AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Gramatiky typu 3
Bezkontextové gramatiky
Backus-Naurova forma
Redukce
Derivace - pravé, levé
Derivační stromy

Konečný **automat** ⇒ gramatika typu 3

- \square KA A=(Q, X, δ , q₀,F)
 - □ definujeme gramatiku $G = (Q, X, q_0, P)$, kde
 - $p \rightarrow xq \in P$, kdykoli $\delta(p, x) = q$
 - $p \rightarrow \lambda \in P$, kdykoli $p \in F$
- \square $w \in L(A) \Leftrightarrow w \in L(G)$
 - $= x_1 x_2 ... x_n \in L(A) \Leftrightarrow (\exists q_0 q_1 q_2 ... q_n) \delta(q_{i-1}, x_i) = q_i a q_n \in F,$ právě když

Př.: G = $(V_N, V_T, 1, P)$, kde $V_N = \{ 1, 2, 3 \}$ $V_{T} = \{ a, b \}$ $P = \{ 1 \rightarrow a1 \mid b2 \}$ $2 \rightarrow a3 \mid b2 \mid \lambda$ $3 \rightarrow a1 \mid b2 \mid \lambda$

Gramatika typu $3 \Rightarrow$ konečný automat (1)

- \square gramatika $G = (V_N, V_T, S, P)$ typu 3
 - □ zkonstruujeme gramatiku G'= (V_N', V_T, S, P') typu 3, že L(G')=L(G), kde
 - pravidla mají v P' mají tvar $X \to xY$ nebo $X \to \lambda$, kde $X, Y \in V_N$ a $x \in V_T$
 - pro pravidlo $X \rightarrow x_1x_2...x_nY \in P$ s $x_i \in V_T$ pro i=1,2,...,n a $X_i,Y \in V_N$ dáme do P' pravidla
 - $X \to X_1 Y_1, Y_1 \to X_2 Y_2, Y_2 \to X_3 Y_3, ..., Y_{n-1} \to X_n Y_n$, kde $Y_1, Y_2, ..., Y_{n-1}$ jsou nové neterminály do V
 - podobně pro pravidlo $X \rightarrow x_1x_2...x_n \in P$ s $x_i \in V_T$ pro i=1,2,...,n a $X,Y \in V_N$ dáme do P' pravidla
 - $X \to x_1 Z_1$, $Z_1 \to x_2 Z_2$, $Z_2 \to x_3 Z_3$, ..., $Z_{n-1} \to x_n Z_n$, $Z_n \to \lambda$, kde $Z_1, Z_2, ..., Z_n$ jsou nové neterminály do V_N
 - ošetření pravide X → Y∈P s X,Y∈V_N
 - zkonstruujeme $\Phi(X) = \{Y \mid Y \in V_N \land X \Rightarrow_G^* Y\}$
 - postupná konstrukce $\Phi_1(X) = \{Y \mid Y \in V_N \land X \Rightarrow_G Y\}$
 - do P' přidáme pravidla $X \to w$, kdykoli $Y \to w \in P'$ pro $Y \in \Phi(X)$

Gramatika typu 3 ⇒ konečný automat (2)

- \square gramatika G'= (V_N', V_T, S, P') typu 3, kde
 - □ pravidla mají v P' mají tvar X \rightarrow xY nebo X \rightarrow λ , kde X, Y \in V_N' a x∈V_⊤
 - definujeme NKA A = $(V_N', V_T, \delta, \{S\}, F)$, kde
 - $\blacksquare \mathsf{F} = \{ \mathsf{X} \mid \mathsf{X} \in \mathsf{V}_{\mathsf{N}}' \land \mathsf{X} \to \mathsf{\lambda} \in \mathsf{P}' \}$
 - $\delta(X, x) = \{Y \mid Y \in V_N' \land X \rightarrow xY \in P'\} \text{ pro } X \in V_N' \text{ a } x \in V_T$
- \square w \in L(G') \Leftrightarrow w \in L(A)
 - $\Rightarrow_{G'} \dots \Rightarrow_{G'} x_1 x_2 \dots x_n Y_n \Rightarrow_{G'} x_1 x_2 \dots x_n$, kde $Y_1, Y_2, \dots, Y_n \in V_N'$, právě když
 - \square ($\exists Y_1, Y_2, ..., Y_n \in V_N'$) $Y_{i+1} \in \delta(Y_i, x_{i+1})$ pro $i=1,2,...,n-1, Y_1 \in \delta(S, x_1)$ a $Y_n \in F$

Bezkontextové gramatiky

- syntaxe jazyků
 - programovacích (Algol, Pascal, 60. léta)
 - značkovacích (xml, html, ...)
- Backus-Naurova forma
 - forma zápisu bezkontextových gramatik
 - pravidla tvaru: <identifikátor> ::= výraz₁ | výraz₂ | ... | výraz_n
 - <identifikátor> odpovídá neterminálu
 - výraz, odpovídá pravé straně pravidla
 - pomocí [] lze ve výrazu vyznačit volitelnou část
 - pomocí { } lze vyznačit skupinu, pomocí ... opakování skupiny

```
Př.: <number> ::= <digit> | <number> <digit> <digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```

```
Př.: <statement> ::= if <condition> then <statement> [else <statement>]
```


Pozn.: moderní jazyky C++, Java, C# mají složitější syntaxi

Redukce bezkontextových gramatik (1)

- \square bezkontextová gramatika $G = (V_N, V_T, S, P)$, kde L(G)≠Ø, je **redukovaná**, jestliže
 - □ (i) pro každý neterminál X∈V_N existuje slovo w∈V_T*, že X⇒_G*w a
 - ukončitelné
 - (ii) pro každý neterminá X∈V_N-{S} existují slova $u, v \in (V_T \cup V_N)^*, že S \Rightarrow_G^* uXv$
 - dosažitelné
- pro bezkontextovou gramatiku G, kde $L(G)\neq\emptyset$, existuje redukovaná bezkontextová gramatika G'', že L(G'')=L(G)
 - 1. odstranit z G neterminály nesplňující (i)
 - 2. odstranit z G neterminály nesplňující (ii)
 - odstranění neterminálu = odstranění všech pravidel, které jej obsahují

```
Př.: G = (V_N, V_T, S, P), kde
       V_N = \{ S, A, B,C,D \}
      V_{T} = \{ a, b \}
       P = \{S \rightarrow aA \mid ab\}
               A \rightarrow BC
               B \rightarrow ba
               D \rightarrow ab \mid \lambda
```

G není redukovaná

C nesplňuje (i) D nesplňuje (ii)

Redukce bezkontextových gramatik (2)

- 1. odstranění neterminálů nesplňujících (i)
 - tedy neukončitelných
 - □ hledáme T = { $X \in V_N \mid (\exists w \in V_T^*) X \Rightarrow_G^* w$ }
 - $T_0 = V_T$
 - $\blacksquare T_{i+1} = T_i \cup \{X \in V_N \mid (\exists w \in T_i^*) X \Rightarrow_G w \}$
 - \blacksquare $T_0 \subseteq T_1 \subseteq ... \subseteq (V_T \cup V_N), (\exists k) T_{k+1} = T_k$
 - platí $T = T_k \cap V_N$
 - mimochodem $L(G) \neq \emptyset \Leftrightarrow S \in T$
 - odstraníme z G pravidla obsahující neterminál z V_N-T (v pravidle vlevo či vpravo)
 - výsledná gramatika splňuje (i)
 - pro X∈T existuje w∈V_T*, že X⇒_G*w
 - derivace pro X⇒_G*w, používá neodstraněná pravidla (indukcí)
 - \blacksquare w∈L(G') \Rightarrow w∈L(G)
 - G' má méně pravidel
 - \blacksquare w∈L(G) \Rightarrow w∈L(G')
 - použití odstraněného pravidla by zabránilo ukončení derivace

```
Př.: G = (V_N, V_T, S, P), kde
       V_{N} = \{ S, A, B, C, D \}
      V_{T} = \{ a, b \}
       P = \{S \rightarrow aA \mid ab\}
               A \rightarrow BC
               B \rightarrow ba
               D \rightarrow ab \mid \lambda
T_0 = \{ a, b \}
T_1 = \{ a, b, S, B, D \}
T_2 = \{a, b, S, B, D\}
T = \{ S, B, D \}
G' = (T, V_T, S, P'), kde
      V_{T} = \{ a, b \}
       P' = \{ S \rightarrow ab \}
               B \rightarrow ba
               D \rightarrow ab \mid \lambda
```

Redukce bezkontextových gramatik (3)

- 2. odstranění neterminálů nesplňujících (ii)
 - tedy **nedosažitelných**
 - hledáme $R = \{ X \in V_N \mid (\exists u, v \in (V_T \cup V_N)^*) S \Rightarrow_{G'} u X v \}$
 - \blacksquare R₀={S}
 - $= R_{i+1} = \frac{R_i \cup \{X \in V_N \mid (\exists Y \in R_i, \exists u, v \in (V_T \cup V_N)^*) \mid Y \Rightarrow_{G'} uXv \}$
 - \blacksquare $R_0 \subseteq R_1 \subseteq ... \subseteq V_N, (\exists k) R_{k+1} = R_k$
 - platí R = R_ν
 - odstraníme z G' pravidla obsahující neterminál z T-R (v pravidle vlevo či vpravo)
 - výsledná gramatika G'' splňuje (i) a (ii)
 - pro X∈T existují ∃u,v∈(V_T∪ V_N)*, že S⇒_{G''}*uXv
 - derivace S⇒_{G'}*uXv používá neodstraněná pravidla (indukcí)
 - (i) zůstává splněno
 - pokud všechny derivace ukazující, že $X \Rightarrow_{G}^{*} w$ pro nějaké $w \in V_{T}^{*}$ vytváří neterminál Y∉R (tj. X by se stal nově neukončitelným), pak X∉R (tj. X je nedosažitelný v G' a bude odstraněn nyní)
 - \blacksquare w∈L(G'') \Rightarrow w∈L(G')
 - G" má méně pravidel
 - \blacksquare w∈L(G') \Rightarrow w∈L(G'')
 - v derivaci $S \Rightarrow_{G'}^* w$, kde $w \in V_T^*$ jsou všechny neterminály dosažitelné

```
Př.: G' = (T, V_T, S, P'), kde
      V_{T} = \{ a, b \}
       P' = \{ S \rightarrow ab \}
                B \rightarrow ba
                D \rightarrow ab \mid \lambda
R_0 = \{S\}
R_1 = \{ S \}
R = \{S\}
G'' = (R, V_T, S, P''), kde
      V_{T} = \{ a, b \}
       P'' = \{ S \rightarrow ab \}
```

Bezkontextové derivace

Př.: $G = (V_N, V_T, S, P)$, kde $V_N = \{ S \}$ $V_{T} = \{ (,) \}$ $P = \{ S \rightarrow SS \}$ $S \rightarrow (S)$ $S \rightarrow ()$

- derivace (obecná)
 - $\square \underline{S} \Rightarrow_{G} \underline{S}\underline{S} \Rightarrow_{G} \underline{S}(S) \Rightarrow_{G} ()(\underline{S}) \Rightarrow_{G} ()((\underline{S})) \Rightarrow_{G} ()(((\underline{S})))$
- levá derivace (left most)
 - $\underline{S} \Rightarrow_{G}^{\operatorname{Im}} \underline{S}S \Rightarrow_{G}^{\operatorname{Im}} ()S \Rightarrow_{G}^{\operatorname{Im}} ()(\underline{S}) \Rightarrow_{G}^{\operatorname{Im}} ()((\underline{S})) \Rightarrow_{G}^{\operatorname{Im}} ()(((\underline{S})))$
 - přepisujeme vždy nejlevější literál
- pravá derivace (right most)
 - $\underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}} \underline{\hspace{0.1cm}}} \underline{\hspace{0.1cm}} \underline{\hspace$
 - přepisujeme vždy nejpravější literál
- poznatky
 - všechny derivace mají stejnou délku
 - používají se stejná pravidla (na stejných místech v odvozovaném) slově)
 - liší se pouze pořadí aplikace pravidel

Levá/pravá derivace

- □ mějme bezkontextovou gramatiku G=(V_N, V_T, S, P)
 - □ jestliže pro $\mathbf{w} \in V_T^*$ je $S \Rightarrow_G^* \mathbf{w}$, pak $S \Rightarrow_G^{lm^*} \mathbf{w}$ a $S \Rightarrow_G^{rm^*} \mathbf{w}$
 - v bezkontextových gramatikách se lze omezit na levé resp. pravé derivace
 - indukcí podle délky pod-derivace, kterou je třeba upravit
 - $S \Rightarrow_G ... \Rightarrow_G uXv_1 \Rightarrow_G uXv_2 \Rightarrow_G ... \Rightarrow_G uXv_n \Rightarrow_G uzv_n \Rightarrow_G^* w \text{ pro } u \in V_T^* \text{ a } v_i \in (V_T \cup V_N)^* \text{ pro } i = 1,2,...,n \text{ a } z \in (V_T \cup V_N)^*, \text{ kde } z \neq X$
 - uXv₁ ⇒_G uXv₂ je první okamžik, kdy nebyl přepsán nejlevější neterminál
 - část derivace $uXv_1 \Rightarrow_G uXv_2 \Rightarrow_G ... \Rightarrow_G uXv_n \Rightarrow_G uzv_n$ nahradíme $uXv_1 \Rightarrow_G uzv_1$ $\Rightarrow_G uzv_2 \Rightarrow_G ... \Rightarrow_G uzv_n$
 - upravovaná pod-derivace je nyní uzv₁ \Rightarrow_G uzv₂ \Rightarrow_G ... \Rightarrow_G uzv_n \Rightarrow_G uzv_n \Rightarrow_G *w
 - pravá derivace analogicky

Derivační strom

- G=(V_N, V_T, S, P) bezkontextová gramatika
 - určité přeuspořádání použití pravidel v derivaci nemá vliv na generované slovo
 - derivační strom (parse tree) je orientovaný pěstovaný strom (hledíme na pořadí následníků), kde:
 - kořen je ohodnocen S
 - každý vrchol je ohodnocen symbolem z $V_N \cup V_T \{\lambda\}$
 - jestliže je vrchol ohodnocen neterminálem $X \in V_N$, pak má následníky ohodnocené $x_1, x_2, ..., x_n$, kde
 - $X \rightarrow x_1 x_2 ... x_n s x_i \in (V_T \cup V_N)$ pro i=1,2,...,n a $X \in V_N$ je pravidlo gramatiky
 - jestliže je vrchol ohodnocen terminálem nebo λ, je to
 - derivační strom přináší slovo w∈V_T*, jestliže w dostaneme konkatenací symbolů v listech postupně zleva doprava
 - v pěstovaném stromu je pořadí listů definováno

Př.: $G = (V_N, V_T, S, P)$, kde $V_N = \{ S \}$ $V_{T} = \{ (,) \}$ $P = \{ S \rightarrow SS \}$ $S \rightarrow (S)$ $S \rightarrow ()$

Vlastnosti derivačních stromů

- \Box G=(V_N, V_T, S, P) bezkontextová gramatika
 - S⇒_G*w pro w∈V_T*, právě když existuje derivační strom pro G, který přináší w
 - z derivace dostaneme strom jednoznačně
 - strom neurčuje derivaci jednoznačně
 - strom určuje mnohé derivace
 - levá resp. pravá derivace je stromem určena jednoznačně
 - různé levé (pravé derivace) vedou na různé stromy
 - nejednoznačnost derivačních stromů

Př.:
$$G = (V_N, V_T, S, P)$$
, kde
 $V_N = \{ S \}$
 $V_T = \{ (,) \}$
 $P = \{ S \rightarrow SS$
 $S \rightarrow (S)$
 $S \rightarrow () \}$

různé derivační stromy přinášející stejné slovo ()()()

Jednoznačnost gramatiky

- G=(V_N, V_T, S, P) bezkontextová gramatika je **nejednoznačná** (ambiguous), jestliže
 - existuje slovo w∈L(G), které má dvě různé levé derivace
 - □ alternativně: existuje slovo w∈L(G), které má dvě různé pravé derivace
 - jinak říkáme, že gramatika je jednoznačná (unambiguous)
- tato nejednoznačnost je vlastnost gramatiky
 - bezkontextový jazyk L je jednoznačný, jestliže existuje jednoznačná bezkontextová gramatika G, že L(G)=L
 - bezkontextový jazyk L je nejednoznačný (inherently ambiguous), jestliže každá bezkontextová gramatika G, že L(G)=L, je nejednoznačná

```
Př.: L = { 0^i 1^j 2^k | i,j,k \in \mathbb{N}_0 \land (i=j \lor j=k) } je nejednoznačný
```

Př.: $G = (V_N, V_T, B, P)$, kde $V_N = \{ R, B \}$ $V_T = \{ (,) \}$ $P = \{ B \rightarrow (RB | \lambda R \rightarrow) | (RR \}$

Využití jednoznačnosti - LL(1)

- jednoznačnost gramatiky umožňuje snadné rozpoznávání přijímaných slov
 - pro dané slovo konstruujeme levou derivaci
 - použité pravidlo je jednoznačně určeno následujícími symboly
 - speciálně LL(1) gramatika
 - LL(1) levá derivace
 - LL(1) čtení vstupu zleva
 - LL(1) výhled na 1 symbol (1 následující symbol stačí na určení pravidla)
 - programovací jazyky mají většinou LL(1) gramatiku

```
Př.: G = (V_N, V_T, B, P), kde

V_N = \{ R, B \}

V_T = \{ (, ) \}

P = \{ B \rightarrow (RB | \lambda R \rightarrow) | (RR \}
```

zbývající vstup	levá derivace
(())()	В
())()	(RB
))()	((RRB
) ()	(()RB
()	(())B
)	(())(RB
λ	(())()B
	(())()