

Software Process Model 2022

Introduction

Session outcomes

- Introduction to Module
- SPM-Introduction

Academic Integrity Policy

- Are you aware that following are not accepted in SLIIT???
 - Plagiarism using work and ideas of other individuals intentionally or unintentionally
 - Collusion preparing individual assignments together and submitting similar work for assessment.
 - Cheating obtaining or giving assistance during the course of an examination or assessment without approval
 - Falsification providing fabricated information or making use of such materials
- Committing above offenses come with serious consequences!
- See General support section of Course web for full information.

Enrollment Key: IT1060

Progression Criteria

- In order to progress from one academic year to the next, you must maintain the following minimum academic standard.
 - From year 1 to year 2 No more than 5 failed or incomplete modules
 - From year 2 to year 3 No more than 3 failed or incomplete modules
 - From year 3 to year 4 No more than 2 failed or incomplete modules
- If you do not meet the above criteria, you will not be able to progress to the next year.

MODULE INTRODUCTION

Module contents

- Course web IT1060
 - IT1060 [2022/FEB] General
 - Module outline
 - Notices
 - Marks
- Weekly updates
 - Lecture
 - Lab
 - Tutorial
 - Additional Reading/Recordings

Delivery Schedule-Due to Pandemic

Lectures – Physically

Main Group	Subgroup	Week 01	Week 02	Week 03	Week 04	Week 05	Week 06	Week 07
	Y1.S2.WD.IT.01 .01.G1 (60) (Group 01)							
						Physical		Physical
Y1.S2.WD.IT.01		Physical Lecture	Lec.Recording	Physical Lecture	Lec.Recording	Lecture	Lec.Recording	Lecture
	Y1.S2.WD.IT.01 .02.G2 (60) (Group 02)				Physical		Physical	Lec.Record
		Lec.Recording	Physical Lecture		Lecture	Lec.Recording	·	ing
			SDLC-Part I- Up			Requirement Engineering Revision+ Use		
Lecture Content		Introduction	waterfall	Rest of SDLC	Engineering	Case Part I	Diagram Part II	

Learning outcomes

Differentiate the characteristics and effects of different types of software engineering processes.

Describe the requirement engineering process and components of a formal requirements document for a software project.

Apply the knowledge of UML to model and represent system requirements.

Describe software design strategies and the importance of design models.

Apply the knowledge of software implementation and testing to write test cases.

Apply Agile development methodology.

Assessment Criteria

Mid Term Examination	30%	LO1-LO4
Assignment I	10%	LO3-LO5
Assignment II	10%	LO4-LO5
Final Examination	50%	LO1-LO9

To pass this module, students need to obtain a pass mark in both "Continuous Assessments" and "End of the Semester Examination" components which would result in an overall mark that would qualify for a "C" grade or above.

Assignments

- Five members in one group
- Randomly chosen case study
- Two submissions
 - Before Mid term Week 7
 - Based on requirements engineering and use case diagrams
 - After Mid term Week 13
 - Based on Activity Diagram

Recommend Texts

- <u>Ian Sommerville</u>, "<u>Software Engineering</u>", Pearson Education Limited, 10th edition, 2016
- R. Pressman, "Software Engineering: a practitioner's approach", McGraw-Hill Education; 8th edition, 2014
- <u>K.S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process, Addison-Wesley, 2012</u>
- SWEBOK, Guide to the Software Engineering Body of Knowledge, 2014

Tutorial & Lab Schedule -2022 (Virtual Tutorials and Labs)

Time	Lectures	Labs/Tutorials		
Week 01	Introduction to Software Engineering	No Tutes /No Labs		
Week 02	SDLC	Tutorial 01 -Introduction		
Week 03	SDLC	Tutorial 02 -SDLC		
Week 04	Requirement Engineering	Tutorial 03 -SDLC		
Week 05	UseCase Diagram	Tutorial 03 - Requirement Eng.		
Week 06	UseCase Diagram	Lab 01- Use Case		
Week 07	Activity Diagram	Lab 01- Use Case		
Week 08	Mid-term Examination			
Week 09	Software Design	Lab 02- Activity Diagram		
Week 10	Implementation and testing	Lab 02- Activity Diagram		
Week 11	Implementation and testing	Tutorial 04		
Week 12	Modern Software Development Methodol	Lab 03 -Agile		
Week 13	Modern Software Development Methodol	Lab 03 -Agile		
Week 14	Revision			

SPM-INTRODUCTION

Session Outcomes

- 1. What is a Software
- 2. What is Software Engineering
- 3. Software Process
- 4. Software Process Activities
- 5. Software process model
- 6. Software Development Life Cycle
- 7. Software Engineering Ethics

What is Software????

https://www.youtube.co m/watch?v=XgzwUrGi n Y&t=46s

What is Software?

Software is **not only** the computer programs, but also associated documentation and configuration files, needed to make the programs operate correctly.

Popular Software

1st Year 1st Semester IP

```
/* adding two numbers*/
#include <stdio.h>

int main(void)
{
    int no1, no2;
    int sum;

    no1 = 25; // assign value to no1 variable
    no2 = 12; // assign value to no2 variable
    sum = no1 + no2; // add numbers
    printf( "Sum is %d\n", sum); // print sun
    return 0;
} // end of main function
```

```
* adding two numbers*/
#include <stdio.h>
int main(void)
         int no1, no2;
         int sum;
         printf("Enter first number: "); /* prompt */
         scanf("%d", &no1); /* read the value */
         printf("Enter second number: "); /* prompt*/
         scanf("%d", &no2); /* read the value */
         sum = no1 + no2; /* assign total to sum */
         printf( "Sum is %d\n", sum); /* print sum */
         return 0;
} // end of main function
```

- Are these Software ?
- What are things that you need to do to develop Software?

Library Software

http://www.verussolutions.biz/technology.php

Programs Vs. Software Products

Program

- Small
- Single developer
- Small in size
- Limited Functionality
- Single user (author)
- Simple user interface
- Sparse documentation
- No user manual
- Ad hoc development

Software Product

- Large
- Team of developers
- Multiple users (customer)
- Complex user interfaces
- Detailed documentation
- User manual
- Systematic development

MS Teams

MS Teams

Teams Documentation

Software products can be

Generic

 These are stand alone systems that are produced by a development organization and sold on the open market to any customer who is able to buy them.

Customized

 These are systems that are developed for a particular customer requirements

How do we develop a real software?

- There will be a real user (Customer) who would need to use the software.
 - 1. Feasibly study (whether it is technical feasible and financially worthwhile)
 - You have to find out what the customer wants (Requirements Gathering)
 - 3. Analyze the problem
 - Develop a solution (Design)
 - 5. Code the solution
 - 6. Test and Debug
 - 7. Maintenance

Suggest Something Innovative?

- Suggest your dream software
 - Do not think about technical barriers
 - You can think beyond of the reality

"New Ideas will lead you to highest point of the Software Engineering"

Suggest Something Innovative in Pandemic Situation?

Suggest Any Software Which helps in Pandemic Situation

- Day to day Life
- Communication
- Shopping
- Any other Idea?

Software Engineering

• IEEE Definition of Software Engineering:

The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software;

that is, the application of engineering to software.

IEEE Standard 610.12-1990, 1993.

Software Engineering Cont.

- Engineering discipline
 make things work by applying theories, methods and
 tools where these are appropriate and also try to
 discover solutions to problems even when there's no
 proper theories/methods.
- All aspects of software production
 Not only technical processes of software development, but also project management and development of tools, methods and theories to support S/W production.

Key Challenges

- Deliver Quality software to the customer at the agreed time
- The product is intangible
- Software processes are available and organization/product specific
- Keep overall costs within budget

Process

Making A Cup of Tea

Making A Cup of Tea

- Ingredients : Tea Leaves, Sugar, Milk Powder, Boiled Water
- Process

Boil the water

Pour boiled water into cup

Put a tea bag inside a cup

Leave it few minutes

Put Sugar and Milk (if necessary)

Stir few seconds

Arrange it nicely

Output: Tea

Software Process

- A software process is a set of interrelated activities and tasks that transform input work products into output work products. (SWEBOK V3
 - Chapter 8)

Software Process Activities

- Software Specification
- Software Development
- Software Validation
- Software Evolution

Software Process Activities

- Software Specification
 - The functionality of the software and constraints
- Software Development
 - The software is designed and programmed.
- Software Validation
 - The software must be validated
- Software Evolution
 - The software must evolve

Software Processes

"There is no universal process that is right for all kinds of software"

Ex:

- For safety-critical systems, a very structured development process is required where detailed records are maintained.
- For business systems, with rapidly changing requirements, amore flexible, agile process is likely to be better

Software process model

• It is a simplified representation of software process.

Software Development Life Cycle

Software Development Life Cycle Models

- A Software Development Life Cycle Model
 - has a series of stages that a software product undergoes during its life time.
 - is a descriptive and diagrammatic representation of the software life cycle.
 - is often referred as software process model.
 - maps the basic development activities to phases in different ways

General Software Process Models

- Waterfall Model
 - Classic
 - Iterative
- Prototyping
- Evolutionary Model
 - Incremental
 - Spiral
- Agile development.

Software Engineering Ethics

As a Professional Software Engineer,

- You should accept that your work involves wider responsibility than simply application of technical skills
- You should behave in an ethical way and morally responsible way
- You should not use your skills and abilities to behave in a dishonest way that will bring disrepute to the software engineering profession

Software Engineering Ethics Con.

Standards

- Confidentiality
- Competence
- Intellectual Property rights
- Computer misuse

Case Studies

Library Management System

Library Management System

 Sri Lanka Institute of Information Technology (SLIIT) is the largest degree awarding institute in Sri Lanka with degree programs diversified to computing, business and engineering. In order to cater to its growing need of knowledge the institute maintains a Library Information System connecting Malabe, Metropolitan and Matara campuses. Each holds a latest collection of books and periodicals, particularly in the field of Information Technology, business management, engineering, general English, architecture and quantity surveying. The library of the Malabe Campus acts as the main resource center through which all library development activities are coordinated. SLIIT libraries are open to SLIIT students daily including weekends from 7.30 AM to 7.00 PM.

Tasks carried out at the library

- Add library materials
- Manage Library membership
- borrow books
- return books
- Pay fine on overdue materials
- Refund library deposit
- Replace lost library material
- Search library materials
- Generate reports

Next Lecture

Software Development Life Cycle Models