Data Wrangling in Python

Erasmus Q-Intelligence B.V.

Data Science and Business Analytics Programming

Introduction

Introduction

Data Wrangling is needed since

- \longrightarrow Data is often in a messy format
- \longrightarrow Data is often not readily usable for analysis and plotting

Data Wrangling often takes a considerable amount of time!

Content

- 1 Introduction
- 2 Software requirements
- 3 Data transformation with pandas
 - query()
 - sort_values()
 - filter()
 - assign()
 - agg() and groupby()
- 4 (Intermezzo) Pipes
- 5 Data transformation (part 2)
 - Efficient coding
- 6 Joining dataframes
- 7 Data transformation
 - melt() and pivot()
- 8 Conclusion

References to Book

- Chapter 3
- Chapter 9

Online (https://r4ds.had.co.nz/)

- Chapter 5
- Chapter 12

Software requirements

Software requirements

import pandas as pd

 \longrightarrow Pandas and numpy contain the functions we primarily use in this lecture

Data set

Flight information of airports in New York in 2013

```
flights = pd.read_csv("flights.csv")
flights
```

```
        Unmained:
0
        year
        month
        day
        dep_time
        sched_dep_time
        dep_delay
        arr_time
        sched_arr_time

        0
        1
        2013
        1
        1
        517.0
        515
        2.0
        830.0
        819

        1
        2
        2013
        1
        1
        533.0
        529
        4.0
        850.0
        830

        2
        3
        2013
        1
        1
        542.0
        540
        2.0
        923.0
        850

        3
        4
        2013
        1
        1
        544.0
        545
        -1.0
        1004.0
        1022

        4
        5
        2013
        1
        1
        554.0
        600
        -8.0
        812.0
        837
```


Data transformation with pandas

Five basic functions

The 5 most common functions in the Pandas-package:

- → query(): filter observations (rows) based on content
- → sort_values(): arrange observations (rows)
- —> filter() and loc(): select variables (columns) based on
 names
- → assign(): mutate or add new variables (columns)
- \longrightarrow agg(): aggregate functions over subsets of the data

Combined with groupby(), these functions can also be evaluated on groups in the data

For example, find the average dep_delay for each day in the data set (data should be grouped by day and month)

query()

Example: Find all flights on March 13th

	Unnamed: 0	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
147375	147376	2013	3	13	103.0	2355	68.0	457.0	340
147376	147377	2013	3	13	458.0	500	-2.0	648.0	648
147377	147378	2013	3	13	515.0	515	0.0	805.0	810
147378	147379	2013	3	13	525.0	530	-5.0	821.0	827
147379	147380	2013	3	13	541.0	545	-4.0	920.0	923

query() (2)

On the previous slide, we used the Boolean-notation &

- \longrightarrow &: 'and' both condition should be TRUE to be selected
- → I: 'or' any condition should be TRUE to be selected
- → !: 'not' condition should be FALSE to be selected

query() (3)

Can also be used to check if a value is within a range

Example: Find all flights in the 4th quarter

```
flights_q4 = flights.query("month >= 10 & month <= 12")
```

In a first data analysis, you often want to find all observations with missings:

```
flights_no_dep_time = flights.query("dep_time.isnull()")
```

Exercises

Download and open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.1

sort_values()

Example: Arrange flights by dep_delay

flights_arranged = flights.sort_values('dep_delay')

	Unnamed: 0	year	month	day	dep_time	sched_dep_time	dep_delay	arr_time	sched_arr_time
89673	89674	2013	12	7	2040.0	2123	-43.0	40.0	2352
113633	113634	2013	2	3	2022.0	2055	-33.0	2240.0	2338
64501	64502	2013	11	10	1408.0	1440	-32.0	1549.0	1559
9619	9620	2013	1	11	1900.0	1930	-30.0	2233.0	2243
24915	24916	2013	1	29	1703.0	1730	-27.0	1947.0	1957

sort_values() (2)

If you want to arrange in descending order, use ascending=0

Example: Arrange flights by dep_delay, in descending order

→ Missing values (NaN) are always put last

Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.2

filter()

Example: Select columns carrier, origin, dest, dep_delay, arr_delay from flights

	carrier	origin	dest	dep_delay	arr_delay
0	UA	EWR	IAH	2.0	11.0
1	UA	LGA	IAH	4.0	20.0
2	AA	JFK	MIA	2.0	33.0
3	B6	JFK	BQN	-1.0	-18.0
4	DL	LGA	ATL	-6.0	-25.0

filter() (2)

You can select a range of columns by using loc() and ':'

```
flights_selection = flights.loc[:, 'carrier':'dest']
```

Or specify which you don't want to select with '!='

Columns can reordered by setting the order as follows

Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.3


```
assign()
```

Example: Create a column giving the gain in delay, and a column giving the gain per minute

```
flights_selection = flights.loc[:, 'year':'air_time']
flights_gain = flights_selection.assign(gain =
    flights_selection['dep_delay']-
      flights_selection['arr_delay'])
flights_gain = flights_gain.assign(gain_per_minute =
    flights_gain['gain']/flights_selection['air_time'])
                         dep time sched dep time dep delay arr time \
                                  540
                          544.0
                                  545
```


assign() (2)

- $\longrightarrow\,$ the second assign can use the first assign
- \longrightarrow any function can be used, as long as the function results in a vector with the same length as the original data.frame

```
flights_gain = flights_gain.assign(gain_per_hour =
    flights_gain['gain_per_minute']*60)

flights_gain = flights_gain.assign(cul_gain =
    flights_gain['gain_per_hour'].expanding().mean())
```


Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.4

mean()

Example: Get the mean of dep_delay

flights_summary = flights['dep_delay'].mean()

12.639070257304708

Not so interesting. Better: Get the mean of dep_delay by day

groupby()

Example: Get the mean of dep_delay by day

```
flights_grouped = flights.groupby(['month', 'day'])
flights_summary = flights_grouped.dep_delay.mean()
```


agg() and groupby()

Helpful functions for describing variables (by group using groupby()):

- mean(), median(), std(): average, median or standard
 deviation of observations
- quantile(): quantile of distribution
- --> count(), isna().sum(): number of observations, and number of missings

agg() and groupby() (2)

```
flights_summary = flights_grouped.agg(
  delay = ('dep_delay', 'mean'),
  first_delay = ('dep_delay', 'first'),
  nr_flights = ('dep_delay', len))
```

		delay	first_delay	nr_flights
month	day			
1	1	11.548926	2.0	842
	2	13.858824	43.0	943
	3	10.987832	33.0	914
	4	8.951595	26.0	915
	5	5.732218	15.0	720

Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.5

groupby(), query() and assign()

Various functions can also be used together with groupby

Example: Find, for each day, the 9 most delayed flights

```
flights_most_delay = flights.sort_values(
   'arr_delay',ascending=False)
   .groupby(['month','days']).head(9)
```


groupby(), query() and assign()

assign() and query() can also be used together with groupby

Example: Calculate, by destination, how much a flight adds to the total delay

```
flights_delays = flights.query("arr_delay > 0")
flights_delays = flights_delays.assign(
    prop_delay = flights_delays['arr_delay']/
    sum(flights_delays['arr_delay']))
flights_delays.groupby('dest')
```

sum(flights_delays['arr_delay']) is the sum over all positive
delays, for that destination

(Intermezzo) Pipes

Pipes

Having to save every step to a data.frame in your environment is not very efficient

→ 'In between'-results are not of interest

Therefore, use pipes (adding functions after another) instead

Pipes (2)

You do not have to repeat the data you work with and do not have to save every 'In between'-result!

— Especially useful if many transformations (query(), loc(),
 assign(), agg()) have to be done

Example: What does this code do?

```
flights_gains = (flights
      .query("month == 3 & day == 13")
      .filter(['carrier', 'origin', 'dest',
                'dep_delay', 'arr_delay'])
      .assign(gain = flights.dep_delay -
                      flights.arr_delay)
      .groupby('dest')
      .agg(mean_gain = ('gain', 'mean'),
           max_gain = ('gain', 'max'),
           nr_flights.= ('gain', len))
```


Pipes (3)

	mean_gain	max_gain	nr_flights
dest			
ALB	8.500000	11.0	2
ATL	3.060000	21.0	50
AUS	14.818182	31.0	11
BDL	13.000000	22.0	2
внм	-1.000000	-1.0	1

Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.6 and 1.7

Data transformation (part 2)

Efficient coding

Applying the same function to a set of columns of the data frame

Having to copy the same code (i.e. the 'mean' function) is not very efficient.

Better to first retrieve the desired columns from the groupby object and then call the mean function only once.

Efficient coding (2)

Example: Find the average for dep_delay , arr_delay and air_time

Efficient coding (3)

Several functions can be used for extracting columns

→ str.startswith(): ... to all columns that start with...

→ str.isalpha(): ... to all alphabetic columns

Efficient coding (4)

Example Find the number of distinct values for all alphabetic columns in flights

```
carrier 16
tailnum 4043
origin 3
dest 105
time_hour 6936
dtype: int64
```


Efficient coding (5)

Several function inputs can be used together, e.g. mean and median

Example Find the mean and median, by day, for dep_delay, arr_delay and air_time

Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercise 1.8

Joining dataframes

Relational data

Often, a dataset from a database consists of multiple separate data

frames

 \longrightarrow To combine these tables, we use joins and merges from panda

In the nycflights13-dataset, we have several data.frames

- \longrightarrow flights
- \longrightarrow airlines
- \longrightarrow airports
- \longrightarrow planes
- \longrightarrow weather

Relational data (2)

The relation between the data frames works with a key

→ A variable (column) which has unique elements and connects two dataframes

Example: With tailnum, planes and flights can be joined.

Inner-join

Add columns of dataframe together based on the key

With inner_join, keep only rows of which the key is in both dataframes

Full-join

Add columns of dataframe together based on the key With full_join, keep all rows from both dataframes and join by key

 \longrightarrow If the value of key is not in the other dataframe, NA is added (Not Available)

Left-join

Add columns of dataframe together based on the key
With left_join, keep all rows from the first dataframe and match
observations with same key from the second dataframe

key	val_x	val_y
1	x1	у1
2	x2	y2
2	x2	у3
2	х3	y2
2	х3	у3
3	x4	y4

Example

Example (2)

```
print(flights_select.head(5))
```

```
day tailnum flight carrier origin dest
                                                    dep time
                                                              arr time
2013
               1 N14228
                           1545
                                           EWR TAH
                                                       517.0
                                                                 830.0
2013
               1 N24211
                            1714
                                           I GA
                                              TAH
                                                       533.0
                                                                 850.0
2013
             1 N619AA
                            1141
                                          JFK MIA
                                                       542.0
                                                                 923.0
                                     AA
2013
                           725
                                               BON
                                                       544.0
               1 N804JB
                                     B6
                                           JFK
                                                                1004.0
2013
               1 N668DN
                            461
                                           LGA ATL
                                                       554.0
                                                                812.0
                                     DL
```


Example (3)

```
planes = pd.read_csv("planes.csv")
print(planes.head(5))
```


Example (4)

```
print(flights_planes.head())
```

```
year_x month day tailnum flight carrier origin dest dep_time
0 2013 1 1 M1228 1545 UA EBR 1M 517.0
1 2013 1 1 N24211 1714 UA LGA IAH 533.0
2 2013 1 1 N619AA 1141 AA JFK MIA 542.0
3 2013 1 1 N8041B 725 B6 JFK BGN 544.0
4 2013 1 1 N806BN 461 DL LGA ATL 554.0
```


Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercise 1.9

Data transformation

Data is tidy if

- Every variable has its own
- columnry observations has its own
- row Every value has its own cell

	Unnamed:	0	country	year	cases	population
0		1	Afghanistan	1999	745	19987071
1		2	Afghanistan	2000	2666	20595360
2		3	Brazil	1999	37737	172006362
3		4	Brazil	2000	80488	174504898
4		5	China	1999	212258	1272915272
5		6	China	2000	213766	1280428583

Data is tidy, since all variables and observations have their own columns and rows

	Unnamed:	0	country	year	type	count
0		1	Afghanistan	1999	cases	745
1		2	Afghanistan	1999	population	19987071
2		3	Afghanistan	2000	cases	2666
3		4	Afghanistan	2000	population	20595360
4		5	Brazil	1999	cases	37737
5		6	Brazil	1999	population	172006362
6		7	Brazil	2000	cases	80488
7		8	Brazil	2000	population	174504898
8		9	China	1999	cases	212258
9	:	10	China	1999	population	1272915272
10	:	11	China	2000	cases	213766
11	:	12	China	2000	population	1280428583

Data is untidy, since variables cases and population are together in one column

Data is tidy if

- Every variable has its own column
- Every observations has its own row
- Every value has its own cell

Tidy data is

- consistently saved
- easier to manipulate

Often, you will need untidy data to present your data in plots or tables

Gather data spread over columns

Often, a variable is spread over more than one column:

	Unnamed:	0	country	1999	2000
0		1	Afghanistan	745	2666
1		2	Brazil	37737	80488
2		3	China	212258	213766

Columns '2019' and '2020' are actually values of the variable year

Gather data spread over columns

Use the function pd.melt to transform the dataframe to a long format with two non-identifier columns: 'variable' and 'value'.

Function arguments:

- data dataframe to be used
- id_vars column(s) to use as identifier variables
- value_vars column(s) to unpivot. If not specified, uses all columns that are not set as id vars.
- var_name name to use for the 'variable' column.
- value_name name to use for the 'value' column.

Gather data spread over columns

	country	year	cases
0	Afghanistan	1999	745
1	Brazil	1999	37737
2	China	1999	212258
3	Afghanistan	2000	2666
4	Brazil	2000	80488
5	China	2000	213766

Spread data gathered in column

Often, more than one variable is gathered in one column:

	Unnamed:	0	country	year	type	count
0		1	Afghanistan	1999	cases	745
1		2	Afghanistan	1999	population	19987071
2		3	Afghanistan	2000	cases	2666
3		4	Afghanistan	2000	population	20595360
4		5	Brazil	1999	cases	37737
5		6	Brazil	1999	population	172006362
6		7	Brazil	2000	cases	80488
7		8	Brazil	2000	population	174504898
8		9	China	1999	cases	212258
9		10	China	1999	population	1272915272
10		11	China	2000	cases	213766
11		12	China	2000	population	1280428583

cases and population are actually separate variables, gathered in column type

Spread data gathered in column

Use the function pivot:

```
table_spread = pd.pivot(table2,
  index = ['country', 'year'],
  columns='type', values='count')
```

Function arguments:

- data dataframe to be used
- index column(s) to use to make new frame's index
- columns column(s) with the new spread out column names
- values column(s) with the values for the new spread out columns

Spread data gathered in column

	cases	population
year		
1999	745	19987071
2000	2666	20595360
1999	37737	172006362
2000	80488	174504898
1999	212258	1272915272
2000	213766	1280428583
	1999 2000 1999 2000 1999	year 1999 745 2000 2666 1999 37737 2000 80488 1999 212258

Exercises

Open the *Data_Wrangling_Exercises.pdf* file from Canvas, and do Exercises 1.10 and 1.11

Conclusion

Conclusion

- → Data is often in a messy format
- → Data is often not readily usable for analysis and plotting
- pandas has handy functions to wrangle your data to make it usable
 - \longrightarrow filter, loc and query to get subsets of the data
 - assign, sort_values, agg and groupby to manipulate your data

Data Wrangling often takes a considerable amount of time!

