2. HW

7 a

Mejme kod turingova stroje M' jenz pridava k M tyto veci:

• symboly ^ (zacatek dat a pasce) a \$ (konec dat na pasce) do paskove abecedy

A nahradime

• operaci L za prechodove funkce:

– (^, L,
$$\sum_i$$
) \to zapis \sum_i \to proved L \to zapis ^ \to proved R – (_, L, \sum_i) \to zapis \sum_i

• operaci R za prechodove funkce:

— (\$, L,
$$\sum_i$$
) \to zapis \sum_i \to proved R \to zapis \$ \to proved L — (_, L, \sum_i) \to zapis \sum_i

Zacneme simulovat vstup x na automatu M'.

- Pokud se zastavi tak zkontrolujeme zda symboly ^ a \$ jsou na pasce vedle sebe.
 - Pokud jsou, tak paska po skonceni je prazdna a automat se ukocil \downarrow se vstupem x.
 - Pokud nejsou, tak paska neni prazdna a automat se ukoncil ↓.
- Pokud se nezastavi tak nic nevime.

Tudiz pokud se zastavi, tak vime zda paska je po skonceni prazdna, ale ne vzdy se automat zastavi, proto se jedna o castecne rozhodnutelny problem.

7 b

Vezmeme automat M' z predchozi ulohy a vyvorime totozny automat M" jen s rozdilem, ze M" se zastavi po n krocich a neprijme.

Udelame si matici kde radky jsou n (pocet kroku do zastaveni) a sloupce budou vsechny vstupni retezce (shortlex).

pak matici prochazime cik-cak (kazdy 2D index je prevoditelny na 1D index).

- Pokud se M" zastavi a prijima, tak hledany vstup x existuje. (tez plati, ze pokud existuje tak se zastavi).
- Pokud se nezastavi, tak opet nevime nic. (proto se jedna pouze o castecne rozhodnutelny problem)

8

Mejme jazyk L_u a ukazme si, ze je prevoditelny na jazyk PP.

Jakmile je jazyk L_u prijimany v prijimajicim stavu, tak jeste do automatu pridame mazaci instrukce, ktere nam pasku vyprazdni (smerem vlevo i vpravo) a dostaneme tak jazyk PP.

Avsak podle definic vime, ze L_u je nerozhodnutelny a jelikoz je jazyk PP pouze podmnozina jazyka L_u , tak i jazyk PP musi byt nerozhodnutelny.