Table 1: Fourier Transform Pairs

Time	Frequency
$x(t) = \frac{1}{2\pi} \int_{\mathbb{R}} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{\mathbb{R}} x(t)e^{-j\omega t}dt$
1	$\delta(\omega)$
$\delta(t)$	1
$\sum_{n=-\infty}^{\infty} \delta\left(t - nT\right)$	$\frac{2\pi}{T} \sum_{n=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi n}{T}\right)$
$e^{-t/\tau}u(t)$	$rac{ au}{1+j\omega au}$
$\frac{1}{\sqrt{2\pi\sigma^2}} \; e^{-t/2\sigma^2}$	$e^{-\sigma^2\omega^2/2}$

Table 2: Fourier Transform Rules

Time	Frequency
y(t) = h(t) * x(t)	$Y(\omega) = H(\omega)X(\omega)$
y(t) = h(t)x(t)	$Y(\omega) = H(\omega) * X(\omega)$
$x(t-t_o)$	$e^{-j\omega t_o}X(\omega)$
$e^{j\omega_o t}x(t)$	$X(\omega - \omega_o)$
$\frac{d}{dt}x(t)$	$j\omega X(\omega)$
-jtx(t)	$\frac{d}{d\omega}X(\omega)$
$\int_{\mathbb{R}} x(t)dt$	$H(\omega=0)$

Table 3: z-transform Pairs

\mathbf{n}	${f z}$
$x(t) = \frac{1}{2\pi j} \oint_{\mathcal{C}} X(z) z^{n-1} dz$	$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$
$\delta[n-N]$	z^{-N}
u[n]	$\frac{1}{1-z^{-1}}$
$p^nu[n]$	$\frac{1}{1 - pz^{-1}}$
$(n+1)p^nu[n]$	$\frac{1}{\left(1 - pz^{-1}\right)^2}$

Table 4: z-transform Rules

n	z
y[n] = h[n] * x[n]	$Y(z) = H(z)X(z), ROC_H \cap ROC_X$
y[n] = h[n]x[n]	$Y(z) = H(z) * X(z), ROC_H \cap ROC_X$
x[n-N]	$z^{-N}X(z)$
$\sum_{n=-\infty}^{\infty} x[n]$	X(z=1)

Table 5: Miscellaneous

Description	Expression
Superposition	$x[n] = \sum_{\substack{k = -\infty \\ \infty}}^{\infty} \delta[n - k]x[k]$
Convolution	$y[n] = \sum_{k = -\infty}^{\infty} h[n - k]x[k]$
Partial-Fraction Expansion	$K \frac{\prod_{i=1}^{N_P} (1-z_i z^{-1})}{\prod_{i=1}^{N_Q} (1-p_i z^{-1})} = \sum_{i=0}^{\text{#direct terms}} D_i z^{-i}$
	$+\sum_{j=1}^{\text{\#non-degen poles}} \frac{A_j}{1-p_j z^{-1}} + \sum_{s=0}^{\text{\#degen order}} \frac{C_s}{(1-p_d z^{-1})^s}$
Moments of $h[n]$	$M_0 = H(\zeta = +1), \zeta \equiv z^{-1}$
	$M_1 = \frac{d}{d\zeta} H(\zeta) \Big _{\zeta = +1}$
	$M_2 - M_1 = \frac{d^2}{d\zeta^2} H(\zeta) \Big _{\zeta = +1}$
Full width (FW) of $h[n]$	$\mathrm{FW} \equiv 2\sqrt{M_2 - M_1^2}$

Table 6: Laplace Transform Pairs

t	\mathbf{s}
$x(t) = \int_{\mathbb{R}} X(s)e^{st}ds$	$X(s) = \int_{\mathbb{R}} x(t)e^{-st}dt$
$\delta(t-t_o)$	e^{-st_o}
u(t)	1/s
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$

Table 7: Laplace Transform Rules

t	s
h(t) * x(t)	H(s)X(s)
$x(t-t_o)$	$e^{-st_o}X(s)$
x(-t)	X(-s)
$M_k = \int_{\mathbb{R}} t^k x(t) dt$	$M_k = (-1)^k \frac{d^k}{ds^k} H(s) \Big _{s=0}$
Full width (FW) of $h(t)$	$\mathrm{FW} \equiv 2\sqrt{M_2 - M_1^2}$