Eg! un problèma de simetria radial

Se tienem 2 coscarones estericos de radir $R_1 y R_2$. Entre los coscarones existe una distribución de corga Volumetrica $S(\vec{r}) = \alpha r$. Las condiciones de contorni del problema son $\phi(R_1,\theta,\Psi) = V_0 y \phi(R_2,\theta,\Psi) = 0$.

a) Halle $\phi(\vec{r})$ entre los coscorones.

b) $\phi(\vec{r})$ quera de los coscorones. c) $\phi(\vec{r})$ al interior de la externa de radio R1.

 $S(\vec{r}) = S(r) = XY (r = coord.$

 $\nabla^2 \phi(r) = \frac{1}{v^2} \frac{d}{dr} \left(r^2 \frac{d}{dr} \phi(r) \right)$ $(R_2) = 0$

.

Luego se resuelve

$$\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\phi}{dr}\right) = -\frac{3(r^2)}{\varepsilon_0} = -\frac{\sqrt{r}}{\varepsilon_0}$$

 $\widehat{\mathcal{H}}$

$$\frac{d}{dr}\left(r^2\frac{d\theta}{dr}\right) = -\alpha \frac{r^3}{\varepsilon_0} \qquad \Rightarrow d\left(r^2\frac{d\theta}{dr}\right) = -\alpha \frac{r^3}{\varepsilon_0} dr$$

 α

$$r^2 \frac{d\phi}{dr} = A - \alpha \frac{r^4}{4\epsilon_0}$$
 (A = 1° constante de integración)

$$d\phi = \left(\frac{A}{Y^2} - \frac{\chi Y^2}{4E}\right) dr$$

$$\phi(r) = -\frac{\chi r^3}{12E_0} - \frac{A}{r} + B \quad (B = 2^{\alpha} \text{ constante de integration})$$

A y B se evalvan con las condiciciones
$$\phi(R_2) = 0$$
 y $\phi(R_1) = \sqrt{6}$

French de las esferres les c.c. son
$$\phi(w) = 0$$
 $\phi(R_2) = 0$ (Resuelva $\nabla^2 \phi = 0$)

$$\phi(\vec{r}) = 0$$
 prove de la estera

c)
$$\phi(\vec{r})$$
 al interior desde $r=0 \rightarrow r=R_1$ es $\phi(\vec{r})=V_0$