

Sistemas Operativos: Gestión de Procesos

* Esquema general de conceptos clave

1. Introducción

- Dn proceso es un programa en ejecución
- Utiliza recursos: CPU, memoria, E/S
- Buena gestión permite:
 - Multitarea eficiente
 - Aislamiento seguro
 - Aprovechamiento óptimo del hardware
- Fundamental en entornos: cloud, contenedores, IA

2. Ciclo de vida del proceso (5 estados)

Modelo clásico:

Nuevo → Listo → Ejecutando → Bloqueado → Terminado

- Transiciones:
 - Dispatch → CPU
 - I/O → Bloqueado
 - Fin I/O → Listo
 - Interrupciones → Listo

3. Modelo extendido: 7 estados

- Añade:
 - Listo suspendido
 - Bloqueado suspendido
- Permite usar disco para procesos suspendidos
- ✓ Mejora rendimiento en sistemas con alta carga
- Usado en SO con paginación bajo demanda

4. PCB – Process Control Block

* Estructura que representa cada proceso

Contiene:

- PID, estado, prioridad
- Registros de CPU
- Memoria, archivos abiertos
- UID/GID, estadísticas
- Esencial para cambios de contexto

5. Hilos (threads)

- Subprocesos dentro de un mismo proceso
- Comparten espacio de direcciones

Modelos:

- 1:1 (Linux): buen rendimiento, más coste
- N:1: solo en espacio usuario, limitado
- M:N: híbrido (Go, Erlang)

A Riesgos:

- Carreras, interbloqueos
 - ✓ Soluciones: mutex, semáforos, monitores

6. Planificación de CPU

Criterios:

- Tiempo de retorno, espera, respuesta
- Rendimiento global (throughput)

Algoritmos:

- FCFS (First Come, First Served)
- SJF (Shortest Job First)
- RR (Round Robin)
- Prioridades
- Multicolas con realimentación
- Linux usa: CFS (Completely Fair Scheduler)
- \triangle Árhol rojo-negro \rightarrow eficiencia O(log n)

7. Concurrencia y sincronización

Procesos concurrentes requieren control:

Mecanismos:

- Semáforos (wait/signal)
- Monitores (síncronos, OO)
- Spinlocks (bloqueo activo)
- Ejemplo clásico: Filósofos comensales

8. Comunicación entre procesos (IPC)

- Métodos comunes:
 - 📥 Memoria compartida
 - I Pipes (anónimos / con nombre)
 - • Colas de mensajes
 - Sockets (locales o red)
- ✓ Usos: microservicios, pipelines, servicios REST

9. Interbloqueos (Deadlocks)

Condiciones de Coffman:

- 1. Exclusión mutua
- 2. Retención y espera
- 3. No expropiación
- 4. Espera circular

Estrategias:

- Prevención: evitar condiciones
- Evitación: algoritmo del banquero
- Detección y recuperación

10. Casuística por sistema operativo

Sistema	Gestión de procesos	Herramientas
Linux	<pre>fork() , exec() , /proc</pre>	ps, htop, strace
Windows	<pre>CreateProcess()</pre>	Task Manager, PowerShell
Contenedores	namespaces, cgroups	Docker, Podman

11. Seguridad en la gestión de procesos

Riesgos comunes:

- Procesos zombie
- Condiciones de carrera
- IPC inseguro

Mitigaciones:

- ASLR (direcciones aleatorias)
- UID/GID + sandboxing
- Control de acceso + auditoría

Conclusión

- ✓ Un proceso es mucho más que un programa:
- ► Tiene estado, recursos y control
- ✓ La buena gestión de procesos permite:
- Seguridad, rendimiento, concurrencia
- ✓ Dominio esencial para administrar sistemas modernos