Probabilidad y Estadística Profesorados y Licenciatura en Computación

Guía N°5: Distribuciones de probabilidad conjunta y muestras aleatorias

Ejercicio 1.

Cierto supermercado tiene una caja rápida y una común. Sea X_1 el número de clientes que están en espera en la caja común en un momento particular del día, y X_2 el número de clientes que están en espera en la caja rápida al mismo tiempo. Si la función de probabilidad conjunta de X_1 y X_2 está dada por:

$x_1 \backslash x_2$	0	1	2	3
0	0,08	0,07		0,00
1	0,06	$0,\!15$	0,05	0,04
2	0,05	0,04	0,10	0,06
3	0,00	0,03	0,04	0,07
4	0,00	0,01	0,05	0,06

- a) ¿Cuál es la probabilidad de que haya exactamente un cliente en cada caja?
- b) ¿Cuál es la probabilidad de que haya exactamente el mismo número de clientes en las dos líneas de espera?
- c) Sea A el evento de que haya por lo menos dos clientes más en una línea de espera que en la otra. ¿Cuál es la probabilidad del evento A?
- d) ¿Cuál es la probabilidad de que el número total de clientes de las dos líneas de espera sea exactamente cuatro? ¿Y por lo menos cuatro?
- e) Hallar las funciones de probabilidad marginales de X_1 y X_2 . ¿Son estas variables independientes? Justifique su respuesta.

Ejercicio 2.

Dada la siguiente fdpc de (X, Y):

$$f(x,y) = \begin{cases} kxy & \text{si } 0 \le x \le 1, \ 0 \le y \le 1 \ \text{y} \ x + y \le 1 \\ 0 & \text{en cualquier otro caso} \end{cases}$$

con k una constante positiva.

- a) Determinar el valor de la constante k para que f sea fdpc.
- b) Hallar las funciones densidad de probabilidad marginal para X e Y respectivamente.
- c) Hallar la esperanza y varianza de X y de Y.
- d) ¿Son independientes X e Y? Justifique su respuesta.

Ejercicio 3.

Sean X, Y variables aleatorias con función de densidad conjunta dada por:

$$f(x,y) = \begin{cases} k(x+y) & \text{si } 0 \le x \le 10 \text{ y } 0 \le y \le 10 \\ 0 & \text{en cualquier otro caso} \end{cases}$$

- a) ¿Cuál es el valor de k?
- **b)** Calcular P(X + Y < 5)
- c) ¿Cuál es la probabilidad de que el valor absoluto de la diferencia entre las variables aleatorias sea a lo sumo 2?
- d) Hallar las funciones de densidad marginales de X e Y. ¿Son estas variables independientes? Justifique su respuesta.
- e) Calcular Cov(X,Y).

Ejercicio 4.

Un profesor entrega un artículo largo a una mecanógrafa y otro más corto a otra. Sea X el número de errores de mecanografía del primer artículo e Y el número de errores de mecanografía del segundo artículo. Suponga que X e Y son variables aleatorias independientes con distribución de Poisson de parámetros λ_1 y λ_2 respectivamente.

- a) Dar la función de probabilidad conjunta de (X, Y).
- b) ¿Cuál es la probabilidad de que a lo sumo se cometa un error entre los dos artículos?
- c) Obtener una expresión general para la probabilidad de que el número total de errores entre ambos artículos sea m, para m cualquier número entero no negativo.

Ejercicio 5.

- a) Si X_1 y X_2 son variables aleatorias independientes con $X_i \sim B(n_i, p)$ para i = 1, 2, probar que $X_1 + X_2 \sim B(n_1 + n_2, p)$.
- b) El resultado anterior puede ser generalizado para la suma de k variables aleatorias binomiales independientes: Si $X_1, ..., X_k$ son variables aleatorias independientes con $X_i \sim B(n_i, p)$ para i = 1, ..., k, probar que $X_1 + ... + X_k \sim B(n_1 + ... + n_k, p)$.

Eiercicio 6.

Una persona tiene dos bombillas para una lámpara en particular. Sea X e Y el tiempo de duración, en miles de horas, para la primera y segunda bombilla respectivamente. Suponga que X e Y son variables aleatorias independientes e idénticamente distribuidas, con distribución exponencial de parámetro $\lambda = 1$.

- a) Dar la función de densidad conjunta de (X, Y).
- b) ¿Cuál es la probabilidad de que ambas bombillas duren a lo sumo mil horas?
- c) ¿Cuál es la probabilidad de que la duración total entre las dos bombillas sea a lo sumo 2000 horas?

Ejercicio 7.

- a) Demuestre que si X e Y son variables aleatorias independientes, entonces E(XY) = E(X)E(Y). (Considere los casos en que las variables aleatorias son ambas discretas o ambas continuas).
- b) Un topógrafo desea marcar en un terreno un cuadrado de longitud L en cada lado. Sin embargo, debido a un error de medición, traza un rectángulo donde los lados norte-sur tienen una longitud X y los lados este-oeste tienen longitud Y. Suponga que X e Y son independientes y que cada una tiene distribución uniforme en el intervalo [L-a,L+a] (donde 0 < a < L). ¿Cuál es el área esperada del rectángulo resultante?

Ejercicio 8.

Suponga que la función de distribución de probabilidad conjunta de (X,Y) está dada por la siguiente tabla:

x y	-1	0	1
-1	a	b	a
0	b	0	b
1	a	b	a

donde se cumple que a + b = 1/4.

- a) Demostrar que E(XY) = E(X)E(Y) y luego $\rho = 0$.
- **b)** Son las variables $X \in Y$ independientes?

Ejercicio 9.

Suponga que Y_1 e Y_2 son variables aleatorias tales que:

$$E(Y_1) = 2$$
 $E(Y_2) = -1$ $\rho(Y_1, Y_2) = \frac{1}{2\sqrt{6}}$
 $Var(Y_1) = 4$ $Var(Y_2) = 6$

Obtener: $E(3Y_1 - 2Y_2)$, $Var(3Y_1 - 2Y_2)$, $Cov(3Y_1 - 2Y_2, Y_1)$, $Cov(2Y_1 + 4Y_2, 5Y_1 - Y_2)$, $E(Y_2^2)$, $E(3Y_1Y_2)$ y $Cov(2Y_1 + 4, -2Y_2 - 6)$.

Ejercicio 10.

Suponga que la densidad del sedimento (g/cm) de un espécimen, seleccionado al azar de cierta región, está normalmente distribuida con una media de 2,65 y una desviación estándar de 0,85.

- a) Si se selecciona al azar una muestra aleatoria de 25 especímenes, ¿cuál es la probabilidad de que el promedio muestral de la densidad del sedimento sea a lo sumo 3? ¿Y que se encuentre entre 2,65 y 3?
- b) ¿Qué tan grande se requeriría el tamaño muestral para asegurar que la primera probabilidad calculada en (a) sea por lo menos 0,99?

Ejercicio 11.

El tiempo que tarda un empleado en procesar el pedido de cada cliente es una variable aleatoria con una media de 1,5 minutos y una desviación estándar de 1 minuto. Suponga que los tiempos que tarda en procesar n pedidos son independientes.

- a) ¿Cuál es la probabilidad aproximada de que se puedan procesar los pedidos de 100 clientes en menos de 2 horas?
- **b)** Determinar el menor valor t_0 , tal que con una probabilidad aproximada de por lo menos 0,90 se puedan procesar 100 pedidos en un tiempo menor a t_0 ?

Ejercicio 12.

La primera tarea en un curso introductorio de programación por computadora implica correr un breve programa. Si la experiencia indica que el 40% de todos los estudiantes principiantes no cometerán errores tipográficos, calcular la probabilidad aproximada de que en un grupo de 50 estudiantes:

- a) por lo menos 25 no cometan errores.
- b) entre 15 y 25 no cometan errores.

Ejercicio 13.

Suponga que el 10% de todos los ejes de acero producidos por cierto proceso están fuera de las especificaciones, pero se pueden volver a trabajar (en lugar de tener que enviarlos a la chatarra). Considere una muestra aleatoria de 200 ejes y sea X el número de los que están fuera de especificaciones y se pueden volver a trabajar. ¿Cuál es la probabilidad (aproximada) de que X:

- a) sea a lo sumo 30?
- **b)** sea menor a 30?
- c) esté entre 15 y 25 inclusive?

Ejercicio 14.

Hallar la probabilidad aproximada de que una variable aleatoria X, con distribución de Poisson con una media de 100, tome valores entre 50 y 80 inclusive.

Ejercicio 15.

Un antropólogo quiere estimar la estatura promedio de los hombres de cierta población. Se supone que la desviación estándar de la población es de 2,5 pulgadas.

- a) Se selecciona al azar a 100 hombres. Encuentre la probabilidad aproximada de que la media muestral diste de la media verdadera de la población en a lo sumo 0,5 pulgadas.
- **b)** Suponga ahora que el antropólogo quiere que la media muestral diste de la media de la población en a lo sumo 0,4 pulgadas, con una probabilidad de por lo menos 0,95. ¿Cuántos hombres tendría que seleccionar para alcanzar su objetivo?

Ejercicio 16.

Suponga que la resistencia esperada a la tensión del acero tipo A es de 106 ksi y la desviación estándar es de 8 ksi. Para el acero tipo B, suponga que la resistencia esperada a la tensión y la desviación estándar son de 104 ksi y 6 ksi, respectivamente. Sean \bar{X} e \bar{Y} las resistencias promedio a la tensión de los aceros tipo A y B con muestras de tamaño 40 y 35, respectivamente.

- a) ¿Cuál es la distribución aproximada de $\bar{X} \bar{Y}$?
- **b)** Dar el valor aproximado de $P(-1 \le \bar{X} \bar{Y} \le 1)$.
- c) Dar el valor aproximado de $P(\bar{X} \bar{Y} \ge 6)$.

Ejercicio 17.

Suponga que el consumo de calorías en el desayuno es una variable aleatoria con valor esperado de 500 y desviación estándar de 50, el consumo de calorías al mediodía es aleatorio con media de 800 y desviación estándar de 100 y el consumo de calorías en la cena es una variable aleatoria con media de 1700 y desviación estándar de 200. Suponga que los consumos en las diferentes comidas son independientes entre sí, que se realizan las tres comidas cada día y que no hay otro consumo de calorías durante el día además de las 3 comidas. ¿Cuál es la probabilidad aproximada de que el promedio de consumo diario de calorías, en un año, esté comprendido entre:

- a) 2950 y 3050 calorías?
- **b)** 2980 y 3030 calorías?