ON SCHEMES FOR EXPONENTIAL DECAY

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory¹

Department of Informatics, University of Oslo²

Nov 23, 2014

GOAL

The primary goal of this demo talk is to demonstrate how to write talks with DocOnce and get them rendered in numerous HTML formats.

LAYOUT

This version utilizes beamer slides with the theme vintage.

PROBLEM SETTING AND METHODS

RESULTS

PROBLEM SETTING AND METHODS

WE AIM TO SOLVE THE (ALMOST) SIMPLEST POSSIBLE DIFFERENTIAL EQUATION PROBLEM

$$u'(t) = -au(t) \tag{1}$$

$$u(0) = I \tag{2}$$

Here,

- $t \in (0,T]$
- a, I, and T are prescribed parameters
- u(t) is the unknown function
- The ODE (1) has the initial condition (2)

- Moss in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant A
- u^n : numerical approx to the exact solution at t_n

The θ rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule.

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at

The θ rule.

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule.

 $u^{n+1} = \frac{1 - (1 - \theta)u\Delta t}{1 + \theta u\Delta t}u^{0}, \quad n = 0, 1, \dots, N - 1$

- Mesh in time: $0 = t_0 < t_1 \cdots < t_N = T$
- Assume constant $\Delta t = t_n t_{n-1}$
- u^n : numerical approx to the exact solution at t_n

The θ rule,

$$u^{n+1} = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}u^n, \quad n = 0, 1, \dots, N - 1$$

THE FORWARD EULER SCHEME EXPLAINED

http://youtube.com/PtJrPEIHNJw

IMPLEMENTATION

IMPLEMENTATION IN A PYTHON FUNCTION:

PROBLEM SETTING AND METHODS

RESULTS

RESULTS

THE CRANK-NICOLSON METHOD SHOWS OSCILLATORY BEHAVIOR FOR NOT SUFFICIENTLY SMALL TIME STEPS, WHILE

THE ARTIFACTS CAN BE EXPLAINED BY SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$

Key results.

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability 12
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: 4 > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

• Stability: |A| < 1

• No oscillations: A > 0

 $\Delta t < 1/a \text{ for } \mathbf{I}$

• $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler ($\theta = 0$)
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler $(\theta = 0)$
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS:

SOME THEORY

Exact solution of the scheme:

$$u^n = A^n$$
, $A = \frac{1 - (1 - \theta)a\Delta t}{1 + \theta a\Delta t}$.

Key results:

- Stability: |A| < 1
- No oscillations: A > 0
- $\Delta t < 1/a$ for Forward Euler $(\theta = 0)$
- $\Delta t < 2/a$ for Crank-Nicolson ($\theta = 1/2$)

CONCLUDING REMARKS: