Proof of (7.2.14) on p. 466

Since $0 < \Phi(v) < 1$, $\log \Phi(v) < 0$ for all v. So (7.2.14) can be restated as

$$g(v) \equiv -[\log \Phi(v) - \log \Phi(0)] \le |v| + |v|^2 \tag{*}$$

for all v. We have: g(0)=0 and $g'(v)=-\frac{\phi(v)}{\Phi(v)}<0$ (where $\phi(.)$, the first derivative of $\Phi(v)$, is the standard normal density function). Thus g(v)<0 for all v>0 and (*) holds for v>0. In what follows, we prove (*) for $v\leq 0$. To avoid confusion, define $x\equiv -v$. Then $x\geq 0$ and (*) can be rewritten as

$$h(x) \equiv -[\log \Phi(-x) - \log \Phi(0)] \le x^2 + x.$$
 (**)

Noting that $\Phi(-x) = 1 - \Phi(x)$ and $\phi(-x) = \phi(x)$, we observe

$$h'(x) = \frac{\phi(-x)}{\Phi(-x)} = \frac{\phi(x)}{1 - \Phi(x)} \equiv \lambda(x).$$

This ratio $\lambda(x)$ is called the **inverse Mill's ratio** (as noted on p. 478). It is well known (and can be verified by taking the derivative of $\lambda(x)$) that $\lambda(x)$ is monotonically increasing, convex and asymptotes to x. Its value at x=0 equals $2\phi(0)=\sqrt{\frac{2}{\pi}}$, which is about 0.80. On the other hand, the derivative of x^2+x has a slope of 2 and its value at x=0 is 1. So the slope of the RHS of (**) is strictly steeper than the slope of the LHS ($\lambda(x)$) for all $x\geq 0$. Since the RHS at x=0 equals the LHS at x=0, this means that the LHS is less than the RHS for all x>0.