SURE Project

August 23, 2022

Objective

Compare spatial predictions of kelp to "in situ" survey data. Compare each year and location.

Extraction

Extract the predicted log kelps density of every year (2004 - 2021) for each site in the North Coast.

```
# set a directory
w.dir <- here()</pre>
d.dir <- here('data')</pre>
r.dir <- here('spatial_data/sp_predictions_5.1.1_V2')</pre>
# rock.dir <- here('spatial_data/sp_predictions_5.1.1_V2_rock')</pre>
# read and transform the observed data to the log scale
df <- read.csv(paste(d.dir,</pre>
                      'RCCA_kelp_inverts_NC_depth-zones_wave_clim_temp_nit_subs_orbvel_npp.csv',
                     sep = '/')) %>%
  dplyr::select(site_name, year, transect, zone, latitude, longitude, den_NERLUE) %>%
  mutate_at(vars(year, transect, zone, site_name), list(as.factor)) %%
  mutate(log_den_NERLUE = log(den_NERLUE))
head(df)
     site_name year transect zone latitude longitude den_NERLUE log_den_NERLUE
##
## 1
        Caspar 2018
                     1 INNER 39.36173 -123.822
                                                                              -Inf
        Caspar 2018
## 2
                           2 INNER 39.36173 -123.822
                                                                 0
                                                                              -Inf
```

```
Caspar 2018
## 3
                         3 INNER 39.36173 -123.822
                                                              0
                                                                          -Inf
## 4
       Caspar 2018
                          4 OUTER 39.36173 -123.822
                                                              0
                                                                          -Inf
## 5
       Caspar 2018
                          5 OUTER 39.36173 -123.822
                                                              0
                                                                          -Inf
       Caspar 2018
                          6 OUTER 39.36173 -123.822
                                                                          -Inf
## 6
```

Note that log(0) returns -Inf.

```
filter(df, den_NERLUE == 0) %>% count() # 719 0's

## n
## 1 719
```

How to deal with log(0)?

```
df$log_den_NERLUE <- replace(df$log_den_NERLUE, df$log_den_NERLUE == -Inf, 0)
head(df)</pre>
```

```
site_name year transect zone latitude longitude den_NERLUE log_den_NERLUE
##
## 1
       Caspar 2018 1 INNER 39.36173 -123.822
## 2
       Caspar 2018
                         2 INNER 39.36173 -123.822
                                                            0
                                                                           0
## 3
       Caspar 2018
                        3 INNER 39.36173 -123.822
                                                                           0
                                                            0
## 4
       Caspar 2018
                         4 OUTER 39.36173 -123.822
                                                            0
                                                                           0
## 5
       Caspar 2018
                         5 OUTER 39.36173 -123.822
                                                            0
                                                                           0
## 6
       Caspar 2018
                          6 OUTER 39.36173 -123.822
                                                                           0
```

Calculate the mean and standard error of kelps density of every year for each site by zone (INNER/OUTER).

```
obs <- df %>%
  group_by(site_name, year, zone) %>%
  summarise_at(vars(log_den_NERLUE), list(mean = mean, se = std.error), na.rm = TRUE) %>%
  pivot_wider(names_from = zone, values_from = c(mean, se))
head(obs)

## # A tibble: 6 x 6
```

```
## # Groups: site_name, year [6]
    site_name year mean_INNER mean_OUTER se_INNER se_OUTER
                        <dbl>
##
    <fct> <fct>
                                  <dbl>
                                           <dbl>
                                                    <dbl>
                        4.38
                                   3.03
                                          0.150
                                                    0.996
## 1 Caspar
             2008
                                   4.17
## 2 Caspar
           2010
                        4.37
                                          0.0664
                                                    0.586
## 3 Caspar
             2014
                        0.799
                                   0
                                          0.799
## 4 Caspar
             2015
                        0
                                   0
                                          Ω
                                                    0
## 5 Caspar
             2016
                        0
                                   0
                                          0
                                                    0
## 6 Caspar
             2017
                        0
                                   Ω
                                          Λ
                                                    0
```

Extract the predicted *log* kelps density of every year for each site.

```
for (i in c(2006:2021)) {
  rast <- rast(pasteO(r.dir, pasteO('/', i, '_Nereo_preds_NC_V4_5.1.1_V2.tif')))</pre>
  ext <- terra::extract(rast, vect(site_shp$geometry)) %>%
    mutate(site_name = site$site_name, year = as.factor(i), .before = fit) %>%
    dplyr::select(-ID)
  pred <- rbind(pred, ext)</pre>
head(pred)
##
          site_name year
                                fit
## 1
             Caspar 2006 0.5090384
## 2
       Caspar North 2006 0.5003366
## 3
         Dark Gulch 2006 0.5309656
## 4 Flat Iron Rock 2006 0.7382968
## 5
          Fort Ross 2006
## 6
        Frolic Cove 2006 0.8228083
# sites and years have predicted values higher than 6.6 (log of density)
filter(pred, fit >= 6.6)
```

```
##
                   site_name year
                                          fit
## 1
        Point Arena MPA (M2) 2007
                                     8.662991
## 2
             Point Arena Ref 2007
                                    21.406689
## 3
                 Timber Cove 2007
                                    23.488674
## 4
                  Dark Gulch 2008
                                    19.940689
## 5
              Flat Iron Rock 2008
                                    22.692287
## 6
                 Frolic Cove 2008
                                    11.673522
## 7
                 Glass Beach 2008
                                    18.386805
## 8
          MacKerricher North 2008
                                    22.953793
## 9
         Mendocino Headlands 2008
                                    33.649105
## 10
                    Monument 2008 211.603195
## 11
                Pebble Beach 2008
                                    17.207937
## 12 Point Arena Lighthouse 2008
                                    51.701321
## 13
        Point Arena MPA (M2) 2008 377.264008
## 14
             Point Arena Ref 2008 365.663879
## 15
            Portuguese Beach 2008 102.522873
## 16
               Pyramid Point 2008 342.526245
## 17
               Russian Gulch 2008
                                    22.330360
           Stillwater Sonoma 2008
## 18
                                    22.428894
                   Stornetta 2008
## 19
                                    12.890643
## 20
                 Timber Cove 2008 409.307465
## 21
                   Van Damme 2008
                                     9.219850
## 22
                  Dark Gulch 2009
                                    23.877867
## 23
                 Frolic Cove 2009
                                    98.134544
## 24
          MacKerricher North 2009
                                    11.300843
## 25
                    Monument 2009 288.878967
## 26 Point Arena Lighthouse 2009
                                    58.657776
## 27
        Point Arena MPA (M2) 2009 290.192169
## 28
             Point Arena Ref 2009
                                    27.217886
## 29
                                    19.214815
               Pyramid Point 2009
## 30
               Russian Gulch 2009
                                    10.897983
```

```
Stornetta 2009 19.797838
## 31
## 32
                 Timber Cove 2009
                                    8.495423
## 33
                Pebble Beach 2012
                                    7.714611
## 34
             Point Arena Ref 2012 19.095858
## 35
                 Timber Cove 2012 19.386978
## 36
               Pyramid Point 2013 14.741710
## 37
            Portuguese Beach 2021
                                   7.111959
# write to cvs
merge_df <- left_join(pred,</pre>
                      site %>% select(c(site_name, longitude, latitude)),
                      by = 'site_name')
write.csv(merge_df, file.path(d.dir, 'NC_kelp_density_predictions.csv'), row.names = FALSE)
```

Comparison

Compare the predicted data to observed data.

```
dim(obs)
## [1] 193
dim(pred)
## [1] 400
             3
kelp_data <- left_join(pred, obs, by = c('site_name', 'year')) %>%
  group_by(site_name) %>%
  arrange(year, .by_group = TRUE) %>%
  relocate(fit, .after = last_col())
head(kelp_data)
## # A tibble: 6 x 7
## # Groups:
               site_name [1]
##
     site_name year mean_INNER mean_OUTER se_INNER se_OUTER
##
     <chr>
                          <dbl>
                                     <dbl>
                                               <dbl>
                                                        <dbl> <dbl>
               <fct>
## 1 Caspar
               2006
                          NA
                                     NA
                                             NA
                                                              0.509
                                                       NA
## 2 Caspar
               2007
                          NA
                                     NA
                                             NA
                                                              0.827
                                                       NA
## 3 Caspar
               2008
                                      3.03
                                             0.150
                          4.38
                                                       0.996 1.83
## 4 Caspar
               2009
                          NA
                                     NA
                                            NA
                                                       NA
                                                              1.62
## 5 Caspar
               2010
                           4.37
                                      4.17
                                             0.0664
                                                       0.586 0.554
## 6 Caspar
               2011
                          NA
                                     NA
                                            NA
                                                       NA
                                                              0.857
```

Plotting

Plot log of kelps density vs year for each site.

```
# kelp_data %>%
# pivot_longer(
      -c('site_name', 'year', 'fit'),
#
#
      names_to = c('.value', 'zone'),
     names_sep = '_'
#
#
      ) %>%
#
  filter(site_name == 'Caspar') %>%
  ggplot(aes(x = year, y = mean, fill = zone)) +
    geom_bar(position = 'dodge', stat = 'identity')
sites <- unique(kelp_data$site_name)</pre>
kelp_longer <- kelp_data %>%
    pivot_longer(
      -c('site_name', 'year', 'fit'),
     names_to = c('.value', 'zone'),
     names_sep = '_'
      )
for (i in sites) {
  plot <- kelp_longer %>%
    filter(site_name == i) %>%
    ggplot() +
    geom_pointrange(aes(
     x = year, y = mean, group = zone, color = zone,
      ymin = mean - se, ymax = mean + se
      ), alpha = 0.5, size = 0.3) +
    geom_bar(aes(x = year, y = fit,
                 fill = ifelse(!is.na(fit) & fit >= 6.6, 'YES', 'NO')),
             stat = 'identity', position = 'dodge', alpha = 0.2) +
    theme_bw() +
    theme(axis.text.x = element_text(angle = 90, size = 8),
          plot.title = element_text(hjust = 0.5),
          panel.grid.major = element_blank(),
          legend.title = element_text(size = 9),
          legend.text = element_text(size = 7)) +
    labs(y = 'log of kelp density', title = i, fill = 'fit >= 6.6')
  print(plot)
}
```


Plot obs. vs pred.

```
kelp_longer %>%
  ggplot(aes(x = fit, y = mean, color = zone)) +
  geom_point(alpha = 0.6) +
  geom_smooth(method = 'lm', alpha = 0.15, aes(fill = zone)) +
  xlim(NA, 110) +
  labs(x = 'pred', y = 'obs') +
  facet_wrap(~zone, ncol = 2) +
  theme_bw()
```

