Combinatorial methods or integer tiling

Itay Londner Weizmann institute of science

joint with Izabella Łaba (UBC)

Combinatorics Seminar - University of Rochester

September 2021

Tiling the integers: an introduction

Tiling the integers with a finite set

Let $A \subset \mathbb{Z}$ be a finite set. We say that A tiles \mathbb{Z} by translations if \mathbb{Z} can be covered by a union of disjoint translates of A. (There is an infinite set $T \subset \mathbb{Z}$ such that every $x \in \mathbb{Z}$ can be uniquely represented as x = a + t, with $a \in A$, $t \in T$.)

Tiling the integers with a finite set

Let $A \subset \mathbb{Z}$ be a finite set. We say that A tiles \mathbb{Z} by translations if \mathbb{Z} can be covered by a union of disjoint translates of A. (There is an infinite set $T \subset \mathbb{Z}$ such that every $x \in \mathbb{Z}$ can be uniquely represented as x = a + t, with $a \in A$, $t \in T$.)

 $A = \{0, 2\}$ and $A = \{0, 4, 8\}$ tile \mathbb{Z} ; $A = \{0, 1, 3\}$ does not.

How to determine whether a given A tiles the integers?

Periodicity

Newman (1977): all tilings of \mathbb{Z} by a finite set A are periodic, with period M.

Tijdeman (1993) + Coven-Meyerowitz (1998): if A tiles the integers, then it also tiles a finite cyclic group \mathbb{Z}_M , where M has the same prime factors as |A|.

This reduces the problem to the study of tilings of finite cyclic groups $\mathbb{Z}_M = \{0, 1, \dots, M-1\}$, with addition mod M. Notation:

$$A \oplus B = \mathbb{Z}_M$$
.

Further reductions

We measure distances between elements in \mathbb{Z}_M in terms of the GCD with M. In particular

$$Div(A) := \{(a - a', M) : a, a' \in A\}$$

Further reductions

We measure distances between elements in \mathbb{Z}_M in terms of the GCD with M. In particular

$$Div(A) := \{(a - a', M) : a, a' \in A\}$$

Sands (1979): let $A, B \subset \mathbb{Z}_M$. Then $A \oplus B = \mathbb{Z}_M$ if and only if |A| |B| = M and

$$Div(A) \cap Div(B) = \{M\}.$$

Geometric representation of tilings

Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = \prod_{i=1}^K p_i^{n_i}$, p_i distinct primes, $n_i \geq 1$. By the Chinese Remainder Theorem, we have

$$\mathbb{Z}_M = \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p_K^{n_K}},$$

which we can represent geometrically as a K-dimensional lattice. Then $A \oplus B$ can be interpreted as a (modular) tiling of that lattice.

Distances

$$\mathbb{Z}_M = \mathbb{Z}_{p_i^2} \oplus \mathbb{Z}_{p_j^2}, M = p_i^2 p_j^2$$

$$\mathbb{Z}_M = \mathbb{Z}_{p_i^2} \oplus \mathbb{Z}_{p_i^2}, M = p_i^2 p_j^2$$

$$\{x \in \mathbb{Z}_M : p_i^2 | x - a\} = a + p_i^2 \mathbb{Z}_M$$

$$\mathbb{Z}_M = \mathbb{Z}_{p_i^2} \oplus \mathbb{Z}_{p_i^2}, M = p_i^2 p_j^2$$

$$\{x \in \mathbb{Z}_M : p_i | x - a\} = a + p_i \mathbb{Z}_M$$

$$\mathbb{Z}_M = \mathbb{Z}_{p_i^{n_i}} \oplus \mathbb{Z}_{p_j^{n_j}} \oplus \mathbb{Z}_{p_k^{n_k}}, M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$$

Examples of tilings

Examples of tilings

The Coven-Meyerowitz tiling conditions

Polynomial formulation

By translational invariance, we may assume that $A, B \subset \{0, 1, ...\}$ and that $0 \in A \cap B$. The *characteristic polynomials* (aka *mask polynomials*) of A and B are

$$A(X) = \sum_{a \in A} X^a, \ B(X) = \sum_{b \in B} X^b.$$

Then $A \oplus B = \mathbb{Z}_M$ is equivalent to

$$A(X)B(X) = 1 + X + \dots + X^{M-1} \mod (X^M - 1).$$

Cyclotomic polynomials

Recall the s-th cyclotomic polynomial is the unique monic, irreducible polynomial $\Phi_s(X)$ whose roots are the primitive s-th roots of unity.

Then the tiling condition $A(X)B(X) = 1 + X + \cdots + X^{M-1}$ mod $(X^M - 1)$ is equivalent to

$$|A||B| = M$$
 and $\Phi_s(X) \mid A(X)B(X)$ for all $s|M, s \neq 1$.

Since Φ_s are irreducible, each $\Phi_s(X)$ with $s|M, s \neq 1$, must divide at least one of A(X) and B(X).

The Coven-Meyerowitz Theorem (1998)

Let $S_A = \{p^{\alpha}: \Phi_{p^{\alpha}}(X)|A(X)\}$. Consider the following conditions.

$$(T1) A(1) = \prod_{s \in S_A} \Phi_s(1),$$

(T2) if $s_1, \ldots, s_k \in S_A$ are powers of different primes, then $\Phi_{s_1 \ldots s_k}(X)$ divides A(X).

Then:

- if A satisfies (T1), (T2), then A tiles \mathbb{Z} ;
- if A tiles \mathbb{Z} then (T1) holds;
- if A tiles \mathbb{Z} and |A| has at most two prime factors, then (T2) holds.

Cyclotomic polynomials and distribution

Divisibility by prime power cyclotomic polynomials $\Phi_{p_i^{\alpha}}$ can be interpreted in terms of distribution of the elements of A:

- $\Phi_{p_i}|A \Leftrightarrow A$ is equidistributed mod p_i ,
- $\Phi_{p_i^{n_i}}|A \Leftrightarrow A$ is equidistributed mod $p_i^{n_i}$ within residue classes mod $p_i^{n_i-1}$.

Assume $M = \prod_i p_i^{n_i}$ and let $M_i = M/p_i^{n_i}$. Given $1 \le \alpha \le n_i$, we define

$$F_{i,\alpha} = \{0, M_i p_i^{\alpha-1}, 2M_i p_i^{\alpha-1}, \dots, (p_i - 1)M_i p_i^{\alpha-1}\}$$

Assume $M = \prod_i p_i^{n_i}$ and let $M_i = M/p_i^{n_i}$. Given $1 \le \alpha \le n_i$, we define

$$F_{i,\alpha} = \{0, M_i p_i^{\alpha - 1}, 2M_i p_i^{\alpha - 1}, \dots, (p_i - 1)M_i p_i^{\alpha - 1}\}$$

$$F_{i,\alpha}(X) = \prod_{d|M_i} \Phi_{dp_i^{\alpha}}(X)$$

Assume
$$A\oplus B=\mathbb{Z}_M$$
 and define
$$B^{\flat}(X):=\prod_i\prod_{\alpha:\,p_i^{\alpha}\in S_B}F_{i,\alpha}(X)$$

Assume $A \oplus B = \mathbb{Z}_M$ and define

$$B^{\flat}(X) := \prod_{i} \prod_{\alpha : p_{i}^{\alpha} \in S_{B}} F_{i,\alpha}(X)$$

Note that

• for $m|M \Phi_m \nmid B^{\flat}$ if and only if

$$m = \prod_{i \in I \subset \{1, \dots, K\}} p_i^{\beta_i} \text{ and } \Phi_{p_i^{\beta_i}} | A \text{ for all } i \left(p_i^{\beta_i} \in S_A \right)$$

• since $S_A \cup S_B = \{p^{\alpha} : p^{\alpha} | M\}$ and disjoint, B^{\flat} is uniquely determined by A.

Assume $A \oplus B = \mathbb{Z}_M$ and define

$$B^{\flat}(X) := \prod_{i} \prod_{\alpha : p_i^{\alpha} \in S_B} F_{i,\alpha}(X)$$

Note that

• for $m|M \Phi_m \nmid B^{\flat}$ if and only if

$$m = \prod_{i \in I \subset \{1, \dots, K\}} p_i^{\beta_i} \text{ and } \Phi_{p_i^{\beta_i}} | A \text{ for all } i \left(p_i^{\beta_i} \in S_A \right)$$

• since $S_A \cup S_B = \{p^{\alpha} : p^{\alpha} | M\}$ and disjoint, B^{\flat} is uniquely determined by A.

Then

A satisfies T2 if and only if A is a maximal set satisfying

$$\#(A' \cap B^{\flat}) = 1$$
 for all A' - translation of A .

Example:

Suppose that $M = p_i^2 p_j^2 p_k^2$ and $A \subset \mathbb{Z}_M$, $|A| = p_i p_j p_k$ is uniformly distributed modulo p_i , p_j and p_k . Then

The following are equivalent

- A satisfies T2
- any translation of A intersects $p_i p_j p_k \mathbb{Z}_M$ at exactly one point
- A is uniformly distributed modulo $p_i p_j p_k$.

Standard T2 sets

$$A = A^{\flat}, B = B^{\flat}$$

$$M/p_{j} \qquad M/p_{i}^{2}$$

$$M/p_{i} \qquad \Phi_{p_{i}^{2}}\Phi_{p_{j}^{2}}|A \qquad \Phi_{p_{i}}\Phi_{p_{j}}|B$$

$$A = A^{\flat}, B = B^{\flat}$$

$$M/p_{i} \qquad \Phi_{p_{i}^{2}}\Phi_{p_{j}^{2}}|A \qquad \Phi_{p_{i}^{2}}\Phi_{p_{j}^{2}}|A \qquad \Phi_{p_{i}^{2}}\Phi_{p_{j}^{2}}|B$$

Main result

Main result (Łaba-L 2021)

Theorem. Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = p_i^2 p_j^2 p_k^2$. Then A and B satisfy T2.

Main result (Łaba-L 2021)

Theorem. Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = p_i^2 p_j^2 p_k^2$. Then A and B satisfy T2.

Additionally:

- The proof essentially provides a classification of all tilings of period $M = p_i^2 p_j^2 p_k^2$. (It does not get much more complicated than Szabó-type examples.)
- Methods and some intermediate results extend to more general M.

Cuboids and cyclotomic divisibility

Particular case: Let $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$. An M-cuboid is a weighed set with the mask polynomial

$$\Delta(X) = X^a \prod_i (1 - X^{d_i M/p_i}) \quad \text{mod } (X^M - 1)$$

where $a \in \mathbb{Z}_M$ and $(d_i, p_i) = 1$.

- \bullet -1 weighted

Cuboids and cyclotomic divisibility

Particular case: Let $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$. An M-cuboid is a weighed set with the mask polynomial

$$\Delta(X) = X^a \prod_i (1 - X^{d_i M/p_i}) \quad \text{mod } (X^M - 1)$$

where $a \in \mathbb{Z}_M$ and $(d_i, p_i) = 1$.

- $\bullet \, -1 \, weighted$

• For $A \subset \mathbb{Z}_M$ we have

 $\Phi_M|A \iff \text{ for every } \Delta, A|_{\Lambda} \text{ sums up to } 0$

Fibers

Let
$$M = \prod_i p_i^{n_i}$$
. An M -fiber in the p_i direction is a set $\{a, a + M/p_i, a + 2M/p_i, \dots, a + (p_i - 1)M/p_i\} \subset \mathbb{Z}_M$.

• A set $A \subset \mathbb{Z}_M$ is M fibered in the p_i direction if it is a union of disjoint M fibers in that direction.

Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and $\Lambda(x, D(M)) := \{ y \in \mathbb{Z}_M : D(M) | x - y \}.$

Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and

$$\Lambda(x, D(M)) := \{ y \in \mathbb{Z}_M : D(M)|x - y \}.$$

We prove the following basic structure lemma:

Let
$$A \subset \mathbb{Z}_M, M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$$

Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and

$$\Lambda(x, D(M)) := \{ y \in \mathbb{Z}_M : D(M)|x - y \}.$$

We prove the following basic structure lemma: Let $A \subset \mathbb{Z}_M$, $M = p_i^{n_i} p_i^{n_j} p_k^{n_k}$

Lemma

If $\Phi_M|A$ and $M/p_i \notin Div(A)$ for some $p_i \neq 2$. Then on every fixed grid $\Lambda(x, D(M))$, the set A is M fibered either in the p_j or the p_k direction.

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and

$$\Lambda(x, D(M)) := \{ y \in \mathbb{Z}_M : D(M)|x - y \}.$$

We prove the following basic structure lemma: Let $A \subset \mathbb{Z}_M$, $M = p_i^{n_i} p_i^{n_j} p_k^{n_k}$

Lemma

If $\Phi_M|A$ and $M/p_i \notin Div(A)$ for some $p_i \neq 2$. Then on every fixed grid $\Lambda(x, D(M))$, the set A is M fibered either in the p_j or the p_k direction.

- Note that this lemma does not require the tiling assumption.
- The lemma is not true when $p_i = 2$.

Proof: Fix $a \in A$. We prove first that a has to belong to an M fiber in either the p_j or the p_k directions.

Proof: Fix $a \in A$. We prove first that a has to belong to an M fiber in either the p_j or the p_k directions. Suppose this is not true and find $x_j, x_k \in \mathbb{Z}_M \setminus A$ with

$$(a - x_{\nu}, M) = M/p_{\nu} \text{ for } \nu = j, k.$$

Proof: Fix $a \in A$. We prove first that a has to belong to an M fiber in either the p_j or the p_k directions.

Suppose this is not true and find $x_j, x_k \in \mathbb{Z}_M \setminus A$ with

$$(a - x_{\nu}, M) = M/p_{\nu} \text{ for } \nu = j, k.$$

Also, since $p_i \neq 2$ and M/p_i is not a difference in A, we may find $x_i, x_i' \in \mathbb{Z}_M \setminus A$ with

$$(a - x_i, M) = (a - x_i', M) = (x_i - x_i', M) = M/p_i.$$

We, therefore, conclude that every element in $A \cap \Lambda(a, D(M))$ is contained in an M fiber in either the p_j or p_k direction. If the choice of direction is uniform across all elements of $A \cap \Lambda(a, D(M))$ - we're done. Otherwise

We, therefore, conclude that every element in $A \cap \Lambda(a, D(M))$ is contained in an M fiber in either the p_j or p_k direction. If the choice of direction is uniform across all elements of $A \cap \Lambda(a, D(M))$ - we're done. Otherwise

Let $M = \prod_i p_i^{n_i}$ and define the slab

$$A_{p_i} = \{ a \in A : 0 \le a \mod p_i^{n_i} \le p_i^{n_i - 1} - 1 \}$$

Let $M = \prod_i p_i^{n_i}$ and define the slab

$$A_{p_i} = \{ a \in A : 0 \le a \mod p_i^{n_i} \le p_i^{n_i - 1} - 1 \}$$

Theorem (Łaba-L, 2021)

Let $A \oplus B = \mathbb{Z}_M$, and $\Phi_{p_i^{n_i}}|A$. The following are equivalent:

- (i) For any translate of A' of A we have $A'_{p_i} \oplus B = \mathbb{Z}_{M/p_i}$.
- (ii) For every $p_i^{n_i}|m|M$ we have

$$m \in Div(A) \Rightarrow m/p_i \notin Div(B).$$

Remarks:

Theorem (Łaba-L, 2021)

Let $A \oplus B = \mathbb{Z}_M$, and $\Phi_{p^{n_i}}|A$. The following are equivalent:

- (i) For any translate of A' of A we have $A'_{p_i} \oplus B = \mathbb{Z}_{M/p_i}$.
- (ii) For every $p_i^{n_i}|m|M$ we have

$$m \in Div(A) \Rightarrow m/p_i \notin Div(B).$$

Remarks:

• The case $M = p_i^2 p_j^2 p_k^2$

Theorem (Łaba-L, 2021)

Let $A \oplus B = \mathbb{Z}_M$, and $\Phi_{p^{n_i}}|A$. The following are equivalent:

- (i) For any translate of A' of A we have $A'_{p_i} \oplus B = \mathbb{Z}_{M/p_i}$.
- (ii) For every $p_i^{n_i}|m|M$ we have

$$m \in Div(A) \Rightarrow m/p_i \notin Div(B).$$

Remarks:

- The case $M = p_i^2 p_j^2 p_k^2$
- Open problem: prove the conclusion of the theorem hold for arbitrary M.

If true then tiling would imply T2, by induction.

Suppose that every element of A belongs to an M-fiber in the p_i direction, i.e.

$$a + M/p_i, \dots, a + (p_i - 1)M/p_i \in A$$
 for all $a \in A$.

We claim that A satisfies the conditions of the slab reduction.

Suppose that every element of A belongs to an M-fiber in the p_i direction, i.e.

$$a + M/p_i, \dots, a + (p_i - 1)M/p_i \in A$$
 for all $a \in A$.

We claim that A satisfies the conditions of the slab reduction.

•
$$(1 + X^{M/p_i} + \ldots + X^{(p_i-1)M/p_i})|A$$
, in particular $\Phi_{p_i^{n_i}}|A$.

Suppose that every element of A belongs to an M-fiber in the p_i direction, i.e.

$$a + M/p_i, \dots, a + (p_i - 1)M/p_i \in A$$
 for all $a \in A$.

We claim that A satisfies the conditions of the slab reduction.

- $(1 + X^{M/p_i} + \ldots + X^{(p_i-1)M/p_i})|A$, in particular $\Phi_{p_i^{n_i}}|A$.
- A satisfies the condition: for every $p_i^{n_i}|m|M$

$$m \in Div(A) \iff m/p_i \in Div(A).$$

Let
$$A \oplus B = \mathbb{Z}_M$$
 with $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$.

Lemma

Assume that Φ_M divides both A and B. Then either A or B has to be M-fibered in some direction. Moreover, if $n_i = n_j = n_k = 2$ then A and B satisfy T2.

Let
$$A \oplus B = \mathbb{Z}_M$$
 with $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$.

Lemma

Assume that Φ_M divides both A and B. Then either A or B has to be M-fibered in some direction. Moreover, if $n_i = n_j = n_k = 2$ then A and B satisfy T2.

Proof.

• By PH principle, WLOG, $M/p_i, M/p_j \notin Div(A)$, and $\max\{p_i, p_j\} > 2$

Let
$$A \oplus B = \mathbb{Z}_M$$
 with $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$.

Lemma

Assume that Φ_M divides both A and B. Then either A or B has to be M-fibered in some direction. Moreover, if $n_i = n_j = n_k = 2$ then A and B satisfy T2.

Proof.

- By PH principle, WLOG, M/p_i , $M/p_j \notin Div(A)$, and $\max\{p_i, p_j\} > 2$
- Since $\Phi_M|A$, by structure lemma A must be M fibered in the p_k direction

Let $M = (p_i p_j p_k)^2$, $|A| = |B| = p_i p_j p_k$.

Let $M = (p_i p_j p_k)^2$, $|A| = |B| = p_i p_j p_k$.

Let
$$M = (p_i p_j p_k)^2$$
, $|A| = |B| = p_i p_j p_k$.

Let
$$M = (p_i p_j p_k)^2$$
, $|A| = |B| = p_i p_j p_k$.

Let
$$M = (p_i p_j p_k)^2$$
, $|A| = |B| = p_i p_j p_k$.

Thank you!