Introduction to Psychology

State of Consciousness

Stages of Sleep

LEARNING OBJECTIVES

By the end of this section, you will be able to:

- Differentiate between REM and non-REM sleep
- Describe the differences between the four stages of non-REM sleep
- Understand the role that REM and non-REM sleep play in learning and memory

Sleep is not a uniform state of being. Instead, sleep is composed of several different stages that can be differentiated from one another by the patterns of brain wave activity that occur during each stage. These changes in brain wave activity can be visualized using EEG and are distinguished from one another by both the frequency and amplitude of brain waves ([link]). Sleep can be divided into two different general phases: REM sleep and non-REM (NREM) sleep. Rapid eye movement (REM) sleep is characterized by darting movements of the eyes under closed eyelids. Brain waves during REM sleep appear very similar to brain waves during wakefulness. In contrast, non-REM (NREM) sleep is subdivided into four stages distinguished from each other and from wakefulness by characteristic patterns of brain waves. The first four stages of sleep are NREM sleep, while the fifth and final stage of sleep is REM sleep. In this section, we will discuss each of these stages of sleep and their associated patterns of brain wave activity.

Brainwave activity changes dramatically across the different stages of sleep. (credit "sleeping": modification of work by Ryan Vaarsi)

NREM STAGES OF SLEEP

The first stage of NREM sleep is known as stage 1 sleep. Stage 1 sleep is a transitional phase that occurs between wakefulness and sleep, the period during which we drift off to sleep. During this time, there is a slow-down in both the rates of respiration and heartbeat. In addition, stage 1 sleep involves a marked decrease in both overall muscle tension and core body temperature.

In terms of brain wave activity, stage 1 sleep is associated with both alpha and theta waves. The early portion of stage 1 sleep produces alpha waves, which are relatively low frequency (8–13Hz), high amplitude patterns of electrical activity (waves) that become synchronized ([link]). This pattern of brain wave activity resembles that of someone who is very relaxed, yet awake. As an individual continues through stage 1 sleep, there is an increase in theta wave activity. Theta waves are even lower frequency (4–7 Hz), higher amplitude brain waves than alpha waves. It is relatively easy to wake someone from stage 1 sleep; in fact, people often report that they have not been asleep if they are awoken during stage 1 sleep.

Brainwave activity changes dramatically across the different stages of sleep.

As we move into stage 2 sleep, the body goes into a state of deep relaxation. Theta waves still dominate the activity of the brain, but they are interrupted by brief bursts of activity known as sleep spindles ([link]). A sleep spindle is a rapid burst of higher frequency brain waves that may be important for learning and memory (Fogel & Smith, 2011; Poe, Walsh, & Bjorness, 2010). In addition, the appearance of K-complexes is often associated with stage 2 sleep. A K-complex is a very high amplitude pattern of brain activity that may in some cases occur in response to environmental stimuli. Thus, K-complexes might serve as a bridge to higher levels of arousal in response to what is going on in our environments (Halász, 1993; Steriade & Amzica, 1998).

Stage 2 sleep is characterized by the appearance of both sleep spindles and K-complexes.

Stage 3 and stage 4 of sleep are often referred to as deep sleep or slow-wave sleep because these stages are characterized by low frequency (up to 4 Hz), high amplitude delta waves ([link]). During this time, an individual's heart rate and respiration slow dramatically. It is much more difficult to awaken someone from sleep during stage 3 and stage 4 than during earlier stages. Interestingly, individuals who have increased levels of alpha brain wave activity (more often associated with wakefulness and transition into stage 1 sleep) during stage 3 and stage 4 often report that they do not feel refreshed upon waking, regardless of how long they slept (Stone, Taylor, McCrae, Kalsekar, & Lichstein, 2008).

- (a) Delta waves, which are low frequency and high amplitude, characterize
- (b) slow-wave stage 3 and stage 4 sleep.

REM SLEEP

As mentioned earlier, REM sleep is marked by rapid movements of the eyes. The brain waves associated with this stage of sleep are very similar to those observed when a person is awake, as shown in [link], and this is the period of sleep in which dreaming occurs. It is also associated with paralysis of muscle systems in the body with the exception of those that make circulation and respiration possible. Therefore, no movement of voluntary muscles occurs during REM sleep in a normal individual; REM sleep is often referred to as paradoxical sleep because of this combination of high brain activity and lack of muscle tone. Like NREM sleep, REM has been implicated in various aspects of learning and memory (Wagner, Gais, & Born, 2001), although there is disagreement within the scientific community about how important both NREM and REM sleep are for normal learning and memory (Siegel, 2001).

(a) A period of rapid eye movement is marked by the short red line segment. The brain waves associated with REM sleep, outlined in the red box in (a), look very similar to those seen (b) during wakefulness.

If people are deprived of REM sleep and then allowed to sleep without disturbance, they will spend more time in REM sleep in what would appear to be an effort to recoup the lost time in REM. This is known as the REM rebound, and it suggests that REM sleep is also homeostatically regulated. Aside from the role that REM sleep may play in processes related to learning and memory, REM sleep may also be involved in emotional processing and regulation. In such instances, REM rebound may actually represent an adaptive response to stress in nondepressed indi-

viduals by suppressing the emotional salience of aversive events that occurred in wakefulness (Suchecki, Tiba, & Machado, 2012).

While sleep deprivation in general is associated with a number of negative consequences (Brown, 2012), the consequences of REM deprivation appear to be less profound (as discussed in Siegel, 2001). In fact, some have suggested that REM deprivation can actually be beneficial in some circumstances. For instance, REM sleep deprivation has been demonstrated to improve symptoms of people suffering from major depression, and many effective antidepressant medications suppress REM sleep (Riemann, Berger, & Volderholzer, 2001; Vogel, 1975).

It should be pointed out that some reviews of the literature challenge this finding, suggesting that sleep deprivation that is not limited to REM sleep is just as effective or more effective at alleviating depressive symptoms among some patients suffering from depression. In either case, why sleep deprivation improves the mood of some patients is not entirely understood (Giedke & Schwärzler, 2002). Recently, however, some have suggested that sleep deprivation might change emotional processing so that various stimuli are more likely to be perceived as positive in nature (Gujar, Yoo, Hu, & Walker, 2011). The hypnogram below ([link]) shows a person's passage through the stages of sleep.

A hypnogram is a diagram of the stages of sleep as they occur during a

period of sleep. This hypnogram illustrates how an individual moves through the various stages of sleep.

Link to Learning

View this **video** that describes the various stages of sleep.

Dreams

The meaning of dreams varies across different cultures and periods of time. By the late 19th century, German psychiatrist Sigmund Freud had become convinced that dreams represented an opportunity to gain access to the unconscious. By analyzing dreams, Freud thought people could increase self-awareness and gain valuable insight to help them deal with the problems they faced in their lives. Freud made distinctions between the manifest content and the latent content of dreams. Manifest content is the actual content, or storyline, of a dream. Latent content, on the other hand, refers to the hidden meaning of a dream. For instance, if a woman dreams about being chased by a snake, Freud might have argued that this represents the woman's fear of sexual intimacy, with the snake serving as a symbol of a man's penis.

Freud was not the only theorist to focus on the content of dreams. The 20th century Swiss psychiatrist Carl Jung believed that dreams allowed us to tap into the collective unconscious. The collective unconscious, as described by Jung, is a theoretical repository of information he believed to be shared by everyone. According to Jung, certain symbols in dreams reflected universal archetypes with meanings that are similar for all people regardless of culture or location.

The sleep and dreaming researcher Rosalind Cartwright, however, believes that dreams simply reflect life events that are important to the dreamer. Unlike Freud and Jung, Cartwright's ideas about dreaming have found empirical support. For example, she and her colleagues published a study in which women going through divorce were asked several times over a five month period to report the degree to which their former spouses were on their minds. These same women were awakened during REM sleep in order to provide a detailed account of their dream content. There was a significant positive correlation between the degree to which women thought about their former spouses during waking hours and the number of times their former spouses appeared as characters in their dreams (Cartwright, Agargun, Kirkby, & Friedman, 2006). Recent research (Horikawa, Tamaki, Miyawaki, & Kamitani, 2013) has uncovered new techniques by which researchers may effectively detect and classify the visual images that occur during dreaming by using fMRI for neural measurement of brain activity patterns, opening the way for additional research in this area.

Recently, neuroscientists have also become interested in understanding why we dream. For example, Hobson (2009) suggests that dreaming may represent a state of protoconsciousness. In other words, dreaming involves constructing a virtual reality in our heads that we might use to help us during wakefulness. Among a variety of neurobiological evidence, John Hobson cites research on lucid dreams as an opportunity to better understand dreaming in general. Lucid dreams are dreams in which certain aspects of wakefulness are maintained during a dream state. In a lucid dream, a person becomes aware of the fact that they are dreaming, and as such, they can control the dream's content (LaBerge, 1990).

Summary

The different stages of sleep are characterized by the patterns of brain waves associated with each stage. As a person transitions from being awake to falling asleep, alpha waves are replaced by theta waves. Sleep spindles and K-complexes emerge in stage 2 sleep. Stage 3 and stage 4 are described as slow-wave sleep that is marked by a predominance of delta waves. REM sleep involves rapid movements of the eyes, paralysis of voluntary muscles, and dreaming. Both NREM and REM sleep appear to play important roles in learning and memory. Dreams may represent life events that are important to the dreamer. Alternatively, dreaming may represent a state of protoconsciousness, or a virtual reality, in the mind that helps a person during consciousness.

Question #1

Check Your Understanding

SELF CHECK QUESTIONS

Critical Thinking Questions

- 1. Freud believed that dreams provide important insight into the unconscious mind. He maintained that a dream's manifest content could provide clues into an individual's unconscious. What potential criticisms exist for this particular perspective?
- 2. Some people claim that sleepwalking and talking in your sleep involve individuals acting out their dreams. Why is this particular explanation unlikely?

Personal Application Question

3. Researchers believe that one important function of sleep is to facilitate learning and memory. How does knowing this help you in your college studies? What changes could you make to your study and sleep habits to maximize your mastery of the material covered in class?

ANSWERS

- 1. The subjective nature of dream analysis is one criticism. Psychoanalysts are charged with helping their clients interpret the true meaning of a dream. There is no way to refute or confirm whether or not these interpretations are accurate. The notion that "sometimes a cigar is just a cigar" (sometimes attributed to Freud but not definitively shown to be his) makes it clear that there is no systematic, objective system in place for dream analysis.
- 2. Dreaming occurs during REM sleep. One of the hallmarks of this particular stage of sleep is the paralysis of the voluntary musculature which would make acting out dre

GLOSSARY

alpha wave type of relatively low frequency, relatively high amplitude brain wave that becomes synchronized; characteristic of the beginning of stage 1 sleep delta wave type of low frequency, high amplitude brain wave characteristic of stage 3 and stage 4 sleep collective unconscious theoretical repository of information shared by all people across cultures, as described by Carl Jung

K-complex very high amplitude pattern of brain activity associated with stage 2 sleep that may occur in response to environmental stimuli

latent content hidden meaning of a dream, per Sigmund Freud's view of the function of dreams

lucid dream people become aware that they are dreaming and can control the dream's content

manifest content storyline of events that occur during a dream, per Sigmund Freud's view of the function of dreams

non-REM (NREM) period of sleep outside periods of rapid eye movement (REM) sleep

rapid eye movement (REM) sleep period of sleep characterized by brain waves very similar to those during wakefulness and by darting movements of the eyes under closed eyelids

sleep spindle rapid burst of high frequency brain waves during stage 2 sleep that may be important for learning and memory

stage 1 sleep first stage of sleep; transitional phase that occurs between wakefulness and sleep; the period during which a person drifts off to sleep

stage 2 sleep second stage of sleep; the body goes into deep relaxation; characterized by the appearance of sleep spindles **stage 3 sleep** third stage of sleep; deep sleep characterized by low frequency, high amplitude delta waves

stage 4 sleep fourth stage of sleep; deep sleep characterized by low frequency, high amplitude delta waves

theta wave type of low frequency, low amplitude brain wave characteristic of the end of stage 1 sleep

Previous Next