# Measuring Prediction Performance

CS4780/5780 – Introduction to Machine Learning

Thorsten Joachims Cornell University

# Why is 0/1 Error not Enough?

- Reason 1: Some applications have asymmetric cost of errors.
  - Example: Spam Filtering

$$\Delta(y',y) = \begin{cases} 1 & if \ y = Ham, y' = Spam \\ 10 & if \ y = Spam, y' = Ham \\ 0 & else \end{cases}$$

## Why is 0/1 Error not Enough?

- Reason 2: Some applications have class imbalance.
  - Example: Search Engine
  - Feature vector:  $\vec{x} = \phi(query, document)$
  - Label:  $y \in \{1, -1\}$  indicating relevance to query
  - → Baseline classifier that always predicts -1 (i.e. not relevant) has 99.99999% accuracy.

## **Contingency Table**

### Performance measures

- Error Rate:  $\frac{FP+FN}{m}$
- Accuracy:  $\frac{TP+TN}{m}$
- Precision:  $\frac{TP}{TP+EP}$
- Recall:  $\frac{TP}{TP+FN}$
- m = TP + FP + FN + TN  $\lambda_{TP} * TP + \lambda_{FP} * FP + \lambda_{FN} * FN + \lambda_{TN} * TN$

m

Counts 
$$y = +1$$
  $y = -1$ 

$$h(\vec{x}) = +1$$
 True False Positives (FP)
$$h(\vec{x}) = -1$$
 False Negatives (FN)
$$m = TP + FP + FN + TN$$

Weighted Loss:

## Classification vs. Ranking

Most rules output score, not just classification.

- $SVM: \overrightarrow{w} \cdot \overrightarrow{x} + b$
- Tree: Leaf purity
- K-NN: Weighted vote
- Naïve Bayes: P(Y|X)
- $\rightarrow$  Sort by score.

#### Example:

- ErrorRate=2/8 (same all "always -1")
- Recall=2/2 (0 for "always -1")
- Precision=2/4 (NaN for "always -1")

| Test<br>Example | Score | True<br>Label |
|-----------------|-------|---------------|
| 7               | 3.5   | 1             |
| 3               | 2.1   | -1            |
| 4               | 0.7   | +1            |
| 5               | 0.1   | -1            |
| 1               | -0.4  | -1            |
| 2               | -0.9  | -1            |
| 6               | -2.3  | -1            |
| 8               | -5.1  | -1            |

## **Evaluating Rankings: DCG**

#### Discounted Cumulative Gain (DCG)

 Evaluate utility of a search-engine ranking r to the user.

$$DCG(r) = \sum_{(\vec{x}_i, y_i) \in S} \frac{1[y_i = 1]}{\log_2(rank(i) + 1)}$$

| Test<br>Example | Score | True<br>Label |
|-----------------|-------|---------------|
| 7               | 3.5   | +1 <          |
| 3               | 2.1   | -1            |
| 4               | 0.7   | +1 -          |
| 5               | 0.1   | -1            |
| 1               | -0.4  | -1            |
| 2               | -0.9  | -1            |
| 6               | -2.3  | -1            |
| 8               | -5.1  | -1            |

### Example

$$- DCG(r) = \frac{1}{\log_2(1+1)} + \frac{1}{\log_2(3+1)}$$

## **Evaluating Rankings: ROC Area**

Receiver Operating Characteristic (ROC)

– Sweep threshold from high to low and plot  $(\frac{TP}{m}, \frac{FN}{m})$ 



| Test<br>Example | Score | True<br>Label |
|-----------------|-------|---------------|
| 7               | 3.5   | +1            |
| 3               | 2.1   | -1            |
| 4               | 0.7   | +1            |
| 5               | 0.1   | -1            |
| 1               | -0.4  | -1            |
| 2               | -0.9  | -1            |
| 6               | -2.3  | -1            |
| 8               | -5.1  | -1            |

### Summary

- Error rate is only one among many performance measures
- Error rate is typically not informative for unbalanced classes
- Performance measure should be chosen to meaningful for the application