

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 9: Sistemas de Proteção Contra Descargas Atmosféricas (SPDA) – Aula 22

Instalações Elétricas I Engenharia Elétrica

9.4.4 - Captor Natural

- Chapas metálicas cobrindo a estrutura a ser protegida, desde que:
 - Tenha continuidade elétrica entre as partes de forma duradoura (solda, caldeamento, frisamento, costurado, aparafusado ou conectado com parafuso e porca);
 - A espessura da chapa tenha espessura mínima segundo a tabela abaixo:

Tabela 3 – Espessura mínima de chapas metálicas ou tubulações metálicas em sistemas de captação

Classe do SPDA	Material	Espessura ^a <i>t</i> mm	Espessura ^b t´ mm
	Chumbo	-	2,0
	Aço (inoxidável, galvanizado a quente)	4	0,5
I a IV	Titânio	4	0,5
	Cobre	5	0,5
	Alumínio	7	0,65
	Zinco	- 1	0,7

a t previne perfuração, pontos quentes ou ignição.

t' somente para chapas metálicas, se não for importante prevenir a perfuração, pontos quentes ou problemas com ignição.

9.4.5 - Subsistemas de Descida

Condutores de descida:

$$N_{cd} = \frac{P_{co}}{D_{cd}}$$

Tabela 4 – Valores típicos de distância entre os condutores de descida e entre os anéis condutores de acordo com a classe de SPDA

Classe do SPDA	Distâncias m
1	10
II	10
III	15
IV	20

NOTA É aceitável que o espaçamento dos condutores de descidas tenha no máximo 20 % além dos valores acima.

- N_{cd} número de condutores de descida;
- P_{co} perímetro da construção (m);
- D_{cd} Distância entre os condutores de descida.

Notas

- Os condutores de descidas devem prover diversos caminhos paralelos para escoar a corrente de descarga, terem o menor comprimento possível e a equipotencialização com partes condutoras deve obedecer ao item 6.2, desta norma;
- Um condutor de descida deve ser instalado, preferencialmente, em cada canto saliente da estrutura, espaçando os demais condutores o mais uniforme possível ao redor do perímetro.

Subsistemas de Descida

Descida com
barra chata de
alumínio, conector
de compressão
bimetálico e tubo
metálico

Descida com cabo de cobre embutida no reboco

Estudar o item 5.3.5 da norma, que apresenta o uso de elementos naturais da construção como condutor de descida.

Exemplo 4

Calcular o número de condutores de descida do edifício residencial abaixo, com comprimento de 75 m e largura de 40 m. Adote o SPDA com classe III.

• Obs: Para descida não natural deve haver um conector interligando a descida ao sistema de aterramento. Ver item 5.3.6 da norma.

Dimensionamento dos Subsistemas Captor e Descida

A Tabela 6 estabelece as dimensões mínimas para os componentes dos subsistemas captor e descida.

Tabela 6 – Material, configuração e área de seção mínima dos condutores de captação, hastes captoras e condutores de descidas

Material	Configuração	Área da seção mínima mm²	Comentários d
	Fita maciça	35	Espessura 1,75 mm
	Arredondado maciço d	35	Diâmetro 6 mm
Cobre	Encordoado	35	Diâmetro de cada fio da cordoalha 2,5 mm
	Arredondado maciço b	200	Diâmetro 16 mm -
	Fita maciça	70	Espessura 3 mm
Alcomo (m.) m	Arredondado maciço	70	Diâmetro 9,5 mm
Alumínio	Encordoado	70	Diâmetro de cada fio da cordoalha 3,5 mm
	Arredondado maciço b	200	Diâmetro 16 mm
Aço cobreado	Arredondado maciço	50	Diâmetro 8 mm
IACS 30 % e	Encordoado	50	Diâmetro de cada fio da cordoalha 3 mm

Obs: consultar outros materiais na Tabela 6 completa na NBR 5419-2015.

9.4.6 - Subsistema de Aterramento Elétrico

- Uma única infraestrutura de aterramento deve ser utilizada envolvendo SPDA, sistemas de energia elétrica e de sinal.
- Arranjos para a infraestrutura de aterramento:
 - 1) Armadura de aço das fundações de concreto, ou outra estrutura metálica subterrânea, desde que com continuidade elétrica garantida;
 - 2) Malha de aterramento, sendo necessária ações preventivas contra tensões superficiais perigosas (seção 8 da norma).
 - 3) Anel condutor, externo à estrutura a ser protegida, em contato com o solo por, pelo menos, 80% de seu comprimento; ou, elemento condutor interligando as armaduras descontínuas da fundação (sapatas). Em qualquer dos caso, a continuidade elétrica deve ser garantida.

Obs.: eletrodos adicionais (verticais [haste], horizontais ou inclinados [cabos]) quando necessário, podem ser conectados ao eletrodo em anel, dando preferência para serem localizados o mais próximo possível dos pontos de conexão com os condutores de descidas.

Subsistema de Aterramento Elétrico

• O eletrodo em anel deve ser enterrado a, no mínimo, 0,5m de profundidade e ficar aproximadamente a 1,0m das paredes externas da edificação a ser protegida.

- Pode ser usado para cada descida um eletrodo de aterramento (L= 5 m paras as classes III e IV, já com a classe I e II consultar norma).
- As hastes devem ser ligadas por soldas exotérmicas ao anel ou por conexão mecânica por meio de caixa de inspeção.
- Deve haver um conector (1,5 m do solo) no condutor de descida que permitas ensaio para medição de aterramento elétrico.

Subsistema de Aterramento Elétrico

Tabela 7 – Material, configuração e dimensões mínimas de eletrodo de aterramento

		Dimensõe	es mínimas ^f		
Material	Configuração	Eletrodo cravado (Diâmetro)	Eletrodo não cravado	Comentários ^f	
	Encordoado c	_	50 mm ²	Diâmetro de cada fio cordoalha 3 mm	
	Arredondado maciço ^c	-	50 mm ²	Diâmetro 8 mm	
Cobre	Fita maciça c	_	50 mm ²	Espessura 2 mm	
	Arredondado maciço	15 mm	1 - 0		
	Tubo	20 mm		Espessura da parede 2 mm	
12	Arredondado maciço a, b	16 mm	Diâmetro 10 mm	B -	
Aço galvanizado	Tubo ^{a b}	25 mm	-	Espessura da parede 2 mm	
à quente	Fita maciça a	-	90 mm ²	Espessura 3 mm	
	Encordoado		70 mm ²	_	
Aço cobreado	Arredondado Maciço ^d Encordoado ⁹	12,7 mm	70 mm ²	Diâmetro de cada fio da cordoalha 3,45 mm	
Aço inoxidável ^e	Arredondado maciço Fita maciça	15 mm	Diâmetro 10 mm 100 mm ²	Espessura mínima 2 mm	

9.4.7 - Sistema interno de proteção contra descargas atmosféricas

- O SPDA Interno deve evitar que a corrente de descarga gere centelhamentos perigosos dentro do volume de proteção e da estrutura a ser protegida.
- O centelhamento pode ocorrer entre o SPDA externo e instalações metálicas:
 - tubulações, escadas, dutos de ar condicionado, coifas, armadura de aço e peças metálicas estruturais);
 - sistemas internos (equipamentos de comunicação, TI, instrumentação e controle);
 - partes condutivas externas (eletrocalhas, suportes metálicos e dutos metálicos);
 - linhas elétricas.
- SPDA externo não isolado, equipotencialização em:
 - Na base da estrutura ou próximo do nível do solo. Com os condutores de ligação conectados ao BEP ou, se necessário, a um barramento de equipotencialização local (BEL).

Sistema interno de proteção contra descargas atmosféricas

• A Tabela 8 da norma NBR 5419-3, apresenta as seções mínimas dos condutores para interligação de barramentos e/ou ligação das barras ao aterramento:

Tabela 8 – Dimensões mínimas dos condutores que interligam diferentes barramentos de equipotencialização (BEP ou BEL) ou que ligam essas barras ao sistema de aterramento

Nível do SPDA	Modo de instalação	Material	Área da seção reta mm ²		
10.0	-	Cobre	16		
	Não enterrado	Alumínio	25		
		Aço galvanizado a fogo	50		
laIV	Marie Con	Cobre	50		
	Enterrado	Alumínio	Não aplicável		
		Aço galvanizado a fogo	80		

9.4.8 – Isolação Elétrica do SPDA Externo

• Os subsistemas de captação e descida devem estar isolados eletricamente das partes metálicas, instalações metálicas e sistemas internos. Isto pode ser obtido pela observação de uma distância "d", entre as partes, superior à distância de segurança "s", dada pela fórmula:

onde

ki depende do nível de proteção escolhido para o SPDA (ver Tabela 10);

$$s = \frac{k_{\rm i}}{k_{\rm m}} \cdot k_{\rm C} \cdot l$$

k_c depende da corrente da descarga atmosférica pelos condutores de descida (ver Tabela 12 e Anexo C);

km depende do material isolante (ver Tabela 11);

Se a captação é feita através do uso de telhado metálico, então, l pode ser desprezado.

Tabela 10 – Valor de ki				
Nível do SPDA Ki				
ı	0,08			
II	0,06			
III e IV	0,04			

Tabela 11 - Valor de km				
Material Km				
Ar	1,0			
Concreto ou tijolo	0,5			

Tabela 12 – Valor de kc				
Número de Descidas Kc (n)				
1 (somente SPDA isolado)	1			
2 0,66				
3 ou mais	0,44			

9.4.9 - Inspeção do SPDA

- As inspeções no SPDA devem ser feitas:
 - Durante a construção da estrutura;
 - Após a instalação do SPDA, no momento da emissão do "as-built";
 - Após alterações ou reparos, ou quando houver suspeita de que a estrutura foi atingida por um raio;
 - Inspeção visual semestral apontando eventuais pontos deteriorados;
 - Periodicamente, realizada por profissional capacitado, com emissão de documentação, em intervalos de:
 - Um ano para locais contendo munição ou explosivos, locais expostos a corrosão atmosférica e estruturas que fornecem serviços essenciais.
 - Três anos para as demais estruturas.

9.5- Dispositivos de Proteção Contra Surtos (DPS)

- A NBR 5410/2004 divide a proteção contra sobretensões em duas categorias:
 - Sobretensões temporárias: Perda do condutor neutro em esquemas TN e TT, em sistemas trifásicos, bifásicos e monofásicos a três condutores;
 - Sobretensões transitórias :
 - Chaveamento de cargas elétricas:
 - Centenas de sobretensões diárias (baixa amplitude), causadas por lâmpadas fluorescentes, motores, máquinas de soldas e etc;
 - Descargas atmosféricas (2 a 200 kA, t=200 μs).

Incidência direta (descarga direta)

Mais comuns

Dispositivos de Proteção Contra Surtos (DPS)

- A NBR 5410/2004 determina que o DPS deve ser usado obrigatoriamente quando :
 - A alimentação da instalação elétrica for feita por linhas aéreas (total ou parcial) e se situar em regiões AQ2 (>25 dias de trovoadas por ano) – descargas indiretas;
 - A instalação se situar numa região AQ3 (riscos provenientes da exposição de componentes da instalação) – descargas diretas.
- O DPS deve ser instalado:
 - Junto com o ponto de entrada da linha elétrica na edificação ou no quadro de distribuição principal, o mais próximo possível do ponto de entrada.
- O modo como cada DPS será ligado (Fase-PE, Neutro-PE) depende do esquema de aterramento, como ilustrado na figura a seguir:

• DPS no Quadro de Distribuição de Circuitos

DP: dispositivo de proteção contra sobrecorrentes

DPS: dispositivo de proteção contra surtos

E/I: equipamento/instalação a ser protegida contra sobretensões

• Quando o DPS for instalado a jusante do DDR no QDC, o DDR deve ter imunidade a surto de no mínimo 3 kA (8/20 μs).

Seção Nominal dos condutores Ligação DPS-PE Caso o **DPS seja instalado no ponto de entrada** da linha elétrica da edificação ou em suas proximidades, deve ter seção de no **mínimo 4 mm²** em cobre ou equivalente".

Caso o "DPS seja destinado à proteção contra sobretensões provocadas por descargas atmosféricas diretas sobre a edificação ou em suas proximidades, a seção nominal do condutor das ligações DPS deve ser de no $mínimo~16~mm^2$.

Especificação da Proteção Contra Surtos (DPS)

- O DPS dever ser especificado com as seguintes características:
 - Nível de proteção (U_p):

Suportabilidade a impulso exigível dos equipamentos da instalação (Tabela 31 da NBR 5410:2004).

Tensão Nominal da Instalação (V)		Tensão de Impulso Suportável Requerida (kV)					
		Categoria do Produto					
Sistemas	Sistemas monofásicos com neutro	Produto a ser utilizado na entrada da instalação	Produto a ser utilizado em circuitos de distribuição e circuitos terminais	Equipamentos de utilização	Produtos especialment protegidos		
trifásicos		Categoria de Suportabilidade a Impulsos					
		IV	III	II	I		
120/208 127/220	115-230 120-240 127-254	4	2,5	1,5	0,8		

Tensão de operação contínua (U_c) :

Tabela 49 da NBR 5410:2004

DPS conectado entre			Esquema de aterramento					
Fase	Neutro	PE	PEN	тт	TN-C	TN-S	IT com Neutro Distribuído	IT Saem Neutro Distribuído
Х	Х			1,1 V _o		1,1 V _o	1,1 V _o	
х		Х		1,1 V _o		1,1 V _o	√3 v _°	V
Х			Х		1,1 V _o			
	Х	Х		V _o		V _o	V _o	

Vo é a tensão fase-neutro.

V é a tensão entre fases.

Especificação da Proteção Contra Surtos (DPS)

- Corrente nominal de descarga (I_n) e corrente de impulso (I_{imp}) :
 - Quando o DPS for usado para proteção contra sobretensões de origem atmosféricas pela linha externa e contra sobretensões temporárias:
 - a corrente nominal não deve ser inferior a 5 kA (8/20µs);
 - Todavia I_n não deve ser inferior a 20 kA (8/20µs) em redes trifásicas, ou a 10 kA em redes monofásicas quando o DPS for usado entre neutro e PE.
 - Quando o DPS for destinado para a proteção contra sobretensões provocadas por descargas diretas sobre a edificação:
 - I_{imp} não deve ser inferior a 12,5 kA;
 - No caso de DPS usado entre fase e neutro, I_{imp} não deve ser inferior a 50 kA para rede trifásica ou 25 kA para rede monofásica.