Honors (alculus, Sample Final 4

(1) (a) By Root test, given so an (x-a). we have.

 $\lim_{n\to\infty} \left| \frac{1}{\sqrt{2}} \sin \left(\frac{x-a}{a} \right) \right| = \left| \frac{x-a}{a} \right|. \Rightarrow -1 < x-a < 1$ $\lim_{n\to\infty} \left| \frac{1}{\sqrt{2}} \sin \left(\frac{x-a}{a} \right) \right| = \left| \frac{x-a}{a} \right|.$ $\lim_{n\to\infty} \left| \frac{1}{\sqrt{2}} \sin \left(\frac{x-a}{a} \right) \right| = \left| \frac{x-a}{a} \right|.$

=> convergent interval: [a-1, a+1] and R = 1.

(b) Given $\sum_{n=1}^{\infty} \frac{X^n}{n^2}$, let $an = \frac{X^n}{n^2}$ $\lim_{N\to\infty} \left| \frac{\partial n+1}{\partial n} \right| = \lim_{N\to\infty} \frac{|x|^{N+1}}{(N+1)^2} \frac{n^2}{|x|^{N}} = \lim_{N\to\infty} \frac{n^2}{(N+1)^2} |x| = |x| < 1.$ and as x=1, $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by p-series. as X = -1 $\frac{10}{5}$ $\frac{10}{10^2}$ converges by A.S.T. Then the convergent interval of $\frac{x}{n^2}$ is [4117 (b) Since $f(x) = \sum_{n=0}^{\infty} a_n(x-a)^n$. We have f is differentiable $f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + a_3(x-a)^2 + a_4(x-a)^2 + a_4(x-a)^2$ f'(x) = 202 + 3!03(x-0) + 4.304(x-0) + 1.1 $f^{(n)}(x) = N(an + (n+1)/an+1(x-a) + \frac{(n+2)!}{2}an+2(x-a)+in$

 $\Rightarrow f^{(n)}(a) = n! an \Rightarrow an = \frac{f'(a)}{n!}$

(c) (i) Since
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

then $T_z = 1 - \frac{x^2}{2!}$

(ii)
$$R_2(x) \le \frac{M|x|^3}{3!}$$
 and $|\cos^{(2)}(x)| \le 1$ and $|x| < \frac{1}{5}$.
So $R_2(x) \le \frac{1}{3!} \cdot \frac{1}{5^3} = \frac{1}{5^3 \cdot 3!}$

(2) Given
$$\frac{2}{N} \frac{(-1)^n}{N}$$
. and $\frac{2}{N} \frac{(-1)^n}{N}$ converges by A.S.T but $\frac{2}{N} \frac{(-1)^n}{N} = \frac{2}{N} \frac{1}{N} \frac$

(b) Given
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$
. Since $\int_{2}^{\infty} \frac{dx}{x(\ln x)^2} = -\frac{1}{\ln |x|} \Big|_{2}^{\infty}$ converges.
So, by integral test $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ converges.

(iii)
$$f(n) = \frac{2}{n} = \frac{2}{n^2} + \frac{2}{n^2} = \frac{2}{n^2} = \frac{2}{n^2} + \frac{2}{n^2} = \frac{2}{n^2} = \frac{2}{n^2} + \frac{2}{n^2} = \frac{2}{$$

(3) (a) Given $\sum_{n=1}^{\infty} \frac{n^2+2n+1}{n^4+n+2}$ let $a_n = \frac{n^2+2n+1}{n^4+n+2}$ and $b_n = \frac{1}{n}$. and $\lim_{n\to\infty} \frac{an}{bn} = \lim_{n\to\infty} \frac{n^3+2n+1}{n^4+n+2}$. n=1>0 & $\lim_{n\to\infty} \frac{n}{n}$ diverges. So, by Comparison test, $\lim_{n\to\infty} \frac{n^3+2n+1}{n^4+n+2}$ diverges (b) Given = (-1)n(n) lot an= In(n) sina lum an=0 and an>anti>0, so, by A.S.T. 2 (1) ntl converges. (c) Green $\frac{8}{100} \frac{n^2}{e^n}$, let $a_n = \frac{n^2}{e^n}$. $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{e^{n+1}} \cdot \frac{e^n}{n^2} \right|$ $=\lim_{N\to\infty}\frac{(N+1)^2}{(N+1)^2}\cdot\frac{1}{e}=\frac{1}{e}<1.$ So, by radio test, in converges. (d) $\frac{\infty}{100} \frac{m^2}{100}$. Since $\frac{m^2}{100} < \frac{2}{(1.2)^n}$ and $\frac{\infty}{100} = \frac{2}{(1.2)^n}$ convergy by geometriz series test. then is use converged by comparison test,

P.3

(i) Since
$$e^{x} = \frac{x}{1} = \frac{x^{n}}{n!}$$
 then $e^{x} = \frac{x}{2} \frac{(2x)^{n}}{n!}$
and $x^{2}e^{2x} = \frac{x}{1} = \frac{x^{n}}{n!}$
So $T_{5} = x^{2} + \frac{2x^{3}}{1!} + \frac{4x^{4}}{2!} + \frac{8x^{5}}{3!}$
Out $f(x) = x^{2}e^{2x}$. $f(5) = \frac{8}{3!} \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 160$.

(5) (1)
$$\frac{1}{1+x^2} = \frac{1}{1-(x^2)} = \frac{2}{1-(x^2)}(-x^2)^n = \frac{2}{1-(x^2)}(-x^2)^n \times (-x^2)^n \times$$

(ii) Since
$$\frac{d}{dx}(\operatorname{ardan}(x)) = \frac{1}{1+x^2} = \frac{x}{n-3}(-x^2)^n$$
 $\forall x \in (+,1)$
 $\operatorname{arzlan}(x) = \int \frac{x}{n-3}(-1)^n \times \frac{x^2}{n-3} dx = \frac{x}{n-3}(-1)^n \int \frac{x^n}{x^n} dx$

$$= \frac{x}{n-3}(-1)^n \frac{x^{n+1}}{n-3} + c.$$

as
$$X=0$$
. $ardan(0) = 0+d \Rightarrow d=0$.
So $ardan(x) = \frac{x}{n+1}(-1)^n \frac{x^{n+1}}{2n+1} \quad \forall x \in (-1,1)$.