Numerical Differentiation

Numerical Differentiation

- Calculate the derivative of a given function represented by a data set
- Discretize a differential equation to solve it numerically

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \Gamma \nabla^2 \phi + q$$

Taylor Series

Taylor series of a function f at x=a

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

$$f(x) = f(a) + \frac{f'(a)(x-a)}{1!} + \frac{f''(a)(x-a)^2}{2!} + \frac{f'''(a)(x-a)^3}{3!} + \cdots$$

Taylor series of f(x) at x_i (i.e. $a = x_i$)

$$f(x) = f(x_j) + \frac{f'(x_j)(x - x_j)}{1!} + \frac{f''(x_j)(x - x_j)^2}{2!} + \frac{f'''(x_j)(x - x_j)^3}{3!} + \cdots$$

Now substitute
$$x = x_{i+1}$$

Note
$$(x_{j+1}-x_j)=+h$$

$$f(x_{j+1}) = f(x_j) + \frac{f'(x_j)(x_{j+1} - x_j)}{1!} + \frac{f''(x_j)(x_{j+1} - x_j)^2}{2!} + \frac{f'''(x_j)(x_{j+1} - x_j)^3}{3!} + \cdots$$

First order accurate *forward* difference formula:

Now substitute $x = x_{i-1}$

Note
$$(x_{j-1}-x_j)=-h$$

$$f(x_{j-1}) = f(x_j) + \frac{f'(x_j)(x_{j-1} - x_j)}{1!} + \frac{f''(x_j)(x_{j-1} - x_j)^2}{2!} + \frac{f'''(x_j)(x_{j-1} - x_j)^3}{3!} + \cdots$$

First order accurate **backward** difference formula:

Subtract Taylor series expansion of $f(x_{j+1})$ from $f(x_{j-1})$

Second order accurate central difference formula:

Fourth order accurate central difference formula:

What about higher order derivatives?

Add Taylor series expansions of $f(x_{j+1})$ and $f(x_{j-1})$

Second order accurate central difference formula for $f''(x_i)$:

$$f_j^{"} = \frac{f_{j+1}-2f_j+f_{j-1}}{h^2} + \mathcal{O}(h^2)$$

Dispersive vs. Diffusive Formulas

https://en.wikipedia.org/wiki/Numerical dispersion

Source: LeVeque, R. J., Numerical Methods for Conservation Laws

Illustration of Numerical diffusion

Use Richardson Extrapolation

Find a 4th order accurate formula for $f''(x_i)$

Error Estimation

Construction of Finite Difference Formulas

$$f'_{j} + \sum_{k=0}^{N} a_{k} f_{j+k} = \mathcal{O}(?)$$

	f_{j}	f_j'	$f_j^{\prime\prime}$	f'''_j
f'_{j}				
f_{j}				
f_{j+1}				
f_{j+2}				

Padé Approximations

Use first order derivatives in the neighboring points

$$f'_{j} + a_{0}f_{j} + a_{1}f_{j+1} + a_{2}f_{j-1} + a_{3}f'_{j+1} + a_{4}f'_{j-1} = \mathcal{O}(?)$$

Use Taylor Tables to determine a_0 , ... a_4

$$f'_{j+1} + f'_{j-1} + 4f'_{j} = \frac{3}{h} (f_{j+1} - f_{j-1}) + \frac{h^4}{30} f^{v}_{j}$$

A tridiagonal system of equations for f'_i

$$\mathbf{A}f_j' = \frac{1}{h}f_j$$

For this reason Padé schemes are global schemes

Non-uniform Mesh

- Finite difference formula on a non-uniform mesh generally has lower order of accuracy than their counterparts on a uniform mesh
 - Difficult to eliminate the terms in a Taylor series expansion

Use a transformation $\xi = g(x)$ to create a uniform mesh in ξ

Example:
$$\xi = \cos^{-1} x \ transforms \ 0 \le x \le 1 \ to \ 0 \le \xi \le \frac{\pi}{2}$$

$$\frac{df}{dx} = \frac{d\xi}{dx} \frac{df}{d\xi} = g' \frac{df}{d\xi}$$

$$\frac{d^2f}{dx^2} = \frac{d}{dx} \left[g' \frac{df}{d\xi} \right] = g'' \frac{df}{d\xi} + (g')^2 \frac{d^2f}{d\xi^2}$$

Apply FD formulas for
$$\frac{df}{d\xi}$$
, $\frac{d^2f}{d\xi^2}$