

CHƯƠNG 6

Phép tính quan hệ (Ngôn ngữ tân từ)

Bài giảng môn Cơ sở dữ liệu

© Bộ môn Hệ Thống Thông Tin - Khoa Công Nghệ Thông Tin - Trường Đại học Khoa học Tự nhiên

Nội dung

- Giới thiệu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
 - Tuple Relational Calculus (TRC)
- Phép tính quan hệ trên miền
 - Domain Relational Calculus (DRC)

Nội dung

- Giới thiệu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

3

Giới thiệu (tt)

- Ngôn ngữ truy vấn hình thức dựa trên lý thuyết logic do Codd đề nghị năm 1972
- Sử dụng biểu thức logic để định nghĩa hình thức kết quả câu truy vấn
 - Dựa trên lý thuyết logic
 - Phi thủ tục
 - Rút trích "cái gì" hơn là "làm thế nào"
- Khả năng diễn đạt tương đương ĐSQH

Giới thiệu (tt)

- Phân loại
 - Phép tính quan hệ trên bộ
 - Biến thiên trên bộ trong quan hệ
 - SQL (Structured Query Language)
 - Phép tính quan hệ trên miền
 - Biến thiên trên thành phần miền giá trị
 - QBE (Query By Example)

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

5

Nội dung

- Giới thiệu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

Nhắc lại về lý thuyết logic

- Biểu thức logic: phát biểu luôn có giá trị "đúng" hay "sai"
 - Bây giờ là tháng 8.
 - 1 > 5 (phát biểu hằng sai)
- Các khái niêm:
 - Biến : đại lượng biến thiên
 - X, Y, Z, ...
 - Phép toán logic
 - ¬: phủ định, ⇒: kéo theo, ∧: và, ∨: hoặc
 - Lượng từ
 - ∃ : tồn tại, ∀ : với mọi
 - Công thức: các biểu thức xây dựng dựa trên biểu thức logic

_

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

7

Nhắc lại về lý thuyết logic

- Một số ví dụ về công thức logic
 - P(t), $\neg P(t)$, Q(t)
 - $\neg P(t) \wedge Q(t)$
 - $\exists t(P(t))$
 - $\forall t(P(t))$

Nội dung

- Giới thiêu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

9

Phép tính quan hệ trên bộ

Biểu thức phép tính quan hệ trên bộ có dạng

- t là biến bộ
 - Có giá trị là một bộ của quan hệ trong CSDL
 - t.A là giá trị của bộ t tại thuộc tính A
- P là công thức có liên quan đến t
 - P(t) có giá trị ĐÚNG hoặc SAI phụ thuộc vào t
- Kết quả trả về là tập các bộ t sao cho P(t) đúng

Tìm các giáo viên có lương trên 2000

- Tìm các bộ t thuộc quan hệ giáo viên và thuộc tính lương có giá trị trên 2000
- Kết quả : t là các bộ thỏa mãn P(t) và Q(t) đúng
- GIAOVIEN(t) đúng
 - Nếu t là một bộ của quan hệ GIAOVIEN
- t.LUONG > 2000 đúng
 - Nếu thuộc tính LUONG của t có giá trị trên 2000

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

11

Ví dụ 2

Tìm mã và họ tên giáo viên có lương trên 2000

{ t.MAGV, t.HOTEN | GIAOVIEN (t) \land t.LUONG > 2000 }

P(t)

- Tập các MAGV và HOTEN của những bộ t sao cho t là một thể hiện của GIAOVIEN và t có giá trị lớn hơn 2000 tại thuộc tính LUONG
- Kết quả:
- Tìm những bộ t thuộc GIAOVIEN có thuộc tính lương lớn hơn 2000
- Lấy ra các giá trị tại thuộc tính MAGV và HOTEN

- Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'
 - Lấy ra những bộ t thuộc GIAOVIEN
 - So sánh t với một bộ s nào đó để tìm ra những giáo viên làm việc ở bộ môn 'Hệ thống thông tin'
 - Lượng từ "tồn tại" của phép toán logic:

 $(\exists t)(P(t))$

Tồn tại 1 bộ t sao cho biểu thức P(t) đúng

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

13

Ví dụ 3

 Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

{ t.MAGV | GIAOVIEN(t) \land

GIAOVIE	EN	
MAGV	HOTEN	MABM
1	Nguyễn Hoài An	HTTT
2	Trần Trà Hương	MMT
3	Nguyễn Nam Sơn	CNPM
4	Lý Hoàng Hà	HTTT

BOMON	Q(s)
MABM	TENBM
HTTT	Hệ thống thông tin
CNPM	Công nghệ phần mềm
MMT	Mạng máy tính

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

14

MAGV

 Cho biết tên các giáo viên (HOTEN) tham gia đề tài hoặc là trưởng bộ môn

{ t.HOTEN | GIAOVIEN(t) \land ((\exists s)(THAMGIADT(s) \land t.MAGV = s.MAGV) \lor (\exists u)(BOMON(u) \land t.MAGV = u.TRUONGBM)) }

	GIAOVIE	CN
	MAGV	HOTEN
t1	1	Nguyễn Hoài An
t2-	2	Trần Trà Hương
t3	3	Nguyễn Nam Sơn
t4	4	Lý Hoàng Hà

THAMGIADT		
MAGV MADT		
1	1	
3	2	

BOMON	
MABM	TRUONGBM
HTTT	1
CNPM	4
MMT	null

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

15

Ví dụ 5

 Cho biết tên các giáo viên (HOTEN) vừa không tham gia đề tài vừa không chủ nhiệm đề tài

{ t.HOTEN | GIAOVIEN(t) ∧ (

- \neg (\exists s) (THAMGIADT(s) \land t.MAGV = s.MAGV) \land
- \neg (\exists u) (DETAI(u) \land t.MAGV = u.GVCNDT)) }

	GIAOVIE	N	
	MAGV	HOTEN	
_	1	Nguyễn Hoài An	
_	2	Trần Trà Hương	L
_	3	Nguyễn Nam Sơn	L
	4	Lý Hoàng Hà	

THAMGIADT		
MAGV	M	ADT
1		1
3		2

DETAI	
MADT	GVCNDT
1	1
2	2
3	null

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

16

 Với mỗi bộ môn của khoa CNTT, cho biết họ tên giáo viên là trưởng bộ môn.

{ s.MABM, t.HOTEN | BOMON(s) \(\times \) GIAOVIEN(t) \(\times \) s.MAKHOA = 'CNTT' \(\times \) s.TRUONGBM = t.MAGV }

BOMON		
MABM	MAKHOA	TRUONGBM
HTTT	CNTT	1
CNPM	CNTT	4
MMT	CNTT	null

MABM	HOTEN
HTTT	Nguyễn Hoài An
CNPM	Lý Hoàng Hà

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

GIAOVIEI	N	
MAGV	HOTEN	MABM
1	Nguyễn Hoài An	HTTT
2	Trần Trà Hương	MMT
3	Nguyễn Nam Sơn	CNPM
4	Lý Hoàng Hà	CNPM

17

Ví dụ 7

 Cho biết tên các giáo viên nữ và tên khoa quản lý giáo viên này

{t.HOTEN, u.TENKHOA | GIAOVIEN(t)
$$\land$$
 KHOA(u) \land t.PHAI = 'N $\tilde{\mathbf{u}}$ ' \land (\exists s)(BOMON(s) \land s.MAKHOA = u.MAKHOA \land s.MABM = t.MABM) }

- Tìm các giáo viên (MAGV, HOTEN) tham gia vào <u>tất cả các</u> đề tài
 - Cấu trúc "với mọi" của phép toán logic

(∀t) (P(t))

Mọi bộ t phải làm cho biểu thức P đúng

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

19

Ví dụ 8 (tt)

 Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài

{ t.MAGV, t.HOTEN | $GIAOVIEN(t) \land$

$$(\forall s)$$
 (DETAI(s) \land ($\exists u$) (THAMGIADT(u) \land

 $u.MADT = s.MADT \land t.MAGV = u.MAGV)$

	GIAOVIE	4
	MAGV	HOTEN
t1	1	Nguyễn Hoài An
t2	2	Trần Trà Hương
t3	3	Nguyễn Nam Sơn
t4	4	Lý Hoàng Hà

	DETAI	
	MADT	TENDT
s 1	1	
s2	2	
s 3	3	

	THAMGIADT		
	MAGV	MADT	
u1	1	1	
u2	2	2	
u3	4	1	
u4	4	2	
u5	4	3	

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

20

- Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài do giáo viên mã số 2 làm chủ nhiệm
 - Cấu trúc "kéo theo" của phép tính logic

```
P \Rightarrow Q
```

Nếu P thì Q

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

21

Ví dụ 9 (tt)

 Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài do giáo viên mã số 2 làm chủ nhiệm

```
{ t.MAGV, t.HOTEN | GIAOVIEN(t) \land

(\foralls)((DETAI(s) \land

s.GVCNDT = 2) \Rightarrow (\existsu(THAMGIADT(u) \land

u.MADT = s.MADT \land

t.MAGV = u.MAGV)))}
```

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

Định nghĩa hình thức

Một công thức truy vấn tổng quát có dạng

$$\{t_1.A_i, t_2.A_j, ...t_n.A_k \mid P(t_1, t_2, ..., t_n)\}$$

- t1, t2, ..., tn là các biến bộ
- Ai, Aj, ..., Ak là các thuộc tính trong các bộ t tương ứng
- P là công thức
 - P là công thức nguyên tố
 - \bullet Hoặc được hình thành từ những công thức nguyên tố

Biến bộ

Biến tự do (free variable)

```
\{t \mid GIAOVIEN(t) \land t.LUONG > 2000 \}
t là biến tự do
```

Biến kết buộc (bound variable)

```
\{t \mid GIAOVIEN(t) \land (\exists s)(BOMON(s) \land s.MABM = t.MABM \land s.TENBM = "Hệ thống thông tin")\}
Biến tự do Biến kết buộc
```

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

25

Công thức nguyên tố

- (i) R(t)
 - t là biến bô

GIAOVIEN (t)

- R là quan hệ
- (ii) | t.A θ s.B
 - A là thuộc tính của biến bộ t

t.MAGV = s.MAGV

- B là thuộc tính của biến bộ s
- θ là các phép so sánh < , > , \leq , \geq , \neq , =
- (iii) t.A θ c
 - c là hằng số

s.LUONG > 30000

- A là thuộc tính của biến bộ t
- θ là các phép so sánh < , > , \leq , \geq , \neq , =

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

26

Công thức nguyên tố (tt)

- Mỗi công thức nguyên tố đều mang giá trị ĐÚNG hoặc SAI
 - Gọi là chân trị của công thức nguyên tố
- Công thức (i) $t \in R$
 - Chân trị ĐÚNG nếu t là một bộ thuộc R
 - Chân trị SAI nếu t không thuộc R

R	Α	В	С
	αα	10 20	1 1

 $\begin{array}{ll} t1=<\alpha,\,10,\,1> & t1\in R\ c\acute{o}\ ch\hat{a}n\ tr!\ \eth\acute{U}NG\\ t2=<\alpha,\,20,\,2> & t2\in R\ c\acute{o}\ ch\hat{a}n\ tr!\ SAI \end{array}$

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

27

Công thức nguyên tố (tt)

- Công thức (ii) và (iii)
- t.A θ s.B $t.A \theta$ c
- Chân trị tùy thuộc vào việc thay thế giá trị thật sự của bộ vào vị trí biến bộ

R	A	В	С
	α	10	1
	α	20	1

Nếu t là bộ $<\alpha$, 10, 1> Thì t.B > 5 có chân trị ĐÚNG (10 > 5)

Công thức

 Được hình thành từ công thức nguyên tố thông qua các phép toán logic hoặc các lượng từ

- Phủ định \neg P(t) - Toán tử và $P(t) \land Q(t)$ - Toán tử hoặc $P(t) \lor Q(t)$

Cấu trúc tồn tại (∃t)(P(t))
Cấu trúc với mọi (∀t)(P(t))

- Phép toán kéo theo : $P(t) \Rightarrow Q(t)$

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

29

Qui tắc

- (1) Mọi công thức nguyên tố là công thức
- (2) Nếu P là công thức thì
 - ¬(P) là công thức
 - (P) là công thức
- (3) Nếu P1 và P2 là các công thức thì
 - $P1 \lor P2$ là công thức
 - P1 ∧ P2 là công thức
 - P1 ⇒ P2 là công thức

Qui tắc (tt)

- (4) Nếu P(t) là công thức thì
 - $\forall t (P(t))$ là công thức
 - Chân trị ĐÚNG khi P(t) ĐÚNG với mọi bộ t.
 - Chân trị SAI khi có ít nhất 1 bộ t làm cho P(t) SAI
 - ∃t (P(t)) là công thức
 - Chân trị ĐÚNG khi có ít nhất 1 bộ làm cho P(t) ĐÚNG
 - Chân trị SAI khi P(t) SAI với mọi bộ t

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

31

Qui tắc (tt)

- (5) Nếu P là công thức nguyên tố thì
 - Các biến bộ t trong P là biến tự do
- (6) Công thức $P=P1 \land P2$, $P=P1 \lor P2$, $P=P1 \Rightarrow P2$
 - Sự xuất hiện của biến t trong P là tự do hay kết buộc phụ thuộc vào việc nó là tự do hay kết buộc trong P1, P2

Một số biến đổi

- (i) $P1 \land P2 = \neg (\neg P1 \lor \neg P2)$
- (ii) $\forall t (R(t) \land (P(t)) = \neg \exists t (\neg R(t) \lor \neg P(t))$
- (iii) $\exists t (R(t) \land (P(t)) = \neg \forall t (\neg R(t) \lor \neg (P(t))$
- (iv) $P \Rightarrow Q = \neg P \lor Q$

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

33

Công thức an toàn

Xét công thức

$$\{ t \mid \neg (GIAOVIEN(t)) \}$$

- Có rất nhiều bộ t không thuộc quan hệ GIAOVIEN
- Thậm chí không có trong CSDL
- Kết quả trả về không xác định
- Một công thức P gọi là an toàn nếu các giá trị trong kết quả đều lấy từ miền giá trị của P
 - Dom(P)
 - Tập các giá trị được đề cập trong P

Công thức an toàn (tt)

Ví dụ

 $\{t \mid GIAOVIEN(t) \land t.LUONG > 30000\}$

- Dom(GIAOVIEN(t) \land t.LUONG > 30000)
- Là tập các giá trị trong đó
 - Có giá trị trên 3000 tại thuộc tính LUONG
 - Và các giá trị khác tại những thuộc tính còn lại
- Công thức trên là an toàn

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

35

Nội dung

- Giới thiệu
- Nhắc lại về lý thuyết logic
- Phép tính quan hệ trên bộ
- Phép tính quan hệ trên miền

Phép tính quan hệ trên miền

Biểu thức phép tính quan hệ trên miền có dạng

$$\{ x_1, x_2, ..., x_n \mid P(x_1, x_2, ..., x_n) \}$$

- x1, x2, ..., xn là các biến miền
 - Biến nhận giá trị là một miền giá trị của một thuộc tính
- P là công thức theo x1, x2, ..., xn
 - P được hình thành từ những công thức nguyên tố
- Kết quả trả về là tập các giá trị x1, x2, ..., xn sao cho khi các giá trị được thay thế cho các xi thì P đúng

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

37

Ví dụ 1

Cho biết mã và tên giáo viên có lương trên 3000

{ p, q | $(\exists r)$ (GIAOVIEN(p, q, r, s, t, u, v, x, y, z,m) \land r > 3000)) }

GIAOVIEN(<u>MAGV</u>, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

 Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

```
{p | (\exists \mathbf{m}) (GIAOVIEN(\mathbf{p}, q, r, s, t, u, v, x, y, z,\mathbf{m}) \land (\exists \mathbf{a})(\exists \mathbf{b})(BOMON(\mathbf{a}, \mathbf{b}, c, d, e, f, j) \land b = 'Hệ thống thông tin' \land \mathbf{a} = \mathbf{m})) }
```

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

BOMON(MABM, TENBM, PHONG, DIENTHOAI, TRUONGBM, MAKHOA, NGAYNHANCHUC)

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

39

Ví dụ 3

 Cho biết các giáo viên (MAGV, HOTEN) không có tham gia đề tài nào

```
{p, q | GIAOVIEN(p, q, r, s, t, u, v, x, y, z, m) \land \neg (\existsa) (THAMGIADT(a, b, c, d, e) \land a = p) }
```

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

THAMGIADT(MAGV, MADT, STT, PHUCAP, KETQUA)

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

Công thức nguyên tố

- (i) $R(x_1, x_2, ..., x_n)$
 - xi là biến miền
 - R là quan hệ có n thuộc tính
- **■** (ii) x θ y
 - x, y là các biến miền
 - Miền giá trị của x và y phải giống nhau
 - θ là các phép so sánh < , > , \leq , \geq , \neq , =
- (iii) x θ c
 - c là hằng số
 - x là biến miền
 - θ là các phép so sánh < , > , \leq , \geq , \neq , =

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

41

Nhận xét

- Một công thức nguyên tố mang giá trị ĐÚNG hoặc SAI với một tập giá trị cụ thể tương ứng với các biến miền
 - Gọi là chân trị của công thức nguyên tố
- Một số qui tắc và biến đổi tương tự với phép tính quan hệ trên bô

Công thức an toàn

Xét công thức

$$\{p, r, s \mid \neg GIAOVIEN(p, q, r, s, t, u, v, x, y, z)\}$$

- Các giá trị trong kết quả trả về không thuộc miền giá trị của biểu thức
- Công thức không an toàn

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

43

Công thức an toàn (tt)

Xét công thức

$$\{x \mid \exists y (R(x,y)) \land \exists z (\neg R(x,z) \land P(x,z))\}$$
Công thức 1
Công thức 2

- R là quan hệ có tập các giá trị hữu hạn
- Cũng có 1 tập hữu hạn các giá trị không thuộc R
- Công thức 1: chỉ xem xét các giá trị trong R
- Công thức 2: không thể kiểm tra khi không biết tập giá trị hữu hạn của z

Công thức an toàn (tt)

Cho biểu thức

$$\{x_1, x_2, ..., x_n \mid P(x_1, x_2, ..., x_n)\}$$

- Biểu thức trên được gọi là an toàn nếu:
 - Những giá trị xuất hiện trong các bộ của biểu thức phải thuộc về miền giá trị của P
 - Lượng từ ∃: biểu thức ∃x (Q(x)) đúng khi và chỉ khi xác định được giá trị của x thuộc dom(Q) làm cho Q(x) đúng
 - Lượng từ \forall : biểu thức $\forall x$ (Q(x)) đúng khi và chỉ khi Q(x) đúng với mọi giá trị của x thuộc dom(Q)

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN

45

