Khai Thác Dữ Liệu Đồ Thị

PHÁT HIỆN CỘNG ĐỒNG

Giảng viên: Lê Ngọc Thành

Email: Inthanh@fit.hcmus.edu.vn

Nội dung

- Khái niệm
- Tối ② u cộng đồng
- Các ph
 ② ong pháp phát hiện cộng đồng
 - Phogong pháp dựa trên lát cắt tối thiểu
 - Ph
 ☐ ong pháp dựa trên trung gian
 - Ph
 ⊡ ong pháp dựa trên RandomWalk

Cộng đồng

kết nối bên trong hơn kết nối ra ngoài.

• Cộng đồng (community) là tập các đỉnh mà mỗi đỉnh có nhiều - Các đồ thi trong thực tế ko phải là ngẫu nhiên - Cta kỳ vong rằng các đỉnh trong 1 đồ thi sẽ tổ chức thành các công đông - Phát hiện ra nhòm (CD) vì tất cả phần tử trong đó đều có tính chất giống nhau - Mỗi nhóm sẽ có tính chất khác nhau nên việc mô tả tính chất là khó - Gom các ptu trong CD thành 1 đỉnh và nếu tác động lên đỉnh đó cx giống như tác động trên nhóm đó - Các đỉnh trong CD sẽ có mối kết nối chặt chẽ với nhau và ít kết nối với các công đồng khác

- Có 2 loai công đồng là:
- + Công dồng giao nhau (*)
- + Công đồng ko giao nhau

=> Bài toán gom nhóm (Clustering) đơ xếp vào Unsupervise learning vì ko có nhãn. Nếu đã có nhãn thì nó thuộc về bài toán phân lớp (Classification)

Nội dung

- Khái niệm
- Tối ưu cộng đồng
- Các ph
 ② ong pháp phát hiện cộng đồng
 - Phogong pháp dựa trên lát cắt tối thiểu
 - Ph
 ⊡ ơng pháp dựa trên trung gian
 - Ph
 ⊡ ong pháp dựa trên RandomWalk

Tối ưu cộng đồng

- - Mật độ trong nhóm (intracluster density): càng lớn càng tốt
 - Mật độ ngoài nhóm (intercluster density): càng nhỏ càng tốt

Mật độ trong nhóm ⇒™

 Mật độ trong nhóm là tỉ số giữa số cạnh bên trong nhóm và số cạnh có thể tối đa trong nhóm.

Nc là số đỉnh trong nhóm

$$\delta(C) = \frac{s \circ c \circ c \circ h \ trong \ nh \circ m}{N_c(N_c - 1)/2}$$

$$V \circ d \circ v \circ d \circ v$$

$$\delta(C_1) = \frac{7}{10} = 0.7$$

$$\delta(C_2) = \frac{4}{6} = 0.75 \Rightarrow \frac{5}{6}$$

$$\delta(C_3) = \frac{3}{3} = 1.0$$

Mật độ ngoài nhóm

 Mật độ ngoài nhóm là tỉ số giữa số cạnh ngoài nhóm và số cạnh ngoài nhóm có thể.

Nc*(N-Nc): số đỉnh trog nhóm * số đỉnh ngoài nhóm

$$\epsilon(C) = \frac{s \circ c anh \, ngo ai \, nh \circ m}{N_c(N - N_c)}$$
 Ví du:

$$\epsilon(C_1) = \frac{2}{35}$$

$$\epsilon(C_2) = \frac{3}{32}$$

$$\epsilon(C_3) = \frac{3}{27}$$

2/(5*(3+4) = 2/35

Nội dung

- Khái niệm
- Tối ② u cộng đồng
- Các phương pháp phát hiện cộng đồng
 - Phogong pháp dựa trên lát cắt tối thiểu
 - Ph
 ⊡ ơng pháp dựa trên trung gian
 - Ph
 ⊡ ong pháp dựa trên RandomWalk

Lát cắt tối thiểu

- Mục tiêu của lát cắt tối thiểu là tìm tập cạnh ít nhất mà chặn luồng từ nguồn S đến T.
 - Kích thủớc cắt là tổng trọng lượng các cạnh đó

Lát cắt tối thiểu

• Lát cắt:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Phát hiện cộng đồng với lát cắt tối thiểu

• Mục tiêu: lát cắt tối thiểu

$$arg min_{A,B} cut(A,B)$$

Vấn đề:

Vấn đề xảy ra do không xem xét kết nối bên trong

Chuẩn hó ☐ lát cắt

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

với vol(A): tổng trọng số các cạnh với ít nhất một đầu ở trong A

$$vol(A) = \sum_{i \in A} k_i$$

Nội dung

- Khái niệm
- Tối ② u cộng đồng
- Các phương pháp phát hiện cộng đồng
 - Phogong pháp dựa trên lát cắt tối thiểu
 - Ph
 ② ong pháp dựa trên trung gian ⇒ Tập trung
 - Ph
 ⊡ ong pháp dựa trên RandomWalk

Phát hiện cộng đồng dự □ trên tính trung gi □n

- Phát hiện cộng đồng dựa trên tính trung gian thực hiện quá trình xác định cộng đồng bằng cách lần lượt bỏ đi đỉnh/cạnh có tính trung gian cao.
- Có hai loại:
 - Dựa trên tính trung gian đỉnh
 - Dựa trên tính trung gian cạnh.

Trung gi □n đỉnh

• Trung gian đỉnh đ ợc tính dựa trên số đ ờng đi ngắn nhất trong đồ thị mà phải đi qua đỉnh cho tr ớc.

Trung gi n cạnh

Trung gian cạnh đ

 ợc đánh giá dựa trên số đ

 ờng đi

 ngắn nhất phải đi qua cạnh cho tr

 ởc.

Thuật toán trung gi □n đỉnh

Lặp lại cho đến khi trung gian đỉnh nhỏ hơn ngưỡng cho trước

Ngắt đồ thị tại đỉnh này

Chọn đỉnh có giá trị trung gian đỉnh lớn nhất

Thuật toán trung gi □n cạnh

- => Thuật toán Girvan Newman
- => Tập trung vào trung gian cạnh
- => Tập trung vào thuật toán Girvan Newman

Nội dung

- Khái niệm
- Tối ② u cộng đồng
- Các phương pháp phát hiện cộng đồng
 - Phogong pháp dựa trên lát cắt tối thiểu
 - Ph
 ⊡ ơng pháp dựa trên trung gian
 - Ph
 ⊡ ong pháp dựa trên RandomWalk

R □ndom W □k

 Cho một đồ thị, từ một đỉnh bắt đầu, ta chọn ngẫu nhiên một đỉnh để đi tiếp. Sau t lần lặp lại nh
 vậy, ta sẽ có một đ
 òng đi ngẫu nhiên (random walk) kích th
 óc t.

R ⊓ndom W ⊓k

Xác suất chọn cạnh có thể đánh giá dựa trên độ
 tơng quan giữa hai văn bản và được chuẩn hóa.

Transition Matrix

Phát hiện cộng đồng dự □ trên r □ndom w □k

Việc phát hiện cộng đồng dựa trên random walk
 đ
 ②ợc thực hiện dựa trên nhận định:

Một đường đi ngẫu nhiên bắt đầu ở một đỉnh nhiều khả năng sẽ di chuyển trong cộng đồng hơn là di chuyển trong cộng đồng khác.

Ví dụ

Node	Prob. Next Step within cluster	Prob. Next Step between clusters
1	80%	20%
2	100%	0%
3	67%	33%

Ý tưởng thuật toán

- Điều chỉnh trọng số để sau bā ớc đi ngẫu nhiên kích tha ớc cho tra ớc, khả năng di chuyển trong nhóm sẽ cao.
- Trọng số đ

 ợc điều chỉnh để mà:
 - Các láng giềng mạnh sẽ càng mạnh lên
 - Các láng giềng yếu sẽ càng yếu đi
 - Tiến trình này đ

 ợc gọi lại sự làm phát (inflation)

Lạm phát hó□

Dự □ trên r □ ndom w □ k

Dự □ trên r □ndom w □ k

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Dự □ trên r □ndom w □ k

=

0.35	0.31	0.38	0.31
0.23	0.31	0.13	0.31
0.19	0.08	0.38	0.08
0.23	0.31	0.13	0.31

Dự ☐ trên r ☐ ndom w ☐ k

Các Infl Ition

Tài liệu th □m khảo

Mih□ce□, R□d□, □nd Dr□gomir R□dev. Graph-based natural language processing and information retrieval. C□mbridge university press, 2011.

