Prediction of Property Crimes in Georgia

Submitted by
Luiz Gustavo Fagundes Malpele
Department of Data Science
Florida Polytechnic University

December 6th, 2019

Abstract: Georgia's state government sought to obtain predictions of property crime rates by county for the purpose of state level law enforcement budgeting and planning. In order to accomplish this, the property crime rate was predicted by utilizing past crime rates, growth rates, and population-related factors. Then, different models were generated utilizing socioeconomic factors, and the best one was selected. Finally, a combination of historical crime rates and the best socioeconomic factors were utilized to see if the models produced had better predictive power. The results were that property crimes in the state of Georgia were better predicted, utilizing both historical factors related to property crimes and socioeconomic factors related to the population's poverty level.

1. Introduction

The Georgia state government desires predictions of crime levels by county for state law enforcement budge and planning. By knowing the most impacting factors that increase the property crime rates, it is possible to allocate resources to solve the problem at its source. This analysis also provides data regarding the expected amount of property crimes to the year 2019 and based on this information. Each county can adequately prepare for the upcoming year.

For such prediction to be made, the best models were developed using the historical data, which included data of past crime rates and population-related factor and socioeconomic-related factors, such as poverty, education, unemployment, and age. Finally, the best models for each of the historical and socioeconomic factors were combined with the objective of increasing the predictive power, and a prediction will be made based off on the best overall models from the analysis.

2. Data

The data utilized in this project came from the Federal Bureau of Investigation's Uniform Crime Reporting Program, which provided data related to the number of property and violent crimes grouped by county for the years of 2012, 2017, and 2018. The second utilized data source was the Census Bureau's American Fact Finder, which provides access to data about United States, Puerto Rico, and the Island Areas acquired from several censuses and surveys. Furthermore, it was utilized from this second data source specific social and economic factors such as age breakdown, education, unemployment, and poverty for each county within Georgia.

It is important to note that the data gathered from these two sources was wrangled and cleaned to be able to properly format it and investigate the best regression models that would best predict the property crimes in county within Georgia. A summary and description of all the variables can be found in Table 2.

Lastly, the top 4 counties inflated the RMSE values of the prediction model as the number of property crimes in the year of 2017 on Clayton, Cobb, DeKalb, and Gwinnett were 8711, 11899, 23246, and 15079 respectively. This fact caused the top 4 percentile to increase the variance of property2017 variable to 2877.916, which is a high value that inflated the RMSE values of the models.

The distribution of the Inproperty2017 is displayed below (Table 1) and it can be observed that this variable is normally distributed since the curve is bell-shaped, but there is substantial an amount of counties on the last bin, these represent 0.04 on the density axis, which are the 4 previously mentioned counties (Clayton, Cobb, DeKalb, and Gwinnett).

7. - Spensor 2. -

Tables 1: Frequency distribution of the Inproperty2017 variable

Tables 2: Summary of the variables (Mean, Standard deviation, Minimum, and Maximum)

Variable	Mean	Std. Dev.	Minimum	Maximum
violent2012	119.8021	402.174	0	3420
violent2017	122.5208	388.4895	0	3184
violent2018	128.8438	389.6356	0	3085
violentgrowth	0.0291374	0.1216718	-0.3531568	0.2834132
Inviolent2012	3.489516	1.394921	0	8.137396
Inviolent2017	3.626937	1.279686	0.6931472	8.065893
property2012	1271.885	3672.148	2	30285
property2017	1109.042	3161.136	3	23246
property2018	978	2877.916	1	21426
popgrowth	0.0033757	0.0107121	-0.013552	0.0697667
lnpop2012	10.28049	1.192467	7.925158	13.78838
lnpop2017	10.29737	1.221712	7.861727	13.85366
pop2012	74038.13	163019.8	2766	973236
pop2017	78400.6	175426.6	2596	1038884
propertygrowth	0.0349247	0.0944389	0.5278115	0.5051457
Inproperty2012	5.888458	1.467278	0.6931472	10.31841
Inproperty2017	5.713834	1.444298	1.098612	10.05389
poppov	74895.93	11167.23	187	77387
poor	6569.26	13266.33	322	79132

	- 40	444		
verypoor	5485.75	11167.23	187	77387
unemployment	8.20625	3.004481	4	20.3
eduless9th	5.896875	2.476859	1.5	14
edu9to12th	11.85208	3.774289	3.2	22.8
highschool	35.37396	6.50032	18.3	52.1
associate	7.396875	1.521388	3.4	12.2
somecollege	20.58437	3.261234	2.1	25.2
bachelor	11.43646	5.627566	3	29.9
graduatedegree	7.464583	3.789653	2.1	25.2
pop14to172012	4176.781	9046.742	119	54311
pop14to172017	4445.188	9903.134	149	60463
pop18to242012	7235.083	16102.45	216	105314
pop18to242017	7289.813	16524.48	190	105701
pop65up2012	8192.01	14809.5	412	93402
pop65up2017	10273.48	19364.88	493	118228
pop85up2012	881.0833	1755.629	33	12704
pop65to842017	9245.125	17337.7	447	104127
share14to17	.0540882	.0076406	.0325851	.07153
share18to24	.0883316	.0250651	.0592906	.2374612
Share65to84	.1551222	.0426909	.0784637	.306959
share85up	.0177731	.0063023	.0063191	.0387641
lessthanhs	17.74375	5.759857	5.000001	31.4
shareold	.1728953	.04791	.0880881	.3445706
sharepoor	.1133421	.0386926	.037361	.2119249
sharepoverty	.2069274	.0694555	.0630627	.4144205
shareverypoor	.0935853	.0401298	.0224568	.2611427
shareyoung	.1424199	.0248166	.100813	.2803217
lessthanhs	17.74375	5.759857	5.000001	31.4
bachelorup	18.90104	9.120185	6.9	50.2

The number of observations for each variable is equal to 96, the variables summary shows a trend of population growth and a decrease on property crime occurrences with a large standard deviation value for variables that are not log-transformed or do not refer to a percentage value, there is a significant number of highly-populated counties and this fact makes the mean and standard deviation value significantly increase. The data will be further analyzed using the Poisson regression model as it is the best one to work with count data, and property crime rates are a good example of it, since it is not an everyday event, and the values were captured in a yearly-based period.

Table 3: Description of all variable (Storage type, Display format, Variable label)

Variable	Storage type	Display format	Variable label
violent2012	int	%8.0g	Violent2012
violent2017	int	%8.0g	Violent2017
violent2018	int	%8.0g	Violent2018
violentgrowth	float	%9.0g	
Inviolent2012	float	%9.0g	
Inviolent2017	float	%9.0g	
property2012	int	%8.0g	Property2012
property2017	int	%8.0g	Property2017
property2018	int	%8.0g	Property2018
popgrowth	float	%9.0g	
lnpop2012	float	%9.0g	
lnpop2017	float	%12.0g	
pop2012	long	%12.0g	Pop2012
pop2017	long	%12.0g	Pop2017
propertygrowth	float	%9.0g	
Inproperty2012	float	%9.0g	
Inproperty2017	float	%9.0g	
poppov	long	%12.0g	PopPov
poor	long	%12.0g	Poor
verypoor	long	%12.0g	VeryPoor
unemployment	float	%9.0g	Unemployment
eduless9th	float	%9.0g	Eduless9th
edu9to12th	float	%9.0g	Edu9to12th
highschool	float	%9.0g	Highschool
associate	float	%9.0g	Associate
somecollege	float	%9.0g	SomeCollege
bachelor	float	%9.0g	Bachelor
graduatedegree	float	%9.0g	Graduate degree
pop14to172012	long	%12.0g	Pop14to172012
pop14to172017	long	%12.0g	Pop14to172017
pop18to242012	long	%12.0g	Pop18to242012
pop18to242017	long	%12.0g	Pop18to242017
pop65up2012	long	%12.0g	Pop65up2012
pop65up2017	long	%12.0g	Pop65up2017
pop85up2012	int	%8.0g	Pop85up2012

pop85up2017	int	%8.0g	Pop85up2017
pop65to842017	float	%9.0g	
share14to17	float	%9.0g	
share18to24	float	%9.0g	
share65to84	float	%9.0g	
share85up	float	%9.0g	
shareold	float	%9.0g	
sharepoor	float	%9.0g	
sharepoverty	float	%9.0g	
shareverypoor	float	%9.0g	
shareyoung	float	%9.0g	
bachelorup	float	%9.0g	
lessthanhs	float	%9.0g	

This table includes information regarding the storage type of each variable (int, float, or long), the display format for each of the variables, and the variable label, which is the variable name on the Excel file before importing it to Stata.

Analysis – Prediction Based on Past Crimes and **Population Factors**

Table 4: Correlation matrix for property, violence, and population data.

	pro~2018	lnvio~2017	viole~h	Inpr~20 17	pr~gro wth	lnpop 2017	popgr owth
property2018	1.0000						
Inviole~2017	0.5904	1.0000					
violentgro~h	-0.0877	0.0578	1.0000				
Inprope~2017	0.6762	0.7736	-0.2816	1.0000			
propertygr~h	0.0271	-0.0321	0.3266	-0.0654	1.0000		
lnpop2017	0.6171	0.7295	-0.1841	0.8802	-0.1026	1.0000	
popgrowth	0.2623	0.3206	-0.1024	0.4586	-0.0202	0.5404	1.0000

The correlation matrix indicates the degrees of collinearity of the variables; when the absolute value of the Pearson's r is above 0.5, it means there is a high a degree of collinearity between the variables and that one of those two variables are more likely to be statistically significant for the analysis.

The relations of lnviolent2017 and property2018 have r value equals to 0.5904, which means that these two variables are highly correlated; the same case occurs for lnproperty2017 and property2018 (r = 0.6762). These two cases refer to crime data, and the reason for these occurrences can be described by the use of similar data, as there was not much difference in crime rates between consecutive years, and there might not be much difference between property and violent crime rates.

There is strong evidence that the lnpop2017 variable should not be used on the analysis since there are high degree of collinearity of this variable with 3 other variables: lnpropertygrowth and lnviolence2017 (r = 0.7736), lnpop2017 and property2018 (r = 0.6171), lnpop2017 and lnviolent2017 (r = 0.7295), lnpop2017 and lnproperty2017 (r = 0.8802).

The high collinearity case of *popgrowth* and lnpop2017 (r = 0.5404) can be explained by the fact that both are population variables and *populationgrowt* involves the lnpop2017 to be calculated.

Table 5: Robust-Poisson regression of Inviolent2017, violentgrowth, Inproperty2017, propertygrowth, Inpop2017, popgrowth on property2018 (6 predictor)

Poisson regression	Number of obs	=	92
	Wald chi2(6)	=	15617.55
	Prob > chi2	=	0.0000
Log pseudolikelihood = -2111.8536	Pseudo R2	=	0.9841

property2018	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lnviolent2017	0059011	.0109741	-0.54	0.591	0274099	.0156077
violentgrowth	.164006	.2144143	0.76	0.444	2562382	.5842503
lnproperty2017	1.106563	.0980341	11.29	0.000	.9144202	1.298707
propertygrowth	3762712	.6124239	-0.61	0.539	-1.5766	.8240576
lnpop2017	1453132	.1426851	-1.02	0.308	4249709	.1343446
popgrowth	7.329432	5.282404	1.39	0.165	-3.023889	17.68275
_cons	.7267536	.8546479	0.85	0.395	9483255	2.401833

Poisson regression was used to analyze the effects of 6 different predictor predictors on the response variable *property2018*. It is noticeable that five different variables, which are *Inviolent2017*, violentgrowth, propertygrowth, popgrowth, and *Inpop2017*, have a p-value above 0.05, which indicates that it is necessary to check through joint tests for the statistical significance of these variables on property2018. The next step is to compare RMSE values for different models and the joint hypotheses tests, then, it will be possible to choose the one that accounts for the best predictors for the analysis of property crimes in the year of 2018.

Table 6: Chi-Square test for the effect of Inpop2017 and popgrowth on property2018

```
(1) [property2018]lnpop2017 = 0
(2) [property2018]popgrowth = 0
         chi2(2) =
                       1.97
       Prob > chi2 =
                       0.3728
```

Given that the p-value equals 0.3728 for the joint effect of lnpop2017 and popgrowth and $\alpha = 0.05$, there is not enough strong evidence to state that at least one of these variables is equal to zero. This fact indicates that these two population variables may not be statistically significant to the analysis of property crimes in the state of Georgia.

Table 7: Chi-Square test for the effect of Inpop2017 and popgrowth on property2018

```
(1)
     [property2018]lnviolent2017 = 0
     [property2018]violentgrowth = 0
(2)
         chi2(2) =
                        0.59
       Prob > chi2 =
                        0.7455
```

Given that the p-value equals to 0.7455 for the joint effect of *Inviolent2017* and violentgrowth and $\alpha = 0.05$, so there is not enough strong evidence to state that at least one of these variables is equal to zero and strong evidence that at least one the β coefficients is equal 0. This fact indicates that these two population variables may not be statistically significant to the analysis of property crimes in the state of Georgia.

Table 8: Robust-Poisson regression of Inviolent2017, violentgrowth, Inproperty2017, propertygrowth, lnpop2017, popgrowth on property2018 (4 predictor)

Poisson regression	Number of obs	=	92
	Wald chi2(4)	=	11066.89
	Prob > chi2	=	0.0000
Log pseudolikelihood = -2332.6422	Pseudo R2	=	0.9824

property2018	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	. Interval]
<pre>lnviolent2017 violentgrowth lnproperty2017 propertygrowth _cons</pre>	022071	.0138086	-1.60	0.110	0491354	.0049933
	.0614741	.3090819	0.20	0.842	5443154	.6672635
	1.019412	.0116899	87.20	0.000	.9964999	1.042324
	5839831	.5853319	-1.00	0.318	-1.731213	.5632464
	1763327	.0845377	-2.09	0.037	3420235	0106419

Since the p-values for lnpop2017 accounted for a high degree of collinearity with three other variables and the joint test of *lnpop2017* and *popgrowth* indicated that these two variables were not statistically significant for the analysis, they were removed from the Poisson model and it was performed with four predictors: *Inviolent2017*, *violentgrowth*, *Inproperty2017*, propertygrowth.

In the case of this new Poisson model (Table 8), there are still inconsistencies since the pvalue for violentgrowth is equal 0.842, so there is strong evidence that this variable is equal to 0 and does not affect the prediction of property crimes — the next step to check this fact by performing joint tests.

Table 9: Chi-Square test for the effect of Inviolent2017 and violentgrowth on property2018

```
( 1) [property2018]lnviolent2017 = 0
(2) [property2018]violentgrowth = 0
         chi2(2) =
                      4.44
       Prob > chi2 =
                      0.1089
```

Given that the p-value equals to 0.1089 for the joint effect of *Inviolent2017* and violentgrowth and $\alpha = 0.05$, so there is not enough strong evidence to state that at least one of these variables is equal to zero and strong evidence that at least one the β coefficients equals 0. This fact indicates that these two population variables may not be statistically significant to the analysis of property crimes in the state of Georgia and that a new model with different variables is necessary.

Table 10: Robust-Poisson regression of Inproperty2017, propertygrowth on property2018 (2 predictor)

Poisson regression		Number of obs	=	96
		Wald chi2(2)	=	11022.00
		Prob > chi2	=	0.0000
Log pseudolikelihood =	-2398.292	Pseudo R2	=	0.9823

property2018	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
propertygrowth lnproperty2017	504605 .997609	.4927611 .0103021	-1.02 96.84	0.306 0.000	-1.470399 .9774172	.461189 1.017801
_cons	1176997	.0754387	-1.56	0.119	2655569	.0301574

This third model (Table 10) presents a consistent result since the individual coefficients of propertygrowth and Inproperty2017 have a p-value of 0.306 and 0.000 respectively, and their joint test yields a p-value equals to 0.000. Furthermore, the Pearson's r for the correlation of the 3 variables involved the correlation (Table 11) are reasonable, with the exception of the relation of Inproperty2017 and property2018, since it presents a Pearson's r equals to 0.6455, which indicates high degree of collinearity of between the property2018 and Inproperty2017, but this is justified by the fact that these two variables are highly correlated and they refer to the property crime data, one in the year of 2017 and the other 2018. The correlation matrix (Table 11) shows each of the relations:

3.2 Model Selection for Historical Factors

Table 11: Correlation matrix for property, violence, and population data.

	property2018	propertygrowth	Inproperty2017
property2018	1.0000		
propertygrowth	0.0382	1.0000	
Inproperty2017	0.6455	0.1144	1.0000

	(1)	(2)	(3)
	property2018	property2018	property2018
property2018			
Inviolent2017	-0.00586	-0.0221	
	(0.011)	(0.014)	
violentgrowth	0.161	0.0614	
Inproperty2017	1.107***	1.019***	0.998***
	(0.098)	(0.012)	(0.010)
propertygrowth	-0.371	-0.584	-0.505
	(0.619)	(0.589)	(0.494)
lnpop2017	-0.146		
	(0.143)		
popgrowth	7.350		
	(5.309)		
_cons	0.728	-0.176*	-0.118
	(0.856)	(0.085)	(0.076)
RMSE	697.879	754.372	468.806
N	91	91	95

Table 12: RMSE comparison of the three models

Standard errors in parentheses

By taking into consideration the RMSE values, joint tests, and statistically significance of each coefficient, it is reasonable to state that model 3 with Inproperty2017 and *propertygrowth* as the coefficients is the most suitable regression model, the RMSE value is the best and the predictors are significantly more statistically significant while compared to the other 2 tested models.

3.3 Multicollinearity on socioeconomic parameters

The next step for the model selection is to investigate socio-economic variables that are useful for the prediction of property crimes in Georgia. This way, the correlation matrix indicates the degrees of collinearity of the variables; when the absolute value of the Pearson's r is above 0.5, it means there is a high a degree of collinearity between the variables and that one of those two variables are more likely to be statistically significant for the analysis. For the matrix below (Table 13), nine different socio-economic variables were taken into consideration for this analysis which are: *property2017*, *Inpop2017*, *popgrowth*, *shareyoung*, *shareold*, *unemployment*, *sharepoverty*, *lessthanhs*, *bachelorup*.

^{*} *p* < 0.05, ** *p* < 0.01, *** *p* < 0.001

	propert y2017	lnpop2 017	popgro wth	sharey oung	shareol d	unempl oyment	sharep overty	lesstha nhs	bach eloru p
propert y2017	1.0000								
lnpop20 17	0.6383	1.0000							
popgro wth	0.2753	0.5614	1.0000						
shareyo ung	0.0622	0.3219	0.0777	1.0000					
shareold	-0.3345	-0.5563	-0.2526	-0.4963	1.0000				
unemplo yment	-0.0782	-0.1848	-0.2512	0.0863	-0.0468	1.0000			
sharepo verty	-0.2184	-0.5184	-0.6938	0.0260	0.1813	0.4265	1.0000		
lessthan hs	-0.2814	-0.5495	-0.6068	-0.2463	0.2130	0.0719	0.6386	1.0000	
bachelor	0.5103	0.7198	0.6480	0.2251	-0.2502	-0.2580	-0.6269	-0.7673	1.000

Table 13: Correlation matrix for 9 different socio-economic variables

From the correlation matrix above it possible to drive some insight based on the Person's r for the relation of each of the coefficients. The *bachelorup* variable is highly correlated with five of the eight other analyzed variables which are *property2017* (r = 0.5103), lnpop2017 (0.7198), and popgrowth (r = 0.6480), the reason for these is because in higher populated counties it is more likely to have citizens with a bachelor or superior degree, and it is negatively correlated with *sharepoverty* (r = -0.6269), *lessthanhs* (r = -0.7673) and the assumptions are intuitive since where poverty is high, the county is more likely to have less graduates and the same thing can be said for the *lessthanhs* variable.

The *lessthanhs* variable is highly correlated with 3 other variables which are *sharepoverty* (r = 0.6386), *lnpop2017* (r = -0.6068), *popgrowth* (r = -0.5495), these last two can be explained by the fact that for growing and highly-populated counties, students are more likely to get their high school diploma and the correlation with *sharepoverty* is due to the fact that in poverty is related to lower-levels of education.

Lastly, lnpop2017 presented a high degree of correlation with 5 other variables (popgrwoth, shareold, sharepoverty, lessthanhs, and bachelorup) and popgrowth with 3 other variables (sharepoverty, lessthanhs, bachelorup). Since, the lnpop variable will be used on the regression models, popgrowth with more tests and evidence could be removed from the models if valid.

Table 14: VIF for socio-economic variables

Variable	VIF	1/VIF
bachelorup	4.07	0.245550
lessthanhs	3.30	0.303298
lnpop2017	3.12	0.320822
sharepoverty	3.02	0.331493
popgrowth	2.34	0.428202
shareold	1.93	0.517072
shareyoung	1.53	0.651540
unemployment	1.43	0.698171
Mean VIF	2.59	

This Variance inflation factor list provides useful insight and reflects the cases of collinearity point out previously. The *bacherlorup* variable has a VIF equal to 4.07 which is an indication that this variable may not be suitable for the analysis as the variance of coefficients estimates is over 4.07 times larger due to multicollinearity, the RMSE values need to be evaluated to drive to a consistent conclusion if this variable is removed or not.

3.4 Parameters Replacement and Hypothesis Testing

After understanding the coefficients that are going to be used in the analysis and check for their correlation, a baseline model for the analysis (Table 14) is created. The Robust-Poisson model was chosen because since the data can be described as count data as the counts have been made within a fixed period, the year 2017, for this case.

A baseline model was created, so it is possible to evaluate how replacing the coefficients change the prediction power while comparing the results to the baseline model. The socioeconomic variable that are going to be used on this first model are: *lnpop2017*, *popgrowth*, *shareyoung*, *unemployment*, *sharepoverty*, *lessthanhs*, and *bachelorup*.

Table 15: Robust-Poisson regression baseline model with all variables

Poisson regression	Number of obs	=	96
	Wald chi2(8)	=	768.49
	Prob > chi2	=	0.0000
Log pseudolikelihood = -15076.717	Pseudo R2	=	0.9011

		Robust				
property2017	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
lnpop2017	1.318093	.1512191	8.72	0.000	1.021709	1.614477
popgrowth	3.042099	14.39551	0.21	0.833	-25.17258	31.25678
shareyoung	-21.69349	12.29053	-1.77	0.078	-45.78247	2.395501
shareold	-4.202415	3.007807	-1.40	0.162	-10.09761	1.692777
unemployment	.0147603	.0356234	0.41	0.679	0550603	.0845809
sharepoverty	3.259106	3.537914	0.92	0.357	-3.675078	10.19329
lessthanhs	0096915	.0197519	-0.49	0.624	0484045	.0290215
bachelorup	0328026	.0256176	-1.28	0.200	0830121	.017407
_cons	-3.954115	2.013414	-1.96	0.050	-7.900335	0078954

Taking into consideration that the RMSE for this model is equal to 2456.76, which is a high value when compared to other models, and the presence of some variables with the problem of high degree of collinearity such as *bachelhorup* (VIF = 4.07), there are improvements that can be performed in order to make better predictions of property crimes.

Table 16: Robust-Poisson regression replacing shareyoung with share14to17 and share18to24

Poisson regres	Number Wald ch Prob >	i2(9)	= =	96 653.97 0.0000			
Log pseudolike	Pseudo	R2	=	0.9037			
		Robust					
property2017	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
lnpop2017	1.335356	.1607283	8.31	0.000	1.02	0334	1.650378
popgrowth	5.546575	14.1491	0.39	0.695	-22.1	8514	33.27829
share14to17	-43.5058	20.71389	-2.10	0.036	-84.10	2429	-2.907312
share18to24	-18.51355	9.526645	-1.94	0.052	-37.1	8543	.158328
shareold	-5.65906	3.053151	-1.85	0.064	-11.6	4313	.3250053
unemployment	.0031606	.0339404	0.09	0.926	063	3614	.0696827
sharepoverty	1.521039	3.434404	0.44	0.658	-5.21	269	8.252347
lessthanhs	0097676	.0200316	-0.49	0.626	049	287	.0294936
bachelorup	0444096	.0269683	-1.65	0.100	097	2666	.0084473
_cons	-2.326547	2.078942	-1.12	0.263	-6.40	1197	1.748104

The RMSE value equals 2446.43, which is a lower value than the base model (RMSE = 2456.76), suggesting that sorting the *shareyoung* variable into *share14to17* and *share18to24* is a better approach in order to get the best fit for the Poisson regression line. The next step is to analyze the p-values of replaced coefficients.

Table 17: Chi-Square test for the joint effect of share18to24 and share14to17 on property2017

Given that the p-value of the Chi-Square test for the joint effect of *share65to84* and *share 89up* equals to 0.0528 and that $\alpha = 0.05$, there is moderate evidence to state that at least one of coefficients of these two variables should not be different from zero. Furthermore, the RMSE value of this model is 10.3 units lower than the baseline model, which is not a statistically significant number, but it supports the argument that replacing these the *shareyoung* variable would be a better approach to the analysis, this variable had a p-value of 0.0780 on the baseline model which is 0.0258 higher than the model with the replaced variables.

Table 18: Chi-Square test comparison of coefficients of variables share 18to 24 and share 14to 17

The comparison of *share14to17* and *share18to24* does not support the argument that these two variables should not replace *shareyoung* since the p-value of the Chi-Square test is 0.1947, the result of this test is inconclusive since the p-value is above 0.05. Indeed, since the previous analyzed evidence has shown that the replacement variable does not yield not statistically significant changes to the model, the best approach is not replacing the shareyoung variable.

Table 19: Robust-Poisson regression replacing shareold with share65to84 and share85up

	Number of obs	=	96
	Wald chi2(9)	=	1282.20
	Prob > chi2	=	0.0000
-15075.86	Pseudo R2	=	0.9011
	-15075.86	Wald chi2(9) Prob > chi2	Wald chi2(9) = Prob > chi2 =

-						
		Robust				
property2017	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lnpop2017	1.317202	.1421603	9.27	0.000	1.038573	1.595831
popgrowth	2.834533	17.93098	0.16	0.874	-32.30954	37.9786
shareyoung	-21.68312	12.20048	-1.78	0.076	-45.59563	2.229386
share65to84	-3.912239	8.41269	-0.47	0.642	-20.40081	12.57633
share85up	-6.695603	74.94257	-0.09	0.929	-153.5803	140.1891
unemployment	.0143257	.0314011	0.46	0.648	0472192	.0758707
sharepoverty	3.321191	2.755484	1.21	0.228	-2.079459	8.721841
lessthanhs	009519	.018401	-0.52	0.605	0455842	.0265462
bachelorup	0323893	.0231745	-1.40	0.162	0778104	.0130319
_cons	-3.965883	1.974348	-2.01	0.045	-7.835534	0962317

The RMSE value equals 2540.67, which is a higher value than the base model (RMSE = 2456.76), suggesting that sorting the *shareold* variable into *share65to84up* and *share85up* is not the best approach in order to get the best fit for the Poisson regression line. The next step is to analyze the p-values of replaced coefficients.

Table 20: Chi-Square test for the joint effect of share65to84 and share85up on property2017

- (1) [property2017]share65to842017 = 0
 (2) [property2017]share85up = 0
 - chi2(2) = 2.10Prob > chi2 = 0.3506

Given that the p-value of the Chi-Square test for the joint effect of *share65to84* and *share 89up* equals to 0.3506 and that $\alpha = 0.05$, there is not enough strong evidence to state that at least one of coefficients of these two variables should be different from zero. Furthermore, the RMSE value of this model is significantly higher than the baseline model, which supports the argument that replacing these the *shareold* variable would be a better approach to the analysis, this variable had a p-value of 0.162 on the baseline model which is 50% lower 0.3506 than the p-value of the joint effect and shows shareold is more significant to the analysis.

Table 21: Chi-Square test comparison of coefficients of variables share65to84 and share85up

The comparison of *share65to84* and *share85up* supports the argument that these two variables should not replace shareold. Since the p-value of the Chi-Square test is 0.97, there is not enough substantial evidence to state that these two variables are different.

Table 22: Robust-Poisson regression replacing sharepoverty with sharepoor and shareverypoor

Poisson regression				Number of obs			96	
				Wald chi	2(9)	=	892.94	
				Prob > c	hi2	=	0.0000	
Log pseudolike	lihood = -149 0	67.701		Pseudo R	2	=	0.9018	
		Robust						
property2017	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]	
lnpop2017	1.31094	.1466636	8.94	0.000	1.02	3484	1.598395	
popgrowth	.3918336	15.79644	0.02	0.980	-30.5	6863	31.3523	
shareyoung	-20.70741	11.62021	-1.78	0.075	-43.	4826	2.067792	
shareold	-4.151512	2.901284	-1.43	0.152	-9.83	7925	1.534902	
unemployment	.0092709	.0332433	0.28	0.780	055	8847	.0744266	
sharepoor	5.975349	3.128632	1.91	0.056	156	6562	12.10735	
shareverypoor	.5807046	5.986128	0.10	0.923	-11.1	5189	12.3133	
lessthanhs	0195076	.0256606	-0.76	0.447	069	8015	.0307863	
bachelorup	0331551	.0257554	-1.29	0.198	083	6348	.0173246	
cons	-3.855985	2.0274	-1.90	0.057	-7.82	9616	.1176458	

The RMSE value equals 2443.41, which is a lower value than the base model (RMSE = 2456.76), suggesting that sorting the *sharepoverty* variable into *sharepoor* and *shareverypoor* is a better approach in order to get the best fit for the Poisson regression line. The next step is to analyze the p-values of replaced coefficients.

```
( 1) [property2017]sharepoor = 0
( 2) [property2017]shareverypoor = 0
```

Given that the p-value of the Chi-Square test for the joint effect of *sharepoor* and *share verypoor* equals to 0.1705 and that $\alpha = 0.05$, there is not enough strong evidence to state that at least one the coefficients of these two variables should be different from zero. It is essencial to point out, though, that the RMSE value of this model is lower than the baseline model, the difference is approximately 0.55%.

Table 24: Chi-Square test comparison of coefficients of variables shareverypoor and sharepoor

(1) [property2017]sharepoor - [property2017]shareverypoor = 0

$$chi2(1) = 0.70$$

Prob > $chi2 = 0.4033$

The comparison of *sharepoor* and *shareverypoor* indicate that these two variables are equal. Since the p-value of the Chi-Square test is 0.4033, it can be concluded that there is not enough strong evidence to disprove that these two variables are equal. Lastly, it is inconclusive if *sharepoverty* should be replaced or not by *sharepoor* or *shareverypoor* because the RMSE value, for this specific case drops when the replacement happens, but the hypotheses tested were inconclusive.

Table 25: Robust-Poisson regression replacing bachelorup with bachelor and graduatedegree

Poisson regression	Number of obs	=	96
	Wald chi2(9)	=	839.03
	Prob > chi2	=	0.0000
Log pseudolikelihood = -14915.857	Pseudo R2	=	0.9021

property2017	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lnpop2017	1.344068	.162523	8.27	0.000	1.025529	1.662607
popgrowth	2.554159	15.28801	0.17	0.867	-27.40979	32.51811
shareyoung	-20.73579	11.08906	-1.87	0.061	-42.46995	.9983705
shareold	-4.325531	2.902743	-1.49	0.136	-10.0148	1.36374
unemployment	.0112243	.0329624	0.34	0.733	0533808	.0758295
sharepoverty	2.241477	3.957434	0.57	0.571	-5.51495	9.997905
lessthanhs	0110515	.0208173	-0.53	0.596	0518527	.0297498
bachelor	0641927	.060353	-1.06	0.288	1824823	.0540969
graduatedegree	.0006243	.0599576	0.01	0.992	1168904	.118139
_cons	-3.96875	1.93969	-2.05	0.041	-7.770473	1670274

The RMSE value equals 2672.69, which is a higher value than the base model (RMSE = 2456.76), suggesting that sorting the *bachelorup* variable into *bachelor* and *graduate* is not the best approach in order to get the best fit for the Poisson regression line. The next step is to analyze the p-values of replaced coefficients.

Table 26: Chi-Square test for the joint effect of bachelor and greaduatedegree on property2017

Given that the p-value of the Chi-Square test for the joint effect of *bachelor* and *graduatedegree* equals to 0.3843 and that $\alpha = 0.05$, there is not enough strong evidence to state that at least one of the coefficients is different from zero. Furthermore, although the RMSE value is 8.7% higher while compared to the baseline model.

(1) [property2017]bachelor - [property2017]graduatedegree = 0

chi2(1) = 0.35Prob > chi2 = 0.5533

sharepoverty

highschool

associate

_cons

bachelorup

somecollege

4.34683

-.0179484

.0322355

.026788

-.030935

-4.013571

The comparison of *barchelor* and *sgraduatedegree* supports the argument that these two variables should not replace *graduateup*. Since the p-value of the Chi-Square test is 0.5533, it can be concluded that there is not enough strong evidence to state that these two variables are different. Indeed, since the previous analyzed evidence has shown that the replacement variable does not yield not statistically significant changes to the model and a worse RMSE value, the best approach is not replacing the *graduateup* variable.

Table 28: Robust-Poisson regression replacing less thanks with some college, associate, and highschool

Poisson regression Log pseudolikelihood = -14720.347				Number Wald ch Prob > Pseudo	i2(10) chi2	= = = =	96 1141.62 0.0000 0.9034
property2017	Coef.	Robust Std. Err.	Z	P> z	[95%	Conf.	Interval]
lnpop2017 popgrowth shareyoung shareold unemployment	1.292286 .1665319 -22.99325 -4.09294 0061053	.1386717 14.54772 12.54162 2.953005 .0522392	9.32 0.01 -1.83 -1.39 -0.12	0.000 0.991 0.067 0.166 0.907	1.020 -28.34 -47.5 -9.880 108	4648 7437 0723	1.564077 28.67955 1.58786 1.694842 .0962817

1.19

-0.56

0.73

0.50

-1.25

-1.43

0.236

0.578

0.463

0.619

0.210

0.152

-2.842448

-.0811024

-.0539021

-.0792948

-9.498973

-.07891

11.53611

.0452056

.1183731

.132486

.0174249

1.47183

3.668067

.032222

.0439486

.0539285

.0246739

2.798726

The RMSE value equals 2644.23, which is a higher value than the base model (RMSE = 2456.76), suggesting that sorting the *lessthanhs* variable into *highschool*, *somecollege* and *associate* is not the best approach in order to get the best fit for the Poisson regression line. The next step is to analyze the p-values of replaced coefficients.

Table 29: Chi-Square test for the joint effect of somecollege, highschool, and associate on property2017

Given that the p-value of the Chi-Square test for the joint effect of *somecollege*, *highschool*, and *associate* equals to 0.8404 and that $\alpha = 0.05$, there is not enough strong evidence to state that at least one of the three coefficients is different from zero. Furthermore, although the RMSE value is 7.6% higher while compared to the baseline model, supporting the argument that these three variables should not replace *lessthanhs*.

Model	Replaced Variable	RMSE	%Difference related to the baseline model
Model1	shareyoung	2446.43	-0.4%
Model2	shareold	2540.67	3.4%
Model3	sharepoverty	2443.41	-0.5%
Model4	bachelorup	2672.69	8.7%
Model5	lessthanhs	2644.23	7.6%
Baseline model	-	2456.76	0.0%

Table 30: RMSE values for tested models

This RMSE table helps understanding the impact of each replaced variable on the predictive power of each model. The percentage difference column shows that the replacement variables for *lessthanhs* and *bachelorup* presented a highly-positive percentage difference when compared to the baseline model, so they were not considered to the analysis. The case of *shareold*'s replacement variables is similar since it yields a RMSE value 3.4% higher while compared to the base line model. Lastly, the considered variables for a possible replacement are *shareyoung* and *sharepoverty*, these presented a negative percentage difference what is a high indicator that these should increase the predictive power of a model.

3.5 Model Selection for Socioeconomic factors

Table 31: Socioeconomic models comparison - Output table for 4 different tested models

	(1)	(2)	(3)	(4)	(5)
	property2017	property2017	property2017	property2017	property2017
property2017					
lnpop2017	1.318***	1.032***	1.031***	1.031***	1.036***
	(0.151)	(0.129)	(0.128)	(0.129)	(0.089)
popgrowth	2.496	6.422			
	(14.503)	(12.687)			
shareyoung	-21.79	-18.42*	-18.69*	-18.76	
	(12.318)	(9.117)	(9.166)	(9.643)	
shareold	-4.245	-7.899	-8.483	-8.508	-8.420*
	(3.013)	(4.495)	(4.534)	(4.881)	(4.198)
unemploymen t	0.0144	0.00116			
	(0.036)	(0.033)			
sharepoverty	3.231				4.392*
	(3.535)				(1.840)
lessthanhs	-0.0102				
	(0.020)				
bachelorup	-0.0330				
	(0.026)				
sharepoor		8.193**	7.764**	7.637**	
		(3.120)	(2.879)	(2.899)	
shareverypoor		0.582	-0.230		
		(5.641)	(4.722)		
share14to17					-16.54
					(18.802)
share18to24					-20.71
					(11.088)
_cons	-3.900	-1.769	-1.464	-1.455	-1.496
	(2.023)	(2.950)	(2.804)	(2.942)	(2.376)
<i>RMSE</i>	2456.76	2302.10	2241.39	2083.31	2489.41
N	95	95	95	95	95

Standard errors in parentheses p < 0.05, ** p < 0.01, *** p < 0.001

This regression table above provides the statistical significance of each coefficient and the RMSE value, which will help to analyze the statistical power of each of the Poisson regression models. The baseline model has a RMSE value of 2456.76, and the variables that were subject to change were *sharepoverty*; in other models it was replaced by *sharepoor* and *shareverypoor*, and *shareyoung* which was replaced by *share14to17* and *share18to24*.

On first tested model (2), the *sharepoverty* variable was replaced and the *lessthanhs* and *graduateup* variable were removed from the model as both presented high p-values and also the absolute value of the Pearson's correlation r with the poverty variables were above 0.5 (respectively: r = 0.6386 and r = -0.6269), this fact indicates high degree of collinearity between variables, the *popgrowth* variable was also removed due to high degree of collinearity with *lnpop2017*(r = 0.5614) and *povertyshare* (r = -0.6938). The RMSE value for this model is 2302.1, and it decreased 6.3% when compared to the baseline model.

Since the first test model presented a consistent result, the prediction power of it can be improved, so on the second tested model (3) the *unemployment* variable was removed as its p-value was equal to 0.970 indicating that there is strong evidence that this coefficient is statistically insignificant to the analysis. The RMSE value for this model is 2241.39, and it decreased 2.6% when compared to the model (2).

The last change that was made to this model involving the poverty data was the removal of variable *shareverypoor* as its p-value was 0.946 indicating that there is strong evidence that this coefficient is statistically insignificant to the analysis. The RMSE value for this model is 2083.31, it decreased 7.1% when compared to the model (3).

Lastly, on model (5) the *shareyoung* variable was replaced by *share14to17* and share18to24, and the *sharepoverty* variable was back transformed from the previous replacement it was applied to it. The RMSE value for this Poisson model was 2489.41, which is higher than the base model, this fact shows that the replacement of the *shareyoung* variable will not be useful for the prediction, but the replacement of *sharepoverty* will.

The chosen model involving socio-economic data is the Robust-Poisson regression of property2017 on *shareyoung*, *shareold*, *lnpop2017* and *sharepoor* (Table 29). This model presented the best RMSE values, and the coefficients are statistically significant to the analysis as their p-values are all below 0.052.

Table 32: Regression of shareyoung, shareold, Inpop2017, and sharepoor on property2017

Poisson regression	Number of obs	=	96
	Wald chi2(4)	=	224.03
	Prob > chi2	=	0.0000
Log pseudolikelihood = -16058.109	Pseudo R2	=	0.8946

property2017	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lnpop2017	1.032805	.1288242	8.02	0.000	.7803143	1.285296
shareyoung	-18.71198	9.628945	-1.94	0.052	-37.58436	.1604101
shareold	-8.499526	4.889626	-1.74	0.082	-18.08302	1.083964
sharepoor	7.658722	2.89849	2.64	0.008	1.977787	13.33966
cons	-1.484192	2.9412	-0.50	0.614	-7.248837	4.280454

3.4 Overall model selection

While combining the strongest social, demographic, and economic data, it was clear that some specific variables such as *sharepoor*, *shareyoung*, and *shareold* and verypoor have high degree of correlation with property crimes and help on the prediction models.

The table above compares three different models. The second model, which seems a good option to be selected since its Pseudo-R2 and the RMSE values are the best while compared to the other models; the RMSE indicates less variance on the line and a more precise prediction. Furthermore, this model accounts for important variables highly correlated to property crime rates. Lastly, this model specifies the different variable that has a direct impact on the crime rate, and it can also be noticed by the significance of the coefficients:

	pro~2018	proper~h	lnprop~7	sharep~r	sharev~r	sharey~g	unempl~t
property2018	1.0000						
propertygrowth	0.0382	1.0000					
Inproperty2017	0.6455	0.1144	1.0000				
sharepoor	-0.1873	0.0638	-0.4072	1.0000			
shareverypoor	-0.1809	0.1448	-0.3593	0.5528	1.0000		
shareyoung	0.0616	-0.0588	0.1910	-0.0767	0.1189	1.0000	
unemployment	-0.0739	0.2784	-0.1644	0.3105	0.4388	0.0863	1.0000

Table 33: Correlation matrix for 9 different socio-economic variables

From the correlation matrix above, it possible to gather some insight based on the Person's r for the relation of each of the coefficients. The lnproperty2017 variable is highly correlated with property2018 (r = 0.6455) as both refer to property crimes' data, but for different years. Lastly, sharepoor is highly correlated with shareverypoor (r = 0.5528), and this happened because both refer to poverty a variable.

The correlation matrix of the baseline models for both historical factors and socioeconomic presented multiples cases of high correlated variables. After multiples tests and model selections, the cases of collinearity among the model's variables decreased significantly. The last step is the comparison of the combined models using the most significant variables that were listed and compared above.

	(1)	(2)	(3)	(4)
	property2018	property2018	property2018	property2018
property2018				
propertygrowth	-0.505	-0.493	-0.358	-0.499
	(0.494)	(0.474)	(0.427)	(0.385)
Inproperty2017	0.998***	0.998***	0.995***	0.996***
	(0.010)	(0.010)	(0.010)	(0.011)
sharepoverty		0.0233		
		(0.315)		
sharepoor			2.133	2.307
			(1.496)	(1.451)
shareverypoor			-2.342	-2.636
			(1.747)	(1.680)
shareyoung				1.287
				(0.795)
_cons	-0.118	-0.123	-0.120	-0.310*
	(0.076)	(0.103)	(0.091)	(0.128)
RMSE	468.81	475.76	449.35	505.80
N	95	95	95	95

Table 34: Combined models comparison - Output table for 4 different tested models

Standard errors in parentheses

The tables above show the comparison of loocv RMSE values of the generated combined models. Model (1) is the best fit for the historic of property crime's factors, it contains only *propertygrowth* and *Inproperty2017* as factors, this model contained the best RMSE value from all previously tested, so that it will be adopted as the baseline model.

Model (2) included the *sharepoverty* variable since poverty is a factor that helps explain why property crimes happen, but the RMSE value went from 468.81 to 475.76, which shows that this model is better than the baseline. Since it was tested before that the *sharepoverty* variable works better to the model when it is replaced by *sharepoor* and *shareverypoor*, this approach was selected for the model (3). This was the model for the analysis, it presented the best RMSE value, 449.35, meaning this one is the model with high predictive power.

Lastly, when the *shareyoung* variable was introduced on model (4) to check if it would increase the prediction power of the model, it was possible to conclude that it would not benefit the predictions since the RMSE went up to 505.80. Finally, model (3) is the selected model as it has the highest RMSE value, and its coefficients are significant to the analysis when joint tested.

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4. Discussion

The values of standard deviation, mean, and RMSE values were inflated due to outliers on the dataset, which were the highest populated counties within Georgia. Since the objective of this study is to predict the property crime rates within all counties in Georgia, these highly-populated counties were maintained in the dataset.

After extensive research and testing of models, the best models for predicting the rate of property crimes in each county within Georgia were determined. The most telling factors, which used the historic predictors for the model, were the natural log of property crimes for 2017 and the growth of property crimes between 2012 and 2017. Apart from the combined model, which included both historic and socioeconomic factors, this was the best-fit among all others.

Finally, in the case of the most telling predictors for the combined model, it took into consideration the best socioeconomic predictor, the ones that reduced the RMSE of the tested model when compared to the baseline. It incorporated the best telling predictors with the historic predictors' model, aiming at finding the best fit model with the highest prediction power. It was explicitly found specifically that the share of people under half of the poverty's level income and between half and the poverty's income aggregated with the historic predictors provided the best fit and highest prediction power.

5. Conclusion

Overall, a study was conducted for Georgia's state government in order to come up with the best model in order to predict the property crime and investigate which are the factor that impacted by increasing the property crime rates, so it is possible to allocate resources to solve the problem at its source. Furthermore, the socioeconomic factor that had the greatest impact on prediction was the share of people under half of the poverty's level income, and between half and the poverty's income aggregated with the historic predictors provided the best fit and highest prediction power. Finally, it can conclude that an efficient way to decrease the property crime rates in county within Georgia, it is reducing the poverty levels.

county property2019 Baldwin 493.4015 Banks 348.1512 Ben Hill 161.0253 Berrien 194.099 Bleckley 91.93798 Brooks 125.8582 Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham		
Banks 348.1512 Ben Hill 161.0253 Berrien 194.099 Bleckley 91.93798 Brooks 125.8582 Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham	county	property2019
Ben Hill 161.0253 Berrien 194.099 Bleckley 91.93798 Brooks 125.8582 Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert	Baldwin	493.4015
Berrien 194.099 Bleckley 91.93798 Brooks 125.8582 Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Charltonga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel	Banks	348.1512
Bleckley 91.93798 Brooks 125.8582 Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans	Ben Hill	
Brooks 125.8582 Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin	Berrien	194.099
Bryan 289.0164 Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette	Bleckley	91.93798
Bulloch 438.6293 Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton	Brooks	125.8582
Butts 295.22 Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer	Bryan	289.0164
Charlton 102.8558 Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Bulloch	438.6293
Chattooga 87.65781 Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Butts	295.22
Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Charlton	102.8558
Cherokee 1178.466 Clay 10.84623 Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Chattooga	87.65781
Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971		1178.466
Clayton 7487.975 Clinch 39.69954 Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Clay	10.84623
Cobb 8294.769 Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Clayton	7487.975
Coffee 438.3635 Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Clinch	39.69954
Columbia 1593.814 Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Cobb	8294.769
Cook 119.1769 Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Coffee	438.3635
Coweta 910.0548 Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Columbia	1593.814
Crawford 182.8411 Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Cook	119.1769
Crisp 396.7691 Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Coweta	910.0548
Dawson 396.3569 Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Crawford	182.8411
Decatur 193.1077 DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Crisp	396.7691
DeKalb 19190.68 Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Dawson	396.3569
Dodge 173.9161 Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Decatur	193.1077
Dooly 81.43768 Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	DeKalb	19190.68
Dougherty 365.8154 Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Dodge	173.9161
Early 94.24102 Echols 46.51483 Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Dooly	81.43768
Echols46.51483Effingham303.3893Elbert256.9738Emanuel210.207Evans31.36139Fannin186.2782Fayette445.3214Fulton1386.254Gilmer388.2971	Dougherty	365.8154
Effingham 303.3893 Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Early	94.24102
Elbert 256.9738 Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Echols	46.51483
Emanuel 210.207 Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Effingham	303.3893
Evans 31.36139 Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Elbert	256.9738
Fannin 186.2782 Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Emanuel	210.207
Fayette 445.3214 Fulton 1386.254 Gilmer 388.2971	Evans	31.36139
Fulton 1386.254 Gilmer 388.2971	Fannin	186.2782
Fulton 1386.254 Gilmer 388.2971	Fayette	445.3214
		1386.254
	Gilmer	388.2971
		1509.402

Grady	166.7265
Greene	106.3729
Gwinnett	12750.62
Habersham	309.1581
Hall	1453.875
Hancock	91.71284
Henry	3141.025
Houston	834.4865
Irwin	92.79786
Jasper	155.1048
Jeff Davis	94.94231
Jefferson	77.11692
Jones	227.8505
Lamar	100.5915
Lanier	127.3118
Laurens	450.9486
Lee	467.8004
Liberty	205.5602
Long	145.3012
Madison	362.5175
Mitchell	231.5638
Monroe	279.5061
Newton	1385.935
Oconee	398.8565
Oglethorpe	173.4772
Paulding	1777.885
Peach	204.4712
Pickens	365.9712
Pierce	236.7844
Pike	177.6722
Polk	504.1217
Pulaski	197.6674
Rabun	191.8175
Rockdale	1132.404
Schley	9.744584
Seminole	53.10657
Spalding	759.3322
Stephens	243.8181
Sumter	168.2458
Talbot	42.39161
Taylor	42.55139
Thomas	427.7527
Towns	123.145
Treutlen	40.95578
	10.75570

Troup	567.9871
Twiggs	93.70404
Union	195.2697
Upson	260.6571
Walton	518.225
Ware	528.0677
Warren	27.97522
Wayne	631.7867
Webster	1.2239
White	123.7384
Whitfield	1359.502
Wilkes	19.2395
Wilkinson	34.35394

Appendix B: Do-file-for-Project

```
/* QMB 3200 Regression Example Work */
clear
cd "C:\Users\luizg\Desktop\QMB Project"
import delimited "C:\Users\luizg\Desktop\QMB Project\projectdata.csv",
encoding(ISO-8859-2)
*Generating Ln Variables and Variable growth
gen lnproperty2012 = ln(property2012)
gen lnproperty2017 = ln(property2017)
gen lnviolent2012 = ln(violent2012)
gen lnviolent2017 = ln(violent2017)
gen propertygrowth=(lnproperty2017-lnproperty2012)/5
gen violentgrowth=(lnviolent2017-lnviolent2012)/5
gen lnpop2012 = ln(pop2012)
gen lnpop2017 = ln(pop2017)
gen popgrowth=(lnpop2017-lnpop2012)/5
*Variables Summary
```

sum violent2012 violent2017 violent2018 violentgrowth lnviolent2012 lnviolent2017 popgrowth propertygrowth lnpop2012 lnpop2017 lnproperty2012 lnproperty2017 property2012 property2017 property2018 unemployment poor verypoor poppov graduatedegree bachelor associate somecollege highschool edu9to12th eduless9th pop2012 pop2017 pop14to172012 pop14to172017 pop18to242012 pop18to242017 pop65up2017 pop65up2012 pop85up2012 pop85up2017

*Variables Description

describe violent2012 violent2017 violent2018 violentgrowth lnviolent2012 lnviolent2017 popgrowth propertygrowth lnpop2012 lnpop2017 lnproperty2012 lnproperty2017 property2012 property2017 property2018 unemployment poor verypoor poppov graduatedegree bachelor associate somecollege highschool edu9to12th eduless9th pop2012 pop2017 pop14to172012 pop14to172017 pop18to242012 pop18to242017 pop65up2017 pop65up2012 pop85up2012 pop85up2017

*Generating Table 4 Variables:

```
gen share14to17=pop14to172017/pop2017
gen share18to24=pop18to242017/pop2017
gen pop65to842017 = pop65up2017 - pop85up2017
gen share65to84=pop65to842017/pop2017
gen share85up=pop85up2017/pop2017
gen shareyoung = share14to17+share18to24
gen shareold = share65to84+share85up
gen shareverypoor = verypoor/poppov
gen sharepoor = poor/poppov
gen sharepoor = poor/poppov
gen sharepoor = bachelor + shareverypoor
gen bachelorup = bachelor + graduate
gen lessthanhs = 100-highschool-somecollege-associate-bachelor-graduate
```

 $\verb|sum| pop65to842017| share14to17| share18to24| share65to84| share85up shareold sharepoor sharepoverty shareverypoor shareyoung bachelorup lessthanhs|$

* 3.1.1 Initial Models:

correlate property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth lnpop2017 popgrowth

poisson property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth lnpop2017 popgrowth, robust

test lnproperty2017 propertygrowth

test lnviolent2017 violentgrowth

loocv poisson property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth lnpop2017 popgrowth, robust

estimates store modelt1

poisson property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth, robust

test lnviolent2017 violentgrowth

loocv poisson property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth, robust

estimates store modelt2

poisson property2018 propertygrowth lnproperty2017, robust

loocv poisson property2018 propertygrowth lnproperty2017, robust

estimates store modelt3

esttab modelt* using "modelt.ttf" , se(3) replace
correlate property2018 propertygrowth lnproperty2017

* 3.2.2 Multicollinearity on the models

correlate property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup

reg property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup

vif

*3.2.3 Baseline Model

poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup, robust

estimates store modelr1

*3.2.4 Tests of alternatives for each class of independent variable

*Share young

poisson property2017 lnpop2017 popgrowth share14to17 share18to24 shareold unemployment sharepoverty lessthanhs bachelorup, robust

loocv poisson property2017 lnpop2017 popgrowth share14to17 share18to24 shareold unemployment sharepoverty lessthanhs bachelorup, robust

estimates store modelr2

test share18to24 share14to17

test share18to24 == share14to17

*Share old

poisson property2017 lnpop2017 popgrowth shareyoung share65to84 share85up unemployment sharepoverty lessthanhs bachelorup, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung share65to84 share85up unemployment sharepoverty lessthanhs bachelorup, robust

estimates store modelr3

test share65to84 share85up

test share65to84 == share85up

*Share Poverty

poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor lessthanhs bachelorup, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor lessthanhs bachelorup, robust

estimates store modelr4

test sharepoor shareverypoor

test sharepoor == shareverypoor

*Bachelorup

poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelor graduate, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelor graduate, robust

estimates store modelr5

test bachelor graduate

test bachelor == graduate

*LessthanHS

poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty highschool somecollege associate bachelorup, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty highschool somecollege associate bachelorup, robust

estimate store modelr6

test somecollege highschool associate

esttab modelr* using "modelr.ttf", se(3) replace

*3.2.5 Estimate the best model

poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup, robust

estimates store modelz1

poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor, robust

loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor, robust

estimate store modelz2

poisson property2017 lnpop2017 shareyoung shareold sharepoor shareverypoor, robust

loocv poisson property2017 lnpop2017 shareyoung shareold sharepoor shareverypoor, robust

estimate store modelz3

poisson property2017 lnpop2017 shareyoung shareold sharepoor, robust loocv poisson property2017 lnpop2017 shareyoung shareold sharepoor, robust

estimate store modelz4

poisson property2017 lnpop2017 share14to17 share18to24 shareold sharepoverty, robust

loocv poisson property2017 lnpop2017 share14to17 share18to24 shareold sharepoverty, robust

estimate store modelz5

esttab modelz* using "modelz.rtf" , se(3) replace

*3.3 Prediction using past crime and other correlates

poisson property2018 propertygrowth lnproperty2017, robust loocv poisson property2018 propertygrowth lnproperty2017, robust estimates store modelt1

estat ic

poisson property2018 propertygrowth lnproperty2017 sharepoverty, robust

loocv poisson property 2018 property growth lnproperty 2017 share poverty, robust

estimates store modelt2

estat ic

poisson property2018 propertygrowth lnproperty2017 sharepoor shareverypoor, robust

```
loocv poisson property2018 propertygrowth lnproperty2017 sharepoor
shareverypoor, robust
estimates store modelt3
estat ic
poisson property2018 propertygrowth lnproperty2017 sharepoor
shareverypoor shareyoung, robust
loocv poisson property2018 propertygrowth lnproperty2017 sharepoor
shareverypoor shareyoung, robust
estimates store modelt4
estat ic
esttab modelt* using "modelt.rtf" , se(3) replace
*3.4 Predictions for 2018
gen lnproperty2018 = ln(property2018)
gen CrimeRate = (lnproperty2018-lnproperty2012)/6
gen property2019=exp(-
0.364423*propertygrowth+0.9952104*lnproperty2018+2.1292*sharepoor-
2.338646*shareverypoor-0.1199882)
list county property2019 (3), compress
STOP
log close
```

Appendix C: Log-file-for-Project

(R)	
/ //	
<u>LLC</u> / / / <u></u> / / / <u></u> / 16.0	Copyright 1985-2019 StataCorp
Statistics/Data Analysis	StataCorp
	4905 Lakeway Drive
	College Station, Texas 77845 USA
	800-STATA-PC
http://www.stata.com	
	979-696-4600
stata@stata.com	
	979-696-4601 (fax)

Single-user Stata license expires 16 Mar 2020:

Serial number: 301609236389

Licensed to: Luiz Gustavo Fagundes Malpele

Florida Polytechnic University

Notes:

- 1. Unicode is supported; see help unicode advice.
- . doedit "C:\Users\luizg\Desktop\QMB Project\do-file-project.do"
- . do "C:\Users\luizg\AppData\Local\Temp\STD5764_000000.tmp"
- . /* QMB 3200 Regression Example Work */

. clear

```
. cd "C:\Users\luizg\Desktop\QMB Project"
C:\Users\luizg\Desktop\QMB Project
. import delimited "C:\Users\luizg\Desktop\QMB
Project\projectdata.csv", encoding(ISO-8859-2)
(28 vars, 96 obs)
. *Generating Ln Variables and Variable growth
. gen lnproperty2012 = ln(property2012)
. gen lnproperty2017 = ln(property2017)
. gen lnviolent2012 = ln(violent2012)
(2 missing values generated)
. gen lnviolent2017 = ln(violent2017)
(2 missing values generated)
. gen propertygrowth=(lnproperty2017-lnproperty2012)/5
. gen violentgrowth=(lnviolent2017-lnviolent2012)/5
(4 missing values generated)
. \text{ gen lnpop2012} = \text{ln(pop2012)}
. gen lnpop2017 = ln(pop2017)
```

. gen popgrowth=(lnpop2017-lnpop2012)/5

•

. *Variables Summary

•

- . sum violent2012 violent2017 violent2018 violentgrowth lnviolent2012 lnviolent2017 popgrowth propertygrowth lnpop2012 lnpop2017 lnproperty2012 lnproperty2017 property2012 property2017 p
- > roperty2018 unemployment poor verypoor poppov graduatedegree bachelor associate somecollege highschool edu9to12th eduless9th pop2012 pop2017 pop14to172012 pop14to172017 pop18to242012 p
- > op18to242017 pop65up2017 pop65up2012 pop85up2012 pop85up2017

Variable Max	I	Obs	Mean	Std. Dev.	Min
	-+				
violent2012 3420	I	96	119.8021	402.174	0
violent2017 3184	I	96	122.5208	388.4895	0
violent2018 3085	I	96	128.8438	389.6356	1
violentgro~h .2834132	I	92	.0291374	.1216718	3531568
<pre>lnviole~2012 8.137396</pre>	1	94	3.489516	1.394921	0
	-+				
<pre>lnviole~2017 8.065893</pre>	I	94	3.626938	1.279686	.6931472
popgrowth .0322412	I	96	.0033757	.0107121	0135521
propertygr~h .5051457	I	96	0349247	.0944389	5278115

lnpop2012	I	96	10.28049	1.192467	7.925158
13.85366			10.29737		
-	-+				
<pre>lnprope~2012 10.31841</pre>	1	96	5.888458	1.467278	.6931472
<pre>lnprope~2017 10.05389</pre>	I	96	5.713834	1.444298	1.098612
property2012 30285	I	96	1271.885	3672.148	2
property2017 23246	1	96	1109.042	3161.136	3
property2018 21426		96	978		1
-	-+				
		0.6			_
20.3		96	8.20625	3.004481	4
			8.20625 6569.26		322
20.3 poor	I	96		13266.33	
20.3 poor 79132 verypoor	I I	96 96	6569.26	13266.33 11167.23	322 187
20.3 poor 79132 verypoor 77387 poppov 978533 graduatede~e 25.2		96969696	6569.26 5385.75 74895.93 7.464583	13266.33 11167.23 167551.8 3.789653	322 187 2613 2.1
20.3 poor 79132 verypoor 77387 poppov 978533 graduatede~e 25.2		96969696	6569.26 5385.75 74895.93 7.464583	13266.33 11167.23 167551.8 3.789653	322 187 2613
poor 79132 verypoor 77387 poppov 978533 graduatede~e 25.2	 	96 96 96	6569.26 5385.75 74895.93 7.464583	13266.33 11167.23 167551.8 3.789653	322 187 2613 2.1
poor 79132 verypoor 77387 poppov 978533 graduatede~e 25.2 bachelor	 -	96 96 96	6569.26 5385.75 74895.93 7.464583	13266.33 11167.23 167551.8 3.789653 5.627566	322 187 2613 2.1

highschool 52.1	I	96	35.37396	6.50032	18.3
22.8			11.85208		
	-+				
eduless9th	I	96	5.896875	2.476859	1.5
pop2012 973236	I	96	74038.13	163019.8	2766
pop2017 1038884	I	96	78400.6	175426.6	2596
pop14~172012 54311	I	96	4176.781	9046.742	119
pop14~172017 60463	I	96	4445.188	9903.134	149
	-+				
	·				
- pop18~242012	1	96	7235.083	16102.45	
- pop18~242012 105314 pop18~242017		96 96	7235.083 7289.813	16102.45 16524.48	216
- pop18~242012 105314 pop18~242017 105701 pop65up2017		96 96 96	7235.083 7289.813	16102.45 16524.48 19364.88	216 190 493
- pop18~242012 105314 pop18~242017 105701 pop65up2017 118228 pop65up2012 93402 pop85up2012 12704		96969696	7235.083 7289.813 10273.48 8192.01	16102.45 16524.48 19364.88 14809.5	21619049341233
- pop18~242012 105314 pop18~242017 105701 pop65up2017 118228 pop65up2012 93402 pop85up2012 12704		96969696	7235.083 7289.813 10273.48 8192.01	16102.45 16524.48 19364.88 14809.5	216 190 493 412

.

•

^{. *}Variables Description

- . describe violent2012 violent2017 violent2018 violentgrowth lnviolent2012 lnviolent2017 popgrowth propertygrowth lnpop2012 lnpop2017 lnproperty2012 lnproperty2017 property2012 property2
- > 017 property2018 unemployment poor verypoor poppov graduatedegree bachelor associate somecollege highschool edu9to12th eduless9th pop2012 pop2017 pop14to172012 pop14to172017 pop18to242
- > 012 pop18to242017 pop65up2017 pop65up2012 pop85up2012 pop85up2017

S	storage	display	value	
variable name	type	format	label	variable label
violent2012	int	%8.0g		Violent2012
violent2017	int	%8.0g		Violent2017
violent2018	int	%8.0g		Violent2018
violentgrowth	float	%9.0g		
lnviolent2012	float	%9.0g		
lnviolent2017	float	%9.0g		
popgrowth	float	%9.0g		
propertygrowth	float	%9.0g		
lnpop2012	float	%9.0g		
lnpop2017	float	%9.0g		
lnproperty2012	float	%9.0g		
lnproperty2017	float	%9.0g		
property2012	int	%8.0g		Property2012
property2017	int	%8.0g		Property2017
property2018	int	%8.0g		Property2018
unemployment	float	%9.0g		Unemployment
poor	long	%12.0g		Poor
verypoor	long	%12.0g		VeryPoor
poppov	long	%12.0g		PopPov

graduatedegree	float	%9.0g	Graduate degree
bachelor	float	%9.0g	Bachelor
associate	float	%9.0g	Associate
somecollege	float	%9.0g	SomeCollege
highschool	float	%9.0g	HighSchool
edu9to12th	float	%9.0g	Edu9to12th
eduless9th	float	%9.0g	EduLess9th
pop2012	long	%12.0g	Pop2012
pop2017	long	%12.0g	Pop2017
pop14to172012	long	%12.0g	Pop14to172012
pop14to172017	long	%12.0g	Pop14to172017
pop18to242012	long	%12.0g	Pop18to242012
pop18to242017	long	%12.0g	Pop18to242017
pop65up2017	long	%12.0g	Pop65up2017
pop65up2012	long	%12.0g	Pop65up2012
pop85up2012	int	%8.0g	Pop85up2012
pop85up2017	int	%8.0g	Pop85up2017

.

. *Generating Table 4 Variables:

.

- . gen share14to17=pop14to172017/pop2017
- . gen share18to24=pop18to242017/pop2017
- . gen pop65to842017 = pop65up2017 pop85up2017
- . gen share65to84=pop65to842017/pop2017
- . gen share85up=pop85up2017/pop2017

- . gen shareyoung = share14to17+share18to24
- . gen shareold = share65to84+share85up
- . gen shareverypoor = verypoor/poppov
- . gen sharepoor = poor/poppov
- . gen sharepoverty = sharepoor + shareverypoor
- . gen bachelorup = bachelor + graduate
- . gen less thanhs = 100-highschool-somecollege-associate-bachelor-graduate

.

. sum pop65to842017 share14to17 share18to24 share65to84 share85up shareold sharepoor sharepoverty shareverypoor shareyoung bachelorup lessthanhs

Variable Max	•	Obs	Mean	Std. Dev.	Min
	+				
pop65~842017 104127	I	96	9245.125	17337.7	447
share14to17.07153	I	96	.0540882	.0076406	.0325851
share18to24 .2374612	I	96	.0883316	.0250651	.0592906
share65to84	I	96	.1551222	.0426909	.0784637

share85up .0387641			.0177731		
+					
shareold .3445706		96	.1728953	.04791	.0880881
sharepoor .2119249		96	.1133421	.0386926	.037361
sharepoverty .4144205		96	.2069274	.0694555	.0630627
shareveryp~r .2611427		96	.0935853	.0401298	.0224568
shareyoung .2803217		96	.1424199	.0248166	.100813
-					
bachelorup 50.2		96	18.90104	9.120185	6.9
lessthanhs 31.4		96	17.74375	5.759857	5.000001
. * 3.1.1 Init	ial Model	s:			
. correlate pr				riolentgrowt	th lnproperty2017
(obs=92)					
popgro~h					proper~h lnpop2~7
+					
property2018	1.0000				
lnviole~2017	0.5904	1.0	000		
violentgro~h	-0.0877	0.0	578 1.000	0	

```
Inprope~2017 | 0.6762 0.7736 -0.2816 1.0000
propertygr~h | 0.0271 -0.0321 0.3266 -0.0654 1.0000
Inpop2017 | 0.6171 0.7295 -0.1841 0.8802 -0.1026 1.0000
popgrowth | 0.2623 0.3206 -0.1024 0.4586 -0.0202 0.5404
1.0000
```

. poisson property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth lnpop2017 popgrowth, robust

```
Iteration 0: log pseudolikelihood = -42716.044
Iteration 1: log pseudolikelihood = -8861.0855
Iteration 2: log pseudolikelihood = -2235.6387
Iteration 3: log pseudolikelihood = -2111.9449
Iteration 4: log pseudolikelihood = -2111.8536
Iteration 5: log pseudolikelihood = -2111.8536
```

Poisson regression 92	Number of obs	=
15617.55	Wald chi2(6)	=
0.0000	Prob > chi2	=
Log pseudolikelihood = -2111.8536 0.9841	Pseudo R2	=

| Robust

property2018 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

<pre>lnviolent2017 .0156077</pre>	0059011	.0109741	-0.54	0.591	0274099
violentgrowth .5842503	.164006	.2144143	0.76	0.444	2562382
<pre>lnproperty2017 1.298707</pre>	1.106563	.0980341	11.29	0.000	.9144202
propertygrowth .8240576	3762712	.6124239	-0.61	0.539	-1.5766
lnpop2017 .1343446	1453132	.1426851	-1.02	0.308	4249709
popgrowth 17.68275	7.329432	5.282404	1.39	0.165	-3.023889
_cons 2.401833	.7267536	.8546479	0.85	0.395	9483255

- . test lnproperty2017 propertygrowth
 - (1) [property2018]lnproperty2017 = 0
 - (2) [property2018]propertygrowth = 0

$$chi2(2) = 192.46$$

Prob > $chi2 = 0.0000$

- . test lnviolent2017 violentgrowth
 - (1) [property2018]lnviolent2017 = 0
 - (2) [property2018]violentgrowth = 0

$$chi2(2) = 0.59$$

Prob > $chi2 = 0.7455$

Leave-One-Out Cross-Validation Results

Method	1	Value
	-+	
Root Mean Squared Errors	1	697.87929
Mean Absolute Errors		204.75109
Pseudo-R2	I	.94305856

- . estimates store modelt1
- . poisson property 2018 lnviolent 2017 violentgrowth lnproperty 2017 property growth, robust

Iteration 0: log pseudolikelihood = -38489.32
Iteration 1: log pseudolikelihood = -7171.226
Iteration 2: log pseudolikelihood = -2385.1893
Iteration 3: log pseudolikelihood = -2332.7717
Iteration 4: log pseudolikelihood = -2332.6422
Iteration 5: log pseudolikelihood = -2332.6422

Poisson regression 92	Number of obs	=
11066.89	Wald chi2(4)	=
0.0000	Prob > chi2	=

Log pseudolikelihood = -2332.6422 0.9824 Pseudo R2

eudo R2

			Robust			
property2018 Interval]		Coef.		Z		[95% Conf.
	+-					
<pre>lnviolent2017 .0049933</pre>		022071	.0138086	-1.60	0.110	0491354
violentgrowth .6672635		.0614741	.3090819	0.20	0.842	5443154
<pre>lnproperty2017 1.042324</pre>		1.019412	.0116899	87.20	0.000	.9964999
propertygrowth .5632464		5839831	.5853319	-1.00	0.318	-1.731213
_cons		1763327	.0845377	-2.09	0.037	3420235

- . test lnviolent2017 violentgrowth
 - (1) [property2018]lnviolent2017 = 0
 - (2) [property2018]violentgrowth = 0

$$chi2(2) = 4.44$$

 $Prob > chi2 = 0.1089$

. loocv poisson property2018 lnviolent2017 violentgrowth lnproperty2017 propertygrowth, robust

T 02770-0n0-011t	Cross-Validation	Dagulta
Leave-one-on.	CIOSS-Valluation	Results

Method	1	Value
	-+	
Root Mean Squared Errors	1	754.37242
Mean Absolute Errors		201.41258
Pseudo-R2	1	.93329208

- . estimates store modelt2
- . poisson property2018 propertygrowth lnproperty2017, robust

Iteration	0:	log	pseudolikelihood	=	-5557.0807
Iteration	1:	log	pseudolikelihood	=	-2421.9652
Iteration	2:	log	pseudolikelihood	=	-2398.3012
Iteration	3:	log	pseudolikelihood	=	-2398.292
Iteration	4:	log	pseudolikelihood	=	-2398.292

Poisson regression 96	Number of obs	=
11022.00	Wald chi2(2)	=
0.0000	Prob > chi2	=
Log pseudolikelihood = -2398.292 0.9823	Pseudo R2	=

property2018 Interval]			z	P> z	[95% Conf.
propertygrowth .461189	504605	.4927611	-1.02	0.306	-1.470399
<pre>lnproperty2017 1.017801</pre>	.997609	.0103021	96.84	0.000	.9774172
_cons	1176997	.0754387	-1.56	0.119	2655569

. loocv poisson property2018 propertygrowth lnproperty2017, robust

Leave-One-Out Cross-Validation Results

Method		Value
	-+	
Root Mean Squared Errors	1	468.80571
Mean Absolute Errors		134.02932
Pseudo-R2	1	.97684202

- . estimates store modelt3
- . esttab modelt* using "modelt.ttf" , se(3) replace
 (output written to modelt.ttf)
- . correlate property2018 propertygrowth lnproperty2017
 (obs=96)

```
| pro~2018 proper~h lnprop~7
property2018 | 1.0000
propertygr~h | 0.0382 1.0000
Inprope~2017 | 0.6455 0.1144 1.0000
. * 3.2.2 Multicollinearity on the models
. correlate property2017 lnpop2017 popgrowth shareyoung shareold
unemployment sharepoverty lessthanhs bachelorup
(obs=96)
           | pro~2017 lnpop2~7 popgro~h sharey~g shareold unempl~t
sharep~y lessth~s bachel~p
_____
______
property2017 | 1.0000
  lnpop2017 | 0.6383 1.0000
  popgrowth | 0.2753 0.5614 1.0000
 shareyoung | 0.0622 0.3219 0.0777 1.0000
   shareold | -0.3345 -0.5563 -0.2526 -0.4963 1.0000
unemployment | -0.0782 -0.1848 -0.2512 0.0863 -0.0468 1.0000
sharepoverty | -0.2184 -0.5184 -0.6938 0.0260 0.1813 0.4265
1.0000
 lessthanhs | -0.2814 -0.5495 -0.6068 -0.2463 0.2130 0.0719
0.6386 1.0000
 bachelorup | 0.5103 0.7198 0.6480 0.2251 -0.2502 -0.2580
```

-0.6269 -0.7673 1.0000

. reg property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty less thanhs bachelorup

Source 96	SS	df	MS	Number of obs	=
+ 11.04				F(8, 87)	=
	478275551	8	59784443.9	Prob > F	=
0.5038	471038637			-	=
+ 0.4582				Adj R-squared	=
Total 2326.9	949314188	95	9992780.92	Root MSE	=
Interval]				> t [95% Cc	
+					
lnpop2017 2267.37	1581.666	344.9898	4.58 0	.000 895.961	.3
popgrowth 35473.18	-32219.31	34057.26	-0.95 0	.347 -99911.8	31
shareyoung 7851.514	-31539.32	11917.74	-2.65 0	.010 -55227.1	.3 -
shareold 6724.83	-7048.415	6929.557	-1.02 0	.312 -20821.6	56
unemployment 220.0058	30.99466	95.09476	0.33 0	.745 -158.016	55
sharepoverty 21444.63	9578.919	5969.844	1.60 0	.112 -2286.79	92

lessthanhs 217.6576	68.07154	75.25931	0.90	0.368	-81.51449	
bachelorup 245.2806	140.2868	52.82418	2.66	0.009	35.29305	
_cons 5718.382	-15454.63	4898.474	-3.15	0.002	-25190.88	-

. vif

Variable	I	VIF	1/VIF
	-+		
bachelorup		4.07	0.245550
lessthanhs		3.30	0.303298
lnpop2017		3.12	0.320822
sharepoverty		3.02	0.331493
popgrowth		2.34	0.428202
shareold		1.93	0.517072
shareyoung		1.53	0.651540
unemployment		1.43	0.698171
	-+		
Mean VIF	1	2.59	

.

. *3.2.3 Baseline Model

. poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup, robust

Iteration 0: log pseudolikelihood = -143334.31
Iteration 1: log pseudolikelihood = -78086.38
Iteration 2: log pseudolikelihood = -20284.874

Iteration 3: log pseudolikelihood = -15549.804Iteration 4: log pseudolikelihood = -15079.904log pseudolikelihood = -15076.717 Iteration 5: Iteration 6: log pseudolikelihood = -15076.717

Poisson regression 96	Number of obs	=
768.49	Wald chi2(8)	=
0.0000	Prob > chi2	=
Log pseudolikelihood = -15076.717 0.9011	Pseudo R2	=

	1		Robust			
property2017 Interval]			Std. Err.		P> z	-
	-+-					
lnpop2017 1.614477		1.318093	.1512191	8.72	0.000	1.021709
popgrowth 31.25678	I	3.042099	14.39551	0.21	0.833	-25.17258
shareyoung 2.395501	I	-21.69349	12.29053	-1.77	0.078	-45.78247
shareold 1.692777	1	-4.202415	3.007807	-1.40	0.162	-10.09761
unemployment .0845809	1	.0147603	.0356234	0.41	0.679	0550603
sharepoverty 10.19329	1	3.259106	3.537914	0.92	0.357	-3.675078
lessthanhs	I	0096915	.0197519	-0.49	0.624	0484045

bachel .017407	orup	0328026	.0256176	-1.28	0.200	0830121	
.0078954		-3.954115	2.013414	-1.96	0.050	-7.900335 -	-
							-

. loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelorup, robust

. estimates store modelr1

•

- . $\star 3.2.4$ Tests of alternatives for each class of independent variable
- . *Share young
- . poisson property 2017 lnpop2017 popgrowth share 14to17 share 18to24 share old unemployment share poverty less thanks bachelorup, robust

```
Iteration 0: log pseudolikelihood = -174276.51
Iteration 1: log pseudolikelihood = -98162.909
Iteration 2: log pseudolikelihood = -40675.962
Iteration 3: log pseudolikelihood = -19008.199
```

Iteration 4:		log pseudoli	ikelihood =	-15197.96	1		
Iteration 5:		log pseudoli	ikelihood =	-14688.78	7		
Iteration 6:		log pseudoli	ikelihood =	-14678.96	1		
Iteration 7:		log pseudoli	ikelihood =	-14678.94	7		
Iteration 8:		log pseudoli	ikelihood =	-14678.94	7		
Poisson regre	ss	ion			Number o	of obs	=
<i>y</i> •					Wald chi	2(9)	=
653.97					Wara on	-2 (3)	
0.0000					Prob > c	chi2	=
Log pseudolik	-01	ihood146	678 017		Pseudo F	2	=
0.9037	ret	11100a146	370.947		rseudo r	\ Z	_
			D 1				
	1	Q F	Robust	_	D> 1 - 1	1050 0	£
property2017 Interval]	l	Coei.	Sta. Err.	Z	P> Z	[95% C	oni.
	+-						
1npop2017 1.650378		1.335356	.1607283	8.31	0.000	1.0203	334
popgrowth 33.27829	I	5.546575	14.1491	0.39	0.695	-22.185	514
share14to17 2.907312	I	-43.5058	20.71389	-2.10	0.036	-84.104	29 -
share18to24 .158328		-18.51355	9.526645	-1.94	0.052	-37.185	543
shareold		-5.65906	3.053151	-1.85	0.064	-11.643	313
unemployment .0696827		.0031606	.0339404	0.09	0.926	06336	514

sharepoverty 8.252347	1.521039	3.434404	0.44	0.658	-5.210269
lessthanhs .0294936	0097676	.0200316	-0.49	0.626	0490287
bachelorup .0084473	0444096	.0269683	-1.65	0.100	0972666
_cons 1.748104	-2.326547	2.078942	-1.12	0.263	-6.401197

. loocv poisson property 2017 lnpop2017 popgrowth share 14to17 share 18to24 shareold unemployment share poverty less thanhs bachelorup, robust

Leave-One-Out Cross-Validation Results

Method	'	Value
	-+	
Root Mean Squared Errors		2446.4285
Mean Absolute Errors	1	686.0418
Pseudo-R2	I	.46033037

- . estimates store modelr2
- . test share18to24 share14to17
 - (1) [property2017]share18to24 = 0
 - (2) [property2017]share14to17 = 0

$$chi2(2) = 5.88$$

Wald chi2(9)

Prob > chi2

Pseudo R2

```
Prob > chi2 = 0.0528
. test share18to24 == share14to17
 (1) - [property2017]share14to17 + [property2017]share18to24 = 0
          chi2(1) =
                         1.68
        Prob > chi2 = 0.1947
. *Share old
. poisson property2017 lnpop2017 popgrowth shareyoung share65to84
share85up unemployment sharepoverty lessthanhs bachelorup, robust
Iteration 0:
              log pseudolikelihood = -146695.75
Iteration 1:
              log pseudolikelihood = -92534.7
Iteration 2:
              log pseudolikelihood = -20914.174
Iteration 3:
              log pseudolikelihood = -15735.393
Iteration 4:
              log pseudolikelihood = -15080.952
Iteration 5:
              \log pseudolikelihood = -15075.861
Iteration 6:
              log pseudolikelihood = -15075.86
Poisson regression
                                               Number of obs
96
```

1282.20

0.0000

0.9011

Log pseudolikelihood = -15075.86

	1		Robust			
property2017 Interval]			Std. Err.	Z		
	-+-					
lnpop2017 1.595831	I	1.317202	.1421603	9.27	0.000	1.038573
popgrowth 37.9786	1	2.834533	17.93098	0.16	0.874	-32.30954
shareyoung 2.229386	I	-21.68312	12.20048	-1.78	0.076	-45.59563
share65to84 12.57633	1	-3.912239	8.41269	-0.47	0.642	-20.40081
share85up 140.1891	1	-6.695603	74.94257	-0.09	0.929	-153.5803
unemployment .0758707	I	.0143257	.0314011	0.46	0.648	0472192
sharepoverty 8.721841	I	3.321191	2.755484	1.21	0.228	-2.079459
lessthanhs.0265462	I	009519	.018401	-0.52	0.605	0455842
bachelorup .0130319	I	0323893	.0231745	-1.40	0.162	0778104
_cons	1	-3.965883	1.974348	-2.01	0.045	-7.835534 -

[.] loocv poisson property2017 lnpop2017 popgrowth shareyoung share65to84 share85up unemployment sharepoverty lessthanhs bachelorup, robust

- . estimates store modelr3
- . test share65to84 share85up
 - (1) [property2017]share65to84 = 0
 - (2) [property2017]share85up = 0

$$chi2(2) = 2.10$$

Prob > $chi2 = 0.3506$

- . test share65to84 == share85up
 - (1) [property2017]share65to84 [property2017]share85up = 0

$$chi2(1) = 0.00$$

Prob > $chi2 = 0.9700$

*Chara Darrant

- . *Share Poverty
- . poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor lessthanhs bachelorup, robust

Iteration 0: log pseudolikelihood = -143828.02

Iteration 1:	log pseudolil	kelihood = -8	30706.74	5		
Iteration 2:	log pseudolil	kelihood = -2	20900.26	4		
Iteration 3:	log pseudolil	kelihood = -1	15642.05	6		
Iteration 4:	log pseudolil	kelihood = -1	14970.32	1		
Iteration 5:	log pseudolil	kelihood = -1	L4967.70	1		
Iteration 6:	log pseudolil	kelihood = -1	L4967.70	1		
Poisson regres	sion			Number c		=
892.94				Wald chi	.2 (9)	=
0.0000				Prob > c	chi2	=
Log pseudolike	lihood = -149	67.701		Pseudo R	R2	=
0.9018						
	I	Robust				
property2017 Interval]		Std. Err.				
	+					
lnpop2017 1.598395	1.31094	.1466636	8.94	0.000	1.02	2101
			0.31	0.000	1.02	3404
	.3918336	15.79644				
popgrowth 31.3523	.3918336		0.02	0.980	-30.5	6863
popgrowth 31.3523 shareyoung 2.067792		11.62021	0.02	0.980	-30.5 -43.	6863 4826
popgrowth 31.3523 shareyoung 2.067792 shareold	-20.70741 -4.151512	11.62021	0.02	0.980 0.075 0.152	-30.5 -43. -9.83	6863 4826 7925

shareverypoor 12.3133		.5807046	5.986128	0.10	0.923	-11.15189
lessthanhs .0307863		0195076	.0256606	-0.76	0.447	0698015
bachelorup .0173246		0331551	.0257554	-1.29	0.198	0836348
_cons		-3.855985	2.0274	-1.90	0.057	-7.829616

. loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor lessthanhs bachelorup, robust

Leave-One-Out Cross-Validation Results

Method	1	Value
Root Mean Squared Errors	·	
Mean Absolute Errors	' 	660.71552
Pseudo-R2		.47995984

- . estimates store modelr4
- . test sharepoor shareverypoor
 - (1) [property2017]sharepoor = 0
 - (2) [property2017]shareverypoor = 0

$$chi2(2) = 3.54$$

```
Prob > chi2 = 0.1705
```

. test sharepoor == shareverypoor

(1) [property2017]sharepoor - [property2017]shareverypoor = 0

$$chi2(1) = 0.70$$

$$Prob > chi2 = 0.4033$$

.

- . *Bachelorup
- . poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty lessthanhs bachelor graduate, robust

```
Iteration 0: \log pseudolikelihood = -142105.03
```

Iteration 3:
$$\log pseudolikelihood = -15375.271$$

Iteration 5:
$$\log pseudolikelihood = -14915.859$$

Iteration 7: log pseudolikelihood = -14915.857

Poisson	regression	Number	of obs	=
0.0				

96

$$Wald chi2(9) =$$

839.03

0.0000

Robust property2017 Coef. Std. Err. z P> z [95 Interval]	& Conf.
property2017 Coef. Std. Err. z P> z [95 Interval]	% Conf.
Interval]	% Conf.
lnpop2017 1.344068 .162523 8.27 0.000 1.0 1.662607	25529
popgrowth 2.554159 15.28801 0.17 0.867 -27. 32.51811	40979
shareyoung -20.73579 11.08906 -1.87 0.061 -42.	46995
shareold -4.325531 2.902743 -1.49 0.136 -10 1.36374	.0148
unemployment .0112243 .0329624 0.34 0.73305 .0758295	33808
sharepoverty 2.241477 3.957434 0.57 0.571 -5. 9.997905	51495
lessthanhs 0110515 .0208173 -0.53 0.59605 .0297498	18527
bachelor 0641927 .060353 -1.06 0.28818 .0540969	24823
graduatedegree .0006243 .0599576 0.01 0.99211 .118139	68904
_cons -3.96875 1.93969 -2.05 0.041 -7.71670274	70473

Leave-One-Out Cross-Validation Results

[.] loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty less thanhs bachelor graduate, robust

Method	1	Value
	-+	
Root Mean Squared Errors	1	2672.6932
Mean Absolute Errors	1	719.37666
Pseudo-R2	1	.3819513

- . estimates store modelr5
- . test bachelor graduate
 - (1) [property2017]bachelor = 0
 - (2) [property2017]graduatedegree = 0

$$chi2(2) = 1.91$$

Prob > $chi2 = 0.3843$

- . test bachelor == graduate
 - (1) [property2017]bachelor [property2017]graduatedegree = 0

$$chi2(1) = 0.35$$

Prob > $chi2 = 0.5533$

- . *LessthanHS
- . poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty highschool somecollege associate bachelorup, robust

Iteration 0: log pseudolikelihood = -153878.96

```
Iteration 1:
          log pseudolikelihood = -62197.721
Iteration 2:
          log pseudolikelihood = -35894.062
Iteration 3:
           log pseudolikelihood = -15559.837
Iteration 4:
           log pseudolikelihood = -14730.331
Iteration 5:
          log pseudolikelihood = -14720.35
Iteration 6:
          log pseudolikelihood = -14720.347
Iteration 7: log pseudolikelihood = -14720.347
                                   Number of obs =
Poisson regression
96
                                   Wald chi2(10)
1141.62
                                   Prob > chi2
0.0000
Log pseudolikelihood = -14720.347
                            Pseudo R2
0.9034
______
_____
                    Robust
         property2017 | Coef. Std. Err. z P>|z| [95% Conf.
Interval
-----
  Inpop2017 | 1.292286 .1386717 9.32 0.000 1.020494
1.564077
  popgrowth | .1665319 14.54772 0.01 0.991 -28.34648
28.67955
 1.58786
   shareold | -4.09294 2.953005 -1.39 0.166
                                         -9.880723
1.694842
unemployment | -.0061053 .0522392 -0.12 0.907 -.1084923
.0962817
```

sharepoverty 11.53611	4.34683	3.668067	1.19	0.236	-2.842448
highschool .0452056	0179484	.032222	-0.56	0.578	0811024
somecollege .1183731	.0322355	.0439486	0.73	0.463	0539021
associate .132486	.026788	.0539285	0.50	0.619	07891
bachelorup .0174249	030935	.0246739	-1.25	0.210	0792948
_cons 1.47183	-4.013571	2.798726	-1.43	0.152	-9.498973

. loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty highschool somecollege associate bachelorup,

Leave-One-Out Cross-Validation Results

Method	1	Value
	-+	
Root Mean Squared Errors	1	2644.2267
Mean Absolute Errors	1	715.13287
Pseudo-R2		.43527218

. estimate store modelr6

robust

. test somecollege highschool associate

```
[property2017] somecollege = 0
 (1)
 (2)
      [property2017]highschool = 0
 (3)
      [property2017]associate = 0
           chi2(3) =
                          0.84
         Prob > chi2 = 0.8404
. esttab modelr* using "modelr.ttf" , se(3) replace
(output written to modelr.ttf)
. *3.2.5 Estimate the best model
. poisson property2017 lnpop2017 popgrowth shareyoung shareold
unemployment sharepoverty less thanhs bachelorup, robust
Iteration 0:
               log pseudolikelihood = -143334.31
Iteration 1:
               log pseudolikelihood = -78086.38
Iteration 2:
               log pseudolikelihood = -20284.874
Iteration 3:
               log pseudolikelihood = -15549.804
Iteration 4:
               log pseudolikelihood = -15079.904
               log pseudolikelihood = -15076.717
Iteration 5:
Iteration 6:
               log pseudolikelihood = -15076.717
Poisson regression
                                                Number of obs
96
                                                Wald chi2(8)
768.49
                                                Prob > chi2
0.0000
Log pseudolikelihood = -15076.717
                                                Pseudo R2
0.9011
```

			Robust			
Interval]			Std. Err.			[95% Conf.
	+-					
lnpop2017 1.614477		1.318093	.1512191	8.72	0.000	1.021709
popgrowth 31.25678	I	3.042099	14.39551	0.21	0.833	-25.17258
shareyoung 2.395501		-21.69349	12.29053	-1.77	0.078	-45.78247
shareold 1.692777		-4.202415	3.007807	-1.40	0.162	-10.09761
unemployment .0845809	I	.0147603	.0356234	0.41	0.679	0550603
sharepoverty 10.19329		3.259106	3.537914	0.92	0.357	-3.675078
lessthanhs		0096915	.0197519	-0.49	0.624	0484045
bachelorup .017407		0328026	.0256176	-1.28	0.200	0830121
_cons .0078954	l	-3.954115	2.013414	-1.96	0.050	-7.900335 -
		·	_			_

. loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoverty less thanhs bachelorup, robust

Leave-One-Out Cross-Validation Results

Method	·		
Root Mean Squared Errors			
Mean Absolute Errors	660.07151		
Pseudo-R2	.47521604		
. estimates store modelz	z1		
. poisson property2017 lunemployment sharepoor sh		reyoung shareold	
Iteration 0: log pseudo	dolikelihood = -55584.83	32	
Iteration 1: log pseudo	dolikelihood = -19654.24	17	
Iteration 2: log pseudo	dolikelihood = -16015.93	39	
Iteration 3: log pseudo	dolikelihood = -16007.18	3 4	
Iteration 4: log pseudo	dolikelihood = -16007.18	3 4	
Poisson regression 96		Number of obs	=
50		Wald chi2(7)	=
342.79		wara chiz (7)	
0.0000		Prob > chi2	=
Log pseudolikelihood = -: 0.8950	-16007.184	Pseudo R2	=
I	Robust		
property2017 Coe: Interval]	ef. Std. Err. z	P> z [95%	Conf.

	+-					
	'					
lnpop2017 1.286109		1.033365	.1289532	8.01	0.000	.7806215
popgrowth 31.54935		6.721811	12.66734	0.53	0.596	-18.10572
shareyoung 5038996		-18.3381	9.09925	-2.02	0.044	-36.1723
shareold.9500728		-7.854712	4.49232	-1.75	0.080	-16.6595
unemployment .0651327		.0012247	.0326068	0.04	0.970	0626834
sharepoor 14.37681		8.274812	3.113321	2.66	0.008	2.172815
shareverypoor 11.63139		.5404179	5.658764	0.10	0.924	-10.55056
_cons 3.964264		-1.811402	2.946822	-0.61	0.539	-7.587068

[.] loocv poisson property2017 lnpop2017 popgrowth shareyoung shareold unemployment sharepoor shareverypoor, robust

I.eave-One-Out	Cross-Validation	Regults
Heave One Out	CIUSS VALIUACIUII	Mesarres

Method		Value
	-+	
Root Mean Squared Errors	1	2302.1008
Mean Absolute Errors	1	655.54489
Pseudo-R2	1	.51036593

. estimate store modelz2

•	

. poisson property 2017 lnpop2017 shareyoung shareold sharepoor sharevery poor, robust $\,$

Iteration	0:	log	pseudolikelihood	=	-53743.698
Iteration	1:	log	pseudolikelihood	=	-19403.733
Iteration	2:	log	pseudolikelihood	=	-16060.876
Iteration	3:	log	pseudolikelihood	=	-16056.429
Iteration	4:	log	pseudolikelihood	=	-16056.429

Poisson regression 96	Number of obs	=
245.20	Wald chi2(5)	=
0.0000	Prob > chi2	=
Log pseudolikelihood = -16056.429 0.8946	Pseudo R2	=

			Robust			
property2017 Interval]		Coef.	Std. Err.	Z	P> z	[95% Conf.
lnpop2017 1.284286		1.032816	.128303	8.05	0.000	.7813473
shareyoung 6529691		-18.61604	9.165002	-2.03	0.042	-36.57912
shareold .4378849		-8.464714	4.542226	-1.86	0.062	-17.36731

sh 13.472	narepoor 259	7.834224	2.876769	2.72	0.006	2.195859
sharev 8.9428	verypoor 888	3185715	4.725321	-0.07	0.946	-9.580031
4.0063	_cons 808	-1.495766	2.807232	-0.53	0.594	-6.997841

. loocv poisson property 2017 lnpop2017 shareyoung shareold sharepoor sharevery poor, robust

Leave-One-Out Cross-Validation Results

Method		Value
	-+	
Root Mean Squared Errors	1	2241.3931
Mean Absolute Errors	1	630.28129
Pseudo-R2	1	.53406812

. estimate store modelz3

.

. poisson property2017 lnpop2017 shareyoung shareold sharepoor, robust

Iteration 0: log pseudolikelihood = -45379.605
Iteration 1: log pseudolikelihood = -18085.355
Iteration 2: log pseudolikelihood = -16058.999
Iteration 3: log pseudolikelihood = -16058.109
Iteration 4: log pseudolikelihood = -16058.109

Poisson regre	essi	ion			Number	of obs	=
224.03					Wald ch	i2(4)	=
224.03					Prob >	chi2	=
0.0000							
Log pseudolik 0.8946	kel:	ihood = -160)58.109		Pseudo	R2	=
	1		Robust				
property2017 Interval]							onf.
	-+						
lnpop2017 1.285296	1	1.032805	.1288242	8.02	0.000	.780314	13
shareyoung .1604101	1	-18.71198	9.628945	-1.94	0.052	-37.5843	36
shareold 1.083964		-8.499526	4.889626	-1.74	0.082	-18.0830	02
sharepoor 13.33966		7.658722	2.89849	2.64	0.008	1.97778	37
_cons 4.280454		-1.484192	2.9412	-0.50	0.614	-7.24883	37

[.] loocv poisson property 2017 lnpop2017 shareyoung shareold sharepoor, robust

Method					
Root Mean Squa					
Mean Absolute	Errors	1	604.26688		
Pseudo-R2			.57891546		
. estimate sto	ore modelz4				
 poisson prop sharepoverty, 	_	npop	02017 share14to	17 share18to24 shareold	
Iteration 0:	log pseudo	olik	xelihood = -707	42.098	
Iteration 1:	log pseudo	olik	elihood = -294	05.873	
Iteration 2:	log pseudo	olik	selihood = -164	82.542	
Iteration 3:	log pseudo	olik	xelihood = -16	427.46	
Iteration 4:	log pseudo	olik	selihood = -164	27.438	
Iteration 5:	log pseudo	olik	xelihood = −164	27.438	
Poisson regres	ssion			Number of obs	=
311.30				Wald chi2(5)	=
0.0000				Prob > chi2	=
Log pseudolike 0.8922	elihood = -1	1642	27.438	Pseudo R2	=

			Robust			
property2017 Interval]	1	Coef.	Std. Err.	Z	P> z	[95% Conf.
	-+-					
lnpop2017 1.212249	1	1.037193	.0893157	11.61	0.000	.8621376
share14to17 20.37992		-16.4947	18.81393	-0.88	0.381	-53.36933
share18to24 1.059558		-20.63601	11.06937	-1.86	0.062	-42.33158
shareold	1	-8.411884	4.209881	-2.00	0.046	-16.6631 -
sharepoverty 7.998627		4.386931	1.842736	2.38	0.017	.7752346
_cons 3.134587	1	-1.523153	2.376442	-0.64	0.522	-6.180893

[.] loocv poisson property 2017 lnpop2017 share14to17 share18to24 shareold share poverty, robust

Leave-One-Out Cross-Validation Results					
Method		Value			
Root Mean Squared Errors					
Mean Absolute Errors		674.73108			
Pseudo-R2	1	.44270051			

. estimate store modelz5

```
. esttab modelz* using "modelz.rtf" , se(3) replace
file modelz.rtf is read-only; cannot be modified or erased
r(608);
end of do-file
r(608);
. do "C:\Users\luizg\AppData\Local\Temp\STD5764 000000.tmp"
. esttab modelz* using "modelz.rtf" , se(3) replace
(output written to modelz.rtf)
. *3.3 Prediction using past crime and other correlates
. poisson property2018 propertygrowth lnproperty2017, robust
Iteration 0: \log pseudolikelihood = -5557.0807
Iteration 1:
             \log pseudolikelihood = -2421.9652
Iteration 2: log pseudolikelihood = -2398.3012
Iteration 3: log pseudolikelihood = -2398.292
Iteration 4: log pseudolikelihood = -2398.292
Poisson regression
                                                Number of obs
96
                                                Wald chi2(2)
11022.00
                                                Prob > chi2
0.0000
```

Log pseudolikelihood = -2398.2920.9823

Pseudo R2 =

			Robust			
property2018 Interval]		Coef.	Std. Err.	z	P> z	[95% Conf.
	-+-					
propertygrowth .461189		504605	.4927611	-1.02	0.306	-1.470399
<pre>lnproperty2017 1.017801</pre>		.997609	.0103021	96.84	0.000	.9774172
_cons	1	1176997	.0754387	-1.56	0.119	2655569

. loocv poisson property2018 propertygrowth lnproperty2017, robust

Leave-One-Out Cross-Validation Results

Method	I	Value
	-+	
Root Mean Squared Errors		468.80571
Mean Absolute Errors		134.02932
Pseudo-R2		.97684202

. estimates store modelt1

. estat ic

- 1 ' 1 F		4.4		_ '		
Akaike's	intormation	criterion	and	Bavesian	information	criterion
IIII CATILO D	TITEOTIMOCTOIL	CTTCCTTCII	arra	DayCoran	TITEOTIMOCTOIL	OTTCCTTCII

BIC	Model		ll(null)	, ,	df	AIC
4804	modelt1 .705	95	-134674.3	-2395.522	3	4797.043
Note: BIC uses N = number of observations. See [R] BIC note.						

Note: BIC uses N = number of observations. See [R] BIC note.

. poisson property2018 propertygrowth lnproperty2017 sharepoverty, robust

Iteration 0: log pseudolikelihood = -10494.028 Iteration 1: log pseudolikelihood = -2465.4931 Iteration 2: log pseudolikelihood = -2398.2678 Iteration 3: log pseudolikelihood = -2398.2328 Iteration 4: log pseudolikelihood = -2398.2328

Poisson regression 96	Number of obs	=
11148.72	Wald chi2(3)	=
0.0000	Prob > chi2	=
Log pseudolikelihood = -2398.2328 0.9823	Pseudo R2	=

			Robust			
property2018 Interval]		Coef.	Std. Err.	Z	P> z	[95% Conf.
	+-					
propertygrowth .4328372		4928042	.4722747	-1.04	0.297	-1.418446
<pre>lnproperty2017 1.018257</pre>		.9978134	.0104307	95.66	0.000	.9773696
sharepoverty .6406202		.0233358	.3149468	0.07	0.941	5939487
_cons		1229764	.1026292	-1.20	0.231	3241259

. loocv poisson property2018 propertygrowth lnproperty2017 sharepoverty, robust

Leave-One-Out Cross-Validation Results						
Method	· -+·	Value				
Root Mean Squared Errors		475.7622				
Mean Absolute Errors	1	137.38873				
Pseudo-R2	1	.97635575				

. estimates store modelt2

. estat ic

7 150 1 150 1 0	information	aritarian	っっつ	Darrogian	information	aritarian
AKAIKE S	IIIIOIIIIatioii	CTTCETTOIL	anu	Davestall	TIITOTIIIattoii	CTTCETTOIL

	Model	N	ll(null)	ll(model)	df	AIC
BIC						
r	modelt2	95	-134674.3	-2395.463	4	4798.926
4809.1	L41					

Note: BIC uses N = number of observations. See [R] BIC note.

•

. poisson property 2018 property growth lnproperty 2017 sharepoor sharevery poor, robust

Iteration 0: log pseudolikelihood = -11477.822
Iteration 1: log pseudolikelihood = -2396.1447
Iteration 2: log pseudolikelihood = -2308.1802
Iteration 3: log pseudolikelihood = -2308.1299
Iteration 4: log pseudolikelihood = -2308.1299

Log pseudolikelihood = -2308.12990.9830

Pseudo R2 =

I		Robust					
property2018 Interval]					[95% Conf.		
propertygrowth .4738798	3604423	.4256824	-0.85	0.397	-1.194764		
<pre>lnproperty2017 1.014427</pre>	.9952104	.0098045	101.51	0.000	.975994		
sharepoor 5.053074	2.1292	1.4918	1.43	0.154	7946736		
shareverypoor 1.077461	-2.338646	1.742944	-1.34	0.180	-5.754753		
_cons .0586094	1199882	.0911229	-1.32	0.188	2985857		

[.] loocv poisson property2018 propertygrowth lnproperty2017 sharepoor shareverypoor, robust

Leave-One-Out Cross-Validation Results

		Value
Root Mean Squared Errors		449.35266
Mean Absolute Errors	1	129.51924
Pseudo-R2	1	.97893602

```
. estimates store modelt3
```

. estat ic

Akaike's information criterion and Bayesian information criterion

Model | N ll(null) ll(model) df AIC

BIC

modelt3 | 95 -134674.3 -2305.249 5 4620.497

4633.267

Note: BIC uses N = number of observations. See [R] BIC note.

. poisson property2018 propertygrowth lnproperty2017 sharepoor shareverypoor shareyoung, robust

Iteration 0: $\log pseudolikelihood = -18254.648$

Iteration 1: log pseudolikelihood = -2701.798

Iteration 2: log pseudolikelihood = -2290.7979

Iteration 3: log pseudolikelihood = -2288.7326

Iteration 4: log pseudolikelihood = -2288.7326

Poisson regression

Number of obs =

9116.47				Wald chi2	(5) =
	Prob > ch	i2 =			
0.0000					
Log pseudolikelih 0.9831	nood = -2288	.7326		Pseudo R2	=
1		Robust			
property2018 Interval]					
propertygrowth .2492891	5020992	.3833684	-1.31	0.190	-1.253488
<pre>lnproperty2017 1.016653</pre>	.9954931	.0107959	92.21	0.000	.9743336
sharepoor 5.137657	2.302194	1.446691	1.59	0.112	5332676
shareverypoor .6530185	-2.630776	1.675436	-1.57	0.116	-5.914571
shareyoung 2.842128	1.284683	.7946298	1.62	0.106	272763
_cons 0585637	3091024	.1278282	-2.42	0.016	5596412

. loocv poisson property 2018 property growth lnproperty 2017 sharepoor sharevery poor shareyoung, robust

Leave-One-Out Cross-Validation Results

Method		Value
	-+	
Root Mean Squared Errors		505.79555
Mean Absolute Errors	1	136.32802
Pseudo-R2		.97625669

- . estimates store modelt4
- . estat ic

Akaike's information criterion and Bayesian information criterion

BIC	Model	N	ll(null)	ll(model)	df	AIC
n	 nodelt4 386	95	-134674.3	-2285.781	6	4583.563

Note: BIC uses N = number of observations. See [R] BIC note.

- . esttab modelt* using "modelt.rtf" , se(3) replace
 (output written to modelt.rtf)
- . *3.4 Predictions for 2018
- . gen lnproperty2018 = ln(property2018)

```
. gen CrimeRate = (lnproperty2018-lnproperty2012)/6
. gen property2019=exp(-
0.364423*propertygrowth+0.9952104*lnproperty2018+2.1292*sharepoor-
2.338646*shareverypoor-0.1199882)
. list county property2019 (3), compress
3 invalid name
r(198);
end of do-file
r(198);
. do "C:\Users\luizg\AppData\Local\Temp\STD5764 000000.tmp"
. list county property2019, compress
    +----+
    county pro~2019 |
    |-----|
 1. | Baldwin 493.0656 |
 2. | Banks 344.8884 |
 3. | Ben Hill 159.2014 |
 4. | Berrien 197.3487 |
 5. | Bleckley 92.02151 |
    |-----|
 6. | Brooks 125.4411 |
 7. | Bryan 291.8895 |
```

8.		Bulloch	439.9952
9.		Butts	289.4147
10.		Charlton	103.44
	-		
11.		Chattooga	81.77737
12.		Cherokee	1174.619
13.		Clay	10.23722
14.		Clayton	7472.627
15.		Clinch	40.65041
	-		
16.		Cobb	8181.151
17.		Coffee	435.7638
18.		Columbia	1589.328
19.		Cook	119.8019
20.		Coweta	901.6461
	-		
21.		Crawford	181.4027
22.		Crisp	399.5795
23.		Dawson	394.2889
24.		Decatur	191.386
25.		DeKalb	19157.35
	-		
26.		Dodge	173.2219
27.		Dooly	81.68842
28.		Dougherty	368.4775
29.		Early	95.41566
30.		Echols	46.39896
	-		
31.		Effingham	296.6019
32.		Elbert	258.4436

33.	Emanuel	209.9395
34.	Evans	32.68354
35.	Fannin	187.0679
36.	Fayette	456.6325
37.	Fulton	1285.335
38.	Gilmer	386.3245
39.	Glynn	1506.552
40.	Grady	166.4527
41.	Greene	104.7981
42.	Gwinnett	12713.54
43.	Habersham	316.316
44.	Hall	1445.785
45.	Hancock	91.26628
46.		3129.087
46.		3129.087
46.	Henry	3129.087
46. 47.	Henry Houston Irwin	3129.087 820.4178 93.40747
46. 47. 48.	Henry Houston Irwin	3129.087 820.4178 93.40747
46. 47. 48.	Henry Houston Irwin Jasper Jeff Davis	3129.087 820.4178 93.40747 152.3876
46. 47. 48. 49.	Henry Houston Irwin Jasper Jeff Davis	3129.087 820.4178 93.40747 152.3876 93.18154
46. 47. 48. 49.	Henry Houston Irwin Jasper Jeff Davis Jefferson	3129.087 820.4178 93.40747 152.3876 93.18154
46. 47. 48. 49. 50.	Henry Houston Irwin Jasper Jeff Davis Jefferson Jones	3129.087 820.4178 93.40747 152.3876 93.18154 75.20541
46. 47. 48. 49. 50.	Henry Houston Irwin Jasper Jeff Davis Jefferson Jones Lamar	3129.087 820.4178 93.40747 152.3876 93.18154 75.20541 225.8053
46. 47. 48. 49. 50. 51. 52. 53.	Henry Houston Irwin Jasper Jeff Davis Jefferson Jones Lamar	3129.087 820.4178 93.40747 152.3876 93.18154 75.20541 225.8053 99.58595 129.8812
46. 47. 48. 49. 50. 51. 52. 53.	Henry Houston Irwin Jasper Jeff Davis Jefferson Jones Lamar Lanier Laurens	3129.087 820.4178 93.40747 152.3876 93.18154 75.20541 225.8053 99.58595 129.8812
46. 47. 48. 49. 50. 51. 52. 53.	Henry Houston Irwin Jasper Jeff Davis Jefferson Jones Lamar Lanier Laurens Laurens	3129.087 820.4178 93.40747 152.3876 93.18154 75.20541 225.8053 99.58595 129.8812 452.0814
46. 47. 48. 49. 50. 51. 52. 53. 54. 55.	Henry Houston Irwin Jasper Jeff Davis Jefferson Jones Lamar Lanier Laurens Laurens	3129.087 820.4178 93.40747 152.3876 93.18154 75.20541 225.8053 99.58595 129.8812 452.0814 466.0869

58.		Long	143.9327
59.		Madison	365.3856
60.	١	Mitchell	229.7884
	١		
61.	I	Monroe	274.5731
62.	١	Newton	1382.42
63.		Oconee	400.3466
64.		Oglethorpe	172.1628
65.		Paulding	1759.773
66.		Peach	201.4963
67.		Pickens	371.4142
68.	I	Pierce	237.222
69.		Pike	178.0229
70.	I	Polk	506.5225
71.		Pulaski	197.3949
72.		Rabun	190.5708
73.		Rockdale	1120.019
74.		Schley	9.490532
75.	I	Seminole	53.3412
76.		Spalding	748.7526
77.		Stephens	242.0559
78.		Sumter	172.5431
79.		Talbot	40.73468
80.	I	Taylor	41.41781
	I		
81.		Thomas	427.7515
82.	I	Towns	123.9782

```
83. | Treutlen 40.05066 |
84. | Troup 569.7014 |
85. | Twiggs 92.75941 |
 |-----|
86. | Union 197.3873 |
87. | Upson 265.1551 |
88. | Walton 519.6805 |
89. | Ware 529.1973 |
90. | Warren 27.24125 |
 |-----|
91. | Wayne 628.5408 |
92. | Webster 1.182196 |
93. | White 122.7599 |
94. | Whitfield 1368.869 |
95. | Wilkes 18.5601 |
  |-----|
96. | Wilkinson 34.49257 |
   +----+
. STOP
command STOP is unrecognized
r(199);
end of do-file
r(199);
```

•