計量経済 I: 宿題 6

村澤 康友

提出期限: 2024年6月18日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上の場合は向きを揃えて問題番号順に重ね,左上隅をホッチキスで留めること。

- 1. (教科書 p. 186, 実証分析問題 7-A) データセット「7_1_income.dta」を gretl に読み込み, 教育の収益率の男女差に関する教科書 p. 171 の回帰分析の結果を再現しなさい.
- 2. (教科書 p. 186, 実証分析問題 7-B) データセット「 $7_3_happy_work.dta$ 」を gretl に読み込み,以下 の分析を行いなさい(必要ならメニューの「標本」 \rightarrow 「基準に基づいて制限する」で標本を制限する).
 - (a) 仕事に対する満足度を通勤時間で説明する単回帰モデルを男女別に推定しなさい.
 - (b) 男女別の単回帰モデルを、女性ダミーを用いて1つの重回帰モデルにまとめて推定しなさい.
 - (c) 男女間で単回帰モデルが等しいかどうかを F 検定で調べなさい.
- 3. (教科書 p. 187, 実証分析問題 7-C) データセット「7_4_minshu.dta」を gretl に読み込み, 以下の分析を行いなさい.
 - (a) 民主党への支持感情を年収と修学年数で説明する重回帰モデルを、都市部とそれ以外に分けて推定しなさい.
 - (b) 都市部とそれ以外に分けた重回帰モデルを,都市部ダミーを用いて1つの重回帰モデルにまとめて推定しなさい.
 - (c) 都市部とそれ以外で重回帰モデルが等しいかどうかを F 検定で調べなさい.

解答例

1. 教育の収益率の男女差

モデル 1: 最小二乗法 (OLS), 観測: 1–4286 従属変数: lincome

	係数	t S	Std. Error	t-ratio	p 値
const	5.34690		.120920	44.22	0.0000
yeduc	0.024	0947 0	.00853344	2.824	0.0048
female	-2.079	20 0	.192386	-10.81	0.0000
$female_yeduc$	0.090	2285 0	.0137996	6.538	0.0000
Mean dependent	var 5	5.260657	S.D. dep	endent var	0.936133
Sum squared resid	d 2	2899.053	S.E. of r	egression	0.822820
R^2	(0.227977	Adjusted	$d R^2$	0.227436
F(3,4282)	4	121.4896	P-value(F)	6.5e-240
Log-likelihood	-5	5243.723	Akaike o	criterion	10495.45
Schwarz criterion	1	0520.90	Hannan-	-Quinn	10504.44

2. (a) 男性

モデル 1: 最小二乗法 (OLS), 観測: 1–1659 従属変数: happy_work

	係数	ζ	Std.	Error	t-ratio	p	値
const	2.2181	.0	0.052	23312	42.39	0.0	0000
commute	-0.0022	28489	0.001	29315	-1.767	0.0)774
Mean dependen	t var	2.14044	46 S	S.D. depe	endent va	r	1.157729
Sum squared res	sid	2218.09	97 5	S.E. of re	gression		1.156988
R^2		0.00188	81 A	Adjusted	\mathbb{R}^2		0.001278
F(1, 1657)		3.12199	99 I	P-value(I	7)		0.077426
Log-likelihood	_	2594.93	34 A	Akaike cr	iterion		5193.869
Schwarz criterio	n	5204.69	97 I	Hannan-	Quinn		5197.882

女性

モデル 2: 最小二乗法 (OLS), 観測: 1–1438 従属変数: happy_work

	係数	St	d. Error	t-ratio	p 値
const	2.33945	0.0	557456	41.97	0.0000
commute	-0.00389770	0.0	0163848	-2.379	0.0175
Mean dependen	t var 2.22	7399	S.D. dep	oendent va	ar 1.132379
Sum squared re	sid 1835	5.408	S.E. of r	regression	1.130548
R^2	0.00	3925	Adjuste	$d R^2$	0.003232
F(1, 1436)	5.65	8919	P-value((F)	0.017497
Log-likelihood	-2215	5.879	Akaike o	criterion	4435.758
Schwarz criterio	n 4446	300	Hannan	–Quinn	4439.694

(b) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–3097 従属変数: happy_work

	係数	Std. Error	$t ext{-ratio}$	p 値
const	2.21810	0.0517794	42.84	0.0000
commute	-0.00228489	0.00127951	-1.786	0.0742
female	0.121348	0.0765993	1.584	0.1133
$female_commute$	-0.00161281	0.00209519	-0.7698	0.4415
Mean dependent va	ar 2.180820	S.D. depen	dent var	1.146664
${\bf Sum~squared~resid}$	4053.504	S.E. of regr	ession	1.144789
\mathbb{R}^2	0.004234	Adjusted F	\mathbb{R}^2	0.003268
F(3,3093)	4.383999	$\operatorname{P-value}(F)$		0.004371
Log-likelihood	-4811.228	Akaike crit	erion	9630.456
Schwarz criterion	9654.609	Hannan-Q	uinn	9639.130

(c) F 検定

モデル 1 についての検定:

帰無仮説:以下の変数の回帰パラメータはゼロである

female, female_commute

検定統計量: F(2, 3093) = 1.78795, p値 0.167476

3. (a) 都市部

モデル 1: 最小二乗法 (OLS), 観測: 1–2476 従属変数: minshu

		係数	ζ	Std.	Error	t-ratio	рί	值
	const	34.9545		2.79	420	12.51	0.00	000
	income	0.0032	3133	0.00	154980	2.085	0.03	372
	yeduc	0.5675	00	0.20	0208	2.835	0.00	046
Mean	depender	nt var	43.80	452	S.D. de	pendent ·	var	18.55335
Sum s	squared re	esid	84680	05.3	S.E. of	regression	n	18.50460
\mathbb{R}^2			0.006	052	Adjuste	ed R^2		0.005248
F(2, 2)	(2473)		7.528	964	P-value	e(F)		0.000550
Log-li	kelihood	-	-10736	3.81	Akaike	criterion		21479.61
Schwa	arz criterio	on	21497	7.06	Hannar	n–Quinn		21485.95

都市部以外

モデル 2: 最小二乗法 (OLS), 観測: 1–1742 従属変数: minshu

		係数		Std.	Error	t-ratio	р1	値
	const	40.9451		3.179	985	12.88	0.00	000
	income	0.00389	9854	0.001	188894	2.064	0.03	392
	yeduc	0.21972	20	0.235	5013	0.9349	0.35	500
Mea	n depende	nt var	44.9	1963	S.D. de	ependent v	ar	17.70488
Sum	ı squared r	esid	5438	57.5	S.E. of	regression	1	17.68450
\mathbb{R}^2			0.00	3447	Adjust	$ed R^2$		0.002301
F(2)	, 1739)		3.00	7723	P-value	e(F)		0.049661
Log-	-likelihood	-	-7474	.513	Akaike	criterion		14955.03
Schv	warz criteri	on	1497	1.41	Hanna	n–Quinn		14961.09

(b) 重回帰

モデル 1: 最小二乗法 (OLS), 観測: 1–4218 従属変数: minshu

	係	数	St	d. Error	t-ratio	p 値
const	40.945	1	3.2	26724	12.53	0.0000
income	0.003	89854	0.0	0194085	2.009	0.0446
yeduc	0.219	720	0.2	41472	0.9099	0.3629
city	-5.990	62	4.2	26650	-1.404	0.1604
${\it city_income}$	-0.000	667210	0.0	0246634	-0.2705	0.7868
${\rm city_yeduc}$	0.347	780	0.3	311380	1.117	0.2641
Mean dependent	var	44.2650	5	S.D. depe	ndent var	18.21389
Sum squared res	sid	139066	3	S.E. of reg	gression	18.17049
R^2		0.00593	9	Adjusted	R^2	0.004759
F(5,4212)		5.03318	3	P-value(F	")	0.000133
Log-likelihood	-	-18213.4	3	Akaike cri	iterion	36438.87
Schwarz criterio	n	36476.9	5	Hannan-C	Quinn	36452.33

(c) F 検定

モデル 1 についての検定:

帰無仮説: 以下の変数の回帰パラメータはゼロである

city, city_income, city_yeduc

検定統計量: F(3, 4212) = 2.31357, p値 0.0739713