Artificial Intelligence Introduction to Logic

Outline

- 1. Introduction to logic
 - Basic concepts of knowledge, logic, reasoning
 - Propositional logic: syntax and semantics
- 2. Propositional logic: inference
- 3. Agents using propositional logic
- 4. First-order logic

Knowledge Representation

Intended role of knowledge representation in AI is to reduce problems of intelligent action to search problems. -- Ginsberg, 1993

An Analogy between AI Problems and Programming

Programming

- 1. Devise an algorithm to solve the problem
- 2. Select a programming language in which the algorithm can be encoded
- 3. Capture the algorithm in a program
- 4. Run the program

Artificial Intelligence

- 1. Identify the knowledge needed to solve the problem
- 2. Select a language in which the knowledge can be represented
- 3. Write down the knowledge in the language
- 4. Use the consequences of the knowledge to solve the problem

It is the final step that usually involves search

Simple Reflex Agent

Condition	Action
[A,Clean]	Right
[A,Dirty]	Suck
[B,Clean]	Left
[B,Dirty]	Suck

Simple Reflex Agent and Knowledge-Based Agent

■ Recall the simple reflex agent

| loop forever | Input percepts | state ← Update-State(state, percept) | rule ← Rule-Match(state, rules) | action ← Rule-Action[rule] | Output action | state ← Update-State(state, action) | end

A knowledge-based agent represents the state of the world using a set of sentences called a knowledge base.

loop forever
Input percepts $KB \leftarrow \text{tell}(KB, \text{make-sentence}(percept))$ $action \leftarrow \text{ask}(KB, action-query})$ Output action $KB \leftarrow \text{tell}(KB, \text{make-sentence}(action))$ end

At each time instant, whatever the agent currently perceived is stated as a sentence, e.g. "I am hungry".

Knowledge Representation and Inference

 The knowledge representation language provides a declarative representation of realworld objects and their relationships

- Fundamental Requirements
 - The "ask" operation should give an answer that **follows** from the knowledge base (i.e., what has been told)
 - It is the inference mechanism that determines what follows from the knowledge base

Knowledge Representation and Inference

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know (or have it Learn the knowledge)
 - Then it can Ask itself what to do—answers should follow from the KB
- For Example:
 - Tell: Father of Dipak is Ramesh
 - Tell: Jyoti is Dipak sister
 - Tell: Dipak father is the same as Jyoti sister father
 - Ask: Who is Jyoti father?

Knowledge Base

Inference Engine

Knowledge Representation

- Knowledge Representation Techniques
 - Logical Calculus
 - Production Rule Systems
 - Structured Models

Logical Calculus

- The goal is find a way to
 - State knowledge explicitly
 - Draw conclusions from the stated knowledge

Logic

- A "logic" is a mathematical notation (a language) for stating knowledge
- The main alternative to logic is "natural language" i.e., English, Marathi, etc.
- As in natural language the fundamental unit is a "sentence" (or a statement)
- Syntax and Semantics
- Logical inference

Logic

- Logic is defined by:
 - A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
 - A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
 - The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation V

: sentence × interpretation → {True , False }

Propositional Logic

- Knowledge representation in logical and mathematical form.
- Proposition is a declarative statement which is either true or false.
 - It is Al course (T)
 - The Sun rises from West (F)
 - 3+3= 7 (F)
 - 5 is a prime number (T)
 - It is raining today (T/F)

- Are you going out somewhere?
- **2+3**
- x + 5 = 3
- She is very talented

- Proposition: {Op, Σ, Value}
 - Operator : Op= $\{\neg, \land, \lor, \Rightarrow, \Leftrightarrow, (,)\}$
 - Set of symbols/variable/atom/formulas/sentence: $\Sigma = \{A, B, ...\}$.
 - Truth Value: V = {t, f}

Syntax

```
Sentence \rightarrow AtomicSentence \mid ComplexSentence
 AtomicSentence \rightarrow True \mid False \mid P \mid Q \mid R \mid \dots
ComplexSentence \rightarrow (Sentence) \mid [Sentence]
                            \neg Sentence
                            Sentence \wedge Sentence
                            Sentence \lor Sentence
                            Sentence \Rightarrow Sentence
                            Sentence \Leftrightarrow Sentence
```

OPERATOR PRECEDENCE : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

Syntax

- Sentences in the propositional logic:
 - Atomic sentences (or formulas):
 - Constructed from constants $\{t, f\}$ and propositional symbols Σ
 - True, False are (atomic) sentences
 - All proposition symbols $a \in \Sigma$, are (atomic) sentence.
 - "Light in the room is on," "It rains outside" are (atomic) sentences
 - Composite sentences (or formulas):
 - Constructed from valid sentences via connectives
 - If A, B are sentences then
 - \blacksquare ¬ A, (A ∧ B), (A ∨ B), (A \Rightarrow B), (A \Leftrightarrow B), (A ∨ B) ∧ (A ∨ ¬ B)

Syntax

Name	Symbol	Meaning	Illustration
Affirmation	f	f	f
Negation	$\neg f$	not f	f
Conjunction	$f \wedge g$	f and g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Disjunction	$f \lor g$	f or g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Implication	$f \rightarrow g$	if f then g	f g
Biconditional	$f \longleftrightarrow g$	f, that is to say g	f g

Semantics

- The semantics of propositional calculus is defined below.
 - Interpretation:
 - A mapping function $V: \Sigma \to \{t, f\}$, depending on whether the symbol is satisfied in the world
 - Assigns a truth value to every proposition variable.
 - Example: consider the two interpretation I_1 and I_2

Interpretation

- Suppose there are three sentence
 - Al_is_fun
 - you_like_Al
 - you_are_happy

- *Interpretation I*₁:
 - $V(AI_is_fun, I_1) = true$
 - $V(you_like_AI, I_1) = false$
 - $V(you_are_happy, I_1) = true$

- AI_{is} fun in I_1 \Rightarrow true
- $\neg Al_is_fun in I_1$ $\Rightarrow false$
- $you_like_Al in I_1$ $\Rightarrow false$
- $\neg you_like_Al in I_1$ $\Rightarrow true$
- $AI_{is}_{fun} \lor you_{like}_{AI} in I_{1}$ $\Rightarrow true$
- $you_like_AI \rightarrow AI_is_fun in I_1$ $\Rightarrow true$
- $AI_{is}_{fun} \rightarrow you_{like}_{AI} \text{ in } I_1$ $\Rightarrow false$
- $you_like_Al \land you_are_happy \rightarrow Al_is_fun \Rightarrow true$ in l_1

Interpretation

- Suppose there are three sentence
 - Al_is_fun
 - you_like_Al
 - you_are_happy

- *Interpretation I₂:*
 - $V(AI_is_fun, I_2) = false$
 - $V(you_like_AI, I_2) = false$
 - $V(you_are_happy, I_2) = false$

- $AI_is_fun in I_2$ $\Rightarrow false$
- $\neg Al_{is}_{fun in l_2}$ $\Rightarrow true$
- $you_like_Al in I_2$ $\Rightarrow false$
- $\neg you_like_Al in I_2$ $\Rightarrow true$
- $AI_is_fun \lor you_like_Al in I_2$ $\Rightarrow false$
- $you_like_AI \rightarrow AI_is_fun in I_2$ $\Rightarrow true$
- $Al_is_fun \rightarrow you_like_Alin_l$ $\Rightarrow true$
- you_like_Al ∧ you_are_happy → Al_is_fun ⇒ true in l₂

Semantics

- For complex sentences
 - Determined using the standard rules of logic
 - Rows define all possible interpretations (worlds)

	P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
fa	lse	false	true	false	false	true	true
fa	lse	true	true	false	true	true	false
tr	ue	false	false	false	true	false	false
tr	ue	true	false	true	true	true	true

Example

Given a sentence

"If the humidity is high and the temperature is high, then one does not feel comfortable"

Propositional Calculus:

• "Humidity is high" \wedge "Temperature is high" \Rightarrow ~ "One feels comfortable".

Example

Given a sentence

"If the humidity is high and the temperature is high, then one does not feel comfortable"

We have the following sentences:

■ P: "Humidity is high"

Q: "Temperature is high"

■ R: "One feels comfortable"

■ Represented by: $((P \land Q) \Rightarrow (^{\sim}R))$

In which interpretation sentence is false

Р	Q	R	$P \wedge Q$	~R	$P \wedge Q \rightarrow \sim R$
Т	Т	Т	Т	H	F
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	Т
Т	F	F	F	Т	Т
F	Т	Т	F	F	Т
F	Т	F	F	Т	Т
F	F	Т	F	F	Т
F	F	F	F	Т	Т

Properties: Logical equivalence

 Two propositions are said to be logically equivalent if and only if the columns in the truth table are identical to each other.

Definition of \wedge	Idempotent Laws	DeMorgan's Laws	Distributive Laws
$P \land \neg P \equiv False$	$p \lor p \equiv p$	$\neg (p \land q) \equiv \neg p \lor \neg q$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
$P \wedge False \equiv False$	$p \wedge p \equiv p$	$\neg (p \lor q) \equiv \neg p \land \neg q$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
$P \wedge True \equiv P$			
Definition of \vee	Double Negation	Absorption Laws	Associative Laws
$P \vee \neg P \equiv True$	$\neg(\neg p) \equiv p$	$p \lor (p \land q) \equiv p$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
$P \vee False \equiv P$		$p \wedge (p \vee q) \equiv p$	$(p \land q) \land r \equiv p \land (q \land r)$
$P \vee True \equiv True$			
	Commutative Laws	Implication Laws	Biconditional Laws
	$p \vee q \equiv q \vee p$	$p o q \equiv eg p ee q$	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
	$p \wedge q \equiv q \wedge p$	$p \to q \equiv \neg q \to \neg p$	$p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

Properties

- A proposition sentence:
 - Valid / Tautology iff sentence is true under every interpretation, e.g., (P V ¬ P)
 - Invalid / Contradiction iff sentence is false under every interpretation, e.g., $(P \land \neg P)$
 - Consistent / Satisfiable iff sentence is true under at least one interpretation
 - Inconsistent / Unsatisfiable iff sentence is not made true under any interpretation

Interpretations and Models

- Every interpretation that satisfies a sentence is called a model of the sentence.
- A sentence is *satisfiable* if it has a model
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is *valid* if it is True in all interpretations
 - i.e., if its negation is not satisfiable (leads to contradiction)

Р	Q	P∨Q	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
Т	Т	Т	F	Т
Т	Т	Т	Т	Т
Т	F	Т	F	Т
T	F	F	F	Т

Knowledge Base

- A knowledge base (KB) is a set of propositions that the agent is given as being true. An element of the knowledge base is an axiom.
- A model of a set of propositions is an interpretation in which all the propositions are true.
- **■** Example KB: {A ∨ C, B ∨ ¬C}
- $KB = (A \lor C) \land (B \lor \neg C)$

Α	В	С	A ∨ C	В∨¬С	КВ
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	T	F	F
T	F	F	T	T	T
F	T	T	T	T	T
F	T	F	F	T	F
F	F	T	T	F	F
F	F	F	F	T	F

Propositional Inference: Entailment

- Given:
 - **KB** = set of propositional sentences
 - α = a propositional sentence / Query / Ask question
- Entailment: $KB = \alpha$ (read as "KB entails α " or " α logically follows from KB")
 - iff α is true in every model of **KB**

OR

• iff every interpretation that makes all sentences in KB true makes α also true.

OR

• iff every model of KB is also a model of α

Propositional Inference: Entailment

Given:

- **KB** = set of propositional sentences = $\{A \lor C, B \lor \neg C\}$
- α = a propositional sentence = A \vee B
- Entailment: $KB = \alpha$

That is, no interpretation exists in which **KB** is true and α is false.

Α	В	С	A∨C	В∨¬С	КВ	α
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	F	F	T
T	F	F	T	T	T	T
F	T	T	T	T	T	T
F	T	F	F	T	F	T
F	F	T	T	F	F	F
F	F	F	F	T	F	F

Model

- Semantics in Logic is in terms of Models: formally structured worlds with respect to which truth can be evaluated
 - A model *m* denotes an assignment of binary weights to propositional symbols.

- If a Sentence α is true in model m
 - m satisfies α (m is model of α)
 - $M(\alpha)$: Set of all models of α

Inference and Entailment

Inference and Entailment

Entailment reflects the relation of one fact in the world following from the others according to logic

• Knowledge base **KB** entails sentence α iff α is true in all worlds where **KB** is true

Inference Procedures

- Inference is a process by which conclusions are reached.
 - We want to implement the inference process on a computer !!

$$KB \mid_i \alpha$$

- Sentence α can be inferred/derived/deduct from KB by procedure i
 - *i* derived α from KB
- Algorithmic procedure that manipulate sentences in the input KB to produce α as an output

Inference Procedures Properties

- Soundness: i is sound if whenever $KB = \alpha$, then $KB = \alpha$
 - No wrong inferences but maybe not all true statements can be derived
 - Derives only entailed sentences
- Completeness: i is complete if whenever $KB = \alpha$, then $KB = \alpha$
 - All true sentences can be derived, but maybe some wrong extra ones as well
 - Derive any sentence that is entailed

Α	В	С	A∨C	В∨¬С	КВ	α
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	F	F	T
T	F	F	T	T	T	T
F	T	T	T	T	T	T
F	T	F	F	T	F	T
F	F	T	T	F	F	F
F	F	F	F	T	F	F

Logical Inference Problem Formulation

Given:

- KB = set of propositional sentences
- α = a propositional sentence / Query / Ask question
- Does a KB semantically entail ? KB $= \alpha$?
- Question: Is there a procedure (program) that can decide this problem in a finite number of steps?
- Answer: Yes. Logical inference problem for the propositional logic is decidable.

Inference: proofs

How we design the sound and complete procedure that answers:

$$KB = \alpha$$
 ?

- Method 1: model-checking
 - For every possible world, if KB is true make sure that is α true too
 - OK for propositional logic (finitely many worlds); not easy for first-order logic
- Method 2: theorem-proving
 - Search for a sequence of proof steps (applications of *inference rules*) leading from KB to α
 - E.g., from $P \land (P \Rightarrow Q)$, infer Q by **Modus Ponens**

Inference: Model Checking

- Given:
 - **KB** = set of propositional sentences = $\{A \lor C, B \lor \neg C\}$
 - α = a propositional sentence = A \vee B
- Entailment: $KB = \alpha$

Α	В	С	A∨C	В∨¬С	КВ	α
T	T	T	T	T	T	T
T	T	F	T	T	T	T
T	F	T	T	F	F	T
T	F	F	T	T	T	T
F	T	T	T	T	T	T
F	T	F	F	T	F	T
F	F	T	T	F	F	F
F	F	F	F	T	F	F

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
           \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-True?(KB, model) then return PL-True?(\alpha, model)
      else return true // when KB is false, always return true
  else do
      P \leftarrow \text{First}(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = true\})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
```

- PL-True returns true if the sentence holds within the model
- For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Inference: Model Checking

Problem given:

- KB = set of propositional sentences
- α = a propositional sentence / Query / Ask question
- KB $\neq \alpha$?
 - We need to *check all possible interpretations* for which the KB is true (models of KB) whether α is true for each of them

Truth table:

 Enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Limitation:

The method of truth tables is a very inefficient since we need to evaluate a formula for each of 2ⁿ possible models (interpretations), where n is the number of distinct atoms in the formula.

Inference Rule for Logic

Modus ponens

$$\frac{p \Rightarrow q, \quad p}{q} \quad \leftarrow \quad \text{premise} \\ \leftarrow \quad \text{conclusion}$$

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is sound.
 - We can prove this through the truth table.

p	q	$p \Rightarrow q$	$p \Rightarrow q \wedge p$
T	<i>T</i>	T	T
T	F	F	F
F	T	T	F
F	F	T	F

Rule of Inference

Generating the conclusions from evidence and facts is termed as Inference.

Simplification	Modus Ponens	Modus Tollens	Hypothetical Syllogism	
$p \wedge q$	p	$\neg q$	p o q	
	p o q	p o q	q ightarrow r	
Therefore, p	Therefore, q	Therefore, $\neg p$	Therefore, $p \to r$	
Conjunction	Addition	Resolution	Disjunctive Syllogism	
p	p	$p \lor q$	$p \lor q$	
q		$\neg p \lor r$	$\neg p$	
Therefore, $p \wedge q$	Therefore, $p \lor q$	Therefore, $q \vee r$	Therefore, q	
Universal Instantiation	Universal Generalization	Existential Instantiation	Existential Generalization	
$\forall x P(x)$	P(c)	$\exists x P(x)$	P(c)	
Therefore, $P(c)$	Therefore, $\forall x P(x)$	Therefore, $P(c)$	Therefore, $\exists x P(x)$	

Theorem Proving: Inference Rule

- Checks only entries for which KB is True.
- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

• (MP) Modes Ponens
$$\frac{\alpha \Rightarrow \beta, \quad \alpha}{\beta}$$

(AI) And-Introduction
$$\frac{\alpha_1, \alpha_2, ..., \alpha_n}{\alpha_1 \wedge \alpha_2 \wedge ... \wedge \alpha_n}$$

• (OI) Or-Introduction
$$\dfrac{lpha_{_i}}{lpha_{_1}eelpha_{_2}ee\cdotseelpha_{_n}}$$

• (NE) Negation-Elimination
$$\frac{\neg \neg \alpha}{\alpha}$$

$$\frac{\alpha \vee \beta, \quad \neg \beta \vee \gamma}{\alpha \vee \gamma}$$

$$rac{lpha_{\scriptscriptstyle 1} \wedge lpha_{\scriptscriptstyle 2} \wedge \cdots \wedge lpha_{\scriptscriptstyle n}}{lpha_{\scriptscriptstyle i}}$$

$$\frac{\neg\neg\alpha}{\alpha}$$

$$\frac{\alpha \vee \beta, \quad \neg \beta}{\alpha}$$

Using Inference Rules

- Given: $KB = \{(A \lor B) \Rightarrow C \land (B \lor \neg D)\}, A \land D\}$
- Prove: (B ∨ D) ∧ C
- 1. $(A \vee B) \Rightarrow C \wedge (B \vee \neg D)$
- 2. $A \wedge D$
- 3. $(A \lor B) \Rightarrow C$: Using 1 and AE
- 4. A : Using 2 and AE
- 5. $B \lor \neg D$: Using 1 and AE
- 6. D : Using 2 and AE
- 7. B : Using 5, 6 and UR
- 8. $A \vee B$: Using 4, 7 and OI
- 9. C : Using 3, 8 and MP
- 10. $B \lor D$: Using 6, 7 and OI
- 11. $(B \lor D) \land C$: Using 9, 10 and Al

Note: in each of the steps in the proof we could have applied other rules to derive new sentences, thus the inference problem is really a search problem:

Initial state = KB

Goal state = conclusion to be proved

Operators = ?

- Given: $KG = \{P \land Q, P \Rightarrow R, (Q \land R) \Rightarrow S\}$
- Prove: KG = S
- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \land R) \Rightarrow S$
- 4. P : Using 1 and AE
- 5. R : Using 2, 4 and MP
- 6. Q : Using 1, and AE
- 7. $(Q \land R)$: Using 5, 6 and Al
- 8. S : Using 3, 7 and MP

Logic inferences and search

- To show that sentence holds for a KB
 - we may need to apply a number of sound inference rules
- Problem: many possible rules can be applied in the next step

- This is an instance of a search problem:
- Truth table method (from the search perspective)
 - blind enumeration and checking

Propositional Definite Clauses

- An atomic proposition or atom (or facts) is the same as in propositional calculus.
- A body is an atom or a conjunction of atoms. $a \wedge b$
- A definite clause is either an **atom** a, called an atomic clause, or of the form $a \Rightarrow b$, called a **rule**,
 - where b, the head, is an atom and a is a body.
- A knowledge base is a set of definite clauses.
- If " $a_1 \wedge ... \wedge a_m \Rightarrow b$ " is a definite clause in the knowledge base,
 - each KB $= a_i$, then KB = b.

Bottom-up Proof Procedure: Forward Chaining

```
1: procedure DCDeductionBU(KB)
        Inputs
 2:
            KB: a set of definite clauses
 3:
        Output
 4:
            Set of all atoms that are logical consequences of KB
 5:
        Local
 6:
            C is a set of atoms
 7:
        C := \{\}
        repeat
 9:
            select "h \leftarrow b_1 \land \ldots \land b_m" in KB where b_i \in C for all i, and h \notin C
10:
            C := C \cup \{h\}
11:
        until no more definite clauses can be selected
12:
        return C
13:
If "h \leftarrow b_1 \wedge ... \wedge b_m" is a definite clause in the knowledge base,
each b<sub>i</sub> has been derived,
```

• then **h** can be derived.

KB $a \leftarrow b \wedge c$. $b \leftarrow d \wedge e$. $b \leftarrow g \wedge e$. $c \leftarrow e$. d. $f \leftarrow a \land g$.

 $KB \models a$ {*d*} $\{e,d\}$ $\{c,e,d\}$ $\{b,c,e,d\}$ $\{a,b,c,e,d\}.$

Top-Down Proof Procedure: Backward Chaining

```
1: non-deterministic procedure DCDeductionTD(KB,Query)
       Inputs
 2:
          KB: a set definite clauses
 3:
          Query: a set of atoms to prove
 4:
       Output
 5:
          yes if KB \models Query and the procedure fails otherwise
       Local
 7:
          G is a set of atoms
      G := Query
       repeat
10:
          select an atom a in G
11:
          choose definite clause "a \leftarrow B" in KB with a as head
12:
          replace a with B in G
13:
       until G = \{\}
14:
15:
       return yes
```

KB

$$a \leftarrow b \wedge c$$
.

$$b \leftarrow d \wedge e$$
.

$$b \leftarrow g \wedge e$$
.

$$c \leftarrow e$$
.

d.

e.

$$f \leftarrow a \land g$$
.

 $KB \models a$

$$yes \leftarrow a$$
.

$$yes \leftarrow b \land c$$
.

$$yes \leftarrow d \land e \land c$$
.

$$yes \leftarrow e \land c$$
.

$$yes \leftarrow c$$
.

$$yes \leftarrow e$$
.

$$yes \leftarrow$$
 .

KB

$$P \Rightarrow Q$$

$$L \wedge M \Rightarrow P$$

$$B \wedge L \Rightarrow M$$

$$A \wedge P \Rightarrow L$$

$$A \wedge B \Rightarrow L$$

 \boldsymbol{A}

B

$$KB \models Q$$

Assume the KB with the following rules and facts

• **KB**: $R1: A \wedge B \Rightarrow C$

 $\alpha = E$?

R2: $C \wedge D \Rightarrow E$

R3: $C \land F \Rightarrow G$

F1: A

F2: B

F3: D

Given: KB

- sam_is_happy.
- ai_is_fun.
- worms_live_underground.
- Night_time.
- bird eats apple.
- bird_eats_apple ⇒ apple_is_eaten .
- sam_is_in_room ∧ night_time ⇒ switch_1_is_up.

Prove:

- KB = bird_eats_apple.
- KB = apple_is_eaten.
- KB = switch_1_is_up

- Until we consider computers with perception and the ability to act in the world
- The computer does not know the meaning of the symbols.
- It is the human that gives the symbols meaning.
- All the computer knows about the world is what it is told about the world.

Proof Procedure

- Bottom-Up proof Approach
 - Forword Chaining
- Work forward from KB to query α:
 - Fire any rule whose premises are satisfied in the KB
 - Add its conclusion to the KB, until query α is found
- Data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions

- Top-Down proof Approach
 - Backward Chaining
- Work **backwards** from the query α to **KB**:
 - Check if α is known already, or
 - Prove by BC all premises of some rule concluding α

- Goal-driven, appropriate for problemsolving
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

Sentence transformations

- Propositional logic:
 - A sentence may include connectives: $\neg \lor \land \Rightarrow \Leftrightarrow$
 - A sentence may consist of multiple nested sentences
- Do we need all operators to represent a complex sentence?
 - No. We can rewrite a sentence in PL using an equivalent sentence with just operators
- Is it possible to limit the depth of the sentence structure?
 - Yes. Example: Normal forms.

Normal forms

- Normal forms: This can simplify the inferences.
- Conjunctive normal form (CNF)
 - Conjunction of clauses (clauses include disjunctions of literals)
 - $\blacksquare (A \lor B) \land (\neg A \lor \neg C \lor D)$
- Disjunctive normal form (DNF)
 - Disjunction of terms (terms include conjunction of literals)
 - $\blacksquare (A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$

Conversion to CNF

Given: A \Leftrightarrow (B \vee C)

- 1. Eliminate \Leftrightarrow , replacing $\alpha \Leftrightarrow \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$. $(A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)$
- 2. Eliminate \Rightarrow , replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$. $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$
- 3. Move \neg inwards using **DeMorgan's rules** and **double-negation**: $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$
- 4. Apply **distributivity law** (\land over \lor) and flatten: $(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$

Properties: Logical equivalence

 Two propositions are said to be logically equivalent if and only if the columns in the truth table are identical to each other.

Definition of \wedge	Idempotent Laws	DeMorgan's Laws	Distributive Laws		
$P \land \neg P \equiv False$	$p \lor p \equiv p$	$\neg (p \land q) \equiv \neg p \lor \neg q$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$		
$P \wedge False \equiv False$	$p \wedge p \equiv p$	$\neg (p \lor q) \equiv \neg p \land \neg q$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$		
$P \wedge True \equiv P$					
Definition of \vee	Double Negation	Absorption Laws	Associative Laws		
$P \vee \neg P \equiv True$	$\neg(\neg p) \equiv p$	$p \lor (p \land q) \equiv p$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$		
$P \vee False \equiv P$, ,	$p \wedge (p \vee q) \equiv p$	$(p \land q) \land r \equiv p \land (q \land r)$		
$P \lor True \equiv True$					
	Commutative Laws	Implication Laws	Biconditional Laws		
	$p \vee q \equiv q \vee p$	$p o q \equiv eg p ee q$	$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$		
	$p \wedge q \equiv q \wedge p$	$p \to q \equiv \neg q \to \neg p$	$p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$		

- Given: $\neg(A \Rightarrow B) \lor (C \Rightarrow A)$
 - ¬(¬A ∨ B) ∨ (¬C ∨ A)
 - (A ∧ ¬B) ∨ (¬C ∨ A)
 - (A ∨ ¬C ∨ A) ∧ (¬B ∨ ¬C ∨ A)
 - (A ∨ ¬C) ∧ (¬B ∨ ¬C ∨ A)
- Given: $(P \Rightarrow (Q \Rightarrow R)) \Rightarrow (P \Rightarrow (R \Rightarrow Q))$
 - ¬(¬P ∨ ¬Q ∨ R) ∨ (¬P ∨ ¬R ∨ Q)
 - $\bullet (P \land Q \land \neg R) \lor (\neg P \lor \neg R \lor Q)$
 - $\bullet (P \lor \neg P \lor \neg R \lor Q) \land (Q \lor \neg P \lor \neg R \lor Q) \land (\neg R \lor \neg P \lor \neg R \lor Q)$

Satisfiability (SAT) problem

- Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)
 - $\blacksquare (P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T)$

- It is an instance of a constraint satisfaction problem (CSP):
 - Variables
 - Propositional symbols (P, R, T, S)
 - Values: True, False
 - Constraints
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true

Solving SAT

Methods:

- Backtracking: equivalent to the depth first search
 - Pick the variable, then pick its value (T or F)
 - Continue till all variables are assigned or till the partial assignment makes the sentence False
- Iterative optimization methods:
 - Start from an arbitrary assignment of T, F values to symbols
 - Flip *T*, *F* values for one variable
 - Heuristics: prefer assignments that make more clauses true
 - Walk-SAT, simulated-annealing procedures

Inference problem and satisfiability

- Logical inference problem:
 - For all interpretations for which KB is true α is also true?
- Satisfiability:
 - Is there is some assignment (interpretation) under which a sentence evaluates to true
- Connection:
 - KB = α if and only if (KB $\wedge \neg \alpha$) is unsatisfiable
- Consequences:
 - Inference problem is NP-complete
 - Programs for solving the SAT problem can be used to solve the inference problem

Inferences with the CNF

Is there an inference rule that is sufficient to support all inferences for the KB in the CNF form?

 A rule that seems to fit very well the CNF form is the resolution rule.

Resolution rule

- Resolution rule
- Sound inference rule that works for the KB in the CNF form

• KB
$$A \lor B$$
, $\neg B \lor C$
• α $A \lor C$

Α	В	С	A∨B	¬B ∨ C	КВ	α
T	T	T	T	T	T	T
T	T	F	T	F	F	T
T	F	T	T	T	T	T
T	F	F	T	T	T	T
F	T	T	T	T	T	T
F	T	F	T	F	F	F
F	F	T	F	T	F	T
F	F	F	F	T	F	F

Inferences with the resolution rule

- Resolution rule is sound
- Is it complete?
 - Is it possible to use it such that we start from the KB
 - Then prove the new facts and eventually prove the theorem if it is entailed?
- Not always = incomplete
 - Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences
 - Example: We know: (A ∧ B) We want to show: (A ∨ B)
 - Resolution rule fails to derive it (incomplete ??)

Satisfiability inferences with the resolution rule

Conversion to SAT:

- Proof by contradiction
 - Disproving: (KB $\wedge \neg \alpha$)
 - Proves the entailment Important: $KB = \alpha$

Important

- Resolution rule is sufficient to determine satisfiability/unsatisfiability of (KB \wedge ¬ α)
- For any KB and Query in the CNF
- We say the resolution rule is refutation complete.

Resolution algorithm

• Algorithm:

- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from

(KB $\wedge \neg \alpha$) (in CNF form)

Stop when:

- Contradiction (empty clause) is reached:
 - \blacksquare A,¬A \rightarrow Ø
 - proves entailment.
- No more new sentences can be derived
 - disproves it.

```
function PL-RESOLUTION(KB, \alpha) returns true or false
  inputs: KB, the knowledge base, a sentence in propositional logic
           \alpha, the query, a sentence in propositional logic
  clauses \leftarrow the set of clauses in the CNF representation of KB \land \neg \alpha
  new \leftarrow \{ \}
  loop do
      for each pair of clauses C_i, C_j in clauses do
           resolvents \leftarrow PL-RESOLVE(C_i, C_j)
           if resolvents contains the empty clause then return true
           new \leftarrow new \cup resolvents
      if new \subseteq clauses then return false
       clauses \leftarrow clauses \cup new
```

• KB: $\{(P \land Q), (P \Rightarrow R), [(Q \land R) \Rightarrow S]\}$

Query/Theorem/Sentence: S

Step 1. convert KB to CNF:

- $(P \land Q) \equiv P \land Q$

- KB = P

 $Q \qquad (\neg P \lor R) \qquad (\neg Q \lor \neg R \lor S)$

Step 2. Negate the theorem to prove it via refutation

■ S ---> ¬S

Step 3. Run resolution on the set of clauses

- $Q \qquad (\neg P \lor R) \qquad (\neg Q \lor \neg R \lor S)$

• KB: $\{(P \land Q), (P \Rightarrow R), [(Q \land R) \Rightarrow S]\}$ Theorem/Sentence: S

Knowledge Base:

- 1. The humidity is high or the sky is cloudy.
- 2. If the sky is cloudy, then it will rain.
- 3. If the humidity is high, then it is hot.
- 4. It is not hot.
- Query: It will rain.

Formulate the Problem

CNF

P: Humidity is high

Q: Sky is cloudy

R: It will rain

S: It is hot

1. The humidity is high or the sky is cloudy: PVQ PVQ

2. If the sky is cloudy, then it will rain : $\mathbf{Q} \Rightarrow \mathbf{R}$ $(\neg \mathbf{Q} \lor \mathbf{R})$

3. If the humidity is high, then it is hot: $P \Rightarrow S$ $(\neg P \lor S)$

4. It is not hot: $\neg S$

Resolution

- KB
 - PVQ
 - (¬Q V R)
 - (¬P V S)
 - **■** ¬S
- Query :
 - ¬R

Wumpus World PEAS description

Performance measure

- gold +1000, death -1000
- -1 per step, -10 for using the arrow

Environment

- Squares adjacent to wumpus are smelly
- Squares adjacent to pit are breezy
- Glitter iff gold is in the same square
- Shooting kills wumpus if you are facing it
- Shooting uses up the only arrow
- Grabbing picks up gold if in same square
- Releasing drops the gold in same square
- Sensors: Stench, Breeze, Glitter, Bump, Scream
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

- Fully Observable
- Deterministic
- Episodic
- Static
- Discrete
- Single-agent?

- No only local perception
- Yes outcomes exactly specified
- No sequential at the level of actions
- Yes Wumpus and Pits do not move
- Yes
- Yes Wumpus is essentially a natural feature

Exploring the Wumpus World

The KB initially contains the rules of the environment.


```
[1,1]: [none,none,none,none],
Move to safe cell e.g. [2,1]
```

```
[2,1]:[none,Breeze,none,none,none]
There is a pit in [2,2] or [3,1]
Return to [1,1] to try next safe cell
```

Exploring the Wumpus World

3.4

3,3 P?

3,2

3,1 P!

4.4

4,3

4.2

4.1

1,4 1,3 w!	2,3	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square P = Pit S = Stench V = Visited W = Wumpus	1,4 1,3 W!	2,4 P? 2,3 A S G B
1,2 A S OK	ок 2,1 в	3,1 P!	4,1		1,2 S V OK	V OK
V OK	V OK	1.			V OK	V OK

```
[1,2]: [Stench,none,none,none]
Wumpus is in [1,3] or [2,2]
YET ... not in [1,1]
Thus ... not in [2,2] or stench would have been detected in [2,1]
Thus ... wumpus is in [1,3]
Thus ... [2,2] is safe because of lack of breeze in [1,2]
Thus ... pit in [3,1]
Move to next safe cell [2,2]
```

Exploring the Wumpus World

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square	1,4	^{2,4} P?	3,4
^{1,3} w!	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	^{1,3} w!	2,3 A S G B	3,
1,2A S OK	2,2 OK	3,2	4,2		1,2 s V OK	v ok	3,2
1,1 V OK	^{2,1} B V OK	3,1 P!	4,1		1,1 V OK	2,1 B V OK	3,
	(.	a)		_		(Ъ)

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 A S G B	^{3,3} P?	4,3
1,2 s v	2,2 V	3,2	4,2
oĸ	оĸ		
1,1 V OK	2,1 B V OK	^{3,1} P!	4,1

[2,2]: [none,none,none,none] Move to next safe cell [2,3]

Exploring the Wumpus World

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

(a)

A = Agent B = Breeze	1
G = Glitter, Gold OK = Safe square	L
P = Pit S = Stench V = Visited	1
W = Wumpus	1

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 A S G B	^{3,3} P?	4,3
1,2 s v ok	v ok	3,2	4,2
1,1 V OK	2,1 B V OK	^{3,1} P!	4,1

(b)

[2,3]: [Stench, Breeze, Glitter, none, none]

Thus... pick up gold

Thus... pit in [3,3] or [2,4]

Entailment in the wumpus world

- Consider possible models for KB assuming only pits
- 3 Boolean choices \Rightarrow 8 possible models

Atomic proposition variable and rules for Wumpus world

- Let P_{i,i} be true if there is a Pit in the room [i, j].
- Let **B**_{i,i} be true if agent perceives breeze in [i, j], (dead or alive).
- Let W_{i,i} be true if there is wumpus in the square[i, j].
- Let S_{i,i} be true if agent perceives stench in the square [i, j].
- Let V_{i,i} be true if that square[i, j] is visited.
- Let G_{i,i} be true if there is gold (and glitter) in the square [i, j].
- Let **OK**_{i,i} be true if the room is safe.

(R2)
$$\neg S_{21} \rightarrow \neg W_{11} \land \neg W_{21} \land \neg W_{22} \land \neg W_{31}$$

(R3)
$$\neg S_{12} \rightarrow \neg W_{11} \land \neg W_{12} \land \neg W_{22} \land \neg W_{13}$$

Representation of Knowledge for Wumpus world

■ Following is the Simple KB for wumpus world when an agent moves from room [1, 1], to room [2,1]:

¬ W ₁₁	¬S ₁₁	¬P ₁₁	¬B ₁₁	¬G ₁₁	V ₁₁	OK ₁₁
¬ W ₁₂		¬P ₁₂			¬V ₁₂	OK ₁₂
¬ W ₂₁	¬S ₂₁	¬P ₂₁	B ₂₁	¬G ₂₁	V ₂₁	OK ₂₁

Wumpus world Entailment by Model-Checking

There is no pit in [1,1]:

$$R1 : \neg P_{1.1}$$

Rule:

R2:
$$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

R3: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$

Percepts for the first two squares visited in the specific world the agent:

R4:
$$\neg B_{1,1}$$

R5: $B_{2,1}$

- $\neg P_{1,2}$ entailed by our KB?
- symbols are B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, and P_{3,1}

Truth table constructed for the Knowledge Base

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false false false false	$false \\ false \\ \vdots \\ true$	false false : false	false false : false	false false : false	false false : false	$egin{aligned} false \ true \ dots \ false \end{aligned}$	$egin{array}{c} true \ true \ dots \ true \end{array}$	$egin{array}{c} true \ \vdots \ true \end{array}$	true false : false	$egin{array}{c} true \ true \ \vdots \ true \end{array}$	$egin{array}{c} false \\ false \\ dots \\ true \end{array}$	false false false false
false false false	true true true	false false false	false false false	false false false	false true true	true false true	true $true$ $true$	true true true	true true true	true true true	true true true	$\begin{array}{c} \underline{true} \\ \underline{true} \\ \underline{true} \end{array}$
false : true	$true$ \vdots $true$	false : true	false : true	true : true	false : true	$false \\ \vdots \\ true$	true : false	false : true	false : true	true : false	true : true	false : false

Wumpus models

- KB = wumpus-world rules + observations
- $\alpha_1 = "[1,2]$ is safe",
- $KB = \alpha_1$, proved by model checking
 - In every model in which KB is true, α_1 is also true.

Wumpus models

- KB = wumpus-world rules + observations
- $\alpha_2 = "[2,2]$ is safe",
- $KB \not \mid \alpha_2$
 - The agent *cannot* conclude that there is no pit in [2,2] (Nor can it conclude that there is a pit in [2,2])

Inference by Theorem Proving

■ There is no pit in [1,1]:

$$R1 : \neg P_{1.1}$$

Rule:

$$R2: B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$$

$$R3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Percepts:

$$R4: \neg B_{1.1}$$

• $\neg P_{1,2}$ entailed by our KB?

Biconditional elimination to R2:

R6:
$$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$

And-Elimination to R6:

$$R7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

Logical equivalence for contrapositives:

R8:
$$(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$$

• Modus Ponens with R8 and the percept R4 (i.e., $\neg B_{1,1}$):

$$R9 : \neg (P_{1,2} \lor P_{2,1})$$

De Morgan's rule to R9:

$$R10: \neg P_{1,2} \land \neg P_{2,1}$$

■ That is, neither [1,2] nor [2,1] contains a pit

Resolution in Wumpus World

$$R11 : \neg B_{1,2}$$

$$R12: B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$$

■ By the same process that led to R10 earlier, derive the absence of pits in [2,2] and [1,3] (remember R1 : $\neg P_{1,1}$ is in KB) :

$$R13 : \neg P_{2.2}$$

$$R14 : \neg P_{1,3}$$

■ Apply biconditional elimination to R3 : $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ followed by Modus Ponens with R5

$$R15 : P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

• Resolution: literal $\neg P_{2,2}$ in R13 resolves with the literal $P_{2,2}$ in R15

• Resolution: literal $\neg P_{1,1}$ in R1 resolves with the literal $P_{1,1}$ in R16

$$R17 : P_{3,1}$$

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

Inference by Theorem Proving

■ There is no pit in [1,1]:

$$R1 : \neg P_{1.1}$$

Rule:

$$R2: B_{1.1} \Leftrightarrow (P_{1.2} \vee P_{2.1})$$

$$R3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

Percepts:

$$R4: \neg B_{1.1}$$

• $\neg P_{1,2}$ entailed by our KB?

Biconditional elimination to R2:

R6:
$$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$

And-Elimination to R6:

$$R7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1})$$

Logical equivalence for contrapositives:

R8:
$$(\neg B_{1,1} \Rightarrow \neg (P_{1,2} \lor P_{2,1}))$$

• Modus Ponens with R8 and the percept R4 (i.e., $\neg B_{1,1}$):

$$R9 : \neg (P_{1,2} \lor P_{2,1})$$

De Morgan's rule to R9:

$$R10: \neg P_{1,2} \land \neg P_{2,1}$$

■ That is, neither [1,2] nor [2,1] contains a pit

Resolution in Wumpus World

$$R11 : \neg B_{1,2}$$

$$R12: B_{1,2} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3})$$

■ By the same process that led to R10 earlier, derive the absence of pits in [2,2] and [1,3] (remember R1 : $\neg P_{1,1}$ is in KB) :

$$R13 : \neg P_{2.2}$$

$$R14 : \neg P_{1,3}$$

■ Apply biconditional elimination to R3 : $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$ followed by Modus Ponens with R5

$$R15 : P_{1,1} \vee P_{2,2} \vee P_{3,1}$$

• Resolution: literal $\neg P_{2,2}$ in R13 resolves with the literal $P_{2,2}$ in R15

• Resolution: literal $\neg P_{1,1}$ in R1 resolves with the literal $P_{1,1}$ in R16

$$R17 : P_{3,1}$$

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

Wumpus World example

•
$$KB = R4 \land R5 = (B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$$
 $\alpha = \neg P_{1,2}$

Efficient propositional inference

Two families of efficient algorithms for propositional inference:

- Complete backtracking search algorithms
 - DPLL algorithm (Davis, Putnam, Logemann, Loveland)
- Incomplete local search algorithms
 - WalkSAT algorithm

Limitation

- Propositional logic has limited expressive power.
- We cannot represent relations like ALL, some, or none with propositional logic. Example:
 - All the animals are intelligent.
 - Some apples are sweet.
- We cannot describe statements in terms of their properties or logical relationships.