第十章有向图

陈建文

May 12, 2023

定义1. 设V为一个有穷非空集合, $A \subseteq V \times V \setminus \{(v,v)|v \in V\}$,二元组D = (V,A)称为一个**有向图**。V称为有向图D的**顶点集**,V中的元素称为D的**顶点**。A称为D的**弧集**或**有向边集**,A中的元素称为D的**弧**或**有向边**。如果 $x = (u,v) \in A$,则u称为弧x的起点,v称为弧x的终点。

定义2. 如果(u,v)和(v,u)都是有向图D的弧,则称(u,v)与(v,u)为D的**对称弧**。如果D中不含对称弧,则称D为**定向图**。

定义3. 设D = (V, A)为一个有向图, D的反向图为有向图 $D^T = (V, A^T)$, 其中

$$A^T = \{(u,v)|(v,u) \in A\}$$

定义4. 设D = (V, A)为一个有向图,v为D的任一顶点,以v为终点的弧称为v的入弧;以v为始点的弧称为v的出弧。顶点v的入弧的条数称为v的入度,记为id(v);顶点v的出弧的条数称为v的出度,记为od(v)。

定理1. 设D = (V, A)为一个有向图, |A| = q, 则

$$\sum_{v \in V} id(v) = \sum_{v \in V} od(v) = q$$

从而

$$\sum_{v \in V} (id(v) + od(v)) = 2q$$

定义5. 有向图D = (V, A)称为完全有向图,如果

$$A = V \times V \setminus \{(v, v) | v \in V\}$$

定义6. 有向图D = (V, A)的补图定义为 $D^c = (V, A^c)$, 其中

$$A^c = (V \times V \setminus \{(v, v) | v \in V\}) \setminus A$$

定义7. 设 $D_1=(V_1,A_1),\ D_2=(V_2,A_2)$ 都为有向图,如果存在一个一一对应 $\varphi:V_1\to V_2,\$ 使得 $\forall u,v\in V_1,(u,v)\in A_1$ 当且仅当 $(\varphi(u),\varphi(v))\in A_2,\$ 则称 D_1 与 D_2 同构。

定义8. 设D = (V, A)为一个有向图。D的一条**有向通道**为D的顶点和弧的一个交错序列

$$v_0, x_1, v_1, x_2, v_2, \cdots, v_{n-1}, x_n, v_n$$

其中 $x_i=(v_{i-1},v_i)$, $i=1,2,\cdots,n$ 。n称为该有向通道的长。这样的有向通道常称为 v_0-v_n 有向通道,并简记为 $v_0v_1v_2\dots v_n$ 。当 $v_0=v_n$ 时,则称此有向通道为**闭有向通道**。

定义9. 如果有向图中一条有向通道的各弧互不相同,则称此有向通道为有向图的**有向迹**。如果一条闭有向通道上的各弧互不相同,则称此闭有向通道为**闭有向迹**。

定义10. 如果一条有向通道上的各顶点互不相同,则称此有向通道为**有向路**。如果一条长度大于0的闭有向迹上除终点外各顶点互不相同,则称此闭有向迹为**有向圈**,或**有向回路**。

定义11. 含有向图D的所有顶点的有向圈称为D的生成有向圈,或有向哈密顿圈。有生成有向圈的有向图称为有向哈密顿图。含有向图D的所有顶点的有向路称为D的生成有向路,或有向哈密顿路。

定义12. 设D = (V, A)为一个有向图,u和v为D的顶点。如果在D中有一条从u到v的有向路,则称从u能达到v,或者v是从u可达的。

定义13. 有向图D称为是**强连通**的,如果对D的任意两个不同的顶点u和v,u和v是 互达的(即从u可以达到v并且从v可以达到u)。

定义14. 有向图D的极大强连通子图称为D的一个强支。

定理2. 设D = (V, A)为一个有向图。在V上定义二元关系 \cong 如下:

 $\forall u,v \in V, u \cong v$ 当且仅当u与v互达

则 \cong 为V上的等价关系,D的强支就是顶点集V关于 \cong 的每个等价类的导出子图。

定义15. 有向图D=(V,A)称为**单向连通**的,如果对D的任意两个不同的顶点u和v,或从u可达到v,或从v可达到u。

定义16. 设D=(V,A)为一个有向图,如果抹去D中所有弧的方向之后所得到的无向图是连通的,则称D为**弱连通**的,简称**连通**的。

定义17. 设D=(V,A)为一个有向图, $V=\{v_1,v_2,\ldots,v_p\},\ p\times p$ 矩阵 $B=(b_{ij})$ 称为D的邻接矩阵,其中

$$b_{ij} = \begin{cases} 1, \text{ up}(v_i, v_j) \in A \\ 0, \text{ up}(v_i, v_j) \notin A \end{cases}$$

定理3. 设B为有向图D=(V,A)的邻接矩阵, $V=\{v_1,v_2,\cdots,v_p\}$,则从顶点 v_i 到顶点 v_j 的长为l的有向通道的条数等于 B^l 的第i行第j列元素 $(B^l)_{ij}$ 的值。

定义18. 设D=(V,A)为一个有向图, $V=\{v_1,v_2,\ldots,v_p\}$, $p\times p$ 矩阵 $R=(r_{ij})$ 称为D的可达矩阵,其中

$$r_{ij} = \begin{cases} 1, \text{如果从} v_i \text{可以达到} v_j \\ 0, \text{如果从} v_i \text{不能达到} v_j \end{cases}$$

定理4. 设 $p \times p$ 矩阵B是有向图D = (V, A)的邻接矩阵,则D的可达矩阵

$$R = I \vee B \vee B^{(2)} \vee \cdots \vee B^{(p-1)}$$

定理5. 设 $p \times p$ 矩阵R为有向图D = (V, A)的可达矩阵,

$$C = R \wedge R^T$$
,

C的第i行上为1的元素 $c_{ij_1},c_{ij_2},\ldots,c_{ij_k}$,则 v_i 在由 $V_i=\{v_{j_1},v_{j_2},\ldots,v_{j_k}\}$ 诱导出的D的子图-D的强支中。

定义19. 设D=(V,A)为一个有p个顶点q条弧的有向图, $V=\{v_1,v_2,\ldots,v_p\}$, $A=\{x_1,x_2,\ldots,x_q\}$, $p\times q$ 矩阵 $H=(h_{ij})$ 称为D的关联矩阵,其中

$$h_{ij} = \begin{cases} 1, \text{如果}v_i 为 \dots x_j \text{的起点} \\ -1, \text{如果}v_i 为 \dots x_j \text{的终点} \\ 0, \text{如果}v_i \dots \text{既不是} \dots x_j \text{的起点也不是} \dots x_j \text{的终点} \end{cases}$$

定义20. 一个有向图,如果抹去其所有弧的方向以后所得到的无向图是一棵无向树,则称该有向图为一棵**有向树**。

定义21. 有向树D称为**有根树**,如果D中恰有一个顶点的入度为 θ ,而其余每个顶点的入度均为 θ 。有根树中入度为 θ 的顶点称为有根树的根,出度为 θ 的顶点称为有根树的叶子,非叶顶点称为有根树的分支点或内顶点。

定义22. 设T = (V, A)为一棵有根树。如果 $(u, v) \in A$,则称v为u的儿子,u为v的父亲。如果从顶点u能达到顶点v,则称v为u的子孙,u为v的祖先。如果u为v的 祖先且 $u \neq v$,则称u为v的真祖先,v为u的真子孙。

定义23. 设T = (V, A)为一棵以 v_0 为根的有根树。从 v_0 到顶点v的有向路的长度称为T的顶点v的深度。从顶点v到T的叶子的最长的有向路的长度称为顶点v在T中的**高度**。根顶点 v_0 的高度称为树T的**高度**。

定义24. 设T = (V, A)为一棵有根树,v为T的一个顶点,由v及其子孙所导出的T的子图称为T的以v为根的**子树**。

定义25. 设T = (V, A)为一棵有根树。如果T的每个顶点的各个儿子排定了次序,则称T为一棵**有序树**。

定义26. 有序树T称为m元有序树,如果T的每个顶点的出度 $\leq m$ 。一棵m元有序树T称为**正则**m元有序树,如果T的每个顶点的出度不是0就是m。二元有序树简称二元树。

练习1. 证明:有向图D是单向连通的当且仅当D中有一条有向生成通道。

证明. 如果有向图D中有一条有向生成通道,显然D是单向连通的。设有向图D是单向连通的,往证D有一条有向生成通道。用反证法,假设D中不含有向生成通道。设 $W:v_1v_2\dots v_k$ 为D中一条包含顶点数最多的有向通道,则存在顶点v,顶点v不是W中的顶点。由D为单向连通的知,要么从顶点v到顶点 v_1 可达,要么从顶点v到顶点 v_1 可达。如果从顶点v到顶点 v_1 可达,那么从顶点v到顶点 v_1 的路后接W构成了D中一条包含顶点数比W更多的通道,与W为D中的一条包含顶点数最多的有向通道矛盾。因此,从顶点 v_1 到顶点v是可达的。同理,从顶点v到顶点 v_k 是可达的。对每个顶点 v_i , $2 \le i \le k-1$,要么从顶点v到顶点v可达,要么从顶点v到顶点 v_i 可达。设 v_j 为W上第一个从顶点v0到其可达的顶点,则从顶点 v_{j-1} 到顶点v2是可达的,于是沿着W从顶点 v_1 3则顶点 v_{j-1} 4,经过从顶点 v_{j-1} 4到顶点v2的一条有向路,再经过从顶点v3则顶点v4的一条有向路,最后沿着v4的一条包含顶点数最多的有向通道,与v5