## Solutions to Linear Equations



[- Set up a scenario

[- Decide on features

( - Conduct an experiment

[ - Find "values" for features weights

Tell us "how our results are affected by each feature."



\* This is essentially all of modern machine learning!



1. Gaussian Elimination

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{12} & a_{13} \\ 0 & 0 & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2' \\ y_3' \end{bmatrix}$$

2. Gauss-Jordan Elimination

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} \chi'_1 \\ \chi'_2 \\ \chi'_3 \end{bmatrix}$$

3. LU decomposition Given the matrix A, "decompose" it into LU.

$$A x = y \qquad \text{where } I = y$$

$$M(x) = y$$

$$M(x) = m$$

$$L(m) = y$$

$$V = m$$

$$V = m$$

$$\bigcup_{m} x = y$$

L m = y $\begin{cases} 1 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0$ 

since Lis lower triangular, it is easy to find m

Once we have 'm'

Again ... trivial

But, how to find I and L?

Three methods (all very similar)

factorization

1s on diagonal of U ~>> Dolittle
1s on diagonal of U ~>>> Crout

~ Cholesky form is LLT

$$\begin{bmatrix} 10 \\ 31 \\ -2 \\ 18 \end{bmatrix}$$



 $l_{22} = 1$ 

$$v_{12} = 1$$
  $v_{2} = 1$ 

$$-1 m + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2 + 1 - 2$$

• 
$$-|m_1| + 2m_1 + (-2)(m_3) = -2$$
  $m_3 = 7$ 

$$V = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \\ 4 \end{bmatrix}$$

$$\chi_{4} = 4$$
 $\chi_{3} = 3$ 
 $\chi_{2} = 2$ 
 $\chi_{1} = 1$ 

Critical points to note:
 — Steps are "mechanical"!