8. Síťová vrstva

Protokol IP (nespojovanost, best effort)

- IP (Internet Protocol) je jedním z nejdůležitějších protokolů v internetové síti.
- Je to síťový protokol vrstvy 3 (OSI Layer 3) a slouží k přenosu datových paketů mezi počítači v rámci internetu.

Nespojovanost

- IP protokol je nespojovaný, což znamená, že při přenosu dat neprovádí žádnou kontrolu kvality služby ani nezajišťuje spojení mezi zdrojem a cílem.
- To znamená, že při přenosu dat se nezaručuje, že pakety budou dodány v pořadí, v jakém byly odeslány, nebo že všechny pakety dojdou k cíli.

Best Effort

- IP protokol pracuje s principem "best effort" (nejlepšího úsilí), což znamená, že se snaží dodat pakety k cíli, ale nezaručuje to.
- Pokud dojde k chybě při přenosu, pakety mohou být ztraceny nebo se mohou dostat do špatného pořadí. Tyto chyby se pak řeší na vyšších vrstvách síťových protokolů, například pomocí protokolů TCP nebo UDP.

Směrování paketů, princip činnosti směrovače (router), směrovací tabulka

Směrování paketů

- Směrování paketů je proces, kdy se určuje cesta pro přenos paketů z jedné sítě do jiné
- Toto se provádí pomocí směrovačů (routerů).
- Směrovač je zařízení, které slouží k přenosu datových paketů mezi různými sítěmi.
- Každý paket přicházející na směrovač se analyzuje a určuje se, jakým směrem má být odeslán dál.
- Tento proces se provádí na základě informací uložených v směrovací tabulce.

Princip činnosti směrovače

- Pokud router přijme paket na rozhraní, koukne se na MAC adresu v rámci, zda je zpráva opravdu určena pro něj.
- Pokud MAC adresy souhlasí, otevře IP paket a podívá se na IP adresu příjemce.
- Poté prohledá svojí routovací tabulku; pokud má onu IP adresu uloženou, poté paket pošle na aktivní port, u které má danou MAC adresu přiřazenou.
- Pokud IP adresu v routovací tabulce nemá, a nemá nastavenou defaultní routu "vše co neznáš, posílej tudy"; pak paket zahodí.

Směrovací tabulka

- Do routovací tabulky se vytváří několik typů záznamů cest (route), záleží na tom, jakým způsobem vznikly.
- Pakety jsou podle toho směrovány jedním ze základních způsobů routování
- Statické routování
 - Ručně zadané cesty (záznamy v routovací tabulce), bezpečné a dobré, ale nereflektuje změny v topologii sítě
- Dynamické routování
 - Síť se automaticky přizpůsobuje změnám v topologii a dopravě, automaticky se vypočítávají cesty pomocí routovacího protokolu. Routery si mezi sebou vyměňují informace
- Defaultní routování
 - o dochází k němu, pokud neexistuje žádná jiná odpovídající cesta
 - o pokud není nastavena defaultní routa, paket je zahozen

IPv4 adresa, maska podsítě a výchozí brána, statické a dynamické přiřazování IP adres

IPv4

- Jedná se o adresu, kam se mají data zasílat
- Má 32 bitů
- Příklad: 192.0.2.126
- Maximální možnost 255
- Je jednoduchá oproti IPv6

Maska podsítě

- Slouží k rozdělení sítě
- Vymezí rozmezí adres, které k sítí patří
- Příklad 192.168.0.0/24 má rozsah 192.168.0.0-192.168.0.255 maska 24 se napíše 255.255.255.0

Výchozí brána

- Vyhrazuje se pro bránu většinou první adresa (192.168.0.1)
- Cesta používaná k předávání informací, když zařízení neví, kde je cíl.
- Data se potom popřípadě pošlou do jiné sítě

Statické přiřazování

- Je určená ip adresa pro dané zařízení
- Zařízení tak bude mít vždycky stejnou adresu
- Dá se nastavit ve Windows přímo na zařízení, ale často se nastavuje na routeru samotném
- Používá se třeba pro servery, který potřebují mít stejnou adresu

Dynamické přiřazování

- Když se připojí zařízení je mu přidělena nějaká adresa
- Tato akce je hlavně prováděna pomocí DHCP
- Adresy jsou propůjčeny z poolu uživatelům pomocí DHCP
- Počítače si musí obnovovat propůjčenou adresu, protože ji mají časově omezenou, aby se, popřípadě uvolnily adresy,
- Lease time je nastavitelný většinou je nastavený na pár hodin

Typy IPv4 adres, třídy IPv4 adres, řešení nedostatku IPv4 adres – podsítě (VLSM), privátní adresy (NAT)

Typy, Třídy

Veřejné

- Viditelné ostatními v internetu
- Je možné se na ně připojit apod.

Privátní

- Vyhrazené adresy pro privatní použítí
- Class A: 10.0.0.0 to 10.255.255.255
- Class B: 172.16.0.0 to 172.31.255.255
- Class C: 192.168.0.0 to 192.168.255.255

Unicast address

• Posílání pouze jednomu cílu

Multicast address

• Poslání jedněch dat více zařízení

Broadcast address

• Zpráva poslána všem

VLSM

- Je technika, která umožňuje efektivně využívat adresy v síti tím, že umožňuje stanovit různou délku masky podsítě pro různé podsítě v síti.
- To znamená, že můžete vytvořit větší podsítě s větším počtem adres a menší podsítě s menším počtem adres, což je užitečné například v případě, že některé podsítě potřebují více adres než jiné.
- Tím se dá efektivněji využít celý rozsah adres v síti.
- Příklad Síť LAN A potřebuje 60 adres připadímě mu teda subnet /26 která podporuje 64 uživatelů a Síť
 LAN B, která potřebuje pouze 2 uživatele tak mu přiřadíme subnet /31 který podporuje 2 uživatele

NAT

- Způsob, jak mít víc privátních adres přidělené jedné veřejné
- Řeší nedostatek IPv4 adres

Typy NAT

Statický NAT

• Jedna privátní adresa převedena na jednu veřejnou.

Dynamická NAT

Zařízení z privátní sítě čerpají z poolu veřejných adres. Přiděluje se jim veřejná ip adresa podle potřeby.

PAT

- Jedná se o typ dynamického NAT, který však spojuje několik privátních IP adres do jediné veřejné.
- Uživateli se v privátní síti se přidělí port který funguje jako identifikátor v lokální sítí o koho se jedná a díky tomu může router předat informace správnému uživateli

Reprezentace a struktura IPv6 adresy, typy IPv6 adres

- Má 128bitů
- Jedna část má 16bitů
- Rozděluje se na 2 části po 64bit
- V první části se nachází údaje o networku a subnetu
- V druhé je Client ID

Typy

Unicast

Posílání pouze jednomu cílu

Multicast

• Poslání jedněch dat více zařízení

Loopback

• Packet se pošle zpět

Link local

- Slouží ke komunikaci v lokální síti
- Začínají fe80::
- Nepoužívají se na internetu

Globalní adresy

Slouží ke komunikaci na internetu

Způsoby koexistence IPv4 a IPv6

Dual Stack

Tato metoda umožňuje zařízením používat jak IPv4, tak IPv6 adresy současně. Toto je nejběžnější
způsob pro přechod na IPv6, kdy se udržuje kompatibilita s existujícími IPv4 sítěmi.

Tunneling

- Tato metoda umožňuje přenos IPv6 paketů přes IPv4 sítě, kdy se IPv6 pakety zabalí do IPv4 paketů. "
- Tyto pakety se poté přenášejí přes IPv4 síť a jsou dekomprimovány na druhé straně zpět do IPv6 paketů.

Translation

- Tato metoda umožňuje komunikaci mezi IPv4 a IPv6 sítěmi prostřednictvím technologie pro překlad mezi těmito protokoly.
- Tyto technologie překládají pakety mezi IPv4 a IPv6 formáty, umožňujíc tak komunikaci mezi zařízeními, která podporují jen jeden z těchto protokolů.

Protokoly ICMPv4 a ICMPv6

- Slouží hlavně k diagnostice v síti
- Tyto zprávy se používají k řešení problémů, jako je například neuspokojivý stav spojení, ztráta paketů, nedostatek volných zdrojů a další. (Errory)
- Pomocí tohoto protokolu funguje i třeba traceroute nebo ping
- ICMPv4 pro IPv4
- ICMPv6 pro iPv6

Traceroute

• Slouží k zobrazení cesty z jednoho internetového zařízení do jiného

Ping

• Je zjednodušená verze traceroute. Testuje jak rychle se tam dostal a jestli dostal odpověď