Formulaire de dérivation

1 Fonctions usuelles

Fonction	Dérivée
f(x) = k	f'(x) = 0
f(x) = x	f'(x) = 1
f(x) = ax + b	f'(x) = a
$f(x) = x^2$	f'(x) = 2x
$f(x) = x^{\alpha}$	$f'(x) = \alpha x^{\alpha - 1}$
$f(x) = \frac{1}{x}(x \neq 0)$	$f'(x) = -\frac{1}{x^2}$
$f(x) = \sqrt{x}(x > 0)$	$f'(x) = \frac{1}{2\sqrt{x}}$
$f(x) = e^x$	$f'(x) = e^x$
f(x) = ln(x)	$f'(x) = \frac{1}{x}$

2 Dérivée et opérations

Fonction	Dérivée
f(x) = u + v	f'(x) = u' + v'
f(x) = ku (k constante)	f'(x) = ku'
f(x) = uv	f'(x) = u'v + uv'
$f(x) = \frac{1}{u}$	$f'(x) = -\frac{u'}{u^2}$
$f(x) = \frac{u}{v}$	$f'(x) = \frac{u'v - uv'}{v^2}$
$f(x) = u^{\alpha}$	$f'(x) = \alpha u^{\alpha - 1} u'$
$f(x) = e^u$	$f'(x) = u'e^u$
f(x) = ln(u)	$f'(x) = \frac{u'}{u}$
$f(x) = v \circ u$	$f'(x) = (v' \circ u)u'$