

Lecture 3 Review on Digital Logic (Part 2)

Xuan 'Silvia' Zhang
Washington University in St. Louis

http://classes.engineering.wustl.edu/ese461/

Circuit Optimization

- Simplest implementation
- Cost criterion
 - literal cost (L)
 - gate input cost (G)
 - gate input cost with NOTs (GN)
- Examples (all the same function):

- Which solution is best?

Half Adder

• Truth Table

X	Y	C	S
0	0	0	0
0	1	0	1

• Expression

$$-S=X\oplus Y$$

-
$$C = X \cdot Y$$

	•				. •
\cap C	10	Imn	leme	בtnta	tion
LUS		шир		TIICO	LLIOII

Full Adder

Expression

-
$$S_i = A_i \oplus B_i \oplus C_i$$

- or
$$C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i$$

-
$$C_o = AB + (A \oplus B)C_i$$

Alternatively

- G = generate (=AB) and
- $P = propagate (=A \oplus B)$

$$- C_{i+1} = G_i + P_i \cdot C_i$$

- or
$$C_0$$
= (G = Generate) OR (P = Propagate AND C_i = Carry In)

Propagation Delay

Delay of a Full Adder

Delay of the Sum and Carry bit

-
$$S_0 = A_0 \oplus B_0 \oplus C_0$$
2 delays
2+2=4 delays

-
$$C_1 = A_0B_0 + (A_0 \oplus B_0)C_0$$

@2

@3

2+2=4 delays

- C_n?S_n?

Ripple Carry Adder

Cascade four 1-bit full adders

Carry Lookahead Adder

Separate circuit to calculate the carry

Revisit Number Representation

- Represent real numbers in hardware
 - accuracy
 - implementation complexity
 - robustness to errors
- Fixed-point
 - e.g. $(11.0101)_2$
 - 2's complement fractional binary number

Fract. binary format	Number of integer bits (including sign bit)	Number of fractional bits	Maximum positive decimal value	Maximum negative decimal value	Lsb decimal value
8.0	8	0	127.0	-128.0	1.0
7.1	7	1	63.5	-64.0	0.5
6.2	6	2	31.75	-32.0	0.25
5.3	5	3	15.875	-16.0	0.125
4.4	4	4	7.9375	-8.0	0.0625
3.5	3	5	3.96875	-4.0	0.03125
2.6	2	6	1.984375	-2.0	0.015625
1.7	1	7	0.9921875	-1.0	0.0078125

Fractional Binary Numbers

- 16-bit DSP
 - digital signal processor (DSP)
 - 1.15 (Q15) format

16-bit binary format	Decimal value	Binary	Hex	
Two's complement	0.9999694824	0,111 1111 1111 1111	7FFF	
1.15 (Q15) format	0.5	0,100 0000 0000 0000	4000	
	0.25	0,010 0000 0000 0000	2000	
resolution \rightarrow	0.0000305175	0,000 0000 0000 0001	0001	
	0	0,000 0000 0000 0000	0000	
	-0.0000305175	1,111 1111 1111 1111	FFFF	
	-0.25	1,110 0000 0000 0000	E000	
	-0.5	1,100 0000 0000 0000	C000	
	-1.0	1,000 0000 0000 0000	8000	

- Two Q15 number multiply = Q30 (2.30 format)

Fixed Point Multiplication

Two Q15 number multiply

- $Q15 \times Q15 = Q30$
- 2.30 format, 32 bits, two sign bits
- MSB: extended sign bit
- need to truncate back to 1.15 format
- left shift by one bit, storing upper 16 bits
- right shift by 15 bits, storing lower 16 bits

• Dynamic range

- in a b-bit system

$$dynamic range_{linear} = \frac{largest positive word value}{smallest positive word value}$$

$$=\frac{2^b-1}{1}=2^b-1.$$

Outline

Arithmetic Logic

Sequential Logic

Memory Circuit

Sequential Logic

- Next state function
 - Next State = f(Inputs, State)
- Output function

Finite State Machine (FSM)

- Mathematical model of computation
 - consist of a finite number of "states"
 - only one state at a time (Current State)
 - change state at a trigging event or condition
- Mealy machine
 - Outputs = g(Inputs, State)

- Moore machine
 - Outputs = h(State)

SR Latch

Basic NOR latch

Other SR Latches

Clocked

NAND SR latch

D Latch

• Truth table

D	Q(t+1)		Q
0	0	- c	0 -
1	1		

Flip-Flop

- Latch timing issue
 - transparent when C = 1
 - state should change only once every new clock cycle

- Master-slave flip flop
 - break feedthrough

Edge-Triggered D Flip-Flop (DFF)

Why edge trigger?

D

Master out

Slave out

• D replace S and R input

Slave

active

Master

active

Sequential Circuit Analysis

- Design steps
 - word description
 - state diagram
 - state table
 - select flip-flop types
 - input to FF and output
 - verification
- Reverse engineering

Input Equations

- To flip-flops
 - $D_A = A(t)x(t)+B(t)x(t)$
 - $D_B = A(t)x(t)$

input

- Output y
 - y(t) = x(t)(B(t) + A(t))

State Table

For the example:
$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$B(t+1) = \overline{A}(t)x(t)$$

$$y(t) = \overline{x}(t)(B(t) + A(t))$$

Inputs of the table Outputs of the table

	Present State	Input	Next State		Output
	A(t) B(t)	x(t)	A(t+1) B(t+1)		y(t)
	0 0	0	0	0	0
	0 0	1	0	1	0
	0 1	0	0	0	1
	0 1	1	1	1	0
	1 0	0	0	0	1
	1 0	1	1	0	0
	1 1	0	0	0	1
ts	1 1	1	1	0	0

m: no. of FF n: no. of inputs

State Diagram

Conventions

Mealy Machine

Mealy type output depends on state and input

Outline

Arithmetic Logic

Sequential Logic

Memory Circuit

Static RAM

Applications

- CPU register file, cache, embedded memory, DSP

Characteristics

- 6 transistor per cell, other topologies
- no need to refresh
- access time ~ cycle time
- no charge to leak
- faster, more area, more expensive

SRAM Operation

- Standby
 - word line de-asserted
- Read
 - precharge bit lines
 - assert WL
 - BL rise/drop slightly
- Write
 - apply value to BL
 - assert WL
 - input drivers stronger

Summary

Number Representation

Boolean Logic and Gates

Combinational Logic

Arithmetic Logic

Sequential Logic

Memory Circuit

Questions?

Comments?

Discussion?

Homework #2

- Download problem sets from class website
- Due 09/12 (Monday) in class
- 2-day grace period