

The codimension of pseudo-plateau bursting

Mark Blyth

Paper goals

- Letermine the codimension-classification of pseudo-plateau bursting
- Propose a normal form for bursting

Plan de jour

- - ▶ What do neurons do?
 - ▶ What are bursting neurons?
 - ► How and why do we categorise them?
- Section 2: Towards a normal form for bursting
- Section 3: Transitions between bursting classes
- Section 4:Codimension-classification of pseudo-plateau bursting
- Section 5: Conclusion

Neurons spike

Neurons encode information in action potentials

Ionic currents

Action potentials happen from ions flowing into and out of the cell

Hodgkin-Huxley

$$\frac{dV}{dt} = \left[I_{inj} - \bar{g}_{Na} m^3 h(V - V_{Na}) - \bar{g}_K n^4 (V - V_K) - g_L (V - V_L) \right] / C$$

$$\frac{dn}{dt} = \alpha_n(V) (1 - n) - \beta_n(V) n$$

$$\frac{dm}{dt} = \alpha_m(V) (1 - m) - \beta_m(V) m$$

$$\frac{dh}{dt} = \alpha_h(V) (1 - h) - \beta_h(V) h$$

We can understand the causes of spike generation with differential equations

bristol.ac.uk

Nonlinear dynamics

Neuron dynamics rely on limit cycles and equilibria

Bifurcations

Equilibria and limit cycles an appear through bifurcations

bristol.ac.uk

KEY POINT: bursting

lonic currents can appear to drive the neuron over bifurcations - this is bursting!

Why do cells burst?

- More reliable for transmitting over synapses
 - ► Higher signal-to-noise ratio
- \slashed{k} Maintain an elevated Ca^{2+} state
 - Promotes neurotransmitter release
 - Promotes hormone release
- Occur in both the brain and elsewhere
 - pre-Botzinger complex bursters control respiration
 - Pituitory somatotroph bursters [not neurons] use bursts to release hormones

Why do we categorise them?

Lots of work is done to categorise bursters, but why?

- Keep Complete classification would describe all the ways a cell could be excitable
- Hints at similarities and differences between cells
 - Small parameter changes can sometimes shift cells into different burster categories
 - 'Close' cell categories usually perform similar tasks

How do we categorise bursters?

	In the second	bifurcations of limit cycles				
	—	saddle-node on invariant circle	saddle homoclinic orbit	supercritical Andronov- Hopf	fold limit cycle	
bifurcations of equilibria	saddle-node (fold)	fold/ circle	fold/ homoclinic	fold/ Hopf	fold/ fold cycle	
	saddle-node on invariant circle	circle/ circle	circle/ homoclinic	circle/ Hopf	circle/ fold cycle	
	supercritical Andronov- Hopf	Hopf/ circle	Hopf/ homoclinic	Hopf/ Hopf	Hopf/ fold cycle	
	subcritical Andronov- Hopf	subHopf/ circle	subHopf/ homoclinic	subHopf/ Hopf	subHopt/ fold cycle	

Under this scheme, there's 16 planar bursters

Multiple timescale dynamics

The previous bursting data can be modelled by

$$\dot{x} = f(x, y) ,$$

$$\dot{y} = \epsilon g(x, y) ,$$

$$|\epsilon| \ll 1 .$$

- & Assume $\epsilon = 0$
- $\ensuremath{\mathbf{k}}$ Spiking is switched off by bifurcations in x
 - y becomes a parameter to cause these bifurcations

How do we categorise bursters?

This is a fold-homoclinic burster

✓ Several bifurcations can happen at the same point

- Several bifurcations can happen at the same point
 - A singularity is a point where one or more bifurcations happen

- Several bifurcations can happen at the same point
 - A singularity is a point where one or more bifurcations happen
- If we add some small terms to a singularity (unfold it), we get a bifurcation space

- Several bifurcations can happen at the same point
 - A singularity is a point where one or more bifurcations happen
- If we add some small terms to a singularity (unfold it), we get a bifurcation space
 - We get a model where we can vary some parameters and see some bifurcations

- Several bifurcations can happen at the same point
 - A singularity is a point where one or more bifurcations happen
- If we add some small terms to a singularity (unfold it), we get a bifurcation space
 - We get a model where we can vary some parameters and see some bifurcations
- A burster will sit in the unfolding of some singularity

- Several bifurcations can happen at the same point
 - A singularity is a point where one or more bifurcations happen
- If we add some small terms to a singularity (unfold it), we get a bifurcation space
 - We get a model where we can vary some parameters and see some bifurcations
- A burster will sit in the unfolding of some singularity
 - ► More unfolding parameters = more complexity

- Several bifurcations can happen at the same point
 - A singularity is a point where one or more bifurcations happen
- If we add some small terms to a singularity (unfold it), we get a bifurcation space
 - We get a model where we can vary some parameters and see some bifurcations
- A burster will sit in the unfolding of some singularity
 - More unfolding parameters = more complexity
 - More unfolding parameters = higher codimension

Classify in terms of...

- Singularity codimension
 - Measures the complexity of the burster
- Bifurcations to turn spikes on and off
 - Describes the dynamics of the burster

Plan de jour

- 30 second intro to neurons
- Section 2: Towards a normal form for bursting
- Section 3: Transitions between bursting classes
- Section 4: Codimension-classification of pseudo-plateau bursting
- Section 5: Conclusion

Biological models can be complex

- Biological models can be complex
- We can often find simpler models that do the same thing

- Biological models can be complex
- We can often find simpler models that do the same thing
 - 'Same thing' usually means same bifurcation structure

- Biological models can be complex
- We can often find simpler models that do the same thing
 - ► 'Same thing' usually means same bifurcation structure
- A normal form is a simple model that shows prototypical example behaviours

- Biological models can be complex
- We can often find simpler models that do the same thing
 - 'Same thing' usually means same bifurcation structure
- A normal form is a simple model that shows prototypical example behaviours
- A burster normal form is a simple model that can describe the bifurcation structure of any bursting neuron

Normal form requirements

	terror .	bifurcations of limit cycles				
	→	saddle-node on invariant circle	saddle homoclinic orbit	supercritical Andronov- Hopf	fold limit cycle	
bifurcations of equilibria	saddle-node (fold)	fold/ circle	fold/ homoclinic	fold/ Hopf	fold/ fold cycle	
	saddle-node on invariant circle	circle/ circle	circle/ homoclinic	circle/ Hopf	circle/ fold cycle	
	supercritical Andronov- Hopf	Hopf/ circle	Hopf/ homoclinic	Hopf/ Hopf	Hopf/ fold cycle	
	subcritical Andronov- Hopf	subHopf/ circle	subHopf/ homoclinic	subHopf/ Hopf	subHopf/ fold cycle	

A burster normal form must be able to operate as all of these classes

Model form

 $\slash\hspace{-0.6em}$ The proposed model has f(x,y) with a complex bifurcation structure...

$$\dot{x} = f(x, y) \; ,$$

klim ... and a simple g(x,y) to drive f over some bifurcations

$$y(t) = A\sin(\omega t)$$

Appropriate models

Golubitsky found a lot of bursters near the codimension-3 degenerate Bogdanov-Takens singularity:

$$f(x,y) = \begin{pmatrix} y \\ -y + \mu x - x^3 + y(\nu + 3x + x^2) \end{pmatrix}$$

✓ Has a rich enough bifurcation structure to show most bursting types

How about this?

- Pituitory cells can also burst
- Looks similar to previous bursters
- ★ No stable limit cycle!
 - How do we categorise this?

This is pseudo-plateau bursting

The codimension of pseudo-plateau bursting

- Pseudo-plateau bursting has a similar bifurcation structure to the others
- It doesn't seem to appear near a degenerate Bogdanov-Takens singularity!

bristol.ac.uk

Singularity choices

- The original paper goal was to classify the pseudo-plateau burster
- The burster doesn't seem to appear in codim-3 degenerate Bodganov-Takens unfolding
 - The singularity must not be able to exhibit all known bursting types
 - It can't be a normal form!

Let's free up a parameter:

$$\dot{x} = \begin{pmatrix} y \\ -y + \mu_2 x - x^3 + y(\nu + bx - x^2) \end{pmatrix}$$

A new model

We have

$$\dot{x_1} = y$$

$$\dot{x_2} = y + \mu_2 x - x^3 + y(\nu + bx - x^2)$$

$$y = A\sin(\omega t)$$

- This is the unfolding of a doubly-degenerate Takens-Bogdanov singularity
- It contains more dynamical richness enough to show pseudo-plateau bursting
- ₭ How do we analyse it?

Model analysis

We can't plot 4-dimensional bifurcation diagrams, so we need to get creative...

★ The b axis consists of degenerate Bogdanov-Takens singularities

- $\slash\hspace{-0.6em} loop$ The b axis consists of degenerate Bogdanov-Takens singularities
- lacktriangle Small b means we're near the doubly-degenerate BT singularity

- $\slash\hspace{-0.6em} extbf{\&}$ The b axis consists of degenerate Bogdanov-Takens singularities
- $f{k}$ Small b means we're near the doubly-degenerate BT singularity
 - We have a richer bifurcation structure in the surrounding neighbourhood than for the degenerate BT

- $\slash\hspace{-0.6em} extsf{ iny}$ The b axis consists of degenerate Bogdanov-Takens singularities
- lacktriangle Small b means we're near the doubly-degenerate BT singularity
 - We have a richer bifurcation structure in the surrounding neighbourhood than for the degenerate BT
- \checkmark Let's look for bifurcations at the edge of this small-b neighbourhood

- $\slash\hspace{-0.6em}\cancel{k}$ The b axis consists of degenerate Bogdanov-Takens singularities
- lacktriangle Small b means we're near the doubly-degenerate BT singularity
 - We have a richer bifurcation structure in the surrounding neighbourhood than for the degenerate BT
- \checkmark Let's look for bifurcations at the edge of this small-b neighbourhood
 - ► Take b small

- $\slash\hspace{-0.6em}\cancel{k}$ The b axis consists of degenerate Bogdanov-Takens singularities
- k Small b means we're near the doubly-degenerate BT singularity
 - We have a richer bifurcation structure in the surrounding neighbourhood than for the degenerate BT
- $\slash\hspace{-0.6em}\cancel{k}$ Let's look for bifurcations at the edge of this small-b neighbourhood
 - ► Take b small
 - \blacktriangleright Find the surface of a ball around the chosen b

- $\slash\hspace{-0.6em} extsf{k}$ The b axis consists of degenerate Bogdanov-Takens singularities
- k Small b means we're near the doubly-degenerate BT singularity
 - We have a richer bifurcation structure in the surrounding neighbourhood than for the degenerate BT
- $\slash\hspace{-0.6em}\cancel{k}$ Let's look for bifurcations at the edge of this small-b neighbourhood
 - ► Take *b* small
 - Find the surface of a ball around the chosen b
 - ► We now have a 2d parameter space!

Bifurcation structure

- This parameter subspace contains the pseudo-plateau burster
- ★ The model is a good normal form candidate

A normal form is a simple model that can display a target bifurcation structure

- A normal form is a simple model that can display a target bifurcation structure
- The degenerate Takens-Bogdanov singularity unfolding is [probably] not usable for a normal form

- A normal form is a simple model that can display a target bifurcation structure
- The degenerate Takens-Bogdanov singularity unfolding is [probably] not usable for a normal form
 - ► The known unfoldings don't contain pseudo-plateau bursters

- A normal form is a simple model that can display a target bifurcation structure
- The degenerate Takens-Bogdanov singularity unfolding is [probably] not usable for a normal form
 - ► The known unfoldings don't contain pseudo-plateau bursters
 - Unknown unfoldings might

- A normal form is a simple model that can display a target bifurcation structure
- The degenerate Takens-Bogdanov singularity unfolding is [probably] not usable for a normal form
 - ► The known unfoldings don't contain pseudo-plateau bursters
 - Unknown unfoldings might
- A doubly-degenerate Bogdanov-Takens singularity does contain pseudo-plateau bursters

- A normal form is a simple model that can display a target bifurcation structure
- The degenerate Takens-Bogdanov singularity unfolding is [probably] not usable for a normal form
 - ► The known unfoldings don't contain pseudo-plateau bursters
 - Unknown unfoldings might
- A doubly-degenerate Bogdanov-Takens singularity does contain pseudo-plateau bursters
 - It is as close as we can currently get to a normal form

Plan de jour

- Section 2: Towards a normal form for bursting
- Section 3: Transitions between bursting classes
- Section 4: Codimension-classification of pseudo-plateau bursting
- Section 5: Conclusion

Plateau and pseudo-plateau bursting cells are similar, functionally and developmentally

- Plateau and pseudo-plateau bursting cells are similar, functionally and developmentally
- So are their bifurcation structures: we can switch between the two classes by modifying a single parameter

- Plateau and pseudo-plateau bursting cells are similar, functionally and developmentally
- So are their bifurcation structures: we can switch between the two classes by modifying a single parameter
 - ► This parameter is analogous to Calcium current activation

- Plateau and pseudo-plateau bursting cells are similar, functionally and developmentally
- So are their bifurcation structures: we can switch between the two classes by modifying a single parameter
 - ► This parameter is analogous to Calcium current activation
- Similar cells have similar bifurcation structures

- Plateau and pseudo-plateau bursting cells are similar, functionally and developmentally
- So are their bifurcation structures: we can switch between the two classes by modifying a single parameter
 - ► This parameter is analogous to Calcium current activation
- K Similar cells have similar bifurcation structures
- Biological robustness: we can mess around with parameters and still see similar behaviour

Plan de jour

- Section 2: Towards a normal form for bursting
- Section 3: Transitions between bursting classes
- ★ Section 4: Codimension-classification of pseudo-plateau bursting
- Section 5: Conclusion

Section 4

- The pseudo-plateau burster appears in a codimension-4 unfolding
 - It must be at most a codim-4 -category system
- There's different forms the unfolding could take; this section justifies why they aren't used

Plan de jour

- Section 2: Towards a normal form for bursting
- Section 3: Transitions between bursting classes
- Section 4: Codimension-classification of pseudo-plateau bursting
- ✓ Section 5: Conclusion

We can categorise bursting cells according to their codimension

- We can categorise bursting cells according to their codimension
- Pseudo-plateau bursting can't be categorised as a codim-3 burster

- We can categorise bursting cells according to their codimension
- Pseudo-plateau bursting can't be categorised as a codim-3 burster
- The unfolding of a doubly-degenerate Bogdanov-Takens singularity can display pseudo-plateau bursting

- We can categorise bursting cells according to their codimension
- Pseudo-plateau bursting can't be categorised as a codim-3 burster
- The unfolding of a doubly-degenerate Bogdanov-Takens singularity can display pseudo-plateau bursting
 - Burster must be at most codim-4

- We can categorise bursting cells according to their codimension
- Pseudo-plateau bursting can't be categorised as a codim-3 burster
- The unfolding of a doubly-degenerate Bogdanov-Takens singularity can display pseudo-plateau bursting
 - Burster must be at most codim-4
 - The singularity unfolding can act as a burster normal form

- We can categorise bursting cells according to their codimension
- Pseudo-plateau bursting can't be categorised as a codim-3 burster
- The unfolding of a doubly-degenerate Bogdanov-Takens singularity can display pseudo-plateau bursting
 - Burster must be at most codim-4
 - The singularity unfolding can act as a burster normal form
- Cells can easily transition between bursting classes, in biologically meaningful ways