

Course Syllabus

STI VISION:

To be the leader in innovative and relevant education that nurtures individuals to become competent and responsible members of society.

STI MISSION:

We are an institution committed to provide knowledge through the development and delivery of superior learning systems.

We strive to provide optimum value to all our stakeholders - our students, our faculty members, our employees, our partners, our shareholders, and our community.

We will pursue this mission with utmost integrity, dedication, transparency, and creativity.

STUNSTITUTIONAL OUTCOMES:

Character (IO1): An STIer is a person of character. An STIer takes responsibility for his/her actions, treats people with respect, and lives with integrity.

Critical thinker (IO2): An STIer is a critical thinker. An STIer challenges and analyses all information through sound questioning and is unafraid to push for creative ideas.

Communicator (IO3): An STIer communicates to understand and be understood. An STIer discerns the value of information read or heard and effectively expresses his/her own emotions when sharing information, may it be spoken or written.

Change-adept (IO4): An STIer is change-adept. An STIer can adjust, adapt, and reinvent continuously to changing circumstances. An STIer believes in letting go of the old and embracing the new to achieve his/her fullest potential.

SERIAL NUMBER: IT2202	COURSE TITLE: COMPUTER GRAPHICS PROGRAMMING	CREDIT: 2 lec 1 lab (2 hours lecture and 3 hours laboratory per week)				
COURSE DESCRIPTION: This course covers the introduction to the mathematics of computer graphics as well as how they are applied to created 3D graphics programs.						
PREREQUISITE:	Computer Programming 2					
COURSE OUTCOMES:	After successful completion of this course, the student should be able to: (PI1-ITPO01, PI2-ITPO02, PI3-ITPO05, PI4-ITPO07, PI5-ITPO09, PI6-ITPO10) CO1. Examine concepts and data structures to represent and manipulate geometry; CO2. Develop 2D and 3D computer graphics programs; and CO3. Implement various approaches and techniques in creating interactive applications.					
MANDATED BOOK:	None					
REFERENCES:	 de Fine, M. (2018). Python 2.6 graphics cookbook. Packt Publishing. Kelly, S. (2019). Python, Pygame, and Raspberry Pi game development. Apress. Korites, B. (2018). Python graphics: A reference for creating 2D and 3D images. Apress. Orland, P. (2019). Math for programmers: 3D graphics, machine learning, and simulations with Python. Manning. Stemkoski, L. & Pascale, M. (2021). Developing graphics frameworks with Python and OpenGL. CRC Press. 					

COURSE REQUIREMENTS:	Class Participation (Recitation, Seatwork, Quizzes)					
	Major Examinations					
	Performance Tasks (Laboratory Exercises, eLMS Activities, Projects)					
GRADING SYSTEM:	The following percentage distribution shall be followed:					
	Prelims	20%				
	Midterms	20%				
	Pre-finals	20%				
	<u>Finals</u>	<u>40%</u>				
		100%				
	The following are the recommended	periodical grade components for this course:				
	Class Participation	20%				
	Performance Task	50%				
	Major Examination	30%				
		100%				
We'd be glad to hear from y	 ou. For questions or feedback on this co	urse, feel free to email us through <u>student.feedback@sti.edu</u>	—			

Course Outline

	Learning Objectives (LO)	Week	LEC Hours	LAB Hours	TOPICS	Teaching and Learning Activities	Assessment Tasks
1	Describe the core concepts used in	1-2	4	6	Introduction to Computer Graphics	Lecture-Demonstration	01 Seatwork 1
	computer graphics (CO1)				Core Concepts		
2	Compare the stages in the graphics				The Graphics Pipeline		01 Laboratory Exercise 1
3	pipeline (CO1) Set up a development environment						
3	(CO2)						
	(652)						
4	Draw graphics in windows (CO2)	3-4	4	6	Pygame and OpenGL	Lecture-Demonstration	02 eLMS Quiz 1
5	Create animations and interactive				Windows, Points, and Shapes		
	applications (CO2)				Uniform Data		02 Laboratory Exercise 1
					Interactivity		02 Performance Task 1
							oz i cilomianec rask i
		5			PRELIMINARY EXAMINATION		Pen and Paper Test
6	Perform vector addition and scalar	6-7	4	6	Vectors and Matrices	Lecture-Demonstration	03 Seatwork 1
	multiplication (CO1)				Vectors		
7	Add, subtract, and multiply matrices				Matrices		03 Laboratory Exercise 1
	(CO1)						
8	Create matrices representing	8-9	4	6	Geometric Transformations	Lecture-Demonstration	04 eLMS Quiz 1
	geometric transformations (CO1)				Scaling, Rotation, and Translation		
9	Incorporate matrix objects into the				Projections		04 Laboratory Exercise 1
	rendering of interactive 3D scenes						OA Berfermen Tool 4
	(CO2)						04 Performance Task 1
		10			MIDTERM EXAMINATION		Pen and Paper Test
10	9 ,	11-13	6	9	A Scene Graph Framework	Lecture-Demonstration	05 Laboratory Exercise 1
	framework (CO2)				The Class Structure		05 1145 0 : 4
11	Develop classes to generate geometric data (CO2)				3D Objects Geometry and Material Objects	Group Activity	05 eLMS Quiz 1
12	Render objects in the framework				Rendering		05 Performance Task 1
	(CO2)						
		14			PRE-FINAL EXAMINATION		Pen and Paper Test

13	Apply textures to the surfaces of	15-17	6	9	Textures, Lights, and Shadows	Lecture-Demonstration	06 Laboratory Exercise 1
	geometric shapes (CO3)				Textures		
14	Create light objects of different				Lights	Group Activity	06 eLMS Quiz 1
	types (CO3)				Shadows		
15	Add shadow rendering capabilities						06 Performance Task 1
	to the framework (CO3)						
		18			FINAL EXAMINATION		Pen and Paper Test

PREPARED BY:

Kierl Christian Roi D. Pañares

VERIFIED BY:

Alyanna R. Tobias, Ed.D

REVIEWED BY:

Beronika A. Peña

APPROVED BY:

Fernando T. Dantes III, MIT

