

=> B is d.f.b=> we apply the and Sighter Ab

3	A 3	Az	d. f. b	
AA				
Ah				
A 5				
4.66	13	1 3	M 3.	

df-b, according to 6 St

(A 3, A2) is of b house optimal dosis

(A) optimal sol of CPI is

$$X^{\circ} = (X_{1}, X_{2}^{\circ}, X_{3}^{\circ}, X_{4}^{\circ}, X_{5}^{\circ})$$
 $(X_{1}, X_{2}^{\circ}, X_{3}, X_{4}^{\circ}, X_{5}^{\circ})$
 $(X_{1}, X_{2}^{\circ}, X_{3}, X_{4}^{\circ}, X_{5}^{\circ})$
 $(X_{1}, X_{2}^{\circ}, X_{3}, X_{4}^{\circ}, X_{5}^{\circ})$
 $(X_{1}, X_{2}^{\circ}, X_{3}, X_{4}^{\circ}, X_{5}^{\circ})$

Dre optimal value (nin) of f on 5 is:

Eas 2 Labore the fall

(P)
$$\int \frac{dx_1}{-2x_1} + \frac{dx_2}{-2x_1} = 0$$

 $-2x_1 + \frac{dx_2}{-2x_2} = 0$
 $-2x_1 + \frac{dx_2}{-2x_2} = -5$ (S)
 $-2x_1 + \frac{dx_2}{-2x_2} = -5$ (S)

« is a parameter

Solution:

(P) is given in standard form

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

$$A^{1} \quad A^{2} \quad A^{3} \quad A^{4} \quad A^{5} \quad A^{6}$$

2	AZ	A5	dfl
A	340		
A3	240		
AT	1 40		
A6	340		
Inlle	- 240		Or-

=) P (P) has no feasible sol => S=D