Travaux dirigés de MACHINE LEARNING

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

Joon Kwon

vendredi 27 mars 2020

*5

Soit $d\geqslant 1$ un entier. Pour $(w,b)\in\mathbb{R}^d\times\mathbb{R}$, on note $g_{w,b}$ la fonction définie par :

$$\forall x \in \mathbb{R}^d$$
, $g_{w,b}(x) = \langle w, x \rangle + b$.

On se place dans un cadre de classification binaire. Soient $\mathscr{Z}=\mathbb{R}^d$ et $\mathscr{Y}=\{-1,1\}$ les ensembles d'entrée et de sortie, et $S=(x_i,y_i)_{i\in[n]}$ l'échantillon d'apprentissage. Soit $(\hat{w},\hat{b})\in\mathbb{R}^d\times\mathbb{R}$ tel que $\hat{f}=\operatorname{sign}\circ g_{\hat{w},\hat{b}}$ soit le classifieur donné par la régression logistique.

1) Rappeler la définition de \hat{w} et \hat{b} .

Le but de l'exercice est de montrer que la régression logistique peut être vue comme une minimisation de risque empirique dans un problème auxiliaire de régression.

Soit $\phi_{sig} : \mathbb{R} \to]0,1[$ la fonction définie par

$$orall z \in \mathbb{R}$$
, $\varphi_{ ext{sig}}(z) = rac{1}{1+e^{-z}}.$

2) Tracer l'allure de ϕ_{sig} .

3) Montrer que ϕ_{sig} admet une fonction réciproque et en donner une expression.

On considère un problème auxiliaire avec pour ensembles d'entrée et de sortie $\mathscr{X}_0 = \mathbb{R}^d$ et $\mathscr{Y}_0 = [0,1]$, et pour classe de prédicteurs :

$${\mathscr F}_0 = \left\{ egin{aligned} igle _{ ext{sig}} \circ g_{w,b}
ight\}_{\substack{w \in \mathbb{R}^d \ b \in \mathbb{R}}}. \end{aligned}$$

Soit
$$S_0 = \left(x_i, \frac{y_i+1}{2}\right)_{i \in [n]}$$
.

- 4) Soit $\hat{f}_0 = \phi_{\text{sig}} \circ g_{\hat{w},\hat{b}}$. Montrer que \hat{f}_0 est le prédicteur donné par la minimisation du risque empirique dans ce problème auxiliaire avec l'échantillon d'apprentissage S_0 et pour une certaine fonction de perte ℓ_0 à déterminer.
- 5) Montrer que $\hat{f} = \operatorname{sign} \circ (\hat{f}_0 \frac{1}{2})$.