ADM Kontrol Devresinin Gerçeklenmesi

BIL-204: Lojik Devreler II

Dersi veren öğretim üyesi:

Yrd. Doç. Dr. Fatih Gökçe

Süleyman Demirel Üniversitesi Mühendislik Fakültesi Bilgisayar Mühendisliği Bölümü

Tasarım Örneği için ADM Diyagramı

Geçtiğimiz ders verdiğimiz sözel ifadelerden aşağıdaki ADM diyagramını elde etmiş ve veri işleyicisi kısmını tasarlamıştık. Bugün Kontrol Devresini farklı yaklaşımlarla gerçekleştireceğiz.

Durum Tablosu

Şimdiki Durum Sembolü	Şimdiki Durum		Girişler		Sonraki Durum		Çıkışlar			
Sembolu	<i>G</i> ₁	G ₂	5	A ₃	A ₄	<i>G</i> ₁	<i>G</i> ₂	T _o	T ₁	T ₂
T _o	0	0	0	X	X	0	0	1	0	0
T_o	0	0	1	X	X	0	1	1	0	0
T ₁	0	1	X	0	X	0	1	0	1	0
T ₁	0	1	X	1	0	0	1	0	1	0
T ₁	0	1	X	1	1	1	1	0	1	0
T ₂	1	1	X	×	×	0	0	0	0	1

JK Flip-Floplu Lojik Diyagram

- □ Flip-Flop girişleri için uyarma tablosunun elde edilmesi ve ardışıl devrenin kombinasyonel devre kısmının basitleştirilmesi gerekir.
- Şimdiki durum ve Girişler toplam 5 sütün olduğu için 5 değişkenli diyagram kullanarak sadeleştirme gerekecektir.

Şimdiki Durum Sembolü	Şimdiki Durum		Girişler		Sonraki Durum		Çıkışlar			
Sembora	<i>G</i> ₁	G ₂	5	A ₃	A ₄	G_1	G ₂	T _o	T ₁	T ₂
T_0	0	0	0	X	X	0	0	1	0	0
T_0	0	0	1	X	X	0	1	1	0	0
T_1	0	1	X	0	X	0	1	0	1	0
T ₁	0	1	X	1	0	0	1	0	1	0
T ₁	0	1	X	1	1	1	1	0	1	0
T ₂	1	1	X	X	X	0	0	0	0	1

$$JG_1 = G_2A_3A_4$$

 $KG_1 = 1$
 $JG_2 = S$
 $KG_2 = G_1$
 $T_0 = G'_2$
 $T_1 = G'_1G_2$
 $T_2 = G_1$

JK Flip-Floplu Lojik Diyagram

- Flip-Flop girişleri için uyarma tablosunun elde edilmesi ve ardışıl devrenin kombinasyonel devre kısmının basitleştirilmesi gerekir.
- Şimdiki durum ve Girişler toplam 5 sütün olduğu için 5 değişkenli diyagram kullanarak sadeleştirme gerekecektir.

$$JG_1 = G_2 A_3 A_4$$
$$KG_1 = 1$$

$$JG_2 = S$$
$$KG_2 = G_1$$

$$T_0 = G'_2$$

 $T_1 = G'_1 G_2$
 $T_2 = G_1$

D Flip-Flopları ve Kod Çözücü

□ D Flip-flop kullanılması durumunda uyarma tablosuna gerek olmaz; sonraki durum doğrudan flip-flop girişleri olarak kullanılabilir.

Şimdiki Durum Sembolü	Şimdiki Durum		Girişler		Sonraki Durum		Çıkışlar			
Sembola	<i>G</i> ₁	G ₂	5	A ₃	A ₄	<i>G</i> ₁	<i>G</i> ₂	T _o	T ₁	T ₂
T_0	0	0	0	X	X	0	0	1	0	0
T_0	0	0	1	X	X	0	1	1	0	0
T_1	0	1	X	0	X	0	1	0	1	0
T_1	0	1	X	1	0	0	1	0	1	0
T_1	0	1	X	1	1	1	1	0	1	0
T ₂	1	1	X	X	X	0	0	0	0	1

$$DG_{1} = G'_{1}G_{2}A_{3}A_{4}$$

$$DG_{2} = G'_{1}G'_{2}S + G'_{1}G_{2}$$

D Flip-Flopları ve Kod Çözücü

 T_0 , T_1 ve T_2 çıkışlarını elde etmek için flip-flop çıkışlarına bir kod çözücü bağlanacaktır. Bu durumda flip-flop çıkışlarını mevcut durum koşulları şeklinde kullanmak yerine, kod çözücü çıkışlarını kullanabiliriz.

Şimdiki Durum Sembolü	Şimdiki Durum		Girişler		Sonraki Durum		Çıkışlar			
Sembolu	<i>G</i> ₁	G ₂	5	A ₃	A ₄	<i>G</i> ₁	G ₂	T _o	T ₁	T ₂
T _o	0	0	0	X	X	0	0	1	0	0
T_o	0	0	1	X	X	0	1	1	0	0
T ₁	0	1	X	0	X	0		0	1	0
T ₁	0	1	X	1	0	0	1	0	1	0
T ₁	0	1	X	1	1	1	1	0	1	0
T ₂	1	1	X	X	X	0	0	0	0	1

$$DG_{1} = G'_{1}G_{2}A_{3}A_{4}$$

$$DG_{2} = G'_{1}G'_{2}S + G'_{1}G_{2}$$

$$DG_{1} = T_{1}A_{3}A_{4}$$

$$DG_{2} = T_{0}S + T_{1}$$

$$DG_1 = T_1 A_3 A_4$$
$$DG_2 = T_0 S + T_1$$

D Flip-Flopları ve Kod Çözücü (Decoder)

T₀, T₁ ve T₂ çıkışlarını elde etmek için flip-flop çıkışlarına bir kod çözücü bağlanacaktır. Bu durumda flip-flop çıkışlarını mevcut durum koşulları şeklinde kullanmak yerine, kod çözücü çıkışlarını kullanabiliriz.

Durum Başına Bir Flip-Flop

 Durum veya uyarma tablosuna gerek duymadan, doğrudan durum diyagramından yararlanılır.

$$DT_0 = T_2 + S'T_0$$

$$DT_1 = ST_0 + A_3'T_1 + A_3A_4'T_1$$

$$= ST_0 + (A_3A_4)'T_1$$

$$DT_2 = A_3A_4T_1$$

Durum Başına Bir Flip-Flop

 Durum veya uyarma tablosuna gerek duymadan, doğrudan durum diyagramından yararlanılır.

$$DT_0 = T_2 + S'T_0$$

$$DT_1 = ST_0 + A_3'T_1 + A_3A_4'T_1$$

$$= ST_0 + (A_3A_4)'T_1$$

$$DT_2 = A_3A_4T_1$$

- Bu kısımda sadece kontrol devresiyle ilgileneceğimiz için durum kutuları boş bırakılmıştır.
- 4 kontrol girişi: w, x, y, z
- 4 Durum: T_0 - $T_3 \rightarrow 2$ flip-flop.

- 2 D flip-flop durumu kodlar.
- Durum, kod çözücü ile çözülerek T₀-T₃ elde edilir.
- Şimdiki durum bir sonraki durumu seçmeyi sağlar.
- Peki, MUX girişlerini nasıl belirleyeceğiz?

Şimdiki Durum		Sonraki Durum		Giriş Koşulları	Veri Seçici Girişleri		
<i>G</i> ₁	G ₂	<i>G</i> ₁	G ₂		MUX1	MUX2	
0	0	0	0	w'	0	w	
0	0	0	1	w			
0	1	1	0	×	1	x'	
0	1	1	1	x'			
1	0	0	0	y'	yz'+yz =	yz	
1	0	1	0	yz'	У		
1	0	1	1	yz			
1	1	0	1	y'z	y+y'z'	y'z+y'z'	
1	1	1	0	У	= y+z'	= y'	
1	1	1	1	y'z'			

Veri Seçici Girişleri							
MUX1	MUX2						
0	w						
1	x'						
yz'+yz = Y	yz						
y+y'z' = y+z'	y'z+y'z' = y'						

Tasarım Örneği: 1'lerin sayısı

- Sistem 2 register (R1 ve R2) ile bir flip-floptan (E) oluşur.
- Sistem R1'e yüklenen ikili sayıdaki 1'lerin sayısını sayar ve bu sayıyı R2'de tutar.
- R1'den E flip-flobuna 1 bit kaydır.
- Eğer E == 1 ise R2++
- Eğer Z == 1 (Yani R1 == 0 ise) ise dur.
- İlk durumda R2 tamamıyla 1'lere set edilmiştir. Niçin?

Tasarım Örneği: 1'lerin sayısı (Bu slaytta

şekildeki ifadeler Türkçeleştirilmiştir.)

- Sistem 2 register (R1 ve R2) ile bir flip-floptan (E) oluşur.
- Sistem R1'e yüklenen ikili sayıdaki 1'lerin sayısını sayar ve bu sayıyı R2'de tutar.
- R1'den E flip-flobuna 1 bit kaydır.
- Eğer E == 1 ise R2++
- Eğer Z == 1 (Yani R1 == 0 ise) ise dur.
- İlk durumda R2 tamamıyla 1'lere set edilmiştir. Niçin?

Tasarım Örneği: 1'lerin sayısı Veri işleyici

Tasarım Örneği: 1'lerin sayısı Veri islevici (Bu slavtta sakillerdeki ifadələr Türkçələr

Veri işleyici (Bu slaytta şekillerdeki ifadeler Türkçeleştirilmiştir.)

4 Bitlik Paralel Yüklemeli İki Yönlü Ötelemeli Kaydedici

Mod Kontrol		
S_1	s_0	Yazıcının İşlevi
0	0	Değişim yok
0	1	Sağa öteleme
1	0	Sola öteleme
1	1	Paralel yükleme

4 Bitlik Paralel Yüklemeli İki Yönlü Ötelemeli Kaydedici

4 Bitlik Paralel Yüklemeli Senkron Sayıcı (PYSS)

Sıfırlama	CP	Yükleme	Sayma	Fonksiyon
0	X	X	X	Sıfırlanır (0)
1	X	0	0	Değişim yok
1	1	1	X	Girişler yüklenir
1	1	0	1	Sonraki ikili durumu sayar

Paralel Yüklemeli Senkron Sayıcı (PYSS) kullanarak tasarımlar

Tasarım Örneği: 1'lerin sayısı Veri Seçici Girişleri

	Şimdiki Durum		raki rum	Giriş Koşulları	Veri Seçici Girişleri	
<i>G</i> 1	G2	G1	G2		MUX1	MUX2
0	0	0	0	5'	0	5
0	0	0	1	5		
0	1	0	0	Z	Z'	0
0	1	1	0	Z'		
1	0	1	1	Yok	1	1
1	1	0	1	E	E'	Е
1	1	1	0	E'		

Tasarım Örneği: 1'lerin sayısı Veri Seçici ile Kontrol Lojiği Tasarımı

