Overview

Lasanga consists of two nested feedback loops, an outer loop that tracks an altitude and commands a velocity, and an inner loop that tracks a velocity and commands a change in lift. A block diagram of the idealized system is shown below¹

 $K_1(s) = K_h$ proportional altitude loop compensator

 $K_2(s) = K_v$ proportional velocity loop compensator

 $H_1(s)$ veloctive estimator, lowpass filter on derivative of position

 $H_2(s)$ integration with decay (estimate of effect of actions, decays to 0 over time)

 h_c commanded altitude (set by Flight Controller)

 v_c commanded velocity (output of position loop)

 l_c commanded change in lift per unit time (output of velocity loop)

 l_t atmospheric disturbances that change balloon lift (heating/cooling)

 v_t atmospheric disturbances that change balloon velocity (turbulence)

 \hat{v} estimate of velocity

h actual balloon altitude

Figure 1: Idealized system block diagram

"Plant" or G(s) refers to the *system* (atmosphere + balloon) dynamics, whereas everything else represents the control feedback structure that is computed in the ValBal flight code.

¹For those without much control background: block diagrams represents the structure of a control system. Each block represents some kind of system with inputs and outputs. Each solid line with an arrow on it represent a value and show how outputs of some blocks are connected to inputs of others. Circles represent adding or subtracting, (the +/- sign where the arrow enters the circle indicates which) while blocks represent transfer functions. Transfer functions are linear systems represented in the Leplace domain. Without going into too much detail, a simple Transfer function K(s) = 5 (s is the variable in the Laplace domain) is simply scalar multiplication by 5. K(s) = 1/s represents integration of a value, and K(s) = s represents the derivative of a value.

Constants Definitions

Contstant	Default	Description
freq	20	frequency that the controller is called at (Hz)
k_v	1e-3	velocity Gain
k_h	1.5e-3	altitude Gain
b_dldt	6e-4	lift rate of ballast actions (kg/s)
v_dldt	3e-3	lift rate of valve actions (kg/s)
b_{tmin}	5	minimum ballast interval (s)
$v_{\mathtt{-}}tmin$	5	minimum valve interval (s)
$h_{\tt cmd}$	13000	commanded altitude (m)
kfuse	7	atmosphere gain for velocity estimator
$kfuse_val$	0.5	velocity estimator gain modifier for valve
ss_error_thresh	750	error tollerance for deadband (m)