Express Mail No.: EV 058600326 US Attorney Docket No.: 2003U013.US

CLAIMS

What is claimed is:

A method of producing polyethylene, the method comprising:
 combining ethylene and at least one α-olefin selected from C₃ to C₁₀ α-olefins, an
 activator, and a metallocene catalyst compound to produce a polyethylene;
 wherein the metallocene catalyst compound is selected from:

$$R^{10}$$
 R^{9}
 R^{1}
 R^{10}
 $R^{$

wherein M is a Group 4 atom; X is a leaving group; n is an integer from 0 to 3; and

 R^1 to R^{12} are independently selected from the group consisting of hydrides, halogens, hydroxy, C_1 to C_6 alkoxys, C_1 to C_6 alkenyls, and C_1 to C_{10} alkyls; and

characterized in that when the comonomer is 1-hexene, and the mole ratio of 1-hexene to ethylene combined is varied between 0.015 to 0.05, the density of the resultant polyethylene changes by less than 5 % and the I_{21}/I_2 varies from 10 to 150.

- 2. The method of Claim 1, further characterized in that the I_{21}/I_2 of the polyethylene varies from 15 to 100.
- 3. The method of Claim 1, wherein R^1 to R^{12} are groups selected from the group consisting of hydride and C_1 to C_{10} alkyls.
- 4. The method of Claim 1, wherein R^1 to R^{12} are groups selected from the group consisting of hydride and C_1 to C_5 alkyls.

Express Mail No.: EV 058600326 US Attorney Docket No.: 2003U013.US

5. The method of Claim 1, wherein R¹ to R⁴ and R⁷ to R¹² are groups selected from the group consisting of hydride and C₁ to C₁₀ alkyls, and R⁵, R⁵, R⁶, and R⁶ groups are hydride.

- 6. The method of Claim 1, wherein the combining takes place under gas-phase polymerization conditions.
- 7. The method of Claim 1, characterized in that when the mole ratio of 1-hexene to ethylene combined is varied from 0.02 to 0.05, the density of the resultant polyethylene changes by from less than 2 %.
- 8. The method of Claim 1, further characterized in that when the mole ratio of 1-hexene to ethylene combined is varied from 0.02 to 0.05 the amount of methyl groups per 1000 carbon atoms of the polyethylene produced therein is from less than 20.
- 9. The method of Claim 1, further characterized in that when the mole ratio of 1-hexene to ethylene combined is varied from 0.02 to 0.05 the amount of comonomer incorporated into the polyethylene produced therein ranges from less than 12 wt% of the total weight of the polyethylene.
- 10. The method of Claim 1, wherein the activator and metallocene catalyst compound are supported on a carrier material.
- 11. A polyethylene produced by the method of any one of Claims 1 through 10 having an I_{21}/I_2 value of from 10 to 300, an M_w/M_n of 1.9 to 6, and a density of from 0.88 to 0.97 g/cm³.
- 12. A catalyst system comprising:
 - an activator and a metallocene catalyst compound; wherein the metallocene catalyst compound is selected from:

$$R^{10}$$
 R^{9}
 R^{1}
 R^{10}
 $R^{$

wherein M is a Group 4 atom; X is a leaving group; n is an integer from 0 to 3; and

 R^1 to R^{12} are independently selected from hydrides, halogens, hydroxy, C_1 to C_6 alkoxys, C_1 to C_6 alkenyls, and C_1 to C_{10} alkyls; and

characterized in that when one or more metallocenes and an activator are combined with ethylene and 1-hexene, and the mole ratio of 1-hexene to ethylene combined is varied between 0.015 to 0.05, the density of the resultant polyethylene changes by less than 5 % and the I_{21}/I_2 varies from 10 to 150.

- 13. The catalyst system of Claim 12, further characterized in that the I_{21}/I_2 of the polyethylene varies from 15 to 100.
- 14. The catalyst system of Claim 12, wherein R^1 to R^{12} are groups selected from the group consisting of hydride and C_1 to C_{10} alkyls.
- 15. The catalyst system of Claim 12, wherein R^1 to R^{12} are groups selected from the group consisting of hydride and C_1 to C_5 alkyls.
- 16. The catalyst system of Claim 12, wherein R¹ to R¹² are groups selected from the group consisting of hydride and C₁ to C₃ linear alkyls.
- 17. The catalyst system of Claim 12, wherein R^1 to R^4 and R^7 to R^{12} are groups selected from the group consisting of hydride and C_1 to C_{10} alkyls, and R^5 , R^5 , R^6 , and R^6 groups are hydride.

Express Mail No.: EV 058600326 US Attorney Docket No.: 2003U013.US

18. The catalyst system of Claim 12, wherein the density of the resultant polyethylene changes by less than 2 %.

- 19. The catalyst system of Claim 12, further comprising a carrier, wherein the activator and metallocene catalyst compound are supported on the carrier.
- 20. The catalyst system of Claim 12, characterized in that when the mole ratio of 1-hexene to ethylene combined is varied from 0.02 to 0.05, the density of the resultant polyethylene changes by from less than 2 %.
- 21. The catalyst system of Claim 12, further characterized in that when the mole ratio of 1-hexene to ethylene combined is varied from 0.02 to 0.05 the amount of methyl groups per 1000 carbon atoms of the polyethylene produced therein is from less than 20.
- 22. The catalyst system of Claim 12, further characterized in that when the mole ratio of 1-hexene to ethylene combined is varied from 0.02 to 0.05 the amount of comonomer incorporated into the polyethylene produced therein ranges from less than 12 wt% of the total weight of the polyethylene.