Module 10: Unsupervised learning (Overview/quizz lecture) TMA4268 Statistical Learning V2023

Stefanie Muff, Department of Mathematical Sciences, NTNU

March 23, 2023

US Arrest Example

##		Murder	${\tt Assault}$	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7

Scales:

- Number of occurrence per 100 000 people
- Percentage

US Arrest Example

	${\tt Murder}$	${\tt Assault}$	${\tt UrbanPop}$	Rape
Alabama	0.0132	0.236	58	0.0212
Alaska	0.0100	0.263	48	0.0445
Arizona	0.0081	0.294	80	0.0310
Arkansas	0.0088	0.190	50	0.0195
${\tt California}$	0.0090	0.276	91	0.0406
Colorado	0.0079	0.204	78	0.0387
		Alabama 0.0132 Alaska 0.0100 Arizona 0.0081	Alabama 0.0132 0.236 Alaska 0.0100 0.263 Arizona 0.0081 0.294 Arkansas 0.0088 0.190 California 0.0090 0.276	Alaska 0.0100 0.263 48 Arizona 0.0081 0.294 80 Arkansas 0.0088 0.190 50 California 0.0090 0.276 91

Scales:

- Number of occurrence per 100 people
- Percentage

Scales:

- Number of occurrence per 100 people
- Percentage

PC loadings vectors $\boldsymbol{\Phi}$

	PC1	PC2	PC3	PC4
Murder	0.0417	-0.0448	0.0799	-0.9949
Assault	0.9952	-0.0588	-0.0676	0.0389
UrbanPop	0.0463	0.9769	-0.2005	-0.0582
Rape	0.0752	0.2007	0.9741	0.0723
	PC1	PC2	PC3	PC4
	PUI	PUZ	PC3	PC4
Murder	0.0000	0.0438	-0.0680	-0.9967
Murder Assault		0.0438 0.9968		
	0.0000	0.0438	-0.0680	-0.9967

The biplot

Example from Compulsory 3, 2020

- We study the decathlon2 dataset from the factoextra package in R, where Athletes' performance during a sporting meeting was recorded.
- We look at 23 athletes and the results from the 10 disciplines in two competitions.

```
##
           100m long_jump shot_put high_jump 400m 110.hurdle discus pole_vault
         11.04
## SEBRLE
                    7.58
                            14.83
                                      2.07 49.81
                                                     14.69 43.75
                                                                       5.02
## BERNARD 11.02
                    7.23
                            14.25 1.92 48.93
                                                     14.99 40.87
                                                                       5.32
## YURKOV 11.34
                    7.09
                            15.19
                                      2.10 50.42
                                                     15.31 46.26
                                                                       4.72
##
          javeline 1500m
## SEBRIE
           63.19 291.7
## BERNARD 62.77 280.1
## YURKOV
            63.44 276.4
```


Scree plot

A graphical description of the **proportion of variance explained** (**PVE**) by a certain number of PCs (see Fig 12.3 from James et al. (2013)):

Proportion of varianced explained (PVE)

Recap: The PVE by PC m is given by

$$\frac{\sum_{i=1}^{m} z_{im}^2}{\sum_{j=1}^{p} \sum_{i=1}^{n} x_{ij}^2}$$

Clustering

- The aim is to find *clusters* or *subgroups*.
- Clustering looks for homogeneous subgroups in the data.

Difference to PCA?

Clustering

- The aim is to find *clusters* or *subgroups*.
- Clustering looks for homogeneous subgroups in the data.

Difference to PCA?

 \rightarrow PCA looks for low-dimensional representation of the data.

K-means vs. hierarchical clustering

See menti.com

K-means clustering

- Fix the number of clusters K.
- Find groups such that the sum of the within-cluster variation is minimized.
- Algorithm?

(Fig 12.8 from course book)

Hierarchical clustering

Bottom-up agglomerative clustering that results in a *dendogram*.

Important in hierarchical clustering

- *Linkage:* Complete, single, average centroid.
- Dissimilarity measure: Euclidian distance, correlation. Other similarity/distance measures? ¹

 $^{^{1}}$ Note: Correlation is actually a similarity measure, not a distance measure. Implication?

Hierarchical clustering – example

Note: The representation on the right is not possible in high-dimensional space (i.e., if we have $X_1, X_2, X_3, ..., X_p$).

$Hierarchical\ clustering-example$

An exam question from 2022:

Pros and cons of clusterization methods / practical issues

References

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical Learning. Vol. 112. Springer.