PRELIMINARY

PSoC 6 MCU: CYB06447BZI-D54 Datasheet

PSoC 64 Secure Boot MCU

General Description

PSoC[®] 6 MCU is a high-performance, ultra-low-power, and secure MCU platform, purpose-built for IoT applications. The PSoC 64 Secure MCU line, based on the PSoC 6 MCU platform, feature out-of-box security functionality, providing an isolated root-of-trust with true attestation and provisioning services. In addition, it delivers a pre-configured secure execution environment which supports system software for various IoT platforms; and enables TLS authentication, secure storage, and secure firmware management. The PSoC 64 also includes a rich execution environment for application development, with RTOS support that communicates with the secure execution environment.

Features

32-bit Dual CPU Subsystem

Note: In PSoC 64 the Cortex M0+ is reserved for system functions, and is not available for applications.

- 150-MHz Arm[®] Cortex[®]-M4F (CM4) CPU with single-cycle multiply, floating point, and memory protection unit (MPU)
- 100-MHz Cortex-M0+ (CM0+) CPU with single-cycle multiply and MPU
- User-selectable core logic operation at either 1.1 V or 0.9 V
- Active CPU current slope with 1.1-V core operation
 - □ Cortex-M4: 40 μA/MHz □ Cortex-M0+: 20 μA/MHz
- Active CPU current slope with 0.9-V core operation
 - □ Cortex-M4: 22 µA/MHz□ Cortex-M0+: 15 µA/MHz
- Two DMA controllers with 16 channels each

Memory Subsystem

- 832-KB application flash, 32-KB auxiliary flash (AUXflash), and 32-KB supervisory flash (Sflash); read-while-write (RWW) support. Two 8-KB flash caches, one for each CPU.
- 184-KB SRAM with power and data retention control
- One-time-programmable (OTP) 1-Kb eFuse array

Hardware-Based Root-of-Trust (RoT)

- RoT based on immutable boot-up code, Flash content hash, and Cypress public key that ensures firmware integrity prior to provisioning
- Supports trusted RoT handover to maintain chain of trust and establish OEM trust anchor for secure boot
- Device generates a unique device ID and a device secret key during the provisioning process, which can be used for attestation and signing

Immutable Secure Boot Support

- Flexible chain of trust can use different signatures for different images
- ECC-based image signature validation

Cypress Secure Bootloader

- Open Source MCUBoot^[1] based bootloader optimized for the PSoC 64 family
- Pre-built bootloader binary capable of validating, launching and updating signed user application images
- Tightly integrated with provisioned debug and boot policies to inherit and implement security policies

Low-Power 1.7-V to 3.6-V Operation

- Six power modes for fine-grained power management
- Deep Sleep mode current of 7 µA with 64-KB SRAM retention
- On-chip Single-In Multiple Out (SIMO) DC-DC Buck converter, <1 µA quiescent current
- Backup domain with 64 bytes of memory and Real-Time Clock

Flexible Clocking Options

- On-chip crystal oscillators (4 to 35 MHz, and 32 kHz)
- Phase-locked Loop (PLL) for multiplying clock frequencies
- 8 MHz Internal Main Oscillator (IMO) with ±2% accuracy
- Ultra-low-power 32-kHz Internal Low-speed Oscillator (ILO)
- Frequency Locked Loop (FLL) for multiplying IMO frequency

Quad SPI (QSPI)/Serial Memory Interface (SMIF)

- Execute-In-Place (XIP) from external Quad SPI Flash
- On-the-fly encryption and decryption
- 4-KB cache for greater XIP performance with lower power
- Supports single, dual, quad, dual-quad, and octal interfaces w/ throughput up to 640 Mbps

Serial Communication

- Nine run-time configurable serial communication blocks (SCBs)
 - □ Eight SCBs: configurable as SPI, I²C, or UARTs □ One Deep Sleep SCB: configurable as SPI or I²C
- USB full-speed device interface

Note

1. For details, refer to https://mcuboot.com/.

Audio Subsystem

■ Two PDM channels and one I²S channel with TDM mode

Timing and Pulse-Width Modulation

- Thirty-two timer/counter pulse-width modulators (TCPWM)
- Center-aligned, Edge, and Pseudo-random modes
- Comparator-based triggering of Kill signals

Programmable Analog

- 12-bit 1-Msps SAR ADC with differential and single-ended modes and 16-channel sequencer with result averaging
- Two low-power comparators available in Deep Sleep and Hibernate modes
- Built-in temp sensor connected to ADC
- One 12-bit voltage mode DAC with < 2-µs settling time
- Two opamps with low-power operation modes

Up to 100 Programmable GPIOs

- Two Smart I/O ports (16 I/Os) enable Boolean operations on GPIO pins; available during system Deep Sleep
- Programmable drive modes, strengths, and slew rates
- Six overvoltage-tolerant (OVT) pins

LCD

- LCD segment direct block support up to 61 segments and up to 8 commons
- Operates in Active, Sleep, and Deep Sleep modes

Capacitive Sensing

- Cypress CapSense provides best-in-class SNR, liquid tolerance, and proximity sensing
- Enables dynamic usage of both self and mutual sensing
- Automatic hardware tuning (SmartSense™)

Cryptography Accelerators

- Hardware acceleration for symmetric and asymmetric cryptographic methods and hash functions
- True Random Number Generator (TRNG) function

Programmable Digital

- 12 programmable logic blocks, each with 8 Macrocells and an 8-bit data path (called universal digital blocks or UDBs)
- Usable as drag-and-drop Boolean primitives (gates, registers), or as Verilog programmable blocks
- Cypress-provided peripheral component library using UDBs to implement functions such as Communication peripherals (for example, LIN, UART, SPI, I²C, S/PDIF and other protocols), Waveform Generators, Pseudo-Random Sequence (PRS) generation, and many other functions.

Profiler

■ Eight counters provide event or duration monitoring of on-chip resources

Packages

■ 124-BGA

PRELIMINARY

Contents

Development Ecosystem	4	Analog Peripherals	43
PSoC 6 MCU Resources	4	Digital Peripherals	52
ModusToolbox™ IDE and the PSoC 6 SDK	5	Memory	
Blocks and Functionality	6	System Resources	5
Functional Description	8	Ordering Information	65
CPU and Memory Subsystem	8	PSoC 6 MPN Decoder	64
System Resources		Packaging	6
Programmable Analog Subsystem	12	Acronyms	6 ⁻
Programmable Digital	14	Document Conventions	69
Fixed-Function Digital	14	Unit of Measure	69
GPIO	15	Errata	70
Special-Function Peripherals	15	Revision History	72
Secure Boot Functionality	19	Sales, Solutions, and Legal Information	73
Pinouts	21	Worldwide Sales and Design Support	73
Power Supply Considerations	33	Products	73
Electrical Specifications	36	PSoC® Solutions	7:
Absolute Maximum Ratings	36	Cypress Developer Community	7:
Device-Level Specifications	37	Technical Support	

Development Ecosystem

PSoC 6 MCU Resources

Cypress provides a wealth of data at www.cypress.com to help you select the right PSoC device and quickly and effectively integrate it into your design. The following is an abbreviated, hyperlinked list of resources for PSoC 6 MCU:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 6 MCU
- Application Notes cover a broad range of topics, from basic to advanced level, and include the following:
 - □ AN221774: Getting Started with PSoC 6 MCU
 - □ AN210781: Getting Started with PSoC 6 MCU BLE
 - □ AN218241: PSoC 6 MCU Hardware Design Guide
 - □ AN213924: PSoC 6 MCU Device Firmware Update Guide
 - □ AN215656: PSoC 6 MCU Dual-CPU System Design
 - □ AN219528: PSoC 6 MCU Power Reduction Techniques
 - □ AN85951: PSoC 4, PSoC 6 MCU CapSense Design Guide
- Code Examples demonstrate product features and usage, and are also available on Cypress GitHub repositories.
- Technical Reference Manuals (TRMs) provide detailed descriptions of PSoC 6 MCU architecture and registers.

- PSoC 6 MCU Programming Specification provides the information necessary to program PSoC 6 MCU nonvolatile memory
- Development Tools
 - ¬ ModusToolbox™ enables cross platform code development with a robust suite of tools and software libraries
 - □ CY8CPROTO-064S1-SB PSoC 64 Secure Boot Prototyping Kit: a low-cost hardware platform that enables design and debug of the PSoC 64 CYB06447BZI-D54 product line
 - □ PSoC 6 CAD libraries provide footprint and schematic support for common tools. BSDL files are also available.
- Training Videos are available on a wide range of topics including the PSoC 6 MCU 101 series
- Cypress Developer Community enables connection with fellow PSoC developers around the world, 24 hours a day, 7 days a week, and hosts a dedicated PSoC 6 MCU Community

ModusToolbox™ IDE and the PSoC 6 SDK

ModusToolbox is an Eclipse-based development environment on Windows, macOS, and Linux platforms that includes the ModusToolbox IDE and the PSoC 6 SDK. The ModusToolbox IDE brings together several device resources, middleware, and firmware to build an application. Using ModusToolbox, you can enable and configure device resources and middleware libraries, write C/C++/assembly source code, and program and debug the device.

The PSoC 6 SDK is the software development kit for the PSoC 6 MCU. The SDK makes it easier to develop firmware for supported devices without the need to understand the intricacies of the device resources.

For additional detail on using the Cypress tools, refer to AN221774: Getting Started with PSoC 6 MCU and the documentation and help integrated into ModusToolbox. As Figure 1 shows, with the ModusToolbox IDE, you can:

- 1. Create a new application based on a list of starter applications, filtered by kit or device, or browse the collection of code examples online.
- 2. Configure device resources in design.modus to build your hardware system design in the workspace.
- 3. Add software components or middleware.
- 4. Develop your application firmware.

Figure 1. ModusToolbox IDE Resources and Middleware

Blocks and Functionality

Figure 2 shows the major subsystems and a simplified view of their interconnections. The color coding shows the lowest power mode where a block is still functional. For example, the SRAM is functional down to Deep Sleep mode.

Figure 2. Block Diagram

PRELIMINARY

PSoC 6 MCU: CYB06447BZI-D54 Datasheet

Page 7 of 73

This product line has up to 1 MB of flash; however, 192 KB is reserved for system usage, leaving 832 KB for applications. It also has up to 288 KB of SRAM; however, 104 KB is reserved for system usage, leaving 184 KB for applications.

The PSoC 64 devices offer an immutable, RoT-based boot-up process, which allows only signed applications to be booted up. In addition, secure user assets such as keys and debug policies can be securely provisioned on the device in an HSM environment and made immutable The PSoC 64 line of Secure MCUs also allow for secure Root-of-Trust based cryptography services which can be accessed using System calls.

There are three debug access ports, one each for CM4 and CM0+, and a system port. All debug and test interfaces can be permanently disabled during final production provisioning to avoid any malicious reprogramming or reading of flash and register contents.

The PSoC 6 devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware. All device interfaces can be permanently disabled (device security) for applications concerned about attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. The security level is settable by the user.

Complete debug-on-chip functionality enables full device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The ModusToolbox Integrated Development Environment (IDE) provides fully integrated programming and debug support for these devices. The SWJ (SWD and JTAG) interface is fully compatible with industry-standard third party probes. With the ability to disable debug features, with very robust flash protection, and by allowing customer-proprietary functionality to be implemented in on-chip programmable blocks, PSoC 6 provides a very high level of security.

Document Number: 002-26017 Rev. *C

Functional Description

The following sections provide an overview of the features, capabilities and operation of each functional block identified in the block diagram in Figure 3. For more detailed information, refer to the following three references.

Peripheral Driver Library (PDL) Application Programming Interface (API) Reference Manual.

PDL provides low-level drivers for each resource in the device, and supports the entire PSoC 6 MCU portfolio. PDL is an element of the PSoC 6 SDK, which is installed as part of ModusToolbox. With ModusToolbox installed, you can access the PDL API reference manual either from the Documentation tab of the Quick Panel, or you can navigate directly to it at <install_directory>\ModusToolbox_<ver-sion>\libraries\psoc6sw-<version>\docs. Using PDL should be the primary means of interacting with the

■ Architecture Technical Reference Manual (TRM)

The architecture TRM provides the detailed description of each resource in the device. This is the next reference to use if it is necessary to understand the operation of the hardware below the software provided by PDL. It describes the architecture and functionality of each resource and explains the operation of each resource in all modes. It provides specific guidance regarding the use of associated registers.

■ Register Technical Reference Manual

PSoC 6 MCU hardware.

The register TRM provides the complete list of all registers in the device. It includes the breakdown of all register fields, their possible settings, read/write accessibility, and default states. All registers that have a reasonable use in typical applications have functions to access them from within PDL. Note that ModusToolbox and PDL may provide software default conditions for some registers that are different from and override the hardware defaults.

CPU and Memory Subsystem

PSoC 6 has multiple bus masters, as Figure 3 shows. They are: CPUs, DMA controllers, and a Crypto block. Generally, all memory and peripherals can be accessed and shared by all bus masters through multi-layer Arm AMBA high-performance bus (AHB) arbitration. Accesses between CPUs can be synchronized using an inter-processor communication (IPC) block.

CPU

There are two Arm Cortex CPUs:

The Cortex-M4 (CM4) has single-cycle multiply, a floating-point unit (FPU), and a memory protection unit (MPU). It can run at up to 150 MHz. This is the main CPU, designed for a short interrupt response time, high code density, and high throughput.

CM4 implements a version of the Thumb instruction set based on Thumb-2 technology (defined in the *Armv7-M Architecture Reference Manual*). The Cortex M4 is used for user Application code.

The Cortex-M0+ (CM0+) has single-cycle multiply, and an MPU. It can run at up to 100 MHz; however, for CM4 speeds above 100 MHz, CM0+ and bus peripherals are limited to half the speed of CM4. Thus, for CM4 running at 150 MHz, CM0+ and peripherals are limited to 75 MHz.

CM0+ is the secondary CPU; it is used to implement system calls and device-level security, safety, and protection features. CM0+ provides a secure, uninterruptible boot function. This guarantees that post boot, system integrity is checked and memory and peripheral access privileges are enforced.

CM0+ implements the Armv6-M Thumb instruction set (defined in the *Armv6-M Architecture Reference Manual*).

The CPUs have the following power draw, at V_{DD} = 3.3 V and using the internal buck regulator:

Table 1. Active Current Slope at V_{DD} = 3.3 V Using the Internal Buck Regulator

		System Power Mode					
		ULP	LP				
CPU	Cortex-M0+	15 μA/MHz	20 μA/MHz				
CFU	Cortex-M4	22 μA/MHz	40 μA/MHz				

The CPUs can be selectively placed in their Sleep and Deep Sleep power modes as defined by Arm.

Both CPUs have nested vectored interrupt controllers (NVIC) for rapid and deterministic interrupt response, and wakeup interrupt controllers (WIC) for CPU wakeup from Deep Sleep power mode.

The CPUs have extensive debug support. PSoC 6 has a debug access port (DAP) that acts as the interface for device programming and debug. An external programmer or debugger (the "host") communicates with the DAP through the device serial wire debug (SWD) or Joint Test Action Group (JTAG) interface pins. Through the DAP (and subject to device security restrictions), the host can access the device memory and peripherals as well as the registers in both CPUs.

Each CPU offers debug and trace features as follows:

- CM4 supports six hardware breakpoints and four watchpoints, 4-bit embedded trace macrocell (ETM), serial wire viewer (SWV), and printf()-style debugging through the single wire output (SWO) pin.
- CM0+ supports four hardware breakpoints and two watchpoints, and a micro trace buffer (MTB) with 4 KB dedicated RAM.

PSoC 6 also has an Embedded Cross Trigger for synchronized debugging and tracing of both CPUs.

Interrupts

PSoC 6 has 147 system and peripheral interrupt sources and supports interrupts and system exception on both CPUs. CM4 has 147 interrupt request lines (IRQ), with the interrupt source 'n' directly connected to IRQn. CM0+ has 32 interrupts IRQ[31:0] with configurable mapping of one system interrupt source to any of the IRQ[31:0].

Each interrupt supports configurable priority levels (eight levels for CM4 and four levels for CM0+). One system interrupt can be mapped to each of the CPUs' non-maskable interrupts (NMI). Up to 41 interrupt sources are capable of waking the device from Deep Sleep power mode using the WIC. Refer to the technical reference manual for details.

DMA Controllers

There are two DMA controllers with 16 channels each. They support independent accesses to peripherals using the AHB Multi-layer bus. The descriptors for DMA channels can be in SRAM or flash. Therefore, the number of descriptors are limited only by the size of the memory. Each descriptor can transfer data in two nested loops with configurable address increments to the source and destination. The size of data transfer per descriptor varies based on the type of DMA channel. Refer to the technical reference manual for detail.

Cryptography Accelerator (Crypto)

This subsystem consists of hardware implementation and acceleration of cryptographic functions and random number generators.

The Crypto subsystem supports the following:

- Encryption/Decryption Functions
 - □ Data Encryption Standard (DES)
 - □ Triple DES (3DES)
 - □ Advanced Encryption Standard (AES) (128-, 192-, 256-bit)
 - □ Elliptic Curve Cryptography (ECC)
 - □ RSA cryptography functions
- Hashing functions
 - □ Secure Hash Algorithm (SHA)
 - □ SHA1
 - □ SHA224/256/384/512
- Message authentication functions (MAC)
 - ☐ Hashed message authentication code (HMAC)
 - □ Cipher-based message authentication code (CMAC)
- 32-bit cyclic redundancy code (CRC) generator
- Random number generators
 - □ Pseudo random number generator (PRNG)
 - ☐ True random number generator (TRNG)

Protection Units

PSoC 64 has multiple types of protection units to control erroneous or unauthorized access to memory and peripheral registers. CM4 and CM0+ have Arm MPUs for protection at the bus master level. Other bus masters use additional MPUs. Shared memory protection units (SMPUs) help implement memory protection for memory/ resources that are shared among multiple bus masters. Peripheral protection units (PPU) are similar to SMPUs but are designed for protecting the peripheral register space.

Protection units support memory and peripheral access attributes including address range, read/write, code/data, privilege level, secure/non-secure, and protection context.

Protection units are configured at secure boot to control access privileges and rights for bus masters and peripherals.

Up to eight protection contexts (secure boot is in protection context 0) allow access privileges for memory and system resources to be set by the secure boot process per protection context by bus master and code privilege level. Multiple protection contexts are supported on the CPUs and the other bus masters. In the PSoC 64 line of processors, the SMPUs are set

up by default and cannot be modified by the user. See section 8 in the Architecture TRM for the protection context assignment.

Memory

PSoC 6 contains flash, SRAM, ROM, and eFuse memory blocks.

■ Flash

There is up to 1 MB of flash; however 192 KB is reserved for system usage, leaving 832 KB for applications, organized in 256 KB sectors. There are also two 32 KB flash sectors:

- □ Auxiliary flash (AUXflash), typically used for EEPROM emulation
- □ Supervisory flash (Sflash). Data stored in Sflash includes device trim values, Flash Boot code, and encryption keys.

In addition to Sflash, Flash Boot uses 192 KB of flash for additional security features in PSoC 64 Secure MCUs.

The flash has 128-bit-wide accesses to reduce power. Write operations can be performed at the row level. A row is 512 bytes. Read operations are supported in both System Low Power and Ultra-Low Power modes, however write operations may not be performed in System Ultra-Low Power mode.

The flash has two caches, one for each CPU. Each cache is 8 KB, with 4-way set associativity.

■ SRAM

There is up to 288 KB of SRAM; 184 KB is available for applications. It can be fully retained or retained in increments of user-designated 32-KB blocks.

The remaining 104 KB is reserved for system usage.

■ ROM

The 128-KB ROM, also referred to as the supervisory ROM (SROM), provides code (ROM Boot) for several system functions. The PSoC 6 MCU ROM contains device initialization, flash write, security, eFuse programming, and other system-level routines. ROM code is executed only by the CM0+CPU, in protection context 0. A system function can be initiated by either CPU, or through the DAP. This causes an NMI in CM0+, which causes CM0+ to execute the system function.

■ eFuse

A one-time-programmable (OTP) eFuse array consists of 1024 bits, all of which are reserved for system use. The bits are used for storing hash values, unique IDs, or other similar content in the PSoC 64 Secure MCUs.

Each fuse is individually programmed; once programmed (or "blown"), its state cannot be changed. Blowing a fuse transitions it from the default state of 0 to 1. To program an eFuse, V_{DDIO0} must be at 2.5 V ±5%, at 14 mA.

Because blowing an eFuse is an irreversible process, programming is recommended only in mass production programming under controlled factory conditions. For more information, see PSoC 6 MCU Programming Specifications.

Boot Code

Two blocks of code, ROM Boot and Flash Boot, are pre-programmed into the device and work together to provide device startup and configuration, basic security features, life-cycle stage management and other system functions.

■ ROM Boot

On a device reset, the boot code in ROM is the first code to execute. This code performs the following:

- ☐ Integrity checks of flash boot code
- ☐ Device trim setting (calibration)
- □ Setting the device protection units
- □ Setting device access restrictions for secure life-cycle states ROM cannot be changed and acts as the Root of Trust in a secure system.

■ Flash Boot

Flash boot is a firmware module stored in Sflash and application flash. It ensures that only a validated application may run on the device. It also ensures that the firmware image has not been modified, such as by a malicious third party.

Flash boot:

- ☐ Is validated by ROM Boot
- □ Runs after ROM Boot and before the user application
- Verifies the integrity of the user application
- □ Enables system calls
- ☐ Enables provisioning and device policy features
- □ Implements RoT-based Secure Services for Cryptography
- Provides secure storage for keys and certificates
- Validates and launches first image based on policies provisioned in the device

If the user application cannot be validated, then flash boot ensures that the device is transitioned into a safe state.

Memory Map

Both CPUs have a fixed address map, with shared access to memory and peripherals. The 32-bit (4 GB) address space is divided into the regions shown in Table 2. Note that code can be executed from the code and SRAM regions.

Table 2. Address Map for CM4 and CM0+

Address Range	Name	Use
0x0000 0000 – 0x1FFF FFFF	Code	Program code region. Data can also be placed here. It includes the exception vector table, which starts at address 0.
0x2000 0000 – 0x3FFF FFFF	SRAM	Data region. This region is not supported in PSoC 6.
0x4000 0000 – 0x5FFF FFFF	Peripheral	All peripheral registers. Code cannot be executed from this region. CM4 bit-band in this region is not supported in PSoC 6.
0x6000 0000 – 0x9FFF FFFF	External RAM	SMIF or Quad SPI, (see the QSPI Interface Serial Memory Interface (SMIF) section). Code can be executed from this region.
0xA000 0000 – 0xDFFF FFFF	External Device	Not used.
0xE000 0000 – 0xE00F FFFF	Private Peripheral Bus	Provides access to peripheral registers within the CPU core.
0xE010 0A000 – 0xFFFF FFFF	Device	Device-specific system registers.

The device memory map shown in Table 3 applies to both CPUs. That is, the CPUs share access to all PSoC 6 MCU memory and peripheral registers. Note that code can be executed from the Code, SRAM, and External RAM regions.

Table 3. Internal Memory Address Map for CM4 and CM0+

Address Range	Memory Type	Size
0x0000 0000 – 0x0001 FFFF	SROM, initial ROM boot code	128 KB
0x0800 0000 - 0x0802 DFFF 0x0802 E000 - 0x0804 7FFF	Application SRAM System SRAM	Up to 184 KB 104 KB
0x1000 0000 - 0x100C FFFF 0x100D 0000 - 0x100F FFFF	Application flash Secure code flash Used for secure boot, secure bootloader, and system calls	832 KB 192 KB
0x1400 0000 - 0x1400 7FFF	Auxiliary flash, can be used for EEPROM emulation	32 KB
0x1600 0000 - 0x1600 7FFF	Supervisory Flash, for secure access	32 KB

Note that the SRAM is located in the Code region for both CPUs (see Table 2). There is no physical memory located in the CPUs' SRAM region.

System Resources

Power System

The power system provides assurance that voltage levels are as required for each respective mode and will either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (brown-out detect (BOD)) when the power supply drops below specified levels. The design guarantees safe chip operation between power supply voltage dropping below specified levels (for example, below 1.7 V) and the reset occurring. There are no voltage sequencing requirements.

The V_{DD} supply (1.7 to 3.6 V) powers an on-chip buck regulator or an LDO, selectable by the user. In addition, both the buck and the LDO offer a selectable (0.9 or 1.1 V) core operating voltage (V_{CCD}). The selection lets users choose between two system power modes:

- System Low Power (LP) operates V_{CCD} at 1.1 V and offers high performance, with no restrictions on any of the device configurations
- System Ultra Low Power (ULP) operates V_{CCD} at 0.9 V for exceptional low power results, but imposes limitations on maximum clock speeds.

An additional backup domain adds an "always on" functionality using a separate power domain supplied by a backup supply (V_{BACKUP}) such as a battery or supercapacitor. It includes a real-time clock (RTC) with alarm feature, supported by a 32.768-kHz watch crystal oscillator (WCO), and power-management IC (PMIC) control. Pin 5 of Port 0 (P0.5) can be assigned as an enable signal for an external PMIC. RTC alarms can be used as a trigger for the PMIC enable signal.

Power Modes

PSoC 6 MCU can operate in four system and three CPU power modes. These modes are intended to minimize the average power consumption in an application. For more details on power modes and other power-saving configuration options, see the application note, AN219528: PSoC 6 MCU Low-Power Modes and Power Reduction Techniques and the Architecture TRM, Power Modes chapter.

Power modes supported by PSoC 6 MCUs, in the order of decreasing power consumption, are:

- System Low Power (LP) All peripherals and CPU power modes are available at maximum speed
- System Ultra Low Power (ULP) All peripherals and CPU power modes are available, but with limited speed
- CPU Active CPU is executing code in system LP or ULP mode
- CPU Sleep CPU code execution is halted in system LP or ULP mode
- CPU Deep Sleep CPU code execution is halted and system Deep Sleep is requested in system LP or ULP mode
- System Deep Sleep Only low-frequency peripherals are available after both CPUs enter CPU Deep Sleep mode
- System Hibernate Device and I/O states are frozen and the device resets on wakeup

CPU Active, Sleep, and Deep Sleep are standard Arm-defined power modes supported by the Arm CPU instruction set architecture (ISA). LP, ULP, Deep Sleep and Hibernate modes are additional low-power modes supported by PSoC 6 MCU. Hibernate mode is the lowest power mode in the PSoC 6 MCU and on wakeup, the CPU and all peripherals go through a reset.

Clock System

The PSoC 64 clock system consists of the following (see Figure 3):

- IMO
- ILO/PILO
- Watch crystal oscillator (WCO)
- External MHz crystal oscillator (ECO)
- External clock input
- One PLL
- One FLL

Clocks may be buffered and brought out to a pin on a smart I/O port.

IMO Clock Source

The IMO is the primary source of internal clocking. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 8 MHz. IMO tolerance is $\pm 2\%$ and its current consumption is less than 10 μ A.

ILO Clock Source

The ILO is a very low power oscillator, nominally 32 kHz, which operates in all power modes. The ILO can be calibrated against a higher accuracy clock for better accuracy.

Precision ILO (PILO)

PILO is an additional source that can provide a more accurate 32.768-kHz clock than ILO when periodically calibrated using a high-accuracy clock such as the ECO. The PILO works in Deep Sleep and higher modes. It does not work in Hibernate mode.

Figure 3. Clocking Diagram

Watchdog Timers (WDT, MCWDT)

PSoC 6 has one WDT and two multi-counter WDTs (MCWDT). The WDT has a 16-bit free-running counter. Each MCWDT has two 16-bit counters and one 32-bit counter, with multiple operating modes. All of the 16-bit counters can generate a watchdog device reset. All of the counters can generate an interrupt on a match event.

The WDT is clocked by the ILO. It can do interrupt/wakeup generation in LP/ULP, Deep Sleep, and Hibernate power modes. The MCWDTs are clocked by LFCLK (ILO or WCO). It can do periodic interrupt / wakeup generation in LP/ULP and Deep Sleep power modes.

Clock Dividers

Integer and fractional clock dividers are provided for peripheral use and timing purposes. There are:

- Eight 8-bit clock dividers
- Sixteen 16-bit integer clock dividers
- Four 16.5-bit fractional clock dividers
- One 24.5-bit fractional clock divider

Trigger Routing

PSoC 6 MCU contains a trigger multiplexer block. This is a collection of digital multiplexers and switches that are used for routing trigger signals between peripheral blocks and between GPIOs and peripheral blocks.

Use cases include:

- Routing the ADC end of conversion signal to DMA to move the ADC result into memory
- Routing the comparator output to trigger a timer, etc.

Some of the trigger multiplexers include logic for inversion and edge detection of trigger signals.

Reset

PSoC 6 MCU can be reset from a variety of sources:

- Power-on reset (POR) to hold the device in reset while the power supply ramps up to the level required for the device to function properly. POR activates automatically at power-up.
- Brown-out detect (BOD) reset to monitor the digital voltage supply V_{DDD} and generate a reset if V_{DDD} falls below the minimum required logic operating voltage.
- External reset (XRES) to reset the device using an external input. The XRES pin is active LOW a logic '1' on the pin has no effect and a logic '0' causes reset. The pin is pulled to logic '1' inside the device. XRES is available as a dedicated pin.
- Watchdog timer (WDT or MCWDT) to reset the device if firmware fails to service it within a specified timeout period.
- Software-initiated reset to reset the device on demand using firmware.
- Logic-protection fault can trigger an interrupt to a fault handler or reset the device if unauthorized operating conditions occur; for example, reaching a debug breakpoint while executing privileged code.
- Hibernate wakeup reset to bring the device out of the Hibernate low-power mode.

Reset events are asynchronous and guarantee reversion to a known state. Some of the reset sources are recorded in a register, which is retained through reset and allows software to determine the cause of the reset.

Programmable Analog Subsystem

12-bit SAR ADC

The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion. One of three internal reference voltages may be used for the ADC reference voltage. The references are, $V_{\rm DD},\,V_{\rm DD}/2,\,{\rm and}\,V_{\rm REF}$ (nominally 1.2 V and trimmed to ±1%). An external reference may also be used, by either driving the VREF pin or routing an external reference to GPIO pin P9.7. These reference options allow ratio-metric readings or absolute readings at the accuracy of the reference used. The input range of the ADC is the full supply voltage between $V_{\rm SS}$ and $V_{\rm DDA}/V_{\rm DDIOA}.$ The SAR ADC may be configured with a mix of single ended and differential signals in the same configuration.

The SAR ADC's sample-and-hold (S/H) aperture is programmable to allow sufficient time for signals with a high impedance to settle sufficiently, if required. System performance will be 65 dB for true 12-bit precision provided appropriate references are used and system noise levels permit it. To improve performance in noisy conditions, an external bypass capacitor for the internal reference amplifier (through the fixed "VREF" pin), may be added.

The SAR is connected to a fixed set of pins through an input multiplexer. The multiplexer cycles through the selected channels autonomously (sequencer scan) and does so with zero switching overhead (that is, the aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The result of each channel is buffered, so that an interrupt may be triggered only when a full scan of all channels is complete. Also, a pair of range registers can be set to detect and cause an interrupt if an input exceeds a minimum and/or maximum value. This allows fast detection of out-of-range values without having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software. The SAR can also be connected, under firmware control, to most other GPIO pins via the Analog Multiplexer Bus (AMUXBUS). The SAR is not available in Deep Sleep and Hibernate modes as it requires a high -speed clock (up to 18 MHz). The SAR operating range is 1.71 to 3.6 V.

Temperature Sensor

An on-chip temperature sensor is part of the SAR and may be scanned by the SAR ADC. It consists of a diode, which is biased by a current source that can be disabled to save power. The temperature sensor may be connected directly to the SAR ADC as one of the measurement channels. The ADC digitizes the temperature sensor's output and a Cypress-supplied software function may be used to convert the reading to temperature which includes calibration and linearization.

12-bit Digital-Analog Converter

There is a 12-bit voltage mode DAC on the chip, which can settle in less than 2 μ s. The DAC may be driven by the DMA controllers to generate user-defined waveforms. The DAC output from the chip can either be the resistive ladder output (highly linear near ground) or a buffered output using an opamp in the CTBm block.

Continuous Time Block (CTBm) with Two Opamps

This block consists of two opamps, which have their inputs and outputs connected to pins and other analog blocks, as Figure 4 shows. They have three power modes (high, medium, and low) and a comparator mode. The Opamps can be used to buffer SAR inputs and DAC outputs. The non-inverting inputs of these opamps can be connected to either of two pins, thus allowing independent sensors to be used at different times. The pin selection can be made via firmware.

The opamps also support operation in system Deep Sleep mode, with lower performance and reduced power consumption.

Low-Power Comparators

Two low-power comparators are provided, which can operate in all power modes. This allows other analog system resources to be disabled while retaining the ability to monitor external voltage levels during Deep Sleep and Hibernate modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode (Hibernate) where the system wake-up circuit is activated by a comparator-switch event.

Figure 4. Analog Subsystem

Programmable Digital

Smart I/O

Smart I/O™ is a programmable logic fabric that enables Boolean operations on signals traveling from device internal resources to the GPIO pins or on signals traveling into the device from external sources. The Smart I/O block sits between the GPIO pins and the high-speed I/O matrix (HSIOM) and is dedicated to a single port.

There are two Smart I/O blocks: one on Port 8 and one on Port 9. When the Smart I/O is not enabled, all signals on Port 8 and Port 9 bypass the Smart I/O hardware.

Smart I/O supports:

- System Deep Sleep operation
- Boolean operations without CPU intervention
- Asynchronous or synchronous (clocked) operation

Each Smart I/O block contains a data unit (DU) and eight look up tables (LUTs).

The DU:

- Performs unique functions based on a selectable opcode.
- Can source input signals from internal resources, the GPIO port, or a value in the DU register.

Each LUT:

- Has three selectable input sources. The input signals may be sourced from another LUT, an internal resource, an external signal from a GPIO pin, or from the DU.
- Acts as a programmable Boolean logic table.
- Can be synchronous or asynchronous.

Universal Digital Blocks (UDBs) and Port Interfaces

has 12 UDBs; the UDB array also provides a switched Digital System Interconnect (DSI) fabric that allows signals from peripherals and ports to be routed to and through the UDBs for communication and control.

Fixed-Function Digital

Timer/Counter/PWM Block

- The TCPWM supports the following operational modes:
 - ☐ Timer-counter with compare
 - □ Timer-counter with capture
 - □ Quadrature decoding
 - □ Pulse width modulation (PWM)
 - □ Pseudo-random PWM
 - □ PWM with dead time
- Up, down, and up/down counting modes.
- Clock prescaling (division by 1, 2, 4, ... 64, 128)
- Double buffering of compare/capture and period values
- Underflow, overflow, and capture/compare output signals
- Supports interrupt on:
 - □ Terminal count Depends on the mode; typically occurs on overflow or underflow
 - □ Capture/compare The count is captured to the capture register or the counter value equals the value in the compare register

- Complementary output for PWMs
- Selectable start, reload, stop, count, and capture event signals for each TCPWM with rising edge, falling edge, both edges, and level trigger options. The TCPWM has a Kill input to force outputs to a predetermined state.

In this device there are:

- Eight 32-bit TCPWMs
- Twenty-four 16-bit TCPWMs

Serial Communication Blocks (SCB)

PSoC 64 SecureBoot MCU has 9 SCBs:

- Eight can implement either I²C, UART, or SPI.
- One SCB (SCB #8) can operate in Deep Sleep with an external clock, this SCB can be either SPI slave or I²C slave.

I²C Mode: The SCB can implement a full multi-master and slave interface (it is capable of multimaster arbitration). This block can operate at speeds of up to 1 Mbps (Fast Mode Plus). It also supports EzI2C that creates a mailbox address range in the memory of and effectively reduces the I²C communication to reading from and writing to an array in the memory.The SCB supports a 256-byte FIFO for receive and transmit.

The I²C peripheral is compatible with I²C standard-mode, Fast Mode, and Fast Mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

UART Mode: This is a full-feature UART operating at up to 8 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows the addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. A 256-byte FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI Secure Simple Pairing (SSP) (essentially adds a start pulse that is used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block supports an EzSPI mode in which the data interchange is reduced to reading and writing an array in memory. The SPI interface will operate with a 25-MHz SPI Clock.

USB Full-Speed Dual Role Host and Device Interface

PSoC 64 incorporates a dual-role USB Host and Device interface. The device can have up to eight endpoints. A 512 byte SRAM buffer is provided and DMA is supported.

QSPI Interface Serial Memory Interface (SMIF)

A serial memory interface is provided, running at up to 80 MHz. It supports single, dual, quad, dual-quad and octal SPI configurations, and supports up to four external memory devices. It supports two modes of operation:

- Memory-mapped I/O (MMIO), a command mode interface that provides data access via the SMIF registers and FIFOs
- Execute in Place (XIP), in which AHB reads and writes are directly translated to SPI read and write transfers.

In XIP mode, the external memory is mapped into the PSoC 6 MCU internal address space, enabling code execution directly from the external memory. To improve performance, a 4-KB cache is included. XIP mode also supports AES-128 on-the-fly encryption and decryption, enabling secure storage and access of code and data in the external memory.

LCD Block

This block drives LCD commons and segments; routing is available to most of the GPIOs. The LCD block has two modes of operation: high speed (8 MHz) and low speed (32 kHz). Both modes operate in system LP and ULP modes. Low-speed mode operates with reduced contrast in system Deep Sleep mode review the number of common and segment lines, viewing angle requirements, and prototype performance before using this mode.

GPIO

PSoC 64 has up to 100 GPIOs. The GPIO block implements the following:

- Eight drive strength modes:
 - ☐ Analog input mode (input and output buffers disabled)
 - Input only
 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - ☐ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Hold mode for latching previous state (used for retaining the I/O state in system Hibernate mode)
- Selectable slew rates for dV/dt-related noise control to improve FMI

The pins are organized in logical entities called ports, which are up to 8 pins in width. Data output and pin state registers store, respectively, the values to be driven on the pins and the input states of the pins.

Every pin can generate an interrupt if enabled; each port has an interrupt request (IRQ) associated with it.

The port 1 pins are capable of overvoltage-tolerant (OVT) operation, where the input voltage may be higher than V_{DDD} . OVT pins are commonly used with I^2C , to allow powering the chip OFF while maintaining a physical connection to an operating I^2C bus without affecting its functionality.

GPIO pins can be ganged to source or sink higher values of current. GPIO pins, including OVT pins, may not be pulled up higher than the absolute maximum; see Electrical Specifications.

During power-on and reset, the pins are forced to the analog input drive mode, with input and output buffers disabled, so as not to crowbar any inputs and/or cause excess turn-on current.

A multiplexing network known as the high-speed I/O matrix (HSIOM) is used to multiplex between various peripheral and analog signals that may connect to an I/O pin.

Special-Function Peripherals

Audio Subsystem

This subsystem consists of the following hardware blocks:

- One Inter-IC Sound (I²S) interface
- Two pulse-density modulation to pulse-code modulation decoder channels

The I²S interface implements two independent hardware FIFO buffers – TX and RX, which can operate in master or slave mode. The following features are supported:

- Multiple data formats I²S, left-justified, Time Division Multiplexed (TDM) mode A, and TDM mode B
- Programmable channel/word lengths 8/16/18/20/24/32 bits
- Internal/external clock operation. Up to 192 ksps
- Interrupt mask events trigger, not empty, full, overflow, underflow, watchdog
- Configurable FIFO trigger level with DMA support

The I²S interface is commonly used to connect with audio codecs, simple DACs, and digital microphones.

The PDM-to-PCM decoder implements a single hardware RX FIFO that decodes a stereo or mono 1-bit PDM input stream to PCM data output. The following features are supported:

- Programmable data output word length 16/18/20/24 bits
- Programmable gain amplifier (PGA) for volume control from –12 dB to +10.5 dB in 1.5 dB steps
- Configurable PDM clock generation. Range from 384 kHz to 3.072 MHz
- Droop correction and configurable decimation rate for sampling; up to 48 ksps
- Programmable high-pass filter gain
- Interrupt mask events not empty, overflow, trigger, underflow
- Configurable FIFO trigger level with DMA support

The PDM-to-PCM decoder is commonly used to connect to digital PDM microphones. Up to two microphones can be connected to the same PDM Data line.

CapSense Subsystem

CapSense is supported in PSoC 6 MCU through a CapSense sigma-delta (CSD) hardware block. It is designed for high-sensitivity self-capacitance and mutual-capacitance measurements, and is specifically built for user interface solutions.

In addition to CapSense, the CSD hardware block supports three general-purpose functions. These are available when CapSense is not being used. Alternatively, two or more functions can be time-multiplexed in an application under firmware control. The four functions supported by the CSD hardware block are:

- CapSense
- 10-bit ADC
- Programmable current sources (IDAC)
- Comparator

CapSense

Capacitive touch sensors are designed for user interfaces that rely on human body capacitance to detect the presence of a finger on or near a sensor. Cypress CapSense solutions bring elegant, reliable, and simple capacitive touch sensing functions to applications including IoT, industrial, automotive, and home appliances.

The Cypress-proprietary CapSense technology offers the following features:

- Best-in-class signal-to-noise ratio (SNR) and robust sensing under harsh and noisy conditions
- Self-capacitance (CSD) and mutual-capacitance (CSX) sensing methods
- Support for various widgets, including buttons, matrix buttons, sliders, touchpads, and proximity sensors
- High-performance sensing across a variety of materials
- Best-in-class liquid tolerance
- SmartSense™ auto-tuning technology that helps avoid complex manual tuning processes
- Superior immunity against external noise
- Spread-spectrum clocks for low radiated emissions
- Gesture and built-in self-test libraries
- Ultra-low power consumption
- An integrated graphical CapSense tuner for real-time tuning, testing, and debugging

ADC

The CapSense subsystem slope ADC offers the following features:

- Selectable 8- or 10-bit resolution
- Selectable input range: GND to V_{REF} and GND to V_{DDA} on any GPIO input
- Measurement of V_{DDA} against an internal reference without the use of GPIO or external components

IDAC

The CSD block has two programmable current sources, which offer the following features:

- 7-bit resolution
- Sink and source current modes
- A current source programmable from 37.5 nA to 609 μA
- Two IDACs that can be used in parallel to form one 8-bit IDAC

Comparator

The CapSense subsystem comparator operates in the System Low Power and Ultra-Low Power modes. The inverting input is connected to an internal programmable reference voltage and the non-inverting input can be connected to any GPIO via the AMUXBUS.

CapSense Hardware Subsystem

Figure 5 shows the high-level hardware overview of the CapSense subsystem, which includes a delta sigma converter, internal clock dividers, a shield driver, and two programmable current sources.

The inputs are managed through analog multiplexed buses (AMUXBUS A/B). The input and output of all functions offered by the CSD block can be provided on any GPIO or on a group of GPIOs under software control, with the exception of the comparator output and external capacitors that use dedicated GPIOs.

Self-capacitance is supported by the CSD block using AMUXBUS A, an external modulator capacitor, and a GPIO for each sensor. There is a shield electrode (optional) for self-capacitance sensing. This is supported using AMUXBUS B and an optional external shield tank capacitor (to increase the drive capability of the shield driver) should this be required. Mutual-capacitance is supported by the CSD block using AMUXBUS A, two external integrated capacitors, and a GPIO for transmit and receive electrodes.

The ADC does not require an external component. Any GPIO that can be connected to AMUXBUS A can be an input to the ADC under software control. The ADC can accept V_{DDA} as an input without needing GPIOs (for applications such as battery voltage measurement).

The two programmable current sources (IDACs) in general-purpose mode can be connected to AMUXBUS A or B. They can therefore connect to any GPIO pin. The comparator resides in the delta-sigma converter. The comparator inverting input can be connected to the reference. Both comparator inputs can be connected to any GPIO using AMUXBUSB; see Figure 4. The reference has a direct connection to a dedicated GPIO; see Table 6.

The CSD block can operate in active and sleep CPU power modes, and seamlessly transition between LP and ULP system modes. It can be powered down in Deep Sleep and Hibernate modes. Upon wakeup from Hibernate mode, the CSD block requires re-initialization. However, operation can be resumed without re-initialization upon exit from Deep Sleep mode, under firmware control.

Figure 5. CapSense Hardware Subsystem

Figure 6 shows the high-level software overview. Cypress provides a middleware library for each function to enable quick integration. User applications interact only with middleware to implement functions of the CSD block. The middleware interacts with underlying drivers to access hardware as necessary. The CSD driver facilitates time-multiplexing of the CSD hardware if more than one piece of CSD-related middleware is present in a project. It prevents access conflicts in this case.

CapSense middleware has configurator software to enable fast configuration and incorporating it into middleware. It also has a tuner for performance evaluation and real-time tuning of the system. Both can be launched from the ModusToolbox IDE or in standalone mode. The tuner requires the EZ12C communication interface in the application to enable real-time tuning capability. The tuner can update configuration parameters directly in the device as well as in the configurator.

CapSense and ADC middleware use the CSD interrupt to implement non-blocking sensing and A-to-D conversion. Therefore, interrupt service routines are a defined part of the middleware, which must be initialized by the application. Middleware and drivers can operate on either CPU. Cypress recommends using the middleware only in one CPU. If both CPUs must access the CSD driver, memory access should be managed in the application.

Refer to AN85951: PSoC 4 and PSoC 6 MCU CapSense Design Guide for more details on CSX sensing, CSD sensing, shield electrode usage and its benefits, and capacitive system design guidelines. Refer to the middleware API reference guide available in the PSoC 6 SDK for more detail on middleware.

Figure 6. CapSense Software/Firmware Subsystem

Secure Boot Functionality

The PSoC64 family of devices support both secure boot functionality and a way to securely provision user credentials. This is achieved by a chain of signed firmware launches, based on a hardware-based RoT. This RoT is initially owned by Cypress and will be handed off to the user/OEM during the provisioning process.

Provisioning Scheme

The provisioning process of the PSoC 64 secure parts achieves the following goals:

- 1. Transfer RoT from Cypress to the user/OEM
- Transfer any secure assets such as keys, certificates, and secure bootloader into the device
- Set up policies which govern the debug and boot-up behavior of the device

This is achieved by sending a series of signed Java Web Tokens (JWTs) to the part.

The high-level flow of provisioning is shown in the following diagram.

This provisioning scheme allows a chain of trust where assets and subsequent firmware can only be injected after the RoT is handed off to a Cypress-trusted distributor.

The transfer of the Root-of-Trust to the user/OEM key is done in a two step process where:

- 1. Cypress authorizes a Hardware Security Module (HSM) by signing the HSM public key
- 2. The User/OEM authorizes the HSM by signing the same public key as well as the public Root-of-Trust key, which needs to be put into the device

The PSoC 64 Secure MCU, which has the Cypress public key, will validate the signatures and contents of the presented tokens. Once verified, the Root-of-Trust is permanently moved to the OEM-public key and any OEM assets, such as keys and debug policies, will need to be signed by the OEM private key.

For development, the SecureBoot SDK will provide a pre-signed HSM public key along with an exposed HSM private key. These must not be used for production as they are inherently insecure as the private key is completely exposed in the SDK.

Secure Boot Scheme

Once the provisioning step is complete, the immutable boot code

- Reads the debug policy for setting access restrictions to DAP ports
- 2. Reads the boot policy and verifies if the subsequent image is signed by the correct key before launch.

The PSoC 64 development libraries come with a Cypress-developed bootloader, which can be programmed into the part for the first image launch. The Cypress Secure

Bootloader is a optimized version of the MCUBoot SecureBoot library with added features to use PSoC 6 protection contexts and the ability read provisioned policies to find the image-key mapping.

A high-level view of the image launches are shown in the following diagram.

Pinouts

GPIO ports are powered by V_{DDx} pins as follows:

- P0: V_{BACKUP}
- P1: V_{DDD}. Port 1 pins are overvoltage tolerant (OVT).
- P2, P3, P4: V_{DDIO2}
- P5, P6, P7, P8: V_{DDIO1}
- P9, P10: V_{DDIOA}, V_{DDA} (V_{DDIOA} and V_{DDA} must be connected together on the PCB)
- P11, P12, P13: V_{DDIO0}
- P14: V_{DDUSB}

Table 4. Pin Information

Pin	Package					
	124-BGA					
V_{DDD}	A1					
V _{CCD}	A2					
V_{DDA}	A12					
V_{DDIOA}	A13					
$V_{\rm DDIO0}$	C4					
V _{DDIO1}	K12					
$V_{\rm DDIO2}$	L4					
V _{BACKUP}	D1					
V_{DDUSB}	M1					
V _{SS}	B12, C3, D4, D10, K4, K10					
V _{DD_NS}	J1					
V _{IND1}	J2					
V _{IND2}	K2					
V _{BUCK1}	K3					
V _{RF}	K1					
XRES	F1					
V_{REF}	B13					
P0.0	E3					
P0.1	E2					
P0.2	E1					
P0.3	F3					
P0.4	F2					
P0.5	G3					
P1.0	G2					
P1.1	G1					
P1.2	H3					
P1.3	H2					
P1.4	H1					
P1.5	J3					
P10.2	B11					
P10.3	C11					

Pin	Package					
FIII	124-BGA					
P2.0	M2					
P2.1	N2					
P2.2	L3					
P2.3	M3					
P2.4	N3					
P2.5	N1					
P2.6	M4					
P2.7	N4					
P3.0	L5					
P3.1	M5					
P3.2	N5					
P3.3	L6					
P3.4	M6					
P3.5	N6					
P4.0	L7					
P4.1	M7					
P5.0	N7					
P5.1	L8					
P5.2	M8					
P5.3	N8					
P5.4	L9					
P5.5	M9					
P5.6	N9					
P5.7	N10					
P6.0	M10					
P6.1	L10					
P6.2	L11					
P6.3	M11					
P6.4	N11					
P11.5	A7					
P11.6	B7					

	Package
Pin	124-BGA
P6.5	M12
P6.6	N12
P6.7	M13
P7.0	L13
P7.1	L12
P7.2	K13
P7.3	N13
P7.4	K11
P7.5	J13
P7.6	J12
P7.7	J11
P8.0	H13
P8.1	H12
P8.2	H11
P8.3	G13
P8.4	G12
P8.5	G11
P8.6	F13
P8.7	F12
P9.0	E11
P9.1	E12
P9.2	E13
P9.3	F11
P9.4	D13
P9.5	D12
P9.6	D11
P9.7	C13
P10.0	C12
P10.1	A11
P13.0	B1
P13.1	A3

Table 4. Pin Information (continued)

Pin	Package
PIII	124-BGA
P10.4	A10
P10.5	B10
P10.6	C10
P10.7	A9
P11.0	B9
P11.1	C9
P11.2	A8
P11.3	B8
P11.4	C8

Di-	Package
Pin	124-BGA
P11.7	C7
P12.0	A6
P12.1	B6
P12.2	C6
P12.3	A5
P12.4	B5
P12.5	C5
P12.6	A4
P12.7	B4

	Bookogo
Pin	Package
•	124-BGA
P13.2	B3
P13.3	B2
P13.4	C2
P13.5	C1
P13.6	D3
P13.7	D2
P14.0 / USBDP	L2
P14.1 / USBDM	L1

Each Port Pin has multiple alternate functions. These are defined in Table 5.

Table 5. Multiple Alternate Functions^[1]

Port/ Pin	ACT#0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P0.0	tcpwm[0].li ne[0]:0	tcpwm[1].lin e[0]:0		srss.ext_ clk:0				scb[0].spi_ select1:0			peri.tr_io_in put[0]:0						
P0.1	tcpwm[0].li ne_compl[0]:0	tcpwm[1].lin e_compl[0]: 0						scb[0].spi_ select2:0			peri.tr_io_in put[1]:0					cpuss.swj_ trstn	
P0.2		tcpwm[1].lin e[1]:0				scb[0].uart _rx:0	scb[0].i2c _scl:0	scb[0].spi_ mosi:0									
P0.3	tcpwm[0].li ne_compl[1]:0	tcpwm[1].lin e_compl[1]: 0				scb[0].uart _tx:0	scb[0].i2c _sda:0	scb[0].spi_ miso:0									
P0.4	tcpwm[0].li ne[2]:0	tcpwm[1].lin e[2]:0				scb[0].uart _rts:0		scb[0].spi_ clk:0				peri.tr_io_ output[0]:2					
P0.5	tcpwm[0].li ne_compl[2]:0	tcpwm[1].lin e_compl[2]: 0		srss.ext_ clk:1		scb[0].uart _cts:0		scb[0].spi_ select0:0				peri.tr_io_ output[1]:2					
P1.0	tcpwm[0].li ne[3]:0	tcpwm[1].lin e[3]:0				scb[7].uart _rx:0	scb[7].i2c _scl:0	scb[7].spi_ mosi:0			peri.tr_io_in put[2]:0						
P1.1	tcpwm[0].li ne_compl[3]:0	tcpwm[1].lin e_compl[3]: 0				scb[7].uart _tx:0	scb[7].i2c _sda:0	scb[7].spi_ miso:0			peri.tr_io_in put[3]:0						
P1.2	tcpwm[0].li ne[4]:4	tcpwm[1].lin e[12]:1				scb[7].uart _rts:0		scb[7].spi_ clk:0									
P1.3	tcpwm[0].li ne_compl[4]:4	tcpwm[1].lin e_compl[12]:1				scb[7].uart _cts:0		scb[7].spi_ select0:0									
P1.4	tcpwm[0].li ne[5]:4	tcpwm[1].lin e[13]:1						scb[7].spi_ select1:0									
P1.5	tcpwm[0].li ne_compl[5]:4	tcpwm[1].lin e_compl[14]:1						scb[7].spi_ select2:0									
P14.0																	
P14.1																	
P2.0	tcpwm[0].li ne[6]:4	tcpwm[1].lin e[15]:1				scb[1].uart _rx:0	scb[1].i2c _scl:0	scb[1].spi_ mosi:0			peri.tr_io_in put[4]:0				bless.mxd_ dpslp_ret_s witch_hv		
P2.1	tcpwm[0].li ne_compl[6]:4	tcpwm[1].lin e_compl[15]:1				scb[1].uart _tx:0	scb[1].i2c _sda:0	scb[1].spi_ miso:0			peri.tr_io_in put[5]:0				bless.mxd_ dpslp_ret_l do_ol_hv		

^{1.} The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximise utilisation of on-chip resources.

Table 5. Multiple Alternate Functions^[1] (continued)

Port/ Pin	ACT#0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P2.2	tcpwm[0].li ne[7]:4	tcpwm[1].lin e[16]:1				scb[1].uart _rts:0		scb[1].spi_ clk:0							bless.mxd_ dpslp buck_en		
P2.3	tcpwm[0].li ne_compl[7]:4	tcpwm[1].lin e_compl[16]:1				scb[1].uart _cts:0		scb[1].spi_ select0:0							bless.mxd_ dpslp_re- set_n		
P2.4	tcpwm[0].li ne[0]:5	tcpwm[1].lin e[17]:1						scb[1].spi_ select1:0							bless.mxd_ dpslp clk_en		
P2.5	tcpwm[0].li ne_compl[0]:5	tcpwm[1].lin e_compl[17]:1						scb[1].spi_ select2:0							bless.mxd_ dpslp_iso- late_n		
P2.6	tcpwm[0].li ne[1]:5	tcpwm[1].lin e[18]:1						scb[1].spi_ select3:0							bless.mxd_ dpslp_act_l do_en		
P2.7	tcpwm[0].li ne_compl[1]:5	tcpwm[1].lin e_compl[18]:1													bless.mxd_ dpslp_x- tal_en		
P3.0	tcpwm[0].li ne[2]:5	tcpwm[1].lin e[19]:1				scb[2].uart _rx:1	scb[2].i2c _scl:1	scb[2].spi_ mosi:1			peri.tr_io_in put[6]:0				bless.mxd_ dpslp_dig_I do_en		
P3.1	tcpwm[0].li ne_compl[2]:5	tcpwm[1].lin e_compl[19]:1				scb[2].uart _tx:1	scb[2].i2c _sda:1	scb[2].spi_ miso:1			peri.tr_io_in put[7]:0		bless.mxd_ act_d- bus_rx_en				
P3.2	tcpwm[0].li ne[3]:5	tcpwm[1].lin e[20]:1				scb[2].uart _rts:1		scb[2].spi_ clk:1					bless.mxd_ act_d- bus_tx_en				
P3.3	tcpwm[0].li ne_compl[3]:5	tcpwm[1].lin e_compl[20]:1				scb[2].uart _cts:1		scb[2].spi_ select0:1					bless.mxd_ act_bpktctl				
P3.4	tcpwm[0].li ne[4]:5	tcpwm[1].lin e[21]:1						scb[2].spi_ select1:1					bless.mxd_ act_tx- d_rxd				
P3.5	tcpwm[0].li ne_compl[4]:5	tcpwm[1].lin e_compl[21]:1						scb[2].spi_ select2:1					bless.mxd_ dpslp_rc- b_data				
P4.0	tcpwm[0].li ne[5]:5	tcpwm[1].lin e[22]:1				scb[7].uart _rx:1	scb[7].i2c _scl:1	scb[7].spi_ mosi:1			peri.tr_io_in put[8]:0		bless.mxd_ dpslp_rc- b_clk				
P4.1	tcpwm[0].li ne_compl[5]:5	tcpwm[1].lin e_compl[22]:1				scb[7].uart _tx:1	scb[7].i2c _sda:1	scb[7].spi_ miso:1			peri.tr_io_in put[9]:0		bless.mxd_ dpslp_rcb_ le				

^{1.} The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximise utilisation of on-chip resources.

Table 5. Multiple Alternate Functions^[1] (continued)

Port/ Pin	ACT#0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P4.2	tcpwm[0].li ne[6]:5	tcpwm[1].lin e[23]:1				scb[7].uart _rts:1		scb[7].spi_ clk:1									
P4.3	tcpwm[0].li ne_compl[6]:5	tcpwm[1].lin e_compl[23]:1				scb[7].uart _cts:1		scb[7].spi_ select0:1							bless.mxd_ dpslp_mx- d_clk_out		
P5.0	tcpwm[0].li ne[4]:0	tcpwm[1].lin e[4]:0				scb[5].uart _rx:0	scb[5].i2c _scl:0	scb[5].spi_ mosi:0		audioss.clk _i2s_if	peri.tr_io_in put[10]:0						
P5.1	tcpwm[0].li ne_compl[4]:0	tcpwm[1].lin e_compl[4]: 0				scb[5].uart _tx:0	scb[5].i2c _sda:0	scb[5].spi_ miso:0		audioss.tx _sck	peri.tr_io_in put[11]:0						
P5.2	tcpwm[0].li ne[5]:0	tcpwm[1].lin e[5]:0				scb[5].uart _rts:0		scb[5].spi_ clk:0		audioss.tx _ws							
P5.3	tcpwm[0].li ne_compl[5]:0	tcpwm[1].lin e_compl[5]: 0				scb[5].uart _cts:0		scb[5].spi_ select0:0		audioss.tx _sdo							
P5.4	tcpwm[0].li ne[6]:0	tcpwm[1].lin e[6]:0						scb[5].spi_ select1:0		audioss.rx _sck							
P5.5	tcpwm[0].li ne_compl[6]:0	tcpwm[1].lin e_compl[6]: 0						scb[5].spi_ select2:0		audioss.rx _ws							
P5.6	tcpwm[0].li ne[7]:0	tcpwm[1].lin e[7]:0						scb[5].spi_ select3:0		audioss.rx _sdi							
P5.7	tcpwm[0].li ne_compl[7]:0	tcpwm[1].lin e_compl[7]: 0						scb[3].spi_ select3:0									
P6.0	tcpwm[0].li ne[0]:1	tcpwm[1].lin e[8]:0	scb[8].i2 c_scl:0			scb[3].uart _rx:0	scb[3].i2c _scl:0	scb[3].spi_ mosi:0				cpuss.fault _out[0]					scb[8].spi _mosi:0
P6.1	tcpwm[0].li ne_compl[0]:1	tcpwm[1].lin e_compl[8]: 0	scb[8].i2 c_sda:0			scb[3].uart _tx:0	scb[3].i2c _sda:0	scb[3].spi_ miso:0				cpuss.fault _out[1]					scb[8].spi _miso:0
P6.2	tcpwm[0].li ne[1]:1	tcpwm[1].lin e[9]:0				scb[3].uart _rts:0		scb[3].spi_ clk:0									scb[8].spi _clk:0
P6.3	tcpwm[0].li ne_compl[1]:1	tcpwm[1].lin e_compl[9]: 0				scb[3].uart _cts:0		scb[3].spi_ select0:0									scb[8].spi _select0:0
P6.4	tcpwm[0].li ne[2]:1	tcpwm[1].lin e[10]:0	scb[8].i2 c_scl:1			scb[6].uart _rx:2	scb[6].i2c _scl:2	scb[6].spi_ mosi:2			peri.tr_io_in put[12]:0	peri.tr_io_ output[0]:1				cpuss.swj_ swo_tdo	scb[8].spi _mosi:1
P6.5	tcpwm[0].li ne_compl[2]:1	tcpwm[1].lin e_compl[10]:0	scb[8].i2 c_sda:1			scb[6].uart _tx:2	scb[6].i2c _sda:2	scb[6].spi_ miso:2			peri.tr_io_in put[13]:0	peri.tr_io_ output[1]:1				cpuss.swj_ swdoe_tdi	scb[8].spi _miso:1

Note

^{1.} The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

Table 5. Multiple Alternate Functions^[1] (continued)

Port/ Pin	ACT #0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P6.6	tcpwm[0].li ne[3]:1	tcpwm[1].lin e[11]:0				scb[6].uart _rts:2		scb[6].spi_ clk:2								cpuss.swj_ swdio_tms	scb[8].spi _clk:1
P6.7	tcpwm[0].li ne_compl[3]:1	tcpwm[1].lin e_compl[11] :0				scb[6].uart _cts:2		scb[6].spi_ select0:2								cpuss.swj_ swclk_tclk	scb[8].spi _select0:1
P7.0	tcpwm[0].li ne[4]:1	tcpwm[1].lin e[12]:0				scb[4].uart _rx:1	scb[4].i2c _scl:1	scb[4].spi_ mosi:1			peri.tr_io_in put[14]:0		cpuss.trac e_clock				
P7.1	tcpwm[0].li ne_compl[4]:1	tcpwm[1].lin e_compl[12]:0				scb[4].uart _tx:1	scb[4].i2c _sda:1	scb[4].spi_ miso:1			peri.tr_io_in put[15]:0						
P7.2	tcpwm[0].li ne[5]:1	tcpwm[1].lin e[13]:0				scb[4].uart _rts:1		scb[4].spi_ clk:1									
P7.3	tcpwm[0].li ne_compl[5]:1	tcpwm[1].lin e_compl[13]:0				scb[4].uart _cts:1		scb[4].spi_ select0:1									
P7.4	tcpwm[0].li ne[6]:1	tcpwm[1].lin e[14]:0						scb[4].spi_ select1:1					bless.ext_l- na_rx_ct- l_out	cpuss.trace_ data[3]:2			
P7.5	tcpwm[0].li ne_compl[6]:1	tcpwm[1].lin e_compl[14]:0						scb[4].spi_ select2:1					bless.ext_p a_tx_ct- I_out	cpuss.trace_ data[2]:2			
P7.6	tcpwm[0].li ne[7]:1	tcpwm[1].lin e[15]:0						scb[4].spi_ select3:1					bless.ext_p a_lna chip_en_o ut	cpuss.trace_ data[1]:2			
P7.7	tcpwm[0].li ne_compl[7]:1	tcpwm[1].lin e_compl[15]:0						scb[3].spi_ select1:0	cpuss.clk_ fm_pump					cpuss.trace_ data[0]:2			
P8.0	tcpwm[0].li ne[0]:2	tcpwm[1].lin e[16]:0				scb[4].uart _rx:0	scb[4].i2c _scl:0	scb[4].spi_ mosi:0			peri.tr_io_in put[16]:0						
P8.1	tcpwm[0].li ne_compl[0]:2	tcpwm[1].lin e_compl[16]:0				scb[4].uart _tx:0	scb[4].i2c _sda:0	scb[4].spi_ miso:0			peri.tr_io_in put[17]:0						
P8.2	tcpwm[0].li ne[1]:2	tcpwm[1].lin e[17]:0				scb[4].uart _rts:0		scb[4].spi_ clk:0									
P8.3	tcpwm[0].li ne_compl[1]:2	tcpwm[1].lin e_compl[17]:0				scb[4].uart _cts:0	_	scb[4].spi_ select0:0									_
P8.4	tcpwm[0].li ne[2]:2	tcpwm[1].lin e[18]:0						scb[4].spi_ select1:0									

^{1.} The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

For example, the name tcpwm[0].line_compl[3]:4 indicates that this is instance 0 of a tcpwm block, the signal is line_compl # 3 (complement of the line output) and this is the fourth occurrence (copy) of the signal. Signal copies are provided to allow flexibility in routing and to maximise utilisation of on-chip resources.

Table 5. Multiple Alternate Functions^[1] (continued)

Port/ Pin	ACT #0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P8.5	tcpwm[0].li ne_compl[2]:2	tcpwm[1].lin e_compl[18]:0						scb[4].spi_ select2:0									
P8.6	tcpwm[0].li ne[3]:2	tcpwm[1].lin e[19]:0						scb[4].spi_ select3:0									
P8.7	tcpwm[0].li ne_compl[3]:2	tcpwm[1].lin e_compl[19]:0						scb[3].spi_ select2:0									
P9.0	tcpwm[0].li ne[4]:2	tcpwm[1].lin e[20]:0				scb[2].uart _rx:0	scb[2].i2c _scl:0	scb[2].spi_ mosi:0			peri.tr_io_in put[18]:0			cpuss.trace_ data[3]:0			
P9.1	tcpwm[0].li ne_compl[4]:2	tcpwm[1].lin e_compl[20]:0				scb[2].uart _tx:0	scb[2].i2c _sda:0	scb[2].spi_ miso:0			peri.tr_io_in put[19]:0			cpuss.trace_ data[2]:0			
P9.2	tcpwm[0].li ne[5]:2	tcpwm[1].lin e[21]:0				scb[2].uart _rts:0		scb[2].spi_ clk:0		pass.dsi_c tb_cmp0:1				cpuss.trace_ data[1]:0			
P9.3	tcpwm[0].li ne_compl[5]:2	tcpwm[1].lin e_compl[21]:0				scb[2].uart _cts:0		scb[2].spi_ select0:0		pass.dsi_c tb_cmp1:1				cpuss.trace_ data[0]:0			
P9.4	tcpwm[0].li ne[7]:5	tcpwm[1].lin e[0]:2						scb[2].spi_ select1:0									
P9.5	tcpwm[0].li ne_compl[7]:5	tcpwm[1].lin e_compl[0]: 2						scb[2].spi_ select2:0									
P9.6	tcpwm[0].li ne[0]:6	tcpwm[1].lin e[1]:2						scb[2].spi_ select3:0									
P9.7	tcpwm[0].li ne_compl[0]:6	tcpwm[1].lin e_compl[1]: 2															
P10.0	tcpwm[0].li ne[6]:2	tcpwm[1].lin e[22]:0				scb[1].uart _rx:1	scb[1].i2c _scl:1	scb[1].spi_ mosi:1			peri.tr_io_in put[20]:0			cpuss.trace_ data[3]:1			
P10.1	tcpwm[0].li ne_compl[6]:2	tcpwm[1].lin e_compl[22]:0				scb[1].uart _tx:1	scb[1].i2c _sda:1	scb[1].spi_ miso:1			peri.tr_io_in put[21]:0			cpuss.trace_ data[2]:1			
P10.2	tcpwm[0].li ne[7]:2	tcpwm[1].lin e[23]:0				scb[1].uart _rts:1		scb[1].spi_ clk:1						cpuss.trace_ data[1]:1			
P10.3	tcpwm[0].li ne_compl[7]:2	tcpwm[1].lin e_compl[23]:0				scb[1].uart _cts:1		scb[1].spi_ select0:1						cpuss.trace_ data[0]:1			
P10.4	tcpwm[0].li ne[0]:3	tcpwm[1].lin e[0]:1						scb[1].spi_ select1:1	audioss.p dm_clk								

Note

^{1.} The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal number where there are more than one signals for a particular signal name, y = Designates copies of the signal name.

Table 5. Multiple Alternate Functions^[1] (continued)

Port/ Pin	ACT#0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P10.5	tcpwm[0].li ne_compl[0]:3	tcpwm[1].lin e_compl[0]: 1						scb[1].spi_ select2:1	audioss.p dm_data								
P10.6		tcpwm[1].lin e[2]:2						scb[1].spi_ select3:1									
P10.7	tcpwm[0].li ne_compl[1]:6	tcpwm[1].lin e_compl[2]: 2															
P11.0	tcpwm[0].li ne[1]:3	tcpwm[1].lin e[1]:1			smif.spi_ select2	scb[5].uart _rx:1	scb[5].i2c _scl:1	scb[5].spi_ mosi:1			peri.tr_io_in put[22]:0						
P11.1	tcpwm[0].li ne_compl[1]:3	tcpwm[1].lin e_compl[1]: 1			smif.spi_ select1	scb[5].uart _tx:1	scb[5].i2c _sda:1	scb[5].spi_ miso:1			peri.tr_io_in put[23]:0						
P11.2	tcpwm[0].li ne[2]:3	tcpwm[1].lin e[2]:1			smif.spi_ select0	scb[5].uart _rts:1		scb[5].spi_ clk:1									
P11.3	tcpwm[0].li ne_compl[2]:3	tcpwm[1].lin e_compl[2]: 1			smif.spi_ data3	scb[5].uart _cts:1		scb[5].spi_ select0:1				peri.tr_io_ output[0]:0					
P11.4	tcpwm[0].li ne[3]:3	tcpwm[1].lin e[3]:1			smif.spi_ data2			scb[5].spi_ select1:1				peri.tr_io_ output[1]:0					
P11.5	tcpwm[0].li ne_compl[3]:3	tcpwm[1].lin e_compl[3]: 1			smif.spi_ data1			scb[5].spi_ select2:1									
P11.6					smif.spi_ data0			scb[5].spi_ select3:1									
P11.7					smif.spi_ clk												
P12.0	tcpwm[0].li ne[4]:3	tcpwm[1].lin e[4]:1			smif.spi_ data4	scb[6].uart _rx:0	scb[6].i2c _scl:0	scb[6].spi_ mosi:0			peri.tr_io_in put[24]:0						
P12.1	tcpwm[0].li ne_compl[4]:3	tcpwm[1].lin e_compl[4]: 1			smif.spi_ data5	scb[6].uart _tx:0	scb[6].i2c _sda:0	scb[6].spi_ miso:0			peri.tr_io_in put[25]:0						
P12.2	tcpwm[0].li ne[5]:3	tcpwm[1].lin e[5]:1			smif.spi_ data6	scb[6].uart _rts:0		scb[6].spi_ clk:0					_				
P12.3	tcpwm[0].li ne_compl[5]:3	tcpwm[1].lin e_compl[5]: 1			smif.spi_ data7	scb[6].uart _cts:0		scb[6].spi_ select0:0									
P12.4	tcpwm[0].li ne[6]:3	tcpwm[1].lin e[6]:1			smif.spi_ select3			scb[6].spi_ select1:0	audioss.p dm_clk				_				

^{1.} The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates

Table 5. Multiple Alternate Functions^[1] (continued)

Port/ Pin	ACT#0	ACT #1	DS #2	ACT #4	ACT #5	ACT #6	ACT #7	ACT #8	ACT #9	ACT #10	ACT #12	ACT #13	ACT #14	ACT #15	DS #4	DS #5	DS #6
P12.5	tcpwm[0].li ne_compl[6]:3	tcpwm[1].lin e_compl[6]: 1						scb[6].spi_ select2:0	audioss.p dm_data								
P12.6	tcpwm[0].li ne[7]:3	tcpwm[1].lin e[7]:1						scb[6].spi_ select3:0									
P12.7	tcpwm[0].li ne_compl[7]:3	tcpwm[1].lin e_compl[7]: 1															
P13.0	tcpwm[0].li ne[0]:4	tcpwm[1].lin e[8]:1				scb[6].uart _rx:1	scb[6].i2c _scl:1	scb[6].spi_ mosi:1			peri.tr_io_in put[26]:0						
P13.1	tcpwm[0].li ne_compl[0]:4	tcpwm[1].lin e_compl[8]: 1				scb[6].uart _tx:1	scb[6].i2c _sda:1	scb[6].spi_ miso:1			peri.tr_io_in put[27]:0						
P13.2	tcpwm[0].li ne[1]:4	tcpwm[1].lin e[9]:1				scb[6].uart _rts:1		scb[6].spi_ clk:1									
P13.3	tcpwm[0].li ne_compl[1]:4	tcpwm[1].lin e_compl[9]:				scb[6].uart _cts:1		scb[6].spi_ select0:1									
P13.4		tcpwm[1].lin e[10]:1						scb[6].spi_ select1:1									
P13.5	tcpwm[0].li ne_compl[2]:4	tcpwm[1].lin e_compl[10]:1						scb[6].spi_ select2:1									
P13.6	tcpwm[0].li ne[3]:4	tcpwm[1].lin e[11]:1						scb[6].spi_ select3:1									
P13.7	tcpwm[0].li ne_compl[3]:4	tcpwm[1].lin e_compl[11] :1															

Note

1. The notation for a signal is of the form IPName[x].signal_name[u]:y.

IPName = Name of the block (such as tcpwm), x = Unique instance of the IP, Signal_name = Name of the signal, u = Signal number where there are more than one signals for a particular signal name, y = Designates

Analog, Smart I/O, and DSI alternate Port Pin functionality is provided in Table 6.

Table 6. Port Pin Analog, Smart I/O, and DSI Functions

Port/Pin	Name	Analog	Digital HV	DSI	SMARTIO	USB
P0.0	P0.0	wco_in		dsi[0].port_if[0]		
P0.1	P0.1	wco_out		dsi[0].port_if[1]		
P0.2	P0.2			dsi[0].port_if[2]		
P0.3	P0.3			dsi[0].port_if[3]		
P0.4	P0.4		pmic_wakeup_in hibernate_wakeup[1]	dsi[0].port_if[4]		
P0.5	P0.5		pmic_wakeup_out	dsi[0].port_if[5]		
P1.0	P1.0			dsi[1].port_if[0]		
P1.1	P1.1			dsi[1].port_if[1]		
P1.2	P1.2			dsi[1].port_if[2]		
P1.3	P1.3			dsi[1].port_if[3]		
P1.4	P1.4		hibernate_wakeup[0]	dsi[1].port_if[4]		
P1.5	P1.5			dsi[1].port_if[5]		
P14.0	USBDP					usb.usb_dp_pad
P14.1	USBDM					usb.usb_dm_pad
P2.0	P2.0			dsi[2].port_if[0]		
P2.1	P2.1			dsi[2].port_if[1]		
P2.2	P2.2			dsi[2].port_if[2]		
P2.3	P2.3			dsi[2].port_if[3]		
P2.4	P2.4			dsi[2].port_if[4]		
P2.5	P2.5			dsi[2].port_if[5]		
P2.6	P2.6			dsi[2].port_if[6]		
P2.7	P2.7			dsi[2].port_if[7]		
P3.0	P3.0					
P3.1	P3.1					
P3.2	P3.2					
P3.3	P3.3					
P3.4	P3.4					
P3.5	P3.5					
P4.0	P4.0			dsi[0].port_if[6]		
P4.1	P4.1			dsi[0].port_if[7]		
P4.2	P4.2			dsi[1].port_if[6]		
P4.3	P4.3			dsi[1].port_if[7]		
P5.0	P5.0			dsi[3].port_if[0]		
P5.1	P5.1			dsi[3].port_if[1]		
P5.2	P5.2			dsi[3].port_if[2]		
P5.3	P5.3			dsi[3].port_if[3]		
P5.4	P5.4			dsi[3].port_if[4]		
P5.5	P5.5			dsi[3].port_if[5]		
P5.6	P5.6	lpcomp.inp_comp0		dsi[3].port_if[6]		
P5.7	P5.7	lpcomp.inn_comp0		dsi[3].port_if[7]		
P6.0	P6.0			dsi[4].port_if[0]		

Table 6. Port Pin Analog, Smart I/O, and DSI Functions (continued)

Port/Pin	Name	Analog	Digital HV	DSI	SMARTIO	USB
P6.1	P6.1			dsi[4].port_if[1]		
P6.2	P6.2	lpcomp.inp_comp1		dsi[4].port_if[2]		
P6.3	P6.3	lpcomp.inn_comp1		dsi[4].port_if[3]		
P6.4	P6.4			dsi[4].port_if[4]		
P6.5	P6.5			dsi[4].port_if[5]		
P6.6	P6.6		swd_data	dsi[4].port_if[6]		
P6.7	P6.7		swd_clk	dsi[4].port_if[7]		
P7.0	P7.0			dsi[5].port_if[0]		
P7.1	P7.1	csd.cmodpadd csd.cmodpads		dsi[5].port_if[1]		
P7.2	P7.2	csd.csh_tankpadd csd.csh_tankpads		dsi[5].port_if[2]		
P7.3	P7.3	csd.vref_ext		dsi[5].port_if[3]		
P7.4	P7.4			dsi[5].port_if[4]		
P7.5	P7.5			dsi[5].port_if[5]		
P7.6	P7.6			dsi[5].port_if[6]		
P7.7	P7.7	csd.cshieldpads		dsi[5].port_if[7]		
P8.0	P8.0			dsi[11].port_if[0]	smartio[8].io[0]	
P8.1	P8.1			dsi[11].port_if[1]	smartio[8].io[1]	
P8.2	P8.2			dsi[11].port_if[2]	smartio[8].io[2]	
P8.3	P8.3			dsi[11].port_if[3]	smartio[8].io[3]	
P8.4	P8.4			dsi[11].port_if[4]	smartio[8].io[4]	
P8.5	P8.5			dsi[11].port_if[5]	smartio[8].io[5]	
P8.6	P8.6			dsi[11].port_if[6]	smartio[8].io[6]	
P8.7	P8.7			dsi[11].port_if[7]	smartio[8].io[7]	
P9.0	P9.0	ctb_oa0+		dsi[10].port_if[0]	smartio[9].io[0]	
P9.1	P9.1	ctb_oa0-		dsi[10].port_if[1]	smartio[9].io[1]	
P9.2	P9.2	ctb_oa0_out		dsi[10].port_if[2]	smartio[9].io[2]	
P9.3	P9.3	ctb_oa1_out		dsi[10].port_if[3]	smartio[9].io[3]	
P9.4	P9.4	ctb_oa1-		dsi[10].port_if[4]	smartio[9].io[4]	
P9.5	P9.5	ctb_oa1+		dsi[10].port_if[5]	smartio[9].io[5]	
P9.6	P9.6	ctb_oa0+ or ctdac_out		dsi[10].port_if[6]	smartio[9].io[6]	
P9.7	P9.7	ctb_oa1+ or ext_vref		dsi[10].port_if[7]	smartio[9].io[7]	
P10.0	P10.0	sarmux[0]		dsi[9].port_if[0]		
P10.1	P10.1	sarmux[1]		dsi[9].port_if[1]		
P10.2	P10.2	sarmux[2]		dsi[9].port_if[2]		
P10.3	P10.3	sarmux[3]		dsi[9].port_if[3]		
P10.4	P10.4	sarmux[4]		dsi[9].port_if[4]		
P10.5	P10.5	sarmux[5]		dsi[9].port_if[5]		
P10.6	P10.6	sarmux[6]		dsi[9].port_if[6]		

Table 6. Port Pin Analog, Smart I/O, and DSI Functions (continued)

Port/Pin	Name	Analog	Digital HV	DSI	SMARTIO	USB
P10.7	P10.7	sarmux[7]		dsi[9].port_if[7]		
P11.0	P11.0			dsi[8].port_if[0]		
P11.1	P11.1			dsi[8].port_if[1]		
P11.2	P11.2			dsi[8].port_if[2]		
P11.3	P11.3			dsi[8].port_if[3]		
P11.4	P11.4			dsi[8].port_if[4]		
P11.5	P11.5			dsi[8].port_if[5]		
P11.6	P11.6			dsi[8].port_if[6]		
P11.7	P11.7			dsi[8].port_if[7]		
P12.0	P12.0			dsi[7].port_if[0]		
P12.1	P12.1			dsi[7].port_if[1]		
P12.2	P12.2			dsi[7].port_if[2]		
P12.3	P12.3			dsi[7].port_if[3]		
P12.4	P12.4			dsi[7].port_if[4]		
P12.5	P12.5			dsi[7].port_if[5]		
P12.6	P12.6	eco_in		dsi[7].port_if[6]		
P12.7	P12.7	eco_out		dsi[7].port_if[7]		
P13.0	P13.0			dsi[6].port_if[0]		
P13.1	P13.1			dsi[6].port_if[1]		
P13.2	P13.2			dsi[6].port_if[2]		
P13.3	P13.3			dsi[6].port_if[3]		
P13.4	P13.4			dsi[6].port_if[4]		
P13.5	P13.5			dsi[6].port_if[5]		
P13.6	P13.6			dsi[6].port_if[6]		
P13.7	P13.7			dsi[6].port_if[7]		

Power Supply Considerations

The following power system diagrams show typical connections for power pins for all supported packages, and with and without usage of the buck regulator.

In these diagrams, the package pin is shown with the pin name, for example " V_{DDA} , A12". For V_{DDx} pins, the I/O port that is powered by that pin is also shown, for example " V_{DDD} , A1; I/O port P1".

Figure 7. 124-BGA Power Connection Diagram

Figure 8. 124-BGA (No Buck) Power Connection Diagram

There are as many as eight V_{DDx} supply pins, depending on the package, and multiple V_{SS} ground pins. The power pins are:

- V_{DDD}: the main digital supply. It powers the low dropout (LDO) regulators and I/O port 1
- V_{CCD}: the main LDO output. It requires a 4.7-µF capacitor for regulation. The LDO can be turned off when V_{CCD} is driven from the switching regulator (see V_{BUCK1} below). For more information, see the power system block diagram in the device technical reference manual (TRM).
- V_{DDA}: the supply for the analog peripherals.
- \blacksquare V_{DDIOA}: the supply for I/O ports 9 and 10. It must be connected to V_{DDA}.
- V_{DDIO0} : the supply for I/O ports 11, 12, and 13.
- V_{DDIO1}: the supply for I/O ports 5, 6, 7, and 8.
- V_{DDIO2}: the supply for I/O ports 2, 3, and 4.
- V_{BACKUP}: the supply for the backup domain, which includes the 32-kHz WCO and the RTC. It can be a separate supply as low

as 1.4 V, for battery or supercapacitor backup, as Figure 9 shows. Otherwise it is connected to V_{DDD} . It powers I/O port 0.

shows. Otherwise it is connected to V_{DDD}. It powers I/O po Figure 9. Separate Battery Connection to V_{BACKUP}

■ V_{DDUSB}: the supply for the USB peripheral and the USBDP and USBDM pins. It must be 2.85 V to 3.6 V for USB operation. If

USB is not used, it can be 1.7 V to 3.6 V, and the USB pins can be used as limited-capability GPIOs on I/O port 14.

Table 7 shows a summary of the I/O port supplies:

Table 7. I/O Port Supplies

Port	Supply	Alternate Supply
0	V_{BACKUP}	V_{DDD}
1	V_{DDD}	-
2, 3, 4	V_{DDIO2}	-
5, 6, 7, 8	V _{DDIO1}	-
9, 10	V_{DDIOA}	V_{DDA}
11, 12, 13	$V_{\rm DDIO0}$	-
14	V_{DDUSB}	-

■ V_{SS}: ground pins for the above supplies. All ground pins should be connected together to a common ground.

In addition to the LDO regulator, a single input multiple output (SIMO) switching regulator is included. It provides two regulated outputs using a single inductor. The regulator pins are:

- V_{DD NS}: the regulator supply.
- \blacksquare V_{IND1} and $V_{IND2}\!:$ the inductor and capacitor connections.
- \blacksquare V_{BUCK1} : the first regulator output. It is typically used to drive $V_{CCD},$ see above.
- V_{RF}: the second regulator output. It is typically not used.

The various V_{DD} power pins are not connected together on chip. They can be connected off chip, in one or more separate nets. If separate power nets are used, they can be isolated from noise from the other nets using optional ferrite beads, as indicated in the diagrams.

No external load should be placed on V_{CCD} , V_{RF} , or any of the switching regulator power pins; whether or not the switching regulator is used.

There are no power pin sequencing requirements; power supplies may be brought up in any order. The power management system holds the device in reset until all power pins are at the voltage levels required for proper operation.

Note: If a battery is installed on the PCB first, V_{DDD} must be cycled for at least 50 μ s. This prevents premature drain of the battery during product manufacture and storage.

Bypass capacitors must be connected to a common ground from the V_{DDx} and other pins, as indicated in the diagrams. Typical practice for systems in this frequency range is to use a $10\text{-}\mu\text{F}$ or $1\text{-}\mu\text{F}$ capacitor in parallel with a smaller capacitor (0.1 μF , for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated for optimal bypassing.

All capacitors and inductors should be $\pm 20\%$ or better. The capacitor connected to V_{IND2} should be 100 nF. The recommended inductor value is 2.2 μ H $\pm 20\%$ (for example, TDK MLP2012H2R2MT0S1).

It is good practice to check the datasheets for your bypass capacitors, specifically the working voltage and the DC bias specifications. With some capacitors, the actual capacitance can decrease considerably when the applied voltage is a significant percentage of the rated working voltage.

For more information on pad layout, refer to PSoC 6 CAD libraries.

Page 36 of 73

Electrical Specifications

Note: These are preliminary and subject to change.

Absolute Maximum Ratings

Table 8. Absolute Maximum Ratings^[2]

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID1	V _{DD_ABS}	Analog or digital supply relative to V_{SS} ($V_{SSD} = V_{SSA}$)	-0.5	_	4	V	
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V _{SSD}	-0.5	_	1.2	V	
SID3	V _{GPIO_ABS}	GPIO voltage; V _{DDD} or V _{DDA}	-0.5	_	V _{DD} + 0.5	V	
SID4	I _{GPIO_ABS}	Current per GPIO	-25	_	25	mA	
SID5	I _{GPIO_injection}	GPIO injection current per pin	-0.5	_	0.5	mA	
SID3A	ESD_HBM	Electrostatic discharge Human Body Model	2200	_	_	V	
SID4A	ESD_CDM	Electrostatic discharge Charged Device Model	500	_	_	V	
SID5A	LU	Pin current for latchup-free operation	-100	_	100	mA	

Note: All specifications are valid for −40 °C ≤ TA ≤ 85 °C and for 1.71 V to 3.6 V except where noted.

Note

Document Number: 002-26017 Rev. *C

^{2.} Usage above the absolute maximum conditions listed in Table 8 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification.

Device-Level Specifications

Table 9. Power Supply Range, CPU Current, and Transition Time Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
DC Specifi	cations						
SID6	V_{DDD}	Internal Regulator and Port 1 GPIO Supply	1.7	_	3.6	V	_
SID7	V_{DDA}	Analog Power Supply Voltage. Shorted to V _{DDIOA} on PCB.	1.7	_	3.6	V	Internally unregulated supply
SID7A	V _{DDIO1}	GPIO Supply for Ports 5 to 8 when present	1.7	_	3.6	V	V_{DDIO_1} must be $\geq V_{DDA}$.
SID7B	V _{DDIO0}	GPIO Supply for Ports 11 to 13 when present	1.7	_	3.6	V	-
SID7E	V _{DDIO0}	Supply for eFuse Programming	2.38	2.5	2.62	V	
SID7C	V _{DDIO2}	GPIO Supply for Ports 2 to 4 on BGA 124 only	1.7	_	3.6	V	_
SID7D	V _{DDIOA}	GPIO Supply for Ports 9 to 10. Must be connected to V _{DDA} on PCB.	1.7	_	3.6	V	-
SID7F	V _{DDUSB}	Supply for Port 14 (USB or GPIO) when present	1.7	-	3.6	V	Min. supply is 2.85 V for USB
SID6B	V _{BACKUP}	Backup Power and GPIO Port 0 supply when present	1.7	_	3.6	٧	Min. is 1.4 V when V _{DDD} is removed.
SID8	V _{CCD1}	Output voltage (for core logic bypass)	-	1.1	-	V	High-speed mode
SID9	V _{CCD2}	Output voltage (for core logic bypass)	1	0.9	_	V	ULP mode. Valid for –20 to 85 °C.
SID10	C _{EFC}	External regulator voltage (V _{CCD}) bypass	3.8	4.7	5.6	μF	X5R ceramic or better; Value for 0.8 to 1.2 V.
SID11	C _{EXC}	Power supply decoupling capacitor	1	10	_	μF	X5R ceramic or better
LP RANGE	POWER SPEC	FIFICATIONS (for V _{CCD} = 1.1 V with Buck a	nd LDO)				
Cortex M4.	Active Mode						
Execute wi	th Cache Disal	oled (Flash)					
SIDF1	I _{DD1}	Execute from Flash; CM4 Active 50 MHz, CM0+ Sleep 25 MHz.	-	2.3	3.2	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		With IMO & FLL. While(1).	1	3.1	3.6	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			ı	5.7	6.5	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
OIDEO		Execute from Flash; CM4 Active 8 MHz.	-	0.9	1.5	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDF2	I _{DD2}	CM0+ Sleep 8 MHz. With IMO. While(1).	-	1.2	1.6	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.8	3.5	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Execute wi	th Cache Enab	led					,
		Execute from Cache; CM4 Active 150 MHz,	-	6.3	7	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDC1	I _{DD3}	CM0+ Sleep 75 MHz. IMO & FLL. Dhrystone.	_	9.7	11.2	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
		, -	_	14.4	15.1	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
		Execute from Cache;	1	4.8	5.8	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDC2	I _{DD4}	CM4 Active 100 MHz, CM0+ Sleep 100 MHz. IMO & FLL. Dhrystone.	-	7.4	8.4	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
		_	_	11.3	12	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C

Table 9. Power Supply Range, CPU Current, and Transition Time Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
			_	2.4	3.4	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDC3	I _{DD5}	Execute from Cache; CM4 Active 50 MHz, CM0+ Sleep 25 MHz. IMO & FLL. Dhrystone	_	3.7	4.1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	6.3	7.2	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
			_	0.9	1.5	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDC4	I _{DD6}	Execute from Cache; CM4 Active 8 MHz, CM0+ Sleep 8 MHz. IMO. Dhrystone.	_	1.3	1.8	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	3	3.8	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M0-	Active Mode			•			
Execute wi	th Cache Disa	bled (Flash)					
SIDF3	l	Execute from Flash; CM4 Off, CM0+ Active 50 MHz.	_	2.4	3.3	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
GIDI 3	I _{DD7}	With IMO & FLL. While (1).	_	3.2	3.7	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	5.6	6.3	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
SIDE4		Execute from Flash;	_	0.8	1.5	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDF4	I _{DD8}	CM4 Off, CM0+ Active 8 MHz. With IMO. While (1).	_	1.1	1.6	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.60	3.4	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Execute wi	th Cache Enab	bled					
SIDC5	lane	Execute from Cache; CM4 Off, CM0+ Active 100 MHz.	-	3.8	4.5	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
GIDOS	I _{DD9}	With IMO & FLL. Dhrystone.	_	5.9	6.5	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	9	9.7	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
SIDC6	laa	Execute from Cache; CM4 Off, CM0+ Active 8 MHz.	_	0.8	1.3	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
CIDOO	I _{DD10}	With IMO. Dhrystone.	_	1.20	1.7	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.60	3.4	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M4.	Sleep Mode			,			
		CM4 Sleep 100 MHz;	_	1.5	2.2	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDS1	I _{DD11}	CM0+ Sleep 100 MHz, CM0+ Sleep 25 MHz. With IMO & FLL.	_	2.2	2.7	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	4	4.6	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
		CMA Class FO Miles	_	1.2	1.9	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDS2	I _{DD12}	CM4 Sleep 50 MHz; CM0+ Sleep 25 MHz. With IMO & FLL.	_	1.7	2.2	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	3.4	4.3	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
		CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.	_	0.7	1.3	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDS3	I _{DD13}	With IMO.	_	1	1.5	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.4	3.3	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M0-	Sleep Mode						
		CM4 Off, CM0+ Sleep 50 MHz.	_	1.3	2	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDS4	I _{DD14}	With IMO & FLL.	_	1.9	2.4	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	3.80	4.6	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C

Table 9. Power Supply Range, CPU Current, and Transition Time Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
			_	0.7	1.3	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDS5	I _{DD15}	CM4 Off, CM0+ Sleep 8 MHz. With IMO.	_	1	1.5	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.4	3.3	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M4	. Minimum Reg	ulator Current Mode					
		Execute from Flash; CM4 LPA 8 MHz, CM0+	_	0.9	1.5	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDLPA1	I _{DD16}	Sleep 8 MHz. With IMO. While (1).	_	1.2	1.7	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			-	2.8	3.5	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
		Execute from Cache; CM4 LPA 8 MHz,	_	0.9	1.5	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDLPA2	I _{DD17}	CM0+ Sleep 8 MHz. With IMO. Dhrystone.	_	1.3	1.8	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.9	3.7	mA	V_{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M0	+. Minimum Re	gulator Current Mode			•	•	
		Execute from Flash;	_	0.8	1.4	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDLPA3	I _{DD18}	CM4 Off, CM0+ Active 8 MHz. With IMO. While (1).	_	1.1	1.6	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
		(1).	-	2.7	3.6	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
		Everyte from Cooker CMA Off, CMO, Active	_	0.8	1.4	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDLPA4	I _{DD19}	Execute from Cache; CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone.	_	1.2	1.7	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.7	3.6	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M4	Minimum Reg	ulator Current Mode		,	•	•	
		CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz.	_	0.7	1.1	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDLPS1	I _{DD20}	With IMO.	_	1	1.5	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.4	3.3	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
Cortex M0	+. Minimum Re	gulator Current Mode					
			_	0.6	1.1	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDLPS3	I _{DD22}	CM4 Off, CM0+ Sleep 8 MHz. With IMO.	_	0.9	1.5	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	2.4	3.3	mA	V _{DDD} = 1.8 to 3.3 V, LDO, Max at 85 °C
ULP RANG	E POWER SPE	ECIFICATIONS (for V _{CCD} = 0.9 V using the I	Buck). U	LP mod	e is valid	from -2	0 to +85 °C.
Cortex M4	Active Mode						
Execute w	ith Cache Disa	bled (Flash)					
SIDF5	I _{DD3}	Execute from Flash; CM4 Active 50 MHz, CM0+ Sleep 25 MHz.	-	1.7	2.2	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		With IMO & FLL. While(1).	_	2.1	2.4	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
			_	0.56	0.8	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
SIDF6	I _{DD4}	Execute from Flash; CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. While (1)	_	0.75	1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Execute w	ith Cache Enab	l oled					
SIDC8	I _{DD10}	Execute from Cache; CM4 Active 50 MHz, CM0+ Sleep 25 MHz.	_	1.6	2.2	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
	10010	With IMO & FLL. Dhrystone.	_	2.4	2.7	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDC9	I _{DD11}	Execute from Cache; CM4 Active 8 MHz, CM0+ Sleep 8 MHz.	-	0.65	0.8	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
2.200	ווטטין	With IMO. Dhrystone.	_	0.8	1.1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
	1	i e		L			1

Table 9. Power Supply Range, CPU Current, and Transition Time Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
Cortex M0+	Active Mode					1	
Execute wi	th Cache Disal	oled (Flash)			_		
SIDF7	I _{DD16}	Execute from Flash; CM4 Off, CM0+ Active	-	1	1.4	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
	2210	25 MHz. With IMO & FLL. Write(1).	_	1.34	1.6	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDF8	I _{DD17}	Execute from Flash; CM4 Off, CM0+ Active	_	0.54	0.75	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
	DD17	8 MHz. With IMO. While(1).	_	0.73	1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Execute wi	th Cache Enab	eled					
SIDC10	I _{DD18}	Execute from Cache; CM4 Off, CM0+ Active 25 MHz. With IMO & FLL. Dhrystone.	-	0.91	1.25	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		20 WHZ. WITH INO G I EE. BIN STORIO.	_	1.34	1.6	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDC11	I _{DD19}	Execute from Cache; CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone.	_	0.51	0.72	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		o Will. With livio. Brillystone.	_	0.73	0.95	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Cortex M4.	Sleep Mode			ı	T		
SIDS7	I _{DD21}	CM4 Sleep 50 MHz, CM0+ Sleep 25 MHz. With IMO & FLL.	_	0.76	1.1	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		With his & I EE.	_	1.1	1.4	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDS8	I _{DD22}	CM4 Sleep 8 MHz, CM0+ Sleep 8 MHz. With IMO.	-	0.42	0.65	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		With his .	-	0.59	0.8	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Cortex M0+	Sleep Mode			ı	_		
SIDS9	I _{DD23}	CM4 Off, CM0+ Sleep 25 MHz. With IMO & FLL.	1	0.62	0.9	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		THAT HAVE Q 1 ZZ:	-	0.88	1.1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDS10	I _{DD24}	CM4 Off, CM0+ Sleep 8 MHz. With IMO.	-	0.41	0.6	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
0 1 111		-	_	0.58	8.0	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Cortex M4.	Minimum Reg	ulator Current Mode		I	1		T
SIDLPA5	I _{DD25}	Execute from Flash. CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. While(1).	-	0.52	0.75	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
			_	0.76	1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDLPA6	I _{DD26}	Execute from Cache. CM4 Active 8 MHz, CM0+ Sleep 8 MHz. With IMO. Dhrystone.	_	0.54	0.76	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		, , , , , , , , , , , , , , , , , , , ,	_	0.78	1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Cortex MU-	r. Minimum Re	gulator Current Mode		I	I	1	T
SIDLPA7	I _{DD27}	Execute from Flash. CM4 Off, CM0+ Active 8 MHz. With IMO. While (1).	_	0.51	0.75	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		, ,	_	0.75	1	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
SIDLPA8	I _{DD28}	Execute from Cache. CM4 Off, CM0+ Active 8 MHz. With IMO. Dhrystone.	_	0.48	0.7	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
		·	_	0.7	0.95	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Cortex M4.	Minimum Reg	ulator Current Mode		I	1		
SIDLPS5	I _{DD29}	CM4 Sleep 8 MHz, CM0 Sleep 8 MHz. With IMO.	_	0.4	0.6	mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
0 1			_	0.57	0.8	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C
Cortex M0+	r. Minimum Re	gulator Current Mode		0.00	0.0		V = 2.2 V Pusts ON Mass st 00.00
SIDLPS7	I _{DD31}	CM4 Off, CM0+ Sleep 8 MHz. With IMO.	-	0.39	0.6	mA mA	V _{DDD} = 3.3 V, Buck ON, Max at 60 °C
			_	0.56	8.0	mA	V _{DDD} = 1.8 V, Buck ON, Max at 60 °C

Table 9. Power Supply Range, CPU Current, and Transition Time Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
Deep Sleep	Mode						
SIDDS1	I _{DD33A}	With internal Buck enabled and 64K SRAM retention	_	7	-	μA	Max value is at 85 °C
SIDDS1_B	I _{DD33A_B}	With internal Buck enabled and 64K SRAM retention	_	7	-	μA	Max value is at 60 °C
SIDDS2	I _{DD33B}	With internal Buck enabled and 256K SRAM retention	_	9	-	μA	Max value is at 85 °C
SIDDS2_B	I _{DD33B_B}	With internal Buck enabled and 256K SRAM retention	-	9	_	μA	Max value is at 60 °C
Hibernate N	Mode						
SIDHIB1	I _{DD34}	V _{DDD} = 1.8 V	-	300	-	nA	No clocks running
SIDHIB2	I _{DD34A}	V _{DDD} = 3.3 V	-	800	-	nA	No clocks running
Power Mod	le Transition Ti	imes					
SID12	T _{LPACT_ACT}	Minimum Regulator Current to LP transition time	-	-	35	μs	Including PLL lock time
SID13	T _{DS_LPACT}	Deep Sleep to LP transition time	1	_	25	μs	Guaranteed by design
SID14	T _{HIB_ACT}	Hibernate to LP transition time	1	500	-	μs	Including PLL lock time

XRES

Table 10. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID17	T _{XRES_IDD}	IDD when XRES asserted	-	300	_	nA	V _{DDD} = 1.8 V
SID17A	T _{XRES_IDD_1}	IDD when XRES asserted	-	800	_	nA	V _{DDD} = 3.3 V
SID77	V _{IH}	Input Voltage high threshold	0.7 * V _{DD}	-	-	V	CMOS Input
SID78	V _{IL}	Input Voltage low threshold	_	-	0.3 * V _{DD}	V	CMOS Input
SID80	C _{IN}	Input Capacitance	-	3	_	pF	_
SID81	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	_
SID82	I _{DIODE}	Current through protection diode to V _{DD} /V _{SS}	_	_	100	μΑ	_

Table 11. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID15	T _{XRES_ACT}	POR or XRES release to Active transition time	-	750	-		Normal mode, 50 MHz M0+.
SID16	T _{XRES_PW}	XRES Pulse width	5	_	_	μs	_

GPIO

Table 12. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID57	V _{IH}	Input voltage high threshold	0.7 * V _{DD}	1	_	V	CMOS Input
SID57A	I _{IHS}	Input current when Pad > V _{DDIO} for OVT inputs	-	_	10	μΑ	Per I ² C Spec
SID58	V _{IL}	Input voltage low threshold	_	-	0.3 * V _{DD}	V	CMOS Input
SID241	V _{IH}	LVTTL input, V _{DD} < 2.7 V	0.7 * V _{DD}	-	_	V	_
SID242	V _{IL}	LVTTL input, V _{DD} < 2.7 V	_	_	0.3* V _{DD}	V	_
SID243	V _{IH}	LVTTL input, V _{DD} ≥ 2.7 V	2.0	-	_	V	_
SID244	V _{IL}	LVTTL input, V _{DD} ≥ 2.7 V	_	-	0.8	V	_
SID59	V _{OH}	Output voltage high level	V _{DD} – 0.5	_	_	V	I _{OH} = 8 mA
SID62A	V _{OL}	Output voltage low level	_	_	0.4	V	I _{OL} = 8 mA
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	_
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	kΩ	_
SID65	I _{IL}	Input leakage current (absolute value)	_	_	2	nA	25 °C, V _{DD} = 3.0 V
SID65A	I _{IL_CTBM}	Input leakage on CTBm input pins	_	-	4	nA	_
SID66	C _{IN}	Input Capacitance	_	-	5	pF	_
SID67	V _{HYSTTL}	Input hysteresis LVTTL V _{DD} > 2.7 V	100	0	-	mV	-
SID68	V _{HYSCMOS}	Input hysteresis CMOS	0.05 * V _{DD}	_	_	mV	_
SID69	I _{DIODE}	Current through protection diode to V _{DD} /V _{SS}	-	ı	100	μΑ	_
SID69A	I _{TOT_GPIO}	Maximum Total Source or Sink Chip Current	_	_	200	mA	_

Table 13. GPIO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID70	T _{RISEF}	Rise time in Fast Strong Mode. 10% to 90% of V _{DD}	-	-	2.5	ns	Cload = 15 pF, 8 mA drive strength
SID71	T _{FALLF}	Fall time in Fast Strong Mode. 10% to 90% of V _{DD}	-	-	2.5	ns	Cload = 15 pF, 8 mA drive strength
SID72	T _{RISES_1}	Rise time in Slow Strong Mode. 10% to 90% of V _{DD}	52	-	142	ns	Cload = 15 pF, 8 mA drive strength, $V_{DD} \le 2.7 \text{ V}$
SID72A	T _{RISES_2}	Rise time in Slow Strong Mode. 10% to 90% of V _{DD}	48	-	102	ns	Cload = 15 pF, 8 mA drive strength, 2.7 V < $V_{DD} \le 3.6$ V
SID73	T _{FALLS_1}	Fall time in Slow Strong Mode. 10% to 90% of V _{DD}	44	-	211	ns	Cload = 15 pF, 8 mA drive strength, $V_{DD} \le 2.7 \text{ V}$
SID73A	T _{FALLS_2}	Fall time in Slow Strong Mode. 10% to 90% of V _{DD}	42	-	93	ns	Cload = 15 pF, 8 mA drive strength, $2.7 \text{ V} < \text{V}_{DD} \le 3.6 \text{ V}$

Table 13. GPIO AC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID73G	T _{FALL_I2C}	Fall time (30% to 70% of V_{DD}) in Slow Strong mode	20 * V _{DDIO} / 5.5	-	250	ns	Cload = 10 pF to 400 pF, 8-mA drive strength
SID74	F _{GPIOUT1}	GPIO Fout. Fast Strong mode.	_	-	100	MHz	90/10%, 15-pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO Fout; Slow Strong mode.	_	-	16.7	MHz	90/10%, 15-pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO Fout; Fast Strong mode.	_	-	7	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO Fout; Slow Strong mode.	_	1	3.5	MHz	90/10%, 25-pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency;1.71 V \leq V _{DD} \leq 3.6 V	_	ı	100	MHz	90/10% V _{IO}

Analog Peripherals

Opamp

Table 14. Opamp Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
	I _{DD}	Opamp Block current. No load.	_	_	_		_
SID269	I _{DD_HI}	Power = Hi	_	1300	1500	μA	_
SID270	I _{DD_MED}	Power = Med	_	450	600	μA	_
SID271	I _{DD_LOW}	Power = Lo	_	250	350	μA	_
	GBW	Load = 50 pF, 0.1 mA. V _{DDA} ≥ 2.7 V	-	_	_		_
SID272	G _{BW_HI}	Power = Hi	6	_	_	MHz	_
SID273	G _{BW_MED}	Power = Med	3	_	_	MHz	_
SID274	G _{BW_LO}	Power = Lo	1	_	_	MHz	_
	I _{OUT_MAX}	V _{DDA} ≥ 2.7 V, 500 mV from rail	-	_	_		_
SID275	I _{OUT_MAX_HI}	Power = Hi	10	_	_	mA	_
SID276	I _{OUT_MAX_MID}	Power = Mid	10	_	_	mA	_
SID277	I _{OUT_MAX_LO}	Power = Lo	-	5	_	mA	_
	l _{out}	V _{DDA} = 1.71 V, 500 mV from rail	_	_	_		_
SID278	I _{OUT_MAX_HI}	Power = Hi	4	_	_	mA	_
SID279	I _{OUT_MAX_MID}	Power = Mid	4	_	_	mA	_
SID280	I _{OUT_MAX_LO}	Power = Lo	_	2	_	mA	_
SID281	V _{IN}	Input voltage range	0	_	V _{DDA} – 0.2	V	Charge pump ON
SID282	V _{CM}	Input common mode voltage	0	_	V _{DDA} – 1.5	V	Charge pump OFF, V _{DDA} ≥ 2.7 V
	V _{OUT}	V _{DDA} ≥ 2.7 V	_	_	_		_
SID283	V _{OUT_1}	Power = Hi, Iload = 10 mA	0.5	_	V _{DDA} – 0.5	V	_
SID284	V _{OUT_2}	Power = Hi, Iload = 1 mA	0.2	_	V _{DDA} – 0.2	V	_
SID285	V _{OUT_3}	Power = Med, Iload = 1 mA	0.2	_	V _{DDA} – 0.2	V	_

Table 14. Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID286	V _{OUT_4}	Power = Lo, Iload = 0.1 mA	0.2	_	V _{DDA} – 0.2	V	_
SID288	V _{OS_TR}	Offset voltage	– 1	±0.5	1	mV	Power = Hi, 0.2 V < V _{OUT} < (V _{DDA} - 0.2 V)
SID288A	V _{OS_TR}	Offset voltage	_	±1	_	mV	Power = Med
SID288B	V _{OS_TR}	Offset voltage	_	±2	_	mV	Power = Lo
SID290	V _{OS_DR_TR}	Offset voltage drift	-10	±3	10	μV/°C	Power = Hi, 0.2 V < V _{OUT} < (V _{DDA} - 0.2 V)
SID290A	V _{OS_DR_TR}	Offset voltage drift	_	±10	_	μV/°C	Power = Med
SID290B	V _{OS_DR_TR}	Offset voltage drift	_	±10	_	μV/°C	Power = Lo
SID291	CMRR	DC Common mode rejection ratio	67	80	_	dB	V _{DDA} ≥ 2.7 V
SID292	PSRR	Power supply rejection ratio at 1 kHz, 10-mV ripple	70	85	_	dB	V _{DDA} ≥ 2.7 V
SID65A	I _{IL_CTBM}	Input leakage on CTBm input pins	_	_	4	nA	_
Noise			_	_	_		_
SID293	VN1	Input-referred, 1 Hz–1 GHz, power = Hi	_	100	_	μVrms	_
SID294	VN2	Input-referred, 1 kHz, power = Hi	-	180	_	nV/rtHz	_
SID295	VN3	Input-referred, 10 kHz, power = Hi	-	70	_	nV/rtHz	_
SID296	VN4	Input-referred, 100 kHz, power = Hi	-	38	_	nV/rtHz	_
SID297	CLOAD	Stable up to max. load. Performance specs at 50 pF.	-	_	125	pF	_
SID298	SLEW_RATE	Output slew rate	4	_	-	V/µs	Cload = 50 pF, Power = Hi, V _{DDA} ≥ 2.7 V
SID299	T_OP_WAKE	From disable to enable, no external RC dominating	-	25	_	μs	_
	COMP_MODE	Comparator mode; 50-mV overdrive, Trise = Tfall (approx.)	-		_		_
SID300	T _{PD1}	Response time; power = Hi	_	150	_	ns	-
SID301	T _{PD2}	Response time; power = Med	_	400	_	ns	_
SID302	T _{PD3}	Response time; power = Lo	_	2000	_	ns	_
SID303	V _{HYST_OP}	Hysteresis	_	10	_	mV	_
Deep Sleep Mode		Mode 1 - Full reference current (Higher GBW) Mode 2 - Approximately 1/10th reference current (Lower Power Consumption) ^[3]					Deep Sleep mode operation: V _{DDA} ≥ 2.7 V. V _{IN} is 0.2 to V _{DDA} −1.5 V
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	_	1300	1500	μΑ	Typ at 25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	_	460	600	μΑ	Typ at 25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	_	230	350	μΑ	Typ at 25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	_	120	_	μA	25 °C

Note
3. Reference current is supplied by AREF (analog reference) block.

Table 14. Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID_DS_5	I _{DD_MED_M2}	Mode 2, Medium current	_	60	_	μA	25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	_	15	_	μΑ	25 °C
SID_DS_7	GBW_HI_M1	Mode 1, High current	_	4	_	MHz	25 °C
SID_DS_8	GBW_MED_M1	Mode 1, Medium current	_	2	_	MHz	25 °C
SID_DS_9	GBW_LOW_M1	Mode 1, Low current	_	0.5	_	MHz	25 °C
SID_DS_10	GBW_HI_M2	Mode 2, High current	_	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} – 1.5 V
SID_DS_11	GBW_MED_M2	Mode 2, Medium current	_	0.2	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} – 1.5 V
SID_DS_12	GBW_LOW_M2	Mode 2, Low current	_	0.1	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} – 1.5 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	_	5	_	mV	25 °C, 0.2 V to V _{DDA} – 1.5 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	_	5	_	mV	25 °C, 0.2 V to V _{DDA} – 1.5 V
SID_DS_15	V _{OS_LOW_M1}	Mode 1, Low current	_	5	_	mV	25 °C, 0.2 V to V _{DDA} – 1.5 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_	mV	25 °C, 0.2 V to V _{DDA} – 1.5 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	_	5	_	mV	25 °C, 0.2 V to V _{DDA} – 1.5 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	_	5	_	mV	25 °C, 0.2 V to V _{DDA} – 1.5 V
SID_DS_19	I _{OUT_HI_M1}	Mode 1, High current	_	10	-	mA	Output is 0.5 V to V _{DDA} – 0.5 V
SID_DS_20	I _{OUT_MED_M1}	Mode 1, Medium current	-	10	-	mA	Output is 0.5 V to V _{DDA} – 0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	_	mA	Output is 0.5 V to V _{DDA} – 0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	_	1	_	mA	Output is 0.5 V to V _{DDA} – 0.5 V
SID_DS_23	I _{OUT_MED_M2}	Mode 2, Medium current	_	1	_	mA	Output is 0.5 V to V _{DDA} – 0.5 V
SID_DS_24	I _{OUT_LOW_M2}	Mode 2, Low current	_	0.5	_	mA	Output is 0.5 V to V _{DDA} – 0.5 V

Low-Power (LP) Comparator

Table 15. LP Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID84		Input offset voltage for COMP1. Normal power mode.	-10	ı	10	mV	COMP0 offset is ±25 mV
SID85A	V _{OFFSET2}	Input offset voltage. Low-power mode.	-25	±12	25	mV	_
SID85B		Input offset voltage. Ultra low-power mode.	-25	±12	25	mV	_
SID86	V _{HYST1}	Hysteresis when enabled in Normal mode	1	ı	60	mV	_

Table 15. LP Comparator DC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID86A	V _{HYST2}	Hysteresis when enabled in Low-power mode	_	-	80	mV	_
SID87	V _{ICM1}	Input common mode voltage in Normal mode	0	-	V _{DDIO1} – 0.1	V	_
SID247	V _{ICM2}	Input common mode voltage in Low power mode	0	-	V _{DDIO1} – 0.1	٧	_
SID247A	V _{ICM3}	Input common mode voltage in Ultra low power mode	0	-	V _{DDIO1} – 0.1	V	_
SID88	CMRR	Common mode rejection ratio in Normal power mode	50	_	_	dB	_
SID89	I _{CMP1}	Block Current, Normal mode	-	-	150	μA	_
SID248	I _{CMP2}	Block Current, Low power mode	-	-	10	μA	_
SID259	I _{CMP3}	Block Current in Ultra low-power mode	_	0.3	0.85	μA	_
SID90	ZCMP	DC Input impedance of comparator	35	_	_	МΩ	_

Table 16. LP Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID91	T _{RESP1}	Response time, Normal mode, 100 mV overdrive	-	-	100	ns	_
SID258	T _{RESP2}	Response time, Low power mode, 100 mV overdrive	_	_	1000	ns	_
SID92	T _{RESP3}	Response time, Ultra-low power mode, 100 mV overdrive	_	_	20	μs	_
SID92E	T_CMP_EN1	Time from Enabling to operation	-	-	10	μs	Normal and Low-power modes
SID92F	T_CMP_EN2	Time from Enabling to operation	_	_	50	μs	Ultra low-power mode

Table 17. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID93	T _{SENSACC}	Temperature sensor accuracy	- 5	±1	5	°C	–40 to +85 °C

Table 18. Internal Reference Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID93R	V_{REFBG}	I	1.188	1.2	1.212	V	_

SAR ADC

Table 19. 12-bit SAR ADC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID94	A_RES	SAR ADC Resolution	_	_	12	bits	_
SID95	A_CHNLS_S	Number of channels - single ended	-	_	16	-	8 full speed.
SID96	A-CHNKS_D	Number of channels - differential	_	_	8	-	Diff inputs use neighboring I/O
SID97	A-MONO	Monotonicity	_	_	_	_	Yes
SID98	A_GAINERR	Gain error	_	_	±0.2	%	With external reference.
SID99	A_OFFSET	Input offset voltage	_	_	2	mV	Measured with 1-V reference
SID100	A_ISAR_1	Current consumption at 1 Msps	_	_	1	mA	At 1 Msps. External Bypass Cap.
SID100A	A_ISAR_2	Current consumption at 1 Msps. Reference = V _{DD}	_	_	1.25	mA	At 1 Msps. External Bypass Cap.
SID101	A_VINS	Input voltage range - single-ended	V _{SS}	_	V_{DDA}	V	_
SID102	A_VIND	Input voltage range - differential	V _{SS}	_	V_{DDA}	V	_
SID103	A_INRES	Input resistance	_	_	2.2	kΩ	_
SID104	A_INCAP	Input capacitance	_	_	10	pF	_

Table 20. 12-bit SAR ADC AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
12-bit SAR	ADC AC Specif	ications					
SID106	A_PSRR	Power supply rejection ratio	70	_	_	dB	_
SID107	A_CMRR	Common mode rejection ratio	66	_	_	dB	Measured at 1 V.
One Megas	sample per seco	ond mode:					
SID108	A_SAMP_1	Sample rate with external reference bypass cap.	-	-	1	Msps	_
SID108A	A_SAMP_2	Sample rate with no bypass cap; Reference = V _{DD}	-	-	250	ksps	_
SID108B	A_SAMP_3	Sample rate with no bypass cap. Internal reference.	-	-	100	ksps	_
SID109	A_SINAD	Signal-to-noise and Distortion ratio (SINAD). V _{DDA} = 2.7 to 3.6 V, 1 Msps.	64	-	_	dB	Fin = 10 kHz
SID111A	A_INL	Integral Non Linearity. V _{DDA} = 2.7 to 3.6 V, 1 Msps	-2	_	2	LSB	Measured with internal V _{REF} = 1.2 V and bypass cap.
SID111B	A_INL	Integral Non Linearity. V _{DDA} = 2.7 to 3.6 V, 1 Msps	-4	_	4	LSB	Measured with external V _{REF} ≥ 1 V and V _{IN} common mode < 2 * Vref.
SID112A	A_DNL	Differential Non Linearity. V _{DDA} = 2.7 to 3.6 V, 1 Msps	-1	-	1.4	LSB	Measured with internal V _{REF} = 1.2 V and bypass cap.
SID112B	A_DNL	Differential Non Linearity. V _{DDA} = 2.7 to 3.6 V, 1 Msps	–1	_	1.7	LSB	Measured with external V _{REF} ≥ 1 V and V _{IN} common mode < 2 * Vref.
SID113	A_THD	Total harmonic distortion. V _{DDA} = 2.7 to 3.6 V, 1 Msps.	_	_	- 65	dB	Fin = 10 kHz

DAC

Table 21. 12-bit DAC DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID108D	DAC_RES	DAC resolution	1	1	12	bits	_
SID111D	DAC_INL	Integral Non-Linearity	-4	1	4	LSB	_
SID112D	DAC_DNL	Differential Non Linearity	-2	1	2	LSB	Monotonic to 11 bits.
SID99D	DAC_OFFSET	Output Voltage zero offset error	-2	_	1	mV	For 000 (hex)
SID103D	DAC_OUT_RES	DAC Output Resistance	_	15	_	kΩ	_
SID100D	DAC_IDD	DAC Current	-	-	125	μA	_
SID101D	DAC_QIDD	DAC Current when DAC stopped	-	_	1	μA	_

Table 22. 12-bit DAC AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID109D	DAC_CONV	DAC Settling time	-	1	2		Driving through CTBm buffer; 25-pF load
SID110D	DAC_Wakeup	Time from Enabling to ready for conversion	_	-	10	μs	_

CSD

Table 23. CapSense Sigma-Delta (CSD) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
CSD V2 Spec	cifications					•	
SYS.PER#3	V _{DD_RIPPLE}	Max allowed ripple on power supply, DC to 10 MHz	-	-	±50	mV	V _{DDA} > 2 V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#1 6	V _{DD_RIPPLE_1.8}	Max allowed ripple on power supply, DC to 10 MHz	_	_	±25	mV	V _{DDA} > 1.75 V (with ripple), 25 ° C T _A , Parasitic Capacitance (C _P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD.BL K	I _{CSD}	Maximum block current			4500	μA	-
SID.CSD#15	V _{REF}	Voltage reference for CSD and Comparator	0.6	1.2	V _{DDA} – 0.6	V	$V_{DDA} - V_{REF} \ge 0.6 \text{ V}$
SID.CSD#15 A	V _{REF_EXT}	External Voltage reference for CSD and Comparator	0.6		V _{DDA} – 0.6	V	$V_{DDA} - V_{REF} \ge 0.6 \text{ V}$
SID.CSD#16	I _{DAC1IDD}	IDAC1 (7-bits) block current	_	_	1900	μΑ	_
SID.CSD#17	I _{DAC2IDD}	IDAC2 (7-bits) block current	_	_	1900	μΑ	_
SID308	V _{CSD}	Voltage range of operation	1.7	-	3.6	V	1.71 to 3.6 V
SID308A	V _{COMPIDAC}	Voltage compliance range of IDAC	0.6	-	V _{DDA} – 0.6	V	$V_{DDA} - V_{REF} \ge 0.6 \text{ V}$
SID309	I _{DAC1DNL}	DNL	-1	_	1	LSB	_
SID310	I _{DAC1INL}	INL	-3	-	3	LSB	If V_{DDA} < 2 V then for LSB of 2.4 μ A or less
SID311	I _{DAC2DNL}	DNL	-1	_	1	LSB	_
SID312	I _{DAC2INL}	INL	-3	_	3	LSB	If V_{DDA} < 2 V then for LSB of 2.4 μA or less

Table 23. CapSense Sigma-Delta (CSD) Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SNRC of the	following is Ratio	of counts of finger to noise. Gua	rantee	d by ch	aracteriz	ation	
SID313_1A	SNRC_1	SRSS Reference. IMO + FLL Clock Source. 0.1-pF sensitivity	5	_	_	Ratio	9.5-pF max. capacitance
SID313_1B	SNRC_2	SRSS Reference. IMO + FLL Clock Source. 0.3-pF sensitivity	5	_	_	Ratio	31-pF max. capacitance
SID313_1C	SNRC_3	SRSS Reference. IMO + FLL Clock Source. 0.6-pF sensitivity	5	_	_	Ratio	61-pF max. capacitance
SID313_2A	SNRC_4	PASS Reference. IMO + FLL Clock Source. 0.1-pF sensitivity	5	-	_	Ratio	12-pF max. capacitance
SID313_2B	SNRC_5	PASS Reference. IMO + FLL Clock Source. 0.3-pF sensitivity	5	-	_	Ratio	47-pF max. capacitance
SID313_2C	SNRC_6	PASS Reference. IMO + FLL Clock Source. 0.6-pF sensitivity	5	-	_	Ratio	86-pF max. capacitance
SID313_3A	SNRC_7	PASS Reference. IMO + PLL Clock Source. 0.1-pF sensitivity	5	_	_	Ratio	27-pF max. capacitance
SID313_3B	SNRC_8	PASS Reference. IMO + PLL Clock Source. 0.3-pF sensitivity	5	_	_	Ratio	86-pF max. capacitance
SID313_3C	SNRC_9	PASS Reference. IMO + PLL Clock Source. 0.6-pF sensitivity	5	_	_	Ratio	168-pF max. capacitance
SID314	I _{DAC1CRT1}	Output current of IDAC1 (7 bits) in low range	4.2		5.7	μA	LSB = 37.5-nA typ
SID314A	I _{DAC1CRT2}	Output current of IDAC1(7 bits) in medium range	33.7		45.6	μA	LSB = 300-nA typ.
SID314B	I _{DAC1CRT3}	Output current of IDAC1(7 bits) in high range	270		365	μA	LSB = 2.4-µA typ.
SID314C	I _{DAC1CRT12}	Output current of IDAC1 (7 bits) in low range, 2X mode	8		11.4	μA	LSB = 37.5-nA typ. 2X output stage
SID314D	I _{DAC1CRT22}	Output current of IDAC1(7 bits) in medium range, 2X mode	67		91	μΑ	LSB = 300-nA typ. 2X output stage
SID314E	I _{DAC1CRT32}	Output current of IDAC1(7 bits) in high range, 2X mode. V _{DDA} > 2 V	540		730	μA	LSB = 2.4-µA typ. 2X output stage
SID315	I _{DAC2CRT1}	Output current of IDAC2 (7 bits) in low range	4.2		5.7	μΑ	LSB = 37.5-nA typ.
SID315A	I _{DAC2CRT2}	Output current of IDAC2 (7 bits) in medium range	33.7		45.6	μA	LSB = 300-nA typ.
SID315B	I _{DAC2CRT3}	Output current of IDAC2 (7 bits) in high range	270		365	μA	LSB = 2.4-μA typ.
SID315C	I _{DAC2CRT12}	Output current of IDAC2 (7 bits) in low range, 2X mode	8		11.4	μA	LSB = 37.5-nA typ. 2X output stage
SID315D	I _{DAC2CRT22}	Output current of IDAC2(7 bits) in medium range, 2X mode	67		91	μA	LSB = 300-nA typ. 2X output stage
SID315E	I _{DAC2CRT32}	Output current of IDAC2(7 bits) in high range, 2X mode. V _{DDA} > 2V	540		730	μA	LSB = 2.4-µA typ. 2X output stage
SID315F	I _{DAC3CRT13}	Output current of IDAC in 8-bit mode in low range	8		11.4	μA	LSB = 37.5-nA typ.

Table 23. CapSense Sigma-Delta (CSD) Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID315G	I _{DAC3CRT23}	Output current of IDAC in 8-bit mode in medium range	67		91	μA	LSB = 300-nA typ.
SID315H	I _{DAC3CRT33}	Output current of IDAC in 8-bit mode in high range. V _{DDA} > 2V	540		730	μA	LSB = 2.4-μA typ.
SID320	I _{DACOFFSET}	All zeroes input	_	_	1	LSB	Polarity set by Source or Sink
SID321	I _{DACGAIN}	Full-scale error less offset	_	_	±15	%	LSB = 2.4-µA typ.
SID322	I _{DACMISMATCH1}	Mismatch between IDAC1 and IDAC2 in Low mode	-	-	9.2	LSB	LSB = 37.5-nA typ.
SID322A	I _{DACMISMATCH2}	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	6	LSB	LSB = 300-nA typ.
SID322B	I _{DACMISMATCH3}	Mismatch between IDAC1 and IDAC2 in High mode	_	_	5.8	LSB	LSB = 2.4-μA typ.
SID323	I _{DACSET8}	Settling time to 0.5 LSB for 8-bit IDAC	_	-	10	μs	Full-scale transition. No external load.
SID324	I _{DACSET7}	Settling time to 0.5 LSB for 7-bit IDAC	_	_	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	_	2.2	_	nF	5-V rating, X7R or NP0 cap.

Table 24. CSD ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
CSDv2 ADC	Specifications						·
SIDA94	A_RES	Resolution	_	-	10	bits	Auto-zeroing is required every millisecond
SID95	A_CHNLS_S	Number of channels - single ended	-		1	16	_
SIDA97	A-MONO	Monotonicity	_	-	Yes	-	V _{REF} mode
SIDA98	A_GAINERR_VREF	Gain error	-	0.6	Т	%	Reference Source: SRSS (V _{REF} = 1.20 V, V _{DDA} < 2.2 V), (V _{REF} = 1.6 V, 2.2 V < V _{DDA} <2.7 V), (V _{REF} = 2.13 V, V _{DDA} >2.7 V)
SIDA98A	A_GAINERR_VDDA	Gain error	-	0.2	1	%	Reference Source: SRSS ($V_{REF} = 1.20 \text{ V}, V_{DDA} < 2.2 \text{V}$), ($V_{REF} = 1.6 \text{ V},$ 2.2 V < $V_{DDA} < 2.7 \text{ V}$), ($V_{REF} = 2.13 \text{ V}, V_{DDA} > 2.7 \text{ V}$)
SIDA99	A_OFFSET_VREF	Input offset voltage	_	0.5	-	LSb	After ADC calibration, Ref. Src = SRSS, (V _{REF} = 1.20 V, V _{DDA} < 2.2 V), (V _{REF} = 1.6 V, 2.2 V <v<sub>DDA < 2.7 V), (V_{REF} = 2.13 V, V_{DDA} > 2.7 V)</v<sub>
SIDA99A	A_OFFSET_VDDA	Input offset voltage	-	0.5	-	LSb	After ADC calibration, Ref. Src = SRSS, (V _{REF} = 1.20 V, V _{DDA} < 2.2 V), (V _{REF} = 1.6 V, 2.2 V <v<sub>DDA < 2.7 V), (V_{REF} = 2.13 V, V_{DDA} > 2.7 V)</v<sub>

Table 24. CSD ADC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SIDA100	A_ISAR_VREF	Current consumption	_	0.3	_	mA	CSD ADC Block current
SIDA100A	A_ISAR_VDDA	Current consumption	_	0.3	-	mA	CSD ADC Block current
SIDA101	A_VINS_VREF	Input voltage range - single ended	V _{SSA}	_	V _{REF}	V	(V _{REF} = 1.20 V, V _{DDA} < 2.2 V), (V _{REF} =1.6 V, 2.2 V <v<sub>DDA < 2.7 V), (V_{REF} = 2.13 V, V_{DDA} > 2.7 V)</v<sub>
SIDA101A	A_VINS_VDDA	Input voltage range - single ended	V _{SSA}	-	V _{DDA}	V	(V _{REF} = 1.20 V, V _{DDA} < 2.2 V), (V _{REF} = 1.6 V, 2.2 V <v<sub>DDA < 2.7 V), (V_{REF} = 2.13 V, V_{DDA} > 2.7 V)</v<sub>
SIDA103	A_INRES	Input charging resistance	_	15	-	kΩ	-
SIDA104	A_INCAP	Input capacitance	-	41	-	pF	-
SIDA106	A_PSRR	Power supply rejection ratio (DC)	_	60	_	dB	-
SIDA107	A_TACQ	Sample acquisition time	-	10	-	μs	Measured with $50-\Omega$ source impedance. 10 μs is default software driver acquisition time setting. Settling to within 0.05% .
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2"(N+2)). Clock frequency = 50 MHz.	_	25	_	μs	Does not include acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2"(N+2)). Clock frequency = 50 MHz.	_	60	_	μs	Does not include acquisition time.
SIDA109	A_SND_VRE	Signal-to-noise and Distortion ratio (SINAD)	_	57	_	dB	Measured with 50-Ω source impedance
SIDA109A	A_SND_VDDA	Signal-to-noise and Distortion ratio (SINAD)	_	52	_	dB	Measured with 50-Ω source impedance
SIDA111	A_INL_VREF	Integral Non Linearity. 11.6 ksps	_	-	2	LSB	Measured with 50-Ω source impedance
SIDA111A	A_INL_VDDA	Integral Non Linearity. 11.6 ksps	-	_	2	LSB	Measured with 50-Ω source impedance
SIDA112	A_DNL_VREF	Differential Non Linearity. 11.6 ksps	_	-	1	LSB	Measured with 50-Ω source impedance
SIDA112A	A_DNL_VDDA	Differential Non Linearity. 11.6 ksps	_	_	1	LSB	Measured with 50-Ω source impedance

Digital Peripherals

Table 25. Timer/Counter/PWM (TCPWM) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID.TCPWM.1	I _{TCPWM1}	Block current consumption at 8 MHz	-	_	70	μA	All modes (TCPWM)
SID.TCPWM.2	I _{TCPWM2}	Block current consumption at 24 MHz	-	_	180	μA	All modes (TCPWM)
SID.TCPWM.2A	I _{TCPWM3}	Block current consumption at 50 MHz	-	_	270	μA	All modes (TCPWM)
SID.TCPWM.2B	I _{TCPWM4}	Block current consumption at 100 MHz	-	_	540	μA	All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	-	_	100	MHz	Fc max = Fcpu Maximum = 100 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input Trigger Pulse Width for all Trigger Events	2 / Fc	-	-	ns	Trigger Events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected. Fc is counter operating frequency.
SID.TCPWM.5	TPWM _{EXT}	Output Trigger Pulse widths	1.5 / Fc	-	-	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) trigger outputs
SID.TCPWM.5A	TC _{RES}	Resolution of Counter	1 / Fc	-	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM Resolution	1 / Fc	-	-	ns	Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	2 / Fc	-	_	ns	Minimum pulse width between Quadrature phase inputs. Delays from pins should be similar.

Table 26. Serial Communication Block (SCB) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions					
Fixed I ² C	Fixed I ² C DC Specifications											
SID149	I _{I2C1}	Block current consumption at 100 kHz	_	_	30	μA	_					
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	_	80	μA	_					
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	_	180	μA	_					
SID152	I _{I2C4}	I2C enabled in Deep Sleep mode	-	_	1.7	μA	At 60 °C					
Fixed I ² C	AC Specifica	tions										
SID153	F _{I2C1}	Bit Rate	_	_	1	Mbps	_					
Fixed UAF	RT DC Specif	ications										
SID160	I _{UART1}	Block current consumption at 100 kbps	_	_	30	μA	_					
SID161	I _{UART2}	Block current consumption at 1000 kbps	_	_	180	μA	_					
Fixed UAF	RT AC Specifi	ications										
SID162A	F _{UART1}	Bit Rate	_	_	3	Mbps	ULP Mode					
SID162B	F _{UART2}		_	_	8		LP Mode					
Fixed SPI DC Specifications												
SID163	I _{SPI1}	Block current consumption at 1Mbps	_	_	220	μA	_					

Table 26. Serial Communication Block (SCB) Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID164	I _{SPI2}	Block current consumption at 4 Mbps	-	-	340	μΑ	_
SID165	I _{SPI3}	Block current consumption at 8 Mbps	_	_	360	μΑ	_
SID165A	I _{SP14}	Block current consumption at 25 Mbps	-	-	800	μΑ	_
Fixed SPI	AC Specifica	tions for LP Mode (1.1 V) unless noted	other	wise.			
SID166	F _{SPI}	SPI Operating Frequency Master and Externally Clocked Slave	_	_	25	MHz	14-MHz max for ULP (0.9 V) mode
SID166A	F _{SPI_IC}	SPI Slave Internally Clocked	-	-	15	MHz	5-MHz max for ULP (0.9 V) mode
SID166B	F _{SPI_EXT}	SPI Operating Frequency Master (F _{SCB} is SPI Clock)	_	_	F _{SCB} /4	MHz	F _{SCB} max is 100 MHz in LP mode, 25 MHz max in ULP mode
Fixed SPI	Master mode	AC Specifications for LP Mode (1.1 V)	unles	s note	ed otherwis	se.	
SID167	T_{DMO}	MOSI Valid after SClock driving edge	_	_	12	ns	20-ns max for ULP (0.9 V) mode
SID168	T _{DSI}	MISO Valid before SClock capturing edge	5	_	_	ns	Full clock, late MISO sampling
SID169	T _{HMO}	MOSI data hold time	0	-	_	ns	Referred to Slave capturing edge
SID169A	T _{SSELMSCK1}	SSEL Valid to first SCK Valid edge	18	_	_	ns	Referred to Master clock edge
SID169B	T _{SSELMSCK2}	SSEL Hold after last SCK Valid edge	18	ı	_	ns	Referred to Master clock edge
Fixed SPI	Slave mode	AC Specifications for LP Mode (1.1 V) ι	ınless	noted	dotherwise	∍.	
SID170	T_{DMI}	MOSI Valid before Sclock Capturing edge	5	-	_	ns	_
SID171A	T _{DSO_EXT}	MISO Valid after Sclock driving edge in Ext. Clk. mode	-	-	20	ns	35-ns max. for ULP (0.9 V) mode
SID171	T _{DSO}	MISO Valid after Sclock driving edge in Internally Clk. Mode	_	-	T _{DSO_EXT} + 3 * Tscb	ns	Tscb is Serial Comm. Block clock period.
SID171B	T _{DSO}	MISO Valid after Sclock driving edge in Internally Clk. Mode with Median filter enabled.	-	-	T _{DSO_EXT} + 4 * Tscb	ns	Tscb is Serial Comm. Block clock period.
SID172	T _{HSO}	Previous MISO data hold time	5	_	_	ns	_
SID172A	TSSEL _{SCK1}	SSEL Valid to first SCK Valid edge	65	_	_	ns	_
SID172B	TSSEL _{SCK2}	SSEL Hold after Last SCK Valid edge	65	_	_	ns	

LCD Specifications

Table 27. LCD Direct Drive DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID154	I _{LCDLOW}	Operating current in low-power mode	_	5	_	μΑ	16 × 4 small segment display at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	_	500	5000	pF	_
SID156	LCD _{OFFSET}	Long-term segment offset	_	20	_	mV	_
SID157	I _{LCDOP1}	PWM Mode current. 3.3-V bias. 8-MHz IMO. 25 °C.	_	0.6	_	mA	32 × 4 segments 50 Hz
SID158	I _{LCDOP2}	PWM Mode current. 3.3-V bias. 8-MHz IMO. 25 °C.	_	0.5	_	mA	32 × 4 segments 50 Hz

Table 28. LCD Direct Drive AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID159	F_{LCD}	LCD frame rate	10	50	150	Hz	_

Memory

All specifications are valid for –40 $^{\circ}$ C \leq T_A \leq 85 $^{\circ}$ C and 1.71 V to 3.6 V, except where noted.

Flash

Table 29. Flash DC Specifications^[4]

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID173A	I _{PE}	Erase and program current	1	1	6	mA	_

Table 30. Flash AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID174	T _{ROWWRITE}	Row write time (erase & program)	_	_	16	ms	Row = 512 bytes
SID175	T _{ROWERASE}	Row erase time	_	_	11	ms	_
SID176	T _{ROWPROGRAM}	Row program time after erase	_	_	5	ms	_
SID178	T _{BULKERASE}	Bulk erase time (1024 KB)	_	_	11	ms	_
SID179	T _{SECTORERASE}	Sector erase time (256 KB)	_	_	11	ms	512 rows per sector
SID178S	T _{SSERIAE}	Subsector erase time	_	_	11	ms	8 rows per subsector
SID179S	T _{SSWRITE}	Subsector write time; 1 erase plus 8 program times	_	_	51	ms	-
SID180S	T _{SWRITE}	Sector write time; 1 erase plus 512 program times	_	_	2.6	seconds	-
SID180	T _{DEVPROG}	Total device write time	-	_	15	seconds	_
SID181	F _{END}	Flash Endurance	100 k	_	_	cycles	_
SID182	F _{RET1}	Flash Retention. T _A ≤ 25 °C, 100 k P/E cycles	10	_	_	years	-
SID182A	F _{RET2}	Flash Retention. $T_A \le 85$ °C, 10 k P/E cycles	10	_	_	years	-
SID182B	F _{RET3}	Flash Retention. $T_A \le 55$ °C, 20 k P/E cycles	20	_	-	years	-
SID256	T _{WS100}	Number of Wait states at 100 MHz	3	_	_		_
SID257	T _{WS50}	Number of Wait states at 50 MHz	2	_	_		_

Note

Document Number: 002-26017 Rev. *C Page 54 of 73

^{4.} It can take as much as 16 milliseconds to write to flash. During this time, the device should not be reset, or flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

System Resources

Power-on-Reset

Table 31. Power-On-Reset with Brown-out DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions			
Precise P	Precise POR (PPOR) Specifications									
SID190		BOD trip voltage in Active and Sleep modes. V _{DDD} .	1.54	-	-		BOD Reset guaranteed for levels below 1.54 V			
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep. V _{DDD}	1.54	_	_	V	_			
SID192A	V _{DDRAMP}	Maximum power supply ramp rate (any supply)	-	-	100	mV/μs	Active mode			

Table 32. POR with Brown-out AC Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID194A		Maximum power supply ramp rate (any supply) in Deep Sleep	_	1	10	mV/μs	BOD operation guaranteed

Voltage Monitors

Table 33. Voltage Monitors DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID195R	V _{HVD0}		1.18	1.23	1.27	V	_
SID195	V _{HVDI1}		1.38	1.43	1.47	V	_
SID196	V _{HVDI2}		1.57	1.63	1.68	V	-
	V _{HVDI3}		1.76	1.83	1.89	V	_
	V _{HVDI4}		1.95	2.03	2.1	V	-
	V _{HVDI5}		2.05	2.13	2.2	V	_
	V _{HVDI6}		2.15	2.23	2.3	V	_
SID201	V _{HVDI7}		2.24	2.33	2.41	V	-
SID202	V _{HVDI8}		2.34	2.43	2.51	V	_
SID203	V _{HVDI9}		2.44	2.53	2.61	V	_
SID204	V _{HVDI10}		2.53	2.63	2.72	V	_
SID205	V _{HVDI11}		2.63	2.73	2.82	V	_
SID206	V _{HVDI12}		2.73	2.83	2.92	V	_
SID207	V _{HVDI13}		2.82	2.93	3.03	V	_
SID208	V _{HVDI14}		2.92	3.03	3.13	V	-
SID209	V _{HVDI15}		3.02	3.13	3.23	V	_
SID211	LVI_IDD	Block current	_	5	15	μA	_

Table 34. Voltage Monitors AC Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID212	T _{MONTRIP}	Voltage monitor trip time	1	1	170	ns	_

SWD and Trace Interface

Table 35. SWD and Trace Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID214	F_SWDCLK2	$1.7~V \le V_{DDD} \le 3.6~V$	ı	-	25	MHz	LP mode. V _{CCD} = 1.1 V
SID214L	F_SWDCLK2L	$1.7~V \le V_{DDD} \le 3.6~V$	ı	-	12	MHz	ULP mode. V _{CCD} = 0.9 V.
SID215	T_SWDI_SETUP	T = 1/f SWDCLK	0.25 * T	_	-	ns	_
SID216	T_SWDI_HOLD	T = 1/f SWDCLK	0.25 * T	_	-	ns	_
SID217	T_SWDO_VALID	T = 1/f SWDCLK	-	_	0.5 * T	ns	_
SID217A	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	-	ns	_
SID214T	F_TRCLK_LP1	With Trace Data setup/hold times of 2/1 ns respectively	ı	-	75	MHz	LP Mode. V _{DD} = 1.1 V
SID215T	F_TRCLK_LP2	With Trace Data setup/hold times of 3/2 ns respectively	1	_	70	MHz	LP Mode. V _{DD} = 1.1 V
SID216T	F_TRCLK_ULP	With Trace Data setup/hold times of 3/2 ns respectively	_	_	25	MHz	ULP Mode. V _{DD} = 0.9 V

Internal Main Oscillator

Table 36. IMO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID218	I _{IMO1}	IMO operating current at 8 MHz	_	9	15	μΑ	_

Table 37. IMO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID223	F _{IMOTOL1}	Frequency variation centered on 8 MHz	_	1	±2	%	_
SID227	T _{JITR}	Cycle-to-Cycle and Period jitter	_	±250	-	ps	_

Internal Low-Speed Oscillator

Table 38. ILO DC Specification

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID231	I _{ILO2}	ILO operating current at 32 kHz	_	0.3	0.7	μΑ	_

Table 39. ILO AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID234	T _{STARTILO1}	ILO startup time	_	ı	7	116	Startup time to 95% of final frequency
SID236	T _{LIODUTY}	ILO Duty cycle	45	50	55	%	_
SID237	F _{ILOTRIM1}	32-kHz trimmed frequency	28.8	32	36.1	kHz	

Crystal Oscillator

Table 40. ECO Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions				
MHz ECO	MHz ECO DC Specifications										
SID316	I _{DD_MHz}	Block operating current with Cload up to 18 pF	_	800	1600	μΑ	Max = 33 MHz, Type = 16 MHz				
MHz ECO	MHz ECO AC Specifications										
SID317	F_MHz	Crystal frequency range	4	_	35	MHz	_				
kHz ECO	kHz ECO DC Specification										
SID318	I _{DD_kHz}	Block operating current with 32-kHz crystal	_	0.38	1	μA	_				
SID321E	ESR32K	Equivalent Series Resistance	_	80	_	kΩ	-				
SID322E	PD32K	Drive level	-	-	1	μW	_				
kHz ECO	AC Specification										
SID319	F_kHz	32-kHz trimmed frequency	-	32.768	-	kHz	-				
SID320	Ton_kHz	Startup time	ı	_	500	ms	_				
SID320E	F _{TOL32K}	Frequency tolerance	_	50	250	ppm	_				

External Clock

Table 41. External Clock Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID305	EXTCLK _{FREQ}	External Clock input Frequency	0	-	100	MHz	_
SID306	EXTCLK _{DUTY}	Duty cycle; Measured at V _{DD/2}	45	_	55	%	_

PLL

Table 42. PLL Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID305P	PLL_LOCK	Time to achieve PLL Lock	-	16	35	μs	_
SID306P	PLL_OUT	Output frequency from PLL Block	-	-	150	MHz	_
SID307P	PLL_IDD	PLL Current	-	0.55	1.1	mA	Typ at 100 MHz out.
SID308P	PLL_JTR	Period Jitter	1	1	150	ps	100-MHz output frequency

Clock Source Switching Time

Table 43. Clock Source Switching Time Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID262	LLLKCMITCH	Clock switching from clk1 to clk2 in clock periods	-	1	4 clk1 + 3 clk2	periods	_

FLL

Table 44. Frequency Locked Loop (FLL) Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID450	FLL_RANGE	Input frequency range.	0.001	-	100	MHz	Lower limit allows lock to USB SOF signal (1 kHz). Upper limit is for External input.
SID451	FLL_OUT_DIV2	Output frequency range. V _{CCD} = 1.1 V	24.00	-	100.00	MHz	Output range of FLL divided-by-2 output
SID451A	FLL_OUT_DIV2	Output frequency range. V _{CCD} = 0.9 V	24.00	-	50.00	MHz	Output range of FLL divided-by-2 output
SID452	FLL_DUTY_DIV2	Divided-by-2 output; High or Low	47.00	-	53.00	%	_
SID454	FLL_WAKEUP	Time from stable input clock to 1% of final value on deep sleep wakeup	1	ı	7.50	μs	With IMO input, less than 10 °C change in temperature while in Deep Sleep, and Fout ≥ 50 MHz.
SID455	FLL_JITTER	Period jitter (1 sigma at 100 MHz)	_	_	35.00	ps	50 ps at 48 MHz, 35 ps at 100 MHz
SID456	FLL_CURRENT	CCO + Logic current	_	_	5.50	μΑ/MHz	_

UDB

Table 45. UDB AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions			
Data Path	Performance					'	,			
SID249	F _{MAX-TIMER}	Max frequency of 16-bit timer in a UDB pair	_	_	100	MHz	_			
SID250	F _{MAX-ADDER}	Max frequency of 16-bit adder in a UDB pair	_	_	100	MHz	_			
SID251	F _{MAX_CRC}	Max frequency of 16-bit CRC/PRS in a UDB pair	_	-	100	MHz	_			
PLD Perfor	PLD Performance in UDB									
SID252	ID252 F _{MAX_PLD} Max frequency of 2-pass PLD function in a UDB pair		_	_	100	MHz	_			
Clock to O	utput Performanc	е								
SID253	T _{CLK_OUT_UDB1}	Prop. delay for clock in to data out	-	5	_	ns	_			
	Adaptor Specifica 10-pF load, 3-V V									
SID263	T _{LCLKDO}	LCLK to Output delay	_	_	11	ns	_			
SID264	T _{DINLCLK}	Input setup time to LCLCK rising edge	_	-	7	ns	_			
SID265	T _{DINLCLKHLD}	Input hold time from LCLK rising edge	5	_	_	ns	_			
SID266	6 T _{LCLKHIZ} LCLK to Output tristated		_	_	28	ns	_			
SID267	T _{FLCLK} LCLK frequency		_	_	33	MHz	_			
SID268	T _{LCLKDUTY}	LCLK duty cycle (percentage high)	40%	_	60%	%	_			

Document Number: 002-26017 Rev. *C

Note
5. The undivided output of the FLL must be a minimum of 2.5X the input frequency.

USB

Table 46. USB Specifications (USB requires LP Mode 1.1-V Internal Supply)

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
USB Block	Specifications						
SID322U	Vusb_3.3	Device supply for USB operation	3.15	-	3.6	V	USB Configured
SID323U	Vusb_3	Device supply for USB operation (functional operation only)	2.85	-	3.6	V	USB Configured
SID325U	lusb_config	Device supply current in Active mode	_	8	_	mA	V _{DDD} = 3.3 V
SID328	SID328 Isub_suspend Device supply current in Sleep mode		_	0.5	1	mA	V _{DDD} = 3.3 V, Device connected
SID329	Isub_suspend	suspend Device supply current in Sleep mode		0.3	1	mA	V _{DDD} = 3.3 V, Device disconnected
SID330U	USB_Drive_Res	USB driver impedance	28	-	44	Ω	Series resistors are on chip
SID331U	USB_Pulldown	USB pull-down resistors in Host mode	14.25	_	24.8	kΩ	_
SID332U	USB_Pullup_Idle	Idle mode range	900	-	1575	Ω	Bus idle
SID333U	USB_Pullup	Active mode	1425	ı	3090	Ω	Upstream device transmitting

QSPI

Table 47. QSPI Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SMIF QSPI Spe	ecifications. All	specs with 15-pF load.					
SID390Q	Fsmifclock	SMIF QSPI output clock frequency	-	-	80	MHz	LP mode (1.1 V)
SID390QU	Fsmifclocku	SMIF QSPI output clock frequency	_	_	50	MHz	ULP mode (0.9 V). Guaranteed by Char.
SID397Q	ldd_qspi	Block current in LP mode (1.1 V)	-	-	1900	μΑ	LP mode (1.1 V)
SID398Q	Q Idd_qspi_u Block current in ULP mode (0.9 V)		-	-	590	μΑ	ULP mode (0.9 V)
SID391Q	ID391Q Tsetup Input data set-up time with respect to clock capturing edge		4.5	_	_	ns	_
SID392Q	Tdatahold	Input data hold time with respect to clock capturing edge	0	_	_	ns	_
SID393Q	Tdataoutvalid	Output data valid time with respect to clock falling edge	-	-	3.7	ns	7.5-ns max for ULP mode (0.9 V)
SID394Q	Tholdtime	Output data hold time with respect to clock rising edge	3	-	_	ns	_
SID395Q	Output Select valid time with respect to clock rising edge		_	-	7.5	ns	15-ns max for ULP mode (0.9 V)
SID396Q	Tselouthold	Output Select hold time with respect to clock rising edge	0.5*Tsc lk	_	_	ns	Tsclk = Fsmifclk cycle time

Audio Subsystem

Table 48. Audio Subsystem Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
•	interior cifications	•					
SID400P	PDM_IDD1	PDM Active current, Stereo operation, 1-MHz clock	-	175	_	μA	16-bit audio at 16 ksps
SID401	PDM_IDD2	PDM Active current, Stereo operation, 3-MHz clock	-	600	-	μA	24-bit audio at 48 ksps
SID402	PDM_JITTER	RMS Jitter in PDM clock	-200	-	200	ps	-
SID403	PDM_CLK	PDM Clock speed	0.384	_	3.072	MHz	_
SID403A	PDM_BLK_CLK	PDM Block input clock	1.024	_	49.152	MHz	_
SID403B	PDM_SETUP	Data input set-up time to PDM_CLK edge	10	_	ı	ns	_
SID403C	PDM_HOLD	Data input hold time to PDM_CLK edge	10	_	-	ns	_
SID404	PDM_OUT	Audio sample rate	8	_	48	ksps	_
SID405	PDM_WL	Word Length	16	_	24	bits	_
SID406	PDM_SNR	Signal-to-Noise Ratio (A-weighted)	1	100	I	dB	PDM input, 20 Hz to 20 kHz BW
SID407	PDM_DR	Dynamic Range (A-weighted)	1	100	ı	dB	20 Hz to 20 kHz BW, – 60 dB FS
SID408	PDM_FR	Frequency Response	-0.2	_	0.2	dB	DC to 0.45. DC Blocking filter off.
SID409	PDM_SB	Stop Band	-	0.56 6	ı	f	-
SID410	PDM_SBA	Stop Band Attenuation	-	60	_	dB	-
SID411	PDM_GAIN	Adjustable Gain	-12	_	10.5	dB	PDM to PCM, 1.5 dB/step
SID412	PDM_ST	Startup time	-	48	-		WS (Word Select) cycles
I2S Speci	fications. The sa	me for LP and ULP modes unle	ss stated otherw	ise.			
SID413	I2S_WORD	Length of I2S Word	8	-	32	bits	_
SID414	12S_WS	Word Clock frequency in LP mode	-	-	192	kHz	12.288-MHz bit clock with 32-bit word
SID414M	12S_WS_U	Word Clock frequency in ULP mode	-	_	48	kHz	3.072-MHz bit clock with 32-bit word
SID414A	I2S_WS_TDM	Word Clock frequency in TDM mode for LP	-	-	48	kHz	Eight 32-bit channels
SID414X	I2S_WS_TDM_U	Word Clock frequency in TDM mode for ULP	-	_	12	kHz	Eight 32-bit channels
I2S Slave	Mode						
SID430	TS_WS	WS Setup Time to the Following Rising Edge of SCK for LP Mode	5	_	-	ns	_
SID430U	TS_WS	WS Setup Time to the Following Rising Edge of SCK for ULP Mode	11	_	-	ns	-

Table 48. Audio Subsystem Specifications (continued)

SID432 TD_SDO	Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID432 TD_SDO	SID430A	TH_WS		_	-	_	ns	-
SID432U TD_SDO	SID432	TD_SDO	Transition from Edge of		ı	$SOC + \overline{2}$	ns	
SID433	SID432U	TD_SDO	Transition from Edge of		ı	$SOC + \overline{7}$	ns	
SID433U TS_SDI	SID433	TS_SDI	Following Edge of RX_SCK in	5	1	_	ns	_
SID435 TSCKCY TX/RX_SCK Bit Clock Duty 45 - 55 % -	SID433U	TS_SDI	Following Edge of RX_SCK in	11	-	-	ns	_
ISBN STANCT Cycle	SID434	TH_SDI		TMCLK_SOC +5	ı	_	ns	_
SID437 TD_WS WS Transition Delay from Falling Edge of SCK in LP mode -10 - 20 ns -	SID435	TSCKCY		45	ı	55	%	-
SID437	I2S Maste	r Mode						
SID437U TD_WS_U Falling Edge of SCK in ULP mode -10 - 40 ns - SID438 TD_SDO SDO Transition Delay from Falling Edge of SCK in LP mode -10 - 20 ns - SID438U TD_SDO SDO Transition Delay from Falling Edge of SCK in ULP mode -10 - 40 ns - SID439 TS_SDI SDI Setup Time to the Associated Edge of SCK 5 - - ns Associated clock edge depends on selected polarity SID440 TH_SDI SDI Hold Time to the Associated Edge of SCK TMCLK_SOC + 5 - - ns Tis TX/RX_SCK Bit Clock period. Associated clock edge depends on selected polarity. SID440 TSCKCY SCK Bit Clock Duty Cycle 45 - 55 % - SID445 FMCLK_SOC MCLK_SOC Frequency in LP mode 1.024 - 98.304 MHz FMCLK_SOC_U = 8* Bit-clock SID446 TMCLKCY MCLK_SOC Duty Cycle 45 - 55 % -	SID437	TD_WS		-10	-	20	ns	_
Falling Edge of SCK in LP mode SID438U TD_SDO SDO Transition Delay from Falling Edge of SCK in ULP mode TD_SDO SDO Transition Delay from Falling Edge of SCK in ULP mode TD_SDO SDI Setup Time to the Associated Edge of SCK TMCLK_SOC +	SID437U	TD_WS_U	Falling Edge of SCK in ULP	-10	_	40	ns	-
SID438U TD_SDO Falling Edge of SCK in ULP	SID438	TD_SDO		-10	_	20	ns	-
SID439 TS_SDI SDI Setup Time to the Associated Edge of SCK 5 ns depends on selected polarity TH_SDI SDI Hold Time to the Associated Edge of SCK TMCLK_SOC + ns depends on selected polarity T is TX/RX_SCK Bit Clock period. Associated depends on selected polarity. SID443 TSCKCY SCK Bit Clock Duty Cycle 45 - 55 % SID445 FMCLK_SOC MCLK_SOC Frequency in LP mode SID445 FMCLK_SOC_U MCLK_SOC Frequency in ULP mode SID445 TMCLKCY MCLK_SOC_Duty Cycle 45 - 24.576 MHz FMCLK_SOC_U = 8 * Bit-clock SID446 TMCLKCY MCLK_SOC Duty Cycle 45 - 55 %	SID438U	TD_SDO	Falling Edge of SCK in ULP	-10	-	40	ns	-
SID440 TH_SDI SDI Hold Time to the Associated Edge of SCK SDI Hold Time to the Associated Edge of SCK TMCLK_SOC +	SID439	TS_SDI		5	-	-	ns	
SID445 FMCLK_SOC MCLK_SOC Frequency in LP mode 1.024 - 98.304 MHz FMCLK_SOC = 8 * Bit-clock SID445U FMCLK_SOC_U MCLK_SOC Frequency in ULP mode 1.024 - 24.576 MHz FMCLK_SOC_U = 8 * Bit-clock SID446 TMCLKCY MCLK_SOC Duty Cycle 45 - 55 % -	SID440	TH_SDI			-	-	ns	Clock period. Associated clock edge depends on selected
SID445 FMCLK_SOC mode 1.024 — 98.304 MHZ 8 * Bit-clock SID445U FMCLK_SOC_U MCLK_SOC Frequency in ULP mode 1.024 — 24.576 MHz FMCLK_SOC_U = 8 * Bit-clock SID446 TMCLKCY MCLK_SOC Duty Cycle 45 — 55 % —	SID443	TSCKCY	SCK Bit Clock Duty Cycle	45	_	55	%	_
SID4450	SID445	FMCLK_SOC		1.024	-	98.304	MHz	
	SID445U	FMCLK_SOC_U		1.024	-	24.576	MHz	
SID447 TJITTER MCLK_SOC Input Jitter -100 - 100 ps -	SID446	TMCLKCY	MCLK_SOC Duty Cycle	45	_	55	%	_
	SID447	TJITTER	MCLK_SOC Input Jitter	-100	_	100	ps	_

Smart I/O

Table 49. Smart I/O Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Unit	Details / Conditions
SID420	SMIO_BYP	Smart I/O Bypass delay	_	-	2	ns	_
SID421	SMIO_LUT	Smart I/O LUT prop delay	_	8	1	ns	_

Precision ILO (PILO)

Table 50. PILO Specifications

Spec ID#	Parameter	Description		Тур	Max	Unit	Details / Conditions		
SID 430R	I _{PILO}	Operating current	_	1.2	4	μΑ	_		
SID431	F_PILO	PILO nominal frequency	_	32768	-	Hz	T = 25 °C with 20-ppm crystal		
SID432R	ACC_PILO	PILO accuracy with periodic calibration	-500	_	500	ppm	_		

Ordering Information

Table 51 lists the CYB06447BZI-D54 part numbers and features. All devices include DC-DC converter, QSPI SMIF, ADC, DAC, 9 SCBs, USB-FS, 32 TCPWMs, 2 PDM, and I2S. See also the product selector guide.

Table 51. Marketing Part Numbers

Family	MPN	CPU Speed (CM4)	CPU Speed (CM0+)	Single CPU/Dual CPU	ULP/LP	Flash (KB)	SRAM (KB)	No. of CTBMs	No. of UDBs	CapSense	GPIOs	CRYPTO	Secure Boot
64	CYB06447BZI-D54	150/50	100/25	Dual	FLEX	832	184	1	12	Yes	100	Yes	124-BGA

PSoC 6 MPN Decoder CY XX 6 A B C DD E - FF G H I JJ K L

Field	Description	Values	Meaning
CY	Cypress	CY	Cypress
		8C	Standard
XX	Firmware	В0	Secure Boot v1
		S0	Std. Secure - AWS
6	Architecture	6	PSoC 6
		0	Value
		1	Programmable
Α	Line	2	Performance
		3	Connectivity
		4	Security
		2	100 MHz
В	Speed	3	150 MHz
		4	150/50 MHz
		0-3	RFU
		4	256K/128K
		5	512K/256K
С	Memory Size (Flash/SRAM)	6	512K/128K
		7	1024K/288K
		8	1024K/512K
		9	RFU
		Α	2048K/1024K
		AZ, AX	TQFP
		LQ	QFN
DD	Package	BZ	BGA
		FM	M-CSP
		FN, FD, FT	WLCSP

Field	Description	Values	Meaning
	2000	С	Consumer
Е	Temperature Range	ı	Industrial
		Q	Extended Industrial
			Cyproca internal
FF	Feature Code	S2-S6	Cypress internal
		BL	Integrated BLE
G	CPU Core	F	Single Core
0	Of O Cole	D	Dual Core
Н	Attributes Code	0–9	Feature set
		1	31-50
	GPIO count	2	51-70
'	GFIO COUIII	3	71-90
		4	91-110
JJ	Engineering sample (optional)	ES	Engineering samples or not
K	Die Revision		Base
Λ.	(optional)	A1-A9	Die revision
L	Tape/Reel Shipment (optional)	Т	Tape and Reel shipment

Packaging

This product line is offered in a 124-BGA package.

Table 52. Package Dimensions

Spec ID#	Package	Description	Package Drawing Number
PKG_1	124-BGA	124-BGA, 9 mm × 9 mm × 1 mm height with 0.65-mm pitch	001-97718

Table 53. Package Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	-	-40	25	85	°C
T_J	Operating junction temperature	_	-40	_	100	°C
T_JA	Package θ _{JA} (124-BGA)	_	-	36.2	_	°C/watt
T_JC	Package θ _{JC} (124-BGA)	-	_	15	_	°C/watt

Table 54. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
124-BGA	260 °C	30 seconds

Table 55. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2

Package	MSL
124-BGA	MSL 3

Document Number: 002-26017 Rev. *C Page 65 of 73

Figure 10. 124-BGA 9.0 × 9.0 × 1.0 mm

0)/14001	DIMENSIONS			
SYMBOL	MIN.	NOM.	MAX.	
Α			1.00	
A1	0.16	0.21	0.26	
D	8.90	9.00	9.10	
E	8.90 9.00 9.10			
D1	7.80 BSC			
E1	7.80 BSC			
MD	13			
ME	13			
N	124			
Ø b	0.25	0.30	0.35	
eD	0.65 BSC			
еE	0.65 BSC			
SD	0			
SE	0			

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X MF.
- DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- **SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.

 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW

 "SD" OR "SE" = 0.
 - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.
- 9. JEDEC SPECIFICATION NO. REF.: MO-280.

001-97718 *B

Acronyms

Acronym	Description	
3DES	triple DES (data encryption standard)	
ADC	analog-to-digital converter	
AES	advanced encryption standard	
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an Arm data transfer bus	
AMUX	analog multiplexer	
AMUXBUS	analog multiplexer bus	
API	application programming interface	
Arm [®]	advanced RISC machine, a CPU architecture	
BGA	ball grid array	
BOD	brown-out detect	
CAD	computer aided design	
CCO	current controlled oscillator	
CM0+	Cortex-M0+, an Arm CPU	
CM4	Cortex-M4, an Arm CPU	
CMAC	cipher-based message authentication code	
CMOS	complementary metal-oxide-semiconductor, a process technology for IC fabrication	
CMRR	common-mode rejection ratio	
CPU	central processing unit	
CRC	cyclic redundancy check, an error-checking protocol	
CSD	CapSense Sigma-Delta	
csx	Cypress mutual capacitance sensing method. See also CSD	
DAC	digital-to-analog converter, see also IDAC, VDAC	
DAP	debug access port	
DES	data encryption standard	
DMA	direct memory access, see also TD	
DNL	differential nonlinearity, see also INL	
DSI	digital system interconnect	
DU	data unit	
ECC	elliptic curve cryptography	
ECO	external crystal oscillator	
EEPROM	electrically erasable programmable read-only memory	
EMI	electromagnetic interference	
ESD	electrostatic discharge	
ETM	embedded trace macrocell	
FIFO	first-in, first-out	
FLL	frequency locked loop	

Acronym	Description	
FPU	floating-point unit	
FS	full-speed	
GND	Ground	
CDIO	general-purpose input/output, applies to a PSoC	
GPIO	pin	
HMAC	Hash-based message authentication code	
HSIOM	high-speed I/O matrix	
I/O	input/output, see also GPIO, DIO, SIO, USBIO	
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol	
I ² S	inter-IC sound	
IC	integrated circuit	
IDAC	current DAC, see also DAC, VDAC	
IDE	integrated development environment	
ILO	internal low-speed oscillator, see also IMO	
IMO	internal main oscillator, see also ILO	
INL	integral nonlinearity, see also DNL	
IoT	internet of things	
IPC	inter-processor communication	
IRQ	interrupt request	
ISR	interrupt service routine	
JTAG	Joint Test Action Group	
LCD	liquid crystal display	
LINI	Local Interconnect Network, a communications	
LIN	protocol	
LP	low power	
LS	low-speed	
LUT	lookup table	
LVD	low-voltage detect, see also LVI	
LVTTL	low-voltage transistor-transistor logic	
MAC	multiply-accumulate	
MCU	microcontroller unit	
MCWDT	multi-counter watchdog timer	
MISO	master-in slave-out	
MMIO	memory-mapped input output	
MOSI	master-out slave-in	
MPU	memory protection unit	
MSL	moisture sensitivity level	
Msps	million samples per second	
МТВ	micro trace buffer	
MUL	multiplier	
NC	no connect	
NMI	nonmaskable interrupt	

Acronym	Description
NVIC	nested vectored interrupt controller
OTP	one-time programmable
OVT	overvoltage tolerant
PASS	programmable analog subsystem
PCB	printed circuit board
PCM	pulse code modulation
PDM	pulse density modulation
PHY	physical layer
PICU	port interrupt control unit
PLL	phase-locked loop
PMIC	power management integrated circuit
POR	power-on reset
PPU	peripheral protection unit
PRNG	pseudo random number generator
PSoC [®]	Programmable System-on-Chip™
PSRR	power supply rejection ratio
PWM	pulse-width modulator
QD	quadrature decoder
QSPI	quad serial peripheral interface
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
ROM	read-only memory
RSA	Rivest–Shamir–Adleman, a public-key cryptog- raphy algorithm
RTC	real-time clock
RX	receive
S/H	sample and hold
SAR	successive approximation register
SARMUX	SAR ADC multiplexer bus
SCB	serial communication block
Sflash	supervisory flash
SHA	secure hash algorithm
SINAD	signal to noise and distortion ratio
SNR	signal-to-noise ration
SOF	start of frame
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SROM	supervisory read-only memory
SRSS	system resources subsystem
SWD	serial wire debug, a test protocol
SWJ	serial wire JTAG

Acronym	Description
SWO	single wire output
SWV	serial-wire viewer
TCPWM	timer, counter, pulse-width modulator
TDM	time division multiplexed
TQFP	thin quad flat package
TRM	technical reference manual
TRNG	true random number generator
TX	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
ULP	ultra-low power
USB	Universal Serial Bus
WCO	watch crystal oscillator
WDT	watchdog timer
WIC	wakeup interrupt controller
WLCSP	wafer level chip scale package
XIP	execute-in-place
XRES	external reset input pin

Document Conventions

Unit of Measure

Table 56. Unit of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
ΜΩ	mega-ohm
Msps	megasamples per second
μΑ	microampere
μF	microfarad

Table 56. Unit of Measure (continued)

Symbol	Unit of Measure
μН	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

PRELIMINARY

PSoC 6 MCU: CYB06447BZI-D54 Datasheet

Errata

This section describes the errata for the PSoC 64 Product Family. Details include errata trigger conditions, scope of impact, available workarounds, and silicon revision applicability. Compare this document to the device's datasheet for a complete functional description. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Device Characteristics	
CY8C6XX	PSoC 64 Product Family	

PSoC 64 Qualification Status

Production

PSoC 64 Errata Summary

Noise is caused in supply and ground traces when multiple outputs switch. The amount of noise is dependent on the number of outputs, the drive strength of the output drivers, the frequency of the switching, and the impact on specific ports. The noise is worse at higher voltages ($V_{DD} = 2.7 \text{ V}$ and higher) and should not be an issue with 1.8 V externally regulated (that is, $V_{DD} = 1.8 \text{ V} \pm 5\%$) designs.

For cases where there are large numbers of GPIOs switching simultaneously, the following errata conditions are applicable. Note that the exact number cannot be specified as there are too many system-dependent conditions.

This table defines the errata applicability to available PSoC 64 family devices.

Items	CY8C6XX 64	Silicon Revision	Fix Status
[1] Drive mode strength must be limited.	All	*C silicon	Investigation underway. Fix planned by Q3'20
[2] CapSense use is restricted to Ports 6 and 7 with switching restrictions on other ports.	All	*C silicon	Investigation underway. Fix planned by Q3'20
[3] Switching noise can cause ADC errors due to voltage reference noise.	All	*C silicon	Investigation underway. Fix planned by Q3'20
[4] Port Usage restrictions must be applied.	All	*C silicon	Investigation underway. Fix planned by Q3'20

1. Drive mode strength must be limited.		
	There are four Drive mode strengths: DM0, DM1, DM2, and DM3, DM0 being the strongest and DM3 the weakest in order. Usage of DM0 can cause noise in supply and ground lines for simultaneous outputs switching. Drive mode strength must be limited to DM2 for all GPIOs except for the 80 MHz QSPI clock which may use DM1.	
Problem Definition	The V_{OL} and V_{OH} specs are affected as follows (also applies to V_{DDIO} , V_{DDIOA} , and V_{DDA} pins): $V_{DD} < 2.7 \text{ V}$:	
	$V_{OL} = 0.5 \text{ V} \text{ @ } I_{OL} = 6 \text{ mA. } V_{OH} = V_{DD} - 0.5 \text{ V}, I_{OH} = 6 \text{ mA.}$	
	$V_{DD} \ge 2.7 \text{ V}$:	
	$V_{OL} = 0.4 @ I_{OL} = 6 \text{ mA. } V_{OH} = V_{DD} - 0.5 \text{ V}, I_{OH} = 6 \text{ mA.}$	
Parameters Affected	Drive mode settings.	
Trigger Condition(s)	Simultaneous outputs switching with high drive strength	
Scope of Impact	Causes supply and ground noise, which can affect ADC and CapSense operation	
Workaround	Follow drive mode strength restrictions. Drive Mode 2 (DM2) should be used for all ports except for the 80-MHz QSPI clock, which should be DM1	
Fix Status	Investigation underway. Fix planned by Q3'20.	

Document Number: 002-26017 Rev. *C Page 70 of 73

2. CapSense use is restricted to Ports 6 and 7 with switching restrictions on other ports.			
Problem Definition	GPIO simultaneous switching creates noise which can affect CapSense accuracy in unrestricted use		
Parameters Affected	CapSense sensitivity and accuracy		
Trigger Condition(s)	Noise caused by GPIO simultaneous output switching during CapSense operation		
Scope of Impact	CapSense may produce erroneous results due to noise coupling from switching GPIOs.		
Workaround	For CapSense usage, the following restrictions apply: a. Limit switching on Port 1 to 1 MHz (no more than 2 outputs) with slow slew rate. b. CapSense pins are restricted to Ports 6 and 7. No other GPIO output activity is allowed on Ports 6 and 7. c. Switching in Ports 5 and 8 is restricted to 1 MHz (no more than 2 outputs) with slow slew rate setting. CapSense must use the SRSS reference.		
Fix Status	Investigation underway. Fix planned by Q3'20.		

3. Switching noise can cause ADC errors due to voltage reference noise.			
Problem Definition	nition 12-bit SAR ADC Counts are affected by switching noise		
Parameters Affected	ADC accuracy		
Trigger Condition(s)	Switching noise caused by GPIO simultaneous switching		
Scope of Impact	ADC accuracy will be impacted		
Workaround	Restrict switching on Ports 9 and 10 (analog input ports). The Programmable Analog Sub-System (PASS), including the SAR ADC, is connected to Ports 9 and 10. With no switching on Ports 9 and 10, the ADC error may be up to 4 LSB counts. Switching in Ports 9 and 10 is restricted to 1 MHz (no more than 2 outputs) with slow slew rate setting and, in this case, the ADC error may be up to 12 counts.		
Fix Status	tus Investigation underway; Fix planned by Q3'20.		

4. Port Usage restrictions must be applied.				
Problem Definition	GPIO simultaneous switching causes supply and ground noise that adversely affects other on-chip subsystems).			
Parameters Affected	CapSense and ADC results			
Trigger Condition(s)	GPIO simultaneous switching with unrestricted strengths and frequency.			
Scope of Impact	Incorrect results may cause false sensing or failure to sense for CapSense and inaccurate results for the SAR ADC (may not deliver 12-bit accuracy).			
	Follow Port Usage restrictions:			
	a. Switching on Port 0 must be restricted to less than 8 MHz.			
Workaround	b. Switching on Port 1 must be restricted to less than 1 MHz with slow rate and no more than 2 outputs.			
	c. Ports 9 and 10 must be restricted to 8 MHz when not using the ADC and the restrictions stated earlier used when the ADC is used.			
	d. Use VREF from System Resource Subsystem (SRSS) for CapSense			
Fix Status	Investigation underway. Fix planned by Q3'20.			

Document Number: 002-26017 Rev. *C Page 71 of 73

Revision History

Description Title: PSoC 6 MCU: CYB06447BZI-D54 Datasheet Document Number: 002-26017						
Revision	ECN	Submission Date	Description of Change			
**	6417471	02/11/2019	New datasheet			
*A	6599170	10/22/2019	Updated the title. Updated General Description, Features and Functional Description. Updated Ordering Information. Updated Memory and Memory Map sections.			
*B	6756608	12/19/2019	Updated Features, Blocks and Functionality, and Functional Description. Updated Pinouts and Power Supply Considerations.			
*C	6848239	04/07/2020	Updated Features. Updated Functional Description. Updated Pinouts. Updated PSoC 6 MPN Decoder			

cypress.com/wireless

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic **Touch Sensing** cypress.com/touch **USB Controllers** cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2019-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whos

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.