2017~2018 年度第一学期《化学原理》期中考试试卷

<u> </u>	单	(共 50 分, 每题 2	2 分)		
				下列说法中正确的	是 (D)
	(A) 分子的数			1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /	/C(D)
	()	均根速率的数值:	$N_2 > H_2$		
	()	可几速率的数值:			
	()	备最可几速率的分		• H2	
	\ /				(C)
	(A) 实际气体	在其压强比较低、	温度比较高时	 为理想气体。	
				比与它们摩尔质量	
	(C) 理想气体	分子的平均动能与	i 气体温度成正	比。	
	* *	分子的速率分布图			
3.	预测 H ₂ 、O ₂ 、	NO2、SO2气体中	van der Waa	als 常量 a 最大的是	(D)
		(B) O_2			, , , , , , , , , , , , , , , , , , ,
				·	(C)
		永远不能被液化。			· · · · · · · · · · · · · · · · · · ·
	(B) 沸点较高	的气体,则临界温	度也一定高。		
	(C) 沸腾现象	在液体的内部和表	面同时发生。		
	(D) 过冷水的	蒸汽压等于相同温	1度下冰的蒸汽	压。	
5.	下列表述中正	确的是			(B)
	(A) 原子中的	电子有确定的飞行	轨道		
	(B) 电子波函	数的平方表示电子	在空间某一点	反此出现的几率密度	
	(C) 电子波函	数的空间外形被称	以为电子云		
	(D) 一个电子	的行为可以用 n,	1,m 三个量子	² 数完全描述	
6.	下列量子数中	',合理的是 <u></u>			(D)
	(C) 4, 3, -4,	-1/2 -1/2	(D) 5, 2,	, 2, +1/2	
				=1 轨道上的能量与	H 原子在
	(A) 3:1	(B) 6:1	(C) 9:1	(D) 1:3	
8.	元素原子的申	上子排布,有的出现 1.子排布,有的出现	见"例外",主	要是由于	(C)
		的三个原则不适用			························· /
		容原理具有不足之			
	(C) 通常使用	的原子轨道能级图	具有近似性。		
	(D) 该元素原	子的电子排布必须	ī服从四个量子	一数的规定。	
9.	下列关于波函	i数径向分布图的说	总法,错误的是	<u> </u>	(C)
	(A) 径向分布	函数 D(r)代表在半	径为r的单位	厚度球壳内电子出现	现的概率。
		布图可以看出,核			
	(C) 由径向分	布图可以看出,3s	电子云内部不	「存在节面。	
	(D) 由径向分	·布图可以看出,外	、层原子轨道存	产在钻穿效应。	
10.	以下元素的原	原子半径递变规律:	是		(B)

(A) Be <b<na<mg< th=""><th>(B) B<be<mg<na< th=""><th></th><th></th><th></th></be<mg<na<></th></b<na<mg<>	(B) B <be<mg<na< th=""><th></th><th></th><th></th></be<mg<na<>			
(C) Be <b<mg<na< td=""><td>(D) B<be<na<mg< td=""><td></td><td></td><td></td></be<na<mg<></td></b<mg<na<>	(D) B <be<na<mg< td=""><td></td><td></td><td></td></be<na<mg<>			
11. 根据原子轨道的 Cotton 能级图, 同		(E	3)
(A) 第四周期元素的 3d 轨道能级价		(,
	4s 轨道都先于 3d 轨道失去电子。			
(C) 原子轨道的能量和原子序数有				
(D) 钾原子的 1s 轨道能量与钙原子				
12. 下列关于原子半径的说法正确的是		((2)
(A) 共价半径指同种元素的两个原-		(,
	和金属半径,则其共价半径的数值较	大。		
	和金属半径,则其共价半径的数值较			
(D) 范德华半径的数值与共价半径列		, °		
13. O3 中的中心氧原子采用的杂化类型		(A)
(A) sn^2 (B) sn	(C) sp ³ (D) n 轨道成键	(11	,
(A) sp² (B) sp 14. 下列离子或分子中,具有反磁性的	7是	(C)
(A) O_2 (B) O_2^-	(C) $O2^{2-}$ (D) $O2^{+}$	(,
15. 中心原子采用 sp³d 杂化轨道成键的		(F	3)
(A) 八面体,四方锥,平面四方形		(_	,	,
(C) 直线形, V形, 平面四方形				
16 NO ₂ 离子中存在差		(В)
16. NO ₃ ⁻ 离子中存在着 (A) 一个 Π ⁴ ₄ (C) 一个 Π ³ ₄	(B) 一个Π ⁶	(D	,
$(C) \rightarrow \Pi_4$	(D) 两个 Π ⁵			
17. 极性分子与非极性分子存在的吸引	作用	((7)
(A) 色散作用、取向作用	(B) 取向作用、诱导作用	(`		,
	(D) 取向作用、诱导作用、色散作	Ħ		
18. 在 CsCl 型的离子晶体中, 其晶胞			A)
(A) 简单立方 (B) 面心立方	(C) 六方 (D) 体心立方	(,
19. 在周期表中,第一电子亲合能具有		(В	`
(A) 氟 (B) 氯	(C) 溴 (D) 氧	(,
20. 根据下列配合物的磁矩,指出属于	一外轨型配合物的是	(C)
(A) $[Fe(CN)_6]^{4-}$ (0 B.M.)		\		
(C) K ₂ [MnBr ₄] (5.9 B.M.)	(D) [Cr(NH ₃) ₆]Cl ₃ (3.9 B.M.)			
21. 下列影响配合物分裂能 △ 大小的团	国素中,正确的是哪一组	(В)
(A) 配合物的几何构型:八面体 >	正方形			
(B) 配体种类: CN->H ₂ O>F->Cl-	$>$ Br $^->$ I $^-$			
(C) 形成体的电荷: Fe ³⁺ <fe<sup>2+</fe<sup>				
(D) 中心原子 d 轨道的主量子数: 3				
22. 在[AlCl4]-中, Al3+所采用的杂化轨	L道预计为	(E	3)
(A) sp (B) sp^3	(C) dsp ² (D) 没有杂化			
23. 羰基配合物[Fe(CO) ₅]的磁矩为 0,	它的空间构型为	(C)
(A) 三角锥形 (B) 平面四方形	(C) 三角双锥形 (D) 四方锥形			
24. 在八面体的 Co ²⁺ 离子的配合物中,				
	·虑电子成对能)	(В)
(A) 4Dq (B) 10Dq	(C) 16Dq (D) 20Dq			

	下列关于价键理论处理配合物的说法不妥的是
二、	填空题(共20分,每空1分)
1.	当温度由 298K 升至 308K, 某液体的蒸气压增加了一倍, 则它的蒸发热为
2.	
3.	写出六方晶系的晶胞参数: a=b≠c , α= β=90° , γ=120°。
4.	H 原子的电子能级由量子数
	数共同决定。
5.	P 和 S 中第一电离能较高的是P。 请按照熔点由高到低的顺序,重新排列下列分子:①②③④
6.	请按照熔点由高到低的顺序,重新排列下列分子:①②③④
7.	。 ① NaCl; ② MgCl ₂ ; ③ AlCl ₃ ; ④ SiCl ₄ 。 原子轨道线性组合形成分子轨道需满足的原则是 对称性匹配 、 最大重叠 、 能量相近
8.	O_2^{2-} 的 分 子 轨 道 电 子 排 布 式 为
	$_{(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\sigma_{2px})^2(\pi_{2py})^2(\pi_{2pz})^2(\pi_{2py}^*)^2(\pi_{2pz}^*)^2$
	级为 反磁性 _。
9.	下列各对分子间,存在的分子间作用力类型分别是: a. H ₂ O 和 C ₂ H ₅ OH 分子间存在_
	取向力, 诱导力, 色散力, 氢键
	存在。。
	Zn(NH ₃) ₄ ²⁺ 的中心离子所采取的杂化轨道应是sp ³ 杂化。
11.	在电子构型为 $d^1 \sim d^9$ 的过渡金属离子中,既能形成高自旋又能形成低自旋八面体配
12	合物的离子,其 d 电子构型是 d⁴~d¹。 □ 京 궁 Ђ(II o) 計 司 □ ¼ 滿 的 見 古 □ ¼ 拔 方 202001
12.	配 离 子 $Ti(H_2O)_6^{3+}$ 可 见 光 谱 的 最 大 吸 收 峰 在 $20300cm^{-1}$, 则 其 $CFSE=$ -8120 cm^{-1} 。
13	配 体 F 、 H ₂ O 、 CN 在 光 谱 化 学 序 列 中 的 顺 序 是
15.	F- <h<sub>2O-<cn< td=""></cn<></h<sub>
14.	[Fe(CN) ₆] ³⁻ 配离子的中心离子在晶体场中的 d 电子分布可表示为 $t_{2g}{}^5e_g{}^0$ (用符号表示)。
15.	请按分裂能由大到小的顺序重新排列:。
	① $[Co(NH_3)_6]^{2+}$; ② $[Fe(CN)_6]^{4-}$; ③ $[NiCl_4]^{2-}$; ④ $[Ni(CN)_4]^{2+}$ 。

三、计算与简答(共20分)

1. 利用 Born-Haber 循环,求 MgCl₂ 的晶格能。(已知 Mg 的升华热为 141 kJ/mol, Mg 原子的第一、第二电离能分别为 737.7 kJ/mol、1450.7 kJ/mol。Cl₂ 的离解能是 244 kJ/mol, Cl 原子的电子亲和能是-348.8 kJ/mol, MgCl₂ 的生成热为-641.62 kJ/mol)

$$\begin{split} \Delta_{_{f}}H^{\theta}_{_{m}}(MgCl_{_{2}}) = & \Delta_{_{\mathcal{H}^{\psi}}}H^{\theta}_{_{m}}(Mg) + \Delta_{_{\mathop{\raisebox{.5ex}{ψ}}}\&lember{H}^{\theta}_{_{m}}}(Cl\text{-}Cl) + 2\Delta_{_{\mathop{\mathclap{\mathfrak{R}}}^{\eta}}}H^{\theta}_{_{m}}(Cl) + \\ & \Delta_{_{\mathop{\mathclap{\mathfrak{E}}}|8l}}H^{\theta}_{_{m}}(Mg) + \Delta_{_{\mathop{\mathclap{\mathfrak{E}}}|8l}}H^{\theta}_{_{m}}(Mg) + (\text{-}U) \end{split}$$

$$U = 141 + 244 + (-348.8) \times 2 + (737.7 + 1450.7) - (-641.62)$$
$$= 2517.42 \text{KJ} \cdot \text{mol}^{-1}$$

2. 请在同一图上画出氢原子 3d、4s、4p 原子轨道的径向分布示意图。

- 3. 用晶体场理论判断配离子[Fe(H₂O)₆]²⁺,[Fe(CN)₆]⁴⁻是高自旋还是低自旋,并计算配 合物的磁矩 μ 以及晶体场稳定化能(CFSE)。
- 解: 因 H_2O 是弱场配体,所以 $[Fe(H_2O)_6]^{2+}$ 是高自旋配合物,组态为 d^6 ,有 4 个 单 电子, $\mu=[n^*(n+2)]^{0.5}=[4^*(4+2)]^{0.5}=4.9$ B.M.

$$CFSE=4* (-4Dq) +2*6Dq=-4Dq$$

因 CN-是强场配体,所以 $[Fe(CN)_6]^4$ -是低自旋配合物,组态为 d^6 ,没有单 电子, μ =0 B.M.

$$CFSE=6* (-4Dq) =-24Dq$$