Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

First Year B. Tech. (All Branches)

Winter - 2016

Course Code: ETU101

Course Name: Basic Electronics Engineering

Time: 2 Hrs. Max. Marks: 30

Instructions to Candidate

All questions are compulsory.

- Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- Use of logarithmic table, drawing instruments and nonprogrammable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Solve any two (2)

- a) Explain the working of Zener diode as a voltage 4
 regulator circuit.
- b) Contrast between Half wave, Center tapped and 4 Bridge rectifiers.
- c) Discuss the constructional details of an LED.
- a) Explain in brief the working of FET-CS amplifier 4
 and define the terms Transconductance and
 Amplification factor of FET.
 - Explain the working of a Direct coupled transistor 4 amplifier.

4

3.	Solve any two	(2)
3.	Solve any two	

- a) Draw and explain the block diagram of OpAmp. 4
- Explain the constructional details of SCR and 4 define the terms I_L and I_H.
- c) Draw and explain the working of OpAmp as an 4 Inverting amplifier in closed loop configuration and derive the equation for gain.
- a) Explain the working of TRIAC in first and third 3
 quadrant.
 - b) Define α and β of transistor and obtain the relation 3 between them.

ernment College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

First Year B. Tech.

Winter - 2014

Course Code: ETU 101

2

Course Name: Basic Electronics Engineering

Time: 2 Hrs. Max. Marks: 30

Instructions to Candidate

1) All questions are compulsory.

2) Assume suitable data wherever necessary and clearly state the assumptions made.

3) Diagrams/sketches should be given wherever necessary.

4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.

5) Figures to the right indicate full marks.

Solve ANY THREE from following questions 09

(a) Explain the fabrication and operation of LED, discuss its parameters, and design LED circuits.

(b) Sketch Zener diode voltage regulator circuits, and explain their operation.

(c) Sketch the circuit diagram for diode AND gate and OR gate with two input terminals and briefly explain circuit operation.

(d) Sketch a two diode full wave rectifier circuit for producing a positive output voltage. Sketch the input and output waveforms after using shunt filter and explain the circuit operation.

Solve ANY THREE from the following questions 09

(a) Draw a block diagram of an unbiased NPN bipolar junction transistor. Identify each part of device and show the depletion region and barrier voltage and briefly explain it.

Cont.

ing, An

ranches

Max.

y and c

ever n

V rat WR?

ner iV,

First Semester B. Tech. (All branches)

Winter - 2012

Course Code: ETU101

Course Name: Basic Electronics Engineering

Time: 2 Hrs.

Max. Marks: 30

Instructions to Candidate

1) All questions are compulsory.

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Solve any THREE

9

- a) What is PIV? What should be the PIV rating of diode in HWR, FWR and bridge type FWR?
- b) Determine V_L , V_R , I_Z and P_Z for zener diode network given below fig $1R = 1k\Omega$, V=16V, $V_Z = 10V$, $P_{ZM} = 30$ mw and $R_L = 1.2 k\Omega$

Fig. 1

Contd..

- c) What is avalanche breakdown? How it differs from zener breakdown? Justify "Avalanche breakdown voltage increases with increased temperature".
- d) Compare the LED and photodiode with its construction, working principle and applications?

9

ent

rain.

pinch

stics C

y expl

OP-A

n inv

on- in

2. Solve any THREE

- a) Explain common emitter NPN configuration with collector and base characteristics and show three region of operation on it.
- Write down Shockley's equation and Justify "After pinch-of", as Vds is increased, then effective length of channel is increases".
- Sketch cross section of P channel enhancement MOSFET and explain working of it with drain transfer characteristics.
- d) Explain in brief charge recombination and pinch off process in FET.
- 3. a) Explain construction and VI characteristics of 04 TRIAC, state it's any two applications.
 - b) Design Differential amplifier and briefly explain of it. What are the important parameters of OP-AMP and give ideal values of them?
 - what is virtual ground concept in inverting amplifier? Why it is not possible in non-inverting amplifier? Find out voltage gain of non-inverting amplifier.

Triple A

Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

First Sem. B. Tech.

Winter -2011

Course Code: ETU101

Course Name: Basic Electronics Engineering

Time: 2 Hrs.

Max. Marks: 30

Instructions to Candidate

1) All questions are compulsory

- 2) Assume suitable data wherever necessary and clearly state the assumptions made.
- 3) Diagrams/sketches should be given wherever necessary.
- 4) Use of logarithmic table, drawing instruments and nonprogrammable calculators is permitted.
- 5) Figures to the right indicate full marks.

1. Solve any THREE

- a) Define TUF? What is meant by the statement "A transformers utilization factor is 0.28 when used in a HWR circuit"
- b) What is transition and diffusion capacitance in p-n junction diode and Explain reverse recovery time?
- c) Explain with reference to a zener diode characteristics curve, What you understand by Izk, Izr and Zz.

Contd.

	1
	1
d) Compare the LED and photodiode with its construction, working principle and applications?	
2 Solve the following	
a) What is need of biasing? Explain voltage divider biasing method for CE configuration.	
b) Explain pinch-off in FET? Write down drain current equations for enhancement and depletion type MOSFET?	
c) Sketch and explain cross section of N channel depletion MOSFET with drain transfer characteristics?	
3 Solve any THREE	
a) Why UJT is referred as negative resistance region device? State it's any two applications.	
b) Draw the block diagram of op-amp and explain each block.	
c) (i) Define: input offset voltage and CMRR with reference to op amp. Also write their ideal values for IC741.	
(ii) What is virtual ground concept in operational Amplifier?	
Draw the circuit diagram of non inverting amplifier and derive expression for its voltage gain. How it can be used as voltage follower.	
201\ Santa of its cut as voltage follower.	

Species in marks.

Government College of Engineering, Amravati (An Autonomous Institute of Government of Maharashtra)

First Year B. Tech. (All Branches)

Winter - 2016

Cour	se Code: ETU101	
Cours	se Name: Basic Electronics Engineering	
	: 2 Hrs. Max. Marks: 30	
3 4	1) All questions are compulsory. 2) Assume suitable data wherever necessary and clearly state the assumptions made. 3) Diagrams/sketches should be given wherever necessary. 4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted. 5) Figures to the right indicate full marks.	
1.	Solve any two (2)	1
a)	Explain the working of Zener diode as a voltage 4 regulator circuit.	
b)	Contrast between Half wave, Center tapped and 4 Bridge rectifiers.	3
c)	Discuss the constructional details of an LED. 4	1
2. (a)	Explain in brief the working of FET-CS amplifier 4 and define the terms Transconductance and Amplification factor of FET.	
b)	Explain the working of a Direct coupled transistor 4 amplifier.	

- 3. Solve any two (2)
 - a) Draw and explain the block diagram of OpAmp. 4
 - b) Explain the constructional details of SCR and 4 define the terms I_L and I_H .
 - c) Draw and explain the working of OpAmp as an 4 Inverting amplifier in closed loop configuration and derive the equation for gain.
- 4. (a) Explain the working of TRIAC in first and third 3 quadrant.
 - b) Define α and β of transistor and obtain the relation 3 between them.

Government College of Engineering, Amravati

(An Autonomous Institute of Government of Maharashtra)

First Semester B. Tech. (All Branches) Winter 2015

Course Code: ETU 101

Course Name: Basic Electronics Engineering

Time: 2 hrs. Max. Marks: 30

Instructions to Candidate

1) All questions are compulsory.

2) Assume suitable data wherever necessary and clearly state the assumptions made.

3) Diagrams/sketches should be given wherever necessary.

4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.

5) Figures to the right indicate full marks.

1. (a) Why zener diode is preferred over PN junction 3 diode to use it as a voltage regulator and hence explain its working with circuit diagram.

OR

- (b) What is a PN junction diode? Explain its V-I 3 characteristics in detail. Hence state what will happen to the depletion region if doping goes on increasing?
- (c) Explain bridge type of full wave rectifier with its 3 circuit diagram and waveforms.
- (d) Differentiate between LED and photodiode on the 4 basis of following points.

1. Working principle 2. Symbol

3. Material used for construction 4. Applications

2.	(a)	What is transistor?	Explain	different	modes	of	3
		working of transistor	r.				

OR

- (b) Draw PNP and NPN transistors. Label all the 3 currents and show the direction of flow. How are the currents of a transistor related?
- (c) Explain transistor RC coupled amplifier with its 3 advantages and disadvantages.
- (d) Differentiate CE, CB, and CC configurations used 4 for transistor on the basis of following points.

 1. Circuit diagram 2. Voltage gain 3. Current gain 4. Applications
- 3. (a) What is Opamp? Explain the different blocks used 4 in designing Opamp.
 - (b) Show that voltage gain for non-inverting amplifier 3 is Av = (1 + (Rf/Rin)) where Rf = feedback resistance and Rin = input resistance.

OR

- (c) Define the following terms.

 1. CMRR 2. SVRR 3. Slew rate 4. Bandwidth product 5. Input bias current 6. Offset voltage
- (d) Draw two transistor analogy diagram for SCR and 3 explain its V-I characteristics.

3