Parallele Algorithmen und Datenverarbeitung (Ü) (WiSe 2018/2019)

Marcel Friedrichs
AG Bioinformatik / Medizinische Informatik

Lösungen zum Übungszettel 4

Aufgabe 1:

a)

- b) Der Instruktionsbereich wird durch den FORK-Befehl erweitert, der neue Prozessoren generieren kann.
- c) Programmablauf trifft auf den Befehl "FORK label":
 - 1. Schritt: Freier Prozessor wird gesucht Pi
 - 2. Schritt: Speicher von P_i löschen
 - 3. Schritt: AKKU-Inhalt von Po in Pi übertragen
 - 4. Schritt: P_i bei *label* starten

Po und Pj laufen nebenläufig.

- d) Konflikte:
 - Zwei Prozessoren wollen gleichzeitig aus einer Zelle lesen/in eine Zelle schreiben.
 - Prozessor will aus einer Zelle lesen, in die ein anderer schreiben will. Lösungen sind geeignete PRAM-Modelle: EREW-PRAM, CREW-PRAM, CRCW-PRAM

Aufgabe 2:

Aufgabe 3:

Hinweis: Die Lösungen sollen in PDF-Form, bzw. Code bis zum Montag (10 Uhr) der jeweils folgenden Woche per Mail an mfriedrichs@techfak.uni-bielefeld.de abgegeben werden. Zu Beginn des nächsten Übungstermins werden diese in offener Runde vorgestellt und diskutiert.

Parallele Algorithmen und Datenverarbeitung (Ü) (WiSe 2018/2019)

Marcel Friedrichs
AG Bioinformatik / Medizinische Informatik

Aufgabe 4:

- Einfaches paralleles Modell, dass sofort in Hardware gegossen werden kann
- Komplexitätsmaße leicht definierbar (Tiefe = Worst Case Laufzeit, Größe = erforderliche Hardware). Platz und Zeit sind realistische Größen.
- Schaltkreise sind leicht übersetzbar in andere parallele Modelle (TM, RAM, PRAM) oder Graphen.