The dichotomy property and definability of types

Advanced Model Theory

March 10, 2022

In class we proved

If some type over a model is non-definable, then some formula has the dichotomy property.

Or equivalently,

If no formula has the dichotomy property, then all types over models are definable.

This was Proposition 8 in the March 3 notes. Our proof followed Theorem 11.11 in the text-book, using strong heirs p^U coming from ultrapower. This document discussed a completely different proof, which might be easier to understand, and which tells us something stronger:

If no formula has the dichotomy property, then all types over *arbitrary sets* are definable.

In Section 1 we review notation. In Section 2 we review the dichotomy property. In Section 3 we discuss the notion of " φ -types" and state the main theorem (Theorem 10). In Section 4 we prove the main theorem, and in Section 5 we give some applications.

1 Notation

A "binary string" is a sequence of 0's and 1's. If α is an ordinal, then 2^{α} is the set of binary strings of length α , and $2^{<\alpha} = \bigcup_{\beta} 2^{\beta}$. In these notes, we only care about $\alpha \leq \omega$. Then 2^{ω} is the set of binary strings of length ω , and $2^{<\omega}$ is the set of finite binary strings.

For example, some typical elements of $2^{<\omega}$ are

(the empty string), 010, 1, 11001101,

and a typical element of 2^{ω} is

$01101001100101101001011001 \cdots$

If $\sigma \in 2^{\alpha}$ and $\beta \leq \alpha$, let $\sigma \upharpoonright \beta$ be the initial segment of σ of length β . For example, $01001 \upharpoonright 3 = 010$. If σ, τ are binary strings, then $\sigma \sqsubseteq \tau$ means that τ extends σ . Equivalently, $\sigma \sqsubseteq \tau$ if $\sigma = \tau \upharpoonright \beta$, where β is the length of σ . For example, $0100 \sqsubseteq 01001$, but $1001 \not\sqsubseteq 01001$.

2 The dichotomy property

Fix a complete theory T and monster model M. Fix a formula $\varphi(\bar{x}; \bar{y})$.

Definition 1. " D_{α} is consistent" if there are $(\bar{a}_{\sigma}: \sigma \in 2^{\alpha})$ and $(\bar{b}_{\tau}: \tau \in 2^{<\alpha})$ such that

$$\sigma \sqsubseteq \tau 0 \implies \mathbb{M} \models \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$$

$$\sigma \sqsubseteq \tau 1 \implies \mathbb{M} \models \neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau}).$$

For example, D_2 is consistent if there are $\bar{a}_{00}, \bar{a}_{01}, \bar{a}_{10}, \bar{a}_{11}, \bar{b}, \bar{b}_0, \bar{b}_1$ such that

Remark 2. " D_{α} " is the name for the set of formulas $\{\varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \supseteq \tau 0\} \cup \{\neg \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) : \sigma \supseteq \tau 1\}$, a partial type in the variables $(\bar{x}_{\sigma} : \sigma \in 2^{\alpha})$ and $(\bar{y}_{\tau} : \tau \in 2^{<\alpha})$.

Definition 3. $\varphi(\bar{x}; \bar{y})$ has the dichotomy property if D_{ω} is consistent.

Lemma 4. If D_n is consistent for all $n < \omega$, then D_{ω} is consistent.

Poizat thinks this is obvious.¹

Proof. Let F be a finite fragment of D_{ω} . By compactness, it suffices to show that F is consistent. Take n bigger than the length of τ for any \bar{y}_{τ} appearing in F. Because D_n is consistent, there are $(\bar{a}_{\sigma}^0: \sigma \in 2^n)$ and $(\bar{b}_{\tau}^0: \tau \in 2^{< n})$ as in Definition 1. Define $(\bar{a}_{\sigma}: \sigma \in 2^{\omega})$ and $(\bar{b}_{\tau}: \tau \in 2^{< \omega})$ as follows:

- If $\sigma \in 2^{\omega}$, then $\bar{a}_{\sigma} = \bar{a}_{\sigma \upharpoonright n}^{0}$.
- If τ is such that \bar{y}_{τ} appears in F, then τ has length less than n, so we can take $\bar{b}_{\tau} = \bar{b}_{\tau}^{0}$.
- If τ is such that \bar{y}_{τ} doesn't appear in F, choose \bar{b}_{τ} to be anything.

Then the $(\bar{a}_{\sigma}: \sigma \in 2^{\omega})$ and $(\bar{b}_{\tau}: \tau \in 2^{<\omega})$ satisfy F:

- If $\sigma \supseteq \tau 0$ and $\varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) \in F$, then τ has length less than n, by choice of n. Then $(\sigma \upharpoonright n) \supseteq \tau 0$ and so $\varphi(\bar{x}_{\sigma \upharpoonright n}, \bar{y}_{\tau}) \in D_n$. Then $\varphi(\bar{a}^0_{\sigma \upharpoonright n}, \bar{b}^0_{\tau})$ holds. We chose $\bar{a}_{\sigma} = \bar{a}^0_{\sigma \upharpoonright n}$ and $\bar{b}_{\tau} = \bar{b}^0_{\tau}$, so $\varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds.
- Similarly, if $\sigma \supseteq \tau 1$ and $\neg \varphi(\bar{x}_{\sigma}, \bar{y}_{\tau}) \in F$, then $\neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds.

[&]quot;Note that every finite fragment of D_{α} can be interpreted in D_n , for large enough n" (Poizat, page 235).

3 φ -types

Continue to fix $T, \mathbb{M}, \varphi(\bar{x}; \bar{y})$. Let n be the length of the variable tuple \bar{x} .

Definition 5. If $B \subseteq \mathbb{M}$ is a set and $\bar{a} \in \mathbb{M}^n$, then $\operatorname{tp}^{\varphi}(\bar{a}/B)$ is the partial type

$$\{\varphi(\bar{x};\bar{b}):\bar{b}\in B,\ \mathbb{M}\models\varphi(\bar{a},\bar{b})\}\ \cup\ \{\neg\varphi(\bar{x};\bar{b}):\bar{b}\in B,\ \mathbb{M}\models\neg\varphi(\bar{a},\bar{b})\}.$$

In other words, $\operatorname{tp}^{\varphi}(\bar{a}/B)$ is the set of formulas in $\operatorname{tp}(\bar{a}/B)$ of the form φ or $\neg \varphi$.

Remark 6. Suppose $\bar{a}, \bar{b} \in \mathbb{M}^n$.

1. $\operatorname{tp}^{\varphi}(\bar{a}/C) = \operatorname{tp}^{\varphi}(\bar{b}/C)$ if and only if

$$\forall \bar{c} \in C : \mathbb{M} \models (\varphi(\bar{a}, \bar{c}) \leftrightarrow \varphi(\bar{b}, \bar{c}))$$

So \bar{a} and \bar{b} have the same φ -type over C iff they satisfy exactly the same formulas of the form $\varphi(\bar{x}, \bar{c})$ with $\bar{c} \in C$.

2. $\bar{b} \in \mathbb{M}^n$ realizes $\operatorname{tp}^{\varphi}(\bar{a}/C)$ if and only if $\operatorname{tp}^{\varphi}(\bar{a}/C) = \operatorname{tp}^{\varphi}(\bar{b}/C)$.

Warning 7. Some authors like Pillay in his book Geometric Stability Theory use " φ -type" to mean something slightly different. But the definition here is more common in contemporary research.

Definition 8. $S_{\varphi}(B)$ is the set $\{\operatorname{tp}^{\varphi}(\bar{a}/B) : \bar{a} \in \mathbb{M}^n\}$.

Definition 9. A φ -type $p \in S_{\varphi}(B)$ is definable if there is an L(B)-formula $\psi(\bar{y})$ such that

For any
$$\bar{b} \in B$$
, $\varphi(\bar{x}, \bar{b}) \in p(\bar{x}) \iff \mathbb{M} \models \psi(\bar{b})$.

Theorem 10. Suppose φ does not have the dichotomy property. Then every φ -type over any set is definable.

4 Proof of Theorem 10

Continue to fix $T, \mathbb{M}, \varphi(\bar{x}; \bar{y})$.

Definition 11. Let $\Sigma(\bar{x})$ be a small set of $L(\mathbb{M})$ -formulas. Define " $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$ " by recursion on n:

- $R_{\varphi,2}(\Sigma(\bar{x})) \ge 0$ iff $\Sigma(\bar{x})$ is consistent.
- $R_{\varphi,2}(\Sigma(\bar{x})) \geq n+1$ iff there is $\bar{b} \in \mathbb{M}$ such that

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \ge n$$

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg \varphi(\bar{x},\bar{b})\}) \ge n$$

Lemma 12. $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$ if and only if there are $(\bar{a}_{\sigma} : \sigma \in 2^n)$ and $(\bar{b}_{\tau} : \tau \in 2^{< n})$ such that

- If σ extends $\tau 0$, then $\varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds.
- If σ extends $\tau 1$, then $\neg \varphi(\bar{a}_{\sigma}, \bar{b}_{\tau})$ holds.
- Each \bar{a}_{σ} satisfies $\Sigma(\bar{x})$.

Proof. By induction on n. (Try a few small values of n and you'll see how this works.) \Box

Definition 13. $R_{\varphi,2}(\Sigma(\bar{x}))$ is the largest n such that $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$, or $-\infty$ if there is no such n (because $\Sigma(\bar{x})$ is inconsistent), or $+\infty$ if $R_{\varphi,2}(\Sigma(\bar{x})) \geq n$ for all n.

 $R_{\varphi,2}(\Sigma(\bar{x}))$ is called the " φ -2-rank" or " $R_{\varphi,2}$ -rank" of Σ .

Remark 14 (Monotonicity). If $\Sigma(\bar{x}) \vdash \Sigma'(\bar{x})$, then $R_{\varphi,2}(\Sigma(\bar{x})) \leq R_{\varphi,2}(\Sigma'(\bar{x}))$. This can either be proved by induction using Definition 11, or directly from the explicit description in Lemma 12.

We write $\{\bar{x} = \bar{x}\}$ for the partial type that is satisfies by all $\bar{a} \in \mathbb{M}$. (We could also write $\{\}$, but it is traditional to write $\{\bar{x} = \bar{x}\}$ instead.) Note $\Sigma(\bar{x}) \vdash \{\bar{x} = \bar{x}\}$ for any Σ .

Remark 15. From Lemma 12, we see that $R_{\varphi,2}(\{\bar{x}=\bar{x}\}) \geq n$ iff " D_n is consistent" in the sense of Definition 1. By Lemma 4,

 $R_{\varphi,2}(\{\bar{x}=\bar{x}\})=+\infty$ iff φ has the dichotomy property.

In particular, if φ does *not* have the dichotomy property, then $R_{\varphi,2}(\{\bar{x}=\bar{x}\})$ is finite. By Monotonicity, $R_{\varphi,2}(\Sigma(\bar{x}))$ is finite for any $\Sigma(\bar{x})$.

Remark 16 (Definability). Suppose $\Sigma(\bar{x})$ is a <u>finite</u> partial type over $A \subseteq M$, and suppose $n < \omega$. Then the set

$$\{\bar{b} \in \mathbb{M} : R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \ge n\}$$

is A-definable. This can either be proved by induction on n using Definition 11, or directly from the explicit description in Lemma 12.

Now we can prove Theorem 10. Suppose $p \in S_{\varphi}(B)$. Take a finite subtype $\Sigma(\bar{x}) \subseteq_f p(\bar{x})$ minimizing $R_{\varphi,2}(\Sigma(\bar{x}))$. Then $\Sigma(\bar{x})$ is a partial type over B. Let $k = R_{\varphi,2}(\Sigma(\bar{x}))$.

Claim. If $\varphi(\bar{x}, \bar{b}) \in p(\bar{x})$, then

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) = k$$

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg\varphi(\bar{x},\bar{b})\}) < k$$

Proof. Monotonicity gives

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \le R_{\varphi,2}(\Sigma(\bar{x})) = k$$

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg\varphi(\bar{x},\bar{b})\}) \le R_{\varphi,2}(\Sigma(\bar{x})) = k$$

If the first inequality is sharp, then $R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) < k$. But $\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}$ is a finite subtype of p (because $\varphi(\bar{x},\bar{b}) \in p(\bar{x})$), so this contradicts the choice of $\Sigma(\bar{x})$. Therefore the first inequality is an equality:

$$R_{\omega,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) = k$$

If the second inequality is not sharp, then

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg \varphi(\bar{x}, \bar{b})\}) = k$$

Then $R_{\varphi,2}(\Sigma(\bar{x})) \geq k+1$ by Definition 11, contradicting the choice of k. Therefore the second inequality is sharp:

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg \varphi(\bar{x}, \bar{b})\}) < k.$$

A similar argument shows

Claim. If $\neg \varphi(\bar{x}, \bar{b}) \in p(\bar{x})$, then

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) < k$$

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\neg\varphi(\bar{x},\bar{b})\}) = k$$

Combining the two claims, we see that the set

$$\{\bar{b} \in B : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\}$$

is exactly

$$\{\bar{b} \in B : R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \ge k\}.$$

By Definability, there is an L(B)-formula $\psi(\bar{x})$ such that

$$R_{\varphi,2}(\Sigma(\bar{x}) \cup \{\varphi(\bar{x},\bar{b})\}) \ge k \iff \mathbb{M} \models \psi(\bar{b}).$$

Therefore

$$\{\bar{b} \in B : \varphi(\bar{x}, \bar{b}) \in p(\bar{x})\} = \{\bar{b} \in B : \mathbb{M} \models \psi(\bar{b})\}.$$

It follows that p is a definable φ -type. This completes the proof of Theorem 10.

4.1 Remarks on the proof

1. In the proof of Theorem 10, the finite subtype $\Sigma(\bar{x}) \subseteq p(\bar{x})$ chosen to minimize $R_{\varphi,2}(\Sigma(\bar{x}))$ actually has

$$R_{\varphi,2}(\Sigma(\bar{x})) = R_{\varphi,2}(p(\bar{x})).$$

This comes from the following:

Fact 17. Let $\Sigma(\bar{x})$ be a partial type over \mathbb{M} .

- (a) If $n < \omega$ and if $R_{\varphi,2}(\Sigma_0(\bar{x})) \ge n$ for every finite subtype $\Sigma_0(\bar{x})$, then $R_{\varphi,2}(\Sigma(\bar{x})) \ge n$.
- (b) $R_{\varphi,2}(\Sigma(\bar{x}))$ is the minimum of $R_{\varphi,2}(\Sigma_0(\bar{x}))$ as Σ_0 ranges over finite subtypes of Σ .

Part (1) is an easy consequence of Lemma 12 and compactness.² Part (2) follows formally from part (1).³

- 2. We have discussed $R_{\varphi,2}$ for partial types, but we can also define it for definable sets. If D is a definable set, defined by a finite type $\Sigma(\bar{x})$, then $R_{\varphi,2}(D) := R_{\varphi,2}(\Sigma(\bar{x}))$. The choice of Σ doesn't matter by Remark 14. An equivalent definition in the style of Definition 11 is
 - $R_{\varphi,2}(D) \geq 0$ iff D is non-empty.
 - $R_{\varphi,2}(D) \geq n+1$ iff there is \bar{b} such that

$$R_{\varphi,2}(D \cap \varphi(\mathbb{M}^n, \bar{b})) \ge n$$

$$R_{\varphi,2}(D \setminus \varphi(\mathbb{M}^n, \bar{b})) \ge n.$$

More generally, we can allow D to be a type-definable set (a set defined by a partial type, or equivalent, a small intersection of definable sets.)

5 Consequences of Theorem 10

Theorem 18. Suppose that no formula $\varphi(x_1, \ldots, x_n; \bar{y})$ has the dichotomy property. For any model $M \models T$ and any $p \in S_n(M)$, p is definable.

Proof. Take $\bar{a} \in \mathbb{M}$ realizing p. Let $\varphi(\bar{x}; \bar{y})$ be a formula. By Theorem 10, $\operatorname{tp}^{\varphi}(\bar{a}/M)$ is definable, which means that there is an L(M)-formula $\psi(\bar{y})$ such that for any $\bar{b} \in M$,

$$\varphi(\bar{x}, \bar{b}) \in p(\bar{x}) \iff \varphi(\bar{x}, \bar{b}) \in \operatorname{tp}^{\varphi}(\bar{a}/M) \iff \mathbb{M} \models \psi(\bar{b}).$$

This exactly means that p is definable.

²If you can get the leaves a_{σ} to satisfy Σ_0 for any Σ_0 , you can get them to satisfy Σ .

³If $\Sigma_0(\bar{x}) > \Sigma(\bar{x})$ for all finite subtypes Σ_0 , then take $n = \Sigma(\bar{x}) + 1$, and contradict part (1).

We also proved this in class by a completely different method (Proposition 8 in the March 3 notes).

Remark 19. When $A \subseteq \mathbb{M}$ is arbitrary (not necessarily a model), one says that $p \in S_n(A)$ is definable if for any $\varphi(\bar{x}; \bar{y})$ there is an L(A)-formula $\psi(\bar{y})$ such that for $\bar{b} \in A$,

$$\varphi(\bar{x}; \bar{b}) \in p(\bar{x}) \iff \mathbb{M} \models \psi(\bar{b}).$$

When A is a model, this recovers the definition of "definable type" over a model. The proof of Theorem 18 shows more generally that

If no formula has the dichotomy property, then any $p \in S_n(A)$ is definable for any A.

"No formula has the dichotomy property" is one of the definitions of "stable," and so we can conclude:

In a stable theory, any type over any set is definable.

Warning 20. Definable types over arbitrary sets are not as well-behaved as definable types over models. For example:

- 1. A definable type over $A \subseteq \mathbb{M}$ can have more than one A-definable extension to \mathbb{M} .
- 2. A definable type over $A \subseteq \mathbb{M}$ can have no A-definable extensions to \mathbb{M}^{5}
- 3. There is no good notion of "heirs" in this context.

Here is another important application of Theorem 10

Theorem 21. Assume T is stable and $M \models T$. Let $D \subseteq M^n$ be \varnothing -definable. If $X \subseteq D$ is definable (with parameters from M), then X is definable over parameters from D.

Proof. Let $\psi(\bar{y})$ be a formula defining D and let $\varphi(\bar{a}; \bar{y})$ be a formula defining X. Then $\operatorname{tp}^{\varphi}(\bar{a}/D)$ is definable by Theorem 10. Therefore there is a formula $\theta(\bar{y})$ with parameters from D such that if $\bar{b} \in D$, then

$$(M \models \varphi(\bar{a}; \bar{b})) \iff \varphi(\bar{x}; \bar{b}) \in \operatorname{tp}^{\varphi}(\bar{a}/D) \iff (M \models \theta(\bar{b}))$$

In other words, if $\psi(\bar{y})$ holds, then $\varphi(\bar{a}; \bar{y})$ is equivalent to $\theta(\bar{y})$. Therefore X is defined by $\psi(\bar{y}) \wedge \theta(\bar{y})$, a formula with parameters from D.

⁴Example: in DLO, there is only one 1-type over \varnothing . It has two different \varnothing -definable extensions to \mathbb{M} : the types at $+\infty$ and $-\infty$.

⁵Example: in ACF, $\operatorname{tp}(\sqrt{2}/\mathbb{Q})$ is definable (because ACF is stable), but there is no \mathbb{Q} -definable extension to the monster model \mathbb{M} . Indeed, there are exactly two extensions to \mathbb{M} , namely $\operatorname{tp}(\sqrt{2}/\mathbb{M})$ and $\operatorname{tp}(-\sqrt{2}/\mathbb{M})$. These are exchanged by some automorphisms in $\operatorname{Aut}(\mathbb{M}/\mathbb{Q})$, so neither one can be \mathbb{Q} -definable.

Poizat calls Theorem 21 the *Parameter Separation Theorem* (Corollary 12.31). In modern literature, Theorem 21 is usually called "stable embeddedness." Using Theorem 21, one can prove the following:

Fact 22. Let M be a stable structure and $D \subseteq M^n$ be A-definable. Let N be the structure whose domain is D, with an m-ary relation symbol for each A-definable $X \subseteq D^m$. Then the definable subsets of D^m in M agree with the definable subsets of D^m in N.

Note that we may as well take A to be finite, and then the language of N is no bigger than the language of M. Fact 22 is especially useful when M is a monster model. One can show that N is also a monster model (assuming A is small).

Here is the point of Fact 22: when studying a definable set D in a stable theory, we can essentially assume that D is the entire structure. For example, if G is a definable group in a stable theory, and we want to understand the internal structure of G, we can assume that G is the entire structure. If D is a strongly minimal set⁷, and we want to understand definable relations on D, we can assume D is the entire structure (and then the theory is strongly minimal!).

⁶A set $A \subseteq M$ is "stably embedded" if for any definable set $D \subseteq M^n$, there is an A-definable set $D' \subseteq M^n$ such that $D \cap A^n = D' \cap A^n$. Theorem 21 says that any definable set in a stable theory is stably embedded. More generally, Theorem 10 says that any set in a stable theory is stably embedded.

⁷A strongly minimal set is an infinite definable set $D \subseteq \mathbb{M}$ that can't be written as a disjoint union $X \sqcup Y$ of two infinite definable sets. This is the original motivation for the terminology "minimal."