SISTEMAS COMBINACIONALES (CONTINUACIÓN)

Técnicas Digitales I

Luis Eduardo Toledo

SUMADOR PARALELO BINARIO (4 BITS)

Tabla de verdad del sumador completo

Entradas			Salidas	
X	Y	Z	С	S
()	ı.	.	0	0
0	0	1	0	}
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	ì	1

$$C = XY + XZ + YZ$$

$$= XY + Z(XY + XY)$$

$$= XY + Z(X \oplus Y)$$

COMPLEMENTO A LA BASE Y A LA BASE-1

Existen dos tipos de complementos para cada sistema de base β . El complemento a la base y el complemento a la base-1.

Cuando el valor de la base se sustituye en el nombre, los dos tipos se conocen como complemento a 2 y complemento a 1 en el sistema binario y como complemento a 10 y complemento a 9 en el sistema decimal.

Dado un número N en base β que tiene n dígitos, el complemento a (β -1) de N se define como: (β^n -1)-N Y el complemento a β de N se define como: β^n -N

 β^n representa un número que consta de un 1 seguido de n ceros.

En el caso de números binarios $\beta=2$ y (2^n-1) es un número binario representado por n unos.

COMPLEMENTO A 2

Forma práctica: invierto unos por ceros y ceros por unos y al

resultado le sumo uno: 10101100

01010011

+ 1

01010100

SUMADOR - RESTADOR (4 BITS)

ALU (8 BITS)

Los cuatro bits de estado, C (acarreo - carry), V (desbordamiento - overflow), Z (cero - zero) y S (signo - sign).

MULTIPLICADOR (2x2 BITS)

Tabla de verdad del semisumador

Entra	adas	Salidas	
X	Y	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = \overline{X}Y + X\overline{Y} = X \oplus Y$$

