Semantic Segmentation using CLIP Model

Ahmad Rammal Vladislav Tominin Iaroslav Tominin

Table of Content

Semantic Segmentation Setting

Semantic Segmentation Without Fine-Tuning

Generating Crops

Feature Fusion - Concept Fusion Paper

Semantic Masks

Dataset: CamVid

Results

Conclusion

Table of Content

Semantic Segmentation Setting

Semantic Segmentation Without Fine-Tuning

Generating Crops

Feature Fusion - Concept Fusion Paper

Semantic Masks

Dataset: CamVid

Results

Conclusion

Semantic Segmentation Setting

What is Semantic Segmentation?

Goal: Divide an image into segments, and assigning a label to each segment

Common Approach

Semantic segmentation is typically achieved labeling each pixel in an image with a semantic class. A CNN is trained on a large dataset of labeled images.

CLIP Usage

CLIP can be used as a feature extractor that can encode both the image and text inputs into a common embedding space

Further Fine-tuning is required

Semantic Segmentation Without Fine-Tuning

Model Architecture

Generating Crops: Instance Segmentation

Mask R-CNN vs Mask2former

Mask2former has outperform Mask R-CNN:

Better Quality + Mask2former crops cover all the cropped photo.

Unmasked Crops

Feature Fusion: Concept-Fusion Paper

Pixel Fusion Overview

Local and global embeddings

The bounding boxes are fed through the model $\ \mathbb{F}$ to obtain local embeddings $\ f_i^L = \mathbb{F}(b_i)$

The global embedding $f^G = \mathbb{F}(X)$ is simply the embedding of the entire image.

We compute the cosine similarity between the local features and the global feature:

$$\phi_i = \frac{\mathbf{f}^L i \cdot \mathbf{f}^G}{\|\mathbf{f}^L i\| \|\mathbf{f}^G\| + \epsilon}$$

We compute the matrix of cosine similarities between all pairs of local embeddings:

$$\varphi ij = \langle f_i^L, f_j^L \rangle : \forall i, j$$

For each local embedding f_i^L , we compute its average similarity to all other local embeddings:

$$\overline{\varphi}i = \frac{1}{R} \sum_{j=1, j \neq i}^{R} \varphi_{ij}$$

We combine the two similarities above to compute the mixing weight, with | au=1:

$$w_{i} = \frac{\exp\left(\frac{\phi_{i} + \overline{\varphi}i}{\tau}\right)}{\sum_{i=1}^{R} \exp\left(\frac{\phi_{i} + \overline{\varphi}_{i}}{\tau}\right)}$$

Finally, the pixel-aligned feature for each crop i is:

$$f_i^P = w_i f^G + (1 - w_i) f_i^L$$

The crop's embedding is assigned to each pixel. If a pixel is in multiple crops we simply take the average embedding.

Semantic Mask

Dataset: CamVid

Dataset CamVid

367 images with annotated masks

Results

Class	F1-Score	Recall	Precision	IOU (ref = 0.64)
Sky	0.19	0.20	0.21	0.18
Building	0.47	0.50	0.45	0.40
Column-Pole	0.02	0.13	0.10	0.01
Road	0.42	0.49	0.38	0.37
Sidewalk	0.01	0.15	0.00	0.00
Tree	0.42	0.47	0.44	0.32
Sign-Symbol	0.00	0.00	0.00	0.00
Fence	0.00	0.00	0.00	0.00
Car	0.51	0.80	0.43	0.40
Void	0.15	0.17	0.19	0.11

Conclusion

Conclusion

- Competitive results for the segmentation of sufficiently large objects is obtained
- Approach does not require fine-tuning, inference can be done on the CPU
- Algorithm does not work well with small objects, it may become the topic of the following works
- If a labeled dataset is available, it is possible to fine-tune the CLIP to get better results.

Possible ways of development

- Modify Feature Embeddings
- Fixing problems with small objects
- Feature Fusion Utility Testing