

<u>Course</u> > <u>Unit 6:</u> ... > <u>Lec. 13:</u>... > 10. Exe...

10. Exercise: Conditional variance II

Exercises due Mar 25, 2020 05:29 IST Completed

Exercise: Conditional variance II

3/3 points (graded)

The random variable Q is uniform on [0,1]. Conditioned on Q=q, the random variable X is Bernoulli with parameter q.

(a) The conditional variance, $\operatorname{Var}(X|Q)$, is equal to:

 $\bigcirc 1/4$

 $\bigcirc q (1-q)$

 $\bigcirc Q (1-Q)$

 $\bigcirc q^2$

 $\bigcirc Q^2$

(b) Recall that a uniform random variable on [0,1] has a variance of 1/12 and also satisfies ${f E}\,[Q^2]=1/3.$ Then:

 $\mathsf{Var}ig(\mathbf{E}\left[X\,|\,Q
ight]ig)= igg[$ 1/12 igstar Answer: 0.08333

Solution:

(a) We know that ${\sf Var}\,(X\,|\,Q=q)=q\,(1-q)$, for all $q\in[0,1]$, which translates into the abstract statement ${\sf Var}\,(X\,|\,Q)=Q\,(1-Q)$.

(b) Since
$$\mathbf{E}\left[X\,|\,Q
ight]=Q$$
, we have $\mathsf{Var}ig(\mathbf{E}\left[X\,|\,Q
ight]ig)=\mathsf{Var}\left(Q
ight)=1/12.$

Since $\operatorname{\sf Var}\left(X\,|\,Q\right)=Q\left(1-Q\right)$, we have

$$\mathbf{E}ig[\mathsf{Var}\left(X\,|\,Q
ight)ig] = \mathbf{E}ig[Q\left(1-Q
ight)ig] = \mathbf{E}\left[Q
ight] - \mathbf{E}[Q^2ig] = rac{1}{2} - rac{1}{3} = rac{1}{6}.$$

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 6: Further topics on random variables:Lec. 13: Conditional expectation and variance revisited; Sum of a random number of independent r.v.'s / 10. Exercise: Conditional variance II

Show all posts	•	by recent activi	ty 🗸
? <u>viral explos</u> Suppose a pe	sion erson who is a carrier of an infectious virus enters a city with a population of 100l	<u>«. How lon</u>	1
<u>UTC.</u>	or these problems 23:59UTC? But I cannot submit at 03:30 EDT which that the due date for these Unit 6 problems is 23:59UTC. But I cannot submit at		3
1	f expressions ried from all these nestings of formulas and random variables, and am frankly los	ing sight o	3
	ward approach works as well grate if you don't trust your intuition solving part (b). But I must admit that the au	thors' solu	3
? how to beg	in ? one please help me with how to approach this problem? I am lost here	1 new_	6
Hint, secon	<u>d part</u>		

	In the last question, we have solved E[X/Q], and now we have the value of the variance of Q. In the first p	1
?	$\frac{\text{rrd question}}{\text{l could work out the first 2, but I am struggling with the 3rd. Is } E[Var(X Q)=Var(X)-Var(E[X Q])? \text{ If so what } i}$	5

© All Rights Reserved

