Теория Алгоритмов Лекция 8

Екатеринбург, 2015

Лекция 7

Задача SAT Задача 3SAT Задача IS Известные NP-полные задачи

Лекция 7 Задача SAT Задача ЗSAT Задача IS Известные NP-полные задачи

Формулировка

Определение

Проверить, является ли данная булева формула выполнимой

Доказательство NP-полноты языка L

- 1. $L \in NP$
- 2. *L* − *NP*-труден
 - 2.1 *N* − *NP*-труден
 - 2.2 $f(w) \in N \Leftrightarrow w \in L$
 - $2.3 \, f$ полиномиален

Лекция 7

Задача SAT

Задача 3SAT

Задача IS

Известные NP-полные задачи

Формулировка

Определение

Проверить, является ли данная булева формула, записаная в 3-конъюнктивной нормальной форме, выполнимой

Докажем NP-полноту 3SAT

Имеем задачу:
$$(x_1 \lor \neg x_2 \lor x_3) \& (\neg x_1 \lor x_2 \lor x_3) \& (x_1 \lor x_2 \lor x_3)$$

- 1. $3SAT \in NP$
- 2. SAT $\stackrel{\leadsto}{c}$ 3SAT

$$a_{1,1}x_1 \lor a_{2,1}x_2 \lor \cdots a_{n,1}x_n$$

$$\vdots \qquad \qquad \vdots \qquad \qquad = a_{1,n}x_1 \lor a_{2,n}x_2 \lor \cdots a_{n,n}x_n$$

Докажем
$$f(w) \in \mathsf{3SAT} \Leftarrow w \in \mathsf{SAT}$$
 $w \in \mathsf{SAT} \Rightarrow \mathsf{xotg}$ бы 1 из дизъюнктов равен 1 Имеем формулу w из SAT : $(x_1 \lor x_2 \lor \neg x_3 \neg \lor x_4 \lor x_5)$ Превратим ее в набор дизъюнктов $f(w)$ для $\mathsf{3SAT}$: $(x_1 \lor x_2 \lor y_1)\&$ $(\neg y_1 \lor \neg x_3 \lor y_2)\&$ $(\neg y_2 \lor \neg x_4 \lor x_5)$ "Протаскиваем" 1 так, чтобы $f(w) \Rightarrow w$ Докажем $f(w) \in \mathsf{3SAT} \Rightarrow w \in \mathsf{SAT}$

Нельзя добиться истинности конъюнкций не используя ни одного x=1, а значит итоговая строка равна 1

Лекция 7

Задача SAT Задача 3SAT

Задача IS

Известные NP-полные задачи

Формулировка

Определение

По графу G=(V,E) и числу k узнать, существует ли независимое множество вершин V^\prime , такое что $|V^\prime|=k$

Докажем NP-полноту IS

- 1. $IS \in NP$
- 2. IS *NP*-трудна
- 3. 3SAT $\stackrel{\leadsto}{c}$ IS

$$(x_1 \lor x_2 \lor \neg x_3) = F_1$$

$$(x_1 \lor \neg x_2 \lor x_3) = F_2$$

$$(\neg x_1 \lor x_2 \lor x_3) = F_3$$

$$(\neg x_1 \lor \neg x_3 \lor \neg x_2) = F_4$$

Каждую переменную в каждом дизъюнкте превращаем в вершину графа. Вершины соеденены сторонами если состоят в одном дизъюнкте (будем назыать их E_1), либо являются отрицанием друг друга $(x_i \ u \ \neg x_i)$) (будем называть их E_2)

$$w \in 3SAT \Rightarrow f(w) = (V, E, k) \in IS$$

 $\exists x_1 \dots x_n : F_1(x_1 \dots x_n) = F_2(x_1 \dots x_n) = \dots = 1$ Среди каждой тройки ЗSAT существует формула, равная 1 E_1 независисмы по определению E_2 независимы по построению $(x_i \neq \neg x_i)$

$$w \in 3SAT \Leftarrow f(w) = (V, E, k) \in IS$$

 \exists IS , V': |V'| = k x_i не может быть выбрано с $\neg x_i$ Выбрано строго по 1 вершине в каждой тройке и нет противоречий, значит 3SAT выполнима.

Лекция 7

Задача SAT Задача 3SAT Задача IS

Известные NP-полные задачи

Сводимость некоторых NP-полных задач

