Selettore prodotti in base al colore

La linea di smistamento con rilevamento del colore viene utilizzata per la separazione automatica di diversi blocchi colorati. In questo processo, un nastro trasportatore trasporta componenti geometricamente identici ma di colore diverso, a un sensore di colore, dove vengono separati in base al loro colore.

Il nastro trasportatore è alimentato da un motore a +24VDC e il percorso di trasporto viene misurato con l'aiuto di un sensore a impulsi: il sensore produce un impulso di tensione al passaggio di ciascuna tacca del nastro trasportatore.

L'espulsione dei pezzi viene gestita da cilindri pneumatici che vengono assegnati alle posizioni di stoccaggio appropriate e sono azionati da elettrovalvole.

Diverse barriere fotoelettriche monitorano il flusso dei pezzi e il livello di riempimento dei luoghi di stoccaggio.

Il rilevamento del colore è gestito da un sensore ottico in grado di rilevare il loro colore in base alla riflessione superficiale. Tecnicamente parlando il sensore di colore è quindi un sensore riflettente che indica quanto bene una superficie riflette la luce. Il valore misurato del sensore non è quindi proporzionale alla lunghezza d'onda del colore misurato e nemmeno è possibile l'assegnazione di coordinate di colore o spazi colore (ad esempio RGB o CMYK). Oltre al colore dell'oggetto, la luce ambientale, la superficie dell'oggetto e la distanza dell'oggetto dal sensore influenzano la qualità del segnale riflesso.

Per questo motivo, è imperativo che il sensore di colore sia protetto dalla luce ambientale e che la superficie degli oggetti sia simile. Inoltre, è importante che il sensore sia installato perpendicolarmente alla superficie dell'oggetto. I valori soglia che limitano i valori misurati dei singoli colori fanno una distinzione tra i pezzi colorati. Poiché gli intervalli di valori differiscono in base al diverso sensore di colore, i valori limite devono assolutamente essere tarati sperimentalmente.

L'espulsione dei pezzi è controllata con l'aiuto della barriera luminosa situata prima del primo eiettore. A seconda del valore di colore rilevato, il cilindro pneumatico corrispondente viene attivato con un ritardo dopo che la barriera fotoelettrica è stata attraversata dal pezzo. È qui che entra in gioco il sensore a impulsi, che rileva la rotazione della ruota dentata che guida il nastro trasportatore. A differenza di un ritardo dipendente dal tempo, questo approccio è indipendente dalle variazioni della velocità del nastro trasportatore.

I pezzi espulsi vengono avviati attraverso tre scivoli verso i magazzini di stoccaggio specifici. L'espulsione dei pezzi è gestita da tre cilindri pneumatici monostabili che vengono controllati con l'aiuto di elettrovalvole a 3/2 vie. Nel caso dei cilindri pneumatici, un pistone divide il volume del cilindro in due camere. La pressione diversa tra queste due camere provoca una forza sul pistone, causando il movimento del pistone. Questo movimento corrisponde a una variazione di volume in entrambe le camere. Togliendo la pressione d'aria, il ritorno a riposo del pistone è garantita tramite una molla.

I magazzini di stoccaggio sono dotati di barriere fotoelettriche che rilevano se il magazzino di stoccaggio è pieno o meno. Tuttavia, le barriere fotoelettriche non possono dire quanti pezzi sono presenti nel magazzino di stoccaggio.

Segnali di controllo bordo macchina:

Not in the picture: Q1, Q3, Q4, Q5

Nota bene: Verificare i livelli attivi dei sensori ottici

Terminale	Funzione	Input / Output
1	Alimentazione attuatori	24V DC
2	Alimentazione sensori	24V DC
3	GND attuatori	GND
4	GND sensori	GND
5	Sensore a impulsi del nastro	I1 <mark>(NC)</mark>
6	Sensore presenza pezzo all'ingresso del selettore colori	12 (<mark>NC</mark>)
7	Sensore presenza pezzo all'uscita del selettore colori	I3 (<mark>NA</mark>)
8	Non usato	
9	Uscita analogica sensore colori	14
10	Sensore magazzino pezzi bianchi	15
11	Sensore magazzino pezzi rossi	16
12	Sensore magazzino pezzi blu	17
17	Motore avanzamento nastro trasportatore	Q1
18	Compressore	Q2
19	Non usato	
20	Valvola pistone pezzi bianchi	Q3
21	Valvola pistone pezzi rossi	Q4
22	Valvola pistone pezzi blu	Q5

Ipotesi di algoritmo per il riconoscimento del colore

Il rilevamento del colore avviene facendo passare il pezzo sotto il sensore di colore.

Il sensore produce una tensione analogica variabile tra 0V e +10V sulla linea I4.

In generale, la risposta del sensore è influenzata dalla luce che filtra all'interno della camera di misura. Si propone il seguente algoritmo di misura:

• Un FB richiamato periodicamente ogni T_c secondi dal Task Main esegue la lettura della tensione v[n] del sensore e aggiorna un valor medio $v_{mean}[n]$ mediante un filtro passa basso numerico:

$$v_{mean}[n] = \alpha \cdot v_{mean}[n-1] + (1-\alpha) \cdot v[n]$$

nella quale la costante α dipende dalla costante di tempo au che si desidera assegnare al filtro passa basso:

$$\alpha = \frac{\tau}{T_c + \tau}$$

mentre il valore iniziale $v_{mean}[0]$ del valor medio può essere assegnato con una prima lettura della tensione v[n] del sensore nella fase di inizializzazione dell'FB.

- Quando un pezzo viene rilevato dal sensore I2 posto all'ingresso del selettore colori, si interrompe l'aggiornamento del valor medio e si campiona ciclicamente la tensione v[n] del sensore fino a determinarne il valore massimo v_{MAX}
- Si calcola la differenza tra valore massimo e valore medio $\Delta v = v_{MAX} v_{mean}$ e la si confronta con due soglie di decisione **limit1** e **limit2** per stabilire l'assegnazione del pezzo ai colori bianco, rosso o blu.
- In base alla determinazione del colore si imposta il numero di steps di avanzamento che dovrà effettuare il nastro fino a posizionare il pezzo davanti al corretto magazzino di accumulo.
- Quando il sensore I3 posto all'uscita del selettore colori rileva il passaggio del pezzo, si riprende l'aggiornamento del valor medio $v_{mean}[n]$

Calibrazione

A causa delle diverse influenze ambientali e delle variazioni nel sensore di colore, la linea di selezione deve essere calibrata. Mentre il primo valore limite "limit1" viene utilizzato per distinguere tra bianco e rosso, il secondo valore limite "limit2" viene utilizzato per distinguere tra rosso e blu.

Valore limite	Valore predefinito	Valore di calibrazione
limit1		
limit2		

Si suggerisce l'impiego del tool "Scope" per visualizzare un grafico YT della tensione istantanea v[n] del sensore, della tensione media $v_{mean}[n]$ e della differenza $\Delta v = v_{MAX} - v_{mean}$ e ripetere più volte il passaggio di ciascun pezzo colorato prima di assegnare il rispettivo valore di calibrazione.

A titolo di esempio, viene riportato di seguito l'andamento della tensione prodotta dal sensore sulla linea 14 (curva verde) e la sua versione filtrata passa basso (curva blu) con costante di tempo tau = 100 ms

Da sinistra, all'istante t = 1,5s risposta al passaggio di un oggetto blu, poi di un oggetto rosso e infine di un oggetto bianco. La misura riprende con la stessa sequenza di oggetti dopo l'istante t = 6,5s

Comandi

È presente una pulsantiera con i tasti: START, STOP, ACK, EMERGENZA e gli indicatori luminosi L_START, L_STOP, L_ACK.

Lo START avvia il ciclo di lavorazione se non è premuto lo STOP o se non è attiva una emergenza.

A macchina avviata, L_START è acceso; a macchina spenta ma con PLC avviato, L_STOP è acceso.

STOP: se la lavorazione è in corso, viene completata la lavorazione fino all'espulsione del pezzo, poi la macchina si arresta.

EMERGENZA arresta immediatamente la macchina: arresto nastro trasportatore Q1, spegnimento del compressore Q2 e ritorno a riposo (scarico) dei pistoni. Durante l'arresto di emergenza L_ACK è acceso e L_STOP lampeggia.

ACK: dopo un arresto di emergenza, se un pezzo è ancora presente nel selettore colori attiva il nastro per lo scarico del pezzo dal nastro (senza attivazione dei pistoni di smistamento), poi si torna allo stato di macchina spenta in attesa dello START. Durante questa fase di ripristino L_ACK lampeggia.

Pulsantiera di comando:

Sequenza di funzionamento

La macchina viene avviata premendo il pulsante START.

Il pezzo in lavorazione viene caricato manualmente all'inizio del nastro trasportatore. Il sensore I2 ne rileva la presenza e dopo 2 secondi deve essere attivata la linea Q1 che comanda il motore del nastro per trasportare il pezzo nel selettore dei colori. Viene attivato il compressore Q2.

La logica di riconoscimento del colore determina il numero di steps di cui dovrà avanzare il nastro per raggiungere il corretto punto di scarico.

Quando il pezzo viene rilevato dal sensore I3 posto all'uscita del selettore colori, si conteggiano i fronti di salita del sensore a impulsi del nastro I1.

Quando il conteggio degli impulsi è uguale o maggiore del numero di steps determinato dalla logica di selezione del colore, si arresta l'avanzamento del motore Q1 e si comanda l'apertura della valvola del pistone corrispondente (uscite Q3 o Q4 o Q5) per un tempo di 500ms; poi si spegne il compressore Q2 e si spegne il comando della valvola del pistone attivo.

Quando il pezzo raggiunge il sensore del magazzino, la macchina a stati finiti ritorna allo stato iniziale di attesa pezzo.

Mappa degli I/O

Completare i cablaggi secondo la seguente tabella di corrispondenza tra segnali di campo/bordo macchina e morsettiera del PLC di controllo.

KIT FischerTechnik		Morsettiera PLC		
Terminale	Funzione	Input / Output	Terminale	Input/Output
1	Alimentazione attuatori	24V DC		Bus +24V
2	Alimentazione sensori	24V DC		Bus +24V
3	GND attuatori	GND		Bus GND
4	GND sensori	GND		Bus GND

5	Sensore a impulsi del nastro	I1 <mark>(NC)</mark>	EL1809	I1
6	Sensore presenza pezzo all'ingresso del selettore	I2 (<mark>NC</mark>)	EL1809	12
	colori			
7	Sensore presenza pezzo	I3 (<mark>NA</mark>)	EL1809	13
	all'uscita del selettore colori			
9	Uscita analogica sensore	14	EL3004	A1
	colori			and pin 2 to GND
10	Sensore magazzino pezzi	15	EL1809	15
	bianchi			
11	Sensore magazzino pezzi	16	EL1809	16
	rossi			
12	Sensore magazzino pezzi blu	17	EL1809	17
17	Motore avanzamento nastro	Q1	EL2809	Q1
	trasportatore			
Q1	Compressore	Q2	EL2809	Q2
20	Valvola pistone pezzi bianchi	Q3	EL2809	Q3
21	Valvola pistone pezzi rossi	Q4	EL2809	Q4
22	Valvola pistone pezzi blu	Q5	EL2809	Q5
	Quadretto comandi		Morsettiera PLC	
Terminale	Funzione	Input / Output	Terminale	Input/Output
	START	19	EL1809	19
	STOP	I10	EL1809	I10
	ACK	l11	EL1809	l11
	EMERGENZA	l12	EL1809	l12
	L_START	Q9	EL2809	Q9
	L_STOP	Q10	EL2809	Q10
	L_ACK	Q11	EL2809	Q11