

CORSO DI LAUREA IN DATA SCIENCE A.A. 2023/2024

ISTRUZIONE DI PROGETTO

CASO DI STUDIO

CORSO DI GESTIONE DI DATI STRUTTURATI E NON STRUTTURATI

DOCENTI

Prof. Mario Alessandro Bochicchio

Prof. Corrado Loglisci

STUDENTI

Detomaso Giacomo

(e-mail: g.detomaso7@studenti.uniba.it)

Detomaso Gabriele

(e-mail: g.detomaso6@studenti.uniba.it)

Sommario

l٢	ndicazioni generali sul progetto	3
	Premessa	
	Struttura del progetto	
	Caricamento automatico del progetto	
	Caricamento manuale del progetto	
	Indicazioni sulle query	
	Acronimi comuni nelle query	
	Note sul DMI	

Indicazioni generali sul progetto

Premessa

Questo documento riporta alcune informazioni di tipo descrittivo sul progetto di "Gestione dati strutturati e non strutturati".

Il tema di progetto, fornito da uno stakeholder operante nel campo B&B, è il medesimo per le due parti di esame. La nostra idea è stata quella di fare due analisi che <u>non fossero indipendenti</u>, ma che, ad un certo punto, potessero "incontrarsi".

Ad esempio, un caso emblematico è quello in cui, in fase di **analisi non strutturata**, è emerso che i neighborhoods che lo stakeholder dovrebbe considerare al fine di poter aprire la propria attività a NYC, sono ubicati nei boroughs di Manhattan, Queens e Brooklyn, i quali, in fase di **analisi strutturata**, erano emersi come i distretti chiave sui quali concentrarsi nella ricerca di un neighborhood ideale (in base ai requisiti forniti per le analisi).

Le due relazioni, inoltre, terminano **con la medesima query conclusiva** la quale, nonostante sia "strutturata", sfrutta particolari risultati ottenute nelle due analisi.

Struttura del progetto

Il progetto è suddiviso in numerose cartelle:

- DDL, DML, QL contengono i codici relativi alle operazioni descritte dal nome della cartella
 - o In QL in particolare i file structured.sql contengono queries solo strutturate, il nonstructured.sql contengono queries solo non strutturate;
- **Datasets**: contiene i file ottenuti dalle fonti date (suddivisi in CSV e shapefiles, questi ultimi visti la grande dimensione sono zippati);
- Schema: contiene gli schemi prodotti in formato SVG;
- Results sets: contiene i risultati (CSV) per le varie lanciate
- Result presentation: contiene le presentazioni grafiche dei risultati

Per queste ultime due cartelle vi è una divisione tra strutturato e non.

Caricamento automatico del progetto

Il notebook project_loader.ipynb, una volta lanciato permette di caricare il progetto su Postgres in maniera automatizzata. E' necessario fornire semplicemente i propri parametri di connessione nei blocchi di codice della sezione iniziale.

Il notebook esegue automaticamente:

- Caricamento shapefiles in tabelle d'appoggio;
- Caricamento CSV in tabelle di appoggio;
- Esecuzione di script DDL e DML nell'ordine prestabilito.

Caricamento manuale del progetto

Di seguito sono forniti gli step da seguire per eseguire correttamente il progetto su Postgres:

- Caricare con la GUI di utilty di Postgres gli shapefiles;
- Lanciare lo script: DDL/ddl_shapefiles.sql;
- Lanciare lo script: DDL/ddl/csv_temporary_tables;
- Per poter popolare le tabelle CSV d'appoggio è necessario per forza usare il processo automatizzato fornito (o in alternativa usare comandi da terminale di postgres o utility pg admin). In particolare, è necessario eseguire tutti i blocchi di codice del notebook presenti nelle seguenti sezioni:
 - Sezione di introduzione per il setting della connessione;
 - Sezione dal titolo: "Loading CSV into postgres"
- Lanciare lo script: DDL/ddl_csv.sql;
- Lanciare gli script DML degli shapefiles (l'ordine non è importante);
- Lanciare gli script DML dei file CSV (l'ordine non è importante) tranne i seguenti: dm_function_make_point.sql e dm_function_find_neighborhood;
- Eseguire i due script menzionati al punto precedente nell'ordine desiderato;
- Lanciare script DDL/ddl constraints.sql;
- Lanciare script DDL/ddl_drop_temp_tables.sql.

Indicazioni sulle query

La produzione di ogni query è stata fatta a seguito di richieste precise dello stakeholder al fine di raggiungere gli obiettivi di analisi. Pertanto, ogni query di analisi dati, per entrambe le parti di esame, comprende la creazione e gestione di numerosi semilavorati come temporary tables o view (anche view materializzate per prestazioni migliori delle query), così come funzioni, al fine di raggiungere, tramite una **select finale** i risultati voluti.

Pertanto, si fa presente che le queries strutturate in questa maniera non sono banali select.

Ogni query, è stata sviluppata con l'idea di fornire una presentazione chiara dei risultati in linea con quanto espresso dallo stakeholder, sfruttando i costrutti SQL standard e spaziali (visti a lezione e non) necessari per raggiungere gli obiettivi .

Acronimi comuni nelle query

In questa sezione si rende noto che:

- I termini rental units, unità di affito, B&B, bnb sono usati in maniera interscambiabile nel corso della relazione e sviluppo queries;
- Per questioni di analisi sono state considerate solo le rental units significative denominate significant rental units. È quindi comune trovare le seguenti abbreviazioni
 - SRU: significant_rental_units
 - o RU: rental_units

In generale si è cercato di commentare in maniera adeguata il codice prodotto.

Note sul DML

Il mapping del dominio della tabella POI è stato effettuato con un documento presente nella relativa cartella zippata all'interno della cartella datasets/spatial_dataset_zipped/nyc_point_of_intereset.zip.