Assessing FASTQC Outputs

Dr. Princess Rodriguez

2025-01-29

CBSR-Research Technologies Seminar Series

Bioinformatic Workflows with Nextflow and NF-core

Presenter: Dr. Ramiro Barrantes-Reynolds, UVM Bioinfomatics Shared Resources

Wednesday, Feb. 12, 2025 - HSRF 200 - 12-1pm. Join us!

Attend in-person: Lunch will be served

Attend via Zoom: https://uvmcom.zoom.us/j/91418328196?from=addon

Bioinformatics projects usually require pipelines to go from data to an output of interest. Each pipeline consists of many steps, each one processing the output of the previous step with a different tool. Nextflow is a powerful language for creating pipelines, taking advantage of containers, parallelization using HPCs, and version control. allowing for pipelines to be easily reproducible, portable and extensible.

The CBSR Bioinformatics core uses Nextflow and NF-core extensively and will show examples of how this can be of benefit to your research.

Learning Objectives:

- Describe the contents and format of a FASTQ file
- Create a quality report using FASTQC
- Evaluate the quality of your NGS data using FastQC

Recap: Advantages of Batch Job Submissions

Batch job submission on an HPC (High-Performance Computing) system offers several advantages, particularly for computationally intensive tasks like bioinformatics, genomics, and large-scale data analysis.

Efficient Resource Management:

- Jobs are queued and scheduled based on resource availability, ensuring optimal utilization of CPUs, memory, and GPUs.
- Users can specify resource requirements (e.g., nodes, cores, memory) to avoid wasting computational power.

Recap: Advantages of Batch Job Submissions

Scalability:

- HPC clusters handle jobs of varying sizes, from single-threaded processes to massively parallel workloads.
- Batch processing supports running multiple jobs concurrently, improving overall throughput.

Recap: Advantages of Batch Job Submissions

Parallel Execution:

 Batch submission allows running thousands of jobs in parallel (e.g., processing multiple sequencing samples).

Job Monitoring:

Provides insights into job status, resource usage, and debugging.

Looking inside of sra_fqdump.sh

Purpose: Is to download FASTQ files from the SRA. FASTQ files to be downloaded are listed in a text file with accession numbers provided by you!

```
nano sra fodump.sh
#!/bin/bash
#SBATCH ---partition=bluemoon
#SBATCH --nodes=1
#SBATCH ---ntasks=2
#SBATCH ---mem=50G
#SBATCH -- time=30:00:00
#SBATCH --- iob-name=fastg
# %x=iob-name %i=iobid
#SBATCH --output=%x_%j.out
#while there are lines in the list of SRRs file
while read p
do
#call the bash script that does the fasta dump, passing it the SRR number next $
sbatch inner_script.sh $p
done <list of SRRs.txt
```

To submit a script use the command:

sbatch your-script.sh

When you submit your job, Slurm will respond with the job ID. For example, where the job ID Slurm assigns is "123456," Slurm will respond:

Submitted batch job 123456

After submitting this script you will see .out files:

```
[pdrodrig@vacc-user1 GSE164713 Tcf1]$ ls
fastg 6008331.out
                   fastg 6426350.out
                                         SRR13422709.fastq.qz
fastg 6366635.out
                   fastg 6426351.out
                                         SRR13422710.fastq.qz
fastq_6366636.out
                   inner_script.sh
                                         SRR13422711.fastq.gz
fastg 6366637.out
                   list of SRRs.txt
                                         SRR13422712.fastq.qz
fastg 6366638.out
                   list.txt
                                         SRR13422713.fastq.qz
fastg 6366639.out
                   sra download.sh
                                         SRR13423162.fastq.gz
fastg 6366640.out
                   sra_fqdump.sh
                                         SRR13423163.fastq.gz
fastq_6366641.out
                   SRR13416485.fastq.qz
                                         SRR13423164.fastq.qz
fastg 6426340.out
                   SRR13416486.fastq.qz
                                         SRR13423165.fastq.qz
fastg 6426341.out
                   SRR13422702.fastq.qz
                                         SRR13423166.fastq.qz
fastq_6426342.out
                   SRR13422703.fastq.gz
                                         SRR13423167.fastq.gz
fastq_6426343.out
                   SRR13422704.fastq.gz
                                         SRR17379677.fastq.gz
fastg 6426344.out
                   SRR13422705.fastq.qz
                                         SRR17379678.fastq.qz
fastg 6426347.out
                   SRR13422706.fastq.qz
                                         SRR17379679.fastq.qz
fastg 6426348.out
                   SRR13422707.fastq.qz
                                         SRR17379680.fastq.qz
fastq_6426349.out
                   SRR13422708.fastq.gz
```

STDOUT records the output of programs

Three data streams exist for all Linux programs:

- STDIN (Standard Input a way to send data into the program)
- STDOUT (Standard Output a way to send expected data out of the program)
- STDERR (Standard Error a way to send errors or warnings out of the program)

Next Step in Processing Sequencing Data

Processing Sequencing Data

Assessing FASTQC Outputs

What is the Point of QC? An Example...

PC2 Genes (85 total)

- No clear biological theme
- No clear connection to system

What is going on?

What is the Point of QC?

Technical Problems ...

- Don't always cause pipelines to fail
- Don't prevent hits being generated
- · These hits can look biologically real

Real biology...

 Can cause unexpected, interesting behaviour of data

– Set Pipelines can miss things.... -

QC Saves Time, Effort and Money!!

- Better to know asap what you're dealing with
- · Want to be sure any follow-up work will be worth it

Quality Control of FASTQ files

The first step in the bioinformatic pipeline is to assess the quality of the sequence reads retrieved from the sequencing facility.

FASTQ files

Similar to FASTA, the FASTQ file begins with a header line. The difference is that the FASTQ header is denoted by a @ character.

```
@HWUSI-EAS611:34:6669YAAXX:1:1:5069:1159
       TCGATAATACCGTTTTTTTCCGTTTGATGTTGATACCATT
Sequence 1
       @HWUSI-EAS611:34:6669YAAXX:1:1:5243:1158 1:N:0:
       TATCTGTAGATTTCACAGACTCAAATGTAAATATGCAGAG
Sequence 2
       DF=DBD<BBFGGGGGGBD@GGGD4@CA3CGG>DDD:D,B
       @HWUSI-EAS611:34:6669YAAXX:1:1:5266:1162 1:N:0:
       GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCTGGGGCCT
Sequence 3
       : GBGGGGGGGGDGDEDGGDGGGGDHHDHGHHGBGG: GG
```

Illumina Header Sections (Line 1)

@HWUST-EAS611:34:6669YAAXX:5:1:5069:1159 1:N:0:

 Starts with @ (required by fastq spec) Instrument ID (HWUSI-EAS611) Run number (34) Flowcell ID (6669YAAXX)

(5) Tile (1)X-position (5069)Y-position (1159)

[space]

Lane

Read number (1)

 Was filtered (Y/N) (N) - You wouldn't normally see the Ys

Control number (0 = no control)

(only if demultiplexed using Illumina's software) Sample number

A Single FASTQ Entry

- 1. @HWUSI-EAS611:34:6669YAAXX:1:1:5266:1162 1:N:0:
- 2. GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCTGGGGCCT
- **3**. +
- 4. : GBGGGGGGGGDGDEDGGDGGGGDHHDHGHHGBGG: GG

- 1. Header starts with @
- 2. Base calls (can include N or IUPAC codes)
- 3. Mid-line starts with + usually empty
- 4. Quality scores (= Phred Scores)

Phred Scores (Line 4)

```
Base Calls

GGAGGAAGTATCACTTCCTTGCCTGCCTCCTCTGGGGCCT

Phred Scores
: GBGGGGGGGGGDGDEDGGDGGGGDHHDHGHHGBGG: GG
```

- Each quality score represents the probability that the corresponding nucleotide call is incorrect.
- _ This quality score is logarithmically based and is calculated as:

$$Q = -10 \times log10(P)$$

- P is the probability that a base call is erroneous
 - Phred = $-10 * (int)log_{10}(p)$
 - p=0.1 Phred = 10
 - p=0.01 Phred = 20
 - p=0.001 Phred = 30

Higher Phred Score
Higher Confidence

Phred Score Encoding

- · Translation of Phred score to single ASCII letter
- Based on standard ASCII table

Different quality encoding scales exist, but the most commonly one used is fastqsanger, which is the scale output by Illumina since mid-2011.

0	NUL	17	C1	33	!	50	2	67	С
1	SOH	18	DC2	34	u	51	3	68	D
2	STX	19	DC3	35	#	52	4	69	Е
3	ETX	20	DC4	36	\$	53	5	70	F
4	EOT	21	NAK	37	%	54	6	71	G
5	ENQ	22	SYN	38	&	55	7	72	Н
6	ACK	23	ETB	39		56	8	73	ı
7	BEL	24	CAN	40	(57	9	74	J
8	BS	25	EM	41)	58	:	75	К
9	HT	26	SUB	42	*	59	;	76	L
10	LF	27	ESC	43	+	60	<	77	М
11	VT	28	FS	44	,	61	=	78	N
12	FF	29	GS	45	-	62	>	79	0
13	CR	30	RS	46		63	?	80	Р
14	so	31	US	47	/	64	@	81	Q
15	SI	32	(SPACE)	48	0	65	Α	82	R
16	DLE			49	1	66	В	83	s

How QC Programmes Fits Into Processing Pipelines

QC metrics we can work with:

Phred Scores

How the Sequencer Performed

- At different cycles
- Across different locations
- · For different reads

Library Composition

The Nature of our Sequenced Reads

- Biases
- Contaminants
- Duplication

Mapping

Where our Sequencing Reads Come From

- Species (plural or singular!)
- Region (repetitive or unique)

QC Programs in Data Processing

FastQC

- FastQC provides a simple way to do some quality checks on raw sequence data coming from high throughput sequencing pipelines.
- It provides a modular set of analyses, which you can use to obtain an impression of whether your data has any problems that you should be aware of before moving on to the next analysis.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FastQC

fastqc seqfile1 seqfileN fastqc *.fastq.qz

- Reads raw fastq file(s)
- Performs multiple checks
 - · Pass/warn/fail
 - Compares to genomic library
- · Generates a HTML Report

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Interpreting the HTML report

- Within the report, a summary of all of the modules is given on the left-hand side.
- Do not take the **yellow** "WARNING"s and **red** "FAIL"s as "this sample is not usable"; they should be interpreted as flags!

Context is Key for QC

QC should be about what you expect and what you see

Context is Key for QC

Assessing FASTQC Outputs

Individual Library:

Replicate Libraries:

Universal QC Metrics

Demultiplexing

Base Call Quality

Adapter Content

Mapping Quality

Demultiplexing: Expectation

Only the barcodes we assigned to samples should be present—no others

What could unknown barcode sequences mean?

Demultiplexing: Unknown

Human Error is a really common source of barcode issues

Demultiplexing: Unknown

PhiX is a well characterized bacteriophage that is used as a control in Illumina sequencing runs.

Unknown Sequence

This is added by the individual running the sample at the core.

PhiX is typically added for lowcomplexity libraries. To add sequence diversity.

Improves flow cell clustering and reduces sequencing errors.

Basic Statistics

⊘Basic Statistics

Measure	Value				
Filename	Mov10_oe_1.subset.fq				
File type	Conventional base calls				
Encoding	Sanger / Illumina 1.9				
Total Sequences	305900				
Sequences flagged as poor quality	0				
Sequence length	100				
%GC	47				

Base Call Quality: Expectations

Illumina Sequencers are technically reliable, so we expect confident calls

Per base sequence quality

The yellow box represents the 25th and 75th percentiles, with the red line as the median. The whiskers are the 10th and 90th percentiles. The blue line represents the average quality score for the nucleotide. Based on these metrics, the quality scores for nearly all reads have scores above 28

Read Position / Cycles of Chemistry

Per base sequence quality

For reads generated by Illumina sequencing, this is not alarming and there are known causes for this drop in quality.

Clusters get out of sync over length of the read

Problem

- As the chain grows, signal quality deteriorates
- At each cycle, accumulates noise

7 Cycles ... Read length

Flow Cell Imaging

Per sequence quality scores

Positional Quality

A good tile plot is a blue square

Read Position / Cycles of Chemistry

Positional Quality

Positional Quality

More Examples of Positional Fails

Per base sequence content

Always gives a FAIL for RNA-seq data. This is because the first 10-12 bases result from the 'random' hexamer priming that occurs during RNA-seq library preparation.

This priming is not as random as we might hope giving an enrichment in particular bases for these intial nucleotides.

Universal QC Metrics

- Demultiplexing
- Base Call Quality

Adapter Content

Adapter Content

Due to variable insert and read length, we may sequence adapter at the end of our reads

Measuring Read-through Adapters

Assessing FASTQC Outputs

49 / 74

Library Dependent QC Metrics

From the Base Sequence:

GC Content

• Base Composition

GATC

Duplication

GATCTACGAGTTACGATCAGT
GATCTACGAGTTACGATCAGT
GATCTACGAGTTACGATCAGT
GATCTACGAGTTACGATCAGT

Library Dependent QC Metrics

From the Base Sequence:

GC Content

• Base Composition

Duplication

Library GC Content

- · Generic summary of library composition at a read level
- Expect a normally distributed set of values centred on the overall GC content

Per sequence GC content

This plot would indicate some type of over-represented sequence with the sharp peaks, indicating either contamination or a highly over-expressed gene.

Single contamination

Broad contamination

Library Base Composition

- For every chemistry cycle we can look at the number of ATGC
 - The composition should be the same for all cycles

Library Base Composition: Bias

Very low diversity

Library Base Composition: Bias

Bisulphite treated – C is converted to T

Consistent disproportional expression of bases

Duplication

If the exact same sequence appears more than once it could be...

Technical:

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

· PCR duplicates

Coincidental:

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

ATCCGAGCTATTCGGCGAGCTCGCCAGTTACG

- Deep sequencing
- Highly present sequences
- Restricted diversity libraries

Overrepresented Sequences

- Extreme duplication
- Displays the sequences (at least 20 bp) that occur in more than 0.1% of the total number of sequences.
- The exact same sequence is a significant proportion of the whole library (which might not be duplicated overall)

Overrepresented Sequences: Poly N

PolyN – Quality too poor to make any calls

Sequence	Count	Percentage
***************************************	462344	1.070097045533307
GNAAAAAAAAAAAA	232540	0.5382147642627897
Ammanaaaaaaaaaaaaaaaaaaaaaaaaaa	127291	0.29461553090984244
Christianananananananananananananan	87792	0.20319493671694688
TNNNAAAAAAAAAAAAAAAA	85181	0.19715176672688003
GANDONNANANANANANANANANANANANANANANANANAN	48918	0.11322090753507845

59 / 74

Overrepresented Sequences: Poly A

PolyA (or PolyT) – Common in RNA-Seq

Sequence	Count	Percentage
	68355	1.7344041279604823
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	67792	1.7201188595230343

Overrepresented Sequences: Adapter Dimers

Barcode	Adapter	Insert			Adapter	Barcode	
	Bar	code	Adapter	Adapter	Barc	ode	

Overrepresented sequences

Sequence	Count	Percentage	Possible Source		
GATCGGAAGAGCACGTCTGAACTCCAGTCACCTTGTAATCTCGTATGC	17957	0.14359551756800035	TruSeq Adapter, Index 12 (100% over 50bp)		

Overrepresented Sequences: Specific Sequences

Let's Practice Running FastQC

We would like to run the FastQC tool on fastq files in the <code>raw_fastq</code> directory.

Try running it now.

Run fastqc with the Environment Module System:

```
module load gcc/13.3.0-xp3epyt module load fastqc/0.12.1-qxseuq5
```

How to use fastqc?

```
fastqc --help
SYNOPSIS
    fastqc seqfile1 seqfile2 .. seqfileN
    fastqc [-o output dir]
    [--(no) extract]
    [-f fastq|bam|sam]
    [-c contaminant file]
    seqfile1 .. seqfileN
```

Quick Exercise

Run fastqc on Mov10_oe_1.subset.fq

fastqc Mov10_oe_1.subset.fq

FASTQC Outputs

For each individual FASTQ file that is input to FastQC, there are **two output files that are generated**.

- The first is an HTML file which is a self-contained document with various graphs embedded into it. Each of the graphs evaluate different quality aspects of our data, we will discuss in more detail in this lesson.
- Alongside the HTML file is a zip file. This file contains the different plots from the report as separate image files but also contains data files which are designed to be easily parsed to allow for a more detailed and automated evaluation of the raw data on which the QC report is built.

Class Exercise #1

 Run FASTQC on all FASTQ files in raw_fastq. FASTQC allows you to redirect your output into a specified location with the -o parameter. Be sure to use this parameter in your final code.

If successful, you will see the following outputs inside of the fastqc folder:

```
Irrel_kd_1.subset_fastqc.html Irrel_kd_3.subset_fastqc.html Irrel_kd_3.subset_fastqc.zip Irrel_kd_3.subset_fastqc.zip Irrel_kd_2.subset_fastqc.html Mov10_oe_1.subset_fastqc.html Irrel_kd_2.subset_fastqc.zip Mov10_oe_1.subset_fastqc.zip
```

Special Note

We are running FASTQC interactively. This is running on the login node relatively quickly. This is because this alignment for these FASTQ files was only performed for a small portion of the chromosome 1. Later on, this will take a lot longer. Therefore, you will need to generate a script.

Running Parameters for FASTQC:

- 10G of memory is required
- 1 node, 2 tasks

Class Exercise #2: Assessing Universal Metrics

- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Adapter Content

Grab the following folder from the location below.

/gpfs1/cl/mmg3320/course_materials/FASTQC_example

Viewing the HTML report from FASTQC

All of the following are solutions that allow students to transfer files between remote (i.e. VACC) and local (i.e. your laptop) servers.

An FTP application such as Filezilla

Viewing the HTML report from FASTQC

RStudio (via VACC-OOD)

You can export it or simply view it using RStudio

Viewing the HTML report from FASTQC

In File Explorer on OpenOnDemand, use the "Download" button

Citation

This lesson has been developed by members of the teaching team at the <u>Harvard Chan Bioinformatics Core (HBC)</u>. These are open access materials distributed under the terms of the <u>Creative Commons Attribution license</u> (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.