Simulation of Traffic Flow and Congestion on a Circular Road

Xinyu Li

xl3665@nyu.edu

December 21, 2022

Table of Contents

Problem & Equation

Numerical Method

3 Experiment 1: Stability of Equilibrium

4 Experiment 2: Behavior of Traffic Congestion

Given a circular road of length D meters with N vehicles c_i , i = 0, ..., N - 1. What will the traffic flow on this road be like?

Given a circular road of length D meters with N vehicles c_i , i = 0, ..., N - 1. What will the traffic flow on this road be like?

- x_n : Location of vehicle c_n
- v_n : Velocity of vehicle c_n
- d_n : Distance from vehicle c_n to vehicle c_{n+1}

- x_n : Location of vehicle c_n
- v_n : Velocity of vehicle c_n
- d_n : Distance from vehicle c_n to vehicle c_{n+1}

Let $x_N = x_0$, then

$$d_n = (x_{i+1} - x_i) \bmod D$$

$$\begin{cases} \frac{d}{dt}x_n(t) = v_n(t) \\ \frac{d}{dt}v_n(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) \\ x_n(0) = x_n^{(0)} \\ v_n(0) = 0 \end{cases}$$
 $n = 0, ..., N - 1$

where we define a distance-based optimal velocity ov(d)

$$ov(d) = egin{cases} 0 & ext{if } d \leq d_{min} \ v_{max} * rac{log(d/d_{min})}{log(d_{max}/d_{min})}) & ext{if } d_{min} < d < d_{max} \ v_{max} & ext{if } d \geq d_{max} \end{cases}$$

Formulation using d_n instead of x_n

Formulation using d_n instead of x_n

$$\begin{cases} \frac{d}{dt}d_n(t) = v_{(n+1)}(t) - v_n(t) \\ \\ \frac{d}{dt}v_n(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) \\ \\ d_n(0) = d_n^{(0)} \\ \\ v_n(0) = 0 \end{cases}$$
 $n = 0, ..., N - 1$

Formulation using d_n instead of x_n

$$\begin{cases} \frac{d}{dt}d_n(t) = v_{(n+1)}(t) - v_n(t) \\ \\ \frac{d}{dt}v_n(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) \\ \\ d_n(0) = d_n^{(0)} \\ \\ v_n(0) = 0 \end{cases} \qquad n = 0, ..., N - 1$$

We prefer d_n over x_n because:

• Easier calculation, ov is a function of d_n

Formulation using d_n instead of x_n

$$\begin{cases} \frac{d}{dt}d_n(t) = v_{(n+1)}(t) - v_n(t) \\ \\ \frac{d}{dt}v_n(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) \\ \\ d_n(0) = d_n^{(0)} \\ \\ v_n(0) = 0 \end{cases} \qquad n = 0, ..., N - 1$$

We prefer d_n over x_n because:

- **①** Easier calculation, ov is a function of d_n
- ② d_n has more interesting equilibrium (equilibrium under the formulation using x_n requires $v_n = 0$)

Drivers will adjust the velocity of their vehicles so that they can approximate the optimal velocity $ov(d_n)$.

Drivers will adjust the velocity of their vehicles so that they can approximate the optimal velocity $ov(d_n)$.

Theorem

$$v(t) \rightarrow ov(t)$$
 as $\tau \rightarrow 0$ for any time $t \geq 0$.

Drivers will adjust the velocity of their vehicles so that they can approximate the optimal velocity $ov(d_n)$.

Theorem

$$v(t) \rightarrow ov(t)$$
 as $\tau \rightarrow 0$ for any time $t \ge 0$.

Writing v, ov as functions of time t, we have

$$\begin{cases} \frac{d}{dt}v(t) = \frac{1}{\tau}(ov(t) - v(t)) \\ v(0) = 0 \end{cases}$$

Drivers will adjust the velocity of their vehicles so that they can approximate the optimal velocity $ov(d_n)$.

Theorem

$$v(t) \rightarrow ov(t)$$
 as $\tau \rightarrow 0$ for any time $t \ge 0$.

Writing v, ov as functions of time t, we have

$$\begin{cases} \frac{d}{dt}v(t) = \frac{1}{\tau}(ov(t) - v(t)) \\ v(0) = 0 \end{cases}$$

Using the method of integral factor, we can find the solution

$$v(t) = e^{-rac{1}{ au}t} \int_0^t rac{1}{ au} e^{rac{1}{ au}s} ov(s) ds$$

Let $K_{\tau}(s) = \frac{1}{\tau}e^{-\frac{1}{\tau}s}$ be a family of kernels parametrized by τ , then we can rewrite the solution as a convolution between K and ov.

Let $K_{\tau}(s) = \frac{1}{\tau}e^{-\frac{1}{\tau}s}$ be a family of kernels parametrized by τ , then we can rewrite the solution as a convolution between K and ov.

$$v(t) = e^{-\frac{1}{\tau}t} \int_{0}^{t} \frac{1}{\tau} e^{\frac{1}{\tau}s} ov(s) ds$$

$$= \int_{0}^{t} \frac{1}{\tau} e^{-\frac{1}{\tau}(t-s)} ov(s) ds$$

$$= \int_{0}^{t} K_{\tau}(t-s) ov(s) ds$$

$$= (K_{\tau} * ov)(t)$$

 $\lim_{\tau \to 0} K_{\tau}(s) = \delta(s)$ where $\delta(s)$ is the Dirac delta function

$$\delta(s) = egin{cases} +\infty & s=0 \ 0 & s
eq 0 \end{cases}$$

Demo: https://www.geogebra.org/calculator/manp7fbc

 $\lim_{\tau \to 0} K_{\tau}(s) = \delta(s)$ where $\delta(s)$ is the Dirac delta function

$$\delta(s) = egin{cases} +\infty & s=0 \ 0 & s
eq 0 \end{cases}$$

Demo: https://www.geogebra.org/calculator/manp7fbc

Theorem (Convolution with Dirac Delta Function)

$$(\delta * f)(t) = f(t)$$

 $\lim_{\tau \to 0} K_{\tau}(s) = \delta(s)$ where $\delta(s)$ is the Dirac delta function

$$\delta(s) = egin{cases} +\infty & s=0 \ 0 & s
eq 0 \end{cases}$$

Demo: https://www.geogebra.org/calculator/manp7fbc

Theorem (Convolution with Dirac Delta Function)

$$(\delta * f)(t) = f(t)$$

$$\lim_{\tau \to 0} v(t) = \lim_{\tau \to 0} (K_\tau * ov)(t) = ((\lim_{\tau \to 0} K_\tau) * ov)(t) = (\delta * ov)(t) = ov(t)$$

Theorem

The system reaches equilibrium if and only if all vehicles are of equal, constant distance $d_i = d_e = D/N$ and equal, constant velocity $v_i = v_e = ov(d_e)$ for i = 0, 1, ..., N-1

The system reaches an equilibrium if and only if

$$\begin{cases} \frac{d}{dt}d_n(t) = v_{n+1}(t) - v_n(t) = 0 \\ \\ \frac{d}{dt}v_n(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) = 0 \end{cases}$$

$$d'_n(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

$$d_n'(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

• $v_{n+1}(t) = v_n(t)$ for any time t

$$d'_n(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

- $v_{n+1}(t) = v_n(t)$ for any time t
- $d_n(t)$ is constant w.r.t time

$$d_n'(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

- $v_{n+1}(t) = v_n(t)$ for any time t
- $d_n(t)$ is constant w.r.t time

$$v_n'(t)=rac{1}{ au}(ov(d_n)-v_n(t))=0$$
 implies that

$$d_n'(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

- $v_{n+1}(t) = v_n(t)$ for any time t
- $d_n(t)$ is constant w.r.t time

$$v_n'(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) = 0$$
 implies that

• $v_n(t) = ov(d_n(t))$ for any time t

$$d_n'(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

- $v_{n+1}(t) = v_n(t)$ for any time t
- $d_n(t)$ is constant w.r.t time

$$v_n'(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) = 0$$
 implies that

- $v_n(t) = ov(d_n(t))$ for any time t
- $v_n(t)$ is constant w.r.t. time

$$d_n'(t) = v_{n+1}(t) - v_n(t) = 0$$
 implies that

- $v_{n+1}(t) = v_n(t)$ for any time t
- $d_n(t)$ is constant w.r.t time

$$v_n'(t) = \frac{1}{\tau}(ov(d_n) - v_n(t)) = 0$$
 implies that

- $v_n(t) = ov(d_n(t))$ for any time t
- $v_n(t)$ is constant w.r.t. time

Assume
$$D/N \ge d_{min}$$
, we have $d_n(t) = d_e = D/N$

$$\begin{cases} d_n(t) = d_e = D/N \\ \\ v_n(t) = v_e = ov(d_e) \end{cases}$$

Numerical Methods: Discretization of the System

Let Δt be the time step, T be the duration of simulation. Then, we have

$$\begin{cases} x_n(t+\Delta t) = x_n(t) + (v_{n+1} - v_n(t)) \cdot \Delta t \\ v_n(t+\Delta t) = \frac{(\Delta t \cdot ov(d_n) + \tau \cdot v_n(t))}{\Delta t + \tau} \\ x_n(0) = x_n^{(0)} \\ v_n(0) = 0 \end{cases}$$
 $n = 0, ..., N-1$

Numerical Methods: Discretization of the System

The discretization of v_n is obtained by the backward-Euler method:

$$egin{split} rac{v_n(t+\Delta t)-v_n(t)}{\Delta t} &= rac{ov(d_n)-v(t+\Delta t)}{ au} \ v_n(t+\Delta t) &= rac{(\Delta t \cdot ov(d_n)+ au \cdot v_n(t))}{\Delta t+ au} \end{split}$$

Numerical Methods: Verification

Is the result is independent of the choice of time step?

Numerical Methods: Verification

Is the result is independent of the choice of time step? We test for $\Delta t=0.0025,0.005,0.01,0.025,0.05$, and compare the results to that of $\Delta t=0.0025$ (the most accurate result)

Numerical Methods: Verification

Is the result is independent of the choice of time step?

We test for $\Delta t = 0.0025, 0.005, 0.01, 0.025, 0.05$, and compare the results to that of $\Delta t = 0.0025$ (the most accurate result)

Experiment 1: Stability of the Equilibrium

Let $\vec{y} = (\vec{d}, \vec{v})$. We can rewrite the system (represented by d and v) as

Let $\vec{y} = (\vec{d}, \vec{v})$. We can rewrite the system (represented by d and v) as

$$\begin{cases} \frac{d}{dt}\vec{y} = f(\vec{y}) \\ \\ \vec{y}(0) = \vec{y}_0 = (\vec{d}_0, \vec{v}_0) \end{cases}$$

where f is a nonlinear function.

We can study the stability of the equilibrium by computing the Jacobian of f evaluated at $\vec{y_e} = (\vec{d_e}, \vec{v_e})$

We can study the stability of the equilibrium by computing the Jacobian of f evaluated at $\vec{y_e} = (\vec{d_e}, \vec{v_e})$

$$Df(y_e) = J = \begin{bmatrix} 0_n & M \\ \frac{c}{d_0} & 0 \\ \dots & \frac{c}{d_{N-1}} & -\frac{1}{\tau} I_n \end{bmatrix}$$

where

$$c = \frac{v_{max}}{\tau(log(d_{max}/d_{min}))}$$

$$M = (m_{ij}), m_{i,i} = -1, m_{i+1\%N,i} = 1, \text{ otherwise } m_{ij} = 0$$

where

$$c = \frac{v_{max}}{\tau(log(d_{max}/d_{min}))}$$

$$M = (m_{ij}), m_{i,i} = -1, m_{i+1\%N,i} = 1, \text{ otherwise } m_{ij} = 0$$

For N = 4, we have

$$M = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \end{bmatrix}$$

$$\vec{d'}(t) = M\vec{v}(t) = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_0 \\ v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_1 - v_0 \\ v_2 - v_1 \\ v_3 - v_2 \\ v_0 - v_3 \end{bmatrix}$$

- If all of J 's eigenvalues have negative real part, the equilibrium is asymptotically stable.
- If *J* has an eigenvalue whose real part is positive, the equilibrium is unstable.

- If all of *J* 's eigenvalues have negative real part, the equilibrium is asymptotically stable.
- If *J* has an eigenvalue whose real part is positive, the equilibrium is unstable.

We can numerically calculate the eigenvalues of J for different τ .

```
https://colab.research.google.com/drive/1gD9n_8F9nWiFnkkdR28wrpgU506NUqWl?usp=sharing
```

To check the asymptoticity of the equilibrium, we can initialize the system with small perturbation from equilibrium

- $v_n = 0$
- $d_n = d_e + \epsilon_n$ where $\epsilon_n \sim \textit{Unif}[-P, P]$ for some $P \geq 0$

To check the asymptoticity of the equilibrium, we can initialize the system with small perturbation from equilibrium

- $v_n = 0$
- $d_n = d_e + \epsilon_n$ where $\epsilon_n \sim \textit{Unif}[-P, P]$ for some $P \geq 0$

We experiments with P=0,2,4 and au=0.1,0.5,1.0

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Findings:

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Findings:

F1 The traffic snake moves against the traffic flow

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Findings:

- F1 The traffic snake moves against the traffic flow
- F2 The traffic snake will grow / shrink / stay still depending on τ , d_{min} , d_{max} , v_{max} .

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Findings:

- F1 The traffic snake moves against the traffic flow
- F2 The traffic snake will grow / shrink / stay still depending on τ , d_{min} , d_{max} , v_{max} .
- F3 Depending on the parameters, the traffic snake will either be fully alleviated or stay at a constant length and moves backwards at a constant velocity.

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Findings:

- F1 The traffic snake moves against the traffic flow
- F2 The traffic snake will grow / shrink / stay still depending on τ , d_{min} , d_{max} , v_{max} .
- F3 Depending on the parameters, the traffic snake will either be fully alleviated or stay at a constant length and moves backwards at a constant velocity.
- e.g. 1

https://xinyu-li-123.github.io/videos/reach_equi_vid.mp4

Traffic snake: A queue of vehicles that are stuck in traffic congestion.

Numerically: A queue of vehicles whose velocity is less than a small number.

Findings:

- F1 The traffic snake moves against the traffic flow
- F2 The traffic snake will grow / shrink / stay still depending on τ , d_{min} , d_{max} , v_{max} .
- F3 Depending on the parameters, the traffic snake will either be fully alleviated or stay at a constant length and moves backwards at a constant velocity.
- e.g. 1
 https://xinyu-li-123.github.io/videos/reach_equi_vid.mp4
- e.g. 2

F1. The traffic snake moves against the traffic flow

F1. The traffic snake moves against the traffic flow

F1. The traffic snake moves against the traffic flow

After some time steps, c_9 will leave the queue and c_4 will join the queue. This will move the queue against the direction of the traffic flow.

F2. The traffic snake will grow / shrink / stay still depending on τ , d_{min} , d_{max} , v_{max} .

F2. The traffic snake will grow / shrink / stay still depending on τ , $d_{min}, d_{max}, v_{max}$.

F2. The traffic snake will grow / shrink / stay still depending on τ , d_{min} , d_{max} , v_{max} .

Figure: Length of traffic snake in e.g.2

F3. Depending on the parameters, the traffic snake will either be fully alleviated or stay at a constant length and moves backwards at a constant velocity.

F3. Depending on the parameters, the traffic snake will either be fully alleviated or stay at a constant length and moves backwards at a constant velocity.

d_{min}	d_{max}	V _{max}	reach equilibrium b/f 1000s?
0.2+21	100+3l	120	True
0.2+31	/	/	False
/	50+3l	/	False
/	/	150	False
↑	+	↑	snake will last longer

F3. Depending on the parameters, the traffic snake will either be fully alleviated or stay at a constant length and moves backwards at a constant velocity.

d_{min}	d _{max}	v _{max}	reach equilibrium b/f 1000s?
0.2+21	100+31	120	True
0.2+31	/	/	False
/	50+3l	/	False
/	/	150	False
↑	+	↑	snake will last longer

These parameters will affect the derivative of ov at d_e . This demo gives an example https://www.geogebra.org/calculator/xbd9shvh

Example of both cases.

(a) v0 - t relation in e.g.1

(b) v0 - t relation in e.g.2