Higher-order accuracy

What is the (approximate) value of the first derivative at the desired location?

Higher-order accuracy

What is the (approximate) value of the first derivative at the desired location?

The first derivative, to 2nd order accuracy is

$$f_i' = rac{-f_{i-1} + f_{i+1}}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

to 4th order accuracy, it is

$$f_i' = rac{f_{i-2} - 8f_{i-1} + 8f_{i+1} - f_{i+2}}{12\Delta x} + \mathcal{O}(\Delta x^4)$$

to 6th order accuracy, it is

$$f_i' = rac{-f_{i-3} + 9f_{i-2} - 45f_{i-1} + 45f_{i+1} - 9f_{i+2} + f_{i+3}}{60\Delta x} + \mathcal{O}(\Delta x^6)$$

Finite Difference Coefficients

These coefficients come from Taylor expansion. Suppose that we want to compute df/dx to 2nd order. Using a 3-point stencil, we have

$$rac{df}{dx} = rac{1}{h}[Af(x-h) + Bf(x) + Cf(x+h)]$$

where $h=\Delta x$. According to the table above, we expect to find A=-1/2, B=0 and C=1/2. Let us prove this.

If we Taylor expand around x,

$$Af(x-h) = Af(x) + Af'(x)(-h) + Af''(x)rac{h^2}{2} \ Bf(x) = Bf(x) \ Cf(x+h) = Cf(x) + Cf'(x)(h) + Cf''(x)rac{h^2}{2}$$

Summing them all

$$hrac{df}{dx}=f(x)(A+B+C)+f'(x)(A-C)h+f''(x)rac{h^2}{2}(A+C)$$

Since only the first derivative should survive in the RHS, this leads to the conditions

$$A + B + C = 0$$
$$A - C = 1$$
$$A + C = 0$$

Leading to A=-1/2, C=1/2, B=0, as expected.

Stencil for 4th order accuracy

- Higher orders naturally require a larger stencil
- More points are needed to reach the higher order terms in the Taylor series expansion

Geometrical Interpretation

2nd order accuracy

$$f_i' = rac{-f_{i-1} + f_{i+1}}{2\Delta x} + \mathcal{O}(\Delta x^2)$$

6th order accuracy

$$f_i' = rac{-f_{i-3} + 9f_{i-2} - 45f_{i-1} + 45f_{i+1} - 9f_{i+2} + f_{i+3}}{60\Delta x} + \mathcal{O}(\Delta x^6)$$

With more points, the function is better sampled!

Finite Difference Coefficients

General formula!

$$\sum_{i=0}^{N-1} s_i^n c_i = d! \ \delta(n-d) \quad ext{for } 0 < n < N-1$$

s = (-3, -2, -1, 0, 1, 2, 3) stencil positions

N = size of stencil

d = order of the derivative

$\sum_{i=0}^{N-1} s_i^n c_i = d! \ \delta(n-d) \quad ext{for } 0 < n < N-1$

s = (-3,-2,-1,0,1,2,3) stencil positions N = size of stencil d = order of the derivative

Finite difference coefficient

Ż∆ 7 languages ∨

Article Talk Read Edit View history Tools >

From Wikipedia, the free encyclopedia

In mathematics, to approximate a derivative to an arbitrary order of accuracy, it is possible to use the finite difference. A finite difference can be **central**, **forward** or **backward**.

Central finite difference [edit]

This table contains the coefficients of the central differences, for several orders of accuracy and with uniform grid spacing;[1]

Derivative	Accuracy	-5	-4	-3	-2	-1	0	1	2	3	4	5
1	2					-1/2	0	1/2				
	4				1/12	-2/3	0	2/3	-1/12			
	6			-1/60	3/20	-3/4	0	3/4	-3/20	1/60		
	8		1/280	-4/105	1/5	-4/5	0	4/5	-1/5	4/105	-1/280	
2	2					1	-2	1				
	4				-1/12	4/3	-5/2	4/3	-1/12			
	6			1/90	-3/20	3/2	-49/18	3/2	-3/20	1/90		
	8		-1/560	8/315	-1/5	8/5	-205/72	8/5	-1/5	8/315	-1/560	
3	2				-1/2	1	0	-1	1/2			
	4			1/8	-1	13/8	0	-13/8	1	-1/8		
	6		-7/240	3/10	-169/120	61/30	0	-61/30	169/120	-3/10	7/240	
4	2				1	-4	6	-4	1			
	4			-1/6	2	-13/2	28/3	-13/2	2	-1/6		
	6		7/240	-2/5	169/60	-122/15	91/8	-122/15	169/60	-2/5	7/240	
5	2			-1/2	2	-5/2	0	5/2	-2	1/2		
	4		1/6	-3/2	13/3	-29/6	0	29/6	-13/3	3/2	-1/6	
	6	-13/288	19/36	-87/32	13/2	-323/48	0	323/48	-13/2	87/32	-19/36	13/288
6	2			1	-6	15	-20	15	-6	1		
	4		-1/4	3	-13	29	-75/2	29	-13	3	-1/4	
	6	13/240	-19/24	87/16	-39/2	323/8	-1023/20	323/8	-39/2	87/16	-19/24	13/240

High order derivatives

Class exercise.

- Define a signal $f(x)=\sin(kx)$
 - $k=2\pi$,
 - grid from 0 to 1
- The analytical derivative is k*cos(kx)
- Take the numerical derivative in 2nd, 4th, and 6th order
- Compare the norm |analytical-numerical|

Higher-order accuracy

- Higher order derivative = smaller truncation error.
- Higher orders naturally require a larger stencil.
- Higher order derivatives approach machine precision faster.

Finite Differences - Summary

- Conceptually the simplest of the numerical methods and can be learned quite quickly
- Depending on the physical problem FD methods are conditionally stable (relation between time and space increment)
- > High-order FD methods have difficulties concerning damping at the grid scale
- FD methods are usually explicit and therefore very easy to implement and efficient on parallel computers
- FD methods work best on regular, rectangular grids