定理 2.40 東< A, \le > に対して,A が有限集合であるならば,東< A, \le > の最小元と最大元が必ず存在する。

【証明】

東< A , < > に対して,A は有限集合であるならば, $A = \{a_1, a_2, ..., a_n\}$ とし,< A , \lor , \land > を東< A , < > によって定義される代数系とする。 \lor と \land はA 上の閉じた演算であるから, $a_1 \land a_2 \land ... \land a_n$ と $a_1 \lor a_2 \lor ... \lor a_n$ はA の二つの要素である。A の任意の要素 a_j ($1 \le j \le n$) に対して, $a_1 \land a_2 \land ... \land a_n \le a_j$ と $a_j \le a_1 \lor a_2 \lor ... \lor a_n$ が成り立つ。よって, $a_1 \land a_2 \land ... \land a_n$ と $a_1 \lor a_2 \lor ... \lor a_n$ はそれぞれ束< A , < > の最小元と最大元である。