Laboratory 2 Parametric models

1. Linear Regression

- ➤ **linear regression** method predicts a real-valued output (label/target) $y \in \mathbb{R}$, given a set of real-valued inputs (features) x_1, x_2, \dots, x_d ;
- \succ the relationship between the independent variables x_1, x_2, \ldots, x_d and the dependent variable y is *linear*;
- > to develop a model for predicting $y \in \mathbb{R}$, we need to obtain a dataset consisting of known outputs for corresponding inputs;
- the dataset is called a training dataset/set, and each row is called example/data point/sample;
- > the linear regression model is expressed as:

$$\hat{y} = w_0 + w_1 \stackrel{feature}{x_1} + \cdots + w_d \stackrel{feature}{x_d}.$$
 \uparrow
predicted bias feature weight feature weight

1. Linear Regression

- the weights determine the influence of each feature on our prediction;
- \triangleright given a dataset, our goal is to choose the weights w_1, w_2, \ldots, w_d and the bias w_0 such that, on average, the predictions \hat{y} made by our model *best fit* the true labels y observed in the data;

Figure 1: Linear regression with d = 1.

> normal equation: $\mathbf{w}^* = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$.

1. Linear Regression

> generate data ($y = 4 + 3x_1 + Gaussian noise$) and compute w^* using normal equation;

 \rightarrow generate predictions using w^* ;

6. Softmax Regression

3. **Prediction**: the class with the highest probability is the output class;

$$\hat{y} = \underset{k}{argmax} \hat{p}_k.$$

training softmax regression involves minimizing a loss function, called the cross entropy loss, that captures the difference between predicted probabilities and the actual class labels;

$$\mathcal{L}(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{q} y_k^{(i)} log \hat{p}_k^{(i)},$$

where *n* denotes the number of examples in the dataset.

6. Softmax Regression

classify the iris flowers into the three classes:

- ➤ multi_class="multinomial"
 → softmax regression;
- ➤ solver="lbfgs" → variant of stochastic gradient descent;
- > ℓ_2 regularization, $C=\frac{1}{\lambda}$;

softmax_reg = LogisticRegression(max_iter=1000, multi_class="multinomial", solver="lbfgs", C=10, random_state=42)
softmax_reg.fit(X_train, y_train)
softmax_reg.score(X_test, y_test)