Глава 1

Интергирование

1.1

Лекция 1

14 feb

1.1.1 Формула Тейлора с остаточным членом в интегральной форме

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x),$$

где

$$T_{n,x_0}f(x) = \sum_{i=0}^n \frac{1}{i!} f^{(i)}(x) (x - x_0)^i,$$

а R_{n,x_0} — остаток.

Theorem 1.1.1 (Формула Тейлора с остатком в интегральной форме). $f \in C^{n+1}(\langle a, b \rangle), \ x, x_0 \in (a, b).$ Тогда остатков в формуле Тейлора представим в виде

$$R_{n,x_0} = \frac{1}{n!} \int_{x_0}^{x} f^{(n+1)}(t)(x-t)^n dt.$$

Доказательство. Индукция по n.

База: n=1. По формуле Ньютона-Лейбница:

$$R_{0,x_0}f(x) = f(x) - f(x_0) = \int_{x_0}^x f'(t)dt.$$

Переход: $n-1 \rightarrow n$.

$$R_{n-1,x_0}f(x) = \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(x-t)^{n-1} dt =$$

$$= \frac{1}{(n-1)!} \int_{x_0}^x f^{(n)}(t) d\left(\frac{(x-t)^n}{n}\right) =$$

$$= \underbrace{-\frac{1}{n!} f^{(n)}(t)(x-t)^n \Big|_{x_0}^x}_{\frac{(x-x_0)^n}{n!} f^{(n)}(x_0)} + \underbrace{\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt}_{R_{n,x_0}f(x)}$$

Теорема о среднем 1.1.2

Theorem 1.1.2 (Хитрая теорема о среднем). $f, g \in C[a, b], g \ge 0$. Тогда

$$\exists c \in (a,b) : \int_a^b f(x)g(x)dx = f(c) \int_a^b g(x)dx.$$

Доказательство. Найдем максимум и минимум f на [a,b].

$$m \leqslant f(x) \leqslant M$$
.

Тогда

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x).$$

Так как интеграл монотонен

$$\begin{split} m \int_a^b g(x) dx &\leqslant \int_a^b f(x) d(x) dx \leqslant M \int_a^b g(x) dx \\ m &\leqslant \frac{\int_a^b f(x) g(x) dx}{\int_a^b g(x) dx} \leqslant M. \end{split}$$

По теореме Больцано-Коши о промежуточном значении

$$\exists c \in (a,b) : f(c) = \frac{\int_a^b f(x)g(x)dx}{\int_a^b g(x)dx}.$$

Corollary. Если $|f^{(n+1)}| \leq M$, то существует понятно какая оценка сверху для $|R_{n,x_0}f(x)|$.

Theorem 1.1.3. Формула Тейлора с остатком в форме Лагранжа следует из формулы Тейлора с остатком в интегральной форме.

Доказательство. Запишем остаток в форме Лагранжа:

$$R_{n,x_0}f(x) = \frac{f^{(n+1)}(\Theta)}{(n+1)!}(x-x_0)^{n+1}, \quad \Theta$$
 лежит между x, x_0 .

По прошлой теореме 2, где $g(t) = (x-t)^n$, получаем, что

$$\frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \int_{x_0}^x (x-t)^n dt = \frac{1}{n!} \cdot f^{(n+1)}(\Theta) \cdot \left(-\frac{(x-t)^{n+1}}{n+1}\right) \Big|_{x_0}^x.$$

1.2 Приближенное вычисление интеграла

Definition 1: Дробление

Пусть $\tau = \{x_0, x_1, \dots x_n\}$, $a < x_0 < \dots < x_n < b$. Тогда τ называется **дроблением** отрезка [a, b]. Мелкость дробления $|\tau|=\max_{0\leqslant i\leqslant n-1}(x_{i+1}x_i).$ Θ называется оснащением дробления $\tau,$ если $\Theta=\{t_1,\dots t_n\}:t_j=[x_{j-1},x_j]$

Пара (τ,Θ) называется оснащенным дроблением.

Definition 2: Интегральная сумма

Если $f \in C[a,b], (\tau,\Theta)$ — оснащенное дробление отрезка [a,b], интегральной суммой называется

$$S_{\tau,\Theta}(f) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}).$$

Theorem 1.2.1. $f \in C[a,b]$. Тогда $\forall \varepsilon > 0 \ \exists \delta > 0 : \ \forall (\tau,\Theta)-$ оснащенное дробление отрезка [a,b], $|\tau| < \delta$:

$$\left| S_{\tau,\Theta}(f) - \int_a^b f(x) dx \right| \leqslant \varepsilon.$$

To ecmb $\lim_{|\tau|\to 0} = \int_a^b f(x) dx$.

Доказательство. По теореме Кантора о равномерной непрерывности

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall s,t \in [a,b] : \left(|s-t| < \delta \Longrightarrow |f(s) - f(t)| < \frac{\varepsilon}{|b-a|} \right).$$

Перепишем неравенство

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \underbrace{\int_{x_{j-1}}^{x_j} f(x) dx}_{(x_j - x_{j-1})f(c_i)} \right| \leqslant \sum_{j=1}^{n} \left| f(t_j) - f(c_j) \right| (x_j - x_{j-1}) \leqslant \frac{\varepsilon}{|b - a|} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon.$$

1.3 Приближенное вычисление интеграла

Definition 3: Дробление

Пусть $\tau = \{x_0, \dots, x_n\}, \ a < x_0 < \dots < x_n < b.$ Тогда τ называется дроблением отрезка [a, b]. Мелкость дробления —

$$|\tau| = \max_{0 \le i \le n-1} (x_{i+1} - x_i).$$

Оснащение дробления —

$$\theta = \{t_1, \dots t_n\}, \quad t_j \in [x_{j-1}, x_j].$$

Оснащенное дробление — пара (τ, Θ)

Definition 4

 $f\in C[a,b],\,(\Theta,\tau)$ — оснащенное дробление отрезка [a,b]. Тогда

$$S_{\tau,\Theta}(f) = \sum_{j=1}^{n} f(t_j)(x_j - x_{j+1})$$

называется интегральной суммой.

Theorem 1.3.1. $f \in C[a,b]$. Тогда $\forall \varepsilon > 0 \ \exists \delta > 0$ такие, что для любого оснащенного дробления (τ,Θ) отрезка $[a,b], \ |\tau| < \delta$:

$$\left| S_{\tau,\Theta}(t) - \int_a^b f(x) dx \right| \leqslant \varepsilon.$$

То есть

$$\lim_{|\tau|\to 0} S_{\tau,\Theta} \to \int_a^b f(x) dx.$$

Доказательство. По теореме Канторая о равномерной непрерывности $\forall \varepsilon > 0 \ \exists \delta > 0 \colon \left(\forall s, t \in [a,b], |s-t| < S \Longrightarrow |f(s)-f(t)| < \frac{\varepsilon}{|b-a|} \right).$

$$\left| \sum_{j=1}^{n} f(t_j)(x_j - x_{j-1}) - \sum_{j=1}^{n} \int_{x_{j-1}}^{x_j} f(x) dx \right| \le$$

$$\le \left| \sum_{j=1}^{n} |f(t_j) - f(r_j)| (x_j - x_{j-1}) \right| \le$$

$$\le \frac{\varepsilon}{b - a} \sum_{j=1}^{n} (x_j - x_{j-1}) = \varepsilon$$

Здесь $t_j, r_j \in [x_j, x_{j-1}].$