DataScience & IA

Christophe Rodrigues

Plan du cours

Challenge de classification
Projet final
Réseaux de neurones
Du Perceptron au Deep Learning
Quiz

Challenge de classification

- 1) Un dataset anonyme avec plusieurs dimensions en entrée et une variable à prédire vous sera communiqué.
- 2) vous entraînerez votre modèle sur ce dataset en divisant en deux parties : une pour l'apprentissage, une pour le test de votre modèle. Vous êtes libres de le faire comme vous le voulez, la seule contrainte est d'utiliser un K plus proche voisin.
- 3) un dataset sur le même problème vous sera fourni mais sans l'étiquette que vous devrez prédire vous-même à l'aide de votre modèle développé en étape 2).
- 4) vous devrez envoyer les étiquettes que vous avez trouver que l'on pourra comparer aux étiquettes réelles et vous attribuer un score.

Les instructions détaillées suivront

Projet final : Gomoku

Matrice de 19x19 positions

Exactement le même principe que le Morpion, excepté qu'il faille aligner 5 pions au lieu de 3

A faire par groupe de 3/4 étudiants Présentation/Démonstration lors de la dernière séance de TP

Réseaux de neurones Perceptron

Rosenblatt 1952

Réseaux de neurones **Perceptron**

$$o = f(z) = egin{cases} 1 & ext{si} & \sum_{i=1}^n w_i x_i > heta \ 0 & ext{sinon} \end{cases}$$

 $W_i' = W_i + \alpha (Y_t - Y) X_i$

 W_i' = le poids i corrigé

 Y_t = sortie attendue

a

σ

Y =sortie observée

 α = le taux d'apprentissage

 X_i = l'entrée du poids i pour la sortie attendue Y_t

 W_i = le poids i actuel

Perceptron + XOR = L'hiver de l'IA

OR		
I ₁	l ₂	out
0	0	0
0	1	1
1	0	1
1	1	1

Minsky & al. 1969

XOR		
l,	I ₂	out
0	0	0
0	1	1
1	0	1
1	1	0

...Solution plus de 15 ans après

Perceptron multicouche avec rétropropagation du gradient (en pratique en 1986, Rumelhart)

Perceptron avec une couche cachée

Perceptron multicouches

Rétropropagation du gradient

Propager chaque exemple dans le réseau

Calculer l'erreur en sortie puis le gradient

Modifier les poids dans la direction opposée au gradient

3 principales variantes :

- batch (précis mais long)
- stochastic (instable mais rapide)
- mini-batch (meilleur des 2 mondes)

Inside Black Box: ConvnetJS

https://cs.stanford.edu/people/karpathy/convnetjs//demo/classify2d.html

Apprentissage d'une représentation

Le réseau part des pixels et apprend sa propre représentation des images

Grandes familles de réseaux

Réseau dense

AE - Auto-Encoder

Très utilisés pour le transfert de connaissances

CNN - Convolutional Neural Networks

RNN - Recurrent Neural Networks

Traitement des séquences (ex : traduction de texte)

GAN - Generative Adversarial Networks

Régularisation: Contraindre les poids

- Sur la courbe du haut, il y a 4 points mal prédits.
- Sur la courbe du bas, il n'y a aucune erreur mais elle semble faire un surapprentissage.
- La courbe du haut plus simple est préférable (rasoir d'Occam) car elle généralise mieux et est supposée meilleure sur des exemples jamais vus.
- Concrètement on va ajouter au calcul de l'erreur un terme restreignant la distribution des poids dans le réseau.

Régularisation: Dropout

Itérativement, En apprentissage lors de la rétropropagation du gradient, certains neurones choisis aléatoirement vont être gelés et ne seront pas mis à jour.

Le but est d'éviter des co-adaptations complexes pouvant engendrer du sur-apprentissage

Eviter le sur-apprentissage

Avoir plus de données Réduire la capacité du réseau Régulariser les poids Utiliser le dropout

StarCraft - AlphaStar IA

Dans le Machine Learning de reddit : « We understand that the consensus among Starcraft 2 scene is that AlphaStar won the games through superhuman army control and that superior strategic thinking wasn't even needed. »

https://www.reddit.com/r/MachineLearning/comments/ak3v4i/d_an_analysis_on_how_alphastars_superhuman_speed/

Pour continuer...

Artificial Intelligence A modern Approach Stuart Russell, Peter Norvig 3ème édition 2011, 1152 pages

Apprentissage Artificiel Antoine Cornuéjols, Laurent Miclet, Vincent barra 3ème édition 2018, 899 pages

Pour continuer...

Deep Learning with Python François Chollet 2017, 384 pages

Deep Learning Ian Goodfellow, Yoshua Bengio, Aaron Courville 2016, 775 pages

Pour continuer à l'ESILV...

- **Année 4 Machine Learning par M. Ghassany**
- **Année 4 Deep Learning par Mme Alizadeh**
- Année 5 Apprentissage par M. Oblin
- Année 5 Advanced Machine Learning for Big Data and Text Processing par M. Rodrigues