

October 27, 2021

The SiD Digital ECal based on Monolithic Active Pixel Sensors

Jim Brau, University of Oregon

on behalf of the SiD MAPS Collaboration (M. Breidenbach, L. Rota, et al.)

The SiD Digital ECal based on Monolithic Active Pixel Sensors

- * SiD TDR ECal design successfully tested in 9 layer SLAC beam test.
 - * 13 mm² pixels on 6 inch wafers
 - * 1024 pixels per wafer
 - * KPiX readout bump-bonded to sensor

* Improved ECal design under development based on 25 μm x 100 μm MAPS

Large area MAPS for SiD tracker & ECal

SLAC

Benefits of large-area MAPS:

- Standard CMOS foundry, low resistivity: cost
- Sensing element and readout electronics on same die
 - In-pixel amplification: noise ♣, power ♣
 - No need for bump-bonding: cost
- Area > $10x10 \text{ cm}^2 \rightarrow \text{enable O}(1) \text{ m}^2 \text{ modules}$

Several design challenges:

- Large on-die variations, mismatch
- Yield
- Stitching layout rules
- Distribution of power supply
- Distribution of global control signals/references

An example of the SiD Tracker and the ECal overall design

Goals of R&D: find solutions and explore novel design techniques

Model of longitudinal structure of SiD ECal

 $Total = 27 X_O$

Incident Particle

Minimize sampling gap to achieve optimal Moliere radius and shower separation

HCAL

Main specifications for Large Area MAPS development

Parameter	Value	Notes			
Min Threshold	140 e⁻	0.25*MIP with 10 µm thick epi layer			
Spatial	7 µm	In bend plane, based on SiD tracker			
resolution		specs			
Pixel size	25 x 100 μm ²				
Chip size	10 x 10 cm ²	Requires stitching on 4 sides			
Chip thickness	300 µm	<200 µm for tracker. Could be 300 µm for EMCal to improve yield.			
Total lonizing Dose	100 kRads	Total lifetime dose, not a concern			
Hit density / train	1000 hits / cm ²				
Hits spatial distribution	Clusters	Due to jets			
Balcony size	1 mm	Only on one side, where wire- bonding pads will be located.			
Power density	20 mW / cm ²	Based on SiD tracker power consumption: 400W over 67m ²			

SiD Tracker and the ECal

ILC time structure & operation phases

Description:

- Idle: non vital resources kept in power saving mode
- Wake: all resources get ready to run
- Integration: analog processing in pixels active. No digital activity, balcony in power saving
- Readout: zero-suppressed readout & data transmission. Matrix in power saving

Overall architecture

SLAC

- Expected 1 hit/pixel/bunch train → integrate charge through whole bunch train → store 1 hit/pixel
- Segmentation of pixel front-end connected to common digital logic. See also CLICTD [1]
- Optimal segmentation of pixel front-ends will depend on sensor performance

Power during integration phase

Phase:

Integration

Readout

Acquisition

Readout

- Avg power consumption reduced by power-cycling
 ... but peak current draw is not!
- Assuming 1µA/pixel, current draw is ~16 A
- Resistance of metal lines not negligible over 10 cm → significant voltage drop

Possible strategies:

- Bypass caps distributed over sensor
- EMCal flat cable distributes power to all reticule bump connections
- Re-distribution layer with thick metal deposited on-top
- Discuss with foundry about having more/thicker metal layers

Need to investigate strategies on how to cope with shorts:

Add "switches" for each column/cluster → if a short detected DAO disables the column during initial power-up sequence Switches

Power during readout phase

Phase: Acquisition Readout Acquisition Readout
--

Design an asynchronous readout logic with zero-suppression:

- Only pixels with HIT information are read-out by balcony
- Need to transmit data from pixel to balcony over ~10 cm lines, with large interconnection RC \rightarrow minimize bit transitions \rightarrow power \downarrow
- Remove clock → power ↓
- Handshaking between pixel and balcony ensures proper data transmission even with large on-die variations
- First simulations done, data throughput meets specs: ~200 ns to transmit one "hit" from pixel to balcony L. Rota

Large area MAPS: next steps

- Join WP1.2 collaboration at CERN
- Design 1.5x1.5 mm² prototype with few pixels to test sensor + front-end
- Submission of first prototype in early 2022
- Study sensor performance on TowerJazz 65 nm process
 - TCAD simulations to optimize sensor design
 - Feedback from WP 1.2 measurements done at CERN
- Study bunch-tagging strategy
 - Analog-based: ramp, with low-res ADC in balcony (~8 bits)
 - Digital-based: local DLL for Time-to-Digital Conversion

Gap Structure with MAPS

ONE CABLE IN GAP DESIGN

Gap structure with MAPs on one cable (or pcb). Requires bump bonding

M. Breidenbach

This may well need adjustment following more cable design

Middle Cable	400 µ	
Top Sensor	200	
Bottom Sensor	200	
Bottom Cable	0	
Total	800	
Clearance with 1 mm gap	200	12

Sampling Gap Simulation - SiD MAPS Digital ECal

Geant4 simulated silicon gap structures

Assumption:

Pixel threshold = 1 keV ≈ 270 e's

Future:

More detailed gap model

Typical hits distribution

Multi-shower of SiD MAPS compared to SiD TDR

 $40 \text{ GeV } \pi^0 \rightarrow \text{two } 20 \text{ GeV } \gamma\text{'s}$

SiD TDR hexagonal sensors 13 mm² pixels

New SiD fine pixel sensors $25 \mu m \times 100 \mu m$ pixels

Linearity of response (counting hits in γ showers)

Non-linearity due to differing response and counting in thin (0.7 X_0) and thick (1.4 X_0) layers (and uncorrected leakage).

Hits resolution

ILC TDR anticipates $\frac{17\%}{\sqrt{E}} \oplus 1\%$ for the SiD SiW ECal; but we can do better.

Pixel counts (hits & mips) - 20 GeV γ

Ultimate goal is to count mips based on hit distribution. Potential to improve resolution compared to hit count.

Hits appear in clusters (size 1, 2, 3,...)

$S_i|D$

Mips per cluster

Cluster summary (20 GeV γ)

Energy resolution from counting clusters

Improved compared to hit resolutions:

$$\frac{17\%}{\sqrt{E}} \text{ (10 GeV)}$$

$$\frac{18\%}{\sqrt{E}}(20 \text{ GeV})$$

Resolution vs. Energy (hits/clusters/mips)

Cluster performance is simple cluster counting.

When cluster properties are taken into account the performance will improve, based on preliminary studies.

SiD

$40~\text{GeV}\,\pi^0 \longrightarrow \text{two}\,20~\text{GeV}\,\text{gammas}$

$40 \text{ GeV} \pi^0$ reconstruction

Two 10 GeV electron showers - 1 cm separation

SiD Digital ECal based on Silicon MAPS

Performance summary Two nearby 10 GeV electrons in SiD MAPS ECal

- Excellent performance!
- * Note very little optimization so far

Counting showers: random number of electrons Spatial distribution rms = 8 mm

Shower Count										
		0	1	2	3	4	5			
Suc	1	2	152	0	0	0	0			
lectrons	2	0	1	145	3	0	0			
Ele	3	0	0	1	70	1	0			
	4	0	0	0	1	24	0			

Reconstructing positions of Random number distribution of electrons

Mips/cluster and shower radius dependence

Cluster details "sense" number of mips:

Radius from shower axis;

Longitudinal position (layer

number);

Cluster shape.

Analysis using these parameters improves cluster resolution in preliminary studies.

Mips/cluster vs. Radius from shower axis

Mips/cluster vs. Radius from shower axis

Ongoing studies - Sensor development and shower analysis

- Sensor development progressing.
- Shower performance studies advancing:
 - * Various cluster features "sense" mip count in "large" clusters.
 - * So far, each cluster is assumed to hold one mip, but cluster features show potential to improve this assumption:
 - * Based on radial position in shower;
 - Based on longitudinal position in shower;
 - Based on shape of cluster;
 - * THESE ARE ALL BEING INVESTIGATED, along with other aspects that show promise for improved precision.
- * WE ARE LOOKING FOR COLLABORATORS JOIN US!