Zone Assignment

Bryce McManus

2022-01-26

Contents

Intro	
Library	1
Data	•
Zone assignment	
FishSET v. NE zone assignment	4
Factors that may affect point assignment	

Intro

This document shows how observations are assigned in FishSET and compares zone assignments with those found in the most recent version of the scallop data (provided Oct/Nov 2021). It then illustrates certain factors that can affect zone assignment: polygon boundary types, spherical v. planar geometry, and spatial joins.

Library

```
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.2.1, PROJ 7.2.1
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.5
## -- Attaching packages ----- tidyverse 1.3.1 --
## v ggplot2 3.3.5
                    v purrr
                             0.3.4
## v tibble 3.1.6
                    v dplyr
                             1.0.7
## v tidyr 1.1.4
                 v stringr 1.4.0
## v readr 2.1.0
                    v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.0.5
```

Warning: package 'leaflet' was built under R version 4.0.5

Data

##

This is the data from the most recent Kiteworks folder that was shared with the FishSET team in Oct/Nov of last year.

scallop_10_18 <- read_csv("~/NE Scallops/data/updated/cost_join_10_18.csv")</pre>

```
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
tenMinSqr_new <- st_read("~/NE Scallops/data/updated/10 Minute Sq")</pre>
```

```
## Reading layer `Ten_Minute_Squares' from data source
## `C:\Users\bryce.mcmanus\Work\NE Scallops\data\updated\10 Minute Sq'
## using driver `ESRI Shapefile'
## Simple feature collection with 6291 features and 13 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: -83 ymin: 24 xmax: -65 ymax: 46
## Geodetic CRS: NAD83
```

i Use `spec()` to retrieve the full column specification for this data.

Check for duplicate trip IDs.

```
nrow(scallop_10_18)

## [1] 34737

scallop_10_18 %>%
    distinct(TRIPID) %>%
    nrow()
```

[1] 34737

Zone assignment

This is the approach we take in FishSET to assign observations to zones.

```
# create sf version of data, convert to WGS84
crs <- "+proj=longlat +datum=WGS84"</pre>
# crs <- st_crs(tenMinSqr_new) # using crs from ten minute squares didn't change results
scallop_sf <-
  st_as_sf(x = scallop_10_18, coords = c("DDLON", "DDLAT"),
           crs = crs)
# convert Squares to WGS84
tenMinSqr_new <- st_transform(tenMinSqr_new, crs = st_crs(scallop_sf))</pre>
# same results as st_within
inter <- sf::st_intersects(scallop_sf, tenMinSqr_new)</pre>
inter_save <- inter</pre>
 if (any(lengths(inter) > 1)) { # if more than one zone intersects, assign to closest zone
 dub <- which(lengths(inter) > 1)
  inter[dub] <- st_nearest_feature(scallop_sf[dub,], tenMinSqr_new)</pre>
# Add ZoneID column to data
pts <- as.data.frame(as.numeric(inter))</pre>
colnames(pts) <- "col.id"</pre>
pts$ID <- tenMinSqr_new$MN10SQID[pts$col.id]</pre>
scallop_sf$ZoneID <- pts$ID</pre>
```

52 points did not intersect a zone and 195 intersected multiple zones. The rest intersected with one zone. Non-intersecting points will show up as NA in the ZoneID column.

```
table(lengths(inter_save))

##
## 0 1 2
## 52 34490 195
```

After reassigning zones with 2+ intersections to the nearest zone.

```
table(lengths(inter))
```

```
## 0 1
## 52 34685
```

FishSET v. NE zone assignment

Just to recap: ZoneID is the zone assignment column created using the FishSET approach. MN10SQID is the zone ID column that came with the updated scallop data. There is a 6.15% difference (2086 obs) in zone assignments between ZoneID and MN10SQID.

```
scallop_sf <- scallop_sf %>%
  mutate(fs_ne_match = ZoneID == MN10SQID)
# add ZoneID and match col to scallop_10_18
scallop_10_18 <-
  scallop_sf %>%
  st set geometry(NULL) %>%
  select(ZoneID, fs_ne_match) %>%
  bind_cols(scallop_10_18, .)
# summary table of matching IDs
scallop sf %>%
  st_set_geometry(NULL) %>%
  summarize(n_{obs} = n(),
            id_match = sum(fs_ne_match, na.rm = TRUE),
            id_no_match = sum(!fs_ne_match, na.rm = TRUE),
            perc_match = id_match/n() * 100,
            perc_no_match = 100 - perc_match)
```

```
## # A tibble: 1 x 5
## n_obs id_match id_no_match perc_match perc_no_match
## <int> <int> <int> <dbl> <dbl>
## 1 34737 32599 2086 93.8 6.15
```

All the unassigned points in ZoneID fall on a zone intersection.

```
s_bbox <- st_bbox(filter(scallop_sf, is.na(ZoneID)))

ggplot() +
  geom_sf(data = tenMinSqr_new, fill = "white", color = "black") +
  geom_sf(data = filter(scallop_sf, is.na(ZoneID)),color = "red") +
  coord_sf(xlim = c(s_bbox[1], s_bbox[3]), ylim = c(s_bbox[2], s_bbox[4]))</pre>
```


The difference in zone assignment appears only to occur on zone boundaries and intersections.

This leaflet plot shows the first 20 non-matching zone assignments. Each point has a label showing the zone assigned by FishSET and by NE.

```
# marker labels for leaflet plots
scallop_10_18 <-
  scallop_10_18 %>%
  mutate(ZoneID_lab = pasteO("FS: ", ZoneID, "<br/>"),
         MN10SQID_lab = paste0("NE: ", MN10SQID, "<br/>")) %>%
  unite("unite_lab", ZoneID_lab, MN10SQID_lab, sep = " ") %>%
  mutate(unite_lab = pasteO(unite_lab, "lon: ", DDLON, "<br/>lat: ", DDLAT))
fs_no_match <- scallop_10_18 %>%
  filter(fs_ne_match == FALSE) %>%
  head(20) %>%
  pull(ZoneID)
ne_no_match <- scallop_10_18 %>%
  filter(fs_ne_match == FALSE) %>%
  head(20) %>%
  pull(MN10SQID)
leaflet() %>%
  addTiles() %>%
  addPolygons(data = filter(tenMinSqr_new, MN10SQID %in% c(fs_no_match, ne_no_match)),
              fillColor = "white",
              fillOpacity = 0.5,
```

```
color = "black",
    stroke = TRUE,
    weight = 1,
    labelOptions = labelOptions(noHide = TRUE),
    layerId = ~MN10SQID,
    label = ~MN10SQID) %>%
addMarkers(data = head(filter(scallop_10_18, fs_ne_match == FALSE), 20),
    lng = ~DDLON, lat = ~DDLAT,
    label = ~lapply(unite_lab, htmltools::HTML))
```


Similar to the plot above, but comparing the unassigned points in ZoneID with MN10SQID.

Factors that may affect point assignment

Polygon boundary types

Point assignment can vary depending on whether polygon boundaries are treated as "closed", "open", or "semi-open".

A tibble: 7 x 3

```
## # Groups: boundary_type [3]
##
     boundary_type Zones_assigned
##
     <chr>
                             <int> <int>
## 1 Closed
                                 0
                                      52
## 2 Closed
                                 1 34490
## 3 Closed
                                     195
## 4 Open
                                     247
## 5 Open
                                1 34490
## 6 Semi
                                0
                                      52
## 7 Semi
                                1 34685
sf version < 1.0
Sf 1.0+ uses spherical geometry (S2) on coordinates, sf < 1.0 uses planar geometry (R2).
# test difference in S2 and R2 methods
sf_use_s2(FALSE)
## Spherical geometry (s2) switched off
inter_closed_r2 <- lengths(st_intersects(scallop_sf, tenMinSqr_new, model = "closed"))</pre>
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
inter_open_r2 <- lengths(st_intersects(scallop_sf, tenMinSqr_new, model = "open"))</pre>
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
inter_semi_r2 <- lengths(st_intersects(scallop_sf, tenMinSqr_new, model = "semi-open"))</pre>
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
## although coordinates are longitude/latitude, st_intersects assumes that they are planar
sf_use_s2(TRUE)
## Spherical geometry (s2) switched on
bound_type_r2 <- tibble(Closed = inter_closed_r2,
                        Open = inter_open_r2,
                        Semi = inter_semi_r2)
pivot_longer(bound_type_r2, cols = c("Closed", "Open", "Semi"),
             names_to = "boundary_type", values_to = "Zones_assigned") %>%
  group_by(boundary_type) %>%
  count(Zones_assigned)
```

```
## # A tibble: 6 x 3
## # Groups: boundary_type [3]
    boundary_type Zones_assigned
     <chr>
                           <int> <int>
##
## 1 Closed
                                1 33505
## 2 Closed
                                2 1232
## 3 Open
                                1 33505
## 4 Open
                                2 1232
## 5 Semi
                                1 33505
## 6 Semi
                                2 1232
```

Spatial join

Spatial joins will add additional rows if a point intersects more than one zone. If an inner join is used (left = FALSE), points that don't intersect zones are dropped.

```
scallop_sf_join <- st_join(scallop_sf,</pre>
                            tenMinSqr_new["MN10SQID"],
                            suffix = c(".x", ".y"),
                            left = TRUE)
scallop_sf_join <-</pre>
  scallop_sf_join %>%
 mutate(fs_join_match = ZoneID == MN10SQID.y,
         ne_join_match = MN10SQID.x == MN10SQID.y)
scallop sf join %>%
  st_set_geometry(NULL) %>%
  summarize(n_{obs} = n(),
    fs_join_match = sum(fs_join_match, na.rm = TRUE),
    ne_join_match = sum(ne_join_match, na.rm = TRUE),
    fs_ne_match = sum(fs_ne_match, na.rm = TRUE))
## # A tibble: 1 x 4
##
    n_obs fs_join_match ne_join_match fs_ne_match
```

Spatial join adds 195 rows: one for each point that intersected two zones.

<int>

32599

<int>

34685

```
nrow(scallop_sf_join)
```

32599

```
## [1] 34932
```

<int>

1 34932

##

```
scallop_sf_join %>%
st_set_geometry(NULL) %>%
distinct(TRIPID) %>%
nrow()
```

```
## [1] 34737
```

Table of matching zones by FishSET, NE, and spatial join approaches.

```
scallop_sf_join %>%
    st_set_geometry(NULL) %>%
    count(fs_ne_match, fs_join_match, ne_join_match)
```

```
## # A tibble: 4 x 4
     fs_ne_match fs_join_match ne_join_match
                                                   n
                 <1g1>
                                <1g1>
##
     <1g1>
                                               <int>
## 1 FALSE
                 FALSE
                                FALSE
                                                 195
## 2 FALSE
                 TRUE
                                FALSE
                                                2086
## 3 TRUE
                 TRUE
                                TRUE
                                               32599
## 4 NA
                 NA
                                NA
                                                  52
```

All 195 of the cases from the first row of the table above (no shared zone assignments) are from points assigned to multiple zones. No approach handled this case in the same way.

```
dup_trip_id <- scallop_10_18$TRIPID[lengths(inter_save) > 1]

scallop_sf_join <-
    scallop_sf_join %>%
    mutate(dup_zone = TRIPID %in% dup_trip_id)

scallop_sf_join %>%
    st_set_geometry(NULL) %>%
    filter(!fs_ne_match & !fs_join_match & !ne_join_match) %>%
    summarize(dup_zone = sum(dup_zone))
```

```
## # A tibble: 1 x 1
## dup_zone
## <int>
## 1 195
```