Core and accessory genomes

What is the core/accessory/pangenome?

- Bacterial strains have different sets of genes
- Present in all/nearly all strains in a species core
- Present only in some strains accessory
- Everything seen in a species pangenome

Comparing genomes

VS.

Core

VS.

Accessory

VS.

Pan

Why look at the pangenome?

- Choice of reference genome biases the gene content
- Find pathways/genes present in only some strains
 - virulence genes, antibiotic resistant genes, metabolic pathways
- Association of genes with other characteristics
 - · virulence, environmental vs clinical isolates, disease severity
- Core genome are in every strain, represent essential genes

Five genomes

Whole genome multiple alignment ^

Find "common" segments

The core genome

Core is common to all & has similar sequence.

The accessory genome

Accessory = not core (but still similar within)

The pan genome

Determining the pan genome

Whole genome alignment is difficult!

Rearrangements.

Sequence divergence.

Duplications.

Does not scale computationally.

Reframing the problem

Align whole genomes (DNA)

Cluster homologous genes (DNA or AA)

Homologs = common ancestor

<u>Ortholog</u>

Speciation

<u>Paralog</u>

Duplication

<u>Xenolog</u>

Lateral transfer

Homolog clustering

- :: Group homologous proteins together
 - : exploit sequence similarity + synteny + operons
 - : all versus all sequence comparison (not scalable)
 - DNA or amino acid (fast heuristics)
 - : difficulty increases with taxa distance
- :: Depends on annotation quality
 - Missing genes
 - False genes

Typical workflow

:: De novo assembly - SPAdes

:: Annotation - Prokka

:: Visualise - Phandango

Roary → matrix / spreadsheet

CLUSTER	STRAIN1	STRAIN2	STRAIN3
00001	DNO1000	EHEC1000	MRSA_1000
00002	DNO1001	EHEC1002	MRSA_1001
00003	DNO1002	EHEC1003	MRSA_1002
00004	DNO1003	EHEC1004	MRSA_1003
00005	DNO1004	EHEC1005	MRSA_1022
:	:	:	:
02314	DNO1005	na	MRSA_1023
02315	DNO1451	EHEC3215	na
02316	na	EHEC3216	MRSA_1923
:	:	:	:
04197	DNO1456	na	na
04198	na	EHEC3877	na
04199	na	na	MRSA_0533

Dispensable

Isolate-specific

Roary matrix (3819 gene clusters)

Visualisation tools

• Phandango demo