诚信应考,考试作弊将带来严重后果!

华南理工大学期末考试

《信号与系统》试卷 A 答案

注意事项: 1. 考前请将密封线内各项信息填写清楚;

- 2. 所有答案请直接答在试卷上(或答题纸上);
- 3. 考试形式: 闭卷:
- 4. 本试卷共 五 大题,满分100分, 考试时间120分钟。

题 号		=	四	五	总分
得 分					
评卷人					

一、 填空题(共 20 分, 每小题 2 分)

1、 $x(t) = 3\cos\left(4t + \frac{\pi}{3}\right)$ _____ 是___ (选填: 是或不是) 周期信号, 若是,其基波周期 $T = \frac{\pi}{2}$ 。

2、 $x[n] = \cos\left(\frac{n}{4}\pi + \frac{\pi}{6}\right)$ <u>是</u> (选填: 是或不是) 周期信号,若是,基波周期 N= 8 。

- 3 、信号 $x(t) = \cos(2\pi t) + \sin(3t)$ 的 傅里 叶变换 $X(j\omega) = \pi[\delta(\omega 2\pi) + \delta(\omega + 2\pi)] j\pi[\delta(\omega 3) + \delta(\omega + 3)]$ 。
- 4、一离散 LTI 系统的阶跃响应 $s[n]=\delta[n]+2\delta[n-1]$,该系统的单位脉冲响应 $h[n]=\ \underline{\delta[n]+\delta[n-1]-2\delta[n-2]}$ 。
- 5、一连续 LTI 系统的输入 $\mathbf{x}(t)$ 与输出 $\mathbf{y}(t)$ 有如下关系: $\mathbf{y}(t) = \int_{-\infty}^{+\infty} e^{-(t-\tau+2)} \mathbf{x}(\tau) d\tau$,该系统的单位冲激响应 $\mathbf{h}(t) = \underline{e^{-(t+2)}}$ 。
- 6、一信号 $x(t) = 3e^{-4t} \mathbf{u}(t+2)$, $\mathbf{X}(\mathbf{j}\omega)$ 是该信号的傅里叶变换,求 $\int_{-\infty}^{+\infty} \mathbf{X}(\mathbf{j}\omega) d\omega = \underline{6\pi}$ 。
- 7、周期性方波 $\mathbf{x}(\mathbf{t})$ 如下图所示,它的二次谐波频率 $\boldsymbol{\omega}_2 = \frac{4\pi}{\mathbf{T}}$ 。

《信号与系统》试卷第 1 页 共 5 页

8、设 $X(e^{j\omega})$ 是下图所示的离散序列 x[n]傅立叶变换,则 $\int_0^{2\pi}X(e^{j\omega})d\omega=$ <u>2</u> π 。

9、已知一离散实偶周期序列 x[n]的傅立叶级数系数 a_k 如图所示,求 x[n]的周期 N=8

- 10、一因果信号 x[n],其 z 变换为 $X(z) = \frac{2z^2 + 5z + 1}{(z+1)(z+2)}$, 求该信号的初值 x[0] = 2___。
- 二、 判断题(判断下列各题,对的打√,错的打×)(共20分,每小题2分)
 - 1、已知一连续系统的频率响应为 $H(j\omega)=3e^{-j(\omega^2+5\omega)}$,信号经过该系统不会产生相位失真。(×)

 - 3、如果 x(t)是有限持续信号,且绝对可积,则 X(s)收敛域是整个 s 平面。(↓)
 - 4、已知一左边序列 x[n]的 Z 变换 $X(z) = \frac{5z^{-1} + 1}{(z^{-1} + 3)(z^{-1} + 2)}$,则 x[n]的傅立叶变换存在。(×)
 - 5、对 $x(t)=\left[rac{\sin(1000\pi t)}{\pi t}
 ight]^2$ 进行采样,不发生混叠现象的最大采样间隔 $T_{max}=0.5ms. \left(\ \ \checkmark \ \
 ight)$

《信号与系统》试卷第 2 页 共 5 页

- 6、一个系统与其逆系统级联构成一恒等系统,则该恒等系统是全通系统。(√)
- 7、离散时间系统 S,其输入为 x[n],输出为 y[n],输入-输出关系为: y[n] = nx[n]则该系统是 LTI 系统。(\times)

- 10、若 $\mathbf{x}(t) = \sum_{k=-100}^{100} \cos(k\pi) e^{jk\frac{2\pi}{50}t}$,则它的傅立叶级数系数为实、奇函数。(\times)
- 三、 计算或简答题(共40分,每小题8分)
 - 1、 $f_1(t)$ 与 $f_2(t)$ 波形如下图所示,试利用卷积的性质,画出 $f_1(t)*f_2(t)$ 的波形。

解:

2、如下图所示系统,如果 $H_1(j\omega)$ 是截止频率为 ω_{hp} 、相位为零相位的高通滤波器,

求该系统的系统函数 $H(j\omega)$, $H(j\omega)$ 是什么性质的滤波器?

解:

$$y(t) = x(t) - x(t) * h_1(t)$$

$$Y(j\omega) = X(j\omega) - X(j\omega)H_1(j\omega)$$

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = 1 - H_1(j\omega)$$

低通滤波器。

3、设 x(t) 为一带限信号,其截止频率 $\omega_m = 8$ rad/s。现对 x(4t) 采样,求不发生 混迭时的最大间隔 T_{max}

解:

设 x(t)的傅立叶变换为 X(jω)

则
$$x(4t)$$
 的傅立叶变换为 $X(j\omega) = \frac{1}{4}X(\frac{j\omega}{4})$,

∴ x(4t) 的截止频率ω_m= 32 rad/s,

$$\therefore 2\pi \frac{1}{T_{\text{max}}} = 64, \quad T_{\text{max}} = \frac{\pi}{32} s,$$

4、系统函数为 $H(s) = \frac{s-1}{(s+3)(s-2)}$ 的系统是否稳定,请说明理由?

解: 该系统由 2 个极点, $s_1=-3$ 和 $s_2=2$,

- 1) 当系统的 ROC: $\sigma < -3$ 时,ROC 不包括 $i\omega$ 轴, :: 系统是不稳定的。
- 2) 当系统的 ROC: σ>2 时, ROC 不包括 jω轴, ∴系统是不稳定的。
- 3) 当系统的 ROC: -3⟨σ<2 时, ROC 包括 jω轴, ∴系统是稳定的。
- 5、已知一个因果离散 LTI 系统的系统函数 $H(z) = \frac{5z+1}{2z+1}$, 其逆系统也是因果的, 其逆系统是否稳定? 并说明理由。

解: 逆系统的系统函数为
$$G(Z) = \frac{1}{H(Z)} = \frac{2z+1}{5z+1}$$
,

$$G(Z)$$
有一极点 $z=-\frac{1}{5}$,

- ::逆系统是因果的,
- ∴ G(Z) 的 ROC: $|z| > \frac{1}{5}$, 包含单位圆,
- ∴逆系统是稳定的。
- 四、 $(10 \, \text{分})$ 关于一个拉普拉斯变换为 X(s)的实信号 x(t)给出下列 5 个条件: $(1) \, X(s)$ 只有两个极点。 $(2) \, X(s)$ 在有限 S 平面没有零点。 $(3) \, X(s)$ 有一个极点在 s=-1+j。

(4) $e^{2t}x(t)$ 是绝对可积的。(5)、X(0)=2。试确定 X(s) 并给出它的收敛域。

解:

设 X(s)的两个极点为 s₁和 s₂,

根据条件 (1)、(2), 可设
$$X(s) = \frac{A}{(s-s_1)(s-s_2)}$$
, A 为常数;

- : x(t)是实信号;
- ∴ s₁和 s₂是共轭复数, s₁=-1+j, s₂=-1-j;

$$\therefore X(0) = \frac{A}{(1-i)(1+j)} = 2, A=4;$$

$$\therefore X(s) = \frac{4}{(s+1-j)(s+1+j)}$$

由条件(4)可知: X(s)的 ROC: σ>-1.

五、(10分)一个LIT因果系统,由下列差分方程描述:

$$y(n+2) - \frac{3}{4}y(n+1) + \frac{1}{8}y(n) = e(n+2) + \frac{1}{3}e(n+1)$$

- (1) 求系统函数H(z),并绘出其极零图。
- (2) 判断系统是否稳定,并求h(n)。

解:

(1) 对差分方程两边做Z变换

$$z^{2}Y(z) - \frac{3}{4}zY(z) + \frac{1}{8}Y(z) = z^{2}E(z) + \frac{1}{3}zE(z)$$

$$H(z) = \frac{Y(z)}{E(z)} = \frac{z^{2} + \frac{1}{3}z}{z^{2} - \frac{3}{4}z + \frac{1}{8}}, \quad |z| > \frac{1}{2}.$$

$$Re[z]$$

(2)
$$H(z) = \frac{\frac{10}{3}z}{z - \frac{1}{2}} - \frac{\frac{7}{3}z}{z - \frac{1}{4}}$$

因为H(z)的极点均在单位圆内,且收敛域包含单位圆,所以系统稳定。

$$h[n] = \left[\frac{10}{3} \left(\frac{1}{2}\right)^n - \frac{7}{3} \left(\frac{1}{4}\right)^n\right] u(n)$$

《信号与系统》试卷第 5 页 共 5 页