Time series analysis with updated window definition

Cheyenne Ehman, Ziyan Zhu

3/29/2021

Select varible of interests

```
source("step2 data wrangle.R")
district_policies <- OH_K12 %>%
 distinct(county,county_enroll,leaid,district_enroll,schooltemporaryshutdown,opendategrouped,teachingm
# Calculate the proportion and generate date brackets
prop_opendate <- district_policies%>%
 filter(!schooltemporaryshutdown %in% c('Closed indefinitely','Pending','Unknown'))%>%
 group_by(county,county_enroll,opendategrouped)%>%
 summarise(n_opendate = sum(district_enroll))%% # number of students under certain date for each coun
 mutate(prop_opendate = round(n_opendate/county_enroll,2))%>% # proportion
 group_by(county)%>%
 #filter(prop_opendate>0.6)%>%
 slice(which.max(prop_opendate))%>% # filter large proportions of students with same reopen dates #can
 mutate(threeweeks_lag_open = opendategrouped+21, sixweeks_lag_open = opendategrouped+42, twomonths_lag_
 select(-n_opendate)
opendate_cases <- case_mobility%>%
 inner_join(prop_opendate,by=c('COUNTY'='county'))%>%
 group_by(COUNTY)%>%
 filter(DATE>=opendategrouped & DATE<=beforechristmas)%>%
 mutate(window_id = case_when(DATE<threeweeks_lag_open~"fall_reopento21d",</pre>
   DATE>=threeweeks_lag_open & DATE<sixweeks_lag_open~'reopen_21dto42d',
   DATE>= sixweeks_lag_open & DATE<twomonths_lag_open ~ 'reopen_42dto63d',
   TRUE ~ 'before_christmas'
 ))%>%
 mutate(death_prop = round(CUMDEATHS/POPULATION,5),
        window_id = as.factor(window_id))%>%
 left_join(wide_teaching_enroll,by=c('COUNTY'='county','county_enroll'))
# select the start date and end date data for each window of time
start_of_window <- opendate_cases%>%
 group_by(COUNTY, window_id)%>%
 arrange(DATE)%>%
 filter(row_number()==1)%>%
 ungroup()%>%
 mutate(y_label = case_when(window_id == "fall_reopento21d"~'before reopen',
   window id == "reopen 21dto42d" ~ 'Fall reopen',
   window_id == "reopen_42dto63d" ~ '3 weeks after reopen',
   window_id == "before_christmas" ~ '6 weeks after reopen'
 ))%>%
```

```
select(-opendategrouped,-threeweeks_lag_open,-sixweeks_lag_open,-twomonths_lag_open,-beforechristmas,
```

```
start_of_window$y_label <- factor(start_of_window$y_label,</pre>
         levels = c("before reopen",
         "Fall reopen",
         "3 weeks after reopen",
         "6 weeks after reopen"))
start_of_window$major_teaching <- factor(start_of_window$major_teaching,
         levels = c("On Premises",
         "Hybrid",
         "Online Only"))
start_of_window %>%
  ggplot(aes(y = death_prop,
             fill = major_teaching))+
 geom_boxplot(na.rm = T) +
 facet_grid(~y_label)+
  theme_bw()+
  labs(y = "Death Proportion",
       fill = "Majority Teaching Method",
       title = "Death Proportion")+theme(legend.position = "bottom")
```

Death Proportion

Death Proportion Increase

#ggsave("Deathpropinc_box.jpg", width = 8.5, height = 5)

```
title = "Y1-Y0 against X1",
subtitle = "increase during 3-6 weeks of reopen",
color = "Majority Teaching Method")
```

Y1-Y0 against X1

increase during 3-6 weeks of reopen

Majority Teaching Method

- On Premises
- Hybrid
- Online Only

ggsave("y1x1.jpg", width = 7, height = 5)
county_policy_wide\$major_teaching <- factor(county_policy_wide\$major_teaching,</pre>

```
levels = c("On Premises",
         "Hybrid",
         "Online Only"))
# see when the intesection happens
date.intercept <- as.Date("2020-11-24")</pre>
# add 95% confidence bans
confidence_level <- .95</pre>
z_cl <- qnorm(confidence_level)</pre>
# case_policy_wide
case_policy_wide <- case_mobility %>%
 left_join(county_policy_wide[,c("county","major_teaching","Online_Only","Hybrid","On_Premises")],by =
 mutate(death_prop = CUMDEATHS/POPULATION)
# plot
case_policy_wide%>%
  group_by(DATE, major_teaching) %>%
  summarise(total_deaths = sum(CUMDEATHS),
            total_pop = sum(POPULATION),
```

```
death_prop = total_deaths/total_pop,
          death_prop_upper = death_prop + z_cl*sqrt(death_prop*(1 - death_prop)/total_pop),
          death_prop_lower = death_prop - z_cl*sqrt(death_prop*(1 - death_prop)/total_pop),
          .groups = "drop") %>%
ggplot(aes(x = DATE, y = death_prop, group = major_teaching))+
  geom rect(data=opendate cases[1,],
          aes(xmin=as.Date("2020/08/26"), xmax=as.Date("2020/12/12"),
              ymin=-Inf,ymax=Inf),
          color = NA,alpha=0.2, show.legend = F, fill = "orange") +
  geom_line(aes(color = major_teaching), size = 1, alpha = .8) +
  geom_ribbon(aes(ymin = death_prop_lower, ymax = death_prop_upper,
                  fill= major_teaching),
              alpha = .3, show.legend = F)+
  geom_vline(xintercept = date.intercept, linetype = "dashed") +
  annotate("text",x = date.intercept,y = .001,
           label = date.intercept,
           hjust = 1.0) +
  geom_vline(xintercept = as.Date('2020/11/03'), linetype = "dashed") +
  annotate("text", x = as.Date('2020/11/03'), y = .0006,
             label =as.Date('2020/11/03'),
            hjust = 1.1) +
 theme_bw() +
  labs(x = "Date", y = "Total Death Proportion",
       title = "Total Death Proportion by Teaching Method",
       subtitle = "Red area represents the fall semester",
       color = "Majority Teaching Method")
```

Total Death Proportion by Teaching Method Red area represents the fall semester


```
scale_x_date(date_breaks = "2 month", date_labels = "%b-%y")
library(gridExtra)
date plot <- function(date, var, title text){</pre>
 p <- case mobility%>%
 filter(DATE == date)%>%
 mutate(death_prop = CUMDEATHS/POPULATION)%>%
 ggplot(aes(x= get(var),y = death_prop))+theme_minimal()+
 labs(x=NULL,y="Death Proportion",title=paste0(date,": ",title_text))+geom_point()+geom_smooth(method=
return(p)
}
p11 <- date_plot(date = '2020-09-01',var = "work_prop_7d",title_text = "3 weeks before reopen")
p12 <- date_plot(date = '2020-09-01',var = "res_visit_prop",title_text = "3 weeks before reopen")
p13 <- date_plot(date = '2020-09-01',var = "bar_visit_prop",title_text = "3 weeks before reopen")
p21 <- date plot(date = '2020-09-22', var = "work prop 7d", title text = "around reopen")
p22 <- date plot(date = '2020-09-22',var = "res visit prop",title text = "around reopen")
p23 <- date_plot(date = '2020-09-22',var = "bar_visit_prop",title_text = "around reopen")
p31 <- date plot(date = '2020-10-12', var = "work prop 7d", title text = "3 weeks after reopen")
p32 <- date_plot(date = '2020-10-12', var = "res_visit_prop", title_text = "3 weeks after reopen")
p33 <- date_plot(date = '2020-10-12', var = "bar_visit_prop", title_text = "3 weeks after reopen")
p41 <- date_plot(date = '2020-11-03', var = "work_prop_7d", title_text = "6 weeks after reopen")
p42 <- date_plot(date = '2020-11-03', var = "res_visit_prop", title_text = "6 weeks after reopen")
p43 <- date_plot(date = '2020-11-03', var = "bar_visit_prop", title_text = "6 weeks after reopen")
p51 <- date_plot(date = '2020-11-24',var = "work_prop_7d",title_text = "3 weeks before Thanksgiving")
p52 <- date_plot(date = '2020-11-24',var = "res_visit_prop",title_text = "3 weeks before Thanksgiving")
p53 <- date_plot(date = '2020-11-24',var = "bar_visit_prop",title_text = "3 weeks before Thanksgiving")
p61 <- date_plot(date = '2020-12-15',var = "work_prop_7d",title_text = "around Thanksgiving")
p62 <- date_plot(date = '2020-12-11',var = "res_visit_prop",title_text = "around Thanksgiving")
p63 <- date_plot(date = '2020-12-11',var = "bar_visit_prop",title_text = "around Thanksgiving")
```

```
p71 <- date_plot(date = '2021-02-22',var = "work_prop_7d",title_text = "")
p72 <- date_plot(date = '2021-02-22', var = "res_visit_prop",title_text = "")
p73 <- date_plot(date = '2021-02-22',var = "bar_visit_prop",title_text = "")
options(scipen=10000)
grid.arrange(p11, p21, p31,p41,p51,p61,nrow = 3,ncol=2,widths = c(5,5),heights = c(3,3,3),bottom= "Frac
        2020-09-01: 3 weeks before reopen
                                                  2020-09-22: around reopen
  0.0012
                                           0.00125
Death Proportion
                                         Death Proportion
                                           0.00100
  0.0008
                                           0.00075
                                           0.00050
  0.0004
                                           0.00025
  0.0000
                                           0.00000
                                                   0.07
               0.08 0.09
                          0.10
                                0.11
                                                         0.08
                                                               0.09
        2020-10-12: 3 weeks after reopen
                                                 2020-11-03: 6 weeks after reoper
                                        Death Proportion
Death Proportion
  0.0010
                                           0.0010
  0.0005
                                           0.0005
  0.0000
                                           0.0000
                 0.08
                        0.09
                              0.10
                                     0.11
                                                  0.08
                                                         0.09
                                                                0.10
                                                                       0.11
        2020–11–24: 3 weeks before Thanksgiving 2020–12–15: around Thanksgiving
  0.0020
                                         Death Proportion
                                           0.0020
Death Proportion
  0.0015
                                           0.0015
  0.0010
                                           0.0010
  0.0005
                                           0.0005
  0.0000
```

Fraction of devices that spent between 3 and 6 hours at work

0.09

0.10

grid.arrange(p12, p22, p32,p42,p52,p62,nrow = 3,ncol=2,widths = c(5,5),heights = c(3,3,3),bottom="Restaurange".

0.06

0.10

grid.arrange(p13,p23,p33,p43,p53,p63,nrow = 3,ncol=2,widths = c(5,5),heights = c(3,3,3),bottom="Bar vis


```
annotate("text", x = as.Date('2020/11/03'), y = .11,
              label =as.Date('2020/11/03'),
              hjust = 1.1) +
    theme bw() +
    labs(x = "Date", y = "Average Mobility Porportion",
         title = "Average Mobility Proportion by Teaching Method",
         subtitle = "Red area represents the fall semester",
         color = "Majority Teaching Method",
         caption = "The fraction of devices that spent between 3 and 6 hours at a location other than t
  theme(legend.position = "bottom")
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
```

```
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call(C_textBounds, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
```

```
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <e2>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <80>
## Warning in grid.Call.graphics(C_text, as.graphicsAnnot(x$label), x$x, x$y, :
## conversion failure on 'The fraction of devices that spent between 3 and 6
## hours at a location other than their home during the daytime (SafeGraph's)' in
## 'mbcsToSbcs': dot substituted for <99>
```

Average Mobility Proportion by Teaching Method

Red area represents the fall semester

Majority Teaching Method — Hybrid — On Premises — Online Only

n of devices that spent between 3 and 6 hours at a location other than their home during the daytime (SafeGraph...s)

```
avg_bar_visit <- case_policy_wide %>%
drop_na(bar_visit_prop)%>%
group_by(DATE, major_teaching) %>%
summarise(avg_bar_visit = mean(bar_visit_prop))
```

```
title = "Average Number of Bar Visits by Teaching Method",
    subtitle = "Red area represents the fall semester",
    color = "Majority Teaching Method",
    caption = "Weekly counts of visits and normalized by population size (SafeGraph)")+
theme(legend.position = "bottom")
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Average Number of Bar Visits by Teaching Method

Majority Teaching Method — Hybrid — Online Only

Weekly counts of visits and normalized by population size (SafeGraph)

```
avg_res_visit <- case_policy_wide %>%
drop_na(res_visit_prop)%>%
group_by(DATE, major_teaching) %>%
summarise(avg_res_visit = mean(res_visit_prop))
```

```
theme(legend.position = "bottom")
```

$geom_smooth()$ using method = 'loess' and formula 'y ~ x'

Average Number of Restaurant Visits by Teaching Method

Red area represents the fall semester

Weekly counts of visits and normalized by population size (SafeGraph)

Notice

After removing missing values in each of the mobility measures, we end up with different sample size for each linear regression

```
summary(lm(death_prop~work_prop_7d,data = case_policy_wide,na.action='na.omit'))
```

```
##
## Call:
## lm(formula = death_prop ~ work_prop_7d, data = case_policy_wide,
      na.action = "na.omit")
##
##
## Residuals:
##
                     1Q
                            Median
                                                     Max
  -0.0005834 -0.0003986 -0.0002491 0.0002207 0.0024472
##
##
## Coefficients:
##
                 Estimate Std. Error t value
                                                        Pr(>|t|)
## (Intercept) 0.00027520 0.00001481 18.58 <0.00000000000000000 ***
## work_prop_7d 0.00211781 0.00018531 11.43 <0.00000000000000000 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 0.0005767 on 35021 degrees of freedom
## Multiple R-squared: 0.003716,
                                 Adjusted R-squared: 0.003687
## F-statistic: 130.6 on 1 and 35021 DF, p-value: < 0.00000000000000022
summary(lm(death_prop~res_visit_prop,data = case_policy_wide,na.action='na.omit'))
##
## Call:
## lm(formula = death_prop ~ res_visit_prop, data = case_policy_wide,
      na.action = "na.omit")
##
## Residuals:
                           Median
                     1Q
                                                    Max
## -0.0005306 -0.0004127 -0.0002491 0.0001850 0.0024543
##
## Coefficients:
##
                      Estimate
                                 Std. Error t value
                                                               Pr(>|t|)
## (Intercept)
                 0.00041176670 0.00000464860
                                            88.579 < 0.0000000000000000 ***
## res_visit_prop 0.00000003558 0.00000001156
                                              3.077
                                                                0.00209 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0005665 on 33324 degrees of freedom
    (1697 observations deleted due to missingness)
## Multiple R-squared: 0.000284,
                                  Adjusted R-squared: 0.000254
## F-statistic: 9.468 on 1 and 33324 DF, p-value: 0.002093
summary(lm(death_prop~bar_visit_prop,data = case_policy_wide,na.action='na.omit'))
##
## Call:
## lm(formula = death_prop ~ bar_visit_prop, data = case_policy_wide,
##
      na.action = "na.omit")
##
## Residuals:
##
                     1Q
                           Median
                                          3Q
                                                    Max
## -0.0003484 -0.0003422 -0.0001275 0.0001626 0.0013851
##
## Coefficients:
##
                       Estimate
                                   Std. Error t value
                                                                Pr(>|t|)
## (Intercept)
                  ## bar_visit_prop -0.00000001162 0.00000003757 -0.309
                                                                   0.757
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.000403 on 7221 degrees of freedom
    (27800 observations deleted due to missingness)
## Multiple R-squared: 1.324e-05, Adjusted R-squared: -0.0001252
## F-statistic: 0.09559 on 1 and 7221 DF, p-value: 0.7572
```

NOTES:

Though we are getting all significance at the end, I am suspective about the results. Please double check the code and input data, make sure it is not random.

```
summary(lm(death_prop~work_prop_7d+res_visit_prop,data = case_policy_wide,na.action='na.omit'))
##
## Call:
## lm(formula = death_prop ~ work_prop_7d + res_visit_prop, data = case_policy_wide,
      na.action = "na.omit")
##
## Residuals:
##
                     1Q
                           Median
         Min
                                          30
                                                    Max
## -0.0005708 -0.0003810 -0.0002459 0.0001793 0.0024678
## Coefficients:
##
                                 Std. Error t value
                                                              Pr(>|t|)
                      Estimate
                 0.00025842346 0.00001481203 17.447 < 0.0000000000000000 ***
## (Intercept)
                 0.00204538960 0.00018762626 10.901 < 0.0000000000000000 ***
## work_prop_7d
## res_visit_prop 0.0000001370 0.0000001172
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0005655 on 33323 degrees of freedom
    (1697 observations deleted due to missingness)
## Multiple R-squared: 0.003837, Adjusted R-squared: 0.003777
## F-statistic: 64.17 on 2 and 33323 DF, p-value: < 0.000000000000000022
summary(lm(death_prop~Hybrid+On_Premises+Online_Only,data = case_policy_wide))
##
## Call:
## lm(formula = death_prop ~ Hybrid + On_Premises + Online_Only,
      data = case_policy_wide)
##
## Residuals:
                     1Q
                           Median
                                          3Q
                                                    Max
## -0.0006384 -0.0004175 -0.0002487 0.0002245 0.0024486
##
## Coefficients:
                 Estimate Std. Error t value
                                                        Pr(>|t|)
## (Intercept) 0.00063839 0.00001584 40.300 <0.00000000000000002 ***
              ## Hybrid
## On_Premises -0.00018479 0.00001916 -9.643 <0.00000000000000002 ***
## Online Only -0.00027022 0.00002387 -11.320 <0.00000000000000000 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0005783 on 34223 degrees of freedom
    (796 observations deleted due to missingness)
## Multiple R-squared: 0.004825,
                                 Adjusted R-squared: 0.004738
## F-statistic: 55.31 on 3 and 34223 DF, p-value: < 0.000000000000000022
summary(lm(death_prop~work_prop_7d+Hybrid+On_Premises+Online_Only,data = case_policy_wide))
##
## Call:
## lm(formula = death_prop ~ work_prop_7d + Hybrid + On_Premises +
      Online_Only, data = case_policy_wide)
```

```
##
## Residuals:
##
                    1Q
                           Median
                                                   Max
## -0.0006691 -0.0003983 -0.0002533 0.0002164 0.0024690
## Coefficients:
                  Estimate Std. Error t value
                                                        Pr(>|t|)
## (Intercept) 0.00047488 0.00002109 22.52 <0.000000000000000002 ***
## work_prop_7d 0.00222574 0.00018994 11.72 <0.000000000000000002 ***
              ## Hybrid
## On_Premises -0.00021334 0.00001928 -11.06 <0.00000000000000002 ***
## Online_Only -0.00027112 0.00002382 -11.38 <0.00000000000000002 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0005771 on 34222 degrees of freedom
    (796 observations deleted due to missingness)
## Multiple R-squared: 0.008802,
                                 Adjusted R-squared: 0.008686
## F-statistic: 75.97 on 4 and 34222 DF, p-value: < 0.00000000000000022
lag_cases <- case_mobility %>%
 left_join(county_policy_wide[,c("county","major_teaching")],
           by = c("COUNTY" = "county")) %>%
 drop na(major teaching)%>%
 select(COUNTY,DATE,CUMDEATHS,POPULATION,major_teaching)%>%
 group by (COUNTY) %>%
 mutate(lag_total_deaths = lag(CUMDEATHS,21)) %>%
 ungroup()%>%
 group_by(DATE,major_teaching) %>%
 summarise(total_deaths = sum(CUMDEATHS),
           total_deaths_lag = sum(lag_total_deaths),
           total_pop = sum(POPULATION),
           death_prop = total_deaths/total_pop,
           lag_death_prop = total_deaths_lag/total_pop,
           death_prop_inc = (total_deaths-total_deaths_lag)/total_pop,
           .groups = "drop")
ggplot(lag_cases, aes(x = lag_death_prop, y = death_prop, color = major_teaching)) +
   geom line(size = 1,alpha = .8, na.rm=T)+
 theme bw() +
 labs(x = "Death Proportion of 3 weeks prior", y = "Death Proportion",
      color = "Majority Teaching Method")
```



```
peak.date <- as.Date("2020-12-23")</pre>
ggplot(lag_cases,aes(x = DATE, y = death_prop_inc,
                     color = major_teaching,
                     fill = "red")) +
   geom_line(na.rm = T) +
    geom_rect(data = lag_cases[1,],
            aes(xmin=as.Date("2020/08/26"), xmax=as.Date("2020/12/12"),
                ymin=-Inf,ymax=Inf),
            color = NA,alpha=0.2, show.legend = F) +
    geom_vline(xintercept = peak.date, linetype = "dashed")+
    annotate("text",x = peak.date,y = .0005,
             label = peak.date,
             hjust = 1.2) +
  theme_bw() +
  labs(x = "Date",
       y = "Death Proportion Increase",
       title = "Death Proportion Increase by Teaching Method",
       subtitle = "Increase compared to 3 Week Lag \nRed area represents Fall Semester",
       color = "Majority Teaching Method") +
  scale_y_continuous(labels = comma)
```

Death Proportion Increase by Teaching Method

Increase compared to 3 Week Lag Red area represents Fall Semester

