Лабораторная работа №8 «Граф состояний СМО. Уравнение Колмогорова»

Цель работы: ознакомиться с понятием и принципами построения графа состояний системы массового обслуживания (СМО), способами определения вероятностей нахождения системы в том или ином состоянии.

Порядок выполнения лабораторной работы:

1. Ознакомиться с разновидностями потоков событий в СМО, понятием и принципом построения графа состояний системы, способами вычисления вероятностей состояния СМО на основе системы уравнений Колмогорова.

Рекомендуемый источник (с. 18 – 33):

Солнышкина И.В., Теория систем массового обслуживания : учебное пособие /И.В. Солнышкина. – Комсомольск-на-Амуре: ФГБОК «КнАГТУ», 2015. – 76 с.

- 2. Изучить пример решения задач по определению вероятностных характеристик функционирования СМО
- 3. Решить задачи согласно варианту задания:

Задача 1.

Работу кассового аппарата в узле расчета магазина можно описать следующими состояниями:

 S_0 – устройство полностью исправно;

 S_1 – имеются незначительные неисправности, позволяющие работать;

 S_2 – устройство сломано, требуется ремонт,

 S_3 – устройство списано, ремонту не подлежит.

Значения переходных вероятностей из одного состояния в другое представлены в следующей таблице:

№ Варианта	P ₀₁	P ₀₂	P ₀₃	P ₁₀	P ₁₂	P ₁₃	P ₂₀	P ₂₃
1	0,3	0,2	0,4	0,1	0,3	0,2	0,3	0,4
2	0,6	0,2	0,1	0,2	0,2	0,6	0,1	0,4
3	0,5	0,1	0,2	0,1	0,4	0,1	0,6	0,3
4	0,4	0,4	0,1	0,4	0,2	0,1	0,4	0,5
5	0,1	0,5	0,2	0,2	0,3	0,1	0,5	0,4
6	0,3	0,3	0,1	0,1	0,4	0,2	0,2	0,1
7	0,6	0,1	0,2	0,1	0,3	0,2	0,2	0,4
8	0,1	0,2	0,4	0,4	0,1	0,3	0,5	0,1
9	0,2	0,1	0,5	0,4	0,3	0,2	0,6	0,1
10	0,4	0,3	0,1	0,4	0,2	0,1	0,4	0,5
11	0,4	0,2	0,3	0,2	0,4	0,3	0,1	0,7

Математическое моделирование: Мельникова В.А.

12	0,1	0,7	0,1	0,1	0,2	0,2	0,3	0,6
13	0,2	0,2	0,1	0,2	0,3	0,1	0,4	0,1
14	0,2	0,1	0,3	0,1	0,1	0,3	0,4	0,5
15	0,4	0,1	0,4	0,2	0,1	0,2	0,3	0,4
16	0,2	0,3	0,1	0,2	0,3	0,1	0,2	0,4
17	0,5	0,2	0,2	0,2	0,3	0,2	0,4	0,5
18	0,1	0,6	0,1	0,4	0,1	0,1	0,1	0,5
19	0,4	0,3	0,2	0,3	0,3	0,1	0,1	0,6
20	0,3	0,3	0,1	0,2	0,3	0,3	0,3	0,3

Найдите вероятности задержки в каждом состоянии, постройте размеченный граф и матрицу переходных вероятностей.

Задача 2.

Кредитный отдел коммерческого банка состоит из двух рабочих мест. В течении рабочего дня работа отдела может быть описана следующими состояниями:

 S_0 – оба кредитных эксперта свободны;

 S_1 – один кредитный эксперт занят выдачей кредита (любой из двух);

 S_2 – оба кредитных эксперта заняты.

Найти предельные вероятности p_0, p_1 , p_2 при следующих исходных данных, представленных в таблице:

№ Варианта	μ_0	λ_0	μ_1	λ_1
	(кл./мин)	(кл./мин)	(кл./мин)	(кл./мин)
1	0,6	0,3	0,5	0,7
2	0,7	0,5	0,1	0,5
3	0,7	0,8	0,6	0,7
4	0,5	0,8	0,9	0,8
5	1	0,9	0,1	0,8
6	0,3	0,8	0,3	0,7
7	0,9	0,1	0,1	0,7
8	0,5	0,2	0,1	0,9
9	0,9	0,2	0,8	1
10	0,6	0,9	0,2	1
11	0,5	1	0,6	0,3
12	0,7	0,9	0,8	0,1
13	0,5	0,8	0,8	0,5
14	0,4	0,1	0,9	0,7
15	0,3	0,6	0,6	0,7
16	0,6	0,6	0,9	0,3
17	0,6	1	1	0,9
18	0,5	0,5	0,3	0,8
19	0,3	1	0,6	0,2

Сделайте вывод о работе кредитного отдела банка.