Fast Alignment Heuristics

COMP462/561: Computational Biology Methods Fall 2016

M & W: 10:00 am - 11:30 am

*Based on Course Notes by Dr. Mathieu Blanchette

Reminder!

• Office Hours:

David Becerra – Thursday's 11:30am-1:00 pm (Trottier 3110) Mathieu Blanchette – Monday's 11:30am-1:00 pm (Trottier 3107) Christopher Cameron – Friday's 10:00-11:30am (Trottier 3110)

- Assignment #1 will be out this week
 - Don't wait until the last minute to get help...

Motivation

Problem:

Given a query sequence, q, of length m (small, ~1000 nucleotides) and a large database (target), D, of size n (billions of nucleotides)

Find <u>all local alignments</u> of q within D that have a score above threshold, T

3

Smith-Waterman?

- SW is too slow...would take O(mn + m*hits)
- How?
 - Trace back all entries of a dynamic programming matrix with a score>T

- Too slow!
 - For example, NCBI is a database containing 1000's of genes
 - NCBI webserver needs the ability to satisfy many queries per second

Smith-Waterman: Local Alignment (1981)

Problem:

Given two sequences, A and B, of lengths m and n, find the optimum alignment of all possible lengths.

Steps:

- 1. Initialization matrix
- 2. Fill matrix with appropriate alignment scores
- 3. Trace back from highest scoring cell(s) to find best alignment(s)

5

SW Initialization

A FOOCTWANTCES, A and B, a pair-wise matrix, H, is built such that: B = GCTTAC

H(i,0))=0, 0≤ ()=0, 0≤	i≤n i≤n	G	Т	G	Α	Α	Т	Т	С	Α	Т
-	0,0	0	0	0	0	0	0	0	0	0	0	0
G	0											
С	0											
Т	0											
Т	0											
Α	0											
С	0											

SW Matrix Filling

٠.	• • • •	, C	Ģ	Т,	, G	. A	, A	. Ţ.	Т.	. С	, . A .	T	
اک ۔	mijar	to jve	eajen	າaŋ-v	vuŋsc	u (Yavı	,) , Jiii	ın fne	matr	ıx şuc	n that	. 0	
G H(l,j)=	0 <i>max</i> { ■ (79 & <i>@H(i</i> -	229 -1,/ - 1)-	?p + <i>s(ā↓i ,l</i>	?? ₩ <i>j</i>)& <i>Mc</i>	1 itch/Mis	0 match@	0 max\k`	0 ≥1 <i>{H(i</i> -	0 - <i>k,i)+g</i> }	& <i>Deleti</i>	on@ma	r↓ <i>l</i> >1 { <i>H(i,j</i> −
Č	oʻ	2 `	1	O	² 0	1	0	0	,0	2	1	0	
T	0	1	0	3	2	1	0	2	1	1	1	3	
Т	0	0	0	2	2	1	0	2	4	3	2	2	
A	0	0	0	1	1	4	3	2	3	3	5	4	
С	0	2	1	0	0	3	3	2	2	5	4	4	

With a match score of +2 and a mismatch & indel score equal to -1.

7

SW Trace Back

 With NW, we trace back from the bottom right-most cell of the matrix

Basic Local Alignment Search Tool Idea

- Give up on (guaranteed) optimality
 - Heuristic approach
 - Search only for local-alignments with high-scoring gapless alignments (HSPs)
- Pre-process the database, *D*, so that queries can be answered in constant time with respect to *n*
- BLAST was published in 1990
 - cited by more than 10⁵ papers

9

Gapless Alignments

• If q has a good alignment, X, somewhere in D

• Then X is likely to contain a HSP

Preprocess Database to Build Indices

11

Indexing the Database

Index

0	AAAA
1	AAAC
4 ^w -1	TTTT

→ List of positions in the Database

Encoding: w-mer \rightarrow 0, ..., 4^w -1 *2-bit per character

Scanning for Hits in D

• Given a query, q

For each w-mer in q O(|q|)
Find index of D O(w)
Consider all hits

How many hits do we expect for a w-mer of size 11?

 $3 \times 1079 / 4711 = 1000$

13

Improving Scan Times

• Encode database indices in a trie

Extending hits to find HSP

15

Ungapped Extension Phase

Time? Linear in size of extension

BLAST HSP

Query

How can we improve the hit further?

17

Gapped Extension

- ullet If the HSP's alignment score is greater than some threshold, T
 - Do a more expensive gapped extension

Query

• Using NW

- Perform NW in each direction
 - Consider only entries with score greater than "best so far"

Statistics of Local Alignments

- Even if *D* was completely random, we would expect to observe some pretty high scoring HSPs
 - How do we know when we should get excited?
- <u>E-value</u> (score(HSP))
 - The expected number of local alignments with a score greater or equal to HSP's that would be found in a random D

10

Karlin-Attschul (1990)

$$E(S) = Kmne1 - \lambda S$$

- S is the score of the ungapped HSP alignment
- ${\it K}$ and ${\it \lambda}$ depend on the scoring scheme and background probabilities
 - λ scales scores scheme
- A low E-value (10^{-1} 10^{-100}) is a good match
 - Low chance of observing HSP given random chance alone

Choosing the wSize

Small (<=11)

- High probability of finding exact w-mer in HSP
- Lots of false positive seeds
- High sensitivity
- Slow

Large (>12)

- Miss many HSPs
- Few false positives
- Low sensitivity
- Fast

21

Variants

For proteins: inexact matches are considered

• Based on a point accepted matrix (PAM)

Query	Target	BLAST variant
DNA	DNA	blastn
Protein	Protein	blastp
Protein	DNA	tblastn
DNA	protein	blastx

Optimizations

- Dealing with repeats in q or D
- Two-Hit method
 - Lower T to allow more hits, but only extend if two hits fall on the same diagonal
 - · Within a window of fixed length
 - Increases hits and lowers extensions
- Gapped seeds

23

Upcoming Topics

- Wednesday multiple sequence alignment (MSA)
 - Dr. Blanchette will return!
- End of the semester Burrows-Wheeler Transform (BWT)
 - https://en.wikipedia.org/wiki/Burrows%E2%80%93Wheeler transform
 - In pattern matching: https://www.youtube.com/watch?v=z5EDLODQPtg

Clustering

COMP462/561: Computational Biology Methods

Fall 2016

M & W: 10:00 am – 11:30 am

Motivation

Given: A collection of <u>unlabeled</u> samples $X_i ... X_n$, where X_i represents the data for sample i

Goal: Partition samples into groups that are similar within themselves but dissimilar between

	X_1	•••	X_n
gene1			
gene2			
gene3			
•••			
gene _{k-1}			
gene _k			

Similarity (or Distance) Measures

Given: Two expression profiles, X_i and X_j

Euclidean Distance

$$d_E(X_i, X_j) = \sqrt{\sum_{g=1...k} (X_{i,g} - X_{j,g})^2}$$

Pearson Correlation Coefficient

Similarity Measure

$$Sim(X_i, X_j) = \frac{Cov(X_i, X_j)}{\sqrt{Var(X_i) \times Var(X_j)}}$$

$$= \frac{\sum (X_i(g) - \overline{X_i})(X_j(g) - \overline{X_j})}{\sqrt{(\sum (X_i(g) - \overline{X_i})^2) \times (\sum (X_j(g) - \overline{X_j})^2)}}$$

Pearson Correlation Coefficient Cont'd

- Different expression level
 - But always goes in the same direction

Hierarchical Clustering

- 1. Start with each data point in its own cluster
- 2. Find the two clusters that are the closest and merge them
- 3. Repeat step two until all data points belong to a single cluster

Measuring Similarity Between Clusters

1) Single Linkage approach

$$Sim(c_1, c_2) = max_{x \in c_1, y \in c_2} \{sim(x, y)\}$$

Problem

Given the following data points:

- Apply single linkage approach to clustering
- Get long and skinny clusters by having one point near the others
 - Shouldn't the two clusters on the right pair better together?

Measuring Similarity Between Clusters

2) Average linkage

Measuring Similarity Between Clusters

3) Complete linkage

Makes very compact clusters

$$Sim(c_1, c_2) = min_{x \in c_1, y \in c_2} sim(x, y)$$

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- 2. Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- 2. Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

- 'k' is the number of clusters desired / expected
- Each cluster has a centroid

- 1. Randomly choose k centroids
- Assign data points to nearest centroid
- 3. Move centroid to center of cluster
- 4. Repeat 2-4. Stop when no change to data point assignment

Cluster Validation

• **Cohesion:** measures how closely related data points in a cluster are (i.e., within cluster Sum of Squares [WSS])

$$WSS = \sum_{i} \sum_{x \in c_i} ||x - m_i||^2$$

• **Separation:** measures how distinct or well-separated a cluster is from others (i.e., between cluster Sum of Squares [BSS])

$$BSS = \sum_{i} \sum_{j} |c_{i}| \cdot |c_{j}| \cdot ||m_{i} - m_{j}||^{2}$$

Cohesion and Separation

Cohesion

Separation