Titlu

Achiziția comprimată a semnalelor cu reprezentări rare

Text

Am text italic si **bold** si subliniat.

Ecuații

O ecuație inline este $p \ge 1$

Aici am o ecuație:

$$||x||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$
 (1)

si ma refer la ea ca ecuatia (eq. 1). E **obligatoriu** ca ecuația să fie intr-un paragraf nou (separată cu linii goale inainte și după),

O listă cu ecuații inline si separate:

- 1. $||ax|| = |a| \cdot ||x||$ (omogenitate)
- $2. \,$ Și încă una aici

$$||x|| = 0 \iff x = 0 \tag{2}$$

1. $||x + y|| \le ||x|| + ||y||$ (inegalitatea triunghiului)

si o citez pe ultima ca (eq. 2).

Din păcate, pentru ca trebuie să pun ecuația într-un paragraf nou, **se întrerupe** numerotarea!!

Și încă o ecuație cu cuvinte în interior (unde) și cazuri ():

$$||x||_0 = \sum_i c_i$$
, unde $c_i = \begin{cases} 1, x_i \neq 0 \\ 0, x_i = 0 \end{cases}$

Figuri

În Figura 1 sunt înfățișate sferele ℓ_p într-un spațiu bidimensional, adică punctele care au aceeași valoare a normei ℓ_p (aici, egală cu 1), pentru diverse valori ale lui p. Pentru p=0, domeniul cuprinde doar cele două axe (exceptând punctul 0). Se observă că valori mici ale lui p implică puncte situate în apropierea celor două axe, funcționând astfel ca niște aproximații ale normei ℓ_0 .

Figure 1: Figura 1 - Punctele dintr-un plan care au norma ℓ_p egală cu 1

Teoreme, definiții, citari

Definiție ca text:

Definiție. [1]: Fie matricea $A \in \mathbb{R}^{m \times n}$. Spark-ul matricii A, notat σ , reprezintă numărul minim de coloane ale lui A care sunt liniar independente.

Următoarea este o teoremă cu demonstrație, ca text:

Teoremă. [1]: Fie γ un vector rar cu $\|\gamma\|_0 = k$, achiziționat cu o matrice A ca în (eq. 1). Fie σ spark-ul matricii A. Dacă $k < \sigma/2$, atunci γ este soluție unică a problemei de optimizare (eq. 2).

Demonstrație. Demonstrația rezultă imediat: dacă (eq. 1) ar admite o soluție diferită, cu raritatea $k' \leq k$, atunci diferența celor două soluții ar produce un

vector de raritate $(k'+k) < \sigma$ care apartine spațiului nul al matricii A. Acest lucru înseamnă un set de coloane liniar independente ale lui A în număr mai mic decât spark-ul matricii, ceea ce contrazice definitia acestuia.

Din păcate, calcularea spark-ului unei matrici este o problemă de complexitate combinatorică, și deci NP-hard, ceea ce limitează aplicabilitatea practică a teoremei.

Algoritmi

Algoritmul Orthogonal Matching Pursuit (OMP)

Fenced clode block:

- 1. \$r^{(0)} \leftarrow y\$
- 2. \$\gamma_i \leftarrow 0, \forall i\$
- 3. repetă:
 - 3.1. Găsește $a_m \in A$ cu coeficientul de corelația maxim $\left(r_{(k)} \right)$
 - 3.2. Adaugă \$m\$ la setul indicilor atomilor selectati, \$T \leftarrow T \cup \{m\}
 - Proiectează \$x\$ pe subspațiul atomilor \$a_{\{T\}}\$, obținând vectorul coefic:
- Actualizează reziduul: $r^{(k+1)} \le x A \cdot (k+1)$ 4. până la un criteriu de oprire (de ex. $||r^{(k)}||_2 \le epsilon$, sau număr fixat de
- sau clode block normal (cu 4 spații):
- 1. \$r^{(0)} \leftarrow y\$
- 2. \$\gamma_i \leftarrow 0, \forall i\$
- 3. repetă:
 - 3.1. Găsește \$a_m \in A\$ cu coeficientul de corelația maxim \$\left\langle r^{(k)}, a
 - 3.2. Adaugă \$m\$ la setul indicilor atomilor selectati, \$T \leftarrow T \cup \{m\}\$
 - Proiectează \$x\$ pe subspațiul atomilor \$a_{\{T\}}\$, obținând vectorul coeficien 3.3.
- Actualizează reziduul: $r^{(k+1)} \cdot x A \cdot x A \cdot x$ 4. până la un criteriu de oprire (de ex. $|r^{(k)}|_2 \le \$, sau număr fixat de i
- Din păcate, în code blocks nu se parsează ecuațiile Latex. Singura soluție este să le scriu ca liste obișnuite (de ex. cu 3 spații):
 - 1. $r^{(0)} \leftarrow y$
 - 2. $\gamma_i \leftarrow 0, \forall i$
 - 3. repetă:
 - 3.1. Găsește $a_m \in A$ cu coeficientul de corelația maxim $\langle r^{(k)}, a_m \rangle$
 - 3.2. Adaugă m la setul indicilor atomilor selectați, $T \leftarrow T \cup \{m\}$
 - Proiectează x pe subspațiul atomilor $a_{\{T\}}$, obținând vectorul coeficienților de la pasul k: $\gamma_{\{T\}}^{(k+1)} = a_{\{T\}}^{\dagger} x$ 3.4. Actualizează reziduul: $r^{(k+1)} \leftarrow x - A \cdot \gamma^{(k+1)}$
 - 4. până la un criteriu de oprire (de ex. $||r^{(k)}||_2 \le \epsilon$, sau număr fixat de iterații}

Tabele

TODO

[1] D. L. Donoho and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," $Proceedings\ of\ the\ National\ Academy\ of\ Sciences,\ vol.\ 100,\ no.\ 5,\ pp.\ 2197–2202,\ 2003.$