EECS 16A Designing Information Devices and Systems I Discussion 6A

Reference: Inner products

Let \vec{x} , \vec{y} , and \vec{z} be vectors in real vector space \mathbb{V} . A mapping $\langle \cdot, \cdot \rangle$ is said to be an inner product on \mathbb{V} if it satisfies the following three properties:

(a) Symmetry: $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$

(b) Linearity: $\langle \vec{x}, \vec{y} + \vec{z} \rangle = \langle \vec{x}, \vec{y} \rangle + \langle \vec{x}, \vec{z} \rangle$ and $\langle c\vec{x}, \vec{y} \rangle = c \langle \vec{x}, \vec{y} \rangle$

(c) Positive-definiteness: $\langle \vec{x}, \vec{x} \rangle \ge 0$, with equality if and only if $\vec{x} = \vec{0}$.

We define the norm of \vec{x} as $||\vec{x}|| = \sqrt{\langle \vec{x}, \vec{x} \rangle}$.

Cross-correlation:

The cross-correlation between two signals r[n] and s[n] is defined as follows:

$$\operatorname{corr}_r(s)[k] = \sum_{i=-\infty}^{\infty} r[i]s[i-k].$$

1. Mechanical Inner Products

For the following pairs of vectors, find the Euclidean inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$.

(a)

$$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

(b)

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

(c)

$$\begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$$

2. Inner Product Properties

Demonstrate the following properties of inner products for any vectors in \mathbb{R}^2 , assuming we are working with the Euclidean inner product and norm.

(a) Symmetry

(b) Linearity

3. Correlation

We are given the following two signals, $s_1[n]$ and $s_2[n]$ respectively.

Find the cross correlations, $corr_{s_1}(s_2)$ and $corr_{s_2}(s_1)$ for signals $s_[n]$ and $s_2[n]$. Recall

$$\operatorname{corr}_{x}(y)[k] = \sum_{i=-\infty}^{\infty} x[i]y[i-k].$$

\vec{s}_1	0	0		1	2		3	0	0	
$\vec{s}_2[n-2]$										
$\langle \vec{s}_1, \vec{s}_2[n-2] \rangle$	-	+	+		+	+	+	+	- :	=

$\operatorname{corr}_{ec{s_2}}(ec{s_1})[k]$												
\vec{s}_2	0	0		2	4		3		0		0	
$\vec{s}_1[n+2]$												
$\overline{\langle \vec{s}_2, \vec{s}_1[n+2] \rangle}$		+	+		+	+		+		+		=