PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing

Connelly Barnes

Eli Shechtman Goldman **Adam Finkelstein**

Dan B

CS 294-69 Paper Presentation

Jiamin Bai (Presenter)

Stacy Hsueh (Discussant)

Structural Image Editing

 Synthesize complex texture and image structures that resembles input imagery

- Image retargeting
- Image completion
- Image reshuffling

Matching Patches

Nearest Neighbor Search

Which patch is most similar?

Matching Patches

Naïve Approach

Sample every possible patch to find best match!

O(mM²)

Which patch is most similar?

- Search space
 - Patch offsets vs Patches

Neighboring pixels have coherent matches

 Large number of random sampling will yield some good guesses.

Patches

VS.

Patch offsets

Patch p with 25 dimensions

(x and y displacements)

Patch p offset search with 2 dimensions

Coherent matches with neighbors

Large numbers of guesses

M number of total pixels

Probability of correct random guess: 1/M

Probability of incorrect random guess: 1 - 1/M

Probability of all pixels with incorrect guess: $(1 - 1/M)^{M}$ [approximately 0.37]

 \Rightarrow Probability of at least 1 pixel with correct guess : 1 - (1 - 1/M)^M

 \Rightarrow Probability of at least 1 pixel with good enough guess: 1 - (1 - C/M) M

Algorithm – 3 steps

Algorithm – Initialization

 Each pixel is given a random patch offset as initialization

Algorithm – Propagation

 Each pixels checks if the offsets from neighboring patches give a better matching patch. If so, adopt neighbor's patch offset.

Algorithm – Search

- Each pixels searches for better patch offsets within a concentric radius around the current offset.
- The search radius starts with the size of the image and is halved each time until it is 1.

Algorithm

- 1. Initialize pixels with random patch offsets
- Check if neighbors have better patch offsets
- (a) Initialization

- 3. Search in concentric radius around the current offset for better better patch offsets
- 4. Go to Step 2 until converge.

O(mMlogM)

Algorithm

Speed Improvements

	Time [s]		Memory [MB]	
Megapixels	Ours	kd-tree	Ours	kd-tree
0.1	0.68	15.2	1.7	33.9
0.2	1.54	37.2	3.4	68.9
0.35	2.65	87.7	5.6	118.3

Impact

- Not only used in graphics, but in vision
 - Non-local means denoising
 - Image forensics
 - Object detection

Video Tapestries

- Videos: Patchmatch in 3D
 - Temporal super-resolution

Results

(a) input (b) result

Results

(a) input

(b) hole and guides

(c) completion result

Results

Results (Failure)

Results (Failure)

