Math 285 Lecture Notes

1 September 6th

We will start with a review of calculus, recast in into differential forms.

Definition 1.1. Let $U \in \mathbb{R}^n$ be an open set. For a function $f: U \to \mathbb{R}$, we say $f \in C_p^k$ at a point p if all partial derivatives of f with order $\leq k$ exist and are continuous at k.

Example: $C^0(\mathbb{R})$ describes functions that are at least continuous over the real numbers. In our setting, we will usually concern ourselves with functions that belong to C^{∞} , where $C^{\infty} = \bigcap_{i=0}^{\infty} C^i$

Definition 1.2. Let $U \subseteq \mathbb{R}^n$, and let $f: U \to \mathbb{R}$. We call f analytic at a point $p \in U$ if it agrees with its Taylor's series at p in some neighborhood of p.

We notice that because taking derivatives is linear, that is, we can differentiate term by term, that if f is analytic, then $f \in C^{\infty}$. However, the converse need not be true:

Consider:

$$f = \begin{cases} e^{-1/x} & \text{when } x > 0\\ 0 & \text{else} \end{cases}$$

Without too much work, we see that this function is continuous. Moreover, the derivative of $e^{-1/x}$ is equal to $x^{-2}e^{-1/x} = x^{-2}f$. Taking the limit as $x \to 0$, and using L'Hôpital's rule where necessary, we can see this goes to 0. Alternatively, we can look at:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$$

with reasonable usage of L'Hôpital's.

The upshot is that, inductively, we may show that $f^{(k)}(0) = 0$, and thus, at the point x = 0, the Taylor series for f is identically 0. However, in no neighborhood of 0, is f(x) identically 0. Thus, f is not analytic. However, via computation, we see that $f \in C^{\infty}$. So, $C^{\infty} \Rightarrow$ analytic.

Another way to see this concept, is if we think about Taylor's Series up to k-th order. This is just a Taylor series truncated at the k-th term, with a remainder term R_{k+1} . Then, in such a view, f is analytic at a point $p \iff \lim_{k\to\infty} R_k = 0$.

Definition 1.3. Let $U \in \mathbb{R}^n$ be a set, and $p \in U$. We call U star-shaped with respect to p if, for all $q \in U$, that the line segment $\overline{pq} \subset U$.

This motivates the hypotheses for Taylor's Theorem with a remainder term:

Theorem 1.1. Let $U \subset \mathbb{R}^n$ be a star-shaped open set with respect to a point $p \in U$. Let $f: U \to \mathbb{R}$. If $f \in C^{\infty}$, then there exist $g_1, ..., g_n \in C^{\infty}$ such that

$$f(x) = f(p) + \sum_{i=1}^{n} g_i(x)(x^i - p^i)$$
 with $g_i(p) = \frac{\partial f}{\partial x^i}(p)$

Proof: Let $y \in U$, and let $x \in \overline{py} \subseteq U$. Taking a parametrization of $\overline{py} : x(t) = p + t(y - p)$ where the *i*-th component is given by $x^i(t) = p^i + t(y^i - p^i)$.

Now, consider f(y) - f(p) = f(x(1)) - f(x(0)). Using the fundamental theorem:

$$f(x(1)) - f(x(0)) = \int_0^1 \frac{d}{dt} f(x(t)) dt = \int_0^1 \sum_i \frac{\partial f}{\partial x^i} (x(t)) \frac{dx^i}{dt} dt =$$

$$\sum_{i} \int_{0}^{1} \frac{\partial f}{\partial x^{i}}(p+t(y-p))(y^{i}-p^{i})dt = \sum_{i} \left(\int_{0}^{1} \frac{\partial f}{\partial x^{i}}(p+t(y-p))dt \right) (y^{i}-p^{i})dt$$

Thus, we identify:

$$g_i(y) = \int_0^1 \frac{\partial f}{\partial x^i}(p + t(y - p))dt$$

It should be clear that:

$$g_i(p) = \int_0^1 \frac{\partial f}{\partial x^i}(p + t(p - p))dt = \int_0^1 \frac{\partial f}{\partial x^i}(p)dt = \frac{\partial f}{\partial x^i}(p)$$

as $\frac{\partial f}{\partial x^i}(p)$ is not a function of t.

Further, by an application of the dominated convergence theorem:

$$\frac{\partial}{\partial y^{j}}g_{i}(y) = \frac{\partial}{\partial y^{j}} \left(\int_{0}^{1} \frac{\partial f}{\partial x^{i}} (p + t(p - p)) dt \right) =$$

$$\int_{0}^{1} \frac{\partial}{\partial y^{j}} \frac{\partial f}{\partial x^{i}} (p + t(p - p)) dt$$

which exists and is continuous because $f \in C^{\infty}$. Thus, $g_i \in C^{\infty}$

2 September 11th

We want to reformulate the concept of a tangent vector in a coordinate-free way, because we should not need to immerse our manifold in an ambient Euclidean space.

Note that we will use parentheses for a point, and angle brackets for a vectors. Recall that for a surface traced out in \mathbb{R}^3 by some function $M: f(x^1, x^2, x^3) = 0$, we can say that the tangent space is:

$$T_p(M) = \{ v_p \in T_p(\mathbb{R}^3) : \nabla f(p) \cdot v_p = 0 \}$$

But this depends on the space we're immersed in.

To move towards a coordinate independent description, we instead look at the directional derivative.

Definition 2.1. If $v_p \in T_p(U)$ and $f \in C^{\infty}(U)$, then the directional derivative of f in the direction of v_p at the point p is denoted by $D_{v_p}f$.

Explicitly, we can describe this as a cross section f(p+tv), and thus:

$$D_{v_p} = \frac{d}{dt}\bigg|_{t=0} = \sum_i \frac{\partial}{\partial x^i}\bigg|_{x=(p+tv_p)} \frac{dx^i}{dt}\bigg|_{t=0} = \sum_i \frac{\partial}{\partial x^i}(p)v^i = \sum_i v_i \frac{\partial}{\partial x^i}\bigg|_{p}$$

This leads to the concept of the germs of a function:

Definition 2.2. Let (f, U) denote a C^{∞} function and its domain: $f: U \to \mathbb{R}$. Fix $a \ p \in U$.

We say that $(f, U) \sim (g, V)$ if there exists $W \subset U \cap V$ such that $p \in W$, and that restricted to W, f = g. We denote these equivalence classes as [(f, U)] and call these the germs of functions.

Further, we denote the set of equivalence classes at p as C_n^{∞} .

With some work, we can show that due to our equivalence being on some neighborhood of p, and the derivative being a local characteristic, that we may apply the directional derivative as:

$$D_{v_p}: C_p^{\infty} \to \mathbb{R}$$

Without too much trouble, we can see that there is a algebra of germs over \mathbb{R} with the following operations:

$$\begin{cases} [(f,U)] + [(g,V)] = [(f+g,U\cap V)] \\ [(f,U)] * [(g,V)] = [(f*g,U\cap V)] \\ \lambda[(f,U)] = [(\lambda f,U)] \end{cases}$$

Proposition 2.1. Let $D_{v_p}: C_p^{\infty} \to \mathbb{R}$.

- (i) D_{v_p} is \mathbb{R} -linear.
- (ii) $D_{v_p}^{r}$ follows a Leibniz rule, that is: $D_{v_p}(fg) = D_{v_p}(f)g(p) + f(p)D_{v_p}(g)$

Definition 2.3. Let $D: C_p^{\infty} \to \mathbb{R}$. If D satisfies (i) and (ii) from Proposition 2.1, then we call it a derivation at p, or equivalently, a point-derivation of C_p^{∞} .

Definition 2.4. We denote the set of point-derivations of C_p^{∞} as $\mathcal{D}_p(\mathbb{R}^n)$.

Note that $\mathcal{D}_p(\mathbb{R}^n)$ is closed under addition and scalar multiplication, but not under multiplication. Thus, this forms a vector space, but not an algebra.

So, now we can recast our tangent space.

Theorem 2.1. The map defined by:

$$\phi: T_p(\mathbb{R}^n) \to \mathcal{D}_p(\mathbb{R})$$

such that $v_p \mapsto D_{v_p}$

is a linear isomorphism of vector spaces.

Proof. Suppose D_{ν_p} is the 0 operator. By definition:

$$\varphi(v_p) = D_{v_p} = \sum_i v^i \frac{\partial}{\partial x^i} \bigg|_p$$

Since this is true for all functions, it is in particular true for the function $f = x^j$. Of course then:

$$D_{v_p}(f) = \sum_{i} v^i \frac{\partial}{\partial x^i} \bigg|_{p} (f) = v_p^j = 0$$

Since the choice of x^j was arbitrary, this may be performed for each x^j . Thus, $v_p^i = 0$ for all i, and thus $v_p = 0$. Now, let $D \in \mathcal{D}_p(\mathbb{R}^n)$ be an arbitrary point-derivation.

Define
$$D_{v_p} = \sum_{i} v^i \frac{\partial}{\partial x^i} \bigg|_{p}$$
 where $v^j = D(x^j)$.

We claim that for an arbitrary $f \in C_p^{\infty}$, that $Df = D_{v_p}f$. Using Theorem 1.1 (Taylor's theorem with Remainder), we expand f as:

$$f(x) = f(p) + \sum g_i(x)(x^i - p^i) : g_i(p) = \frac{\partial f}{\partial x^i}(p)$$

So, computing:

$$D(f) = D(f(p) + \sum_{i} g_i(x)(x^i - p^i)) = 0 + \sum_{i} D(g_i(x)(x^i - p^i)) = 0$$

$$\sum D(g_i)(p^i - p^i) + g_i(p)D(x^i - p^i) = \sum \frac{\partial f}{\partial x^i}(p)D(x^i)$$

We notice that this is exactly the same form as $\sum v^i \frac{\partial}{\partial x^i} \Big|_{-}$ due to our identification of $v^i = D(x^i)$. Thus, $D = D_{v_p}$ on all f. Note: we will notate in the future as $e_{i,p} = \frac{\partial}{\partial x^i} \Big|_{p}$ from now on.

Because we have a bijection, we can establish the following definition:

Definition 2.5. $T_p(U)$ is the set of point derivations of C_p^{∞} .

Definition 2.6. Let $X: U \to \coprod_{p \in U} T_p(U)$. If $X_p \in T_p(U)$, we call such a function a vector field, where we use \coprod to remind ourselves that the tangent spaces are disjoint.

Unpacking the definition a little bit, if $X_p \in T_p(U)$ then:

$$X_p = \sum a^i(p) \frac{\partial}{\partial x^i} \bigg|_p$$

Denoting $a^i: U \to \mathbb{R}$ as $p \mapsto a^i(p)$, then we have that:

$$X = \sum a^i \frac{\partial}{\partial x^i}$$

Definition 2.7. Let X be a vector field as above. We say that $X \in C^{\infty}$ if each $a^i: U \to \mathbb{R}$ is C^{∞} .

Notation: The set of C^{∞} vector spaces on U is an \mathbb{R} -vector space. We denote this by $\mathcal{X}(U)$.

3 September 13th

Multilinear algebra:

Recall some easy examples.

The dot product $\langle u, v \rangle$ is a bilinear function that takes $V \times V \to k$.

Dual spaces:

Note that we like this point of view because we can always multiply functions, but we may not admit a multiplication on vectors. Cross products need not exist.

Definition 3.1. A covector of a vector space V is a linear function $f: V \to \mathbb{R}$.

Definition 3.2. The dual space of V is the set of all covectors of V. We denote this as V^* .

Theorem 3.1. Let V be a vector space with basis $\{e_i\}_{i=1}^n$, and we have $\alpha^i \in V^*$, where $\alpha^i(e_j) = \delta_i^j$. Then, $\{\alpha^i\}$ form a basis for V^* . We call this the dual basis to $\{e_i\}$.

Proof. Suppose $\sum_{I=1}^{n} c_i \alpha^I = 0$. Since these are functions on V, consider their action on e_j . Then, of course, we find that $c_j = 0$. Repeating this argument, this tells us that $c_i = 0$ for all I. In a similar fashion, if we assume f to be a functional, its action is completely determined on the basis vectors. Then, we may construct g such that $g = \sum_{I=1}^{n} d_i \alpha^I$. And we notice f - g = 0 everywhere, so f = g.

Corollary 3.1. The dimension of the dual space is the dimension of the vector space.

Definition 3.3. Let f is a function, k-linear on V. That is, a function from $V \times V \dots \times V \to \mathbb{R}$, linear in each argument. We call this object a k-tensor on V. Further, we call f symmetric if, for any permutation of the arguments, f is constant.

$$f(v_{\sigma(1)}, ..., v_{\sigma(n)}) = f(v_1, ..., v_n)$$

for any $\sigma \in S_n$. Call f alternative if, instead:

$$f(v_{\sigma(1)}, ..., v_{\sigma(n)}) = sgn(\sigma)f(v_1, ..., v_n)$$

Definition 3.4. Let $\sigma \in S_n$. We say that:

 $sgn(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ can be expressed as a product of an even number of transpositions} \\ -1 & \text{if } \sigma \text{ can be expressed as a product of an odd number of transpositions} \end{cases}$

Equivalently, we can count the inversions.

It turns out, that the symmetric tensors will not be terribly interesting for this course, but the alternating ones will be.

Definition 3.5. Denote the k-tensors on V as the set $L_k(V)$. Denote the alternating k-tensors on V as the set $A_k(V)$

Definition 3.6. Let $f \in L_k(V)$, $g \in L_l(V)$. Denote the tensor product of f and g as $f \otimes g \in L_{k+k}(V)$, where:

$$f \otimes g(v_1, ..., v_{k+l}) = f(v_1, ..., v_k)g(v_{k+1}, ..., v_{k+l})$$

Note that this is not commutative, but it is associative.

Definition 3.7. Let $f \in A_k(V)$, $g \in A_l(V)$. We denote the wedge product of f and g as $f \wedge g$, computed as:

$$f \wedge g(v_1, ... v_{k+l}) = \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} sgn(\sigma) f(v_{\sigma(1)}, ..., v_{\sigma(k)}) g(v_{\sigma(k+1)}, ..., v_{\sigma(k+l)})$$

Definition 3.8. Let $\sigma \in S_{k+l}$. If $\sigma(1) < \ldots < \sigma(k)$ and $\sigma(k+1) < \ldots < \sigma(k+l)$, we call σ a (k,l) shuffle. Note that we have $\binom{k+l}{k}$

We notice that instead of summing over all permutations of S_n , we may simply define the wedge product over (k,l) shuffles, and drop the fraction in front.

Definition 3.9. Let $\sigma \in S_k$, and let $f \in L_k(V)$. Then, we denote the permutation of the arguments as $\sigma f(v_1,...,v_k) = f(v_{\sigma(1)},...,v_{\sigma(k)})$.

Definition 3.10. Let $f \in L_k(V)$. We call the function:

$$A(f) = \sum_{\sigma \in S_h} sgn(\sigma)(\sigma f)$$

the alternator of f.

Theorem 3.2. For $f \in L_k(V)$, A(k) is alternating.

Proof. Let $\tau \in S_n$. Then, we have that:

$$\tau A(f) = \tau \sum_{\sigma} \operatorname{sgn}(\sigma)(\sigma f) = \sum_{\sigma} \operatorname{sgn}(\sigma)(\tau \sigma f) = \sum_{\sigma} \operatorname{sgn}(\sigma)(\tau \sigma f) = \operatorname{sgn}(\tau) \sum_{\sigma} \operatorname{sgn}(\tau \sigma)(\tau \sigma) f$$

But, we see that summing over σ is equivalent to summing over $\tau\sigma$ because it's just a translation of the group. So, this is equal to $\operatorname{sgn}(\tau)A(f)$, and we're

Thus, we notice that we can also write the wedge product:

$$f \otimes g = \frac{1}{k! l!} A(f \otimes g)$$

Remark: The wedge product has the following properties: (i) $f \wedge g = (-1)^{d_f d_g} g \wedge f$ where d_f is the degree of f and same for g. (ii) It is associative, $(f \wedge g) \wedge h = f \wedge (g \wedge h)$. (iii) $f \wedge g \wedge h = \frac{1}{k! l! m!} A(f \otimes g \otimes h)$. (iv) For $\alpha^i \in V^*$, $(\alpha^1 \wedge \ldots \wedge \alpha^k)(v_1, \ldots, v_k) = \det[\alpha^i(v_j)]$

4 September 18th

Differential forms on \mathbb{R}^n

Recall that a covector is a linear map from $V \to \mathbb{R}$, 1-tensor, alternating 1-tensor.

Analogously then, a covector field on an open set $U \subseteq \mathbb{R}$ assigns a covector to each point $u \in U$.

An alternative name for a covector field is a 1-form.

Differentials of f:

Definition 4.1. For $f \in C^{\infty}(U)$, define the 1-form df on U via, for $p \in U$:

$$(df)_p(X_p) = D_{X_p}f := X_pf$$

Example 4.1.

$$(dx^{i})_{p} \left(\frac{\partial}{\partial x^{j}} \Big|_{p} \right) = \frac{\partial}{\partial x^{j}} \Big|_{p} x^{i} = \delta^{i}_{j}$$

We notice that $\left\{\frac{\partial}{\partial x^i}\right\}$ is a basis, and the standard basis for $T_p(\mathbb{R}^n)$. Therefore, $\{dx^i\}$ is the dual basis for $(T_p\mathbb{R}^n)^v:=T_p^*(\mathbb{R}^n)$, the cotangent space at p.

Then, of course, every covector w_p at p may be expressed in this basis as:

$$w_p = \sum b_i(p) dx_p^i$$

Viewing b_i as a function over U, then:

$$w = \sum b_i dx^i$$

where $b_i: U \to \mathbb{R}$.

Definition 4.2. A 1-form $w = \sum b_i dx^i$ is C^{∞} if all $b_i \in C^{\infty}$.

Example 4.2. Consider $\{x, y, z\} \subset \mathbb{R}^3$ as the standard coordinates. dx is a 1-form on \mathbb{R}^3 such that

$$dx\left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y} + c\frac{\partial}{\partial z}\right) = a$$

that is, it extracts the x-coordinate of a vector.

If we consider extracting coordinates via the dual basis, it's not hard to see that, for $f \in C^{\infty}$:

$$df = \sum \frac{\partial f}{\partial x^i} dx^i$$

Extending to k arguments, we have the following:

Definition 4.3. A k-form on U is an alternating k-tensor w_p defined at each point $p \in U$.

Recall the following theorem:

Theorem 4.1. If $\alpha^1,...,\alpha^n$ is a basis for $A_1(V)$, then a basis for $A_k(V)$ is $\alpha^{i_1} \wedge ... \wedge \alpha^{i_k}$ where $i_1 < ... < i_k$.

Example 4.3. In \mathbb{R}^3 :

A 0-form associates to each point a number, so is a linear function $f:U\to$ \mathbb{R} .

A 1-form looks like:

$$w = fdx + gdy + hdz$$

A 2-form looks like:

$$w = Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy$$

A 3-form looks like:

$$w = f dx \wedge dy \wedge dz$$

In general, we define a k-form on $U \subset \mathbb{R}^n$ as:

$$w = \sum_{I} b_{I} dx^{I}$$

where I is a multi-index such that $1 \le i_1 < ... < i_k \le n$.

We can see that there exists a 1-1 correspondence between 1-forms/2-forms and vector fields.

We can also see that these exists a 1-1 correspondence between 0-forms/3-forms and functions.

Not too hard to see, we would just look at these as abstract vector fields.

Exterior Derivative:

Notationally, we will denote $\Omega^k(U)$ as the C^{∞} k-forms on U.

Definition 4.4. We define the exterior derivative as a map:

$$d: \Omega^k(U) \to \Omega^{k+1}(U)$$

where
$$d\left(\sum_{I}b_{I}dx^{I}\right) = \sum_{I}db_{I} \wedge dx^{I} = \sum_{I,j} \frac{\partial b_{I}}{\partial x^{j}}dx^{j} \wedge dx^{I}$$

Proposition 4.1. (i) d is an antiderivation of degree 1:

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau$$

(ii) $d \cdot c = 0$.

(iii) If f is a 0-form, then:

$$df(X) = Xf$$

See proof in book.

Recall some basics from vector calculus.

The gradient of f may be viewed as:

$$\nabla f = \begin{bmatrix} f_x \\ f_y \\ f_x \end{bmatrix}$$

We say this corresponds to the following 1-form:

$$df = f_x dx + f_y dy + f_z dz$$

Similarly, for the curl:

$$\nabla \times f = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} \times \begin{bmatrix} P \\ Q \\ R \end{bmatrix} = \begin{bmatrix} R_y - Q_z \\ P_z - R_x \\ Q_x - P_y \end{bmatrix}$$

This corresponds to the following 2-form:

$$(R_y - Q_z)dy \wedge dz + (P_z - R_x)dz \wedge dx + (Q_x - P_y)dx \wedge dy = d(Pdx + Qdy + Rdz)$$

Without writing it out, we can look at the divergence of a vector field, and we notice that it corresponds to the following 2-form:

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy)$$

In particular then, we see that these are special cases of the exterior derivative. More generally, if we let $\mathfrak{X}(U)$ denote C^{∞} vector fields on U, we see that we have a sequence:

$$C^{\infty}(U) \to_{\operatorname{grad}} \mathfrak{X}(U) \to_{\operatorname{curl}} \mathfrak{X}(U) \to_{\operatorname{div}} C^{\infty}(U)$$

and we have a parallel sequence of isomorphic structures:

$$\Omega^0(U) \to_d \Omega^1(U) \to_d \Omega^2(U) \to_d \Omega^3(U)$$

Theorem 4.2.

$$d^2 = 0 \iff curl(qrad\ f) = 0, div(curl\ F) = 0$$

Similar, we can look at Green's theorem as a statement on differential forms:

Theorem 4.3. The Generalized Stokes' Theorem

$$\int_{\partial D} \omega = \iint_{D} d\omega$$

5 September 20

Topological Manifolds:

Definition 5.1. We call a topological space M locally Euclidean if, for every $p \in M$, there exists a neighborhood $p \in U$ such that U is homeomorphic to a neighborhood of a Euclidean space $\phi: U \to \phi(U) \subseteq \mathbb{R}^n$, for some n. For such an n, we say that M is locally Euclidean of dimension n. We call a pair (U, ϕ) a chart, or a coordinate neighborhood of M.

Definition 5.2. If a topological space is locally Euclidean, Hausdorff, and second countable, we call it a topological manifold.

Note that the idea here is that hope that topological manifolds can be embedded in some \mathbb{R}^n , and \mathbb{R}^n is Hausdorff, second countable. Since topological subspaces remain Hausdorff, second countable, we restrict ourselves to the study of this class of manifolds.

Example 5.1. We want to show that the set $\{(x,y): xy=0\}$ is not locally Euclidean. Suppose it were around the origin p=(0,0). Then, we note that we have a homeomorphism from $U \setminus p \to \phi(U \setminus p) \subseteq \mathbb{R}^n$. However, we notice that $U \setminus p$ has 4 connected components, but removing a single point from any Euclidean neighborhood gives us either 2 components in \mathbb{R} and 1 else. Thus, such a homeomorphism cannot exist.

Definition 5.3. Let U, V be open sets, locally Euclidean with charts $\varphi : U \to \mathbb{R}^n$, $\psi : V \to \mathbb{R}^n$. We call $\psi, \varphi C^{\infty}$ compatible if both:

$$\begin{cases} \psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V) \\ \varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V) \end{cases}$$

are C^{∞} maps.

Definition 5.4. Let $\{(U_{\alpha}, \phi_{\alpha})\}_{{\alpha} \in I}$ be a collection of C^{∞} charts, such that $M = \bigcup_{\alpha} U_{\alpha}$. We call this collection an atlas.

Definition 5.5. Let \mathfrak{U} be a C^{∞} atlas. We call it maximal if it is not contained in any other C^{∞} atlas, that is, if $\mathfrak{U} \subseteq \mathfrak{M}$, then $\mathfrak{U} = \mathfrak{M}$.

Definition 5.6. We call a topological manifold equipped with a maximal C^{∞} atlas, a C^{∞} manifold.

Theorem 5.1. Every C^{∞} atlas on a locally Euclidean space is contained within a unique, maximal C^{∞} atlas.

Theorem 5.2. If M, N are C^{∞} manifolds, so too is $M \times N$.