Упражнение 11

1 Коректност на контекстно-свободни граматики

Продължаваме с доказателство на коректността на к-св. граматика с две променливи.

Пример 1. Ще докажем коректността на следната граматика G, генерираща езика $L = \{a^m b^n \mid m > n\}$:

$$G: \begin{array}{|c|c|} S \to aA \\ A \to aA \mid aAb \mid \epsilon \end{array}$$

Отново, твърдението което се опитваме да докажем е следното:

$$(\forall w \in \Sigma^*)[w \in L(G) \iff w \in L].$$

Следната Лема късаеща релацията ⇒* ще ни бъде нужна.

Лема 1. За всяка дума $w \in (\Sigma \cup V)^*$, ако $S \Rightarrow^* w$, то w е в един от следните четири вида:

- (1) S;
- (2) $a^m A b^n$, за някой $m, n \in \mathbb{N}$ и m > n;
- (3) $a^m b^n$, за някой $m, n \in \mathbb{N}$ и m > n.

Доказателство: Еквивалентно, искаме да покажем, че

$$(\forall n \in \mathbb{N})[(\forall w \in (\Sigma \cup V)^*)[S \Rightarrow^n w \implies w \text{ е в някой от видовете } (1)\text{-}(3)]].$$

За целта ще проведем индукция относно n.

База: Ако n=0 и w е такава редица от терминали и нетерминали, че $S\Rightarrow^0 w$, то w=S. Следователно, w е от вид (1).

Стъпка: Ако n>0 и w е такава редица от терминали и нетерминали, че $S\Rightarrow^n w$, то съществува извод с дължина n на w от S. Да фиксираме един такъв извод

$$S = w_0 \Rightarrow w_1 \Rightarrow \dots \Rightarrow w_{n-1} \Rightarrow w_n = w.$$

От този извод можем в частност да заключим, че $S \Rightarrow^{n-1} w_{n-1}$. Съгласно И.П. това означава, че w_{n-1} е в някои от видовете (1)-(3). Веднага отхвърляме възможността w_{n-1} да е от вид (3), тъй като тя трябва да съдържа нетерминали, съгласно дефиницията на \Rightarrow . Значи имаме следните два случая:

1 сл. $w_{n-1} = S$. Тогава единствената възможност е $w_n = aA$, съгласно правилата на G. Следователно w_n е от вид (2), за m = 1.

2 сл. $w_{n-1} = a^m A b^n$, за някои $m, n \in \mathbb{N}$, такива че m > n. Тук имаме три възможности за това, кое правило ще приложим на следваща стъпка (върху единствения нетерминал в редицата, A).

2.1 сл. $w_n = a^m a A b^n$, тоест приложили сме правилото $A \to a A$. Тогава $w_n = a^{m+1} A b^n$ е очевидно от вид (2), тъй като $m > n \implies m+1 > n$.

2.2 сл. $w_n = a^m a A b b^n$, тоест приложили сме правилото $A \to a A b$. Тогава $w_n = a^{m+1} A b^{n+1}$ е очевидно от вид (2), тъй като $m > n \implies m+1 > n+1$.

2.3 сл. $w_n = a^m \epsilon b^n$, тоест приложили сме правилото $A \to \epsilon$. Тогава $w_n = a^m b^n$ е очевидно от вид (3).

С това случаите се изчерпаха и индукцията приключи. Лемата е доказана

Преминаваме към доказателството на същинското твърдение. Нека $w \in \Sigma^*$

 (\Rightarrow) Нека $w\in L(G)$. Тогава $S\Rightarrow^* w$ и $w\in \Sigma^*$. Съгласно **Лема 1**, $w=a^mb^n$, за някои $m,n\in\mathbb{N}$, такива че m>n. Следователно $w\in L$.

 (\Leftarrow) Обратно, с индукция относно m ще докажем, че

$$(\forall m \in \mathbb{N})[(\forall n \in \mathbb{N})[m > n \implies S \Rightarrow^{m+1} a^m b^n]]$$

База: m=0. Тогава със сигурност $m \not> n$. Значи импликацията е тривиално изпълнена.

Стъпка: m > 0. Нека $m = m_1 > 0$. Искаме да покажем следното:

$$(\forall n \in \mathbb{N})[m_1 > n \implies S \Rightarrow^{m_1+1} a^{m_1}b^n]$$

За целта ще проведем индукция по n.

База: n=0. Съгласно И.П. на външната индукция, $S\Rightarrow^{m_1-1+1}a^{m_1-1}b^0$. Тоест $S\Rightarrow^{m_1}a^{m_1-1}$. Следователно $aA\Rightarrow^{m_1-1}a^{m_1-1}$. От тук имаме, че $aaA\Rightarrow^{m_1-1}aa^{m_1-1}$. Тоест $aaA\Rightarrow^{m_1-1}a^{m_1}$. От друга страна $S\Rightarrow aA$ и $aA\Rightarrow aaA$. Общо имаме $S\Rightarrow^{m_1-1+2}a^m$. Тоест $S\Rightarrow^{m_1+1}a^{m_1}$.

Стъпка: n>0. Нека $m_1>n$. Тогава $m_1-1>n-1$. По И.П. на външната индукция имаме, че $S\Rightarrow^{m_1-1+1}a^{m_1-1}b^{n-1}$. Тоест $S\Rightarrow^{m-1}a^{m_1-1}b^{n-1}$. Тогава $aA\Rightarrow^{m_1-1}a^{m_1-1}b^{n-1}$. Следователно $aaAb\Rightarrow^{m_1-1}aa^{m_1-1}b^{n-1}b$. Тоест $aaAb\Rightarrow^{m_1-1}a^{m_1}b^n$. От друга страна $S\Rightarrow aA$ и $aA\Rightarrow aaAb$. Общо имаме, че $S\Rightarrow^{m_1-1+2}a^{m_1}b^n$. Тоест $S\Rightarrow^{m_1+1}a^{m_1}b^n$, което искахме да покажем.

2 Задачи

Задача 1. Докажете коректността на следната регулярна граматика, генерираща езика $\mathscr{L}(a^{\star}b)$:

$$G: \begin{array}{|c|c|} S \to aS \mid A \\ A \to b \end{array}$$

Задача 2. Докажете коректността на следната регулярна граматика, генерираща езика $L = \{w \in \{a,b\}^* \mid w \text{ има четен брой } a\text{-ra}\}$:

$$G: \begin{array}{|c|c|c|c|}\hline S \to bS \mid aA \mid \epsilon \\ A \to bA \mid aS \\ \hline \end{array}$$

Задача 3. Докажете коректността на следната граматика, генерираща езика $\mathcal{L}(aa^{\star}bb^{\star})$:

$$G: \begin{array}{|c|c|} \hline S \to AB \\ A \to aA \mid a \\ B \to bB \mid b. \\ \hline \end{array}$$

Задача 4. Докажете коректността на следната граматика, генерираща езика $L = \{a^n b^m a^k \mid n+k=m\}$:

$$G: \begin{array}{|c|c|} \hline S \to AB \\ A \to aAb \mid \epsilon \\ B \to bBa \mid \epsilon \\ \hline \end{array}$$

3 Решения

Задача 1. Възможните видове на редиците, генерирани от G са:

- (1) $a^n S$;
- (2) $a^n A$;
- (3) $a^n b$.

Задача 2. Възможните видове на редиците, генерирани от G са:

- $(1) (b^n a b^k a)^m b^l a b^s A;$
- (2) $(b^n a b^k a)^m b^l S$;

 $(3) (b^n a b^k a)^m b^l$.

Задача 3. Езикът по дефиниция е конкатенация на $\mathscr{L}(aa^*)$ и $\mathscr{L}(bb^*)$. Ако използваме конструкцията за конкатенация, е достатъчно да покажем, че граматиката $G_1: S_1 \to aS_1 \mid a$ генерира $\mathscr{L}(aa^*)$ и аналогично, че граматиката $G_2: S_2 \to bS_2 \mid b$ генерира $\mathscr{L}(bb^*)$.

Задача 4. Езикът може да се представи като конкатенация на $\{a^nb^n\mid n\in\mathbb{N}\}$ и $\{b^na^n\mid n\in\mathbb{N}\}$. Ако използваме конструкцията за конкатенация, е достатъчно да покажем, че граматиката $G_1: S_1\to aS_1b\mid \epsilon$ генерира $\{a^nb^n\mid n\in\mathbb{N}\}$ и аналогично, че граматиката $G_2: S_2\to bS_2a\mid \epsilon$ генерира $\{b^na^n\mid n\in\mathbb{N}\}$.