Color, Edge

2. Basic Image Features

low-level mid-level high-level

Eun Yi Kim

- Used heavily in human vision,
- Color is a pixel property, making som e recognition problems easy
- Visible spectrum for humans is 400 nm (blue) to 700 nm (red)
- Machines can "see" much more;
 ex. X-rays, infrared, radio waves

Coding methods for humans

- RGB is an additive system (add colors to black) used for displays.
- CMY is a subtractive system for printing.
- ☐ (HSI) is a good perceptual space for art, psychology, and recognition.
- YIQ used for TV is good for compression.

RGB color cube = order color space

(0,0,1)

(1,0,1)

(1,0,1)

(1,0,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(1,1,0)

yellow

(0,0,0)

(1,0,0)

black

Green

(0,1,0)

grey

- R, G, B values normalized to (0, 1) int erval
- human perceives gray for triples on the diagonal
- "Pure colors" on corners

Color palette and normalized RGB

b = 1 - r - g, so we only need to look at r and g to characterize

Color hexagon for HSI (HSV)

- Hue is encoded as an angle (0 to 2π).
- Saturation is the distance to the vertical axis (0 to 1).
- Intensity is the height along the vertical axis (0 to 1).

RGB to HSI Transform

 \rightarrow RGB \rightarrow HSI

$$r = \frac{R}{R+G+B}$$
, $g = \frac{G}{R+G+B}$, $b = \frac{B}{R+G+B}$

$$s = 1 - 3 \cdot \min(r, g, b); \quad s \in [0, 1]$$

$$i = (R + G + B)/(3.255); i \in [0,1]$$

$$h = \cos^{-1} \left\{ \frac{0.5 \cdot \left[(r-g) + (r-b) \right]}{\left[(r-g)^2 + (r-b)(g-b) \right]^{\frac{1}{2}}} \right\}$$

$$h = 2\pi - \cos^{-1} \left\{ \frac{0.5 \cdot \left[(r-g) + (r-b) \right]}{\left[(r-g)^2 + (r-b)(g-b) \right]^{\frac{1}{2}}} \right\}$$

$$h \in [0, \pi]$$
 for $b \le g$

$$h \in [\pi, 2\pi]$$
 for $b > g$

HSI to RGB Transform

Kuzy Mally.

RG area ($0 \le H \le 120$)

$$\begin{split} b &= \frac{1}{3} \left(1 - S \right) \\ r &= \frac{1}{3} \left[1 + \frac{Scos(H)}{cos(60 - H)} \right] \\ g &= 1 - (r + b) \end{split}$$

GB area (120 ≤ H ≤ 240)

$$\begin{split} H &= H - 120 \\ g &= \frac{1}{3} \left[1 + \frac{S cos (H)}{cos (60 - H)} \right] \\ r &= \frac{1}{3} \left(1 - S \right) \\ b &= 1 - (r + g) \end{split}$$

- Hue is not defined when S = 0. → 500 NM NAN MAN X.

YIQ and YUV for TV signals

- Have better compression properties
- Luminance Y encoded using more bits than chrominance values I and Q; humans more sensitive to Y than I,Q
- Luminance used by black/white TVs
- All 3 values used by color TVs
- YUV encoding used in some digital video and JPEG and MPEG compression

Conversion from RGB to YIQ

RGB-> YIQ

An approximate linear transformation from RGB to YIQ:

We often use this for color to gray-tone conversion.

offer Artisting,

Histogram -> Color 1/2 rms applied them 146.

- Color histogram can represent an image
- Histogram is fast and easy to compute.
- Size can easily be normalized so that different image histo grams can be compared.
- Can match color histograms for database query or classification.

Histograms of two color images Lo mobile of the of

Apples versus Oranges

Separate HSI histograms for apples (left) and oranges (right) used by IBM's VeggieVision for r ecognizing produce at the grocery store checkout station.

Editing saturation of colors

· OSKY HSI 2 VSVet,.

SHUVATION ? (1984) A ORY TOTAL

- (Left) Image of food originating from a digital camera;
- (center) saturation value of each pixel decreased 20%;
- (right) saturation value of each pixel increased 40%.

Skin color in RGB space > 4kin color 12 nomalized kyr

Artificial Inteligence & Computer Vision

Finding a face in video frame

न्त्र जुल गुरु.

