In der unteren Abbildung ist der Zusammenhang zwischen der Wiederholungszahl und der relativen Häufigkeit graphisch dargestellt.

- a) Beschreiben Sie den Verlauf des Graphen und erklären Sie, wie sich die relative Häufigkeit mit steigender Durchführungszahl entwickelt.
- b) Erklären Sie die Bedeutung der "50 %" in Bezug auf den Graphen und das Zufallsexperiment.
- c) Stellen Sie eine Vermutung am Beispiel des Münzwürfs auf, wie sich die relative Häufigkeit und die Wahrscheinlichkeit eines Ereignisses unterscheiden.

Gesetz der großen Zahlen und Wahrscheinlichkeitsbegriff

Die Wahrscheinlichkeit beruht auf theoretischen Überlegungen und steht vor einem Zufallsversuch fest!

Wissen: Empirisches Gesetz der großen Zahlen – Wahrscheinlichkeit

Wird ein Zufallsexperiment sehr oft durchgeführt, so stabilisieren sich mit einer ausreichend hohen Anzahl von Versuchsdurchführungen die relativen Häufigkeiten der Ergebnisse um einen festen Wert p, der zwischen 0 und 1 liegt.

Dieser feste Wert p wird als **Wahrscheinlichkeit P (A)** (sprich: "P von A") **des Ergebnisses A** bezeichnet.

Eine **stabilisierte relative Häufigkeit** eines Ergebnisses kann als **Schätzwert** für die **Wahrscheinlichkeit** verwendet werden.

Beispiele:

Elementarereignis e_i	rot	gelb
Wahrscheinlichkeit $P(e_i)$	0,6	0,4

Elementarereignis e_i	rot	grün	blau
Wahrscheinlichkeit $P(e_i)$	0,5	1/6	1/3

QU 01001100111

Rechenregeln für Wahrscheinlichkeiten

• Lesen Sie im Buch S. 38/39 und übernehmen Sie die Rechenregeln sowie wichtige Hinweise.