CHAPTER 4: ORTHOGONALITY

Introduction to Linear Algebra

Franklin Chen

Gilbert Strang Juanita High School 26 Feburary 2025

Contents

1	Orthogonality of the Four Subspaces	3
2	Projections	5
3	Least Squares Approximations	5
4	Orthogonal Bases and Gram-Schmidt	5

1 Orthogonality of the Four Subspaces

Definition 1.1 (Orthogonal Subspaces)

Subspaces V and W of a vector space are orthogonal if every vector in V is perpendicular/orthogonal to every vector in W.

$$\vec{v} \cdot \vec{w} = (\vec{v})^T \times \vec{w} = 0 \quad \forall \vec{v} \in V, \vec{w} \in W$$

Example 1.2 (Floors and Walls)

Suppose you live in a rectangular room. The floor of your room (extended to infinity) is a subspace F. The line where two walls meet is a subspace W (one-dimensional). F and W are orthogonal; every vector along W is perpendicular to every vector along F. The origin (0,0,0) is in the corner.

Example 1.3 (Zero)

If a vector is in two mutually orthogonal subspaces, then $\vec{v} \cdot \vec{v} = 0$. The only \vec{v} that has this property is $\vec{0}$. $\vec{0}$ is the only vector that will be in two mutually orthogonal subspaces.

The crucial examples for Linear Algebra come from the fundamental subspaces.

Theorem 1.4

The nullspace of A is orthogonal to the row space of A.

Proof. Suppose \vec{x} is in the nullspace of A. Then, $A\vec{x} = \vec{0}$. By the definitions of matrix-vector multiplication:

$$A\vec{x} = \begin{bmatrix} \operatorname{row} & 1 \\ \operatorname{row} & 2 \\ \vdots \\ \operatorname{row} & m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} \operatorname{row} & 1 \cdot \vec{x} \\ \operatorname{row} & 2 \cdot \vec{x} \\ \vdots \\ \operatorname{row} & m \cdot \vec{x} \end{bmatrix} = \vec{0}$$

Because every cross product between the rows of A and \vec{x} equal zero, every row of A is perpendicular to \vec{x} . This implies that the rows of A- the row space- and any vector in the nullspace of A are mutually perpendicular. Thus, the nullspace of A is orthogonal to the row space of A.

Theorem 1.5

The left nullspace of A (the nullspace of the row space) is orthogonal to the column space of A.

Proof. (Very similar proof to Theorem 1.4.) Suppose \vec{y} is in the left nullspace. Then, $A^T \vec{y} = \vec{0}$. Taking the transpose, $(A^T \vec{y})^T = (\vec{y})^T A = (\vec{0})^T$. Expanding this out:

$$(\vec{y})^T A = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix} \begin{bmatrix} \text{col } 1 & \text{col } 2 & \cdots & \text{col } n \end{bmatrix}$$

= $\begin{bmatrix} \text{col } 1 \cdot (\vec{y})^T & \text{col } 2 \cdot (\vec{y})^T & \cdots & \text{col } n \cdot (\vec{y})^T \end{bmatrix} = (\vec{0})^T$

Every cross product between the cols of A and $(\vec{y})^T$ equals zero, implying that the cols of A and $(\vec{y})^T$ are mutually perpendicular. Thus, the left nullspace of A is orthogonal to the column space of A.

Note that the fundamental subspaces are more than orthogonal: they are **orthogonal** compliments (which matter for some reason?)

Definition 1.6 (Orthogonal Compliment)

The orthogonal compliment of a subspace V contains **all** vectors orthogonal to V. The orthogonal compliment is denoted V^{\perp} ("v perp").

By definition, the nullspace is the orthogonal complement of the row space, and similar with the left nullspace and the column space. **Keep in mind what this implies**: every \vec{x} orthogonal to the row space automatically satisfies $A\vec{x} = \vec{0}$, and every \vec{y} orthogonal to the null space is automatically part of the row space. $N(A)^{\perp} = R(A^T)$ and $R(A^T)^{\perp} = N(A)!$ Similar applies for the left nullspace and the column space.

This is all crystalised in the Second Fundamental Theorem of Linear Algebra:

Theorem 1.7 (Second Fundamental Theorem of Linear Algebra)

The nullspace is the orthogonal complement of the row space in \mathbb{R}^n . The left nullspace is the orthogonal complement of the col space in \mathbb{R}^m .

From what I understand, this implies that the nullspace plus the row space is equal to \mathbb{R}^n . Thus, any input $\vec{x} \in \mathbb{R}^n$ can be broken down into the sum of a row space component \vec{x}_r and a null space component \vec{x}_n . So, for any $\vec{b} \in R(A)$:

- 1. By the definition of the column space, there exists a vector $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} = \vec{b}$.
- 2. Shown above, $\vec{x} = \vec{x}_r + \vec{x}_n$.
- 3. $A\vec{x} = A(\vec{x}_r + \vec{x}_n) = A\vec{x}_r + \vec{0} = A\vec{x}_r = \vec{b}$!

Furthermore, Theorem 1.8 can be shown:

Theorem 1.8 (Row Space and Col Space one-to-one mapping)

For every vector \vec{y} in the column space, there exists one and only one vector \vec{x} in the row space such that $A\vec{x} = \vec{y}$.

Proof. Suppose there exists $\vec{x'}$ in the row space such that $A\vec{x} = A\vec{x'}$. The difference $\vec{x} - \vec{x'}$ can be observed to be in the nullspace (maps to 0). By the additive property of subspaces, $\vec{x} - \vec{x'}$ is also part of the row space. As zero is the only vector that can be in two mutually orthogonal subspaces, this difference must equal zero. As such, $\vec{x} = \vec{x'}$.

If we "throw away" the nullspaces, we can see that there is always(?) an invertible matrix "hiding" within any matrix because of this one-to-one mapping.

Example 1.9 (Hidden Invertible Matrix)

$$A = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 contains
$$\begin{bmatrix} 3 & 0 \\ 0 & 5 \end{bmatrix}$$

The hidden invertible matrix will always have size $r \times r$: both the row space and col space are of dimension r.

The following is quite useful, and is provided without proof:

Theorem 1.10 (Linear Independence and Span)

Any n linearly independent vectors in \mathbb{R}^n must span \mathbb{R}^n . Any n vectors that span \mathbb{R}^n must be linearly independent.

- 2 Projections
- 3 Least Squares Approximations
- 4 Orthogonal Bases and Gram-Schmidt

[1]

References

[1] bibtex won't shut the fuck up, "The Comprehensive Tex Archive Network (CTAN)," TUGBoat, vol. 14, no. 3, pp. 342–351, 1993.