

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO							
Disciplina:				Código da Disciplina:			
Ciências Térmicas II				EPM308			
Course:				!			
Thermal Sciences							
Materia:							
Ciencias Térmicas							
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 00 - 02 - 00			
Curso/Habilitação/Ênfase:			Série:	Período:			
Engenharia de Produção			3	Diurno			
Engenharia de Produção			3	Noturno			
Engenharia de Produção			3	Noturno			
Professor Responsável:		Titulação - Graduaç	ção	Pós-Graduação			
Roberto de Aguiar Peixoto	Engenheiro Naval		Doutor				
Professores:	Titulação - Graduação		Pós-Graduação				
João de Sa Brasil Lima	Engenheiro Mecânico		Doutor				
Roberto de Aguiar Peixoto	Engenheiro Naval		Doutor				

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

- C1: Domínio dos diversos aspectos da sua habilitação profissional de modo a atuar nas áreas da Engenharia de Produção;
- C2: Sólida formação generalista nas principais áreas da Engenharia de Produção;
- C7: Sólida formação nas ciências básicas para facilitar a compreensão dos avanços tecnológicos, como: computação, desenho técnico, eletricidade, física, matemática, química, resistência dos materiais e ciências térmicas;
- C8: Sólida formação multidisciplinar de modo a poder permear entre as diversas áreas da Engenharia e de modo a dispor de uma visão sistêmica na solução de problemas técnicos;
- C9: Conhecimento para:
- 1) avaliar e desenvolver soluções de problemas de sua habilitação específica e multidisciplinares;
- 2) avaliar os impactos sociais e ambientais do seu trabalho;
- 5) atuar em equipes multidisciplinares envolvendo especialistas de várias áreas;
- 6) projetar, executar e analisar resultados de experimentos.
- C10: Conhecimentos práticos de modo a contribuir na interpretação de problemas de Engenharia.

Específicos da Disciplina:

- C1-Compreender os princípios e equações básicas da mecânica dos fluidos e da transferência de calor;
- C3-Compreender os fenômenos de transporte de energia e resistência ao movimento associada com o escoamento de fluidos;
- C4-Compreender os fenômenos de transferência de energia devido a uma diferença de temperaturas.

2020-EPM308 página 1 de 11

HABILIDADES

H2: Aplicar conhecimentos matemáticos, estatísticos, científicos, tecnológicos e instrumentais à engenharia na sua área de atuação;

H4: Atuar em equipes multidisciplinares;

H6: Avaliar criticamente a operação e manutenção de sistemas e processos na sua área de atuação;

H11: Demonstrar noção de ordem de grandeza na estimativa de dados e na avaliação de resultados.

H12: Desenvolver raciocínio espacial, lógico e matemático;

H14: Esboçar, ler e interpretar desenhos, gráficos e imagens;

H20: Avaliar o impacto das atividades de engenharia no contexto social e ambiental;

H21: Compreender a interdependência dos sistemas de produção com o meio ambiente, tanto no que se refere a utilização de recursos escassos quanto à disposição final de resíduos e rejeitos, atentando para a exigência de sustentabilidade e qualidade de vida.

Específicas da Disciplina:

H1-Utilizar os princípios básicos associados com o estudo da energia: seu uso, sua transferência e sua conversão de uma forma em outra;

H2-Aplicar os conceitos de sistemas e volumes de controle no projeto e análise de sistemas térmicos;

H3-Desenvolver cálculos a partir das equações gerais de conservação e de transferência de calor.

ATITUDES

A4: Ter visão sistêmica e interdisciplinar na solução de problemas técnicos;

A5: Ter percepção do conjunto e capacidade de síntese;

A8: Ter posição crítica com relação a conceitos de ordem de grandeza;

Al4: Ter autocrítica para reconhecer os seus próprios limites e os de suas decisões;

Al5: Ter consciência da necessidade de atualizar-se permanentemente.

Específicas da Disciplina:

Al-Incorporar a importância do conceito físico de transferência e conversão de energia e de otimização energética de sistemas térmicos;

A2-Incorporar o conceito de simulação numérica de sistemas térmicos.

EMENTA

Ciclos Termodinâmicos. Manometria e Dinâmica dos Fluidos Perfeitos. Equações da Conservação da Quantidade de Movimento e da Energia para Volumes de Controle. Análise Dimensional e Semelhança. Escoamentos Viscosos Internos e Externos. Transferência de Calor por Condução, Convecção e Radiação

2020-EPM308 página 2 de 11

SYLLABUS

Power and Refrigeration Cycles. Manometry and Elementary Fluid Dynamics. Momentum and Energy Equations: Control Volume Analysis. Dimensional Analysis and Similitude. Viscous Flow in Conduits. Flow Over Immersed Bodies. Heat transfer by conduction, convection and radiation.

TEMARIO

Ciclos termodinámicos. Manometría y Dinámica de Fluidos Elementales. Ecuaciones de Momento y Energía: Análisis de Volumen de Control. Análisis Dimensional y Similitud. Flujo viscoso en conductos. Flujo Sobre Cuerpos Inmersos. Transferencia de calor por conducción, convección y radiación.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Problem Based Learning
- Sala de aula invertida

METODOLOGIA DIDÁTICA

- A disciplina conta com 2 horas de teoria e práticas semanais. Nas aulas de teoria serão apresentados os conceitos fundamentais e também resolvidos exercícios para reforço desses conceitos. Nas aulas práticas serão realizados experimentos laboratoriais e resolução de exercícios.
- O Laboratório de Mecânica dos Fluidos será utilizado para a realização de experimentos de perda de carga em tubulações e escoamento ao redor de cilindros.

As aulas são ministradas mediante o uso de projetor digital e lousa. Durante as aulas os alunos são incentivados à utilização de softwares específicos para cálculos de processos térmicos e de escoamento de fluidos bem como outros auxiliares à solução de equações e métodos numéricos.

Os conceitos serão apresentados procurando relacioná-los com situações do cotidiano de modo a facilitar o aprendizado.

O ambiente Moodle será utilizado para: disponibilizar materiais didáticos extras aos alunos; submissão de relatórios (trabalhos); comunicar os alunos sobre avisos importantes da disciplina.

Serão realizados trabalhos com outras disciplinas da mesma série.

2020-EPM308 página 3 de 11

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Física, com ênfase nos assuntos de dinâmica e energia em sistemas mecânicos; Mecânica Geral; Cálculo Diferencial e Integral; Ciências Térmicas I (Termodinâmica).

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina Ciências Térmicas II apresenta os princípios básicos Mecânica dos Fluidos e Transferência de Calor.

É fundamental ao futuro engenheiro de produção conhecer os mecanismos e eficiências dos vários sistemas de conversão e transporte. Isto é desenvolvido na disciplina por meio do conhecimento das propriedades da matéria, dos fenômenos físicos e do comportamento dos sistemas termo-fuido-mecânicos.

No âmbito estritamente industrial, a competitividade no setor de manufatura é altamente dependente da utilização eficiente da energia, que por sua vez é ditada por diversos fatores relativos aos aspectos térmicos.

Como benefícios adicionais obtidos no estudo da termodinâmica pode-se citar: o treinamento do estudante para representar processos e equipamentos por modelos simplificados; o treinamento do estudante na solução de problemas complexos; o desenvolvimento da capacidade do estudante de analisar problemas e desenvolver procedimentos organizados para a sua solução.

Por outro lado, no âmbito estritamente industrial, a competitividade no setor de manufatura é altamente dependente da utilização eficiente da energia, que por sua vez é ditada por diversos fatores relativos aos aspectos térmicos. Fica claro, portanto, seja no setor de P&D&I como no da Manufatura, que os graus de inovação serão tanto melhores quanto melhor for o domínio que se tiver sobre os assuntos tratados por esta disciplina.

BIBLIOGRAFIA

Bibliografia Básica:

Bibliografia Complementar:

BORGNAKKE, Claus; SONNTAG, Richard E. Fundamentos da termodinâmica. 7. ed. São Paulo, SP: Blucher, 2010. 461 p.

BORGNAKKE, Claus; SONNTAG, Richard E. Fundamentos da termodinâmica. PEIXOTO, Roberto de Aguiar (Coord. e Revisor). 8. ed. São Paulo: Blucher, 2013. 728 p. (Van Wylen).

FOX, Robert W; McDONALD, Alan T. Introdução à mecânica dos fluidos. 5. ed. Rio de Janeiro, RJ: LTC, 2001. 504 p.

2020-EPM308 página 4 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

FOX, Robert W; McDONALD, Alan T. Introdução à mecânica dos fluidos. Tradução de Alexandre Matos de Souza Melo. 4. ed. Rio de Janeiro, RJ: Guanabara Dois, 1995. 662 p.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Carlos Alberto Biolchini da Silva. 5. ed. Rio de Janeiro, RJ: LTC, 2002. 698 p.

INCROPERA, Frank P; DEWITT, David P. Fundamentos de transferência de calor e de massa. Trad. de Carlos Alberto Biolchini da Silva. 5. ed. Rio de Janeiro, RJ: LTC, 2002. CD-ROM.

MORAN, Michael J et al. Introdução à engenharia de sistemas térmicos: termodinâmica, mecânica dos fluidos e transferência de calor. Tradução de Carlos Alberto Biolchini da Silva. Rio de Janeiro, RJ: LTC, 2005. 604 p.

MORAN, Michael J; SHAPIRO, Howard N. Princípios de termodinâmica para engenharia. 4. ed. Rio de Janeiro, RJ: LTC, 2002. 681 p.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore H. Fundamentos da mecânica dos fluidos. trad. da 4. ed. americana por Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 2008. 571 p.

MUNSON, Bruce R; YOUNG, Donald F; OKIISHI, Theodore H. Fundamentos da mecânica dos fluidos: versão SI. Trad. da 2. ed. americana de Euryale de Jesus Zerbini. São Paulo, SP: Edgard Blücher, 1997. v. 2.

ÇENGEL, Yunus A. Transferência de calor e massa: uma abordagem prática. Trad. de Luiz Felipe mendes de Moura ; rev. téc. de Kamal A. R. Ismail. 3. ed. Boston: McGraw-Hill, 2009. 902 p. (McGraw-Hill Series in Mechanical Engineering).

ÇENGEL, Yunus A; BOLES, Michael A. Termodinâmica. Trad. de Kátia Aparecida Roque. 5. ed. São Paulo, SP: McGraw-Hill, 2006. 740 p.

ÇENGEL, Yunus A; CIMBALA, John M. Fluid mechanics: fundamentals and applications. Boston: McGraw-Hill Higher Education, 2006. 956 p. (McGraw-Hill Series in Mechanical Engineering).

ÇENGEL, Yunus A; TURNER, Robert H. Fundamentals of thermal-fluid sciences. 2 ed. New York: McGraw Hill, 2005. 1206 p. (McGraw-Hill Series in Mechanical Engineering).

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-EPM308 página 5 de 11

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_p)$: 0,7 Peso de $MT(k_T)$: 0,3

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

As provas serão compostas de questões envolvendo cálculos e aspectos teóricos

Os trabalhos consistirão de experiências de laboratório e/ou simulações de problemas práticos do conteúdo da disciplina em softwares específicos.

Não há aproveitamento de trabalhos de oferecimentos anteriores desta disciplina.

2020-EPM308 página 6 de 11

OUTRAS INFORMAÇÕES

OUTRAS INFORMAÇÕES	
Esta disciplina fará uso intensivo do ambiente Moodle. Assim, é fundamental qu	
todos os alunos matriculados nela também se inscrevam neste ambiente. A	
informações para inscrição serão passadas aos alunos em sala de aula logo m	10
início do curso.	

2020-EPM308 página 7 de 11

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
Engineering Equation Solver - EES

2020-EPM308 página 8 de 11

2020-EPM308 página 9 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

PROGRAMA DA DISCIPLINA				
Nº da	Conteúdo	EAA		
semana				
1 E	SEMANA DE RECEPÇÃO AOS CALOUROS	0		
2 E	Apresentação do Curso. Introdução a Mecânica dos Fluidos:	1% a 10%		
	propriedades de um fluido			
3 E	Estática dos Fluidos, Manometria	11% a 40%		
4 E	FERIADO	0		
5 E	Estática dos Fluidos, Manometria - Exercícios	41% a 60%		
6 E	Dinâmica dos Fluidos Elementar: Equação de Bernoulli, Vazão	1% a 10%		
7 E	Equação da Conservação da Massa para Volume de Controle	11% a 40%		
8 E	Revisão para a P1	0		
9 E	Período de Provas Pl	0		
10 E	Laboratório-Medição de Vazão - Tl	91% a		
		100%		
11 E	Feriado	0		
12 E	Sistemas com massa variável	1% a 10%		
13 E	Equação da Quantidade de Movimento	41% a 60%		
14 E	Equação da Energia	11% a 40%		
15 E	SMILE	0		
16 E	Escoamento viscoso em condutos	1% a 10%		
17 E	T2	0		
18 E	Revisão para P2	0		
19 E	Período de Provas P2	0		
20 E	Período de Provas P2	0		
21 E	Atendimento a alunos	0		
22 E	Atendimento a alunos	0		
23 E	Período de Provas PS	0		
24 E	Introdução à Transferência de Calor	1% a 10%		
25 E	Condução - Equação Geral da Condução, Parede Plana e Analogia	11% a 40%		
	Elétrica			
26 E	Condução - Paredes Cilíndrica e Esférica e Geração de Energia	11% a 40%		
27 E	Convecção Forçada Externa - Introdução e Placas	11% a 40%		
28 E	Feriado	0		
29 E	Revisão para a P3	11% a 40%		
30 E	Р3	0		
31 E	Convecção Forçada Externa - Cilindros.	11% a 40%		
32 E	Convecção Forçada Interna. Escoamento interno em dutos.	11% a 40%		
	Correlações para cálculo de coeficiente de transferência de calor			
33 E	Feriado	0		
34 E	Laboratório Condução - T3	91% a		
		100%		
35 E	Т4	0		
36 E	Feriado	0		
37 E	Revisão para P4	0		
38 E	Período de Provas P4	0		
39 E	Período de Provas P4	0		

2020-EPM308 página 10 de 11

INSTITUTO MAUÁ DE TECNOLOGIA

40 E Atendimento a alunos	0
41 E Período de Provas PS	0
Legenda: T = Teoria, E = Exercício, L = Laboratório	
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

2020-EPM308 página 11 de 11