return [True, t_stat, perc, perc, p_value]
if h1 == 'mu1 < mu2':</pre>
    p value = 1 - norm.sf(t stat)
    perc = norm.ppf(alpha/100)
    p value perc = norm.sf(abs(perc))
    if p_value<p_value_perc:</pre>
        return [False, t_stat, perc, perc, p_value]
    else:
        return [True, t_stat, perc, perc, p_value]
return False #we will never be here
```

```
if Ticker1 == 'HMC':
    dataset1 = hmc['Log_return']
if Ticker1 == 'TM':
    dataset1 = tm['Log_return']
if Ticker1 == 'RACE':
    dataset1 = race['Log_return']
if Ticker2 == 'GM':
    dataset2 = gm['Log_return']
if Ticker2 == 'F':
    dataset2 = f['Log return']
if Ticker2 == 'HMC':
    dataset2 = hmc['Log_return']
if Ticker2 == 'TM':
    dataset2 = tm['Log return']
if Ticker2 == 'RACE':
    dataset2 = race['Log_return']
result = test_equal_mean(dataset1, dataset2, alpha, h1)
x axis = np.arange(-3, 3, 0.01)
plt.plot(x_axis, norm.pdf(x_axis, 0, 1))
f1 = plt.plot(result[1], 0, linewidth=0, marker='o', color='b', la
f2 = plt.plot(result[2], 0, linewidth=0, marker='x', color='r',
f3 = plt.plot(result[3], 0, linewidth=0, marker='x', color='r')
s1 = "P-value: " + str(round(result[4]*100,2)) +"%" #test statisti
sns.despine()
plt.legend()
if result[0]: #if we cannot reject h0
    s2 = "At "+ str(Confidence_level)+"% of confidence, we cannot
    return s1, s2
else: #if we can reject h0
    s2 = "At "+ str(Confidence_level)+"% of confidence, we reject
    return s1, s2
```

Regression between Two Log Returns

```
In [20]: from scipy import stats
#this function receives 2 tickers and create a log return linear regre
# and the dependent one is Y_Ticker
```

```
def log_return_regression(X_Ticker, Y_Ticker):
   y=''
    if X_Ticker == 'GM':
        x = gm['Log_return']
    if X Ticker == 'F':
        x = f['Log_return']
    if X_Ticker == 'HMC':
        x = hmc['Log_return']
    if X Ticker == 'TM':
        x = tm['Log_return']
    if X_Ticker == 'RACE':
        x = race['Log_return']
    if Y Ticker == 'GM':
        y = gm['Log_return']
    if Y Ticker == 'F':
        y = f['Log_return']
    if Y_Ticker == 'HMC':
        y = hmc['Log_return']
    if Y Ticker == 'TM':
        y = tm['Log_return']
    if Y_Ticker == 'RACE':
        y = race['Log_return']
    slope, intercept, r, p, std_err = stats.linregress(x, y)
    def myfunc(x):
      return slope * x + intercept
    #draw the graph
    mymodel = list(map(myfunc, x))
    plt.figure(figsize=(10,5))
    plt.scatter(x, y, s=15)
    plt.plot(x, mymodel, color = 'red')
    x0, xmax = plt.xlim()
    y0, ymax = plt.ylim()
    data_width = xmax - x0
    data_height = ymax - y0
    title = f'Linear regression of {X_Ticker} log returns (X variable)
    plt.title(title, fontsize=20)
    plt.ylabel(f'{Y_Ticker} log returns', fontsize=15)
    plt.xlabel(f'{X_Ticker} log returns', fontsize=15)
```

```
plt.text(x0 + data_width*1.06, y0 + data_height * 0.5, f'$LogRetur plt.text(x0 + data_width * 1.06, y0 + data_height * 0.4, f'$R^2 = plt.show()
```

Normal returns and probability plot

```
In [21]: import statsmodels.graphics.gofplots as sm
         #this function receives as input the Ticker and generates 2 graphs:
         # — one containing the stock returns histogram and a normal PDF to see
         # - a normal probability plot of the stock returns
         def generate_graph(Ticker):
             x_values = None
             if Ticker == 'GM':
                 x_values = gm['Log_return']
             if Ticker == 'F':
                 x values = f['Log_return']
             if Ticker == 'HMC':
                 x_values = hmc['Log_return']
             if Ticker == 'TM':
                 x values = tm['Log return']
             if Ticker == 'RACE':
                 x_values = race['Log_return']
             plt.figure(figsize=(10,5))
             #Plot stock return Histogram
             plt.hist(x_values, bins=100, density=True, alpha=0.6, color='b')
             # Plot the normal PDF
             xmin, xmax = plt.xlim()
             x = np.linspace(xmin, xmax, 100)
             p = norm.pdf(x, x_values.mean(), x_values.std())
             plt.plot(x, p, 'k', linewidth=2)
             title = f"{Ticker} Returns vs Normal Returns"
             plt.title(title)
             #Plot the Normal Probability plot
             plt.figure(figsize=(10,5))
             sm.ProbPlot(x values).ggplot(line='s')
             title=f"{Ticker} Normal Probability plot"
             plt.title(title)
             sns.despine()
```

Linear regression on time

```
In [22]: import statsmodels.formula.api as smf
         #this function creates the regression of a Ticker over time, to try to
         #stock return and if it can be used as a prediction of future returns
         #it also plots the linear regression
         def create_regression(Ticker):
             if Ticker == 'GM':
                 dataset = gm.copy()
             if Ticker == 'F':
                 dataset = f.copy()
             if Ticker == 'HMC':
                 dataset = hmc.copy()
             if Ticker == 'TM':
                 dataset = tm.copy()
             if Ticker == 'RACE':
                 dataset = race.copy()
             dataset['date'] = np.arange(len(dataset))
             reg_dataset = smf.ols('Log_return ~ date', data=dataset) #ordinary
             reg_result_dataset = reg_dataset.fit()
             plt.figure(figsize=(14, 8))
             plt.plot(dataset['Date'], dataset.Log_return, linewidth=0, marker=
             x_points = dataset['Date']
             b0 dataset = reg result dataset.params[0]
             b1_dataset = reg_result_dataset.params[1]
             y_points = b0_dataset + b1_dataset*dataset['date'] #regression lin
             plt.plot(x_points, y_points, linewidth=3)
             plt.xticks(fontsize=20)
             plt.yticks(fontsize=20)
             x0, xmax = plt.xlim()
             y0, ymax = plt.ylim()
             data\_width = xmax - x0
             data_height = ymax - y0
             plt.text(x0 + data_width*1.06, y0 + data_height * 0.5,f'$y = {roun
             plt.text(x0 + data_width*1.06, y0 + data_height * 0.4, f'R^2 = {r}
             plt.xlabel('Date', fontsize=20)
             plt.ylabel('Log Return', fontsize=20)
             sns.despine()
             reg result dataset.summary()
```

Dashboard

Normal returns and probability plot

In [23]: from ipywidgets import interact, FloatSlider

Choose a ticker to see if its log return over time can be aproximated by a normal and to see its normal probability plot

In [24]: interact(generate_graph, Ticker = ['GM','F','HMC','TM', 'RACE'])

<Figure size 720x360 with 0 Axes>

Out[24]: <function __main__.generate_graph(Ticker)>

Confidence Intervals

Choose a Ticker to see its mean and variance intervals given a confidence level

Linear Regression over time

Choose a Ticker to run a linear regression of its log returns over time

Out[26]: <function __main__.create_regression(Ticker)>

Equal mean Test

Regression between Two Log Returns

Choose 2 Tickers to run a linear regression of the log returns of one over the other ones

Out[28]: <function __main__.log_return_regression(X_Ticker, Y_Ticker)>