

Eficiencia empírica de los algoritmos

Los algoritmos seleccionados:

- ·Algoritmo de la burbuja -> $O(n^2)$
- ·Algoritmo de selección -> $O(n^2)$
- ·Algoritmo de inserción -> $O(n^2)$
- ·Algoritmo de quicksort ->O(n*log(n))
- ·Algoritmo de heapsort ->O(n*log(n))
- ·Algoritmo de mezcla -> O(n*log(n))
- ·Algoritmo de Floyd -> $O(n^3)$
- ·Algoritmo de Hanoi -> $O(2^n)$

Algoritmo de la burbuja

Algoritmo de selección

Gráfica ajustada a eficiencia teórica

Algoritmo de inserción

Algoritmo de mezcla (Mergesort)

Gráfica ajustada a eficiencia teórica

Algoritmo de Quicksort

Algoritmo de Heapsort

Gráfica ajustada a eficiencia teórica

Algoritmo de Floyd

Gráfica ajustada a eficiencia teórica

Gráfica ajustada a eficiencia teórica alternativa

Algoritmo de las torres de Hanoi

Gráfica ajustada a eficiencia teórica alternativa

Algoritmos clasificados por su eficiencia

Gráfica con todos los algoritmos de ordenación juntos

COMPILADOS CON -01

COMPILADOS CON -02

COMPILADOS CON -03

EJEMPLO DE PARAMETROS CON -01

```
nuplot> fit f(x) 'datos_seleccion.dat' via a,b,c
       chisq
                   delta/lim lambda a
 0 3.7086597138e+00 0.00e+00 3.82e-02
                                         1.579712e-10 6.712563e-08
 1 5.4940100028e-04 -6.75e+08 3.82e-03
                                          9.870389e-10 7.380673e-08
 2 8.6528102582e-05 -5.35e+05 3.82e-04
                                          9.943634e-10 1.198450e-07 3.551663e-05
 3 4.8572861830e-05 -7.81e+04 3.82e-05
                                          9.844335e-10 3.633958e-07 5.127422e-06
                                         9.797345e-10 5.287166e-07 -1.154464e-03
 4 4.1187399112e-05 -1.79e+04 3.82e-06
 5 4.0461902347e-05 -1.79e+03 3.82e-07
                                          9.779495e-10 5.940001e-07 -1.651782e-03
                                          9.779418e-10 5.942811e-07 -1.653923e-03
 6 4.0461889012e-05 -3.30e-02 3.82e-08
                   delta/lim lambda a
fter 6 iterations the fit converged.
inal sum of squares of residuals : 4.04619e-05
el. change during last iteration : -3.2955e-07
legrees of freedom
                   (FIT_NDF)
                                                  : 27
                   (FIT STDFIT) = sqrt(WSSR/ndf)
rariance of residuals (reduced chisquare) = WSSR/ndf : 1.49859e-06
inal set of parameters
                                Asymptotic Standard Error
              = 9.77942e-10
                                               (0.3416%)
             = 5.94281e-07
                                +/- 1.067e-07
                                               (17.96%)
             = -0.00165392
                                +/- 0.0007178
orrelation matrix of the fit parameters:
             1.000
             -0.970 1.000
              0.770 -0.882 1.000
```

Selección normal

```
nuplot> fit f(x) 'datos_seleccion_01.dat' via a,b,c
        chisq
                   delta/lim lambda a
  0 7.4448382017e-02 0.00e+00 6.63e-02
                                          2.739798e-10 1.460543e-07 -2.086904e-04
  1 1.1762700744e-05 -6.33e+08 6.63e-03
                                           1.565381e-10 1.445556e-07 -2.088405e-04
  2 2.2826614191e-06 -4.15e+05 6.63e-04
                                           1.556496e-10 1.344716e-07 -2.108321e-04
                                           1.572026e-10 9.455760e-08 -1.643572e-04
  3 1.4918945548e-06 -5.30e+04 6.63e-05
                                           1.579461e-10 6.804043e-08
  4 1.3761588457e-06 -8.41e+03 6.63e-06
  5 1.3760200195e-06 -1.01e+01 6.63e-07
                                           1.579712e-10 6.712596e-08
  6 1.3760200195e-06 -1.31e-06 6.63e-08
                                           1.579712e-10 6.712563e-08 3.425577e-05
        chisq
                   delta/lim lambda a
After 6 iterations the fit converged.
final sum of squares of residuals : 1.37602e-06
rel. change during last iteration : -1.30639e-11
degrees of freedom
                   (FIT_NDF)
                                                   : 27
 ms of residuals
                   (FIT_STDFIT) = sqrt(WSSR/ndf)
                                                   : 0.000225751
 ariance of residuals (reduced chisquare) = WSSR/ndf
                                                   : 5.09637e-08
Final set of parameters
                                Asymptotic Standard Error
              = 1.57971e-10
                                +/- 6.161e-13
              = 6.71256e-08
                                +/- 1.968e-08
                                                (29.33%)
              = 3.42558e-05
                                +/- 0.0001324
 orrelation matrix of the fit parameters:
              1.000
              -0.970 1.000
              0.770 -0.882 1.000
```

Selección optimizado

EJEMPLO DE PARAMETROS CON -02

```
gnuplot> fit f(x) 'datos mergesort.dat' via a,b
        chisq
                    delta/lim lambda
 0 9.8037070736e-02 0.00e+00 2.76e-02
                                           7.283286e-09 -3.646604e-08
  2 5.9827767749e-04 -8.19e+02 2.76e-04
                                           1.423615e-08 -3.646624e-08
  3 5.9827767741e-04 -1.36e-05 2.76e-05
                                          1.423615e-08 -3.648842e-08
                    delta/lim lambda a
After 3 iterations the fit converged.
final sum of squares of residuals : 0.000598278
rel. change during last iteration : -1.3629e-10
degrees of freedom
                    (FIT NDF)
rms of residuals
                    (FIT STDFIT) = sqrt(WSSR/ndf)
variance of residuals (reduced chisquare) = WSSR/ndf : 8.7982e-06
Final set of parameters
                                Asymptotic Standard Error
= 1.42362e-08
                                +/- 1.285e-10
              = -3.64884e - 08
                                +/- 0.0006898
                                                (1.89e+06%)
correlation matrix of the fit parameters:
              1.000
              -0.858 1.000
gnuplot>
```

Mergesort normal

```
gnuplot > f(x) = a*x*log(x)+b
gnuplot> fit f(x) 'datos mergesort O2.dat' via a,b
                    delta/lim lambda a
  0 8.1123222749e-02 0.00e+00 3.57e-03
                                           9.416322e-10
  1 6.6865422019e-05 -1.21e+08 3.57e-04
                                           7.238310e-09
  2 6.2788140179e-05 -6.49e+03 3.57e-05
                                           7.283283e-09
                                                        -3.287533e-08
  3 6.2788109636e-05 -4.86e-02 3.57e-06
                                           7.283286e-09 -3.646604e-08
                    delta/lim lambda a
After 3 iterations the fit converged.
final sum of squares of residuals : 6.27881e-05
rel. change during last iteration : -4.86449e-07
degrees of freedom
                    (FIT NDF)
                                                    : 68
rms of residuals
                    (FIT_STDFIT) = sqrt(WSSR/ndf)
                                                   : 0.000960913
variance of residuals (reduced chisquare) = WSSR/ndf
Final set of parameters
                                 Asymptotic Standard Error
<del>-----</del>------
                                 ______
               = 7.28329e-09
                                 +/- 4.164e-11
               = -3.6466e-08
                                 +/- 0.0002235
                                                 (6.128e+05%)
correlation matrix of the fit parameters:
              1.000
              -0.858 1.000
gnuplot>
```

Mergesort optimizado

EJEMPLO DE PARAMETROS CON -03

```
1 1.0948616842e+13 -6.77e+09 5.33e+06
                                          2.056820e-03 9.981987e-01 9.999966e-01
                                                                                    1.000000e+00
  2 6.6977906499e+10 -1.62e+07 5.33e+05
                                                        9.958352e-01
  3 4.3872972567e+10 -5.27e+04 5.33e+04
                                          -1.437450e-03 8.050995e-01
                                                                     9.991117e-01
  4 7.2846962525e+07 -6.01e+07 5.33e+03
                                          -5.383175e-05
                                                       2.839398e-02 9.955203e-01
                                                                                   9.999826e-01
  5 9.4274126853e+04 -7.72e+07 5.33e+02
                                          4.862038e-06 -4.548217e-03 9.920630e-01
                                                                                   9.999441e-01
  6 5.3328124786e+04 -7.68e+04 5.33e+01
                                          3.669123e-06 -3.422898e-03 7.433783e-01
                                                                                    9.970853e-01
  7 4.9778003114e+01 -1.07e+08 5.33e+00
                                          8.219862e-08
                                                       -6.727347e-05 1.092799e-02
                                                                                    9.874475e-01
  8 2.7695336861e+00 -1.70e+06 5.33e-01
                                          -2.315926e-08
                                                       3.064182e-05 -1.001967e-02
  9 1.4898434251e-02 -1.85e+07 5.33e-02
                                          2.070812e-09
                                                        2.306198e-06 -7.352962e-04
                                                                                   6.407825e-02
 10 1.6869821890e-04 -8.73e+06 5.33e-03
                                          4.056634e-09
                                                       7.642938e-08 -4.961598e-06
                                                                                   2.659492e-04
 11 1.6868911761e-04 -5.40e+00 5.33e-04
                                          4.058196e-09 7.467529e-08 -4.387066e-06 2.157500e-04
  * 1.6868911761e-04 3.21e-10 5.33e-03
                                          4.058196e-09 7.467527e-08 -4.387061e-06 2.157496e-04
 12 1.6868911761e-04 -9.00e-10 5.33e-04
                                          4.058196e-09 7.467527e-08 -4.387061e-06 2.157496e-04
                  delta/lim lambda a
After 12 iterations the fit converged.
final sum of squares of residuals : 0.000168689
rel. change during last iteration : -8.99811e-15
degrees of freedom (FIT_NDF)
 ms of residuals (FIT STDFIT) = sqrt(WSSR/ndf) : 0.00166295
variance of residuals (reduced chisquare) = WSSR/ndf
                                                 : 2.7654e-06
Final set of parameters
                                Asymptotic Standard Error
              = 4.0582e-09
              = 7.46753e-08
                               +/- 3.995e-08
                               +/- 1.139e-05
              = -4.38706e-06
                                               (259.7%)
              = 0.00021575
                               +/- 0.000875
correlation matrix of the fit parameters:
              a b c d
              -0.986 1.000
              0.920 -0.970 1.000
              -0.684 0.765 -0.879 1.000
```

Floyd normal

```
gnuplot> fit f(x) 'datos_floyd_03.dat' via a,b,c,d
       chisq
                   delta/lim lambda a
  0 9.4410692646e+00 0.00e+00 2.16e-01
                                          4.058196e-09 7.467527e-08 -4.387061e-06
                                                                                    2.157496e-04
  1 3.1195230885e-04 -3.03e+09 2.16e-02
                                          5.011773e-10
                                                        7.219608e-08 -4.405253e-06
  2 9.1375847127e-05 -2.41e+05 2.16e-03
                                          5.204694e-10
                                                       5.408346e-08 -4.625662e-06
  3 4.1877098785e-05 -1.18e+05 2.16e-04
                                          5.822706e-10 1.183293e-08 -7.485716e-07 3.448877e-04
  4 2.8495956333e-05 -4.70e+04 2.16e-05
                                          6.313003e-10 -3.207144e-08 7.663218e-06 6.218449e-04
  5 2.8490432536e-05 -1.94e+01 2.16e-06
                                          6.321982e-10 -3.285702e-08 7.800238e-06
  6 2.8490432536e-05 -2.66e-06 2.16e-07
                                         6.321980e-10 -3.285674e-08 7.800127e-06 6.305697e-04
                   delta/lim lambda a
After 6 iterations the fit converged.
final sum of squares of residuals : 2.84904e-05
rel. change during last iteration : -2.66125e-11
degrees of freedom (FIT NDF)
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 0.000683415
variance of residuals (reduced chisquare) = WSSR/ndf
Final set of parameters
                                Asymptotic Standard Error
              = 6.32198e-10
                                +/- 1.636e-11 (2.588%)
              = -3.28567e-08
                               +/- 1.642e-08
                                               (49.97%)
              = 7.80013e-06
                                +/- 4.683e-06
                                                (60.03%)
              = 0.00063057
                                +/- 0.0003596
                                                (57.03%)
correlation matrix of the fit parameters:
              1.000
             -0.986 1.000
              0.920 -0.970 1.000
             -0.684 0.765 -0.879 1.000
```

Floyd optimizado

Variación en calidad de ajustes

```
correlation matrix of the fit parameters:

a b c
a 1.000
b -0.971 1.000
c _____ 0.774 -0.884 1.000
```

 $T(6) = 4.07 * 10^{-3}$

Algoritmo de la Burbuja

$$T(6) = -0.2796$$

Recopilación final

O(n²)	BURBUJA	INSERCION	SELECCIÓN	O(2^n	HANOI	O(n ^s)	FLOYD	O(nlog(n))	QUICKSORT	HEAPSORT	MERGE SORT
Tamaño				Tamañ	0	Tamaño		Tamaño			
1000	0.003725	0.002859	0.00108605	1	1,00E-06	10	3.4e-05	1000	0.000366	0.000127	0.00134151
2000	0.006237	0.003452	0.00411013	2	1,00E-06	20	0.000268	2000	0.000868	0.000309	0.00288
3000	0.014832	0.007514	0.009112	3	1,00E-06	30	0.000659	3000	0.001292	0.000482	0.004131
4000	0.027287	0.013465	0.016582	4	2,00E-06	40	0.000296	4000	0.000393	0.000759	0.006818
5000	0.044807	0.020175	0.025423	5	1,00E-06	50	0.000587	5000	0.000446	0.001009	0.008514
6000	0.066308	0.029558	0.036851	6	2,00E-06	60	0.000971	6000	0.000564	0.001368	0.009313
7000	0.094743	0.039514	0.050307	7	2,00E-06	70	0.001518	7000	0.000656	0.001673	0.0111
8000	0.125221	0.051306	0.064776	8	3,00E-06	80	0.002325	8000	0.000812	0.002185	0.01364
9000	0.162785	0.065847	0.082499	9	5,00E-06	90	0.003238	9000	0.000925	0.003046	0.01558
10000	0.205539	0.079912	0.101053	10	9,00E-06	100	0.004807	10000	0.00103	0.001181	0.018529
11000	0.249845	0.098017	0.122921	11	1.5e-05	110	0.006263	11000	0.001162	0.001312	0.017051
12000	0.303364	0.115706	0.145535	12	3.2e-05	120	0.008157	12000	0.001243	0.001461	0.019053
13000	0.358567	0.136202	0.17079	13	6.2e-05	130	0.010148	13000	0.001375	0.00163	0.021068
14000	0.42073	0.158119	0.198004	14	0.000121	140	0.011979	14000	0.001508	0.001765	0.023425
15000	0.487893	0.181173	0.227203	15	0.000239	150	0.014787	15000	0.001609	0.001853	0.026135
16000	0.562743	0.205654	0.258552	16	0.000475	160	0.018596	16000	0.001717	0.001999	0.027959
17000	0.632581	0.231057	0.290887	17	0.000946	170	0.021205	17000	0.001838	0.002182	0.030299
18000	0.71375	0.262041	0.325722	18	0.001897	180	0.025059	18000	0.001981	0.002309	0.03295
19000	0.80031	0.29224	0.362522	19	0.003841	190	0.029963	19000	0.002107	0.002454	0.036694
20000	0.893149	0.322848	0.400376	20	0.007353	200	0.035242	20000	0.002034	0.002602	0.037946
21000	0.986542	0.357905	0.444063	21	0.011324	210	0.039764	21000	0.002154	0.002708	0.034124
22000	1.08645	0.389459	0.487566	22	0.020701	220	0.045828	22000	0.002252	0.002872	0.037008
23000	1.19856	0.426719	0.531152	23	0.040178	230	0.052292	23000	0.002371	0.003026	0.03819
24000	1.30425	0.464225	0.576454	24	0.080462	240	0.05891	24000	0.002395	0.003263	0.040167
25000	1.4192	0.49827	0.623446	25	0.158489	250	0.067004	25000	0.002505	0.003334	0.043132
26000		0.545143	0.673326	26	0.315409	260	0.074894	26000	0.002626	0.003454	0.04448
27000		0.584223	0.729135	27	0.628951	270	0.08475	27000	0.002808	0.00359	0.046989
28000		0.632708	0.783412	28	1.25188	280	0.093455	28000	0.002859	0.00374	0.049827
29000		0.682245	0.835421	29	2.51728	290	0.104588	29000	0.003032	0.00389	0.051695
30000		0.718393	0.894877	30	5.00059	300	0.116475	30000	0.003012	0.004454	0.054386
31000		0.767888		31	9.94644	310	0.126596	31000	0.00321	0.004204	0.056358
32000		0.822539				320	0.139711	32000	0.003353	0.004377	0.059447
33000		0.875339				330	0.152502	33000	0.003792	0.004533	0.061166
34000		0.923252				340	0.167651	34000	0.003566	0.004725	0.064593
35000		0.990398				350	0.181532	35000	0.003672	0.004874	0.066304
						360	0.1971	36000	0.003906	0.005001	0.069316
						370	0.214649	37000	0.003962	0.005142	0.071288
						380	0.232571	38000	0.004027	0.005336	0.074837
						390	0.251855	39000	0.004157	0.005478	0.076965
						400	0.269403	40000	0.004297	0.005658	0.080537
						410	0.290881	41000	0.004418	0.00658	0.069507

Análisis de Eficiencia de Algoritmos

Trabajo realizado por:

Manuel Ángel Rodríguez Segura Javier Ramírez Pulido Ángel Solano Corral Alejandro Ruíz Rodríguez