Hafta 03/04 - Uzaklık/Benzerlik - En Yakın Komşular - Karar Ağaçları

BGM 565 - Siber Güvenlik için Makine Öğrenme Yöntemleri Bilgi Güvenliği Mühendisliği Yüksek Lisans Programı

> Dr. Ferhat Özgür Çatak ozgur.catak@tubitak.gov.tr

İstanbul Sehir Üniversitesi 2018 - Bahar



- Regularization
  - Detay
  - Neden Katsayıların Büyüklüğünü Cezalandırıyoruz?
  - Lab
- Uzaklık ve Benzerlik
  - Uzaklık
  - Farklı Uzaklık Ölçümleri

- Benzerlik Ölçümleri
- kNN Yöntemi
  - Giriş
  - kNN Yöntemi
  - Karar Sınırları
  - Ağırlıklı kNN
  - Karar Ağaçları
    - Giriş
    - Çok Sınıflı Sınıflandırma
    - Ağacın Oluşturulması

- Regularization
  - Detay
  - Neden Katsayıların Büyüklüğünü Cezalandırıyoruz?
  - Lab
- - Uzaklık
  - Farklı Uzaklık Ölcümleri

- Benzerlik Ölçümleri
- Giris
  - kNN Yöntemi
  - Karar Sınırları
- Ağırlıklı kNN
- Karar Ağaçları
  - Giris
  - Çok Sınıflı Sınıflandırma
  - Ağacın Olusturulması

### Regularization - Detay I

#### Regularization

Ridge ve Lasso regresyonu, genellikle yüksek sayıda özniteliğin (feature, column v.s.) olduğu durumlarda model (hipotez) oluşturulmasında kullanılan güçlü tekniklerdir. Burada yüksek, genellikle iki konudan birini ifade etmektedir:

- Bir modelin aşırı öğrenme eğilimini arttırmak için yeterince yüksek sayıda (10 değişken bile aşırı öğrenmeye neden olabilir)
- Hesaplama zorluklarına neden olacak kadar büyük. Modern sistemlerde, bu durum milyonlarca veya milyarlarca özellikte ortaya çıkabilir.

**Regularization**: Tahmin ve gerçek gözlemler arasındaki hatayı en aza indirgeyerek, özellik katsayılarının büyüklüğünü cezalandırarak çalışırlar.

# Regularization - Detay II



**Şekil**: Farklı  $\lambda$  değerleri için lasso ve ridge regularization

## Regularization - Detay III



Şekil: Aşırı Öğrenme

### Neden Katsayıların Büyüklüğünü Cezalandırıyoruz?

#### Regularization

000000

- ► Eski maliyet fonksiyonu  $C = \frac{1}{2m} \sum_{i=1}^{m} \left( h(x^{(i)}) y^{(i)} \right)^2$ 
  - MSE (Mean Square Error) değerinin azaltılması tek hedeftir.
  - ▶ Bu nedenle, MSE düşürmek için ağırlık değerleri herhangi bir değer alabilir.
  - Ağırlıkların yüksek olması ezberlemeye (overfit) neden olabilir.
- Cözüm: Sadece MSE düsürülmemeli aynı zamanda ağırlıklar cok vüksek olmamalıdır.
- ► Yeni maliyet fonksiyonu  $C = \frac{1}{2m} \left( \sum_{i=1}^m \left( h(x^{(i)}) y^{(i)} \right)^2 + \lambda \sum_{j=1}^n w_j^2 \right)$ 
  - λ: regularization ifadesinin değerini ayarlamak için kullanılmaktadır. n değeri öznitelik sayısıdır.
    - λ değeri cok düsükse, maliyet sadece coğunlukla MSE've bağımlıdır.
    - λ değeri cok büyükse ağırlıklar oldukça düsük değerler olacaktır.

00000 Lab

Regularization

# Lab Uygulaması 1 ve 2

### İçindekiler

- - Neden Katsayıların
  - Lab
- Uzaklık ve Benzerlik
  - Uzaklık
  - Farklı Uzaklık Ölcümleri

### Benzerlik Ölçümleri

- - Giris
  - kNN Yöntemi
  - Karar Sınırları
  - Ağırlıklı kNN Karar Ağaçları
  - Giris
    - Çok Sınıflı Sınıflandırma
    - Ağacın Olusturulması

#### Uzaklık I

 Kümeleme ve sınıflandırma olmak üzere iki örneğin birbirlerine olan uzaklık ve benzerlikleri kullanılmaktadır.

#### Uzaklık

Uzaklık: X kümesindeki bir metrik. (**uzaklık fonksiyonu** veya sadece **uzaklık** adlandırılır).

$$d: X \times X \to \mathbb{R} \to [0, \infty)$$

 $\mathbf{x}$ ,  $\mathbf{y}$ ,  $\mathbf{z} \in X$  gibi X kümesinden alınacak örnekler için uzaklık olarak  $[0,\infty)$  şeklinde skaler sonuçlar üretir. Aşağıdaki koşullar yerine getirir:

- ►  $d(\mathbf{x}, \mathbf{y}) \ge 0$ , iki örneklem arasında uzaklık pozitiftir.
- $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$  iki örneklem arasında uzaklık 0 ise bu iki örneklem aynıdır.
- $ightharpoonup d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ , Uzaklıklar simetriktir.
- ▶  $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{x}, \mathbf{z})$  Üçgen eşitsizliği

Alternatif olarak uzaklık d, norm N olarak ifade edebiliriz.

$$d(\mathbf{x},\mathbf{y}) = N(\mathbf{x} - \mathbf{y})$$



#### Uzaklık Matrisi

*m* adet satır ve *n* adet özniteliğe sahip veri kümesi  $\mathcal{D} \in \mathbb{R}^{m \times n}$  için uzaklık matrisi  $\mathcal{R} \in \mathbb{R}^{m \times m}$  şeklinde tanımlanır.

$$\mathcal{R} = egin{bmatrix} 0 & d_{12} & \dots & d_{1m} \ d_{21} & 0 & \dots & d_{2m} \ dots & dots & \ddots & dots \ d_{m1} & d_{m2} & \dots & 0 \end{bmatrix}$$

### Uzaklık III

### Uygulama

Örnekler (satırlar,  $\mathbf{x}_i \in \mathbb{R}^n, n \geq 1$ ) arasında benzerliği birbirlerine olan yakınlık olarak tanımlayabiliriz.



Karar Ağaçları

# Farklı Uzaklık Ölçümleri I

Regularization

#### Uzaklık Ölçümleri - Minkowski Uzaklığı

$$d_{\rho}(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||_{\rho} = \left(\sum_{k=1}^{n} |\mathbf{x}_{k} - \mathbf{y}_{k}|^{\rho}\right)^{\frac{1}{\rho}}$$
(1)

- p = 1: **Manhattan** uzaklığı ( $L_1$ -Norm, Taxicab veya City-Block)
- $\triangleright$  p = 2: Öklid uzaklığı (L<sub>2</sub>-Norm veya Ruler)
- ▶  $p \to \infty$ : **Chebyshev** uzaklığı ( $L_{max}$ -Norm, maximum metric)

  - Örnek:

$$\mathbf{x} = [0, 3, 4, 5]$$
  
 $\mathbf{v} = [7, 6, 3, -1]$ 

$$d_{Chebyshev}(\mathbf{x}, \mathbf{y}) = 7$$

# Benzerlik Ölçümleri I

#### Tanım

- ► Pearson korelasyon katsayısı, *X* ve *Y* iki değişkeni arasındaki doğrusal korelasyonun bir ölçütüdür.
- Öznitelikler arasında bulunan benzerlik derecesini hesaplamada kullanılır.
- ightharpoonup [-1, +1] aralığında yer alırlar.

#### **Pearson Correlation**

$$\rho_{X,Y} = \frac{\sum_{k=1}^{n} (x_k - \overline{x})(y_k - \overline{y})}{\sqrt{\sum_{k=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{k=1}^{n} (y_i - \overline{y})^2}}$$
(2)

#### Benzerlik Ölçümleri II Pearson Correlation





Regularization

#### Kosinüs Benzerliği

- lki vektör arasında bulunan açı farkını kullanan benzerlik ölçümü.
- Açı 0 ise kosinüs değeri 1 olacaktır. Diğer durumlarda 1'den küçük olacaktır.
- Kullanım alanı:
  - Döküman benzerlikleri
  - Multimedia kıyaslamaları
  - Arama motorları v.s.

$$cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{b}_{i}}{\sqrt{\sum_{i=1}^{n} \mathbf{a}_{i}^{2}} \sqrt{\sum_{i=1}^{n} \mathbf{b}_{i}^{2}}}$$
(3)

## Kosinüs Benzerliği II



 $X_1$ 

# Kosinüs Benzerliği III

### Örnek

$$\mathbf{a} = [1, 6] \ \mathbf{b} = [3, 5]$$

$$\|\boldsymbol{a}\| = \sqrt{1^2 + 6^2} = 6.08 \ \|\boldsymbol{b}\| = \sqrt{3^2 + 5^2} = 5.83$$

$$\mathbf{a} \cdot \mathbf{b} = 1 \times 3 + 6 \times 5 = 33$$

$$cos(\theta) = \frac{33}{6.08 \times 5.83} = 0.93$$



# Kategorik Değişkenler I

Regularization

#### Kategorik Değişkenler

Öznitelikerin temsili amacıyla söz konusu özelliğin varlığı/yokluğu (Var/Yok, True/False) ile ifade edilmesi

#### Hamming Uzaklığı

► Tanım:  $\mathbf{x} \in \mathbb{R}^m \mathbf{y} \in \mathbb{R}^m$  olsun.  $d(\mathbf{x}, \mathbf{y})$  için

$$d_{hamming}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{m} (\mathbf{x}_{i} XOR \mathbf{y}_{i})$$

$$d(00111, 11001) = 4 \frac{d}{d}(0122, 1220) = 3$$
(4)

Örnekler:

$$d(00111, 11001) = 4 \stackrel{i=1}{d}(0122, 1220) = 3$$
  
 $d('karolin', 'kathrin') = 3$ 



# Kategorik Değişkenler II



#### İkili alfabe Hamming uzaklığı

Kelimeler ( $\mathbb{R}^3$ ) üç boyutlu bir küpün köşeleri olarak temsil edilebilir.

000,001,010,011,100101,110,111

## Kategorik Değişkenler III

### Jaccard Benzerliği

- Jaccard benzerliği, hangi üyelerin paylaşıldığını, hangilerinin farklı olduğunu görmek için iki kümeyi karşılaştırmaktadır.
- ► Benzerlik ölçüsü aralığı: [0,1]
- ► Jaccard = (the number in both sets) / (the number in either set) \* 100
- $J(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$
- Örnek:

$$A = \{0, 1, 2, 5, 6\}$$

$$B = \{0, 2, 3, 4, 5, 7, 9\}$$

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|\{0, 2, 5\}|}{|\{0, 1, 2, 3, 4, 5, 6, 7, 9\}|} = \frac{3}{9} = 0.33$$

▶ Jaccard uzaklığı:  $d_{iaccard}(A, B) = 1 - J(A, B)$ 

# Lab Uygulaması 3

### Dogularization

- Detay
- Neden Katsayıların Büyüklüğünü Cezalandırıyoruz?
- Lab
- Uzaklık ve Benzerlik
  - Uzaklık
  - Farklı Uzaklık Ölçümleri

- Benzerlik Ölçümleri
- kNN Yöntemi
  - Giriş
  - kNN Yöntemi
  - Karar Sınırları
  - Ağırlıklı kNN
- Karar Ağaçları
  - Giriş
  - Çok Sınıflı Sınıflandırma
  - Ağacın Oluşturulması

#### **Giris**

lki değişkenin benzerliği ve uzaklığı çeşitli yöntemlerle (Öklid, Hamming, Jaccard, Pearson gibi) hesaplanabilmektedir.

kNN Yöntemi

- ► Bu yöntemler kullanılarak **Voronoi** mozaikleriyle **karar sınırları** tanımlanabilmektedir.
- ▶ Voronoi: Düzlemin belirli bir alt kümesindeki noktalara olan uzaklığa bağlı olarak bir düzlemin bölgelere ayrılmasıdır.

# k-En Yakın Komşu Yöntemi I

k-Nearest-Neighbor (kNN)

#### **kNN**

- En basit sınıflandırma algoritmalarından bir tanesidir.
- Bir test örneği ile belirtilen eğitim örnekleri arasındaki uzaklığa dayanır.



k-En-Yakın komşu algoritması

kNN Yöntemi

- En basit sınıflandırma yöntemi
- Örnek tabanlı: Bir öğrenme aşaması yok. Bunun yerine bütün örnekleri hatırlayarak yeni örneğin sınıfını uzaklıkları kullanarak hesaplamaktadır.

# k-En Yakın Komşu Yöntemi II

k-Nearest-Neighbor (kNN)

#### kNN Nasıl Çalışır?

- ▶ k adet en yakın komsunun sahip olduğu sınıf etiketi kullanılarak gözlemin sınıfı belirlenir.
- ► Uzaklık ölçümü (d(x,y)) için genellikle Öklid (Euclidean) uzaklığı kullanılır.
- ► En yakın komşu:
  - eğer bilinmeyen örnek  $\mathbf{x} \in \mathbb{R}^m$  için eğitim veri kümesinde  $\mathcal{D} \in \mathbb{R}^{m \times n}$ bulunan örneklerin (satırların) uzaklıklarına göre artan sırada sıralayalım.

$$d_1(\mathbf{x}) \leq d_2(\mathbf{x}) \leq \cdots \leq d_m(\mathbf{x})$$

kNN Yöntemi

▶ d₁ ifadesi en yakın örneğe olan uzaklık, d₂ ifadesi ikinci en yakın örneğe olan uzaklığı ifade etmektedir.

#### Formal Tanım

- ▶ positif tamsayı K, gözlemlenen örnek **x** ve benzerlik metriği d olmak üzere, kNN aşağıda yer alan 2 adımı gerçekleştirir.
  - ▶ Bütün veri kümesi, D, üzerinde bulunan örnekler (satırlar, gözlemler v.b.) ile sınıf etiketi bilinmeyen  $\mathbf{x}$  arasında d hesaplanır.

kNN Yöntemi

► Her bir sınıf için sartlı olasılık hesaplanarak, en yüksek olasılığa sahip sınıf etiketi x gözlemine atanmaktadır.

$$P(y = j | X = \mathbf{x}) = \frac{1}{K} \sum_{i \in \mathcal{A}} I(y^{(i)} = j)$$

1: Indicator function, doğru ise 1 diğer durumda 0.

kNN'yi anlamak icin alternatif bir yol: yeni noktaları sınıflandırmak icin kullanılan bir karar sınırını hesaplamak olarak düşünülebilir.

Table: KDDCUP'99 veri kümesinden alınmış 10 örneğin birbirlerine olan öklid uzaklıkları.

|                       | <i>x</i> <sub>0</sub> | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | х3      | <i>x</i> <sub>4</sub> | <i>x</i> 5 | <i>x</i> <sub>6</sub> | <i>x</i> 7 | <i>x</i> 8 | <i>x</i> 9 |
|-----------------------|-----------------------|-----------------------|-----------------------|---------|-----------------------|------------|-----------------------|------------|------------|------------|
| <i>x</i> <sub>0</sub> | 0.00                  | 1314.42               | 0.00                  | 1.41    | 849.42                | 0.00       | 2022.72               | 1172.66    | 1188.98    | 9325.94    |
| x <sub>1</sub>        | 1314.42               | 0.00                  | 1314.42               | 1313.68 | 842.25                | 1314.42    | 960.09                | 268.17     | 871.97     | 8500.60    |
| X <sub>2</sub>        | 0.00                  | 1314.42               | 0.00                  | 1.41    | 849.42                | 0.00       | 2022.72               | 1172.66    | 1188.98    | 9325.94    |
| x <sub>3</sub>        | 1.41                  | 1313.68               | 1.41                  | 0.00    | 848.22                | 1.41       | 2022.23               | 1171.83    | 1188.38    | 9325.83    |
| x <sub>4</sub>        | 849.42                | 842.25                | 849.42                | 848.22  | 0.00                  | 849.42     | 1564.92               | 738.86     | 1031.45    | 8962.28    |
| x <sub>5</sub>        | 0.00                  | 1314.42               | 0.00                  | 1.41    | 849.42                | 0.00       | 2022.72               | 1172.66    | 1188.98    | 9325.94    |
| <i>x</i> <sub>6</sub> | 2022.72               | 960.09                | 2022.72               | 2022.23 | 1564.92               | 2022.72    | 0.00                  | 1228.09    | 1775.06    | 7540.70    |
| x <sub>7</sub>        | 1172.66               | 268.17                | 1172.66               | 1171.83 | 738.86                | 1172.66    | 1228.09               | 0.00       | 649.59     | 8768.61    |
| <i>x</i> <sub>8</sub> | 1188.98               | 871.97                | 1188.98               | 1188.38 | 1031.45               | 1188.98    | 1775.06               | 649.59     | 0.00       | 9272.38    |
| x <sub>9</sub>        | 9325.94               | 8500.60               | 9325.94               | 9325.83 | 8962.28               | 9325.94    | 7540.70               | 8768.61    | 9272.38    | 0.00       |

kNN Yöntemi

000000000



Şekil: kNN karar sınırları



# Lab Uygulaması - 4

kNN Yöntemi

000000000

#### Ağırlıklı kNN

- ➤ Yöntem: sınıf etiketi bilinmeyen örneklem x için yakınında bulunan örneklerin uzaklıklarına göre ağırlıklandırılması yöntemidir.
- Bu amaçla uzaklık bir benzerlik ölçüsü olarak kullanılır. Yakın olan noktaların ağırlıkları daha yüksek olmalıdır.

$$P(y = j | X = \mathbf{x}) = \frac{1}{K} \sum_{i \in A} \frac{1}{d(\mathbf{x}, \mathbf{x}_i)} I(y^{(i)} = j)$$

#### **Python**

class sklearn.neighbors.KNeighborsClassifier(n\_neighbors=5,
weights='uniform', algorithm='auto', leaf\_size=30, p=2,
metric='minkowski', metric\_params=None,n\_jobs=1, \*\*kwargs)

- - Neden Katsayıların
  - Lab
- - Uzaklık
    - Farklı Uzaklık Ölcümleri

- Benzerlik Ölçümleri
- - Giris
  - kNN Yöntemi
  - Karar Sınırları
  - Ağırlıklı kNN
- Karar Ağaçları
  - Giriş
  - Çok Sınıflı Sınıflandırma
  - Ağacın Olusturulması

# Karar Ağaçları I

### Hiyerarşik Öğrenme

- Tek Aşamalı Sınıflandırıcılar
  - Tek bir işlem kullanarak (doğrusal regresyon, lojistik regresyon) bir x örneklemine sınıf etiketi ataması yaparlar.
  - Bütün sınıflar için tek bir öznitelik kümesi kullanılmaktadır.
  - Özniteliklerin nominal olma durumu.
- Hiyerarşik Sınıflandırıcılar
  - Birden çok ardışık test

# Karar Ağaçları II

#### **Nominal Veri**

#### Öznitelikler

- Ayrık (Discrete)
- ► Herhangi bir sıralama/benzerlik kavramı yok
- Metrik olmayan öğrenme (Non-metric learning)

### Örnekler:

Protocol type: TCP, UDP
 Service: http, mail, ftp, ssh
 Flags: SYN, ACK, RST, FIN

## Karar Ağaçları III



# Cok Sınıflı Sınıflandırma

Multiclass classification

#### Çok Sınıflı Sınıflandırma

- Bire-karşı-hepsi (One-versus-all)
  - K adet sınıflandırıcı (hipotez, model) oluştur, oylama ile x etikietini bul
- Bire-karşı-bir (One-versus-one):
  - ► K(K-1)/2 adet sınıflandırıcı (hipotez, model) oluştur, oylama ile x etikietini bul
- Coklu sınıfları isleyen bir algoritma kullanımı:
  - Karar ağaçları
  - Yapay Sinir ağları

### Ağacın Oluşturulması I

#### Giriş

- Monothetic ağaçlarda (her bir node üzerinde sadece bir öznitelik olması) karar sınırları axis'lere ortagonal yapıdadır.
- Ayrıştırma değişkeni (j) ve ayrıştırma noktaları 2 bölge tanımlamaktadır.
- ▶ j ve s değerleri saf olmamayı (Impurity) azaltacak şekilde seçilmelidir.
  - ► Niteliklerin kategorik olması durumunda: Bilgi Kazanımı
  - Niteliklerin sürekli olması durumunda: **Gini index**  $Gini = 1 \sum_{i=1}^{c} (p_i)^2$

#### Formal Tanım

- ▶ Eğitim vektörleri  $\mathbf{x}_i \in \mathbb{R}^n, i = 1, \cdot, m$  ve sınıf vektörü  $\mathbf{y} \in \mathbb{R}^m$  olsun.
- Karar ağacı algoritması, girdi uzayını aynı etiketlere sahip örneklere göre parçalamaktadır.
- Amaç: Impurity minimize etmek için öznitelikler seçilir.

$$\min_{j} \left( \frac{|R_1(j)|}{n_{total}} \times Imp(R_1(j)) + \frac{|R_2(j)|}{n_{total}} \times Imp(R_2(j)) \right)$$
 (5)



## Ağacın Oluşturulması II

#### Bilgi Kazanımı (Information Gain)

► Rassal bir değişken X belirsizliği/rassallığı **Entropi** ile ölçülür.

$$H(X_n) = -\sum_k p_k \log_2(p_k)$$
 (6)

 $p_k$  ifadesi,  $X_n$  içinde yer alan eğitim örneklerinin k sınıfına ait olanlarının oranıdır.

- ▶ İkili sınıflandırma problemi (-1, +1):
  - Bütün örneklerin sınıf etiketi aynı ise Entropi 0. Düşük Entropi.

$$\mathbf{y} = \{-1, -1, \cdots, -1\}$$
 veya  $\mathbf{y} = \{+1, +1, \cdots, +1\}$ 

▶ Bütün örneklerin yarısının sınıf etiketi −1 diğer yarısı +1 aynı ise Entropi 1. Yüksek Entropi



Şekil: Örnek verikümesi 1

### Ağacın Oluşturulması IV

### Bağımlı Değişken Entropy Değeri

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$



### Bağımsız Değişken (Outlook) Entropy Değeri

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

|         |          | Play Golf |    |    |
|---------|----------|-----------|----|----|
|         |          | Yes       | No |    |
| Outlook | Sunny    | 3         | 2  | 5  |
|         | Overcast | 4         | 0  | 4  |
|         | Rainy    | 2         | 3  | 5  |
|         | •        |           |    | 14 |
|         |          | •         |    |    |

E(PlayGolf, Outlook) = 
$$P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3)$$
  
=  $(5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$   
=  $0.693$ 

# Ağacın Oluşturulması VI

### Bilgi Kazanımı (Information Gain)

Bilgi kazancı, bir veri kümesinin bir öznitelik üzerine bölünmesinden sonra Entropi azalmasına dayanmaktadır.

|              |          | Play Golf |    |  |
|--------------|----------|-----------|----|--|
|              |          | Yes       | No |  |
|              | Sunny    | 3         | 2  |  |
| Outlook      | Overcast | 4         | 0  |  |
|              | Rainy    | 2         | 3  |  |
| Gain = 0.247 |          |           |    |  |

|          |        | Play Golf |    |  |
|----------|--------|-----------|----|--|
|          |        | Yes       | No |  |
| Humidity | High   | 3         | 4  |  |
| numidity | Normal | 6         | 1  |  |

Gain = 0.152

|              |      | Play Golf |    |  |
|--------------|------|-----------|----|--|
|              |      | Yes       | No |  |
|              | Hot  | 2         | 2  |  |
| Temp.        | Mild | 4         | 2  |  |
|              | Cool | 3         | 1  |  |
| Gain = 0.029 |      |           |    |  |

|              |       | Play Golf |    |  |
|--------------|-------|-----------|----|--|
|              |       | Yes       | No |  |
| M5-4-        | False | 6         | 2  |  |
| Windy        | True  | 3         | 3  |  |
| Gain = 0.048 |       |           |    |  |

Gain(T, X) = Entropy(T) - Entropy(T, X)

G(PlayGolf, Outlook) = E(PlayGolf) - E(PlayGolf, Outlook)= 0.940 - 0.693 = 0.247



## Ağacın Oluşturulması VII

En yüksek bilgi kazanımı olan öznitelik (Outlook), karar düğümü olarak seçilir.



### Ağacın Oluşturulması VIII

R<sub>1</sub>: IF (Outlook=Sunny) AND (Windy=FALSE) THEN Play=Yes

R<sub>2</sub>: IF (Outlook=Sunny) AND (Windy=TRUE) THEN Play=No

R<sub>3</sub>: IF (Outlook=Overcast) THEN Play=Yes

R<sub>4</sub>: IF (Outlook=Rainy) AND (Humidity=High) THEN Play=No

R<sub>5</sub>: IF (Outlook=Rain) AND (Humidity=Normal) THEN Play=Yes



<sup>1</sup> http://www.saedsayad.com/decision\_tree.htm