Approach

The following are the steps involved:

- Definitions: Provide definitions for Views, ShapeTracker and Mergeability.
- 2. Conditions and Functions: Read the code thoroughly and attempt to extract/define under which attributes' constraints the class' methods/functions leads to ShapeTracker having a single-view. I intend to provide a rigorous analysis of the code using mathematical notation. I will then use the conditions determined to state Propositions that lead to mergeability, and also define Functions that either return Ø or a ShapeTracker based on the conditions/contraints deduced from code analysis. Given a particular proposition and it's antecedents (constraints from code analysis), I intend to use the defined functions to conclude mergeability (which trivially has already been established by the analysis of the code)

3. Proof methods:

- Induction: The proof will be based on induction, since a particular ShapeTracker may have a tuple of views applying the simplify function recursively.
- 4. **Tests:** After proving that a statement/proposition is correct, we need to verify that our conditions on the propositions do indeed return a single view.

Example Test

```
def test_shape_tracker('condition1', 'condition2', ..., 'conditionN'):
    # Assert the conditions of the proposition meet their constraints
    assert condition1
    assert condition2
    ...
    assert conditionN

ST1 = ShapeTracker
ST2 = ShapeTracker
# Perform the addition
STm = add(ST1, ST2)
# Construct the ShapeTracker and assert the result
    assert STm is not None
    assert len(STm.views) == len(ST1.views) # Assuming we expect one view in the result
```

General

Mergeability Definition

Two ShapeTrackers with Views V_1 and V_2 are said to be mergeable if and only if

$$\operatorname{card}(V_m) = \operatorname{card}(V_1)$$

where V_m is the ShapeTracker ST_m View and card(.) denotes the cardinality of a ShapeTracker's View.

Proposition

Here we state the relevant **Propositions** we intend to prove.

- Proposition 1:
- Proposition 2:

Views

Definition of a View

Let $S = \{s_1, s_2, \ldots, s_n\}$ where $s_i \in \mathbb{N}$ be a set of all possible shapes. Let $T = \{t_1, t_2, \ldots, t_m\}$ where $t_i \in \mathbb{N}$ be a set of all possible strides. Let $O = \{o \mid o \in C\}$ be the set of all possible offsets. Define $M = \{m \mid m = (sint_1, sint_2, \ldots, sint_n)\}$ where $sint_i$ is a tuple of tuples: $sint_i = sint_{i1}, sint_{i2}, \ldots$), and sint is the set:

 $(\mathbb{N} \backslash (\mathbb{V} \cup MN \cup SN)) \cup (\mathbb{V} \backslash (\mathbb{N} \cup MN \cup SN)) \cup (MN \backslash (\mathbb{N} \cup \mathbb{V} \cup SN)) \cup (SN \backslash (\mathbb{N} \cup \mathbb{V} \cup MN))$

where V = Variable, MN = MulNode, SN = SumNode

Let $C = \{c \mid c \in \{0,1\}\}$ be a set of contiguous attributes.

Define a view V as a tuple: V = (S, T, O, M, C)

where:

- \mathcal{S} is the set of shapes,
- \mathcal{T} is the set of strides,
- O is the set of offsets,
- *M* is the set of masks,
- \bullet $\, \mathcal{C}$ is the set of contiguous attributes.
- ullet F is the set of functions, for brevity I will include the relevant functions only,

In addition, V supports the following functions:

function: un1d - To be completed, depnding on the constraints at hand

Define the function: unid: $S \times O \to \text{Tuple}_{\sin t}$ where the range is the set: $\{sint_1, sint_2, \dots, sint_n\}$ and sint is defined as above.

function: strides_for_shape - To be made precise

Define the function strides_for_shape : $S \times O \rightarrow \text{Tuple}_{\sin t}$

Define strides to be a sequence $(\Pi_{i=1}^d o_i, \Pi_{i=1}^d o_2, \dots, \Pi_{i=1}^d o_n)$ where shape is given by: $o = (o_1, o_2, \dots, o_n)$. Thus, strides_for_shape is:

$$strides_for_shape = \begin{cases} \emptyset & \text{if shape } \notin \mathcal{C} \\ canonicalise_strides & (as defined above) \end{cases}$$

function: canonicalise_strides - To be made precise

Define the function canonicalise_strides:

canonicalise_strides :
$$O \times S \to \{0,1\}^n$$

It returns a sequence (t_1, t_2, \ldots, t_n) where:

$$t_i = \begin{cases} 0 & \text{if } o_i = 1\\ s_i & \text{if } o_i \neq 1 \quad \forall c \in \{1, 2, \dots, n\} \end{cases}$$

function: __add__ - To be completed, however I used case 1 on the Induction proof

Given two views V_1 and V_2 , the function add is defined as follows:

add : $V_s \times V_s \to V_s$, where V_s is defined as the set of all possible Views.

where V_s is the set of all views V such that:

- 1. If V_2 .contiguous = 1, then $\operatorname{add}_{C(V_1,V_2)} = V_s$. Here we introduce the dot (.) notation to access the attributes of \mathcal{V} .
- 2. If V_1 contiguous = 1 and V_1 shape = V_2 shape, then $\operatorname{add}_{C(V_1,V_2)} = V_s$.
- 3. If V_1 .contiguous = 1 and V_1 .size $(C) = V_2$.size(C), then $add_{C(V_1,V_2)} = ret$, where the functions size and reshape are defined.
- 4. If V_1 .mask $\in \emptyset$, and the following conditions are also true: Let origin = unid $(V_2$.shape, V_1 .offset) for a given shape and offset.

$$\forall d_1 \in \{0,1,\dots,|S|-1\}, \quad \forall st \in S, \text{ if } st \neq 0, \text{ then } \forall d_2 \in \{0,1,\dots,|O|-1\}, \quad \forall (o,s_1) \in \text{zip}(O,U), \text{ let } s_1'=s_1-o, \text{ if } s_1' \neq 0, \text{ then }$$

Definition of a ShapeTracker

Define a shapetracker ST as a tuple: ST = (V, F)where:

- V is the set of sequences of views,
- F is the set of functions, for brevity I will include the relevant functions

In addition, ST supports the following functions:

Function __add__

The computation of the merged ShapeTracker ST_m , denoted as $ST_m = ST_1 +$ ST_2 , with views V_m , V_1 , and V_2 , given ST_1 and ST_2 , is determined by the function add defined as follows:

add:
$$ST_s \times ST_s \to ST_s$$
,

where ST_s is defined as the set of all possible ShapeTrackers. For each View in ST_1 and ST_2 , we have specific conditions and rules for combining them into ST_m .

Proof of Mergeability by Induction

Given: ShapeTrackers ST_1^{initial} with a Views attribute $V^{\text{initial}} = \{ v_1^{\text{initial}}, v_2^{\text{initial}}, \dots, v_n^{\text{initial}} \} := ST_1^{\text{initial}}.\text{views and } ST_2^{\text{initial}}$ with a Views attribute $W^{\text{initial}} = \{w_1^{\text{initial}}, w_2^{\text{initial}}, \dots, w_n^{\text{initial}} \} := ST_2^{\text{initial}}.\text{views}$ V^{initial} and W^{initial} may be \emptyset .

Let ST_n^{append} be a sequence of appended Shape Trackers with the Views $V^{\text{append}} = \{v_1^{\text{append}}, v_2^{\text{append}}, \dots, v_n^{\text{append}}\} := ST^{\text{append}}. \text{views } (\forall n \in |W_2^{\text{initial}}|), \text{ and } v_i^{\text{append}} = ST_1^{\text{initial}}. \text{views} + ST_2^{\text{initial}}. \text{views}_i.$

Define the sequence ST_n^{merged} to be sequence of merged ShapeTrackers with the Views given by $V^{\text{merged}} = \{v_1^{\text{merged}}, v_2^{\text{merged}}, \dots, v_n^{\text{merged}}\} := ST^{\text{merged}}.$ views such that $ST_n^{\text{merged}} = ST_1^{\text{initial}}$ and $ST_n^{\text{append}} = \text{simplify}(ST_n^{\text{append}})$ for $(0 \le n < |W_2^{\text{initial}}|)$

Define the function __init_-(ST_n^{append}) = (ST_{n+1}^{append}), this function returns a ShapeTracker class,

Define simplify (ST_n^{append}) as:

simplify(ST_n^{append}) = $\begin{cases} \text{simplify}(ST_n^{\text{append}}) \text{ for n } (0 \le n < |W_2^{\text{initial}}|) \text{ and merged} \neq \emptyset \\ ST_n^{\text{merged}} \text{ otherwise} \end{cases}$

Define _add_(ST_1^{initial}, n) = ST_n^{merged} , this function returns the nth term

of ST_n^{merged} .

The recursion is given by:

$$_\mathrm{add}_(\mathrm{ST}_1^{\mathrm{initial}}, n) = \begin{cases} \mathrm{simplify}(_\mathrm{init}_(ST_n^{\mathrm{append}}.\mathrm{views})) \text{ for } (0 \leq n < |W_2^{\mathrm{initial}}|) \\ ST_1^{\mathrm{initial}} \text{ if } n = 1 \end{cases}$$

Proposition: If ST_1^{initial} .views.contiguous = 1. Define the function __add__(ST_1^{initial} , n) as above. Assume both ST_1^{initial} .views and ST_2^{initial} .views are not \emptyset . Then ST_1^{initial} and ST_2^{initial} are mergeable. Assume $|ST_1^{\text{initial}}|$.views|w| = w.

Proof: Base case: for \emptyset if n = 1

$$\mathrm{ST}_1^{\mathrm{merged}} = -\mathrm{add}_{-}(ST_1^{\mathrm{initial}}, 1) = ST_1^{\mathrm{initial}}, \text{ hence } |ST_1^{\mathrm{merged}}| = |ST_1^{\mathrm{initial}}|$$

Inductive step: for n = k

Assume for some
$$k \geq 2$$
, $\left|ST_k^{\text{merged}}\right| = \left|\text{--add}\text{--}(ST_1^{\text{initial}},k)\right| = \left|ST_1^{\text{initial}}\right|$
We need to show that: $\left|ST_{k+1}^{\text{merged}}\right| = \left|\text{--add}\text{--}(ST_1^{\text{initial}},k+1)\right| = \left|ST_1^{\text{initial}}\right|$

By definition of _add_, $ST_{k+1}^{merged} = simplify(_init_(ST_{k+1}^{append}.views))$ the function _init_ creates a new ShapeTracker by appending a view of $ST_2^{initial}$ to $ST_1^{initial}.views$, hence the ShapeTracker created will have $ST^{append}.views = |ST^{initial}.views| + 1.$

The function simplify computes: $\operatorname{merged} = ST^{\operatorname{appended}}.\operatorname{views}_{n-1} + ST^{\operatorname{appended}}.\operatorname{views}_n$ as one of its conditions. merged is the sum of two views and then added according to the function $_{-}\operatorname{add}_{-}$ belonging to the class View object defined above.

Change notation n=w, so we may index $ST^{\rm append}$.views using w. Since $ST_1^{\rm initial}$.views.contiguous = 1, by the definition of __add__ from above defined View class object we can conclude that merged $\notin \emptyset$, i.e., it will be a particular view object. Hence, by the definition of simplify function a new ShapeTracker will be initialized by __init__, and it will have a view = merged + $ST^{\rm appended}$.views $(1 \le w < w - 1)$, since the cardinality of a finite site is its number of elements we can conclude that this new view will be of size $|ST_1^{\rm initial}|$.

When simplify is again called recursively on the above returned ShapeTracker, it will just return merged ShapeTracker, which is the equal to the appended ShapeTracker because merged will return \emptyset , since we are at the initial size of $ST_1^{\rm initial}$ and its views are not mergeable. The inductive step holds, hence $\forall \mathbf{N}$