

FCC SAR Test Report

Product Name : FIELDBOOK

Model No. : I1

Applicant : LOGIC INSTRUMENT S.A.

Address : 43 Avenue de l' Europe, BP60012, 95331 DOMONT cedex, France.

Date of Receipt : 2014/10/08

Issued Date : 2014/10/29

Report No. : 14A0216R-SAUSP02V00

Report Version : V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: 2014/10/29

Report No.: 14A0216R-SAUSP02V00

QuieTek

Product Name : FIELDBOOK

Applicant : LOGIC INSTRUMENT S.A.

Address : 43 Avenue de l' Europe, BP60012, 95331 DOMONT

cedex, France.

Manufacturer : Ubiqconn Technology,Inc.

Model No. : I1

Trade Name : LOGIC INSTRUMENT

FCC ID : XGIFBI1

Applicable Standard : FCC Oet65 Supplement C June 2001

IEEE Std. 1528-2003

47CFR § 2.1093

Measurement : KDB 447498 D01 v05r02

procedures KDB 248227 D01 v01r02

KDB 616217 D04 V01r01 KDB 865664 D01 V01r01

Test Result : Max. SAR Measurement (1g)

802.11b/g(2.4GHz): **0.42** W/kg

802.11a(5 GHz): 1.25 W/kg

Application Type : Certification

Documented By : Anny Chou

(Adm. Specialist / Anny Chou)

Tested By :

(Engineer / Wen Lee)

Approved By

(Director / Vincent Lin)

TABLE OF CONTENTS

Desc	ription	I Information	Page
١.		JT Description	
		ntenna List	
		aximum output power and tolerance allowed for production units	
		AR Test Exclusion Calculation	
2.		nvironment	
۷.		easurement System	
		lications	
		Scans	
		m Scan (Cube Scan Averaging)	
		ertainty of Inter-/Extrapolation and Averaging	
		75 E-Field Probe	
		opic E-Field Probe Specification	
		lary Detection Unit and Probe Mounting Device	
		A Acquisition Electronics (DAE) and Measurement Server	
	2.5 Robot		13
	2.6 Light 1	Beam Unit	13
	2.7 Device	e Holder	14
	2.8 SAM 7	Twin Phantom	14
3.	Tissue	Simulating Liquid	15
	3.1 The co	omposition of the tissue simulating liquid	15
	3.2 Tissue	Calibration Result	15
	3.3 Tissue	Dielectric Parameters for Head and Body Phantoms	18
4.	SAR Me	easurement Procedure	19
	4.1 SAR S	System Check	19
	4.1.1 Dipo	oles	19
	4.1.2 Syste	em Check Result	19
	4.2 SAR N	Measurement Procedure	21
5 .	SAR Ex	posure Limits	22
6.	Test Eq	uipment List	23
7.		ement Uncertainty	
8.		cted Power Measurement	
9.		sults	
	9.1 SAR T	Test Results Summary	27

Report No: 14A0216R-SAUSP02V00

	9.2 Simultaneous Transmission	30
10.	SAR measurement variability	31
	Appendix	32
	Appendix A. SAR System Check Data	
	Appendix B. SAR measurement Data	
	Appendix C. Test Setup Photographs & EUT Photographs	
	Appendix D. Probe Calibration Data	
	Appendix E. Dipole Calibration Data	

1. General Information

1.1 EUT Description

Product Name	FIELDBOOK					
Trade Name	LOGIC INSTRUMENT					
Model No.	l1					
FCC ID	XGIFBI1					
TX Frequency	802.11b/g/n-20MHz:2412-2462MHz,					
	802.11n-40MHz:2422-2452MHz					
	802.11a/n-20MHz:5180-5320MHz,5500-5700MHz,					
	5745-5825MHz					
	802.11n-40MHz: 5190-5310, 5510-5670MHz, 5755-5795MHz					
	802.11ac-20MHz: 5720, 802.11ac-40MHz: 5710					
	802.11ac-80MHz: 5210-5290MHz, 5530-5690MHz, 5775MHz					
Number of Channels	802.11b/g/n-20MHz: 11, n-40MHz: 7					
	802.11a/n-20MHz: 24, n-40MHz: 11					
	802.11ac-20MHz: 1, 802.11ac-40MHz: 1, 802.11ac-80MHz: 5					
Data Rate	802.11b: 1-11Mbps, 802.11a/g: 6-54Mbps,					
	802.11n: up to 300Mbps					
	802.11ac-80MHz: up to 866.7MHz					
Type of Modulation	802.11b:DSSS, DBPSK, DQPSK, CCK					
	802.11a/g/n/ac: OFDM, BPSK, QPSK, 16QAM, 64QAM,					
	256QAM					
Contain Module	Intel / 7260HMW					
Antenna Type	PIFA					
Device Category	Portable					
RF Exposure Environment	Uncontrolled					
Max. Output Power	802.11b: 15.49 dBm					
(Conducted)	802.11g/n-20M/n-40M: 16.36 dBm					
	802.11a/n-20M/n-40M: 16.45 dBm					
Data Rate Type of Modulation Contain Module Antenna Type Device Category RF Exposure Environment Max. Output Power (Conducted)	802.11ac-20MHz: 1, 802.11ac-40MHz: 1, 802.11ac-80MHz 802.11b: 1-11Mbps, 802.11a/g: 6-54Mbps, 802.11n: up to 300Mbps 802.11ac-80MHz: up to 866.7MHz 802.11b:DSSS, DBPSK, DQPSK, CCK 802.11a/g/n/ac: OFDM, BPSK, QPSK, 16QAM, 64Q 256QAM Intel / 7260HMW PIFA Portable Uncontrolled 802.11b: 15.49 dBm 802.11g/n-20M/n-40M: 16.36 dBm					

1.2 Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	ethertronics	5001791 (Main)	3.8dBi For 2.4GHz
		5001799 (Aux)	5.1dBi For 5.15~5.25GHz
			5.1dBi For 5.25~5.35GHz
			4.2dBi For 5.47~5.725GHz
			2.6dBi For 5.725~5.850GHz

Page: 5 of 32

1.3 Maximum output power and tolerance allowed for production units

Band	Mode	Nominal power (dBm)	Tolerance (dBm)	Upper Tolerance (dBm)
2.4G	802.11b Main (CH 1~11)/ 802.11g Aux (CH 6,CH10)	14	±1.5	15.5
2.4G	802.11b Aux (CH 1~11)	12.5	±1.5	14
2.4G	802.11g Main (CH 6)/ 802.11n-20M(CH6,CH11)	15	±1.5	16.5
2.4G	802.11g Main (CH 1,CH11)/ 802.11g Aux (CH11)	12	±1.5	13.5
2.4G	802.11g Main (CH 2,CH10)/ 802.11n-40M(CH6)	14.5	±1.5	16.0
2.4G	802.11g Aux (CH 2)/ 802.11n-40M(CH9)	13.5	±1.5	15
2.4G	802.11n-20M(CH1)	14	±1.5	15.5
2.4G	802.11n-40M(CH3)	10	±1.5	11.5
5G	802.11a Main/Aux (CH40~CH44,CH56~60)	14.5	±1.5	16
5G	802.11a Main/Aux (CH48)	13.5	±1.5	15
5G	802.11a Main (CH64)	12	±1.5	13.5
5G	802.11a Aux (CH64)	11.5	±1.5	13
5G	802.11a Main/Aux (CH104~136,CH149~165)	15	±1.5	16.5
5G	802.11n-20M (CH40~44,CH56~60)/ 802.11n-40M (CH137),	14.5	±1.5	16
5G	802.11n-20M (CH48) / 802.11n-40M (CH46)	14	±1.5	15.5
5G	802.11n-20M (CH64)	13	±1.5	14.5
5G	802.11n-20M(CH104~165)/802.11n-40M(CH110~118,CH151~159)	15	±1.5	16.5
5G	802.11n-40M(CH38,54)	9.5	±1.5	11
5G	802.11n-40M(CH62)	10.5	±1.5	12
5G	802.11n-40M(CH134)	14.5	±1.5	16
5G	802.11ac-80M(CH42,CH106)	8	±1.5	9.5
5G	802.11ac-80M(CH58)	10	±1.5	11.5
5G	802.11ac-80M(CH122,138,155)	15	±1.5	16.5

1.4 SAR Test Exclusion Calculation

According 447498 D01, SAR is not required base on below :

Main	Тх	Frequency	Tx			•				ulaed Th				
Antenna		(IVITZ)	dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom
2.4G	WiFi	2412	16.50	45	18	210	38	180	6	3.9	>50mm	1.8	>50mm	11.6
5G	WiFi	5150	16.00	40	18	210	38	180	6	5.0	>50mm	2.4	>50mm	15.1
5G	WiFi	5280	16.00	40	18	210	38	180	6	5.1	>50mm	2.4	>50mm	15.2
5G	WiFi	5520	16.50	45	18	210	38	180	6	5.8	>50mm	2.8	>50mm	17.5
5G	WiFi	5745	16.50	45	18	210	38	180	6	5.9	>50mm	2.8	>50mm	17.8
Main	Тх	Frequency	Output	Power	;	Separatio	on distan	ces (mm)			ulaed Th xclusion		
Antenna		(MHz)	dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom
2.4G	WiFi	2412	16.50	45	18	210	38	180	6	<50mm	1696.6	<50mm	1396.6	<50mm
5G	WiFi	5150	16.00	40	18	210	38	180	6	<50mm	1666.1	<50mm	1366.1	<50mm
5G	WiFi	5280	16.00	40	18	210	38	180	6	<50mm	1665.3	<50mm	1365.3	<50mm
5G	WiFi	5520	16.50	45	18	210	38	180	6	<50mm	1663.8	<50mm	1363.8	<50mm
5G	WiFi	5745	16.50	45	18	210	38	180	6	<50mm	1662.6	<50mm	1362.6	<50mm
Aux	Tx	Frequency	Output	Power	:	Separatio	on distan	ces (mm)	<50mm ,Calculaed Threshold Value (≦3.0 SAR is not required)				
Antenna		(MHz)	dBm	mW	Back	Right	Left	Тор	Bottom	Back	Right	Left	Тор	Bottom
2.4G	WiFi	2412	16.50	45	18	210	38	180	6	3.9	>50mm	1.8	>50mm	11.6
5G	WiFi	5150	16.00	40	18	210	38	180	6	5.0	>50mm	2.4	>50mm	15.1
5G	WiFi	5280	16.00	40	18	210	38	180	6	5.1	>50mm	2.4	>50mm	15.2
5G	WiFi	5520	16.50	45	18	210	38	180	6	5.8	>50mm	2.8	>50mm	17.5
			10.00		.0	210		100	U					
5G	WiFi	5745	16.50	45	18	210	38	180	6		>50mm	2.8	>50mm	17.8
Aux	WiFi Tx	5745 Frequency	16.50		18		38	180	6	5.9 >50m	nm ,Calc	2.8 ulaed Th xclusion	reshold \	/alue
		5745	16.50	45	18	210	38	180	6	5.9 >50m	nm ,Calc	ulaed Th	reshold \	/alue
Aux		5745 Frequency	16.50 Output	45 Power	18	210 Separation	38 on distan	180 ces (mm	6	5.9 >50m (SA	nm ,Calc	ulaed Th	reshold \power,m	/alue W)
Aux Antenna	Тх	5745 Frequency (MHz)	16.50 Output	45 Power mW	18 Back	210 Separation	38 on distan	180 ces (mm	6) Bottom	5.9 >50m (SA Back <50mm	nm ,Calco AR test e Right 1696.6	ulaed Th xclusion Left <50mm	reshold \power,m	/alue W) Bottom <50mm
Aux Antenna 2.4G	Tx WiFi	5745 Frequency (MHz) 2412	16.50 Output dBm 16.50	45 Power mW 45	18 Back 18	210 Separation Right 210	38 on distan Left 38	180 ces (mm Top 180	6 Bottom 6	5.9 >50m (SA Back <50mm	R test e Right 1696.6	ulaed Th xclusion Left <50mm	reshold \power,m Top 1396.6 1366.1	/alue W) Bottom <50mm
Aux Antenna 2.4G 5G	Tx WiFi WiFi	5745 Frequency (MHz) 2412 5150	16.50 Output dBm 16.50 16.00	45 Power mW 45 40	18 Back 18 18	210 Separation Right 210 210	38 on distan Left 38 38	180 ces (mm Top 180 180	6 Bottom 6 6	5.9 >50m (SA Back <50mm <50mm	Right 1696.6 1665.3	ulaed Th xclusion Left <50mm <50mm	reshold \power,m Top 1396.6 1366.1 1365.3	Value W) Bottom <50mm <50mm <50mm

1.5 Test Environment

Ambient conditions in the laboratory:

Test Date: Oct 16, 2014

Items	Required	Actual
Temperature (°C)	18-25	21.2± 2
Humidity (%RH)	30-70	54

Test Date: Oct 21, 2014

Items	Required	Actual
Temperature (°C)	18-25	23.1± 2
Humidity (%RH)	30-70	53

Site Description:

Accredited by TAF

Accredited Number: 0914

Effective through: December 12, 2014

Site Name: Quietek Corporation

Site Address: No.5-22, Ruishukeng, Linkou Dist.,

New Taipei City 24451,

Taiwan, R.O.C.

TEL: 886-2-8601-3788 / FAX: 886-2-8601-3789

E-Mail: service@quietek.com

2. SAR Measurement System

2.1 DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1 Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3 Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x7 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 30mm in the Z axis.

2.1.4 Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat

Page: 10 of 32

distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2 DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1 Isotropic E-Field Probe Specification

Model	Ex3DV4	
Construction	Symmetrical design with triangular core Built-in sl charges PEEK enclosure material (resistant to o DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in an (e.g., very strong gradient fields). Only procompliance testing for frequencies up to 6 GHz w 30%.	obe which enables

above 80dB.

2.3 Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7 Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

1				
INGREDIENT	2450MHz	2450MHz	5200MHz	5800MHz
(% Weight)	Head	Body	Body	Body
Water	46.7	73.2	76	75.68
Salt	0.00	0.04	0.00	0.43
Sugar	0.00	0.00	0.00	0.00
HEC	0.00	0.00	0.00	0.00
Preventol	0.00	0.00	0.00	0.00
DGBE	53.3	26.7	4.44	4.42

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Agilent E5071C Vector Network Analyzer.

Body Tissue Simulate Measurement							
Frequency	Description	Dielectric P	arameters	Tissue Temp.			
[MHz]	Description	٤ _r	σ [s/m]	[°C]			
	Reference result	52.7	1.95	N/A			
2450 MHz	± 5% window	50.065 to 55.335	1.8525 to 2.0475	IN/A			
	16-Oct-14	53.31	1.97	20.4			
2412 MHz	Low channel	53.66	1.91	20.4			
2437 MHz	Mid channel	53.39	1.94	20.4			
2462 MHz	High channel	53.18	1.99	20.4			

Page: 15 of 32

Body Tissue Simulate Measurement							
Frequency	Description	Dielectric P	Tissue Temp.				
[MHz]	Description	εr	σ [s/m]	[°C]			
	Reference result	49	5.3	N/A			
5200MHz	± 5% window	46.55 to 51.45	5.035 to 5.565	IN/A			
	21-Oct-14	48.73	5.40	21.2			
5220 MHz	Low channel	48.67	5.43	21.2			
5240 MHz	Mid channel	48.61	5.47	21.2			
5280 MHz	High channel	48.47	5.55	21.2			

Body Tissue Simulate Measurement				
Frequency	Description	Dielectric Parameters		Tissue Temp.
[MHz]	Description	εr	σ [s/m]	[°C]
	Reference result	48.9	5.42	N/A
5300MHz	± 5% window	46.45 to 51.34	5.15 to 5.69	IN/A
	21-Oct-14	48.44	5.57	21.2
5320 MHz	Low channel	48.41	5.59	21.2

Body Tissue Simulate Measurement					
Frequency [MHz]		Dielectric F	Dielectric Parameters		
	Description	εr	σ [s/m]	Temp. [°C]	
5600MHz	Reference result ± 5% window	48.5 46.07 to 50.92	5.77 5.48 to 6.06	N/A	
	21-Oct-14	47.61	6	21.2	
5520 MHz	Low channel	47.84	5.81	21.2	
5580 MHz	Mid channel	47.64	5.93	21.2	
5680 MHz	High channel	47.37	6.05	21.2	

Body Tissue Simulate Measurement					
Frequency		Dielectric F	Parameters	Tissue	
[MHz]	Description	εr	σ [s/m]	Temp. [°C]	
	Reference result	48.2	6	N/A	
5800MHz	± 5% window	45.79 to 50.61	5.7 to 6.3	IN/A	
	21-Oct-14	47.06	6.24	21.2	
5745 MHz	Low channel	47.23	6.16	21.2	
5785 MHz	Mid channel	47.11	6.21	21.2	
5825 MHz	High channel	46.98	6.29	21.2	

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Во	dy
(MHz)	ϵ_{r}	σ (S/m)	€ _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page: 18 of 32

4. SAR Measurement Procedure

4.1 SAR System Check

4.1.1 Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6
5200M~5800MHz	20.6	45.4	3.6

4.1.2 System Check Result

System Performance Check at 2450MHz

Dipole Kit: ALS-D-2450

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	50.4 45.36 to 55.44	23.44 21.1 to 25.78	N/A
	16-Oct-14	53.6	24.72	20.4

Note: (1) The power level is used 250mW

- (2) All SAR values are normalized to 1W forward power.
- (3) The reference result is from Appendix E.

System Performance Check at 5200MHz Dipole Kit: D5GHzV2					
Frequency [MHz] Description SAR [w/kg] SAR [w/kg] Tissue Temp. 10g [°C]					
5200 MHz	Reference result ± 10% window	74 66.6 to 81.4	20.7 18.63 to 22.77	N/A	
	21-Oct-14 81.2 22.7 21.2				
(2) A	(2) All SAR values are normalized to 1W forward power.				

System Performance Check at 5300MHz Dipole Kit: D5GHzV2					
Frequency [MHz] Description SAR [w/kg] SAR [w/kg] Tissue Temp. 10g [°C]					
Reference result 75.3 21.1 N/A 5300 MHz ± 10% window 67.77 to 82.83 18.99 to 23.21					
	21-Oct-14	81.9	22.2	21.2	
(4) A	(4) All SAR values are normalized to 1W forward power.				

System Performance Check at 5600MHz Dipole Kit: D5GHzV2						
Frequency [MHz] Description SAR [w/kg] SAR [w/kg] Tissue Temp. 10g [°C]						
5600 MHz	Reference result ± 10% window	79.4 71.46 to 87.34	22 19.8 to 24.2	N/A		
	21-Oct-14 85.8 23.6 21.2					
Note: (1) The power level is used 100mW (6) All SAR values are normalized to 1W forward power. (7) The reference result is from Appendix E.						

System Performance Check at 5800MHz Dipole Kit: D5GHzV2					
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]	
5800 MHz	Reference result ± 10% window	73.8 66.42 to 81.18	20.4 18.36 to 22.44	N/A	
	21-Oct-14	70	18.8	21.2	
(2) A	(2) All SAR values are normalized to 1W forward power.				

4.2 SAR Measurement Procedure

The Dasy5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last	Next
				Calibration	Calibration
Stäubli Robot TX60L	Stäubli	TX60L	F09/5BL1A1/A06	2009/05/18	only once
Controller	Speag	CS8c	N/A	2009/05/18	only once
Aprel Reference Dipole 2450MHz	Aprel	ALS-D-2450	QTK-319	2014/07/24	2016/07/23
Speag Reference Dipole 5GHz	Speag	D5GHzV2	1041	2013/05/31	2015/05/30
SAM Twin Phantom	Speag	QD000 P40 CA	Tp 1515	N/A	N/A
Device Holder	Speag	N/A	N/A	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1207	2014/05/19	2015/05/18
E-Field Probe	Speag	EX3DV4	3698	2014/07/25	2015/07/24
SAR Software	Speag	DASY52	V52.8 (8)	N/A	N/A
Aprel Dipole Spaccer	Aprel	ALS-DS-U	QTK-295	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A
Directional Coupler	Agilent	778D-012	50550	N/A	N/A
Universal Radio Communication	R&S	CMU 200	104846	2014/05/05	2015/05/04
Tester					
Vector Network	Agilent	E5071C	MY46108013	2013/11/09	2014/11/08
Signal Generator	Anritsu	MG3694A	041902	2014/08/06	2015/08/05
Power Meter	Anritsu	ML2487A	6K00001447	2013/12/14	2014/12/13
Wide Bandwidth Sensor	Anritsu	MA2491A	034457	2013/12/14	2014/12/13

7. Measurement Uncertainty

	DΔ	SY5 U	ncert	aintv	Δccordin	g to IEC 622	200_2/2010)	
Measurement u								
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc.	Std. Unc.	(Vi)
·	value	Dist.		1g	10g	(1g)	(10g)	Veff
Measurement System			ı		I	1	L	I
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
Modulation Response	±2.4%	R	√3	1	1	±1.4%	±1.4%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	√3	1	1	±3.9%	±3.9%	∞
Post-processing	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Scaling	±0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%	8
SAR correction	±1.9%	R	$\sqrt{3}$	1	0.84	±1.1%	±1.1%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±1.1%	±1.0%	8
Liquid Permittivity (meas.)	±2.5%	N	1	0.26	0.26	±0.3%	±0.4%	∞
Temp. unc Conductivity	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%	8
Temp. unc Permittivity	±0.4%	R	√3	0.23	0.26	±0.1%	±0.1%	∞
Combined Std. Uncertainty						±12.5%	±12.5%	748
Expanded STD Uncertainty						±25.1%	±25.1%	

Page: 24 of 32

8. Conducted Power Measurement

BT:

Mode	Frequency (MHz)	Channel	1Mbps	3Mbps	Frequency (MHz)	Channel	BLE
ВТ	2402	00	3.04	2.21	2402	00	8.77
ВТ	2441	39	3.22	2.39	2440	39	8.88
ВТ	2480	78	3.12	2.32	2480	78	8.76

WLAN:

Mode	Frequency	Channel	Main (Chain A)	Aux (Chain B)
Mode	(MHz)	Chamer	Average Power(dBm)	Average Power(dBm)
802.11b	2412	1	15.35	13.97
802.11b	2437	6	15.49	13.98
802.11b	2462	11	15.22	13.85
802.11g	2412	1	13.37	13.45
802.11g	2417	2	15.84	14.87
802.11g	2437	6	15.86	15.50
802.11g	2457	10	15.84	14.47
802.11g	2462	11	13.35	13.38
802.11a	5200	40	15.75	15.96
802.11a	5220	44	15.84	16.00
802.11a	5240	48	14.99	15.00
802.11a	5280	56	15.87	15.97
802.11a	5300	60	15.78	15.94
802.11a	5320	64	13.38	13.00
802.11a	5520	104	16.02	15.75
802.11a	5580	116	15.09	15.35
802.11a	5680	136	15.01	14.89
802.11a	5745	149	14.23	14.89
802.11a	5785	157	14.06	14.64
802.11a	5825	165	13.96	14.56

	Frequency		Main (Chain A)	Aux (Chain B)	Main (Chain A)+
Mode	(MHz)	Channel	5 -	Average	Aux (ChainB)
	(1711 12)		Power(dBm)	Power(dBm)	Average Power(dBm)
802.11n-20M	2412	1	12.34	12.72	15.54
802.11n-20M	2437	6	13.38	13.32	16.36
802.11n-20M	2462	11	13.31	13.35	16.34
802.11n-20M	5200	40	12.19	13.32	15.80
802.11n-20M	5220	44	12.41	13.2	15.83
802.11n-20M	5240	48	11.82	12.89	15.40
802.11n-20M	5280	56	12.74	13.21	15.99
802.11n-20M	5300	60	12.60	13.17	15.90
802.11n-20M	5520	104	13.26	13.38	16.33
802.11n-20M	5580	116	13.33	13.29	16.32
802.11n-20M	5680	136	12.46	13.13	15.82
802.11n-20M	5745	149	12.06	12.99	15.56
802.11n-20M	5785	157	11.65	12.86	15.31
802.11n-20M	5825	165	11.62	12.68	15.19
802.11n-40M	2422	3	8.34	8.60	11.48
802.11n-40M	2437	6	13.00	13.00	16.00
802.11n-40M	2452	9	11.88	12.00	14.95
802.11n-40M	5190	38	7.40	8.39	10.93
802.11n-40M	5230	46	11.89	12.84	15.40
802.11n-40M	5270	54	7.55	8.26	10.93
802.11n-40M	5310	62	8.50	9.41	11.99
802.11n-40M	5550	110	13.31	13.57	16.45
802.11n-40M	5590	118	13.13	13.43	16.29
802.11n-40M	5670	134	12.61	12.89	15.76
802.11n-40M	5755	151	11.56	12.58	15.11
802.11n-40M	5795	159	11.34	12.20	14.80
802.11ac-80M	5210	42	5.91	6.99	9.49
802.11ac-80M	5290	58	7.86	8.99	11.47
802.11ac-80M	5530	106	6.07	6.45	9.27
802.11ac-80M	5610	122	12.84	13.36	16.12
802.11ac-80M	5690	138	12.84	13.09	15.98
802.11ac-80M	5775	155	11.59	12.66	15.17

9. Test Results

9.1 SAR Test Results Summary

	3.1 OAK Test Results outlinary								
SAR MEASUF	REMENT								
Ambient Tempe	rature (°C)	: 21.2 ±2			Relativ	e Humidity (%):	: 54		
Liquid Tempera	ture (°C) : 2	20.4 ±2			Depth o	of Liquid (cm):>	·15		
Test Mode: 802	.11g - 2450	MHz- eth	ertronics	Main Antenna,	P/N: 50017	791			
Test Position	Antenna	Frequer		Conducted Po	wer (dBm)	SAR 1g (\	V/kg)	Limit	
Body	Position	Channel	MHz	Measurement	Tune-up Limit	Measurement	Tune-up Scaled	(W/kg)	
Bottom	Fixed	2	2417	15.84	16	0.329	0.341	1.6	
Bottom	Fixed	6	2437	15.86	16.5	0.36	0.417	1.6	
Bottom	Fixed	10	2457	15.84	16	0.299	0.310	1.6	
Back	Fixed	6	2437	15.86	16.5	0.117	0.136	1.6	
Left-Side	Fixed	6	2437	15.86	16.5	0.044	0.051	1.6	
Test Mode: 802	.11g - 2450	MHz- eth	ertronics	Aux Antenna, F	P/N: 50017	99			
Тор	Fixed	6	2437	15.50	15.50	0.102	0.102	1.6	
Back	Fixed	6	2437	15.50	15.50	0.266	0.266	1.6	
Left-Side	Fixed	6	2437	15.50	15.50	0.030	0.030	1.6	
Test Mode: 802	.11b - 2450	MHz- eth	ertronics	Main Antenna,	P/N: 5001	791			
Bottom	Fixed	6	2437	15.49	15.50	0.288	0.289	1.6	
Test Mode: 802	.11b - 2450	MHz- eth	ertronics	Aux Antenna, I	P/N: 50017	99			
Back	Fixed	6	2437	13.98	14.00	0.155	0.156	1.6	
Test Mode: 802	.11n (20M)	- 2450 MH	z- ethert	ronics Main Ant	enna, P/N:	5001791			
Bottom	Fixed	6	2437	16.36	16.50	0.152	0.157	1.6	
Test Mode: 802	.11n (20M)	- 2450 MH	z- ethert	ronics Aux Ante	nna, P/N: 5	001799			
Back	Fixed	6	2437	16.36	16.50	0.111	0.115	1.6	
Test Mode: 802	.11n (40M)	- 2450 MH	z- ethert	ronics Main Ant	enna, P/N:	5001791			
Bottom	Fixed	6	2437	16.00	16.00	0.184	0.184	1.6	
Test Mode: 802	.11n (40M)	- 2450 MH	z- ethert	ronics Aux Ante	nna, P/N: 5	001799			
Back	Fixed	6	2437	16.00	16.00	0.129	0.129	1.6	
Note : 1. According	g KDB 447498	3 D01, SAR o	an be exc	luded when test ex	clusion thresh	nolds are applicabl	e.(can refer l	⁵ 6)	

Page: 27 of 32

SAR MEASUREMENT

Ambient Temperature (°C): 23.1 ±2 Relative Humidity (%): 53

Liquid Temperature (°C): 21.2 ±2 Depth of Liquid (cm):>15 Test Mode: 802.11a - 5 GHz- ethertronics Main Antenna. P/N: 5001791

		Freque		ain Antenna, P/ Conducted Pov		SAR 1g (\	N/kg)	Limit
Test Position Body	Antenna Position	Channel	MHz	Measurement	Tune-up Limit	Measurement	Tune-up Scaled	Limit (W/kg)
Bottom	Fixed	40	5200	15.75	16.00	1.18	1.250	1.6
Bottom	Fixed	44	5220	15.84	16.00	1.13	1.172	1.6
Bottom	Fixed	48	5240	14.99	15.00	0.845	0.847	1.6
Bottom	Fixed	56	5280	15.87	16.00	0.866	0.892	1.6
Bottom	Fixed	60	5300	15.78	16.00	0.955	1.005	1.6
Bottom	Fixed	64	5320	13.38	13.50	0.653	0.671	1.6
Bottom	Fixed	104	5520	16.02	16.50	0.932	1.041	1.6
Bottom	Fixed	116	5580	15.09	16.50	0.797	1.103	1.6
Bottom	Fixed	136	5680	15.01	16.50	0.6	0.846	1.6
Bottom	Fixed	149	5745	14.23	16.50	0.563	0.950	1.6
Bottom	Fixed	157	5785	14.06	16.50	0.617	1.082	1.6
Bottom	Fixed	165	5825	14.12	16.50	0.711	1.230	1.6
Back	Fixed	104	5520	16.02	16.50	0.139	0.155	1.6
Left-Side	Fixed	104	5520	16.02	16.50	0.019	0.021	1.6
Test Mode: 802	.11a - 5 GH	z- ethertro	onics A	ux Antenna, P/N	N: 5001799)		
Bottom	Fixed	40	5200	15.96	16.00	0.277	0.280	1.6
Bottom	Fixed	44	5220	16.00	16.00	0.608	0.608	1.6
Bottom	Fixed	48	5240	15.00	16.00	0.378	0.476	1.6
Bottom	Fixed	56	5280	15.97	16.00	0.568	0.572	1.6
Bottom	Fixed	60	5300	15.94	16.00	0.55	0.558	1.6
Bottom	Fixed	64	5320	13.00	13.00	0.309	0.309	1.6
Bottom	Fixed	104	5520	15.75	16.50	0.461	0.548	1.6
Bottom	Fixed	116	5580	15.35	16.50	0.409	0.533	1.6
Bottom	Fixed	136	5680	14.89	16.50	0.327	0.474	1.6
Bottom	Fixed	149	5745	14.89	16.50	0.239	0.346	1.6
Bottom	Fixed	157	5785	14.64	16.50	0.245	0.376	1.6
Bottom	Fixed	165	5825	14.56	16.50	0.232	0.363	1.6
Back	Fixed	104	5520	15.75	16.50	0.412	0.490	1.6
Left-Side	Fixed	104	5520	15.75	16.50	0.032	0.038	1.6
Test Mode: 802	2.11n (20M)	- 5GHz- et	hertron	ics Main Anteni	na, P/N: 50	001791		
Bottom	Fixed	104	5520	16.33	16.50	0.570	0593	1.6
Test Mode: 802	2.11n (20M)	- 5GHz- et	hertron	ics Aux Antenna	a, P/N: 500	01799		
Тор	Fixed	104	5520	16.33	16.50	0.356	0.370	1.6

Page: 28 of 32

Test Mode: 802.11n (40M)- 5GHz- ethertronics Main Antenna, P/N: 5001791									
Bottom	Fixed	110	5550	16.45	16.50	0.641	0.648	1.6	
Test Mode: 802	Test Mode: 802.11n (40M)- 5GHz- ethertronics Aux Antenna, P/N: 5001799								
Top Fixed 110 5550 16.45 16.50 0.361 0.365 1.6								1.6	
Test Mode: 802	11ac (80M	l)- 5GHz- 6	ethertro	nics Main Antei	nna, P/N: 5	5001791			
Bottom	Fixed	122	5610	16.12	16.50	0.635	0.693	1.6	
Test Mode: 802	Test Mode: 802.11ac (80M)- 5GHz- ethertronics Aux Antenna, P/N: 5001799								
Top Fixed 122 5610 16.12 16.50 0.373 0.407 1.6									
Test Mode: 802	11ac (80M)- 5GHz- (ethertro	nics Aux Anten	na, P/N: 50	01799			

Note: 1. According KDB 447498 D01, SAR can be excluded when test exclusion thresholds are applicable.(can refer P6)

9.2 Simultaneous Transmission

According the KDB 447498 D01 Section 4.3.2, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion

(max. power of channel, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/7.5}$]

Frequency	Max. power (dBm)	Test separation distance ,(mm)	Estimated BT SAR (W/Kg)
2441	8.88	6	0.31

For UNII Band:

WLAN	BT	Simultaneous	Antenna pair in mm	Peak location
SAR (W/Kg)	SAR (W/Kg)	Transmission (W/Kg)		separation ratio
1.25	0.31	1.56	N/A	N/A

The sum of value is less than 1.6W/Kg, thus simultaneous SAR testing is no need.

For DTS Band:

WLAN	Estimated BT	Simultaneous	Antenna pair in mm	Peak location
SAR (W/Kg)	SAR (W/Kg)	Transmission (W/Kg)		separation ratio
1.23	0.31	1.54	N/A	N/A

The sum of value is less than 1.6W/Kg, thus simultaneous SAR testing is no need.

Page: 30 of 32

10. SAR measurement variability

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Freque	ency	SAR 1g (W/kg)						
Ola ava a al	al Mila Original	First Repeated Seco		Second F	Second Repeated		Third Reapeated	
Channel	MHz	Original	Value	Ratio	Value	Ratio	Value	Ratio
40	5200	1.18	1.15	1.03	N/A	N/A	N/A	N/A

Appendix

Appendix A. SAR System Check Data

Appendix B. SAR measurement Data

Appendix C. Test Setup Photographs & EUT Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Appendix A. SAR System Check Data

Test Laboratory: QuieTek Date/Time: 10/16/2014

System Performance Check_2450MHz-Body DUT: Dipole 2450 MHz; Type: ALS-D-2450

Communication System: UID 10000, CW; Frequency: 2450 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ S/m}$; $\varepsilon_r = 53.31$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM; Serial:
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/2450MHz_Body/Area Scan (8x9x1): Measurement grid: dx=12mm, dv=12mm

Maximum value of SAR (measured) = 17.3 W/kg

Configuration/2450MHz_Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.39 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 28.1 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 17.7 W/kg

Test Laboratory: QuieTek Date/Time: 10/21/2014

System Performance Check_5200MHz-Body

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, WLAN 5G; Frequency: 5200 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5200 MHz; σ = 5.4 S/m; ε_r = 48.73; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/5200MHz-Body 100mW/Area Scan (8x8x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.8 W/kg

Configuration/5200MHz-Body 100mW/Zoom Scan (7x7x12), dist=2mm

(7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 65.06 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Test Laboratory: QuieTek Date/Time: 10/21/2014

System Performance Check_5300MHz-Body

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5300 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5300 MHz; $\sigma = 5.57 \text{ S/m}$; $\varepsilon_r = 48.44$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/5300MHz-Body 100mW/Area Scan (8x8x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.6 W/kg

Configuration/5300MHz-Body 100mW/Zoom Scan (7x7x12), dist=2mm

(7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 70.74 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 33.8 W/kg

SAR(1 g) = 8.19 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 20.8 W/kg

Test Laboratory: QuieTek Date/Time: 10/21/2014

System Performance Check_5600MHz-Body

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5600 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5600 MHz; $\sigma = 6 \text{ S/m}$; $\varepsilon_r = 47.61$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/5600MHz-Body 100mW/Area Scan (8x8x1): Measurement grid:

dx=10mm, dy=10mm

Maximum value of SAR (measured) = 14.7 W/kg

Configuration/5600MHz-Body 100mW/Zoom Scan (7x7x12), dist=2mm

(7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 71.18 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 36.3 W/kg

SAR(1 g) = 8.58 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 20.8 W/kg

System Performance Check 5800MHz-Body

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: UID 0, CW; Frequency: 5800 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5800 MHz; $\sigma = 6.24 \text{ S/m}$; $\varepsilon_r = 47.06$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/5800MHz-Body 100mW/Area Scan (8x8x1): Measurement grid:

dx=10mm, dv=10mm

Maximum value of SAR (measured) = 11.3 W/kg

Configuration/5800MHz-Body 100mW/Zoom Scan (7x7x12), dist=2mm (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 65.16 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7 W/kg; SAR(10 g) = 1.88 W/kgMaximum value of SAR (measured) = 18.5 W/kg

Appendix B. SAR measurement Data

Test Laboratory: QuieTek Date/Time: 10/16/2014

802.11g_2-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2417 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2417 MHz; $\sigma = 1.92 \text{ S/m}$; $\varepsilon_r = 53.58$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.292 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.251 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.658 W/kg

SAR(1 g) = 0.329 W/kg; SAR(10 g) = 0.153 W/kg

Maximum value of SAR (measured) = 0.432 W/kg

802.11g_6-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.423 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.562 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.715 W/kg

SAR(1 g) = 0.360 W/kg; SAR(10 g) = 0.165 W/kg

Maximum value of SAR (measured) = 0.485 W/kg

802.11g_10-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2457 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2457 MHz; $\sigma = 1.98 \text{ S/m}$; $\varepsilon_r = 53.26$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.286 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.076 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.611 W/kg

SAR(1 g) = 0.299 W/kg; SAR(10 g) = 0.139 W/kg

Maximum value of SAR (measured) = 0.394 W/kg

802.11g_6-Back Main

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (8x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.139 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.090 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.216 W/kg

SAR(1 g) = 0.117 W/kg; SAR(10 g) = 0.073 W/kg Maximum value of SAR (measured) = 0.141 W/kg

0.139 0.115 0.091 0.067 0.043 0.019

802.11g_6-Left-Side Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x21x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0560 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.407 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.0780 W/kg

SAR(1 g) = 0.044 W/kg; SAR(10 g) = 0.026 W/kg Maximum value of SAR (measured) = 0.0545 W/kg

802.11g_6-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x16x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.122 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.330 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.197 W/kg

SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.058 W/kg

Maximum value of SAR (measured) = 0.124 W/kg

802.11g_6-Back Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; σ = 1.94 S/m; ϵ_r = 53.39; ρ = 1000 kg/m³

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (8x11x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.317 W/kg

Configuration/Body/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.61 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.535 W/kg

SAR(1 g) = 0.266 W/kg; SAR(10 g) = 0.141 W/kg

Maximum value of SAR (measured) = 0.335 W/kg

802.11g_6-Left-Side Aux DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x21x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0398 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.011 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 0.0570 W/kg

SAR(1 g) = 0.030 W/kg; SAR(10 g) = 0.018 W/kg Maximum value of SAR (measured) = 0.0406 W/kg

802.11b_6-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.259 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.729 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.585 W/kg

SAR(1 g) = 0.288 W/kg; SAR(10 g) = 0.133 W/kg

Maximum value of SAR (measured) = 0.382 W/kg

802.11b 6-Back Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.198 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.288 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.317 W/kg

SAR(1 g) = 0.155 W/kg; SAR(10 g) = 0.085 W/kg

Maximum value of SAR (measured) = 0.184 W/kg

802.11n-20M_6-Bottom HT8 Main

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.146 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.385 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.310 W/kg

SAR(1 g) = 0.152 W/kg; SAR(10 g) = 0.072 W/kg

Maximum value of SAR (measured) = 0.204 W/kg

802.11n-20M_6-Back HT8 Aux DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.143 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.909 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.230 W/kg

SAR(1 g) = 0.111 W/kg; SAR(10 g) = 0.062 W/kg

Maximum value of SAR (measured) = 0.137 W/kg

802.11n-40M_6-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.169 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.469 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.382 W/kg

SAR(1 g) = 0.184 W/kg; SAR(10 g) = 0.087 W/kg

Maximum value of SAR (measured) = 0.243 W/kg

802.11n-40M_6-Back HT8 Aux DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 2.4G; Frequency: 2437 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 2437 MHz; $\sigma = 1.94 \text{ S/m}$; $\varepsilon_r = 53.39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 21.2, Liquid Temperature (°C): 20.4 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.5, 6.5, 6.5); Calibrated: 7/25/2014;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with left table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.156 W/kg

Configuration/Body/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.108 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.292 W/kg

SAR(1 g) = 0.129 W/kg; SAR(10 g) = 0.071 W/kg

Maximum value of SAR (measured) = 0.158 W/kg

802.11g (Main Antenna) EUT Bottom Z-Axis plot

Channel: 6

802.11a_40-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5200 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5200 MHz; $\sigma = 5.4 \text{ S/m}$; $\varepsilon_r = 48.73$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.94 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 23.13 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 4.67 W/kg

SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.374 W/kg Maximum value of SAR (measured) = 2.16 W/kg

802.11a_44-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5220 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5220 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 48.67$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.86 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 22.87 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 4.41 W/kg

SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.360 W/kg Maximum value of SAR (measured) = 2.11 W/kg

802.11a_48-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5240 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5240 MHz; $\sigma = 5.47 \text{ S/m}$; $\varepsilon_r = 48.61$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.34 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 19.35 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 3.72 W/kg

SAR(1 g) = 0.845 W/kg; SAR(10 g) = 0.276 W/kg

Maximum value of SAR (measured) = 1.62 W/kg

802.11a_56-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5280 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5280 MHz; $\sigma = 5.55 \text{ S/m}$; $\varepsilon_r = 48.47$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.45 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 20.06 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 3.65 W/kg

SAR(1 g) = 0.866 W/kg; SAR(10 g) = 0.246 W/kg

Maximum value of SAR (measured) = 1.66 W/kg

802.11a_60-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5300 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5300 MHz; $\sigma = 5.57 \text{ S/m}$; $\varepsilon_r = 48.44$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.57 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 20.76 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 3.90 W/kg

SAR(1 g) = 0.955 W/kg; SAR(10 g) = 0.307 W/kg

Maximum value of SAR (measured) = 1.79 W/kg

802.11a_64-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5320 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5320 MHz; $\sigma = 5.59 \text{ S/m}$; $\varepsilon_r = 48.41$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.974 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 15.94 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.48 W/kg

SAR(1 g) = 0.653 W/kg; SAR(10 g) = 0.259 W/kg

Maximum value of SAR (measured) = 1.17 W/kg

802.11a_104-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5520 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5520 MHz; $\sigma = 5.81 \text{ S/m}$; $\varepsilon_r = 47.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.81, 3.81, 3.81); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.50 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 19.91 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 4.30 W/kg

SAR(1 g) = 0.932 W/kg; SAR(10 g) = 0.303 W/kg

Maximum value of SAR (measured) = 1.72 W/kg

802.11a_116-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5580 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5580 MHz; $\sigma = 5.93 \text{ S/m}$; $\varepsilon_r = 47.64$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.27 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 19.09 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 3.39 W/kg

SAR(1 g) = 0.797 W/kg; SAR(10 g) = 0.280 W/kg

Maximum value of SAR (measured) = 1.51 W/kg

802.11a_136-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5680 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5680 MHz; $\sigma = 6.05 \text{ S/m}$; $\varepsilon_r = 47.37$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.04 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 16.43 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 2.73 W/kg

SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.207 W/kg

Maximum value of SAR (measured) = 1.10 W/kg

802.11a_149-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5745 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5745 MHz; $\sigma = 6.16 \text{ S/m}$; $\varepsilon_r = 47.23$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.830 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 15.01 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.197 W/kg Maximum value of SAR (measured) = 1.00 W/kg

0.830 0.664 0.498 0.332 0.166

802.11a_157-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5785 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5785 MHz; $\sigma = 6.21 \text{ S/m}$; $\varepsilon_r = 47.11$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.03 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 15.72 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 2.33 W/kg

SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.247 W/kg

Maximum value of SAR (measured) = 1.16 W/kg

802.11a_165-Bottom Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5825 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5825 MHz; $\sigma = 6.29 \text{ S/m}$; $\varepsilon_r = 46.98$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.14 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 16.59 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 3.52 W/kg

SAR(1 g) = 0.711 W/kg; SAR(10 g) = 0.264 W/kg

Maximum value of SAR (measured) = 1.36 W/kg

802.11a_104-Back Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5520 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5520 MHz; $\sigma = 5.81 \text{ S/m}$; $\varepsilon_r = 47.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.81, 3.81, 3.81); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (9x13x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.225 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 2.393 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.300 W/kg

SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.101 W/kg

Maximum value of SAR (measured) = 0.300 W/kg

802.11a_104-Left-Side Main DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5520 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5520 MHz; $\sigma = 5.81 \text{ S/m}$; $\varepsilon_r = 47.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.81, 3.81, 3.81); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.0246 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 0.6700 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0460 W/kg

SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.014 W/kg

Maximum value of SAR (measured) = 0.0457 W/kg

802.11a_40-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5200 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5200 MHz; $\sigma = 5.4 \text{ S/m}$; $\varepsilon_r = 48.73$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.504 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 7.242 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.966 W/kg

SAR(1 g) = 0.277 W/kg; SAR(10 g) = 0.095 W/kg

Maximum value of SAR (measured) = 0.534 W/kg

802.11a_44-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5220 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5220 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 48.67$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.953 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 12.16 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 2.12 W/kg

SAR(1 g) = 0.608 W/kg; SAR(10 g) = 0.286 W/kg

Maximum value of SAR (measured) = 1.01 W/kg

802.11a_48-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5240 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5240 MHz; $\sigma = 5.47 \text{ S/m}$; $\varepsilon_r = 48.61$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.712 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 9.848 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.378 W/kg; SAR(10 g) = 0.142 W/kg

Maximum value of SAR (measured) = 0.656 W/kg

802.11a 56-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5280 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5280 MHz; $\sigma = 5.55 \text{ S/m}$; $\varepsilon_r = 48.47$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.951 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 10.74 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 2.11 W/kg

SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.197 W/kg Maximum value of SAR (measured) = 0.973 W/kg

0.951 0.767 0.582 0.398 0.213

802.11a_60-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5300 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5300 MHz; $\sigma = 5.57 \text{ S/m}$; $\varepsilon_r = 48.44$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.968 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 10.98 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.51 W/kg

SAR(1 g) = 0.550 W/kg; SAR(10 g) = 0.261 W/kg

Maximum value of SAR (measured) = 0.932 W/kg

802.11a_64-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5320 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5320 MHz; $\sigma = 5.59 \text{ S/m}$; $\varepsilon_r = 48.41$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.13, 4.13, 4.13); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.447 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 7.135 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.309 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.473 W/kg

802.11a_104-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5520 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5520 MHz; $\sigma = 5.81 \text{ S/m}$; $\varepsilon_r = 47.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.81, 3.81, 3.81); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.827 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 9.486 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.232 W/kg

Maximum value of SAR (measured) = 0.785 W/kg

802.11a_116-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5580 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5580 MHz; $\sigma = 5.93 \text{ S/m}$; $\varepsilon_r = 47.64$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.723 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 9.093 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.409 W/kg; SAR(10 g) = 0.156 W/kg

Maximum value of SAR (measured) = 0.733 W/kg

802.11a_136-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G (0); Frequency: 5680 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5680 MHz; $\sigma = 6.05 \text{ S/m}$; $\varepsilon_r = 47.37$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.457 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 7.925 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.174 W/kg

Maximum value of SAR (measured) = 0.623 W/kg

802.11a_149-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5745 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5745 MHz; $\sigma = 6.16 \text{ S/m}$; $\varepsilon_r = 47.23$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.376 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 8.222 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.704 W/kg

SAR(1 g) = 0.239 W/kg; SAR(10 g) = 0.128 W/kg

Maximum value of SAR (measured) = 0.415 W/kg

802.11a_157-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5785 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5785 MHz; $\sigma = 6.21 \text{ S/m}$; $\varepsilon_r = 47.11$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.358 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 7.071 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.133 W/kg

Maximum value of SAR (measured) = 0.514 W/kg

802.11a_165-Top Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5825 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5825 MHz; $\sigma = 6.29 \text{ S/m}$; $\varepsilon_r = 46.98$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.94, 3.94, 3.94); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.358 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 6.816 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.232 W/kg; SAR(10 g) = 0.121 W/kg

Maximum value of SAR (measured) = 0.378 W/kg

802.11a_44-Back Aux

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5220 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5220 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 48.67$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (9x13x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.630 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 8.120 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.184 W/kg

Maximum value of SAR (measured) = 0.702 W/kg

802.11a_44-Left-Side Aux DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5220 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5220 MHz; $\sigma = 5.43 \text{ S/m}$; $\varepsilon_r = 48.67$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (7x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.0484 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 1.321 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 0.0770 W/kg

SAR(1 g) = 0.032 W/kg; SAR(10 g) = 0.022 W/kg

Maximum value of SAR (measured) = 0.0634 W/kg

802.11n-20M_104-Bottom Main HT8

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5520 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5520 MHz; $\sigma = 5.81 \text{ S/m}$; $\varepsilon_r = 47.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.81, 3.81, 3.81); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.809 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 14.93 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 2.40 W/kg

SAR(1 g) = 0.570 W/kg; SAR(10 g) = 0.247 W/kg

Maximum value of SAR (measured) = 0.948 W/kg

802.11n-20M 104-Bottom Aux HT8

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5520 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5520 MHz; $\sigma = 5.81 \text{ S/m}$; $\varepsilon_r = 47.84$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.81, 3.81, 3.81); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.457 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 10.06 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 2.01 W/kg

SAR(1 g) = 0.356 W/kg; SAR(10 g) = 0.196 W/kg

Maximum value of SAR (measured) = 0.553 W/kg

802.11n-40M 110-Bottom Main HT8

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5550 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5550 MHz; $\sigma = 5.87 \text{ S/m}$; $\varepsilon_r = 47.75$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.899 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 15.36 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 4.12 W/kg

SAR(1 g) = 0.641 W/kg; SAR(10 g) = 0.274 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

802.11n-40M 110-Bottom Aux HT8

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5550 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5550 MHz; $\sigma = 5.87 \text{ S/m}$; $\varepsilon_r = 47.75$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.539 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 10.50 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 2.16 W/kg

SAR(1 g) = 0.361 W/kg; SAR(10 g) = 0.207 W/kg

Maximum value of SAR (measured) = 0.595 W/kg

802.11ac-80M 122-Bottom Main HT8

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5610 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5610 MHz; $\sigma = 6.02 \text{ S/m}$; $\varepsilon_r = 47.59$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.936 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 15.24 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 0.635 W/kg; SAR(10 g) = 0.278 W/kg

Maximum value of SAR (measured) = 1.13 W/kg

802.11ac-80M 122-Bottom Aux HT8

DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5610 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5610 MHz; $\sigma = 6.02 \text{ S/m}$; $\varepsilon_r = 47.59$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.64, 3.64, 3.64); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x17x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.564 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 10.80 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 1.71 W/kg

SAR(1 g) = 0.373 W/kg; SAR(10 g) = 0.212 W/kg

Maximum value of SAR (measured) = 0.617 W/kg

802.11a (Main Antenna) EUT Bottom, Z-Axis plot

Channel: 40

802.11a_40-Bottom Main-Verify DUT: FIELDBOOK; Type: I1

Communication System: UID 0, WLAN 5G; Frequency: 5200 MHz;

Communication System PAR: 0 dB

Medium parameters used: f = 5200 MHz; $\sigma = 5.4 \text{ S/m}$; $\varepsilon_r = 48.73$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Ambient Temperature (°C): 23.1, Liquid Temperature (°C): 21.2 Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(4.23, 4.23, 4.23); Calibrated: 7/25/2014;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 5/19/2014
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/Body/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.86 W/kg

Configuration/Body/Zoom Scan (6x6x12) (6x6x12)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=2mm

Reference Value = 22.53 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 4.48 W/kg

SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.398 W/kg Maximum value of SAR (measured) = 2.15 W/kg

