Machine Learning Assignment No.1

Que.1 Create a scatter plot between cylinder vs Co2Emission (green color)

Import the libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("C:/Users/Lenovo/Documents/Data
Set/FuelConsumption.csv")

df

a) // = 1		MAKE	MODEL	VEHICLECLASS	ENGINESIZE
CYLIN 0 4	NDERS \ 2014	ACURA	ILX	COMPACT	2.0
1 4	2014	ACURA	ILX	COMPACT	2.4
2 4	2014	ACURA	ILX HYBRID	COMPACT	1.5
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5
6	2014	ACURA	RDX AWD	SUV - SMALL	3.5
6 					
1062	2014	V0LV0	XC60 AWD	SUV - SMALL	3.0
6 1063	2014	V0LV0	XC60 AWD	SUV - SMALL	3.2
6 1064	2014	V0LV0	XC70 AWD	SUV - SMALL	3.0
6 1065	2014	V0LV0	XC70 AWD	SUV - SMALL	3.2
6 1066 6	2014	V0LV0	XC90 AWD	SUV - STANDARD	3.2
	TRANSMISSIO	N FUELT	YPE FUELCON	SUMPTION_CITY F	UELCONSUMPTION_HWY
0	AS	5	Z	9.9	6.7
1	M	6	Z	11.2	7.7

AV7	Z	6.0	5.8
AS6	Z	12.7	9.1
AS6	Z	12.1	8.7
AS6	Х	13.4	9.8
AS6	Х	13.2	9.5
AS6	Х	13.4	9.8
AS6	Х	12.9	9.3
AS6	Х	14.9	10.2
9. 5. 11. 10. 11. 11.	6 9 1 6 8 5 8 3	33 29 48 25 27 24 25 24 25 22	196 221 136 255 244 271 264 271 260 294
ACURA M ACURA R	ILX COMPACT ILX COMPACT HYBRID COMPACT IDX 4WD SUV - SMALL IDX AWD SUV - SMALL FUELCONSUMPTION_CIT 9.	2.0 2.4 1.5 3.5 3.5 Y FUELCONSUMP	4 4 4 6 6
	AS6	AS6 Z AS6 Z AS6 X SUMPTION_COMB FUELCONSUMPTION_ 8.5 9.6 5.9 11.1 10.6 11.8 11.5 11.8 11.3 12.8 13 columns] MAKE MODEL VEHICLECLASS ACURA ILX COMPACT ACURA ILX COMPACT ACURA ILX COMPACT ACURA ILX COMPACT ACURA ILX HYBRID COMPACT ACURA MDX 4WD SUV - SMALL ACURA RDX AWD SUV - SMALL N FUELTYPE FUELCONSUMPTION_CIT	AS6 Z 12.7 AS6 Z 12.1

4	AS6	Z			1	12.1		8.7
FUELCONS 0 1 2 3 4	SUMPTIO	ON_COMB 8.5 9.6 5.9 11.1 10.6		LCONS	UMPTION_C	COMB_MPG 33 29 48 25 27		IONS 196 221 136 255 244
df.tail()								
		MAKE	M	0DEL	VEHICL	ECLASS	ENGINESIZ	E
1062	\ 2014	V0LV0	XC60	AWD	SUV -	SMALL	3.	0
6 1063	2014	V0LV0	XC60	AWD	SUV -	SMALL	3.	2
6 1064	2014	V0LV0	XC70	AWD	SUV -	SMALL	3.	0
6 1065	2014	V0LV0	XC70	AWD	SUV -	SMALL	3.	2
6 1066 6	2014	V0LV0	XC90	AWD	SUV - ST	ANDARD	3.	2
	MISSI0	N FUELT	YPE	FUELC	ONSUMPTIC	N_CITY	FUELCONSU	MPTION_HWY
\ 1062	AS	6	Χ			13.4		9.8
1063	AS	6	Χ			13.2		9.5
1064	AS	6	Χ			13.4		9.8
1065	AS	6	Χ			12.9		9.3
1066	AS	6	Χ			14.9		10.2
FUELO 1062 1063 1064 1065 1066 df.info	CONSUMI	_1 1 1 1	OMB 1.8 1.5 1.8 1.3	FUELC	ONSUMPTIO	ON_COMB_	MPG C02EM 24 25 24 25 22	1SSIONS 271 264 271 260 294
<bound meth<br="">VEHICLECLAS 0 4</bound>	SS EN			of LINDE IL	RS \	ELYEAR COMPAC	MAKE T	MODEL 2.0

-	2014	A CUD A		TLV	COMPACT	2.4
1 4	2014	ACURA		ILX	COMPACT	2.4
2 4	2014	ACURA	ILX HY	BRID	COMPACT	1.5
3	2014	ACURA	MDX	4WD	SUV - SMALL	3.5
6 4 6	2014	ACURA	RDX	AWD	SUV - SMALL	3.5
1062 6	2014	V0LV0	XC60	AWD	SUV - SMALL	3.0
1063 6	2014	V0LV0	XC60	AWD	SUV - SMALL	3.2
1064	2014	V0LV0	XC70	AWD	SUV - SMALL	3.0
6 1065	2014	V0LV0	XC70	AWD	SUV - SMALL	3.2
6 1066 6	2014	V0LV0	XC90	AWD	SUV - STANDARD	3.2
	TRANSMISSIO	N FUELT	YPE FUI	ELCON	SUMPTION_CITY FUEL	CONSUMPTION_HWY
0	AS	55	Z		9.9	6.7
1	M	16	Z		11.2	7.7
2	AV	7	Z		6.0	5.8
3	AS	66	Z		12.7	9.1
4	AS	66	Z		12.1	8.7
1062	AS	66	Χ		13.4	9.8
1063	AS	66	Х		13.2	9.5
1064	AS	66	Χ		13.4	9.8
1065	AS	66	Χ		12.9	9.3
1066	AS	66	Χ		14.9	10.2
0	FUELCONSUM		OMB FUI 8.5	ELCON	SUMPTION_COMB_MPG 33	CO2EMISSIONS 196
1			9.6		29	221

```
2
                        5.9
                                                     48
                                                                   136
3
                       11.1
                                                     25
                                                                   255
4
                       10.6
                                                     27
                                                                   244
                        . . .
                                                     . . .
                                                                   . . .
1062
                       11.8
                                                                   271
                                                     24
                       11.5
                                                     25
1063
                                                                   264
1064
                       11.8
                                                     24
                                                                   271
1065
                       11.3
                                                     25
                                                                   260
1066
                       12.8
                                                     22
                                                                   294
[1067 rows x 13 columns]>
df.isnull().sum()
MODELYEAR
                              0
                              0
MAKE
                              0
MODEL
VEHICLECLASS
                              0
ENGINESIZE
                              0
                              0
CYLINDERS
TRANSMISSION
                              0
                              0
FUELTYPE
                              0
FUELCONSUMPTION CITY
FUELCONSUMPTION HWY
                              0
FUELCONSUMPTION COMB
                              0
FUELCONSUMPTION COMB MPG
                              0
CO2EMISSIONS
                              0
dtype: int64
plt.scatter(df['CYLINDERS'],df['CO2EMISSIONS'] , color = "green")
<matplotlib.collections.PathCollection at 0x21189b46b50>
```


Que.2 Using scatter plot compare data cylinder vs Co2Emission and Enginesize Vs Co2Emission using different colors

plt.scatter(df["CYLINDERS"],df["C02EMISSIONS"], color='yellow')
plt.scatter(df["ENGINESIZE"],df["C02EMISSIONS"],color='red')

<matplotlib.collections.PathCollection at 0x21189c4ed60>

Que.3 Using scatter plot compare data cylinder vs Co2Emission and Enginesize Vs Co2Emission and FuelConsumption_comb Co2Emission using different colors

```
plt.scatter(df["CYLINDERS"], df["C02EMISSIONS"], color="blue")
plt.scatter(df["ENGINESIZE"], df["C02EMISSIONS"], color='red')
plt.scatter(df["FUELCONSUMPTION_COMB"], df["C02EMISSIONS"],
color='green')
```

<matplotlib.collections.PathCollection at 0x21189cd6520>

Que.4 Train your model with indepedent variable as cylinder and dependent variable as Co2Emission

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

df = pd.read_csv("C:/Users/Lenovo/Documents/Data
Set/FuelConsumption.csv")

df

MODE	LYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE
CYLINDERS	\				
0	2014	ACURA	ILX	COMPACT	2.0
4					
1	2014	ACURA	ILX	COMPACT	2.4
4					

2	2014	ACURA	ILX HY	BRID	COMPAC	T	1.5
4	2014	ACURA	MDX	4WD	SUV - SMAL	.L	3.5
6 4 6	2014	ACURA	RDX	AWD	SUV - SMAL	.L	3.5
						•	
1062 6	2014	V0LV0	XC60	AWD	SUV - SMAL	.L	3.0
1063 6	2014	V0LV0	XC60	AWD	SUV - SMAL	.L	3.2
1064	2014	V0LV0	XC70	AWD	SUV - SMAL	.L	3.0
6 1065	2014	V0LV0	XC70	AWD	SUV - SMAL	.L	3.2
6 1066 6	2014	V0LV0	XC90	AWD	SUV - STANDAF	RD	3.2
	TRANSMISSI0	N FUELT	YPE FU	ELCON	SUMPTION_CITY	FUELCONS	UMPTION_HWY
0	AS	5	Z		9.9		6.7
1	М	16	Z		11.2		7.7
2	AV	7	Z		6.0		5.8
3	AS	6	Z		12.7		9.1
4	AS	6	Z		12.1		8.7
1062	AS	6	Χ		13.4		9.8
1063	AS	6	Χ		13.2		9.5
1064	AS	6	Χ		13.4		9.8
1065	AS	6	Χ		12.9		9.3
1066	AS	6	Χ		14.9		10.2
0 1 2 3	FUELCONSUM	_	0MB FU 8.5 9.6 5.9 1.1	ELCON	SUMPTION_COMB_	MPG C02E 33 29 48 25	MISSIONS 196 221 136 255

4	10.6		27	244
1062 1063 1064 1065 1066	11.8 11.5 11.8 11.3 12.8		24 25 24 25 22	271 264 271 260 294
[1067 rows x 13	columns]			
<pre>df.head()</pre>				
1 2014 AC 2 2014 AC 3 2014 AC	URA URA URA ILX HYB	4WD SUV - SMAL	T 2.0 T 2.4 T 1.5 L 3.5	CYLINDERS \ 4 4 4 6 6
TRANSMISSION F 0 AS5 1 M6 2 AV7 3 AS6 4 AS6	UELTYPE FUE Z Z Z Z Z Z	11 6	.9 .2 .0 .7	1PTION_HWY \ 6.7 7.7 5.8 9.1 8.7
FUELCONSUMPTI 0 1 2 3 4	ON_COMB FUE 8.5 9.6 5.9 11.1 10.6	ELCONSUMPTION_CO	MB_MPG CO2EMI 33 29 48 25 27	ISSIONS 196 221 136 255 244
df.tail()				
MODELYEAR CYLINDERS \	MAKE M	10DEL VEHICLE	CLASS ENGINES	SIZE
	VOLVO XC60) AWD SUV -	SMALL	3.0
	VOLVO XC60) AWD SUV -	SMALL	3.2
-	VOLVO XC70) AWD SUV -	SMALL	3.0
	VOLVO XC70) AWD SUV -	SMALL	3.2
	VOLVO XC90) AWD SUV - STA	NDARD	3.2
	N FUELTYPE	FUELCONSUMPTION	_CITY FUELCON	NSUMPTION_HWY
\ 1062 AS	6 X		13.4	9.8

1063	A	AS6	Χ		13.2			9.5
1064	P	NS6	Χ		13.4			9.8
1065	P	AS6	Χ		12.9			9.3
1066	P	NS6	Χ		14.9			10.2
1062 1063 1064 1065 1066 df.inf		_1 1 1 1	OMB FUI 1.8 1.5 1.8 1.3 2.8	ELCON	SUMPTION_COME	24 25 24 25 24 25 22		ONS 271 264 271 260 294
)ataFrame	.info o	f	MODELYEAR	MAK	E MO	DEL
VEHICL 0	ECLASS E	NGINESIZ					2.0	
4 1	2014	ACURA		ILX	COMPA	.CT	2.4	
4 2	2014	ACURA	ILX HY	BRID	COMPA	CT	1.5	
4 3 6	2014	ACURA	MDX	4WD	SUV - SMA	LL	3.5	
6 6	2014	ACURA	RDX	AWD	SUV - SMA	LL	3.5	
1062 6	2014	VOLVO	XC60	AWD	SUV - SMA	LL	3.0	
1063 6	2014	VOLVO	XC60	AWD	SUV - SMA	LL	3.2	
1064 6	2014	VOLVO	XC70	AWD	SUV - SMA	LL	3.0	
1065 6	2014	VOLVO	XC70	AWD	SUV - SMA	LL	3.2	
1066 6	2014	VOLV0	XC90	AWD	SUV - STANDA	RD	3.2	
	TRANSMISSI	ON FUELT	YPE FUI	ELCON	SUMPTION_CITY	FUE	LCONSUMPTI	ON_HWY
0	A	AS5	Z		9.9			6.7
1		M6	Z		11.2			7.7

2	AV7 Z	6.0	5.8
3	AS6 Z	12.7	9.1
4	AS6 Z	12.1	8.7
		•••	
1062	AS6 X	13.4	9.8
1063	AS6 X	13.2	9.5
1064	AS6 X	13.4	9.8
1065	AS6 X	12.9	9.3
1066	AS6 X	14.9	10.2
0 1 2 3 4	FUELCONSUMPTION_COMB 8.5 9.6 5.9 11.1 10.6	FUELCONSUMPTION_COMB_MPG 33 29 48 25 27	CO2EMISSIONS 196 221 136 255 244
1062 1063	11.8 11.5	24 25	271 264

271

260

294

24

25

22

[1067 rows x 13 columns]>

11.8

11.3

12.8

Data Exploration
Summarize the Data

df.describe()

1064

1065

1066

	MODELYEAR	ENGINESIZE	CYLINDERS	FUELCONSUMPTION_CITY	\
count	1067.0	1067.000000	1067.000000	$1067.0\overline{0}0000$	
mean	2014.0	3.346298	5.794752	13.296532	
std	0.0	1.415895	1.797447	4.101253	
min	2014.0	1.000000	3.000000	4.600000	
25%	2014.0	2.000000	4.000000	10.250000	
50%	2014.0	3.400000	6.000000	12.600000	
75%	2014.0	4.300000	8.000000	15.550000	
max	2014.0	8.400000	12.000000	30.200000	

FUELCONSUMPTION HWY FUELCONSUMPTION COMB FUELCONSUMPTION COMB MPG \ 1067.000000 1067.000000 count 1067.000000 9,474602 11.580881 mean 26.441425 2.794510 3.485595 std 7.468702 4.900000 4.700000 min 11.000000 25% 7.500000 9.000000 21.000000 50% 8.800000 10.900000 26.000000 75% 10.850000 13.350000 31.000000 25.800000 20.500000 max 60.000000 CO2EMISSIONS count 1067.000000 256.228679 mean 63.372304 std 108.000000 min 25% 207.000000 50% 251.000000 75% 294.000000 488.000000 max df[['MODELYEAR','ENGINESIZE','CYLINDERS']] MODELYEAR ENGINESIZE CYLINDERS 0 2014 2.0 4 1 2014 4 2.4 2 1.5 4 2014 3 2014 3.5 6 4 3.5 6 2014 1062 2014 3.0 6 1063 2014 3.2 6 1064 2014 6 3.0 1065 2014 3.2 6 1066 2014 3.2 6 [1067 rows x 3 columns] df[['CYLINDERS','CO2EMISSIONS']] CYLINDERS CO2EMISSIONS 0 4 196 1 4 221

2	4	136
3	6	255
4	6	244
1062	6	271
1063	6	264
1064	6	271
1065	6	260
1066	6	294

[1067 rows x 2 columns]

df

	ELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE
CYLINDERS	\				
0	2014	ACURA	ILX	COMPACT	2.0
4	2014	A CUID A	T1 \	COMPACT	2.4
1	2014	ACURA	ILX	COMPACT	2.4
4	2014	A CLID A	TLV UVDDTD	COMPACT	1 -
2	2014	ACURA	ILX HYBRID	COMPACT	1.5
4	2014	ACURA	MDX 4WD	SUV - SMALL	3.5
3 6	2014	ACUNA	MDV 4MD	SUV - SMALL	3.3
4	2014	ACURA	RDX AWD	SUV - SMALL	3.5
6	2014	ACONA	NDX AND	JOV JIIALL	3.3
1062	2014	V0LV0	XC60 AWD	SUV - SMALL	3.0
6					
1063	2014	V0LV0	XC60 AWD	SUV - SMALL	3.2
6					
1064	2014	V0LV0	XC70 AWD	SUV - SMALL	3.0
6					
1065	2014	V0LV0	XC70 AWD	SUV - SMALL	3.2
6					
1066	2014	V0LV0	XC90 AWD	SUV - STANDARD	3.2
6					

,	TRANSMISSION	FUELTYPE	FUELCONSUMPTION_CITY	FUELCONSUMPTION_HWY
0	AS5	Z	9.9	6.7
1	M6	Z	11.2	7.7
2	AV7	Z	6.0	5.8
3	AS6	Z	12.7	9.1
4	AS6	Z	12.1	8.7

			• • •		
1062	AS6	Х	13.4	9.8	
1063	AS6	Х	13.2	9.5	
1064	AS6	Х	13.4	9.8	
1065	AS6	Х	12.9	9.3	
1066	AS6	Х	14.9	10.2	
0 1 2 3 4 1062 1063 1064 1065 1066	FUELCONSUMPT	ION_COMB 8.5 9.6 5.9 11.1 10.6 11.8 11.5 11.8 11.3 12.8	FUELCONSUMPTION_COMB_MPG	CO2EMISSIONS 196 221 136 255 244 271 264 271 260 294	
[1067 rows x 13 columns]					
<pre>cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']] cdf.head()</pre>					
EN 0 1 2 3 4	GINESIZE CYL 2.0 2.4 1.5 3.5 3.5	INDERS FU 4 4 4 6 6	UELCONSUMPTION_COMB CO2EN 8.5 9.6 5.9 11.1 10.6	MISSIONS 196 221 136 255 244	
cdf.tail()					
1062 1063 1064 1065 1066	ENGINESIZE 3.0 3.2 3.0 3.2 3.2	CYLINDERS 6 6 6 6 6	FUELCONSUMPTION_COMB CO 11.8 11.5 11.8 11.3 12.8	D2EMISSIONS 271 264 271 260 294	

Creating train and test dataset

cdf

train

```
ENGINESIZE CYLINDERS
                              FUELCONSUMPTION COMB
                                                    CO2EMISSIONS
0
             2.0
                                               8.5
                                                              196
1
             2.4
                          4
                                               9.6
                                                              221
2
                                               5.9
             1.5
                           4
                                                              136
3
             3.5
                           6
                                              11.1
                                                              255
4
             3.5
                           6
                                              10.6
                                                              244
                         . . .
1062
             3.0
                          6
                                              11.8
                                                              271
             3.2
                                              11.5
                                                              264
1063
                          6
1064
             3.0
                          6
                                              11.8
                                                              271
                                              11.3
1065
             3.2
                          6
                                                              260
1066
                          6
             3.2
                                              12.8
                                                              294
[1067 rows x 4 columns]
len(cdf)
1067
msk = np.random.rand(len(cdf)) <= 0.80 #80% #len 1067 #853
msk
array([ True, True, True, True, True, True])
~msk
array([False, False, False, False, False, False])
len(msk)
1067
len(~msk)
1067
train = cdf[msk] #80% of rows are your trainig example
test = cdf[~msk] #rest of the data out of the msk are for testing data
#~not
train.shape
(845, 4)
test.shape
(222, 4)
```

0 1 2 3 4	ENGINESIZE 2.0 2.4 1.5 3.5 3.5	CYLINDERS 4 4 4 6 6	FUELCONSUMPTION_COMB 8.5 9.6 5.9 11.1 10.6	CO2EMISSIONS 196 221 136 255 244
1062 1063 1064 1065 1066	3.0 3.2 3.0 3.2 3.2	6 6 6 6	11.8 11.5 11.8 11.3 12.8	271 264 271 260 294
_	rows x 4 col	umns]		
5 7 9 13 19 1041 1045 1046 1047	ENGINESIZE 3.5 3.7 2.4 5.9 2.0 2.0 2.5 2.5 3.6 2.0	CYLINDERS 6 6 4 12 4 4 5 5 6 4	FUELCONSUMPTION_COMB 10.0 11.1 9.2 15.6 8.8 6.9 9.7 9.8 10.8 11.6	CO2EMISSIONS 230 255 212 359 202 186 223 225 248 267

[222 rows x 4 columns]

Simple Regression Model

Linear Regression fits a linear model with coefficients B = (B1, ..., Bn) to minimize the 'residual sum of squares' between the actual value y in the dataset, and the predicted value yhat using linear approximation.

```
# Train data distribution

plt.scatter(train.CYLINDERS, train.CO2EMISSIONS, color='blue')
plt.xlabel("CYLINDERS")
plt.ylabel("CO2Emission")
plt.show()
```


Modeling

Using sklearn package to model data.

```
train[['CYLINDERS']]
```

CYLINDERS					
0				4	
1				4	
2				4	
3 4	6				
4				6	
1062			• •	6	
1063				6	
1064				6	
1065				6	
1066				6	
[845	rows	х	1	columns]	
train	η[['C()2E	M]	[['SSIONS	
	C02I	EMI	SS	SIONS	
0				196	
1				221	
2				136	
3				255	

```
4
                 244
1062
                 271
1063
                 264
1064
                 271
1065
                 260
1066
                 294
[845 rows x 1 columns]
np.asanyarray(train[['CYLINDERS']])
array([[ 4],
[ 4],
        [ 4],
        [ 6],
        [ 6],
        [ 6],
        [ 6],
        [4],
        [ 6],
        [12],
        [8],
        [8],
        [8],
        [8],
        [12],
        [ 4],
        [ 4],
        [4],
        [ 4],
        [ 6],
        [ 6],
        [ 6],
        [ 6],
        [8],
        [ 6],
        [ 6],
        [8],
        [ 6],
        [ 4],
        [ 4],
        [ 6],
        [ 6],
        [8],
        [8],
        [10],
        [8],
        [8],
        [10],
```

```
[ 8],
[ 8],
[ 6],
[ 6],
[ 8],
[ 8],
[ 4],
[ 8],
[ 12],
[ 8],
[ 12],
[ 12],
[ 12],
[ 12],
[ 12],
```

[4], [4], [4], [4], [4], [6], [6], [6], [4], [6], [6], [6], [4], [6],

[6], [6], [8], [8], [8], [8], [8], [6],

[8], [8], [8], [8], [8], [6], [4], [6], [8], [6], [6], [6], [6], [4], [4], [6], [6], [6], [6], [4], [4], [4], [4], [4], [4], [4],

[6], [4], [6], [6], [4],

[6], [4],

[6], [6], [6], [8], [8], [8], [8], [8],

```
[ 8],
[ 6],
[ 6],
[ 6],
```

[6],

[6], [8], [8], [8], [8], [4], [4], [4], [4], [4], [4],

[6], [6], [8], [8], [8], [8], [8], [8], [8], [8],

[8],

[8], [8], [8], [6], [4],

[4], [4], [6], [8], [8], [8], [8], [8],

```
[ 4],
[ 4],
```

[4], [4], [4], [4], [4], [4], [8], [8], [8],

[8], [8], [8], [8], [6],

[4], [4],

[4], [6], [4], [6],

[8], [6],

6],

[6], [6], [6], [6], [6],

[4],

[4],

[8], [8], [8], [8],

[6], [6],

[8], [6], [8], [6], [6], [6],

[4], [4], [4],

```
[ 4],
[ 4],
```

[4], [4], [6],

[6],

[6], [6], [6], [6], [6], [4], [4], [4], [8], [8], [8], [8], [8], [8], [6], [6], [4], [4], [4], [4],

[8],

[6], [6], [6], [6],

[6], [8],

[6], [6], [6], [6], [8], [8], [8], [6],

```
[ 6],
[ 6],
[ 8],
[ 8],
[ 4],
```

[6], [6], [6], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [6], [6],

[6], [6], [6], [6], [6],

6], 6],

[4], [4], [4], [4], [6],

[6], [6],

[8], [8], [8], [8], [8], [8], [8], [8],

```
[ 8],
[ 8],
[ 8],
[ 6],
```

[8], [8], [8], [6], [8], [8], [4], [6],

[4], [6], [8], [8], [8], [8], [8], [8], [8], [8],

[4], [4], [4], [6], [6],

[4],

[4], [4], [6], [4], [4], [4],

[6], [6], [6], [4], [4], [4], [4], [8], [6], [6],

```
[ 4],
[ 4],
```

[4], [4], [4], [4], [4], [4], [4], [4], [6], [6], [6],

[6],

[6],

[6], [6], [8], [6],

[8], [6],

6],

[6], [6],

[6], [6], [8], [8],

6],

[6],

[8], [8], [8], [8],

[6], [8],

[8], [8], [8], [8], [8], [8], [4], [4],

```
[ 4],
[ 4],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 8],
[ 8],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
 [6],
 [6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
```

[4], [4], [4], [4], [4],

[6], [4],

[6], [4], [6], [4], [4], [10], [10], [4], [6],

```
[ 4],
[ 4],
[ 8],
[ 8],
    [6],
   [ 8],
[ 8],
[ 6],
[ 6],
[ 8],
[ 8],
[ 4],
[ 6],
[ 6],
    [8],
    [6],
   [ 6],
[ 6],
[ 6],
[ 6],
    [ 8],
[ 8],
    [ 8],
[ 8],
[ 8],
[ 8],
[ 6],
         6],
    [ 6],
   [ 6],
[ 4],
[ 6],
[ 4],
    [ 6],
[ 4],
[ 8],
[ 8],
[ 6],
   [ 6],
[ 8],
[ 8],
[ 6],
```

[4], [4], [4],

```
[ 4],
[ 4],
```

[6], [6], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4],

[4], [4], [4], [4], [4], [6],

[6], [6],

6],

[6], [6], [8], [8], [8],

[8], [8],

[4], [4], [8], [8], [4],

[6],

[6], [6], [6], [8], [8], [8], [8], [8],

```
[ 8],
[ 8],
[ 6],
[ 8],
```

[6],

[6], [8], [8], [8], [8], [8], [8], [8], [4],

[4], [4], [4], [4], [4], [4], [4], [4],

```
[ 4],
[ 4],
```

- [4], [4], [4], [4], [4], [3], [4], [6], [4], [6], [6], [6],

- [6],
- [8],

- [4], [6], [6], [6],
- [4],

- [4], [6], [6], [6], [4],

- [4],
- [4],
- [8], [8], [4], [4],

- [6], [6],

- [6], [6], [6], [6], [6], [6],
- [6], [6], [6], [6],

```
[ 6],
[ 6],
[ 6],
[ 6],
[6],
```

[6], [6], [6], [6], [6], [6],

[6], [8], [8], [6], [8],

6],

[6],

[6], [6], [6], [6],

[6], [8],

[8], [6], [8], [8], [8],

6],

[6],

[6], [6], [6], [6], [6],

[12], [12], [12], [12], [4], [4], [4], [4], [3], [10],

```
[10],
[4],
[4],
[4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
    6],
[ 4],
[ 6],
[ 4],
[ 4],
[ 4],
[ 6],
[6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
    6],
    6],
[ 4],
[ 6],
[ 6],
[ 6],
[ 6],
[ 6],
[4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 6],
[ 6],
[ 4],
[ 4],
[ 6],
[ 4],
```

```
[ 4],
[ 6],
[ 8],
[ 8],
[ 8],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
```

- [4], [6], [4], [6], [6], [5], [6], [6],

```
[ 6],
        [6],
        [ 6],
        [ 6],
        [ 6],
        [ 6],
        [ 6]], dtype=int64)
np.asanyarray(train[['CO2EMISSIONS']])
array([[196],
        [221],
        [136],
        [255],
        [244],
        [232],
        [267],
        [225],
        [239],
        [359],
        [338],
        [354],
        [338],
        [354],
        [359],
        [230],
        [214],
        [230],
        [214],
        [251],
        [224],
        [258],
        [224],
        [260],
        [227],
        [258],
        [288],
        [230],
        [242],
        [239],
        [258],
        [294],
        [336],
        [407],
        [354],
        [336],
        [407],
        [354],
        [306],
        [308],
        [262],
```

```
[285],
```

- [262],
- [267],
- [281],
- [281],
- [292],
- [209],
- [209],
- [297],
- [356],
- [320],
- [380],
- [322],
- [380],
- [380],
- [437],
- [193],
- [200],
- [181],
- [181], [193],
- [200],
- [209],
- [209],
- [209],
- [230],
- [228],
- [237],
- [232],
- [193],
- [200],
- [209],
- [221],
- [230],
- [237],
- [202],
- [209],
- [213],
- [232],
- [292],
- [232],
- [292],
- [281],
- [292],
- [292],
- [191],
- [292],
- [338],
- [338],
- [317],

```
[338],
```

- [317],
- [209],
- [260],
- [230],
- [253],
- [320],
- [370],
- [274],
- [209],
- [200],
- [278],
- [253],
- [278],
- [283],
- [290],
- [196],
- [212],
- [264],
- [250],
- [264],
- [264],
- [225],
- [246],
- [189],
- [225],
- [218],
- [221],
- [235],
- [207],
- [251],
- [232],
- [258],
- [262],
- [232],
- [248],
- [248],
- [260],
- [253],
- [260],
- [255],
- [382],
- [340],
- [382],
- [340],
- [338],
- [322],
- [377],
- [283],
- [294],

```
[271],
```

- [290],
- [258],
- [269],
- [294],
- [382],
- [340],
- [276],
- [258],
- [179],
- [189],
- [192],
- [177],
- [163],
- [209],
- [259],
- [290],
- [272],
- [366],
- [334],
- [380],
- [344],
- [380],
- [344],
- [362],
- [380],
- [344],
- [380],
- [362],
- [414],
- [432],
- [411],
- [419],
- [435],
- [229],
- [200],
- [228],
- [184],
- [244],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [299],
- [329],
- [184],
- [173],
- [184],

```
[172],
```

- [182],
- [191],
- [182],
- [191],
- [182],
- [159],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [290],
- [207],
- [232],
- [246],
- [230],
- [230],
- [230],
- [294],
- [251],
- [251],
- [237],
- [222],
- [276],
- [269],
- [225],
- [230],
- [301],
- [294],
- [320],
- [317],
- [258],
- [237],
- [294],
- [251],
- [308], [251],
- [237],
- [235],
- [222],
- [186],
- [198],
- [202],
- [195],
- [202],
- [168],

```
[168],
```

- [278],
- [250],
- [271],
- [264],
- [255],
- [285],
- [276],
- [179],
- [179],
- [182],
- [179],
- [156],
- [200],
- [193],
- [373],
- [350],
- [396],
- [360],
- [386],
- [368],
- [488],
- [225],
- [264],
- [281],
- [209],
- [216],
- [214],
- [230],
- [368],
- [346],
- [274],
- [254],
- [288],
- [267],
- [294],
- [366],
- [317],
- [308],
- [283],
- [283],
- [264],
- [336],
- [336],
- [315],
- [308],
- [288],
- [308],
- [288],
- [320],

```
[318],
```

- [152],
- [184],
- [264],
- [278],
- [294],
- [205],
- [177],
- [165],
- [179],
- [165],
- [184],
- [170],
- [166],
- [162],
- [196],
- [186],
- [205],
- [186],
- [216],
- [126],
- [244],
- [264],
- [244],
- [209],
- [271],
- [237],
- [229],
- [258],
- [251],
- [218],
- [228],
- [232],
- [239],
- [283],
- [297],
- [347],
- [366],
- [334],
- [344],
- [380],
- [344],
- [380],
- [380],
- [344],
- [414],
- [432],
- [411], [419],
- [435],

```
[271],
```

- [269],
- [292],
- [270],
- [324],
- [290],
- [285],
- [277],
- [329],
- [209],
- [276],
- [230],
- [290],
- [272],
- [317],
- [294],
- [338],
- [322],
- [354],
- [317],
- [294],
- [317],
- [294],
- [182],
- [186],
- [200],
- [209],
- [221],
- [251],
- [110],
- [161],
- [166],
- [246],
- [209],
- [159],
- [172],
- [244],
- [265],
- [276],
- [308],
- [177],
- [177],
- [196],
- [304],
- [255],
- [258],
- [267],
- [237],
- [264],
- [255],

```
[221],
```

- [143],
- [145],
- [214],
- [232],
- [230],
- [244],
- [177],
- [184],
- [202],
- [196],
- [235],
- [172],
- [189],
- [265],
- [269],
- [283],
- [255],
- [267],
- [253],
- [283],
- [267],
- [294],
- [175],
- [271],
- [244], [294],
- [334],
- [345],
- [237],
- [244],
- [294],
- [306],
- [290],
- [306],
- [285],
- [280],
- [306],
- [306],
- [301],
- [315],
- [310], [315],
- [310],
- [218],
- [230],
- [248],
- [232],
- [251],
- [267],

```
[225],
```

- [209],
- [225],
- [216],
- [235],
- [216],
- [255],
- [340],
- [267],
- [278],
- [363],
- [225],
- [216],
- [216],
- [255],
- [294],
- [308],
- [251],
- [184],
- [193],
- [193],
- [223],
- [225],
- [193],
- [196],
- [216],
- [221],
- [193],
- [198],
- [200],
- [175],
- [177],
- [175],
- [212],
- [214],
- [276],
- [237],
- [262],
- [253],
- [271],
- [207],
- [209],
- [230],
- [361],
- [400],
- [274],
- [334],
- [225],
- [225],
- [354],

```
[342],
```

- [285],
- [278],
- [345],
- [331],
- [283],
- [283], [277],
- [354],
- [347],
- [129],
- [138],
- [221],
- [239],
- [253],
- [175],
- [320],
- [223],
- [239],
- [244],
- [253],
- [244],
- [290],
- [283],
- [297],
- [262],
- [380],
- [255],
- [189],
- [271],
- [260],
- [294],
- [235],
- [281],
- [207],
- [262],
- [145],
- [368],
- [346],
- [292],
- [292],
- [347],
- [334],
- [301],
- [189],
- [184],
- [198],
- [196],
- [205],
- [283],

```
[290],
```

- [177],
- [170],
- [159],
- [161],
- [170],
- [163],
- [166],
- [177],
- [168],
- [166],
- [223],
- [225],
- [175],
- [168],
- [235],
- [221],
- [228],
- [184],
- [216],
- [216],
- [242],
- [224],
- [239],
- [244],
- [242],
- [347],
- [352],
- [304],
- [308],
- [179],
- [212],
- [264],
- [301],
- [194],
- [235],
- [230],
- [239],
- [242],
- [235],
- [202],
- [267],
- [269],
- [262],
- [297],
- [310],
- [310],
- [419],
- [407],
- [324],

```
[359],
```

- [260],
- [256],
- [278],
- [327],
- [356],
- [278],
- [276],
- [327],
- [205],
- [207],
- [225],
- [246],
- [380],
- [361],
- [361],
- [179],
- [179],
- [179],
- [179],
- [200],
- [179],
- [175],
- [200],
- [179],
- [179],
- [179],
- [184],
- [191],
- [207],
- [196],
- [191],
- [184],
- [207],
- [196],
- [191],
- [184],
- [191],
- [184],
- [191],
- [184],
- [207],
- [196],
- [191],
- [207],
- [196],
- [191],
- [184],
- [189],
- [191],

```
[288],
```

- [283],
- [267],
- [198],
- [198],
- [138],
- [147],
- [198],
- [235],
- [200],
- [202],
- [207],
- [253],
- [264],
- [262],
- [175],
- [214],
- [380],
- [283],
- [292],
- [315],
- [301],
- [186],
- [198],
- [251],
- [244], [253],
- [202],
- [255],
- [161], [179],
- [359],
- [398],
- [152],
- [177],
- [327],
- [315],
- [232],
- [237],
- [246],
- [242],
- [253],
- [248],
- [253],
- [253], [258],
- [232], [246],
- [244], [248],

- [246],
- [251],
- [322],
- [274],
- [274],
- [274],
- [274],
- [212],
- [228],
- [225],
- [313],
- [281],
- [320],
- [299],
- [251],
- [315],
- [212],
- [225],
- [239],
- [251],
- [255],
- [260],
- [264],
- [292],
- [260],
- [294],
- [340],
- [313],
- [354],
- [290],
- [285],
- [275],
- [274],
- [260],
- [262],
- [254],
- [368],
- [393],
- [393],
- [359],
- [193],
- [207],
- [184],
- [182],
- [147],
- [147],
- [389],
- [389],
- [221],
- [223],

```
[179],
```

- [196],
- [258],
- [179],
- [196],
- [258],
- [288],
- [198],
- [228],
- [267],
- [207],
- [301],
- [196],
- [212],
- [177],
- [297],
- [297],
- [221],
- [131],
- [138],
- [177],
- [168],
- [163],
- [170],
- [156],
- [159],
- [196],
- [189],
- [297],
- [320],
- [237],
- [258],
- [264],
- [191],
- [189],
- [110],
- [108],
- [126],
- [216], [218],
- [384],
- [260],
- [285],
- [251],
- [235],
- [301],
- [274],
- [271],
- [322],
- [310],

```
[329],
```

- [356],
- [347],
- [373],
- [230],
- [253],
- [235],
- [260],
- [163],
- [196],
- [200],
- [209],
- [216],
- [225],
- [221],
- [200],
- [214],
- [216],
- [197],
- [197],
- [225],
- [283],
- [221],
- [218],
- [216],
- [194],
- [189],
- [189],
- [216],
- [207],
- [207],
- [212],
- [186],
- [124],
- [198],
- [198],
- [192],
- [184],
- [278],
- [246],
- [246],
- [281],
- [281],
- [223],
- [232],
- [264],
- [235],
- [264],
- [258],
- [271],

```
[264],
       [271],
       [260],
       [294]], dtype=int64)
X = np.asanyarray(train[['CYLINDERS']])
Χ
array([[ 4],
       [ 4],
       [ 4],
       [ 6],
       [ 6],
       [ 6],
       [ 6],
        [4],
       [ 6],
       [12],
       [8],
       [8],
       [8],
        [8],
       [12],
       [ 4],
       [ 4],
       [ 4],
       [ 4],
        [6],
       [ 6],
       [ 6],
       [ 6],
       [8],
       [6],
       [ 6],
       [8],
       [ 6],
       [4],
       [ 4],
       [ 6],
       [ 6],
        [8],
        [8],
       [10],
       [8],
       [8],
       [10],
       [8],
       [8],
       [ 6],
       [ 6],
```

```
[ 6],
[ 6],
[ 8],
[ 8],
[ 4],
[ 4],
[ 12],
[ 12],
[ 12],
[ 12],
[ 12],
[ 12],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
```

[4], [4], [6], [6], [6], [4], [4], [4], [6],

[6],

[4], [4], [6], [6], [8],

[8], [8], [8], [8], [8], [8], [8],

```
[ 8],
[ 4],
[ 6],
[ 4],
[ 6],
```

[8],

[8], [8], [6], [4], [6], [6], [6],

[6],

[4], [4], [6], [6],

[6],

[6],

[4], [4], [4], [4], [4], [4], [6], [6],

6],

[4],

[6], [4], [6], [6],

[6], [6],

[8], [8], [8], [8], [8], [6], [6],

```
[ 6],
[ 6],
[ 6],
[ 8],
 [8],
[ 8],
[ 8],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
```

[6],

[4], [4], [4], [4],

[6], [6],

[8], [8], [8], [8], [8], [4], [4], [4],

```
[ 4],
[ 4],
```

[4], [4], [4], [4],

[8], [8], [8], [8], [8], [8], [8],

[4], [4], [4], [6],

[4],

[6], [8], [6], [6],

[6],

[6], [6],

6],

[6], [4], [4], [8], [8], [8],

[8],

[6], [6], [8], [6],

[8],

[6],

[6], [6], [4], [4], [4], [4], [4], [4],

```
[ 6],
[ 6],
[ 6],
[ 6],
[ 4],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 8],
[ 8],
[ 8],
 [10],
[ 4],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 8],
[ 6],
         6],
 [ 6],
[ 6],
[ 8],
[ 6],
[ 6],
[ 6],
[ 6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 6],
[ 6],
[ 6],
[ 6],
[ 8],
[ 8],
```

```
[ 4],
[ 4],
```

[6], [6], [6], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4],

[4], [6], [6], [4], [6],

[6], [6],

6],

[6], [6], [4], [4], [4],

[6],

[6], [6], [8], [8], [8],

[8], [8], [8], [8], [8], [8], [8], [8],

```
[ 6],
[ 8],
[ 8],
[ 8],
[6],
[ 6],
[ 8],
[ 8],
[ 4],
[ 6],
[ 6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[8],
[ 8],
[ 8],
[ 4],
[ 4],
[ 6],
[ 6],
       6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 6],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 6],
[ 6],
[4],
[ 4],
[ 4],
[ 8],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
```

```
[ 4],
[ 4],
```

[4], [4], [4], [4], [4], [4], [6], [6], [6],

[6],

[6], [6], [6], [6],

[8],

[6],

[8], [6], [6],

[6],

[6], [8], [8], [8], [6], [6], [8], [8],

[8],

[8], [8], [8], [8], [8],

[8], [8], [4], [4], [6], [4], [6], [4],

```
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 4],
[ 6],
[ 4],
[ 4],
[ 10],
[ 10],
[ 4],
[ 6],
[ 4],
[ 8],
[ 8],
```

```
[ 6],
[ 6],
[ 8],
[ 8],
```

- [6],

- [6], [8], [8], [4], [6], [6],

- [6], [8], [6], [6],
- [6],

- [6], [8], [8], [8], [8], [8],

- [6], [6],
- [6], [6], [6], [4],
- 4], 6],
- [4],
- [6], [4], [8], [8],

- [6], [6],

- [8], [8], [6], [4], [4], [4],

- [4], [6], [6],

```
[ 4],
[ 4],
```

[4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4], [4],

[6], [6], [6], [6], [6],

[8], [8],

[8], [8], [8], [4], [4], [8],

[4],

[6], [6], [6],

[6], [6],

[6], [6],

[8], [8], [8], [8], [8], [8], [8], [6],

```
[ 6],
[ 6],
[ 6],
[ 8],
```

[8],

[8], [8], [4], [4], [6], [8], [8],

[8], [8], [8], [4],

[4], [4], [4], [4], [4], [4], [4], [4],

```
[ 4],
[ 4],
```

- [4], [4], [3],
- [3], [3], [4], [6], [4], [4], [6], [6],

- [4], [6], [8], [4], [6],

- [6],
- [6],

- [4], [4], [6],
- [6],
- [6],
- [4], [6], [4], [4], [8],

- [8], [4],
- [4],

- [6], [6], [6], [6], [6],
- [6],
- [6],

- [6], [6], [6], [6], [6], [6],

- [6], [6], [6],

```
[ 6],
[ 6],
[ 6],
[ 6],
 [6],
[ 6],
[ 6],
[ 6],
[ 6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 6],
[ 6],
[ 6],
[ 6],
        6],
 [6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 8],
[ 6],
[ 6],
[ 6],
[ 6],
[ 6],
[12],
[12],
[12],
 [ 4],
[ 4],
[ 4],
[ 4],
[ 3],
[ 10],
[ 10],
[ 4],
[ 4],
```

```
[ 4],
[ 4],
```

- [4], [4], [4], [4], [4], [6], [4], [6], [6], [6], [6], [4], [4], [4],
- [4], [4], [4], [4], [4],

- [4], [6], [6], [4], [6],

- 6],
- [6],
- [4], [4], [4], [4], [4], [8],

- [6], [6], [4], [6], [4], [6], [6], [8],

[8], [8], [8], [4], [6],

[6], [4], [5], [6],

[6], [6], [5], [6], [6], [6], [6],

```
[6],
        [6],
        [ 6]], dtype=int64)
y = np.asanyarray(train[['CO2EMISSIONS']])
У
array([[196],
        [221],
        [136],
        [255],
        [244],
        [232],
        [267],
        [225],
        [239],
        [359],
        [338],
        [354],
        [338],
        [354],
        [359],
        [230],
        [214],
        [230],
        [214],
        [251],
        [224],
        [258],
        [224],
        [260],
        [227],
        [258],
        [288],
        [230],
        [242],
        [239],
        [258],
        [294],
        [336],
        [407],
        [354],
        [336],
        [407],
        [354],
        [306],
        [308],
        [262],
        [285],
        [262],
```

```
[267],
```

[281],

[281],

[292],

[209],

[209],

[297],

[356],

[320],

[380],

[322],

[380],

[380],

[437],

[193],

[200],

[181],

[181],

[193],

[200],

[209],

[209],

[209],

[230],

[228],

[237],

[232],

[193],

[200],

[209],

[221],

[230],

[237],

[202],

[209],

[213],

[232],

[292],

[232],

[292], [281],

[292],

[292],

[191],

[292],

[338],

[338],

[317], [338],

[317],

```
[209],
```

- [260],
- [230],
- [253],
- [320],
- [370],
- [274],
- [209],
- [200],
- [278],
- [253],
- [278],
- [283],
- [290],
- [196],
- [212],
- [264],
- [250],
- [264],
- [264],
- [225],
- [246],
- [189],
- [225],
- [218],
- [221],
- [235],
- [207],
- [251],
- [232],
- [258],
- [262],
- [232],
- [248],
- [248],
- [260],
- [253],
- [260],
- [255],
- [382],
- [340],
- [382],
- [340],
- [338],
- [322],
- [377],
- [283],
- [294],
- [271],
- [290],

```
[258],
```

[269],

[294],

[382],

[340],

[276],

[258], [179],

[189],

[192],

[177],

[163],

[209],

[259],

[290],

[272],

[366],

[334],

[380],

[344],

[380],

[344],

[362],

[380],

[344],

[380],

[362],

[414],

[432],

[411],

[419],

[435],

[229],

[200],

[228],

[184],

[244],

[271],

[269],

[292],

[270],

[324],

[290],

[299],

[329],

[184],

[173],

[184],

[172],

[182],

```
[191],
```

[182],

[191],

[182],

[159],

[317],

[294],

[317],

[294],

[317],

[294],

[317],

[294],

[290],

[207],

[232],

[246],

[230],

[230],

[230],

[294],

[251],

[251],

[237],

[222],

[276],

[269],

[225],

[230],

[301],

[294],

[320],

[317],

[258],

[237],

[294],

[251],

[308],

[251],

[237], [235],

[222],

[186],

[198],

[202],

[195],

[202],

[168],

[168],

[278],

```
[250],
```

[271],

[264],

[255],

[285],

[276],

[179],

[179],

[182],

[179],

[156],

[200],

[193],

[373],

[350],

[396],

[360],

[386],

[368],

[488],

[225],

[264],

[281],

[209],

[216],

[214],

[230],

[368],

[346],

[274],

[254],

[288],

[267],

[294],

[366],

[317],

[308],

[283],

[283],

[264],

[336],

[336],

[315],

[308],

[288],

[308],

[288],

[320],

[318],

[152],

```
[184],
```

- [264],
- [278],
- [294],
- [205],
- [177],
- [165],
- [179],
- [165],
- [184],
- [170],
- [166],
- [162],
- [196],
- [186],
- [205],
- [186],
- [216],
- [126],
- [244],
- [264],
- [244],
- [209],
- [271],
- [237],
- [229],
- [258],
- [251],
- [218],
- [228],
- [232],
- [239],
- [283],
- [297],
- [347],
- [366],
- [334],
- [344],
- [380],
- [344],
- [380],
- [380],
- [344],
- [414],
- [432],
- [411],
- [419],
- [435],
- [271],
- [269],

```
[292],
```

- [270],
- [324],
- [290],
- [285],
- [277],
- [329],
- [209],
- [276],
- [230],
- [290],
- [272],
- [317],
- [294],
- [338],
- [322],
- [354],
- [317],
- [294],
- [317],
- [294],
- [182],
- [186],
- [200],
- [209],
- [221],
- [251],
- [110],
- [161],
- [166],
- [246],
- [209],
- [159],
- [172],
- [244],
- [265],
- [276],
- [308],
- [177],
- [177],
- [196],
- [304],
- [255],
- [258],
- [267],
- [237],
- [264],
- [255],
- [221],
- [143],

- [145],
- [214],
- [232],
- [230],
- [244],
- [177],
- [184],
- [202],
- [196],
- [235],
- [172],
- [189],
- [265],
- [269],
- [283],
- [255],
- [267],
- [253],
- [283],
- [267],
- [294],
- [175],
- [271],
- [244],
- [294],
- [334],
- [345],
- [237],
- [244],
- [294],
- [306],
- [290],
- [306],
- [285],
- [280],
- [306],
- [306],
- [301],
- [315],
- [310],
- [315],
- [310],
- [218],
- [230],
- [248],
- [232],
- [251],
- [267], [225],
- [209],

```
[225],
```

- [216],
- [235],
- [216],
- [255],
- [340],
- [267],
- [278],
- [363],
- [225],
- [216],
- [216],
- [255],
- [294],
- [308],
- [251],
- [184],
- [193],
- [193],
- [223],
- [225],
- [193],
- [196],
- [216],
- [221],
- [193],
- [198],
- [200],
- [175], [177],
- [175],
- [212],
- [214],
- [276],
- [237],
- [262],
- [253],
- [271],
- [207],
- [209],
- [230],
- [361],
- [400],
- [274],
- [334],
- [225],
- [225],
- [354],
- [342],
- [285],

```
[278],
```

- [345],
- [331],
- [283],
- [283],
- [277],
- [354], [347],
- [129],
- [138],
- [221],
- [239],
- [253],
- [175],
- [320],
- [223],
- [239],
- [244],
- [253],
- [244],
- [290],
- [283],
- [297],
- [262],
- [380],
- [255],
- [189],
- [271],
- [260],
- [294],
- [235],
- [281],
- [207],
- [262],
- [145],
- [368],
- [346],
- [292],
- [292],
- [347],
- [334],
- [301],
- [189],
- [184],
- [198],
- [196],
- [205],
- [283],
- [290],
- [177],

```
[170],
```

- [159],
- [161],
- [170],
- [163],
- [166],
- [177],
- [168],
- [166],
- [223],
- [225],
- [175],
- [168],
- [235],
- [221],
- [228],
- [184],
- [216],
- [216],
- [242],
- [224],
- [239],
- [244],
- [242],
- [347],
- [352],
- [304],
- [308],
- [179],
- [212],
- [264],
- [301],
- [194],
- [235],
- [230],
- [239],
- [242],
- [235],
- [202],
- [267],
- [269],
- [262],
- [297],
- [310],
- [310],
- [419],
- [407],
- [324],
- [359],
- [260],

```
[256],
```

- [278],
- [327],
- [356],
- [278],
- [276],
- [327],
- [205],
- [207],
- [225],
- [246],
- [380],
- [361],
- [361],
- [179],
- [179],
- [179],
- [179],
- [200],
- [179],
- [175],
- [200],
- [179],
- [179],
- [179],
- [184],
- [191],
- [207],
- [196],
- [191],
- [184],
- [207],
- [196],
- [191],
- [184],
- [191],
- [184],
- [191],
- [184],
- [207],
- [196],
- [191],
- [207],
- [196],
- [191],
- [184],
- [189],
- [191],
- [288],
- [283],

```
[267],
```

- [198],
- [198],
- [138],
- [147],
- [198],
- [235],
- [200],
- [202],
- [207],
- [253],
- [264],
- [262],
- [175],
- [214],
- [380],
- [283],
- [292],
- [315],
- [301],
- [186],
- [198],
- [251],
- [244],
- [253],
- [202],
- [255],
- [161],
- [179], [359],
- [398],
- [152],
- [177],
- [327],
- [315],
- [232],
- [237],
- [246],
- [242],
- [253], [248],
- [253],
- [253],
- [258],
- [232],
- [246],
- [244],
- [248],
- [246],
- [251],

```
[322],
```

- [274],
- [274],
- [274],
- [274],
- [212],
- [228],
- [225],
- [313],
- [281],
- [320],
- [299],
- [251],
- [315],
- [212],
- [225],
- [239],
- [251],
- [255],
- [260],
- [264],
- [292],
- [260],
- [294],
- [340],
- [313],
- [354],
- [290],
- [285],
- [275],
- [274],
- [260],
- [262],
- [254],
- [368],
- [393],
- [393],
- [359],
- [193],
- [207],
- [184],
- [182],
- [147],
- [147],
- [389],
- [389],
- [221],
- [223],
- [179],
- [196],

```
[258],
```

[179],

[196],

[258],

[288],

[198],

[228],

[267],

[207],

[301],

[196],

[212],

[177],

[297],

[297],

[221],

[131],

[138],

[177],

[168], [163],

[170],

[156],

[159],

[196],

[189],

[297],

[320],

[237],

[258],

[264],

[191],

[189],

[110],

[108],

[126],

[216],

[218],

[384],

[260],

[285],

[251],

[235],

[301],

[274],

[271],

[322],

[310], [329],

[356],

```
[347],
```

- [373],
- [230],
- [253],
- [235],
- [260],
- [163],
- [196],
- [200],
- [209],
- [216],
- [225],
- [221],
- [200],
- [214],
- [216],
- [197],
- [197],
- [225],
- [283],
- [221],
- [218],
- [216],
- [194], [189],
- [189],
- [216],
- [207],
- [207],
- [212],
- [186],
- [124],
- [198],
- [198],
- [192],
- [184],
- [278],
- [246],
- [246],
- [281],
- [281],
- [223],
- [232],
- [264],
- [235],
- [264],
- [258],
- [271],
- [264],
- [271],

```
[260],
       [294]], dtype=int64)
from sklearn import linear model
\# y = mx + c == y is dependent variable, x is the data(indep.
variable) m is COEFFICIENT and c is INTERCEPT
regr = linear model.LinearRegression()
regr
LinearRegression()
train.shape
(845, 4)
test.shape
(222, 4)
train x = np.asanyarray(train[['CYLINDERS']]) #x represents
independent variables
train_y = np.asanyarray(train[['CO2EMISSIONS']]) #y represent
dependent variable
train x # All Values of Cylinders column this will be used for
training
array([[ 4],
       [ 4],
       [4],
       [ 6],
       [ 6],
       [ 6],
       [ 6],
       [4],
       [ 6],
       [12],
       [8],
       [8],
       [8],
       [8],
       [12],
       [ 4],
       [4],
       [ 4],
       [ 4],
       [ 6],
       [ 6],
       [ 6],
```

```
[ 6],
[ 8],
[ 6],
[ 6],
[ 8],
[ 6],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 8],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[ 10],
[
```

[4], [4], [4], [4], [6], [6],

[6], [6], [4], [4],

```
[ 4],
[ 6],
[ 6],
[ 4],
[ 4],
```

[4], [6], [6], [8], [8], [8], [8],

[8], [8], [6], [8], [8], [8],

[8],

[8],

[4], [6], [4], [6],

[8], [8],

[8], [6], [4], [4], [6],

6],

[6],

[6], [4], [4], [6],

[6], [6],

[6], [4], [4], [4], [4], [4], [4], [4], [6],

```
[ 4],
[ 6],
[ 6],
[ 4],
[ 6],
```

[4], [6], [6], [6], [8], [8], [8], [8], [8], [8], [8], [8], [6],

[6],

[6], [6], [6], [8], [8], [8], [4], [4], [4], [4],

[4],

[6], [6], [6], [8], [8],

[8], [8], [8], [8], [8], [8], [8], [8],

```
[ 8],
[ 8],
[ 8],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
 [8],
[ 6],
[ 4],
[ 4],
[ 4],
[ 6],
[ 4],
[ 6],
[ 8],
[ 6],
[ 6],
[ 6],
[ 6],
[ 4],
```

```
[ 8],
[ 8],
[ 8],
[ 8],
 [6],
[ 8],
[ 6],
[ 6],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 6],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 10],
[ 4],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 8],
[ 8],
```

```
[ 6],
[ 6],
[ 6],
[ 6],
```

[8],

[8], [6], [6], [6], [8], [8],

[6], [6], [6], [6], [8],

[8],

[4],

[4], [6], [6],

[6], [4], [4], [4], [4], [4], [4], [4],

[4],

[4], [4], [4], [4], [4],

[6], [8], [6], [6], [6], [6],

[6], [6], [4],

```
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 6],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
```

[6],

[6], [8], [8], [8], [6],

[6], [8], [8],

[8], [8], [4], [6], [6], [6],

[8],

[8], [8], [8], [8], [8],

[8], [8], [4], [4], [4], [6],

[6], [6], [4], [4],

```
[ 4],
[ 6],
```

- [4], [4], [4],

- [6],

- [6], [6], [6], [4], [4], [4], [8],

- [6],

- [6], [4], [4], [4], [4], [4],

- [4], [4], [4], [4], [4], [4], [4], [6], [6],

- 6], [6],

- [6], [6], [6], [6],
- [6], [8],

- [6], [8], [6], [6], [6], [8], [8], [6],

```
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 8],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
```

```
[ 4],
[ 4],
```

[4], [4], [6],

[4],

[6], [4], [6], [4], [4], [10], [10], [6], [4], [4], [8],

[8],

[6],

[6], [8], [8], [6],

[6], [6], [8], [8], [4], [4],

6],

[6],

[6], [8], [6], [6],

[6], [6],

[6], [8], [8], [8], [8], [6], [6],

```
[ 6],
[ 4],
[ 6],
[ 4],
[ 6],
 [4],
[ 8],
[ 8],
[ 6],
[ 8],
[ 8],
[ 4],
[ 4],
[ 4],
[ 4],
[ 4],
```

[6], [4],

[4], [4], [4], [4], [4], [4], [4], [4], [4], [4],

[4], [4], [4], [4], [4], [4],

[6], [6], [6], [6], [8], [8], [8], [8],

```
[ 4],
[ 8],
[ 8],
[ 4],
[ 6],
```

[6],

[6], [6], [6], [6], [8], [8], [8],

[8], [8], [8], [8], [8], [8],

[8],

[8], [6], [6], [8], [8], [8], [8],

[8], [8], [4], [4], [6], [8],

[8],

[8], [4], [4], [4], [4],

[4], [4], [4], [4], [4], [4], [4], [4],

```
[ 4],
[ 4],
```

[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[4],
[6],

6],

[6],

[4], [6], [8], [4],

[6],

[6],

[6], [4], [6], [6], [6], [4], [4], [4],

[8], [8],

[4], [4], [6],

[6],

[6], [6], [6], [6], [6], [6],

[6], [6], [6], [6], [6],

[6],

[6],

[6], [6], [6],

[6],

[6], [6], 6],

[6], [6], [6], [6], [6], [8], [8],

[6],

[8], [6], [6], [6],

[6], [6],

[6], [6], [8], [6], [8], [8],

[8], [6], [6],

```
[ 6],
[ 6],
[ 6],
[ 6],
[ 12],
```

- [12], [12], [12], [4], [4], [4], [3], [10], [10], [4], [4], [4],

- [4], [4], [4], [4], [4], [4], [6], [6], [4],

- [4], [4],
- [4],
- [4], [6], [6], [4], [4], [4],

- [4], [4], [4], [4], [4], [4],

- [4], [4], [6], [6], [4],

```
[ 6],
[ 6],
[ 6],
[ 4],
[ 4],
[ 4],
[ 4],
[ 6],
[ 6],
[ 4],
[ 6],
[ 6],
```

[8],

[8], [8], [8], [4], [6],

[4], [6], [4], [4], [4], [4], [5],

[5],

[4], [4], [4], [4], [4],

[6], [4], [5], [5], [4], [4], [4], [4], [4],

```
[ 4],
        [ 4],
        [ 4],
        [ 4],
        [ 4],
       [ 4],
       [ 4],
       [ 6],
        [ 4],
        [ 4],
        [ 6],
        [ 6],
       [5],
       [5],
       [ 6],
        [ 6],
        [ 6],
        [ 6],
        [ 6],
        [ 6],
        [ 6],
       [ 6],
       [ 6]], dtype=int64)
train_y # Column Values of column co2emissions will be used for the
training only as dependent varibale
array([[196],
        [221],
        [136],
        [255],
        [244],
        [232],
        [267],
        [225],
        [239],
        [359],
        [338],
        [354],
        [338],
        [354],
        [359],
        [230],
        [214],
        [230],
        [214],
        [251],
        [224],
        [258],
        [224],
```

[260],

```
[227],
```

- [258],
- [288],
- [230],
- [242],
- [239],
- [258],
- [294],
- [336],
- [407],
- [354],
- [336],
- [407],
- [354],
- [306],
- [308],
- [262],
- [285],
- [262],
- [267],
- [281],
- [281],
- [292],
- [209],
- [209],
- [297],
- [356],
- [320],
- [380],
- [322],
- [380],
- [380],
- [437],
- [193],
- [200],
- [181],
- [181],
- [193],
- [200], [209],
- [209],
- [209],
- [230],
- [228],
- [237],
- [232],
- [193],
- [200],
- [209],
- [221],

```
[230],
```

- [237],
- [202],
- [209],
- [213],
- [232],
- [292],
- [232],
- [292],
- [281],
- [292],
- [292],
- [191],
- [292],
- [338],
- [338],
- [317],
- [338],
- [317],
- [209],
- [260],
- [230],
- [253],
- [320],
- [370],
- [274],
- [209],
- [200],
- [278],
- [253],
- [278],
- [283],
- [290],
- [196],
- [212],
- [264],
- [250],
- [264],
- [264],
- [225],
- [246],
- [189],
- [225],
- [218],
- [221],
- [235],
- [207],
- [251],
- [232], [258],

```
[262],
```

- [232],
- [248],
- [248],
- [260],
- [253],
- [260],
- [255],
- [382],
- [340],
- [382],
- [340],
- [338],
- [322],
- [377],
- [283],
- [294],
- [271],
- [290],
- [258],
- [269],
- [294],
- [382],
- [340],
- [276],
- [258],
- [179],
- [189],
- [192],
- [177],
- [163],
- [209],
- [259],
- [290],
- [272],
- [366],
- [334],
- [380],
- [344],
- [380],
- [344],
- [362],
- [380],
- [344],
- [380],
- [362],
- [414],
- [432],
- [411],
- [419],

```
[435],
```

- [229],
- [200],
- [228],
- [184],
- [244],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [299],
- [329],
- [184],
- [173],
- [184],
- [172],
- [182],
- [191],
- [182],
- [191],
- [182],
- [159],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [290],
- [207],
- [232],
- [246],
- [230],
- [230],
- [230],
- [294],
- [251],
- [251],
- [237],
- [222],
- [276],
- [269],
- [225],
- [230],
- [301],
- [294],

```
[320],
```

- [317],
- [258],
- [237],
- [294],
- [251],
- [308],
- [251],
- [237],
- [235],
- [222],
- [186],
- [198],
- [202],
- [195],
- [202],
- [168],
- [168],
- [278],
- [250],
- [271],
- [264],
- [255],
- [285],
- [276],
- [179],
- [179],
- [182],
- [179],
- [156],
- [200],
- [193],
- [373],
- [350],
- [396],
- [360],
- [386],
- [368],
- [488],
- [225], [264],
- [281],
- [209],
- [216],
- [214],
- [230],
- [368],
- [346],
- [274],
- [254],

```
[288],
```

- [267],
- [294],
- [366],
- [317],
- [308],
- [283],
- [283],
- [264],
- [336],
- [336],
- [315],
- [308],
- [288],
- [308],
- [288],
- [320],
- [318],
- [152],
- [184],
- [264],
- [278],
- [294],
- [205],
- [177],
- [165],
- [179], [165],
- [184],
- [170],
- [166],
- [162],
- [196],
- [186],
- [205],
- [186],
- [216],
- [126],
- [244],
- [264],
- [244],
- [209],
- [271],
- [237],
- [229],
- [258],
- [251],
- [218],
- [228],
- [232],

```
[239],
```

- [283],
- [297],
- [347],
- [366],
- [334],
- [344],
- [380],
- [344],
- [380],
- [380],
- [344],
- [414],
- [432],
- [411],
- [419],
- [435],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [285],
- [277],
- [329],
- [209],
- [276],
- [230],
- [290],
- [272],
- [317],
- [294],
- [338],
- [322],
- [354],
- [317],
- [294],
- [317],
- [294], [182],
- [186],
- [200], [209],
- [221],
- [251],
- [110],
- [161],
- [166],
- [246],

```
[209],
```

- [159],
- [172],
- [244],
- [265],
- [276],
- [308],
- [177],
- [177],
- [196],
- [304],
- [255],
- [258],
- [267],
- [237],
- [264],
- [255],
- [221],
- [143],
- [145],
- [214],
- [232],
- [230],
- [244],
- [177],
- [184], [202],
- [196],
- [235],
- [172],
- [189],
- [265],
- [269],
- [283],
- [255],
- [267],
- [253],
- [283],
- [267],
- [294],
- [175],
- [271],
- [244],
- [294],
- [334],
- [345],
- [237],
- [244],
- [294],
- [306],

```
[290],
```

[306],

[285],

[280],

[306],

[306],

[301],

[315],

[310],

[315],

[310],

[218], [230],

[248],

[232],

[251],

[267],

[225],

[209],

[225],

[216],

[235],

[216],

[255],

[340],

[267],

[278],

[363],

[225],

[216],

[216],

[255],

[294],

[308],

[251],

[184],

[193],

[193],

[223], [225],

[193],

[196],

[216],

[221],

[193],

[198],

[200],

[175],

[177],

[175],

```
[212],
```

- [214],
- [276],
- [237],
- [262],
- [253],
- [271],
- [207],
- [209],
- [230],
- [361],
- [400],
- [274],
- [334],
- [225],
- [225],
- [354],
- [342],
- [285],
- [278],
- [345],
- [331],
- [283],
- [283],
- [277],
- [354],
- [347],
- [129],
- [138],
- [221],
- [239],
- [253],
- [175],
- [320],
- [223],
- [239],
- [244],
- [253],
- [244],
- [290],
- [283],
- [297],
- [262],
- [380],
- [255],
- [189],
- [271],
- [260],
- [294],
- [235],

```
[281],
```

[207],

[262],

[145],

[368],

[346],

[292],

[292],

[347],

[334],

[301],

[189],

[184],

[198],

[196],

[205],

[283],

[290],

[177],

[170],

[159],

[161],

[170],

[163],

[166],

[177],

[168],

[166],

[223],

[225],

[175],

[168],

[235],

[221],

[228],

[184],

[216],

[216],

[242],

[224], [239],

[244],

[242],

[347],

[352],

[304],

[308],

[179],

[212],

[264],

```
[301],
```

- [194],
- [235],
- [230],
- [239],
- [242],
- [235],
- [202],
- [267],
- [269],
- [262],
- [297],
- [310],
- [310],
- [419],
- [407],
- [324],
- [359],
- [260],
- [256],
- [278],
- [327],
- [356],
- [278],
- [276],
- [327],
- [205],
- [207],
- [225],
- [246],
- [380],
- [361],
- [361],
- [179],
- [179],
- [179],
- [179],
- [200],
- [179],
- [175],
- [200],
- [179],
- [179],
- [179],
- [184],
- [191],
- [207],
- [196],
- [191],
- [184],

```
[207],
```

- [196],
- [191],
- [184],
- [191],
- [184],
- [191],
- [184],
- [207],
- [196],
- [191],
- [207],
- [196],
- [191],
- [184],
- [189],
- [191],
- [288],
- [283],
- [267],
- [198],
- [198],
- [138],
- [147],
- [198],
- [235],
- [200],
- [202],
- [207],
- [253],
- [264],
- [262],
- [175],
- [214],
- [380],
- [283],
- [292],
- [315], [301],
- [186],
- [198],
- [251],
- [244],
- [253],
- [202],
- [255],
- [161],
- [179],
- [359],
- [398],

```
[152],
```

- [177],
- [327],
- [315],
- [232],
- [237],
- [246],
- [242],
- [253],
- [248],
- [253],
- [253],
- [258],
- [232],
- [246],
- [244],
- [248],
- [246],
- [251],
- [322],
- [274],
- [274],
- [274],
- [274],
- [212],
- [228],
- [225],
- [313],
- [281], [320],
- [299],
- [251],
- [315],
- [212],
- [225],
- [239],
- [251],
- [255],
- [260],
- [264],
- [292],
- [260],
- [294],
- [340],
- [313],
- [354],
- [290],
- [285],
- [275],
- [274],

```
[260],
```

[262],

[254],

[368],

[393],

[393],

[359],

[193],

[207],

[184],

[182],

[147],

[147],

[389],

[389],

[221],

[223],

[179],

[196],

[258],

[179],

[196],

[258],

[288],

[198],

[228],

[267],

[207],

[301],

[196],

[212],

[177],

[297],

[297],

[221],

[131],

[138],

[177],

[168],

[163],

[170],

[156],

[159],

[196],

[189],

[297],

[320],

[237],

[258],

[264],

```
[191],
```

[189],

[110],

[108],

[126],

[216],

[218], [384],

[260],

[285],

[251],

[235],

[301],

[274],

[271],

[322],

[310],

[329],

[356],

[347],

[373],

[230],

[253],

[235],

[260],

[163],

[196],

[200],

[209],

[216],

[225],

[221],

[200],

[214],

[216],

[197],

[197],

[225],

[283],

[221],

[218],

[216],

[194],

[189],

[189],

[216],

[207],

[207],

[212],

[186],

```
[124],
       [198],
       [198],
       [192],
       [184],
       [278],
       [246],
       [246],
       [281],
       [281],
       [223],
       [232],
       [264],
       [235],
       [264],
       [258],
       [271],
       [264],
       [271],
       [260],
       [294]], dtype=int64)
regr.fit(independentvariable,dependentvariable)
regr.fit(train x, train y)
LinearRegression()
# The coefficients
print ('Coefficients: ', regr.coef_)
print ('Intercept: ',regr.intercept )
Coefficients: [[30.70676327]]
Intercept: [78.19444198]
regr.coef
array([[30.70676327]])
regr.intercept_
array([78.19444198])
regr.coef_[0][0]
30.706763266880237
regr.intercept_[0]
78.19444197620655
```

Plot Outputs

```
plt.scatter(train.CYLINDERS, train.C02EMISSIONS, color='blue')
plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], 'r')
#y = mx+c
plt.xlabel("CYLINDERS")
plt.ylabel("C02EMISSION")
```

Text(0, 0.5, 'C02EMISSION')

Evaluation

```
[201.02149504],
[446.67560118],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[446.67560118],
[201.02149504],
[262.43502158],
[262.43502158],
[385.26207465],
[385.26207465],
[323.84854811],
[262.43502158],
[323.84854811],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[262.43502158],
[323.84854811],
[262.43502158],
[323.84854811],
[446.67560118],
[262.43502158],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[262.43502158],
[323.84854811],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[262.43502158],
[262.43502158],
[323.84854811],
[201.02149504],
[201.02149504],
[262.43502158],
[201.02149504],
[262.43502158],
```

```
[323.84854811],
[323.84854811],
[201.02149504],
[262.43502158],
[201.02149504],
[262.43502158],
[323.84854811],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[201.02149504],
[262.43502158],
[323.84854811],
[262.43502158],
[323.84854811],
[262.43502158],
[262.43502158],
[262.43502158],
[262.43502158],
[262.43502158],
[323.84854811],
[201.02149504],
[201.02149504],
[323.84854811],
[262.43502158],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[323.84854811],
[323.84854811],
[262.43502158],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[323.84854811],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[201.02149504],
[201.02149504],
```

```
[201.02149504],
[201.02149504],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[323.84854811],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[201.02149504],
[201.02149504],
[262.43502158],
[323.84854811],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[262.43502158],
[262.43502158],
[262.43502158],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[446.67560118],
[323.84854811],
[262.43502158],
```

```
[323.84854811],
[323.84854811],
[262.43502158],
[323.84854811],
[262.43502158],
[262.43502158],
[323.84854811],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[323.84854811],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[201.02149504],
[262.43502158],
[323.84854811],
[323.84854811],
[323.84854811],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[201.02149504],
[262.43502158],
[201.02149504],
[262.43502158],
[201.02149504],
[201.02149504],
[201.02149504],
[262.43502158],
[262.43502158],
[262.43502158],
[262.43502158],
[323.84854811],
[323.84854811],
[262.43502158],
[262.43502158],
[446.67560118],
[446.67560118],
[446.67560118],
[201.02149504],
[201.02149504],
[201.02149504],
[201.02149504],
```

```
[201.02149504],
       [201.02149504],
       [201.02149504],
       [201.02149504].
       [201.02149504],
       [201.02149504],
       [262.43502158].
       [201.02149504],
       [262.43502158],
       [201.02149504],
       [262.43502158],
       [201.02149504],
       [231.72825831],
       [201.02149504],
       [201.02149504],
       [201.02149504],
       [231.72825831],
       [231.72825831],
       [262.43502158],
       [201.02149504]])
test y.shape
(222, 1)
predicted y.shape
(222, 1)
from sklearn.metrics import r2 score
print(f"Mean absolute error: {np.mean(np.absolute(predicted y -
test y))} ")# pred - actual
Mean absolute error: 26.218296344468087
print("Residual sum of squares (MSE): %.2f" % np.mean((predicted y -
test y) **2))
Residual sum of squares (MSE): 1109.97
from sklearn.metrics import r2_score
print(f"R2-score:{r2_score(test_y , predicted_y)*100} %") # Most
accurate thing or evaluation metrics
R2-score:72.38654274529334 %
```

Apply Lasso Regression to cover the overfitting and underfitting problem

```
from sklearn.linear_model import Lasso
L = Lasso(alpha = 1)
```

```
L.fit(train_x,train_y)
Lasso(alpha=1)
y_pred1 = L.predict(test_x)
from sklearn.metrics import r2_score
print("R2-score",r2_score(test_y,y_pred1))
print(f"Mean absolute error: {np.mean(np.absolute(y_pred1 - test_y))}
")# pred - actual

R2-score 0.7256514539177052
Mean absolute error: 68.97569534677652
```

Que.5 Train another model with independent variable as FuelConsumption_comb and dependent variable as Co2Emission

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("C:/Users/Lenovo/Documents/Data
Set/FuelConsumption.csv")

df

MODELYEAR		MAKE	MODEL	VEHICLECLASS	ENGINESIZE
CYLINDERS	\				
0	2014	ACURA	ILX	COMPACT	2.0
4	2014	4 6115 4	T1 1/	COMPACT	2.4
1	2014	ACURA	ILX	COMPACT	2.4
4 2	2014	ACURA	ILX HYBRID	COMPACT	1.5
4	2014	ACUNA	ILV HIDVID	CUMPACI	1.5
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5
6					
4	2014	ACURA	RDX AWD	SUV - SMALL	3.5
6					
					• • •
1062	2014	V0LV0	XC60 AWD	SUV - SMALL	3.0
6	2014	VULVU	ACOU AWD	SUV - SMALL	3.0
1063	2014	V0LV0	XC60 AWD	SUV - SMALL	3.2
6					
1064	2014	V0LV0	XC70 AWD	SUV - SMALL	3.0
6					
1065	2014	V0LV0	XC70 AWD	SUV - SMALL	3.2
6	2014	VOL VO	VCOO ALID	CIIV CTANDADD	2 2
1066	2014	V0LV0	XC90 AWD	SUV - STANDARD	3.2

,	TRANSMISS	SION FU	ELTYPE	FUELCONS	UMPTION_C	ITY I	FUELCON	SUMPTION_HWY
0		AS5	Z			9.9		6.7
1		M6	Z		1	1.2		7.7
2		AV7	Z			6.0		5.8
3		AS6	Z		1	.2.7		9.1
4		AS6	Z		1	.2.1		8.7
1062		AS6	Х		1	.3.4		9.8
1063		AS6	Х		1	.3.2		9.5
1064		AS6	Χ		1	.3.4		9.8
1065		AS6	Х		1	.2.9		9.3
1066		AS6	Х		1	4.9		10.2
0 1 2 3 4 1062 1063 1064 1065			8.5 9.6 5.9 11.1 10.6 11.8 11.5 11.8 11.3	FUELCONS	UMPTION_C		PG C02 33 29 48 25 27 24 25 24 25 24	EMISSIONS 196 221 136 255 244 271 264 271 260 294
[1067 rows x 13 columns]								
	ead() ODELYEAR 2014 2014 2014 2014	MAKE ACURA ACURA ACURA ACURA	ILX HYE	ILX ILX BRID	CLECLASS COMPACT COMPACT COMPACT - SMALL	ENGI	NESIZE 2.0 2.4 1.5 3.5	CYLINDERS \ 4 4 4 6

4 20	14 ACURA	A RDX A	AWD SUV - S	MALL	3.5	6	
TRANSMIS 0 1 2 3 4	SION FUEL AS5 M6 AV7 AS6 AS6	TYPE FUEL Z Z Z Z Z Z	CONSUMPTION	I_CITY FUE 9.9 11.2 6.0 12.7 12.1	ELCONSUMPTION	HWY \ 6.7 7.7 5.8 9.1 8.7	
FUELCON 0 1 2 3 4	SUMPTION_	COMB FUEL 8.5 9.6 5.9 11.1 10.6	CONSUMPTION	I_COMB_MPG 33 29 48 25 27	CO2EMISSION 19 22 13 25 24	6 1 6 5	
<pre>df.tail()</pre>							
	LYEAR M	MO MO	DEL VEHI	CLECLASS	ENGINESIZE		
1062 6	2014 VC	LVO XC60	AWD SUV	' - SMALL	3.0		
1063	2014 VC	LVO XC60	AWD SUV	' - SMALL	3.2		
6 1064	2014 V	LVO XC70	AWD SUV	' - SMALL	3.0		
6 1065	2014 V	LVO XC70	AWD SUV	' - SMALL	3.2		
6 1066 6	2014 VC	LVO XC90	AWD SUV -	STANDARD	3.2		
TRANSMISSION FUELTYPE FUELCONSUMPTION_CITY FUELCONSUMPTION_HWY							
\ 1062	AS6	Х		13.4		9.8	
1063	AS6	Х		13.2		9.5	
1064	AS6	Х		13.4		9.8	
1065	AS6	Х		12.9		9.3	
1066	AS6	X		14.9		10.2	
FUEL 1062 1063 1064 1065 1066	CONSUMPTI	CON_COMB F 11.8 11.5 11.8 11.3 12.8	FUELCONSUMPT	TION_COMB_N	MPG CO2EMISS 24 25 24 25 22	IONS 271 264 271 260 294	

df.describe()

MODELYEAR

MAKE

MODEL

0

1

2

ui.describe()							
count mean std min 25% 50% 75% max	1067.0 2014.0 0.0 2014.0 2014.0 2014.0	1.415895 1.000000 2.000000 3.400000 4.300000	1067.000000 5.794752 1.797447 3.000000 4.000000 6.000000 8.000000	FUELCONSUMPTION_CITY 1067.000000 13.296532 4.101253 4.600000 10.250000 12.600000 15.550000 30.200000	\		
FUELCO count 1067.0 mean 26.441 std 7.4687 min 11.000 25% 21.000 50% 26.000 75% 31.000 max	NSUMPTION_0 1000000 .425 .000 .000		3.46 4.70 9.00 10.90 13.3	_			
C02EMISSIONS count 1067.000000 mean 256.228679 std 63.372304 min 108.000000 25% 207.000000 50% 251.000000 75% 294.000000 max 488.000000 df.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 1067 entries, 0 to 1066 Data columns (total 13 columns):</class>							
# C	Column		Non-Null Cou	nτ υτype 			

1067 non-null int64

object object

1067 non-null 1067 non-null

```
3
     VEHICLECLASS
                                 1067 non-null
                                                  obiect
 4
     ENGINESIZE
                                 1067 non-null
                                                  float64
 5
     CYLINDERS
                                 1067 non-null
                                                  int64
 6
     TRANSMISSION
                                 1067 non-null
                                                  object
 7
     FUELTYPE
                                 1067 non-null
                                                  object
 8
     FUELCONSUMPTION CITY
                                 1067 non-null
                                                  float64
 9
     FUELCONSUMPTION HWY
                                 1067 non-null
                                                  float64
 10 FUELCONSUMPTION COMB
                                 1067 non-null
                                                  float64
 11
     FUELCONSUMPTION COMB MPG
                                 1067 non-null
                                                  int64
 12
     CO2EMISSIONS
                                 1067 non-null
                                                  int64
dtypes: float64(4), int64(4), object(5)
memory usage: 108.5+ KB
df.isnull().sum()
                              0
MODELYEAR
                              0
MAKE
                              0
MODEL
                              0
VEHICLECLASS
                              0
ENGINESIZE
                              0
CYLINDERS
TRANSMISSION
                              0
                              0
FUELTYPE
                              0
FUELCONSUMPTION CITY
FUELCONSUMPTION HWY
                             0
                             0
FUELCONSUMPTION COMB
FUELCONSUMPTION COMB MPG
                              0
CO2EMISSIONS
                              0
dtype: int64
df[['MODELYEAR','ENGINESIZE','CYLINDERS']]
      MODELYEAR ENGINESIZE CYLINDERS
0
           2014
                         2.0
                                       4
1
           2014
                         2.4
                                       4
2
                         1.5
                                       4
           2014
3
                         3.5
                                       6
           2014
4
                         3.5
                                       6
           2014
             . . .
                          . . .
. . .
1062
           2014
                         3.0
                                       6
1063
           2014
                         3.2
                                       6
1064
           2014
                         3.0
                                       6
                                       6
1065
           2014
                         3.2
                         3.2
1066
           2014
                                       6
[1067 rows x 3 columns]
df[["FUELCONSUMPTION_COMB","C02EMISSIONS"]]
      FUELCONSUMPTION COMB CO2EMISSIONS
```

8.5

196

0

```
1
2
                           9.6
                                            221
                           5.9
                                            136
3
                                            255
                          11.1
4
                          10.6
                                           244
                                            . . .
                          11.8
                                            271
1062
1063
                          11.5
                                           264
1064
                          11.8
                                           271
1065
                          11.3
                                           260
1066
                          12.8
                                           294
```

[1067 rows x 2 columns]

Simple Regression Model

Train Data Distribution

```
plt.scatter(train.FUELCONSUMPTION_COMB, train.CO2EMISSIONS,
color='blue')
plt.xlabel("FUELCONSUMPTION_COMB")
plt.ylabel("CO2EMISSIONS")
plt.show()
```


Modelling

train[['FUELCONSUMPTION_COMB']]

```
FUELCONSUMPTION_COMB
0
                         8.5
1
                         9.6
2
                         5.9
3
                        11.1
4
                        10.6
1062
                        11.8
1063
                        11.5
1064
                        11.8
                        11.3
1065
1066
                        12.8
[845 rows x 1 columns]
train[['CO2EMISSIONS']]
      CO2EMISSIONS
0
                196
1
                221
2
                136
3
                255
4
                244
                . . .
. . .
1062
                271
1063
                264
1064
                271
1065
                260
1066
                294
[845 rows x 1 columns]
np.asanyarray(train[['FUELCONSUMPTION_COMB']])
array([[ 8.5],
       [ 9.6],
        [5.9],
        [11.1],
        [10.6],
        [10.1],
        [11.6],
        [ 9.8],
        [10.4],
        [15.6],
        [14.7],
        [15.4],
        [14.7],
        [15.4],
        [15.6],
       [10.],
        [ 9.3],
```

```
[10.],
[ 9.3],
[10.9],
[ 8.3],
[11.2],
[ 8.3],
```

[11.3], [8.4],

[11.2],

[12.5], [8.5],

[10.5],

[10.4],

[11.2], [10.9],

[14.6],

[17.7],

[15.4],

[14.6],

[17.7], [15.4],

[13.3],

[13.4],

[11.4],

[12.4],

[11.4],

[11.6],

[12.2],

[12.2],

[12.7],

[9.1], [9.1],

[12.9],

[15.5],

[13.9],

[16.5],

[14.],

[16.5],

[16.5],

[19.],

[8.4], [8.7],

[6.7],

[6.7],

[8.4],

[8.7],

[9.1],

[9.1],

[9.1], [10.],

```
[ 9.9],
[10.3],
```

[10.1],

[8.4],

[8.7],

[9.1],

[9.6],

[10.],

[10.3],

[8.8],

[9.1],

[7.9],

[10.1],

[12.7],

[10.1],

[12.7],

[12.2],

[12.7],

[12.7],

[8.3],

[12.7],

[14.7],

[14.7],

[13.8],

[14.7],

[13.8],

[9.1],

[11.3],

[10.], [11.],

[13.9],

[16.1],

[11.9],

[9.1],

[8.7],

[12.1],

[11.],

[12.1],

[12.3],

[12.6],

[8.5],

[9.2],

[11.5],

[15.6],

[11.5],

[16.5],

[9.8],

[10.7],

[8.2], [9.8],

```
[ 9.5],
[ 9.6],
```

[10.2],

[9.],

[10.9],

[10.1],

[11.2], [11.4],

[10.1],

[10.8],

[10.8],

[11.3],

[11.],

[11.3],

[11.1],

[16.6],

[14.8],

[16.6],

[14.8],

[14.7],

[20.1],

[16.4],

[12.3],

[12.8],

[11.8],

[12.6],

[11.2],

[11.7],

[12.8],

[16.6],

[14.8],

[12.],

[11.2],

[7.8],

[8.2],

[7.1],

[7.7],

[7.1],

[9.1],

[16.2],

[12.6],

[17.],

[15.9],

[20.9],

[16.5],

[21.5],

[16.5],

[21.5],

[22.6],

[16.5],

```
[21.5],
```

- [16.5],
- [22.6],
- [18.],
- [18.8],
- [25.7],
- [18.2],
- [18.9],
- [14.3],
- [8.7],
- [9.9],
- [8.],
- [10.6],
- [11.8],
- [16.8],
- [12.7],
- [16.9],
- [14.1],
- [12.6],
- [13.],
- [14.3],
- [8.],
- [7.5],
- [8.],
- [7.5],
- [7.9],
- [8.3],
- [7.9],
- [8.3],
- [7.9],
- [6.9],
- [13.8],
- [18.4],
- [13.8],
- [18.4], [13.8],
- [18.4],
- [13.8],
- [18.4],
- [12.6],
- [9.],
- [10.1],
- [10.7],
- [14.4],
- [10.],
- [14.4],
- [12.8],
- [10.9],
- [10.9],
- [14.8],

```
[13.9],
```

- [12.],
- [16.8],
- [9.8],
- [10.],
- [13.1],
- [12.8],
- [13.9],
- [13.8],
- [11.2],
- [10.3],
- [12.8],
- [10.9],
- [13.4],
- [10.9],
- [14.8],
- [10.2],
- [13.9],
- [8.1],
- [8.6],
- [8.8],
- [12.2],
- [8.8],
- [7.3],
- [7.3],
- [12.1],
- [15.6],
- [11.8],
- [16.5],
- [11.1],
- [12.4],
- [12.],
- [7.8], [7.8],
- [7.9],
- [7.8],
- [6.8],
- [8.7],
- [8.4],
- [16.2],
- [21.9],
- [17.2],
- [22.5],
- [16.8],
- [23.], [21.2],
- [9.8],
- [11.5],
- [12.2],
- [9.1],

```
[ 9.4],
```

[9.3],

[10.],

[16.],

[21.6],

[11.9],

[15.9],

[12.5],

[16.7],

[12.8],

[15.9],

[13.8],

[13.4],

[12.3],

[12.3],

[16.5],

[14.6],

[14.6],

[19.7],

[13.4],

[18.],

[13.4],

[18.],

[20.],

[19.9],

[6.6],

[8.],

[11.5],

[12.1],

[12.8],

[8.9],

[7.7],

[10.3],

[7.8], [10.3],

[8.],

[10.6], [7.2],

[10.1],

[8.5],

[8.1],

[8.9],

[8.1],

[9.4],

[5.5],

[10.6],

[11.5],

[10.6],

[9.1],

[11.8],

```
[10.3],
```

- [14.3],
- [11.2],
- [15.7],
- [9.5],
- [9.9],
- [10.1],
- [10.4],
- [12.3],
- [12.9],
- [15.1],
- [15.9],
- [20.9],
- [21.5],
- [16.5],
- [21.5],
- [16.5],
- [16.5],
- [21.5],
- [18.],
- [18.8],
- [25.7],
- [18.2],
- [18.9],
- [11.8],
- [16.8],
- [12.7],
- [16.9],
- [14.1],
- [12.6],
- [17.8],
- [17.3],
- [14.3],
- [9.1], [12.],
- [10.],
- [12.6],
- [17.],
- [13.8],
- [18.4],
- [14.7],
- [20.1],
- [22.1],
- [13.8],
- [18.4],
- [13.8],
- [18.4],
- [7.9],
- [8.1],
- [8.7],

```
[ 9.1],
[ 9.6],
```

[10.9],

[4.8],

[7.], [7.2],

[10.7],

[9.1],

[6.9],

[7.5],

[10.6],

[11.5],

[12.],

[13.4],

[7.7],

[7.7],

[8.5],

[13.2],

[11.1],

[11.2],

[11.6],

[10.3],

[11.5],

[11.1],

[9.6],

[6.2],

[6.3],

[9.3],

[10.1],

[10.],

[10.6],

[7.7],

[8.],

[8.8],

[8.5],

[10.2],

[7.5],

[8.2],

[11.5],

[11.7],

[12.3],

[11.1],

[11.6],

[11.],

[12.3],

[11.6], [12.8],

[7.6],

[11.8],

[10.6],

```
[12.8],
```

- [14.5],
- [15.],
- [10.3],
- [10.6],
- [12.8],
- [13.3],
- [18.1],
- [13.3],
- [12.4],
- [17.5],
- [13.3],
- [13.3],
- [13.1],
- [13.7],
- [13.5],
- [13.7],
- [13.5],
- [9.5],
- [10.],
- [10.8],
- [10.1],
- [10.9],
- [11.6],
- [9.8],
- [9.1],
- [9.8],
- [9.4],
- [10.2],
- [9.4],
- [11.1],
- [14.8],
- [9.9],
- [12.1],
- [15.8],
- [9.8],
- [9.4],
- [9.4],
- [11.1],
- [12.8],
- [13.4],
- [10.9],
- [8.],
- [8.4],
- [8.4],
- 9.7],
- [9.8],
- [8.4],
- [8.5],
- [9.4],

```
[ 9.6],
[ 8.4],
[ 8.6],
[ 8.7],
[ 7.6],
[ 7.7],
[ 7.6],
```

[9.2], [9.3],

[12.], [10.3],

[11.4],

[11.], [11.8],

[9.],

[9.1],

[10.], [15.7],

[15.7],

[11.9],

[14.5],

[9.8],

[9.8],

[15.4], [21.4],

[12.4],

[12.4], [17.4],

[15.],

[20.7],

[12.3],

[12.3],

[17.3],

[15.4],

[15.1],

[5.6],

[6.],

[9.6], [10.4],

[11.],

[7.6],

[13.9],

[9.7],

[10.4],

[10.6],

[11.],

[10.6],

[12.6],

[12.3],

[12.9],

[11.4],

```
[16.5],
[11.1],
```

- [8.2],
- [11.8],
- [11.3],
- [12.8],
- [10.2],
- [12.2],
- [9.],
- [11.4],
- [6.3],
- [16.],
- [21.6],
- [12.7],
- [12.7],
- [15.1],
- [14.5],
- [13.1],
- [8.2],
- [8.],
- [8.6],
- [8.5],
- [8.9],
- [12.3],
- [12.6],
- [7.7],
- [7.4],
- [6.9],
- [7.], [7.4],
- [7.1],
- [7.2],
- [7.7],
- [7.3],
- [7.2],
- [9.7],
- [9.8], [7.6],
- [7.3],
- [10.2],
- [9.6],
- [9.9],
- [8.],
- [9.4],
- [9.4],
- [10.5],
- [14.],
- [10.4],
- [10.6],
- [10.5],

```
[15.1],
```

- [15.3],
- [13.2],
- [13.4],
- [7.8],
- [9.2],
- [11.5],
- [13.1],
- [7.2],
- [10.2],
- [10.],
- [10.4],
- [10.5],
- [10.2],
- [8.8],
- [11.6],
- [11.7],
- [11.4],
- [12.9],
- [13.5],
- [13.5],
- [18.2],
- [17.7],
- [12.],
- [15.6],
- [11.3],
- [16.],
- [10.3],
- [14.2],
- [15.5],
- [12.1],
- [12.],
- [14.2],
- [8.9],
- [9.],
- [9.8],
- [10.7],
- [16.5],
- [15.7],
- [15.7],
- [7.8],
- [7.8],
- [7.8],
- [7.8],
- [8.7],
- [7.8],
- [7.6],
- [8.7],
- [7.8],
- [7.8],

```
[ 7.8],
[8.],
[ 8.3],
[ 9. ],
[ 8.5],
[ 8.3],
[8.],
[
  9.],
[ 8.5],
[ 8.3],
[8.],
[8.3],
[8.],
[ 8.3],
[8.],
[ 9. ],
[ 8.5],
[8.3],
[ 9. ],
[8.5],
[8.3],
[ 8. ],
[ 8.2],
[ 8.3],
[12.5],
[12.3],
[11.6],
[ 8.6],
[ 8.6],
[6.],
[ 6.4],
[8.6],
[10.2],
[ 8.7],
[8.8],
[ 9. ],
[11. ],
[11.5],
[11.4],
[ 7.6],
[ 9.3],
[16.5],
[12.3],
[12.7],
[13.7],
[13.1],
[ 8.1],
[ 8.6],
[10.9],
[10.6],
```

```
[11. ],
[8.8],
[11.1],
[ 7. ],
[ 7.8],
[15.6],
[17.3],
[ 6.6],
[ 7.7],
[14.2],
[13.7],
[10.1],
[10.3],
[10.7],
[10.5],
[11.],
[10.8],
[11.],
[11.],
[11.2],
[10.1],
[10.7],
[10.6],
[10.8],
[10.7],
[10.9],
[14.],
[11.9],
[11.9],
[11.9],
[11.9],
[ 9.2],
[ 9.9],
[ 9.8],
[13.6],
[10.4],
[13.9],
[13.],
[10.9],
[13.7],
[ 9.2],
[ 9.8],
[10.4],
[10.9],
[11.1],
[11.3],
[11.5],
[12.7],
[11.3],
```

[12.8],

```
[14.8],
```

- [13.6],
- [15.4],
- [12.6],
- [17.8],
- [10.2],
- [11.9],
- [11.3],
- [11.4],
- [15.9],
- [16.],
- [17.1],
- [17.1],
- [15.6],
- [8.4],
- [9.],
- [8.],
- [7.9],
- [6.4],
- [6.4],
- [16.9],
- [16.9],
- [9.6],
- [9.7],
- [7.8],
- [8.5], [11.2],
- [7.8],
- [8.5],
- [11.2],
- [12.5], [8.6],
- [9.9], [11.6],
- [9.],
- [13.1],
- [8.5],
- [9.2],
- [7.7],
- [12.9],
- [12.9],
- [9.6], [5.7],
- [6.],
- [7.7],
- [7.3],
- [7.1],
- [7.4],
- [6.8],
- [6.9],

```
[ 8.5],
[ 8.2],
```

[12.9],

[13.9],

[10.3],

[11.2],

[11.5],

[8.3],

[8.2],

[4.8],

[4.7],

[5.5],

[9.4],

[9.5],

[16.7],

[11.3],

[12.4],

[10.9],

[10.2],

[13.1],

[11.9],

[11.8],

[14.],

[13.5],

[14.3],

[15.5],

[15.1],

[16.2],

[10.], [11.],

[10.2],

[11.3],

[7.1],

[8.5],

[8.7],

[9.1],

[9.4],

[9.8],

[9.6],

[8.7],

[9.3],

[9.4],

[7.3],

[7.3],

[9.8],

[12.3],

[9.6],

[9.5],

[9.4],

[7.2],

```
[8.2],
        [ 9.4],
        [ 9. ],
        [ 9. ],
        [ 9.2],
        [ 6.9],
        [ 5.4],
        [ 8.6],
        [ 8.6],
        [7.1],
        [ 6.8],
        [12.1],
        [10.7],
        [10.7],
        [12.2],
        [10.4],
        [ 9.7],
        [10.1],
        [11.5],
        [10.2],
        [11.5],
        [11.2],
        [11.8],
        [11.5],
        [11.8],
        [11.3],
        [12.8]])
np.asanyarray(train[['CO2EMISSIONS']])
array([[196],
        [221],
        [136],
        [255],
        [244],
        [232],
        [267],
        [225],
        [239],
        [359],
        [338],
        [354],
        [338],
        [354],
        [359],
        [230],
        [214],
        [230],
        [214],
        [251],
```

[8.2],

```
[224],
```

- [258],
- [224],
- [260],
- [227],
- [258],
- [288],
- [230],
- [242],
- [239],
- [258],
- [294],
- [336],
- [407],
- [354],
- [336],
- [407],
- [354],
- [306],
- [308],
- [262],
- [285],
- [262],
- [267],
- [281],
- [281], [292],
- [209],
- [209],
- [297],
- [356],
- [320],
- [380],
- [322],
- [380],
- [380],
- [437],
- [193],
- [200],
- [181],
- [181],
- [193],
- [200],
- [209],
- [209],
- [209],
- [230],
- [228],
- [237],
- [232],

```
[193],
```

- [200],
- [209],
- [221],
- [230],
- [237],
- [202],
- [209],
- [213],
- [232],
- [292],
- [232],
- [292],
- [281],
- [292],
- [292],
- [191],
- [292],
- [338],
- [338],
- [317],
- [338],
- [317],
- [209],
- [260],
- [230],
- [253],
- [320],
- [370],
- [274],
- [209],
- [200],
- [278],
- [253],
- [278],
- [283],
- [290],
- [196],
- [212],
- [264],
- [250],
- [264],
- [264],
- [225],
- [246],
- [189],
- [225],
- [218],
- [221],
- [235],

```
[207],
```

- [251],
- [232],
- [258],
- [262],
- [232],
- [248],
- [248],
- [260],
- [253],
- [260],
- [255],
- [382],
- [340],
- [382],
- [340],
- [338],
- [322],
- [377],
- [283],
- [294],
- [271],
- [290],
- [258],
- [269],
- [294],
- [382],
- [340],
- [276],
- [258],
- [179],
- [189],
- [192],
- [177],
- [163],
- [209],
- [259],
- [290],
- [272],
- [366],
- [334],
- [380],
- [344],
- [380],
- [344],
- [362],
- [380],
- [344],
- [380],
- [362],

```
[414],
```

- [432],
- [411],
- [419],
- [435],
- [229],
- [200],
- [228],
- [184],
- [244],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [299],
- [329],
- [184],
- [173],
- [184],
- [172],
- [182],
- [191],
- [182],
- [191],
- [182],
- [159],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [290],
- [207],
- [232],
- [246],
- [230],
- [230],
- [230],
- [294],
- [251],
- [251],
- [237],
- [222],
- [276],
- [269],

```
[225],
```

- [230],
- [301],
- [294],
- [320],
- [317],
- [258],
- [237],
- [294],
- [251],
- [308],
- [251],
- [237],
- [235],
- [222],
- [186],
- [198],
- [202],
- [195],
- [202],
- [168],
- [168],
- [278],
- [250],
- [271],
- [264],
- [255],
- [285],
- [276],
- [179],
- [179],
- [182],
- [179],
- [156],
- [200],
- [193],
- [373],
- [350],
- [396],
- [360],
- [386],
- [368],
- [488],
- [225],
- [264],
- [281],
- [209],
- [216],
- [214],
- [230],

```
[368],
```

- [346],
- [274],
- [254],
- [288],
- [267],
- [294],
- [366],
- [317],
- [308],
- [283],
- [283],
- [264],
- [336],
- [336],
- [315],
- [308],
- [288],
- [308],
- [288],
- [320],
- [318],
- [152],
- [184],
- [264],
- [278], [294],
- [205],
- [177],
- [165],
- [179],
- [165],
- [184],
- [170],
- [166],
- [162],
- [196],
- [186],
- [205],
- [186], [216],
- [126],
- [244],
- [264],
- [244],
- [209],
- [271],
- [237],
- [229],
- [258],

```
[251],
```

- [218],
- [228],
- [232],
- [239],
- [283],
- [297],
- [347],
- [366],
- [334],
- [344],
- [380],
- [344],
- [380],
- [380],
- [344],
- [414],
- [432],
- [411],
- [419],
- [435],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [285],
- [277],
- [329],
- [209],
- [276],
- [230],
- [290],
- [272],
- [317],
- [294],
- [338],
- [322],
- [354],
- [317], [294],
- [317],
- [294],
- [182],
- [186],
- [200],
- [209],
- [221],
- [251],

```
[110],
```

- [161],
- [166],
- [246],
- [209],
- [159],
- [172],
- [244],
- [265],
- [276],
- [308],
- [177],
- [177],
- [196],
- [304],
- [255],
- [258],
- [267],
- [237],
- [264],
- [255],
- [221],
- [143],
- [145],
- [214],
- [232],
- [230],
- [244],
- [177],
- [184],
- [202],
- [196],
- [235],
- [172],
- [189],
- [265],
- [269],
- [283],
- [255],
- [267],
- [253],
- [283],
- [267],
- [294],
- [175],
- [271],
- [244],
- [294],
- [334],
- [345],

```
[237],
```

- [244],
- [294],
- [306],
- [290],
- [306],
- [285],
- [280],
- [306],
- [306],
- [301],
- [315],
- [310],
- [315],
- [310],
- [218],
- [230],
- [248],
- [232],
- [251],
- [267],
- [225],
- [209],
- [225],
- [216],
- [235],
- [216],
- [255],
- [340],
- [267],
- [278],
- [363],
- [225],
- [216],
- [216],
- [255],
- [294],
- [308],
- [251],
- [184], [193],
- [193],
- [223],
- [225],
- [193],
- [196],
- [216],
- [221],
- [193],
- [198],

```
[200],
```

- [175],
- [177],
- [175],
- [212],
- [214],
- [276],
- [237],
- [262],
- [253],
- [271],
- [207],
- [209],
- [230],
- [361],
- [400],
- [274],
- [334],
- [225],
- [225],
- [354],
- [342],
- [285],
- [278],
- [345],
- [331],
- [283],
- [283],
- [277],
- [354],
- [347],
- [129],
- [138],
- [221],
- [239],
- [253],
- [175],
- [320],
- [223],
- [239],
- [244],
- [253],
- [244],
- [290],
- [283],
- [297],
- [262],
- [380],
- [255],
- [189],

```
[271],
```

- [260],
- [294],
- [235],
- [281],
- [207],
- [262],
- [145],
- [368],
- [346],
- [292],
- [292],
- [347],
- [334],
- [301],
- [189],
- [184],
- [198],
- [196],
- [205],
- [283],
- [290],
- [177],
- [170],
- [159],
- [161],
- [170],
- [163],
- [166],
- [177],
- [168],
- [166],
- [223],
- [225],
- [175],
- [168],
- [235],
- [221],
- [228],
- [184],
- [216],
- [216],
- [242],
- [224],
- [239],
- [244],
- [242],
- [347],
- [352],
- [304],

```
[308],
```

- [179],
- [212],
- [264],
- [301],
- [194],
- [235],
- [230],
- [239],
- [242],
- [235],
- [202],
- [267],
- [269],
- [262],
- [297],
- [310],
- [310],
- [419],
- [407],
- [324],
- [359],
- [260],
- [256],
- [278], [327],
- [356],
- [278],
- [276],
- [327],
- [205],
- [207],
- [225],
- [246],
- [380],
- [361],
- [361],
- [179],
- [179],
- [179],
- [179],
- [200],
- [179],
- [175],
- [200],
- [179],
- [179],
- [179],
- [184],
- [191],

```
[207],
```

- [196],
- [191],
- [184],
- [207],
- [196],
- [191],
- [184],
- [191],
- [184],
- [191],
- [184],
- [207],
- [196],
- [191],
- [207],
- [196],
- [191],
- [184],
- [189],
- [191],
- [288],
- [283],
- [267],
- [198],
- [198],
- [138],
- [147],
- [198], [235],
- [200],
- [202],
- [207],
- [253], [264],
- [262],
- [175],
- [214],
- [380],
- [283],
- [292],
- [315],
- [301],
- [186],
- [198], [251],
- [244],
- [253],
- [202],
- [255],

```
[161],
```

[179],

[359],

[398],

[152],

[177],

[327],

[315],

[232],

[237],

[246],

[242],

[253],

[248],

[253],

[253],

[258],

[232],

[246],

[244],

[248],

[246],

[251],

[322],

[274],

[274],

[274],

[274],

[212],

[228],

[225],

[313],

[281],

[320],

[299],

[251], [315],

[212],

[225],

[239],

[251], [255],

[260],

[264],

[292],

[260],

[294],

[340],

[313],

[354],

```
[290],
```

- [285],
- [275],
- [274],
- [260],
- [262],
- [254],
- [368],
- [393],
- [393],
- [359],
- [193],
- [207],
- [184],
- [182],
- [147],
- [147],
- [389],
- [389],
- [221],
- [223],
- [179],
- [196],
- [258],
- [179],
- [196],
- [258],
- [288],
- [198],
- [228],
- [267],
- [207],
- [301],
- [196],
- [212],
- [177],
- [297],
- [297],
- [221],
- [131],
- [138],
- [177],
- [168],
- [163],
- [170],
- [156],
- [159],
- [196],
- [189],
- [297],

```
[320],
```

[237],

[258],

[264],

[191],

[189],

[110],

[108],

[126],

[216],

[218],

[384],

[260],

[285],

[251],

[235],

[301],

[274],

[271],

[322],

[310],

[329],

[356],

[347],

[373],

[230],

[253],

[235],

[260],

[163],

[196],

[200],

[209],

[216],

[225],

[221],

[200],

[214],

[216],

[197],

[197],

[225],

[283],

[221],

[218],

[216],

[194],

[189],

[189],

[216],

```
[207],
        [207],
        [212],
        [186],
        [124],
        [198],
        [198],
        [192],
        [184],
        [278],
        [246],
        [246],
        [281],
        [281],
        [223],
        [232],
        [264],
        [235],
        [264],
        [258],
        [271],
        [264],
        [271],
        [260],
       [294]], dtype=int64)
X = np.asanyarray(train[['FUELCONSUMPTION_COMB']]) # Independent
Variable
Χ
array([[ 8.5],
        [ 9.6],
        [5.9],
        [11.1],
        [10.6],
        [10.1],
        [11.6],
        [ 9.8],
        [10.4],
        [15.6],
        [14.7],
        [15.4],
        [14.7],
        [15.4],
        [15.6],
        [10.],
        [ 9.3],
        [10.],
        [ 9.3],
        [10.9],
```

```
[8.3],
```

[11.2],

[8.3],

[11.3],

[8.4],

[11.2],

[12.5],

[8.5],

[10.5],

[10.4],

[11.2],

[10.9],

[14.6],

[17.7],

[15.4],

[14.6],

[17.7],

[15.4],

[13.3],

[13.4],

[11.4],

[12.4],

[11.4],

[11.6],

[12.2],

[12.2],

[12.7],

[9.1],

[9.1],

[12.9],

[15.5],

[13.9],

[16.5],

[14.],

[16.5],

[16.5],

[19.],

[8.4],

[8.7],

[6.7],

[6.7],

[8.4],

[8.7],

[9.1],

[9.1], [9.1],

[10.],

[9.9],

[10.3],

[10.1],

```
[ 8.4],
[ 8.7],
```

[9.1],

[9.6],

[10.],

[10.3],

[8.8],

[9.1], [7.9],

[10.1],

[12.7],

[10.1],

[12.7],

[12.2],

[12.7],

[12.7],

[8.3],

[12.7],

[14.7],

[14.7], [13.8],

[14.7],

[13.8],

[9.1], [11.3],

[10.],

[11.],

[13.9],

[16.1],

[11.9],

[9.1],

[8.7],

[12.1],

[11.], [12.1],

[12.3],

[12.6],

[8.5],

[9.2],

[11.5],

[15.6],

[11.5],

[16.5],

[9.8],

[10.7],

[8.2],

[9.8],

[9.5],

[9.6],

[10.2],

```
[ 9. ],
[10.9],
```

[10.1],

[11.2],

[11.4],

[10.1],

[10.8],

[10.8],

[11.3],

[11.], [11.3],

[11.1],

[16.6],

[14.8],

[16.6],

[14.8],

[14.7],

[20.1],

[16.4],

[12.3],

[12.8],

[11.8],

[12.6],

[11.2],

[11.7],

[12.8],

[16.6],

[14.8],

[12.], [11.2],

[7.8], [8.2],

[7.1],

[7.7],

[7.1],

[9.1],

[16.2],

[12.6],

[17.],

[15.9],

[20.9],

[16.5],

[21.5],

[16.5],

[21.5],

[22.6],

[16.5],

[21.5],

[16.5],

[22.6],

```
[18.],
[18.8],
[25.7],
[18.2],
[18.9],
[14.3],
[ 8.7],
[ 9.9],
[ 8. ],
[10.6],
[11.8],
[16.8],
[12.7],
[16.9],
[14.1],
[12.6],
[13.],
[14.3],
[8.],
[7.5],
[8.],
[ 7.5],
[7.9],
[ 8.3],
[7.9],
[8.3],
[7.9],
[ 6.9],
[13.8],
[18.4],
[13.8],
[18.4],
[13.8],
[18.4],
[13.8],
[18.4],
[12.6],
[ 9. ],
[10.1],
[10.7],
[14.4],
[10.],
[14.4],
[12.8],
[10.9],
```

[10.9], [14.8], [13.9], [12.], [16.8],

```
[ 9.8],
```

[10.],

[13.1],

[12.8],

[13.9],

[13.8],

[11.2],

[10.3],

[12.8],

[10.9],

[13.4],

[10.9],

[14.8],

[10.2],

[13.9],

[8.1],

[8.6],

[8.8],

[12.2],

[8.8],

[7.3],

[7.3],

[12.1],

[15.6],

[11.8],

[16.5],

[11.1],

[12.4],

[12.],

[7.8],

[7.8], [7.9],

[7.8],

[6.8],

[8.7],

[8.4],

[16.2],

[21.9],

[17.2],

[22.5],

[16.8],

[23.],

[21.2],

[9.8],

[11.5],

[12.2],

[9.1],

[9.4],

[9.3],

[10.],

```
[16.],
[21.6],
```

[11.9],

[15.9],

[12.5],

[16.7],

[12.8],

[15.9],

[13.8],

[13.4],

[12.3],

[12.3],

[16.5],

[14.6],

[14.6],

[19.7],

[13.4],

[18.],

[13.4],

[18.],

[20.],

[19.9],

[6.6],

[8.],

[11.5],

[12.1],

[12.8],

[8.9],

[7.7],

[10.3],

[7.8],

[10.3],

[8.],

[10.6],

[7.2],

[10.1],

[8.5],

[8.1],

[8.9],

[8.1],

[9.4], [5.5],

[10.6],

[11.5],

[10.6],

[9.1],

[11.8],

[10.3],

[14.3],

[11.2],

```
[15.7],
```

- [9.5],
- [9.9],
- [10.1],
- [10.4],
- [12.3],
- [12.9],
- [15.1],
- [15.9],
- [20.9],
- [21.5],
- [16.5],
- [21.5],
- [16.5], [16.5],
- [21.5],
- [18.],
- [18.8],
- [25.7],
- [18.2],
- [18.9],
- [11.8],
- [16.8],
- [12.7],
- [16.9],
- [14.1],
- [12.6],
- [17.8],
- [17.3],
- [14.3],
- [9.1],
- [12.],
- [10.], [12.6],
- [17.],
- [13.8],
- [18.4], [14.7],
- [20.1],
- [22.1],
- [13.8],
- [18.4],
- [13.8],
- [18.4],
- [7.9],
- [8.1],
- [8.7],
- [9.1], [9.6],
- [10.9],

```
[ 4.8],
[ 7. ],
```

[7.2],

[10.7],

[9.1],

[6.9],

[7.5],

[10.6],

[11.5],

[12.],

[13.4],

[7.7], [7.7],

[8.5],

[13.2],

[11.1],

[11.2],

[11.6], [10.3],

[11.5],

[11.1],

[9.6],

[6.2],

[6.3],

[9.3],

[10.1],

[10.],

[10.6],

[7.7],

[8.],

[8.8],

[8.5],

[10.2],

[7.5],

[8.2],

[11.5],

[11.7],

[12.3],

[11.1],

[11.6],

[11.],

[12.3],

[11.6],

[12.8],

[7.6],

[11.8],

[10.6],

[12.8],

[14.5],

[15.],

```
[10.3],
```

- [10.6],
- [12.8],
- [13.3],
- [18.1],
- [13.3],
- [12.4],
- [17.5],
- [13.3],
- [13.3],
- [13.1],
- [13.7], [13.5],
- [13.7],
- [13.5],
- [9.5],
- [10.],
- [10.8],
- [10.1],
- [10.9],
- [11.6],
- [9.8],
- [9.1],
- [9.8],
- [9.4],
- [10.2],
- [9.4],
- [11.1],
- [14.8],
- [9.9],
- [12.1],
- [15.8],
- [9.8],
- [9.4],
- [9.4],
- [11.1],
- [12.8],
- [13.4],
- [10.9],
- [8.],
- [8.4],
- [8.4],
- [9.7],
- [9.8],
- [8.4],
- [8.5],
- [9.4],
- [9.6],
- [8.4],
- [8.6],

```
[ 8.7],
[ 7.6],
[ 7.7],
[ 7.6],
[ 9.2],
[ 9.3],
[12. ],
[10.3],
[11.4],
```

[11.8], [9.],

[9.1], [10.], [15.7],

[17.4], [11.9],

[14.5], [9.8],

[9.8],

[15.4], [21.4],

[12.4],

[17.4],

[15.],

[20.7], [12.3],

[12.3],

[17.3],

[15.4],

[15.1],

[5.6],

[6.],

[9.6],

[10.4],

[11.], [7.6],

[13.9],

[9.7],

[10.4],

[10.6],

[11.],

[10.6],

[12.6],

[12.3],

[12.9], [11.4],

[11.4], [16.5],

[11.1],

[8.2],

```
[11.8],
```

- [11.3],
- [12.8],
- [10.2],
- [12.2],
- [9.],
- [11.4],
- [6.3],
- [16.],
- [21.6],
- [12.7],
- [12.7],
- [15.1],
- [14.5],
- [13.1],
- [8.2],
- [8.],
- [8.6],
- [8.5],
- [8.9],
- [12.3],
- [12.6],
- [7.7],
- [7.4],
- [6.9],
- [7.],
- [7.4],
- [7.1],
- [7.2],
- [7.7],
- [7.3],
- [7.2],
- [9.7],
- [9.8],
- [7.6],
- [7.3],
- [10.2],
- [9.6],
- [9.9],
- [8.],
- [9.4],
- [9.4],
- [10.5],
- [14.],
- [10.4],
- [10.6],
- [10.5],
- [15.1],
- [15.3],
- [13.2],

```
[13.4],
```

- [7.8],
- [9.2],
- [11.5],
- [13.1],
- [7.2],
- [10.2],
- [10.],
- [10.4],
- [10.5],
- [10.2],
- [8.8],
- [11.6],
- [11.7],
- [11.4],
- [12.9],
- [13.5],
- [13.5],
- [18.2],
- [17.7],
- [12.],
- [15.6],
- [11.3],
- [16.],
- [10.3],
- [14.2],
- [15.5], [12.1],
- [12.], [14.2],
- [8.9], [9.],
- [9.8],
- [10.7],
- [16.5],
- [15.7], [15.7],
- [7.8],
- [7.8],
- [7.8],
- [7.8],
- [8.7],
- [7.8],
- [7.6],
- [8.7],
- [7.8],
- [7.8],
- [7.8],
- [8.],
- [8.3],

```
[ 9. ],
[ 8.5],
[ 8.3],
[8.],
[ 9. ],
[ 8.5],
[8.3],
[8.],
[ 8.3],
[8.],
[ 8.3],
[8.],
  9. ],
[
[ 8.5],
[ 8.3],
[ 9. ],
[ 8.5],
[ 8.3],
[8.],
[8.2],
[ 8.3],
[12.5],
[12.3],
[11.6],
[ 8.6],
[ 8.6],
[ 6. ],
[ 6.4],
[8.6],
[10.2],
[ 8.7],
[8.8],
[ 9. ],
[11.],
[11.5],
[11.4],
[ 7.6],
[ 9.3],
[16.5],
[12.3],
[12.7],
[13.7],
[13.1],
[ 8.1],
[ 8.6],
[10.9],
[10.6],
[11.],
[8.8],
[11.1],
```

```
[ 7. ],
[ 7.8],
```

[15.6],

[17.3],

[6.6],

[7.7],

[14.2],

[13.7],

[10.1],

[10.3],

[10.7],

[10.5],

[11.],

[10.8],

[11.],

[11.],

[11.2],

[10.1],

[10.7],

[10.6],

[10.8],

[10.7],

[10.9],

[14.],

[11.9],

[11.9],

[11.9],

[11.9],

[9.2],

[9.9],

[9.8],

[13.6],

[10.4],

[13.9],

[13.],

[10.9],

[13.7],

[9.2],

[9.8],

[10.4],

[10.9],

[11.1],

[11.3],

[11.5],

[12.7],

[11.3],

[12.8],

[14.8],

[13.6],

[15.4],

```
[12.6],
[17.8],
```

[10.2],

[11.9],

[11.3],

[11.4],

[15.9],

[16.],

[17.1],

[17.1],

[15.6],

[8.4],

[9.],

[8.],

[7.9],

[6.4],

[6.4],

[16.9],

[16.9],

[9.6],

[9.7],

[7.8],

[8.5],

[11.2],

[7.8],

[8.5],

[11.2],

[12.5],

[8.6],

[9.9],

[11.6],

[9.],

[13.1],

[8.5],

[9.2],

[7.7],

[12.9],

[12.9],

[9.6],

[5.7],

[6.],

[7.7],

[7.3],

[7.1],

[7.4],

[6.8],

[6.9],

[8.5],

[8.2],

[12.9],

```
[13.9],
```

- [10.3],
- [11.2],
- [11.5],
- [8.3],
- [8.2],
- [4.8],
- [4.7],
- [5.5],
- [9.4],
- [9.5],
- [16.7],
- [11.3],
- [12.4],
- [10.9],
- [10.2],
- [13.1],
- [11.9],
- [11.8],
- [14.],
- [13.5],
- [14.3],
- [15.5],
- [15.1],
- [16.2],
- [10.],
- [11.],
- [10.2],
- [11.3],
- [7.1],
- [8.5],
- [8.7],
- [9.1],
- [9.4],
- [9.8],
- [9.6],
- [8.7],
- [9.3],
- [9.4],
- [7.3],
- [7.3],
- [9.8],
- [12.3],
- [9.6],
- [9.5],
- [9.4],
- [7.2],
- [8.2],
- [8.2],
- [9.4],

```
[ 9. ],
       [ 9. ],
        [ 9.2],
        [ 6.9],
        [5.4],
       [8.6],
        [ 8.6],
        [7.1],
        [ 6.8],
        [12.1],
        [10.7],
        [10.7],
        [12.2],
        [10.4],
        [ 9.7],
        [10.1],
        [11.5],
        [10.2],
        [11.5],
        [11.2],
        [11.8],
        [11.5],
        [11.8],
        [11.3],
        [12.8]])
y = np.asanyarray(train[['CO2EMISSIONS']]) # Dependent Variable
У
array([[196],
        [221],
        [136],
        [255],
        [244],
        [232],
        [267],
        [225],
       [239],
        [359],
        [338],
        [354],
        [338],
        [354],
        [359],
        [230],
        [214],
        [230],
        [214],
        [251],
        [224],
```

```
[258],
```

[224],

[260],

[227],

[258],

[288],

[230],

[242],

[239],

[258],

[294],

[336],

[407],

[354],

[336], [407],

[354],

[306],

[308],

[262],

[285],

[262],

[267],

[281],

[281],

[292],

[209],

[209],

[297],

[356],

[320],

[380],

[322],

[380],

[380],

[437],

[193],

[200],

[181],

[181],

[193],

[200],

[209],

[209],

[209],

[230],

[228],

[237],

[232],

[193],

```
[200],
```

- [209],
- [221],
- [230],
- [237],
- [202],
- [209],
- [213],
- [232],
- [292],
- [232],
- [292],
- [281],
- [292],
- [292],
- [191],
- [292],
- [338],
- [338],
- [317],
- [338],
- [317],
- [209],
- [260],
- [230],
- [253],
- [320],
- [370],
- [274],
- [209],
- [200],
- [278],
- [253],
- [278], [283],
- [290],
- [196],
- [212],
- [264],
- [250],
- [264],
- [264],
- [225],
- [246],
- [189],
- [225],
- [218], [221],
- [235],
- [207],

```
[251],
```

- [232],
- [258],
- [262],
- [232],
- [248],
- [248], [260],
- [253],
- [260],
- [255],
- [382],
- [340],
- [382],
- [340],
- [338],
- [322],
- [377],
- [283],
- [294],
- [271],
- [290],
- [258],
- [269],
- [294],
- [382],
- [340],
- [276],
- [258],
- [179],
- [189],
- [192],
- [177],
- [163],
- [209],
- [259],
- [290],
- [272],
- [366],
- [334],
- [380],
- [344],
- [380],
- [344],
- [362],
- [380],
- [344],
- [380],
- [362],
- [414],

```
[432],
```

- [411],
- [419],
- [435],
- [229],
- [200],
- [228],
- [184],
- [244],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [299],
- [329],
- [184],
- [173],
- [184],
- [172],
- [182],
- [191],
- [182],
- [191],
- [182],
- [159],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [317],
- [294],
- [290],
- [207],
- [232],
- [246],
- [230],
- [230],
- [230],
- [294],
- [251],
- [251],
- [237],
- [222],
- [276],
- [269],
- [225],

```
[230],
```

- [301],
- [294],
- [320],
- [317],
- [258],
- [237],
- [294],
- [251],
- [308],
- [251],
- [237],
- [235],
- [222],
- [186],
- [198],
- [202],
- [195],
- [202],
- [168],
- [168],
- [278],
- [250],
- [271],
- [264],
- [255],
- [285],
- [276],
- [179],
- [179],
- [182],
- [179],
- [156],
- [200],
- [193],
- [373],
- [350],
- [396],
- [360],
- [386],
- [368],
- [488],
- [225],
- [264],
- [281],
- [209],
- [216],
- [214],
- [230],
- [368],

```
[346],
```

- [274],
- [254],
- [288],
- [267],
- [294],
- [366],
- [317],
- [308],
- [283],
- [283],
- [264],
- [336],
- [336],
- [315],
- [308],
- [288],
- [308],
- [288],
- [320],
- [318],
- [152],
- [184],
- [264],
- [278],
- [294],
- [205],
- [177],
- [165],
- [179],
- [165],
- [184],
- [170],
- [166], [162],
- [196],
- [186],
- [205],
- [186],
- [216],
- [126],
- [244],
- [264],
- [244],
- [209],
- [271],
- [237],
- [229],
- [258],
- [251],

```
[218],
```

- [228],
- [232],
- [239],
- [283],
- [297],
- [347],
- [366],
- [334],
- [344],
- [380],
- [344],
- [380],
- [380],
- [344],
- [414],
- [432],
- [411],
- [419],
- [435],
- [271],
- [269],
- [292],
- [270],
- [324],
- [290],
- [285],
- [277],
- [329],
- [209],
- [276],
- [230],
- [290],
- [272],
- [317],
- [294],
- [338],
- [322],
- [354],
- [317],
- [294],
- [317],
- [294],
- [182],
- [186],
- [200],
- [209],
- [221],
- [251],
- [110],

```
[161],
```

- [166],
- [246],
- [209],
- [159],
- [172],
- [244],
- [265],
- [276],
- [308],
- [177],
- [177],
- [196],
- [304], [255],
- [258],
- [267],
- [237],
- [264],
- [255],
- [221],
- [143],
- [145],
- [214],
- [232],
- [230],
- [244],
- [177],
- [184],
- [202],
- [196],
- [235],
- [172],
- [189],
- [265],
- [269],
- [283],
- [255],
- [267],
- [253], [283],
- [267],
- [294], [175],
- [271],
- [244],
- [294],
- [334],
- [345],
- [237],

```
[244],
```

[294],

[306],

[290],

[306],

[285],

[280],

[306],

[306],

[301],

[315],

[310],

[315],

[310],

[218],

[230],

[248],

[232],

[251],

[267],

[225],

[209],

[225],

[216],

[235],

[216],

[255],

[340],

[267],

[278],

[363],

[225],

[216],

[216],

[255],

[294],

[308],

[251],

[184],

[193],

[193],

[223],

[225],

[193],

[196],

[216],

[221],

[193],

[198], [200],

```
[175],
```

- [177],
- [175],
- [212],
- [214],
- [276],
- [237],
- [262],
- [253],
- [271],
- [207],
- [209],
- [230],
- [361],
- [400],
- [274],
- [334],
- [225],
- [225],
- [354],
- [342],
- [285],
- [278],
- [345],
- [331],
- [283],
- [283],
- [277],
- [354],
- [347],
- [129],
- [138],
- [221],
- [239],
- [253],
- [175],
- [320],
- [223],
- [239],
- [244],
- [253], [244],
- [290],
- [283],
- [297],
- [262],
- [380],
- [255],
- [189],
- [271],

```
[260],
```

- [294],
- [235],
- [281],
- [207],
- [262],
- [145],
- [368],
- [346],
- [292],
- [292],
- [347],
- [334],
- [301],
- [189],
- [184],
- [198],
- [196],
- [205],
- [283],
- [290],
- [177],
- [170],
- [159],
- [161],
- [170],
- [163],
- [166],
- [177],
- [168],
- [166],
- [223],
- [225],
- [175],
- [168],
- [235],
- [221],
- [228],
- [184],
- [216],
- [216],
- [242],
- [224],
- [239],
- [244],
- [242], [347],
- [352],
- [304], [308],

```
[179],
```

- [212],
- [264],
- [301],
- [194],
- [235],
- [230],
- [239],
- [242],
- [235],
- [202],
- [267],
- [269],
- [262],
- [297],
- [310],
- [310],
- [419],
- [407],
- [324],
- [359],
- [260],
- [256],
- [278],
- [327],
- [356],
- [278],
- [276],
- [327],
- [205],
- [207],
- [225],
- [246],
- [380],
- [361],
- [361],
- [179],
- [179],
- [179],
- [179],
- [200],
- [179],
- [175],
- [200],
- [179],
- [179],
- [179],
- [184],
- [191],
- [207],

```
[196],
```

- [191],
- [184],
- [207],
- [196],
- [191],
- [184],
- [191],
- [184],
- [191],
- [184],
- [207],
- [196],
- [191],
- [207],
- [196],
- [191],
- [184],
- [189],
- [191],
- [288],
- [283],
- [267],
- [198],
- [198],
- [138],
- [147],
- [198],
- [235],
- [200],
- [202],
- [207],
- [253],
- [264],
- [262],
- [175],
- [214],
- [380],
- [283],
- [292],
- [315],
- [301],
- [186],
- [198],
- [251],
- [244],
- [253],
- [202],
- [255],
- [161],

```
[179],
```

- [359],
- [398],
- [152],
- [177],
- [327],
- [315],
- [232],
- [237],
- [246],
- [242],
- [253],
- [248],
- [253],
- [253],
- [258],
- [232],
- [246],
- [244],
- [248],
- [246],
- [251],
- [322],
- [274],
- [274],
- [274],
- [274],
- [212],
- [228],
- [225],
- [313],
- [281],
- [320],
- [299],
- [251],
- [315],
- [212],
- [225],
- [239],
- [251],
- [255],
- [260],
- [264],
- [292],
- [260],
- [294],
- [340],
- [313],
- [354],
- [290],

```
[285],
```

- [275],
- [274],
- [260],
- [262],
- [254],
- [368], [393],
- [393],
- [359],
- [193],
- [207],
- [184],
- [182],
- [147],
- [147],
- [389],
- [389],
- [221],
- [223],
- [179],
- [196],
- [258],
- [179],
- [196],
- [258],
- [288],
- [198],
- [228],
- [267],
- [207],
- [301],
- [196],
- [212],
- [177],
- [297],
- [297],
- [221],
- [131],
- [138],
- [177],
- [168],
- [163],
- [170],
- [156],
- [159],
- [196],
- [189],
- [297],
- [320],

```
[237],
```

[258],

[264],

[191],

[189],

[110],

[108],

[126],

[216],

[218],

[384],

[260],

[285],

[251],

[235],

[301],

[274],

[271],

[322],

[310],

[329],

[356],

[347],

[373],

[230],

[253],

[235],

[260],

[163],

[196],

[200],

[209],

[216],

[225],

[221],

[200],

[214],

[216],

[197],

[197],

[225],

[283],

[221],

[218],

[216],

[194],

[189],

[189],

[216],

[207],

```
[207],
       [212],
       [186],
       [124],
       [198],
       [198],
       [192],
       [184],
       [278],
       [246],
       [246],
       [281],
       [281],
       [223],
       [232],
       [264],
       [235],
       [264],
       [258],
       [271],
       [264],
       [271],
       [260],
       [294]], dtype=int64)
from sklearn import linear_model
\# y = mx + c == y is dependent variable, x is the data(indep.
variable) m is COEFFICIENT and c is INTERCEPT
regr = linear model.LinearRegression()
regr
LinearRegression()
train.shape
(845, 4)
test.shape
(222, 4)
train_x = np.asanyarray(train[['FUELCONSUMPTION_COMB']]) #x represents
independent variables
train y = np.asanyarray(train[['CO2EMISSIONS']]) #y represent
dependent variable
train x # All Values of FUELCONSUMPTION COMB column this will be used
for training
```

```
array([[ 8.5],
        [ 9.6],
        [5.9],
        [11.1],
        [10.6],
        [10.1],
        [11.6],
        [ 9.8],
        [10.4],
        [15.6],
        [14.7],
        [15.4],
        [14.7],
        [15.4],
        [15.6],
        [10.],
        [ 9.3],
        [10.],
        [ 9.3],
        [10.9],
        [ 8.3],
        [11.2],
        [ 8.3],
        [11.3],
        [ 8.4],
        [11.2],
        [12.5],
        [ 8.5],
        [10.5],
        [10.4],
        [11.2],
        [10.9],
        [14.6],
        [17.7],
        [15.4],
        [14.6],
        [17.7],
        [15.4],
        [13.3],
        [13.4],
        [11.4],
        [12.4],
        [11.4],
        [11.6],
        [12.2],
        [12.2],
        [12.7],
        [ 9.1],
        [ 9.1],
        [12.9],
```

```
[15.5],
[13.9],
[16.5],
[14.],
[16.5],
[16.5],
[19.],
[ 8.4],
[ 8.7],
[ 6.7],
[ 6.7],
[8.4],
[8.7],
[ 9.1],
[ 9.1],
[ 9.1],
[10.],
[ 9.9],
[10.3],
```

[10.3], [10.1], [8.4], [8.7], [9.1], [9.6],

[10.], [10.3], [8.8], [9.1], [7.9], [10.1],

[12.7], [10.1], [12.7], [12.2], [12.7],

[12.7], [8.3], [12.7], [14.7], [14.7], [13.8],

[14.7], [13.8], [9.1], [11.3], [10.], [11.],

[13.9], [16.1], [11.9],

```
[ 9.1],
```

[8.7],

[12.1],

[11.],

[12.1],

[12.3],

[12.6],

[8.5],

[9.2],

[11.5],

[15.6],

[11.5],

[16.5],

[9.8],

[10.7],

[8.2],

[9.8], [9.5],

[9.6],

[10.2],

[9.],

[10.9],

[10.1],

[11.2],

[11.4],

[10.1],

[10.8],

[10.8],

[11.3],

[11.],

[11.3],

[11.1],

[16.6],

[14.8],

[16.6],

[14.8],

[14.7],

[20.1],

[16.4],

[12.3],

[12.8],

[11.8],

[12.6],

[11.2],

[11.7],

[12.8],

[16.6],

[14.8],

[12.], [11.2],

```
[ 7.8],
```

[8.2],

[7.1],

[7.7],

[7.1],

[9.1],

[16.2],

[12.6],

[17.],

[15.9],

[20.9],

[16.5],

[21.5],

[16.5],

[21.5],

[22.6],

[16.5],

[21.5],

[16.5],

[22.6],

[18.],

[18.8],

[25.7],

[18.2],

[18.9],

[14.3],

[8.7],

[9.9],

[8.],

[10.6],

[11.8],

[16.8],

[12.7],

[16.9],

[14.1],

[12.6],

[13.],

[14.3],

[8.],

[7.5], [8.],

[7.5],

[7.9],

[8.3],

[7.9],

[8.3],

[7.9],

[6.9],

[13.8],

[18.4],

```
[13.8],
```

- [18.4],
- [13.8],
- [18.4],
- [13.8],
- [18.4],
- [12.6],
- [9.],
- [10.1],
- [10.7],
- [14.4],
- [10.],
- [14.4],
- [12.8],
- [10.9],
- [10.9],
- [14.8],
- [13.9],
- [12.],
- [16.8],
- [9.8],
- [10.],
- [13.1],
- [12.8],
- [13.9],
- [13.8],
- [11.2],
- [10.3],
- [12.8],
- [10.9],
- [13.4],
- [10.9],
- [14.8],
- [10.2],
- [13.9],
- [8.1],
- [8.6],
- [8.8],
- [12.2],
- [8.8],
- [7.3], [7.3],
- [12.1],
- [15.6],
- [11.8],
- [16.5],
- [11.1],
- [12.4],
- [12.],
- [7.8],

```
[ 7.8],
[7.9],
```

[7.8],

[6.8],

[8.7],

[8.4],

[16.2],

[21.9],

[17.2],

[22.5],

[16.8],

[23.], [21.2],

[9.8], [11.5],

[12.2],

[9.1], [9.4],

[9.3],

[10.],

[16.],

[21.6],

[11.9],

[15.9],

[12.5],

[16.7],

[12.8],

[15.9],

[13.8],

[13.4],

[12.3],

[12.3],

[16.5],

[14.6],

[14.6],

[19.7],

[13.4],

[18.],

[13.4],

[18.],

[20.], [19.9],

[6.6],

[8.],

[11.5],

[12.1],

[12.8],

[8.9],

[7.7],

[10.3],

```
[ 7.8],
```

[10.3],

[8.],

[10.6],

[7.2],

[10.1],

[8.5],

[8.1],

[8.9],

[8.1],

[9.4],

[5.5],

[10.6],

[11.5],

[10.6],

[9.1],

[11.8],

[10.3],

[14.3],

[11.2],

[15.7],

[9.5],

[9.9],

[10.1],

[10.4],

[12.3],

[12.9],

[15.1],

[15.9],

[20.9],

[21.5],

[16.5],

[21.5],

[16.5],

[16.5],

[21.5], [18.],

[18.8],

[25.7],

[18.2],

[18.9],

[11.8],

[16.8],

[12.7],

[16.9],

[14.1],

[12.6],

[17.8],

[17.3],

[14.3],

```
[ 9.1],
[12.],
[10.],
[12.6],
[17.],
[13.8],
[18.4],
[14.7],
[20.1],
[22.1],
[13.8],
[18.4],
[13.8],
[18.4],
[7.9],
[8.1],
[ 8.7],
[ 9.1],
[ 9.6],
[10.9],
[ 4.8],
[ 7. ],
[ 7.2],
[10.7],
[ 9.1],
[ 6.9],
[ 7.5],
[10.6],
[11.5],
[12.],
[13.4],
[7.7],
[ 7.7],
[ 8.5],
[13.2],
[11.1],
[11.2],
[11.6],
[10.3],
[11.5],
[11.1],
[ 9.6],
[ 6.2],
[ 6.3],
[ 9.3],
[10.1],
```

[10.], [10.6], [7.7], [8.],

```
[8.8],
```

- [8.5],
- [10.2],
- [7.5],
- [8.2],
- [11.5],
- [11.7],
- [12.3],
- [11.1],
- [11.6],
- [11.],
- [12.3],
- [11.6],
- [12.8],
- [7.6],
- [11.8],
- [10.6],
- [12.8],
- [14.5],
- [15.],
- [10.3],
- [10.6],
- [12.8],
- [13.3],
- [18.1],
- [13.3],
- [12.4], [17.5],
- [13.3],
- [13.3],
- [13.1],
- [13.7],
- [13.5],
- [13.7], [13.5],
- [9.5], [10.],
- [10.8],
- [10.1],
- [10.9],
- [11.6],
- [9.8],
- [9.1],
- [9.8],
- [9.4],
- [10.2],
- [9.4],
- [11.1],
- [14.8],
- [9.9],

```
[12.1],
```

[15.8],

[9.8],

[9.4],

[9.4],

[11.1],

[12.8],

[13.4],

[10.9],

[8.],

[8.4],

[8.4],

9.7],

9.8],

[8.4],

[8.5],

[9.4],

[9.6],

[8.4],

[8.6],

[8.7],

[7.6],

[7.7],

[7.6],

[9.2],

[9.3],

[12.],

[10.3],

[11.4],

[11.],

[11.8],

[9.],

[9.1],

[10.],

[15.7],

[17.4],

[11.9],

[14.5],

[9.8],

[9.8],

[15.4],

[21.4],

[12.4],

[17.4],

[15.],

[20.7],

[12.3],

[12.3],

[17.3],

[15.4],

```
[15.1],
[5.6],
[ 6. ],
[ 9.6],
[10.4],
[11.],
[ 7.6],
[13.9],
[ 9.7],
[10.4],
[10.6],
[11.],
[10.6],
[12.6],
[12.3],
[12.9],
[11.4],
[16.5],
[11.1],
[ 8.2],
[11.8],
[11.3],
[12.8],
[10.2],
[12.2],
[ 9. ],
[11.4],
[ 6.3],
[16.],
[21.6],
[12.7],
[12.7],
[15.1],
[14.5],
[13.1],
[ 8.2],
[ 8. ],
[ 8.6],
[ 8.5],
[ 8.9],
[12.3],
[12.6],
[7.7],
[ 7.4],
[ 6.9],
[7.],
[ 7.4],
```

[7.1], [7.2], [7.7],

```
[ 7.3],
```

[7.2],

[9.7],

[9.8],

[7.6],

[7.3],

[10.2],

[9.6],

[9.9],

[8.],

[9.4],

[9.4],

[10.5],

[14.],

[10.4],

[10.6],

[10.5],

[15.1],

[15.3],

[13.2],

[13.4],

[7.8],

[9.2],

[11.5],

[13.1],

[7.2],

[10.2],

[10.],

[10.4],

[10.5],

[10.2],

[8.8],

[11.6],

[11.7],

[11.4],

[12.9],

[13.5],

[13.5],

[18.2],

[17.7],

[12.],

[15.6],

[11.3],

[16.],

[10.3],

[14.2],

[15.5],

[12.1],

[12.],

[14.2],

```
[8.9],
[ 9. ],
[ 9.8],
[10.7],
[16.5],
[15.7],
[15.7],
[ 7.8],
[ 7.8],
[ 7.8],
[ 7.8],
[8.7],
[ 7.8],
[7.6],
[ 8.7],
[ 7.8],
[ 7.8],
[ 7.8],
[8.],
[8.3],
[ 9. ],
[ 8.5],
[ 8.3],
[8.],
[ 9. ],
[ 8.5],
[8.3],
[8.],
[8.3],
[8.],
[8.3],
Ī
 8.],
[ 9. ],
[ 8.5],
[8.3],
[ 9. ],
[ 8.5],
[ 8.3],
[8.],
[ 8.2],
[8.3],
[12.5],
[12.3],
[11.6],
[ 8.6],
[ 8.6],
[6.],
[ 6.4],
[8.6],
[10.2],
```

```
[ 8.7],
[8.8],
[ 9. ],
[11. ],
[11.5],
[11.4],
[ 7.6],
[ 9.3],
[16.5],
[12.3],
[12.7],
[13.7],
[13.1],
[ 8.1],
[ 8.6],
[10.9],
[10.6],
[11.],
[8.8],
[11.1],
[7.],
[ 7.8],
[15.6],
[17.3],
[ 6.6],
[7.7],
[14.2],
[13.7],
[10.1],
[10.3],
[10.7],
[10.5],
[11.],
[10.8],
[11.],
[11.],
[11.2],
[10.1],
[10.7],
[10.6],
[10.8],
[10.7],
[10.9],
[14.],
[11.9],
[11.9],
[11.9],
[11.9],
[ 9.2],
[ 9.9],
```

```
[ 9.8],
```

- [13.6],
- [10.4],
- [13.9],
- [13.],
- [10.9],
- [13.7],
- [9.2],
- [9.8],
- [10.4],
- [10.9],
- [11.1],
- [11.3],
- [11.5],
- [12.7],
- [11.3],
- [12.8],
- [14.8],
- [13.6],
- [15.4],
- [12.6],
- [17.8],
- [10.2],
- [11.9],
- [11.3],
- [11.4],
- [15.9],
- [16.],
- [17.1],
- [17.1],
- [15.6],
- [8.4],
- [9.],
- [8.],
- [7.9],
- [6.4],
- [6.4],
- [16.9],
- [16.9],
- [9.6],
- [9.7],
- [7.8],
- [8.5], [11.2],
- [7.8],
- [8.5],
- [11.2],
- [12.5],
- [8.6],
- [9.9],

```
[11.6],
[ 9. ],
[13.1],
[ 8.5],
[ 9.2],
[ 7.7],
[12.9],
[12.9],
[ 9.6],
[5.7],
[ 6. ],
[7.7],
[ 7.3],
[7.1],
[7.4],
[ 6.8],
[ 6.9],
[ 8.5],
[ 8.2],
[12.9],
[13.9],
[10.3],
[11.2],
[11.5],
[ 8.3],
[ 8.2],
[ 4.8],
[ 4.7],
[5.5],
[ 9.4],
[ 9.5],
[16.7],
[11.3],
[12.4],
[10.9],
[10.2],
[13.1],
[11.9],
[11.8],
[14.],
[13.5],
```

[14.3], [15.5], [15.1], [16.2], [10.], [11.], [11.3], [7.1],

```
[ 8.5],
       [8.7],
       [ 9.1],
       [ 9.4],
       [ 9.8],
       [ 9.6],
       [8.7],
       [ 9.3],
       [ 9.4],
       [ 7.3],
       [7.3],
       [ 9.8],
       [12.3],
       [ 9.6],
       [ 9.5],
       [ 9.4],
       [ 7.2],
       [8.2],
       [8.2],
       [ 9.4],
       [ 9. ],
       [ 9. ],
       [ 9.2],
       [ 6.9],
       [5.4],
       [ 8.6],
       [ 8.6],
       [7.1],
       [ 6.8],
       [12.1],
       [10.7],
       [10.7],
       [12.2],
       [10.4],
       [ 9.7],
       [10.1],
       [11.5],
       [10.2],
       [11.5],
       [11.2],
       [11.8],
       [11.5],
       [11.8],
       [11.3],
       [12.8]])
train y # Column Values of column CO2EMISSIONS will be used for the
training only as dependent varibale
array([[196],
       [221],
```

- [136],
- [255],
- [244],
- [232],
- [267],
- [225],
- [239],
- [359],
- [338],
- [354],
- [338],
- [354],
- [359],
- [230],
- [214],
- [230],
- [214],
- [251],
- [224],
- [258],
- [224],
- [260],
- [227],
- [258],
- [288],
- [230],
- [242],
- [239],
- [258],
- [294],
- [336],
- [407],
- [354],
- [336],
- [407],
- [354],
- [306],
- [308],
- [262],
- [285],
- [262],
- [267],
- [281],
- [281],
- [292],
- [209],
- [209],
- [297],
- [356],
- [320],

```
[380],
```

- [322],
- [380],
- [380],
- [437],
- [193],
- [200], [181],
- [181],
- [193],
- [200],
- [209],
- [209],
- [209],
- [230],
- [228],
- [237],
- [232],
- [193],
- [200],
- [209],
- [221],
- [230],
- [237],
- [202],
- [209],
- [213],
- [232],
- [292],
- [232],
- [292],
- [281],
- [292],
- [292],
- [191],
- [292],
- [338],
- [338],
- [317],
- [338],
- [317],
- [209],
- [260],
- [230],
- [253],
- [320],
- [370],
- [274],
- [209],
- [200],

```
[278],
```

- [253],
- [278],
- [283],
- [290],
- [196],
- [212],
- [264],
- [250],
- [264],
- [264],
- [225],
- [246],
- [189],
- [225],
- [218],
- [221],
- [235],
- [207],
- [251],
- [232],
- [258],
- [262],
- [232],
- [248],
- [248],
- [260],
- [253],
- [260],
- [255],
- [382],
- [340],
- [382],
- [340],
- [338],
- [322],
- [377],
- [283],
- [294],
- [271],
- [290],
- [258],
- [269],
- [294],
- [382],
- [340],
- [276],
- [258],
- [179],
- [189],

```
[192],
```

[177],

[163],

[209],

[259],

[290], [272],

[366],

[334],

[380],

[344],

[380],

[344],

[362],

[380],

[344],

[380],

[362],

[414],

[432],

[411],

[419],

[435],

[229],

[200],

[228],

[184],

[244],

[271],

[269],

[292],

[270],

[324],

[290],

[299],

[329],

[184],

[173],

[184],

[172],

[182],

[191], [182],

[191],

[182],

[159],

[317],

[294],

[317],

[294],

```
[317],
```

- [294],
- [317],
- [294],
- [290],
- [207],
- [232],
- [246],
- [230],
- [230],
- [230],
- [294],
- [251],
- [251],
- [237],
- [222],
- [276],
- [269],
- [225],
- [230],
- [301],
- [294],
- [320],
- [317],
- [258],
- [237],
- [294],
- [251],
- [308],
- [251],
- [237],
- [235],
- [222],
- [186],
- [198],
- [202],
- [195],
- [202],
- [168],
- [168],
- [278],
- [250],
- [271],
- [264],
- [255],
- [285],
- [276],
- [179],
- [179],
- [182],

```
[179],
```

- [156],
- [200],
- [193],
- [373],
- [350],
- [396],
- [360],
- [386],
- [368],
- [488],
- [225],
- [264],
- [281],
- [209],
- [216],
- [214],
- [230],
- [368],
- [346],
- [274],
- [254],
- [288],
- [267],
- [294],
- [366],
- [317], [308],
- [283],
- [283], [264],
- [336],
- [336],
- [315],
- [308],
- [288],
- [308],
- [288],
- [320],
- [318],
- [152],
- [184], [264],
- [278],
- [294],
- [205],
- [177], [165],
- [179],
- [165],

```
[184],
```

[170],

[166],

[162],

[196],

[186],

[205], [186],

[216],

[126],

[244],

[264],

[244],

[209],

[271],

[237],

[229],

[258],

[251],

[218],

[228],

[232],

[239],

[283],

[297],

[347],

[366],

[334],

[344],

[380],

[344],

[380],

[380],

[344],

[414],

[432],

[411],

[419],

[435],

[271],

[269],

[292],

[270],

[324],

[290],

[285],

[277],

[329],

[209],

[276],

```
[230],
```

- [290],
- [272],
- [317],
- [294],
- [338],
- [322],
- [354],
- [317],
- [294],
- [317],
- [294],
- [182],
- [186],
- [200],
- [209],
- [221],
- [251],
- [110],
- [161],
- [166],
- [246],
- [209],
- [159],
- [172],
- [244],
- [265],
- [276],
- [308],
- [177],
- [177],
- [196],
- [304],
- [255],
- [258],
- [267],
- [237],
- [264],
- [255],
- [221],
- [143],
- [145],
- [214],
- [232],
- [230],
- [244], [177],
- [184],
- [202],
- [196],

```
[235],
```

- [172],
- [189],
- [265],
- [269],
- [283],
- [255],
- [267],
- [253],
- [283],
- [267],
- [294],
- [175],
- [271],
- [244],
- [294],
- [334],
- [345],
- [237],
- [244],
- [294],
- [306],
- [290],
- [306],
- [285],
- [280],
- [306],
- [306],
- [301],
- [315],
- [310],
- [315],
- [310],
- [218],
- [230],
- [248],
- [232],
- [251],
- [267],
- [225],
- [209],
- [225],
- [216],
- [235],
- [216],
- [255],
- [340],
- [267],
- [278],
- [363],

```
[225],
```

- [216],
- [216],
- [255],
- [294],
- [308],
- [251],
- [184],
- [193],
- [193],
- [223],
- [225],
- [193],
- [196],
- [216],
- [221],
- [193],
- [198],
- [200],
- [175],
- [177],
- [175],
- [212],
- [214],
- [276],
- [237],
- [262],
- [253],
- [271],
- [207],
- [209],
- [230],
- [361],
- [400],
- [274],
- [334],
- [225],
- [225],
- [354],
- [342],
- [285],
- [278],
- [345],
- [331],
- [283],
- [283],
- [277],
- [354],
- [347],
- [129],

```
[138],
```

- [221],
- [239],
- [253],
- [175],
- [320],
- [223],
- [239],
- [244],
- [253],
- [244],
- [290],
- [283],
- [297],
- [262],
- [380],
- [255],
- [189],
- [271],
- [260],
- [294],
- [235],
- [281],
- [207],
- [262],
- [145],
- [368],
- [346],
- [292],
- [292],
- [347],
- [334],
- [301],
- [189],
- [184],
- [198],
- [196],
- [205],
- [283],
- [290],
- [177],
- [170],
- [159],
- [161],
- [170],
- [163],
- [166],
- [177],
- [168],
- [166],

- [223],
- [225],
- [175],
- [168],
- [235],
- [221],
- [228],
- [184],
- [216],
- [216],
- [242],
- [224], [239],
- [244],
- [242],
- [347],
- [352],
- [304],
- [308],
- [179],
- [212],
- [264],
- [301],
- [194],
- [235],
- [230],
- [239],
- [242],
- [235],
- [202],
- [267],
- [269],
- [262],
- [297],
- [310],
- [310],
- [419],
- [407],
- [324],
- [359],
- [260],
- [256],
- [278],
- [327],
- [356], [278],
- [276],
- [327],
- [205],
- [207],

```
[225],
```

- [246],
- [380],
- [361],
- [361],
- [179],
- [179], [179],
- [179],
- [200],
- [179],
- [175],
- [200],
- [179],
- [179],
- [179],
- [184],
- [191],
- [207],
- [196],
- [191],
- [184],
- [207],
- [196],
- [191],
- [184],
- [191],
- [184],
- [191],
- [184],
- [207],
- [196],
- [191],
- [207],
- [196],
- [191],
- [184],
- [189],
- [191],
- [288],
- [283],
- [267],
- [198],
- [198],
- [138],
- [147],
- [198],
- [235],
- [200],
- [202],

```
[207],
```

- [253],
- [264],
- [262],
- [175],
- [214],
- [380],
- [283],
- [292],
- [315],
- [301],
- [186],
- [198],
- [251],
- [244],
- [253],
- [202],
- [255],
- [161],
- [179],
- [359],
- [398],
- [152],
- [177],
- [327],
- [315],
- [232],
- [237],
- [246],
- [242],
- [253],
- [248],
- [253],
- [253],
- [258],
- [232],
- [246],
- [244],
- [248],
- [246],
- [251],
- [322],
- [274],
- [274],
- [274],
- [274],
- [212],
- [228],
- [225],
- [313],

```
[281],
```

- [320],
- [299],
- [251],
- [315],
- [212],
- [225],
- [239],
- [251],
- [255],
- [260],
- [264],
- [292],
- [260],
- [294],
- [340],
- [313],
- [354],
- [290],
- [285],
- [275],
- [274],
- [260],
- [262],
- [254],
- [368],
- [393],
- [393],
- [359],
- [193],
- [207],
- [184],
- [182],
- [147],
- [147],
- [389],
- [389],
- [221],
- [223],
- [179],
- [196],
- [258],
- [179],
- [196],
- [258],
- [288],
- [198],
- [228],
- [267],
- [207],

```
[301],
```

- [196],
- [212],
- [177],
- [297],
- [297],
- [221],
- [131],
- [138],
- [177],
- [168],
- [163],
- [170],
- [156],
- [159],
- [196],
- [189],
- [297],
- [320],
- [237],
- [258],
- [264],
- [191],
- [189],
- [110],
- [108],
- [126],
- [216],
- [218],
- [384],
- [260],
- [285],
- [251],
- [235],
- [301],
- [274],
- [271],
- [322],
- [310],
- [329],
- [356],
- [347],
- [373],
- [230],
- [253],
- [235],
- [260],
- [163],
- [196],
- [200],

```
[209],
        [216],
        [225],
        [221],
        [200],
        [214],
        [216],
        [197],
        [197],
        [225],
        [283],
        [221],
        [218],
        [216],
        [194],
        [189],
        [189],
        [216],
        [207],
        [207],
        [212],
       [186],
        [124],
        [198],
        [198],
        [192],
        [184],
        [278],
        [246],
        [246],
        [281],
        [281],
        [223],
        [232],
        [264],
        [235],
        [264],
        [258],
        [271],
       [264],
        [271],
        [260],
       [294]], dtype=int64)
regr.fit(independentvariable,dependentvariable)
regr.fit(train_x,train_y)
LinearRegression()
```

```
# The coefficients
print ('Coefficients: ', regr.coef_)
print ('Intercept: ',regr.intercept_)
Coefficients: [[16.37691523]]
Intercept: [66.31999663]
regr.coef_
array([[16.37691523]])
regr.intercept_
array([66.31999663])
regr.coef [0][0]
16.37691522903722
regr.intercept [0]
66.31999662763249
Plot Outputs
plt.scatter(train.FUELCONSUMPTION_COMB, train.CO2EMISSIONS,
color='blue')
plt.plot(train_x, regr.coef_[0][0]*train_x + regr.intercept_[0], 'r')
\# y = mx + c
plt.xlabel("FUELCONSUMPTION COMB")
plt.ylabel("CO2EMISSION")
Text(0, 0.5, 'C02EMISSION')
```


Evaluation

```
test_x = np.asanyarray(test[['FUELCONSUMPTION_COMB']]) #question in
exam Questions
test y = np.asanyarray(test[['CO2EMISSIONS']])#(ACTUAL answers)
test x.shape # Independent variable data for testing
(222, 1)
test y.shape # Dependent variable data for testing
(222, 1)
predicted y = regr.predict(test x) #whatever answerr will be generated
will be stored in predicted y predicted
predicted_y
array([[230.08914892],
       [248.10375567],
       [216.98761673],
       [321.7998742],
       [210.43685064],
       [230.08914892],
       [233.36453196],
       [249.74144719],
       [323.43756572],
       [216.98761673],
       [215.34992521],
```

```
[282.49527765],
[357.8290877],
[357.8290877],
[272.66912851],
[269.39374547],
[277.58220308],
[235.00222349],
[235.00222349],
[210.43685064],
[223.53838283],
[228.4514574],
[241.55298958],
[266.11836242],
[241.55298958],
[274.30682004],
[320.16218268],
[218.62530826],
[216.98761673],
[274.30682004],
[292.32142679],
[307.06065049],
[292.32142679],
[248.10375567],
[297.23450136],
[200.61070151],
[228.4514574],
[228.4514574],
[251.37913872],
[275.94451156],
[253.01683024],
[338.17678943],
[308.69834202],
[428.24982319],
[253.01683024],
[238.27760653],
[274.30682004],
[194.05993541],
[210.43685064],
[262.84297938],
[230.08914892],
[313.61141659],
[336.53909791],
[488.84440954],
[223.53838283],
[239.91529806],
[233.36453196],
[357.8290877 ],
[349.64063009],
[202.24839303],
[195.69762694],
```

```
[202.24839303],
[179.32071171],
[267.75605394],
[203.88608455],
[198.97300998],
[235.00222349],
[238.27760653],
[226.81376587],
[238.27760653],
[285.7706607],
[235.00222349],
[292.32142679],
[238.27760653],
[302.14757593],
[249.74144719],
[249.74144719],
[323.43756572],
[292.32142679],
[207.1614676],
[216.98761673],
[302.14757593],
[331.62602334],
[184.23378628],
[195.69762694],
[194.05993541],
[164.581488
[366.01754532],
[457.7282706],
[243.1906811],
[223.53838283],
[233.36453196],
[279.21989461],
[274.30682004],
[352.91601314],
[336.53909791],
[388.94522664],
[310.33603354],
[308.69834202],
[361.10447075],
[190.78455237],
[190.78455237],
[180.95840323],
[213.71223369],
[233.36453196],
[274.30682004],
[282.49527765],
[336.53909791],
[436.4382808],
[336.53909791],
[436.4382808],
```

```
[488.84440954],
[279.21989461],
[331.62602334],
[292.32142679],
[367.65523684],
[334.90140638],
[190.78455237],
[220.26299978],
[169.49456257],
[192.42224389],
[207.1614676],
[205.52377607],
[238.27760653],
[243.1906811],
[246.46606415],
[205.52377607],
[238.27760653],
[266.11836242],
[284.13296917],
[269.39374547],
[352.91601314],
[284.13296917],
[272.66912851],
[238.27760653],
[246.46606415],
[321.7998742],
[215.34992521],
[226.81376587],
[233.36453196],
[275.94451156],
[285.7706607],
[202.24839303],
[228.4514574],
[212.07454217],
[210.43685064],
[251.37913872],
[253.01683024],
[241.55298958],
[366.01754532],
[313.61141659],
[269.39374547],
[307.06065049],
[416.78598253],
[225.17607435],
[277.58220308],
[257.92990481],
[266.11836242],
[316.88679963],
[185.8714778],
[180.95840323],
```

```
[198.97300998],
[238.27760653],
[280.85758613],
[236.63991501],
[277.58220308],
[315.24910811],
[325.07525725],
[205.52377607],
[264.4806709],
[282.49527765],
[257.92990481],
[274.30682004],
[185.8714778],
[202.24839303],
[197.33531846],
[197.33531846],
[221.9006913],
[215.34992521],
[257.92990481],
[251.37913872],
[277.58220308],
[208.79915912],
[259.56759633],
[218.62530826],
[202.24839303],
[207.1614676],
[241.55298958],
[236.63991501],
[262.84297938],
[228.4514574],
[277.58220308],
[297.23450136],
[239.91529806],
[341.45217248],
[328.35064029],
[346.36524704],
[346.36524704],
[221.9006913],
[167.85687105],
[213.71223369],
[228.4514574],
[228.4514574],
[205.52377607],
[221.9006913],
[207.1614676],
[271.03143699],
[226.81376587],
[257.92990481],
[200.61070151],
[223.53838283],
```

```
[212.07454217],
       [284.13296917],
       [185.8714778],
       [231.72684044],
       [225.17607435],
       [179.32071171],
       [179.32071171].
       [225.17607435],
       [226.81376587],
       [243.1906811],
       [256.29221328]])
test y.shape
(222, 1)
predicted_y.shape
(222, 1)
from sklearn.metrics import r2 score
print(f"Mean absolute error: {np.mean(np.absolute(predicted y -
test_y))} ")# pred - actual
Mean absolute error: 20.0264532711564
print("Residual sum of squares (MSE): %.2f" % np.mean((predicted y -
test y) **2))
Residual sum of squares (MSE): 822.80
from sklearn.metrics import r2 score
print(f"R2-score:{r2 score(test y ,predicted y)*100} %") # Most
accurate thing or evaluation metrics
R2-score:79.53048969001148 %
Apply Lasso Regression to cover the overfitting and underfitting
problem
from sklearn.linear model import Lasso
L = Lasso(alpha=1)
L.fit(train_x,train_y)
Lasso(alpha=1)
```

ypred2 = L.predict(test x)

from sklearn.metrics import r2 score

print("R2-score", r2_score(test_y, ypred2))

```
print(f"Mean absolute error: {np.mean(np.absolute(vpred2 - test v))}
")# pred - actual
R2-score 0.7956622176158492
Mean absolute error: 67.56303603234201
Que.6 Train your model on different train test ratio and train the
models and note down there accuracies
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
Bill Authentication = pd.read csv("C:/Users/Lenovo/Documents/Data
Set/bill authentication.csv")
Bill Authentication
      Variance
                Skewness
                          Curtosis Entropy
                                             Class
0
       3.62160
                 8.66610
                           -2.8073 -0.44699
                                                 0
1
       4.54590
                 8.16740
                           -2.4586 -1.46210
                                                 0
2
       3.86600 -2.63830
                           1.9242 0.10645
                                                 0
3
               9.52280
                           -4.0112 -3.59440
                                                 0
       3.45660
4
       0.32924
                -4.45520
                            4.5718 -0.98880
                                                 0
1367
       0.40614
                 1.34920
                           -1.4501 -0.55949
                                                 1
                           6.4774 0.34179
                                                 1
1368
      -1.38870 -4.87730
1369
      -3.75030 -13.45860
                           17.5932 -2.77710
                                                 1
                                                 1
1370
      -3.56370
                -8.38270
                           12.3930 -1.28230
1371
      -2.54190
                -0.65804
                           2.6842 1.19520
                                                 1
[1372 rows x 5 columns]
Bill Authentication.head()
   Variance Skewness Curtosis Entropy
                                          Class
0
    3.62160
               8.6661
                        -2.8073 -0.44699
                                              0
               8.1674
1
    4.54590
                        -2.4586 -1.46210
                                              0
2
              -2.6383
                         1.9242 0.10645
                                              0
    3.86600
3
    3.45660
               9.5228
                        -4.0112 -3.59440
                                              0
    0.32924
              -4.4552
                        4.5718 -0.98880
                                              0
Bill Authentication.tail()
      Variance Skewness
                          Curtosis
                                    Entropy
                                             Class
1367
       0.40614
                 1.34920
                           -1.4501 -0.55949
                                                 1
1368
      -1.38870
                -4.87730
                            6.4774
                                    0.34179
                                                 1
                                                 1
1369
      -3.75030 -13.45860
                           17.5932 -2.77710
1370
      -3.56370
                -8.38270
                           12.3930 -1.28230
                                                 1
```

2.6842 1.19520

1

1371

-2.54190

-0.65804

```
X = Bill Authentication[["Variance", "Skewness", "Curtosis", "Entropy"]]
# Independant Variable
Χ
      Variance Skewness Curtosis Entropy
               8.66610
                         -2.8073 -0.44699
0
       3.62160
1
      4.54590 8.16740
                          -2.4586 -1.46210
2
       3.86600 -2.63830
                          1.9242 0.10645
3
       3.45660 9.52280
                          -4.0112 -3.59440
       0.32924 -4.45520
4
                          4.5718 -0.98880
     0.40614 1.34920
                          -1.4501 -0.55949
1367
1368
      -1.38870 -4.87730
                          6.4774 0.34179
      -3.75030 -13.45860
                          17.5932 -2.77710
1369
1370
      -3.56370 -8.38270
                          12.3930 -1.28230
1371 -2.54190 -0.65804
                         2.6842 1.19520
[1372 rows x 4 columns]
Y = Bill Authentication[["Class"]]
Υ
      Class
0
          0
          0
1
2
          0
3
          0
4
          0
1367
          1
1368
          1
1369
          1
1370
          1
1371
          1
[1372 rows x 1 columns]
Setting up Decision Tree
from sklearn.model selection import train_test_split
X trainset, X testset, Y trainset, Y testset = train test split(X, Y,
test size=0.2, random state=500)
Modelling
ClassTree = DecisionTreeClassifier(criterion="entropy", max_depth = 4)
ClassTree # it shows the default parameters
```

```
DecisionTreeClassifier(criterion='entropy', max depth=4)
ClassTree.fit(X trainset,Y trainset)
DecisionTreeClassifier(criterion='entropy', max depth=4)
```

Prediction

variable called predTree

```
Let's make some predictions on the testing dataset and store it into a
Y pred = ClassTree.predict(X testset)
Y pred
array([1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
1,
       1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0,
0,
       0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1,
0,
       0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
1,
       1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,
0,
       0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1,
       1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1,
0,
       1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0,
1,
       0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,
1,
       1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0,
0,
       0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,
1,
       1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,
0,
       0, 0, 0, 0, 0, 0, 1, 0, 0, 0], dtype=int64)
# You can print out predTree and y testset if you want to visually
compare the prediction to the actual values.
print (Y pred [0:5])# Predicted by the ml model
print (Y testset [0:5])# Actual values we have
[1 0 1 1 0]
      Class
```

```
816
           1
316
           0
762
           1
1128
           1
           0
232
print (Y_testset [0:5])
      Class
816
           0
316
762
           1
1128
           1
232
           0
```

Evaluation

warnings.warn(

Next, let's import metrics from sklearn and check the accuracy of our model.

```
from sklearn import metrics
print("DecisionTrees's Accuracy: ", metrics.accuracy_score(Y_testset,
Y pred))
DecisionTrees's Accuracy:
                          0.9490909090909091
Bill Authentication.head()
   Variance Skewness Curtosis Entropy
                                          Class
0
    3.62160
               8.6661
                       -2.8073 -0.44699
                                              0
1
    4.54590
               8.1674
                        -2.4586 -1.46210
                                              0
2
    3.86600
              -2.6383
                         1.9242 0.10645
                                              0
3
              9.5228
                        -4.0112 -3.59440
                                              0
    3.45660
    0.32924
              -4.4552
                         4.5718 -0.98880
                                              0
Bill Authentication.tail()
      Variance Skewness Curtosis Entropy
1367
       0.40614
                 1.34920
                           -1.4501 -0.55949
                                                 1
1368
      -1.38870
                -4.87730
                            6.4774 0.34179
                                                 1
1369
      -3.75030 -13.45860
                           17.5932 -2.77710
                                                 1
      -3.56370
1370
                -8.38270
                           12.3930 -1.28230
                                                 1
1371 -2.54190 -0.65804
                           2.6842 1.19520
                                                 1
ClassTree.predict([[3,4,-4,3]])
C:\Users\Lenovo\anaconda3\lib\site-packages\sklearn\base.py:450:
UserWarning: X does not have valid feature names, but
DecisionTreeClassifier was fitted with feature names
```

```
array([1], dtype=int64)
max(Bill Authentication['Variance'])
6.8248
min(Bill_Authentication['Variance'])
-7.0421
X_testset[0:5]
      Variance Skewness
                           Curtosis
                                       Entropy
       -4.8554 -5.903700
                             10.9818 -0.821990
816
316
        5.7353 5.280800
                             -2.2598 0.075416
762
       -1.3971 3.319100
                             -1.3927 -1.994800
1128
       -2.1802 3.379100
                             -1.2256 -2.662100
        2.2596 -0.033118
                             4.7355 -0.277600
232
Y_testset = np.array(Y_testset)
Y testset
array([[1],
       [0],
       [1],
       [1],
       [0],
       [1],
       [1],
       [1],
       [0],
       [1],
       [0],
       [1],
       [1],
       [0],
       [1],
       [1],
       [1],
       [0],
       [1],
       [1],
       [1],
       [1],
       [0],
       [0],
       [1],
       [1],
       [0],
       [1],
       [0],
       [0],
```

```
[0],
[1],
[1],
          [0],
          [0],
[1],
          [0],
          [0],
         [0],
[1],
          [1],
          [1],
          [1],
          [0],
[0],
[0],
[0],
          [0],
          [1],
          [0],
         [0],
[0],
[0],
[0],
          [1],
          [0],
[1],
          [1],
[0],
          [1],
          [0],
          [0],
          [1],
         [0],
[0],
          [0],
          [0],
[0],
          [0],
          [1],
[0],
[0],
          [0],
          [0]], dtype=int64)
X_testset
                                    Curtosis
        Variance Skewness
                                                    Entropy
                                    10.98180 -0.821990
          -4.8554 -5.903700
           5.7353
                      5.280800
                                    -2.25980
                                                  0.075416
```

```
762
       -1.3971
                3.319100
                          -1.39270 -1.994800
1128
       -2.1802
               3.379100
                          -1.22560 -2.662100
232
        2.2596 -0.033118
                           4.73550 -0.277600
1122
       -2.0285
                          -0.63435 -1.175000
                3.846800
141
        1.7317 -0.347650
                           4.19050 -0.991380
633
        4.4295 -2.350700
                           1.70480 0.909460
428
        3.4246 -0.146930
                           0.80342
                                    0.291360
277
        1.3638 -4.775900
                           8.41820 -1.883600
```

[275 rows x 4 columns]

X_testset = X_testset.values

X testset

```
array([[-4.8554
                , -5.9037
                          , 10.9818 , -0.82199 ],
       [5.7353,
                   5.2808
                          , -2.2598 ,
                                        0.075416],
      [-1.3971]
                   3.3191 , -1.3927
                                     , -1.9948
      [ 4.4295 , -2.3507 ,
                             1.7048 ,
                                        0.90946 1,
                , -0.14693 ,
      [ 3.4246
                             0.80342 ,
                                        0.29136],
      [ 1.3638
                , -4.7759 ,
                             8.4182 , -1.8836 ]])
```

plt.scatter(X_testset[:,0],X_testset[:,-1], c = Y_pred)
<matplotlib.collections.PathCollection at 0x2118c333d00>

plt.scatter(X_testset[:,0],X_testset[:,-1], c = Y_testset)
<matplotlib.collections.PathCollection at 0x2118c3aa250>

For the accuracy of training and testing are

- 1) When take tranning data 80% and testing data 20% then accuracy is 94.90%
- 2) When take tranning data 70% and testing data the 30% then accuracy is 96.35%
- 3) When take tranning data is 60% and testing data is 40% then accuracy is 96.90%
- 4) When take tranning data 50% and testing data 50% then accuracy is 96.50%

Que.7 we are providing you another dataset regarding housing prediction to need to apply Linear Regression on atleast 5 pairs of independent and dependent variable and store their accuracy and thenmake a plot of those accuracyNote: Dependent Variable is SalesPrice

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("C:/Users/Lenovo/Documents/Data Set/housing.csv")

df
```

1 - 1 Ch	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley
LotShap 0	e \ 1	60	RL	65.0	8450	Pave	NaN
Reg 1	2	20	RL	80.0	9600	Pave	NaN
Reg 2	3	60	RL	68.0	11250	Pave	NaN
IR1 3	4	70	RL	60.0	9550	Pave	NaN
IR1 4 IR1	5	60	RL	84.0	14260	Pave	NaN

			• • •						
1455	1456		60	RL	6	52.0	7917	Pave	NaN
Reg 1456	1457		20	RL	8	35.0	13175	Pave	NaN
Reg 1457	1458		70	RL	(66.0	9042	Pave	NaN
Reg 1458	1459		20	RL	(68.0	9717	Pave	NaN
Reg 1459 Reg	1460		20	RL	7	75.0	9937	Pave	NaN
		ntour Ut	ilities		PoolArea	PoolQC	Fence	MiscFe	ature
MiscV 0	al \	Lvl	AllPub		Θ	NaN	NaN		NaN
0		Lvl	AllPub		Θ	NaN	NaN		NaN
0 2		Lvl	AllPub		Θ	NaN	NaN		NaN
0 3		Lvl	AllPub		0	NaN	NaN		NaN
0 4 0		Lvl	AllPub		0	NaN	NaN		NaN
1455		Lvl	AllPub		0	NaN	NaN		NaN
0 1456		Lvl	AllPub		0	NaN	MnPrv		NaN
0 1457		Lvl	AllPub		0	NaN	GdPrv		Shed
2500 1458		Lvl	AllPub		0	NaN	NaN		NaN
0 1459 0		Lvl	AllPub		0	NaN	NaN		NaN
0 1 2 3 4 1455 1456 1457	MoSold 2 5 9 2 12 8 2	2008 2007 2008 2006 2008 2007 2010 2010	и и и и и и	VD VD VD VD VD VD VD	AleCondita Norr Norr Abnor Norr Norr Norr	nal nal rml nal nal nal	lePrice 208500 181500 223500 140000 250000 175000 210000 266500		
1458 1459	4 6	2010 2008		VD VD	No rr No rr		142125 147500		

[1460 rows x 81 columns]

df.head()

Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape
1	60	RL	65.0	8450	Pave	NaN	Reg
2	20	RL	80.0	9600	Pave	NaN	Reg
3	60	RL	68.0	11250	Pave	NaN	IR1
4	70	RL	60.0	9550	Pave	NaN	IR1
5	60	RL	84.0	14260	Pave	NaN	IR1
	1 2 3 4	1 60 2 20 3 60 4 70	1 60 RL 2 20 RL 3 60 RL 4 70 RL	1 60 RL 65.0 2 20 RL 80.0 3 60 RL 68.0 4 70 RL 60.0	1 60 RL 65.0 8450 2 20 RL 80.0 9600 3 60 RL 68.0 11250 4 70 RL 60.0 9550	1 60 RL 65.0 8450 Pave 2 20 RL 80.0 9600 Pave 3 60 RL 68.0 11250 Pave 4 70 RL 60.0 9550 Pave	1 60 RL 65.0 8450 Pave NaN 2 20 RL 80.0 9600 Pave NaN 3 60 RL 68.0 11250 Pave NaN 4 70 RL 60.0 9550 Pave NaN

M		Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscVal
0		AllPub	 0	NaN	NaN	NaN	0
1	Lvl	AllPub	 Θ	NaN	NaN	NaN	0
5	Lvl	AllPub	 0	NaN	NaN	NaN	0
9 3 2	Lvl	AllPub	 0	NaN	NaN	NaN	0
4		AllPub	 0	NaN	NaN	NaN	0

	YrSold	SaleType	SaleCondition	SalePrice
0	2008	WD	Normal	208500
1	2007	WD	Normal	181500
2	2008	WD	Normal	223500
3	2006	WD	Abnorml	140000
4	2008	WD	Normal	250000

[5 rows x 81 columns]

df.tail()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley
LotSh 1455		60	RL	62.0	7917	Pave	NaN
Reg 1456 Reg	1457	20	RL	85.0	13175	Pave	NaN
1457 Reg	1458	70	RL	66.0	9042	Pave	NaN

1458	1459		20	RL	6	58.0	9717	Pave	NaN
Reg 1459 Reg	1460		20	RL	7	75.0	9937	Pave	NaN
		ntour Ut	ilities		PoolArea	PoolQC	Fence	MiscFe	ature
MiscV 1455 0	al \	Lvl	AllPub		0	NaN	NaN		NaN
1456		Lvl	AllPub		0	NaN	MnPrv		NaN
0 1457 2500		Lvl	AllPub		0	NaN	GdPrv		Shed
1458		Lvl	AllPub		0	NaN	NaN		NaN
0 1459 0		Lvl	AllPub		0	NaN	NaN		NaN
1455 1456 1457 1458 1459	MoSold 8 2 5 4 6	YrSold 2007 2010 2010 2010 2008	SaleType Wi Wi Wi Wi Wi	D D D	aleConditi Norm Norm Norm Norm Norm	nal nal nal nal	lePrice 175000 210000 266500 142125 147500		

[5 rows x 81 columns]

df.info()

Column	Non-Null Count	Dtype
		int64
MSSubClass	1460 non-null	int64
MSZoning	1460 non-null	object
LotFrontage	1201 non-null	float64
LotArea	1460 non-null	int64
Street	1460 non-null	object
Alley	91 non-null	object
LotShape	1460 non-null	object
LandContour	1460 non-null	object
Utilities	1460 non-null	object
LotConfig	1460 non-null	object
LandSlope	1460 non-null	object
Neighborhood	1460 non-null	object
Condition1	1460 non-null	object
Condition2	1460 non-null	object
BldgType	1460 non-null	object
	Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities LotConfig LandSlope Neighborhood Condition1 Condition2	Id 1460 non-null MSSubClass 1460 non-null MSZoning 1460 non-null LotFrontage 1201 non-null LotArea 1460 non-null Street 1460 non-null Alley 91 non-null LotShape 1460 non-null LandContour 1460 non-null Utilities 1460 non-null LotConfig 1460 non-null LandSlope 1460 non-null Neighborhood 1460 non-null Condition1 1460 non-null Condition2 1460 non-null

16 17 18 19 20 21 22 23 24 25 26 27 28	HouseStyle OverallQual OverallCond YearBuilt YearRemodAdd RoofStyle RoofMatl Exterior1st Exterior2nd MasVnrType MasVnrArea ExterQual ExterCond	1460 1460 1460 1460 1460 1460 1460 1452 1452 1460 1460	non-null	object int64 int64 int64 object object object object float64 object object
29 30 31 32 33 34 35 36 37	Foundation BsmtQual BsmtCond BsmtExposure BsmtFinType1 BsmtFinSF1 BsmtFinType2 BsmtFinSF2 BsmtUnfSF	1460 1423 1423 1422 1423 1460 1422 1460 1460	non-null non-null non-null non-null non-null non-null non-null non-null	object object object object int64 object int64 int64
38 39 40 41 42 43 44 45	TotalBsmtSF Heating HeatingQC CentralAir Electrical 1stFlrSF 2ndFlrSF LowQualFinSF	1460 1460 1460 1460 1459 1460 1460	non-null non-null non-null non-null non-null non-null non-null	int64 object object object int64 int64
46 47 48 49 50 51 52 53	GrLivArea BsmtFullBath BsmtHalfBath FullBath HalfBath BedroomAbvGr KitchenAbvGr	1460 1460 1460 1460 1460 1460 1460	non-null non-null non-null non-null non-null non-null non-null	int64 int64 int64 int64 int64 int64 object
54 55 56 57 58 59 60 61 62 63 64 65	TotRmsAbvGrd Functional Fireplaces FireplaceQu GarageType GarageYrBlt GarageFinish GarageCars GarageArea GarageQual GarageCond PavedDrive	1460 1460 1460	non-null	int64 object int64 object object float64 object int64 int64 object object

66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch	1460 non-null	int64
69	3SsnPorch	1460 non-null	int64
70	ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null	int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76	MoSold	1460 non-null	int64
77	YrSold	1460 non-null	int64
78	SaleType	1460 non-null	object
79	SaleCondition	1460 non-null	object
80	SalePrice	1460 non-null	int64
dtyp	es: float64(3),	int64(35), obje	ct(43)
memo	ry usage: 924.0	+ KB	

df.describe()

Ic	MSSubClass	LotFrontage	LotArea
OverallQual \ count 1460.000000 1460.000000	1460.000000	1201.000000	1460.000000
mean 730.500000	56.897260	70.049958	10516.828082
6.099315 std 421.610009	42.300571	24.284752	9981.264932
1.382997 min 1.000000	20.000000	21.000000	1300.000000
1.000000 25% 365.750000	20.000000	59.000000	7553.500000
5.000000 50% 730.500000	50.000000	69.000000	9478.500000
6.000000 75% 1095.250000	70.000000	80.000000	11601.500000
7.000000 max 1460.000000 10.000000	190.000000	313.000000	215245.000000
OverallCond	YearBuilt	YearRemodAdd	MasVnrArea
count 1460.000000	1460.000000	1460.000000	1452.000000
mean 5.575342	1971.267808	1984.865753	103.685262
443.639726 std 1.112799	30.202904	20.645407	181.066207
456.098091 min 1.000000	1872.000000	1950.000000	0.000000
0.000000 25% 5.000000	1954.000000	1967.000000	0.000000

0.000000			
50% 5.000000	1973.000000	1994.000000	0.000000
75% 6.00000 712.250000	2000.000000	2004.000000	166.000000
max 9.000000 5644.000000	2010.000000	2010.000000	1600.000000
WoodDeckSF ScreenPorch \	OpenPorchSF	EnclosedPorch	3SsnPorch
count 1460.000000 1460.000000	1460.000000	1460.000000	1460.000000
mean 94.244521 15.060959	46.660274	21.954110	3.409589
std 125.338794 55.757415	66.256028	61.119149	29.317331
min 0.000000 0.000000	0.000000	0.000000	0.000000
25% 0.000000 0.000000	0.000000	0.000000	0.000000
50% 0.000000 0.000000	25.000000	0.000000	0.000000
75% 168.000000 0.000000	68.000000	0.000000	0.000000
max 857.000000 480.000000	547.000000	552.000000	508.000000
PoolArea	MiscVal	MoSold	YrSold
SalePrice count 1460.000000 1460.000000	1460.000000	1460.000000	1460.000000
mean 2.758904 180921.195890	43.489041	6.321918	2007.815753
std 40.177307 79442.502883	496.123024	2.703626	1.328095
min 0.000000 34900.000000	0.000000	1.000000	2006.000000
25% 0.000000 129975.000000	0.000000	5.000000	2007.000000
50% 0.000000 163000.000000	0.000000	6.000000	2008.000000
75% 0.000000 214000.000000	0.000000	8.000000	2009.000000
max 738.000000 755000.000000	15500.000000	12.000000	2010.000000
[8 rows x 38 column	s]		

[8 rows x 38 columns]
df.isnull().sum()

```
Ιd
                    0
MSSubClass
                    0
MSZoning
                    0
LotFrontage
                  259
LotArea
                    0
MoSold
                    0
YrSold
                    0
SaleType
                    0
SaleCondition
                    0
SalePrice
Length: 81, dtype: int64
df[["1stFlrSF"]]
      1stFlrSF
0
            856
1
           1262
2
            920
3
            961
4
           1145
            . . .
1455
            953
1456
          2073
1457
           1188
1458
          1078
1459
          1256
[1460 rows x 1 columns]
df[["2ndFlrSF"]]
      2ndFlrSF
0
            854
1
              0
2
            866
3
            756
4
           1053
            . . .
1455
            694
1456
              0
1457
           1152
1458
              0
1459
              0
[1460 rows x 1 columns]
df[["OpenPorchSF"]]
      OpenPorchSF
0
                61
```

```
1
2
                  0
                 42
3
                 35
4
                 84
1455
                 40
1456
                  0
1457
                 60
1458
                  0
                 68
1459
[1460 rows x 1 columns]
df[["BsmtFinSF1"]]
      BsmtFinSF1
0
              706
1
              978
2
              486
3
              216
4
              655
. . .
               . . .
1455
                0
1456
              790
1457
              275
1458
               49
              830
1459
[1460 rows x 1 columns]
set(df['1stFlrSF'])
{334,
 372,
 438,
 480,
 483,
 495,
 520,
 525,
 526,
 536,
 546,
 551,
 561,
 572,
 575,
 576,
 581,
 596,
 600,
```

612,

616,

624,

625,

626,

630,

649,

658,

660,

661,

663, 664,

672,

673,

676,

679,

680, 682,

684,

686,

689,

691,

693,

694,

696,

697,

698, 702,

703,

707,

708,

713,

716,

720,

725,

728,

729,

734, 735,

736,

738, 741,

742,

747,

750, 751,

752,

753,

755, 756,

757,

760,

764,

765,

767,

768,

769,

770,

772,

773,

774,

778,

779,

780,

783, 784,

786,

788,

789,

790,

792,

793,

794,

796,

798,

799, 800,

802,

803,

804,

806,

807,

808,

810,

811,

812,

813,

814,

815,

816, 818,

820,

822,

824, 825,

827,

829,

833,

835,

838,

840,

841,

842,

845,

846,

847,

848,

849,

851, 854,

855,

856,

858,

859,

860,

861,

864, 865,

866,

869,

872,

874,

875,

876,

877,

879,

880,

882,

884,

885,

886,

887,

888, 889,

892,

893,

894,

896,

897,

899,

900,

901,

902,

904,

905,

909,

910,

912,

913,

914,

915,

916,

918,

920,

923,

924,

925, 926,

927,

928,

929,

930,

932,

933,

935,

936,

938, 939,

941,

943,

944,

948,

949,

950,

951,

952,

953,

954,

955,

956,

958, 959,

960,

961,

962,

963,

964,

965,

966,

968,

969,

970,

971,

975,

976,

977,

979,

980,

981,

983,

984,

985,

986,

988,

989,

990,

991,

992,

993,

996,

997, 998,

999,

1001,

1002,

1003,

1004,

1005,

1006,

1007,

1008,

1010,

1012,

1013,

1014,

1015, 1020,

1021,

1021,

1024,

1026,

1028,

1029, 1032,

1034,

1035,

1036,

1038,

1039,

1040,

1041,

1047,

1048,

1050,

1051,

1052,

1053,

1054,

1055,

1056,

1057,

1058,

1060,

1061,

1062,

1063,

1064, 1065,

1067,

1068,

1069,

1071,

1072,

1073,

1074,

1075,

1077,

1078,

1079,

1080,

1082,

1085,

1086,

1088,

1089,

1090,

1091,

1092,

1094,

1095,

1096,

1097,

1098,

1099,

1100,

1103,

1104,

1105,

1107,

1112,

1113,

1114,

1116,

1117,

1118,

1120,

1121,

1122,

1124,

1125, 1126,

1120,

1128,

1130,

1131,

1132,

1133,

1134,

1136,

1137,

1138,

1140,

1141,

1142,

1143,

1144,

1145,

1146,

1148,

1149,

1150, 1152,

1153,

1155,

1154,

1155, 1156,

1158,

1159,

1160,

1161,

1163,

1164,

1165,

1166,

1167,

1168, 1170,

1175,

1178,

1180,

1181,

1182,

1184,

1186,

1187,

1188,

1190,

1192,

1194,

1195,

1196,

1199,

1200,

1203,

1204,

1207,

1208,

1210,

1211,

1212, 1214,

1215,

1216,

1217,

1218,

1220,

1221,

1222,

1223,

1224,

1225,

1226,

1228,

1229,

1232,

1234,

1235,

1236,

1238,

1240,

1241,

1242,

1244,

1246,

1247,

1251,

1252,

1253,

1256,

1258,

1260,

1261,

1262,

1264,

1265,

1266,

1268,

1269,

1272,

1274,

1276,

1277,

1279,

1281, 1282,

1283,

1284,

1285,

1287,

1288,

1291,

1294, 1296,

1297,

1298,

1299,

1301,

1302,

1304,

1306,

1307,

1309,

1310,

1314,

1316,

1318, 1319,

1320,

1324,

1325, 1327,

1328,

1332,

1337,

1338,

1339,

1340,

1342,

1344,

1349,

1350,

1352,

1357,

1358,

1360,

1361,

1362,

1363,

1364,

1368,

1370,

1372, 1375,

1377,

1378,

1381,

1382,

1383,

1389,

1390,

1391,

1392,

1394,

1402,

1405,

1407,

1411,

1412,

1414, 1416,

1419,

1422,

1423, 1425,

1426,

1428, 1429,

1430,

1431,

1432,

1434,

1440,

1442,

1444,

1445,

1453,

1454,

1456,

1459,

1462,

1464,

1465,

1466,

1468,

1470,

1472,

1473,

1476,

1478,

1479,

1482,

1484,

1486,

1489, 1490,

1493,

1494,

1496,

1498,

1500,

1501,

1502,

1504,

1505,

1506,

1507,

1509,

1512, 1516,

1518, 1520,

1521,

1523,

1525,

1526,

1530,

1532,

1533,

1535,

1541,

1542,

1547,

1548,

1549,

1552,

1553,

1554,

1555,

1557,

1559,

1560,

1561,

1563,

1566,

1567,

1569,

1571,

1572,

1573,

1574,

1575,

1576,

1578, 1580,

1582,

1584,

1586,

1588,

1593,

1600,

1601,

1602,

1604,

1610,

1614,

1616,

1617,

1619,

1620,

1621,

1622,

1624, 1625,

1629,

1630,

1632,

1634,

1644,

1646,

1647,

1651,

1652,

1654,

1656,

1657,

1659,

1660,

1661,

1663,

1664,

1668, 1670,

1675,

1679,

1680,

1682,

1684,

1686,

1687,

1689,

1690,

1694,

1696,

1698,

1699,

1700,

1701,

1702,

1704,

1707,

1709,

1710,

1712,

1713,

1717,

1718,

1719,

1720,

1721,

1724,

1726,

1728, 1733,

1734,

1742,

1766,

1768,

1771,

1776,

1779,

1787,

1788,

1792,

1795,

1800,

1801,

1803,

1811,

1824,

1826,

1828,

1831,

1836,

1838,

1839,

1842,

1844,

1848,

1850,

1856,

1867,

1869,

1872,

1888,

1898,

1902,

1905,

1922,

1932,

1940,

1944,

1959, 1966,

1968,

1973,

1976,

1980,

1987,

1992,

2000,

2018,

2020,

2028,

```
2042,
 2046,
 2053,
 2069,
 2073,
 2076,
 2084,
 2097,
 2110,
 2113,
 2117,
 2121,
 2129,
 2136,
 2156,
 2158,
 2196,
 2207,
 2217,
 2223,
 2234,
 2259,
 2364,
 2392,
 2402,
 2411,
 2444,
 2515,
 2524,
 2633,
 2898,
 3138,
 3228,
 4692}
df[["1stFlrSF","2ndFlrSF","0penPorchSF","PoolArea","BsmtFinSF1"]].valu
es # Independent variable
Χ
                        61,
                854,
                                    706],
array([[ 856,
                                0,
        [1262,
                  0,
                         0,
                                0,
                                    978],
        [ 920,
                866,
                        42,
                                0,
                                    486],
        . . . ,
        [1188, 1152,
                        60,
                                Θ,
                                    275],
                                    49],
        [1078,
                  0,
                         0,
                                0,
                                    830]], dtype=int64)
        [1256,
                  0,
                        68,
                                0,
Y = df[["SalePrice"]].values # Dependent Variable
```

```
Υ
array([[208500],
       [181500],
       [223500],
       [266500],
       [142125],
       [147500]], dtype=int64)
Splitting the dataset into the Training set and Test set
from sklearn.model selection import train test split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size =
0.2, random state = 500)
X train.shape
(1168, 5)
X test.shape
(292, 5)
Feature Scaling
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
sc Y = StandardScaler()
X train = sc X.fit transform(X train)
X_{\text{test}} = sc_{X}.transform(X_{\text{test}})
Y train = sc Y.fit transform(Y train)
Y test = sc Y.transform(Y test)
X train
array([[ 0.10235513, -0.78522929, 0.94757715, -0.07684505,
0.531936121,
       [0.60747084, -0.78522929, 0.85855721, -0.07684505, -
0.902313141,
       [ 1.40050251, 0.52565775, 3.36595228, -0.07684505,
1.90633593],
       [ 1.15804697, -0.78522929, -0.69929179, -0.07684505, 0.3716251
],
       [-0.52651394, -0.78522929, -0.69929179, -0.07684505,
0.41651219],
       [ 0.49634538, -0.78522929, -0.69929179, -0.07684505, -
0.95361266]])
```

```
X test
array([[-1.06951333,
                      0.9456955 , -0.18000879, -0.07684505, -
0.95361266],
                      1.21341187, 0.32443755, -0.07684505, -
       [-0.19061199,
0.09220812],
                      0.9595429 , -0.69929179, -0.07684505, -
       [-0.72098349,
0.12854528],
       [-0.4128629 , 2.11580066, -0.01680556, -0.07684505, -
0.95361266],
       [ 1.12016329, -0.78522929, 0.32443755, -0.07684505, -
0.60092842],
       [-0.73613696, 1.31034366, 0.60633404, -0.07684505,
0.39941234]])
Y train
array([[-0.47654967],
       [ 0.04412298],
       [ 3.30843421],
       [-0.52555415],
       [-0.75955057],
       [-0.36628958]])
Y_{test}
array([[-9.79900262e-02],
       [ 2.83019842e-01],
       [-4.33670746e-01],
       [-5.56181958e-01],
       [-9.67649141e-02],
       [ 6.24996610e-02],
       [ 6.07674553e-01],
       [-7.52199896e-01],
       [ 4.91288902e-01],
       [-2.49903929e-01],
       [-2.75214745e-01],
       [ 5.15791144e-01],
       [-5.90485097e-01],
       [-5.13303034e-01],
       [-7.22626718e-02],
       [ 4.07981278e-01],
       [ 1.23755267e-01],
       [-6.66442048e-01],
       [-3.81603481e-01],
       [-9.54343396e-01],
       [-3.41787337e-01],
       [ 4.90234277e-02],
       [ 5.28042265e-01],
```

```
5.26817153e-01],
[ 2.52392039e-01],
[-7.38723663e-01],
[-2.74406171e-01],
[-1.49339273e+00],
[-5.99060882e-01],
[-4.15294064e-01],
  1.48257509e-01],
[-3.67344204e-02],
 2.70874183e+00],
 8.94350788e-01],
[-5.13303034e-01],
[-1.00334788e+00],
[-5.38859900e-02],
[ 4.60661099e-01],
[-4.82675231e-01],
[-9.42092275e-01],
[-2.65830386e-01],
[-2.92782853e-01],
 2.54413474e-01],
[-3.47912898e-01],
[-4.77604295e-02],
[-1.10070660e-02],
 5.28042265e-01],
[-7.83882324e-02],
[-1.10070660e-02],
 4.36264319e+00],
 3.13647645e-01],
[-7.95078821e-01],
 1.10384496e+00],
[-9.42092275e-01],
[-2.74406171e-01],
[-5.56181958e-01],
 1.89430863e-05],
 1.48257509e-01],
[-1.09016035e-01],
[-4.39796307e-01],
[-3.49909831e-01],
[-9.42092275e-01],
[-6.11312003e-01],
  2.57462975e-021,
[-5.01051913e-01],
[ 5.63741004e-02],
[-6.35814245e-01],
  5.09665584e-01],
 1.80093375e+00],
[-7.59550569e-01],
[-4.27545186e-01],
[-4.52047428e-01],
[-4.58172988e-01],
```

```
[-1.15036133e+00],
[-3.43012450e-01],
[-4.53272540e-01],
[-4.03042943e-01],
[ 2.21764236e-01],
[-5.37805276e-01],
[ 1.69189878e+00],
[-5.74558640e-01],
[-1.33412815e+00],
[ 1.20185393e+00],
[-1.70271641e-01],
[-2.68280610e-01],
[-1.21774250e+00],
[ 8.34320294e-01],
 5.63741004e-02],
[-1.09016035e-01],
[-4.64298549e-01],
[-6.48065367e-01],
[-9.05338911e-01],
[-4.64298549e-01],
[-1.04010124e+00],
[ 3.44275448e-01],
[-4.76549670e-01],
[-3.84666262e-01],
[ 6.75055719e-01],
[-1.64146081e-01],
[-4.88150538e-03],
[-6.35814245e-01],
[-2.49903929e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.45137930e-02],
[ 7.10583971e-01],
[-2.43778368e-01],
[-7.14221421e-01],
[-8.57389051e-02],
[-2.68280610e-01],
[ 4.60661099e-01],
[-1.13233994e+00],
  4.17782175e-01],
  1.53263420e+001,
[-7.64451018e-01],
 2.39633824e+00],
  1.16510057e+00],
 4.66786659e-01],
 6.86252216e-02],
 7.11809083e-01],
[-2.32581871e-02],
[-7.33823215e-01],
[-5.14528146e-01],
```

```
[-1.22386806e+00],
[-3.41787337e-01],
[-4.76549670e-01],
[-5.13915590e-01],
[ 8.09818052e-01],
 1.69189878e+00],
 9.92530245e-02],
[-2.43778368e-01],
[-3.29536216e-01],
[-3.29536216e-01],
[-8.25657619e-01],
[-7.95078821e-01],
 4.91288902e-011,
 2.79449968e+00],
 1.62835221e+00],
[-6.60316488e-01],
[-2.68280610e-01],
 1.96036882e-01],
[-1.33518278e-01],
[-2.19276126e-01],
[-5.13303034e-01],
[-4.70424110e-01],
[-9.35966714e-01],
[-8.45137930e-02],
[-2.68280610e-01],
[-7.70576578e-01],
[-5.31679715e-01],
[-1.49339273e+00],
[-1.08298017e+00],
 9.92530245e-02],
[-4.52047428e-01],
 1.03033823e+001,
[-7.27697654e-01],
 2.50353555e+00],
 1.32436514e+00],
[-1.00334788e+00],
 1.63064317e+00],
[-1.00334788e+00],
 1.75315438e+00],
[-5.75783752e-01],
 6.38302356e-011,
[-3.29536216e-01],
[-1.71326265e-02],
[-5.68433079e-01],
[ 9.06601909e-01],
[-5.74558640e-01],
[ 3.30799215e-01],
[-6.05186442e-01],
[-1.08910573e+00],
[-3.05033974e-01],
```

```
6.50553477e-01],
 3.13647645e-01],
[-7.70576578e-01],
[-6.37039358e-01],
[ 2.34015357e-01],
[-1.45891910e-01],
[-6.66442048e-01],
  1.60508630e-01],
[-1.71326265e-02],
[-8.93590086e-01],
 4.23907735e-01],
[-5.77008864e-01],
[-6.35814245e-01],
[-5.13303034e-01],
[-1.45769399e-01],
[-3.05033974e-01],
[-9.78845638e-01],
[-2.69566978e-01],
[-6.11312003e-01],
[-8.45137930e-02],
[-2.31527247e-01],
 2.57462975e-02],
[-1.09016035e-01],
[-7.09320972e-01],
[-5.01051913e-01],
[ 2.58517600e-01],
[-4.64298549e-01],
[-1.34025371e+00],
[ 1.65024496e+00],
 9.44580385e-01],
[-2.68893166e-01],
 6.26051235e-01],
[-9.78845638e-01],
 5.89297871e-01],
 9.07827021e-01],
[-6.29688685e-01],
[-1.18711470e+00],
[ 8.70019034e-02],
[-9.64144293e-01],
[ 1.01270887e+00],
[-1.23611918e+00],
[ 2.57292488e-01],
  1.42131949e-01],
[-8.56334426e-01],
[-4.52047428e-01],
[ 8.33265670e-02],
[-2.93837477e-02],
[ 4.97414462e-01],
 1.07321716e+00],
 6.99557962e-01],
```

```
[-1.24959542e+00],
[-1.33518278e-01],
[-3.78540701e-01],
[-6.48065367e-01],
[ 1.02911312e+00],
[-5.50056397e-01],
[ 7.07962231e-01],
[-9.11464472e-01],
[-2.32581871e-02],
[-8.01204381e-01],
 3.48668803e+00],
[-5.25554155e-01],
[-8.80836669e-01],
[-2.32581871e-02],
 1.85010873e-01],
  1.25085841e+00],
  3.79974187e-02],
[-4.29995410e-01],
[ 4.05531054e-01],
[-4.76549670e-01],
[-1.17486358e+00],
[-2.25401686e-01],
 1.12834720e+00],
[-1.71496753e-01],
 2.17091761e+00],
  5.89297871e-01],
  6.87306840e-01],
  1.15284944e+00],
[-3.78540701e-01],
[-2.92782853e-01],
 3.91960590e+00],
[-3.72415140e-01],
[-8.19581063e-01],
 3.44275448e-01],
 3.67723066e-02],
 2.58517600e-01],
[-4.22644737e-01],
[-5.25554155e-01],
[-5.13303034e-01],
[-6.11312003e-01],
  1.23755267e-011,
 2.21764236e-01],
[-5.37805276e-01],
 2.42696605e+00],
 6.21150786e-01],
[-3.94467158e-01],
[-1.15036133e+00],
[-1.55464833e+00],
[-7.39948775e-01],
[-7.76702139e-01],
```

```
[ 1.26310954e+00],
[-1.45769399e-01],
[-2.07025005e-01],
[-4.21419625e-01],
[-5.13303034e-01],
[-4.15294064e-01],
[-3.29536216e-01],
[-6.05186442e-01],
[-7.76702139e-01],
[-7.70576578e-01],
[-9.67649141e-02],
[ 6.24996610e-02],
[ 1.13202254e+00],
[-4.76549670e-01],
[-3.99367607e-01],
[-1.00947344e+00],
[ 2.21764236e-01],
[ 1.36006388e-01],
[ 1.36006388e-01]])
```

Multiple Regression Model

```
from sklearn import linear model
from sklearn.linear model import Lasso
regr = linear model.LinearRegression()
regr.fit(X_train, Y_train)#training func question + answers
# The coefficients
print ('Intercept: ',regr.intercept )
print ('Coefficient : ',regr.coef_)
Intercept: [-8.10072062e-17]
Coefficient: [[ 0.60519595  0.44512289  0.06762205 -0.05752323
0.16796952]]
regr.intercept
array([-8.10072062e-17])
regr.coef
array([[ 0.60519595, 0.44512289, 0.06762205, -0.05752323,
0.16796952]])
regr.coef [0][0]
0.6051959545443171
regr.coef [0][1]
0.44512289318862164
regr.coef_[0][3]
```

```
-0.05752322506300601
y pred = regr.predict(X test)
y_pred
array([[-0.39424447],
       [ 0.43563115],
       [-0.07368063],
       [-0.09273092],
       [-0.36267396],
       [ 0.05064675],
       [ 0.20328702],
       [-0.8909513],
       [ 0.44851715],
       [0.04391717],
       [-0.29435498],
       [ 0.02776111],
       [-0.62409479],
       [-0.21444144],
       [-0.30049126],
       [-0.32029542],
       [ 0.07722696],
       [-0.30865709],
       [-0.17249878],
       [ 0.22677364],
       [-0.06008962],
       [-0.11402423],
       [ 0.89433856],
       [ 0.22671411],
       [-0.2201243],
       [-0.49964672],
       [ 1.11553858],
       [-0.39585851],
       [-0.46073544],
       [-0.25803403],
       [ 0.26731555],
       [-0.35702107],
       [ 1.6646843 ],
       [0.36677717],
       [-0.45637249],
       [-0.97169607],
       [-0.23762948],
       [ 0.06964113],
       [-0.706152]
       [-0.93373737],
       [-0.57429101],
       [-0.18820504],
       [-0.2201243],
       [0.27443221],
       [-0.49368059],
```

```
[-0.19819601],
[ 0.44379244],
[-0.26581468],
[-0.04162286],
[ 2.41381306],
[ 0.04899152],
[-0.16488018].
[ 1.98164081],
[-0.75123254],
[-0.2860274],
[ 0.24255629],
[ 0.16162348],
[-0.35757792]
[-0.33531867],
[-0.21049214],
[-0.08543071],
[-0.31536566],
[-0.61637194],
[ 0.67924379],
[-0.51443501],
[-0.32675775],
[ 0.37725886],
 0.59308954],
[ 0.77566353],
[-0.61820833],
[-0.46732462],
[-0.33917436],
[-0.81236477],
[-0.9612609],
[-0.34263428],
[-0.57137771],
[-0.60408211],
[-0.02313707],
[-0.80598496]
[ 2.343037
[-0.51389148],
[-1.17843512],
[ 0.59308929],
 0.14954728],
 1.25717844],
 0.105608841,
[ 1.32354575],
[-0.0231399],
[ 0.17137702],
[-0.09975317],
[-0.82649847],
[-0.41658061],
[-0.20159653],
[-0.95292784],
```

[0.44542798],

```
[-0.74045428],
[-0.56557265],
[ 0.80593344],
[-0.05871606],
[-0.06612426],
[-0.17198534],
[-0.20486258].
[-0.49452428],
[ 0.19415472],
[-0.25643087],
[ 0.07191543],
[-0.33613923],
[-0.62189038],
[-0.32407706],
[ 0.10955637],
[ 0.10709579],
[-0.48493283],
 0.06914469],
[ 0.79174333],
[-0.60996888],
[ 0.83557209],
 0.92860065],
[
 0.51944553],
 0.37254083],
[ 0.77134671],
[-0.14344445],
[-0.60803221],
[-0.1727019],
[-1.06074294],
[-0.25845798],
[ 0.14827678],
[-0.39225051],
[ 0.55704345],
 0.75717653],
[0.56203734],
[
 0.05282437],
 0.09608483],
[-0.3233979],
[-0.43952115],
[-0.51835199],
 0.555885361,
[ 2.38836419],
[ 0.5734452 ],
[-0.63315472],
[-0.28944078],
 0.47846466],
[ 0.0454706 ],
[-0.04010479],
[-0.28958818],
```

[-0.33771609],

```
[-1.07449917],
[-0.34975182],
[ 0.18119894],
[-0.93419024],
[-0.63671654],
[-1.1234102],
[-0.75657742],
[ 0.44216756],
[-0.58670529],
[ 0.31004663],
[-0.35530514],
[ 1.43536464],
 1.19561933],
[-1.04624946],
[ 1.5125534 ],
[ 0.19718782],
[ 1.50177389],
[-0.74416217],
[ 0.43008988],
[-0.76636746],
[-0.10802081],
[-0.47813759],
[ 0.58217396],
[-0.90227556],
[ 0.33182492],
[-0.47570051],
[-0.51487281],
[-0.27914205],
[ 0.5234929 ],
 0.09877503],
[ 0.30937116],
[-0.31406017],
[-0.08164559],
[-0.32466683],
[-0.80586083],
[ 0.12764177],
 0.00780896],
[ 0.0067488 ],
[ 0.37087928],
[-0.85444471],
[-0.7276939],
[-0.80410705],
[-0.1151538],
[-0.03591672],
[-0.18130247],
[-0.39509065],
[-0.9285049],
[ 0.10398306],
[ 0.25502138],
```

[0.30977458],

```
[-0.06224381],
[-0.00263775],
[-0.79979867],
[ 0.03151065],
[-0.17740457],
[-1.2456878],
[ 1.15126287],
[ 0.4952321 ],
[-0.50100753],
[ 0.55449689],
[-0.7106943],
[ 0.4057285 ],
 0.7337886],
[-0.22795365],
[-0.66531054],
[ 0.82197778],
[-0.99807567],
[ 0.46324862],
[-1.20552949],
 0.111563081.
 0.67083072],
 0.26827984],
[
 0.31410351],
[-0.09833141],
 0.16121226],
 0.23556011],
 0.13869097],
[ 0.09115838],
[-1.20441911],
[-0.24428647],
[-0.64015975],
[-0.33229225],
[ 0.10883714],
[-0.63099913],
[ 1.15044974],
[-1.08214152],
[-0.31630063],
[-0.784873
[ 2.27901352],
[-0.73078841],
[-0.7408098],
[-0.03945174],
[ 0.01712556],
[ 0.63297054],
[-0.04344139],
[-0.52943309],
[ 0.13894206],
[-0.08600372],
[-1.26994773],
[-0.61675165],
```

```
[ 0.55179153],
       [-0.04485907],
       [ 2.06094397],
       [ 0.52814623],
       [ 0.50581097],
       [ 1.189303
       [-0.76845706].
       [-0.25917978],
       [ 1.81220882],
       [-0.70311425],
       [-0.81007387],
       [ 1.10596693],
       [-0.17181428],
       [ 0.2665812 ],
       [-0.74482918],
       [-0.7929351],
       [-0.57948478],
       [-0.79241117],
       [-0.0770204],
       [ 1.53639455],
       [ 0.243747 ],
       [ 1.49016372],
       [ 0.0701655 ],
       [-0.08305935],
       [-0.85272071],
       [-1.12952408],
       [ 0.24890305],
       [-0.77387983],
       [ 0.62866392],
       [-0.60896776],
       [ 0.14668456],
       [-0.06020836],
       [-0.24001964],
       [-0.51477893],
       [-0.28171621],
       [-0.48217394],
       [-0.52132441],
       [-0.44227057],
       [-0.43681607],
       [ 0.20806301],
       [ 0.88397146],
       [-0.32906096],
       [-0.79979867],
       [-0.94305075],
       [ 0.53503444],
       [ 0.25381661],
       [ 0.25026787]])
from sklearn.metrics import r2_score
print(f"R2 Score : {r2_score(Y_test,y_pred)*100} % ")
```

```
R2 Score: 69.52190340964152 %
print(f"Mean absolute error: {np.mean(np.absolute(y pred - Y test))}
")#pred - actual
Mean absolute error: 0.3362259554459409
print("Residual sum of squares (MSE): %.2f" % np.mean((y_pred -
Y test) **2))
Residual sum of squares (MSE): 0.22
accuracy = (f"accuracy : {r2_score(Y_test,y_pred)*100} % ")
accuracy
'accuracy : 69.52190340964152 % '
Plots
import matplotlib.pyplot as plt
plt.scatter(X_test[:,0],X_test[:,-1], c = y_pred)
plt.plot(X_test, regr.coef_[0][0]*X_test + regr.intercept_[0], 'r') #
y = mx + c
plt.xlabel("1stFlrSF")
plt.ylabel("BsmtFinSF1")
Text(0, 0.5, 'BsmtFinSF1')
```



```
import matplotlib.pyplot as plt
plt.scatter(X_test[:,0],X_test[:,-1], c = y_pred)
```

```
plt.plot(X_test, regr.coef_[0][1]*X_test + regr.intercept_[0], 'r') #y
= mx+c
plt.xlabel("1stFlrSF")
plt.ylabel("BsmtFinSF1")

Text(0, 0.5, 'BsmtFinSF1')
```


Apply Lasso Regression to cover overfitting and undefitting Problem from sklearn.linear model import Lasso

```
L = Lasso(alpha = 1)
L.fit(X_train,Y_train)
Lasso(alpha=1)
ypred3 = L.predict(X_test)
from sklearn.metrics import r2_score
print("R2-score",r2_score(Y_test,ypred3))
print(f"Mean absolute error: {np.mean(np.absolute(ypred3 - Y_test))}
")# pred - actual
R2-score -0.004908518792945626
```

Mean absolute error: 0.6243935831081134