Programming in the R Language

MY 470, Week 9: Advanced R Programming

Pablo Barbera

2018-11-26

(More) Advanced R Programming

Revisiting data frames

my_data_frame

A data.frame is a matrix-like R object in which the columns can be of different types.

```
## numbers fruits logical
## 1 5.00 apple TRUE
## 2 4.00 pear FALSE
## 3 2.00 plumb FALSE
## 4 100.00 pineapple TRUE
## 5 7.65 strawberry FALSE
```

Beware: stringsAsFactors = TRUE by default

str(my_data_frame)

```
## 'data.frame': 5 obs. of 3 variables:
```

```
## $ numbers: num 5 4 2 100 7.65
## $ fruits : Factor w/ 5 levels "apple", "pear", ...: 1 2 4
```

\$ logical: logi TRUE FALSE FALSE TRUE FALSE

How to correct this:

##

\$ logical: logi TRUE FALSE FALSE TRUE FALSE

list

A list is a collection of any set of object types

```
my list <- list(something = my data frame$num vec,
               another thing = matrix(1:6, nrow=2),
               something_else = "ken")
my list
## $something
## NULL
##
## $another_thing
## [,1] [,2] [,3]
## [1,] 1 3
## [2,] 2 4 6
##
## $something else
## [1] "ken"
```

How to index list elements in R

Using [

```
my_list["something_else"]
## $something_else
## [1] "ken"
my_list[3]
## $something_else
## [1] "ken"
```

Using [[

```
my_list[["something"]]
## NULL
```

```
my_list[[1]]
```

NULL

Using \$

```
my_list$another_thing
```

```
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
```

(Does not allow multiple elements to be indexed in one command)

functions

R makes extensive use of functions, which all have the same basic structure.

```
function_name(argument_one, argument_two, ...)
```

Where

- function_name is the name of the function
- argument_one is the first argument passed to the function
- argument_two is the second argument passed to the function

using function arguments

when a function is not assigned a default value, then it is mandatory

using function arguments

- when a function is not assigned a default value, then it is mandatory
- when a function has a default, this is used but can be overridden

using function arguments

- when a function is not assigned a default value, then it is mandatory
- when a function has a default, this is used but can be overridden
- it is not necessary to specify the names of the arguments, although it is best to do so except for the first or possibly second arguments

function example

Let's consider the mean() function. This function takes two main arguments:

```
mean(x, na.rm = FALSE)
```

Where x is a numeric vector, and na.rm is a logical value that indicates whether we'd like to remove missing values (NA).

```
vec <- c(1, 2, 3, 4, 5)
mean(x = vec, na.rm = FALSE)</pre>
```

```
## [1] 3
```

```
vec <- c(1, 2, 3, NA, 5)
mean(x = vec, na.rm = TRUE)</pre>
```

```
## [1] 2.75
```

function example

We can also perform calculations on the output of a function:

```
vec <- 1:5
mean(vec) * 3
## [1] 9</pre>
```

Which means that we can also have nested functions:

```
sqrt(mean(vec))
```

```
## [1] 1.732051
```

We can also assign the output of any function to a new object for use later:

```
sqrt_mean_of_vec <- sqrt(mean(vec))</pre>
```

User defined functions

Functions are also objects, and we can create our own. We define a function as follows:

```
my_addition_function <- function(a = 10, b) {</pre>
    a + b
}
my_addition_function(a = 5, b = 50)
## [1] 55
my_addition_function(3, 4)
## [1] 7
my_addition_function(b = 100)
```

[1] 110

Variables in functions have local scope

```
my_demo_function <- function(a = 10) {</pre>
    a < -a * 2
    а
a <- 1
my_demo_function(a = 20)
## [1] 40
а
## [1] 1
```

Reading data into R

Reading data into R (.csv)

```
my_data <- read.csv(file = "my_file.csv")</pre>
```

- my_data is an R data.frame object (you could call this anything)
- my_file.csv is a .csv file with your data
- <- is the assignment operator</p>
- ▶ In order for R to access my_file.csv, it will have to be saved in your current working directory
- Use get_wd() to check your current working directory
- Use set_wd() to change your current working directory
- Might need to use the stringsAsFactors = FALSE argument
- For large datasets, functions read_csv in readr package

(creating some fake data)

```
n < -1000
x \leftarrow rnorm(n)
z \leftarrow runif(n)
g <- sample(letters[1:6], n, replace = T)
beta <- 0.5
beta2 < -0.3
beta3 < -0.4
alpha \leftarrow 0.3
eps \leftarrow rnorm(n, sd = 1)
y \leftarrow alpha + beta*x + beta2*z + beta3*(x*z) + eps
y bin <- as.numeric(y > median(y))
my_{data} \leftarrow data.frame(x = x, y = y, z = z, g = g)
```

Plots and graphs

Introduction

- ▶ Plots are one of the great strengths of R.
- ▶ There are two main frameworks for plotting:
 - 1. Base R graphics
 - 2. ggplot

The basic plotting syntax is very simple. $plot(x_var, y_var)$ will give you a scatter plot:

plot(my_data\$x, my_data\$y)

The plot function takes a number of arguments (?plot for a full list). The fewer you specify, the uglier your plot:

My spilled bubble gum

The default behaviour of plot() depends on the type of input variables for the x and y arguments. If x is a factor variable, and y is numeric, then R will produce a boxplot:

```
plot(x = my_data$g, y = my_data$x)
```


Also popular is the **ggplot2** library. This is a separate package (i.e. it is not a part of the base R environment) but is very widely used.

- Based on the "Grammar of Graphics" data visualisation scheme
- Graphs are broken into scales and layers
- Has slightly idiosyncratic language style!

Let's recreate the previous scatter plot using ggplot:

```
library("ggplot2"")
ggplot(data = my_data, aes(x= x, y= y, col = g)) +
    geom_point() +
    xlab("X variable")+
    ylab("Y variable")+
    ggtitle("ggplot title")+
    theme(panel.background = element_rect("white"))
```

Warning: package 'ggplot2' was built under R version 3.4

One nice feature of ggplot is that it is very easy to create facet plots:

```
library("ggplot2")
ggplot(data = my_data, aes(x= x, y= y, col = g)) +
    geom_point() +
    xlab("X variable")+
    ylab("Y variable")+
    ggtitle("ggplot facet title")+
    theme(panel.background = element_rect("white"))+
    facet_wrap(~ g)
```


Linear Regression Models

Linear regression models in R are implemented using the lm() function.

```
my_lm <- lm(formula = y ~ x, data = my_data)</pre>
```

The formula argument is the specification of the model, and the data argument is the data on which you would like the model to be estimated.

```
print(my_lm)

##

## Call:
## lm(formula = y ~ x, data = my_data)
##

## Coefficients:
## (Intercept) x

## 0.4470 0.3065
```

lm

We can specify multivariate models:

```
my_lm_multi \leftarrow lm(formula = y \sim x + z, data = my_data)
```

Interaction models:

```
my_lm_interact <- lm(formula = y ~ x * z, data = my_data)
```

Fixed-effect models:

```
my_lm_fe \leftarrow lm(formula = y \sim x + g, data = my_data)
```

And many more!

lm

The output of the 1m function is a long list of interesting output.

When we call print(saved_model), we are presented with the estimated coefficients, and nothing else.

For some more information of the estimated model, use summary(saved_model):

```
my_lm_summary <- summary(my_lm)
print(my_lm_summary)</pre>
```

```
## Residuals:
##
      Min 10 Median 30
                                  Max
## -2.8296 -0.6786 -0.0259 0.6511 3.2597
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.44704 0.03112 14.37 <2e-16 ***
## x 0.30648 0.03032 10.11 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
##
## Residual standard error: 0.9836 on 998 degrees of freed
## Multiple R-squared: 0.09289, Adjusted R-squared: 0
## F-statistic: 102.2 on 1 and 998 DF, p-value: < 2.2e-16
```

```
1 m
```

As with any other function, summary(saved_model) returns an object. Here, it is a list. What is saved as the output of this function?

```
names(my_lm_summary)
```

```
## [1] "call" "terms" "residuals"
## [5] "aliased" "sigma" "df"
## [9] "adj.r.squared" "fstatistic" "cov.unscaled"
```

If we want to extract other information of interest from the fitted model object, we can use the \$ operator to do so:

```
print(my_lm_summary$r.squared)
```

```
## [1] 0.09288762
```

Accessing elements from saved models can be very helpful in making comparisons across models:

lm

We can print the values:

```
print(r2.compare)
```

```
## model r.squared
## 1 bivariate 0.09288762
## 2 multivariate 0.11174404
## 3 interaction 0.13788630
```

Or we can plot them:

```
ggplot(r2.compare, aes(x = model, y = r.squared))+
    geom_point(size = 4)+
    ggtitle("R^2 Comparison")
```

lm

model

munivariate

1m diagnostics

There are a number of functions that are helpful in producing model diagnostics:

- residuals(saved_model) extracts the residuals from a fitted model
- coefficients(saved_model) extracts coefficients
- fitted(saved_model) extracts fitted values
- plot(saved_model) is a convenience function for producing a number of useful diagnostics plots

1m residual plot

We can easily plot the residuals from a fitted model against an explanatory variable of interest:

```
par(mfrow = c(1,2)) # Divide the plotting region into 1 row
plot(x = my_data$x, y = residuals(my_lm_multi),
     xlab = "x", ylab = "residuals", # axis labels
                                       # filled circles
     pch = 19,
     col="grey",
                                       # mhange colour
     cex = 0.5)
                                       # make point size sm
abline(h = 0)
                                       # add a horizontal l
plot(x = my_data$z, y = residuals(my_lm_multi),
     xlab = "z", ylab = "residuals",
     pch = 19, col = "grey", cex = 0.5)
abline(h = 0)
```

1m residual plot

Non-Linear Regression Models

glm

To estimate a range of non-linear models, the glm function is particularly helpful.

First, let us transform our outcome variable from a continuous measure to a binary measure:

```
my_data$y_bin <- as.numeric(my_data$y > median(my_data$y))
table(my_data$y_bin)
```

glm

Now we can estimate our model:

```
my_logit <- glm(formula = y_bin ~ x + z, data = my_data, fa</pre>
```

Where:

- formula is the model specification
- data is the data
- family is a description of the error distribution and link function to be used
- binomial, poisson, gaussian etc...

summary(my_logit)

##

Deviance Residuals:

Min

```
##
## Coefficients:
##
           Estimate Std. Error z value Pr(>|z|)
0.53329 0.06816 7.824 5.11e-15 ***
## x
## z 0.90284 0.23140 3.902 9.55e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
##
  (Dispersion parameter for binomial family taken to be 1)
##
     Null deviance: 1386.3 on 999 degrees of freedom
##
```

Residual deviance: 1303 9 on 997 degrees of freedom

1Q Median

-1.77170 -1.10272 0.04551 1.10492 1.80913

30

Max

glm

##

OK, but no-one actually thinks in terms of log-odds, so let's translate that into something more meaningful.

```
my_logit_OR <- exp(cbind(OR = coef(my_logit), confint(my_logit))</pre>
```

- coef extracts the coefficients
- confint extracts the confidence intervals
- cbind binds the vectors together as separate columns

OR 2.5 % 97.5 %

exp exponentiates the log-odds ratios

```
round(my_logit_OR, digits = 4)
```

```
## (Intercept) 0.6434 0.4939 0.836
## x 1.7045 1.4940 1.952
## z 2.4666 1.5703 3.892
```

glm

Almost all of the convenience functions that we used for ${\tt lm}$ are also applicable to ${\tt glm}$ models:

```
summary(my_logit)
plot(my_logit)
residuals(my_logit)
coefficients(my_logit)
fitted(my_logit)
```

Other models

There are a number of external packages that can make fitting other model types (relatively) straightforward:

- ▶ 1mer4 Linear, generalised linear, and nonlinear mixed models
- mcgv generalised additive models
- survival survival analysis
- ▶ glmnet lasso and elastic net regression models
- randomForest random forest models from machine learning
- rjags and rstan Bayesian models

To use a package that is not a part of the base R installation, use:

```
install.packages("survival")
library(survival)
```

We can retrieve the fitted values from the model using fitted(), but we may be interested in calculating predicted values for arbitrary levels of our covariates.

```
sim_data <- data.frame(x = c(0, 1))
y_hat <- predict(object = my_lm, newdata = sim_data)
y_hat</pre>
```

```
## 1 2
## 0.4470368 0.7535156
```

Here, I am creating a data.frame with two observations of one variable (x).

I am then using the predict function, where

- object = my_lm tells R the model object for which prediction is desired
- newdata = sim_data tells R the values for which I would like predictions

x z ## 1 0 0

y hat

We can use the same syntax to retreive predictions for (marginally) more interesting models:

```
sim_data <- data.frame(x = c(0, 0, 1, 1), z = c(0, 1, 0, 1)
sim_data
```

```
## 2 0 1
## 3 1 0
## 4 1 1

y hat <- predict(my lm multi, newdata = sim data)</pre>
```

1 2 3 4 ## 0.1964472 0.6912442 0.5011507 0.9959478

This can be especially useful when trying to visualise interactive models:

```
sim_data_z0 <- data.frame(x = seq(from = -2, to = 2, by = 0
sim_data_z1 <- data.frame(x = seq(from = -2, to = 2, by = 0
y_hat_z0 <- predict(my_lm_interact, newdata = sim_data_z0)
y_hat_z1 <- predict(my_lm_interact, newdata = sim_data_z1)</pre>
```

- seq generates a regular sequences from one value to another value by given increments
- ▶ I am creating two data.frames for prediction, in both cases varying the value of x, but first setting z to 0, and then setting z to 1

```
# Create a plot of the data
plot(my data$x, my data$y, cex = 0.5, pch = 19,
col = "gray", bty = "n",
xlab = "X", ylab = "Y",
main = "Fitted values for sim data")
# Add a prediction line for z = 0
lines(x = sim data z0$x, y = y hat z0, lwd = 2)
# Add a prediction line for z = 1
lines(x = sim_data_z1$x, y = y_hat_z1, lwd = 2, col = "red
# Add a legend
legend("bottomright", legend = c("z = 0", "z = 1"), col = c
```


Other helpful functions

runif()

```
objects() / ls() # Which objects are currently loaded in my rm() # Remove objects from my current environment save() # Save R object(s) to disk is.na() # Is this object a missing value? Or, whi rnorm() # Generate random numbers from a normal discrepance.
```

Generate random numbers from a uniform

Other helpful packages

```
library(dplyr)
library(zoo)
library(shiny)
library(streamR)
library(DBI)
library(quanteda)
```