

Introdução à Computação (I.C)

Módulo 02

Prof. Daniel Caixeta in

Conteúdo programático

Representação da Informação: Dos bits aos bytes [...]

- 4.1. Conceito de bit e byte.
- 4.2. Possibilidades de representação.

Representação computacional: Números, textos, imagens, etc.

- 5
- 5.1. Números.
- 5.2. Textos.
- 5.3. Imagem.
- 5.4. Som/Música.

6

Sistemas de numeração: A história dos números.

- 6.1. Introdução [...].
- 6.2. Os sistemas de numeração.
- 6.3. O sistema egípcio (3.000 a.C.).
- 6.4. O sistema babilônico (2.000 a.C.).
- 6.5. O sistema romano (27 a.C. 395 d.C.).
- 6.6. O sistema indo-arábico (± sec. V).

Referências

4.1. CONCEITO DE BIT E BYTE

• Um bit ou dígito binário (binary digit), é:

[...] a unidade básica que os computadores e sistemas digitais utilizam para trabalhar, e pode assumir apenas dois valores, 0 ou 1. (FARIAS, 2013).

- Já um byte é uma sequência de 8 bits.
- Portanto, o byte é a menor unidade de armazenamento utilizada pelos computadores. Isto quer dizer, que nunca conseguiremos salvar menos do que 8 bits em uma informação.

• Todo dispositivo de armazenamento indica o número de *bytes* (8 *bits*) que ele pode conter. Vejamos as principais unidades de medida.

Unidade	Símbolo	Número de <i>bytes</i>	Base exponencial
Kilobyte	KB	1.024	2 ¹⁰
Megabyte	MB	1.048.576	2 ²⁰
Gigabyte	GB	1.073.741.824	2 ³⁰
Terabyte	TB	1.099.511.627.776	2 ⁴⁰
Petabyte	PB	1.125.899.906.842.624	2 ⁵⁰
Exabyte	EB	1.152.921.504.606.846.976	2 ⁶⁰
Zettabyte	ZB	1.180.591.620.717.411.303.424	2 ⁷⁰
Yottabyte	YB	1.208.925.819.614.629.174.706.176	2 ⁸⁰

APRENDA MAIS Q

• Curiosidades [...]

- É bastante comum a confusão entre os consumidores de internet em relação à unidade de medida da velocidade de transferência.
- Quando você contrata um serviço, por exemplo 100 MB, você acha que poderá fazer download de um arquivo a "100 mega por segundo". Isto pode parecer possível "baixar" um arquivo de 100 megabytes em 1 segundo, o quê não é verdade.
- A velocidade de transferência é medida em bits por segundo e não em bytes.
 Portanto, um download a 100 mbps significa 100 megabits por segundo e não 100 megabytes.

4.2. POSSIBILIDADES DE REPRESENTAÇÃO

• Um *bit* só pode assumir dois valores (0 ou 1), portanto, só será possível representar exatamente dois estados distintos. (FARIAS, 2013).

Tabela 1. Representação com um bit.

Bit	Porta	Lâmpada	Detector de movimento	Estado civil
0	Fechada	Desligada	Sem movimento	Solteiro
1	Aberta	Ligada	Com movimento	Casado

 Por exemplo, em um sistema com trava eletrônica, o valor 0 poderia indicar que a porta estava fechada, enquanto 1 indicaria que a porta estaria aberta.

 Para representar mais de dois valores distintos precisamos de uma sequência de bits maior. Na Tabela 2, é apresentado exemplos utilizando uma sequência de 2 bits, obtendo assim 4 possibilidades.

Tabela 2. Representação com dois bit.

Sequência de <i>bit</i> s	Semáforo
00	Desligado
┌ ── 01 ← ─	Pare
10	Atenção
└→ 11 ─	Siga

 Segundo Farias (2013), o número de possibilidades diferentes que podemos representar depende do tamanho da sequência que estamos utilizando, mais precisamente:

 $P = 2^n$, onde n = tamanho de bits.

Exemplos:

$$2^{1} = 2$$
 $2^{2} = 4$ $2^{3} = 8$ $2^{4} = 16$ $2^{5} = 32$ $2^{6} = 64$ $2^{7} = 128$ $2^{8} = 256$ (1 byte)

5.1. NÚMEROS

- Independente do que desejamos representar, o primeiro passo é verificar quantas informações diferentes iremos utilizar e, com base nestas informações podemos calcular quantos bits serão necessários para representar todas as possibilidades. (FARIAS, 2013).
- Nessa representação torna-se necessário estabelecer um intervalo com as possibilidades distintas que queremos representar (2ⁿ). *E.g.*, 2⁸ = 256 possibilidades diferentes.
- Para isso, a construção de tabelas são bastante úteis.

Tabela 3. Exemplo de uma tabela representando os números utilizando um byte.

N.	B.	N.	B.	N.	B.	N.	B.	N.	B.
0	00000000	8	00001000	16	00010000	24	00011000	248	11111000
1	0000001	9	00001001	17	00010001	25	00011001	249	11111001
2	00000010	10	00001010	18	00010010	26	00011010	250	11111010
3	00000011	11	00001011	19	00010011	27	00011011	251	11111011
4	00000100	12	00001100	20	00010100	28	00011100	252	11111100
5	00000101	13	00001101	21	00010101	29	00011101	253	11111101
6	00000110	14	00001110	22	00010110	30	00011110	254	11111110
7	00000111	15	00001111	23	00010111	31	00011111	255	11111111

Legenda

N. = Número.

B. = Byte.

5.2. TEXTOS

- O formato ASCII¹ é o padrão de representação de caracteres mais conhecido.
- Na Tabela 4 apresentamos um exemplo de extrato da tabela ASCII, onde cada caractere possui sua representação em bits.
- Este padrão também inclui outros caracteres de controle, não apresentados na tabela, como fim de linha e final de arquivo. A composição de um texto é realizada informando a sequência de caracteres contidos nele. (FARIAS, 2013).

```
!"#$%&'()*+,-./012
3456789:;<=>?@ABCDE
FGHIJKLMNOPQRSTUVWX
YZ[\]^_`abcdefghijk
lmnopqrstuvwxyz{|}~
```

Tabela 4. Exemplo de alguns caracteres no formato ASCII. Diferenciação entre caracteres maiúsculos e minúsculos e alguns números.

Caractere	Byte	Caractere	Byte	
а	01100001	Α	01000001	
b	01100010	В	01000010	
С	01100011	С	01000011	
d	01100100	D	01000100	
		[]		
X	01111000	X	01011000	
у	01111001	Υ	01011001	
Z	01111010	Z	01011010	
		[]		
0	00110000	1	00110001	1
2	00110010	3	00110011	'

- Percebe-se que neste sistema os caracteres são representados por exatamente um byte (tamanho mínimo possível). (FARIAS, 2013).
- Nota-se também a ausência dos caracteres especiais, como o "ç", "ß", além dos caracteres acentuados como "ã", "ô", "é", etc. Isto porque este padrão é americano, sendo utilizado apenas para codificar mensagens escritas no idioma inglês, que não possuem tais caracteres.
- Por esta razão, existem vários outros sistemas de codificação para melhor representar as mensagens do idioma que se deseja utilizar. Alguns exemplos são: Unicode, UTF-8 e ISO 8859-1 (padrão latinoamericano). (FARIAS, 2013).

5.3. IMAGEM

- Uma imagem é a representação visual de um objeto.
- Uma das formas possíveis para representar imagens é tratá-las como grades de pontos (ou *pixels*). E o tamanho desta grade (pontos horizontais e verticais) é conhecido como <u>resolução da imagem</u>.
- Ao atribuir uma cor para cada ponto, podemos então pintar a imagem.

Figura 2. Fotografia evidenciando a grade de pontos. (FARIAS, 2013).

- Um sistema popular de representação de cores é o RGB, onde é reservado um *byte* para os tons de cada uma das cores primárias: vermelho, verde e azul. Este sistema é utilizado pelo formato de imagem BMP².
- Como um byte permite representar 256 tons de uma cor, ao total são possíveis representar mais de 16 milhões de cores (256 x 256 x 256).
- O sistema RGBA inclui também um canal alpha, responsável por representar a transparência do ponto, utilizado pelo formato de imagem PNG³.

- 2. BMP Bit Mapped Picture.
- 3. PNG Portable Network Graphics.

5.4. SOM/MÚSICA

- Para representar uma música, podemos imaginá-la como sendo apenas uma partitura e salvar todas as informações contidas nela. Depois a música poderá ser ouvida tocando a partitura salva.
- Trata-se de uma representação de conversão analógica-digital cujos princípios estão fundamentados nos estudos da teoria musical.

Figura 3. Partitura da música Marcha Soldado.

- Já o formato digital envolve estudos sobre as propriedades físicas do som (acústica) e teorias das ondas, tais como fases, períodos e frequências além das composições multidimensionais do som. Tudo em bits (0s e 1s).
- Formatos como mp3, wav, aac, etc., apresentam essas composições de acordo com as taxas de resoluções (fps) que caracterizam a profundidade da natureza de um som.

Figura 4. Exemplos de ondas de som.

APRENDA MAIS Q

• Dica bacana [...].

Vídeo sobre vídeo sobre a Representação da informação.

https://www.youtube.com/watch?v=y_eCltEibHl

6.1. INTRODUÇÃO [...]

- Um numeral é um símbolo ou grupo de símbolos que representa um número em um determinado instante da história humana. (FARIAS, 2013).
- Por exemplo os símbolos "11", "onze" e "XI" são numerais diferentes.
 Representam o mesmo número, apenas escrito em idiomas e épocas diferentes. (ibidem).
- Vamos falar bastante sobre o sistema de numeração, principalmente a binária, que é utilizada por computadores e responsável por operações aritméticas computacionais. (*ibidem*).

6.2. OS SISTEMAS DE NUMERAÇÃO

- Há milhares de anos o modo de vida era muito diferente do atual. Os primórdios não possuíam a necessidade de contar. Eles não compravam, não vendiam, portanto não tinham moeda.
- Com o passar dos anos, os costumes foram mudando e passaram a cultivar a terra, a criar animais, a construir casas e a comercializar.
- Surge então a necessidade de contar.

Figura 5. Modo de vida dos povos antigos.

 Surgem as primeiras aldeias que, lentamente foram crescendo, tornando-se cidades (polis). Cidades se desenvolveram, dando origem algumas das grandes civilizações de nossa história.

 Com o progresso e o alto grau de organização das antigas civilizações, a necessidade de aprimorar os processos de contagem e seus registros tornou-se fundamental.

Figura 6. Ruinas da Roma antiga.

• Foram criados, então, símbolos e regras originando assim os diferentes sistemas de numeração.

6.3. O SISTEMA EGÍPCIO (3.000 a.C.)³

 Um dos primeiros sistemas de numeração é o egípcio, que foi desenvolvido pelas civilizações que viviam nas margens do rio Nilo, no nordeste da África.

Figura 7. Sistema de numeração egípcio. (FARIAS, 2013).

^{3.} Este sistema adota o princípio aditivo, ou seja, os símbolos possuem seus respectivos valores individuais e juntos passam a formar novos valores pela simples adição destes.

6.4. O SISTEMA BABILÔNICO (2.000 a.C.)

- Os babilônios viviam na Mesopotâmia, nos vales dos rios Tigres e Eufrates, na Ásia, atual Iraque.
- É bem semelhante ao sistema egípcio, pois ambos se baseavam na adição.

Figura 8. Sistema babilônico. (FARIAS, 2013).

6.5. O SISTEMA ROMANO (27 a.C. – 395 d.C.)

- O sistema de numeração romano, apesar das dificuldades operatórias foi utilizado na Europa durante muitos séculos. Com o passar dos anos sofreu processos de evolução.
- Inicialmente, utilizava-se apenas o princípio aditivo, sendo que um mesmo símbolo podia ser repetido até, no máximo, quatro vezes.
- Posteriormente, passou a utilizar também o princípio subtrativo, além de permitir a repetição de um mesmo símbolo, no máximo, três vezes.

Numeração romana antiga	Numeração romana moderna
Princípio aditivo	Princípio subtrativo
	I V 5 – 1 = 4
V	I X
5 + 1 + 1 + 1 + 1 = 9	10 -1 = 9

Figura 9. Sistema de numeração romano e sua evolução. (FARIAS, 2013).

6.6. O SISTEMA INDO-ARÁBICO (± SEC. V)

- Os hindus, que viviam no vale do Rio Indo, hoje Paquistão, desenvolveram um sistema de numeração que reunia as diferentes características dos antigos sistemas.
- Tratava-se de um sistema posicional decimal. Posicional porque um mesmo símbolo representava valores diferentes dependendo da posição ocupada, e decimal porque era utilizado um agrupamento de dez símbolos.
- Corresponde ao nosso atual sistema de numeração.
- Por terem sido os árabes os responsáveis pela divulgação, ficou conhecido como sistema de numeração indo-arábico.

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Figura 10. Evolução do sistema numérico indo-arábico.

 Observe que, inicialmente, os hindus não utilizavam o zero. A criação de um símbolo para o nada, ou seja, o zero, foi uma das grandes invenções dos hindus.

REFERÊNCIAS

FARIAS, Gilberto. Introdução à computação. UFPB, 2013.

TANENBAUM, Andrew S. Sistemas Operacionais Modernos. 3ª ed. Pearson, 2010.

TANENBAUM, Andrew S. AUSTIN, Todd. Organização Estruturada de Computadores. 6ª ed. Pearson, 2013.

MONTEIRO, Mário A. Introdução à Organização dos Computadores. 5ª ed. LTC. 2014.

TANENBAUM, Andrew S. VAN STEEN, Maarten. Sistemas Distribuídos. Princípios e Paradigmas. 2ª ed. Pearson, 2007.

TEDESCO, Kennedy. Bits, bytes e unidades de medida. Disponível *in*: http://twixar.me/Fgjm . Acessado em: 10.mar.2021.

RIBEIRO, Carlos; DELGADO, José. Arquitetura de Computadores. 2ª ed. Rio de Janeiro: LTC, 2009.

