CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12

Extension 2 Mathematics

Assessment Task 1 2014

Time allowed: I ho	our 40 minutes	
Name:		Teacher: Ms Strilakos
•		· ·

Instructions:

- All questions should be attempted on your own paper.
- Show ALL necessary working in Section 2
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Please write on one side of each sheet of paper only.

	Multiple Choice	Q6	Q7	Total
E3	Choice			
Total	/5	/27	/25	/57

Section 1 - Multiple Choice

For each of the following questions please circle the correct answer:

1. If z is a non-zero complex number, then $\arg z + \arg \bar{z}$ is equal to:

A. $\frac{\pi}{2}$

B. 1

 C, x^2

D. 0

If z = 4 + 3i and w = 1 + i then $\frac{z}{w}$ is equal to:

A. $2 + \frac{3i}{2}$ B. $\frac{7}{2} - \frac{1}{2}i$ C. 3+2i D. $2\sqrt{2} + \frac{i 3\sqrt{2}}{2}$

The Cartesian equation of the locus described by the statement |z| = |z - 2| is: 3.

 $x^2 + y^2 = 4$ B. x = 2 C. x = 1 D. y = 2x

If |w+z|=|w|+|z| for two non-zero complex numbers w and z then the 4. expression for arg z in terms of arg w would be:

A. arg(2w) B. $arg(w^2)$ C. arg(w) D. arg(0)

5. The modulus-argument form of the complex number z = 2i is:

A. $2 \operatorname{cis} \frac{\pi}{2}$ B. $2 \operatorname{cis} \pi$ C. $\sqrt{2} \operatorname{cis} \frac{\pi}{2}$ D. $\sqrt{2} \operatorname{cis} \pi$

END OF SECTION 1

Section 2

Question 6

- a) Find the Cartesian equation of the locus described by
 - i) $z.\bar{z} = 16$
 - ii) |z-2| = |z+3i|
- b) Given z is a complex number such that |z|=1 and $\arg z=\theta$, $\text{where } \frac{\pi}{3} < \theta < \frac{\pi}{2}, \text{ show on an Argand diagram the set of points}$ representing i) z,
 - ii) z^2
 - iii) $1 z^2$.
- c) If x and y are real numbers such that $(x + iy)^2 = 4 + 3i$
 - i) Find real numbers a and b such that $(x iy)^2 = a + bi$ 1
 - ii) Find the two square roots of 4+3i and hence the two square roots of 4-3i.
 - iii) Solve the equation $(z^2 4)^2 + 9 = 0$ for z^2 .
 - iv) Use your results from (i), (ii) and (iii) to solve $(z^2-4)^2+9=0 \ \text{for} \ z.$
- d) Simplify, without the use of a calculator, showing all working: 2

$$\frac{\left(\cos\frac{\pi}{7} - i\sin\frac{\pi}{7}\right)^3}{\left(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}\right)^4}$$

e) If z and w are complex numbers with Im z = 2 and Re w = -1 and z + w = -zw, find z and w.

f) i) If $z_1 = 6 + 8i$ and $|z_2| = 6$

find the greatest and least values of $|z_1 + z_2|$

- ii) If $|z_1 + z_2|$ takes its greatest value, then write z_2 in the form x + iy, 3 where x and y are real.
- g) OABC is a rhombus as shown in the diagram below, with \overrightarrow{OA} representing z_1 and \overrightarrow{OC} representing $z_2=4i$.

If $\arg z_1 = \frac{\pi}{6}$, find in x + iy form the number representing:

- i) \overrightarrow{OA}
- ii) \overrightarrow{OB}
- iii) \overrightarrow{CA}
- iv) z_1 after dilation by a factor of 3 followed by an anticlockwise 2 rotation through an angle of $\frac{\pi}{6}$ radians.

Question 7

a) If $w^3 = 1$, $w \ne 1$ show that $1 + w^n + w^{2n}$ is equal to either 3 or zero. 3 Clearly state the conditions on n in both cases.

(you do not need to use Proof by Induction to show this clearly)

2

b) i) Find the three cubic roots of 8

ii) If $z_1^3 = 8$ and $z_1 = \frac{z_2}{1 - z_2}$, using your answer to part (i) 3

find the three roots of z_2 .

c) Find the Cartesian equation of the locus of the point P(x, y) where P 3 represents the complex number z = x + iy, given:

$$\arg(z-3) = \frac{2\pi}{3} + \arg z$$

- d) Find all the complex numbers z=a+ib, where a and b are real, 3 such that $|z|^2+5\bar{z}+10i=0$
- e) (i) Show that the Cartesian equation of the locus of a point P, 2 representing the complex number z, where |z-1|=|z-3i| is x-3y+4=0
 - (ii) Sketch this locus on an Argand diagram and find z when |z| 3 has its least value on this locus.
- f) (i) Given that $z = cos\theta + i sin \theta$, using De Moivre's Theorem, 3 show that $cos 5\theta = cos\theta (5 20cos^2 \theta + 16cos^4 \theta)$
 - (ii) Hence find the general solutions of the equation $\cos 5\theta = 16\cos^5\theta$

You may find the following general expansion useful:

$$(x+a)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}a + \binom{n}{2}x^{n-2}a^2 + \binom{n}{3}x^{n-3}a^3 \dots \binom{n}{n}a^n$$

END OF PAPER

when I

1.2.
$$\frac{2}{1} = \frac{4+3i}{1+i}$$
 x 1-i

8

Mesting 6

2 - 2 2 - 2 2 8- x+-= ha

SECTION 2 Q.6 (C) 1) If $(x+ty)^2 = 4+3i$

then
$$(x-iy)^2 = 4-3i$$
 (1) number $(x+iy)^2 = x^2 - y^2 + 2xyi$

x and y are real.

ond
$$(x-iy)^{-1} = x^{-1}y^{+2}$$
 and $(x-iy)^{-1} = x^{-1}y^{-1} - 23yi$

$$(x+iy)^{2} = 1 + 3i$$

 $x^{2}-y^{2} + \lambda xyi = 1 + 3i$

Substitute @ who
$$\oplus$$
 $\chi^2-9=4$

x = ± 3/2 2

If
$$x = 3\sqrt{2}$$
, $y = \frac{3\sqrt{2}}{2\sqrt{3}\sqrt{2}} = \frac{12}{2}$

Thus the two square rook of 4+3i are
$$\frac{312}{2} + 12$$
 if and $\frac{312}{2}$. Since, for 4-3i, $x^2 - y^2 = t$ and $y = -\frac{3}{2x}$, the show square rook of 4-3i are $\frac{312}{2} + \frac{1}{2}$ and $\frac{332}{2} + \frac{1}{2}$

$$\left(\frac{\partial \sigma}{\partial \sigma} \frac{\pi}{T} - i \sin \frac{\pi}{T} \right)^{3} = \left(\frac{\partial \sigma}{\partial \sigma} \right)^{3}$$

$$\left(\frac{\partial \sigma}{\partial \sigma} \frac{\pi}{T} + i \sin \frac{\pi}{T} \right)^{4} = \left(\frac{\partial \sigma}{\partial \sigma} \right)^{4}$$

$$= \frac{\left(\cos\left(\frac{\pi}{7}\right) + i\sin\left(\frac{\pi}{7}\right)\right)^{3}}{\left(\cos\frac{\pi}{7} + i\sin\frac{\pi}{7}\right)^{4}}$$

$$(665(-17)+1.584(-11))^{-1}=-1$$

$$-\lambda = -(x+\lambda i)(-1+yi)$$

bquating teel and unaginage pasts: R== 16+24 1.6 y=

alo e) continued

ii)
$$| \uparrow | z_1 + z_2 | = | b | \psi$$
 ocum when $\equiv 0$ and z_2 are parallely

$$\chi_{\lambda} = \frac{3}{5} \left(6+8i \right) = \frac{8}{5} + 24 = 1$$

$$\hat{c}$$

iv)
$$3 z_1 \times (\omega \mathcal{E} + i \sin \mathcal{E})$$

= $3 (213 + 2i) (\frac{13}{2} + \frac{1}{2})$

3

Weshin 7

$$\omega^3-1=(\omega-1)(\omega^2+\omega\omega+1)=0$$

Since $\omega\neq 1$, we may conclude that $\omega^2+\omega+1=0$
 $1+\omega+\omega^2=0$ $\omega^2+\omega^2+\omega^2$

$$0.0^3 = 1$$
; $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$. $0.7 + 1$.

1+10+102" = 3

$$n=3$$
 $1+\omega^3+\omega^6=1+1+1=3$
 $n=\psi$ $1+\omega^4+\omega^8=1+\omega+\omega^{*2}=0$

$$0 = C_1 + C_2 + C_1 = C_1 + C_2 + C_3 + C_4 = C_4 + C_4 + C_4 + C_4 + C_5 +$$

angle at curumference Subtends an obtuse NOTE: Mayor and

"Courte must be below x-axis

$$z_{b} = 2 \cos \frac{2\pi}{3} \qquad z_{c} = 3 \sin \frac{2\pi}{3}$$

$$= 2 \left(-\frac{1}{2} + \frac{13}{2} t \right) = 2 \left(-\frac{1}{2} - \frac{13}{2} t \right)$$

$$= -\frac{1}{4} + \frac{13}{13} t = \frac{1}{4} +$$

$$\xi_1 - \xi_1 \xi_2 = \xi_2$$

 $\xi_2 \left([+\xi_1] \right) = \xi_1$ 0° $\xi_2 = \frac{\xi_1}{[+2]}$

差 = 火一山.

(S)

Sulost.
$$y=z$$
 with 0 yields $x^2+b+5x=0$ $(x+b)(x+1)=0$ or $x=-b,4$.

$$-2x + \log_{10} - 8 = 0$$
 16. $x - 3y + 4 = 0$ as required. $3y = x + 4$

Z=COO+ISmB (-(-

= con 50 - 10 con 30 sin 10 + 5 con 0-sin 40 & Cost + ism 50

(P)

Egusting head and imaginary parts:

CB 50 = CB 50 - 10 cB 30 SW70 + 5 CB SWHO

1.
$$(50.50) = (50.50) - 10(50) = (1-(50.50)) + 5(50.50$$

Either cos $\theta = 0$ or $\cos^2 \theta = \frac{1}{4}$ cos $\theta = \pm \frac{1}{2}$.

je 5000 (1-4 cm20)=0.

 $\theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}...$ $= \frac{n\pi}{2}, n = \pm 1, \pm 3, ...$

or ±(nm+变)

D=#3,243,557,743.

//z`