Language shortcut 1: Visual giveaway	Language shortcut 2: Weak distractors	Language shortcut 3: Language bias
Q: The green TOMM20 outer mitochondrial membrane protein localizes where?	Q: What is the localization of the green stain?	Q: For a study on Parkinson's disease, we stain a target green. Where does it localize?
A) MitochondriaB) NucleusC) ERD) Golgi	A) MitochondriaB) ButaneC) The cellD) Everywhere	A) MitochondriaB) NucleusC) ERD) Golgi
Why? The 'M' in "TOMM20" stands for 'mitochondria', so that's enough to answer the question.	Why? The LLM generates distractors that are not plausible (e.g., 'butane') and they can easily be eliminated	Why? 'Mitochondria' is the most plausible answer because the question mentions Parkinson's disease, which frequently studies

mitochondrial dysfunction

be eliminated