Thursday, 31 March 16

Crux Lecture - 20

Data Structures

Priority Queues and Heaps

Nidhi Agarwal

Data Structures so far

- Linked Lists
- Stacks and Queues
- Dynamic Arrays
- Trees(Generic + Binary)
- BST
- Maps

How to find min/max out of some elements?

Priority Queues

Priority Queues

```
Class PriorityQueue{
  // accessor methods
  int size();
  boolean isEmpty();
  Object min();
  // update methods
  void insert(Object priority, Object value);
  void removeMin();
}
```


Implement using unsorted List

- Min
- RemoveMin
- Insert

Selection Sort?

Implement using sorted List

- Min
- RemoveMin
- Insert

Insertion Sort?

Any other options?

Heaps

Heap Data Structure

- Binary Tree
- Complete Binary Tree Property
- Heap Order Property

What is the height of a complete binary tree?

Complete Binary Tree

- Add
- Remove

How to implement a complete binary tree

How to implement Heap using CBT?

- Min
- Insertion
- removeMin

Heap Sort

Inplace Heap Sort

Building a Heap in O(n)

Lets discuss few problems

• Sort an almost sorted given array in O(n).

Your Turn

• Given an unsorted array, find k smallest elements.

Extra space – O(k) and time – O(nLogk)

Thank You!!@

Nidhi Agarwal nidhi@codingblocks.com