João Miguel Clemente de Sena Esteves, Sérgio Lopes e Sérgio Monteiro					
Análise de Circuitos					
Exercícios das Aulas Teórico-Práticas					
Guimarães, Outubro de 2020					

1^a Aula

1. Preencha o quadro anexo à figura.

2. Preencha os quadros anexos à figura.

A fonte ideal de corrente recebe energia do circuito ou fornece-lhe energia?

2^a Aula

- 1. Relativamente ao circuito da figura:
 - 1.1 Com o interruptor **K aberto**, determine:
 - 1.1.1 o sentido e o valor da corrente **I**;
 - 1.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 1.2 Com o interruptor **K fechado**, determine:
 - 1.2.1 o sentido e o valor da corrente I;
 - 1.2.2 a tensão e a potência em jogo em cada componente do circuito.

- 2. Relativamente ao circuito da figura:
 - 2.1 Com o interruptor **K aberto**, determine:
 - 2.1.1 o sentido e o valor da corrente I;
 - 2.1.2 a tensão e a potência em jogo em cada componente do circuito.
 - 2.2 Com o interruptor **K fechado**, determine:
 - 2.2.1 o sentido e o valor da corrente I;
 - 2.2.2 a tensão e a potência em jogo em cada componente do circuito.

TPC

- 3. Relativamente ao circuito da figura:
 - 3.1 Determine o número de correntes que existem neste circuito.
 - 3.2 Determine o número de tensões que existem neste circuito.
 - 3.3 Determine a tensão, a corrente e a potência em jogo em cada componente do circuito.
 - 3.4 Verifique quais são os componentes que absorvem energia ao circuito e quais são os componentes que lhe fornecem energia.

3^a Aula

1. Determine o valor da potência em jogo numa fonte ideal de tensão de 120V que alimenta uma resistência de 100Ω .

- 2. Determine o valor da energia absorvida durante duas horas por uma resistência de $22k\Omega$ sujeita a uma tensão constante de 54V.
- 3. Admitindo que o preço da energia eléctrica é de 0,15€/kWh, determine o custo mensal devido ao funcionamento de uma lâmpada de 60W que está ligada 8 horas por dia, 5 dias por semana.
- 4. Calcule, em cada circuito, o valor da resistência medida entre os terminais A e B.

5. Calcule os valores das resistências indicadas.

 $R_{AB} =$

 $R_{BD} = \\$

 $R_{AC} =$

4^a Aula

1. A tensão U_2 é medida recorrendo a um voltímetro de resistência interna R_V .

$$U = 50V$$
 (cons tan te)
 $R_1 = 1k\Omega$
 $R_2 = 1k\Omega$

Calcule o valor de U2 quando

$$1.1 R_V = 1\Omega$$

$$1.2 R_V = 1k\Omega$$

$$1.3 R_V = 1M\Omega$$

2. A corrente I₂ é medida recorrendo a um amperímetro de resistência interna R_A.

$$I = 10A$$
 (cons tan te)
 $R_1 = 1\Omega$
 $R_2 = 1\Omega$

Calcule o valor de I2 quando

$$2.1~R_A=0,1\Omega$$

$$2.2 R_A = 1\Omega$$

$$2.3 R_A = 1k\Omega$$

3. Recorrendo às Leis de Kirchhoff, determine as correntes nos ramos do circuito.

5^a Aula

1. Preencha o quadro anexo à figura.

Recorrendo ao Teorema de Thévenin, determine o valor da potência em jogo na fonte de
 2A. Essa fonte recebe energia do circuito ou fornece-lhe energia?

TPC

3. Recorrendo ao Teorema de Norton, determine o valor da potência em jogo na resistência de 2Ω .

6^a Aula

 O gráfico apresenta a evolução da tensão presente nos terminais de uma fonte de energia, em função da corrente debitada por essa fonte.

- 1.1 Determine o valor da tensão que existe entre os terminais da fonte quando esta se encontra em vazio.
- 1.2 Determine o valor da corrente de curto-circuito da fonte.
- 1.3 Determine o valor da resistência interna da fonte.
- 1.4 Determine o Equivalente de Thévenin da fonte.
- 1.5 Determine o Equivalente de Norton da fonte.
- 1.6 Determine o valor da tensão que existe entre os terminais da fonte quando esta alimenta uma resistência de 15Ω .
- 1.7 Determine o valor da corrente debitada pela fonte quando esta alimenta uma resistência de 3Ω .
- 1.8 Determine o valor da resistência de carga quando a tensão que existe entre os terminais da fonte é de 37V.
- 1.9 Determine o valor da resistência de carga quando a corrente debitada pela fonte é de 18A.
- 1.10 Verifique se esta fonte se aproxima mais de uma fonte ideal de tensão ou de uma fonte ideal de corrente, quando alimenta uma carga que pode variar
 - entre 80Ω e 90Ω .
 - entre $0.1\Omega e 0.7\Omega$.
- 1.11 Determine o valor máximo de potência que esta fonte pode entregar a uma carga resistiva.

7^a Aula

1. Determine o equivalente de Thévenin deste circuito, relativamente aos seus terminais.

- 2. No gráfico está representado um período completo da corrente periódica i_L.
 - 2.1 Desenhe, no mesmo gráfico, a evolução temporal da corrente i_R.

<u>12</u> Análise de Circuitos

3. No instante t=0 o condensador encontra-se carregado com uma tensão de 5mV. Esboce o gráfico da tensão $u_C(t)$.

