Linked Data and the Semantic Web: the Basics

Pieter Pauwels LDAC Summer School 17 June 2019

Outline

- 1. Information exchange and the AEC industry
- 2. LBD in practice!
- 3. Some technical basics
- 4. Scaling up the graph
- 5. Exercises

Building Information Modelling

Building Life-cycle

Engineering

Design

BIM

Construction

Concept

FM and operation

⇒ improved information exchange with sources outside the traditional BIM environments, additional to the already existing techniques

linking building data across various sources

Different serializations of the same data model

ifcOWL ontologies available

```
Ifc2x all If.exp
                        not supported
    IFC2X2 ADD1.exp
                        not supported
    IFC2X2 FINAL.exp
                        not supported
IFC2X2 PLATFORM.exp
                        not supported
     IFC2X3 Final.exp
                        IFC2X3 Final.owl / .ttl
                       IFC2X3 TC1.owl / .ttl
      IFC2X3 TC1.exp
                       IFC4.owl / .ttl
             IFC4.exp
       IFC4 ADD1.exp
                       IFC4 ADD1.owl / .ttl
```

http://ifcowl.openbimstandards.org/IFC4 ADD1
http://ifcowl.openbimstandards.org/IFC4
http://ifcowl.openbimstandards.org/IFC2X3 Final
http://ifcowl.openbimstandards.org/IFC2X3 TC1

CLASSES INDIVIDUALS OJECT PROPERTIES

Industry Foundation Classes (IFC)

There exists a standard, but:

- not modular
- not extensible
- not simple enough to use

AND not Web-compliant!

Outline

- 1. Information exchange and the AEC industry
- 2. LBD in practice!
- 3. Some technical basics
- 4. Scaling up the graph
- 5. Exercises

BOT + SOSA + geometry

Mads Holten Rasmussen, Christian Aaskov Frausing, Christian Anker Hviid Jan Karlshøj, Integrating Building Information Modeling and Sensor Observations using Semantic Web, Semantic Sensor Networks Workshop, https://youtu.be/P-38glvrbmg

Implementation @Gigantium Denmark - Combination with sensor data

Repo of 531 LBD building graphs

- 36 million triples in total
- 372 bot:Building instances
- 3,523 bot:Zone instances
- 2,117 bot:Space instances
- 615,452 bot:Element instances

converted from http://smartlab1.elis.ugent.be:8889/IFC-repo/ to LBD using https://github.com/jyrkioraskari/IFCtoLBD

Ekaterina Petrova, Pieter Pauwels, Kjeld Svidt, Rasmus Lund Jensen, Towards data-driven sustainable design: decision support based on knowledge discovery in disparate building data, Architectural Engineering and Design Management (2018) p.1-23

Scan to LBD Graph

Jeroen Werbrouck, Semantic enrichment of the existing building geometry. Master Thesis 2018, Ghent University.

BOT and geospatial data

- Using BOT to interlink
 Ordnace Survey Ireland
 building data (>3.5 million
 buildings)
- Provide a registry of authoratative URI's for Irish building stock.
- http://geovis.adaptcentre.ie/
 - Username: odef_adapt
 - Password: geo123

Outline

- 1. Information exchange and the AEC industry
- 2. LBD in practice!
- 3. Some technical basics
- 4. Scaling up the graph
- 5. Exercises

The cool and awesome intro movies

https://vimeo.com/36752317

https://www.youtube.com/watch?v=4x xzT5eF5Q

https://www.youtube.com/watch?v=OM6XIICm_qo

Resource Description Framework

- RDF stands for Resource Description Framework
- RDF is a standard data model for describing web resources
 - Note: 'web resources' can make statements about anything in the real world: DBPedia, geography, building information, sensors, ... anything goes
- RDF is designed to be read and understood by computers
- RDF is not designed for being displayed to people
- RDF is written in XML usually
- RDF is a W3C Recommendation -> standardisation

not a file format, not a syntax, not a schema, ... => a data model

RDF Graphs, what are they?

RDF Graphs, what are they not?

Hierarchies (cfr. XML)

Relational databases (cfr. SQL)

RDF graphs are DIRECTED, LABELLED GRAPHS

Connecting Triples

Example RDF graph

```
@prefix b: <http://www.beta-i.com/building#> .
@prefix c: <http://www.beta-i.com/city#>.
<a href="http://www.beta-i.com/today#building">http://www.beta-i.com/today#building</a> 1>
             b:hasRoom <a href="http://www.beta-i.com/today#room">b:hasRoom <a href="http://www.beta-i.com/today#room">http://www.beta-i.com/today#room</a> 1>;
             b:hasName "Our course building";
             c:partOfCity <a href="http://cities.com/#copenhagen">http://cities.com/#copenhagen</a>.
<a href="http://cities.com/#copenhagen">http://cities.com/#copenhagen</a>
             c:closeToCity < http://cities.com/#malmo>;
             c:hasName "Copenhagen".
```

Example RDF graph

Uniform Resource Identifiers (URIs)

- URI stands for Uniform Resource Identifier
- Purpose: Obtain globally unique identifiers, so that information can be exchanged globally.
- Structure:

```
<a href="http://www.beta-i.com/today#building_1">http://www.beta-i.com/today#building_1</a>
<a href="http://www.beta-i.com/today#building_1">Name</a>
<a href="http://www.beta-i.com/today#building_1">Name</a>
```

Outline

- 1. Information exchange and the AEC industry
- 2. LBD in practice!
- 3. Some technical basics
- 4. Scaling up the graph
- 5. Exercises

Data integration now possible

Main principles

- distributed / decentralised information management
- interactive information search and reasoning over the web
- sharing partial data

Linked Open Data cloud (LOD)

http://tomheath.com/blog/2009/03/linked-data-web-of-data-semantic-web-wtf/

Bring BIM into the Semantic Web

LOD cloud grouped per domain

BY EXAMPLE COSTS & BENEFITS SEE ALSO @ -

5 ★ OPEN DATA

Tim Berners-Lee, the inventor of the Web and Linked Data initiator, suggested a 5-star deployment scheme for Open Data. Here, we give examples for each step of the stars and explain costs and benefits that come along with it.

5 ★ OPEN DATA

BY EXAMPLE

COSTS & BENEFITS

example ...

SEE ALSO

Below, we provide examples for each level of Tim's 5-star Open Data plan. The example data used throughout is 'the temperature forecast for Galway, Ireland for the next 3 days':

make your stuff available on the Web (whatever format) example ... under an open license¹

★★ make it available as structured data (e.g., Excel instead example ...

of image scan of a table)²

★★★ make it available in a non-proprietary open format (e.g., example ... CSV as well as of Excel)³

 $\star\star\star\star$ use URIs to denote things, so that people can point at example ... your stuff⁴

★★★★★ link your data to other data to provide context⁵

What else?

- Ontologies
- An ontology is a formal, explicit specification of a shared conceptualization

Abstract model and simplified view of some phenomenon in the world that we want to represent

Machine-readable

Concepts, properties, relations, functions, constraints, axioms

Consensual knowledge

R. Studer, V.R. Benjamins, D. Fensel. Knowledge engineering: Principles and methods. Data & Knowledge Engineering 25(1-2): 1998. 161-197. T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisition 5(2): 1993. 199-220.

Standard vocabulary (1)

G. Costa, P. Pauwels. Building product suggestions for a BIM model based on rule sets and a semantic reasoning engine.

Proceedings of the 32rd international CIB W78 conference. 2015. p.98-107.

Choose your ontologies wisely

Jeroen Werbrouck, Semantic enrichment of the existing building geometry. Master Thesis 2018, Ghent University.

Outline

- 1. Information exchange and the AEC industry
- 2. LBD in practice!
- 3. Some technical basics
- 4. Scaling up the graph
- 5. Exercises!