Die Determinante einer 3×3 Matrix

Um die Determinante einer 3×3 Matrix zu berechnen, können wir die Leibniz-Formel verwenden. Diese Formel bezieht sich auf das Konzept der Permutations in der Menge S_n , wobei S_n die symmetrische Gruppe der Permutationen von $\{1, 2, \ldots, n\}$ ist. Im Fall einer 3×3 Matrix folgt:

Die Determinante einer Matrix $A = [a_{ij}]$ mit $i, j \in \{1, 2, 3\}$ ist gegeben durch

$$\det(A) = \sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} a_{2,\sigma(2)} a_{3,\sigma(3)},$$

wobei $sgn(\sigma)$ das Vorzeichen der Permutation σ ist, welches +1 ist, wenn die Anzahl der Vertauschungen in σ gerade ist, und -1, wenn diese ungerade ist.

In expliziter Form für eine 3×3 Matrix A, gegeben durch

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix},$$

kann die Determinante wie folgt berechnet werden:

$$\det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) + a_{12}(a_{23}a_{31} - a_{21}a_{33}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}).$$

Dies ist ein alternativer Ausdruck, der auf die Summe der Produkte der Diagonalelemente und deren entsprechenden Komplemente, unter Berücksichtigung des Vorzeichens entsprechend der Permutation, zurückzuführen ist.