Report: Happy vs Unhappy Image Classification

Introduction

This project focuses on binary image classification: distinguishing between **happy** and **unhappy** faces using machine learning techniques. Two models were used:

- Logistic Regression (implemented from scratch)
- Support Vector Machine (SVM using scikit-learn)

The dataset contains color images of faces resized to 64×64×3 pixels, provided in .h5 format (train_happy.h5 and test_happy.h5).

Dataset Description

Dataset	Format	Image s	Shape
train_happy.h5	HDF5	~600	(64, 64, 3)
test_happy.h5	HDF5	~150	(64, 64, 3)

Images were flattened into vectors of size $64 \times 64 \times 3 = 12,288$ and normalized to the range [0, 1].

Methods

1. Logistic Regression (From Scratch)

Implemented using NumPy. Key steps:

- Sigmoid activation
- Binary cross-entropy loss
- Gradient descent optimization

```
loss = -1/m * \Sigma [y log(p) + (1 - y) log(1 - p)]
```

2. Support Vector Machine (SVM)

Used sklearn.svm.SVC with a linear kernel.

from sklearn.svm import SVC model = SVC(kernel='linear')

Evaluation Metrics

- **Accuracy**: Percentage of correctly predicted labels
- Loss: Binary cross-entropy loss (for logistic regression)

Experimental Results

Logistic Regression Test Accuracy: 94%

SVM Test Accuracy: 96%

Plot 1: Loss vs Iterations

• The loss decreased steadily, indicating proper convergence.

Plot 2: Accuracy vs Learning Rate

Plot 3: Accuracy vs Training Size

Model Comparison(Logistic regression vs SVM)

Discussion

- Logistic Regression performed very well even when implemented from scratch.
- SVM slightly outperformed logistic regression due to better margin optimization.
- The loss curve and accuracy plots indicate stable learning.
- Learning rate and training size both had strong influence on accuracy.

Conclusion

This project demonstrates the success of both models on a binary image classification task. The custom logistic regression achieved 94% accuracy, while SVM achieved 96%, making both models highly reliable for real-world classification problems.