III: Bipolar Junction Transistors

1: Basic operation

An NPN BJT is a semiconductor device consisting a narrow P-type region which called the base,
 while the two N-type regions called the emitter and the collector.

- The N-type emitter is **heavily** doped (N+), where the P-type is lightly doped (P-). The N-type collector has a **moderate** doping.
- This is not a symmetrical structure.
- The transistor is an active device and it is mainly used as amplifier or electronic switch.
- We can also build the PNP bipolar junction transistor.

2: Symbol of NPN BJT

Symbol of an NPN BJT

- In order to simplify the analysis, we assumed V_{CE} is greater or equal to zero as we always connects the collector to V_{CC} and connects the emitter to the ground.
- So the collector side have the high voltage and the emitter side have the low voltage side.
- As we always choose the as reference, V_{CE} can be written as $V_{CE} = V_{CB} + V_{BE} = V_{BE} V_{BC}$

3: Four mode of operation

3.1: Cut-off mode, when both BE and BC diodes are off

- As the base-collector junction and base-emitter junction have same threshold voltage, so we mark it as $V_{BE,on}$.
- For a silicon BJT, we have $V_{BE.on} \sim$ 0.7 volts.

Two depletion regions

• As the existence of the two depletion region, carriers from both sides cannot enter the base,

$$I_B = 0, I_C = 0, I_E = 0$$

.

3.2: Forward-active mode, when the BE is on but BC is off

- The forward-active mode means $V_{BE} = V_{BE,on}$ and $V_{BC} < V_{BE,on}$.
- We can find that $V_{CE}>0$ in this condition.

- As the electrons are minor carriers in base (lightly doped), only few electrons will combine with the holes in base.
- Most of the electrons from the emitters will across the base entering collector side.
- With the reverse-bias voltage, these electrons into the collector formed a collector current.
- Recalling the knowledge of the diode: **The depletion region cannot be crossed by majority carriers but the minority carriers.
- The plenty of electrons in BJT form the collector current.
- If we mark α_F as a constant parameter indicating the proportion of electrons coming form the emitters and reach the collector:

$$I_C = lpha_F I_E \ I_B = (1 - lpha_F) I_E$$

- We typically have $\alpha~0.99$.
- From the previous equations, we can find that:

$$I_C = rac{lpha_F}{1 - lpha_F} I_B$$

- We notes $eta_F = rac{lpha_F}{1-lpha_F}$, which is called *forward current gain* .
- It shows the BJT can used as a linear current amplifier.

3.3: Reverse-active mode, when BE diode is off and BC is on

- If $V_{BE} < v_{BE,on}$ and $V_{BC} = V_{BE,on}$.
- If we take the emitter as a reference, since $V_{CE}=V_{BE}-V_{BC}$, we can get that $V_{CE}<0$.
- $V_{CE} < 0$ is contradicted with the original assumption that $V_{CE} \geq 0$. So that BJT can never in this mode under this assumption.

3.4: Saturation mode, when both BE and BC diodes are on

- A BJT is said to be in saturation mode if $V_{BE} = V_{BE,on}$.
- $V_{BE} = V_{BE,on}$ and $V_{CE} = 0$.

Red arrows showing the flows of electrons Blue arrows showing the flows of holes

- There are two transistor effects to consider in this mode: a first one in forward direction and a second in the reverse mode.
- Note the forward effect is more powerful cause α_F 0.99 and α_R 0.5.
- Since the concentration of free electrons is higher in the emitter than in collector, it is much easier to diffuse in forward direction.

3.5: Summary

- Strictly speaking, the forward-active mode is defined as the mode for which the current in reverse direction are negligible compared to the forward current.
- In practice, V_{CE} is slightly greater than zero.
- So for the forward mode, the accurate statement should be "the BJT is forward active when $V_{BE}=V_{BE,on}$ and $V_{CE}>V_{CE,sat}$ ".
- ullet Hereafter, we use $V_{CE,sat}=0.2$ volts.

- ullet For the saturated mode, the statement should be "the BJT is saturated when $V_{BE}=V_{BE,on}$ and $V_{CE}=V_{CE,sat}$ ".
- ullet For simplicity sake, we take $V_{CE} = V_{CE,sat}$ in saturation mode instead of $V_{CE} < V_{CE,sat}$.

4: Summary about BJT

5: Application of BJT

5.1: Example_1

• According to the KVL and Ohm's Law, we can get the expression below:

• If the BJT is in Cut-off mode:

• Forward-active mode:

• Saturation mode:

3) Samurtion Mode
VBE = VBE, ON IB>0
$V_{BE} = V_{BE}, o_{V}$ $I_{B} > 0$ $V_{CE} = V_{CE}, sort$ $I_{C} > 0$
$\Rightarrow V_{axt} = V_{cE} = V_{cE}$, sat
VBE+ RB IB = Vin / IB >0
⇒ VBE, ON < Vin
Vart + Re IL = Vcc / IL>0
> Vout < Vcc

• Using the results above, we can get the curve below, which shows the function of V_{in} and V_{out} :

- This circuits can be used as an inverter (NOT gate) as it can invert the high volts to low and vice versa.
- The linear part of the graph can also be used as amplifier.
- As $V_{out}=V_{CC}=\beta_F\cdot \frac{R_C}{R_B}\cdot (V_{in}-V_{BE,on})$., we can defined the new input voltage as the increasing of the amount of ΔV_{in} : $V'_{in}=V_{in}+\Delta V_{in}$.
- The new output voltage V_{out}^{\prime} due to V_{in}^{\prime} is given by:

$$V_{out}' = V_{CC} - eta_F \cdot rac{R_c}{R_B} \cdot (V_{in}' - V_{BE,on}) - eta_F \cdot rac{R_C}{R_B} \cdot \Delta V_{in}$$

• So that we can find the increment:

$$\Delta V_{out} = -eta_F \cdot rac{R_C}{R_B} \cdot \Delta V_{in}.$$

This is the behaviour of a linear voltage amplifier with a voltage gain:

$$\frac{\Delta V_{out}}{\Delta V_{in}} = -\beta_F \cdot \frac{R_C}{R_B}$$

 Top make our circuit work as a practical linear amplifier, we have to make sure the BJT always in forward-active mode.

5.2: Example_2

• What we are going to do is add another DC voltage source $V_{IN,0}$ and AC source v_{in} to compose the V_{in} :

$$V_{in} = V_{IN,0} + v_{in}$$

• The DC voltage source $V_{IN,0}$ is used to bias the circuit so that forward-active mode can remain, so the \$V_{IN,0}\$ often referred as the **bias voltage**.

• If we replace V_{in} by $V_{in} = V_{ON,0} + v_{in}$:

$$egin{aligned} V_{out} &= V_{CC} - eta_F \cdot rac{R_C}{R_B} \cdot (V_{IN,0} - V_{BE,on}) - eta_F \cdot rac{R_C}{R_B} \cdot v_{in} \ &= V_{OUT,0} + v_{out} \end{aligned}$$

- ullet $V_{out,0}$ is the DC components of the output.
- ullet v_{out} is the AC signal.
- The '0' means the AC signal swings around zero as mean value:

- The DC voltage $V_{IN,0}$ and $V_{OUT,0}$ are the bias voltages.
- To design the value of bias voltages, we need know the **maximum output voltage swing,** $\Delta V_{out,max}$, which is the maximum peak-to-peak amplitude of the AC output voltages v_{out} that make sure no distortion. The same for v_{in} .
- We can see the effective voltage swing from the graph below:

• In this circuit, in order to maximum the maximum output voltage swing, we have to ensure that $V_{OUT,0}$ is located at the midway of the V_{CC} and $V_{CE,sat}$:

$$V_{OUT,0} = rac{V_{CC} + V_{CE,sat}}{2}$$

- Same for the $V_{IN,0}$.
- The final result will be:

• For the bad choose of bias voltages, distortion (clipping) will occur:

