Površina ravnih likova

Neka je $f:[a,b]\to\mathbb{R}$ neprekidna funkcija nad [a,b]. Potrebno je izračunati površinu krivolinijskog trapeza ograničenog krivom y=f(x), x-osom i pravama x=a i x=b.

I) Ako je $f(x) \ge 0$ za svako $x \in [a, b]$ tada je

$$P = \int_{a}^{b} f(x) \, dx.$$

II) Ako je $f(x) \leq 0$ za svako $x \in [a, b]$, tada je

$$P = -\int_{a}^{b} f(x) \, dx.$$

III) Ako funkcija f(x) menja znak na intervalu [a,b], tj. postoji tačka $c \in [a,b]$ takva da je f(c)=0 i $f(x)\geq 0$ za svako $x\in [a,c]$ i $f(x)\leq 0$ za svako $x\in [c,b]$, tada je

$$P = \int_a^c f(x) dx - \int_c^b f(x) dx.$$

U slučaju da je f(c)=0 i $f(x)\leq 0$ za svako $x\in [a,c]$ i $f(x)\geq 0$ za svako $x\in [c,b],$ tada je

$$P = -\int_a^c f(x) dx + \int_c^b f(x) dx.$$

IV) Ako je potrebno izračunati površinu koja se nalazi između grafika dve funkcije f(x) i g(x) i važi da je $f(x) \ge g(x)$ za svako $x \in [a, b]$, tada je

$$P = \int_a^b (f(x) - g(x)) dx.$$

Slične formule važe i u slučaju da je x = g(y), tada se integracija vrši duž y-ose.

U slučaju da je funkcija y = f(x) zadata parametarski, $y = \psi(t)$ i $x = \varphi(t)$ za $t \in [\alpha, \beta]$, pri čemu je funkcija $\varphi(t)$ monotono rastuća i ima neprekidan prvi izvod nad $[\alpha, \beta]$ dok je $\psi(t)$ neprekidna nad $[\alpha, \beta]$ i $\psi(t) \geq 0$ za svako $t \in [\alpha, \beta]$, tada je

$$P = \int_{\alpha}^{\beta} \psi(t) \, \varphi'(t) \, dt.$$

1

Ukoliko je u polarnom koordinatnom sistemu data kriva $\rho = \rho(\varphi)$, $\alpha \leq \varphi \leq \beta$, $|\beta - \alpha| \leq 2\pi$, gde je $\rho = \rho(\varphi)$ neprekidna funkcija, tada površinu krivolinijskog trougla ograničenog ravnima $\varphi = \alpha$, $\varphi = \beta$ i krivom $\rho = \rho(\varphi)$ računamo

$$P = \frac{1}{2} \int_{0}^{\beta} \rho^{2}(\varphi) \, d\varphi.$$

1. Izračunati površinu ograničenu parabolom $y = x^2$, pravama x = -1 i x = 2 i x-osom. Rešenje: Tražena površina predstavljena je na slici.

Interval integracije je [-1, 2], a nad njim je funkcija $f(x) = x^2$ nenegativna,

$$P = \int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{8}{3} - \frac{-1}{3} = 3.$$

2. Izračunati površinu ograničenu grafikom funkcije $y = \sin x$ i delom x-ose za $x \in [0, 2\pi]$. Rešenje: Tražena površina je predstavljena na slici. Na intervalu $[0, 2\pi]$ postoji nula funkcije, tj. $y(\pi) = 0$ i važi da je $y \ge 0$ za svako $x \in [0, \pi]$ i $y \le 0$ za svako $x \in [\pi, 2\pi]$.

$$P = \int_{0}^{\pi} \sin x \, dx - \int_{\pi}^{2\pi} \sin x \, dx$$

$$= (-\cos x) \Big|_{0}^{\pi} - (-\cos x) \Big|_{\pi}^{2\pi}$$

$$= -\cos \pi + \cos 0 + \cos 2\pi - \cos \pi$$

$$= -(-1) + 1 + 1 - (-1) = 4$$

3. Izračunati površinu ograničenu parabolom $y = 2x - x^2$ i pravom y = -x.

Rešenje: Prava y = -x u tački O(0,0) seče x-osu.

Presek parabole sa x-osom (y = 0) se dobija rešavanjem jednačine $2x - x^2 = 0$. Rešenja navedene jednačine su x=0 ili x=2, tako da parabola u tačkama $T_1(2,0)$ i O(0,0) seče x-osu.

Iz $y' = (2x - x^2)' = 2 - 2x = 0$ sledi da parabola u x = 1 može da ima ekstremnu vredost. Kako je y'' = -2 < 0 za svako x, sledi da u x = 1 parabola dostiže maksimum. $y(1) = 2 \cdot 1 - 1^2 = 1$, pa je tačka maksimuma T(1, 1).

Apscise presečnih tačaka funkcija $y=2x-x^2$ i y=-x su rešenja jednačine

$$2x - x^2 = -x \quad \Longleftrightarrow \quad x(3 - x) = 0,$$

odakle je x=0 i x=3. Iz y=-x sledi da su tačke preseka parabole i prave tačke O(0,0)i $T_2(3,-3)$. Tražena površina je predstavljena na slici.

$$P = \int_{0}^{3} (2x - x^{2} - (-x)) dx$$
$$= \int_{0}^{3} (3x - x^{2}) dx = \frac{9}{2}$$

$$= \int_{0}^{3} (3x - x^{2}) dx = \frac{9}{2}$$

4. Izračunati površinu ograničenu pravama x=0, x=2 i graficima krivih $p_1: y=2x-x^2$ i $p_2: y=2^x$.

Rešenje: Tražena površina predstavljena je na slici. Interval integracije je [0,2]. Presek parabole p_1 i x-ose su tačke O(0,0) i $T_1(2,0)$. Za svako $x \in \mathbb{R}$ je $2^x > 2x - x^2$.

5. Izračunati površinu ograničenu parabolama $p_1: x = -2y^2$ i $p_2: x = 1 - 3y^2$.

Rešenje: U ovom slučaju integracija se vrši po promenljivoj y.

Teme parabole p_1 je u tački O(0,0), a parabole p_2 u tački $T_1(1,0)$.

Presek parabole p_2 sa y-osom je rešenje jednačine $1-3y^2=0 \iff y^2=\frac{1}{3}$, odakle se dobijaju tačke $T_2(0,-\frac{1}{\sqrt{3}})$ i $T_3(0,\frac{1}{\sqrt{3}})$.

Parabole p_1 i p_2 se seku u tačkama sa ordinatama $-2y^2=1-3y^2 \Leftrightarrow 1-y^2=0 \Leftrightarrow y=\pm 1$, tj. u tačkama $T_2(-2,1)$ i $T_3(-2,-1)$, pa je interval integracije [-1,1].

6. Izračunati površinu oblasti ograničene parabolama $p_1: y = x^2$ i $p_2: y = \frac{x^2}{2}$ i pravom p: y = 2x.

Rešenje: Apscise presečnih tačaka parabole p_1 i prave p su rešenja jednačine $x^2 = 2x$, tj. x = 0 ili x = 2. Iz y = 2x sledi da su presečne tačke O(0,0) i $T_2(2,4)$.

Apscise presečnih tačaka parabole p_2 i prave p su rešenja jednačine $\frac{x^2}{2} = 2x$, tj. x = 0 ili x = 4, pa su presečne tačke O(0,0) i $T_2(4,8)$. Opet smo za određivanje oridanata presečnih tačaka koristili da je y = 2x.

3

Potrebno je površinu podeliti na dva dela.

$$P = P_1 + P_2,$$

$$P_1 = \int_0^2 (x^2 - \frac{x^2}{2}) dx = \frac{1}{2} \frac{x^3}{3} \Big|_0^2 = \frac{4}{3}$$

i

$$P_2 = \int_{2}^{4} (2x - \frac{x^2}{2}) dx = \left(x^2 - \frac{1}{6}x^3\right) \Big|_{2}^{4} = \frac{8}{3},$$

pa je

$$P = \frac{4}{3} + \frac{8}{3} = 4.$$

7. Izračunati površinu ograničenu krivom $y = \ln x^{-\frac{1}{x}}$, x-osom i pravama $x = \frac{1}{e}$ i x = e.

Rešenje: Domen funkcije $y = \ln x^{-\frac{1}{x}}$ je $(0, \infty)$. Nalazimo presek grafika funkcije $y = \ln x^{-\frac{1}{x}}$ sa x-osom (y = 0):

$$y = 0 \Leftrightarrow \ln x^{-\frac{1}{x}} = 0 \Leftrightarrow -\frac{1}{x} \ln x = 0 \Leftrightarrow \ln x = 0 \quad \Leftrightarrow x = 1,$$

tako da kriva $y = \ln x^{-\frac{1}{x}}$ seče x-osu u tački T(1,0).

Prvi izvod funkcije je $y' = \frac{\ln x - 1}{x^2}$. Iz

$$y' < 0 \Leftrightarrow \ln x - 1 < 0 \Leftrightarrow \ln x < 1 \Leftrightarrow x < e$$

sledi da na intervalu $\left[\frac{1}{e},e\right]$ funkcija ymonotono opada.

Iz $y\left(\frac{1}{e}\right)=-e\ln\frac{1}{e}=-e\ln e^{-1}=e>0,\ y(e)=-\frac{1}{e}\ln e=-\frac{1}{e}<0$ i y(1)=0 zaključuje se da je na intervalu $\left[\frac{1}{e},1\right]$ grafik funkcije iznad x-ose, dok je na intervalu $\left[1,e\right]$ ispod x-ose.

$$\int \frac{\ln x}{x} \, dx = \left[\begin{array}{c} \ln x = t \\ \frac{1}{x} dx = dt \end{array} \right] = \int t \, dt = \frac{t^2}{2} + C = \frac{\ln^2 x}{2} + C$$

$$P = -\frac{\ln^2 x}{2} \Big|_{\frac{1}{2}}^{1} + \frac{\ln^2 x}{2} \Big|_{1}^{e} = \frac{1}{2} + \frac{1}{2} = 1$$

8. Izračunati površinu kardioide koja je zadata jednačinama

$$c: \begin{cases} x(t) = a(2\sin t - \sin 2t), \\ y(t) = a(2\cos t - \cos 2t). \end{cases}$$

Rešenje: Površina koju je potrebno izračunati predstavljena je na slici.

Međutim dovoljno je izračunati površinu P_1 koja se dobija za vrednost parametra $t \in [0, \pi]$, pa je

$$P = 2P_1$$
.

$$P_{1} = \int_{0}^{\pi} a(2\cos t - \cos 2t) a (2\cos t - 2\cos 2t) dt$$

$$= 2a^{2} \int_{0}^{\pi} (2\cos^{2} t - 3\cos t \cos 2t + \cos^{2} 2t) dt$$

$$= 2a^{2} (2I_{1} - 3I_{2} + I_{3}),$$

gde je

$$I_1 = \int_0^{\pi} \cos^2 t \, dt, \quad I_2 = \int_0^{\pi} \cos t \cos 2t \, dt, \quad I_3 = \int_0^{\pi} \cos^2 2t \, dt.$$

Kako je

$$I_{1} = \int_{0}^{\pi} \cos^{2}t \, dt = \int_{0}^{\pi} \frac{1 + \cos 2t}{2} \, dt = \frac{1}{2}t \Big|_{0}^{\pi} + \frac{1}{2} \int_{0}^{\pi} \cos 2t \, dt$$

$$= \frac{\pi}{2} + \frac{1}{4} \sin 2t \Big|_{0}^{\pi} = \frac{\pi}{2},$$

$$I_{2} = \int_{0}^{\pi} \cos t (\cos^{2}t - \sin^{2}t) \, dt = \int_{0}^{\pi} \cos t (1 - 2\sin^{2}t) \, dt$$

$$= \sin t \Big|_{0}^{\pi} - \frac{2}{3} \sin^{3}t \Big|_{0}^{\pi} = 0,$$

$$I_{3} = \int_{0}^{\pi} \cos^{2}2t \, dt = \int_{0}^{\pi} \frac{1 + \cos 4t}{2} \, dt = \frac{1}{2}t \Big|_{0}^{\pi} + \frac{1}{2} \int_{0}^{\pi} \cos 4t \, dt$$

$$= \frac{\pi}{2} + \frac{1}{8} \sin 4t \Big|_{0}^{\pi} = \frac{\pi}{2},$$

dobija se da je površina $P_1=2a^2(\pi+\frac{\pi}{2})=3a^2\pi,$ odakle je

$$P = 6a^2\pi.$$

9. Izračunati površinu ograničenu kardioidom $\rho = a(1 + \cos \varphi), \ a > 0, \ \varphi \in [0, 2\pi].$

Rešenje: Površina koju je potrebno izračunati predstavljena je na slici.

$$P = 2P_1 = 2 \cdot \frac{1}{2} \int_0^{\pi} a^2 (1 + \cos \varphi)^2 d\varphi =$$

$$= a^2 \int_0^{\pi} (1 + 2\cos \varphi + \cos^2 \varphi) d\varphi =$$

$$= a^2 \int_0^{\pi} d\varphi + 2a^2 \int_0^{\pi} \cos \varphi d\varphi + \frac{a^2}{2} \int_0^{\pi} (1 + \cos 2\varphi) d\varphi =$$

$$= a^2 \varphi \bigg|_0^\pi + 2a^2 \sin \varphi \bigg|_0^\pi + \frac{a^2}{2} \varphi \bigg|_0^\pi + \frac{a^2}{4} \sin 2 \varphi \bigg|_0^\pi = a^2 \pi + \frac{1}{2} a^2 \pi = \frac{3}{2} a^2 \pi$$

·· ,