Electrical Characteristics of MOS Devices

The MOS Capacitor

- Voltage components
- Accumulation, Depletion, Inversion Modes
- Effect of channel bias and substrate bias
- Effect of gate oxide charges
- Threshold-voltage adjustment by implantation
- Capacitance vs. voltage characteristics

MOS Field-Effect Transistor

- I-V characteristics
- Parameter extraction

1) Reading Assignment

Streetman: Section of Streetman Chap 8 on MOS

- 2) Visit the Device Visualization Website http://jas.eng.buffalo.edu/and run the *visualization experiments* of
- 1) Charge carriers and Fermi level,
- 2) pn junctions
- 3) MOS capacitors
- 4) MOSFETs

Work Function of Materials

 $q\Phi_M$ is determined by the metal material

 $q\Phi_{S}$ is determined by the semiconductor material, the dopant type, and doping concentration

Work Function ($q\Phi_M$) of MOS Gate Materials

 $\mathbf{E_0} = \text{vacuum energy level}$ $\mathbf{E_f} = \text{Fermi level}$ E_c = bottom of conduction band E_v = top of conduction band $q\chi = 4.15eV$ (electron affinity)

Examples: AI = 4.1 eV $TiSi_2 = 4.6 \text{ eV}$

Work Function of doped Si substrate

* Depends on substrate concentration N_B

$$|\Phi_F| = \frac{kT}{q} \ln \left(\frac{N_B}{n_i} \right)$$

 $\Phi_{\rm s}$ (volts) = 4.15 +0.56 - $|\Phi_{\rm F}|$

$$\Phi_{\rm s}$$
 (volts) = 4.15 +0.56 + $|\Phi_{\rm F}|$

The MOS Capacitor

$$\mathbf{V_G} = \mathbf{V_{FB}} + \mathbf{V_{ox}} + \mathbf{V_{Si}}$$

$$C_{ox} = \frac{\mathcal{E}_{ox}}{x_{ox}}$$

[in Farads /cm²]

Oxide capacitance/unit area

Flat Band Voltage

• V_{FB} is the "built-in" voltage of the MOS:

$$V_{FB} \equiv \Phi_M - \Phi_S$$

Gate work function Φ_M:

Al: 4.1 V; n+ poly-Si: 4.15 V; p+ poly-Si: 5.27 V

• Semiconductor work function Φ_{S} :

$$\Phi_{\rm s}$$
 (volts) = 4.15 +0.56 - $|\Phi_{\rm F}|$ for n-Si

$$\Phi_{s}$$
 (volts) = 4.15 +0.56 + $|\Phi_{F}|$ for p-Si

- V_{ox} = voltage drop across oxide (depends on V_{G})
- V_{Si} = voltage drop in the silicon (depends on V_G)

MOS Operation Modes

A) Accumulation: $V_G < V_{FB}$ for p-type substrate

$$V_{Si} \approx 0$$
, so $V_{ox} = V_G - V_{FB}$
 $Q_{Si}' = \text{charge/unit area in Si}$
 $= C_{ox} (V_G - V_{FB})$

MOS Operation Modes

B) Flatband Condition : V_G = V_{FB}

No charge in Si (and hence no charge in metal gate)

•
$$V_{Si} = V_{ox} = 0$$

	M	0	S (p-Si)
Charge Distribution	ı		

MOS Operation Modes (cont.)

C) Depletion: $V_G > V_{FB}$

Charge Distribution

Depletion
Layer
thickness

$$x_{d} = \sqrt{\frac{2\epsilon_{Si}V_{Si}}{qN_{B}}}$$

$$V_{G} = V_{FB} + \frac{qN_{B}X_{d}}{C_{ox}} + \frac{qN_{B}X_{d}^{2}}{2\varepsilon_{s}}$$

(For given V_G , can solve for x_d)

Depletion layer

Note: $N_B x_d$ is the total charge in Si /unit area

OX

10

Depletion Mode :Charge and Electric Field Distributions by Superposition Principle of Electrostatics

MOS Operation Modes (cont.)

D) Threshold of Inversion: $V_G = V_T$

 $n_{surface} = N_B$ (for p-type substrate)

$$=> V_{Si} = 2|\Phi_{\rm F}|$$

This is a *definition* for onset of strong inversion

$$V_G = V_T = V_{FB} + \frac{\sqrt{2\varepsilon_s(2|\Phi_F|)qN_B}}{C_{ox}} + 2|\Phi_F|$$

MOS Operation Modes (cont.)

E) Strong Inversion: $V_G > V_T$

$$V_{ox} = \frac{qN_B x_{d \max} + |Q'_n|}{C_{ox}}$$
$$Q'_n \approx -C_{ox}(V_G - V_T)$$

x_{dmax} is approximately unchanged

Biasing Conditions for p-type Si

MOS Band Diagrams (n-type Si)

Decrease $V_{\rm G}$ (toward more negative values)

-> move the gate energy-bands up, relative to the Si

- Accumulation
 - $-V_{\rm G} > V_{\rm FB}$
 - Electrons accumulate at surface

- Depletion
 - $-V_{\rm G} < V_{\rm FB}$
 - Electrons repelled from surface

- Inversion
 - $-V_{\rm G} < V_{\rm T}$
 - Surface becomes p-type

Total Charge Density in Si, Q_s

^{*} For simplicity, dielectric constants assumed to be same for oxide and Si in E-field sketches

Suggested Exercise

Most derivations for MOS shown in lecture notes are done with p-type substrate (NMOS) as example.

Repeat the derivations yourself for n-type substrate (PMOS) to test your understanding of MOS.

p-Si substrate (NMOS)

n-Si substrate (PMOS)

MOS Capacitance Measurement

- $V_{\rm G}$ is scanned slowly
- Capacitive current due to v_{ac} is measured

$$i_{ac} = C \frac{dv_{ac}}{dt}$$

$$C = \left| \frac{dQ_{GATE}}{dV_G} \right| = \left| \frac{dQ_s}{dV_G} \right|$$

20

MOS C-V Characteristics (p-type Si)

Professor N Cheung, U.C. Berkeley

Capacitance in Inversion (p-type Si)

CASE 1: Inversion-layer charge can be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at the surface of the substrate.

Time required to build inversion-layer charge = $2N_{\rm A}\tau_{\rm o}/n_{\rm i}$, where $\tau_{\rm o}$ = minority-carrier lifetime at surface

$$C = \left| \frac{dQ_{inv}}{dV_G} \right| = C_{ox}$$

Capacitance in Inversion (p-type Si)

CASE 2: Inversion-layer charge cannot be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth W_d in the substrate.

23

Capacitor *vs.* Transistor *C-V* (or LF *vs.* HF *C-V*)

p-type Si:

C-V Characteristic

- a) accumulation: C_{ox}
- b) flatband: ~C_{ox} (actually a bit less)
- c) depletion: Cox in series with the Cdepl
- d) threshold: Cox in series with the minimum Cdepl
- e) inversion: C_{ox} (with some time delay!)

Small signal charge response ΔQ due to ΔVG

All frequencies

$$C = C_{ox}$$

Depletion

All frequencies

$$1/C = 1/C_{ox} + x_d/\varepsilon_s$$

Inversion

Key:

+ Holes

- Electrons

Acceptor ions

Low frequency

$$C = C_{ox}$$

High frequency

 $1/C = 1/C_{ox} + x_{dmax}/\epsilon_{s}$

Effect of Substrate Bias V_B and Channel Bias V_C

net bias across MOS

At the onset of strong inversion, where V_G is defined as the threshold voltage

as the threshold voltage
$$M \quad O \quad Si$$

$$E_{i} \quad \downarrow q |\phi_{p}|$$

$$Q(V_{C}-V_{B})$$

$$V_{Si} = \frac{1}{2} \frac{qN_{a}X^{2}_{d \max}}{\varepsilon_{s}}$$

$$V_{Si} = 2|\phi_{p}| + (V_{C}-V_{B})$$

$$(V_{G}-V_{B}) = V_{FB} + \frac{qN_{a}X_{d \max}}{C_{OX}} + \frac{1}{2} \frac{qN_{a}X^{2}_{d \max}}{\varepsilon_{s}}$$

At threshold:
$$V_G - V_B = V_{FB} + V_{ox} + V_{Si}$$

But
$$V_{Si} = 2|\Phi_p| + (V_C - V_B) =>$$

x_{dmax} is different from no-bias case

$$x_{d\max} = \sqrt{\frac{2\varepsilon_{Si}V_{Si}}{qN_B}}$$

$$V_{T} - V_{B} = V_{FB} + \frac{\sqrt{2\epsilon_{s}qN_{B}(2|\phi_{F}| + V_{C}-V_{B})}}{C_{ox}} + 2|\phi_{F}| + V_{C} - V_{B}$$

$$V_{Si}$$

Flat Band Voltage with Oxide charges

V_{FB} is the Gate voltage required to create no charge in the Si

ρ_{ox} (x) due to alkaline contaminants or trapped charge to broken bonds at

Professor N Cheung, U.C. Berkeley

V_T Tailoring with Ion Implantation

- **Acceptor** implant gives positive shift $(+ \Delta V_T)$
- Donor implant gives negative shift ΔV_T

Algebraic sign of V_T shift is independent of n or p substrate!

The delta-function approximation of implanted profile

* Valid if thickness of implanted dopants << x_{dmax}

The V_T shift can be viewed as the extra gate voltage nee

deplete the implanted dopants ~ Q_i/C_{ox}

<u>Summary</u>: Parameters Affecting V_T

7 Dopant implant near Si/SiO₂ interface

EE143 F2010

Substrate concentration, $N_{\rm B}$ (atoms/cm³)

Summary of MOS Threshold Voltage (NMOS, p-substrate)

Threshold voltage of MOS capacitor:

$$V_T = V_{FB} + \frac{\sqrt{2\epsilon_s q N_B(2|\phi_F|)}}{C_{ox}} + 2|\phi_F| - \frac{Q_i}{C_{ox}}$$

Threshold voltage of MOS transistor:

$$V_{T} = V_{FB} + \frac{\sqrt{2\epsilon_{s}qN_{B}(2|\phi_{F}| + |V_{C}-V_{B}|)}}{C_{ox}} + 2|\phi_{F}| + V_{C} - \frac{Q_{i}}{C_{ox}}$$

Note 1: At the *onset* of strong inversion, inversion charge is negligible and is often ignored in the V_T expression

Note 2: V_T of a MOSFET is taken as the V_T value at source (i.e., $V_C = V_S$)

Note 3: $Q_i = (q \bullet implant dose)$ is the charge due to the ionized donors or acceptors implanted at the Si surface. Q_i is *negative* for acceptors

Summary of MOS Threshold Voltage (PMOS, n-substrate)

Threshold voltage of MOS capacitor:

$$V_{T} = V_{FB} - \frac{\sqrt{2\epsilon_{s}qN_{B}(2|\phi_{F}|)}}{C_{ox}} - 2|\phi_{F}| - \frac{Q_{i}}{C_{ox}}$$

Threshold voltage of MOS transistor:

$$V_{T} = V_{FB} - \frac{\sqrt{2\epsilon_{s}qN_{B}(2|\phi_{F}| + |V_{C}-V_{B}|)}}{C_{ox}} - 2|\phi_{F}| + V_{C} - \frac{Q_{i}}{C_{ox}}$$

^{*} Yes, + sign for V_C term but V_C (<0) is a negative bias for PMOS because the inversion holes have to be negatively biased with respect to the n-substrate to create a reverse biased pn junction.