SDM Crash Course #3: Predictor Variables & How to Pick Them

What are we doing today?

Predictor Variables:

How are they stored?
How is it gathered?
What Data is available?
Considerations

How is Predictor Data Stored?

Models generally use a grid-system known as rasters to store predictor variables

• Raster: a grid of pixels used to store information, where each pixel has **a** value representing a data point

Can be stored in a variety of formats, often .TIFF or .GeoTIFF

Note: Rasters do not capture intra-cell variability, each cell has a single value

Predictor Variable Attributes: Resolution

Arc

- Decimal degrees
- Arc seconds / Arc Minutes

Size

- Hectares
- Km²

Map Ratio

· 1:125,000

Predictor Variable Attributes: Geographic Scale

Extent: The area over which environmental correlates have been measured

 Will cover in a future talk, study extent should vary depending on 1) the particular species being modeled, & 2) the question at hand

A larger extent requires either more cells or a lower resolution

Predictor Variable Attributes: Temporal Scale

Should consider the temporal scale

 Ex: If I am investigating shifts in the last two decades, would average temperature from 1970-2000 really be appropriate?

Should consider seasonality

Predictor Variable Attributes: Temporal Scale

Should consider the temporal scale

Should consider seasonality

 Cases where a species undergoes diapause or seasonal migration rely on seasonality

How is this data gathered?

Readily available environmental data is not raw

- Interpolated between weather stations
 - Angular Distance Weighting, forms of Kriging, Inverse
 Distance Weighting, Nearest Neighbor Interpolation, etc, etc
- Remote sensing

How is this data gathered?

Readily available environmental data is not raw

- Interpolated between weather stations
- Remote sensing
 - Varies in availability at the temporal and geographic scale

Issues with These Approaches

Each predictor will have some degree of error

 Instrumentation imprecision, interpolation differences, etc.

This error is rarely quantified or available

Issues?

An aside about microclimatic data

Very high-resolution datasets (spatially or temporally)

Used to be predominantly collected via in-situ sensors, remote sensed *seems* to be increasingly common

Remote sensing data

High temporal resolution

+ High spatial resolution
+ Broad (regional)
spatial extent

Species distribution data

High spatiotemporal resolution
Broad spatiotemporal extent

Future microclimate

2018 review on the use of microclimate in SDMs

Types of Data Available: Environmental

Environmental

- Bioclimatic variables
 - Permutations of temperature/precipitation/radiation
- Geographic Variables
 - Elevation and derivatives, soil type, etc.
- Anthropogenic Variables
 - Land-use type, human impact, population density

Physiological

Types of Data Available: Physiological

Environmental

Physiological

- Temperature-dependent trait performance
 - Most commonly used physiology metric
- XYZ-dependent trait performance
 - Salinity, etc.
- Often generated in part using the prior environmental raster layers

Why not use every predictor?

- Sufficiency
 - Rough rule of thumb: a robust model requires >10-20 occurrence points for each predictor to avoid overfitting
- Redundancy
- Collinearity

Why not use every predictor?

- Sufficiency
- Redundancy
 - Some variables measure very similar things, adding little new information to model training other than error
- Collinearity

Why not use every predictor?

- Sufficiency
- Redundancy
- Collinearity
 - Predictors might be collinear with each other, including these together can produce biased models

Best-practices in a perfect world:

Figure out what is known about the physiology and ecology of the species,
 select important variables accordingly

Meaningful

 An underground organism is unlikely to be heavily impacted by cloud cover

Direct vs. Indirect Variables

 Organism might be distributed as a function of a variable, but it could be indirect

What people actually do:

Statistical approach

- Narrow down a large set of predictors by identifying which are the most informative and show the least collinearity
 - Recursive tuning process: start with many, measure importance and collinearity, remove some, repeat

Dealing with Collinearity

- $-1 \le r \le 1$
- Sign is direction
- Absolute value is magnitude

r²

- Conservative estimate of magnitude
- r ≥ 0.7
- Strong correlation

Variance Inflation Factor

<u>Variance Inflation Factor</u>: a statistical measure used to identify how each predictor contributes to multicollinearity

$$VIF = \frac{1}{1 - r_i^2}$$

Where r_i^2 is the correlation coefficient of the ith predictor regressed on the other coefficients

VIF > 5: Strong contributor to multicollinearity

- 1. Estimate VIF for all predictors (If all < 'threshold', stop)
- 2. If not, eliminate predictor with highest VIF, go back to step 1
 - VIFstep r function does this in a forward, step-wise manner

Cluster-Based Selection

- 1. Create clusters of highly collinear variables (via some metric)
- 2. Select and retain the most informative/biologically informed variable per highly collinear cluster
- 3. Re-run to ensure variables are not highly collinear

Variables	Schistosoma haematobium	Schistosoma mansoni
Group1 [†]		Section
Annual mean temperature	-	
Max temperature of warmest month	2	2
Min temperature of coldest month	12	2
Mean temperature of wettest quarter		2
Mean temperature of driest quarter	E	Selected
Mean temperature of warmest quarter	2	
Mean temperature of coldest quarter	12	2
LST at night	Selected	5
Group 2†		
Mean diurnal temperature range	Selected	-
Isothermality	-	_
Temperature seasonality		
Temperature annual range		Selected
Group 3 [†]		Deleted
Annual precipitation	Selected	
Precipitation of wettest month	Delected	3
Precipitation of wettest month		8
Group 4 [†]		
Precipitation of driest month		Selected
Precipitation of driest quarter	Selected	Sciected
Variables moderately correlated	Selected	-
Precipitation seasonality		Selected
Precipitation of warmest quarter	Selected	Selected
Precipitation of coldest quarter	Selected	Selected
LST in the day time	Selected	Selected
NDVI	Selected	Sciected
Land cover	Selected	Selected
Elevation	Sciected	Selected
Water distance	Selected	Selected
Climatic zones	Selected	Selected
		Selected
pH measured in water Soil moisture	Selected Selected	Selected
		Selected
Human influence index (HII)	-	-
Urban extents		-
Gross domestic product (GDP)	Selected	0.1
Infant mortality rates (IMR)	Selected	Selected
Proportion of improved sanitation	Selected	
Proportion of improved drinking-water sources Survey type	Selected	Selected Selected

Of All Models: Garbage In, Garbage Out

