

2 Resutant of concurrent coplonar force system

Force	x-component	y-component
F ₁	35.cos 70°	35.Sin70°
	= 11.97	= 32.89
F ₂	-50.cos40°	50.sin40°
	= - 38.30	= 32.14
Fz	- 30·cos30° = - 25·98	30.5in30° = 15.00
F4	-40.00	•
F ₅	- 60 · cos 80°	-605in80°
	= - 10.42	= - 59.08
F6	42 cos 25°	- 42.8in25°
	= 38.06	= - 17.75
Result	ant - Chicz	D = 5E. = 3.2 kN
R	$R_{z} = \sum F_{z} = -64.67$	Ry = 5 Fy = 3.2 km

3 Resultant of parallel force system:

R = 5-10 = -5 KN i.e. 5 KN ($\frac{1}{4}$)
To locate the point of application of the resultant force, use Varignon's thm. of moments.
Take moments \bigcirc A,

$$(5 \times d) = (5 \times 3) - (10 \times 9) + 50$$

$$d = -25$$

$$d = -5.0 \, \text{m}$$

As 'd' is -ve, the resultant is rotating in clockwise sense @ A

(4) Resultant of concurrent coplanar force system

Consider 'z' axis, parallel to AB. 120, As the resultant is parallel to plane AB,

R = SE = R and R = SE = C

$$\therefore R = \sum_{x} F_{x} = R_{x} \text{ and } R_{y} = \sum_{y} F_{y} = 0$$

?
$$R_y = \Sigma F_y = 80 \cdot \sin \theta - 120 \cdot \sin (90 - \theta) = 0$$

. $80 \cdot \sin \theta - 120 \cdot \cos \theta = 0$

$$7an \theta = 1.5$$

$$6 = 56.3^{\circ}$$

The magnitude of the resultant is given by, $R = R_{x} = \sum F_{x} = 60 + (80)(\cos 56.3^{\circ}) + (120)(\cos 33.7^{\circ})$ * R = 204.22 Along AB

(5) Resultant of porallel force system:

R = 90+90+90 = 270 KN (~)

Vising Varianon's thm. of moments, taking moment & the axis of the plane,

 $R \cdot d = 270 \cdot d = (90 \times 21) - (90 \times 12) - (90 \times 21)$ d = -4 m

:. As the distance d is -ve the resultant is rotating in clockwise sense @ the axis of the plane.

Ans: Resultant thrust = 270KN acting at a dist. of 4 m below the axis of the plane.

