2章 微分の応用

問 1
$$y = f(x)$$
とする.

$$(1) f'(x) = 3x^2$$

$$f(2) = 2^3 = 8$$

$$f'(2) = 3 \cdot 2^2 = 12$$

したがって、x = 2における接線の方程式は

$$y - f(2) = f'(2)(x - 2)$$

$$y - 8 = 12x - 24$$

$$v = 12x - 16$$

 $(2) f(x) = x^{-2}$

$$f'(x) = -2x^{-3} = -\frac{2}{x^3}$$

よって

$$f(-1) = \frac{1}{(-1)^2} = 1$$

$$f'(-1) = -\frac{2}{(-1)^3} = 2$$

したがって, x = -1における接線の方程式は

$$y - f(-1) = f'(-1)\{x - (-1)\}$$

$$y - 1 = 2x + 2$$

$$y = 2x + 3$$

 $(3) f'(x) = -\sin x$

よって

$$f(\pi) = \cos \pi = -1$$

$$f'(\pi) = -\sin \pi = 0$$

したがって、 $x = \pi$ における接線の方程式は

$$y - f(\pi) = f'(\pi)(x - \pi)$$

$$y - (-1) = 0$$

$$y = -1$$

 $(4) f'(x) = e^x$

$$f(-2) = e^{-2}$$

$$f'(-2) = e^{-2}$$

したがって, x = -2における接線の方程式は

$$y - f(-2) = f'(-2)\{x - (-2)\}$$

$$y - e^{-2} = e^{-2}(x + 2)$$

$$y = e^{-2}x + 3e^{-2}$$

$$y = \frac{1}{e^2}x + \frac{3}{e^2}$$

問2 y = f(x)とする.

$$(1) f'(x) = 2x + 3$$

$$f(1) = 1^2 + 3 \cdot 1 = 4$$

$$f'(1) = 2 \cdot 1 + 3 = 5$$

したがって, x = 1における法線の方程式は

$$y - f(1) = -\frac{1}{f'(1)}(x - 1)$$

$$y - 4 = -\frac{1}{5}(x - 1)$$

$$y = -\frac{1}{5}x + \frac{21}{5}$$

 $(2) f'(x) = \cos x$

$$f\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$$

$$f'\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$$

 $f'\left(\frac{\pi}{2}\right) = 0$ なので、 $x = \frac{\pi}{2}$ における法線の方程式は

$$x=\frac{\pi}{2}$$

問3

$$(1) f'(x) = -5x^4 - 2$$

$$=-(5x^4+2)$$

 $5x^4 + 2 > 0$ なので、 $-(5x^4 + 2) < 0$

よって、すべての実数xについて、f'(x) < 0であるから、

f(x)は区間Iで単調に減少する.

 $(2) f'(x) = 1 - \cos x$

区間 $(0, 2\pi)$ のxについて

 $-1 \leq \cos x < 1$

 $1 \ge -\cos x > -1$

であるから

$$2 \ge 1 - \cos x > 0$$

すなわち, f'(x) > 0であるから,

f(x)は区間Iで単調に増加する.

問4

(1)
$$y' = 4x + 8$$

 $= 4(x + 2)$
 $y' = 0$ とすると, $x = -2$
 $x = -2$ のときのyの値は
 $y = 2 \cdot (-2)^2 + 8 \cdot (-2) + 5$
 $= 8 - 16 + 5$

= -3

yの増減表は次のようになる.

x	•••	-2	
y'	_	0	+
у	7	-3	7

よって

x > -2のとき 増加 x < -2のとき 減少

(2)
$$y' = 6x^2 - 6x - 12$$

 $= 6(x^2 - x - 2)$
 $= 6(x + 1)(x - 2)$
 $y' = 0$ とすると、 $x = -1$, 2
 $x = -1$ のときのyの値は

$$y = 2 \cdot (-1)^3 - 3 \cdot (-1)^2 - 12 \cdot (-1) + 7$$
$$= -2 - 3 + 12 + 7$$

= 14

x = 2のときのyの値は

$$y = 2 \cdot 2^{3} - 3 \cdot 2^{2} - 12 \cdot 2 + 7$$
$$= 16 - 12 - 24 + 7$$
$$= -13$$

yの増減表は次のようになる.

x		-1		2	
y'	+	0	1	0	+
у	7	14	7	-13	7

よって

x < -1, x > 2のとき 増加 -1 < x < 2のとき 減少

(3)
$$y' = 4x^3 - 4x$$

 $= 4x(x^2 - 1)$
 $= 4x(x + 1)(x - 1)$
 $y' = 0$ とすると、 $x = -1$, 0, 1
 $x = -1$ のときのyの値は
 $y = (-1)^4 - 2 \cdot (-1)^2 + 3$

$$= 1 - 2 + 3$$

$$= 2$$

x = 0のときのyの値は

$$y = 3$$

x = 1のときのyの値は

$$y = 1^4 - 2 \cdot 1^2 + 3$$

$$= 1 - 2 + 3$$

$$= 2$$

γの増減表は次のようになる.

х		-1		0		1	
y'	_	0	+	0	-	0	+
у	7	2	7	3	7	2	7

よって

$$-1 < x < 0, x > 1$$
のとき 増加 $x < -1, 0 < x < 1$ のとき 減少

問 5

(1)
$$y' = 3x^2 - 6x$$

= $3x(x - 2)$
 $y' = 0$ とすると, $x = 0$, 2
 $x = 0$ のときの y の値は

$$y = 1$$

x = 2のときのyの値は

$$y = 2^3 - 3 \cdot 2^2 + 1$$
$$= 8 - 12 + 1$$

$$= -3$$

γの増減表は次のようになる.

х		0		2	
y'	+	0	_	0	+
у	7	1	7	-3	7

よって

極大値 1
$$(x = 0)$$

極小値
$$-3$$
 $(x = 2)$

$$(2) y' = -4x^{3} + 4x$$
$$= -4x(x^{2} - 1)$$
$$= -4x(x + 1)(x - 1)$$

$$y' = 0$$
とすると, $x = -1$, 0, 1

x = -1のときのyの値は

$$y = -(-1)^4 + 2 \cdot (-1)^2$$

= -1 + 2

= 1

x = 0のときのyの値は

y = 0

x = 1のときのyの値は

$$y = -1^4 + 2 \cdot 1^2$$

= -1 + 2

= 1

yの増減表は次のようになる.

x	•••	-1	•••	0	•••	1	•••
y'	+	0	1	0	+	0	-
y	7	1	7	0	7	1	7

よって

極大値 1 (x = -1, 1)

極小値 0 (x=0)

(3)
$$y' = 12x^3 - 24x^2$$

 $= 12x^2(x-2)$
 $y' = 0$ とすると, $x = 0$, 2
 $x = 0$ のときのyの値は
 $y = 7$
 $x = 2$ のときのyの値は
 $y = 3 \cdot 2^4 - 8 \cdot 2^3 + 7$
 $= 48 - 64 + 7$
 $= -9$

νの増減表は次のようになる.

х	•••	0	•••	2	•••
y'	_	0	_	0	+
у	7	7	7	-9	7

よって

極大値 なし

極小値 -9 (x = 2)

問 6

yの増減表は次のようになる.

х		-2	•••	2	
y'	+	0	_	0	+
у	7	a + 16	V	a – 16	7

増減表より

極大値
$$a + 16$$
 $(x = -2)$

極小値
$$a-16$$
 $(x=2)$

極大値が正,極小値が負なので

$$\begin{cases} a+16 > 0 \cdot \cdot \cdot \text{ } \\ a-16 < 0 \cdot \cdot \cdot \text{ } \text{ } \end{cases}$$

①
$$\& 9$$
, $a > -16$

②
$$\sharp$$
 ϑ , $a < 16$

問 7

$$(1) y' = 3x^2 + 6x - 9$$
$$= 3(x^2 + 2x - 3)$$

$$=3(x+3)(x-1)$$

$$y' = 0$$
 とすると, $x = -3$, 1

x = -3は変域の外なので考えない.

x = -1のときのyの値は

$$y = (-1)^3 + 3 \cdot (-1)^2 - 9 \cdot (-1) + 1$$

$$= -1 + 3 + 9 + 1$$

= 12

x = 1のときのyの値は

$$y = 1^3 + 3 \cdot 1^2 - 9 \cdot 1 + 1$$

$$= 1 + 3 - 9 + 1$$

= -4

x = 2のときのyの値は

$$y = 2^3 + 3 \cdot 2^2 - 9 \cdot 2 + 1$$

$$= 8 + 12 - 18 + 1$$

= 3

νの増減表は次のようになる.

х	-1		1	•••	2
<i>y</i> ′		_	0	+	
у	12	7	-4	7	3

よって

最大値 12
$$(x = -1)$$

最小値 -4 (x = 1)

$$(2) y' = 1 - 2\sin x$$

$$y' = 0$$
とすると,

$$\sin x = \frac{1}{2}$$

 $0 \le x \le \pi$ では

$$x = \frac{\pi}{6}, \ \frac{5}{6}\pi$$

x = 0のときのyの値は

$$y = 0 + 2\cos 0$$

$$= 2 \cdot 1 = 2$$

$$x = \frac{\pi}{6}$$
のときのyの値は

$$y = \frac{\pi}{6} + 2\cos\frac{\pi}{6}$$

$$=\frac{\pi}{6}+2\cdot\frac{\sqrt{3}}{2}$$

$$=\frac{\pi}{6}+\sqrt{3}$$

$$x = \frac{5}{6}\pi$$
のときの y の値は

$$y = \frac{5}{6}\pi + 2\cos\frac{5}{6}\pi$$

$$=\frac{5}{6}\pi + 2 \cdot \left(-\frac{\sqrt{3}}{2}\right)$$

$$=\frac{5}{6}\pi-\sqrt{3}$$

 $x = \pi$ のときのyの値は

 $y = \pi + 2\cos\pi$

$$=\pi+2\cdot(-1)$$

$$= \pi - 2$$

yの増減表は次のようになる.

х	0		$\frac{\pi}{6}$		$\frac{5}{6}\pi$		π
y'		+	0	_	0	+	
у	2	7	$\frac{\pi}{6} + \sqrt{3}$	7	$\frac{5}{6}\pi - \sqrt{3}$	7	$\pi - 2$

よって

最大値
$$\frac{\pi}{6} + \sqrt{3}$$
 $\left(x = \frac{\pi}{6}\right)$

最小值
$$\frac{5}{6}\pi - \sqrt{3}$$
 $\left(x = \frac{5}{6}\pi\right)$

(3)
$$y' = (x^2)'e^{-x} + x^2(e^{-x})'$$

$$= 2xe^{-x} - x^2e^{-x}$$
$$= xe^{-x}(2-x)$$

$$y' = 0$$
とすると, $x = 0, 2$

$$x = 0$$
のときの y の値は

$$y = 0$$

$$x = 2$$
のときの y の値は

$$v = 2^2 \cdot e^{-2}$$

$$=\frac{4}{e^2}$$

x = 3のときのyの値は

$$y = 3^2 \cdot e^{-3}$$

$$=\frac{9}{a^3}$$

yの増減表は次のようになる.

			-		
х	0	•••	2	•••	3
y'		+	0	_	
у	0	7	$\frac{4}{e^2}$	7	$\frac{9}{e^3}$

よって

最大值
$$\frac{4}{e^2}$$
 $(x=2)$

最小値
$$0 (x = 0)$$

$$(4) y' = 1 - 2 \cdot \frac{1}{2\sqrt{x}}$$
$$= 1 - \frac{1}{\sqrt{x}}$$

y' = 0とすると, x = 1

x = 0のときのyの値は

y = 0

x = 1のときのyの値は

$$y = 1 - 2\sqrt{1}$$

= -1

x = 4のときのyの値は

$$y = 4 - 2\sqrt{4}$$

= 0

yの増減表は次のようになる.

x	0	•••	1	•••	4
y'		ı	0	+	
у	0	7	-1	7	0

よって

最大値 0 (x = 0, 4)

最小值 -1 (x = 1)

問8

(1) 点AからBCに垂線を引く.

その垂線とDGの交点をM、BCとの交点をNとする.

△ADMと△DBEにおいて

 $\angle ADM = \angle DBE$

 $\angle AMD = \angle DEB = 90^{\circ}$

2組の角がそれぞれ等しいので、△ ADM∞ △ DBE 相似の関係から、

MD : AM = EB : DE

$$1 : AM = x : 2$$

$$AM \cdot x = 2$$

$$AM = \frac{2}{x}$$

また,

$$BC = BE + EF + FC$$

$$= x + 2 + x$$

$$= 2 + 2x$$

$$= 2(1 + x)$$

$$AN = AM + MN$$

$$=\frac{2}{x}+2$$

$$= \frac{2+2x}{x}$$
$$= \frac{2(1+x)}{x}$$

$$S = \frac{1}{2} \cdot BC \cdot AN$$

$$=\frac{1}{2}\cdot 2(1+x)\cdot \frac{2(1+x)}{x}$$

$$=\frac{2(1+x)^2}{x}$$

また, xの変域は, x > 0

$$(2) S' = 2 \cdot \left\{ \frac{2(1+x) \cdot x - (1+x)^2 \cdot 1}{x^2} \right\}$$

$$= 2 \cdot \left\{ \frac{2x + 2x^2 - 1 - 2x - x^2}{x^2} \right\}$$

$$= 2 \cdot \left\{ \frac{x^2 - 1}{x^2} \right\}$$

$$= \frac{2(x+1)(x-1)}{x^2}$$

$$S' = 0$$
とすると, $x = -1$, 1

x = -1は変域の外なので考えない.

x = 1のときのSの値は

$$S = \frac{2(1+1)^2}{1}$$

$$= 2 \cdot 4$$

Sの増減表は次のようになる.

х		1	
S'	-	0	+
S	7	8	7

よって,

Sが最小になるときのxの値は, x = 1

問 9

(1)
$$y = e^x - x - 1$$
とおく.

$$y' = e^x - 1$$

$$y' = 0$$
とすると, $x = 0$

$$x = 0$$
のときの γ の値は

$$y = e^0 - 0 - 1$$

$$= 1 - 0 - 1$$

$$= 0$$

yの増減表は次のようになる.

x		0	•••
y'	_	0	+
у	7	0	7

よって、最小値はy = 0 (x = 0)となるから、

$$y = e^x - x - 1 \ge 0$$

したがって, $e^x \ge x + 1$ となる.

(2) $y = x - \tan^{-1} x$ とおく.

$$y' = 1 - \frac{1}{1 + x^2}$$

$$y' = 0 とすると, x = 0$$

$$x = 0$$
 ときのyの値は
$$y = 0 - \tan^{-1} 0$$

$$= 0$$

yの増減表は次のようになる.

x	0	•••
<i>y</i> ′	0	+
у	0	7

よって、最小値はy = 0 (x = 0)となるから、

$$y = x - \tan^{-1} x \ge 0$$

したがって, $x \ge \tan^{-1} x$ となる.

問 10

(1) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 1} \frac{(x^4 + 2x^2 - 3)'}{(x^3 + 3x^2 - 4)'}$$

= $\lim_{x \to 1} \frac{4x^3 + 4x}{3x^2 + 6x}$
= $\frac{4 \cdot 1^3 + 4 \cdot 1}{3 \cdot 1^2 + 6 \cdot 1}$
= $\frac{8}{9}$

(2) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(1 - e^x)'}{(x)'}$$

= $\lim_{x \to 0} \frac{-e^x}{1}$
= $-e^0$
= $-\mathbf{1}$

(3) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(\sin 2x)'}{(\sin 5x)'}$$
=
$$\lim_{x \to 0} \frac{2 \cos 2x}{5 \cos 5x}$$
=
$$\frac{2}{5} \lim_{x \to 0} \frac{\cos 2x}{\cos 5x}$$
=
$$\frac{2}{5} \cdot \frac{\cos 0}{\cos 0}$$
=
$$\frac{2}{5}$$

問 11

(1) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 1} \frac{(x^3 - 3x + 2)'}{(x^5 - 5x + 4)'}$$

= $\lim_{x \to 1} \frac{3x^2 - 3}{5x^4 - 5}$ ※ここでも $\frac{0}{0}$ の不定形

= $\lim_{x \to 1} \frac{(3x^2 - 3)'}{(5x^4 - 5)'}$

= $\lim_{x \to 1} \frac{6x}{20x^3}$

= $\frac{3}{10} \lim_{x \to 1} \frac{1}{x}$

= $\frac{3}{10} \cdot \frac{1}{1}$

(2) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(x^3)'}{(x - \sin x)'}$$

$$= \lim_{x \to 0} \frac{3x^2}{1 - \cos x} \quad \text{※ここでも} \frac{0}{0} \text{の不定形}$$

$$= \lim_{x \to 0} \frac{(3x^2)'}{(1 - \cos x)'}$$

$$= \lim_{x \to 0} \frac{6x}{\sin x} \quad \text{※ここでも} \frac{0}{0} \text{の不定形}$$

$$= \lim_{x \to 0} \frac{(6x)'}{(\sin x)'}$$

$$= \lim_{x \to 0} \frac{6}{\cos x}$$

$$= \frac{6}{\cos 0}$$
$$= \frac{6}{1}$$
$$= 6$$

問 12

(1) 与式は $\frac{8}{8}$ の不定形である.

与式 =
$$\lim_{x \to \infty} \frac{\{\log(1+x^2)\}'}{\{\log(1+x)\}'}$$

= $\lim_{x \to \infty} \frac{\frac{1}{1+x^2} \cdot (1+x^2)'}{\frac{1}{1+x} \cdot (1+x)'}$

= $\lim_{x \to \infty} \frac{\frac{2x}{1+x^2}}{\frac{1}{1+x}}$

= $\lim_{x \to \infty} \left\{ \frac{2x}{1+x^2} \cdot \frac{1+x}{1} \right\}$

= $\lim_{x \to \infty} \frac{2x+2x^2}{1+x^2}$ ※ここでも $\frac{\infty}{\infty}$ の不定形

= $\lim_{x \to \infty} \frac{(2x+2x^2)'}{(1+x^2)'}$

= $\lim_{x \to \infty} \frac{2+4x}{2x}$ ※ここでも $\frac{\infty}{\infty}$ の不定形

= $\lim_{x \to \infty} \frac{(2+4x)'}{(2x)'}$

= $\lim_{x \to \infty} \frac{4}{2}$

= 2

(2) 与式を $\frac{\log x}{\frac{1}{\sqrt{x}}}$ と変形すれば, $\frac{-\infty}{\infty}$ の不定形である.

$$\left(\frac{1}{\sqrt{x}}\right)' = \left(x^{-\frac{1}{2}}\right)' = -\frac{1}{2}x^{-\frac{3}{2}} = -\frac{1}{2x\sqrt{x}}$$

$$\exists \vec{x} = \lim_{x \to +0} \frac{(\log x)'}{\left(\frac{1}{\sqrt{x}}\right)'}$$

$$= \lim_{x \to +0} \frac{\frac{1}{x}}{-\frac{1}{2x\sqrt{x}}}$$

$$= \lim_{x \to +0} \left\{ \frac{1}{x} \cdot \left(-\frac{2x\sqrt{x}}{1} \right) \right\}$$

$$= -2 \lim_{x \to +0} \sqrt{x}$$

$$= -2 \cdot 0$$
$$= 0$$