Application of Archimedes's Principle

Determine if the crown is made of pure gold by finding the density of it.

Application of Archimedes's Principle

Determine if the crown is made of pure gold by finding the density of it.

$$\rho_{crown} = \frac{m_c}{V_c} = \frac{F_g / g}{V_c}$$

$$F_b = \rho_{water} g V_{disp}$$

$$F_b = \rho_{water} g V_{disp}$$
 $V_{disp} = V_c = \frac{F_b}{\rho_{water} g}$

$$F_b = T_1 - T_2$$

Fluid Dynamics

Ideal fluid flow

- 1. nonviscous -- internal friction is neglected
- 2. steady -- all particles passing through a point have the same velocity.
- **3. incompressible** -- the density is constant.
- 4. irrotational -- no angular momentum

At each point along its path, the particle's velocity is tangent to the streamline.

Fluid Dynamics -- Continuity

$$m_{1} = \rho A_{1} \Delta x_{1} = \rho A_{1} v_{1} \Delta t$$

$$m_{2} = \rho A_{2} \Delta x_{2} = \rho A_{2} v_{2} \Delta t$$

$$m_{1} = m_{2} \qquad A_{1} \Delta x_{1} = A_{2} \Delta x_{2} = V$$

$$A_{1} v_{1} = A_{2} v_{2} = \text{constant} \quad \leftarrow \quad Continuity$$

Watering a Garden

A gardener uses a water hose 2.50 cm in diameter to fill a 30.0-L bucket. The gardener notes that it takes 1.00 min to fill the bucket.

A nozzle with an opening of cross-sectional area 0.500 cm² is then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

Watering a Garden

$$m_1 = \rho A_1 \Delta x_1 = \rho A_1 v_1 \Delta t = m_2 = \rho A_2 v_2 \Delta t$$

 $A_1 v_1 = A_2 v_2 = \text{constant} \leftarrow Continuity$

A gardener uses a water hose 2.50 cm in diameter to fill a 30.0-L bucket. The gardener notes that it takes 1.00 min to fill the bucket.

A nozzle with an opening of cross-sectional area 0.500 cm² is then attached to the hose. The nozzle is held so that water is projected horizontally from a point 1.00 m above the ground. Over what horizontal distance can the water be projected?

$$A_1 v_1 \Delta t = Volume$$

$$v_{1} = \frac{Volume}{A_{1}\Delta t} = \frac{0.03}{\pi (0.0125)^{2} \cdot 60} = 1.02 \ m/s$$

$$v_{2} = \frac{A_{1}v_{1}}{A_{2}} = \frac{\pi R_{1}^{2}}{\pi R_{2}^{2}} v_{1} = \frac{\pi (1.25)^{2}}{0.500} v_{1} = 9.82v_{1} = 10.01 \ m/s$$

Bernoulli's Equation

The relationship between

- fluid speed (KE)
- Pressure (force, work)
- and elevation (mg, U)

$$m_{1} = \rho A_{1} \Delta x_{1} = \rho A_{1} v_{1} \Delta t$$

$$m_{2} = \rho A_{2} \Delta x_{2} = \rho A_{2} v_{2} \Delta t$$

$$m_{1} = m_{2} \qquad A_{1} \Delta x_{1} = A_{2} \Delta x_{2} = V$$

$$A_{1} v_{1} = A_{2} v_{2} = \text{constant} \quad \leftarrow Continuity$$

$$W_{1} = F_{1} \Delta x_{1} = P_{1} A_{1} \Delta x_{1} = P_{1} V$$

$$W_{2} = -F_{2} \Delta x_{2} = -P_{2} A_{2} \Delta x_{2} = -P_{2} V$$

$$W_{2} = -F_{2}\Delta x_{2} = -P_{2}A_{2}\Delta x_{2} = -P_{2}V$$

$$\Delta x = v\Delta t$$
The net work during Δt is
$$W_{net} = W_{1} + W_{2} = (P_{1} - P_{2})V$$

$$\Delta K = \frac{1}{2}mv_{2}^{2} - \frac{1}{2}mv_{1}^{2} \quad \Delta U = mgy_{2} - mgy_{1}$$

$$W_{net} = \Delta K + \Delta U$$

$$(P_{1} - P_{2})V = \frac{1}{2}mv_{2}^{2} - \frac{1}{2}mv_{1}^{2} + mgy_{2} - mgy_{1}$$

$$P + \frac{1}{2}\rho v^{2} + \rho gy = \text{constant}$$

Bernoulli's Equation Applications

Venturi Tube

$$P + \frac{1}{2}\rho v^2 + \rho gy = \text{constant}$$

$$A_1v_1 = A_2v_2 = \text{constant}$$

$$v_1 = \frac{A_2 v_2}{A_1}$$

$$P_1 + \frac{1}{2}\rho \left(\frac{A_2}{A_1}v_2\right)^2 = P_2 + \frac{1}{2}\rho v_2^2$$

$$v_2 = A_1 \sqrt{\frac{2(P_1 - P_2)}{\rho(A_1^2 - A_2^2)}}$$

a

$$P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

$$P_1 - P_2 = \frac{1}{2} \rho (v_2^2 - v_1^2)$$

Bernoulli's Equation Applications

$$P + \frac{1}{2}\rho v^2 + \rho gy = \text{constant}$$

$$P_0 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P + \rho g y_2$$

$$\frac{1}{2}\rho v_1^2 = P - P_0 + \rho g y_2 - \rho g y_1$$

Applications of Fluid Dynamics

How does the wing of an airplane work?

$$P + \frac{1}{2}\rho v^2 + \rho gy = \text{constant}$$

Same for the spray gun

The air approaching from the right is deflected downward by the wing.

