Real Analysis Presentation Problem Week 12

Joseph C. McGuire

November 8, 2018

1 Page 128 #2(c)

Use the definition to establish each of the following limits: $\lim_{x\to p} (x^3) = p^3$

Proof. Let $\epsilon > 0$ be given, $p \in \mathbb{R}$, and define $\delta = \min\{1, \frac{\epsilon}{3|p^2|+3|p|+1}\}$. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = x^3$ for all $x \in \mathbb{R}$. Then assume $0 < |x-p| < \delta$. Then, by our definition of δ we have |x-p| < 1. Note, by Corollary 2.1.4(b) we have $||x|-|p|| \le |x-p|$, and we have ||x|-|p|| < 1. Then by Theorem 2.1.2(b), we have $\sqrt{(|x|-|p|)^2} < 1$ iff |x|-|p| < 1 iff |x| < |p| + 1.

Note from here we get $|x|^2 < (|p|+1)^2$ iff $|x^2| < |p|^2 + 2|p| + 1$ iff $|x^2| < |p^2| + 2|p| + 1$.

Similarly: |p||x| < |p|(|p|+1) iff $|px| < |p^2| + |p|$.

Then consider the following: $|f(x) - p^3| = |x^3 - p^3| = |(x - p)(x^2 + px + p^2)| = |x - p||x^2 + px + p^2|$.

Then since we have |x-p| < 1 (In either case of δ this true):

$$\begin{split} |x-p||x^2+px+p^2| &< |x^2+px+p^2| \\ &\le |x^2|+|px|+|p^2|, \text{ by the Triangle Inequality} \\ &< (|p^2|+2|p|+1)+(|p^2|+|p|)+|p^2| \\ &= 3|p^2|+3|p|+1 \end{split}$$

Hence $|x-p||x^2+px+p^2|<|x-p|(3|p^2|+3|p|+1)$. Then by our definition of δ , we have $|x-p|<\frac{\epsilon}{3|p^2|+3|p|+1}$. Thus $|x-p||x^2+px+p^2|<\frac{\epsilon}{3|p^2|+3|p|+1}(3|p^2|+3|p|+1)=\epsilon$ \therefore Thus $\lim_{x\to p}(x^3)=p^3$

Q.E.D.