Image Enhancement

Albert Chung

Department of Computer Science

University of Exeter

Spring Term 2023

References

- Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing, Third Edition, Pearson Education, 2008:
 - Histogram Equalization: Chapter 3.3.1

https://en.wikipedia.org/wiki/Histogram equalization

Image histogram

• A digital image with L gray levels r_k . The probability of occurrence of gray level r_k is given by

$$p_r(r_k) = \frac{n_k}{N}$$
 where n_k = number of pixels with gray level r_k
 $N = \text{total number of pixels in an image}$

Images with different histograms

FIGURE 3.16 Four basic image types: dark, light, low contrast, high contrast, and their corresponding histograms.

Contrast stretching

Histogram of a low contrast image

$$p_r(r_k) = \frac{n_k}{N}$$

Contrast compressing

Histogram of a high contrast image

$$p_r(r_k) = \frac{n_k}{N}$$

Histogram equalization

• We want an image with output intensity values that approx. follow a *uniform distribution*.

- That is, a flat histogram, where each gray level, r_k , appears an equal number of times, i.e., N/L times,
 - L is the number of gray levels
 - N is the total number of pixels in the image
- The intensity transformation is s = T(r), such that
 - (a) T(r) is single-valued and non-decreasing in the interval $0 \le r \le 1$
 - (b) $0 \le T(r) \le 1$ for $0 \le r \le 1$

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF, independently of the form of the PDF of the r's.

Histogram equalization transform

• The intensity transformation is the cumulative distribution function (CDF) of r, which is represented by

$$s = T(r) = \int_0^r p_r(w) dw$$

• The discrete implementation is given by

$$S_k = T(r_k) = \sum_{j=0}^k \frac{n_j}{N} = \sum_{j=0}^k p_r(r_j)$$

where

 s_k is the output intensity

 r_k is the input intensity

 n_j is the number of pixels with gray level r_j

k = 0, 1, 2, 3, ... L-1 (total number of gray levels is L)

Example 2

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-equalized images. Right column: histograms of the images in the center column.

Histogram equalization

- Histogram equalization can significantly improve image appearance
 - Automatic
 - Computationally efficient
- Good pre-processing step
 - Account for different lighting conditions
 - Account for different camera/device properties

Local histogram equalization

Apply histogram equalization about a neighborhood around (x,y)

• Transform the gray level for pixel (x,y)

• Move the neighborhood over the rest of the image

Local histogram equalization

Reveals details in local areas

Original

Global Histogram

Local Histogram

Summary

- Image histogram
- Histogram equalization
- Local histogram equalization
- More examples and details can be found at
 - https://en.wikipedia.org/wiki/Histogram_equalization