EECS 495: Combinatorial Optimization Matroid Intersection

Lecture 9

Reading: Schrijver, Chapter 41

Matroid Intersection

Claim: (Edmonds, 1970) For matroids M_1, M_2 on S,

$$\max_{J \in \mathcal{I}_1 \cap \mathcal{I}_2} \{|J|\} = \min_{A \subseteq S} \{r_1(A) + r_2(\overline{A})\}.$$

Proof

Need:

- 1. deletion
- 2. contraction
- 3. submodularity of rank function

Def: The dual M^* of matroid $M = (S, \mathcal{I})$ is the matroid with ground set S whose independent sets I are such that $S \setminus I$ contains a basis of M.

Def: The deletion $M \setminus Z$ of matroid $M = (S, \mathcal{I})$ and subset $Z \subset S$ is the matroid with ground set $S \setminus Z$ and independent sets $\{I \subseteq S \setminus Z : I \in \mathcal{I}\}.$

Example: Take graph, delete edges, take acyclic subsets of remaining edges.

Def: The contraction M/Z is $(M^* \setminus Z)^*$. Unwrapping, we get:

- M^* is everything that excludes a basis B of M
- $(M^* \setminus Z)$ has ground set $S' = S \setminus Z$ and indep sets is everything that excludes a basis B and excludes Z
- max indep sets of $(M^* \setminus Z)$ is
 - take max indep set of M in Z, say J
 - extend J to basis with elts $J' \in S \setminus Z$
 - then $S \setminus (Z \cup J')$ is max indep set (excludes Z and basis $J \cup J'$)
- so indep sets of $(M^* \setminus Z)^*$ are $\{J' \subseteq S' : J' \cup J \in \mathcal{I}, r(J) = r(Z)\}$

Example: Take graph, contract edges, take acyclic subsets of remaining edges.

Note: Defin does not depend on which indep set $J \subseteq Z$ that we choose (clear from graph example)

Claim: M' = M/Z is a matroid with rank function $r'(A) = r(A \cup Z) - r(Z)$.

Proof: Downward-closed, exchange property both follow as M satisfies them. For rank function:

- let $J' \subseteq A$ be max indep set in $A \subseteq S \setminus Z$ according to M'
- let $J \subset Z$ be max indep set according to M such that $J \cup J'$ indep in M

- then $J \cup J'$ is a max indep set in $A \cup Z$ according to M since if not $\exists e \in A \cup Z, J \cup J' \cup \{e\}$ indep in M
 - if $e \in A$ then J' not max since $J' \cup \{e\} \in \mathcal{I}'$ by defin of contraction
 - if $e \in Z$ then J not max since $J \cup \{e\} \in \mathcal{I}$ by downward closure
- claim follows since $J \cap J' = \emptyset$

Def: A function f is submodular if for any A, B,

$$f(A \cup B) + f(A \cap B) \le f(A) + r(B)$$

or equivalently if for any $S \subset T$ and $i \notin T$,

$$f(S \cup \{i\}) - f(S) \ge f(T \cup \{i\}) - f(T).$$

Claim: $r(\cdot)$ is rank func of a matroid iff

- $r(\emptyset) = 0$ and $r(A \cup \{e\}) r(A) \in \{0, 1\}$ for all e, A
- $r(\cdot)$ is submodular

Proof: (of Matroid Intersection Theorem) Already showed max \leq min. Other direction:

$$\max_{J \in \mathcal{I}_1 \cap \mathcal{I}_2} |J| \ge \min_{A \subseteq S} r_1(A) + r_2(S \setminus A)$$

by induction on |S|.

- let k be $\min_A(r_1(A) + r_2(S \setminus A)$
- if no $\{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$ we're done since
 - $-\max \geq 0$
 - for each e, $\{e\} \notin \mathcal{I}_1$ or $\{e\} \notin \mathcal{I}_2$
 - take $A = \{e \in S : r_1(\{e\}) = 0\}$
 - for such A, $r_1(A) + r_2(\overline{A})$ is 0 so $\min \le 0$

• else let $\{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$

delete e, if min = k, (actually just need \geq but min can't grow) we're done since

- $-M'_i = (S' = S \setminus \{e\}, \mathcal{I}'_i = \{J \in \mathcal{I}_i : e \notin J\})$
- $\ \operatorname{let} A = \operatorname{argmin}_{A \subseteq S'} r_1'(A) + r_2'(S' \backslash A)$
- by induction, $\max_{J \in \mathcal{I}'_1 \cap \mathcal{I}'_2} |J| \ge r'_1(A) + r'_2(S' \setminus A)$
- common independent sets only grow when add back $\{e\}$ so $\max_{J \in \mathcal{I}_1 \cap \mathcal{I}_2} |J| \ge \max_{J \in \mathcal{I}_1' \cap \mathcal{I}_2'} |J|$
- by assumption both min equal k

contract e, if min $\geq k - 1$, we're done since

- by induction, $\max \ge \min$ in contracted matroids
- take common indep set J of size at least k-1 in contracted matroids
- then $J \cup \{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$ by defin of contraction and assumption that $\{e\} \in \mathcal{I}_1 \cap \mathcal{I}_2$
- so max in original matroid $\geq |J \cup \{e\}| \geq k = \min$ in original matroid by assumption
- suppose above don't hold. then exist $A, B \subseteq S \setminus \{e\}$ s.t.

$$r_1(A) + r_2(S' \setminus A) \le k - 1$$

and

$$r_1(B \cup \{e\}) - r_1(\{e\})$$

+ $r_2((S' \setminus B) \cup \{e\}) - r_2(\{e\})$
 $< k - 2$

by submodularity and that $r_1(\{e\}) = r_2(\{e\}) = 1$ we get

$$r_1(A \cup B \cup \{e\}) + r_1(A \cap B)$$

$$+r_2(S \setminus (A \cap B)) + r_2(S \setminus (A \cup B \cup \{e\}))$$

 $\leq 2k-1$

but then either sum of middle two terms or sum of other two terms is at most k-1, contradiction that min was k.