2021 DeepSleep Paper Review Layer Normalization (2016)

Presenter : Haram Lee

Remind for Batch normalization

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};
```

Parameters to be learned: γ , β

Output:
$$\{y_i = BN_{\gamma,\beta}(x_i)\}$$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \qquad // \text{ mini-batch mean}$$

$$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{\mathcal{B}})^{2} \qquad // \text{ mini-batch variance}$$

$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} \qquad // \text{ normalize}$$

$$y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv \text{BN}_{\gamma,\beta}(x_{i}) \qquad // \text{ scale and shift}$$

→ 새로운 파라미터 γ,β

이미지 출처 : Ioffe, Sergey, and Christian Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift.", ICML 2015 https://arxiv.org/pdf/1502.03167.pdf

$$z = g(Wu + b)$$

$$z = g(BN(Wu))$$

정규화	설명	그림	Shape 비교	
Batch Norm	각 feature별로, 한 mini-batch에 대한 summed input의 평균과 분산을 구한다.	M, H	• fully-connected networks • x : $N \times D$ • $\mu, \sigma, \gamma, \beta$: $1 \times D$ • convolutional networks • x : $N \times C \times H \times W$ • $\mu, \sigma, \gamma, \beta$: $1 \times C \times 1 \times 1$	
Layer Norm	각 training case별로, 한 레이어의 모든 뉴런에 대한 summed input의 평균과 분산을 구한다.	M, H	• fully-connected networks • x : $N \times D$ • $\mu, \sigma, \gamma, \beta$: $N \times 1$ • convolutional networks • x : $N \times C \times H \times W$ • $\mu, \sigma, \gamma, \beta$: $N \times 1 \times 1 \times 1$	

[MLP에서의 비교]

Batch normalization

Layer normalization

 γ, β

[RNN에서의 비교]

Batch normalization

Layer normalization

2. 특징

Batch normalization 의 한계

- RNN의 recurrent neuron에 대한 입력은 종종 시퀀스 길이에 따라 달라지므로, RNN에 적용하기 어렵다.
- μ 와 σ 는 batch size에 따라 달라지기 때문에 batch size 조정에 제약이 있을 수 있다.
- online learning task나 batch size가 작아야 하는 극도로 큰 분산 모델에는 적용할 수 없다.

Layer normalization 의 효과

- RNN 에 적용하였을 때 잘 동작하고, 학습 속도와 성능의 일반화를 향상시킬 수 있다.
- batch size에 제약이 없다.
- batch size=1인 pure online learning에서 사용할 수 있다.

3. 분석

(1) 불변 속성

	Weight matrix re-scaling	Weight matrix re-centering	Weight vector re-scaling	Dataset re-scaling	Dataset re-centering	Single training case re-scaling
Batch norm	Invariant	No	Invariant	Invariant	Invariant	No
Weight norm	Invariant	No	Invariant	No	No	No
Layer norm	Invariant	Invariant	No	Invariant	No	Invariant

Table 1: Invariance properties under the normalization methods.

- (2) Normalization scalar(σ)는 암묵적으로 learning rate를 낮추고 학습을 더 안정적으로 만든다.
 - weight norm이 커질 경우, weight space 방향의 곡률이 원만해진다.
 - 이를 통해, 학습 중에 weight norm이 큰 weight vector의 방향을 변경하기가 더 어렵다.
 - 따라서 정규화 방법은 weight vector에 암묵적인 "early stopping" 영향을 미치며 수렴을 위한 학습을 안정화 하는 데 도움이 된다.

4. 실험

- Image-sentence ranking
- 2) Question-answering
- 3) Contextual language modelling
- 4) Generative modelling
- 5) Handwriting sequence generation
- 6) MNIST classification

5. 결과

- 대체로 수렴 속도가 빨라지고, 베이스라인 모델보다 성능이 좋아졌다.
- CNN에서, 베이스라인 모델에 비해 속도 개선은 되지만, 성능은 Batch Normalization을 적용한 것이 더 좋다.
- 실험을 통해 경험적으로, 특히 long sequence와 small mini-batch를 가지는 RNN이 Layer normalization의 가장 큰 혜택을 받는다.
- (+추가) Transformer 등의 모델에서 사용한다.

Q & A