Sampling

Aliasing

Rekontruksi

26 September 2018

PENS

Disiapkan oleh: Hary Oktavianto

Sampling: mengapa

Mengapa sinyal harus dikonversi?

Pemrosesan sinyal analog dilakukan dalam dunia digital didalam mikroprosesor

ADC = Analog to Digital Converter DAC = Digital to Analog Converter

Sumber: Google

Sampling: kerja ADC

ADC (Analog to Digital Converter) PCM (Pulse Code Modulation)

Pilihlah ADC sesuai kebutuhan

Sampling: sensor

https://www.explainthatstuff.com/webcams.html

https://www.eurekalert.org/multimedia/pub/143213.php?from=362190 3.30 mm

CMOS Image Sensor Chip

ADC: better inside or not?

ADC0804

Sumber: Google

Typical Application Schematic

Sampling: mathematics view point

2.2 - Sampling Theorem & Aliasing

Sampling: mathematics view point

Terlihat pada gambar (c), bahwa:

$$\Omega_{S} - \Omega_{N} > \Omega_{N}$$

$$\Omega_{S} > 2. \Omega_{N}$$

$$f_{S} > 2. f_{N}$$

Dimana f_S adalah frekuensi sampling sistem dan f_N adalah frekuensi maksimum sinyal input.

Nyquist Sampling Theorem

Nyquist 1928; Shannon 1948, menyatakan:

Let $x_c(t)$ be a bandlimited signal with

$$X_c(j\Omega) = 0$$
 for $|\Omega| \ge \Omega_N$.

Then $x_c(t)$ is uniquely determined by its samples $x[n] = x_c(nT), n = 0, \pm 1, \pm 2, \dots$, if

$$\Omega_s = \frac{2\pi}{T} \ge 2\Omega_N.$$

^{*}Discrete-time Signal Processing, Oppenheim, Schaffer, Buck

Aliasing

Apa yang terjadi, bila sampling terlalu lambat?

 $X_c(j\Omega)$

Sinyal yang disampling akan terbaca pada frekuensi yang berbeda!

Aliasing: menghindar dan membayangkan

- □ Patuhi batas Nyquist: $f_S > 2$. f_N (dalam praktek, gunakan lebih besar dari 2)
- Batasi sinyal yang masuk dengan filter low-pass (filter antialiasing)

1st Nyquist 2nd Nyquist 3rd Nyquist Zone Zone Zone Zone Zone 3Fs/2

Membayangkan aliasing

Rekonstruksi

Sinyal tersampling yang tidak mengalami aliasing, dapat direkonstruksi secara sempurna menggunakan filter low-pass (filter rekonstruksi) ideal berikut:

http://i.stack.imgur.com/tRjQr.png