QUANTUM MECHANICS 2 - WORKSHOP 3

Q1) The 3 dimensional harmonic potential has energies

$$E_{n_x,n_y,n_z} = (n_x + n_y + n_z + 3/2) \hbar \omega.$$

Write down the energies and degeneracies of the first 4 energy levels.

Q2) The 1D harmonic oscillator potential $V(x) = \frac{1}{2}m\omega^2x^2$. The ground state (n=0) energy eigenfunction is $\psi_0(x) = Ne^{-m\omega x^2/2\hbar}$. The energy of the n^{th} state is $E_n = (n+1/2)\hbar\omega$.

[In sections a) and b) we are not concerned with normalisation.]

a) Use the upwards ladder operator $a_{+}=A(-ip+m\omega x)$, where $A^{2}=1/(2\hbar\omega m)$, to show that

$$a_+\psi_0(x) \propto xe^{-m\omega x^2/2\hbar}$$

This is also $\propto \psi_1(x)$. The upward ladder operator enables the next energy eigenfunction to be calculated so $a_+\psi_n \propto \psi_{n+1}$.

- b) The downwards ladder operator $a_{-} = A(ip + m\omega x)$. Use this together with a_{+} above and the fundamental commutator $[x, p] = i\hbar$ to show that $[a_{-}, a_{+}] = 1$.
- c) Write x in terms of a_{-} and a_{+} only (i.e. no p). Hence show that

$$x^{2} = \frac{\hbar}{2m\omega} \left((a_{+})^{2} + a_{+}a_{-} + a_{-}a_{+} + (a_{-})^{2} \right)$$

Hence write $V(x) = \frac{1}{2}m\omega^2 x^2$ as a function of a_{\pm} .

d) For any energy eigenstate ψ_n show that $\langle V_n \rangle = \int \psi_n^* V(x) \psi_n dx = 1/2m\omega^2 \langle x^2 \rangle = E_n/2$ given that $a_+ a_- \psi_n = n \psi_n$ and $a_- a_+ \psi_n = (n+1)\psi_n$, and that energy eigenfunctions of differing n are orthogonal.