Применение синтетических данных, полученных с помощью генеративной нейросети, для повышения качества моделей детекции Выпускная квалификационная работа бакалавра

Степанов Илья Дмитриевич Научный руководитель: к.ф.-м.н. А.В. Грабовой Научный констультант: А.В. Филатов

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 01.03.02 Прикладная математика и информатика

Цель исследования

Задача

Создание высококачественных аугментаций с помощью генеративной нейросети для повышения качества моделей детекции.

Проблема

В машинном обучении одной из ключевых проблем является нехватка доступных данных. Объём и разнообразие выборки влияют на обобщающую способность моделей, однако сбор и разметка новых образцов требуют временных и финансовых затрат.

Цель

Разработать автоматизированную модель, способную генерировать качественные аугментации и тем самым повышать обобщающую способность моделей детекции. Провести сравнительный анализ влияния аугментаций на показатели качества и изучить вклад отдельных компонентов предложенного метода.

Рассмотрим датасет для задачи детекции:

$$\mathcal{D} = \{(x_i, t_i), i = 1, \ldots, n\},\$$

где X — пространство изображений, $x_i \in X$ — исходное изображение, T — пространство аннотаций отдельных объектов, $\mathcal{F}(T) \subseteq 2^T$ — пространство аннотаций изображений множества $X, \ t_i \in \mathcal{F}(T)$ — множество аннотаций, соответствующих объектам на изображении x_i .

Рассмотрим произвольную модель детекции как отображение:

$$D: X \to \mathcal{F}(\hat{T}),$$

где \hat{T} — пространство аннотаций для отдельных объектов, содержащих координаты ограничивающих прямоугольников, классы объектов и уверенность, предсказанных моделью. $\mathcal{F}(\hat{T}) \subseteq 2^{\hat{T}}$ — пространство предсказанных аннотаций изображений множества X.

Определим функцию потерь для модели детекции YOLO f_{θ} :

$$\mathcal{L}_{YOLO}(\theta) = \lambda_{\text{coord}} \sum_{i=1}^{S^{2}} \sum_{j=1}^{K} \mathbf{I}_{ij}^{\text{obj}} \left[(x_{i}^{gt} - \hat{x}_{i})^{2} + (y_{i}^{gt} - \hat{y}_{i})^{2} \right]$$

$$+ \lambda_{\text{coord}} \sum_{i=1}^{S^{2}} \sum_{j=1}^{K} \mathbf{I}_{ij}^{\text{obj}} \left[(\sqrt{w_{i}^{gt}} - \sqrt{\hat{w}_{i}})^{2} + (\sqrt{h_{i}^{gt}} - \sqrt{\hat{h}_{i}})^{2} \right]$$

$$+ \sum_{i=1}^{S^{2}} \sum_{j=1}^{K} \mathbf{I}_{ij}^{\text{obj}} (\hat{C}_{i} - C_{i})^{2} + \lambda_{\text{noobj}} \sum_{i=1}^{S^{2}} \sum_{j=1}^{K} \mathbf{I}_{ij}^{\text{noobj}} (\hat{C}_{i} - C_{i})^{2}$$

$$+ \sum_{i=1}^{S^{2}} \mathbf{I}_{i}^{\text{obj}} \sum_{c \in \mathcal{C}} (\hat{p}_{i}(c) - p_{i}(c))^{2},$$

где $S \times S$ — размер сетки, на которую разбивается изображение, K— количество предсказанных ограничивающих прямоугольников в каждой ячейке сетки, $\lambda_{\mathsf{coord}}, \lambda_{\mathsf{noobj}}$ — коэффициенты, регулирующие вклад в функцию потерь, $\mathbf{I}_{ii}^{\mathrm{obj}}$ — индикатор наличия объекта в j-ом прямоугольнике i-й ячейки, $\mathbf{l}_{ii}^{\mathrm{noobj}}$ — индикатор отсутствия объекта в j-ом прямоугольнике i-й ячейки, $(x_i^{gt}, y_i^{gt}, w_i^{gt}, h_i^{gt})$ — координаты центра, ширина и высота истинного ограничивающего прямоугольника для i-й ячейки, $(\hat{x}_i, \hat{y}_i, \hat{w}_i, \hat{h}_i)$ — предсказанные координаты ограничивающего прямоугольника для i-й ячейки, C_i и $\hat{\mathcal{C}}_i$ — истинная и предсказанная вероятность наличия объекта в i-й ячейке, C — множество классов объектов, $p_i(c)$ и $\hat{p}_i(c)$ — истинная и предсказанная вероятность принадлежности объекта классу с для і-й ячейки.

Решается следующая оптимизационная задача:

$$\theta^* = \arg\min_{\theta} \ \mathcal{L}_{YOLO}(\theta),$$

Определим функцию потерь для модели детекции DETR g_ϕ :

$$\mathcal{L}_{DETR}(\phi) = \sum_{i=1}^{N} \left[-\log \hat{p}_{\hat{\sigma}_{\phi}(i)}(c_{i}) + \mathbf{I}_{\{c_{i}\neq\varnothing\}} \left(\lambda_{L1} \|b_{i} - \hat{b}_{\hat{\sigma}_{\phi}(i)} \|_{1} + \lambda_{\text{giou GIoU}}(a_{i}, \hat{a}_{\hat{\sigma}_{\phi}(i)}) \right) \right],$$

Для вычисления данной функции потерь необходимо определить оптимальное соответствие с помощью алгоритма назначений.

$$\hat{\sigma} = \arg\min_{\sigma \in S_N} \sum_{i=1}^{N} \left[-\mathbf{I}_{\{c_i \neq \varnothing\}} \ \hat{p}_{\sigma(i)}(c_i) + \ \mathbf{I}_{\{c_i \neq \varnothing\}} \ \left(\lambda_{L1} \left\| b_i - \hat{b}_{\sigma(i)} \right\|_1 \right. \right. \\ + \left. \lambda_{\text{giou GIoU}}(a_i, \ \hat{a}_{\sigma(i)}) \right) \right],$$

где $\hat{\sigma}$ — оптимальное соответствие между истинными аннотациями и предсказанными, S_N — множество инъективных отображений из $\{1, \ldots, M\}$ в $\{1, \ldots, N\}$, M — число истинных аннотаций объектов на изображении, N > M — число предсказаных аннотаций объектов на изображении, $\mathbf{I}_{\{c_i \neq \varnothing\}}$ — индикатор наличия объекта в истинном наборе, c_i — истинная метка класса объекта i, $\hat{p}_i(c)$ — предсказанная моделью вероятность класса c для аннотации i, a_i — истинная аннотация объекта i, b_i — истинный ограничивающий прямоугольник объекта i, \hat{a}_i — предсказанная аннотация объекта j, \hat{b}_i — предсказанный ограничивающий прямоугольник объекта $j,~\lambda_{L_1}$ и $\lambda_{
m giou}$ — регуляризационные коэффициенты для задачи поиска оптимального соответствия, GloU — функция качества, оценивающая совпадение предсказанной и истинной аннотации.

Решается следующая оптимизационная задача:

$$\phi^* = \arg\min_{\phi} \ \mathcal{L}_{DETR}(\phi).$$

Функции качества

Определим функции качества для задачи детекции. Рассмотрим функцию mAP (mean Average Precision).

$$\mathsf{mAP}: \{\hat{\mathcal{T}}\} \times \{\mathcal{T}\} \times [0,1] \to [0,1],$$

Для каждого класса $c \in \mathcal{C}$ вычисляется функция AP (Average Precision):

$$\mathsf{AP}(c,\tau,t,\hat{t}) = \int_0^1 P_c(r,\tau,t,\hat{t}) \, dr,$$

где $P_c(r,\tau,t,\hat{t})$ — функция, задающая кривую Precision—Recall для класса c при пороге τ , $t\subseteq T$ — множество истинных разметок для класса c, $\hat{t}\subseteq \hat{T}$ — множество предсказанных разметок для класса c.

$$\mathsf{mAP} = rac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \mathsf{AP}(c, au, t, \hat{t}).$$

Функции качества

Рассмотрим функцию mAP_{50:95}:

$$\mathsf{mAP}_{50:95}: \{\hat{\mathcal{T}}\} \times \{\mathcal{T}\} \rightarrow [0,1]\text{,}$$

Определим промежуточную функцию $\mathsf{AP}_{50:95}$ для каждого класса c как усреднение $\mathsf{AP}(c,\tau,t,\hat{t})$ по десяти порогам:

$$\mathsf{AP}_{50:95}(c,\,t,\,\hat{t}) \;=\; \frac{1}{10} \sum_{\tau \in \{0.50,\,0.55,\,...,\,0.95\}} \mathsf{AP}(c,\,\tau,\,t,\,\hat{t}).$$

$$\mathsf{mAP}_{50:95}(t,\,\hat{t}) \,=\, \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \mathsf{AP}_{50:95}(c,\,t,\,\hat{t}).$$

Рассмотрим модель генеративной аугментации как отображение:

$$egin{aligned} F_{\psi,lpha,eta,\gamma}:X imes [0,1] &\longrightarrow (X_{\mathsf{aug}} imes T_{\mathsf{aug}}) \ \cup \ \{arnothing\}, \ f_{\psi}:X o M imes L imes T_{\mathsf{aug}} \ & g_{lpha}:X imes L o P \ & h_{eta}:X imes M imes P o X_{\mathsf{aug}} \ & r_{\gamma}:Y imes M imes L imes [0,1] o \{0,1\} \end{aligned}$$

где X — пространство исходных изображений, $X_{\rm aug}$ — пространство аугментированных изображений, $T_{\rm aug}$ — пространство разметок аугментированных объектов на изображениях, отображение f_{ψ} — модель детекции объекта, который будет аугментирован, отображение g_{α} — модель генерации текстового запроса для аугментации нового объекта, отображение h_{β} — модель генерации нового объекта,

отображение r_{γ} — модель фильтрации некачественных генераций, M — пространство бинарных масок объектов исходных изображений, P — пространство текстовых запросов для аугментации объекта, $L \subset P$ — пространство классов объектов изображений, число из отрезка [0,1] отвечает за порог для модели фильтрации.

где
$$(m,\,\ell,\,a_{\mathrm{aug}})=f_{\psi}(x),\,\,x_{\mathrm{aug}}=h_{\beta}ig(x,\,m,\,g_{lpha}(x,\ell)ig).$$

Пусть $\mathcal{D} = \mathcal{D}_{\mathsf{val}} \; \sqcup \; \mathcal{D}_{\mathsf{train}}.$ Рассмотрим аугментированный датасет для задачи детекции:

$$\mathcal{D}_{\mathsf{aug}}(\tau) = \left\{ (x_i^{\mathsf{aug}}, \ t_i^{\mathsf{aug}}), \ i = 1, \dots, m \right\},\,$$

где $(x_i,t_i)\in\mathcal{D}_{\mathrm{train}}$ — пара «изображение-разметка изображения» из обучающего датасета, $(x_i^{\mathrm{aug}},a_i^{\mathrm{aug}})=F_{\psi,\alpha,\beta,\gamma}(x_i,\tau)$ — пара «аугментированное изображение-разметка аугментированного объекта», $a_i^*\in t_i$ — аннотация объекта с наибольшей площадью ограничивающего прямоугольника, $t_i^{\mathrm{aug}}=(t_i\setminus \{\,a_i^*\,\})\cup \{\,a_i^{\mathrm{aug}}\,\}$ — разметка аугментированного изображения, $\tau\in[0,1]$ — пороговое значение для модели фильтрации.

Утверждение 1:

Пусть $\mathcal{D}_{\text{val}} = \{(x_i, \ t_i), \ i=1,\dots,k\}$. Существует такое значение $\tau^* \in [0,1]$, что модели детекции f_{θ_1} и g_{ϕ_1} , обученные на объединённом датасете $\mathcal{D}_{\text{aug}}(\tau^*) \sqcup \mathcal{D}_{\text{train}}$, достигают не меньшего значения по функциям mAP и $\text{mAP}_{50:95}$ на \mathcal{D}_{val} , чем модели f_{θ_2} и g_{ϕ_2} , обученные на $\mathcal{D}_{\text{train}}$. То есть:

$$\begin{split} & \operatorname{mAP} \big(\{ f_{\theta_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big) \geq \operatorname{mAP} \big(\{ f_{\theta_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big), \\ & \operatorname{mAP}_{50:95} \big(\{ f_{\theta_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big) \geq \operatorname{mAP}_{50:95} \big(\{ f_{\theta_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big), \\ & \operatorname{mAP} \big(\{ g_{\phi_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big) \geq \operatorname{mAP} \big(\{ g_{\phi_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big), \\ & \operatorname{mAP}_{50:95} \big(\{ g_{\phi_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big) \geq \operatorname{mAP}_{50:95} \big(\{ g_{\phi_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big). \end{split}$$

Рассмотрим модель генеративной аугментации следующего вида:

$$F'_{\psi,eta,\gamma}(x, au) \;=\; egin{cases} ig(x_{\mathsf{aug}},a_{\mathsf{aug}}ig), & \mathsf{если} \; r_\gammaig(x_{\mathsf{aug}},\,m,\,\ell,\, auig) = 1, \\ igotimes, & \mathsf{если} \; r_\gammaig(x_{\mathsf{aug}},\,m,\,\ell,\, auig) = 0. \end{cases}$$

где
$$(m,\,\ell,\,a_{\mathsf{aug}}) = f_\psi(x),\,\,x_{\mathsf{aug}} = h_\beta\big(x,\,m,\,\ell\big).$$

Рассмотрим аугментированный датасет для задачи детекции:

$$\mathcal{D}_{\mathsf{aug}}^{'}(\tau) = \{(x_i^{\mathsf{aug}}, t_i^{\mathsf{aug}}), i = 1, \dots, n\},$$

где $(x_i,t_i)\in\mathcal{D}_{\mathrm{train}}$ — пара «изображение-разметка изображения» из обучающего датасета, $(x_i^{\mathrm{aug}},a_i^{\mathrm{aug}})=F_{\psi,\beta,\gamma}'(x_i,\tau)$ — пара «аугментированное изображение-разметка аугментированного объекта», $a_i^*\in t_i$ — аннотация объекта с наибольшей площадью ограничивающего прямоугольника, $t_i^{\mathrm{aug}}=(t_i\setminus\{a_i^*\})\cup\{a_i^{\mathrm{aug}}\}$ — разметка аугментированного изображения, $\tau\in[0,1]$ — пороговое значение для модели фильтрации.

Утверждение 2:

Пусть $\mathcal{D}_{\text{val}} = \{(x_i, \ t_i), \ i=1,\ldots,k\}$. Существует такое значение $\tau^* \in [0,1]$, что модели детекции f_{θ_1} и g_{ϕ_1} , обученные на объединённом датасете $\mathcal{D}_{\text{aug}}(\tau^*) \sqcup \mathcal{D}_{\text{train}}$, достигают не меньшего значения по функциям mAP и $\text{mAP}_{50:95}$ на \mathcal{D}_{val} , чем модели f_{θ_2} и g_{ϕ_2} , обученные на $\mathcal{D}_{\text{aug}}'(\tau^*) \sqcup \mathcal{D}_{\text{train}}$. То есть:

$$\begin{split} & \operatorname{mAP} \big(\{ f_{\theta_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big) \geq \operatorname{mAP} \big(\{ f_{\theta_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big), \\ & \operatorname{mAP}_{50:95} \big(\{ f_{\theta_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big) \geq \operatorname{mAP}_{50:95} \big(\{ f_{\theta_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big), \\ & \operatorname{mAP} \big(\{ g_{\phi_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big) \geq \operatorname{mAP} \big(\{ g_{\phi_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big), \\ & \operatorname{mAP}_{50:95} \big(\{ g_{\phi_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big) \geq \operatorname{mAP}_{50:95} \big(\{ g_{\phi_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big). \end{split}$$

Аналогично рассмотрим модель генеративной аугментации следующего вида:

$$F_{\psi,\alpha,\beta}^{"}(x,\tau) = (x_{\text{aug}}, a_{\text{aug}})$$

где
$$(m, \ell, a_{\mathsf{aug}}) = f_{\psi}(x), \ x_{\mathsf{aug}} = h_{\beta}(x, m, g_{\alpha}(x, \ell)).$$

Рассмотрим аугментированный датасет для задачи детекции:

$$\mathcal{D}_{\text{aug}}^{''}(\tau) = \{(x_i^{\text{aug}}, t_i^{\text{aug}}), i = 1, \dots, n\},$$

где $(x_i,t_i)\in\mathcal{D}_{\mathrm{train}}$ — пара «изображение-разметка изображения» из обучающего датасета, $(x_i^{\mathrm{aug}},a_i^{\mathrm{aug}})=F_{\psi,\alpha,\beta}^{''}(x_i,\tau)$ — пара «аугментированное изображение-разметка аугментированного объекта», $a_i^*\in t_i$ — аннотация объекта с наибольшей площадью ограничивающего прямоугольника, $t_i^{\mathrm{aug}}=(t_i\setminus \{a_i^*\})\cup \{t_{\mathrm{aug}}\}$ — разметка аугментированного изображения, $\tau\in[0,1]$ — пороговое значение для модели фильтрации.

Утверждение 3:

Пусть $\mathcal{D}_{\text{val}} = \{(x_i, \ t_i), \ i=1,\dots,k\}$. Существует такое значение $\tau^* \in [0,1]$, что модели детекции f_{θ_1} и g_{ϕ_1} , обученные на объединённом датасете $\mathcal{D}_{\text{aug}}(\tau^*) \sqcup \mathcal{D}_{\text{train}}$, достигают не меньшего значения по функциям mAP и $\text{mAP}_{50:95}$ на \mathcal{D}_{val} , чем модели f_{θ_2} и g_{ϕ_2} , обученные на $\mathcal{D}_{\text{aug}}^{"}(\tau^*) \sqcup \mathcal{D}_{\text{train}}$. То есть:

$$\begin{split} & \operatorname{mAP} \big(\{ f_{\theta_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big) \geq \operatorname{mAP} \big(\{ f_{\theta_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big), \\ & \operatorname{mAP}_{50:95} \big(\{ f_{\theta_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big) \geq \operatorname{mAP}_{50:95} \big(\{ f_{\theta_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big), \\ & \operatorname{mAP} \big(\{ g_{\phi_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big) \geq \operatorname{mAP} \big(\{ g_{\phi_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k, 0.5 \big), \\ & \operatorname{mAP}_{50:95} \big(\{ g_{\phi_1}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big) \geq \operatorname{mAP}_{50:95} \big(\{ g_{\phi_2}(x_i) \}_{i=1}^k, \{ t_i \}_{i=1}^k \big). \end{split}$$

Эксперимент

Dataset	Model	Setting	Size	mAP@50	mAP@50:95
Pascal VOC	DETR	original	4000	57.2	41.2
		w/o expanded prompt	4000 + 4000	55.4	38.7
		w/o expanded prompt w/o filter model	4000 + 4000	57.4	40.9
		ours	4000 + 4000	58.2	41.4
	YOLO	original	4000	59.6	41.5
		w/o expanded prompt w/o filter model	4000 + 4000	59.4	41.2
		w/o filter model	4000 + 4000	61.4	43.2
		ours	4000 + 4000	61.5	43.2
сосо	DETR	original	5000	26.6	17.6
		w/o expanded prompt	5000 + 5000	27.5	17.8
		w/o expanded prompt w/o filter model	5000 + 5000	26	16.5
		ours	5000 + 5000	27.8	17.8
	YOLO	original	5000	26.7	17.4
		w/o expanded prompt w/o filter model	5000 + 5000	27.5	17.9
		w/o filter model	5000 + 5000	27.7	17.9
		ours	5000 + 5000	28.2	18.3

Таблица: Проведение сравнительного анализа значений функций качества mAP@50 и mAP@50:95 моделей DETR и YOLO, обученных на датасетах Pascal VOC и COCO с применением аугментаций и без них, а также анализ влияния отдельных компонентов.

Выносится на защиту

- 1. Предложен автоматизированный подход к созданию аугментированных изображений.
- 2. Проведены эксперименты, демонстрирующие влияние аугментаций на качество работы модели детекции.
- 3. Проведён анализ влияния отдельных компонентов метода на итоговое значение функций качества.