Monotonic Alpha-divergence Minimisation for Variational Inference

Kamélia Daudel

University of Oxford kamelia.daudel@stats.ox.ac.uk

StatML CDT 09/12/2021

Joint work with Randal Douc and François Roueff

Outline

- 1 Introduction
- 2 Monotonic Alpha-Divergence Minimisation
- 3 Numerical Experiments
- **4** Conclusion

Outline

- 1 Introduction
- 2 Monotonic Alpha-Divergence Minimisation
- 3 Numerical Experiments
- 4 Conclusion

Bayesian statistics

 \bullet Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

• Problem : for many important models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.

Bayesian statistics

ullet Compute / sample from the posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

• Problem : for many important models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family Q, where $q \in Q$.
 - **2** Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

```
Typically, D: exclusive Kullback-Leibler (KL) divergence and \mathcal{Q}: parametric family (e.g. Mean-field) \begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbb{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q: y \mapsto k(\theta, y): \theta \in \mathbb{T}\} \end{cases}
```

- Can we select alternative/more general D?
- Can we design more expressive variational families Q?

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family Q, where $q \in Q$.
 - $oldsymbol{2}$ Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

Typically,
$$D$$
: exclusive Kullback-Leibler (KL) divergence and \mathcal{Q} : parametric family (e.g. Mean-field)
$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbb{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q: y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} \end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q?

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family Q, where $q \in Q$.
 - \mathbf{Q} Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

Typically, D: exclusive Kullback-Leibler (KL) divergence and \mathcal{Q} : parametric family (e.g. Mean-field)

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} \end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q?

- → Variational Inference : inference is seen as an optimisation problem.
 - **①** Posit a *simpler* variational family Q, where $q \in Q$.
 - \mathbf{Q} Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

Typically, D: exclusive Kullback-Leibler (KL) divergence and $\mathcal Q$: parametric family (e.g. Mean-field)

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} \end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q?

- → Variational Inference : inference is seen as an optimisation problem.
 - **①** Posit a *simpler* variational family Q, where $q \in Q$.
 - **2** Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

Typically, D: exclusive Kullback-Leibler (KL) divergence and \mathcal{Q} : parametric family (e.g. Mean-field)

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} \log \left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} \end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q?

- → Variational Inference : inference is seen as an optimisation problem.
 - **1** Posit a *simpler* variational family Q, where $q \in Q$.
 - **2** Fit q to obtain the best approximation to the posterior density

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\;,$$

where D is a measure of dissimilarity between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

Typically, D: exclusive Kullback-Leibler (KL) divergence and \mathcal{Q} : parametric family (e.g. Mean-field)

$$\begin{cases} D_{KL}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} \log\left(\frac{q(y)}{p(y)}\right) q(y) \nu(\mathrm{d}y) \\ \mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\} \end{cases}$$

- Can we select alternative/more general D?
- Can we design more expressive variational families Q?

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q \text{, } \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p. \end{array}$

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

 $(\mathsf{Y},\mathcal{Y},\nu)$: measured space, ν is a σ -finite measure on (Y,\mathcal{Y}) . \mathbb{Q} and $\mathbb{P}:\mathbb{Q}\preceq\nu$, $\mathbb{P}\preceq\nu$ with $\frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu}=q$, $\frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu}=p$.

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

A flexible family of divergences...

Figure: In red, the Gaussian which minimises $D_{\alpha}(\mathbb{Q}||\mathbb{P})$ for a varying α

Adapted from V. Cevher's lecture notes (2008) https://www.ece.rice.edu/~vc3/elec633/AlphaDivergence.pdf

α -divergence between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\inf_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \Leftrightarrow \inf_{q \in \mathcal{Q}} \Psi_{\alpha}(q;p)$$
 with $\Psi_{\alpha}(q;p) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ and $p = p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ -upper bound minimization A. Dieng et al. (2017). NeurIP

$\alpha\text{-divergence}$ between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \left\{0,1\right\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Forward KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Reverse KL).} \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\inf_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \Leftrightarrow \inf_{q \in \mathcal{Q}} \Psi_{\alpha}(q;p)$$
 with $\Psi_{\alpha}(q;p) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ and $p = p(\cdot,\mathscr{D})$

Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIPS

Outline

- 1 Introduction
- 2 Monotonic Alpha-Divergence Minimisation
- 3 Numerical Experiments
- 4 Conclusion

Monotonic Alpha-Divergence Minimisation

Monotonic Alpha-divergence Minimisation.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Idea: Extend the typical variational parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by considering the mixture model variational family

$$\mathcal{Q} = \left\{ q : y \mapsto \mu_{\boldsymbol{\lambda},\Theta} k(y) := \sum_{j=1}^{J} \lambda_{j} k(\theta_{j},y) \; : \; \boldsymbol{\lambda} \in \mathcal{S}_{J}, \Theta \in \mathsf{T}^{J} \right\}$$

and propose an update formula for (λ, Θ) that ensures a systematic decrease in the α -divergence (i.e. Ψ_{α}) at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k;p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k;p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in T \times Y$, $k(\theta, y) > 0$, $p(y) \ge 0$ and $\int_Y p(y)\nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1) and let $\alpha \in [0,1)$. Then, choosing $(\lambda_n,\Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k;p)<\infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0$$
 (Weights)

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\gamma_{j,\alpha}^n(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_α at each step.

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

- (Weights) and (Components) permit separate/simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

- (Weights) and (Components) permit separate/simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

- (Weights) and (Components) permit separate/simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for λ_{n+1} such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\begin{split} &\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \\ &\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \gamma_{j,\alpha}^{n}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \end{split} \tag{Components}$$

- (Weights) and (Components) permit separate/simultaneous updates
- 2 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). Ann. Statist. 49 (4) 2250 - 2270.

Core insights

- lacktriangle The mixture weights update is gradient-based, η_n plays the role of a learning rate
- **2** We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). Ann. Statist. 49 (4) 2250 - 2270.

Core insights

- lacktriangledown The mixture weights update is gradient-based, η_n plays the role of a learning rate
- We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_{n}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). Ann. Statist. 49 (4) 2250 - 2270.

Core insights:

- lacktriangledown The mixture weights update is gradient-based, η_n plays the role of a learning rate
- We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \;, \quad j = 1 \dots J \\ \Theta_{n+1} &= \Theta_n \end{split}$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). Ann. Statist. 49 (4) 2250 - 2270.

Core insights:

- lacktriangle The mixture weights update is gradient-based, η_n plays the role of a learning rate
- We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2021). Ann. Statist. 49 (4) 2250 - 2270.

Core insights:

- lacktriangle The mixture weights update is gradient-based, η_n plays the role of a learning rate
- We can improve on the Power Descent by proposing simultaneous updates for ⊕ with convergence guarantees!

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta,y)) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j = 1 \dots J$, $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = c_{j,n} \int_{Y} \frac{\gamma_{j,\alpha}^{n}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \log(k(\theta,y)) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j = 1 \dots J$, $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j=1\ldots J$, $a_{j,n}>0$, $b_{j,n}\geqslant 0$ and

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \left[\underline{a_{j,n}} \gamma_{j,\alpha}^n(y) + \underline{b_{j,n}} k(\theta_{j,n},y) \right] \log(k(\theta,y)) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j = 1 \dots J$, $\gamma_{j,n} \in (0,1]$, $c_{j,n} > 0$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathbf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \gamma_{j,\alpha}^n(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j=1\ldots J$, $a_{j,n}>0$, $b_{j,n}\geqslant 0$ and

$$\theta_{j,n+1} = \mathrm{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \left[\underline{a_{j,n}} \gamma_{j,\alpha}^n(y) + \underline{b_{j,n}} \underline{k}(\theta_{j,n}, \underline{y}) \right] \log(\underline{k}(\theta, \underline{y})) \nu(\mathrm{d}\underline{y})$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1],\ c_{j,n}>0$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $eta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$ with

$$g_{j,n}(\theta) = c_{j,n} \int_{\mathsf{Y}} \frac{\gamma_{j,\alpha}^n(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

Related work

Maximisation approach (Gaussian case)

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^{T} \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

NB :
$$\gamma_{j,n}=(a_{j,n}\int_{Y}\gamma_{j,\alpha}^{n}(y)\nu(\mathrm{d}y)+b_{j,n})^{-1}$$
 with $b_{j,n}\geqslant 0$
Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$\alpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

We have generalised an integrated EM algorithm for mixture models optimisation

- ① We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

Maximisation approach (Gaussian case)

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^{T} \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

NB:
$$\gamma_{j,n} = (a_{j,n} \int_{Y} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + b_{j,n})^{-1}$$
 with $b_{j,n} \geqslant 0$
Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin J.-M. Marin and C. P. Robert (2008). Statistics and Computing. 18(4):447–459

ightarrow The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$lpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

We have generalised an integrated EM algorithm for mixture models optimisation

- **1** We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1)\kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^{T} \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

NB :
$$\gamma_{j,n}=(a_{j,n}\int_{\mathsf{Y}}\gamma^n_{j,\alpha}(y)\nu(\mathrm{d}y)+b_{j,n})^{-1}$$
 with $b_{j,n}\geqslant 0$ Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$lpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

- **1** We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) (y - m_{j,n+1}) (y - m_{j,n+1})^T \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

NB:
$$\gamma_{j,n}=(a_{j,n}\int_{\mathsf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y)+b_{j,n})^{-1}$$
 with $b_{j,n}\geqslant 0$ Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$\alpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

- **1** We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^{T} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

NB:
$$\gamma_{j,n}=(a_{j,n}\int_{\mathsf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y)+b_{j,n})^{-1}$$
 with $b_{j,n}\geqslant 0$ Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

→ The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$\alpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

- We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^{n}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_{n}}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) (y - m_{j,n+1}) (y - m_{j,n+1})^{T} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^{n}(y) \nu(\mathrm{d}y)}$$

NB:
$$\gamma_{j,n}=(a_{j,n}\int_{\mathsf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y)+b_{j,n})^{-1}$$
 with $b_{j,n}\geqslant 0$ Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$\alpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

- **1** We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- **2** We extend the systematic decrease property to $\alpha \in [0,1)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) y \ \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

$$\Sigma_{j,n+1} = (1 - \gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) (y - m_{j,n+1}) (y - m_{j,n+1})^T \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

NB:
$$\gamma_{j,n}=(a_{j,n}\int_{\mathsf{Y}}\gamma_{j,\alpha}^n(y)\nu(\mathrm{d}y)+b_{j,n})^{-1}$$
 with $b_{j,n}\geqslant 0$
Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

ightarrow The M-PMC algorithm a.k.a 'Integrated EM' corresponds to

$$\alpha=0$$
, $\eta_n=1$, $\kappa=0$ and $\gamma_{j,n}=1$

- We introduce η_n , κ and $\gamma_{i,n}$, where η_n and $\gamma_{i,n}$ act as learning rates
- 2 We extend the systematic decrease property to $\alpha \in [0,1)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$
 (RGD)
$$m_{j,n+1} = m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_n k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)}$$
 (MG)
$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) y \ \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)}$$

• (RGD). Set $p=p(\cdot,\mathscr{D}),\ \gamma_{j,n}:=\gamma_n\in(0,1].$ Usual gradient descent steps on Θ for Rényi's α -divergence minimisation

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS

NB : We provide simultaneous updates for λ that preserve the convergence

• (MG). 'EM-like' : coincides with the mixture means update from the maximisation approach.

NB: Our maximisation approach gives updates for the covariance matrices too!

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \text{(RGD)} \quad m_{j,n+1} &= m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_n k(y)^\alpha p(y)^{1-\alpha} \nu(\mathrm{d}y)} \\ \text{(MG)} \quad m_{j,n+1} &= (1 - \gamma_{j,n}) \, m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) y \; \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} \end{split}$$

• (RGD). Set $p=p(\cdot,\mathscr{D}),\ \gamma_{j,n}:=\gamma_n\in(0,1].$ Usual gradient descent steps on Θ for Rényi's α -divergence minimisation

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS

NB : We provide simultaneous updates for λ that preserve the convergence!

• (MG). 'EM-like' : coincides with the mixture means update from the maximisation approach.

NB: Our maximisation approach gives updates for the covariance matrices too

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \text{(RGD)} \quad m_{j,n+1} &= m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_n k(y)^\alpha p(y)^{1-\alpha} \nu(\mathrm{d}y)} \\ \text{(MG)} \quad m_{j,n+1} &= (1 - \gamma_{j,n}) \, m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) y \; \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} \end{split}$$

• (RGD). Set $p=p(\cdot,\mathscr{D}),\ \gamma_{j,n}:=\gamma_n\in(0,1].$ Usual gradient descent steps on Θ for Rényi's α -divergence minimisation

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS

NB : We provide simultaneous updates for λ that preserve the convergence!

• (MG). 'EM-like': coincides with the mixture means update from the maximisation approach.

NB: Our maximisation approach gives updates for the covariance matrices too!

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \text{(RGD)} \quad m_{j,n+1} &= m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \mu_n k(y)^\alpha p(y)^{1-\alpha} \nu(\mathrm{d}y)} \\ \text{(MG)} \quad m_{j,n+1} &= (1 - \gamma_{j,n}) \, m_{j,n} + \gamma_{j,n} \frac{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) y \; \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} \end{split}$$

• (RGD). Set $p=p(\cdot,\mathscr{D}),\ \gamma_{j,n}:=\gamma_n\in(0,1].$ Usual gradient descent steps on Θ for Rényi's α -divergence minimisation

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS

 $\mathsf{NB}:\mathsf{We}$ provide simultaneous updates for λ that preserve the convergence!

• (MG). 'EM-like': coincides with the mixture means update from the maximisation approach.

NB: Our maximisation approach gives updates for the covariance matrices too

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \text{(RGD)} \quad m_{j,n+1} &= m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_n k(y)^\alpha p(y)^{1-\alpha} \nu(\mathrm{d}y)} \\ \text{(MG)} \quad m_{j,n+1} &= (1 - \gamma_{j,n}) \, m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) y \; \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} \end{split}$$

• (RGD). Set $p=p(\cdot,\mathscr{D}),\ \gamma_{j,n}:=\gamma_n\in(0,1].$ Usual gradient descent steps on Θ for Rényi's α -divergence minimisation

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS

 $\mathsf{NB}:\mathsf{We}$ provide simultaneous updates for λ that preserve the convergence!

• (MG). 'EM-like' : coincides with the mixture means update from the maximisation approach.

NB: Our maximisation approach gives updates for the covariance matrices too

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \gamma_{\ell,\alpha}^n(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ \text{(RGD)} \quad m_{j,n+1} &= m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \lambda_{j,n} \gamma_{j,\alpha}^n(y) (y - m_{j,n}) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_n k(y)^\alpha p(y)^{1-\alpha} \nu(\mathrm{d}y)} \\ \text{(MG)} \quad m_{j,n+1} &= (1 - \gamma_{j,n}) \, m_{j,n} + \gamma_{j,n} \frac{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) y \; \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \gamma_{j,\alpha}^n(y) \nu(\mathrm{d}y)} \end{split}$$

• (RGD). Set $p=p(\cdot,\mathscr{D}),\ \gamma_{j,n}:=\gamma_n\in(0,1].$ Usual gradient descent steps on Θ for Rényi's α -divergence minimisation

Rényi divergence variational inference. Y. Li and R. E Turner (2016). NeurIPS

 $\mathsf{NB}:\mathsf{We}$ provide simultaneous updates for λ that preserve the convergence!

• (MG). 'EM-like' : coincides with the mixture means update from the maximisation approach.

NB: Our maximisation approach gives updates for the covariance matrices too!

Outline

- 1 Introduction
- 2 Monotonic Alpha-Divergence Minimisation
- 3 Numerical Experiments
- 4 Conclusion

Monte Carlo approximations

Algorithm 1: Gaussian Mixture Models optimisation

At iteration n,

- ① Draw independently M samples $(Y_{m,n})_{1\leqslant m\leqslant M}$ from the proposal q_n . Define for all $j=1\dots J$, all $y\in Y$ and all $n\geqslant 1,\ \hat{\gamma}^n_{j,\alpha}(y)=k(\theta_{j,n},y)/q_n(y)\ (\mu_nk(y)/p(y))^{\alpha-1}.$
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{\ell,\alpha}^{n}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})}$$

$$\rightarrow$$
 Here $\hat{\gamma}_{j,\alpha}^n(y) = \frac{\gamma_{j,\alpha}^n(y)}{q_n(y)}$.

 \to We consider two samplers : $q_n=\mu_{\lambda_n,\Theta_n}$ (IS-n) and $q_n=J^{-1}\sum_{j=1}^J k(\theta_{j,n},\cdot)$ (IS-unif)

Monte Carlo approximations

Algorithm 1: Gaussian Mixture Models optimisation

At iteration n,

- ① Draw independently M samples $(Y_{m,n})_{1\leqslant m\leqslant M}$ from the proposal q_n . Define for all $j=1\dots J$, all $y\in {\mathsf Y}$ and all $n\geqslant 1,\ \hat{\gamma}^n_{j,\alpha}(y)=k(\theta_{j,n},y)/q_n(y)\ (\mu_nk(y)/p(y))^{\alpha-1}.$
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\gamma}_{\ell,\alpha}^{n}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\gamma}_{j,\alpha}^{n}(Y_{m,n})}$$

$$\rightarrow$$
 Here $\hat{\gamma}_{j,\alpha}^n(y) = \frac{\gamma_{j,\alpha}^n(y)}{q_n(y)}$.

o We consider two samplers : $q_n=\mu_{\pmb{\lambda}_n,\Theta_n}$ (IS-n) and $q_n=J^{-1}\sum_{j=1}^J k(\theta_{j,n},\cdot)$ (IS-unif).

Comparing RGD to MG (fixed λ)

Target :
$$p(y) = 2 \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha=0.2$$
, $d=16$, $M=200$, $\kappa_n=0$, $\eta_n=0$. and $q_n=\mu_n k$.]

• LogMSE averaged over 30 trials for RGD and MG.

	J=10			J = 50		
	$\gamma = 0.1$	$\gamma = 0.5$		$\gamma = 0.1$		
$\begin{array}{c} RGD\text{-}IS\text{-}n(\gamma) \\ MG\text{-}IS\text{-}n(\gamma) \end{array}$						

Comparing RGD to MG (fixed λ)

Target :
$$p(y) = 2 \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha=0.2$$
, $d=16$, $M=200$, $\kappa_n=0$, $\eta_n=0$. and $q_n=\mu_n k$.]

• LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50		
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$
RGD-IS-n (γ)	-0.081	-0.076	-0.218	-1.640	-1.673	-1.560
$MG ext{-}IS ext{-}n(\gamma)$	-3.702	-1.875	-2.711	-2.760	-2.771	-2.788

Comparing RGD to MG (varying λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\eta = 0.1$, $\kappa_n = 0$.]

LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50		
	$\gamma = 0.1$		$\gamma = 1.0$	$\gamma = 0.1$		$\gamma = 1.0$
RGD-IS-n(γ)	0.372	0.510	0.384	-0.616	-0.713	
$MG-IS-n(\gamma)$	1.104	1.074	0.387	1.135	-0.077	
RGD-IS-unif(γ)	0.359	0.469	0.458		-0.670	
$MG-IS-unif(\gamma)$	-0.200	-0.229	-0.515	-1.500	-1.462	-1.246

Comparing RGD to MG (varying λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\eta = 0.1$, $\kappa_n = 0$.]

• LogMSE averaged over 30 trials for RGD and MG.

		J = 10			J = 50	
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$
RGD-IS-n (γ)	0.372	0.510	0.384	-0.616	-0.713	-0.778
$MG ext{-}IS ext{-}n(\gamma)$	1.104	1.074	0.387	1.135	-0.077	-0.060
$RGD ext{-}IS ext{-}unif(\gamma)$	0.359	0.469	0.458	-0.688	-0.670	-0.583
$MG ext{-}IS ext{-}unif(\gamma)$	-0.200	-0.229	-0.515	-1.500	-1.462	-1.246

Comparing RGD to MG (varying λ , cont'd)

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• LogMSE averaged over 30 trials for RGD and MG. [Here, $\alpha = 0.2$, d = 16, M = 200, $\gamma = 0.5$, $\kappa_n = 0$.]

		J = 10			J = 50	
	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$
RGD-IS-n (γ)	0.045	0.510	1.299	-1.355	-0.713	0.924
$MG ext{-}IS ext{-}n(\gamma)$	0.087	1.074	1.343	-1.205	-0.077	1.329
$RGD ext{-}IS ext{-}unif(\gamma)$	-0.018	0.469	1.328	-1.385	-0.670	0.928
$MG ext{-}IS ext{-}unif(\gamma)$	-1.244	-0.229	1.100	-2.524	-1.462	0.309

Comparing RGD to MG (varying λ , cont'd)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• LogMSE averaged over 30 trials for RGD and MG. [Here, $\alpha = 0.2$, d = 16, M = 200, $\gamma = 0.5$, $\kappa_n = 0.$]

		J = 10			J = 50	
	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$
RGD-IS-n (γ)	0.045	0.510	1.299	-1.355	-0.713	0.924
$MG ext{-}IS ext{-}n(\gamma)$	0.087	1.074	1.343	-1.205	-0.077	1.329
$RGD ext{-}IS ext{-}unif(\gamma)$	-0.018	0.469	1.328	-1.385	-0.670	0.928
$MG ext{-}IS ext{-}unif(\gamma)$	-1.244	-0.229	1.100	-2.524	-1.462	0.309

Outline

- 1 Introduction
- 2 Monotonic Alpha-Divergence Minimisation
- 3 Numerical Experiments
- **4** Conclusion

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Novel framework for monotonic α -divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications

Thank you for your attention!

kamelia.daudel@stats.ox.ac.uk

Monotonic Alpha-divergence Minimisation

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier (2020). Ann. Statist. 49 (4) 2250 - 2270.