Cours - Limites de suites

I. Limite d'une suite

1) Limite finie

Exemple : comportement de la suite (u_n) définie sur \mathbb{N}^* par $u_n = 1 + \frac{1}{n}$:

<u>Définition</u>: dire que la suite (u_n) <u>admet pour limite L</u>, ou est <u>convergente vers L</u>, signifie que :

Cette définition traduit une accumulation des termes de la suite autour de L. On note $\lim_{n \to +\infty} u_n = L$

<u>Propriété (admise)</u>: si une suite converge vers une limite L, alors cette limite est unique.

<u>Définition</u>: Une suite qui n'est pas convergente est dite <u>divergente</u>. Exemple:

Suites de référence ayant pour limite 0 :

<u>Démonstration de</u> $\lim_{n\to+\infty} \frac{1}{n} = 0$:

2) Limite infinie

Exemple : étude de la suite (u_n) définie sur $\mathbb N$ par $u_n=n^2$

<u>**Définition**</u>: on dit que la suite (u_n) <u>a pour limite</u> $+\infty$, et on note $\lim_{n \to +\infty} u_n = +\infty$, lorsque :

On dit que la suite (u_n) <u>a pour limite</u> $-\infty$, et on note $\lim_{n \to +\infty} u_n = -\infty$, lorsque :

Suites de référence ayant pour limite $+\infty$:

II. Limites et comparaison

Théorème de comparaison :

Si (u_n) et (v_n) sont deux suites telles qu'à partir d'un certain rang, $u_n \leq v_n$, et $\lim_{n \to +\infty} u_n = +\infty$,

Démonstration **exigible** :

A partir des hypothèses du théorème, il s'agit de prouver que $\lim_{n\to+\infty}v_n=+\infty$, c'est-à-dire que :

De même, on peut prouver que : si (u_n) et (v_n) sont deux suites telles qu'à partir d'un certain rang, $u_n \leq v_n$, et $\lim_{n \to +\infty} v_n = -\infty$,

Théorème des gendarmes, ou théorème d'encadrement (admis) :

Si (u_n) , (v_n) et (w_n) sont trois suites telles qu'à partir d'un certain rang $u_n \le v_n \le w_n$, et (u_n) et (w_n) ont la même limite finie L, alors

Exemple: Déterminer $\lim_{n\to+\infty} \left(\frac{\sin(n)}{n}\right)$

III. Opérations sur les limites

Lorsque deux suites (u_n) et (v_n) ont des limites connues, on peut dans certains cas déduire directement la limite de la suite somme (u_n+v_n) , ou de la suite produit (u_nv_n) , ou encore de la suite quotient $\left(\frac{u_n}{v_n}\right)$.

Dans d'autres cas, notés F.I (Forme Indéterminée), on ne peut pas conclure sur la limite et il faudra écrire le calcul sous une autre forme pour aboutir à un résultat.

1) Limite d'une somme

$\lim_{n\to+\infty}u_n$	L	L	L	+∞	-∞	+∞
$\lim_{n\to+\infty}v_n$	L'	+∞	-∞	+∞	-∞	8
$\lim_{n\to+\infty} (u_n + v_n) =$						

Exemples:

2) Limite d'un produit

$\lim_{n\to +\infty}u_n$	L	L > 0	L < 0	L > 0	L < 0	+∞	-∞	+∞	0
$\lim_{n\to+\infty}v_n$	L'	+∞	+∞	-∞	-∞	+∞	-8	-∞	+∞ ou -⊗
$ \lim_{n\to+\infty} (u_n v_n) = $									

Exemples:

3) Limite d'un quotient

$\lim_{n\to+\infty}u_n$	L	L	L > 0 ou +∞	<i>L</i> < 0 ou −∞	<i>L</i> > 0 ou +∞	<i>L</i> < 0 ou −∞	0	+∞	+∞	-∞	-∞	+∞ ou -∞
$\lim_{n\to+\infty}v_n$	<i>L'</i> ≠0	+∞ ou -∞	$egin{array}{c} 0 ext{ avec} \ v_n > 0 \end{array}$	0 avec $v_n>0$	0 avec $v_n < 0$	0 avec $v_n < 0$	0	L'>0	L' < 0	L'>0	L'<0	+∞ ou -∞
$\lim_{n\to+\infty}\frac{u_n}{v_n}$												

Exemples:

Les F.I. sont, de manière non rigoureuse, les formes suivantes : $+\infty-\infty$; $0\times\infty$; $\frac{\pm\infty}{\pm\infty}$; $\frac{0}{0}$ Attention : ne pas utiliser ces écritures lors d'une rédaction !

Méthodes pour lever une indétermination : le principe est en général de transformer l'écriture de l'expression.

- a. Déterminer la limite de la suite de terme général $n^2 4n + 1$.
- b. Déterminer la limite de la suite de terme général $\sqrt{n+2}-\sqrt{n}$.
- c. Déterminer la limite de la suite de terme général $\frac{n-1}{n+3}$.

IV. Limite d'une suite géométrique

<u>Rappel</u>: une suite géométrique a pour terme général $u_n = u_0 \times q^n$.

D'après les théorèmes sur les opérations avec les limites, il suffit de connaître le comportement de (q^n) lorsque n tend vers $+\infty$ pour connaître le comportement d'une suite géométrique.

<u>Exemple</u>: étudier le comportement de la suite géométrique de premier terme 1 et de raison $q = \frac{1}{3}$.

Et si la raison est $q = -\frac{1}{3}$?

Et
$$q = 3$$
 ?

$$q = -3$$
?

<u>Propriété</u>: comportement de la suite géométrique (q^n) , avec q un nombre réel:

q	$q \leq -1$	-1 < q < 1	q = 1	q > 1
$\lim_{n\to +\infty}q^n$				

Applications:

Quelle est la limite d'une suite géométrique (u_n) de premier terme -5 et de raison 4 ?

Quelle est la limite d'une suite géométrique (v_n) de premier terme 1 et de raison -2 ?

Démonstration de la propriété dans le cas q > 1, **exigible** :

Si q > 1, alors on peut poser q = a + 1 avec a > 0.

Rappelons l'inégalité de Bernoulli démontrée dans le chapitre raisonnement par récurrence :

V. <u>Convergence des suites monotones</u>

Théorème de convergence monotone (admis) :

- 1) Toute suite croissante et majorée est convergente.
- 2) Toute suite décroissante et minorée est convergente.

Corollaire:

- 1) Toute suite croissante et non majorée a pour limite $+\infty$.
- 2) Toute suite décroissante et non minorée a pour limite $-\infty$.

Démonstration exigible du corollaire 1 :

Soit (u_n) une suite croissante et non majorée, et un réel a.

Il s'agit de prouver qu'à partir d'un certain rang, tous les termes de la suite appartiennent à l'un certain rang, tous les termes de la suite appartiennent à

Comme (u_n) n'est pas majorée, il existe un rang p tel que

La suite (u_n) est croissante, donc pour tout n > p, on a

Donc pour tout n > p, on a

On a trouvé un rang p à partir duquel tous les termes appartiennent à $]a; +\infty[$: on en déduit que $\lim_{n\to +\infty} u_n = +\infty$.

Démonstration analogue pour le corollaire 2).