

Priors

 $\mu_i^A \sim \text{Gaussian}(0, 100), \ \sigma_i^A \sim \text{Exponential}(0.01)$

 $\mu_i^b \sim \text{Gaussian}(0, 100), \ \sigma_i^b \sim \text{Exponential}(0.01)$

 $k_i^n \sim \text{Exponential}(0.01), \ \lambda_i^n \sim \text{Exponential}(10)$ $k_i^{\epsilon} \sim \text{Exponential}(0.01), \ \lambda_i^{\epsilon} \sim \text{Exponential}(10)$

Subject specific parameters

 $A_{is} \sim \text{Gaussian}(\mu_i^A, \sigma_i^A)$ $B_{is} \sim \text{Gaussian}(\mu_i^B, \sigma_i^B)$

 $\sigma_{is}^n \sim \text{Gamma}(k_i^n, \lambda_i^n)$

 $\sigma_{is}^{\epsilon} \sim \operatorname{Gamma}(k_i^{\epsilon}, \lambda_i^{\epsilon})$

Stimulus driven noise for repeated game

 $\epsilon_{isg} \sim \text{Logistic}(0, \sigma_{is}^{\epsilon})$

Free noise for each game

 $n_{isgr} \sim \text{Logistic}(0, \sigma_{is}^n)$

Observed choices

 $\Delta Q_{isqr} \leftarrow \Delta R_{isq} + A_{is} \Delta I_{isq} + B_{is} + n_{isqr} + \epsilon_{isq}$ $c_{isar} \sim \text{Bernoulli}(Q_{isar} > 0)$