10 клас

Задача 1.Вниз за течією річки на відстані L від берега пливе катер зі швидкістю $\mathbf{v_0}$ відносно берега. По якому напрямку повинен рухатись від берега човен, щоб доплисти до катеру за мінімальний час, якщо його швидкість відносно води $\mathbf{v_1}$ і в початковий момент він знаходиться від катеру на відстані \mathbf{S} нижче за течією? Швидкість течії \mathbf{u} . Якою повинна бути мінімальна швидкість човна, щоб він міг зустрітись з катером?

Задача 2. По горизонтальній поверхні з постійною швидкістю рухається візок, покрівля якого є площиною, нахиленою під кутом 15° до горизонту. На візок з висоти Н=15м без початкової швидкості падає маленька кулька. При якому значенні швидкості візка V кулька після пружного зіткнення з ним знов упаде на візок у ту ж саму точку? Чи будуть наступні падіння попадати у цю ж точку? Висотою візка знехтувати. Маса візка набагато більша маси кульки, тертя кульки об візок в момент удару не враховувати.

Задача 3. В велику каструлю налили $v_0 = 2,0$ л холодної води при температурі $t_0 = 15^0 C$ і поставили на увімкнену електроплиту. За час $\tau = 5,0$ хв температура води досягла $t_1 = 45^0 C$. Після цього в каструлю стали повільно доливати холодну воду (при температурі $t_0 = 15^0 C$) зі сталою швидкістю $v = 100^{\text{ CM}^3}/_{\text{XB}}$, безперервно перемішуючи її в каструлі. Побудуйте наближений графік залежності температури води в каструлі від часу. При якій швидкості наливання холодної води v_1 температура води буде залишатись незмінною під час наливання? Втратами тепла і теплоємністю каструлі знехтувати.

Задача 4. З одного із двох однакових гальванометрів зробили вольтметр, розширивши його межі вимірювання напруги у N разів. а з другого – амперметр, розширивши його межі вимірювання струму у N разів Два отриманих прилади використали для вимірювання опору R підключивши їх наступними двома способами.

При цьому похибка вимірювання, пов'язана з не ідеальністю приладів виявилася однаковою.

Знайдіть опір гальванометра.

Задача 5. Точкове джерело світла знаходиться на відстані L від екрану. Збиральну лінзу з фокусною

відстанню F>(L/4), паралельну екрану, переміщують між джерелом і екраном. При якому положенні лизи діаметр плями, яка буде спостерігатись на екрані, буде мінімальним?