

UMN OHR project

Predicting employee departures

Faculty/Staff Model Building & Final Presentation Prep

July 28, 2020

Kevin Grady, Wendy Lu, Anthony Meyers, Danny Moncada, Claire Ryan & Jonathan Watkins

Today's Agenda

This Week's Progress

Next Steps

This Week's Progress

Table Generation & Feature Engineering

Conversion of code to pre-packaged Python script - in progress

Model Building

- Faculty modeling Classifier
 - Refined/tweaked parameters to determine best performing model with existing data and features
- Staff modeling Classifier
 - Refined/tweaked parameters to determine best performing model with existing data and features
- Survival analysis
 - Continued development and testing of model outcomes

Setting up machine learning pipeline for Staff & Faculty Classification

- A. Take output of "flattened" table generation and feature engineering pipeline (set of Python scripts) which is delivered as a "final" CSV file
- B. Select a set of features to use for training the models (using our hypothesized feature set)

*Normalization is the process of scaling individual data points to have a normal or standard distribution, and is critical because many machine learning estimators behave erratically if individual features do not look like normally distributed data.

- C. Transform the features into a format that is usable by the algorithms (see notes for details)
- D. Split the data in training/testing sets (in our testing we used ⅓ for training, ⅓ for test)

** Many machine learning algorithms cannot operate on features that are "label" values vs. numeric values; a DecisionTree classifier can handle categorical labels directly but a Logistic Regression model requires numeric inputs and outputs.

Staff Classification & Modeling - Outcomes

- Machine learning pipeline created to classify professional staff employees using entire five year history
- Using data provided in VM, here was the best performing model using the LightGBM algorithm

- Top Five Feature Importances
 - Time at University of Minnesota
 - Pay
 - Supervisor Number of Reports
 - Time to Last Raise
 - Number of Raises

LightGBM – Model Evaluation

Confusion Matrix	
True Negatives	False Positives
False Negatives	True Positives

	Active Employees	Churned Employees
Active Employees	4115	102
Churned Employees	187	783

	Precision	Recall	F1	Support
	(TP / (TP + FP))	(TP / TP + FN)	(2 * (Precision * Recall / Precision + Recall))	(how many testing examples were available)
Active Employees (0)	0.953	0.983	0.968	4217
Churned Employees (1)	0.915	0.791	0.848	970

Faculty Classification & Modeling – Outcomes

- A similar pipeline was used to classify faculty
- As with Professional Staff, LightGBM was found to be the best performing predictive model using the entire history
- Top Five Feature Importances
 - Pay
 - Time at University of Minnesota
 - Supervisor Number of Reports
 - Department Size
 - Time to Last Raise

LightGBM – Model Evaluation

Confusion Matrix	
True Negatives	False Positives
False Negatives	True Positives

Faculty		
	Active Employees	Churned Employees
Active Employees	1334	25
Churned Employees	70	164

	Precision	Recall	F1	Support
	(TP / (TP + FP))	(TP / TP + FN)	(2 * (Precision * Recall / Precision + Recall))	(how many testing examples were available)
Active Employees (0)	0.982	0.950	0.966	1359
Churned Employees (1)	0.868	0.701	0.775	234

Survival Analysis Modeling & Outcomes

Proportional Hazard (PH) Model Results

Histogram of Predicted Median Survival Times (in weeks)

Model Evaluation:

- Used holdout data to evaluate performance
- Achieved a concordance score of 0.85

Model Application:

 Predicted median survival times for nonresigned individuals

Model Results:

 Mean: 1292
 1st Quartile: 944

 Min: 200
 2nd Quartile: 1440

 Max: 2055
 3rd Quartile: 1773

Note: Durations given in weeks

Survival Analysis Modeling & Outcomes

Conditional Survival Forest (CSF) Model Results

Actual vs Predicted Survival Times

Model Features:

- Allows us to incorporate more data such as ZDEPTIDs and Locations
- Does not make certain assumptions

Model Evaluation:

- Used holdout data to evaluate performance
- Achieved a concordance score of 0.75

Model Application:

Predicted survival times for non-resigned individuals

Note: Durations given in weeks

Challenges when dealing with running predictions with two+ month lead time

- Few instances of churn led to very poor precision scores
- Lacking key features to generate credible predictions
- Classifiers (on their own) cannot be relied upon for credible predictions with the limited data available

Techniques used to overcome issue:

- Oversampling/undersampling
- Different prediction windows (3 months and 6 months)
- Training / testing splits using multiple periods (TimeSeries splitting)

LightGBM – Model Evaluation on three month window

Professional Staff (3 month window)		
	Active Employees	Churned Employees
Active Employees	12263	212
Churned Employees	112	3

*Looking at the confusion matrix for model evaluation on a three month window, we see much less **support** for employee resignations; using a subset of data from December 2019 to March 2020, there were only 115 resignations, leading to a significant class imbalance.

	Precision	Recall	F1	Support
	(TP / (TP + FP))	(TP / TP + FN)	(2 * (Precision * Recall / Precision + Recall))	(how many testing examples were available)
Active Employees (0)	0.983	0.983	0.983	12475
Churned Employees (1)	0.014	0.026	0.018	115

Next steps

Next Steps

- Finalize machine learning pipeline and begin updating Knowledge Transfer document
- Provide OHR with lessons learned / next steps for improving model outcomes
- Prepare for final presentation & begin updating Knowledge Transfer