

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : C08G 63/78, 63/80, 63/88		A1	(11) International Publication Number: WO 00/32673 (43) International Publication Date: 8 June 2000 (08.06.00)
(21) International Application Number: PCT/BR99/00099		(81) Designated States: BR, CA, MX, US.	
(22) International Filing Date: 25 November 1999 (25.11.99)		Published <i>With international search report.</i>	
(30) Priority Data: 98/15166 27 November 1998 (27.11.98) FR			
(71) Applicant (<i>for all designated States except US</i>): RHODIA STER S.A. [BR/BR]; Rua Antonio das Chagas, 945 – 2o. andar, Chácara Santo Antonio, CEP-04714-001 São Paulo, SP (BR).			
(72) Inventor; and			
(75) Inventor/Applicant (<i>for US only</i>): CANOVA, Thomas [BR/FR]; 8, rue des Emeraudes, F-69006 Lyon (FR).			
(74) Agents: ARNAUD, Antonio, M., P. et al.; 7th floor, Rua José Bonifácio, 93, CEP-01003-901 São Paulo, SP (BR).			

(54) Title: A PROCESS FOR MANUFACTURING POLYESTER

(57) Abstract

The present invention refers to a process for manufacturing polyester comprising at least the following steps: a) esterifying or transesterifying a carboxylic diacid or a diester of a carboxylic diacid with a diol, b) polymerizing in melt phase the esterification or transesterification product, c) solidifying and granulating, d) placing in contact the granules with a liquid swelling medium, e) post-condensing the granules in solid phase. The realization of the immersion step in a swelling medium permits increasing the kinetics of the solid phase post-condensation step.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

"A PROCESS FOR MANUFACTURING POLYESTER".

The present invention refers to the manufacturing of polyester-type polymers and refers particularly to the solid phase post-condensation steps.

5 The manufacture of polyesters is generally carried out in several steps. The first step is a step of esterification or transesterification of a carboxylic diacid or a diacid diester with a diol. This step is followed by a melt phase polymerization step. As the
10 reaction advances, the product becomes more and more viscous. Above a certain viscosity the technology used nowadays does not permit the continuation of the reaction. The viscosity limit attained in melt phase is generally around 85 ml/g (viscosity index). If
15 higher molecular weight compounds are to be obtained, it is necessary to proceed with the reaction in solid phase. This step is called a solid phase post-condensation step. It consists in proceeding with the condensation through heating in a gaseous medium or
20 under vacuum, the polymer being in the form of solid elements. This step is very slow and constitutes a limiting step in the process of manufacturing a polyester.

It is known that a limiting factor in solid phase
25 post-condensation is the diffusion of condensation by-products within the polymeric mass. To speed up the solid phase post-condensation, US Patent No. 5,391,694 discloses a process which permits the increase of the exchange surface between the solid particles and the
30 gaseous medium surrounding them by providing them with particular shapes during solidification. US Patent No. 4,755,587 teaches manufacturing porous tablets by compacting crystalline very light granulometry polymer powders. US Patent 5,532,335 teaches the improvement
35 in heat transfer within a solid phase post-

condensation medium by effecting the same in a liquid eventually pressurized medium and by increasing the post-condensation temperature.

Notwithstanding the progress reached, efforts are
5 always being made to obtain an improved performance solid phase post-condensation step. The object of the present invention is to accelerate condensation kinetics by improving the diffusion of the condensation by-products outwards from within the
10 particles. To attain this object, the present invention employs a step preceding post-condensation, consisting in dipping the solidified polymer in a swelling medium.

Therefor, the invention proposes a process for
15 manufacturing polyester comprising at least the following steps:

- a) esterifying or transesterifying a carboxylic diacid or a diester of a carboxylic diacid with a diol,
- b) polymerizing in melt phase the esterification or
20 transesterification product,
- c) solidifying and granulating,
- d) placing in contact the granules with a liquid swelling medium,
- e) post-condensing the granules in solid phase.

25 These steps constitute the essential operations necessary to carry out the process. The process may comprise others. Each of these steps may eventually be subdivided in elementary operations within several installations.

30 Polymerization step b) is in fact widely applied by industry. It consists in a condensation in the molten state of the reaction product of step a). It is in general catalyzed by a metal compound, for example, antimonium trioxide. During the advancement of the
35 reaction, the product becomes more and more viscous.

Beyond a certain viscosity, the type of technology presently employed does not permit the reaction to proceed. The limit in viscosity attained in the molten phase is generally around 85 ml/g. If higher molecular weight compounds are desired, it is necessary to proceed with a solid phase condensation.

By viscosity it is to be understood the viscosity index (VI) in ml/g measured at 25°C with the help of a Ubbelohde type viscosimeter for a 0.005 g/ml solution 10 of polymer dissolved at 115°C in a mixture comprising 50% by weight of phenol and 50% by weight of 1,2-dichlorobenzene.

During step c) the molten polymer coming from step b) is made into the form of a granular solid, for example 15 by extrusion and cooling. It is then essentially amorphous. The granules exiting this step can be used either as they are, eventually after crystallization, or can be submitted to solid phase post-condensation for applications requiring higher molecular weight 20 polymers.

The solid phase post-condensation carried out during step e) consists in heating the granules coming from step c) to temperatures comprised between the glass transition temperature of the polymer and the melt 25 temperature thereof. This condensation is accompanied by the separation of reaction products, especially of diol.

In order to speed up the post-condensation kinetics, the present invention comprises a step d) of preparing 30 the granules coming from step c). This step consists in placing in contact said granules with a liquid swelling medium. The operation makes the granules become porous, thereby reducing the diffusional path, and thus increasing their specific exchange surface. 35 The diffusion of the diol coming from post-

condensation is thus facilitated. Such a property permits speeding up the subsequent solid phase condensation step. The placing in contact may be effected by any means, for example by immersion. The 5 step may be effected either continuously or discontinuously.

As examples of liquid swelling media, the following compounds can be mentioned: methylene chloride, dioxane, nitromethane, acetone, benzene, 10 dimethylformamide, dimehtylacetamide, methanol, ethanol, chloroform, trichloroethylene, tetrachloroethylene, carbon tetrachloride, toluene, benzyl alcohol, methyl-vinyl-ketone. Acetone particularly provides very good results.

15 The above-described steps are necessary for the realization of the invention, but the process can include others, either upstream, downstream or intermediately. The process according to the invention may particularly include a step of crystallizing the 20 granules between the placing in contact and the solid phase condensation steps.

The swelling liquid medium may be used at room temperature or maximum at a temperature lower than the boiling temperature of the liquid and the melt 25 temperature of the treated polymer.

The placing in contact with the swelling medium may be applied to polymers having molecular weights advantageously higher than a molecular weight corresponding to a viscosity index around 30 ml/g. The 30 process may be applied to polymers having higher viscosity indexes, especially until viscosity indexes around 90 ml/g. It may alternatively be applied to very high viscosity index polymers, for example up to 130 ml/g, in order to manufacture very high molecular 35 weight compounds.

The carrying out of the step of placing in contact with the swelling medium provides substantial technological improvements to the process. It can thus permit reducing the number of polymerization reactors.

- 5 It can permit simplifying or eliminating the crystallization procedures usually carried out. For example, since the classic process for preparing polymers after solidification and before post-condensation consists in a passage through three units
- 10 for pre-crystallization, crystallization and crystallization-conditioning the invention can reduce the number of operations so that not more than two placing in contact steps are employed, for example through immersion, and crystallization/conditioning.
- 15 The process according to the present invention can be used to prepare polyester-type polymers. It can be applied to polyesters obtained from the following diacids: terephthalic acid, isophthalic acid, naphthalenedioic acid, and mixtures thereof, and the
- 20 following diols: ethylene glycol, propylene glycol, butane diol, neopentyl glycol, diethylene glycol, bisphenol and mixtures thereof. It can be applied particularly to the manufacture of poly(ethylene terephthalate).
- 25 Other details and advantages of the invention will become apparent from the examples given hereunder for illustrative purposes only.

Example 1

- 30 Granules of poly(ethylene terephthalate) polymer manufactured in a conventional manner, with an initial viscosity index (VI) of 73 ml/g, are dipped during 4 days in acetone, at a temperature of 20°C. They are dried at room temperature during 12 hours. They are then subjected to a solid phase post-condensation at
- 35 190°C during 20 hours under vacuum. The viscosity

index (final VI) of the obtained granules is measured.

Example 2

Granules of poly(ethylene terephthalate) polymer

manufactured in a conventional manner, with an initial

5 viscosity index (VI) of 74,7 ml/g, are dipped during 2

hours in acetone, at a temperature of 50°C. They are

dried at room temperature during 12 hours. They are

then subjected to a solid phase post-condensation at

214°C during 31 hours under vacuum. The viscosity

10 index (final VI) of the obtained granules is measured

according to the procedures previously set forth.

Comparative examples

Comparative samples are subjected to the same heat

treatment without immersion in acetone. The sample of

15 comparative example 1 is submitted to a 20-hour post-

condensation at 190°C. The sample of comparative

example 2 is submitted to a 31-hour post-condensation

at 214°C.

The results are respectively presented in tables 1 and

20 2. The efficiency of the solid phase post-condensation

can be defined by the relationship between the

differences in viscosity obtained during the post-

condensation applied during the same period of time

both for the compound having been submitted to an

25 immersion and to a compound not having been submitted

to immersion. Hence, for a compound not having been

submitted to immersion (comparative examples) the

efficiency is the reference efficiency, equal to 1.

Table 1

	Initial VI (ml/g)	Final VI (ml/g)	Difference	Efficiency
Comparative Example	73	88.3	15.3	1
Example 1	73	95.2	22.2	1.45

It appears that the invention permits attaining 45% of the solid phase post-condensation.

5 Table 2

	Initial VI (ml/g)	Final VI (ml/g)	Difference	Efficiency
Comparative Example	74.7	100.5	25.8	1
Example 2	734.7	108.9	34.2	1.33

It appears that the invention permits attaining 33% of the solid phase post-condensation.

CLAIMS

- 1 - A process for manufacturing polyester comprising the following steps:
 - a) esterifying or transesterifying a carboxylic diacid or a diester of a carboxylic diacid with a diol,
 - b) polymerizing in melt phase the esterification or transesterification product,
 - c) solidifying and granulating,
 - d) placing in contact the granules with a liquid swelling medium,
 - e) post-condensing the granules in solid phase.
- 2 - The process of claim 1, characterized by comprising a crystallization step between the steps of placing in contact with the liquid swelling medium and the solid phase post-condensation.
- 3 - The process of one of claims 1 or 2, characterized in that the liquid swelling medium is selected from methylene chloride, dioxane, nitromethane, acetone, benzene, dimethylformamide, dimehtylacetamide, methanol, ethanol, chloroform, trichloroethylene, tetrachloroethylene, carbon tetrachloride, toluene, benzyl alcohol, methyl-vinyl-ketone.
- 4 - The process of claim 3, characterized in that the liquid swelling medium is acetone.
- 5 - The process of any of claims 1 to 4, characterized in that the swelling medium is heated to a temperature under the melting point of the polymer.
- 6 - The process of any of claims 1 to 5, characterized in that the viscosity index of the compound resulting from the polymerization step is higher than 30 ml/g.
- 7 - The process of any of claims 1 to 6, characterized in that the carboxylic diacids are selected from terephthalic acid, isophthalic acid, naphthalenedioic acid and mixtures thereof.
- 8 - The process of any of claims 1 to 7, characterized

in that the diol is selected from ethylene glycol, propylene glycol, butane diol, neopentyl glycol, diethylene glycol, bisphenol and mixtures thereof.

9 - The process of any of claims 1 to 8, characterized
5 in that the polyester is poly(ethylene terephthalate).

INTERNATIONAL SEARCH REPORT

International Application No
PCT/BR 99/00099

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C08G63/78 C08G63/80 C08G63/88

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C08G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 3 390 134 A (KIBLER, CHARLES JACOB) 25 June 1968 (1968-06-25) claims 1-10 column 2, line 24 -column 3, line 49	1-4,6-8
X	CHEMICAL ABSTRACTS, vol. 89, no. 12, 18 September 1978 (1978-09-18) Columbus, Ohio, US; abstract no. 90449, XP002112011 abstract & JP 53 054295 A (TEIJIN LTD.) 17 May 1978 (1978-05-17)	1-4,6-8
X	US 5 164 478 A (LEE, CHERYLyn ET AL) 17 November 1992 (1992-11-17) claims 1-5; example column 2, line 36 -column 3, line 54	1-8
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the International search	Date of mailing of the International search report
22 February 2000	28/02/2000
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 81 651 epo nl. Fax (+31-70) 340-3016	Authorized officer Krische, D

INTERNATIONAL SEARCH REPORT

International Application No
PCT/BR 99/00099

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 744 578 A (DUH, BEN) 28 April 1998 (1998-04-28) claim 14; examples 1,3 column 3, line 60 -column 5, line 56	1,2,5-8
X	GB 1 101 900 A (THE GOODYEAR TIRE & RUBBER COMP.) 31 January 1968 (1968-01-31) the whole document	1,3,4, 6-9
X	DATABASE WPI Section Ch, Week 8011 Derwent Publications Ltd., London, GB; Class A23, AN 80-19011C XP002112015 & JP 55 013715 A (NIPPON ESTER CO LTD), 30 January 1980 (1980-01-30) abstract	1,3,4,6
Y	US 5 225 448 A (MAIER, THOMAS R. ET AL) 6 July 1993 (1993-07-06) claims 1-20; example 1 column 3, line 10 -column 4, line 47 column 6, line 67 -column 8, line 42	1-3,6-9
Y	CHEMICAL ABSTRACTS, vol. 97, no. 6, 9 August 1982 (1982-08-09) Columbus, Ohio, US; abstract no. 39561, XP002112012 abstract & AGEEV, E.P. ET AL.: VESTN. MOSK. UNIV., SER. 2: KHIM., vol. 23, no. 2, 1982, pages 75-87,	1-3,6-9
X	US 4 613 664 A (TATE, S. ET AL.) 23 September 1986 (1986-09-23) claims 1-5; example 1 column 2, line 25 -column 3, line 47	1,5-9
A	CHEMICAL ABSTRACTS, vol. 113, no. 2, 9 July 1990 (1990-07-09) Columbus, Ohio, US; abstract no. 7046, XP002112013 abstract & JP 02 038422 A (TOYOB0 CO.) 7 February 1990 (1990-02-07)	1,3,4, 6-8
A	US 4 755 587 A (RINEHART, VERNE R.) 5 July 1988 (1988-07-05) cited in the application abstract column 3, line 31 -column 7, line 34	1-9
		-/-

INTERNATIONAL SEARCH REPORT

Inte	onal Application No
PCT/BR 99/00099	

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DATABASE WPI Section Ch, Week 9132 Derwent Publications Ltd., London, GB; Class A23, AN 91-234125 XP002112016 & JP 03 152137 A (ASAHI CHEM IND CO LTD), 28 June 1991 (1991-06-28) abstract	1,7
A	CHEMICAL ABSTRACTS, vol. 91, no. 6, 6 August 1979 (1979-08-06) Columbus, Ohio, US; abstract no. 40779, XP002112014 abstract & CZECHOWSKI, WOJCIECH ET AL.: PRZEGL. WLOK., vol. 33, no. 1, 1979, pages 7-9,	1,3,9
A	US 4 080 317 A (MORAWETZ, GOTTFRIED ET AL) 21 March 1978 (1978-03-21) abstract; example 1	1,2,6-9

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internat	Application No
PCT/BR	99/00099

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 3390134 A	25-06-1968	NONE		
JP 53054295 A	17-05-1978	NONE		
US 5164478 A	17-11-1992	NONE		
US 5744578 A	28-04-1998	AU BR CN WO EP PL	5315998 A 9712591 A 1235620 A 9818847 A 0937117 A 333113 A	22-05-1998 26-10-1999 17-11-1999 07-05-1998 25-08-1999 08-11-1999
GB 1101900 A		DE FR US	1570689 A 1446811 A 3453240 A	22-01-1970 10-10-1966 01-07-1969
JP 55013715 A	30-01-1980	NONE		
US 5225448 A	06-07-1993	AU AU CA DE DE EP JP MX	661256 B 5078893 A 2104533 A 69310481 D 69310481 T 0598299 A 6206994 A 9306956 A	13-07-1995 02-06-1994 20-05-1994 12-06-1997 23-10-1997 25-05-1994 26-07-1994 31-05-1994
US 4613664 A	23-09-1986	JP JP JP JP JP JP JP JP JP EP	1808754 C 5021135 B 61293220 A 1800496 C 5011126 B 62001724 A 1755513 C 4045526 B 61157525 A 0207856 A	10-12-1993 23-03-1993 24-12-1986 12-11-1993 12-02-1993 07-01-1987 23-04-1993 27-07-1992 17-07-1986 07-01-1987
JP 2038422 A	07-02-1990	NONE		
US 4755587 A	05-07-1988	AU AU CN EP JP MX US ZA	603195 B 1374788 A 1030594 A 0284544 A 63289019 A 164141 B 4876326 A 8802087 A	08-11-1990 29-09-1988 25-01-1989 28-09-1988 25-11-1988 20-07-1992 24-10-1989 26-10-1988
JP 3152137 A	28-06-1991	NONE		
US 4080317 A	21-03-1978	AU BE CA DD DE FR	3464371 A 773707 A 972897 A 94895 A 2152245 A 2111783 A	19-04-1973 31-01-1972 12-08-1975 05-01-1973 27-04-1972 09-06-1972

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/BR 99/00099

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 4080317 A		GB 1371505 A NL 7114553 A ZA 7106801 A	23-10-1974 25-04-1972 26-07-1972