Final 2023 Spring

Created by Qihang Ma -- 2023.05.01

Name I used to generate data

- python3.11 datageneration.py "Qihang Ma" "..."
- · Writing Random Values for Qihang Ma into ...
- Hashed Name: 7b8449b9dcbacd4fe5537e2a5211ca1569bf9f77

If you want to run my code, you may need to install my library with the name "RiskLib".

```
import warnings
warnings.filterwarnings("ignore")
from RiskLib import calculation, cov_matrix, linear_regression, optimal_port
import pandas as pd
import numpy as np
import datetime as dt
from scipy.optimize import fsolve, minimize
import statsmodels.api as sm
from scipy.stats import t, norm, kurtosis, skew
import matplotlib.pyplot as plt
```

Problem 1

Using the data in "problem1.csv"

- a. Calculate Log Returns (2pts)
- b. Calculate Pairwise Covariance (4pt)
- c. Is this Matrix PSD? If not, fix it with the "near_psd" method (2pt)
- d. Discuss when you might see data like this in the real world. (2pt)

```
In []: missing_data = pd.read_csv('problem1.csv')
missing_data
```

Out[]:		Price1	Price2	Price3	Date
	0	102.826412	94.650195	98.743159	2023-04-12
	1	NaN	94.790948	100.022901	2023-04-13
	2	102.785907	NaN	NaN	2023-04-14
	3	102.847258	96.056428	98.541876	2023-04-15
	4	102.818215	94.861366	97.983723	2023-04-16
	5	NaN	NaN	98.458978	2023-04-17
	6	102.829005	94.108024	98.650071	2023-04-18
	7	102.920044	94.206004	NaN	2023-04-19
	8	102.848208	94.611114	99.883936	2023-04-20
	9	102.642653	96.234730	99.904116	2023-04-21
	10	102.754235	95.428819	97.964658	2023-04-22
	11	102.868349	93.233250	98.728656	2023-04-23
	12	102.917764	94.484647	98.832556	2023-04-24
	13	102.893253	92.947829	100.991001	2023-04-25
	14	102.836209	95.488845	98.757883	2023-04-26
	15	102.784084	94.710784	100.125275	2023-04-27
	16	102.900801	95.225558	99.508122	2023-04-28
	17	102.876522	96.947049	100.611910	2023-04-29
	18	102.824049	92.089138	98.087277	2023-04-30
	19	103.022571	95.964771	100.139857	2023-05-01

1.1 Calculate the log return for the price

• If the data is missing, then the return for that day is NaN, and for the next day, it will also be NaN.

```
In [ ]: missing_returns = calculation.return_calculate(missing_data, method = 'LOG')
    missing_returns
```

Out[]:		Price1	Price2	Price3
	0	NaN	0.001486	0.012877
	1	NaN	NaN	NaN
	2	0.000597	NaN	NaN
	3	-0.000282	-0.012519	-0.005680
	4	NaN	NaN	0.004839
	5	NaN	NaN	0.001939
	6	0.000885	0.001041	NaN
	7	-0.000698	0.004291	NaN
	8	-0.002001	0.017015	0.000202
	9	0.001087	-0.008410	-0.019604
	10	0.001110	-0.023276	0.007768
	11	0.000480	0.013333	0.001052
	12	-0.000238	-0.016399	0.021604
	13	-0.000555	0.026971	-0.022360
	14	-0.000507	-0.008182	0.013751
	15	0.001135	0.005421	-0.006183
	16	-0.000236	0.017917	0.011031
	17	-0.000510	-0.051408	-0.025413
	18	0.001929	0.041224	0.020710

1.2 Calculate the pairwise Covariance Matrix

• Since there are some missing values in the returns, calculate the covariance matrix with the pairwise method.

1.3 Check if the matrix psd or not

```
In [ ]: cov_matrix.is_psd(pairwise_cov)
Out[ ]: True
```

So, it is a psd matrix.

1.4 When we will see the missing data

Not all markets are open at the same time on the same days. A holiday in one market is not necessarily a holiday in another, even in the same country. Or in different countries, there will be different opening time. So, we may see the missing datas like this.

Problem 2

"problem2.csv" contains data about a call option. Time to maturity is given in days. Assume 255 days in a year.

- a. Calculate the call price (1pt)
- b. Calculate Delta (1pt)
- c. Calculate Gamma (1pt)
- d. Calculate Vega (1pt)
- e. Calculate Rho (1pt)

Assume you are long 1 share of underlying and are short 1 call option. Using Monte Carlo assuming a Normal distribution of arithmetic returns where the implied volatility is the annual volatility and 0 mean

- f. Calculate VaR at 5% (2pt)
- g. Calculate ES at 5% (2pt)
- h. This portfolio's payoff structure most closely resembles what? (1pt)

```
In [ ]: call_option = pd.read_csv('problem2.csv')
    call_option
```

```
        Out [ ]:
        Underlying
        Strike
        IV TTM
        RF DivRate

        0
        85.084564
        74.575976
        0.22
        148 0.045
        0.04477
```

2.1 Calculate the value and greeks about this option with Black-scholes model

```
In []: S0 = call_option['Underlying'].values[0]
        K = call_option['Strike'].values[0]
        iv = call_option['IV'].values[0]
        rf = call_option['RF'].values[0]
        q = call_option['DivRate'].values[0]
        ttm = call_option['TTM'].values[0]/255
        call = Option.black_scholes_matrix(S0,K,ttm,rf,q,iv,'call')
        pd.DataFrame(call.greeks(), index=['call'])
Out[]:
                Value
                         Delta
                                                    Theta
                                Gamma
                                           Vega
                                                               Rho
                                                                    Carry Rho
        call 11.844251 0.787432 0.018651 17.240393 -2.749939 32.010991 38.885301
```

2.2 Simulate the returns and calculate the VaR and ES

```
In []: ttm 1 = (call option['TTM'].values[0]-1)/255
        VaRs = []
        ESs = []
        dfs = []
        for i in range(1000):
            np.random.seed(i)
            sim_r = np.random.normal(size=10000, loc=0, scale=iv/np.sqrt(255))
            sim_price = pd.DataFrame((1+sim_r) * S0, columns=['Price'])
            sim_price['PnL'] = sim_price.apply(lambda x:call.price() - Option.black
            VaRs.append(VaR.calculate var(sim price['PnL']))
            ESs.append(VaR.calculate ES(sim price['PnL']))
            dfs.append(simulation.Fitting t MLE(sim price['PnL'])[0])
        VaRs = np.array(VaRs)
        ESs = np.array(ESs)
        dfs = np.array(dfs)
        print("VaR Mean: {:.4f} -- 5% range [{:.4f}, {:.4f}].".format(VaRs.mean(), r
        print("ES Mean: {:.4f} -- 5% range [{:.4f}, {:.4f}].\n".format(ESs.mean(), r
        print("If fitting with t distribution, the degree of freedom:")
        print("df Mean: {:.4f} -- 5% range [{:.4f}, {:.4f}].".format(dfs.mean(), np.
        VaR Mean: 0.4337 -- 5% range [0.4216, 0.4461].
        ES Mean: 0.5607 -- 5% range [0.5455, 0.5762].
        If fitting with t distribution, the degree of freedom:
        df Mean: 52.0227 -- 5% range [25.3523, 121.9174].
```

Since the degree of freedom is relatively high, so this portfolio's payoff structure most closely resembles normal distribution.

Problem 3

Data in "problem3_cov.csv" is the covariance for 3 assets. "problem3_ER.csv" is the expected return for each asset as well as the risk free rate.

- a. Calculate the Maximum Sharpe Ratio Portfolio (4pt)
- b. Calculate the Risk Parity Portfolio (4pt)
- c. Compare the differences between the portfolio and explain why. (2pt)

```
In []: covar_matrix = pd.read_csv('problem3_cov.csv')
    origin_exp_return = pd.read_csv('problem3_ER.csv')
    assets = covar_matrix.columns.to_list()
    exp_return = origin_exp_return.values[0][1:]
    rf = origin_exp_return['RF'].values[0]
```

3.1 Calculate the Maximum Sharpe Ratio Portfolio

• With the constrain of positive weights

3.2 Calculate the Risk Parity Portfolio

```
In [ ]: weights_rp = risk_parity.vol_risk_parity(exp_return, covar_matrix)
    weights_rp
```

Out[]:		Weight	cEr	CSD
		0	0.398465	0.056812	0.064306
		1	0.289625	0.051915	0.064306
		2	0.311910	0.052918	0.064306

3.3 Comparation of two portfolios

Correlations and Sharpe ratios are equal -> risk parity is the maximum sharpe ratio portfolio

Problem 4

Data in "problem4_returns.csv" is a series of returns for 3 assets. "problem4_startWeight.csv" is the starting weights of a portfolio of these assets as of the first day in the return series.

- a. Calculate the new weights for the start of each time period (2pt)
- b. Calculate the ex-post return attribution of the portfolio on each asset (4pt)
- c. Calculate the ex-post risk attribution of the portfolio on each asset (2pt)

```
In []: returns = pd.read_csv('problem4_returns.csv').drop('Date', axis=1)
    start_weights = pd.read_csv('problem4_startWeight.csv').values[0]
```

4.1 Calculate the new weights from the start to each time period

```
In [ ]: stocks = list(returns.columns)
        n = returns.shape[0]
        weights = np.empty((n+1, len(start_weights)))
        lastW = np.copy(start_weights)
        matReturns = returns[stocks].values
        for i in range(n):
            # Save Current Weights in Matrix
            weights[i,:] = lastW
            # Update Weights by return
            lastW = lastW * (1.0 + matReturns[i,:])
            # Portfolio return is the sum of the updated weights
            pR = np.sum(lastW)
            # Normalize the wieghts back so sum = 1
            lastW = lastW / pR
        weights[n,:] = lastW
        pd.DataFrame(weights, columns=stocks)
```

Out[]:		Asset1	Asset2	Asset3
	0	0.429088	0.284605	0.286308
	1	0.442359	0.271454	0.286187
	2	0.457152	0.273731	0.269117
	3	0.432297	0.288847	0.278856
	4	0.451087	0.264639	0.284274
	5	0.471658	0.233571	0.294771
	6	0.486315	0.228444	0.285241
	7	0.507897	0.239593	0.252510
	8	0.534966	0.233213	0.231821
	9	0.512858	0.242326	0.244816
	10	0.531614	0.232880	0.235506
	11	0.535166	0.248667	0.216168
	12	0.530176	0.254229	0.215594
	13	0.558669	0.240152	0.201179
	14	0.530123	0.261294	0.208583
	15	0.519007	0.267382	0.213611
	16	0.520033	0.263188	0.216779
	17	0.518247	0.253837	0.227916
	18	0.515476	0.260974	0.223550
	19	0.537459	0.246885	0.215656
	20	0.586327	0.224125	0.189548

4.2 & 4.3 Calculate the ex-post return & risk attribution

In []:	risk_attribution.expost_attribution(start_weights,return					
Out[]:		Value	Asset1	Asset2	Asset3	Portfolio
	0	TotalReturn	0.629554	-0.060875	-0.210485	0.192545
	1	Return Attribution	0.276461	-0.019145	-0.064771	0.192545
	2	Vol Attribution	0.021414	0.008023	0.006717	0.036153

Problem 5

Input prices in "problem5.csv" are for a portfolio. You hold 1 share of each asset. Using arithmetic returns, fit a generalized T distribution to each asset return series. Using a Gaussian Copula:

- a. Calculate VaR (5%) for each asset (3pt)
- b. Calculate VaR (5%) for a portfolio of Asset 1 & 2 and a portfolio of Asset 3 & 4
 (4pt)
- c. Calculate VaR (5%) for a portfolio of all 4 assets. (3pt)

```
In []: dataset = pd.read_csv('problem5.csv')
   all_returns = calculation.return_calculate(dataset).drop('Date',axis=1)
   latest_prices = dataset.drop('Date',axis=1).tail(1).values[0]
```

```
In [ ]: def gaussian_copula(returns, fitting_model=None, n_sample=10000, seed=12345)
            stocks = returns.columns.tolist()
            n = len(stocks)
            if fitting model is None:
                fitting_model = np.full(n, 't')
            # Fitting model for each stock
            parameters = []
            assets_returns_cdf = pd.DataFrame()
            for i, stock in enumerate(stocks):
                if fitting model[i] == 't':
                    params = t.fit(returns[stock])
                    fitting = 't'
                elif fitting_model[i] == 'n':
                    params = norm.fit(returns[stock])
                    fitting = 'n'
                parameters.append(params)
                assets_returns_cdf[stock] = t.cdf(returns[stock],df=params[0], loc=r
            # Simulate N samples with spearman correlation matrix
            np.random.seed(seed)
            spearman corr matrix = assets returns cdf.corr(method='spearman')
            sim_sample = simulation.multivariate_normal_simulation(spearman_corr_mat
            sim sample = pd.DataFrame(sim sample, columns=stocks)
            # Convert simulation result with cdf of standard normal distribution
            sim_sample_cdf = pd.DataFrame()
            for stock in stocks:
                sim_sample_cdf[stock] = norm.cdf(sim_sample[stock],loc=0,scale=1)
            # Convert cdf matrix to return matrix with parameter
            sim_returns = pd.DataFrame()
            for i, stock in enumerate(stocks):
                if fitting model[i] == 't':
                    sim_returns[stock] = t.ppf(sim_sample_cdf[stock], df=parameters[
                elif fitting model[i] == 'n':
                    sim_returns[stock] = norm.ppf(sim_sample_cdf[stock], loc=parame
            return sim_returns, pd.DataFrame(parameters,index=[stocks,fitting_model]
In []: sim returns, params = qaussian copula(all returns, seed=1)
```

5.1 Calculate VaR for each asset

```
In [ ]: for i, asset in enumerate(sim_returns.columns):
            single VaR = VaR.calculate var(sim returns[asset])
            single_dollar_VaR = VaR.calculate_var(sim_returns[asset] * latest_prices
            print("For Asset {}, the VaR is {:.6f}, $VaR is {:.6f}.".format(i+1,sind
        For Asset 1, the VaR is 0.000814, $VaR is 0.092485.
        For Asset 2, the VaR is 0.000547, $VaR is 0.049353.
        For Asset 3, the VaR is 0.000498, $VaR is 0.043831.
        For Asset 4, the VaR is 0.000720, $VaR is 0.062007.
        5.2 Calculate VaR for a portfolio of Asset 1 & 2 and a portfolio of Asset 3 &
In [ ]: VaR_12 = VaR.calculate_var(sim_returns[['Price1','Price2']].dot(latest_price
        print("For Portfolio of Asset 1 & 2, the VaR is {:.6f}, $VaR is {:.6f}.".for
        For Portfolio of Asset 1 & 2, the VaR is 0.000670, $VaR is 0.136627.
In [ ]: VaR_34 = VaR.calculate_var(sim_returns[['Price3', 'Price4']].dot(latest_price
        print("For Portfolio of Asset 3 & 4, the VaR is {:.6f}, $VaR is {:.6f}.".for
        For Portfolio of Asset 3 & 4, the VaR is 0.000592, $VaR is 0.103059.
        5.3 Calculate VaR for the whole portfolio
In [ ]: VaR_all = VaR.calculate_var(sim_returns.dot(latest_prices))
        print("For the whole Portfolio, the VaR is {:.6f}, $VaR is {:.6f}.".format(V
        For the whole Portfolio, the VaR is 0.000618, $VaR is 0.233630.
In []:
```