Uncertainty (Chapter 13)

July 25, 2021

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- ► Inference
- ► Independence and Bayes' Rule

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (radio/GPS traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time" ot
- 2. leads to conclusions that are too weak for decision making: " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

(A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

Default or nonmonotonic logic:

Assume my car does not have a flat tire Assume A_{25} works unless contradicted by evidence **Issues:** What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:

- ► $A_{25} \mapsto_{0.3} AtAirportOnTime$
- ▶ Sprinkler $\mapsto_{0.99}$ WetGrass
- \blacktriangleright WetGrass $\mapsto_{0.7}$ Rain

Issues: Problems with combination, e.g., *Sprinkler* causes *Rain*?? Probability

▶ Given the available evidence, A_{25} will get me there on time with probability 0.04 (Mahaviracarya (9th C.), Cardamo (1565) theory of gambling)

Methods for handling uncertainty

- ► Fuzzy logic handles *degree of truth* NOT probabilistic uncertainty e.g., *WetGrass* is true to degree 0.2
- ► Fuzzy logic handles uncertainty due to lack of definition, rather than to lack of data
 - Most human defined / natural concepts are fuzzy, in that their boundaries are not precise
 - Example: tall/short/medium height; young/old/middle age; round; cloudy; intelligent; beautiful

Probability

Probabilistic assertions summarize effects of

- ▶ laziness: failure to enumerate exceptions, qualifications, etc.
- ignorance: lack of relevant facts, initial conditions, etc.

Subjective or Bayesian probability:

- Probabilities relate propositions to one's own state of knowledge e.g., $P(A_{25}|\text{no reported accidents}) = 0.06$
- These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
- ▶ Probabilities of propositions change with new evidence: e.g., $P(A_{25}|\text{no reported accidents}, 5 \text{ a.m.}) = 0.15$ (Analogous to logical entailment status $KB \models \phi$, not truth.)

Making decisions under uncertainty

Suppose I believe the following:

```
P(A_{25} \text{ gets me there on time}|...) = 0.04

P(A_{90} \text{ gets me there on time}|...) = 0.70

P(A_{120} \text{ gets me there on time}|...) = 0.95

P(A_{1440} \text{ gets me there on time}|...) = 0.9999
```

Which action to choose?

- ▶ Depends on my preferences/tollerance for missing flight vs. airport cuisine, etc.
- Utility theory is used to represent and infer preferences
- ▶ Decision theory = utility theory + probability theory

Probability basics

- **>** Begin with a set Ω: the sample space e.g., 6 possible rolls of a die.
- lacktriangledown $\omega \in \Omega$ is a sample point/possible world/atomic event
- A probability space or probability model is a sample space with an assignment $P(\omega)$ for every $\omega \in \Omega$ s.t.

$$0 \le P(\omega) \le 1$$

$$\sum_{\omega} P(\omega) = 1$$

e.g.,
$$P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 1/6$$
.

 \blacktriangleright An event A is any subset of Ω

$$P(A) = \sum_{\{\omega \in A\}} P(\omega)$$

E.g.,
$$P(\text{die roll } < 4) = P(1) + P(2) + P(3) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$$

Random variables

- A random variable is a function from sample points to some range, e.g., the reals or Booleans e.g., Odd(1) = true.
- ▶ P induces a probability distribution for any r.v. X:

$$P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$$

e.g.,

$$P(Odd = true) = P(1) + P(3) + P(5) = 1/6 + 1/6 + 1/6 = 1/2$$

Propositions

- ► Think of a proposition as the event (set of sample points) where the proposition is true
- ▶ Given Boolean random variables A and B:
- event $a = \text{set of sample points where } A(\omega) = true$
- event $\neg a = \text{set of sample points where } A(\omega) = \text{false}$
- event $a \wedge b =$ points where $A(\omega) = true$ and $B(\omega) = true$
- Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables
- ▶ With Boolean variables, sample point = propositional logic model e.g., A = true, B = false, or $a \land \neg b$.
- Proposition = disjunction of atomic events in which it is true e.g., $(a \lor b) = (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$ $\implies P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$

Why use probability?

The definitions imply that certain logically related events must have related probabilities

E.g.,
$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Syntax for propositions

Propositional or Boolean random variables. e.g., Cavity (do I have a cavity?):

cavity (do I have a cavity:).

Cavity = true is a proposition, also written cavity

Discrete random variables (finite or infinite)

e.g., Weather is one of < sunny, rain, cloudy, snow >

Weather = rain is a proposition. Values must be exhaustive and **mutually exclusive**.

Continuous random variables (bounded or unbounded)

e.g., *Temp* = 21.6; also allow, e.g., *Temp* < 22.0

Arbitrary Boolean combinations of basic propositions

Prior probability

▶ Prior or unconditional probabilities of propositions

$$P(\text{Cavity} = \text{true}) = 0.1 \text{ and } P(\text{Weather} = \text{sunny}) = 0.72$$
 correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:

(Weather)
$$=$$
 $<$ 0.72, 0.1, 0.08, 0.1 $>$ (normalized, i.e., sums to 1)

▶ Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)

(Weather, Cavity) = a 4×2 matrix of values:

We ather =	sunny	rain	cloudy	snow
Cavity = true				
Cavity = false	0.576	0.08	0.064	0.08

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points

Probability for continuous variables

Express distribution as a parameterized function of value:

$$P(X = x) = U[18, 26](x) =$$
uniform density between 18 and 26

Here P is a density; integrates to 1.

$$P(X = 20.5) = 0.125$$
 really means

$$\lim_{dx\to 0} P(20.5 \le X \le 20.5 + dx)/dx = 0.125$$

Gaussian density

$$P(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

Conditional probability

► Conditional or posterior probabilities, e.g.,

$$P(cavity | toothache) = 0.8$$

i.e., given that toothache is all I know NOT "if toothache then 80% chance of cavity"

Notation for conditional distributions:

(Cavity |Toothache) =
$$2 \times 2$$
 matrix

Cavity/Toothache	Т	F
Т	W	Χ
F	у	Z

such that w + y = 1 and x + z = 1

► If we know more, for example, cavity is also given, then we have

$$P(cavity \mid toothache, cavity) = 1$$

► Note: the less specific belief *remains valid* after more evidence arrives, but is not always *useful*.

Conditional probability

- ▶ New evidence may be irrelevant, allowing simplification, in which case adding it does not change the belief.
 - For example, we add that Cincinnati Reds won the last game -CinciRedsWin, which is (or ought to be) irrelevant to the probability of cavity, or toothache:

```
\mathsf{P}(\mathsf{cavity} \mid \mathsf{toothache}, \, \mathsf{CinciRedsWin}) = \mathsf{P}(\mathsf{cavity} \mid \mathsf{toothache}) = 0.8
```

This kind of inference, sanctioned by domain knowledge, is crucial!!!!

Conditional probability

▶ Definition of conditional probability:

$$P(a|b) = \frac{P(a \wedge b)}{P(b)}$$
 if $P(b) \neq 0$

Product rule gives an alternative formulation:

$$P(a \wedge b) = P(a|b)P(b) = P(b|a)P(a)$$

A general version holds for whole distributions, e.g.,

$$P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)$$

(View as a 4×2 set of equations, *not* matrix mult.)

► Chain rule is derived by successive application of product rule:

$$P(X_{1},...,X_{n}) = P(X_{1},...,X_{n-1})P(X_{n}|X_{1},...,X_{n-1})$$

$$= P(X_{1},...,X_{n-2})P(X_{n-1}|X_{1},...,X_{n-2})P(X_{n}|X_{1},...,X_{n-1})$$

$$= ...$$

$$= \prod_{i=1}^{n} P(X_{i}|X_{1},...,X_{i-1})$$

► Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

 \blacktriangleright For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

$$P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega\models\phi} P(\omega)$$

$$P(cavity \lor toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28$$

Start with the joint distribution:

	toothache		¬ toothache	
	catch	¬ catch	catch	¬ catch
cavity	.108	.012	.072	.008
¬ cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

$$P(\neg cavity | toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)}$$
$$= \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

Normalization

	toothache		¬ too	¬ toothache	
	catch	¬ catcl	catch	¬ catch	
cavity	.108	.012	.072	.008	
¬ cavity	.016	.064	.144	.576	

Denominator can be viewed as a **normalization constant** k

$$P(Cavity|toothache) = kP(Cavity, toothache)$$

$$= k[P(Cavity, toothache, catch) + P(Cavity, toothache, \neg catch)]$$

$$= k[(0.108, 0.016) + (0.012, 0.064)]$$

$$= k(0.12, 0.08) = (0.6, 0.4)$$

► **General idea:** compute distribution on query variable by fixing evidence variables and summing over hidden variables

- Let X be all the variables.
- Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
- Let the hidden variables be

$$H = X \setminus Y \setminus E$$

Note: \ denotes the set difference operation: for two sets A, B, $A \setminus B = \{x \mid x \in A \& x \notin B\} = A \cap \overline{B}$. This is different from $A - B = \{x \mid x = a - b, \text{ with } a \in A \& b \in B\}$.

► Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E = e) = kP(Y, E = e)$$

= $k \sum_{h} P(Y, E = e, H = h)$

The terms in the summation are joint entries because **Y**, **E**, and **H** together exhaust the set of random variables

- **Obvious problems:**
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries???

Independence

ightharpoonup A and B are independent \iff

$$P(A|B) = P(A)$$
 or $P(B|A) = P(B)$ or $P(A,B) = P(A)P(B)$

Cavity

Toothache Catch

Weather

P(Toothache, Catch, Cavity, Weather) = P(Toothache, Catch, Cavity) P(Weather)

- ▶ 32 entries reduced to 12; for *n* independent biased coins, $2^n \rightarrow n$
- ▶ Absolute independence powerful but rare (e.g., Dentistry is a large field with hundreds of variables, none of which are independent.) What to do?

Conditional independence – 1

P(Toothache, Cavity, Catch) has $2^3 - 1 = 7$ independent entries

1. If cavity, the probability that the probe catches in it doesn't depend on toothache:

$$P(catch|toothache, cavity) = P(catch|cavity)$$

2. The same independence holds if NO cavity:

$$P(catch|toothache, \neg cavity) = P(catch|\neg cavity)$$

We say that *Catch* is conditionally independent of *Toothache* given *Cavity*:

$$P(Catch|Toothache, Cavity) = P(Catch|Cavity)$$

Equivalent statements:

$$P(Toothache|Catch, Cavity) = P(Toothache|Cavity)$$

$$P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)$$

Conditional independence - 2

Write out full joint distribution using chain rule:

$$= P(Toothache|Catch, Cavity)P(Catch, Cavity)$$

$$= P(\textit{Toothache}|\textit{Catch},\textit{Cavity})P(\textit{Catch}|\textit{Cavity})P(\textit{Cavity})$$

$$= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)$$

i.e.,
$$2 + 2 + 1 = 5$$
 independent numbers

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.

Claim: Conditional independence is the most basic and robust form of knowledge about uncertain environments.

Bayes' Rule

Product rule: $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$

$$\rightarrow$$
 Bayes' rule $P(a|b) = \frac{P(b|a)P(a)}{P(b)}$

or in distribution form

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = kP(X|Y)P(Y)$$

Useful for assessing diagnostic probability from causal probability:

$$P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)}$$

e.g., let M be meningitis, S be stiff neck:

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

Note: posterior probability of meningitis still very small!, although 8 times bigger than prior probability of meningitis.

Bayes' Rule and conditional independence

 $P(Cavity | toothache \land catch)$

 $= k P(toothache \land catch|Cavity)P(Cavity)$

= k P(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a naive Bayes model:

$$P(Cause, Effect_1, ..., Effect_n) = P(Cause) \prod_i P(Effect_i | Cause)$$

Total number of parameters is *linear* in *n*

Summary

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- ► Independence and conditional independence provide the tools