Modeling Tesla Stock Trends with ARIMA and Recurrent Neural Network LSTM

Julie Seo

Sangmyeong Lee

- o To forecast Tesla Stock Prices using two different time series modeling:
 - LSTM (Recurrent Neural Network)
 - ARIMA (Classical Statistical model)
- o To compare the performance of traditional statistical forecasting vs. deep learning methods
 - o Are good evaluation metric(e.g. RMSE) indicate good performance in real-world trading?
 - o Does neural network always outperform than classical statistic method?

- Source: yfinance API from Yahoo Finance
- Stock: Tesla (TSLA)
- **Time Range**: Jan 1, 2021 April 4, 2025
- Train, test: 80% for training, 10% for validation, 10% for testing

LSTM Model 1 vs. LSTM Model 2

Aspect	Model 1	Model 2	Explanation & Reasoning
Target Variable	TSLA_Close (normalized)	TSLA_target (next-day close price)	Model 1 predicts the actual closing price (scaled), Model 2 explicitly defines a target-shifted column to predict the next day close price.
Features Used	Close, MA10, MA20	Open, High, Low, Close, Volume, NASDAQ Index	Model 1 focuses on technical indicators. Model 2 includes external index , trying to model TSLA's behavior with broader market context and price action .
Input Sequence	60 days	30 days	Model 1 uses a longer memory. Model 2 is more responsive to recent fluctuations .
Normalization	Close, MA10, MA20 (MinMaxScaler)	Full feature + target scaling	Model 1 is simpler and avoids leaking future info. Model 2 standardizes everything.
Architecture	LSTM(128) → LSTM(64)	LSTM(64) → LSTM(32)	Model 1 is deeper and potentially more expressive. Model 2 is lighter – this may reduce overfitting, especially given the higher input dimensionality.

Dropout Regularization	None	0.2 after each LSTM layer	Model 2 adds dropout to prevent overfitting, more generalization — especially with more features. Model 1 doesn't, which might explain its slightly better training fit , but less generalization.
Validation Split	Manual x_val, y_val	validation_split=0.1 in Keras	Model 1 uses explicit split. Model 2 uses 'Keras' automatic slicing .
RMSE (Test Set)	16.63	24.51	Model 1 has a better RMSE – due to simpler features + less overfitting.
Relative RMSE	4.71%	8.51%	
Directional Accuracy	53.37%	55.22%	Model 2 slightly better.
Naive RMSE	15.35	12.96	Naive benchmarks (predict tomorrow = today)

LSTM Model 1

LSTM Model 2

Raw Plot

Variable used: TSLA_Close (daily closing prices)

➤ High volatility, Non-stationarity appearance

Detrending

• Fit Linear Regression:

$$TSLA_{Clost_t} = \beta_0 + \beta_1 t$$

• Residual (detrended TSLA price):

$$Z_t = X_t - \beta_o + \beta_1 t$$

ARIMA on Detrended Series

- Fitted ARIMA(0,1,0) on detrended TSLA data
- Forecasted is made on residuals, then trend is re-added

TSLA weekly Rolling Forecast (de-trended + ARIMA)

- Applied rolling ARIMA model (weekly updates) to residuals
 - · Each forecast is updated using the most recent data

Model Evaluation

Evaluation Metrics	Result
RMSE	19.88
MAPE	5.06%
MAE	14.46
Directional Accuracy	48.33%
Relative RMSE	7.05%
Naïve RMSE	12.50

LSTM Mock Trading

- Initial cash: \$10,000
- **Model 1** Final Portfolio Value: \$9,991.46
 - Total profit: -\$8.54
 - Profit percentage: -0.0854%
- Model 2 Final Portfolio Value: \$10,567.73
 - Total profit: \$567.73
 - Profit percentage: 5.6773%

ARIMA Mock Trading

- Initial cash: \$10,000
- Final Portfolio Value: \$10,072.18
 - Total Profit: \$72.18
 - Profit Percentage: 0.72%

Conclusions

- LSTM model 1 had the lowest RMSE but produced a smallest trading profit
- LSTM model 2 had higher RMSE but achieved the highest profit in mock trading
- ARIMA model had moderate accuracy but made a small profit
- Statistical accuracy (like RMSE) doesn't guarantee better trading outcomes.
 - directional accuracy and feature design matter
- Neural networks aren't always better

Limitations

- Limited input futures
 - Macro Economic indexes such as GDP, CPI, inflation rates and other external factors are not reflected
- Market conditions can shift drastically (past trends may not reflect the future)
- Directional accuracy remains low despite the low RMSE/MAE
- Mock trading doesn't account for the transaction costs, or real-world latency

