01/02 Final Exam

 $Cp = 2p' - n + \frac{Ros S.S.(p')}{6}$

3. (15 marks) An experiment was conducted to model Y with five explanatory variables X_1 , X_2 , X_3 , X_4 and X_5 . We desire an equation of relating Y to the other variables. The goal is to find variables that should be further studied with the eventual goal of developing a prediction equation. The following table gives RSS for all possible regressions. Total sum of squares is equal to 5.0634 and the number of observations is equal to 20.

No. of parameters in the model	RSS	Model
2	2.0338	X_1
2	5.0219	X_2 $S370$
2	1.5370	X_3 . $= 242 - 20 + \frac{1}{4000}$
2	2.5044	$\begin{array}{c} x_2 \\ x_3 \\ x_4 \\ x_5 \end{array}$ = $\frac{1.5370}{0.965/4}$
2	1.5563	=6.294
3	1.5921	X_1, X_2
3	1.4397	X_1, X_3
3	1.7462	X_1, X_4
3	1.4963	X_1, X_5
3	1.4707	X_2, X_3
3	2.4381	$\begin{array}{c} x_{1}, x_{3} \\ x_{2}, x_{3} \\ x_{2}, x_{4} \\ x_{2}, x_{5} \\ x_{3}, x_{4} \end{array} \Rightarrow C_{p} = 2 \times 3 - 20 + \frac{1.085}{0.9652/14}$
3	1.4388	X_2, X_5
3	1.4590	$X_3, X_4 = (1.50)$
3	1.0850	Rest model = X3, X5
3	1.3287	X_4, X_5
4	1.2582	X_1, X_2, X_3
4	1.4257	X_1, X_2, X_4
4	1.2764	X_1, X_2, X_5
4	1.3894	X_1, X_3, X_4
4	1.0644	X_1, X_3, X_5 $\Rightarrow C_0 = 2*4 - 20 + \frac{0.1011}{1}$
4	1.3204	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4	1.3900	$X_2, X_3, X_4 = 2.3 8$
4	0.9871	X_2, X_3, X_5
4	1.2178	X_2, X_4, X_5
4	1.0634	X_3, X_4, X_5
5	1.2199	X_1, X_2, X_3, X_4
5	0.9871	X ₁ , X ₂ , X ₃ , X ₅
5	1.1565	X_1, X_2, X_4, X_5 $\Rightarrow C_{p=2+5-20} + \frac{\alpha(5)}{\alpha(5)}$
5	1.0388	X_1, X_3, X_4, X_5
5	0.9653	X_2, X_3, X_4, X_5
6	0.9652	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Find the best model by C_p , forward selection, backward selection and stepwise selection. Write down how to get the best model on details. Choose critical values for both ENTRY and STAY to be 2. Comment the results.

$$\frac{6}{6} \text{ full wordel} = \frac{0.9652}{20 - 40.3} = \frac{69652}{14}$$

= 6.06894

(6) Cross - validation (1) 0 2(y-9)2 Calmelate $\Xi \Xi (y-\hat{y})^2$ are obs. \Rightarrow without ith obs. \Rightarrow statistic $N_1 = N-1 \rightarrow fit$ a model $N_2 = 1 \rightarrow \widetilde{y}_{i(-i)}$ i=1, -, n(yi - yi(-i)) PRESS residual PRESS = $\frac{n}{2} \left(y_i - \hat{y}_i(-i) \right)^2$ $= \frac{n}{2} \frac{\hat{e}_{z}^{2}}{(1-\hat{e}_{z})^{2}}$ Pi = yi - ŷ: - restdual hii = (i, i)th element in H when H = X (XTX) - XT hii) = XT (XTX) -1 xi Xi - ith row in X leverage

=> all digagen dragonal elements are non-regative

I matrix with ex all elevents equal to 1

(4

Lihear Regression

$$L(\hat{f},\hat{f}) = \frac{1}{(2\pi)^N}(\hat{f})^{N/2} \exp \left\{-\frac{2\pi}{2}(\hat{f}-2\sqrt{1}\hat{f})^2\right\}$$

$$= V \log_2 L = -\frac{N}{2} \ln(2\pi) + N \ln(\hat{f}^2) - \frac{N}{2}$$

$$= V - 2 \log_2 L = N \ln(2\pi) + N \ln(\hat{f}^2) + \frac{N}{2} = \frac{1}{N} (3\pi - N^2 \hat{f})^2 + \frac{N}{2} \ln(2\pi) + \frac{N}{2} \ln(\hat{f}^2) + \frac{$$

X1, ----, Xi-1, Xi, Xit1 ----, Xn y, --- you, yol, yit ---, yn
ignore the ith obs → (n-1) obs => Fit a wodel of y on x βο(-i), βι(-i), ---, βγ(-i), δ(-i) Put 2i into the fitted model Res S.S. (-c) Ji(-i) (n-1) - p'# of obs. # of unknown t: ~ t (n-1-pr) ? para in the model Use to to detect outlier @ Ei, ti, to Desidual Plat Check: livearity constat varance pattern of fransfurting y 4 × & I) Here is pathon Ei, riti

Figure 6.3 Residual plots: (a) null plot; (b) right-opening megaphone; (c) left-opening megaphone; (d) double outward bow; (e) nonlinearity; (f) nonlinearity; (g) nonlinearity and nonconstant variance; (h) nonlinearity and nonconstant variance.

e.g. court data \Rightarrow ~ Portson (M) E(Y) = MVar(Y) \Rightarrow Morelest -2 log L

Var(Y) \Rightarrow Morelest -2 log L

variant Var(Y) \Rightarrow Morelest -2 log L

va

Monnality asomption

Q-a plot => monnade normality

Arrange ti, ---, to

T to, ---, ton

Transformation on y box - Cox transformation (Power # transformation) $y_{i}^{*} = \begin{cases}
\frac{4^{2}-1}{2} & 1 \neq 0 \\
\log_{2}(y_{i}) & \lambda = 0
\end{cases}$ $\begin{array}{l}
\text{Find m.l.e.of } \lambda
\end{array}$ $\begin{array}{l}
\text{Find m.l.e.of } \lambda
\end{array}$ $\begin{array}{l}
\text{Outer a power of the power of t$

= GM(y) 2-1

8

liver repression luge L = - \frac{\gamma}{2} \log (2\chi \chi) - \frac{\gamma}{2} \log (\hat{6}^2) - \frac{\gamma}{2} = - 12 log (Kess) + constat logelikekihood $(\lambda) = -\frac{n}{2} \log (\tilde{\epsilon}^2(\lambda))$ $\mathcal{E}_{\mathcal{I}}(y) = \frac{1}{\lambda_{*,1}} \frac{\lambda_{*,-}}{\lambda_{*,-}} \frac{\lambda_{*,1}}{\lambda_{*,-}} \frac{\lambda_{*,1}}{\lambda_{*,1}} \frac{\lambda_{*,1}}{\lambda_$ profile likelihood Define Zn = X*/J /n => log likhihad (x) = - 1 log (Res S.S. 2 (Z2)) when 2 mil vertor with 2 = { JEGMYJJ > +0 GM(y) ln(fi) A = 0 For each A, = calculate Zi fit zin X

=> Ress. (2)

eg. $\hat{\lambda} = 0.423$ 95% $\hat{\eta}$?

Zoesit over 0.5?