

# Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009

Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016

Hints on Using the Orca Program

In order to run the Orca program, an input file (e.g. myinp.inp) is created and the executed in the following manner:

orca myinp.inp > myinp.log &

One of the ways to determine the progress of the job is

tail -f myinp.log

The general form of the input file for Orca is the following

```
# comment lines (anywhere in input)
! Method BasisSet Additional-Keywords

#Possible input blocks start with '%'
# for example:
%scf maxiter 150
    end

* xyz Charge, Multiplicity
Cartesian coordinates
*
or:
    int Charge, Multiplicity
Z-Matrix
*
```

where Cartesian coordinates (xyz), or internal coordinates (int) can be used. The multiplicty is defined as 2S + 1, where S is the total spin of the state of the molecule, and is the the number of unpaired electrons +1.

Here is an example for formaldehyde (H<sub>2</sub>C=O), where Cartesian coordinates are used:

#### Internal Coordinates: The Z-Matrix

If the molecule under investigation is not too large, the most convenient route for building molecules is to manually input bond distances, bond angles and dihedral angles. A definition of the molecular structure in this way is called a Z-Matrix. In order to specify the position of a given atom, one needs six numbers:

- R, A, and D are the bond distance, the bond angle, and dihedral angle.
- NA, NB, NC are the numbers atom numbers to which the new atom is connected. The integers NA, NB, and NC are used in the following manner:
  - NA: the new atom connects to a previously defined atom (NA), and with distance,
     R in Å.
  - NA, NB: the new atom forms an angle with two previously defined atoms (NA and NB), and with angle, A in degrees.
  - NA, NB, NC: the new atom forms a dihedral angle with three previously defined atoms (NA, NB, and NC), and with dihedral angle, D in degrees.
     This is defined as the angle between the new atom and previously defined atom NC when looking down the NA-NB axis.
- 1. The first atom is always placed at the origin.
- 2. The second atom is placed at a distance, R, from the first atom, in Å, along one of the coordinate axes (e.g. x-axis).
- 3. The third atom is placed in a plane (e.g the xz-plane).
- 4. Any additional atoms require all six parameters (NA, NB, NC, R, A, D) as discussed above.

## Constrained Optimization

In the following input example, a constrained optimization is performed on the formaldehyde molecule ( $H_2C=O$ ), but which also illustrates how to use the Z-Matrix formalism for the use of internal coordinates:

```
Constraining bond distances : { B N1 N2 value C }
Constraining bond angles : { A N1 N2 N1 value C }
Constraining dihedral angles : { D N1 N2 N3 N4 value C }
Constraining cartesian coordinates : { C N1 C }
```

The following points should be noted with respect to constraining coordinates:

• It is optional to assign a value for the constraint parameter. If a value is not given, the value in the Z-matrix is constrained.

For Cartesian coordinates, the initial position of the atom is constrained.

- It is recommended to use a value close to the initial structure.
- It is possible to constrain whole sets of coordinates.

### Rigid Potential Energy Surface (PES) Scan

A rigid potential energy surface scan can be performed as in the following input example.

```
# Scan the H-O-H angle
! RHF SVP
%paras R_OH = 0.950
                             # O-H distance
        A_HOH = 180,90,19
                             # H-O-H angle (180 to 90 in 19 steps)
end
* int 0 1
       0
   0
         0
               0.00
                        0.00
                                 0.00
Η
       0 0
               \{R\_OH\}
                        0.00
                                 0.00
Η
   1
       2 0
               \{R_OH\}
                       {HOH_A}
                                 0.00
```

In the above example, the H–O–H bond angle will be modified in 18 equidistant 5° steps,  $((180^{\circ} - 90^{\circ})/5 + 1 = 19)$ , and, at each step, a constrained geometry optimization will be carried out to yield a rigid potential energy surface scan of the H–O–H bond angle.

### Relaxed Potential Energy Surface (PES) Scan

A relaxed potential energy surface scan can be performed as in the following Orca input example.

```
! RKS B3LYP/G SV(P) TightSCF Opt
%geom Scan
       B 0 1 = 1.35, 1.10, 12
                # C-O distance that will be scanned
       end
     end
* int 0 1
   C 0 0 0 0.0000
                     0.000
                               0.00
   0 1 0 0 1.3500
                     0.000
                               0.00
      1 2 0 1.1075 122.016
                               0.00
      1 2 3 1.1075 122.016
                             180.00
```

In the above example, the C–O bond length will be modified in 12 equidistant steps (1.35 Å - 1.10 Å), and, at each step, a constrained geometry optimization will be carried out to yield a potential energy surface scan of the C–O bond stretch.

#### **Transition States**

In order to find transition states, it is necessary to start with a structure that is reasonably close to the transition state. Structures close to a transition state can be obtained by either a relaxed or rigid potential energy surface scan of the principal reaction coordinate. In addition, chemical intuition can also play an important role. Below is the Orca input for the linear H-H-H molecule, where the coordinates are given n Z-Matrix format:

```
! RHF SVP TightSCF SlowConv Opt PModel NumFreq
%geom TS search
                   true # Calculate the exact Hessian initially
     Calc Hess
                        # Alternatively use InHess read
                        # and InHessName "MyJob.hess" to read
                        # a Hessian calculated at a lower level
                        # of theory
      coordsys redundant
     Recalc Hess 5 # re-calculate Hessian after 5 steps
      # Additional options:
      #modify_internal
      \# { B 1 0 A } \# # add a bond between atoms 0 and 10
                    # # add a bond between atoms 0 and 10
      # { B 3 1 A }
      # end
      #Update Powell
     End
* int 0 2
H 0 0 0 0.0
H 1 2 0 1.0 0
                  0
H 2 1 0 1.0 180
```

### Localized Orbitals (LOCs)

Localized orbitals can be obtained by using the %loc end block command, which also creates a file called MyJob.loc.

Analyze the composition of Localized Orbitals (LOCs) by running a second calculation and re-reading them with the \[ \frac{\mathbb{m}\text{moinp "Myjob.loc"}}{\text{keyword so that these MOs are read and } \]

[! NoIter keyword, so that no SCF interations are performed.]

The resulting orbitals can be processed for visualization programs such as VMD, Molden, Gabedit, and others, using the command: orca\_plot MyJob.loc -i.

#### Unrestricted Corresponding Orbitals (UCOs)

An additional analysis tool that can be used here involves unrestricted corresponding orbitals (UCOs). In order to obtain them, use <u>! UCO</u> in the input file. This will produce a file called MyJob.uco and additional output, which consists of spatial overlaps of spin-up and spin-down orbitals.

Analyze the composition of these orbitals by running a second calculation and re-reading them with the \[ \begin{align\*} \text{moinp "Myjob.uco"} & keyword, so that these MOs are read, and \[ \begin{align\*} ! NoIter & keyword, so that no SCF interations are performed. \]

### Quasi Restricted Orbitals (QROs)

A set of Quasi Restricted Orbitals (QROs) can be obtained by employing the ! UNO keyword, which also creates a file called MyJob.qro.

Analyze the composition of Quasi Restricted Orbitals (QROs) by running a second calculation and re-reading them with the [%moinp "Myjob.qro"] keyword so that these MOs are read and [! NoIter] keyword, so that no SCF interations are performed.

The resulting orbitals can be processed for visualization programs such as VMD, Molden, Gabedit, and others, using the command: orca\_plot MyJob.qro -i.

### Unrestricted Natural Orbitals (UNOs)

A set of Unrestricted Natural Orbitals (UNOs) can be obtained by employing the <u>! UNO</u> keyword, which also creates a file called MyJob.uno.

Analyze the composition of Unrestricted Natural Orbitals (UNOs) by running a second calculation and re-reading them with the [%moinp "Myjob.uno"] keyword so that these MOs are read and [! NoIter] keyword, so that no SCF interations are performed.

The resulting orbitals can be processed for visualization programs such as VMD, Molden, Gabedit, and others, using the command: orca-plot MyJob.uno -i.

## **Broken Symmetry Calculations**

Together with some approximate formalisms, it is possible to extract a value for J from a high-spin and a broken symmetry calculation. It is possible to specifically ask for such solutions. One of the ways to study antiferromagnetic coupling employs the command  $\frac{\text{Scf BrokenSym 1,1 end}}{\text{Scf BrokenSym 1,1 end}}$ . In the output can be found the J(3) value, which is the predicted exchange coupling constant.

# Example Calculation on the $[Cr(H_2O)_6]^{3+}$ Complex

#### Spin-Up Orbitals

In spin-unrestricted calculations, there are separate spin-up and spin-down MOs. In the present case of a  $d^3$  system, one would expect that the three spin-up HOMOs are mainly metal  $t_{2g}$  in character, and the two spin-up LUMOs will have metal  $e_g$  character, which can be verified, by observing the spin-up HOMO/LUMO gap:

| 39 | 1.0000 | -0.759449 | -20.6651 |
|----|--------|-----------|----------|
| 40 | 1.0000 | -0.759446 | -20.6651 |
| 41 | 1.0000 | -0.759445 | -20.6650 |
| 42 | 0.0000 | -0.655032 | -17.8239 |
| 43 | 0.0000 | -0.655029 | -17.8238 |

It can be seen that the three highest occupied and two lowest unoccupied spin-up orbitals are all degenerate, as shown by their composition:

|            | 36       | 37       | 38       | 39       | 40       | 41       |
|------------|----------|----------|----------|----------|----------|----------|
|            | -0.82938 | -0.82938 | -0.82938 | -0.75945 | -0.75945 | -0.75945 |
|            | 1.00000  | 1.00000  | 1.00000  | 1.00000  | 1.00000  | 1.00000  |
|            |          |          |          |          |          |          |
| 0 Cr dxz   | 0.0      | 0.0      | 0.0      | 12.9     | 56.4     | 0.2      |
| 0 Cr dyz   | 0.0      | 0.0      | 0.0      | 0.2      | 0.1      | 69.2     |
| 0 Cr dxy   | 0.0      | 0.0      | 0.0      | 56.4     | 13.0     | 0.1      |
|            | -0.65503 | -0.65503 | -0.49107 | -0.29188 | -0.29187 | -0.29187 |
|            | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
|            |          |          |          |          |          |          |
| 0 Cr s     | 0.0      | 0.0      | 61.6     | 0.0      | 0.0      | 0.0      |
| 0 Cr dz2   | 5.2      | 71.0     | 0.0      | 0.0      | 0.0      | 0.0      |
| 0 Cr dx2y2 | 71.0     | 5.2      | 0.0      | 0.0      | 0.0      | 0.0      |

The result above is the one that is quite reasonable, as can be seen from the compositions of the orbitals. However, they are not pure  $d_{xy}$ ,  $d_{xz}$ , and  $d_{yz}$  orbitals because degenerate orbitals can arbitrarily mix among themselves without changing anything in the physics. These three orbitals simply span the three components of the  $t_{2g}$  representation.

#### Spin-Down Orbitals

In addition, the five spin-down LUMOs are expected to represent the spin-down counterparts of the metal  $t_{2g}$  and metal  $e_g$  orbitals which are shown below:

|    | _      |           |          |
|----|--------|-----------|----------|
| 39 | 0.0000 | -0.652195 | -17.7467 |
| 40 | 0.0000 | -0.652191 | -17.7466 |
| 41 | 0.0000 | -0.652190 | -17.7466 |
| 42 | 0.0000 | -0.605269 | -16.4698 |
| 43 | 0.0000 | -0.605267 | -16.4697 |

The compositions of the LUMOs are given below:

|      |                   | 36<br>-0.82555<br>1.00000 | 37<br>-0.82555<br>1.00000 | 38<br>-0.82554<br>1.00000 | 39<br>-0.65219<br>0.00000 | 40<br>-0.65219<br>0.00000 | 41<br>-0.65219<br>0.00000 |
|------|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 0 Cr | dxz<br>dyz<br>dxy | 0.0<br>0.0<br>0.0         | 0.0<br>0.0<br>0.0         | 0.0<br>0.0<br>0.0         | 16.2<br>0.8<br>73.1       | 62.3<br>11.2<br>16.6      | 11.6<br>78.1<br>0.4       |
|      |                   | 42<br>-0.60527<br>0.00000 | 43<br>-0.60527<br>0.00000 | 44<br>-0.48831<br>0.00000 | 45<br>-0.29023<br>0.00000 | 46<br>-0.29022<br>0.00000 | 47<br>-0.29022<br>0.00000 |
|      | s dz2<br>c dx2y2  | 0.0<br>6.9<br>73.8        | 0.0<br>73.8<br>6.9        | 62.3<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0         | 0.0<br>0.0<br>0.0         | 0.0<br>0.0<br>0.0         |

Interestingly, the orbital splittings of the spin-up and spin-down levels are quite different. In general DFT without admixture of Hartree-Fock exchange, as is the case with the BP functional used here, orbital energy difference between occupied and virtual orbitals is a 0th order approximation to the excitation energy.

#### **Excited States**

In the present case, a ligand field transiton energy is predicted around 2.8 eV (23000 cm<sup>-1</sup>). This can be checked by running a TD-DFT calculation for only six excited states, corresponding to the six ways of taking an electron out of a  $t_{2g}$  orbital, and placing it into the  $e_g$  orbital.

|       |         | AB:            | SORPTION SPECTRU | <br>JM  |         |                     |          |
|-------|---------|----------------|------------------|---------|---------|---------------------|----------|
| State | Energy  | Waveleng       | th fosc          | Т2      | TX      | TY                  | TZ       |
|       | (cm-1)  | (nm)           |                  | (D**2)  | (D)     | (D)                 | (D)      |
| 1 2   | 20591.4 | 485.6<br>485.6 | 0.000000000      | 0.00000 | 0.00000 | -0.00002<br>0.00000 | 0.00000  |
| 3     | 20591.5 | 485.6          | 0.000000000      | 0.00000 | 0.00000 | -0.00003            | 0.00002  |
| 4     | 23600.1 | 423.7          | 0.000000000      | 0.00000 | 0.00001 | -0.00000            | 0.00001  |
| 5     | 23600.7 | 423.7          | 0.000000000      | 0.00000 | 0.00001 | -0.00001            | -0.00001 |
| 6     | 23601.3 | 423.7          | 0.000000000      | 0.00000 | 0.00000 | 0.00002             | 0.00001  |

It can be seen that two excited states that are triply degenerate each and correspond to the singly excited  ${}^4T_{1g}$  and  ${}^4T_{2g}$  terms expected from Table 1. The splitting between the two states is one of the characterisitics of electron-electron repulsion leading to different multiplets.

Despite the small basis set, the result compares favorably with experiment, where transitions are observed at  $17,400 \text{ cm}^{-1}$  and  $24,700 \text{ cm}^{-1}$ . Furthermore, the average of the two transition energies correspond well with the orbital energy difference.

It is possible to determine which state corresponds to each symmetry by using a group theoretical table and working out the allowed transitions for a CD spectrum. The magnetic dipole components  $R_x$ ,  $R_y$ ,  $R_z$  transform as the molecular rotations and belong to the  $T_{1g}$  representation for  $O_h$  symmetry. Thus, the  ${}^4A_{2g} \rightarrow {}^4T_{1g}$  is magnetic-dipole allowed because the direct product  $A_{2g} \otimes T_{1g} \otimes T_{1g}$  yields the totally symmetric representation,  $A_{2g}$  which leads to an allowed transition in the CD spectrum for  $[Cr(H_2O)_6]^{3+}$ .

It is not always the case that TD-DFT calculations agree with experiment, and there is every reason to be critical about the calculational results. Very carefully compare the TD-DFT calculations with experiment. In many cases, artifacts will arise: charge transfer states tend to appear much too low in the spectrum; double excitations are entirely missing; neutral-to-ionic transitions are poorly predicted; and spin-flip transitions cannot be predicted.

#### **Excited States**

The compositions of these transition shows that they indeed correspond to the expected excitations:

```
1: E= 0.093822 au 2.553 eV 205
39a -> 43a : 0.040541 (c= -0.20134677)
40a -> 42a : 0.235055 (c= -0.401677)
STATE 1: E= 0.093822 au
                                                    20591.4 cm**-1
                         0.091500 (c= 0.30248889)
    40a -> 43a :
    41a -> 42a :
41a -> 43a :
                          0.033109 (c= 0.18195871)
                          0.591178 (c= 0.76888093)
STATE 2: E= 0.093822 au
                                     2.553 eV
                                                    20591.5 cm**-1
    39a -> 43a : 0.102372 (c= 0.31995577)
40a -> 42a : 0.340978 (c= 0.58393339)
    40a -> 43a :
41a -> 42a :
                          0.178600 (c= -0.42261116)
                          0.028003 (c= 0.16734110)
    41a -> 43a :
                          0.340662 (c= 0.58366233)
STATE 3: E= 0.093823 au
                                     2.553 eV
                                                    20591.8 cm**-1
    39a -> 42a : 0.835399 (c= -0.91400145)
    40a -> 42a :
40a -> 43a :
                          0.010739 (c= -0.10363150)
                          0.138077 (c= -0.37158743)
STATE 4: E= 0.107530 au
                                     2.926 eV
                                                    23600.1 cm**-1
    41a -> 42a : 0.921691 (c= -0.96004745)
41a -> 43a : 0.057615 (c= 0.24003050)
STATE 5: E= 0.107533 au
                                      2.926 eV
                                                    23600.7 cm**-1
     39a -> 42a : 0.122088 (c= 0.34941155)
     39a -> 43a :
40a -> 42a :
                          0.011888 (c= 0.10903325)
                          0.341659 (c = -0.58451589)
     40a -> 43a :
                          0.505530 (c= -0.71100658)
STATE 6: E= 0.107536 au
                                     2.926 eV
                                                    23601.3 cm**-1
     39a -> 42a : 0.029369 (c= -0.17137471)
39a -> 43a : 0.828386 (c= 0.91015695)
40a -> 42a : 0.062645 (c= -0.25029038)
     40a -> 43a : 0.070858 (c= 0.26619100)
```

# Keywords for the Orca Program

Below is a summary for some of the keywords for the Orca program.

| ORCA            | ACTIONS                                                                                                                                                                                                                                               |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RHF             | Perform a restricted (closed-shell) Hartree-Fock calculation                                                                                                                                                                                          |
| UHF             | Perform a spin-unrestricted open-shell Hartree-Fock calculation                                                                                                                                                                                       |
| B3LYP/G         | Perform a B3LYP calculation with B3LYP being defined as in the Gaussian series of programs. (Note for spin-unrestricted calculations the keyword is $\tt UKS\ B3LYP/G$ ; the program automatically chooses UHF for open shell systems).               |
| MP2             | Perform a MP2 calculation on top of a RHF starting point. This is possible for energy and geometry optimization calculations.                                                                                                                         |
| RI-MP2          | Perform a RI-MP2 calculation – much faster than standard MP2 but requires the input of an "auxiliary basis set" (here: SV/C if SVP; TZV/C if TZVP and TZVPP/C if TZVPP)                                                                               |
| CCSD(T)         | Perform a coupled cluster calculation with single- and double excitations together with a perturbative estimate of triple excitations. This is an accurate and expensive level of theory (presently only available for closed shell systems in ORCA). |
| SVP             | Use the SVP basis set. (small double zeta basis set for initial explorations; contains one set of polarization functions: p for H and d for heavier elements. With SV(P) the p functions on the hydrogens are deleted)                                |
| TZVP            | Use the TZVP basis set. (medium triple-zeta basis set; already good for geometries and frequencies; contains one set of polarization functions: p for H and d for heavier elements)                                                                   |
| TZVPP           | Use the TZVPP basis set. (Larger triple-zeta basis set for accurate energies. Contains three sets of polarization functions: 2p1d for H and 2d1f for heavier elements).                                                                               |
| QZVP            | Large quadruple-zeta basis set with multiple polarization functions. Expensive but accurate for close-to-basis-set-limit results.                                                                                                                     |
| Opt             | Perform a geometry optimization                                                                                                                                                                                                                       |
| NumFreq         | Perform a second derivative calculation (ORCA can only do numerical frequency calculations presently). This will also automatically provide a calculated IR spectrum as well as ZPE and thermal corrections to the energy                             |
| TightSCF        | Request "tight" SCF convergence criteria (Necessary for geometry optimizations and frequency calculations; required input for ORCA).                                                                                                                  |
| %cis nroots 10  | Absorption spectra: Calculate the first 10 excited states using configuration                                                                                                                                                                         |
| end             | interaction with single excitations (appropriate for RHF or UHF SCF calculations).                                                                                                                                                                    |
| %tddft nroots   | Absorption spectra: Calculate the first 10 excited states using the time-dependent                                                                                                                                                                    |
| 10 end          | density functional theory (appropriate for a DFT SCF calculation)                                                                                                                                                                                     |
| %eprnmr gtensor | ESR Spectra: Calculate the most important parameters of the ESR spectrum of S=1/2                                                                                                                                                                     |
| true            | systems. NMR chemical shifts can also be calculated.                                                                                                                                                                                                  |
| Nuclei = all {  |                                                                                                                                                                                                                                                       |
| aiso, adip}     |                                                                                                                                                                                                                                                       |
| End             | Desferos a natural manufation analysis                                                                                                                                                                                                                |
| NPA             | Perform a natural population analysis                                                                                                                                                                                                                 |