CHAROTAR UNIVERSITY OF SCIENCE & TECHNOLOGY

Third Semester of B. Tech. (CE) Examination March 2018

CE242 / CE204.01 / CE204 Digital Electronics

Date: 30.03.2018, Friday Time: 01.30 p.m. To 04.30 p.m. Maximum Marks: 70

Instructions:

- 1. The question paper comprises two sections.
- 2. Section I and II must be attempted in separate answer sheets.
- 3. Make suitable assumptions and draw neat figures wherever required.
- 4. Use of scientific calculator is allowed.

SECTION - I

Q - 1	Answer the following questions.	[06]	
a.	Represent Decimal Number 865 into its equivalent BCD		
b.	Convert (201BC) ₁₆ into its equivalent Decimal & Octal number.	[02]	
c.	Draw the Equivalent circuit for the given function USING NAND GATE ONLY, $F = A B' + B' C D + A B' D + B' C$	[03]	
Q-2	Answer the following questions. (Any Three)	[15]	
a.	Explain Half Adder & Half Subtractor	[05]	
b.	Simplify the following Boolean function using K-Map:	[05]	
	$F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$	L 3	
c.	Implement the following Boolean function using an 8:1 multiplexer. (Use A as input)	[05]	
	$F(A, B, C, D) = \sum_{i=1}^{n} (0, 1, 3, 4, 8, 9, 15)$		
d.	Implement the following functions using ROM:	[05]	
	$F1(A1, A0) = \sum (1, 2, 3)$		
	$F2(A1, A0) = \sum (0, 2)$		
e.	Design 5 X 32 Decoder Using 3 X 8 and 2 X 4 Decoders	[05]	
Q - 3	Answer the following questions. (Any two)	[14]	
Q - 3 a.	Answer the following questions. (Any two) Design a circuit for BCD to excess-3 code conversion	[14] [07]	
-			
a.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum_{i=0}^{\infty} m(0, 1, 2, 8, 10, 11, 14, 15)$	[07]	
a.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum m(0, 1, 2, 8, 10, 11, 14, 15)$ Implement the following functions using PLA	[07]	
a. b.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum m (0, 1, 2, 8, 10, 11, 14, 15)$ Implement the following functions using PLA $F0(X, Y, Z) = \sum m (0, 2, 3, 4)$	[07] [07]	
a. b.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum m (0, 1, 2, 8, 10, 11, 14, 15)$ Implement the following functions using PLA $F0(X, Y, Z) = \sum m (0, 2, 3, 4)$ $F1(X, Y, Z) = \sum m (0, 1, 4)$	[07] [07]	
a. b. c.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum m(0, 1, 2, 8, 10, 11, 14, 15)$ Implement the following functions using PLA $F0(X, Y, Z) = \sum m(0, 2, 3, 4)$ $F1(X, Y, Z) = \sum m(0, 1, 4)$ $F2(X, Y, Z) = \sum m(0, 1, 2, 3)$	[07] [07] [07]	
a. b.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum m (0, 1, 2, 8, 10, 11, 14, 15)$ Implement the following functions using PLA $F0(X, Y, Z) = \sum m (0, 2, 3, 4)$ $F1(X, Y, Z) = \sum m (0, 1, 4)$ $F2(X, Y, Z) = \sum m (0, 1, 2, 3)$ Why NAND & NOR gates are called as Universal Gates? Explain NAND & NOR as	[07] [07]	
a. b. c.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A,B,C,D) = \sum m \ (0,1,2,8,10,11,14,15)$ Implement the following functions using PLA $F0(X,Y,Z) = \sum m \ (0,2,3,4)$ $F1(X,Y,Z) = \sum m \ (0,1,4)$ $F2(X,Y,Z) = \sum m \ (0,1,2,3)$ Why NAND & NOR gates are called as Universal Gates? Explain NAND & NOR as Universal Gates	[07] [07] [07]	
a. b. c.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A, B, C, D) = \sum m (0, 1, 2, 8, 10, 11, 14, 15)$ Implement the following functions using PLA $F0(X, Y, Z) = \sum m (0, 2, 3, 4)$ $F1(X, Y, Z) = \sum m (0, 1, 4)$ $F2(X, Y, Z) = \sum m (0, 1, 2, 3)$ Why NAND & NOR gates are called as Universal Gates? Explain NAND & NOR as Universal Gates $ SECTION - II $	[07] [07] [07]	
a.b.c.d.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A,B,C,D) = \sum m \ (0,1,2,8,10,11,14,15)$ Implement the following functions using PLA $F0(X,Y,Z) = \sum m \ (0,2,3,4)$ $F1(X,Y,Z) = \sum m \ (0,1,4)$ $F2(X,Y,Z) = \sum m \ (0,1,2,3)$ Why NAND & NOR gates are called as Universal Gates? Explain NAND & NOR as Universal Gates $ \textbf{SECTION-II} $ Answer the following questions.	[07] [07] [07]	
 a. b. c. d. Q-4 a. 	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A,B,C,D) = \sum m \ (0,1,2,8,10,11,14,15)$ Implement the following functions using PLA $F0(X,Y,Z) = \sum m \ (0,2,3,4)$ $F1(X,Y,Z) = \sum m \ (0,1,4)$ $F2(X,Y,Z) = \sum m \ (0,1,2,3)$ Why NAND & NOR gates are called as Universal Gates? Explain NAND & NOR as Universal Gates	[07] [07] [07] [07]	
a.b.c.d.	Design a circuit for BCD to excess-3 code conversion Simplify the following function by using the Tabulation Method: $F(A,B,C,D) = \sum m \ (0,1,2,8,10,11,14,15)$ Implement the following functions using PLA $F0(X,Y,Z) = \sum m \ (0,2,3,4)$ $F1(X,Y,Z) = \sum m \ (0,1,4)$ $F2(X,Y,Z) = \sum m \ (0,1,2,3)$ Why NAND & NOR gates are called as Universal Gates? Explain NAND & NOR as Universal Gates $ \textbf{SECTION-II} $ Answer the following questions.	[07] [07] [07]	

Q-5**Answer the following questions. (Any Three)**

[15]

- Express the following function as a sum of min-terms and product of max-terms: [05] a. F(A, B, C, D) = B'D + A'D + BD
- Explain clocked R-S flip flop with symbol, logic diagram and characteristic table b. [05]
- Draw the State Diagram for the following State Table. Also reduce the numbers of the c. [05] states of the State Table. Tabulate reduced State Table & Draw the reduced State Diagram of it.

Present State	Next State		Output	
Flesent State	X = 0	X = 1	X = 0	X = 1
A	D	С	0	0
В	G	A	1	0
С	F	В	1	1
D	G	A	1	0
Е	F	В	0	0
F	F	Е	0	0
G	D	С	0	0
Н	G	Н	0	1

d. Design 3-bit binary counter using D Flip-Flip [5]

A sequential circuit with Two D flip-flops, A and B; Two Inputs X & Y; and One e. [5] Output Z, specified by the following Next State & Output Equations:

$$A (t+1) = X'Y + XA$$

 $B (t+1) = A$
 $Z = B$

- Derive the State Table
- Draw the logic diagram of the circuit

Q-6 Answer the following que	stions. (Any Two)
------------------------------	-------------------

[14]

Explain 4-bit Bidirectional Shift Register with Parallel load with Diagram a.

[07]

[07]

b. Explain BCD Ripple Counter using J-K flip flops and state diagram.

[07]

Design a Decimal Counter using J-K Flip-Flop c.

d. Design a clocked sequential circuit for the given state diagram using T Flip-Flop [07]

