2013.7.3 担当:佐藤

注意事項

- 指定された用紙に解その他を記述し、7月8日(月)に提出すること。
- 答案には解を導き出す過程を必ず書くこと(解だけの場合は加点しない)。解には下線を引いて明示すること。
- $oxed{1}$ 行列 $A=\left(egin{array}{cc} 1 & rac{1}{2} \ rac{1}{2} & 1 \end{array}
 ight)$ について以下の問に答えなさい.
 - (1) A の固有多項式 $f_A(t)$ を求めなさい。(2点)
 - (2) Aの固有値を求めなさい. (2点)
 - (3) (2) で求めた各固有値に関する A の固有ベクトルを求めなさい。 (4 点)
 - (4) (2) で求めた各固有値に関する A の固有ベクトルで,ノルムが 1 のベクトルをそれぞれ 1 つ 挙げなさい。(2 点)
 - (5) (4) で挙げた単位ベクトルを並べてできる 2 次正方行列を P とする。 P が直交行列であることを示しなさい。 (2点)
 - (6) tPAP が対角行列のなることを示しなさい。(2点)
- **2** 2 次多項式 $\varphi(x,y) = x^2 + xy + y^2 + 5x + y + 6$ について以下の間に答えなさい. (各 3 点)
 - (1) $\varphi(\bar{x} + \lambda, \bar{y} + \mu)$ を計算し、 \bar{x} の係数と \bar{y} の係数を λ, μ を用いて表しなさい.
 - (2) $\varphi(\bar{x}+\lambda,\bar{y}+\mu)=\bar{x}^2+\bar{x}\bar{y}+\bar{y}^2+\bar{c}$ となるような λ,μ を求めなさい。また,定数項 \bar{c} の値を求めなさい。
 - (3) $\bar{\varphi}(\bar{x},\bar{y}) = \bar{x}^2 + \bar{x}\bar{y} + \bar{y}^2 + \bar{c}$ とおく。直交行列 P を用いて $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = P \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$ と座標変換 すると, $\bar{\varphi}(\bar{x},\bar{y}) = \alpha \tilde{x}^2 + \beta \tilde{y}^2 + \bar{c}$ となった。このときの直交行列 P と実数 α,β を求めなさい。
 - (4) 以上を踏まえて、2 次曲線 $\varphi(x,y)=0$ がどのような形か(楕円、双曲線、放物線、または そのいずれでもないか)を答えなさい。
- **3** 2 次多項式 $\varphi(x,y) = x^2 + xy + y^2 + 5x + y + 6$ について以下の問に答えなさい. (各 3 点)
 - (1) 2 (3) で求めた直交行列 P に対し, $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix}$ と座標変換する.このとき, $\varphi(x,y)$ を \tilde{x} , \tilde{y} に関する 2 次多項式として表しなさい.
 - (2) (1) で求めた 2 次多項式を $\tilde{\varphi}(\tilde{x}, \tilde{y})$ とおく.このとき, $\tilde{\varphi}(\tilde{x}, \tilde{y}) = \alpha(\tilde{x} \tilde{\lambda})^2 + \beta(\tilde{y} \tilde{\mu})^2 + \tilde{c}$ となるような実数 $\tilde{\lambda}, \tilde{\mu}$ および α, β, \tilde{c} を求めなさい.
 - (3) (2) で求めた $\tilde{\lambda}$, $\tilde{\mu}$ に対し, $\begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} + \begin{pmatrix} \tilde{\lambda} \\ \tilde{\mu} \end{pmatrix}$ と座標変換する.このとき, $\tilde{\varphi}(\tilde{x},\tilde{y})$ を \bar{x},\bar{y} の多項式として表し, $\mathbf{2}$ (3) で求めた 2 次多項式と比較しなさい.