Варіанти завдань до контрольної лабораторної роботи \mathbb{N}^2 2020/21 н.р., перший семестр

1)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (2n+1)!}{(n!)^2 (2n+3)!} x^{2n+3}, D_S = [a; b], a = -0.4, b = 0.4$$

2)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n!}{(2n)!} x^n$$
, $D_S = [a; b]$, $a = 0, b = 1$

3)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+3)!} x^{4n+3}, D_S = [a; b], a = -1, b = 1$$

4)
$$S(x) = \sum_{n=0}^{\infty} \frac{n!}{(2n)!} x^{2n}, D_S = [a; b], a = -1, b = 1$$

5)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+2)!} x^{2n+1}, D_S = [a; b], a = 0, b = 1$$

6)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n)!)^2}{(2n-1)(n!)^4} x^{2n}, D_S = [a; b], a = -0.2, b = 0.2$$

7)
$$S(x) = \sum_{n=0}^{\infty} \frac{(4n+1)!}{((2n)!)^2} x^{2n}, D_S = [a; b], a = -0.2, b = 0.2$$

8)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+1)!} x^{n+1}, D_S = [a; b], a = -0.2, b = 0.2$$

9)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!(2n+1)!}{(n!(n+1)!)^2} x^{n+1}, D_S = [a; b], a = 0, b = 0.04$$

10)
$$S(x) = \sum_{n=0}^{\infty} \frac{n!}{(2n+1)!} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

11)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n!)^2} x^n$$
, $D_S = [a; b]$, $a = 0$, $b = 1$

12)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{6n+1} x^{6n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

13)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+2)!}{n!(n+3)!} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

14)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)(3n+1)} x^{3n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

15)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^{\left[\frac{n+1}{2}\right]}}{(2n+1)!} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

16)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{6n+1} x^{6n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

17)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+1)!}{(n!)^2} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

18)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!} x^n, D_S = [a; b], a = 0, b = 1$$

19)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n)!)^2}{(n!(n+1)!)^2} x^{4n+4}, D_S = [a; b], a = 0, b = 0.4$$

20)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)} x^{n+1}, D_S = [a; b], a = 0.0, b = 0.8$$

21)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n+1)!)^2}{(n!(n+2)!)^2} x^{2n+4}, D_S = [a; b], a = 0.05, b = 0.2$$

22)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^2}{(2n+2)!} x^{2n+2}, D_S = [a; b], a = -1, b = 1$$

23)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

24)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{4n+1} x^{4n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

25)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+3)!} x^{n+3}, D_S = [a; b], a = -0.2, b = 0.2$$

26)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(2n+1)} x^{2n+1}, D_S = [a;b], a = -1, b = 1$$

27)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n+2)(2n+1)} x^{n+2}, D_S = [a; b], a = 0, b = 0.9$$

28)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(2n+1)(2n+3)} x^{2n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

29)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)} x^{2n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

30)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(3n+1)!} x^{3n+1}, D_S = [a; b], a = -1, b = 1$$

31)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

32)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(3n+1)(3n+2)} x^{3n+2}, D_S = [a; b], a = -0.9, b = 0.9$$

33)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n)!)^2}{(n!(n+1)!)^2} x^{2n+2}, D_S = [a; b], a = 0, b = 0.2$$

34)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{3n+2} x^{3n+2}, D_S = [a; b], a = -0.9, b = 0.9$$

35)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n!)^2} x^{2n}, D_S = [a; b], a = 0, b = 1$$

36)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n)!} x^{4n}, D_S = [a; b], a = -1, b = 1$$

37)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+2)!} x^{2n}, D_S = [a; b], a = 0, b = 1$$

38)
$$S(x) = \sum_{n=1}^{\infty} \frac{n}{(n+2)!} x^{n+2}, D_S = [a; b], a = -1, b = 1$$

39)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+3)!}{n!(n+1)!} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

40)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+2)!} x^{4n+2}, D_S = [a; b], a = -1, b = 1$$

41)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n)!)^2}{(n!)^4} x^{2n}, D_S = [a; b], a = -0.2, b = 0.2$$

42)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+3)} x^{2n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

43)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n!}{(2n)!} x^{2n}, D_S = [a; b], a = -1, b = 1$$

44)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+1)!} x^{4n+1}, D_S = [a; b], a = -1, b = 1$$

45)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^2}{(2n)!} x^n, D_S = [a; b], a = 0, b = 1$$

46)
$$S(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+1)!} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

47)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{4n+3} x^{4n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

48)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+3)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

49)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(2n+3)} x^{2n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

50)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n)!(4n+1)} x^{4n+1}, D_S = [a; b], a = -1, b = 1$$

51)
$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n+1)} x^{2n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

52)
$$S(x) = \sum_{n=0}^{\infty} \frac{n!(n+1)!}{(2n+3)!} x^{2n+3}, D_S = [a; b], a = -1, b = 1$$

53)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{3n+1} x^{3n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

54)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(n!)^2 (2n+1)} x^{2n+1}, D_S = [a; b], a = -0.4, b = 0.4$$

55)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(2n+1)} x^{n+1}, D_S = [a; b], a = 0.0, b = 0.8$$

56)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!(4n+3)} x^{4n+3}, D_S = [a; b], a = -1, b = 1$$

57)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

58)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

59)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2(2n-1)} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

60)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+1)!}{(n!)^2(2n+3)} x^{2n+3}, D_S = [a;b], a = -0.4, b = 0.4$$

61)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^{\left[\frac{n}{2}\right]}}{(2n+1)!} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

62)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} x^{2n}, D_S = [a; b], a = 0, b = 1$$

63)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+2)} x^{n+2}, D_S = [a; b], a = -0.9, b = 0.9$$

64)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

65)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{n!(n+1)!} x^{2n}, D_S = [a; b], a = 0, b = 1$$

66)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+3)} x^{n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

67)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+2)!} x^{4n+2}, D_S = [a; b], a = -1, b = 1$$

68)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(2n+1)} x^{2n+2}, D_S = [a; b], a = -0.9, b = 0.9$$

69)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+1} x^{4n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

70)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^2}{(2n+2)!} x^{n+1}, D_S = [a; b], a = 0, b = 1$$

71)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(2n+1)} x^{2n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

72)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (4n)!}{((2n)!)^2} x^{2n}, D_S = [a; b], a = -0.2, b = 0.2$$

73)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)(2n+3)(2n+5)} x^{2n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

74)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)(4n+3)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

75)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2(2n+1)} x^{2n+1}, D_S = [a; b], a = -0.4, b = 0.4$$

76)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n!}{(2n+1)!} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

77)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} x^{n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

78)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{4n+3} x^{4n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

79)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)(2n+3)} x^{2n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

80)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+1)!(2n+3)} x^{2n+3}, D_S = [a;b], a = -0.4, b = 0.4$$

81)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^{[n/2]}(-1)^n(2n)!}{(n!)^2} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

82)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{((2n)!)^2} x^{2n}, D_S = [a; b], a = 0, b = 1$$

83)
$$S(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^n, D_S = [a; b], a = 0, b = 1$$

84)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{((2n)!)^2} x^{4n}, D_S = [a; b], a = 0, b = 1$$

85)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(n!)^2 (2n+1)^2} x^{2n+1}, D_S = [a; b], a = -0.2, b = 0.2$$

86)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+3)!}{n!(n+2)!} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

87)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2(2n-1)^2} x^{2n-1}, D_S = [a;b], a = -0.4, b = 0.4$$

88)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^2}{(2n+1)!} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

89)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{n!(n+2)!} x^{n+2}, D_S = [a; b], a = -0.2, b = 0.2$$

90)
$$S(x) = \sum_{n=0}^{\infty} \frac{(4n)!}{((2n)!)^2} x^{2n}, D_S = [a; b], a = -0.2, b = 0.2$$

91)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n)!)^2}{(n!)^4} x^n$$
, $D_S = [a; b]$, $a = 0, b = 0.04$

92)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{n!(n+2)} x^{n+2}, D_S = [a; b], a = -1, b = 1$$

93)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)!} x^{4n+1}, D_S = [a; b], a = -1, b = 1$$

94)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(n!)^4} x^{2n}, D_S = [a; b], a = 0, b = 1$$

95)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^3} x^n, D_S = [a; b], a = 0, b = 1$$

96)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n)!} x^{4n}, D_S = [a; b], a = -1, b = 1$$

97)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^2}{(2n+3)!} x^{2n+3}, D_S = [a; b], a = -1, b = 1$$

98)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n)!(2n+1)!} x^{4n+1}, D_S = [a; b], a = 0, b = 1$$

99)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n+3)(2n+5)} x^{2n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

100)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+2)!} x^{2n+1}, D_S = [a; b], a = 0, b = 1$$

101)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

102)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+3)!}{n!(n+4)!} x^{n+4}, D_S = [a; b], a = -0.2, b = 0.2$$

103)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+1)(4n+3)} x^{4n+3}, D_S = [a;b], a = -0.9, b = 0.9$$

104)
$$S(x) = \sum_{n=0}^{\infty} \frac{(4n+1)!}{((2n)!)^2} x^n$$
, $D_S = [a; b]$, $a = 0$, $b = 0.02$

105)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+3)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

106)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+3)!}{n!(n+3)!} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

107)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(3n+2)!} x^{3n+2}, D_S = [a; b], a = -1, b = 1$$

108)
$$S(x) = \sum_{n=0}^{\infty} \frac{n!}{(2n)!} x^n, D_S = [a; b], a = 0, b = 1$$

109)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+1)!} x^{2n}, D_S = [a; b], a = 0, b = 1$$

110)
$$S(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} x^{2n}, D_S = [a; b], a = -1, b = 1$$

111)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+2)!} x^n, D_S = [a; b], a = 0, b = 1$$

112)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)(4n+3)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

113)
$$S(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+2)!} x^{n+1}, D_S = [a; b], a = 0, b = 1$$

114)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{n!(n+2)!} x^n, D_S = [a; b], a = 0, b = 1$$

115)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(n+1)(2n+1)} x^{2n+2}, D_S = [a; b], a = -0.9, b = 0.9$$

116)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (n!)^2}{(2n)!} x^{2n}, D_S = [a; b], a = -1, b = 1$$

117)
$$S(x) = \sum_{n=0}^{\infty} \frac{((2n)!)^2}{(2n-1)(n!)^4} x^n$$
, $D_S = [a; b]$, $a = 0.0, b = 0.04$

118)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!(2n+1)!} x^{2n+1}, D_S = [a; b], a = 0, b = 1$$

119)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)!(2n+1)} x^{2n+1}, D_S = [a; b], a = -1, b = 1$$

120)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n n! (n+1)!}{(2n+3)!} x^{2n+3}, D_S = [a; b], a = -1, b = 1$$

121)
$$S(x) = \sum_{n=0}^{\infty} \frac{(4n)!}{((2n)!)^2} x^n$$
, $D_S = [a; b]$, $a = 0.0, b = 0.04$

122)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)(n+3)} x^{n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

123)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n)!} x^{2n}, D_S = [a; b], a = 0, b = 1$$

124)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(n+1)!} x^n, D_S = [a; b], a = 0, b = 1$$

125)
$$S(x) = \sum_{n=1}^{\infty} \frac{n}{(n+3)!} x^{n+3}, D_S = [a; b], a = -1, b = 1$$

126)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(3n+2)(3n+4)} x^{3n+4}, D_S = [a; b], a = -0.9, b = 0.9$$

127)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2(2n+1)^2} x^{2n+1}, D_S = [a; b], a = -0.2, b = 0.2$$

128)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n!)^2} x^n, D_S = [a; b], a = 0, b = 1$$

129)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^{[n/2]}(2n)!}{(n!)^2} x^n, D_S = [a; b], a = -0.2, b = 0.2$$

130)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (4n)!}{((2n)!)^2} x^n, D_S = [a; b], a = 0.0, b = 0.04$$

131)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+1)!}{n!(n+3)!} x^{n+3}, D_S = [a; b], a = -0.2, b = 0.2$$

132)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+3)(4n+7)} x^{4n+7}, D_S = [a;b], a = -0.9, b = 0.9$$

133)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n)!(2n+1)!}{(n!(n+1)!)^2} x^{2n+2}, D_S = [a; b], a = 0, b = 0.2$$

134)
$$S(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+2)!} x^{2n+2}, D_S = [a;b], a = -1, b = 1$$

135)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(4n+3)!} x^{4n+3}, D_S = [a; b], a = -1, b = 1$$

136)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(n!)^4} x^n, D_S = [a; b], a = 0, b = 1$$

137)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{n!(n+1)} x^{n+1}, D_S = [a; b], a = -1, b = 1$$

138)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(3n)!} x^{3n}, D_S = [a; b], a = -1, b = 1$$

139)
$$S(x) = \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2 n} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

140)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(2n+1)} x^{2n+1}, D_S = [a; b], a = -0.9, b = 0.9$$

141)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+2)(2n+1)} x^{n+2}, D_S = [a; b], a = 0, b = 0.9$$

142)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+3)} x^{4n+3}, D_S = [a; b], a = -0.9, b = 0.9$$

143)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+2)!}{n!(n+2)!} x^n$$
, $D_S = [a; b]$, $a = -0.2$, $b = 0.2$

144)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{n!(n+2)!} x^{2n}, D_S = [a; b], a = 0, b = 1$$

145)
$$S(x) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!(2n+1)!} x^{4n+2}, D_S = [a; b], a = 0, b = 1$$

146)
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} x^{n+2}, D_S = [a; b], a = -0.9, b = 0.9$$

147)
$$S(x) = \sum_{n=0}^{\infty} \frac{(2n+1)!}{n!(n+2)!} x^{n+2}, D_S = [a; b], a = -0.2, b = 0.2$$

148)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)(4n+3)(4n+5)} x^{4n+5}, D_S = [a; b], a = -0.9, b = 0.9$$

149)
$$S(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+3)(4n+7)} x^{4n+7}, D_S = [a; b], a = -0.9, b = 0.9$$

150)
$$S(x) = \sum_{n=0}^{\infty} \frac{(n!)^2}{(2n+3)!} x^{2n+3}, D_S = [a; b], a = -1, b = 1$$