Expected Value

E[c] = c
E[cX] = cE[X]
$E[X_1 + X_2X_n] = \Sigma E[X_i]$

$$E[g(X)] = \Sigma g(x) \cdot pmf(x)$$

$$E[g(X)] = \int g(x) \cdot pdf(x)dx$$

$$E[g(X,Y)] = \Sigma \Sigma g(x,y) \cdot pmf(x,y)$$

$$E[g(X,Y)] = \int \int g(x,y) \cdot pdf(x,y) dx dy$$

Given $X_1, ..., X_n$ are independent then $E[(X_1)(...)(E_n)] = (E[X_1])(...)(E[X_n])$

Marginal

Marginal
$$f_x = \int f(X,Y)dy$$
 $f(X|Y) = \frac{f(X,Y)}{f_y(Y)}$ $(n-1)\frac{S^2}{\sigma^2} \approx \chi^2$

Given X and Y are independent then ... $f(X,Y) = f_x(X) \cdot f_y(Y)$

Chebyshev's inequality

Within k Standard Deviations there is at least $1 - \frac{1}{k^2}$ of the data

Conditional Expectation

$$\begin{array}{l} E[g(X)|Y=y)] = \int g(X)f(X|Y)dx \\ E[g(X)|Y=y)] = \Sigma g(X)f(X|Y) \end{array}$$

Sampling Distribution

$$ar{Y} = rac{1}{n} \Sigma y_i$$
 $L(\theta|y_1...y_2)$ $L(\bar{\theta}|y_1...y_2)$ $L(\bar{\theta}|y_1...y_2)$ $L(\bar{\theta}|y_1...y_2)$ $L(\bar{\theta}|y_1...y_2)$ $L(\theta|y_1...y_2)$ $L(\theta|y_1...y_2)$

If Y's are taken from a normal, then $\bar{Y}^{B[\hat{\theta}]=E[\hat{\theta}]-\theta}$ is normal. Else n must be large to $\text{be} \frac{1}{MSE[\hat{\theta}]} = V[\hat{\theta}] - B[\hat{\theta}]^2$ normal

$$Z = \frac{\bar{Y} - \mu_{\bar{Y}}}{\frac{\sigma_{\bar{Y}}}{\sqrt{\sigma_{\bar{x}}}}} = \sqrt{n} (\frac{\bar{Y} - \mu_{\bar{Y}}}{\sigma})$$

Confidence Interval

$$\hat{\theta} \pm Z * StandardError \\ SE = \sqrt{Var}$$

Z can sometimes be T

Variance

$$\begin{split} Var[c] &= 0 \\ Var[cX] &= c^2 Var[X] \\ Var[X_1 + X_2...X_n] &= \Sigma \Sigma Cov(X_i, X_j) \\ &= \Sigma Var[X_i] + 2(\Sigma \Sigma Cov(X_i, X_j)) \\ \text{If } X_1, ..., X_n \text{ are independent then} \\ Var[X_1, ..., X_n] &= \Sigma Var[X_i] \end{split}$$

$$Var = \sigma^2 = E[X^2] - E[X]^2$$

 $SE = \text{Standard Error} = \sqrt{Var}$

CoVariance

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

....= $E[XY] - E[X]E[Y]$
It follows that $cov(X, X)=Var(X)$

And that if X and Y are independent cov(X,Y)=0

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
 and $p_p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$

 $q(u,\theta) * f(y_1,...y_n)$

Correlation

$$\rho = \frac{cov(X,Y)}{\sqrt{var(X) \cdot var(Y)}}$$
 and $-1 \leq \rho \leq 1$

Order Statistics

If $Y_1...Y_n$ iid with CDF F and pdf f then $g_{(k)} = \frac{n!}{(k-1)!(n-k)!} F(y)^{k-1} (1 - F(y))^{n-k} f(y)$ written as $G_{(n)}(y) = P(\dots, Y_{n-1} \le y, Y_n \le y)$ $G_{(1)}(y) = P(y \le Y_1, y \le Y_2,...)$

Don't Forget!

$$P(Y \le y) = CDF(y)$$

$$P(y \le Y) = 1 - CDF(y)$$

Bias

Likelvhood

$$B[\hat{\theta}] = E[\hat{\theta}] - \theta$$

$$MSE[\hat{\theta}] = E[(\hat{\theta} - \theta)^{2}]$$

$$MSE[\hat{\theta}] = V[\hat{\theta}] - B[\hat{\theta}]^{2}$$

 $error = \int_{\theta-h}^{\theta+b} pmf(\hat{\theta})d\hat{\theta}$ bounded using distributions Unbiased if $E[\hat{\theta}] = \theta$

Consistient

Consistient if $\lim_{n\to\infty} V[\theta] = 0$

MLE

Find Likelyhood Find the minimum of this If it is not obvious take the log Set to 0 Solve for θ and call it $\hat{\theta}$

which is then

Neyman-Pearson Lemma $\frac{L(\theta_0)}{L(\theta_a)} < k \text{ so } RR : \{y < k^*\}$ where k^* is found in $\alpha lph\alpha = P(Y < k^* | \theta = \theta_a)$

Type	pmf	mean	variance	mgf	
Binomial	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$((1-p)+pe^t)^n$	
Negative	$\binom{Y-1}{r-1}p^r(1-p)^{Y-1}$	$r \qquad \frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{P}{1-(1-p)e^t}\right)^r$	
Hyper	$\frac{\binom{y}{r}\binom{N-r}{n-y}}{\binom{N}{n}}$	$\frac{nr}{N}$	$(\frac{nr}{N})(\frac{(N-r)(N-n)}{N(N-1)})$	DNE	
Geometric	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$	
Poisson	$e^{-\lambda} \frac{\lambda^y}{y!}$	λ	λ	$e^{\lambda(e^t-1)}$	
Type	pdf	mean	variance	mgf	
Chi-Square	$rac{y^{rac{v}{2}-1}e^{rac{-y}{2}}}{2^{v/2}\Gamma(rac{v}{2})}$	v	2v	$(1-2t)^{\frac{-v}{2}}$	
Exponential	$\frac{1}{\theta}e^{\frac{-x}{\theta}}$	θ	θ^2	$\frac{1}{1-\theta t}$	
Gamma	$\frac{1}{\Gamma(\alpha)\beta^{\alpha}}x^{\alpha-1}e^{\frac{-x}{\beta}}$	lphaeta	$\alpha \beta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha}$	
Uniform	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at}}{(b-a)t}$	
Normal	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + \frac{\sigma^2 t^2}{2}}$	
	Point I	Estimators			

	0 V 2 N				
$n_1 n_1 + n_2 n_2$	Point	Estimators			
$\frac{E}{n_1}$ and $p_p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}$	Parameter	Sample Size	$\hat{ heta}$	$E[\hat{ heta}]$	SE
Suffiency	μ	n	$ar{Y}$	μ	$\frac{\sigma}{\sqrt{n}}$
θ is a sufficient	\overline{p}	n	$\hat{p} = \frac{Y}{n}$	p	$\sqrt{\frac{pq}{n}}$
statistic for u if $L(\theta y_1y_2)$ can be	$\mu_1 + \mu_2$	$n_1 + n_2$	$\bar{Y}_1 - \bar{Y}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
written as $a(u, \theta) * f(u_1, u_2)$	$p_1 - p_2$	$n_1 + n_2$	$\hat{p_1} - \hat{p_2}$	p_1	$\sqrt{\frac{p_1q_1}{\sqrt{n_1}} + \frac{p_2q_2}{\sqrt{n_2}}}$

Sample Stat	Distribution
\bar{x}	$Z = \frac{\bar{x} - \mu_a}{s\sqrt{n}}$
$\bar{x}_1 - \bar{x}_2$	$Z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
\hat{p}	$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
$\hat{p}_1 - \hat{p}_2$	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{p_p(1 - p_p)\frac{1}{n_1} + \frac{1}{n_2}}}$
	$ \frac{\bar{x}}{\bar{x}_1 - \bar{x}_2} $ $ \hat{p}$