Specialist Mathematics Trial Exam 1 Solutions 2007 Free download and print from www.itute.com Do not photocopy ©Copyright 2007 itute.com

Q1a
$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$
, $x, y \in R$.

Implicit differentiation, $\frac{2x}{3} - y \frac{dy}{dr} = 0$, $\therefore \frac{dy}{dr} = \frac{2x}{3y}$

Q1b
$$\frac{dy}{dx} = -1$$
, $\therefore \frac{2x}{3y} = -1$, $\therefore y = -\frac{2x}{3}$

Since
$$\frac{x^2}{3} - \frac{y^2}{2} = 1$$
, $\therefore \frac{x^2}{3} - \frac{\left(-\frac{2x}{3}\right)^2}{2} = 1$, $\frac{x^2}{3} - \frac{2x^2}{9} = 1$, $\frac{x^2}{9} = 1$, $\therefore x = \pm 3$ and $y = \pm 2$. $\therefore (3, -2)$ or $(-3, 2)$.

Q2a
$$a = 12i - 5j$$
, resultant force $R = ma = 24i - 10j$.
 $|R| = \sqrt{24^2 + (-10)^2} = 26 \text{ N}$.

Direction: At $\theta = \tan^{-1} \left(\frac{-10}{24} \right) = \tan^{-1} \left(\frac{-5}{12} \right)$ with i.

Q2b At
$$t = 0$$
, velocity $v = 0$. $\therefore v = \int 12 i - 5j dt = 12ti - 5tj$.

At t = 2, displacement $s = \int_{0}^{2} 12t \, \boldsymbol{i} - 5t \, \boldsymbol{j} \, dt = [6t^{2} \, \boldsymbol{i} - 2.5t^{2} \, \boldsymbol{j}]_{0}^{2}$ = 24i - 10j.

Q3a
$$r(t) = 2ti - (5t + 1)j + 2k, v = \frac{d}{dt}r(t) = 2i - 5j.$$

Velocity v is constant, \therefore the particle moves in a straight line.

Q3b Speed =
$$|v| = \sqrt{2^2 + (-5)^2} = \sqrt{29}$$

Q4 Let
$$u = \log_{e}(2x)$$
, $\frac{du}{dx} = \frac{1}{x}$.

$$x \frac{dy}{dx} - \log_{e}(2x) = 0, \quad \frac{dy}{dx} = \frac{\log_{e}(2x)}{x},$$

$$y = \int \frac{\log_{e}(2x)}{x} dx = \int u \frac{du}{dx} dx = \int u du = \frac{1}{2}u^{2} + c = \frac{1}{2}(\log_{e}(2x))^{2} + c$$

$$= \int_{-1}^{3} \frac{10\sqrt{3}}{x^{2} - 4x + 7} dx = 10 \int_{-1}^{3} \frac{\sqrt{3}}{3 + (x - 2)^{2}} dx = 10 \left[\tan^{-1}\left(\frac{x - 2}{\sqrt{3}}\right) \right]_{-1}^{3}$$
Since $f\left(\frac{1}{2}\right) = 0$, $\therefore c = 0$, $\therefore y = \frac{1}{2}(\log_{e}(2x))^{2}$.
$$= 10 \left[\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) - \tan^{-1}\left(-\sqrt{3}\right) \right] = 10 \left(\frac{\pi}{6} + \frac{\pi}{3}\right) = 5\pi$$
.

Q5a
$$T_{CD} = 5g = 5 \times 9.8 = 49 \text{ N}$$

Q5b
$$\frac{T_{BC}}{T_{CD}} = \frac{0.6}{1.0}$$
, $T_{BC} = 0.6T_{CD} = 0.6 \times 49 = 29.4 \text{ N}$

Q6a
$$P(-1,0,1)$$
, $Q(1,-2,2)$ and $R(2,1,0)$.

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) - (-\mathbf{i} + \mathbf{k}) = 2\mathbf{i} - 2\mathbf{j} + \mathbf{k}$$

Q6b
$$|\overrightarrow{PQ}| = \sqrt{2^2 + (-2)^2 + 1^2} = 3.$$

Unit vector in the direction of $\overrightarrow{PQ} = \frac{1}{3}(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$.

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = (2\mathbf{i} + \mathbf{j}) - (-\mathbf{i} + \mathbf{k}) = 3\mathbf{i} + \mathbf{j} - \mathbf{k}.$$

Scalar resolute of \overrightarrow{PR} in the direction of \overrightarrow{PO}

=
$$(3i + j - k) \cdot \frac{1}{3} (2i - 2j + k) = 1$$
.

Vector resolute of \overrightarrow{PR} in the direction of \overrightarrow{PQ}

$$=1\times\frac{1}{3}(2i-2j+k)=\frac{1}{3}(2i-2j+k).$$

Vector resolute of \overrightarrow{PR} perpendicular to \overrightarrow{PO}

$$= (3i + j - k) - \frac{1}{3}(2i - 2j + k) = \frac{1}{3}(7i + 5j - 4k).$$

:. shortest distance = $\frac{1}{2}\sqrt{7^2 + 5^2 + (-4)^2} = \sqrt{10}$.

Q7a
$$f(x) = \frac{10\sqrt{3}}{x^2 - 4x + 7} = \frac{10\sqrt{3}}{3 + x^2 - 4x + 4} = \frac{10\sqrt{3}}{3 + (x - 2)^2}$$

Q7b Sketch the graph of the quadratic function $y = x^2 - 4x + 7$, then the graph of the reciprocal with dilation factor of $10\sqrt{3}$.

$$\begin{aligned}
&= \int_{-1}^{3} \frac{10\sqrt{3}}{x^2 - 4x + 7} dx = 10 \int_{-1}^{3} \frac{\sqrt{3}}{3 + (x - 2)^2} dx = 10 \left[\tan^{-1} \left(\frac{x - 2}{\sqrt{3}} \right) \right]_{-1}^{3} \\
&= 10 \left[\tan^{-1} \left(\frac{1}{\sqrt{2}} \right) - \tan^{-1} \left(-\sqrt{3} \right) \right] = 10 \left(\frac{\pi}{6} + \frac{\pi}{3} \right) = 5\pi .\end{aligned}$$

Q8a Use the quadratic formula to find the zeros of $x^2 + i2\sqrt{3}x - 4$.

$$x = \frac{-i2\sqrt{3} \pm \sqrt{(i2\sqrt{3})^2 - 4(1)(-4)}}{2(1)} = \frac{-i2\sqrt{3} \pm 2}{2} = \pm 1 - i\sqrt{3}.$$

$$\therefore x^2 + i2\sqrt{3}x - 4 = (x - 1 + i\sqrt{3})(x + 1 + i\sqrt{3}).$$

Q8b Express $1 - i\sqrt{3}$ in polar form. $1 - i\sqrt{3} = 2cis\left(-\frac{\pi}{3}\right)$.

$$\sqrt{1 - i\sqrt{3}} = \left[2cis \left(-\frac{\pi}{3} + 2k\pi \right) \right]^{\frac{1}{2}} = \sqrt{2}cis \left(-\frac{\pi}{6} + k\pi \right)$$

$$= \sqrt{2}cis \left(-\frac{\pi}{6} \right) = \sqrt{2} \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right) = \frac{\sqrt{2}}{2} \left(\sqrt{3} - i \right) \text{ when } k = 0,$$
or
$$= \sqrt{2}cis \left(\frac{5\pi}{6} \right) = \sqrt{2} \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i \right) = -\frac{\sqrt{2}}{2} \left(\sqrt{3} - i \right) \text{ when } k = 1.$$

Similarly,
$$-1 - i\sqrt{3} = 2cis\left(-\frac{2\pi}{3}\right)$$
.

$$\sqrt{-1 - i\sqrt{3}} = \left[2cis\left(-\frac{2\pi}{3} + 2k\pi\right)\right]^{\frac{1}{2}} = \sqrt{2}cis\left(-\frac{\pi}{3} + k\pi\right)$$

$$= \sqrt{2}cis\left(-\frac{\pi}{3}\right) = \sqrt{2}\left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = \frac{\sqrt{2}}{2}\left(1 - i\sqrt{3}\right) \text{ when } k = 0,$$
or
$$= \sqrt{2}cis\left(\frac{2\pi}{3}\right) = \sqrt{2}\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = -\frac{\sqrt{2}}{2}\left(1 - i\sqrt{3}\right) \text{ when }$$

Q8c
$$x^4 + i2\sqrt{3}x^2 - 4 = (x^2 - 1 + i\sqrt{3})(x^2 + 1 + i\sqrt{3})$$

= $\left(x - \frac{\sqrt{2}}{2}(\sqrt{3} - i)\right)\left(x + \frac{\sqrt{2}}{2}(\sqrt{3} - i)\right)\left(x - \frac{\sqrt{2}}{2}(1 - i\sqrt{3})\right)\left(x + \frac{\sqrt{2}}{2}(1 - i\sqrt{3})\right)$

Q9a
$$v(t) = \frac{5(1-2t)}{1+2t}$$
, $t \ge 0$.
When $v = 0$, $\frac{5(1-2t)}{1+2t} = 0$, $1-2t = 0$, $t = \frac{1}{2}$.

Q9b At $0 \le t < \frac{1}{2}$, v > 0, the particle is moving *forwards*.

Displacement =
$$\int_{0}^{\frac{1}{2}} \frac{5(1-2t)}{1+2t} dt = \int_{0}^{\frac{1}{2}} \left(\frac{10}{2t+1} - 5\right) dt$$
$$= \left[5\log_{e}|2t+1| - 5t\right]_{0}^{\frac{1}{2}} = 5\left(\log_{e} 2 - \frac{1}{2}\right).$$

Distance =
$$|\text{displacement}| = 5 \left(\log_e 2 - \frac{1}{2} \right)$$

At $\frac{1}{2} < t \le 1$, v < 0, the particle is moving *backwards*.

Displacement =
$$\int_{\frac{1}{2}}^{1} \left(\frac{10}{2t+1} - 5 \right) dt$$

= $\left[5 \log_e |2t+1| - 5t \right]_{\frac{1}{2}}^{1} = 5 (\log_e 3 - 1) - 5 \left(\log_e 2 - \frac{1}{2} \right) = 5 \left(\log_e \frac{3}{2} - \frac{1}{2} \right)$
Distance = $|\text{displacement}| = -5 \left(\log_e \frac{3}{2} - \frac{1}{2} \right)$.
Total distance = $5 \left(\log_e 2 - \frac{1}{2} \right) - 5 \left(\log_e \frac{3}{2} - \frac{1}{2} \right) = 5 \log_e \frac{4}{3}$.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors