Set Theory - Basics

Domain and Range

Describe the elements of the subset $a = \{(x,y) \mid y < x\}$

$a = \{(x,y) \mid y > x\}$ Describe the elements of the subset b=s-a

Infinite sets

A = set of natural numbers

B = set of integers

C = set of even numbers

. . . .

Operations

- Union
 - $A = \{1, 2, 3\}$ and $B = \{3, 4\}$
 - A U B = $\{1, 2, 3, 4\}$
- Intersection
 - $A = \{1, 2, 3\}$ and $B = \{3, 4\}$
 - $A \cap B = \{3\}$
- Disjoint : $A \cap B = \{\}$ = null set

Sum or union A + B.

Complement.

Intersection or product $A \cdot B$.

Difference A - B.

AB = 0.

Mutually exclusive sets.

Subset $B \subset A$. AB = B.

Distributive law. A(B + C) = AB + AC.

Distributive law. A + BC = (A + B)(A + C).

Dualization. (A + B)' = A'B'.

Dualization. (AB)' = A' + B'.

Example

$$A = A_1 A_2 + A_2 A_3 + A_4 A_5 A_6$$

Probability space of two events.

Problems

In a class of 100 students, 50 students passed in English, 60 students passed in Tamil, and 30 students passed in both English and Tamil.

How many students failed in both?

Solution

Students passed in at least one subject

 Students passed in English + students passed in Tamil - Students passed in both

$$= 50 + 60 - 30 = 80$$

Students NOT passed in at least one subject

 Total students – students passed in at least one subject

$$= 100 - 80 = 20$$

Example

There are three radio stations *A*, *B*, and *C* which can be received in a town of 3,000 families.

The following data are given:

- (a) 1,800 families listen to station A.
- (b) 1,700 families listen to station B.
- (c) 1,200 families listen to station C.
- (d) 1,250 families listen to stations A and B.
- (e) 700 families listen to stations A and C.
- (f) 600 families listen to stations Band C.
- (g) 200 families listen to stations A, B, and C.

Find the number of families who are not listening to any station

$$n(ABC') = n(AB) - n(BCA) = 1250 - 200 = 1050$$

$$n(ACB') = n(AC) - n(BCA) = 700 - 200 = 500$$


```
n(A \cup B \cup C) = n(A) + n(B) + n(C) - \{n(A \cap B) + n(B \cap C) + n(C \cap A)\} + n(A \cap B \cap C)
= 1800 + 1700 + 1200 - (1250 + 700 + 600) + 200
= 4700 - 2550 + 200
= 2350
\Rightarrow Not listening to any station = 3000 - 2350 = 650
```

