

Technische

Grundlagen der Informationstechnik (Wireless)

Drahtlose Kommunikation / Ausbreitung e/m Wellen

Thomas Schneider

Inhalt

- Motivation und Einführung
- Die elektromagnetische Welle
- Der drahtlose Kanal
- Antennen
- Ausbreitung e/m Wellen
- Berechnung von Funkstrecken
- THz-Kommunikation
- Funksysteme
- Optische Kommunikation
- Silizium Photonik
- Plasmonik

Inhalt

- Dämpfung
- Brechung
- Streuung
- Beugung

Inhalt

- Dämpfung
- Brechung
- Streuung
- Beugung

Atmosphärische Dämpfung

Inhalt

- Dämpfung
- Brechung
- Streuung
- Beugung

Brechung

$$N = (n-1) \times 10^6$$

$$N=N_Se^{-\frac{h}{H}}$$

$$H = 7.35 \text{ km}$$

 $N_{\rm S} = 315$

$$R_{eff} = \frac{4}{3} \times 6375km = 8500 \ km$$

Inhalt

- Dämpfung
- Brechung
- Streuung
- Beugung

Streuung

Inhomogeneous distribution of optical properties

Streuung

Inhomogeneous distribution of optical properties

Inhomogeneous distribution of optical properties

If $d_{particle} \sim \lambda \rightarrow Mie-Scattering (Milk, Fog)$

Regendämpfung

Rain rate (mm/h) exceeded for 0.01% of the average year

 $\label{eq:FIGURE 4} FIGURE~4$ Rain rate (mm/h) exceeded for 0.01% of the average year

Nebeldämpfung

Inhalt

- Dämpfung
- Brechung
- Streuung
- Beugung

Beugung

Reflexion

- Die Moleküle in der Luft können elektromagnetischen Wellen Energie entziehen und in Wärme verwandeln. Wie gut dieser Prozess funktioniert hängt vom Verhältnis der Frequenz der Welle zur Resonanzfrequenz der Luftmoleküle ab.
- Im GHz-Bereich gibt es 5 Resonanzfrequenzen des O₂ und des H₂O-Moleküls die zu einer starken Dämpfung des Signals führen.
- Regen führt, abhängig von seiner Stärke, ebenfalls zu einer Dämpfung der Welle. Die übertragbare Datenrate einer Richtfunkstrecke kann sich demnach bei starkem Regen drastisch verkleinern und die Richtfunkstrecke kann auch vollständig zusammenbrechen.

Dämpfung [dB/km]

1013 hPa

- Durch den nach oben hin abnehmenden Luftdruck nimmt auch der Brechungsindex der Luft mit größer werdender Höhe ab. Elektromagnetische Wellen werden dadurch frequenzabhängig gebrochen. Daher ist der Horizont für Radiowellen weiter als für sichtbares Licht.
- Zur Beschreibung der Beugung muss man den Wellencharakter berücksichtigen.
- Fresnelsche Zonen werden durch einen Wegunterschied der Wellen von $\lambda/2$ gebildet.
- Die reflektierte Leistung einer Welle hängt nicht nur von der Frequenz und dem Brechungsindex des Materials, sondern auch vom Einfallswinkel und der Polarisation der Welle ab.

