Relazione sull'implementazione di un'RNN

A.A. 2023/2024

Rosso Carlo

Indice

1	Intro	Introduzione										
	1.1	Descrizione del problema	2									
	1.2	Dataset	2									
2	Des	crizione dei modelli	2									
3	Risu	ıltati	4									
	3.1	25 unità nascoste	4									
		Label Confusion Matrix	4									
		Label Metrics	4									
		Root Label Confusion Matrix	5									
		Root Label Metrics	5									
	3.2	50 unità nascoste	5									
		Label Confusion Matrix	5									
		Label Metrics	5									
		Root Label Confusion Matrix	6									
		Root Label Metrics	6									
	3.3	75 unità nascoste	6									
		Label Confusion Matrix	6									
		Label Metrics	7									
		Root Label Confusion Matrix	7									
		Root Label Metrics	7									
	3.4	100 unità nascoste	7									
	0	Label Confusion Matrix	7									
		Label Metrics	7									
		Root Label Confusion Matrix	8									
		Root Label Metrics	8									
		Noot Label Metrics	O									
4	Con	clusioni	8									

1 Introduzione

1.1 Descrizione del problema

Il task affrontato dai modelli allenati sullo Sentiment Penn Treebank riguarda la classificazione del sentimento di frasi e frasi parziali (nodi) all'interno degli alberi sintattici. In particolare, il task principale è la rilevazione del sentimento espresso in ogni frase, che può variare da negativo a positivo su una scala a cinque livelli:

```
negativo (- -);
un po' negativo (-);
neutro (0);
un po' positivo (+);
positivo (+ +);
```

In particolare il task si compone di tre sotto-task:

- Classificazione del Sentimento Fine-Grained: I modelli devono prevedere l'etichetta di sentimento per ogni frase e sottofrase all'interno di un albero sintattico. Le etichette sono suddivise in cinque categorie.
- Composizionalità del Sentimento: Il task richiede ai modelli di catturare e comporre correttamente i sentimenti delle sottofrasi per prevedere il sentimento della frase completa. Ciò include la gestione di fenomeni linguistici complessi come la negazione e le congiunzioni contrastive.
- **Analisi degli Alberi Sintattici**: Utilizzando gli alberi di parsing sintattico generati dal Stanford Parser, i modelli devono processare e analizzare ogni nodo per comprendere come il sentimento si propaga attraverso la struttura dell'albero.

1.2 Dataset

La descrizione del dataset viene omessa in quanto presente in un documento a parte.

2 Descrizione dei modelli

Viene richiesto di implementare la *Recursive Neural Network* (RNN) descritta nel paper Socher et al. 2013. Quindi l'implementazione viene svolta a partire dal codice fornito dagli autori del paper. In particolare seguono i passaggi svolti per l'implementazione:

- 1. Clone del repository: ho clonato il repository https://github.com/stanfordnlp/CoreNLP.git;
- 2. **Installazione delle dipendenze**: ho seguito le istruzioni nel README del repository per installare le dipendenze necessarie;

- 3. Check del modello fornito: ho verificato che il modello fornito funzionasse correttamente con il comando java -cp "*" -mx5g edu.stanford.nlp.sentiment.SentimentPipeline -file examples/sample-maven-project/sample-english.txt
 Non ha funzionato;
- 4. Correzione: ho sostituito il comando con

```
mvn exec:java -Dexec.mainClass="edu.stanford.nlp.sentiment.SentimentPipeline"
-Dexec.args="-file examples/sample-maven-project/sample-english.txt"
e ha funzionato;
```

- 5. **Lettura del codice**: ho letto un po' del codice per orientarmi nella codebase. Ho capito che il modello che tratta il problema che mi interessa si trova all'interno del package edu.stanford.nlp.sentiment;
- 6. **Implementazione del modello**: ho individuato la classe che si occupa dell'allenamento del modello, ovvero SentimentTraining;
- 7. **Studio di** SentimentTraining: ho studiato il codice di SentimentTraining per capire come funziona il training del modello. Non solo, ho anche compreso quali sono i parametri in input della classe e come sono utilizzati;
- 8. Costruzione del comando di allenamento: ho costruito il seguente comando per allenare il modello:

```
mvn exec:java -Dexec.mainClass="edu.stanford.nlp.sentiment.SentimentTraining"
```

- -Dexec.args="-train -model rnn.ser.gz -trainpath train.txt -devpath dev.txt
- -nousetensors -lowercasewordvectors -numhid 100 -randomseed 42"

In particolare, la classe specificata si occupa di allenare un modello generico. Di seguito spiego gli argomenti passati al comando:

- -train: specifica che si vuole allenare il modello;
- -model ../rnn.ser.gz: specifica il percorso in cui salvare il modello allenato;
- -trainpath ../train.txt: specifica il percorso del file o della directory di training;
- -devpath ../dev.txt: specifica il percorso del file o della directory di validazione;
- -nousetensors: specifica che non si vogliono utilizzare i tensori. In questo modo si passa dall'RNTN descritto nel paper all'RNN, proprio come spiegato all'interno del paper medesimo;
- -lowercasewordvectors: specifica che si vogliono utilizzare i vettori delle parole in minuscolo, si tratta di una scelta personale, a dire il vero non so se sia stata usata anche dagli autori del paper;
- -numhid 100: specifica il numero di hidden units;
- -randomseed 42: specifica il seed per la generazione dei numeri casuali, in modo da rendere riproducibile l'esperimento.

- 9. Setup dei dataset: ho scaricato i dataset nel formato opportuno, si trovano al seguente indirizzo: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip. Poi li ho scompattati e li ho spostati nella directory del progetto;
- Allenamento del modello: ho eseguito il comando di allenamento del modello. Il training è durato circa 6
 ore;
- 11. Test del modello: ho testato il modello con il comando
 - mvn exec:java -Dexec.mainClass="edu.stanford.nlp.sentiment.Evaluate"
 - -Dexec.args="-model rnn.ser.gz -treebank test.txt" .

3 Risultati

Ho deciso di implementare 4 versioni del modello, rispettivamente con 25, 50, 75 e 100 hidden units. Riporto le matrici di confusione, la precision, la recall e l'f1-score per ciascun modello, oltre che l'accuratezza e l'accuratezza delle radici.

3.1 25 unità nascoste

- **Label Accuracy:** 0.784891 %;

- Root Label Accuracy: 0.396833 %;

Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	809	1028	696	329	105	2967
1	864	5340	2930	834	154	10122
2	257	2378	50767	2859	348	56609
3	47	391	1875	5959	1227	9499
4	31	118	280	1017	1957	3403
Marg. (Gold)	2008	9255	56548	10998	3791	

Label Metrics

- Class 0: Precision = 0.27267, Recall = 0.40289, Specificity = 0.97322, F1-score = 0.32523
- Class 1: Precision = 0.52756, Recall = 0.57699, Specificity = 0.9348, F1-score = 0.55117
- Class 2: Precision = 0.8968, Recall = 0.89777, Specificity = 0.77576, F1-score = 0.89728
- Class 3: Precision = 0.62733, Recall = 0.54183, Specificity = 0.95056, F1-score = 0.58145
- Class 4: Precision = 0.57508, Recall = 0.51622, Specificity = 0.98165, F1-score = 0.54406

Root Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	129	198	90	71	30	518
1	124	311	129	99	30	693
2	17	67	72	52	20	228
3	5	41	75	150	104	375
4	4	16	23	138	215	396
Marg. (Gold)	279	633	389	510	399	

Root Label Metrics

- Class 0: Precision = 0.24903, Recall = 0.46237, Specificity = 0.79855, F1-score = 0.32371

- Class 1: Precision = 0.44877, Recall = 0.49131, Specificity = 0.75777, F1-score = 0.46908

- Class 2: Precision = 0.31579, Recall = 0.18509, Specificity = 0.91433, F1-score = 0.23339

- Class 3: Precision = 0.4, Recall = 0.29412, Specificity = 0.86765, F1-score = 0.33898

- Class 4: Precision = 0.54293, Recall = 0.53885, Specificity = 0.90006, F1-score = 0.54088

3.2 50 unità nascoste

- **Label Accuracy:** 0.794286 %;

- Root Label Accuracy: 0.424434 %;

Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	448	289	53	11	7	808
1	999	4746	1896	480	98	8219
2	405	3436	52196	3213	346	59596
3	144	748	2319	6741	1863	11815
4	12	36	84	553	1477	2162
Marg. (Gold)	2008	9255	56548	10998	3791	

Label Metrics

- Class 0: Precision = 0.55446, Recall = 0.22311, Specificity = 0.99553, F1-score = 0.31818

- Class 1: Precision = 0.57744, Recall = 0.5128, Specificity = 0.95265, F1-score = 0.54321

- Class 2: Precision = 0.87583, Recall = 0.92304, Specificity = 0.71595, F1-score = 0.89882
- Class 3: Precision = 0.57055, Recall = 0.61293, Specificity = 0.92914, F1-score = 0.59098
- Class 4: Precision = 0.68316, Recall = 0.38961, Specificity = 0.99131, F1-score = 0.49622

Root Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	60	64	10	1	2	137
1	152	317	117	67	13	666
2	38	125	120	73	26	382
3	27	123	131	293	210	784
4	2	4	11	76	148	241
Marg. (Gold)	279	633	389	510	399	

Root Label Metrics

- Class 0: Precision = 0.43796, Recall = 0.21505, Specificity = 0.96012, F1-score = 0.28846
- Class 1: Precision = 0.47598, Recall = 0.50079, Specificity = 0.77869, F1-score = 0.48807
- Class 2: Precision = 0.31414, Recall = 0.30848, Specificity = 0.85612, F1-score = 0.31128
- Class 3: Precision = 0.37372, Recall = 0.57451, Specificity = 0.71118, F1-score = 0.45286
- Class 4: Precision = 0.61411, Recall = 0.37093, Specificity = 0.94865, F1-score = 0.4625

3.3 75 unità nascoste

- **Label Accuracy:** 0.792264 %;

- Root Label Accuracy: 0.387783 %;

Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	682	687	246	107	42	1764
1	835	4721	1919	568	177	8220
2	429	3582	53098	4300	643	62052
3	54	235	1187	5556	1545	8577
4	8	30	98	467	1384	1987
Marg. (Gold)	2008	9255	56548	10998	3791	

Label Metrics

- Class 0: Precision = 0.38662, Recall = 0.33964, Specificity = 0.98657, F1-score = 0.36161

- Class 1: Precision = 0.57433, Recall = 0.5101, Specificity = 0.95229, F1-score = 0.54031

- Class 2: Precision = 0.8557, Recall = 0.93899, Specificity = 0.6563, F1-score = 0.89541

- Class 3: Precision = 0.64778, Recall = 0.50518, Specificity = 0.95781, F1-score = 0.56766

- Class 4: Precision = 0.69653, Recall = 0.36508, Specificity = 0.99235, F1-score = 0.47906

Root Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	125	171	55	34	11	396
1	108	269	108	83	42	610
2	35	158	153	145	47	538
3	10	29	59	195	184	477
4	1	6	14	53	115	189
Marg. (Gold)	279	633	389	510	399	

Root Label Metrics

- Class 0: Precision = 0.31566, Recall = 0.44803, Specificity = 0.85966, F1-score = 0.37037

- Class 1: Precision = 0.44098, Recall = 0.42496, Specificity = 0.78377, F1-score = 0.43282

- Class 2: Precision = 0.28439, Recall = 0.39332, Specificity = 0.78858, F1-score = 0.3301

- Class 3: Precision = 0.40881, Recall = 0.38235, Specificity = 0.83412, F1-score = 0.39514

- Class 4: Precision = 0.60847, Recall = 0.28822, Specificity = 0.95914, F1-score = 0.39116

3.4 100 unità nascoste

- Label Accuracy: 0.782930 %;

- Root Label Accuracy: 0.397738 %;

Label Confusion Matrix

Label Metrics

- Class 0: Precision = 0.50165, Recall = 0.22759, Specificity = 0.99437, F1-score = 0.31312

- Class 1: Precision = 0.58236, Recall = 0.5195, Specificity = 0.95299, F1-score = 0.54914

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	457	345	79	25	5	911
1	973	4808	1961	435	79	8256
2	242	2533	50450	2459	222	55906
3	251	1302	3610	6734	1264	13161
4	85	267	448	1345	2221	4366
Marg. (Gold)	2008	9255	56548	10998	3791	

- Class 2: Precision = 0.90241, Recall = 0.89216, Specificity = 0.79057, F1-score = 0.89726
- Class 3: Precision = 0.51166, Recall = 0.61229, Specificity = 0.91024, F1-score = 0.55747
- Class 4: Precision = 0.5087, Recall = 0.58586, Specificity = 0.97278, F1-score = 0.54456

Root Label Confusion Matrix

Guess/Gold	0	1	2	3	4	Marg. (Guess)
0	47	62	11	3	1	124
1	142	273	92	38	10	555
2	16	58	53	26	12	165
3	46	176	159	212	82	675
4	28	64	74	231	294	691
Marg. (Gold)	279	633	389	510	399	

Root Label Metrics

- Class 0: Precision = 0.37903, Recall = 0.16846, Specificity = 0.96012, F1-score = 0.23325
- Class 1: Precision = 0.49189, Recall = 0.43128, Specificity = 0.82118, F1-score = 0.4596
- Class 2: Precision = 0.32121, Recall = 0.13625, Specificity = 0.9385, F1-score = 0.19134
- Class 3: Precision = 0.31407, Recall = 0.41569, Specificity = 0.72765, F1-score = 0.35781
- Class 4: Precision = 0.42547, Recall = 0.73684, Specificity = 0.78078, F1-score = 0.53945

4 Conclusioni

I risultati ottenuti confermano le affermazioni del paper Socher et al. 2013. Infatti, il modello RNN dimostra una notevole robustezza anche variando il numero di unità nascoste. Inoltre, l'accuratezza sui singoli nodi si attesta intorno all'80%, in linea con quanto riportato nel paper, che indica un'accuratezza del 79.0% per la classificazione fine-grained. Nel nostro esperimento, il modello con 50 unità nascoste ha raggiunto un'accuratezza del 79.4%, un

valore molto vicino a quello del paper.

Anche l'accuratezza relativa al label della root è comparabile: il paper riporta un'accuratezza del 43.2%, mentre il nostro modello con 50 unità nascoste ha raggiunto il 42.2%. Questi risultati suggeriscono che il modello è stato allenato correttamente e che le prestazioni ottenute sono soddisfacenti. Le differenze riscontrate potrebbero essere dovute all'inizializzazione dei pesi, poiché il seed utilizzato nel paper non è stato fornito, impedendoci di valutare se tali differenze derivino da questo aspetto.

Riferimenti bibliografici

[Soc+13] Richard Socher et al. "Recursive Deep Models for Semantic Compositionality Over a Sentiment Tree-bank". In: *Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing*. A cura di David Yarowsky et al. Seattle, Washington, USA: Association for Computational Linguistics, ott. 2013, pp. 1631–1642. URL: https://aclanthology.org/D13-1170.