JOIN

Telegram @PuneEngineers

Study Media.in

Total No. of Questions : 6]	Total	No.	of	Questions	:	6	
-----------------------------	--------------	-----	----	------------------	---	---	--

P72

SEAT No. :

[Total No. of Pages: 2

Oct./TE/Insem.-191

T.E. (1**T**)

THEORY OF COMPUTATION

(2015 Course) (Semester - I)

Time: 1 Hour]

[Max. Marks: 30

Instructions to the candidates:

- 1) Attempt questions Q1 or Q2, Q3 or Q4, and Q5 or Q6.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.
- Q1) a) Construct Mealy machine to find 2' complement of any binary number & convert it into Moore machine.[8]
 - b) Define following:-

[2]

- i) \in -closure of a state
- ii) NFA

OR

Q2) a) Construct the minimum state automation equivalent to the transition diagram given below. [8]

b) State what do you mean by FSM & state limitations of FSM.

[2]

P.T.O.

<i>Q3</i>)	a)	Det	termine the regular expression over the $\Sigma = \{a,b\}$ for the following	g [6]
		i)	Set of all strings containing exactly 2 a's	
		ii)	Set of all strings containing at least 2 a's	
		iii)	Set of all strings that do not consist of two consecutive 0's	
	b)	Con	nvert the given Right-linear Grammar into its equivalent Left-li	near
		Gra	ımmar.	[4]
		S —	→ 0A 1B	
			→ 0C 1A 0	
			→ 1B 1A 1	
		C –	$\rightarrow 0 0A$	
		_	OR	
Q4)	a)	Def	fine Pumping Lemma & Apply it to prove the follow	ing
		L=	$= \{0^{i^2} / i \text{ is an integer, } i \ge 1\}$ is not regular.	[6]
	1 . \			
	b)	1	cribe in simple english the language defined by the following regressions:-	[4]
		S. C.Ap.	$(a+b)*\cdot aa\cdot (a+b)**$	ניין
		···\		
		ii)	a+ b*·c+∈	
0 5)	۵)	Clar	all whather are at the following diameter and inverse if it is now	
<i>Q5</i>)	a)		eck whether or not the following Grammar is ambiguous; if it is remambiguity and write an equivalent unambiguous grammar.	[6]
			\Rightarrow i C t S i c t S \in S a	[0]
		C -		3
	b)	Wri	ite note on: Chomsky Hierarchy.	341
	- /		OR	5
Q6)	a)	Sim	pplify the following Grammar	[6]
~	,	i)	$S \rightarrow aA bS e$	
		ŕ	$A \rightarrow aA bB \in$	
			$B \to aA bc \in$	
			$C \rightarrow aC bc$	
		ii)	$S \rightarrow A bb$	
			$A \rightarrow B b$	
			ite note on: Chomsky Hierarchy. OR aplify the following Grammar $S \to aA bS \in$ $A \to aA bB \in$ $B \to aA bc \in$ $C \to aC bc$ $S \to A bb$ $A \to B b$	
	b)	Fine	d the CNF for the given CFG S \rightarrow 0S1S[V S0S] \in	[4]
			d the CNF for the given CFG S \rightarrow 0S1S[VS0S] \in	
			\rightarrow \rightarrow \rightarrow	
TT: /	T ~	one 1		
1 L/.	1118	em1	71	