

ABES Engineering College, Ghaziabad B. Tech Even Semester Sessional Test-1

Printed Pages: Session: 2023-24

Semester: 2nd

Course Code: BEE201 Roll No.:

Course Name: Fundamentals of Electrical Engineering Time: 1.15 Hrs.

Maximum Marks: 30

Instructions:

1. Attempt All sections.

2. If require any missing data, then choose suitably.

Q. No.	Question	Marks	CO	KL	PI
	Section-A				20
1	Attempt ANY ONE part from the following				
a)	Explain the following with examples (i) Active and passive circuit elements (ii) Unilateral and bilateral circuit elements	2.5 +2.5	CO1	K2	2.1.2 2.1.3
b)	Differentiate the followings with V-I characteristics (i) Ideal and Practical Voltage source. (ii) Ideal and Practical Current source.	2.5 +2.5	CO1	K2	1.4.1
2	Attempt ANY ONE part from the following				
a)	Determine the current in 6Ω in the figure given below by using mesh or nodal analysis. $\frac{1\Omega}{4\Omega} \frac{3\Omega}{4\Omega} \frac{1}{12v}$	5	CO1	K3	1.2.1 1.4.1
b)	Determine the voltage V_1 across 6Ω resistor using mesh or nodal analysis. $ \begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\$	5	CO1	K3	1.2.1 1.4.1
3	Attempt ANY ONE part from the following				_
a)	Calculate the value of current I in 15Ω resistor in the figure given below by using nodal analysis	10	CO1	К3	1.2.1 1.4.1

	2Ω \$ 10 Ω 15 Ω 1/3 A T18V				
b)	Calculate the value of current in 50Ω in the given figure using mesh analysis.	10	CO1	K3	1.2.1 1.4.1
	Section-B	Total Marks: 10			
4	Attempt ANY ONE part from the following	10ta	l Mark	s:10	
a)	Attempt ANY ONE part from the following Derive the expression for instantaneous power and average power for a pure resistance connected across single phase sinusoidal AC supply. Also draw the waveforms of instantaneous voltage, current and power.	5	CO2	K2	1.1.1 1.4.1
	Derive the expression for instantaneous power and average power for a pure resistance connected across single phase sinusoidal AC supply. Also draw the waveforms of instantaneous voltage,				
a)	Derive the expression for instantaneous power and average power for a pure resistance connected across single phase sinusoidal AC supply. Also draw the waveforms of instantaneous voltage, current and power. Derive form factor and peak for a full wave rectified alternating	5	CO2	K2	1.4.1 1.1.1
a) b)	Derive the expression for instantaneous power and average power for a pure resistance connected across single phase sinusoidal AC supply. Also draw the waveforms of instantaneous voltage, current and power. Derive form factor and peak for a full wave rectified alternating voltage waveform.	5	CO2	K2	1.4.1 1.1.1

CO Course Outcomes mapped with respective question KL Bloom's knowledge Level (K1, K2, K3, K4, K5, K6) K1-Remember, K2-Understand, K3-Apply, K4-Analyze, K5:Evaluate, K6-Create

Solution of Sessional Test -1

Q.1 (a) **Active and Passive Elements**: A Circuit element is said to be active if it is capable of delivering net power to the other elements when connected in a circuit. Ex: All sources voltage source and current source are considered as active elements.

Passive circuit elements are those elements which are capable of consuming power when connected in a circuit. R, L and C are considered as passive elements

Unilateral and Bilateral Elements:

If the V-I relationship of an element depends on the direction of flow of current then, the element is called unilateral circuit element. Ex: Diode, Op-amp.

If the V-I relationship of an element is independent of the direction of flow of current then, the element is called bilateral circuit element. Ex: R, L and C

Q.1 (b) **Ideal and Practical Voltage Source** An ideal voltage source is a 2-terminal circuit element that maintains a constant terminal voltage no matter how much current is drawn from it. The internal resistance of ideal voltage source is zero.

A practical voltage source consists of an ideal voltage source in series with an internal resistance (R_{in})

Ideal and Practical Current Source An ideal current source is a 2-terminal circuit element that maintains a constant current no matter how much voltage is exist across its terminals. The internal resistance of ideal current source is infinite.

Symbol Characteristic

A practical current source consists of an ideal current source in parallel with an internal resistance.

Q2(a)

2(a)

A WIND JONE 12

Rep ABEDA Jn loop BCFEB

In 16 (In Iz) + 2I = 18 3I 2 + 4Iz + 6(Iz - Iz) = -12

9I, -6I 2 = 18 -6I, + 13I 2 = -12

On Solving He set
$$I_1 = 2A$$
 $I_2 = 0A$

Current in $6A = (I_1 - I_2)$ $8 to E = 2A$ $1 to E$

Nodal:

Nodal:

1 1 2 4 5 to E

Nodal:

2 4 5 to E

Nodal:

3 1 2 4 5 to E

Nodal:

3 1 2 4 5 to E

Nodal:

1 2 4 5 to E

Nodal:

3 2 2 4 5 to E

Nodal:

3 2 2 4 5 to E

Nodal:

3 3 2 5 5 to B 5 to E

Nodal:

3 2 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 4 5 to E

Nodal:

3 2 5 2 1 5 1 5 to E

Nodal:

3 2 5 2 1 5 to E

Nodal:

3 2 5 2 1 5 to E

Nodal:

3 2 5 2 1 5 to E

Q3(9) T by \$1052 T \$15.0 \$11/34 T18V
At Node A I, - I2+I3
$\frac{10 - V_A}{2} = \frac{V_A}{10} + \frac{V_A - V_B}{5}$
$= 50 - 5V_A = V_A + 2V_A - 2V_B$ $= 8V_A - 2V_B = 50 - (i)$
At Node B2- I3 = I + 1/3 + I4
$\frac{V_{A}-V_{B}}{5} = \frac{V_{B}}{15} + \frac{V_{B}-18}{3}$
$=) 3V_A - 3V_B = V_B + 5 + 5V_B - 90$ $= 3V_A - 9V_B = 85 - (i)$
on Salving VA = 9.394 VB = 12.575 Velts
Current in $15 - 1(I) = \frac{V_B}{15} = \frac{12.575}{15}$
7 2 0 000

Q3(b)

Q4(a) CIRCUIT WITH PURE RESISTANCE ONLY

A pure resistance is that in which there is only a ohmic voltage drop. Consider a circuit having a pure resistance R as shown is figure above.. Let the instantaneous value of the alternating voltage applied be, $e = V_m \sin \omega t$ The instantaneous value of current,

$$i=~e/R=(V_m~Sin~\omega t)/R~.=I_m~Sin~\omega t$$

Instantaneous Power

$$p = V_m \sin \omega t^* I_m \sin \omega t = V_m I_m \sin^2 \omega t = \frac{V_m I_m}{2} - \frac{V_m I_m}{2} \cos 2\omega t$$

Instantaneous power consists of a constant part $\frac{V_m I_m}{2}$ and a fluctuating part $\frac{V_m I_m}{2} cos2\omega t$ of frequency double that of supply. On taking average over complete cycle the fluctuating part reduces to zero and we get average Power

$$P = \frac{1}{2\pi} \int_0^{2\pi} ei \ d(\omega t) = \frac{V_m I_m}{2}$$
 watt or $V_{RMS} * I_{RMS}$ watt

Wave diagram for resistive circuit

Form factor of a Full wave rectifier (VO)
For the full wave rectified valtage on 211 311 411 (0)
Average value is given by 1 tig (2.6)
Vary = 1/1 St. do = 1 St Vm Sino do The period of ways
=> VAy = Vm [- Caso] => VAy = 2Vm /T (i)
The RMS value is given by.
$V_{RMS} = \sqrt{\frac{1}{\pi}} \int_{V^2 d0}^{\pi} = V_{RMS} = \frac{1}{\pi} \int_{V_{M}}^{2} V_{M}^2 S_{IM}^2 \frac{1}{0.000} \frac{1}{0.000}$
$V_{RMS}^2 = \frac{V_m^2}{2\pi} \int_0^{\pi} (1 - (0.020) \cdot d\theta) = \frac{V_m^2}{2\pi} \left[\theta - \frac{S_{10}}{2} \right]^{\pi}$
$=) V_{RMS}^{2} = \frac{V_{m}^{2}}{2\pi} \times \Pi =) V_{RMS} = \frac{V_{m}}{\sqrt{2}} - (ii)$
So four factor of tall wave rectified wave is given by
Vens Vens III III Vente
Peak Factor (Kp) = $\frac{V_{m}}{V_{RMS}} = \frac{V_{m}}{V_{m}/v_{2}} = \frac{V_{m}}{v_{1}} = \frac{V_{m}}{V_{m}/v_{2}} = \frac{V_{m}}{V_{m}/v_{2$