12.- Exploratory Data Analysis_25_01_listas_espera_v_01

June 10, 2023

#

CU25_Modelo de gestión de Lista de Espera Quirúrgica

Citizenlab Data Science Methodology > II - Data Processing Domain *** > # 12.- EDA - Exploratory Data Analysis Analysis

0.1 Tasks

0.2 File

- Input File: CU_25_09.2_01_lista_espera_completo_clean_v_01.csv
- Output File: No aplica

0.2.1 Encoding

Con la siguiente expresión se evitan problemas con el encoding al ejecutar el notebook. Es posible que deba ser eliminada o adaptada a la máquina en la que se ejecute el código.

```
[57]: Sys.setlocale(category = "LC_ALL", locale = "es_ES.UTF-8")
```

 $\label{eq:collate} $$'LC_COLLATE=es_ES.UTF-8; LC_CTYPE=es_ES.UTF-8; LC_MONETARY=es_ES.UTF-8; LC_NUMERIC=C; LC_TIME=es_ES.UTF-8'$

0.3 Settings

0.3.1 Libraries to use

```
[58]: library(readr)
    library(dplyr)
    library(sf)
    library(tidyr)
    library(ggplot2)
    library(summarytools)
    library(GGally)
    library(nortest)
    library(lubridate)
```

0.3.2 Paths

```
[59]: iPath <- "Data/Input/" oPath <- "Data/Output/"
```

0.4 Data Load

OPCION A: Seleccionar fichero en ventana para mayor comodidad

Data load using the {tcltk} package. Ucomment the line if using this option

```
[60]: # file_data <- tcltk::tk_choose.files(multi = FALSE)
```

OPCION B: Especificar el nombre de archivo

```
[61]: iFile <- "CU_25_09.2_01_lista_espera_completo_clean_v_01.csv"

file_data <- pasteO(iPath, iFile)

if(file.exists(file_data)){
    cat("Se leerán datos del archivo: ", file_data)
} else{
    warning("Cuidado: el archivo no existe.")
}</pre>
```

Se leerán datos del archivo:
Data/Input/CU_25_09.2_01_lista_espera_completo_clean_v_01.csv

Data file to dataframe Usar la función adecuada según el formato de entrada (xlsx, csv, json, ...)

```
[62]: data <- read_csv(file_data)

Rows: 55216 Columns: 46

Column specification
```

```
Delimiter: ","
chr (6): Hospital, Especialidad, nombre_area, Municipio, Clase,
Dependencia
dbl (39): total_pacientes, ano, semana, CODCNH, id_area, cmunicipio,
CAMAS, ...
lgl (1): is_train
```

Use `spec()` to retrieve the full column specification for this data.

Specify the column types or set `show_col_types = FALSE` to quiet this message.

0.5 Data Structure

Estructura de los datos:

[63]: data |> glimpse()

```
Rows: 55,216
Columns: 46
$ Hospital
                     <chr> "HOSPITAL REY JUAN CARLOS",
"HOSPITAL CENTRAL DE LA ...
$ Especialidad
                     <chr> "UROLOGÍA", "ODONTOESTOMATOLOGÍA",
"GINECOLOGÍA", "D...
                     <dbl> 344, 0, 52, 37, 0, 4, 0, 718, 0,
$ total_pacientes
271, 108, 0, 34, 86...
$ ano
                     <dbl> 2021, 2020, 2021, 2021, 2021, 2020,
2021, 2020, 2021...
                    <dbl> 30, 36, 49, 23, 3, 5, 50, 7, 35, 1,
$ semana
42, 10, 21, 33, ...
$ CODCNH
                     <dbl> 281348, 280724, 281292, 281292,
281236, 280724, 2807...
                     <dbl> 8, 7, 11, 11, 11, 7, 3, 6, 1, 2, 2,
$ id_area
8, 11, 11, 1, 3,...
                    <chr> "SUR-OESTE I", "CENTRO-OESTE", "SUR
$ nombre area
II", "SUR II", "...
$ cmunicipio
                     <dbl> 280920, 280796, 280133, 280133,
281610, 280796, 2800...
                     <chr> "MÓSTOLES", "MADRID", "ARANJUEZ",
$ Municipio
"ARANJUEZ", "VALDE...
$ CAMAS
                     <dbl> 382, 475, 98, 98, 182, 475, 507,
613, 269, 1143, 156...
                     <chr> "HOSPITALES GENERALES", "HOSPITALES
$ Clase
GENERALES", "HOS...
$ Dependencia
                     <chr> "SERVICIOS E INSTITUTOS DE SALUD DE
LAS COMUNIDADES ...
$ TAC
                    <dbl> 2, 2, 1, 1, 1, 2, 3, 3, 0, 0, 1, 2,
6, 6, 1, 3, 4, 1...
$ RM
                    <dbl> 3, 2, 1, 1, 2, 2, 2, 3, 0, 0, 0, 2,
5, 5, 1, 2, 4, 1...
                     <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
$ GAM
2, 2, 0, 0, 2, 0...
$ HEM
                     <dbl> 1, 2, 0, 0, 1, 2, 1, 2, 0, 0, 0, 1,
3, 3, 0, 1, 1, 0...
$ ASD
                     <dbl> 2, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 1,
2, 2, 0, 1, 2, 1...
$ ALI
                    <dbl> 1, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0,
3, 3, 0, 2, 2, 0...
                     <dbl> 1, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0,
$ SPECT
3, 3, 0, 0, 0, 0...
                     <dbl> 2, 1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 2,
$ MAMOS
3, 3, 1, 1, 3, 1...
$ DO
                     <dbl> 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,
2, 2, 0, 1, 2, 0...
```

```
$ DIAL
                     <dbl> 20, 24, 13, 13, 17, 24, 28, 31, 0,
0, 0, 28, 43, 43,...
                     <dbl> -3.870412, -3.745529, -3.610795,
$ X
-3.610795, -3.69744...
                     <dbl> 40.33920, 40.38791, 40.05726,
$ Y
40.05726, 40.19884, 40...
$ t3 1
                     <dbl> 42.34715, 45.37878, 42.06149,
42.06149, 42.06149, 45...
                     <dbl> 532487, 511605, 899702, 899702,
$ t1 1
899702, 511605, 3830...
                     <dbl> 0.5122493, 0.5296804, 0.5240445,
$ t2_1
0.5240445, 0.524044...
$ t2_2
                     <dbl> 0.4877507, 0.4703198, 0.4759555,
0.4759555, 0.475955...
$ t4_1
                     <dbl> 0.1659665, 0.1054260, 0.1540793,
0.1540793, 0.154079...
$ t4_2
                     <dbl> 0.6371549, 0.6742432, 0.6753787,
0.6753787, 0.675378...
                     <dbl> 0.1968769, 0.2203341, 0.1705449,
$ t4_3
0.1705449, 0.170544...
$ t5 1
                     <dbl> 0.1137647, 0.1744493, 0.1747059,
0.1747059, 0.174705...
$ t6_1
                     <dbl> 0.1604646, 0.2629599, 0.2641879,
0.2641879, 0.264187...
                     <dbl> 0.05422176, 0.05481008, 0.04898547,
$ t7_1
0.04898547, 0.04...
                     <dbl> 0.04120012, 0.04653221, 0.03679912,
$ t8_1
0.03679912, 0.03...
                     <dbl> 0.3348780, 0.4914365, 0.3346063,
$ t9_1
0.3346063, 0.334606...
                     <dbl> 0.13692541, 0.12170996, 0.15173209,
$ t10_1
0.15173209, 0.15...
$ t11_1
                     <dbl> 0.5072726, 0.4915713, 0.5024130,
0.5024130, 0.502413...
                     <dbl> 0.5849309, 0.5597213, 0.5900028,
$ t12 1
0.5900028, 0.590002...
                     <dbl> 17, 0, 8, 5, 0, 5, 1, 24, 6, 6, 30,
$ capacidad
4, 2, 15, 20, 6,...
                     <dbl> 1447, 1211, 1293, 1501, 1240, 1504,
$ pacientes
1502, 1533, 1463...
                     <dbl> 573, 45, 108, 103, 44, 42, 36,
$ consultas
1119, 34, 466, 220, 6...
$ hospitalizaciones <dbl> 12, 0, 2, 2, 0, 1, 0, 4, 0, 12, 3,
0, 2, 4, 1, 2, 15...
                     <dbl> 54.45, 0.00, 37.96, 23.14, 0.00,
$ Target
6.25, 0.00, 78.20, ...
$ is_train
                     <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE...
```

Muestra de los primeros datos:

[64]:	<pre>data > slice_head(n = 5)</pre>
-------	---

	Hospital	Especialidad
	<chr $>$	<chr></chr>
	HOSPITAL REY JUAN CARLOS	UROLOGÍA
A spec_tbl_df: 5×46	HOSPITAL CENTRAL DE LA DEFENSA GOMEZ ULLA	ODONTOESTOMATOLO
	HOSPITAL UNIVERSITARIO DEL TAJO	GINECOLOGÍA
	HOSPITAL UNIVERSITARIO DEL TAJO	DERMATOLOGÍA
	HOSPITAL UNIVERSITARIO INFANTA ELENA	ODONTOESTOMATOLO

Tamaño de Memoria de los datos

[65]: object.size(data)

20133120 bytes

Structure of non-numerical features

[66]: # Display non-numerical features
data |> select(where(~ !is.numeric(.x))) |> freq()

HOSPITAL CENTRAL DE LA CRUZ ROJA SAN JOSE Y SANTA A

HOSPITAL CENTRAL DE LA DEFENSA GOMEZ

HOSPITAL CLINICO SAN CA

HOSPITAL EL ESC

HOSPITAL GENERAL DE VILI

HOSPITAL GENERAL UNIVERSITARIO GREGORIO MAR

HOSPITAL INFANTIL UNIVERSITARIO NIÑO

HOSPITAL RAMON Y

HOSPITAL REY JUAN CA

HOSPITAL UNIVERSITARIO 12 DE OCT

HOSPITAL UNIVERSITARIO DE FUENLAE

HOSPITAL UNIVERSITARIO DE G

HOSPITAL UNIVERSITARIO DE LA PRII

HOSPITAL UNIVERSITARIO DE MOS

HOSPITAL UNIVERSITARIO DE TORI

HOSPITAL UNIVERSITARIO DEL HEI HOSPITAL UNIVERSITARIO DEL SU

HOSPITAL UNIVERSITARIO DEI

HOSPITAL UNIVERSITARIO FUNDACION ALCO

HOSPITAL UNIVERSITARIO FUNDACION JIMENEZ

HOSPITAL UNIVERSITARIO INFANTA CRI

HOSPITAL UNIVERSITARIO INFANTA I

HOSPITAL UNIVERSITARIO INFANTA LE

HOSPITAL UNIVERSITARIO INFANTA

HOSPITAL UNIVERSITARIO I

HOSPITAL UNIVERSITARIO PRINCIPE DE AST

HOSPITAL UNIVERSITARIO PUERTA DE HIERRO MAJADAE

HOSPITAL UNIVERSITARIO SANTA CRI

HOSPITAL UNIVERSITARIO SEVERO C

1. A summarytools: 31×5 of type dbl

_					Freq	% \
	ANGIOLOGÍA Y CIRUGÍA VASCULAR					6.25
				A CARDIACA	3451	6.25
	CIRUGÍA GENERA				3451	6.25
	CIRUGÍA ORAL Y MAXILOFACIAL					
			RUGÍA PEDIÁTRICA GENERAL			6.25
	CIRUO	GÍA PL		EPARADORA	3451	6.25
			CIRUGÍ.	A TORÁCICA	3451	6.25
			DER	MATOLOGÍA	3451	6.25
2. A summarytools: 18×5 of type dbl			G	INECOLOGÍA	3451	6.25
			NE	UROCIRUGÍA	3451	6.25
		OD	ONTOESTO	MATOLOGÍA	3451	6.25
			OFT	ALMOLOGÍA	3451	6.25
		OT	ORRINOLAI	RINGOLOGÍA	3451	6.25
		3451	6.25			
		3451	6.25			
				UROLOGÍA	3451	6.25
				<NA $>$	0	NA
				Total	55216	100
		Freq	% Valid	% Valid Cum.	% Tot	al
_	CENTRO-NORTE	7616	13.793103	13.79310	13.793	3103
	CENTRO-OESTE	5712	10.344828	24.13793	10.344	1828
	ESTE	3808	6.896552	31.03448	6.896552	
	NORTE	7616	13.793103	44.82759	13.793	3103
	OESTE	5712	10.344828	55.17241	10.344	
3. A summarytools: 12×5 of type dbl	SUR-ESTE	5712	10.344828	65.51724	10.344	
	SUR-OESTE I	5712	10.344828	75.86207	10.344	
	SUR-OESTE II	3808	6.896552	82.75862	6.8965	
	SUR I	3808	6.896552	89.65517	6.8965	
	SUR II	5712	10.344828	100.00000	10.344	
	<na></na>	0	NA	NA	0.0000	
	Total	55216	100.000000	100.00000	100.00	00000

		Freq	% Valid		% Valid (
	ALCALÁ DE HENARES	1904	3.448276		3.448276
	ALCORCÓN	1904	3.448276	;	6.896552
	ARANJUEZ	1904	3.448276	;	10.344828
	ARGANDA DEL REY	1904	3.448276	;	13.793103
	COLLADO VILLALBA	1904	3.448276	;	17.241379
	COSLADA	1904	3.448276	;	20.689655
	FUENLABRADA	1904	3.448276	;	24.137931
4. A summary tools: 18×5 of type dbl	GETAFE	1904	3.448276	;	27.586207
	LEGANÉS	1904	3.448276	;	31.034483
	MADRID	24752	44.82758	66	75.862069
	MAJADAHONDA 1904 3.448276		;	79.310345	
	MÓSTOLES 3808 6.896552)	86.206897	
	SAN LORENZO DE EL ESCORIAL	1904	3.448276	;	89.655172
	SAN SEBASTIÁN DE LOS REYES 1904 3.448276		;	93.103448	
	TORREJÓN DE ARDOZ	1904	3.448276	;	96.551724
	VALDEMORO	1904	3.448276	;	100.00000
	<na></na>	0	NA		NA
	Total	55216	100.0000	00	100.00000
			Freq	% V	alid 9
-	HOSPITALES ESPECIALIZ	ZADOS	1904	3.44	8276
E A gurramanuta algu E v E aft 31-1	HOSPITALES GENE	RALES	51408	93.1	03448
5. A summarytools: 5×5 of type dbl	OTROS CENTROS CON INTERNAM	IENTO	1904	3.44	8276
		<NA $>$	0	NA	I
		Total	55216	100.	.000000
			1		

MINISTERIO I

6. A summary tools: 5×5 of type dbl

SERVICIOS E INSTITUTOS DE SALUD DE LAS COMUNIDADES A

		Freq	% Valid	% Valid Cum.	% Total	% Total Cun
	FALSE	11046	20.00507	20.00507	20.00507	20.00507
7. A summary tools: 4×5 of type dbl	TRUE	44170	79.99493	100.00000	79.99493	100.00000
	<na></na>	0	NA	NA	0.00000	100.00000
	Total	55216	100.00000	100.00000	100.00000	100.00000

Structure of numerical features

[67]: data |> select(where(is.numeric)) |> descr()

		ALI	ano	ASD	CAMAS
	Mean	7.586207e-01	2.021101e+03	8.965517e-01	4.397241e+
	Std.Dev	1.134278e+00	7.603137e-01	9.227041e-01	3.094683e +
	Min	0.000000e+00	2.020000e+03	0.000000e+00	9.100000e+
	Q1	0.000000e+00	2.021000e+03	0.000000e+00	1.880000e⊣
	Median	0.000000e+00	2.021000e+03	1.000000e+00	3.820000e +
	Q3	2.0000000e+00	2.022000e+03	1.000000e+00	5.430000e +
A summarytools: 15×39 of type dbl	Max	4.000000e+00	2.022000e+03	3.000000e+00	1.196000e +
A summary tools. 13 × 39 of type dor	MAD	0.000000e+00	1.482600e+00	1.482600e+00	2.876244e +
	IQR	2.0000000e+00	1.000000e+00	1.000000e+00	3.550000e +
	CV	1.495185e+00	3.761879e-04	1.029170e+00	7.037783e-
	Skewness	1.191503e+00	-1.707826e-01	7.328005e-01	1.069584e +
	SE.Skewness	1.042393e-02	1.042393e-02	1.042393e-02	1.042393e-0
	Kurtosis	3.027613e-01	-1.254976e+00	-4.159124e -01	1.613542e-0
	N.Valid	5.521600e+04	5.521600e + 04	5.521600e + 04	5.521600e +
	Pct.Valid	1.000000e+02	1.000000e+02	1.000000e + 02	1.000000e-

0.6 Data Types

Tipo de datos

```
[68]: sapply(data, class)
glimpse(data)
```

Hospital 'character' Especialidad 'character' total_pacientes 'numeric' ano 'numeric' semana 'numeric' CODCNH 'numeric' id_area 'numeric' nombre_area 'character' cmunicipio 'numeric' Municipio 'character' CAMAS 'numeric' Clase 'character' Dependencia 'character' TAC 'numeric' RM 'numeric' GAM 'numeric' HEM 'numeric' ASD 'numeric' ALI 'numeric' SPECT 'numeric' MAMOS 'numeric' DO 'numeric' DIAL 'numeric' X 'numeric' Y 'numeric' t3_1 'numeric' t1_1 'numeric' t2_1 'numeric' t2_2 'numeric' t4_1 'numeric' t4_3 'numeric' t5_1 'numeric' t6_1 'numeric' t7_1 'numeric' t8_1 'numeric' t9_1 'numeric' t10_1 'numeric' t11_1 'numeric' t12_1 'numeric' t12_1 'numeric' Target 'numeric' consultas 'numeric' hospitalizaciones 'numeric' Target 'numeric' is_train 'logical'

```
Rows: 55,216
Columns: 46
$ Hospital
                    <chr> "HOSPITAL REY JUAN CARLOS",
"HOSPITAL CENTRAL DE LA ...
$ Especialidad
                     <chr> "UROLOGÍA", "ODONTOESTOMATOLOGÍA",
"GINECOLOGÍA", "D...
$ total_pacientes
                     <dbl> 344, 0, 52, 37, 0, 4, 0, 718, 0,
271, 108, 0, 34, 86...
                    <dbl> 2021, 2020, 2021, 2021, 2021, 2020,
$ ano
2021, 2020, 2021...
                    <dbl> 30, 36, 49, 23, 3, 5, 50, 7, 35, 1,
$ semana
42, 10, 21, 33, ...
                     <dbl> 281348, 280724, 281292, 281292,
$ CODCNH
281236, 280724, 2807...
```

```
<dbl> 8, 7, 11, 11, 11, 7, 3, 6, 1, 2, 2,
$ id_area
8, 11, 11, 1, 3,...
                     <chr> "SUR-OESTE I", "CENTRO-OESTE", "SUR
$ nombre_area
II", "SUR II", "...
                     <dbl> 280920, 280796, 280133, 280133,
$ cmunicipio
281610, 280796, 2800...
$ Municipio
                     <chr> "MÓSTOLES", "MADRID", "ARANJUEZ",
"ARANJUEZ", "VALDE...
                     <dbl> 382, 475, 98, 98, 182, 475, 507,
$ CAMAS
613, 269, 1143, 156...
                     <chr> "HOSPITALES GENERALES", "HOSPITALES
$ Clase
GENERALES", "HOS...
                     <chr> "SERVICIOS E INSTITUTOS DE SALUD DE
$ Dependencia
LAS COMUNIDADES ...
$ TAC
                     <dbl> 2, 2, 1, 1, 1, 2, 3, 3, 0, 0, 1, 2,
6, 6, 1, 3, 4, 1...
$ RM
                     <dbl> 3, 2, 1, 1, 2, 2, 2, 3, 0, 0, 0, 2,
5, 5, 1, 2, 4, 1...
$ GAM
                     <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
2, 2, 0, 0, 2, 0...
$ HEM
                     <dbl> 1, 2, 0, 0, 1, 2, 1, 2, 0, 0, 0, 1,
3, 3, 0, 1, 1, 0...
$ ASD
                     <dbl> 2, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 1,
2, 2, 0, 1, 2, 1...
$ ALI
                     <dbl> 1, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0,
3, 3, 0, 2, 2, 0...
                     <dbl> 1, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0,
$ SPECT
3, 3, 0, 0, 0, 0...
$ MAMOS
                     <dbl> 2, 1, 1, 1, 1, 1, 2, 2, 0, 0, 1, 2,
3, 3, 1, 1, 3, 1...
                     <dbl> 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1,
$ DO
2, 2, 0, 1, 2, 0...
$ DIAL
                     <dbl> 20, 24, 13, 13, 17, 24, 28, 31, 0,
0, 0, 28, 43, 43,...
                     <dbl> -3.870412, -3.745529, -3.610795,
$ X
-3.610795, -3.69744...
$ Y
                     <dbl> 40.33920, 40.38791, 40.05726,
40.05726, 40.19884, 40...
                     <dbl> 42.34715, 45.37878, 42.06149,
$ t3_1
42.06149, 42.06149, 45...
                     <dbl> 532487, 511605, 899702, 899702,
$ t1_1
899702, 511605, 3830...
                     <dbl> 0.5122493, 0.5296804, 0.5240445,
$ t2_1
0.5240445, 0.524044...
                     <dbl> 0.4877507, 0.4703198, 0.4759555,
$ t2_2
0.4759555, 0.475955...
$ t4_1
                     <dbl> 0.1659665, 0.1054260, 0.1540793,
0.1540793, 0.154079...
```

```
$ t4_2
                     <dbl> 0.6371549, 0.6742432, 0.6753787,
0.6753787, 0.675378...
$ t4_3
                     <dbl> 0.1968769, 0.2203341, 0.1705449,
0.1705449, 0.170544...
                     <dbl> 0.1137647, 0.1744493, 0.1747059,
$ t5 1
0.1747059, 0.174705...
$ t6 1
                     <dbl> 0.1604646, 0.2629599, 0.2641879,
0.2641879, 0.264187...
                     <dbl> 0.05422176, 0.05481008, 0.04898547,
$ t7 1
0.04898547, 0.04...
                     <dbl> 0.04120012, 0.04653221, 0.03679912,
$ t8_1
0.03679912, 0.03...
                     <dbl> 0.3348780, 0.4914365, 0.3346063,
$ t9_1
0.3346063, 0.334606...
$ t10_1
                     <dbl> 0.13692541, 0.12170996, 0.15173209,
0.15173209, 0.15...
$ t11_1
                     <dbl> 0.5072726, 0.4915713, 0.5024130,
0.5024130, 0.502413...
$ t12 1
                     <dbl> 0.5849309, 0.5597213, 0.5900028,
0.5900028, 0.590002...
$ capacidad
                     <dbl> 17, 0, 8, 5, 0, 5, 1, 24, 6, 6, 30,
4, 2, 15, 20, 6,...
$ pacientes
                     <dbl> 1447, 1211, 1293, 1501, 1240, 1504,
1502, 1533, 1463...
$ consultas
                     <dbl> 573, 45, 108, 103, 44, 42, 36,
1119, 34, 466, 220, 6...
$ hospitalizaciones <dbl> 12, 0, 2, 2, 0, 1, 0, 4, 0, 12, 3,
0, 2, 4, 1, 2, 15...
                     <dbl> 54.45, 0.00, 37.96, 23.14, 0.00,
$ Target
6.25, 0.00, 78.20, ...
$ is_train
                     <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,
TRUE, TRUE, TRUE...
```

0.7 Statistical Measures

[69]: data |> descr()

		ALI	ano	ASD	CAMAS
	Mean	7.586207e-01	2.021101e+03	8.965517e-01	4.397241e+
	Std.Dev	1.134278e + 00	7.603137e-01	9.227041e-01	3.094683e +
	Min	0.000000e+00	2.020000e+03	0.000000e+00	9.100000e+
	Q1	0.000000e+00	2.021000e+03	0.000000e+00	1.880000e+
	Median	0.000000e+00	2.021000e+03	1.000000e+00	3.820000e +
	Q3	2.000000e+00	2.022000e+03	1.000000e+00	5.430000e +
A summarytools: 15×39 of type dbl	Max	4.000000e+00	2.022000e+03	3.000000e+00	1.196000e +
A summary tools. 13 × 39 of type dor	MAD	0.000000e+00	1.482600e+00	1.482600e+00	2.876244e +
	IQR	2.000000e+00	1.000000e+00	1.000000e+00	3.550000e+
	CV	1.495185e+00	3.761879e-04	1.029170e + 00	7.037783e-
	Skewness	1.191503e+00	-1.707826e-01	7.328005 e-01	1.069584e +
	SE.Skewness	1.042393e-02	1.042393e-02	1.042393e-02	1.042393e-0
	Kurtosis	3.027613e-01	-1.254976e+00	-4.159124e -01	1.613542e-0
	N.Valid	5.521600e + 04	5.521600e + 04	$5.521600e{+04}$	5.521600e +
	Pct.Valid	1.0000000e+02	1.000000e+02	1.000000e+02	1.000000e+

0.8 Uniques values

```
[70]: # Rthe number of unique values in each column.
data |> summarise(across(everything(), n_distinct))
```

	Hospital	Especialidad	$total_pacientes$	ano	semana	CODCNH	id_area	nombre_a
A tibble: 1×46	<int $>$	<int $>$	<int $>$	<int $>$	<int $>$	<int $>$	<int $>$	<int $>$
-	29	16	3528	3	51	29	10	10

0.9 CrossTab

Select columns

Hacer los cruces que tengan sentido

```
[71]: data |> select(where(~ !is.numeric(.x))) |> colnames()
Column1 <- "Especialidad"
Column2 <- "Municipio"
```

1. 'Hospital' 2. 'Especialidad' 3. 'nombre_area' 4. 'Municipio' 5. 'Clase' 6. 'Dependencia' 7. 'is train'

Operation

```
[72]: # Referencia cruzada de variables
# Create a contingency table
ctable <- table(data[[Column1]], data[[Column2]])

# Print the contingency table
print(ctable)</pre>
```

ALCALÁ DE HENARES ALCORCÓN ARANJUEZ

ANGIOLOGÍA Y CIRUGÍA VASCULAR		119	119	119
CIRUGÍA CARDIACA		119	119	119
CIRUGÍA GENERAL Y DEL APARATO DIGESTI	<i>1</i> 0	119	119	119
CIRUGÍA ORAL Y MAXILOFACIAL		119	119	119
CIRUGÍA PEDIÁTRICA GENERAL		119	119	119
CIRUGÍA PLÁSTICA Y REPARADORA		119	119	119
CIRUGÍA TORÁCICA		119	119	119
DERMATOLOGÍA		119	119	119
GINECOLOGÍA		119	119	119
NEUROCIRUGÍA		119	119	119
ODONTOESTOMATOLOGÍA		119	119	119
OFTALMOLOGÍA		119	119	119
OTORRINOLARINGOLOGÍA		119	119	119
TOTAL		119	119	119
TRAUMATOLOGÍA		119	119	119
UROLOGÍA		119	119	119
	ARGANDA	DEL REY COL	LADO VII	LLALBA
ANGIOLOGÍA Y CIRUGÍA VASCULAR		119		119
CIRUGÍA CARDIACA		119		119
CIRUGÍA GENERAL Y DEL APARATO DIGESTI	<i>1</i> 0	119		119
CIRUGÍA ORAL Y MAXILOFACIAL		119		119
CIRUGÍA PEDIÁTRICA GENERAL		119		119
CIRUGÍA PLÁSTICA Y REPARADORA		119		119
CIRUGÍA TORÁCICA		119		119
DERMATOLOGÍA		119		119
GINECOLOGÍA		119		119
NEUROCIRUGÍA		119		119
ODONTOESTOMATOLOGÍA		119		119
OFTALMOLOGÍA		119		119
OTORRINOLARINGOLOGÍA		119		119
TOTAL		119		119
TRAUMATOLOGÍA		119		119
UROLOGÍA		119		119
	COSLADA	FUENLABRADA	GETAFE	LEGANÉS
ANGIOLOGÍA Y CIRUGÍA VASCULAR	119	119	119	119
CIRUGÍA CARDIACA	119	119	119	119
CIRUGÍA GENERAL Y DEL APARATO DIGESTI	<i>I</i> 0 119	119	119	119
CIRUGÍA ORAL Y MAXILOFACIAL	119	119	119	119
CIRUGÍA PEDIÁTRICA GENERAL	119	119	119	119
CIRUGÍA PLÁSTICA Y REPARADORA	119	119	119	119
CIRUGÍA TORÁCICA	119	119	119	119
DERMATOLOGÍA	119	119	119	119
GINECOLOGÍA	119	119	119	119
NEUROCIRUGÍA	119	119	119	119
ODONTOESTOMATOLOGÍA	119	119	119	119
OFTALMOLOGÍA	119	119	119	119

OTORRINOLARINGOLOGÍA TOTAL TRAUMATOLOGÍA UROLOGÍA		119 119 119 119	119 119 119 119	119 119 119 119
ANGIOLOGÍA Y CIRUGÍA VASCULAR CIRUGÍA CARDIACA CIRUGÍA GENERAL Y DEL APARATO CIRUGÍA ORAL Y MAXILOFACIAL CIRUGÍA PEDIÁTRICA GENERAL CIRUGÍA PLÁSTICA Y REPARADORA CIRUGÍA TORÁCICA DERMATOLOGÍA GINECOLOGÍA NEUROCIRUGÍA ODONTOESTOMATOLOGÍA OTORRINOLARINGOLOGÍA TOTAL TRAUMATOLOGÍA UROLOGÍA	DIGESTIVO	MADRID MAJAD 1547 1547 1547 1547 1547 1547 1547 1547 1547 1547 1547 1547 1547 1547 1547	DAHONDA MÓS 119 119 119 119 119 119 119 119 119 11	238 238 238 238 238 238 238 238 238 238
ANGIOLOGÍA Y CIRUGÍA VASCULAR CIRUGÍA CARDIACA CIRUGÍA GENERAL Y DEL APARATO CIRUGÍA ORAL Y MAXILOFACIAL CIRUGÍA PEDIÁTRICA GENERAL CIRUGÍA PLÁSTICA Y REPARADORA CIRUGÍA TORÁCICA DERMATOLOGÍA GINECOLOGÍA NEUROCIRUGÍA ODONTOESTOMATOLOGÍA OTORRINOLARINGOLOGÍA TOTAL TRAUMATOLOGÍA UROLOGÍA	DIGESTIVO	SAN LORENZO		
ANGIOLOGÍA Y CIRUGÍA VASCULAR CIRUGÍA CARDIACA CIRUGÍA GENERAL Y DEL APARATO CIRUGÍA ORAL Y MAXILOFACIAL CIRUGÍA PEDIÁTRICA GENERAL CIRUGÍA PLÁSTICA Y REPARADORA	DIGESTIVO	SAN SEBASTIÁ	in de los 1	REYES 119 119 119 119 119 119

CIRUGÍA TORÁCICA			119
DERMATOLOGÍA			119
GINECOLOGÍA			119
NEUROCIRUGÍA			119
ODONTOESTOMATOLOGÍA			119
OFTALMOLOGÍA			119
OTORRINOLARINGOLOGÍA			119
TOTAL			119
TRAUMATOLOGÍA			119
UROLOGÍA			119
	TORREJÓN	DE ARDOZ	VALDEMORO
ANGIOLOGÍA Y CIRUGÍA VASCULAR		119	119
CIRUGÍA CARDIACA		119	
CIRUGÍA GENERAL Y DEL APARATO DIGESTIVO		119	
CIRUGÍA ORAL Y MAXILOFACIAL		119	119
CIRUGÍA PEDIÁTRICA GENERAL		119	119
CIRUGÍA PLÁSTICA Y REPARADORA		119	119
CIRUGÍA TORÁCICA		119	119
DERMATOLOGÍA		119	119
GINECOLOGÍA		119	119
NEUROCIRUGÍA		119	119
ODONTOESTOMATOLOGÍA		119	119
OFTALMOLOGÍA		119	119
OTORRINOLARINGOLOGÍA		119	119

0.10 Analyzing Numerical Variables

0.10.1 Selecting continuous variables

TOTAL

UROLOGÍA

TRAUMATOLOGÍA

```
[73]: # Numeric colums
  cdata <- data |> select(where(is.numeric))
  cdata <- head(cdata, 50)</pre>
```

119

119

119

119

119

119

0.10.2 Global view of the numerical variables

Global view on the dataset to identify some very unusual patterns.

NOTA: Esto puede tardar si hay muchas variables

```
[74]: # pairs(cdata)
# cdata /> ggpairs()
```

0.10.3 Histograms

```
[75]: cdata |>
    pivot_longer(cols = everything()) |>
    ggplot(aes(x = value)) +
    geom_histogram(bins = 10) +
    facet_wrap(~name, scales = "free")
```


0.10.4 Box plot

```
[76]: cdata |>
    pivot_longer(cols = everything()) |>
    ggplot(aes(x = value)) +
    geom_boxplot() +
    facet_wrap(~name, scales = "free")
```


0.10.5 Violin plot

```
[77]: cdata |>
    pivot_longer(cols = everything()) |>
    ggplot(aes(x = "", y = value)) +
    geom_violin() +
    facet_wrap(~name, scales = "free")
```


Х

0.10.6 Distribution plot

```
[78]: cdata |>
    pivot_longer(cols = everything()) |>
    ggplot(aes(x = value)) +
    geom_density() +
    facet_wrap(~name, scales = "free")
```


0.11 Analyzing Categorical Variables

0.11.1 Selecting categorical variables

```
[79]: # Category colums
     char_cols <- data |> select(where(~ !is.numeric(.x))) |> colnames()
     char cols
     1. 'Hospital' 2. 'Especialidad' 3. 'nombre_area' 4. 'Municipio' 5. 'Clase' 6. 'Dependencia'
     7. 'is train'
[80]: # Category colums
     char_data <- data |> select(where(~ !is.numeric(.x)))
     head(char data)
                  Hospital
                                                                     Especialidad
                  <chr>
                                                                     <chr>
                  HOSPITAL REY JUAN CARLOS
                                                                     UROLOGÍA
                  HOSPITAL CENTRAL DE LA DEFENSA GOMEZ ULLA
                                                                     ODONTOESTOMATOLOGÍA
     A tibble: 6 \times 7
                  HOSPITAL UNIVERSITARIO DEL TAJO
                                                                     GINECOLOGÍA
                                                                     DERMATOLOGÍA
                  HOSPITAL UNIVERSITARIO DEL TAJO
                                                                     ODONTOESTOMATOLOGÍA
                  HOSPITAL UNIVERSITARIO INFANTA ELENA
                  HOSPITAL CENTRAL DE LA DEFENSA GOMEZ ULLA CIRUGÍA TORÁCICA
     0.11.2 Visualization of categorical variables
     0.12 Statistical Normality Tests
[81]: cdata_long <- cdata |>
       pivot_longer(cols = everything())
     0.12.1 Test de Shapiro-Wilk
     Si hay muchos datos este no se puede hacer
[82]: tapply(cdata_long$value, cdata_long$name, shapiro.test)
     $ALI
             Shapiro-Wilk normality test
     data: X[[i]]
     W = 0.6947, p-value = 6.657e-09
     $ano
             Shapiro-Wilk normality test
     data: X[[i]]
```

W = 0.78117, p-value = 3.316e-07

\$ASD

Shapiro-Wilk normality test

data: X[[i]]

W = 0.81024, p-value = 1.522e-06

\$CAMAS

Shapiro-Wilk normality test

data: X[[i]]

W = 0.83471, p-value = 6.115e-06

\$capacidad

Shapiro-Wilk normality test

data: X[[i]]

W = 0.55977, p-value = 5.149e-11

\$cmunicipio

Shapiro-Wilk normality test

data: X[[i]]

W = 0.84604, p-value = 1.211e-05

\$CODCNH

Shapiro-Wilk normality test

data: X[[i]]

W = 0.81409, p-value = 1.88e-06

\$consultas

Shapiro-Wilk normality test

W = 0.39785, p-value = 5e-13

\$DIAL

Shapiro-Wilk normality test

data: X[[i]]

W = 0.87571, p-value = 8.314e-05

\$D0

Shapiro-Wilk normality test

data: X[[i]]

W = 0.75776, p-value = 1.06e-07

\$GAM

Shapiro-Wilk normality test

data: X[[i]]

W = 0.5598, p-value = 5.153e-11

\$HEM

Shapiro-Wilk normality test

data: X[[i]]

W = 0.73934, p-value = 4.524e-08

\$hospitalizaciones

Shapiro-Wilk normality test

data: X[[i]]

W = 0.4561, p-value = 2.364e-12

\$id_area

Shapiro-Wilk normality test

```
W = 0.88563, p-value = 0.0001666

$MAMOS

Shapiro-Wilk normality test
data: X[[i]]
W = 0.8455, p-value = 1.171e-05
```

\$pacientes

Shapiro-Wilk normality test

data: X[[i]]
W = 0.98843, p-value = 0.9027

\$RM

Shapiro-Wilk normality test

data: X[[i]]
W = 0.87087, p-value = 5.98e-05

\$semana

Shapiro-Wilk normality test

data: X[[i]]
W = 0.93188, p-value = 0.006515

\$SPECT

Shapiro-Wilk normality test

data: X[[i]]
W = 0.58175, p-value = 1.053e-10

\$t1_1

Shapiro-Wilk normality test

```
W = 0.7821, p-value = 3.476e-07
$t10_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.80572, p-value = 1.19e-06
$t11_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.89374, p-value = 0.0003005
$t12 1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.87254, p-value = 6.694e-05
$t2_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.89198, p-value = 0.0002638
$t2_2
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.89067, p-value = 0.0002398
$t3_1
        Shapiro-Wilk normality test
data: X[[i]]
```

```
W = 0.81175, p-value = 1.653e-06
$t4_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.87105, p-value = 6.054e-05
$t4_2
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.81874, p-value = 2.438e-06
$t4 3
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.75101, p-value = 7.724e-08
$t5_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.83106, p-value = 4.934e-06
$t6_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.79946, p-value = 8.52e-07
$t7_1
        Shapiro-Wilk normality test
```

```
W = 0.81847, p-value = 2.401e-06
$t8_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.86068, p-value = 3.05e-05
$t9_1
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.79704, p-value = 7.497e-07
$TAC
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.82779, p-value = 4.08e-06
$Target
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.87291, p-value = 6.867e-05
$total_pacientes
        Shapiro-Wilk normality test
data: X[[i]]
W = 0.39408, p-value = 4.539e-13
$X
```

Shapiro-Wilk normality test

```
W = 0.89074, p-value = 0.000241
     $Y
             Shapiro-Wilk normality test
     data: X[[i]]
     W = 0.8732, p-value = 7.001e-05
     0.12.2 Test de Anderson-Darling
[83]: tapply(cdata_long$value, cdata_long$name, ad.test)
     $ALI
             Anderson-Darling normality test
     data: X[[i]]
     A = 7.2641, p-value < 2.2e-16
     $ano
             Anderson-Darling normality test
     data: X[[i]]
     A = 5.2013, p-value = 4.857e-13
     $ASD
             Anderson-Darling normality test
     data: X[[i]]
     A = 3.9466, p-value = 5.636e-10
     $CAMAS
             Anderson-Darling normality test
     data: X[[i]]
     A = 2.9171, p-value = 1.928e-07
```

\$capacidad

Anderson-Darling normality test

data: X[[i]]

A = 6.4759, p-value = 3.979e-16

\$cmunicipio

Anderson-Darling normality test

data: X[[i]]

A = 3.9704, p-value = 4.926e-10

\$CODCNH

Anderson-Darling normality test

data: X[[i]]

A = 3.5705, p-value = 4.729e-09

\$consultas

Anderson-Darling normality test

data: X[[i]]

A = 8.9599, p-value < 2.2e-16

\$DIAL

Anderson-Darling normality test

data: X[[i]]

A = 2.0702, p-value = 2.416e-05

\$DO

Anderson-Darling normality test

data: X[[i]]

A = 5.0388, p-value = 1.207e-12

\$GAM

Anderson-Darling normality test

data: X[[i]]

A = 10.381, p-value < 2.2e-16

\$HEM

Anderson-Darling normality test

data: X[[i]]

A = 5.3011, p-value = 2.778e-13

\$hospitalizaciones

Anderson-Darling normality test

data: X[[i]]

A = 9.2752, p-value < 2.2e-16

\$id_area

Anderson-Darling normality test

data: X[[i]]

A = 1.7151, p-value = 0.0001847

\$MAMOS

Anderson-Darling normality test

data: X[[i]]

A = 3.1682, p-value = 4.629e-08

\$pacientes

Anderson-Darling normality test

data: X[[i]]

A = 0.24866, p-value = 0.736

\$RM

Anderson-Darling normality test

data: X[[i]]

A = 2.1257, p-value = 1.76e-05

\$semana

Anderson-Darling normality test

data: X[[i]]

A = 1.0734, p-value = 0.007375

\$SPECT

Anderson-Darling normality test

data: X[[i]]

A = 9.5767, p-value < 2.2e-16

\$t1_1

Anderson-Darling normality test

data: X[[i]]

A = 4.5047, p-value = 2.423e-11

\$t10_1

Anderson-Darling normality test

data: X[[i]]

A = 3.7218, p-value = 2.009e-09

\$t11_1

Anderson-Darling normality test

data: X[[i]]

A = 2.0742, p-value = 2.362e-05

```
$t12_1
```

Anderson-Darling normality test

data: X[[i]]

A = 2.6325, p-value = 9.748e-07

\$t2_1

Anderson-Darling normality test

data: X[[i]]

A = 2.1094, p-value = 1.93e-05

\$t2_2

Anderson-Darling normality test

data: X[[i]]

A = 2.1684, p-value = 1.378e-05

\$t3_1

Anderson-Darling normality test

data: X[[i]]

A = 4.3577, p-value = 5.545e-11

\$t4_1

Anderson-Darling normality test

data: X[[i]]

A = 2.5265, p-value = 1.783e-06

\$t4_2

Anderson-Darling normality test

data: X[[i]]

A = 3.4201, p-value = 1.109e-08

```
$t4_3
```

Anderson-Darling normality test

data: X[[i]]

A = 5.746, p-value = 2.313e-14

\$t5_1

Anderson-Darling normality test

data: X[[i]]

A = 3.179, p-value = 4.354e-08

\$t6_1

Anderson-Darling normality test

data: X[[i]]

A = 4.3746, p-value = 5.043e-11

\$t7_1

Anderson-Darling normality test

data: X[[i]]

A = 2.777, p-value = 4.279e-07

\$t8_1

Anderson-Darling normality test

data: X[[i]]

A = 2.2259, p-value = 9.918e-06

\$t9_1

Anderson-Darling normality test

data: X[[i]]

A = 4.4212, p-value = 3.878e-11

```
$TAC
```

Anderson-Darling normality test

data: X[[i]]

A = 3.2061, p-value = 3.732e-08

\$Target

Anderson-Darling normality test

data: X[[i]]

A = 1.8527, p-value = 8.394e-05

\$total_pacientes

Anderson-Darling normality test

data: X[[i]]

A = 9.069, p-value < 2.2e-16

\$X

Anderson-Darling normality test

data: X[[i]]

A = 2.2919, p-value = 6.805e-06

\$Y

Anderson-Darling normality test

data: X[[i]]

A = 2.4939, p-value = 2.149e-06

0.12.3 Test de Lilliefors

[84]: tapply(cdata_long\$value, cdata_long\$name, lillie.test)

\$ALI

```
data: X[[i]]
D = 0.39463, p-value < 2.2e-16
$ano
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.31023, p-value = 3.047e-13
$ASD
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.26349, p-value = 2.251e-09
$CAMAS
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.18643, p-value = 0.0001573
$capacidad
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.30254, p-value = 1.473e-12
$cmunicipio
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.29784, p-value = 3.776e-12
$CODCNH
```

```
data: X[[i]]
D = 0.22159, p-value = 1.672e-06
$consultas
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.33388, p-value = 1.814e-15
$DIAL
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.216, p-value = 3.66e-06
$D0
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.31212, p-value = 2.052e-13
$GAM
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.45374, p-value < 2.2e-16
$HEM
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.31699, p-value = 7.344e-14
$hospitalizaciones
```

```
data: X[[i]]
D = 0.3286, p-value = 5.905e-15
$id_area
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.15542, p-value = 0.004051
$MAMOS
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.28566, p-value = 4.021e-11
$pacientes
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.070472, p-value = 0.7738
$RM
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.19883, p-value = 3.515e-05
$semana
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.14038, p-value = 0.01516
$SPECT
```

```
data: X[[i]]
D = 0.41928, p-value < 2.2e-16
$t1_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.26015, p-value = 3.997e-09
$t10_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.21451, p-value = 4.49e-06
$t11_1
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.24929, p-value = 2.444e-08
$t12_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.19816, p-value = 3.822e-05
$t2_1
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.23069, p-value = 4.443e-07
$t2_2
        Lilliefors (Kolmogorov-Smirnov) normality test
```

```
data: X[[i]]
D = 0.23397, p-value = 2.714e-07
$t3_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.29141, p-value = 1.335e-11
$t4_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.27134, p-value = 5.644e-10
$t4_2
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.23442, p-value = 2.537e-07
$t4_3
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.36784, p-value < 2.2e-16
$t5_1
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.23353, p-value = 2.902e-07
$t6_1
        Lilliefors (Kolmogorov-Smirnov) normality test
```

```
data: X[[i]]
D = 0.24703, p-value = 3.528e-08
$t7_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.18735, p-value = 0.0001413
$t8_1
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.16408, p-value = 0.001757
$t9_1
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.27338, p-value = 3.91e-10
$TAC
        Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.27597, p-value = 2.441e-10
$Target
       Lilliefors (Kolmogorov-Smirnov) normality test
data: X[[i]]
D = 0.1656, p-value = 0.001508
$total_pacientes
        Lilliefors (Kolmogorov-Smirnov) normality test
```

```
data: X[[i]]
D = 0.33907, p-value = 5.572e-16

$X

Lilliefors (Kolmogorov-Smirnov) normality test

data: X[[i]]
D = 0.20848, p-value = 1.012e-05

$Y

Lilliefors (Kolmogorov-Smirnov) normality test

data: X[[i]]
D = 0.20794, p-value = 1.087e-05
```

0.12.4 QQ-plots

```
[85]: cdata |>
    pivot_longer(cols = everything()) |>
    ggplot(aes(sample = value)) +
    geom_qq() +
    geom_qq_line() +
    facet_wrap(~name, scales = "free")
```


0.13 Bivariate analysis

- Ver gráficos de dispersión y ggpairs arriba
- Completar si es necesario con alguna comparación específica (gráfico de dispersión o boxplot por grupos)

Correlaciones

```
[86]: cor(cdata, use = "pairwise.complete.obs")
```

		total_pacientes	ano	semana	CODCNH i
A matrix: 39×39 of type dbl	total_pacientes	1.000000000	0.015072844	-0.065076294	-0.19430715 -
	ano	0.015072844	1.000000000	-0.255009696	-0.22373644 -
	semana	-0.065076294	-0.255009696	1.000000000	0.14510980
	CODCNH	-0.194307145	-0.223736437	0.145109802	1.00000000 (
	id_area	-0.190014107	-0.044276161	0.039448729	0.07879005 1
	cmunicipio	0.066341035	0.067890616	-0.133486833	-0.15296528 -
	CAMAS	0.336196650	0.164561885	-0.127972906	-0.71776882
	TAC	-0.043785077	0.066061277	0.187626371	-0.36870927
	RM	-0.055798691	-0.019827426	0.195928021	-0.20458234 (
	GAM	0.152550212	0.136150902	0.135751701	-0.49746417 (
	HEM	0.023236887	0.006135085	0.109571988	-0.38746608
	ASD	-0.002672427	-0.054640066	0.021111767	-0.10671986
	ALI	0.031968878	-0.019485107	0.028693289	-0.32913218 (
	SPECT	-0.022068399	0.007208873	0.041894755	-0.24995346 (
	MAMOS	-0.042390016	-0.055456225	0.211114730	-0.16337675 (
	DO	0.016303692	0.030201002	0.099071048	-0.38474474 (
	DIAL	-0.063650366	-0.070978287	0.168172754	-0.08955304 (
	X	0.048355588	0.104575704	0.062253726	0.04710977 -
	Y	0.119979788	0.004305994	0.021592552	-0.34704892 -
	t3_1	0.152258631	-0.052174498	-0.235183527	-0.34086859 -
	t1_1	-0.112392380	0.179771695	0.006105534	0.05857178
	t2_1	0.219547701	0.156825981	-0.313710849	-0.44957026 -
	t2_2	-0.223372482	-0.158352949	0.318242122	0.45854927
	t4_1	-0.096533999	0.052702699	0.201839280	0.31045474
	t4_2	-0.195981379	0.078254485	0.118247162	0.13766028
	t4_3	0.185366766	-0.087210458	-0.235751711	-0.33859704 -
	t5_1	-0.148725821	0.057059643	0.043178830	-0.02231410
	t6_1	-0.132813418	0.077549617	-0.033666347	-0.09199249 (
	t7_1	0.083629261	-0.046867375	-0.085581292	-0.03759493 -
	t8_1	0.128467157	-0.042406216	-0.141597770	-0.13150022 -
	t9_1	0.230535599	-0.016791543	-0.290853292	-0.37662854 -
	t10_1	-0.243382553	0.030782513	0.260240659	0.34470449
	t11_1	0.069703811	0.023692711	0.048837532	0.01829785 -
	t12_1	-0.127024912	0.053516487	0.253982619	0.29170826
	capacidad	0.875322662	-0.061540286	-0.063136237	-0.22826114 -
	pacientes	0.126162282	-0.057162673	0.123566872	-0.24002853 -
	consultas	0.999961634	0.015536770	-0.065936204	-0.19367793 -
	hospitalizaciones	0.794250190	0.044480511	-0.005287760	-0.24455709 -
	Target	0.316682109	-0.062370615	0.014929694	-0.06230871 -

0.14 Regression analysis

0.14.1 Modelo completo regresión lineal simple

```
[87]: modelo <- lm(Target ~ ., data = cdata)
      summary(modelo)
     Call:
     lm(formula = Target ~ ., data = cdata)
     Residuals:
         Min
                   1Q
                       Median
                                   30
                                           Max
     -54.882 -10.576
                      -0.073
                               13.368
                                       50.968
     Coefficients: (8 not defined because of singularities)
                          Estimate Std. Error t value Pr(>|t|)
     (Intercept)
                         9.661e+05 9.511e+05
                                                 1.016
                                                         0.3225
     total_pacientes
                        -9.296e-01
                                    1.227e+00 -0.758
                                                         0.4578
                                    1.401e+01
                                               -2.974
                                                         0.0078 **
     ano
                        -4.167e+01
                        -3.239e-01
                                    5.438e-01
                                                -0.596
                                                         0.5585
     semana
     CODCNH
                         2.016e-01
                                    8.553e-02
                                                 2.357
                                                         0.0293 *
     id area
                        -1.670e+01
                                    6.839e+01
                                               -0.244
                                                         0.8097
     cmunicipio
                         4.052e-02 8.307e-02
                                                 0.488
                                                         0.6313
     CAMAS
                         1.512e-01
                                    1.020e-01
                                                 1.482
                                                         0.1546
     TAC
                                    9.082e+01
                                                 2.219
                         2.015e+02
                                                         0.0389 *
     RM
                         9.319e+00
                                    4.767e+01
                                                 0.196
                                                         0.8471
     GAM
                        -3.268e+01
                                    5.014e+01
                                               -0.652
                                                         0.5224
     HEM
                        -5.000e+01
                                    4.333e+01
                                                -1.154
                                                         0.2628
     ASD
                        -3.217e+01
                                    4.003e+01
                                                -0.804
                                                         0.4316
     ALI
                        -1.632e+02
                                    8.023e+01
                                               -2.034
                                                         0.0561
     SPECT
                         8.931e+01
                                    4.879e+01
                                                 1.830
                                                         0.0829
     MAMOS
                        -6.666e+01
                                    8.683e+01
                                               -0.768
                                                         0.4521
     DO
                         9.177e+01
                                    5.833e+01
                                                 1.573
                                                         0.1322
     DIAL
                        -4.919e+00
                                    4.962e+00
                                               -0.991
                                                         0.3340
     Х
                        -5.747e+02
                                               -0.394
                                    1.460e+03
                                                         0.6983
     Y
                        -1.353e+03
                                    1.033e+03
                                                -1.310
                                                         0.2059
     t3 1
                         1.294e+03
                                    1.867e+03
                                                 0.693
                                                         0.4965
     t1_1
                        -9.413e-04
                                    1.066e-03
                                               -0.883
                                                         0.3884
     t2_1
                        -1.005e+06
                                    1.054e+06
                                               -0.953
                                                         0.3526
     t2_2
                        -9.962e+05
                                    1.040e+06
                                               -0.958
                                                         0.3503
                                    1.346e+05
                         8.624e+04
                                                 0.641
     t4_1
                                                         0.5293
                         5.470e+04
                                    5.955e+04
                                                 0.919
                                                         0.3698
     t4_2
     t4_3
                                NA
                                            NA
                                                    NA
                                                             NA
     t5_1
                        -5.036e+03
                                    1.594e+04
                                                -0.316
                                                         0.7554
     t6_1
                                NA
                                            NA
                                                    NA
                                                             NA
     t7_1
                                NA
                                            NA
                                                    NA
                                                             NA
     t8_1
                                NA
                                            NA
                                                    NA
                                                             NA
```

NA

t9_1

NA

NA

NA

```
t10_1
                         NA
                                    NA
                                            NA
                                                     NA
t11_1
                         NA
                                    NA
                                            NA
                                                    NA
t12_1
                         NA
                                                    NA
                                    NA
                                            NA
capacidad
                 -2.562e+00 1.228e+00 -2.087
                                                0.0506 .
                 -2.050e-02 7.233e-02 -0.283
pacientes
                                                 0.7799
consultas
                  6.627e-01 8.171e-01
                                         0.811
                                                 0.4274
hospitalizaciones 1.388e+00 1.951e+00
                                         0.712
                                                 0.4853
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 36.06 on 19 degrees of freedom

Multiple R-squared: 0.6698, Adjusted R-squared: 0.1484

F-statistic: 1.285 on 30 and 19 DF, p-value: 0.2877

[88]: plot(modelo)

Warning message:

"not plotting observations with leverage one: 25"


```
Warning message in sqrt(crit * p * (1 - hh)/hh):
"NaNs produced"
Warning message in sqrt(crit * p * (1 - hh)/hh):
"NaNs produced"
```


0.14.2 Selección de variables

Puede que dé error por la estructura de los datos, en ese caso dejarlo indicado

```
[89]: modelo2 <- step(modelo, trace = FALSE)
summary(modelo2)</pre>
```

```
Call:
```

```
lm(formula = Target ~ total_pacientes + ano + CODCNH + cmunicipio +
    CAMAS + TAC + HEM + ALI + SPECT + MAMOS + DO + DIAL + Y +
    t3_1 + t1_1 + t2_1 + t2_2 + t4_2 + t5_1 + capacidad + consultas,
    data = cdata)
```

```
Residuals:
   Min
             1Q Median
                             3Q
                                    Max
-55.927 -12.013
                  0.651
                       14.491
                                52.786
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                3.280e+05 8.924e+04
                                       3.676 0.000995 ***
total_pacientes -1.355e+00 8.522e-01
                                     -1.590 0.123017
               -3.097e+01 9.899e+00 -3.129 0.004077 **
ano
CODCNH
                1.410e-01 4.840e-02
                                      2.914 0.006946 **
                                       1.216 0.234321
cmunicipio
                3.312e-02 2.725e-02
CAMAS
                7.888e-02 3.240e-02 2.434 0.021552 *
TAC
                1.337e+02 3.937e+01
                                       3.395 0.002069 **
HEM
               -2.572e+01 1.881e+01 -1.368 0.182339
ALI
               -8.843e+01 3.475e+01
                                     -2.545 0.016732 *
                4.331e+01 1.714e+01
                                       2.527 0.017432 *
SPECT
MAMOS
               -5.821e+01 2.144e+01
                                     -2.715 0.011212 *
DO
                5.174e+01 2.590e+01
                                      1.998 0.055568 .
DIAL
               -5.423e+00 2.216e+00
                                     -2.447 0.020951 *
Y
               -5.763e+02 2.097e+02 -2.748 0.010379 *
                                     2.033 0.051637 .
t3 1
                3.877e+01 1.907e+01
               -2.233e-04 9.135e-05 -2.445 0.021044 *
t1_1
t2_1
               -2.965e+05 9.116e+04 -3.253 0.002976 **
               -2.992e+05 9.126e+04 -3.279 0.002786 **
t2_2
t4_2
                9.175e+03 3.320e+03
                                     2.764 0.009984 **
               -6.324e+03 2.166e+03 -2.919 0.006857 **
t5_1
               -2.211e+00 8.354e-01 -2.647 0.013176 *
capacidad
consultas
                9.517e-01 5.695e-01
                                      1.671 0.105850
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 31.7 on 28 degrees of freedom
```

Multiple R-squared: 0.6238, Adjusted R-squared: 0.3417

F-statistic: 2.211 on 21 and 28 DF, p-value: 0.02531

Stationary analysis 0.15

- Si hay una variable fecha, usarla
- Si hay mes, o semana, convertir a fecha

```
[90]: tsdata <- data |>
          mutate(fecha = as.Date(parse_date_time(paste(ano, semana, 1, sep="/"),'Y/W/
       →W')))
```

0.16 Data Save

• No aplica

Identificamos los datos a guardar

```
[]: data_to_save <- data
```

Estructura de nombre de archivos:

- Código del caso de uso, por ejemplo "CU 04"
- Número del proceso que lo genera, por ejemplo "_06".
- Resto del nombre del archivo de entrada
- Extensión del archivo

Ejemplo: "CU_04_06_01_01_zonasgeo.json, primer fichero que se genera en la tarea 01 del proceso 05 (Data Collection) para el caso de uso 04 (vacunas) y que se ha transformado en el proceso 06

Importante mantener los guiones bajos antes de proceso, tarea, archivo y nombre

0.16.1 Proceso 12

```
[]: # caso <- "CU_XX"

# proceso <- '_10'

# tarea <- "_XX"

# archivo <- ""

# proper <- "_xxxxx"

# extension <- ".csv"
```

OPCION A: Uso del paquete "tcltk" para mayor comodidad

- Buscar carpeta, escribir nombre de archivo SIN extensión (se especifica en el código)
- Especificar sufijo2 si es necesario
- Cambiar datos por datos_xx si es necesario

```
[]: # file_save <- pasteO(caso, proceso, tarea, tcltk::tkgetSaveFile(), proper,uextension)

# path_out <- pasteO(oPath, file_save)

# write_csv(data_to_save_xxxxx, path_out)

# cat('File saved as: ')

# path_out
```

OPCION B: Especificar el nombre de archivo

• Los ficheros de salida del proceso van siempre a Data/Output/.

```
[]: # file_save <- pasteO(caso, proceso, tarea, archivo, proper, extension)
# path_out <- pasteO(oPath, file_save)
# write_csv(data_to_save_xxxxx, path_out)

# cat('File saved as: ')
# path_out
```

Copia del fichero a Input Si el archivo se va a usar en otros notebooks, copiar a la carpeta Input

```
[]:  # path_in <- pasteO(iPath, file_save)
# file.copy(path_out, path_in, overwrite = TRUE)
```

0.17 REPORT

A continuación se realizará un informe de las acciones realizadas

0.18 Main Actions Carried Out

• Se ha realizado exploratorio de los datos del caso de uso

0.19 Main Conclusions

• Los datos son adecuados para el caso de uso

0.20 CODE TO DEPLOY (PILOT)

A continuación se incluirá el código que deba ser llevado a despliegue para producción, dado que se entiende efectúa operaciones necesarias sobre los datos en la ejecución del prototipo

Description

• No hay nada que desplegar en el piloto, ya que estos datos son estáticos o en todo caso cambian con muy poca frecuencia, altamente improbable durante el proyecto.

CODE