Proves d'accés a la universitat

Matemàtiques

Sèrie 2

Qualificació		TR	
Qüestions	1		
	2		
	3		
	4		
	5		
	6		
Suma de notes parcials			
Qualificació final			

Etiqueta de l'alumne/a	Ubicació del tribunal Número del tribunal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2,5 punts.

Podeu utilitzar calculadora, però no es permet l'ús de calculadores o altres aparells que poden emmagatzemar dades o que poden transmetre o rebre informació.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de la pàgina de la qüestió corresponent.

- 1. Considereu la paràbola $y = 4 x^2$ i un valor a > 0.
 - *a*) Comproveu que l'equació de la recta tangent a la gràfica de la paràbola en el punt d'abscissa x = a és $y = -2ax + a^2 + 4$ i calculeu els punts de tall d'aquesta recta tangent amb els eixos de coordenades.

[1,25 punts]

b) Calculeu el valor de a > 0 perquè l'àrea del triangle determinat per aquesta recta tangent i els eixos de coordenades sigui mínima.
 [1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 1	b	
	Total	

2. Considereu el sistema d'equacions lineals següent, que depèn del paràmetre real p:

$$\begin{cases} px + y + z = 2\\ 2x + py + p^2z = 1\\ 2x + y + z = 2 \end{cases}$$

a) Discutiu el sistema per als diferents valors del paràmetre *p*. [1,5 punts]

b) Resoleu, si és possible, el sistema per al cas p = 2. [1 punt]

Espai per al corrector/a		
	а	
Qüestió 2	b	
	Total	

- 3. Considereu el punt P = (-1, 3, 1), el pla $\pi : x = y$ i la recta $r : \frac{x-1}{2} = \frac{y}{3} = z 2$.
 - *a*) Trobeu les coordenades del punt P' simètric a P respecte al pla π . [1,25 punts]

<i>b</i>)	De tots els plans que contenen la recta r , trobeu l'equació cartesiana del que és perpendicular al pla π . [1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 3	b	
	Total	

- **4.** Sigui la funció $f(x) = \frac{\ln(x)}{x}$ definida en el domini x > 0, en què ln és el logaritme neperià.
 - *a*) Trobeu les coordenades d'un punt de la corba y = f(x) en el qual la recta tangent a la corba sigui horitzontal i analitzeu si la funció té un extrem relatiu en aquest punt. [1 punt]

b) Determineu si la funció f(x) té alguna asímptota horitzontal. [0,5 punts]

c) Calculeu l'àrea de la regió delimitada per la corba y = f(x) i les rectes x = 1 i x = e. Feu un dibuix aproximat de la gràfica de la funció en el domini 0 < x < 5, en què quedi representada l'àrea que heu calculat. [1 punt]

Espai per al corrector/a		
	а	
Oücetié 4	b	
Qüestió 4	С	
	Total	

5. a) Donada la matriu $A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, resoleu l'equació matricial $A^2X = A - 3I$, en què

 $\emph{\textbf{I}}$ és la matriu identitat. [1,25 punts]

b) Una matriu quadrada M satisfà que $M^3 - 3M^2 + 3M - I = 0$, en què I és la matriu identitat. Justifiqueu que M és invertible i expresseu la inversa de M en funció de les matrius M i I.

[1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 5	b	
	Total	

- **6.** Considereu la funció $f(x) = e^{x-1} x 1$.
 - *a*) Estudieu-ne la continuïtat, els extrems relatius i els intervals de creixement i decreixement.

[1,25 punts]

b) Demostreu que l'equació f(x) = 0 té exactament dues solucions entre x = -1 i x = 3. [1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 6	b	
	Total	

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

	1	
	Etiqueta de l'alumne/a	
	. 1	

Proves d'accés a la universitat

Matemàtiques

Sèrie 5

Qualificació		TR	
Qüestions	1		
	2		
	3		
	4		
	5		
	6		
Suma de notes parcials			
Qualificació final			

Etiqueta de l'alumne/a	
	Ubicació del tribunal Número del tribunal
Etiqueta de qualificació	Etiqueta del corrector/a

Responeu a QUATRE de les sis questions seguents. En les respostes, expliqueu sempre què voleu fer i per què.

Cada qüestió val 2,5 punts.

Podeu utilitzar calculadora, però no es permet l'ús de calculadores o altres aparells que poden emmagatzemar dades o que poden transmetre o rebre informació.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de la pàgina de la qüestió corresponent.

- 1. Considereu les matrius $A = \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ i $C = \begin{pmatrix} 5 & 1 \\ 0 & 7 \end{pmatrix}$.
 - *a*) Raoneu que la matriu \boldsymbol{B} és invertible i després calculeu \boldsymbol{B}^{-1} . [1,25 punts]

b) Calculeu la matriu X que satisfà la igualtat $A + B \cdot X = C \cdot A$. [1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 1	b	
	Total	

- 2. Siguin les funcions $f(x) = x^3 9x$ i g(x) = 7x. a) Estudieu els intervals de creixement i decreixement de f(x). [1,25 punts]

<i>b</i>)	Calculeu l'àrea de la regió del semiplà $x \ge 0$ compresa entre les gràfiques de $f(x)$ i $g(x)$. [1,25 punts]

Espai per al corrector/a

*b*Total

Qüestió 2

- 3. Considereu els punts de l'espai tridimensional A = (1, a, 1), B = (a, 1, 2), C = (1, 1, 1) i D = (0, 0, 0), en què a és un paràmetre real.
 - a) Determineu el valor del paràmetre a per al qual els punts són diferents i coplanaris (és a dir, que hi ha un pla que els conté).
 [1,25 punts]

b) Per al valor a = 2, calculeu l'àrea del triangle de vèrtexs A, B i C. [1,25 punts]

Nota: Per a calcular l'àrea del triangle definit pels vectors v i w, podeu fer servir l'expressió $S = \frac{1}{2} \| v \times w \|$, en què $v \times w$ és el producte vectorial dels vectors v i w.

Espai per al	per al corrector/a	
	а	
Qüestió 3	b	
	Total	

- **4.** La resistència al trencament R d'una biga de secció rectangular de base x i altura y és directament proporcional al producte xy^2 ; per tant, $R = kxy^2$, en què k és una constant positiva. Disposem d'un tronc de fusta en forma de cilindre de diàmetre d com el de la figura.
 - *a*) Comproveu que la resistència R de la biga rectangular de base x que podem construir amb aquest tronc ve donada per l'expressió $R = kx(d^2 x^2)$. [1,25 punts]

b) Calculeu les dimensions de la biga rectangular de resistència màxima que podem construir a partir d'aquest tronc i calculeu aquesta resistència màxima.

[1,25 punts]

Espai per al corrector/a		
	а	
Qüestió 4	b	
	Total	

5. Considereu el sistema d'equacions lineals següent, que depèn del paràmetre real *a*:

$$\begin{cases} x + 2y + az = 8 \\ 2x + y - az = 1 \\ 3x - 3az = 1 \end{cases}$$

a) Comproveu que, per a qualsevol valor del paràmetre *a*, el sistema d'equacions lineals no té solució.

[1,25 punts]

 b) Interpreteu geomètricament el sistema d'equacions lineals. Feu un dibuix esquemàtic que representi la posició relativa dels tres plans.
 [1,25 punts]

Espai per al	Espai per al corrector/a		
	а		
Qüestió 5	b		
	Total		

- **6.** Resoleu les dues qüestions següents:
 - a) Sigui $f(x) = 2x^3 + mx^2 + nx + p$ una funció que té dos extrems relatius en x = -3 i en x = 1 i que passa pel punt (3, 4). Calculeu els valors de m, n i p.

 [1,25 punts]

b) Calculeu l'equació de la recta tangent a la funció $f(x) = \frac{1-x}{1+x}$ en x = -3. [1,25 punts]

Espai per al	Espai per al corrector/a	
	а	
Qüestió 6	b	
	Total	

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a alguna qüestió.]

	1	
	Etiqueta de l'alumne/a	
	. 1	

