Performance Improvements

Performance Improvements

- Learning Curves
- Batch Norm
- Dropout + Regularization
- Data Augmentation
- Tuning
- Embeddings
- Continuous Learning
- Callbacks

How to interpret learning Curve

- New model or keep training?
- Are the errors converging?
 - \circ Yes \rightarrow more data
 - \circ No \rightarrow new model

https://github.com/nrkfeller/YCBS_notes/blob/master/C7_Learning_Curves.ipynb

Batch Norm

Reduces the chances of overfitting

- Standardize output of layer
- Rescale by learned parameters

This gives us

- Higher learning rates \rightarrow faster learning
- Regularizes the model
- Improves accuracy

Explained...

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$$

// scale and shift

// normalize

- 1. Get mean
- 2. Get variance
- Rescale using mean and variance
- 4. Scale and shift with gamma and beta, which is learned

Significant perf improvement

Model	Resolution	Crops	Models	Top-1 error	Top-5 error
GoogLeNet ensemble	224	144	7	-	6.67%
Deep Image low-res	256	_	1	-	7.96%
Deep Image high-res	512	-	1	24.88	7.42%
Deep Image ensemble	variable	-	-	-	5.98%
BN-Inception single crop	224	1	1	25.2%	7.82%
BN-Inception multicrop	224	144	1	21.99%	5.82%
BN-Inception ensemble	224	144	6	20.1%	4.9%

Figure 4: Batch-Normalized Inception comparison with previous state of the art on the provided validation set comprising 50000 images. *BN-Inception ensemble has reached 4.82% top-5 error on the 100000 images of the test set of the ImageNet as reported by the test server.

https://github.com/nrkfeller/YCBS_notes/blob/master/C7_Batch_Normalization.ipynb

Dropout

Quick recap (this should be understood)

- Build redundancy
- Removes reliance on other nodes

Noise robustness: right (dropout with p = 0.50)

Only 1 Hyper parameter \rightarrow % dropout Interval of performance ~.3 to .6 in this case

https://github.com/nrkfeller/YCBS_notes/blob/master/C7_Dropout.ipynb

Data Augmentation

-45 deg

Affine: Translate x=-32 y=-16 x=-16 y=-32 x=-16 y=-8 x=16 y=32 x=16 y=8 Affine: Rotate -45 deg 45 deg 90 deg -90 deg 0 deg Affine: Shear

-25 deg

0 deg

25 deg

45 deg

https://github.com/nrkfeller/YCBS_notes/blob/master/C7_Data_Augmentation.ipynb