Proofs and Problem Solving

Li Qianrui

$March\ 1,\ 2023$

Contents

1	$\mathbf{U}\mathbf{p}\mathbf{p}$	per bounds and Least upper bound	3		
	1.1	Upper and Lower Bounds	3		
	1.2	Least Upper Bounds and Greatest Lower Bounds	3		
	1.3	Completeness Axiom for the real numbers	3		
2	Lim	uits	4		
	2.1	The $\epsilon - \mathbb{N}$ definition of a limit	4		
	2.2	Bounded Sequence	4		
	2.3	Application: the existence of roots	4		
	2.4	Infinite limits	4		
3	$Th\epsilon$	e monotone Convergence Theorem	5		
	3.1	Monotonic	5		
	3.2	literatively defined sequence	5		
4	Decimals and Series				
	4.1	Decimals	6		
	4.2	The number e	6		
5	Cor	nplex number	7		
	5.1	Definition 9.1 - Complex numbers definition	7		
	5.2	Argand diagram	7		
	5.3	Definition 9.2 - Modulus	7		
	5.4	Definition 9.3 - Complex conjugate	7		
	5.5	Definition 9.4 - Cartesian and Polar form	8		
	5.6	multiplication of complex	8		
	5.7	Exponential form: Euler's formula	8		
	5.8	Theorem 9.4 - Roots of Unity	8		

6	Polynomials			
	6.1	Definition 10.1		
	6.2	Abel-Ruffini Theorem		
	6.3	Theorem 10.2 - Fundamental Theorem of Algebra		
	6.4	Theorem 10.3 - Factorization Theorem		
	6.5	Theorem 10.4 - Real Polynomials		
	6.6	Theorem 10.5 - Root-Coefficient Theorem		

1 Upper bounds and Least upper bound

1.1 Upper and Lower Bounds

Definition 5.1 Let A be a subset of \mathbb{R} .

- An upper bound for A is a real number M such that for all x ∈ A, we have x ≤ M.
 We say that A is bounded above if there exists an upper bound for A, and unbounded above otherwise.
- A *lower bound* for A is a real number m such that for all x ∈ A, we have m ≤ x. We say that A is *bounded below* if there exists a lower bound for A, and *unbounded below* otherwise.
- We say A is bounded if it is both bounded above and bounded below.

1.2 Least Upper Bounds and Greatest Lower Bounds

Definition 5.2

Given a subset $A \sqsubseteq \mathbb{R}$, a number L is a **least upper bound (LUB)** or supremum for A if:

(a)L is an upper bound for A, that is, $x \leq L$ for all $x \in A$;

(b) $L \leq M$ for every upper bound M of A or

for all t < L, there exist $x \in A$ such that x > t.

Greatest lower boudn (GLB) or infinum for A is similar to LUB

1.3 Completeness Axiom for the real numbers

Every nonempty subset of \mathbb{R} that is bounded above has a *least upper bound*.

Theorem 5.1

The Archimedean property holds. That is, for any $x, y \in \mathbb{R}$ with x, y > 0, there is some $n \in \mathbb{N}$ such that ny > x. (Could be prove by contradiction)

2 Limits

2.1 The $\epsilon - \mathbb{N}$ definition of a limit.

Let $(x_n)_{n=1}^{\infty}$ be a sequence of real numbers x1,x2,... and let $L \in \mathbb{R}$. We say that x_n converge to L, or L us the **limit** of the sequence (x_n) , if for all $\epsilon > 0$, there exists a natural number N such that for all n > N,

$$|x_n - L| < \epsilon$$
,

When x_n converges to L, we write $x_n \to L$ as $n \to \infty$, or $\lim_{n \to \infty} x_n = L$.

2.2 Bounded Sequence

We say that a sequence (a_n) is **bounded** if the set of values a1,a2,... is a bounded set.

i.e. there are m,M such that $m \leq a_n \leq M$ for all n.

Proposition 6.1

Suppose the sequence (a_n) converges. Then it is bounded.

Proposition 6.3

Suppose that $x_n \to L$ as $n \to \infty$ and that $k \in \mathbb{N}$. Then $x_n^k \to L^k$ as $n \to \infty$.

2.3 Application: the existence of roots

Theorem 6.6

Let x > 0 and $k \in \mathbb{N}$. Then there is a unique y > 0 such that $y^k = x$.

2.4 Infinite limits

Definition 6.4 Let x_n be a sequence of real numbers.

- (a) We say (x_n) tends to ∞ or **diverges** to ∞ , and write $x_n \to \infty$ as $n \to \infty$ if for all M > 0, there exists $N \in \mathbb{N}$ such that n > N implies $x_n \ge M$.
- (b) Similar for $x_n \to -\infty$

3 The monotone Convergence Theorem

3.1 Monotonic

A sequence $(a_n)_{n=1}^{\infty}$ is **increasing** if $a_{n+1} \geq a_n$ for all n. It is **decreasing** if $a_{n+1} \leq a_n$ for all n. We say a_n is **monotonic** if it is either increasing or decreasing.

Monotone Convergence Theorem (MCT)

Let (a_n) be an **increasing** sequence of real numbers that is bounded above (i.e. there is M so that $a_n \leq M$ for all n). Then (a_n) converges to some limit. Similar to **decreasing** sequence.

3.2 literatively defined sequence

The value of x_{n+1} is specified in terms of previous values of the sequence $x_1, ..., x_n$, (usually x_n).

4 Decimals and Series

Every real number has a decinal expansion, and conversely, every decimal expansion gives rise to a real number.

4.1 Decimals

Theorem 8.1

Given sequence (a_n) with $a_n \in [0, 1, ..., 9]$ for all n, the decimal expansion $x = 0.a_1a_2a_3a_4...a_n...$ given by the limit of the sequence

$$x_n = \frac{a_1}{10} + \frac{a_2}{100} + \dots + \frac{a_n}{10^n} \tag{1}$$

defines a real number x satisfying $0 \le x \le 1$.

Theorem 8.3

Let $0 \le x \le 1$ and suppose that $x = 0.a_1a_2... = 0.b_1b_2...$ Let l be the smallest integer for which $a_l \ne b_l$ and suppose that $a_l < b_l$. Then $b_l = a_l + 1$, and for all k > l we have $b_k = 0$ and $a_l = 9$.

Corollary 8.5 - of the proof.

If p and q are positive inegers, the rational number p/q has a decimal expansion with period at most q.

Theorem 8.7

A number $x \geq 0$ is ration \Leftrightarrow it has periodic decimal expansion.

Corollary 8.8

A number $x \geq 0$ is irrational \Leftrightarrow if has aperiodic decimal expansion

Definition 8.2

Given a sequence a_j , we say that the infinite series $\sum_{j=1}^{\infty} a_j$ converges if the sequence of partial sums

$$s_n = \sum_{j=1}^n a_j \tag{2}$$

converges as $n \to \infty$. When (s_n) converges we denote its limit by $\sum_{j=1}^{\infty} a_j$.

4.2 The number e

$$e := \sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
 (3)

5 Complex number

5.1 Definition 9.1 - Complex numbers definition

Define i to be a number such that $i^2 = -1$

The comple numbers are any number of the form

$$z = x + iywherex, y \in \mathbb{R} \tag{4}$$

The set of all complex numbers is denoted $\mathbb C$

We define Re(z)=x and Im(z)=y to be the **real** and **imaginary** parts of z.

5.2 Argand diagram

5.3 Definition 9.2 - Modulus

Definition 9.2 — Modulus. Given a complex number z = x + iy, the *modulus* of z is

$$|z| = |x + iy| = \sqrt{x^2 + y^2}.$$

Geometrically, the modulus of z is its distance from the origin, which is the length of the hypotenuse of a triangle of base x and height y, computed using the Pythagorean theorem.

5.4 Definition 9.3 - Complex conjugate

Definition 9.3 — Complex Conjugate. Given a complex number z = x + iy, its *com*-

plex conjugate is defined to be

$$\overline{z} = x - yi$$
.

Geometrically, this is the complex number obtained by reflecting z across the 'x-axis'.

5.5 Definition 9.4 - Cartesian and Polar form

Definition 9.4 Let $z \neq 0$ be a complex number. Let r = |z| and define the *argument* of z be the angle $\theta \in [0,2\pi)$ between the line from 0 to z and the positive x-axis. We can then write

 $z = r(\cos\theta + i\sin\theta).$

This is the *polar form* of *z*.

5.6 multiplication of complex

Let $z = r(\cos\theta + i\sin\theta)$ and $w = s(\cos\phi + i\sin\phi)$

$$zw = r(\cos\theta + i\sin\theta) \times s(\cos\phi + i\sin\phi)$$
$$= rs(\cos(\theta + \phi) + i\sin(\theta + \phi))$$
(5)

De Movivre's Theorem

If we let $z = r(\cos\theta + i\sin\theta)$, and $n \in \mathbb{N}$, then

$$z^{n} = r^{n}(\cos n\theta + i\sin n\theta)$$

$$z^{-n} = r^{-n}(\cos(-n\theta) + i\sin(-n\theta)) = \frac{1}{r^{n}}(\cos(n\theta) - i\sin(n\theta))$$
(6)

5.7 Exponential form: Euler's formula

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{7}$$

Special case 1:

$$e^{i\pi} = -1$$

Special case 2:

$$z = re^{i\theta} = r(\cos\theta + i\sin\theta)$$

5.8 Theorem 9.4 - Roots of Unity

The solutions to $z^n=1$ are $1,w,...w^{n-1}$ where $w=e^{\frac{2\pi i}{n}}$, That is, they are $e^{\frac{2\pi k i}{n}}$ for k=0,1,...,n-1.

6 Polynomials

6.1 Definition 10.1

For $n \in \mathbb{N}$, and n-degree complex polynomial p is a function of the form

$$p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$$
(8)

where $a_n \neq 0$ and $a_i \in \mathbb{C}$ for all i.

n is called the degree of the polynomial

A root of p is a complex number $\alpha \in \mathbb{C}$ such that $p(\alpha) = 0$.

6.2 Abel-Ruffini Theorem

There is no formula for the roots of a polynomial of degree ≥ 5 .

6.3 Theorem 10.2 - Fundamental Theorem of Algebra.

Any complex polynomial has at least one root in \mathbb{C} .

6.4 Theorem 10.3 - Factorization Theorem

If p is a degree n polynomial, then there are n roots $r_1, ..., r_n \in \mathbb{C}$ and a number $a \in \mathbb{C}$ so that

$$p(z) = a(z - r_1)(z - r_2)...(z - r_n).$$
(9)

6.5 Theorem 10.4 - Real Polynomials

Real Polynomials have conjugated roots.

If p(x) has real coefficients and r is a root, so is (r).

6.6 Theorem 10.5 - Root-Coefficient Theorem

If $p(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$, has roots $r_1, ..., r_n$ (counting multiplicities), then

$$r_1 + \dots + r_n = -a_{n-1}r_1...r_n = (-1)_0^a$$
 (10)

In general, if s_j denotes the sum of all products of j-tuples of the roots (e.g. $s_2 = r_1r_2 + r_1r_3 + r_2r_3 + ...$), then

$$s_j = (-1)^j a_{n-j}. (11)$$