Attack-Resilient Weighted L1 Observer with Prior Pruning

Yu Zheng Olugbenga M. Anubi

Motivation

Secure Operation on Cyber Physical System

■ False Data Injection Attacks

- Erroneous measurements maliciously combined with systems measurement to disrupt performance/stability
- Bypasses bad data detection mechanisms
- Properties: time-varying, possibly unbounded, sparse

■ Resilient Observers Limitations

- Examples: event-triggered Luenberger observer, Gramian-based estimator, Robust estimator (local estimator + global fusion), L1 decoder ...
- ◆ If there is k attacks, the system should be at least 2k-detetable/observable

Preliminary

■ L0-L1 Minimization Program

$$\begin{aligned} \mathbf{y} &= H\mathbf{x} + \mathbf{e}, & \mathbf{e} \in \mathcal{R}(H) \\ & \min & \|\mathbf{e}\|_0 \\ & s.t. & \mathbf{y} &= H\mathbf{x} + \mathbf{e} \end{aligned} \qquad \begin{aligned} & \min & \|\mathbf{y} - H\mathbf{x}\|_0 \\ & & \mathbf{1} & \text{Restricted Isometry Property (RIP)} \\ & & \min & \|\mathbf{y} - H\mathbf{x}\|_1 \end{aligned}$$

Pre-requirement: Less than half of measurements are attacked

- Prior
 - ◆ State prior [16]
 - ◆ Measurement prior [7,15]
 - ◆ Support prior [5]

Linear System Case

Physical Model with decoder-detector

$$\mathbf{x}_{i+1} = A\mathbf{x}_i$$
 $\mathbf{x}_i \in R^n, \mathbf{y}_i \in R^m (m > n)$ $\mathbf{y}_i = C\mathbf{x}_i + \mathbf{e}_i$ $\mathbf{e}_i \in R^m$

$$\mathbf{x}_{i+1} = A\mathbf{x}_{i} \qquad \mathbf{x}_{i} \in R^{n}, \mathbf{y}_{i} \in R^{m}(m > n)$$

$$\mathbf{y}_{i} = C\mathbf{x}_{i} + \mathbf{e}_{i} \qquad \mathbf{e}_{i} \in R^{m}$$

$$\mathbf{y}_{T} = H\mathbf{x}_{i-T+1} + \mathbf{e}_{T} \qquad H = \begin{bmatrix} CA^{T-1} \\ CA^{T-2} \\ \vdots \\ CA \\ C \end{bmatrix} = [U_{1} \ U_{2}] \begin{bmatrix} \sum_{1} \\ 0 \end{bmatrix} V$$

Decoder

$$\hat{\mathbf{x}} = \mathcal{D}(\mathbf{y}_T) = V \Sigma_1^{-1} \operatorname{argmin} \|\mathbf{y}_T - U_1 \mathbf{z}\|_1$$

Detector

$$\mathcal{D}_{\epsilon}(\mathbf{y}_T) = \begin{cases} 1 & \text{if } ||\mathbf{y}_T - H\mathcal{D}(\mathbf{y}_T)||_1 > \epsilon \\ 0 & \text{otherwise} \end{cases}$$

False Data Injection Attacks

■ Threat Model

Successful FDIA:
$$\|\mathbf{x}^{\star} - \mathcal{D}(\mathbf{y}_T)\|_2 \ge \alpha$$
, $\mathcal{D}_{\epsilon}(\mathbf{y}_T) = 0$

■ Successful FDIA Design

Theorem 2.1: Given the support sequence $\mathcal{T} = \{\mathcal{T}_i \ \mathcal{T}_{i-1} \cdots \mathcal{T}_{i-T+1}\}$ with $|\mathcal{T}_i| \leq k$. Let \mathbf{z}_e be an optimal solution of the optimization program

Maxmize:
$$\|U_1\mathbf{z}\|_2$$
,
Subject to: $\|U_{1,\mathcal{T}^c}\mathbf{z}\|_2 \leq \frac{\varepsilon}{\sqrt{Tm-|\mathcal{T}|}}$. (7)

If
$$||U_{1,\mathfrak{I}^c}||_2 < \frac{1}{2\sqrt{Tm-|\mathfrak{I}|}}$$
, then the FDIA

$$\mathbf{e}_{\mathcal{T}} = (U_{1,\mathcal{T}})\mathbf{z}_e, \quad \mathbf{e}_{\mathcal{T}^c} = \mathbf{0} \tag{8}$$

Measurement Prior

Prior model

Def (Indicator):

$$\mathbf{q}_i = \begin{cases} 1 & \text{if } i \in \mathcal{T}^c \\ 0 & \text{otherwise} \end{cases}$$

Def (Precision of estimation):

$$\mathsf{PPV} = \frac{\|\mathbf{q} \circ \hat{\mathbf{q}}\|_{\ell_0}}{\|\hat{\mathbf{q}}\|_{\ell_0}}$$

Uncertainty model:

$$\mathbf{q}_{i} = \epsilon_{i} \hat{\mathbf{q}}_{i} + (1 - \epsilon_{i})(1 - \hat{\mathbf{q}}_{i})$$

$$\epsilon_{i} \sim \mathcal{B}(1, \mathbf{p}_{i}), \text{ with known } \mathbf{p}_{i} \in R_{+}$$
given by
$$\mathbf{p}_{i} = E[\epsilon_{i}] = \Pr\{\epsilon_{i} = 1\}$$

- 1. Uncertainty
- 2. Training price

Pruning

Algorithm 1: Pruning with Uncertain Oracle

I. Obtaining reliable trust parameter

Given reliability level $\eta \in (0,1)$, return the maximum size l_{η} such that l_{η} safe nodes are correctly localized with a probability of at least η :

$$l_{\eta} = \max \left\{ |\mathcal{I}| \mid \prod_{i \in \mathcal{I}} \mathbf{p}_i \ge \eta, \ \mathcal{I} \in \hat{\mathcal{T}}^c \right\}.$$
 (31)

II. Pruning

A *Pruned support prior* is obtained through a robust extraction:

$$\hat{\mathcal{T}}_{\eta}^{c} = \left\{ \text{argsort} \downarrow (\mathbf{p} \circ \hat{\mathbf{q}}) \right\}_{1}^{l_{\eta}}$$
 (32)

where, $\{\cdot\}_{1}^{l_{\eta}}$ is an index extraction from the first elements to l_{η} elements.

$$\rightarrow$$
 Pr {PPV $_{\eta} = 1$ } $\geq \eta$.

Lemma 3.1

■ Weighted L1 Observer

Minimize
$$\sum_{p=i-T+1}^{i} \|\mathbf{y}_p - C\mathbf{z}_p\|_{1,w}$$
 Subject to $\mathbf{z}_{p+1} - A\mathbf{z}_p = 0$,
$$p = i - T + 1, \cdots, i - 1$$

$$w = \left\{ \begin{array}{ll} 1, & j \in \hat{\mathcal{T}}_{\eta}^c \\ \omega, & j \in \hat{\mathcal{T}}_{\eta} \end{array} \right.$$

$$\|\mathbf{z}\|_{1,w} = \sum_{i} w_{i} |\mathbf{z}_{i}|$$
 is the weighted 1-norm

Minimize
$$\|\mathbf{y}_T - H\mathbf{z}\|_{1,w}$$
, with $w = \begin{cases} 1, & j \in \mathcal{T}_{\eta}^c \\ \omega, & j \in \hat{\mathcal{T}}_{\eta} \end{cases}$

■ Main Theorem (Theorem 3.2)

Restricted Isometry Property

Estimation Error Bound

Support Prior
$$\widehat{T}$$

$$\downarrow$$
 Pruned Support Prior $\widehat{T_{\eta}}$

$$(1 - \delta_{km}) \|\mathbf{h}\|_{2}^{2} \le \|U_{2}^{\top}\mathbf{h}\|_{2}^{2} \le (1 + \delta_{km}) \|\mathbf{h}\|_{2}^{2}$$

$$\delta_{akm} + C\delta_{(a+1)km} \le C - 1$$

$$\|\hat{\mathbf{x}} - \mathbf{x}^*\|_2 \le \frac{C_1}{\sigma \sqrt{km}} \left(\omega \sigma_{km}(\mathbf{e}) + (1 - \omega) \|\mathbf{e}_{\hat{\mathfrak{I}}_{\eta}^c}\|_1 \right)$$

Numerical Simulation

success ratio

 $\hat{\mathbf{x}}$

Numerical Simulation

Application Example

Application Example

Estimation error on bus angles

LO: Luenburger Observer

UL10: Unconstrained L1 Observer

MMO: Multi-model Observer

ETLO: Event triggered Luenbueger Observer

RRO: proposed Pruning Observer

	RMS Metric						
	LO	UL10	MMO	ETLO	RPO		
δ_1	2.9527	6.2e - 5	8.28e - 6	5.61e - 4	1.13e - 15		
δ_2	2.8814	6.66e - 5	7.89e - 6	8.24e - 4	2.55e - 16		
δ_3	3.0904	5.45e - 4	4.65e - 5	6.06e - 4	8.98e - 16		
δ_4	3.1951	2.55e - 4	2.01e - 5	3.6e - 3	9.44e - 16		
δ_5	3.4116	6.41e - 4	1.95e - 4	9.66e - 4	6.62e - 16		
П	May Ans Matric						

Ш		Max. Alis. Metric					
		LO	UL10	MMO	ETLO	RPO	
\prod	δ_1	9.7290	0.0017	1.82e - 4	0.0012	3.1e - 14	
	δ_2	9.4818	0.0017	1.53e - 4	0.0017	5.94e - 15	
	δ_3	13.4232	0.0116	8.37e - 4	0.0013	2.45e - 14	
	δ_4	12.8337	0.0058	3.55e - 4	0.0079	2.42e - 14	
	δ_5	12.5917	0.0078	0.0027	0.0021	1.28e - 14	

Conclusion

Resilient weighted L1 observer with prior pruning against False data Injection attacks

Pruning: a way to improve the precision of results of localization algorithm without training

Observer: can cope with big percentage of attacks

Weighted L1: provide a chance to reduce the sacrifice of measurements redundancy

THANK YOU

Olugbenga Moses Anubi – anubi@caps.fsu.edu

Open source codes: https://github.com/ZYblend/Resilient-Pruning-Observer-Design-for-CPSs-under-FDIA