CS 412: INTRODUCTION TO MACHINE LEARNING

Course Goals

Enable you to **build useful machine learning systems** for new (and old) problem settings.

- Learn about key ML problems/paradigms
 - From simple approaches to state-of-the-art
- Develop algorithms for reasoning about data
 - Probability & statistics, optimization
- Gain experience with real data

Prerequisites

Formal: CS251, STAT 381/IE 342

Less formal:

Comfort with "abstract mathematical concepts"

(discrete math, calculus, probability & statistics, matrix algebra)

Computer science/programming experience

(data structures, dynamic programming, e.g., C++, Java, Python)

We will use Python

LECTURE 1: WHAT IS MACHINE LEARNING?

Prof. Xinhua Zhang

Big Data

- Widespread use of personal computers and wireless communication leads to "big data"
- We are both producers and consumers of data
 - Customize/personalize
- Data is not random, it has structure, e.g., customer behavior
- We need "big theory" to extract that structure from data for
 - (a) Understanding the process (descriptive)
 - (b) Making predictions for the future (predictive)

Why "Learn"?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- There is no need to "learn" to calculate payroll
- Reverse parking?
- Learning is used when:
 - Human expertise does not exist (navigating on Mars),
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - Solution needs to be adapted to particular cases (user biometrics)

What We Talk About When We Talk About "Learning"

- Learning general models from a data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:
 - People who bought "Blink" also bought "Outliers" (www.amazon.com)
- Build a model that is a good and useful approximation to the data.

Huge Implications

"If you invent a breakthrough in artificial intelligence, so machines can learn, that is worth 10 Microsofts."

Bill Gates

Data Mining

- Retail: Market basket analysis, Customer relationship management (CRM)
- □ Finance: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- □ Telecommunications: Spam filters, intrusion detection
- Bioinformatics: Motifs, alignment
- Web mining: Search engines
- □ ...

What is Machine Learning?

- Optimize a performance criterion using example data or past experience.
- Role of Statistics: Inference from a sample
- Role of Computer science: Efficient algorithms to
 - Solve the optimization problem
 - Representing and evaluating the model for inference

Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

Learning Associations

Basket analysis:

 $P(Y \mid X)$ probability that somebody who buys X also buys Y where X and Y are products/services.

Example: P (chips | beer) = 0.7

Classification

- Example: Credit scoring
- Differentiating
 between low-risk and
 high-risk customers
 from their income and
 savings

Discriminant: IF $income > \theta_1$ AND $savings > \theta_2$ THEN low-risk ELSE high-risk

- Aka Pattern recognition
- □ Text Classification:

spam or not spam

This email is a commercial solicitation

□ Face recognition: Pose,lighting, occlusion (glasses,beard), make-up, hair style

Training examples of a person

Test images

true class = 7

- Aka Pattern recognition
- □ Character recognition:

Different handwriting styles

true class = 2

true class = 1

- □ Aka Pattern recognition
- □ Object recognition:

- Aka Pattern recognition
- □ Recommendation systems:

What other movies?

Example: Recommendation Systems

Rank	Team Name	Best Score	% Improvement	Last Submit Time
1	BellKor's Pragmatic Chaos	0.8558	10.05	2009-06-26 18:42:37
Grand	Prize - RMSE <= 0.8563			
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51
3	BellKor in BigChaos	0.8590	9.71	2009-05-13 08:14:09
4	Grand Prize Team	0.8593	9.68	2009-06-12 08:20:24
5	Dace	0.8604	9.56	2009-04-22 05:57:03
6	<u>BigChaos</u>	0.8613	9.47	2009-06-23 23:06:52
Progr	<u>ress Prize 2008</u> - RMSE = 0.8	616 - Winning T	eam: BellKor in BigCl	haos
7	BellKor	0.8620	9.40	2009-06-24 07:16:02
8	xlvector	0.8630	9.29	2009-06-27 14:08:39
9	Gravity	0.8634	9.25	2009-04-22 18:31:32
10	Opera Solutions	0.8638	9.21	2009-06-26 23:18:13
11	BruceDengDaoCiYiYou Lect	ure 10. What	is Machine Lear	ning9-06-27 00:55:55
12	pengpengzhou	0.8638	9.21	2009-06-27 01:06:43
13	Foods?	0.8641	9.18	2009-06-26 22:51:55

- Aka Pattern recognition
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
- Medical diagnosis: From symptoms to illnesses
- Biometrics: Recognition/authentication using physical and/or behavioral characteristics: Face, iris, signature, etc
- Outlier/novelty detection:

Regression

- Example: Price of a used car
- □ x : car attributes

y: price

$$y = g(x \mid \theta)$$

g() model,

heta parameters

Example: Algorithmic Trading

Regression Applications

Navigating a car: Angle of the steering

□ Kinematics of a robot arm

Response surface design

Supervised Learning: Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: The rule is easy to understand: credit card application
- Compression: The rule is simpler than the data it explains: feature selection
- Outlier detection: Exceptions that are not covered by the rule, e.g., fraud

Applications

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

Unsupervised Learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Example applications
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - Bioinformatics: Learning motifs

Unsupervised Learning

Generative models

Reinforcement Learning

- Learning a policy: A sequence of outputs
- No supervised output but delayed reward
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

Example: Learning to Act

Example: Learning to Act

Robotic Ping Pong

Lecture 1: What is Machine Learning?

Resources: Datasets

- □ UCI Repository: http://www.ics.uci.edu/~mlearn/MLRepository.html
- □ Statlib: http://lib.stat.cmu.edu/

Resources: Journals

- Journal of Machine Learning Research <u>www.jmlr.org</u>
- IEEE Trans on Pattern Analysis and Machine Intelligence
- Machine Learning
- Neural Computation
- Neural Networks
- IEEE Trans on Neural Networks and Learning Systems
- Journals on Statistics/Data Mining/Signal Processing/Natural Language Processing/Bioinformatics/...

Resources: Conferences

- International Conference on Machine Learning (ICML)
- Neural Information Processing Systems (NeurIPS)
- Uncertainty in Artificial Intelligence (UAI)
- Computational Learning Theory (COLT)
- International Conference on AI & Statistics (AISTATS)
- European Conference on Machine Learning (ECML)
- International Conference on Artificial Neural Networks (ICANN)
- International Conference on Pattern Recognition (ICPR)
- □ ...

No Free Lunch

"All models are wrong, but some are useful."

George Box, Statistician

- Modeling assumptions that work well for one problem, may not work well for another
- No "universal learner" exists
 - We need many different techniques for different domains and task characteristics

