Higher Education Synthesized

Extending Higher Education Data with Synthetic Data at the Onset of the Demographic Cliff

Problem Statement — Introduction/Motivation

Data Mining + Diminishing Data = No Good

- After decades of enrollment increases, higher education is now facing decreasing enrollments, either gradually over time or with a sharp drop off of a demographic cliff, depending on who you ask
- One corollary to declining enrollments is declining amounts of data
- This project will explore synthesizing institution-level Integrated Postsecondary Education Data System (IPEDS) data from the National Center for Education Statistics (NCES), a well-known and reliable set of higher education data overseen by the federal Department of Education
- This iteration of the project will use generative models in the Synthetic Data Vault Project (https://github.com/sdv-dev) to create tabular synthetic IPEDS data and evaluate the quality of that data
- Source code at https://github.com/jhleakakos/msds-data-mining-project

IPEDS Data

Difficulties

- IPEDS data dictionaries are not clear about mapping categorical feature numeric values to definitions
- IPEDS data dictionaries are not clear about how to group across categorical features to get the correct summary counts
- Number of features per data file some files have hundreds of features
- Inconsistencies between encodings (binary fields represented as different pairs of numbers), even with the same files

Domains of Data

Institutional Characteristics: information related to higher education institutions

12-Month Enrollment: unduplicated counts of students who enroll anytime during a 12-month period

Completions: counts of students who complete degree or non-degree credentials

Completions
12-Month Enrollment

Institutional Characteristics

Synthetic Data

- Synthetic data is "artificially generated [data] that resemble[s] the actual data more precisely, having similar statistical properties" (*)
- Synthetic data allows us to create more IPEDS data to counter the reduction in real higher education data, either to replace or supplement that real data

Real Data

😭 state_abbr 💠	<pre>⇔ bea_region</pre>	🗘 is_hbcu 💠	<pre>⇔ control_affiliation</pre>	123 enrollment ÷	<u>123</u> completions… ≎
AR	Southeast AL AR FL GA KY LA MS NC SC TN VA WV	n	Private for-profit	52	20
WA	Far West AK CA HI NV OR WA	n	Private not-for-profit indepe	1560	355
CA	Far West AK CA HI NV OR WA	n	Private for-profit	2278	829
GA	Southeast AL AR FL GA KY LA MS NC SC TN VA WV	У	Private not-for-profit religi	342	22
NY	Mid East DE DC MD NJ NY PA	n	Public	19441	1382

Synthetic Data

⇔ state_abbr ÷	<pre>⇔ bea_region</pre>	😭 is_hbcu 💠	<pre>⇔ control_affiliation</pre>	123 enrollment \$	123 completions ÷
IA	Mid East DE DC MD NJ NY PA	n	Private not-for-profit indepe	487	36
PR	Plains IA KS MN MO NE ND SD	n	Private not-for-profit religi	740	78
WY	Southeast AL AR FL GA KY LA MS NC SC TN VA WV	У	Private not-for-profit religi	3115	0
MN	Southeast AL AR FL GA KY LA MS NC SC TN VA WV	n	Private for-profit	561	162
PR	Southeast AL AR FL GA KY LA MS NC SC TN VA WV	n	Private not-for-profit religi	1534	136

Related Work

We're On Our Own

- Did not find much research directly related to data mining or generative modeling for higher education or IPEDS data
- Found some research about data mining on education data generally, particularly focusing on different predictive approaches
- Found research speaking to the importance of bringer more advanced data methods to higher education data
- Found research highlighting the lack of big data practices in higher education
- Found a subsection of research focused on general use of synthetic data
- In summary, no research that covers each of the aspects of this project

Proposed Work

- 1. Scrape IPEDS data from the IPEDS website using Python scripts, storing flat files on disk
- 2. Read through IPEDS data dictionaries to determine a set of fields that we want to explore for possible modeling
- 3. Run a local PostgreSQL database in Docker, using schemas to separate out data lake and data warehouse
- 4. Design, create, and load data lake with SQL scripts based on findings in data dictionaries
- 5. Pull data out of data lake and into Jupyter Notebook for an initial pass of EDA
- 6. Use EDA to inform design of data warehouse, using a very small-scale version of a dimensional model to mimic a larger warehouse concept
- 7. Pull data out of data warehouse and into Jupyter notebook for generative modeling, using Synthetic Data Vault Project libraries to generate synthetic IPEDS data
- 8. Evaluate synthetic data quality
- 9. Load real and synthetic data into a separate Jupyter Notebook in order to perform deeper modeling and run modeling on real data, synthetic data, and a combination of both

Data Pipeline

Evaluation Methodology

Is Our Fake Data Any Good?

Real Data

Synthetic Data

Per-Attribute Statistics

Real + Synthetic
Data Combined

Machine Learning Score

Real
ynthetic

Combined

Data

Real

Synthetic

Metric

Median

Median

MSF

X.XX

Value

X.XX

X.XX

R^2

X.XX

- Per-Attribute Statistics: compare mean, median, standard deviation, and other distributional metrics between features in the real and synthetic data
- Machine Learning Score: train regressors on each of the three input training sets and compare performance

Evaluation Metrics

- Does the GAN training look reasonable in terms of generator and discriminator losses?
- Are measures like the mean and standard deviation for a given feature similar across the real and synthetic data?
- Do synthetic columns have the same distribution shapes as their associated real columns?
- Do trends between columns in the real data show the same trends in the synthetic data?
- Diagnostics that check that the synthetic data is valid, meaning it has the right types of data in the right ranges and more
- Does the synthetic data have valid data unique primary keys, values that fall within the minimum and maximum range for numeric columns, and categories that exist in the real data?
- How similar is the performance of regressors when trained on the real, synthetic, and combined data and tested on a held-out test set from the real data?

Evaluation Output

Table 1: SDMetrics Quality Report

Property	Score
Column Shapes	0.872
Column Pair Trends	0.870
Overall Score	0.871

Table 2: SDMetrics Column Shapes

Column	Metric	Score
year	TVComplement	1.000
state_abbr	TVComplement	0.882
bea_region	TVComplement	0.897
highest_level	TVComplement	0.938
is_degree_offering	TVComplement	0.945
is_hbcu	TVComplement	0.973
is_tribal_institution	TVComplement	0.974
geographic_status	TVComplement	0.892
date_closed	KSComplement	0.167
institutional_category	TVComplement	0.945
control_affiliation	TVComplement	0.906
enrollment	KSComplement	0.887
completions_number_students	KSComplement	0.932

Table 3: Machine Learning Score

Metric	Training Set	Target	Value
MSE	Real	Enrollment	101,200,325.55
MSE	Synthetic	Enrollment	111,006,681.53
MSE	Combined	Enrollment	101,978,162.27
R^2	Real	Enrollment	0.19
R^2	Synthetic	Enrollment	0.11
R^2	Combined	Enrollment	0.19
MSE	Real	Completions	116,066,105.90
MSE	Synthetic	Completions	133,327,873.83
MSE	Combined	Completions	129,922,536.22
R^2	Real	Completions	-0.01
R^2	Synthetic	Completions	-0.07
R^2	Combined	Completions	-0.04

Evaluation Output

Evaluation Output

Timeline and Scope

- Timeline of 3-4 weeks to counter increasing scope
- Focus on creating synthetic IPEDS data and exploring its quality and suitability for handling reductions in real IPEDS data
- Picking 3 domains of IPEDS data and further narrowing that down
- Database and scripts instead of more powerful software
- Adjusting end of pipeline to focus on exploring and evaluating generative modeling

Lessons and Questions

- The biggest challenge has been the complexity of the IPEDS data
- Where to put generative modeling in the pipeline?
- How to interpret generative modeling evaluation
- Incorporating student-level data

Future Work

- More domains of IPEDS data
- Exploring generative modeling at different stages of pipeline
- · More thorough evaluation process for generative modeling, including tracking history
- Utility functionality to facilitate pipeline expansion
- Incorporation of dedicated orchestration software or custom orchestration design