AE-705: Introduction to Flight Bernoulli, Coandă & Mach Three Giants of Fluid Mechanics

Siddharth Joshi
Mechanical Engineering Department
VIT Vellore

"...there is no philosophy which is not founded upon knowledge of phenomena, but to get any profit from this knowledge it is absolutely necessary to be a mathematician."

DANIEL BERNOULLI

Early Life

Return to Basel

Academics

Source: http://bernoullisprinciple.weebly.com/uploads/6/6/7/8/6678503/1009873.jpeg/

<u>Life in</u> <u>Saint Petersburg</u>

Source:https://static1.squarespace.com/static/530bb0b9e4b0f4676186966d/531fd3 17e4b0db5158a50c15/531fd317e4b0db5158a50c14/1394405054069/260px-Daniel_Bernoulli_001.jpg

Daniel Bernoulli[1700-1782]

Exercitationes quaedam Mathematicae

Hydrodynamica

AE-705 Introduction to Flight

Lecture-04

AE-705 Introduction to Flight

Lecture-04

THE MAGNUS EFFECT **FASTER AIR** SLOWER AIR Fastball - Pitchers's Perspective

55162b42e4b00ad45a1d2a1a/1427516393546/magnus-effect.gif

MAGNUS EFFECT

Spinning object moving through a fluid creates a pressure difference between its sides

Difference in pressure curves the object and changes its trajectory

MAGNUS EFFECT

Lecture-04

Capsule-02

AE-705 Introduction to Flight

Source: https://www.youtube.com/watch?v=YIPO3W081Hw

Source: https://static.vecteezy.com/system/resources/previews/000/077/164/non_2x/cartoon-scientist-vector.jpg

Question

Why does this happen?

Bernoulli Principle

Or

Coandă Effect

History and Applications

COANDĂ EFFECT

Source: http://ampress.ro/wp-content/uploads/2015/04/coand% C4%83.jpg

Henri Coandă [1886-1972]

- born in Bucharest, Romania
- interested in the technical problems of flight
- designed and piloted the first jet plane known as the Coandă-1910

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Coanda_1910.png/300px-Coanda_1910.png

In 1930, he discovered the Coandă effect

AE-705 Introduction to Flight

Lecture-04

Coandă Effect

jet flow attaches itself to a nearby surface

Jet remains attached even when the surface curves away

Source: http://www.thermofluids.co.uk/images/coandaeffect2.jpg

Let's understand Coandă Effect with an <u>experiment</u>

Source: https://thumbs.dreamstime.com/z/cartoon-boy-idea-28030171.jpg

Source: https://s-media-cache-ak0.pinimg.com/originals/38/2e/b7/382eb7839f80b6/5202c32fa3c4f642c8.jpg

Coandă Effect Applications

Source: http://www.discoverhover.org/infoinstructors/images/cans.jpg

Source: http://www.danubewings.com/wp-content/uploads/2015/11/4-14.jpg

PING PONG
BALLS

NORMAL
PRESSURE

NORMAL
PRESSURE

NORMAL
PRESSURE

NORMAL
PRESSURE

NORMAL
PRESSURE

NORMAL
PRESSURE

Source: http://www.aethro-kinematics.com/Ping-pong.jpg

Coandă Effect Saucer

The presentations and conceptions of the average man of the world are formed and dominated, not by the full and pure desire for knowledge as an end in itself, but by the struggle to adapt himself favourably to the conditions of life.

(Ernst Mach)

izquotes.com

History, Regimes, Applications and Shock Waves

MACH NUMBER

Source: http://www.kbvp.com/sites/default/files/images/F18F% 20 pushing % 20 the % 20 mach. preview.jpg

- > Dimensionless number
- \triangleright Determines the behaviour of fluid at v > a

Mach Number

Local Flow Velocity

 $M = \frac{v}{a}$

Speed of Sound in the medium

Source:http://www.aerospaceweb.org/question/history/mach/ackeret.jpg

Significance of Mach Number

At high speeds →
 Aircraft compresses air around it

- Local density of the air varies
- Varying Density →
 Alters the net force on the aircraft

Source: http://i178.photobucket.com/albums/w276/scd718/Aircraft/f14d2cm.jpg

As per Conservation of Momentum

Assuming Isentropic flow

$$\rho V dV = -dP$$

$$\frac{dP}{P} = \gamma \frac{d\rho}{\rho} \qquad dP = \gamma \frac{P}{\rho} d\rho$$

$$= \gamma RT d\rho$$
Capsule-02

AE-705 Introduction to Flight

Lecture-04

$$dP = \gamma \frac{P}{\rho} d\rho = \gamma R T d\rho$$
$$dP = a^2 d\rho$$

Combining with momentum equation

$$\rho V dV = -a^2 d\rho$$

$$-M^2\frac{dV}{V}=\frac{d\rho}{\rho}$$

If

 $M<1 \rightarrow \rho\sim constant$

 $M\sim1 \rightarrow d\rho\sim dV$

 $M>1 \rightarrow d\rho > dV$ by a factor of M^2

HISTORY OF MACH NUMBER

Source:https://media1.britannica.com/eb-media/69/68569-004-0B1898D2.jpg

Ernst Mach, February 18, 1838 to February 19, 1916

He was an Austrian physicist and philosopher, noted for his contributions to physics such as the Mach number and the study of shock waves. As a philosopher of science, he was a major influence on logical positivism and through his criticism of Newton, a forerunner of Einstein's relativity.

"...Science always has its origin in the adaptation of thought to some definite field of experience"

ERNST MACH

AE-705 Introduction to Flight

Lecture-04

Source:https://upload.wikimedia.org/wikipedia/commons/thumb/b/be/Ernst_Mach_01.jpg/648px-Ernst_Mach_01.jpg

Ernst Mach [1838-1916]

 First to understand the fundamental principles of supersonic flow

Source:https://www.wired.com/wp-content/uploads/images_blogs/wiredscience/2011/06/supersonic-bullet_660.jpg

Source: Anderson, J. D., Jr. <u>History of</u> <u>High Speed Flight and its Technical</u> <u>Development.</u>, AIAA Paper 2000-02, 30th ASM&E, Reno, NV, 2000

Revolutionary paper *Photographische Fixierung der durch Projektile in der Luft eingeleiten Vorgange*, presented before the Academy of Sciences in Vienna in 1887

SUPERSONIC BULLET EXPERIMENT

 Demonstrated the existence of the shock waves Mach photographed shock waves formed by a bullet traveling faster than the speed of sound

weaker shock wave created at the aft end of the bullet

strong shock wave formed by the nose of the bullet

lines made by the trip wires that triggered the camera

Source:http://www.aerospaceweb.org/question/history/mach/bullet.jpg

AE-705 Introduction to Flight

Lecture-04

SUPERSONIC BULLET EXPERIMENT

A shadowgraph was used to obtain the photo

AE-705 Introduction to Flight

Lecture-04

Shock waves create changes in temperature and air flow

Source:http://www.aerospaceweb.org/question/history/mach/shadowgraph.gif

Shadows created on the screen

Source:http://www.aerospaceweb.org/question/aerodynamics/bullet/bullet2.jpg

MACH REGIMES

Division of flight regimes based on Mach number

Mach Number Flow Regimes

 $Source: https://upload.wikimedia.org/wikipedia/commons/9/95/Mach_Number_Flow_Regimes.png$

AE-705 Introduction to Flight

Lecture-04

SUBSONIC FLOW

Aircraft with high aspect ratio wings and rounded features

Source:http://1j5jsm2mvi7w2f7x4m23n116.wpengine.netdna-cdn.com/wp-content/uploads/2015/07/ALH-jetbuyfeatured.jpg

Source:http://i.dailymail.co.uk/i/pix/2016/10/15/01/0A34186C000005DC-3839195-image-a-2_1476489689898.jpg

Grumman OV-1 Mohawk

Mach Number Flow Regimes

Focke-Wulf Fw 190

Mach Number Source:https://upload.wikimedia.org/wikipedia/commons/9/95/Mach_Number_Flow_Regimes.png

AE-705 Introduction to Flight

Lecture-04

TRANSONIC FLOW

Region which divides the subsonic and supersonic flows

Source: http://www.airbusgroup.com/int/en/group-vision/what-we-do.html

Airbus A350-1000

Mach Number Flow Regimes

Source:http://www.boeing.com/resources/boeingdotcom/commercial/747/assets/images/marquee-747.jpg

Boeing 747-8

Source:https://upload.wikimedia.org/wikipedia/commons/9/95/Mach_Number_Flow_Regimes.png

AE-705 Introduction to Flight

Lecture-04

SUPERSONIC FLOW

Source:http://i.dailymail.co.uk/i/pix/2015/01/05/246C29D00000578-0-image-a-5_1420466801321.jpg

Source:http://images.indianexpress.com/2016/07/tejas-oped-2-759.jpg

HAL Tejas

Boeing F/A-18E/F Super Hornet

Mach Number Flow Regimes

Source:https://upload.wikimedia.org/wikipedia/commons/9/95/Mach_Number_Flow_Regimes.png

HYPERSONIC FLOW

 $Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcT9tDN-en0h0yQjy0sQncQ_gYL7ai8RO7ySmh8Q_p5mqjeQrNsl$

Source:https://static.turbosquid.com/Preview/2014/05/21__10_53_06/rend02.jpg1e5d7a4d -c39f-4237-bc41-b4073ce4880bOriginal.jpg

Boeing X-51A (WaveRider)

Source:https://upload.wikimedia.org/wikipedia/commons/9/95/Mach_Number_Flow_Regimes.pngc

AE-705 Introduction to Flight

Lecture-04

HYPER VELOCITY FLOW

Source:http://www.space-rockets.com/photo/launch1.jpg

Source:https://www.nasa.gov/sites/default/files/orion-d4-liftoff-ingalls.jpg

ULA Delta IV

Pathfinder

Mach Number Flow Regimes

Mach Number

Source:https://upload.wikimedia.org/wikipedia/commons/9/95/Mach_Number_Flow_Regimes.pngc

AE-705 Introduction to Flight

Lecture-04

Mach Number of aircrafts, spacecraft and missiles

 $Source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcT9tDN-en0h0yQjy0sQncQ_gYL7ai8RO7ySmh8Q_p5mqjeQrNsl$

X-43 A Scramjet

- Mach 9.6
- Highest speed aircraft

Source:https://upload.wikimedia.org/wikipedia/commons/thumb/2/20/AG M-84_Harpoon_launched_from_USS_Leahy_%28CG-16%29.jpg/330px-AGM-84_Harpoon_launched_from_USS_Leahy_%28CG-16%29.jpg

Exocet missile

Mach 3-5

Saturn V

Mach 13

AE-705 Introduction to Flight

Lecture-04

MACH WAVES

 $V_{shock\,wave} \uparrow \leftrightarrow Amplitude \uparrow$

FORMATION OF SHOCK WAVES

AE-705 Introduction to Flight

Lecture-04

Source: http://www.exo.net/~pauld/workshops/ligo/dopplercircles.gif

Stationary sound wave

Doppler effect takes place and $\ \lambda_1 < \lambda_2$

Source: https://uprepcharlie.files.wordpress.com/2013/05/circles.png/

Subsonic sound wave

Source: http://www.school-for-champions.com/science/images/sound_traveling_faster_sonic_boom.gif

Supersonic sound wave

AE-705 Introduction to Flight

Lecture-04

Normal Shock

Shock wave ⊥ flow direction

Curved Shock

- Shock wave not ⊥ flow direction
- Decreases with Mach number

Source: https://www.slideshare.net/asiflemon7/presentation-on-shockwave-phenomena

Source: https://www.youtube.com/watch?v=x6DUbxCpszU

SONIC BOOM

Source: https://img.buzzfeed.com/buzzfeed-static/2015-02/23/11/enhanced/webdr03/original-19818-1424710169-33.png?downsize=715:*&output-format=auto&output-quality=auto

Source: https://www.scienceabc.com/wp-content/uploads/2017/04/Military-jet-plane-sonic-boom.jpg

- Boom experienced when there is a sudden change in pressure
- Overall pressure profile known as N-wave

SONIC BOOM

- Loud noise created by shock wave
- Coherent addition of wave → creation of strong sum wave

Source: https://qph.ec.quoracdn.net/main-qimg-c921e1f0659b74c8de6eece7fff7eadc

A conical pressure wave front is produced called **Mach Cone**

 $Source: \ http://w3.shorecrest.org/\sim Lisa_Peck/Physics/syllabus/soundlight/ch25waves/ch25wave_images/sonicboom.jpg$

Mach cone meets the ground creating a hyperbolic area called

Boom Carpet

Mach Angle

Source: https://www.grc.nasa.gov/www/k-12/airplane/machang.html

Mach angle is the angle a shock wave makes with the direction of motion

$$\sin \mu = \frac{a}{v}$$

$$\sin \mu = \frac{1}{M}$$

$$\mu = \sin^{-1} \frac{1}{M}$$

AE-705 Introduction to Flight

Lecture-04

ISENTROPIC FLOW

- Reversible flow at constant value of entropy
- Sound waves creation → isentropic process
- change in flow variables→ small and gradual

- No heat is added to the flow
- No energy transformations occur due to friction or dissipative effects

Source: http://engineering-references.sbainvent.com/thermodynamics/pictures/isentropic-process.jpg

T-S Diagram

- energy can be exchanged with the flow → as long as it doesn't happen as heat exchange.
- Example: an isentropic expansion or compression

Source: http://www.ecourses.ou.edu/ebook/thermodynamics/ch06/sec065/media/th060508p.gif

h-s Diagram

TOTAL PRESSURE

Source: https://eng-software.com/media/1771/pressure2.png?width=400px&height=256px

- Pressure developed if the fluid were brought to rest isentropically
- The entire kinetic energy of the fluid particle is utilized to increase its pressure only
- This is possible only in an isentropic process

$$P_{total} = P_{static} + P_{dynamic}$$

Assuming incompressible flow

Applying Bernoulli at A and B

Source: http://www.nptel.ac.in/courses/112104118/lecture-16/images/fig_16.2.gif

Pressure

measuring Device

$$V = \sqrt{2(\frac{P_o - P}{\rho})}$$

TOTAL TEMPERATURE

 Temperature developed when the moving flow is isentropically brought to a halt

 depends on the Mach number of the flow

Source: https://wahlco.com/wp-content/uploads/2016/01/stagnation-thermocouple.jpg

- T_{total} is the sum of the static temperature and the dynamic temperature
- total temperature measured using thermocouples

$$T_{total} = T_{static} + T_{dynamic}$$

Assuming Isentropic flow, the relation between Total and Static temperature is

Also

$$\frac{P}{P_o} = \left(\frac{T}{T_t}\right)^{\frac{\gamma}{\gamma - 1}}$$
Total Pressure