

Ex dibats universitates albertheasis

Digitized by the Internet Archive in 2025 with funding from University of Alberta Library

https://archive.org/details/0162005883010

University of Alberta

Library Release Form

Name of Author: Kenneth A. Kranrod

Title of Thesis: Effects of Timber Harvesting Methods on Terrestrial Lichens and

Understory Plants in West-Central Alberta

Degree: Master of Science in Environmental Biology and Ecology

Year this Degree Granted: 1996

Permission is hereby granted to the University of Alberta Library to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly, or scientific research purposes only.

The author reserves all other publication and other rights in association with the copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatever without the author's prior written permission.

University of Alberta

EFFECTS OF TIMBER HARVESTING METHODS ON TERRESTRIAL LICHENS AND UNDERSTORY PLANTS IN WEST-CENTRAL ALBERTA

by

Kenneth A. Kranrod

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

in

Environmental Biology and Ecology Department of Biological Sciences

> Edmonton, Alberta Fall, 1996

amount to retirement of the

PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF T

(I) to make A Product

no mountain taking at dissociat one publish successor to price (factor) and as sentente about A.

Control to gardatat in agent, also to dispressions all.

Mary Service

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled EFFECTS OF TIMBER HARVESTING METHODS ON TERRESTRIAL LICHENS AND UNDERSTORY PLANTS IN WEST-CENTRAL ALBERTA by Kenneth A. Kranrod in partial fulfillment of the requirements for the degree of Master of Science in Environmental Biology and Ecology.

Abstract

This study examined the short-term effects of mechanical damage by various timber harvesting methods in woodland caribou habitat of west-central Alberta. Treatments consisted of combinations of a) summer or winter harvest, b) stump-side or road-side delimbing, and c) presence or absence of scarification. Terrestrial lichens. shrubs, herbaceous plants and terrestrial bryophytes were sampled prior to and immediately following timber harvest. All species decreased in abundance following all treatment combinations. Summer logging and scarification were primarily responsible for observed decreases. Results were influenced to a lesser extent by the method of delimbing. The greatest reductions in lichen and plant communities were observed following summer logging and stump-side delimbing with scarification. This treatment combination resulted in greater amounts of heavy machinery traffic on-site and increased disturbance of the ground surface. The smallest reductions in lichen and plant communities were observed following winter logging and stump-side delimbing without scarification. This treatment combination resulted in less ground disturbance from lower amounts of heavy machinery traffic on-site. Slash piles produced by this treatment may have provided suitable microhabitats for terrestrial lichens. These results suggest that a combination of winter timber harvest and on-site processing of trees without scarification will retain the greatest abundance of terrestrial forage for woodland caribou immediately following timber harvest in this region.

Acknowledgments

I will start by thanking my supervisory committee of Dale Vitt, Mark Dale and Vic Lieffers for allowing me the opportunity to undertake this project and for assistance along the way. I am grateful to Dale for his instruction on cryptogamic ecology and help with lichen and bryophyte identifications, Mark for his advice on study design and data analysis and Vic for his practical forestry perspective.

Primary funding for this project was provided by Weldwood of Canada Ltd., Hinton Division and the Foothills Model Forest. Additional funding and support was provided by the Environmental Training Center, William Switzer Provincial Park, the University of Alberta through graduate teaching assistantships, and the Canadian Circumpolar Institute.

I would like to acknowledge the advice and identifications provided by Bernard Goffinet and Trevor Goward for lichens, Rene Belland for bryophytes and Brij Kohli for vascular plants.

Many people from various backgrounds also deserve thanks for their advice and comments during this project. These people include Rick Bonar, Jan Edmonds, Kirby Smith, Gordon Stenhouse, Dan Farr, Marianne Gibbard, Deryl Farquharson, Melissa Todd, Don Thomas, Shawn Francis, Richard Little, Brendan Wilson, Phil Lee and Todd and Linda Zimmerling. All had an influence whether they are aware of it or not.

Special thanks is deserved by my parents and my family for all their support and encouragement given throughout my graduate as well as undergraduate studies.

Finally I especially thank my wife Paula for her assistance throughout every stage of this project. She provided a strong back in the field, quick and accurate data entry on the computer, comments and criticisms for my crazy ideas and complaints, and most importantly unwavering love, understanding and support during all of the trials and tribulations.

Table of Contents

Abstract		•••••
Acknowledge	ments	•••••
List of Figure	s	•••••
General Introd	duction	1
Chapter 1	Effects of timber harvesting methods on terrestrial lichens	7
Chapter 2	Effects of timber harvesting methods on shrubs, herbaceous plants and terrestrial bryophytes.	44
General Conc	lusion, Recommendations and Future Research	61
Appendices		66

List of Figures

Figure		Page
Figure 1.1	Study area location	11
Figure 1.2	Study stands with treatment sampling sites	13
Figure 1.3	Pre- and post-harvest abundances of terrestrial lichens for all treatment sampling sites of all 3 stands	18
Figure 1.4	Pre- and post-harvest abundances of <i>Cladina</i> species for all treatment sampling sites of all 3 stands	20
Figure 1.5	Pre- and post-harvest abundances of <i>Cladonia</i> species for all treatment sampling sites of all 3 stands	22
Figure 1.6	Pre- and post-harvest abundances of <i>Peltigera</i> species for all treatment sampling sites of all 3 stands	24
Figure 1.7	Pre- and post-harvest abundances of <i>Stereocaulon</i> species for all treatment sampling sites of all 3 stands	26
Figure 1.8	Pre- and post-harvest abundances of <i>Cetraria</i> species for all treatment sampling sites of all 3 stands	28
Figure 1.9	Pre- and post-harvest abundances of 'non-reindeer lichen' species for all treatment sampling sites of all 3 stands	30
Figure 2.1	Pre- and post-harvest abundances of shrub species for all treatment sampling sites of all 3 stands.	47
Figure 2.2	Pre- and post-harvest abundances of herbaceous species for all treatment sampling sites of all 3 stands	49
Figure 2.3	Pre- and post-harvest abundances of bryophyte species for all treatment sampling sites of all 3 stands	51

General Introduction

Studies have shown that the diet of woodland caribou consists primarily of arboreal and terrestrial lichens (Ahti, 1961; Edwards and Ritchey, 1960; Scotter, 1962; 1964; 1967; Bergerud, 1972; Ahti et al., 1973; Moser et al., 1979; Thomas & Hervieux, 1986; Thomas & Barry, 1991; Thomas & Kiliaan, 1991; Staaland et al., 1993). Terrestrial species form the bulk of the caribou winter diet and are consumed to a lesser extent during the summer months (Thomas & McCourt, 1981; Edmonds & Bloomfield, 1984; Thomas & Hervieux, 1986; Thomas & Barry, 1991; Thomas, 1994). During the summer, caribou increase the amount of foraging on more nutritious plants including shrubs, herbaceous plants and bryophytes (Cringan, 1957; Bergerud & Russell, 1964; Ahti & Hepburn, 1967; Bergerud, 1974; Thomas & Hervieux, 1986; Thomas, 1994; Thomas et al., in press).

The impact of timber harvest on northern woodlands and associated lichen and understory plant species is of importance to forest managers and wildlife biologists concerned with the preservation of endemic caribou populations. The extent to which lichen and plant communities are affected depends upon the nature of the sites as well as the type of logging practice employed (Brumelis & Carleton, 1989; Harris, 1992). Differences in the revegetation of logged sites are often associated with the degree of logging disturbance including such factors as season of harvest and degree of scarification (Corns & La Roi, 1976; Brumelis & Carleton, 1989; Enns, 1992; Snyder & Woodard, 1992). Understanding the differences among various logging methods and the subsequent impact on lichen and plant communities is of importance for the management of year-round forage availability in woodland caribou habitat.

Recent studies have examined the effects of logging operations on lichen and plant communities, but were usually limited to examining vegetation recovery following timber harvest disturbances in general (Corns & La Roi, 1976; Abrams & Dickmann, 1982; Helle et al, 1983; Kupiainen & Nieminen, 1985; Söderström, 1988; Brumelis & Carleton, 1989; Lesica et al., 1991; Harris, 1992; Nieppola, 1992; Snyder & Woodard, 1992; Armleder & Stevenson, 1994; Thomas & Armbruster, 1996). Few studies have incorporated the collection of baseline or pre-disturbance data for harvested sites which provides important

information for determining the effects of logging on vegetation (Enns, 1992). As a result, forest management decision which attempt to incorporate the considerations of both forestry and maintenance of caribou habitat, lack specific recommendations for appropriate timber harvest practices at an operational level.

This study was undertaken as a result of concerns over the initiation of large scale timber harvest on the remaining winter range of woodland caribou in the foothills of west-central Alberta (Edmonds & Bloomfield, 1984; Edmonds, 1988; Thomas *et al.*, in press). The purpose of this study was to examine the short-term effects of various timber harvesting operations and to identify logging methods that reduce mechanical damage to terrestrial lichens and understory plant communities present in woodland caribou habitat. The following four hypotheses were examined.

- H₁ Post-harvest abundance will be lower than pre-harvest abundance for all treated sites. All treatment combinations involve machinery traffic on-site during timber harvest. Through direct mechanical damage, the abundance of terrestrial lichens and understory plants will be reduced.
- Summer harvest will result in greater decreases in abundance than winter harvest, regardless of treatment combination tested. Summer harvest involves heavy machinery traffic on-site during snow-free conditions resulting in ground disturbance and greater damage to terrestrial lichens and understory plants.
 During the winter, machinery travels on top of a snowpack which reduces physical contact at ground level and decreases damage to surface vegetation.
- H₃ Scarification will result in greater decreases in abundance than no scarification, regardless of treatment combination tested. Scarification involves additional machinery traffic on-site during snow-free conditions in the spring. Disturbance of terrestrial lichens and understory plants is increased when this practice is conducted.

H4 Stump-side delimbing will result in greater decreases in abundance than road-side delimbing, regardless of treatment combination tested. Road-side delimbing takes place off-site and requires no additional machinery. Stump-side delimbing involves the addition of a mechanical delimbing machine on-site. This practice results in additional traffic and woody debris left on-site which increases ground disturbance and damage to terrestrial lichens and understory plants.

Chapter 1 examines the effects of timber harvesting methods on the following terrestrial lichen groups:

- Lichens in total
- Cladina species
- Cladonia species
- Peltigera species
- Stereocaulon species
- Cetraria species
- Non-reindeer lichens

Chapter 2 covers the effects of timber harvesting methods on the following vascular and non-vascular plant groups:

- Tall and dwarf shrubs
- Herbaceous plants
- Terrestrial bryophytes

Based on this information, recommendations were developed for timber harvesting methods that reduce mechanical damage to the ground surface and thereby increase the short-term retention of important forage species in woodland caribou habitat of west-central Alberta.

Literature Cited

- Abrams, M.D. and Dickmann, D.I. 1982. Early revegetation of clear-cut and burned jack pine sites in northern lower Michigan. Canadian Journal of Botany 60: 946-954. Ahti, T. 1959. Studies on the Caribou Lichen Stands of Newfoundland. Annales Botanici. Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 30(4): 1-44.
- Ahti, T. 1961. The open boreal woodland subzone and its relation to reindeer husbandry. Archivum Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 16(suppl.): 91-93.
- Ahti, T. and Hepburn, R.L. 1967. Preliminary studies on woodland caribou range, especially on lichen stands. Ontario Department of Lands and Forests, Research Report (Wildlife), No. 74. 134 pages.
- Ahti, T., Scotter, G.W., and Vänskä, H. 1973. Lichens of the reindeer preserve, Northwest Territories, Canada. The Bryologist 76(1): 48-76.
- Armleder, H.M. and Stevenson, S.K. 1994. Silviculture systems to maintain caribou habitat in managed forests. Proceedings: Innovative silviculture systems in boreal forests. Edmonton, Alberta, Canada. 16 pages.
- Bergerud, A.T. 1972. Food habits of Newfoundland caribou. Journal of Wildlife Management 36: 913-923.
- Bergerud, A.T. 1974. Relative abundance of food in winter for Newfoundland caribou. Oikos 25: 379-397.
- Bergerud, A.T. and Russell, L. 1964. Evaluation of rumen food analysis for Newfoundland caribou. Journal of Wildlife Management 28(4): 809-814.
- Brumelis, G. and Carleton, T.J. 1989. The vegetation of post-logged black spruce lowlands in central Canada. II. Understory vegetation. Journal of Applied Ecology 26: 321-339.
- Corns, I.G.W. and La Roi, G.H. 1976. A comparison of mature with recently clear-cut and scarified lodgepole pine forests in the lower foothills of Alberta. Canadian Journal of Forest Research 6: 20-32.
- Cringan, A.T. 1957. History, food habits and range requirements of the woodland caribou of continental North America. Transactions of the North American Wildlife Conference 22: 485-501.
- Edmonds, E.J. 1988. Population status, distribution, and movements of woodland caribou in west-central Alberta. Canadian Journal of Zoology 66: 817-826.

- Edmonds, E.J. and Bloomfield, M.I. 1984. A study of woodland caribou (*Rangifer tarandus caribou*) in West-Central Alberta. 1979-1983. Alberta Energy and Natural Resources., Fish and Wildlife Division. Unpublished Report. 203 pages.
- Edwards, R.Y. and Ritchey, R.W. 1960. Foods of caribou in Wells Gray Park, British Columbia. Canadian Field-Naturalist 74(1): 3-7.
- Enns, K.A. 1992. Terrestrial lichen management in the Itcha-Ilgachuz, Chilcotin Range. B.C. Interim Report. Larkspur Biological Consultants. 25 pages.
- Harris, A. 1992. Post-logging regeneration of reindeer lichens (*Cladina* spp.) as related to woodland caribou winter habitat. Ontario Ministry of Natural Resources, Northwest Region Science and Technology, Technical Report #69. 33 pages.
- Helle, T., Aspi, J. and Tarvainen, L. 1983. The growth rate of *Cladonia rangiferina* and *C. mitis* in relation to forest characteristics in northeastern Finland. Rangifer 3(2): 2-5.
- Kupiainen, K. and Nieminen, M. 1985. Reindeer husbandry and forestry in the reindeer herding district of Poikjärvi during the years 1963-1984. Rangifer 6(1): 23-35.
- Lesica, P., McCune, B., Cooper, S.V. and Hong, W.S. 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany 69: 1745-1755.
- Moser, T.J., Nash, T.H., and Thomson, J.W. 1979. Lichens of the Anaktuvuk Pass, Alaska, with emphasis on the impact of caribou grazing. The Bryologist 82(3): 393-408.
- Nieppola, J. 1992. Long-term vegetation changes in stands of *Pinus sylvestris* in southern Finland. Journal of Vegetation Science 3: 475-484.
- Scotter, G.W. 1962. Productivity of arboreal lichens and their possible importance to barren-ground caribou. Archivum Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 16: 155-161.
- Scotter, G.W. 1964. Effects of forest fires on the winter range of barren-ground caribou in northern Saskatchewan. Canadian Wildlife Service. Wildlife Management Bulletin Series. 1. No. 18.
- Scotter, G.W. 1967. The winter diet of barren-ground caribou in northern Canada. Canadian Field-Naturalist 81: 33-39.

- Snyder, J.M. and Woodard, P.M. 1992. Lichen regeneration rates in Alberta following various types of logging and wildfire disturbances. Unpublished Final Report. University of Alberta. 95 pages.
- Söderström, L. 1988. The occurrence of epixylic bryophyte and lichen species in an old natural and a managed forest stand in northeast Sweden. Biological Conservation 45: 169-178.
- Staaland, H., Scheie, J.O., Grøndahl, F.A., Persen, E., Leifseth, A.B., and Holand, Ø. 1993. The introduction of reindeer to Brøggerhalvøya, Svalbard: grazing preference and effect on vegetation. Rangifer 13(1): 15-19.
- Thomas, D.C. 1994. Fire-caribou relationships: (V) The winter diet of the Beverly herd in northern Canada. Canadian Wildlife Service Unpublished Report. 41 pages
- Thomas, D.C. & McCourt, K.H. 1981. Seasonal diets of the Porcupine caribou herd.

 American Midland Naturalist 105: 70-77.
- Thomas, D.C. and Hervieux, D.P. 1986. The late winter diets of barren-ground caribou in north-central Canada. Rangifer, Special Issue 1: 305-310.
- Thomas, D.C. and Barry, S.J. 1991. Microhistological analysis of caribou diet: fecal versus rumen and other variables. Pages 516-529 *in* Butler, C.E. and Mahoney, S.P. (eds.). Proceedings of the 4th North American caribou workshop, St. John's Newfoundland.
- Thomas, D.C. and Kiliaan, H.P.L. 1991. Fire-caribou relationships: (IV) Recovery of habitat after fire on winter range of the Beverly herd in northern Canada. Canadian Wildlife Service, Western and Northern Region, Edmonton, Alberta, Canada. 115 pages.
- Thomas, D.C. and Armbruster, H.J. 1996. Woodland caribou studies in Saskatchewan: second annual report including some preliminary recommendations. Unpublished progress report, Canadian Wildlife Service. 46 pages.
- Thomas, D.C., Edmonds, E.J. and Brown, W.K. in press. The diet of woodland caribou populations in west-central Alberta. Rangifer Special Issue.

Chapter 1

Effects of Timber Harvesting Methods on Terrestrial Lichens

1.1) Introduction

Lichens are major food sources for reindeer in northern Eurasia and caribou in North America (Ahti, 1959; 1961; Edwards and Ritchey, 1960; Scotter, 1962; 1964; 1967; Bergerud, 1972; Ahti et al., 1973; Moser et al., 1979; Thomas & Kiliaan, 1991; Staaland et al., 1993). Lichens are important in the diet of tundra-dwelling, barren-ground caribou populations and are equally or more essential for woodland caribou in forested habitats (Thomas & Hervieux, 1986; Thomas & Barry, 1991).

Although lichens are an energy source high in carbohydrates, they provide poor nourishment in proteins, fats, vitamins and minerals (Hustich, 1951; Scotter, 1965; 1972; Thomas & Kroeger, 1981; Klein, 1982; Thomas et al., 1984; Nieminen & Heiskari, 1989). Owing to their low nutritive qualities, lichens comprise only a small portion of the caribou diet in spring and summer. During these months more nutritious vascular plants are consumed, including sedges, grasses, forbs and shrubs (Cringan, 1957; Bergerud & Russell, 1964; Ahti & Hepburn, 1967; Bergerud & Nolan, 1970). In the fall and winter, when vascular forage diminishes, lichen consumption increases dramatically to constitute the bulk of the caribou diet (Thomas & McCourt, 1981). Winter diets are nutritionally supplemented with relatively small amounts of evergreen shrubs and bryophytes as well as forbs and grasses with wintergreen foliage (Cringan, 1957; Bergerud & Russell, 1964; Ahti & Hepburn, 1967; Bergerud, 1974a; Thomas & Hervieux, 1986; Thomas, 1994).

Although the nutritive value of arboreal lichens has been reported to be considerably higher than that of ground lichens, epiphytic species are eaten only when access to terrestrial species is limited by very deep or hard-crusted snowpack conditions (Cringan, 1957; Edwards and Ritchey, 1960; Edwards *et al.*, 1960; Ahti, 1962; Ahti & Hepburn, 1967; Fancy & White, 1985). Thus, during the fall and winter months, woodland caribou feed selectively on terrestrial lichens which form the majority of their winter lichen intake (Edmonds & Bloomfield, 1984; Thomas *et al.*, in press; Thomas, 1994). Woodland caribou appear to feed selectively on terrestrial lichens, especially

species of the genus *Cladina*, commonly referred to as 'reindeer lichens' (Holleman & Luick, 1977; Holleman *et al.*, 1979; Thomas, 1994; Thomas & Barry, 1991). Other lichens typically consumed by woodland caribou include species of *Cetraria*, *Cladonia*, *Peltigera* and *Stereocaulon* and are often collectively referred to as reindeer or caribou lichens (Cringan, 1957; Ahti & Hepburn, 1967; Bergerud, 1971; Thomas, 1994).

Stand age is an important factor in determining the heterogeneity of both arboreal and terrestrial lichen communities (Scotter, 1963; Adams & Risser, 1971; McCune & Antos, 1982; Larson, 1984; Lesica, et al., 1991; Gustafsson et al., 1992; Hyvärinen et al., 1992; Berg et al., 1994; Crites, 1995). Lichens are poikilohydric and as such are influenced by environmental changes that are often less important to higher plants (Canters et al., 1991). The effect of forest characteristics on ground surface illumination, temperature and evaporation provide numerous microhabitats suitable for a variety of lichen species (Kershaw & Rouse, 1971; Lechowicz & Adams, 1974b; Kershaw & Field, 1975; Kershaw & MacFarlane, 1980; MacFarlane & Kershaw, 1980). Both abundance and diversity of lichens have been correlated with the variety of microhabitats provided by old-growth forests (Lambert & Maycock, 1968; McCune & Antos, 1981; 1982; Söderström, 1988; Canters et al., 1991; Selva, 1994). The close relationship between lichens and old-growth forests provides habitat suitable for woodland caribou populations during winter months (Husitch, 1951; Ahti, 1964; Euler et al., 1976; Freddy, 1979; Fuller & Keith, 1981; Oksanen and Ahti, 1982; Helle et al, 1983; Boonstra & Sinclair, 1984; Bergerud & Elliot, 1986; Cumming & Beange, 1987; Rominger & Oldemeyer, 1989; Servheen & Lyon, 1989; Seip, 1992).

The ecology of northern forests is dependent upon natural fire events which influence forest structure, nutrient recycling rates and vegetative productivity (Ahlgren & Ahlgren, 1960; Johnson, 1981). Accumulations of arboreal and terrestrial lichens are generally characteristic of the later successional stages of post-fire sequences (Bergerud, 1971; Viereck, 1973; Lechowicz & Adams, 1974a; Johnson & Rowe, 1975; Yarranton, 1975; Maikawa & Kershaw, 1976; Rouse, 1976; Zackrisson, 1977; Morneau & Payette, 1989; Thomas *et al.*, 1996). In recent years, the natural regeneration of northern forests by fire has been increasingly replaced by commercial forestry operations. Although timber

harvest practices create large disturbances, the effects of logging differ greatly from fire, and can affect woodland caribou populations in ways beyond the removal of trees (Bergerud, 1974b; Kupiainen & Nieminen, 1985; Cumming, 1992; Ferguson & Gaulthier, 1992). The effects of logging practices on terrestrial lichen communities and the subsequent direct impact on endemic woodland caribou populations has become an important management consideration as lichen woodlands come under pressure for timber harvest.

Until recently, biologists and foresters concerned with the maintenance of terrestrial lichen populations have relied primarily on the results of post-fire studies (Bergerud, 1971; Corns & La Roi, 1976; Maikawa & Kershaw; 1976; Klein, 1982; Snyder, 1987; Snyder & Woodard, 1992). Since stands often do not revegetate in the same manner following fire as they do following timber harvest, post-fire studies are of limited usefulness in addressing specific lichen-related forestry issues (Abrams & Dickmann, 1982; Enns, 1992; Harris, 1992; Thomas & Armbruster, 1996). Recent postlogging studies have provided more appropriate information but were usually limited to examining lichen regeneration following timber harvest disturbance in general (Helle et al., 1983; Söderström, 1988; Brumelis & Carleton, 1989; Lesica et al., 1991; Nieppola, 1992). Few studies have examined the effects of specific logging practices (Snyder, 1987; Harris, 1992; Snyder & Woodard, 1992; Armleder & Stevenson, 1994; Thomas & Armbruster, 1996) and still fewer have incorporated collection of baseline or predisturbance information for harvested sites (Enns, 1992). As a result, forest management decisions which attempt to incorporate the considerations of both forestry and maintenance of caribou habitat, lack specific recommendations for appropriate timber harvest practices at an operational level.

The detrimental effects of commercial forestry operations on lichen communities may occur as a result of direct damage to the lichen thalli from factors such as large machinery traffic or the skidding of logs across the ground surface (Enns, 1992; Harris, 1992). Such immediate physical damage is important in assessing the short-term impact of logging practices on lichens. Indirect effects may also occur through changes in ground-level microclimatic conditions resulting from the opening of the forest canopy (Enns,

1992; Harris, 1992). Micro-environmental changes include greater diurnal fluctuations in temperature, increased light levels, and higher wind speeds, which ultimately result in increased desiccation at ground level. These effects can occur immediately following harvest and remain significant factors affecting lichen growth over a much longer time. Owing to the direct and indirect impacts of current timber harvesting methods on terrestrial lichens, there is a need to know which practices cause the most disturbance to lichen communities in order to reduce the impact of logging operations in caribou habitat.

1.2) Methods

1.2.1) Study Area

The study area was located approximately 75 km north-west of the town of Hinton in the foothills of west-central Alberta, Canada (53° 40° N, 118° 20° W; Figure 1.1). The region is dominated by till-covered ridges and glaciofluvial deposits consisting of coarse-textured, well-drained sediments (Bennett et al, 1983). Soils are classified as luvisolic and brunisolic and the area has a xeric moisture regime and oligotrophic nutrient regime (Corns & Annas, 1986). All sampling sites were located within the Subalpine Ecoregion and corresponded to a lodgepole pine/black spruce/labrador tea/lichen ecosystem association (Corns & Annas, 1986). The area has previously been documented as woodland caribou habitat (Edmonds & Bloomfield, 1984).

The study area was located in even-aged pine stands of pyrogenic origin with dominant trees approximately 150 years of age. *Pinus contorta* Loudon was the dominant tree species in all sites with *Picea mariana* (Mill.) BSP. and *Abies lasiocarpa* (Hook.) Nutt. present in small amounts in the understory. Common shrubs included *Betula glandulosa* Michx. and *Ledum groenlandicum* Oeder, as well as an abundance of dwarf species including *Arctostaphylos uva-ursi* (L.) Spreng., *Empetrum nigrum* L., *Linnaea borealis* L., *Vaccinium caespitosum* Michx. and *Vaccinium vitis-idaea* L. Ground layer vegetation in relatively moist areas such as depressions and slope bases, was dominated by the mosses *Dicranum fuscescens* Turn., *Hylocomium splendens* (Hedw.) Schimp., *Pleurozium schreberi* (Brid.) Mitt., *Polytrichum juniperinum* Hedw. and *Ptilium cristacastrensis* (Hedw.) De Not. Ridge tops and other relatively drier sites were largely

Figure 1.1 Study Area Location

vegetated by lichens including Cetraria ericetorum Opiz., Cladina mitis (Sandst.) Hustich, Cladonia ecmocyna Leight., Cladonia uncialis (L.) Wigg., Peltigera aphthosa (L.) Willd. and Peltigera malacea (Ach.) Funck. Mosses and lichens dominated the ground cover in patchy distributions governed by differences in relief. Ground layer vascular plants were low in abundance and included Arnica cordifolia Hook., Cornus canadensis L., Elymus innovatus Beal., Epilobium angustifolium L., Oryzopsis pungens (Torr.) A.S. Hitchc., and Petasites palmatus (Ait.) A. Gray.

1.2.2) Data Collection

Three forest stands were selected for the study (Figure 1.2). Stands were scheduled for timber harvest by standard clear-cut logging methods for the fall of 1994 and were each approximately 30 hectares in size. Within the proposed timber harvest boundaries (cut-blocks) of each stand, eight sample sites were selected on the basis of high lichen abundance. These areas were typically located on gravel benches and ridge tops. Four sampling sites were located outside the cut-block boundaries of each stand. These sites underwent no timber harvest and served as controls.

Each sampling site consisted of a square 30 X 30 m block divided into 20 rows and 20 columns, each 1.5m in width. Prior to the first field season, 50 of the 400 possible sample units were established within each sampling site through random number selection. This procedure was repeated independently for each sampling site. Individual sample units consisted of a 50 X 50 cm quadrat placed on the ground. Quadrats did not span entire row or column widths, which allowed for movement throughout the grid without disturbance to vegetation within the quadrat. When a tree prevented accurate quadrat placement, the quadrat was relocated to the next available position in the column. All sampling sites and sample units were set up as permanent sample plots (PSPs) and were marked in the field with metal spikes placed below ground. Detailed maps recorded exact locations of all sample sites and sample units which, combined with a metal detector, allowed for post-harvest resampling of the pre-harvest quadrats (summer, 1995) and will facilitate future re-examination of the study area.

Figure 1.2 Study stands with treatment sampling sites

Initial lichen sampling and identification occurred prior to timber harvest to establish a baseline or pre-harvest dataset. All terrestrial lichen species present in each sample unit were identified and recorded in the field or collected and identified later at the University of Alberta. Terrestrial lichens included all species found growing on soil and/or downed woody material which consisted primarily of tree trunks and large branches in advanced stages of decay. Crustose lichens were not sampled since they do not constitute a portion of the woodland caribou lichen diet. Since all treatments involved clear-cut logging which resulted in the removal of the entire forest canopy, arboreal lichens were not sampled. Nomenclature follows Esslinger and Egan (1995) for terrestrial lichens. Voucher specimens were deposited and are available in the cryptogamic herbarium at the Department of Biological Sciences of the University of Alberta (ALTA).

Terrestrial lichen abundance for each sample unit was estimated using visual percent-cover classes for each species (Appendix 1.1). Lichens within sample units were not disturbed using cover estimations and, if possible, unknown specimens were taken from outside the plot so as to minimize the effects of sampling on future estimates. Sampling sites were laid out in April, 1994 and all pre-harvest sampling was conducted between May 1 and October 30, 1994. All post-harvest sampling was conducted between June 1 and August 30, 1995.

1.2.3) Timber Harvest Treatments

Application of treatments was incorporated into timber harvest operations scheduled for the area. Treatments consisted of standard logging practices that were unaltered other than being applied in specific combinations. The individual practices consisted of a) summer or winter harvest, b) stump-side or road-side delimbing, and c) presence or absence of scarification. Eight combinations of these logging techniques were examined in order to determine the differential effects of each practice in various harvesting situations as well as any possible additive effects. Each of the eight treatment combinations were assigned to separate sampling sites and replicated across all three stands. Treatments consisted of the following combinations:

- summer harvest + scarification + stump-side delimbing
- summer harvest + scarification + road-side delimbing
- summer harvest + no scarification + stump-side delimbing
- summer harvest + no scarification + road-side delimbing
- winter harvest + scarification + stump-side delimbing
- winter harvest + scarification + road-side delimbing
- winter harvest + no scarification + stump-side delimbing
- winter harvest + no scarification + road-side delimbing

Summer harvesting took place during snow-free conditions and was conducted by a Timberjack Model 618 feller-buncher. Stump-side delimbing consisted of on-site processing of trees and was conducted by a Limmit Model 2000 delimber mounted on a Caterpillar Model 320L. This practice resulted in increased machinery traffic on the sites and large piles of woody debris deposited on-site, consisting of tree tops, branches, bark and cones, collectively referred to as slash. Slash piles were usually 1 to 5 m in diameter and approximately 1 m in height. Road-side delimbing took place off-site, required no additional machinery and left no slash piles on-site. Regardless of delimbing method performed, rubber-wheeled machines were used to drag or skid trees to a central area where trees were either mechanically chipped or cut into sections for hauling. Skidding machinery consisted of a John Deere 748E grapple skidder, a Timberjack Model 450C grapple skidder, and a Clark-Ranger Model 666 grapple skidder. Winter logging resulted in all logging machinery involved in harvesting, delimbing and skidding traveling on top of a snowpack. Snow depth varied from 15 to 45 cm at the time of the winter harvesting operations. None of the machinery appeared to penetrate the snowpack.

Scarification of the sites took place during dry conditions in the spring and involved a Komatsu Model D85E bulldozer towing a scarifying apparatus across the ground surface. The scarifying drags consisted of five metal, shark-fin barrels approximately one meter in length with a five meter length of anchor chain attached to the end of each barrel. This practice is commonly referred to as drag scarification and serves to disturb ground vegetation and expose mineral soil for planting purposes.

Logging treatments were applied individually to entire stands until specific combinations were completed. Markers as well as personal instruction directed machinery operators to ensure that the sites received appropriate treatment combinations. Machinery was directed so all sampling sites received approximately similar amounts of traffic and skid trails were not created through any sampling site.

Summer harvesting was conducted between September 8 and October 21, 1994 and winter harvesting between January 27 and February 3, 1995. Road-side delimbing treatments were performed concurrently with harvesting. Stump-side delimbing was conducted on September 20 and October 28, 1994 for summer harvested sites and on February 9 and 10, 1995 for winter harvested sites. Scarification was conducted in all stands between June 26 and July 10, 1995.

1.2.4) Data Analysis

Pre-treatment percent cover data were subtracted from post-treatment percentages to determine changes in percent cover data following treatments for each sample unit of every site. Percent cover data were arcsine-transformed to alter the binomially distributed percentages into data with an underlying distribution increased in normality. For each sample unit, percent-cover differences of lichen species were added together to form seven different groupings including total lichens, *Cetraria* species, *Cladina* species, *Cladonia* species, *Peltigera* species, *Stereocaulon* species and 'non-reindeer lichens'. These data were used for all statistical analyses.

The above genera were analyzed individually due to the disparity between authors on what constitutes 'reindeer lichen' (Thomas, 1994). By individually examining the major genera of lichen preferred by caribou, wildlife biologists and forest managers can make use of results for the appropriate lichen genera present in their particular areas. For the purposes of this study, all of the above genera will be referred to collectively as 'reindeer lichens'. The *Cetraria* group included species of the genera *Cetraria* and *Flavocetraria*. The group of 'non-reindeer lichens' included the genera *Dactylina*, *Nephroma*, *Pertusaria*, and *Solorina*. Lichens were analyzed as a total group to examine the effects of timber harvesting methods on lichens in general.

Pairwise comparisons (paired-sample t-test, Zar, 1984) were performed on a per sample unit basis to determine significant differences between pre- and post-treatment periods within each treatment sampling site. Multiple comparisons (one-way analysis of variance (ANOVA), Tukey-test, Zar, 1984) were performed to determine differences between treatments. For each lichen group in which differences were observed between treatments and controls, a three-way analysis of variance (three-way ANOVA, Sokal & Rohlf, 1981) was performed. Results of the three-way ANOVA were used to determine the differential effects of the three factors examined in the study, namely scarification, delimbing and season of timber harvest as well as any interactions that may have occurred among factors. The level of significance was set at $\alpha = 0.05$ for all statistical analyses.

1.3) Results

1.3.1) Treatment effects on terrestrial lichens

Six of the twelve control sites indicated no significant difference in lichen abundance between field seasons (pairwise t-test, p < 0.05; Figure 1.3; Appendices 1.2-1.4). All treatment sites, except W3 in stand 1, showed significant reductions in lichen cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated similarity among control sites with no particular pattern of grouping evident for treatment sites (one-way ANOVA, Tukey-test, p < 0.05). Results of a three-way ANOVA indicated that scarification (all three stands) and season of harvest (two of three stands) were significant factors responsible for the differences observed among various treatment combinations (p < 0.05; Appendix 1.5). Treatments with scarification resulted in less lichen cover remaining than comparable treatments without scarification and sites harvested in the summer showed a greater loss of lichen cover than comparable treatment sites harvested during the winter. There was a significant first-order interaction (all three stands) between season of harvest and scarification (p < 0.05). No significant second-order interactions were indicated.

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.3 Pre- and post-harvest abundances of terrestrial lichens for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.3.2) Treatment effects on Cladina species

Eight of the twelve control sites indicated no significant difference in lichen abundance between years (pairwise t-test, p < 0.05; Figure 1.4; Appendices 1.6-1.8). All treatment sites, except W4 in stand 1 and W3 in stands 1 and 2, showed significant reductions in lichen cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated similarity among controls with no particular pattern of grouping evident for treatment sites (one-way ANOVA, Tukey-test, p < 0.05). Differences were observed between control sites as a whole and treatment sites (p < 0.05). Results of a three-way ANOVA indicated that scarification (all three stands) and season of harvest (two of three stands) were significant factors responsible for the differences observed among various treatment combinations (p < 0.05; Appendix 1.9). Treatments with scarification resulted in less *Cladina* cover remaining than comparable treatments with no scarification performed and summer harvested sites showed a greater loss of *Cladina* cover than comparable treatment sites harvested during the winter. There was a significant first-order interaction (all three stands) between season of harvest and scarification (p < 0.05). A significant first-order interaction between season of harvest and method of delimbing (p < 0.05) was indicated by only stand 2. No significant second-order interactions were indicated.

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.4 Pre- and post-harvest abundances of *Cladina* species for all treatment treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.3.3) Treatment effects on Cladonia species

All control sites showed no significant difference between field seasons (pairwise t-test, p < 0.05; Figure 1.5; Appendices 1.10-1.12). All treatment sites, except W3 in stand 1 and W4 in stands 1 and 2 showed significant reductions in lichen cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated similarity among control sites with no particular pattern of grouping evident for treatment sites (one-way ANOVA, Tukey-test, p < 0.05). Results of a three-way ANOVA indicated that scarification (all three stands) and season of harvest (two of three stands) and were significant factors responsible for the differences observed among various treatment combinations (p < 0.05; Appendix 1.13). Treatments with scarification resulted in less *Cladonia* cover remaining than comparable treatments without scarification and sites harvested during the summer showed a greater loss of Cladonia cover than comparable treatment sites that were winter harvested. Delimbing was indicated as a significant factor in only one of the three stands (p < 0.05). Stump-side processing reduced the amount of Cladonia cover on-site when combined with summer harvesting and scarification. In all other treatment combinations, stump-side delimbing increased retention of Cladonia cover compared to identical treatments with road-side delimbing. There was a significant first-order interaction between season of harvest and scarification for two of the three stands (p < 0.05). A significant secondorder interaction among all three factors was displayed by these same two stands (p <0.05).

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.5 Pre- and post-harvest abundances of *Cladonia* species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.3.4) Treatment effects on Peltigera species

Nine of the twelve control sites indicated no significant difference in lichen cover between years (pairwise t-test, p < 0.05; Figure 1.6; Appendices 1.14-1.16). All treatment sites displayed significant reductions in lichen cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated similarity among controls with no particular pattern of grouping evident for treatment sites (one-way ANOVA, Tukey-test; p < 0.05). Results of a three-way ANOVA indicated that scarification (two of three stands) was a significant factor responsible for the differences observed among various treatment combinations (p < 0.05; Appendix 1.17). Treatments with scarification resulted in less *Peltigera* cover remaining than comparable treatments with no scarification performed. Delimbing was shown as a significant factor in only one of the three stands (p < 0.05). Stump-side processing decreased the amount of *Peltigera* cover left on all sites except when combined with winter harvest and no scarification. Significant first-order interactions between season of harvest and delimbing as well as scarification and delimbing were indicated by only one stand in each case (p < 0.05). No significant second order interactions were indicated.

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.6 Pre- and post-harvest abundances of Peltigera species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.3.5) Treatment effects on Stereocaulon species

All control and treatment sites, except S2 and S3 in stand 1 and S1 in stand 3, showed no significant differences between years (pairwise t-test, p < 0.05; Figure 1.7; Appendices 1.18-1.20). All three significant reductions consisted of summer harvested treatment sites with two of the three involving scarification. Multiple comparison results indicated a high degree of similarity among controls and treatment sites which prevented any observable grouping patterns and further analyses (one-way ANOVA, Tukey-test; p < 0.05). A three-way ANOVA was not performed.

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.7 Pre- and post-harvest abundances of *Stereocaulon* species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.3.6) Treatment effects on Cetraria species

All control and treatment sites, except S2 in stand 2 and C4 in stand 3, showed no significant differences between years (pairwise t-test, p < 0.05; Figure 1.8; Appendices 1.21-1.23). Treatment S2 consisted of a summer harvested treatment that was stump-side delimbed and scarified. Multiple comparison results indicated a high degree of similarity among controls and treatment sites which prevented any observable grouping patterns and further analyses (one-way ANOVA, Tukey-test; p < 0.05). A three-way ANOVA was not performed.

Treatment Legend:

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.8 Pre- and post-harvest abundances of Cetraria species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.3.7) Treatment effects on 'non-reindeer lichen' species

All sampling sites showed no significant differences between years (pairwise t-test, p < 0.05; Figure 1.9; Appendices 1.24-1.26). Multiple comparison results indicated a high degree of similarity among controls and treatment sites which prevented any observable grouping patterns and further analyses (one-way ANOVA, Tukey-test; p < 0.05). A three-way ANOVA was not performed.

Treatment Legend:

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 1.9 Pre- and post-harvest abundances of 'non-reindeer lichen' species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

1.4) Discussion

The lichen genera *Stereocaulon* and *Cetraria* as well as 'non-reindeer' lichens did not display significant results. Extremely low abundances prevented any useful analyses and resulted in no observable trends in the data. These three lichen groups will therefore not be included in the discussion. Effects of the various treatment combinations were similar for the lichen genera *Cladina*, *Cladonia* and *Peltigera* as well as lichens considered together as a group.

All terrestrial lichens declined in abundance following logging treatments. Post-harvest lichen populations consisted primarily of common rather than rare species. Timber harvesting methods however did not appear to selectively damage particular lichen species. Higher pre-harvest covers of common lichens accounts for subsequently greater post-harvest abundances, as compared to that of rare species. Post-harvest lichen populations consisted of species that were present before logging took place. Replacement or turnover of lichen species did not occur. The short time frame of this study accounts for the absence of invading lichen species. Pre- and post-harvest abundances of individual lichen species for all treatment combinations are provided in Appendices 3.1 - 3.9.

Decreases in lichen abundance were attributed primarily to season of harvest and scarification. Delimbing was responsible for a minor portion of observed decreases. The treatment combinations of summer harvest and stump-side delimbing followed by scarification in the spring generally resulted in the greatest reduction of lichen abundance. The greatest retention of lichen cover was observed following the treatment combinations of winter harvest and stump-side delimbing with no scarification.

Season of harvest appeared to be the major factor determining the amount of disturbance to terrestrial lichen communities. Regardless of the treatment combination, summer harvesting reduced lichen abundance for all lichens to a greater degree than winter harvesting. For most sites, summer harvesting reduced original lichen communities to isolated lichen fragments. The large difference apparent between summer and winter harvest was likely attributable to the absence of a snowpack during harvesting in the summer. In the summer, lichens are vulnerable to the wheel and track traffic of heavy

machinery as well as trees that are dragged across the ground surface. This is especially true during dry periods when lichens are brittle and easily damaged. Dry conditions were present during the summer harvesting operations of this study. During wet conditions, the increased flexibility of lichens may reduce mechanical damage to some degree, however the extent of this possible moderating effect is unknown.

Lichens do not have a vascular root system like higher plants and therefore are not anchored to the ground and are easily removed. During the winter, logging machinery travels on a snowpack over frozen ground. This reduces or eliminates physical traffic at the ground level and minimizes ground surface disturbance and damage to terrestrial lichens. In the spring before scarification was conducted, terrestrial lichens in winter harvested sites often appeared as if no physical damage had been sustained from logging.

Scarification was also a major factor in determining lichen abundance following timber harvest treatments. Scarification severely damaged vegetation and disturbed the ground surface exposing large amounts of mineral soil. Lichen cover was reduced to a greater degree following all treatment combinations involving scarification as compared to similar treatments without scarification. Lichen communities in winter harvested sites were largely intact with large furrows of exposed mineral soil while lichens in summer harvested sites consisted of only scattered fragments of the original colonies. The effect of scarification was pronounced, in some sites reducing the lichen cover of winter harvested sites to a greater degree than that of non-scarified summer harvested sites.

Enns (1992) also found that drag scarification severely reduced terrestrial lichen abundance. Absence of a scarification treatment eliminated this damage. However, over a long time frame severe disturbance such as scarification may actually increase terrestrial lichen regeneration rates to equal or greater levels than that following no scarification or fire (Snyder & Woodard, 1992). Harris (1992) speculated that terrestrial lichen regeneration would be maximized following a scarification treatment that provided sufficient mineral soil exposure yet retained enough of the original lichen communities for satisfactory recolonization. The treatment combinations in this study involving winter harvesting and scarification may provide such results over the long-term.

Delimbing influenced the degree to which lichen abundance decreased, although not to the extent as either scarification or summer harvest. Stump-side delimbing in combination with summer harvesting and scarification generally caused the greatest damage to terrestrial lichens. This was likely attributable to increased machinery traffic on the site which has been previously documented for stump-side delimbing practices (Araki, 1994). In addition, stump-side delimbing generally deposited large amounts of woody debris on-site which were dragged across the ground surface of sites by the scarifier. This may have resulted in increased ground disturbance and damage to terrestrial lichens than by scarifying drags alone.

Stump-side delimbing in combination with winter harvest and followed by no scarification resulted in the greatest amount of lichen cover left on the sites. The delimbing machinery operated on a snowpack which reduced damage at the ground surface. Stump-side delimbing also left large piles of woody debris on-site. Underneath these piles, environmental extremes of temperature, light, moisture and wind present in the open cut-block were reduced. At pile edges, fluctuations in light and temperature were moderated, and combined with high moisture levels appeared to provide suitable microenvironments for lichens. Lichens present in road-side delimbed sites without cover often appeared to be suffering damage from extreme temperature and light levels as well as desiccation. Similar effects were observed for terrestrial lichens following removal of the forest canopy by logging in south-central British Columbia (Enns, 1992). Debris piles may therefore serve to maintain lichens over a short period of time following logging and possibly retain lichen populations over a much longer time frame (Harris, 1992). For this study, the abundance of terrestrial lichens is expected to continue decreasing over the next few years in response to altered microenvironmental conditions. Decreases may abate following revegetation of the sites which would ameliorate microenvironmental extremes.

1.5) Conclusion

Due to the low abundances of *Stereocaulon*, *Cetraria* and 'non-reindeer' lichens, the following conclusions are based on results from the lichen genera *Cladina*, *Cladonia* and *Peltigera* as well as terrestrial lichens as a whole. Lichens decreased in abundance

following all treatment combinations and showed similar trends for the various treatments examined. The greatest reductions in abundance of lichens were observed following the treatment combination of summer harvesting and stump-side delimbing with scarification. Data support Hypothesis 1: post-harvest abundance will be lower than pre-harvest abundance for all treated sites.

Regardless of the treatment combination, summer harvesting generally reduced lichen abundance to a greater degree than comparable treatments harvested in the winter. Data support Hypothesis 2: summer harvesting will result in greater decreases in abundance than winter harvesting, regardless of treatment combination tested.

Regardless of the treatment combination, scarification generally reduced lichen abundance to a greater degree than comparable treatments without scarification. Data support Hypothesis 3: scarification will result in greater decreases in abundance than no scarification, regardless of treatment combination tested.

Stump-side delimbing in combination with summer timber harvest and no scarification resulted in the greatest reductions in lichen cover. However, stump-side delimbing conducted during winter timber harvest without scarification retained the greatest lichen abundance. Data do not support Hypothesis 4: stump-side delimbing will result in greater decreases in abundance than road-side delimbing, regardless of treatment combination tested

The treatment combinations of winter harvest and no scarification, whether combined with stump-side or road-side delimbing of trees, retained the highest lichen abundance of all logging treatments. This combination included treatments W3 and W4 which in some sites, retained as much or more terrestrial lichen cover as control sites. By increasing the retention of terrestrial lichens through this combination of logging practices, important lichen forage species for woodland caribou may be maintained immediately following timber harvest.

Lichens left on road-side delimbed sites with no woody debris piles for cover may have a higher probability of succumbing to environmental extremes present in the open cut-block. The slash piles provided by stump-side delimbing appear to maintain lichen abundance over the short-term. Over a longer time frame, these microhabitats may

decrease the recovery time of lichen communities by increasing the amount of terrestrial lichen retained after logging. With slash piles distributed throughout a cut-block, numerous sites are provided from which lichens can spread from and possibly recolonize the logged area in a much shorter time period.

Literature Cited

- Abrams, M.D. and Dickmann, D.I. 1982. Early revegetation of clear-cut and burned jack pine sites in northern lower Michigan. Canadian Journal of Botany 60: 946-954.
- Adams, D.B. and Risser, P.G. 1971. Some factors influencing the frequency of bark lichens in north central Oklahoma. American Journal of Botany 58(8): 752-757.
- Ahlgren, I.F. and Ahlgren, C.E. 1960. Ecological effects of forest fires. Botanical Revue 26: 438-533.
- Ahti, T. 1959. Studies on the Caribou Lichen Stands of Newfoundland. Annales Botanici. Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 30(4): 1-44.
- Ahti, T. 1961. The open boreal woodland subzone and its relation to reindeer husbandry. Archivum Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 16(suppl.): 91-93.
- Ahti, T. 1962. Ecological investigations on lichens in Wells Gray Provincial Park, with special reference to their importance to mountain caribou. Unpublished report. British Columbia department of recreation and conservation. Victoria, British Columbia, Canada. 69 pages.
- Ahti, T. 1964. Macrolichens and their zonal distribution in boreal and arctic Ontario, Canada. Annales Botanici Fennici 1: 1-35.
- Ahti, T. and Hepburn, R.L. 1967. Preliminary studies on woodland caribou range, especially on lichen stands. Ontario Department of Lands and Forests, Research Report (Wildlife), No. 74. 134 pages.
- Ahti, T., Scotter, G.W., and Vänskä, H. 1973. Lichens of the reindeer preserve, Northwest Territories, Canada. The Bryologist 76(1): 48-76.
- Araki, D. 1994. At-the-stump and roadside log processing in Alberta: a comparison. Forest Engineering Research Institute of Canada. Special Report No. SR-96. 29 pages.
- Armleder, H.M. and Stevenson, S.K. 1994. Silviculture systems to maintain caribou habitat in managed forests. Proceedings: Innovative silviculture systems in boreal forests. Edmonton, Alberta, Canada. 16 pages.
- Bennett, K.J., Rayner, M.R., and Karpuk, E.W. 1983. Mapping forests with lichens in a portion of the Berland Integrated Resource Planning Area. Resource Evaluation Branch, Alberta Energy and Natural Resources. 18 pages.

- Berg, Å., Ehnström, B., Gustafsson, L., Hallingbäck, T., Jonsell, M., and Weslein, J. 1994. Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conservation Biology 8: 718-731.
- Bergerud, A.T. 1971. Abundance of forage on the winter range of Newfoundland caribou. Canadian Field-Naturalist 85: 39-52.
- Bergerud, A.T. 1972. Food habits of Newfoundland caribou. Journal of Wildlife Management 36: 913-923.
- Bergerud, A.T. 1974a. Relative abundance of food in winter for Newfoundland caribou. Oikos 25: 379-397.
- Bergerud, A.T. 1974b. Decline of caribou in North America following settlement. Journal of Wildlife Management 38(4): 757-770.
- Bergerud, A.T. and Elliot, J.P. 1986. Dynamics of caribou and wolves in northern British Columbia. Canadian Journal of Zoology 64: 1515-1529.
- Bergerud, A.T. and Nolan, M.J. 1970. Food habits of hand-reared caribou *Rangifer tarandus* L. in Newfoundland. Oikos 21: 348-350.
- Bergerud, A.T. and Russell, L. 1964. Evaluation of rumen food analysis for Newfoundland caribou. Journal of Wildlife Management 28(4): 809-814.
- Boonstra, R. and Sinclair, A.R.E. 1984. Distribution and habitat use of caribou, (*Rangifer tarandus caribou*, and moose, *Alces Alces andersoni*, in the Spatsizi Plateau Wilderness Area, British Columbia. Canadian Field-Naturalist 98(1): 12-21.
- Brumelis, G. and Carleton, T.J. 1989. The vegetation of post-logged black spruce lowlands in central Canada. II. Understory vegetation. Journal of Applied Ecology 26: 321-339.
- Canters, K.J., Schöller, H., Ott, S., and Jahns, H.M. 1991. Microclimatic influences on lichen distribution and community development. The Lichenologist 23: 237-252.
- Corns, I.G.W. and Annas, R.M. 1986. Field guide to forest ecosystems of west-central Alberta. Canadian Forest Service, Northern Forestry Center, Edmonton, Alberta. 251 pages + map insert.
- Corns, I.G.W. and La Roi, G.H. 1976. A comparison of mature with recently clear-cut and scarified lodgepole pine forests in the lower foothills of Alberta. Canadian Journal of Forest Research 6: 20-32.

- Cringan, A.T. 1957. History, food habits and range requirements of the woodland caribou of continental North America. Transactions of the North American Wildlife Conference 22: 485-501.
- Crites, S. 1995. Bryophytes, lichens, and fungi on downed woody material in aspen mixedwood forests of northeastern Alberta. Masters thesis. University of Alberta. 85 pages.
- Cumming, H.G. 1992. Woodland caribou: Facts for forest managers. The Forestry Chronicle 68(4): 481-491.
- Cumming, H.G. and Beange, D.B. 1987. Dispersion and movements of woodland caribou near Lake Nipigon, Ontario. Journal of Wildlife Management 51(1): 69-79.
- Edmonds, E.J. 1988. Population status, distribution, and movements of woodland caribou in west-central Alberta. Canadian Journal of Zoology 66: 817-826.
- Edmonds, E.J. and Bloomfield, M.I. 1984. A study of woodland caribou (*Rangifer tarandus caribou*) in West-Central Alberta. 1979-1983. Alberta Energy and Natural Resources., Fish and Wildlife Division. Unpublished Report. 203 pages.
- Edwards, R.Y. and Ritchey, R.W. 1960. Foods of caribou in Wells Gray Park, British Columbia. Canadian Field-Naturalist 74(1): 3-7.
- Edwards, R.Y., Soos, J. and Ritchey, R.W. 1960. Quantitative observations on epidendric lichens used as food by caribou. Ecology 41(3): 425-431.
- Enns, K.A. 1992. Terrestrial lichen management in the Itcha-Ilgachuz, Chilcotin Range. B.C. Interim Report. Larkspur Biological Consultants. 25 pages.
- Esslinger, T.L. and Egan, R.S. 1995. A sixth checklist of the lichen-forming, lichenicolous, and allied fungi of the continental United States and Canada. The Bryologist 98(4): 467-549.
- Euler, D.L., Snider, B., and Timmermann, H.R. 1976. Woodland caribou and plant communities on the Slate Islands, Lake Superior. The Canadian Field-Naturalist 90: 17-21.
- Fancy, S.G. and White, R.G. 1985. Energy expenditures by caribou while cratering in snow. Journal of Wildlife Management 49(4): 987-993.
- Ferguson, A.D. and Gaulthier, L. 1992. Status and trends of *Rangifer tarandus* and *Ovibus moschatus* populations in Canada. Rangifer 12(3): 127-141.

- Foster, D.R. 1985. Vegetation development following fire in *Picea mariana* (black spruce)-*Pleurozium* forests of south-eastern labrador, Canada. Journal of Ecology 73: 517-534.
- Freddy, D.J. 1979. Distribution and movements of Selkirk caribou, 1972-1974. Canadian Field Naturalist 93: 71-74.
- Fuller, T.K. and Keith, L.B. 1981. Woodland caribou population dynamics in northeastern Alberta. Journal of Wildlife Management 45(1): 197-213.
- Gustafsson, L., Fiskesjö, A., Ingelög, T., Pettersson, B., and Thor, G. 1992. Factors of importance to some lichen species of deciduous broad-leaved woods in southern Sweden. Lichenologist 24: 255-266.
- Harris, A. 1992. Post-logging regeneration of reindeer lichens (*Cladina* spp.) as related to woodland caribou winter habitat. Ontario Ministry of Natural Resources, Northwest Region Science and Technology, Technical Report #69. 33 pages.
- Helle, T., Aspi, J. and Tarvainen, L. 1983. The growth rate of *Cladonia rangiferina* and *C. mitis* in relation to forest characteristics in northeastern Finland. Rangifer 3(2): 2-5.
- Holleman, D.F. and Luick, J.R. 1977. Lichen species preference by reindeer. Canadian Journal of Zoology 55: 1368-1369.
- Holleman, D.F., Luick, J.R. and White, R.G. 1979. Lichen intake estimates for reindeer and caribou during winter. Journal of Wildlife Management 43(1): 192-201.
- Hustich, I. 1951. The lichen woodlands in Labrador and their importance as winter pastures for domesticated reindeer. Acta Geographica 12: 1-48.
- Hyvärinen, M., Halonen, P., and Kauppi, M. 1992. Influence of stand age and structure on the epiphytic lichen vegetation in the middle-boreal forests of Finland. The Lichenologist 24: 165-180.
- Johnson, E.A. 1981. Vegetation organization and dynamics of lichen woodland communities in the Northwest Territories, Canada. Ecology 62(1): 200-215.
- Johnson, E.A. and Rowe, J.S. 1975. Fire in the subarctic wintering ground of the Beverly caribou herd. American Midland Naturalist 94: 1-14.
- Kershaw, K.A. and Field, G.F. 1975. Studies on lichen-dominated systems. XV. The temperature and humidity profiles in a *Cladina alpestris* mat. Canadian Journal of Botany 53: 2614-2620.

- Kershaw, K.A. and MacFarlane, J.D. 1980. Physiological-environmental interactions in lichens. X. Light as an ecological factor. New Phytologist 84: 687-702.
- Kershaw, K.A. and Rouse, W.R. 1971. Studies on lichen-dominated systems. I. The water relations of *Cladonia alpestris* in spruce-lichen woodland in northern Ontario. Canadian Journal of Botany 49: 1389-1399.
- Klein, D.R. 1982. Fire, lichens, and caribou. Journal of Range Management 35(3): 390-395.
- Kupiainen, K. and Nieminen, M. 1985. Reindeer husbandry and forestry in the reindeer herding district of Poikjärvi during the years 1963-1984. Rangifer 6(1): 23-35.
- Lambert, J.D.H. and Maycock, P.F. 1968. The ecology of terricolous lichens of the northern conifer-hardwood forests of central eastern Canada. Canadian Journal of Botany 46: 1043-1078.
- Larson, D.W. 1984. Habitat overlap/niche segregation in two *Umbilicaria* lichens: a possible mechanism. Oecologia 62: 118-125.
- Lechowicz, M.J. and Adams, M.S. 1974a. Ecology of *Cladonia* lichens. I. Preliminary assessment of the ecology of terricolous lichen-moss communities in Ontario and Wisconsin. Canadian Journal of Botany 52: 55-64.
- Lechowicz, M.J. and Adams, M.S. 1974b. Ecology of *Cladonia* lichens. II. Comparative physiological ecology of *C. mitis*, *C. rangiferina* and *C. uncialis* in the Taltson River region, N.W.T. Canada. Canadian Journal of Botany 52: 411-422.
- Lesica, P., McCune, B., Cooper, S.V. and Hong, W.S. 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Canadian Journal of Botany 69: 1745-1755.
- MacFarlane, J.D. and Kershaw, K.A. 1980. Physiological-environmental interactions in lichens. XI. Snowcover and nitogenase activity. New Phytologist 84: 703-710.
- Maikawa, E. and Kershaw, K.A. 1976. Studies on lichen-dominated systems. XIX. The postfire recovery sequence of black spruce-lichen woodland in the Abitau Lake Region, N.W.T. Canadian Journal of Botany 54: 2679-2687.
- McCune, B. and Antos, J.A. 1981. Correlations between forest layers in the Swan Valley, Montana. Ecology 62: 1196-1204.
- McCune, B. and Antos, J.A. 1982. Epiphyte communities of the Swan Valley, Montana. The Bryologist 85: 1-12.

- Moser, T.J., Nash, T.H., and Thomson, J.W. 1979. Lichens of the Anaktuvuk Pass, Alaska, with emphasis on the impact of caribou grazing. The Bryologist 82(3): 393-408.
- Morneau, C. and Payette. 1989. Postfire lichen-spruce woodland recovery at the limit of the boreal forest in northern Quebec. Canadian Journal of Botany 67: 2770-2782.
- Nieminen, M. and Heiskari, U. 1989. Diets of freely grazing and captive reindeer during summer and winter. Rangifer 9: 17-34.
- Nieppola, J. 1992. Long-term vegetation changes in stands of *Pinus sylvestris* in southern Finland. Journal of Vegetation Science 3: 475-484.
- Oksanen, J. and Ahti, T. 1982. Lichen-rich pine forest vegetation in Finland. Annales Botanici Fennici 19: 275-301.
- Rominger, E.M. and Oldemeyer, J.L. 1989. Early-winter habitat of woodland caribou, Selkirk Mountains, British Columbia. Journal of Wildlife Management 53: 238-243.
- Rouse, W.R. 1976. Microclimatic changes accompanying burning in subarctic lichen woodland. Arctic and Alpine Research 8: 357-376.
- Rowe, J.S. & Scotter, G.W. 1973. Fire in the boreal forest. Quaternary Research 3: 444-464.
- Schoonmaker, P. and McKee, A. 1988. Species composition and diversity during secondary succession of coniferous forests in the western Cascade mountains of Oregon. Forest Science 34(4): 960-979.
- Scotter, G.W. 1962. Productivity of arboreal lichens and their possible importance to barren-ground caribou. Archivum Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 16: 155-161.
- Scotter, G.W. 1963. Growth rates of *Cladonia alpestris*, C. mitis, and C. rangiferina in the Taltson River region, N.W.T. Canadian Journal of Botany 41: 199-1202.
- Scotter, G.W. 1964. Effects of forest fires on the winter range of barren-ground caribou in northern Saskatchewan. Canadian Wildlife Service. Wildlife Management Bulletin Series. 1. No. 18.
- Scotter, G.W. 1965. Chemical composition of forage lichens from northern Saskatchewan as related to use by barren-ground caribou. Canadian Journal of Plant Science 45: 246-250.

- Scotter, G.W. 1967. The winter diet of barren-ground caribou in northern Canada. Canadian Field-Naturalist 81: 33-39.
- Scotter, G.W. 1972. Chemical composition of forage plants from the reindeer preserve, Northwest Territories. Arctic 25(1): 21-27.
- Seip, D.R. 1992. Factors limiting woodland caribou populations and their interrelationships with wolves and moose in southeastern British Columbia. Canadian Journal of Zoology 70: 1494-1503.
- Selva, S.B. 1994. Lichen diversity and stand continuity in the northern hardwoods and spruce-fir forests of northern New England and western New Brunswick. The Bryologist 97: 424-429.
- Servheen, G. and Lyon, L.J. 1989. Habitat use by woodland caribou in the Selkirk Mountains, British Columbia. Journal of Wildlife Management 53: 230-237.
- Shafi, M.I. and Yarranton, G.A. 1973a. Diversity, floristic richness and species evenness during a secondary (post-fire) succession. Ecology 54: 897-902.
- Shafi, M.I. and Yarranton, G.A. 1973b. Vegetational heterogeneity during a secondary (postfire) succession. Canadian Journal of Botany 51: 73-90.
- Snyder, J.M. 1987. Lichen regeneration in disturbed caribou winter range forests of west-central Alberta. Grande Prairie Regional College. Grande Prairie, Alberta, Canada. Unpublished report. 51 pages.
- Snyder, J.M. and Woodard, P.M. 1992. Lichen regeneration rates in Alberta following various types of logging and wildfire disturbances. Unpublished Final Report. University of Alberta. 95 pages.
- Söderström, L. 1988. The occurrence of epixylic bryophyte and lichen species in an old natural and a managed forest stand in northeast Sweden. Biological Conservation 45: 169-178.
- Sokal, R.R. and Rohlf, F.J. 1981. Biometry. 2nd edition. W.H. Freeman and Co., San Francisco. 859 pages.
- Staaland, H., Scheie, J.O., Grøndahl, F.A., Persen, E., Leifseth, A.B., and Holand, Ø. 1993. The introduction of reindeer to Brøggerhalvøya, Svalbard: grazing preference and effect on vegetation. Rangifer 13(1): 15-19.
- Thomas, D.C. 1994. Fire-caribou relationships: (V) The winter diet of the Beverly herd in northern Canada. Canadian Wildlife Service Unpublished Report. 41 pages.

- Thomas, D.C. and Kroeger, P. 1981. Digestibility of plants in ruminal fluids of barrenground caribou. Arctic 34(4): 321-324.
- Thomas, D.C. & McCourt, K.H. 1981. Seasonal diets of the Porcupine caribou herd. American Midland Naturalist 105: 70-77.
- Thomas, D.C. and Barry, S.J. 1991. Microhistological analysis of caribou diet: fecal versus rumen and other variables. Pages 516-529 *in* Butler, C.E. and Mahoney, S.P. (eds.). Proceedings of the 4th North American caribou workshop, St. John's Newfoundland.
- Thomas, D.C. and Hervieux, D.P. 1986. The late winter diets of barren-ground caribou in north-central Canada. Rangifer, Special Issue 1: 305-310.
- Thomas, D.C. and Kiliaan, H.P.L. 1991. Fire-caribou relationships: (IV) Recovery of habitat after fire on winter range of the Beverly herd in northern Canada. Canadian Wildlife Service, Western and Northern Region, Edmonton, Alberta, Canada. 115 pages.
- Thomas, D.C. and Armbruster, H.J. 1996. Woodland caribou studies in Saskatchewan: second annual report including some preliminary recommendations. Unpublished progress report, Canadian Wildlife Service. 46 pages.
- Thomas, D.C., Kroeger, P. and Hervieux, D. 1984. *In Vitro* digestibilities of plants utilized by barren-ground caribou. Arctic 37(1): 31-36.
- Thomas, D.C., Barry, S.J. and Alaie, G.M. 1996. Fire caribou winter range relationships in northern Canada. Unpublished progress report, Canadian Wildlife Service. 31 pages.
- Thomas, D.C., Edmonds, E.J. and Brown, W.K. in press. The diet of woodland caribou populations in west-central Alberta. Rangifer Special Issue.
- Viereck, L.A. 1973. Wildfire in the taiga of Alaska. Quaternary Research 3: 465-495.
- Yarranton, G.A. 1975. Population growth in *Cladonia stellaris* (Opiz.) Pouz. and Vezda. New Phytologist 75: 99-110.
- Zackrisson, O. 1977. Influence of forest fires on the north Swedish boreal forest. Oikos 29: 22-23.
- Zar, J.H. 1984. Biostatistical Analysis. 2nd edition. Prentice-Hall, Inc., New Jersey. 718 pages.

Chapter 2

Effects of Timber Harvesting Methods on Shrubs, Herbs and Terrestrial Bryophytes

2.1) Introduction

The boreal forest is characterized by high levels of disturbance in which rapid vegetative regeneration occurs following forest fires which then progresses through various successional stages until another fire occurrence (Ahlgren & Ahlgren, 1960; Shafi & Yarranton, 1973a; 1973b; Maikawa & Kershaw, 1976; Zackrisson, 1977; Johnson, 1981; Foster, 1985). Large-scale commercial forestry operations have replaced fire as the main form of disturbance in many areas of North America (Schoonmaker & McKee, 1988). Since periodic fire events are important to the natural cycle of woodland caribou habitat (Rowe & Scotter, 1973; Johnson & Rowe, 1975; Klein, 1982; Morneau & Payette, 1989), the impact of logging on northern woodlands is of importance to forest managers and wildlife biologists concerned with the preservation of endemic caribou populations.

Although timber harvest practices create large disturbances with characteristics that may approximate the effects of fire, post-logging recovery of vegetation has been shown to differ from regeneration following fire (Corns & La Roi, 1976; Abrams & Dickmann, 1982). Studies have documented some of the distinctive differences that exist between post-fire and post-logging regeneration of terrestrial lichens (Söderström, 1988. Harris, 1992; Snyder & Woodard, 1992). These studies have provided important information for the management of woodland caribou populations since terrestrial lichens account for the majority of caribou winter diets as well as partially for caribou summer diets (Thomas, 1994).

Other types of forage important in the woodland caribou winter diet include shrubs, herbaceous plants and terrestrial bryophytes. These plants provide essential sources of proteins and vitamins which complement lichen nutrition (Cringan, 1957; Bergerud & Russell, 1964; Ahti & Hepburn, 1967; Bergerud, 1974a; Thomas & Hervieux, 1986; Thomas, 1994). Consumption of these vascular and non-vascular plants by caribou exceeds the intake of lichens during the snowfree summer months when succulent

vegetation becomes available (Cringan, 1957; Bergerud & Russell, 1964; Ahti & Hepburn, 1967; Bergerud & Nolan).

The impact of timber harvest on understory vegetation has been previously studied (Corns & La Roi, 1976; Abrams & Dickmann, 1982; Brumelis & Carleton, 1989; Nieppola, 1992). The responses of shrub and herbaceous plant communities to logging has been shown to be highly variable, ranging from large decreases in cover and species richness to little change with increases not uncommon (Brinkman, 1936; Dyrness, 1973; Corns & La Roi, 1976; Kauppi et al., 1978; Abrams & Dickmann, 1982; Kirby, 1988; Brumelis & Carleton, 1989; Nieppola, 1992; Snyder & Woodard, 1992). Bryophyte species appear to be severely affected by timber removal in general, displaying large decreases in cover following logging (Brinkman, 1936; Corns & La Roi, 1976; Nieppola, 1992). The extent to which these plant communities are affected depends upon the nature of the sites examined as well as the type of logging practice employed (Brumelis & Carleton, 1989). Differences in revegetation have often been attributed to varying levels of logging disturbance (Brumelis & Carleton, 1989). Season of logging and scarification are often two factors which decidedly change the revegetation that occurs following logging. Understanding the differences of various logging methods and the subsequent impacts on the vascular and non-vascular plant communities is of importance for management of year-round forage availability in caribou habitat.

2.2) Methods

For a detailed description of the study area, timber harvest treatments and the data collection and analysis methods see section 1.2 in Chapter 1. The only differences were that species of bryophytes, shrubs and herbaceous plants were sampled rather than lichens. Nomenclature follows Anderson *et al.* (1990) for mosses, Stotler and Crandall-Stotler (1977) for liverworts and Moss (1983) for trees, shrubs, forbs, graminoids, horsetails and clubmosses. For the purposes of this study, bryophytes included all species of mosses and liverworts. Shrubs consisted of all tall shrub, dwarf shrub and trees species < 1.3 m in height. Herbaceous plants included all forb, graminoid, clubmoss and horsetail species. These data were used for all statistical analyses.

2.3) Results

2.3.1) Treatment effects on shrub species

Eight of the twelve control sites indicated no significant difference in shrub abundance between years (pairwise t-test, p < 0.05; Figure 2.1; Appendices 2.1-2.3). All treatment sites showed significant reductions in shrub cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated similarity among control sites with no particular pattern of grouping evident for treatment sites (one-way ANOVA, Tukey-test, p < 0.05. Results of a three-way ANOVA indicated that method of delimbing (two of three stands) was a significant factor responsible for differences observed among various treatment combinations (p < 0.05; Appendix 2.4). Stump-side processing increased the amount of shrub cover left on-site for all treatment combinations except summer harvested and scarified sites in which shrub cover was less than comparable road-side delimbed sites. Season of harvest and scarification were indicated as significant factors by only one of three stands (p < 0.05). Sites harvested in the summer showed a greater loss of shrub cover than comparable treatments harvest during the winter and treatments with scarification resulted in less shrub cover remaining than comparable treatments without scarification. Significant first-order interactions between season of harvest and scarification, as well as season of harvest and delimbing were displayed by only one of three stands in each case (p < 0.05). A significant second-order interaction among all three factors was displayed by one stand (p < 0.05). Although not significant, controls showed little change in shrub cover compared to treatment sites.

Treatment Legend:

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 2.1 Pre- and post-harvest abundances of shrub species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

2.3.2) Treatment effects on herbaceous species

Ten of the twelve control sites indicated no significant difference in herb abundance between years (pairwise t-test, p < 0.05; Figure 2.2; Appendices 2.5-2.7). Treatment sites showed mixed results. In stand 1, all treatment sites except S2 showed no significant reductions in herb cover following logging treatments (pairwise t-test, p < 0.05). For stand 2, all treatment sites except S2 showed significant reductions in herb cover following logging treatments (pairwise t-test, p < 0.05). In stand 3, all treatment sites except S2 and W2 showed no significant reductions in herb cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated a high degree of similarity among controls and treatment sites which prevented any observable grouping patterns and further analyses (one-way ANOVA, Tukey-test, p < 0.05). Significant differences in herbaceous cover occurred in only one stand. Extremely low abundances of herbaceous plants prevented any useful analyses and observable trends in the data.

Treatment Legend:

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 2.2 Pre- and post-harvest abundances of herbaceous species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

2.3.3) Treatment effects on terrestrial bryophyte species

Nine of the twelve control sites indicated no significant difference in bryophyte abundance between years (pairwise t-test, p < 0.05; Figure 2.3; Appendices 2.8-2.10). All treatment sites showed significant reductions in bryophyte cover following logging treatments (pairwise t-test, p < 0.05).

Multiple comparison results indicated similarity among control sites with no particular pattern of grouping evident for treatment sites (one-way ANOVA, Tukey-test, p < 0.05). Results of a three-way ANOVA indicated that scarification (two of three sites) was a significant factor responsible for differences observed among various treatment combinations (p < 0.05; Appendix 2.11). Treatments involving scarification resulted in a greater loss of bryophyte cover than comparable treatments without scarification. Season of harvest and delimbing were indicated as significant factors by only one of three stands in each case (p < 0.05). Summer harvested sites showed a greater loss of bryophyte cover than comparable sites harvested during the winter. Stump-side processing reduced the amount of bryophyte cover left on-site for all treatment combinations except summer harvested, non-scarified sites in which bryophyte cover was greater than comparable roadside delimbed sites. A significant first-order interaction between season of harvest and scarification was indicated by two of three stands (p < 0.05). Stand 1 indicated a significant first-order interaction between season of harvest and scarification as well as a second-order interaction among all three factors (p < 0.05). Although not significant, controls showed little change in bryophyte cover compared to treatment sites.

Treatment Legend:

- S1 Summer harvest / Scarification / Stump-side delimbing
- S2 Summer harvest / Scarification / Road-side delimbing
- S3 Summer harvest / No scarification / Stump-side delimbing
- S4 Summer harvest / No scarification / Road-side delimbing
- W1 Winter harvest / Scarification / Stump-side delimbing
- W2 Winter harvest / Scarification / Road-side delimbing
- W3 Winter harvest / No scarification / Stump-side delimbing
- W4 Winter harvest / No scarification / Road-side delimbing
- C1, C2, C3, C4 Control Sites (No treatment)

Figure 2.3 Pre- and post-harvest abundances of bryophyte species for all treatment sampling sites of all 3 stands. (n = 50 for each treatment)

2.4) Discussion

Vascular plants, including shrub and herb species, appeared to differ in response to the various timber harvesting methods examined from that of the non-vascular bryophytes. Shrub and herb species displayed large decreases in abundance following all treatment combinations. Remaining vascular plant populations consisted primarily of common rather than rare species. Timber harvesting methods however did not appear to selectively damage particular plant species. Higher pre-harvest covers of common plants accounts for subsequently greater post-harvest abundances, as compared to that of rare species. Post-harvest shrub and herb populations consisted of species that were present before logging took place. Replacement or turnover of vascular species did not occur. The short time frame of this study accounts for the absence of invading species. Pre- and post-harvest abundances of individual vascular plant species for all treatment combinations are provided in Appendices 4.1 - 4.18.

Although reductions in shrub cover were primarily attributed to delimbing, shrubs appeared to decrease approximately the same for all treatment combinations. Herbaceous cover was also equally reduced by all logging treatments. Season of harvest, method of delimbing and presence or absence of scarification therefore did not appear to be significant factors in determining the post-harvest vascular plant cover. Removal of the forest canopy appeared to be the primary factor resulting in similar reductions of vascular plant cover, regardless of timber harvest treatment combination. Most remaining shrub and herb species appeared to be unhealthy and dying. This was likely attributable to the altered environmental conditions of the cut-block. These conditions included increased temperature, light and wind extremes resulting from removal of the forest canopy.

Previous studies have indicated that regeneration of dwarf shrub communities may be slow following logging. Snyder & Woodard (1992) observed large decreases in dwarf shrub abundance immediately following logging with slow recovery occurring over a 30 year period after timber harvest. Corns & La Roi (1976), Nieppola (1992) and Abrams & Dickmann (1981) observed similar results for the initial stages of dwarf shrub regeneration. Initial revegetation of sites may consist largely of invading competitor-

species with original shrub species regaining dominance after several years (Dyrness, 1973; Brumelis & Carleton, 1989).

As with shrub communities, previous studies have also shown that large decreases in herbaceous plant cover can occur immediately following logging (Corns & La Roi, 1976; Nieppola, 1992; Snyder & Woodard, 1992). Recovery of herbaceous species appears to be much more rapid with post-harvest vegetation abundance often approaching pre-harvest levels within 10 years of logging (Abrams & Dickmann, 1981; Nieppola, 1992; Snyder & Woodard, 1992). Competitive herbaceous species may dominate the initial revegetation of sites with original species regaining dominance after several years (Dyrness, 1973; Brumelis & Carleton, 1989). For this study, the abundance of shrub and herb species is expected to continue decreasing over the next few years in response to altered microenvironmental conditions. Decreases may abate following revegetation of the sites which would ameliorate microenvironmental extremes.

Differences between timber harvesting treatments were evident in the reduction of terrestrial bryophyte communities. Terrestrial bryophytes decreased in abundance following all treatment combinations. As with the shrub and herb communities, post-harvest bryophyte populations consisted primarily of common rather than rare species of mosses and liverworts. All bryophytes present following logging consisted of species that were present before timber harvest took place and replacement or turnover of bryophyte species did not occur. The short time frame of this study accounts for the absence of invading bryophyte species. Pre- and post-harvest abundances of individual non-vascular plant species for all treatment combinations are provided in Appendices 4.19 - 4.27.

Scarification was the primary factor in determining bryophyte abundance following timber harvest treatments. Scarification severely damaged vegetation and disturbed the ground surface exposing large amounts of mineral soil. Bryophyte cover was reduced to a greater degree following all treatment combinations involving scarification as compared to similar treatments without scarification. Winter harvested sites that were scarified consisted essentially of intact bryophyte communities with large furrows of exposed mineral soil.

Season of harvest appeared to be a major factor determining the amount of disturbance to terrestrial bryophyte communities. Regardless of the treatment combination, summer harvesting decreased bryophyte abundance to a greater degree than winter harvesting. For most sites, summer harvesting reduced the original bryophyte communities to isolated patches and fragments. The large difference apparent between summer and winter harvest was likely attributable to the absence of a snowpack during harvesting in the summer. During the summer, bryophytes are easily damaged by wheel and track traffic of heavy machinery and by trees that are dragged across the ground surface. In addition, bryophytes lack a vascular root system like that of higher plants and so are easily removed from the ground surface and displaced. In the winter, the ground is frozen and logging machinery travels on a snowpack which reduces or eliminates physical disturbance at the ground surface. This minimizes damage to the ground surface and to terrestrial bryophyte communities. As with vascular plant species however, bryophytes are affected by the removal of the forest canopy. Mosses and liverworts in winter harvested sites often appeared to have sustained no physical damage from the logging machinery during timber harvest yet seemed to be suffering from desiccation.

Delimbing also influenced the degree to which bryophyte cover decreased, although not to the extent as either scarification or summer harvest. Stump-side delimbing in combination with summer harvesting and scarification generally caused the greatest damage to terrestrial bryophytes. This was probably attributable to increased machinery traffic on the site which has been documented for stump-side delimbing practices (Araki, 1994). In addition, stump-side delimbing generally deposited large amounts of woody debris on-site which were dragged across the ground surface of sites by the scarifier which may have resulted in increased ground disturbance and damage to bryophytes than by scarifying drags alone.

Road-side delimbing in combination with winter harvest and followed by no scarification resulted in the greatest amount of bryophyte cover left on the sites. The slash piles provided by stump-side delimbing did not appear to increase the retention of bryophytes. As discussed in Chapter 1, underneath these piles the environmental extremes of temperature, light, moisture and wind of the cut-block are reduced. At pile

edges, fluctuations in light and temperature were moderated, and combined with high moisture levels appeared to provide suitable short-term microenvironments for terrestrial lichens. It appears that the microenvironmental conditions provided by these slash piles may not be more beneficial to terrestrial bryophytes than those of road-side delimbed sites. Slash piles may alter light and moisture levels beyond the tolerance limits of bryophytes.

As with shrub and herb communities, previous studies have shown large decreases in bryophyte cover immediately following logging (Corns & La Roi, 1976; Nieppola, 1992; Snyder & Woodard, 1992). Recovery of bryophyte species occurs very slowly with post-harvest abundance remaining lower than pre-logging levels 30 years after timber harvest (Snyder & Woodard, 1992). Bryophyte species appear to be affected by altered microenvironmental conditions to a much greater degree than vascular plants. Brinkman (1936) observed that rapid reduction of bryophyte communities usually occurred following removal of the forest canopy even without physical disturbance of the bryophyte flora. For this study, the abundance of bryophytes is expected to continue decreasing over the next few years in response to altered microenvironmental conditions. Decreases may abate following revegetation of the sites which would ameliorate microenvironmental extremes although the recovery of bryophyte communities may take much longer than that of vascular plants.

2.5) Conclusion

Shrubs, herbaceous plants and terrestrial bryophytes showed decreases in cover following all treatment combinations. Data support Hypothesis 1: post-harvest abundance will be lower than pre-harvest abundance for all treated sites.

Regardless of the treatment combination, summer harvesting reduced the abundance of bryophytes to a greater degree than comparable treatments harvested in the winter. Bryophyte data support Hypothesis 2: summer harvesting will result in greater decreases in abundance than winter harvesting, regardless of treatment combination tested. Summer harvesting did not always result in greater reductions of shrub and herbaceous cover for all treatment combinations and therefore data did not support Hypothesis 2.

Scarification, regardless of the treatment combination, reduced the abundance bryophytes to a greater degree than comparable treatments without scarification.

Bryophyte data support Hypothesis 3: scarification will result in greater decreases in abundance than no scarification, regardless of treatment combination tested. Scarification did not always result in greater reductions of shrub and herbaceous cover for all treatment combinations and therefore data did not support Hypothesis 3.

Regardless of the treatment combination, stump-side delimbing reduced the abundance of bryophytes to a greater degree than comparable treatments with road-side delimbing. Bryophyte data support Hypothesis 4: stump-side delimbing will result in greater decreases in abundance than road-side delimbing, regardless of treatment combination tested. Stump-side delimbing did not always result in greater reductions of shrub and herbaceous cover for all treatment combinations and therefore data did not support Hypothesis 4.

Similar responses by the shrub and herb communities to all of the treatment combinations indicated that the cover of these species was reduced irrespective of logging method employed. Trends were evident for bryophytes however. Summer harvesting and stump-side delimbing with scarification proved to be the treatment combination which resulted in the greatest reductions of bryophyte species abundance. The treatment combination of winter harvesting and road-side delimbing with no scarification resulted in the greatest retention of bryophyte cover. The slash piles provided by stump-side delimbing do not appear to maintain the abundance of shrubs, herbs and terrestrial bryophytes over the short-term.

Literature Cited

- Abrams, M.D. and Dickmann, D.I. 1982. Early revegetation of clear-cut and burned jack pine sites in northern lower Michigan. Canadian Journal of Botany 60: 946-954. Ahti, T. 1959. Studies on the Caribou Lichen Stands of Newfoundland.

 Annales Botanici. Societatis Zoologicæ Botanicæ Fennicæ 'Vanamo' 30(4): 1-44.
- Ahlgren, I.F. and Ahlgren, C.E. 1960. Ecological effects of forest fires. Botanical Revue 26: 438-533.
- Ahti, T. and Hepburn, R.L. 1967. Preliminary studies on woodland caribou range, especially on lichen stands. Ontario Department of Lands and Forests, Research Report (Wildlife), No. 74. 134 pages.
- Anderson, L.E., Crum, H.A. and Buck, W.R. 1990. List of the mosses of North America north of Mexico. The Bryologist 93: 448-499.
- Bergerud, A.T. 1971. Abundance of forage on the winter range of Newfoundland caribou. Canadian Field-Naturalist 85: 39-52.
- Bergerud, A.T. 1972. Food habits of Newfoundland caribou. Journal of Wildlife Management 36: 913-923.
- Bergerud, A.T. 1974. Relative abundance of food in winter for Newfoundland caribou. Oikos 25: 379-397.
- Bergerud, A.T. and Nolan, M.J. 1970. Food habits of hand-reared caribou *Rangifer tarandus* L. in Newfoundland. Oikos 21: 348-350.
- Bergerud, A.T. and Russell, L. 1964. Evaluation of rumen food analysis for Newfoundland caribou. Journal of Wildlife Management 28(4): 809-814.
- Brinkman, A.H. 1936. Mosses in relation to Cajander theory of forest types. Forestry Chronicle 12: 300-315.
- Brumelis, G. and Carleton, T.J. 1989. The vegetation of post-logged black spruce lowlands in central Canada. II. Understory vegetation. Journal of Applied Ecology 26: 321-339.
- Corns, I.G.W. and La Roi, G.H. 1976. A comparison of mature with recently clear-cut and scarified lodgepole pine forests in the lower foothills of Alberta. Canadian Journal of Forest Research 6: 20-32.

- Cringan, A.T. 1957. History, food habits and range requirements of the woodland caribou of continental North America. Transactions of the North American Wildlife Conference 22: 485-501.
- Dyrness, C.T. 1973. Early stages of plant succession following logging and burning in the western Cascades of Oregon. Ecology 54: 57-69.
- Edmonds, E.J. 1988. Population status, distribution, and movements of woodland caribou in West-Central Alberta. Canadian Journal of Zoology 66: 817-826.
- Edmonds, E.J. and Bloomfield, M.I. 1984. A study of woodland caribou (*Rangifer tarandus caribou*) in West-Central Alberta. 1979-1983. Alberta Energy and Natural Resources., Fish and Wildlife Division. Unpublished Report. 203 pages.
- Euler, D.L., Snider, B., and Timmermann, H.R. 1976. Woodland caribou and plant communities on the Slate Islands, Lake Superior. The Canadian Field-Naturalist 90: 17-21.
- Foster, D.R. 1985. Vegetation development following fire in *Picea mariana* (black spruce)-*Pleurozium* forests of south-eastern labrador, Canada. Journal of Ecology 73: 517-534.
- Harris, A. 1992. Post-logging regeneration of reindeer lichens (*Cladina* spp.) as related to woodland caribou winter habitat. Ontario Ministry of Natural Resources, Northwest Region Science and Technology, Technical Report #69. 33 pages.
- Johnson, E.A. 1981. Vegetation organization and dynamics of lichen woodland communities in the Northwest Territories, Canada. Ecology 62(1): 200-215.
- Johnson, E.A. and Rowe, J.S. 1975. Fire in the subarctic wintering ground of the Beverly caribou herd. American Midland Naturalist 94: 1-14.
- Kauppi, P., Hari, P. and Kellomäki, S. 1978. A direct time model for succession of ground cover communities after clear-cutting. Oikos 30: 100-105.
- Kirby, K.J. 1988. Changes in the ground flora under plantations on ancient woodland sites. Forestry 61: 317-338.
- Klein, D.R. 1982. Fire, lichens, and caribou. Journal of Range Management 35(3): 390-395.
- Maikawa, E. and Kershaw, K.A. 1976. Studies on lichen-dominated systems. XIX. The postfire recovery sequence of black spruce-lichen woodland in the Abitau Lake Region, N.W.T. Canadian Journal of Botany 54: 2679-2687.

- Morneau, C. and Payette. 1989. Postfire lichen-spruce woodland recovery at the limit of the boreal forest in northern Quebec. Canadian Journal of Botany 67: 2770-2782.
- Moss, E.H. 1983. Flora of Alberta. 2nd edition, revised by J.G. Packer. University of Toronto Press, Toronto. 687 pages.
- Nieppola, J. 1992. Long-term vegetation changes in stands of *Pinus sylvestris* in southern Finland. Journal of Vegetation Science 3: 475-484.
- Rowe, J.S. & Scotter, G.W. 1973. Fire in the boreal forest. Quaternary Research 3: 444-464.
- Schoonmaker, P. and McKee, A. 1988. Species composition and diversity during secondary succession of coniferous forests in the western Cascade mountains of Oregon. Forest Science 34(4): 960-979.
- Shafi, M.I. and Yarranton, G.A. 1973a. Diversity, floristic richness and species evenness during a secondary (post-fire) succession. Ecology 54: 897-902.
- Shafi, M.I. and Yarranton, G.A. 1973b. Vegetational heterogeneity during a secondary (postfire) succession. Canadian Journal of Botany 51: 73-90.
- Snyder, J.M. and Woodard, P.M. 1992. Lichen regeneration rates in Alberta following various types of logging and wildfire disturbances. Final Report. University of Alberta. 95 pages.
- Söderström, L. 1988. The occurrence of epixylic bryophyte and lichen species in an old natural and a managed forest stand in Northeast Sweden. Biological Conservation 45: 169-178.
- Stotler, R. and Crandall-Stotler, B. 1977. A checklist of the liverworts and hornworts of North America. The Bryologist 80: 405-428.
- Thomas, D.C. 1994. Fire-caribou relationships: (V) The winter diet of the Beverly herd in northern Canada. Canadian Wildlife Service Unpublished Report. 41 pages.
- Thomas, D.C. and Hervieux, D.P. 1986. The late winter diets of barren-ground caribou in north-central Canada. Rangifer, Special Issue 1: 305-310.
- Thomas, D.C. and Kiliaan, H.P.L. 1991. Fire-caribou relationships: (IV) Recovery of habitat after fire on winter range of the Beverly herd in northern Canada. Canadian Wildlife Service, Western and Northern Region, Edmonton, Alberta, Canada. 115 pages

Zackrisson, O. 1977. Influence of forest fires on the north Swedish boreal forest. Oikos 29: 22-23.

General Conclusion, Management Recommendations and Future Research

Conclusion

The purpose of this study was to determine the short-term effects of various timber harvesting methods and to identify logging methods that reduce mechanical damage to terrestrial lichen and understory plant communities present in woodland caribou habitat. This was accomplished by examining the 4 main hypotheses, outlined in the General Introduction, dealing with various logging practice combinations to determine the differential effects on terrestrial lichen and understory plant species.

Hypothesis 1 was supported by the results of this study. All lichen and plant species showed a general decrease in abundance following all logging treatment combinations. Hypotheses 2 and 3 were supported by the results of terrestrial lichen and bryophyte species. Abundances of terrestrial lichens and bryophytes decreased to a greater extent following treatment combinations with a) summer harvesting as compared to winter harvesting and b) scarification as compared to no scarification. Hypothesis 4 was only supported by the terrestrial bryophyte results of this study. Only the abundance of bryophyte species was consistently reduced to a greater extent with stump-side delimbing than road-side delimbing, regardless of treatment combination.

The greatest overall short-term reduction in abundance of lichens and bryophytes resulted from summer harvesting and stump-side delimbing followed by scarification. This treatment combination appeared to maximize the amount of ground disturbance on-site, resulting in the greatest amounts of damage to lichen and bryophyte communities. Although road-side delimbing, as compared to stump-side processing, tended to result in lower covers of species for lichens and bryophytes when combined with summer harvesting and scarification, the overall effects of delimbing were minor when compared to season of harvest and scarification.

The greatest short-term retention of terrestrial lichens resulted from winter harvesting and stump-side delimbing with no scarification. This treatment combination appeared to reduce heavy machinery traffic on the ground surface due to the protective snowpack present during winter logging. Stump-side delimbing appeared to provide

suitable microhabitats for lichens following timber harvest and the absence of scarification eliminated severe ground disturbance and damage to remaining lichens. Similar responses by shrub and herb communities to all of the treatment combinations indicated that the cover of these species was reduced regardless of logging method employed. The greatest short-term retention of terrestrial bryophytes resulted from winter harvesting and scarification with road-side delimbing. Compared to terrestrial lichens, bryophytes appeared to respond differently to the microenvironmental conditions of the slash piles.

Recommendations

The lichen and bryophyte results of this study provided a strong indication of appropriate timber harvesting methods for the short-term maintenance of woodland caribou forage. Treatment combinations involving summer harvesting and scarification resulted in the greatest short-term decreases in abundance of terrestrial lichens and understory plants. It is recommended that these timber harvesting methods be reduced or eliminated from use in regions where the short-term maintenance of forage species in woodland caribou habitat is of concern. Logging operations should incorporate winter timber harvest without spring scarification to reduce the amount of damage to vegetation during logging. This treatment combination minimizes heavy machinery traffic on-site which reduces the amount of mechanical damage to terrestrial lichens and bryophytes thereby maintaining the greatest abundance of caribou forage after timber harvest. Stumpside delimbing, when applied in conjunction with winter harvesting increases the retention of terrestrial lichens immediately following logging by providing suitable microhabitats. Given the greater importance of terrestrial lichens in the caribou diet, increased lichen abundance may outweigh decreases in bryophyte cover that may result from stump-side delimbing.

Future Research

This research presents results for only one year following timber harvest and therefore only examines the initial impact of mechanical damage by logging machinery on terrestrial lichens and understory plants. Previous studies have indicated that vegetation

continues to decrease during the years immediately following timber harvest in response to altered microenvironmental conditions (Brinkman, 1936; Dyrness, 1973; Corns & La Roi, 1976; Kauppi et al., 1978; Kirby, 1988; Brumelis & Carleton, 1989; Nieppola, 1992; Snyder & Woodard, 1992). The species composition and pattern of revegetation immediately following timber harvest may differ from the original lichen and plant communities depending upon the species present in the immediate and surrounding areas as well as the long-term, on-site effects of the various timber harvest practices.

The results presented in this study indicate that the slash piles produced by stump-side delimbing may serve to maintain the highest abundance of terrestrial lichens immediately following logging by providing favorable microhabitats. Slash piles may provide suitable cover for the regeneration of lichens and possibly vascular and non-vascular plants as well over a much longer time frame. The revegetation of logged sites may therefore be enhanced by the increased abundance of species on-site serving as sources of lichen and plant species for recolonization.

Previous studies have shown that species replacement or turnover can occur in logged sites with competitive lichens and plants dominating the original species for several years (Dyrness, 1973; Brumelis & Carleton, 1989). Changes in the species composition of caribou habitat may severely alter the quality of forage available to woodland caribou. Studies have also indicated that the long-term regeneration of terrestrial lichens on logged sites may be improved by increased disturbance such as summer harvesting or scarification (Harris, 1992; Snyder & Woodard, 1992). Long-term increases in the terrestrial lichen cover of woodland caribou habitat may be more beneficial than short-term maintenance. These are issues on which little information is available.

This study is unique in Alberta and is among few such research projects currently taking place in Canada (Enns, 1992; Anonymous, 1995, Thomas & Armbruster, 1996). Detailed information on all species of lichens, bryophytes, shrubs, and herbaceous plants collected prior to timber harvest as well as immediately following logging has created a baseline of information on which future research can be based. Permanent sample plots in the study area will facilitate future monitoring of lichen and plant communities as

long-term effects of the various logging treatments become apparent. Present as well as future information will be valuable in the development of long-term management strategies that incorporate the maintenance of woodland caribou habitat with commercial timber harvest operations.

Literature Cited

- Anonymous. 1995. Silvicultural systems to maintain northern caribou habitat in lodgepole pine forests in the Mxv and SBPSxc subzones in the cariboo forest region. Draft working plan. Ministry of Forests, British Columbia. 27 pages.
- Brinkman, A.H. 1936. Mosses in relation to Cajander theory of forest types. Forestry Chronicle 12: 300-315.
- Brumelis, G. and Carleton, T.J. 1989. The vegetation of post-logged black spruce lowlands in central Canada. II. Understory vegetation. Journal of Applied Ecology 26: 321-339.
- Corns, I.G.W. and La Roi, G.H. 1976. A comparison of mature with recently clear-cut and scarified lodgepole pine forests in the lower foothills of Alberta. Canadian Journal of Forest Research 6: 20-32.
- Enns, K.A. 1992. Terrestrial lichen management in the Itcha-Ilgachuz, Chilcotin Range. B.C. Interim Report. Larkspur Biological Consultants. 25 pages.
- Harris, A. 1992. Post-logging regeneration of reindeer lichens (*Cladina* spp.) as related to woodland caribou winter habitat. Ontario Ministry of Natural Resources, Northwest Region Science and Technology, Technical Report #69. 33 pages.
- Dyrness, C.T. 1973. Early stages of plant succession following logging and burning in the western Cascades of Oregon. Ecology 54: 57-69.
- Kauppi, P., Hari, P. and Kellomäki, S. 1978. A direct time model for succession of ground cover communities after clear-cutting. Oikos 30: 100-105.
- Kirby, K.J. 1988. Changes in the ground flora under plantations on ancient woodland sites. Forestry 61: 317-338.
- Nieppola, J. 1992. Long-term vegetation changes in stands of *Pinus sylvestris* in southern Finland. Journal of Vegetation Science 3: 475-484.
- Snyder, J.M. and Woodard, P.M. 1992. Lichen regeneration rates in Alberta following various types of logging and wildfire disturbances. Final Report. University of Alberta. 95 pages.
- Thomas, D.C. & Armbruster, H.J. 1996. Woodland caribou habitat studies in Saskatchewan: Second annual report including some preliminary recommendations. Unpublished report. Canadian Wildlife Service. 46 pages.

Appendix 1.1 Percentage classes and percent cover ranges used to estimate abundances of lichens and all vascular and non-vascular plant species.

Percentage Assigned	Percent Cover Range
95	95 - 99
90	90 - 94
80	80 - 89
70	70 - 79
60	60 - 69
50	50 - 59
40	40 - 49
30	30 - 39
25	25 - 29
20	20 - 24
15	15 - 19
10	10 - 14
8	8 - 9
5	5 - 7
3	3 - 4
2	2
1	1
0.1	species present with trace cover

In each sample unit (quadrat), individual lichen and plant species were assigned specific percentages based on visual estimation of the percent cover range. Total abundance of lichen and plant groups were calculated by addition of species percent covers for each group.

Appendix 1.2 Abundance of terrestrial lichens¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Tourse	D., II.,	The state of
Treatment	<u>Pre-Harvest</u>	Post-Harvest
S1	36.93 ± 2.90	1.91 ± 0.39 * ab
S2	35.54 ± 2.56	1.81 ± 0.33 * ab
S3	36.83 ± 3.29	2.80 ± 0.41 * ab
S4	29.53 ± 2.95	5.36 ± 1.00 * b
W1	44.57 ± 3.42	8.59 ± 1.18 * a
W2	43.24 ± 3.34	10.12 ± 1.68 * ab
W3	37.39 ± 2.89	35.60 ± 3.64 c
W4	35.78 ± 3.66	28.25 ± 3.45 * c
Control		
C1	27.40 ± 2.97	27.65 ± 3.09 c
C2	37.22 ± 2.76	36.39 ± 2.91 c
С3	35.19 ± 2.87	39.12 ± 3.14 * c
C4	49.40 ± 3.63	48.42 ± 3.69 c

¹ includes all lichen species, except crustose growth forms, found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.3 Abundance of terrestrial lichens¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	27.08 ± 2.57	1.55 ± 0.23 * ab
S2	23.23 ± 2.30	3.28 ± 0.60 * bc
S3	36.44 ± 2.56	10.64 ± 1.34 * ab
S4	30.88 ± 2.19	8.52 ± 1.43 * b
W1	44.35 ± 3.36	9.19 ± 1.07 * a
W2	47.53 ± 3.16	12.81 ± 1.50 * a
W3	35.62 ± 3.92	32.03 ± 3.75 * de
W4	48.77 ± 3.30	38.17 ± 2.79 * cd
Control		
C1	33.06 ± 3.42	33.20 ± 3.39 e
C2	41.36 ± 4.15	36.32 ± 3.92 * de
C3	48.99 ± 4.03	47.75 ± 4.03 e
C4	31.35 ± 2.62	32.04 ± 2.90 e

¹ includes all lichen species, except crustose growth forms, found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.4 Abundance of terrestrial lichens¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

<u>Treatment</u>	Pre-Harvest	Post-Harvest
Treatment	TTC Harvest	1 Ost-Hai vest
S1	49.65 ± 3.14	4.64 ± 0.59 * a
S2	40.85 ± 2.98	7.25 ± 1.41 * a
S3	34.85 ± 2.20	17.23 ± 2.24 * b
S4	37.23 ± 2.43	16.12 ± 1.99 * b
W1	33.32 ± 2.69	13.94 ± 1.40 * b
W2	37.84 ± 2.89	12.45 ± 1.74 * b
W3	45.22 ± 2.85	28.40 ± 2.51 * b
W4	45.87 ± 2.61	27.47 ± 2.15 * b
Control		
C 1	29.60 ± 2.98	33.61 ± 3.58 * c
C2	27.12 ± 3.15	$23.53 \pm 2.83 * c$
C3	40.34 ± 3.03	47.79 ± 3.51 * c
C4	45.34 ± 4.07	37.51 ± 3.84 * c

¹ includes all lichen species, except crustose growth forms, found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.5 Summary statistics for three-way ANOVA of terrestrial lichen abundance

Stand 1

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	5358.02040	5358.02040	31.58724 *
Factor B	1	12028.49595	12028.49595	70.91181 *
Factor C	1	636.27540	636.27540	3.75105
First-order interaction A X B	1	5269.23551	5269.23551	31.06382 *
First-order interaction AXC	1	141.81237	141.81237	0.83603
First-order interaction B X C	1	206.54001	206.54001	1.21762
Second-order interaction AXBXC	1	242.28479	242.28479	1.42835
Within Groups (Error)	392	66493.44131	169.62613	
Total	399	23882.66444		

 $F_{0.05(1),1,392 = 3.87}$

Stand 2

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	89.07584	89.07584	0.56083
Factor B	1	6392.32230	6392.32230	40.24700 *
Factor C	1	65.33489	65.33489	0.41136
First-order interaction A X B	1	8454.25081	8454.25081	53.22920 *
First-order interaction A X C	1	369.10094	369.10094	2.32391
First-order interaction B X C	1	70.86272	70.86272	0.44616
Second-order interaction AXBXC	1	18.24144	18.24144	0.11485
Within Groups (Error)	392	62260.30188	158.82730	
Total	399	15459.18896		

 $F_{0.05(1),1,392} = 3.87$

Stand 3

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	3459.91004	3459.91004	23.13180
Factor B	1	6924.07052	6924.07052	46.29202 1
Factor C	1	19.13188	19.13188	0.12791
First-order interaction A X B	1	2058.25542	2058.25542	13.76081
First-order interaction A X C	1	795.40921	795.40921	5.31784 1
First-order interaction B X C	1	122.92157	122.92157	0.82181
Second-order interaction AXBXC	1	795.46562	795.46562	5.31822 1
Within Groups (Error)	392	58632.90904	149.57375	
Total	399	14175.16426		

 $F_{0.05(1),1,392 = 3.87}$

Factor A = Season of Timber Harvest

Factor B = Scarification

Factor C = Method of Delimbing

* = significant factor / interaction

Appendix 1.6 Abundance of *Cladina* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	17.89 ± 1.90	0.74 ± 0.15 * a
S2	15.15 ± 1.53	1.12 ± 0.29 * a
S3	18.81 ± 2.23	1.39 ± 0.26 * a
S4	15.65 ± 2.33	2.68 ± 0.57 * ab
W1	23.30 ± 2.81	4.82 ± 0.86 * a
W2	26.81 ± 2.72	6.78 ± 1.36 * a
W3	21.87 ± 2.46	23.11 ± 3.05 bc
W4	18.45 ± 2.91	16.37 ± 2.88 c
Control		
C1	15.16 ± 2.58	15.70 ± 2.66 c
C2	22.23 ± 2.49	21.01 ± 2.55 c
C3	14.20 ± 2.07	16.34 ± 2.44 * c
C4	29.53 ± 3.18	28.22 ± 3.17 c

¹ includes all species of *Cladina* found growing on soil and/or downed woody material.

^{*} indicates significant difference ($P \le 0.001$) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.7 Abundance of *Cladina* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	12.81 ± 1.87	0.85 ± 0.15 * bcd
S2	10.47 ± 1.73	1.58 ± 0.39 * cde
S3	19.75 ± 2.07	5.81 ± 0.92 * abc
S4	17.87 ± 2.00	4.94 ± 0.91 * bcd
W1	24.54 ± 2.73	5.20 ± 0.68 * ab
W2	30.83 ± 2.82	8.71 ± 1.18 * a
W3	18.81 ± 3.15	16.06 ± 2.92 efd
W4	33.99 ± 2.87	26.08 ± 2.46 * cd
Control		
C 1	15.91 ± 2.60	15.69 ± 2.66 f
C2	22.99 ± 3.02	20.73 ± 3.02 * ef
С3	25.00 ± 2.71	23.24 ± 2.53 f
C4	14.61 ± 1.91	15.40 ± 2.21 f

¹ includes all species of *Cladina* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.8 Abundance of *Cladina* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest	
S1	27.43 ± 2.61	2.94 ± 0.43 * a	,
S2	23.29 ± 2.52	4.76 ± 1.02 * a	b
S3	18.83 ± 2.00	9.41 ± 1.67 * b	С
S4	21.33 ± 2.23	10.54 ± 1.66 * b	С
W1	19.71 ± 2.05	8.61 ± 0.97 * b	С
W2	18.49 ± 2.07	6.88 ± 1.10 * b	С
W3	24.03 ± 2.64	16.81 ± 2.21 * c	d
W4	27.37 ± 2.40	15.71 ± 1.86 * b	С
Control			
C1	16.19 ± 2.58	18.29 ± 2.87 e	;
C2	9.46 ± 1.95	8.02 ± 1.73 e	;
C3	14.98 ± 1.71	17.97 ± 2.03 * d	le
C4	19.73 ± 2.61	16.89 ± 2.60 * d	le

¹ includes all species of *Cladina* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.9 Summary statistics for three-way ANOVA of Cladina species abundance

Stand 1

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	1308.26890	1308.26890	9.58119 *
Factor B	1	4783.65890	4783.65890	35.03344 4
Factor C	1	311.13432	311.13432	2.27861
First-order interaction AXB	1	3457.32240	3457.32240	25.31993 *
First-order interaction A X C	1	134.28174	134.28174	0.98342
First-order interaction B X C	1	273.37316	273.37316	2.00207
Second-order interaction AXBXC	1	9.66588	9.66588	0.07079
Within Groups (Error)	392	53525.84198	136.54552	
Total	399	10277.70530		

 $F_{0.05(1),1,392} = 3.87$

Stand 2

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	384.68938	384.68938	2.77468
Factor B	1	1325.50606	1325.50606	9.56058 *
Factor C	1	51.68891	51.68891	0.37282
First-order interaction A X B	1	4656.08346	4656.08346	33.58330 *
First-order interaction A X C	1	739.26891	739.26891	5.33218 *
First-order interaction B X C	1	9.36666	9.36666	0.06756
Second-order interaction AXBXC	1	2.86117	2.86117	0.02064
Within Groups (Error)	392	54347.98359	138.64282	
Total	399	7169.46455		

 $F_{0.05(1),1,392} = 3.87$

Stand 3

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	1555.78969	1555.78969	12.77436 *
Factor B	1	3150.63303	3150.63303	25.86937 *
Factor C	1	2.81736	2.81736	0.02313
First-order interaction A X B	1	644.67749	644.67749	5.29335 *
First-order interaction A X C	1	292.63234	292.63234	2.40276
First-order interaction B X C	1	271.17856	271.17856	2.22661
Second-order interaction AXBXC	1	4.41630	4.41630	0.03626
Within Groups (Error)	392	47741.70822	121.79007	
Total	399	5922.14478		

 $F_{0.05(1),1,392} = 3.87$

Factor A = Season of Timber Harvest

Factor B = Scarification

Factor C = Method of Delimbing

* = significant factor / interaction

Appendix 1.10 Abundance of *Cladonia* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	12.59 ± 1.82	1.04 ± 0.28 * a
S2	7.96 ± 0.96	0.41 ± 0.10 * ab
S3	7.99 ± 0.92	1.12 ± 0.20 * ab
S4	8.63 ± 1.37	1.81 ± 0.66 * b
W1	8.64 ± 0.94	2.81 ± 0.45 * bc
W2	7.52 ± 0.70	$1.70 \pm 0.33 * bc$
W3	7.38 ± 0.88	7.57 ± 1.13 d
W4	7.54 ± 0.74	6.52 ± 0.55 d
Control		
C1	5.89 ± 1.05	5.18 ± 0.79 d
C2	6.38 ± 0.70	6.80 ± 0.78 d
C3	6.60 ± 0.90	6.94 ± 1.02 d
C4	10.37 ± 0.98	11.94 ± 1.37 cd

¹ includes all species of *Cladonia* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.11 Abundance of *Cladonia* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	8.39 ± 1.15	0.59 ± 0.12 * ab
S2	5.62 ± 0.81	0.86 ± 0.20 * bcd
S3	9.22 ± 0.97	3.27 ± 0.40 * abc
S4	8.16 ± 0.80	2.25 ± 0.55 * abc
W1	10.65 ± 1.84	3.02 ± 0.43 * abc
W2	11.69 ± 1.10	3.53 ± 0.68 * a
W3	8.96 ± 1.25	11.33 ± 1.66 * cde
W4	8.32 ± 0.97	8.54 ± 0.97 def
Control		
C1	7.22 ± 1.03	7.79 ± 1.11 f
C2	5.77 ± 0.82	5.49 ± 0.79 f
C3	7.26 ± 0.96	8.21 ± 1.04 ef
C4	5.53 ± 0.99	5.94 ± 0.99 f

¹ includes all species of *Cladonia* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.001) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.12 Abundance of *Cladonia* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	13.02 ± 1.29	1.22 ± 0.24 * a
S2	8.39 ± 0.78	1.67 ± 0.33 * b
S3	10.72 ± 0.92	6.86 ± 0.97 * b
S4	9.17 ± 0.94	3.96 ± 0.64 * b
W1	6.76 ± 0.66	3.91 ± 0.47 * bc
W2	7.91 ± 0.99	3.21 ± 0.49 * b
W3	12.66 ± 1.30	8.61 ± 0.99 * b
W4	11.81 ± 1.15	8.79 ± 0.98 * bcd
Control		
C1	5.32 ± 0.69	5.56 ± 0.81 d
C2	7.03 ± 0.90	6.97 ± 0.91 d
C3	7.07 ± 0.74	8.06 ± 0.86 cd
C4	6.35 ± 1.33	5.54 ± 1.09 d

¹ includes all species of *Cladonia* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.13 Summary statistics for three-way ANOVA of Cladonia species abundance

Stand 1

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	2245.43300	2245.43300	44.17195 *
Factor B	1	1371.14684	1371.14684	26.97307 *
Factor C	1	86.95563	86.95563	1.71058
First-order interaction AXB	1	127.66740	127.66740	2.51146
First-order interaction AXC	1	57.28976	57.28976	1.12700
First-order interaction B X C	1	29.87716	29.87716	0.58774
Second-order interaction AXBXC	1	83.50304	83.50304	1.64266
Within Groups (Error)	392	19926.89354	50.83391	
Total	399	4001.87282		

 $F_{0.05(1),1,392} = 3.87$

Stand 2

Source of Variation	df	Sum of Squares	Mean Square	$F_{calculated}$
Factor A	1	179.78787	179.78787	3.41088
Factor B	1	878.97426	878.97426	16.67562 *
Factor C	1	134.03851	134.03851	2.54294
First-order interaction A X B	1	1217.20743	1217.20743	23.09247 *
First-order interaction A X C	1	19.60276	19.60276	0.37190
First-order interaction B X C	1	17.83795	17.83795	0.33842
Second-order interaction AXBXC	1	500.34979	500.34979	9.49248 *
Within Groups (Error)	392	20662.37311	52.71014	
Total	399	2947.79857		

 $F_{0.05(1),1,392 = 3.87}$

Stand 3

Source of Variation	df	Sum of Squares	Mean Square	F _{calculated}
Factor A	1	873.26160	873.26160	20.91559 *
Factor B	1	656.79438	656.79438	15.73096 *
Factor C	1	191.21358	191.21358	4.57978 *
First-order interaction AXB	1	280.09370	280.09370	6.70856 *
First-order interaction A X C	1	88.84948	88.84948	2.12804
First-order interaction B X C	1	53.47997	53.47997	1.28091
Second-order interaction AXBXC	1	445.08341	445.08341	10.66025 *
Within Groups (Error)	392	16366.66826	41.75170	
Total	399	2588.77612		

 $F_{0.05(1),1,392} = 3.87$

Factor A = Season of Timber Harvest

Factor B = Scarification

Factor C = Method of Delimbing

* = significant factor / interaction

Appendix 1.14 Abundance of *Peltigera* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	5.87 ± 0.85	0.06 ± 0.02 * abc
S2	8.05 ± 1.31	0.10 ± 0.02 * ab
S3	3.52 ± 0.65	0.12 ± 0.04 * cdef
S4	4.68 ± 0.94	0.71 ± 0.33 * bcd
W1	11.15 ± 1.61	0.73 ± 0.15 * a
W2	6.27 ± 1.27	1.05 ± 0.27 * bcd
W3	5.67 ± 0.86	2.88 ± 0.48 * bcde
W4	7.20 ± 1.58	3.40 ± 0.68 * bcde
Control		
C1	5.27 ± 0.93	5.59 ± 1.25 ef
C2	7.89 ± 1.64	7.88 ± 1.64 f
С3	13.72 ± 2.09	15.07 ± 2.00 cdef
C4	5.54 ± 0.80	5.31 ± 0.75 def

¹ includes all species of *Peltigera* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.15 Abundance of *Peltigera* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	5.27 ± 0.84	0.08 ± 0.01 * ab
S2	3.54 ± 0.80	0.29 ± 0.07 * bc
S3	6.23 ± 0.86	1.28 ± 0.31 * ab
S4	3.83 ± 0.70	$1.00 \pm 0.33 * bc$
W1	8.42 ± 1.23	0.82 ± 0.41 * a
W2	3.42 ± 0.66	$0.44 \pm 0.17 * bc$
W3	7.69 ± 1.34	4.39 ± 0.93 * abc
W4	5.96 ± 1.14	$3.11 \pm 0.53 * bc$
Control		
C 1	6.18 ± 0.94	6.94 ± 1.02 c
C2	5.49 ± 0.81	$3.89 \pm 0.57 * c$
C3	5.87 ± 1.00	6.25 ± 1.10 c
C4	9.62 ± 1.46	9.42 ± 1.41 c

¹ includes all species of *Peltigera* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.001) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.16 Abundance of *Peltigera* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest	
S1	5.99 ± 0.99	0.16 ± 0.05 *	ab
S2	7.71 ± 1.01	0.68 ± 0.30 *	a
S3	4.43 ± 0.61	0.69 ± 0.18 *	abc
S4	5.38 ± 0.77	1.15 ± 0.25 *	abc
W1	5.85 ± 0.93	1.22 ± 0.20 *	abc
W2	10.32 ± 1.72	2.03 ± 0.52 *	a
W3	6.64 ± 0.91	2.38 ± 0.38 *	abc
W4	4.66 ± 0.81	1.90 ± 0.33 *	bc
Control			-
C1	6.27 ± 1.18	8.15 ± 1.71	c
C2	9.16 ± 1.51	7.48 ± 1.35	С
C3	8.82 ± 1.15	11.69 ± 1.47 *	bc
C4	13.51 ± 1.91	10.45 ± 1.53 *	bc

¹ includes all species of *Peltigera* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.17 Summary statistics for three-way ANOVA of Peltigera species abundance

Stand 1

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	10.59828	10.59828	0.14534
Factor B	1	1772.62051	1772.62051	24.30823 *
Factor C	1	63.32181	63.32181	0.86834
First-order interaction A X B	1	4.43313	4.43313	0.06079
First-order interaction A X C	1	567.13041	567.13041	7.77715 *
First-order interaction B X C	1	175.33732	175.33732	2.40443
Second-order interaction AXBXC	1	261.16176	261.16176	3.58135
Within Groups (Error)	392	28585,68078	72.92266	
Total	399	2854.60322		

 $F_{0.05(1),1,392 = 3.87}$

Stand 2

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	0.00189	0.00189	0.00003
Factor B	1	50.51656	50.51656	0.84883
Factor C	1	1146.46574	1146.46574	19.26401 *
First-order interaction A X B	1	203.10525	203.10525	3.41277
First-order interaction A X C	1	11.74776	11.74776	0.19740
First-order interaction B X C	1	99.75016	99.75016	1.67610
Second-order interaction AXBXC	1	102.40428	102.40428	1.72069
Within Groups (Error)	392	23329.23213	59.51335	
Total	399	1613.99163		

 $F_{0.05(1),1,392 = 3.87}$

Stand 3

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	61.90542	61.90542	1.00678
Factor B	1	903.66372	903.66372	14.69649 1
Factor C	1	78.49960	78.49960	1.27666
First-order interaction A X B	1	26.79098	26.79098	0.43571
First-order interaction A X C	1	17.86753	17.86753	0.29058
First-order interaction B X C	1	328.18946	328.18946	5.33742 1
Second-order interaction AXBXC	1	167.78021	167.78021	2.72865
Within Groups (Error)	392	24103.45006	61.48839	
Total	399	1584.69692		

 $F_{0.05(1),1,392} = 3.87$

Factor A = Season of Timber Harvest

Factor B = Scarification

Factor C = Method of Delimbing

* = significant factor / interaction

Appendix 1.18 Abundance of *Stereocaulon* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.17 ± 0.10	0.02 ± 0.01 c
S2	3.27 ± 1.14	0.10 ± 0.03 * ab
S3	5.96 ± 1.75	0.08 ± 0.02 * a
S4	0.08 ± 0.02	0.02 ± 0.01 c
W1	0.78 ± 0.35	0.13 ± 0.07 c
W2	2.27 ± 1.24	0.47 ± 0.21 bc
W3	1.73 ± 0.94	1.43 ± 1.01 c
W4	1.31 ± 0.52	1.07 ± 0.51 c
Control		
C1	0.85 ± 0.32	0.97 ± 0.46 c
C2	0.37 ± 0.12	0.31 ± 0.10 c
С3	0.59 ± 0.41	0.69 ± 0.44 c
C4	2.89 ± 1.12	2.23 ± 0.89 c

¹ Stereocaulon tomentosum was the only species found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.19 Abundance of *Stereocaulon* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.37 ± 0.19	0.01 ± 0.004 a
S2	0.39 ± 0.22	0.10 ± 0.05 a
S3	0.75 ± 0.51	0.08 ± 0.06 a
S4	0.41 ± 0.16	0.08 ± 0.04 a
W1	0.20 ± 0.12	0.04 ± 0.03 a
W2	1.24 ± 0.77	0.07 ± 0.04 a
W3	0.06 ± 0.04	0.10 ± 0.10 a
W4	0.23 ± 0.12	0.16 ± 0.07 ⋅a
Control		
C1	1.01 ± 0.41	0.57 ± 0.22 a
C2	4.75 ± 1.59	4.31 ± 1.45 a
C3	9.81 ± 2.82	9.24 ± 2.78 a
C4	1.01 ± 0.61	0.87 ± 0.51 a

¹ Stereocaulon tomentosum was the only species found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.20 Abundance of *Stereocaulon* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	2.51 ± 0.87	0.15 ± 0.07 * a
S2	0.97 ± 0.44	0.05 ± 0.02 ab
S3	0.51 ± 0.23	0.15 ± 0.06 b
S4	0.73 ± 0.26	0.25 ± 0.14 b
W1	0.69 ± 0.60	0.09 ± 0.05 b
W2	0.67 ± 0.27	0.15 ± 0.07 b
W3	0.90 ± 0.39	0.17 ± 0.09 b
W4	0.86 ± 0.25	0.44 ± 0.11 ab
Control		
C1	1.19 ± 0.53	1.09 ± 0.49 b
C2	1.11 ± 0.39	0.79 ± 0.27 b
C3	8.78 ± 2.68	9.48 ± 2.78 ab
C4	4.78 ± 1.76	4.07 ± 1.56 b

¹ Stereocaulon tomentosum was the only species found growing on soil and/or downed woody material.

^{*} indicates significant difference ($P \le 0.05$) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.21 Abundance of Cetraria species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

_		
Treatment	Pre-Harvest	Post-Harvest
S1	0.40 ± 0.09	0.05 ± 0.01 abc
S2	0.84 ± 0.19	0.08 ± 0.01 a
S3	0.56 ± 0.11	0.09 ± 0.01 ab
S4	0.49 ± 0.12	0.14 ± 0.02 ab
W1	0.60 ± 0.21	0.10 ± 0.02 abc
W2	0.36 ± 0.09	0.11 ± 0.02 bcd
W3	0.72 ± 0.20	0.58 ± 0.15 bcd
W4	1.28 ± 0.40	0.88 ± 0.25 ab
Control		
C1	0.23 ± 0.08	0.21 ± 0.09 d
C2	0.36 ± 0.14	0.38 ± 0.19 cd
C3	0.08 ± 0.02	0.08 ± 0.02 d
C4	1.04 ± 0.23	0.67 ± 0.14 cd

¹ includes all species of *Cetraria* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.22 Abundance of *Cetraria* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.24 ± 0.07	0.02 ± 0.01 bc
S2	3.21 ± 0.74	0.45 ± 0.08 * a
S3	0.50 ± 0.12	0.20 ± 0.04 bc
S4	0.60 ± 0.13	0.25 ± 0.07 bc
W1	0.54 ± 0.13	0.09 ± 0.02 bc
W2	0.34 ± 0.10	0.06 ± 0.01 bc
W3	0.10 ± 0.04	0.15 ± 0.06 c
W4	0.29 ± 0.08	0.27 ± 0.06 bc
Control		
C1	2.50 ± 0.67	2.03 ± 0.56 b
C2	2.15 ± 0.55	1.64 ± 0.50 b
С3	1.06 ± 0.19	0.80 ± 0.16 bc
C4	0.51 ± 0.16	0.29 ± 0.09 bc

¹ includes all species of *Cetraria* found growing on soil and/or downed woody material.

^{*} indicates significant difference ($P \le 0.05$) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.23 Abundance of *Cetraria* species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.64 ± 0.13	0.16 ± 0.04 abc
S2	0.48 ± 0.10	0.09 ± 0.01 abc
S3	0.34 ± 0.08	0.11 ± 0.01 abc
S4	0.60 ± 0.12	0.22 ± 0.05 abc
W1	0.29 ± 0.11	0.11 ± 0.01 bc
W2	0.44 ± 0.13	0.17 ± 0.05 abc
W3	0.99 ± 0.20	0.43 ± 0.21 a
W4	1.14 ± 0.26	0.61 ± 0.19 ab
Control		
C1	0.63 ± 0.17	0.49 ± 0.17 bc
C2	0.35 ± 0.09	0.27 ± 0.08 c
C3	0.69 ± 0.24	0.59 ± 0.20 bc
C4	0.93 ± 0.24	0.47 ± 0.13 * ab

¹ includes all species of Cetraria found growing on soil and/or downed woody material.

^{*} indicates significant difference ($P \le 0.05$) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.24 Abundance of non-reindeer lichen species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest	
S1	0.00 ± 0.00	0.002 ± 0.002	b
S2	0.26 ± 0.16	0.002 ± 0.002	a
S3	0.00 ± 0.00	0.00 ± 0.00	b
S4	0.002 ± 0.002	0.00 ± 0.00	b
W1	0.11 ± 0.06	0.002 ± 0.002	ab
W2	0.002 ± 0.002	0.002 ± 0.002	b
W3	0.02 ± 0.02	0.04 ± 0.04	ab
W4	0.00 ± 0.00	0.00 ± 0.00	b
Control			
C 1	0.00 ± 0.00	0.00 ± 0.00	b
C2	0.00 ± 0.00	0.00 ± 0.00	b
С3	0.00 ± 0.00	0.00 ± 0.00	b
C4	1.20 ± 0.02	0.05 ± 0.03	ab

¹ includes species of *Dactylina*, *Nephroma*, *Pertusaria* and *Solorina* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.25 Abundance of non-reindeer lichen species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.004 ± 0.003	0.00 ± 0.00 a
S2	0.00 ± 0.00	0.00 ± 0.00 a
S3	0.00 ± 0.00	0.00 ± 0.00 a
S4	0.00 ± 0.00	0.00 ± 0.00 a
W1	0.00 ± 0.00	0.02 ± 0.02 a
W2	0.00 ± 0.00	0.00 ± 0.00 a
W3	0.00 ± 0.00	0.00 ± 0.00 a
W4	0.00 ± 0.00	0.00 ± 0.00 a
Control		
C 1	0.24 ± 0.17	0.18 ± 0.12 a
C2	0.20 ± 0.12	0.26 ± 0.17 a
C3	0.002 ± 0.002	0.00 ± 0.00 a
C4	0.08 ± 0.06	0.12 ± 0.10 a

¹ includes all species of *Dactylina*, *Nephroma*, *Pertusaria* and *Solorina* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 1.26 Abundance of non-reindeer lichen species¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest	
S1	0.05 ± 0.03	0.002 ± 0.002	a
S2	0.00 ± 0.00	0.00 ± 0.00	a
S3	0.02 ± 0.02	0.00 ± 0.00	a
S4	0.004 ± 0.003	0.004 ± 0.003	a
W1	0.02 ± 0.02	0.00 ± 0.00	a
W2	0.002 ± 0.002	0.004 ± 0.003	a
W3	0.002 ± 0.002	0.002 ± 0.002	a
W4	0.04 ± 0.04	0.02 ± 0.02	a
Control			
C1	0.004 ± 0.003	0.02 ± 0.02	a
C2	0.00 ± 0.00	0.00 ± 0.00	a
С3	0.00 ± 0.00	0.00 ± 0.00	a
C4	0.04 ± 0.04	0.08 ± 0.06	a

¹ includes all species of *Dactylina*, *Nephroma*, *Pertusaria* and *Solorina* found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.1 Abundance of shrub plants¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	15.18 ± 1.21	0.08 ± 0.04 * a
S2	14.53 ± 1.69	0.22 ± 0.12 * a
S3	20.24 ± 2.15	1.71 ± 0.50 * a
S4	15.00 ± 1.42	0.33 ± 0.09 * a
W1	14.94 ± 1.14	0.43 ± 0.12 * a
W2	19.15 ± 2.01	0.39 ± 0.13 * a
W3	22.39 ± 2.59	5.07 ± 1.39 * a
W4	17.75 ± 1.75	2.81 ± 0.51 * a
Control		
C1	28.01 ± 2.70	34.32 ± 2.82 * b
C2	23.02 ± 2.09	27.91 ± 2.39 * b
C3	12.96 ± 1.20	13.96 ± 1.36 c
C4	21.60 ± 2.79	19.96 ± 3.02 b

¹ includes all species of shrubs, dwarf shrubs, and tree seedlings < 1.3 m in height found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.2 Abundance of shrub plants¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	<u>Post-Harvest</u>
S1	11.65 ± 1.01	0.14 ± 0.07 * b
S2	22.80 ± 2.27	0.64 ± 0.46 * a
S3	14.16 ± 1.38	0.74 ± 0.17 * b
S4	15.09 ± 1.02	1.09 ± 0.41 * b
W1	13.43 ± 1.46	0.18 ± 0.05 * b
W2	12.21 ± 1.12	0.30 ± 0.16 * b
W3	11.91 ± 1.81	1.89 ± 0.39 * bcd
W4	14.29 ± 1.62	2.63 ± 0.61 * bc
Control		
C1	20.12 ± 2.03	20.46 ± 2.29 e
C2	21.72 ± 2.39	22.50 ± 2.33 de
C3	26.17 ± 1.92	25.16 ± 2.40 cde
C4	26.28 ± 2.77	26.01 ± 2.82 e

¹ includes all species of shrubs, dwarf shrubs, and tree seedlings < 1.3 m in height found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.3 Abundance of shrub plants¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	12.81 ± 1.45	0.20 ± 0.07 * a
S2	16.83 ± 1.50	0.17 ± 0.05 * a
S3	18.41 ± 1.68	1.51 ± 0.29 * a
S4	19.33 ± 1.42	1.47 ± 0.25 * a
W1	17.75 ± 1.94	0.70 ± 0.20 * a
W2	19.00 ± 1.96	0.53 ± 0.15 * a
W3	13.22 ± 1.19	1.85 ± 0.43 * a
W4	16.81 ± 1.31	1.57 ± 0.19 * a
Control		
C1	20.14 ± 2.17	24.16 ± 2.83 * b
C2	24.66 ± 2.83	25.05 ± 3.18 b
C3	15.99 ± 1.63	18.35 ± 2.14 * b
C4	27.33 ± 2.75	27.99 ± 2.94 b

¹ includes all species of shrubs, dwarf shrubs, and tree seedlings < 1.3 m in height found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.4 Summary statistics for three-way ANOVA of shrub species abundance

Stand 1

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	42.44523	42.44523	0.56117
Factor B	1	13.18416	13.18416	0.17431
Factor C	1	46.81296	46.81296	0.61891
First-order interaction A X B	1	127.66740	127.66740	1.68788
First-order interaction A X C	1	182.79040	182.79040	2.41666
First-order interaction B X C	1	180.84870	180.84870	2.39099
Second-order interaction AXBXC	1	66.65090	66.65090	0.88119
Within Groups (Error)	392	29649.94233	75 .63761	
Total	399	660.39975		

 $F_{0.05(1),1,392} = 3.87$

Stand 2

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	1134.40976	1134.40976	16.99901 *
Factor B	1	413.02433	413.02433	6.18913 *
Factor C	1	603.24272	603.24272	9.03953 *
First-order interaction A X B	1	0.42641	0.42641	0.00639
First-order interaction AXC	1	353.55281	353.55281	5.29795 *
First-order interaction B X C	1	101.62656	101.62656	1.52286
Second-order interaction AXBXC	1	595.11602	595.11602	8.91775 *
Within Groups (Error)	392	26159.67318	66.73386	
Total	399	3201.39862		

 $F_{0.05(1),1,392} = 3.87$

Stand 3

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
F4 4	1	13.48726	13.48726	0.19878
Factor A	1			
Factor B	1	9.76250	9.76250	0.14388
Factor C	1	457.16854	457.16854	6.73783
First-order interaction AXB	1	722.66881	722.66881	10.65082
First-order interaction AXC	1	1.20231	1.20231	0.01772
First-order interaction B X C	1	0.70141	0.70141	0.01034
Second-order interaction A X B X C	1	124.93651	124.93651	1.84134
Within Groups (Error)	392	26597.60491	67.85103	
Total .	399	1329.92733		

 $F_{0.05(1),1,392 = 3.87}$

Factor A = Season of Timber Harvest

Factor B = Scarification

Factor C = Method of Delimbing

* = significant factor / interaction

Appendix 2.5 Abundance of herbaceous plants¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.88 ± 0.25	0.03 ± 0.02 bc
S2	2.70 ± 0.66	0.12 ± 0.06 * a
S3	0.40 ± 0.14	0.18 ± 0.05 c
S4	0.13 ± 0.05	0.09 ± 0.05 c
W1	0.32 ± 0.09	0.02 ± 0.01 c
W2	0.52 ± 0.25	0.05 ± 0.01 c
W3	0.46 ± 0.20	0.13 ± 0.07 c
W4	0.16 ± 0.08	0.01 ± 0.004 c
Control		
C1	0.88 ± 0.29	1.13 ± 0.32 c
C2	0.58 ± 0.18	0.67 ± 0.17 c
C3	3.38 ± 0.34	3.54 ± 0.35 ab
C4	0.32 ± 0.12	0.39 ± 0.13 c

¹ includes all species of forbs, graminoids, clubmosses and horsetails found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.6 Abundance of herbaceous plants¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest	
S 1	2.24 ± 0.31	0.06 ± 0.04 *	a
S2	1.17 ± 0.26	0.14 ± 0.11	bcde
S3	2.19 ± 0.40	0.22 ± 0.12 *	ab
S4	2.48 ± 0.41	0.03 ± 0.01 *	a
W1	1.65 ± 0.30	0.002 ± 0.002 *	abcd
W2	1.85 ± 0.27	0.01 ± 0.004 *	ab
W3	1.99 ± 0.29	0.32 ± 0.12 *	abc
W4	1.89 ± 0.28	0.05 ± 0.02 *	ab
Control			
C1	0.20 ± 0.04	0.68 ± 0.16	de
C2	0.94 ± 0.22	1.26 ± 0.34	cde
C3	0.26 ± 0.12	0.38 ± 0.20	e
C4	1.73 ± 0.27	4.69 ± 0.69 *	a

¹ includes all species of forbs, gramminoids, clubmosses and horsetails found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.7 Abundance of herbaceous plants¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	0.92 ± 0.17	0.04 ± 0.01 abcde
S2	1.43 ± 0.19	0.02 ± 0.01 * ab
S3	0.57 ± 0.22	0.06 ± 0.04 de
S4	0.18 ± 0.06	0.02 ± 0.01 e
W1	1.37 ± 0.32	0.02 ± 0.01 abcd
W2	2.19 ± 0.57	0.04 ± 0.02 * a
W3	0.34 ± 0.12	0.03 ± 0.01 e
W4	0.75 ± 0.16	0.05 ± 0.01 cde
Control	3.70 = 3.20	0.00 = 0.01
C1	2.34 ± 0.55	207 ± 0.70 abo
		2.87 ± 0.78 abc
C2	1.91 ± 0.40	$3.43 \pm 0.56 * abc$
C3	1.36 ± 0.25	1.98 ± 0.30 abcde
C4	1.16 ± 0.28	1.62 ± 0.34 bcde

¹ includes all species of forbs, gramminoids, clubmosses and horsetails found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.8 Abundance of terrestrial bryophytes¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 1 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	30.53 ± 3.70	5.70 ± 1.14 * a
S2	20.12 ± 3.27	4.84 ± 1.41 * abc
S3	20.02 ± 3.54	$1.68 \pm 0.53 * abc$
S4	46.02 ± 3.51	8.89 ± 2.20 * e
W1	22.14 ± 3.47	5.93 ± 1.04 * ab
W2	16.15 ± 2.87	6.65 ± 1.37 * bcd
W3	26.94 ± 3.63	17.65 ± 2.79 * bcd
W4	49.37 ± 4.62	$36.07 \pm 4.47 * abc$
Control		
C 1	47.53 ± 4.96	45.29 ± 5.35 bcd
C2	45.30 ± 4.17	42.46 ± 4.28 * cd
C3	32.22 ± 3.84	36.34 ± 3.82 * bcd
C4	21.38 ± 3.40	19.62 ± 3.04 d

Note: letters indicate homogeneous groups (1-Way ANOVA, Tukey test, P < 0.05).

¹ includes all species of mosses and liverworts found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.9 Abundance of terrestrial bryophytes¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 2 (n = 50 for each treatment).

_		
Treatment	<u>Pre-Harvest</u>	Post-Harvest
S1	41.81 ± 4.84	5.25 ± 0.99 * ab
S2	31.77 ± 3.94	8.89 ± 1.51 * bc
S3	44.36 ± 4.39	15.91 ± 2.67 * ab
S4	35.60 ± 4.19	7.54 ± 1.55 * bc
W1	54.43 ± 4.45	16.82 ± 2.56 * a
W2	47.61 ± 4.71	10.33 ± 1.40 * ab
W3	57.31 ± 4.86	43.66 ± 4.57 * cd
W4	34.16 ± 4.25	31.23 ± 3.94 * de
Control		
C1	9.76 ± 2.21	10.41 ± 2.30 e
C2	10.82 ± 1.95	10.75 ± 1.91 e
С3	16.27 ± 3.09	17.68 ± 3.02 e
C4	32.13 ± 4.16	38.10 ± 4.30 * de

Note: letters indicate homogeneous groups (1-Way ANOVA, Tukey test, P < 0.05).

¹ includes all species of mosses and liverworts found growing on soil and/or downed woody material.

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.10 Abundance of terrestrial bryophytes¹ (mean percent cover \pm S.E.) before and after timber harvest for stand 3 (n = 50 for each treatment).

Treatment	Pre-Harvest	Post-Harvest
S1	14.17 ± 2.71	2.30 ± 0.53 * bcd
S2	18.59 ± 3.60	6.40 ± 1.36 * ab
S3	19.97 ± 3.10	9.30 ± 1.67 * bcd
S4	30.27 ± 4.19	13.93 ± 2.66 * ab
W1	19.55 ± 2.99	5.78 ± 1.53 * ab
W2	26.72 ± 4.27	11.17 ± 1.99 * a
W3	31.25 ± 3.90	21.74 ± 3.16 * bc
W4	16.97 ± 3.25	12.96 ± 2.59 * cde
Control		
C 1	22.87 ± 3.92	23.48 ± 4.08 e
C2	37.25 ± 4.99	37.37 ± 4.95 de
C3	24.10 ± 3.62	26.03 ± 3.81 de
C4	21.21 ± 3.88	22.16 ± 3.85 e

¹ includes all species of mosses and liverworts found growing on soil and/or downed woody material.

Note: letters indicate homogeneous groups (1-Way ANOVA, Tukey test, P < 0.05).

^{*} indicates significant difference (P < 0.05) between pre-harvest and post-harvest years determined by t-Test calculations on pairwise comparisons of arcsine-transformed data.

Appendix 2.11 Summary statistics for three-way ANOVA of bryophyte species abundance

Stand 1

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	6420.33613	6420.33613	27.68221 *
Factor B	1	643.89063	643.89063	2.77623
Factor C	1	210.39503	210.39503	0.90715
First-order interaction A X B	1	792.02845	792.02845	3.41495
First-order interaction AXC	1	656.02577	656.02577	2.82855
First-order interaction B X C	1	7136.36353	7136.36353	30.76947
Second-order interaction AXBXC	1	1407.97553	1407.97553	6.07069
Within Groups (Error)	392	90916,57366	231.93003	
Total	399	17267.01506		

 $F_{0.05(1),1,392} = 3.87$

Stand 2

Source of Variation	df	Sum of Squares	Mean Square	Fcalculated
Factor A	1	1031.98350	1031.98350	3.33650
Factor B	1	11967.37542	11967.37542	38.69163 *
Factor C	1	2456.04492	2456.04492	7.94062 *
First-order interaction A X B	1	9130.28026	9130.28026	29.51904 *
First-order interaction A X C	1	12.64158	12.64158	0.04087
First-order interaction B X C	1	128.53891	128.53891	0.41558
Second-order interaction AXBXC	1	467.57575	467.57575	1.51172
Within Groups (Error)	392	121246.15014	309.30140	
Total	399	25194.44034		

 $F_{0.05(1),1,392} = 3.87$

Stand 3

Source of Variation	df	Sum of Squares	Mean Square	F _{calculated}
Factor A	1	73.77092	73.77092	0.35939
Factor B	1	997.23324	997.23324	4.85823 *
Factor C	1	96.60924	96.60924	0.47065
First-order interaction A X B	1	1689.86766	1689.86766	8.23254 *
First-order interaction AXC	1	738.86112	738.86112	3.59951
First-order interaction B X C	1	377.36948	377.36948	1.83843
Second-order interaction AXBXC	1	681.88877	681.88877	3.32196
Within Groups (Error)	392	80464.65819	205.26699	
Total	399	4655.60044		

 $F_{0.05(1),1,392} = 3.87$

Factor A = Season of Timber Harvest

Factor B = Scarification

Factor C = Method of Delimbing

* = significant factor / interaction

Appendix 3.1 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for summer harvested sites of Stand 1.

		SI						
	Pre	Post	Ç, Q	78		S3		St
Lichens:		100 1	LIG	Post	Pre	Post	Pre	Post
Cetraria ericetorum	0.256 +/- 0.067	0.018 ±/. 0.00E	0,000					
Cetraria islandica		0000	-/+ 0.310 +/-	+	0.444 +/- 0.104	0.048 +/- 0.007	7 0.168 +/- 0.080	0 04 a 40 0
Cladina mitis	13 826 +/- 1 562	0.002 +/-	10.140 +/-	002 +/-	0.000 +/- 0.000	0.000 +/- 0.	0.004 +/-	0.048 +/+ 0.0
Cladina rangiferina	+	0.74 000 0	13.440 +/- 1	'	18.688 +/- 2.152	1.362 +/-	8 460 +/-	0000
Cladina stellaris	0000 14 0000	-/+ 200.0	+	0.162 +/- 0.160	2.120 +/- 0.995	0.026 +/-	7 188 +/-	0.474 +/-
Cladonia amaurocuaea		-V+ 000.0	0.000 +/- 0.000	0.000 +/~ 0.000	0.000 +/- 0.000	7+ 000 0	2 4 000	7+ 4/4-0
Cladenia homalis		+	0.000 +/- 0.000	0.000 +/- 0.000	+	2000	7+ 000.0	'
Citational Contains	0.000 +/- 0.000	0.000 +/- 0.000	0.026 +/- 0.020	0 000 -/- 0 000		0.000	-/+ 0000 n	0.000 +/- 0.000
Ciadonia pointes	0.000 +/- 0.000	0.000 +/- 0.000	4	. 7	- 1	-V+ 000.0	_	0.000 +/- 0.000
C. ladonia cameola	0.000 +/- 0.000	+		-	+		000.0 -/+ 000.0 (0.000 +/- 0.000
Cladonia cenotea	0.022 +/- 0.020	+		<u>+</u> ·		0.000 +/- 0.000	0.000 +/- 0.000	+
Cladonia cervicornis subsp. verticillata				0.000 +/- 0.000	0.006 +/- 0.003	0.000 +/- 0.000	0.014 +/-	1
Cladonia chlorophaea		+		0.000 +/- 0.000	0.046 +/- 0.040	-/+ 000.0	7+ 0000	÷ :
Cladenia conforma		+/+	0.046 +/- 0.007	0.000 +/- 0.000	7	7+ 000 0	0.002 -/- 0.	+
Cl-1	0.004 +/- 0.003	0.000 +/- 0.000	0.000 +/+ 0.000	0 -/+	- 4	- 1	0.022 +/-	0.000 +/- 0.000
C. ladonia comula	0.916 +/- 0.198	0.010 +/- 0.004	0.750 +/- 0.146	4		+		0.000 +/- 0.000
L. ladonia crispata	0.998 +/- 0.195	0.004	. 4			7	0.742 +/- 0.152	0.072 +/- 0.034
Cladonia deformis	0.050 +/- 0.007			+	892	0.022 +/- 0.020	0.462 +/- 0.120	+
Cladonia ecmocyna	5 924 +/- 1 110	4	÷ :	-/+ 770	0.306 +/- 0.127	0.020 +/- 0.006	0.194 +/- 0	0.036 +/- 0.030
Cladonia fimbriata	7	÷ :	+	0.216 +/- 0.061	2.556 +/- 0.429	+/+	3540 +/- 0	
Cladonia furcato		+	+	0.008 +/- 0.004	0.040 +/- 0.007	7+	0.030 + 0.00	-
Cladonia oracilia		+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	4	7, 2000	+
Clarity Bluettes	+	0.002 +/- 0.002	0.470 +/- 0.180	0 004 +/- 0 003	. 7		0.000 +/+	+/+
Claachta grayt	0.056 +/- 0.028	0.000 +/- 0.000	0.006 +/- 0.003	+	- 1	+	0.634 +/-	+
Ciddoma macilenta var. bacillaris	0.002 +/- 0.002	0.000 +/- 0.000	4		-	+		0.000 +/- 0.000
Cladonia multiformis	0.000 +/- 0.000	+	14		<u>,</u>	+	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia pyxidata	0.016 +/- 0.005	+		0.000 +/- 0.000	+	0.000 +/- 0.000	0.004 +/- 0.003	+/-
(Nadonia sulphurina	0.010 +/- 0.004	4	-		+	0.004 +/- 0.003	0.006 +/- 0.003	1/+
Cladonia unclalis	3 840 + / + 606	£ .	-/+ 800	0.000 +/- 0.000	0.012 +/- 0.005	7+		
Dactyling arctica	0.000 1/0.000	0-/+	312 +/-	0.106 +/- 0.048	1.924 +/- 0.482	+/-		+ :
Wanter and the second	0.000 +/- 0.000	000	0.000 +/- 0.000	0.000 +/- 0.000	1/+	1	ř.	+/-
בושיים ביותות כחכותותום			0.332 +/- 0,122	0.044 +/- 0.007	. +		+	+
Flavoceirana nivalis	0.000 +/- 0.000	0.002 +/- 0.002	+				+	0.048 +/- 0.007
Nephroma arcticum	0.000 +/- 0.000	0.000 +/- 0.000	4	t000 0 /+ 000 0		<u>+</u>	+	0.038 +/- 0.020
Nephroma expallidum	0.000 +/- 0.000	0.000 +/- 0.000	1		-	+	0.000 +/- 0.000	0.000 +/- 0.000
Peltigera aphthosa	2.106 +/- 0.444	022 +/- 0	. 4	- 7	0 -/+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Peltigera leucophlebia	0.000 +/- 0.000	7/+ 000		÷ ;	+	0.054 +/- 0.028	2.666 +/- 0.754	+
Peltigera malacea	3.668 +/- 0.748	036 +/-	1/4 000	7-0	122	0.000 +/- 0.000	0.482 +/- 0.316	0 -/+ 000
Peltigera neopolydactyla		74 000	1/1 000	÷ :		0.070 +/- 0.028	1.530 +/- 0.382	+
Peltigera retifoveata	+/-	2 4 600	; ;	+		0.000 +/- 0.000	0.000 +/- 0.000	4
Peltigera rufescens		7 .	+/+	7	0.000 +/- 0.000	0.000 +/- 0.000	4	. 7
Peltigera scabrosa		+	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	7+	+	
Pertusaria dactylina	0000 -/- 0000		-/+ 000	0.000 -/- 0.000	0.000 +/- 0.000	7		
Solorina crocea	0.000 4/- 0.000		+/- 0.000	+/- 0.000	0.000 +/- 0.000	7	+	0.000 +/- 0.000
Stereocaulon tomentosum	0.000 -/- 0.000	7 0	122 +/- 0.102	+/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	+	- 7
	-	0.020 +/- 0.008	3.272 +/- 1.139	0.096 +/- 0.027	5.964 +/- 1.746	+	. 7	
							-	0.024 +/- 0.006

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.2 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for winter harvested sites of Stand 1.

	Pre	Post	Pre Pre	Post	Z 2	W3	Pro	W4 Post
Lichens:								
Cetraria ericetorum	0.186 +/- 0.061	0.028 +/- 0.008	0.124 +/- 0.026	0.044 +/- 0.007	0.110 +/- 0.039	0.072 +/- 0.020	0,130 +/- 0.047	0.070 +/- 0.020
Cetraria islandica	0.000 +/- 0.000	0.000 -/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		0.048 +/- 0.040	002 +/- 0.
Cladina mitis	21.060 +/- 2.820	4.250 +/- 0.848	25,304 +/- 2,776	6.502 +/- 1.340	+	19.968 +/- 2.863	1/+	+
Cladina rangiferina	2.244 +/- 1.051	0.570 +/- 0.212	1.508 +/- 0.663	0.282 +/- 0.128	2.168 +/- 1.012	3.142 +/- 1.304	5.246 +/- 1.198	4.186 +/- 1.226
Cladina stellaris	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000	0.000 +/- 0.000	0.020 +/- 0.020	0.000 +/- 0.000
Cladonia amaurocraea	0.000 +/+ 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000	0.000 +/- 0.000	0.060 +/- 0.060	0.060 +/- 0.060
Cladonia borealis	0.006 +/- 0.003	0.002 +/- 0.002	0.032 +/- 0.020	0.004 +/- 0.003	0.002 +/- 0.002	0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000
Cladonia bottytes	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia cameola	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	+	0.000 +/- 0.000
Cladonia cenotea	0.034 +/- 0.020	0.002 +/- 0.002	0.018 +/- 0.005	0.002 +/- 0.002	0.042 +/- 0.020	0.006 +/- 0.003	0.006 +/- 0.003	0.012 +/- 0.005
Cladonia cervicornis subsp. verticillata	0.020 +/- 0.020	0.002 +/- 0.002	0.002 +/- 0.002	0.004 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia chlorophaea	0.016 +/- 0.005	0.000 +/- 0.000	0.018 +/- 0.005	0.000 +/~ 0.000	0.018 +/- 0.005	0.006 +/- 0.003	0.006 +/- 0.003	0.000 +/- 0.000
Cladonia conlocraea	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia comuta	0.450 +/- 0,103	0.044 +/- 0.020	1.006 +/- 0.239	0.208 +/- 0.160	0.712 +/- 0.137	0.572 +/- 0.148	0.342 +/- 0.084	0.238 +/- 0.059
Cladonia crispata		0.280 +/- 0.093	4	0.096 +/- 0.063	1,102 +/- 0,264	1.152 +/- 0.447	0.372 +/- 0.173	0.194 +/- 0.105
Cladonia deformis		+	-/+ 880	-/+ 050	+	+	+	+
Cladonia ecmocyna		+	+/+	+	+	-/+	+	+
Cladonia fimbriata		+		+	-/+ 9/0	+	4	+/-
Cladonia furcata		+		+	+		+	-/+ 000
Cladonia gracilis		+	+	+	758 +/-	+	+	+
Cladonia grayi		+	+	+/+	004 +/-	+	+	+
Cladonia macilenta var. bacillaris		+		+			+/+	+
Cladonia multiformis		7		+			+	+/-
Cladonia pyxidata	4	+	+	002 +/- 0.	-/+ 900	+	+/- 0	-/+ 000
Cladonia sulphurina		+	+	+			4/- 0	+
Cladonia unctalis		+/+		+			+	+/+
Dactylina arctica		+	+	+	005	+	+	-/+ 000
Flavocetraria cucullata		+/-	+	054 +/-	528 +/-	+	794 +/-	+/-
Flavocetraria nivalis		+/-	+/-	-/-0	082 +/-	7	+/+	+
Nephroma arcticum		+/+		+		-/+	+/-	
Nephroma expallidum		+	+	+	-/+ 000	-/+ 000	+	-/+ 000
Peltigera aphthosa		+	+/-	0-/+	384 +/-	544 +/-	+/- 1.	412 +/-
Peltigera leucophlebia	+	+	-/+ 000	+/- 0	+	-/+ 000	+/- 0	+
Peltigera malacea	9.422 +/- 1.540	+	4	+/		+/-	+/-	
Peltigera neopolydactyla	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Peltigera retifoveata	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Peltigera rufescens	0000 +/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Peltigera scabrosa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Pertusaria dactylina	0.000 +/- 0.000	+	+	+	+	7	+	+
Solorina crocea	0.064 +/- 0.044	0.002 +/- 0.002	002 +/- 0.	+/- 0	+/-0	+/- 0	+/- 0	+/- 0.
Stereocaulon tomentosum	0.776 +/- 0.352	0.128 +/- 0.071	2.266 +/- 1.238	0.468 +/- 0.215	1.730 +/- 0.941	1.426 +/- 1.014	1.308 +/- 0.524	1.074 +/- 0.514

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.3 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for control sites of Stand 1.

		23						
	Pre	C.I.		C2		C3		7.7
Lichens:		160 1	Fre	Post	Pre	Post	Pro	10.00
Cetraria ericetorum	0.082 +/- 0.028	2000	•					180.1
Cetraria islandica	0000	0.000 +/+ 0.00	0.062 +/-	0.058 +/- 0.007	0.040 +/- 0.007	7 0 0 34 ±/- 0 007	0 2 4 0	
Cladina mitis	0.000 +/- 0.000	0.000 +/- 0.	0.000 +/- 0.000	0.000 +/- 0.000	0 7/+ 000 0	10000	0.110 +/-	+
Clading was seen	12.914 +/- 2.293	€ (C)	14.502 +/- 1.903	13 104 +/- 1 026	7 470 +7	0.000 +/- 0.	-/+ Z00.0	0.002 +/- 0.002
Cladina rangijenna		2.650 +/- 0.798	7.684 +/- 1	1 1	A 750 +/- 1.	8.2/2 +/- 1.		24.926 +/- 3.120
Clauma stellaris	0.000 +/- 0.000	0.000 +/- 0.000	0.040 +/- 0			8.070 +/- 1		3.290 +/- 1.216
C. ladonia amaurocraea	0.000 +/- 0.000	0.000 +/- 0.000	0 7+ 000		-/+ 000.0			0.000 +/- 0.000
Cladonia borealis	0.000 +/- 0.000	4	2000			0.000 +/- 0.000	-/+ 000.0	7
Cladonia borrytes	- 4	- :	0.002 +/-	0.004 +/- 0.003	0.002 +/- 0.002	0.000 +/- 0	0.064 +/	
Cladonia campola		+/+	_	0.002 +/- 0.002	0.000 +/- 0.000	74 000 0	1000	+/-
		0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000		-74 000.0	-/+ 000.0 -/-	0.000 +/- 0.000
ciadonia cenored	0.016 +/- 0.005	0.020 +/- 0.006	0.048 +/- 0.020	- 7	-	-/+ 000.0		0.000 +/- 0.000
Uladonia cervicomis subsp. verticillata	0.002 +/- 0.002	+		ļ.,	+	0.034 +/- 0.020	0.004 +/- 0.003	0.004 +/- 0.003
Cladonia chlorophaea	0.016 +/- 0.005			+	0.004 +/- 0.003	0.000 +/- 0.000	0.000 +/-	4
Cladonia coniocraea			+	+/-	0.030 +/- 0.007	0.012 +/- 0.005	0 00 4	
Cladonia comuta	0.000 1/2 0.000		+	0.002 +/- 0.002	0.022 +/- 0.006	0.004 +/-	10000	Ļ.
Cladonia crispata	0.000 -/- 0.15/	+	0.352 +/- 0.067	0.246 +/- 0,065	0.530 +/- 0 178	0.500		÷
Clodoning dolining	0.505 +/- 0.141	0.466 +/- 0.136	1.214 +/- 0.232	·+	200		+	0.656 +/- 0.135
CI T	0.120 +/- 0.047	0.078 +/- 0.028	0.132 +/- 0.037	4	0.007 - 7.0.210	+	1.308 +/- 0.274	1.318 +/- 0.248
Ставота естосупа	4.286 +/- 0.963	3 696 +/- 0 749	- 7	F		0.104 +/- 0.033	0.054 +/- 0.020	+
Cladonia fimbriata	0.048 +/- 0.007			'	3.376 +/- 0.404	3.546 +/- 0.457	6.548 +/- 0 929	
Cladonia furcata	+		<u>.</u>	÷	0.052 +/- 0.007	0.046 +/- 0.007	072 +1-	
Cladonia gracilis	0,000 1/4 0,000	F	+	0.000 +/- 0.000	0.000 +/- 0.000	7	. 4	
Cladonio aravi	-		0.342 +/- 0.146	0.576 +/- 0,189	0.658 +/- 0.337	7	÷ :	+
Clodenia marilmar	0.006 +/- 0.003	7	0.010 +/- 0.004	7	0.000 +/- 0.000	<u> </u>	+	+
Cladenia macriema val. odcinaris	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		- 7	÷ :	÷	0.004 +/- 0.003
Cledionia multijormis	0.000 +/- 0.000	0.000 +/- 0.000	1+		<u> </u>	÷.		0.000 +/- 0.000
Cidaonia pyxidaia	0.006 +/- 0.003	0.004 +/- 0.003	. 4	9 6	+ :	÷	0.002 +/- 0.002	0.000 +/- 0.000
Cladonia sulphurina	0.034 +/- 0.020	+	+		÷ .	7+	0.004 +/- 0.003	·/+
Cladonia unctalis	0.246 +/- 0.101	. +	- 7		+	0.008 +/- 0.004	0.002 +/- 0.002	. *
Dactylina arctica	0.000 +/- 0.000	+	<u> </u>	0.802 +/- 0.496	+	1.162 +/- 0.719	0.570 +/- 0.252	+
Flavocetraria cucullata	0 106 +/- 0 062		7+ 000		0,000 +/- 0,000	0.000 +/- 0.000	COO O -/+	. 7
Flavocetraria nivalis		1/4 0/0	-/+ 0/0	0.042 +/- 0.020	0.018 +/- 0.005	0.018 +/- 0.005	4/5 0 5/4	- :
Nephroma arcticum	- 1	0-/+ 400	224 +/- 0.141	0.284 +/- 0.187	0.024 +/- 0.020	. 7	1, 0,075	
Nephroma expallidum		000 +/- 000	000 -/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	1	0000	<u> </u>
Peltigera aphihosa	# 1	+/- O	000 -/- 000	0.000 +/- 0.000	0.000 +/- 0.000	. 7	4/- 0.000	+ :
Peltigera leuconhlebia	- :	914	318 +/- 0.779	2.370 +/- 0.836	6.148 +/- 1.359	1	77-0.002	'
Politicera malacaa	÷ .	102 +/-	322 +/- 0.300	0.302 +/- 0.300	\' +	. 7	1/- 0.524	+
Dalinger a manuful		2.974 +/- 1.130	5.246 +/- 1.436	5.212 +/- 1.390	- 4	<u> </u>	+/- 0.020	0.040 +/- 0.028
reingera neopolyaaciyla	0.000 +/- 0.000	0.000 +/- 0.000		000	7. 000	+	+/- 0.665	3.246 +/- 0.585
Pelingera retifoveata	0.000 +/- 0.000	0.000 +/- 0.000	+/+ 0.000	- 1	0.000 +/- 0.000	+	+/- 0.000	0.000 +/- 0.000
Peltigera rufescens	0.000 +/- 0.000		0000	-	+	0.060 +/- 0.060	0.000 +/- 0.000	0.000 +/- 0.000
Peltigera scabrosa	+		77-0.000	+/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	· \
Pertusaria dactylina	0.00 -/- 0.00		+/- 0.000	+/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	4/- 0 000	-
Solorina crocea	0 000 -/- 0 000	0000 -/+ 0000	000 +/- 0.000	+/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000-/+	. 7
Stereocaulon tomentosum	0.850 +/- 0.322	2 0	000 -/- 000	000 -/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0000-/+	
	2700		0.3/4 +/- 0.120	0.314 +/- 0.103	0.594 +/- 0.411	0.692 +/- 0.444	+7-4-124	
							1.127	

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.4 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for summer harvested sites of Stand 2.

		SI		SZ		63		
Lichens:	Pre	Post	Pre	Post	Оно			St
Cathoring processions					21.7	Fost	Pre	Post
Copyring information	0.092 +/- 0.027	7 0.012 +/- 0.005	0.474 +/- 0.174	0.000 +/- 0.000	0.00			
Clading with		3 0.000 +/- 0.000	0.090 +/- 0.039	0.030 +/-	7+ 000	0.058 +/-	0.162 +/-	0.070 +/- 0.007
Cladina minis	10.306 +/- 1.752	2 0.694 +/- 0.118	7.006 +/- 1230	1 344 +/	7.000 +/-	-/+ 0000		0.002 +/- 0.002
Cloding of the	2.504 +/- 0.760	0.152 +/- 0.075	+/- 1	0.240 +/-	10.002 +/-	4.776 +/- 0	-	4.048 +/- 0.797
Cladaria stetutis	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	74 000 0	3.000 +/-	1.032 +/-		0.894 +/- 0.325
Ciduonia amairrocraea	0.000 +/- 0.000	0.000 +/-	+	- 7	-/+ 00.0	0.000 +/-	0.000 +/- 0.000	+
Ciadonia porealis	0.002 +/- 0.002	0.000 +/-	4		-/+ 000.0	o	0.000 +/- 0.000	+
Cladonia botrytes	0.002 +/- 0.002	/+ 000 0	-	+	_	0.000 +/- 0.000	0.004 +/- 0.003	
Cladonia cameola		0000	+	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/-	7	-
Cladonia cenotea		0.000 +/-	+	0.000 +/- 0.000	0.002 +/- 0.002	74 000 0	<u>.</u>	+
Cladania cervicornis subsp. meticiliza	DOD -/- 0.096	-/+ 0000	0.008 +/- 0.004	0.000 +/- 0.000	1	2000	÷.	+
Cladonia chlosophase	Ŧ	0.000 +/- 0.000	0.002 +/- 0.002	+	. 7	0.00	+	0.002 +/- 0.002
Cladenia Chilolophaea		0.000 +/- 0.000	0.050 +/- 0.020	+			0.000 -/- 0.000	0.000 +/- 0.000
Clarating confoctage	0.002 +/- 0.002	0.000 +/- 0.000	+	- 7	+	+	0.092 +/- 0.027	0.000 +/- 0.000
Cidaonia comuta	1.086 +/- 0.230	0.024 +/- 0.020	+		+	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002
Cladonia crispata	0.552 +/- 0.140	+	218 +/	-	+	0.206 +/- 0.078	1.060 +/- 0.217	. 7
C. ladonia deformis	0.182 +/- 0.056	028 +/-	1/1 050	÷ ·	+	0.168 +/- 0.077		. 4
Cladonia ecmocyna	4.688 +/- 0 795	388 ±/	÷ :	022 +/-	0.190 +/- 0.055	0.038 +/- 0.007	1/+	
Cladonia fimbriata	0.044 +/- 0.007	2 4 800	÷ .	+	4.650 +/- 0.612	1/+	+	,
Cladonia furcata	0000 /+ 0000		+	0.030 +/- 0.020	0.034 +/- 0.007	0.018 +/- 0.005	2 0	0.000 -/- 0.2/6
Cladonia gracilis	0474 + 0500	-/+ 000	+	0.000 +/- 0.000	0.000 +/- 0.000	. +	- 7	
Cladonia grayi		0 -/+ 000	+	0.002 +/- 0.002	1.114 +/- 0.306	. 4	÷ :	+
Cladonia macilenta var hacillaris	0.020 +/- 0.020	-/+ 000	+	0.000 +/- 0.000	+		+/- 0.165	+
Cladonia multiformis	÷ :	+	0.002 +/- 0.002	0.000 +/- 0.000	· '+	- 4	+/- 0.003	+
Cladonia myildata	<u></u> ;	000 -/- 0000	0.002 +/- 0.002	0.000 +/- 0.000	1+	- 7	+/- 0.000	÷
Cladonia sulphurina	+	000 -/- 0000	0.004 +/- 0.003	0.000 +/- 0.000	+	- 1	+/- 0.000	+
Clodonic modelle		008 +/- 0.004	0.014 +/- 0.005	1	- 1	÷ :	+/- 0.006	0.000 +/- 0.000
Doorling antically	÷	156 +/- 0.063	1.286 +/- 0.592			÷ :	+/- 0.005	0.000 +/- 0.000
Elmina arenca	0.000 +/- 0.000	0.000 +/- 0.000	7		÷ :		+/- 0.215	0.528 +/- 0.401
i de ocerrand cucullata	+	0.008 +/- 0.004	+	74 410			+/- 0.000	0.000 +/- 0.000
invoceruria mivalis	0.020 +/- 0.020	0.002 +/- 0.002	+	4	- :	' +	+/- 0.090	0.122 +/- 0.043
Separation arcticum	+		+		÷ :	‡	+/- 0.063	0.052 +/- 0.028
Partitional expanionm	0.000 +/- 0.000	0.000 +/- 0.000	+	. 4	<u>-</u> -		+/- 0.000	0.000 +/- 0.000
Date:		0.044 +/- 0.007	+	078 +/-	7.		000 -/+ 000	0.000 +/- 0.000
Designation of the property of	0.462 +/- 0.280	0.000 +/- 0.000	1-/+	74 000	-/+ 040	+	+/- 0.559	0.654 +/- 0.306
p. Filigera malacea	3.254 +/- 0.710	0.034 +/- 0.007 2	648 +/-	. 4	74 700	000 -/- 000	+/- 0.000	0.000 +/- 0.000
Believed neopolydachyla	0.000 +/- 0.000	+/- 0.000	000 -/+ 000	74 000	+ :	+/- 0.221	+/- 0.507	0.342 +/- 0.122
r emgara renjoveata	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0 000	- 4	÷:	4/- 0.000	0.000 +/- 0.000	+
reingera rujescens	0.000 +/- 0.000	+/- 0.000	0000 /+	-	+/- 0.000 -/-	+/- 0.000	0.000 +/- 0.000	0.000 +/- 0.00.0
L'eingera scabrosa	0.000 +/- 0.000		+/- 000 0 -/-	0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Pertusaria dactylina	0.000 +/- 0.000	+/- 0.000	+/- 0.000	000 -/- 0.00	+/- 0.000	+/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Solorina crocea	0.004 +/- 0.003	+/- 0.000	+/- 0.000 +/-	*/- 0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000	
Stereocaulon tomentosum	0.368 +/- 0.191	+/- 0.004	+/- 0.221	-/- 0.000 -/-	000 +/- 0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000
			770	-/- 0.040	0.746 +/- 0.510	0.084 +/- 0.063	0.414 +/- 0.158 0	0.084 +/- 0.044
Note: Three decimal places are in 1 1							L	1

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.5 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for winter harvested sites of Stand 2.

		WI		27.5				
	Pre	Post	2	7M		W3		WA
Lichens;		150 4	21.	Post	Pre	Post	Pr	100
Cetraria ericetorum	0.086 +/- 0.028	0 74 9000						1031
Cetraria islandica	0000 /+ 0000	1/+ 020.0	-/+ 090'0		1 0.030 +/- 0.007	7 0.038 +/- 0.007	0.00	
Cladina mitis	14 502 +/ 2024	-/+ 700.0	0.002 +/-		0.000 +/- 0	0000	7, 000	+
Cladina rangiferina		3.350 +/- 0	. 4	5.924 +/- 0.892	14 226 +/-	12 330 +4	-7+ 400.0	+
Cladina stellaris	0.0042 +/- 1.888	1.852 +/-		2.782 +/- 0.557	4 528 +/- 1	3 730 +/-	45.250 +/-	+
Cladonia amanzocrano	0.000 +/- 0.000	-/+ 000.0		0.000 +/- 0.000	0.080 +/-	0.000	10.726 +/-	8.722 +/- 1.732
Cladonia homalia		o	0.000 +/- 0.000	+/+	0000	4/+ 000.0	-/+ 000.0 	0.000 +/- 0.000
Cladamia contentis	0.004 +/- 0.003	0.000 +/- 0.000	0.002 +/- 0.002	4	74 0000	0.000 +/-	0.000 +/- 0.000	0.000 +/- 0.000
saluaonia potrytes	0.000 +/- 0.000	0.000 +/-	7		-/+ pooro	0.000 +/- 0.000	0.002 +/- 0.002	+
C. ladonia carneola	0000 -/- 0000	7+ 000 0		+	0.000 +/- 0.000	0.000 +/- 0.000	0000	
Cladonia cenotea		74.000.0	+	0.000 +/- 0.000	0.000 +/- 0.000	0000	0000	-
Cladonia convicamie unhen	0.034 +/- 0.020	-/+ 800.0	0.034 +/- 0.020	0.004 +/- 0.003	0 00 A		+/+	0.000 +/- 0.000
Codonia attended autop. Verneinaid	000.0 -/- 0.00.0	0.000 +/- 0.000	0.000 +/- 0.000	+	0000	0.0	0.030 +/- 0.007	0.008 +/- 0.004
Ciadonia eniorophaea	0.018 +/- 0.005	0.006 +/- 0.003	+		+		0.000 +/- 0.000	0.002 +/- 0.002
Cladonia coniocraea	0.002 +/- 0.002	0.000 +/- 0.000		· ·	÷	0.004 +/- 0.003	0.084 +/- 0.080	
Cladonia comuta	0.780 +/- 0.142	7 900	ļ.,	+	0.000 +/- 0.000	0.000 +/- 0.000	+	
Cladonia crispata		0 - 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	+/+	0.032 +/- 0.007	0.636 +/- 0.143	0 774 +/-		
Cladonia deformis		-/+ +/-	1.152 +/- 0.233	0.054 +/- 0.028	1/+	1000	÷.	0.718 +/- 0.111
Cladonio como Cladonio	+		0.164 +/- 0.049	+		+	1.174 +/- 0.245	1.070 +/- 0.223
Clear comocond	4.630 +/- 0.681	2.082 +/- 0.340	1/+	. 7	+	+/-	0.144 +/- 0.041	0.152 +/- 0.050
C. ladoma fimbriata	0.076 +/- 0.020	+/- U	- 7	<u>.</u>	+	7.468 +/- 1.200	4.228 +/- 0 708	
C. ladonia furcata	0.002 +/- 0.002	7 7 000	-	+	0.038 +/- 0.007	0.042 +/- 0.007	1/+	
Cladonia gracilis	. +	2000	+/+	0.000 +/- 0.000	0.000 +/- 0.000	1/+	. 4	÷
Cladonia gravi	- 1		+	0.048 +/- 0.028	0.388 +/- 0 127		- :	+
Cladonia macilento var bacillania	-	-/+ 000	0.018 +/- 0.005	0.000 +/- 0.000	018 +/			0.194 +/- 0.061
Cladonia multiformia	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	. +		+	0.020 +/- 0.006	0.004 +/- 0.003
Claderia muniformis	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		÷ :	+	0.000 +/- 0.000	0.000 +/- 0.000
Ci i i pvitadia	0.010 +/- 0.004	0.000 +/- 0.000	0.012 +/- 0.005		<u>+</u> .		0.000 +/- 0.000	+/+
Cladonia sulphurina	0.026 +/- 0.020	008 +/-		<u>.</u>	+	0.006 +/- 0.003		+
Cladonia uncialis	3.424 +/- 1 763			-/+ 900	0.002 +/- 0.002	0.010 +/- 0.004		. 7
Dactylina arctica	+			-/+	0.784 +/- 0.602	1.684 +/- 1.027		÷ :
Flavocetraria cucullata	4	-	+	0.000 +/- 0.000	0.000 +/- 0.000			+
Flavocetraria nivalis	0.000 +/- 0.104	<u>,</u>	+	0.046 +/- 0.007	+	4	-/- 0.000	+
Nephroma arcticum	0.002 +/- 0.034	' +	0.084 +/- 0.063	0.008 +/- 0.004	+	. 1	+/- 0.048	÷
Nephroma ovnollishim	0.000 +/- 0.000	' +	0.000 +/- 0.000	0.000 +/- 0.000	4	<u> </u>	+/- 0.044	0.028 +/- 0.020
Politicara anhibasa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+		+	+/- 0.000	0.000 +/- 0.000
Politican formalist	3.544 +/- 0.780	0.616 +/- 0.401	1.110 +/- 0.327	. +		+	+/- 0.000	0.000 +/- 0.000
1 etitleta teucopnieota	0.370 +/- 0.302	0.000 +/- 0.000	0.042 +/- 0.040	/+ 000	<u>-</u> :	+/+	2.386 +/- 0.722	1.164 +/- 0.313
Pelngera malacea	4.510 +/- 0.968	+	0 7	-	+	7	0.320 +/- 0.155	
Petitigera neopolydactyla	0.000 +/- 0.000	. /+	5 0	-/+	4.612 +/- 1.181	1.918 +/- 0.672	0.811	1 030 +/ 0 404
Peltigera retifoveata	0 000 -/- 0 000) - - -	+	0.300 +/- 0.300	0.200 +/- 0.200	0000	
Peltigera rufescens	0000 -/- 0000	<u>-</u>	+	0.000 +/- 0.000	0.000 +/- 0.000	7	0000	÷ .
Peltigera scabrosa	0000 -/- 0000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	. 7	-/- 0.000 -/-	+
Portugaria docuilua	0.000 +/- 0.000	+	0.000 +/- 0.000	1/+	0000 -/- 0000	<u>-</u> :	+/- 0.000	0.000 +/- 0.000
Solowing auctivities		0.000 +/- 0.000	0.000 +/- 0.000	1		÷ :	+/- 0.000	0.000 +/- 0.000
Standard Locked		0.000 +/- 0.000		. +	F 7	÷ :	+/- 0.000	0.000 +/- 0.000
ora cocumon tomentosum	0.200 +/- 0.121	0.042 +/- 0.028		+	0.000 +/- 0.000	+/- 0.000	+/- 0.000	+
				-	-	0.102 +/- 0.100	0.228 +/- 0.119 0	0.164 +/- 0.072
Note: Three decimel places are included to	and of popular		•					

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.6 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for control sites of Stand 2.

		500						
	Pre	CI) 	22		63	3	C4
Lichens:		150 1	LIE	Post	Pre	Post	Pre	Post
Cetraria ericetorum	0.548 +/ 0.120	000						
Cetraria islandica	- 1	0.522 +/- 0	+	+	0.148 +/- 0.036	0.094 +/- 0.019	0.078 +/- 0.028	0.000 /+ 850.0
Clading mitte		-/+ 89n'n	0.060 +/- 0.044	0.026 +/- 0.020	0.022 +/- 0.020	0 -/+	0 000 0	5 6
(Jadina somai Comina	13.740 +/- 2.596	15.468 +/-	22.486 +/- 3.020	20.302 +/- 3.020	21.386 +/- 2.401	+	11.060	0.004 +/- 0.003
Cladina stallant	0.160 +/- 0.116	o.	0.508 +/- 0.500	0.424 +/- 0.400	7	1	14 200	*/+ and
Chalmia stellaris		O	0.000 +/- 0.000	0.000 +/- 0.000	7+ 000	F 7	‡ :	+
Ci adunia amanrocraea	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	1/+	4	-	+	+/+
C. Iadonia borealis	0.014 +/- 0.005	0.030 +/- 0.020	4/- 0	+		÷ :	+	+
L'Iadonia botrytes	0.000 +/- 0.000	0.002 +/- 0.002	. 7	- 7	-	+	+	0.000 +/- 0.000
Cladonia cameola	0.000 +/- 0.000	-/+ 000 0	7		<u>.</u>	+	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia cenotea	0.154 +/- 0.061	0.082 +/-	- 1	+ :	+	0.000 +/- 0.000	0.000 +/- 0.000	+
Cladonia cervicornis subsp. verticillata	+	0 148 +/-	F	<u>+</u> ·	+	0.030 +/- 0.020	0.034 +/- 0.020	+
Cladonia chlorophaea		0.40.00.0	-	+	+	0,000 +/- 0,000	0.004 +/- 0.003	+
Cladonia conjocraeu		74 0000	' -	+	0.002 +/- 0.002	0.008 +/- 0.004	0.004 +/- 0.003	* *
Cladonia cornuta	. 1	7+ 20.00	<u>+</u> .	7+	0.002 +/- 0.002	0.002 +/- 0.002	7	+
Cladonia crispata		-	+	+	0.682 +/- 0.155	0.762 +/- 0.186	. +	
Cladonia deformis		<u>'</u>	+	7+	1.282 +/- 0.416	1.526 +/- 0.419	+	- 1
Cladonia como mus	F	+	0.088 +/- 0.044	0.088 +/- 0.040	0.082 +/- 0.028		4	
Clodonio Guitaine		+	2.026 +/- 0.461	2.012 +/- 0.444	+		-	
Clesses finorald		0.040 +/- 0.007	0.026 +/- 0.008	0.038 +/- 0.007	. +		+	3.018 +/- 0.450
C. Idaonia furcata	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	. 7	4	ļ ;	+	
C. Iddonia gracilis	0.950 +/- 0.245	1.138 +/- 0.279	1.058 +/- 0.239	. /		÷.	+	0.000 +/- 0.000
Cladonia grayi	0.004 +/- 0.003	0.004 +/- 0.003	. +		÷ ;	+	+	0.196 +/- 0.105
(ladonia macilenta var. bacillaris	0.000 +/- 0.000	+	+	-	0.000 +/- 0.004	+	+	
Cladonia multiformis	0.002 +/- 0.002	+	+		0.000 +/- 0.000	÷ :	+	+
Cladonia pyxidata	0.024 +/- 0.006	+	. +	- 1	+ :	+	+	0.002 +/- 0.002
Cladonia sulphurina	0.002 +/- 0.002	+	+/- 0.000	- 7	+	+	0.012 +/- 0.005	0.002 +/- 0.002
Cladonia uncialis	0.220 +/- 0.122	144 +/- 0	+/- 0.502	+ 7	÷ :	+	+/- 0.004	0.004 +/- 0.003
Dactylina arctica	0.020 +/- 0.020	020 +/- 0	000 +/- 000	0.000 +/- 0.000	<u>+</u> :	+	+/- 0.936	1.486 +/- 0.889
Flavocetraria cueullata	+	216 +/- 0	+/- 0.558	- 1	-/+ 000		+/- 0.000	0.000 +/- 0.000
Flavocetraria nivalis	0.322 +/- 0.222	0-/+	+/- 0.004	-	+	+	+/- 0.134	0.166 +/- 0.069
Nephroma arcticum	0.000 +/- 0.000	-/+ 000	+/- 0 000	0000 +/- 0000	0.022 +/- 0.074	+	+/- 0.100	0.062 +/- 0.060
Nephroma expallidum	0.220 +/- 0.170	160 +/- 0	+/- 0 121	- 4	÷ :	÷ :	+/- 0.000	0.000 +/- 0.000
Pettigera aphthosa	0.474 +/- 0.314	0-/+	+/- 0 100	- 7	2 .	÷	+/- 0.063	0.120 +/- 0.102
Peltigera leucophlebia	0.000 +/- 0.000	.002 +/-	+/- 0.002	- 4	1/-	<u>+</u>	+/- 1.487	6.610 +/- 1.415
Peltigera malacea	5.706 +/- 0.931	+/+	+/- 0.840	- 1) (- - -	+	+/- 0.020	0.024 +/- 0.020
Peltigera neopolydactyla	0.000 +/- 0.000	0 -/+ 000	000 -/- 000	- 7	+ :	+	+/- 0.589	2.788 +/- 0.665
Peltigera retifoveata	0.000 +/- 0.000	0 -/+ 000	0000-/-		+/- 0.000 -/-	+/- 0.000	+/- 0.000	0.000 +/- 0.000
Peltigera rufescens	0.000 +/- 0.000	+	0000	000 -/- 000	+/- 0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000
Peltigera scabrosa	0.000 +/- 0.000	. +	4/- 0000	0.000	+/- 0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000
Pertusaria dactylina	0.000 +/- 0.000	+	0000	-/- 0.000 -/-	+/- 0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000
Salorina crocea	0.000 +/- 0.000	+	4/- 0000	0.000		+/- 0.000	+/- 0.000	0.000 +/- 0.000
Stereocaulon fomentosum	1.012 +/- 0.408	. 📫	+/- 1.588	1,4000	+/- 0.00Z	000 +/- 0.000	4/- 0.000	0.000 +/- 0.000
				044.1-/-	900 +/- 7.875	9.244 +/- 2.782	1.006 +/- 0.609 C	0.866 +/- 0.511

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.7 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for summer harvested sites of Stand 3.

		6.1						
	Pre	Doce	f	S2		S3		S
Lichens:		T COL	a.	Post	Pre	Post	Pre	Post
Cetraria ericetorum	0.234 +/- 0.058	0 0 0 0	_					
Cerraria islandica	2000	0.030 +/+ 0.	-/+ 201.0		0.094 +/- 0.019	0.060 +/- 0.007	0 108 +/_ 0 007	(
Cladina mittie	26.764 -/ 0.002	0.002 +/- 0.	-/+ 0000.0	0	0.000 +/- 0.000	0.002 +/- 0	0.004 +/- 0	2000
(Jacking management	810.7 -1- 2.518	2.5/0 +/- 0	14.542 +/- 1.751	2.774 +/- 0.558	18.602 +/-	7 768 +/	2000	0.000 +/-
radina jangijerina	1.668 +/- 0.629	0	8.748 +/- 2.008	1.984 +/- 0	2 228 ±/L 0	1.00.7	13.962 +/-	+/+
Cladina stellaris	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0 74 000 0	7. 000 0	1.044 +/-	7.352 +/-	3.860 +/- 1.091
Uladonia amaurocraea	0.000 +/- 0.000	0.000 +/- 0	+	0000	-	-/+ 000.0	-/+ 0000'0	0.000 +/- 0.000
Cladoma borvalis	0.002 +/- 0.002	0 -/+ 000 0		0000	+		0.000 +/- 0.000	0.000 +/- 0.000
Cladonia bottytes	+	0000	-/-	-/+ 000	0.008 +/- 0.004	0.002 +/- 0.002	0.002 +/- 0.002	\ +
Cladonia cameola		000 ±/- 00	+	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000 0	71 000	
	+/+		0.002 +/- 0.002	0.000 +/- 0.000	0000 -/- 0000	71 000 0	7, 200	+
Cidaonia cenolea	0.042 +/- 0.020	0.000 +/- 0.000	0.068 +/- 0.028	. 4	- 7	-	-/+ 000.0	+
L'Iadonia cervicornis subsp. verticillata	0.006 +/- 0.003	0.000 +/- 0.000	7+ 600	. 7	+	+	0.020 +/- 0.006	0.006 +/- 0.003
Cladonia chlorophaea	0.166 +/- 0.049	000 +/- 0		0.000 -/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia coniocraea	1/+	7	-	0.002 +/~ 0.002	+	0.012 +/- 0.005	0.066 +/- 0.020	0 000 +/- 0 000
Cladonia comuta	+		+ .	+	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	. 7
Cladonia crispata	. 1	0 -/+ +60.	+	0.026 +/- 0.006	1.154 +/- 0.189	0.510 +/- 0.123	-/+	
Cladonia deformis	-	-/+ 9/1	+	0.156 +/- 0.070	1.270 +/- 0.208	7	1	-
Contract of the second of the			0.178 +/- 0.060	0.028 +/- 0.006	0 148 +/- 0 041	1		+
C. Iddonia ecmocyna	5.148 +/- 0.728	0.580 +/- 0.121	4.754 +/- 0.713	4		Ļ.	+	0.086 +/- 0.020
Cladonia fimbriata	0.024 +/- 0.008	0.022 +/- 0.008		11 040	÷ :	+	5,146 +/- 0,766	2.442 +/- 0.544
(ladonia furcata	0.000 +/- 0.000	000 +/- 0	. 7	-	+	0.042 +/- 0.007	0.048 +/- 0.007	0.036 +/- 0.007
Cladonia gracilis		71 000	-	+	+	0.000 +/- 0.000	0.000 +/- 0.000	· /+
Cladonia gravi	1	7 000	+	+	0.812 +/- 0.261	0.154 +/- 0.075	0.840 +/- 0 198	+
Cladonia macilenta ver hacillarir	- 1	+	+/-	0.000 +/- 0.000	0.004 +/- 0.003	0.000 +/- 0.000	0.018 +/- 0.005	- 7
Cladonia multiformis	- :	3	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		
Codmia maniforms	+		0.000 +/- 0.000	0.000 +/- 0.000	+	+	0000 -/- 0000	+
ישיים וויין להיווים וני	÷	0.004 +/- 0.003	0.022 +/- 0.020	0.000 +/- 0.000	+		Ļ.	+
L'Iadoma sulphurina	0.000 +/- 0.000	0.002 +/- 0.002	+	+	- 7	+	,	+
Cladonia uncialis	2.586 +/- 1.070	0.350 +/- 0.107	+	- 1	<u>}</u> :	+	+	0.002 +/- 0.002
Dactylina arctica	0.000 +/- 0.000	7	-	-	<u>.</u>		0.470 +/- 0.236	0.594 +/- 0.233
Flavocetraria cucullata	0.400 +/- 0.123	7	- 7	-	-/+ ooo		0.002 +/- 0.002	0.002 +/- 0.002
Flavocetraria nivalis	0.008 +/- 0.004	+		+		0.044 +/- 0.007	0.450 +/- 0.116	0.122 +/- 0.043
Nephroma arcticum	0 00 0 -/- 0 00 0	1 7	-	+	+	0.008 +/- 0.004	0.044 +/- 0.040	7+
Nephroma expallidum	0.000 +/- 0.000	- 7	-	<u>+</u>	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Peltigera aphthosa	1 222 +/- 0 451	2 4	0-/+	+	+	0.000 +/- 0.000	+	. '
Peltigera leucophlebia	0.000 +/- 0.000	- 1	0-/+	+	1.126 +/- 0.380	0.316 +/- 0.125	+	. 4
Peltigera malacea	4 768 +/ 0 646	-	0 -/+ -/-	+	0.022 +/- 0.020	0.000 +/- 0.000	0.322 +/- 0.150	7+ 020
Politicera menondadachila	3 to .0 -/- 000 to	+	+	0.500 +/- 0.300	3.282 +/- 0.555	0.378 +/- 0.107	524 +/-	
Dolling of actions of the second	0.000 +/- 0.000	+/-	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	1000	
Dolties Carloveula	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	+		
i emgera rajescens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0 000 +/- 0 000	4			0.000 +/- 0.000
Feltigera scabrosa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	1	+ :	+	0.000 +/- 0.000
Pertusaria daciyiina	0.000 +/- 0.000	0.000 -/- 0.000	0.000 +/- 0.000	- 4	-	+	+	0.000 +/- 0.000
Solorina crocea	0.048 +/- 0.028	7	+	- 1	÷ :	+	0.000 +/- 0.000	0.000 +/- 0.000
Stereocaulon tomentosum	2.514 +/- 0.868	+	+	-	0 -/+ 770	+	0.002 +/- 0.002	0.002 +/- 0.002
		1		0.024 +/- 0.020	0.506 +/- 0.229	0.152 +/- 0.064	0.732 +/- 0.264	0.248 +/- 0.140
7.1								ı

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.8 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for winter harvested sites of Stand 3.

		WI						
	Pre	Doet		W2		W3		FM
Lichens:		160 1	rre	Post	Pre	Post	Pro	
Cetraria ericetorum	0.098 +/- 0.010	0 74 840 0						1607
Cetraria islandica	0.000 -/- 0.000	7+ +00.0	<u>+</u> -	+/-	0.096 +/- 0.019	0.060 +/- 0.007	0 128 +/- 0 028	
Cladina mitis	- 4	0.002 +/-	+	-/+ 000	0.004 +/- 0.003	0.000 +/- 0	0000	0.000
Cladina rangiferina	R 724 +/ 1 400	7+ 7+0.0	+	5.482 +/- 0.901	20.522 +/- 2.278	14.322 +/-	22 620 +/	40.000
Cladina stellaris	-	4.204 +/-	4.524 +/- 1.432	1.402 +/- 0.455	3.506 +/- 1.264	- /	4 746 1	12.300 +/-
Cladonia amaurocraen	0.000 -/- 0.000	-/+ 000.0	0,000 +/- 0,000	0.000 +/- 0.000	7	1	14 0000	+
Clodonia houndlin	0.000 +/- 0.000	o.	0.000 +/- 0.000	0.000 +/- 0.000	1		-/+ 000.0	0.000 +/- 0.000
Cladenia boreans	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	. +	-	÷ :	-/+ 000.0	0.000 +/- 0.000
Cidaonia boirvies	0.002 +/- 0.002	0.000 +/- 0.000	+		<u>.</u>		0.004 +/- 0.003	0.002 +/- 0.002
(-ladonia carneola	0.002 +/- 0.002	+	7	£ .	' +	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Cladonia cenotea	0.044 +/- 0.020	008 +/-		-/+ non	+	0.000 +/- 0.000	0.000 +/- 0.000	. /+
Cladonia cervicornis subsp. verticillata	0.000 +/- 0.000	7+ 000	1/2 000	+	+	0.004 +/- 0.003	0.010 +/- 0.004	+
Cladonia chlorophaea	0.036 +/- 0.020	7+ 000	-	+	0.000 +/- 0.000	0.002 +/- 0.002	+	
Cladonia coniocraea		200	<u>+</u> .	+	0.008 +/- 0.004	0.000 +/- 0.000	. +	
Cladonia comuta		200	+ .	+	0.002 +/- 0.002	0.000 +/- 0.000	. 4	-
Cladonia crispata		7 . 200	÷ .	' +	0.706 +/- 0.122	0.318 +/- 0.081	+	
Cladonia deformis	1	-/+ +00	+	0.256 +/- 0.108	1.144 +/- 0.192	· +	. 4	
Cladonia ecuracimo	-	0-/+ 900	0.150 +/- 0.041	0.052 +/- 0.007	0.172 +/- 0.066	+		0.820 +/- 0.192
Cladonia fimbriato	+	-/+ 088	4.638 +/- 0.951	2.394 +/- 0.418	*	- 7	+ :	
Clodonio firmation	+	0.024 +/- 0.006	0.078 +/- 0.020	1/+	1	- 7	+	5.786 +/- 0.874
Clanding invalid	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+		<u>+</u> .	+	0,072 +/- 0,020
CI-1-	0.774 +/- 0.154	0.048 +/- 0.028	+	0 132 +/- 0 064	÷ :	+	0,000 +/- 0,000	0,000 +/- 0,000
Cladonia grayi	0.006 +/- 0.003	0.000 +/- 0.000	010 +/-	0000 +/ 0000	÷ :	+	0.720 +/- 0.168	0.274 +/- 0.093
Cladonia macilenta var. bacillaris	0.000 +/- 0.000	0.000 +/- 0.000	. +	- 1	÷ :	'	0.002 +/- 0.002	0.000 +/- 0.000
Cladonia multiformis		-/+ 000		- 7	÷ .	+	0.000 +/- 0.000	7
Cladonia pyxidata	0.008 +/- 0.004	-/+ 900		-	÷ :	+	0.000 +/- 0.000	+
Cladomia sulphurina	0.014 +/- 0.005	002 +/-	. 7	+ :	' +	0.002 +/- 0.002	0.008 +/- 0.004	+
Cladonia uncialis	0.388 +/- 0,195	+	+/- 0.003	+	+	0.002 +/- 0.002	0.000 +/- 0.000	. 7
Dactylina arctica	+	+	7/- 0,263	<u>+</u> -	+	0.380 +/- 0.191	1.542 +/- 0.725	+
Flavocetraria cucullata	0.184 +/- 0.106	050 +/-	+/- 0.00Z	+	+	0.002 +/- 0.002	0.040 +/- 0.040	\\ \
Flavocetraria nivalis	0.006 +/- 0.003	0 004 +/- 0 003	1, 0, 1,4	+	+	0.326 +/- 0.207	0.984 +/- 0.252	7
Nephroma arcticum		0.000 +/- 0.000	+/+ 0.044 +/- 0.000	0.026 +/- 0.020	+	0.044 +/- 0.028		7
Nephroma expallidum	0.000 +/- 0.000		0000	+ :	+	0.000 +/- 0.000	0.000 +/- 0.000	7+
Pettigera aphthosa	1.784 +/- 0.428	-/+	+/ 0.000 +/ 0.000	+ :	+	0.000 +/- 0.000	0.000 +/- 0.000	. 7
Peltigera leucophlebia	0.180 +/- 0.117	+	1/- 0.0/0 -/-	-	+		0.492 +/- 0.232	+
Peltigera malacea	3.888 +/- 0.828	7	1/1 0.202	-/+ +	+	0.000 +/- 0.000	0.000 +/- 0.000	. 4
Peltigera neopolydactyla	0.000 +/- 0.000	1	1.000	<u>+</u> .	5.466 +/- 0.837	1.628 +/- 0.327	4.164 +/- 0.801	7
Peltigera retifoveata	0.000 +/- 0.000	- +	+/- 0.000 -/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	+	1
Peltigera rufescens	0.000 +/- 0.000	0000	+/- 0,000	+	+/- 0.000	0.000 +/- 0.000	7	. 4
Peltigera scabrosa	0000 -/- 0000	0.000	-/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	. +	
Pertusaria dactylina	0.000 +/- 0.000	0.000	+/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0.000	0000 -/- 0000
Solorina crocea	0 000 +/+ 0 000	0.000	+/- 0.000	4/- 0.000	+/- 0.000	0.000 +/- 0.000	0000 -/+	
Stereocaulon tomentosum	0.690 +/- 0.601	1, 0,000	+/- 0.000 -/- 0.000	+/- 0.000	+/- 0.000	0.000 +/- 0.000	4/- 0.002	
		1/- 0.040	008 +/- 0.275	0.148 +/- 0.073	0.896 +/- 0.386	0.170 +/- 0.087	+/- 0 247	
							7.5.7	

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 3.9 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial lichen species for control sites of Stand 3.

		200						
	Pre	CI	,	C2		c3		C4
Lichens:		- NA	Fre	Post	Pre	Post	Pre	Doet
Cetraria ericetorum	0.230 +/- 0.058	0 24 0 74 0 0						LOST
Cetraria islandica	0000 /+ 0000	1/+ +17.0	0.134 +/- 0	0.144 +/- 0.064	0.120 +/- 0.032	0.108 +/- 0.027	7 0 108 4/ 0 007	
Cladina mitis	14 GBB +/ 2 E07	000	0.004 +/- 0	0.002 +/- 0.002	0.000 +/- 0.000	0 -/+	2 4 000	0.100 +/- 0.048
Cladina rangiferina	1007 /+ 000 /-	-/+ 800.	260 +/- 1.	6.862 +/- 1.541	12.980 +/- 1.689	· +	19,000	47 0. (
Clading stellars	227.0-17-202.1	-/+ 074		1.162 +/- 0.848	2.004 +/- 0.383	- 0	19.004	+
Cladonia amourocuan	0.000 +/- 0.000	0 -/+ 000	_	0.000 +/- 0.000	7	. 7	0.722 +/-	+
Cladaria hamania		0.000 +/- 0.000	0.000 +/- 0.000	1	. 7	ļ	0.000 +/- 0	0.000 +/- 0.000
cladonia porealis	0.010 +/- 0.004	0.012 +/- 0.005	-/+ 000	7+ 000	<u> </u>	÷		0.000 +/- 0.000
Cladonia porrytes	0.002 +/- 0.002	0.004 +/- 0.003	+	200	+	+/+	0.014 +/- 0.005	0.016 +/- 0.005
Cladonia cameola	0.000 +/- 0.000	000 +/- 0		-/+ +/-	' +	0.000 +/- 0.000	0.000 +/- 0.000	000
Cladonia cenotea	0.098 +/- 0.038	184 +/ 0	1/1 000	-/+ 000	0.002 +/- 0.002	0.000 +/- 0.000	0.002 +/-	4
Cladonia cervicornis subsp. verticillata	4		+	076	0.026 +/- 0.006	0.020 +/- 0.006	0.012 +/-	
Cladonia chlorophaea	- +	7 6 6 6 6	002 +/-	0.000 +/- 0.000	0.000 +/- 0.000	+	0.088 +/-	
СТадоніа соніостива	- 4	-/+ 210	+	0.000 +/- 0.000	0.034 +/- 0.007	1/+	74 600 0	0.046 +/- 0.040
Cladonia cornuta	- 7	000 +/- 000 200 -/- 0	+	0.002 +/- 0.002	0.004 +/- 0.003	- 4	20000	<u>-</u>
Cladonia crispata	+	./08 +/- 0	1.036 +/- 0.207	0.688 +/- 0,160	+	- 7	÷ :	
Cladonia deformata	+		0.254 +/- 0.123	+	070	Ė	'	0.346 +/- 0.087
Classing deformis		0.106 +/- 0.048	0.112 +/- 0.062	. /		+/+	1.094 +/- 0.234	0.848 +/- 0.176
Ci daonia ecmocyna	2.436 +/- 0.525	2.456 +/- 0.617	+	- 4	÷ :	158 +/-	0.140 +/- 0.047	0.100 +/- 0.027
Cladonia fimbriata	0.112 +/- 0.033	0.144 +/- 0.050	+		+	+	3.556 +/- 1.251	3.174 +/- 1.033
C. ladonia furcata	0.000 +/- 0.000	1/+	+	<u> </u>	-/+ 990	+	0.068 +/- 0.007	+
C. ladonia gracilis	0.796 +/- 0.197		-	-	-/+ 000	+	0.000 +/- 0.000	+
Cladonia grayi	0.000 +/- 0.000	. 7		-/+ 076	+	0.698 +/- 0.169	0.608 +/- 0.197	. ;
Cladonia macilenta var. bacillaris	0.000 +/- 0.000	. 4	2 4 000	÷ :	+	0.006 +/- 0.003	0.014 +/- 0.005	. /+
Cladonia multiformis	0.020 +/- 0.020	0.004 +/- 0.003	- 1	+ :	+	0.000 +/- 0.000	0.000 +/- 0.000	+
Cladonia pyxidata	0.022 +/- 0.006	- 4	77 700	4	-/+ 000		0.000 +/- 0.000	. +
Cladonia sulphurina	0.002 +/- 0.002	. +	- 7	+	+	0.008 +/- 0.004	0.026 +/- 0.006	7
Cladonia uncialis	0.080 +/- 0.044	. +		÷ .	+	0.006 +/- 0.003	+	+
Dactylina arctica	0.000 +/- 0.000	7		+	+	2.044 +/- 0.648	0.060 +/- 0.060	+
Flavocetraria cucullata	0.298 +/- 0.130	+	-	+ :	000	0.000 +/- 0.000	+	4
Flavocetraria nivalis	0.102 +/- 0.100	+	- 7	-/+ 201		0.278 +/- 0.128	0.726 +/- 0.225	- 4
Nephroma arcticum	0.000 +/- 0.000	. ;	- 1	0.020 +/- 0.020	÷	+	0.102 +/- 0.100	· +
Nephroma expallidum	0.004 +/- 0.003	+	+	<u> </u>	'	+	+/- 0.000	7
Pettigera aphiliosa	0.284 +/- 0.178	+	5 0	- :	-/+ 000	+	0.000 +/- 0.000	
Peltigera leucophlebia	0.000 +/- 0.000	. *	4, 0,000	<u>-</u>	+	3.708 +/- 0.985	2.722 +/- 0.889	. 7
Peltigera malacea	5.984 +/- 1.191	+	100 -1- 0.000	+	7	0.040 +/- 0.028		
Peltigera neopolydactyla	0.000 +/+ 0.000	. 4	1.972	1	6.122 +/- 0.916	7.944 +/- 1.201	+/- 1 782	4
Peltigera retifoveata	. +	- 1	+/- 0.000 -/-	+	+/- 0.000		2000 0 -/+	
Peltigura rufescens	0000 -/+ 0000		000 +/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0000	
Peltigera scabrosa	0000 -/- 0000	<u> </u>	+/- 0.000	+/- 0.000	+/- 0.000	1+	+/- 0.300	-
Pertusaria dactylina	0.000 +/+ 0.000	<u>-</u>	+/- 0.000	+/- 0.000		*	0.000	<u> </u>
Solorina crocea	0.000 +/- 0.000		+/- 0.000	+/- 0.000	0.000 +/- 0.000	*	4/- 0.000	0.000 +/- 0.000
Stereocaulon tomentosum	1 104 +/ 0 500	0-1-	+/- 0.000	000 -/- 0000	0.000 +/- 0.000	1/+	0.000	2 0
		1.082 +/- 0.487	1.112 +/- 0.392 (0.788 +/- 0.273	8.776 +/- 2.684	+	7, 0,040	<u>+</u> .
							1./01	4.074 +/- 1.562

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.1 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for summer harvested sites of Stand 1.

			7-051 1-1-0.000 1-1-0.000 1-1-0.000 1-1-0.000 1-1-0.000 1-0.	
	73		0.000 +/- 0.000 0.000 +/- 0.000	
		Dre	0.000 +/- 0.000 0.902 +/- 0.584 0.002 +/- 0.002 0.100 +/- 0.000 0.000 +/- 0.000 1.860 +/- 0.568 0.000 +/- 0.000	
	S3	Post	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	
	52	Pre	0.000 +/- 0.000 0.022 +/- 0.141 1.022 +/- 0.141 1.020 +/- 0.964 0.000 +/- 0.000 0.000 +/- 0.000	
	22	Post	0.000 +/- 0.000 0.000 +/- 0.000	
		Fre	0.000 +/- 0.000 0.004 +/- 0.000 0.064 +/- 0.060 1.062 +/- 0.640 0.020 +/- 0.000 0.000 +/- 0.000	
	Post	1001	0.000 +/- 0.000 0.000 +/- 0.000	
5	Pre		0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.160 +/- 0.203 0.000 +/- 0.000 0.000 +/- 0.000	
		Trees:	Abies lasiocarpa Picea mariana Pinus contoria Shruhs: Arctostaphylos uva-ursi Betula glandulosa Empetrum nigrum Ledum groenlandicum Linnaca borealis Rosa acicularis Rubus arcticus Salix farriae Vaccinium caespitosum Vaccinium vitis-idaea	Moter Three decimants

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.2 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for winter harvested sites of Stand 1.

	WI		CW	c,	N.	(1)		
	Pre	Post	Pro	Doet	A CA	WS	W4	
Trees:				1001	Lic	1603	rre	Post
Abies lasiocarpa	0.000 +/- 0.000	0.000 +/- 0.000	0.020 +/- 0.020	0.000 +/- 0.000	0.022 +/- 0.020	0 0 0 -/+ 0 0 0	000 0 -/+ 000 0	0000 0 7+ 0000 0
Picea mariana	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0 000 0 -/+ 0 000 0	0000 -/+ 0000	0000 =/+ 0000
Pinus contorta	0.102 +/- 0.100	0.002 +/- 0.002	1.004 +/- 1.000	0.000 +/- 0.000	0.022 +/- 0.020	0 00 0 -/- 0 00 0	0.000 +/- 0.000	0.000 -/+ 0.000
Shrubs:							0.00-1. 4.50.0	2000
Arctostaphylos uva-ursi	0.780 +/- 0.497	0.002 +/- 0.002	0.020 +/- 0.020	0.000 +/- 0.000	2.160 +/- 1.337	1,920 +/- 1,291	0.180 +/- 0.180	0000 0 7+ 0000 0
Betula glandulosa	0.002 +/- 0.002	0,000 +/- 0,000	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	000 0 -/+ 000 0
Empetrum nigrum	0.400 +/- 0.400	0.000 +/- 0.000	1.760 +/- 0.975	0.000 +/- 0.000	0.100 +/- 0.100	0.002 +/- 0.002	1.580 +/- 0.883	0.260 +/- 0.187
Ledum groenlandicum	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 -/- 0.000	0.000 +/- 0.000	0000 +/- 0000
Linnaea borealis	1.084 +/- 0.508	0.002 +/- 0.002	0.000 +/- 0.000	0,000 +/- 0,000	0,104 +/- 0,100	0.002 +/- 0.002	0.062 +/- 0.044	0.002 +/- 0.002
Rosa acicularis	0.040 +/- 0.040	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.220 +/- 0.165	0.002 +/- 0.002	0.000 +/- 0.000	0,000 +/- 0,000
Rubus arcticus	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 -/- 0.000	0.000 +/- 0.000
Salix farriae	0000 +/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.100 +/- 0.100	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000
Faccinium caespitosum	2.930 +/- 0.789	0.200 +/- 0.084	2.202 +/- 0.713	0.058 +/- 0.028	5.800 +/- 0.975	1.198 +/- 0.282	1.104 +/- 0.385	0.080 +/- 0.044
Vaccinium myrtillus	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Vaccinium vitis-idaea	9.600 +/- 0.802	0.218 +/- 0.086	14.140 +/- 1,589	0.330 +/- 0.116 13,860 +/- 2.222	13,860 +/- 2,222	1,904 +/- 0,510 14,820 +/- 1,525	14.820 +/- 1.525	2 460 +/- 0 452

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.3 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for control sites of Stand 1.

	CI	1	0	23		2	20	
	Pre	Post	Pre	Post	Pre	Post	D.	Doct
Trees:						460.4	7110	Lost
Abies lasiocarpa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/- 0000	000 0 -/+ 000 0	0000 0 7+ 0000
Picea mariana	0.000 +/- 0.000	0.000 +/- 0.000	0.062 +/- 0.060	0.004 +/- 0.003		0 000 0 -/+ 0 000 0	0.060 +/- 0.060	0.000 -/- 0.000
Pinus contorta	0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000	0.000 -/- 0.000	0,000 -/- 0,000
Shrubs:								10.0-71 121.0
Arctostaphylos uva-ursi	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.240 +/- 0.201	0 160 +/- 0 160	0000 -/+ 0000	0000 0 7+ 0000 0
Betulu glandulosa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0 000 -/- 0 000	0.364 +/- 0.305	0 122 +/- 0 084
Empetrum nigrum	5.622 +/- 1.242	5.966 +/- 1.256	3.130 +/- 1.277	2.812 +/- 1.271	1,840 +/- 0,880	1.260 +/- 0.681	1 200 +/- 1 200	1 800 +/- 1 800
Ledum groenlandicum	1.740 +/- 0.804	1.760 +/- 0.837	1.100 +/- 0.491	0.800 +/- 0.336	0.460 +/- 0.337	0.400 +/- 0.280	0.400 +/- 0.400	0300 -/- 0300
Linnaea borealis	0.168 +/- 0.108	0.224 +/- 0.104	0.000 +/- 0.000	0.002 +/- 0.002	1.362 +/- 0.330	1.450 +/- 0.414	0.160 +/- 0.160	0.400 +/- 0.400
Rosa acicularis	0.042 +/- 0.040	0.022 +/- 0.020	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 +/- 0000
Rubus arcticus	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 -/- 0.000	0000 -/- 0000	0.00 +/- 0.00
Salix farriae	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.040 +/- 0.040
Vaccinium caespitosum	12.180 +/- 1.828	17.404 +/- 2.175	4.846 +/- 0.740	14.224 +/- 2.112	4.700 +/- 0.806	6.684 +/- 1.121	2.586 +/- 0.768	4.328 +/- 1.207
Vaccinium myrtillus	0.000 +/- 0.000	0.000 +/- 0.000	0.400 +/- 0.400	0.400 +/- 0.400	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Vaccinium vitts-idaea	8.260 +/- 1.097	8.940 +/- 1.291	8.940 +/- 1.291 13.482 +/- 1.170	9.666 +/- 1.088	4.360 +/- 0.551	4.004 +/- 0.650 16 720 +/- 2 609		12 444 +/- 2 491

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.4 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for summer harvested sites of Stand 2.

		7	0.000 0.000 0.000 0.000 0.300 0.020 0.020 0.000
	S	Pre Post	0.000 +/- 0.000 0.000 +/- 0.00
	25	Pre Post	0.000 +/- 0.000 0.000 +/- 0.00
150	Pre		0.000 +/- 0.000 0.002 +/- 0.002 0.000 +/- 0.000 0.000 +/- 0.000
	E	I rees:	Picea mariana 0.000 +/- 0.000 Picea mariana 0.000 +/- 0.040 Pirus contorta 0.042 +/- 0.040 Shrubs: 0.060 +/- 0.060 Arctostaphylos uva-uvxi 0.060 +/- 0.060 Betula glandulosa 0.000 +/- 0.000 Empetrum nigrum 0.000 +/- 0.000 Limaea borealis 0.000 +/- 0.000 Limaea borealis 0.000 +/- 0.000 Rosa acicularis 0.000 +/- 0.000 Rubus arcticus 0.000 +/- 0.000 Vaccinium nyrtillus 0.000 +/- 0.000 Vaccinium vitis-idaea 0.000 +/- 0.000 Vacc

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.5 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for winter harvested sites of Stand 2.

	WI	presi.	W2	2	*	W3	K	W4
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Trees:								
Abies lasiocarpa	0.040 +/- 0.040	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Picea mariana	0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Pinus contorta	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000
Shrubs:								
Arctostaphylos wa-ursi	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Betula glandulosa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0,000 +/- 0,000
Empetrum nigrum	1.664 +/- 1.120	0.002 +/- 0.002	0.100 +/- 0.100	0.000 +/- 0.000	1.002 +/- 1.000	0.162 +/- 0.160	0,000 +/- 0,000	0000 -/- 0000
Ledum groenlandicum	0.300 +/- 0.300	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.300 +/- 0.300	0.002 +/- 0.002
Linnaea borealis	0.082 +/- 0.044	0.000 +/- 0.000	0.302 +/- 0.174	0.000 +/- 0.000	0.506 +/- 0.206	0.008 +/- 0.004	1.368 +/- 0.575	0.012 +/- 0.005
Rosa acicularis	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Rubus arcticus	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Salix farriae	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Vaccinium caespitosum	4.642 +/- 0.834	0.054 +/- 0.020	4.206 +/- 0.902	0.156 +/- 0.101	2.662 +/- 0.701	0.670 +/- 0.246	4.542 +/- 1.310	1.242 +/- 0.542
Faccinium myrtillus	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Vaccinium vitts-idaea	6.720 +/- 0.454	0.122 +/- 0.047	7.600 +/- 0.668	0.146 +/- 0.064	7.740 +/- 1.090	1.050 +/- 0.224	8.080 +/- 0.920	1.370 +/- 0.333

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.6 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for control sites of Stand 2.

	Pre	I Doet		C2		ස	22	
Trees:		160.7	r.c	Post	Pre	Post	Pre	Post
Abies Iasiocarpa Picea mariana Pinus contorta Shrubs:	0.000 +/- 0.000 0.000 +/- 0.000 0.650 +/- 0.331	0.000 +/- 0.000 0.000 +/- 0.000 0.428 +/- 0.210	0.000 +/- 0.000 0.160 +/- 0.160 2.204 +/- 1.003	0.000 +/- 0.000 0.200 +/- 0.200 1.768 +/- 0.861	0.000 +/- 0.000 0.000 +/- 0.000 0.100 +/- 0.071	0.000 +/- 0.000 0.000 +/- 0.000 0.104 +/- 0.071	0.000 +/- 0.000 0.202 +/- 0.164 0.060 +/- 0.044	0.000 +/- 0.000 0.100 +/- 0.100 0.062 +/- 0.044
Arctostaphylos uva-ursi Betula glandulosa Empetrum nigrum Ledum groenlandicum Linnaea borealis Rosa acicularis Rubus arcticus Salix farriae Vaccinium caespitosum Vaccinium vitis-idaea	0.782 +/- 0.445 0.188 +/- 0.117 0.400 +/- 0.400 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 1.744 +/- 0.671 0.000 +/- 0.000 1.744 +/- 0.671 0.000 +/- 0.000	0.440 +/- 0.259 0.324 +/- 0.135 0.400 +/- 0.400 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.002 +/- 0.002 0.002 +/- 0.002 2.862 +/- 0.854 0.000 +/- 0.000	0.560 +/- 0.502 0.010 +/- 0.004 0.000 +/- 0.000 0.000 +/- 0.000 3.280 +/- 1.568 0.000 +/- 0.000 0.000 +/- 0.000 2.124 +/- 0.549 0.000 +/- 0.000 13.382 +/- 1.858	0.220 +/- 0.170 0.014 +/- 0.005 0.000 +/- 0.000 0.000 +/- 0.000 3.642 +/- 1.683 0.000 +/- 0.000 0.000 +/- 0.000 0.002 +/- 0.000 5.364 +/- 1.397 0.000 +/- 0.000	0.000 +/- 0.000 0.654 +/- 0.261 0.760 +/- 0.618 0.000 +/- 0.000 0.002 +/- 0.002 0.102 +/- 0.100 0.000 +/- 0.000 9.440 +/- 1.495 0.000 +/- 0.000	0.000 +/- 0.000 0.844 +/- 0.377 0.700 +/- 0.606 0.000 +/- 0.000 0.440 +/- 0.308 0.002 +/- 0.002 0.180 +/- 0.181 0.000 +/- 0.000 13.622 +/- 2.240 0.000 +/- 0.000 9.448 +/- 2.035	0.600 +/- 0.600 0.808 +/- 0.607 0.600 +/- 0.600 0.000 +/- 0.000 1.022 +/- 0.369 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 4.700 +/- 1.287 0.000 +/- 0.000	0.600 +/- 0.600 0.844 +/- 0.606 0.800 +/- 0.800 0.000 +/- 0.000 1.722 +/- 0.662 0.000 +/- 0.000 0.002 +/- 0.000 4.740 +/- 1.223 0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.7 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for summer harvested sites of Stand 3.

	S		3	63				
	Pre	Post	Dro			2	*S.	
Trees:			21.1	1807	Fre	Post	Pre	Post
Abies lasiocarpa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 0 7+ 0000 0	74 000 0	7.		
Picea marlana	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0 000 -/- 0 000	0.000 -/- 0.000	0.000 -/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Pinus contorta	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0 000 -/- 0 000	0.000 +/- 0.000	0.000 +/- 0.000	0.020 +/- 0.020	0.020 +/- 0.020
Shrubs:					0.000 =/+ 0.000	0.000 -/+ 0.000	0.002 +/- 0.002	0,000 +/- 0,000
Arctostaphylos uva-ursi	0.000 +/- 0.000	0.000 +/- 0.000	0.460 +/- 0.248	0000 -/+ 0000	00000740000	7. 000		
Betula glandulosa	0.122 +/- 0.102	0.040 +/- 0.040	0 000 -/- 0 000 0	0000 0 74 0000	0.000 T CCC 0	0000 -/- 0000	0.000 +/- 0.000	0.000 +/- 0.000
Empetrum nigrum	0.000 +/- 0.000	0000 -/- 0000	0.160 +/- 0.160	000.0 1/4 000.0	4 200 11 0 000	0.062 +/- 0.063	0.044 +/- 0.040	0.040 +/- 0.040
Ledun groenlandicum	0000 +/- 0000	000007+0000	0,100,170,100	0.000 +/- 0.000	1.320 +/- 0.888	0.206 +/- 0.200	0.200 +/- 0.200	0.002 +/- 0.002
Linnaea borealis	0.360 -/- 0.360	0000 -/- 0000	0.160 +/- 0.160	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Rosa acicularis	00000	0.000 -/- 0.000	0.300 +/- 0.188	0.000 +/- 0.000	0.300 +/- 0.210	0.022 +/- 0.020	0.040 +/- 0.028	0.002 +/- 0.002
Rubus arcticus	0000 -/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Salix farriae	0000 -/+ 0000	0.000 -/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Vacchium caesnitosum	3 396 +/ 0,000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Vaccinium mutiflus	0.300 -/- 0.808	0.056 +/- 0.028	8.924 +/- 1.560	0.074 +/- 0.028	10.122 +/- 1.503	0.676 +/- 0.158	11.604 +/- 1.609	0.928 +/- 0.218
Vocinium wife idoor	0.100 4/- 0.100	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
name united	3.042 +/- 1.300	0.104 +/- 0.033	6.820 +/- 0.870	0.098 +/- 0.033	8.422 +/- 0.746	0.524 +/- 0.139	7.420 +/- 0.702	0.480 +/- 0.099

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.8 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for winter harvested sites of Stand 3.

	WI	1/1	CW	,				
Ę	Pre	Post	Dro			W3	W4	4
l rees:			211	1.091	Pre	Post	Pre	Poet
Abies lasiocarpa Picea mariana Pinus contorta Shrubs:	0.000 +/- 0.000 0.000 +/- 0.000 0.004 +/- 0.003	0.000 +/- 0.000 0.000 +/- 0.000 0.002 +/- 0.002	0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000 0.020 +/- 0.020 0.000 +/- 0.000	0.000 +/- 0.000 0.002 +/- 0.002 0.000 +/- 0.000	0.000 +/- 0.000 0.000 +/- 0.000 0.006 +/- 0.003	0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000
Artostaphylos uva-ursi Betula glandulosa Empetrum nigrum Ledum groenlandicum Linnaea borealis Rosa acicularis Rubus arcticus Salix farriae Vaccinium caespitosum Vaccinium vitis-idaea	0.120 +/- 0.102 0.000 +/- 0.000 0.140 +/- 0.107 0.000 +/- 0.000 0.122 +/- 0.074 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 8.820 +/- 1.440 0.120 +/- 0.102 8.420 +/- 1.605	0.000 +/- 0.000 0.000 +/- 0.000 0.002 +/- 0.002 0.000 +/- 0.000 0.000 +/- 0.000	0.160 +/- 0.160 0.000 +/- 0.000 1.380 +/- 0.860 0.000 +/- 0.000 5.920 +/- 1.754 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 5.022 +/- 1.052 0.000 +/- 0.000 6.520 +/- 0.710	0.002 +/- 0.002 0.000 +/- 0.000 0.042 +/- 0.040 0.000 +/- 0.000 0.330 +/- 0.020 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.136 +/- 0.005 0.324 +/- 0.103	0.000 +/- 0.000 0.000 +/- 0.000 0.300 +/- 0.300 0.000 +/- 0.000 1.340 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 2.342 +/- 0.801 0.000 +/- 0.000	0.000 +/- 0.000 0.000 +/- 0.000 0.020 +/- 0.020 0.000 +/- 0.000 0.526 +/- 0.410 0.000 +/- 0.000 0.000 +/- 0.000 0.126 +/- 0.051 0.000 +/- 0.001 0.000 +/- 0.001	0.002 +/- 0.002 0.002 +/- 0.002 0.000 +/- 0.000 0.000 +/- 0.000 0.182 +/- 0.113 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 1.261 0.020 +/- 0.020 0.020 +/- 0.020	0.002 +/- 0.002 0.020 +/- 0.020 0.000 +/- 0.000 0.000 +/- 0.000 0.004 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.135 0.000 +/- 0.145

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.9 Pre- and post-harvest percent covers (+/- S.E.) of tree and shrub species for control sites of Stand 3.

	C4	Pre Post	0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.064 +/- 0.044 0.046 +/- 0.040	1.302 +/- 0.777 1.380 +/- 0.839 0.060 +/- 0.060 0.300 +/- 0.300 0.320 +/- 0.300 0.140 +/- 0.107 0.000 +/- 0.000 0.000 +/- 0.000 1.740 +/- 0.880 1.682 +/- 0.888 0.000 +/- 0.000 0.060 +/- 0.044 0.004 +/- 0.003 0.000 +/- 0.002 2.460 +/- 0.000 0.002 +/- 0.002 2.460 +/- 0.765 3.380 +/- 0.915 0.000 +/- 0.000 0.000 +/- 0.000
	ຮ	Post	0.000 +/- 0.000 0.060 +/- 0.060 0.002 +/- 0.002	0.480 +/- 0.285 0.000 +/- 0.000 0.480 +/- 0.000 0.000 +/- 0.020 0.364 +/- 0.224 0.020 +/- 0.000 0.000 +/- 0.000 7.600 +/- 1.690 0.000 +/- 0.000 9.340 +/- 1.162
		Pre	0.000 +/- 0.000 0.060 +/- 0.060 0.002 +/- 0.002	0.400 +/- 0.230 0.000 +/- 0.000 0.480 +/- 0.337 0.000 +/- 0.000 0.344 +/- 0.222 0.020 +/- 0.020 0.000 +/- 0.000 5.262 +/- 1.124 0.000 +/- 0.000 9.420 +/- 1.028
2	Does	160 1	0.000 +/- 0.000 0.020 +/- 0.020 0.080 +/- 0.060	1.500 +/- 0.644 0.080 +/- 0.044 0.400 +/- 0.400 0.100 +/- 0.100 4.224 +/- 1.534 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 7.282 +/- 1.890 0.000 +/- 0.000
57	Pro		0.000 +/- 0.000 0.040 +/- 0.040 0.100 +/- 0.100	1.802 +/- 0.789 0.062 +/- 0.060 0.000 +/- 0.600 0.000 +/- 0.000 3.804 +/- 1.403 0.000 +/- 0.000 0.000 +/- 0.000 5.228 +/- 1.411 0.000 +/- 0.000
1	Post		0.002 +/- 0.002 0.000 +/- 0.000 0.044 +/- 0.040	
5	Pre		0.002 +/- 0.002 0.000 +/- 0.000 0.044 +/- 0.040	2.242 +/- 0.883 1,702 +/- 0.624 0.260 +/- 0.173 0.320 +/- 0.195 0.000 +/- 0.000 0.000 +/- 0.000 4.264 +/- 1.224 5.420 +/- 0.600 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.000 +/- 0.000 0.002 +/- 0.002 3.648 +/- 1.183 5.690 +/- 1.904 0.000 +/- 0.000 0.002 +/- 0.002 9.680 +/- 1.214 10.982 +/- 1.874
		I rees:	Abies (astocarpa Picea mariana Pinus contorta Shrubs:	Arciostopnylos uva-ursi Betula glandulosa Empetrum nigrum Ledum groenlandicum Linnaea borealis Rosa acticularis Rosa acticularis Salix farriae Vaccinium caespitosum Vaccinium vitis-idaea

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.10 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous species for summer harvested sites of Stand 1.

		6.1						
	Pre	Poet	D _{ro}	22		S3	52	St
Forbs:		160 7	LIC	Post	Pre	Post	Pre	Post
Achillea millefolium	0 000 +/- 0 000	7 000 0						
Aconitum delphinifolium	000.0 -/+ 000.0		+,	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
doneans alauca	0.000 -/- 0.000		0.022 +/- 0.020	0.002 +/- 0.002	0.000 +/- 0.000	0.002 +/- 0.002		i c
Daniel Contraction	0.000 +/- 0.000		0.002 +/- 0.002	0.000 +/- 0.000	0.002 +/- 0.002		7	
Ameniuna parvijiora	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.020 +/- 0.020	· +		<u> </u>	
Armica coraifolia	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000	0 7/+			+	
Aster sibiricus	0.162 +/- 0.160	0.000 +/- 0.000	+			-/+ ooo	÷	0.000 +/- 0.000
Campanula rotundifolla	0.000 +/- 0.000			+ -		0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000
Circaea alpina	0 000 +/- 0 000		<u> </u>			0.006 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000
Cornus canadensis	0.000 /+ 0.000		+		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	
Crepis tectorum	0.000 +/- 0.008		+/+		0.000 +/- 0.000	0.000 +/- 0.000	+	
Epilobium angustifolium	0.000 +/- 0.000	0.000 +/- 0.000	÷ .		0.000 +/- 0.000	0.000 +/- 0.000	+	
Fragaria virginiana	0000 /+ 0000		+		0.042 +/- 0.040	0.062 +/- 0.044	0.002 +/- 0.002	
Galium boreale	0.000 +/+ 0.000		-/+ 000		0.000 +/- 0.000	0.000 +/- 0.000	7	
Hodgerman Amine	0.000 +/- 0.000	0.000 +/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	
Dalili-	0.000 +/- 0.000		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	. \	. 7	÷ :
Ornina secunda	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	. 4			+
Pedicularis labradorica	0.020 +/- 0.020	0.000 +/- 0.000	+/+		. 7		4/- 0	+
Petasites palmatus	0.468 +/- 0.157	+	. /	800	<u> </u>	÷ .	0-/+	+
Potentilla diversifolia	0000 -/- 0000	+			+		0.000 +/- 0.000	0.000 +/- 0.000
Pyrola chlorantha	0.000 +/- 0.000		- 7		+		0.000 +/- 0.000	0.000 +/- 0.000
Solidago spathulata	0000 -/+ 0000	74 000	200		+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Stellaria crassifolia	0000 -/- 0000	2000	74 000	002	+	0.004 +/- 0.003	0.002 +/- 0.002	+
Veronica alpina	0000 -/+ 0000	7 .	-/+ non		0.002 +/- 0.002	0.022 +/- 0.020	0.000 +/- 0.000	+
Viola adunca	0000 -/+ 0000	0.000 -/+ 0.000	-/+ 000°	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Graminoids:		2	0.000 +/- 0.000	0.000 -/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Agrostis scabra	0.014 +/- 0.005	000 0 7+ 000 0	00000/1 8000					
Danthonia californica	0.000 +/- 0.000	0 1/+	/+ 000	0.000 +/- 0.000	0-/+ 800		0.048 +/- 0.040	0.000 +/- 0.000
Deschampsia caespitosa	0.002 +/- 0.002	0000 -/- 0000	74 800		010 +/- 0.0	005	0.000 +/- 0.000	0:000 +/- 0:000
Elymus innovatus	0.010 +/- 0.004	0 000 +/- 0 000	200			900	0.000 +/- 0.000	0:000 +/- 0:000
Festuca saximontana	0.000 +/- 0.000		2 4	1 0			0.050 +/- 0.020	0.020 +/- 0.006
Oryzopsis pungens	0.020 +/- 0.008	2 4	7 000	-/+ 000	022 +/-	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000
Clubmosses & Horsetails:			000	0.004 +/- 0.003	0.048 +/- 0.040	0.010 +/- 0.004	0.000 +/- 0.000	0.044 +/- 0.040
Equisetum sctrpoides	0.000 +/- 0.000	0.000 +/- 0.000	0 000 0 -/- 0 000 0	000007+0000				
Lycopodium annotinum	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		0.004 +/- 0.003	0.000 +/- 0.000	+/- 0.003	0.000 +/- 0.000
Lycopodium complanatum	0.000 +/- 0.000	0.000 +/- 0.000	0000 -7- 0000	0.000 -/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0.000	0.000 +/- 0.000
					0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.11 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for winter harvested sites of Stand 1.

		11/11						
	Pre	Post	A	W2		W3		W4
Forbs:			LIG	Post	Pre	Post	Pre	Post
Achillea millefolium	0.000 +/- 0.000	0000 /+ 0000						
Acontum delphintfolium	0000 +/- 0000	0,000 +/+ 0,000	002 +/- 0.	+		0.040 +/- 0.040	0.000 +/- 0.000	0000 -/+ 0000
Agoserus glauca	0000 -/+ 0000	0000 -/- 0000	000 +/- 000	+	0.000 +/- 0.000	0.000 +/- 0.000	0 -/+ 000 0	
Antemaria parviflora	0000	-/+ ono	002 +/- 0.	0.000 +/- 0.000	0.000 +/- 0.000	7+	74 000 0	
Arnica condifolia	0.000 +/- 0.000	+		0.002 +/- 0.002	0.060 +/- 0.060	. +	0000	
	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000			0.00.0	
Asier Sibiricins	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000			+		0.000 +/- 0.000
Campanula rotundifolia	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000		<u> </u>	+	0.000 +/- 0.000	0.000 +/- 0.000
C Ireaea alpina	0.000 +/- 0.000		7+ 000		+ -	+	0.000 +/- 0.000	0.000 +/- 0.000
Cornus canadensis	0.244 +/- 0.088		14 000		+	+	0.000 +/- 0.000	0.000 +/- 0.000
Crepis tectorum	0.000 +/- 0.000		000			0.000 +/- 0.000	0.144 +/- 0.076	0.000 +/- 0.000
Epilobium angustifolium	0.000 +/- 0.000		7 4 000			0.000 +/- 0.000	0.000 +/- 0.000	+
Fragaria virginiana	0.000 +/- 0.000					0.024 +/- 0.020	0.000 +/- 0.000	. +
Galium boreale					0.000 +/- 0.000	0.000 +/- 0.000		1
Hedysarum alpinum	0000 /+ 0000		000		0.000 +/- 0.000	0.000 +/- 0.000		. 7
Orthilia secunda	0000 -/- 0000		000	0.000 +/- 0.000	0.000 +/- 0.000	000		0.000 -/- 0.000
Podionianis Johnson	0.000 +/- 0.000		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		-	
Dotoritor nother than	0.000 +/- 0.000		0.028 +/- 0.020	0.002 +/- 0.002			÷ :	
r ensites paimatus	0.002 +/- 0.002	0.004 +/- 0.003	0.260 +/- 0.187	- '+			+	0.000 -/- 0.000
l'otentila diversifolia	0.000 +/- 0.000	0.000 +/- 0.000		+			+	0.000 +/- 0.000
Pyrola chlorantha	0.000 +/- 0.000	0.000 +/- 0.000		- 7			0.000 +/- 0.000	0.000 +/- 0.000
Solidago spathulata	0.000 +/- 0.000			5			0.000 +/- 0.000	0.000 +/- 0.000
Stellaria crassifolia	0.000 +/- 0.000) (0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000
Veronica alpina	0.000 +/- 0.000		2 4 000) (-/-		0.000 +/- 0.000	0.000 +/- 0.000	
l'iola adunca	0.000 +/- 0.000		2000	000 +/- 0	÷	0.000 +/- 0.000	0.000 +/- 0.000	
Graminoids:		5	-	0.000 +/- 0.000	0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000	
Agrostis scabra	0.012 +/- 0.005	0.004 +/- 0.003	0 0 0 1 T 0 0 0					
Danthonia californica	0.000 +/- 0.000		- 1			0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000
Deschampsia caespitosa	0.000 +/- 0.000		- 4	0.000 +/- 0.000		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Elymus innovatus	0.008 +/- 0.004		- 1			0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Festuca saximontana	0.000 +/- 0.000		2000			0.010 +/- 0.004	0.006 +/- 0.003	7
Oryzopsis pungens	0.020 +/- 0.020		444	-/+ 000	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	+
Clubmosses & Horsetails:		-	ŧ	0.026 +/- 0.006	0.002 +/- 0.002	0.016 +/- 0.005	0.000 +/- 0.000	+
Equisetum sctrpoides	0.034 +/- 0.020	0.002 +/- 0.002	~/- 0 000					
Гусородінт аппоніпит	0.000 +/- 0.000	0,000 +/- 0,000		0.000	0.042 +/- 0.020	0.006 +/- 0.003		0.000 +/- 0.000
Lycopodium complanatum	0.000 +/- 0.000	0.000 +/- 0.000	0000		+/- 0.000	0.000 +/- 0.000		0.000 +/- 0.000
			000.0	1,-0.000 1	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.12 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for control sites of Stand 1.

		5						
	Pre	Post) D,	5		3		7.7
Forbs:		100		F081	Pre	Post	Pre	Post
Achillea millefolium	0000 +/- 0000	0000 74 000 0						
Aconttum delphinifolium	0000 /+ 0000		+	-/+ 000		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Social Solawa	000.0 -/- 000.0	-	+	0,000 +/- 0,000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	U */+
Cartes and a constitution of the constitution	0.000 -/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7	
design party sylved	0.000 +/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		7	
Armed coraljona	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	000			
ASTON SIBILICUS	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0 1/+			÷ .	+
Campanula rotundifolia	0.000 +/- 0.000	0,000 +/- 0,000	. +	5 6			+	0.042 +/- 0.040
Circaea alpina	0.000 +/- 0.000		200	-		+	' +	0.000 +/- 0.000
Cornus canadensis	0.596 +/- 0.175		-	0 4	000 +/- 0	+	0.000 +/- 0.000	0.000 +/- 0.000
Crepis tectorum	0.000 +/- 0.000		<u>}</u> :	0-7+	124	3.284 +/- 0.328	0.140 +/- 0.107	0.140 +/- 0.107
Epilobium answertfolium	0.000 -/- 0.000		÷ .		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Fragaria viralniana	0000 -/+ 0000		<u>.</u>			0.004 +/- 0.003	0.020 +/- 0.020	0.062 +/- 0.044
Calium horecile	0000 -/- 0000		-/+ 000	+	0.000 +/- 0.000	0.000 +/- 0.000	1/+	
Hocherman alminim	0.000 +/+ 0.000		-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/+ 0.000	7	
Callita and albuman	0.000 +/- 0.000		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7+	4	
Comming secunda	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	-/+	. 4	j c	j 0	
Pedicularis labradorica	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	-/+	. 4		000 +/- 00	+
Petasites palmatus	0.000 +/- 0.000	0.000 +/- 0.000	000 +/- 0	74 000	- 1	+	000 +/- 0.	+
Potentilla diversifolia	0.000 +/- 0.000	\ +	000			+/+	022 +/- 0.	0.044 +/- 0.028
Pyrola chlorantha	0.000 +/- 0.000	+/+	000		+	-/+ 000	+/- 0.	0.000 +/- 0.000
Solidago spathulata	0 000 -/+ 0 000 0	2	2000	000	<u>+</u>	+	0.000 +/- 0.000	0.000 +/- 0.000
Stellaria crassifolia	0000 -/+ 0000	2 4	000 +/- 000	0-/+	-/+ 000	0.000 +/- 0.000	0.042 +/- 0.040	0.042 +/- 0.040
l'eronica alpina	0000 -/- 0000	2000	-/+ 000	000 +/- 0	000 +/- 0	0.000 +/- 0.000	0.000 +/- 0.000	+
Viola adunca	0.000 +/+ 0.000	000 +/- 000	0.74 000	000 +/- 0	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Graminoids;	0.000.0	0.00.0 -/+ 0.00.0	0.000 +/- 0.000	0.000 -/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Agrostis scabra	0.000 +/- 0.000	000 0 7+ 000 0	7 0000	0				
Danthonia californica	0 000 -/- 0 000	000 +/- 000	7 000		-/+ oto	+	0.054 +/- 0.020	0.000 +/- 0.000
Deschampsia caespitosa	0 000 -/- 0 000 0		200				0.000 +/- 0.000	0.000 +/- 0.000
Elymus innovatus	0000 /+ 0000	000.0	7. 000	000	·/- 0	0.000 +/- 0.000.0	0.000 +/- 0.000	0.000 +/- 0.000
Festuca saximontana	0000				0.020 +/- 0.006	0.018 +/- 0.005	0.018 +/- 0.005	0.028 +/- 0.006
Onzonsis mundens	0.000 +/- 0.000	J (·/+ 000	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0.000	7
Clubmosses & Horsetails:	0.000 +/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.008 +/~ 0.004	000 -/- 000	+
Equisetum scirpoides	0.000 +/- 0.000	0000 0 7+ 0000 0	0					
Lycopodium annotinum	0.280 +/- 0.206	0.064 +/- 0.060	0000 11 0000		0.000 +/- 0.000	0.000 +/- 0.000		0.004 +/- 0.003
Lycopodium complanatum	0.000 -/+ 0.000	0000 -/+ 0000	0.000 +/- 0.000	0000-/+	200	0.060 +/- 0.060	+/- 0.000	0.000 +/- 0.000
		200.0		0.00% +/- 0.00%	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.13 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for summer harvested sites of Stand 2.

	S	S1	S2			S3		Z
Forher	rre	Post	Pre	Post	Pre	Post	Pre	Post
richilled millefolium	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 4/- 0.000	74 000 0	
secontum delphinifolium	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0 000 +/- 0 000	1			-/+ O -/+
Agoserus glauca	0.000 +/- 0.000	0.000 +/- 0.000	+	7			+	-/+ 000
Antennaria parviflora	0 000 +/- 0 000	7			+	200	0.000 +/- 0.000	0.000 +/- 0.000
Armica condifolio	0000	ļ -	÷ :	0-/+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Table of the court			+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000
Canter stuffichs		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 +/+ 0000	. /	1
L'ampanula rotundifolia		0.000 +/- 0.000	0.008 +/- 0.004	0.004 +/- 0.003	0 -/+ 000		- 7	
Circaea alpina	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000	7+ 000		- :	
Comus canadensis	2.228 +/- 0.306	0.056 +/- 0.040	+	+	154 +/-	0 0	÷ :	
Crepis tectorum	0.000 +/- 0.000	0,000 +/- 0,000	-/+ 000	1	1		+	
Epilobium angustifolium	0.000 +/- 0.000	+/+	+	- 4			+	000
Fragaria virginiana	0.00 0 -/+ 0.00 0	7	- 7		<u>.</u>		+	0.000 -/- 0.000
Galium boreale	0000 -/+ 0000	- 7	1/-	+	+		0.000 +/- 0.000	0.000 +/- 0.000
Hedrsarum alpinum	0000 -/+ 0000	-	-/+ ZOO	+		0.000 +/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Ordullo sociando	0.000 -/- 0.000	+	000 +/- 00	÷	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Padionland John Julian	0.000 +/- 0.000	+	000 +/- 0	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	
ם במונ אומרוט ומסרממסרוכמ	0.000 +/- 0.000	+	0.084 +/- 0.063	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0 -/+	
r etasties paintains	0.002 +/- 0.002	+/+	0.304 +/- 0.149	0.104 +/- 0.100	0.000 +/- 0.000	1/4	. 7	
Fotentila diversifolia	0.000 +/- 0.000	000 +/- 000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7	\ \ +	
I yrola chiorantha	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	1+	. +	- 4	
Solidago spathulata	0.000 +/- 0.000	0.000 +/- 0.000	0.008 +/- 0.004	· /+		. 7	-	+
Stellaria crassifolia	0.000 +/- 0.000	0-/+	0 -/+ 000	0 0) C	4,0	+
l'eronica alpina	0.000 +/- 0.000	000 +/- 0	0 7+ 000		7 . 000	Ó -/.+	0-/-	+
l'iola adunca	0.000 +/- 0.000	000 +/- 0	000 +/- 000		, t	+/- 0.	000 +/- 0	000 +/- 00
Graminolds:			2	000	-/+ 000	0.000 +/+ 0.000	0.000 +/- 0.000	0.000 -/- 0.000
Agrostis scabra	0.002 +/- 0.002	0.000 +/- 0.000	0.002 +/- 0.002	0000 -/+ 0000	000 0 7+ 000 0	00000		
Danthonia californica	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000	-/+ 000	1			÷,
Deschampsia caespitosa	0.006 +/- 0.003	0.000 +/- 0.000	-/+ 000	. +	200		3 6	+
Elymus innovatus	0.002 +/- 0.002	+	048		- 7		000	+
Festuca saximontana	0.000 +/- 0.000	1/- 0	7+ 000				200	+
Oryzopsis pungens	0.002 +/- 0.002	-/+	+	- 1	7	0.00 +/+ 000	000 +/- 0	000 +/- 0
Clubmosses & Horsetails:		<i>.</i>		/+ noo		0.002 +/- 0.002	0.000 +/+ 0.000	0.012 +/- 0.005
Equisetum scirpoides	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/- 0000	0000 0 7+ 0000	000 0	0000	
Lycopodium annotinum	0.000 +/- 0.000	0.000 +/- 0.000	0 000 -/- 0 000	. 1		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lycopodium complanatum	0.000 +/- 0.000	0 000 +/- 0 000	0000 -/- 0000	0000 -/+ 0000) c		0.060 +/- 0.060	+
		1	2	200	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.14 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for winter harvested sites of Stand 2.

	Dwo	Don't		W2		W3		W4
Forthe.	110	1.031	rre	1804	Pre	Post	Pre	Post
A 0100								_
Achillea millefolium	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Aconstum delphinifolium	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Agoserus glauca	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+/+	+	7	7+ 000
Antennaria parviflora	0.000 +/- 0.000	0.000 +/- 0.000	+/-0	-/+ 000	-/+ 000	+	+	
Arnica cordifolia	0000 +/- 0000	0.000 +/- 0.000	000 +/- 0	-/+ 000	-/+ 000	-/+ 000	+	
Aster sibiricus	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000	-/+ 000	1	1) c	
Campanula rotundifolia	0,000 +/- 0,000	-/+ 000	-/+ 000	-/+ 000	4	200	5 0	
Circaea alpina	0.000 +/- 0.000	-/+ 000	-/+ 000	-/+ 000	7	7+ 000	1	
Cornus canadensi's	1.646 +/- 0.299	.002 +/-	+	-/+ 800	+	1 7	+	200
Crepis tectorum	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	*	. 7	. 1	0.04 000	
Epilobium angustifolium	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	4	+	7	
Fragaria virginiana	0.000 +/- 0.000	0000 -/+ 0000	0.000 +/- 0.000	+	+	7	-/+	000
Galium boreale	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	7	. +
Hedysarum alpinum	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7	1/+	+
OrthHia secunda	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000	0.000 +/- 0.000	0.000 +/- 0.000	+	+	+
Pedicularis labradorica	0.000 +/- 0.000	+/- 0	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	+
Petasites palmatus		000 +/- 0	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Potentilla diversifolia		000 +/- 0		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0	1/+
Pyrola chlorantha		+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0	+
Solidago spathulata	0.000 +/- 0.000	0000'0 -/+ 000'0	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	000 +/- 0	+	+
Stellaria crassifolia	0000 -/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	-/+ 000	-/+ 000	+
Veronica alpina	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0	-/+ 000	+
Fiola adunca	0000 -/+ 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	-/+ 000	+
Graminolds:								
Agrostis scabra	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.006 +/- 0.003	0.000 +/- 0.000	0.002 +/- 0.002	0000 -/- 0000
Danthonia californica	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	000	000	+
Deschampsia caespitosa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	000	0 -/+ 000	+
Elymus innovatus	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.002 +/- 0.002	0.002 +/- 0.002		044 +/- 0	· +
Festuca saximontana	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	+	0 -/+ 000	+
Oryzopsis pungens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	0-/+	+
Clubmosses & Horsetails:								
Equisetum scirpoides	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.082 +/- 0.063	0.004 +/- 0.003	0.016 +/- 0.005	0.006 +/- 0.003
Lycopodium annotinum	0.000 +/- 0.000	+	100 +/- 0	000 +/- 0	+/- 0		000	+
Lycopodium complanatum	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
				The second secon			ı	

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.15 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for control sites of Stand 2.

		C1)					
	Pre	Post	D			ຮ		3
Forbs:			211	180.7	Pre	Post	Pre	Post
Achillea millefollum	0.000 +/- 0.000	0000 +/- 0000	7+ 000 0	7				
Acontum delphinifolium	0.002 +/- 0.002	008 ±/- 0	5 0	+		+	0.002 +/- 0.002	0.002 +/- 0.002
Agoserus glauca	0000 -/+ 0000	- 4		÷,	+	0.000 +/- 0.000	0000 +/- 0000	0.000 +/- 0.000
Antennaria parviflora	0 00 0 -/+ 0 00 0	- 7	-	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Arrica cardifolio	0.002 -/- 0.002	<u>.</u>	+	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	
Action significant		+	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		
2001 1000		0.000 +/- 0.000	0.044 +/- 0.040	0.220 +/- 0.201	+/-	7+		
Campanula rotundifolia		0.004 +/- 0.003	0.008 +/- 0.004	0.012 +/- 0.005	. 7	- 7		+
C. Ircaea alpina	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7+ 000	- 7	-		÷
Cornus canadensis	0.000 +/- 0.000	0.000 +/- 0.000	. +	. +		-/+ 000 -/-		
Crepis tectorum	0.000 +/- 0.000	0000 -/- 0000		200	<u>.</u>	-/+ nnn		3.802 +/- 0.673
Epilobium angustifolium				<u> </u>	' '	000	0.000 +/- 0.000	0.000 +/- 0.000
Fragaria virginiana	0.000 +/- 0.000	+		÷ -	+ ·	+	0.006 +/- 0.003	0.062 +/- 0.034
Galium boreale	0.008 +/- 0.004	. 7		* ·	+	+	0.000 +/- 0.000	0.000 +/- 0.000
Hedysarım alpinum	0000 -/- 0000	- 7		* +	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Orthilia secunda	0000-7-	<u> </u>		+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+
Podicularis Johnadariaa	0.000 +/- 0.000	÷ .	-/+ 000	000	0.000 +/- 0.000	0.000 +/- 0.000	7	+
Datasitas malaratica	0.000 +/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7	4	
Describes primitality	0.058 +/- 0.028	+	0.106 +/- 0.071	0.186 +/- 0.089	+		. 4	
Dienning aiversipand	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.002 +/- 0.002	+		. 4	
Pyrola chiorantha	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	1/+	7+ 000		-	+
Solidago spathulata	0.004 +/- 0.003	0.042 +/- 0.028		4			+	
Stellaria crassifolia	0.000 +/- 0.000	7	+	1/1 000	-/+ 000	÷ :	+	0.002 +/- 0.002
l'eronica alpina	0.000 +/- 0.000	+		<u> </u>	+	+	0.000 +/- 0.000	0.000 +/- 0.000
Viola adunca	0.000 +/- 0.000	7	- 1	-	-/+ nnn	000 +/- 0	0.000 +/- 0.000	0.000 +/- 0.000
Graminoids:		-	UKK +/= U.	0.022 +/- 0.020	0.000 +/+ 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000
Agrastis scabra	0.034 +/- 0.007	0.002 +/- 0.002	0 228 +/- 0 420	74 600 0	7			
Danthonia californica	0.000 +/- 0.000	-/+ 000	180 +1		+ :	+		0.000 +/- 0.000
Deschampsia caespitosa	0.000 +/- 0.000	· +			÷ :	+		0.000 +/- 0.000
Elymus innovatus	0.054 +/- 0.007	. +	0000-1/- 0000		-/+ 000	'	0.000 +/- 0.000	0.000 +/- 0.000
Festuca saximontana	0.000 +/- 0.000	0000 -/+ 0000	- 1		<u>-</u>	7	0.036 +/- 0.007	0.042 +/- 0.007
Oryzopsis pungens	0 000 +/- 0 000	4	o c	-/+ 000°	000 +/- 000	8	0.000 +/- 0.000	0.000 +/- 0.000
Clubmosses & Horsetails:	700.0	j L	0.102 +/- 0.071	0.316 +/- 0.147	0.000 +/- 0.000	0.098 +/- 0.060	0.014 +/- 0.005	0.028 +/- 0.006
Equisetum scirpoides	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 0 7+ 0000	74 000 0			
Lycopodium annotinum	0.000 +/- 0.000	000	0000 -/- 0000	0000 /+ 0000		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lycopodium complanatum	0.000 +/- 0.000	0.000 +/- 0.000	0 00 0 -/- 0 00 0	0000 +/+ 0.000	0.000	0.000 +/- 0.000	+	0.000 +/- 0.000
					-/-	0,000 +/- 0,000	0.000 +/- 0.000	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.16 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for summer harvested sites of Stand 3.

Prof. Prof			Si						
0.000 +/- 0.000 0.000 +/- 0.00		Pre					S3		72
0.000 + 0.000 0 0 0 0 0 + 0.000 0 0 0 0	lorbs:			2	Post	Pre	Post		Post
0.000 + 4.000 0.000 + 4.000 0.000 + 0.000 0.	chillea millefolium	0.000 +/- 0.000	0.000 +/- 0.	-/+ 0000	C				
0000 +/- 0000 0000 +/- 0000 0000 +/- 0000 0000	constant desphinifolium	0.000 +/- 0.000	-/+ 000.0	-/+ 0000	0000	, c	+	0000	-/-
0.000 +/- 0.000 0.000 +/- 0.00	goserus glauca	0.000 +/- 0.000	-/+ 000.0	-/+ 000.0	0000	, t		-/+ 000.0	+
0.000 +/- 0.000 0.000 +/- 0.00	mennaria parvillora	0.000 +/- 0.000	0.000 +/-	-/+ 0000	/ 000	÷ :		+	+
0.000 +/- 0.000 0.000 +/- 0.00	mica cordifolia	0.000 +/- 0.000	0.000 +/-	7+ 000 0	7 .	÷ .		+	0-/+
0.0000 +/- 0.000 0.000 +/- 0.0	ster sibiricus	0.004 +/- 0.003	0.002 +/-	/+ 000 0	7, 000	+		+	+
0.000 +/- 0.000	ampanula rotundifolia	0.000 +/- 0.000	7+ 000	2000	-/+ 000	+		-/+	/+
0.746 +/-0.155 0.008 +/-0.009 0.000	ircaea alpina	0.000 +/- 0.000	7+ 000	2,000	000 +/- 00	-/+		+	
0.000 +/- 0.000	ornus canadensis	0 746 +/- 0 153	000		000 +/- 00	+		+	4
0.000 +/- 0.000	repis tectorum	0000 /+ 0000	-/+ 000	+	014 +/- 0.	+		1	-
0.000 +/- 0.000 0.000 +/- 0.00	pilobium angustifolium	0.000 -/- 0.000	-/+ 000	+	000 +/- 0.	+	+	-	
0.0000 +/- 0.000			004 +/- 0	+/+	-/+ 000	7		4	
0.0000 +/- 0.000	again a trigimand		-/+ 000	+	. /		-/+	+	
0.000 +/- 0.000 0.000 +/- 0.00	anum poreale		-/+ 000	7		1	+/+	+/+	
0.000 +/- 0.000	edysarum alpinum	0000 +/- 0000	/+ 000		+	1	+	+/-	
0.000 +/- 0.000 0.000 +/- 0.00	rthilia secunda	0000 /+ 0000		+	000	+	+	+	
0.000 +/- 0.000 0.000 +/- 0.00	dieularis labradorica	0000-1-0000	+	+		1/+	+		
0.000 +/- 0.000	tasites palmatus	0.000 +/- 0.000	-/+	+		+	- 7	-	
0.000 +/- 0.000 0.000 +/- 0.00	the state of the state of the	0.040 +/- 0.040	+/- 0	+/+	1+	1	- :	+	+
0.000 +/- 0.000	nennia arversijona	0.000 +/- 0.000	000 +/- 0	-/+ 000	4	- :	+	+	+/+
0.000 +/- 0.000	rola eniorantha	0.000 +/- 0.000	0 -/+ 000	7+ 000		+	+		-/+
0.000 +/- 0.000 0.000 +/- 0.00	lidago spathulata	0.000 +/- 0.000	000 +/- 0	200	+	+	+/+	-/- 0	\' +
0.000 +/- 0.000 0.000 +/- 0.00	llarta crassifolia	0.000 +/- 0.000	+	75 000	-/+ 000	+	-/+ 000	0-/+	7
0.020 +/- 0.000	ronica alpina	0000 -/- 0000		-/+ 000	+	-/+ 000	-/+ 000		- 7
0.020 +/- 0.006	ola adunca	0000 -/+ 0000	ļ :	-/+ 000	+	-/+ 000	-/+ 000		F 4
0.020 +/- 0.006 0.000 +/- 0.000 0.000 +/- 0.00	aminoids:	00000	-/-	.000 +/- 0.	+/- 0	000 +/- 0	-/+ 000	7+ 000	+ 7
0.000 +/- 0.000	rostis scabra	0000 -/+ 0000	7						o .
0.002 +/- 0.000 0.000 +/- 0.00	nthonia californica	0000 /+ 0000	- -	+	-/+ 000	010 +/- 0.		+	
0.036 +/- 0.002	schampsia caesnitaea	0.000 -/- 0.000		+	-/+ 000	0-/+	+		÷ .
0.035 +/- 0.020 0.012 +/- 0.005 0.016 +/- 0.005 0.002 +/- 0.000 0.000	min in and in an and in an	0.002 +/- 0.002		+	+	/+		+/- 0.000 -/-	+
0.000 +/- 0.000 0.000 +/- 0.00	mus muovanus	0.036 +/- 0.020		016 +/-	+/+	. 7		+/- 0.000	+
0.050 +/- 0.028	stuca saximontana	0.000 +/- 0.000	+	7+ 000	1	<u>.</u>		+/- 0.003	+
0.000 +/- 0.000 0.000 +/- 0.00	vzopsis pungens	0.050 +/- 0.028	+	7+ 000		<u>+</u> -		+/- 0.000	+
0.000 +/- 0.000 0.000 +/- 0.00	ubmosses & Horsetails:				00/4 YOU	020 +/- 0	008 +/- 0	000 -/+ 000	7+
0.000 +/- 0.000 0.000 +/- 0.00	uisetum scirpoides	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000	00000				
0.000 -/- 0.000 0.000 -/- 0.000 0.000 -/- 0.000 0.000 -/- 0.000 0.000 -/- 0.000 0.000 0.000 -/- 0.000 0	copodium annotinum	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+/- 0.000	4/- 0.000	
200 - 1 200 0 0 00 0 - 1 0 00 0 0 0 0 0 0 0 0 0 0	copodium complanatum	0.000 +/- 0.000	0000 -/- 0000	-	0.000 +/- 0.000	+/- 0.000	+/- 0.000	0000 -/+	000 0 -/+ 000 0
		2000	0.000 -/- 0.000	+	0.000 +/- 0.000.0	+/- 0.000	4/- 0 000	000	200 -/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.17 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for winter harvested sites of Stand 3.

	Pre	WI Post	7	W2		W3		W4
Forbs:		1601	77	Post	Pre	Post	Pre	Post
Achillea millefolium	0000 -/- 0000	0000077	-					
Aconitum delphinifolium	0000 /+ 0000		-/+ -/-	<u>+</u>	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0 000 +/- 0 000 0
Agoserus glauca	2000 -/- 0000	<u> </u>	000 +/- 000	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000	
Antonional a married our	0.000 -/- 0.000	+/+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		
ייווניווומוומ אווייווומו	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	1	- :	
Armea corationa	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	7+ 000		ļ.,		
Aster sibirious	0.000 +/- 0.000	0.000 +/- 0.000	000	200	-/- 000	+	0.000 +/- 0.000	0.000 +/- 0.000
Campanula rotundifolia	0.000 +/- 0.000	-/+		-/- a	-/+ 700	002 +/-	0.000 +/- 0.000	0.000 +/- 0.000
Circaea alpina	0.000 +/- 0.000	- 7	-	-/+ 700	'	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000
Cornus canadensis	1.360 +/- 0.324		÷ :	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	
Crepis tectorum	0000 -/- 0000	-	+ :	-/+ 900	0.300 +/- 0.125	0.002 +/- 0.002	0.656 +/- 0.155	900
Epilobium angustifolium		-	<u>*</u>	000 +/- 0	0.000 +/- 0.000	0.000 +/- 0.000		
Fragaria virginiana	0.000 -/- 0.000	+	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		
Calium horeale	0.000 +/- 0.000	+	+	0.000 +/- 0.000	0.000 +/- 0.000			- 1
Elochiocom almine	0.000 +/- 0.000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002			<u>, </u>
Treussarum aipinium	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	+	74 000		+	+
Оттина ѕесина	0.000 +/- 0.000	0.000 +/- 0.000	0.004 +/- 0.003	+			+	
Pedicularis labradorica	0.000 +/- 0.000	0.000 +/- 0.000	. +	- 7	<u>;</u> ;		+	0.000 +/- 0.000
Petasites palmatus	0.000 +/- 0.000	+	1 +		÷ :		+	0.000 +/- 0.000
Potentilla diversifolia	0.000 +/- 0.000	-/+	74 000	-	+		0.000 +/- 0.000	0.000 +/- 0.000
Pyrola chlorantha	0.000 +/- 0.000	1		÷ :	-/+	-/+ 000	0.000 +/- 0.000	1/+
Solidago spathulata	0.000 +/- 0.000	1) 	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0,000 +/- 0,000
Stellaria crassifolia	0 000 -/- 0 000	- 4	-/+ 000	-/+ 000	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	
l'eronica alpina	0 000 -/- 0 000	2 4	-	-/+ 000	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	
Viola adunca	0 000 0 -/+ 0 000	77 7000	+	0-/+		0.000 +/- 0.000	0.000 +/- 0.000	
Graminoids:	200	5	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	
Agrostis scabra	0.004 +/- 0.003	0 000 0 -/- 0 000 0	2000 0 14 800 0	6				
Danthonia californica	0.000 +/- 0.000	000 +/- 0	2000	0.002 +/- 0.002	, +	+	0.040 +/- 0.020	0.000 +/- 0.000
Deschampsia caespitosa	0.002 +/- 0.002	. +	7+ 000		÷.	+	0.000 +/- 0.000	0.000 +/- 0.000
Elymus innovatus	0.004 +/- 0.003	+	71 000	3 6	÷ .	+	0.000 +/- 0.000	0.000 +/- 0.000
Festuca saximontana	0.000 +/- 0.000	- 4	0 0	0.006 +/- 0.003	<u>+</u>	7	0.016 +/- 0.005	0.016 +/- 0.005
Oryzopsis pungens	0.000 +/- 0.000	7	- 4) c	000 +/- 00		0.000 +/- 0.000	0.000 +/- 0.000
Clubmosses & Horsetails:			200	0.004 +/- 0.003	0.000 +/- 0.000	0.008 +/- 0.004	0.000 +/- 0.000	0.024 +/- 0.006
Equisetum scirpoides	0.000 +/- 0.000	0.000 +/- 0.000	0 000 0 -/+ 0 000 0	000 0 /+ 000 0				
Lycopodium annotinum	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/- 0000	0.000 +/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lycopodium complanatum	0.000 +/- 0.000	0000 -/+ 0000	0000 -/- 0000	0.000 -/- 0.000	4/- 0.000	0.000 +/- 0.000.0	0.000 +/- 0.000	0.000 +/- 0.000
			-	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000.0	0.000 +/- 0.000	0.000 +/- 0.00.0

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.18 Pre- and post-harvest percent covers (+/- S.E.) of herbaceous plant species for control sites of Stand 3.

		12						
	Pre	Poer	o o	7		3		25
Forbs:			311	1.080	Pre	Post	Pre	Post
Achillea millefolium	0 004 +/- 0 003	(
Aconitum delphinifolium	0000 /+ 0000	-	Ö-/+	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/- 0000
consist of and	0.000	+	+/- 0.	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	- /+
		+/+	0.062 +/- 0.044	0.030 +/- 0.020	0.000 +/- 0.000	0 000 +/- 0 000 0	- 4	
Antennaria parvytora		0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	U -/+	4		<u>.</u>
Armica cordifolia	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	00007+0000	3 0			' +
Aster sibiricus	0.044 +/- 0.040	7+	. 7		<u>.</u> .	-/+ non		0.000 +/- 0.000
Campanula rotundifolia	0.004 +/- 0.003	4		-/+ nnn	-/+ 000	0.000 +/- 0.000	0.002 +/- 0.002	0.020 +/- 0.020
Circaea alpina			-	+	-/+ 000	0.002 +/- 0.002	0.010 +/- 0.004	0.070 +/- 0.060
Cornes canadensis		ļ.,	-/+ 000	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.00.0	
Cronic footowing	0.000 -/- 0.458	<u>'</u>	+	+	1.294 +/- 0.248	1.952 +/- 0,297		+
Knilohum onenstifolium	0.000 +/- 0.000	<u>*</u> ·	+	+	0.000 +/- 0.000	0.000 +/- 0.000		+
Property washing	0.086 4/- 0.191	+	170 +/-	0.664 +/- 0.238	0.002 +/- 0.002	0.000 +/- 0.000	. 7	- 7
Calina to Simona	0.002 +/- 0.002	+	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000		4	
Canna coreate	0.068 +/- 0.044	0.048 +/- 0.040	0.062 +/- 0.044	1/+	1			
Hedysarum alpinum	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000	. 4			+	'
Orthilia secunda	0.002 +/- 0.002	0.022 +/- 0.020	+	- 7			+	0.160 +/- 0.160
Pedicularis labradorica	0.000 +/- 0.000	7+ 000	- 7	74 000		+	0.000 +/- 0.000	0.000 -/- 0.000
Petasites palmatus	0.420 +/- 0.164	540 +/-	74 000	0 -/-		7	0.064 +/- 0.044	0.026 +/- 0.020
Potentilla diversifolia	0 000 +/- 0 000		-	-/+ 080		0.000 +/- 0.000	0.000 +/- 0.000	000
Pyrola chlomatho	0000 -/+ 0000	000 -1/- 000	+	+	0.000 +/- 0.000	0.000 +/- 0.000	+	000
Solidado entrilista		0 -/+ 000	-/+ 000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	-/+	
Some spanning		0,000 +/- 0,000	0.002 +/- 0.002	0.042 +/- 0.040	0.000 +/- 0.000	. +	4	
Stellana crassifolia	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	1/+	+		-	
Veronica alpina	0.000 +/- 0.000	0.000 +/- 0.000	-/+ 000	4	200	-	+	
Fiola adımca	0.028 +/- 0.020	+	040 +/-		74 000	0-1-	000 +/- 00	0.000 +/- 0.000
Graminolds:				-/-	0.000 +/+ 0.000	0.000 +/+ 0.000	0.000 +/- 0.000	0.004 +/- 0.003
Agrostis scabra	0.068 +/- 0.040	0.000 +/- 0.000	0.000 +/- 0.000	74 000 0				
Danthonia californica	0.000 +/- 0.000	+	7+ 000		+ :	+		0.000 +/- 0.000
Deschampsia caespitosa	0.000 +/- 0.000		1	0.002	÷ :	+		0.000 +/- 0.000
Elymus innovatus	0.080 +/- 0.028	0.046 +/- 0.007		0,000 -/- 0,000	+	+	0.000 +/- 0.000	0.000 +/- 0.000
Festuca saximontana	0000 -/+ 00000	4		-	-/+ 970	÷	0.048 +/- 0.020	0.052 +/- 0.020
Orvzopsis pungens	0.004 +/- 0.003	- 7	7- 000	0 -/+	000 +/- 000		0.000 +/- 0.000	0.000 +/- 0.000
Clubmosses & Horsetails:		-	0.000 +/+ 0.000	0.022 +/- 0.006	0.000 +/- 0.000	0.010 +/- 0.004	0.100 +/- 0.100	0.110 +/- 0.100
Equisetum scirpoides	0.000 +/- 0.000	0.000 +/- 0.000	0.258 +/- 0.163	0 118 +/ 0 051	1			
Lycopodium annotinum	0.000 +/- 0.000	0.000 +/- 0.000	00000-/+	2000	0.000 -7- 0.000	0.000 -/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000
Lycopodium complanatum	0.000 +/- 0.000	0 000 +/- 0 000		0,000	+	+	+/- 0.000	+
		1	200.5	0.000 -/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.19 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for summer harvested sites of Stand 1.

	IS		S2	2	S	S3	5	St
	Pre	Post	Pre	Post	Pre	Post	Pre	Poet
Mosses:								
Dicranum brevifolium	0.602 +/- 0.339	0,238 +/- 0,164	0.884 +/- 0.474	0.212 +/- 0.099	1.936 +/- 0.562	0.160 +/- 0.103	1.186 +/- 0.326	0.212 +/- 0.117
Dicranum fuscescens	3.448 +/- 0.809	1.372 +/- 0.376	1.894 +/~ 0.856	0.890 +/- 0.197	2.882 +/- 1.013	0.420 +/- 0.133	4.130 +/- 1.040	
Dicranum polysetum	0.128 +/- 0.073	0.004 +/- 0.003	0.020 +/- 0.020	0.020 +/- 0.020	0.164 +/- 0.115		0.040 +/- 0.028	
Dicranum sp.	2.310 +/- 0.655	0.000 +/- 0.000	1.894 +/- 0.586	0.000 +/- 0.000	0.202 +/- 0.200	0.000 +/- 0.000	1.002 +/- 0.440	
Dicranum undulatum	0.160 +/- 0.116	0.002 +/- 0.002	0.000 +/- 0.000	0.002 +/- 0,002	0.300 +/- 0.300	0.002 +/- 0.002	0.000 +/- 0.000	
Hylocomium splendens	0.126 +/- 0.074	0.074 +/- 0.060	0.246 +/- 0.203	0.104 +/- 0.065	0.800 +/- 0.807	0.010 +/- 0.004	1.360 +/- 1.015	0.092 +/- 0.048
Pleurozium schreberi	22.096 +/- 3,657	3,970 +/- 0,910	12.036 +/- 3.082	3.484 +/- 1.372	10.784 +/- 2.950	0.772 +/- 0.421	31.790 +/- 3.924	5.704 +/- 1.912
Pohlia nutans	0.280 +/- 0.086	0.012 +/- 0.005	0.552 +/- 0.150	0.058 +/- 0.028	0.446 +/- 0.142	0.228 +/- 0.122	0.580 +/- 0.173	
Polytrichum commune	0.102 +/- 0.100	0.000 +/- 0.000	0.046 +/- 0.040	0.000 +/- 0.000	0.006 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Рофитсьнит јитретинт	0.130 +/- 0.065	0.004 +/- 0.003	1.684 +/- 1.256	0.024 +/- 0.006	1.356 +/- 0.355	0.062 +/- 0.020	1.136 +/- 0.462	0.116 +/- 0.043
Polytrichum piliferum	0.004 +/- 0.003	0.000 +/- 0.000	0.066 +/- 0.044	0.002 +/- 0.002	0.048 +/- 0.040	0.008 +/- 0.004	0.000 +/- 0.000	
Ptilium crista-castrensis	0.790 +/- 0.431	0.020 +/- 0.006	0.258 +/- 0.116	0.040 +/- 0.020	0.668 +/- 0.264	0.016 +/- 0.005	2.098 +/- 0.797	0.062 +/- 0.020
Sanionia uncinata	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	
Liverworts:								
Barbilophozia hatcheri	0.020 +/- 0.008	0.000 +/- 0.000	0.068 +/- 0.060	0.000 +/- 0.000	0.022 +/- 0.020	0.000 +/- 0.000	0.082 +/- 0.056	0.000 +/- 0.000
Barbilophozia lycopodiodes	0.026 +/- 0.006	0.000 +/- 0.000	0.004 +/- 0.003	0.002 +/- 0.002	0.008 +/- 0.004	0.000 +/- 0.000	0.032 +/- 0.020	0.000 +/- 0.000
Lophozia longidens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lophozia ventricosa	0.082 +/- 0.044	0.000 +/- 0.000	0.376 +/- 0.226	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000
Ptilidium ciliare	0.230 +/- 0.170	0.000 +/- 0.000	0.094 +/- 0.048	0.002 +/- 0.002	0,394 +/- 0,193	0.004 +/- 0.003	2.588 +/- 1.277	0.014 +/- 0.005

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.20 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for winter harvested sites of Stand 1.

	W1		W2	2	W3	(3	W4	7
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicramum brevifolium	0.082 +/- 0.063	0.396 +/- 0.113	0.748 +/- 0.341	1.596 +/- 0.633	1.580 +/- 0.689	3.024 +/- 0.854	1.782 +/- 0.722	4.384 +/- 1.603
Dicranum fuscescens	4.468 +/- 0.987	1.254 +/- 0.211	5.560 +/- 1.679	0.544 +/- 0.142	7,224 +/- 1.304	3.648 +/- 1.139	9.224 +/- 1.836	7.350 +/- 1.829
Dicranum polysetum	0.162 +/- 0.108	0.000 +/- 0.000	0.264 +/- 0.171	0.006 +/- 0.003	0.066 +/- 0.060	0.002 +/- 0.002	0.120 +/- 0.102	0.000 +/- 0.000
Dicranum sp.	0.842 +/- 0,468	0.000 +/- 0.000	0.128 +/- 0.068	0.080 +/- 0.063	0.000 +/- 0.000	0.000 +/- 0.000	0.960 +/- 0.625	0.000 +/- 0.000
Dicramum undulatum	0.100 +/- 0.100	0.000 +/- 0.000	0.000 +/- 0.000	0.120 +/- 0.102	0.024 +/- 0.020	0.006 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000
Hylocomium splendens	0.460 +/- 0.403	0.310 +/- 0.300	0.064 +/- 0.060	0.024 +/- 0.020	1.020 +/- 0.820	0.964 +/- 0.813	0.322 +/- 0.152	0.246 +/- 0.129
Pleurozium schreberi	11.140 +/- 2.983	2.926 +/- 0.895	5.852 +/- 2.046	3.538 +/- 1.196	11.946 +/- 2.871	6.094 +/- 1.978	33.652 +/- 4.667	22.994 +/- 4.173
Pohlia nutans	1.986 +/- 0.445	0.514 +/- 0.144	2.156 +/- 0.388	0.572 +/- 0.179	1.598 +/- 0.278	1.636 +/- 0.421	0.326 +/- 0.114	0.446 +/- 0.186
Роцитіснит соттите	0.004 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.004 +/- 0.003	0.002 +/- 0.002	0.000 +/- 0.000	0.000 -/- 0.000
Ровунтснит јитервтинт	0.564 +/- 0.219	0.310 +/- 0.169	0.186 +/- 0.161	0.042 +/- 0.020	0.790 +/- 0.511	0.906 +/- 0.799	0.284 +/- 0.097	0.130 +/- 0.051
Polytrichum piliferum	0.084 +/- 0.034	0.046 +/- 0.028	0,110 +/- 0,065	0.008 +/- 0.003	0.008 +/~ 0.004	0.002 +/- 0.002	0.002 +/- 0.002	0.002 +/- 0.002
Philium crista-castrensis	1.662 +/- 0.990	0.100 +/- 0.063	0.166 +/- 0.103	0.118 +/- 0.065	1,890 +/- 0.848	0.880 +/- 0.446	1.916 +/- 0.568	0.426 +/- 0.144
Sanionia uncinata	0.000 +/- 0.000	0000 -/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Liverworts:								
Barbilophozia hatcheri	0.164 +/- 0.104	0.000 +/- 0.000	0.266 +/- 0.127	0.000 +/- 0.000	0.372 +/- 0.224	0.004 +/- 0.003	0.034 +/- 0.020	0.000 +/- 0.000
Barbilophozia lycopodiodes	0.198 +/- 0.093	0.004 +/- 0.003	0.040 +/- 0.028	0.002 +/- 0.002	0,042 +/- 0.040	0.070 +/- 0.060	0.154 +/- 0.085	0.042 +/- 0.040
Lophozia longidens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lophozia ventricosa	0.022 +/- 0.006	0.000 +/- 0.000	0.222 +/- 0.085	0.000 +/- 0.000	0.046 +/- 0.028	0.006 +/- 0.003	0.062 +/- 0.028	0.000 +/- 0.000
Ptilidium ciliare	0.218 +/- 0,114	0.066 +/- 0.044	0.390 +/- 0.191	0.000 +/- 0.000	0.326 +/- 0.179	0.404 +/- 0.306	0.530 +/- 0.216	0.052 +/- 0.040

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.21 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for control sites of Stand 1.

			.040 .020 .020 .040 .040 .000 .000 .000	000 000 004 004
		Post	0.040 +/- 0.040 4.310 +/- 1.316 0.020 +/- 0.020 0.960 +/- 0.441 0.040 +/- 0.040 0.426 +/- 0.400 7.994 +/- 2.000 1.696 +/- 0.370 0.000 +/- 0.000 1.848 +/- 1.020 0.002 +/- 0.000 0.212 +/- 0.090	0.004 +/- 0.003 0.050 +/- 0.028 0.000 +/- 0.000 0.010 +/- 0.004
	ਠ	Pre	0.584 +/- 0.252 5.008 +/- 1.400 0.062 +/- 0.060 0.020 +/- 0.020 0.000 +/- 0.000 0.844 +/- 0.800 9.640 +/- 2.341 1.212 +/- 0.280 0.000 +/- 0.000 1.740 +/- 1.012 0.000 +/- 0.000 0.288 +/- 0.107 0.000 +/- 0.000	0.062 +/- 0.044 0.068 +/- 0.034 0.000 +/- 0.000 0.042 +/- 0.020 1.818 +/- 0.825
	3	Post	0.340 +/- 0.191 5.300 +/- 0.000 0.000 +/- 0.000 0.862 +/- 0.442 0.280 +/- 0.187 2.010 +/- 1.169 20.488 +/- 3.705 1.558 +/- 0.451 0.000 +/- 0.000 0.514 +/- 0.236 0.000 +/- 0.000 1.302 +/- 0.539 0.000 +/- 0.000	1.182 +/- 0.532 2.016 +/- 0.403 0.000 +/- 0.000 0.062 +/- 0.034 0.328 +/- 0.188
		Pre	1.972 +/- 0.872 3.826 +/- 0.785 0.362 +/- 0.254 0.242 +/- 0.129 0.000 +/- 0.000 1.424 +/- 0.857 19.726 +/- 3.840 0.0846 +/- 0.268 0.000 +/- 0.000 0.296 +/- 0.132 0.000 +/- 0.000 1.456 +/- 0.656	0.552 +/- 0.259 1.222 +/- 0.260 0.000 +/- 0.000 0.018 +/- 0.005 0.276 +/- 0.145
5		Post	0.160 +/- 0.087 4.492 +/- 0.745 0.160 +/- 0.071 0.100 +/- 0.071 0.162 +/- 0.160 0.570 +/- 0.411 32.072 +/- 4.546 0.372 +/- 0.097 0.000 +/- 0.000 0.272 +/- 0.203 0.000 +/- 0.000 1.522 +/- 0.892 0.000 +/- 0.000	0.036 +/- 0.020 1.738 +/- 0.522 0.000 +/- 0.000 0.040 +/- 0.020 0.768 +/- 0.431
	Dra	21.1	0.000 +/- 0.000 6.012 +/- 1.049 0.322 +/- 0.224 0.000 +/- 0.000 0.000 +/- 0.534 32.990 +/- 4.421 0.114 +/- 0.047 0.000 +/- 0.000 0.472 +/- 0.316 0.000 +/- 0.000 1.958 +/- 1.107 0.000 +/- 0.000	0.090 +/- 0.048 1.896 +/- 0.485 0.000 +/- 0.000 0.046 +/- 0.020 0.630 +/- 0.269
CI	Post		0.044 +/- 0.028 2.804 +/- 0.674 0.000 +/- 0.000 0.002 +/- 0.000 0.728 +/- 0.433 38.830 +/- 5.468 0.070 +/- 0.060 0.000 +/- 0.000 0.002 +/- 0.000 0.002 +/- 0.000 0.002 +/- 0.000	0.050 +/- 0.028 0.984 +/- 0.240 0.020 +/- 0.020 0.134 +/- 0.061 0.364 +/- 0.213
0	Pre		0.982 +/- 0.311 2.858 +/- 0.818 0.080 +/- 0.063 0.000 +/- 0.000 0.424 +/- 0.212 37.906 +/- 5.233 0.332 +/- 0.135 0.000 +/- 0.000 0.180 +/- 0.000 0.180 +/- 0.000 0.180 +/- 0.003 1.536 +/- 0.685 0.000 +/- 0.000	0.302 +/- 0.300 2.368 +/- 0.677 0.000 +/- 0.000 0.174 +/- 0.072 0.386 +/- 0.226
		Mosses:	Dicranum brevifolium Dicranum fuscescens Dicranum polysetum Dicranum sp. Dicranum sp. Polyrichum splendens Polyrichum imperimum Polyrichum imperimum Polyrichum imperimum Polyrichum imperimum Polyrichum imperimum Polyrichum imperimum Polyrichum impigerum	paronopioza natenen Barbilophozia lycopodiodes Lophozia longidens Lophozia ventricosa Ptilidium ciliare

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.22 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for summer harvested sites of Stand 2.

	S1		S2		SS	3	ま	4
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicramum brevifolium	1.020 +/- 0.502	0.158 +/- 0.075	3.204 +/- 1.018	0.476 +/- 0.127	0.402 +/- 0.314	0.042 +/- 0.040	0.520 +/- 0.341	0.304 +/- 0.177
Dicranum fuscescens	5.048 +/- 1.194	0.274 +/- 0.085	2.454 +/~ 1.062	1.486 +/- 0.297	9.968 +/- 1.616	5.014 +/- 1.015	8.564 +/- 1.455	2.692 +/- 0.575
Dicramm polysetum	0.042 +/- 0.040	0.004 +/- 0.003	0.042 +/- 0.028	0.004 +/- 0.003	0.002 +/- 0.002	0.000 -/+ 0.000	0.102 +/- 0.059	0.000 +/- 0.000
Dicranum sp.	0.646 +/- 0.430	0000 -/- 0000	1.040 +/- 0.454	0.002 +/- 0.002	0.400 +/- 0.400	0.060 +/- 0.044	0.082 +/- 0.056	0.000 +/- 0.000
Dievanum undulatum	0000 -/- 0000	0.000 +/- 0.000	0.040 +/- 0.040	0.000 +/- 0.000	0.040 +/- 0.040	0.000 +/- 0.000	0.020 +/- 0.020	0,000 +/+ 0,000
Hylocomium splendens	1.982 +/- 1.266	0.210 +/- 0.088	2.162 +/- 0.880	0.628 +/~ 0.342	0.106 +/- 0.071	0.006 +/- 0.003	1.160 +/- 1.009	0.014 +/- 0.005
Pleurazium schrebeni	24.574 +/- 4.647	4,266 +/- 0.933	16.670 +/- 3.729	5.306 +/- 1.412	30,486 +/- 4,619	9.552 +/- 2.495	21.470 +/- 3.992	3.864 +/- 1.410
Pohlia nutans	0.338 +/- 0.111	0.036 +/- 0.020	0.972 +/- 0.206	0.668 +/- 0.320	0.488 +/- 0.163	0.624 +/- 0.152	0.390 +/- 0.122	0,270 +/- 0.091
Polytrichum commune	0.114 +/- 0.065	0.000 +/- 0.000	0.008 +/- 0.004	0.000 +/- 0.000	0.108 +/- 0.059	0.002 +/- 0.002	0.004 +/- 0.003	0.000 +/- 0.000
Polytrichum juntperinum	3.686 +/- 1.288	0.172 +/- 0.069	0.446 +/- 0.123	0.070 +/- 0.028	0.344 +/- 0,188	0.212 +/- 0.116	0.672 +/- 0.327	0.210 +/- 0.159
Polytrichum piliferum	0.006 +/- 0.003	0.002 +/- 0.002	0.042 +/- 0.028	0.020 +/- 0.020	0.000 +/- 0.000	0.000 +/+ 0.000	0.020 +/- 0.020	0.000 +/- 0.000
Ptilium crista-castrensis	2.926 +/- 1.669	0.124 +/- 0.062	3.908 +/- 1.857	0.238 +/- 0.110	0.642 +/- 0.247	0.260 +/- 0.201	1.482 +/- 0.636	0.174 +/- 0.102
Sanionia uncinata	0000 -/- 0000	0000 +/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Liverworts:								
Barbilophozia hatcheri	0.286 +/- 0.111	0.000 +/- 0.000	0.082 +/- 0.048	0.000 +/- 0.000	0.424 +/- 0.241	0.000 +/- 0.000	0.286 +/- 0.204	0.000 +/- 0.000
Barbilophozia lycopodiodes	0.748 +/- 0.197	0.002 +/- 0.002	0.290 +/- 0.110	0.006 +/- 0.003	0.486 +/- 0.171	0.134 +/- 0.101	0.284 +/- 0.097	0.014 +/- 0.005
Lophozia longidens	0000 +/- 0'000	0.000 +/- 0.000	0.000 +/- 0.000	0.004 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lophozia ventricosa	0.144 +/- 0.054	0.000 +/- 0.000	0.018 +/- 0.005	0.000 +/- 0.000	0.080 +/- 0.034	0.000 +/- 0.000	0.188 +/- 0.077	0.002 +/- 0.002
Ptilidlum ciliare	0.246 +/- 0.165	0.000 +/- 0.000	0.390 +/- 0.139	0.002 +/- 0.002	0.384 +/- 0.189	0.000 +/- 0.000	0.360 +/- 0.112	0.000 +/- 0.000

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.23 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for winter harvested sites of Stand 2.

	WI		W2	7	==	W3	W4	4
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicranum brevifolium	0.000 +/- 0.000	0.204 +/- 0.121	0.020 +/- 0.020	0.328 +/- 0.112	0.000 +/- 0.000	0.624 +/- 0.250	0.000 +/- 0.000	1.522 +/- 0.593
Dicranum fuscescens	10.710 +/- 1.924	3.844 +/- 0.572	9.196 +/- 1.613	2.958 +/- 0.506	4.752 +/- 0.849	4.664 +/- 0.841	4.630 +/- 0.856	3.868 +/- 0.936
Dicranum polysetum	0.000 +/- 0.000	0.002 +/- 0.002	0.100 +/- 0.065	0.000 +/- 0.000	0.060 +/- 0.044	0,060 +/- 0,060	0.040 +/- 0.040	0.040 +/- 0.040
Dicranum sp.	0.042 +/- 0.040	0.000 +/- 0.000	0,100 +/- 0,100	0.000 +/- 0.000	0.386 +/- 0.210	0,000 +/- 0,000	0.142 +/- 0.107	0.000 +/- 0.000
Dicranum undulatum	0.060 +/- 0.060	0.000 +/- 0.000	0.000 +/- 0.000	0.042 +/- 0.040	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Hylocomium splendens	0.840 +/- 0.441	0.096 +/- 0.063	0.208 +/~ 0.140	0.080 +/- 0.034	0.902 +/- 0.414	0.110 +/- 0.059	0.144 +/- 0.103	0.108 +/- 0.100
Pleurozium schreberi	36.744 +/- 4.637	12.348 +/- 2.529	34.510 +/- 4.592	6.544 +/- 1.265	46.928 +/- 5.399	35.030 +/- 4.764	25.468 +/- 4.258	23,468 +/- 3,803
Pohlia nutans	0.734 +/- 0.194	0.044 +/- 0.020	0.836 +/- 0.207	0.134 +/~ 0.042	0.550 +/- 0.187	0.736 +/- 0.173	1.098 +/- 0.297	0.760 +/- 0.214
Polytrichum commune	0.014 +/- 0.005	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.076 +/- 0.044	0.006 +/- 0.003	0.232 +/- 0.165	0.000 +/- 0.000
Polytrichum juntperimum	0.230 +/- 0.110	0.096 +/- 0.044	0.228 +/- 0.108	0.036 +/- 0.020	0.230 +/- 0.117	0.278 +/- 0.165	0.662 +/- 0.197	0.604 +/- 0.208
Polytrichum piliferum	0.002 +/- 0.002	0.002 +/- 0.002	0.042 +/- 0.040	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Pulium crista-castrensis	2.828 +/- 1.380	0,180 +/- 0,056	0.346 +/- 0.179	0.082 +/- 0.034	1.618 +/- 0.817	1.496 +/- 0.725	0.496 +/- 0.234	0.706 +/- 0.412
Sanionia uncinata	0.000 +/- 0.000	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Liverworts:								
Barbilophozia hatcheri	0.318 +/- 0.121	0.000 +/- 0.000	0.260 +/- 0.112	0.000 +/- 0.000	0.570 +/- 0.339	0.004 +/- 0.003	0.208 +/- 0.085	0.000 +/- 0.000
Barbilophozia lycopodiodes	0.808 +/- 0.233	0.004 +/- 0.003	0.934 +/- 0.191	0.082 +/- 0.060	0.580 +/- 0.142	0.480 +/- 0.166	0.538 +/- 0.310	0.090 +/- 0.056
Lophozia longidens	0.002 +/- 0.002	0.000 +/- 0.000	0.006 +/- 0.003	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lophozia ventricosa	0.122 +/- 0.038	0.000 +/- 0.000	0.378 +/- 0.105	0.000 +/- 0.000	0.154 +/- 0.075	0.026 +/- 0.020	0.066 +/- 0.028	0.010 +/- 0.004
Ptilidium ciliare	0.974 +/- 0.611	0.002 +/- 0.002	0.446 +/- 0.217	0 044 +/- 0 040	0 506 +/- 0 410	0.144 +/- 0.103	0 436 +/- 0 225	0.052 +/- 0.028

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.24 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for control sites of Stand 2.

	CI		CZ		3	3	3	7
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicranum brevifolium	0.060 +/- 0.060	0.584 +/- 0.284	0.080 +/- 0.063	0.042 +/- 0.040	0.264 +/- 0.130	0.002 +/- 0.002	0.320 +/- 0.116	0.162 +/- 0.083
Dicranum fuscescens	1.594 +/- 0.560	1.338 +/- 0.521	1.778 +/- 0.508	2.466 +/- 0.672	3.790 +/- 1.156	4.486 +/- 1.222	2.040 +/- 0.475	2.302 +/- 0.506
Dicranum polysetum	0.100 +/- 0.100	0000 -/+ 0000	0.006 +/- 0.003	0.004 +/- 0.003	0.004 +/- 0.003	0.044 +/- 0.040	0.080 +/- 0.063	0.040 +/- 0.028
Dicranum sp.	090'0 -/+ 090'0	0.020 +/- 0.020	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.222 +/- 0.162	0.000 +/- 0.000	0.040 +/- 0.040
Dieranum undulatum	0.000 +/- 0.000	0.100 +/- 0.100	0.022 +/- 0.020	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.082 +/- 0.063	0.162 +/- 0.116
Hylocomium splendens	0.006 +/- 0.003	0.084 +/- 0.048	0,160 +/- 0,108	0.182 +/- 0.117	0.860 +/- 0.800	0.862 +/- 0.800	1.742 +/- 1.425	1.690 +/- 1.256
Pleurozium schreberi	4.284 +/- 2.010	4.076 +/- 2.002	3.622 +/- 1.198	4.070 +/- 1.187	6.706 +/- 2.559	8.246 +/- 2.450	22.154 +/- 3.844	24.832 +/- 4.114
Pohlla nutans	1.836 +/- 0.492	1.970 +/- 0.392	1,778 +/- 0,501	1.800 +/- 0.451	1.050 +/- 0.218	1.756 +/- 0.381	0.898 +/- 0.202	2.052 +/- 0.464
Polytrichum commune	0.000 +/- 0.000	0.002 +/- 0.002	0.020 +/- 0.020	0 022 +/- 0.020	0.000 +/- 0.000	0.000 +/- 0.000	0,644 +/- 0,600	0,498 +/- 0.403
Polytrichum juniperimum	0.910 +/- 0.529	1.430 +/- 0.821	1.192 +/- 0.570	0.912 +/- 0.458	1.796 +/- 0.673	2.246 +/- 0.787	0.598 +/- 0.195	0.910 +/- 0.422
Polytrichum piliferum	0.284 +/- 0.093	0.322 +/- 0.099	0.190 +/- 0.082	0.084 +/- 0.028	0.044 +/- 0.040	0.042 +/- 0.028	0.002 +/- 0.002	0.002 +/- 0.002
Ptilium crista-castrensis	0.272 +/- 0.145	0.212 +/- 0.114	1,414 +/- 0,696	0.772 +/- 0.343	0.090 +/- 0.063	0.074 +/- 0.060	2.698 +/- 0.880	3,612 +/- 0.987
Sanionia uncinata	0000 +/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000	0.000 +/- 0.000	0,000 +/- 0,000
Liverworts:								
Barbilophozia hatcheri	0.020 +/- 0.020	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.020 +/- 0.020	0.108 +/- 0.100	0.062 +/- 0.060
Barbilophozia lycopodiodes	0.068 +/- 0.060	0.024 +/- 0.020	0.062 +/- 0.060	0.144 +/- 0.107	0.704 +/- 0.436	0.446 +/- 0.200	0.330 +/- 0.181	0.676 +/- 0.241
Lophozia longidens	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/- 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Lophozia ventricosa	0000 -/+ 0000	0.000 +/- 0.000	0.020 +/- 0.020	0.000 +/- 0.000	0.056 +/- 0.028	0.004 +/- 0.003	0,000 +/- 0,000	0.032 +/- 0.020
Ptilidium ciliare	0.284 +/- 0.140	0.266 +/- 0.117	0.474 +/- 0.208	0.270 +/- 0.102	0.900 +/- 0.398	1.234 +/- 0.533	0.434 +/- 0.171	1.024 +/- 0.311

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.25 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for summer harvested sites of Stand 3.

	SI		S2		S	3	S4	
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicranum brevifolium	0.520 +/- 0.320	0.012 +/- 0.005	0.186 +/- 0.093	0.058 +/- 0.028	0.122 +/- 0.074	0.004 +/- 0.003	0.380 +/- 0.254	0.040 +/- 0.040
Dicranum fuscescens	6.606 +/- 1.779	1.664 +/- 0.463	2.116 +/- 0.618	0.896 +/- 0.278	5.568 +/- 1.186	3.694 +/- 0.807	9,166 +/- 1,754	6.060 +/- 1.452
Dicramum sp.	0.642 +/- 0.339	0000 +/- 0000	0.188 +/- 0.161	0.000 +/- 0.000	0.106 +/- 0.071	0.000 +/- 0.000	0.040 +/- 0.040	0.000 +/- 0.000
Dicramum polysetum	0.000 +/- 0.000	0.000 +/- 0.000	0.284 +/- 0.208	0.006 +/- 0.003	0.020 +/- 0.020	0.002 +/- 0.002	0.004 +/- 0.003	0000 -/- 0000
Dicranum undulatum	0.020 +/- 0.020	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0,000 +/- 0,000
Hylocomium splendens	0.200 +/- 0.200	0.002 +/- 0.002	0.762 +/- 0.618	0.020 +/- 0.006	0.002 +/- 0.002	0.008 +/- 0.004	0.044 +/- 0.040	0.002 +/- 0.002
Pleurozium schreberi	3.538 +/- 1,438	0,398 +/- 0,133	12.622 +/- 3.489	4.682 +/- 1.177	10.148 +/- 2.692	3.738 +/- 1.310	16.074 +/- 3.268	8.476 +/- 1.782
Pohlia nutans	0.978 +/- 0.290	0.170 +/- 0.058	0.782 +/- 0.254	0.124 +/- 0.065	1.910 +/- 0.462	1.426 +/- 0.403	0.682 +/- 0.152	0.386 +/- 0.126
Polytrichum commune	0.024 +/- 0.020	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.022 +/- 0.006	0.004 +/- 0.003	0.070 +/- 0.060	0.000 +/- 0.000
Polytrichum juniperinum	0.690 +/- 0.351	0.036 +/- 0.007	0.068 +/~ 0.028	0.022 +/- 0.006	0.390 +/- 0.135	0.172 +/- 0.075	0.232 +/- 0.079	0,108 +/- 0,059
Polytrichum piliferum	0.392 +/- 0.173	0.008 +/- 0.004	0.026 +/- 0.020	0.000 +/- 0.000	0.046 +/- 0.040	0.024 +/- 0.020	0.066 +/- 0.044	0.026 +/- 0.020
Ptilium crista-castrensis	0.206 +/- 0.162	0.004 +/- 0.003	0.246 +/- 0.201	0.588 +/- 0.412	0.814 +/- 0.800	0.186 +/- 0.161	0.810 +/- 0.424	0.238 +/- 0.140
Sanionia uncinata	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/- 0000	0.000 +/+ 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/+ 0.000
Liverworts:								
Barbilophozia hatcheri	0.062 +/- 0.044	0.000 +/- 0.000	0.146 +/~ 0.103	0.000 +/- 0.000	0.182 +/- 0.084	0.000 +/- 0.000	0.068 +/- 0.044	0.000 +/- 0.000
Barbilophozia lycopodiodes	0.006 +/- 0.003	0.000 +/- 0.000	0.356 +/- 0.175	0.010 +/- 0.004	0.212 +/- 0.114	0.034 +/- 0.020	2.436 +/- 1.448	0.590 +/- 0.502
Lophozia longidens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0000 -/+ 0000
Lophozia ventricosa	0.014 +/- 0.005	0.000 +/- 0.000	0.170 +/- 0.075	0.002 +/- 0.002	0.322 +/- 0.128	0.000 +/- 0.000	0.114 +/- 0.033	0.000 +/- 0.000
Ptilidium ciliare	0.270 +/- 0.150	0.004 +/- 0.003	0.636 +/- 0.315	0.008 +/- 0.004	0.104 +/- 0.059	0.006 +/- 0.003	0.080 +/- 0.034	0.002 +/- 0.002

Note. Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.26 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for winter harvested sites of Stand 3.

	W		CW.		W	3	F/M	T
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicranum brevifolium	0.244 +/- 0.163	0.080 +/- 0.044	0.082 +/- 0.058	0.048 +/- 0.028	0.180 +/- 0.102	0.000 +/- 0.000	0.000 +/- 0.000	0.100 +/- 0.043
Dicranun fuscescens	3.722 +/- 1.023	1.218 +/- 0.311	2.902 +/- 0.704	1.434 +/- 0.212	13.406 +/- 2.427	11.692 +/- 2.139	9.036 +/- 1.893	8.028 +/- 1.780
Dicranum sp.	0000 -/+ 0000	0.020 +/- 0.020	0.002 +/- 0.002	0.020 +/- 0.020	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000
Dicranum polysetum	0.242 +/- 0.168	0.122 +/- 0.102	0.204 +/- 0.121	0.046 +/- 0.040	0.000 +/- 0.000	0.000 +/- 0.000	0.020 +/- 0.020	0.002 +/- 0.002
Dicranum undulatum	0.000 +/- 0.000	0.002 +/- 0.002	0.306 +/- 0.300	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.020 +/- 0.020
Hylocomium splendens	0.302 +/- 0.300	0.004 +/- 0.003	1,104 +/- 1,000	0.044 +/- 0.020	1.044 +/- 1.000	0.100 +/- 0.100	0.640 +/- 0.601	0.062 +/- 0.060
Pleurozium schreberi	12.544 +/- 2.987	3.794 +/- 1.397	20.140 +/- 4.108	8.966 +/~ 1.960	10.408 +/- 2.798	6.854 +/- 2.535	5.058 +/- 1.924	3,240 +/- 1,539
Pohlia nutans	0.632 +/- 0.227	0.106 +/- 0.048	0.532 +/- 0.144	0.170 +/- 0.080	2.018 +/- 0.344	2.552 +/- 0.493	0.982 +/- 0.178	1.220 +/- 0.271
Рофитсинт соттине	0.000 +/- 0.000	0.000 +/- 0.000	0.012 +/- 0.005	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000
Polytrichum juniperinum	0.132 +/- 0.101	0.042 +/- 0.020	0.156 +/- 0.070	0.140 +/- 0.099	0.554 +/- 0.209	0.198 +/- 0.071	0.070 +/- 0.028	0.064 +/- 0.028
Polytrichum piliferum	0000 -/+ 0000	0.000 +/- 0.000	0.046 +/- 0.028	0.002 +/- 0.002	0.028 +/- 0.020	0.004 +/~ 0.003	0.032 +/- 0.020	0.016 +/- 0.005
Ptilium crista-castrensis	0.366 +/- 0.301	0.136 +/- 0.084	0.072 +/- 0.044	0.130 +/- 0.058	1.144 +/- 0.801	0.126 +/- 0.058	0.530 +/- 0.357	0.166 +/- 0.115
Sanionia uncinata	0000 -/+ 0000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.00.0	0.000 +/- 0.000	0000 -/+ 000'0
Liverworts:								
Barbilophozia hatcheri	0.124 +/- 0.068	0.000 +/- 0.000	0.324 +/- 0.132	0.000 +/- 0.000	0.408 +/- 0.230	0.000 +/- 0.000	0.062 +/- 0.034	0.000 +/- 0.000
Barbilophozia lycopodiodes	0.430 +/- 0.145	0,060 +/- 0.040	0.250 +/- 0.092	0.076 +/- 0.034	0.686 +/~ 0.200	0.030 +/- 0.020	0.310 +/- 0.172	0.004 +/- 0.003
Lophozia longidens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0000'0 -/+ 000'0	0.000 +/- 0.000
Lophozia ventricosa	0.156 +/- 0.067	0.004 +/- 0.003	0.174 +/- 0.102	0.002 +/- 0.002	0.194 +/- 0.076	0.000 +/- 0.00.0	0.062 +/- 0.028	0.000 +/- 0.000
Ptilidium ciliare	0.652 +/- 0.413	0.208 +/- 0.200	0.412 +/- 0.142	0.086 +/- 0.063	1.172 +/- 0.595	0.188 +/- 0.117	0.168 +/- 0.092	0.042 +/- 0.040

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

Appendix 4.27 Pre- and post-harvest percent covers (+/- S.E.) of terrestrial bryophyte species for control sites of Stand 3.

	D	1	CZ	2	ස	3	3	4
	Pre	Post	Pre	Post	Pre	Post	Pre	Post
Mosses:								
Dicramum brevifolium	0.382 +/- 0.217	1.080 +/- 0.318	0.002 +/- 0.002	0.880 +/- 0.807	0.000 +/- 0.000	0.468 +/- 0.148	0.026 +/- 0.020	0.564 +/- 0.411
Dicramum fuscescens	3.448 +/- 0.867	2.212 +/- 0.800	2,222 +/- 0,648	1.814 +/- 0.372	1.900 +/- 0.397	1.436 +/- 0.531	2.310 +/~ 0.827	1,568 +/- 0,630
Dicranum polysetum	0.102 +/- 0.043	0.102 +/- 0.059	0.126 +/- 0.054	0.146 +/- 0.070	0.508 +/- 0.320	0.164 +/- 0.082	0.120 +/- 0.102	0.022 +/- 0.020
Dicranum sp.	0.000 +/- 0.000	0.062 +/- 0.060	0000 -/+ 000'0	0.082 +/- 0.056	0.024 +/- 0.020	0.004 +/- 0.003	0,000 +/- 0,000	0.000 +/- 0.000
Dicramum undulatum	0.020 +/- 0.020	0.000 +/- 0.000	0,000 +/- 0,000	0.000 +/- 0.000	0.060 +/- 0.060	0.360 +/- 0.305	0.000 +/- 0.000	0.200 +/- 0.164
Hyloconium splendens	0.800 +/- 0.800	1.024 +/- 1.000	2.296 +/- 1.043	1.392 +/- 0.667	0.044 +/- 0.028	0.106 +/- 0.071	1.728 +/- 1.237	1.424 +/- 1.018
Pleurozium schreberi	11.014 +/- 2.543	11.716 +/- 2.919	22.220 +/- 4.218	23.640 +/- 4.345	18.148 +/- 3.564	19,432 +/- 3.614	13.782 +/- 3.604	14.404 +/- 3.620
Pohlia nutans	1.952 +/- 0,428	2.682 +/- 0.590	2.104 +/- 0.653	2.452 +/- 0.996	0.698 +/- 0.196	0.866 +/- 0.182	0.962 +/- 0.231	1.616 +/- 0.363
Polytrichum commune	0.000 +/- 0.000	0.000 +/- 0.000	0,002 +/- 0,002	0.114 +/- 0.071	0.004 +/- 0.003	0.000 +/- 0.000	0000 +/- 0000	0,000 +/- 0,000
Polytrichum juntperimum	0.050 +/- 0.040	0.114 +/- 0.071	1.556 +/- 0.850	0.806 +/- 0.522	0.220 +/- 0.114	0.196 +/- 0.093	0.744 +/- 0.433	0.756 +/- 0.432
Polytrichum piliferum	0.046 +/- 0.040	0.066 +/- 0.060	0.124 +/- 0.084	0.124 +/- 0.074	0.004 +/- 0.003	0.004 +/- 0.003	0.514 +/- 0.337	0.634 +/- 0.603
Pitlium crista-castrensis	4.462 +/- 2.309	3.610 +/- 2.115	5.798 +/- 1.838	5.280 +/- 1.638	0.444 +/- 0.400	0.328 +/- 0.300	0.204 +/- 0.164	0.088 +/- 0.063
Sanionia uncinata	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.062 +/- 0.060	0.060 +/- 0.044
Liverworts:								
Barbilophozia hatcheri	0.100 +/- 0.100	0.000 +/- 0.000	0.020 +/- 0.020	0.082 +/- 0.044	0.782 +/- 0.292	0.626 +/- 0.344	0.048 +/- 0.028	0.044 +/- 0.040
Barbilophozia lycopodiodes	0.002 +/- 0.002	0.228 +/- 0.128	0.374 +/- 0.155	0.292 +/- 0.131	0.504 +/- 0.204	1.304 +/- 0.329	0.378 +/- 0.132	0.534 +/- 0.156
Lophozia longidens	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.000 +/- 0.000	0.002 +/- 0.002	0.002 +/- 0.002	0.000 +/- 0.000
Lophozia ventricosa	0.092 +/- 0.033	0.010 +/- 0.004	0.084 +/- 0.063	0.080 +/- 0.060	0.212 +/- 0.073	0.052 +/- 0.040	0.012 +/- 0.005	0.052 +/- 0.040
Ptilidium ciliare	0.396 +/- 0.158	0.578 +/- 0.261	0.318 +/- 0.134	0.228 +/- 0.096	0.550 +/- 0.178	0.688 +/- 0.231	0.316 +/- 0.169	0.196 +/- 0.105

Note: Three decimel places are included to provide an indication of abundance for species with extremely low average percent covers.

B45443