DEEP-LEARNING ASSIGNMENT-2 MANASVI AGGARWAL (MTECH. (RES.)) SR. NO. 16223

Part1: Train a neural network on Fashion MNIST dataset.

My model specifications are as follows:

#layers 4
#neurons in each layer [512,128,16,10]
activation used in each (relu)
batch size 512
#epochs 100
dropout rate 0.

I came to these specifications based on the validation loss and accuracy. And the validation loss was minimum for this configuration so I saved this model. Validation set contains 10% of the train set. 90% of the train set is used for training. At the end I tested my saved model on the test set. I testes various configurations. For #layers I tested for 2,3,4 and for #neurons I tested for 16,64,256. Training accuracy of the saved model is 96% and test accuracy is 89.35%. I choose current architecture as validation loss was minimum on this architecture. Also, more complex model requires more data therefore, I didn't choose more than 4 layers. Also, Learning rate is set to 0.001 as higher learning rate will lead to oscillations during training. Confusion Matrix for NN model is (on test set):

[[87	9	1	29	21	9	Ð	50	0	11	0]
[2 98	16	0	7	4	0	0	0	1	0]
[2	4	1	851	11	75	Ø	36	Ø	2	0]
[2:	5	6	12	885	46	0	20	Ø	5	1]
1	1	1	81	21	870	Ø	24	0	2	0]
1	9	0	0	ø	Ø	960	Ø	24	1	15]
[16]	7	3	108	23	81	0	602	0	16	0]
1	9	0	0	0	0	6	0	978	0	16]
	3	0	3	1	5	1	3	5	979	0]
1	9	0	0	0	0	8	1	46	0	945]]

Given are some plots for some configurations which I tested: (All plots on y axis denotes the train accuracy/train loss):

Plot 1: EPOCHS VS LOSS

Plot 2: VARYING ACTIVATION FUNCTIONS

Plot 3: DIFFERENT NUMBER OF LAYERS

Plot 4: VARYING NUMBER OF NEURONS

PART 2: Train a CNN on Fashion MNIST dataset.

My model specifications are as follows:

#CNN layers 2
Filter size 5,2
activation used in each layer relu
batch size 128
#epochs 30
#filters in each CNN layer 32,64
#FCC layers 3
#neurons in each FCC layer 512,10

I came to these specifications based on the validation loss and accuracy. I keep doubling the #channels in each CN layer as input to a CNN layer is decreasing after every CNN layer. And the validation loss was minimum for this configuration so I saved this model. Validation set contains 10% of the train set. 90% of the train set is used for training. At the end I tested my saved model on the test set. I testes various configurations. For #CNN/FC layers I tested for 2,3,4 and for #neurons I tested for 16,32,64,128,256 for each FC layer. Training accuracy of the saved model is 97% and test accuracy is 91.55%. More complex model requires more data therefore, I didn't choose more than 2 CNN layers and 2 FCL. Also, model is converging and hence these configurations are used. The early stopping is used while training CNN and when validation loss starts increasing for some epochs I stop the training. Also, Learning rate is set to 0.001 as higher learning rate will lead to oscillations during training. Confusion matrix is (on test set):

	847	0	18	15	7	1	107	0	4	1]
Ţ	3	979	3	9	4	0	2	0	0	Θĵ
]	15	1	853	7	71	0	53	0	0	8]
]	13	2	9	911	37	0	28	0	0	8]
	3	0	36	15	916	0	30	0	8	8]
	0	0	0	0	0	981	9	13	0	6]
	101	1	59	24	97	1	714	8	3	8]
	0	(9)	(9)	0	0	4	8	979	Θ	17]
	3	0	6	3	3	2	3	4	976	0]
	0	0	0	8	0	5	1	29	1	964]]

Given are some plots for some configurations which I tested: (All plots on y axis denotes the train accuracy)

Plot 1: DIFFERENT NUMBER OF CNN LAYERS

Plot 2: VARYING NUMBER OF NEURONS

Plot 3: VARYING ACTIVATION FUNCTIONS

