L2 Informatique - 2022/2023

aurelien.esnard@u-bordeaux.fr

Informations Générales

- Code Apogée : 4TIN310U
- Responsable : Aurélien Esnard < <u>aurelien.esnard@u-bordeaux.fr</u> >
- Public Étudiants : L2 Info
- Moodle: https://moodle1.u-bordeaux.fr/course/view.php?id=10861
- RocketChat : https://lstinfo.emi.u-bordeaux.fr/wiki/doku.php?id=liste-ub-chat
- Organisation : 12 CM + 12 séance de 2h40 (TD/TM ou TM/TM)
- MCCC : Contrôle Continu Intégral (6 ECTS)
 - o pas de seconde session!
- Evaluation (non contractuelle, encore à discuter..)
 - Rapports TPs : 10% (individuel)
 - Diverses Activités Moodle : 10%
 - Projet : 25%
 - TP Noté : 25% (sem. 46, vendredi à 14h00 au CREMI)
 - DST: 30%

Organisation des Séances (2022-2023)

Sem.	12 CM (1h20)	12 séances de TD/TP (2h40)			
36	CM01 - Introduction				
37	CM02 - Introduction	TD01 - Débit et Latence	TP01 - Commandes de Base		
38	CM03 - Couche Réseau	TD02 - Réseau et Sous-Réseau	TP02 - Configuration d'un LAN		
39	CM04 - Couche Réseau	TD03 - Analyse de Trames	TP03 - Wireshark		
40	CM05 - Couche Transport	TD04 - Contrôle d'Erreur	TP04 - Scapy		
41	CM06 - Couche Application	TP05 - Socket (client)	TP05 - Socket (client)		
42	CM07 - Prog. Socket	TP05 - Socket (serveur)	TP05 - Socket (serveur)		
43	CM08 - Couche Basse	TP06 - Socket (chat)	TP06 - Socket (chat)		
44		Vacances			
45	Semaine OP2				
46	CM09 - Couche Basse	Projet	Projet		
47	CM10 - Routage	TP07 - Routage	???		
48	CM11 - Firewall	TP07 - Firewall	TP08 - Sécurité		
49	CM12 - Sécurité	TP09 - Techno Web	TP09 - Techno Web		
50		???	???		

Cours 1

Introduction

Un peu d'Histoire...

- 1832 télégraphe électrique de Morse
- 1876 invention du téléphone par Graham Bell
- 1948 invention du transistor
- 1955 premier réseau commercial pour Americal Airline réalisé par IBM (1200 téléscripteurs, infrastructure centralisé)
- 1956 premier câble téléphonique transocéanique

American Airline. Source : Wikipedia

Un peu d'Histoire...

- 1958 premier Modem (transfert binaire sur ligne téléphonique)
- 1961 théorie sur la commutation de paquet (L. Kleinrock, MIT)
- 1962 satellite Telstar1 (première liaison de télévision transocéanique)
- 1969 permier pas de l'homme sur la lune (en direct)
- 1979 premier réseau mondial de transmission de données par paquets X.25 ouvert au public (réseau **Transpac** en France)
- 1981-2012 Minitel en France, basé sur Transpac (modem 1200 bits/s)

Minitel 1B. Source: Wikipedia

Un peu d'Histoire...

- 1959-1968 programme ARPA (DoD)
- 1969 **Arpanet**, basé sur le protocole NCP
- 1971 **Cyclades**, un Arpanet français à base de datagramme (Louis Pouzin)

Honolulu

- 1973 première publication sur TCP/IP (Vinton Cerf & Bob Kahn)
- 1983 naissance d'Internet sur la base Arpanet qui adopte TCP/IP
 - mail, newsgroup, telnet, ...

Arpanet map. Source: Wikipedia

USCB

DOCB

Kjeller

"TIP" - Kan tilknyttes vertsmaskiner og terminaler "IMP" Kan tilknyttes vertsmaskiner

Internet

Internet : réseau informatique mondial, résultant de l'interconnexion d'une multitude de réseaux informatiques à travers la planète, unifiées grâce au protocole IP. [1983]

Protocole réseau : un protocole définit de manière formelle et interopérable l'échange des informations entre ordinateurs.

Source : Wikipedia

Internet

- 1990 démocratisation d'Internet (invention du web)
- 1990-2000 ouverture au grand public avec les FAI (ou ISP)
- 2005 1 milliard d'internautes
- 2010 2 milliard d'internautes
- 2020 aujourd'hui, 4.8 milliard d'internautes !!!

Source: https://www.internetlivestats.com

Accès à Internet dans le Monde

Internet

Interconnexion de multiples réseaux hétérogènes et distants...

Internet

Une structure hiérarchique...

Exemple de Renater

La Gouvernance d'Internet

Plusieurs organismes en charge de la gestion d'Internet : ICANN, IETF, ISOC

- élaboration des standards techniques,
- attribution des noms de domaines,
- attribution des blocs d'adresses IP,
- attribution des numéros de d'AS (Autonomous System).
- → Garantir la neutralité du réseau et la libre circulation de l'information.

Web

Web (ou la toile): l'ensemble des hyperliens (ou liens hypertextes) qui relient les pages web entre elles. [1990]

Ne pas confondre Internet et le Web, qui est un des nombreux services Internet!

Premier serveur Web, Tim Berners-Lee au CERN . Source : Wikipedia

Web

Serveur Web: ordinateur qui contient les ressources du Web (pages, media, ...) et les met à disposition sur Internet.

Ex.: www.google.com, fr.wikipedia.org, ...

Navigateur Web: logiciel (client du serveur Web) permettant de consulter les ressources du Web.

Ex.: Internet Explorer, Firefox, Chromium, ...

Web

HTTP (HyperText Transfert Protocol) : protocole de transfert des pages HTML permettant de naviguer sur le Web (HTTPS pour la version sécurisée).

HTML (Hypertext Markup Language) : language à balise pour représenter les pages Web (mise en forme, liens hypertextes, ressources multimédias, ...).

```
<!DOCTYPE html PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>
<head>
<title>
Exemple de HTML
</title>
</head>
<body>
Ceci est une phrase avec un <a href="cible.html">hyperlien</a>.

Ceci est un paragraphe où il n'y a pas d'hyperlien.

</body>
</html>
```


Moteur de Recherche

Moteur de recherche : outil permettant de retrouver des pages Web à partir d'une requête

Ex.: Google, Bing, Qwant, ...

Indexation automatique : les pages du Web sont parcourues automatiquement par un « robot » et analysées pour en extraire des mots-clés significatifs.

Ordre des réponses : il dépend de l'adéquation des mot-clefs et de la popularité

de la page web :

 nombre de liens vers la page (PageRank de Google)

 les clics des utilisateurs sur la page de réponse

Messagerie Electronique

Messagerie électronique : outil permettant d'échanger des messages (courriel ou mail) de manière asynchrone par l'intermédiaire d'une boîte à lettres électronique identifiée par une adresse électronique.

Adresse életronique : prenom.nom@etu.u-bordeaux.fr

Client de messagerie local ou application webmail

Ex.: Thunderbird, Outlook, ... vs Gmail, Yahoo!, ...

Messagerie Electronique

Principe d'acheminement d'un courriel

Envoi : lorsqu'un expéditeur envoie un courriel, son ordinateur soumet une reqûete au serveur sortant (SMTP), qui l'achemine vers le serveur entrant du destinataire

Réception : lorsqu'un destinataire relève ses courriels, ils sont téléchargés sur son ordinateur depuis le serveur entrant (POP3 ou IMAP)

Notion de Protocole

Protocole : Spécification de plusieurs règles pour communiquer sur une même couche d'abstraction entre deux machines.

Modèle en Couche OSI (simplifié)

Modèle OSI vs TCP/IP

Source: https://linux-note.com/modele-osi-et-tcpip/

Modèle en Couche OSI

- 1. **Couche physique** (physical layer) : transmission effective des signaux entre les interlocuteurs ; service typiquement limité à l'émission et la réception d'un bit ou d'un train de bit continu.
- 2. **Couche liaison de données** (datalink layer) : communications entre deux machines adjacentes, i.e. directement reliés entre elle par un support physique.
- 3. **Couche réseaux** (network layer) : communications de bout en bout, généralement entre machines (adressage logique et routage des paquets).
- 4. **Couche transport** (transport layer) : communications de bout en bout entre programmes (UDP, TCP).
- 5. **Couche session** (session layer) : synchronisation des échanges et transaction, permet l'ouverture et la fermeture de session.
- 6. **Couche présentation** : codage des données applicatives, et plus précisément conversion entre données manipulées au niveau applicatif et chaînes d'octets effectivement transmises
- 7. Couche application : point d'accès aux services réseaux ; non spécifiée.

De la Théorie à la Réalité...

Evolution du modèle TCP/IP, de patch en patch, 50 ans plus tard!

TCP/IP RM Application network part of each application transport data transfer services logical communication

adjacent communication

medium abstraction

Source: Louis Pouzin

Link

Exemple du Protocole HTTP

En pratique, plusieurs niveaux d'interactions...

- <u>le niveau de l'application</u>: le client clique sur un lien, le serveur renvoie une page web
- <u>le niveau des messages</u> : le client envoie un message contenant une URI, le serveur renvoie un message contenant un fichier HTML
- <u>le niveau des paquets</u>: le message du client est découpé en paquets, les différents routeurs du réseau les acheminent vers le serveur (idem pour le retour)
- <u>le niveau de la transmission des bits</u>: pour envoyer les paquets, chaque bit (0 ou 1) est transmis comme un signal électrique sur une ligne.

Chaque niveau utilise les fonctions du niveau inférieur.

Frame	IP	TCP	HTTP	Data	Frame
Header	Header	Header	Header		Trailer

Exemple du Protocole HTTP

Encapsulation des protocoles...

Débit : nombre de bits que le réseau peut transporter par seconde...

asymétrie : débit montant (upload) & débit descendant (download)

Latence : nombre de secondes que met le premier bit pour aller de la source à la destination...

Quelques exemples de débits (en bit/s)

- modem RTC 56K, ADSL (1M à 8M), FTTH (1G)
- Ethernet (10M, 100M, 1G, 10G), ATM (155M), FDDI (100M), ...
- sans-fil : IEEE 802.11 (11M à 54M)
- GSM: 3G (144K-1,9M), EDGE (64k-384k), 3G+ (3,6M, 14,4M), 4G (100M-1G), 5G (10G) ...

Nota Bene: $1Ko = 10^{3}$ octets et non $1024 = 2^{10}$!

Exercice: Sneakernet

On souhaite transférer 4 Go de données entre deux villes distantes de 100 km. Plusieurs moyens de transfert sont envisagés :

- Un pigeon voyageur portant un carte microSD, volant à une vitesse de 60 à 110 km/h selon la direction du vent;
- 2. Le réseau Internet avec ligne ADSL2 ayant un débit descendant de 8Mbit/s et montant de 1 Mbit/s.

Calculez le débit du *pigeon* ? Quel moyen de transfert est le plus performant ?

Correction

Le pigeon va mettre au plus 100 km / (60 km/h / 3600 s/h) = 6000 s pour transporter 4 Go = 4~000 Mo = 32~000 Mbit, ce qui nous donne un débit de 32~000 Mbit / 6000 s = 5.33 Mbit/s...

Le transfert en ADSL est limité par le débit montant qui est de 1 Mbit/s... Le pigeon voyageur est donc 5 fois plus rapide que l'ADSL2.

Ceci a été réellement expérimenté!

https://en.wikipedia.org/wiki/Sneakernet

Sneakers

Les Outils pour le Réseau

Les outils de base sous Linux & Windows...

Description	Linux	Windows
Afficher toutes les interfaces réseaux	ifconfig -a	ipconfig /all
Tester si la machine d'adresse <ip> est vivante</ip>	ping <ip></ip>	ping <ip></ip>
Afficher l'état des connexions réseaux (TCP)	netstat -tapn	netstat
Afficher la table ARP (correspondance des adresses IP / Ethernet)	arp -n	arp -a
Afficher la table de routage	route -n	route print
Afficher le chemin que va suivre un paquet IP pour atteindre la machine <ip></ip>	traceroute <ip></ip>	tracert <ip></ip>
Ouvrir une connexion TCP vers la machine <ip> (port <port>) et lire/écrire des caractères</port></ip>	netcat <ip> <port></port></ip>	ncat <ip> <port></port></ip>
Outil d'exploration réseau avec de nombreuses possibilités	nmap <>	nmap <>
Obtenir l'adresse IP d'une machine à partir de son nom <name> en interrogeant le serveur DNS</name>	nsloopup <name></name>	nslookup <name></name>
Afficher le traffic réseau associé à toutes (any) les interfaces réseaux	tcpdump -i any -n	

