Exercices GEL-15217

EXERCICES MACHINE ASYNCHRONE

Exercice 1

Soit un moteur asynchrone de tension nominale ligne à ligne U_S =3300V, 60Hz et à 3 paires de pôles (p=3). On a réalisé un essai à vide et un essai à rotor bloqué dont les résultats sont les suivants:

Essai à vide:

Tension ligne-line nominale U_{SO}=3300V Courant I_O=20A Puissance P_O pratiquement nulle donc négligeable. (I_O est purement réactif, les pertes magnétiques et la résistance R_S des enroulements du stator sont négligées).

Essai à rotor bloqué:

Tension ligne-line U_{SCC}=892V, Courant Iscc=50A, Facteur de Puissance cosφ_{CC}=.216.

- 1) Déterminer les éléments du schéma équivalent simplifié en "L", sachant que l'on néglige la résistance R_S des enroulements du stator.
- 2) Sachant que ce moteur possède un couple nominal T_{emn} égal à son couple de démarrage T_d , calculer son glissement au point nominal g_n . Quelle est la vitesse nominale N_n (rpm) de ce moteur?
- 3) Calculer le courant nominal I_{Sn} et le facteur de puissance nominal $\cos \phi_n$ de ce moteur. Calculer son rendement au point nominal sachant qu'en plus des hypothèses précédentes, les pertes mécaniques sont négligées.
- 4) Calculer le couple maximal T_{emax} de ce moteur alimenté sous sa tension nominale et la vitesse N_{max} (rpm) correspondante.
- 5) Calculer le couple de démarrage I_{cd} , le courant de démarrage I_{sd} et le facteur de puissance $cos\phi_d$ correspondant lorsque le moteur est alimenté à tension nominale. Calculer le rapport I_{sd}/I_{sn} en %.

Exercice 2

Dans cet exercice, on utilise un schéma équivalent très simplifié de la machine asynchrone dans lequel on néglige le courant à vide I_0 , la résistance R_S des enroulements du stator et les pertes mécaniques.

- 1) A l'aide de ce circuit équivalent, établir l'expression du couple nominal T_{emn} en fonction du glissement nominal g_n et l'expression du couple de démarrage T_d à partir du bilan de puissance active.
- 2) Etablir l'expression du rapport $k_T=T_d/T_{emn}$ et celle du rapport $k_I=I_{sd}/I_{sn}$. En déduire une expression du glissement nominal g_n en fonction de k_T et k_I .
- 3) On utilise un moteur asynchrone de glissement nominal $g_n=5\%$ tel que le couple de démarrage est égal au couple nominal. Calculer le rapport entre le courant de démarrage et le courant nominal. Calculer le glissement g_{max} correspondant au couple maximal du moteur.
- 4) Le stator du moteur asynchrone précédent était couplé en triangle. On veut démarrer ce moteur sur le même réseau d'alimentation en le couplant en étoile au démarrage, puis en le couplant en triangle quand la vitesse atteind la moitiée de sa valeur nominale de manière à obtenir le point d'équilibre nominal de l'entraînement (couple nominal T_{emn}, vitesse nominale N_n, courant nominal I_{sn}). Calculer le rapport entre le nouveau couple de

démarrage en étoile et le couple T_{emn} puis le rapport entre le nouveau courant de démarrage en étoile et le courant nominal I_{sn}. Comparer avec les valeurs correspondant au démarrage sans couplage étoile.

Exercice 3

Une soufflerie est entraînée à vitesse variable par un moteur asynchrone dont on fait varier la tension stator à l'aide d'un dispositif approprié. L'hélice de la soufflerie exerce sur l'arbre du moteur un couple résistant T_r =k. Ω^2 (Ω vitesse du moteur en rad/s).

La plaque signalétique du moteur indique: U_{Sn}=550V (ligne à ligne), p=3, Isn=17A.

On utilise un schéma équivalent simplifié en "L" en négligeant la résistance R_S des enroulements du stator et les pertes mécaniques.

Les essais classiques du moteur asynchrone ont fourni les résultats suivants:

Essai à vide:

Tension ligne-line nominale $U_{SO}=550V$ Courant $I_{O}=5.7A$ $\cos\varphi_{O}=.103$

Essai à rotor bloqué:

Courant Iscc=14.9A, Puissance active totale P_{cc} =1900W, Puissance réactive totale Q_{cc} =4200VAR .

- 1) Déterminer les éléments du schéma équivalent simplifié en "L", sachant que l'on néglige la résistance R_S des enroulements du stator.
- 2) à l'équilibre, pour U_{S1} =550V, la vitesse de rotation du moteur qui entraîne la soufflerie est N_1 =1050rpm. Calculer alors le glissement g_1 , le couple T_{em1} , le courant I_{S1} , les pertes Joules au rotor P_{JR1} , le rendement du moteur, et le coefficient k du couple résistant exerçé par l'hélice.
- 3) Quelle est la valeur U_{S2} de la tension ligne qu'il faut appliquer au moteur pour que la soufflerie tourne à N_2 =800rpm? Pour cette tension U_{S2} , on a mesuré à vide I_{O2} =2.25A et $cos\phi_{O2}$ =.13. Calculer alors les pertes Joule au rotor P_{JR2} et le rendement du moteur.
- 4) Soit un point de fonctionnement quelconque de cet entraînement avec alimentation à tension variable du moteur caractérisé par un couple T_{em} , une vitesse Ω , un glissement g et une tension U_s . Montrer en utilisant l'expression du couple résistant T_r de l'hélice que le rapport des couples T_{em}/T_{em1} s'exprime uniquement en fonction de g et de g_1 . En déduire le rapport a entre les pertes Joules: $a=P_{JR}/P_{JR1}$. Montrer que a passe par un maximum a_{max} pour g=1/3. Calculer a_{max} . Que peut-on en déduire sur le choix du moteur pour une telle application?

Exercice 4

Un moteur asynchrone triphasé à 4 pôles, alimenté par un réseau 60Hz U_S =208V (ligne à ligne) entraîne une charge mécanique qui exerce un couple résistant utile T_{ru} =20Nm, à une vitesse telle que le glissement est de 4%. Dans ces conditions de fonctionnement, le rendement du moteur est η =.85 et son facteur de puissance est $\cos \varphi$ =.8.

- 1- Calculer les pertes Joule dans l'induit du moteur sachant que la valeur moyenne des résistances mesurées entre deux bornes de l'induit (la troisième n'étant pas alimentée) est $R_b=.3\Omega$.
- 2- On veut compenser le facteur de puissance de l'installation qui fonctionne comme précédemment par un ensemble de capacités câblées en triangle, disposé en parallèle avec

le moteur. Calculer la valeur C des capacités dans chaque branche du triangle, de manière à ce que le facteur de puissance global de l'installation soit égal à .9.

Exercice 5

Un moteur asynchrone triphasé à rotor bobiné possède six pôles. Il est relié à un réseau triphasé 60Hz. Lorsque les bagues du rotor sont court-circuitées, le moteur tourne dans le sens horaire lorsque l'induit est mis sous tension.

- 1- Le rotor étant immobile et les enroulements du rotor étant en circuit ouvert, on alimente l'induit par le réseau triphasé. Soit U_{10} la valeur efficace de la tension ligneligne au rotor, mesurée entre deux bagues. Quelle est la fréquence f_1 des tensions ligneligne au rotor?
- 2- Sans modifier le montage précédent, on entraı̂ne le rotor par un moteur auxiliaire à 600rpm dans le sens horaire. Soit U_{20} la valeur efficace de la tension ligne-ligne au rotor, mesurée entre deux bagues. Quelle est alors la fréquence f_2 des tensions ligne-ligne au rotor? Exprimer U_{20} en fonction de U_{10} .
- 3- Quelle est la fréquence f3 des tensions ligne-ligne au rotor, lorsqu'on entraîne le rotor à 600rpm dans le sens anti-horaire? Soit U_{30} la valeur efficace de la tension ligne-ligne au rotor, mesurée entre deux bagues. Exprimer U_{30} en fonction de U_{10} .

Exercice 6

On veut entraîner une charge mécanique qui présente une caractéristique couple résistant vitesse de la forme T_r =k. Ω (Ω vitesse en rad/s) dans les deux sens de rotation (cf Figure 1). Pour cela, on utilise un moteur asynchrone de tension nominale ligne à ligne U_S =440V, 60Hz et à 2 paires de pôles (p=2). On a réalisé un essai à vide et un essai à rotor bloqué dont les résultats sont les suivants:

Essai à vide: Tension ligne-line nominale U_{SO} =440V Courant I_{O} =35A Puissance P_{O} pratiquement nulle donc négligeable. (I_{O} est purement réactif, les pertes magnétiques et la résistance R_{S} des enroulements du stator sont négligées).

Essai à rotor bloqué: Tension ligne-ligne U_{scc} =37V, Courant Iscc=35A, Facteur de Puissance $\cos\varphi_{cc}$ =.3.

On utilise un schéma équivalent simplifié en "L" en négligeant la résistance R_S des enroulements du stator et les pertes mécaniques.

- 1) Déterminer les éléments X_m , R'_r , $X=X_S+X'_r$ du schéma équivalent choisi, à partir des résultats des essais précédents, en tenant compte des hypothèses adoptées.
- 2) Lorsque le moteur est alimenté à tension nominale U_s =440V, la vitesse d'équilibre de l'entraînement est N_1 =1664rpm. Calculer alors le glissement g₁, le couple T_{em1} , le courant stator I_{s1} , le facteur de puissance $cos\phi_1$, et le coefficient k du couple résistant exercé par la charge.
- 3) Pour inverser le sens de rotation de l'entraînement, on a associé au moteur asynchrone un dispositif d'inversion de la séquence des phases qui permet de changer pratiquement instantanément le sens de rotation des forces magnétomotrices tournantes dans la machine.

Pour inverser le sens de rotation à partir du point d'équilibre de la question 1, on permute instantanément deux phases du stator. Comme le moment d'inertie J des parties rotatives de l'entraînement est importante, la vitesse N₁ ne varie pas instantanément.

Calculer le glissement g_2 du rotor par rapport à la nouvelle vitesse synchrone, immédiatement après l'inversion de la séquence des phases. Calculer la valeur absolue du couple T_{em2} du moteur, le courant stator I_{s2} et le facteur de puissance $\cos\varphi_2$ correspondants.

4) Montrer que le point de fonctionnement de la question 3 est instable et que la vitesse de l'entraînement évolue vers un nouveau point d'équilibre à une vitesse N₃. Visualiser l'évolution des points d'opération sur les caractéristiques couple-vitesse en traçant une figure identique à la Figure 1. Calculer N₃ en rpm, le couple T_{em3}, le courant stator I_{s3} et le facteur de puissance cosφ₃ de ce nouveau point d'équilibre.

Exercice 7

Un moteur asynchrone à rotor bobiné à 4 pôles est alimenté par un réseau triphasé $60 \mathrm{Hz}$ de tension nominale ligne à ligne U_S = $600 \mathrm{V}$. L'enroulement du rotor est couplé en étoile. Les résultats de l'essai à vide et de l'essai à rotor bloqué sont les suivants:

Essai à rotor ouvert:

- 1) **Stator :** Tension ligne-line nominale U_{SO} =600V Courant I_{O} =15A Puissance P_{O} pratiquement nulle donc négligeable. (I_{O} est purement réactif, les pertes magnétiques et la résistance R_{S} des enroulements du stator sont négligées).
- 2) **Rotor :** Tension ligne-line nominale au rotor en circuit ouvert U_{ro} =600V Essai à rotor bloqué:Tension ligne-ligne U_{scc} =29V, Courant Iscc=40A, Puissance active totale P_{cc} = 592W.

On utilise un schéma équivalent simplifié en "L" en négligeant la résistance R_S des enroulements du stator et les pertes mécaniques.

Exercices GEL-15217

5

1) En tenant compte des hypothèses, déterminer les éléments X_m, R'_r, X du schéma équivalent choisi à partir des résultats des essais.

- 2) Ce moteur est utilisé pour entraîner un treuil qui exerce sur l'arbre du moteur un couple T_r = 500Nm constant quelque soit la vitesse. Le moteur est alimenté directement par le réseau triphasé 60Hz de tension nominale ligne à ligne U_s=600V. Calculer la vitesse d'équilibre N₁ en rpm, le courant I_{s1} absorbé au stator, le facteur de puissance, la puissance active à l'entrée du moteur et le rendement du moteur
- 3) On veut varier la vitesse du treuil en plaçant une résistance R_{ext} en série avec chaque phase du rotor. Calculer la valeur de R_{ext} pour que le treuil tourne à N_2 = 1000rpm. Calculer le I_{s2} absorbé au stator, le facteur de puissance et le rendement du moteur pour ce nouveau point de fonctionnement. Calculer la puissance active à l'entrée du moteur et la puissance totale consommée dans les résistances de réglage.

Exercice 8

Le pont roulant de la fig2 comporte un treuil actionné par un moteur asynchrone. Le câble s'enroule sur le treuil et la charge (poids P) crée un couple résistant $T_r(\Omega)$ constant. Au moteur est associé un dispositif d'inversion de la séquence des phases qui permet d'obtenir Ω_S ou $-\Omega_S$ avec les conventions de signe des vitesses et de couple de la fig2 (cf fig3).

On a:

 $T_{\mathbf{r}}(\Omega)=80\text{mN}$ constant

p=2 V_{Sn} =220V f_{S} =60Hz (V_{Sn} ligne-neutre)

A rotor bloqué, le moteur se comporte comme une impédance complexe Z_{cc} telle que:

Module: $|Z_{cc}|=.607\Omega$ $\cos\varphi_{cc}=.296$

On suppose:

*que $R_S=R'_T$ et $X_S=X'_T$

*que le courant à vide $I_0=30A$ est purement réactif ($\cos\varphi_0=0$)

*que l'on peut utiliser un schéma en "L" sans négliger R_S.

*que les pertes mécaniques sont négligeables (T_{em}=T_r à l'équilibre).

Exercices GEL-15217

- 1) Déterminer le glissement et la vitesse d'équilibre en montée (Ω >0 avec les conventions des fig 2 et 3). Calculer le courant I_S absorbé par le moteur.
- 2) Pendant que la charge précédente est remontée à la vitesse Ω constante, le pont roulant se déplace horizontalement vers un autre endroit de la salle de manutention. Arrivé à l'endroit voulu, il s'immobilise tandis que la charge continue d'être remontée dans les conditions de la question précédente,

Pour déposer la charge, on permute instantanément deux phases du stator. Que se passet-il? Expliquer les points de fonctionnement successifs en raisonnant sur l'équation mécanique du groupe:

 T_{em} - $T_r = J d\Omega/dt$ J: inertie du groupe.

Visualiser le couple d'accélération J $d\Omega/dt$ sur les caractéristiques de la fig3 et les sens de déplacement des points de fonctionnement sur celles-ci. $(T_{em}(\Omega))$ et $T_r(\Omega)$.

Y a-t-il un point d'équilibre de l'entraînement? Si oui, démontrer sa stabilité. (on suppose que la charge était placée suffisamment haut pour que le régime permanent puisse s'établir avant que la charge s'écrase par terre!)

- 3) Calculer la nouvelle vitesse d'équilibre Ω et le courant ${\rm I}_S.$
- 4)Si au cours de la descente, on veut arrêter et remonter la charge, que faut-il faire? Ceci est-il valable pour n'importe quelle caractéristique de moteur? Quelle est la condition sur la caractéristique pour que l'on puisse revenir à une montée de la charge sans décrocher? Est-ce possible dans l'exemple traité?

Exercice 9

Dans cet exercice on utilise un schéma équivalent simplifié en "L" du moteur asynchrone en négligeant la résistance R_S des enroulements du stator, les pertes mécaniques et magnétiques.

Un treuil qui exerce un couple constant de 2200Nm quelle que soit la vitesse de rotation est entraîné par un moteur asynchrone triphasé à 4 pôles, dont la tension efficace nominale ligne-ligne est U_{sn} =575V et la fréquence nominale f_s =60Hz. Les résultats de l'essai à vide et de l'essai à rotor bloqué sont les suivants:

- Essai à vide: Tension ligne-line nominale U_{SO} =575V Courant I_{O} =307A Puissance P_{O} pratiquement nulle donc négligeable. (I_{O} est purement réactif, les pertes magnétiques et la résistance R_{S} des enroulements du stator sont négligées).

- Essai à rotor bloqué: Tension ligne-ligne U_{scc} =81V, Courant Iscc=300A, Puissance active totale P_{cc} = 10800W.
- 1) En tenant compte des hypothèses, déterminer les 3 éléments X_m , R_r , X du schéma équivalent choisi à partir des résultats des essais (garder 4 chiffres significatifs pour ces paramètres). En déduire la valeur de l'inductance magnétisante L_m ($X_m = L_m$. ω_s) et de l'inductance de fuites totale l ($X = 1.\omega_s$).
- 2) En **Amérique du Nord**, on alimente le moteur qui entraîne le treuil par un réseau alternatif **60Hz** de tension ligne-ligne U_{sn1} =575V. Déterminer le glissement g_1 , la vitesse d'équilibre N_1 de l'entraînement, le courant à vide I_{s01} (circulant dans L_m), le courant I_{s1} absorbé par le moteur, le facteur de puissance $\cos \varphi_1$ et le rendement η_1 . Cette valeur de courant I_{s1} correspond à la valeur nominale du courant qu'on ne peut pas dépasser sans échauffement excessif du moteur en régime permanent.
- 3) On veut utiliser ce treuil et ce moteur en **Europe** sur un réseau alternatif **50Hz** de tension efficace nominale ligne-ligne U_{sn2} =**400V**. On décide de brancher directement le moteur sur ce réseau **50Hz** puisque $U_{sn2} < U_{sn1}$. Déterminer le glissement g_2 , la vitesse d'équilibre N_2 de l'entraı̂nement, le courant à vide I_{s02} (circulant dans L_m), le courant I_{s2} absorbé par le moteur, le facteur de puissance $\cos \varphi_2$ et le rendement η_2 . Ce fonctionnement est-il acceptable pour le moteur. Justifier clairement votre réponse. (La vitesse de fonctionnement du treuil n'est pas une exigence particulière de l'utilisateur).
- 4) Quelle tension ligne-ligne U_{sn3} doit-on appliquer sur le moteur (en utilisant un transformateur de rapport U_{sn2}/U_{sn3} pour alimenter le moteur à partir du réseau **50Hz**), pour qu'il fonctionne de manière adéquate sans dépasser son échauffement nominal (le courant nominal du moteur est celui de la question 2 soit I_{s1})? Pour cette valeur de tension U_{sn3} à **50Hz**, déterminer le glissement g_3 , la vitesse d'équilibre N_3 de l'entraînement, le courant à vide I_{s03} (circulant dans L_m), le courant I_{s3} absorbé par le moteur, le facteur de puissance $cos\phi_3$ et le rendement η_3 . Vérifier que le fonctionnement est adéquat en le comparant à celui de la question 2.