Homework 5

Li Yunzhi

October 10, 2017

Abstract

In this homework, 2 methods were used to proof these equivalences

- (1) Using Contradiction.
- (2) Uising Truth Table.

1 Implication elimination : $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$

Proof 1 We have the definition that $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$ Prove by contradiction.

First, we proof $(\alpha \Rightarrow \beta) \vDash (\neg \alpha \lor \beta)$

Assume that $(\alpha \Rightarrow \beta) \nvDash (\neg \alpha \lor \beta)$

Then it means that there is a set of value v s.t.

- $(1) \qquad (\alpha \Rightarrow \beta)^v = 1$
- $(2) \qquad (\neg \alpha \lor \beta)^v = 0$

From (2) we can know that $\alpha^v = 1$ $\beta^v = 0$

But from (1) we can know that if $(\alpha \Rightarrow \beta)^v = 1$ and $\alpha^v = 1$, then we must have $\beta^v = 1$ Contradiction!

Then we know that $(\alpha \Rightarrow \beta) \vDash (\neg \alpha \lor \beta)$ is correct

Second, we proof $(\neg \alpha \lor \beta) \vDash (\alpha \Rightarrow \beta)$

Assume that $(\neg \alpha \lor \beta) \nvDash (\alpha \Rightarrow \beta)$

Then it means that there is a set of value v s.t.

- $(1) \qquad (\neg \alpha \lor \beta)^v = 1$
- $(2) \qquad (\alpha \Rightarrow \beta)^v = 0$

From (2) we can know that $\alpha^v = 1$ $\beta^v = 0$

But from (1) we can know that if $(\neg \alpha \lor \beta)^v = 1$ and $\alpha^v = 1$, then we must have $\beta^v = 1$ Contradiction!

Then we know that $(\neg \alpha \lor \beta) \vDash (\alpha \Rightarrow \beta)$ is correct

Above all, we know that $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$

2 Biconditional elimination : $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$

Proof 2 We have the definition that $\alpha \equiv \beta$ if and only if $\alpha \vDash \beta$ and $\beta \vDash \alpha$

Prove by contradiction.

First, we proof($\alpha \Leftrightarrow \beta$) \vDash (($\alpha \Rightarrow \beta$) \land ($\beta \Rightarrow \alpha$))

Assume that $(\alpha \Leftrightarrow \beta) \nvDash ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$

Then it means that there is a set of value v s.t.

- $(1) \qquad (\alpha \Leftrightarrow \beta)^v = 1$
- (2) $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))^v = 0$

From (2) we can know that $\alpha^v = 1$ $\beta^v = 0$ or $\alpha^v = 0$ $\beta^v = 1$

But from (1) we can know that if $(\alpha \Leftrightarrow \beta)^v = 1$, then we must have $\alpha^v = \beta^v$

Contradiction!

Then we know that $(\alpha \Leftrightarrow \beta) \vDash ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ is correct

Second, we proof that $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \vDash (\alpha \Leftrightarrow \beta)$

Assume that $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \nvDash (\alpha \Leftrightarrow \beta)$

Then it means that there is a set of value v s.t.

- $(1) \qquad ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))^v = 1$
- $(2) \qquad (\alpha \Leftrightarrow \beta)^v = 0$

From (2) we can know that $\alpha^v = 1$ $\beta^v = 0$ or $\alpha^v = 0$ $\beta^v = 1$

But from (1) we can know that if $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))^v = 1$, then we must have $\alpha^v = \beta^v$ Contradiction!

Then we know that $((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \nvDash (\alpha \Leftrightarrow \beta)$ is correct

Above all, we know that $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$

3 De Morgan : $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$

Proof 3 Using Truth table

α	β	$\neg(\alpha \land \beta)$	$(\neg \alpha \lor \neg \beta)$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

Table 1: Truth table 1

4 De Morgan : $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$

Proof 4 Using Truth table

α	β	$\neg(\alpha \lor \beta)$	$(\neg \alpha \land \neg \beta)$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Table 2: Truth table 2

5 Distributvity of \wedge over \vee : $(\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma))$

α	β	γ	$(\alpha \wedge (\beta \vee \gamma))$	$((\alpha \land \beta) \lor (\alpha \land \gamma))$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
_1	1	1	1	1

Table 3: Truth table 3

6 Distributvity of \vee over \wedge : $(\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$

α	β	γ	$(\alpha \vee (\beta \wedge \gamma))$	$((\alpha \vee \beta) \wedge (\alpha \vee \gamma))$
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
_1	1	1	1	1

Table 4: Truth table 4