Home Work (13)

Task 1: Properties of Clebsch-Gordan coefficients

(2 Points)

Use the properties of Clebsch-Gordan coefficients to show that the following coefficients vanish

- a) $\langle 21, 10|2-1 \rangle$
- **b)** $\langle 0.0, 1.0 | 3.0 \rangle$
- **c)** $\langle 10, 10 | 10 \rangle$

Task 2: Two spin-1/2 particles

(2 Points)

Use the rule for adding angular momentum with Clebsch-Gordan coefficients to construct the coupled spin states of two spin-1/2 particles.

Task 3: Landau-Yang theorem

(4 Points)

Prove the Landau-Yang theorem which says that the vector particle with momentum J=1 can not decay into two photons (photon's spin is 1).

Hint: The spatial part of wave-function of two photons should be symmetric.

Task 4: Probability in a Rotated Coordinate System

(2 Points)

Assume a particle with angular momentum $\ell=2$ and projection m=1 on the z-axis of the coordinate system Σ . Let Σ' be a coordinate system that is rotated by $\vartheta=60^\circ$ with respect to Σ . Find the probability P(m') that the particle has projection m' on the z'-axis.

Hint: You might need:

$d_{m,m'}^2$	2	1	0	-1	-2
2	$\frac{(1+\cos(\beta))^2}{4}$	$-rac{\sin(eta)(1+\cos(eta))}{2}$	$\frac{1}{2}\sqrt{\frac{3}{2}}\sin\left(\beta\right)^2$	$-rac{\sin(eta)(1-\cos(eta))}{2}$	$\frac{(1-\cos(\beta))^2}{4}$
1	$\frac{\sin(\beta)(1+\cos(\beta))}{2}$	$\frac{2\cos(\beta)^2 + \cos(\beta) - 1}{2}$	$-\sqrt{\frac{3}{2}}\sin(\beta)\cos(\beta)$	$-\frac{2\cos(\beta)^2-\cos(\beta)-1}{2}$	$-\frac{\sin(\beta)(1-\cos(\beta))}{2}$
0	$\frac{1}{2}\sqrt{\frac{3}{2}}\sin\left(\beta\right)^2$	$\sqrt{\frac{3}{2}}\sin\left(\beta\right)\cos\left(\beta\right)$	$\frac{3\cos(\beta)^2 - 1}{2}$	$-\sqrt{\frac{3}{2}}\sin\left(\beta\right)\cos\left(\beta\right)$	$\frac{1}{2}\sqrt{\frac{3}{2}}\sin\left(\beta\right)^2$
-1	$\frac{\sin(\beta)(1-\cos(\beta))}{2}$	$-\frac{2\cos(\beta)^2-\cos(\beta)-1}{2}$	$\sqrt{\frac{3}{2}}\sin\left(\beta\right)\cos\left(\beta\right)$	$\frac{2\cos(\beta)^2 + \cos(\beta) - 1}{2}$	$-\frac{\sin(\beta)(1+\cos(\beta))}{2}$
-2	$\frac{(1-\cos(\beta))^2}{4}$	$\frac{\sin(\beta)(1-\cos(\beta))}{2}$	$\frac{1}{2}\sqrt{\frac{3}{2}}\sin\left(\beta\right)^2$	$\frac{\sin(\beta)(1+\cos(\beta))}{2}$	$\frac{(1+\cos(\beta))^2}{4}$