WHAT IS CLAIMED IS:

1. A compound of the structure

$$B-A-CH \xrightarrow{D} \begin{array}{c} R_3 \\ R_2 \\ R_1 \\ \end{array}$$

5

wherein:

D is H or ORa

10

wherein R^a is H or alkyl;

A is a linear string of A¹, A², A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸, in any order, such that A¹ may occur in the string from 0 to 6 times;

15

A² may occur in the string from 0 to 2 times;

A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸ may each occur in the string 0 or 1 time, such that the total number of linear A groups is 0 to 6;

20

$$A^{1}$$
 is $-\frac{{}^{R_{5}}_{1}}{{}^{L}_{R_{5a}}}$;

$$A^2 is \xrightarrow{R_{5b} R_{5c} \atop |C=C};$$

A³ is
$$-\frac{N}{R} = \frac{0}{C}$$
, -cycloheteroalkyl $-\frac{0}{C}$, or $-\frac{0}{C}$ cycloheteroalkyl;

$$A^4$$
 is $-\overset{\circ}{\mathbb{C}}$;

A⁵ is cycloalkyl;

5 A^6 is aryl;

A⁷ is heteroaryl; and

A⁸ is cycloheteroalkyl,

wherein R_{5a}, R_{5a}, R_{5b}, R_{5c}, and R_{5d} are the same or different and are independently selected from H, alkyl, aryl, arylalkyl halo or nitro;

B is amino, aminoalkyl, aminoalkyl, aminocycloalkyl, cycloheteroalkyl, aryl,

heteroaryl, alkylamino, carboxamido (—NH2-C) or cycloalkyl;

 R_1 is hydrogen, carboxy, alkoxycarbonyl, A_2 -aryl, $C = R_7$

20

$$-C - N \xrightarrow{(CH_2)_0} B_1 - C - CH_2 - O - R_{10}, -SO_2 - R_7,$$

$$B_3 - C - CH_2 - O - R_{10}, -SO_2 - R_7,$$

R₂ and R₃ are the same or different and are independently selected from hydrogen, or alkyl;

$$X_1$$
 is $C = R_7$, $C = N - R_6$ $C = N_1$, $C = N_2$, $C = N_1$, $C = N_2$, $C = N_2$, $C = N_1$, $C = N_2$

$$-C = N \xrightarrow{(CH_2)_0} B_1 = R_8, \quad -C = alkyl = SO_2 = R_7,$$

10

$$-C$$
-aryl- SO_2 - R_7 , $-C$ - CH_2 - O - R_{10} , $-SO_2$ - R_7 ,

R₄ and R₅ are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted

30

cycloalkyl, cycloalkyl-A₃-cycloalkyl, A₂-cycloalkyl-A₃-cycloalkyl, cycloalkyl-A₃aryl, A₂-cycloalkyl-A₃-aryl, cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, A₂-cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃substituted cycloalkyl, A2-cycloalkyl-A3-substituted cycloalkyl, cycloalkyl-A3-5 substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃cycloalkyl, A₂-substituted cycloalkyl-A₃-cycloalkyl, substituted cycloalkyl-A₃substituted cycloalkyl, A₂-substituted cycloalkyl-A₃-substituted cycloalkyl, substituted cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, substituted cycloalkyl-A₃heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃-10 heterocycloalkyl, A2-substituted cycloalkyl-A3-heterocycloalkyl, substituted cycloalkyl-A₃-substituted aryl, A₂-substituted cycloalkyl-A₃-substituted aryl, heteroaryl-A₃-heteroaryl, A₂-heteroaryl-A₃-heteroaryl, heteroaryl-A₃-cycloalkyl, A₂heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂-heteroaryl-A₃substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃-15 heterocycloalkyl, A₂-heteroaryl-A₃-heterocycloalkyl, heteroaryl-A₃-substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃-heterocycloalkyl, A₂heterocycloalkyl-A₃-heterocycloalkyl, heterocycloalkyl-A₃-cycloalkyl, A₂heterocycloalkyl-A₃-cycloalkyl, heterocycloalkyl-A₃-substituted cycloalkyl, A₂heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂-20 heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂-heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂-heterocycloalkyl-A₃heteroaryl, substituted aryl-A3-substituted aryl, A2-substituted aryl-A3-substituted aryl, substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-cycloalkyl, substituted aryl-A₃substituted cycloalkyl, A2-substituted aryl-A3-substituted cycloalkyl, substituted aryl-25 A₃-aryl, A₂-substituted aryl-A₃-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-heteroaryl, substituted aryl-A₃-heterocycloalkyl, and A₂-substituted aryl-A₃heterocycloalkyl;

R₆ is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₃-heteroaryl, A₂-heteroaryl, A₃-heteroaryl, A₃-heter

aryl-A₃-heteroaryl, aryl-A₃-heterocycloalkyl, A₂-aryl-A₃-heterocycloalkyl, carboxy,

alkoxycarbonyl, aryloxycarbonyl,
$$-\stackrel{O}{-}\stackrel{R_4}{\sim}$$
, $-\stackrel{R_4}{\sim}$, alkoxycarbonylamino,

aryloxycarbonylamino, arylcarbonylamino, -N(alkyl)(alkoxycarbonyl),

- -N(alkyl)(aryloxycarbonyl), alkylcarbonylamino, -N(alkyl)(alkylcarbonyl), or
- 5 -N(alkyl)(arylcarbonyl);

m is an integer from 1 to 5;

10

20

$$N-C-A_3-C-R_7$$
, $N-C-N$ $N-C-C+CH_2-C-R_7$,

15
$$N-C-N$$
 $N-C-C-R_7$, or $N-C-N$ $N-C-C-R_7$;

R₇ is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, cycloalkyl-A₃-cycloalkyl, A₂-cycloalkyl, cycloalkyl-A₃-aryl, cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-Cycloalkyl-A₃-aryl, cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-

A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, A₂-cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-substituted cycloalkyl, A₂-cycloalkyl-A₃-substituted cycloalkyl, cycloalkyl-A₃-substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃-cycloalkyl, A₂-substituted cycloalkyl-A₃-cycloalkyl, substituted 5 cycloalkyl-A₃-substituted cycloalkyl, A₂-substituted cycloalkyl-A₃-substituted cycloalkyl, substituted cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, substituted cycloalkyl-A₃-heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃-heterocycloalkyl, A₂-substituted cycloalkyl-A₃heterocycloalkyl, substituted cycloalkyl-A3-substituted aryl, A2-substituted cycloalkyl-10 A₃-substituted aryl, heteroaryl-A₃-heteroaryl, A₂-heteroaryl-A₃-heteroaryl, heteroaryl-A₃-cycloalkyl, A₂-heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂heteroaryl-A₃-substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃-heterocycloalkyl, A₂-heteroaryl-A₃-heterocycloalkyl, heteroaryl-A₃substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃-15 heterocycloalkyl, A₂-heterocycloalkyl-A₃-heterocycloalkyl, heterocycloalkyl-A₃cycloalkyl, A2-heterocycloalkyl-A3-cycloalkyl, heterocycloalkyl-A3-substituted

cycloalkyl, A₂-heterocycloalkyl-A₃-cycloalkyl, heterocycloalkyl-A₃-substituted cycloalkyl, A₂-heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂-heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂-heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂-heterocycloalkyl-A₃-heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted

aryl-A₃-substituted aryl-A₃-substituted aryl-A₃-substituted aryl-A₃-substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-cycloalkyl, substituted aryl-A₃-substituted aryl-A₃-substituted aryl-A₃-substituted aryl-A₃-substituted aryl-A₃-aryl, A₂-substituted aryl-A₃-aryl, substituted aryl-A₃-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-

25 heterocycloalkyl, A_2 -substituted aryl- A_3 -heterocycloalkyl, -N R_5

$$A_2 - N \begin{pmatrix} R_4 \\ R_5 \end{pmatrix}$$
;

n and o are independently one or two provided that the sum of n plus o is two or three;

v and w are independently one, two, or three provided that the sum of v plus w is three, four, or five;

R₈ is hydrogen, halo, amino, -NH(lower alkyl), -N(lower alkyl)₂, nitro, alkyl, substituted alkyl, alkoxy, hydroxy, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heteroaryl, aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl;

 B_1 , B_2 and B_3 are each CH, or two of B_1 , B_2 and B_3 are CH and the other is N, or one of B_1 , B_2 and B_3 is CH and the other two are N;

R₉ is hydrogen or lower alkyl;

R₁₀ is alkyl, substituted alkyl, alkyl-O-alkyl, alkyl-O-alkyl, cycloalkyl, 20 substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, aryl-A₃-aryl, heteroaryl, A₂-heteroaryl, heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-heterocycloalkyl;

25

10

15

 R_{21} and R_{22} are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, A_2 -aryl, and A_2 -substituted aryl;

p is an integer from 2 to 6;

q is an integer from 1 to 6;

r is zero, 1, 2 or 3;

s is 1, 2 or 3;

5

t is 1, 2, 3 or 4;

u is 1, 2 or 3;

A₂ is an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, or an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds;

A₃ is a bond, an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds, — (CH₂) d—O—(CH₂) e—, — (CH₂) d—S—(CH₂) e—,

20 —
$$(CH_2)_d$$
— $(CH_2)_e$ —, — $(CH_2)_d$ — $(CH_2)_d$ — $(CH_2)_e$ —,

$$-(CH_2)_d$$
 N C N $(CH_2)_e$ $-(CH_2)_d$ C N $(CH_2)_e$ $-(CH_2)_e$ R_{21}

$$-(CH_2)_d$$
 O C N $(CH_2)_e$, $-(CH_2)_d$ N C $(CH_2)_e$, R_{21}

$$-(CH_2)_d$$
 $-(CH_2)_e$ or $-(CH_2)_d$ $-(CH_2)_d$ $-(CH_2)_e$;

d and e are independently selected from zero and an integer from 1 to 10 provided that the sum of d plus e is no greater than 10;

and an inner salt or a pharmaceutically acceptable salt thereof, a hydrolyzable ester thereof, or a solvate thereof, with the provisos that

10 (a) where R_1 is COOZ, where Z is $(t-c_4H_9OC-0r c_6H_5CH_2OC-0r)$, and $-A-C-1s (CH_2)_q$, then B is other than amino or R_{20} -NH- where R_{20} is alkyl, cycloalkyl, A_2 -cycloalkyl or A_2 -aryl;

(b) where
$$R_1$$
 is $C_6H_5CH_2OC$, X_1 is X_1 is X_1 is X_1 is X_2 is X_1 is X_1 is X_2 is X_1 is X_1 is X_2 is X_2 is X_1 is X_2 is X_1 is X_2 is X_1 is X_2 is X_2 is X_1 is X_2 is X_1 is X_2 is X_1 is X_2 is X_2 is X_2

15 and $-A-\overset{D}{c}$ — is other than

(1)
$$(CH_3)_3 - C - O - C - N$$
 $C_1 - C_4$ alkyl,

(2)
$$[(H_3C)_3-C-O-C]_2-N-C_1-C_4 \text{ alkyl---},$$

- (3) amino C_1 - C_5 alkyl,
- (4) C_1 - C_4 alkylamino C_1 - C_5 alkyl, or
- 25 (5) piperidyl.

- 2. The compound as defined in Claim 1 wherein R_3 and R_2 are each H.
- The compound as defined in Claim 1 wherein R₁ is carboxy orarylalkoxycarbonyl.
 - 4. The compound as defined in Claim 1 wherein R_1 is carboxy, $-\stackrel{\circ}{\mathbb{C}}_{-OR_7}$, or $-\stackrel{\circ}{\mathbb{C}}_{-N}_{-N}$.
- The compound as defined in Claim 4 wherein R_7 is substituted alkyl, R_6 is substituted alkyl and m is 2.
 - 6. The compound as defined in Claim 1 wherein X_1 is $-\stackrel{\circ}{\mathbb{C}}_{-R_7}$ or

$$\begin{array}{c|c}
O & (CH_2)_{v} \\
-C-N & Y \\
(CH_2)_{w}
\end{array}$$

15

where Y is

$$-N-C-A_3-O-R-$$

$$-N-\stackrel{O}{C}-N\stackrel{R_4}{\underset{R_5}{}}$$

$$-N$$
 N
 N
 N

$$-N-C-A_3-R_7$$
.

- 7. The compound as defined in Claim 6 wherein $-\stackrel{\circ}{\mathbb{C}}_{-\mathbb{R}_7}$ is $-\stackrel{\circ}{\mathbb{C}}_{-\mathbb{N}}^{\mathbb{N}}$; and
- 5 $Y \text{ is } N-\stackrel{0}{C}-0$,
 - or $N \longrightarrow N$
 - or $N-\stackrel{\circ}{C}$,
- or $N \stackrel{\circ}{c} N \stackrel{\circ}{\leftarrow}$.

- 8. The compound as defined in Claim 1 wherein A is a bond, heteroaryl, (alkylene) $\begin{bmatrix} R_5 \\ C \\ R_5 \end{bmatrix}$,
- $\begin{array}{c|c}
 R_{5a} & O \\
 \hline
 (C) & C \\
 R_{5a} \\
 R_{5a}
 \end{array}$ where Z is CH or N, r = 0 to 3, s = 0 to 3.
- (alkylcarbonyl cycloheteroalkyl), carbonyl cycloheteroalkyl, $-\frac{N}{R_5}$

- 9. The compound as defined in Claim 1 wherein B is heteroaryl,
 5 cycloheteroaryl, alkylcycloheteroalkyl, amino, alkylamino, dialkylamino or aminoalkyl.
 - 10. The compound as defined in Claim 1 wherein $-\stackrel{D}{\subset}H$ is $-CH_2^{\text{min}}$.
- 10 11. The compound as defined in Claim 1 wherein X_1 is

$$\begin{array}{c}
O \\
II \\
-C-N
\end{array}$$

$$\begin{array}{c}
(CH_2)_{v} \\
(CH_2)_{w}
\end{array}$$

where Y is
$$\begin{vmatrix} 0 \\ 11 \\ -C-A_3-R_7 \end{vmatrix}$$
 or $\begin{vmatrix} 0 \\ 11 \\ -C-A_3-OR_7 \end{vmatrix}$,

wherein A₃ is a bond,

and R_7 is alkyl, cycloalkyl, aryl or arylalkyl, or Y is N = N = N.

12. The compound as defined in Claim 10 where X_1 includes the moiety

$$\bigcup_{\mathbb{O}} \mathbb{N} \bigcup_{\mathbb{N}} \mathbb{N}$$

13. The compound as defined in Claim 1 wherein

- heteroaryl.
 - The compound as defined in Claim 13 wherein R_7 is $\begin{array}{c} \text{CH}-\text{CH}_3 \\ \text{CH}-\text{CH}_3 \\ \end{array}$, A 14.

is pyridyl, B is H_2N \longrightarrow $^{N-}$, $^{Z_1-N}$ where Z_1 is H, NH₂CO or alkyl, or B is

10 HN-CH_2 -C-N .

15. The compound as defined in Claim 1 having the structure

or its mono HCl, a monoTFA salt,

5

or its TFA salt,

5

or its TFA salt,

10

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

or its HCl salt,

$$H_3C-N$$
OH
OH
OH
OH

or its TFA salt, or

5

or its TFA salt.

10 16. A compound of the formula

$$B-A-CH \xrightarrow{R_3} R_2 R_1 \quad \text{or} \quad X_1$$

including an inner salt thereof, or a pharmaceutically acceptable salt thereof, or a hydrolyzable ester thereof, or a solvate thereof wherein:

B, A, D, R_1 , R_2 and R_3 are as defined in Claim 1;

$$X_1$$
 is $-C-N$ $N-C-R_{25}$, $-C-N$ $N-C-C-R_{25}$, $-C-N$ $N-C-C-R_{25}$, $-C-N$ $N-R_{25}$ or $-C-N$ $N-SO_2-R_{25}$; and

R₂₅ is a spacer terminating in a lipophilic group wherein said spacer comprises groups of 3 or more atoms or groups of 2 or more atoms and a phenylene, substituted phenylene, cycloalklene, heteroarylene, or heterocycloalkylene ring and said lipophilic terminating group is aryl, substituted aryl, cycloalkyl, heteroaryl, or heterocycloalkyl.

5

17. A compound of Claim 16 wherein R₂₅ is selected from the group

consisting of
$$-(CH_2)_5$$
 , $-(CH_2)_6$

$$10 - (CH_2)_4 - O$$
, $-NH - (CH_2)_4 - O$,

$$-N$$
 $-(CH2)4 $-(CH2)3 $-(CH2)3$$$

$$-0-(CH_2)_4$$
 \longrightarrow , $-0-(CH_2)_2$,

$$-0-(CH_2)^{\frac{1}{3}}$$
 $0-(CH_2)^{\frac{1}{3}}$

$$-(CH_2)_2$$
, $-(CH_2)_5-N$,

20
$$-(CH_2)_5-N$$
 0, $-(CH_2)_2-NH-C-NH-C$

$$-(CH_2)_3$$
 NH , $-(CH_2)_5$,

5
$$-(CH_2)_5$$
, and $-N-(CH_2)_2$.

18. A compound of Claim 17 wherein R_{25} is selected from the group

consisting of
$$-(CH_2)_5$$
— $\left\langle CH_2 \right\rangle_6$ — $\left\langle CH_2 \right\rangle_6$

$$-(CH_2)_4$$
 \longrightarrow $NH-(CH_2)_4$

$$-N$$
 (CH₂)₄ $-N$, $-N$ NH (CH₂)₃ $-N$,

$$-(CH_2)_2$$
, $-(CH_2)_5-N$,

5
$$-(CH_2)_5 - N$$
 0, $-(CH_2)_2 - NH - C - NH - C$,

$$-(CH_2)_3$$
 NH , $-(CH_2)_5$

10 $-(CH_2)_5 \xrightarrow{N} \text{, and } -N \xrightarrow{N} (CH_2)_2 \xrightarrow{N} .$

19. A compound of Claim 17 wherein

15
$$R_{25}$$
 is $-(CH_2)_5$

20. The compound as defined in Claim 16 having the following structure:

5

5

21. A pharmaceutical composition comprising a compound as defined in Claim 1 and a pharmaceutically acceptable carrier therefor.

10

22. A method for treating and/or preventing medical conditions in a mammalian species related to tryptase, thrombin, trypsin, Factor Xa, Factor VIIa, or urokinase-type plasminogen activator and/or for treating and/or preventing asthma or

allergic rhinitis and/or for treating chronic asthma, which comprises administering a mammalian species a therapeutically effective amount of a compound of the structure

$$B-A-CH \xrightarrow{R_3} \begin{array}{c} R_2 \\ R_1 \\ N \\ X_1 \end{array}$$

5

wherein:

D is H or OR^a;

10 wherein R^a is H or alkyl;

A is a linear string of A¹, A², A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸, in any order, such that A¹ may occur in the string from 0 to 6 times;

15 A² may occur in the string from 0 to 2 times;

A³, A⁴, A⁵, A⁶, A⁷ and/or A⁸ may each occur in the string 0 or 1 time, such that the total number of linear A groups is 0 to 6;

20
$$A^{1}$$
 is $-\begin{bmatrix} R_{5a} \\ C \\ R_{5a} \end{bmatrix}$;

$$A^{2}$$
 is $C=C$

A³ is
$$-\frac{0}{1}$$
 -cycloheteroalkyl $-\frac{0}{1}$ - or $-\frac{0}{1}$ -cycloheteroalkyl;

$$A^4$$
 is $-\overset{\circ}{C}$;

A⁵ is cycloalkyl;

5 A^6 is aryl;

10

20

A⁷ is heteroaryl; and

A⁸ is cycloheteroalkyl;

wherein R_{5a}, R_{5a}, R_{5b}, R_{5c}, and R_{5d} are the same or different and are independently selected from H, alkyl, aryl, arylalkyl halo or nitro;

B is amino, aminoalkyl, aminoalkyl, aminocycloalkyl, cycloheteroalkyl, aryl, heteroaryl, alkylamino, carboxamido (—NH2-C—) or cycloalkyl;

 R_1 is hydrogen, carboxy, alkoxycarbonyl, A_2 -aryl, alkyl, $C = R_7$,

$$- \overset{\circ}{\underset{R_{6}}{\text{-}}} \overset{(CH_{2})_{m}}{\underset{R_{6}}{\text{-}}} , \ \overset{\circ}{\underset{R_{7}}{\text{-}}} \overset{\circ}{\underset{R_{8}}{\text{-}}} \overset{\circ}{\underset{R_{8}}{\text{-}}} \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} , \ - \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} \overset{\circ}{\underset{R_{8}}{\text{-}}} \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} , \ \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} , \ \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} \overset{\circ}{\underset{R_{8}}{\text{-}}} \overset{\circ}{\underset{C-N-R_{7}}{\text{-}}} \overset{\circ}{\underset{C-N-R_{7$$

 $-\frac{O}{C} - \frac{(CH_2)_{O}}{I} + \frac{B_1}{I} + \frac{O}{C} - CH_2 - O - R_{10}, SO_2 - R_7,$

R₂ and R₃ are the same or different and are independently selected from hydrogen, or alkyl;

$$X_1$$
 is $C = R_7$, $C = N = R_6$ $C = N_7$, $C = N_8$

$$-C = N \xrightarrow{(CH_2)_0} B_1 = R_8, \quad -C = alkyl = SO_2 - R_7,$$

10

R₄ and R₅ are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, heteroaryl, A₂-heterocycloalkyl, A₂-heterocycloalkyl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, aryl-A₃-cycloalkyl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl, aryl-A₃-substituted aryl, A₂-aryl-A₃-substituted cycloalkyl, A₂-aryl-A₃-substituted cycloalkyl, cycloalkyl-A₃-substituted cycloalkyl, cycloalkyl-A₃-aryl, A₂-cycloalkyl-A₃-heteroaryl, A₂-cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-heteroaryl, cycloalkyl-A₃-heterocycloalkyl, cycloalkyl-A₃-heterocycloalk

substituted cycloalkyl, A2-cycloalkyl-A3-substituted cycloalkyl, cycloalkyl-A3substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃cycloalkyl, A2-substituted cycloalkyl-A3-cycloalkyl, substituted cycloalkyl-A3substituted cycloalkyl, A2-substituted cycloalkyl-A3-substituted cycloalkyl, substituted 5 cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, substituted cycloalkyl-A₃heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃heterocycloalkyl, A₂-substituted cycloalkyl-A₃-heterocycloalkyl, substituted cycloalkyl-A₃-substituted aryl, A₂-substituted cycloalkyl-A₃-substituted aryl, heteroaryl-A₃-heteroaryl, A₂-heteroaryl-A₃-heteroaryl, heteroaryl-A₃-cycloalkyl, A₂-10 heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂-heteroaryl-A₃substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃heterocycloalkyl, A₂-heteroaryl-A₃-heterocycloalkyl, heteroaryl-A₃-substituted aryl, A₂-heteroaryl-A₃-substituted aryl, heterocycloalkyl-A₃-heterocycloalkyl, A₂heterocycloalkyl-A₃-heterocycloalkyl, heterocycloalkyl-A₃-cycloalkyl, A₂-15 heterocycloalkyl-A₃-cycloalkyl, heterocycloalkyl-A₃-substituted cycloalkyl, A₂heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂-heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂-heterocycloalkyl-A₃heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted aryl-A₃-substituted aryl, 20 substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-cycloalkyl, substituted aryl-A₃substituted cycloalkyl, A₂-substituted aryl-A₃-substituted cycloalkyl, substituted aryl-A₃-aryl, A₂-substituted aryl-A₃-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-heteroaryl, substituted aryl-A₃-heterocycloalkyl, and A₂-substituted aryl-A₃heterocycloalkyl;

25

30

 R_6 is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, aryl, substituted aryl, A_2 -aryl, A_2 -substituted aryl, aryl- A_3 -aryl, A_2 -aryl, heteroaryl, A_2 -heteroaryl, heterocycloalkyl, A_2 -heterocycloalkyl, aryl- A_3 -cycloalkyl, A_2 -aryl- A_3 -heteroaryl, aryl- A_3 -heterocycloalkyl, A_2 -aryl- A_3 -heterocycloalkyl, carboxy,

alkoxycarbonyl, aryloxycarbonyl, -C-N R_4 R_5 R_5 , alkoxycarbonylamino,

aryloxycarbonylamino, arylcarbonylamino, -N(alkyl)(alkoxycarbonyl),

- -N(alkyl)(aryloxycarbonyl), alkylcarbonylamino, -N(alkyl)(alkylcarbonyl), or
- -N(alkyl)(arylcarbonyl);

5

m is an integer from 1 to 5;

10 N-C-O-A₃-R₇, N-
$$\stackrel{N}{\longleftarrow}$$
, N-C-N-R₄, N-C-N-N-C-R₇,

$$N-C-N \hspace{-0.5cm} \stackrel{\bigcirc }{\underset{N-C-}{\parallel}} N-C-N \hspace{-0.5cm} \stackrel{\bigcirc }{\underset{N-C-}{\parallel}} N-C-N \hspace{-0.5cm} \stackrel{\bigcirc }{\underset{N-C-}{\parallel}} \stackrel{\bigcirc }{\underset{R_7}{\parallel}} ;$$

15

20

25

 R_7 is hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, aryl, substituted aryl, A_2 -aryl, A_2 -substituted aryl, heteroaryl, A_2 -heteroaryl, heterocycloalkyl, A_2 -heterocycloalkyl, aryl- A_3 -aryl, A_2 -aryl- A_3 -aryl, aryl- A_3 -cycloalkyl, A_2 -aryl- A_3 -heteroaryl, aryl- A_3 -heterocycloalkyl, A_2 -aryl- A_3 -heterocycloalkyl, aryl- A_3 -substituted aryl, A_2 -aryl- A_3 -substituted cycloalkyl, A_2 -aryl- A_3 -substituted cycloalkyl, A_2 -aryl- A_3 -substituted cycloalkyl, cycloalkyl- A_3 -cycloalkyl, A_2 -cycloalkyl- A_3 -cycloalkyl- A_3 -heteroaryl, A_2 -cycloalkyl- A_3 -heteroaryl, cycloalkyl- A_3 -heterocycloalkyl, cycloalkyl- A_3 -substituted cycloalkyl, cycloalkyl- A_3 -substituted cycloalkyl, cycloalkyl- A_3 -substituted cycloalkyl,

cycloalkyl-A₃-substituted aryl, A₂-cycloalkyl-A₃-substituted aryl, substituted cycloalkyl-A₃-cycloalkyl, A₂-substituted cycloalkyl-A₃-cycloalkyl, substituted cycloalkyl-A₃-substituted cycloalkyl, A₂-substituted cycloalkyl-A₃-substituted cycloalkyl, substituted cycloalkyl-A₃-aryl, A₂-substituted cycloalkyl-A₃-aryl, 5 substituted cycloalkyl-A₃-heteroaryl, A₂-substituted cycloalkyl-A₃-heteroaryl, substituted cycloalkyl-A₃-heterocycloalkyl, A₂-substituted cycloalkyl-A₃heterocycloalkyl, substituted cycloalkyl-A3-substituted aryl, A2-substituted cycloalkyl- A_3 -substituted aryl, heteroaryl- A_3 -heteroaryl, A_2 -heteroaryl- A_3 -heteroaryl, heteroaryl-A₃-cycloalkyl, A₂-heteroaryl-A₃-cycloalkyl, heteroaryl-A₃-substituted cycloalkyl, A₂-10 heteroaryl-A₃-substituted cycloalkyl, heteroaryl-A₃-aryl, A₂-heteroaryl-A₃-aryl, heteroaryl-A₃-heterocycloalkyl, A₂-heteroaryl-A₃-heterocycloalkyl, heteroaryl-A₃substituted aryl, A2-heteroaryl-A3-substituted aryl, heterocycloalkyl-A3heterocycloalkyl, A2-heterocycloalkyl-A3-heterocycloalkyl, heterocycloalkyl-A3cycloalkyl, A2-heterocycloalkyl-A3-cycloalkyl, heterocycloalkyl-A3-substituted 15 cycloalkyl, A₂-heterocycloalkyl-A₃-substituted cycloalkyl, heterocycloalkyl-A₃-aryl, A₂-heterocycloalkyl-A₃-aryl, heterocycloalkyl-A₃-substituted aryl, A₂heterocycloalkyl-A₃-substituted aryl, heterocycloalkyl-A₃-heteroaryl, A₂heterocycloalkyl-A₃-heteroaryl, substituted aryl-A₃-substituted aryl, A₂-substituted aryl-A₃-substituted aryl, substituted aryl-A₃-cycloalkyl, A₂-substituted aryl-A₃-20 cycloalkyl, substituted aryl-A3-substituted cycloalkyl, A2-substituted aryl-A3substituted cycloalkyl, substituted aryl-A3-aryl, A2-substituted aryl-A3-aryl, substituted aryl-A₃-heteroaryl, A₂-substituted aryl-A₃-heteroaryl, substituted aryl-A₃-

heterocycloalkyl, A_2 -substituted aryl- A_3 -heterocycloalkyl, $-\mathbb{N}_{R_5}^{R_4}$, or

$$A_2 - N \begin{pmatrix} R_4 \\ R_5 \end{pmatrix}$$
;

25

n and o are independently one or two provided that the sum of n plus o is two or three;

v and w are independently one, two, or three provided that the sum of v plus w is three, four, or five;

R₈ is hydrogen, halo, amino, -NH(lower alkyl), -N(lower alkyl)₂, nitro, alkyl, substituted alkyl, alkoxy, hydroxy, aryl, substituted aryl, A₂-aryl, A₂-substituted aryl, aryl-A₃-aryl, A₂-aryl-A₃-aryl, cycloalkyl, substituted cycloalkyl, A₂-cycloalkyl, A₂-substituted cycloalkyl, heteroaryl, heterocycloalkyl, A₂-heteroaryl, heterocycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-cycloalkyl, aryl-A₃-heteroaryl, A₂-aryl-A₃-heterocycloalkyl;

10

5

 B_1 , B_2 and B_3 are each CH, or two of B_1 , B_2 and B_3 are CH and the other is N, or one of B_1 , B_2 and B_3 is CH and the other two are N;

R₉ is hydrogen or lower alkyl;

15

20

25

 R_{10} is alkyl, substituted alkyl, alkyl-O-alkyl, alkyl-O-alkyl-O-alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, aryl, substituted aryl, A_2 -aryl, A_2 -aryl, A_2 -aryl, heteroaryl, A_2 -heteroaryl, heterocycloalkyl, A_2 -heterocycloalkyl, aryl- A_3 -cycloalkyl, A_2 -aryl- A_3 -cycloalkyl, aryl- A_3 -heteroaryl, A_2 -aryl- A_3 -heterocycloalkyl, aryl- A_3 -heterocycloalkyl;

 R_{21} and R_{22} are the same or different and are independently selected from hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, A_2 -cycloalkyl, A_2 -substituted cycloalkyl, A_2 -aryl, and A_2 -substituted aryl;

p is an integer from 2 to 6; q is an integer from 1 to 6;

r is zero, 1 or 2;

s is 1 or 2;

t is 1, 2, 3 or 4;

5 u is 1, 2 or 3;

A₂ is an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, or an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds;

A₃ is a bond, an alkylene or a substituted alkylene bridge of 1 to 10 carbons, an alkenyl or substituted alkenyl bridge of 2 to 10 carbons having one or more double bonds, an alkynyl or substituted alkynyl bridge of 2 to 10 carbons having one or more triple bonds, $-(CH_2)_d$ $-(CH_2)_e$, $-(CH_2)_d$ $-(CH_2)_e$.

$$-(CH_2)_d$$
 N_{e-} $(CH_2)_e$ N_{e-} $(CH_2)_d$ N_{e-} $(CH_2)_d$ N_{e-} $(CH_2)_e$ N_{e-}

$$-(CH_2)_d$$
 N C N $CH_2)_e$ $-(CH_2)_d$ C N $(CH_2)_e$ $-(CH_2)_d$ R_{21}

20

10

$$-(CH_2)_d$$
 O C N $(CH_2)_e$ $-(CH_2)_d$ N C $(CH_2)_e$ $-(CH_2)_d$ R_{21}

$$-(CH_2)_d$$
 $-(CH_2)_e$ $-(CH_2)_d$ $-(CH_2)_d$ $-(CH_2)_d$ $-(CH_2)_e$;

d and e are independently selected from zero and an integer from 1 to 10 provided that the sum of d plus e is no greater than 10;

5

and an inner salt or a pharmaceutically acceptable salt thereof, a hydrolyzable ester thereof, or a solvate thereof;

- 23. The method as defined in Claim 22 for treating and/or preventing asthma or allergic rhinitis.
 - 24. The method for treating chronic asthma as defined in Claim 22 which comprises administering to a mammalian species by inhalation to the bronchioles an effective amount of said compound.