Diode Laser Absorption Spectroscopy of Rubidium

Iago B. Mendes

Lab partner: Avay Subedi

March 20, 2025

Introduction

 \bullet Study hyperfine splitting of the ground state of rubidium ($^{85}\mathrm{Rb}$ and $^{87}\mathrm{Rb})$

- \bullet Study hyperfine splitting of the ground state of rubidium ($^{85}{\rm Rb}$ and $^{87}{\rm Rb})$
- Measure it using absorption spectroscopy

- \bullet Study hyperfine splitting of the ground state of rubidium ($^{85}{\rm Rb}$ and $^{87}{\rm Rb})$
- Measure it using absorption spectroscopy
- Use a diode laser and a Fabry-Perot resonator

- Study hyperfine splitting of the ground state of rubidium (⁸⁵Rb and ⁸⁷Rb)
- Measure it using absorption spectroscopy
- Use a diode laser and a Fabry-Perot resonator
- Test consistency of measured hyperfine splittings with literature values

Theory

Figure 1

• ^{85}Rb and ^{87}Rb outermost electron ground state $\rightarrow 5\text{s}$ ($\ell=0$) excited state $\rightarrow 5\text{p}$ ($\ell=1$)

Figure 1

• ⁸⁵Rb and ⁸⁷Rb outermost electron ground state \rightarrow 5s ($\ell = 0$) excited state \rightarrow 5p ($\ell = 1$) • Spin-orbit interaction \rightarrow fine splitting different excitations: D_1 and D_2

Figure 1

• 85 Rb and 87 Rb outermost electron ground state $\rightarrow 5s$ ($\ell = 0$) excited state $\rightarrow 5p$ ($\ell = 1$)

- Spin-orbit interaction \rightarrow fine splitting different excitations: D_1 and D_2
- Electron-nucleus interaction \rightarrow hyperfine splitting

Figure 1

Absorption spectroscopy

 $\bullet\,$ The beam passes through a vapor cell containing rubidium atoms

Absorption spectroscopy

- The beam passes through a vapor cell containing rubidium atoms
- If the laser frequency matches an atomic transition (D_2) :
 - Atoms absorb photons, exciting electrons to higher energy states
 - Absorbed photons are re-emitted in random directions (scattering)
 - Reduced intensity in the original beam path is measured as absorption

Absorption spectroscopy

- The beam passes through a vapor cell containing rubidium atoms
- If the laser frequency matches an atomic transition (D_2) :
 - Atoms absorb photons, exciting electrons to higher energy states
 - Absorbed photons are re-emitted in random directions (scattering)
 - Reduced intensity in the original beam path is measured as absorption
- Transmission spectrum shows dips at resonant frequencies

Methods

Diode laser

 $\bullet\,$ Semiconductor laser diode used to generate tunable laser beam

Diode laser

- Semiconductor laser diode used to generate tunable laser beam
- Wavelength tuning: change current
 - \Rightarrow change frequency

Diode laser

- Semiconductor laser diode used to generate tunable laser beam
- Wavelength tuning: change current
 - \Rightarrow change frequency
- $\lambda \sim 780 \text{ nm}$
 - \Rightarrow sweep current over time to get all peaks

 \bullet Transmits only specific frequencies based on mirror spacing

- \bullet Transmits only specific frequencies based on mirror spacing
- Used to measure discrete transmission peaks

- Transmits only specific frequencies based on mirror spacing
- Used to measure discrete transmission peaks
- Peak frequency spacing: free spectral range (FSR)

$$\Delta \nu_{\rm FSR} = \frac{c}{2nL} \tag{1}$$

- Transmits only specific frequencies based on mirror spacing
- Used to measure discrete transmission peaks
- Peak frequency spacing: free spectral range (FSR)

$$\Delta \nu_{\rm FSR} = \frac{c}{2nL} \tag{1}$$

 $\bullet\,$ Enables time-to-frequency conversion

Results

Transmission and absorption data

Figure 2

Transmission and absorption data

• Manually selected the times for each transmission peak

Figure 2

Transmission and absorption data

- Manually selected the times for each transmission peak
- Used Igor Pro to fit to a function for the cumulative number of peaks at a given time

$$N(t) = K_0 + K_1 t + K_2 t^2 + K_3 t^3 (2)$$

Figure 2

 $\bullet\,$ Length of Fabry-Perot resonator

$$L = 900(1) \text{ mm}$$
 (3)

• Length of Fabry-Perot resonator

$$L = 900(1) \text{ mm}$$
 (3)

• Free spectral range

$$\Delta \nu_{\rm FSR} = \frac{c}{2nL} \tag{4}$$

• Length of Fabry-Perot resonator

$$L = 900(1) \text{ mm}$$
 (3)

• Free spectral range

$$\Delta \nu_{\rm FSR} = \frac{c}{2nL} \tag{4}$$

• Frequency spacing between transmission peaks is uniform

$$\nu(N) = \Delta \nu_{\rm FSR} N + \nu_0 \tag{5}$$

• Length of Fabry-Perot resonator

$$L = 900(1) \text{ mm}$$
 (3)

• Free spectral range

$$\Delta \nu_{\rm FSR} = \frac{c}{2nL} \tag{4}$$

• Frequency spacing between transmission peaks is uniform

$$\nu(N) = \Delta\nu_{\rm FSR}N + \nu_0 \tag{5}$$

• Conversion function

$$\nu(t) = \Delta \nu_{\rm FSR} N(t) + \nu_0 \tag{6}$$

$$= \Delta \nu_{\text{FSR}}(K_0 + K_1 t + K_2 t^2 + K_3 t^3) + \nu_0 \tag{7}$$

Figure 3

• Gaussian fits with scipy

Figure 3

• Gaussian fits with scipy

• Note: misalignment of peak offsets

Figure 3

- Gaussian fits with scipy
- Note: misalignment of peak offsets

• Used literature values to identify peaks

2nd and 3rd
$$\rightarrow$$
 ⁸⁵Rb
1st and 4th \rightarrow ⁸⁷Rb

Figure 3

Hyperfine splittings

• Measurements

$$\Delta\nu(^{87}\text{Rb}) = 6.5(5) \text{ GHz} \tag{8}$$

$$\Delta\nu(^{85}\text{Rb}) = 2.9(3) \text{ GHz} \tag{9}$$

Hyperfine splittings

• Measurements

$$\Delta\nu(^{87}\text{Rb}) = 6.5(5) \text{ GHz} \tag{8}$$

$$\Delta \nu(^{85}\text{Rb}) = 2.9(3) \text{ GHz}$$
 (9)

• Literature values¹

$$\Delta \nu_{\text{literature}}(^{87}\text{Rb}) = 3.035732439(6) \text{ GHz}$$
 (10)

$$\Delta \nu_{\text{literature}}(^{85}\text{Rb}) = 6.83468261090429(9)) \text{ GHz}$$
 (11)

¹D. A. Steck, Alkali D Line Data.

Peak widths

 \bullet Expected width due to Doppler broadening for 780 nm laser²

$$\delta \nu_{\text{Doppler}} = 502 \text{ MHz.}$$
 (12)

²J. R. Brandenberger, Experiments in Laser Physics and Spectroscopy for Undergraduates.

Peak widths

 \bullet Expected width due to Doppler broadening for 780 nm laser²

$$\delta \nu_{\text{Doppler}} = 502 \text{ MHz.}$$
 (12)

• Full-width at half-maximum (FWHM)

$$\delta \nu_{\rm FHHM} = 2\sqrt{2 \ln 2} \ \sigma_{\rm Gaussian}$$
 (13)

²J. R. Brandenberger, Experiments in Laser Physics and Spectroscopy for Undergraduates.

Peak widths

 \bullet Expected width due to Doppler broadening for 780 nm laser²

$$\delta \nu_{\text{Doppler}} = 502 \text{ MHz.}$$
 (12)

• Full-width at half-maximum (FWHM)

$$\delta \nu_{\rm FHHM} = 2\sqrt{2 \ln 2} \ \sigma_{\rm Gaussian}$$
 (13)

• Measurements

$$\delta \nu_1 = 520(10) \text{ MHz}, \tag{14}$$

$$\delta \nu_2 = 590(6) \text{ MHz}, \tag{15}$$

$$\delta \nu_3 = 570(20) \text{ MHz}, \tag{16}$$

$$\delta \nu_4 = 490(90) \text{ MHz.}$$
 (17)

²J. R. Brandenberger, Experiments in Laser Physics and Spectroscopy for Undergraduates.

Conclusion

Summary

- \bullet Successfully measured hyperfine splitting for $^{85}{\rm Rb}$ and $^{87}{\rm Rb}$
- Results consistent with literature values within experimental uncertainty
- Peak width measurements affected by Doppler broadening and misalignment
- Possible improvements:
 - Adjust diode laser parameters to align peak offsets
 - Improve frequency resolution with better laser stability

The end

Thank you! Any questions?