Geometrie - Curs 3

Victor Vuletescu

University of Bucharest, Faculty of Mathematics, Bucharest, Romania.

14 Aprilie 2019

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Observatie

Dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin, atunci:

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Observatie

Dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin, atunci:

• $dir_{O'}(\mathcal{A}')$ nu depinde de punctul $O' \in \mathcal{A}'$ ales;

Definiție

Fie \mathcal{A} un spațiu afin. O submulțime $\mathcal{A}' \subset \mathcal{A}$ se numește subspațiu afin dacă există un punct $O' \in \mathcal{A}'$ astfel încât

$$dir_{O'}(\mathcal{A}') = \{\overrightarrow{O'P}|P \in \mathcal{A}'\}$$

este subspațiu vectorial al lui dir(A).

Observatie

Dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin, atunci:

- $dir_{O'}(\mathcal{A}')$ nu depinde de punctul $O' \in \mathcal{A}'$ ales;
- \mathcal{A}' devine un spațiu afin de direcție $dir_{\mathcal{O}'}(\mathcal{A}')$.

Teoremă

Fie A un spațiu afin de dimensiune n în care am fixat un reper cartezian Rși $\mathcal{A}' \subset \mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă

Teoremă

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ o submulțime. Atunci $\mathcal A'$ este subspațiu afin dacă și numai dacă există o matrice $A\in Mat_{n,m}(K)$ și $B\in Mat_{m,1}(K)$ astfel încât

$$A' = \{ P \in A \text{ de coordonate } X | AX = B \}.$$

Teoremă

Fie \mathcal{A} un spațiu afin de dimensiune n în care am fixat un reper cartezian \mathcal{R} și $\mathcal{A}' \subset \mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă există o matrice $A \in Mat_{n,m}(K)$ și $B \in Mat_{m,1}(K)$ astfel încât

$$A' = \{P \in A \text{ de coordonate } X | AX = B\}.$$

Propoziție

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ dat de sistemul de ecuații AX=B. Atunci $dir(\mathcal A')$ este subspațiul vectorial definit de sistemul de ecuații omogene

Teoremă

Fie \mathcal{A} un spațiu afin de dimensiune n în care am fixat un reper cartezian \mathcal{R} și $\mathcal{A}'\subset\mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă există o matrice $A\in Mat_{n,m}(K)$ și $B\in Mat_{m,1}(K)$ astfel încât

$$A' = \{ P \in A \text{ de coordonate } X | AX = B \}.$$

Propoziție

Fie $\mathcal A$ un spațiu afin de dimensiune n în care am fixat un reper cartezian $\mathcal R$ și $\mathcal A'\subset \mathcal A$ dat de sistemul de ecuații AX=B. Atunci $dir(\mathcal A')$ este subspațiul vectorial definit de sistemul de ecuații omogene

$$(dir(A')): AX = 0.$$

Teoremă

Fie A un spațiu afin de dimensiune n în care am fixat un reper cartezian Rși $\mathcal{A}'\subset\mathcal{A}$ o submulțime. Atunci \mathcal{A}' este subspațiu afin dacă și numai dacă există o matrice $A \in Mat_{n,m}(K)$ și $B \in Mat_{m,1}(K)$ astfel încât

$$A' = \{P \in A \text{ de coordonate } X | AX = B\}.$$

Propoziție

Fie A un spațiu afin de dimensiune n în care am fixat un reper cartezian Rși $\mathcal{A}' \subset \mathcal{A}$ dat de sistemul de ecuații AX = B. Atunci $dir(\mathcal{A}')$ este subspațiul vectorial definit de sistemul de ecuații omogene

$$(dir(A')): AX = 0.$$

In particular,

$$dim(A') = dim(A) - rang(A)$$
.

Drepte afine

ullet Se numște dreaptă afină un subspațiu $afin~\mathcal{A}'$ de dimensiune

Drepte afine

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=1.$

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune

Cazuri particulare remarcabile

Drepte afine

- $dim(\mathcal{A}')=1.$ Dacă A este un spațiu afin raportat la reperul cartezian $\mathcal R$ atunci
- Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci dreapta afină ce trece prin punctul A de coordonate $A=(x_1^A,\ldots,x_n^A)$ și are direcția generată de vectorul $v=(v_1,\ldots,v_n)$ este

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune

Cazuri particulare remarcabile

Drepte afine

- $dim(\mathcal{A}')=1.$ Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci
- Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \dots = \frac{x_n - x_n^A}{v_n}$$

• Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune

Cazuri particulare remarcabile

Drepte afine

- $dim(\mathcal{A}')=1.$ Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci
- Dacă A este un spațiu afin raportat la reperul cartezian \mathcal{R} atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \dots = \frac{x_n - x_n^A}{v_n}$$

• Dacă \mathcal{A} este un spațiu afin raportat la reperul cartezian \mathcal{R} iar $A \neq B$ sunt două puncte distincte din \mathcal{A} , atunci ecuația dreptei determinată de A și B este:

Drepte afine

- Se numște dreaptă afină un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=1.$
- ullet Dacă ${\mathcal A}$ este un spațiu afin raportat la reperul cartezian ${\mathcal R}$ atunci dreapta afină ce trece prin punctul A de coordonate $A = (x_1^A, \dots, x_n^A)$ și are direcția generată de vectorul $v = (v_1, \dots, v_n)$ este

$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \dots = \frac{x_n - x_n^A}{v_n}$$

• Dacă $\mathcal A$ este un spațiu afin raportat la reperul cartezian $\mathcal R$ iar A
eq Bsunt două puncte distincte din A, atunci ecuația dreptei determinată de A și B este:

$$\frac{x_1 - x_1^A}{x_1^B - x_1^A} = \frac{x_2 - x_2^A}{x_2^B - x_2^A} = \dots = \frac{x_n - x_n^A}{x_n^B - x_n^A}$$

Plane afine

ullet Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune

Plane afine

• Se numște plan afin un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=2$.

Plane afine

- ullet Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune $\dim(\mathcal{A}')=2.$
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A})=3$ raportat la reperul cartezian $\mathcal{R},\ A\in\mathcal{A}'$ este un punct iar $V'\subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V')=2$ generat de vectorii $V'=< v=(v_1,v_2,v_3), u=(u_1,u_2,u_3)>$ atunci planul afin \mathcal{A}' ce trece prin A și are direcția V' are ecuația:

Plane afine

- Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=2$.
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A})=3$ raportat la reperul cartezian $\mathcal{R},\ A\in\mathcal{A}'$ este un punct iar $V'\subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V')=2$ generat de vectorii $V'=< v=(v_1,v_2,v_3), u=(u_1,u_2,u_3)>$ atunci planul afin \mathcal{A}' ce trece prin \mathcal{A} și are direcția V' are ecuația:

$$\begin{vmatrix} x_1 - x_1^A & v_1 & u_1 \\ x_2 - x_2^A & v_2 & u_2 \\ x_3 - x_3^A & v_3 & u_3 \end{vmatrix} = 0$$

Plane afine

- Se numște *plan afin* un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}')=2$.
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A})=3$ raportat la reperul cartezian $\mathcal{R},\ A\in\mathcal{A}'$ este un punct iar $V'\subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V')=2$ generat de vectorii $V'=< v=(v_1,v_2,v_3), u=(u_1,u_2,u_3)>$ atunci planul afin \mathcal{A}' ce trece prin \mathcal{A} și are direcția V' are ecuația:

$$\begin{vmatrix} x_1 - x_1^A & v_1 & u_1 \\ x_2 - x_2^A & v_2 & u_2 \\ x_3 - x_3^A & v_3 & u_3 \end{vmatrix} = 0$$

• Ca atare, ecuația planului determinat de trei puncte A, B, C va fi

Plane afine

- Se numşte plan afin un subspațiu afin \mathcal{A}' de dimensiune $dim(\mathcal{A}') = 2$.
- Dacă \mathcal{A} este un spațiu afin de dimensiune $dim(\mathcal{A}) = 3$ raportat la reperul cartezian \mathcal{R} , $A \in \mathcal{A}'$ este un punct iar $V' \subset dir(\mathcal{A})$ este un subspațiu vectorial de dimensiune $dim_K(V') = 2$ generat de vectorii $V' = \langle v = (v_1, v_2, v_3), u = (u_1, u_2, u_3) \rangle$ atunci planul afin \mathcal{A}' ce trece prin A și are direcția V' are ecuația:

$$\begin{vmatrix} x_1 - x_1^A & v_1 & u_1 \\ x_2 - x_2^A & v_2 & u_2 \\ x_3 - x_3^A & v_3 & u_3 \end{vmatrix} = 0$$

• Ca atare, ecuația planului determinat de trei puncte A, B, C va fi

$$\begin{vmatrix} x_1 - x_1^A & x_1^B - x_1^A & x_1^C - x_1^A \\ x_2 - x_2^A & x_2^B - x_2^A & x_2^C - x_2^A \\ x_3 - x_3^A & x_3^B - x_3^A & x_3^C - x_3^A \end{vmatrix} = 0$$

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și A_2 sunt paralele (notat $A_1 \parallel A_2$) dacă are loc măcar una dintre incluziunile $dir(A_1) \subset dir(A_2)$ sau invers, $dir(A_2) \subset dir(A_1)$.

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

• Relația de paralelism *nu este* tranzitivă, i.e. dacă $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ sunt trei subspații astfel încât $\mathcal{A}_1 \parallel \mathcal{A}_2, \mathcal{A}_2 \parallel \mathcal{A}_3$ nu rezultă $\mathcal{A}_1 \parallel \mathcal{A}_3$.

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și \mathcal{A}_2 sunt paralele (notat $\mathcal{A}_1 \parallel \mathcal{A}_2$) dacă are loc măcar una dintre incluziunile $dir(\mathcal{A}_1) \subset dir(\mathcal{A}_2)$ sau invers, $dir(\mathcal{A}_2) \subset dir(\mathcal{A}_1)$.

Observații

- Relația de paralelism *nu este* tranzitivă, i.e. dacă $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3$ sunt trei subspații astfel încât $\mathcal{A}_1 \parallel \mathcal{A}_2, \mathcal{A}_2 \parallel \mathcal{A}_3$ nu rezultă $\mathcal{A}_1 \parallel \mathcal{A}_3$.
- Dacă A_1, A_2 sunt subspații afine de acceeași dimensiune atunci $A_1 \parallel A_2$ dacă și numai dacă $dir(A_1) = dir(A_2)$.

Definiție

Fie \mathcal{A} un spațiu afin și $\mathcal{A}_1, \mathcal{A}_2 \subset \mathcal{A}$ subspații afine ale sale. Spunem că \mathcal{A}_1 și A_2 sunt paralele (notat $A_1 \parallel A_2$) dacă are loc măcar una dintre incluziunile $dir(A_1) \subset dir(A_2)$ sau invers, $dir(A_2) \subset dir(A_1)$.

Observatii

- Relația de paralelism *nu este* tranzitivă, i.e. dacă A_1, A_2, A_3 sunt trei subspații astfel încât $A_1 \parallel A_2, A_2 \parallel A_3$ nu rezultă $A_1 \parallel A_3$.
- Dacă A_1, A_2 sunt subspații afine de acceeași dimensiune atunci $\mathcal{A}_1 \parallel \mathcal{A}_2$ dacă și numai dacă $dir(\mathcal{A}_1) = dir(\mathcal{A}_2)$.
- Ca și consecință, în categria spațiilor afine are loc "postulatul paralelelor": dacă $\mathcal{A}' \subset \mathcal{A}$ este un subspațiu afin și $A \in \mathcal{A}$ este un punct arbitrar, atunci există și este unic un subspațiu afin A" astfel încât

$$A \in \mathcal{A}$$
", \mathcal{A} " $\parallel \mathcal{A}'$, și $dim(\mathcal{A}$ ") = $dim(\mathcal{A}')$.

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

şi

$$(d_2): \frac{x_1-x_1^B}{u_1}=\frac{x_2-x_2^B}{u_2}=\frac{x_3-x_3^B}{u_3}$$

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

şi

$$(d_2): \frac{x_1 - x_1^B}{u_1} = \frac{x_2 - x_2^B}{u_2} = \frac{x_3 - x_3^B}{u_3}$$

Atunci $d_1 \parallel d_2$ dacă și numai dacă

Exemple: drepte paralele

• Fie dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\frac{x_3-x_3^A}{v_3}$$

şi

$$(d_2): \frac{x_1 - x_1^B}{u_1} = \frac{x_2 - x_2^B}{u_2} = \frac{x_3 - x_3^B}{u_3}$$

Atunci $d_1 \parallel d_2$ dacă și numai dacă

$$\frac{u_1}{v_1} = \frac{u_2}{v_2} = \frac{u_3}{v_3}$$

Exemple: plane paralele

• Fie planele

$$(\pi_1)$$
: $A_1x_1 + B_1x_2 + C_1x_3 = D_1$

Exemple: plane paralele

• Fie planele

$$(\pi_1): A_1x_1 + B_1x_2 + C_1x_3 = D_1$$

şi

$$(\pi_2)$$
: $A_2x_1 + B_2x_2 + C_2x_3 = D_2$

Exemple: plane paralele

• Fie planele

$$(\pi_1): A_1x_1 + B_1x_2 + C_1x_3 = D_1$$

şi

$$(\pi_2)$$
: $A_2x_1 + B_2x_2 + C_2x_3 = D_2$

Atunci $\pi_1 \parallel \pi_2$ dacă și numai dacă

Exemple: plane paralele

Fie planele

$$(\pi_1)$$
: $A_1x_1 + B_1x_2 + C_1x_3 = D_1$

şi

$$(\pi_2)$$
: $A_2x_1 + B_2x_2 + C_2x_3 = D_2$

Atunci $\pi_1 \parallel \pi_2$ dacă și numai dacă

$$\frac{A_1}{B_1} = \frac{A_2}{B_2} = \frac{A_3}{B_3}$$

Exemple: plan paralel cu dreaptă

Fie planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 = D$

Paralelism în spații afine

Exemple: plan paralel cu dreaptă

• Fie planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 = D$

și dreapta

(d):
$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \frac{x_3 - x_3^A}{v_3}$$

Paralelism în spații afine

Exemple: plan paralel cu dreaptă

• Fie planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 = D$

și dreapta

(d):
$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \frac{x_3 - x_3^A}{v_3}$$

Atunci $\pi \parallel d$ dacă și numai dacă

Paralelism în spații afine

Exemple: plan paralel cu dreaptă

• Fie planul

$$(\pi): Ax_1 + Bx_2 + Cx_3 = D$$

și dreapta

(d):
$$\frac{x_1 - x_1^A}{v_1} = \frac{x_2 - x_2^A}{v_2} = \frac{x_3 - x_3^A}{v_3}$$

Atunci $\pi \parallel d$ dacă și numai dacă

$$Av_1 + Bv_2 + Cv_3 = 0$$

Aplicații afine

Definiție

Fie $\mathcal{A}_1,\mathcal{A}_2$ spații afine peste un acelasși corp K. O funcție $\tau:\mathcal{A}_1\to\mathcal{A}_2$ se numește *aplicație afină* dacă

Aplicații afine

Definiție

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un acelasși corp K. O funcție $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ se numește *aplicație afină* dacă există un punct $O \in \mathcal{A}_1$ astfel încât aplicația $T_{O,\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_2)$ definită prin

$$T_{O,\tau}(\overrightarrow{OP}) = \overrightarrow{\tau(O)\tau(P)}$$

este aplicație liniară.

Aplicații afine

Definiție

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un acelasși corp K. O funcție $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ se numește *aplicație afină* dacă există un punct $O \in \mathcal{A}_1$ astfel încât aplicația $T_{O,\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_2)$ definită prin

$$T_{O,\tau}(\overrightarrow{OP}) = \overrightarrow{\tau(O)\tau(P)}$$

este aplicație liniară.

Propoziție

Dacă $au: \mathcal{A}_1 \to \mathcal{A}_2$ este o aplicație afină, atunci aplicația liniară $T_{O, au}$ de mai sus *nu depinde de alegerea lui O*. Ea se numește *urma vectorială* a lui au și este notată $T_{ au}$.

Caracterizarea aplicațiilor afine utilizând combinații afine

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Atunci τ este transformare afină dacă și numai dacă **pentru orice** $n \geq 2$, și orice alegeri $P_1, \ldots, P_n \in \mathcal{A}_1$ și $a_1, \ldots, a_n \in K$ cu $\sum_{i=1}^n a_i = 1$ avem

$$\tau\left(\sum_{i=1}^n a_i P_i\right) = \sum_{i=1}^n a_i P_i.$$

Caracterizarea aplicațiilor afine utilizând combinații afine

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Atunci τ este transformare afină dacă și numai dacă **pentru orice** $n \geq 2$,

și orice alegeri
$$P_1,\ldots,P_n\in\mathcal{A}_1$$
 și $a_1,\ldots,a_n\in\mathcal{K}$ cu $\sum_{i=1}^n a_i=1$ avem

$$\tau\left(\sum_{i=1}^n a_i P_i\right) = \sum_{i=1}^n a_i P_i.$$

Remarcă

În cazul afin, spre deosebire de cel vectorial, nu ne putem limita la a testa egalitatea de mai sus doar pentru n = 2!!!

Caracterizarea aplicațiilor afine utilizând combinații afine

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Atunci τ este transformare afină dacă și numai dacă **pentru orice** $n \geq 2$,

și orice alegeri
$$P_1,\ldots,P_n\in\mathcal{A}_1$$
 și $a_1,\ldots,a_n\in\mathcal{K}$ cu $\sum_{i=1}^n a_i=1$ avem

$$\tau\left(\sum_{i=1}^n a_i P_i\right) = \sum_{i=1}^n a_i P_i.$$

Remarcă

În cazul afin, spre deosebire de cel vectorial, nu ne putem limita la a testa egalitatea de mai sus doar pentru n=2!!!

Se poate demonstra că dacă avem $char(K) \neq 2$ atunci ne putem limita la a testa egalitatea de mai sus doar pentru n = 2puncte.

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă există o matrice $A \in Mat_{m,n}(K)$ și o matrice $B \in Mat_{m,1}(K)$ astfel încât

$$\tau(X) = AX + B$$

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă există o matrice $A \in Mat_{m,n}(K)$ și o matrice $B \in Mat_{m,1}(K)$ astfel încât

$$\tau(X) = AX + B$$

Remarcă

Dacă $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ este o transformare afină ce are expresia

$$\tau(X) = AX + B$$

în raport cu reperele $\mathcal{R}_1=(O_1,B_1)$ respectiv $\mathcal{R}_2=(O_2,B_2)$ atunci matricea urmei vectoriale T_{τ} a lui τ în raport cu bazele B_1 respectiv B_2 este

Teoremă

Fie $\mathcal{A}_1, \mathcal{A}_2$ spații afine peste un același corp K de dimensiuni n (respectiv m) și $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ o funcție. Fie \mathcal{R}_1 (respectiv \mathcal{R}_2) repere afine pentru \mathcal{A}_1 (respectiv \mathcal{A}_2) fixate. Atunci τ este aplicație afină dacă și numai dacă există o matrice $A \in Mat_{m,n}(K)$ și o matrice $B \in Mat_{m,1}(K)$ astfel încât

$$\tau(X) = AX + B$$

Remarcă

Dacă $\tau: \mathcal{A}_1 \to \mathcal{A}_2$ este o transformare afină ce are expresia

$$\tau(X) = AX + B$$

în raport cu reperele $\mathcal{R}_1=(O_1,B_1)$ respectiv $\mathcal{R}_2=(O_2,B_2)$ atunci matricea urmei vectoriale T_{τ} a lui τ în raport cu bazele B_1 respectiv B_2 este A, i.e.

$$T_{\tau}(X) = AX.$$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $\mathcal{T}_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $\mathcal{T}_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *omotetie* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_1)$ este de forma

$$T_{\tau}(v) = \lambda v, \ \lambda \in K, \lambda \neq 1.$$

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *omotetie* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_1)$ este de forma

$$T_{\tau}(v) = \lambda v, \ \lambda \in K, \lambda \neq 1.$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este omotetie dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este

Translații

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *translație* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}) \to dir(\mathcal{A})$ este identitatea,

$$T_{\tau}(v) = v, \ \forall v \in dir(A).$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este translație dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = X + B$

Omotetii

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ se numește *omotetie* dacă urma sa vectorială $T_{\tau}: dir(\mathcal{A}_1) \to dir(\mathcal{A}_1)$ este de forma

$$T_{\tau}(v) = \lambda v, \ \lambda \in K, \lambda \neq 1.$$

• O transformare afină $\tau: \mathcal{A} \to \mathcal{A}$ este omotetie dacă și numai dacă expresia ei în raport cu un reper cartezian \mathcal{R} este $\tau(X) = \lambda X + B$

Hipercuadrice în spații afine

Definiție

Fie $\mathcal A$ un spaţiu afin de dimensiune n raportat la un reper cartezian $\mathcal R$. Se numeşte hipercuadrică în $\mathcal A$ o submulţime $\mathcal Q\subset\mathcal A$ care este mulţimea zerourilor ununi polinom de gradul doi $F\in\mathcal K[X_1,\ldots,X_n]$,

$$\mathcal{Q} = \{(x_1,\ldots,x_n)|F(x_1,\ldots,x_n) = 0\}$$

Hipercuadrice în spații afine

Definiție

Fie $\mathcal A$ un spațiu afin de dimensiune n raportat la un reper cartezian $\mathcal R$. Se numește hipercuadrică în $\mathcal A$ o submulțime $\mathcal Q\subset\mathcal A$ care este mulțimea zerourilor ununi polinom de gradul doi $F\in\mathcal K[X_1,\ldots,X_n]$,

$$Q = \{(x_1, \ldots, x_n) | F(x_1, \ldots, x_n) = 0\}$$

Observație

Cu alte cuvinte, o hipercuadrică este o mulțime de forma

$$Q = \{\{(x_1, \dots, x_n) | \sum_{1 \le i \le j \le n} a_{ij} x_i x_j + 2 \sum_{i=1}^n b_i x_i + c = 0\}$$

Hipercuadrice în spații afine

Terminologie

ullet Dacă ${\mathcal Q}$ este o hipercuadrică ca mai sus, vom nota

$$q_F = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j$$

și respectiv

$$I_F = \sum_{i=1}^n b_i x_i;$$

 q_F este evident o formă pătratică (vectorială), numită forma pătratică asociată hipercuadricei.

• În cazul dim(A) = 2 hipercuadricele se numesc *conice*, iar în cazul dim(A) = 3 hipercuadricele se numesc *cuadrice*.

Definiție

Fie V un spațiu vectorial peste corpul \mathbb{R} . Se numește produs scalar pe V o biliniară $g: V \times V \to \mathbb{R}$ care este simetrică și pozitiv definită, i.e.

$$g(u, v) = g(v, u), \forall u, v \in V;$$

Definiție

Fie V un spațiu vectorial peste corpul \mathbb{R} . Se numește produs scalar pe V o biliniară $g: V \times V \to \mathbb{R}$ care este simetrică și pozitiv definită, i.e.

$$g(u, v) = g(v, u), \forall u, v \in V;$$

$$g(v,v) \ge 0, \ \forall v \in V \$$
și

Definiție

Fie V un spațiu vectorial peste corpul \mathbb{R} . Se numește produs scalar pe V o biliniară $g: V \times V \to \mathbb{R}$ care este simetrică și pozitiv definită, i.e.

$$g(u, v) = g(v, u), \forall u, v \in V;$$

$$g(v,v) \ge 0, \ \forall v \in V \ \text{si} \ g(v,v) = 0 \Leftrightarrow v = 0_V.$$

Definiție

Fie V un spațiu vectorial peste corpul \mathbb{R} . Se numește produs scalar pe V o biliniară $g: V \times V \to \mathbb{R}$ care este simetrică și pozitiv definită, i.e.

$$g(u, v) = g(v, u), \forall u, v \in V;$$

$$g(v,v) \geq 0, \ \forall v \in V \ \text{si} \ g(v,v) = 0 \Leftrightarrow v = 0_V.$$

Exemplu

Definiție

Fie V un spațiu vectorial peste corpul \mathbb{R} . Se numește produs scalar pe V o biliniară $g: V \times V \to \mathbb{R}$ care este simetrică și pozitiv definită, i.e.

$$g(u, v) = g(v, u), \forall u, v \in V;$$

$$g(v,v) \ge 0, \ \forall v \in V \ \text{si} \ g(v,v) = 0 \Leftrightarrow v = 0_V.$$

Exemplu ("produsul scalar canonic")

Definiție

Fie V un spațiu vectorial peste corpul \mathbb{R} . Se numește produs scalar pe V o biliniară $g: V \times V \to \mathbb{R}$ care este simetrică și pozitiv definită, i.e.

$$g(u, v) = g(v, u), \forall u, v \in V;$$

$$g(v,v) \ge 0, \ \forall v \in V \ \text{si} \ g(v,v) = 0 \Leftrightarrow v = 0_V.$$

Exemplu ("produsul scalar canonic")

Fie $V = \mathbb{R}^n$ și $g_0 : V \times V \to \mathbb{R}$ dată prin

$$g_0((x_1,\ldots,x_n),(y_1,\ldots,y_n))=\sum_{i=1}^n x_iy_i$$

Forma generală a unui produs scalar

Fie $V = \mathbb{R}^n$ și $g: V \times V \to \mathbb{R}$ o biliniară simetrică, dată prin

$$g((x_1,...x_n),(y_1,...,y_n)) = \sum_{i,j=1}^n a_{ij}x_iy_j$$

Atunci g este un produs scalar dacă și numai dacă

Forma generală a unui produs scalar

Fie $V = \mathbb{R}^n$ și $g: V \times V \to \mathbb{R}$ o biliniară simetrică, dată prin

$$g((x_1,...x_n),(y_1,...,y_n)) = \sum_{i,j=1}^n a_{ij}x_iy_j$$

Atunci g este un produs scalar dacă și numai dacă

$$\Delta_i > 0, \forall i = 1, \dots n$$

unde

$$\Delta_i = \left| egin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1i} \\ a_{21} & a_{22} & \dots & a_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ii} \end{array}
ight.$$

Proprietăți ale produselor scalare

Notație

Dacă $g:V imes V o \mathbb{R}$ este un produs scalar, vom nota

$$\langle u, v \rangle \stackrel{not}{=} g(u, v)$$

Proprietăți ale produselor scalare

Notație

Dacă $g:V imes V o \mathbb{R}$ este un produs scalar, vom nota

$$\langle u, v \rangle \stackrel{not}{=} g(u, v)$$

Inegalitatea Cauchy-Buniakowsky-Schwarz

Fie $<,>: V \times V \to \mathbb{R}$ un produs scalar. Atunci pentru orice doi vectori $u, v \in V$ are loc

$$(\langle u, v \rangle)^2 \leq \langle u, u \rangle \langle v, v \rangle$$

cu egalitate dacă și numai dacă u, v sunt liniar dependenți.

Proprietăți ale produselor scalare

Notație

Dacă $g: V \times V \to \mathbb{R}$ este un produs scalar, vom nota

$$\langle u, v \rangle \stackrel{not}{=} g(u, v)$$

Inegalitatea Cauchy-Buniakowsky-Schwarz

Fie $<,>: V \times V \to \mathbb{R}$ un produs scalar. Atunci pentru orice doi vectori $u, v \in V$ are loc

$$(\langle u, v \rangle)^2 \leq \langle u, u \rangle \langle v, v \rangle$$

cu egalitate dacă și numai dacă u, v sunt liniar dependenți.

Demonstrație

Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = \langle tu + v, tu + v \rangle$. Atunci

Notație

Dacă $g: V \times V \to \mathbb{R}$ este un produs scalar, vom nota

$$\langle u, v \rangle \stackrel{not}{=} g(u, v)$$

Inegalitatea Cauchy-Buniakowsky-Schwarz

Fie $<,>: V \times V \to \mathbb{R}$ un produs scalar. Atunci pentru orice doi vectori $u, v \in V$ are loc

$$(\langle u, v \rangle)^2 \leq \langle u, u \rangle \langle v, v \rangle$$

cu egalitate dacă și numai dacă u, v sunt liniar dependenți.

Demonstrație

Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = \langle tu + v, tu + v \rangle$. Atunci $f(t) = \langle u, u \rangle t^2 + 2 \langle u, v \rangle t + \langle v, v \rangle$ si

Notație

Dacă $g: V \times V \to \mathbb{R}$ este un produs scalar, vom nota

$$\langle u, v \rangle \stackrel{not}{=} g(u, v)$$

Inegalitatea Cauchy-Buniakowsky-Schwarz

Fie $<,>: V \times V \to \mathbb{R}$ un produs scalar. Atunci pentru orice doi vectori $u, v \in V$ are loc

$$(\langle u, v \rangle)^2 \leq \langle u, u \rangle \langle v, v \rangle$$

cu egalitate dacă și numai dacă u, v sunt liniar dependenți.

Demonstrație

Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = \langle tu + v, tu + v \rangle$. Atunci $f(t) = \langle u, u \rangle t^2 + 2 \langle u, v \rangle t + \langle v, v \rangle$ și $f(t) \geq 0, \forall t \in \mathbb{R}$. Deci

Notație

Dacă $g: V \times V \to \mathbb{R}$ este un produs scalar, vom nota

$$\langle u, v \rangle \stackrel{not}{=} g(u, v)$$

Inegalitatea Cauchy-Buniakowsky-Schwarz

Fie $<,>: V \times V \to \mathbb{R}$ un produs scalar. Atunci pentru orice doi vectori $u, v \in V$ are loc

$$(\langle u, v \rangle)^2 \le \langle u, u \rangle \langle v, v \rangle$$

cu egalitate dacă și numai dacă u, v sunt liniar dependenți.

Demonstrație

Fie funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = \langle tu + v, tu + v \rangle$. Atunci $f(t) = \langle u, u \rangle t^2 + 2 \langle u, v \rangle t + \langle v, v \rangle$ și $f(t) \ge 0, \forall t \in \mathbb{R}$. Deci $\Delta_f \le 0$.

Norma indusă de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V.Se numește *norma indusă de* \langle , \rangle funcția $|| || : V \to \mathbb{R}$ definită prin

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Norma indusă de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V.Se numește *norma indusă de* \langle , \rangle funcția $|| || : V \to \mathbb{R}$ definită prin

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Exemplu. Pentru produsul scalar canonic pe \mathbb{R}^n avem

$$||(x_1,\ldots,x_n)|| = \sqrt{x_1^2 + \ldots x_n^2}$$

Norma indusă de un produs scalar

Fie V un spațiu vectorial și $\langle, \rangle: V \times V \to \mathbb{R}$ un produs scalar pe V.Se numește norma indusă de \langle, \rangle funcția $|| || : V \to \mathbb{R}$ definită prin

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Exemplu. Pentru produsul scalar canonic pe \mathbb{R}^n avem

$$||(x_1,\ldots,x_n)|| = \sqrt{x_1^2 + \ldots x_n^2}$$

Proprietăți ale normei

Norma indusă de un produs scalar

Fie V un spațiu vectorial și $\langle, \rangle: V \times V \to \mathbb{R}$ un produs scalar pe V.Se numește *norma indusă de* \langle , \rangle funcția $|| || : V \to \mathbb{R}$ definită prin

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Exemplu. Pentru produsul scalar canonic pe \mathbb{R}^n avem

$$||(x_1,\ldots,x_n)|| = \sqrt{x_1^2 + \ldots x_n^2}$$

Proprietăți ale normei

a)
$$||u + v|| \le ||u|| + ||v||, \forall u, v \in V$$
;

Norma indusă de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V.Se numește *norma indusă de* \langle , \rangle funcția $|| || : V \to \mathbb{R}$ definită prin

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Exemplu. Pentru produsul scalar canonic pe \mathbb{R}^n avem

$$||(x_1,\ldots,x_n)|| = \sqrt{x_1^2 + \ldots x_n^2}$$

Proprietăți ale normei

a)
$$||u + v|| \le ||u|| + ||v||, \forall u, v \in V$$
;

b)
$$||tv|| = |t| \cdot ||v||, \forall t \in \mathbb{R}, \forall v \in V;$$

Norma indusă de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V.Se numește *norma indusă de* \langle , \rangle funcția $|| || : V \to \mathbb{R}$ definită prin

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Exemplu. Pentru produsul scalar canonic pe \mathbb{R}^n avem

$$||(x_1,\ldots,x_n)|| = \sqrt{x_1^2 + \ldots x_n^2}$$

Proprietăți ale normei

a)
$$||u + v|| \le ||u|| + ||v||, \forall u, v \in V$$
;

b)
$$||tv|| = |t| \cdot ||v||, \forall t \in \mathbb{R}, \forall v \in V;$$

c)
$$||v|| \ge 0, \forall v \in V \text{ și } ||v|| = 0 \Leftrightarrow v = 0_V.$$

Măsuri de unghiuri induse de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. Fie $u, v \in V$ vectori nenuli. Definim măsura unghiului $\widehat{u, v}$ dintre u și v prin

$$cos(\widehat{u,v}) = \frac{\langle u,v \rangle}{||u|| \cdot ||v||}$$

Măsuri de unghiuri induse de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. Fie $u, v \in V$ vectori nenuli. Definim măsura unghiului $\widehat{u, v}$ dintre u și v prin

$$cos(\widehat{u,v}) = \frac{\langle u,v \rangle}{||u|| \cdot ||v||}$$

Remarcă.

Faptul că această noțiune este corect definită provine din CBS:

Măsuri de unghiuri induse de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. Fie $u, v \in V$ vectori nenuli. Definim măsura unghiului $\widehat{u, v}$ dintre u și v prin

$$cos(\widehat{u,v}) = \frac{\langle u,v \rangle}{||u|| \cdot ||v||}$$

Remarcă.

Faptul că această noțiune este corect definită provine din CBS:

$$-1 \le \left| \frac{\langle u, v \rangle}{||u|| \cdot ||v||} \right| \le 1$$

Măsuri de unghiuri induse de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. Fie $u, v \in V$ vectori nenuli. Definim măsura unghiului $\widehat{u, v}$ dintre u și v prin

$$cos(\widehat{u,v}) = \frac{\langle u,v \rangle}{||u|| \cdot ||v||}$$

Remarcă.

Faptul că această noțiune este corect definită provine din CBS:

$$-1 \le \left| \frac{\langle u, v \rangle}{||u|| \cdot ||v||} \right| \le 1$$

Prependicularitate

Dacă $u, v \in V$ sunt vectori nenuli, atunci spunem prin definiție că u este perpendicular pe v (notat $u \perp v$) dacă și numai dacă

Măsuri de unghiuri induse de un produs scalar

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. Fie $u, v \in V$ vectori nenuli. Definim măsura unghiului $\widehat{u, v}$ dintre u și v prin

$$cos(\widehat{u,v}) = \frac{\langle u,v \rangle}{||u|| \cdot ||v||}$$

Remarcă.

Faptul că această noțiune este corect definită provine din CBS:

$$-1 \le \left| \frac{\langle u, v \rangle}{||u|| \cdot ||v||} \right| \le 1$$

Prependicularitate

Dacă $u, v \in V$ sunt vectori nenuli, atunci spunem prin definiție că u este perpendicular pe v (notat $u \perp v$) dacă și numai dacă $\langle u, v \rangle = 0$.

Definiție

Fie V un spațiu vectorial și $\langle,\;\rangle:V\times V\to\mathbb{R}$ un produs scalar pe V. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a lui V se numește bază ortonormată dacă

Definiție

Fie V un spațiu vectorial și $\langle,\;\rangle:V\times V\to\mathbb{R}$ un produs scalar pe V. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a lui V se numește bază ortonormată dacă

$$e_i \perp e_j, \forall i \neq j, \text{ și}$$

Definitie

Fie V un spațiu vectorial și $\langle,\;\rangle:V\times V\to\mathbb{R}$ un produs scalar pe V. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a lui V se numește bază ortonormată dacă

$$e_i \perp e_j, \forall i \neq j, \text{ si } ||e_i|| = 1, \forall i = 1, n.$$

Definitie

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a lui V se numește bază ortonormată dacă

$$e_i \perp e_j, \forall i \neq j, \text{ si } ||e_i|| = 1, \forall i = 1, n.$$

Remarcă

Baza $\mathcal{B} = \{e_1, \dots, e_n\}$ este ortonormată dacă și numai dacă $\langle e_i, e_i \rangle = \delta_{ii}, \forall i, j \text{ unde } \delta_{ii} \text{ este simbolul Kronecker:}$

Definitie

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a lui V se numește bază ortonormată dacă

$$e_i \perp e_j, \forall i \neq j, \text{ si } ||e_i|| = 1, \forall i = 1, n.$$

Remarcă

Baza $\mathcal{B} = \{e_1, \dots, e_n\}$ este ortonormată dacă și numai dacă $\langle e_i, e_i \rangle = \delta_{ii}, \forall i, j \text{ unde } \delta_{ii} \text{ este simbolul Kronecker:}$

$$\delta_{ij} = \left\{ egin{array}{ll} 1, & \mathsf{dac} \ i = j; \\ 0, & \mathsf{dac} \ i
eq j. \end{array}
ight.$$

Definitie

Fie V un spațiu vectorial și $\langle , \rangle : V \times V \to \mathbb{R}$ un produs scalar pe V. O bază $\mathcal{B} = \{e_1, \dots, e_n\}$ a lui V se numește bază ortonormată dacă

$$e_i \perp e_j, \forall i \neq j, \text{ si } ||e_i|| = 1, \forall i = 1, n.$$

Remarcă

Baza $\mathcal{B} = \{e_1, \dots, e_n\}$ este ortonormată dacă și numai dacă $\langle e_i, e_i \rangle = \delta_{ii}, \forall i, j \text{ unde } \delta_{ii} \text{ este simbolul Kronecker:}$

$$\delta_{ij} = \left\{ egin{array}{ll} 1, & \mathsf{dac} \ i = j; \\ 0, & \mathsf{dac} \ i
eq j. \end{array}
ight.$$

Exemplu. Baza canonică a lui \mathbb{R}^n este ortonormată în raport cu produsul scalar canonic.

Algoritmul

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. Fie $\mathcal{B}_i = \{f_1, \dots, f_n\}$ o bază arbitrară alui V. Construim o bază ortonormată $B_o = \{e_1, \dots, e_n\}$ astfel:

Algoritmul

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. Fie $\mathcal{B}_i = \{f_1, \dots, f_n\}$ o bază arbitrară alui V. Construim o bază ortonormată $B_o = \{e_1, \dots, e_n\}$ astfel: **Pasul 1.** Punem prin definiție

$$e_1=\frac{1}{||f_1||}f_1;$$

Algoritmul

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. Fie $\mathcal{B}_i = \{f_1, \dots, f_n\}$ o bază arbitrară alui V. Construim o bază ortonormată $B_o = \{e_1, \dots, e_n\}$ astfel: **Pasul 1.** Punem prin definiție

$$e_1 = \frac{1}{||f_1||} f_1;$$

Pasul general. Presupunem că am construit vectorii e_1, \ldots, e_{k-1} din baza \mathcal{B}_o .

Algoritmul

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. Fie $\mathcal{B}_i = \{f_1, \dots, f_n\}$ o bază arbitrară alui V. Construim o bază ortonormată $B_o = \{e_1, \dots, e_n\}$ astfel: **Pasul 1.** Punem prin definiție

$$e_1 = \frac{1}{||f_1||} f_1;$$

Pasul general. Presupunem că am construit vectorii e_1, \ldots, e_{k-1} din baza \mathcal{B}_o . Construim mai întâi un vector "auxiliar" g_k prin formula:

$$g_k = f_k - \sum_{i=1}^{k-1} \langle f_k, e_i \rangle e_i;$$

Algoritmul

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. Fie $\mathcal{B}_i = \{f_1, \dots, f_n\}$ o bază arbitrară alui V. Construim o bază ortonormată $B_o = \{e_1, \dots, e_n\}$ astfel: **Pasul 1.** Punem prin definiție

$$e_1 = \frac{1}{||f_1||} f_1;$$

Pasul general. Presupunem că am construit vectorii e_1, \ldots, e_{k-1} din baza \mathcal{B}_o . Construim mai întâi un vector "auxiliar" g_k prin formula:

$$g_k = f_k - \sum_{i=1}^{k-1} \langle f_k, e_i \rangle e_i;$$

Punem

$$e_k = \frac{1}{||g_k||} g_k.$$

Aplicații ortogonale

Definiție.

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O funcție $T: V \to V$ se numește transformare ortogonală dacă păstrează produsul scalar, i.e. dacă

$$\langle T(u), T(v) \rangle = \langle u, v \rangle, \forall u, v \in V.$$

Aplicații ortogonale

Definiție.

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O funcție $T: V \to V$ se numește transformare ortogonală dacă păstrează produsul scalar, i.e. dacă

$$\langle T(u), T(v) \rangle = \langle u, v \rangle, \forall u, v \in V.$$

Teorema de caracterizare a transformărilor ortogonale.

Fie (V, \langle, \rangle) un spațiu vectorial euclidian și $\mathcal{B} = \{e_1, \dots, e_n\}$ o bază ortogonală fixată a lui V. Fie $T: V \to V$ o aplicație liniară având matricea A în raport cu baza \mathcal{B} . Atunci T este transformare ortogonală dacă și numai dacă matricea A satisface relația:

Aplicații ortogonale

Definiție.

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O funcție $T: V \to V$ se numește transformare ortogonală dacă păstrează produsul scalar, i.e. dacă

$$\langle T(u), T(v) \rangle = \langle u, v \rangle, \forall u, v \in V.$$

Teorema de caracterizare a transformărilor ortogonale.

Fie (V, \langle, \rangle) un spațiu vectorial euclidian și $\mathcal{B} = \{e_1, \dots, e_n\}$ o bază ortogonală fixată a lui V. Fie $T: V \to V$ o aplicație liniară având matricea A în raport cu baza \mathcal{B} . Atunci T este transformare ortogonală dacă și numai dacă matricea A satisface relația:

$$A \cdot A^t = I_n$$

Grupul ortogonal

Definiție

Fie $(V,\langle,\,\rangle)$ un spațiu vectorial euclidian. Atunci mulțimea

$$O(V) = \{T | T : V \rightarrow V, T = \text{ transformare ortogonală } \}$$

este un grup în raport cu compunerea funcțiilor, numit $grupul \ ortogonal \ al \ lui \ V.$

În cazul particular $V = \mathbb{R}^n$ cu produsul scalar canonic, acest grup se notează O(n).

Grupul ortogonal

Definiție

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. Atunci mulțimea

$$O(V) = \{T | T : V \rightarrow V, T = \text{ transformare ortogonală } \}$$

este un grup în raport cu compunerea funcțiilor, numit $grupul \ ortogonal \ al \ lui \ V.$

În cazul particular $V = \mathbb{R}^n$ cu produsul scalar canonic, acest grup se notează O(n).

Remarci

• Fie $A \in O(n)$; atunci $det(A) = \pm 1$.

Grupul ortogonal

Definiție

Fie (V,\langle,\rangle) un spațiu vectorial euclidian. Atunci mulțimea

$$O(V) = \{T | T : V \rightarrow V, T = \text{ transformare ortogonală } \}$$

este un grup în raport cu compunerea funcțiilor, numit $grupul \ ortogonal \ al \ lui \ V.$

În cazul particular $V = \mathbb{R}^n$ cu produsul scalar canonic, acest grup se notează O(n).

Remarci

- Fie $A \in O(n)$; atunci $det(A) = \pm 1$.
- Mulţimea

$$SO(n) = \{A \in O(n) | det(A) = 1\}$$

este un subgrup al lui O(n) numit grupul special ortogonal.

Teoremă

Avem

$$O(2) = \mathcal{R} \cup \mathcal{S}$$

unde

Teoremă

Avem

$$O(2) = \mathcal{R} \cup \mathcal{S}$$

unde

$$\mathcal{R} = \{ R_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

Teoremă

Avem

$$O(2) = \mathcal{R} \cup \mathcal{S}$$

unde

$$\mathcal{R} = \{ R_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

$$S = \{S_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

Teoremă

Avem

$$O(2) = \mathcal{R} \cup \mathcal{S}$$

unde

$$\mathcal{R} = \{ R_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

$$\mathcal{S} = \{ \mathcal{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

Matricele de forma R_{α} se numesc matrici de rotație

Teoremă

Avem

$$O(2) = \mathcal{R} \cup \mathcal{S}$$

unde

$$\mathcal{R} = \{ R_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

$$\mathcal{S} = \{ \mathcal{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

Matricele de forma R_{α} se numesc *matrici de rotație* iar matricele de forma S_{α} se numesc *matrici de simetrie*.

Grupul O(2)

Teoremă

Avem

$$O(2) = \mathcal{R} \cup \mathcal{S}$$

unde

$$\mathcal{R} = \{ R_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

$$S = \{S_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R} \}$$

Matricele de forma R_{α} se numesc *matrici de rotație* iar matricele de forma S_{α} se numesc *matrici de simetrie*. În plus, $SO(2) = \mathcal{R}$.

Definiție

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O transformare liniară $T: V \to V$ se numește *simetrică* dacă are loc

$$\langle T(u), v \rangle = \langle u, T(v) \rangle, \forall u, v \in V.$$

Definiție

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O transformare liniară $T: V \to V$ se numește *simetrică* dacă are loc

$$\langle T(u), v \rangle = \langle u, T(v) \rangle, \forall u, v \in V.$$

Teoremă

Fie (V, \langle, \rangle) un spațiu vectorial euclidian, \mathcal{B} o bază ortonomată alui V și $\mathcal{T}: V \to V$ o aplicație liniară. Atunci:

a) T este simetrică dacă și numai dacă matricea A a lui T în raport cu baza $\mathcal B$ este

Definiție

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O transformare liniară $T: V \to V$ se numește *simetrică* dacă are loc

$$\langle T(u), v \rangle = \langle u, T(v) \rangle, \forall u, v \in V.$$

Teoremă

Fie (V, \langle, \rangle) un spațiu vectorial euclidian, $\mathcal B$ o bază ortonomată alui V și $\mathcal T: V \to V$ o aplicație liniară. Atunci:

a) T este simetrică dacă și numai dacă matricea A a lui T în raport cu baza $\mathcal B$ este matrice simetrică, i.e.

$$A=A^{t}$$
.

Definiție

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O transformare liniară $T: V \to V$ se numește *simetrică* dacă are loc

$$\langle T(u), v \rangle = \langle u, T(v) \rangle, \forall u, v \in V.$$

Teoremă

Fie (V, \langle, \rangle) un spațiu vectorial euclidian, \mathcal{B} o bază ortonomată alui V și $\mathcal{T}: V \to V$ o aplicație liniară. Atunci:

a) T este simetrică dacă și numai dacă matricea A a lui T în raport cu baza $\mathcal B$ este matrice simetrică, i.e.

$$A = A^t$$
.

b) dacă T este simetrică, atunci T este diagonalizabilă.

Definiție

Fie (V, \langle, \rangle) un spațiu vectorial euclidian. O transformare liniară $T: V \to V$ se numește *simetrică* dacă are loc

$$\langle T(u), v \rangle = \langle u, T(v) \rangle, \forall u, v \in V.$$

Teoremă

Fie (V, \langle, \rangle) un spațiu vectorial euclidian, $\mathcal B$ o bază ortonomată alui V și $\mathcal T: V \to V$ o aplicație liniară. Atunci:

a) T este simetrică dacă și numai dacă matricea A a lui T în raport cu baza \mathcal{B} este matrice simetrică, i.e.

$$A=A^{t}$$
.

b) dacă T este simetrică, atunci T este diagonalizabilă. În plus, există o bază de diagonalizare a lui T care este ortonormată.

Definiție

Se numește *spațiu afin euclidian* un spațiu afin \mathcal{A} peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spaţiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Definitie

Se numește *spațiu afin euclidian* un spațiu afin $\mathcal A$ peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spațiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Distanța în spații euclidiene

Dacă A este un spațiu afin euclidian, definim funcția distanță pe A prin $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$.

Definitie

Se numește *spațiu afin euclidian* un spațiu afin $\mathcal A$ peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spaţiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Distanța în spații euclidiene

Dacă A este un spațiu afin euclidian, definim funcția distantă pe A prin $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$.

$$d(P,Q) = ||\overrightarrow{PQ}||$$

Definiție

Se numește *spațiu afin euclidian* un spațiu afin \mathcal{A} peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spațiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Distanța în spații euclidiene

Dacă A este un spațiu afin euclidian, definim funcția distantă pe A prin $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$.

$$d(P,Q) = ||\overrightarrow{PQ}||$$

Definiție

Se numește *spațiu afin euclidian* un spațiu afin $\mathcal A$ peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spațiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Distanța în spații euclidiene

Dacă A este un spațiu afin euclidian, definim funcția distanță pe A prin $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$.

$$d(P,Q) = ||\overrightarrow{PQ}||$$

$$d(P, Q) = d(Q, P), \forall P, Q \in A;$$

Definitie

Se numește *spațiu afin euclidian* un spațiu afin $\mathcal A$ peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spaţiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Distanța în spații euclidiene

Dacă A este un spațiu afin euclidian, definim funcția distanță pe A prin $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$.

$$d(P,Q) = ||\overrightarrow{PQ}||$$

$$d(P,Q) = d(Q,P), \forall P, Q \in \mathcal{A}; d(P,Q) + d(Q,R) \ge d(P,R), \forall P, Q, R \in \mathcal{A};$$

Definitie

Se numește *spațiu afin euclidian* un spațiu afin $\mathcal A$ peste corpul numerelor reale, astfel încât spațiul său vectorial director dir(A) are o structură de spaţiu vectorial euclidian, i.e. s-a fixat un produs scalar \langle , \rangle pe dir(A).

Distanța în spații euclidiene

Dacă A este un spațiu afin euclidian, definim funcția distanță pe A prin $d: \mathcal{A} \times \mathcal{A} \to \mathbb{R}$.

$$d(P,Q) = ||\overrightarrow{PQ}||$$

$$d(P,Q) = d(Q,P), \forall P, Q \in \mathcal{A};$$

 $d(P,Q) + d(Q,R) \ge d(P,R), \forall P, Q, R \in \mathcal{A};$
 $d(P,Q) \ge 0 \text{ si } d(P,Q) = 0 \Leftrightarrow P = Q.$

Definitie

Fie $\mathcal A$ un spațiu afin euclidian și $\mathcal A',\mathcal A""\subset\mathcal A$ subspații afine. Sunem că \mathcal{A}' este perpendicular pe \mathcal{A}'' dacă $dir(\mathcal{A}'') \perp dir(\mathcal{A}'')$, i.e.

Definitie

Fie \mathcal{A} un spațiu afin euclidian și $\mathcal{A}', \mathcal{A}''' \subset \mathcal{A}$ subspații afine. Sunem că \mathcal{A}' este perpendicular pe \mathcal{A}'' dacă $dir(\mathcal{A}'') \perp dir(\mathcal{A}'')$, i.e.

$$\langle u, v \rangle = 0, \forall u \in \textit{dir}(\mathcal{A}'), v \in \textit{dir}(\mathcal{A}").$$

Definitie

Fie \mathcal{A} un spațiu afin euclidian și $\mathcal{A}', \mathcal{A}''' \subset \mathcal{A}$ subspații afine. Sunem că \mathcal{A}' este perpendicular pe \mathcal{A}'' dacă $dir(\mathcal{A}'') \perp dir(\mathcal{A}'')$, i.e.

$$\langle u, v \rangle = 0, \forall u \in dir(\mathcal{A}'), v \in dir(\mathcal{A}").$$

Drepte perpendiculare

Fie $\mathcal{A} = \mathbb{R}^n$ cu structura euclidiană canonică. Considerăm dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\cdots=\frac{x_n-x_n^A}{v_n};$$

$$(d_2): \frac{x_1-x_1^B}{u_1}=\frac{x_2-x_2^B}{u_2}=\cdots=\frac{x_n-x_n^B}{u_n}.$$

Atunci

$$d_1 \perp d_2 \Leftrightarrow$$

Definitie

Fie \mathcal{A} un spațiu afin euclidian și $\mathcal{A}', \mathcal{A}''' \subset \mathcal{A}$ subspații afine. Sunem că \mathcal{A}' este perpendicular pe \mathcal{A}'' dacă $dir(\mathcal{A}'') \perp dir(\mathcal{A}'')$, i.e.

$$\langle u, v \rangle = 0, \forall u \in dir(\mathcal{A}'), v \in dir(\mathcal{A}'').$$

Drepte perpendiculare

Fie $\mathcal{A} = \mathbb{R}^n$ cu structura euclidiană canonică. Considerăm dreptele

$$(d_1): \frac{x_1-x_1^A}{v_1}=\frac{x_2-x_2^A}{v_2}=\cdots=\frac{x_n-x_n^A}{v_n};$$

$$(d_2): \frac{x_1-x_1^B}{u_1}=\frac{x_2-x_2^B}{u_2}=\cdots=\frac{x_n-x_n^B}{u_n}.$$

Atunci

$$d_1 \perp d_2 \Leftrightarrow v_1 u_1 + v_2 u_2 + \dots v_n u_n = 0.$$

Perpendicularitate între drepte și plane

Fie dreapta

$$(d_1): \frac{x_1-x_1^O}{v_1}=\frac{x_2-x_2^O}{v_2}=\frac{x_3-x_3^O}{v_3}$$

și planul

$$(\pi): Ax_1 + Bx_2 + Cx_3 + D = 0$$

Atunci $d \perp \pi$ dacă și numai dacă

Perpendicularitate între drepte și plane

Fie dreapta

$$(d_1): \frac{x_1-x_1^O}{v_1}=\frac{x_2-x_2^O}{v_2}=\frac{x_3-x_3^O}{v_3}$$

și planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 + D = 0$

Atunci $d \perp \pi$ dacă și numai dacă (A, B, C) și (v_1, v_2, v_3) sunt proportionali.

Perpendicularitate între drepte și plane

Fie dreapta

$$(d_1): \frac{x_1-x_1^O}{v_1}=\frac{x_2-x_2^O}{v_2}=\frac{x_3-x_3^O}{v_3}$$

și planul

$$(\pi)$$
: $Ax_1 + Bx_2 + Cx_3 + D = 0$

Atunci $d \perp \pi$ dacă și numai dacă (A, B, C) și (v_1, v_2, v_3) sunt proportionali.

Perpendiculara dusă dintr-un punct la un plan

Fie $P = (x_1^P, x_2^P, x_3^P)$ și planul $(\pi) : Ax_1 + Bx_2 + Cx_3 + D = 0$.

Dreapta π^{\perp} perpendiculară dusă din punctul P pe planul π are ecuația:

Perpendicularitate între drepte și plane

Fie dreapta

$$(d_1): \frac{x_1-x_1^O}{v_1}=\frac{x_2-x_2^O}{v_2}=\frac{x_3-x_3^O}{v_3}$$

și planul

$$(\pi): Ax_1 + Bx_2 + Cx_3 + D = 0$$

Atunci $d \perp \pi$ dacă și numai dacă (A, B, C) și (v_1, v_2, v_3) sunt proporționali.

Perpendiculara dusă dintr-un punct la un plan

Fie $P = (x_1^P, x_2^P, x_3^P)$ și planul $(\pi) : Ax_1 + Bx_2 + Cx_3 + D = 0$.

Dreapta π^{\perp} perpendiculară dusă din punctul P pe planul π are ecuația:

$$(\pi^{\perp}): \frac{x_1 - x_1^P}{A} = \frac{x_2 - x_2^P}{B} = \frac{x_3 - x_3^P}{C}$$

Distanța de la un punct la un plan

Fie $P = (x_1^P, x_2^P, x_3^P)$ și planul $(\pi) : Ax_1 + Bx_2 + Cx_3 + D = 0$. Atunci distanța de la punctul P la planul π este

Distanța de la un punct la un plan

Fie $P = (x_1^P, x_2^P, x_3^P)$ și planul $(\pi) : Ax_1 + Bx_2 + Cx_3 + D = 0$. Atunci distanța de la punctul P la planul π este

$$dist(P,\pi) = \frac{|Ax_1^P + Bx_2^P + Cx_3^P + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Distanța de la un punct la un plan

Fie $P = (x_1^P, x_2^P, x_3^P)$ și planul $(\pi) : Ax_1 + Bx_2 + Cx_3 + D = 0$. Atunci distanța de la punctul P la planul π este

$$dist(P,\pi) = \frac{|Ax_1^P + Bx_2^P + Cx_3^P + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Perpendiculariate între plane

Fie planele

$$(\pi')$$
: $A'x_1 + B'x_2 + C'x_3 + D' = 0$

şi

$$(\pi''): A''x_1 + B''x_2 + C''x_3 + D'' = 0.$$

Atunci $\pi' \perp \pi''$ dacă și numai dacă

Distanța de la un punct la un plan

Fie $P = (x_1^P, x_2^P, x_3^P)$ și planul $(\pi) : Ax_1 + Bx_2 + Cx_3 + D = 0$. Atunci distanța de la punctul P la planul π este

$$dist(P,\pi) = \frac{|Ax_1^P + Bx_2^P + Cx_3^P + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Perpendiculariate între plane

Fie planele

$$(\pi')$$
: $A'x_1 + B'x_2 + C'x_3 + D' = 0$

şi

$$(\pi'')$$
: $A''x_1 + B''x_2 + C''x_3 + D'' = 0$.

Atunci $\pi' \perp \pi''$ dacă și numai dacă

$$A'A'' + B''B'' + C'C'' = 0.$$

Izometrii în spații euclidiene

Definiție

Fie \mathcal{A} un spațiu euclidian. O funcție $f:\mathcal{A}\to\mathcal{A}$ se numește *izometrie* dacă

$$d(P,Q) = d(f(P), f(Q)), \forall P, Q \in A$$

Izometrii în spații euclidiene

Definiție

Fie \mathcal{A} un spațiu euclidian. O funcție $f: \mathcal{A} \to \mathcal{A}$ se numește *izometrie* dacă

$$d(P,Q) = d(f(P), f(Q)), \forall P, Q \in A$$

Teoremă

Fie \mathcal{A} un spațiu afin euclidian și $\mathcal{R}_c = (O, \mathcal{B})$ un reper cartezian ortonormat (i.e. baza $\mathcal{B} = \{e_1, \dots, e_n\}$ este bază ortonormată). Atunci o funcție $f: \mathcal{A} \to \mathcal{A}$ este izometrie dacă și numai dacă

Izometrii în spații euclidiene

Definiție

Fie \mathcal{A} un spațiu euclidian. O funcție $f: \mathcal{A} \to \mathcal{A}$ se numește *izometrie* dacă

$$d(P,Q) = d(f(P), f(Q)), \forall P, Q \in A$$

Teoremă

Fie \mathcal{A} un spațiu afin euclidian și $\mathcal{R}_c = (O, \mathcal{B})$ un reper cartezian ortonormat (i.e. baza $\mathcal{B} = \{e_1, \dots, e_n\}$ este bază ortonormată). Atunci o funcție $f: A \to A$ este izometrie dacă și numai dacă există o matrice ortogonală $A \in Mat_{n \times n}(\mathbb{R})$ și o matrice $B \in Mat_{n \times 1}(\mathbb{R})$ astfel încât

$$f(X)=AX+B.$$

Teoremă

Teoremă

$$(I): \frac{x_1^2}{a_1^2} + \dots + \frac{x_p^2}{a_p^2} - \frac{x_{p+1}^2}{a_{p+1}^2} - \dots - \frac{x_r^2}{a_r^2} = 0$$

Teoremă

$$(I): \frac{x_1^2}{a_1^2} + \dots + \frac{x_p^2}{a_p^2} - \frac{x_{p+1}^2}{a_{p+1}^2} - \dots - \frac{x_r^2}{a_r^2} = 0$$

$$(II): \frac{x_1^2}{a_1^2} + \dots + \frac{x_p^2}{a_p^2} - \frac{x_{p+1}^2}{a_{p+1}^2} - \dots - \frac{x_r^2}{a_r^2} \pm 1 = 0$$

Teoremă

$$(I): \frac{x_1^2}{a_1^2} + \dots + \frac{x_p^2}{a_p^2} - \frac{x_{p+1}^2}{a_{p+1}^2} - \dots - \frac{x_r^2}{a_r^2} = 0$$

$$(II): \frac{x_1^2}{a_1^2} + \dots + \frac{x_p^2}{a_p^2} - \frac{x_{p+1}^2}{a_{p+1}^2} - \dots - \frac{x_r^2}{a_r^2} \pm 1 = 0$$

$$(III): \frac{x_1^2}{a_1^2} + \dots + \frac{x_p^2}{a_p^2} - \frac{x_{p+1}^2}{a_{p+1}^2} - \dots - \frac{x_r^2}{a_r^2} - 2x_{r+1} = 0$$

•
$$\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$$
 ("punct dublu")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_1^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_2^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")
- $\frac{x_1^2}{a_1^2} = 0$ (" dreaptă dublă")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_1^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")
- $\frac{x_1^2}{a_1^2} = 0$ ("dreaptă dublă")
- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 1$ (" elipsă")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_2^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")
- $\frac{x_1^2}{a_1^2} = 0$ (" dreaptă dublă")
- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 1$ (" elipsă")
- $\frac{x_1^2}{a_1^2} \frac{x_2^2}{a_2^2} = 1$ ("hiperbolă")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_2^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")
- $\frac{x_1^2}{a^2} = 0$ (" dreaptă dublă")
- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 1$ ("elipsă")
- $\frac{x_1^2}{a_1^2} \frac{x_2^2}{a_2^2} = 1$ (" hiperbolă")
- $\frac{x_1^2}{a^2} = 1$ ("pereche de drepte paralele")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_2^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")
- $\frac{x_1^2}{a_1^2} = 0$ (" dreaptă dublă")
- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 1$ ("elipsă")
- $\frac{x_1^2}{a_1^2} \frac{x_2^2}{a_2^2} = 1$ (" hiperbolă")
- $\frac{x_1^2}{a^2} = 1$ ("pereche de drepte paralele")
- $\frac{x_1^2}{a_1^2} 2x_2 = 0$ ("parabolă")

- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 0$ ("punct dublu")
- $\frac{x_1^2}{a_2^2} \frac{x_2^2}{a_2^2} = 0$ ("pereche de drepte secante")
- $\frac{x_1^2}{a_1^2} = 0$ (" dreaptă dublă")
- $\frac{x_1^2}{a_1^2} + \frac{x_2^2}{a_2^2} = 1$ ("elipsă")
- $\frac{x_1^2}{a_1^2} \frac{x_2^2}{a_2^2} = 1$ (" hiperbolă")
- $\frac{x_1^2}{a^2} = 1$ ("pereche de drepte paralele")
- $\frac{x_1^2}{a_2^2} 2x_2 = 0$ ("parabolă")

Cuadrice în spațiul euclidian

Cuadrice pe ecuație canonică

Mikipedia cuadrice