Organic Chemistry Review Sheet

Compound	Formula	Example with Name	Other Information	Intermolecular Forces and Physical Properties	Chemical Reactions
Carboxylic Acid	-COOH -COOH Corboxyl	H-C-C-C-C-C-C-O-H H H H H Pentanoic acid CH3CH2CH2CH2COOH	Carboxylic acids are weak acids.	Dispersion Dipole-dipole	React with alcohol to produce an ester + H20 React with reactive metal to produce soil + H200. React with base to produce soil + H20. React with paetal carbonate to produce soil+H20.
Ester oote		4-h	• Fruity oclours • Produced from condensation reaction of alcohol + carboxylic acid. *	Dispersion Dipole-dipole	React with a hydroxide to preduce a carboxylate ion and on alcohol.
Amide	-CONH ₂	Pentanamide CH3CH2CH2COHH2		Dispersion Dipole-olipole Hydrogen-bonding	
Aldehyde	O -CHO	H H H H H O H-C-C-C-C-C-H H H H H CH3CH2CH2CH0	1 (-(-(-(-)	Dispersion Dipole - dipole	Aldehydes oxidise to proclae comboxylic acris
Ketone	0 -CO- 11 -C- carbony)	H-C-c-c-C-H H H H H CH3CH2CH2COCH3 Pentan-2-one		Dispersion Dipole -dipole	
Alcohol 6	-OH -OH hydroxyl but called hydroxy when attached	H H H H H H-C-C-C-C-C-C-O-H H H H H H Pentan-1-01	Get primary (1°), secondary (2°) and tetary (3°) alcohols. Mp's and bp's: 1°>2°>3° as OH is more exposed for H-bonding in 1° than 2° than 3° alcohols.	Hydragen banding	execut with carboxylic acid to produce an energy alcohol orders aldehyde orders carboxylic acid or l'alcohol orders to produce ketone 3° alcohol oxidises to produce ketone 3° alcohols do not readily oxidise:
Amine anine	amine but colled amino when attached	H H H H H H CH3CHNH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH	3	Dispersion . Hydrogen bonding	
Alkene	c=c(CH_3 CH_2CH_3 $C=C$ H H $Cis-pent-2-enc$	Cis-trans isomerism	(Mps and bps lower than alkanes as due to stereochemistry (shape) moleuk are not able to come as close to each other a weaker intermolecular forces.)	Undergo addition reactions (quick) eg GH3CHCHCH3 + Cl2 -> CH3CHCICHCICH3 Hydration produces an olcohol on eg GH3CHCHCH3 + H2O -> CH3CHCH2CH3 combustion too
Alkane ane		4-6-6-6-6-1 Pentane H H H H H H C - C - C - C - C - C - H H C - C - C - C - C - H H C - C - C - C - C - C - H H C - C - C - C - C - C - C - C - C - C	Cycloalkanes have some molecular formula as alkenes. (i) = benzene	Dispersion and y	etholorgo substitution reactions (sbul) eg CH3CH2CH2CH3 + Cl2 -> CH3CH2CH2CH2CH + 1 Also undergo combustion eg 2C+H10 + 1302 -> 8CO2 + 10H2O
Amino Acid	H H N O -C-C OH	HHA HC-C-COH HANH 2-amino proponoic acid CH3 CHNH2COOH	in solid state and in neutral solutions: R-CH-Co-NH3*		Zw. tterions can act as acids on bases and .: also as In acid: R-CH-CO + HOO+ = R-CH-CO + H2CO acts a base NH3 NH3 NH3 10 base: R-CH-CO + CH-CO + H2CO acts a aid R-CH-CO + CH-CO + H2CO acts a aid NH3

Mp's and bp's in increasing order: alkenes < alkanes < ketones + aldehydes + esters < amines < alcohols < carboxylic acids < amine acids as zwitterions due to ionic bonding.