

Camille BERGEZ-CASALOU – 2nd year PhD student – Supervisor: Bertram Bitsch

Group meeting 21st November 2019

How to create giant planets?

Overview:

- Origins of giant planets: two possible formation scenarios
- Process of gas accretion and derived accretion rates
- How do we model gas accretion with Fargo2D1D
- Some results from my work

And please enjoy the macarons!

Core accretion: Pollack et al 1996

Gravitational Instability:

Adams et al 1989

Paardekooper, SJ. & Johansen, A. (2018)

Core accretion: Pollack et al 1996

- Step 1: Agglomeration of dust/pebbles to form a core
- Step 2: When massive enough, slow accretion of gas governed by Kelvin-Helmholtz cooling timescale
- Step 3: When $M_{core} \simeq M_{enveloppe} \simeq 10 M_{\oplus}$ outer layers of atmosphere collapse allowing more gas to be accreted: Runaway gas accretion

Gravitational Instability: Adams et al 1989

- Massive disks become unstable at large radii Toomre stability criterion $Q=rac{c_S\Omega}{\pi G\Sigma}>1$
- Instability causes initial over density,
 subject to self-gravity → creating clumps
- If the clumps get rid of potential energy faster than pressure and differential rotation smooth them out → collapse into a giant planet

Core accretion:

Pollack et al 1996

Produces:

- Gas giant and terrestrial planets

Pros:

- Can produce terrestrial and ice giants
- Composition can match

Cons:

- How to stop runaway gas accretion?
- Many stages only partially understood yet

Gravitational Instability:

Adams et al 1989

Produces:

- Massive gas giant planets at large radii

Pros:

- Can explain the formation of the massive cold giant planets observed
- Debated presence of core in Jupiter

Cons:

- Require a very massive disk
- Composition does not quite match
- Solar System planets are less massive

Gas accretion complicated? Nooo ...

Gas accretion complicated? Nooo ...

Gas accretion rates?

Paper	$\dot{M}_{runaway}$	Comment
D'Angelo et al 2003	$\sim 10^{-4} M_j/yr$	
Tanigawa & Ikoma 2007	$\sim 10^{-8} M_j/yr$	With photoevaporation
Machida et al 2010	$\sim (2-6).10^{-5} M_j/yr$	
Tanigawa & Tanaka 2016	$\sim 10^{-8} M_j/yr$	
Schulik et al 2019	$\sim 10^{-4} M_j/yr$	
Lambrechts et al 2019	$\sim (10^{-5} - 10^{-6}) M_j/yr$	$\dot{M}_{flux~atmosphere} \ \sim 10^{-4}~M_j/yr$

Modelling gas accretion

My work:

- Impact of gas accretion onto the protoplanetary disk
- Not resolving the process of gas accretion itself different scale
 - → Value of accretion rate is one of my "input" parameters (see slide 11)

How gas accretion is modeled here?

- 1 planet = 1 gravitational potential from a mass M_{planet}

dM?

$$M_{disk}(t+dt) = M_{disk}(t) - dM$$

$$M_{disk}(t+dt) = M_{disk}(t) + dM$$

Accretion routine

Kley accretion principle (Kley 1999)

$$dM_K = f_{red}.S_{acc}.\Sigma(r,t).f_{acc}.dt$$

Machida accretion principle (Machida et al 2010)

Accretion routine

Kley accretion principle (Kley 1999)

$$dM_K = f_{red}.S_{acc}.\Sigma(r,t).f_{acc}.dt$$

Machida accretion principle (Machida et al 2010)

$$dM_M = \Sigma(r,t) \quad H^2\Omega \times \min(0.14; 0.83.(r_H/H)^{9/2}).dt$$

$$r_H = r_p \left(\frac{m_p}{3M_\star}\right)^{1/3}$$

Machida+ 2010: Derived from 3D simulations without removing gas from the disk

Crida&Bitsch 2017: Used it in 2D simulations (migration + accretion) with $\Sigma(r,t) = \Sigma_0$

Accretion routine

Accretion routine at each dt:

- Step 1: Calculation of Kley accretion rate
- Step 2: Calculation of Machida accretion rate

 Tuning of Machida's accretion rate → Exploring different accretion rates
- Step 3: Checking which accretion rate is the smaller $(dM = dM_{Machida})$ or dM_{Kley}
- Step 4: Removing the gas via Kley's principle with the smaller rate:

```
if dM_{Kley} > dM_{Machida}:

f_{acc} = dM_{Machida}/dM_{Kley}
```

Simulations parameters

Fargo2D1D: locally isothermal

→ Global viscous evolution of disc

Disc parameters:

$$h = 0.03, 0.05, 0.07$$
 $\alpha = 10^{-2}, 5.10^{-3}, 10^{-3}, 10^{-4}$

$$\Sigma \propto r^{-1}$$
 $\Sigma_0 = 3 \times 10^{-4}$ $M_{disc} = 10\% M_{\star}$
= 93.6 g/cm²

Planet initial parameters:

$$M_{planet} = 20M_{\oplus}$$
 $r = 5.2 \, AU$ $\dot{M}_{Machida} = (0.1, 0.2, 0.5, 1, 2, 5, 10) \times \dot{M}_{Machida}$

Influence of accretion rate

Machida factor:

Reduced:10

Reduced:5

Reduced:2

Nominal

Enhanced x2 Enhanced x5

Enhanced x10

Range in accretion rates obtained:

From
$$\sim 2.10^{-4} M_j/yr$$

to $\sim 6.10^{-6} M_j/yr$

Range in masses obtained:

From
$$\sim 3 M_j$$

to $\sim 0.5 M_j$ in 6.10^4 yrs

→ Jupiter like planets

Bergez-Casalou et al (In prep)

Influence of accretion rate

Machida factor:

Reduced:10

Reduced:5

Reduced:2

Nominal

Enhanced x2 Enhanced x5

Enhanced x10

7.5

Semi major axis in AU

10.0

12.5

For $m_p = 0.5 M_j$:

Only small differences in gap shape at the same mass at this viscosity

Influence of viscosity

Alpha viscosity:

$$\alpha = 10^{-2}$$
 $\alpha = 5.10^{-3}$
 $\alpha = 10^{-3}$
 $\alpha = 10^{-4}$
 $\alpha = 10^{-5}$

Viscosity has an influence on how the planet creates a gap via:

- Torques between the planet and the disc
- Refill of gas removed by accretion

For $\alpha = 10^{-4}$ and $\alpha = 10^{-5}$ presence of vortices. They push material in the vicinity of the planet

oscillations in the accretion rate

Influence of viscosity

Gap opening mass

Alpha viscosity:

$$\alpha = 10^{-2}$$
 $\alpha = 5.10^{-3}$
 $\alpha = 10^{-3}$
 $\alpha = 10^{-4}$
 $\alpha = 10^{-5}$

Definition of a gap here:

$$\Sigma_{min} = 0.1 \frac{\Sigma}{\Sigma_{unp}}$$

Gap opening mass

Timescale fight

When $au_{gap} > au_{acc}$:

While planet is forming the gap, it is accreting

 $M_{acc,gap} > M_{non\ acc,gap}$

When $au_{ u} < au_{acc}$:

Everything that is accreted by the planet is replenished by viscosity

 $M_{acc,gap} \simeq M_{non\ acc,gap}$

Gap opening mass

Bibliography

Review papers:

Core accretion and Gravitational instabilities:

Paardekooper, SJ. & Johansen, A. Space Sci Rev (2018) 214: 38. https://doi.org/10.1007/s11214-018-0472-y

Gravitational instability in disks + planet formation:

K. Kratter, G. Lodato, Annu. Rev. Astron. Astrophys. **54** 271–311 (2016). https://doi.org/10.1146/annurev-astro-081915-023307

Lecture notes:

Armitage, P. J. 2007 https://arxiv.org/pdf/astro-ph/0701485.pdf This is a chocolatine

Take home messages

- Gas accretion is a complicated subject, not very well constrained yet.
 High resolution and complex physics simulations are starting to help us understand the details of gas accretion.
- The disc parameters have a strong impact on gas accretion: presence of vortices at low viscosity pushes material toward the planet.
- With respect to viscosity, gas accretion can change gap opening mass.

Thank you for your attention

Camille Bergez-Casalou bergez@mpia.de +33 6 46 77 16 68

