

TAREA 2a: DEEP LEARNING

Prof. NIBALDO RODRÍGUEZ A.

OBJETIVO

■ Implementar y evaluar el rendimiento de un modelo Aprendizaje Profundo (DL) usando un algoritmo Híbrido (Pseudo—inverse y Descenso Gradiente) para clasificar diez tipos de severidad de fallos de un motor de inducción.

DATA: Train

■ Formato: train_x.csv:
□ D-filas: número de atributos
□ N-columnas: números de muestras
■ Formato: train_y.csv:
□ 10-filas: etiqueta binaria para cada clase

□ N-columnas: números de muestras

DATA: Test

- Formato: test_x.csv:
 - □ D-filas: número de atributos
 - □ N-columnas: números de muestras
- Formato: test_y.csv:
 - □ 10-filas: etiqueta binaria para cada clases
 - □ N-columnas: números de muestras

FASE 1: Pre-Tuning

- train.py
 - □ Archivos de Salida:
 - costo_softmax.csv. (N-filas por 1-columna)
 - Pesos del Deep Learning (w_dl.npz).

- test.py
 - □ Archivos de Salida:
 - metrica_dl.csv.
 - □ F-scores para cada una de las 10 clases.

Configuración: AE-Apilados

■ param_sae.csv □ Porcentaje de training : 0.80 □ Tasa aprendizaje : 0.1 □ Penalidad de P-inversa : 100 ■ Máximo Iteraciones : 100 □ Número Nodos Oculto AE1 : 400 □ Número Nodos Oculto AE2 : 200 □ Número Nodos Oculto AE3 : 100

Configuración: Softmax

param_softmax.csv

- □ Máximo Iteraciones : 500
- □ Tasa aprendizaje (mu) : 0.1
- □ Penalidad (lambda) : 0.0001

ENTREGA

- Lunes 10/Mayo/2021
 - ☐ Hora: 9:00am
 - □ Lugar : Aula Virtual del curso
- Lenguaje Programación:
 - □ Python version: 3.7.6 window (anaconda)
 - numpy
 - panda

OBSERVACIÓN:

Si un Grupo no Cumple con los requerimientos funcionales y no-funcionales, entonces la nota máxima que obtendrá será igual a 3,5 (tres como a cinco).