日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 9月30日

出 願 番 号 Application Number:

特願2002-287246

[ST. 10/C]:

Applicant(s):

[JP2002-287246]

出 願 人

セイコーエプソン株式会社

2003年10月21日

特許庁長官 Commissioner, Japan Patent Office

ページ: 1/E

【書類名】

特許願

【整理番号】

J0094520

【あて先】

特許庁長官 殿

【国際特許分類】

C09D 11/00

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン株

式会社内

【氏名】

宮林 利行

【特許出願人】

【識別番号】

000002369

【氏名又は名称】 セイコーエプソン株式会社

【代理人】

【識別番号】

100099195

【弁理士】

【氏名又は名称】

宮越 典明

【手数料の表示】

【予納台帳番号】

030889

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9900310

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 マイクロカプセル化顔料及びその製造方法、水性分散液、並びに、インクジェット記録用インク

【特許請求の範囲】

【請求項1】 アニオン性基を表面に有する顔料粒子が、カチオン性基と疎水性基と重合性基とを有するカチオン性重合性界面活性剤から誘導された繰り返し構造単位と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーから誘導された繰り返し構造単位とを有するポリマーにより被覆されたことを特徴とするマイクロカプセル化顔料。

【請求項2】 アニオン性基を表面に有する顔料粒子が分散された水性分散 液中で、カチオン性基と疎水性基と重合性基とを有するカチオン性重合性界面活性剤と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーとを重合することにより、前記顔料粒子をポリマーで被覆してなるマイクロカプセル化顔料。

【請求項3】 前記ポリマーが、疎水性モノマーから誘導された繰り返し構造単位をさらに有することを特徴とする請求項1または2に記載のマイクロカプセル化顔料。

【請求項4】 前記顔料粒子を構成する顔料が、カーボンブラックまたは有機顔料であることを特徴とする請求項1~3のいずれかに記載のマイクロカプセル化顔料。

【請求項 5 】 前記顔料粒子のアニオン性基が、スルホン酸アニオン基($-SO_3$)及び/又はスルフィン酸アニオン基($-RSO_2$ $-: RはC_1 \sim C_1$ 2のアルキル基又はフェニル基およびその変性体)であることを特徴とする請求項1~4のいずれかに記載のマイクロカプセル化顔料。

【請求項 6 】 前記顔料粒子のアニオン性基が、カルボン酸アニオン基 $(-COO^-)$ であることを特徴とする請求項 $1\sim 4$ のいずれかに記載のマイクロカプセル化顔料。

【請求項7】 前記カチオン性重合性界面活性剤のカチオン性基が、第一級

アミンカチオン、第二級アミンカチオン、第三級アミンカチオン、第4級アンモニウムカチオンからなる群から選択されたものである、請求項1または2に記載のマイクロカプセル化顔料。

【請求項8】 前記カチオン性重合界面活性剤の疎水性基が、アルキル基、アリール基およびこれらが組み合わされた基からなる群から選択されたものである、請求項1または2に記載のマイクロカプセル化顔料。

【請求項9】 前記カチオン性重合界面活性剤の重合性基が、ラジカル重合が可能な不飽和炭化水素基であって、ビニル基、アリル基、アクリロイル基、メタクリロイル基、プロペニル基、ビニリデン基、ビニレン基からなる群から選択されたものである請求項1または2に記載のマイクロカプセル化顔料。

【請求項10】 アニオン性基を表面に有する顔料粒子をポリマーにより被覆するマイクロカプセル化顔料の製造方法であって、前記アニオン性基を表面に有する顔料粒子の水性分散液に前記カチオン性重合性界面活性剤を加えて混合後、前記アニオン性重合性界面活性剤及び/又は前記アニオン性基を有する親水性モノマーを加え乳化後、重合開始剤を加えて乳化重合することを特徴とするマイクロカプセル化顔料の製造方法。

【請求項11】 アニオン性基を表面に有する顔料粒子をポリマーにより被覆するマイクロカプセル化顔料の製造方法であって、前記アニオン性基を表面に有する顔料粒子の水性分散液に前記カチオン性重合性界面活性剤を加えて混合後、前記アニオン性重合性界面活性剤及び/又は前記アニオン性基を有する親水性モノマー及び疎水性モノマーを加え乳化後、重合開始剤を加えて乳化重合することを特徴とするマイクロカプセル化顔料の製造方法。

【請求項12】 請求項1~9の何れかに記載のマイクロカプセル化顔料を含むことを特徴とする水性分散液。

【請求項13】 請求項12に記載の水性分散液を含むインクジェット記録用インク。

【請求項14】 請求項1~9の何れかに記載のマイクロカプセル化顔料と 水とを少なくとも含むことを特徴とするインクジェット記録用インク。

【請求項15】 水溶性有機溶媒をさらに含むことを特徴とする請求項13

または請求項14に記載のインクジェット記録用インク。

【請求項16】 前記水溶性有機溶媒が、沸点が180℃以上の高沸点水溶性有機溶媒であることを特徴とする請求項15に記載のインクジェット記録用インク。

【請求項17】 前記水溶性有機溶媒が、グリセリンであることを特徴とする請求項15または16に記載のインクジェット記録用インク。

【請求項18】 前記水溶性有機溶媒が、多価アルコールのアルキルエーテル及び/又は1,2-アルキルジオールからなる群から選択された一種以上の化合物であることを特徴とする請求項 $15\sim17$ の何れかに記載のインクジェット記録用インク。

【請求項19】 固体湿潤剤をさらに前記インクジェット記録用インクの全重量に対して3重量%~20重量%で含むことを特徴とする請求項13~18の何れかに記載のインクジェット記録用インク。

【請求項20】 前記固体湿潤剤が、トリメチロールプロパン及び/または 1,2,6-ヘキサントリオールであることを特徴とする請求項19に記載のインクジェット記録用インク。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、マイクロカプセル化顔料及びその製造方法、水性分散液及びインクジェット記録用インクに関する。

[0002]

【従来の技術】

インクジェット記録方法は、微細なノズルヘッドからインク液滴を吐出して、 文字や図形を紙などの記録媒体の表面に記録する方法である。インクジェット記 録方法としては電歪素子を用いて電気信号を機械信号に変換し、ノズルヘッド部 分に貯えたインク液滴を断続的に吐出して記録媒体表面に文字や記号を記録する 方法や、あるいはノズルヘッドの吐出部分に近い一部でインク液の一部を急速に 加熱して泡を発生させ、その泡による体積膨張でインク液滴を断続的に吐出して 、記録媒体表面に文字や記号を記録する方法などが実用化されている。

[0003]

インクジェット記録用インクとして、最近では、顔料を水中に分散させた水系顔料インクが提供されている。これは、顔料を用いたインクの方が、水溶性染料を用いたインクに比べて、耐水性や耐光性に優れるという特徴を有するからである。このような水系顔料インクにおいては、界面活性剤や高分子分散剤等の分散剤を用いて顔料を水性分散媒中に分散させることが一般的に行われている。

例えば、特開平3-157464号公報には、アセチレングリコール系浸透剤を使用した顔料インクにおいて、顔料粒子の分散剤としてポリマー分散剤を、水性媒体として水、不揮発性有機溶剤、低級アルコールを使用することでその分散安定性を確保する検討が行われている。しかし、このように顔料粒子の分散に分散剤を用いると、インク調製時の要素が多くなり、粘度などのインク物性を所望に設定するのが困難であった。また、この顔料インクにおいても、印字濃度を確保しにくいという課題については未解決である。

さらに、これらの水系顔料インクにおいては、分散剤が顔料粒子表面に単に吸着しているだけであり、インク液がノズルヘッドの細いノズルを通って吐出される際に強い剪断力が加わるので、顔料粒子表面に吸着していた分散剤が離脱して分散性が劣化し、吐出が不安定となる傾向が認められることがある。また、前記の水系顔料インクを長期間保存した場合にも分散性が不安定となる傾向が認められることがある。

[0004]

顔料粒子を水中に分散させる他の手法として、顔料粒子の表面にスルホン酸基を導入する技術も提案されている。例えば、活性プロトンを有さない溶剤中に分散させた有機顔料をスルホン化剤で処理して得られるスルホン化表面処理有機顔料を含む顔料インクが知られている(従来例1;特許文献1参照)。従来例1によれば、前記顔料インクは、分散安定性に優れ、また、記録ヘッドのノズルからの吐出安定性(記録ヘッドから一定方向に安定して吐出される特性)が良好であるとされている。

[0005]

【特許文献1】

特開平10-110129号公報

[0006]

また、特開平11-49974号公報には、スルホン酸基を導入した有機顔料塊状体を1価金属イオンで処理することにより、表面を正帯電させる有機顔料塊状体を調製することが知られており、更に、その表面正帯電有機顔料塊状体から調製された顔料微粒子,分散剤,及び水を含み、貯蔵安定性(分散安定性)に優れた水系インク組成物が知られている(従来例2;特許文献2参照)。

[0007]

【特許文献2】

特開平11-49974号公報

[0008]

しかしながら、上記従来例1および従来例2の表面処理顔料粒子を着色剤として用いたインクは、これまでの顔料系インクジェット記録用インクと比較して、分散安定性および吐出安定性には優れるものの、普通紙やインクジェット用記録媒体(インクジェット記録用インクを受容するためのインク受容層が表面に設けられた記録媒体)等の記録媒体に印刷して得られる記録物の耐擦性は依然不十分なものであった。これは、記録媒体に対する前記表面処理顔料粒子の定着性が良好でないことによるものと考えられる。

[0009]

一方、顔料系インクジェットインクに含まれる顔料の記録媒体に対する定着性を向上させる目的で、着色剤粒子がポリマーで被覆されたマイクロカプセル化顔料を使用する技術が知られている。特公平7-94634号公報、特開平8-59715号公報には顔料微粒子をカプセル化したものが、特開平5-339516号公報、特開平8-302227号公報、特開平8-302228号公報、特開平8-81647号公報には顔料粒子の表面に、ポリマーをグラフト重合したものが提案されている。特開平5-320276号公報では、両親媒性グラフトポリマーを用いて疎水性粉体をマイクロカプセル化する方法が提案されているが、マイクロカプセル化にあたり、予め重合したポリマーを用いるとカプセル化後

の粒子径が大きくなりすぎるという問題があった。上記の提案のほかに、特開平 08-218015号公報、特開平08-295837号公報、特開平09-3 376号公報、特開平08-183920号公報、特開平10-46075号公 報、特開平10-292143号公報、特開平11-80633号公報、特開平 11-349870号公報、特開平2000-7961号公報には転相乳化法に よって室温で皮膜形成性を有する樹脂を被覆した顔料を用いたインクが、特開平 9-31360号公報、特開平9-217019号公報、特開平9-31635 3号公報、特開平9-104834号公報、特開平9-151342号公報、特 開平10-140065号公報、特開平11-152424号公報、特開平11 -166145号公報、特開平11-166145号公報、特開平11-199 783号公報、特開平11-209672号公報には酸析法によってアニオン性 基含有有機高分子化合物で被覆した顔料を用いたインクが提案されている。

$[0\ 0\ 1\ 0\]$

さらに、特開平9-286939号公報、特開2000-44852号公報、 特開2000-53897号公報、特開2000-53898号公報、特開20 00-53899号公報、特開2000-53900号公報には、転相乳化法に よってポリマー微粒子に色材を含浸させてなるポリマーエマルジョンを用いたイ ンクが提案されている(従来例3;特許文献3~8参照)。

[0011]

【特許文献3】

特開平9-286939号公報

【特許文献4】

特開2000-44852号公報

【特許文献5】

特開2000-53897号公報

【特許文献6】

特開2000-53898号公報

【特許文献7】

特開2000-53899号公報

【特許文献8】

特開2000-53900号公報

$[0\ 0\ 1\ 2]$

しかしながら、転相乳化法や酸析法によって得られた着色剤においても、インクに使用される浸透剤等の有機溶媒の種類によっては、顔料粒子に吸着されたポリマーの脱離が起きインク中に溶解することもあり、インクの分散安定性や吐出安定性、画像品質等が十分でない場合もあった。従来例3のインクにおいては、顔料粒子に吸着されたポリマーの脱離が少なからず起きるため、分散安定性の点からインク中の顔料含有量が制限されるので、このインクを使用して得られた記録物の画像は印字濃度が低く、特に、記録媒体を普通紙とした場合には、画像の滲みが発生しやすく、また、発色性も低いという問題があった。

$[0\ 0\ 1\ 3\]$

【発明が解決しようとする課題】

本発明は、上記問題点に鑑みて成されたものであって、その目的とするところは、

- (1)分散安定性に優れる、
- (2) 記録ヘッドからの吐出安定性に優れる、
- (3) 画像の堅牢性に優れる記録物を得ることができる、
- (4) 画像の印字濃度が高い記録物を得ることができる、
- (5) 画像の耐擦性に優れる記録物を得ることができる、
- (6) 記録媒体として普通紙を使用する場合においても、画像が滲みにくく、また画像の発色性が高い記録物を得ることができる、

の前記(1)~(6)の全てを満足するインクジェット記録用インクを作製可能なマイクロカプセル化顔料及びその製造方法、並びに、水性分散液を提供することである。

また、本発明の目的は、前記(1) \sim (6)の全てを満足するインクジェット 記録用インクを提供することである。

$[0\ 0\ 1\ 4]$

【課題を解決するための手段】

本発明者らは鋭意検討の結果、特定のマイクロカプセル化顔料を作製し、このマイクロカプセル化顔料をインクジェット記録用インクの着色剤とすることによって、驚くべきことに、前記(1)~(6)の全てを満足するインクジェット記録用インクを得ることができることを見出し、本発明を完成したものである。すなわち、本発明の技術的構成は以下の通りである。

[0015]

- 1) アニオン性基を表面に有する顔料粒子が、カチオン性基と疎水性基と重合性基とを有するカチオン性重合性界面活性剤と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーから誘導された繰り返し構造単位を有するポリマーにより被覆されたことを特徴とするマイクロカプセル化顔料。
- 2) アニオン性基を表面に有する顔料粒子が分散された水性分散液中で、カチオン性基と疎水性基と重合性基とを有するカチオン性重合性界面活性剤と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーとを重合することにより、前記顔料粒子をポリマーで被覆してなるマイクロカプセル化顔料。
- 3) 前記ポリマーが、疎水性モノマーから誘導された繰り返し構造単位をさらに有することを特徴とする前記1)または2)に記載のマイクロカプセル化顔料。

[0016]

- 4) 前記顔料粒子を構成する顔料が、カーボンブラックまたは有機顔料である ことを特徴とする前記1)~3)のいずれかに記載のマイクロカプセル化顔料。
- 5) 前記顔料粒子のアニオン性基が、スルホン酸アニオン基($-SO_3^-$)及 U/Vはスルフィン酸アニオン基($-RSO_2^-:R$ は $C_1\sim C_{12}$ のアルキル 基又はフェニル基およびその変性体)であることを特徴とする前記 1) \sim 4) の いずれかに記載のマイクロカプセル化顔料。
- 6) 前記顔料粒子のアニオン性基が、カルボン酸アニオン基 $(-COO^-)$ であることを特徴とする前記 1) \sim 4) のいずれかに記載のマイクロカプセル化顔料。

- 7) 前記カチオン性重合性界面活性剤のカチオン性基が、第一級アミンカチオン、第二級アミンカチオン、第三級アミンカチオン、第4級アンモニウムカチオンからなる群から選択されたものである、前記1)または2)に記載のマイクロカプセル化顔料。
- 8) 前記カチオン性重合界面活性剤の疎水性基が、アルキル基、アリール基およびこれらが組み合わされた基からなる群から選択されたものである、前記1) または2)に記載のマイクロカプセル化顔料。
- 9) 前記カチオン性重合界面活性剤の重合性基が、ラジカル重合が可能な不飽和炭化水素基であって、ビニル基、アリル基、アクリロイル基、メタクリロイル基、プロペニル基、ビニリデン基、ビニレン基からなる群から選択されたものである前記1)または2)に記載のマイクロカプセル化顔料。

$\{0\ 0\ 1\ 7\}$

- 10) アニオン性基を表面に有する顔料粒子をポリマーにより被覆するマイクロカプセル化顔料の製造方法であって、前記アニオン性基を表面に有する顔料粒子の水性分散液に前記カチオン性重合性界面活性剤を加えて混合後、前記アニオン性重合性界面活性剤及び/又は前記アニオン性基を有する親水性モノマーを加え乳化後、重合開始剤を加えて乳化重合することを特徴とするマイクロカプセル化顔料の製造方法。
- 11) アニオン性基を表面に有する顔料粒子をポリマーにより被覆するマイクロカプセル化顔料の製造方法であって、前記アニオン性基を表面に有する顔料粒子の水性分散液に前記カチオン性重合性界面活性剤を加えて混合後、前記アニオン性重合性界面活性剤及び/又は前記アニオン性基を有する親水性モノマー及び疎水性モノマーを加え乳化後、重合開始剤を加えて乳化重合することを特徴とするマイクロカプセル化顔料の製造方法。

[0018]

- 12) 前記1)~9)の何れかに記載のマイクロカプセル化顔料を含むことを特徴とする水性分散液。
- 13) 前記12)に記載の水性分散液を含むインクジェット記録用インク。
- 14) 前記1)~9)の何れかに記載のマイクロカプセル化顔料と水とを少な

くとも含むことを特徴とするインクジェット記録用インク。

- 15) 水溶性有機溶媒をさらに含むことを特徴とする前記13)または14)に記載のインクジェット記録用インク。
- 16) 前記水溶性有機溶媒が、沸点が180℃以上の高沸点水溶性有機溶媒であることを特徴とする前記15) に記載のインクジェット記録用インク。
- 17) 前記水溶性有機溶媒が、グリセリンであることを特徴とする前記15) または16) に記載のインクジェット記録用インク。
- 18) 前記水溶性有機溶媒が、多価アルコールのアルキルエーテル及び/又は 1,2-アルキルジオールからなる群から選択された一種以上の化合物であることを特徴とする前記 15) \sim 17) の何れかに記載のインクジェット記録用インク。
- 19) 固体湿潤剤をさらに前記インクジェット記録用インクの全重量に対して 3重量%~20重量%で含むことを特徴とする前記13)~18) の何れかに記載のインクジェット記録用インク。
- 20) 前記固体湿潤剤が、トリメチロールプロパン及び/または1,2,6-ヘキサントリオールであることを特徴とする前記19)に記載のインクジェット 記録用インク。

[0019]

【発明の実施の形態】

本発明に係るマイクロカプセル化顔料は、アニオン性基を表面に有する顔料粒子が、カチオン性基と疎水性基と重合性基とを有するカチオン性重合性界面活性剤と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーから誘導された繰り返し構造単位を有するポリマーにより被覆されたことを特徴としている。

このようなマイクロカプセル化顔料は、アニオン性基を表面に有する顔料粒子をポリマーにより被覆するマイクロカプセル化顔料の製造方法であって、前記アニオン性基を表面に有する顔料粒子の水性分散液に前記カチオン性重合性界面活性剤を加えて混合後、前記アニオン性重合性界面活性剤及び/又は前記アニオン性基を有する親水性モノマーを加え乳化後、重合開始剤を加えて乳化重合するこ

とにより、好適に製造できる。

このような乳化重合法によれば、重合系内に、アニオン性基を表面に有する顔料粒子の表面の親水性基と、カチオン性重合性界面活性剤のカチオン性基とアニオン性重合性界面活性剤のアニオン性基とに起因する分極状態が作製される。そして、顔料粒子の周囲に存在する乳化重合前におけるモノマーの配置形態が重合系内の前記特定の分極状態の影響を受けることによって極めて高精度で制御されることにより、本発明の実施形態に係るマイクロカプセル化顔料は、

- (1)分散安定性に優れる、
- (2) 記録ヘッドからの吐出安定性に優れる、
- (3) 画像の堅牢性に優れる記録物を得ることができる、
- (4) 画像の印字濃度が高い記録物を得ることができる、
- (5) 画像の耐擦性に優れる記録物を得ることができる、
- (6) 記録媒体として普通紙を使用する場合においても、画像が滲みにくく、また画像の発色性が高い記録物を得ることができる、

の前記(1)~(6)の全てを満足するインクジェット記録用インクを作製可能である。なお、転相乳化法や酸析法等を使用するなどして、顔料に対して予め作製されたポリマーが被覆されたマイクロカプセル化顔料では、ポリマーが予め作製されていることによって顔料粒子に対する被覆状態が限定されるせいか、前記(1)~(6)の全てを満足するようなポリマーの顔料粒子に対する被覆状態が達成されていないものと考えられる。

[0020]

ここで、マイクロカプセル化顔料のアスペクト比(長短度)が1. $0 \sim 1$. 3 であり、かつ、Z i n g g指数は、1. $0 \sim 1$. 3 (より好ましくは1. $0 \sim 1$. 2) であることが好ましい。これにより、前記(1)、(2)、(4)及び(6)の項目をより確実に満足できる。

ある粒子の短径を b、長径を l、厚みを t $(l \ge b \ge t > 0)$ とした場合、アスペクト比(長短度)は l / b (≥ 1) 、扁平度は b / t (≥ 1) であり、 Z i n g g 指数 = 長短度 / 扁平度 = $(l \cdot t)$ / b 2 である。すなわち、真球は、アスペクト比が l であり、かつ、 Z i n g g 指数が l となる。

Zingg指数が1.3より大きくなると、マイクロカプセル化顔料がより扁平形状となって等方性が低くなるせいか、特に、前記(1)、(2)、(4)及び(6)の項目に関して、充分な結果が得られない傾向となる。アスペクト比ならびにZingg指数を上記範囲内とする方法としては特に限定されないが、アニオン性基を表面に有する顔料粒子が前記した乳化重合法によりポリマーで被覆されたマイクロカプセル化顔料は、この条件を容易に満たし得る。

[0021]

なお、酸析法や転相乳化法等の乳化重合法以外の方法によって作製されたマイクロカプセル化顔料では、アスペクト比ならびにZingg指数が上記範囲内になり難い。

マイクロカプセル化顔料が上記のアスペクト比ならびにZingg指数の範囲にあると、真球状となるが、これによって、インクの流動特性がニュートニアンとなりやすく、吐出安定性に優れたものとなる。また、真球状であることから、紙等の記録媒体に着弾した場合にカプセル化粒子が媒体上に高密度で配置され、印刷濃度や発色を高効率で発現することができる。また、真球状であることから、分散性や分散安定性にも優れる。

以下、前記した好適な製造方法において顔料粒子の起こり得る分散状態を挙げながら、本発明の実施形態を説明する。ただし、以下に挙げる顔料粒子の分散状態は推定を含むものである。

[0022]

図1は、親水性基としてアニオン性基14を表面に有する顔料粒子1が、水を主成分とする溶媒(以下、水性溶媒ともいう)に分散するとともに、カチオン性基11と疎水性基12と重合性基13とを有するカチオン性重合性界面活性剤2と、アニオン性基14、と疎水性基12、と重合性基13、とを有するアニオン性重合性界面活性剤3とに対して、共存している状態を示す図である。カチオン性重合性界面活性剤2は、そのカチオン性基11が顔料粒子1のアニオン性基14に向くように配置され、イオン性の強い結合で吸着する。そして、このカチオン性重合性界面活性剤2の疎水性基12と重合性基13に対しては、疎水性相互作用によって、アニオン性重合性界面活性剤3の疎水性基12、と重合性基13、が向き、他のアニオン性重合性

界面活性剤3のアニオン性基14'は水性溶媒の存在する方向、すなわち顔料粒子1から離れる方向に向いている。

また、顔料粒子1の表面は、特定密度で化学結合されたアニオン性基14を有するとともに、アニオン性基14の間に疎水領域50を有しており、この疎水領域50には、例えば、カチオン性重合性界面活性剤2の疎水性基12と重合性基13とが向いている。そしてこのカチオン性重合性界面活性剤2のカチオン性基11には、アニオン性基14'が向くようにアニオン性重合性界面活性剤3が配置され、イオン性の強い結合で吸着する。このアニオン性重合性界面活性剤3の疎水性基12'と重合性基13'には、疎水性相互作用によって、他のアニオン性重合性界面活性剤3の疎水性基12'と重合性基13'が向き、アニオン性重合性界面活性剤3のアニオン性基14'は水性溶媒の存在する方向、すなわち顔料粒子1から離れる方向に向いている。

[0023]

このような水性分散液に例えば重合開始剤を添加するなどしてカチオン性重合性界面活性剤2の重合性基13ならびにアニオン性重合性界面活性剤3の重合性基13、を重合させることによって、図2に示すように、顔料粒子1がポリマー層60で被覆されたマイクロカプセル化顔料100が作製される。ここで、ポリマー層60の表面はアニオン性基14、を有するので、マイクロカプセル化顔料100は、水性溶媒に分散可能である。前記アニオン性重合性界面活性剤3の代わりに、親水性基としてアニオン性基を有する親水性モノマーを使用する場合も同様にしてマイクロカプセル化顔料を作製することができる。重合の際、必要に応じて、水性分散液中に、カチオン性重合性界面活性剤と、アニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーとに対して共重合可能なコモノマーを存在させても良く、その場合は、ポリマー層が、カチオン性重合性界面活性剤と、アニオン性重合性界面活性剤及び/又はアニオン性重合性界面活性剤と、アニオン性重合性界面活性剤と、アニオン性重合性界面活性剤と、アニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーと、コモノマーとから共重合されるコポリマー層となり得る。

$[0\ 0\ 2\ 4]$

以上、図面を用いて分散状態を挙げたが、先ず、顔料粒子1が、その表面に親 水性基としてアニオン性基を有することによって、水性溶媒に分散した状態とな っている。水性溶媒中における顔料粒子1の分散は、表面に親水性基(アニオン 性基)を有さない顔料粒子を分散剤によって分散させた場合と比較して高分散で ある。このようなアニオン性基を表面に有する顔料粒子がポリマーにより被覆さ れたマイクロカプセル化顔料によれば、図2に示すように、マイクロカプセル化 顔料の表面のアニオン性基が水性溶媒の存在する方向に向いて規則正しく密に配 向していることから、マイクロカプセル化顔料の水性溶媒に対する分散安定性を 向上できる。そのため、本発明に係るマイクロカプセル化顔料をインクジェット 記録用インクの着色剤とするとともに、インクの溶媒を水性溶媒とすれば、より 多重量のマイクロカプセル化顔料をインク中に含有させても、従来のマイクロカ プセル化顔料インクと同等の優れた分散安定性を付与できる。分散安定性に優れ れば、マイクロカプセル化顔料が記録ヘッドのノズルを詰まらせる虞れが少なく なることから、吐出安定性も良好となる。すなわち、分散安定性および吐出安定 性に優れると同時に、従来のマイクロカプセル化顔料インクと比較して着色剤の 重量濃度が向上したマイクロカプセル化顔料インクを作製できる。そして、この ような着色剤の重量濃度が高いマイクロカプセル化顔料インクを使用してインク ジェット記録を行うことによって、画像の堅牢性に優れるだけでなく、画像の印 字濃度が高い記録物を得ることができる。

[0025]

より具体的に考察すれば、本発明のマイクロカプセル化顔料においては、上述したように、アニオン性基が水性溶媒側に向かって規則正しく密に配向しているものと考えられるので、マイクロカプセル化顔料の間に、効果的な静電的な反発力が生じているものと考えられる。また、このような静電的な反発力に加えて、顔料粒子を被覆しているポリマーに起因する立体障害による効果(高分子効果)も、本発明のマイクロカプセル化顔料が水性媒体中で優れた分散安定性を有する一因となっているものと考えられる。

[0026]

記録媒体を普通紙とした場合に画像の滲みの発生を抑制できる理由、また、画像の印字濃度の高い理由としては、マイクロカプセル化顔料の水性溶媒側に向かって規則正しく密に配向している顔料の親水性基の働きによるところが大きいものと考えられる。インクが記録ヘッドから吐出されて普通紙上に着弾すると、イ

ンク溶媒は紙中に急速に浸透するが、従来の分散剤で分散された顔料粒子(顔料粒子を分散剤が覆っている)を用いた顔料インクでは顔料粒子が溶媒とともに紙の横方向や深部に移動して行き、普通紙表面のセルロース繊維上に吸着しにくく(この原因は、顔料表面の親水性基量が本発明の実施形態の係るマイクロカプセル化顔料に比べて少ないことと、親水性基が規則正しく密に配向した状態でないことによるためと考えられる。)、そのため印字濃度が低く発色性が不十分である。

これに対して、本発明のマイクロカプセル化顔料は、表面に存在する親水性基 (特にアニオン性基)が普通紙中に通常含まれるマグネシウム,カルシウム,アルミニウム等の各種の金属イオンと相互作用することによって凝集しやすく、また、普通紙のサイズ処理においてサイズ剤と共に用いられた普通紙中のカチオン性デンプンや、カチオン性高分子と、マイクロカプセル化顔料の親水性基 (特にアニオン性基)とが相互作用することによって吸着あるいは凝集しやすく、また、マイクロカプセル化顔料の親水性基 (特にアニオン性基)とセルロース繊維との相互作用によって普通紙のセルロース繊維上に吸着しやすい。よって、本発明のマイクロカプセル化顔料を着色剤とするインクが記録ヘッドから吐出されて普通紙上に着弾すると、着色剤が普通紙の着弾位置近傍に溜まりやすいので、高い画像濃度が得られるとともに滲みの発生も抑制されるものと考えられる。

[0027]

また、本発明に係るインクジェット記録用インクは、顔料がポリマーで被覆されているので、従来の表面処理顔料粒子を着色剤として用いたインクと比較して、記録媒体に対する定着性に優れ、その結果、記録物の耐擦過性を優れたものにできる。

[0028]

次に、本発明に係るマクロカプセル化顔料の構成成分について詳細に説明する

[0029]

親水性基を表面に有する顔料粒子は、顔料粒子の表面を親水性基付与剤によって処理することにより、好適に作製できる。よって、親水性基を表面に有する顔

料粒子を構成する顔料としては、親水性基付与剤に溶解しない顔料であれば特に限定されない。このような観点から、特に、本発明のインクにおいて好ましい顔料としては、以下の無機顔料及び有機顔料を挙げることができる。

無機顔料としては、ファーネスブラック、ランブブラック、アセチレンブラック、チャンネルブラック等のカーボンブラック(C. 1. ピグメントブラック7)類、あるいは、酸化鉄顔料等を挙げることができる。有機顔料としては、アゾ顔料(アゾレーキ、不溶性アゾ顔料、縮合アゾ顔料、及びキレートアゾ顔料などを含む。)、多環式顔料(例えば、フタロシアニン顔料、ペリレン顔料、ペリノン顔料、アントラキノン顔料、キナクリドン顔料、ジオキサン顔料、チオインジゴ顔料、イソインドリノン顔料、又はキノフラノン顔料など)、染料キレート(例えば、塩基性染料型キレート又は酸性染料型キレートなど)、ニトロ顔料、ニトロソ顔料、又はアニリンブラックなどを使用することができる。

[0030]

更に詳しくは、ブラック用として使用される無機顔料として、以下のカーボン ブラック、例えば、三菱化学製のNo. 2300、No. 900、MCF88、 No. 33, No. 40, No. 45, No. 52, MA7, MA8, MA10 0、又はNo2200B等;コロンビア社製のRaven5750、Raven 5 2 5 0、Raven 5 0 0 0、Raven 3 5 0 0、Raven 1 2 5 5、又 はRaven700等;キャボット社製のRegal 400R、Regal 330R, Regal 660R, Mogul L, Monarch 700, Monarch 800, Monarch 880, Monarch 900, Monarch 1000, Monarch 1100, Monarch 13 00、又はMonarch 1400等;あるいは、デグッサ社製のColor Black FW1, Color Black FW2, Color Bla ck FW2V, Color Black FW18, Color Black FW200, Color Black S150, Color Black S160, Color Black S170, Printex 35, Pri ntex U, Printex V, Printex 140U, Specia l Black 6, Special Black 5, Special Bl

ack 4A、又はSpecial Black 4等を使用することができる。

また、ブラック用の有機顔料としては、アニリンブラック(C.1.ピグメントブラック1)等の黒色有機顔料を用いることができる。

[0031]

また、イエローインク用の有機顔料としては、C. 1. ピグメントイエロー1 (ハンザイエロー)、2,3 (ハンザイエロー10G)、4,5 (ハンザイエロー5G)、6,7,10,11,12,13,14,16,17,24 (フラバントロンイエロー),34,35,37,53,55,65,73,74,75,81,83,93,94,95,97,98,99,108(アントラピリミジンイエロー)、109,110,113,117(銅錯塩顔料)、120,124,128,129,133(キノフタロン)、138,139(イソインドリノン)、147,151,153(ニッケル錯体顔料)、154,167,172,180などを挙げることができる。

[0032]

更に、マゼンタインク用の有機顔料としては、C. 1. ピグメントレッド1(パラレッド)、2,3(トルイジンレッド)、4,5(1TR Red)、6,7,8,9,10,11,12,14,15,16,17,18,19,21,22,23,30,31,32,37,38(ピラゾロンレッド)、40,41,42,48(Ca),48(Mn),57(Ca),57:1,88(チオインジゴ)、112(ナフトールAS系)、114(ナフトールAS系)、122(ジメチルキナクリドン)、123,144,146,149,150,166,168(アントアントロンオレンジ)、170(ナフトールAS系)、171,175,176,177,178,179(ベリレンマルーン)、184,185,187,202,209(ジクロロキナクリドン)、219,224(ベリレン系)、245(ナフトールAS系)、又は、C. I. ピグメントバイオレット19(キナクリドン)、23(ジオキサジンバイオレット)、32,33,36,38,43,50などを挙げることができる。

[0033]

[0034]

更にまた、マゼンタ、シアン又はイエローインク以外のカラーインクに用いる 有機顔料として、

C. I. ピグメントグリーン 7 (フタロシアニングリーン)、10 (グリーンゴールド)、36,37;

C. I. $\frac{1}{2}$ $\frac{1}{2}$

C. I. ピグメントオレンジ1, 2, 5, 7, 13, 14, 15, 16, 24, 34, 36, 38, 40, 43, 63等を用いることができる。

本発明に係るマクロカプセル化顔料においては、前記の顔料を1種で又は2種 以上を組み合わせて使用することができる。.

[0035]

顔料粒子の表面を処理するための親水性基付与剤としては、先ず、硫黄を含有する処理剤を好適に挙げることができる。

硫黄を含有する処理剤としては、硫酸、発煙硫酸、三酸化硫黄、クロロ硫酸、フルオロ硫酸、アミド硫酸、スルホン化ピリジン塩、スルファミン酸が挙げられ、中でも、三酸化硫黄、スルホン化ピリジン塩またはスルファミン酸等のスルホン化剤が好適である。これらを単独または2種以上を混合して用いることができる。(なお、"スルホン化剤"とは、スルホン酸 $(-SO_3H)$ および/またはスルフィン酸 $(-RSO_2H:RicC_1\sim C_{12}$ のアルキル基、または、フェニル基およびその変性体)を付与するための処理剤である。)

[0036]

また、前記三酸化硫黄を、三酸化硫黄と錯体を形成することのできる溶剤(N N-ジメチルホルムアミドジオキサン, ピリジン, トリエチルアミン, トリメチルアミンのような塩基性溶剤、ニトロメタン、アセトニトリル等)と後述する

溶剤1種以上との混合溶媒により、錯体化させることも有用である。

特に、三酸化硫黄自身では反応性が大きすぎて、顔料自身を分解または変質させたり、あるいは強酸による反応制御が困難な場合には、上記のように三酸化硫黄と第三アミンとの錯体を用いて顔料粒子の表面処理(この場合はスルホン化)を行うことが好ましい。

[0037]

また、硫酸や発煙硫酸、クロロ硫酸、フルオロ硫酸などを単体で使用すると容易に顔料粒子が溶解し、一分子ごとに反応する様な強酸に対しては、反応を抑制する必要があり、後述する溶剤の種類や使用する量に関して留意する必要がある。

反応に用いられる溶剤は、硫黄を含む処理剤とは反応せず、また、上記した顔料が不溶性または難溶性となるようなものから選択され、スルホラン、Nーメチルー2ーピロリドン、ジメチルアセトアミド、キノリン、ヘキサメチルホスホリックトリアミド、クロロホルム、ジクロロエタン、テトラクロロエタン、テトラクロロエチレン、ジクロロメタン、ニトロメタン、ニトロベンゼン、液体二酸化硫黄、二硫化炭素、トリクロロフルオロメタンなどが挙げられる。

[0038]

硫黄を含む処理剤による処理は、顔料粒子を溶剤に分散させ、この分散液に硫黄を含む処理剤を添加し、60~200℃に加熱、3~10時間攪拌することにより行う。具体的には、予めハイスピードミキサー等で高速せん断分散し、あるいはビーズミルやジェットミル等で衝撃分散し、スラリー状(分散液)とする方法が好ましい。その後、穏やかな攪拌に移した後、硫黄を含む処理剤を添加し、親水性基を顔料粒子の表面に導入させる。この際、親水性基の導入量の決定には、反応条件と硫黄を含む処理剤の種類が大きく左右する。この後に加熱処理した後、顔料粒子のスラリーから、溶剤および残留する硫黄を含む処理剤は取り除かれる。除去は、水洗,限外濾過,逆浸透等の方法、遠心分離,濾過等を繰り返して行う。

[0039]

さらに、前掲したスルホン酸 $(-SO_3H)$ および/またはスルフィン酸(-RS)

 $O_2H:R$ は $C_1\sim C_{12}$ のアルキル基、または、フェニル基およびその変性体)をアルカリ化合物で処理することによって、親水性基として、スルホン酸アニオン基($-SO_3$)及び/又はスルフィン酸アニオン基($-RSO_2$ -: Rは $C_1\sim C_1$ 2のアルキル基又はフェニル基およびその変性体)を表面に有する顔料粒子とすることができる。本発明においては、この状態で好ましく用いられる。

[0040]

アルカリ化合物としては、カチオンがアルカリ金属イオンまたは化学式($R_1R_2R_3R_4N$)+ (R_1 , R_2 , R_3 および R_4 は同一でも異なってもよく、水素原子、アルキル基,ヒドロキシアルキル基またはハロゲン化アルキル基を示す)で示される1価のイオンとなるアルカリ化合物が選択される。好ましくは、カチオンが、リチウムイオン(L_i +)、カリウムイオン(K+)、ナトリウムイオン(N_a +)、アンモニウムイオン(N_4 +)、および、トリエタノールアミンカチオン等のアルカノールアミンカチオンとなるアルカリ化合物である。

[0041]

アルカリ化合物のアニオンとしては、水酸化アニオンが好適に用いられ、その具体例としては、アンモニア、アルカノールアミン(モノエタノールアミン、ジエタノールアミン、N、Nーブチルエタノールアミン、トリエタノールアミン、プロパノールアミン、アミノメチルプロパノール、2ーアミノイソプロパノール等)、一価のアルカリ金属の水酸化物(LiOH、NaOH、KOH)が例示できる。

[0042]

上記したアルカリ化合物の添加量としては、顔料粒子のスルホン酸基および/ またはスルフィン酸基の中和当量以上が好ましい。さらに、アンモニア、アルカ ノールアミン等の揮発性のある添加剤については、概ね、中和当量の1.5倍以 上の添加が好ましい。

[0043]

なお、操作は、アルカリ化合物中に上記スルホン酸基および/またはスルフィン酸基が表面に化学結合された顔料粒子を入れ、ペイントシェーカー等で振とうすることにより行うことができる。

[0044]

また、顔料粒子の表面を処理するための親水性基付与剤としては、カルボキシル化剤も好適に挙げることができる。ここで"カルボキシル化剤"とは、カルボン酸基(-COOH)を付与するための処理剤である。

カルボキシル化剤としては、次亜塩素酸ナトリウムや次亜塩素酸カリウム等の次亜ハロゲン酸塩の様な酸化剤を使い、顔料粒子表面の一部結合(C=C、C-C)を切断し、酸化処理することによる。また前記の化学処理のほかにプラズマ処理等のような物理的酸化によりカルボン酸基を付与する場合もあるが、本発明では、水性媒体中での分散安定を確保可能な処理方法であれば、各種手法の選択が可能である。さらに、例示のカルボン酸導入処理においては、量的には少ないがキノン基等が導入される場合もある。こうした場合であっても、マイクロカプセル化顔料の水性媒体中での分散安定性を確保可能であれば本発明の主旨に反しない

[0045]

カルボキシル化剤による処理の一例を挙げると、顔料粒子を水性媒体中に予めハイスピードミキサー等で高速せん断分散し、あるいはビーズミルやジェットミル等で衝撃分散し、スラリー状(分散液)とする。次に、有効ハロゲン濃度で10~30%の次亜塩素酸ナトリウムのような次亜ハロゲン酸塩とを適量の水中で混合させ、60~80℃に加熱、5~10時間程度、好ましくは10時間以上攪拌することにより行う。この作業は、かなりの発熱を伴うため、安全上の注意が必要である。この後に表面処理された顔料粒子のスラリーから、溶剤および残留するカルボキシル化剤を加熱処理することで取り除く。また、必要によっては水洗、限外濾過、逆浸透等の方法、遠心分離、濾過等を繰り返して行うことで所望の水性分散体とすることが可能である。

$[0\ 0\ 4\ 6]$

ここでも、カルボン酸基(-COOH)を有する顔料粒子をアルカリ化合物で処理することによって、親水性基として、カルボン酸アニオン基(-COO-)を表面に有する顔料粒子とすることができる。本発明においては、この状態で好ましく用いられる。

アルカリ化合物の種類およびアルカリ化合物による処理方法は前述と同様である。

[0047]

次に、親水性基の顔料表面への好ましい導入量とその導入状態を調べるための 手法について述べる。

まず、親水化をスルホン化剤によって行う場合、顔料粒子表面に導入された親水性基の導入量は、顔料粒子1g当たり0.01mmol当量以上であることが好ましい。親水性基の導入量が0.01mmol/g未満になると、水性溶媒中での顔料粒子のマイクロカプセル化工程において、顔料粒子の凝集物が発生し易くなり、マイクロカプセル化顔料の平均粒径が増大する傾向がある。マイクロカプセル化顔料の平均粒径が増大する傾向がある。マイクロカプセル化顔料の平均粒径が増大するにつれて、分散安定性および吐出安定性が優れるとともに画像の印字濃度を高くできるインクジェット記録用インクは得にくくなる。

顔料粒子に対する親水性基の導入量の上限は、特に限定されないが、0.15 mm o l/gより大きくなると、親水性基導入量の増加に伴う顔料粒子の平均粒径に変化が認められなくなることがあるので、コストの点から、0.15 mm o l/g以下であることが好ましい。

[0048]

次に、カルボキシル化剤による顔料表面への親水性基の導入量について述べる。本発明で用いる表面処理手法では、カルボン酸基(-COOH)及び/又はカルボン酸アニオン基(-COO-)が顔料表面に導入されると考えられるが、直接的にこの導入量を求めることが出来ないため、本発明においてはその導入量を表面活性水素含有量で測定するものとする。詳細な測定方法は、後述する。

こうした方法によって得られる顔料への活性水素含有量は、 $1.0 \, \text{mmol/}$ g以上であることが好ましく、 $1.5 \, \text{mmol/g}$ 以上であることがより好ましい。 $1.0 \, \text{mmol/g}$ 以下では水分散性が悪くなり、マイクロカプセル化工程中で合一(粒子が自然に集まり、大粒径化すること)が起り易くなる。

[0049]

以上、親水性基を表面に有する顔料粒子について詳述したが、上記方法により

、親水性基を表面に有する顔料粒子の平均粒径を容易に150 n m以下とすることができる。特に、顔料や親水性基付与剤の種類、親水性基の導入量などを選択することにより平均粒径を20 n m~80 n mとするのがより好ましく、これにより、分散安定性および吐出安定性が優れるとともに、画像の印字濃度を高くできるインクジェット記録用インクをより確実に作製できるマイクロカプセル化顔料を得ることができる。(本明細書において平均粒径の記述は、レーザ光散乱法の計測値によって述べている。)

[0050]

親水性基を表面に有する顔料粒子は、引き続き、カチオン性基と疎水性基と重合性基とを有するカチオン性重合性界面活性剤から誘導された繰り返し構造単位と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーから誘導された繰り返し構造単位とを有するポリマーによって被覆されることにより、本発明の実施形態に係るマイクロカプセル化顔料とされる。このようなマイクロカプセル化顔料は、前述したように、アニオン性基を表面に有する顔料粒子の水性分散液にカチオン性重合性界面活性剤を加えて混合後、アニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーを加え乳化後、重合開始剤を加えて乳化重合することにより好適に作製できる。

[0051]

カチオン性重合性界面活性剤のカチオン性基としては、第一アミンカチオン、第二アミンカチオン、第三アミンカチオン、第四級アンモニウムカチオンなる群から選択されたカチオン性基が好ましい。第一アミンカチオンとしてはモノアルキルアンモニウムカチオン(RNH3+)等を、第二アミンカチオンとしてはジアルキルアンモニウムカチオン(R2NH2+)等を、第三アミンカチオンとしてはトリアルキルアンモニウムカチオン(R3NH+)等を、第四級アンモニウムカチオンとしては(R4N+)等を挙げることができる。ここで、Rは、疎水性基及び重合性基であり、下記に示すものを挙げることができる。

前掲のカチオン性基の対アニオンとしては、 $C1^-$ 、 Br^- 、 I^- 等を挙げることができる。

疎水性基としては、アルキル基、アリール基およびこれらが組み合わされた基 からなる群から選択されることが好ましい。

重合性基としては、不飽和炭化水素基が好ましく、さらに詳しくは、ビニル基、アリル基、アクリロイル基、メタクリロイル基、プロペニル基、ビニリデン基、ビニレン基からなる群から選択されたものであることが好ましい。このなかでも特にアクリロイル基、メタクリロイル基が好ましい例として例示できる。

[0052]

前記カチオン性重合性界面活性剤の具体的な例としては、特公平4-6582 4号公報に記載されているようなカチオン性のアリル酸誘導体などを挙げること ができる。

[0053]

本発明において使用するカチオン性重合性界面活性剤としては、例えば、一般式 $R[_{4-(1+m+n)}]R^1{}_1R^2{}_mR^3{}_nN^+\cdot X^-$ で表される化合物を挙げることができる(Rは重合性基であり、 R^1 、 R^2 、 R^3 はそれぞれアルキル基またはアリール基であり、XはC1、B r またはI であり、I、m、n はそれぞれ1 または0 である。)。ここで、前記重合性基としては、ラジカル重合可能な不飽和炭化水素基を有する炭化水素基を好適に例示でき、より具体的には、アリル基、アクロイル基、メタクリロイル基、ビニル基、プロペニル基、ビニリデン基、ビニレン基等を挙げることができる。

[0054]

カチオン性重合性界面活性剤の具体例としては、メタクリル酸ジメチルアミノエチルメチルクロライド、メタクリル酸ジメチルアミノエチルベンジルクロライド、メタクリロイルオキシエチルトリメチルアンモニウムクロライド、ジアリルジメチルアンモニウムクロライド、2ーヒドロキシー3ーメタクリロキシプロピルトリメチルアンモニウムクロライド等を挙げることができる。

[0055]

前記のカチオン性重合性界面活性剤としては、市販品を用いることもできる。 例えば、アクリエステルDMC(三菱レイヨン(株))、アクリエステルDML 60(三菱レイヨン(株))、C-1615(第一工業製薬(株))などを挙げ ることができる。

[0056]

以上に例示したカチオン性重合性界面活性剤は、単独で、又は2種以上の混合物として使用することができる。

[0057]

カチオン性重合性界面活性剤の添加量は、アニオン性基を表面に有する顔料の使用量に対するアニオン性基の総モル数(=使用した顔料の重量(g)×顔料表面のアニオン性基(mol/g))に対して、 $0.5\sim2$ 倍モルの範囲が好ましく、より好ましくは、 $0.8\sim1.2$ 倍モルの範囲である。0.5倍モル以上の添加量とすることによって、親水性基としてアニオン性基を有する顔料粒子にイオン的に強く結合し、容易にカプセル化が可能となる。2倍モル以下の添加量とすることで、顔料粒子に未吸着のカチオン性重合性界面活性剤の発生を少なくすることができ、顔料粒子を芯物質として持たないポリマー粒子(ポリマーのみからなる粒子)の発生を防止することができる。

[0058]

前記アニオン性重合性界面活性剤の具体的な例としては、特公昭 49-46291 号公報、特公平 1-24142 号公報、又は特開昭 62-104802 号公報に記載されているようなアニオン性のアリル誘導体、特開昭 62-221431 号公報に記載されているようなアニオン性のプロペニル誘導体、特開昭 62-34947 号公報又は特開昭 55-11525 号公報に記載されているようなアニオン性のアクリル酸誘導体、特公昭 46-34898 号公報又は特開昭 51-30284 号公報に記載されているようなアニオン性のイタコン酸誘導体などを挙げることができる。

[0059]

本発明において使用するアニオン性重合性界面活性剤としては、例えば、一般 式(31):

[0060]

【化1】

[式中、R 21 及びR 31 は、それぞれ独立して、水素原子又は炭素数 1 ~ 1 2の炭化水素基であり、 1 は、炭素-炭素単結合又は式

$$-CH_{2}-O-CH_{2}-$$

で表される基であり、mは2~20の整数であり、

Xは式 $-SO_3M^1$ で表される基であり、 M^1 はアルカリ金属、アンモニウム塩、

又はアルカノールアミンである]

で表される化合物、又は式(32):

$$[0\ 0\ 6\ 1]$$

【化2】

$$R^{22}$$
— $CH = CH_2$ — D

$$O = (C_2H_4O)_n - Y$$
(32)

[式中、R 22 及びR 32 は、それぞれ独立して、水素原子又は炭素数 1 ~ 1 2の炭化水素基であり、Dは、炭素-炭素単結合又は式

$$-CH_2-O-CH_2-$$

で表される基であり、nは2~20の整数であり、

Yは式 $-SO_3M^2$ で表される基であり、 M^2 はアルカリ金属、アンモニウム塩、

又はアルカノールアミンである]

で表される化合物が好ましい。

[0062]

前記式(31)で表される重合性界面活性剤は、特開平5-320276号公報、又は特開平10-316909号公報に記載されている。式(31)におけ

る R^{21} の種類と x の値を適宜調整することによって、顔料粒子表面の親水性又は 疎水性の度合いに対応させることが可能である。式(31)で表される好ましい 重合性界面活性剤としては、下記の式(310)で表される化合物を挙げること ができ、具体的には、下記の式(31a)~(31d)で表される化合物を挙げ ることができる。

[0063]

【化3】

$$CH_2 = CH - CH_2 - O - CH_2$$
 $O - CH_2 - CH - O(C_2H_4O)_m - SO_3M^1$
 (310)

[式中、 R^{31} , m, M^1 は式(3 1)で表される化合物と同様] 【0 0 6 4】

【化4】

$$CH_2=CH-CH_2O-CH_2$$
 C_9H_{19}
 $O-CH_2-CH-O-(C_2H_4-O-)_{10}-SO_3NH_4$
(31a)

【化5】

$$CH_2=CH-CH_2O-CH_2$$
 C_6H_{13}
 $O-CH_2-CH-O-(C_2H_4-O-)_{14}-SO_3Na$
(31b)

【化6】

$$CH_2=CH-CH_2O-CH_2$$
 C_4H_9
 $O-CH_2-CH-O-(C_2H_4-O-)_6-SO_3NH(C_2H_4OH)_3$

(31c)

【化7】

$$CH_2=CH-CH_2O-CH_2$$
 C_8H_{17}
 $O-CH_2-CH-O-(C_2H_4-O-)_4-SO_3NH_4$
(31d)

[0065]

前記のアニオン性重合性界面活性剤としては、市販品を用いることもできる。例えば、第一工業製薬株式会社のアクアロンHSシリーズ(アクアロンHS-05、HS-10、HS-20、HS-1025)、あるいは、旭電化工業株式会社のアデカリアソープSE-10N、SE-20Nなどを挙げることができる。

旭電化工業株式会社のアデカリアソープSE-10Nは、式(310)で表される化合物において、 M^1 がN H_4 、 R^{31} が C_9 H_{19} 、m=10とされた化合物である。旭電化工業株式会社のアデカリアソープSE-20Nは、式(310)で表される化合物において、 M^1 がN H_4 、 R^{31} が C_9 H_{19} 、m=20とされた化合物である。

[0066]

また、本発明において使用するアニオン性重合性界面活性剤としては、例えば、一般式 (33):

[0067]

【化8】

$$CH_3(CH_2)_p$$
— CH — CH_2 — CH = CH_2
 $O + CH_2CH_2O + A$
(33)

[式中、pは9又は11であり、qは $2\sim2$ 0の整数であり、Aは $-SO_3M^3$ で表わされる基であり、 M^3 はアルカリ金属、アンモニウム塩又はアルカノールアミンである〕

で表される化合物が好ましい。式(33)で表される好ましいアニオン性重合性 界面活性剤としては、以下の化合物を挙げることができる。

[0068]

【化9】

$$CH_3(CH_2)_r$$
— CH — CH_2 - O - CH_2 — CH = CH_2
 O + CH_2CH_2O + SO_3NH_4

[式中、rは9又は11、sは5又は10]

[0069]

前記のアニオン性重合性界面活性剤としては、市販品を用いることもできる。例えば、第一工業製薬株式会社のアクアロンKHシリーズ(アクアロンKH-05、アクアロンKH-10) などを挙げることができる。アクアロンKH-05 は、上記式で示される化合物において、rが9、sが5とされた化合物と、rが11、sが5とされた化合物との混合物である。アクアロンKH-10は、上記式で示される化合物において、rが9、sが10とされた化合物と、rが11、sが10とされた化合物との混合物である。

[0070]

また、アニオン性重合性界面活性剤としては、下記の式(A)で表される化合物も好ましい。

[0071]

【化10】

$$CH=CHCH_3$$
 $O(CH_2CH_2)_1-Z$
 (A)

Z; -SO₃M⁴

[上式中、 R^4 は水素原子または炭素数1から12の炭化水素基を表し、1は2~20の数を表し、 M^4 はアルカリ金属、アンモニウム塩、またはアルカノールアミンを表す。]

[0072]

以上に例示したアニオン性重合性界面活性剤は、単独で、又は2種以上の混合物として使用することができる。

[0073]

アニオン性重合性界面活性剤の添加量は、カチオン性重合性界面活性剤に対して、1倍~10倍モル程度の範囲が好ましく、より好ましくは1.5倍モル~5倍モル程度の範囲である。1倍モル以上の添加量とすることにより、カプセル化粒子の分散性及び分散安定性が優れたものとなり、吐出安定性も優れたものとなる。さらには紙繊維への吸着性が向上し、印刷濃度、発色性に優れたものとなる。10倍モル以下の添加量とすることでカプセル化に寄与しないアニオン性重合性界面活性剤の発生を抑制し、そしてカプセル粒子以外に芯物質が存在しないポリマー粒子が発生することを防止できる。

[0074]

前記アニオン性重合性界面活性剤のアニオン性基は、マイクロカプセル化後、カプセル表面に水相側に配向して存在するものと考えられる。これによって、カプセル化粒子の水相中での分散性及び分散安定性が優れたものとなる。また、上記のアニオン性基は、普通紙中に通常含まれるマグネシウム、カルシウム、アルミニウム等の各種の金属イオンやカチオン性デンプンやカチオン性高分子や、セルロース繊維と相互作用しやすい。かかるマイクロカプセル化顔料を着色剤とするインクジェット記録用インクを普通紙に対して吐出させれば、着色剤が普通紙の着弾位置近傍に溜まりやすいので、より確実に、画像濃度が得られるとともに、滲みの発生も抑制できる。

[0075]

本発明において使用できるアニオン性基を有する親水性モノマーとしては、その構造中に親水性基としてのアニオン性基と重合性基とを少なくとも有するもので、親水性基がスルホン酸基、スルフィン酸基、カルボキシル基、カルボニル基およびこれらの塩の群から選択されたものを好適に例示できる。

重合性基としては、ラジカル重合が可能な不飽和炭化水素基であって、ビニル 基、アリル基、アクリロイル基、メタクリロイル基、プロペニル基、ビニリデン 基、ビニレン基からなる群から選択されるのが好ましい。

[0076]

スルホン酸基、スルフィン酸基、カルボキシル基、カルボニル基およびこれら

の塩等のアニオン性基は、カプセル表面に水相側に配向して存在するものと考えられ、これによってカプセル化粒子の水相中での分散性及び分散安定性が優れたものとなる。また、上記のアニオン性基は、普通紙中に通常含まれるマグネシウム,カルシウム,アルミニウム等の各種の金属イオンや、カチオン性デンプンやカチオン性高分子や、セルロース繊維と相互作用しやすい。親水性基としてアニオン性基を有する重合性モノマーを使用してマイクロカプセル化顔料を作製し、このようなマイクロカプセル化顔料を着色剤とするインクジェット記録用インクを普通紙に対して吐出させれば、着色剤が普通紙の着弾位置近傍に溜まりやすいので、より確実に、画像濃度が得られるとともに滲みの発生も抑制できる。

アニオン性基を有する親水性モノマーの好ましい具体例としては、例えば、メタクリル酸、アクリル酸、リン酸基含有(メタ)アクリレート、ビニルスルホン酸ナトリウム、2-スルホエチルメタクリレート、2-アクリルアミド-2-メチルプロパンスルホン酸、などを挙げることができる。

[0077]

アニオン性基を有する親水性基モノマーの添加量は、カチオン性重合性界面活性剤に対して、1倍モル~10倍モル程度の範囲が好ましく、より好ましくは、1.5倍モル~5倍モル程度の範囲である。1倍モル以上の添加量とすることにより、カプセル化粒子の分散性及び分散安定性が優れたものとなり、吐出安定性も優れたものとなる。10倍モル以下の添加量とすることでカプセル化に寄与しない親水性モノマーの発生を抑制し、そしてカプセル粒子以外に芯物質が存在しないポリマー粒子が発生することを防止できる。

[0078]

アニオン性重合性界面活性剤とアニオン性基を有する親水性基モノマーとを併用する場合においては、その添加量の総和がカチオン性重合性界面活性剤に対して、1倍モル~10倍モル程度の範囲が好ましく、より好ましくは、1.5倍モル~5倍モル程度の範囲である。前述したように、1倍モル以上の添加量とすることにより、カプセル化粒子の分散性及び分散安定性が優れたものとなる。10倍モル以下の添加量とすることでカプセル化に寄与しない親水性モノマーの発生を抑制し、そしてカプセル化粒子以外に芯物質が存在しないポリマー粒子の発生

を防止することができる。

[0079]

本発明の実施形態に係るマイクロカプセル化顔料は、より具体的には、以下の 手順によって好適に製造される。

- (1) アニオン性基を表面に有する顔料が水に分散された分散液に、カチオン 性重合性界面活性剤を加える。ここでは、カチオン性重合性界面活性剤のカチオン性基が、アニオン性基を表面に有する顔料のアニオン性基に吸着してイオン的に結合し、固定化される。
- (2) カチオン性重合界面活性剤に対して共重合可能なコモノマー、より具体的には、アニオン性基と疎水性基と重合性基とを有するアニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーと、重合開始剤とを加え、乳化重合する。

このような手順により、カチオン性重合性界面活性剤から誘導された繰り返し構造単位と、アニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーから誘導された繰り返し構造単位とを有するポリマーで被覆されたマイクロカプセル化顔料を好適に製造できる。

[0080]

さらに、特に、記録物の定着性や耐擦過性、耐溶剤性を制御したり、インクの 保存安定性を制御する目的で、他のコモノマーを添加してもよい。

特に、記録物の定着性や耐擦過性は、本発明に係るマイクロカプセル化顔料の 顔料粒子を被覆している共重合体(コポリマー)のガラス転移点(Tg)を制御 することによって可能である。共重合体のガラス転移点(Tg)は-20 \mathbb{C} ~ 3 0 \mathbb{C} が好ましい。Tg が 3 0 \mathbb{C} を超えると定着性や耐擦過性が低下する傾向とな り、Tg が -2 0 \mathbb{C} $\mathbb{$

[0081]

他のコモノマーとしては、親水性モノマー(前記アニオン性基を有する親水性 モノマー以外の親水性モノマー)及び/又は疎水性モノマーを挙げることができ る。

[0082]

アニオン性基を有する親水性モノマー以外の親水性モノマーとしては、2ーヒドロキシルメタクリレート、エチルジエチレングリコールアクリレート、ポリエチレングリコールモノメタクリレート、メトキシポリエチレングリコールメタクリレート、Nービニル-2-ピロリドン、などを挙げることができる。

[0083]

記録物の定着性や耐擦過性、耐水性、耐溶剤性等の要求特性を満足するには、 疎水性モノマーを好適に使用することができる。すなわち、本発明に係るマイク ロカプセル化顔料は、アニオン性基を表面に有する顔料粒子が、カチオン性基と 疎水性基と重合性基とを有するカチオン性重合性界面活性剤から誘導された繰り 返し構造単位と、アニオン性基と疎水性基と重合性基とを有するアニオン性重合 性界面活性剤及び/又はアニオン性基を有する親水性モノマーから誘導された繰り り返し構造単位に加え、疎水性モノマーから誘導された繰り返し構造単位をさら に有していても良い。

[0084]

疎水性モノマーとしては、その構造中に疎水性基と重合性基とを少なくとも有するもので、疎水性基が脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基の群から選択されたものを例示できる。脂肪族炭化水素基としてはメチル基、エチル基、プロピル基等を、脂環式炭化水素基としてはシクロヘキシル基、ジシクロペンテニル基、イソボルニル基等を、芳香族炭化水素基としてはベンジル基、フェニル基、ナフチル基等を挙げることができる。

重合性基としては、ラジカル重合が可能な不飽和炭化水素基であって、ビニル基、アリル基、アクリロイル基、メタクリロイル基、プロペニル基、ビニリデン基、ビニレン基からなる群から選択されるのが好ましい。

[0085]

疎水性モノマーの具体例としては、スチレンおよびメチルスチレン、ジメチルスチレン、クロルスチレン、ジクロルスチレン、ブロムスチレン、pークロルメチルスチレン、ジビニルベンゼン等のスチレン誘導体;アクリル酸メチル、アクリル酸エチル、アクリル酸nーブチル、ブトキシエチルアクリレート、アクリル酸ベンジル、アクリル酸フェニル、フェノキシエチルアクリレート、アクリル酸

シクロヘキシル、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、アクリル酸テトラヒドロフルフリル、イソボルニルアクリレート等の単官能アクリル酸エステル類;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸 n ー ブチル、2 ー エチルヘキシルメタクリレート、ブトキシメチルメタクリレート、メタクリル酸ベンジル、メタクリル酸フェニル、フェノキシエチルメタクリレート、メタクリル酸シクロペンテニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、メタクリル酸テトラヒドロフルフリル、イソボルニルメタクリレート等の単官能メタクリル酸エステル類;アリルベンゼン、アリルー3ーシクロヘキサンプロピオネート、1ーアリルー3,4ージメトキシベンゼン、アリルフェノキシアセテート、アリルフェニルアセテート、アリルシクロヘキサン、多価カルボン酸アリル等のアリル化合物;フマル酸、マレイン酸、イタコン酸のエステル類;Nー置換マレイミド、環状オレフィンなどのラジカル重合性基を有するモノマーが挙げられる。

[0086]

疎水性モノマーは、上記の要求特性を満足させるものが適宜、選択され、その 添加量は任意に決定される。

[0087]

カチオン性重合性界面活性剤と、アニオン性重合界面活性剤及び/又はアニオン性基を有する親水性モノマーとの共重合、または、これらに加えて疎水性モノマーとの共重合は、重合開始剤の添加によって開始されるのが好ましく、このような重合開始剤としては、水溶性の重合開始剤が好ましく、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、2,2-アゾビスー(2-メチルプロピオンアミジン)二塩酸塩、または4,4-アゾビスー(4-シアノ吉草酸)などが挙げられる。

[0088]

そして、本発明の実施形態に係るマイクロカプセル化顔料の製造は、親水性基 としてアニオン性基を表面に有する顔料粒子の水性分散液に、前記カチオン性重 合性界面活性剤を加え、必要に応じて、水もしくは水と水性溶媒を加えて混合し 、超音波を所定時間照射した後、アニオン性重合制界面活性剤及び/又はアニオン性基を有する親水性モノマー(これらの他に、疎水性モノマーを加えることもできる。)と必要に応じて水を加えて再び超音波を所定時間照射して分散し、超音波照射と攪拌を行いながら、所定の温度(重合開始剤の活性化する温度)まで昇温し、重合開始剤を加えて重合開始剤を活性化させて乳化重合することによって好適に実施することができる。

[0089]

反応は、超音波発生器、攪拌機、還流冷却器、滴下漏斗及び温度調節器を備えて反応容器を使用するのが好ましい。

重合開始剤の添加は、水溶性重合開始剤を純水に溶解した水溶液を滴下することにより好適に実施できる。

重合開始剤の活性化は、水性分散液を所定の重合温度まで昇温することにより好適に実施できる。重合終了後に、pH7.0~9.0の範囲に調整し、濾過を行なうことが好ましい。ここで、水性溶媒は、前述したように、水を主成分とする溶媒のことであり、水の他に、任意成分として、例えば、グリセリン類やグリコール類のような水溶性溶媒等を含んでいても良い。また、重合温度は、60℃~90℃の範囲とされるのが好ましい。なお、親水性基としてアニオン性基を表面に有する顔料粒子が水性分散液の状態にない場合は、前処理として、ボールミル、ロールミル、アイガーミル、ジェットミル等の一般的な分散機を用いて分散処理を行うことが好ましい。

[0090]

以上のようにして得られる本発明の実施形態に係るマイクロカプセル化顔料は、平均粒径の小さい顔料粒子がポリマー層で完全に被覆される(欠陥部分がない)とともに、ポリマー層の親水性基が水性溶媒に向かって規則正しく配向するものと考えられるので(図2参照)、水性溶媒に対して高い分散安定性を有することになる。

[0091]

以上に本発明の実施形態に係るマイクロカプセル化顔料について説明したが、 これらのマイクロカプセル化顔料の粒子径は、好ましくは400nm以下、更に 好ましくは300 n m以下、特に好ましくは50~200 n mである。

[0092]

「水性分散液〕

本発明の実施形態に係る水性分散液は、本発明の実施形態に係るマイクロカプセル化顔料を含むものであり、このような水性分散液としては、前記本発明の実施形態における乳化重合後の液を好適に例示できる。この水性分散液に、さらにインクジェット記録用インクとするための他の配合成分を常法によって添加することにより、本発明の実施形態に係るインクジェット記録用インクを製造できる

[0093]

「インクジェット記録用インク]

本発明の実施形態に係るインクジェット記録用インクは、前記したように、水 性分散液を含んでいる。

また、本発明の他の実施形態に係るインクジェット記録用インクは、本発明の実施形態に係るマイクロカプセル化顔料と水とを少なくとも含んでいる。マイクロカプセル化顔料の含有量は、インクジェット記録用インクの全重量に対して、1重量%~20重量%が好ましく、より好ましくは、3重量%~15重量%である。特に高い印刷濃度と高発色性を得るには、5重量%~15重量%が好ましい

[0094]

また、本発明の実施形態に係るインクジェット記録用インクの溶媒は、水及び水溶性有機溶媒を基本溶媒として含むのが好ましく、また必要に応じて任意の他の成分を含むことができる。

[0095]

水溶性有機溶媒としては、エタノール、メタノール、ブタノール、プロパノール、又はイソプロパノールなどの炭素数 1~4のアルキルアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコール

モノエチルエーテル、ジエチレングリコールモノーnープロピルエーテル、エチ レングリコールモノーisoープロピルエーテル、ジエチレングリコールモノー isoープロピルエーテル、エチレングリコールモノーnーブチルエーテル、ジ エチレングリコールモノーnーブチルエーテル、トリエチレングリコールモノー n-ブチルエーテル、エチレングリコールモノーt-ブチルエーテル、ジエチレ ングリコールモノー t ーブチルエーテル、1 - メチル-1 - メトキシブタノール 、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチル エーテル、プロピレングリコールモノーt-ブチルエーテル、プロピレングリコ ールモノーnープロピルエーテル、プロピレングリコールモノーisoープロピ ルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコ ールモノエチルエーテル、ジプロピレングリコールモノーn-プロピルエーテル 、ジプロピレングリコールモノーiso-プロピルエーテル、プロピレングリコ ールモノーn-ブチルエーテル、又はジプロピレングリコールモノ-n-ブチル エーテルなどのグリコールエーテル類、あるいは、ホルムアミド、アセトアミド 、ジメチルスルホキシド、ソルビット、ソルビタン、アセチン、ジアセチン、ト リアセチン、又はスルホランなどを挙げることができる。

[0096]

また、本発明の実施形態に係るインクジェット記録用インクは、水溶性有機溶媒として、インクジェット記録用インクの保水性と湿潤性をもたらす目的で、高沸点水溶性有機溶媒からなる湿潤剤を含有するのが好ましい。このような高沸点水溶性有機溶媒としては、沸点が180℃以上の高沸点水溶性有機溶媒を例示できる。

[0097]

沸点が180℃以上の水溶性有機溶媒の具体例としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ペンタメチレングリコール、トリメチレングリコール、2ーエチルー1,3 ーへキサンジオール、2ーメチルー2,4ーペンタンジオール、トリプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルグリコール、ジプロピレングリコールモノメメ チルエーテル、ジプロピレングリコール、トリエチレングリコールモノメチルエーテル、テトラエチレングリコール、トリエチレングリコール、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、トリプロピレングリコール、分子量2000以下のポリエチレングリコール、1,3ープロピレングリコール、イソプロピレングリコール、イソプチレングリコール、1,4ーブタンジオール、1,3ーブタンジオール、1,5ーペンタンジオール、1,6ーへキサンジオール、グリセリン、メソエリスリトール、ペンタエリスリトールを挙げることができる。沸点が200℃以上である有機溶媒が好ましい。これらは単独又は2種以上の混合物として使用することができる。これにより、開放状態(室温で空気に触れている状態)で放置しても流動性と再分散性とを長時間で維持するインクジェット記録用インクを提供することができる。更に、印字中もしくは印字中断後の再起動時にノズルの目詰まりが生じ難くなり、高い吐出安定性が得られる。

[0098]

これらの水溶性有機溶媒の含有量は、インクジェット記録用インクの全重量に対して、好ましくは $10\sim50$ 重量%程度であり、より好ましくは $10\sim30$ 重量%である。

[0099]

さらに、水溶性有機溶媒としては、2-ピロリドン,N-メチルピロリドン, $\epsilon-$ カプロラクタム,ジメチルスルホキシド,スルホラン,モルホリン,N-エチルモルホリン,1,3-ジメチル-2-イミダゾリジノン等の極性溶媒を挙げることができ、これらから一種以上選択して用いてもよい。これら極性溶媒の添加は分散性に効果があり、インクの吐出安定性を良好とすることができる。

これらの極性溶媒の含有量は、インクジェット記録用インクの全重量に対して、好ましくは0.1重量% ~20 重量%であり、より好ましくは1重量% ~10 重量%である。

$[0\ 1\ 0\ 0\]$

本発明の実施形態に係るインクジェット記録用インクは、水性溶媒の記録媒体 に対する浸透を促進する目的で、浸透剤を含有するのが好ましい。水性溶媒が記

録媒体に対して素早く浸透することによって、画像の滲みが少ない記録物を確実 に得ることができる。このような浸透剤としては、多価アルコールのアルキルエ ーテル (グリコールエーテル類ともいう)、1,2-アルキルジオールが好まし く用いられる。具体的には、多価アルコールのアルキルエーテルとしては、例え ばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエー テル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチル エーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレング リコールモノエチルエーテル、エチレングリコールモノーnープロピルエーテル 、エチレングリコールモノーiso-プロピルエーテル、ジエチレングリコール モノーisoープロピルエーテル、エチレングリコールモノーnーブチルエーテ ル、ジエチレングリコールモノーnーブチルエーテル、トリエチレングリコール モノー n ーブチルエーテル、エチレングリコールモノー t ーブチルエーテル、ジ エチレングリコールモノー t ーブチルエーテル、1-メチル-1-メトキシブタ ノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ エチルエーテル、プロピレングリコールモノーt-ブチルエーテル、プロピレン グリコールモノーnープロピルエーテル、プロピレングリコールモノーiso-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレン グリコールモノエチルエーテル、ジプロピレングリコールモノーn-プロピルエ ーテル、ジプロピレングリコールモノーisoープロピルエーテル、プロピレン グリコールモノーnーブチルエーテル、ジプロピレングリコールモノーnーブチ ルエーテル等が挙げられる。1,2ーアルキルジオールとしては、具体的には、 例えば1,2-ペンタンジオール、1,2-ヘキサンジオールが挙げられる。こ れらの他に、1、3-プロパンジオール、1、4-ブタンジオール1、5-ペン タンジオール、1, 6 - ヘキサンジオール、1, 7 - ヘプタンジオール、1, 8 ーオクタンジオール等の直鎖炭化水素のジオール類からも適宜選択されても良い

[0101]

特に、本発明の実施形態においては、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、ジエチレングリコールモノブ

チルエーテル、トリエチレングリコールモノブチルエーテル、1, 2-ペンタンジオール、1, 2-ペンタンジオール、1, 2-ペキサンジオールが好ましい。これらの浸透剤の含有量は、インクジェット記録用インクの全重量に対して、総量で、好ましくは1-20重量%、さらに好ましくは1-10重量%である。浸透剤の含有量が1重量%より少ないと浸透性に効果がなく、20重量%を超えると画像の滲みによる印字品質の低下や粘度が高くなる等の不具合が生じるため好ましくない。また、特に、1, 2-ペンタンジオール、1, 2-ペキサンジオール等の1, 2-アルキルジオールを用いることによって、印字後の乾燥性と滲みが格段に改善される。

[0102]

特に、本発明の実施形態において、グリセリンを含むことによって、インクの 目詰まり信頼性と保存安定性を十分に確保することができる。

さらに、多価アルコールのアルキルエーテル及び1,2ーアルキルジオールからなる群から選択された1種以上の化合物を含むことによって、記録媒体へのインク溶媒成分の浸透性を高めることができるため、本発明の実施形態のマイクロカプセル化顔料の効果と相俟って、普通紙や再生紙等への印刷においても画像の滲みが激減して印字品質を格段に向上させることができる。

[0103]

また、前掲したグリコールエーテル類を使用する場合には、特に、グリコール エーテル類と後述する界面活性剤としてのアセチレングリコール化合物とを併用 するのが好ましい。

[0104]

また、本発明の実施形態に係るインクジェット記録用インクは、界面活性剤、特にアニオン性界面活性剤および/またはノニオン性界面活性剤を含んでなることが好ましい。アニオン性界面活性剤の具体例としては、アルカンスルホン酸塩、αーオレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタリンスルホン酸、アシルメチルタウリン酸、ジアルキルスルホ琥珀酸等のスルホン酸型、アルキル硫酸エステル塩、硫酸化油、硫酸化オレフィン、ポリオキシエチレンアルキルエーテル硫酸エステル塩;脂肪酸塩、アルキルザルコシン塩などのカルボン酸型、;アルキルリン酸エステル塩、ポリオキシエチレンアルキル

エーテルリン酸エステル塩、モノグリセライトリン酸エステル塩などのリン酸型エステル型、;等が挙げられる。また、ノニオン性界面活性剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンアルキルアミドなどのエチレンオキシド付加型;グリセリンアルキルエステル、ソルビタンアルキルエステル、シュガーアルキルエステルなどのポリオールエステル型;多価アルコールアルキルエーテルなどのポリエーテル型;アルカノールアミン脂肪酸アミドなどのアルカノールアミド型;が挙げられる。

[0105]

より具体的には、アニオン性界面活性剤としてはドデシルベンゼンスルホン酸ナトリウム、ラウリル酸ナトリウム、ポリオキシエチレンアルキルエーテルサルフェートのアンモニウム塩などが挙げられ、ノニオン性界面活性剤の具体例としてはポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテルなどのエーテル系、ポリオキシエチレンオレイン酸、ポリオキシエチレンオレイン酸エステル、ポリオキシエチレンジステアリン酸エステル、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンセスキオレート、ポリオキシエチレンモノオレエート、ポリオキシエチレンステアレートなどのエステル系等を挙げることができる。

[0106]

特に、本発明の実施形態に係るインクジェット記録用インクは、界面活性剤として、アセチレングリコール系界面活性剤および/またはアセチレンアルコール系界面活性剤を含んでなることが望ましい。これにより、インクを構成する水性溶媒の記録媒体への浸透性を高くでき、種々の記録媒体において滲みの少ない印刷が期待できる。

本発明において用いられるアセチレングリコール化合物の好ましい具体例とし

ては、下記の式(6)で表される化合物が挙げられる。

[0107]

【化11】

$$R^{3} - C - C = C - C - R^{4}$$

$$\downarrow 0$$

$$\downarrow CH_{2}$$

上記式(6) において、m及びnは、それぞれ $0 \le m + n \le 5$ 0を満たす数である。また、 R^1 、 R^2 、 R^3 及び R^4 は、それぞれ独立してアルキル基(好ましくは炭素数6以下のアルキル基)である。

上記式 (6) で表される化合物の中でも、特に好ましくは、2, 4, 7, 9 ー テトラメチルー5 ーデシンー4, 7 ージオール、3, 6 ージメチルー4 ーオクチンー3, 6 ージオール、3, 5 ージメチルー1 ーヘキシンー3 ーオールなどが挙げられる。上記式 (6) で表される化合物は、アセチレングリコール系界面活性剤として市販されている市販品を利用することも可能であり、その具体例としては、サーフィノール1 0 4 、8 2 、4 6 5 、4 8 5 またはT G (いずれもA ir P roducts and Chemicals. Inc. より入手可能)、オルフィンST G、オルフィンE 1 0 1 0 (以上、日信化学社製 商品名)が挙げられる。

[0108]

アセチレンアルコール系界面活性剤としては、サーフィノール 6 1 (Air Products and Chemicals. Inc. より入手可能) 等が挙げられる。

[0109]

これらの界面活性剤の含有量は、インクジェット記録用インクの全重量に対して、好ましくは $0.01\sim10$ 重量%の範囲であり、より好ましくは $0.1\sim5$ 重量%である。

[0110]

また、本発明の実施形態に係るインクジェット記録用インクは、pH調整剤を含有することもでき、好ましくは、pHを $7\sim9$ の範囲、より好ましくは、 $7.5\sim8.5$ の範囲に設定される。

p H調整剤としては、具体的には水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸リチウム、リン酸ナトリウム、リン酸カリウム、リン酸リチウム、リン酸二水素カリウム、リン酸水素ニカリウム、シュウ酸ナトリウム、シュウ酸カリウム、シュウ酸リチウム、ホウ酸ナトリウム、四ホウ酸ナトリウム、フタル酸水素カリウム、酒石酸水素カリウムなどのカリウム金属類、アンモニア、メチルアミン、エチルアミン、ジエチルアミン、トリメチルアミン、トリエチルアミン、トリス(ヒドロキシメチル)アミノメタン塩酸塩、トリエタノールアミン、ジエタノールアミン、ジエチルエタノールアミン、トリイソプロペノールアミン、ブチルジエタノールアミン、モルホリン、プロパノールアミンなどのアミン類などが好ましい。

中でも、水酸化アルカリ化合物あるいはアミンアルコールを添加すると、イン ク中でも顔料粒子の分散安定性を向上できる。

水酸化アルカリ化合物の添加量は、インク全量に対して、好ましくは 0.01 重量%~5重量%、より好ましくは 0.05~3重量%である。

アミンアルコールの添加量は、インク全量に対して、好ましくは 0.1 重量% ~ 10 重量%、より好ましくは $0.5 \sim 5$ 重量%である。

[0111]

また、本発明の実施形態に係るインクジェット記録用インクは、防カビ剤、防腐、防錆の目的で、安息香酸、ジクロロフェン、ヘキサクロロフェン、ソルビン酸、p-ヒドロキシ安息香酸エステル、エチレンジアミン四酢酸(EDTA)、デヒドロ酢酸ナトリウム、1,2-ベンチアゾリン-3-オン〔製品名:プロキセルXL(アビシア製)〕、3,4-イソチアゾリン-3-オン、4、4-ジメ

チルオキサゾリジン等を含むことができる。

また、本発明の実施形態に係るインクジェット記録用インクは、記録ヘッドの ノズルが乾燥するのを防止する目的で、尿素、チオ尿素、及び/又はエチレン尿 素等を含むことができる。

[0112]

特に好ましい本発明の実施形態に係るインクジェット記録用インクは、

- (1) 本発明の実施形態に係るマイクロカプセル化顔料、
- (2) アセチレングリコール系界面活性剤及び/又はアセチレンアルコール系界面活性剤、
- (3) ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、及び/又は炭素数 $4 \sim 1001$, 2 -アルキルジオールからなる群から選択される 1 種以上の化合物(浸透剤)、
- (4) グリセリン、
- (5)水、

を少なくとも含む。

このようなインクジェット記録用インクは、特に、分散安定性及び吐出安定性に優れ、更に、長期にわたって、ノズルの目詰まりもなく、安定した印字が可能である。また、普通紙や再生紙及びコート紙等の記録媒体において、印字後の乾燥性が良好で、滲みがなく、高い印刷濃度を有し、発色性に優れた高品位の画像を得ることができる。

[0 1 1 3]

一般に、顔料を分散させる場合には、界面活性剤や高分子分散剤等の分散剤が 用いられるが、これらの分散剤は顔料粒子表面に単に吸着しているのみであるの で、通常は、何らかの環境要因によって分散剤が顔料粒子表面から脱離しやすい 傾向にある。これに対して、本発明の実施形態においては、前記したように、ポ リマー被膜又は架橋化ポリマー被膜で親水性基を表面に有する顔料粒子の表面を 完全に包含し、顔料粒子表面を取り巻いているポリマー被膜又は架橋化ポリマー 被膜が非常に強固に顔料粒子表面に固着するために、顔料粒子表面から脱離しに くくなっているものと考えられる。

[0114]

更に詳しくは、界面活性剤や高分子分散剤等の分散剤を用いて顔料を分散した 顔料分散液を用いて、前記のアセチレングリコール系界面活性剤及び/又はアセ チレンアルコール系界面活性剤と、ジエチレングリコールモノブチルエーテル、 トリエチレングリコールモノブチルエーテル、プロピレングリコールモノブチル エーテル、ジプロピレングリコールモノブチルエーテル、又は1,2-アルキル ジオール等の浸透剤で浸透性を向上したインクでは、細いノズルを通って吐出さ れる際に加わる強い剪断力によって分散剤が顔料表面から容易に脱離して分散性 の劣化をもたらし、吐出が不安定となる傾向がある。

[0115]

これに対して、本発明の実施形態に係るマイクロカプセル化顔料を用いたインクジェット記録用インクでは、こうした現象が全く認められず、安定に吐出される。また、ポリマー被膜で顔料粒子を包含しているために、良好な耐溶剤性が得られるので、上記の浸透剤による顔料粒子からの脱離の促進やポリマーの膨潤等が起こりにくくなり、長期にわたって優れた分散安定性を維持することができる

[0116]

また、界面活性剤や高分子分散剤等の分散剤を用いて顔料を分散した顔料分散液を用い、且つ浸透性を向上したインク組成物では、一般に、分散した当初から顔料表面に吸着されずに液中に溶解している分散剤や、その後に顔料から脱離した分散剤によってインク組成物の粘度が高くなる傾向にあるため、顔料の含有量が制限されることが多い。そのため、特に普通紙や再生紙においては充分な印刷濃度を得ることができずに良好な発色性が得られないことも多い。これに対して、本発明の実施形態に係るマイクロカプセル化顔料を用いたインク組成物では、前記したようにポリマー被膜が顔料粒子を包含しているので、顔料粒子から脱離しにくく、従って、インク組成物の粘度増加がないためインク組成物の低粘度化が容易であり、顔料粒子をより多く含有させることができるとの利点を有し、普通紙や再生紙上で充分な印刷濃度を得ることができる。

[0117]

前記した特に好ましい本発明の実施形態において、前記(2)のアセチレング リコール系界面活性剤及び/又はアセチレンアルコール系界面活性剤の添加量は インクの全重量に対して、好ましくは0.01~10重量%、より好ましくは0.1~5重量%である。

[0118]

前記した特に好ましい本発明の実施形態において、前記(3)の浸透剤としてのジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテルの添加量はインク組成物の全重量に対して、好ましくは10重量%以下、より好ましくは0.5~5重量%である。ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテルを添加すると、浸透性の向上に顕著な効果を示す。また、ジエチレングリコールモノブチルエーテル及び/又はトリエチレングリコールモノブチルエーテルの添加は、アセチレングリコール系の界面活性剤の溶解性を向上させることと印字品質の向上に役立つ。

[0119]

前記した特に好ましい本発明の実施形態において、前記(3)の浸透剤としての炭素数 $4 \sim 1001$, 2 - rルキレングリコールの添加量はインク組成物の全重量に対して、好ましくは15重量%以下である。炭素数が3以下の1, 2 - rルキレングリコールでは充分な浸透性が得られず、炭素数が15を超えると水に溶解しにくくなるので好ましくない。添加量が15重量%を超えると粘度増加の傾向が現れるので適当ではない。1, 2 - rルキレングリコールとしては、具体的には1, 2 - r2 のションジオール又は1, 2 - r4 カンジオールを用いるのが好ましく、それらを単独で又は両者を一緒に用いることができる。1, 2 - r2 クンジオールは、1 - r3 の範囲で添加するのが好ましい。1 - r4 重量%の範囲で添加するのが好ましい。1 - r5 重量%未満では良好な浸透性が得られない。1 - r6 の範囲で添加するのが好ましい。1 - r7 重量%の範囲で添加するのが好ましい。1 - r8 重量%未満では良好な浸透性が得られない。1 - r9 重量%未満では良好な浸透性が得られない。

[0120]

また、特に、本発明の実施形態に係るインクジェット記録用インクは、目詰まりが発生しにくい特性(目詰まり信頼性)の上昇、及び、得られる記録物の画像

領域において意図しない白点が発生するのを抑制するために、固体湿潤剤をインクの全重量に対して3重量%~20重量%で含有するのが好ましい。

本明細書において、固体湿潤剤とは、保水機能を有する常温(25℃)で固体 の水溶性物質を言う。好ましい固体湿潤剤は、糖類、糖アルコール類、ヒアルロ ン酸塩、トリメチロールプロパン、1,2,6-ヘキサントリオールである。糖 の例としては、単糖類、二糖類、オリゴ糖類(三糖類および四糖類を含む)およ び多糖類があげられ、好ましくはグルコース、マンノース、フルクトース、リボ ース、キシロース、アラビノース、ガラクトース、アルドン酸、グルシトール、 (ソルビット)、マルトース、セロビオース、ラクトース、スクロース、トレハ ロース、マルトトリオース、などがあげられる。ここで、多糖類とは広義の糖を 意味し、アルギン酸、αーシクロデキストリン、セルロースなど自然界に広く存 在する物質を含む意味に用いることとする。また、これらの糖類の誘導体として は、前記した糖類の還元糖(例えば、糖アルコール(一般式HOCH2(СHO H) $_{n}$ CH₂OH (ここで、 $n=2\sim5$ の整数を表す) で表される)、酸化糖 (例 えば、アルドン酸、ウロン酸など)、アミノ酸、チオ糖など)があげられる。特 に糖アルコールが好ましく、具体例としてはマルチトール、ソルビトール、キシ リトールなどが挙げられる。ヒアルロン酸塩は、ヒアルロン酸ナトリウム1%水 溶液(分子量350000)として市販されているものを使用することができる 。これらの固体湿潤剤は単独あるいは2種以上を混合して使用する。特に好まし い固体湿潤剤は、トリメチロールプロパン、1,2,6-ヘキサトリオールであ る。

[0121]

固体湿潤剤を使用することによって、その保水機能によって水分の蒸発を抑えることができるため、インクの流路やノズル周辺での粘度の上昇がなく、また皮膜も形成されにくいため、目詰りが起こり難くなる。また、上記の固体湿潤剤は化学的に安定であるため、インク中で分解することもなく、長期にわたって性能を維持することができる。また、上記の固体湿潤剤を添加してもインクがノズルプレートを濡らすことはなく、安定した吐出を得ることができる。特に、トリメチロールプロパン、1, 2, 6 - ヘキサントリオールを使用した場合に優れる。

[0122]

本発明においては、上記の固体湿潤剤の含有量は、単独で使用する場合には、インクジェット記録用インク組成物の全重量に対して3~20重量%が好ましく、より好ましくは3~10重量%であり、二種以上混合して使用する場合には、インクジェット記録用インクの全重量に対して、二種以上の総量が3~20重量%であるのが好ましく、より好ましくは3~10重量%である。二種以上混合して使用する場合の好ましい組み合わせは、糖類、糖アルコール類、ヒアルロン酸塩のグループとトリメチロールプロパン、1,2,6~ヘキサントリオールのグループとの組み合わせである。この組み合わせは、添加によるインクの粘度の上昇を抑えることが可能なため好ましい。固体湿潤剤の含有量が3重量%未満では目詰まり性の改善に十分な効果が得られず、また20重量%を越えると粘度が上昇し安定な吐出が得られにくくなるという弊害が起こりやすい。

[0123]

以上、本発明の実施形態に係るインクジェット記録用インクを説明したが、着色剤として含有される本発明の実施形態に係るマイクロカプセル化顔料は、前述したように、形状が真球状であり、インクの流動性がニュートニアンとなりやすく、表面のアニオン性基が水性溶媒側に向かって規則正しく密に配向しているものと考えられるので、効果的な静電的な反発力が生じているものと考えられることから、従来のマイクロカプセル化顔料と比較して吐出安定性にも優れ、より分散性(高分散性)および分散安定性に優れ、さらに、着色剤の含有濃度が向上したインクジェット記録用インクを作製することができる。

[0124]

インクジェット記録は、本発明の実施形態に係るインクジェット記録用インクを公知のインクジェットプリンタに搭載し、普通紙やインクジェット用記録媒体等の記録媒体に印刷することにより、好適に行われ、これにより、記録ヘッドからのインクの吐出安定性を優れたものにできるとともに、画像の堅牢性、耐擦性および発色性に優れ、画像の印字濃度が高く、画像が滲みにくい記録物を得ることができる。また、記録媒体として普通紙を使用しても、画像が滲みにくく、また画像の発色性が高い記録物が得られる。

[0125]

【実施例】

以下、実施例及び比較例を挙げ、本発明を更に具体的に説明するが、本発明は これらの実施例に限定されるものではない。

[0126]

ここで、以下に示す"顔料粒子の表面における親水性基の導入量"は、以下の 方法によって求めた。

「アニオン性基の導入量の定量」

(スルホン化剤によってアニオン性基を導入した場合)

スルホン化剤によって表面が処理された顔料粒子を酸素フラスコ燃焼法で処理し、0.3%過酸化水素水溶液に吸収させた後、イオンクロマトグラフ法(ダイオネクス社; 2000i)で硫酸イオン(2価)を定量し、この値をスルホン酸基に換算し、顔料 1 g 当たりのモル量(mmol/g)として示した。

(カルボキシル化剤によってアニオン性基を導入した場合)

手法としては、ツアイゼル法を用いる。ジアゾメタンを適当な溶剤に溶かし込み、これを滴下することにで顔料粒子表面の活性水素を全てメチル基に交換する。こうして処理した顔料に、比重1.7のヨウ化水素酸を加え加熱して、メチル基をヨウ化メチルとして気化させる。このヨウ化メチルの気体を硝酸銀溶液でトラップしてヨウ化メチル銀として沈殿させる。このヨウ化銀の重量より元のメチル基の量、即ち活性水素の量を測定し、顔料1g当たりのモル量(mmol/g)として示した。すなわち、この顔料粒子表面の活性水素量は、カルボン酸基量に相当する。

[0127]

「アニオン性基を表面に有するブラック顔料粒子 "P1"の作製」

カーボンブラック(三菱化学社製「MA-7」)15部をスルホラン200部中に混合し、アイガーモーターミルM250型(アイガージャパン社製)で、ビーズ充填率70%及び回転数5000rpmの条件下で1時間分散し、分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら、120℃に加熱して、系内に含まれる水分をできるだけ留去した後、15

0℃に温度制御した。次いで、三酸化硫黄 2 5 部を加えて 6 時間反応させ、反応終了後、過剰なスルホランで数回洗浄した後、水中に注ぎ濾過することで、ブラック顔料粒子 "P 1"を得た。

得られたブラック顔料粒子 "P1"のアニオン性基(スルホン酸アニオン基)の導入量は、 $0.12 \, \text{mmol/g}$ であった。

[0128]

「アニオン性基を表面に有するブラック顔料粒子"P2"の作製」

市販の酸性カーボンブラック「MA-100(三菱化学社)」300gを水1000 mlに良く混合した後、これに次亜塩素酸ソーダ(有効塩素濃度12%)4 50g を滴下して、80%で15 時間攪拌した。得られたスラリーを東洋濾紙No. 2 で濾過しながら、繰り返しイオン交換水で水洗した。水洗完了時の目安としては、濾紙を通過したイオン交換水に硝酸銀0.1 規定水溶液を加えた場合に白濁がなくなるまで行った。この顔料スラリーを水2500 mlに再分散し、電導度0.2 マイクロシーメンス以下になるまで逆浸透膜で脱塩を行い、さらに顔料濃度15 重量%程度になるよう濃縮した。

得られた表面処理顔料分散液を酸処理(塩酸水で酸性化)、濃縮、乾燥及び微粉砕して、粉末とした。得られたブラック顔料粒子"P2"のアニオン性基(カルボン酸アニオン基)の導入量は、2.8mmol/gであった。

[0129]

「アニオン性基を表面に有するシアン顔料粒子"P3"の作製」

フタロシアニン顔料(C. I. ピグメントブルー15:3)20部をキノリン500部と混合し、アイガーモーターミルM250型(アイガージャパン社製)でビーズ充填率70%及び回転数5000rpmの条件下で2時間分散し、分散した顔料ペーストと溶剤の混合液をエバポレーターに移し、30mmHg以下に減圧しながら120℃に加熱し、系内に含まれる水分をできるだけ留去した後、160℃に温度制御した。次いで、スルホン化ピリジン錯体20部を加えて8時間反応させ、反応終了後に過剰なキノリンで数回洗浄した後に水中に注ぎ、濾過することで、親水性基(アニオン性基)を表面に有するシアン顔料粒子"P3"を得た。

得られたシアン顔料粒子 "P3" のアニオン性基の導入量は、 $0.04 \, \text{mm} \, \text{o}$ 1/gであった。

[0130]

「アニオン性基を表面に有するイエロー顔料粒子"P4"の作製」

前記「親水性基を表面に有するシアン顔料粒子 "P3"の作製」において、「フタロシアニン顔料(C. I. ピグメントブルー15:3)20部」を「イソインドリノン顔料(C. I. ピグメントイエロー110)20部」に代えた以外は、同様な処理方法により、アニオン性基を表面に有するイエロー顔料粒子 "P4"を得た。

得られたイエロー顔料粒子 "P 4" のアニオン性基の導入量は、 $0.045 \,\mathrm{m}$ m o 1/g) であった。

[0131]

「親水性基(アニオン性基)を表面に有するマゼンタ顔料粒子 "P5"の作製」前記「親水性基を表面に有するシアン顔料粒子 "P3"の作製」において、「フタロシアニン顔料(C. I. ピグメントブルー15:3)20部」を「イソインドリノン顔料(C. I. ピグメントレッド122)20部」に代えた以外は、同様な処理方法により、アニオン性基を表面に有するマゼンタ顔料粒子 "P5"を得た。

得られたイエロー顔料粒子 "P5" のアニオン性基の導入量は、 $0.06 \, \text{mm}$ ol/gであった。

[0132]

マイクロカプセル化顔料 "MCP1" ~ "MCP6" の製造

「マイクロカプセル化顔料"MCP1"の製造 |

アニオン性基を表面に有するブラック顔料粒子 "P1" 15gをイオン交換水80gに分散した水性分散液に、カチオン性重合性界面活性剤としてメタクリル酸ジメチルアミノエチルメチルクロライドを0.4g添加して混合した後、超音波を15分間照射した。次いで、アニオン性重合性界面活性剤アクアロンKH-10を2.1gとイオン交換水20gを添加して混合し、再び超音波を30分間照射した。これを、攪拌機、還流冷却器、滴下漏斗、温度調整器、窒素導入管及

び超音波発生器を備えた反応容器に投入した。反応容器の内温を80℃に昇温した後、イオン交換水10gに重合開始剤として過硫酸カリウム0.03gを溶解した過硫酸カリウム水溶液を滴下し、窒素を導入しながら、80℃で6時間重合した。重合終了後、2 mol/l水酸化カリウム水溶液でp Hを8に調製し、孔径1 μ mのメンブレンフィルターで濾過し粗大粒子を除去して目的のマイクロカプセル化顔料 "MCP1" の分散液を得た。

[0133]

【化12】

$$(KH-10)$$
 $CH_3 (CH_2)_n - CH - CH_2OCH_2 - CH = CH_2$
 $O - (CH_2CH_2O)_{10} - SO_3NH_4$

[0134]

「マイクロカプセル化顔料 "MCP2"の製造」

[0135]

「マイクロカプセル化顔料"MCP3"の製造し

アニオン性基を表面に有するシアン顔料粒子"P3"100gをイオン交換水

[0136]

「マイクロカプセル化顔料"MCP4"の製造」

アニオン性基を表面に有するイエロー顔料粒子 "P 4" 15gをイオン交換水80gに分散した水性分散液に、カチオン性重合性界面活性剤としてメタクリロイルオキシエチルトリメチルアンモニウムクロライドを0.28g添加して混合した後、超音波を15分間照射した。次いで、アニオン性重合性界面活性剤アクアロンKH-10を1.58gとイオン交換水20gを添加して混合し、再び超音波を30分間照射した。これを、攪拌機、還流冷却器、滴下漏斗、温度調整器、窒素導入管及び超音波発生器を備えた反応容器に投入した。反応容器の内温を80℃に昇温した後、イオン交換水10gに重合開始剤として過硫酸カリウム0.05gを溶解した過硫酸カリウム水溶液を滴下し、窒素を導入しながら、80℃で6時間重合した。重合終了後、2mol/1水酸化カリウム水溶液でpHを8に調製し、孔径1μmのメンブレンフィルターで濾過し粗大粒子を除去して目的のマイクロカプセル化顔料"MCP4"の分散液を得た。

[0137]

「マイクロカプセル化顔料"MCP5"の製造」

アニオン性基を表面に有するマゼンタ顔料粒子"P5"100gをイオン交換

水500gに分散した水性分散液に、カチオン性重合性界面活性剤としてメタクリル酸ジメチルアミノエチルメチルクロライドを1.25g添加して混合した後、超音波を15分間照射した。次いで、ベンジルメタクリレート12g、ドデシルメタクリレート8g、アニオン性重合性界面活性剤アクアロンKH-10を3.9gと親水性モノマーとして2-アクリルアミド-2-メチルプロパンスルホン酸を2.07gとイオン交換水50gを添加して混合し、再び超音波を30分間照射した。これを、攪拌機、還流冷却器、滴下漏斗、温度調整器、窒素導入管及び超音波発生器を備えた反応容器に投入した。反応容器の内温を80℃に昇温した後、イオン交換水20gに重合開始剤として過硫酸カリウム0.6gを溶解した過硫酸カリウム水溶液を滴下し、窒素を導入しながら、80℃で6時間重合した。重合終了後、2mo1/1水酸化カリウム水溶液でpHを8に調製し、孔径1μmのメンブレンフィルターで濾過し粗大粒子を除去して目的のマイクロカプセル化顔料"MCP3"の分散液を得た。

[0138]

「マイクロカプセル化顔料"MCP6"の製造」

アニオン性基を表面に有するブラック顔料粒子 "P1" 20gをイオン交換水80gに分散した水性分散液に、カチオン性重合性界面活性剤としてメタクリル酸ジメチルアミノエチルメチルクロライドを0.81g添加して混合した後、超音波を15分間照射した。次いで、イソボルニルメタクリレート2.45g、ラウリルメタクリレート2.55g、アニオン性重合性界面活性剤アクアロンKHー10を3.37gとイオン交換水30gを添加して混合し、再び超音波を30分間照射した。これを、攪拌機、還流冷却器、滴下漏斗、温度調整器、窒素導入管及び超音波発生器を備えた反応容器に投入した。反応容器の内温を80℃に昇温した後、イオン交換水20gに重合開始剤として過硫酸カリウム0.3gを溶解した過硫酸カリウム水溶液を滴下し、窒素を導入しながら、80℃で6時間重合した。重合終了後、2mo1/1水酸化カリウム水溶液でpHを8に調製し、孔径1μmのメンブレンフィルターで濾過し粗大粒子を除去して目的のマイクロカプセル化顔料"MCP6"の分散液を得た。

[0139]

マイクロカプセル化顔料"MCP1"~"MCP6"のアスペクト比及びZing g指数の測定結果を表1に示す。

[0140]

【表1】

表 1

マイクロカプセル化顔料	MC P1	MCP2	мс Рз	MCP4	MCP5	мс Р6
アスペクト比	1.0	1.0	1.0	1.0	1.0	1.0
Zingg指数	1.0	1.0	1.0	1.0	1.0	1.0

[0141]

「マイクロカプセル化顔料"MCP7"~"MCP10"の作製」

MCP7(マイクロカプセル化ブラック顔料)、MCP8(マイクロカプセル化シアン顔料)、MCP9(マイクロカプセル化マゼンタ顔料)、MCP10(マイクロカプセル化イエロー顔料)を、特開平10-140065号公報に記載の方法に準じて製造した。

[0142]

「"MCP7"の作製」

フラスコにメチルエチルケトン250gを仕込み、窒素シール下に、撹拌しながら、75℃まで昇温させ、n-ブチルメタクリレート85g、n-ブチルアクリレート90g、2-ヒドロキシエチルメタクリレート40g、メタクリル酸25g及び重合開始剤パーブチルO(日本油脂(株)製のtert-ブチルパーオキシオクトエート)20gから成る混合液を2時間かけて滴下し、更に15時間反応させて、ビニル系ポリマーの溶液を得た。

上記のポリマー溶液8gをステンレス製ビーカーに、ジメチルエタノールアミン0.4gとブラック顔料(三菱化学製MA-100)8gとともに加え、さらにイオン交換水を加えて総量が40gとなるようにし、平均粒子径が0.5 mmのジルコニアビーズ250gを加えて、サンドミルを用いて、4時間混練を行った。混練終了後に、ジルコニアビーズを濾別して、塩基で中和されたカルボキシル基を有するポリマーと顔料から成る分散体を水に分散したものを得た。これを、常温で、分散機で撹拌しながら、1規定塩酸を樹脂が不溶化して顔料に固着す

るまで添加した。この時のpHは $3\sim5$ であった。ポリマーの固着した顔料を含有する水性媒体を吸引濾過し、水洗して、含水ケーキを得た。この含水ケーキを分散機で撹拌しながら、分散体のpHが $8.5\sim9.5$ となるまで10%NaOH水溶液を加え、1時間撹拌を続けた後に、イオン交換水を加えて、固形分濃度が20%となるように調整して、カーボンブラックのマイクロカプセル化顔料MCP7を得た。アスペクト比は1.4、2ingg指数は、1.4であった。

[0143]

「"MCP8"の作製」

フラスコにメチルエチルケトン 250g を仕込み、窒素シール下に、撹拌しながら、75 でまで昇温させ、n ーブチルメタクリレート 155g、n ーブチルアクリレート 20g、2 ーヒドロキシエチルメタクリレート 35g、メタクリル酸 40g及び重合開始剤パーブチル 05g から成る混合液を 2 時間かけて滴下し、更に 15 時間反応させて、ビニル系ポリマーの溶液を得た。

上記のポリマー溶液10gと、シアン顔料(C. I. ピグメント・ブルー15:3)7g、メチルエチルケトン40g、平均粒子径が0.5mmのセラミック・ビーズ150gを、ステンレス製容器に入れ、ビーズミル分散機を用いて分散させた後、セラミック・ビーズを濾別して、マイクロカプセル化顔料用ペーストを調製した。

次に、上記のマイクロカプセル化顔料用ペースト20gとジエタノールアミン 0.2gを混合して有機溶媒相とし、この有機溶媒相を超音波を照射しながら撹拌しているところへ、イオン交換水25gを20分間かけて滴下し転相乳化させて、マイクロカプセル化顔料含有水性分散液を得た。

更に、このマイクロカプセル化顔料含有水性分散液を、85℃で蒸留することによって溶剤を留去させた。このようにして、C.I.ピグメント・ブルー15: 3のマイクロカプセル化顔料MCP8を行た。アスペクト比は1.4、Zing g指数は、1.4であった。

[0144]

「"MCP9"の作製し

フラスコにメチルエチルケトン250gを仕込み、窒素シール下に、撹拌しな

がら、75 \mathbb{C} まで昇温させ、n-ブチルメタクリレート170 g、n-ブチルアクリレート58 g、2-ヒドロキシエチルメタクリレート35 g、アクリル酸35 g 及び重合開始剤パーブチル020 g から成る混合液を2 時間かけて滴下し、更に15 時間反応させて、ビニル系ポリマーの溶液を得た。

上記のポリマー溶液15gをステンレス製ビーカーに、ジメチルエタノールアミン0.8gとマゼンタ顔料(C. I. ピグメントレッド122)15gとともに加え、さらにイオン交換水を加えて総量が75gとなるようにし、平均粒子径が0.5nmのジルコニアビーズ250gを加えて、サンドミルを用いて、4時間混練を行った。混練終了後に、ジルコニアビーズを濾別して、塩基で中和されたカルボキシル基を有するポリマーと顔料から成る分散体を水に分散したものを得た。これを、常温で分散機で撹拌しながら、1規定塩酸を樹脂が不溶化して顔料に固着するまで添加した。この時のpHは3~5であった。ポリマーの固着した顔料を含有する水性媒体を吸引濾過し、水洗して、含水ケーキを得た。この含水ケーキを分散機で撹拌しながら、分散体のpHが8.5~9.5となるまで10%NaOH水溶液を加え、1時間撹拌を続けた後に、イオン交換水を加えて、固形分濃度が20%となるように調整して、C. I. ピグメント・レッド122のマイクロカプセル化顔料MCP9を得た。アスペクト比は1.4、Zingg指数は、1.4であった。

[0145]

「"MCP10"の作製し

フラスコにメチルエチルケトン250gを仕込み、窒素シール下に、撹拌しながら、75 で 配 で 昇温させ、n ー ブチルメタクリレート 170 g、n ー ブチルアクリレート 5 g、2 ー ヒドロキシエチルメタクリレート 35 g、アクリル酸 35 g及び 重合 開始剤パーブチル 0 20 gから成る混合液を 2 時間 がけて滴下し、更に 15 時間 反応させて、ビニル系ポリマーの溶液を得た。

上記のポリマー溶液 1 5 g をステンレス製ビーカーに、ジメチルエタノールアミン 0.8 g とイエロー顔料 (C. I. ピグメント・イエロー・110) 15 g とともに加え、さらにイオン交換水を加えて総量が 7 5 g となるようにし、平均粒子径が 0.5 mmのジルコニアビーズ 250 g を加えて、サンドミルを用いて

、4時間混練を行った。混練終了後に、ジルコニアビーズを濾別して、塩基で中和されたカルボキシル基を有するポリマーと顔料から成る分散体を水に分散したものを得た。これを、常温で、分散機で撹拌しながら、1規定塩酸を樹脂が不溶化して顔料に固着するまで添加した。この時のpHは3~5であった。ポリマーの固着した顔料を含有する水性煤体を吸引濾過し、水洗して、含水ケーキを得た。この含水ケーキを分散機で撹拌しながら、分散体のpHが8.5~9.5となるまで10%NaOH水溶液を加え、1時間撹拌を続けた後に、イオン交換水を加えて、固形分濃度が20%となるように調整して、C.I.ピグメント・イエロー・110のマイクロカプセル化顔料MCP10を得た。アスペクト比は1.4、Zingg指数は、1.4であった。

[0146]

以上のように、実施例のマイクロカプセル化顔料 "MCP1" ~ "MCP6"は、アスペクト比が1.0かつZingg指数が1.0であり、真球状であったのに対し、比較例のマイクロカプセル化顔料 "MCP7" ~ "MCP10"のアスペクト比が1.3より大きく、Zingg指数は、1.3より大きくなり、真球状ではなかった。なお、アスペクト比及びZingg指数は、水性分散液をイオン交換水で100倍に希釈し、乾燥させて、透過型電子顕微鏡(TEM)および走査型電子顕微鏡(SEM)で粒子を観察し、粒子の短径、長径、厚みを測定することによって求めた。

[0147]

「インクジェット記録用インクの作製|

<実施例1~9>

表 2 に示す組成に基づいて、実施例 $1 \sim 9$ のインクジェット記録用インクを調製した。

[0148]

【表2】

The state of the s	マイクロカブセル [MCP1	化顏料 MCP2	MCP3	MCP4	MCP5	MCP6	過温剤 ダリセリン	ジエチレングリコールモノブチ	トリエチレングリコールモノブチルエーテル	1, 2-ヘキサンジオール	固体湿潤剤 トリメチロールプロパン	1, 2, 6-ヘキサントリオール	極性溶媒 [2-ピロリドン	界面活性剤 オルフィンE1010	サーフィノール465	pH調整剤 水酸化カリウム	プロキセルXL-2	()
BK								ルエーテル	レエーテル									Z
実施例1	8						15				5		2			0.1	0.05	西郑
実施例2 [8						13	25			7			1		0.1	0.05	中裁
実施例3	8						13		2	3		7			_	0.1	0.05	香報
天施例4		8					14		5	4		L	2	l I		0.1	90.0	告和
実施例5			8				13	5		2	80		2	-		0.1	0.05	2.4 4
実施例6				8			13		9	3	4	4	1		_	0.1	0.05	香班
実施例7					8		13	2		S	8		2	1		0.1	90'0	一种
実施例8						∞	12				L		2			0.1	0.05	古我
実施例9						8	13	5		2	8			-		0.1	0.05	中級
6																		

添加量は何れも重量%で示す。 マイクロカプセル化顔料は、固形分濃度で示す。

[0149]

<比較例1~26>

表3~6に示す組成に基づいて、比較例1~2~6のインクジェット記録用インクを調製した。

[0150]

【表3】

	添加軍は何れも重軍%で示す。								
		比較例1	比較例2	比較例3	比較例4	比較例 5	比較例 6	比較例7	比較例8
マイクロカプセル	MCP 7	4				8			
化颜料 MCP 8	MCP 8		7				4		
	MCP 9			7				80	
	MCP10				2				g
温温剂	グリセリン	15	15	12	12	15	5	5	15
	ジェチレングリコール						<u>۔</u>	വ	
浸透剤	ジエチレングリコールモノブチルエーテル	9	9			7.5		ع	
	1, 2ーヘキサンジオール			9	9		7.5		9
界面活性剤	サーフィノール465	1	0.5	ı	0.5	-	-	-	-
	ポリオキシエチレンノニルフェニルエーテル					0.5	0.5		
レス酸Hd	水酸化カリウム								0.1
	プロパノールアミン	2	က	က	e	ဗ	က	е	
防腐剤	プロキセルXL	0.05	0.05			0.05		0.05	
	4.4ージメチルオキサゾリジン			-	1		-		_
木	イオン交換水	残量	残量	残量	残量	残量	残量	残量	残量

[0151]

【表4】

表4 比較例の	表4 比較例のインクジェット記録用インクのインク組成					
	添加量は何れも重量%で示す。					
		比較例9	比較例10	上較例11	比較例10 比較例11 比較例12	上較例13
颜料	l b1	80				
	P2		4			
	РЗ			φ		
	P4				10	
	P5					00
原語	グリセリン	15	01	01	12	15
	ジェチレングリコール		2	2		
海路型	ジエチレングリコールモノブチルエーテル	9	9		7.5	
	1, 2ーヘキサンジオール		ო	ဖ		7.5
界面活性剤	サーフィノール465	-	-	-	-	1
	ポリオキシエチレンノニルフェニルエーテル			0.5	0.5	
pH調整剤	木酸化カリウム	0.5	0.5			
	プロパノールアミン			_	-	_
克爾型	プロキセルXL	0.05	0.05			0.05
	4, 4ージメチルオキサゾリジン			-	-	
×	イオン交換水	養養	發量	残量	残量	残量

[0152]

0.1 湖

0.05

0.05 殘量

0.05 残量

0.0 残量

水酸化カリウム プロキセルXL-2 イオン交換水

オルフィンE1010

くろいロユー2

--

2.

<u>.</u>

0

₹ 9

2

2

8

ထ

2 15

> 1, 2ーヘキサンジオール ジエチレングリコール

グリセリン

00

9

9

S

2

7

【表5】

比較例14 | 比較例15 | 比較例16 | 比較例17 | 比較例18 ဖ œ C. I. ピグメントブルー 15:3 C. I. ピグメントイェロー 185 表5 比較例のインクジェット記録用インクのインク組成添加量は何れも重量%で示す C. 1. ピグメントレッド 122 スチレンーアクリル酸共重合体のアンモニウム塩 (分子量7000、ポリマー成分38%) カーボンブラック 額料

[0153]

【表6】

表6 比較例のインクジェット記録用インクのインク組成添加量に何れも重量%で示す	ント記録用インクのインク組成添加量は何れも重量%で示す	温成で示す。							
		比較例19	比較例 20	比較例 21	比較例 22	比較例 23	比較例 24	比較例 20 比較例 21 比較例 22 比較例 23 比較例 24 比較例 25 比較例 26	比較例 26
	MCP 7 (ブラック)	4				80			
MCP 8 (シアン)	MCP 8 (シアン)		3				8		
イントン・ファート アンコンの女子	MCP 9 (マゼンタ)			3				œ	
	MCP 10 (4xa-)				3				8
グリセリン		15	15	15	15	15	01	10	15
ジエチレングリコール							5	S	
トリメチロールプロパン							9	9	9
ジエチレングリコールモノブチルエーテル	ブチルエーテル					8			
1, 3ージメチルー2ーイミダゾリジノン	ダグリジノン			2	2				
2ーピロリドン		2	2						
サーフィノール465		-	1	1	-	1	1	-	
水酸化カリウム		0.1	0.1	0.1	1.0	0.1	0.1	0.1	0.1
プロキセルXLー2		0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
イオン交換水		殘量	残量	残量	残量	残量	残量	残量	残量

[0154]

実施例 $1\sim9$,比較例 $1\sim26$ のインクジェット記録用インク、並びに、これらのインクを用いて印刷した記録物の評価を、下記に示す方法により行った。

[0155]

評価1-1:分散性1

実施例及び比較例のインクジェット記録用インクを 20 \mathbb{C} でレオメータ Paar Physica社製のPHYSICA MCR300でコーン半径37.50mm、コーン角 1 度、測定ギャップ0.05mmのコーンプレート(Paar Physica社製 \mathbb{C} P 75-1)を用いて、角速度を 0.5 rad/sec~5 rad/secまで印加したときの各角速度における貯蔵剛性率(Pa)を測定した。そして、0.6 rad/secの時の貯蔵弾性率を \mathbb{G}' $\omega=0.6$ 、0.8 rad/secの時の貯蔵弾性率を \mathbb{G}' $\omega=0.8$ とした。以下の基準でインクの分散性を評価した。

[0156]

A: (logG' $_{\omega=0.8}$ -logG' $_{\omega=0.6}$) / (log0. 8-log0. 6) の値が 1. 8 \sim 2. 0 である。

B: (logG' $_{\omega=0.8}$ -logG' $_{\omega=0.6}$) / (log0. 8-log0. 6) の値が 1. 6 \sim 1. 8である。

C: $(\log G'_{\omega=0.8}-\log G'_{\omega=0.6})$ / $(\log 0.8-\log 0.6)$) の値が $1.2\sim 1.6$ である。

D: (logG' $_{\omega=0.8}-$ logG' $_{\omega=0.6}$) / (log0. 8-log0. 6) の値が1. 2より小さい。

[0157]

評価1-2:分散性2

実施例及び比較例のインクジェット記録用インクを20℃でローリングボール式粘度計AMV nで内径0. 9 mmのキャピラリーと直径0. 7 9 4 mm, 密度7. 8 5 0 g / c m 3 0 の鋼球を用いて、傾斜角度が7 0 ° 、6 0 ° 、5 0 ° 、4 0 ° 、3 0 ° のときの粘度を測定し、横軸をs i n θ とし、縦軸を粘度としてプロットして得たs i n θ - 粘度曲線における勾配を求めた。以下の基準でインクの分散性を評価した。

[0158]

A:s i n θ -粘度曲線における勾配が $0 \sim -0$. 05 であり、ニュートン性を示し、特に良好な分散性を示す。

B:s i n θ -粘度曲線における勾配が-0. $05\sim-0$. 1であり、ニュートン性に近く、Aに次いで良好な分散性を示す。

 $C: s i n \theta$ - 粘度曲線における勾配が $-0.1 \sim -0.15$ であり、非ニュートン性を示すが、分散性はやや良い。

D: $sin\theta$ - 粘度曲線における勾配が-0.15 より小さく、非ニュートン性を示し、沈降が起こり易く、分散性が良くない。

[0159]

評価2:分散安定性

実施例及び比較例のインクジェット記録用インクをガラス製のサンプル瓶に入れ密栓後、それぞれ60℃で2週間放置して、放置前後でのインクの粘度について調べた。測定は、レオメータ Paar Physica社製のPHYSICA MCR300でコーン半径37.50mm、コーン角1 \sharp 、測定ギャップ0.05mmのコーンプレート(Paar Physica社製CP75-1)を用いて、20℃で、剪断速度が150/Sにおける粘度を測定した。得られた結果を以下の基準で評価した。

A:変化量が±0.1mPa·s未満のもの。

B:変化量が±0.1以上0.3mPa·s未満のもの。

C:変化量が±0.3mPa·s以上のもの。

[0160]

評価3:沈降性

実施例及び比較例のインクジェット記録用インクについて、インク中の着色剤の沈降性をサンプルの高さ方向の後方散乱光と透過光の強度分布から沈降性を評価することのできるFORMUL ACTION社製のTURBISCAN 2000を用いて、20 ℃で測定した。FORMUL ACTION社製TURBISCAN 2000の測定原理を以下に示す。この装置は、該装置の所定の位置にインクを入れたガラス管をセットして測定を開始すると、このガラス管の周り(径方向)を取り巻くように設置されたステージがガラス管に沿って上下方向に移動する仕組みとなっており、該ステージ上に設置された光源と散乱光および透過光の検出器が、ステージの上下動に合わせて、このガラス管の縦方向に対し散乱光・透過光の強度分布を40 μ mのピッチで測定するもので、この動作を任意の時間間隔で繰り返すことによって粒子の移動や粒子径の変化があった場合に光の強度として経時的に観測することができる測定装置である。

評価は以下の基準で行った。

A:2週間経過後にも沈降現象が見られなかった。

B:2週間経過後に沈降現象が見られた。

[0161]

評価4:印刷濃度

実施例及び比較例のインクジェット記録用インクをインクカートリッジに充填し、これをインクジェットプリンタ PM-720C(セイコーエプソン株式会社製)に装填して、普通紙のXerox P紙(ゼロックス社製)に、ベタ印刷を行い、このベタ印刷部分の濃度を分光光度計(グレタグマクベス社製、GRETAGSPM-50)で測定し、得られた結果を下記に示す基準により評価した。

A:ブラックインクのOD値:1.4以上

カラーインクのOD値:1.2以上

B:ブラックインクのOD値:1.3以上1.4未満

カラーインクのOD値: 1. 15以上1. 2未満

C:ブラックインクのOD値:1.3未満

カラーインクのOD値:1.15未満

[0162]

評価5:印字品質

実施例及び比較例のインクジェット記録用インクをインクカートリッジに充填し、これをインクジェットプリンタ PM-720C(セイコーエプソン株式会社製)に装填して、以下の普通紙各紙(再生紙を一部含む。)にアルファベットの大文字と小文字の各24文字を印刷し、目視での観察を行い、以下の基準で評価した。

AA:全紙に滲みの発生が無い。

A:2~3紙に僅かに滲みの発生が観察されるのみである。

B:全紙で僅かに滲みの発生が観察される。

C:全紙で滲みの発生が多い。

評価に用いた印刷用紙は、Conqueror紙、Favorit紙、Modo紙、Rapid Copy紙、EP SON EPP紙、Xerox P紙、Xerox 4024紙、Xerox 10紙、Neenha Bond紙、Ricopy 62

ページ: 68/

00紙、やまゆり(再生紙)、Xerox R(再生紙)の12紙である。

[0163]

評価6:発色性

実施例及び比較例のインクジェット記録用インクをインクカートリッジに充填し、これをインクジェットプリンタPM-720C(セイコーエプソン株式会社製)に装填して、MC写真用紙半光沢(セイコーエプソン株式会社製)とXerox P紙(ゼロックス社製)のそれぞれにベタ印刷を行ない、ベタ印刷部分のC*値を測定し、MC写真用紙半光沢(セイコーエプソン株式会社製)上のC*値に対するXerox P紙(ゼロックス社製)上のC*値の比を求め、普通紙上の発色性を以下の基準で評価した。

A:0.9以上

B:0.8以上0.9未満

C:0.8未満

[0164]

評価7:耐擦性

実施例及び比較例のインクジェット記録用インクをインクカートリッジに充填し、これをインクジェットプリンタPM-720C(セイコーエプソン株式会社製)に装填して、セイコーエプソン製 スーパーファイン専用光沢フィルムに10mm×10mmの領域に100% d u t yでベタ印刷し、25℃の温度で1時間放置した後に、上記の印刷領域をゼブラ社製イエロー水性蛍光ペン ZEBRA PEN2(商標)を用いて、500g荷重で速度10mm/秒で擦り、汚れの発生の有無を観察した。その結果を以下の基準で評価した。

A:2回擦っても全く汚れが生じない。

B:1回の擦りでは汚れが生じないが、2回目の擦りで汚れが発生する。

C:1回の擦りで汚れが発生する。

[0165]

評価8:耐水性

評価4の印字濃度試験で得られた印刷物の印字部分に1mlのイオン交換水を 滴下し、20分後の状態を目視で観察し、以下の基準で評価した。 A:全紙に変化が無い。

B:印字部分から僅かに色材が流れ出しているが、文字の認識は可能である。

C:印字部分から色材が流れ出して印字した文字の輪郭が不鮮明のため文字の認識が困難である。

[0166]

評価9:吐出安定性

実施例及び比較例の各インクについて、これをインクジェットプリンタPM- 720C(セイコーエプソン株式会社製)に装填して、セイコーエプソン(株) 製スーパーファイン専用紙に、1mmの罫線を印刷して、ドット抜けやインク着 弾位置ずれ等の印字の状態を目視で観察し、以下の基準で評価した。

A:印字枚数が10000枚以上印字してもドット抜けやインク着弾位置ずれがない。

B:印字枚数が1000枚以上10000枚未満でドット抜けやインク着弾ずれが発生する。

C:印字枚数が100枚以上1000枚未満でドット抜けやインク着弾ずれが発生する。

D:印字枚数が100枚未満でドット抜けやインク着弾ずれが発生する。

[0167]

評価10:目詰まり信頼性

前記評価5での行った印刷の後、プリンタの電源をオフにして放置し、1週間後に同様な印字試験を行った。その時の"インクの吐出状況"を目視で観察した。そして、以下に示す基準で評価した。

A:印字信号をプリンタに送信すると同時に、クリーニング動作なしで正常な印字を開始する。

B: クリーニング動作3回以内で、正常な印字を行う。

C:クリーニング動作6回以内で、正常な印字を行う。

D:クリーニング動作を7回以上繰り返しても、正常な印字が行えない。

[0168]

評価11:白点

実施例及び比較例のインクをインクカートリッジに充填し、これをインクジェットプリンタPM-720C(セイコーエプソン株式会社製)に装填して、評価5で使用した普通紙各紙にベタ印刷を行い、このベタ印刷部分を目視で観察し、以下に示す基準により評価した。

A:ベタ印刷部分にインクが乗らないで紙の生地の色が出ている微小部分(本明細書では白点と称する。)が全く見られない。

B:ベタ印刷部分にインクが乗らないで紙の生地の色が出ている微小部分がわずかに見られる。

C:ベタ印刷部分にインクが乗らないで紙の生地の色が出ている微小部分が見られる。

D:ベタ印刷部分にインクが乗らないで紙の生地の色が出ている微小部分が多数見られる。

[0169]

【表7】

評価11	白魚	٧	∢	۷	4	∢	٨	٨	٨	۷
即自10	目詰まり 信頼性	∢	4	4	⋖	4	4	4	4	4
6里湖	吐出 安定性	٨	٧	٧	4	۷	٨	4	٨	4
評価8	耐水性	A	4	Α	А	٨	٧	A	٨	٨
評価7	耐擦性	8	8	8	В	В	В	A	4	٧
評価6	発色性	٧	A	٧	Α	٧	٨	٧	٨	٧
評価5	印品	∀∀	AA	AA	۷V	VV	٧V	VΥ	AA	VΥ
評価4	印濃剛度	A	۷	A	A	Α	A	A	٧	4
配面 基	沈降性	٧	٧	٧	٧	٨	٧	٧	٨	٧
評価2	少数 安定在	۷	A	۷	A	A	A	A	A	¥
評価1-2	分散性2	٧	٧	4	٨	¥	٧	٧	A	4
評価1-1	分散性1	A	٧	A	٨	A	A	٧	A	4
Ř		実施例1	実施例2	実施例3	実施例4	東施例5	実施例6	実施例7	実施例8	東施例9

[0170]

【表8】

_	 ,			1						_				
評価11	白魚	ပ	ပ	ပ	ပ	ပ	ပ	ပ	ပ	۷	٨	4	٨	٧
評価10	目詰まり 信頼性	၁	В	В	В	C	၁	၁	ပ	٨	A	∢	٧	4
6周點	吐出 安定性	В	۷	٧	٧	၁	В	၁	В	٨	٧	٧	۷	٧
智田智	耐水性	٧	٧	٧	٧	٧	٧	٧	٧	٨	٧	٧	A	٨
評価7	耐擦性	В	a	В	В	٧	٧	٧	٧	ပ	C	C	C	C
評価6	発色性	1	В	8	8	-	В	В	В	ı	1	٧	A	A
評価5	品。	၁	၁	၁	၁	၁	၁	၁	၁	٨	٧	٧	٧	٨
評価4	印憲国	ပ	၁	S	၁	В	В	8	В	٧	٧	٧	٧	٧
計価3	沈降性	۷	٧	٧	4	8	4	æ	٧	٧	٧	٧	٧	٧
評価2	少数 好定在	В	٧	A	٨	ပ	æ	ပ	В	4	A	A	A	A
評価1-2	分散性2	В	٧	٧	٧	ပ	മ	ပ	В	۷	٧	٧	٧	٧
評価1-1	分散性1	8	4	¥	4	ပ	മ	ပ	മ	¥	4	A	A	٧
2		比較例1	比較例2	比較例3	比較例4	比較例5	比較例6	比較例7	比較例8	比較例9	比較例10	比較例11	比較例12	比較例13

[0171]

【表9】

	(価5) 解価6 解価7 解価8 解	即字 発色性 耐擦性 耐水性 安定性	B - C A	C - C A	C C A	ပ အ	ပ	C - B A	C B B A	8	8	C - A A	C B A A	В	
	評価3 評価4 評	沈降性 高度	B B	ပ ရ	၁ 8	ВВ	၁ B	O A	A C		A C	B B	8	8	a
		分散性2 分散 安定性	o a	၁ ၁	၁ ၁	S a	ე ე	_	8 8		8 8	၁ ၁		၁	S
X 3	1-194	分散性1	比較例14 D	比較例15 C	比較例16 C	比較例17 D	比較例18 C	比較例19 B	比較例20 B		比較例22 B	比較例23 C	比較例24 C	比較例25 C	比較例26 C

[0172]

表7~表9に示すように、実施例のインクジェット記録用インクは、全ての評価項目において優れたものとなった。

また、固体湿潤剤を含有する実施例 $1\sim 9$, 比較例 2 $4\sim 2$ 6 のインクジェッ

ト記録用インクは、特に、目詰まり信頼性において良好な結果を示した。

比較例14~18の顔料を分散剤で分散したインクジェット記録用顔料インクは、分散性、分散安定性、印刷濃度、印字品質、発色性、耐擦性、吐出安定性が不充分である。アニオン基付与剤による処理を施していない顔料をポリマーで被覆した従来型のマイクロカプセル化顔料を着色剤として使用した場合で、マイクロカプセル化顔料の濃度を実施例のインクよりも低く設定した比較例1~4,19~22のインクジェット記録用インクは、分散安定性および吐出安定性には優れたものの、得られた記録物に対する評価である印字濃度、印字品質、耐擦性、発色性については、十分な結果が得られなかった。

一方、前記従来型のマイクロカプセル化顔料を着色剤として含有するとともに、マイクロカプセル化顔料の濃度が実施例のインクと同等に設定された比較例 5 ~ 8, 2 3 ~ 2 6 のインクジェット記録用インクは、分散性、分散安定性、吐出安定性が特に劣ったものとなった。また、アニオン基付与剤による処理がされた顔料を着色剤として含有する比較例 9 ~ 1 3 のインクジェット記録用インクは、分散安定性および吐出安定性には優れたものの、耐擦性が劣ったものとなった。

[0173]

【発明の効果】

以上説明したように、本発明に係るマイクロカプセル化顔料及びその製造方法 によれば、

- (1)分散安定性に優れる、
- (2) 記録ヘッドからの吐出安定性に優れる、
- (3) 画像の堅牢性に優れる記録物を得ることができる、
- (4) 画像の印字濃度が高い記録物を得ることができる、
- (5) 画像の耐擦性に優れる記録物を得ることができる、
- (6) 記録媒体として普通紙を使用する場合においても、画像が滲みにくく、また画像の発色性が高い記録物を得ることができる、

の前記(1)~(6)の全てを満足するインクジェット記録用インクを作製可能 なマイクロカプセル化顔料及びその製造方法、並びに、水性分散液を提供できる

[0174]

また、本発明に係るインクジェット記録用インクによれば、

- (1) 分散安定性に優れる、
- (2) 記録ヘッドからの吐出安定性に優れる、
- (3) 画像の堅牢性に優れる記録物を得ることができる、
- (4) 画像の印字濃度が高い記録物を得ることができる、
- (5) 画像の耐擦性に優れる記録物を得ることができる、
- (6) 記録媒体として普通紙を使用する場合においても、画像が滲みにくく、また画像の発色性が高い記録物を得ることができる、
- の前記(1) \sim (6) の全てを満足するインクジェット記録用インクを提供できる。

【図面の簡単な説明】

【図1】

アニオン性基を表面に有する顔料粒子が、水性溶媒に分散するとともに、カチオン性重合性界面活性剤とアニオン性重合性界面活性剤とに対して、共存している状態を示す模式図である。

【図2】

図1に示す分散状態においてカチオン性重合性界面活性剤とアニオン性重合性 界面活性剤とが重合された状態を示す模式図である。

【符号の説明】

- 1 顔料粒子
- 2 カチオン性重合性界面活性剤
- 3 アニオン性重合性界面活性剤
- 10 親水性基
- 11 カチオン性基
- 12, 12' 疎水性基
- 13, 13' 重合性基
- 14, 14' アニオン性基
- 60 ポリマー層 (ポリマー)

100 マイクロカプセル化顔料

【書類名】 図面

【図1】

【図2】

【書類名】 要約書

【要約】

【課題】 分散安定性および吐出安定性に優れるとともに、画像の堅牢性、耐擦性および発色性に優れ、印字濃度が高く、画像が滲みにくい記録物を得ることができるインクジェット記録用インク(IJI)を提供する。また、前記インクを作製可能なマイクロカプセル化顔料(MCP)及びその製造方法、並びに、水性分散液を提供する。

【解決手段】 親アニオン性基を表面に有する顔料粒子が、カチオン性重合性界面活性剤及び / 又はアニオン性基を有する親水性モノマーから誘導された繰り返し構造単位と を有するポリマーにより被覆されたことを特徴とするMCP。アニオン性基を表面に有する顔料粒子の水性分散液にカチオン性重合性界面活性剤を加えて混合後、アニオン性重合性界面活性剤及び/又はアニオン性基を有する親水性モノマーを加え乳化後、重合開始剤を加えて乳化重合するマイクロカプセル化顔料の製造 方法。前記MCPと水とを少なくとも含有する IJI。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2002-287246

受付番号 50201470728

書類名 特許願

担当官 第六担当上席 0095

作成日 平成14年10月 1日

<認定情報・付加情報>

【提出日】 平成14年 9月30日

出願人履歴情報

識別番号

[000002369]

1990年 8月20日

1. 変更年月日

[変更理由] 新規登録

住 所

東京都新宿区西新宿2丁目4番1号

氏 名 セイコーエプソン株式会社