```
In [1]: import pandas as pd
import numpy as np
```

In [5]: salarydata_train=pd.read_csv("C:\\Users\\Admin\\Downloads\\naive bayes\\SalaryData_Train.csv")
 salarydata_train.head()

Out[5]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex	capitalgain	capitalloss	hoursperweek
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174	0	40
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	13
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	40
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	40
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	0	40
4												

In [7]: salarydata_test = pd.read_csv("C:\\Users\\Admin\\Downloads\\naive bayes\\SalaryData_Test.csv")
 salarydata_test.head()

Out[7]:

		age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex	capitalgain	capitalloss	hoursperweek	n
•	0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	U ;
	1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	U ;
	2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male	0	0	40	U ;
	3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	U ;
	4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	Male	0	0	30	U !
	4													•

```
In [8]: salarydata_train.shape
Out[8]: (30161, 14)
In [9]: salarydata_test.shape
Out[9]: (15060, 14)
In [6]: salarydata_train.isnull().sum()
Out[6]: age
                         0
        workclass
                         0
        education
                         0
        educationno
        maritalstatus
        occupation
        relationship
                         0
                         0
        race
                         0
        sex
        capitalgain
                         0
        capitalloss
                         0
        hoursperweek
                         0
        native
                         0
        Salary
                         0
        dtype: int64
```

In [11]: salarydata_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):

	COTA (COCAT	<u> </u>	
#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object
dtyne	$as \cdot int64(5)$ of	hiect(9)	

dtypes: int64(5), object(9)
memory usage: 3.2+ MB

memory asage: 5:21 Hb

In [12]: salarydata_train.describe()

Out[12]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

In [13]: salarydata_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15060 entries, 0 to 15059
Data columns (total 14 columns):

	() 0	, .	
#	Column	Non-Null Count	Dtype
0	age	15060 non-null	l int64
1	workclass	15060 non-null	lobject
2	education	15060 non-null	lobject
3	educationno	15060 non-null	l int64
4	maritalstatus	15060 non-null	lobject
5	occupation	15060 non-null	lobject
6	relationship	15060 non-null	lobject
7	race	15060 non-null	lobject
8	sex	15060 non-null	lobject
9	capitalgain	15060 non-null	l int64
10	capitalloss	15060 non-null	l int64
11	hoursperweek	15060 non-null	l int64
12	native	15060 non-null	lobject
13	Salary	15060 non-null	Lobject
d+vn/	$ac \cdot in + 64(5)$	nioct(0)	

dtypes: int64(5), object(9)
memory usage: 1.6+ MB

In [15]: salarydata_test.describe()

Out[15]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	15060.000000	15060.000000	15060.000000	15060.000000	15060.000000
mean	38.768327	10.112749	1120.301594	89.041899	40.951594
std	13.380676	2.558727	7703.181842	406.283245	12.062831
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	48.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	3770.000000	99.000000

```
In [16]: | salarydata_train.isin(['?']).sum(axis=0)
Out[16]: age
                           0
         workclass
                           0
         education
                           0
         educationno
                           0
         maritalstatus
         occupation
         relationship
                           0
         race
                           0
                           0
         sex
         capitalgain
                           0
         capitalloss
                           0
         hoursperweek
                           0
         native
                           0
         Salary
                           0
         dtype: int64
In [17]: salarydata_test.isin(['?']).sum(axis=0)
Out[17]: age
                           0
         workclass
                           0
         education
                           0
         educationno
                           0
         maritalstatus
         occupation
                           0
         relationship
                           0
         race
                           0
                           0
         sex
         capitalgain
                           0
         capitalloss
                           0
         hoursperweek
                           0
         native
                           0
         Salary
                           0
         dtype: int64
```

6/25/22, 11:13 AM Naive Bayes for test - Jupyter Notebook In [18]: print(salarydata train[0:5]) age workclass education educationno maritalstatus \ State-gov 39 13 0 Bachelors Never-married Self-emp-not-inc 50 Bachelors 13 Married-civ-spouse 9 Divorced 2 38 Private HS-grad 3 53 Private 11th Married-civ-spouse 4 28 Bachelors Married-civ-spouse Private 13 relationship occupation sex capitalgain \ race 0 Adm-clerical 2174 Not-in-family White Male Husband 0 1 Exec-managerial White Male 2 Handlers-cleaners Not-in-family Male 0 White Handlers-cleaners Husband Black Male 0 Prof-specialty 4 Wife Black Female 0 capitalloss hoursperweek native Salary 0 0 United-States <=50K 40

```
1
              0
                                  United-States
                            13
                                                   <=50K
2
              0
                            40
                                 United-States
                                                   <=50K
3
              0
                                  United-States
                                                   <=50K
                            40
4
              0
                                                   <=50K
                            40
                                            Cuba
```

```
In [19]: categorical = [var for var in salarydata_train.columns if salarydata_train[var].dtype=='0']
    print('There are {} categorical variables\n'.format(len(categorical)))
    print('The categorical variables are :\n\n', categorical)
```

There are 9 categorical variables

The categorical variables are :

['workclass', 'education', 'maritalstatus', 'occupation', 'relationship', 'race', 'sex', 'native', 'Salary']

In [20]: salarydata_train[categorical].head()

Out[20]:

	workclass	education	maritalstatus	occupation	relationship	race	sex	native	Salary
0	State-gov	State-gov Bachelors Never-married		Adm-clerical	Not-in-family	White	Male	United-States	<=50K
1	Self-emp-not-inc	Bachelors	Married-civ-spouse	Exec-managerial	Husband	White	Male	United-States	<=50K
2	Private	HS-grad	Divorced	Handlers-cleaners	Not-in-family	White	Male	United-States	<=50K
3	Private	11th	Married-civ-spouse	Handlers-cleaners	Husband	Black	Male	United-States	<=50K
4	Private	Bachelors	Married-civ-spouse	Prof-specialty	Wife	Black	Female	Cuba	<=50K

```
In [21]: | salarydata_train[categorical].isnull().sum()
```

Out[21]: workclass 0 education 0 maritalstatus occupation relationship race sex native Salary dtype: int64

```
In [22]: for var in categorical:
             print(salarydata_train[var].value_counts())
          Nicaragua
                                            33
                                            30
          Peru
                                            29
          Greece
                                            27
           France
                                            27
          Ecuador
          Ireland
                                            24
                                            19
          Hong
                                            18
          Cambodia
                                            18
          Trinadad&Tobago
                                            17
          Laos
          Thailand
                                            17
          Yugoslavia
                                            16
          Outlying-US(Guam-USVI-etc)
                                            14
                                            13
          Hungary
          Honduras
                                            12
          Scotland
                                            11
         Name: native, dtype: int64
```

<=50K

>50K

22653

7508 Name: Salary, dtype: int64

```
In [23]: for var in categorical:
             print(salarydata train[var].value counts()/np.float(len(salarydata train)))
          Hong
                                         0.000630
          Cambodia
                                         0.000597
          Trinadad&Tobago
                                         0.000597
                                         0.000564
          Laos
          Thailand
                                         0.000564
          Yugoslavia
                                         0.000530
          Outlying-US(Guam-USVI-etc)
                                         0.000464
          Hungary
                                         0.000431
          Honduras
                                         0.000398
          Scotland
                                         0.000365
         Name: native, dtype: float64
          <=50K
                   0.751069
          >50K
                   0.248931
         Name: Salary, dtype: float64
         C:\Users\Admin\AppData\Local\Temp/ipykernel 432/217981199.py:3: DeprecationWarning: `np.float` is a deprecat
         ed alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify
         any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
         Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html
         #deprecations (https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations)
In [24]: | salarydata train.workclass.unique()
Out[24]: array([' State-gov', ' Self-emp-not-inc', ' Private', ' Federal-gov',
                 'Local-gov', 'Self-emp-inc', 'Without-pay'], dtype=object)
In [25]: salarydata train.workclass.value counts()
Out[25]:
                               22285
          Private
          Self-emp-not-inc
                                2499
          Local-gov
                                2067
                                1279
          State-gov
          Self-emp-inc
                                1074
          Federal-gov
                                 943
          Without-pay
                                  14
         Name: workclass, dtype: int64
```

```
In [26]: salarydata train.occupation.unique()
Out[26]: array([' Adm-clerical', ' Exec-managerial', ' Handlers-cleaners',
                ' Prof-specialty', ' Other-service', ' Sales', ' Transport-moving',
                ' Farming-fishing', ' Machine-op-inspct', ' Tech-support',
                'Craft-repair', 'Protective-serv', 'Armed-Forces',
                ' Priv-house-serv'], dtype=object)
In [27]: salarydata train.occupation.value counts()
Out[27]:
          Prof-specialty
                               4038
          Craft-repair
                               4030
          Exec-managerial
                               3992
          Adm-clerical
                               3721
          Sales
                               3584
          Other-service
                               3212
          Machine-op-inspct
                               1965
          Transport-moving
                               1572
          Handlers-cleaners
                               1350
          Farming-fishing
                                989
          Tech-support
                                912
          Protective-serv
                                644
          Priv-house-serv
                                143
          Armed-Forces
                                  9
         Name: occupation, dtype: int64
In [28]: | salarydata train.native.unique()
Out[28]: array([' United-States', ' Cuba', ' Jamaica', ' India', ' Mexico',
                ' Puerto-Rico', ' Honduras', ' England', ' Canada', ' Germany',
                'Iran', 'Philippines', 'Poland', 'Columbia', 'Cambodia',
                ' Thailand', ' Ecuador', ' Laos', ' Taiwan', ' Haiti', ' Portugal',
                'Dominican-Republic', 'El-Salvador', 'France', 'Guatemala',
                'Italy', 'China', 'South', 'Japan', 'Yugoslavia', 'Peru',
                'Outlying-US(Guam-USVI-etc)', 'Scotland', 'Trinadad&Tobago',
                'Greece', 'Nicaragua', 'Vietnam', 'Hong', 'Ireland',
                ' Hungary'], dtype=object)
```

United-States	27504	
Mexico	610	
Philippines	188	
Germany	128	
Puerto-Rico	109	
Canada	107	
India	100	
El-Salvador	100	
Cuba	92	
England	86	
Jamaica	80	
South	71	
China	68	
Italy	68	
Dominican-Republic	67	
Vietnam	64	
Guatemala	63	
Japan	59	
Poland	56	
Columbia	56	
Iran	42	
Taiwan	42	
Haiti	42	
Portugal	34	
Nicaragua	33	
Peru	30	
Greece	29	
France	27	
Ecuador	27	
Ireland	24	
Hong	19	
Cambodia	18	
Trinadad&Tobago	18	
Laos	17	
Thailand	17	
Yugoslavia	16	
Outlying-US(Guam-USVI-etc)	14	
Hungary	13	
Honduras	12	
Scotland	11	

```
In [30]: for var in categorical:
             print(var, ' contains ', len(salarydata train[var].unique()), ' labels')
         workclass contains 7 labels
         education contains 16 labels
         maritalstatus contains 7 labels
         occupation contains 14 labels
         relationship contains 6 labels
         race contains 5 labels
         sex contains 2 labels
         native contains 40 labels
         Salary contains 2 labels
In [31]: numerical = [var for var in salarydata train.columns if salarydata train[var].dtype!='0']
         print('There are {} numerical variables\n'.format(len(numerical)))
         print('The numerical variables are :', numerical)
         There are 5 numerical variables
         The numerical variables are : ['age', 'educationno', 'capitalgain', 'capitalloss', 'hoursperweek']
In [32]: | salarydata train[numerical].head()
Out[32]:
             age educationno capitalgain capitalloss hoursperweek
             39
          0
                        13
                                2174
                                             0
                                                        40
             50
                        13
                                   0
                                             0
                                                        13
          1
                                   0
                                             0
          2
             38
                                                        40
                         7
             53
                                   0
                                             0
                                                        40
                        13
                                             0
             28
                                   0
                                                        40
```

```
In [33]: | salarydata_train[numerical].isnull().sum()
Out[33]: age
                          0
                          0
         educationno
         capitalgain
                          0
         capitalloss
                          0
         hoursperweek
         dtype: int64
In [34]: | X = salarydata_train.drop(['Salary'], axis=1)
         y = salarydata train['Salary']
In [35]: | from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 0)
In [36]: X_train.shape, X_test.shape
Out[36]: ((21112, 13), (9049, 13))
In [37]: |X_train.dtypes
Out[37]: age
                            int64
         workclass
                           object
         education
                          object
         educationno
                            int64
                          object
         maritalstatus
                          object
         occupation
         relationship
                          object
                          object
         race
                           object
         sex
                            int64
         capitalgain
         capitalloss
                            int64
         hoursperweek
                            int64
         native
                           object
         dtype: object
```

```
In [38]: X_test.dtypes
Out[38]: age
                            int64
                           object
         workclass
                           object
         education
                            int64
         educationno
                           object
         maritalstatus
         occupation
                           object
         relationship
                           object
                           object
         race
                           object
         sex
                            int64
         capitalgain
         capitalloss
                            int64
         hoursperweek
                            int64
         native
                           object
         dtype: object
In [39]: categorical = [col for col in X_train.columns if X_train[col].dtypes == '0']
         categorical
Out[39]: ['workclass',
           'education',
           'maritalstatus',
           'occupation',
           'relationship',
           'race',
           'sex',
           'native']
In [40]: | numerical = [col for col in X_train.columns if X_train[col].dtypes != '0']
         numerical
Out[40]: ['age', 'educationno', 'capitalgain', 'capitalloss', 'hoursperweek']
```

```
In [41]: X_train[categorical].isnull().mean()
Out[41]: workclass
                           0.0
         education
                           0.0
         maritalstatus
                           0.0
         occupation
                           0.0
         relationship
                           0.0
                           0.0
         race
                           0.0
         sex
         native
                           0.0
         dtype: float64
In [42]: for col in categorical:
             if X_train[col].isnull().mean()>0:
                  print(col, (X_train[col].isnull().mean()))
In [44]: X_train[categorical].isnull().sum()
Out[44]: workclass
                           0
         education
                           0
         maritalstatus
                           0
         occupation
                           0
         relationship
         race
                           0
         sex
         native
                           0
         dtype: int64
In [45]: X_test[categorical].isnull().sum()
Out[45]: workclass
                           0
         education
                           0
         maritalstatus
                           0
         occupation
         relationship
         race
                           0
         sex
                           0
         native
                           0
         dtype: int64
```

```
In [46]: X_train.isnull().sum()
Out[46]: age
                           0
         workclass
                           0
         education
                           0
         educationno
                           0
         maritalstatus
                           0
         occupation
                           0
         relationship
                           0
         race
                           0
                           0
         sex
         capitalgain
                           0
         capitalloss
                           0
         hoursperweek
                           0
         native
                           0
         dtype: int64
In [47]: X_test.isnull().sum()
Out[47]: age
                           0
         workclass
                           0
         education
                           0
         educationno
                           0
         maritalstatus
                           0
         occupation
                           0
         relationship
                           0
                           0
         race
                           0
         sex
         capitalgain
                           0
         capitalloss
                           0
         hoursperweek
                           0
         native
                           0
         dtype: int64
```

In [49]: X_train[categorical].head()

Out[49]:

	workclass	education maritalstatus		occupation	relationship	race	sex	native
8166	Local-gov	Some-college	Married-civ-spouse	Protective-serv	Husband	White	Male	United-States
7138	Private	Some-college	Never-married	Other-service	Own-child	White	Male	United-States
437	Private	HS-grad	Never-married	Transport-moving	Not-in-family	White	Male	United-States
5436	Private	HS-grad	Married-civ-spouse	Craft-repair	Husband	White	Male	United-States
6541	Self-emp-not-inc	HS-grad	Married-civ-spouse	Tech-support	Husband	White	Male	United-States

In [50]:

!pip install category encoders

Requirement already satisfied: category encoders in c:\users\admin\anaconda3\lib\site-packages (2.4.0)

```
Requirement already satisfied: statsmodels>=0.9.0 in c:\users\admin\anaconda3\lib\site-packages (from category
         encoders) (0.12.2)
         Requirement already satisfied: numpy>=1.14.0 in c:\users\admin\anaconda3\lib\site-packages (from category_enco
         ders) (1.20.3)
         Requirement already satisfied: scikit-learn>=0.20.0 in c:\users\admin\anaconda3\lib\site-packages (from catego
         ry encoders) (0.24.2)
         Requirement already satisfied: pandas>=0.21.1 in c:\users\admin\anaconda3\lib\site-packages (from category enc
         oders) (1.3.4)
         Requirement already satisfied: patsy>=0.5.1 in c:\users\admin\anaconda3\lib\site-packages (from category_encod
         ers) (0.5.2)
         Requirement already satisfied: scipy>=1.0.0 in c:\users\admin\anaconda3\lib\site-packages (from category encod
         ers) (1.7.1)
         Requirement already satisfied: pytz>=2017.3 in c:\users\admin\anaconda3\lib\site-packages (from pandas>=0.21.1
         ->category encoders) (2021.3)
         Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\admin\anaconda3\lib\site-packages (from pand
         as>=0.21.1->category encoders) (2.8.2)
         Requirement already satisfied: six in c:\users\admin\anaconda3\lib\site-packages (from patsy>=0.5.1->category_
         encoders) (1.16.0)
         Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\admin\anaconda3\lib\site-packages (from scikit
         -learn>=0.20.0->category encoders) (2.2.0)
         Requirement already satisfied: joblib>=0.11 in c:\users\admin\anaconda3\lib\site-packages (from scikit-learn>=
         0.20.0->category encoders) (1.1.0)
In [51]: import category encoders as ce
         encoder = ce.OneHotEncoder(cols=['workclass', 'education', 'maritalstatus', 'occupation', 'relationship',
In [52]:
                                           'race', 'sex', 'native'])
         X train = encoder.fit transform(X train)
         X test = encoder.transform(X test)
```

In [53]: X_train.head()

Out[53]:

	age	workclass_1	workclass_2	workclass_3	workclass_4	workclass_5	workclass_6	workclass_7	education_1	education_2	 r
8166	54	1	0	0	0	0	0	0	1	0	 _
7138	21	0	1	0	0	0	0	0	1	0	
437	30	0	1	0	0	0	0	0	0	1	
5436	42	0	1	0	0	0	0	0	0	1	
6541	37	0	0	1	0	0	0	0	0	1	

5 rows × 102 columns

In [55]: X_train.shape

Out[55]: (21112, 102)

In [56]: X_test.head()

Out[56]:

	age	workclass_1	workclass_2	workclass_3	workclass_4	workclass_5	workclass_6	workclass_7	education_1	education_2	
25338	21	0	1	0	0	0	0	0	0	1	
18840	21	0	1	0	0	0	0	0	0	0	
8391	56	0	1	0	0	0	0	0	0	0	
18258	43	1	0	0	0	0	0	0	1	0	
16669	53	0	0	0	1	0	0	0	0	0	

5 rows × 102 columns

In [57]: X_test.shape

Out[57]: (9049, 102)

```
In [58]: cols = X_train.columns
In [59]: from sklearn.preprocessing import RobustScaler
          scaler = RobustScaler()
          X_train = scaler.fit_transform(X_train)
          X_test = scaler.transform(X_test)
In [60]: X_train = pd.DataFrame(X_train, columns=[cols])
In [61]: X test = pd.DataFrame(X test, columns=[cols])
In [62]: X train.head()
Out[62]:
                       workclass_1 workclass_2 workclass_3 workclass_5 workclass_6 workclass_7 education_1 education_2 ...
              age
             0.894737
                               1.0
                                          -1.0
                                                                              0.0
                                                                                          0.0
                                                                                                                  1.0
                                                                                                                              0.0 ...
                                                       0.0
                                                                   0.0
                                                                                                      0.0
             -0.842105
                                                                                                                  1.0
                               0.0
                                           0.0
                                                       0.0
                                                                  0.0
                                                                              0.0
                                                                                          0.0
                                                                                                      0.0
                                                                                                                              0.0 ...
           2 -0.368421
                               0.0
                                           0.0
                                                       0.0
                                                                  0.0
                                                                              0.0
                                                                                          0.0
                                                                                                      0.0
                                                                                                                  0.0
                                                                                                                              1.0 ...
              0.263158
                               0.0
                                           0.0
                                                       0.0
                                                                  0.0
                                                                              0.0
                                                                                          0.0
                                                                                                      0.0
                                                                                                                  0.0
                                                                                                                              1.0 ...
                                                                                                      0.0
                                                                                                                  0.0
                                                                                                                              1.0 ...
              0.000000
                               0.0
                                          -1.0
                                                       1.0
                                                                   0.0
                                                                              0.0
                                                                                          0.0
          5 rows × 102 columns
In [63]: from sklearn.naive bayes import GaussianNB
          gnb = GaussianNB()
          gnb.fit(X train, y train)
Out[63]: GaussianNB()
```

```
In [64]: y pred = gnb.predict(X test)
         y_pred
Out[64]: array([' <=50K', ' <=50K', ' <=50K', ' <=50K', ' <=50K', ' >50K'],
               dtype='<U6')
In [65]: from sklearn.metrics import accuracy score
         print('Model accuracy score: {0:0.4f}'. format(accuracy score(y test, y pred)))
         Model accuracy score: 0.7995
In [66]: y pred train = gnb.predict(X train)
         y_pred_train
Out[66]: array([' >50K', ' <=50K', ' <=50K', ' <=50K', ' >50K', ' <=50K'],</pre>
               dtype='<U6')
In [67]: | print('Training-set accuracy score: {0:0.4f}'. format(accuracy score(y train, y pred train)))
         Training-set accuracy score: 0.8023
In [68]: |print('Training set score: {:.4f}'.format(gnb.score(X_train, y_train)))
         print('Test set score: {:.4f}'.format(gnb.score(X test, y test)))
         Training set score: 0.8023
         Test set score: 0.7995
In [69]: y_test.value_counts()
Out[69]: <=50K
                   6798
          >50K
                   2251
         Name: Salary, dtype: int64
```

```
In [70]: |\text{null accuracy} = (7407/(7407+2362))
         print('Null accuracy score: {0:0.4f}'. format(null accuracy))
         Null accuracy score: 0.7582
In [71]: from sklearn.metrics import confusion matrix
         cm = confusion_matrix(y_test, y_pred)
         print('Confusion matrix\n\n', cm)
         print('\nTrue Positives(TP) = ', cm[0,0])
         print('\nTrue Negatives(TN) = ', cm[1,1])
         print('\nFalse Positives(FP) = ', cm[0,1])
         print('\nFalse Negatives(FN) = ', cm[1,0])
         Confusion matrix
           [[5422 1376]
           [ 438 1813]]
         True Positives(TP) = 5422
         True Negatives(TN) = 1813
```

False Positives(FP) = 1376

False Negatives(FN) = 438

Out[73]: <AxesSubplot:>


```
In [74]: from sklearn.metrics import classification report
         print(classification report(y test, y pred))
                       precision
                                     recall f1-score
                                                        support
                 <=50K
                             0.93
                                       0.80
                                                 0.86
                                                           6798
                                      0.81
                 >50K
                             0.57
                                                 0.67
                                                           2251
              accuracy
                                                 0.80
                                                           9049
                                                 0.76
                                                           9049
                             0.75
                                       0.80
            macro avg
         weighted avg
                                       0.80
                                                 0.81
                             0.84
                                                           9049
In [75]: TP = cm[0,0]
         TN = cm[1,1]
         FP = cm[0,1]
         FN = cm[1,0]
In [76]: classification accuracy = (TP + TN) / float(TP + TN + FP + FN)
         print('Classification accuracy : {0:0.4f}'.format(classification accuracy))
         Classification accuracy: 0.7995
In [77]: classification error = (FP + FN) / float(TP + TN + FP + FN)
         print('Classification error : {0:0.4f}'.format(classification error))
         Classification error: 0.2005
In [78]: precision = TP / float(TP + FP)
         print('Precision : {0:0.4f}'.format(precision))
         Precision: 0.7976
```

```
In [79]: recall = TP / float(TP + FN)
         print('Recall or Sensitivity : {0:0.4f}'.format(recall))
         Recall or Sensitivity: 0.9253
In [80]: true positive rate = TP / float(TP + FN)
         print('True Positive Rate : {0:0.4f}'.format(true positive rate))
         True Positive Rate: 0.9253
In [81]: false positive rate = FP / float(FP + TN)
         print('False Positive Rate : {0:0.4f}'.format(false positive rate))
         False Positive Rate: 0.4315
In [82]: specificity = TN / (TN + FP)
         print('Specificity : {0:0.4f}'.format(specificity))
         Specificity: 0.5685
In [83]: y pred prob = gnb.predict proba(X test)[0:10]
         y pred prob
Out[83]: array([[9.99955511e-01, 4.44887598e-05],
                [9.95935549e-01, 4.06445120e-03],
                [8.63901480e-01, 1.36098520e-01],
                [9.99999906e-01, 9.37239455e-08],
                [8.80888343e-02, 9.11911166e-01],
                [9.99562896e-01, 4.37103927e-04],
                [5.34482750e-06, 9.99994655e-01],
                [6.28497161e-01, 3.71502839e-01],
                [5.46536963e-04, 9.99453463e-01],
                [9.99999570e-01, 4.30495598e-07]])
```

0 0.999956 4.448876e-05 1 0.995936 4.064451e-03 2 0.863901 1.360985e-01 3 1.000000 9.372395e-08 4 0.088089 9.119112e-01 5 0.999563 4.371039e-04 6 0.000005 9.999947e-01 7 0.628497 3.715028e-01 8 0.000547 9.994535e-01 9 1.000000 4.304956e-07

```
In [89]: import matplotlib.pyplot as plt
plt.rcParams['font.size'] = 12

plt.hist(y_pred1, bins = 10)

plt.title('Histogram of predicted probabilities of salaries >50K')

plt.xlim(0,1)

plt.xlabel('Predicted probabilities of salaries >50K')
plt.ylabel('Frequency')
```

Out[89]: Text(0, 0.5, 'Frequency')


```
In [90]:
    from sklearn.metrics import roc_curve
    fpr, tpr, thresholds = roc_curve(y_test, y_pred1, pos_label = '>50K')
    plt.figure(figsize=(6,4))
    plt.plot(fpr, tpr, linewidth=2)
    plt.plot([0,1], [0,1], 'k--' )
    plt.rcParams['font.size'] = 12
    plt.title('ROC curve for Gaussian Naive Bayes Classifier for Predicting Salaries')
    plt.xlabel('False Positive Rate (1 - Specificity)')
    plt.ylabel('True Positive Rate (Sensitivity)')
    plt.show()
```

C:\Users\Admin\anaconda3\lib\site-packages\sklearn\metrics_ranking.py:949: UndefinedMetricWarning: No positive samples in y_true, true positive value should be meaningless warnings.warn("No positive samples in y true, "

ROC curve for Gaussian Naive Bayes Classifier for Predicting Salaries


```
In [91]: from sklearn.metrics import roc auc score
         ROC_AUC = roc_auc_score(y_test, y_pred1)
         print('ROC AUC : {:.4f}'.format(ROC AUC))
         ROC AUC : 0.8902
In [92]: | from sklearn.model_selection import cross_val_score
         Cross_validated_ROC_AUC = cross_val_score(gnb, X_train, y_train, cv=5, scoring='roc_auc').mean()
         print('Cross validated ROC AUC : {:.4f}'.format(Cross validated ROC AUC))
         Cross validated ROC AUC: 0.8923
In [93]: | from sklearn.model_selection import cross_val_score
         scores = cross_val_score(gnb, X_train, y_train, cv = 10, scoring='accuracy')
         print('Cross-validation scores:{}'.format(scores))
         Cross-validation scores: [0.81676136 0.79829545 0.79014685 0.81288489 0.80388441 0.79062056
          0.80767409 0.7925154 0.79630507 0.80909522]
In [94]: print('Average cross-validation score: {:.4f}'.format(scores.mean()))
         Average cross-validation score: 0.8018
 In [ ]:
```