MU5IN075 Network Analysis and Mining 2. Graph algorithms

Esteban Bautista-Ruiz, Lionel Tabourier

LIP6 - CNRS and Sorbonne Université

first_name.last_name@lip6.fr

September 21, 2021

Approximate me

Outline

- Definitions and metrics
 - Reminder
 - Distributions
 - Benefit
 - Cumulative distributions
- 2 Algorithms
 - Connected components
 - Distances computation
 - Local density
- 3 Approximate measurements

Definitions and metrics
Algorithms
proximate measurements

Reminder Distributions

Outline

- Definitions and metrics
 - Reminder
 - Distributions
 - Benefit
 - Cumulative distributions
- 2 Algorithms
 - Connected components
 - Distances computation
 - Local density
- Approximate measurements

Definitions and metric Algorithm Approximate measurement

Reminder Distributions

Definitions and notations

A graph G = (V, E) is a couple of sets.

- *V* is the set of *nodes*
- $E \subseteq (V \times V)$ is the set of *edges*

We denote:

- n = |V| the number of nodes
- m = |E| the number of edges

u and *v* are neighbors if there is an edge between them.

Degree: $(k_i \text{ or } d(i))$ number of neighbors of i

916

Average degree, density

- Average degree of a graph, $\overline{d} = \frac{\sum_{v} d(v)}{n}$
- Density of a graph, $\delta = \frac{2m}{n(n-1)}$

degrees: 2, 2, 3, 1; average degree 2

$$n = 4$$
, $m = 4$, $\delta = \frac{8}{12} = 0.66$..

Connectedness

Path from *u* to *v*: sequence of edges

 $(u, v_1), (v_1, v_2), \ldots, (v_{\alpha-1}, v)$

Length: number of edges in the path (here α)

Connected component: maximal set of nodes such that $\exists \ a$

path between any pair of nodes

Connected graph: only one connected component

Definitions and metrics
Algorithms
proximate measurements

Reminder Distributions

Distributions

Distribution: synthetic way to represent a sequence of values.

 \rightarrow how many times a value occurs in the sequence?

Example/reminder of the degree distribution:

4 nodes, degrees : 2 2 3 1

$$1\rightarrow 1,\, 2\rightarrow 2,\, 3\rightarrow 1$$

Definitions and metric Algorithm Approximate measuremen Reminder Distributions

Degree distribution characteristics

Benefit: characterize qualitatively a sequence of values.

Heterogeneous = non-homogeneous distribution (various types of behaviors), in practice often close to a power law

Definitions and metrics
Algorithms

Reminder Distributions

Heterogeneous vs homogeneous distributions

Homogeneous (e.g. distance distribution in a graph)

Idea of normality (and of exceptions)

Heterogeneous (e.g. degree distribution in a graph)

Any kind of behaviours \rightarrow no notion of normality/exceptions

9/32

Definitions and metrics
Algorithms

Reminder Distributions

Two choices:

- N_k : number of occurrences of value k in the sequence
- p_k : proportion of the value k in the sequence
 - → Normalized distribution

$$p_k = \frac{N_k}{n}$$

Just a change of the value on the *Y*-axis.

Allow to compare graphs with different sizes:

Definitions and metrics
Algorithms

Reminder Distributions

Two choices:

- N_k : number of occurrences of value k in the sequence
- p_k : proportion of the value k in the sequence
 - → Normalized distribution

$$p_k = \frac{N_k}{n}$$

Just a change of the value on the Y-axis.

Allow to compare graphs with different sizes:

Definitions and metrics
Algorithms

Reminder Distributions

Notion of cumulative distributions

Distribution of k:

 N_k : number of occurrences equal to k

• Cumulative distribution of *k*:

 C_k : number of occurrences lower or equal to k

• Inverse cumulative distribution of *k*:

 IC_k : number of occurrences greater or equal to k

Definitions and metrics
Algorithms

Reminder Distributions

Cumulative and inverse cumulative distribution

- N_k : number of occurrences equal to k
- C_k : number of occurrences lower or equal to k
- *IC_k*: number of occurrences greater or equal to *k*

 N_k and IC_k for a heterogeneous distribution:

linear scale

Definitions and metrics

Algorithms

Approximate measurements

Reminder Distributions

Cumulative and inverse cumulative distribution

- N_k : number of occurrences equal to k
- C_k : number of occurrences lower or equal to k
- *IC_k*: number of occurrences greater or equal to *k*

 N_k and IC_k for a heterogeneous distribution:

log-log scale

Definitions and metrics
Algorithms

Reminder Distributions

Cumulative and inverse cumulative distribution

- N_k : number of occurrences equal to k
- C_k : number of occurrences lower or equal to k
- *IC_k*: number of occurrences greater or equal to *k*

Homogeneous and heterogeneous

can be distinguished on both normal and cumulative distributions

Ex: power-law

• $N_k \sim k^{-\alpha} \Longrightarrow C_k \sim k^{-\alpha+1}$ Remark: same idea as $\int x^{-\alpha} dx \sim x^{-\alpha+1}$ Algorithm Approximate measuremen Reminder Distributions

Cumulative and inverse cumulative distribution

- N_k : number of occurrences equal to k
- C_k : number of occurrences lower or equal to k
- *IC_k*: number of occurrences greater or equal to *k*

Homogeneous and heterogeneous

can be distinguished on both normal and cumulative distributions

Ex: power-law

• $N_k \sim k^{-\alpha} \Longrightarrow C_k \sim k^{-\alpha+1}$

Remark: same idea as $\int x^{-\alpha} dx \sim x^{-\alpha+1}$

13/3

Connected components
Distances computation
Local density

Outline

Definitions and metrics

- Reminder
- Distributions
 - Benefit
 - Cumulative distributions
- 2 Algorithms
 - Connected components
 - Distances computation
 - Local density
- Approximate measurements

Definitions and metrics
Algorithms
Approximate measurements

Connected components
Distances computation
Local density

Connectedness (reminder)

For complex networks

In general, giant component

→ contains most nodes

Q: How to identify the giant component? How to count the connected components?

Definitions and metrics

Algorithms

Connected components
Distances computation
Local density

Breadth First Search algorithm (BFS)

Parcours en largeur

```
Algorithm 1: Breadth First Search of a graph G from node S.

begin

F \leftarrow \text{CreateEmptyQueue}()

Enqueue(F,S)

Mark(S)

while F not empty \mathbf{do}

u \leftarrow \text{DequeueFirstElement}(F)

Display u

for v neighbor of u in G \mathbf{do}

if Unmarked(v) then

Enqueue(F,v)

Mark(v)

end

end

end
```

Definitions and metrics
Algorithms
Approximate measurements

Connected components
Distances computation
Local density

Breadth First Search algorithm (BFS)

Properties of a BFS:

- From a node : we detect its connected component
 - → 1 BFS per component
- Complexity: O(m)
- With parentage memorization:

spanning tree (fr: arbre couvrant) of shortest paths

E (A (A)

Connected components
Distances computation
Local density

Breadth First Search algorithm (BFS)

Properties of a BFS:

- From a node : we detect its connected component
 → 1 BFS per component
- Complexity: $\mathcal{O}(m)$
- With parentage memorization:
 spanning tree (fr: arbre couvrant) of shortest paths

Definitions and metrics

Algorithms

Approximate measurements

Connected components
Distances computation
Local density

Example

- Apply the algorithm on the graph above, starting from node
 Draw the corresponding BFS tree.
- 2 How to modify it so that it returns a tree of shortest paths from node *s*? Indicate the distances on the BFS tree.

as and metrics Connected components

Algorithms oproximate measurements

Distances computation Local density

Modified BFS

Algorithm 2: Distance from node s in graph G.

```
begin

F ← CreateEmptyQueue()

Enqueue(F,s)

V Dist(V) initialized at -1

Dist(s) ← 0

while F not empty do

u ← DequeueFirstElement(F)

Display u

for v neighbor of u in G do

if Dist(V) = -1 then

Enqueue(F, V)

Dist(V) ← Dist(U) +1

end

end

end

end
```

Definitions and metrics

Algorithms

Approximate measurements

Connected components
Distances computation
Local density

Distances computation

Distance from a node to all others: modified breadth first search \rightarrow Complexity: $\mathcal{O}(m)$

Average distance, diameter

possible to approximate or to give bounds on the diamete More info about this in *Approximate measurements*

10/01

Distances computation

Distance from a node to all others: modified breadth first search \rightarrow Complexity: $\mathcal{O}(m)$

Average distance, diameter

Need all distances $\rightarrow \mathcal{O}(nm)$ possible to approximate or to give bounds on the diameter More info about this in *Approximate measurements*

Going back to local density

Several means to capture this idea, for example:

- clustering coefficient: $cc(G) = \frac{\sum_{V} \frac{\Delta(V)}{\Lambda(V)}}{n'}$ n' = # nodes with degree ≥ 2
- transitive ratio: $tr(G) = \frac{3\Delta(G)}{\Lambda(G)}$

In other words:

- clustering coefficient: compute a value for each node (with degree ≥ 2), then average
- transitive ratio: direct computation

ns and metrics Connected components

Local density

Distances computation

Algorithms
Approximate measurements

Going back to local density

Several means to capture this idea, for example:

- clustering coefficient: $CC(G) = \frac{\sum_{v} \frac{\Delta(v)}{\Lambda(v)}}{n'}$ n' = # nodes with degree > 2
- transitive ratio: $tr(G) = \frac{3\Delta(G)}{\Lambda(G)}$

In other words:

- clustering coefficient: compute a value for each node (with degree ≥ 2), then average
- transitive ratio: direct computation

Definitions and metric
Algorithm
Approximate measuremen

Connected components
Distances computation
Local density

Transitive ratio vs Clustering coefficient

We have $n \in \mathbb{N}$, let's G_n be the graphs of 2n + 1 nodes and 3n edges such that:

- a unique node n₀ is connected to all other nodes in the network
- all other nodes have degree 2

Exercise:

- Draw the cases of G_3 , G_4 .
- ② Compute the local density coefficients for G_4 .
- **1** How do these coefficients evolve when n goes to ∞ ?
- Oeduce how to interpret these coefficients in terms of probability.

Connected components
Distances computation
Local density

Computing the number of triangles

Both coefficients rely on the number of triangles. How to enumerate the number of triangles that node *n* belongs to?

Naive answer: for all nodes v, for any pair of neighbors (u_1, u_2) of v, test if (u_1, u_2) exists.

```
Algorithm 3: Naive triangle counting algorithm

for v \in V do

for u1 \in N(v) do

for u2 \in N(v), u2 \neq u1 do

if u1 \in N(u2) then

u1 \in N(u2) then
```

note: N(x) is the list of neighbors of node x

Definitions and metrics Algorithms

Connected components
Distances computation
Local density

Computing the number of triangles

Both coefficients rely on the number of triangles. How to enumerate the number of triangles that node *n* belongs to?

Naive answer: for all nodes v, for any pair of neighbors (u_1, u_2) of v, test if (u_1, u_2) exists.

Questions:

- Why dividing by 6? Because 1 triangle is seen 6 times
- 2 Time complexity of the algorithm? $\sum_{v} \frac{d(v) \cdot (d(v)-1)}{2}$
- **1** In which case is it expensive? if d(v) is large
- Is it a problem for the networks we are working on?
 yes because beterogeneous degree distribution

Definitions and metric

Algorithm

Approximate measurement

Connected components
Distances computation
Local density

Computing the number of triangles

Both coefficients rely on the number of triangles. How to enumerate the number of triangles that node *n* belongs to?

Naive answer: for all nodes v, for any pair of neighbors (u_1, u_2) of v, test if (u_1, u_2) exists.

Questions:

- Why dividing by 6? Because 1 triangle is seen 6 times
- 2 Time complexity of the algorithm? $\sum_{v} \frac{d(v) \cdot (d(v)-1)}{2}$
- **3** In which case is it expensive? if d(v) is large

23/

Definitions and metric
Algorithm
Approximate measuremen

Connected components
Distances computation
Local density

Computing the number of triangles

Both coefficients rely on the number of triangles. How to enumerate the number of triangles that node *n* belongs to?

Naive answer: for all nodes v, for any pair of neighbors (u_1, u_2) of v, test if (u_1, u_2) exists.

Questions:

- Why dividing by 6? Because 1 triangle is seen 6 times
- 2 Time complexity of the algorithm? $\sum_{v} \frac{d(v) \cdot (d(v)-1)}{2}$
- **1** In which case is it expensive? if d(v) is large
- Is it a problem for the networks we are working on? ves. because heterogeneous degree distribution

23/32

Connected components Distances computation Local density

Computing the number of triangles

Both coefficients rely on the number of triangles. How to enumerate the number of triangles that node *n* belongs to?

Naive answer: for all nodes v, for any pair of neighbors (u_1, u_2) of v_1 test if (u_1, u_2) exists.

Questions:

- Why dividing by 6? Because 1 triangle is seen 6 times
- 2 Time complexity of the algorithm? $\sum_{v} \frac{d(v).(d(v)-1)}{2}$
- 1 In which case is it expensive? if d(v) is large
- Is it a problem for the networks we are working on?

Approximate measurement

Connected components Distances computation Local density

Computing the number of triangles

Both coefficients rely on the number of triangles. How to enumerate the number of triangles that node *n* belongs to?

Naive answer: for all nodes v, for any pair of neighbors (u_1, u_2) of v, test if (u_1, u_2) exists.

Questions:

- Why dividing by 6? Because 1 triangle is seen 6 times
- 2 Time complexity of the algorithm? $\sum_{v} \frac{d(v) \cdot (d(v)-1)}{2}$
- 1 In which case is it expensive? if d(v) is large
- Is it a problem for the networks we are working on? yes, because heterogeneous degree distribution

Connected components Distances computation Local density

Improved computation of the number of triangles

Other point view:

Consider edge (u, v), how many triangles does it belong to?

Connected components Distances computation Local density

Improved computation of the number of triangles

Other point view:

Consider edge (u, v), how many triangles does it belong to? $\rightarrow |N(u) \cap N(v)|$

Definitions and metrics

Connected components Distances computation Local density

Improved computation of the number of triangles

Other point view:

Consider edge (u, v), how many triangles does it belong to? $\rightarrow |N(u) \cap N(v)|$

```
Algorithm 4: Improved triangle counting algorithm
for (u, v) \in E, u < v do
   for w \in N(u) \cap N(v) do
      if v < w then
       │ nb++
      end
   end
end
return nb
```

- we added the inequalities to count each triangle once
- time complexity in $\sum_{(u,v)\in E} d(u).d(v)$ and can be improved, how?
- practical running time better than naive version

Algorithms

Connected components Distances computation Local density

Exercise

Apply the previous algorithm to the following graph:

Definitions and metrics Approximate measurements

Connected components Local density

Improved computation of the number of triangles

Other point view:

Consider edge (u, v), how many triangles does it belong to? $\rightarrow |N(u) \cap N(v)|$

```
Algorithm 5: Improved triangle counting algorithm
for (u, v) \in E, u < v do
   for w \in N(u) \cap N(v) do
      if v < w then
       │ nb++
      end
   end
end
return nb
```

notes:

- we added the inequalities to count each triangle once
- time complexity in $\sum_{(u,v)\in E} d(u).d(v)$ and can be improved, how?
- practical running time better than naive version

Algorithms

Connected components Distances computation Local density

Higher order cliques

Clique

Triangles are 3-nodes cliques. A clique is a complete subgraph.

- subgraph: graph obtained considering a subset of nodes and the edges between these nodes (fr: sous-graphe)
- complete: any node is connected to all others (fr: complet)

Maximal cliques

Decomposition of a graph into its maximal cliques

Approximate measurement

Connected components Distances computation Local density

Higher order cliques

Clique

Triangles are 3-nodes cliques. A clique is a complete subgraph.

- subgraph: graph obtained considering a subset of nodes and the edges between these nodes (fr: sous-graphe)
- complete: any node is connected to all others (fr: complet)

Maximal cliques

Decomposition of a graph into its maximal cliques

Obtaining the list of all maximal cliques is known to be computationally hard

→ we favor search with fixed size

Outline

- Reminder
- Distributions

 - Cumulative distributions

Approximate measurement

- Connected components
- Distances computation
- Local density
- Approximate measurements

Approximations

Approximation: given a property P, how to estimate this property on a given graph.

Examples: average degree, average distance, diameter, ...

One possible approach (sampling)

- Pick a node v of G at random
- 2 Estimate the property for *v*
- 3 Go back to step 1 while the estimation is not good enough

- How to express the notion of "good enough"?
- How to know if this approach provides a good

Approximations

Approximation: given a property *P*, how to estimate this property on a given graph.

Examples: average degree, average distance, diameter, ...

One possible approach (sampling)

- Pick a node v of G at random
- 2 Estimate the property for *v*
- 3 Go back to step 1 while the estimation is not good enough

Questions:

- How to express the notion of "good enough"?
- How to know if this approach provides a good approximation or not?

Approximate measurements

Average degree

Application of the former method to the average degree:

Definitions and metrics
Algorithms
Approximate measurements

Average distance

Application of the former method to the average degree: X-axis: fraction of measured values

Definitions and metrics
Algorithms

Diameter

Application of the former method to the average degree: X-axis: fraction of measured values

Algorit Approximate measurem

Approximations

Quality of the approximation: depends on the nature of the property.

Other possible approach

- Compute (lower and upper) bounds of the property
- Rely on the property to drive the computations

Example: For every node v, let max_v be the greatest distance from v to a node of G. Then the diameter D of G is such that:

 $max_v \leq D \leq 2max_v$

Exercise: explain why.

Approximations

Quality of the approximation: depends on the nature of the property.

Other possible approach

- Compute (lower and upper) bounds of the property
- Rely on the property to drive the computations

Example: For every node v, let max_v be the greatest distance from v to a node of G. Then the diameter D of G is such that:

$$max_v \leq D \leq 2max_v$$

Exercise: explain why.

