

The Elements of Chance (Nothing in life is certain)

The Randomness everywhere!

The Elements of Chance (Nothing in life is certain)

The Randomness everywhere!

The study of these chances is the subject matter of Probability Theory!

Set Theory

Experiments, sample spaces, events

Axioms of probability

Random Variables

Distributions

Exceptions

Set is a collection of elements

Set is a collection of elements
Subsets and equal sets

I = set of all integers

$$S = \{x : x \in I, x < 0\}$$

Every element of S in contained in I

S ⊂ I subset

Equal Sets:

A = B if $A \subset B$ and $B \subset A$ equal sets

Universal set

Every set of interest is a subset of the universal set

 Ω = set of 52 cards

A: set of all aces $A \subset \Omega$

H: set of all hearts $H \subset \Omega$

B: set of all black $B \subset \Omega$

F: set of all face $F \subset \Omega$

Empty Set:

Set with no elements (null set)

 $\emptyset = \{ \}$

Set Operations

Complement:

$$A^{C} = \{x : x \in \Omega \text{ and } x \notin A\}$$

Union (2 Sets)

$$\mathbf{A} \cup \mathbf{B} = \{x : x \in A \text{ and } x \in \mathbf{B}\}$$

Intersection (2 Sets)

$$\mathbf{A} \cap \mathbf{B} = \{x : x \in A \text{ or } x \in \mathbf{B}\}$$

Properties of Set Operations

Commutativity

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Distributive laws

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

AU(BUC)=(AUB)UC

Proof: Distributive laws

$$X \in A \cap (B \cup C) = x \in A \text{ and } x \in (B \cup C)$$

Properties of Set Operations

De Morgan's Laws

$$(A \cup B)^{C} = A^{C} \cap B^{C}$$

$$(A \cap B)^{\overline{C}} = A^{\overline{C}} \cup B^{\overline{C}}$$

Proof: De Morgan's Laws

$$X \in (A \cap B)^{C} = x \in A^{C} \cap B^{C}$$

$$= x \in A^{C} \text{ or } x \in B^{C}$$

$$= x \in A^{C} \cup B^{C}$$