Ayudantía 6

Teoría Macroeconómica I - EAE320B Profesor: Alexandre Janiak Ayudantes: Leonardo Montoya, Ignacio Rojas

Consumo

1 Consumo con ingreso estocástico

Consideremos el siguiente problema de un consumidor en tiempo discreto, indexado por t y descontado por un factor $\beta \in (0,1)$. El horizonte es de T periodos, donde T puede ser potencialemente infinito. El agente cobra un sueldo exógeno ω_t en cada periodo, con $\omega_t = w_t \varepsilon_t$ donde $w_{t+1} = gw_t$ es un componente determinístico, $g \geq 0$, y ε_t un componente estocástico que sigue una cadena de Markov con matriz de transición Π y media incondicional igual a 1. Para analizar el caso sin riesgo, simplemente consideraremos una varianza nula de ε_t .

La riqueza del agente es a, consume c y tiene acceso al mercado financiero donde la tasa de interés bruta es $R \equiv (1+r)$, cumpliéndose la propiedad R-g>0. El agente puede estar sujeto a una restricción de liquidez, en el sentido de que no puede elegir una riqueza a_{t+1} menor que un umbral $\theta \in \mathbb{R}$.

La utilidad intertemporal del agente está dada por la siguiente ecuación:

$$V_t(a_t, w_t, \varepsilon_t) = \max_{c_t, a_{t+1}} u(c_t) + \beta \mathbb{E}_{\varepsilon_t} V_{t+1}(a_{t+1}, w_{t+1}, \varepsilon_{t+1})$$

$$\tag{1}$$

sujeto a

$$c_t + a_{t+1} = Ra_t + \omega_t \tag{2}$$

$$a_{t+1} \ge \theta \tag{3}$$

donde $u(\cdot)$ estará definida más abajo, a_0 y ω_0 son dados, y $\mathbb{E}_{\varepsilon_t}$ es la esperanza condicional a conocer ε_t . Llamaremos λ_t y μ_t los multiplicadores asociados a las restricciones (2) y (3) respectivamente.

El contexto general que estamos describiendo en esta sección 1 seguirá válido para las secciones 1.1, 1.2 y 1.3.

1. A partir de la ecuación de Bellman (1) y el teorema de la envolvente, obtenga la siguiente ecuación de Euler (debe escribir el lagrangiano apropiado para obtener la relación):

$$u'(c_t) = \mu_t + \beta R \mathbb{E}_{\varepsilon} \left[u'(c_{t+1}) \right] \tag{4}$$

2. Interprete la condición (4), considerando primero el caso en que $\mu = 0$ y luego un μ estrictamente positivo.

1.1 Trayectoría del consumo sin riesgo

Consideremos ahora el siguiente caso particular: T es infinito, no hay riesgo asociado a ε y el factor de descuento es tal que $\beta R = 1$. La función de utilidad es cuadrática:

$$u(c) = c - \frac{\gamma}{2}c^2 \tag{5}$$

Los parámetros del modelo (incluyendo $\gamma > 0$) son tales que el agente nunca valorará utilidad en la parte decreciente de la curva (5). Finalmente, tenemos que g > 1 y ω_0 es suficientemente bajo de manera que la restricción de liquidez (3) será activa en los primeros periodos.

1. Muestre que

$$c_{t+1} - c_t = \frac{\mu_t}{\gamma} \tag{6}$$

y explique económicamente esta relación, enfatizando el rol de μ y de γ .

2. A partir de la ecuación obtenida en la pregunta anterior, muestre que

$$c_t = c_{t+k} - \frac{1}{\gamma} \sum_{i=0}^{k-1} \mu_{t+i} \tag{7}$$

para un $k \ge 1$.

Explique económicamente esta relación. En particular, enfatice la razón detrás de la presencia de la sumatoria.

3. Dibuje gráficamente la evolución de c_t , a_t y ω_t suponiendo que la restricción de liquidez es activa k periodos.

1.2 Ahorro precautorio

Consideremos ahora un horizonte finito, $\beta R = 1$, g = 1 y la posibilidad de riesgo en ε . La función de utilidad sigue siendo la descrita en la ecuación (5). Haremos el supuesto de que, si la varianza de ε fuera nula, el nivel de activos a_0 es tal que la restricción de liquidez nunca sería activa en equilibrio.

De la misma manera que obtuvieron la relaciones (6) y (7), uno puede mostrar que

$$E_t \left[c_{t+1} - c_t \right] = \frac{\mu_t}{\gamma}$$

у

$$c_t = E_t \left\{ Ra_T + \omega_T - \frac{1}{\gamma} \sum_{i=t}^{T-1} \mu_i \right\}. \tag{8}$$

- 1. Considere el caso en que $\mu_t = 0$ para todo t. Explique por que la varianza de ε no afecta c_t en (8) para una esperanza de $E_t \{Ra_T + \omega_T\}$ dada. ¿Cual es el supuesto clave?
- 2. Consideremos que ε está asociado a M estados posibles: puede tomar los valores $y_1, y_2, ..., y_M$ con probabilidades $\pi^m_{t,\tau} = P(\varepsilon_\tau = y_m | \varepsilon_t)$ para $\tau > t$. Reescriba la ecuación (8) considerando esta notación e indexando μ también, es decir, usando $\mu^m_{t,\tau}$.
- 3. En base a la ecuación que obtuvo en la pregunta anterior, explique con palabras como podemos obtener ahorro precautorio (considerando un aumento en la varianza de ε) para el caso en que los $\mu_{t,\tau}^m$ pueden ser positivos. ¿Por qué este resultado puede sorprender conociendo el puzzle de la martingala de Hall (1978)?

1.3 Mercados completos y ausencia de riesgo

Supongamos nuevamente un horizonte infinito con g>1 y sin riesgo asociado a ε . Para esta sección consideraremos mercados completos, es decir, $\theta\to-\infty$, con lo que el agente puede endeudarse libremente. Además, consideraremos que βR puede ser distinto de 1 y que el agente tiene la siguiente función de utilidad:

$$u(c) = -\frac{1}{\alpha} \exp(-\alpha c) \quad \text{con } \alpha > 0$$
(9)

1. Utilizando la ecuación de Euler, muestre que el cambio en el consumo entre el periodo t y un periodo (t+k) se puede escribir de la siguiente manera:

$$c_{t+k} - c_t = k \frac{\log \beta R}{\alpha} \tag{10}$$

y explique económicamente esta relación enfatizando el rol de βR y de α .

2. Muestre que el stock de activos del periodo t+k está descrito por la siguiente relación:

$$\frac{a_{t+k}}{R^{k-1}} = Ra_t + \sum_{i=0}^{k-1} \frac{\omega_{t+i}}{R^i} - \sum_{i=0}^{k-1} \frac{c_{t+i}}{R^i}$$
(11)

Sea claro en su procedimiento.

3. A partir de las expresiones anteriores y la evolución de los salarios, demuestre que el consumo del periodo t se puede escribir de la siguiente manera¹:

$$c_t = (R - 1) a_t + w_t \frac{R - 1}{R - q} - \frac{\log \beta R}{\alpha (R - 1)} - (R - 1) \lim_{k \to \infty} \frac{a_{t+k}}{R^k}$$
(12)

4. Considere la siguiente condición de transversalidad:

$$\lim_{k \to \infty} \beta^k u'(c_{t+k}) a_{t+k} = 0$$
 (13)

Utilizando esta condición, demuestre que el consumo quedan descrito por:

$$c_t = ra_t + w_t \frac{r}{R - g} - \frac{\log \beta R}{\alpha r}$$

Seguimiento VI

Considere el problema de un agente resumido en la siguiente ecuación de Bellman:

$$U(h) = \max_{s} \{b - C(s) + \beta[p(s)W(h) + (1 - p(s))U(h)]\}\$$

con $W(h) = h(1-\tau) + \beta W(h)$. ¿Cumple las condiciones de Blackwell esta especificación? Demuestre.

Recuerde que si $\delta < |1|$, $\sum_{i=0}^{\infty} \delta^i = \frac{1}{1-\delta}$ y $\sum_{i=0}^{\infty} i \cdot \delta^i = \frac{\delta}{(1-\delta)^2}$.