Appendix Table 2-5

Estimates of other parameters when $c_1^2=c_2^2$ for scenario 1-4

Yi

2021-04-05

Load data

```
s.rdt <- "scenario/18rows/set-0.5b-all.RData"
dt <- "res/DT-pkg-0.5b-all/"</pre>
```

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Table 1: Estimates of the parameters when $c_1^2=c_2^2$

$\overline{S_P}$	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	Reitsma _O	Reitsma _P
	1 61		- (1: 2/	- \ 1 2/		
25	μ_1	0.000	-0.041 (-0.242, 0.167)	$0.022 \ (-0.152, \ 0.204)$	0.139 (-0.008, 0.298)	$0.010 \ (-0.106, \ 0.136)$
	μ_2	1.735	$1.758 \ (1.572, \ 1.918)$	$1.738 \ (1.564, \ 1.889)$	$1.848 \ (1.712, \ 1.982)$	$1.729 \ (1.601, \ 1.850)$
	$ au_1^2 \ au_2^2$	0.500	$0.503 \ (0.326, \ 0.716)$	$0.423 \ (0.280, \ 0.622)$	$0.388 \ (0.262, \ 0.554)$	$0.441 \ (0.314, \ 0.588)$
	$ au_2^2$	0.500	$0.438 \ (0.282, \ 0.634)$	$0.433 \ (0.279, \ 0.621)$	$0.396 \ (0.261, \ 0.540)$	$0.433 \ (0.319, \ 0.576)$
	$ au_{12}$	-0.150	-0.151 (-0.297, -0.005)	-0.131 (-0.261, 0.002)	-0.175 (-0.283, -0.065)	-0.143 (-0.239, -0.039)
	c_{1}^{2}	0.500	$0.592 \ (0.205, \ 0.861)$			
	β	0.500	$1.704 \ (0.593, \ 2.000)$	$0.667 \ (0.182, \ 1.812)$		
	$\alpha_{0.7}$	-0.423	-0.507 (-1.694, 0.412)	-0.514 (-1.219, 0.071)		
50	μ_1	0.000	-0.045 (-0.217, 0.102)	-0.014 (-0.133, 0.117)	$0.119\ (0.021,\ 0.219)$	-0.004 (-0.087, 0.080)
	μ_2	1.735	1.735 (1.587, 1.864)	$1.738 \ (1.606, \ 1.856)$	1.861 (1.766, 1.954)	1.734 (1.657, 1.811)
	$ au_1^2$	0.500	$0.527 \ (0.405, \ 0.692)$	$0.481 \ (0.365, \ 0.613)$	$0.443 \ (0.341, \ 0.539)$	$0.474 \ (0.393, \ 0.578)$
	$\begin{array}{c} \mu_2 \\ \tau_1^2 \\ \tau_2^2 \end{array}$	0.500	$0.482\ (0.362,\ 0.656)$	$0.470 \ (0.357, \ 0.616)$	$0.434 \ (0.333, \ 0.543)$	$0.474 \ (0.377, \ 0.576)$
	$ au_{12}$	-0.150	-0.143 (-0.252, -0.038)	-0.127 (-0.226, -0.029)	-0.183 (-0.271, -0.104)	-0.145 (-0.221, -0.074)
	c_{1}^{2}	0.500	$0.520\ (0.217,\ 0.786)$			
	\bar{eta}	0.500	$0.900\ (0.510,\ 1.684)$	$0.577 \ (0.271, \ 0.964)$		
	$\alpha_{0.7}$	-0.423	-0.483 (-1.077, 0.125)	-0.465 (-0.827, -0.087)		
200	μ_1	0.000	-0.024 (-0.124, 0.067)	0.001 (-0.060, 0.062)	$0.127 \ (0.076, \ 0.174)$	-0.000 (-0.045, 0.041)
	μ_2	1.735	1.742 (1.666, 1.811)	1.739 (1.677, 1.799)	1.864 (1.814, 1.911)	1.735 (1.694, 1.781)
	$ au_1^2$	0.500	$0.521\ (0.445,\ 0.609)$	$0.491\ (0.435,\ 0.557)$	$0.458 \ (0.410, \ 0.512)$	$0.494 \ (0.449, \ 0.544)$
	$\begin{array}{c} \mu_2 \\ \tau_1^2 \\ \tau_2^2 \end{array}$	0.500	0.497 (0.432, 0.562)	$0.494 \ (0.431, \ 0.559)$	$0.460 \ (0.404, \ 0.515)$	$0.495 \ (0.448, \ 0.547)$
	$ au_{12}$	-0.150	-0.151 (-0.201, -0.094)	-0.147 (-0.197, -0.095)	-0.193 (-0.236, -0.151)	-0.148 (-0.192, -0.110)
	c_1^2	0.500	0.543 (0.327, 0.716)	, , ,	, , ,	, , ,
	\dot{eta}	0.500	0.592(0.441, 0.771)	$0.517 \ (0.367, \ 0.686)$		
	$\alpha_{0.7}$	-0.423	-0.407 (-0.662, -0.114)	-0.431 (-0.614, -0.249)		

Table 2: Estimates of the parameters when $c_1^2=c_2^2$

- C	Don	Thurs	Drop agad (22, 22)	Drop agad (a ² a ²)	Doitana	Doitama
S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$Reitsma_O$	$Reitsma_{P}$
25	μ_1	0.000	-0.037 (-0.262, 0.167)	$0.016 \ (-0.145, \ 0.165)$	0.098 (-0.038, 0.237)	$0.001 \ (-0.119, \ 0.125)$
	μ_2	1.735	$1.747 \ (1.568, \ 1.923)$	$1.732\ (1.588,\ 1.881)$	$1.814\ (1.682,\ 1.959)$	$1.736 \ (1.608, \ 1.854)$
	$ au_1^2 \ au_2^2$	0.500	$0.523 \ (0.332, \ 0.738)$	$0.433 \ (0.288, \ 0.611)$	$0.420\ (0.280,\ 0.581)$	$0.458 \ (0.332, \ 0.596)$
	$ au_2^2$	0.500	$0.469 \ (0.314, \ 0.676)$	$0.437 \ (0.299, \ 0.619)$	$0.419\ (0.292,\ 0.579)$	$0.448 \ (0.326, \ 0.584)$
	$ au_{12}$	-0.300	-0.300 (-0.452, -0.160)	-0.266 (-0.398, -0.139)	-0.291 (-0.411, -0.174)	-0.277 (-0.390, -0.171)
	c_{1}^{2}	0.500	$0.551 \ (0.188, \ 0.859)$			
	β	0.500	$1.547 \ (0.626, \ 2.000)$	$0.613 \ (0.160, \ 1.346)$		
	$\alpha_{0.7}$	-0.461	$-0.601 \ (-1.702, \ 0.367)$	-0.528 (-1.299, 0.066)		
50	μ_1	0.000	-0.047 (-0.222, 0.117)	0.021 (-0.109, 0.121)	0.098 (-0.005, 0.187)	0.006 (-0.079, 0.089)
	μ_2	1.735	1.751 (1.612, 1.882)	1.743 (1.621, 1.848)	1.821 (1.721, 1.918)	1.731 (1.648, 1.813)
	$ au_1^2$	0.500	$0.532\ (0.403,\ 0.692)$	$0.465 \ (0.357, \ 0.581)$	$0.446 \ (0.349, \ 0.552)$	$0.461 \ (0.377, \ 0.566)$
	$\begin{array}{c} \mu_2 \\ \tau_1^2 \\ \tau_2^2 \end{array}$	0.500	$0.481 \ (0.371, \ 0.636)$	$0.460 \ (0.359, \ 0.589)$	$0.442\ (0.353,\ 0.558)$	$0.477 \ (0.390, \ 0.575)$
	$ au_{12}$	-0.300	-0.311 (-0.427, -0.204)	-0.282 (-0.377, -0.192)	-0.304 (-0.397, -0.224)	-0.291 (-0.364, -0.219)
	c_{1}^{2}	0.500	$0.584 \ (0.195, \ 0.820)$			
	β	0.500	$0.903 \ (0.507, \ 1.750)$	$0.528\ (0.220,\ 0.927)$		
	$\alpha_{0.7}$	-0.461	$-0.456 \ (-1.226, \ 0.157)$	-0.467 (-0.965, -0.016)		
200	μ_1	0.000	-0.018 (-0.132, 0.067)	0.003 (-0.051, 0.058)	0.094 (0.043, 0.143)	0.002 (-0.041, 0.046)
	μ_2	1.735	1.738 (1.671, 1.818)	1.739 (1.689, 1.793)	$1.825 \ (1.782, 1.875)$	1.739 (1.702, 1.777)
	$ au_1^2$	0.500	$0.526\ (0.458,\ 0.614)$	$0.494 \ (0.439, \ 0.555)$	$0.478\ (0.429,\ 0.535)$	$0.494 \ (0.449, \ 0.545)$
	$\begin{array}{c} \mu_2 \\ \tau_1^2 \\ \tau_2^2 \end{array}$	0.500	$0.499\ (0.438,\ 0.562)$	$0.491\ (0.435,\ 0.549)$	$0.478 \ (0.425, \ 0.529)$	$0.489 \ (0.444, \ 0.539)$
	$ au_{12}$	-0.300	-0.306 (-0.366, -0.255)	-0.294 (-0.341, -0.247)	-0.315 (-0.363, -0.273)	-0.298 (-0.336, -0.254)
	c_{1}^{2}	0.500	$0.531\ (0.313,\ 0.736)$			
	β	0.500	$0.610 \ (0.464, \ 0.767)$	$0.517 \ (0.379, \ 0.660)$		
	$\alpha_{0.7}$	-0.461	-0.465 (-0.733, -0.160)	-0.484 (-0.662, -0.286)		

Table 3: Estimates of the parameters when $c_1^2=c_2^2$

S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$Reitsma_O$	$Reitsma_{P}$
25	μ_1	0.000	-0.069 (-0.356, 0.198)	0.015 (-0.195, 0.221)	0.122 (-0.055, 0.323)	0.003 (-0.149, 0.163)
	μ_2	1.735	1.861 (1.390, 2.345)	1.801 (1.329, 2.251)	2.403 (2.089, 2.693)	1.740 (1.485, 2.005)
	$ au_1^2$	1.000	$1.051\ (0.727,\ 1.481)$	$0.903 \ (0.649, 1.257)$	$0.870\ (0.614,\ 1.185)$	$0.908 \ (0.702, \ 1.197)$
	$ au_2^2$	4.000	$3.606\ (2.546,\ 4.935)$	3.645 (2.529, 5.029)	$2.712\ (2.048,\ 3.488)$	$3.671 \ (2.963, 4.495)$
	$ au_{12}$	-0.600	-0.624 (-1.110, -0.167)	-0.541 (-0.985, -0.114)	-0.700 (-1.086, -0.393)	-0.553 (-0.881, -0.251)
	$\begin{array}{c} \tau_{12} \\ c_1^2 \end{array}$	0.500	$0.619\ (0.243,\ 0.837)$			
	\bar{eta}	0.500	$2.000 \ (0.660, \ 2.000)$	$0.728\ (0.274,\ 2.000)$		
	$\alpha_{0.7}$	-0.172	0.189 (-0.481, 0.991)	-0.023 (-0.453, 0.356)		
50	μ_1	0.000	-0.051 (-0.281, 0.177)	0.010 (-0.128, 0.160)	$0.120 \ (-0.005, \ 0.257)$	0.005 (-0.114, 0.111)
	μ_2	1.735	$1.800 \ (1.381, \ 2.177)$	$1.787\ (1.420,\ 2.158)$	$2.415\ (2.190,\ 2.627)$	$1.752 \ (1.539, \ 1.935)$
	$ au_1^2$	1.000	$1.068 \ (0.813, \ 1.393)$	$0.951\ (0.746,\ 1.179)$	$0.917 \ (0.721, \ 1.131)$	$0.947 \ (0.776, \ 1.133)$
	$ au_2^2$	4.000	$3.856\ (2.929,\ 5.021)$	$3.738\ (2.911,\ 4.898)$	$2.863\ (2.374,\ 3.411)$	3.910 (3.326, 4.469)
	$ au_{12}$	-0.600	-0.588 (-1.007, -0.226)	-0.570 (-0.908, -0.265)	-0.743 (-0.999, -0.521)	-0.559 (-0.817, -0.346)
	c_{1}^{2}	0.500	$0.560 \ (0.267, \ 0.773)$			
	β	0.500	$0.967 \ (0.473, \ 2.000)$	$0.583 \ (0.280, \ 1.112)$		
	$\alpha_{0.7}$	-0.172	$0.082 \ (-0.234, \ 0.598)$	-0.046 (-0.294, 0.213)		
200	μ_1	0.000	0.002 (-0.142, 0.128)	0.008 (-0.075, 0.090)	$0.125\ (0.057,\ 0.187)$	-0.001 (-0.057, 0.053)
	μ_2	1.735	1.736 (1.519, 1.970)	$1.762 \ (1.572, 1.963)$	$2.398 \ (2.291, \ 2.506)$	1.733 (1.633, 1.837)
	$ au_1^2$	1.000	1.026 (0.903, 1.166)	$0.985 \ (0.874, 1.105)$	0.964 (0.856, 1.076)	$0.986 \ (0.900, 1.079)$
	$ au_1^2 \ au_2^2$	4.000	$3.955 \ (3.373, 4.657)$	3.895 (3.370, 4.437)	$2.971 \ (2.712, \ 3.255)$	3.948 (3.665, 4.249)
	$ au_{12}$	-0.600	-0.634 (-0.862, -0.441)	-0.613 (-0.776, -0.444)	-0.785 (-0.917, -0.662)	-0.593 (-0.717, -0.479)
	c_{1}^{2}	0.500	$0.498 \ (0.310, \ 0.641)$, , ,	, , ,	, , ,
	\dot{eta}	0.500	0.558 (0.411, 0.732)	$0.516\ (0.371,\ 0.659)$		
	$\alpha_{0.7}$	-0.172	-0.086 (-0.196, 0.057)	-0.132 (-0.218, -0.038)		

Table 4: Estimates of the parameters when $c_1^2=c_2^2$

S_P	Par	True	Proposed $(\tilde{c}_1^2, \tilde{c}_2^2)$	Proposed $(c_1^2 = c_2^2)$	$Reitsma_O$	$Reitsma_{P}$
25	μ_1	0.000	-0.117 (-0.413, 0.184)	-0.000 (-0.214, 0.190)	0.021 (-0.167, 0.186)	-0.006 (-0.151, 0.150)
	μ_2	1.735	$1.902 \ (1.405, \ 2.411)$	$1.786 \ (1.324, \ 2.226)$	2.347 (2.054, 2.654)	$1.743\ (1.451,\ 2.020)$
	$ au_1^2 \ au_2^2$	1.000	$1.058 \ (0.725, \ 1.493)$	$0.923 \ (0.654, \ 1.230)$	$0.901 \ (0.625, \ 1.195)$	$0.916 \ (0.684, \ 1.151)$
	$ au_2^2$	4.000	$3.688 \ (2.554, \ 5.114)$	$3.763 \ (2.518, \ 5.217)$	$2.843\ (2.129,\ 3.718)$	3.746 (2.982, 4.614)
	$ au_{12}$	-1.200	-1.168 (-1.796, -0.697)	-1.106 (-1.613, -0.632)	-1.114 (-1.543, -0.740)	-1.133 (-1.507, -0.779)
	$\begin{array}{c} \tau_{12} \\ c_1^2 \end{array}$	0.500	$0.621\ (0.270,\ 0.835)$			
	β	0.500	$2.000 \ (0.671, \ 2.000)$	$0.701\ (0.240,\ 2.000)$		
	$\alpha_{0.7}$	-0.255	-0.011 (-0.646, 0.706)	-0.113 (-0.593, 0.217)		
50	μ_1	0.000	-0.070 (-0.337, 0.165)	-0.010 (-0.147, 0.144)	0.009 (-0.121, 0.140)	0.001 (-0.121, 0.100)
	μ_2	1.735	1.743 (1.370, 2.172)	1.755 (1.394, 2.067)	$2.328\ (2.125,\ 2.543)$	$1.732\ (1.528,\ 1.926)$
	$ au_1^2 \ au_2^2$	1.000	$1.083\ (0.857,\ 1.366)$	$0.966 \ (0.772, \ 1.159)$	$0.963 \ (0.767, 1.151)$	$0.962 \ (0.819, \ 1.124)$
	$ au_2^2$	4.000	3.919 (3.032, 5.127)	3.847 (2.995, 4.958)	$3.013\ (2.519,\ 3.606)$	3.890 (3.331, 4.430)
	$ au_{12}$	-1.200	-1.234 (-1.664, -0.840)	-1.154 (-1.503, -0.816)	-1.181 (-1.470, -0.908)	-1.159 (-1.422, -0.941)
	c_{1}^{2}	0.500	$0.576\ (0.304,\ 0.770)$			
	β	0.500	$0.962 \ (0.506, \ 2.000)$	$0.599 \ (0.266, \ 1.162)$		
	$\alpha_{0.7}$	-0.255	-0.020 (-0.351, 0.434)	-0.148 (-0.416, 0.095)		
200	μ_1	0.000	-0.037 (-0.170, 0.096)	-0.005 (-0.075, 0.067)	0.014 (-0.057, 0.070)	-0.006 (-0.055, 0.047)
	μ_2	1.735	$1.759\ (1.522,\ 2.003)$	$1.759 \ (1.562, \ 1.949)$	2.338 (2.227, 2.443)	1.742 (1.640, 1.837)
	$ au_1^2$	1.000	$1.029 \ (0.926, \ 1.152)$	$0.976 \ (0.877, 1.080)$	$0.991\ (0.889,\ 1.091)$	$0.976 \ (0.893, \ 1.065)$
	$ au_1^2 \ au_2^2$	4.000	$3.901 \ (3.330, 4.534)$	3.858 (3.380, 4.438)	3.093 (2.800, 3.415)	3.913 (3.610, 4.240)
	$ au_{12}$	-1.200	-1.181 (-1.387, -0.986)	-1.174 (-1.340, -1.012)	-1.201 (-1.345, -1.064)	-1.165 (-1.304, -1.055)
	c_1^2	0.500	$0.525 \ (0.381, \ 0.682)$,
	\dot{eta}	0.500	$0.578\ (0.419,\ 0.780)$	$0.513 \ (0.366, \ 0.672)$		
	$\alpha_{0.7}$	-0.255	-0.153 (-0.275, -0.015)	-0.216 (-0.327, -0.123)		