Mingchen Xia

Singularities in global pluripotential theory

- Lectures at Zhejiang University -

Updated on December 25, 2024. The latest version can be found here. Recent updates: Fix typos and include figures from Chap 1 to Chap 4. Include a Conjecture in Sec 4.2. Fix a mistake of Bedford–Taylor.

Preface

This book is an expanded version of my lecture notes at the Institute for Advanced Study in Mathematics (IASM) at Zhejiang university. My initial goal was to write a self-contained reference for the participants of the lectures. But I soon realized that many results have never been rigorously proved in any literature. When attempting to resolve these loose ends, the notes grew increasingly lengthy, ultimately resulting in the current book.

In this book, I would like to present my point of view towards the *global* pluripotential theories. There are three different but interrelated theories which deserve this name. They are

- (1) the pluripotential theory on compact Kähler manifolds,
- the pluripotential theory on the Berkovich analytification of projective varieties, and
- (3) the toric pluripotential theory on toric varieties.

We will begin by explaining the picture in the first case. Let us fix a compact Kähler manifold X. The central objects are the *quasi-plurisubharmonic functions* on X.

We are mostly interested in the *singularities* of such functions, that is, the places where a quasi-plurisubharmonic function φ tends to $-\infty$ and how it tends to $-\infty$.

Singularities occur naturally in mathematics. In geometric applications, X should be regarded as the compactified moduli space of certain geometric objects. A Zariski open subset $U \subseteq X$ would parametrize smooth objects. The natural metric on the associated polarizing line bundle is usually smooth only on U, not on X. In case we have suitable positivities, the classical Grauert–Remmert extension theorem (Theorem B.2.2) allows us to extend the metric outside U, but at the cost of introducing singularities.

The classification of singularities is a huge project. Locally near the singularities we know that quasi-plurisubharmonic functions present very complicated behaviours. There are many local invariants associated with the singularities. The most notable ones are the Lelong numbers and the multiplier ideal sheaves. These invariants only reflect the rough behaviour of a quasi-plurisubharmonic function. As an example,

vi Preface

a quasi-plurisubharmonic function with log-log singularities have the same local invariants as a bounded one.

The situation changes drastically in the global setting, namely on compact manifolds. In the global setting, there are three different ways to classify quasiplurisubharmonic functions according to their singularities:

- (1) The singularity type characterizing the singularities up to a bounded term.
- (2) The *P*-singularity type associated with global masses.
- (3) The \mathcal{I} -singularity type associated with all non-Archimedean data.

The classification becomes rougher and rougher as we go downward. In the first case, we say two quasi-plurisubharmonic functions have the same singularity type if their difference lies in L^{∞} . The corresponding equivalence class gives us essentially the finest information of the singularities we can expect. The other two relations are more delicate, we will study them in detail in Chapter 6.

A natural idea to study the singularities would consist of the following steps:

- (1) Classify the I-singularity types.
- (2) Classify the P-singularity types within a given \mathcal{I} -singularity class.
- (3) Classify the singularity types within a given *P*-equivalence class.

The Step 3 is well-studied in the literature in the last decade under the name of pluripotential theory with prescribed singularities. There are numerous excellent results in this direction. In some sense, this step is already well-understood.

We will give a complete answer to Step 1 in Chapter 7, where we show that I-singularity types can be described very explicitly.

It remains to consider Step 2. This is not an easy task. It is easy to construct examples where a given I-equivalence class consists of a huge amount of P-equivalence classes.

On the other hand, by contrast, in the toric pluripotential theory and non-Archimedean pluripotential theory, Step 2 is essentially trivial: An \mathcal{I} -equivalence class consists of a single P-equivalence class. In the toric situation, an \mathcal{I} or P-equivalence class is simply a sub-convex body of the Newton body, while in the non-Archimedean situation, an \mathcal{I} or P-equivalence class is a homogeneous plurisubharmonic metric.

This apparent anomaly and numerous examples show that in the pluripotential theory on compact Kähler manifolds, certain singularities are pathological. Within each I-equivalence class, we could pick up a canonical P-equivalence class, the quasi-plurisubharmonic functions in which are said to be I-good. We will study the theory of I-good singularities in Chapter 7. As we will see later on, almost all (if not all) singularities occurring naturally are I-good.

My personal impression is that we are in a situation quite similar to the familiar one in real analysis. There are many non-measurable functions, but in real life, unless you construct a pathological function by force, you only encounter measurable functions. Similarly, although there exist many non- \mathcal{I} -good singularities, you would never encounter them in reality!

Having established this general principle, we could content ourselves in the framework of I-good singularities. Then Step 2 is essentially solved, and we have a pretty good understanding of the classification of singularities.

Preface vii

Of course, this classification is a bit abstract. To put it into use, we will introduce two general techniques allowing us to make induction on dim X. For a prime divisor Y in general position, we have the so-called analytic Bertini theorems relating quasi-plurisubharmonic functions on X and on Y. For a non-generic Y, we have the technique of trace operators. These techniques will be explained in Chapter 8.

In the toric situation, these constructions and methods are quite straightforward and are likely known to experts before I entered this field, see Chapter 5 for the toric pluripotential theory on ample line bundles.

The corresponding toric pluripotential theory on big line bundles has never been written down in the literature. We will develop the theory of partial Okounkov bodies in Chapter 10 and the general toric pluripotential theory will be developed as an application in Chapter 12.

Finally, we give applications to non-Archimedean pluripotential theory in Chapter 13 based on the theory of test curves developed in Chapter 9. We also prove the convergence of the partial Bergman kernels in Chapter 14.

The readers are only supposed to be familiar with the basic pluripotential theory. The excellent book [GZ17] is more than enough.

Mingchen Xia in Hangzhou, March 2024

Acknowledgments

I would like to express my gratitude to Bing Wang and Song Sun for their gracious invitations to China and for providing me with the opportunity to deliver a series of lectures.

Furthermore, I am indebted to the dedicated researchers and secretaries of the University of Science and Technology of China (USTC) and the Institute for Advanced Study in Mathematics (IASM) for cultivating an exceptional research environment. Their commitment to excellence has allowed me to immerse myself fully in the field of mathematics during my time in China.

I am also immensely thankful to the participants of the course, including Song Sun, Mingyang Li, Xin Fu, Jiyuan Han, Junsheng Zhang, Yifan Chen, Yueqing Feng, Minghao Miao, and Federico Giust. Their active engagement and insightful discussions have greatly enriched my lectures and enhanced my understanding of the subject matter.

Special appreciation goes to Yi Yao and Kewei Zhang for their invaluable contributions to discussions on toric geometry, which ultimately inspired the theory developed in Chapter 12.

Most results in this book are developed in collaboration with Tamás Darvas and Kewei Zhang, whose insights are always crucial in the development of the theories. I would like to thank them for the collaborations over years.

A substantial part of the current book was essentially contained in my PhD thesis. I would like to thank my advisor Robert Berman for his guidance and my colleagues in Göteborg and Paris for constant discussions, especially Bo Berndtsson, David Witt Nyström, Sébastien Boucksom and Elizabeth Wulcan.

This work would not have been possible without the unwavering support and encouragement of all those mentioned above. Thank you for your generosity, guidance, and camaraderie throughout this endeavor.

I want to thank the following people for either pointing out mistakes or typos in the original version of the book: Vasanth Pidaparthy, Prakhar Gupta, Yi Yao, Tamás Darvas

Enfin, je tiens à exprimer ma gratitude à Sébastien Boucksom et Madame Natalia Hristic de la Sorbonne Université, qui m'ont aidé à contacter le ministère de l'intérieure x Acknowledgments

en France. Sans leur intervention, je serais encore coincé en France, échoué par l'efficacité extraordinaire du gouvernement français, en particulier de la préfecture de Créteil et ce livre n'aurait jamais vu le jour.

Contents

Part I Preliminaries

1	Plui	risubharmonic functions	3
	1.1	The definition of plurisubharmonic functions	3
		1.1.1 The 1-dimensional case	3
		1.1.2 The higher dimensional case	4
		1.1.3 The manifold case	6
	1.2	Properties of plurisubharmonic functions	7
	1.3	Plurifine topology	13
		1.3.1 Plurifine topology on domains	13
		1.3.2 Plurifine topology on manifolds	18
	1.4	Lelong numbers and multiplier ideal sheaves	19
	1.5	Quasi-plurisubharmonic functions	24
	1.6	Analytic singularities	25
	1.7	The space of currents	28
	1.8	Plurisubharmonic metrics on line bundles	30
2	Non	ı-pluripolar products	35
	2.1	Bedford–Taylor theory	35
	2.2	The non-pluripolar products	36
	2.3	Properties of non-pluripolar products	39
3	The	envelope operators	45
	3.1	The <i>P</i> -envelope	45
		3.1.1 Rooftop operator and the definition of the <i>P</i> -envelope	45
		3.1.2 Properties of the <i>P</i> -envelope	50
		3.1.3 Relative full mass classes	54
	3.2	The <i>I</i> -envelope	57
		3.2.1 <i>I</i> -equivalence	57
		3.2.2 The definition of the <i>I</i> -envelope	58
		3.2.3 Properties of the <i>I</i> -envelope	60

xii	Contents

4		desic rays in the space of potentials	
	4.1	Subgeodesics	
	4.2	Geodesics in the space of potentials	68
5	Tori	c pluripotential theory on ample line bundles	
	5.1	Toric setup	81
	5.2	Toric plurisubharmonic functions	83
Par	t II I	The theory of \mathcal{I} -good singularities	
6	Con	nparison of singularities	99
	6.1	The P and \mathcal{I} -partial orders	
		6.1.1 The definitions of the partial orders	
		6.1.2 Properties of the partial orders	103
	6.2	The d_S -pseudometric	107
		6.2.1 The definition of the d_S -pseudometric	
		6.2.2 Convergence theorems	113
		6.2.3 Continuity of invariants	
7	T-00	ood singularities	123
•	7.1	The notion of I -good singularities	
	7.2	Properties of <i>I</i> -good singularities	
	7.3	The volume of Hermitian big line bundles	
0	The	440.00 00.004.00	122
8	8.1	trace operator	
	8.2	The definition of the trace operator	
	8.3	Restricted volumes	
	8.4	Analytic Bertini theorems	144
9		curves	
	9.1	The notion of test curves	
	9.2	Ross–Witt Nyström correspondence	
	9.3	<i>I</i> -model test curves	
	9.4	Operations on test curves	162
10	The	theory of Okounkov bodies	173
	10.1	Flags and valuations	173
		10.1.1 The algebraic setting	173
		10.1.2 The transcendental setting	
	10.2	Algebraic partial Okounkov bodies	
		10.2.1 The spaces of sections	
		10.2.2 Algebraic Okounkov bodies	
		10.2.3 Construction of partial Okounkov bodies	
		10.2.4 Basic properties of partial Okounkov bodies	

Contents xiii

	10.2.5 The Hausdorff convergence property of partial Okounkov bodies	106
	10.2.6 Recover Lelong numbers from partial Okounkov bodies 10.3 Transcendental partial Okounkov bodies	. 190
	10.3.1 The traditional approach to the Okounkov body problem	
	10.3.2 Definitions of partial Okounkov bodies	. 192
	10.3.3 The valuative characterization	. 197
	10.4 Okounkov test curves	. 202
11	The theory of b-divisors	. 209
	11.1 The intersection theory of b-divisors	. 209
	11.2 The singularity b-divisors	. 211
	11.3 Okounkov bodies of b-divisors	. 214
Par	rt III Applications	
12	Toric pluripotential theory on big line bundles	. 221
	12.1 Toric setup	
	12.2 Toric partial Okounkov bodies	
	12.2.1 Newton bodies	
	12.2.2 Partial Okounkov bodies	
	12.3 The pluripotential theory	. 226
13	Non-Archimedean pluripotential theory	
	13.1 The definition of non-Archimedean metrics	
	13.2 Operations on non-Archimedean metrics	
	13.3 Duistermaat–Heckman measures	. 240
14	Partial Bergman kernels	
	14.1 Partial envelopes	
	14.2 Quantization of partial equilibrium measures	
	14.2.1 Bernstein–Markov measures	
	14.2.2 Partial Bergman kernels	. 253
Coı	mments	. 261
A	Convex functions and convex bodies	. 267
	A.1 The notion of convex functions	
	A.2 Legendre transform	
	A.3 Classes of convex functions	
	A.4 Monge–Ampère measures	
	A.5 Separation lemmata	. 275

xiv	Contents

В	Plur	ipotential theory on unibranch spaces277
		Complex spaces
		Plurisubharmonic functions
	B.3	Extensions of the results in the smooth setting
C	Alm	ost semigroups
		Convex bodies
	C.2	The Okounkov bodies of almost semigroups
		C.2.1 Generalities on semigroups
		C.2.2 Okounkov bodies of semigroups
		C.2.3 Okounkov bodies of almost semigroups
Ind	lex	293
Ref	erenc	es

Conventions

In the whole book, we adopt the following conventions:

- A complex space is always assumed to be reduced, paracompact and Hausdorff.
- A modification of a complex space X is proper bimeromorphic morphism
 π: Y → X that is obtained from a finite composition of blow-ups with smooth
 centers.
- A subnet of a net refers to a cofinal subnet.
- A *domain* in \mathbb{C}^n refers to a connected open subset.
- A complex manifold is assumed to be paracompact.
- A submanifold of a complex manifold means a complex submanifold.
- A neighborhood is not necessarily open.
- The set \mathbb{N} of natural numbers includes 0.
- Increasing functions and decreasing functions are not necessarily strictly monotone.

We will use the following notations throughout the book:

- If *I* is a non-empty set, then Fin(*I*) denote the net of finite non-empty subsets of *I*, ordered by inclusion.
- dd^c means $(2\pi)^{-1}i\partial \overline{\partial}$.

Part I Preliminaries

In the first two chapters Chapter 1 and Chapter 2 of this part, we recall a few preliminaries about the notion of plurisubharmonic functions and the non-pluripolar products of plurisubharmonic functions.

All materials in these chapters are standard and are well-documented in other textbooks, so we will be rather sketchy. The readers are encouraged to consult the excellent textbook [GZ17].

In Chapter 3, we develop the techniques of envelope operators. All results in this section are known and are written in various articles.

In Chapter 4, we develop the theory of geodesics in the space of quasiplurisubharmonic functions. Most results in this chapter are known to different degrees, but not in the fully general form as we present. Most proofs are similar to the known proofs in the literature, but the presence of singularities requires a very careful treatment.

In Chapter 5, we recall the basic results about the toric pluripotential theory on ample line bundles, which will be generalized to big line bundles in Chapter 12. Experienced readers may safely skip the whole part.

Chapter 1

Plurisubharmonic functions

Once Frigyes Riesz^a gave a brilliant explanation of why scientific work is easy. "Everyone has ideas, both right ideas and wrong ideas," he said. "Scientific work consists merely of separating them." — Istvan Vincze

chap:psh

In this chapter, we recall the notion of plurisubharmonic functions and a few basic properties of these functions. The main purpose is to fix the notation for later chapters, so we refer to the literature for most of the proofs.

We give some details about the plurifine topology in Section 1.3, since the related proofs are scattered in a number of articles.

In the literature related to multiplier ideal sheaves and Lelong numbers, there are several different conventions about their normalizations. The readers can find more about the conventions that we adopt throughout the book in Section 1.4.

1.1 The definition of plurisubharmonic functions

sec:pshdef

In this section, we recall the notion of plurisubharmonic functions. We will also take care of the 0-dimensional case, which makes a number of induction arguments easier to carry out. None of our references treats the 0-dimensional case, but the readers can easily verify that the results in this section hold in this exceptional case.

1.1.1 The 1-dimensional case

Let Ω be a domain (a connected open subset) in \mathbb{C} .

def:subhar1

Definition 1.1.1 A *subharmonic function* on Ω is a function $\varphi \colon \Omega \to [-\infty, \infty)$ satisfying the following three conditions:

- (1) $\varphi \not\equiv -\infty$;
- (2) φ is upper semi-continuous;
- (3) φ satisfies the *sub-mean value inequality*: For any $a \in \Omega$ and r > 0 such that $B_1(a,r) \subseteq \Omega$, we have

^a Frigyes Riesz (1880–1956), known as Frédéric Riesz in French and Frederic Riesz in English was the first mathematician to define the general notion of subharmonic functions, who also gave these functions a Frenglish name from the very beginning — *fonctions subharmoniques*.

$$\varphi(a) \le \frac{1}{2\pi} \int_0^{2\pi} \varphi(a + re^{i\theta}) d\theta.$$

We will denote the set of subharmonic functions on Ω as $SH(\Omega)$.

Here, $B_1(a,r)$ denotes the open ball with center a and radius r. See (1.1).

In fact, for each $a \in \Omega$, in (3), it suffices to require the sub-mean value inequality for all small enough r > 0.

Intuitively, at a specific point $a \in \Omega$, the Condition (2) gives a lower bound of the value of $\varphi(a)$ using the nearby values of φ , while the Condition (3) gives an upper bound. This intuition leads to the following rigidity theorem:

thm:sh_rigid

Theorem 1.1.1 *Let* $\varphi \colon \Omega \to [-\infty, \infty)$ *be a measurable function. Then the following are equivalent:*

- (1) φ is locally integrable and $\Delta \varphi \geq 0$.
- (2) φ coincides almost everywhere with a subharmonic function ψ on Ω .

Moreover, the subharmonic function ψ in (2) is unique.

Here in Condition (1), $\Delta \varphi$ is the Laplacian in the sense of currents. This is a special case of Theorem 1.1.2 below.

This theorem gives a very useful way of constructing subharmonic functions.

1.1.2 The higher dimensional case

We will fix $n \in \mathbb{N}$ and a domain Ω (a connected open subset) in \mathbb{C}^n .

def:psh

Definition 1.1.2 When $n \ge 1$, a plurisubharmonic function on Ω is a function $\varphi \colon \Omega \to [-\infty, \infty)$ satisfying the following three conditions:

- (1) $\varphi \not\equiv -\infty$;
- (2) φ is upper semi-continuous;
- (3) for any complex line $L \subseteq \mathbb{C}^n$ and any connected component U of $L \cap \Omega$, the restriction $\varphi|_U$ is either subharmonic or constantly $-\infty$.

When n = 0, the only domain Ω is the singleton. In this case, a *plurisubharmonic* function on Ω is a real-valued function on Ω .

The set of plurisubharmonic functions on Ω is denoted by $PSH(\Omega)$.

A plurisubharmonic function is also called a psh function for short. The relevant notations are indicated in Fig. 1.1.²

¹ An extremely common mistake in the literature is to replace (3) by the condition that φ is locally integrable and $\mathrm{dd}^c \varphi \geq 0$ in the sense of current. For a concrete counterexample, consider a function φ that takes a constant value 0 at all but one single point, at which the value of φ is 1.

² We remind the readers that all figures in this book are sometimes misleading: We usually draw a complex dimension as a real dimension. The figures should not be read literally!

Fig. 1.1 A domain cut by a line

fig:psh

Example 1.1.1 When n = 0, we have a canonical bijection $PSH(\Omega) \cong \mathbb{R}$.

Example 1.1.2 When n = 1, we have $PSH(\Omega) = SH(\Omega)$.

Similar to Theorem 1.1.1, we have a rigidity theorem for plurisubharmonic functions as well.

thm:psh_rigid

Theorem 1.1.2 *Let* $\varphi: \Omega \to [-\infty, \infty)$ *be a measurable function. Then the following are equivalent:*

- (1) φ is locally integrable and $dd^c \varphi \ge 0$;
- (2) φ coincides almost everywhere with a plurisubharmonic function ψ on Ω .

Moreover, the plurisubharmonic function ψ *is unique.*

Here, the operator ddc is normalized so that

$$dd^{c} = \frac{i}{2\pi} \partial \overline{\partial}.$$

For the proof, we refer to $\boxed{GZ17}$, Proposition 1.43].

Plurisubharmonic functions have nice functorialities:

prop:func_domain

Proposition 1.1.1 Let $n' \in \mathbb{N}$ and $\Omega' \subseteq \mathbb{C}^{n'}$ be a domain. Given any holomorphic map $f: \Omega \to \Omega'$ and any $\varphi \in PSH(\Omega')$ exactly one of the following cases occurs:

- (1) $f^*\varphi \equiv -\infty$;
- (2) $f^*\varphi \in PSH(\Omega)$.

We refer to [GZ17, Proposition 1.44] for the proof³.

For each $n \in \mathbb{N}$, $a \in \mathbb{C}^n$ and r > 0, we write

$$B_n(a,r) = \{ z \in \mathbb{C}^n : |z-a| < r \}.$$
 (1.1) {eq:Bnar}

³ We remind the readers that the statement of [GZ17, Proposition 1.44] is flawed.

6

prop:ballpshconvex

Proposition 1.1.2 *Let* $\varphi \in PSH(B_n(a, r_0))$ *for some* $r_0 > 0$. *Then the function*

$$(-\infty, \log r_0) \to \mathbb{R}, \quad \log r \mapsto \sup_{B_n(a,r)} \varphi$$

is convex and increasing.

See Boul7, Corollary 2.4].

prop:subhimplyconv

Proposition 1.1.3 *Let* a < b *be two real numbers. Let* $f: (a,b) \to [-\infty,\infty)$ *be a function. Define*

$$g: \{z \in \mathbb{C} : e^{-b} < |z| < e^{-a}\} \to [-\infty, \infty), \quad z \mapsto f(-\log|z|).$$

Suppose that g is subharmonic, then f is convex. In particular, f takes real values only.

See [HK76, Theorem 2.12] for a more general result.

1.1.3 The manifold case

Let *X* be a complex manifold. In the whole book, complex manifolds are assumed to be paracompact, namely, all connected components have countable bases.

def:pshmfd

Definition 1.1.3 A *plurisubharmonic function* on X is a function $\varphi \colon X \to [-\infty, \infty)$ such that for any $x \in X$, there exists an open neighborhood U of x in X, an integer $n \in \mathbb{N}$, a domain $\Omega \subseteq \mathbb{C}^n$ and a biholomorphic map $F \colon \Omega \to U$ such that $F^*(\varphi|_U) \in \mathrm{PSH}(\Omega)$.

The set of plurisubharmonic functions on X is denoted by PSH(X).

Example 1.1.3 When X is a domain in \mathbb{C}^n , the notions of plurisubharmonic functions in Definition 1.1.3 and in Definition 1.1.2 coincide.

Example 1.1.4 Write $\{X_i\}_{i\in I}$ for the set of connected components of X. Then we have a natural bijection

$$PSH(X) \cong \prod_{i \in I} PSH(X_i).$$

Here the product is in the category of sets. In particular, if $X = \emptyset$, then $PSH(X) = \emptyset$.

This example allows us to reduce to the case of connected manifolds when studying general plurisubharmonic functions.

prop:pullbackpsh

Proposition 1.1.4 *Let* Y *be another complex manifold and* $f: Y \to X$ *be a holomorphic map. Then for any* $\varphi \in PSH(X)$ *, exactly one of the following cases occurs:*

- (1) $f^*\varphi$ is identically $-\infty$ on some connected component of Y;
- (2) $f^*\varphi \in PSH(Y)$.

This proposition follows easily from Proposition 1.1.1. We leave the details to the readers.

Theorem 1.1.2 implies immediately the general form of the rigidity theorem:

thm:psh_rigid_gen

Theorem 1.1.3 *Let* $\varphi: X \to [-\infty, \infty)$ *be a measurable function. Then the following are equivalent:*

- (1) φ is locally integrable and $dd^c \varphi \ge 0$;
- (2) φ coincides almost everywhere with a plurisubharmonic function ψ on X.

Moreover, the plurisubharmonic function ψ *in* (2) *is unique.*

def:pluripolarsets

Definition 1.1.4 A subset $E \subseteq X$ is *pluripolar* if for any $x \in X$, there is an open neighborhood U of x in X and a function $\psi \in PSH(U)$ such that

$$\psi|_{E\cap U} \equiv -\infty$$
.

A subset $E \subseteq X$ is *non-pluripolar* if E is not pluripolar.

A subset $F \subseteq X$ is *co-pluripolar* if $X \setminus F$ is pluripolar.

thm:Josefson

Theorem 1.1.4 (Josefson's theorem) *Let* $E \subseteq \mathbb{C}^n$ *be a pluripolar set. Then there is* $\varphi \in \mathrm{PSH}(\mathbb{C}^n)$ *such that* $\varphi|_E \equiv -\infty$.

See [6217, Corollary 4.41] for the proof of a more general result.

There is also a global version of Josefson's theorem:

thm:gloJosefson

Theorem 1.1.5 Assume that X is a compact complex manifold and $E \subseteq X$ is a pluripolar set. Then there is a quasi-plurisubharmonic function φ on X with $\varphi|_E \equiv -\infty$.

For a proof, see [Vu19].

1.2 Properties of plurisubharmonic functions

In this section, we explore the basic properties of plurisubharmonic functions. Let *X* be a complex manifold.

Proposition 1.2.1

- (1) Assume that $(\varphi_i)_{i \in I}$ is a non-empty family in PSH(X) that is locally uniformly bounded from above. Then $\sup^* \varphi_i \in PSH(X)$.
- (2) Assume that $(\varphi_i)_{i \in I}$ is a decreasing net in PSH(X) such that $\lim_{i \in I} \varphi_i$ is not identically $-\infty$ on each connected component of X, then $\lim_{i \in I} \varphi_i \in PSH(X)$.

Here sup* denotes the upper semicontinuous regularization of the supremum. When I is a finite family, observe that

$$\sup_{i\in I} \varphi_i = \sup_{i\in I} \varphi_i.$$

prop:pshfunction_closedse

When $I = \{1, ..., m\}$, we write

$$\varphi_1 \vee \cdots \vee \varphi_m \coloneqq \sup_{i \in I} \varphi_i.$$

We refer to [GZ17, Proposition 1.28, Proposition 1.40]⁴.

prop:Choquet

Proposition 1.2.2 (Choquet's lemma) Assume that X has countably many connected components. Assume that $(\varphi_i)_{i \in I}$ is a non-empty family in PSH(X) that is locally uniformly bounded from above. There exists a countable subset $J \subseteq I$ such that

$$\sup_{i \in I} \varphi_i = \sup_{j \in J} \varphi_j.$$

Proof We may assume that X is connected. Since by our convention, the complex manifold X is paracompact, it can be covered by countably many open balls, so we can easily reduce to the case where X is an open ball. In this case, the result is proved in [GZ17, Lemma 4.31].

prop:pshlocLp

Proposition 1.2.3 Let $\varphi \in PSH(X)$, then for any $p \ge 1$, $\varphi \in L^p_{loc}(X)$.

See [GZ17, Theorem 1.46, Theorem 1.48].

prop:ppsnull

Proposition 1.2.4 A pluripolar set $E \subseteq X$ is a Lebesgue null set.

Proof This is a trivial consequence of Proposition 1.2.3.

prop:supsupstardiff

Proposition 1.2.5 Let $(\varphi_i)_{i \in I}$ be a non-empty family in PSH(X) that is locally uniformly bounded from above. Then the set

$$\left\{ x \in X : \sup_{i \in I} \varphi_i < \sup_{i \in I} * \varphi_i \right\}$$

is pluripolar and hence Lebesgue null.

See [GZ17, Corollary 4.28].

prop:pshfuncdetdense

Proposition 1.2.6 Suppose that $\varphi, \psi \in PSH(X)$. Assume that there is a dense subset $E \subseteq X$ such that $\varphi|_E \le \psi|_E$, then $\varphi \le \psi$.

Proof The problem is local, so we may assume that X is a domain in \mathbb{C}^n .

We may assume that $\varphi|_E = \psi|_E$ after replacing φ by $\varphi \lor \psi$. Then we need to show that $\varphi = \psi$.

It follows from [GZ17, Theorem 4.20] that this holds outside a pluripolar set $Y \subseteq X$. In particular, $\varphi = \psi$ almost everywhere. It follows from the uniqueness statement in Theorem 1.1.3 that $\varphi = \psi$.

⁴ In [GZ17, Proposition 1.28], the second part is only stated for sequences, the net version is obvious using the sub-mean value inequality.

prop:pluripolarunion

Proposition 1.2.7 Let $(E_i)_{i \in \mathbb{Z}_{>0}}$ be a sequence of pluripolar sets in X. Then

$$E := \bigcup_{i=1}^{\infty} E_i$$

is also pluripolar.

Proof The problem is local, so we may assume that $X \subseteq \mathbb{C}^n$ is a domain. In this case, by Theorem 1.1.4 for each $i \in \mathbb{Z}_{>0}$ we can choose $\psi_i \in PSH(\mathbb{C}^n)$ such that

$$\psi_i|_{E_i} \equiv -\infty, \quad \psi_i|_X \le 0$$

for all i > 0. After shrinking X, we may guarantee that $\psi_i|_X \in L^1(X)$ for all i > 0. After rescaling, we may also assume that $\|\psi_i\|_{L^1(X)} \le 1$ for all i > 0.

We then define

$$\psi = \sum_{i=1}^{\infty} 2^{-i} \psi_i |_X.$$

Then $\psi \in PSH(X)$ according to Proposition 1.2.1 and $\psi|_E = -\infty$.

cor:L1limipp

Corollary 1.2.1 Let $(\varphi_j)_{j \in \mathbb{Z}_{>0}}$ be a sequence in PSH(X) such that $\varphi_j \xrightarrow{L^1_{loc}} \varphi \in PSH(X)$. Then the set

$$\left\{ x \in X : \varphi(x) \neq \overline{\lim_{j \to \infty}} \varphi_j(x) \right\}$$

is pluripolar.

Proof We first observe that $(\varphi_j)_j$ is locally uniformly bounded from above. This follows from [GZ17, Exercise 1.20].

For each $j \ge 1$, let

$$\psi_j = \sup_{k \ge j} \varphi_k.$$

Then $\psi_j \in \text{PSH}(X)$ by Proposition 1.2.1. Moreover, $(\psi_j)_j$ is a decreasing sequence and $\psi_j \geq \varphi_j$ for all j. In particular, $\varphi \leq \psi \coloneqq \inf_j$ almost everywhere. By Proposition 1.2.1 again, $\psi \in \text{PSH}(X)$.

On the other hand, by Proposition 1.2.5, there exist pluripolar sets $Z_j \subseteq X$ such that

$$\psi_j = \sup_{k \ge j} \varphi_k$$

on $X \setminus Z_i$. Let

$$Z = \bigcup_{j=1}^{\infty} Z_j.$$

Then Z is a pluripolar set by Proposition 1.2.7, and for any $x \in X \setminus Z$, we have $\psi(x) = \overline{\lim}_{j} \varphi_{j}(x)$. Since $\varphi_{j} \xrightarrow{L_{loc}^{1}} \varphi$, we can find a set $Y \subseteq X$ with zero Lebesgue measure such that $\varphi_{j}(x) \to \varphi(x)$ for all $x \in X \setminus Y$.

In particular, for any $x \in X \setminus (Y \cup Z)$, we have

$$\psi(x) = \varphi(x)$$
.

But thanks to Proposition 1.2.6, the equality holds everywhere. Therefore, for all $x \in X \setminus Z$,

$$\varphi(x) = \overline{\lim}_{j \to \infty} \varphi_j(x).$$

thm:GRexten

Theorem 1.2.1 (Grauert–Remmert) *Let* Z *be an analytic subset in* X *and* $\varphi \in PSH(X \setminus Z)$. *Then the function* φ *admits an extension to* PSH(X) *in the following two cases:*

- (1) The set Z has codimension at least 2 everywhere.
- (2) The set Z has codimension at least 1 everywhere and is locally bounded from above on an open neighborhood of Z.

In both cases, the extension is unique.

Fig. 1.2 The proof of Grauert-Remmert extension theorem

fig:GR

Proof The extension is unique thanks to Proposition 1.2.6.

(2) Thanks to the uniqueness of the extension, the problem is local, so we may assume that X is a domain in \mathbb{C}^n with n>0 and there is a non-zero holomorphic function f vanishing identically on Z. For each $\epsilon>0$, we claim that the function φ_{ϵ} defined by

$$\varphi_{\epsilon}(x) \coloneqq \begin{cases} \varphi(x) + \epsilon \log |f(x)|^2, & x \in X \setminus Z; \\ -\infty, & x \in Z \end{cases}$$

is plurisubharmonic on X. By Definition 1.1.2, it suffices to verify the case n=1. In this case, we may assume that $Z=\{0\}$, It is clear that $\varphi_{\epsilon} \in SH(X \setminus Z)$. It suffices to verify the sub-mean value inequality at 0, which is immediate.

Next observe that the sequence φ_{ϵ} is increasing as $\epsilon \searrow 0$ and φ_{ϵ} is locally uniformly bounded from above. It follows from Proposition 1.2.1 that $\tilde{\varphi} := \sup_{\epsilon > 0} \varphi_{\epsilon} \in PSH(X)$. Moreover, $\tilde{\varphi}$ clearly extends φ .

(1) We invite the readers to have a look at Fig. 1.2 for our notations in the proof. It suffices to verify that φ is locally bounded from above near each point of Z. The problem is local, so we may assume that X is a domain in \mathbb{C}^n with $n \ge 2$.

Assume that our assertion fails. Take $z \in Z$ so that there exists a sequence $(x_j)_j$ in $X \setminus Z$ such that

$$\lim_{j\to\infty}\varphi(x_j)=\infty.$$

Since Z has codimension at least 2^5 , we could take a complex line L passing through z and intersects Z only on a discrete set. After shrinking X, we may assume that

$$L \cap Z = \{z\}.$$

Take an open ball $B_n(z,r) \in X$. After adding a constant to φ , we may guarantee that $\varphi < 0$ on $L \cap \partial B_n(z,r)$. Since φ is upper semi-continuous, we could find an open neighborhood U of $L \cap \partial B_n(z,r)$ such that

$$\varphi|_U < 0.$$

For each $j \ge 1$, take a complex line L_j passing through x_j and avoiding Z such that $L_j \to L$ as $j \to \infty$. Here we rely on the fact that Z has codimension at least 2. Here the convergence is in the obvious sense. Then for large enough j, we know have

$$L_i \cap \partial B_n(z,r) \subseteq U$$
.

It follows from the sub-mean value inequality that $\varphi(x_j) < 0$ for large enough j, which is a contradiction.

lma:invariantpshfunfinite

Lemma 1.2.1 Let $\varphi \in PSH((\Delta^*)^n)$ be an $(S^1)^n$ -invariant plurisubharmonic function. Then φ is finite everywhere.

Here

$$\Delta^* = \{ z \in \mathbb{C} : 0 < |z| < 1 \}.$$

Proof It clearly suffices to handle the case n = 1. In this case, by [HK76, Theorem 2.12], the map

$$\log r \mapsto \int_0^1 \varphi(r \exp(2\pi i\theta)) d\theta = \varphi(r)$$

is a convex function of $\log r$. So, the set $\{r \in (0,1) : \varphi(r) = -\infty\}$ is convex. But φ is almost everywhere finite by Proposition 1.2.3. Since φ is S^1 -invariant, $\varphi|_{(0,1)}$ is almost everywhere finite. It follows from the convexity that it is everywhere finite. \square

⁵ In fact, codimension at least 1 suffices for this step.

prop:Kis

Proposition 1.2.8 (Kiselman's principle) Let $\Omega \subseteq \mathbb{C}^m \times \mathbb{C}^n$ be a pseudoconvex domain. Assume that for each $z \in \mathbb{C}^m$, the set

$$\Omega_z := \{ w \in \mathbb{C}^n : (z, w) \in \Omega \}$$

has the form $E + i\mathbb{R}^n$, where $E \subseteq \mathbb{R}^n$ is a subset. Let $\varphi \in PSH(\Omega)$, assume that φ is independent of the imaginary part of the variable in \mathbb{C}^n . Let Ω' be the projection of Ω to \mathbb{C}^m . Define $\psi : \Omega' \to [-\infty, \infty)$ as follows:

$$\psi(z) = \inf_{w \in \Omega_z} \varphi(z, w).$$

Then either $\psi \equiv -\infty$ or $\psi \in PSH(\Omega')$.

See Deml2b, Theorem 7.5].

lma:gl

Lemma 1.2.2 Let $\Omega \subseteq \mathbb{C}^n$ be a domain and $\Omega' \subseteq \Omega$ be a subdomain. Consider $\varphi \in PSH(\Omega)$ and $\psi \in PSH(\Omega')$. Assume that

$$\underbrace{\lim_{\substack{\Omega'\ni y\to x,\\ \psi(y)\neq -\infty}}}(\varphi(y)-\psi(y))\geq 0$$

for any $x \in \Omega \cap \partial \Omega'$. Define

$$\eta(z) = \begin{cases} \varphi(z) \lor \psi(z), & \text{if } z \in \Omega', \\ \varphi(z), & \text{if } z \in \Omega \setminus \Omega'. \end{cases}$$

Then $\eta \in PSH(\Omega)$.

Morally, this is just [GZ17, Proposition 1.30]. But the statement in the reference is slightly misleading, so I reproduced the proof just for clarification.

Proof See Fig. 1.3 for the notations used in the proof.

Take $\epsilon > 0$. We first define

$$\eta_{\epsilon}(z) = \begin{cases} \varphi(z) \vee (\psi(z) - 2\epsilon), & \text{if } z \in \Omega', \\ \varphi(z), & \text{if } z \in \Omega \setminus \Omega'. \end{cases}$$

We claim that

$$\eta_{\epsilon} \in \mathrm{PSH}(\Omega)$$
.

By our assumption, for each $x \in \Omega \cap \partial \Omega'$, we can find an open neighborhood $U_x \subseteq \Omega$ such that for any $y \in U_x \cap \Omega'$, we have $\varphi(y) \ge \psi(y) - \epsilon$. Therefore, there is an open neighborhood U of $\Omega \cap \partial \Omega'$ such that

$$\varphi(y) \ge \psi(y) - \epsilon, \quad \forall y \in U \cap \Omega'.$$

Therefore, on the open set $(\Omega \setminus \Omega') \cup U$, we have $\eta_{\epsilon} = \varphi$ and hence η_{ϵ} is plurisubharmonic there. It is plurisubharmonic on Ω' by Proposition 1.2.1. So our claim follows.

Fig. 1.3 Gluing procedure

fig:glue

Next we observe that as ϵ decreases to 0, the functions η_{ϵ} increases to η . Therefore, $\eta^* \in \mathrm{PSH}(\Omega)$ by Proposition 1.2.1. But observe that η is upper semicontinuous. This is only non-trivial on the boundary of Ω' : Take $x \in \Omega \cap \partial \Omega'$ and let $(y_i)_{i>0}$ be a sequence in Ω' with limit x. Then we need to show that

$$\overline{\lim}_{i \to \infty} \psi(y_i) \le \varphi(x). \tag{1.2}$$

{eq:limsuppsiphitemp1}

We may assume that $\psi(y_i) \neq -\infty$ for all i > 0 and the left-hand side of (1.2) is not $-\infty$. Then we can compute

$$\overline{\lim_{i\to\infty}}\psi(y_i)\leq\overline{\lim_{i\to\infty}}\psi(y_i)+\underline{\lim_{i\to\infty}}(\varphi(y_i)-\psi(y_i))\leq\overline{\lim_{i\to\infty}}\,\varphi(y_i)\leq\varphi(x).$$

Therefore, $\eta = \eta^* \in PSH(\Omega)$.

1.3 Plurifine topology

sec:plurifine

1.3.1 Plurifine topology on domains

Let $\Omega \subseteq \mathbb{C}^n$ $(n \in \mathbb{N})$ be a domain.

def:pftopologydomain

Definition 1.3.1 The *plurifine topology* on Ω is the weakest topology making all \mathbb{R} -valued plurisubharmonic functions on Ω continuous.

We want to distinguish the Euclidean topology from the plurifine topology. In the whole book, topological notions without adjectives refer to those with respect to the Euclidean topology. We include the symbol \mathcal{F} in order to denote those with respect

to the plurifine topology. For example, we will say \mathcal{F} -open subset, \mathcal{F} -neighborhood, \mathcal{F} -closure, etc. The \mathcal{F} -closure of a set $E \subseteq \Omega$ will be denoted by $\bar{E}^{\mathcal{F}}$.

We remind the readers that in the whole book, we follow Bourbaki's convention, a neighborhood is not necessarily open. Similarly, an \mathcal{F} -neighborhood is not necessarily \mathcal{F} -open.

A priori, we should include Ω into the notations as well, but as we will see shortly in Corollary 1.3.1, this is usually unnecessary.

prop:pf_finer

Proposition 1.3.1 *The plurifine topology on* Ω *is finer than the Euclidean topology.*

Proof It suffices to show that the unit ball $\{z \in \mathbb{C}^n : |z| < 1\}$ is \mathcal{F} -open. This follows from the observation that this set can be written as

$$\{\psi < 0\}$$
 with $\psi(z) := (\log |z|) \vee (-1)$.

ex:pfopenpsh

Example 1.3.1 Let $\varphi \in PSH(\Omega)$ and $C \in \mathbb{R}$. Then the sets $\{\varphi > C\}$ and $\{\varphi < C\}$ are both \mathcal{F} -open.

In fact, the later case follows from Proposition 1.3.1. While the former follows from the observation

$$\{\varphi > C\} = \{\varphi \lor (C-1) > C\}.$$

Definition 1.3.2 A subset $E \subseteq \Omega$ is *thin*⁶ at $x \in \Omega$ if one of the following conditions holds:

- (1) $x \notin \bar{E}$;
- (2) $x \in \overline{E}$ and there is an open neighborhood $U \subseteq \Omega$ of x and $\varphi \in PSH(U)$ such that

$$\overline{\lim}_{y \to x, y \in E \setminus \{x\}} \varphi(y) < \varphi(x).$$

We say *E* is *thin* if it is thin at all $x \in \Omega$.

rmk:cstthindef

Remark 1.3.1 In the second case, we can always arrange that

$$\varphi|_{(E\setminus\{x\})\cap U}$$

is a constant. In fact, we may assume that $\varphi \leq 0$ and C < 0 is such that

$$\overline{\lim}_{y \to x, y \in E \setminus \{x\}} \varphi(y) < C < \varphi(x).$$

We let

$$\psi = (-C)^{-1}(u \vee C) + 1.$$

Then ψ satisfies our requirements for a smaller U.

In the second case, the function φ can be very much improved.

⁶ A more proper name would be *plurithin*. But since we will never need the classical notion of thin sets à la Cartan in this book, we prefer omitting the prefix *pluri*-.

prop:BTthin

Proposition 1.3.2 (Bedford–Taylor) Consider a set $E \subseteq \Omega$ and $x \in \overline{E}$. Assume that E is thin at x, then there is $\varphi \in PSH(\mathbb{C}^n)$:

- (1) φ is locally bounded outside a neighborhood of x;
- (2) $\varphi(x) > -\infty$;
- (3) $\lim_{y \to x, y \in E \setminus \{x\}} \varphi(y) = -\infty$.

Proof ⁷ By Remark 1.3.1, there is an open neighborhood $U \subseteq \Omega$ of x and $\psi \in PSH(U)$ such that

$$\psi|_{U \cap (E \setminus \{x\})} = -1 < \psi(x) = 0.$$

Without loss of generality, we may assume that x = 0, U is the unit ball in \mathbb{C}^n .

As ψ is upper semicontinuous, we may choose a decreasing sequence $\delta_j \in (0, 1)$ such that $\psi(y) < 2^{-j-2}$ when $y \in \mathbb{C}^n$ satisfies $|y| < \delta_j$. Set

$$\gamma_j := \exp\left(2^{j+1}\log\delta_j\right) \in (0,1).$$

Observe that γ_i is also decreasing.

We let

$$\varphi_j(z) \coloneqq \begin{cases} \left(\frac{2^{-j-1}}{|\log \delta_j|} \log |z|\right) \vee \left(\psi(z) - 2^{-j}\right), & \text{if } |z| < \delta_j, \\ \\ \frac{2^{-j-1}}{|\log \delta_j|} \log |z|, & \text{if } |z| \ge \delta_j. \end{cases}$$

Observe that when |z| is sufficiently close to δ_j from below (depending on j), we have

$$\frac{2^{-j-1}}{|\log \delta_i|}\log |z| > 2^{-j-2} - 2^{-j} > \psi(z) - 2^{-j}.$$

In particular, $\varphi_i \in PSH(\mathbb{C}^n)$ and $\varphi_i|_U \leq 0$. Moreover, we have

$$\varphi_i(0) = -2^{-j}$$
.

Observe that for $z \in U \cap (E \setminus \{0\})$ with $|z| < \gamma_j$, we have $\varphi_j(z) \le -1$.

We then define

$$\varphi \coloneqq \sum_{j=1}^{\infty} \varphi_j.$$

Since

$$\varphi(0) = -\sum_{j=1}^{\infty} 2^{-j} > -\infty, \quad \sum_{j=1}^{\infty} \frac{2^{-j-1}}{|\log \delta_j|} < \infty,$$

we have $\varphi \in PSH(\mathbb{C}^n)$. Moreover, fix j, for any $z \in E \setminus \{0\}$ with $|z| < \gamma_j$, we have

⁷ The original argument in [B182] Proposition 10.2] was quite intriguing: Neither the auxiliary functions φ_j 's nor the simple computations were correct. However, I believe that Bedford–Taylor had a correct proof in mind. Something more than a typo, but not yet a mistake, could be properly called a *thinkpo*, a terminology invented by R. Berman.

$$\varphi(z) \le \sum_{k=1}^{j} \varphi_k(z) \le -j.$$

Therefore,

$$\overline{\lim}_{y \to x, y \in E \setminus \{0\}} \varphi(y) = -\infty.$$

lma:unionthin

Lemma 1.3.1 Let $E_1, E_2 \subseteq \Omega$. Assume that E_1, E_2 are both thin at $x \in \Omega$, then so is $E_1 \cup E_2$.

Proof We may clearly assume that $x \in \overline{E_1} \cap \overline{E_2}$. Take an open neighborhood $U \subseteq \Omega$ of x and $\varphi_1, \varphi_2 \in PSH(U)$ such that

$$\overline{\lim}_{y \to x, y \in E_i \setminus \{x\}} \varphi_i(y) < \varphi_i(x), \quad i = 1, 2.$$

Then $\varphi_1 + \varphi_2 \in PSH(U)$ and

$$\overline{\lim}_{y \to x, y \in (E_1 \cup E_2) \setminus \{x\}} (\varphi_1 + \varphi_2)(y) < \varphi_1(x) + \varphi_2(x).$$

In particular, $E_1 \cup E_2$ is thin at x.

thm:Cartan

Theorem 1.3.1 (H. Cartan) Consider $x \in \Omega$ and a set $E \subseteq \Omega$. Assume that $x \in E$. Then the following are equivalent:

- (1) E is an \mathcal{F} -neighborhood of x;
- (2) $\Omega \setminus E$ is thin at x.

Proof (2) \Longrightarrow (1). We may assume that $x \in \overline{\Omega \setminus E}$. Otherwise, our assertion follows from Proposition 1.3.1.

By Proposition 1.3.2, there is an open neighborhood U of x in Ω and $\varphi \in PSH(\mathbb{C}^n)$ such that

$$\varphi(x) > \sup_{y \in U \cap (\Omega \setminus E)} \varphi(y) =: \lambda.$$

Let $F = \{y \in \Omega : \varphi(y) > \lambda\}$. Then $x \in F$ and F is \mathcal{F} -open by Example 1.3.1. Moreover, $U \cap F \subseteq E$. By Proposition 1.3.1, we conclude (1).

(1) \implies (2). We may always replace E by smaller \mathcal{F} -neighborhoods of x. In particular, we may assume that E has the following form

$$\{y \in U : \varphi_1(y) > \lambda_1, \dots, \varphi_m(y) > \lambda_m\},\$$

where $U \subseteq \Omega$ is an open neighborhood of x, and $\varphi_1, \ldots, \varphi_m$ are \mathbb{R} -valued psh functions on Ω , and $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$. Since a finite union of thin sets is still thin by Lemma 1.3.1, we may assume that m = 1. In this case, $\Omega \setminus E$ is clearly thin at x. \square

thm:pf_basis

Theorem 1.3.2 A base of the plurifine topology on Ω is given by sets of the following form:

$$\{x \in U : \varphi(x) > 0\},$$
 (1.3) {eq:basis_fine}

where $U \subseteq \Omega$ is an open subset and $\varphi \in PSH(U)$.

Proof Observe that sets of the form (1.3) are \mathcal{F} -open. By Theorem 1.3.1, it suffices to show its complement in Ω is thin at each point of (1.3), which is obvious.

Now consider $x \in \Omega$ and an \mathcal{F} -open neighborhood $V \subseteq \Omega$ of x. We want to find a set of the form (1.3) contained in V and containing x.

Write $E = \Omega \setminus V$. In case $x \in \text{Int } V$, there is nothing to prove. So we may assume that $x \in \bar{E}$. By Theorem 1.3.1, E is thin at x. By definition, there is an open neighborhood $U \subseteq \Omega$ of x and $\varphi \in \text{PSH}(U)$ such that

$$\overline{\lim}_{y \to x, y \in U \cap (E \setminus \{x\})} \varphi(y) < \varphi(x).$$

We may assume that $\varphi|_{E \cap U} \le 0 < \varphi(x)$, Then the set $\{y \in U : \varphi(y) > 0\}$ suffices for our purpose.

cor:pf_compatible

Corollary 1.3.1 Let $\Omega_1 \subseteq \Omega_2 \subseteq \mathbb{C}^n$ be two non-empty open subsets. Then the plurifine topology on Ω_1 is the same as the subspace topology induced from the plurifine topology on Ω_2 .

In particular, when we talk about an \mathcal{F} -open set U in \mathbb{C}^n , we no longer have to specify the domain $\Omega \supseteq U$.

Corollary 1.3.2 *Let* L *be an affine subspace of* \mathbb{C}^n *, then the plurifine topology on* L *is the same as the subspace topology induced from the plurifine topology on* \mathbb{C}^n .

Proof We may assume that $L = \mathbb{C}^k \times \{0\}$ for some $k \le n$. We write the coordinate z on \mathbb{C}^n as (z', z'') with $z \in \mathbb{C}^k$ and $z'' \in \mathbb{C}^{n-k}$.

Consider an \mathcal{F} -open set $U \subseteq \mathbb{C}^n$ and $x = (x', 0) \in U \cap L$. We want to show that $U \cap L$ (identified with a subset of \mathbb{C}^k) is an \mathcal{F} -neighborhood of x' in L. By Theorem 1.3.2, we may assume that there are connected open subsets $U' \subseteq \mathbb{C}^k$ containing x' and $U'' \subseteq \mathbb{C}^{n-k}$ containing 0 together with a psh function ψ on $U' \times U''$ such that

$$x \in \{(z', z'') \in U' \times U'' : \psi(z', z'') > 0\} \subseteq \Omega.$$

It follows that

$$x' \in \{z' \in U' : \psi(z', 0) > 0\} \subset U \cap L.$$

Thanks to Proposition 1.1.1, $\psi(z', 0)$ is plurisubharmonic in z' because $\psi(x', 0) \neq -\infty$. In particular, $U \cap L$ is an \mathcal{F} -neighborhood of x'.

Conversely, if $U \subseteq \mathbb{C}^k$ is an \mathcal{F} -open subset, we claim that $U \times \mathbb{C}^{n-k}$ is \mathcal{F} -open in \mathbb{C}^n . In fact, suppose that $(x', x'') \in U \times \mathbb{C}^{n-k}$. By Theorem 1.3.1, we can find an open neighborhood $V \subseteq \mathbb{C}^k$ of x' and a psh function φ on V such that

$$x' \in \{y \in V : \varphi(y) > 0\} \subseteq U.$$

We define $\psi(z', z'') := \varphi(z')$. Then $\psi \in \text{PSH}(V \times \mathbb{C}^{n-k})$ by Proposition 1.1.1 and

$$(x',x'')\in\{y\in V\times\mathbb{C}^n:\psi(y)>0\}\subseteq U\times\mathbb{C}^{n-k}.$$

⁸ This is not entirely obvious by definition, as φ is not defined on the whole Ω .

cor:compactnhformbase

Corollary 1.3.3 *Let* $\Omega \subseteq \mathbb{C}^n$ *be an* \mathcal{F} -open subset and $x \in \Omega$. Then x has a compact \mathcal{F} -neighborhood contained in Ω .

Proof By Theorem 1.3.2, we may assume that there is an open set $U \subseteq \mathbb{C}^n$ and a plurisubharmonic function φ on U such that $\Omega = \{y \in U : \varphi(y) > 0\}$.

Take a compact neighborhood K of x in U. Now $\{y \in K : \varphi(y) \ge \varphi(x)/2\}$ is a compact \mathcal{F} -neighborhood of x contained in Ω .

cor:holomappfcont

Corollary 1.3.4 Let $\Omega \in \mathbb{C}^n$, $\Omega' \subseteq \mathbb{C}^{n'}$ be two domains and $F \colon \Omega' \to \Omega$ be a surjective holomorphic map. Then F is \mathcal{F} -continuous.

Proof It suffices to show that the inverse image $F^{-1}(U)$ of each \mathcal{F} -open subset $U \subseteq \Omega$ is \mathcal{F} -open. By Theorem 1.3.2, after possibly shrinking Ω and Ω' , we may assume that U has the form $\{x \in \Omega : \psi(x) > 0\}$, where $\psi \in PSH(\Omega)$. Since $F^*\psi \in PSH(\Omega')$ by Proposition 1.1.4, we find that

$$F^{-1}(U) = \{ y \in \Omega' : F^* \psi(y) > 0 \}$$

is \mathcal{F} -open.

1.3.2 Plurifine topology on manifolds

subsec:pftmfd

Let *X* be a complex manifold.

def:pftopologygeneral

Definition 1.3.3 The *plurifine topology* on X is the topology with a base consisting of sets of the form $F^{-1}(V)$, where $U \subseteq X$ is an open subset and $F: U \to \Omega$ is a biholomorphic morphism with $\Omega \subseteq \mathbb{C}^n$ is a domain for some $n \in \mathbb{N}$ and $V \subseteq \Omega$ is \mathcal{F} -open.

Note that these sets form a topological base thanks to Corollary 1.3.4. Moreover, it also follows from Corollary 1.3.4 that the plurifine topologies on domains defined in Definition 1.3.3 and in Definition 1.3.1 coincide.

We refer to Definition 1.5.1 for the notion of quasi-plurisubharmonic functions.

prop:pshfunFcont

Proposition 1.3.3 *Let* $\varphi \in QPSH(X)$, then $\varphi|_{\{\varphi \neq -\infty\}}$ is \mathcal{F} -continuous.

Proof The problem is local, so we may assume that $X \subseteq \mathbb{C}^n$ is a domain and $\varphi = \psi + g$, where $\psi \in PSH(X)$ and $g \in C^{\infty}(X)$ and $|g| \leq C$ for some C > 0. Take an open interval $(a, b) \subseteq \mathbb{R}$, it suffices to show that

$$U := \{x \in X : a < \varphi(x) < b\} = \{x \in X : a - g(x) < \psi(x) < b - g(x)\}\$$

is \mathcal{F} -open. Take $x \in U$, we can find an open neighborhood V of x in U such that

$$\sup_{y \in V} (a - g(y)) < \psi(x) < \inf_{y \in V} (b - g(y)).$$

Therefore,

$$\left\{ z \in V : \sup_{y \in V} (a - g(y)) < \psi(z) < \inf_{y \in V} (b - g(y)) \right\}$$

is an \mathcal{F} -open neighborhood of z in U. We conclude that U is \mathcal{F} -open.

nfunfinitelocuspfdense

Lemma 1.3.2 *Let* $Z \subseteq X$ *be a pluripolar subset. Then*

$$\overline{X \setminus Z}^{\mathcal{F}} = X.$$

Proof The problem is local, so we may assume that X is a domain in \mathbb{C}^n and $Z = \{\varphi = -\infty\}$ for some $\varphi \in PSH(X)$. We need to show that $\{\varphi > -\infty\}$ is \mathcal{F} -dense. Let $x \in X$ be a point with $\varphi(x) = -\infty$ and $U \subseteq X$ be an \mathcal{F} -open neighborhood of

x in X. We need to show that $U \cap \{\varphi > -\infty\} \neq \emptyset$.

Thanks to Theorem 1.3.2, after shrinking U, we may assume that there is $\psi \in PSH(X)$ such that $U = \{\psi > 0\}$. Observe that U is not a pluripolar set: Otherwise, $\psi \le 0$ almost everywhere by Proposition 1.2.4, and hence everywhere by Proposition 1.2.6. So $\varphi|_U \not\equiv -\infty$. We conclude.

r:diffsupinfindeppluripolar

Corollary 1.3.5 *Let* $\varphi, \psi \in QPSH(X)$. *Set*

$$W = \{x \in X : \varphi(x) = -\infty\} \text{ or } W = \{x \in X : \psi(x) = -\infty\}.$$

Then for any pluripolar set $Z \subseteq X$ *, we have*

$$\sup_{X\backslash W}(\varphi-\psi)=\sup_{X\backslash W\cup Z}(\varphi-\psi),\quad \inf_{X\backslash W}(\varphi-\psi)=\inf_{X\backslash W\cup Z}(\varphi-\psi).$$

In particular, taking $\psi = 0$, we find that

$$\sup_{X\setminus Z}\varphi=\sup_X\varphi.$$

Proof This is an immediate consequence of Lemma 1.3.2 and Proposition 1.3.3.

In the literature about pluripotential theory, one often finds the careless expressions like $\sup_X (\varphi - \psi)$. The issue is that $\varphi - \psi$ is not defined everywhere, and hence this expression does not make sense if you read it literally. Corollary 1.3.5 tells you that you do not have to worry too much about the details on a pluripolar set. In other words, sup and inf could always be understood as a kind of essential supremum and essential infimum modulo pluripolar sets.

1.4 Lelong numbers and multiplier ideal sheaves

sec:Lelongmis

Let *X* be a complex manifold.

Definition 1.4.1 Let $\varphi \in PSH(X)$ and $x \in X$. The *Lelong number* $v(\varphi, x)$ of φ at x is defined as follows: Take an open neighborhood U of x in X and a biholomorphic

map $F: U \to \Omega$, where Ω is a domain in \mathbb{C}^n . Then we define

$$\nu(\varphi, x) \coloneqq \sup \left\{ \gamma \in \mathbb{R}_{\geq 0} : \varphi|_U(F^{-1}(y)) \leq \gamma \log |y - F(x)|^2 + O(1) \text{ as } y \to F(x) \right\}. \tag{1.4}$$

Observe that $v(\varphi, x)$ does not depend on the choices of U and F. Furthermore, it follows from Proposition 1.4.1 below that the supremum in (1.4) is a maximum.

rmk:Lelongconv

Remark 1.4.1 Our definition of the Lelong number is not standard. It differs from the standard definition by a factor of 2. As a mnemonic, just remember

$$v\left(\log|z|^2,0\right) = 1$$
 (instead of 2).

prop:Lelongreform

Proposition 1.4.1 *Let* $\varphi \in PSH(B_n(0,1))$. *Then*

$$\nu(\varphi,0) = \lim_{r \searrow 0} \frac{\sup_{B_n(0,r)} \varphi}{\log r^2} \in [0,\infty). \tag{1.5}$$

Proof It follows from Proposition 1.1.2 that the limit in (1.5) exists and is finite. We shall denote the limit by $v'(\varphi, 0)$ for the time being.

We first observe that by Proposition 1.1.2,

$$\varphi(x) \le \gamma'(\varphi, 0) \log |x|^2 + \sup_{B_{\pi}(0,1)} \varphi \tag{1.6}$$

when $x \in B_n(0, 1)$. In particular, $v(\varphi, x) \ge v'(\varphi, 0)$.

In order to argue the reverse inequality, we may assume that $v(\varphi, x) > 0$.

Next observe that by (1.4), for each small enough $\epsilon > 0$, we can find $r_0 \in (0, 1)$ and C > 0 so that for all $x \in B_n(0, r_0)$, we have

$$\varphi(x) \le (\nu(\varphi, 0) - \epsilon) \log |x|^2 + C.$$

It follows that $\nu'(\varphi,0) \ge \nu(\varphi,0) - \epsilon$. Letting $\epsilon \to 0+$, we conclude.

We recall Siu's semicontinuity theorem.

thm:Siusemi

Theorem 1.4.1 Let $\varphi \in PSH(X)$, then the map $X \ni x \mapsto \nu(\varphi, x)$ is upper semi-continuous with respect to the Zariski topology.

For an elegant proof we refer to Dem12a, Theorem 2.10].

prop:Lelongmax

Proposition 1.4.2 *Let* $\varphi, \psi \in PSH(X)$, $\lambda \in \mathbb{R}_{>0}$ *and* $x \in X$, *then*

$$v(\varphi \lor \psi, x) = \min\{v(\varphi, x), v(\psi, x)\},$$

$$v(\varphi + \psi, x) = v(\varphi, x) + v(\psi, x),$$

$$v(\lambda \varphi, x) = \lambda v(\varphi, x).$$

Proof All properties are local, so we may assume that $X = B_n(0, 1)$ for some $n \in \mathbb{N}$. All properties follow directly from Proposition 1.4.1.

cor:supsLelong

Corollary 1.4.1 *Let* $(\varphi_i)_{i \in I}$ *be a non-empty family in* PSH(X) *locally uniformly bounded from above and* $x \in X$ *, then*

$$v\left(\sup_{i\in I}^* \varphi_i, x\right) = \inf_{i\in I} v(\varphi_i, x).$$

Proof We may assume that X is connected. Write $\varphi = \sup_{i \in I} \varphi_i$. Then $\varphi \in PSH(X)$ by Proposition 1.2.1.

We observe that the \leq inequality is trivial. It remains to argue the reverse inequality. It follows from Proposition 1.2.2 that we may assume that I is countable. When I is finite, this is already proved in Proposition 1.4.2. Otherwise, we may further assume that $I = \mathbb{Z}_{>0}$. Thanks to Proposition 1.4.2, we may further assume that $(\varphi_i)_{i \in \mathbb{Z}_{>0}}$ is an increasing sequence. Furthermore, since the problem is local, we may assume that $X = B_n(0, 1)$ for some $n \in \mathbb{N}$ and $(\varphi_i)_i$ is uniformly bounded from above. In this case, by (1.6), we have

$$\varphi_i(x) \le \nu(\varphi_i, 0) \log |x|^2 + C$$

for all $x \in B_n(0, 1)$ and all $i \ge 1$ and C is a constant independent of i. In particular, thanks to Proposition 1.2.5, for almost all $x \in B_n(0, 1)$, we have

$$\varphi(x) \le \lim_{i \to \infty} \nu(\varphi_i, 0) \log |x|^2 + C.$$

Thanks of Proposition 1.2.6, the same holds for all x and hence

$$v(\varphi, x) \ge \lim_{i \to \infty} v(\varphi_i, x).$$

Definition 1.4.2 Let $F \subseteq X$ be a non-empty analytic subset. Then we define the *generic Lelong number* of φ along F as

$$v(\varphi, F) := \min_{x \in F} v(\varphi, x).$$

Note that the minimum is obtained by Theorem 1.4.1.

Definition 1.4.3 Let $\varphi \in PSH(X)$. Let E be a prime divisor over X (see Definition B.1.1). Take a proper bimeromorphic morphism $\pi: Y \to X$ from a complex manifold Y such that E is a prime divisor on Y, then we define the *generic Lelong number* of φ along E as

$$\nu(\varphi, E) \coloneqq \nu(\pi^*\varphi, E).$$

It follows from Theorem 1.4.1 that $\nu(\varphi, E)$ does not depend on the choice of π .

Definition 1.4.4 Let $\varphi \in PSH(X)$, the *multiplier ideal sheaf* $I(\varphi)$ of φ is by definition the ideal sheaf given by

$$\Gamma(U, \mathcal{I}(\varphi)) = \left\{ f \in \mathcal{O}_X(U) : |f|^2 \exp(-\varphi) \in L^1_{\text{loc}}(U) \right\}$$

for any open subset $U \subseteq X$.

rmk:misconv

Remark 1.4.2 This definition is different from a few standard references, where instead of $\exp(-\varphi)$, they use $\exp(-2\varphi)$. The conventions adopted in the current book is the most convenient one as far as I know. It simplifies a number of formulae. As a mnemonic, for any real $\lambda > 0$, we have

$$I(\lambda \log |z|^2) = O_{\mathbb{C}}(-\lfloor \lambda \rfloor \{0\}),$$

where z is a variable in \mathbb{C} and $\{0\}$ is the divisor defined by $0 \in \mathbb{C}$.

Proposition 1.4.3 (Nadel) *Let* $\varphi \in PSH(X)$. *Then* $\mathcal{I}(\varphi)$ *is coherent.*

See Dem12a, Proposition 5.7].

thm:multipsubadd

Theorem 1.4.2 *Let* $\varphi, \psi \in PSH(X)$, then

$$I(\varphi + \psi) \subseteq I(\varphi) \cdot I(\psi)$$
.

See $\frac{\text{Dem}12}{\text{Dem}12a}$, Theorem 14.2].

The two invariants are related by the following simple result:

prop:Lelongnumfrommis

Proposition 1.4.4 *Let* $\varphi \in PSH(X)$ *and* E *be a prime divisor over* X. *Then*

$$\nu(\varphi, E) = \lim_{k \to \infty} \frac{1}{k} \operatorname{ord}_E I(k\varphi). \tag{1.7}$$
 {eq:LelongMIS}

See DX21, Proposition 2.14].

We remind the readers that this particular form of the formula is compatible with our conventions of ν and I. As a consistency check, consider $\varphi = \log |z|^2$ with $z \in \mathbb{C}$ and E is the divisor defined by $0 \in \mathbb{C}$. Then both sides of (1.7) are equal to 1. See Remark 1.4.1 and Remark 1.4.2.

Also observe the following simple lemma:

lma:blowupLelong

Lemma 1.4.1 Let $x \in X$ and $\varphi \in PSH(X)$. Let $\pi: Y \to X$ be the blow-up of X at X with exceptional divisor E. Then

$$\nu(\varphi, x) = \nu(\varphi, E),$$

See Bou02a, Corollaire 1.1.8].

Conversely, the information of the generic Lelong numbers determines the multiplier ideal sheaves:

thm:valuativemulti

Theorem 1.4.3 Let $\varphi \in PSH(X)$. Let $x \in X$ and $f \in O_{X,x}$. Then the following are equivalent:

(1)
$$f \in \mathcal{I}(\varphi)_x$$
;

(2) there exists $\epsilon > 0$ such that for any prime divisor E over X such that x is contained in the center of E on X, we have

$$\operatorname{ord}_{E}(f) \ge (1 + \epsilon)\nu(\varphi, E) - \frac{1}{2}A_{X}(E). \tag{1.8}$$

{eq:ordfLelonglogdis}

Here A_X denotes the log discrepancy. We refer to Boul 7, Corollary 10.18] for the proof and the precise definition of A_X . The formula (1.8) differs from that in Boucksom's notes: The coefficient $\frac{1}{2}$ in front of $A_X(E)$ arises from our convention for ν and I.

thm:stongopen

Theorem 1.4.4 (Guan–Zhou) Let $\varphi, \psi_j \in PSH(X)$ $(j \in \mathbb{Z}_{>0})$ such that ψ_j is an increasing sequence converging to φ almost everywhere. Then for any $x \in X$, the germs satisfy

$$I(\psi_i)_x = I(\varphi)_x$$

when j is large enough.

See [GZ15, Hiep14] for the proof.

prop:pull-backmis

Proposition 1.4.5 *Let* $\pi: Y \to X$ *be a smooth morphism between complex manifolds. Assume that* $\varphi \in PSH(X)$ *, then*

$$\mathcal{I}(\pi^*\varphi) = \pi^*\mathcal{I}(\varphi).$$

Proof It follows from Groot, Théorème 3.10] that locally π can be written as the composition of an étale morphism and a projection. It suffices to handle the two cases separately.

Recall that in the complex analytic setting, an étale morphism is locally biholomorphic, so there is nothing to prove in this case.

Next, assume that $Y = X \times U$, where $U \subseteq \mathbb{C}^n$ is a domain and π is the natural projection. It follows from Fubini's theorem that

$$I(\pi^*\varphi) \subseteq \pi^*I(\varphi).$$

The reverse inequality is proved in Dem12a, Proposition 14.3].

def:restidealsheaf

Definition 1.4.5 Given a coherent ideal sheaf I on X, the *restriction* Res_Y I is the inverse image ideal sheaf given by

$$\operatorname{Res}_{Y} I := I/(I \cap I_{Y}), \tag{1.9}$$

where I_Y is the ideal sheaf defining Y.

In the literature, it is common to denote this sheaf by the misleading notation $\mathcal{I}|_{Y}$. There is a natural morphism

⁹ In Dem12 a, Proposition 14.3], Demailly used the highly non-standard notation $f^*I(\varphi)$ to denote the image of $f^*I(\varphi) \to O_X$, even when f is not flat.

$$i_Y^* I = I/(I \cdot I_Y) \to \text{Res}_Y I,$$
 (1.10)

{eq:pullbacktoinverimage}

where $i_Y : Y \to X$ is the inclusion.

thm:OT

Theorem 1.4.5 (Ohsawa–Takegoshi) Let Y be a connected submanifold of X and $\varphi \in PSH(X)$. Assume that $\varphi|_{Y} \not\equiv -\infty$, then

$$I(\varphi|_Y) \subseteq \operatorname{Res}_Y I(\varphi)$$
.

See Dem12a, Theorem 14.1].

1.5 Quasi-plurisubharmonic functions

In practice, it is important to consider a variant of plurisubharmonic functions. We will fix a complex manifold X.

def:qpsh

Definition 1.5.1 Let θ be a closed real smooth (1, 1)-form on X.

A θ -plurisubharmonic function on X is a function $\varphi \colon X \to [-\infty, \infty)$ such that for each $x \in X$ and each open neighborhood U of x in X satisfying the condition that $\theta = \operatorname{dd^c} g$ for some smooth function g on U, we have $g + \varphi|_U \in \operatorname{PSH}(U)$. The set of θ -psh functions on X is denoted by $\operatorname{PSH}(X, \theta)$.

A *quasi-plurisubharmonic function* on X is a function $\varphi \colon X \to [-\infty, \infty)$ such that there exists a smooth closed real (1, 1)-form θ' on X such that $\varphi \in PSH(X, \theta')$. The set of quasi-plurisubharmonic functions on X is denoted by QPSH(X).

There is a natural non-strict partial order on QPSH(X) defined as follows:

def:parorder

Definition 1.5.2 Assume that X is compact. Given $\varphi, \psi \in \text{QPSH}(X)$, we say that φ is *more singular* than ψ and write $\varphi \leq \psi^{10}$ if there is $C \in \mathbb{R}$ such that $\varphi \leq \psi + C$. We also say ψ is less singular than φ and write $\psi \leq \varphi$.

In case $\varphi \leq \psi$ and $\psi \leq \varphi$, we say φ and ψ have the same *singularity type*. We write $\varphi \sim \psi$ in this case.

When *X* is not compact, one can still define similar notions, but the generalization is not unique, and we shall not consider them in this book.

Remark 1.5.1 The proceeding results concerning plurisubharmonic functions can be extended *mutatis mutandis* to quasi-plurisubharmonic functions. We will apply these extensions without further explanations.

prop:L1compa

Proposition 1.5.1 Assume that X is compact. Let θ be a closed real smooth (1, 1)-form on X. Then for any $a, b \in \mathbb{R}$, $a \le b$, the set

$$\left\{\varphi\in \mathrm{PSH}(X,\theta): \sup_X \varphi\in [a,b]\right\}$$

¹⁰ Some people write $\psi \leq \varphi$.

is compact with respect to the L^1 -topology. Moreover, $\varphi \mapsto \sup_X \varphi$ is L^1 -continuous for $\varphi \in PSH(X, \theta)$.

This is an immediate consequence of [GZ17, Proposition 8.5, Exercise 1.20].

Lelongnumberupperbound

Proposition 1.5.2 Assume that X is compact. Let θ be a closed real smooth (1, 1)-form on X and E be a prime divisor over E. Then

$$\sup \{ \nu(\varphi, E) : \varphi \in \mathrm{PSH}(X, \theta) \} < \infty.$$

Proof It follows from the proof of Corollary 1.4.1 that $v(\bullet, E)$ is upper semi-continuous with respect to the L^1 -topology on $PSH(X, \theta)$. Thus, the desired upper bound follows from Proposition 1.5.1.

prop:PSHpullbij

Proposition 1.5.3 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a compact Kähler manifold Y. Let θ be a closed real smooth (1,1)-form on X. Then the pull-back gives a bijection

$$\pi^* : \text{PSH}(X, \theta) \xrightarrow{\sim} \text{PSH}(Y, \pi^* \theta).$$

This follows from a more general result Theorem B.1.1.

1.6 Analytic singularities

The simplest type of plurisubharmonic singularities is given by the so-called *analytic singularities*. The notion is fairly subtle and there are several mutually *incompatible* definitions in the literature.

def:neatanasing

Definition 1.6.1 We say $\varphi \in \text{QPSH}(X)$ has *analytic singularities* if for each $x \in X$, we can find an open neighborhood U of x such that $\varphi|_U$ has the form:

$$c \log(|f_1|^2 + \dots + |f_N|^2) + R,$$
 (1.11)

{eg:anasinglocal

where f_1, \ldots, f_N are holomorphic functions on $U, c \in \mathbb{Q}_{>0}$ and R is a bounded function on U.

When R can be taken to be smooth 11 , we say φ has neat analytic singularities.

Suppose that there is a coherent ideal $I \subseteq O_X$ on X such that we can choose U so that the f_1, \ldots, f_N can be chosen as the generators of $\Gamma(U, I)$ and c is independent of the choice of U, we say φ has analytic singularities of type(c, I).

Each potential with analytic singularities has a type. The type is not uniquely determined. We refer to [Bou02a] and [Bou02b] for the details.

¹¹ The decomposition (1.11) is highly non-unique. Here we mean for any x, there is an open neighborhood U and a decomposition of the form (1.11) with R smooth. In the non-trivial cases, R cannot be smooth for all decompositions (1.11).

prop:analysingclosed

Proposition 1.6.1 *Let* $\varphi, \psi \in QPSH(X)$ *be potentials with analytic singularities, then so are* $\lambda \varphi$ ($\lambda \in \mathbb{Q}_{>0}$), $\varphi + \psi$ *and* $\varphi \vee \psi$.

Proof The $\lambda \varphi$ assertion is trivial. The \vee assertion is proved in $\overline{\mathbb{Dem}}$ 15, Proposition 4.1.8]. The addition assertion is easy and is left to the readers.

Definition 1.6.2 Let D be an effective \mathbb{Q} -divisor \mathbb{Q} on X. We say $\varphi \in \mathrm{QPSH}(X)$ has $\log singularities$ (along D) on X if for each $x \in X$, there is an open neighborhood U of x such that

(1) $D|_U$ has finitely many irreducible components and can be written as

$$D|_{U} = \sum_{i=1}^{N} a_{i} D_{i}$$

with D_i being prime divisors on U, $a_i \in \mathbb{Q}_{>0}$ and there is a holomorphic function s_i on U defining D_i , and

(2) we have

$$\varphi|_{U} = a_{i} \sum_{i=1}^{N} \log|s_{i}|^{2} + R, \qquad (1.12) \quad \text{{eq:logsingreminder}}$$

where R is a bounded function on U.

By Proposition 1.6.1, φ has analytic singularities.

lma:logsingrem

Lemma 1.6.1 Suppose that θ is a closed smooth real (1,1)-form on X, a compact Kähler manifold and $\varphi \in PSH(X,\theta)$. Suppose that φ has log singularities along an effective \mathbb{Q} -divisor D on X. Then the cohomology class $[\theta] - [D]$ is nef.

Moreover, if in addition θ_{φ} is a Kähler current 13 , then the cohomology class $[\theta] - [D]$ is ample.

Proof The first assertion follows immediately from the fact that R in (1.12) has bounded coefficients.

The second assertion follows immediately from the first.

The following proposition follows immediate from the definitions:

Proposition 1.6.2 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a complex manifold Y. Suppose that $\varphi \in \text{QPSH}(X)$ has analytic singularities (resp. has log singularities along an effective \mathbb{Q} -divisor D). Then $\pi^*\varphi$ has analytic singularities (resp. has log singularities along π^*D).

thm:resolvelogsing

Theorem 1.6.1 Assume that X is compact. Suppose that $\varphi \in QPSH(X)$ has analytic singularities. Then there is a modification $\pi: Y \to X$ such that $\pi^*\varphi$ has log singularities.

¹² Divisors and Q-divisors are implicitly assumed to have locally finite coefficients as usual.

¹³ That is, there is a Kähler form ω on X such that $\theta_{\varphi} \geq \omega$ in the sense of currents.

For a proof, we refer to the arguments on MM07, Page 104].

def:quasiequsing

Definition 1.6.3 Let X be a compact Kähler manifold and θ be a closed real smooth (1,1)-form on X. Consider $\varphi \in PSH(X,\theta)$. A sequence $(\varphi_j)_{j \in \mathbb{Z}_{>0}}$ in QPSH(X) is quasi-equisingular approximation of φ if

- (1) φ_i has analytic singularities for each j;
- (2) φ_i is decreasing with limit φ ;
- (3) there is a decreasing sequence $\epsilon_j \ge 0$ with limit 0 and a Kähler form ω on X such that $\varphi_j \in \text{PSH}(X, \theta + \epsilon_j \omega)$;
- (4) for each $\lambda' > \lambda > 0$, there is j > 0 such that

$$I(\lambda'\varphi_i)\subseteq I(\lambda\varphi).$$

We also say θ_{φ_i} is a quasi-equisingular approximation of θ_{φ} .

def:analy-sing

Definition 1.6.4 Let $I \subseteq O_X$ be a coherent ideal sheaf and $c \in \mathbb{Q}_{>0}$. A function $\varphi \in \text{QPSH}(X)$ is said to have *gentle analytic singularities* (of type (c, I)) if

- (1) φ has analytic singularities of type (c, \mathcal{I}) ;
- (2) $e^{\varphi/c}: X \to \mathbb{R}_{>0}$ is a smooth function;
- (3) there is a proper bimeromorphic morphism $\pi \colon \tilde{X} \to X$ from a Kähler manifold \tilde{X} and an effective \mathbb{Z} -divisor D on \tilde{X} such that one can write $\pi^* \varphi$ locally as

$$\pi^* \varphi = c \log |g|^2 + h,$$

where g is a local equation of the divisor D and h is smooth.

thm:qequi

Theorem 1.6.2 Let X be a compact Kähler manifold and θ be a closed real smooth (1,1)-form on X. Then any $\varphi \in PSH(X,\theta)$ admits a quasi-equisingular approximation $(\varphi_j)_{j \in \mathbb{Z}_{>0}}$.

Moreover, we can guarantee that for large j, φ_j has gentle analytic singularities of type $(2^{-j}, I(2^j\varphi))$.

We refer to [DPS01] for the proof.

Quasi-equisingular approximations are essentially unique in the following sense:

prop:compqequi

Proposition 1.6.3 Let X be a compact Kähler manifold and θ be a closed real smooth (1,1)-form on X. Consider $\varphi \in PSH(X,\theta)$. Let $(\varphi_j)_j$ and $(\psi_j)_j$ be two quasi-equisingular approximations of φ . Then for any $\epsilon > 0$ and any j > 0, we can find $k_0 > 0$ such that for any $k \ge k_0$, we have

$$\psi_k \leq (1 - \epsilon)\varphi_i$$
.

See Dem15, Corollary 4.1.7].

def:Iinfty

Definition 1.6.5 Assume that X is compact. Let $\varphi \in QPSH(X)$ be a potential with analytic singularities. Then we define $I_{\infty}(\varphi)$ as the ideal sheaf consisting of germs f of holomorphic functions such that $|f|^2 \exp(-\varphi)$ is locally bounded.

Lemma 1.6.2 Assume that X is compact. Let $\varphi \in QPSH(X)$ be a potential with analytic singularities. The sheaf $I_{\infty}(\varphi)$ is a coherent sheaf.

Proof By Theorem 1.6.1, we may find a modification $\pi: Y \to X$ such that $\pi^*\varphi$ has log singularities. Observe that

$$I_{\infty}(\varphi) = \pi_* I(\pi^* \varphi),$$

so we may replace X and φ by Y and $\pi^*\varphi$ and assume that φ has log singularities along an effective \mathbb{Q} -divisor D. We decompose D into its irreducible components:

$$D = \sum_{i=1}^{N} a_i D_i.$$

In this case, observe that

$$I_{\infty}(\varphi) = O_X \left(-\sum_{i=1}^{N} \left(\lceil a_i \rceil D_i \right) \right)$$

is clearly coherent.

lma:IandIinf

Lemma 1.6.3 Assume that X is compact. Let $\varphi \in QPSH(X)$ be a potential with analytic singularities. Then for any $\epsilon > 0$, we can find $k_0 > 0$ such that for each $k \geq k_0$, we have

$$I(k(1+\epsilon)\varphi) \subseteq I_{\infty}(k\varphi).$$

See [Dem15, Proposition 4.1.6].

thm:CT-thm-refined'

Theorem 1.6.3 Let X be a connected compact Kähler manifold and $Y \subseteq X$ be a connected submanifold. Take a Kähler form ω on X and $\varphi \in PSH(Y, \omega|_Y)$ such that $\omega|_Y + dd^c \varphi$ is a Kähler current and that e^{φ} is a Hölder continuous function on V. Then there exists $\tilde{\varphi} \in PSH(X, \omega)$ satisfying

- (1) $\tilde{\varphi}|_Y = \varphi$;
- (2) $\omega_{\tilde{\varphi}}$ is a Kähler current.

In addition, if φ has analytic singularities, then so does $\tilde{\varphi}$.

See DRWNXZ Theorem 6.1].

1.7 The space of currents

Let *X* be a connected compact Kähler manifold of dimension *n* and $\alpha \in H^{1,1}(X,\mathbb{R})$.

Definition 1.7.1 Let Y be a complex manifold and $m \in \mathbb{N}$. We say an (m, m)-current T on Y is *positive*¹⁴ if either m > n or for any smooth (1, 0)-forms $\beta_1, \ldots, \beta_{n-m}$ on X, the measure

$$T \wedge i\beta_1 \wedge \overline{\beta_1} \wedge \cdots \wedge i\beta_{n-m} \wedge \overline{\beta_{n-m}}$$

is positive.

The basic properties of positive currents can be found in DemI2b, Section III.1]. We remind the readers that a positive current is necessarily real.

Definition 1.7.2 We say α is *pseudo-effective* if there is a closed positive (1, 1)-current in α .

We say α is *big* if there is a closed positive (1, 1)-current T in α dominating a Kähler form. Such currents are called *Kähler currents*.

def:spaceofcurrents

Definition 1.7.3 We introduce the following notations:

- (1) $\mathcal{Z}_{+}(X)$ denotes the space of closed positive (1, 1)-currents on X;
- (2) given a pseudo-effective (1,1)-class α on X, we write $\mathcal{Z}_+(X,\alpha)$ for the set of $T \in \mathcal{Z}_+(X)$ such that $[T] = \alpha$.

Here [T] denotes the cohomology class represented by T.

Definition 1.5.2 has a natural analogue for currents.

Definition 1.7.4 Given $T, T' \in \mathcal{Z}_+(X)$, we write $T \leq T'$ and say T is *more singular* than T' if when we write $T = \theta + \mathrm{dd^c}\varphi$, $T' = \theta' + \mathrm{dd^c}\varphi'$, we have $\varphi \leq \varphi'$. We write $T \sim T'$ if $T \leq T'$ and $T' \leq T$. In this case, we say T and T' have the same *singularity type*.

rmk:qpshtocurrents

Remark 1.7.1 Observe that

$$\mathcal{Z}_{+}(X)/{\sim} \cong QPSH(X)/{\sim}$$

canonically. The correspondence sends the class of a closed positive current $\theta_{\varphi} = \theta + dd^{c}\varphi$ to the class of φ .

We will adopt the following convention: Whenever we have a notion for quasiplurisubharmonic functions which depends only on the singularity type, we use the same notation and the same definition for closed positive (1, 1)-currents.

ex:Lelongcurrent

Example 1.7.1 An an important example of Remark 1.7.1, given $T = \theta + dd^c \varphi \in \mathcal{Z}_+(X)$ and $x \in X$, we define

$$\nu(T, x) = \nu(\varphi, x). \tag{1.13}$$

{eq:convnuTx}

Again, as Remark 1.4.1, this differs from the definitions in some literature by a factor of 2. But given our normalization

¹⁴ This notion is sometimes known as weak positivity.

$$dd^{c} = \frac{i}{2\pi} \partial \overline{\partial},$$

(1.13) seems to be the most natural choice.

The key example to keep in mind is the following:

$$\nu([0], 0) = 1,$$

where [0] is the current of integration at $0 \in \mathbb{P}^1$. In fact, as a simple application of the Green's second identity, one can verify that

$$\frac{\mathrm{i}}{2\pi}\partial\overline{\partial}\log|z|^2 = \delta_0,$$

where the right-hand side is the Dirac delta distribution at $0 \in \mathbb{C}$.

def:polarlocus

Definition 1.7.5 Given $T \in \mathcal{Z}_+(X)$. We represent T as $\theta + \mathrm{dd}^c \varphi$ for some closed smooth real (1,1)-form θ on X and $\varphi \in \mathrm{PSH}(X,\theta)$, then the *polar locus* of T is defined as the set $\{\varphi = -\infty\}$.

It is clear that the polar locus of T is independent of the choices of θ and φ .

lma:Siudec

Lemma 1.7.1 (Siu's decomposition) *Let* E *be a prime divisor on* X. *Then for any closed positive* (1,1)-current T *on* X, *the difference* T - v(T,E)[E] *is a closed positive* (1,1)-current.

Here [E] is the current of integration associated with E. See $[\frac{GH14}{GH94}]$, Page 386, Example 1] for the precise definition. See $[\frac{Dem12}{Dem12}]$, Lemma 2.17] for the proof.

It is helpful to check that our conventions are always consistent: There is no extra factor of 2 or 1/2 anywhere. One could verify this using our favorite example as in Example 1.7.1.

1.8 Plurisubharmonic metrics on line bundles

A natural source of quasi-plurisubharmonic functions is the metrics on line bundles. Let X be a connected compact Kähler manifold and L be a holomorphic line bundle on X. Usually, we do not distinguish L from the associated invertible sheaf $O_X(L)$.

Definition 1.8.1 Let V be a 1-dimensional complex linear space. A *Hermitian form* h on V is a map $h: V \times V \to \mathbb{C}$ such that

(1) h is \mathbb{C} -linear in the second variable and conjugate linear in the first, and

 $^{^{15}}$ We have also used [E] to denote the cohomology class of [E]. This should not lead to any confusion.

$$|v|_h^2 := h(v, v) \in \mathbb{R}_{>0}$$

for each $v \in V \setminus \{0\}$.

We usually identify h with the quadratic form $V \to \mathbb{R}$ sending v to $|v|_h^2$. We write $|v|_h = \sqrt{|v|_h^2}$ for any $v \in V$.

The singular Hermitian form on V is the map $V \to \{0, \infty\}$ sending 0 to 0 and other elements to ∞ .

Definition 1.8.2 Let V_1 and V_2 be 1-dimensional complex linear spaces. Given two maps $h_i: V_i \to [0, \infty]$ (i = 1, 2) each of which is either a Hermitian form or a singular Hermitian form. Then we define the tensor product $h_1 \otimes h_2 : V_1 \otimes V_2 \to [0, \infty]$ as

- (1) If either h_1 or h_2 is singular, we define $h_1 \otimes h_2$ as the singular Hermitian form;
- (2) otherwise, define $h_1 \otimes h_2$ as the usual tensor product: For any $v_1 \in V_1$, $v_2 \in V_2$,

$$h_1 \otimes h_2(v_1 \otimes v_2) = h_1(v_1)h_2(v_2).$$

def:Hermmetric

Definition 1.8.3 A *Hermitian metric h* on *L* is a family of Hermitian forms $(h_x)_{x \in X}$,

- (1) for each $x \in X$, h_x is a Hermitian form on L_x , and
- (2) for each local section s of $O_X(L)$, the map $x \mapsto |s(x)|_{h_x}$ is smooth.

The pair (L, h) is called a *Hermitian line bundle*. We shall write $dd^c h = c_1(L, h)^{16}$ for the first Chern form of h^{17} , normalized so that

$$[c_1(L,h)] = c_1(L).$$

The map $x \mapsto |s(x)|_{h_x}$ will be denoted by $|s|_h$.

To be more precise, if $U \subseteq X$ is an open subset on which L admits a nowhere vanishing holomorphic section s, then we define

$$(\mathrm{dd^c}h)|_U = \mathrm{dd^c}\left(-\log|s|_h^2\right).$$

Proposition 1.8.1 (Lelong–Poincaré) Let $s \in H^0(X, L)$ be non-zero and h be a Hermitian metric on L. Then

$$c_1(L,h) + \mathrm{dd^c} \log |s|_h^2 = [Z(s)],$$
 (1.14) {eq:LP}

where Z(s) is the zero divisor defined by s and $[\bullet]$ denote the associated current of integration.

 $^{^{16}}$ The unusual notation dd^ch is sometimes referred to as the Göteborg notation because it is widely used by the complex geometriers in Göteborg (usually spelled as Gothenburg in English, the second largest (yet very poorly known) city in Sweden). As I identify myself as Göteborgare, I do not feel guilty about this notation.

¹⁷ In the literature, people sometimes define the *curvature form* of (L, h) as $\Theta_h = -2\pi i dd^c h$.

See [Dem12a, (3.11)]. Again, we want to check that our conventions are compatible by investigating the following simple example.

ex:LPP1

Example 1.8.1 Let $X = \mathbb{P}^1$ and $L = O_{\mathbb{P}^1}(1)$. The homogeneous coordinates on \mathbb{P}^1 will be denoted by $[X_0 : X_1]$. At a point $x = [X_0 : X_1] \in \mathbb{P}^1$, the fiber L_x is identified with the dual of [x], where $[x] \subseteq \mathbb{C}^2$ is the line represented by x.

In order to introduce the Hermitian metric h on L, we fix the standard Hermitian norm $\| \bullet \|$ on \mathbb{C}^2 . Then given $\lambda \in L_x = [x]^{\vee}$, we introduce

$$|\lambda|_{h_x} = \frac{|\lambda(\tilde{x})|}{||\tilde{x}||},$$

where \tilde{x} is an arbitrary non-zero element in [x]. The readers can easily verify that h is indeed a Hermitian metric on L. The Hermitian metric h is known as the *Fubini–Study metric*.

A holomorphic section $s \in H^0(X, L)$ can be formally identified with a linear form $a_0X_0 + a_1X_1$: At $x \in X$, the corresponding linear form on [x] is given by sending (X_0, X_1) to $a_0X_0 + a_1X_1$.

Next we compute $\mathrm{dd}^\mathrm{c} h = c_1(L,h)$. For this purpose, we cover \mathbb{P}^1 by $\mathbb{C} = \mathbb{P}^1 \setminus \{\infty\}$ and $\mathbb{P}^1 \setminus \{0\}$. Both are holomorphic coordinate charts with coordinate function $z = X_0/X_1$ and $z^{-1} = X_1/X_0$ respectively.

We claim that on \mathbb{C} ,

$$dd^{c}h = dd^{c}\log(1+|z|^{2}). {(1.15)}$$

{eq:curvFS}

In fact, let t be the nowhere vanishing section of L on \mathbb{C} corresponding to X_1 . Then for $z \in \mathbb{C}$, we have an obvious lift $(z, 1) \in [z]$, so

$$|t|_h^2(z) = \frac{1}{|z|^2 + 1}.$$

So (1.15) follows.

In order to obtain a non-trivial case of the Lelong–Poincaré formula, we need to consider a section which vanishes at some points in \mathbb{C} . Let s be the holomorphic section of L corresponding to X_0 . Then

$$\log |s|_h^2(z) = \log \frac{|z|^2}{|z|^2 + 1}$$

for any $z \in \mathbb{C}$ using the same argument as above. Therefore, we find that restricted to \mathbb{C} , we have

$$c_1(L, h) + dd^c \log |s|_h^2 = dd^c f = [0],$$

where $f(z) = \log |z|^2$. So the Lelong–Poincaré formula (1.14) is verified in this case. The Kähler form $d^c h$ on \mathbb{P}^1 is also known as the *Fubini–Study metric*.

Definition 1.8.4 A plurisubharmonic metric 18 h on L is a family $(h_x)_{x \in X}$ such that

¹⁸ In the literature, people usually refer to such metrics as positively curved singular Hermitian metrics. I dislike this terminology, as having positive curvature only determines a plurisubharmonic metric almost everywhere, not everywhere.

- (1) for each $x \in X$, h_x is either a Hermitian form on L_x or the singular Hermitian form on L_x , and
- (2) there is a Hermitian metric h_0 on L and $\varphi \in PSH(X, c_1(L, h_0))$ such that for each $x \in X$ and each $y \in L_x$, we have

$$|\nu|_{h_x}^2 = \begin{cases} 0, & \text{if } \nu = 0; \\ |\nu|_{h_0}^2 e^{-\varphi(x)}, & \text{if } \nu \neq 0. \end{cases}$$
 (1.16)

The (first) Chern current of h is by definition

$$dd^{c}h = c_{1}(L, h) := c_{1}(L, h_{0}) + dd^{c}\varphi.$$

We shall write the plurisubharmonic metric defined by (1.16) as $h_0 \exp(-\varphi)^{19}$. As the readers can easily verify, our conventions guarantee that $c_1(L, h)$ does not depend on the choice of h_0 .

Remark 1.8.1 In the literature, some people prefer the convention that in (1.16), neither side has the square. Our choice seems to be the most natural one given our normalization of dd^c .

Observe that once a Hermitian metric h_0 on L is given, the construction in (2) gives a bijection between $PSH(X, c_1(L, h_0))$ and the set of plurisubharmonic metrics on L.

def:tensorprodpshmetric

Definition 1.8.5 Given two holomorphic line bundles L_1 , L_2 on X and plurisubharmonic functions h_1 on L_1 and h_2 on L_2 , we define the *tensor product* plurisubharmonic metric $h_1 \otimes h_2$ on $L_1 \otimes L_2$ as follows: for each $x \in X$, define

$$(h_1 \otimes h_2)_x = h_{1,x} \otimes h_{2,x}$$

in the sense of Definition 1.8.2.

We can easily verify that $h_1 \otimes h_2$ is indeed a plurisubharmonic metric on $L_1 \otimes L_2$.

ex:logsingP1

Example 1.8.2 We continue with our example Example 1.8.1. Let $X = \mathbb{P}^1$ and $L = O_{\mathbb{P}^1}(1)$. Let h^0 denote the Fubini–Study metric on L as defined in Example 1.8.1. Note that we have changed the notation from h to h^0 . Let $\omega = \mathrm{dd}^{\mathrm{c}} h^0$.

We construct $\varphi \in PSH(X, \omega)$ as follows: On \mathbb{C} , define

$$\varphi(z) = \log \frac{|z|^2}{1 + |z|^2}.$$

Then $\varphi \in \mathrm{PSH}(\mathbb{C}, \omega|_{\mathbb{C}})$ by (1.15). Setting $\varphi(\infty) = 0$, we can easily verify that $\varphi \in \mathrm{PSH}(\mathbb{P}^1, \omega)$.²⁰

¹⁹ Be careful, this is not $h_0^2 \exp(-\varphi)$, as I prefer to think of h_0 as a quadratic form.

²⁰ This can also be verified using the Grauert–Remmert extension theorem Theorem 1.2.1.

We then get a plurisubharmonic metric $h^0 \exp(-\varphi)$. To be more explicit, h_0 is singular, $h_{\infty} = h_{\infty}^0$, while for $z \in \mathbb{C} \setminus \{0\}$ and $\lambda \in [z]^{\vee}$, we have

$$|\lambda|_{h_z} = \frac{|\lambda(z,1)|}{|z|}.$$

We shall need the following Ohsawa–Takegoshi type extension theorem.

thm: OT_ext

Theorem 1.8.1 Assume that L is big and T is a holomorphic line bundle on X. Fix a Hermitian metric h_T on T. Take a Kähler form ω on X. Let $Y \subseteq X$ be a connected submanifold of dimension m. Suppose that $\varphi \in PSH(X, \theta - \delta \omega)$ for some $\delta > 0$ and $\varphi|_Y \not\equiv -\infty$. Then there exists $k_0(\delta, h_T) > 0$ such that for all $k \geq k_0$ and $s \in H^0(Y, T \otimes L|_Y^k \otimes I(k\varphi|_Y))^{2l}$, there exists an extension $\tilde{s} \in H^0(X, T \otimes L^k \otimes I(k\varphi))$ such that

$$\int_X (h^k \otimes h_T)(\tilde{s}, \tilde{s}) \mathrm{e}^{-k\varphi} \, \omega^n \le C \int_Y (h^k \otimes h_T)|_Y(s, s) \mathrm{e}^{-k\varphi|_Y} \, \omega|_Y^m,$$

where C > 0 is an absolute constant, independent of the data (φ, s, k) .

This is a special case of [His12, Theorem 1.4].

prop: Bergman_approx

Proposition 1.8.2 Let (L,h) be a Hermitian line bundle on X and set $\theta = c_1(L,h)$. Let (T,h_T) be a Hermitian line bundle on X. Assume that $\varphi \in PSH(X,\theta)$ is a potential with analytic singularities such that θ_{φ} is a Kähler current. Fix a Kähler form ω on X. For each $k \geq 1$, we let

$$\varphi_k := \frac{1}{k} \log \sup_{\substack{s \in \mathrm{H}^0(X, L^k \otimes T) \\ \int_X h^k \otimes h_T(s, s) \mathrm{e}^{-k\varphi} \omega^n \leq 1}} h^k \otimes h_T(s, s). \tag{1.17}$$

Then for any $k \geq 0$,

$$\varphi \leq \varphi_k \leq \alpha_k \varphi$$
,

where $\alpha_k \in (0,1)$ is an increasing sequence with limit 1.

Note that when k is large enough, $\varphi_k \in PSH(X, \theta)$. We refer to DX21, Remark 2.9] for the proof.

²¹ Here and in the sequel, we usually abbreviate $\otimes k$ in the super-index as k to save spaces.

Chapter 2

Non-pluripolar products

Pour exprimer d'une manière frappante que le monument que j'élève sera placé sous l'invocation de la Science, j'ai décidé d'inscrire en lettres d'or sur la grande frise du premier étage et à la place d'honneur, les noms des plus grands savants^a qui ont honoré la France depuis 1789 jusqu'à nos jours. — Gustave Eiffel, 1889

chap:npp

Let X be a complex manifold and $\varphi_1, \ldots, \varphi_p \in \mathrm{PSH}(X)$ $(p \in \mathbb{N})$. When the functions $\varphi_1, \ldots, \varphi_p$ are all smooth, there is an obvious definition of a differential form

$$dd^{c}\varphi_{1}\wedge\cdots\wedge dd^{c}\varphi_{p} \tag{2.1}$$

{eq:mixedMAtype}

by the usual differential calculus. The product is usually known as the $Monge-Amp\`ere$ product. It is of interest to extend this construction to the case where the φ_i 's have worse regularities.

There are a number of different approaches to this problem. In this book, we will choose the so-called *non-pluripolar theory* due to Bedford, Taylor, Guedj, Zeriahi, Boucksom and Eyssidieux. The reason is that the non-pluripolar theory is the only known theory satisfying the following two features: It is defined for all psh singularities (at least in the global setting) and it satisfies a monotonicity theorem.

We will recall the Bedford–Taylor theory in Section 2.1 and the non-pluripolar theory in Section 2.2.

Some key properties of the non-pluripolar products are recalled in Section 2.3.

The readers who are not familiar with this notion are encouraged to read the original article [BEGZ10].

2.1 Bedford-Taylor theory

sec:BTtheory

Let X be a complex manifold and $\varphi_1, \ldots, \varphi_p \in PSH(X)$ ($p \in \mathbb{N}$) be locally bounded plurisubharmonic functions on X^1 . In this case, there is a canonical definition of the Monge–Ampère type product (2.1).

^a Gaspard Monge, Comte de Péluse (1746—1818), known oddly by his real family name instead of *de Péluse*, is one of the 72 names scribed on the Eiffel tower, was both a mathematician and a politician, active mainly after the French Revolution.

¹ In the literature, some people use $PSH(X) \cap L^{\infty}_{loc}(X)$ to denote the set of such functions, which is an abuse of notation. However, this is legitimate thanks to the rigidity Theorem 1.1.3.

Definition 2.1.1 We define the closed positive (p, p)-current (2.1) on X as follows: We make an induction on $p \ge 0$. When p = 0, we define (2.1) as the (0, 0)-current [X]. When p > 0, we let

$$dd^{c}\varphi_{1} \wedge \cdots \wedge dd^{c}\varphi_{p} := dd^{c} \left(\varphi_{1} dd^{c}\varphi_{2} \wedge \cdots \wedge dd^{c}\varphi_{p} \right).$$

We call this product the Bedford-Taylor product.

rmk:extensionBT

Remark 2.1.1 There is also a slightly more general version of this construction. Given a closed positive current *T*, one can also define the product

$$\mathrm{dd^c}\varphi_1\wedge\cdots\wedge\mathrm{dd^c}\varphi_p\wedge T$$

in a very similar way.

Proposition 2.1.1 The product $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is a closed positive (p, p)-current on X. Moreover, the product is symmetric in the φ_i 's.

See [GZ17, Proposition 3.3, Corollary 3.12]. The proof relies crucially on an important estimate, known as the *Chern–Levine–Nirenberg inequality*. See [GZ17, Theorem 3.9].

The Bedford-Taylor theory has many satisfactory properties.

thm:contMA

Theorem 2.1.1 Let $(\varphi_i^j)_{j \in \mathbb{Z}_{>0}}$ be decreasing sequences (resp. increasing sequences) of locally bounded psh functions on X converging (resp. converging a.e.) to locally bounded psh function φ_i , where $i = 1, \ldots, p$. Then

$$\varphi_0^j \operatorname{dd^c} \varphi_1^j \wedge \cdots \wedge \operatorname{dd^c} \varphi_p^j \longrightarrow \varphi_0 \operatorname{dd^c} \varphi_1 \wedge \cdots \wedge \operatorname{dd^c} \varphi_p$$

as $j \to \infty$. In particular, if φ_0^j is the constant sequence 1, we have

$$\mathrm{dd^c}\varphi_1^j\wedge\cdots\wedge\mathrm{dd^c}\varphi_p^j\rightharpoonup\mathrm{dd^c}\varphi_1\wedge\cdots\wedge\mathrm{dd^c}\varphi_p.$$

Here the notation, → denotes the weak-* convergence of currents.

We refer to [GZ17, Theorem 3.18, Theorem 3.23] for the proofs.

By contrast, we emphasize that the Bedford–Taylor product is not continuous with respect to the L^1_{loc} -convergence in general. A simple example can be found in [GZ17, Example 3.25].

2.2 The non-pluripolar products

sec:npp

The proof of all results in this section can be found in [BEGZ10]. Let X be a complex manifold.

Definition 2.2.1 Let $\varphi_1, \ldots, \varphi_p \in PSH(X)$. We set

$$O_k := \bigcap_{j=1}^p \{\varphi_j > -k\}, \quad k \in \mathbb{Z}_{>0}.$$

We say that $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is *well-defined* if for each connected open subset $U \subseteq X$, any smooth Hermitian form ω on U, for each compact subset $K \subseteq U$, we have

$$\sup_{k\geq 0} \int_{K\cap O_k} \left(\bigwedge_{j=1}^p \mathrm{dd^c}(\varphi_j \vee (-k)) \right)_U \wedge \omega^{\dim U - p} < \infty. \tag{2.2}$$

In this case, we define the *non-pluripolar product* $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ by

$$\mathbb{1}_{O_k} \operatorname{dd^c} \varphi_1 \wedge \cdots \wedge \operatorname{dd^c} \varphi_p = \mathbb{1}_{O_k} \bigwedge_{i=1}^p \operatorname{dd^c} \left(\varphi_j \vee (-k) \right)$$
 (2.3) {eq:npp}

on $\bigcup_{k\geq 0} O_k$ and make a zero-extension to X.

As recalled in Section 1.3, an \mathcal{F} -open subset means an open subset with respect to the plurifine topology.

prop:npp1

Proposition 2.2.1 *Let* $\varphi_1, \ldots, \varphi_p \in PSH(X)$.

(1) The product $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is local with respect to the plurifine topology in the following sense: Let $O \subseteq X$ be an \mathcal{F} -open subset and $\psi_1, \dots, \psi_p \in PSH(X)$. Assume that

$$\varphi_j|_O = \psi_j|_O, \quad j = 1, \dots, p,$$

and that

$$\bigwedge_{j=1}^{p} \mathrm{dd^{c}} \varphi_{j} \text{ and } \bigwedge_{j=1}^{p} \mathrm{dd^{c}} \psi_{j}$$

are both well-defined, then

$$\bigwedge_{j=1}^{p} dd^{c} \varphi_{j} = \bigwedge_{j=1}^{p} dd^{c} \psi_{j}.$$
(2.4) [eq:ppp1]

If furthermore O is open in the usual topology, then the product

$$\bigwedge_{j=1}^{p} \mathrm{dd^{c}} \varphi_{j}|_{O}$$

on O is well-defined and

$$\bigwedge_{j=1}^{p} dd^{c} \varphi_{j} \bigg|_{Q} = \bigwedge_{j=1}^{p} dd^{c} \varphi_{j}|_{Q}. \tag{2.5}$$

Let \mathcal{U} be an open covering of X. Then $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is well-defined if and only if each of the following product is well-defined

$$\bigwedge_{j=1}^p \mathrm{dd}^{\mathrm{c}} \varphi_j|_U, \quad U \in \mathcal{U}.$$

- (2) The current $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ and the fact that it is well-defined depend only on the currents $dd^c \varphi_j$, not on the choice of the φ_j 's nor on the ordering of the φ_j 's.
- (3) When $\varphi_1, \ldots, \varphi_p \in L^{\infty}_{loc}(X)$, the product $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is well-defined and is equal to the Bedford–Taylor product.
- (4) Assume that $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is well-defined, then $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ puts no mass on pluripolar sets.
- (5) Assume that $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is well-defined, then $\bigwedge_{j=1}^p dd^c \varphi_j$ is a closed positive (p, p)-current on X.
- (6) The product is multilinear: Let $\psi_1 \in PSH(X)$, a, b > 0 then

$$\mathrm{dd^c}(a\varphi_1+b\psi_1)\wedge\bigwedge_{j=2}^p\mathrm{dd^c}\varphi_j=a\mathrm{dd^c}\varphi_1\wedge\bigwedge_{j=2}^p\mathrm{dd^c}\varphi_j+b\mathrm{dd^c}\psi_1\wedge\bigwedge_{j=2}^p\mathrm{dd^c}\varphi_j \ \ (2.6)$$
 {eq:ppp6}

in the sense that left-hand side is well-defined if and only if both terms on right-hand side are well-defined, and the equality holds in that case.

In view of (3), we do not need to specify whether our product $dd^c \varphi_1 \wedge \cdots \wedge dd^c \varphi_p$ is the Bedford–Taylor product or the non-pluripolar product when the φ_i 's are all locally bounded.

Definition 2.2.2 Let T_1, \ldots, T_p be closed positive (1,1)-currents on X. We say that $T_1 \wedge \cdots \wedge T_p$ is *well-defined* if there exists an open covering \mathcal{U} of X, such that on each $U \in \mathcal{U}$, we can find $\varphi_i^U \in \text{PSH}(U)$ $(j = 1, \ldots, p)$ such that

$$\mathrm{dd^c}\varphi_i^U = T_j, \quad j = 1, \dots, p$$

and $\mathrm{dd^c}\varphi_1^U\wedge\cdots\wedge\mathrm{dd^c}\varphi_p^U$ is well-defined. In this case, we define the *non-pluripolar product* $T_1\wedge\cdots\wedge T_p$ as the closed positive (p,p)-current on X defined by

$$(T_1 \wedge \dots \wedge T_p)|_U = \mathrm{dd^c} \varphi_1^U \wedge \dots \wedge \mathrm{dd^c} \varphi_p^U, \quad U \in \mathcal{U}. \tag{2.7}$$

The product $T_1 \wedge \cdots \wedge T_p$ is independent of the choices we made thanks to Proposition 2.2.1 (1) and (2).

Proposition 2.2.1 can be formulated in terms of currents without any difficulty.

Remark 2.2.1 Similar to Remark 2.1.1, there is also an extension of the non-pluripolar theory allowing us to define

$$T_1 \wedge \cdots \wedge T_p \cap T$$

for any closed positive current T. This is the *relative non-pluripolar product* introduced by Vu [$\overline{\text{Vu21}}$]. Unlike the relative Bedford–Taylor products, the relative non-pluripolar products present some pathological behaviors. For example, they are not linear in general.

prop:nppwelldef

Proposition 2.2.2 *Let* X *be a compact Kähler manifold and* T_1, \ldots, T_p *are closed positive* (1, 1)-currents on X. Then $T_1 \wedge \cdots \wedge T_p$ is well-defined.

This proposition explains why we usually work in the setting of compact Kähler manifolds.

2.3 Properties of non-pluripolar products

sec:nppprop

Let X be a connected compact Kähler manifold of dimension n and $\theta, \theta_1, \ldots, \theta_n$ be closed real smooth (1, 1)-forms on X.

We write

$$PSH(X,\theta)_{>0} = \left\{ \varphi \in PSH(X,\theta) : \int_X \theta_{\varphi}^n > 0 \right\}. \tag{2.8}$$

The non-pluripolar product θ_{ω}^{n} is well-defined thanks to Proposition 2.2.2.

Remark 2.3.1 Suppose that X is a connected complex manifold of dimension 0, namely, X is a single point. In this case, by definition, the non-pluripolar product θ_{φ}^n is given by the current of integration at the unique point. So $PSH(X, \theta)_{>0} = PSH(X, \theta) \cong \mathbb{R}$ in this case and $\int_X \theta_{\varphi}^n = 1$ for all $\varphi \in PSH(X, \theta)$.

prop:nppmassinv

Proposition 2.3.1 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a Kähler manifold Y and $\varphi_i \in PSH(X, \theta_i)$ for i = 1, ..., n. Then

$$\int_{Y} \pi^* \theta_{1,\pi^*\varphi_1} \wedge \cdots \wedge \pi^* \theta_{n,\pi^*\varphi_n} = \int_{X} \theta_{1,\varphi_1} \wedge \cdots \wedge \theta_{n,\varphi_n}.$$

Proof This follows immediately from Proposition 2.2.1 (1) and (4).

We shall write

$$V_{\theta} = \sup \left\{ \varphi \in \mathrm{PSH}(X, \theta) : \varphi \le 0 \right\}. \tag{2.9}$$

It follows from Proposition 1.2.1 that $V_{\theta} \in PSH(X, \theta)$ if $PSH(X, \theta) \neq \emptyset$.

thm:semicon

Theorem 2.3.1 (Semicontinuity theorem) *Let* $\varphi_j, \varphi_j^k \in PSH(X, \theta_j)$ $(k \in \mathbb{Z}_{>0}, j = 1, ..., n)$. *Let* $\chi \geq 0$ *be a bounded function such that there are* $\eta_1, \eta_2 \in QPSH(X)$ *with* $\eta_1 + \chi = \eta_2$.

Assume that for any $j=1,\ldots,n$, as $k\to\infty$, either φ_j^k decreases to $\varphi_j\in \mathrm{PSH}(X,\theta)$ or increases to $\varphi_j\in \mathrm{PSH}(X,\theta)$ almost everywhere. Then for any open set $U\subseteq X$, we have

$$\lim_{k \to \infty} \int_{U} \chi \, \theta_{1,\varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n,\varphi_{n}^{k}} \ge \int_{U} \chi \, \theta_{1,\varphi_{1}} \wedge \cdots \wedge \theta_{n,\varphi_{n}}. \tag{2.10}$$

See [DDNL18b, Theorem 2.3]

thm:mono

Theorem 2.3.2 (Monotonicity theorem) Let $\varphi_j, \psi_j \in PSH(X, \theta_j)$ for j = 1, ..., n. Assume that $\varphi_j \geq \psi_j^2$ for every j, then

$$\int_X \theta_{1,\varphi_1} \wedge \cdots \theta_{n,\varphi_n} \ge \int_X \theta_{1,\psi_1} \wedge \cdots \theta_{n,\psi_n}.$$

In particular, if $\varphi, \psi \in PSH(X, \theta)$ with $\varphi \geq \psi$, then

$$\int_X \theta_{\varphi}^n \ge \int_X \theta_{\psi}^n.$$

See [DDNL18mono] See [DDNL18b, Theorem 1.1]. We will prove a vast extension of this theorem in Proposition 6.1.4.

Thanks to this theorem, the non-pluripolar mass $\int_X \theta_{\varphi}^n$ could be used as a rough measure of the singularities of $\varphi \in PSH(X, \theta)$. In Section 3.1, we shall refine this measure by defining the notion of P-envelope.

As a corollary, we obtain that

cor:incsegnppcont

Corollary 2.3.1 Fix a directed set I. For each j = 1, ..., n, take an increasing net $(\varphi_j^i)_{i \in I}$ in $PSH(X, \theta_j)$, uniformly bounded from above. Set

$$\varphi_j \coloneqq \sup_{i \in I} \varphi_j^i.$$

Then

$$\lim_{i \in I} \int_{X} \theta_{1,\varphi_{1}^{i}} \wedge \dots \wedge \theta_{n,\varphi_{n}^{i}} = \int_{X} \theta_{1,\varphi_{1}} \wedge \dots \wedge \theta_{n,\varphi_{n}}.$$
 (2.11)

(2.11) {eq:increseqnppcont}

Proof We may assume that I is infinite as there is nothing to prove otherwise. Thanks to Theorem 2.3.2, we already know the \leq inequality in (2.11). We prove the reverse inequality. When $I \cong \mathbb{Z}_{>0}$ as directed sets, the reverse inequality follows from Theorem 2.3.1. In general, by Choquet's lemma Proposition 1.2.2, we can find a countable infinite subset $R \subseteq I$ such that

$$\sup_{r \in R} \varphi_j^r = \sup_{i \in I} \varphi_j^i$$

for all $j=1,\ldots,n$. We fix a bijection $R\cong\mathbb{Z}_{>0}$. For any $j=1,\ldots,n$, we will then denote elements φ_j^r $(r\in R)$ by $\varphi_j^1,\varphi_j^2,\ldots$. We shall write

$$\psi^a_j = \varphi^1_j \vee \cdots \vee \varphi^a_j$$

for each $a \in \mathbb{Z}_{>0}$.

It follows from the fact that *I* is a directed set and Theorem 2.3.2 that

$$\lim_{i \in I} \int_X \theta_{1, \varphi_1^i} \wedge \cdots \wedge \theta_{n, \varphi_n^i} \ge \lim_{a \to \infty} \int_X \theta_{1, \psi_1^a} \wedge \cdots \wedge \theta_{n, \psi_n^a}.$$

² See Definition 1.5.2 for the notation.

From the special case mentioned above, we know that the right-hand side is exactly the right-hand side of (2.11), so we conclude.

The following lemma is striking in that we begin only with an upper bound of φ , but at the end of the day, we get a lower bound almost for free. This powerful method will be employed again and again in the whole book.

lma:pathoenvelope

Lemma 2.3.1 Let $\varphi, \psi \in \text{PSH}(X, \theta), \ \varphi \leq \psi \ \text{and} \ \int_X \theta_{\varphi}^n > 0.$ Then for any

$$a \in \left(1, \left(\frac{\int_X \theta_{\psi}^n}{\int_X \theta_{\psi}^n - \int_X \theta_{\varphi}^n}\right)^{1/n}\right), \tag{2.12}$$

there is $\eta \in PSH(X, \theta)_{>0}$ such that

$$a^{-1}\eta + (1 - a^{-1})\psi \le \varphi.$$

The fraction in (2.12) is understood as ∞ if $\int_X \theta_{\psi}^n = \int_X \theta_{\varphi}^n$. Thanks to Theorem 2.3.2, the interval (2.12) is non-empty.

We write

$$P_{\theta}(a\varphi + (1-a)\psi) = \sup^* \left\{ \eta \in PSH(X,\theta) : a^{-1}\eta + (1-a^{-1})\psi \le \varphi \right\}$$

$$\in PSH(X,\theta)$$

$$(2.13) \quad \{eq:perversePtheta\}$$

Remark 2.3.2 The notation $P_{\theta}(a\varphi+(1-a)\psi)$ might lead to some potential confusions since $a\varphi+(1-a)\psi$ is not defined everywhere. But the author cannot come up with a better notation.

Observe that

$$a^{-1}P_{\theta}(a\varphi + (1-a)\psi) + (1-a^{-1})\psi \le \varphi. \tag{2.14}$$

In fact, this equation holds outside a pluripolar set by Proposition 1.2.5, hence it holds everywhere by Proposition 1.2.6.

Proof Without loss of generality, we may assume that $\varphi \leq \psi \leq 0$.

We refer to [DDNL215, Lemma 4.3] for the proof of the existence of $\eta \in PSH(X, \theta)$ satisfying the given inequality. Next we argue that $P_{\theta}(a\varphi + (1-a)\psi) \in PSH(X, \theta)_{>0}$. Choose

$$a' \in \left(a, \left(\frac{\int_X \theta_{\psi}^n}{\int_X \theta_{\psi}^n - \int_X \theta_{\varphi}^n}\right)^{1/n}\right).$$

It follows from (2.13) that

$$P_{\theta}(a\varphi + (1-a)\psi) \ge \frac{a}{a'}P_{\theta}(a'\varphi + (1-a')\psi) + \frac{a'-a}{a'}\varphi. \tag{2.15}$$

Therefore, by Theorem 2.3.2, we have

{eq:Pthetalowerbdtemp2}

$$\int_{Y} \theta_{P_{\theta}(a\varphi+(1-a)\psi)}^{n} \ge \frac{(a'-a)^{n}}{a'^{n}} \int_{Y} \theta_{\varphi}^{n} > 0.$$
 (2.16)

cor:pathoenvelopeeqmass

Corollary 2.3.2 Let $\varphi, \psi \in \text{PSH}(X, \theta)_{>0}, \ \varphi \leq \psi$. Assume that $\int_X \theta_{\varphi}^n = \int_X \theta_{\psi}^n$. Then for any $\epsilon \in (0,1)$, there is $\eta \in PSH(X,\theta)$ such that

$$(1) \int_X \theta_\eta^n = \int_X \theta_\varphi^n;$$

(1)
$$\int_X \theta_{\eta}^n = \int_X \theta_{\varphi}^n$$
;
(2) $\epsilon \eta + (1 - \epsilon^{-1}) \psi \le \varphi$.

Note that by (2), we trivially have $\eta \leq \psi$.

Proof Fix $\epsilon \in (0, 1)$, we define

$$\eta = P_{\theta} \left(\epsilon^{-1} \varphi + (1 - \epsilon^{-1}) \psi \right).$$

This is well-defined due to Theorem 2.3.2.

Thanks to (2.16), for each $a' > \epsilon^{-1}$, we have

$$\int_X \theta^n_{\eta} > \left(\frac{a' - \epsilon^{-1}}{a'}\right)^n \int_X \theta^n_{\varphi}.$$

Letting $a' \to \infty$, we conclude that

$$\int_X \theta_\eta^n \ge \int_X \theta_\varphi^n.$$

On the other hand, since $\eta \leq \psi$, using Theorem 2.3.2 we find that

$$\int_X \theta_\eta^n \le \int_X \theta_\psi^n = \int_X \theta_\varphi^n.$$

Hence,

$$\int_{X} \theta_{\eta}^{n} = \int_{X} \theta_{\varphi}^{n}.$$

lma:kahcurrentposmass

Lemma 2.3.2 For any $\varphi \in PSH(X, \theta)_{>0}$, there is $\psi \in PSH(X, \theta)$ such that

- (1) θ_{ψ} is a Kähler current, and
- (2) $\psi \leq \varphi$.

In particular, there is an increasing sequence $(\varphi_i)_i$ in $PSH(X, \theta)$ converging almost everywhere to φ such that θ_{φ_i} is a Kähler current for all $i \geq 1$.

Proof Using Lemma 2.3.1, we can find $\epsilon > 0$ and $\gamma \in PSH(X, \theta)$ such that

$$\frac{\epsilon}{1+\epsilon}V_{\theta} + \frac{1}{1+\epsilon}\gamma \le \varphi.$$

We observe that the cohomology class $[\theta]$ is big as a consequence of [BEGZ10], Proposition 1.22]. Therefore, we can take $\eta \in PSH(X, \theta)$ such that θ_{η} is a Kähler current and $\eta \leq 0$. Then we may take

$$\psi = \frac{\epsilon}{1+\epsilon} \eta + \frac{1}{1+\epsilon} \gamma.$$

Then ψ clearly satisfies (1) and (2).

For the latter claim, it suffices to take

$$\varphi_i = (1 - (i+1)^{-1})\varphi + (i+1)^{-1}\psi.$$

lma:existsecposmass

Lemma 2.3.3 *Let* L *be a holomorphic line bundle on* X *with* $\theta \in c_1(L)$. *Assume that* $\varphi \in PSH(X, \theta)_{>0}$, *then there exists* $k_0 > 0$ *such that for each* $k \ge k_0$, *we have*

$$\mathrm{H}^0(X,L^k\otimes \mathcal{I}(k\varphi))\neq 0.$$

Proof By Lemma 2.3.2, we may further assume that θ_{φ} is a Kähler current. In this case, the result follows from Hörmander's L^2 -estimate, see [Dem12a, Theorem 13.21]. \square

thm:logconc

Theorem 2.3.3 *Let* $\varphi_0, \varphi_1 \in PSH(X, \theta)$ *. Then the map*

$$[0,1]\ni t\mapsto \log\int_X \theta^n_{t\varphi_1+(1-t)\varphi_0}$$

is concave.

See [DDNL19log [DDNL21a] for the proof.

Remark 2.3.3 Here and in the sequel, when we write expressions like $t\varphi + (1 - t)\psi$ for $\varphi, \psi \in QPSH(X)$, we will follow the convention that when t = 0, the value is ψ and when t = 1, the value is φ .

Chapter 3

The envelope operators

Politiques et scientifiques ont le sens des réalités, mais ce ne sont pas les mêmes. Il en résulte — et ce sera là un principe que le général de Gaulle fera sien que l'activité de recherche ne peut être évaluée, quant à sa qualité propre, que par des hommes qui la pratiquent eux-mêmes. — Pierre Lelong^a, 1999

chap:enve

In this chapter, we study two envelope operators lying at the heart of the whole theory. The first envelope, called the P-envelope, is defined using the non-pluripolar masses, while the second, called the \mathcal{I} -envelope, is defined using the multiplier ideal sheaves. The corresponding theories are developed in Section 3.1 and Section 3.2 respectively.

Later on in Chapter 6, we will develop the corresponding P and \mathcal{I} -partial orders associated with these envelopes, allowing us to compare the singularities.

3.1 The P-envelope

sec:Penv

In this section, X will denote a connected compact Kähler manifold of dimension n.

3.1.1 Rooftop operator and the definition of the *P*-envelope

We will fix a smooth closed real (1, 1)-form θ on X.

def:rooftop

Definition 3.1.1 Given $\varphi, \psi \in PSH(X, \theta)$, we define their *rooftop operator* as follows:

$$\varphi \wedge \psi = \sup \left\{ \eta \in \mathrm{PSH}(X, \theta) : \eta \le \varphi, \eta \le \psi \right\}. \tag{3.1}$$

{eq:roottopdef1}

For the simplicity of notations, we extend the definition to the case where φ or ψ is constantly $-\infty$, in this case, we simply set

$$\varphi \wedge \psi = -\infty$$
.

When we want to be more specific, we could also write $\varphi \wedge_{\theta} \psi$.

Proposition 3.1.1 *The operator* \land *is a well-defined commutative, associative binary operator*

^a Pierre Lelong (1912–2011) was the husband of another famous mathematician Jacqueline Ferrand. During their marriage (1947–1977), the latter published under the name of Jacqueline Lelong-Ferrand.

$$PSH(X, \theta) \cup \{-\infty\} \times PSH(X, \theta) \cup \{-\infty\} \rightarrow PSH(X, \theta) \cup \{-\infty\}.$$

Proof We first show that the map is well-defined. For this purpose, take $\varphi, \psi \in PSH(X, \theta)$. When the set in (3.1) is empty, there is nothing to prove. So let us assume that the set is not empty.

Define

$$\gamma = \sup^* \{ \eta \in \mathrm{PSH}(X, \theta) : \eta \le \varphi, \eta \le \psi \}.$$

Then by Proposition 1.2.1, we find that $\gamma \in PSH(X, \theta)$ and hence γ is a candidate for the supremum in (3.1). Therefore, $\gamma \leq \varphi \wedge \psi$. The reverse inequality is trivial, so

$$\varphi \wedge \psi = \gamma \in PSH(X, \theta).$$

The commutativity and the associativity of \land are both trivial.

lma:rooftopMA

Lemma 3.1.1 Let $\varphi, \psi \in PSH(X, \theta)$. Assume that $\varphi \land \psi \in PSH(X, \theta)$. Then

$$\theta^n_{\varphi \wedge \psi} \leq \mathbb{1}_{\{\varphi \wedge \psi = \varphi\}} \theta^n_{\varphi} + \mathbb{1}_{\{\varphi \wedge \psi = \psi\}} \theta^n_{\psi}.$$

See DDNL18mono [DDNL18b, Lemma 3.7] for the proof.

We recall that the relations \leq and \sim are introduced in Definition 1.5.2.

def:Penv

Definition 3.1.2 Given $\varphi \in PSH(X, \theta)$, we define its *P-envelope* as follows:

$$P_{\theta}[\varphi] := \sup^* \{ \psi \in \mathrm{PSH}(X, \theta) : \psi \le 0, \psi \le \varphi \}. \tag{3.2}$$

Observe that by Proposition 1.2.1, we have $P_{\theta}[\varphi] \in PSH(X, \theta)$ and $P_{\theta}[\varphi] \leq 0$. Moreover, the definition can be equivalently described as

$$P_{\theta}[\varphi] = \sup_{C \in \mathbb{Z}_{>0}} (\varphi + C) \wedge V_{\theta}. \tag{3.3}$$

Recall that V_{θ} is introduced in (2.9). Observe that for any $C \in \mathbb{R}$, we have $(\varphi+C) \wedge V_{\theta} \in PSH(X,\theta)$ and

$$(\varphi + C) \wedge V_{\theta} \sim \varphi$$
.

In other words, in (3.2), we may replace the condition $\psi \leq \varphi$ by $\psi \sim \varphi$.

Morally, the idea lying behind the definition of $P_{\theta}[\varphi]$ is that we choose the least singular element out of all potentials with the same singularity type as φ . As we shall see in Example 3.1.1 below, $P_{\theta}[\varphi]$ does not necessarily have the same singularity type as φ . This forces us to define a rougher equivalence relation in Definition 6.1.1.

prop:Penvindeptheta

Proposition 3.1.2 Let $\theta' = \theta + \mathrm{dd}^{\mathrm{c}} g$ for some $g \in C^{\infty}(X)$. Then for any $\varphi \in \mathrm{PSH}(X,\theta)$, we have $\varphi - g \in \mathrm{PSH}(X,\theta')$ and

$$P_{\theta}[\varphi] \sim P_{\theta'}[\varphi'].$$

Proof By symmetry, it suffices to show that

$$P_{\theta}[\varphi] \leq P_{\theta'}[\varphi'].$$

We may assume that $g \ge 0$. Then for any $\psi \in PSH(X, \theta)$ with $\psi \le \varphi$ and $\psi \le 0$, we set $\psi' := \psi - g \in PSH(X, \theta')$. Then $\psi' \le \varphi'$ and $\psi' \le 0$, so $\psi' \le P_{\theta'}[\varphi']$. Since ψ is arbitrary, it follows that

$$P_{\theta}[\varphi] - \sup_{X} g \le P_{\theta}[\varphi] - g \le P_{\theta'}[\varphi'].$$

The *P*-envelope preserves the non-pluripolar masses:

prop:Ppresmass

Proposition 3.1.3 *Suppose that* $\theta_1, \ldots, \theta_n$ *be smooth closed real* (1, 1)-forms on X. *Let* $\varphi_i \in PSH(X, \theta_i)$ *for each* $i = 1, \ldots, n$. *Then*

$$\int_{X} \theta_{1,P_{\theta_{1}}[\varphi_{1}]} \wedge \cdots \wedge \theta_{n,P_{\theta_{n}}[\varphi_{n}]} = \int_{X} \theta_{1,\varphi_{1}} \wedge \cdots \wedge \theta_{n,\varphi_{n}}. \tag{3.4}$$
 {eq:Penvpremass}

Proof For each $C \in \mathbb{Z}_{>0}$ and each i = 1, ..., n, we have

$$(\varphi_i + C) \wedge V_{\theta_i} \sim \varphi_i$$
.

It follows from Theorem 2.3.2 that

$$\int_X \theta_{1,(\varphi_1+C)\wedge V_{\theta_1}} \wedge \cdots \wedge \theta_{n,(\varphi_n+C)\wedge V_{\theta_n}} = \int_X \theta_{1,\varphi_1} \wedge \cdots \wedge \theta_{n,\varphi_n}.$$

So (3.4) follows from (3.3) and Corollary 2.3.1.

Conversely, Proposition 3.1.3 characterizes the *P*-envelope:

thm:Pvarphidiffdef

Theorem 3.1.1 Assume that $\varphi \in PSH(X, \theta)_{>0}$, then

$$P_{\theta}[\varphi] = \sup \left\{ \psi \in \mathrm{PSH}(X, \theta) : \psi \leq 0, \varphi \leq \psi, \int_{X} \theta_{\varphi}^{n} = \int_{X} \theta_{\psi}^{n} \right\}. \tag{3.5}$$

In particular, in this case,

$$P_{\theta}[P_{\theta}[\varphi]] = P_{\theta}[\varphi].$$
 (3.6) {eq:Penvprojop}

We refer to [DDNL23, Theorem 3.14] for the proof.

Note that in (3.5) and (3.2), the test function ψ lies on different sides of φ .

In general, we do not know if (3.6) holds when $\int_X \theta_{\varphi}^n > 0$. We expect it to be wrong. According to our general philosophy, the *P*-envelope operator is the correct object only when the non-pluripolar mass is positive. We will avoid using the degenerate case in the whole book.

def:modelpot

Definition 3.1.3 If $\varphi = P_{\theta}[\varphi]$ and $\int_X \theta_{\varphi}^n > 0$, we say φ is a model potential.

We remind the readers that the notion of model potentials depends heavily on the choice of θ . When there is a risk of confusion, we also say φ is a model potential in $PSH(X, \theta)$.

Remark 3.1.1 Definition 3.1.3 is different from the common definition in the literature: We impose the extra condition $\int_X \theta_{\varphi}^n > 0$. The author believes that this is the only case where this notion is natural. We sometimes emphasize this point by saying $\varphi \in PSH(X, \theta)_{>0}$ is a model potential.

There are plenty of model potentials:

or:Psendspotentialtomode

Corollary 3.1.1 *Let* $\varphi \in PSH(X, \theta)_{>0}$, then $P_{\theta}[\varphi]$ is a model potential in $PSH(X, \theta)$. *Moreover,*

$$\int_X \theta^n_{P_\theta[\varphi]} = \int_X \theta^n_\varphi.$$

Proof This follows immediately from Theorem 3.1.1 and Proposition 3.1.3.

ex:loglogsing

Example 3.1.1 We continue our favorite example Example 1.8.1. Let $X = \mathbb{P}^1$ and ω be the Fubini–Study metric. We define $\varphi \in \text{PSH}(X, \omega)$ as follows: for $z \in \mathbb{C}$, we let

$$\varphi(z) = \begin{cases} -\log(|z|^2 + 1) + \left(-\log\left(-\log|z|^2\right)\right) \vee \left(2 + \log|z|^2\right), & \text{if } |z| < 1/\sqrt{2}, \\ 2 + \log\frac{|z|^2}{|z|^2 + 1}, & \text{Otherwise,} \end{cases}$$

while $\varphi(\infty) = 2$. The singularity of φ only occurs at z = 0, close to which, $\varphi \sim -\log(-\log|z|^2)$. This type of singularity is therefore called the *log-log type singularity*.

We claim that

$$P_{\omega}[\varphi] = 0.$$
 (3.7) {eq:PomegavarphiOtemp1}

In particular, we find that φ and $P_{\omega}[\varphi]$ have different singularity types.

Due to Theorem 3.1.1, in order to verify (3.7), it suffices to verify that

$$\int_{\mathcal{M}} \omega_{\varphi} = 1. \tag{3.8} \qquad \text{{eq:Pomegavarphi0temp2}}$$

Here ω_{φ} is taken in the non-pluripolar sense. Since $\{0,\infty\}\subseteq\mathbb{P}^1$ is pluripolar, this reduces to show that

$$\int_{\mathbb{C}^*} dd^c \psi = \frac{1}{4\pi} \int_{\mathbb{C}^*} (\Delta \psi) d\mu = 1,$$

where $\psi(z) = \varphi(z) + \log(|z|^2 + 1)$ and μ is the standard Lebesgue measure on \mathbb{C} .

Note that the Laplacian vanishes outside $\overline{B(0,0.7)}$ since $\psi(z) = 2 + \log|z|^2$ there, which is harmonic. Therefore,

$$\int_{\mathbb{C}^*}\mathrm{d}\mathrm{d}^c\psi=\frac{1}{4\pi}\int_{|z|<1/\sqrt{2}}(\Delta\psi)(z)\,\mathrm{d}\mu.$$

It is an elementary exercise to see that the right-hand side is exactly equal to 1. If you are familiar with toric geometry, this is more or less trivial since

$$\nabla_r ((-\log(-r)) \vee (2+r)) (-\infty, -\log 2) = [-1, 0).$$

Otherwise, just try to evaluate the integral using Green's identities. Therefore, (3.8) is proved and our assertion (3.7) follows.

Next we give a criterion on when the rooftop operator is not identically $-\infty$.

prop:landfinitecond1

Proposition 3.1.4 *Assume that* $\varphi, \psi \in PSH(X, \theta)$ *and*

$$\int_X \theta_\varphi^n + \int_X \theta_\psi^n > \int_X \theta_{\varphi \vee \psi}^n.$$

Then $\varphi \wedge \psi \in PSH(X, \theta)$.

Proof Without loss of generality, we may assume that $\varphi, \psi \leq 0$. Take

$$\eta \coloneqq P_{\theta}[(1-\epsilon)(\varphi \vee \psi) + \epsilon V_{\theta}]$$

for some small enough $\epsilon > 0$, we may guarantee that

$$\int_X \theta_{\varphi}^n + \int_X \theta_{\psi}^n > \int_X \theta_{\eta}^n, \quad \varphi \vee \psi \leq \eta.$$

This is a consequence of Corollary 3.1.1.

Take C > 0 large enough, so that

$$\int_{\{\varphi>\eta-C\}} \theta_{\varphi}^{n} + \int_{\{\psi>\eta-C\}} \theta_{\psi}^{n} > \int_{X} \theta_{\eta}^{n}. \tag{3.9}$$
 [\text{eq:intsumintbiggerintemp1}]

This is possible thanks to Proposition 2.2.1(4). Fix C' > C. Write

$$\gamma_{C'} := (\varphi \vee (\eta - C')) \wedge (\psi \vee (\eta - C')).$$

Then observe that

$$\inf_{C'>C}\gamma_{C'}=\varphi\wedge\psi.$$

Assume by contradiction that $\varphi \wedge \psi \equiv -\infty$, then we have

$$\lim_{C'\to\infty}\sup_X\gamma_{C'}=-\infty.$$

Observe that for each C' > C,

$$\sup_{X} \gamma_{C'} = \sup_{\{\eta \neq -\infty\}} (\gamma_{C'} - \eta)$$

since η is a model potential. It follows that

¹ In fact, the \leq direction is trivial, in view of Corollary 1.3.5. As for the reverse inequality, we may assume that the left-hand side is 0, but as η is model and $\gamma_{C'} \leq \eta$, we have $\gamma_{C'} \leq \eta$.

$$\lim_{C' \to \infty} \sup_{\{\eta \neq -\infty\}} (\gamma_{C'} - \eta) = -\infty. \tag{3.10}$$
 {eq:limsupgammametatemp1}

For each C' > C, we compute

$$\begin{split} \int_{\{\gamma_{C'} \leq \eta - C\}} \theta^n_{\gamma_{C'}} &\leq \int_{\{\varphi \vee (\eta - C') \leq \eta - C\}} \theta^n_{\varphi \vee (\eta - C')} + \int_{\{\psi \vee (\eta - C') \leq \eta - C\}} \theta^n_{\psi \vee (\eta - C')} \\ &= 2 \int_X \theta^n_{\eta} - \int_{\{\varphi > \eta - C\}} \theta^n_{\varphi} - \int_{\{\psi > \eta - C\}} \theta^n_{\psi} \\ &< \int_X \theta^n_{\eta}, \end{split}$$

where the first line follows from Lemma 3.1.1, the third line follows from (3.9). Using (3.10), we can take C' large enough so that $\gamma_{C'} \leq \eta - C$. Then we find

$$\int_X \theta^n_{\gamma_{C'}} < \int_X \theta^n_{\eta},$$

which contradicts Theorem 2.3.2.

3.1.2 Properties of the *P*-envelope

Let θ , θ_1 , θ_2 be smooth closed real (1, 1)-forms on X.

prop:Penvbimero

Proposition 3.1.5 *Let* $\pi: Y \to X$ *be a proper bimeromorphic morphism from a Kähler manifold Y to X. Then for any* $\varphi \in PSH(X, \theta)$ *, we have*

$$P_{\pi^*\theta}[\pi^*\varphi] = \pi^*P_{\theta}[\varphi].$$

In particular, a potential $\varphi \in PSH(X, \theta)_{>0}$ is model if and only if $\pi^*\varphi \in PSH(Y, \pi^*\theta)_{>0}$ is model.

Proof This follows immediately from Proposition 1.5.3.

We have the following concavity property of the *P*-envelope.

prop:Pconc

Proposition 3.1.6

(1) Suppose that $\varphi \in PSH(X, \theta)$ and $\lambda \in \mathbb{R}_{>0}$, then

$$P_{\lambda\theta}[\lambda\varphi] = \lambda P_{\theta}[\varphi].$$

(2) Suppose that $\varphi_1 \in PSH(X, \theta_1)$ and $\varphi_2 \in PSH(X, \theta_2)$, then

$$P_{\theta_1+\theta_2}[\varphi_1+\varphi_2] \geq P_{\theta_1}[\varphi_1] + P_{\theta_2}[\varphi_2].$$

Proof (1) This is obvious by definition.

(2) Suppose that $\psi_1 \in PSH(X, \theta_1)$ and $\psi_2 \in PSH(X, \theta_2)$ satisfy

$$\psi_i \leq 0, \quad \psi_i \leq \varphi_i$$

for i = 1, 2. Then

$$\psi_1 + \psi_2 \le 0, \quad \psi_1 + \psi_2 \le \varphi_1 + \varphi_2.$$

It follows from (3.2) that

$$\psi_1 + \psi_2 \le P_{\theta_1 + \theta_2} [\varphi_1 + \varphi_2].$$

Since ψ_1 and ψ_2 are arbitrary, we conclude.

prop:landpresmodel

Proposition 3.1.7 *Let* $\varphi, \psi \in PSH(X, \theta)$ *. Assume that*

$$\varphi = P_{\theta}[\varphi], \quad \psi = P_{\theta}[\psi], \quad \varphi \wedge \psi \not\equiv -\infty.$$

Then

$$P_{\theta}[\varphi \wedge \psi] = \varphi \wedge \psi. \tag{3.11}$$
 {eq:Pthetaphilandpsi}

Proof Observe that we obviously have

$$P_{\theta}[\varphi \wedge \psi] \leq P_{\theta}[\varphi] = \varphi, \quad P_{\theta}[\varphi \wedge \psi] \leq P_{\theta}[\psi] = \psi.$$

So the \leq direction in (3.11) holds. The reverse direction is trivial.

thm:Pvarphisupport

Theorem 3.1.2 *Let* $\varphi \in PSH(X, \theta)$ *. Then*

$$\theta_{P_{\theta}[\varphi]}^n \le \mathbb{1}_{\{P_{\theta}[\varphi]=0\}} \theta^n.$$

See [DDNL18mono | DDNL18b, Theorem 3.8] for the proof.

thm:diamond

Theorem 3.1.3 Assume that $\varphi, \psi \in PSH(X, \theta)$ and $\varphi \land \psi \in PSH(X, \theta)$. Then

$$\int_{Y} \theta_{\varphi}^{n} + \int_{Y} \theta_{\psi}^{n} \leq \int_{Y} \theta_{\varphi \wedge \psi}^{n} + \int_{Y} \theta_{\varphi \wedge \psi}^{n}. \tag{3.12}$$

We refer to [DDNL21b, Theorem 5.4] for the proof.

prop:decseqmodel

Proposition 3.1.8 Let $(\varphi_j)_{j\in I}$ be a decreasing net of potentials in $PSH(X,\theta)$ satisfying $P_{\theta}[\varphi_i] = \varphi_i$ for each $j \in I$ and $\varphi \coloneqq \inf_i \varphi_i \not\equiv -\infty$. Then $P_{\theta}[\varphi] = \varphi$.

Proof It follows from Proposition 1.2.1 that $\varphi \in PSH(X, \theta)$. Therefore, for each $j \in I$,

$$\varphi \leq P_{\theta}[\varphi] \leq P_{\theta}[\varphi_i] = \varphi_i$$
.

Therefore, $\varphi = P_{\theta}[\varphi]$.

prop:vol_limit_model

Proposition 3.1.9 Let $(\epsilon_j)_{j\in I}$ be a decreasing net in $\mathbb{R}_{\geq 0}$ with limit 0. Take a Kähler form ω on X. Consider a decreasing net $\varphi_j \in \mathrm{PSH}(X, \theta + \epsilon_j \omega)$ $(j \in I)$ satisfying

$$P_{\theta+\epsilon_i\omega}[\varphi_j] = \varphi_j$$
 (3.13) {eq:Palmostmodeltemp}

with pointwise limit $\varphi \not\equiv -\infty$. Then

$$\lim_{i \in I} \int_{V} (\theta + \epsilon_{i} \omega)_{\varphi_{i}}^{n} = \int_{V} \theta_{\varphi}^{n}. \tag{3.14}$$

Moreover, if $\int_X \theta_{\varphi}^n > 0$, then for any prime divisor E over X, we have

$$\lim_{i \in I} \nu(\varphi_j, E) = \nu(\varphi, E). \tag{3.15}$$
 {eq:Lelongcontdecseq}

Proof Observe that $\varphi \in PSH(X, \theta)$. By Theorem 2.3.2, we have

$$\underline{\lim}_{j \in I} \int_{X} (\theta + \epsilon_{j} \omega)_{\varphi_{j}}^{n} \ge \underline{\lim}_{j \in I} \int_{X} (\theta + \epsilon_{j} \omega)_{\varphi}^{n} = \int_{X} \theta_{\varphi}^{n}.$$

We now argue the reverse inequality.

Fix $j_0 \in I$, we have

$$\begin{split} \overline{\lim}_{j \in I} \int_{X} (\theta + \epsilon_{j} \omega)_{\varphi_{j}}^{n} &= \overline{\lim}_{j \in I} \int_{\left\{\varphi_{j} = 0\right\}} (\theta + \epsilon_{j} \omega)_{\varphi_{j}}^{n} \\ &\leq \overline{\lim}_{j \in I} \int_{\left\{\varphi_{j} = 0\right\}} (\theta + \epsilon_{j_{0}} \omega)_{\varphi_{j}}^{n} \\ &\leq \int_{\left\{\varphi = 0\right\}} (\theta + \epsilon_{j_{0}} \omega)_{\varphi}^{n}, \end{split}$$

where in the first line we used (3 13) and Theorem 3.1.2, and in the last line we have used the fact that $\varphi_j \setminus \varphi$ and [DDNL21b, Proposition 4.6] (see also [DDNL23, Lemma 2.11]). Taking limit with respect to j_0 , we arrive at the desired conclusion:

$$\overline{\lim_{j \in I}} \int_X (\theta + \epsilon_j \omega)_{\varphi_j}^n \leq \underline{\lim_{j_0 \in I}} \int_{\{\varphi = 0\}} (\theta + \epsilon_{j_0} \omega)_{\varphi}^n = \int_{\{\varphi = 0\}} \theta_{\varphi}^n \leq \int_X \theta_{\varphi}^n.$$

This finishes the proof of (3.14).

It remains to argue (3.15). By Lemma 2.3.1 and (3.14), for any $\epsilon \in (0, 1)$ and j big enough there exists $\psi_j \in \text{PSH}(X, \theta + \epsilon_j \omega)$ such that $(1 - \epsilon)\varphi_j + \epsilon \psi_j \leq \varphi$. This implies that for j big enough we have

$$(1 - \epsilon)\nu(\varphi_i, E) + \epsilon\nu(\psi_i, E) \ge \nu(\varphi, E) \ge \nu(\varphi_i, E).$$

On the other hand, the Lelong numbers $v(\psi_j, E)$ admit an upper bound for various j by Proposition 1.5.2. So taking limit with respect to j, we conclude (3.15).

cor:Pprojdec

Corollary 3.1.2 *Let* $(\varphi_j)_{j\in I}$ *be a decreasing net of potentials in* $PSH(X,\theta)$ *with pointwise limit* $\varphi \in PSH(X,\theta)_{>0}$. *Then*

$$P_{\theta}[\varphi] = \inf_{j \in I} P_{\theta}[\varphi_j].$$

Proof We may assume that I is infinite since otherwise, there is nothing to prove.

Let $\eta = \inf_{i \in I} P_{\theta}[\varphi_i]$. We clearly have $0 \ge \eta \ge P_{\theta}[\varphi]$.

By Proposition 3.1.9, we have

$$\lim_{i \in I} \int_X \theta_{\varphi_i}^n = \int_X \theta_{\varphi}^n > 0.$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_i \setminus 0$ $(i \in I)$ with $\epsilon_i \in (0, 1)$ and $\psi_i \in PSH(X, \theta)$ such that for all $i \in I$,

$$(1 - \epsilon_i)\varphi_i + \epsilon_i\psi_i \le \varphi, \quad \psi_i \le \varphi_i.$$

By Proposition 3.1.6, we have

$$\eta + \epsilon_i P_{\theta}[\psi_i] \le (1 - \epsilon_i) \eta + \epsilon_i P_{\theta}[\psi_i] \le (1 - \epsilon_i) P_{\theta}[\varphi_i] + \epsilon_i P_{\theta}[\psi_i] \le P_{\theta}[\varphi].$$

Observe that the L^1 -norms of $P_{\theta}[\psi_i]$ (with respect to a fixed volume form) are uniformly bounded by Proposition 1.5.1. It follows from Chebyshev's inequality that $\eta \leq P_{\theta}[\varphi]$ almost everywhere, and hence everywhere by Proposition 1.2.6.²

prop:varphiperturbtheta

Corollary 3.1.3 *Let* $\varphi \in PSH(X, \theta)_{>0}$ *be a model potential. Let* ω *be a Kähler form on X. Then*

$$\varphi = \inf_{\epsilon > 0} P_{\theta + \epsilon \omega} [\varphi].$$

Proof Clearly, we have the \leq direction and the right-hand side is non-positive. So by Theorem 3.1.1, it suffices to show that they have the same mass, which follows from Proposition 3.1.9.

prop:incnetmodel

Proposition 3.1.10 *Let* $(\varphi_i)_{i \in I}$ *be an increasing net of potentials in* $PSH(X, \theta)_{>0}$ *uniformly bounded from above. Let* $\varphi := \sup_{i \in I} \varphi_i$. *Then*

$$\sup_{i\in I} {}^*P_{\theta}[\varphi_i] = P_{\theta}[\varphi].$$

In particular, if φ_i is model for all $i \in I$, then so is φ .

Proof We may assume that *I* is infinite since otherwise, there is nothing to prove. We write

$$\eta \coloneqq \sup_{i \in I} P_{\theta}[\varphi_i].$$

Then it is clear that $\eta \leq P_{\theta}[\varphi]$.

By Corollary 2.3.1, we have

² The arguments like the last paragraph is very common. We will usually omit the details in the sequel.

$$\lim_{i \in I} \int_X \theta_{\varphi_i}^n = \int_X \theta_{\varphi}^n > 0.$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_i \setminus 0$ $(i \in I)$ with $\epsilon_i \in (0, 1)$ and $\psi_i \in PSH(X, \theta)$ $(i \in I)$ such that for all $i \in I$,

$$(1 - \epsilon_i)\varphi + \epsilon_i\psi_i \leq \varphi_i$$
.

By Proposition 3.1.6, we have

$$P_{\theta}[\varphi] + \epsilon_i P_{\theta}[\psi_i] \le (1 - \epsilon_i) P_{\theta}[\varphi] + \epsilon_i P_{\theta}[\psi_i] \le \eta.$$

Taking limit with respect to *i*, we conclude that $P_{\theta}[\varphi] \leq \eta$.

3.1.3 Relative full mass classes

subsec:fullmass

Let θ be a smooth closed real (1,1)-form on X representing a big cohomology class. Fix a model potential $\phi \in PSH(X,\theta)_{>0}$.

Definition 3.1.4 We define

$$\begin{split} \operatorname{PSH}(X,\theta;\phi) &\coloneqq \left\{ \eta \in \operatorname{PSH}(X,\theta) : \eta \leq \phi \right\}, \\ \mathcal{E}^{\infty}(X,\theta;\phi) &\coloneqq \left\{ \eta \in \operatorname{PSH}(X,\theta) : \eta \sim \phi \right\}, \\ \mathcal{E}(X,\theta;\phi) &\coloneqq \left\{ \eta \in \operatorname{PSH}(X,\theta;\phi) : \int_X \theta_{\varphi}^n = \int_X \theta_{\phi}^n \right\}, \\ \mathcal{E}^1(X,\theta;\phi) &\coloneqq \left\{ \eta \in \mathcal{E}(X,\theta;\phi) : \int_X |\phi - \eta| \, \theta_{\eta}^n < \infty \right\}. \end{split}$$

Potentials in the last three classes are said to have *relatively minimal singularities*, *full mass* and *finite energy* relative to ϕ respectively.

We have the following inclusions:

$$\mathcal{E}^{\infty}(X,\theta;\phi)\subseteq\mathcal{E}^{1}(X,\theta;\phi)\subseteq\mathcal{E}(X,\theta;\phi)\subseteq \mathrm{PSH}(X,\theta;\phi). \tag{3.16}$$
 {eq:energyclassinc}

The only non-trivial part is the first inclusion, which follows from Theorem 2.3.2.

rmk:intwelldef

Remark 3.1.2 Note that this integral

$$\int_{X} |\phi - \eta| \, \theta_{\eta}^{n}$$

is defined: The locus where $\phi - \eta$ is undefined is a pluripolar set, while the product θ_n^n puts no mass on pluripolar sets (Proposition 2.2.1).

Similar remarks apply when we talk about similar integrals in the sequel.

When $\phi = V_{\theta}$, we usually write

$$\mathcal{E}^{\infty}(X, \theta; V_{\theta}) = \mathcal{E}^{\infty}(X, \theta),$$

$$\mathcal{E}(X, \theta; V_{\theta}) = \mathcal{E}(X, \theta),$$

$$\mathcal{E}^{1}(X, \theta; V_{\theta}) = \mathcal{E}^{1}(X, \theta).$$

Potentials in the three classes are said to have minimal singularities, full mass and finite energy respectively. The relation (3.16) can be written as

$$\mathcal{E}^{\infty}(X,\theta) \subseteq \mathcal{E}^{1}(X,\theta) \subseteq \mathcal{E}(X,\theta)$$

in this case.

The *P*-envelope can be used to characterize the full mass classes:

prop:fullmassP

Proposition 3.1.11 *Let* $\varphi \in PSH(X, \theta)$ *. Then the following are equivalent:*

(1)
$$\varphi \in \mathcal{E}(X, \theta; \phi)$$
;

(2)
$$P_{\theta}[\varphi] = \phi$$
.

Proof (2) \implies (1). This follows from Proposition 3.1.3.

(1)
$$\Longrightarrow$$
 (2). Note that ϕ is a candidate of $P_{\theta}[\varphi]$ as in (3.5). So $P_{\theta}[\varphi] = \phi$. \square

In order to handle the finite energy classes, it is convenient to introduce the following quantity:

def:MAenergy

Definition 3.1.5 We define the *Monge–Ampère energy* $E_{\theta}^{\phi} : \mathcal{E}^{\infty}(X, \theta; \phi) \to \mathbb{R}$ as follows

$$E_{\theta}^{\phi}(\varphi) := \frac{1}{n+1} \sum_{i=0}^{n} \int_{X} (\varphi - \phi) \, \theta_{\varphi}^{j} \wedge \theta_{\phi}^{n-j}. \tag{3.17}$$

More generally, we extend E_{θ}^{ϕ} to a functional E_{θ}^{ϕ} : $PSH(X, \theta; \phi) \rightarrow [-\infty, \infty)$ as follows

$$E^{\phi}_{\theta}(\varphi) := \inf \left\{ E^{\phi}_{\theta}(\psi) : \psi \in \mathcal{E}^{\infty}(X, \theta; \phi), \varphi \leq \psi \right\}. \tag{3.18}$$

We write E_{θ} instead of E_{θ}^{ϕ} when $\phi = V_{\theta}$.

Proposition 3.1.12 *Let* $\varphi \in PSH(X, \theta; \phi)$ *. The following are equivalent:*

$$\begin{array}{l} (1) \ \varphi \in \mathcal{E}^1(X,\theta;\phi); \\ (2) \ E^\phi_\theta(\varphi) > -\infty. \end{array}$$

(2)
$$E_{\alpha}^{\phi}(\omega) > -\infty$$

When the conditions are satisfied, (3.17) holds.

Given $\varphi, \psi \in \mathcal{E}^1(X, \theta; \phi)$, we have the following cocycle equality

$$E_{\theta}^{\phi}(\psi) - E_{\theta}^{\phi}(\varphi) = \frac{1}{n+1} \sum_{i=0}^{n} \int_{X} (\psi - \varphi) \, \theta_{\psi}^{j} \wedge \theta_{\varphi}^{n-j}. \tag{3.19}$$

See [BEGZ10, Proposition 2.11] and [DDNL18big | [DDNL18a, Proposition 2.5] for the proofs.³

³ In these references, they took $\phi = V_{\theta}$, but the proof of the general case is almost identical.

prop:relrooftopclosed

Proposition 3.1.13 Assume that $\varphi, \psi \in \mathcal{E}(X, \theta; \phi)$ (resp. $\mathcal{E}^1(X, \theta; \phi)$, $\mathcal{E}^{\infty}(X, \theta; \phi)$), then so is $\varphi \wedge \psi$.

Proof The case of $\mathcal{E}^{\infty}(X, \theta; \phi)$ is trivial.

We consider the case $\mathcal{E}(X, \theta; \phi)$. It follows from Proposition 3.1.4 that $\varphi \land \psi \in PSH(X, \theta)$. By Theorem 3.1.3, we have

$$\int_X \theta_{\varphi \wedge \psi}^n \ge \int_X \theta_{\phi}^n.$$

By Theorem 2.3.2, equality holds. By Theorem 3.1.1, we conclude that

$$P_{\theta}[\varphi \wedge \psi] = \phi.$$

Finally, the case $\mathcal{E}^1(X,\theta;\phi)$ is proved in Xia23a, Theorem 4.13] (the arXiv version).

prop:relativeEupperclosed

Proposition 3.1.14 Let $\varphi, \psi \in PSH(X, \theta)$ be potentials such that $\psi \leq \phi$ and $\varphi \leq \psi$. Assume that $\varphi \in \mathcal{E}(X, \theta; \phi)$ (resp. $\mathcal{E}^1(X, \theta; \phi), \mathcal{E}^{\infty}(X, \theta; \phi)$), then so is ψ .

Proof The case $\mathcal{E}^{\infty}(X,\theta;\phi)$ is trivial. The case $\mathcal{E}(X,\theta;\phi)$ follows from Theorem 2.3.2. The case $\mathcal{E}^1(X,\theta;\phi)$ follows from [Xia23a, Proposition 4.5] (arXiv version).

prop:supsEE1

Proposition 3.1.15 Let $(\varphi_i)_{i\in I}$ be a uniformly bounded from above non-empty family in $\mathcal{E}(X,\theta;\phi)$ (resp. $\mathcal{E}^1(X,\theta;\phi)$, $\mathcal{E}^{\infty}(X,\theta;\phi)$), then so is $\sup^* \varphi_i$.

Proof Thanks to Proposition 3.1.14, it suffices to show that

$$\sup_{i\in I}^* \varphi_i \leq \phi.$$

Since ϕ is model and $\varphi_i \leq \phi$, we know that

$$\varphi_i - \sup_X \varphi_i \le \phi$$

for any $i \in I$. By assumption $(\varphi_i)_{i \in I}$ is uniformly bounded from above, our assertion follows.

prop:envrelfullmass

Proposition 3.1.16 *Let* $\varphi, \psi \in \mathcal{E}(X, \theta; \phi)$ *. Then*

$$\sup_{C \ge 0} {}^*(\varphi + C) \wedge \psi = \psi.$$

Proof Since for each $C \ge 0$,

$$(\varphi \wedge \psi + C) \wedge \psi \leq (\varphi + C) \wedge \psi \leq \psi,$$

we may replace φ by $\varphi \land \psi$ (c.f. Proposition 3.1.13) and assume that $\varphi \leq \psi$. In this case, the result is proved in [DDNL18b, Theorem 3.8, Corollary 3.11].

3.2 The I-envelope

sec:Ienv

From the algebraic point of view, a more natural envelope operator is given by the I-envelope.

In this section, X will denote a connected compact Kähler manifold of dimension n.

3.2.1 *I*-equivalence

prop: Iequivchar

Proposition 3.2.1 Given $\varphi, \psi \in QPSH(X)$, the following are equivalent:

(1) For any $k \in \mathbb{Z}_{>0}$, we have

$$I(k\varphi) = I(k\psi);$$

(2) for any $\lambda \in \mathbb{R}_{>0}$, we have

$$I(\lambda \varphi) = I(\lambda \psi);$$

(3) for any modification $\pi: Y \to X$ and any $y \in Y$, we have

$$\nu(\pi^*\varphi, y) = \nu(\pi^*\psi, y);$$

(4) for any proper bimeromorphic morphism $\pi: Y \to X$ from a Kähler manifold and any $y \in Y$, we have

$$\nu(\pi^*\varphi, y) = \nu(\pi^*\psi, y);$$

(5) for any prime divisor E over X, we have

$$\nu(\varphi, E) = \nu(\psi, E).$$

See Definition B.1.1 for the definition of prime divisors over *X*. We remind the readers that in the whole book, a *modification* of a compact complex space means a finite composition of blow-ups with smooth centers. This terminology is highly non-standard.

Proof (4) \iff (5). This follows from Lemma 1.4.1.

- (3) \iff (5). This follows from Corollary B.1.1.
- $(1) \implies (5)$. This follows from Proposition 1.4.4.
- $(5) \implies (2)$. This follows from Theorem 1.4.3.
- $(2) \implies (1)$. This is trivial.

def:Iequiv

Definition 3.2.1 Given $\varphi, \psi \in QPSH(X)$, we say they are *I*-equivalent and write $\varphi \sim_I \psi$ if the equivalent conditions in Proposition 3.2.1 are satisfied.

Clearly, $\sim_{\mathcal{I}}$ is an equivalence relation on QPSH(X).

prop:Ienvbimero

Proposition 3.2.2 *Let* $\pi: Y \to X$ *be a proper bimeromorphic morphism from a Kähler manifold* Y *to* X. *Then for* $\varphi, \psi \in QPSH(X)$, *we the following are equivalent:*

(1)
$$\varphi \sim_I \psi$$
;

(2)
$$\pi^* \varphi \sim_I \pi^* \psi$$
.

Proof (1) \Longrightarrow (2). This follows from Proposition 3.2.1(4).

 $(2) \implies (1)$. This follows from the simple fact that

$$I(k\varphi) = \pi_* \left(\omega_{Y/X} \otimes I(k\pi^*\varphi) \right), \quad I(k\psi) = \pi_* \left(\omega_{Y/X} \otimes I(k\pi^*\psi) \right)$$

for any
$$k \in \mathbb{Z}_{>0}$$
.

prop:Iequivmax

Proposition 3.2.3 Let $\varphi, \varphi', \psi, \psi' \in QPSH(X)$ and $\lambda > 0$. Assume that $\varphi \sim_I \psi$ and $\varphi' \sim_I \psi'$, then

$$\varphi \vee \varphi' \sim_I \psi \vee \psi', \quad \varphi + \varphi' \sim_I \psi + \psi', \quad \lambda \varphi \sim_I \lambda \psi.$$

Similarly, if $(\varphi_i)_{i\in I}$, $(\psi_i)_{i\in I}$ are two non-empty uniformly bounded from above families in $PSH(X,\theta)$ for some closed smooth real (1,1)-form θ on X such that $\varphi_i \sim_I \psi_i$ for all $i \in I$, then

$$\sup_{i \in I} \varphi_i \sim_I \sup_{i \in I} \psi_i.$$

Proof This follows from Proposition 1.4.2 and Corollary 1.4.1.

3.2.2 The definition of the I-envelope

We will fix a smooth closed real (1, 1)-form θ on X.

def:Ienv

Definition 3.2.2 Given $\varphi \in PSH(X, \theta)$, we define its *I*-envelope as follows:

$$P_{\theta}[\varphi]_{\mathcal{I}} \coloneqq \sup^* \{ \psi \in \mathrm{PSH}(X, \theta) : \psi \le 0, \psi \sim_{\mathcal{I}} \varphi \}. \tag{3.20}$$

If $\varphi = P_{\theta}[\varphi]_{\mathcal{I}}$, we say φ is an \mathcal{I} -model potential (in PSH(X, θ)).

Note that by Proposition 1.2.1, $P_{\theta}[\varphi]_{\mathcal{I}} \in PSH(X, \theta)$.

prop:Ienvindeptheta

Proposition 3.2.4 Let $\theta' = \theta + \mathrm{dd}^c g$ for some $g \in C^{\infty}(X)$. Then for any $\varphi \in \mathrm{PSH}(X,\theta)$, we have $\varphi - g \in \mathrm{PSH}(X,\theta')$ and

$$P_{\theta}[\varphi]_{\mathcal{I}} \sim P_{\theta'}[\varphi']_{\mathcal{I}}.$$

The proof is similar to that of Proposition 3.1.2, so we omit it.

prop: Ienvelopebimero

Proposition 3.2.5 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a Kähler manifold Y to X. Then for $\varphi \in PSH(X, \theta)$, we have

$$P_{\pi^*\theta}[\pi^*\varphi]_T = \pi^*P_{\theta}[\varphi]_T.$$

Proof The proof is similar to that of Proposition 3.1.5 in view of Proposition 3.2.2.□

prop: Ienvprojection

Proposition 3.2.6 *Let* $\varphi \in PSH(X, \theta)$ *, then*

$$\varphi \sim_I P_{\theta}[\varphi]_I$$
.

In particular,

$$P_{\theta} [P_{\theta}[\varphi]_I]_T = P_{\theta}[\varphi]_I$$

and the upper semicontinuous regularization in (3.20) is not necessary.

Proof In view of Proposition 3.2.1, it suffices to show that for $k \in \mathbb{Z}_{>0}$, we have

$$I(k\varphi) = I(kP_{\theta}[\varphi]_{I}). \tag{3.21}$$

{eq:IenvelopepreservLelong}

By Proposition 1.2.2, we can find $\psi_i \in PSH(X, \theta)$ $(i \in \mathbb{Z}_{>0})$ such that $\psi_i \leq 0$, $\psi_i \sim_{\mathcal{I}} \varphi$ for all $i \geq 1$ and

$$\sup_{i>0} {}^*\psi_i = P_{\theta}[\varphi]_{\mathcal{I}}.$$

By Proposition 3.2.3, we may replace ψ_i by $\psi_1 \vee \cdots \vee \psi_i$ and assume that the sequence ψ_i is increasing. In this case, it follows from the strong openness theorem Theorem 1.4.4 that for each $k \in \mathbb{Z}_{>0}$, we have

$$I(k\varphi) = I(k\psi_i) = I(kP_{\theta}[\varphi]_T)$$

for *j* large enough.

def:volqpsh

Definition 3.2.3 Let $\varphi \in PSH(X, \theta)$, we define the *volume*⁴ $vol(\theta, \varphi)$ as

$$\operatorname{vol}(\theta, \varphi) = \int_{Y} (\theta + \operatorname{dd}^{c} P_{\theta}[\varphi]_{I})^{n}.$$

prop:voldeponlyoncurr

Proposition 3.2.7 Let $\theta' = \theta + \mathrm{dd}^{\mathrm{c}} g$ for some $g \in C^{\infty}(X)$. Then for any $\varphi \in \mathrm{PSH}(X,\theta)$, we have $\varphi' = \varphi - g \in \mathrm{PSH}(X,\theta')$ and

$$vol(\theta, \varphi) = vol(\theta', \varphi').$$

Proof This follows immediately from Proposition 3.2.4 and Theorem 2.3.2.

In view of Proposition 3.2.7, the volume $vol(\theta, \varphi)$ depends only on the current θ_{φ} , and we could write

$$vol \theta_{\varphi} = vol(\theta, \varphi). \tag{3.22}$$

{eq:volcurrdef

The I-envelope and the P-envelope are related in a simple manner.

⁴ We choose to call this quantity the *volume* instead of the *I-volume* so that the terminology is consistent with the line bundle case.

prop:PandPI

Proposition 3.2.8 *Let* $\varphi \in PSH(X, \theta)$, *then*

$$P_{\theta}[\varphi] \leq P_{\theta}[\varphi]_{\mathcal{I}}, \quad \varphi \sim_{\mathcal{I}} P_{\theta}[\varphi].$$

Proof It suffices to show that $\varphi \sim_I P_\theta[\varphi]$. Namely, for each $k \in \mathbb{Z}_{>0}$, we have

$$I(k\varphi) = I(kP_{\theta}[\varphi]). \tag{3.23}$$

Fix k for now. It follows from (3.3) and the strong openness theorem Theorem 1.4.4 that

$$I(kP_{\theta}[\varphi]) = I((k\varphi + C) \wedge kV_{\theta})$$

when C is large enough. Since $(k\varphi + C) \wedge kV_{\theta} \sim k\varphi$, we have

$$I((k\varphi + C) \wedge kV_{\theta}) = I(k\varphi)$$

and (3.23) follows.

cor:compnppmassandvol

Corollary 3.2.1 *Let* $\varphi \in PSH(X, \theta)$, then

$$\int_X \theta_{\varphi}^n \le \operatorname{vol} \theta_{\varphi}.$$

Proof This follows from Proposition 3.2.8, Theorem 2.3.2 and Proposition 3.1.3. □

The reverse inequality fails in general, see Example 7.1.3.

We note the following special case:

Proposition 3.2.9 Let $\varphi \in PSH(X, \theta)$. Assume that φ has analytic singularities, then

$$\varphi \sim P_{\theta}[\varphi] \sim P_{\theta}[\varphi]_{I}$$
.

Proof In view of Proposition 3.2.8, it suffices to show that

$$P_{\theta}[\varphi]_{\mathcal{T}} \le \varphi. \tag{3.24}$$

{eq:Pprecvarphitemp1}

{eq:IkvarphiIkP}

By Proposition 3.2.5, Proposition 3.1.5 and Theorem 1.6.1, we may assume that φ has log singularities along an effective \mathbb{Q} -divisor D. By rescaling using Proposition 3.2.10, we may assume that D is a divisor. Take quasi-equisingular approximations $(\eta_j)_j$ and $(\varphi_j)_j$ of $P_{\theta}[\varphi]_{\mathcal{I}}$ and of φ respectively. Recall that by Theorem 1.6.2, we can guarantee that η_j and φ_j both have the singularity type $(2^{-j}, \mathcal{I}(2^j\varphi))$ and hence $\eta_j \sim \varphi_j$ for all large enough j. On the other hand, it is clear that $\varphi_j \sim \varphi$ for all $j \geq 1$. So (3.24) follows.

3.2.3 Properties of the *I*-envelope

Let θ , θ_1 , θ_2 be smooth closed real (1, 1)-forms on X.

We have the following concavity property of the I-envelope.

prop:analysingcompPandPI

prop:PIconc

Proposition 3.2.10

(1) Suppose that $\varphi \in PSH(X, \theta)$ and $\lambda \in \mathbb{R}_{>0}$, then

$$P_{\lambda\theta}[\lambda\varphi]_{\mathcal{I}} = \lambda P_{\theta}[\varphi]_{\mathcal{I}}.$$

(2) Suppose that $\varphi_1 \in PSH(X, \theta_1)$ and $\varphi_2 \in PSH(X, \theta_2)$, then

$$P_{\theta_1+\theta_2}[\varphi_1+\varphi_2]_{\mathcal{I}} \geq P_{\theta_1}[\varphi_1]_{\mathcal{I}} + P_{\theta_2}[\varphi_2]_{\mathcal{I}}.$$

(3) Suppose that $\varphi_1 \in PSH(X, \theta_1)$ and $\varphi_2 \in PSH(X, \theta_2)$, then

$$P_{\theta_1+\theta_2}[\varphi_1+\varphi_2]_I \sim_I P_{\theta_1}[\varphi_1]_I + P_{\theta_2}[\varphi_2]_I.$$

(4) Suppose that $\varphi_1, \varphi_2 \in PSH(X, \theta)$, then

$$P_{\theta}[\varphi_1 \vee \varphi_2]_{\mathcal{I}} \sim_{\mathcal{I}} P_{\theta}[\varphi_1]_{\mathcal{I}} \vee P_{\theta}[\varphi_2]_{\mathcal{I}}.$$

Proof (1) This is obvious by definition.

(2) Suppose that $\psi_1 \in PSH(X, \theta_1)$ and $\psi_2 \in PSH(X, \theta_2)$ satisfy

$$\psi_i \leq 0$$
, $\psi_i \sim_I \varphi_i$

for i = 1, 2. Then thanks to Proposition 3.2.3,

$$\psi_1+\psi_2\leq 0,\quad \psi_1+\psi_2\sim_I \varphi_1+\varphi_2.$$

It follows that

$$\psi_1 + \psi_2 \le P_{\theta_1 + \theta_2} [\varphi_1 + \varphi_2]_I.$$

Since ψ_1 and ψ_2 are arbitrary, we conclude.

(3) and (4) These follow easily from Proposition 3.2.6 and Proposition 3.2.3.

lma:PIenvmono1

Lemma 3.2.1 Let $\varphi, \psi \in PSH(X, \theta)$. Assume that $\varphi \leq \psi$, then

$$P_{\theta}[\varphi]_{\mathcal{I}} \leq P_{\theta}[\psi]_{\mathcal{I}}.$$

Proof It suffices to observe that $P_{\theta}[\varphi]_{\mathcal{I}} \vee \psi \sim_{\mathcal{I}} \psi$ as a consequence of Proposition 1.4.2 and Proposition 3.2.6.

prop:decnetmodelPI

Proposition 3.2.11 Consider a decreasing net $(\varphi_i)_{i \in I}$ of model potentials in $PSH(X, \theta)_{>0}$. Suppose that $\varphi := \inf_{i \in I} \varphi_i \not\equiv -\infty$ and $\int_X \theta_{\varphi}^n > 0$. Then

$$\inf_{i \in I} P_{\theta}[\varphi_i]_{\mathcal{I}} = P_{\theta}[\varphi]_{\mathcal{I}}.$$

Proof Let $\eta = \inf_{i \in I} P_{\theta}[\varphi_i]_{\mathcal{I}}$. We clearly have $\eta \geq P_{\theta}[\varphi]_{\mathcal{I}}$ as a consequence of Lemma 3.2.1.

By Proposition 3.1.9, we have

$$\lim_{i \in I} \int_X \theta_{\varphi_i}^n = \int_X \theta_{\varphi}^n > 0.$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_i \setminus 0$ $(i \in I)$ with $\epsilon_i \in (0, 1)$ and $\psi_i \in PSH(X, \theta)$ such that for all $i \in I$,

$$(1 - \epsilon_i)\varphi_i + \epsilon_i\psi_i \leq \varphi.$$

By Proposition 3.2.10 and Lemma 3.2.1, we have

$$\eta + \epsilon_i P_\theta[\psi_i]_\mathcal{I} \leq (1 - \epsilon_i) \eta + \epsilon_i P_\theta[\psi_i]_\mathcal{I} \leq (1 - \epsilon_i) P_\theta[\varphi_i]_\mathcal{I} + \epsilon_i P_\theta[\psi_i]_\mathcal{I} \leq P_\theta[\varphi]_\mathcal{I}.$$

Taking limit with respect to *i*, we conclude that $\eta \leq P_{\theta}[\varphi]_{\mathcal{I}}$.

prop:incnetmodelPI

Proposition 3.2.12 Let $(\varphi_i)_{i \in I}$ be an increasing net in $PSH(X, \theta)_{>0}$ uniformly bounded from above. Let $\varphi := \sup_{i \in I} \varphi_i$. Then

$$\sup_{i \in I} P_{\theta}[\varphi_i]_{\mathcal{I}} = P_{\theta}[\varphi]_{\mathcal{I}}.$$

In particular, if the φ_i 's are all I-model, then so is φ .

Proof Let $\eta = \sup_{i \in I} P_{\theta}[\varphi_i]_I$. Then $\eta \leq P_{\theta}[\varphi]_I$ as a consequence of Lemma 3.2.1.

By Corollary 2.3.1, we have

$$\lim_{i \in I} \int_X \theta_{\varphi_i}^n = \int_X \theta_{\varphi}^n > 0.$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_i \setminus 0$ ($i \in I$) with $\epsilon_i \in (0, 1)$ and $\psi_i \in PSH(X, \theta)$ such that for all $i \in I$,

$$(1 - \epsilon_i)\varphi + \epsilon_i\psi_i \leq \varphi_i$$
.

By Proposition 3.2.10 and Lemma 3.2.1, we have

$$P_{\theta}[\varphi]_{I} + \epsilon_{i} P_{\theta}[\psi_{i}]_{I} \leq (1 - \epsilon_{i}) P_{\theta}[\varphi]_{I} + \epsilon_{i} P_{\theta}[\psi_{i}]_{I} \leq P_{\theta}[\varphi_{i}]_{I} \leq \eta.$$

Taking limit with respect to i, we conclude that $\eta \geq P_{\theta}[\varphi]_{I}$.

Remark 3.2.1 One could also define the following interpolation between the I-envelope and the P-envelope: Suppose $\varphi \in \mathrm{PSH}(X,\theta)_{>0}, j \in \{0,\ldots,n\}$. Then we let

$$\begin{split} P_{\theta,j}[\varphi] \coloneqq \sup^* \left\{ & \psi \in \mathrm{PSH}(X,\theta) : \psi \leq 0, \varphi \leq \psi, \int_X \theta_\varphi^j \wedge \theta_{P_\theta[\varphi]_I}^{n-j} \\ & = \int_X \theta_\psi^j \wedge \theta_{P_\theta[\psi]_I}^{n-j} \right\}. \end{split}$$

Based on the techniques developed in Chapter 6, one could show that $P_{\theta,j}[\bullet]$ is a projection operator. When j=n, this operator reduces to the P-envelope, while when j=0, this operator reduces to the \mathcal{I} -envelope.

Chapter 4

Geodesic rays in the space of potentials

In den Dreißiger Jahren besuchte ich regelmäßig die Schweiz, teils um mich auch auf den Viertausendern zu tummeln, zum großen Teil aber auch, um Emigrantenblätter zu lesen und mich mit Kollegen über Naziverbrechen zu unterhalten. Aber auch die Schweizer schauten sich, wenn sie offen reden wollten, ebenso ängstlich um wie das bei uns üblich war.^a — Oskar Perron^b

chap:rays

In this chapter, we study subgeodesics and geodesics in the space of quasiplurisubharmonic functions. Unlike what one usually finds in the literature, here we are carrying out the constructions in the space of Kähler potentials with prescribed singularities. The usual regularization techniques break down in this setup.

The results in Section 4.2 seem to be new, although they have been applied without proofs in the literature.

4.1 Subgeodesics

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real (1, 1)-form on X representing a big cohomology class.

def:subgeod

Definition 4.1.1 Let us fix $\varphi_0, \varphi_1 \in PSH(X, \theta)$. A *subgeodesic* from φ_0 to φ_1 is a family $(\varphi_t)_{t \in (0,1)}$ in $PSH(X, \theta)$ such that

(1) if we define

$$\Phi \colon X \times \{z \in \mathbb{C} : e^{-1} < |z| < 1\} \to [-\infty, \infty), \quad (x, z) \mapsto \varphi_{-\log|z|}(x),$$

then Φ is $p_1^*\theta$ -psh, where $p_1: X \times \{z \in \mathbb{C} : e^{-1} < |z| < 1\} \to X$ is the natural projection;

(2) when $t \to 0+$ (resp. to 1–), φ_t converges to φ_0 (resp. φ_1) with respect to the L^1 -topology.

We also say $(\varphi_t)_{t \in [0,1]}$ is a subgeodesic.

We call Φ the *complexification* of the subgeodesic $(\varphi_t)_t$.

^a The recent policy of ETH against Chinese students makes me feel that nothing has changed in Switzerland after the collapsing of Nazi for almost 80 years.

^b Oskar Perron (1880—1975), after earning himself an *Eisernes Kreuz* during WWI, obtained a position in München in 1922, initiating the glorious period of München. Among his colleagues are Carathéodory, Tietze and Sommerfield.

When we do not want to specify φ_0 and φ_1 , we shall say $(\varphi_t)_{t\in(0,1)}$ is a subgeodesic.

In general, there are no subgeodesics from φ_0 to φ_1 . In fact, the existence of a subgeodesic implies that $\varphi_0 \wedge \varphi_1 \not\equiv -\infty$ by Proposition 4.1.2, which does not always hold as we show in Example 5.2.3.

We first note that the subgeodesics are well-behaved under the change of θ :

prop:subgeodindeptheta

Proposition 4.1.1 *Let* g *be a smooth real function on* X. *Let* $\theta' = \theta + \mathrm{dd}^{\mathrm{c}} g$. *Suppose that* $(\varphi_t)_{t \in [0,1]}$ *is a subgeodesic in* $\mathrm{PSH}(X,\theta)$. *Then* $(\varphi_t - g)_{t \in [0,1]}$ *is a subgeodesic in* $\mathrm{PSH}(X,\theta')$.

Proof This follows trivially by definition.

ex:linearsubgeod

Example 4.1.1 Let $\varphi_0 \in PSH(X, \theta)$, $C \in \mathbb{R}$. Let

$$\varphi_t = \varphi_0 + tC, \quad t \in (0, 1].$$

Then $(\varphi_t)_{t \in [0,1]}$ is a subgeodesic.

For this purpose, it suffices to observe that $\log |z|$ is a harmonic function in z when |z| > 0.

As a consequence, the constant $(\varphi_0)_{t \in [0,1]}$ is a subgeodesic, called the *constant subgeodesic* at φ_0 .

A more general version is as follows: Suppose that $(\varphi_t)_{t \in [0,1]}$ is a subgeodesic in PSH $(X, \theta), C_1, C_2 \in \mathbb{R}$, then $(\varphi_t + C_1t + C_2)_{t \in [0,1]}$ is also a subgeodesic.

prop:convexsubgeod

Proposition 4.1.2 *Let* $\varphi_0, \varphi_1 \in PSH(X, \theta)$ *and* $(\varphi_t)_{t \in (0,1)}$ *be a subgeodesic from* φ_0 *to* φ_1 . *Then for each* $x \in X$, $[0,1] \ni t \mapsto \varphi_t(x)$ *is a convex function. In particular,*

$$\inf_{t \in (0,1)} \varphi_t \in \mathrm{PSH}(X,\theta), \quad \inf_{t \in (0,1)} \varphi_t \le \varphi_0 \wedge \varphi_1.$$

Proof For each $x \in X$, the map

$$\{z \in \mathbb{C} : e^{-1} < |z| < 1\} \rightarrow [-\infty, \infty), \quad z \mapsto \Phi(x, z)$$

is either subharmonic or constantly $-\infty$, as follows from Definition 4.1.1 (1) and Proposition 1.1.4. In the latter case, the convexity of $[0, 1] \ni t \mapsto \varphi_t(x)$ is trivial. In the former case, the convexity on the interval (0, 1) follows from Proposition 1.1.3.

In order to verify the convexity at the boundary, let us fix $s \in (0, 1)$. We need to show that

$$\varphi_s(x) \le s\varphi_1(x) + (1 - s)\varphi_0(x) \tag{4.1}$$

{eq:varphisconvextemp1}

for all $x \in X$. Thanks to Proposition 1.2.6, it suffices to prove this for almost all x. Take a set $Z \subseteq X$ with zero Lebesgue measure such that for all $x \in X \setminus Z$, we have

- (1) $\varphi_t(x) \neq -\infty$ for all $t \in [0, 1] \cap \mathbb{Q}$;
- (2) $\varphi_t(x) \to \varphi_0(x)$ as $t \to 0+$ and $\varphi_t(x) \to \varphi_1(x)$ as $t \to 1-$.

For all such x, the convexity of $\varphi_t(x)$ for $t \in (0, 1)$ guarantees that $\varphi_t(x) \neq -\infty$ for all $t \in [0, 1]$ and $t \mapsto \varphi_t(x)$ is convex for $t \in [0, 1]$. In particular, (4.1) holds.

Let us prove the last assertion. Let

$$\varphi \coloneqq \inf_{t \in (0,1)} \varphi_t.$$

By Kiselman's principle Proposition 1.2.8¹, we know that $\varphi \in PSH(X, \theta) \cup \{-\infty\}$. Take $x \in X$ so that

$$\lim_{t \to 0+} \varphi_t(x) = \varphi_0(x) \neq -\infty, \quad \lim_{t \to 1-} \varphi_t(x) = \varphi_1(x) \neq -\infty.$$

Then $\varphi(x) \neq -\infty$. Hence we conclude that $\varphi \in PSH(X, \theta)$. For any $t \in (0, 1)$, using the convexity established above, we have

$$\varphi \leq (1-t)\varphi_1 + t\varphi_0.$$

It follows that $\varphi \leq \varphi_0$, $\varphi \leq \varphi_1$ almost everywhere and hence everywhere by Proposition 1.2.6. Our assertion follows.

prop:maxsubgeod

Proposition 4.1.3 Let $(\varphi_0^i)_{i\in I}$, $(\varphi_1^i)_{i\in I}$ be two non-empty uniformly bounded from above families in $PSH(X,\theta)$. Let $(\varphi_t^i)_{t\in(0,1)}$ be subgeodesics from φ_0^i to φ_1^i for each $i\in I$. Then

$$\left(\sup_{i\in I}^* \varphi_t^i\right)_{t\in(0,1)}$$

is a subgeodesic from $\sup_{i} \varphi_0^i$ to $\sup_{i} \varphi_1^i$.

Proof We may assume that $\varphi_0^i, \varphi_1^i \le 0$ for all $i \in I$. Then it follows that $\varphi_t^i \le 0$ for all $t \in (0, 1)$ and all $i \in I$ by Proposition 4.1.2.

We define

$$\varphi_t \coloneqq \sup_{i \in I} \varphi_t^i \in \mathrm{PSH}(X, \theta)$$

for all $t \in [0, 1]$. Observe that $[0, 1] \ni t \mapsto \varphi_t$ is convex by the same argument leading to (4.1).

Let $(\psi_t)_{t\in(0,1)}$ be the subgeodesic whose complexification Φ_{ψ} corresponds to $\sup_i \Phi_{\varphi^i}$, where Φ_{φ^i} is the complexification of $(\varphi_t^i)_{t\in(0,1)}$. Then clearly, $\varphi_t \leq \psi_t$ for each $t \in (0,1)$. On the other hand, by Proposition 1.2.5,

$$\psi_t = \sup_{i \in I} \varphi_t^i = \varphi_t$$
 almost everywhere

for almost all $t \in (0, 1)$. Therefore, using Proposition 1.2.6, we find $\psi_t = \varphi_t$ for almost all $t \in (0, 1)$. Since both functions are convex in t, we conclude that $\psi_t = \varphi_t$ for all $t \in (0, 1)$.

It remains to argue that $\varphi_t \xrightarrow{L^1} \varphi_0$ as $t \to 0+$ and $\varphi_t \xrightarrow{L^1} \varphi_1$ as $t \to 1-$. By symmetry, it suffices to argue the former.

Thanks to Proposition 1.2.2, we may further assume that I is a countable set. We know that for any $t \in (0, 1)$ and any $j \in I$,

$$\varphi_t^j \le \varphi_t \le t\varphi_1 + (1-t)\varphi_0.$$

¹ Applied the the universal cover of the annulus.

Letting $t \to 0+$, we find that

$$\varphi_0^j \le \overline{\lim}_{t \to 0+} \varphi_t \le \varphi_0$$

almost everywhere. Since I is countable, we conclude that

$$\varphi_0 = \overline{\lim}_{t \to 0+} \varphi_t \tag{4.2}$$
 {eq:varphi0limsuptemp1}

almost everywhere.

Fix $i_0 \in I$. Recall that by Proposition 4.1.2, for each $t \in (0, 1)$, we have

$$\inf_{t \in (0,1)} \sup_X \varphi_t \geq \inf_{t \in (0,1)} \sup_X \varphi_t^{i_0} \geq \sup_X \left(\varphi_0^{i_0} \wedge \varphi_1^{i_0} \right) > -\infty,$$

so the set $\{\varphi_t\}_{t\in(0,1)}$ is relatively compact with respect to the L^1 -topology by Proposition 1.5.1. Let ψ be a cluster point as $t\to 0+$. It suffices to show that $\psi=\varphi_0$. By Corollary 1.2.1 and (4.2), this holds almost everywhere. Therefore, it holds everywhere by Proposition 1.2.6.

prop:subgeodrestsubgeod

Proposition 4.1.4 Let $(\varphi_t)_{t \in [0,1]}$ be a subgeodesic. Then for any $0 \le a \le b \le 1$, the segment $(\varphi_{tb+(1-t)a})_{t \in [0,1]}$ is a subgeodesic.

Proof It suffices to show that

$$\varphi_{tb+(1-t)a} \xrightarrow{L^1} \varphi_a, \quad \varphi_{tb+(1-t)a} \xrightarrow{L^1} \varphi_b$$

as $t \to 0+$ and $t \to 1-$ respectively. In other words, we need to show that for any $c \in (0,1)$, we have

$$\varphi_t \xrightarrow{L^1} \varphi_c$$

as $t \to c$. For this purpose, observe that by Proposition 4.1.2,

$$\sup_{X} \inf_{s \in (0,1)} \varphi_t \le \sup_{X} \varphi_t \le \sup_{X} \varphi_0 + \sup_{X} \varphi_1$$

for any $t \in (0, 1)$. Therefore, $\{\varphi_t\}_{t \in (0, 1)}$ is a relatively compact family with respect to the L^1 -topology on PSH (X, θ) by Proposition 1.5.1. It suffices to show that any cluster point ψ of φ_t as $t \to c$ is equal to φ_c . By Corollary 1.2.1 and the convexity Proposition 4.1.2, we have $\varphi_c = \psi$ almost everywhere and hence everywhere by Proposition 1.2.6.

4.2 Geodesics in the space of potentials

sec:relativeray

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real (1,1)-form on X representing a big cohomology class. Fix a model potential $\phi \in \text{PSH}(X,\theta)_{>0}$. See Definition 3.1.3 for the definition.

Definition 4.2.1 Let $\varphi_0, \varphi_1 \in \mathcal{E}(X, \theta; \phi)$. The *geodesic* $(\varphi_t)_{t \in (0,1)}$ from φ_0 to φ_1 is the family of potentials $\varphi_t \in \text{PSH}(X, \theta)$ such that

$$\varphi_t = \sup^* \{ \psi_t : (\psi_s)_s \text{ is a subgeodesic from } \psi_0 \text{ to } \psi_1, \\ \psi_0, \psi_1 \in \text{PSH}(X, \theta), \psi_0 \leq \varphi_0, \psi_1 \leq \varphi_1 \}.$$

$$(4.3)$$

We refer to Section 3.1.3 for the definition of $\mathcal{E}(X,\theta;\phi)$. The envelopes of the form (4.3) are usually referred to as the *Perron envelopes*.

ex:lineargeod

Example 4.2.1 Let $\varphi_0 \in \text{PSH}(X, \theta)$ and $C \in \mathbb{R}$. Then the subgeodesic $(\varphi_0 + tC)_{t \in [0,1]}$ studied in Example 4.1.1 is a geodesic. This follows easily from Proposition 4.1.2.

In particular, when C = 0, we find that the constant subgeodesic at φ_0 is indeed a geodesic, which we call the *constant geodesic* at φ .

More generally, suppose that $(\varphi_t)_{t \in [0,1]}$ is a geodesic and $C_1, C_2 \in \mathbb{R}$, then $(\varphi_t + C_1t + C_2)_{t \in [0,1]}$ is also a geodesic. This follows immediately from Example 4.1.1.

def:geod2

Definition 4.2.2 Let $(\varphi_t)_{t \in [a,b]}$ $(a,b \in \mathbb{R}, a \le b)$ be a curve in $\mathcal{E}(X,\theta;\phi)$. We say $(\varphi_t)_{t \in [a,b]}$ is a *geodesic* if the curve $(\varphi_{t(b-a)+a})_{t \in (0,1)}$ is a geodesic from φ_a to φ_b . We also say $(\varphi_t)_{t \in [a,b]}$ or $(\varphi_t)_{t \in (a,b)}$ is a geodesic in $\mathcal{E}(X,\theta;\phi)$ from φ_a to φ_b .

prop:perronenvissubgeod

Proposition 4.2.1 Given $\varphi_0, \varphi_1 \in \mathcal{E}(X, \theta; \phi)$, the geodesic $(\varphi_t)_{t \in (0,1)}$ from φ_0 to φ_1 is a subgeodesic from φ_0 to φ_1 and $\varphi_t \in \mathcal{E}(X, \theta; \phi)$ for each $t \in (0, 1)$.

Moreover, for any $0 \le a \le b \le 1$, the restriction $(\varphi_t)_{t \in [a,b]}$ is a geodesic. If furthermore $\varphi_0, \varphi_1 \in \mathcal{E}^1(X,\theta;\phi)$ (resp. $\mathcal{E}^{\infty}(X,\theta;\phi)$), then $\varphi_t \in \mathcal{E}^1(X,\theta;\phi)$ (resp. $\mathcal{E}^{\infty}(X,\theta;\phi)$) for all $t \in (0,1)$.

Proof Without loss of generality, we may assume that $\varphi_0, \varphi_1 \leq \phi$. It follows from Proposition 4.1.2 that $\varphi_t \leq \phi$ for all $t \in (0, 1)$. In fact, we have the stronger estimate

$$\varphi_t \le t\varphi_1 + (1-t)\varphi_0, \quad t \in (0,1).$$
 (4.4)

{eq:geodesicconvextemp1}

We first observe that when $\varphi_0, \varphi_1 \in \mathcal{E}(X, \theta; \phi)$, so is $\varphi_0 \wedge \varphi_1$, see Proposition 3.1.13. In particular, the constant subgeodesic $t \mapsto \varphi_0 \wedge \varphi_1$ is a candidate in (4.3). So

$$\varphi_t \ge \varphi_0 \land \varphi_1, \quad t \in (0,1).$$
(4.5)

{eq:varphitgeqlandtemp1}

By Proposition 4.1.3, $(\varphi_t)_{t \in (0,1)}$ is a subgeodesic. It follows from Proposition 3.1.14 that $\varphi_t \in \mathcal{E}(X, \theta; \phi)$ for all $t \in (0,1)$.

Next, we show that as $t \to 0+$, we have $\varphi_t \xrightarrow{L^1} \varphi_0$. The corresponding result at t = 1 is similar.

We first argue the special case where $\varphi_0 \leq \varphi_1$. Take a constant C > 0 such that

$$\varphi_0 - C \leq \varphi_1$$
.

Then $(\varphi_0 - Ct)_{t \in (0,1)}$ is clearly a candidate in (4.3), see Example 4.1.1. Therefore, for all $t \in (0,1)$,

$$\varphi_0 - Ct \le \varphi_t \le t\varphi_1 + (1 - t)\varphi_0. \tag{4.6}$$

{eq:varphi0andvarphit}

It follows that $\varphi_t \xrightarrow{L^1} \varphi_0$ as $t \to 0+$.

Let us come back to the general case. By (4.4) and (4.5), we know that for all $t \in (0, 1)$,

$$\sup_{X} \varphi_0 \wedge \varphi_1 \leq \sup_{X} \varphi_t \leq (\sup_{X} \varphi_0) \vee (\sup_{X} \varphi_1).$$

It follows from Proposition 1.5.1 that $\{\varphi_t : t \in (0,1)\}$ is a relatively compact subset of PSH (X,θ) with respect to the L^1 -topology.

Let ψ be an L^1 -cluster point of φ_t as $t \setminus 0$, it suffices to show that $\psi = \varphi_0$. For each $M \in \mathbb{N}$, we write

$$\varphi_0^M = \varphi_0 \wedge (\varphi_1 + M).$$

Observe that $\varphi_0^M \in \mathcal{E}(X,\theta;\phi)$ by Proposition 3.1.13. Let $(\varphi_t^M)_{t \in (0,1)}$ be the geodesic from φ_0^M to φ_1 . Then it is clear that $\varphi_t^M \leq \varphi_t$ for all $t \in (0,1)$. Therefore,

$$\psi \ge \varphi_0 \wedge (\varphi_1 + M)$$

almost everywhere hence everywhere by Proposition 1.2.6. On the other hand, by (4.4), $\psi \le \varphi_0$. So it suffices to show that

$$\varphi_0 \wedge (\varphi_1 + M) \xrightarrow{L^1} \varphi_0$$

as $M \to \infty$, which is shown in Proposition 3.1.16.

Next, take $0 \le a \le b \le 1$. We want to show that the restriction $(\varphi_t)_{t \in [a,b]}$ is the geodesic from φ_a to φ_b . We may assume that a < b. The argument is the standard *balayage* argument.

Let $(\psi_t)_{t \in (a,b)}$ be the (reparameterized) geodesic from φ_a to φ_b . Since $(\varphi_t)_{t \in [a,b]}$ is a (reparameterized) subgeodesic by Proposition 4.1.4. we have $\psi_t \ge \varphi_t$ for all $t \in (a,b)$.

We define

$$\eta_t = \begin{cases} \psi_t, & \text{if } t \in (a, b), \\ \varphi_t, & \text{if } t \in (0, 1) \setminus (a, b). \end{cases}$$

We claim that $(\eta_t)_{t\in(0,1)}$ is a subgeodesic from φ_0 to φ_1 . This is clear by Lemma 1.2.2 when neither a=0 nor b=1. Next we handle the case where a=0. By the previous part of the proof, we know that $\psi_t \xrightarrow{L^1} \varphi_0$ as $t \to 0+$. But $\psi_t = \eta_t = \eta_t'$ for $t \in (0,b)$. Hence $\eta_t' \xrightarrow{L^1} \varphi_0$ as $t \to 0+$. The case b=1 is handled similarly.

Therefore, for all $t \in (0, 1)$, we have

$$\varphi_t \geq \eta_t$$
.

In particular, for $t \in (a, b)$, we have

$$\varphi_t \ge \eta_t = \psi_t \ge \varphi_t$$
.

In other words, $(\varphi_t)_{t\in(a,b)} = (\psi_t)_{t\in(a,b)}$ is the (reparametrized) geodesic from φ_a to φ_b .

Finally, assume furthermore that $\varphi_0, \varphi_1 \in \mathcal{E}^1(X, \theta; \phi)$ (resp. $\mathcal{E}^{\infty}(X, \theta; \phi)$). Thanks to (4.5), Proposition 3.1.13 and Proposition 3.1.14, we find $\varphi_t \in \mathcal{E}^1(X, \theta; \phi)$ (resp. $\mathcal{E}^{\infty}(X, \theta; \phi)$) for all $t \in (0, 1)$.

In general, I suspect that the existence of subgeodesics can be characterized by the following condition:

conj:geodexistPequiv

Conjecture 4.2.1 Let $\varphi_0, \varphi_1 \in PSH(X, \theta)_{>0}$. Then the following are equivalent:

- (1) There is a subgeodesic from φ_0 to φ_1 ;
- (2) we have $P_{\theta}[\varphi_0] = P_{\theta}[\varphi_1]$.

Note that (2) implies (1) as follows from Proposition 4.2.1. The conjecture is obvious in the toric case, beyond which I do not know any non-trivial cases.²

prop:geodsupsublinear

Proposition 4.2.2 Let $\varphi_1, \varphi_0 \in \mathcal{E}(X, \theta; \phi)$ with $\varphi_1 \leq \varphi_0$. Let $(\varphi_t)_{t \in (0,1)}$ be the geodesic from φ_0 to φ_1 . Then

$$s \sup_{\{\varphi_0 \neq -\infty\}} (\varphi_1 - \varphi_0) = \sup_{\{\varphi_0 \neq -\infty\}} (\varphi_s - \varphi_0)$$
 (4.7) [eq:tsupsuptemp1]

for all $s \in [0, 1]$.

Proof The notations in the proof are indicated in Fig. 4.1.3

We may assume that $s \in [0, 1)$ since there is nothing to prove when s = 1.

After replacing φ_t by $\varphi_t - C't$ for some large enough C' > 0, we may assume that $\varphi_1 \le \varphi_0$. This procedure preserves the geodesic property by Example 4.2.1.

Since the constant geodesic at φ_1 is a candidate in (4.3), it follows that $\varphi_1 \leq \varphi_t$ for all $t \in [0, 1]$. Similarly, $[0, 1] \ni t \mapsto \varphi_t$ is decreasing.

Let

$$C = \sup_{\{\varphi_1 \neq -\infty\}} (\varphi_1 - \varphi_0) \le 0. \tag{4.8}$$

{eq:Cdefsupvarphi1m0temp1}

Then by Proposition 1.2.6, we have

$$\varphi_1 \leq \varphi_0 + C$$
.

So $(\varphi_1 - C(1-t))_{t \in (0,1)}$ is a candidate in (4.3) and hence

$$\varphi_1 - C(1-t) \le \varphi_t, \quad t \in (0,1).$$
 (4.9)

{eq:varphi1leqvarphittemp}

² The conjecture can be easily reduced to the following assertion: Let $S = \{z \in \mathbb{C} : 0 < \text{Re } z < 1\}$ and $\pi \colon X \times S \to X$ be the projection. Suppose that $\Phi \in \text{PSH}(X \times S, \pi^* \theta)$ is a function independent of the imaginary part of the variable in S. Then the map $z \mapsto \int_X \left(\theta + \text{dd}_x^c \Phi(x, z)\right)^n$ is constant for $z \in S$.

³ When dealing with convex functions, drawing a picture is the easiest way to keep track of the directions of inequalities.

Fig. 4.1 The typical behavior of $\varphi_t(x)$

fig:convphi

By Proposition 4.2.1, we have $\varphi_t \xrightarrow{L^1} \varphi_1$ as $t \to 1-$. Since φ_t is decreasing in $t \in (0,1)$. It follows that $\varphi_1 = \inf_{t \in (0,1)} \varphi_t$. Therefore, we can find a pluripolar set $Z \subseteq X$ such that $\varphi_t(x) \to \varphi_1(x) > -\infty$ as $t \to 1$ - for all $x \in X \setminus Z$.

Similarly, since $\varphi_0 = \sup_{t \in (0,1)} \varphi_t$, after enlarging Z, we may also guarantee that $\varphi_t(x) \to \varphi_0(x) > -\infty$ as $t \to 0+$ for all $x \in X \setminus Z$ by Proposition 1.2.5.

For any such $x \in X \setminus Z$, the function $t \mapsto \varphi_t(x)$ is a real-valued continuous convex function on [0, 1]. In particular, $t \mapsto \varphi_t(x)$ is absolutely continuous on [0, 1]. Hence, for any $s \in [0, 1)$, we have

$$\varphi_1(x) - \varphi_s(x) = \int_s^1 \frac{\mathrm{d}}{\mathrm{d}t} \varphi_t(x) \, \mathrm{d}t \le (1 - s) \lim_{t \to 1^-} \frac{\varphi_1(x) - \varphi_t(x)}{1 - t} \le (1 - s)C, \quad (4.10) \quad \text{{eq:varphi1minusvarphi0temp1}}$$

where the second inequality follows from (4.9).

Taking supremum in (4.10), we find that

$$\sup_{X \setminus Z} (\varphi_1 - \varphi_s) \le (1 - s) \sup_{x \in X \setminus Z} \lim_{t \to 1^-} \frac{\varphi_1(x) - \varphi_t(x)}{1 - t} \le (1 - s)C. \tag{4.11}$$
 [eq:supvarphi1sleqleqtemp1]

When s = 0, we deduce from Corollary 1.3.5 and (4.8) that

$$\sup_{\{\varphi_1 \neq -\infty\}} (\varphi_1 - \varphi_0) = \sup_{x \in X \setminus Z} \lim_{t \to 1-} \frac{\varphi_1(x) - \varphi_t(x)}{1 - t}.$$

But this equality works equally well for the geodesic $(\varphi_{(1-s)t+s})_{t\in[0,1]}$. It follows that

{eq:supvarphi1mivarphi0temp1}

$$\sup_{\{\varphi_1\neq-\infty\}}(\varphi_1-\varphi_s)=(1-s)\sup_{x\in X\setminus Z}\lim_{t\to 1-}\frac{\varphi_1(x)-\varphi_t(x)}{1-t}=(1-s)C.$$

Therefore, invoking Corollary 1.3.5 again, we deduce that all inequalities in (4.11) are in fact equalities. In other words,

$$\sup_{\{\varphi_1 \neq -\infty\}} (\varphi_1 - \varphi_0) = \sup_{x \in X \setminus Z} \lim_{t \to 1^-} \frac{\varphi_1(x) - \varphi_t(x)}{1 - t} = \sup_{\{\varphi_1 \neq -\infty\}} \frac{\varphi_1 - \varphi_s}{1 - s}. \tag{4.12}$$

On the other hand, we have the trivial inequality

$$\sup_{\{\varphi_1\neq -\infty\}} (\varphi_1-\varphi_0) \leq s \sup_{\{\varphi_1\neq -\infty\}} \frac{\varphi_s-\varphi_0}{s} + (1-s) \sup_{\{\varphi_1\neq -\infty\}} \frac{\varphi_1-\varphi_s}{1-s}.$$

Together with (4.12), we find that

$$\sup_{\{\varphi_1\neq -\infty\}} (\varphi_1 - \varphi_0) \leq \sup_{\{\varphi_1\neq -\infty\}} \frac{\varphi_s - \varphi_0}{s}.$$

The reverse inequality follows from the convexity,

$$\sup_{\{\varphi_1 \neq -\infty\}} \frac{\varphi_s - \varphi_0}{s} = \sup_{\{\varphi_1 \neq -\infty\}} (\varphi_1 - \varphi_0).$$

Using Corollary 1.3.5, we conclude (4.7).

With an almost identical proof, we find

nron: geodinfsuhlinear

Proposition 4.2.3 Let $\varphi_1, \varphi_0 \in \mathcal{E}^{\infty}(X, \theta; \phi)$. Let $(\varphi_t)_{t \in (0,1)}$ be the geodesic from φ_0 to φ_1 . Then

$$t \inf_{\{\phi \neq -\infty\}} (\varphi_1 - \varphi_0) = \inf_{\{\phi \neq -\infty\}} (\varphi_t - \varphi_0)$$

for all $t \in (0, 1]$.

Definition 4.2.3 Let $\ell = (\ell_t)_{t \geq 0}$ be a curve in $\mathcal{E}(X, \theta; \phi)$. We say ℓ is a *geodesic ray* in $\mathcal{E}(X, \theta; \phi)$ emanating from ℓ_0 if for each $0 \leq a \leq b$, the restriction $(\ell_t)_{t \in [a,b]}$ is a geodesic.

The set of geodesic rays in $\mathcal{E}(X, \theta; \phi)$ emanating from ϕ is denoted by $\mathcal{R}(X, \theta; \phi)$. We say a geodesic ray $\ell \in \mathcal{R}(X, \theta; \phi)$ has *finite energy* if $\ell_t \in \mathcal{E}^1(X, \theta; \phi)$ for all t > 0. The set of geodesic rays with finite energy is denoted by $\mathcal{R}^1(X, \theta; \phi)$.

We say a geodesic ray $\ell \in \mathcal{R}(X, \theta; \phi)$ is *bounded* if $\ell_t \in \mathcal{E}^{\infty}(X, \theta; \phi)$ for all $t \geq 0$. The set of bounded geodesic rays is denoted by $\mathcal{R}^{\infty}(X, \theta; \phi)$.

Given $\ell, \ell' \in \mathcal{R}(X, \theta; \phi)$, we write $\ell \leq \ell'$ if $\ell_t \leq \ell'_t$ for each $t \geq 0$.

When $\phi = V_{\theta}$, we usually omit it from the notations and write $\mathcal{R}(X, \theta)$, $\mathcal{R}^{1}(X, \theta)$ and $\mathcal{R}^{\infty}(X, \theta)$ respectively.

prop:raysuplinear

Proposition 4.2.4 *Let* $\ell \in \mathcal{R}(X, \theta; \phi)$. *Then there is a constant* C > 0 *such that*

$$\sup_{X} \ell_t \le Ct, \quad t \ge 0.$$

In fact, more precisely, we have

$$\ell_t \leq \phi + Ct$$
.

Proof It follows from Proposition 4.2.2 that

$$\ell_t \le \phi + t \sup_{\{\phi = -\infty\}} (\ell_1 - \phi), \quad t \ge 0.$$

Since $\ell_1 \in \mathcal{E}(X, \theta; \phi)$, we have $\ell_1 \leq \phi + C$ for some constant C and our conclusion follows.

def:radialMAenergy2

Definition 4.2.4 We define the *radial Monge–Ampère energy* $\mathbf{E}^{\phi} : \mathcal{R}^{1}(X, \theta; \phi) \to \mathbb{R}$ as follows:

$$\mathbf{E}^{\phi}(\ell) \coloneqq \overline{\lim}_{t \to \infty} \frac{E_{\theta}^{\phi}(\ell_t)}{t}.$$

When $\phi = V_{\theta}$, we write **E** instead of $\mathbf{E}^{V_{\theta}}$.

Thanks to Proposition 4.2.2, $\mathbf{E}^{\phi}(\ell) < \infty$ for any $\ell \in \mathcal{R}^1(X, \theta; \phi)$.

def:d1onE12

Definition 4.2.5 Let $\varphi, \psi \in \mathcal{E}^1(X, \theta; \phi)$, we define

$$d_1(\varphi,\psi) = E_{\theta}^{\phi}(\varphi) + E_{\theta}^{\phi}(\psi) - 2E_{\theta}^{\phi}(\varphi \wedge \psi).$$

Note that by Proposition 3.1.13, $\varphi \in \psi \in \mathcal{E}^1(X, \theta; \phi)$.

In particular, if $\varphi \leq \psi$, we have

$$d_1(\varphi,\psi) = E_{\theta}^{\phi}(\psi) - E_{\theta}^{\phi}(\varphi). \tag{4.13}$$
 {eq:dlasEdiff}

thm:d1complete

Theorem 4.2.1 The function d_1 defined in Definition 4.2.5 is a complete metric on $\mathcal{E}^1(X,\theta;\phi)$.

The function $E_{\theta}^{\phi} \colon \mathcal{E}^1(X, \theta; \phi) \to \mathbb{R}$ is continuous with respect to d_1 .

Moreover, given a decreasing (resp. increasing) sequence $(\varphi_j)_{j \in \mathbb{Z}_{>0}}$ in $\mathcal{E}^1(X, \theta; \phi)$

converging (resp. converging almost everywhere) to $\varphi \in \mathcal{E}^1(X, \theta; \phi)$, then $\varphi_j \xrightarrow{d_1} \varphi$.

See DDNL18big [DDNL18a, Theorem 1.1, Proposition 2.9, Proposition 2.7]. The readers should have no difficulty in generalizing all arguments to the current setting.

Next we recall a few particular properties when $\phi = V_{\theta}$.

prop:energylinear

Proposition 4.2.5 *Let* $(\varphi_t)_{t \in [a,b]}$ *be a geodesic in* $\mathcal{E}^1(X,\theta)$ *, then* $t \mapsto E_{\theta}(\varphi_t)$ *is a linear function of* $t \in [a,b]$.

See [DDNL18fullmass [DDNL18c, Theorem 3.12].

prop:dlgeod diff E

Proposition 4.2.6 *Let* $\ell, \ell' \in \mathcal{R}^1(X, \theta)$ *and* $\ell \leq \ell'$. *Then*

$$d_1(\ell, \ell') = \mathbf{E}(\ell') - \mathbf{E}(\ell). \tag{4.14}$$
 {eq:dlrayscompa}

³ I expect that these assertions hold even when $\phi \neq V_{\theta}$. But I am unable to prove them.

Proof This is a direct consequence of (4.13).

Proposition 4.2.7 *Let* $\ell, \ell' \in \mathcal{R}^1(X, \theta)$. *Then the map*

$$t\mapsto d_1(\ell_t,\ell_t')$$

is convex.

See [DDNL21b, Proposition 2.10] for the proof. In particular, we can introduce

def:d1rays

Definition 4.2.6 Let $\ell, \ell' \in \mathcal{R}^1(X, \theta)$. We define

$$d_1(\ell,\ell') \coloneqq \lim_{t \to \infty} \frac{1}{t} d_1(\ell_t,\ell'_t).$$

thm:d1raycomplete

Theorem 4.2.2 The function d_1 defined in Definition 4.2.6 is a metric and $(\mathcal{R}^1(X,\theta),d_1)$ is a complete metric space.

See DDNLmetric [DDNL21b, Theorem 2.14] for the proof.

prop:supsgeod

Proposition 4.2.8 Let $(\varphi_0^i)_{i\in I}$, $(\varphi_1^i)_{i\in I}$ be two uniformly bounded from above increasing nets in $\mathcal{E}^{\infty}(X,\theta)$. Let $(\varphi_t^i)_{t\in(0,1)}$ be the geodesic from φ_0^i to φ_1^i for each $i\in I$. Then

$$\left(\sup_{i\in I}^* \varphi_t^i\right)_{t\in(0,1)}$$

is the geodesic from $\sup_{i} \varphi_{0}^{i}$ to $\sup_{i} \varphi_{0}^{i}$.

Proof By Proposition 1.2.2 and Proposition 4.1.3, we may assume that I is countable. In this case, the assertion follows from [DDNL18c, Proposition 3.3] and Theorem 2.1.1.

Next we recall that \vee operator at the level of geodesic rays.

def:lorrav1

Definition 4.2.7 Let $\ell, \ell' \in \mathcal{R}^{\infty}(X, \theta)$. We define $\ell \vee \ell'$ as the minimal ray in $\mathcal{R}^{\infty}(X, \theta)$ lying above both ℓ and ℓ' .

prop:lorrays

Proposition 4.2.9 Given $\ell, \ell' \in \mathcal{R}^{\infty}(X, \theta)$. Then $\ell \vee \ell' \in \mathcal{R}^{\infty}(X, \theta)$ exists, and

$$\mathbf{E}(\ell \vee \ell') = \lim_{t \to \infty} \frac{1}{t} E_{\theta}(\ell_t \vee \ell'_t). \tag{4.15}$$

Proof For each t > 0, let $(\ell_s''')_{s \in [0,t]}$ be the geodesic from V_θ to $\ell_t \vee \ell_t'$.

Step 1. We first show that for each fixed $s \ge 0$, ℓ_s'''' is increasing in $t \in [s, \infty)$.

To see this, fix $s \ge 0$ and choose $t' > t \ge s$. We need to show that

$$\ell_s^{\prime\prime\prime\prime} \ge \ell_s^{\prime\prime\prime}$$
. (4.16) {eq:ellppdo

{eq:ellppdombyellpptemp1}

Since $(\ell_a^{\prime\prime\prime t'})_{a\in[0,t]}$ is a geodesic. It suffices to show that $(\ell_a^{\prime\prime\prime t})_{a\in[0,t]}$ is a candidate in the Perron envelope defining the former geodesic. In other words, in verifying (4.16),

we may assume that either s = 0 or s = t. The case s = 0 is of course trivial. So it remains to prove the following:

$$\ell_t^{\prime\prime t'} \ge \ell_t \vee \ell_t'$$
.

By symmetry, it suffices to prove

$$\ell_t^{\prime\prime\prime t^\prime} \ge \ell_t$$
.

But since $(\ell_a)_{a \in [0,t']}$ is a candidate in the Perron envelope defining ℓ'''' , this inequality follows.

Step 2. Next, observe that for a fixed $s \ge 0$, we have

$$\sup_{X} \ell_s^{\prime\prime t} \le \frac{s}{t} \sup_{X} \ell_t^{\prime\prime t} + \frac{t-s}{t} \sup_{X} \ell_0^{\prime\prime t} = \frac{s}{t} \left(\sup_{X} \ell_t \right) \vee \left(\sup_{X} \ell_t^{\prime} \right)$$

for all $t \ge s$. The right-hand side is bounded from above by a constant independent of $t \ge s$ by Proposition 4.2.4. Let

$$(\ell \vee \ell')_s = \sup_{t \ge s} \ell'''_s.$$

Then Proposition 4.2.8 guarantees that $\ell \vee \ell' \in \mathcal{R}^{\infty}(X, \theta)$.

Step 3. We need to show that $\ell \vee \ell'$ defined in this way is indeed the minimal ray lying above ℓ and ℓ' .

First, by Step 1, we have

$$\ell_s^{\prime\prime\prime t} \ge \ell_s^{\prime\prime\prime s} \ge \ell_s$$

for any $t \ge s \ge 0$. Therefore,

$$(\ell \vee \ell')_s \ge \ell_s$$

for all $s \ge 0$. In other words, $\ell \lor \ell' \ge \ell$. Similarly, $\ell \lor \ell' \ge \ell'$.

Next, let $L \in \mathcal{R}^{\infty}(X, \theta)$ be a ray lying above both ℓ and ℓ' . Then we have

$$L_t \geq \ell_t \wedge \ell_t'$$

for all $t \ge 0$. In particular,

$$L_s \geq \ell_s^{\prime\prime\prime t}$$

for all $t \ge s \ge 0$. It follows that

$$L_s \geq (\ell \vee \ell')_s$$

for all $s \ge 0$.

Step 4. It remains to argue (4.15):

$$\mathbf{E}(\ell \vee \ell') = E_{\theta}(\ell \vee \ell')_{1} = \lim_{t \to \infty} E_{\theta}(\ell'''_{1}) = \lim_{t \to \infty} \frac{1}{t} E_{\theta}(\ell_{t} \vee \ell'_{t}),$$

where we applied Proposition 4.2.5 and Theorem 4.2.1.

lma:d1rayineq

Lemma 4.2.1 For any $\ell, \ell' \in \mathcal{R}^{\infty}(X, \theta)$, we have

$$d_1(\ell,\ell') \le d_1(\ell,\ell\vee\ell') + d_1(\ell',\ell\vee\ell') \le C_n d_1(\ell,\ell'), \tag{4.17}$$

where $C_n = 3(n+1)2^{n+2}$.

Proof The first inequality is trivial. As for the second, we estimate

$$d_{1}(\ell, \ell \vee \ell') = \mathbf{E}(\ell \vee \ell') - \mathbf{E}(\ell)$$

$$= \lim_{t \to \infty} \frac{1}{t} \mathbf{E}(\ell_{t} \vee \ell'_{t}) - \mathbf{E}(\ell)$$

$$= \lim_{t \to \infty} \frac{1}{t} d_{1}(\ell_{t} \vee \ell'_{t}, \ell_{t}),$$

where one the first line and the third, we applied Proposition 4.2.6, on the second line, we used (4.15). In all, we find

$$d_1(\ell, \ell \vee \ell') + d_1(\ell', \ell \vee \ell') \le \lim_{t \to \infty} \frac{1}{t} \left(d_1(\ell_t \vee \ell'_t, \ell_t) + d_1(\ell_t \vee \ell'_t, \ell'_t) \right).$$

By [DDNL18big [DDNL18a, Theorem 3.7],

$$d_1(\ell_t \vee \ell_t', \ell_t) + d_1(\ell_t \vee \ell_t', \ell_t') \le 3(n+1)2^{n+2}d_1(\ell_t, \ell_t').$$

Now (4.17) follows.

ex:rayasspsh

Example 4.2.2 Let $\varphi \in \mathrm{PSH}(X, \theta)$. For each C > 0, let $(\ell^{\varphi, C}_t)_{t \in [0, C]}$ be the geodesic from V_{θ} to $(V_{\theta} - C) \vee \varphi$. For each $t \geq 0$, there is $\ell^{\varphi}_t \in \mathcal{E}^{\infty}(X, \theta)$ such that

$$\ell_t^{\varphi,C} \xrightarrow{d_1} \ell_t^{\varphi}$$
 (4.18) {eq:ellvarphiraydef}

as $C \to \infty$. Then $\ell^{\varphi} \in \mathcal{R}^{\infty}(X, \theta)$ and

$$\mathbf{E}(\ell^{\varphi}) = \frac{1}{n+1} \sum_{j=0}^{n} \left(\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} - \int_{X} \theta_{V_{\theta}}^{n} \right). \tag{4.19}$$

Proof Step 1. We first assume that $\varphi \leq 0$.

We first show that for each fixed $t \ge 0$, $\ell_t^{\varphi,C}$ is increasing in $C \ge t$.

To see this, choose $t \le C_1 < C_2$. We need to show that

$$\ell_t^{\varphi,C_1} \leq \ell_t^{\varphi,C_2}$$
.

Since both sides are geodesics for $t \in [0, C_1]$, it suffices to show that

Now $((V_{\theta} - t) \vee \varphi)_{t \in [0,C_2]}$ is a subgeodesic from V_{θ} to $(V_{\theta} - C_2) \vee \varphi$ by Proposition 4.1.3.⁴ At t = 0 and $t = C_1$, it is dominated by the geodesic ℓ_t^{φ,C_2} , hence we conclude that the same holds at $t = C_1$, which is exactly (4.20).

From Proposition 4.1.2, we know that for any C > t > 0, we have

$$\ell_t^{\varphi,C} \le \frac{t}{C} \left((V_\theta - C) \lor \varphi \right) + \frac{C - t}{C} \cdot V_\theta \le 0,$$

so by Proposition 1.2.1,

$$\ell_t^{\varphi} := \sup_{C > t} \ell_t^{\varphi, C} \in \mathcal{E}^{\infty}(X, \theta)$$

for all $t \ge 0$. Thanks to Theorem 4.2.1, we have

$$\ell_t^{\varphi,C} \xrightarrow{d_1} \ell_t^{\varphi}$$

as $C \to \infty$ for all $t \ge 0$. It follows from Proposition 4.2.8 that $\ell^{\varphi} \in \mathcal{R}^{\infty}(X, \theta)$.

It remains to compute the energy of ℓ^{φ} . We first fix $C \ge t > 0$ and compute using Proposition 4.2.5:

$$E_{\theta}\left(\ell_{t}^{\varphi,C}\right) = \frac{t}{C} E_{\theta}\left(\left(V_{\theta} - C\right) \vee \varphi\right).$$

Letting $C \to \infty$ and applying Theorem 4.2.1, we find that

$$E_{\theta}(\ell_t^{\varphi}) = \lim_{C \to \infty} \frac{t}{C} E_{\theta} \left((V_{\theta} - C) \vee \varphi \right)$$

for any $t \ge 0$. It follows that

$$\mathbf{E}(\ell^{\varphi}) = \lim_{C \to \infty} \frac{1}{C} E_{\theta} \left((V_{\theta} - C) \vee \varphi \right).$$

Using the definition of E_{θ} , in order to obtain (4.19), it suffices to show that for each $j = 0, \dots, n$, we have

$$\lim_{C \to \infty} \int_X \frac{(V_{\theta} - C) \vee \varphi - V_{\theta}}{C} \theta^j_{(V_{\theta} - C) \vee \varphi} \wedge \theta^{n-j}_{V_{\theta}} = \int_X \theta^j_{\varphi} \wedge \theta^{n-j}_{V_{\theta}} - \int_X \theta^n_{V_{\theta}}. \quad (4.21) \quad \text{[eq:limCintXtemp1]}$$

For this purpose, for each C>0, we decompose X as $\{\varphi>V_{\theta}-C\}$ and $\{\varphi\leq V_{\theta}-C\}$. We have

$$\begin{split} & \int_{\{\varphi > V_{\theta} - C\}} \frac{(V_{\theta} - C) \vee \varphi - V_{\theta}}{C} \theta^{j}_{(V_{\theta} - C) \vee \varphi} \wedge \theta^{n-j}_{V_{\theta}} \\ = & \int_{\{\varphi > V_{\theta} - C\}} \frac{\varphi - V_{\theta}}{C} \theta^{j}_{\varphi} \wedge \theta^{n-j}_{V_{\theta}}. \end{split}$$

On the other hand,

⁴ Here we need $\varphi \leq 0$.

$$\begin{split} &\int_{\{\varphi \leq V_{\theta} - C\}} \frac{(V_{\theta} - C) \vee \varphi - V_{\theta}}{C} \theta^{j}_{(V_{\theta} - C) \vee \varphi} \wedge \theta^{n-j}_{V_{\theta}} \\ &= -\int_{\{\varphi \leq V_{\theta} - C\}} \theta^{j}_{(V_{\theta} - C) \vee \varphi} \wedge \theta^{n-j}_{V_{\theta}} \\ &= -\int_{X} \theta^{n}_{V_{\theta}} + \int_{\{\varphi > V_{\theta} - C\}} \theta^{j}_{\varphi} \wedge \theta^{n-j}_{V_{\theta}}. \end{split}$$

Observe that for C > 0, the functions $\mathbb{1}_{\{\varphi > V_{\theta} - C\}}C^{-1}(\varphi - V_{\theta})$ is defined almost everywhere and is bounded. When $C \to \infty$, these functions converge to 0 almost everywhere. Therefore, (4.21) follows.

Finally, let us observe that ℓ_t is decreasing in $t \ge 0$ by the argument in the proof of Proposition 4.2.2.

Step 2. We assume that $D = \sup_X \varphi > 0$.

Then

$$(V_{\theta}-C)\vee\varphi=(V_{\theta}-C-D)\vee(\varphi-D)+D.$$

Therefore,

$$\ell_t^{\varphi,C} = \ell_{\underline{C+D}-t}^{\varphi-D,C+D} + \frac{D}{C} \cdot t$$
 (4.22) [eq:varphiminusDsctemp1]

for all C > 0 and $t \in [0, C]$, since both sides are geodesics with the same endpoints.

Next, observe that for any fixed $t \ge 0$, as $C \to \infty$, we have

$$\ell_{\frac{C+D}{C}\cdot t}^{\varphi-D,C+D} \xrightarrow{d_1} \ell_t^{\varphi-D}. \tag{4.23}$$

In fact, we may assume that t > 0, then for any $\delta \in (0, t)$, we have

$$\begin{split} & \overline{\lim}_{C \to \infty} d_1 \left(\ell^{\varphi - D, C + D}_{\frac{C + D}{C} \cdot t}, \ell^{\varphi - D}_t \right) \\ & \leq \overline{\lim}_{C \to \infty} d_1 \left(\ell^{\varphi - D, C + D}_{\frac{C + D}{C} \cdot t}, \ell^{\varphi - D, C + D}_t \right) + \overline{\lim}_{C \to \infty} d_1 \left(\ell^{\varphi - D}_t, \ell^{\varphi - D, C + D}_t \right) \\ & = \overline{\lim}_{C \to \infty} d_1 \left(\ell^{\varphi - D, C + D}_{\frac{C + D}{C} \cdot t}, \ell^{\varphi - D, C + D}_t \right) \\ & \leq \overline{\lim}_{C \to \infty} d_1 \left(\ell^{\varphi - D, C + D}_{t - \delta}, \ell^{\varphi - D, C + D}_t \right) \\ & = d_1 (\ell^{\varphi - D}_{t - \delta}, \ell^{\varphi - D}_t), \end{split}$$

where on the third line, we applied Step 1. Let $\delta \to 0+$, using Theorem 4.2.1, we find that

$$\lim_{\delta \to 0+} d_1(\ell_{t-\delta}^{\varphi-D}, \ell_t^{\varphi-D}) = 0.$$

Therefore, (4.23) follows.

Taking (4.22) into account, we conclude that

$$\ell_t^{\varphi,C} \xrightarrow{d_1} \ell_t^{\varphi-D}$$

as $C \to \infty$ for any $t \ge 0$. Namely,

$$\ell^{\varphi}=\ell^{\varphi-D}.$$

In particular,

$$\mathbf{E}(\ell^{\varphi}) = \mathbf{E}(\ell^{\varphi - D})$$

and (4.19) follows.

Chapter 5

Toric pluripotential theory on ample line bundles

There are two principal ways to formulate mathematical assertions (problems, conjectures, theorems, . . .): Russian and French. The Russian way is to choose the most simple and specific case (so that nobody could simplify the formulation preserving the main point). The French way is to generalize the statement as far as nobody could generalize it further. — Vladimir Arnold^a

"Vladimir Igorevich Arnold (1937–2010), who became a professor at l'Université Paris IX after the dissolution of USSR, was always sick of France (so am I!). In the public lecture entitled "Sur l'éducation mathématique" in 1997, he invented the famous joke "Combien font 2 + 3?" to question the french education system.

chap:toric_ample

In this chapter, we briefly recall the toric pluripotential theory relative to an ample line bundle. The general case of big line bundles will be handled in Chapter 12 after developing the powerful machinery of partial Okounkov bodies in Chapter 10. The main new result is Theorem 5.2.2 computing the L^2 -sections of a Hermitian big line bundle in the toric setting.

We assume that the readers are familiar with basic toric geometry, such as the materials in [CLS11]. If not, this section can be safely skipped.

Some basic facts about convex functions and convex bodies are recalled in Appendix A.

5.1 Toric setup

sec:toricsetup

Let T be a complex torus of dimension n^1 and $T_c \subset T(\mathbb{C})$ denotes the corresponding compact torus. Write M for the character lattice of T, which is a free Abelian group of rank n. Similarly, let N be cocharacter lattice of T, which is the dual lattice of M. Let $P \subseteq M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}$ be a full-dimensional $smooth^2$ lattice polytope³. Write $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$.

Given any (closed) facet F of P, let $u_F \in N$ denote the unique ray generator (the first non-zero integral element) of the inward normal ray of F. Then P can be represented as

¹ Namely, an algebraic group defined over \mathbb{C} , which is isomorphic to $\mathbb{G}_{\mathfrak{m}}^n$.

² Recall that *smooth* means that for every vertex $v \in P$, if we take the first lattice point w_E apart from v as one transverses each edge E of P containing v from v, then $\{w_E - v\}_E$ forms a basis of M. See [CLS11, Definition 2.4.2]. We also say P is a *Delzant polytope* in this case.

³ A *lattice polytope* in $M_{\mathbb{R}}$ is the convex hull of finitely many points in M.

$$P = \{ m \in M_{\mathbb{R}} : \langle m, u_F \rangle \ge -a_F \text{ for all facets } F \text{ of } P \}$$
 (5.1) \{ \text{eq:Pface}

for some uniquely determined integers a_F . The presentation is called the *facet* presentation of P.

Given any (closed) face Q of P, we let $\sigma_Q \subseteq N_{\mathbb{R}}$ be the closed convex cone generated by the u_F 's, where F runs over all facets of P containing Q. When Q = P, σ_P is understood as $\{0\}$.

Let Σ be the (inner) normal fan of P. Namely,

$$\Sigma = \{ \sigma_O : Q \text{ is a face of } P \}$$
.

The notation $\Sigma(1)$ denotes the set of rays in Σ . Note that $\Sigma(1)$ is in bijective correspondence with the set of facets of P. In fact, given any facet F of P, the cone σ_F is just the ray generated by u_F , namely, the inward normal ray of F.

For any $\rho \in \Sigma(1)$, let $u_{\rho} \in N$ denote the ray generator of ρ , namely the first non-zero element in $N \cap \rho$. If $\rho = \sigma_F$ for some facet F of P, then $u_{\rho} = u_F$.

Now the facet presentation (5.1) can be equivalently rewritten as

$$P = \{ m \in M_{\mathbb{R}} : \langle m, u_{\rho} \rangle \ge -a_{\rho} \text{ for all } \rho \in \Sigma(1) \}.$$

Let Supp_P: $N_{\mathbb{R}} \to \mathbb{R}$ denote the *support function* of *P*. Recall that the support function (Example A.1.2) of *P* is defined as

$$\operatorname{Supp}_{P}(n) = \max \{ \langle m, n \rangle : m \in P \}.$$

Note that our support function differs from [CLS11, Proposition 4.2.14], where instead of a maximum, they took the minimum.

Recall that the *characteristic function* $\chi_P : N_{\mathbb{R}} \to \{0, \infty\}$ of P is defined as in Example A.1.1:

$$\chi_P(n) := \begin{cases} 0, & n \in P; \\ \infty, & n \notin A. \end{cases}$$

Let $X = X_{\Sigma}$ be the smooth projective toric variety corresponding to Σ . See [CLS11, Theorem 3.1.5] for the construction of X and [CLS11, Theorem 3.1.19] for the smoothness of X. There is a canonical embedding $T \subseteq X$ as a dense Zariski open subset.

Let D be the Cartier divisor on X defined by P:

$$D = \sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho},$$

where D_{ρ} is the toric prime divisor defined by ρ under the orbit-cone correspondence [CLS11, Theorem 3.2.6].

Let L be the toric line bundle induced by P, namely $L_{S,1} \equiv O_X(D)$. Since P has full dimension, L^k is very ample for each $k \ge n - 1$ by [CLS11, Corollary 2.2.19], we actually know that L is ample.

We will choose the base e for the logarithm map

$$\mathbb{C}^* \to \mathbb{R}, \quad z \mapsto \log|z|^2.$$
 (5.2)

{eq:log}

This choice will be fixed throughout the whole book. Since we have a canonical identification $T(\mathbb{C}) \cong N \otimes_{\mathbb{Z}} \mathbb{C}^*$, the logarithm map then induces a tropicalization map after tensoring with N:

Trop:
$$T(\mathbb{C}) \to N_{\mathbb{R}}$$
. (5.3)

Before proceeding, it is always helpful to understand everything in our favorite example.

ex:P1toric

Example 5.1.1 We take n=1 and $P=[0,1]\subseteq M_{\mathbb{R}}=\mathbb{R}$. In this case, the facet representation (5.1) becomes

$$P = \{ m \in \mathbb{R} : \langle m, 1 \rangle \ge 0, \langle m, -1 \rangle \ge -1 \},$$

with $u_{\{0\}}=1,\,u_{\{1\}}=-1,\,a_{\{0\}}=0$ and $a_{\{1\}}=1.$ The normal fan Σ is

$$\Sigma = \{(-\infty, 0], \{0\}, [0, \infty)\}.$$

The corresponding toric variety is just $X = \mathbb{P}^1$. Under the orbit-cone correspondence, we have

$$D_{\{0\}} = [0], \quad D_{\{0\}} = [\infty].$$

The canonical divisor $D = [\infty]$ and therefore,

$$L = O_X(D) = O_{\mathbb{P}^1}(1).$$

5.2 Toric plurisubharmonic functions

We continue to use the notations of Section 5.1.

lma:convextopsh

Lemma 5.2.1 *Let* $F: N_{\mathbb{R}} \to [-\infty, \infty]$ *be a function. Then the following are equivalent:*

- (1) F is convex and takes values in \mathbb{R} , and
- (2) Trop* F is plurisubharmonic on $T(\mathbb{C})$.

Proof We may choose an identification $N \cong \mathbb{Z}^n$ so that we have an identification $T(\mathbb{C}) \cong \mathbb{C}^{*n}$. Then Trop is identified with the map

Trop:
$$\mathbb{C}^{*n} \to \mathbb{R}^n$$
, $(z_1, \dots, z_n) \mapsto (\log |z_1|^2, \dots, \log |z_n|^2)$.

(1) \Longrightarrow (2). Let $F_k \in C^{\infty}(\mathbb{R}^n) \cap \text{Conv}(\mathbb{R}^n)$ be a decreasing sequence with limit F (see Proposition A.3.3). It follows from a straightforward computation that

$$\mathrm{dd^c} \operatorname{Trop}^* F_k(z_1, \dots, z_n) = \frac{\mathrm{i}}{2\pi} \sum_{i,j=1}^n \partial_{ij} F_k \left(\log |z_1|^2, \dots, \log |z_n|^2 \right) z_i^{-1} \overline{z_j}^{-1} \mathrm{d} z_i \wedge \mathrm{d} \overline{z_j}.$$

.4) {eq:ddctrop}

So Trop* F_k is plurisubharmonic. It follows from Proposition 1.2.1 that Trop* F is plurisubharmonic.

(2) \Longrightarrow (1). It follows from Lemma 1.2.1 that F is finite. Moreover, take a radial mollifier, we may find a decreasing sequence φ_k of $(S^1)^n$ -invariant smooth psh functions on \mathbb{C}^{*n} with limit Trop* F. Write $\varphi_k = \text{Trop* } F_k$ for some function $F_k : \mathbb{R}^n \to \mathbb{R}$, it follows from (5.4) that F_k is convex for all k. Therefore, F is convex by Lemma A.1.2.

Next we define a canonical Kähler form in $c_1(L)$.

Let $G_0: M_{\mathbb{R}} \to (-\infty, \infty]$ be defined as

$$G_0(m) := \begin{cases} \sum_{\rho \in \Sigma(1)} \left(\langle m, u_\rho \rangle + a_\rho \right) \log \left(\langle m, u_\rho \rangle + a_\rho \right)^4, & \text{if } m \in P, \\ & \infty, \text{ otherwise.} \end{cases}$$

$$(5.5) \quad \text{eq:GOdef}$$

This is a closed proper convex function and $G_0 \sim \chi_P$, where \sim is the relation defined in Definition A.1.8.

Let

$$F_0 = G_0^* \in \mathcal{E}^{\infty}(N_{\mathbb{R}}, P). \tag{5.6}$$

Recall that G_0^* is the Legendre transform of G_0 , as recalled in Definition A.2.1. The set $\mathcal{E}^{\infty}(N_{\mathbb{R}}, P)$ is defined in Definition A.3.1.

By Guillemin's theorem [Gui94, CDG03], dd^c Trop* F_0 can be extended to a unique Kähler form ω in $c_1(L)$. The Kähler form ω is clearly T_c -invariant.

ex:P1toric1

Example 5.2.1 Let us move on with our favorite example Example 5.1.1. We continue to use the same notations. In this case,

$$G_0(m) = \begin{cases} m \log m + (1-m) \log(1-m), & \text{if } m \in [0,1], \\ & \infty, & \text{otherwise.} \end{cases}$$

The Legendre transform is given⁵ by

$$F_0(n) = \log\left(1 + \mathrm{e}^n\right).$$

Composing with the tropicalization map, we find that

⁴ We understand that $0 \log 0 = 0$ in this expression.

⁵ While reading an advanced mathematical textbook/paper, I usually tend to trust the author for their elementary computations. A few years ago, I was asked to present the result of a landmark paper written by two respected mathematicians on a conference. After spending a few days on the elementary integrals, I found out that all non-trivial constants in that paper were wrong. So I ask the readers to really verify this expression, if it is not obvious to you.

$$\omega|_{\mathbb{C}^*}(z) = \log\left(1 + |z|^2\right).$$

This is exactly the Fubini–Study metric as we have seen in Example 1.8.1.

Now we could explain one subtlety: In our expression (5.5), there is no factor 1/2 before the sum, this is due to the presence of the square in our choice of the tropicalization map (5.2).

Let $PSH_{tor}(X, \omega)$ denote the set of T_c -invariant ω -psh functions.

thm:toricpsh

Theorem 5.2.1 There are canonical bijections between the following three sets:

- (1) The set of $\varphi \in PSH_{tor}(X, \omega)$,
- (2) the set $\mathcal{P}(N_{\mathbb{R}}, P)$ in Definition A.3.1, namely, the set of convex functions $F: N_{\mathbb{R}} \to \mathbb{R}$ satisfying $F \leq \operatorname{Supp}_{P}$, and
- (3) the set of closed proper convex functions $G \in \text{Conv}(M_{\mathbb{R}})$ satisfying

$$G|_{M_{\mathbb{R}}\setminus P}\equiv\infty.$$

For the notion of closeness and properness, we refer to Definition A.1.2 and Definition A.1.7.

Proof The bijection between (2) and (3) is the classical Legendre duality. Given F as in (2), we construct $G = F^*$ and *vice versa*, see Proposition A.2.4.

The map from (1) to (2) is given as follows: Given $\varphi \in \mathrm{PSH}_{\mathrm{tor}}(X, \omega)$, since φ is T_c -invariant, we can find $f: N_{\mathbb{R}} \to [-\infty, \infty)$ such that

$$\varphi|_{T(\mathbb{C})} = \operatorname{Trop}^* f. \tag{5.7}$$

{ex:varphitropf}

We then define $F = f + F_0$. Then $\operatorname{Trop}^* F \in \operatorname{PSH}(T(\mathbb{C}))$. By Lemma 5.2.1, F(n) is finite for any $n \in N_{\mathbb{R}}$ and F is convex. Moreover, $F \leq \operatorname{Supp}_P$ since this holds for F_0 . Conversely, given a map $F \in \mathcal{P}(N_{\mathbb{R}}, P)$, then

$$\operatorname{Trop}^*(F - F_0) \in \operatorname{PSH}(T(\mathbb{C}), \omega|_{T(\mathbb{C})}).$$

It follows from Theorem 1.2.1 that this function can be extended uniquely to an ω -psh function on X. The uniqueness of the extension guarantees its T_c -invariance.

The two maps are clearly inverse to each other.

Given $\varphi \in \text{PSH}_{\text{tor}}(X, \omega)$, we will write F_{φ} and G_{φ} for the convex functions given by Theorem 5.2.1. From the proof, we have the following relations:

$$\varphi|_{T(\mathbb{C})} = \operatorname{Trop}^*(F_{\varphi} - F_0), \quad G_{\varphi} = F_{\varphi}^*. \tag{5.8}$$

{eq:FvarphidefGdef}

П

ex:FGsimplevarphi

Example 5.2.2 Let us take our favorite example Example 5.2.1 again. We will continue to use the same notations.

Recall that in Example 1.8.2 and Example 3.1.1, we constructed two S^1 -invariant functions in PSH(X, ω).

We begin with the function φ in Example 1.8.2. Recall that

$$\varphi(z) = \log \frac{|z|^2}{|z|^2 + 1}$$

for $z \in \mathbb{C}$. The function $f : \mathbb{R} \to \mathbb{R}$ in (5.7) is therefore

$$f(n) = \log \frac{e^n}{1 + e^n}.$$

Therefore, $F_{\varphi} \colon \mathbb{R} \to \mathbb{R}$ is

$$F_{\varphi}(n)=n.$$

Correspondingly, $G_{\varphi} \colon \mathbb{R} \to \mathbb{R}$ is

$$G_{\varphi}(m) = \begin{cases} 0, & \text{if } m = 1, \\ \infty, & \text{otherwise.} \end{cases}$$

Similarly, if ψ denote the function in Example 3.1.1, then the function f in (5.7) is

$$f(n) = \begin{cases} -\log(e^{n} + 1) + (-\log(-n)) \lor (n+2), & \text{if } n < -\log 2, \\ 2 + \log\frac{e^{n}}{1 + e^{n}}, & \text{otherwise.} \end{cases}$$

Therefore,

$$F_{\psi}(n) = \begin{cases} (-\log(-n)) \lor (n+2), & \text{if } n < -\log 2, \\ 2 + n, & \text{otherwise.} \end{cases}$$

The Legendre transform is tricky to compute. Let λ be the large solution of $\log x = x - 2$. So $\lambda \approx 3.146$. The smaller solution is around 0.159 < $\log 2 \approx 0.693$. It might be helpful to have a look at the poorly drawn picture Fig. 5.1.

Fig. 5.1 The graphs of $\log x$ and x - 2.

fig:logx

It is immediate that $G_{\psi}(m) = -\infty$ unless $m \in [0, 1]$. Let us assume that $m \in [0, 1]$. Then

$$\begin{split} G_{\psi}(m) &= \sup_{n \in \mathbb{R}} \left(mn - F_{\psi}(n) \right) \\ &= \sup_{n < -\log 2} \left(mn - (-\log(-n)) \vee (n+2) \right) \vee \sup_{n \geq -\log 2} \left(mn - n - 2 \right) \\ &= \sup_{n > \log 2} \left(-mn + (\log n) \wedge (n-2) \right) \vee \left((1-m) \log 2 - 2 \right). \end{split}$$

Let us focus on the first part, which can be decomposed further into

$$\sup_{n>\log 2} (-mn + (\log n) \wedge (n-2))$$

$$= \sup_{n \in (\log 2, \lambda]} (n-2-mn) \vee \sup_{n>\lambda} (\log n - mn)$$

$$= ((1-m)\lambda - 2) \vee \sup_{n>\lambda} (\log n - mn).$$

The latter part can be computed easily:

$$\sup_{n>\lambda}(\log n - mn) = \begin{cases} -\log m - 1, & \text{if } m \in [0, \lambda^{-1}], \\ \log \lambda - m\lambda, & \text{if } m \in (\lambda^{-1}, 1]. \end{cases}$$

Putting everything together, we find

$$G_{\psi}(m) = \begin{cases} (-\log m - 1) \vee ((1-m)\lambda - 2), & \text{if } m \in [0, \lambda^{-1}], \\ (\log \lambda - m\lambda) \vee ((1-m)\lambda - 2), & \text{if } m \in (\lambda^{-1}, 1]. \end{cases}$$

This can be further simplified, the final result is

$$G_{\psi}(m) = \begin{cases} -\log m - 1, & \text{if } m \in [0, \lambda^{-1}], \\ (1 - m)\lambda - 2, & \text{if } m \in (\lambda^{-1}, 1], \\ \infty, & \text{otherwise.} \end{cases}$$

The graph of G_{ψ} on (0, 1] is sketched in Fig. 5.2.

We observe a few elementary facts.

prop:toricpshcomp

Proposition 5.2.1 *Given* $\varphi, \psi \in PSH_{tor}(X, \omega)$. *The following are equivalent:*

- (1) $\varphi \leq \psi$,
- (2) $F_{\varphi} \leq F_{\psi}$, and
- (3) $G_{\psi} \leq G_{\varphi}$.

The same holds if we replace all \leq 's by \leq .

In particular, $\varphi \in \mathcal{E}^{\infty}(X, \omega)$ if and only if $F_{\varphi} \in \mathcal{E}^{\infty}(N_{\mathbb{R}}, P)$.

Fig. 5.2 The graph of G_{ψ} .

fig:Gpsi

Proof The equivalence between (1) and (2) follows from the definition (5.8). The equivalence between (2) and (3) follows from the definition of the Legendre transform.

Similarly, we have

nron toriculuses

Proposition 5.2.2 *Given* $\varphi \in PSH_{tor}(X, \omega)$ *and* $C \in \mathbb{R}$ *. We have*

$$F_{\varphi+C}=F_{\varphi}+C, \quad G_{\varphi+C}=G_{\varphi}-C.$$

prop:toricrooftop

Proposition 5.2.3 Given $\varphi, \psi \in \mathrm{PSH}_{\mathrm{tor}}(X, \omega)$ with $\varphi \wedge \psi \not\equiv -\infty$, then $\varphi \wedge \psi \in \mathrm{PSH}_{\mathrm{tor}}(X, \omega)$ and

$$F_{\varphi \wedge \psi} = F_{\varphi} \wedge F_{\psi}, \quad G_{\varphi \wedge \psi} = G_{\varphi} \vee G_{\psi}.$$

The operators \land and \lor are defined in Definition A.1.5 and Definition A.1.6.

Proof It is clear that $\varphi \wedge \psi \in \mathrm{PSH}_{\mathrm{tor}}(X,\omega)$. So $\varphi \wedge \psi$ is the biggest element in $\mathrm{PSH}_{\mathrm{tor}}(X,\omega)$ which id dominated by both φ and ψ . In view of Theorem 5.2.1 and Proposition 5.2.1, $G_{\varphi \wedge \psi}$ is the smallest closed proper convex function G on $M_{\mathbb{R}}$ dominating both G_{φ} and G_{ψ} , which is just $G_{\varphi} \vee G_{\psi}$.

The claim for *F* follows from Proposition A.2.2.

ex:landminfty

Example 5.2.3 Now we can give an example of $\varphi, \psi \in \mathrm{PSH}_{\mathrm{tor}}(X, \omega)$ with $\varphi \wedge \psi \equiv -\infty$. We take P = [0, 1] so that $X = \mathbb{P}^1$ and ω is the Fubini–Study metric. Let $\varphi \in \mathrm{PSH}(X, \omega)$ be such that

$$\varphi(z) = \log \frac{|z|^2}{|z|^2 + 1}$$

for $z \in \mathbb{C}$. We have computed that G_{φ} in Example 5.2.2:

$$G_{\varphi}(m) = \begin{cases} 0, & \text{if } m = 1, \\ \infty, & \text{otherwise.} \end{cases}$$

Now we define $\psi \in PSH_{tor}(X, \omega)$ as the unique function such that

$$\psi(z) = \log \frac{1}{|z|^2 + 1}$$

for $z \in \mathbb{C}$. Then a similar computation shows that

$$G_{\psi}(m) = \begin{cases} 0, & \text{if } m = 0, \\ \infty, & \text{otherwise.} \end{cases}$$

Now we claim that $\varphi \wedge \psi \equiv -\infty$. Otherwise, we would have

$$G_{\varphi \lor \psi} = G_{\varphi} \lor G_{\psi} \equiv \infty,$$

which is not proper.

prop:toricsea

Proposition 5.2.4 *Let* $\{\varphi_i\}_{i\in I}$ *be a non-empty family in* $PSH_{tor}(X,\omega)$ *uniformly bounded from above. Then* $\sup_{i\in I} \varphi_i \in PSH_{tor}(X,\omega)$ *and*

$$F_{\sup^*_{i\in I}\varphi_i} = \bigvee_{i\in I} F_{\varphi_i}, \quad G_{\sup^*_{i\in I}\varphi_i} = \operatorname{cl} \bigwedge_{i\in I} G_{\varphi_i}.$$

Moreover, if I is finite, then

$$G_{\max_{i\in I}\varphi_i} = \bigwedge_{i\in I} G_{\varphi_i}.$$

Similarly, if $\{\varphi_i\}_{i\in I}$ is a decreasing net in $\operatorname{PSH}_{\operatorname{tor}}(X,\omega)$ such that $\inf_{i\in I}\varphi_i\not\equiv -\infty$, then $\inf_{i\in I}\varphi_i\in\operatorname{PSH}_{\operatorname{tor}}(X,\omega)$ and

$$F_{\inf_{i\in I}\varphi_i}=\inf_{i\in I}F_{\varphi_i},\quad G_{\inf_{i\in I}\varphi_i}=\bigvee_{i\in I}G_{\varphi_i}.$$

Recall that the closure cl is defined in Definition A.1.7.

Proof Thanks to Lemma A.1.2 and Proposition A.1.1, in both cases, the statement for F is clear. The corresponding statement for G is obtained via Proposition A.2.2.

The complex Monge-Ampère operator is closely related to the real one:

prop:toricMAandrealMA Propositio

Proposition 5.2.5 *Let* $\varphi \in PSH_{tor}(X, \omega)$, then

$$\operatorname{Trop}_* \left(\omega|_{T(\mathbb{C})} + \operatorname{dd^c} \varphi|_{T(\mathbb{C})} \right)^n = \operatorname{MA}_{\mathbb{R}}(F_{\varphi}). \tag{5.9}$$

In particular,

$$\int_X \omega_{\varphi}^n = \int_{N_{\mathbb{P}}} \mathrm{MA}_{\mathbb{R}}(F_{\varphi}) = n! \, \mathrm{vol} \, \overline{\{G_{\varphi} < \infty\}}$$

and

$$\int_{V} \omega^{n} = n! \operatorname{vol} P.$$

Here the real Monge–Ampère operator is defined in Definition A.4.1. The normalization of the Lebesgue measure vol on $M_{\mathbb{R}}$ is such that the fundamental lattice cube as measure 1.

Proof We only need to prove (5.9). By Proposition A.3.3, we can find a decreasing sequence of smooth convex functions F_j on $N_{\mathbb{R}}$ with limit F_{φ} . We write $F_j = F_{\varphi_j}$ for some $\varphi_j \in \mathrm{PSH_{tor}}(X,\omega)$. By Theorem 2.1.1 and Theorem A.4.1, it suffices to establish (5.9) for the φ_j 's. We may therefore reduce to the case where F_{φ} is smooth. We write $F = F_{\varphi}$ to simplify the notations. The notations $a_i = \log |z_i|^2$ will be used, where $i = 1, \ldots, n$.

Next we fix an identification $N = \mathbb{Z}^n$. Fix a test function $f \in C_c^0(N_{\mathbb{R}})$, we need to show that

$$\int_{\mathbb{C}^{*n}} f(a_1, \dots, a_n) \left(\operatorname{dd^c} \operatorname{Trop}^* F(z_1, \dots, z_n) \right)^n = \int_{\mathbb{R}^n} f \operatorname{MA}_{\mathbb{R}}(F).$$

Using Proposition A.4.1 and (5.4), this reduces to

$$\left(\frac{\mathrm{i}}{2\pi}\right)^{n} \int_{\mathbb{C}^{*n}} f(a_{1}, \dots, a_{n}) \left(\sum_{i,j=1}^{n} \partial_{i,j} F(a_{1}, \dots, a_{n}) z_{i}^{-1} \overline{z_{j}}^{-1} \mathrm{d}z_{i} \wedge \mathrm{d}\overline{z_{j}}\right)^{n} =$$

$$n! \int_{\mathbb{R}^{n}} f \det \nabla^{2} F \, \mathrm{d} \operatorname{vol}.$$

$$(5.10) \quad \text{{eq:realcplxMAtemp1}}$$

Expanding the bracket, we get

$$\left(\sum_{i,j=1}^{n} \partial_{i,j} F z_{i}^{-1} \overline{z_{j}}^{-1} dz_{i} \wedge d\overline{z_{j}}\right)^{n} = \sum_{i_{1},\dots,i_{n}=1}^{n} \sum_{j_{1},\dots,j_{n}=1}^{n} \partial_{i_{1}j_{1}} F \cdots \partial_{i_{n}j_{n}} F \cdot d\log z_{i_{1}} \wedge d\log \overline{z_{j_{1}}} \wedge \cdots \wedge d\log z_{i_{n}} \wedge d\log \overline{z_{j_{n}}},$$

where d log $z_i = z_i^{-1} dz_i$ and d log $\overline{z_i} = \overline{z_i}^{-1} d\overline{z_i}$ are understood.

Using the apparent symmetry, the expression on the right-hand side becomes

$$\begin{split} & \sum_{\sigma,\tau\in\mathfrak{S}_n} \prod_{k=1}^n \partial_{\sigma(k)\tau(k)} F \operatorname{d}\log z_{\sigma(1)} \wedge \operatorname{d}\log \overline{z_{\tau(1)}} \wedge \cdots \wedge \operatorname{d}\log z_{\sigma(n)} \wedge \operatorname{d}\log \overline{z_{\tau(n)}}, \\ = & n! \sum_{\tau\in\mathfrak{S}_n} \prod_{k=1}^n \partial_{k\tau(k)} F \operatorname{d}\log z_1 \wedge \operatorname{d}\log \overline{z_{\tau(1)}} \wedge \cdots \wedge \operatorname{d}\log z_n \wedge \operatorname{d}\log \overline{z_{\tau(n)}} \\ = & n! \sum_{\tau\in\mathfrak{S}_n} (-1)^{\operatorname{Sign}\tau} \prod_{k=1}^n \partial_{k\tau(k)} F \operatorname{d}\log z_1 \wedge \operatorname{d}\log \overline{z_1} \wedge \cdots \wedge \operatorname{d}\log z_n \wedge \operatorname{d}\log \overline{z_n} \\ = & n! \det \nabla^2 F \operatorname{d}\log z_1 \wedge \operatorname{d}\log \overline{z_1} \wedge \cdots \wedge \operatorname{d}\log z_n \wedge \operatorname{d}\log \overline{z_n}, \end{split}$$

where \mathfrak{S}_n is the permutation group on $\{1, \ldots, n\}$ and $\operatorname{Sign}(\tau)$ is the sign of τ . Next, switch to polar coordinates for each z_i : Let $z_i = r_i \exp(i\theta_i)$ and recall that $r_i = \exp(a_i/2)$, then the left-hand side of (5.10) becomes

$$\frac{n!}{(2\pi)^n} \int_{\mathbb{R}^n \times [0,2\pi)^n} f \det \nabla^2 F \, da_1 \wedge d\theta_1 \wedge \dots \wedge da_n \wedge d\theta_n$$

$$= n! \int_{\mathbb{R}^n} f \det \nabla^2 F \, da_1 \wedge \dots \wedge da_n,$$

which is exactly what we have expected.

Next we study the envelope operators developed in Chapter 3 in the toric setting.

Definition 5.2.1 Let $\varphi \in PSH_{tor}(X, \omega)$. We define its *Newton body* as

$$\Delta(\omega,\varphi) := \overline{\{G_{\omega} < \infty\}} \subseteq P.$$

Note that $\Delta(\omega, \varphi)$ is a convex body.

By Proposition A.2.1, we have

$$\Delta(\omega,\varphi) = \overline{\nabla F_{\omega}(N_{\mathbb{R}})}.$$

Example 5.2.4 By (5.5), we have

$$\Delta(\omega,0) = P$$
.

In the case of Example 5.2.2, we have

$$\Delta(\omega, \varphi) = \{1\}, \quad \Delta(\omega, \psi) = [0, 1].$$

Observe that in the latter case,

$$\{G_{\omega} < \infty\} \subsetneq P$$
.

Proposition 5.2.6 *Let* $\varphi \in PSH_{tor}(X, \omega)$. *Then* $P_{\omega}[\varphi] \in PSH_{tor}(X, \omega)$ *and*

$$G_{P_{\omega}[\varphi]}(x) = \begin{cases} G_0(x), & \text{if } x \in \Delta(\omega, \varphi); \\ \infty, & \text{otherwise.} \end{cases}$$
 (5.11) {eq:toricPenv}

Proof By (3.3), we have

$$P_{\omega}[\varphi] = \sup_{C \in \mathbb{R}} * ((\varphi + C) \wedge 0).$$

It follows from Proposition 5.2.2, Proposition 5.2.3 and Proposition 5.2.4 that $P_{\omega}[\varphi] \in PSH_{tor}(X, \omega)$. Moreover, by the same propositions, we have

$$G_{P_{\omega}[\varphi]} = \operatorname{cl} \inf_{C \in \mathbb{R}} (G_0 \vee (G_{\varphi} - C)),$$

which is clearly equal to the right-hand side of (5.11).

Next we prove a result of Yi Yao claiming that in the toric setting, all potentials are I-good.

thm:Yao

Theorem 5.2.2 (Yao) *Let* $\varphi \in PSH_{tor}(X, \omega)$, *then*

$$h^0(X, L \otimes I(\varphi)) = \# (\Delta(\omega, \varphi) \cap M).$$

Proof It is well-known that $H^0(X_S I_1)$ can be identified with the vector space generated by χ^m for all $m \in P \cap M$, see [CLS11, Proposition 4.3.3]. We will show that

$$\mathrm{H}^{0}(X,L\otimes I(\varphi)) = \bigoplus_{m\in\Delta(\omega,\varphi)\cap M} \mathbb{C}\chi^{m}. \tag{5.12}$$

It is convenient to use explicit coordinates. We will identify N with \mathbb{Z}^n after choosing a basis. In this way, we get an identification $M = \mathbb{Z}^n$ and $T(\mathbb{C}) = \mathbb{C}^{*n}$. In this case, we have

$$v^m(z) = z^m$$

with the multi-index notation.

Observe that $H^0(X, L \otimes \mathcal{I}(\varphi))$ is a \mathbb{C}^{*n} -invariant subspace of $H^0(X, L)$, it follows that $H^0(X, L \otimes \mathcal{I}(\varphi))$ is the direct sum of suitable χ^m 's.

We first show that $\chi^m \in H^0(X, L \otimes \mathcal{I}(\varphi))$ for each $m \in \Delta(\omega, \varphi) \cap M$. We need to show that

$$\int_{\mathbb{C}^{*n}} |\chi^m|^2 \exp(-P_{\omega}[\varphi]) \, \omega^n < \infty.$$

Using Proposition 5.2.6 and Proposition 5.2.5, we find that the latter holds if and only if

$$\int_{\mathbb{R}^n} \exp\left(\langle m, n \rangle - \operatorname{Supp}_{\Delta(\omega, \varphi)}(n)\right) \operatorname{MA}_{\mathbb{R}}(F_0)(n) < \infty,$$

which is obvious since

$$\langle m, n \rangle - \operatorname{Supp}_{\Lambda(n, \omega)}(n) \leq 0.$$

Next we show that for any $m \in M \cap (P \setminus \Delta(\omega, \varphi))$, the function χ^m does not lie in $H^0(X, L \otimes \mathcal{I}(\varphi))$. Again, this means

$$\int_{\mathbb{R}^n} \exp\left(\langle m, n \rangle - \operatorname{Supp}_{\Delta(\omega, \varphi)}(n)\right) \operatorname{MA}_{\mathbb{R}}(F_0)(n) = \infty.$$

By change of variables, this is equivalent to

$$\int_{P} \exp\left(\langle m, \nabla G_0(m') \rangle - \operatorname{Supp}_{\Delta(\omega, \varphi)}(\nabla G_0(m'))\right) dm' = \infty.$$

Since m does not lie in $\Delta(\omega, \varphi)$, we can find $n_0 \in \mathbb{R}^n$ such that

$$\langle m, n_0 \rangle - \operatorname{Supp}_{\Delta(\omega, \varphi)}(n_0) > 0.$$

In particular, there are closed convex cones $C' \subseteq C$ containing n_0 in their interiors such that there exists $\epsilon > 0$ such that

$$\langle m, n \rangle - \operatorname{Supp}_{\Delta(\omega, \varphi)}(n) \ge \epsilon |n|$$

for all $n \in C$ and C' intersects the boundary of C only at 0.

Thus, it would suffice to prove

$$\int_{P \cap \{\nabla G_0 \subseteq C\}} \exp\left(\epsilon |\nabla G_0(m')|\right) \, \mathrm{d}m' = \infty. \tag{5.13}$$
 {eq:intexpinftemp1}

For each $\rho \in \Sigma(1)$, we write

$$r_o(m') = \log(\langle m', u_o \rangle + a_o) + 1, \quad m' \in \mathbb{R}^n.$$

It follows from (5.5) that

$$\nabla G_0(m') = \sum_{\rho \in \Sigma(1)} r_{\rho}(m') u_{\rho}.$$

Take a cone σ in Σ such that $n_0 \in -\text{RelInt } \sigma$. Let ρ_1, \ldots, ρ_a be the rays of σ . We may find rays $\rho_{a+1}, \ldots, \rho_n \in \Sigma(1)$ such that $u_{\rho_1}, \ldots, u_{\rho_n}$ form a basis of \mathbb{R}^n .

A subset of $P \cap \{\nabla G_0 \subseteq C\}$ is given by those $m' \in P$ such that for all $\rho \in \Sigma(1)$ different from ρ_1, \ldots, ρ_a , the function $r_\rho(m')$ is uniformly bounded, while m' is close enough to the faces corresponding to the rays ρ_1, \ldots, ρ_n and $\sum_{i=1}^a r_{\rho_i}(m')u_{\rho_i} \in C'$. Replace the domain of integration in (5.13) to this region and the variable m' to $r_{\rho_1}(m'), \ldots, r_{\rho_n}(m')$, we find that the Jacobian is a polynomial in $r_{\rho_1}, \ldots, r_{\rho_a}$, while the integrand diverges exponentially. We conclude.

cor:DXmaintoric

Corollary 5.2.1 *Let* $\varphi \in PSH_{tor}(X, \omega)$, then

$$\lim_{k\to\infty} \frac{n!}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\varphi)) = n! \operatorname{vol} \Delta(\omega, \varphi).$$

We interpret the full mass potentials studied in Section 3.1.3 in the toric setting. We have the following straightforward observation in the full mass case.

Proposition 5.2.7 *Let* $\varphi \in PSH_{tor}(X, \omega)$. *Then the following are equivalent:*

- (1) $\varphi \in \mathcal{E}^{\infty}(X, \omega)$;
- (2) $F_{\varphi} \sim F_0$;
- (3) $G_{\varphi} \sim G_0$.

Proposition 5.2.8 *Let* $\varphi \in PSH_{tor}(X, \omega)$. *Then the following are equivalent:*

- (1) $\varphi \in \mathcal{E}(X, \omega)$;
- (2) $F_{\varphi} \in \mathcal{E}(N_{\mathbb{R}}, P)$;
- (3) $\overline{\text{Dom } G_{\omega}} = P$.

Proof (1) \iff (3). By Proposition 5.2.5

$$\int_X \omega_\varphi^n = \int_{T(\mathbb{C})} \left(\omega|_{T(\mathbb{C})} + \mathrm{dd^c} \varphi|_{T(\mathbb{C})} \right)^n = n! \, \mathrm{vol} \, \overline{\mathrm{Dom} \, G_\varphi}, \quad \int_X \omega^n = n! \, \mathrm{vol} \, P.$$

Therefore, (1) and (3) are equivalent.

$$(2) \iff (3)$$
. This follows from Proposition A.2.1.

Proposition 5.2.9 *Let* $\varphi \in PSH_{tor}(X, \omega)$, then

$$E_{\omega}(\varphi) = n! \int_{P} (G_0 - G_{\varphi}) \, d \operatorname{vol}.$$

Proof It suffices to consider the case where φ is bounded. In this case, one could apply [BB13, Proposition 2.9].

Corollary 5.2.2 *Let* $\varphi \in PSH_{tor}(X, \omega)$ *. Then the following are equivalent:*

- (1) $\varphi \in \mathcal{E}^1(X, \omega)$;
- (2) $F_{\varphi} \in \mathcal{E}^{1}(N_{\mathbb{R}}, P);$ (3) $G_{\varphi} \in L^{1}(P).$

Definition 5.2.2 We define

$$\mathcal{E}^{\infty}_{tor}(X,\omega) = \mathcal{E}^{\infty}(X,\omega) \cap PSH_{tor}(X,\omega),$$

$$\mathcal{E}^{1}_{tor}(X,\omega) = \mathcal{E}^{1}(X,\omega) \cap PSH_{tor}(X,\omega),$$

$$\mathcal{E}_{tor}(X,\omega) = \mathcal{E}(X,\omega) \cap PSH_{tor}(X,\omega).$$

cor:toricd1

Corollary 5.2.3 *Let* $\varphi, \psi \in \mathcal{E}^1_{tor}(X, \omega)$, then

$$d_1(\varphi, \psi) = -n! \int_P \left(G_{\varphi} + G_{\psi} - 2G_{\varphi \vee \psi} \right) d \operatorname{vol}.$$

prop:toricgeodsec

Proposition 5.2.10 *Let* $\varphi_0, \varphi_1 \in \mathcal{E}^1_{tor}(X, \omega)$. *The geodesic* $(\varphi_t)_{t \in (0,1)}$ *from* φ_0 *to* φ_1 *satisfies the following: For each* $t \in (0,1)$, $\varphi_t \in \mathcal{E}^1_{tor}(X,\omega)$ *and*

$$G_{\varphi_t} = (1 - t)G_{\varphi_0} + tG_{\varphi_1}.$$

This will be proved more generally in Corollary 12.3.2.

Definition 5.2.3 We define

$$\mathcal{R}^1_{\mathrm{tor}}(X,\omega) := \left\{ \ell \in \mathcal{R}^1(X,\omega) : \ell_t \in \mathrm{PSH}_{\mathrm{tor}}(X,\omega) \text{ for all } t \geq 0 \right\}.$$

Corollary 5.2.4 *Let* $\ell \in \mathcal{R}^1_{tor}(X,\omega)$. Then there is an integrable convex function $G' \in Conv(N_{\mathbb{R}})$ with $\overline{Dom G'} = P$ such that

$$G_{\ell_t} = G_0 + tG'$$

for all $t \geq 0$.

We could also make Example 4.2.2 concrete.

Proposition 5.2.11 Suppose that $\varphi \in PSH_{tor}(X, \omega)$. Then the ray ℓ^{φ} defined in *Example 4.2.2* satisfies:

$$G_{\ell_t} = G_0 + t f_{\ell}, \quad f_{\ell}(x) = \min_{\substack{\lambda \in [0,1] \\ x_1 \in P, x_0 \in \Delta(\omega, \varphi) \\ \lambda x_1 + (1 - \lambda) x_0 = x}} \lambda x_1 + \frac{\lambda}{2} \sum_{k=0}^{\infty} \frac{\lambda}{2} \sum_{k=0}^{\infty} \frac{\lambda}{2} \left(\frac{\lambda}{2} \right) \left(\frac{\lambda$$

for any $t \ge 0$ and $x \in M_{\mathbb{R}}$.

Proof Recall that for each C > 0, we defined $(\ell_t^{\varphi,C})_t$ as the geodesic from 0 to $-C \vee \varphi$. By Proposition 5.2.2, Proposition 5.2.4, we have $G_{-C \vee \varphi} = (G_0 + C) \wedge G_{\varphi}$. So by Proposition 5.2.10, we have

$$G_{\ell_t^{\varphi,C}} = \frac{t}{C} \left((G_0 + C) \wedge G_{\varphi} \right) + \frac{C - t}{C} G_0$$

for each $t \in [0, C]$.

Recall that for all $t \ge 0$,

$$\ell_t = \sup_{C \ge t} \ell_t^{\varphi, C}.$$

It follows from Proposition 5.2.4 that

$$G_{\ell_t} = \operatorname{cl}\inf_{C > t} \frac{t}{C} \left((G_0 + C) \wedge G_{\varphi} \right) + \frac{C - t}{C} G_0.$$

Since the infimum is clearly linear, the closure operation is not needed and G_{ℓ_t} is linear in t. So it suffices to compute the slope f:

$$f_{\ell} := \inf_{C > 0} \frac{1}{C} \left((G_0 + C) \wedge G_{\varphi} \right) - \frac{1}{C} G_0.$$

We compute this limit using Proposition A.1.2: For $x \in M_{\mathbb{R}}$, we compute the slope as follows

$$\begin{split} f_{\ell}(x) &= \inf_{C>0} \inf_{\substack{\lambda \in (0,1) \\ x_1, x_0 \in M_{\mathbb{R}} \\ \lambda x_1 + (1-\lambda) x_0 = x}} \lambda \left(\frac{G_0(x_1)}{C} + 1 \right) + \frac{1-\lambda}{C} G_{\varphi}(x_0) - \frac{G_0(x)}{C} \\ &= \inf_{\substack{\lambda \in (0,1) \\ x_1, x_0 \in M_{\mathbb{R}} \\ \lambda x_1 + (1-\lambda) x_0 = x}} \inf_{C>0} \lambda \left(\frac{G_0(x_1)}{C} + 1 \right) + \frac{1-\lambda}{C} G_{\varphi}(x_0) - \frac{G_0(x)}{C} \\ &= \inf_{\substack{\lambda \in [0,1] \\ x_1 \in P, x_0 \in \Delta(\omega, \varphi) \\ \lambda x_1 + (1-\lambda) x_0 = x}} \lambda. \end{split}$$

This part is the technical core of the whole book. We will develop the theory of I-good singularities.

We first develop some general techniques to compare the singularities in Chapter 6: The P-partial order, the \mathcal{I} -partial order and the d_S -pseudometric.

The P-partial order seems to be new. Some basic properties of the d_S -pseudometric have never appeared in the literature either.

Then in Chapter 7, we introduce the notion of I-good singularities and characterize I-good singularities in different ways. In the algebraic situation, we establish the asymptotic Riemann–Roch formula.

In Chapter 8, we will develop two key techniques in the inductive study of singularities: The trace operator and the analytic Bertini theorem. Roughly speaking, the latter tells us the behaviour of a quasi-plurisubharmonic function along a general divisor, while the former handles the case of special divisors. We will establish a relative version of the asymptotic Riemann–Roch formula in the algebraic situation.

In Chapter 9, we develop the theory of test curves. These are curves of model potentials. The key technique is the Ross–Witt Nyström correspondence, which relates test curves with geodesic rays. The complete proof of the most general form of this correspondence has never appeared in the literature, so we will give the full details.

In Chapter 10, we develop the theory of partial Okounkov bodies, in both algebraic and transcendental setting. The partial Okounkov bodies can be regarded as non-toric extensions of the Newton bodies. It turns out that even in the toric setting, our techniques give non-trivial new results.

In Chapter 11, we develop the theory of b-divisors in the algebraic setting. We formulate the general form of the Chern–Weil formula in terms of b-divisors. We also relate the theory of partial Okounkov bodies to b-divisors.

Chapter 6

Comparison of singularities

chap:comp

In this chapter, we study several ways of comparing the singularities of quasiplurisubharmonic functions. In Section 6.1, we will introduce the P and I-partial orders, closely related to the P and I-equivalence relations introduced in Chapter 3.

In Section 6.2, we introduce and study the d_S -pseudometric characterizing the differences between singularities. We will prove that a number of continuity results with respect to d_S .

6.1 The P and I-partial orders

sec:PIpartialorder

Let X be a connected compact Kähler manifold of dimension n.

Recall that we have defined a (non-strict) partial order on QPSH(X) in Definition 1.5.2 to compare the singularity types of quasi-plurisubharmonic functions. The problem with this partial order is that it is too fine. In general, for our interest, it is helpful to consider rougher relations.

6.1.1 The definitions of the partial orders

Recall that the *P*-envelope is defined in Definition 3.1.2.

def:Pmoresing

Definition 6.1.1 Let $\varphi, \psi \in \text{QPSH}(X)$, we say φ is *P-more singular than* ψ and write $\varphi \leq_P \psi$ if for some closed smooth real (1,1)-form θ on X such that $\varphi, \psi \in \text{PSH}(X,\theta)_{>0}$, we have

$$P_{\theta}[\varphi] \leq P_{\theta}[\psi].$$

Suppose that $\varphi \leq_P \psi$ and $\psi \leq_P \varphi$, we shall write $\varphi \sim_P \psi$ and say φ and ψ have the same *P-singularity type*.

This definition is independent of the choice of θ :

lma:Pproj_insens_omega

Lemma 6.1.1 Let $\varphi, \psi \in PSH(X, \theta)_{>0}$. For any Kähler form ω on X, the following are equivalent:

- (1) $P_{\theta}[\varphi] \leq P_{\theta}[\psi];$
- (2) $P_{\theta+\omega}[\varphi] \leq P_{\theta+\omega}[\psi]$.

In particular, \leq_P defines a non-strict partial order on QPSH(X).

Proof (1) implies (2). Observe that

$$P_{\theta}[\varphi] \le P_{\theta+\omega}[\varphi], \quad \varphi \le P_{\theta}[\varphi].$$

It follows from Theorem 3.1.1 that

$$P_{\theta+\omega}[\varphi] = P_{\theta+\omega}[P_{\theta}[\varphi]]. \tag{6.1}$$
 {eq:doubleP}

A similar formula holds for ψ . So we see that (2) holds.

(2) implies (1). By (6.1), we may assume that φ and ψ are both model potentials in PSH(X, θ)>0.

Observe that $\varphi \lor \psi \le P_{\theta+\omega}[\psi]$. It follows that $P_{\theta+\omega}[\varphi \lor \psi] \le P_{\theta+\omega}[\psi]$. The reverse inequality is trivial, so

$$P_{\theta+\omega}[\varphi\vee\psi]=P_{\theta+\omega}[\psi].$$

From the direction we have proved, for any $C \ge 1$,

$$P_{\theta+C\omega}[\varphi\vee\psi] = P_{\theta+C\omega}[\psi].$$

So by Proposition 3.1.3,

$$\int_X \left(\theta + C\omega + \mathrm{dd^c}(\varphi \vee \psi)\right)^n = \int_X \left(\theta + C\omega + \mathrm{dd^c}\psi\right)^n.$$

Since both sides are polynomials in C, the equality extends to C = 0, namely,

$$\int_X \theta_{\varphi \vee \psi}^n = \int_X \theta_{\psi}^n.$$

In particular, $\varphi \lor \psi \le P_{\theta}[\psi] = \psi$ by (3.5). So (1) follows.

As a first example of *P*-equivalence, we have:

ex:Pequiv

Example 6.1.1 Let θ be a closed smooth real (1,1)-form on X and $\varphi \in PSH(X,\theta)_{>0}$, then

$$\varphi \sim_P P_\theta[\varphi].$$

This follows immediately from Theorem 3.1.1.

prop:Pequivchar2

Proposition 6.1.1 *Let* $\varphi, \psi \in PSH(X, \theta)$ *and* $\varphi \leq \psi$. *Then the following are equivalent:*

(1)
$$\varphi \sim_P \psi$$
;

(2) for each $j = 0, \ldots, n$, we have

$$\int_{Y} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} = \int_{Y} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j}. \tag{6.2}$$

Assume furthermore that $\varphi, \psi \in PSH(X, \theta)_{>0}$, then these conditions are equivalent to the following:

(3) We have

$$\int_X \theta_{\varphi}^n = \int_X \theta_{\psi}^n.$$

Recall that V_{θ} is introduced in (2.9).

Proof We first prove the equivalence between (1) and (3) when $\varphi, \psi \in PSH(X, \theta)_{>0}$.

(1) \Longrightarrow (3). Assume that $\varphi \sim_P \psi$. By Definition 6.1.1, we have

$$P_{\theta}[\varphi] = P_{\theta}[\psi].$$

So (3) follows from Proposition 3.1.3.

(3) \Longrightarrow (1). It follows from Theorem 3.1.1 that $P_{\theta}[\varphi] = P_{\theta}[\psi]$, so (1) follows. Let us come back to the general case.

(1) \implies (2). Fix $j \in \{0, ..., n\}$, we argue (6.2).

Take a Kähler form ω on X. By Definition 6.1.1, for each $\epsilon > 0$, we have

$$P_{\theta+\epsilon\omega}[\varphi] = P_{\theta+\epsilon\omega}[\psi].$$

It follows from Proposition 3.1.3 that

$$\begin{split} \int_{X} \left(\theta + \epsilon \omega + \mathrm{dd^{c}} \psi\right)^{j} \wedge \theta_{V_{\theta}}^{n-j} &= \int_{X} \left(\theta + \epsilon \omega + \mathrm{dd^{c}} P_{\theta + \epsilon \omega} [\psi]\right)^{j} \wedge \theta_{V_{\theta}}^{n-j} \\ &= \int_{X} \left(\theta + \epsilon \omega + \mathrm{dd^{c}} P_{\theta + \epsilon \omega} [\varphi]\right)^{j} \wedge \theta_{V_{\theta}}^{n-j} \\ &= \int_{X} \left(\theta + \epsilon \omega + \mathrm{dd^{c}} \varphi\right)^{j} \wedge \theta_{V_{\theta}}^{n-j}. \end{split}$$

Since the two extremes are both polynomials in ϵ , we conclude that the same holds when $\epsilon = 0$, that is, (6.2) holds.

(2) \Longrightarrow (1). Assume (6.2) holds for all j = 0, ..., n. For each $t \in (0, 1)$, we have

$$\int_X \theta^n_{t\varphi+(1-t)V_\theta} = \int_X \theta^n_{t\psi+(1-t)V_\theta}$$

by the binomial expansion. By the implication $(3) \implies (1)$, we have

$$t\varphi + (1-t)V_\theta \sim_P t\psi + (1-t)V_\theta$$

for each $t \in (0, 1)$.

Fix a Kähler form ω on X. From the implication (1) \Longrightarrow (3), we have

$$\int_X (\theta+\omega)^n_{t\varphi+(1-t)V_\theta} = \int_X (\theta+\omega)^n_{t\psi+(1-t)V_\theta}.$$

Since both sides are polynomials in t, the same holds when t = 1. From the implication (3) \implies (1) again, we have $\varphi \sim_P \psi$.

prop: Iequivchar

Proposition 6.1.2 *Given* $\varphi, \psi \in QPSH(X)$, the following are equivalent:

(1) For any $k \in \mathbb{Z}_{>0}$, we have

$$I(k\varphi) \subseteq I(k\psi);$$

(2) for any $\lambda \in \mathbb{R}_{>0}$, we have

$$I(\lambda \varphi) \subseteq I(\lambda \psi);$$

(3) for any modification $\pi: Y \to X$ and any $y \in Y$, we have

$$\nu(\pi^*\varphi, y) \ge \nu(\pi^*\psi, y);$$

(4) for any proper bimeromorphic morphism $\pi: Y \to X$ from a Kähler manifold and any $y \in Y$, we have

$$\nu(\pi^*\varphi, y) \ge \nu(\pi^*\psi, y);$$

(5) for any prime divisor E over X, we have

$$v(\varphi, E) \ge v(\psi, E)$$
.

Proof The proof is almost identical to that of Proposition 3.2.1, we omit the details.□

Definition 6.1.2 Let $\varphi, \psi \in QPSH(X)$, we say φ is I-more singular than ψ and write $\varphi \leq_I \psi$ if the equivalent conditions in Proposition 6.1.2 are satisfied.

It is clear that \leq_I is a non-strict partial order on QPSH(X).

Note that $\varphi \leq_I \psi$ and $\psi \leq_I \varphi$ both hold if and only if $\varphi \sim_I \psi$ in the sense of Definition 3.2.1.

lma:reform_preceqP

Lemma 6.1.2 *Let* $\varphi, \psi \in QPSH(X)$. *Then the following are equivalent:*

- (1) $\varphi \leq_P \psi$ (resp. $\varphi \leq_I \psi$);
- (2) $\varphi \lor \psi \sim_P \psi$ (resp. $\varphi \lor \psi \sim_I \psi$).

Proof Take a closed real smooth (1,1)-form θ on X such that $\varphi, \psi \in PSH(X,\theta)_{>0}$. We only prove the P case, the \mathcal{I} case is similar.

- (2) \Longrightarrow (1). By (2) and Example 6.1.1, $P_{\theta}[\varphi \lor \psi] = P_{\theta}[\psi] \sim_P \psi$. But $\varphi \le P_{\theta}[\varphi \lor \psi]$, so (1) follows.
 - (1) \Longrightarrow (2). We may assume that φ, ψ are both model in PSH $(X, \theta)_{>0}$ as

$$P_{\theta}[\varphi \vee \psi] = P_{\theta}[P_{\theta}[\varphi] \vee P_{\theta}[\psi]].$$

Then $\varphi \leq \psi$ and (2) follows.

cor:PimpliesI

Corollary 6.1.1 Let $\varphi, \psi \in QPSH(X)$. Assume that $\varphi \leq_P \psi$, then $\varphi \leq_I \psi$.

Proof This follows from Lemma 6.1.2 and Proposition 3.2.8.

cor:Pvarphidef3

Corollary 6.1.2 *Assume that* $\varphi \in PSH(X, \theta)_{>0}$ *, then*

$$P_{\theta}[\varphi] = \sup \{ \psi \in PSH(X, \theta) : \psi \le 0, \psi \sim_{P} \varphi \}$$
$$= \sup \{ \psi \in PSH(X, \theta) : \psi \le 0, \psi \le_{P} \varphi \}.$$

Proof Note that $\psi \sim_P \varphi$ implies that $\psi \in PSH(X, \theta)_{>0}$ by Proposition 6.1.4. We observe that

$$\sup \{ \psi \in \mathrm{PSH}(X, \theta) : \psi \le 0, \psi \sim_P \varphi \}$$
$$= \sup \{ \psi \in \mathrm{PSH}(X, \theta) : \psi \le 0, \varphi \le \psi, \psi \sim_P \varphi \}$$

by Lemma 6.1.2. So the first equality is a direct consequence of Proposition 6.1.1 and Theorem 3.1.1.

Next we prove the second equality. We only need to show that for any $\psi \in PSH(X, \theta)$ with $\psi \leq 0$ and $\psi \leq_P \varphi$, we have $\psi \leq P_{\theta}[\varphi]$.

By Lemma 6.1.2 and Example 6.1.1, we know that $P_{\theta}[\varphi] \lor \psi \sim_{P} \varphi$ and $P_{\theta}[\varphi] \lor \psi \le 0$. It follows from the first equality that $\psi \le P_{\theta}[\varphi]$.

Similarly, we have

cor:Ienvelopedef2

Corollary 6.1.3 *Assume that* $\varphi \in PSH(X, \theta)$ *, then*

$$P_{\theta}[\varphi]_{\mathcal{I}} = \sup \{ \psi \in PSH(X, \theta) : \psi \le 0, \psi \le_{\mathcal{I}} \varphi \}.$$

prop:Icomparandenvelope

Proposition 6.1.3 *Suppose that* $\varphi, \psi \in QPSH(X)$ *and* θ *is a closed real smooth* (1,1)-form on X such that $\varphi, \psi \in PSH(X,\theta)$. Then the following are equivalent:

- (1) $\varphi \leq_{\mathcal{I}} \psi$;
- $(2) P_{\theta}[\varphi]_{\mathcal{I}} \leq P_{\theta}[\psi]_{\mathcal{I}}.$

Proof (1) \implies (2). This follows immediately from Corollary 6.1.3.

 $(2) \implies (1)$. This follows from Proposition 3.2.6.

6.1.2 Properties of the partial orders

Now we state a more natural version of the monotonicity theorem Theorem 2.3.2.

prop:mono2

Proposition 6.1.4 Let $\theta_1, \ldots, \theta_n$ be closed real smooth (1, 1)-forms on X. Let $\varphi_i, \psi_i \in PSH(X, \theta_i)$ for $i = 1, \ldots, n$. Assume that $\varphi_i \leq_P \psi_i$ for each i. Then

$$\int_X \theta_{\varphi_1} \wedge \dots \wedge \theta_{\varphi_n} \le \int_X \theta_{\psi_1} \wedge \dots \wedge \theta_{\psi_n}.$$

Proof Fix a Kähler form ω on X. For each $i = 1, \ldots, n$, since $\varphi_i \leq_P \psi_i$, we have

$$P_{\theta+\epsilon\,\omega}[\varphi_i] \leq P_{\theta+\epsilon\,\omega}[\psi_i]$$

for all $\epsilon > 0$. Therefore, by Proposition 3.1.3 and Theorem 2.3.2, we have

$$\int_X (\theta + \epsilon \omega)_{\varphi_1} \wedge \cdots \wedge (\theta + \epsilon \omega)_{\varphi_n} \le \int_X (\theta + \epsilon \omega)_{\psi_1} \wedge \cdots \wedge (\theta + \epsilon \omega)_{\psi_n}.$$

Since both sides are polynomials in ϵ , we find that the same holds at $\epsilon = 0$, which is the desired inequality.

prop:Ppartialsum

Proposition 6.1.5 *Let* $\varphi, \psi, \varphi', \psi' \in QPSH(X)$. *Assume that*

$$\varphi \leq_P \psi, \quad \varphi' \leq_P \psi'.$$

Then

$$\varphi + \varphi' \leq_P \psi + \psi'$$
.

The same holds with \leq_I in place of \leq_P .

Proof Take a Kähler form ω on X such that $\varphi, \psi, \varphi', \psi' \in PSH(X, \omega)_{>0}$. The statement for $\leq_{\mathcal{I}}$ is a simple consequence of Proposition 1.4.2. We only need to handle the case of \leq_{P} .

Step 1. We first show that

$$P_{\omega}[\varphi] + P_{\omega}[\varphi'] \sim_P \varphi + \varphi'.$$

In fact, we clearly have

$$P_{\omega}[\varphi] + P_{\omega}[\varphi'] \ge \varphi + \varphi'.$$

So by Proposition 6.1.1, it suffices to show that they have the same volume. We compute

$$\begin{split} &\int_{X} \left(2\omega + \mathrm{dd^{c}}P_{\omega}[\varphi] + \mathrm{dd^{c}}P_{\omega}[\varphi']\right)^{n} \\ &= \sum_{j=0}^{n} \binom{n}{j} \int_{X} \left(\omega + \mathrm{dd^{c}}P_{\omega}[\varphi]\right)^{j} \wedge \left(\omega + \mathrm{dd^{c}}P_{\omega}[\varphi']\right)^{n-j} \\ &= \sum_{j=0}^{n} \binom{n}{j} \int_{X} \omega_{\varphi}^{j} \wedge \omega_{\varphi'}^{n-j} \\ &= \int_{Y} \left(2\omega + \varphi + \varphi'\right)^{n}, \end{split}$$

where we applied Proposition 3.1.3 on the third line.

Step 2. By Step 1, we may assume that $\varphi, \psi, \varphi', \psi'$ are all model potentials. So $\varphi \leq \psi$ and $\varphi' \leq \psi'$. Our assertion follows.

prop:Ppartialsup

Proposition 6.1.6 Let $(\varphi_i)_{i \in I}$, $(\psi_i)_{i \in I}$ be uniformly bounded from above non-empty families in QPSH(X). Assume that there exists a closed smooth real (1,1)-form θ such that $\varphi_i, \psi_i \in \text{PSH}(X, \theta)$ and $\varphi_i \leq_P \psi_i$ for all $i \in I$. Then

$$\sup_{i\in I} {}^*\varphi_i \leq_P \sup_{i\in I} {}^*\psi_i.$$

The same holds with \leq_I in place of \leq_P .

Proof By increasing θ , we may assume that $\varphi_i, \psi_i \in \text{PSH}(X, \theta)_{>0}$ for all $i \in I$. The statement for \leq_I is a simple consequence of Corollary 1.4.1, we only have to consider the statement for \leq_P .

Step 1. We first handle the case where *I* is a directed set and $(\varphi_i)_{i \in I}$ and $(\psi_i)_{i \in I}$ are increasing nets.

In this case, our assertion follows simply from Proposition 3.1.10.

Step 2. We handle the case where *I* is finite. We may assume that $I = \{0, 1\}$. It suffices to show that

$$P_{\theta}[\varphi_0] \vee P_{\theta}[\varphi_1] \sim_P \varphi_0 \vee \varphi_1.$$

For this purpose, it suffices to prove the following:

$$P_{\theta}[\varphi_0] \vee \varphi_1 \sim_P \varphi_0 \vee \varphi_1$$
.

The \geq_P direction is obvious. So thanks to Proposition 6.1.1, it suffices to argue that they have the same mass. We may assume that $\varphi_0 \leq 0$. Thanks to Lemma 2.3.1, for each $\epsilon \in (0,1)$, we can find $\eta_{\epsilon} \in \text{PSH}(X,\theta)_{>0}$ such that

$$(1 - \epsilon)P_{\theta}[\varphi_0] + \epsilon \eta_{\epsilon} \le \varphi_0, \quad \eta_{\epsilon} \le \varphi_0 \le P_{\theta}[\varphi_0].$$

In particular,

$$(1 - \epsilon) (P_{\theta}[\varphi_0] \vee \varphi_1) + \epsilon \eta_{\epsilon} \leq \varphi_0 \vee \varphi_1.$$

It follows from Theorem 2.3.2 that

$$(1 - \epsilon)^n \int_X \theta_{P_{\theta}[\varphi_0] \vee \varphi_1}^n \le \int_X \theta_{\varphi_0 \vee \varphi_1}^n.$$

Letting $\epsilon \to 0+$ and using Theorem 2.3.2 again, we conclude that

$$\int_X \theta^n_{P_\theta[\varphi_0] \vee \varphi_1} = \int_X \theta^n_{\varphi_0 \vee \varphi_1}.$$

Our assertion is proved.

Step 3. The general case can be reduced to the two cases handled in Step 1 and Step 2. More precisely, by Proposition 1.2.2, we could find a countable subset $J \subseteq I$ such that

$$\sup_{j \in J} \varphi_j = \sup_{i \in I} \varphi_i, \quad \sup_{i \in I} \psi_j = \sup_{i \in I} \psi_i.$$

We may replace I by J and assume that I is countable. We may assume that I is infinite, as otherwise, we could apply Step 2 directly. So let us assume that $J = \mathbb{Z}_{>0}$. In this case, by Step 2 again, we may assume that both $(\varphi_i)_i$ and $(\psi_i)_i$ are increasing, which is the situation of Step 1.

prop:rooftopprePequiv

Proposition 6.1.7 *Let* $\varphi, \psi, \varphi', \psi' \in PSH(X, \theta)_{>0}$ *for some closed smooth real* (1, 1)-*form on X. Assume that*

$$\varphi \sim_P \varphi', \quad \psi \sim_P \psi'$$

and

$$\varphi' \wedge \psi' \in \mathrm{PSH}(X, \theta)_{>0}$$
.

Then

$$\varphi \wedge \psi \in \mathrm{PSH}(X, \theta)_{>0}$$

and

$$\varphi \wedge \psi \sim_P \varphi' \wedge \psi'$$
.

Proof Without loss of generality, we may assume that $\psi = \psi'$. Replacing φ' by $P_{\theta}[\varphi']$, we may also assume that $\varphi \leq \varphi'$.

Using Corollary 2.3.2, for each $\epsilon \in (0, 1)$, we can find $\eta \in PSH(X, \theta)$ such that

$$\int_X \theta_\eta^n = \int_X \theta_\varphi^n, \quad \epsilon \eta + (1 - \epsilon) \varphi' \le \varphi, \quad \eta \le \varphi'.$$

Since

$$\int_X \theta_\eta^n + \int_X \theta_{\varphi' \wedge \psi}^n > \int_X \theta_{\varphi'}^n,$$

by Proposition 3.1.4, we find $\eta \wedge \psi \in PSH(X, \theta)$. Now observe that

$$\epsilon(\eta \wedge \psi) + (1 - \epsilon)(\varphi' \wedge \psi) \le \varphi \wedge \psi.$$

By Theorem 2.3.2, we find that

$$(1 - \epsilon)^n \int_{Y} \theta_{\varphi' \wedge \psi}^n \le \int_{Y} \theta_{\varphi \wedge \psi}^n.$$

Letting $\epsilon \to 0+$ and applying Theorem 2.3.2, we find that

$$\int_X \theta^n_{\varphi' \wedge \psi} = \int_X \theta^n_{\varphi \wedge \psi}.$$

We conclude by Proposition 6.1.1.

6.2 The d_S -pseudometric

sec:dsdef

Let X be a connected compact Kähler manifold of dimension n and θ be a closed real smooth (1,1)-form on X representing a big cohomology class. The goal of this section is to study a pseudometric on the space $PSH(X, \theta)$.

6.2.1 The definition of the d_S -pseudometric

Recall that for any $\varphi \in PSH(X, \theta)$, the geodesic ray $\ell^{\varphi} \in \mathcal{R}^1(X, \theta)$ is defined in Example 4.2.2.

def:dS

Definition 6.2.1 For $\varphi, \psi \in PSH(X, \theta)$, we define

$$d_S(\varphi, \psi) := d_1(\ell^{\varphi}, \ell^{\psi}).$$

When we want to be more specific, we write $d_{S,\theta}$ instead of d_{S} .

The d_1 distance of geodesic rays is defined in Definition 4.2.6.

Proposition 6.2.1 *The function* d_S *defined in Definition 6.2.1 is a pseudometric on* $PSH(X, \theta)$.

Proof This follows immediately from Theorem 4.2.2.

When studying a pseudometric, the first thing is to understand when the distance between two elements vanishes.

We first prove a preparation:

lma:dSalmostriano

Lemma 6.2.1 *Let* $\varphi, \psi \in PSH(X, \theta)$ *. Then*

$$d_S(\varphi, \psi) \le d_S(\varphi, \varphi \vee \psi) + d_S(\psi, \varphi \vee \psi) \le C_n d_S(\varphi, \psi),$$

where $C_n = 3(n+1)2^{n+2}$.

Proof Observe that

$$\ell^{\varphi} \vee \ell^{\psi} = \ell^{\varphi \vee \psi}$$
. (6.3) {eq:elllorsingtype}

In fact, it is clear that

$$\ell^{\varphi} \le \ell^{\varphi \lor \psi}, \quad \ell^{\psi} \le \ell^{\varphi \lor \psi},$$

so the \leq direction in (6.3) holds.

Conversely, if $\ell' \in \mathcal{R}^1(X, \theta)$ and $\ell' \geq \ell^{\varphi} \vee \ell^{\psi}$, then for each $t \geq 0$,

$$\ell_t' \ge ((V_\theta - t) \lor \varphi) \lor ((V_\theta - t) \lor \psi) = (V_\theta - t) \lor (\varphi \lor \psi).$$

It follows that $\ell' \geq \ell^{\varphi \vee \psi}$.

So our assertion follows from Lemma 4.2.1.

108

prop:ds0char

Proposition 6.2.2 *Let* $\varphi, \psi \in PSH(X, \theta)$ *. Then the following are equivalent:*

(1)
$$\varphi \sim_P \psi$$
;

(2)
$$d_S(\varphi, \psi) = 0$$
.

In particular, $d_S(\varphi, P_{\theta}[\varphi]) = 0$ for all $\varphi \in PSH(X, \theta)_{>0}$.

Proof By Lemma 6.1.2, we have $\varphi \sim_P \psi$ if and only if $\varphi \sim_P \varphi \vee \psi$ and $\psi \sim_P \varphi \vee \psi$. By Lemma 6.2.1, $d_S(\varphi, \psi) = 0$ if and only if $d_S(\varphi, \varphi \vee \psi) = 0$ and $d_S(\psi, \varphi \vee \psi) = 0$. So it suffices to prove the assertion when $\varphi \leq \psi$. Assuming this, by Proposition 4.2.6 we have that 2 holds if and only if

$$\mathbf{E}(\ell^{\varphi}) = \mathbf{E}(\ell^{\psi}),$$

But using (4.19), this holds if and only if

$$\sum_{j=0}^n \int_X \theta_\varphi^j \wedge \theta_{V_\theta}^{n-j} = \sum_{j=0}^n \int_X \theta_\psi^j \wedge \theta_{V_\theta}^{n-j}.$$

But by Theorem 2.3.2, this holds if and only if for all j = 0, ..., n,

$$\int_X \theta_{\varphi}^j \wedge \theta_{V_{\theta}}^{n-j} = \int_X \theta_{\psi}^j \wedge \theta_{V_{\theta}}^{n-j},$$

which is equivalent to 1 by Proposition 6.1.1.

lma:varphileqpsi_metric

Lemma 6.2.2 *Suppose that* $\varphi, \psi \in PSH(X, \theta)$ *and* $\varphi \leq_P \psi$ *, then*

$$d_S(\varphi,\psi) = \frac{1}{n+1} \sum_{i=0}^n \left(\int_X \theta_\psi^j \wedge \theta_{V_\theta}^{n-j} - \int_X \theta_\varphi^j \wedge \theta_{V_\theta}^{n-j} \right).$$

Proof This follows trivially from (4.19).

cor:dsthreeterm

Corollary 6.2.1 *Suppose that* $\varphi, \psi, \eta \in PSH(X, \theta)$ *and* $\varphi \leq_P \psi \leq_P \eta$ *. Then*

$$d_S(\varphi, \eta) \ge d_S(\varphi, \psi), \quad d_S(\varphi, \eta) \ge d_S(\psi, \eta).$$

Proof This is an immediate consequence of Lemma 6.2.2 and Proposition 6.1.4. □

cor:dsmetricdoubleineq

Corollary 6.2.2 *For any* $\varphi, \psi \in PSH(X, \theta)$ *, we have*

$$d_{S}(\varphi, \psi) \leq \sum_{j=0}^{n} \left(2 \int_{X} \theta_{\varphi \vee \psi}^{j} \wedge \theta_{V_{\theta}}^{n-j} - \int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} - \int_{X} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \right)$$

$$\leq C_{n} d_{S}(\varphi, \psi),$$

$$(6.4) \quad \text{eq:ds_biineq}$$

where $C_n = 3(n+1)2^{n+2}$.

In particular, if $(\varphi_i)_{i \in I}$ is a net in $PSH(X, \theta)$ with d_S -limit φ , then for each j = 0, ..., n,

$$\lim_{i \in I} \int_X \theta_{\varphi_i}^j \wedge \theta_{V_\theta}^{n-j} = \int_X \theta_{\varphi}^j \wedge \theta_{V_\theta}^{n-j} = \int_X \theta_{\varphi_i \vee \varphi}^j \wedge \theta_{V_\theta}^{n-j}$$

Proof The estimates (6.4) follows from the combination of Lemma 6.2.2 and Lemma 6.2.1

The last assertion follows from (6.4) and Theorem 2.3.2.

cor:incseadSconv

Corollary 6.2.3 *Suppose that* $\varphi_i \in PSH(X, \theta)$ $(i \in I)$ *be an increasing net, uniformly bounded from above. Then*

$$\varphi_i \xrightarrow{d_S} \sup_{j \in I} {}^*\varphi_j.$$

Proof Write $\varphi = \sup_{j \in I} \varphi_j$. Recall that by Proposition 1.2.1, $\varphi \in PSH(X, \theta)$. By Lemma 6.2.2, it suffices to show that for each k = 0, ..., n, we have

$$\lim_{j \in I} \int_X \theta_{\varphi_j}^k \wedge \theta_{V_\theta}^{n-k} = \int_X \theta_{\varphi}^k \wedge \theta_{V_\theta}^{n-k}.$$

The latter follows from Corollary 2.3.1.

By constrast, for decreasing nets, the situation is different:

cor:decnetdS

Corollary 6.2.4 *Suppose that* $\varphi_i \in PSH(X, \theta)$ *is a decreasing net such that* $\varphi := \inf_{i \in I} \varphi_i \not\equiv -\infty$. *Then the following are equivalent:*

(1) We have

$$\varphi_i \xrightarrow{d_S} \varphi;$$

(2) for each k = 0, ..., n, we have

$$\lim_{j \in I} \int_{X} \theta_{\varphi_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k} = \int_{X} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k}. \tag{6.5}$$

If we assume furthermore that $\int_X \theta_{\varphi}^n > 0$, then the above conditions are equivalent to the following:

(3) We have

$$\lim_{j \in I} \int_{X} \theta_{\varphi_{j}}^{n} = \int_{X} \theta_{\varphi}^{n}.$$

In the latter case, we also have

$$P_{\theta}[\varphi] = \inf_{i \in I} P_{\theta}[\varphi_i]. \tag{6.6}$$

Proof Recall that by Proposition 1.2.1, $\varphi \in PSH(X, \theta)$.

- (1) \iff (2). This follows immediately from Lemma 6.2.2.
- $(2) \implies (3)$. This is trivial.
- (3) \Longrightarrow (2). Let $(b_j)_{j \in I}$ be a net converging to ∞ such that

$$b_j \in \left(1, \left(\frac{\int_X \theta_{\varphi_j}^n}{\int_X \theta_{\varphi_j}^n - \int_X \theta_{\varphi}^n}\right)^{1/n}\right).$$

By Lemma 2.3.1, for each $j \in I$, we can find $\eta_j \in PSH(X, \theta)$ such that

$$b_i^{-1}\eta_j + (1 - b_i^{-1})\varphi_j \le \varphi.$$

It follows from Theorem 2.3.2 that for any k = 0, ..., n,

$$\int_X \theta_\varphi^k \wedge \theta_{V_\theta}^{n-k} \ge (1 - b_j^{-1})^k \int_X \theta_{\varphi_j}^k \wedge \theta_{V_\theta}^{n-k}.$$

Taking the limit, we conclude the \leq direction in (6.5). The \geq direction follows from Theorem 2.3.2.

Finally, we argue (6.6).

Let $\psi_j = P_{\theta}[\varphi_j]$. It follows from Corollary 3.1.1 that ψ_j is a model potential. Let

$$\psi = \inf_{j \in I} \psi_j.$$

It follows from Proposition 3.1.3 and Proposition 3.1.9 that

$$\int_X \theta_{\psi}^n = \lim_{j \in I} \int_X \theta_{\psi_j}^n = \lim_{j \in I} \int_X \theta_{\varphi_j}^n = \int_X \theta_{\varphi}^n.$$

By Proposition 3.1.8, ψ is a model potential. So by Proposition 6.1.1, we have $\varphi \sim_P \psi$ and hence $\psi = P_{\theta}[\varphi]$ by Corollary 6.1.2.

Having understood the increasing and decreasing cases, we shall handle more general convergent sequences. In fact, since d_S is a pseudometric, the topology is completely determined by convergent sequences, so we do not need to consider nets in general.

prop:incandded

Proposition 6.2.3 Let $\varphi_j, \varphi \in PSH(X, \theta)$ $(j \ge 1), \varphi_j \xrightarrow{d_S} \varphi$. Assume that there is $\delta > 0$ such that

$$\int_X \theta_{\varphi_j}^n \ge \delta, \quad \int_X \theta_{\varphi}^n \ge \delta$$

for all j and the φ_j 's and φ are all model potentials. Then up to replacing $(\varphi_j)_j$ by a subsequence, there is a decreasing sequence $\psi_j \in PSH(X, \theta)$ and an increasing sequence $\eta_i \in PSH(X, \theta)$ such that

$$(1) \psi_j \xrightarrow{d_S} \varphi, \eta_j \xrightarrow{d_S} \varphi;$$

$$(2) \psi_j \ge \varphi_j \ge \eta_j \text{ for all } j.$$

In fact, for any $j \ge 1$, we will take

$$\eta_j = \inf_{k \in \mathbb{N}} \varphi_j \wedge \varphi_{j+1} \wedge \cdots \wedge \varphi_{j+k}, \quad \psi_j = \sup_{k \ge j} {}^*\varphi_k.$$

Proof We are free to replace $(\varphi_j)_j$ by a subsequence. So we may assume that

$$d_S(\varphi_j, \varphi_{j+1}) \le C_n^{-2j}, \quad d_S(\varphi, \varphi_j) \le \frac{2^{-j-2}}{(n+1)C_n}, \tag{6.7}$$

where C_n is the constant in Corollary 6.2.2.

Step 1. We handle the ψ_i 's. For each $j \ge 1$ and $k \ge 1$, by Corollary 6.2.2 we have

$$d_{S}(\varphi_{j}, \varphi_{j} \vee \varphi_{j+1} \vee \cdots \vee \varphi_{j+k}) \leq C_{n} d_{S}(\varphi_{j}, \varphi_{j+1} \vee \cdots \vee \varphi_{j+k})$$

$$\leq C_{n} d_{S}(\varphi_{j}, \varphi_{j+1}) + C_{n} d_{S}(\varphi_{j+1}, \varphi_{j+1} \vee \cdots \vee \varphi_{j+k}).$$

By iteration, we find

$$d_{S}(\varphi_{j}, \varphi_{j} \vee \varphi_{j+1} \vee \dots \vee \varphi_{j+k}) \leq \sum_{a=j}^{j+k-1} C_{n}^{a+1-j} d_{S}(\varphi_{a}, \varphi_{a+1})$$

$$\leq \sum_{a=j}^{j+k-1} C_{n}^{a+1-j} C_{n}^{-2a} = \frac{C_{n}^{1-2j}}{1 - C_{n}^{-1}}.$$

Using Corollary 6.2.3, we have

$$\varphi_j \vee \varphi_{j+1} \vee \cdots \vee \varphi_{j+k} \xrightarrow{d_S} \psi_j$$

as $k \to \infty$ and hence when $j \ge j_0$ for some j_0 , we have

$$d_S(\varphi_j, \psi_j) \le \frac{C_n^{1-2j}}{1 - C_n^{-1}} \le \frac{1}{(n+1)C_n 2^{2+j}}.$$
 (6.8) {eq:dsvarphijpsijesttemp1}

We conclude that $\psi_j \xrightarrow{d_S} \varphi$.

Moreover, we observe that

$$\varphi = \inf_{i} P_{\theta}[\psi_{i}]$$
 (6.9) {eq:varphiexpressiontemp1}

by Corollary 6.2.4.

Step 2. We consider the η_j 's. For each $j \ge 1$ and $k \ge 0$, we let

$$\eta_i^k \coloneqq \varphi_i \wedge \cdots \wedge \varphi_{i+k}.$$

Using the assumption (6.7) and Corollary 6.2.2, we have

$$\left| \int_X \theta_{\varphi_j}^n - \int_X \theta_{\varphi}^n \right| \le 2^{-j}.$$

Similarly, using (6.8), we have

$$\left| \int_X \theta_{\psi_j}^n - \int_X \theta_{\varphi}^n \right| \le 2^{-j}.$$

Step 2.1. Take j_1 so that for $j \ge j_1, 2^{3-j} < \delta$. We claim that for a fixed $j \ge j_0 \lor j_1$, for any $k \in \mathbb{N}$, we have $\eta_j^k \in \mathrm{PSH}(X, \theta)$ and

$$\int_X \theta_{\eta_j^k} \ge \int_X \theta_{\varphi_j}^n - \sum_{a=0}^k 2^{-j-a+2}.$$

We argue by induction on $k \ge 0$. The case k = 0 follows from Theorem 2.3.2. When k > 0, assume that the case k - 1 is known. Then

$$\begin{split} \int_X \theta^n_{\eta^{k-1}_j} + \int_X \theta^n_{\varphi_{j+k}} &> \int_X \theta^n_{\varphi_j} - \sum_{a=0}^{k-1} 2^{2-j-a} + \int_X \theta^n_{\psi_{j+k-1}} - 2^{2-j-k} \\ &\geq \int_X \theta^n_{\varphi_j} - 2^{3-j} + \int_X \theta^n_{\psi_{j+k-1}} &> \int_X \theta^n_{\psi_{j+k-1}}. \end{split}$$

It follows from Proposition 3.1.4 that $\eta_j^k \in \mathrm{PSH}(X,\theta)$. By Theorem 3.1.3, we deduce that

$$\int_X \theta^n_{\varphi_{j+k}} + \int_X \theta^n_{\eta^{k-1}_j} \leq \int_X \theta^n_{\psi_{j+k-1}} + \int_X \theta^n_{\eta^k_j}.$$

Our claim therefore follows.

Step 2.2. It follows from Proposition 3.1.7 that

$$P_{\theta}[\eta_{j}^{k}] = \eta_{k}^{j}.$$

By Proposition 3.1.9, we have

$$\lim_{k \to \infty} \int_X \theta_{\varphi_j^k}^n = \int_X \theta_{\eta_j}^n.$$

By Step 1, for large enough j, we have

$$\int_X \theta_{\eta_j}^n \ge \int_X \theta_{\varphi_j}^n - 2^{3-j} > 0.$$

Let $\eta = \sup_{j} \eta^{j}$. Observe that we also have

$$\int_{Y} \theta_{\eta_{j}}^{n} \leq \int_{Y} \theta_{\psi_{j}}^{n}$$

by Theorem 2.3.2. It follows that

$$\int_X \theta_{\eta}^n = \lim_{j \to \infty} \int_X \theta_{\varphi_j}^n = \lim_{j \to \infty} \int_X \theta_{\psi_j}^n = \int_X \theta_{\varphi}^n.$$

Since $\eta_j \leq \varphi_j \leq \psi_j \leq 0$, we also have that $\eta_j \leq P_{\theta}[\psi_j]$. Therefore, by Corollary 6.2.4, we also have $\eta \leq \varphi$. It follows from Proposition 6.1.1 that $\eta \sim_P \varphi$. By Corollary 6.2.3 and Proposition 6.2.2, we have $\eta^j \xrightarrow{d_S} \varphi$.

cor:completenessdS

Corollary 6.2.5 Let $(\varphi_j)_{j\in I}$ be a net in $PSH(X,\theta)$. Assume that there is $\delta > 0$ such that $\int_X \theta_{\varphi_j}^n \geq \delta$ for all $j \in I$. Then $(\varphi_j)_{j\in I}$ has a d_S -convergent subnet. If moreover $(\varphi_j)_{j\in I}$ is decreasing, then $(\varphi_j)_{j\in I}$ itself is convergent.

Proof Since the space of $\varphi \in \mathrm{PSH}(X, \theta)$ with $\int_X \theta_{\varphi}^n \geq \delta$ is a pseudometric space, its completeness can be characterized using sequences instead of nets. So we may assume that $(\varphi_i)_{i \in I}$ is a sequence.

Replacing φ_j by a subsequence, we may assume that (6.7) holds. By the proof of Proposition 6.2.3 Step 1, we may assume that φ_j is a decreasing sequence. In this case, by Proposition 6.2.2 and Corollary 6.1.2, we may assume that each φ_j is a model potential. Then φ_j converges by Corollary 6.2.4 and Proposition 3.1.9.

On the other hand, if $(\varphi_j)_{j \in I}$ is decreasing, then it is convergent by Corollary 6.2.4 and Proposition 3.1.9.

lma:dSsmallmult

Lemma 6.2.3 There is a constant C > 0 such that for any $\varphi \in PSH(X, \theta)$ satisfying that θ_{φ} is a Kähler current, we have

$$d_{S,\theta}((1-\epsilon)\varphi,\varphi) \leq C\epsilon$$

for $\epsilon > 0$ *such that* $(1 - \epsilon)\varphi \in PSH(X, \theta)$.

Proof By Lemma 6.2.2, we can compute

$$\begin{split} d_{S,\theta}((1-\epsilon)\varphi,\varphi) = & \frac{1}{n+1} \sum_{j=0}^n \left(\int_X \theta^j_{(1-\epsilon)\varphi} \wedge \theta^{n-j}_{V_\theta} - \int_X \theta^j_\varphi \wedge \theta^{n-j}_{V_\theta} \right) \\ = & \frac{1}{n+1} \sum_{j=0}^n \left(\int_X (1-\epsilon)^j \theta^j_\varphi \wedge \theta^{n-j}_{V_\theta} - \int_X \theta^j_\varphi \wedge \theta^{n-j}_{V_\theta} \right) \\ + & \sum_{j=0}^n \sum_{k=0}^{j-1} \binom{j}{k} (1-\epsilon)^k \epsilon^{j-k} \int_X \theta^{j-k} \wedge \theta^k_\varphi \wedge \theta^{n-j}_{V_\theta}. \end{split}$$

Both terms are of the order of $O(\epsilon)$.

6.2.2 Convergence theorems

lma:dsconvpertV

Lemma 6.2.4 Let $(\varphi_i)_{i \in I}$ be a net in $PSH(X, \theta)$ and $\varphi \in PSH(X, \theta)$. Assume that $\varphi_i \xrightarrow{d_S} \varphi$. Then for any $t \in (0, 1]$,

$$(1-t)\varphi_i + tV_\theta \xrightarrow{d_S} (1-t)\varphi + tV_\theta.$$

Proof Fix $t \in (0, 1]$, we write

$$\varphi_{i,t} = (1-t)\varphi_i + tV_{\theta}, \quad \varphi_t = (1-t)\varphi + tV_{\theta}$$

for any $i \in I$. By Corollary 6.2.2, it suffices to show that for each $j = 0, \dots, n$,

$$2\int_{V}\theta_{\varphi_{i,t}\vee\varphi_{t}}^{j}\wedge\theta_{V_{\theta}}^{n-j}-\int_{V}\theta_{\varphi_{i,t}}^{j}\wedge\theta_{V_{\theta}}^{n-j}-\int_{V}\theta_{\varphi_{t}}^{j}\wedge\theta_{V_{\theta}}^{n-j}\to0. \tag{6.10}$$

Observe that

$$\varphi_{i,t} \vee \varphi_t = (1-t)(\varphi \vee \varphi_i) + tV_{\theta}.$$

So after binary expansion, (6.10) follows from Corollary 6.2.2.

Similarly,

lma:linearpertbyVtheta

Lemma 6.2.5 Let $\varphi \in PSH(X, \theta)$. For each $t \in (0, 1)$, let $\varphi_t = (1 - t)\varphi + tV_\theta$. Then

$$\varphi_t \xrightarrow{d_S} \varphi$$

as $t \to 0+$.

Proof By Lemma 6.2.2, we need to show that for each j = 1, ..., n, we have

$$\lim_{t \to 0+} \int_X \theta_{\varphi_t}^j \wedge \theta_{V_\theta}^{n-j} = \int_X \theta_\varphi^j \wedge \theta_{V_\theta}^{n-j}.$$

For this purpose, we compute

$$\int_{X} \theta_{\varphi_{t}}^{j} \wedge \theta_{V_{\theta}}^{n-j} - \int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}$$

$$= \sum_{i=0}^{j-1} {j \choose i} (1-t)^{i} t^{j-i} \theta_{\varphi}^{i} \wedge \theta_{V_{\theta}}^{n-i}.$$

As $t \to 0+$, the right-hand side clearly tends to 0.

The following convergent theorem lies at the heart of the whole theory.

thm:convdS

Theorem 6.2.1 Let $\theta_1, \ldots, \theta_n$ be smooth closed real (1,1)-forms on X representing big cohomology classes. Suppose that $(\varphi_j^k)_{k\in I}$ are nets in $PSH(X,\theta_j)$ for $j=1,\ldots,n$ and $\varphi_1,\ldots,\varphi_n\in PSH(X,\theta)$. We assume that $\varphi_j^k\xrightarrow{d_S}\varphi_j$ for each $j=1,\ldots,n$. Then

$$\lim_{k \in I} \int_{Y} \theta_{1,\varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n,\varphi_{n}^{k}} = \int_{Y} \theta_{1,\varphi_{1}} \wedge \cdots \wedge \theta_{n,\varphi_{n}}. \tag{6.11}$$

Proof Since d_S is a pseudometric, in order to establish the continuity of mixed masses, it suffices to consider sequences instead of nets. So we may assume that $I = \mathbb{Z}_{>0}$ as ordered sets.

Step 1. We reduce to the case where φ_j^k , φ_j all have positive masses and there is a constant $\delta > 0$, such that for all j and k,

$$\int_X \theta_{j,\varphi_j^k}^n > \delta.$$

Take $t \in (0, 1)$. By Lemma 6.2.4, we have

$$(1-t)\varphi_j^k + tV_{\theta_j} \xrightarrow{d_S} (1-t)\varphi_j + tV_{\theta_j}$$

for each *j*. Assume that we have proved the special case of the theorem, we have

$$\lim_{k \in I} \int_{X} \theta_{1,(1-t)\varphi_{1}^{k}+tV_{\theta_{1}}} \wedge \cdots \wedge \theta_{n,(1-t)\varphi_{n}^{k}+tV_{\theta_{n}}}$$

$$= \int_{X} \theta_{1,(1-t)\varphi_{1}+tV_{\theta_{1}}} \wedge \cdots \wedge \theta_{n,(1-t)\varphi_{n}+tV_{\theta_{n}}}.$$

Since both sides are polynomials in t, it follows that the same holds at t = 0. From this, (6.11) follows.

Step 2. Next we may assume that φ_j^k , φ_j are model potentials by Proposition 6.2.2 and Corollary 3.1.1.

It suffices to prove that any subsequence of $\int_X \theta_{1,\varphi_1^k} \wedge \cdots \wedge \theta_{n,\varphi_n^k}$ has a converging subsequence with limit $\int_X \theta_{1,\varphi_1} \wedge \cdots \wedge \theta_{n,\varphi_n}$. Thus, by Proposition 6.2.3 and Theorem 2.3.2, we may assume that for each fixed i, φ_i^k is either increasing or decreasing. We may assume that for $i \le i_0$, the sequence is decreasing and for $i > i_0$, the sequence is increasing.

Recall that in (6.11) the \geq inequality always holds by Theorem 2.3.2, it suffices to prove

$$\overline{\lim_{k \in I}} \int_{Y} \theta_{1, \varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{k}} \leq \int_{Y} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}}. \tag{6.12}$$

By Theorem 2.3.2 in order to prove (6.12), we may assume that for $j > i_0$, the sequences φ_j^k are constant. Thus, we are reduced to the case where for all i, φ_i^k are decreasing.

In this case, for each i we may take an increasing sequence $b_i^k > 1$, tending to ∞ , such that

$$(b_i^k)^n \int_X \theta_{i,\varphi_i}^n \ge \left((b_i^k)^n - 1 \right) \int_X \theta_{i,\varphi_i^k}^n.$$

Let ψ_i^k be the maximal θ_i -psh function such that

$$(b_i^k)^{-1}\psi_i^k + (1 - (b_i^k)^{-1})\varphi_i^k \le \varphi_i$$
,

whose existence is guaranteed by Lemma 2.3.1.

Then by Theorem 2.3.2 again,

$$\prod_{i=1}^{n} \left(1 - (b_i^k)^{-1} \right) \int_X \theta_{1,\varphi_1^k} \wedge \cdots \wedge \theta_{n,\varphi_n^k} \le \int_X \theta_{1,\varphi_1} \wedge \cdots \wedge \theta_{n,\varphi_n}.$$

Letting $k \to \infty$, we conclude (6.12).

Corollary 6.2.6 Suppose that $(\varphi_i)_{i \in I}$ is a net in $PSH(X, \theta)$ and $\varphi \in PSH(X, \theta)$. Then the following are equivalent:

(1)
$$\varphi_i \xrightarrow{d_S} \varphi$$
;

(2)
$$\varphi_i \vee \varphi \xrightarrow{d_S} \varphi$$
 and

$$\lim_{i \in I} \int_{V} \theta_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j} = \int_{V} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}$$
(6.13) {eq:massconv_varphii}

for each $j = 0, \ldots, n$.

The corollary allows us to reduce a number of convergence problems related to d_S to the case $\varphi_i \ge \varphi$, which is much easier to handle by Lemma 6.2.2. This is the most handy way of establishing d_S -convergence in practice.

Proof (1) \Longrightarrow (2). $\varphi_i \vee \varphi \xrightarrow{d_S} \varphi$ follows from Corollary 6.2.2. While (6.13) follows

(2) \Longrightarrow (1). By (6.4), we need to show that for each j = 0, ..., n, we have

$$2\int_X \theta^j_{\varphi_i\vee\varphi}\wedge\theta^{n-j}_{V_\theta}-\int_X \theta^j_\varphi\wedge\theta^{n-j}_{V_\theta}-\int_X \theta^j_{\varphi_i}\wedge\theta^{n-j}_{V_\theta}\to 0.$$

This follows from Theorem 6.2.1 and (6.13).

Corollary 6.2.7 *Let* $(\varphi_i)_{i \in I}$ *be a net in* $PSH(X, \theta)$ *and* $\varphi \in PSH(X, \theta)$. *Let* ω *be a* Kähler form on X. Then the following are equivalent:

(1)
$$\varphi_i \xrightarrow{d_{S,\theta}} \varphi$$
;
(2) $\varphi_i \xrightarrow{d_{S,\theta+\omega}} \varphi$.

$$(2) \varphi_i \xrightarrow{a_{S,\theta+\omega}} \varphi.$$

In particular, there is no risk when we simply write $\varphi_i \xrightarrow{d_S} \varphi_i$

Proof (1) \Longrightarrow (2). It suffices to show that for each j = 0, ..., n, we have

$$\begin{split} 2\int_X (\theta+\omega)^j_{\varphi_i\vee\varphi}\wedge(\theta+\omega)^{n-j}_{V_{\theta+\omega}} - \int_X (\theta+\omega)^j_{\varphi_i}\wedge(\theta+\omega)^{n-j}_{V_{\theta+\omega}} \\ - \int_X (\theta+\omega)^j_{\varphi}\wedge(\theta+\omega)^{n-j}_{V_{\theta+\omega}} \to 0. \end{split}$$

Note that this quantity is a linear combination of terms of the following form:

$$2\int_{X} \theta_{\varphi_{i} \vee \varphi}^{r} \wedge \omega^{j-r} \wedge (\theta + \omega)_{V_{\theta + \omega}}^{n-j} - \int_{X} \theta_{\varphi_{i}}^{r} \wedge \omega^{j-r} \wedge (\theta + \omega)_{V_{\theta + \omega}}^{n-j} - \int_{X} \theta_{\varphi}^{r} \wedge \omega^{j-r} \wedge (\theta + \omega)_{V_{\theta + \omega}}^{n-j},$$

where r = 0, ..., j. By Theorem 6.2.1, it suffices to show that $\varphi \lor \varphi_i \xrightarrow{d_S} \varphi$. But this follows from Corollary 6.2.6.

(2) \Longrightarrow (1). From the direction we already proved, for each $C \ge 1$, we have that

$$\varphi_i \xrightarrow{d_{S,\theta+C\omega}} \varphi.$$

By Theorem 6.2.1, it follows that

$$\lim_{i \in I} \int_X (\theta + C\omega)_{\varphi_i}^j \wedge \theta_{V_\theta}^{n-j} = \int_X (\theta + C\omega)_{\varphi}^j \wedge \theta_{V_\theta}^{n-j}$$

for all j = 0, ..., n. It follows that

$$\lim_{i \in I} \int_{V} \theta_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j} = \int_{V} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}. \tag{6.14}$$

By Corollary 6.2.6, it remains to show that $\varphi_i \vee \varphi \xrightarrow{d_{S,\theta}} \varphi$. By Corollary 6.2.6 again, we know that $\varphi_i \vee \varphi \xrightarrow{d_{S,\theta+\omega}} \varphi$. So it suffices to apply (6.14) to $\varphi_i \vee \varphi$ instead of φ_i , and we conclude by Lemma 6.2.2.

We sometimes need a slightly more general form.

cor:dsequivalenceindep

Corollary 6.2.8 Let $(\varphi_j)_{j\in I}$, $(\psi_j)_{j\in I}$ be nets in $PSH(X, \theta)$. Consider a Kähler form ω on X. Then the following are equivalent:

- (1) $d_{S,\theta}(\varphi_i,\psi_i) \to 0$;
- (2) $d_{S,\theta+\omega}(\varphi_i,\psi_i) \to 0$.

In particular, we can write $d_S(\varphi_i, \psi_i) \to 0$ without ambiguity.

Proof The proof is similar to that of Corollary 6.2.7, which is therefore left to the readers.

We have the following sandwich criterion:

lma:dsconvupplower

Corollary 6.2.9 *Let* $(\varphi_i)_{i \in I}$, $(\psi_i)_{i \in I}$, $(\eta_i)_{i \in I}$ *be three nets in* $PSH(X, \theta)$ *and* $\varphi \in PSH(X, \theta)$. *Assume that*

- (1) $\psi_i \leq_P \varphi_i \leq_P \eta_i$ for each $i \in I$;
- (2) $\eta_i \xrightarrow{d_S} \varphi, \psi_i \xrightarrow{d_S} \varphi$.

Then $\varphi_i \xrightarrow{d_S} \varphi$.

Proof By Corollary 6.2.7, we may replace θ by $\theta + \omega$, where ω is a Kähler form on X. In particular, we may assume that $\varphi_i, \psi_i, \eta_i \in \text{PSH}(X, \theta)_{>0}$ for all $i \in I$. By Proposition 6.2.2, we may assume that $\varphi_i, \psi_i, \eta_i$ are model potentials for all $i \in I$ and hence $\varphi_i \leq \psi_i \leq \eta_i$ for all $i \in I$.

It follows from Theorem 2.3.2 that for each k = 0, ..., n, we have

$$\int_X \theta^k_{\psi_i} \wedge \theta^{n-k}_{V_\theta} \leq \int_X \theta^k_{\varphi_i} \wedge \theta^{n-k}_{V_\theta} \leq \int_X \theta^k_{\eta_i} \wedge \theta^{n-k}_{V_\theta}$$

for all $i \in I$. By Theorem 6.2.1, the limits of the both ends are $\int_X \theta_{\varphi}^k \wedge \theta_{V_{\theta}}^{n-k}$ as $j \to \infty$. It follows that

$$\lim_{i \in I} \int_{V} \theta_{\varphi_{i}}^{k} \wedge \theta_{V_{\theta}}^{n-k} = \int_{V} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k}. \tag{6.15}$$

By Corollary 6.2.6, it remains to prove that $\varphi_i \vee \varphi \xrightarrow{d_S} \varphi$. By Corollary 6.2.6, up to replacing ψ_i (resp. φ_i , η_i) by $\psi_i \vee \varphi$ (resp. $\varphi_i \vee \varphi$, $\eta_i \vee \varphi$), we may assume from the beginning that ψ_i , φ_i , $\eta_i \geq \varphi$. Now $\varphi_i \xrightarrow{d_S} \varphi$ by (6.15) and Lemma 6.2.2.

prop:dsconvpresorder

Proposition 6.2.4 Let $(\varphi_i)_{i \in I}$, $(\psi_i)_{i \in I}$ be nets in $PSH(X, \theta)$ such that $\varphi_i \xrightarrow{d_S} \varphi \in PSH(X, \theta)$ and $\psi_i \xrightarrow{d_S} \psi \in PSH(X, \theta)$. Assume that $\varphi_i \leq_P \psi_i$ for all $i \in I$. Then $\varphi \leq_P \psi$.

Proof It follows from Proposition 6.2.5 that

$$\varphi_i \vee \psi_i \xrightarrow{d_S} \varphi \vee \psi.$$

By Lemma 6.1.2, we have $\varphi_i \vee \psi_i \sim_P \psi_i$ for all $i \in I$. In particular, by Proposition 6.2.2,

$$\varphi_i \vee \psi_i \xrightarrow{d_S} \psi.$$

By Proposition 6.2.2 again, $\varphi \lor \psi \sim_P \psi$ and hence $\varphi \leq_P \psi$ by Lemma 6.1.2. \square

prop:lor_dS_conv

Proposition 6.2.5 Let $(\varphi_i)_{i \in I}$ (resp. $(\psi_i)_{i \in I}$) be a net in $PSH(X, \theta)$ such that $\varphi_i \xrightarrow{d_S} \varphi \in PSH(X, \theta)$ (resp. $\varphi_i \xrightarrow{d_S} \psi \in PSH(X, \theta)$). Then

$$\varphi_i \vee \psi_i \xrightarrow{d_S} \varphi \vee \psi.$$

Proof Since d_S is a pseudometric, we may assume that both nets are actually sequences.

Using Corollary 6.2.7 and Proposition 6.2.3, we may assume that both sequences are monotone and lie in $PSH(X, \theta)_{>0}$.

Thanks to Proposition 6.1.6, we may assume that the φ_j 's, the ψ_j 's, φ and ψ are all model. In particular, $(\varphi_j)_j$ (resp. $(\psi_j)_j$) converges to φ (rest. ψ) almost everywhere. We handle three cases separately.

Step 1. Assume that both sequences are increasing.

In this case, we have $\varphi_j \lor \psi_j \nearrow \varphi \lor \psi$ almost everywhere. Therefore, $\varphi_j \lor \psi_j \xrightarrow{d_S} \varphi \lor \psi$ by Corollary 6.2.3.

Step 2. Assume that one sequence, say $(\varphi_j)_j$ is increasing while the other is decreasing. Then we have

$$\varphi_i \lor \psi \le \varphi_i \lor \psi_i \le \varphi \lor \psi_i$$
.

Thanks to Corollary 6.2.9, it suffices to show that both sides converge to $\varphi \lor \psi$ with respect to d_S . So we reduce to the case where both sequences are decreasing.

Step 3. Assume that both sequences are decreasing.

In this case, it suffices to show that

$$\lim_{j \to \infty} \int_{Y} \theta_{\varphi_{j} \vee \psi_{j}}^{n} = \int_{Y} \theta_{\varphi \vee \psi}^{n}. \tag{6.16}$$

Thanks to Lemma 2.3.1, we may find a sequence $(\epsilon_j)_j$ in (0,1) with limit 0 and a sequences $(\eta_j)_j$ in PSH $(X,\theta)_{>0}$ such that

(1) we have

$$(1 - \epsilon_i)\varphi_i + \epsilon_i\eta_i \le \varphi;$$

(2) we have

$$\eta_i \leq \varphi_i$$
.

It follows that for each $j \ge 1$, we have

$$(1 - \epsilon_i)\varphi_i \vee \psi_i + \epsilon_i \eta_i \leq \varphi \vee \psi_i$$
.

Therefore,

$$(1 - \epsilon_j)^n \int_X \theta_{\varphi_j \vee \psi_j}^n \le \int_X \theta_{\varphi \vee \psi_j}^n.$$

Letting $j \to \infty$, we find that

$$\lim_{j \to \infty} \int_X \theta^n_{\varphi_j \vee \psi_j} \le \lim_{j \to \infty} \int_X \theta^n_{\varphi \vee \psi_j}.$$

Therefore, in order to prove (6.16), we may assume that one of the sequences is constant, let us say $\psi_j = \psi$ for all j. Repeating the same argument as before and constructing $(\epsilon_j)_j$, $(\eta_j)_j$ as above, we get

$$(1 - \epsilon_j)^n \int_X \theta_{\varphi_j \vee \psi}^n \le \int_X \theta_{\varphi \vee \psi}^n.$$

Letting $j \to \infty$, we conclude (6.16).

thm:dSadditivity

Theorem 6.2.2 Let θ_1 , θ_2 be smooth real closed (1,1)-forms on X representing big cohomology classes. Suppose that $(\varphi_i)_{i\in I}$ (resp. $(\psi_i)_{i\in I}$) be a net in $PSH(X,\theta_1)$ (resp. $PSH(X,\theta_2)$) and $\varphi \in PSH(X,\theta_1)$ (resp. $\psi \in PSH(X,\theta_2)$). Consider the following three conditions:

$$(1) \varphi_i \xrightarrow{d_S} \varphi;$$

$$(2) \psi_i \xrightarrow{d_S} \psi;$$

(3)
$$\varphi_i + \psi_i \xrightarrow{d_S} \varphi + \psi$$
.

Then any two of these conditions imply the third.

Proof By Corollary 6.2.7, we may assume that θ_1, θ_2 are both Kähler forms. We denote them by ω_1, ω_2 instead. Let $\omega = \omega_1 + \omega_2$.

 $(1)+(2) \implies (3)$. It suffices to show that for each $r = 0, \ldots, n$,

$$2\int_X \omega^r_{(\varphi_j + \psi_j) \vee (\varphi + \psi)} \wedge \omega^{n-r} - \int_X \omega^r_{\varphi_j + \psi_j} \wedge \omega^{n-r} - \int_X \omega^r_{\varphi + \psi} \wedge \omega^{n-r} \to 0.$$

Observe that for each $j \in I$,

$$(\varphi_j + \psi_j) \lor (\varphi + \psi) \le \varphi_j \lor \varphi + \psi_j \lor \psi.$$

Thus, it suffices to show that

$$2\int_{\mathbf{X}}\omega^{r}_{\varphi_{j}\vee\varphi+\psi_{j}\vee\psi}\wedge\omega-\int_{\mathbf{X}}\omega^{r}_{\varphi_{j}+\psi_{j}}\wedge\omega^{n-r}-\int_{\mathbf{X}}\omega^{r}_{\varphi+\psi}\wedge\omega^{n-r}\to0.$$

The left-hand side is a linear combination of

$$2\int_X \omega_{1,\varphi_j\vee\varphi}^a \wedge \omega_{2,\psi_j\vee\psi}^{r-a} \wedge \omega^{n-r} - \int_X \omega_{1,\varphi_j}^a \wedge \omega_{2,\psi_j}^{r-a} \wedge \omega^{n-r} - \int_X \omega_{1,\varphi}^a \wedge \omega_{2,\psi}^{r-a} \wedge \omega^{n-r}$$

with a = 0, ..., r. Observe that $\varphi_j \vee \varphi \xrightarrow{d_S} \varphi$ and $\psi_j \vee \psi \xrightarrow{d_S} \psi$ by Corollary 6.2.2, each term tends to 0 by Theorem 6.2.1.

 $(2)+(3) \implies (1)$. This is similar.

(1)+(3) \Longrightarrow (2). For each $C \ge 1$, from the direction we already proved,

$$C\varphi_i + \psi_i \xrightarrow{d_S} C\varphi + \psi.$$

By Theorem 6.2.1, for each $j = 0, \ldots, n$,

$$\lim_{i \in I} \int_X (C\omega_1 + \omega_2 + \mathrm{dd^c}(C\varphi_i + \psi_i))^j \wedge \omega_2^{n-j}$$

$$= \int_X (C\omega_1 + \omega_2 + \mathrm{dd^c}(C\varphi + \psi))^j \wedge \omega_2^{n-j}.$$

It follows that

$$\lim_{i \in I} \int_{X} \omega_{2,\psi_{i}}^{j} \wedge \omega_{2}^{n-j} = \int_{X} \omega_{2,\psi}^{j} \wedge \omega_{2}^{n-j}. \tag{6.17}$$

Therefore, 2 follows if $\psi_i \ge \psi$ for each *i* by Lemma 6.2.2.

Next we prove the general case. By the direction that we already proved, we know that $\varphi_i + \psi \xrightarrow{d_S} \varphi + \psi$. By Proposition 6.2.5, we have that

$$\varphi_i + \psi_i \vee \psi \xrightarrow{d_S} \varphi + \psi.$$

It follows from the special case above that $\psi_i \lor \psi \xrightarrow{d_S} \psi$. It follows from (6.17) and Corollary 6.2.6 that (2) holds.

thm:contPI

Theorem 6.2.3 *The map*

$$P_{\theta}[\bullet]_{\mathcal{I}} : PSH(X, \theta)_{>0} \to PSH(X, \theta)_{>0}$$

is continuous with respect to d_S .

Proof Let $(\varphi_i)_{i \in \mathbb{Z}_{>0}}$ be a sequence in $PSH(X,\theta)_{>0}$ such that $\varphi_i \xrightarrow{d_S} \varphi \in PSH(X,\theta)_{>0}$. We want to show that

$$P[\varphi_i]_I \xrightarrow{d_S} P[\varphi]_I. \tag{6.18}$$

We may assume that the φ_i 's and φ are all model potentials by Proposition 6.2.2.

By Proposition 6.2.3 and Corollary 6.2.9, we may assume that $(\varphi_i)_i$ is either increasing or decreasing. The two cases are handled by Proposition 3.2.12 and Proposition 3.2.11 respectively.

6.2.3 Continuity of invariants

thm:Lelongcont

Theorem 6.2.4 Let $(\varphi_j)_{j\in I}$ be a net in $PSH(X,\theta)$ and $\varphi_j \xrightarrow{d_S} \varphi \in PSH(X,\theta)$. Then for any prime divisor E over X, we have

$$\lim_{j \in I} \nu(\varphi_j, E) = \nu(\varphi, E). \tag{6.19}$$

{eq:convnu}

Proof First observe that since d_S is a pseudometric, it suffices to prove (6.19) when $I = \mathbb{Z}_{>0}$ as partially ordered sets.

By Corollary 6.2.7, we may assume that the masses of φ_j and of φ are bounded from below by a positive constant.

By Theorem 6.2.3, we may assume that φ_i and φ are both I-model. When proving (6.19), we are free to pass to subsequences.

By Proposition 6.2.3, we may assume that the sequence (φ_i) is either increasing or decreasing. In the increasing case, there is nothing to prove. In the decreasing case, (6.19) follows from Proposition 3.1.9.

thm:contvolu

Theorem 6.2.5 Let $(\varphi_j)_{j\in I}$ be a net in $PSH(X,\theta)$ and $\varphi \in PSH(X,\theta)_{>0}$. Assume that $\varphi_j \xrightarrow{d_S} \varphi \in PSH(X,\theta)$, then

$$\operatorname{vol} \theta_{\varphi_i} \to \operatorname{vol} \theta_{\varphi}.$$
 (6.20) [eq:Ivolcont]

Recall the volume is defined in Definition 3.2.3.

Proof It follows from Theorem 6.2.1 that

$$\int_X \theta_{\varphi_j}^n \to \int_X \theta_{\varphi}^n.$$

We may therefore assume that $\int_X \theta_{\varphi_j}^n > 0$ for all $j \in I$. Then by Theorem 6.2.3, we have

$$P_{\theta}[\varphi_j]_I \xrightarrow{d_S} P_{\theta}[\varphi]_I.$$

Therefore, (6.20) follows from Theorem 6.2.1.

thm:equising_cond_general

Theorem 6.2.6 Let $\varphi_j, \varphi \in \text{PSH}(X, \theta)$ $(j \in \mathbb{Z}_{>0})$. Assume that $\varphi_j \xrightarrow{d_S} \varphi$. Then for each $\lambda' > \lambda > 0$, there is $j_0 > 0$ so that for $j \geq j_0$,

$$I(\lambda'\varphi_j)\subseteq I(\lambda\varphi).$$
 (6.21) {eq:quasi_equi_cond}

Proof Fix $\lambda' > \lambda > 0$, we want to find $j_0 > 0$ so that for $j \ge j_0$, (6.21) holds.

Step 1. We first assume that φ has analytic singularities.

Let $\pi: Y \to X$ be a log resolution of φ and let E_1, \ldots, E_N be all prime divisors of the singular part of φ on Y. Recall that a local holomorphic function f lies in the right-hand side of (6.21) if and only if

$$\operatorname{ord}_{E_i}(f) > \lambda \operatorname{ord}_{E_i}(\varphi) - \frac{1}{2} A_X(E_i)$$
 (6.22) {eq:ordEif}

whenever they make sense. Here A_X denotes the log discrepancy. Similarly, f lies in the left-hand side of (6.21) implies that there is $\epsilon > 0$ so that

$$\operatorname{ord}_{E_i}(f) \ge (1 + \epsilon)\lambda' \operatorname{ord}_{E_i}(\varphi_j) - \frac{1}{2}A_X(E_i).$$

As Lelong numbers are continuous with respect to d_S by Theorem 6.2.4, we can find $j_0 > 0$ so that when $j \ge j_0$, λ' ord $_{E_i}(\varphi_j) \ge \lambda$ ord $_{E_i}(\varphi)$ for all i. In particular, (6.22) follows.

Step 2. We handle the general case.

By Corollary 6.2.7, we are free to increase θ and assume that θ_{φ} is a Kähler current

Take a quasi-equisingular approximation $(\psi_k)_k$ of φ . The existence is guaranteed by Theorem 1.6.2. Take $\lambda'' \in (\lambda, \lambda')$, then by definition, we can find k > 0 so that

$$I(\lambda''\psi_k) \subseteq I(\lambda\varphi).$$

Observe that $\varphi_j \lor \psi_k \xrightarrow{d_S} \psi_k$ as $j \to \infty$ by Proposition 6.2.5. By Step 1, we can find $j_0 > 0$ so that for $j \ge j_0$,

$$I(\lambda'(\varphi_i \vee \psi_k)) \subseteq I(\lambda''\psi_k).$$

It follows that for $j \geq j_0$,

$$I(\lambda'\varphi_j)\subseteq I(\lambda\varphi).$$

Chapter 7

I-good singularities

chap: Igood

In this chapter, we study the key notion in the whole theory: the I-good singularities. We will give several useful characterizations of I-good singularities. The key result is the asymptotic Riemann–Roch formula for Hermitian big line bundles Theorem 7.3.1.

7.1 The notion of I-good singularities

Let X be a connected compact Kähler manifold of dimension n.

thm:charIgoodasclosure

Theorem 7.1.1 Let θ be a closed real smooth (1,1)-form on X representing a big cohomology class. Let $\varphi \in \text{PSH}(X,\theta)_{>0}$. Then the following are equivalent:

- (1) There exists a sequence $(\varphi_j)_j$ in $PSH(X, \theta)$ with analytic singularities such that $\varphi_j \xrightarrow{d_S} \varphi$.
- (2) We have

$$\int_{X} \theta_{\varphi}^{n} = \operatorname{vol} \theta_{\varphi}. \tag{7.1}$$

(3) We have

$$P_{\theta}[\varphi] = P_{\theta}[\varphi]_{I}.$$

In (1), we could in addition require that each θ_{φ_j} is a Kähler current.

Moreover, if θ_{φ} is a Kähler current, the sequence in (1) can be taken as any quasi-equisingular approximation of φ in $PSH(X, \theta)$.

Proof (1) \Longrightarrow (2). By Theorem 6.2.1, we may assume that $\int_X \theta_{\varphi_j}^n > 0$ for all j. It follows from Proposition 3.2.9 that

$$\int_X \theta_{\varphi_j}^n = \operatorname{vol} \theta_{\varphi_j}$$

for any $j \ge 1$. Using Theorem 6.2.5 and Theorem 6.2.1, we conclude (7.1).

(2) \iff (3). This follows from Theorem 3.1.1.

{eq:nppmassequalvolume}

(3) \Longrightarrow (1). Note that the condition in (1) characterizes the closure of analytic singularities in PSH(X, θ).

Step 1. We first reduce to the case where θ_{φ} is a Kähler current.

By Lemma 2.3.2, we can find $\psi \in PSH(X, \theta)$ so that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. We let

$$\psi_j = (1 - j^{-1})\varphi + j^{-1}\psi$$

for each $j \in \mathbb{Z}_{>0}$. Then $(\psi_j)_j$ is an increasing sequence converging almost everywhere to φ . Then

$$P_{\theta}[\psi_j]_I \xrightarrow{d_S} P_{\theta}[\varphi]_I = P_{\theta}[\varphi]$$

by Proposition 3.2.12, Corollary 6.2.3. So it suffices to show that $P_{\theta}[\psi_j]_I$ lies in the closure of analytic singularities.

Step 2. We assume that θ_{φ} is a Kähler current. We show that $P_{\theta}[\varphi]_{I}$ lies in the closure of analytic singularities.

Let $(\varphi_j)_j$ be a quasi-equisingular approximation of φ in PSH (X, θ) . We will show that $\varphi_j \xrightarrow{d_S} P_{\theta}[\varphi]_{\mathcal{I}}$. Let

$$\psi = \inf_{j \in \mathbb{Z}_{>0}} P_{\theta}[\varphi_j].$$

We know that $\varphi_j \xrightarrow{d_S} \psi$ by Proposition 6.2.2, Proposition 3.1.9 and Corollary 6.2.4. Moreover, observe that ψ is I-model by Proposition 3.2.11 and Example 7.1.1. So it suffices to show that $\varphi \sim_I \psi$.

It is clear that $\psi \geq \varphi$. Conversely, it remains to argue that $\psi \leq_{\mathcal{I}} \varphi$. For this purpose, take $\lambda > 0$, we need to show that

$$I(\lambda\psi)\subseteq I(\lambda\varphi).$$

By the strong openness Theorem 1.4.4, we may take $\lambda' > \lambda$ such that $\mathcal{I}(\lambda \psi) = \mathcal{I}(\lambda' \psi)$, then it follows from the definition of the quasi-equisingular approximation that

$$I(\lambda'\psi) \subseteq I(\lambda'\varphi_i) \subseteq I(\lambda\varphi)$$

for large enough j. Our assertion follows.

def:Igoodpot

Definition 7.1.1 We say a potential $\varphi \in \text{QPSH}(X)$ is \mathcal{I} -good if for some smooth closed real (1,1)-form on X such that $\varphi \in \text{PSH}(X,\theta)_{>0}$, we have

$$P_{\theta}[\varphi] = P_{\theta}[\varphi]_{I}. \tag{7.2}$$

{eq:envelopeeq}

An immediate question is to verify that this definition is in dependent of the choice of θ .

lma:Igoodinsenspert

Lemma 7.1.1 Let $\varphi \in PSH(X, \theta)_{>0}$ for some smooth closed real (1, 1)-form θ on X. Take a Kähler form ω on X. Then the following are equivalent:

- (1) $P_{\theta}[\varphi] = P_{\theta}[\varphi]_{\mathcal{I}}$;
- (2) $P_{\theta+\omega}[\varphi] = P_{\theta}[\varphi+\omega]_{\mathcal{I}}$.

Proof (1) \Longrightarrow (2). By Theorem 7.1.1, we can find $\varphi_j \in PSH(X, \theta)$ with analytic singularities such that $\varphi_j \xrightarrow{d_{S,\theta}} \varphi$. By Corollary 6.2.7, we have $\varphi_j \xrightarrow{d_{S,\theta+\omega}} \varphi$. Therefore, by Theorem 7.1.1 again, 2 holds.

 $(2) \implies (1)$. Suppose that (1) fails, so that

$$\int_X (\theta + \mathrm{dd^c}\varphi)^n < \int_X (\theta + \mathrm{dd^c}P_{\theta}[\varphi]_{\mathcal{I}})^n.$$

It follows that

$$\begin{split} \int_X (\theta + \omega + \mathrm{dd^c}\varphi)^n &= \sum_{i=0}^n \binom{n}{i} \int_X \theta_\varphi^i \wedge \omega^{n-i} \\ &< \sum_{i=0}^n \binom{n}{i} \int_X \theta_{P_\theta[\varphi]_\mathcal{I}}^i \wedge \omega^{n-i} \\ &= \int_X (\theta + \omega + \mathrm{dd^c}P_\theta[\varphi]_\mathcal{I})^n \\ &\leq \int_X (\theta + \omega + \mathrm{dd^c}P_{\theta + \omega}[\varphi]_\mathcal{I})^n. \end{split}$$

So (2) fails as well.

cor:Igoodclosed

Corollary 7.1.1 *Let* θ *be a closed real smooth* (1,1)-form on X representing a big cohomology class. Let $(\varphi_j)_{j\in I}$ be a net of I-good potentials in $PSH(X,\theta)$ such that $\varphi_j \xrightarrow{d_S} \varphi$. Then φ is I-good.

Proof By Corollary 6.2.7, we may assume that $\varphi_j, \varphi \in PSH(X, \theta)_{>0}$ for all $j \in I$. It follows from Theorem 7.1.1 that

$$\int_{Y} \theta_{\varphi_{j}}^{n} = \operatorname{vol} \theta_{\varphi_{j}}$$

for all $j \in I$. Taking limit with respect to j with the help of Theorem 6.2.5 and Theorem 6.2.1, we conclude that

$$\int_X \theta_{\varphi}^n = \operatorname{vol} \theta_{\varphi}.$$

Therefore, by Theorem 7.1.1 again, we find that φ is \mathcal{I} -good.

ex:analyIgood

Example 7.1.1 Assume that $\varphi \in \text{QPSH}(X)$ has analytic singularities. Then φ is I-good. This is proved in Proposition 3.2.9.

ex:ImodelIgood

Example 7.1.2 Assume that $\varphi \in PSH(X, \theta)_{>0}$ is an \mathcal{I} -model potential for some closed real smooth (1, 1)-form θ on X. Then φ is \mathcal{I} -good.

cor:quasi-equichar

Corollary 7.1.2 Let $\varphi \in PSH(X, \theta)_{>0}$ and $(\epsilon_j)_j$ be a decreasing sequence in $\mathbb{R}_{\geq 0}$ with limit 0. Fix a Kähler form ω on X. Consider a decreasing sequence $\varphi_j \in$

 $PSH(X, \theta + \epsilon_j \omega)$ of potentials with analytic singularities for each $j \geq 1$. Assume that $\varphi = \inf_j \varphi_j$. Then the following are equivalent:

- (1) $\varphi_j \xrightarrow{d_S} P_{\theta}[\varphi]_I$, and
- (2) $(\varphi_j)_j$ is a quasi-equisingular approximation of φ .

Proof By Corollary 6.2.7 and Example 7.1.2, we may replace θ by $\theta + C\omega$ for some large constant C > 0 and assume that $\varphi, \varphi_j \in \text{PSH}(X, \theta - \omega)$ for all $j \ge 1$.

- $(2) \implies (1)$. This is already proved in the proof of Theorem 7.1.1.
- $(1) \implies (2)$. This follows from Theorem 6.2.6.

ex:BBJ

Example 7.1.3 Let $X = \mathbb{P}^1$ and ω be the Fubini–Study metric. Let $K \subseteq \mathbb{P}^1$ be a polar Cantor sets carrying an atom free probability measure μ supported on K (see Car83, Page 31]). Write $\mu = \omega + \Delta \varphi$ for some $\varphi \in SH(X, \omega)$. Since μ is atom free, we know that all Lelong numbers of φ are 0. On the other hand, φ has 0 non-pluripolar mass since K is pluripolar. In particular, $c\varphi$ for $c \in (0, 1)$ is not I-good.

7.2 Properties of I-good singularities

Let *X* be a connected compact Kähler manifold.

prop:Igoodlinear

Proposition 7.2.1 *Let* $\varphi, \psi \in QPSH(X)$ *be* I-good and $\lambda > 0$. Then the following potentials are all I-good.

- (1) $\varphi + \psi$;
- (2) $\varphi \vee \psi$:
- (3) $\lambda \varphi$.

Proof Take a closed real smooth (1,1)-form θ on X such that $\varphi, \psi \in PSH(X,\theta)_{>0}$. It follows from Theorem 7.1.1 that there are sequences φ_j, ψ_j in $PSH(X,\theta)$ with analytic singularities such that $\varphi_j \xrightarrow{d_S} \varphi$ and $\psi_j \xrightarrow{d_S} \psi$.

By Theorem 6.2.2, Proposition 6.2.5, we have

$$\varphi_j + \psi_j \xrightarrow{d_S} \varphi + \psi, \quad \varphi_j \vee \psi_j \xrightarrow{d_S} \varphi \vee \psi.$$

On the other hand, it is clear that

$$\lambda \varphi_i \xrightarrow{d_S} \lambda \varphi.$$

Therefore, our assertions follow from Theorem 7.1.1.

prop:Igoodsup

Proposition 7.2.2 Let $\{\varphi_j\}_{j\in I}$ be a non-empty family of I-good potentials. Assume that the family is uniformly bounded from above and there exists a closed real smooth (1,1)-form θ on X such that $\varphi_j \in \mathrm{PSH}(X,\theta)$ for all $j \in I$. Then $\sup_{j \in I} \varphi_j$ is I-good.

Proof Without loss of generality, we may assume that $\varphi_j \in PSH(X, \theta)_{>0}$ for all $j \in I$.

When *I* is finite, this result follows from Proposition 7.2.1. When *I* is infinite, we may assume that $I = \mathbb{Z}_{>0}$ by Proposition 1.2.2. By Proposition 7.2.1, we may assume that the sequence $(\varphi_j)_j$ is increasing. In this case, as shown in Corollary 6.2.3,

$$\varphi_j \xrightarrow[i \in \mathbb{Z}_{>0}]{d_S} \sup_{i \in \mathbb{Z}_{>0}} \varphi_i.$$

Therefore, $\sup_{i \in \mathbb{Z}_{>0}} \varphi_i$ is \mathcal{I} -good by Theorem 7.1.1.

thm:contvolu2

Theorem 7.2.1 Let $(\varphi_j)_{j\in I}$ be a net in $PSH(X,\theta)$ such that $\varphi_j \xrightarrow{d_S} \varphi \in PSH(X,\theta)$. Assume that φ is I-good, then we have

$$\operatorname{vol} \theta_{\varphi_j} \to \operatorname{vol} \theta_{\varphi}.$$
 (7.3) {eq:Ivolcont2}

Proof Fix a Kähler form ω on X. Then for any $\epsilon > 0$, we have

$$\operatorname{vol}(\theta + \epsilon \omega)_{\varphi} = \int_{X} (\theta + \epsilon \omega + \operatorname{dd^{c}} P_{\theta + \epsilon \omega} [\varphi]_{I})^{n}$$
$$= \int_{X} (\theta + \epsilon \omega + \operatorname{dd^{c}} \varphi)^{n}.$$

On the other hand,

$$\int_{X} (\theta + \epsilon \omega + \mathrm{dd}^{c} P_{\theta + \epsilon \omega} [\varphi]_{I})^{n} \ge \int_{X} (\theta + \epsilon \omega + \mathrm{dd}^{c} P_{\theta} [\varphi]_{I})^{n}$$

$$\ge \int_{X} (\theta + \mathrm{dd}^{c} P_{\theta} [\varphi]_{I})^{n}$$

$$\ge \int_{X} \theta_{\varphi}^{n}.$$

Therefore,

$$\operatorname{vol}(\theta + \epsilon \omega)_{\varphi} - \operatorname{vol}\theta_{\varphi} \le \int_{X} (\theta + \epsilon \omega + \operatorname{dd^{c}}\varphi)^{n} - \int_{X} \theta_{\varphi}^{n}.$$

The difference can be controlled by a polynomial in ϵ without constant term independent of the choice of φ . We have a similar estimate for φ_j as well. So our assertion follows from Theorem 6.2.5.

prop:vollinearlimit

Proposition 7.2.3 *Let* $\varphi, \psi \in PSH(X, \theta)_{>0}$. *Then*

(1) we have

$$\lim_{\epsilon \to 0+} \operatorname{vol}(\theta, (1 - \epsilon)\varphi + \epsilon \psi) = \operatorname{vol}(\theta, \varphi).$$

(2) Let ω be a Kähler form on X, then

$$\operatorname{vol} \theta_{\varphi} = \lim_{\epsilon \to 0+} \operatorname{vol}(\theta + \epsilon \omega)_{\varphi}.$$

(3) Consider a prime divisor E on X. Then

$$\operatorname{vol} \theta_{\omega} = \operatorname{vol}(\theta_{\omega} - \nu(\varphi, E)[E]).$$

Proof (1) We need to show that

$$\lim_{\epsilon \to 0+} \int_X \left(\theta + \mathrm{dd^c} P_\theta \big[(1-\epsilon)\varphi + \epsilon \psi \big]_I \right)^n = \int_X \left(\theta + \mathrm{dd^c} P_\theta \big[\varphi\big]_I \right)^n.$$

By Proposition 3.2.10, for any $\epsilon \in (0, 1)$,

$$(1 - \epsilon)\varphi + \epsilon\psi \sim_I (1 - \epsilon)P_{\theta}[\varphi]_I + \epsilon P_{\theta}[\psi]_I.$$

In particular, we may replace φ and ψ by $P_{\theta}[\varphi]_{\mathcal{I}}$ and $P_{\theta}[\psi]_{\mathcal{I}}$ respectively. By Proposition 7.2.1, it remains to show that

$$\lim_{\epsilon \to 0+} \int_X \left(\theta + \mathrm{dd^c} \left((1 - \epsilon) \varphi + \epsilon \psi \right) \right)^n = \int_X \left(\theta + \mathrm{dd^c} \varphi \right)^n,$$

which is obvious.

(2) For each $\epsilon > 0$,

$$\begin{aligned} \operatorname{vol}(\theta + \epsilon \omega)_{\varphi} &= \int_{X} \left(\theta + \epsilon \omega + \operatorname{dd^{c}} P_{\theta + \epsilon \omega} [\varphi]_{\mathcal{I}} \right)^{n} \\ &= \int_{X} \left(\theta + \epsilon \omega + \operatorname{dd^{c}} P_{\theta + \epsilon \omega} \left[P_{\theta} [\varphi]_{\mathcal{I}} \right] \right)^{n} \\ &= \int_{X} \left(\theta + \epsilon \omega + \operatorname{dd^{c}} P_{\theta} [\varphi]_{\mathcal{I}} \right)^{n}, \end{aligned}$$

where the third equality follows from Example 7.1.2. Letting $\epsilon \to 0+$, we conclude.

(3) By (2), we may assume that θ_{φ} is a Kähler current. Take a quasi-equisingular approximation $(S_i)_i$ of $\theta_{\varphi} - \nu(\varphi, E)[E]$. By Theorem 6.2.2,

$$S_j + \nu(\varphi, E)[E] \xrightarrow{d_S} \theta_{\varphi}.$$

For each $j \ge 1$, the currents $S_j + \nu(\varphi, E)[E]$ and S_j are I-good as follows from Proposition 7.2.1, we have

$$\operatorname{vol}(S_j + \nu(\varphi, E)[E]) = \int_X (S_j + \nu(\varphi, E)[E])^n = \int_X S_j^n = \operatorname{vol} S_j.$$

Letting $j \to \infty$, we conclude by Theorem 6.2.6.

7.3 The volume of Hermitian big line bundles

sec:volHermitianbig

Let X be a connected compact Kähler manifold of dimension n.

Definition 7.3.1 A *Hermitian pseudoeffective line bundle* (L, h) on X consists of a pseudoeffective line bundle L on X together with a plurisubharmonic metric h on L. A *Hermitian big line bundle* (L, h) on X is a big line bundle L on X together with a plurisubharmonic metric h on L such that $vol(dd^c h) > 0$.

When X admits a big line bundle, it is necessarily projective. See [MM07] Theorem 2.2.26].

thm:DXmain1

Theorem 7.3.1 Let (L, h) be a Hermitian big line bundle and T be a holomorphic line bundle on X. We have

$$\lim_{k \to \infty} \frac{n!}{k^n} h^0(X, T \otimes L^k \otimes \mathcal{I}(h^k)) = \text{vol}(dd^c h). \tag{7.4}$$

In particular, the limit exists.

Remark 7.3.1 This theorem also holds for a general Hermitian pseudoeffective line bundle. The proof is more involved. We would have to apply the singular holomorphic Morse inequality of Bonavero [Bon98]. See [DX21, Theorem 1.1].

For the proof, let us fix a smooth Hermitian metric h_0 on L with $\theta = c_1(L, h_0)$. We identify h with $h_0 \exp(-\varphi)$ for some $\varphi \in PSH(X, \theta)$.

We first handle the case where φ has analytic singularities.

prop: DXmainanalytic

Proposition 7.3.1 *Under the assumptions of Theorem 7.3.1, assume furthermore that* φ *has analytic singularities, then* (7.4) *holds.*

Proof Step 1. Reduce to the case of log singularities.

Let $\pi: Y \to X$ be a modification such that $\pi^* \varphi$ has log singularities. In this case, for each $k \in \mathbb{Z}_{>0}$, we have

$$h^0(X, T \otimes L^k \otimes \mathcal{I}(kh)) = h^0(Y, K_{Y/X} \otimes \pi^* T \otimes \pi^* L^k \otimes \mathcal{I}(k\pi^* h)).$$

By Proposition 3.2.5, we have

$$\operatorname{vol}(\operatorname{dd}^{\operatorname{c}} h) = \operatorname{vol}(\operatorname{dd}^{\operatorname{c}} \pi^* h).$$

Therefore, it suffices to argue (7.4) with $K_{Y/X} \otimes \pi^*T$, π^*L and π^*h in place of T, L and h.

Step 2. Assume that *D* has log singularities along an effective \mathbb{Q} -divisor *D*, we decompose *D* into irreducible components, say

$$D = \sum_{i=1}^{N} a_i D_i.$$

In this case, we can easily compute

$$I(k\varphi) = O_X \left(-\sum_{i=1}^N \lfloor ka_i \rfloor D_i \right)$$

for each $k \in \mathbb{Z}_{>0}$. Observe that L - D is nef (see Lemma 1.6.1), so we could apply the asymptotic Riemann–Roch theorem to conclude that

$$\lim_{k\to\infty}\frac{n!}{k^n}h^0\left(X,T\otimes L^k\otimes O_X\left(-\sum_{i=1}^N\lfloor ka_i\rfloor D_i\right)\right)=(L-D)^n.$$

Observe that by Proposition 1.8.1,

$$\theta_{\varphi} = [D] + T,$$

where T is a closed positive (1, 1)-current with bounded potential. Therefore,

$$(L-D)^n = \int_X T^n = \int_X \theta_{\varphi}^n.$$

By Example 7.1.1, we know that the right-hand side is exactly vol θ_{φ} .

Proof (Proof of Theorem 7.3.1) Step 1. We first handle the case where θ_{φ} is a Kähler current. Fix a Kähler form $\omega \geq \theta$ on X such that $\theta_{\varphi} \geq 2\delta\omega$ for some $\delta \in (0,1)$.

Let $(\varphi_j)_j$ be a quasi-equisingular approximation of φ in PSH (X, θ) . We may assume that $\theta_{\varphi_j} \ge \delta \omega$ for all j. From Proposition 7.3.1, we know that for each $j \ge 1$,

$$\varlimsup_{k\to\infty}\frac{n!}{k^n}h^0(X,T\otimes L^k\otimes \mathcal{I}(k\varphi))\leq \lim_{k\to\infty}\frac{n!}{k^n}h^0(X,T\otimes L^k\otimes \mathcal{I}(k\varphi_j))=\operatorname{vol}\theta_{\varphi_j}.$$

It follows from Theorem 7.1.1 and Theorem 6.2.5 that the right-hand side converges to vol θ_{φ} as $j \to \infty$. Therefore,

$$\overline{\lim_{k\to\infty}} \frac{n!}{k^n} h^0(X, T\otimes L^k\otimes \mathcal{I}(k\varphi)) \le \operatorname{vol} \theta_{\varphi}.$$

Conversely, fix an integer $N > \delta^{-1}$. From Theorem 7.1.1 and Theorem 6.2.1, we know that

$$\lim_{j \to \infty} \int_X \theta_{\varphi_j}^n = \int_X \theta_{P_{\theta}[\varphi]_I}^n > 0. \tag{7.5}$$

Therefore, by Lemma 2.3.1, we can find $j_0 > 0$ such that for $j \ge j_0$, there is $\psi \in PSH(X, \theta)_{>0}$ with

$$(1-N^{-1})\varphi_j + N^{-1}\psi \le P_\theta[\varphi]_I. \tag{7.6} \quad \text{{eq:linearlowerbdPItemp1}}$$

{eq:quasiequmassconvtemp1}

For each k > 0, we write k = k'N - r, where $k' \in \mathbb{N}$ and $r \in \{0, 1, ..., N - 1\}$. Then we compute for $j > j_0$ and large enough k that

$$\begin{split} & h^0(X, T \otimes L^k \otimes I(k\varphi)) \\ \geq & h^0(X, T \otimes L^{-r} \otimes L^{k'N} \otimes I(k'N\varphi)) \\ \geq & h^0\left(X, T \otimes L^{-r} \otimes L^{k'N} \otimes I\left(k'(\psi + (N-1)\varphi_j)\right)\right) \\ \geq & h^0\left(X, T \otimes L^{-r} \otimes L^{k'N} \otimes L^{k'(N-1)} \otimes I\left(k'N\varphi_j\right)\right), \end{split}$$

where the third line follows from (7.6), the fourth line can be argued as follows: for large enough k, there is a non-zero section $s \in H^0(X, L^{k'} \otimes \mathcal{I}(k'\psi))$ by Lemma 2.3.3; It follows from Lemma 1.6.3 that for large enough k,

$$I\left(k'N\varphi_i\right)\subseteq I_{\infty}\left(k'(N-1)\varphi_i\right).$$

It follows that multiplication by s gives an injective map

$$\begin{split} & H^0\left(X,T\otimes L^{-r}\otimes L^{k'(N-1)}\otimes I\left(k'N\varphi_j\right)\right) \hookrightarrow \\ & H^0\left(X,T\otimes L^{-r}\otimes L^{k'N}\otimes I\left(k'\psi+k'(N-1)\varphi_j\right)\right). \end{split}$$

Next observe that

$$(N-1)\theta + N\mathrm{dd^c}\varphi_i \ge 0.$$

So Proposition 7.3.1 is applicable. We let $k \to \infty$ to conclude that

$$\begin{split} & \varliminf_{k \to \infty} h^0(X, T \otimes L^k \otimes \mathcal{I}(k\varphi)) \geq & \frac{1}{n! \cdot N^{-n}} \int_X \left((N-1)\theta + N \mathrm{dd^c} \varphi_j \right)^n \\ & = & \frac{1}{n!} \int_X \left((1-N^{-1})\theta + \mathrm{dd^c} \varphi_j \right)^n. \end{split}$$

Letting $j \to \infty$ and then $N \to \infty$ and using (7.5), we find that

$$\varliminf_{k\to\infty} h^0(X,T\otimes L^k\otimes \mathcal{I}(k\varphi)) \geq \int_X \theta^n_{P_\theta[\varphi]_I}.$$

Step 2. We handle the general case. We may assume that φ is \mathcal{I} -model.

Take an ample line bundle A on X and a Kähler form ω in $c_1(A)$. Then for any fixed $N \in \mathbb{Z}_{>0}$, we apply Step 1 to $L^N \otimes A$ in place of L and $T \otimes L^i$ with $i = 0, \ldots, N-1$ in place of T, we have

$$\overline{\lim_{k\to\infty}} \frac{n!}{k^n} h^0(X, T\otimes L^k\otimes \mathcal{I}(k\varphi)) \le \int_Y \left(N^{-1}\omega + \theta + \mathrm{dd^c} P_{\theta+N^{-1}\omega}[\varphi]_I\right)^n.$$

On the other hand, since φ is \mathcal{I} -good by Example 7.1.2, we have

$$P_{\theta+N^{-1}\omega}[\varphi]_I = P_{\theta+N^{-1}\omega}[\varphi].$$

It follows from Proposition 3.1.3 that

$$\overline{\lim_{k\to\infty}} \frac{n!}{k^n} h^0(X, T\otimes L^k\otimes \mathcal{I}(k\varphi)) \le \int_X \left(\theta + N^{-1}\omega + \mathrm{dd^c}\varphi\right)^n.$$

Letting $N \to \infty$, we conclude

$$\overline{\lim_{k\to\infty}} \frac{n!}{k^n} h^0(X, T\otimes L^k\otimes I(k\varphi)) \le \int_X \theta_\varphi^n.$$

It remains to argue the reverse inequality.

Choose $\psi \in \text{PSH}(X, \theta)$ such that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. The existence of ψ is guaranteed by Lemma 2.3.2. Then for any $t \in (0, 1)$, we set

$$\varphi_t = (1 - t)\varphi + t\psi$$
.

It follows again from Step 1 that

$$\underline{\lim_{k\to\infty}} \frac{n!}{k^n} h^0(X, T\otimes L^k\otimes \mathcal{I}(k\varphi)) \geq \lim_{k\to\infty} \frac{n!}{k^n} h^0(X, T\otimes L^k\otimes \mathcal{I}(k\varphi_t)) = \operatorname{vol}\theta_{\varphi_t}.$$

On the other hand, by Corollary 6.2.3, we have $\varphi_t \xrightarrow{d_S} \varphi$ as $t \to 0+$. It follows from Theorem 6.2.5 that

$$\lim_{t \to 0+} \operatorname{vol} \theta_{\varphi_t} = \operatorname{vol} \theta_{\varphi}.$$

So we find

$$\underline{\lim_{k \to \infty} \frac{n!}{k^n} h^0(X, T \otimes L^k \otimes I(k\varphi))} \ge \operatorname{vol} \theta_{\varphi}.$$

ex:toricIgood

Example 7.3.1 If X is a toric smooth projective variety and θ is invariant under the action of the compact torus. Suppose that $\varphi \in PSH(X, \theta)_{>0}$ is also invariant under the action of the compact torus, then φ is \mathcal{I} -good.

Proof Thanks to Lemma 7.1.1, we may assume that $\theta \in c_1(L)$ for some toric invariant ample line bundle L. In this case, the result follows from Theorem 7.1.1, Theorem 7.3.1 and Theorem 5.2.2.

cor:volbigL

Corollary 7.3.1 We have

$$\lim_{k \to \infty} \frac{n!}{k^n} h^0(X, L^k) = \int_X \theta^n_{V_\theta}. \tag{7.7}$$

This common quantity is the *volume* of L, usually denoted by vol L.

Chapter 8

The trace operator

chap:trace

In this chapter, we develop the theory of trace operators and prove the analytic Bertini theorem. These techniques allow us to make induction on the dimension while studying the singularities.

8.1 The definition of the trace operator

Let X be a connected compact Kähler manifold and $Y \subseteq X$ be an irreducible analytic subset. The trace operator gives a way to restrict a quasi-plurisubharmonic function on X to \tilde{Y} , the normalization of Y. It follows from GK20, Proposition 3.5] that \tilde{Y} is a normal Kähler space. We refer to Appendix B for the pluripotential theory on unibranch Kähler spaces.

For later applications, we need this generality even if initially we are only interested in the smooth case.

We first observe that given $\varphi \in \text{QPSH}(X)$ with analytic singularities such that $\nu(\varphi, Y) = 0$, then $\varphi|_Y \not\equiv -\infty$. This observation will be crucial in the sequel.

Proposition 8.1.1 Let $\varphi \in \text{QPSH}(X)$. Consider a smooth closed real (1,1)-form on X and $\varphi \in \text{PSH}(X,\theta)$ such that $v(\varphi,Y)=0$. Let $(\varphi_i)_i$, $(\psi_i)_i$ be quasi-equisingular approximations of φ . Then

$$\lim_{i \to \infty} d_S \left(\varphi_i |_{\tilde{Y}}, \psi_i |_{\tilde{Y}} \right) = 0. \tag{8.1}$$

{eq:dsequivtemp1}

The meaning of (8.1) is explained in Corollary 6.2.8.

Proof Take a Kähler form ω on X. By Corollary 6.2.8, we may assume that $\varphi, \varphi_i, \psi_i \in \text{PSH}(X, \theta - \omega)$ for all $i \geq 1$. Replacing φ by $P_{\theta}[\varphi]_{\mathcal{I}}$, we may assume that φ is \mathcal{I} -good. It follows from Corollary 7.1.2 and Proposition 6.2.5 that we can assume $\varphi_i \leq \psi_i$ for all $i \geq 1$.

Take a decreasing sequence $(\epsilon_j)_j$ in $\mathbb{R}_{>0}$ with limit 0 such that $(1 - \epsilon_j)\varphi_j \in PSH(X, \theta)$. We first observe that

op:traceindquasiequisingapp

$$\lim_{i\to\infty} d_S(\varphi_i|_{\tilde{Y}}, (1-\epsilon_i)\varphi_i|_{\tilde{Y}}) = 0.$$

This is a consequence of Lemma 6.2.3.

Next by Proposition 1.6.3, we could find a subsequence $(\psi_{j_i})_{i \in \mathbb{Z}_{>0}}$ of $(\psi_j)_j$ such that for each $i \geq 1$,

$$\varphi_{j_i} \leq \psi_{j_i} \leq (1 - \epsilon_i)\varphi_i$$
.

Therefore, (8.1) follows from Corollary 6.2.1.

def:traceop

Definition 8.1.1 Let $\varphi \in \text{QPSH}(X)$ such that $\nu(\varphi, Y) = 0$. We say a potential $\psi \in \text{QPSH}(\tilde{Y})$ is a *trace operator* of φ along Y if there is a smooth closed real (1,1)-form θ on X such that $\varphi \in \text{PSH}(X,\theta)$ and a quasi-equisingular approximation $(\varphi_i)_i$ of φ such that

$$\varphi_i|_{\tilde{Y}} \xrightarrow{d_S} \psi.$$
 (8.2)

{eq:deftrace}

By Corollary 6.2.5, the trace operator is always defined. Observe that by Proposition 8.1.1, the condition (8.2) is independent of the choice of $(\varphi_j)_j$. It is also independent of the choice of θ by Corollary 6.2.7.

prop:traceunique

Proposition 8.1.2 Let $\varphi \in QPSH(X)$ such that $v(\varphi, Y) = 0$. Suppose that ψ and ψ' are trace operators of φ along Y. Then ψ and ψ' are I-good and $\psi \sim_P \psi'$.

Proof That ψ and ψ' are I-good follows from Theorem 7.1.1. The fact that $\psi \sim_P \psi'$ follows from Proposition 8.1.1 and Proposition 6.2.2.

Definition 8.1.2 Let $\varphi \in \text{QPSH}(X)$ such that $\nu(\varphi, Y) = 0$. We write $\text{Tr}_Y(\varphi)$ for any trace operator of φ along Y.

Given a closed smooth real (1, 1)-form θ on X. When $\mathrm{Tr}_Y(\varphi)$ can be chosen to lie in $\mathrm{PSH}(\tilde{Y}, \theta|_{\tilde{Y}})_{>0}$, we write

$$\operatorname{Tr}_Y^\theta(\varphi) \coloneqq P_{\theta|_{\check{Y}}}\left[\operatorname{Tr}_Y(\varphi)\right] = P_{\theta|_{\check{Y}}}\left[\operatorname{Tr}_Y(\varphi)\right]_I.$$

The trace operator $\text{Tr}_Y(\varphi)$ is therefore well-defined only up to *P*-equivalence by Proposition 8.1.2.

rmk:tracecurrent

Remark 8.1.1 As in Remark 1.7.1, the trace operator could also be applied to closed positive (1,1)-currents on X. If $T \in \mathcal{Z}_+(X,\alpha)$ (see Definition 1.7.3) and $\beta \in H^{1,1}(\tilde{Y},\mathbb{R})$, then we write

$$\operatorname{Tr}_Y^{\beta}(T)$$

for any closed positive (1, 1)-current in β representing $\text{Tr}_Y(T)$ when $\nu(T, Y) = 0$.

prop:Trdominarest

Proposition 8.1.3 Let $\varphi \in QPSH(X)$ such that $v(\varphi, Y) = 0$. Assume that $\varphi|_Y \not\equiv -\infty$. Then

$$\varphi|_{\tilde{Y}} \leq_P \operatorname{Tr}_Y(\varphi).$$

Proof Take a Kähler form ω such that ω_{φ} is a Kähler current. Let $(\varphi_j)_j$ be a quasi-equisingular approximation of φ in $PSH(X, \omega)$. We may assume that $\varphi_j \leq 0$ for all $j \geq 1$.

Then

$$\varphi_{j}|_{\tilde{Y}} \leq P_{\theta|_{\tilde{Y}}}\left[\varphi_{j}|_{\tilde{Y}}\right] \tag{8.3}$$
 {eq:varphijrestrleqPtemp}

for all $j \ge 1$.

Thanks to Corollary 6.2.4,

$$\operatorname{Tr}_{Y}(\varphi) \sim_{P} \inf_{j>1} P_{\theta|_{\bar{Y}}}[\varphi_{j}|_{\bar{Y}}].$$
 (8.4) {eq:TrYnewexpression}

Letting $j \to \infty$ in (8.3), we conclude our assertion.

ex:resanalyt

Example 8.1.1 Let $\varphi \in \text{QPSH}(X)$ such that $\nu(\varphi, Y) = 0$. Assume that φ has analytic singularities, then

$$\operatorname{Tr}_{Y}(\varphi) \sim_{P} \varphi|_{\tilde{Y}}.$$

Example 8.1.2 Let $\varphi \in \text{QPSH}(X)$. Take a closed real smooth (1,1)-form θ on X such that $\varphi \in \text{PSH}(X,\theta)_{>0}$, then

$$\operatorname{Tr}_X(\varphi) \sim_P P_{\theta}[\varphi]_{\mathcal{I}}, \quad \operatorname{Tr}_X^{\theta}(\varphi) = P_{\theta}[\varphi]_{\mathcal{I}}.$$

In particular, the trace operator can be regarded as a generalization of the \mathcal{I} -envelope.

ex:tracedefinedposmass

Example 8.1.3 Assume that $\varphi \in PSH(X, \theta)$ for some closed smooth real (1, 1)-form θ on X and

$$\lim_{\epsilon \searrow 0} \int_{Y} \left(\theta |_{Y} + \epsilon \omega |_{Y} + dd^{c} \operatorname{Tr}_{Y}^{\theta + \epsilon \omega}(\varphi) \right)^{m} > 0$$
 (8.5)

{eq:traceposmasscond}

for any arbitrary choice of a Kähler form ω on X. Then it follows from Proposition 3.1.9 that $\operatorname{Tr}_{V}^{\theta}(\varphi)$ is defined, and its mass is exact the above limit.

In particular, if θ_{φ} is a Kähler current, $\operatorname{Tr}_{V}^{\theta}(\varphi)$ is always defined.

Remark 8.1.2 The trace operator allows us to introduce the following extension of the moving Seshadri constant: Let $T \in \mathcal{Z}_+(X, \alpha)$ and $x \in X$, we define

$$\epsilon(T,x) := \inf_{V \ni x} \left(\frac{\operatorname{vol} \operatorname{Tr}_{V}^{\alpha|_{\bar{V}}} T}{\operatorname{mult}_{x} V} \right)^{\frac{1}{\dim V}},$$

where $\operatorname{vol}\operatorname{Tr}_V^{\alpha|_{\bar{V}}}T=0$ if $\operatorname{Tr}_V^{\alpha|_{\bar{V}}}T$ is not defined. Here V runs over all positive-dimensional closed irreducible analytic subsets of X containing x.

These moving Seshadri constants seem to be new.

8.2 Properties of the trace operator

Let X be a connected compact Kähler manifold and $Y \subseteq X$ be an irreducible analytic subset.

prop:tracelinear

Proposition 8.2.1 Let $\varphi, \psi \in QPSH(X)$, $\lambda > 0$. Assume that $\nu(\varphi, Y) = \nu(\psi, Y) = 0$. Then we have the following:

- (1) Suppose that $\varphi \leq_I \psi$, then $\operatorname{Tr}_Y(\varphi) \leq_P \operatorname{Tr}_Y(\psi)$.
- (2) We have

$$\operatorname{Tr}_{V}(\varphi + \psi) \sim_{P} \operatorname{Tr}_{V}(\varphi) + \operatorname{Tr}_{V}(\psi).$$

(3) We have

$$\operatorname{Tr}_{Y}(\lambda \varphi) \sim_{P} \lambda \operatorname{Tr}_{Y}(\varphi).$$

(4) We have

$$\operatorname{Tr}_{Y}(\varphi \vee \psi) \sim_{P} \operatorname{Tr}_{Y}(\varphi) \vee \operatorname{Tr}_{Y}(\psi).$$

Proof Take a closed smooth real (1,1)-form θ on X such that θ_{φ} , θ_{ψ} are both Kähler currents. Let $(\varphi_j)_j$ and $(\psi_j)_j$ be quasi-equisingular approximations of φ and ψ in PSH (X,θ) respectively.

- (1) By Corollary 7.1.2 and Proposition 6.2.5, we may assume that $\varphi_j \le \psi_j$ for all j. Then our assertion follows from Proposition 6.2.4.
- (2) It follows from Theorem 6.2.2 that $\varphi_j + \psi_j \xrightarrow{d_S} P_{\theta}[\varphi]_{\mathcal{I}} + P_{\theta}[\psi]_{\mathcal{I}}$. However, by Proposition 3.2.10 and Proposition 7.2.1, we have

$$P_{\theta}[\varphi]_{I} + P_{\theta}[\psi]_{I} \sim_{P} P_{\theta}[\varphi + \psi]_{I}.$$

Therefore, by Proposition 6.2.2, Corollary 7.1.2 and Proposition 1.6.1, $\varphi_j + \psi_j$ is a quasi-equisingular approximation of $\varphi + \psi$. We conclude using Theorem 6.2.2.

- (3) Let $(\lambda_j)_j$ be an increasing sequence of positive rational numbers with limit λ . Then $(\lambda_j \varphi_j)_j$ is a quasi-equisingular approximation of φ . Our assertion follows Lemma 6.2.3.
 - (4) By Proposition 6.2.5, we have

$$\varphi_i \vee \psi_i \xrightarrow{d_S} P_{\theta}[\varphi]_I \vee P_{\theta}[\psi]_I.$$

By Proposition 3.2.10 and Proposition 7.2.1, we have

$$P_{\theta}[\varphi]_{I} \vee P_{\theta}[\psi]_{I} \sim_{P} P_{\theta}[\varphi \vee \psi]_{I}.$$

Therefore, our assertion follows exactly as in the proof of (2).

prop:tracedeclimit

Proposition 8.2.2 Let $(\varphi_j)_{j\in I}$ be a decreasing net in QPSH(X). Assume that there exists a closed real smooth (1,1)-form θ such that $\varphi_j \in \text{PSH}(X,\theta)$ for each $j \in I$. Assume that $\varphi_j \xrightarrow{d_S} \varphi \in \text{QPSH}(X)$ and $v(\varphi,Y) = 0$. Then

$$\operatorname{Tr}_{Y}(\varphi_{i}) \xrightarrow{d_{S}} \operatorname{Tr}_{Y}(\varphi).$$

Proof By Corollary 6.2.7, we may assume that there is a Kähler form ω on X such that $\varphi, \varphi_j \in \text{PSH}(X, \theta - \omega)$ for all $j \in I$. Note that for each $j \ge 1$,

$$\operatorname{Tr}_{Y}(\varphi_{i+1}) \leq_{P} \operatorname{Tr}_{Y}(\varphi_{i}).$$

It follows from Proposition 8.2.1 and Corollary 6.2.5 that there exists $\psi \in PSH(\tilde{Y}, \theta|_{\tilde{Y}})$ such that $Tr_Y(\varphi_i) \xrightarrow{d_S} \psi$.

For each j, we take a quasi-equisingular approximation $(\varphi_j^k)_k$ in PSH (X, θ) of φ_j . Using Theorem 1.6.2, we may guarantee that

$$\varphi_{i+1}^k \leq \varphi_i^k$$

for each $j, k \ge 1$. In particular, $(\varphi_j^j)_j$ is a quasi-equisingular approximation of φ . By Proposition 6.2.4, we have $\psi \le_P \operatorname{Tr}_Y(\varphi)$.

Conversely, by Proposition 8.2.1, $\operatorname{Tr}_Y(\varphi_j) \geq_P \operatorname{Tr}_Y(\varphi)$. It follows again from Proposition 6.2.4 that $\operatorname{Tr}_Y(\varphi) \leq_P \psi$.

Example 8.2.1 The trace operator is not continuous along increasing sequences. Let us consider the case $X = \mathbb{P}^2$ with coordinates (z_1, z_2) . Let ω_{FS} denote the Fubini–Study metric. The subvariety $Y \cong \mathbb{P}^1$ is defined by $z_2 = 0$. Consider an increasing sequence $(\varphi_i)_i$ in PSH (X, ω_{FS}) , whose potentials near (0, 0) are given by

$$\log |z_1|^2 \vee (k^{-1} \log |z_2|^2) + O(1).$$

The pointwise restriction of these potentials to Y are given locally by

$$\log |z_1|^2 + O(1)$$
.

On the other hand, locally

$$\log|z_1|^2 \vee \left(k^{-1}\log|z_2|^2\right) \to 0$$

almost everywhere as $k \to \infty$. So the trace operator is not continuous along the sequence $(\varphi_i)_i$.

lma:rescommpullback

Lemma 8.2.1 Let $\pi: Z \to X$ be a proper bimeromorphic morphism with Z being a connected Kähler manifold. Assume that W (resp. Y) be analytic subsets in Z (resp. X) of codimension 1 such that the restriction $\Pi: W \to Y$ of π is defined and is bimeromorphic, so that we have the following commutative diagram

$$\begin{array}{cccc} \tilde{W} & \longrightarrow & W & \longleftarrow & Z \\ \downarrow \tilde{\Pi} & & \downarrow \Pi & & \downarrow \pi \\ \tilde{Y} & \longrightarrow & Y & \longleftarrow & X. \end{array}$$

Then for any $\varphi \in QPSH(X)$ with $\nu(\varphi, Y) = 0$, we have

$$\tilde{\Pi}^* \operatorname{Tr}_{V}(\varphi) \sim_{P} \operatorname{Tr}_{W}(\pi^* \varphi).$$
 (8.6) {eq:rescommpullback}

Proof We first observe that by Zariski's main theorem, $v(\pi^*\varphi, W) = 0$. So the right-hand side of (8.6) makes sense.

Step 1. Assume that T has analytic singularities. It suffices to apply Example 8.1.1 to reformulate (8.6) as

$$\tilde{\Pi}^*(\varphi|_{\tilde{Y}}) \sim_P (\pi^*\varphi)|_{\tilde{W}}.$$

In fact, the strict equality holds, which is nothing but the functoriality of pullbacks.

Step 2. Next we handle the general case. Up to replacing θ by $\theta + \omega$ for some Kähler form ω on X, we may assume that T is a Kähler current. Take a quasi-equisingular approximation $(\varphi_j)_j$ of φ in PSH (X,θ) . By Corollary 7.1.2, $(\pi^*\varphi_j)_j$ is a quasi-equisingular approximation of $\pi^*\varphi$. From Step 1, we know that for each j,

$$\tilde{\Pi}^* \operatorname{Tr}_Y(\varphi_i) \sim_P \operatorname{Tr}_W(\pi^* \varphi_i).$$

Letting $j \to \infty$, we conclude (8.6) using Proposition 8.2.2.

prop:0T2

Proposition 8.2.3 *Let* $\varphi \in QPSH(X)$ *with* $\nu(\varphi, Y) = 0$. *Assume that Y is smooth. Then for any* $\lambda > 0$, *we have*

$$I(\lambda \operatorname{Tr}_{Y}(\varphi)) \subseteq \operatorname{Res}_{Y} I(\lambda \varphi).$$
 (8.7) {eq:0T}

Proof Take a Kähler form ω on X such that ω_{φ} is a Kähler current. Let $(\varphi_j)_j$ be a quasi-equisingular approximation of φ in PSH (X, ω) . By definition, for each $j \geq 1$, we get that

$$\operatorname{Tr}_{Y}(\varphi) \leq_{P} \varphi_{i}|_{Y}$$
.

For any $\lambda' > \lambda > 0$, we can find j > 0 so that

$$I(\lambda'\varphi_i)\subseteq I(\lambda\varphi).$$

By Theorem 1.4.5, we have

$$I(\lambda' \operatorname{Tr}_{Y}(\varphi)) \subseteq I(\lambda' \varphi_{i}|_{Y}) \subseteq \operatorname{Res}_{Y} I(\lambda' \varphi_{i}) \subseteq \operatorname{Res}_{Y} I(\lambda \varphi).$$

Thanks to Theorem 1.4.4, we conclude (8.7).

Lastly, we turn our attention to global sections. For this we will need the following global Ohsawa–Takegoshi extension theorem for the trace operator:

thm: OT_ext_global

Theorem 8.2.1 Let L be a big line bundle on X and θ is a closed real smooth (1,1)-form on X representing $c_1(L)$. Suppose that $\varphi \in PSH(X,\theta)$ and θ_{φ} is a Kähler current. Assume that $v(\varphi,Y) = 0$. Let T be a holomorphic line bundle on X. Then there exists k_0 such that for all $k \geq k_0$ and $s \in H^0(Y,T|_Y \otimes L|_Y^k \otimes I(k\operatorname{Tr}_Y^\theta(\varphi)))$, there exists an extension $\tilde{s} \in H^0(X,T \otimes L^k \otimes I(k\varphi))$.

It is of interest to know if one could control the L^2 -norm of \tilde{s} in the above result.

Proof Fix a Kähler form ω on X. We may assume that $Y \neq X$ and that $\theta_{\varphi} \geq 3\delta\omega$ for some $\delta > 0$. Let $(\varphi_j)_j$ be the decreasing quasi-equisingular approximation of φ in PSH (X,θ) . We can assume that $\theta_{\varphi_j} \geq 2\delta\omega$ for all $j \geq 1$. Also, there exists $\epsilon_0 > 0$ such that $\theta_{(1+\epsilon)\varphi_j} \geq \delta\omega$ for any $\epsilon \in (0,\epsilon_0)$. Take $k_0 = k_0(\delta)$ as in Theorem 1.8.1.

We fix $k \ge k_0$ and $s \in H^0(Y, T|_Y \otimes L|_Y^k \otimes \mathcal{I}(k \operatorname{Tr}_Y^\theta(\varphi)))$. By Theorem 1.4.4, there exists $\epsilon \in (0, \epsilon_0)$ such that $s \in H^0(Y, T|_Y \otimes L|_Y^k \otimes \mathcal{I}(k(1+\epsilon)\operatorname{Tr}_Y^\theta(\varphi)))$.

Since $\operatorname{Tr}_Y^{\theta}(\varphi) \leq \varphi_j|_Y$, we obtain that $s \in \operatorname{H}^0(Y, T|_Y \otimes L|_Y^k \otimes \mathcal{I}(k(1+\epsilon)\varphi_j|_Y))$. Due to Theorem 1.8.1 there exists $\tilde{s}_j \in \operatorname{H}^0(X, T \otimes L^k \otimes \mathcal{I}(k(1+\epsilon)\varphi_j))$ such that $\tilde{s}_i|_Y = s$, for all j.

But by definition of quasi-equisingular approximation, we obtain that for high enough j the inclusion $I(k(1+\epsilon)\varphi_i)\subseteq I(k\varphi)$ holds. As a result, $\tilde{s}_i\in H^0(X,T\otimes I)$ $L^k \otimes \mathcal{I}(k\varphi)$) for high enough j, finishing the argument.

8.3 Restricted volumes

Let X be a connected projective manifold of dimension n and $Y \subseteq$ be a connected submanifold of dimension m. Consider a big line bundle L on X, a Hermitian metric h_0 on L with $\theta = c_1(L, h_0)$. Let A be a very ample line bundle on X. Take a Hermitian metric h_A on A such that $\omega = dd^c h_A$ is a Kähler form.

Using the trace operator, one could prove the following generalization of Theorem 7.3.1.

thm: rest_volume

Theorem 8.3.1 Let h be a singular plurisubharmonic metric on L with $v(dd^c h, Y) = 0$. Assume that

$$\lim_{\epsilon \searrow 0} \left(\operatorname{Tr}_{Y}^{c_{1}(L|_{Y}) + \epsilon \omega} (c_{1}(L, h)) \right)^{m} > 0. \tag{8.8}$$

{eq:traceposmasscond2}

Then for any holomorphic line bundle T on X we have that

$$\int_{Y} \left(\operatorname{Tr}_{Y}^{c_{1}(L|_{Y})}(c_{1}(L,h)) \right)^{m} = \lim_{k \to \infty} \frac{m!}{k^{m}} h^{0} \left(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes \operatorname{Res}_{Y}(\mathcal{I}(h^{k})) \right). \tag{8.9}$$

Recall that Resy is defined in Definition 1.4.5. Observe that by Example 8.1.3, (8.8) implies that $\operatorname{Tr}_{V}^{c_1(L|_Y)}(c_1(L,h))$ is defined. So (8.9) is defined.

We will identify h with $\varphi \in PSH(X, \theta)$ as in (1.16).

We only need to consider the case $Y \neq X$, since otherwise, the result is proved in Theorem 7.3.1. We will always assume $Y \neq X$ in the sequel.

Lemma 8.3.1 There is $\psi_Y \in QPSH(X)$ with neat analytic singularities such that $\{\psi_Y = -\infty\} = Y$ and in an open neighbourhood of Y, we have

$$\psi_Y(x) = 2(n-m)\log\operatorname{dist}(x,Y) \tag{8.10}$$
 {eq: Psi_Y_def}

for some Riemannian distance function $dist(\cdot, Y)$.

See Definition 1.6.1 for the definition of neat analytic singularities. See [Fin22, Lemma 2.3] for the proof.

lma: IpsiY

Lemma 8.3.2 The multiplier ideal sheaf of ψ_Y can be calculated as

$$I(\psi_Y) = I_Y. \tag{8.11}$$

Moreover, given $y \in Y$ and $\epsilon > 0$, for any germ $f \in \mathcal{I}_{Y,y}$ we have

$$\int_{U} |f|^{\epsilon} e^{-\psi_{Y}} \omega^{n} < \infty, \tag{8.12}$$
 {eq:integrabilitypsiY}

where U is an open neighbourhood of y in X.

In other words, ψ_Y has log canonical singularities.

Proof Since ψ_Y is locally bounded away from Y, it suffices to prove (8.11) along Y. Fix $y \in Y$, and we will verify (8.11) germ-wise at y.

Take an open neighbourhood $U \subset X$ of y and a biholomorphic map $F \colon U \to V \times W$, where V is an open neighbourhood of y in Y and W is a connected open subset in \mathbb{C}^{n-m} containing 0, such that $F(Y \cap U) = V \times \{0\}$. For any $x \in U$, write x_V, x_W for the two components of F(x) in V and W respectively. We denote the coordinates in \mathbb{C}^{n-m} as w_1, \ldots, w_{n-m} .

Due to (8.10), after possibly shrinking U, we may assume that

$$\exp(-\psi_Y(x)) = |x_W|^{2m-2n} + O(1)$$

for any $x \in U \setminus Y$.

Given $f \in I_{Y,y}$, after shrinking U, we may assume that there exists $g_1, \ldots, g_{n-m} \in H^0(V \times W, O_{V \times W})$ such that

$$f = \sum_{i=1}^{n-m} w_i g_i.$$

In order to verify $f \in I(\psi_Y)_y$, it suffices to show $w_i g_i \in I\left(\left(\sum_{i=1}^{n-m} |w_i|^2\right)^{m-n}\right)_{F(y)}$, which follows from Fubini's theorem. The proof of (8.12) is similar.

Conversely, take $f \in I(\psi_Y)$, the similar application of Fubini's theorem shows that after possible shrinking U, we have $f|_Y = 0$. By Rückert's Nullstellensatz [GR84, Page 67], it follows that $f \in I_Y$.

lem: analytic_formula

Lemma 8.3.3 Assume that φ has analytic singularity type and θ_u is a Kähler current. Suppose that $\varphi|_Y \not\equiv -\infty$. Then

$$\int_{Y} (\theta|_{Y} + \mathrm{dd^{c}}\varphi|_{Y})^{m} = \lim_{k \to \infty} \frac{m!}{k^{m}} \dim_{\mathbb{C}} \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes \mathcal{I}(k\varphi)) \right\}. \quad (8.13) \quad \text{{eq:asymanasing}}$$

Recall that I_{∞} is defined in Definition 1.6.5.

Proof Suppose that $\epsilon \in (0, 1)$ is small enough so that $(1 - \epsilon)u \in PSH(X, \theta)$. Using Theorem 7.3.1 we can start to write the following sequence of inequalities:

$$\frac{1}{m!} \int_{Y} (\theta|_{Y} + \mathrm{dd^{c}}\varphi|_{Y})^{m}$$

$$= \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I(k\varphi|_{Y}))$$

$$\leq \lim_{k \to \infty} \frac{1}{k^{m}} \dim \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes I(k\varphi)) \right\} \quad \text{by Theorem 1.8.1}$$

$$\leq \overline{\lim_{k \to \infty}} \frac{1}{k^{m}} \dim \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes I(k\varphi)) \right\}$$

$$\leq \overline{\lim_{k \to \infty}} \frac{1}{k^{m}} \dim \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes I_{\infty}((1 - \epsilon)k\varphi)) \right\} \quad \text{by Lemma 1.6.3}$$

$$\leq \overline{\lim_{k \to \infty}} \frac{1}{k^{m}} \dim_{\mathbb{C}} \left\{ s \in \mathrm{H}^{0}(Y, T|_{Y} \otimes L|_{Y}^{k}) : \log h^{k}(s, s) \leq (1 - \epsilon)k\varphi|_{Y} \right\}$$

$$\leq \overline{\lim_{k \to \infty}} \frac{1}{k^{m}} h^{0} \left(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I((1 - \epsilon)k\varphi|_{Y}) \right)$$

$$= \frac{1}{m!} \int_{Y} (\theta|_{Y} + (1 - \epsilon) \mathrm{dd^{c}}\varphi|_{Y})^{m} \quad \text{by Theorem 7.3.1.}$$

Letting $\epsilon \to 0$, (8.13) follows from multi-linearity of the non-pluripolar product. \Box

prop: rest_volume

Proposition 8.3.1 In the setting of *Theorem 8.3.1*, assume that dd^ch is a Kähler current. Then (8.9) holds.

Proof Let $(\varphi_j)_j$ a quasi-equisingular approximation of φ in PSH (X, θ) . After possibly replacing $(\varphi_j)_j$ by a subsequence, there exists $\epsilon_0 \in (0,1) \cap \mathbb{Q}$ such that $\theta_{(1-\epsilon)^2\varphi_j}$ and $\theta_{(1-\epsilon)\varphi_j}$ are also Kähler currents for any $\epsilon \in (0,\epsilon_0)$.

We claim that for any $j \ge 1$ and $k \in \mathbb{N}$, we have

$$I_{\infty}((1-\epsilon)k\varphi_j) \cap I(\psi_Y) \subseteq I((1-\epsilon)^2k\varphi_j + \psi_Y).$$
 (8.14) [eq:Jcap1]

Take $x \in X$, and it suffices to argue (8.14) along the germ of x. Since ψ_Y is locally bounded outside Y, we may assume that $x \in Y$. Recall that by Lemma 8.3.2, $I(\psi_Y) = I_Y$.

Let $f \in I_{\infty}((1-\epsilon)k\varphi_j)_X \cap I(\psi_Y)_X$. Then there is an open neighbourhood U of x in X such that $|f|^{2(1-\epsilon)}e^{-k(1-\epsilon)^2\varphi_j} \le C$ holds on $U \setminus \{\varphi_j = -\infty\}$ for some C > 0, hence

$$\begin{split} \int_{U} |f|^{2} \mathrm{e}^{-k(1-\epsilon)^{2} \varphi_{j} - \psi_{Y}} \; \omega^{n} &= \int_{U} |f|^{2(1-\epsilon)} \mathrm{e}^{-k(1-\epsilon)^{2} \varphi_{j}} |f|^{2\epsilon} \mathrm{e}^{-\psi_{Y}} \; \omega^{n} \\ &\leq C \int_{U} |f|^{2\epsilon} \mathrm{e}^{-\psi_{Y}} \; \omega^{n} < \infty, \end{split}$$

where the last inequality follows from Lemma 8.3.2. We have proved the claim (8.14). Next we consider the following composition morphism of coherent sheaves on *Y*:

$$\operatorname{Res}_{Y} I_{\infty}((1-\epsilon)k\varphi_{j}) \hookrightarrow \frac{I((1-\epsilon)^{2}k\varphi_{j})}{I_{\infty}((1-\epsilon)k\varphi_{j}) \cap I_{Y}} \to \frac{I((1-\epsilon)^{2}k\varphi_{j})}{I((1-\epsilon)^{2}k\varphi_{j}+y/y)}. \quad (8.15)$$
 [eq: sheaf_injection]

Here we have identified the coherent O_X -modules supported on Y with coherent O_Y -modules. Note that the target of (8.15) is also supported on Y as ψ_Y is locally bounded outside Y. We denote the coherent O_Y -module whose pushforward to X gives $\frac{I((1-\epsilon)^2k\varphi_j)}{I((1-\epsilon)^2k\varphi_j+\psi_Y)}$ by $I_{k,j}$.

In (8.15), the first map is the inclusion and the second one is the obvious projection induced by (8.14). Although in general the second map fails to be injective, we observe that the composition is still injective as $I((1-\epsilon)^2 k \varphi_j + \psi_Y) \subseteq I(\psi_Y) = I_Y$. Therefore, for any $k \in \mathbb{N}$, we have an injective morphism of coherent O_Y -modules:

$$L|_{Y}^{k} \otimes T|_{Y} \otimes \operatorname{Res}_{Y} I_{\infty}((1-\epsilon)k\varphi_{j}) \hookrightarrow L|_{Y}^{k} \otimes T|_{Y} \otimes I_{k,j}. \tag{8.16}$$

Using Theorem 7.3.1 we can start the following inequalities:

$$\begin{split} &\frac{1}{m!} \int_{Y} \left(\theta|_{Y} + \mathrm{dd^{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m} \\ &= \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I(k \operatorname{Tr}_{Y}^{\theta}(\varphi))) \quad \text{by Theorem 7.3.1} \\ &\leq \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes \operatorname{Res}_{Y}(I(k\varphi))) \quad \text{by Theorem 1.4.5} \\ &\leq \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes \operatorname{Res}_{Y}(I(k\varphi))) \\ &\leq \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I(k\varphi_{j})|_{Y}) \\ &\leq \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I_{\infty}((1 - \epsilon)k\varphi_{j})|_{Y}) \quad \text{by Lemma 1.6.3} \\ &\leq \lim_{k \to \infty} \frac{1}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I_{k,j}) \quad \text{by (8.16)} \\ &\leq \lim_{k \to \infty} \frac{1}{k^{m}} \dim_{\mathbb{C}} \left\{ s|_{Y} : s \in \operatorname{H}^{0}\left(X, T \otimes L^{k} \otimes \frac{I((1 - \epsilon)^{2}k\varphi_{j})}{I((1 - \epsilon)^{2}k\varphi_{j} + \psi_{Y})} \right) \right\} \\ &= \lim_{k \to \infty} \frac{1}{k^{m}} \dim_{\mathbb{C}} \left\{ s|_{Y} : s \in \operatorname{H}^{0}(X, T \otimes L^{k} \otimes I((1 - \epsilon)^{2}k\varphi_{j})) \right\} \quad \text{(see below)} \\ &= \frac{1}{m!} \int_{Y} \left(\theta|_{Y} + (1 - \epsilon)^{2} \mathrm{dd^{c}}\varphi_{j}|_{Y} \right)^{m} \quad \text{by Lemma 8.3.3,} \end{split}$$

where in the penultimate line we used [CDM17, Theorem 1.1(6)] for q = 0. Letting $\epsilon \to \infty$ and then $j \to \infty$ the result follows.

Proof (Proof of Theorem 8.3.1) Using Proposition 8.2.3 and Theorem 7.3.1 we obtain that

$$\int_{Y} \left(\theta |_{Y} + \mathrm{dd^{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi) \right)^{m} = \lim_{k \to \infty} \frac{m!}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes I(k \operatorname{Tr}_{Y}^{\theta}(\varphi)))$$

$$\leq \lim_{k \to \infty} \frac{m!}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes \operatorname{Res}_{Y}(I(k\varphi))).$$

{eq:DX_cor}

Now we address the other direction in (8.9). Let $\phi \in H^0(X, A)$ be a section that does not vanish identically on Y. Such ϕ exists since A is very ample.

We fix $k_0 \in \mathbb{N}$. For any $k \ge 0$, we have that $k = qk_0 + r$ with $q, r \in \mathbb{N}$ and $r \in \{0, \dots, k_0 - 1\}$. Also, we have an injective linear map

$$\mathrm{H}^{0}(Y,T|_{Y}\otimes L|_{Y}^{k}\otimes \mathcal{I}(k\varphi|_{Y}))\xrightarrow{\cdot\phi^{\otimes q}}\mathrm{H}^{0}\left(Y,T|_{Y}\otimes L|_{Y}^{k}\otimes A|_{Y}^{q}\otimes \mathcal{I}(k\varphi|_{Y})\right).$$

Therefore,

$$\begin{split} & \overline{\lim}_{k \to \infty} \frac{m!}{k^m} h^0 \left(Y, T|_Y \otimes L|_Y^k \otimes I(k\varphi|_Y) \right) \\ & \leq \overline{\lim}_{k \to \infty} \frac{m!}{k^m} h^0 \left(Y, T|_Y \otimes L|_Y^k \otimes A|_Y^q \otimes I(k\varphi|_Y) \right) \\ & = \frac{1}{k_0^m} \overline{\lim}_{q \to \infty} \frac{m!}{q^m} h^0 \left(Y, T|_Y \otimes L|_Y^{qk_0} \otimes A|_Y^q \otimes L|_Y^r \otimes I(k\varphi|_Y) \right) \\ & \leq \frac{1}{k_0^m} \overline{\lim}_{q \to \infty} \frac{m!}{q^m} h^0 \left(Y, T|_Y \otimes L|_Y^{qk_0} \otimes A|_Y^q \otimes L|_Y^r \otimes I(k_0 q\varphi|_Y) \right) \\ & = \int_Y \left(\theta|_Y + k_0^{-1} \omega|_Y + \mathrm{dd^c} \operatorname{Tr}_Y^{\theta + k_0^{-1} \omega}(\varphi) \right)^m \\ & = \int_Y \left(\theta|_Y + k_0^{-1} \omega|_Y + \mathrm{dd^c} \operatorname{Tr}_Y^{\theta}(\varphi) \right)^m, \end{split}$$

where in the fourth line we have used that $k_0 q \le k$ and in the last line we have used Proposition 8.3.1 for the big line bundle $L^{k_0} \otimes A$, the Kähler current $k_0 \theta_u - \mathrm{dd^c} \log g = k_0 \theta_u + \omega$, and twisting bundle $T \otimes L^r$. Letting $k_0 \to \infty$, we conclude that

$$\overline{\lim_{k\to\infty}} \frac{m!}{k^m} h^0\left(Y, T|_Y \otimes L|_Y^k \otimes \mathcal{I}(k\varphi|_Y)\right) \leq \int_Y \left(\theta|_Y + \mathrm{dd^c} \operatorname{Tr}_Y^\theta(\varphi)\right)^m.$$

thm: rest_volume_2

Theorem 8.3.2 Let $\varphi \in PSH(X, \theta)$ such that $v(\varphi, Y) = 0$. Assume that θ_{φ} is a Kähler current. Then

$$\int_{Y} \left(\theta |_{Y} + \mathrm{dd^{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi) \right)^{m} = \lim_{k \to \infty} \frac{m!}{k^{m}} \dim_{\mathbb{C}} \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes I(k\varphi)) \right\}.$$

Proof This is a consequence of Theorem 7.3.1, Theorem 8.2.1 and Theorem 8.3.1:

$$\begin{split} \int_{Y} \left(\theta |_{Y} + \mathrm{dd^{c}} \, \mathrm{Tr}_{Y}^{\theta}(\varphi) \right)^{m} &= \lim_{k \to \infty} \frac{m!}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes \mathcal{I}(k \, \mathrm{Tr}_{Y}^{\theta}(\varphi))) \\ &\leq \lim_{k \to \infty} \frac{m!}{k^{m}} \dim_{\mathbb{C}} \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes \mathcal{I}(k\varphi)) \right\} \\ &\leq \lim_{k \to \infty} \frac{m!}{k^{m}} \dim_{\mathbb{C}} \left\{ s|_{Y} : s \in \mathrm{H}^{0}(X, T \otimes L^{k} \otimes \mathcal{I}(k\varphi)) \right\} \\ &\leq \lim_{k \to \infty} \frac{m!}{k^{m}} h^{0}(Y, T|_{Y} \otimes L|_{Y}^{k} \otimes \mathcal{I}(k\varphi)|_{Y}) \\ &= \int_{Y} \left(\theta |_{Y} + \mathrm{dd^{c}} \, \mathrm{Tr}_{Y}^{\theta}(\varphi) \right)^{m}. \end{split}$$

Remark 8.3.1 One could also show that when (8.8) fails, the right-hand side of (8.9) is 0. See [DX24].

8.4 Analytic Bertini theorems

Let X be a connected projective manifold of dimension $n \ge 1$.

The analytic Bertini theorem handles the restriction along a generic subvariety.

thm:Bert

Theorem 8.4.1 Let $\varphi \in \text{QPSH}(X)$. Let $p: X \to \mathbb{P}^N$ be a morphism $(N \ge 1)$. Define

$$\mathcal{G}\coloneqq \{H\in |O_{\mathbb{P}^N}(1)|: H'\coloneqq H\cap X \text{ is smooth and } \mathcal{I}(\varphi|_{H'})=\mathrm{Res}_{H'}(\mathcal{I}(\varphi))\}\,.$$

Then $\mathcal{G} \subseteq |\mathcal{O}_{\mathbb{P}^N}(1)|$ is co-pluripolar.

Recall that co-pluripolar sets are defined in Definition 1.1.4. We adopt the convention that $I(-\infty) = 0$.

Remark 8.4.1 Here and in the sequel, we slightly abuse the notation by writing $H \cap X$ for $p^{-1}H$, the scheme-theoretic inverse image of H. In other words, $H \cap X := H \times_{\mathbb{P}^N} X$. By definition, any $H \in |O_{\mathbb{P}^N}(1)|$ such that $p^{-1}H = \emptyset$ lies in \mathcal{G} .

Proof Take an ample line bundle L with a smooth Hermitian metric h such that $c_1(L,h) + \mathrm{dd^c}\varphi \geq 0$, where $c_1(L,h)$ is the first Chern form of (L,h), namely the curvature form of h. We introduce $\Lambda := |\mathcal{O}_{\mathbb{P}^N}(1)|$ to simplify our notations.

Step 1. We prove that the following set is co-pluripolar:

$$\mathcal{G}_L \coloneqq \left\{ H \in \Lambda : H \cap X \text{ is smooth and } H^0 \left(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes \mathcal{I} \left(\varphi|_{H \cap X} \right) \right) = H^0 \left(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes \mathrm{Res}_{H \cap X} (\mathcal{I} \left(\varphi \right)) \right) \right\}.$$

Here $\omega_{H \cap X}$ denotes the dualizing sheaf of $H \cap X$.

Let $U \subseteq \Lambda \times X$ be the closed subvariety whose \mathbb{C} -points correspond to pairs $(H, x) \in \Lambda \times X$ with $p(x) \in H$. Let $\pi_1 : U \to \Lambda$ be the natural projection. We may assume that π_1 is surjective, as otherwise there is nothing to prove.

Observe that U is a local complete intersection scheme by *Krulls Hauptidealsgtz* and *a fortiori* a Cohen–Macaulay scheme. It follows from miracle flatness [Mat89, Theorem 23.1] that the natural projection $\pi_2 : U \to X$ is flat. As the fibers of π_2 over closed points of X are isomorphic to \mathbb{P}^{N-1} , it follows that π_2 is smooth. Thus, U is smooth as well. Moreover, observe that

$$I(\pi_2^*\varphi) = \pi_2^*I(\varphi) \tag{8.17}$$

{eq:pi2pullvarphiItemp1}

by Proposition 1.4.5.

In the following, we will construct pluripolar sets $\Sigma_1 \subseteq \Sigma_2 \subseteq \Sigma_3 \subseteq \Sigma_4 \subseteq \Lambda$ such that the behaviour of π_1 is improved successively on the complement of Σ_i .

Step 1.1. The usual Bertini theorem shows that there is a proper Zariski closed set $\Sigma_1 \subseteq \Lambda$ such that π_1 has smooth fibres outside Σ_1 . Enlarging Σ_1 , we could guarantee that π_1 and $I(\pi_2^*\varphi)$ are both flat outside Σ_1 . See [DG65, Théorème 6.9.1]. Then after further enlarging Σ_1 so that H avoids all associated points of $O_X/I(\varphi)$, for all $H \in \Lambda \setminus \Sigma_1$. Let $\pi_{1,H}$ denote the fibre of π_1 at H and write $i_H : \pi_{1,H} \to U$ for the inclusion morphism. We arrive at

$$\operatorname{Res}_{\pi_{1,H}}(I(\pi_2^*\varphi)) = i_H^*I(\pi_2^*\varphi)$$

for all $H \in \Lambda \setminus \Sigma_1$.

Step 1.2. By Grauert's coherence theorem,

$$\mathcal{F}^i := R^i \pi_{1*} \left(\omega_{U/\Lambda} \otimes \pi_2^* L \otimes \mathcal{I}(\pi_2^* \varphi) \right)$$

is coherent for all i. Here $\omega_{U/\Lambda}$ denotes the relative dualizing sheaf of the morphism $U \to \Lambda$. Thus, there is a proper Zariski closed set $\Sigma_2 \subseteq \Lambda$ such that

- (1) $\Sigma_2 \supseteq \Sigma_1$.
- (2) The \mathcal{F}^i 's are locally free outside Σ_2 .

We write $\mathcal{F} = \mathcal{F}^0$. By cohomology and base change [Har77, Theorem III.12.11], for any $H \in \Lambda \setminus \Sigma_2$, the fibre $\mathcal{F}|_H$ of \mathcal{F} is given by

$$\mathcal{F}|_{H} = \mathrm{H}^{0}\left(\pi_{1,H}, \omega_{U/\Lambda}|_{\pi_{1,H}} \otimes \pi_{2}^{*}L|_{\pi_{1,H}} \otimes \mathrm{Res}_{\pi_{1,H}}(\mathcal{I}(\pi_{2}^{*}\varphi))\right).$$

Step 1.3. In order to proceed, we need to make use of the Hodge metric P_{ST8} on \mathcal{F} defined in [HPS18]. We briefly recall its definition in our setting. By [HPS18, Section 22], we can find a proper Zariski closed set $\Sigma_3 \subseteq \Lambda$ such that

- (1) $\Sigma_3 \supseteq \Sigma_2$,
- (2) π_1 is smooth outside Σ_3 ,
- (3) both \mathcal{F} and $\pi_{1*}\left(\omega_{U/\Lambda}\otimes\pi_2^*L\right)/\mathcal{F}$ are locally free outside Σ_3 , and
- (4) for each i,

$$R^i\pi_{1*}\left(\omega_{U/\Lambda}\otimes\pi_2^*L\right)$$

is locally free outside Σ_3 .

This subtle point was overlooked in the proof of Xia22al.

Then for any $H \in \Lambda \setminus \Sigma_3$,

$$H^{0}(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes I(\varphi|_{H \cap X})) \subseteq \mathcal{F}|_{H} \subseteq H^{0}(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X}).$$

See [HPS18], Lemma 22.1].

Now we can give the definition of the Hodge metric on $\Lambda \setminus \Sigma_3$. Given any $H \in \Lambda \setminus \Sigma_3$, any $\alpha \in \mathcal{F}|_H$, the Hodge metric is defined as

$$h_{\mathcal{H}}(\alpha,\alpha) := \int_{X \cap H} |\alpha|_h^2 \mathrm{e}^{-\varphi} \in [0,\infty].$$

Observe that $h_{\mathcal{H}}(\alpha, \alpha) < \infty$ if and only if $\alpha \in H^0(\mathcal{H} \cap X, \omega_{H \cap X} \otimes I_{\mathbb{R}} |_{H \cap X} \otimes I(\varphi|_{H \cap X}))$. Moreover, $h_{\mathcal{H}}(\alpha, \alpha) > 0$ if $\alpha \neq 0$. It is shown in [HPS18] (c.f. [PT18, Theorem 3.3.5]) that $h_{\mathcal{H}}$ is indeed a singular Hermitian metric, and it extends to a positive metric on \mathcal{F} .

Step 1.4. The determinant det $h_{\mathcal{H}}$ is singular at all $H \in \Lambda \setminus \Sigma_3$ such that

$$H^0(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes I(\varphi|_{H \cap X})) \neq \mathcal{F}|_{H}.$$

As the map π_2 is smooth, we have $\pi_2^* I(\varphi) = I(\pi_2^* \varphi)$ by Proposition 1.4.5. Under the identification $\pi_{1,H} \cong H \cap X$, we have

$$\operatorname{Res}_{\pi_{1,H}}\left(\pi_{2}^{*}I(\varphi)\right) \cong \operatorname{Res}_{H\cap X}\left(I(\varphi)\right).$$

Thus, we have the following inclusions:

$$H^{0}(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes I(\varphi|_{H \cap X}))$$

$$\subseteq H^{0}(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes \operatorname{Res}_{H \cap X}(I(\varphi))),$$

the right-hand side being $\mathcal{F}|_H$.

Recall that the first inclusion follows from Theorem 1.4.5. Hence, det $h_{\mathcal{H}}$ is singular at all $H \in |\mathcal{O}_{\mathbb{P}^N}(1)| \setminus \Sigma_3$ such that

$$H^{0}(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes I(\varphi|_{H \cap X}))$$

$$\neq H^{0}(H \cap X, \omega_{H \cap X} \otimes L|_{H \cap X} \otimes \operatorname{Res}_{H \cap X}(I(\varphi))).$$

Let Σ_4 be the union of Σ_3 and the set of all such H. Since the Hodge metric $h_{\mathcal{H}}$ is positive ([PT18, Theorem 3.3.5] and [HPS18, Theorem 21.1]), its determinant det $h_{\mathcal{H}}$ is also positive ([Rau15, Proposition 1.3] and [HPS18, Proposition 25.1]), it follows that Σ_4 is pluripolar. As a consequence, G_L is co-pluripolar.

Step 2

Fix an ample invertible sheaf S on X. The same result holds with $L\otimes S^{\otimes a}$ in place of L. Thus, the set

$$A \coloneqq \bigcap_{a=0}^{\infty} \mathcal{G}_{L \otimes S^{\otimes a}}$$

is co-pluripolar. For each $H \in W$ such that $X \cap H$ is smooth and $\mathcal{I}(\varphi|_{X \cap H}) \neq \operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi))$, let \mathcal{K} be the following cokernel:

$$0 \to \mathcal{I}(\varphi|_{X \cap H}) \to \operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi)) \to \mathcal{K} \to 0.$$

By Serre vanishing theorem, taking a large enough, we may guarantee that

$$H^1(X \cap H, \omega_{X \cap H} \otimes (L \otimes S^{\otimes a})|_{X \cap H} \otimes \mathcal{I}(\varphi|_{X \cap H})) = 0$$

and

$$H^0(X \cap H, \omega_{X \cap H} \otimes (L \otimes S^{\otimes a})|_{X \cap H} \otimes \mathcal{K}) \neq 0.$$

Then

$$H^{0}(X \cap H, \omega_{X \cap H} \otimes (L \otimes S^{\otimes a})|_{X \cap H} \otimes \mathcal{I}(\varphi|_{X \cap H})) \neq$$

$$H^{0}(X \cap H, \omega_{X \cap H} \otimes (L \otimes S^{\otimes a})|_{X \cap H} \otimes \operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi))).$$

Thus, $H \notin A$. We conclude that \mathcal{G} is co-pluripolar.

In the sequel of this section, we fix a base-point free linear system Λ on X.

cor:qpshgeneralres

Corollary 8.4.1 Let $\varphi \in \text{QPSH}(X)$. Then there is a co-pluripolar subset $\Lambda' \subseteq \Lambda$ such that $\varphi|_H \not\equiv -\infty$ for any $H \in \Lambda'$.

Proof This follows immediately from Theorem 8.4.1.

cor:ABTfortrace

Corollary 8.4.2 Assume that $n \ge 2$. Let $\varphi \in QPSH(X)$. Then there is a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ is connected and smooth, $v(\varphi, H) = 0$ and we have

$$\operatorname{Tr}_{H}(\varphi) \sim_{\mathcal{I}} \varphi|_{H}.$$

The assumption $n \ge 2$ is only to guarantee that a general element $H \in \Lambda$ is connected, since we developed most of our theories only in this case.

Proof First observe that the set $\{x \in X : \nu(\varphi, x) > 0\}$ is a countable union of proper analytic subsets by Theorem 1.4.1. It follows that a very general element in Λ is not contained in this set.

Fix an ample line bundle L so that there is a smooth psh metric h_L such that $c_1(L, h_L) + \mathrm{dd^c}\varphi$ is a Kähler current. Thanks to Theorem 8.4.1, we can find a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that each $H \in \Lambda'$ satisfies the following:

- (1) H is smooth;
- (2) $\nu(\varphi, H) = 0$;
- (3) $I(k\varphi|_H) = \operatorname{Res}_H(I(\varphi))$ for all k > 0.

It follows from Theorem 8.3.1 and Theorem 7.3.1 that

$$\int_{H} \left(c_{1}(L,h_{L})|_{H} + \mathrm{dd^{c}} \operatorname{Tr}_{Y}^{c_{1}(L,h_{L})}(\varphi) \right)^{n-1} = \int_{H} \left(c_{1}(L,h_{L})|_{H} + \mathrm{dd^{c}} \varphi|_{H} \right)^{n-1}.$$

Since $\varphi|_H \leq \text{Tr}_Y(\varphi)$ by Proposition 8.1.3, our assertion follows.

lma:posmasscurrres

Lemma 8.4.1 Assume that $n \ge 2$. Let T be a closed positive (1,1)-current on X with $\int_X T^n > 0$. Then there is a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ is connected and smooth, $T|_H$ is well-defined and satisfies

$$\int_H T|_H^{n-1} > 0.$$

Proof Write $T = \theta_{\varphi}$ for some smooth closed real (1, 1)-form θ on X and $\varphi \in PSH(X, \theta)_{>0}$. Thanks to Lemma 2.3.2, we can find $\psi \in PSH(X, \theta)$ such that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. By Corollary 8.4.1, we can find a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that each $H \in \Lambda'$ satisfies:

- (1) H is smooth and connected;
- (2) the restriction $\psi|_H$ is not identically $-\infty$.

Therefore, $\psi|_H \leq \varphi|_H$ are two potentials in $PSH(H, \theta|_H)$ for any $H \in \Lambda'$. Our assertion follows from Theorem 2.3.2.

cor:tracegeneralwelldef

Corollary 8.4.3 Assume that $n \ge 2$. Let T be a closed positive (1,1)-current on X with $\operatorname{vol} T > 0$. Then there is a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ is connected and smooth, and $\operatorname{Tr}_H^{[T]|_H}(T)$ is well-defined.

Proof This follows from Example 8.1.3, Corollary 8.4.2 and Lemma 8.4.1.

Proposition 8.4.1 Assume that $n \ge 2$. Let $\varphi, \psi \in QPSH(X)$. Assume that $\varphi \le_P \psi$. Then there is a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ is connected and smooth, and $\varphi|_H \le_P \psi|_H$.

Proof Thanks to Lemma 6.1.2, we may replace φ by $\varphi \lor \psi$ and assume that $\varphi \sim_P \psi$. It suffices to show that $\varphi|_H \sim \psi|_H$.

Take a smooth closed real (1,1)-form θ on X so that $\varphi, \psi \in PSH(X,\theta)_{>0}$. It suffices to compare φ and ψ with $P_{\theta}[\varphi]$, so without loss of generality, we may assume that ψ is a model potential in $PSH(X,\theta)_{>0}$. Up to adding a constant to φ , we may then assume that $\varphi \leq \psi$. It follows from Lemma 2.3.1 that we can find a sequence $(\eta_i)_i$ in $PSH(X,\theta)_{>0}$ such that

$$j^{-1}\eta_j + \left(1 - j^{-1}\right)\psi \le \varphi$$

for all $j \ge 2$. By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ satisfies:

- (1) H is smooth and connected;
- (2) $\eta_j|_H \in PSH(H, \theta|_H)_{>0}$ for all $j \ge 2$ and $\psi|_H \in PSH(H, \theta|_H)_{>0}$.

Therefore, taking Proposition 3.1.6 into account, we arrive at

$$j^{-1}P_{\theta|_H}[\eta_j|_H] + (1 - j^{-1})P_{\theta|_H}[\psi|_H] \le P_{\theta|_H}[\varphi|_H]$$

for all $j \ge 2$. Letting $j \to \infty$, we conclude that

$$P_{\theta|_H}[\psi|_H] \le P_{\theta|_H}[\varphi|_H]$$

and hence $\psi|_H \leq_P \varphi|_H$.

lma:Igoodrest

Lemma 8.4.2 Assume that $n \ge 2$. Let θ be a closed smooth (1,1)-form on X representing a big cohomology class and $(\varphi_i)_i$ be a decreasing sequence in $PSH(X,\theta)$.

Assume that $\varphi \in \text{PSH}(X, \theta)$ and $\varphi_j \xrightarrow{d_S} \varphi$. Then there is a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ is connected and smooth, $\varphi_j|_{H} \not\equiv -\infty$ for all $j \geq 1$, $\varphi|_{H} \not\equiv -\infty$, and

$$\varphi_j|_H \xrightarrow{d_S} \varphi|_H.$$

Proof By Corollary 6.2.7, we may assume that $\varphi \in PSH(X, \theta)_{>0}$. Using Lemma 2.3.1, we could find a decreasing sequence $(\epsilon_j)_j$ in (0, 1) with limit 0 and $\eta_j \in PSH(X, \theta)_{>0}$ such that $\eta_j \leq \varphi_j$ and

$$\epsilon_i \eta_i + (1 - \epsilon_i) \varphi_i \le \varphi.$$

By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ satisfies:

- (1) *H* is smooth and connected;
- (2) $\eta_i|_H \in PSH(H,\theta|_H)_{>0}$ for all $j \ge 1$ and $\varphi|_H \in PSH(H,\theta|_H)_{>0}$.

Therefore, taking Proposition 3.1.6 into account, we arrive at

$$\epsilon_i P_{\theta|_H}[\eta_i|_H] + (1 - \epsilon_i) P_{\theta|_H}[\varphi_i|_H] \le P_{\theta|_H}[\varphi|_H].$$

Letting $j \to \infty$, we get

$$\lim_{j \to \infty} P_{\theta|H}[\varphi_j|_H] \le P_{\theta|H}[\varphi|_H].$$

By Theorem 2.3.2 and Proposition 3.1.9, we conclude that

$$\lim_{j\to\infty} \int_H (\theta|_H + \mathrm{dd^c}\varphi_j|_H)^{n-1} = \int_H (\theta|_H + \mathrm{dd^c}\varphi|_H)^{n-1}.$$

Therefore, using Corollary 6.2.4, we conclude that $\varphi_j|_H \xrightarrow{d_S} \varphi|_H$.

Corollary 8.4.4 Assume that $n \ge 2$. Let $\varphi \in QPSH(X)$ be an I-good potential. Then there is a co-pluripolar set $\Lambda' \subseteq \Lambda$ such that any $H \in \Lambda'$ satisfies:

- (1) H is connected and smooth;
- (2) $\varphi|_H \in PSH(X, \theta|_H)$ is I-good;
- (3) $v(\varphi, H) = 0$;
- (4) $\operatorname{Tr}_H \varphi \sim_P \varphi|_H$.

Furthermore, if θ is a closed smooth real (1,1)-form on X such that $\varphi \in PSH(X,\theta)_{>0}$, then we could further guarantee that $Tr_H(\varphi)$ has a representative $Tr_H(\varphi) \in PSH(H,\theta|_H)_{>0}$ for all $H \in \Lambda'$.

Proof This is a consequence of Lemma 8.4.2, Theorem 7.1.1, Corollary 8.4.2 and Corollary 8.4.3. $\ \Box$

Chapter 9

Test curves

chap:testcurve

In this chapter, we develop the theory of test curves. Roughly speaking, a test curve is a concave curve of model potentials. In Section 9.2, we will prove the Ross–Witt Nyström correspondence, through which the test curves are related to geodesic rays in the space of quasi-plurisubharmonic functions. In Section 9.4, we define operations on test curves, anticipating applications in non-Archimedean pluripotential theory in Chapter 13.

9.1 The notion of test curves

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real (1, 1)-form on X representing a big cohomology class.

def:testcur

Definition 9.1.1 A *test curve* Γ in PSH(X, θ) consists of a real number Γ_{max} together with a map $(-\infty, \Gamma_{\text{max}}) \to \text{PSH}(X, \theta)$ denoted by $\tau \mapsto \Gamma_{\tau}$ satisfying the following conditions:

- (1) The map $\tau \mapsto \Gamma_{\tau}$ is concave and decreasing;
- (2) each Γ_{τ} is a model potential;
- (3) the potential

$$\Gamma_{-\infty} \coloneqq \sup_{\tau < \Gamma_{\max}} \Gamma_{\tau}$$
 (9.1) {eq:Gammaminf}

satisfies

$$\int_X \left(\theta + \mathrm{dd^c} \Gamma_{-\infty}\right)^n > 0.$$

Let $\phi \in \text{PSH}(X, \theta)_{>0}$ be a model potential. The set of test curves Γ with $\Gamma_{-\infty} = \phi$ is denoted by $\text{TC}(X, \theta; \phi)$.

The union of all $TC(X, \theta; \phi)$'s for various model potentials $\phi \in PSH(X, \theta)_{>0}$ is denoted by $TC(X, \theta)_{>0}$.

By (2), $\sup_X \Gamma_{\tau} = 0$ for each $\tau < \Gamma_{\max}$. So $\Gamma_{-\infty} \in PSH(X, \theta)$ by Proposition 1.2.1. Moreover, $\Gamma_{-\infty}$ is a model potential by Proposition 3.1.10.

rmk:extendtestcur

Remark 9.1.1 Sometimes it is convenient to extend Γ_{τ} to $\tau \geq \Gamma_{\text{max}}$ as well. This can be done as follows: for $\tau > \Gamma_{\text{max}}$, we set $\Gamma_{\tau} \equiv -\infty$. For $\tau = \Gamma_{\text{max}}$, we set

$$\Gamma_{\tau} \coloneqq \inf_{\tau' < \Gamma_{\max}} \Gamma_{\tau'} \in \mathrm{PSH}(X, \theta).$$

We will always make this extension in the sequel.

Recall that according to our general principle, we only talk about model potentials when a potential has positive mass. Fortunately, this principle is not violated in the above definition, as shown below:

lma:testcurvposmass

Lemma 9.1.1 Assume that $\Gamma \in TC(X, \theta)_{>0}$. Then for each $\tau < \Gamma_{max}$, we have

$$\int_{Y} (\theta + dd^{c}\Gamma_{\tau})^{n} > 0. \tag{9.2}$$
 {eq:dalethtauposmass}

Proof Fix $\tau \in (-\infty, \Gamma_{\text{max}})$.

By assumption, $\Gamma_{-\infty}$ has positive mass. By Corollary 2.3.1, we have

$$\int_X \theta_{\Gamma_{-\infty}}^n = \lim_{\tau \to -\infty} \int_X \theta_{\Gamma_{\tau}}^n.$$

In particular, for a sufficiently small $\tau_0 < \tau$, we have

$$\int_X \theta_{\Gamma_{\tau_0}}^n > 0.$$

Now take $\tau' \in (\tau, \Gamma_{\text{max}})$ and $t \in (0, 1)$ so that

$$\tau = (1 - t)\tau' + t\tau_0.$$

From the concavity of Γ , we find that

$$\Gamma_{\tau} \geq (1-t)\Gamma_{\tau'} + t\Gamma_{\tau_0}$$

By Theorem 2.3.2,

$$\int_X \theta_{\Gamma_\tau}^n \ge \int_X \theta_{(1-t)\Gamma_{\tau'}+t\Gamma_{\tau_0}}^n \ge t^n \int_X \theta_{\Gamma_{\tau_0}}^n > 0$$

and (9.2) follows.

prop:testcurvmasslogconc

Proposition 9.1.1 *Let* $\Gamma \in TC(X, \theta)_{>0}$. *Then the map*

$$[-\infty, \Gamma_{\max}) \to \mathbb{R}, \quad \tau \mapsto \log \int_X \theta_{\Gamma_{\tau}}^n$$

is concave and continuous.

Proof The concavity of this function follows from Theorem 2.3.3 and Theorem 2.3.2. The continuity at $-\infty$ is a consequence of Corollary 2.3.1.

def:relattestcur

Definition 9.1.2 Let $\phi \in PSH(X, \theta)_{>0}$ be a model potential.

A test curve $\Gamma \in TC(X, \theta; \phi)$ is said to be *bounded* if for τ small enough, $\Gamma_{\tau} = \phi$. The subset of bounded test curves is denoted by $TC^{\infty}(X, \theta; \phi)$. In this case, we write

$$\Gamma_{\min} := \{ \tau \in \mathbb{R} : \Gamma_{\tau} = \phi \}.$$

A test curve $\Gamma \in TC(X, \theta; \phi)$ is said to have *finite energy* if

$$\mathbf{E}^{\phi}(\Gamma) := \Gamma_{\max} \int_{X} \theta_{\phi}^{n} + \int_{-\infty}^{\Gamma_{\max}} \left(\int_{X} \theta_{\Gamma_{\tau}}^{n} - \int_{X} \theta_{\phi}^{n} \right) d\tau > -\infty. \tag{9.3}$$

The subset of test curves with finite energy is denoted by $TC^1(X, \theta; \phi)$.

We first observe that the notion of test curves does not really depend on the choice of θ within its cohomology class.

prop:testcurveindeptheta

Proposition 9.1.2 Let θ' be another smooth closed real (1,1)-form on X representing the same cohomology class as θ . Let $\phi \in PSH(X,\theta)_{>0}$ be a model potential. Let $\phi' \in PSH(X,\theta')_{>0}$ be the unique model potential satisfying $\phi \sim \phi'$.

Then there is a canonical bijection

$$TC(X, \theta; \phi) \xrightarrow{\sim} TC(X, \theta'; \phi').$$

This bijection induces the following bijections:

$$\operatorname{TC}^1(X,\theta;\phi) \xrightarrow{\sim} \operatorname{TC}^1(X,\theta';\phi'), \quad \operatorname{TC}^\infty(X,\theta;\phi) \xrightarrow{\sim} \operatorname{TC}^\infty(X,\theta';\phi').$$

These bijections satisfy the obvious cocycle conditions.

Proof Choose $g \in C^{\infty}(X)$ such that $\theta' = \theta + \mathrm{dd}^{\mathrm{c}} g$. Given any $\Gamma \in \mathrm{TC}(X, \theta; \phi)$, we observe that $\Gamma' : (-\infty, \Gamma_{\mathrm{max}}) \to \mathrm{PSH}(X, \theta')$ defined as

$$\tau \mapsto P_{\theta'}[\Gamma_{\tau} - g]$$

lies in $TC(X, \theta'; \phi')$. Moreover, the choice of g is irrelevant since for any other choice of g, say g', we have

$$\Gamma_{\tau} - g \sim \Gamma_{\tau} - g'$$
.

All assertions follow directly from the definition.

prop:ETCbimero

Proposition 9.1.3 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a compact Kähler manifold. Then the pointwise pull-back induces a bijection

$$\pi^* : \mathrm{TC}(X, \theta; \phi) \xrightarrow{\sim} \mathrm{TC}(Y, \pi^* \theta; \pi^* \phi).$$

Proof This follows immediately from Proposition 3.1.5.

prop:Gammaclosed

Proposition 9.1.4 *Let* Γ *be a test curve in* $PSH(X, \theta)$. *For each* $x \in X$, *the map* $\mathbb{R} \ni \tau \mapsto \Gamma_{\tau}(x)$ *is a closed concave function. Moreover, the map is proper as long as* $\Gamma_{\Gamma_{max}}(x) \neq -\infty$.

The notion of closedness is recalled in Definition A.1.7.

Proof We argue the closedness. Fix $x \in X$. Assume that $\Gamma_{\tau}(x) \neq -\infty$ for some $\tau \in \mathbb{R}$. We only need to argue the upper-semicontinuity of $\tau \mapsto \Gamma_{\tau}(x)$. The upper semi-continuity is clear at $\tau \geq \Gamma_{\text{max}}$, so we are reduced to prove the following:

$$\Gamma_{\tau} = \inf_{\tau' < \tau} \Gamma_{\tau'} \tag{9.4}$$

{eq:Gammatautemp1}

for any $\tau < \Gamma_{max}$. Take $\tau'' \in (\tau, \Gamma_{max})$. Outside the polar locus of $\Gamma_{\tau''}$, we know that (9.4) holds by continuity. So (9.4) holds everywhere by Proposition 1.2.6.

The final assertion is trivial.

def:Ptestcurve

Definition 9.1.3 Let $\Gamma \in TC(X, \theta)_{>0}$ and ω be a smooth closed real positive (1, 1)-form. Then we define $P_{\theta+\omega}[\Gamma] \in TC(X, \theta+\omega)_{>0}$ as follows:

(1) Define

$$P_{\theta+\omega}[\Gamma]_{\max} = \Gamma_{\max};$$

(2) for each $\tau < \Gamma_{max}$, define

$$P_{\theta+\omega}[\Gamma]_{\tau} = P_{\theta+\omega}[\Gamma_{\tau}].$$

It follows form Proposition 3.1.6 that $P_{\theta+\omega}[\Gamma] \in TC(X, \theta+\omega)_{>0}$.

9.2 Ross-Witt Nyström correspondence

sec:RWN

Let *X* be a connected compact Kähler manifold of dimension *n* and θ be a smooth closed real (1,1)-form on *X* representing a big cohomology class. Fix a model potential $\phi \in \text{PSH}(X,\theta)_{>0}$.

Proposition 9.1.4 allows us to talk about the Legendre transforms in the expected way.

The general definition of the Legendre transform Definition A.2.1 can be translated as follows:

def:Leatrans

Definition 9.2.1 Let $\Gamma \in TC(X, \theta; \phi)$. We define its *Legendre transform* as $\Gamma^* \colon [0, \infty) \to PSH(X, \theta)$ given by

$$\Gamma_t^* = \sup_{\tau \in \mathbb{R}} (t\tau + \Gamma_\tau). \tag{9.5}$$

{eq:testcurveLegtran}

rmk:negativeray

Remark 9.2.1 Here we do not talk about the case t < 0 because its behaviour is pretty trivial: take $x \in X$, if $\Gamma_{\tau}(x) = -\infty$ for all τ , then $\Gamma_{t}^{*} = -\infty$; otherwise, $\Gamma_{t}^{*} = \infty$.

As we will see later on, the information about $t \ge 0$ suffices to characterize Γ . We have made a non-trivial claim that $\Gamma_t^* \in \mathrm{PSH}(X,\theta)$ for all $t \ge 0$. Let us prove this.

lma:testcurvelegusc

Lemma 9.2.1 Let $\Gamma \in TC(X, \theta; \phi)$. Then $\Gamma_t^* \in PSH(X, \theta)$ for all $t \ge 0$. In fact, Γ is upper semicontinuous as a function of $X \times (0, \infty)$.

Proof We first observe that for each $x \in X$, we have

$$\Gamma_t^*(x) \le t\Gamma_{\max} < \infty.$$

Let $R = \{a + ib \in \mathbb{C} : a > 0\}$. We consider

$$F: X \times R \to [-\infty, \infty), \quad (x, a + ib) \mapsto \Gamma_a^*(x).$$

Let $\pi: X \times R \to X$ be the natural projection. Observe that the upper semicontinuous envelope G of F is $\pi^*\theta$ -psh by Proposition 1.2.1. It suffices to show that F = G. We let

$$E := \{(x, z) \in X \times R : F(x, z) < G(x, z)\}.$$

We want to argue that $E = \emptyset$. Clearly, E can be written as $B \times i\mathbb{R}$ for some set $B \subseteq X \times (0, \infty)$. Since E is a pluripolar set by Proposition 1.2.5, it has zero Lebesgue measure. Hence, B has zero Lebesgue measure. For each $x \in X$, write

$$B_x = \{t \in (0, \infty) : (t, x) \in B\}$$
.

By Fubini theorem, B_x has zero 1-dimensional Lebesgue measure for all $x \in X \setminus Z$, where $Z \subseteq X$ is a subset of measure 0. We may assume that $Z \supseteq \{\Gamma_{-\infty} = 0\}$ so that for $x \in X \setminus Z$, $\Gamma_t(x) \neq -\infty$ for all t > 0.

For any $x \in X \setminus Z$, both $t \mapsto F(x,t)$ and G(x,t) are convex functions with values in \mathbb{R} on $(0,\infty)$. They agree almost everywhere, hence everywhere by their continuity. It follows that for $x \in X \setminus Z$, we have $B_x = 0$.

By Theorem A.2.1, for any $x \in X$, we have

$$\Gamma_{\tau}(x) = \inf_{t>0} (F(t,x) - t\tau), \quad \tau < \Gamma_{\max}.$$

On the other hand, let

$$\chi_{\tau}(x) = \inf_{t>0} (G(t,x) - t\tau), \quad \tau < \Gamma_{\max}, x \in X.$$

By Kiselman's principle Proposition 1.2.8, $\chi_{\tau} \in PSH(X, \theta)$. But on $X \setminus Z$, we already know that $\Gamma_{\tau} = \chi_{\tau}$ for all $\tau < \Gamma_{max}$. By Proposition 1.2.6, they are equal everywhere. By Theorem A.2.1 again, we find that F = G.

lma:suplegenlinear

Lemma 9.2.2 *Let* $\Gamma \in TC(X, \theta; \phi)$, *then*

$$\sup_{X} \Gamma_t^* = t \Gamma_{\max}$$

for all $t \geq 0$.

In particular, $t \mapsto \Gamma_t^* - t\Gamma_{\max}$ is a decreasing function in $t \ge 0$.

Proof Choose $x \in X$ such that $\Gamma_{\Gamma_{\max}}(x) = 0$. Then

$$\Gamma_t^*(x) = t\Gamma_{\max}$$

by definition. On the other hand, since $\Gamma_{\tau} \leq 0$ for all $\tau < \Gamma_{\text{max}}$, we have

$$\sup_{X} \Gamma_t^* \le t \Gamma_{\max}.$$

lma:LegsendsTCtoR

Lemma 9.2.3 Given $\Gamma \in TC(X, \theta; \phi)$, we have $\Gamma^* \in \mathcal{R}(X, \theta; \phi)$.

Proof It follows from Lemma 9.2.1, (9.5) and Proposition 1.2.1 that Γ^* is a subgeodesic (in the sense that for each $0 \le a \le b$, the restriction $(\Gamma_t^*)_{t \in (a,b)}$ is a subgeodesic from Γ_a^* to Γ_b^*).

First observe that as $t \to 0+$, we have

$$\Gamma_t^* \xrightarrow{L^1} \phi$$
. (9.6) {eq:GammatophiL1temp}

To see this, first observe that by (9.5), for any fixed t > 0 and any $x \in X$ with $\phi(x) \neq -\infty$, we have

$$\Gamma_t^*(x) \le t\Gamma_{\max} + \phi(x).$$

By Proposition 1.2.6, the same holds everywhere. Therefore, any L^1 -cluster point ψ of Γ_t^* as $t \to 0$ satisfies $\psi \le \phi$. On the other hand, for any fixed $\tau < \Gamma_{\text{max}}$, by (9.5), we have

$$\Gamma_t^* \geq \Gamma_\tau + t\tau$$

for any t > 0. So $\psi \ge \Gamma_{\tau}$ almost everywhere and hence everywhere by Proposition 1.2.6. It follows that $\psi \ge \phi$. Therefore, $\psi = \phi$. On the other hand, from the above estimates and Proposition 1.5.1 that $(\Gamma_t^*)_{t \in (0,1)}$ is a relative compact subset in PSH (X, θ) with respect to the L^1 -topology. We therefore conclude (9.6).

Assume that Γ^* is not a geodesic ray. Then we can find $0 \le a < b$ such that $(\Gamma_t^*)_{t \in (a,b)}$ differs from the geodesic $(\eta_t)_{t \in (a,b)}$ from Γ_a^* to Γ_b^* . We consider the subgeodesic $(\ell_t)_{t>0}$ given by $\ell_t = \eta_t$ for $t \in (a,b)$ and $\ell_t = \Gamma_t^*$ otherwise. Consider the Legendre transform

$$\Gamma'_{\tau} = \inf_{t>0} (\ell_t - t\tau), \quad \tau \in \mathbb{R}.$$

Then $\Gamma'_{\tau} \geq \Gamma_{\tau}$ and $\Gamma'_{\tau} \in PSH(X, \theta) \cup \{-\infty\}$ by Proposition 1.2.8 for all $\tau \in \mathbb{R}$. We claim that

$$\Gamma'_{\tau} \leq \Gamma_{\tau} + (b - a)(\Gamma_{\max} - \tau), \quad \tau \in \mathbb{R}.$$

Observe that $\Gamma'_{\tau} \equiv -\infty$ when $\tau > \Gamma_{\text{max}}$ by Lemma 9.2.2. So it suffices to consider $\tau \leq \Gamma_{\text{max}}$. In this case, we compute

$$\inf_{t \in [a,b]} (\ell_t - t\tau) \le \Gamma_b^* - b\tau \le (b-a)(\Gamma_{\max} - \tau) \inf_{t \in [a,b]} (\Gamma_t^* - t\tau),$$

where we applied Lemma 9.2.2. In particular, for any $\tau < \Gamma_{\text{max}}$, we have

$$\Gamma'_{\tau} \leq \Gamma_{\tau}$$
.

On the other hand, by definition of Γ'_{τ} , we clearly have $\Gamma'_{\tau} \leq 0$ for all $\tau < \Gamma_{\text{max}}$. It follows from the fact that Γ_{τ} is a model potential that $\Gamma_{\tau} = \Gamma'_{\tau}$ for all $\tau < \Gamma_{\text{max}}$. Therefore, by Theorem A.2.1, we have $\Gamma^*_{t} = \ell'_{t}$ for all t > 0, which is a contradiction.

thm:Legenbij

Theorem 9.2.1 The Legendre transform in Definition 9.2.1 is a bijection

$$TC(X, \theta; \phi) \xrightarrow{\sim} \mathcal{R}(X, \theta; \phi).$$

Moreover, this bijection restricts to the following bijections:

$$\operatorname{TC}^{1}(X,\theta;\phi) \xrightarrow{\sim} \mathcal{R}^{1}(X,\theta;\phi), \quad \operatorname{TC}^{\infty}(X,\theta;\phi) \xrightarrow{\sim} \mathcal{R}^{\infty}(X,\theta;\phi).$$

For any $\Gamma \in TC^1(X, \theta; \phi)$, we have

$$\mathbf{E}^{\phi}(\Gamma) = \mathbf{E}^{\phi}(\Gamma^*). \tag{9.7}$$

Proof It follows from Lemma 9.2.3 that the forward map is well-defined.

The inverse map is of course also given by the Legendre transform: given $\ell \in \mathcal{R}(X, \theta; \phi)$, its Legendre transform is given by

$$\ell_{\tau}^* := \inf_{t>0} (\ell_t - t\tau), \quad \tau \in \mathbb{R}. \tag{9.8}$$

By Proposition 4.2.4, there is a constant C > 0 such that $\ell_t \le Ct$.

Note that it follows from Proposition 1.2.8 that $\ell_{\tau}^* \in \text{PSH}(X, \theta) \cup \{-\infty\}$ for all $\tau \in \mathbb{R}$.

We need to argue for any $\tau \in \mathbb{R}$ such that $\ell_{\tau}^* \neq -\infty$, we have $P_{\theta}[\ell_{\tau}^*] = \ell_{\tau}^*$. Fix such τ and some C > 0. It suffices to show that

$$(\ell_{\tau}^* + C) \land \phi \le \ell_{\tau}^*. \tag{9.9}$$
 {eq:ellstarleqetemp1}

For this purpose, let us consider the following geodesics: for any M > 0 and $t \in [0, 1]$, let

$$\ell_t^{1,M} = \ell_{tM} - tM\tau, \quad \ell_t^{2,M} = (\ell_\tau^* + C) \wedge \phi - Ct.$$

It is clear that at t = 0, 1, we have $\ell_t^{2,M} \le \ell_t^{1,M}$. Hence, the same holds for all $t \in [0, 1]$. In particular, for any fixed $s \in [0, 1]$, we have

$$(\ell_{\tau}^* + C) \wedge \phi - Cs \leq \ell_{sM} - sM.$$

Take infimum with respect to $M \ge 1$ and then the supremum with respect to s, we conclude (9.9).

The two operations are inverse to each other thanks to Theorem A.2.1.

Next we consider the bounded situation. Suppose that $\Gamma \in TC^{\infty}(X, \theta; \phi)$. Take $\tau_0 \in \mathbb{R}$ so that $\Gamma_{\tau} = \phi$ for all $\tau \leq \tau_0$. It follows from that

$$\Gamma_t^* \geq \phi + t\tau_0$$

for all t > 0. Therefore, $\Gamma_t^* \sim \phi$ for all t > 0 and hence $\Gamma^* \in \mathcal{R}^{\infty}(X, \theta; \phi)$.

Conversely, suppose that $\ell \in \mathcal{R}^{\infty}(X, \theta; \phi)$. Thanks to Proposition 4.2.3, there is a constant C > 0 such that

$$\ell_t \geq \phi - Ct$$
.

Therefore, according to (9.8), we have

$$\ell_{\tau}^* \ge \inf_{t>0} \phi - (C+\tau)t = \phi$$

if $\tau \leq -C$. Therefore, $\ell_{\tau}^* = \phi$ for all $\tau \leq -C$.

Finally, it remains to handle (9.7). Take $\Gamma \in TC^{\infty}(X, \theta; \phi)$. We may assume that $\Gamma_{\max} = 0$ after a translation.

For $N \in \mathbb{Z}_{>0}$, $M \in \mathbb{Z}$, we introduce the following:

$$\Gamma_t^{*,N,M} := \max_{\substack{k \in \mathbb{Z} \\ k \le M}} \left(\Gamma_{k/2^N} + tk/2^N \right) \in \mathcal{E}^{\infty}(X,\theta;\phi), \quad t > 0.$$

Moreover, we now argue that

$$\frac{t}{2^N}\int_X\theta^n_{\Gamma_{(M+1)/2^N}}\leq E^\phi_\theta(\Gamma^{*,N,M+1}_t)-E^\phi_\theta(\Gamma^{*,N,M}_t)\leq \frac{t}{2^N}\int_X\theta^n_{\Gamma_{M/2^N}}. \tag{9.10}$$

Indeed, for elementary reasons:

$$\int_{X} \left(\Gamma_{t}^{*,N,M+1} - \Gamma_{t}^{*,N,M} \right) \theta_{\Gamma_{t}^{*,N,M+1}}^{n} \leq E_{\theta}^{\phi} \left(\Gamma_{t}^{*,N,M+1} \right) - E_{\theta}^{\phi} \left(\Gamma_{t}^{*,N,M} \right) \\
\leq \int_{X} \left(\Gamma_{t}^{*,N,M+1} - \Gamma_{t}^{*,N,M} \right) \theta_{\Gamma_{t}^{*,N,M}}^{n}. \tag{9.11}$$

Clearly $\Gamma_t^{*,N,M+1} \ge \Gamma_t^{*,N,M}$, and using τ -concavity, we notice that

$$U_t := \left\{ \Gamma_t^{*,N,M+1} - \Gamma_t^{*,N,M} > 0 \right\} = \left\{ \Gamma_{(M+1)/2^N} + 2^{-N}t - \Gamma_{M/2^N} > 0 \right\}.$$

Moreover, on U_t we have

$$\Gamma_t^{*,N,M+1} = \Gamma_{(M+1)/2^N} + t(M+1)/2^N, \quad \Gamma_t^{*,N,M} = \Gamma_{M/2^N} + tM/2^N.$$

We also note that U_t is an open set in the plurifine topology, implying that

$$\begin{split} \theta^n_{\Gamma_{(M+1)/2^N}}\Big|_{U_t} &= \theta^n_{\Gamma_t^{*,N,M+1}}\Big|_{U_t}, \\ \theta^n_{\Gamma_{M/2^N}}\Big|_{U_t} &= \theta^n_{\Gamma_t^{*,N,M}}\Big|_{U_t}. \end{split}$$

Recall that $\theta_{\Gamma_{M/2}N}^n$ and $\theta_{\Gamma_{(M+1)/2}N}^n$ are supported on the sets $\{\Gamma_{M/2}N=0\}$ and $\{\Gamma_{(M+1)/2}N=0\}$ respectively, see Theorem 3.1.2. Since $\{\Gamma_{(M+1)/2}N=0\}\subseteq U_t$ and $\{\Gamma_{(M+1)/2}N=0\}\subseteq \{\Gamma_{M/2}N=0\}$, applying the above to (9.11), we arrive at (9.10). Fixing N, let $M=\lfloor 2^N\Gamma_{\min}\rfloor$. Then repeated application of (9.10) yields

$$\sum_{M+1 \le j \le 0} \frac{t}{2^N} \int_X \theta^n_{\Gamma_{j/2^N}} \le E^\phi_\theta(\Gamma^{*,N,0}_t) - E^\phi_\theta(E^{*,N,M}_t) \le \sum_{M \le j \le -1} \frac{t}{2^N} \int_X \theta^n_{\Gamma_{j/2^N}} \; .$$

Since $M \leq 2^N \Gamma_{\min}$, we have that

$$\Gamma_t^{*,N,M} = \Gamma_{M/2^N} + tM/2^N = \phi + tM/2^N,$$

we can continue to write

$$\sum_{j=M+1}^0 \frac{t}{2^N} \left(\int_X \theta^n_{\Gamma_{j/2^N}} - \int_X \theta^n_\phi \right) \leq E^\theta_\phi(\Gamma^{*,N,0}_t) \leq \sum_{j=M}^{-1} \frac{t}{2^N} \left(\int_X \theta^n_{\Gamma_{j/2^N}} - \int_X \theta^n_\phi \right).$$

We now notice that we have Riemann sums on both the left and right of the above inequality. Using Proposition 9.1.1, it is possible to let $N \to \infty$ and obtain

$$E^{\theta}_{\phi}(\Gamma_t^*) = t\mathbf{E}^{\phi}(\Gamma)$$

So (9.7) follows as desired. Note that we have furthermore shown that $t \mapsto E_{\phi}^{\theta}(\Gamma_t^*)$ is linear.

Finally, let us come back to the general case. Let $\Gamma \in TC(X, \theta; \phi)$. Again, we may assume that $\Gamma_{max} = 0$. For each $\epsilon > 0$, we introduce $\Gamma^{\epsilon} \in TC^{\infty}(X, \theta; \phi)$ as follows:

- (1) Let $\Gamma_{\max}^{\epsilon} = 0$, and
- (2) for each τ < 0, we set

$$\Gamma_{\tau}^{\epsilon} = P_{\theta} \left[(1 + \epsilon \tau) \vee 0 \right) \Gamma_{\tau} + (1 - (1 + \epsilon \tau) \vee 0)) \phi \right].$$

It follows from Corollary 3.1.2 that for each $\tau < 0$, the sequence Γ_{τ}^{ϵ} is a decreasing sequence with limit Γ_{τ} as $\epsilon \searrow 0$. Therefore, by Proposition 3.1.9, we have

$$\lim_{\epsilon \to 0+} \int_X \left(\theta + \mathrm{dd^c} \Gamma_\tau^\epsilon \right)^n = \int_X \left(\theta + \mathrm{dd^c} \Gamma_\tau \right)^n$$

for all τ < 0. Hence, by the monotone convergence theorem, we find

$$\mathbf{E}^{\phi}(\Gamma) = \lim_{\epsilon \to 0+} \mathbf{E}^{\phi}(\Gamma^{\epsilon}) = \lim_{\epsilon \to 0+} \mathbf{E}^{\phi}(\Gamma^{\epsilon,*}). \tag{9.12}$$

Furthermore, according to Proposition A.2.2, we have

$$\Gamma_t^* = \inf_{\epsilon > 0} \Gamma_t^{\epsilon,*}$$

for all t > 0.

Now suppose that $\Gamma \in TC^1(X, \theta; \phi)$. Then it follows from Theorem 4.2.1 that for each t > 0,

$$E^{\phi}_{\theta}(\Gamma^*_t) = \lim_{\epsilon \to 0+} E^{\phi}_{\theta}(\Gamma^{\epsilon,*}_t) = t\mathbf{E}^{\phi}(\Gamma).$$

Hence, $\Gamma^* \in \mathcal{E}^1(X, \theta; \phi)$.

Conversely, suppose that $\Gamma^* \in \mathcal{E}^1(X, \theta; \phi)$. Then (9.12) implies that $\Gamma \in TC^1(X, \theta; \phi)$.

As an immediate consequence of the proof, we have

Corollary 9.2.1 Let $\ell \in \mathcal{R}^1(X, \theta; \phi)$, then $[0, \infty) \ni t \mapsto E^{\phi}_{\theta}(\ell_t)$ is linear.

cor:reltestcursuplinear

Corollary 9.2.2 *Let* $\ell \in \mathcal{R}(X, \theta; \phi)$. *Then* $\sup_X \ell_t = \ell_{\max}^* t$.

Proof This follows from Lemma 9.2.2 and Theorem 9.2.1.

prop:mis_RWN

Proposition 9.2.1 *Let* $\ell \in \mathcal{R}(X, \theta; \phi)$. *Given any* $\tau < \ell_{\max}^*$ *and* $x \in X$, *we have*

$$I(\ell_{\tau}^*)_x = \left\{ f \in O_{X,x} : |f|^2 \int_0^\infty \exp(-\ell_t + t\tau) \, \mathrm{d}t \text{ is locally integrable near } x \right\}. \tag{9.13}$$

Proof Fix $x \in X$, $\tau < \ell_{\max}^*$ and $f \in O_{X,x}$. Fix a Kähler form ω on X.

Step 1. We first assume that f lies in the right-hand side of (9.13). Given any $y \in X$, it follows from (9.8) that there is $t_0 > 0$ with

$$\ell_{\tau}^{*}(y) + 1 \ge \ell_{t_0}(y) - t_0 \tau.$$

Observe that $t \mapsto \ell_t - t\ell_{\max}^*$ is decreasing in t, it follows that for $t \in [t_0, t_0 + 1]$, we have

$$\ell_{\tau}^*(y) + 1 - t_0(\ell_{\max}^* - \tau) \ge \ell_{t_0}(y) - t_0\ell_{\max}^* \ge \ell_t(y) - t\ell_{\max}^*.$$

Since $\tau < \ell_{\text{max}}^*$, we deduce that

$$\ell_{\tau}^{*}(y) + 1 + \ell_{\max}^{*} - \tau \ge \ell_{t}(y) - t\tau, \quad t \in [t_{0}, t_{0} + 1]. \tag{9.14}$$

Take a sufficiently small open neighbourhood U of x such that

$$\int_{U} |f|^{2} \int_{0}^{\infty} \exp(-\ell_{t} + t\tau) dt \, \omega^{n} < \infty.$$

Applying (9.14), we deduce that

$$\int_{U} |f|^2 \exp(-\ell_{\tau}^*) \, \omega^n < \infty.$$

Therefore, $f \in I(\ell_{\tau}^*)_x$.

Step 2. Assume that $f \in \mathcal{I}(\ell_{\tau}^*)_x$.

It follows from Theorem 1.4.4 that $f \in I(\ell_{\tau+\epsilon}^*)_x$ for some small enough $\epsilon > 0$ with $\tau + \epsilon < \ell_{\max}^*$. Take a sufficiently small open neighbourhood U of x such that

$$\int_{U} |f|^2 \exp(-\ell_{\tau+\epsilon}^*) < \infty.$$

We compute

$$\int_{U} |f|^{2} \int_{0}^{\infty} \exp(-\ell_{t} + t\tau) dt \, \omega^{n} \leq \int_{U} |f|^{2} \int_{0}^{\infty} \exp(-\ell_{\tau+\epsilon}^{*} - t\epsilon) dt \, \omega^{n}$$

$$= \frac{1}{\epsilon} \int_{U} |f|^{2} \exp(-\ell_{\tau+\epsilon}^{*}) \, \omega^{n}$$

$$< \infty$$

Therefore, f lies in the right-hand side of (9.13).

9.3 *I*-model test curves

sec:Imodeltc

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real (1,1)-form on X representing a big cohomology class. Fix a model potential $\phi \in \text{PSH}(X,\theta)_{>0}$.

Definition 9.3.1 A test curve $\Gamma \in TC(X, \theta; \phi)$ is I-model if for any $\tau < \Gamma_{\max}$, the potential Γ_{τ} is I-model.

The subset of I-model test curves in $TC(X, \theta; \phi)$ is denoted by $PSH^{NA}(X, \theta; \phi)$. The set of I-model test curves in $PSH(X, \theta)$ for any model potential $\phi \in PSH(X, \theta)_{>0}$ is denoted by $PSH^{NA}(X, \theta)_{>0}$.

prop:GammaminfImodel

Proposition 9.3.1 *Let* $\Gamma \in PSH^{NA}(X, \theta)_{>0}$. Then $\Gamma_{-\infty}$ is an I-model potential.

Proof This follows from Proposition 3.2.12.

p:Imodeltestcurveindeptheta

Proposition 9.3.2 Let θ' be another smooth closed real (1,1)-form on X representing the same cohomology class as θ . Then there is a canonical bijection

$$PSH^{NA}(X, \theta) > 0 \xrightarrow{\sim} PSH^{NA}(X, \theta') > 0.$$

This bijection satisfies the obvious cocycle condition.

Proof This is an immediate consequence of Proposition 9.1.2 and Example 7.1.2.□

prop:ETCIbimero

Proposition 9.3.3 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a compact Kähler manifold. Then the pointwise pull-back induces a bijection

$$\pi^* : PSH^{NA}(X, \theta; \phi) \xrightarrow{\sim} PSH^{NA}(Y, \pi^*\theta; \pi^*\phi).$$

Proof This is an immediate consequence of Proposition 9.1.3 and Proposition 3.2.5.□

def:TCIenvelope

Definition 9.3.2 Given $\Gamma \in TC(X, \theta; \phi)$, we define its I-envelope $P_{\theta}[\Gamma]_{I}$ as the map $(-\infty, \Gamma_{\text{max}}) \to PSH(X, \theta)$ given by

$$\tau \mapsto P_{\theta} [\Gamma_{\tau}]_{\tau}$$
.

prop:transitionPI

Proposition 9.3.4 *Let* $\Gamma \in TC(X, \theta; \phi)$ *, then*

$$P_{\theta}[\Gamma]_{I} \in PSH^{NA}(X, \theta; P_{\theta}[\phi]_{I}).$$

More generally, for any closed real smooth positive (1,1)-form ω on X, we have

$$P_{\theta+\omega}[\Gamma]_I \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta+\omega; P_{\theta+\omega}[\phi]_I).$$

Proof The only non-trivial point is to show that

$$\sup_{\tau < \Gamma_{\max}} P_{\theta}[\Gamma_{\tau}]_{\mathcal{I}} = P_{\theta}[\phi]_{\mathcal{I}}, \quad \sup_{\tau < \Gamma_{\max}} P_{\theta + \omega}[\Gamma_{\tau}]_{\mathcal{I}} = P_{\theta + \omega}[\phi]_{\mathcal{I}}.$$

This follows from Proposition 3.2.12.

9.4 Operations on test curves

sec:operationtc

Let X be a connected compact Kähler manifold of dimension n and θ , θ' , θ'' be smooth closed real (1, 1)-forms on X representing big cohomology classes.

def:potestcurve

Definition 9.4.1 Given $\Gamma, \Gamma' \in TC(X, \theta)_{>0}$, we say $\Gamma \leq \Gamma'$ if for all $\Gamma_{max} \leq \Gamma'_{max}$ and for all $\tau < \Gamma_{max}$, we have

$$\Gamma_{\tau} \le \Gamma_{\tau}'.$$
 (9.15)

{eq:GammatauGammap}

Observe that (9.15) actually holds for all $\tau \in \mathbb{R}$. It is easy to verify that for all \leq defines a partial order on $TC(X, \theta)_{>0}$.

lma:testcurord1

Lemma 9.4.1 Let $\Gamma, \Gamma' \in TC(X, \theta)_{>0}$ and ω be a closed real smooth positive (1, 1)-form on X. Then the following are equivalent:

- (1) $\Gamma \leq \Gamma'$;
- (2) $P_{\theta+\omega}[\Gamma] = P_{\theta+\omega}[\Gamma']$.

Proof It suffices to observe that we could rewrite (9.15) as

$$\Gamma_{\tau} \leq_P \Gamma'_{\tau}$$
,

since both potentials are model.

def:sumtestcur

Definition 9.4.2 Let $\Gamma \in TC(X, \theta)_{>0}$ and $\Gamma' \in TC(X, \theta')_{>0}$, then we define $\Gamma + \Gamma' \in TC(X, \theta + \theta')_{>0}$ as follows:

(1) we set

$$(\Gamma + \Gamma')_{\text{max}} := \Gamma_{\text{max}} + \Gamma'_{\text{max}};$$

(2) for any $\tau < (\Gamma + \Gamma')_{max}$, we define

$$(\Gamma + \Gamma')_{\tau} := P_{\theta} \left[\sup_{t \in \mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau - t} \right) \right]. \tag{9.16}$$

lma:testcurvplus

Lemma 9.4.2 Let $\Gamma \in TC(X, \theta)_{>0}$ and $\Gamma' \in TC(X, \theta')_{>0}$, then for any $\tau < (\Gamma + \Gamma')_{max}$, we have

$$\sup_{t\in\mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau-t} \right) \in \mathrm{PSH}(X,\theta).$$

This potential is I-good if $\Gamma \in PSH^{NA}(X, \theta)_{>0}$ and $\Gamma' \in PSH^{NA}(X, \theta')_{>0}$. In particular, (9.16) in Definition 9.4.2 makes sense.

Proof Let

$$\eta_{\tau} = \sup_{t \in \mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau - t} \right) = \sup_{t < \Gamma_{\max}, \tau - t < \Gamma'_{\max}} \left(\Gamma_t + \Gamma'_{\tau - t} \right)$$

for all $\tau \in \mathbb{R}$. Set

$$Z = \left\{ x \in X : \Gamma_{-\infty}(x) = -\infty \text{ or } \Gamma'_{-\infty}(x) = -\infty \right\}.$$

It follows from Proposition A.2.3 that for any $x \in X \setminus Z$, we have

$$\eta_t^*(x) = \Gamma_t^*(x) + \Gamma_t^{\prime *}(x)$$

for all t > 0. The same trivially holds when $x \in Z$, so the equation holds everywhere. In particular, by Theorem A.2.1 and Proposition 1.2.8, we have

$$\eta_{\tau} = (\Gamma^* + \Gamma'^*)_{\tau}^* \in PSH(X, \theta + \theta') \cup \{-\infty\}.$$

Next, assume that Γ and Γ' are I-model. We need to argue that so is $\Gamma + \Gamma'$. Fix $\tau < \Gamma_{\max} + \Gamma'_{\max}$. Then for each $t \in \mathbb{R}$ such that $t < \Gamma_{\max}$ and $\tau - t < \Gamma'_{\max}$, we know that $\Gamma_t \in \text{PSH}(X,\theta)_{>0}$ and $\Gamma'_{\tau-t} \in \text{PSH}(X,\theta')_{>0}$ by Lemma 9.1.1. It follows from Example 7.1.2 that Γ_t and $\Gamma'_{\tau-t}$ are both I-good, hence so is $\Gamma_t + \Gamma'_{\tau-t} \in \text{PSH}(X,\theta+\theta')_{>0}$ by Proposition 7.2.1. Therefore, η_τ is I-good by Proposition 7.2.2. Therefore, $\Gamma + \Gamma'$ is I-model.

prop:testcurvesumproperty

Proposition 9.4.1 Let $\Gamma \in TC(X, \theta)_{>0}$ and $\Gamma' \in TC(X, \theta')_{>0}$, then $\Gamma + \Gamma' \in TC(X, \theta + \theta')_{>0}$. Moreover,

$$(\Gamma + \Gamma')_{-\infty} = P_{\theta + \theta'} [\Gamma_{-\infty} + \Gamma'_{-\infty}]. \tag{9.17}$$

{eq:sumGammaGammap}

When $\Gamma \in \mathrm{PSH^{NA}}(X,\theta)_{>0}$ and $\Gamma' \in \mathrm{PSH^{NA}}(X,\theta')_{>0}$, we have $\Gamma + \Gamma' \in \mathrm{PSH^{NA}}(X,\theta+\theta')_{>0}$.

The operation + *is commutative and associative.*

Proof It follows immediately from Lemma 9.4.2 that $\Gamma + \Gamma' \in TC(X, \theta + \theta')_{>0}$, and it lies in $PSH^{NA}(X, \theta + \theta')_{>0}$ if $\Gamma \in PSH^{NA}(X, \theta)_{>0}$ and $\Gamma' \in PSH^{NA}(X, \theta')_{>0}$.

We argue (9.17). By definition, for any small enough τ , we have

$$(\Gamma + \Gamma')_{-\infty} \ge (\Gamma + \Gamma')_{2\tau} \ge_P \Gamma_\tau + \Gamma'_\tau.$$

Letting $\tau \to -\infty$ and applying Proposition 6.2.4 and Theorem 6.2.2, we find that

$$(\Gamma + \Gamma')_{-\infty} \geq_P \Gamma_{-\infty} + \Gamma'_{-\infty}$$
.

On the other hand, for each small enough τ , we have

$$(\Gamma + \Gamma')_{\tau} \sim_{P} \sup_{t \in \mathbb{P}} (\Gamma_{t} + \Gamma'_{\tau - t}) \leq_{P} \Gamma_{-\infty} + \Gamma'_{-\infty}$$

by Proposition 6.1.5 and Proposition 6.2.4. We apply Proposition 6.2.4 again, we conclude that

$$(\Gamma + \Gamma')_{-\infty} \leq_P \Gamma_{-\infty} + \Gamma'_{-\infty}.$$

So (9.17) follows.

Finally, let us show that + is commutative and associative. Commutativity is obvious. Let $\Gamma'' \in TC(X, \theta'')_{>0}$. Then we want to show that

$$(\Gamma + \Gamma') + \Gamma'' = \Gamma + (\Gamma' + \Gamma'').$$

First observe that

$$((\Gamma + \Gamma') + \Gamma'')_{\text{max}} = (\Gamma + (\Gamma' + \Gamma''))_{\text{max}}.$$

Fix τ less than this common value. We observe that

$$((\Gamma + \Gamma') + \Gamma'')_{\tau}$$

$$= P_{\theta} \left[\sup_{t_1 \in \mathbb{R}} \left((\Gamma + \Gamma')_{t_1} + \Gamma''_{\tau - t_1} \right) \right]$$

$$\sim_{P} \sup_{t_1 \in \mathbb{R}} \left((\Gamma + \Gamma')_{t_1} + \Gamma''_{\tau - t_1} \right)$$

$$\sim_{P} \sup_{t_1, t_2 \in \mathbb{R}} \left(\Gamma_{t_2} + \Gamma'_{t_1 - t_2} + \Gamma''_{\tau - t_1} \right),$$

where in the last line, we applied Proposition 6.2.4 and Proposition 6.1.5. Similarly, for $(\Gamma + (\Gamma' + \Gamma''))_{\tau}$, we get the same expression. The associativity follows.

lma:testcursumcomp Lemma 9

Lemma 9.4.3 Let $\Gamma \in TC(X, \theta)_{>0}$ and $\Gamma' \in TC(X, \theta')_{>0}$, then for any closed smooth positive (1, 1)-forms ω and ω' on X, we have

$$P_{\theta+\omega+\theta'+\omega'}[\Gamma+\Gamma'] = P_{\theta+\omega}[\Gamma] + P_{\theta'+\omega'}[\Gamma].$$

Proof Observe that

$$P_{\theta+\omega+\theta'+\omega'}[\Gamma+\Gamma']_{\max} = (P_{\theta+\omega}[\Gamma] + P_{\theta'+\omega'}[\Gamma])_{\max} = \Gamma_{\max} + \Gamma'_{\max}.$$

Take $\tau \in \mathbb{R}$ less than this common value, we need to verify that

$$(\Gamma + \Gamma')_{\tau} \sim_P (P_{\theta + \omega}[\Gamma] + P_{\theta' + \omega'}[\Gamma])_{\tau}.$$

By definition, this means that

$$\sup_{t \in \mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau - t} \right) \sim_P \sup_{t \in \mathbb{R}} \left(P_{\theta + \omega} [\Gamma_t] + P_{\theta' + \omega'} [\Gamma'_{\tau - t}] \right).$$

This is a consequence of Proposition 6.1.5 and Proposition 6.1.6.

def:testcurvplus(

Definition 9.4.3 Let $\Gamma \in TC(X, \theta)_{>0}$ and $C \in \mathbb{R}$, we define $\Gamma + C \in TC(X, \theta)_{>0}$ as follows:

(1) We set

$$(\Gamma + C)_{\text{max}} := \Gamma_{\text{max}} + C;$$

(2) for any $\tau < (\Gamma + C)_{\text{max}}$, we set

$$\Gamma_{\tau} := \Gamma_{\tau - C}$$
.

It is obvious that if $\Gamma \in PSH^{NA}(X, \theta)_{>0}$, then so is $\Gamma + C$.

prop:testcurveplusC

Proposition 9.4.2 *Let* $\Gamma \in TC(X, \theta)_{>0}$, $\Gamma \in TC(X, \theta')_{>0}$ and $C, C' \in \mathbb{R}$, then

$$(1)\; (\Gamma+\Gamma')+C=\Gamma+(\Gamma'+C)=(\Gamma+C)+\Gamma';$$

(2)
$$\Gamma + (C + C') = (\Gamma + C) + C'$$
.

Proof (1) We first observe that

$$((\Gamma + \Gamma') + C)_{\text{max}} = (\Gamma + (\Gamma' + C))_{\text{max}} = ((\Gamma + C) + \Gamma')_{\text{max}} = \Gamma_{\text{max}} + \Gamma'_{\text{max}} + C.$$

Take any $\tau \in \mathbb{R}$ less than this common value. We compute

$$\begin{split} ((\Gamma + \Gamma') + C)_{\tau} &= (\Gamma + \Gamma')_{\tau - C} = P_{\theta + \theta'} \left[\sup_{t \in \mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau - C - t} \right) \right], \\ (\Gamma + (\Gamma' + C))_{\tau} &= P_{\theta + \theta'} \left[\sup_{t \in \mathbb{R}} \left(\Gamma_t + (\Gamma' + C)_{\tau - t} \right) \right] = P_{\theta + \theta'} \left[\sup_{t \in \mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau - C - t} \right) \right], \\ ((\Gamma + C) + \Gamma')_{\tau} &= P_{\theta + \theta'} \left[\sup_{t \in \mathbb{R}} \left((\Gamma + C)_{C + t} + \Gamma'_{\tau - C - t} \right) \right] \\ &= P_{\theta + \theta'} \left[\sup_{t \in \mathbb{R}} \left(\Gamma_t + \Gamma'_{\tau - C - t} \right) \right]. \end{split}$$

(2) Observe that

$$(\Gamma + (C + C'))_{\text{max}} = ((\Gamma + C) + C')_{\text{max}} = \Gamma_{\text{max}} + C + C'.$$

For any $\tau \in \mathbb{R}$ less than this value, we have

$$(\Gamma + (C + C'))_{\tau} = \Gamma_{\tau - C - C'} = ((\Gamma + C) + C')_{\tau}$$

def:testcurlor

Definition 9.4.4 Let $\Gamma, \Gamma' \in TC(X, \theta)_{>0}$. We define $\Gamma \vee \Gamma' \in TC(X, \theta)_{>0}$ as follows:

(1) We set

$$(\Gamma \vee \Gamma')_{\max} := \Gamma_{\max} \vee \Gamma'_{\max}$$

and

(2) for any $\tau < (\Gamma \vee \Gamma')_{max}$, we define

$$(\Gamma \vee \Gamma')_{\tau} := P_{\theta} \left[\operatorname{CE} \left(\rho \mapsto \Gamma_{\rho} \vee \Gamma'_{\rho} \right) \right]. \tag{9.18}$$

Recall that the upper convex hull CE is defined in Definition A.1.4. Trivially, we have $\Gamma \vee \Gamma' \geq \Gamma$ and $\Gamma \vee \Gamma' \geq \Gamma'$.

lma:testcurlor

Lemma 9.4.4 Let $\Gamma, \Gamma' \in TC(X, \theta)_{>0}$. Then for any $\tau < \Gamma_{max} \vee \Gamma'_{max}$, we have

$$CE\left(\rho \mapsto \Gamma_{\rho} \vee \Gamma_{\rho}'\right)_{\tau} \in PSH(X, \theta).$$

This potential is I-good if $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)_{>0}$. In particular, (9.18) in Definition 9.4.4 makes sense.

Proof To simply the notations, we write

$$\psi_{\tau} = \operatorname{CE}\left(\rho \mapsto \Gamma_{\rho} \vee \Gamma_{\rho}'\right)_{\tau}$$

for all $\tau \in \mathbb{R}$. Thanks to Proposition A.2.2, we have

$$\psi_t^*(x) = \Gamma_t^*(x) \vee \Gamma_t^{\prime *}(x) \tag{9.19}$$
 {eq:psistartemp1}

for all t>0 as long as $\Gamma_{\tau}(x)\neq -\infty$ and $\Gamma_{\tau}(x)\neq -\infty$ for some $\tau\in\mathbb{R}$. Otherwise, assume that $x\in X$ is such that $\Gamma_{\tau}=-\infty$ for all $\tau\in\mathbb{R}$, then by definition, $\psi_{\tau}(x)=\Gamma'_{\tau}(x)$ for all $\tau\in\mathbb{R}$. Therefore, $\Gamma^*_t(x)=-\infty$ for all t>0 and hence (9.19) continues to hold. Therefore, we have shown that

$$\psi_t^* = \Gamma_t^* \vee \Gamma_t'^* \in PSH(X, \theta).$$

It follows from Proposition 4.1.3 that $(\psi_t^*)_{t \in [a,b]}$ is a subgeodesic for any 0 < a < b. Next we observe that ψ_{\bullet} is closed by definition. So it follows from Proposition A.2.2 and Proposition 1.2.8 that

$$\psi_{\tau} = (\psi_{\bullet}^*)_{\tau}^* \in \text{PSH}(X, \theta) \cup \{-\infty\}.$$

Due to Proposition 9.1.4 and Proposition A.1.2, there is a pluripolar set $Z \subseteq X$ such that for $x \in X \setminus Z$, we have

$$\psi_{\tau}(x) = \sup \left\{ \lambda \Gamma_{\rho}(x) + (1 - \lambda) \Gamma_{\rho'}'(x) : \lambda \in (0, 1), \rho, \rho' \in \mathbb{R}, \lambda \rho + (1 - \lambda) \rho' = \tau \right\}$$

for all $\tau < \Gamma_{max} \vee \Gamma'_{max}$. It follows from Proposition 1.2.6 that

$$\psi_{\tau} = \sup^* \left\{ \lambda \Gamma_{\rho} + (1 - \lambda) \Gamma_{\rho'}' : \lambda \in (0, 1), \rho, \rho' \in \mathbb{R}, \lambda \rho + (1 - \lambda) \rho' = \tau \right\} \quad (9.20)$$

{eq:psitausupslineartemp}

for all $\tau < \Gamma_{\text{max}} \vee \Gamma'_{\text{max}}$.

It follows from (9.20) that ψ_{τ} is I-good if $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)_{>0}$, thanks to Proposition 7.2.1 and Proposition 7.2.2.

Corollary 9.4.1 *Let* $\Gamma, \Gamma' \in TC(X, \theta)_{>0}$. Then $\Gamma \vee \Gamma' \in TC(X, \theta)_{>0}$ and

$$(\Gamma \vee \Gamma')_{-\infty} = P_{\theta} \left[\Gamma_{-\infty} \vee \Gamma'_{-\infty} \right]. \tag{9.21}$$

{eq:GammalorGammapminfty}

If $\Gamma, \Gamma' \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, then $\Gamma \vee \Gamma' \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$.

For each $\Gamma'' \in TC(X, \theta)_{>0}$ and each $\Gamma'' \geq \Gamma$ and $\Gamma'' \geq \Gamma'$, we have $\Gamma'' \geq \Gamma \vee \Gamma'$. Moreover, the operation \vee is associative and commutative.

Proof It follows immediately from Lemma 9.4.4 that $\Gamma \vee \Gamma' \in TC(X, \theta)_{>0}$, and it lies in $PSH^{NA}(X, \theta)_{>0}$ if $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)_{>0}$.

The argument of (9.21) is very similar to that of (9.17), which we leave to the

Take Γ'' as in the statement of the proposition. First observe that

$$\Gamma''_{\max} \ge \Gamma_{\max} \vee \Gamma'_{\max} = (\Gamma \vee \Gamma')_{\max}.$$

Take $\tau < (\Gamma \vee \Gamma')_{max}$, we argue that

$$\Gamma_{\tau}^{"} \geq (\Gamma \vee \Gamma')_{\tau}.$$

By the concavity of Γ'' , this is equivalent to

$$\Gamma_{\tau}^{"} \geq \Gamma_{\tau} \vee \Gamma_{\tau}^{'}$$
.

Therefore,

$$\Gamma'' \geq \Gamma \vee \Gamma'$$
.

The commutativity and associativity of \vee are trivial.

lma:testcurlorPthetapomega

Lemma 9.4.5 Let $\Gamma, \Gamma' \in TC(X, \theta)_{>0}$ and ω be a closed smooth positive (1, 1)-form on X. Then

$$P_{\theta+\omega}[\Gamma \vee \Gamma'] = P_{\theta+\omega}[\Gamma] \vee P_{\theta+\omega}[\Gamma'].$$

Proof We first observe that

$$(P_{\theta+\omega}[\Gamma \vee \Gamma'])_{\max} = (P_{\theta+\omega}[\Gamma] \vee P_{\theta+\omega}[\Gamma'])_{\max} = \Gamma_{\max} \vee \Gamma'_{\max}.$$

Let $\tau \in \mathbb{R}$ be less than this common value. We need to show that

$$(\Gamma \vee \Gamma')_{\tau} \sim_P (P_{\theta+\omega}[\Gamma] \vee P_{\theta+\omega}[\Gamma'])_{\tau}.$$

We need the formula (9.20) proved in the proof of Lemma 9.4.4:

$$(\Gamma \vee \Gamma')_{\tau} = \sup^* \left\{ \lambda \Gamma_{\rho} + (1-\lambda) \Gamma'_{\rho'} : \lambda \in (0,1), \rho, \rho' \in \mathbb{R}, \lambda \rho + (1-\lambda) \rho' = \tau \right\}.$$

A similar result holds with $P_{\theta+\omega}[\Gamma]$ and $P_{\theta+\omega}[\Gamma']$ in place of Γ and Γ' . So our assertion is a direct consequence of Proposition 6.1.5 and Proposition 6.1.6.

Definition 9.4.5 Let $(\Gamma^i)_{i \in I}$ be an increasing net in $TC(X, \theta)_{>0}$. Assume that

$$\sup_{i \in I} \Gamma_{\max}^{i} < \infty. \tag{9.22}$$

Then we define $\sup_{i \in I} \Gamma^i \in TC(X, \theta)_{>0}$ as follows:

(1) We set

$$\left(\sup_{i\in I}^* \Gamma^i\right)_{\max} = \sup_{i\in I} \Gamma^i_{\max};$$

(2) for any $\tau < \sup_{i \in I} \Gamma_{\max}^i$, we let

$$\left(\sup_{i\in I}^*\Gamma^i\right)_{\tau} \coloneqq \sup_{i\in I}^*\Gamma^i_{\tau}.$$

prop:supsincnetteestcur

Proposition 9.4.3 Let $(\Gamma^i)_{i \in I}$ be an increasing net in $TC(X, \theta)_{>0}$ satisfying (9.22). Then $\sup_{i \in I} \Gamma^i$ as defined in Definition 9.4.5 lies in $\sup_{i \in I} \Gamma^i \in TC(X, \theta)_{>0}$. Moreover, if $\Gamma^i \in PSH^{NA}(X, \theta)_{>0}$ for all $i \in I$, then $\sup_{i \in I} \Gamma^i$ lies in $PSH^{NA}(X, \theta)_{>0}$ as well.

Moreover, we have

$$\left(\sup_{i \in I} \Gamma^{i}\right)_{-\infty} = \sup_{i \in I} \Gamma^{i}_{-\infty}. \tag{9.23}$$

Proof The first assertion follows easily from Proposition 3.1.10, while the second follows from Proposition 3.2.12.

It remains to argue (9.23). Without loss of generality, we may assume that I contains a minimal element i_0 .

By Proposition 1.2.5, there is a pluripolar set $Z \subseteq X$ such that for any $x \in X \setminus Z$,

$$\left(\sup_{i\in I}^*\Gamma^i\right)_{-\infty}(x) = \sup_{\tau<\Gamma^{i_0}_{\text{new}}}\left(\sup_{i\in I}^*\Gamma^i_{\tau}\right)(x) = \sup_{\tau<\Gamma^{i_0}_{\text{new}},\,i\in I}\Gamma^i_{\tau}(x) = \sup_{i\in I}\Gamma^i_{-\infty}(x).$$

So they are equal everywhere by Proposition 1.2.6.

lma:suptestcurvcompatible

Lemma 9.4.6 Let $(\Gamma^i)_{i \in I}$ be an increasing net in $TC(X, \theta)_{>0}$ satisfying (9.22). Assume that ω is a closed smooth positive (1, 1)-form on X. Then

$$P_{\theta+\omega}\left[\sup_{i\in I}^*\Gamma^i\right] = \sup_{i\in I}^*P_{\theta+\omega}\left[\Gamma^i\right].$$

Proof Observe that

$$\left(P_{\theta+\omega}\left[\sup_{i\in I}^*\Gamma^i\right]\right)_{\max} = \left(\sup_{i\in I}^*P_{\theta+\omega}\left[\Gamma^i\right]\right)_{\max} = \sup_{i\in I}\Gamma^i_{\max}.$$

Fix $\tau \in \mathbb{R}$ less than this common value.

It suffices to show that

$$\left(\sup_{i \in I} \Gamma^{i}\right)_{\tau} = \left(\sup_{i \in I} P_{\theta + \omega} \left[\Gamma^{i}\right]\right)_{\tau}.$$

This is an immediate consequence of Proposition 6.1.6.

def:testcurvsupsgenera

Definition 9.4.6 Let $(\Gamma^i)_{i \in I}$ be a non-empty family in $TC(X, \theta)_{>0}$ satisfying (9.22). Then we define

$$\sup_{i \in I} {}^{i} := \sup_{J \in \text{Fin}(I)} \left(\bigvee_{i \in J} \Gamma^{j} \right). \tag{9.24}$$

Observe that by **Definition 9.4.4**, we have

$$\sup_{J \in \operatorname{Fin}(I)} \left(\bigvee_{j \in J} \Gamma^j \right)_{\max} = \sup_{i \in I} \Gamma^i_{\max} < \infty.$$

So (9.24) makes sense. In particular,

$$\left(\sup_{i\in I}\Gamma^{i}\right)_{\max} = \sup_{i\in I}\Gamma^{i}_{\max}. \tag{9.25}$$

It is clear that Definition 9.4.6 extends both Definition 9.4.5 and Definition 9.4.4.

Proposition 9.4.4 Let $(\Gamma^i)_{i\in I}$ be a non-empty family in $TC(X,\theta)_{>0}$ satisfying (9.22). Then $\sup_{i\in I} \Gamma^i \in TC(X,\theta)_{>0}$. Moreover, if $\Gamma^i \in PSH^{NA}(X,\theta)_{>0}$, then so is $\sup_{i\in I} \Gamma^i$.

Finally, we have

$$\left(\sup_{i\in I} \Gamma^{i}\right)_{-\infty} = P_{\theta} \left[\sup_{i\in I} \Gamma^{i}_{-\infty}\right]. \tag{9.26}$$

Proof The first assertion and the second follow from Proposition 9.4.3 and Corollary 9.4.1.

It remains to argue (9.26). For this purpose, it suffices to show that

$$\left(\sup_{i\in I}^* \Gamma^i\right)_{-\infty} \sim_P \sup_{i\in I}^* \Gamma^i_{-\infty}.$$

For any $J \in Fin(I)$, it follows from Corollary 9.4.1 and Proposition 6.1.6 that

$$\left(\bigvee_{j\in J}\Gamma^j\right)_{-\infty}\sim_P\bigvee_{j\in J}\Gamma^j_{-\infty}.$$

From this, applying Proposition 6.1.6 and Proposition 9.4.3, we conclude our assertion.

lma:testcursupcompatible

Lemma 9.4.7 Let $(\Gamma^i)_{i \in I}$ be a non-empty family in $TC(X, \theta)_{>0}$ satisfying (9.22). Assume that ω is a closed smooth positive (1, 1)-form on X. Then

$$P_{\theta+\omega} \left[\sup_{i \in I} \Gamma^{i} \right] = \sup_{i \in I} P_{\theta+\omega} \left[\Gamma^{i} \right].$$

Proof This is a direct consequence of Lemma 9.4.6 and Lemma 9.4.5.

prop:testcurvChoquet

Proposition 9.4.5 Let $(\Gamma^i)_{i \in I}$ be a non-empty family in $TC(X, \theta)_{>0}$ satisfying (9.22). Then there is a countable subset $I' \subseteq I$ such that

$$\sup_{i \in I} {}^*\Gamma^i = \sup_{i \in I'} {}^*\Gamma^i.$$

Proof We may assume that *I* is infinite.

It follows from Proposition 1.2.2 that we can find a countable subset $I' \subseteq I$ such that for each

$$\tau \in \left(-\infty, \sup_{i \in I} \Gamma^i_{\max}\right) \cap \mathbb{Q},$$

we have

$$\sup_{i \in I} {}^*\Gamma^i_\tau = \sup_{i \in I'} {}^*\Gamma^i_\tau.$$

Let $\Gamma' = \sup_{i \in I'} \Gamma^i$. Then clearly, $\Gamma' \le \Gamma$. We claim that they are actually equal. For this purpose, it suffices to show that for any $\tau < \sup_{i \in I} \Gamma^i_{\max}$, we have

$$\int_X \left(\theta + \mathrm{dd^c}\Gamma_\tau'\right)^n = \int_X \left(\theta + \mathrm{dd^c}\Gamma_\tau\right)^n.$$

Since we know that this holds on a dense subset of τ , this holds everywhere by Theorem 2.3.3.

prop:supGammiotherprop

Proposition 9.4.6 Let $(\Gamma^i)_{i \in I}$ be a non-empty family in $TC(X, \theta)_{>0}$ satisfying (9.22). Let $C \in \mathbb{R}$. Then

$$\sup_{i \in I} *(\Gamma^i + C) = \sup_{i \in I} *\Gamma^i + C.$$

Suppose that $(\Gamma'^i)_{i\in I}$ is another family in $TC(X,\theta)_{>0}$ satisfying (9.22). Suppose that $\Gamma^i \leq \Gamma'^i$ for all $i \in I$, then

$$\sup_{i \in I} \Gamma^i \le \sup_{i \in I} \Gamma'^i.$$

Proof This is immediate by definition.

def:res

Definition 9.4.7 Let $\Gamma \in TC(X, \theta)_{>0}$ and $\lambda > 0$, we define $\lambda \Gamma \in TC(X, \lambda \theta)_{>0}$ as follows:

(1) We set

$$(\lambda\Gamma)_{\max} = \lambda\Gamma_{\max};$$

(2) for any $\tau < \lambda \Gamma_{\text{max}}$, we set

$$(\lambda\Gamma)_{\tau} = \lambda\Gamma_{\lambda^{-1}\tau}$$
.

nron:testcurrescaling

Proposition 9.4.7 *Let* $\Gamma \in TC(X, \theta)_{>0}$ *and* $\lambda > 0$, *then* $\lambda \Gamma$ *as defined in Definition 9.4.7 lies in* $TC(X, \lambda \theta)_{>0}$. *Moreover, if* $\Gamma \in PSH^{NA}(X, \theta)_{>0}$, *then* $\lambda \Gamma \in PSH^{NA}(X, \lambda \theta)_{>0}$.

We have

$$(\lambda \Gamma)_{-\infty} = \lambda \Gamma_{-\infty}. \tag{9.27}$$

prop:resclacompat

Proposition 9.4.8 *Let* $\Gamma \in TC(X, \theta)_{>0}$, $\Gamma' \in TC(X, \theta')_{>0}$, $C \in \mathbb{R}$ and $\lambda, \lambda' > 0$, we have

$$\lambda(\Gamma + \Gamma') = \lambda\Gamma + \lambda\Gamma',$$

$$(\lambda\lambda')\Gamma = \lambda(\lambda'\Gamma),$$

$$\lambda(\Gamma + C) = \lambda\Gamma + \lambda C.$$

Suppose that $(\Gamma^i)_{i\in I}$ is a non-empty family in $TC(X,\theta)_{>0}$ satisfying (9.22), then

$$\lambda \left(\sup_{i \in I} {}^*\Gamma^i \right) = \sup_{i \in I} {}^*(\lambda \Gamma^i).$$

lma:testcurvrescompatible

Lemma 9.4.8 *Let* $\Gamma \in TC(X, \theta)_{>0}$ *and* $\lambda > 0$. *Then for any closed smooth positive* (1, 1)-form ω *on* X, *we have*

$$P_{\lambda(\theta+\omega)}[\lambda\Gamma] = \lambda P_{\theta+\omega}[\Gamma].$$

Proof This is clear by definition.

Chapter 10

The theory of Okounkov bodies

chap: Okou

In this chapter, we apply our theory of singularities to the study of Okounkov bodies. We establish the theory of partial Okounkov bodies, which are convex bodies constructed from a given plurisubharmonic singularity. These objects allow us to reduce many problems in pluripotential theory to problems in convex geometry, which are usually simpler.

We will establish two related theories. One in the algebraic setting in Section 10.2 and one in the transcendental setting in Section 10.3.

10.1 Flags and valuations

10.1.1 The algebraic setting

subsec:flagvalalgebraic

Let X be an irreducible normal projective variety of dimension n.

|def:admfl

Definition 10.1.1 An *admissible flag Y* $_{\bullet}$ on X is a flag of subvarieties

$$X = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_n$$

such that Y_i is irreducible of codimension i and is smooth at the point Y_n .

Given any admissible flag Y_{\bullet} , we can define a rank n valuation $v_{Y_{\bullet}} : \mathbb{C}(X)^{\times} \to \mathbb{Z}^{n}$. Here we consider \mathbb{Z}^{n} as a totally ordered Abelian group with the lexicographic order. We sometimes write $\mathbb{Z}^{n}_{\text{lex}}$ to emphasize this point.

The automorphism group $\operatorname{Aut}(\mathbb{Z}^n_{\operatorname{lex}})$ of $\mathbb{Z}^n_{\operatorname{lex}}$ is then identified with the subgroup of $\operatorname{GL}(n,\mathbb{Z})$ consisting of matrices of the form I+U, where I is the identity matrix and U is a strictly upper triangular matrix with elements in \mathbb{Z} .

We recall the definition: Let $s \in \mathbb{C}(X)^{\times}$. Let $v(s)_1 = \operatorname{ord}_{Y_1} s$. After localization around Y_n , we can take a local defining equation t^1 of Y_1 , set $s_1 = (s(t^1)^{-\nu_1(s)})|_{Y_1}$. Then $s_1 \in \mathbb{C}(Y_1)^{\times}$. We can repeat this construction with Y_2 in place of Y_1 to get $v(s)_2$ and s_2 . Repeating this construction n times, we get

$$\nu_{Y_{\bullet}}(s) = \nu(s) = (\nu(s)_1, \nu(s)_2, \dots, \nu(s)_n) \in \mathbb{Z}^n.$$

It is easy to verify that ν is indeed a rank n valuation.

The same construction can be applied to define $\nu_{Y_{\bullet}}(s)$ when $s \in H^0(X, L)$ or $\nu_{Y_{\bullet}}(D)$ when D is an effective divisor on X.

rmk: Abhyankar

Remark 10.1.1 Conversely, by a theorem of Abhyankar, any valuation of $\mathbb{C}(X)$ with Noetherian valuation ring of rank n is equivalent to a valuation taking value in \mathbb{Z}^n , see [FK18, Chapter 0, Theorem 6.5.2]. As shown in [CFK-17, Theorem 2.9], any such valuation is equivalent to (but not necessarily equal to) a valuation induced by an admissible flag on a modification of X.

10.1.2 The transcendental setting

Let X be a connected compact Kähler manifold of dimension n.

Definition 10.1.2 A *smooth flag Y* $_{\bullet}$ on *X* consists of a flag of connected submanifolds of *X*:

$$X = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_n$$

where Y_i has dimension n - i.

In this section, we will fix a smooth flag Y_{\bullet} on X.

def:valcuri

Definition 10.1.3 Let T be a closed positive (1,1)-current on X. We define the *valuation* of T along Y_{\bullet} as

$$\nu_{Y_{\bullet}}(T) = (\nu_{Y_{\bullet}}(T)_1, \dots, \nu_{Y_{\bullet}}(T)_n) \in \mathbb{R}^n_{>0}$$

by induction on n. When n = 0, we define $\nu_{Y_{\bullet}}(T)$ as the unique point in \mathbb{R}^0 . When n > 1, we define

$$\nu_{Y_{\bullet}}(T)_1(T) = \nu(T, Y_1);$$

Then for i = 2, ..., n, we define

$$\nu_{Y_{\bullet}}(T)_i = \nu_{Y_1 \supseteq \cdots \supseteq Y_n} \left(\operatorname{Tr}_{Y_1}(T - \nu(T, Y_1)[Y_1]) \right)_{i=1}.$$

Proposition 10.1.1 *Let T be a closed positive* (1,1)-current on X. Then $v_{Y_{\bullet}}(T) \in \mathbb{R}^n_{\geq 0}$ defined in Definition 10.1.3 is independent of the choices of the trace operators in the definition. Moreover, $v_{Y_{\bullet}}(T)$ depends only on the I-equivalence class of T.

Proof We will prove both statements at the same time by induction on $n \ge 0$. The case n = 0 is trivial.

¹ Two valuations ν , ν' with value in \mathbb{Z}^n are equivalent if one can find a matrix G of the form I + N, where N is strictly upper triangular with integral entries, such that $\nu' = \nu G$.

Let us consider the case n > 0 and assume that the result is known in dimension n - 1. We first observe that $v_{Y_{\bullet}}(T)$ is independent of the choice of the trace operator: different choices of $\text{Tr}_{Y_1}(T - v(T, Y_1)[Y_1])$ are I-equivalent by Proposition 8.1.2. Therefore, by induction, its valuation is well-defined.

Next, let T' be another closed positive (1,1)-current such that $T \sim_I T'$. Using Proposition 3.2.1, we know that $\nu(T,Y_1) = \nu(T',Y_1)$. Therefore,

$$T - \nu(T, Y_1)[Y_1] \sim_{\mathcal{I}} T' - \nu(T', Y_1)[Y_1].$$

It follows by induction that

$$\nu_{Y_1 \supseteq \cdots \supseteq Y_n} \left(\operatorname{Tr}_{Y_1} (T - \nu(T, Y_1)[Y_1]) \right) = \nu_{Y_1 \supseteq \cdots \supseteq Y_n} \left(\operatorname{Tr}_{Y_1} (T' - \nu(T', Y_1)[Y_1]) \right).$$

ex:valuationdivcompatible

Example 10.1.1 When X is projective, we have

$$\nu_{Y_{\bullet}}([D]) = \nu_{Y_{\bullet}}(D),$$

where the right-hand side is defined in Section 10.1.1.

prop:nuvaluationlinear

Proposition 10.1.2 *Let T, S be closed positive* (1,1)*-currents on X,* $\lambda \in \mathbb{R}_{>0}$. Then

(1) if $T \leq_{\mathcal{I}} S$, we have

$$\nu_{Y_{\bullet}}(T) \ge_{\text{lex}} \nu_{Y_{\bullet}}(S).$$
 (10.1) {eq:nuTS}

(2) We have the following additivity property:

$$\nu_{Y_{\bullet}}(T+S) = \nu_{Y_{\bullet}}(T) + \nu_{Y_{\bullet}}(S), \quad \nu_{Y_{\bullet}}(\lambda T) = \lambda \nu_{Y_{\bullet}}(T). \tag{10.2}$$

{eq:nuvaluationlinear}

Proof (1) We make an induction on $n \ge 0$. The case n = 0, 1 is trivial. Assume that $n \ge 2$ and the case n - 1 is known. Observe that $\nu(T, Y_1) \ge \nu(S, Y_1)$, if the inequality is strict, we are done. So let us assume that $\nu(T, Y_1) = \nu(S, Y_1)$. By Proposition 8.2.1, we find that

$$\operatorname{Tr}_{Y_1}(T - \nu(T, Y_1)[Y_1]) \leq_{\mathcal{I}} \operatorname{Tr}_{Y_1}(S - \nu(T, Y_1)[Y_1]).$$

By the inductive hypothesis, we conclude (10.1).

(2) We make an induction on $n \ge 0$. The cases n = 0, 1 are trivial. Assume that $n \ge 2$ and the case n - 1 is known. By Proposition 1.4.2, we have

$$\nu(T + S, Y_1) = \nu(T, Y_1) + \nu(S, Y_1), \quad \nu(\lambda T, Y_1) = \lambda \nu(T, Y_1).$$

By Proposition 8.2.1, we have

$$\operatorname{Tr}_{Y_1}(T+S-\nu(T+S,Y_1)[Y_1]) \sim_P \operatorname{Tr}_{Y_1}(T-\nu(T,Y_1)[Y_1]) + \operatorname{Tr}_{Y_1}(S-\nu(S,Y_1)[Y_1]),$$

$$\operatorname{Tr}_{Y_1}(\lambda T-\nu(\lambda T,Y_1)[Y_1]) \sim_P \lambda \operatorname{Tr}_{Y_1}(T-\nu(T,Y_1)[Y_1]).$$

By the inductive hypothesis, we conclude (10.2).

Definition 10.1.4 Let $\pi: Z \to X$ be a proper bimeromorphic morphism with Z being a Kähler manifold. We say that a smooth flag W_{\bullet} on Z is a *lifting* of Y_{\bullet} to Z if the restriction of π to $W_i \to Y_i$ is defined and bimeromorphic for each $i = 0, \ldots, n$.

In this case, we define $cor(Y_{\bullet},\pi) \in Aut(\mathbb{Z}^n_{lex})$ inductively as follows:

$$\operatorname{cor}(Y_{\bullet}, \pi) := \begin{bmatrix} 1 & -\nu_{W_1 \supseteq \cdots \supseteq W_n} ((\pi^*[Y_1] - [W_1])|_{W_1}) \\ 0 & \operatorname{cor}(Y_1 \supseteq \cdots \supseteq Y_n, \pi|_{W_1} : W_1 \to Y_1) \end{bmatrix}. \tag{10.3}$$

We observe that a lifting W_{\bullet} of Y_{\bullet} on Z is unique if it exists. For each $i=0,\ldots,n-1$, the component W_{i+1} is necessarily the strict transform of Y_{i+1} with respect to the bimeromorphic morphism $W_i \to Y_i$. We shall also say that $(W_{\bullet}, \operatorname{cor}(Y_{\bullet}, \pi))$ is the lifting of Y_{\bullet} to Z.

prop:cormult

Proposition 10.1.3 Let $\pi: Z \to X$, $p: Z' \to Z$ be proper bimeromorphic morphisms with Z and Z' being Kähler manifolds. Assume that Y_{\bullet} admits a lifting W_{\bullet} (resp. W'_{\bullet}) to Z (resp. Z'). Then

$$\operatorname{cor}(Y_{\bullet}, \pi \circ p) = \operatorname{cor}(Y_{\bullet}, \pi) \operatorname{cor}(W_{\bullet}, p).$$
 (10.4) {eq:cormul}

Proof We let $\pi' = \pi \circ p$:

We make induction on $n \ge 1$. The case n = 1 is trivial. Assume that $n \ge 2$ and the case n - 1 has been solved. Then by (10.3), the desired formula (10.4) can be reformulated as

$$\begin{bmatrix} 1 & -\nu_{W_1' \supseteq \cdots \supseteq W_n'}((\pi'^*[Y_1] - [W_1'])|_{W_1'}) \\ 0 & \operatorname{cor}(Y_1 \supseteq \cdots \supseteq Y_n, \pi'|_{W_1'} : W_1' \to Y_1) \end{bmatrix} =$$

$$\begin{bmatrix} 1 & -\nu_{W_1 \supseteq \cdots \supseteq W_n}((\pi^*[Y_1] - [W_1])|_{W_1}) \\ 0 & \operatorname{cor}(Y_1 \supseteq \cdots \supseteq Y_n, \pi|_{W_1} : W_1 \to Y_1) \end{bmatrix} .$$

$$\begin{bmatrix} 1 & -\nu_{W_1' \supseteq \cdots \supseteq W_n'}((p^*[W_1] - [W_1'])|_{W_1'}) \\ 0 & \operatorname{cor}(W_1 \supseteq \cdots \supseteq W_n, p|_{W_1'} : W_1' \to W_1) \end{bmatrix} .$$

By the inductive hypothesis, this is equivalent to

$$\nu_{W'_1 \supseteq \cdots \supseteq W'_n}((\pi'^*[Y_1] - [W'_1])|_{W'_1}) = \nu_{W'_1 \supseteq \cdots \supseteq W'_n}((p^*[W_1] - [W'_1])|_{W'_1}) + \nu_{W_1 \supseteq \cdots \supseteq W_n}((\pi^*[Y_1] - [W_1])|_{W_1}) \operatorname{cor}(W_1 \supseteq \cdots \supseteq W_n, p|_{W'_1} : W'_1 \to W_1),$$

which can be further rewritten as

$$\begin{split} \nu_{W_1' \supseteq \cdots \supseteq W_n'}((\pi'^*[Y_1] - [W_1'])|_{W_1'}) &= \nu_{W_1' \supseteq \cdots \supseteq W_n'}((p^*[W_1] - [W_1'])|_{W_1'}) + \\ \nu_{W_1' \supseteq \cdots \supseteq W_n'}(p|_{W_1'}^*(\pi^*[Y_1] - [W_1])|_{W_1}). \end{split}$$

This follows from Proposition 10.1.2.

prop:cormatrix

Proposition 10.1.4 Let $\pi: Z \to X$ be a proper bimeromorphic morphism with Z being a Kähler manifold. Let W_{\bullet} be a lifting of Y_{\bullet} , then for any closed positive (1,1)-current T on X, we have

$$\nu_{W_{\bullet}}(\pi^*T) = \nu_{Y_{\bullet}}(T)\operatorname{cor}(Y_{\bullet}, \pi).$$
 (10.5)

Proof We make induction on $n \ge 0$. The case n = 0 is trivial. In general, assume that $n \ge 1$ and the result is proved in dimension n - 1.

For simplicity, we write $\nu = \nu_{Y_{\bullet}}$ and $\nu' = \nu_{W_{\bullet}}$. Let μ (resp. μ') be the valuation of currents defined by the truncated flag $Y_1 \supseteq \cdots \supseteq Y_n$ (resp. $W_1 \supseteq \cdots \supseteq W_n$). Then we need to show that

By Zariski's main theorem,

$$\nu'(\pi^*T)_1 = \nu(T)_1 =: c.$$

By the inductive hypothesis, we have

$$\mu'(\Pi^*\operatorname{Tr}_{Y_1}(T-c[Y_1])) = \mu(\operatorname{Tr}_{Y_1}(T-c[Y_1]))\operatorname{cor}(Y_1 \supseteq \cdots \supseteq Y_n,\Pi), \qquad (10.7) \quad \boxed{\{\operatorname{eq: ind_hypos}\}}$$

where $\Pi: W_1 \to Y_1$ is the restriction of π . By Lemma 8.2.1 and Proposition 8.2.1,

$$\Pi^* \operatorname{Tr}_{Y_1}(T - c[Y_1]) \sim_P \operatorname{Tr}_{W_1}(\pi^*(T - c[Y_1]))$$

$$\sim_P \operatorname{Tr}_{W_1}(\pi^*T - c[W_1]) + c \operatorname{Tr}_{W_1}(\pi^*[Y_1] - [W_1]).$$

So

$$\mu'(\Pi^* \operatorname{Tr}_{Y_1}(T - c[Y_1])) = \mu'(\operatorname{Tr}_{W_1}(\pi^*T - c[W_1])) + c\mu'(\operatorname{Tr}_{W_1}(\pi^*[Y_1] - [W_1])).$$

Combining the above with (10.7), we see that (10.6) follows.

thm:liftableflag

Theorem 10.1.1 Let $\pi: Z \to X$ be a proper bimeromorphic morphism from a reduced complex space Z. Then there is a modification $W \to X$ dominating $Z \to X$ such that Y_{\bullet} admits a lifting to W.

Proof By Hironaka's Chow lemma, we may assume that π is a modification.

We begin by setting $W_0 = Z$. We will construct W_i inductively for each i. Assume that for $0 \le i < n$ a smooth partial flag $W_0 \supset \cdots \supset W_i$ has been constructed on a modification $\pi_i : Z_i \to Z$ so that $\pi \circ \pi_i$ restricts to bimeromorphic morphisms $W_i \to Y_i$ for each $j = 0, \ldots, i$.

By Zariski's main theorem, $W_i \rightarrow Y_i$ is an isomorphism outside a codimension 2 subset of Y_i . We let W_{i+1} be the strict transform of Y_{i+1} in W_i . The problem is that W_{i+1} is not necessarily smooth.

We will further modify Z_i and lift W_1, \ldots, W_{i+1} in order to make the flag smooth.

Take the embedded resolution of (W_j, W_{i+1}) , say $W'_j \to W_j$ for each $j = 0, \dots, i$. We have canonical embeddings $W'_i \hookrightarrow W'_{i-1} \hookrightarrow \cdots \hookrightarrow W'_0$ making the following diagram commutative:

$$W'_{i} \longleftrightarrow W'_{i-1} \longleftrightarrow \cdots \longleftrightarrow W'_{0}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \vdots \qquad \qquad \downarrow$$

$$W_{i} \longleftrightarrow W_{i-1} \longleftrightarrow \cdots \longleftrightarrow W_{0}$$

Let W'_{i+1} be the strict transform of W_{i+1} in W'_i . It suffices to define π_{i+1} as the morphism $W'_0 \to Z_i \to Z$ and replace $W_0 \supset \cdots \supset W_{i+1}$ by $W'_0 \supset \cdots \supset W'_{i+1}$.

10.2 Algebraic partial Okounkov bodies

sec:PoB

Let X be a connected smooth complex projective variety of dimension n and (L, h)be a Hermitian big line bundle on X.

Let h_0 be a smooth Hermitian metric on L. Let $\theta = c_1(L, h_0)$. Then we can identify h with a function $\varphi \in PSH(X, \theta)$. We will use interchangeably the notations (θ, φ) and (L, h).

Fix a rank *n* valuation $\nu \colon \mathbb{C}(X)^{\times} \to \mathbb{Z}^n$, which without loss of generality can be assumed to be surjective.

We will adopt the notations of Appendix C.2.

10.2.1 The spaces of sections

Definition 10.2.1 We will write

$$\Gamma(\theta,\varphi) := \left\{ (\nu(s),k) : k \in \mathbb{N}, s \in H^0(X, L^k \otimes I(k\varphi))^{\times} \right\},$$

$$\Delta_k(\theta,\varphi) := \operatorname{Conv} \left\{ k^{-1} \nu(f) : f \in H^0(X, L^k \otimes I(k\varphi))^{\times} \right\} \subseteq \mathbb{R}^n, \quad k \ge 0.$$

When $\theta = V_{\theta}$, we simply write $\Gamma(L)$ and $\Delta_k(L)$ instead.

Here Conv denotes the convex hull. For large enough k, $\Delta_k(\theta, \varphi)$ is non-empty thanks to Theorem 7.3.1.

Definition 10.2.2 Assume that φ has analytic singularities. We define

$$\Gamma^{\infty}(\theta,\varphi) \coloneqq \left\{ (\nu(s),k) : k \in \mathbb{N}, s \in \mathrm{H}^{0}(X,L^{k} \otimes \mathcal{I}_{\infty}(k\varphi))^{\times} \right\}. \tag{10.8}$$

For later use, we introduce a twisted version as well.

Definition 10.2.3 If T is a holomorphic line bundle on X, we introduce

$$\Delta_{k,T}(\theta,\varphi) := \operatorname{Conv}\left\{k^{-1}\nu(f) : f \in \operatorname{H}^{0}(X,T \otimes L^{k} \otimes I(k\varphi))^{\times}\right\} \subseteq \mathbb{R}^{n},$$

$$\Delta_{k,T}(L) := \operatorname{Conv}\left\{k^{-1}\nu(f) : f \in \operatorname{H}^{0}(X,T \otimes L^{k})^{\times}\right\} \subseteq \mathbb{R}^{n}.$$

10.2.2 Algebraic Okounkov bodies

prop:Okounbiglbdl

Proposition 10.2.1 There is a convex body $\Delta \in \mathcal{K}_n$ such that $\Gamma(L) \in \mathcal{S}'(\Delta)$.

Proof Step 1. We first show that there is $\Delta \in \mathcal{K}_n$ such that $\Delta_k(L) \subseteq \Delta$. For this purpose, using Remark 10.1.1, we may assume that ν is induced by an admissible flag Y_{\bullet} on X.

Fix $s \in H^0(X, L^k)^{\times}$ for some $k \in \mathbb{Z}_{>0}$. Assume that $s \neq 0$. We need to show that for each $i = 1, ..., n, v(s)_i \leq Ck$ for some constant C > 0, independent of the choices of k and s.

Fix an ample divisor H on X. Take a large enough integer $b_1 > 0$ such that

$$(L-b_1Y_1)\cdot H^{n-1}<0.$$

Then $v(s)_1 \le b_1 k$. Next take a large enough integer b_2 such that

$$((L - aY_1)|_{Y_1} - b_2Y_2) \cdot H^{n-2} < 0.$$

It follows that $v(s)_2 \le b_2 k$. Continue in this manner, we conclude that $v(s)_i/k$ is bounded for each i.

Step 2. Observe that $\Gamma(L)$ is clearly a semigroup. It remains to show that $\Gamma(L)$ generates \mathbb{Z}^{n+1} as an Abelian group.

For this purpose, take two very ample divisors A and B so that $L = O_X(A - B)$. After choosing A and B ample enough, we may guarantee that there exist sections $s_0 \in H^0(X, A)$, $t_i \in H^0(X, B)$ for i = 0, ..., n such that

$$v(s_0) = v(t_0) = 0$$

and $v(t_i)$ is the *i*-th unit vector $e_i \in \mathbb{R}^n$ for i = 1, ..., n.

Since L is big, we can find $m_0 > 0$ such that for any $m \ge m_0$ we can find an effective divisor F_m on X linearly equivalent to mL - B. Let $f_m = \nu([F_m])$. Then we find that

$$(f_m, m), (f_m + e_1, m), \dots, (f_m + e_n, m) \in \Gamma(L).$$

Since (m + 1)L is linearly equivalent to $A + F_m$, so

$$(f_m, m+1) \in \Gamma(L)$$
.

It follows that $\Gamma(L)$ generates \mathbb{Z}^{n+1} .

Thanks to Proposition 10.2.1, we can introduce the next definition.

Definition 10.2.4 We define the *Okounkov body* of L with respect to the valuation ν as

$$\Delta_{\nu}(L) := \Delta(\Gamma(L)).$$

prop:Okounonlydepnum

Proposition 10.2.2 *The Okounkov body* $\Delta_{\nu}(L)$ *depends only on the numerical class of* L.

See [LM09] Proposition 4.1] for the elegant proof.

cor:Okounvol

Corollary 10.2.1 We have

$$\operatorname{vol} \Delta_{\nu}(L) = \frac{1}{n!} \operatorname{vol} L. \tag{10.9}$$

Proof This follows immediately from Proposition 10.2.1 and Theorem C.2.1.

prop:GammaepsSp

Proposition 10.2.3 Assume that φ has analytic singularities and θ_{φ} is a Kähler current. Then we have

$$\Gamma^{\infty}(\theta,\varphi) \in \mathcal{S}'(X,\theta)$$

and

$$\operatorname{vol}\Gamma^{\infty}(\theta,\varphi) = \frac{1}{n!} \int_{X} \theta_{\varphi}^{n}.$$

Proof Replacing X by a modification, we may assume that φ has log singularities along an effective \mathbb{Q} -divisor D. See Theorem 1.6.1.

In this case,

$$\Gamma^{\infty}(\theta,\varphi) = \left\{ (\nu(s),k) : k \in \mathbb{N}, s \in \mathrm{H}^{0}(X,L^{k} \otimes \mathcal{O}_{X}(-\lfloor kD \rfloor)). \right\}$$

Since L - D is ample by Lemma 1.6.1, our assertion follows from the same argument as Proposition 10.2.1.

We first extend Theorem C.2.1 to the twisted case.

prop-Deltaconvtwisted

Proposition 10.2.4 For any holomorphic line bundle T on X, as $k \to \infty$

$$\Delta_{k,T}(L) \xrightarrow{d_{\text{Haus}}} \Delta_{\nu}(L).$$

Proof As L is big, we can take $k_0 \in \mathbb{Z}_{>0}$ so that

- (1) $T^{-1} \otimes L^{k_0}$ admits a non-zero global holomorphic section s_0 , and
- (2) $T \otimes L^{k_0}$ admits a non-zero global holomorphic section s_1 .

Then for $k \in \mathbb{Z}_{>k_0}$, we have injective linear maps

$$H^0(X, L^{k-k_0}) \xrightarrow{\times s_1} H^0(X, T \otimes L^k) \xrightarrow{\times s_0} H^0(X, L^{k+k_0}).$$

It follows that

$$(k - k_0)\Delta_{k - k_0}(L) + \nu(s_1) \subseteq k\Delta_{k,T}(L) \subseteq (k + k_0)\Delta_{k + k_0}(L) - \nu(s_0).$$

Using Theorem C.2.1, we conclude.

prop:subadd0koun

Proposition 10.2.5 *Let L' be another big line bundle on X. Then*

$$\Delta_{\nu}(L) + \Delta_{\nu}(L') \subseteq \Delta_{\nu}(L \otimes L').$$

Proof Observe that for each $k \in \mathbb{N}$, we have

$$\Delta_k(L) + \Delta_k(L') \subseteq \Delta_k(L \otimes L').$$

So our assertion follows immediately from Theorem C.2.1.

prop:Okourescaling

Proposition 10.2.6 *For any* $a \in \mathbb{Z}_{>0}$ *, we have*

$$\Delta_{\nu}(L^a) = a\Delta_{\nu}(L).$$

Proof This is an immediate consequence of Theorem C.2.1.

10.2.3 Construction of partial Okounkov bodies

thm:Gammaasg

Theorem 10.2.1 We have

$$\Gamma(\theta, \varphi) \in \overline{\mathcal{S}'(\Delta_{\nu}(L))}_{>0}.$$

This theorem allows us to give the following definition:

Definition 10.2.5 The partial Okounkov body of (L, h) is defined as

$$\Delta_{\nu}(L,h) = \Delta_{\nu}(\theta,\varphi) := \Delta\left(\Gamma(\theta,\varphi)\right). \tag{10.10} \quad \{\text{eq:Deltalbdef}\}$$

When ν is induced by an admissible flag Y_{\bullet} on X (see Definition 10.1.1), we also say that $\Delta_{\nu}(\theta, \varphi)$ the *partial Okounkov body* of (L, h) or of (θ, φ) with respect to Y_{\bullet} . In this case, we also write $\Delta_{Y_{\bullet}}$ instead of Δ_{ν} .

cor:POBvolume

Corollary 10.2.2 We have

$$\operatorname{vol} \Delta_{\nu}(\theta, \varphi) = \frac{1}{n!} \operatorname{vol} \theta_{\varphi}. \tag{10.11}$$

Proof This follows immediately from Theorem 10.2.1, Theorem 7.3.1 and Theorem C.2.2.

We will prove Theorem 10.2.1 and Corollary 10.2.2 at the same time.

Proof Step 1. We first assume that φ has analytic singularities and θ_{φ} is a Kähler current.

We claim that

$$d_{\rm sg}(\Gamma^{\infty}(\theta,\varphi),\Gamma(\theta,\varphi)) = 0. \tag{10.12}$$

{eq:Gamma0Gammaanalytic}

Observe that for each $\epsilon \in \mathbb{Q}_{>0}$, we have

$$\mathrm{H}^0(X,L^k\otimes\mathcal{I}_\infty(k\varphi))\subseteq\mathrm{H}^0(X,L^k\otimes\mathcal{I}(k\varphi))\subseteq\mathrm{H}^0(X,L^k\otimes\mathcal{I}_\infty(k(1-\epsilon)\varphi))$$

for all large enough k. This is a consequence of Lemma 1.6.3. Therefore, it suffices to show that

$$\lim_{\mathbb{Q}\ni\epsilon\to0+}\operatorname{vol}\Gamma^{\infty}(\theta,(1-\epsilon)\varphi)=\operatorname{vol}\Gamma^{\infty}(\theta,\varphi).$$

This follows from the explicit formula in Proposition 10.2.3.

Step 2. We next handle the case where θ_{φ} is a Kähler current.

Let $(\varphi_j)_j$ be a quasi-equisingular approximation of φ in PSH (X, θ) . Then $\varphi_j \xrightarrow{d_S} P_{\theta}[\varphi]_{\mathcal{I}}$ by Corollary 7.1.2.

In this case, it suffices to prove that

$$\Gamma(\theta, \varphi_j) \xrightarrow{d_{\text{sg}}} \Gamma(\theta, \varphi).$$
 (10.13) [eq:WtoWclaim]

In fact, by Theorem 7.3.1, we have

$$\begin{split} &d_{\operatorname{sg}}(\Gamma(\theta,\varphi_{j}),\Gamma(\theta,\varphi)) \\ &= \overline{\lim}_{k \to \infty} k^{-n} \left(\operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi_{j})) - \operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi)) \right) \\ &= \lim_{k \to \infty} k^{-n} \operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi_{j})) - \lim_{k \to \infty} k^{-n} \operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi)) \\ &= \frac{1}{n!} \operatorname{vol} \theta_{\varphi_{j}} - \frac{1}{n!} \operatorname{vol} \theta_{\varphi}. \end{split}$$

Letting $j \to \infty$, we conclude (10.13) by Theorem 6.2.5.

Step 3. Now we only assume that vol $\theta_{\varphi} > 0$. We may replace φ with $P_{\theta}[\varphi]_{\mathcal{I}}$ and then assume that $\varphi \in \text{PSH}(X, \theta)_{>0}$.

Take a potential $\psi \in PSH(X, \theta)$ such that $\psi \leq \varphi$ and θ_{ψ} is a Kähler current. The existence of ψ is proved in Lemma 2.3.2. For each $\epsilon \in (0, 1)$, let $\varphi_{\epsilon} = (1 - \epsilon)\varphi + \epsilon \psi$. It suffices to show that

$$\Gamma(\theta, \varphi_{\epsilon}) \xrightarrow{d_{\text{sg}}} \Gamma(\theta, \varphi)$$

as $\epsilon \to 0+$. We compute using Theorem 7.3.1:

П

$$\begin{split} &d_{\operatorname{sg}}\left(\Gamma(\theta,\varphi_{\epsilon}),\Gamma(\theta,\varphi)\right) \\ &= \overline{\lim}_{k \to \infty} k^{-n} \left(\operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi)) - \operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi_{\epsilon})) \right) \\ &= \lim_{k \to \infty} k^{-n} \operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi)) - \lim_{k \to \infty} k^{-n} \operatorname{H}^{0}(X,L^{k} \otimes I(k\varphi_{\epsilon})) \\ &= \frac{1}{n!} \operatorname{vol} \theta_{\varphi} - \frac{1}{n!} \operatorname{vol} \theta_{\varphi_{\epsilon}} \\ &\to 0 \end{split}$$

by Theorem 6.2.5, as $\epsilon \to 0+$.

rmk:DeltaanaW0

Remark 10.2.1 It follows from the proof that if φ has analytic singularities and θ_{φ} is a Kähler current, then (10.12) holds.

If we take a modification $\pi\colon Y\to X$ such that $\pi^*\varphi$ has log singularities along an effective \mathbb{Q} -divisor D on Y, then

$$\Delta_{\nu}(\theta,\varphi) = \Delta_{\nu}(\pi^*L - D) + \nu(D).$$

10.2.4 Basic properties of partial Okounkov bodies

cor:Okocurrent

Proposition 10.2.7 *The partial Okounkov body* $\Delta_{\nu}(L, h)$ *depends only on* dd^c h, *not on the explicit choices of* L, h_0 , h.

Thanks to this result, given a closed positive (1,1)-current $T \in c_1(L)$ on X with $\int_X T^n > 0$, we can write

$$\Delta_{\nu}(T) := \Delta_{\nu}(\theta, \varphi)$$

if $T = \theta + \mathrm{dd}^{\mathrm{c}} \varphi$ for some $\varphi \in \mathrm{PSH}(X, \theta)$.

Proof There are two different claims to prove, as detailed in the two steps below.

Step 1. Let h'_0 be another Hermitian metric on L. Set $\theta' = c_1(L, h'_0)$. Write $dd^c f = \theta - \theta'$. Let $\varphi' = \varphi + f \in PSH(X, \theta')$. Then

$$\Delta_{\nu}(\theta,\varphi) = \Delta_{\nu}(\theta',\varphi'). \tag{10.14}$$

{eq:DeltaDelta1}

This is obvious since $\Gamma(\theta, \varphi) = \Gamma(\theta', \varphi')$.

Step 2. Let L' be another big line bundle on X. By Step 1, we may assume that the reference Hermitian metric h'_0 on L' is such that $c_1(L', h'_0) = \theta$.

Let h' be a plurisubharmonic metric on L' with $c_1(L,h) = c_1(L',h')$. Then

$$\Delta_{\nu}(L,h) = \Delta_{\nu}(L',h').$$

From our construction, we may assume that $c_1(L, h)$ has analytic singularities. After taking a birational resolution, it suffices to deal with the case where $c_1(L, h)$ has analytic singularities along an effective \mathbb{Q} -divisors D. By rescaling, we may also

assume that D is a divisor. By Remark 10.2.1, we further reduce to the case where $c_1(L, h)$ is not singular.

In this case, the assertion is proved in Proposition 10.2.2.

prop:IcompimplyDeltacomp

Proposition 10.2.8 Let $\varphi, \psi \in PSH(X, \theta)_{>0}$. Assume that $\varphi \leq_{\mathcal{I}} \psi$, then

$$\Delta_{\nu}(\theta,\varphi) \subseteq \Delta_{\nu}(\theta,\psi).$$
 (10.15) {eq:Deltacomp}

Proof This follows from Corollary C.2.2.

thm:Okoucont

Theorem 10.2.2 The Okounkov body map

$$\Delta_{\nu}(\theta, \bullet) : (\mathrm{PSH}(X, \theta)_{>0}, d_S) \to (\mathcal{K}_n, d_{\mathrm{Haus}})$$

is continuous.

Proof Let $\varphi_j \to \varphi$ be a d_S -convergent sequence in $PSH(X, \theta)_{>0}$. We want to show that

$$\Delta_{\nu}(\theta, \varphi_j) \xrightarrow{d_{\text{Haus}}} \Delta_{\nu}(\theta, \varphi).$$
 (10.16) [eq:Deltar

By Proposition 10.2.8, we may assume that all φ_i 's and φ are model potentials.

By Theorem C.1.1 and Proposition 6.2.3, we may assume that $(\varphi_j)_j$ is either decreasing or increasing. By Theorem 6.2.3, we may further assume that the φ_j 's are \mathcal{I} -model. In both cases, we claim that

$$\Gamma(\theta, \varphi_j) \xrightarrow{d_{sg}} \Gamma(\theta, \varphi)$$

as $j \to \infty$. In fact, using Theorem 7.3.1, we can compute

$$\begin{split} d_{\text{sg}}\left(\Gamma(\theta,\varphi_{j}),\Gamma(\theta,\varphi)\right) &= \overline{\lim_{k\to\infty}} \, k^{-n} \left| \mathrm{H}^{0}(X,L^{k}\otimes\mathcal{I}(k\varphi_{j})) - \mathrm{H}^{0}(X,L^{k}\otimes\mathcal{I}(k\varphi)) \right| \\ &= \frac{1}{n!} \left| \mathrm{vol}\,\theta_{\varphi_{j}} - \mathrm{vol}\,\theta_{\varphi} \right|, \end{split}$$

which converges to 0 by Theorem 6.2.5.

prop:birinv0

Proposition 10.2.9 *Let* $\pi: Y \to X$ *be a modification. Then*

$$\Delta_{\mathcal{V}}(\pi^*L, \pi^*h) = \Delta_{\mathcal{V}}(L, h).$$

Proof Thanks to Proposition 3.2.5, we may assume that φ is I-model. By Theorem 7.1.1, we can find a sequence $(\varphi_j)_j$ with analytic singularities in PSH (X, θ) such that $\varphi_j \xrightarrow{d_S} \varphi$. It is clear that $\pi^* \varphi_j \xrightarrow{d_S} \pi^* \varphi$. By Theorem 10.2.2, we may then reduce to the case where φ has analytic singularities. In this case, it suffices to apply Remark 10.2.1.

prop:suba

Proposition 10.2.10 *Let* (L', h') *be another Hermitian big line bundle on* X. Then

$$\Delta_{\nu}(L,h) + \Delta_{\nu}(L',h') \subseteq \Delta_{\nu}(L \otimes L',h \otimes h').$$

Proof Take a smooth metric h'_0 on L' and let $\theta' = c_1(L', h'_0)$. We identify h' with $\varphi' \in PSH(X, \theta')$. Then we need to show

$$\Delta_{\nu}(\theta,\varphi) + \Delta_{\nu}(\theta',\varphi') \subseteq \Delta_{\nu}(\theta+\theta',\varphi+\varphi'). \tag{10.17}$$
 {eq:suba}

By Theorem 7.1.1, we can find sequences $(\varphi_j)_j$ and $(\varphi'_j)_j$ in $PSH(X, \theta)_{>0}$ and $PSH(X, \theta')_{>0}$ respectively such that

(1) φ_j and φ_i' both have analytic singularities for all $j \ge 1$, and

(2)
$$\varphi_j \xrightarrow{d_S} \varphi, \varphi'_j \xrightarrow{d_S} \varphi'.$$

Then $\varphi_j + \varphi_j' \in \text{PSH}(X, \theta + \theta')_{>0}$ and $\varphi_j + \varphi_j' \xrightarrow{d_S} \varphi + \varphi'$ by Theorem 6.2.2. Thus, by Theorem 10.2.2, we may assume that φ and ψ both have analytic singularities. Taking a birational resolution, we may further assume that they have log singularities. By Remark 10.2.1, we reduce to the case without singularities, in which case the result is just Proposition 10.2.5.

thm:concOko

Theorem 10.2.3 Let $\varphi, \psi \in PSH(X, \theta)_{>0}$. Then for any $t \in (0, 1)$,

$$\Delta_{\nu}(\theta, t\varphi + (1-t)\psi) \supseteq t\Delta_{\nu}(\theta, \varphi) + (1-t)\Delta_{\nu}(\theta, \psi). \tag{10.18}$$

{eq:Deltaconcave}

Proof We may assume that t is rational as a consequence of Theorem 10.2.2. Similarly, as in the proof of Proposition 10.2.10, we could reduce to the case where both φ and ψ have analytic singularities. In this case, let N > 0 be an integer such that Nt is an integer. Then for any $s \in H^0(X, L^k \otimes I_\infty(k\varphi))$ and $r \in H^0(X, L^k \otimes I_\infty(k\psi))$, we have

$$s^{tN} \otimes r^{N-tN} \in \mathrm{H}^0(X, L^{kN} \otimes \mathcal{I}_{\infty}(Nt\varphi + (N-Nt)\psi)).$$

By Theorem C.2.1 and Remark 10.2.1, (10.18) follows.

prop:res

Proposition 10.2.11 *For any* $a \in \mathbb{Z}_{>0}$,

$$\Delta_{\nu}(a\theta, a\varphi) = a\Delta_{\nu}(\theta, \varphi).$$

Proof As in the proof of Proposition 10.2.10, we may assume that φ has log singularities. Using Remark 10.2.1, we reduce to the case without the singularity φ , which is proved in Proposition 10.2.6.

In particular, if T is a closed positive (1, 1)-current on X with $\int_X T^n > 0$ and such that

$$[T] \in NS^1(X)_{\mathbb{Q}},$$

we can define

$$\Delta_{\nu}(T) := a^{-1} \Delta_{\nu}(aT) \tag{10.19}$$

{eq:DeltanuTalgebraic1}

for a sufficiently divisible positive integer a.

We also need the following perturbation. Let A be an ample line bundle on X. Fix a Hermitian metric h_A on A such that $\omega \coloneqq c_1(A, h_A)$ is a Kähler form on X.

prop:Deltapert

Proposition 10.2.12 As $\delta \searrow 0$, the convex bodies $\Delta_{\nu}(\theta + \delta\omega + dd^{c}\varphi)$ are decreasing and

$$\Delta_{\nu}(\theta + \delta\omega + \mathrm{dd}^{\mathrm{c}}\varphi) \xrightarrow{d_{\mathrm{Haus}}} \Delta_{\nu}(\theta_{\varphi}).$$

Proof Let $0 \le \delta < \delta'$ be two rational numbers. Take $C \in \mathbb{N}_{>0}$ divisible enough, so that $C\delta$ and $C\delta'$ are both integers. Then by Proposition 10.2.10,

$$\Delta_{\nu}(C\theta + C\delta\omega + C\mathrm{dd}^{\mathrm{c}}\varphi) \subseteq \Delta_{\nu}(C\theta + C\delta'\omega + C\mathrm{dd}^{\mathrm{c}}\varphi).$$

It follows that

$$\Delta_{\nu}(\theta + \delta\omega + dd^{c}\varphi) \subseteq \Delta_{\nu}(\theta + \delta'\omega + dd^{c}\varphi).$$

On the other hand,

$$\operatorname{vol} \Delta_{\nu}(\theta + \delta\omega + \operatorname{dd^{c}}\varphi) = \frac{1}{n!}\operatorname{vol}(\theta + \delta\omega)_{\varphi} = \frac{1}{n!}\int_{X} (\theta + \delta\omega)_{P_{\theta}[\varphi]_{I}}^{n},$$

where we applied Example 7.1.2. As $\delta \to 0+$, the right-hand side converges to

$$\operatorname{vol} \Delta_{\nu}(\theta, \varphi) = \frac{1}{n!} \operatorname{vol} \theta_{\varphi}.$$

Our assertion therefore follows.

10.2.5 The Hausdorff convergence property of partial Okounkov bodies

Let T be a holomorphic line bundle on X.

thm:HCP

Theorem 10.2.4 As $k \to \infty$, we have $\Delta_{k,T}(\theta,\varphi) \xrightarrow{d_{\text{Haus}}} \Delta_{\nu}(\theta,\varphi)$.

Although we are only interested in the untwisted case, the proof given below requires twisted case.

lma:twistedHcp

Lemma 10.2.1 Assume that φ has analytic singularities and θ_{φ} is a Kähler current, then as $k \to \infty$,

$$\Delta_{k,T}(\theta,\varphi) \xrightarrow{d_{\text{Haus}}} \Delta_{\nu}(\theta,\varphi).$$

Proof Up to replacing X by a birational model and twisting T accordingly, we may assume that φ has log singularities along an effective \mathbb{Q} -divisor D, see Proposition 10.2.9 and Theorem 1.6.1.

Take a small enough $\epsilon \in \mathbb{Q}_{>0}$. In this case, for large enough $k \in \mathbb{Z}_{>0}$ we have

$$\mathrm{H}^0(X,T\otimes L^k\otimes \mathcal{I}_\infty(k\varphi))\subseteq \mathrm{H}^0(X,T\otimes L^k\otimes \mathcal{I}(k\varphi))\subseteq \mathrm{H}^0(X,T\otimes L^k\otimes \mathcal{I}_\infty(k(1-\epsilon)\varphi)).$$

Take an integer $N \in \mathbb{Z}_{>0}$ so that ND is a divisor and $N\epsilon$ is an integer.

Let Δ' be the limit of a subsequence of $(\Delta_{k,T}(\theta,\varphi))_k$, say the sequence defined by the indices k_1, k_2, \ldots . We want to show that $\Delta' = \Delta(\theta,\varphi)$.

There exists $t \in \{0, 1, ..., N-1\}$ such that $k_i \equiv t \mod N$ for infinitely many i, up to replacing k_i by a subsequence, we may assume that $k_i \equiv t \mod N$ for all i. Write $k_i = Ng_i + t$. Then for large enough i, we have

$$\begin{split} \mathrm{H}^0(X,T\otimes L^{-N+t}\otimes L^{N(g_i+1)}\otimes I_{\infty}(N(g_i+1)\varphi)) &\subseteq \mathrm{H}^0(X,T\otimes L^{k_i}\otimes I(k_i\varphi)) \\ &\subseteq \mathrm{H}^0(X,T\otimes L^t\otimes L^{Ng_i}\otimes I_{\infty}(g_iN(1-\epsilon)\varphi)). \end{split}$$

So

$$(g_i + 1)\Delta_{g_i + 1, T \otimes L^{-N+t}}(NL - ND) + N(g_i + 1)\nu(D) \subseteq (Ng_i + t)\Delta_{k,T}(\theta, \varphi)$$

$$\subseteq g_i\Delta_{g_i, T \otimes L^t}(NL - N(1 - \epsilon)D) + Ng_i(1 - \epsilon)\nu(D).$$

Letting $i \to \infty$, by Proposition 10.2.4,

$$\Delta_{\nu}(L-D) + \nu(D) \subseteq \Delta' \subseteq \Delta_{\nu}(L-(1-\epsilon)D) + (1-\epsilon)\nu(D).$$

Letting $\epsilon \to 0+$, we find that

$$\Delta_{\nu}(L-D) + \nu(D) = \Delta'.$$

It follows from Theorem C.1.1 that

$$\Delta_{k,T}(\theta,\varphi) \xrightarrow{d_{\text{Haus}}} \Delta_{\nu}(L-D) + \nu(D) = \Delta_{\nu}(\theta,\varphi)$$

as $k \to \infty$.

lma-Hausconvbetato0

Lemma 10.2.2 Assume that θ_{φ} is a Kähler current, then as $\mathbb{Q} \ni \beta \to 0+$, we have

$$\Delta_{\nu}((1-\beta)\theta,\varphi) \xrightarrow{d_{\text{Haus}}} \Delta_{\nu}(\theta,\varphi).$$

Here and in the sequel, $\Delta_{\nu}((1-\beta)\theta, \varphi) = \Delta_{\nu}((1-\beta)\theta + dd^{c}\varphi)$.

Proof By Proposition 10.2.10, we have

$$\Delta_{\mathcal{V}}((1-\beta)\theta,\varphi) + \beta\Delta_{\mathcal{V}}(L) \subseteq \Delta_{\mathcal{V}}(\theta,\varphi).$$

In particular, if Δ' is the Hausdorff limit of a subsequence of $(\Delta((1-\beta)\theta,\varphi))_{\beta}$, then $\Delta' \subseteq \Delta_{\nu}(\theta,\varphi)$. But

$$\operatorname{vol} \Delta' = \lim_{\beta \to 0+} \Delta_{\nu}((1-\beta)\theta, \varphi) = \lim_{\beta \to 0+} \int_{X} ((1-\beta)\theta + \operatorname{dd^{c}} P_{(1-\beta)\theta}[\varphi]_{I})^{n}$$
$$= \int_{Y} (\theta + \operatorname{dd^{c}} P_{\theta}[\varphi]_{I})^{n},$$

where the last step follows easily from Theorem 11.2.1. It follows that $\Delta' = \Delta_{\nu}(\theta, \varphi)$. We conclude by Theorem C.1.1.

Proof (**Proof** of **Theorem 10.2.4**) Fix a Kähler form $\omega \ge \theta$ on X.

Step 1. We first handle the case where θ_{φ} is a Kähler current, say $\theta_{\varphi} \geq 2\delta\omega$ for some $\delta \in (0,1)$. Take a quasi-equisingular approximation $(\varphi_j)_j$ of φ in PSH (X,θ) . We may assume that $\theta_{\varphi_j} \geq \delta\omega$ for all $j \geq 1$.

Let Δ' be a limit of a subsequence of $(\Delta_{k,T}(\theta,\varphi))_k$. Let us say the indices of the subsequence are $k_1 < k_2 < \cdots$. By Theorem C.1.1, it suffices to show that $\Delta' = \Delta_{\nu}(\theta,\varphi)$.

Observe that for each $j \ge 1$, we have $\Delta' \subseteq \Delta_{\nu}(\theta, \varphi_j)$ by Lemma 10.2.1. Letting $j \to \infty$, we find $\Delta' \subseteq \Delta_{\nu}(\theta, \varphi)$. Therefore, it suffices to prove that

$$\operatorname{vol} \Delta' \ge \operatorname{vol} \Delta_{\nu}(\theta, \varphi).$$
 (10.20)

Fix an integer $N > \delta^{-1}$. Observe that for any $j \ge 1$, we have $\varphi_j \in \text{PSH}(X, (1-N^{-1})\theta)$. Similarly, $\varphi \in \text{PSH}(X, (1-N^{-1})\theta)$. By Lemma 10.2.2, it suffices to argue that

$$\operatorname{vol} \Delta' \ge \operatorname{vol} \Delta_{\nu}((1 - N^{-1})\theta, \varphi). \tag{10.21}$$

{eq:volDeltatoprove}

For this purpose, we are free to replace k_i 's by a subsequence, so we may assume that $k_i \equiv a \mod q$ for all $i \ge 1$, where $a \in \{0, 1, \dots, q-1\}$. We write $k_i = g_i q + a$. Observe that for each $i \ge 1$,

$$H^0(X, T \otimes L^{k_i} \otimes \mathcal{I}(k_i \varphi)) \supseteq H^0(X, T \otimes L^{-q+a} \otimes L^{g_i q+q} \otimes \mathcal{I}((g_i q+q) \varphi)).$$

Up to replacing T by $T \otimes L^{-q+a}$, we may therefore assume that a = 0.

By Lemma 2.3.1, we can find $k' \in \mathbb{Z}_{>0}$ such that for all $k \ge k'$, there is $\psi \in PSH(X, \theta)_{>0}$ satisfying

$$P_{\theta}[\varphi]_{\mathcal{I}} \ge (1 - N^{-1})\varphi_k + N^{-1}\psi_k.$$

Fix $k \ge k'$. It suffices to show that

$$\Delta_{\nu}((1-N^{-1})\theta,\varphi_k) + \nu' \subseteq \Delta' \tag{10.22}$$

{eq:DeltatransinDeltaprime}

for some $v' \in \mathbb{R}^n$. In fact, if this is true, we have

$$\operatorname{vol} \Delta' \ge \operatorname{vol} \Delta((1 - N^{-1})\theta, \varphi_k).$$

Letting $k \to \infty$ and applying Theorem 10.2.2, we conclude (10.21).

It remains to prove (10.22). By the proof of Theorem 7.3.1, there is $j_0 > 0$ such that for any $j \ge j_0$, we can find a non-zero section $s_j \in H^0(X, L^j \otimes I(j\psi_k))$ such that we get an injective linear map

$$\mathrm{H}^0(X,T\otimes L^{(N-1)j}\otimes \mathcal{I}(jN\varphi_k))\xrightarrow{\times s_j} \mathrm{H}^0(X,T\otimes L^{jN}\otimes \mathcal{I}(jN\varphi)).$$

In particular, when $j = k_i$ for some i large enough, we then find

$$\Delta_{k_i,T}((N-1)\theta,N\varphi_k)+(k_i)^{-1}\nu(s_{k_i})\subseteq N\Delta_{k_i,T}(\theta,\varphi).$$

We observe that $(k_i)^{-1}\nu(s_{k_i})$ is bounded as both convex bodies appearing in this equation are bounded when i varies. Then by Lemma 10.2.1, there is a vector $v' \in \mathbb{R}^n$ such that (10.22) holds.

Step 2. Next we handle the general case.

Let Δ' be the Hausdorff limit of a subsequence of $(\Delta_{k,T}(\theta,\varphi))_k$, say the subsequence with indices $k_1 < k_2 < \cdots$. By Theorem C.1.1, it suffices to prove that $\Delta' = \Delta_{\nu}(\theta,\varphi)$.

Take $\psi \in \text{PSH}(X, \theta)$ such that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. The existence of ψ follows from Lemma 2.3.2.

Then for any $\epsilon \in \mathbb{Q} \cap (0, 1)$,

$$\Delta_{k,T}(\theta,\varphi) \supseteq \Delta_{k,T}(\theta,(1-\epsilon)\varphi + \epsilon\psi)$$

for all $k \ge 1$. It follows from Step 1 that

$$\Delta' \supseteq \Delta_{\nu}(\theta, (1 - \epsilon)\varphi + \epsilon \psi).$$

Letting $\epsilon \to 0$ and applying Theorem 10.2.2, we have $\Delta' \supseteq \Delta_{\nu}(\theta, \varphi)$. It remains to establish that

$$\operatorname{vol} \Delta' \le \operatorname{vol} \Delta_{\nu}(\theta, \varphi). \tag{10.23}$$

{eq:Deltapvolumeupp}

For this purpose, we are free to replace $k_1 < k_2 < \cdots$ by a subsequence. Fix q > 0, we may then assume that $k_i \equiv a \mod q$ for all $i \ge 1$ for some $a \in \{0, 1, \ldots, q-1\}$. We write $k_i = g_i q + a$. Observe that

$$H^0(X, T \otimes L^{k_i} \otimes \mathcal{I}(k_i \varphi)) \subseteq H^0(X, T \otimes L^a \otimes L^{g_i q} \otimes \mathcal{I}(g_i q \varphi)).$$

Up to replacing T by $T \otimes L^a$, we may assume that a = 0.

Take a very ample line bundle H on X and fix a Kähler form $\omega \in c_1(H)$, take a non-zero section $s \in H^0(X, H)$.

We have an injective linear map

$$H^0(X, T \otimes L^{jq} \otimes I(jq\varphi)) \xrightarrow{\times s^j} H^0(X, T \otimes H^j \otimes L^{jq} \otimes I(jq\varphi))$$

for each $j \ge 1$. In particular, for each $i \ge 1$,

$$k_i \Delta_{k_i,T}(q\theta, q\varphi) + k_i \nu(s) \subseteq k_i \Delta_{k_i,T}(\omega + q\theta, q\varphi).$$

Letting $i \to \infty$, by Step 1, we have

$$q\Delta' + \nu(s) \subseteq \Delta_{\nu}(\omega + q\theta, q\varphi).$$

So

$$\operatorname{vol} \Delta' \leq \operatorname{vol} \Delta_{\nu}(q^{-1}\omega + \theta, \varphi) = \int_{Y} (q^{-1}\omega + \theta + \operatorname{dd^{c}} P_{q^{-1}\omega + \theta}[\varphi]_{\mathcal{I}})^{n}.$$

By Example 7.1.2,

$$\operatorname{vol} \Delta' \le \int_X (q^{-1}\omega + \theta + \operatorname{dd^c} P_{\theta}[\varphi]_{\mathcal{I}})^n.$$

Letting $q \to \infty$, we conclude (10.23).

10.2.6 Recover Lelong numbers from partial Okounkov bodies

thm:nu0k

Theorem 10.2.5 Let E be a prime divisor on X. Let Y_{\bullet} be an admissible flag with $E = Y_1$. Then

$$\nu(\varphi, E) = \min_{x \in \Delta_{Y_{\bullet}}(\theta, \varphi)} x_1. \tag{10.24}$$

Here x_1 denotes the first component of x.

Proof Replacing φ by $P_{\theta}[\varphi]_{I}$, we may assume that φ is I-good.

Step 1. We first reduce to the case where φ has analytic singularities.

By Theorem 7.1.1, we can find a sequence $(\varphi_j)_j$ in PSH $(X, \theta)_{>0}$ with analytic singularities such that $\varphi_j \xrightarrow{d_S} \varphi$. It follows from Theorem 10.2.2 that

$$\Delta_{Y_{\bullet}}(\theta,\varphi_j) \xrightarrow{d_{\text{Haus}}} \Delta_{Y_{\bullet}}(\theta,\varphi).$$

Therefore,

$$\lim_{j\to\infty} \min_{x\in\Delta_{Y_{\bullet}}(\theta,\varphi_j)} x_1 = \min_{x\in\Delta_{Y_{\bullet}}(\theta,\varphi)} x_1.$$

In view of Theorem 6.2.4, it suffices to prove (10.24) with φ_i in place of φ .

Step 2. Assume that φ has analytic singularities. In view of Proposition 10.2.9 and Theorem 1.6.1, after replacing X by a birational model, we may assume that φ has log singularities along an effective \mathbb{Q} -divisor F.

Perturbing L by an ample \mathbb{Q} -line bundle by Proposition 10.2.12, we may assume that θ_{φ} is a Kähler current. Therefore, L-F is ample by Lemma 1.6.1. Finally, by rescaling, we may assume that F is a divisor and L is a line bundle.

By Theorem 10.2.4, we know that

$$\min_{x \in \Delta_{Y_{\bullet}}(\theta,\varphi)} x_1 = \lim_{k \to \infty} \min_{x \in \Delta_k(\theta,\varphi)} x_1.$$

By definition,

$$\min_{x \in \Delta_k(\theta,\varphi)} x_1 = k^{-1} \operatorname{ord}_E H^0(X, L^k \otimes \mathcal{I}(k\varphi)).$$

It remains to show that

$$\lim_{k \to \infty} k^{-1} \operatorname{ord}_E H^0(X, L^k \otimes \mathcal{I}(k\varphi)) = \lim_{k \to \infty} k^{-1} \operatorname{ord}_E \mathcal{I}(k\varphi). \tag{10.25}$$

The \geq direction is trivial, we prove the converse. Observe that

$$H^0(X, L^k \otimes I(k\varphi)) = H^0(X, L^k \otimes O_X(-kF)), \quad I(k\varphi) = O(-kF).$$

As L - F is ample, for large enough k, we have

$$\operatorname{ord}_E H^0(X, L^k \otimes O_X(-kF)) = \operatorname{ord}_E(kF).$$

Thus, (10.25) is clear.

cor:Deltacontimplyvarphi

Corollary 10.2.3 Let $\varphi, \psi \in PSH(X, \theta)_{>0}$. If

$$\Delta_{W_{\bullet}}(\pi^*\theta, \pi^*\varphi) \subseteq \Delta_{W_{\bullet}}(\pi^*\theta, \pi^*\psi)$$

for all birational models $\pi: Y \to X$ and all admissible flags W_{\bullet} on Y, then $\varphi \leq_{\mathcal{I}} \psi$.

Proof This follows immediately from Theorem 10.2.5.

cor:numin

Corollary 10.2.4 *Let E be a prime divisor over X. Then*

$$\nu(V_{\theta}, E) = \lim_{k \to \infty} \frac{1}{k} \operatorname{ord}_{E} H^{0}(X, L^{k}).$$
(10.26)

Proof This follows from Theorem 10.2.5 and the fact that $\Delta_{Y_{\bullet}}(\theta, V_{\theta}) = \Delta_{Y_{\bullet}}(L)$ for any admissible flag Y_{\bullet} on X.

10.3 Transcendental partial Okounkov bodies

sec:tpob

Let X be a connected compact Kähler manifold of dimension n. Fix a smooth flag Y_{\bullet} on X.

10.3.1 The traditional approach to the Okounkov body problem

Definition 10.3.1 Let α be a big cohomology class on X. We define the *Okounkov* body of α as

$$\Delta_{Y_{\bullet}}(\alpha) := \overline{\left\{\nu_{Y_{\bullet}}(S) : S \in \mathcal{Z}_{+}(X,\alpha), S \text{ has gentle analytic singularities}\right\}}. \quad (10.27) \quad \text{{eq:twodefspob}}$$

See Definition 1.6.4 for the definition of gentle analytic singularities. The results of $[DRWN^{+}23]$ can be summarized as follows:

thm:Okounkovtranmain

Theorem 10.3.1 For any big cohomology class α on X, the set $\Delta_{Y_{\bullet}}(\alpha) \subseteq \mathbb{R}^n$ is a convex body satisfying the following properties:

(1) we have

$$\operatorname{vol} \Delta_{Y_{\bullet}}(\alpha) = \frac{1}{n!} \operatorname{vol} \alpha;$$

(2) Given another big cohomology class α' on X, we have

$$\Delta_{Y_{\bullet}}(\alpha) + \Delta_{Y_{\bullet}}(\alpha') \subseteq \Delta_{Y_{\bullet}}(\alpha + \alpha');$$

(3) Let $\pi: Y \to X$ be a proper bimeromorphic morphism with Y being a Kähler manifold. Assume that (W_{\bullet}, g) is the lifting of Y_{\bullet} to Y, then

$$\Delta_{W_{\bullet}}(\pi^*\alpha) = \Delta_{Y_{\bullet}}(\alpha)g;$$

- (4) The map $\alpha \mapsto \Delta_{Y_{\bullet}}(\alpha)$ is continuous in the big cone with respect to the Hausdorff metric:
- (5) For any small enough t > 0, we have

$$\left\{y \in \mathbb{R}^{n-1} : (t, y) \in \Delta_{Y_{\bullet}}(\beta)\right\} = \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}((\beta - t[Y_1])|_{Y_1}).$$

10.3.2 Definitions of partial Okounkov bodies

Let θ be a closed real smooth (1,1)-form on X representing a big cohomology class α .

Let $T = \theta_{\varphi} \in \mathcal{Z}_+(X, \alpha)$. We shall define a convex body $\Delta_{Y_{\bullet}}(T) \subseteq \mathbb{R}^n$, which is also written as $\Delta_{Y_{\bullet}}(\theta, \varphi)$. This convex body is called the *partial Okounkov body* of T with respect to the flag Y_{\bullet} .

10.3.2.1 The case of analytic singularities

def:POBanalsing

Definition 10.3.2 When *T* is a Kähler current with analytic singularities, we take a modification $\pi: Y \to X$ so that

(1)
$$\pi^*T = [D] + R, \qquad (10.28) \quad \text{{eq:resolve analytic}}$$

where D is an effective \mathbb{Q} -divisor on Y and R is a closed positive (1,1)-current with bounded potential, and

(2) the lifting (Z_{\bullet}, g) of Y_{\bullet} to Y exists.

Define

$$\Delta_{Y_{\bullet}}(T) \coloneqq \Delta_{Z_{\bullet}}([R])g^{-1} + \nu_{Z_{\bullet}}([D])g^{-1}.$$

The existence of π is guaranteed by Theorem 1.6.1 and Theorem 10.1.1.

Lemma 10.3.1 *The convex body* $\Delta_{Y_{\bullet}}(T)$ *defined in Definition 10.3.2 is independent of the choice of* π .

Proof Take another map $\pi': Y' \to X$ with the same properties. We want to show that π and π' defines the same $\Delta_{Y_{\bullet}}(T)$. We may assume that π' dominates π through $p: Y' \to Y$, so that we have a commutative diagram

We take D and R as in (10.28). Then

$$\pi'^*T = [p^*D] + p^*R.$$

Write (Z_{\bullet}, g) and (Z'_{\bullet}, g') for the liftings of Y_{\bullet} to Y and Y' respective. We need to prove that

$$\Delta_{Z_{\bullet}}([R])g^{-1} + \nu_{Z_{\bullet}}([D])g^{-1} = \Delta_{Z_{\bullet}'}([p^*R])g'^{-1} + \nu_{Z_{\bullet}'}([p^*D])g'^{-1}.$$

This follows Theorem 10.3.1, Proposition 10.1.4 and Proposition 10.1.3. □

Note that from the above proof, we could describe the bimeromorphic behaviour of $\Delta_{Y_{\bullet}}(T)$ as follows:

lma:liftOkounana

Lemma 10.3.2 Let $T \in \mathcal{Z}_+(X, \alpha)$ be a Kähler current with analytic singularities. Let $\pi \colon Y \to X$ be a proper bimeromorphic morphism and (W_{\bullet}, g) be the lifting of Y_{\bullet} to Y. Then

$$\Delta_{W_{\bullet}}(\pi^*T) = \Delta_{Y_{\bullet}}(T)g.$$

lma:Okounkovanalycomp

Lemma 10.3.3 Assume that $T, S \in \mathcal{Z}_+(X, \alpha)$ are two Kähler currents with analytic singularities and $T \leq S$, then

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(\alpha).$$

Moreover,

$$\operatorname{vol} \Delta_{Y_{\bullet}}(T) = \frac{1}{n!} \int_{Y} T^{n}. \tag{10.29}$$

Proof We first show that

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(S)$$
.

Using Lemma 10.3.2, we may assume that T and S have log singularities along effective \mathbb{Q} -divisors E and F respectively. By assumption, $E \ge F$. Replacing T and S by T - [F] and S - [F] respectively, we may assume that F = 0.

In this case, we need to show that

$$\Delta_{Y_{\bullet}}(\alpha) \supseteq \Delta_{Y_{\bullet}}(\alpha - [E]) + \nu_{Y_{\bullet}}([E]),$$

which is obvious.

Next we prove that

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(\alpha).$$

By Lemma 10.3.2 and Theorem 10.3.1 again, we may assume that T has log singularities. We take D and β as in (10.28). We need to show that

$$\Delta_{Y_{\bullet}}(\alpha - [D]) + \nu_{Y_{\bullet}}([D]) \subseteq \Delta_{Y_{\bullet}}(\alpha),$$

which is again obvious.

Finally, (10.29) follows immediately from Theorem 10.3.1.

10.3.2.2 The case of Kähler currents

def:POBKahcurr

Definition 10.3.3 Let $T \in \mathcal{Z}_+(X, \alpha)$ be a Kähler current. Take a quasi-equisingular approximation $(T_i)_i$ of T in $\mathcal{Z}_+(X, \alpha)$. Then we define

$$\Delta_{Y_{\bullet}}(T) := \bigcap_{j=1}^{\infty} \Delta_{Y_{\bullet}}(T_j).$$

Lemma 10.3.4 *The convex body* $\Delta_{Y_{\bullet}}(T)$ *in Definition 10.3.3 is independent of the choices of the* T_i *'s.*

In particular, if T also has analytic singularities, then the $\Delta_{Y_{\bullet}}(T)$'s defined in Definition 10.3.3 and in Definition 10.3.2 coincide.

Proof Let $(S_j)_j$ be another quasi-equisingular approximation of T in $\mathcal{Z}_+(X,\alpha)$. By Proposition 1.6.3, for any small rational $\epsilon > 0$, j > 0, we can find k > 0 so that

$$S_k \leq (1 - \epsilon)T_i$$
.

It is more convenient to use the language of θ -psh functions at this point. Let ψ_k (resp. φ_k) denote the potentials in PSH (X, θ) corresponding to S_k (resp. T_k) for each $k \ge 1$. Note that ψ_k and φ_k are unique up to additive constants.

By Lemma 10.3.3,

$$\bigcap_{k=1}^{\infty} \Delta_{Y_{\bullet}}(\theta, \psi_k) \subseteq \Delta_{Y_{\bullet}}(\theta, (1-\epsilon)\varphi_j).$$

On the other hand, observe that

$$\bigcap_{\epsilon \in \mathbb{Q}_{>0} \text{ small enough}} \Delta_{Y_{\bullet}}(\theta, (1-\epsilon)\varphi_j) = \Delta_{Y_{\bullet}}(\theta, \varphi_j).$$

In fact, the \supseteq direction follows from Lemma 10.3.3, so it suffices to show that the two sides have the same volume, which follows from (10.29).

It follows that

$$\bigcap_{k=1}^{\infty} \Delta_{Y_{\bullet}}(\theta, \psi_k) \subseteq \bigcap_{j=1}^{\infty} \Delta_{Y_{\bullet}}(\theta, \varphi_j).$$

The other inclusion follows by symmetry.

The same argument shows that

cor:Kahlercurrentcase

Corollary 10.3.1 *Suppose that* $T, S \in \mathcal{Z}_+(X, \alpha)$ *are two Kähler currents satisfying* $T \leq_I S$. Then

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(\alpha).$$

Proposition 10.3.1 *Let* $T \in \mathcal{Z}_{+}(X, \alpha)$ *be a Kähler current. Then*

$$\operatorname{vol} \Delta_{Y_{\bullet}}(T) = \frac{1}{n!} \operatorname{vol} T. \tag{10.30} \quad \text{{eq:volokocur}}$$

Proof Take a quasi-equisingular approximation $(T_j)_j$ of T in $\mathcal{Z}_+(X,\alpha)$. Note that $\Delta_{Y_\bullet}(T_j)$ is decreasing in j, as follows from Lemma 10.3.3. Our assertion follows from (10.29) and Theorem 6.2.5.

lma:Okomonotone

Lemma 10.3.5 Let $T \in \mathcal{Z}_+(X, \alpha)$ be a Kähler current and ω be a Kähler form on X. Then

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(T + \omega). \tag{10.31}$$

{eq:DeltaTincreaseomegatemp1}

Moreover.

$$\Delta_{Y_{\bullet}}(T) = \bigcap_{\epsilon > 0} \Delta_{Y_{\bullet}}(T + \epsilon \omega). \tag{10.32}$$

{eq:DeltaTincreaseomegatemp2}

Proof We first prove (10.31). Taking quasi-equisingular approximations, we reduce immediately to the case where T has analytic singularities. By Lemma 10.3.2, we may assume that T has log singularities. Take D and R as in (10.28). By definition again, it suffices to show that

$$\Delta_{Y_{\bullet}}([\beta]) \subseteq \Delta_{Y_{\bullet}}([\beta + \omega]),$$

which is clear by definition.

Next we prove (10.32). Thanks to (10.31), it remains to prove that both sides have the same volume:

$$\lim_{\epsilon \to 0+} \operatorname{vol}(T + \epsilon \omega) = \operatorname{vol} T.$$

This is proved in Proposition 7.2.3.

10.3.2.3 The general case

def:generalPOB

Definition 10.3.4 Let $T \in \mathcal{Z}_+(X, \alpha)$. Take a Kähler form ω on X, we define

$$\Delta_{Y_{\bullet}}(T) = \bigcap_{i=1}^{\infty} \Delta_{Y_{\bullet}}(T + j^{-1}\omega). \tag{10.33}$$
 {eq:DeltaTgeneral}

The same definition makes sense when α is only pseudo-effective.

This definition is clearly independent of the choice of ω by Lemma 10.3.5. Moreover, it extends Definition 10.3.3 and Definition 10.3.2 as a result of Lemma 10.3.5.

Remark 10.3.1 When α is pseudoeffective but not big and T has minimal singularities, Definition 10.3.4 differs from all known definitions of $\Delta_{Y_{\bullet}}(\alpha)$ in the literature. But in view of Lemma 10.3.7, our definition seems to be the most natural one.

The main properties of $\Delta_{Y_{\bullet}}(T)$ are summarized as follows:

thm:pobmain

Theorem 10.3.2 *The convex bodies* $\Delta_{Y_{\bullet}}(T)$ *'s satisfies the following properties:*

(1) Suppose that $T \in \mathcal{Z}_+(X, \alpha)_{>0}$, We have

$$\operatorname{vol} \Delta_{Y_{\bullet}}(T) = \frac{1}{n!} \operatorname{vol} T. \tag{10.34}$$
 {eq:volpobgeneral}

(2) For $T, S \in \mathcal{Z}_+(X, \alpha)$ satisfying $T \leq_T S$, we have

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(\alpha).$$

(3) For any current $T \in \mathcal{Z}_+(X, \alpha)$ with minimal singularities, we have

$$\Delta_{Y_{\bullet}}(T) = \Delta_{Y_{\bullet}}(\alpha).$$

- (4) The map $\mathcal{Z}_+(X,\alpha)_{>0} \to \mathcal{K}_n$ given by $T \mapsto \Delta_{Y_\bullet}(T)$ is continuous, where we endow the d_S -pseudometric on $\mathcal{Z}_+(X,\alpha)_{>0}$ and the Hausdorff topology on \mathcal{K}_n .
- (5) Let $\pi: Y \to X$ be a proper bimeromorphic morphism with Y being a Kähler manifold. Assume that the lifting (W_{\bullet}, g) of Y_{\bullet} to Y exists, then for any $T \in \mathcal{Z}_{+}(X, \alpha)_{>0}$, we have

$$\Delta_{W_{\bullet}}(\pi^*T) = \Delta_{Y_{\bullet}}(T)g.$$

(6) For $T, S \in \mathcal{Z}_+(X, \alpha)$, we have

$$\Delta_{Y_{\bullet}}(T) + \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(T+S).$$
 (10.35) {eq:pobadditiv}

Proof (1) By (10.33) and (10.30), for any Kähler form ω on X,

$$\operatorname{vol} \Delta_{Y_{\bullet}}(T) = \lim_{j \to \infty} \Delta_{Y_{\bullet}}(T + j^{-1}\omega) = \frac{1}{n!} \lim_{j \to \infty} \operatorname{vol}(T + j^{-1}\omega).$$

The right-hand side is computed in Proposition 7.2.3. Hence, (10.34) follows.

(2) Fix a Kähler form ω on X. By Corollary 10.3.1, for each $j \geq 1$,

$$\Delta_{Y_{\bullet}}(T+j^{-1}\omega) \subseteq \Delta_{Y_{\bullet}}(S+j^{-1}\omega) \subseteq \Delta_{Y_{\bullet}}(\alpha+j^{-1}[\omega]).$$

It remains to show that

$$\Delta_{Y_{\bullet}}(\alpha) = \bigcap_{j=1}^{\infty} \Delta_{Y_{\bullet}}(\alpha + j^{-1}[\omega]).$$

The \subseteq direction is clear. Comparing the volumes using Theorem 10.3.1, we conclude that equality holds.

(3) This follows from (1) and (2).

- (4) Let $(T_j)_j$ be a sequence in $\mathcal{Z}_+(X,\alpha)_{>0}$ converging to $T \in \mathcal{Z}_+(X,\alpha)_{>0}$ with respect to d_S . We want to show that $\Delta_{Y_\bullet}(T_j) \xrightarrow{d_{\text{Haus}}} \Delta_{Y_\bullet}(T)$. By Proposition 6.2.3 and (2), we may assume that the singularity type of T_j is either increasing or decreasing. In both cases, the continuity follows from (1).
- (5) We may assume that T is I-good. It follows from (4) and Theorem 7.1.1 that we could reduce to the case where T has analytic singularities. Our assertion follows from Lemma 10.3.2.
- (6) By (10.33), in order to prove (10.35), we may assume that T and S are both Kähler currents. Take quasi-equisingular approximations $(T_j)_j$ and $(S_j)_j$ of T and S respectively. By Theorem 6.2.2, $T_j + S_j \xrightarrow{dS} T + S$. By (4), we may therefore assume that T and S have analytic singularities. Replacing X by a suitable modification, we may assume that T and S both have log singularities, say

$$T = [D] + R, \quad S = [D'] + R',$$

where D and D' are \mathbb{Q} -divisors on X and β and β' are closed positive (1,1)-currents with bounded potentials. We need to show that

$$\Delta_{Y_{\bullet}}([R]) + \Delta_{Y_{\bullet}}([R']) + \nu_{Y_{\bullet}}([D]) + \nu_{Y_{\bullet}}([D']) \subseteq \Delta_{Y_{\bullet}}([R+R']) + \nu_{Y_{\bullet}}([D+D']).$$

By Proposition 10.1.2, this is equivalent to

$$\Delta_{Y_{\bullet}}(\lceil R \rceil) + \Delta_{Y_{\bullet}}(\lceil R' \rceil) \subseteq \Delta_{Y_{\bullet}}(\lceil R + R' \rceil),$$

which is already proved in Theorem 10.3.1.

Corollary 10.3.2 Assume that L is a big line bundle on X and h is a plurisubharmonic metric on L with positive volume. Then

$$\Delta_{Y_{\bullet}}(\mathrm{dd}^{\mathrm{c}}h) = \Delta_{Y_{\bullet}}(L,h). \tag{10.36}$$

{eq:tran0kounandalg0koun}

Similarly, the definition (10.19) is compatible with the definition in Definition 10.3.4.

Proof We may assume that dd^ch has positive mass and is I-good. By the d_S -continuity of both sides of (10.36) as proved in Theorem 10.3.2 and Theorem 10.2.2, together with Theorem 7.1.1, we may assume that dd^ch has analytic singularities.

In this case, using the birational invariance of both sides of (10.36) as proved in Proposition 10.2.9 and Theorem 10.3.2, we may assume that $dd^c h$ has log singularities. Finally, after all these reductions, the equality (10.36) holds by construction.

10.3.3 The valuative characterization

In this section, we will characterize the partial Okounkov bodies using valuations of currents.

lma:Kahlerclassokounrest

Lemma 10.3.6 Let β be a nef class on X. Then

$$\{y \in \mathbb{R}^{n-1} : (0, y) \in \Delta_{Y_n}(\beta)\} = \Delta_{Y_1 \supset \dots \supset Y_n}(\beta|_{Y_1}).$$
 (10.37)

{eq:Deltaresttox10}

Proof Step 1. We first reduce to the case where β is a Kähler class.

Take a Kähler class α on X. It follows from the volume formula in Theorem 10.3.1 that

$$\Delta_{Y_{\bullet}}(\beta) = \bigcap_{\epsilon > 0} \Delta_{Y_{\bullet}}(\beta + \epsilon \alpha), \quad \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}(\beta|_{Y_1}) = \bigcap_{\epsilon > 0} \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}(\beta|_{Y_1} + \epsilon \alpha|_{Y_1}).$$

So it suffices to prove (10.37) with $\beta + \epsilon \alpha$ in place of β .

Step 2. Assume that α is a Kähler class. The \supseteq direction in (10.37) follows from the extension theorem Theorem 1.6.3. To prove the other direction, recall that by Theorem 10.3.1, for t > 0 small enough, we have

$$\{y \in \mathbb{R}^{n-1} : (t, y) \in \Delta_{Y_{\bullet}}(\beta)\} = \Delta_{Y_1 \supseteq \cdots \supseteq Y_n} \left((\beta - t[Y_1])|_{Y_1} \right).$$

As $t \to 0+$, the right-hand side converges to $\Delta_{Y_1 \supseteq \cdots \supseteq Y_n}(\beta|_{Y_1})$ with respect to the Hausdorff metric as a consequence of Theorem 10.3.1, while the left-hand side converges to

$$\left\{y\in\mathbb{R}^{n-1}:(0,y)\in\Delta_{Y_{\bullet}}(\beta)\right\}$$

by Lemma C.1.2. We conclude our assertion.

lma:slicepob

Lemma 10.3.7 Let $T \in \mathcal{Z}_+(X, \alpha)$ be a Kähler current. Assume that $v(T, Y_1) = 0$, then

$$\left\{ y \in \mathbb{R}^{n-1} : (0, y) \in \Delta_{Y_{\bullet}}(T) \right\} = \Delta_{Y_1 \supseteq \cdots \supseteq Y_n} \left(\operatorname{Tr}_{Y_1}^{\alpha|_{Y_1}}(T) \right). \tag{10.38}$$

{eq:Deltaslice}

More generally, if $T \in \mathcal{Z}_+(X,\alpha)$ and $v(T,Y_1) = 0$, suppose in addition that $\operatorname{Tr}_{Y_1}^{\alpha|_{Y_1}}(T)$ is defined, then (10.38) still holds.

See Remark 8.1.1 for the definition of $\operatorname{Tr}_{Y_1}^{\alpha|_{Y_1}}(T)$. Note that $\Delta_{Y_1 \supseteq \cdots \supseteq Y_n}\left(\operatorname{Tr}_{Y_1}^{\alpha|_{Y_1}}(T)\right)$ is independent of the choice of the representative $\operatorname{Tr}_{Y_1}^{\alpha|_{Y_1}}(T)$.

Remark 10.3.2 More generally, the same argument shows the following result: Let $k=0,\ldots,n$ and $T\in\mathcal{Z}_+(X,\alpha)$ such that $\nu(T,Y_k)=0$. Assume that $\mathrm{Tr}_{Y_k}^{\alpha|Y_k}(T)$ is defined, then

$$\left\{ y \in \mathbb{R}^{n-k} : (0, \dots, 0, y) \in \Delta_{Y_{\bullet}}(T) \right\} = \Delta_{Y_k \supseteq \dots \supseteq Y_n} \left(\operatorname{Tr}_{Y_k}^{\alpha \mid Y_k}(T) \right). \tag{10.39}$$

Also note that this result extends [Jow10], Theorem 3.4] and hence gives simpler proofs of [Jow10], Theorem A, Theorem B].

Proof Let ω be a Kähler form on X. The last assertion follows from the first by perturbing θ to $\theta + \epsilon \omega$.

Step 1. We first handle the case where *T* has analytic singularities. Let $\pi: Z \to X$ be a modification such that

- (1) Y_{\bullet} admits a lifting (W_{\bullet}, g) , and
- (2) $\pi^*T = [D] + R$, where *D* is an effective \mathbb{Q} -divisor on *Z* and *R* is closed positive (1,1)-current with bounded potential.

This is possible by Theorem 1.6.1 and Theorem 10.1.1. By Lemma 8.2.1,

$$\Pi^* \operatorname{Tr}_{Y_1}(T) \sim_P \operatorname{Tr}_{W_1}(\pi^*T),$$

where $\Pi: W_1 \to Y_1$ is the restriction of π . It follows from Theorem 10.3.2 that

$$\Delta_{W_1 \supseteq \cdots \supseteq W_n}(\operatorname{Tr}_{W_1}(\pi^*T)) = \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}(\operatorname{Tr}_{Y_1}(T))\operatorname{cor}(Y_1 \supseteq \cdots \supseteq Y_n, \Pi),$$

$$\Delta_{W_n}(\pi^*T) = \Delta_{Y_n}(T)g.$$

Taking (10.3) into account, we find that it suffices to show that

$$\left\{y \in \mathbb{R}^{n-1} : (0, y) \in \Delta_{W_{\bullet}}(\pi^*T)\right\} = \Delta_{W_1 \supseteq \cdots \supseteq W_n}(\operatorname{Tr}_{W_1}(\pi^*T)).$$

We may assume that π is the identity map. Then we have

$$T = [D] + R, \quad T|_{Y_1} = [D]|_{Y_1} + R|_{Y_1}.$$

Note that $[D]|_{Y_1}$ is the current of integration along an effective \mathbb{Q} -divisor on Y_1 . In particular,

$$\begin{split} \Delta_{Y_{\bullet}}(T) = & \Delta_{Y_{\bullet}}([R]) + \nu_{Y_{\bullet}}([D]), \\ \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}(T|_{Y_1}) = & \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}([R]|_{Y_1}) + \nu_{Y_1 \supseteq \cdots \supseteq Y_n}([D]|_{Y_1}). \end{split}$$

So it suffices to show that

$$\{y \in \mathbb{R}^{n-1} : (0, y) \in \Delta_{Y_{\bullet}}([R])\} = \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}([R]|_{Y_1}),$$

which is exactly Lemma 10.3.6.

Step 2. Next we consider the case where T is a Kähler current. Take a quasi-equisingular approximation $(T_j)_j$ of T in $\mathcal{Z}_+(X,\alpha)$. From Step 1, we know that for large $j \geq 1$,

$$\left\{y \in \mathbb{R}^{n-1} : (0, y) \in \Delta_{Y_{\bullet}}(T_j)\right\} = \Delta_{Y_1 \supseteq \cdots \supseteq Y_n}(\operatorname{Tr}_{Y_1}(T_j)).$$

Letting $j \to \infty$ and applying Theorem 10.3.2 and Proposition 8.2.2, we conclude (10.38).

thm:KahcurrminOkoun

Theorem 10.3.3 Assume that $T \in \mathcal{Z}_+(X,\alpha)_{>0}$ is a Kähler current. We have

$$\min_{\text{lex}} \Delta_{Y_{\bullet}}(T) = \nu_{Y_{\bullet}}(T). \tag{10.40}$$
 {eq:min0kounkov}

Here the minimum is with respect to the lexicographic order.

Proof We make induction on $n \ge 0$. The case n = 0 is of course trivial. Let us assume that n > 0 and the case n - 1 has been proved.

We first observe that by Theorem 10.3.2,

$$\Delta_{Y_{\bullet}}(T - \nu(T, Y_1)[Y_1]) + (\nu(T, Y_1), 0, \dots, 0) \subseteq \Delta_{Y_{\bullet}}(T).$$

Comparing the volumes of both sides using Theorem 10.3.2 and Proposition 7.2.3, we find that equality holds:

$$\Delta_{Y_{\bullet}}(T - \nu(T, Y_1)[Y_1]) + (\nu(T, Y_1), 0, \dots, 0) = \Delta_{Y_{\bullet}}(T).$$

Replacing T by $T - \nu(T, Y_1)[Y_1]$, we may therefore assume that $\nu(T, Y_1) = 0$. It suffices to apply Lemma 10.3.7 and the inductive hypothesis.

cor:valuationcurrentinPOB

Corollary 10.3.3 *For any* $T \in \mathcal{Z}_{+}(X, \alpha)$ *,*

$$\nu_{Y_{\bullet}}(T) \in \Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(\alpha).$$

Proof When T is a Kähler current, this follows from Theorem 10.3.3.

In general, by definition, $\nu_{Y_{\bullet}}(T) = \nu_{Y_{\bullet}}(T + \omega)$ for any Kähler form ω on X. It follows that

$$\nu_{Y_{\bullet}}(T) \in \Delta_{Y_{\bullet}}(T + \omega)$$

for any Kähler form ω . It follows that $\nu_{Y_{\bullet}}(T) \in \Delta_{Y_{\bullet}}(T)$.

thm:Deltapartialint

Theorem 10.3.4 For any $T \in \mathcal{Z}_+(X, \alpha)_{>0}$,

$$\Delta_{Y_{\bullet}}(T) = \overline{\left\{\nu_{Y_{\bullet}}(S) : S \in \mathcal{Z}_{+}(X,\alpha), S \leq_{I} T\right\}}. \tag{10.41}$$

In particular,

$$\Delta_{Y_{\bullet}}(\alpha) = \overline{\left\{\nu_{Y_{\bullet}}(T) : T \in \mathcal{Z}_{+}(X,\alpha)\right\}}.$$

Remark 10.3.3 We expect that the closure operation in (10.41) is not necessary. This problem is closely related to the Dirichlet problem of the trace operator, see Page 264 for more details.

Proof The \supseteq direction in (10.41) follows from Corollary 10.3.3 and Theorem 10.3.2(2).

Let us write

$$D_{Y_{\bullet}}(T) = \left\{ \nu_{Y_{\bullet}}(S) : S \in \mathcal{Z}_{+}(X,\alpha), S \leq_{\mathcal{I}} T \right\}$$

for the time being.

Step 1. Assume that *T* has analytic singularities. We have

$$\Delta_{Y_{\bullet}}(T) \supseteq \overline{D_{Y_{\bullet}}(T)}$$

$$\supseteq \overline{\left\{\nu_{Y_{\bullet}}(S) : \mathcal{Z}_{+}(X,\alpha) \ni S \text{ has gentle analytic singularities, } S \leq T\right\}}.$$

It follows easily from Theorem 10.3.1 that the volume of the right-hand side is equal to the volume of $\Delta_{Y_{\bullet}}(T)$, so (10.41) holds.

Step 2. Assume that T is a Kähler current. Take a quasi-equisingular approximation $T_j \in \mathcal{Z}_+(X,\alpha)$ of T. Next we use the language of psh functions. Let $\varphi_j, \varphi \in PSH(X,\theta)$ be the potentials corresponding to T_j, T for each $j \geq 1$.

Fix an integer N > 0. For large enough $j \ge 1$, we can find $\psi \in PSH(X, \theta)_{>0}$ such that

$$P_{\theta}[\varphi]_{I} \ge (1 - N^{-1})\varphi_{i} + N^{-1}\psi_{i}.$$

The existence of ψ_i follows from Lemma 2.3.1. It follows that

$$D_{Y_{\bullet}}(T) \supseteq D_{Y_{\bullet}} \left(\theta + \mathrm{dd^c} \left((1 - N^{-1}) \varphi_j + N^{-1} \psi_j \right) \right)$$

$$\supseteq (1 - N^{-1}) D_{Y_{\bullet}}(T_j) + N^{-1} D_{Y_{\bullet}}(\theta + \mathrm{dd^c} \psi_j).$$

By Theorem C.1.1, up to replacing T_j by a subsequence, we may guarantee that $\overline{D_{Y_{\bullet}}(\theta + \mathrm{dd^c}\psi_j)}$ admits a Hausdorff limit contained in $\Delta_{Y_{\bullet}}(\alpha)$ as $j \to \infty$. Let $j \to \infty$ and $N \to \infty$ then it follows that

$$\overline{D_{Y_{\bullet}}(T)}\supseteq\bigcap_{j=1}^{\infty}D_{Y_{\bullet}}(T_{j}).$$

By Lemma C.1.3,

$$\overline{D_{Y_{\bullet}}(T)} \supseteq \bigcap_{j=1}^{\infty} D_{Y_{\bullet}}(T_j) = \bigcap_{j=1}^{\infty} \overline{D_{Y_{\bullet}}(T_j)}.$$

Therefore, by Step 1, we conclude that

$$\Delta_{Y_{\bullet}}(T) = \bigcap_{j=1}^{\infty} \overline{\Delta_{Y_{\bullet}}(T_j)} = \bigcap_{j=1}^{\infty} \overline{D_{Y_{\bullet}}(T_j)} \subseteq \overline{D_{Y_{\bullet}}(T)}.$$

The reverse direction is already known.

Step 3. Finally, consider the general case. Take a Kähler current $T' \in \mathcal{Z}_+(X, \alpha)$ more singular than T. For each $\epsilon \in (0, 1)$. The existence of T' is proved in Lemma 2.3.2. We know that

$$\Delta_{Y_{\bullet}}((1-\epsilon)T+\epsilon T')=\overline{D_{Y_{\bullet}}((1-\epsilon)T+\epsilon T')}\subseteq \overline{D_{Y_{\bullet}}(T)}.$$

Letting $\epsilon \to 0+$ and using Proposition 7.2.3, we find that

$$\Delta_{Y_{\bullet}}(T) \subseteq \overline{D_{Y_{\bullet}}(T)}.$$

As the other inclusion is already known, we conclude.

Corollary 10.3.4 *Assume that* $T \in \mathcal{Z}_+(X, \alpha)_{>0}$ *. We have*

$$\min_{\text{lex}} \Delta_{Y_{\bullet}}(T) = \nu_{Y_{\bullet}}(T). \tag{10.42}$$
 {eq:min0kounkov3}

cor:KahcurrminOkoun

Proof By Theorem 10.3.4, it is clear that

$$\min_{\mathrm{low}} \Delta_{Y_{\bullet}}(T) \leq_{\mathrm{lex}} \nu_{Y_{\bullet}}(T).$$

On the other hand, we clearly have

$$\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(T + \omega)$$

for any Kähler form ω on X. It follows that

$$\min_{\mathrm{lex}} \Delta_{Y_{\bullet}}(T) \geq_{\mathrm{lex}} \min_{\mathrm{lex}} \Delta_{Y_{\bullet}}(T + \omega).$$

By Theorem 10.3.3, the right-hand side is just $v_{Y_{\bullet}}(T + \omega) = v_{Y_{\bullet}}(T)$. We conclude the proof.

10.4 Okounkov test curves

Fix $n \in \mathbb{N}$. Let $\Delta, \Delta' \subseteq \mathbb{R}^n$ be convex bodies with positive volume. The standard Lebesgue measure on \mathbb{R}^n is denoted by vol.

We refer to Appendix C for the notations \mathcal{K}_n and d_{Haus} .

def:Otc

Definition 10.4.1 An *Okounkov test curve* relative to Δ consists of

- (1) a number $\Delta_{max} \in \mathbb{R}$ and
- (2) an assignment $(-\infty, \Delta_{\max}) \ni \tau \mapsto \Delta_{\tau} \in \mathcal{K}_n$ satisfying
 - a. the assignment $\tau \mapsto \Delta_{\tau}$ is a decreasing and concave;
 - b. we have $\Delta_{\tau} \xrightarrow{d_{\text{Haus}}} \Delta$ as $\tau \to -\infty$.

The set of Okounkov test curves relative to Δ is denoted by $TC(\Delta)$.

An Okounkov test curve Δ_{\bullet} is *bounded* if $\Delta_{\tau} = \Delta$ when τ is small enough. The subset of bounded Okounkov test curves is denoted by $TC^{\infty}(\Delta)$.

An Okounkov test curve Δ_{\bullet} is said to have *finite energy* if

$$\mathbf{E}(\Delta_{\bullet}) := n! \Delta_{\max} \operatorname{vol} \Delta + n! \int_{-\infty}^{\Delta_{\max}} (\operatorname{vol} \Delta_{\tau} - \operatorname{vol} \Delta) \, d\tau > -\infty. \tag{10.43}$$

The subset of Okounkov test curves with finite energy is denoted by $TC^1(\Delta)$.

Given $\Delta_{\bullet} \in TC(\Delta)$ and $\Delta'_{\bullet} \in TC(\Delta')$, we say $\Delta_{\bullet} \leq \Delta'_{\bullet}$ if $\Delta_{max} \leq \Delta'_{max}$ and for any $\tau < \Delta_{max}$, we have $\Delta_{\tau} \subseteq \Delta'_{\tau}$.

Here concavity in (2)b refers to the concavity with respect to the Minkowski sum. Sometimes it is convenient to introduce

$$\Delta_{\Delta_{\max}} = \bigcap_{\tau < \Delta_{\max}} \Delta_{\tau} \in \mathcal{K}_n. \tag{10.44}$$

We shall always make this extension in the sequel when we talk about $\Delta_{\Delta_{max}}$. Observe that $(-\infty, \Delta_{max}] \ni \tau \mapsto \Delta_{\tau}$ is still concave.

prop:Otccont

Proposition 10.4.1 Any Okounkov test curve $(\Delta_{\tau})_{\tau < \Delta_{max}}$ relative to Δ is continuous in τ . Moreover, vol $\Delta_{\tau} > 0$ for all $\tau < \Delta_{max}$.

Proof We first claim that $\operatorname{vol} \Delta_{\tau'} > 0$ for all $\tau' < \Delta_{\max}$. By Condition (2)b in Definition 10.4.1 and Theorem C.1.2, we know that $\operatorname{vol} \Delta_{\tau''} > 0$ when τ'' is small enough. Fix one such τ'' . We may assume that $\tau'' \le \tau'$ since otherwise there is nothing to prove. Next take $\tau''' \in (\tau', \Delta_{\max})$. Take $t \in (0, 1)$ such that $\tau' = t\tau''' + (1 - t)\tau''$. It follows that

$$\operatorname{vol} \Delta_{\tau'} \ge \operatorname{vol} (t \Delta_{\tau'''} + (1 - t) \Delta_{\tau''}) \ge (1 - t)^n \operatorname{vol} \Delta_{\tau''} > 0.$$

Next we claim that $\operatorname{vol} \Delta_{\tau}$ is continuous for $\tau < \Delta_{max}$. In fact, it follows from Theorem C.1.4 that $(-\infty, \Delta_{max}) \ni \tau \mapsto \log \operatorname{vol} \Delta_{\tau}$ is concave, the continuity follows. Next we show that

$$\Delta_{\tau} = \bigcap_{\tau' < \tau} \Delta_{\tau'}.$$

The \supseteq direction is obvious. By the continuity of the volume, both sides have the same volume and the volume is positive, we therefore obtain the equality.

Similarly, we have

$$\Delta_{\tau} = \overline{\bigcup_{\tau' > \tau} \Delta_{\tau'}}.$$

The continuity of Δ_{τ} at $\tau < \Delta_{max}$ is proved.

def:tf

Definition 10.4.2 A *test function* on Δ is a function $F: \Delta \to [-\infty, \infty)$ such that

- (1) F is concave,
- (2) F is finite on Int Δ , and
- (3) *F* is upper semicontinuous.

A test function *F* is *bounded* if *F* is bounded from below.

A test function F has finite energy if

$$\mathbf{E}(F) := n! \int_{\Delta} F \, \mathrm{d}\lambda > -\infty. \tag{10.45}$$

def:LegOkoun

Definition 10.4.3 Let $\Delta_{\bullet} \in TC(\Delta)$. We define its *Legendre transform* as

$$G[\Delta_{\bullet}]: \Delta \to [-\infty, \infty), \quad a \mapsto \sup \{\tau < \Delta_{\max} : a \in \Delta_{\tau}\}.$$

Given a test function $F: \Delta \to [-\infty, \infty)$, we define its *inverse Legendre transform* $\Delta[F]_{\bullet}$ as the Okounkov test curve relative to Δ defined as follows:

- (1) $\Delta[F]_{\text{max}} = \sup_{\Lambda} F$, and
- (2) for each $\tau < \sup_{\Lambda} F$, we set

$$\Delta[F]_{\tau} = \{ x \in \Delta : F \ge \tau \}.$$

We observe that

$$G[\Delta_{\bullet}](a) = \max \{ \tau \le \Delta_{\max} : a \in \Delta_{\tau} \}, \text{ if } G[\Delta_{\bullet}](a) > -\infty.$$
 (10.46)

{eq:GDeltamax}

lma:convbodyLegendre

Lemma 10.4.1 *Let* $\Delta_{\bullet} \in TC(\Delta)$. Then $G[\Delta_{\bullet}]$ defined in Definition 10.4.3 is a test function.

Similar, if $F: \Delta \to [-\infty, \infty)$ is a test function, then $\Delta[F]_{\bullet}$ is an Okounkov test curve.

Proof First suppose that $\Delta_{\bullet} \in TC(\Delta)$. We want to verify that $G[\Delta_{\bullet}]$ satisfies the conditions in Definition 10.4.2.

We first verify the concavity. Take $a, b \in \Delta$. We want to prove that for any $t \in (0, 1)$,

$$G[\Delta_{\bullet}](ta + (1-t)b) \ge tG[\Delta_{\bullet}](a) + (1-t)G[\Delta_{\bullet}](b). \tag{10.47}$$

{eq:GDeltaconc}

There is nothing to prove if $G[\Delta_{\bullet}](a)$ or $G[\Delta_{\bullet}](b)$ is $-\infty$. So we assume that both are finite. In this case, by (10.46),

$$a \in \Delta_{G[\Delta_{\bullet}](a)}, \quad b \in \Delta_{G[\Delta_{\bullet}](b)}.$$

Thus,

$$ta + (1-t)b \in t\Delta_{G[\Delta_{\bullet}](a)} + (1-t)\Delta_{G[\Delta_{\bullet}](b)} \subseteq \Delta_{tG[\Delta_{\bullet}](a) + (1-t)G[\Delta_{\bullet}](b)}.$$

We deduce that

$$G[\Delta_{\bullet}](ta + (1-t)b) \ge tG[\Delta_{\bullet}](a) + (1-t)G[\Delta_{\bullet}](b).$$

Therefore, (10.47) follows.

It is clear that F is finite on the interior of Δ . It remains to argue that F is upper semicontinuous.

Let $(a_i)_{i\geq 1}$ be a sequence in Δ with limit $a\in \Delta$. Define $\tau_i=G[\Delta_{\bullet}](a_i)$. Let $\tau=\overline{\lim}_i\tau_i$. We need to show that

$$G[\Delta_{\bullet}](a) \ge \tau. \tag{10.48}$$

{eq:ainDelta1}

There is nothing to prove if $\tau = -\infty$. We assume that it is not this case. Up to subtracting a subsequence we may assume that $\tau_i \to \tau$. In particular, we can assume that $\tau_i \neq -\infty$ for all $i \geq 1$. It follows from (10.46) that $a_i \in \Delta_{\tau_i}$ for all $i \geq 1$. Since $\Delta_{\tau_i} \xrightarrow{d_{\text{Haus}}} \Delta_{\tau}$. By Theorem C.1.3 it follows that $a \in \Delta_{\tau}$. Thus,(10.48) follows.

Conversely, suppose that $F: \Delta \to [-\infty, \infty)$ is a test function. We argue that $\Delta[F]_{\bullet}$ is an Okounkov test curve. We verify the conditions in Definition 10.4.1.

Firstly, for each $\tau < \sup_{\Delta} F$, the set $\Delta[F](\tau)$ is a convex body as F is concave and usc. Moreover, $\Delta[F]_{\tau}$ is clearly decreasing in τ .

Secondly, for each $a \in \Delta$, we can write $a = \lim_i a_i$ with $a_i \in \text{Int } \Delta$. By assumption, F is finite at a_i . Thus,

$$a \in \overline{\{F > -\infty\}} = \overline{\bigcup_{\tau < \sup_{\Delta} F} \Delta[F]_{\tau}}.$$

By Theorem C.1.3, $\Delta[F]_{\tau} \xrightarrow{d_{\text{Haus}}} \Delta$ as $\tau \to -\infty$.

Thirdly, $\Delta[F]$ is concave. To see, take $\tau, \tau' < \Delta_{\max}$, we need to prove that for any $t \in (0, 1)$,

$$\Delta[F]_{t\tau+(1-t)\tau'} \supseteq t\Delta[F]_{\tau} + (1-t)\Delta[F]_{\tau'}. \tag{10.49}$$

{eq:Deconc}

Let $a \in \Delta[F]_{\tau}$ and $b \in \Delta[F]_{\tau'}$. We have $F(a) \ge \tau$ and $F(b) \ge \tau'$. As F is concave, we have $F(ta + (1 - t)b) \ge t\tau + (1 - t)\tau'$. Thus,

$$ta + (1-t)b \in \Delta[F]_{t\tau + (1-t)\tau'}$$

and (10.49) follows.

thm:Okotestcurve

Theorem 10.4.1 The Legendre transform and inverse Legendre transform are inverse to each other, defining a bijection between $TC(\Delta)$ and the set of test functions on Δ . Under this bijection, $TC^1(\Delta)$ corresponds to test functions on Δ with finite energy and $TC^{\infty}(\Delta)$ corresponds to bounded test functions on Δ .

Proof Thanks to Lemma 10.4.1, in order to prove the first assertion, it only remains to see that the Legendre transform and the inverse Legendre transform are inverse to each other, which is immediate by definition.

It is obvious that $TC^{\infty}(\Delta)$ corresponds to bounded test curves. Moreover, a direct computation shows that if $\Delta_{\bullet} \in TC(\Delta)$, then

$$\mathbf{E}(\Delta_{\bullet}) = \mathbf{E}(G[\Delta_{\bullet}]),$$

concluding the $TC^1(\Delta)$ case.

prop:decnetLegend

Proposition 10.4.2 Let $(\Delta^i)_{i \in I}$ be a decreasing net in \mathcal{K}_n . Consider a decreasing net $(\Delta^i_{\bullet})_{i \in I}$ with $\Delta^i_{\bullet} \in TC(\Delta^i)$ for all $i \in I$ such that there is $\Delta_{\bullet} \in TC(\Delta)$ satisfying the following properties:

- (1) $\Delta_{\max} = \lim_{i \in I} \Delta_{\max}^i$;
- (2) for any $\tau < \Delta_{\text{max}}$, we have $\Delta_{\tau}^{i} \xrightarrow{d_{\text{Haus}}} \Delta_{\tau}$.

Then for any $a \in \Delta$ *, we have*

$$\lim_{i \in I} G[\Delta_{\bullet}^{i}](a) = G[\Delta_{\bullet}](a). \tag{10.50}$$

{eq:pwconvLegendre}

Note that in general,

$$\Delta \subsetneq \bigcap_{i \in I} \Delta^i.$$

Proof Fix $a \in \Delta$. It follows immediately from the definition of G that the net $(G[\Delta^i_{\bullet}](a))_{i \in I}$ is decreasing and the \geq direction in (10.50) holds. Let us prove the

reverse inequality. Let τ denote the left-hand side of (10.50) for the moment. By definition, for any $\epsilon > 0$ and any $i \in I$, we have $a \in \Delta^i_{\tau - \epsilon}$. It follows that

$$a \in \Delta^{\infty}_{\tau - \epsilon}$$
.

Therefore,

$$\tau \leq G[\Delta_{\bullet}](a).$$

Similarly, for increasing nets, we have:

prop:incnetLegend

Proposition 10.4.3 Let $(\Delta^i)_{i \in I}$ be an increasing net in \mathcal{K}_n with Hausdorff limit Δ such that vol $\Delta^i > 0$ for all $i \in I$. Consider an increasing net $(\Delta^i_{\bullet})_{i \in I}$ with $\Delta^i_{\bullet} \in TC(\Delta^i)$ for all $i \in I$. Let $\Delta_{\max} = \lim_{i \in I} \Delta^i_{\max}$. For any $\tau < \Delta_{\max}$, let Δ_{τ} be the Hausdorff limit of Δ^i_{τ} . Then $\Delta_{\bullet} \in TC(\Delta)$ and

$$\lim_{i \in I} G[\Delta_{\bullet}^{i}](a) = G[\Delta_{\bullet}](a) \tag{10.51}$$

{eq:apwconvLegendre}

for any $a \in \text{Int } \Delta$.

Proof It is obvious that $\Delta_{\bullet} \in TC(\Delta)$.

Fix $a \in \text{Int } \Delta$. Then up to replacing I by a subnet, we may assume that $a \in \Delta^i$ for all $i \in I$. By definition, the net $(G[\Delta^i_{\bullet}](a))_{i \in I}$ is increasing and the \leq direction in (10.51) holds. Let us write $\tau = G[\Delta_{\bullet}](a)$ for the time being. By definition of G, for any $\epsilon > 0$, we have

$$a \in \Delta_{\tau - \epsilon/2}$$
.

The concavity of $\Delta_{-\bullet}$ guarantees that

$$a \in \operatorname{Int} \Delta_{\tau - \epsilon}$$
.

It follows that there is a subnet J in I such that for all $j \in J$,

$$a \in \Delta^j_{\tau-\epsilon}$$
.

Therefore,

$$\tau - \epsilon \le G[\Delta^j_{\bullet}](a).$$

Taking the limit with respect to j and then with respect to ϵ , we conclude the desired inequality.

def:DHmeasureOTC

Definition 10.4.4 Let Δ_{\bullet} be an Okounkov test curve relative to Δ . We define the *Duistermaat–Heckman measure* DH(Δ_{\bullet}) as

$$\mathrm{DH}(\Delta_{\bullet}) := G[\Delta_{\bullet}]_*(\mathrm{vol}).$$

It is a Radon measure on \mathbb{R} .

In other words, $DH(\Delta_{\bullet})$ is the distribution of the random variable $G[\Delta_{\bullet}]$.

prop: DHmoments

Proposition 10.4.4 *Let* $\Delta_{\bullet} \in TC(\Delta)$. *Let* $m \in \mathbb{Z}_{>0}$. *Then the m-th moment of the* DH(Δ_{\bullet}) *is given by*

$$\int_{\mathbb{R}} x^m \, \mathrm{DH}(\Delta_{\bullet})(x) = \Delta_{\max}^m \, \mathrm{vol} \, \Delta + m \int_{-\infty}^{\Delta_{\max}} \tau^{m-1}(\mathrm{vol} \, \Delta_{\tau} - \mathrm{vol} \, \Delta) \, \mathrm{d}\tau \qquad (10.52) \quad \text{{eq:momentcalc}}$$

and

$$\int_{\mathbb{D}} DH(\Delta_{\bullet}) = \text{vol } \Delta. \tag{10.53}$$
 {eq:massDHm1}

Proof In fact, (10.53) follows immediately from the definition, while (10.52) follows form a straightforward computation:

$$\int_{\mathbb{R}} x^{m} \operatorname{DH}(\Delta_{\bullet})(x)$$

$$= \int_{\Delta} G[\Delta_{\bullet}](a)^{m} \operatorname{d} \operatorname{vol}(a)$$

$$= \int_{\Delta} \left(\Delta_{\max}^{m} - \int_{G[\Delta_{\bullet}](a)}^{\Delta_{\max}} m \tau^{m-1} \operatorname{d} \tau \right) \operatorname{d} \operatorname{vol}(a)$$

$$= \Delta_{\max}^{m} \operatorname{vol} \Delta - m \int_{\mathbb{R}} \int_{\Delta} \mathbb{1}_{[G(\Delta_{\bullet}](a), \Delta_{\max}]}(\tau) \tau^{m-1} \operatorname{d} \operatorname{vol}(a) \operatorname{d} \tau$$

$$= \Delta_{\max}^{m} \operatorname{vol} \Delta - m \int_{-\infty}^{\Delta_{\max}} \int_{\Delta \setminus \Delta_{\tau}} \tau^{m-1} \operatorname{d} \operatorname{vol}(a) \operatorname{d} \tau$$

$$= \Delta_{\max}^{m} \operatorname{vol} \Delta - m \int_{-\infty}^{\Delta_{\max}} \tau^{m-1} \left(\operatorname{vol} \Delta - \operatorname{vol} \Delta_{\tau} \right) \operatorname{d} \tau.$$

lma:DHmconv

Lemma 10.4.2 Let $(\Delta^i)_{i \in I}$ be a decreasing net in \mathcal{K}_n with limit Δ . Suppose that $(\Delta^i_{\bullet})_{i \in I}$ is a decreasing net with $\Delta^i_{\bullet} \in TC(\Delta^i)$. Suppose that there is $\Delta_{\bullet} \in TC(\Delta)$ such that

- (1) $\Delta_{\max} = \lim_{i \in I} \Delta_{\max}^i$;
- (2) for any $\tau < \Delta_{\text{max}}$, we have $\Delta_{\tau}^{i} \xrightarrow{d_{\text{Haus}}} \Delta_{\tau}$.

Then $\mathrm{DH}(\Delta^i_{\bullet}) \rightharpoonup \mathrm{DH}(\Delta_{\bullet})$.

Proof It follows from Proposition 10.4.2 that

$$G[\Delta^i_{\bullet}] \to G[\Delta_{\bullet}]$$

pointwisely on Δ . Our assertion then follows from the dominated convergence theorem.

Similarly, we have

lma:DHmconv2

Lemma 10.4.3 Let $(\Delta^i)_{i \in I}$ be an increasing net in \mathcal{K}_n with Hausdorff limit Δ such that vol $\Delta^i > 0$ for all $i \in I$. Consider an increasing net $(\Delta^i_{\bullet})_{i \in I}$ with $\Delta^i_{\bullet} \in TC(\Delta^i)$ for all $i \in I$. Let $\Delta_{\bullet} \in TC(\Delta)$ be defined as

- (1) $\Delta_{\max} = \lim_{i \in I} \Delta_{\max}^i$;
- (2) for any $\tau < \Delta_{\text{max}}$, Δ_{τ} is the Hausdorff limit of Δ_{τ}^{i} .

Then we have

$$\mathrm{DH}(\Delta^i_{\bullet}) \rightharpoonup \mathrm{DH}(\Delta_{\bullet}).$$

Proof It follows from Proposition 10.4.3 that

$$G[\Delta^i_{\bullet}] \to G[\Delta_{\bullet}]$$

almost everywhere on Δ . Our assertion then follows from the dominated convergence theorem. \qed

The main source of Okounkov test curves is the following:

thm:Okountescurvex

Theorem 10.4.2 Let X be a connected compact Kähler manifold and θ be a closed smooth real (1,1)-form on X representing a big cohomology class α . Let Y_{\bullet} be a smooth flag on X and $\Gamma \in TC(X,\theta)_{>0}$. Then the map

$$(-\infty, \Gamma_{\text{max}}) \ni \tau \mapsto \Delta_{Y_{\bullet}}(\theta, \Gamma)_{\tau} := \Delta_{Y_{\bullet}}(\theta, \Gamma_{\tau})$$

defines an Okounkov test curve relative to $\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty})$.

If furthermore $\Gamma \in TC^1(X, \theta; \Gamma_{-\infty})$ (resp. $TC^{\infty}(X, \theta; \Gamma_{-\infty})$), then we have $\Delta_{Y_{\bullet}}(\theta, \Gamma) \in TC^1(\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}))$ (resp. $TC^{\infty}(\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}))$).

See Definition 9.1.1 and Definition 9.1.2 for the relevant definitions.

Proof Consider $\Gamma \in TC(X, \theta)_{>0}$. We need to verify that $\Delta_{Y_{\bullet}}(\theta, \Gamma)$ is an Okounkov test curve relative to $\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty})$.

First observe that $\tau \mapsto \Delta_{Y_{\bullet}}(\theta, \Gamma_{\tau})$ is concave and decreasing for $\tau < \Gamma_{\text{max}}$. This is a direct consequence of Theorem 10.3.4.

Next we show that as $\tau \to -\infty$, we have

$$\Delta_{Y_{\bullet}}(\theta, \Gamma_{\tau}) \xrightarrow{d_{\text{Haus}}} \Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}).$$

It suffices to compute

$$\lim_{\tau \to -\infty} \operatorname{vol} \Delta_{Y_{\bullet}}(\theta, \Gamma_{\tau}) = \frac{1}{n!} \lim_{\tau \to -\infty} \operatorname{vol}(\theta + \operatorname{dd^{c}}\Gamma_{\tau}) = \frac{1}{n!} \operatorname{vol}(\theta + \operatorname{dd^{c}}\Gamma_{-\infty})$$

$$= \operatorname{vol} \Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}),$$

where we applied Theorem 10.3.2 and Theorem 6.2.5.

When $\Gamma \in TC^{\infty}(X, \theta; \Gamma_{-\infty})$, it is clear that $\Delta_{Y_{\bullet}}(\theta, \Gamma) \in TC^{\infty}(\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}))$. When $\Gamma \in TC^{1}(X, \theta; \Gamma_{-\infty})$, by Theorem 10.3.2(1), (9.3) and (10.43), we have

$$\mathbf{E}^{\Gamma_{-\infty}}(\Gamma) = \mathbf{E}(\Delta_{Y_{\bullet}}(\theta, \Gamma)).$$

So
$$\Gamma \in TC^1(\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}))$$
.

Chapter 11 The theory of b-divisors

chap:bdiv

In this chapter, we study the theory of b-divisors. In Section 11.2, we prove a Chern–Weil type formula, which relates volumes of currents to intersection numbers. In Section 11.3, we prove that the algebraic partial Okounkov bodies constructed in Chapter 10 have natural interpretations in terms of the b-divisors.

11.1 The intersection theory of b-divisors

In this section, we briefly recall the intersection theory of Dang–Favre [DF22]. Let X be a connected smooth projective variety of dimension n.

Definition 11.1.1 A *birational model* of X is a projective birational morphism $\pi: Y \to X$ from a *smooth* variety Y. A morphism between two birational models $\pi: Y \to X$ and $\pi': Y' \to X$ is a morphism $Y \to Y'$ over X.

We write Bir(X) for the isomorphism classes of birational models of X. It is a directed set under the partial ordering of domination.

We will usually be sloppy by omitting π and say Y is a birational model of X.

We write $NS^1(X)$ for the Néron–Severi group of X and $NS^1(X)_K$ for $NS^1(X) \otimes_{\mathbb{Z}} K$ for any subfield K of \mathbb{R} . Given $\alpha, \beta \in NS^1(X)_K$, we write $\alpha \leq \beta$ if $\beta - \alpha$ is pseudo-effective.

Definition 11.1.2 A *Weil b-divisor* \mathbb{D} on X is an assignment that associates with each $(\pi\colon Y\to X)\in \operatorname{Bir}(X)$ a class $\mathbb{D}_Y=\mathbb{D}_\pi\in\operatorname{NS}^1(Y)_\mathbb{R}$ such that when $\pi'\colon Y'\to X$ dominates π through $p\colon Y'\to Y$, we have

$$p_*\mathbb{D}_{Y'}=\mathbb{D}_Y.$$

The set of Weil b-divisors on X is denoted by bWeil(X).

A Weil b-divisor $\mathbb D$ on X is *Cartier* if there is $(\pi\colon Y\to X)\in \operatorname{Bir}(X)$ such that for any $(\pi'\colon Y'\to X)\in \operatorname{Bir}(X)$ which dominates π through $p:Y'\to Y$, we have

$$\mathbb{D}_{Y'}=p^*\mathbb{D}_Y.$$

In this case we say \mathbb{D} is *determined* on Y or \mathbb{D} has an *incarnation* \mathbb{D}_Y on Y and write $\mathbb{D} = \mathbb{D}(\mathbb{D}_Y)$. We also say \mathbb{D} is a Cartier b-divisor. The linear space of Cartier b-divisors is denoted by bCart(X).

Our definition simply means

$$bWeil(X) = \lim_{(\pi: Y \to X) \in Bir(X)} NS^{1}(Y)_{\mathbb{R}},$$

$$bCart(X) = \lim_{(\pi: Y \to X) \in Bir(X)} NS^{1}(Y)_{\mathbb{R}},$$

$$(11.1) \quad \{eq:bdivprojlim\}$$

in the category of vector spaces.

We endow bWeil(X) with the projective limit topology, then the first equation in (11.1) becomes a projective limit in the category of locally convex linear spaces. Clearly, bCart(X) is dense in bWeil(X).

def:nef

Definition 11.1.3 A Cartier b-divisor \mathbb{D} on X is *nef* (resp. *big*) if some incarnation is (equivalently all incarnations are) nef (resp. big).

A Weil b-divisor \mathbb{D} on X is *nef* if it lies in the closure of the set of nef Cartier b-divisors.

Write $bWeil_{nef}(X)$ for the set of nef Weil b-divisors on X.

A Weil b-divisor \mathbb{D} on X is *pseudo-effective* if for all $(\pi: Y \to X) \in Bir(X)$, $\mathbb{D}_Y \ge 0$.

We introduce a partial ordering on bWeil(X):

$$\mathbb{D} \leq \mathbb{D}'$$
 if and only if $\mathbb{D}_Y \leq \mathbb{D}_Y'$ for all $(\pi \colon Y \to X) \in Bir(X)$.

We summarise Dang-Favre's results:

thm:DF1

Theorem 11.1.1 ([DF22, Theorem 2.1]) Let $\mathbb{D} \in bWeil(X)$ be a nef Weil b-divisor. Then there is a decreasing net $(\mathbb{D}_i)_{i \in I}$ of nef Cartier b-divisors such that

$$\mathbb{D} = \lim_{i \in I} \mathbb{D}_i.$$

def:nefint

Definition 11.1.4 Let $\mathbb{D}_i \in \text{bWeil}(X)$ (i = 1, ..., n) be nef Cartier b-divisors on X. We define $(\mathbb{D}_1, ..., \mathbb{D}_n) \in \mathbb{R}$ as follows: take $(\pi \colon Y \to X) \in \text{Bir}(X)$ such that all $\mathbb{D}_i's$ are determined on Y. Then define

$$(\mathbb{D}_1, \dots, \mathbb{D}_n) := (\mathbb{D}_{1,Y}, \dots, \mathbb{D}_{n,Y}). \tag{11.2}$$

The intersection number $(\mathbb{D}_1, \dots, \mathbb{D}_n)$ does not depend on the choice of Y.

thm:DF2

Theorem 11.1.2 (DF22, Proposition 3.1, Theorem 3.2]) *There is a unique pairing*

$$(bWeil_{nef}(X))^n \to \mathbb{R}_{>0}$$

extending the pairing in Definition 11.1.4 such that

- (1) The pairing is monotonically increasing in each variable.
- (2) The pairing is continuous along decreasing nets in each variable.

Moreover, this pairing has the following properties:

- (1) It is symmetric, multilinear.
- (2) It is usc in each variable.

Definition 11.1.5 We define the *volume* of $\mathbb{D} \in bWeil_{nef}(X)$ by

$$\operatorname{vol} \mathbb{D} = (\mathbb{D}, \dots, \mathbb{D}).$$
 (11.3) {eq:volbdivdef}

We say $\mathbb{D} \in bWeil_{nef}(X)$ is *big* if vol $\mathbb{D} > 0$.

Note that the definition of bigness is compatible with the definition in Definition 11.1.3 in the case of Cartier b-divisors.

lma:volbdivaslim

Lemma 11.1.1 *Let* $\mathbb{D} \in bWeil_{nef}(X)$, *then*

$$\operatorname{vol} \mathbb{D} = \inf_{(Y \to X) \in \operatorname{Bir}(X)} \operatorname{vol} \mathbb{D}_Y = \lim_{(Y \to X) \in \operatorname{Bir}(X)} \operatorname{vol} \mathbb{D}_Y.$$

Proof By Theorem 11.1.1, we can find a decreasing net \mathbb{D}^{α} of nef Cartier b-divisors on X converging to \mathbb{D} . Clearly,

$$\operatorname{vol} \mathbb{D}^{\alpha} = \inf_{Y \to X} \operatorname{vol} \mathbb{D}_{Y}^{\alpha}.$$

It follows from Theorem 11.1.2 and the continuity of the volume functional [ELMP05, Corollary 2.6] that

$$\operatorname{vol} \mathbb{D} = \inf_{\alpha} \inf_{Y \to X} \operatorname{vol} \mathbb{D}_Y^{\alpha} = \inf_{Y \to X} \operatorname{vol} \mathbb{D}_Y.$$

On the other hand, as in general push-forward will increase the volume, we see that $\operatorname{vol} \mathbb{D}_Y$ is decreasing in Y, so we conclude.

11.2 The singularity b-divisors

sec:bdiv1

Let *X* be a connected smooth projective variety over \mathbb{C} of dimension *n*. Let $\alpha \in NS^1(X)_{\mathbb{R}}$ be a big class and *T* be a closed positive (1, 1)-current in α .

Fix a closed real smooth (1,1)-form θ in $c_1(L)$ and we can write $T = \theta_{\varphi}$ for some $\varphi \in PSH(X,\theta)$.

Definition 11.2.1 Define the *singularity divisor* $\operatorname{Sing}_X T$ of T as the formal sum

$$\operatorname{Sing}_X T := \sum_E \nu(T, E)E, \tag{11.4}$$

where E runs over all prime divisors contained in X.

The singularity divisor is *not* a Weil divisor in general.

Note that this is a countable sum by Siu's semicontinuity theorem. Although $\operatorname{Sing}_X T$ is not a divisor in general, it does define a closed positive (1,1)-current due to Siu's decomposition. Moreover, the numerical class $[\operatorname{Sing}_X T]$ in $\operatorname{NS}^1(X)_{\operatorname{RBIS}}$ also well-defined by treating the sum in (11.4) as a sum of numerical classes $[\operatorname{BFJO}]$, Proposition 1.3].

def:singbdiv

Definition 11.2.2 The *singularity b-divisor* Sing *T* of *T* is the b-divisor over *X* defined by

$$(\operatorname{Sing} T)_Y := [\operatorname{Sing}_Y \pi^* T],$$

where $(\pi: Y \to X) \in Bir(X)$.

Define

$$\mathbb{D}(T) := \mathbb{D}(\alpha) - \operatorname{Sing} T.$$

Here $\mathbb{D}(\alpha)$ is the Cartier b-divisor determined by α on X.

We are ready to derive the first version of the Chern-Weil formula.

thm:nefbvolume

Theorem 11.2.1 *The b-divisor* $\mathbb{D}(T)$ *is a nef b-divisor and if in addition* vol T > 0,

$$vol \, \mathbb{D}(T) = vol \, T. \tag{11.5}$$

{eq:volbandline}

Proof Step 1. We first handle the case where T has analytic singularities. After replacing X by a modification, we may assume that T has log singularities along an effective \mathbb{Q} -divisor D on X. Namely, we can write

$$T=[D]+R,$$

where *R* is a closed positive (1,1)-current with bounded potential. In this case, $\mathbb{D}(T) = \mathbb{D}(\alpha - D)$, which is nef. In order to prove (11.5), it suffices to show that

$$\int_{Y} T^{n} = ((\alpha - D)^{n}), \tag{11.6}$$
 {eq:temp14}

which is obvious.

Step 2. Assume that *T* is a Kähler current. Take a quasi-equisingular approximation $(T_i)_i$ of *T* in $\mathcal{Z}_+(X,\theta)$. By Theorem 6.2.5, we have

$$\lim_{j\to\infty}\operatorname{vol} T_j=\operatorname{vol} T.$$

In view of Step 1 and Theorem 11.1.2, it remains to show that $\mathbb{D}(T_j) \to \mathbb{D}(T)$ as $j \to \infty$. In more concrete terms, this means that for any $(\pi: Y \to X) \in \text{Bir}(X)$,

$$[\operatorname{Sing}_{V}(\pi^{*}T_{i})] \rightarrow [\operatorname{Sing}_{V}(\pi^{*}T)]$$

in NS¹(Y) $_{\mathbb{R}}$. This obviously follows from Theorem 6.2.4 if Sing(π^*T) has only finitely many components. In general, fix an ample class ω in NS¹(Y). We want to show that

for any $\epsilon > 0$, we can find $j_0 > 0$ so that when $j \ge j_0$,

$$[\operatorname{Sing}_{Y}(\pi^*T_i)] \ge [\operatorname{Sing}_{Y}(\pi^*T)] - \epsilon \omega. \tag{11.7}$$

Write

$$[\operatorname{Sing}_Y(\pi^*T)] = \sum_{i=1}^{\infty} a_i E_i, \quad [\operatorname{Sing}(\pi^*T_j)] = \sum_{i=1}^{\infty} a_i^j E_i.$$

Then $a_i^j \le a_i$. We can find N > 0 large enough, so that

$$[\operatorname{Sing}_Y(\pi^*T)] \le \sum_{i=1}^N a_i E_i + \frac{\epsilon}{2}\omega.$$

By Theorem 6.2.4, we can take j_0 large enough so that for $j > j_0$,

$$(a_i - a_i^j)E_i \le \frac{\epsilon}{2N}\omega, \quad i = 1, \dots, N.$$

Then (11.7) follows.

Step 3. Assume that $\operatorname{vol} T > 0$.

By Lemma 2.3.2, we can take a Kähler current $S \in \alpha$ such that $S \leq T$. Consider $\epsilon S + (1 - \epsilon)T$ for $\epsilon \in (0, 1)$. When $\epsilon \to 0+$, we have $\epsilon S + (1 - \epsilon)T \xrightarrow{d_S} T$. Using Theorem 6.2.5, we reduce immediately to the situation of Step 2.

Step 4. We handle the general case.

Take a Kähler form ω on X From Step 3, we know that for any $\epsilon > 0$, $\mathbb{D}(T) + \epsilon \mathbb{D}(\omega)$ is a nef b-divisor. It follows immediately that $\mathbb{D}(T)$ is nef.

cor: Imodcharbdiv

Corollary 11.2.1 Assume that vol T > 0, then T is I-good if and only if

$$\operatorname{vol} \mathbb{D}(T) = \int_X T^n.$$

Proof This follows from Theorem 11.2.1 and Theorem 7.3.1.

thm:pshbdivcont

Theorem 11.2.2 *The map* \mathbb{D} : $PSH(X, \theta) \rightarrow bWeil(X)$ *is continuous. Here on* $PSH(X, \theta)$ *we take the* d_S -pseudometric.

Proof Let $\varphi_i \in \text{PSH}(X, \theta)$ be a sequence converging to $\varphi \in \text{PSH}(X, \theta)$ with respect to d_S . We want to show that

$$\mathbb{D}(\theta + \mathrm{dd^c}\varphi_i) \to \mathbb{D}(T).$$

As $\varphi_i \xrightarrow{d_S} \varphi$ implies that $\pi^* \varphi_i \xrightarrow{d_S} \pi^* \varphi$ for any $(\pi \colon Y \to X) \in \operatorname{Bir}(X)$, it suffices to prove

$$[\operatorname{Sing}_X \varphi_i] \to [\operatorname{Sing}_X \varphi] \quad \text{in NS}^1(X)_{\mathbb{R}}.$$
 (11.8) {eq:temp7}

Write

$$\operatorname{Sing}_X \varphi_i = \sum_E a_i^E E, \quad \operatorname{Sing}_X \varphi = \sum_E a^E E,$$

where E runs over all prime divisors on X. By Theorem 6.2.4, $a_i^E \to a^E$ as $i \to \infty$. When the number of E's is finite, (11.8) follows trivially. Otherwise, we write the prime divisors on X having positive coefficients in either $\operatorname{Sing}_X \varphi_i$ or $\operatorname{Sing}_X \varphi$ as E_1, E_2, \ldots

We fix a basis e_1, \ldots, e_N of the finite-dimensional vector space $NS^1(X)_{\mathbb{R}}$, so that the pseudo-effective cone is contained in the cone $\sum_d \mathbb{R}_{\geq 0} e_d$. Write

$$E_i = \sum_{d=1}^{N} f_i^d e_d, \quad i = 1, 2, \dots$$

Then we need to show that for any d = 1, ..., N,

$$\lim_{i \to \infty} \sum_{j=1}^{\infty} a_i^{E_j} f_j^d = \sum_{j=1}^{\infty} a^{E_j} f_j^d.$$

This follows from the dominated convergence theorem, since

$$\sum_{i=1}^{\infty} a_i^{E_j}[E_j] \le \alpha, \quad \sum_{i=1}^{\infty} a^{E_j}[E_j] \le \alpha.$$

A mixed version of Theorem 11.2.1 is also true:

thm:nefbvolume2

Theorem 11.2.3 Let $T_1, \ldots, T_n \in \mathcal{Z}_+(X)$ such that $\operatorname{vol} T_i > 0$ for each $i = 1, \ldots, n$. Then

$$\frac{1}{n!} \left(\mathbb{D}(T_1), \dots, \mathbb{D}(T_n) \right) \ge \frac{1}{n!} \int_X T_1 \wedge \dots \wedge T_n. \tag{11.9}$$

If the T_i 's are I-good, then equality holds.

Proof This follows from Theorem 11.2.1 and Proposition 7.2.1.

11.3 Okounkov bodies of b-divisors

sec:Okounkovbdiv

Let X be a connected projective manifold of dimension n and (L, h) be a Hermitian big line bundle on X.

Fix a smooth flag Y_{\bullet} on X. Let $v = v_{Y_{\bullet}} : \mathbb{C}(X)^{\times} \to \mathbb{Z}^n$ be the valuation associated with Y_{\bullet} .

thm:pobbd

Theorem 11.3.1 The partial Okounkov body $\Delta_{Y_{\bullet}}(L, h)$ admits the following expression:

$$\Delta_{Y_{\bullet}}(L,h) = \nu_{Y_{\bullet}}(\mathrm{dd^c}h) + \lim_{\pi \colon Z \to X} \Delta_{Y_{\bullet}}\left(c_1(\pi^*L) - [\mathrm{Sing}_Z(\pi^*h)]\right), \tag{11.10}$$

where π runs over the directed set of projective birational morphisms to X with Z normal.

Here the limit is a Hausdorff limit.

This theorem suggests that we define

$$\Delta_{Y_{\bullet}}\left(\mathbb{D}(\mathsf{dd}^{\mathsf{c}}h)\right) := \lim_{\pi \colon Z \to X} \Delta_{Y_{\bullet}}\left(c_{1}(\pi^{*}L) - \left[\operatorname{Sing}_{Z}(\pi^{*}h)\right]\right). \tag{11.11} \quad \text{{eq:0koubodbdiv}}$$

Then one could rewrite (11.10) as

$$\Delta_{Y_{\bullet}}(L, h) = \Delta_{Y_{\bullet}}(\mathbb{D}(\mathrm{dd}^{\mathrm{c}}h)) + \nu_{Y_{\bullet}}(\mathrm{dd}^{\mathrm{c}}h).$$

Remark 11.3.1 (11.11) shows that the partial Okounkov bodies are *algebraic* objects in nature.

One should be able to prove the existence of the limits like (11.11) over other base fields, at least after assuming the existence of resolution of singularities. If so, one would get an interesting extension of the theory of partial Okounkov bodies.

lma:valuationT

Lemma 11.3.1 *Let T be a closed positive* (1, 1)-current on X. Then we have

$$\lim_{\pi \colon Z \to Y} \nu(\operatorname{Sing}_Z(\pi^*T)) = \nu(T), \tag{11.12}$$
 {eq:nuTaslimit}

where π runs over the directed set of projective birational morphisms to X with Z normal.

Proof Given $\pi: Z \to X$, we let W_1 denote the strict transform of Y_1 in Z. The restriction $\pi_1: W_1 \to Y_1$ is necessarily birational. Let $\widetilde{W_1}$ be the normalization of W_1 . Let $\widetilde{\pi_1}$ denote the normalization of π_1 so that we have a commutative diagram

$$\widetilde{W_1} \longrightarrow W_1 \hookrightarrow Z
\downarrow_{\widetilde{\pi_1}} \qquad \downarrow_{\pi_1} \qquad \downarrow_{\pi}
Y_1 = Y_1 \hookrightarrow X.$$

We will argue by induction. The case n = 0 is trivial. Assume that n > 0 and the case n - 1 is known.

We may clearly assume that $v(T, Y_1) = 0$. By definition, we have

$$\nu(T) = (0, \mu(\operatorname{Tr}_{Y_1}(T))),$$

where μ denotes the valuation induced by the flag $Y_1 \supseteq Y_2 \supseteq \cdots \supseteq Y_n$.

Observe that birational morphisms of the form $\pi_1 \colon \widetilde{W_1} \to Y_1$ are cofinal in the directed set of projective birational morphisms of Y_1 . This is obvious since the modifications given by compositions of blow-ups with smooth centers on Y_1 are cofinal. It suffices to blow-up X with the same centers.

Therefore, by the inductive hypothesis applied to $\operatorname{Tr}_{Y_1} T$, it suffices to argue that

$$\nu(\operatorname{Sing}_{Z}(\pi^{*}T)) = \left(0, \mu\left(\operatorname{Sing}_{\widetilde{W_{1}}}\widetilde{\pi_{1}}^{*}(\operatorname{Tr}_{Y_{1}}(T))\right)\right). \tag{11.13}$$
 {eq:indstep}

From Lemma 8.2.1, we know that

$$\widetilde{\pi_1}^* \operatorname{Tr}_{Y_1}(T) \sim_P \operatorname{Tr}_{W_1}(\pi^*T).$$

So we only need to prove

$$\nu(\operatorname{Sing}_{Z}(\pi^{*}T)) = \left(0, \mu(\operatorname{Sing}_{\widetilde{W_{1}}}(\operatorname{Tr}_{W_{1}}(\pi^{*}T))\right),$$

This is reduced to the following statement:

$$\operatorname{Tr}_{W_1}\operatorname{Sing}_Z(\pi^*T) \sim_P \operatorname{Sing}_{\widetilde{W_1}}(\operatorname{Tr}_{W_1}(\pi^*T)).$$
 (11.14) {eq:nusingzpistarTtemp1}

In order to prove this, we may add a Kähler form to T and assume that T is a Kähler current. Take a quasi-equisingular approximation $(T_j)_j$ of T. Then $(\pi^*T_j)_j$ is a quasi-equisingular approximation of π^*T . Thanks to Proposition 8.2.2, we have

$$\operatorname{Tr}_{W_1}(\pi^*T_i) \xrightarrow{d_S} \operatorname{Tr}_{W_1}(\pi^*T)$$

Therefore, as in the proof of Theorem 11.2.2, we find that Sing_Z and $\operatorname{Sing}_{\widetilde{W_1}}$ are both continuous along this sequence as well. So we finally reduce to the case where T has analytic singularities.

In this case, arguing as before, we may assume replace π by a modification dominating it so that $\pi^*T \sim [D]$ for an effective \mathbb{Q} -divisor D on Z, in which case (11.14) is clear.

Proof (The proof of Theorem 11.3.1) It would be more convenient to use the language of currents. We shall write $T = dd^c h$.

Instead of arguing (11.10), we shall argue a slightly more general version: for any $\alpha \in NS^1(X)_{\mathbb{R}}$, we have

$$\Delta_{Y_{\bullet}}(T) = \nu(T) + \lim_{\pi \colon Z \to X} \Delta_{Y_{\bullet}}(\alpha - [\operatorname{Sing}_{Z}(\pi^{*}T)]). \tag{11.15}$$

We argue by induction on n. The case n = 0 is of course trivial. Let us assume that n > 0 and the result is known in dimension n - 1.

We may replace T by $T - \nu(T, Y_1)[Y_1]$ and α by $\alpha - \nu(T, Y_1)[Y_1]$, so that we may reduce to the case where $\nu(T, Y_1) = 0$.

For any projective birational morphism $\pi: Z \to X$ with Z normal, it follows from Theorem 10.3.4 (which also holds for a normal variety, as can be seen after passing to a resolution) that we have

$$\Delta_{Y_{\bullet}}\left(\pi^*\alpha - [\operatorname{Sing}_Z(\pi^*T)]\right) = \overline{\left\{\nu(S) : S \in \pi^*\alpha - [\operatorname{Sing}_Z(\pi^*T)]\right\}}.$$

Therefore,

$$\Delta_{Y_{\bullet}}\left(\pi^*\alpha - [\operatorname{Sing}_Z(\pi^*T)]\right) + \nu(\operatorname{Sing}_Z(\pi^*T)) \subseteq \overline{\left\{\nu(S) : S \in \alpha, \pi^*S \ge \operatorname{Sing}_Z(\pi^*T)\right\}}.$$

We observe that the right-hand side is decreasing with respect to π , which together with Lemma 11.3.1 implies that the net of convex bodies $\Delta_{Y_{\bullet}}(c_1(\pi^*L) - [\operatorname{Sing}_Z(\pi^*T)])$ for various Z is uniformly bounded. Suppose that Δ is the limit of a subnet. Then we have

$$\Delta + \nu(T) \subseteq \overline{\{\nu(S) : S \in c_1(L), S \leq_I T\}}.$$

As shown in Theorem 10.3.4, the right-hand side is exactly $\Delta_{Y_{\bullet}}(T)$. So

$$\Delta + \nu(T) \subseteq \Delta_{Y_{\bullet}}(T)$$
.

But observe that both sides have the same volume, as computed in Theorem 10.3.2 and Theorem 11.2.1. So equality holds.

It follows from the Blaschke selection theorem Theorem C.1.1 that the limit in (11.15) exists and (11.15) holds.

Part III Applications

In this part, we explain a few applications of the theory developed in this book.

In Chapter 12, we develop the pluripotential theory on big line bundles on toric varieties. This theory depends crucially on the theory of partial Okounkov bodies developed in Chapter 10.

In Chapter 13, we develop the transcendental theory of non-Archimedean metrics based on the theory of test curves developed in Chapter 9.

In Chapter 14, we prove the convergence of partial Bergman measures.

Chapter 12

Toric pluripotential theory on big line bundles

chap:toricbig

In this chapter, we develop the toric pluripotential theory on big line bundles. Our development here is based on the theory of partial Okounkov bodies developed in Chapter 10. We will deduce two non-trivial consequences from the general theory: Corollary 12.2.2 and Theorem 12.2.2. The author does not know how to prove either result without relying on partial Okounkov bodies.

12.1 Toric setup

Let T be a complex torus of dimension n with character lattice M and cocharacter lattice N. Consider a rational polyhedral fan Σ in $N_{\mathbb{R}}$ corresponding to an n-dimensional smooth toric variety X.

Let *D* be a *T*-invariant big divisor on *X*. Then $P_D \subseteq M_{\mathbb{R}}$ be the lattice polytope generated by $u \in M$ such that

$$D + \operatorname{div} \chi^u \ge 0.$$

Let $L = O_X(D)$. Note that replacing D by a linearly equivalent divisor amounts to replace D by an integral translation.

We shall fix a smooth T_c -invariant metric h_0 on L. Let $\theta = c_1(L, h_0)$. Fix a smooth function $F_\theta \colon N_\mathbb{R} \to \mathbb{R}$ such that

$$\theta = \mathrm{dd^c} \operatorname{Trop}^* F_{\theta}.$$

Note that F_{θ} is well-defined up to a linear term.

We will consider a T-invariant subvariety $Y \subseteq X$. Since X is smooth, so is Y. Let σ be the cone in Σ corresponding to Y and Q be the face of P corresponding to Y.

Recall that the cocharacter lattice $N(\sigma)$ of Y is given by $N/N \cap \langle \sigma \rangle$, where $\langle \sigma \rangle$ is the linear span of σ . See [CLS11, (3.2.6)]. In particular, the character lattice $M(\sigma)$ of Y can be naturally identified with the linear span of Q. Let $i_{\sigma} \colon M(\sigma) \to M$ be the corresponding inclusion.

Take $m_{\sigma} \in M$ so that $-\operatorname{Supp}_{-P_D}$ coincides with m_{σ} on σ . Observe that m_{σ} is uniquely determined only when σ has full dimension.

12.2 Toric partial Okounkov bodies

12.2.1 Newton bodies

Let $PSH_{tor}(X, \theta)$ be the set of T_c -invariant functions in $PSH(X, \theta)$.

Definition 12.2.1 A function $\varphi \in PSH_{tor}(X, \theta)$ can be written as

$$\varphi|_{T(\mathbb{C})} = \operatorname{Trop}^* f$$

for some unique $f: N_{\mathbb{R}} \to [-\infty, \infty)$. Then we define

$$F_{\varphi}: N_{\mathbb{R}} \to \mathbb{R}$$

as follows:

$$F_{\omega} = F_{\theta} + f. \tag{12.1}$$

Observe that F_{φ} is a convex function and takes finite values by Lemma 5.2.1. It is well-defined up to a linear term.

Definition 12.2.2 Let $\varphi \in PSH_{tor}(X, \theta)$, we define its *Newton body* as

$$\Delta(\theta,\varphi) := \overline{\nabla F_{\varphi}(N_{\mathbb{R}})} \subseteq M_{\mathbb{R}}.$$

Observe that $\Delta(\theta, \varphi)$ depends only on the current θ_{φ} , not on the choices of θ and F_{θ} .

12.2.2 Partial Okounkov bodies

subsec:pobtorgeneral

There are some canonical choices of smooth flags in the toric setting.

Recall that for each $\rho \in \Sigma(1)$, u_{ρ} denotes the ray generator of ρ . Since X is smooth and projective, we could choose a full-dimensional cone σ in Σ with rays $\rho_1, \ldots, \rho_n \in \Sigma(1)$ such that $u_{\rho_1}, \ldots, u_{\rho_n}$ form a basis of N. Define

$$Y_i = D_{\rho_1} \cap \cdots \cap D_{\rho_i}, \quad i = 1, \dots, n.$$

Then Y_{\bullet} is a smooth flag on X. Let

$$\Phi \colon M \to \mathbb{Z}^n, \quad m \mapsto \left(\langle m - m_{\sigma}, u_{\rho_1} \rangle, \dots, \langle m - m_{\sigma}, u_{\rho_n} \rangle \right). \tag{12.2}$$

Then Φ is an isomorphism of lattices. It induces an \mathbb{Z} -affine isomorphism

$$\Phi_{\mathbb{R}}: M_{\mathbb{R}} \to \mathbb{R}^n$$
.

prop:toricusual0ko

Proposition 12.2.1 We have

$$k^{-1}\nu_{Y_{\bullet}}\left(\mathrm{H}^{0}(X,L^{k})^{\times}\right) = \Phi_{\mathbb{R}}\left(P_{D} \cap k^{-1}M\right) \tag{12.3}$$
 {eq:DeltakLtoric}

for any $k \in \mathbb{Z}_{>0}$. In particular,

$$\Delta_{Y_{\bullet}}(L) = \Phi_{\mathbb{R}}(P_D). \tag{12.4}$$

Proof Up to replacing D by a linearly equivalent divisor, we may assume that $D|_{U_{\sigma}} = 0$, where U_{σ} is the affine subvariety of X corresponding to σ . Then $m_{\sigma} = 0$. It suffices to prove (12.3) for k = 1. Let $s \in H^0(X, L)$ be a non-zero section, say χ^u for some $u \in P_D \cap M$. The zero-locus of s is given by

$$D + \sum_{i=1}^{n} \langle u, u_{\rho_i} \rangle D_{\rho_i}.$$

Therefore,

$$v_{Y_{\bullet}}(s) = (\langle u, u_{\rho_1} \rangle, \dots, \langle u, u_{\rho_n} \rangle) = \Phi(u).$$

So (12.3) follows.

thm:toricpob

Theorem 12.2.1 Let $\varphi \in PSH_{tor}(X, \theta)_{>0}$, then

$$\Phi_{\mathbb{R}}\left(\Delta(\theta,\varphi)\right) = \Delta_{Y_{\bullet}}(\theta,\varphi). \tag{12.5}$$

{eq:toricOkounkovcomp}

Proof Up to replacing D by a linearly equivalent divisor, we may assume that $D|_{U_{\sigma}} = 0$, where U_{σ} is the affine subvariety of X corresponding to σ . Then $m_{\sigma} = 0$. **Step 1**. We first reduce to the case where θ_{φ} is a Kähler current.

By Lemma 2.3.2, we can find $\psi \in PSH(X, \theta)$ such that $\psi \leq \varphi$ and θ_{ψ} is a Kähler current. Taking the average along T_c , we may assume that ψ is T_c -invariant.

For each $t \in (0, 1)$, we let

$$\varphi_t = (1-t)\psi + t\varphi.$$

Suppose that Kähler current case is known. Then we get

$$\Phi_{\mathbb{R}}\left(\Delta(\theta,\varphi_t)\right) = \Delta_{Y_{\bullet}}(\theta,\varphi_t)$$

for any $t \in (0, 1)$. It follows from Theorem A.4.2 that

$$\Phi_{\mathbb{R}} (\Delta(\theta, \varphi)) \supseteq \Phi_{\mathbb{R}} (\Delta(\theta, \varphi_t)) \supseteq \Delta_{Y_{\bullet}}(\theta, \varphi_t)$$

for any $t \in (0, 1)$. Thanks to Theorem 10.2.2, we have

$$\Phi_{\mathbb{R}} (\Delta(\theta, \varphi)) \supseteq \Delta_{Y_{\bullet}}(\theta, \varphi).$$

Compare the volumes of both sides using Proposition 12.2.2 and (10.11), we find that

$$n! \operatorname{vol} \Phi_{\mathbb{R}} (\Delta(\theta, \varphi)) = \int_{X} \theta_{\varphi}^{n} = \operatorname{vol} \theta_{\varphi} = n! \operatorname{vol} \Delta_{Y_{\bullet}}(\theta, \varphi).$$

In particular, we conclude (12.5).

Step 2. We handle the case where θ_{φ} is a Kähler current.

Let $(\varphi_i)_i$ be a quasi-equisingular approximation of φ in PSH (X, θ) .

We may assume that φ_j is T_c -invariant for each $j \ge 1$ from the construction of $[\overline{\text{Dem}}12a]$, Theorem 13.21].

Now assume that the result is known for each φ_i . Then

$$\Phi_{\mathbb{R}}\left(\Delta(\theta,\varphi_i)\right) = \Delta_{Y_{\bullet}}(\theta,\varphi_i).$$

In particular, by Proposition 12.2.2 again,

$$\Phi_{\mathbb{R}}(\Delta(\theta,\varphi)) \subseteq \Delta_{Y_{\bullet}}(\theta,\varphi_i)$$

for each $j \ge 1$. It follows from Theorem 10.2.2 that

$$\Phi_{\mathbb{R}}(\Delta(\theta,\varphi))\subseteq \Delta_{Y_{\bullet}}(\theta,\varphi).$$

Compare the volumes of both sides using Proposition 12.2.2, (10.11) and Theorem 5.2.2, we conclude (12.5).

Step 3. It remains to handle the case where φ has analytic singularities and θ_{φ} is a Kähler current. In fact, we may assume that φ has the form

$$\varphi = \log \sum_{i=1}^{a} |s_i|_{h_0}^2 + O(1),$$

where $s_{b
otin 12}$, $s_a
otin H^0(X, L)$. This follows from the proof of Step 2 and the construction of $[\overline{\text{Dem}} 12a]$, Theorem 13.21].

Let $u_1, \ldots, u_a \in P_D \cap M$ be the lattice points corresponding to s_1, \ldots, s_a . Observe that $\Delta(\theta, \varphi)$ is the convex envelope of u_1, \ldots, u_a by Lemma A.5.2.

Then for any $m \in M$ and $k \in \mathbb{Z}_{>0}$, $m \in kP_D$ if and only if

$$|\chi^m|_{h_0^k}^2 \mathrm{e}^{-k\varphi}$$

is bounded from above. It follows that

$$\Phi\left(k\Delta(\theta,\varphi)\cap M\right)\subseteq k\Delta_k(\theta,\varphi).$$

The notation Δ_k is defined Section 10.2. Letting $k \to \infty$ and applying Theorem 10.2.4, we find that

$$\Phi_{\mathbb{R}} (\Delta(\theta, \varphi)) \subseteq \Delta(\theta, \varphi).$$

Compare the volumes of both sides using Proposition 12.2.2 and (10.11), we conclude that the equality holds and (12.5) follows. \Box

As another consequence we have

cor:toricLelong

Corollary 12.2.1 *Let* E *be a T-invariant prime divisor on* X *corresponding to a ray with ray generator* $n \in N$. Then for any $\varphi \in PSH_{tor}(X, \theta)_{>0}$, we have

$$v(\varphi, E) = \inf \{ \langle m - m_{\sigma}, n \rangle : m \in \Delta(\theta, \varphi) \},$$

where σ is the ray in Σ corresponding to E.

Proof This follows immediately from Theorem 12.2.1 and Theorem 10.2.5. In fact, since X is projective and smooth, there is always a T-invariant smooth flag Y_{\bullet} with $Y_1 = E$.

cor:toricLelong2

Corollary 12.2.2 For any T-invariant subvariety $Y \subseteq X$ corresponding to a cone σ in Σ and any $\varphi \in PSH_{tor}(X, \theta)_{>0}$. Then the following are equivalent:

- (1) $\nu(\varphi, Y) = 0$;
- (2) There is a point $m \in \Delta(\theta, \varphi)$ such that $(m m_{\rho}) \cdot u_{\rho} = 0$ for any 1-dimensional face ρ of σ .

Proof Let ρ_1, \ldots, u_r be the rays of σ . Up to replacing D by a translation, we may assume that $m_{\sigma} = 0$.

Let $\pi: Z \to X$ be the blow-up of X along Y. Observe that $\Delta(\theta, \varphi) = \Delta(\pi^*\theta, \pi^*\varphi)$. On the other hand, the ray corresponding to the exceptional divisor E is generated by $u_{\rho_1} + \cdots + u_{\rho_r}$. Since X is smooth, this vector is primitive.

It follows from Corollary 12.2.1 and [Bou02a, Corollaire 1.1.8] that

$$\nu(\varphi, Y) = \nu(\pi^*\varphi, E) = \inf\{(m, u_{\rho_1} + \dots + u_{\rho_r}) : m \in \Delta(\theta, \varphi)\}.$$
 (12.6)

{eq:nuvarphiYtoric1}

Our assertion follows.

It follows from (12.6) that

$$v(\varphi, Y) \ge \sum_{i=1}^{a} v(\varphi, E_i),$$

where the E_i 's are the prime divisors corresponding to the rays of σ . This inequality seems to be new as well.

thm:FVtheta

Theorem 12.2.2 We have

$$F_{V_{\theta}} \in \mathcal{E}(N_{\mathbb{R}}, P_D).$$

Proof Take $\varphi = V_{\theta}$ in Theorem 12.2.1, we find

$$\Phi_{\mathbb{R}}\left(\Delta(\theta, V_{\theta})\right) = \Delta_{Y_{\bullet}}(\theta, V_{\theta}) = \Phi_{\mathbb{R}}(P_{D}),$$

where we applied Proposition 12.2.1 in the second equality. Therefore,

$$\Delta(\theta, V_{\theta}) = P_{D}$$
.

prop:toricMAandrealMA2

Proposition 12.2.2 *Let* $\varphi \in PSH_{tor}(X, \theta)$ *, then*

$$\operatorname{Trop}_* \left(\theta |_{T(\mathbb{C})} + \operatorname{dd^c} \varphi |_{T(\mathbb{C})} \right)^n = \operatorname{MA}_{\mathbb{R}}(F_{\varphi}). \tag{12.7}$$

In particular,

$$\int_X \theta_{\varphi}^n = \int_{N_{\mathbb{R}}} \mathrm{MA}_{\mathbb{R}}(F_{\varphi}) = n! \, \mathrm{vol} \, \Delta(\theta, \varphi) \tag{12.8}$$

and

$$\int_{Y} \theta_{V_{\theta}}^{n} = n! \operatorname{vol} P.$$
 (12.9) {eq:toricminsingmass}

Proof Take F_0 as in (5.6) and ω denotes the corresponding Kähler form.

Then for any large enough C > 0, $\theta + C\omega$ is a Kähler form. So we conclude from Proposition 5.2.5 that

$$\operatorname{Trop}_* \left((\theta + C\omega)|_{T(\mathbb{C})} + \operatorname{dd}^{\operatorname{c}} \varphi|_{T(\mathbb{C})} \right)^n = \operatorname{MA}_{\mathbb{R}} (F_{\varphi} + CF_0).$$

Since both sides are polynomials in C, we conclude that the same holds for C = 0. Therefore, (12.7) follows.

(12.8) is a direct consequence, while (12.9) follows from Theorem 12.2.2.

12.3 The pluripotential theory

thm:toricpshbig

Theorem 12.3.1 *There is a canonical bijection between the following sets:*

- (1) The set of $\varphi \in PSH_{tor}(X, \theta)$;
- (2) the set of $F \in \mathcal{P}(N_{\mathbb{R}}, P_D)$ satisfying $F \leq F_{V_{\theta}}$, and
- (3) the set of closed proper convex functions $G \in \text{Conv}(M_{\mathbb{R}})$ satisfying

$$G \geq F_{V_0}^*$$
.

As before, we write F_{φ} , G_{φ} for the functions determined by this construction.

Proof The proof is similar to that of Theorem 5.2.1, but due to its importance, we give the proof. Again, the correspondence between (2) and (3) follows easily from Proposition A.2.4.

Given φ , we can construct F_{φ} in (2) as explained earlier. Conversely, given $F \in \mathcal{P}(N_{\mathbb{R}}, P_D)$ such that $F \leq F_{V_{\theta}}$. Then

$$\operatorname{Trop}^*(F - F_{\theta}) \in \operatorname{PSH}(T(\mathbb{C}), \theta|_{T(\mathbb{C})}).$$

Since $F \leq F_{V_{\theta}}$, we see that $\operatorname{Trop}^*(F - F_{\theta})$ is bounded from above. It follows that Grauert–Remmert's extension theorem Theorem 1.2.1 is applicable, and this function extends to a unique θ -psh function φ . The uniqueness of the extension guarantees that $\varphi \in \operatorname{PSH}_{\operatorname{tor}}(X, \theta)$.

The two maps are clearly inverse to each other.

We fix a model potential $\phi \in \mathrm{PSH}_{\mathrm{tor}}(X,\theta)_{>0}$ with Newton body $\Delta(\theta,\phi)$. A similar argument guarantees the following:

Corollary 12.3.1 *There is a canonical bijection between the following sets:*

- (1) The set of $\varphi \in PSH_{tor}(X, \theta; \phi)$,
- (2) the set of $F \in \mathcal{P}(N_{\mathbb{R}}, \Delta(\theta, \phi))$ satisfying $F \leq F_{V_{\theta}}$, and
- (3) the set of closed proper convex functions $G \in \text{Conv}(M_{\mathbb{R}})$ satisfying

$$G \geq F_{V_{\theta}}^*, \quad G|_{M_{\mathbb{R}} \setminus \Delta(\theta, \phi)} = \infty.$$

Moreover, under these correspondences, we have the following bijections:

- (1) The set $\mathcal{E}_{tor}(X, \theta; \phi)$,
- (2) the set of $F \in \mathcal{E}(N_{\mathbb{R}}, \Delta(\theta, \phi))$ satisfying $F \leq F_{V_{\theta}}$, and
- (3) the set of closed proper convex functions $G \in \text{Conv}(M_{\mathbb{R}})$ satisfying

$$G \geq F_{V_{\theta}}^*, \quad G|_{\operatorname{Int} P} < \infty.$$

Here the notation $\mathcal{E}_{tor}(X, \theta; \phi)$ means $\mathcal{E}(X, \theta; \phi) \cap PSH_{tor}(X, \theta)$.

With an almost identical argument, we arrive at

prop:toricsubgeod

Proposition 12.3.1 *Let* $\varphi_0, \varphi_1 \in PSH_{tor}(X, \theta)$. *There is a canonical bijection between the following sets:*

- (1) The set of T_c -invariant subgeodesics from φ_0 to φ_1 ,
- (2) the set of convex functions $F: N_{\mathbb{R}} \times (0,1) \to \mathbb{R}$ such that for each $r \in (0,1)$, the function

$$F_r: N_{\mathbb{R}} \to \mathbb{R}, \quad n \mapsto F(n,r)$$

satisfies $F_r \to F_{\varphi_1}$ (resp. $F_r \to F_{\varphi_0}$) everywhere as $r \to 1-$ (resp. $r \to 0+$), and

(3) the set of convex functions Ψ on $M_{\mathbb{R}} \times \mathbb{R}$ such that

$$\Psi(m,s) \geq G_{\varphi_0}(m) \vee (G_{\varphi_1}(m) + s).$$

Note that Ψ in (3) is nothing but the Legendre transform of F. As an immediate corollary,

cor:toricgeodgeneral

Corollary 12.3.2 Let $\varphi_0, \varphi_1 \in \mathcal{E}_{tor}(X, \theta)$. Then the geodesic $(\varphi_t)_{t \in (0,1)}$ from φ_0 to φ_1 corresponds to the lower convex envelope Definition A.1.4 of the function

$$N_{\mathbb{R}} \times [0,1] \to \mathbb{R}, \quad (n,t) \mapsto tF_{\varphi_1}(n) + (1-t)F_{\varphi_0}(n).$$

Moreover, we have

$$G_{\varphi_t} = (1 - t)G_{\varphi_1} + tG_{\varphi_0}. \tag{12.10}$$

{eq:Glinear}

Proof The first assertion follows immediately from Proposition 12.3.1. It remains to argue (12.10).

Let $F: N_{\mathbb{R}} \times [0, 1]$ be the map $(n, t) \mapsto F_{\varphi_t}(n)$.

It follows from the correspondence in Proposition 12.3.1 that the Legendre transform of F is given by $G_{\varphi_0} \vee (G_{\varphi_1} + s)$. From this we conclude that

$$G_{\varphi_t}(m) = -\sup_{s \in \mathbb{R}} \left(st - G_{\varphi_0}(m) \vee \left(G_{\varphi_1}(m) + s \right) \right) = (1 - t)G_{\varphi_1}(m) + tG_{\varphi_0}(m).$$

The proofs of the following results are similar to the ample case studied in Chapter 5. We omit the details.

prop:toricpluscstbig

Proposition 12.3.2 *Given* $\varphi \in PSH_{tor}(X, \theta)$ *and* $C \in \mathbb{R}$ *. We have*

$$F_{\omega+C} = F_{\omega} + C$$
, $G_{\omega+C} = G_{\omega} - C$.

prop:toricrooftopbig

Proposition 12.3.3 *Given* $\varphi, \psi \in PSH_{tor}(X, \theta)$, then $\varphi \wedge \psi \in PSH_{tor}(X, \theta)$ and

$$F_{\omega \wedge \psi} = F_{\omega} \wedge F_{\psi}, \quad G_{\omega \wedge \psi} = G_{\omega} \vee G_{\psi}.$$

prop:toricseqbig

Proposition 12.3.4 *Let* $(\varphi_i)_{i \in I}$ *be a family in* $PSH_{tor}(X, \theta)$ *uniformly bounded from above. Then* $\sup_{i \in I} \varphi_i \in PSH_{tor}(X, \theta)$ *and*

$$F_{\sup^*_{i\in I}\varphi_i} = \sup_{i\in I} F_{\varphi_i}, \quad G_{\sup^*_{i\in I}\varphi_i} = \operatorname{cl} \bigwedge_{i\in I} G_{\varphi_i}.$$

Moreover, if I is finite, then

$$G_{\max_{i \in I} \varphi_i} = \bigwedge_{i \in I} G_{\varphi_i}.$$

Similarly, if $\{\varphi_i\}_{i\in I}$ is a decreasing net in $PSH_{tor}(X,\theta)$ such that $\inf_{i\in I}\varphi_i\not\equiv -\infty$, then $\inf_{i\in I}\varphi_i\in PSH_{tor}(X,\theta)$ and

$$F_{\inf_{i\in I}\varphi_i} = \inf_{i\in I} F_{\varphi_i}, \quad G_{\inf_{i\in I}\varphi_i} = \sup_{i\in I} G_{\varphi_i}.$$

prop:GPenvelopebig

Proposition 12.3.5 *Let* $\varphi \in PSH_{tor}(X, \theta)$. Then $P_{\theta}[\varphi] \in PSH_{tor}(X, \theta)$ and

$$G_{P_{\theta}[\varphi]}(x) = \begin{cases} G_{V_{\theta}}(x), & \text{if } x \in \overline{\{G_{\varphi}(x) < \infty\}}; \\ \infty, & \text{otherwise.} \end{cases}$$
 (12.11) [eq:toricPenvbig]

As a consequence, we have

Corollary 12.3.3 *Let* $\varphi, \psi \in PSH_{tor}(X, \theta)_{>0}$. Then the following are equivalent:

(1)
$$\varphi \sim_P \psi$$
;

(2)
$$\Delta(\theta, \varphi) = \Delta(\theta, \psi)$$
.

Next we consider the trace operator. For this purpose, we will need to fix a T-invariant subvariety $Y \subseteq X$. Since X is smooth, so is Y. Let σ be the cone in Σ corresponding to Y and Q be the face of P corresponding to Y.

prop:traceoptoric

Proposition 12.3.6 Let $\varphi \in \mathrm{PSH}_{\mathrm{tor}}(X,\theta)_{>0}$. Consider a T-invariant subvariety Y corresponding to a face Q of P. Suppose that $v(\varphi,Y)=0$ and $\mathrm{vol}(\theta|_Y,\mathrm{Tr}_Y^\theta(\varphi))>0$. Then

$$\Delta(\theta|_{Y}, \operatorname{Tr}_{Y}^{\theta}(\varphi)) = (i_{\sigma} + m_{\sigma})_{\mathbb{R}}^{*} (\Delta(\theta, \varphi) \cap Q). \tag{12.12}$$

{eq:tracetoricNewton}

In particular, $\operatorname{Tr}_Y(\varphi) \sim_P \varphi|_Y$ if moreover $\varphi|_Y \not\equiv -\infty$.

Observe that the condition $\nu(\varphi, Y) = 0$ means exactly that $\Delta(\theta, \varphi) \cap Q \neq \emptyset$ by Corollary 12.2.2.

Proof Perturbing θ slightly, we may assume that θ_{φ} is a Kähler current. Let $(\varphi_j)_j$ be a quasi-equisingular approximation of φ in PSH_{tor} (X,θ) . It follows from the continuity of the partial Okounkov bodies Theorem 10.2.2 and the continuity of the trace operator Proposition 8.2.2 that it suffices to handle the case where φ has analytic singularities. We need to show that

$$\Delta(\theta|_{Y},\varphi|_{Y}) = (i_{\sigma} + m_{\sigma})^{*}_{\mathbb{R}} (\Delta(\theta,\varphi) \cap Q).$$

It is enough to observe that

$$G_{\varphi|_Y} = (i_\sigma + m_\sigma)^*_{\mathbb{R}} G_{\varphi}|_Q.$$

The argument is contained in [BGPS14, Proof of Proposition 4.8.9].

Finally, observe that if $\varphi|_Y \not\equiv -\infty$, the right-hand side of (12.12) is nothing but $\Delta(\theta|_Y, \varphi|_Y)$ using [BGPS 14, Proof of Proposition 4.8.9]. So we conclude that $\varphi|_Y \sim_P \operatorname{Tr}_Y(\varphi)$.

Chapter 13

Non-Archimedean pluripotential theory

chap: NAapp

In this chapter, we will establish the non-Archimedean pluripotential theory using the theory of I-good singularities.

We also construct the Duistermaat–Heckman measure of a non-Archimedean metric in Section 13.3.

13.1 The definition of non-Archimedean metrics

Let X be a connected compact Kähler manifold of dimension n. Let Käh(X) be the set of Kähler forms on X with the partial order given as follows: we say $\omega \leq \omega'$ if $\omega \geq \omega'$. Note that the ordered set Käh(X) is a directed set.

Let θ be a closed smooth real (1, 1)-form.

Definition 13.1.1 We define

$$\mathrm{PSH}^{\mathrm{NA}}(X,\theta) = \varprojlim_{\omega \in \mathrm{K\ddot{a}h}(X)} \mathrm{PSH}^{\mathrm{NA}}(X,\theta+\omega)_{>0}$$

in the category of sets, where the transition maps are given as follows: suppose that $\omega, \omega' \in \text{K\"{a}h}$ and $\omega \geq \omega'$, then the transition map is defined in Proposition 9.3.4:

$$P_{\theta+\omega'}[\bullet]_I : PSH^{NA}(X, \theta+\omega')_{>0} \to PSH^{NA}(X, \theta+\omega)_{>0}.$$
 (13.1)

(13.1) {eq:PItransPSHNApositive}

In general, we denote the components of $\Gamma \in \mathrm{PSH^{NA}}(X, \theta)$ in $\mathrm{PSH^{NA}}(X, \theta + \omega)$ by $P_{\theta + \omega'}[\Gamma]_I$.

Remark 13.1.1 Thanks to Proposition 9.3.2, for any other θ' representing $[\theta]$, we have a canonical bijection

$$PSH^{NA}(X, \theta) \xrightarrow{\sim} PSH^{NA}(X, \theta').$$

Moreover, these bijections satisfy the cocycle condition. If we view the set of closed real smooth (1, 1)-forms representing $[\theta]$ as a category with a unique morphism between any two objects, then we can define

$$PSH^{NA}(X, [\theta]) = \underset{\alpha}{\varprojlim} PSH^{NA}(X, \theta).$$

This definition is independent of the choice of the explicit representative of the cohomology class $[\theta]$.

However, given the fact that our notations are already quite heavy, we decide to stick to the set $PSH^{NA}(X, \theta)$. The readers should verify that all constructions below are independent of the choice of θ within its cohomology class.

prop:testcminftyPrela

Proposition 13.1.1 Let $\Gamma \in \text{PSH}^{\text{NA}}(X, \theta)$. Then given $\omega, \omega' \in \text{K\"{a}h}(X)$ with $\omega \leq \omega'$, we have

$$P_{\theta+\omega}\left[P_{\theta+\omega'}[\Gamma]_{I,-\infty}\right]=P_{\theta+\omega}[\Gamma]_{I,-\infty}.$$

Proof Since $P_{\theta+\omega'}[\Gamma]_{I,-\infty}$ is I-good by Example 7.1.2, it follows that

$$P_{\theta+\omega}\left[P_{\theta+\omega'}[\Gamma]_{I,-\infty}\right] = P_{\theta+\omega}\left[P_{\theta+\omega'}[\Gamma]_{I,-\infty}\right]_{I}.$$

Our assertion follows from Proposition 3.2.12.

prop:NAposNAemb

Proposition 13.1.2 There is a natural injective map

$$\mathrm{PSH}^{\mathrm{NA}}(X,\theta)_{>0} \hookrightarrow \mathrm{PSH}^{\mathrm{NA}}(X,\theta), \quad \Gamma \mapsto (P_{\theta+\omega}[\Gamma]_I)_{\omega \in \mathrm{K\ddot{a}h}(X)} \,.$$

In the sequel, we will not distinguish an element in $PSH^{NA}(X, \theta)_{>0}$ with its image in $PSH^{NA}(X, \theta)$.

Proof It is obvious that this map is well-defined. It suffices to argue its injectivity. Suppose that $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)_{>0}$ and

$$P_{\theta+\omega}[\Gamma]_I = P_{\theta+\omega}[\Gamma']_I$$

for some Kähler form ω on X. Then for any $\tau < \Gamma_{\text{max}}$, we have

$$\Gamma_{\tau} \sim_{\mathcal{I}} \Gamma'_{\tau}$$

by Proposition 6.1.3. It follows again from Proposition 6.1.3 that

$$\Gamma_{\tau} = \Gamma_{\tau}'$$
.

Definition 13.1.2 Let $\Gamma \in PSH^{NA}(X, \theta)$. We define Γ_{max} as $P_{\theta+\omega}[\Gamma]_{I,max}$ for any Kähler form ω on X.

Note that under the identification of Proposition 13.1.2, for any $\Gamma \in PSH^{NA}(X, \theta)_{>0}$, this definition is compatible with the notion of Γ_{max} in Definition 9.1.1.

Definition 13.1.3 Let $\Gamma \in PSH^{NA}(X, \theta)$, we define its *volume* as follows:

$$\operatorname{vol} \Gamma \coloneqq \lim_{\omega \in \operatorname{K\"{a}h}(X)} \int_{Y} \left(\theta + \omega + \operatorname{dd^{c}} P_{\theta + \omega'}[\Gamma]_{\mathcal{I}, -\infty} \right)^{n} \in [0, \infty).$$

Observe that the net is decreasing, so the limit exists.

Proposition 13.1.3 *Let* $\Gamma \in PSH^{NA}(X, \theta)_{>0}$. *Then*

vol
$$\Gamma = \int_X (\theta + dd^c \Gamma_{-\infty})^n$$
.

Proof This follows from Proposition 3.1.9, Corollary 3.1.3 and Proposition 13.1.1.□

def:PSHNAtrangeneral

Definition 13.1.4 Let ω be a closed real smooth positive (1,1)-form on X. We define the map

$$P_{\theta+\omega}[\bullet]_I : \mathrm{PSH}^{\mathrm{NA}}(X,\theta) \to \mathrm{PSH}^{\mathrm{NA}}(X,\theta+\omega)$$

as follows: given $\Gamma \in \mathrm{PSH^{NA}}(X, \theta)$, we define $P_{\theta+\omega}[\Gamma]_I$ as the element such that for any $\omega' \in \mathrm{K\ddot{a}h}(X)$, we have

$$P_{\theta+\omega+\omega'}\left[P_{\theta+\omega}[\Gamma]_I\right]_I = P_{\theta+\omega+\omega'}[\Gamma]_I.$$

It is straightforward to check that under the identification of Proposition 13.1.2, the map $P_{\theta+\omega}[\bullet]_I$ extends the map (13.1).

Proposition 13.1.4 The maps $P_{\theta+\omega}[\bullet]_I$ in Definition 13.1.4 together induce a bijection

$$PSH^{NA}(X,\theta) \xrightarrow{\sim} \varprojlim_{\omega \in K\ddot{a}h(X)} PSH^{NA}(X,\theta+\omega). \tag{13.2}$$

{eq:PSHNAprojlimigeneral2}

Proof It is a tautology that the maps $P_{\theta+\omega}[\bullet]_{\bar{I}}$ in Definition 13.1.4 are compatible with the transition maps. So the map (13.2) is well-defined. It is injective by the same argument as Proposition 13.1.2. We argue the surjectivity.

By unfolding the definitions, an object in the target of (13.2) is an assignment: with each $\omega \in \text{K\"{a}h}(X)$, we associate a family $(\Gamma^{\omega,\omega'})_{\omega'\in\text{K\"{a}h}(X)}$ satisfying:

- (1) $\Gamma^{\omega,\omega'} \in PSH^{NA}(X, \theta + \omega + \omega')_{>0}$ for each $\omega, \omega' \in K\ddot{a}h(X)$;
- (2) for each $\omega, \omega', \omega'' \in K\ddot{a}h(X)$ satisfying $\omega'' \geq \omega'$, we have

$$P_{\theta+\omega+\omega''}\left[\Gamma^{\omega,\omega'}\right]_{I} = \Gamma^{\omega,\omega''};$$

(3) for each $\omega, \omega', \omega'' \in K\ddot{a}h(X)$ satisfying $\omega \leq \omega'$, we have

$$P_{\theta+\omega'+\omega''}\left[\Gamma^{\omega,\omega''}\right]_I = \Gamma^{\omega',\omega''}.$$

The preimage of such an object is given by the family $(\Gamma^{\omega})_{\omega \in K\ddot{a}h(X)}$ given by

$$\Gamma^{\omega} = \Gamma^{\omega/2,\omega/2}$$
.

The fact that the image of Γ is as expected is a tautology, which we leave to the readers. \Box

With an almost identical argument involving Proposition 3.1.9, we get

prop:PSHNAreform1

Proposition 13.1.5 The maps $P_{\theta+\omega}[\bullet]_I$ in Definition 13.1.4 and the injective maps *Proposition 13.1.2* together induce bijections

$$PSH^{NA}(X,\theta) \xrightarrow{\sim} \varprojlim_{\omega} PSH^{NA}(X,\theta+\omega)_{>0} \xrightarrow{\sim} \varprojlim_{\omega} PSH^{NA}(X,\theta+\omega), \quad (13.3)$$

{eq:PSHNAprojlimigeneral}

where ω runs over either the partially ordered set of all smooth closed real positive (1,1)-forms with positive volume on X or $K\ddot{a}h(X)$.

cor:PSHNAbimero

Corollary 13.1.1 Let $\pi: Y \to X$ be a proper bimeromorphic morphism from a compact Kähler manifold Y. Then π^* induces a bijection

$$PSH^{NA}(X, \theta) \xrightarrow{\sim} PSH^{NA}(Y, \pi^*\theta).$$

Proof This follows immediately from Proposition 13.1.5.

It is immediate to verify that π^* in Corollary 13.1.1 extends the map Proposition 9.3.3.

13.2 Operations on non-Archimedean metrics

Let X be a connected compact Kähler manifold of dimension n and θ , θ' , θ'' be closed real smooth (1, 1)-forms on X representing big cohomology classes.

Definition 13.2.1 Let $\Gamma, \Gamma' \in \mathrm{PSH^{NA}}(X, \theta)$. We say $\Gamma \leq \Gamma'$ if $\Gamma_{\max} \leq \Gamma'_{\max}$ and for some $\omega \in \mathrm{K\ddot{a}h}(X)$, we have

$$P_{\theta+\omega}[\Gamma]_I \geq P_{\theta+\omega}[\Gamma']_I$$
.

This notion is independent of the choice of ω thanks to (9.15).

Moreover, we have the following:

Proposition 13.2.1 Let $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)$ and ω be a closed smooth positive (1, 1)-form on X, then the following are equivalent:

(1)
$$\Gamma \leq \Gamma'$$
;

$$(2) P_{\theta+\omega}[\Gamma]_{\mathcal{I}} \leq P_{\theta+\omega}[\Gamma']_{\mathcal{I}}.$$

Proof This follows immediately from (9.15).

Observe that this definition coincides with the corresponding definition in Definition 9.4.1 when $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)_{>0}$.

def:sumNAmetrics

Definition 13.2.2 Let $\Gamma \in \mathrm{PSH^{NA}}(X,\theta)$ and $\Gamma' \in \mathrm{PSH^{NA}}(X,\theta')$. Then we define $\Gamma + \Gamma' \in \mathrm{PSH^{NA}}(X,\theta + \theta')$ as the unique element such that for any $\omega \in \mathrm{K\ddot{a}h}(X)$, we have

$$P_{\theta+\omega}[\Gamma+\Gamma']_I = P_{\theta+\omega}[\Gamma]_I + P_{\theta+\omega}[\Gamma']_I.$$

This definition yields an element in PSH^{NA} $(X, \theta + \theta')$ by Lemma 9.4.3.

Proposition 13.2.2 Let $\Gamma \in PSH^{NA}(X, \theta)$ and $\Gamma' \in PSH^{NA}(X, \theta')$. Suppose that ω, ω' are two smooth closed positive (1, 1)-forms on X. Then

$$P_{\theta+\omega+\theta'+\omega'}[\Gamma+\Gamma']_I=P_{\theta+\omega}[\Gamma]_I+P_{\theta'+\omega'}[\Gamma']_I.$$

Proof This is a direct consequence of Lemma 9.4.3.

Proposition 13.2.3 *The operation* + *is commutative and associative: for any* $\Gamma \in PSH^{NA}(X, \theta)$, $\Gamma' \in PSH^{NA}(X, \theta')$ and $\Gamma'' \in PSH^{NA}(X, \theta'')$, we have

$$\Gamma + \Gamma' = \Gamma' + \Gamma$$
, $(\Gamma + \Gamma') + \Gamma'' = \Gamma + (\Gamma' + \Gamma'')$.

Proof This is a direct consequence of Proposition 9.4.1.

Definition 13.2.3 Let $\Gamma \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$ and $C \in \mathbb{R}$. We define $\Gamma + C \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for any $\omega \in \mathrm{K\ddot{a}h}(X)$, we have

$$P_{\theta+\omega}[\Gamma+C] = P_{\theta+\omega}[\Gamma]+C.$$

It is obvious from Definition 9.4.3 that $\Gamma + C \in PSH^{NA}(X, \theta)$. It is also obvious that this definition extends Definition 9.4.3.

Proposition 13.2.4 Let $\Gamma \in PSH^{NA}(X, \theta)$ and $C \in \mathbb{R}$. Suppose that ω is a smooth closed positive (1, 1)-form on X. Then

$$P_{\theta+\omega}[\Gamma]_T + C = P_{\theta+\omega}[\Gamma + C]_T$$
.

Proof This is clear by definition.

prop:NAmetricplusC

Proposition 13.2.5 *Let* $\Gamma \in PSH^{NA}(X, \theta)$, $\Gamma \in PSH^{NA}(X, \theta')$ and $C, C' \in \mathbb{R}$, then

(1)
$$(\Gamma + \Gamma') + C = \Gamma + (\Gamma' + C) = (\Gamma + C) + \Gamma';$$

(2)
$$\Gamma + (C + C') = (\Gamma + C) + C'$$
.

Proof This is a direct consequence of Proposition 9.4.2.

def:PSHNAlor

Definition 13.2.4 Let $\Gamma, \Gamma' \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$, we define $\Gamma \vee \Gamma' \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for any $\omega \in \mathrm{K\ddot{a}h}(X)$, we have

$$P_{\theta+\omega}[\Gamma \vee \Gamma']_{\mathcal{T}} = P_{\theta+\omega}[\Gamma]_{\mathcal{T}} \vee P_{\theta+\omega}[\Gamma']_{\mathcal{T}}.$$

It follows from Lemma 9.4.5 that $\Gamma \vee \Gamma' \in PSH^{NA}(X, \theta)$ and this definition extends the corresponding definition in Definition 9.4.4.

Proposition 13.2.6 Let $\Gamma, \Gamma' \in PSH^{NA}(X, \theta)$ and ω be a closed smooth positive (1, 1)-form on X. Then

$$P_{\theta+\omega}[\Gamma \vee \Gamma']_{\mathcal{I}} = P_{\theta+\omega}[\Gamma]_{\mathcal{I}} \vee P_{\theta+\omega}[\Gamma']_{\mathcal{I}}.$$

Proof This is a direct consequence of Lemma 9.4.5.

Proposition 13.2.7 *The operation* \vee *is commutative and associative.*

In particular, given a finite non-empty family $(\Gamma^i)_{i \in I}$ in $PSH^{NA}(X, \theta)$, we then define $\bigvee_{i \in I} \Gamma^i$ in the obvious way.

Proof This is a direct consequence of Corollary 9.4.1.

Definition 13.2.5 Let $(\Gamma^i)_{i \in I}$ be a non-empty family in PSH^{NA} (X, θ) . Assume that

$$\sup_{i \in I} \Gamma_{\max}^i < \infty. \tag{13.4}$$

{eq:supPSHNAmaxfinite}

Then we define $\sup_{i \in I} \Gamma^i \in PSH^{NA}(X, \theta)$ as the unique element such that for any $\omega \in K\ddot{a}h(X)$, we have

$$P_{\theta+\omega}\left[\sup_{i\in I}\Gamma^i\right] = \sup_{i\in I} P_{\theta+\omega}\left[\Gamma^i\right].$$

It follows immediately from Lemma 9.4.7 that $\sup_{i \in I} \Gamma^i \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$ and this definition extends Definition 9.4.6. Moreover, this definition clearly extends Definition 13.2.4 as well.

Proposition 13.2.8 Let $(\Gamma^i)_{i \in I}$ be a non-empty in PSH^{NA} (X, θ) satisfying (13.4). Assume that ω is a closed smooth positive (1, 1)-form on X. Then

$$P_{\theta+\omega}\left[\sup_{i\in I}^*\Gamma^i\right] = \sup_{i\in I}^*P_{\theta+\omega}\left[\Gamma^i\right].$$

Proof This is a direct consequence of Lemma 9.4.7.

prop:NAChoquet

Proposition 13.2.9 Let $(\Gamma^i)_{i \in I}$ be a non-empty in $PSH^{NA}(X, \theta)$ satisfying (13.4). Then there exists a countable subfamily $I' \subseteq I$ such that

$$\sup_{i \in I} {}^*\Gamma^i = \sup_{i \in I'} {}^*\Gamma^i.$$

Proof For any fixed $\omega \in \text{K\"{a}h}(X)$, thanks to Proposition 9.4.5, we could find a countable subfamily $I' \subseteq I$ such that

$$\sup_{i \in I} {}^*P_{\theta+\omega}[\Gamma^i]_I = \sup_{i \in I'} {}^*P_{\theta+\omega}[\Gamma^i]_I.$$

It suffices to show that for any other $\omega' \in K\ddot{a}h(X)$, we have

$$\sup_{i \in I} P_{\theta + \omega'}[\Gamma^i]_I = \sup_{i \in I'} P_{\theta + \omega'}[\Gamma^i]_I.$$

This is an immediate consequence of Proposition 6.1.6.

prop:supGammiotherprop2

Proposition 13.2.10 *Let* $(\Gamma^i)_{i \in I}$ *be a non-empty family in* $PSH^{NA}(X, \theta)$ *satisfying* (13.4). *Let* $C \in \mathbb{R}$. *Then*

$$\sup_{i \in I} *(\Gamma^i + C) = \sup_{i \in I} *\Gamma^i + C.$$

Suppose that $(\Gamma'^i)_{i \in I}$ is another family in $PSH^{NA}(X, \theta)$ satisfying (13.4). Suppose that $\Gamma^i \leq \Gamma'^i$ for all $i \in I$, then

$$\sup_{i \in I} {}^*\Gamma^i \le \sup_{i \in I} {}^*\Gamma'^i.$$

Proof This is an immediate consequence of Proposition 9.4.6.

Definition 13.2.6 Let $(\Gamma_i)_{i \in I}$ be a decreasing net in PSH^{NA} (X, θ) . Assume that

$$\inf_{i \in I} \Gamma_{i,\max} > -\infty, \tag{13.5}$$

then we define $\inf_{i \in I} \Gamma_i \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for each $\omega \in \mathrm{K\ddot{a}h}(X)$, the component

$$P_{\theta+\omega}\left[\inf_{i\in I}\Gamma_i\right]_I\in \mathrm{PSH^{NA}}(X,\theta+\omega)_{>0}$$

is defined as follows:

(1) We set

$$\left(P_{\theta+\omega}\left[\inf_{i\in I}\Gamma_i\right]_I\right)_{\max}=\inf_{i\in I}\Gamma_{i,\max};$$

(2) for any $\tau < \inf_{i \in I} \Gamma_{i,\max}$, we define

$$\left(P_{\theta+\omega}\left[\inf_{i\in I}\Gamma_{i}\right]_{\mathcal{I}}\right)_{\tau} = \inf_{i\in I}P_{\theta+\omega}\left[\Gamma_{i,\tau}\right]_{\mathcal{I}}.$$
(13.6) {eq:decnettestcurdef}

We observe that

$$P_{\theta+\omega}\left[\inf_{i\in I}\Gamma_i\right]_T\in \mathrm{PSH}^{\mathrm{NA}}(X,\theta+\omega)_{>0}.$$

This follows from Proposition 3.2.11. Now it is clear that $\inf_{i \in I} \Gamma_i \in PSH^{NA}(X, \theta)$.

prop:infGammiotherprop2

Proposition 13.2.11 Let $(\Gamma^i)_{i \in I}$ be a decreasing net in $PSH^{NA}(X, \theta)$ satisfying (13.5). Let $C \in \mathbb{R}$. Then

$$\inf_{i \in I} (\Gamma^i + C) = \inf_{i \in I} \Gamma^i + C.$$

Suppose that $(\Gamma'^i)_{i \in I}$ is another decreasing net in $PSH^{NA}(X, \theta)$ satisfying (13.5). Suppose that $\Gamma^i \leq \Gamma'^i$ for all $i \in I$, then

$$\inf_{i \in I} \Gamma^i \le \inf_{i \in I} \Gamma'^i.$$

Proof This is clear by definition.

Definition 13.2.7 Let $\Gamma \in \mathrm{PSH^{NA}}(X,\theta)$ and $\lambda \in \mathbb{R}_{>0}$, then we define $\lambda \Gamma \in \mathrm{PSH^{NA}}(X,\lambda\theta)$ as the unique element such that for any $\omega \in \mathrm{K\ddot{a}h}(X)$, we have

$$P_{\lambda\theta+\omega}[\lambda\Gamma]_{I} = \lambda P_{\theta+\lambda^{-1}\omega}[\Gamma]_{I}.$$

It follows immediately from Lemma 9.4.8 that $\lambda \Gamma \in PSH^{NA}(X, \lambda \theta)$ and this definition extends Definition 9.4.7.

Proposition 13.2.12 *Let* $\Gamma \in PSH^{NA}(X, \theta)$ *and* $\lambda \in \mathbb{R}_{>0}$. *Then for any closed smooth positive* (1, 1)-form ω *on* X, *we have*

$$P_{\lambda\theta+\omega}[\lambda\Gamma]_I = \lambda P_{\theta+\lambda^{-1}\omega}[\Gamma]_I.$$

Proof This follows immediately from Lemma 9.4.8.

Proposition 13.2.13 *Let* $\Gamma \in PSH^{NA}(X, \theta)$, $\Gamma' \in PSH^{NA}(X, \theta')$, $C \in \mathbb{R}$ and $\lambda, \lambda' > 0$. we have

$$\lambda(\Gamma + \Gamma') = \lambda\Gamma + \lambda\Gamma',$$

$$(\lambda\lambda')\Gamma = \lambda(\lambda'\Gamma),$$

$$\lambda(\Gamma + C) = \lambda\Gamma + \lambda C.$$

Suppose that $(\Gamma^i)_{i \in I}$ is a non-empty family in PSH^{NA} (X, θ) satisfying (13.4), then

$$\lambda \left(\sup_{i \in I} {}^{*} \Gamma^{i} \right) = \sup_{i \in I} {}^{*} (\lambda \Gamma^{i}).$$

If $(\Gamma^i)_{i \in I}$ is a decreasing net in $PSH^{NA}(X, \theta)$ satisfying (13.5), then

$$\lambda \left(\inf_{i \in I} \Gamma^i \right) = \inf_{i \in I} (\lambda \Gamma^i).$$

Proof Everything except the last assertion follows from Proposition 9.4.8. The last assertion is obvious by definition.

Definition 13.2.8 Let $\Gamma \in PSH^{NA}(X, \theta)$. Let $Y \subseteq X$ be an irreducible analytic subset. We say that the trace operator of Γ along Y is *well-defined* if

$$\nu\left(P_{\theta+\omega''}[\Gamma_{\tau}]_{I},Y\right)=0$$

for small enough τ and any $\omega'' \in K\ddot{a}h(X)$. We define

$$(\operatorname{Tr}_{Y}(\Gamma))_{\max} := \sup \{ \tau < \Gamma_{\max} : \nu (P_{\theta + \omega''}[\Gamma_{\tau}]_{\mathcal{I}}, Y) = 0 \}.$$

prop:resclacompat2

In this case, we define $\operatorname{Tr}_Y(\Gamma) \in \operatorname{PSH}^{\operatorname{NA}}(\tilde{Y}, \theta|_{\tilde{Y}})$ as the unique element such that for any $\omega \in \operatorname{K\ddot{a}h}(\tilde{Y})$, the component

$$P_{\theta|_{\tilde{Y}}+\omega} \left[\operatorname{Tr}_{Y}(\Gamma) \right]_{I} \in \operatorname{PSH}^{\operatorname{NA}}(Y, \theta|_{\tilde{Y}} + \omega)_{>0}$$

is defined as follows:

(1) We let

$$\left(P_{\theta|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I}\right)_{\max} = \left(\operatorname{Tr}_{Y}(\Gamma)\right)_{\max}; \tag{13.7}$$

(2) for each $\tau \in \mathbb{R}$ less than the common value (13.7), we define

$$P_{\theta|_{\tilde{Y}}+\omega}\left[\mathrm{Tr}_{Y}(\Gamma)\right]_{I,\tau}\coloneqq P_{\theta|_{\tilde{Y}}+\omega}\left[\mathrm{Tr}_{Y}^{\theta+\tilde{\omega}}\left(P_{\theta+\tilde{\omega}}[\Gamma]_{I,\tau}\right)\right],$$

where $\tilde{\omega}$ is an arbitrary Kähler form on X such that $\omega \geq \tilde{\omega}|_{\tilde{v}}$.

It follows from [GK20], Proposition 3.5] that \tilde{Y} is a normal Kähler space. We observe that the choice of the trace operator $\text{Tr}_{Y}^{\theta+\tilde{\omega}}\left(P_{\theta+\tilde{\omega}}[\Gamma]_{I,\tau}\right)$ is irrelevant since two different choice are I-equivalent. Moreover,

$$\left(P_{\theta|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I}\right)_{\tau}$$

is I-model by Proposition 8.1.2.

Furthermore,

$$P_{\theta|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I} \in \operatorname{PSH}^{\operatorname{NA}}(Y,\theta|_{\tilde{Y}}+\omega)_{>0}$$

is a consequence of Proposition 8.2.1. It is therefore clear that $\text{Tr}_Y(\Gamma) \in \text{PSH}^{\text{NA}}(X, \theta)$.

Proposition 13.2.14 *Let* $\pi: Y \to X$ *be a proper bimeromorphic morphism from a compact Kähler manifold Y. Then all definitions in this section are invariant under pulling-back to Y.*

The meaning is clear in most cases. In the case of the trace operator, this means the following: suppose that $Z \subseteq X$ is an analytic subset and $\Gamma \in \mathrm{PSH}^{\mathrm{NA}}(X,\theta)$ has non-trivial restriction to Z. Suppose that Z is not contained in the non-isomorphism locus of π so that the strict transform W of Z is defined. If we write $\Pi \colon W \to Z$ for the restriction of π and $\tilde{\Pi} \colon \tilde{W} \to \tilde{Z}$ the strict transform of Π , then we have

$$\tilde{\Pi}^* \operatorname{Tr}_Z(\Gamma) = \operatorname{Tr}_W(\pi^*\Gamma).$$

Proof We only prove the assertion for the trace operator, as the other proofs are similar.

We shall use the notations above. Observe that for any closed positive smooth (1, 1)-form on X with positive mass, we have

$$\left(\tilde{\Pi}^* \operatorname{Tr}_{Z}(\Gamma)\right)_{\max} = \left(\operatorname{Tr}_{Z}(\Gamma)\right)_{\max} = \sup\left\{\tau < \Gamma_{\max} : \nu(P_{\theta+\omega}[\Gamma_{\tau}]_{I}, Z) = 0\right\}$$

and

$$\begin{split} (\mathrm{Tr}_W(\pi^*\Gamma))_{\mathrm{max}} &= \sup \left\{ \tau < \Gamma_{\mathrm{max}} : \nu(P_{\pi^*\theta + \pi^*\omega}[\pi^*\Gamma_{\tau}]_{\mathcal{I}}, W) = 0 \right\} \\ &= \sup \left\{ \tau < \Gamma_{\mathrm{max}} : \nu(\pi^*P_{\theta + \omega}[\Gamma_{\tau}]_{\mathcal{I}}, W) = 0 \right\} \\ &= \sup \left\{ \tau < \Gamma_{\mathrm{max}} : \nu(P_{\theta + \omega}[\Gamma_{\tau}]_{\mathcal{I}}, Z) = 0 \right\}. \end{split}$$

Here we applied implicitly Proposition 13.1.5. Therefore,

$$(\tilde{\Pi}^* \operatorname{Tr}_Z(\Gamma))_{\max} = (\operatorname{Tr}_W(\pi^*\Gamma))_{\max}.$$

Let $\tau \in \mathbb{R}$ be less than this common value. Take a closed smooth Kähler form ω (resp. ω') on \tilde{Z} (resp. \tilde{W}) with positive mass. We may assume that $\omega' \geq \tilde{\Pi}^* \omega$. Take a Kähler form $\tilde{\omega}$ on Y (resp. $\tilde{\omega'}$ on X) such that

$$\omega' \geq \tilde{\omega'}|_{\tilde{W}}, \quad \omega \geq \tilde{\omega}|_{\tilde{Z}}.$$

Without loss of generality, we may assume that

$$\tilde{\omega'} \geq \pi^* \tilde{\omega}$$
.

It suffices to show that

$$\operatorname{Tr}_{W}^{\pi^{*}\theta+\tilde{\omega}'}\left(P_{\pi^{*}\theta+\tilde{\omega}'}[\pi^{*}\Gamma]_{I,\tau}\right)\sim_{P}\tilde{\Pi}^{*}\operatorname{Tr}_{Z}^{\theta+\tilde{\omega}}\left[P_{\theta+\tilde{\omega}}[\Gamma]_{I,\tau}\right].$$

Using Proposition 8.2.1, this is equivalent to

$$\operatorname{Tr}_{W}\left(P_{\pi^{*}\theta+\pi^{*}\omega}[\pi^{*}\Gamma]_{I,\tau}\right)\sim_{P} \tilde{\Pi}^{*}\operatorname{Tr}_{Z}\left[P_{\theta+\tilde{\omega}}[\Gamma]_{I,\tau}\right].$$

This is a consequence of Lemma 8.2.1.

13.3 Duistermaat-Heckman measures

sec:DHmeasure

Let X be a connected compact Kähler manifold of dimension n and θ be a closed real smooth (1, 1)-form on X representing a big cohomology class.

def:DHm

Definition 13.3.1 Assume that X admits a smooth flag Y_{\bullet} . Let $\Gamma \in PSH^{NA}(X, \theta)_{>0}$. The *Duistermaat–Heckman measure* $DH(\Gamma)$ of an element $\Gamma \in PSH^{NA}(X, \theta)_{>0}$ is defined as

$$DH(\Gamma) := n! \cdot DH(\Delta_{Y_{\bullet}}(\theta, \Gamma)).$$

Recall that $\Delta_{Y_{\bullet}}(\theta, \Gamma) \in TC(\Delta_{Y_{\bullet}}(\theta, \Gamma_{-\infty}))$ is defined in Theorem 10.4.2. See Definition 10.4.4 for the definition of the Duistermaat–Heckman measure of an Okounkov test curve..

thm:DHindep

Theorem 13.3.1 The Duistermaat–Heckman measure $DH(\Gamma)$ of $\Gamma \in PSH^{NA}(X, \theta)_{>0}$ in Definition 13.3.1 is independent of the choice of the smooth flag Y_{\bullet} . Furthermore, for any $m \in \mathbb{Z}_{>0}$, the m-th moment of $DH(\Gamma)$ is given by

$$\int_{\mathbb{D}} x^m \, \mathrm{DH}(\Gamma)(x) = \Gamma_{\max}^m \, \mathrm{vol} \, \Gamma + m \int_{-\infty}^{\Gamma_{\max}} \tau^{m-1} \, \left(\mathrm{vol}(\theta + \mathrm{dd^c}\Gamma_\tau) - \mathrm{vol} \, \Gamma \right) \, \mathrm{d}\tau \quad (13.8) \quad \text{[eq:momentDHmtc1]}$$

if m > 0 and

$$\int_{\mathbb{D}} DH(\Gamma) = \text{vol } \Gamma.$$
 (13.9) {eq:momentDHmtc2}

Proof Assume furthermore that Γ is bounded, we observe that the moments of the random variable $G[\Delta_{Y_{\bullet}}(\theta, \Gamma)]$ as computed in Proposition 10.4.4 are independent of the choice of the flag: In fact, they are given by (13.8) and (13.9) thanks to Theorem 10.3.2(1). Since the Duistermaat–Heckman measure has bounded support in this case (c.f. Theorem 10.4.1), we conclude that DH(Γ) is uniquely determined.

In general, Γ is the decreasing limit of the sequence $\Gamma \vee \Gamma^k$ as $k \to \infty$, where $\Gamma^k : (-\infty, -k) \to \text{PSH}(X, \theta)$ takes the constant value $\Gamma_{-\infty}$. It follows from the argument of Theorem 9.2.1 that $\Delta_{Y_{\bullet}}(\Gamma)_{\tau}$ is the decreasing limit of $\Delta_{Y_{\bullet}}(\Gamma \vee \Gamma^k)_{\tau}$ for any $\tau < \Gamma_{\text{max}}$. So $\text{DH}(\Gamma \vee \Gamma^k) \to \text{DH}(\Gamma)$ by Lemma 10.4.2. It follows that $\text{DH}(\Gamma)$ is independent of the choice of the flag.

More generally, when X does not admit a smooth flag, we could make a modification $\pi \colon Y \to X$ so that Y admits a flag. We define

$$DH(\Gamma) := DH(\pi^*\Gamma).$$
 (13.10) {eq:DHmgeneral

It follows from Theorem 10.3.2(5) that this measure is independent of the choice of π .

prop:contDH

Proposition 13.3.1 Let $(\Gamma^i)_{i\in I}$ be a net in $PSH^{NA}(X,\theta)_{>0}$ and $\Gamma\in PSH^{NA}(X,\theta)_{>0}$. Assume one of the following conditions holds:

(1) The net $(\Gamma^i)_{i \in I}$ is decreasing and $\Gamma = \inf_{i \in I} \Gamma^i$. Assume that

$$\operatorname{vol} \Gamma = \lim_{i \in I} \operatorname{vol} \Gamma^i$$
.

(2) The net $(\Gamma^i)_{i \in I}$ is increasing and $\Gamma = \sup_{i \in I} \Gamma^i$.

Then

$$DH(\Gamma^i) \rightarrow DH(\Gamma).$$
 (13.11) {eq:contDHm}

Proof We may assume that X admits a smooth flag Y_{\bullet} .

Assume (1). We want to derive (13.11) from Proposition 10.4.2. It boils down to prove the following: for any $\tau < \Gamma_{\text{max}}$, we have

$$\Delta_{Y_{\bullet}}(\theta, \Gamma_{\tau}^{i}) \xrightarrow{d_{\text{Haus}}} \Delta_{Y_{\bullet}}(\theta, \Gamma_{\tau}).$$

This follows immediately from Theorem 10.3.2(1).

The proof under the assumption (2) is similar. We only need to apply Proposition 10.4.3 instead of Proposition 10.4.2. □

Chapter 14 Partial Bergman kernels

chap:Berg

In this chapter, we prove the convergence of the partial Bergman kernels.

14.1 Partial envelopes

sec:envrel

In this section, let X be a connected compact Kähler manifold of dimension n and $K \subseteq X$ be a closed non-pluripolar set. Let θ be a smooth closed real (1,1)-form on X representing a pseudoeffective cohomology class. Fix $\varphi \in PSH(X, \theta)$.

Definition 14.1.1 Given a function $v: K \to [-\infty, \infty)$, we introduce the *relative P-envelope* of φ (with respect to K, v, θ) as

$$P_{\theta,K}[\varphi](v) := \sup^* \{ \eta \in \mathrm{PSH}(X,\theta) : \eta|_K \le v \text{ and } \eta \le \varphi \}. \tag{14.1}$$

Similarly, we define the *relative I-envelope* of φ (with respect to K, v, θ) as

$$P_{\theta,K}[\varphi]_{\mathcal{I}}(v) := \sup^* \left\{ \eta \in \mathrm{PSH}(X,\theta) : \eta|_K \le v \text{ and } \eta \le_{\mathcal{I}} \varphi \right\}. \tag{14.2}$$

Observe that when v is bounded, we neither envelope is identically $-\infty$. When K = X and v = 0, these definitions reduce to the usual P-envelope and I-envelope of φ . It would be helpful to consider the following auxiliary functions:

$$\begin{split} P'_{\theta,K}[\varphi](v) &\coloneqq \sup \left\{ \eta \in \mathrm{PSH}(X,\theta) : \eta|_K \le v \text{ and } \eta \le \varphi \right\}, \\ P'_{\theta,K}[\varphi]_I(v) &\coloneqq \sup \left\{ \eta \in \mathrm{PSH}(X,\theta) : \eta|_K \le v \text{ and } \eta \le_I \varphi \right\}. \end{split}$$

We note the following maximum principles, that follow from the above definitions:

lem: max_princ

Lemma 14.1.1 Let $v \in C^0(K)$. Let $\eta \in PSH(X, \theta)$. Assume that $\eta \leq \varphi$, then

$$\sup_K(\eta-v) = \sup_{\{\eta \neq -\infty\}} (\eta-P'_{\theta,K}[\varphi](v)) = \sup_{\{P'_{\theta,K}[\varphi](v) \neq -\infty\}} (\eta-P'_{\theta,K}[\varphi](v)). \quad (14.3) \quad \text{ [eq: max_princ]}$$

Proof We prove the first equality at first. We write $S = \{ \eta = -\infty \}$. By definition, $P'_{\theta,K}[\varphi](v)|_K \le v$, so

$$\left. \left(h - P'_{\theta,K}[\varphi](v) \right) \right|_{K \setminus S} \ge \eta|_{K \setminus S} - v|_{K \setminus S}.$$

This implies that

$$\sup_{K} (\eta - v) \le \sup_{X \setminus S} (\eta - P'_{\theta, K}[\varphi](v)).$$

Conversely, observe that $\sup_K (\eta - v) > -\infty$ as K is non-pluripolar. Let $\eta' := \eta - \sup_K (\eta - v)$, then η' is a candidate in the definition of $P'_{\theta,K}[\varphi](v)$, hence $\eta' \le P'_{\theta,K}[\varphi](v)$, namely,

$$\eta - \sup_{K} (\eta - v) \le P'_{\theta,K}[\varphi](v),$$

the latter implies that

$$\sup_{K} (\eta - v) \ge \sup_{X \setminus S} (\eta - P'_{\theta,K}[\varphi](v)),$$

finishing the proof of the first identity.

We have $\{P'_{\theta,K}[\varphi](v) = -\infty\} \subseteq S$, and we notice that points in $S \setminus \{P'_{\theta,K}[\varphi](v) = -\infty\}$ do not contribute to the supremum of $\eta - P'_{\theta,K}[\varphi](v)$ on $X \setminus \{P'_{\theta,K}[\varphi](v) = -\infty\}$, hence the last equality of (14.3) also follows.

Next, we make the following observations about the singularity types of our envelopes:

lma:same_sing_type

Lemma 14.1.2 For any $v \in C^0(K)$ we have

$$P_{\theta,K}[\varphi](v) \sim P_{\theta}[\varphi], \quad P_{\theta,K}[\varphi]_{\mathcal{I}}(v) \sim P_{\theta}[\varphi]_{\mathcal{I}}.$$

If φ has analytic singularities, we have

$$P_{\theta,K}[\varphi](v) = P_{\theta,K}[\varphi]_I(v). \tag{14.4} \quad \text{{eq:relativePandPIana}}$$

Proof Let C > 0 such that $-C \le v \le C$. Then

$$P_{\theta}[\varphi] - C \le P_{\theta,K}[\varphi](v).$$

Since K is non-pluripolar, for $\eta \in PSH(X_{\mathbb{C}}, \theta)$ the condition $\eta|_K \le v \le C$ implies that $\eta \le \tilde{C}$ on X for some $\tilde{C} := \tilde{C}(C, K) > 0$ [GZ07, Corollary 4.3]. This implies that

$$P_{\theta,K}[\varphi](v) \le P_{\theta}[\varphi] + \tilde{C},$$

giving

$$P_{\theta,K}[\varphi](v) \sim P_{\theta}[\varphi].$$

The exact same argument applies in case of the relative I-envelope. Next assume that φ has analytic singularities, then we have that

$$\varphi \sim P_{\theta}[\varphi]_{I}$$

by Proposition 3.2.9. In particular, for $\eta \in PSH(X, \theta)$, $\eta \leq \varphi$ if and only if $\eta \leq P_{\theta}[\varphi]_{\mathcal{I}}$. So (14.4) follows.

cor:projectivity

Corollary 14.1.1 *Let* $v \in C^0(X)$. *Then*

$$P_{\theta,K}[\varphi]_{\mathcal{I}}(v) = P_{\theta,X}[P_{\theta,K}[\varphi]_{\mathcal{I}}(v)]_{\mathcal{I}}(v).$$

Proof By definition, we have

$$\begin{split} &P_{\theta,X}[P_{\theta,K}[\varphi]_{\mathcal{I}}(v)]_{\mathcal{I}}(v) \\ &= \sup^* \left\{ \eta \in \mathrm{PSH}(X,\theta) : \eta|_K \leq v, \eta \leq_{\mathcal{I}} P_{\theta,K}[\varphi]_{\mathcal{I}}(v) \right\} \\ &= \sup^* \left\{ \eta \in \mathrm{PSH}(X,\theta) : \eta|_K \leq v, \eta \leq_{\mathcal{I}} \varphi \right\} \\ &= &P_{\theta,K}[\varphi]_{\mathcal{I}}(v), \end{split}$$

where we applied Lemma 14.1.2 on the thrid line.

lma:PKoutsidepps

Lemma 14.1.3 Assume that $\varphi \in \text{PSH}(X, \theta)_{>0}$. Let $v \in C^0(K)$. Let $S \subseteq X$ be a pluripolar set and $\eta \in \text{PSH}(X, \theta)_{>0}$ with $\eta \leq \varphi$. Assume that $\eta|_{K \setminus S} \leq v|_{K \setminus S}$, then $\eta \leq P_{\theta,K}[\varphi](v)$.

Proof By Theorem 1.1.5, there is $\chi \in PSH(X, \theta)$, such that $\chi|_S \equiv -\infty$. We claim that we can choose χ so that

$$\chi \leq \eta$$

In fact, since $\int_X \theta_\eta^n > 0$, fixing some χ and $\epsilon \in (0,1)$ small enough, we have

$$\int_{Y} \theta^n_{\epsilon\chi + (1-\epsilon)V_\theta} + \int_{Y} \theta^n_{\eta} > \int_{Y} \theta^n_{V_\theta}.$$

Thus, by Proposition 3.1.4, we have

$$(\epsilon \chi + (1 - \epsilon)V_{\theta}) \wedge \eta \in PSH(X, \theta).$$

It suffices to replace χ by $(\epsilon \chi + (1 - \epsilon)V_{\theta}) \wedge \eta$.

Fix $\chi \leq \eta$ as above. For any $\delta \in (0, 1)$, we have

$$(1 - \delta)\eta|_K + \delta\chi|_K \le v, \quad (1 - \delta)\eta + \delta\chi \le \varphi.$$

Hence,

$$(1 - \delta)\eta + \delta\chi \le P_{\theta,K}[\varphi](v).$$

Letting $\delta \to 0+$, we conclude that $\eta \le P_{\theta,K}[\varphi](v)$.

cor:PKtoPX

Corollary 14.1.2 Assume that $\varphi \in PSH(X, \theta)_{>0}$. Let $v \in C^0(K)$. Then

$$P_{\theta,K}[\varphi](v) = P_{\theta,X}[\varphi] \left(P_{\theta,K}[V_{\theta}](v) \right).$$

Proof It is clear that

$$P_{\theta | K}[\varphi](v) \leq P_{\theta | K}[\varphi](P_{\theta | K}[V_{\theta}](v)).$$

For the reverse direction, it suffices to prove that any $\eta \in PSH(X, \theta)$ such that

$$\eta \leq \varphi, \quad \eta \leq P_{\theta,K}[V_{\theta}](v),$$

we have

$$\eta \le P_{\theta,K}[\varphi](v).$$
 (14.5) {eq:etaleqPthetaKtemp1}

As φ has positive mass, we can assume that η has positive mass as well. Let

$$S = \left\{ P_{\theta,K}[V_{\theta}](v) > P'_{\theta,K}[V_{\theta}](v) \right\}.$$

By Proposition 1.2.5, S is a pluripolar set. Observe that

$$\eta|_{K\setminus S} \leq v|_{K\setminus S}$$
.

Hence, (14.5) follows from Lemma 14.1.3.

The next result motivates our terminology to call the measures $\theta^n_{P_{\theta,K}[\varphi](v)}$ the partial equilibrium measures of our context:

lma:balayage

Lemma 14.1.4 *Let* $v \in C^0(K)$. *Then*

$$\int_{X\backslash K}\theta^n_{P_{\theta,K}[\varphi](v)}=0.$$

Moreover, $P_{\theta,K}[\varphi](v)|_K = v$ almost everywhere with respect to $\theta_{P_{\theta,K}[\varphi](v)}^n$. More precisely, we have

$$\theta^n_{P_{\theta,K}[\varphi](v)} \leq \mathbb{1}_{K \cap \{P_{\theta,K}[\varphi](v) = P_{\theta,K}[V_{\theta}](v) = v\}} \; \theta^n_{P_{\theta,K}[V_{\theta}](v)}. \tag{14.6}$$

Proof Step 1. We address the case where $\varphi = V_{\theta}$.

Let $S \subseteq X$ be a closed pluripolar set, such that V_{θ} is locally bounded on $X \setminus S$. This is possible because we can always find a Kähler current with analytic singularities in the cohomology class $[\theta]$, as a consequence of Theorem 1.6.2.

For the first assertion, it suffices to show that $\theta_{P_{\theta,K}[V_{\theta}](v)}^n$ does not charge any open ball $B \in X \setminus (S \cup K)$.

By Proposition 1.2.2, we can take an increasing sequence $(\eta_j)_j$ in PSH (X, θ) such that

$$\eta_j \to P_{\theta,K}[V_{\theta}](v)$$
 almost everywhere, $\eta_j|_K \le v$ for all $j \ge 1$.

By [BT82, Proposition 9.1], for each $j \ge 1$, we can find $\gamma_j \in PSH(X, \theta)$, such that $(\theta + dd^c \gamma_j|_B)^n = 0$ and w_j agrees with η_j outside B. Note that $(\gamma_j)_j$ is clearly increasing and

$$\gamma_j \ge \eta_j, \quad \gamma_j|_K \le v.$$

for all $j \ge 1$.

It follows that γ_j converges to $P_{\theta,K}[V_{\theta}](v)$ almost everywhere as well. By Theorem 2.3.1, we find that $\theta_{P_{\theta,K}[V_{\theta}](v)}^n$ does not charge B, as desired.

For the second assertion, let $x \in (X \setminus S) \cap K$ be a point such that $P_{\theta,K}[V_{\theta}](v)(x) < v(x) - \epsilon$ for some $\epsilon > 0$. Let B be a ball centered at x, small enough so that θ has a local potential on B, allowing us to identify θ -psh functions with psh functions (on B). By shrinking B, we can further guarantee

- (1) $\overline{B} \subseteq X \setminus S$.
- $(2) \ P_{\theta,K}[V_{\theta}](v)|_{\overline{B}} < v(x) \epsilon.$
- (3) $v|_{\overline{B} \cap K} > v(x) \epsilon$.

Construct the sequences η_j , γ_j as above. On B, by choosing a local potential of θ , we may identify η_j , γ_j with the corresponding psh functions in a neighborhood of \overline{B} . By (2), we have $\gamma_j \leq v(x) - \epsilon$ on ∂B , hence by the comparison principle, $\gamma_j|_B \leq v(x) - \epsilon$. By (3), we have $\gamma_j|_{B\cap K} \leq v|_{B\cap K}$. Thus, we conclude that $\theta_{P_{\theta,K}[V_{\theta}](v)}^n$ does not charge B, as in the previous paragraph.

Step 2. We handle the general case. We can assume $\varphi \in PSH(X, \theta)_{>0}$. Indeed, due to Lemma 14.1.2 and Theorem 2.3.2, we have that

$$\int_X \theta^n_{P_{\theta,K}[\varphi](v)} = \int_X \theta^n_{\varphi}.$$

Hence, there is nothing to prove if $\int_X \theta_{\varphi}^n = 0$.

By Corollary 14.1.2,

$$P_{\theta | K}[\varphi](v) = P_{\theta | X}[\varphi](P_{\theta | K}[V_{\theta}](v)).$$

Now [DDNL18b, Theorem 3.8] gives

$$\begin{aligned} \theta_{P_{\theta,K}[\varphi](v)}^{n} \leq & \mathbb{1}_{\{P_{\theta,K}[\varphi](v) = P_{\theta,K}[V_{\theta}](v)\}} \theta_{P_{\theta,K}[V_{\theta}](v)}^{n} \\ \leq & \mathbb{1}_{\{P_{\theta,K}[\varphi](v) = v\}} \theta_{P_{\theta,K}[V_{\theta}](v)}^{n}, \end{aligned}$$

where in the second inequality we have used Step 1.

cor:suppthetan

Corollary 14.1.3 *Let* $v \in C^0(K)$.

$$\int_{(X\backslash K)\cup\{P_{\theta,K}[\varphi](v)

$$\int_{(X\backslash K)\cup\{P_{\theta,K}[\varphi]_I(v)

$$(14.7) \quad \text{{eq:thetandoesnotcharge1}}$$$$$$

{eq:PthetaKvarphiIvposmasstemp

Proof The first equation in (14.7) follows from Lemma 14.1.4. For the second, we can assume that

$$\int_{X} \theta_{P_{\theta,K}[\varphi]_{I}(\nu)}^{n} > 0, \tag{14.8}$$

otherwise there is nothing to prove. By definition, we have

$$P_{\theta,K}[\varphi]_I(v) = P_{\theta,K}[P_{\theta}[\varphi]_I]_I(v).$$

Next we show that

$$P_{\theta,K}[P_{\theta}[\varphi]_{\mathcal{I}}]_{\mathcal{I}}(v) = P_{\theta,K}[P_{\theta}[\varphi]_{\mathcal{I}}](v).$$

The \geq direction is trivial. It remains to prove the reverse inequality. By Lemma 14.1.2, we get that

$$P_{\theta,K}[P_{\theta}[\varphi]_I]_I(v) \sim P_{\theta}[\varphi]_I.$$

Due to Proposition 1.2.5, we get that

$$P_{\theta,K}[P_{\theta}[\varphi]_{\mathcal{I}}]_{\mathcal{I}}(v) \leq v$$

on $K \setminus S$, where $S \subseteq X$ is a pluripolar set. As a result, due to (14.8), Lemma 14.1.3 allows to conclude that

$$P_{\theta,K}[P_{\theta}[\varphi]_{\mathcal{I}}]_{\mathcal{I}}(v) \leq P_{\theta,K}[P_{\theta}[\varphi]_{\mathcal{I}}](v).$$

Since

$$P_{\theta,K}[P_{\theta}[\varphi]_I]_I(v) = P_{\theta,K}[\varphi]_I(v),$$

we get that the second equation in (14.7), using the first.

Proposition 14.1.1 Assume that $\varphi \in PSH(X, \theta)_{>0}$. Let $v \in C^0(K)$. Then

$$P_{\theta,K}[\varphi](v) = P_{\theta,K}[P_{\theta}[\varphi]](v). \tag{14.9}$$
 {eq: interm_eq}

In particular,

$$P_{\theta,K}[\varphi](v) = P_{\theta,K}[P_{\theta,K}[\varphi](v)](v).$$

Proof The \leq direction in (14.9) is obvious. We to prove the reverse inequality. As $P_{\theta,K}[\varphi](v)$ and $P_{\theta,K}[P_{\theta}[\varphi]](v)$ have the same singularity types by Lemma 14.1.2, by the domination principle [DDNL18b, Corollary 3.10], it suffices to show that

 $P_{\theta,K}[\varphi](v) \ge P_{\theta,K}[P_{\theta}[\varphi]](v)$ almost everywhere with respect to $\theta_{P_{\theta,K}[\varphi](v)}^n$.

[{eq:PthetaKtemp1}]

$$P_{\theta,K}[\varphi](v) = P_{\theta,K}[V_{\theta}](v) = v$$

almost everywhere with respect to $\theta^n_{P_{\theta,K}[\varphi](v)}$. Hence,

$$P_{\theta,K}[P_{\theta}[\varphi]](v) = v$$

prop:PKdependsonmodeltype

almost everywhere with respect to $\theta_{P_{\theta,K}[\varphi](v)}^n$. We conclude that

$$P_{\theta,K}[\varphi](v) = P_{\theta,K}[P_{\theta}[\varphi]](v).$$

Finally, (14.10) follows from Lemma 14.1.2 and (14.9).

def:partialequienergy

Definition 14.1.2 Given $\varphi \in PSH(X, \theta)_{>0}$, the *partial equilibrium energy* functional $\mathcal{E}^{\theta}_{[\varphi],K} \colon C^0(K) \to \mathbb{R}$ of $v \in C^0(K)$ as follows

$$\mathcal{E}^{\varphi}_{\theta,K}(\nu) := E^{P_{\theta}[\varphi]_{\mathcal{I}}}_{\theta}(P_{\theta,K}[\varphi]_{\mathcal{I}}(\nu)). \tag{14.11}$$

Recall that the energy $E_{\theta}^{P_{\theta}[\varphi]_I}$ functional is defined in Definition 3.1.5. Note that by Lemma 14.1.2, we have

$$P_{\theta | K}[\varphi]_{\mathcal{T}}(v) \in \mathcal{E}^{\infty}(X, \theta; P_{\theta}[\varphi]_{\mathcal{T}}),$$

so $\mathcal{E}^{\varphi}_{\theta,K}(v) \in \mathbb{R}$.

prop: differential_P

Proposition 14.1.2 *Let* $K \subseteq X$ *be a closed non-pluripolar set,* $v, f \in C^0(K)$ *and* $\varphi \in PSH(X, \theta)_{>0}$. Then $\mathbb{R} \ni t \mapsto \mathcal{E}^{\varphi}_{\theta, K}(v + tf)$ is differentiable and

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{E}_{\theta,K}^{\varphi}(v+tf) = \int_{K} f \,\theta_{P_{\theta,K}[\varphi]_{I}(v+tf)}^{n} \tag{14.12}$$

for all $t \in \mathbb{R}$.

Proof We may assume that φ is I-model by replacing φ by $P_{\theta}[\varphi]_{I}$. Note that it suffices to prove (14.12) at t = 0, which is equivalent to

$$\lim_{t\to 0} \frac{E_{\theta}^{\varphi}(P_{\theta,K}[\varphi]_{\mathcal{I}}(v+tf)) - E_{\theta}^{\varphi}(P_{\theta,K}[\varphi]_{\mathcal{I}}(v))}{t} = \int_{K} f \,\theta_{P_{\theta,K}[\varphi]_{\mathcal{I}}(v)}^{n}. \quad (14.13) \quad \text{[eq: to_prove_1]}$$

By switching f to -f, we may assume that t > 0 in the above limit.

By the comparison principle [DDNL18b, Proposition 3.5] and Proposition 3.1.12, we find

$$\begin{split} &E_{\theta}^{\varphi}(P_{\theta,K}[\varphi]_{\mathcal{I}}(v+tf)) - E_{\theta}^{\varphi}(P_{\theta,K}[\varphi]_{\mathcal{I}}(v)) \\ = &\frac{1}{n+1} \sum_{i=0}^{n} \int_{X} (P_{\theta,K}[\varphi]_{\mathcal{I}}(v+tf) - P_{\theta,K}[\varphi]_{\mathcal{I}}(v)) \, \theta_{P_{\theta,K}[\varphi]_{\mathcal{I}}(v+tf)}^{i} \wedge \theta_{P_{\theta,K}[\varphi]_{\mathcal{I}}(v)}^{n-i} \\ \leq &\int_{X} (P_{\theta,K}[\varphi]_{\mathcal{I}}(v+tf) - P_{\theta,K}[\varphi]_{\mathcal{I}}(v)) \, \theta_{P_{\theta,K}[\varphi]_{\mathcal{I}}(v)}^{n}. \end{split}$$

By Lemma 14.1.4,

$$\int_X (P_{\theta,K}[\varphi]_I(v+tf) - P_{\theta,K}[\varphi]_I(v)) \, \theta_{P_{\theta,K}[\varphi]_I(v)}^n \le t \int_K f \, \theta_{P_{\theta,K}[\varphi]_I(v)}^n.$$

Thus, we get the inequality,

$$\varlimsup_{t\to 0+} \frac{E^\varphi_\theta(P_{\theta,K}[\varphi]_I(v+tf)) - E^\varphi_\theta(P_{\theta,K}[\varphi]_I(v))}{t} \leq \int_K f\,\theta^n_{P_{\theta,K}[\varphi]_I(v)}.$$

Similarly, we have

$$\begin{split} &E^{\varphi}_{\theta}(P_{\theta,K}[\varphi]_{I}(v+tf)) - E^{\varphi}_{\theta}(P_{\theta,K}[\varphi]_{I}(v)) \\ &\geq \int_{X} (P_{\theta,K}[\varphi]_{I}(v+tf) - P_{\theta,K}[\varphi](v)) \, \theta^{n}_{P_{\theta,K}[\varphi]_{I}(v+tf)} \\ &\geq t \int_{K} f \, \theta^{n}_{P_{\theta,K}[\varphi]_{I}(v+tf)}. \end{split}$$

Together with the above, this implies (14.13).

lem: global_env_approx

Lemma 14.1.5 Fix a Kähler form ω on X. For $v \in C^0(K)$ there exists an increasing bounded sequence $(v_j^-)_j$ in $C^\infty(X)$ and a decreasing bounded sequence $(v_j^+)_j$ in $C^\infty(X)$, such that for all $\varphi \in \text{PSH}(X, \theta)_{>0}$ and $\delta \in [0, 1]$ we have

- (1) $P_{\theta+\delta\omega,X}[\varphi](v_i^+) \searrow P_{\theta+\delta\omega,K}[\varphi](v)$,
- (2) $P_{\theta+\delta\omega,X}[\varphi](v_j) \nearrow P_{\theta+\delta\omega,K}[\varphi](v)$ almost everywhere,
- (3) $\sup_X |v_j^-| \le C$, $\sup_X |v_j^+| \le C$ for some constant C depending only on $||v||_{C^0(K)}$, K and $\theta + \omega$, and

(4)

$$\lim_{j\to\infty}\mathcal{E}^{\varphi}_{\theta,K}(v_j^-)=\mathcal{E}^{\varphi}_{\theta,K}(v),\quad \lim_{j\to\infty}\mathcal{E}^{\varphi}_{\theta,K}(v_j^+)=\mathcal{E}^{\varphi}_{\theta,K}(v).$$

Proof We fix $\delta \in [0, 1]$. First we prove the existence of $(v_i^-)_j$. Let

$$C_{K,v} := \sup \left\{ \sup_{X} \eta : \eta \in \mathrm{PSH}(X, \theta + \omega), \eta|_{K} \le v \right\}.$$

Since *K* is non-pluripolar, we have that $C_{K,v} \in \mathbb{R}$. Now define $\tilde{v}: X \to \mathbb{R}$ as

$$\tilde{v}(x) = \begin{cases} v(x), & x \in K; \\ C_{k,v} + 1, & x \in X \setminus K. \end{cases}$$

Since \tilde{v} is lower semicontinuous, there exists an increasing and uniformly bounded sequence $(v_i^-)_j$ in $C^{\infty}(X)$, such that $v_i^- \nearrow \tilde{v}$.

Observe that $P_{\theta+\delta\omega,X}[\varphi](v_j^-)$ is increasing in $j \ge 1$, and

$$P_{\theta+\delta\omega,X}[\varphi](v_j^-) \leq P_{\theta+\delta\omega,K}[\varphi](v).$$

To prove that

$$P_{\theta+\delta\omega,X}[\varphi](v_j^-) \nearrow P_{\theta+\delta\omega,K}[\varphi](v)$$

almost everywhere, let η be a candidate for $P_{\theta+\delta\omega,K}[\varphi](v)$ such that $\sup_K (\eta-v) < 0$. Then, since η is upper semicontinuous and $\eta < \tilde{v}$, by Dini's lemma there exists $j_0 > 0$ such that $\eta < v_j^-$ for $j \ge j_0$, i.e.

$$\eta \leq P_{\theta + \delta \omega, X}[\varphi](v_i^-),$$

proving existence of $(v_i^-)_j$.

Next, we prove the existence of $(v_i^+)_j$. Since

$$h \coloneqq P_{\theta + \omega, K}[V_{\theta + \omega}](v) \vee (\inf_{K} v - 1)$$

is usc, there exists a decreasing and uniformly bounded sequence $(v_j^+)_j$ in $C^{\infty}(X)$, such that $v_j^+ \setminus h$. Trivially,

$$\chi := \lim_{i \to \infty} P_{\theta + \delta\omega, X}[\varphi](v_j^+) \ge P_{\theta + \delta\omega, K}[\varphi](v).$$

In particular, χ has positive mass, since it has the same singularity types as $P_{\theta+\delta\omega,K}[\varphi](v)$ by Lemma 14.1.2. We introduce

$$S \coloneqq \left\{ P'_{\theta + \omega, K}[V_{\theta + \omega}](v) < P_{\theta + \omega, K}[V_{\theta + \omega}](v) \right\}.$$

By Proposition 1.2.5, S is a pluripolar set. Observe that

$$P_{\theta+\delta\omega,X}[\varphi](v_j^+) \le v_j^+$$

for all $j \ge 1$. Thus, $\chi \le h$. On the other hand, $h \le v$ on $K \setminus S$. So in particular, $\chi|_{K \setminus S} \le v|_{K \setminus S}$. By Lemma 14.1.2 we also have that $\chi \sim P_{\theta + \delta \omega, K}[\varphi](v)$. Hence, by Lemma 14.1.3,

$$\chi \leq P_{\theta + \delta\omega, K}[P_{\theta + \delta\omega, K}[\varphi](v)](v) = P_{\theta + \delta\omega, K}[\varphi](v),$$

where we also used the last statement of Proposition 14.1.1.

Finally observe that (4) follows from Lemma 14.1.2, Lemma 14.1.5 and Theorem 2.3.1.

prop: conv_of_K_env

Proposition 14.1.3 *Let* $K \subseteq X$ *be a compact and non-pluripolar subset. Let* $v \in C^0(K)$. Let $\varphi_j, \varphi \in \text{PSH}(X, \theta)_{>0}$ $(j \ge 1)$ with $\varphi_j \xrightarrow{d_S} \varphi$. Then the following hold:

- (1) If $\varphi_j \searrow \varphi$, then $P_{\theta,K}[\varphi_j]_I(v) \searrow P_{\theta,K}[\varphi]_I(v)$ and $P_{\theta,K}[\varphi_j](v) \searrow P_{\theta,K}[u](v)$.
- (2) If $\varphi_j \nearrow \varphi$ almost everywhere then $P_{\theta,K}[\varphi_j]_I(v) \nearrow P_{\theta,K}[\varphi]_I(v)$ almost everywhere, and $P_{\theta,K}[\varphi_j](v) \nearrow P_{\theta,K}[\varphi](v)$ almost everywhere.

Proof (1) By Theorem 6.2.1, we have

$$\lim_{j\to\infty}\int_X\theta_{\varphi_j}^n=\int_X\theta_{\varphi}^n.$$

It follows from Lemma 2.3.1 that there is a decreasing sequence $\epsilon_j \setminus 0$ with $\epsilon_j \in (0,1)$ and $\eta_j \in PSH(X,\theta)$ such that

$$(1 - \epsilon_i)\varphi_i + \epsilon_i\eta_i \le \varphi.$$

By the concavity similar to Proposition 3.2.10, we get

$$(1 - \epsilon_j) P_{\theta, K} [\varphi_j]_{\mathcal{I}}(v) + \epsilon_j P_{\theta, K} [\eta_j]_{\mathcal{I}}(v) \leq P_{\theta, K} [(1 - \epsilon_j)\varphi_j + \epsilon_j \eta_j]_{\mathcal{I}}(v)$$
$$\leq P_{\theta, K} [\varphi]_{\mathcal{I}}(v).$$

Since $(\varphi_j)_j$ is decreasing, so is $(P_{\theta,K}[\varphi_j]_I(v))_j$, hence

$$\psi \coloneqq \lim_{j \to \infty} P_{\theta}[\varphi_j]_{\mathcal{I}}(v) \ge P_{\theta,K}[\varphi]_{\mathcal{I}}(v)$$

exists. Since $\epsilon_j \to 0$ and $\sup_X P_{\theta,K}[\eta_j]_I(v)$ is bounded, we can let $j \to \infty$ in the above estimate to conclude that

$$\psi = P_{\theta,K}[\varphi]_I(v).$$

The same ideas yield that

$$P_{\theta,K}[\varphi_i](v) \setminus P_{\theta,K}[\varphi](v).$$

The proof of (2) is similar and is left to the readers.

14.2 Quantization of partial equilibrium measures

sec:quant

Let X be a connected compact Kähler manifold of dimension n and L be a pseudoeffective line bundle on X. Let h be a Hermitian metric on L and set $\theta = c_1(L, h)$. Let (T, h_T) be a Hermitian line bundle on X. Take a Kähler form ω on X so that

$$\int_{V} \omega^{n} = 1.$$

14.2.1 Bernstein-Markov measures

Let $K \subseteq X$ be a closed non-pluripolar subset. Let v be a measurable function on K and let μ be a positive Borel probability measure on K. We introduce the following functions on $H^0(X, L^k \otimes T)$ ($k \ge 1$), with values possibly equaling ∞ :

$$N_{v,v}^{k}(s) := \left(\int_{K} h^{k} \otimes h_{T}(s,s) e^{-kv} dv \right)^{1/2},$$

$$N_{v,K}^{k}(s) := \sup_{K \setminus \{v = -\infty\}} \left(h^{k} \otimes h_{T}(s,s) e^{-kv} \right)^{1/2}.$$

We start with the following elementary observation:

lma:mononorm

Lemma 14.2.1 Let $v_1 \le v_2$ be two measurable functions on X. Assume that $\{v_1 = v_1 \le v_2 \}$ $-\infty$ } = { $v_2 = -\infty$ }. Then for any $s \in H^0(X, L^k \otimes T)$ $(k \ge 1)$, we have

$$N_{v_1,K}^k(s) \ge N_{v_2,K}^k(s).$$

If ν puts no mass on $\{\nu = -\infty\}$ then we always have

$$N_{\nu,\nu}^k(s) \le N_{\nu,K}^k(s). \tag{14.14}$$

def:weightedss

Definition 14.2.1 A weighted subset of X is a pair (K, v) consisting of a closed non-pluripolar subset $K \subseteq X$ and a function $v \in C^0(K)$.

def:BMmeasure

Definition 14.2.2 Let (K, v) be a weighted subset of X. A positive Borel probability measure v on K is Bernstein–Markov with respect to (K, v) if for each $\epsilon > 0$, there is a constant $C_{\epsilon} > 0$ such that

$$N_{v,K}^{k}(s) \le C_{\epsilon} e^{\epsilon k} N_{v,u}^{k}(s) \tag{14.15}$$

for any $s \in H^0(X, L^k \otimes T)$ and any $k \in \mathbb{N}$. We write BM(K, v) for the set of Bernstein–Markov measures with respect to (K, v).

As pointed out in [BBWN11], any volume form on X is Bernstein–Markov with respect to (X, v), with $v \in C^{\infty}(X)$.

prop:BMNimplynorm

Proposition 14.2.1 Assume that (K, v) is a weighted subset of X, then

- (1) $N_{v,K}^k$ is a norm on $\mathrm{H}^0(X,L^k\otimes T)$. (2) For any $v\in\mathrm{BM}(K,v),\,N_{v,v}^k$ is a norm on $\mathrm{H}^0(X,L^k\otimes T)$.

Proof (1) As v is bounded, N_{vK}^{k} is clearly finite on $H^{0}(X, L^{k} \otimes T)$. In order to show that it is a norm, it suffices to show that for any $s \in H^0(X, L^k \otimes T), N_{v,K}^k(s) = 0$ implies that s = 0. In fact, we have $s|_K = 0$, hence s = 0 by the connectedness of X.

(2) As v is bounded, clearly $N_{v,v}^k$ is finite and satisfies the triangle inequality. Non-degeneracy follows from the fact that $N_{v,K}^k$ is a norm and (14.15).

14.2.2 Partial Bergman kernels

In this section, we fix a weighted subset (K, v) of X and $v \in BM(K, v)$.

Definition 14.2.3 For any $\varphi \in PSH(X, \theta)$, we introduce the *partial Bergman kernels* of φ (with respect to (K, ν)) as follows: For any $k \ge 0$, we introduce

$$B_{\nu,\varphi,\upsilon}^{k}(x) := \sup \left\{ h^{k} \otimes h_{T}(s,s) e^{-k\nu}(x) : N_{\nu,\upsilon}^{k}(s,s) \le 1, \\ s \in H^{0}(X, L^{k} \otimes T \otimes I(k\varphi)) \right\}, \quad x \in K.$$

$$(14.16)$$

We extend $B_{v,\varphi,\upsilon}^k$ to the whole *X* by setting it to be 0 outside *K*.

The partial Bergman measures of φ (with respect to (K, v)) are defined as

$$\beta_{\nu,\varphi,\upsilon}^{k} := \frac{n!}{k^{n}} B_{\nu,\varphi,\upsilon}^{k} \, \mathrm{d}\upsilon \tag{14.17}$$

for each $k \ge 0$.

Observe that

$$\int_{\mathcal{L}} \beta_{\nu,\varphi,\upsilon}^k = \frac{n!}{k^n} h^0(X, T \otimes L^k \otimes I(k\varphi)). \tag{14.18}$$

The goal of this section is to prove the following theorem:

thm: pBMconvergence

Theorem 14.2.1 Suppose that $\varphi \in PSH(X, \theta)_{>0}$. Let (K, v) be a weighed subset of X, let $v \in BM(K, v)$. Then

$$\beta_{\nu,\varphi,\upsilon}^k \rightharpoonup \theta_{P_{\theta,K}[\varphi]_I(v)}^n$$
 (14.19) {eq:pbkconvgeneral}

as $k \to \infty$.

prop: smooth_weak_conv

Proposition 14.2.2 *Let* $\varphi \in PSH(X, \theta)$ *be a potential with analytic singularities such that* θ_{φ} *is a Kähler current. If* $v \in C^{\infty}(X)$ *, then*

$$\beta_{\nu,\varphi,\omega^n}^k \rightharpoonup \theta_{P_{\theta,X}[\varphi]_{\mathcal{I}}(\nu)}^n = \theta_{P_{\theta,X}[\varphi](\nu)}^n \tag{14.20}$$
 {eq:pbmconvanaly}

as $k \to \infty$.

Proof The equality part in (14.20) follows from Lemma 14.1.2. We start with noticing that as $k \to \infty$,

$$\beta^k_{v,\varphi,\omega^n} \leq \beta^k_{v,V_\theta,\omega^n} \rightharpoonup \theta^n_{P_{\theta,X}[V_\theta](v)} = \mathbb{1}_{\{v = P_{\theta,X}[V_\theta](v)\}} \theta^n_v,$$

where the convergence follows from [Ber09, Theorem 1.2], and the last identity is due to [DNT21, Corollary 3.4]. Let μ be the weak limit of a subsequence of $\beta^k_{\nu,\varphi,\omega^n}$, then we obtain that

$$\mu \le \mathbb{1}_{\{v = P_{\theta, X}[V_{\theta}](v)\}} \theta_v^n.$$
 (14.21)

{eq: Bergmanmeasure}

Let $k \ge 0$, $s \in H^0(X, L^k \otimes T \otimes I(k\varphi))$ be a section such that $N^k_{v,\omega^n}(s,s) \le 1$. Then by [Ber09, Lemma 4.1], there exists C > 0 such that

$$h^k \otimes h_T(s,s) e^{-kv} \le B^k_{v,\varphi,\omega^n} \le B^k_{v,V_\theta,\omega^n} \le k^n C.$$

This implies that

$$\frac{1}{k}\log h^k\otimes h_T(s,s)\leq v+\frac{\log C}{k}+n\frac{\log k}{k}.$$

We define φ_k as in Proposition 1.8.2. Take $\alpha_k \nearrow 1$ as in Proposition 1.8.2. Then

$$\frac{1}{k}\log h^k\otimes h_T(s,s)\leq \varphi_k\leq \alpha_k\varphi.$$

Let $\epsilon > 0$. We notice that $\frac{1}{k} \log h^k \otimes h_T(s,s) \in PSH(X,\theta + \epsilon \omega)$ for all $k \geq k_0(\epsilon)$. In particular,

$$\frac{1}{k}\log h^k\otimes h_T(s,s)-\frac{\log C}{k}-n\frac{\log k}{k}\leq P_{\theta+\epsilon\,\omega,X}[\alpha_k\varphi](v).$$

Now taking supremum over all candidates s, we obtain that

$$B_{\nu,\omega,\omega^n}^k \le C k^n e^{k(P_{\theta+\epsilon\omega,X}[\alpha_k \varphi](\nu)-\nu)}, \quad k \ge k_0. \tag{14.22}$$

We claim that μ does not put mass on $\{P_{\theta+\epsilon\omega,X}[\varphi](v) < v\}$ for any $\epsilon > 0$. Since

$$P_{\theta+\epsilon\omega,X}[\alpha_k\varphi](v) \setminus P_{\theta+\epsilon\omega,X}[\varphi](v)$$

by Proposition 14.1.3, we get that

$${P_{\theta+\epsilon\omega,X}[\alpha_k\varphi](v) < v} \nearrow {P_{\theta+\epsilon\omega,X}[\varphi](v) < v}.$$

As a result, to argue the claim, it suffices to show that μ does not put mass on the set $\{P_{\theta+\epsilon\omega,X}[\alpha_k\varphi](v) < v\}$ for any k. Note that the latter set is open, hence (14.22) implies our claim.

Since φ has analytic singularities, we have that

$$P_{\theta+\epsilon,\omega,X}[\varphi](v) \sim \varphi$$

for all $\epsilon \ge 0$ by Lemma 14.1.2 and Proposition 3.2.9. As a result,

$$P_{\theta+\epsilon\omega,X}[\varphi](v) \setminus P_{\theta,X}[\varphi](v),$$

and we can let $\epsilon \searrow 0$ to conclude that μ does not put mass on $\{P_{\theta,X}[\varphi](v) < v\} =$ $\bigcup_{\epsilon>0} \{P_{\theta+\epsilon\omega,X}[\varphi](v) < v\}$. Putting this together with (14.21), we obtain that

$$\mu \leq \mathbb{1}_{\{P_{\theta,X}[\varphi](v)=v\}}\theta_v^n = \theta_{P_{\theta,X}[\varphi](v)}^n,$$

where the last equality is due to DNT21, Corollary 3.4]. Comparing total masses via (14.18) and Theorem 7.3.1, we conclude that $\mu = \theta_{P_{\theta,X}[\varphi](v)}^n$. As μ is an arbitrary cluster point of $\beta^k_{v,\varphi,\omega^n}$, we conclude that $\beta^k_{v,\varphi,\omega^n}$ converges weakly to $\theta^n_{P_{\theta,X}[\varphi](v)}$, as $k \to \infty$.

Definition 14.2.4 Take $k \ge 0$ and $\varphi \in PSH(X, \theta)$, let $Norm(H^0(X, L^k \otimes T \otimes \mathcal{I}(k\varphi)))$ be the space of Hermitian norms on the vector space $H^0(X, L^k \otimes T \otimes \mathcal{I}(k\varphi))$.

Let $\mathcal{L}_{k,\varphi} \colon \text{Norm}(H^0(X, L^k \otimes T \otimes \mathcal{I}(k\varphi))) \to \mathbb{R}$ be the partial Donaldson functional:

$$\mathcal{L}_{k,\varphi}(H) = \frac{n!}{k^{n+1}} \log \frac{\text{vol}\{s : H(s) \le 1\}}{\text{vol}\{s : N_{0,\omega^n}^k(s) \le 1\}},\tag{14.23}$$

where vol is simply the Euclidean volume.

prop: quant_I_smooth

Proposition 14.2.3 Let $w, w' \in C^0(X)$ and $\varphi \in PSH(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current, then

$$\lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{w,\omega^n}^k) - \mathcal{L}_{k,\varphi}(N_{w',\omega^n}^k) \right) = \mathcal{E}_{\theta,X}^{\varphi}(w) - \mathcal{E}_{\theta,X}^{\varphi}(w'). \tag{14.24}$$

{eq:LdiffonXsmoothmeasure}

In particular,

$$\lim_{k \to \infty} \mathcal{L}_{k,\varphi}(N_{w,\omega^n}^k) = \mathcal{E}_{\theta,X}^{\varphi}(w). \tag{14.25}$$

{eq:LdiffonXsmoothmeasure2}

Proof First observe that by Proposition 14.2.1, for any $k \ge 0$, N_{w,ω^n}^k and N_{w',ω^n}^k are both norms, hence the expressions inside the limit in (14.24) make sense. To start, we make the following observation:

$$\mathcal{L}_{k,\varphi}(N_{w,\omega^n}^k) - \mathcal{L}_{k,\varphi}(N_{w',\omega^n}^k) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{L}_{k,\varphi}(N_{w+t(w'-w),\omega^n}^k) \,\mathrm{d}t$$
$$= \int_0^1 \int_X (w'-w) \,\beta_{w+t(w'-w),\varphi,\omega^n}^k \,\mathrm{d}t.$$

By Proposition 14.2.2, we have

$$\lim_{k\to\infty}\int_X (w'-w)\,\beta^k_{w+t(w'-w),\varphi,\omega^n} = \int_X (w'-w)\,\theta^n_{P_{\theta,X}[\varphi](w+t(w'-w))}.$$

By Theorem 7.3.1, we have $|\int_X (w'-w)\beta_{w+t(w'-w),u,\omega^n}^k| \le C \sup_X |w-w'|$. Hence, by the dominated convergence theorem we obtain that

$$\lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{w,\omega^n}^k) - \mathcal{L}_{k,\varphi}(N_{w',\omega^n}^k) \right) = \int_0^1 \int_X (w' - w) \, \theta_{P_{\theta,X}[\varphi](w+t(w'-w))}^n \, \mathrm{d}t$$
$$= \mathcal{E}_{\theta,X}^{\varphi}(w) - \mathcal{E}_{\theta,X}^{\varphi}(w'),$$

where in the last line we have used Proposition 14.1.2.

Finally, (14.25) is just a special case of (14.24) with w' = 0.

lem:BML

Lemma 14.2.2 Let $\varphi \in PSH(X, \theta)$. Let (K, v) be a weighted subset of X. Let $v \in BM(K, v)$. Then

$$\lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{\nu,K}^k) - \mathcal{L}_{k,\varphi}(N_{\nu,\nu}^k) \right) = 0. \tag{14.26}$$

{eq: Bern_Mark_implies}

Proof This is a direct consequence of the definition of Bernstein–Markov measures (14.15).

cor:Ninfdifflim

Corollary 14.2.1 Let $w \in C^0(X)$, $\varphi \in PSH(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. Then

$$\lim_{k \to \infty} \mathcal{L}_{k,\varphi}(N_{w,X}^k) = \mathcal{E}_{\theta,X}^{\varphi}(w).$$

Proof This follows from Lemma 14.2.2 and Proposition 14.2.3 and the fact that $\omega^n \in BM(X,0)$.

prop: quant_I_algebraic_BM

Proposition 14.2.4 *Let* $\varphi \in PSH(X, \theta)$ *be a potential with analytic singularities such that* θ_{φ} *is a Kähler current. Let* (K, v), (K', v') *be two weighted subsets of* X. *Then*

$$\lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{v,K}^k) - \mathcal{L}_{k,\varphi}(N_{v',K'}^k) \right) = \mathcal{E}_{\theta,K}^{\varphi}(v) - \mathcal{E}_{\theta,K'}^{\varphi}(v'). \tag{14.27}$$

In particular,

$$\lim_{k \to \infty} \mathcal{L}_{k,\varphi}(N_{v,K}^k) = \mathcal{E}_{\theta,K}^{\varphi}(v). \tag{14.28}$$

Proof First observe that by Proposition 14.2.1, for any k > 0, $N_{v,K}^k$ and $N_{v',K'}^k$ are both norms, hence the expressions inside the limit in (14.27) make sense. Moreover, (14.28) is just a special case of (14.27) for K' = X and v' = 0.

To prove (14.27) it is enough to show that for any fixed $w \in C^{\infty}(X)$ we have

$$\lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{v,K}^k) - \mathcal{L}_{k,\varphi}(N_{w,\omega^n}^k) \right) = \mathcal{E}_{\theta,K}^{\varphi}(v) - \mathcal{E}_{\theta,X}^{\varphi}(w) \,. \tag{14.29}$$

For $\epsilon \in (0,1)$ small enough we have that $\theta_{(1-\epsilon)\varphi}$ is still a Kähler current. Let us fix such ϵ , along with an arbitrary $\epsilon' \in (0,1)$.

Let $(v_j^-)_j$, $(v_j^+)_j$ be the sequences of smooth functions constructed in Lemma 14.1.5 for the data (K, v).

By Proposition 1.8.2 there exists $k_0(\epsilon, \epsilon') \in \mathbb{N}$ such that

$$\frac{1}{k}\log h^k\otimes h_T(s,s)\leq (1-\epsilon)u,$$

and $\frac{1}{k} \log h^k \otimes h_T(s,s) \in \text{PSH}(X,\theta+\epsilon'\omega)$ for any $s \in H^0(X,T \otimes L^k \otimes \mathcal{I}(k\varphi))$, as long as $k \geq k_0(\epsilon,\epsilon')$.

In particular, Lemma 14.1.1 gives that

$$\begin{split} N^k_{P'_{\theta+\epsilon'\omega,K}[(1-\epsilon)\varphi](v),X}(s) = & N^k_{v,K}(s), \\ N^k_{P'_{\theta+\epsilon'\omega,X}[(1-\epsilon)\varphi](v^-_j),X}(s) = & N^k_{v^-_j,X}(s), \\ N^k_{P'_{\theta+\epsilon'\omega,X}[(1-\epsilon)\varphi](v^+_j),X}(s) = & N^k_{v^+_j,X}(s). \end{split}$$

As

$$P'_{\theta+\epsilon'\omega,X}[(1-\epsilon)\varphi](v_j^-) \leq P'_{\theta+\epsilon'\omega,K}[(1-\epsilon)\varphi](v) \leq P'_{\theta+\epsilon'\omega,X}[(1-\epsilon)\varphi](v_j^+),$$

by Lemma 14.2.1 we have

$$N^k_{v_j^+,X}(s) \leq N^k_{v,K}(s) \leq N^k_{v_j^-,X}(s), \quad s \in \mathrm{H}^0(X,T \otimes L^k \otimes I(k\varphi)), k \geq k_0(\epsilon,\epsilon').$$

Composing with $\mathcal{L}_{k,\varphi}$ we arrive at

$$\mathcal{L}_{k,\varphi}(N^k_{v_j^-,X}) \leq \mathcal{L}_{k,\varphi}(N^k_{v,K}) \leq \mathcal{L}_{k,\varphi}(N^k_{v_j^+,X})\,,\; k \geq k_0(\epsilon,\epsilon').$$

For any j > 0, by Corollary 14.2.1 we get

$$\begin{split} \mathcal{E}^{\varphi}_{\theta,X}(v_j^-) - \mathcal{E}^{\varphi}_{\theta,X}(w) &= \lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{v_j^+,X}^k) - \mathcal{L}_{k,\varphi}(N_{w,X}^k) \right) \\ &\leq \lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{v,K}^k) - \mathcal{L}_{k,\varphi}(N_{w,X}^k) \right) \\ &\leq \overline{\lim_{k \to \infty}} \left(\mathcal{L}_{k,\varphi}(N_{v,K}^k) - \mathcal{L}_{k,\varphi}(N_{w,X}^k) \right) \\ &\leq \lim_{k \to \infty} \left(\mathcal{L}_{k,\varphi}(N_{v_j^-,X}^k) - \mathcal{L}_{k,\varphi}(N_{w,X}^k) \right) \\ &= \mathcal{E}^{\varphi}_{\theta,X}(v_j^+) - \mathcal{E}^{\varphi}_{\theta,X}(w) \,. \end{split}$$

Using Lemma 14.1.5, we can let $j \to \infty$ to arrive at

$$\mathcal{E}_{\theta,K}^{\varphi}(v) - \mathcal{E}_{\theta,K}^{\varphi}(w) \leq \underline{\lim_{k \to \infty}} \left(\mathcal{L}_{k,\varphi}(N_{v,K}^{k}) - \mathcal{L}_{k,\varphi}(N_{w,X}^{k}) \right)$$
$$\leq \underline{\lim_{k \to \infty}} \left(\mathcal{L}_{k,\varphi}(N_{v,K}^{k}) - \mathcal{L}_{k,\varphi}(N_{w,X}^{k}) \right)$$
$$\leq \mathcal{E}_{\theta,K}^{\varphi}(v) - \mathcal{E}_{\theta,K}^{\varphi}(w).$$

Hence, (14.29) follows.

cor:LktoI

Corollary 14.2.2 Let $\varphi \in PSH(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. Let (K, v) be a weighted subset of X. Assume that $v \in BM(K, v)$. Then

$$\lim_{k\to\infty} \mathcal{L}_{k,\varphi}(N_{v,\upsilon}^k) = \mathcal{E}_{\theta,K}^{\varphi}(v).$$

Proof Our claim follows from Proposition 14.2.4 and Lemma 14.2.2.

prop:weakconvana

Proposition 14.2.5 *Suppose that* $\varphi \in PSH(X, \theta)$ *be a potential with analytic singularities such that* θ_{φ} *is a Kähler current. Let* (K, v) *be a weighted subset of* X. *Let* $v \in BM(K, v)$. *Then*

$$\beta_{v,\varphi,\upsilon}^k \rightharpoonup \theta_{P_{\theta,K}[\varphi]_{\mathcal{I}}(v)}^n = \theta_{P_{\theta,K}[\varphi](v)}^n$$

weakly as $k \to \infty$.

Proof For $w \in C^0(X)$, let

$$f_k(t) := \mathcal{L}_{k,\varphi}(N_{v+tw,v}^k), \quad g(t) := \mathcal{E}_{\theta,K}^{\varphi}(v+tw).$$

By Corollary 14.2.2 $\varliminf_{k\to\infty} f_k(t) = g(t)$. Note that f_k is concave by Hölder's inequality (see [BBWN11, Proposition 2.4]), so by [BB10, Lemma 7.6], $\lim_{k\to\infty} f'_k(0) = g'(0)$, which is equivalent to $\beta^k_{\nu,\varphi,\upsilon} \rightharpoonup \theta^n_{P_{\theta,K}[\varphi](\upsilon)}$, by Proposition 14.1.2.

prop:mainKahcurr

Proposition 14.2.6 *Suppose that* $\varphi \in PSH(X, \theta)$ *such that* θ_{φ} *is a Kähler current. Let* (K, v) *be a weighted subset of* X *and* $v \in BM(K, v)$. *Then*

$$\beta_{\nu,\varphi,\upsilon}^k \rightharpoonup \theta_{P_{\theta,K}[\varphi]_I(v)}^n$$
 (14.30) {eq:pbkconv1}

as $k \to \infty$.

Proof Let μ be the weak limit of a subsequence of $\beta_{\nu,\varphi,\upsilon}^k$. We claim that

$$\mu \le \theta_{P_{\theta,K}[\varphi]_I(v)}^n. \tag{14.31} \qquad \text{{eq:inproofmuleq}}$$

Observe that this claim implies the conclusion. In fact, by Theorem 7.3.1, we have equality of the total masses, so equality holds in (14.31). As μ is an arbitrary cluster point of the sequence $(\beta_{\nu,\varphi,\upsilon}^k)_k$, we get (14.30).

It remains to prove (14.31). Let (φ_j) be a quasi-equisingular approximation of φ in PSH (X, θ) . We may assume that θ_{φ_j} is a Kähler current for all $j \ge 1$. By Lemma 14.1.2, Corollary 7.1.2, we know that

$$\varphi_j \xrightarrow{d_S} P_{\theta,K}[\varphi]_I(v).$$

In particular,

$$\lim_{j \to \infty} \int_{X} \theta_{P_{\theta,K}[\varphi_{j}]_{I}(v)}^{n} = \int_{X} \theta_{P_{\theta,K}[\varphi]_{I}(v)}^{n}. \tag{14.32}$$

Observe that

$$\beta_{v,\varphi,\upsilon}^k \le \beta_{v,\varphi_j,\upsilon}^k$$

for any $k \ge 1$. As $v \in BM(K, v)$, by Proposition 14.2.5,

$$\mu \leq \theta_{P_{\theta,K}[\varphi_i]_I(v)}^n$$

for any $j \ge 1$ fixed. By Proposition 14.1.3,

$$P_{\theta,K}[\varphi_j]_I(v) \searrow P_{\theta,K}[\varphi]_I(v)$$

as $j \to \infty$. Hence, by (14.32) and Theorem 2.3.1, (14.31) follows.

Proof (Proof of Theorem 14.2.1) By Lemma 14.1.2, we have that

$$\begin{split} \mathsf{H}^0\left(X,L^k\otimes T\otimes I(k\varphi)\right) &= \mathsf{H}^0\left(X,L^k\otimes T\otimes I(kP_\theta[\varphi]_I)\right) \\ &= \mathsf{H}^0\left(X,L^k\otimes T\otimes I(kP_{\theta,K}[\varphi]_I(v))\right). \end{split}$$

This allows us to replace φ with $P_{\theta,K}[\varphi]_I(v)$.

By Lemma 2.3.2, there exists $\varphi_j \in PSH(X, \theta)$, such that $\varphi_j \nearrow \varphi$ a.e. and θ_{φ_j} is a Kähler current for each $j \ge 1$. This gives

$$\beta_{v,\varphi_j,\upsilon}^k \le \beta_{v,\varphi,\upsilon}^k$$
.

Let μ be the weak limit of a subsequence of $(\beta_{\nu,\varphi,\nu}^k)_k$. Then by Proposition 14.2.6,

$$\theta_{P_{\theta,K}[\varphi_i]_{\mathcal{I}}(v)}^n \leq \mu.$$

By Proposition 14.1.3 and Theorem 2.3.1 we have that

$$\theta^n_{P_{\theta,K}[\varphi_j]_I(v)} \nearrow \theta^n_{P_{\theta,K}[\varphi]_I(v)}.$$

Hence,

$$\theta_{P_{\theta,K}[\varphi]_I(\nu)}^n \le \mu. \tag{14.33}$$

{eq:inproofmulower}

A comparison of total masses using (14.18) and Theorem 7.3.1 gives that equality holds in (14.33). As μ is an arbitrary cluster limit of the weak compact sequence $(\beta_{\nu,\varphi,\mu}^k)_k$, we obtain (14.19).

Remark 14.2.1 The results in this chapter could also be reformulated as the large deviation principle of a determinantal point process on X using the Gärtner–Ellis theorem exactly as in [Ber14]. We leave the details to the readers.

chap:history

A brief history

Here we recall the origin of various results.

Chapter 1.

The notion of plurisubharmonic functions was introduced by Lelong [Le145], based on F. Riesz's theory of subharmonic functions [Rie26]. See [Bre72] for an excellent introduction to the early history of the subject. We refer to [Bre65] for the foundations of potential theory and [GZ17] for the pluripotential theory.

The global Josefson theorem Theorem 1.1.5 was due to Vu [Vu19]. In the projective setting, it was due to Dinh–Sibony [DS06] and in the Kähler setting, it was established by Guedj–Zeriahi [GZ05].

The extension theorem Theorem 1.2.1 was proved in [GR56]. In fact, they proved a more general version for complex spaces, see Theorem B.2.2. We reproduced their arguments almost word by word for the convenience of the readers.

The plurifine topology was introduced by Bedford–Taylor [BT87] based on H. Cartan's works on the fine topology. The key result Theorem 1.3.2 was claimed in [BT87, Theorem 2.3] without proof. The first rigorous proof was given by El Marzguioui–Wiegerinck [EMW06]. A weaker result was proved earlier in [Kli91, Theorem 4.8.7].

Results in Section 1.3.2 are certainly well-known and are already implicitly used in the literature. I could not find the proofs in the literature and hence all details are presented.

The strong openness was first established by Guan–Zhou [GZ15]. A more elegant proof was due to Hiep [Hie14].

The idea of Theorem 1.4.3 first appeared in the ground-breaking work of Boucksom–Favre–Jonsson [BFJ08].

Proposition 1.2.8 was due to Kiselman [K15/8] [K15/8] The semicontinuity theorem was due to Siu [Siu74] Chapter 2

The Monge–Ampère operators for bound plurisubharmonic functions were introduced by Bedford–Taylor [BT76, BT82]. The non-pluripolar product is due to Bedford–Taylor [BT87], Guedj–Zeriahi [GZ07] and Boucksom–Eyssidieux–Guedj–Zeriahi [BEGZ10].

Chapter 3

The notion of the *P*-envelope is due to Ross–Witt Nyström [RWN14] based on the ideas of Rashkovskii–Sigurdsson [RS05].

The I-envelope was introduced by Darvas-Xia $[BF]_{08}^{PZ}$], inspired by the works of Dano Kim $[Kim]_{08}^{PZ}$] and Boucksom-Favre-Jonsson $[BF]_{08}^{PZ}$]. The notion of I-model singularities was first formulated in the explicit way in [DX22] in 2020, although it was already essentially known in Boucksom-Jonsson's work. In fact, they correspond exactly to the homogeneous non-Archimedean potentials assuming that the relevant masses do not vanish. A less explicit equivalent formulation of I-model potentials also appeared in $[Dem]_{08}^{PZ}$. A few months later, the same notion was rediscovered by Trusiani $[Tru22]_{08}^{PZ}$.

Proposition 3.1.4 was first proved in [DDNL21b].

Chapter 4

The notion of weak geodesics was studied in detail by Darvas Darvas Darvas (Darl7) in the Kähler case.

The case of general big classes was partly handled in [DDNL18c], [DDNL18a]. However, the key fact that the geodesics between two full mass potentials have the correct limit at the end points does not seem to have been proved in any references. We give a proof in Proposition 4.2.1. We also extend the relevant results to the relative setting.

Previously, Proposition 4.2.2 and Proposition 4.2.4 were only known in the Kähler case.

Chapter 5

The toric framework was first written down by Coman–Guedj–Sahin–Zeriahi in CGSZ19].

The beautiful theorem Theorem 5.2.2 was first proved by Yi Yao, who did not publish the result. Later on, a new proof was found by Botero–Burgos Gil–Holmes–de Jong [BBGHdJ21]. We chose to present the approach of Yao, which integrates naturally with our framework.

Chapter 6

The notion of *P*-partial order is new, as well as most results in Section 6.1.

The $d_{SDDNL4715}$ pseudometric was introduced in [DDNL215]. The basic properties are proved in [DDNL215] and [Xia21]

Theorem 6.2.4 is proved in [Xia22b]. Theorem 6.2.6 and Theorem 6.2.5 appear to be new. These results appeared previously in the form of lecture notes.

Chapter 7

The notion of I-good singularities was due to [DX21]. The name I-good was chosen in [Xia22b].

Example 7.1.3 was due to Berman–Boucksom–Jonsson BBJ21]. Theorem 7.1.1 and Theorem 7.3.1 are due to [DX21, DX22].

There are some further examples of I-good singularities provided by [BBGHdJ21] with applications in the theory of modular forms in [BBGHdJ22].

Chapter 8

The trace operator was introduced in DX24]. Here we present a different point of view. Theorem 8.3.1 was proved in DX24].

The analytic Bertini theorem Theorem 8 4.1 was proved in [Maz2a], based on the works of Matsumura–Fujino [FM21] and [Fuj23]. A weaker result was established by Meng–Zhou [MZ23].

Chapter 9

The technique of test curves originates from [RWN 14]. It was generalized by Darvas–Di Nezza–Lu [DDNL18a], [DX21], [DZ22] and [DXZ23]. We give the full details of the proofs.

Test curves in Definition 9.1.1 are called *maximal test curves* in the literature, a terminology which I do not like. I prefer to call the usual notion of test curves in the literature *sub-test curves*.

Proposition 9.2.1 was first proved by He–Testorf–Wang in [HTW23]. Results in Section 9.4 are easy generalizations of the results proved in [Xia230].

Chapter 10

The algebraic theory of partial Okounkov bodies was developed in [Xia21]. The transcendental Okounkov body was first defined by Deng [Den17] as suggested by Demailly. The volume identity was proved in [DRWN+23]. The transcendental theory of partial Okounkov bodies is new. Results in Section 11.3 are also new.

Chapter 11

The applications of b-divisors in pluripotential theory began with [BFJ09]. The intersection theory of nef b-divisors was introduced by Dang–Favre [DF22]. The technique of singularity b-divisors was introduced in [Xia23c] in 2020. The general form first appeared in [Xia22b]. One year later, a special case was rediscovered in [BBGHdJ21]. In 2023, another special case was rediscovered by Trusiani [Tru23].

Chapter 12

The whole chapter appears to be new. The study of toric pluripotential theory on big line bundles was made possible by the development of partial Okounkov bodies. The key result is Theorem 12.2.2.

Most results in this chapter resulted from discussions with Yi Yao.

Chapter 13

Most results from this chapter are from [Xia230] Results from Section 13.3 are new, although the main idea was already contained in [Xia21].

We deliberately avoid talking about the non-Archimedean point of view, which is explained in [DX22] and [Xia23b]. The reason is that the Berkovich analytification has not been constructed in written literature yet. This theory will be studied in the forthcoming thesis of Pietro Piccione.

Special cases of the results in this section have been applied to study K-stability, see [Xia23c], [DZ22], [DZZ23] and [DR22]. In [DX22], we established the bijective correspondence between a class of I-model test curves with the maximal geodesic rays in the sense of [BBJ21].

Chapter 14

The special case of Theorem 14.2.1 without the prescribed singularity φ was due to Berman–Boucksom–Witt Nyström, see [BB10], [BBWN11]. The general case is due to [DX21].

Comments

Open problems

We give a list of important open problem in this theory.

conj:exttracegeneral

Conjecture 14.2.1 Let X be a connected compact Kähler manifold and Y be a submanifold. Fix a Kähler class α on X. For each Kähler current $S \in \alpha|_Y$, we can find a Kähler current $T \in \alpha$ such that

$$\operatorname{Tr}_Y(T) \sim_{\mathcal{I}} S$$
.

If we formally view Tr_Y as an analogue of the trace operator in the theory of Sobolev spaces, then this conjecture corresponds exactly to the Dirichlet problem.

Using Proposition 8.2.2, one could also reduce this conjecture to a strong version of the extension theorem Theorem 1.6.3.

Conjecture 14.2.2 Let X be a connected compact Kähler manifold and Y be a submanifold. Fix a Kähler class α on X. Consider Kähler currents $R \in \alpha$, $S \in \alpha|_Y$ with analytic singularities such that $S \leq R|_Y$. Assume in addition that S has gentle analytic singularities. Then there is a Kähler current $T \in \alpha$ with analytic singularities such that

$$\operatorname{Tr}_Y(T) \sim_I S$$
, $T \leq R$.

This conjecture was proposed by Darvas for different purposes.

Conjecture 14.2.3 Let X be a connected smooth projective variety of dimension n. Assume that (L_i, h_i) is a Hermitian big line bundle on X for each i = 1, ..., n with the h_i 's being I-good. Then

$$\int_X c_1(L_1,h_1) \wedge \cdots \wedge c_1(L_n,h_n) = \sup_{\nu} \operatorname{vol} \left(\Delta_{\nu}(L_1,h_1), \ldots, \Delta_{\nu}(L_n,h_n) \right),$$

where $\nu \colon \mathbb{C}(X)^{\times} \to \mathbb{Z}^n$ runs over all (surjective) valuation of rank n.

See [Sch14] Section 5.1] for the notion of mixed volumes.

This conjecture seems reasonable in view of Corollary 10.2.3 and Corollary 10.2.2. Even when h_1, \ldots, h_n have minimal singularities, this conjecture remains open:

Conjecture 14.2.4 Let X be a connected smooth projective variety of dimension n. Assume that L_1, \ldots, L_n are big line bundles on X. Then

$$\langle L_1,\ldots,L_n\rangle=\sup_{\nu}\operatorname{vol}\left(\Delta_{\nu}(L_1),\ldots,\Delta_{\nu}(L_n)\right),$$

where $\nu \colon \mathbb{C}(X)^{\times} \to \mathbb{Z}^n$ runs over all (surjective) valuation of rank n.

Here on the left-hand side, we are using the movable intersection theory [BDPP13].

Problem 14.2.1 Is it possible to extend the definition of the trace operator Tr_Y to the case where the ambient variety is only unibranch?

The difficulty lies in the lack of Demailly type regularization theorems.

Problem 14.2.2 What is the relation between the Duistermaat–Heckman measure in Section 13.3 and the definition in [Ino22]?

Problem 14.2.3 Is there a natural definition of the transcendental Okounkov body of a closed positive (1, 1)-current T with 0-mass so that its dimension is equal to the numerical dimension of T?

See [Cao14] for the definition of the numerical dimension of a current. The following two problems are proposed by Witt Nyström.

Problem 14.2.4 Consider a compact Kähler manifold X and a connected submanifold Y. We have defined the trace operator Tr_Y from a subset of $\text{QPSH}(X)/\sim_I$ to $\text{QPSH}(Y)/\sim_I$. Is it possible to refine this operator to one from a subset of $\text{QPSH}(X)/\sim_P$ to $\text{QPSH}(Y)/\sim_P$?

Problem 14.2.5 Consider a connected compact Kähler manifold X of dimension n and a smooth flag Y_{\bullet} on X. Consider closed smooth real (1,1)-form θ on X representing a big cohomology class and $\varphi \in \mathrm{PSH}(X,\theta)$ with $\int_X \theta_{\varphi}^n > 0$.

Can one define a refined notion of partial Okounkov bodies $\Delta'_{Y_{\bullet}}(\theta + dd^c \varphi)$ contained in $\Delta_{Y_{\bullet}}(\theta + dd^c \varphi)$ with volume given by $\frac{1}{n!} \int_X \theta_{\varphi}^n$?

We also look for generalizations of our theory to more general settings.

Problem 14.2.6 To what extent can the results in the current book be generalized to the non-Kähler setting?

The non-pluripolar products in the non-Kähler setting was recently studied by Boucksom–Guedj–Lu in [BGL24]. See also the references therein.

Problem 14.2.7 To what extent can the results in the current book about closed positive (1, 1)-currents be generalized to closed positive currents of higher bidegree?

A fundamental issue is the lack of a strong enough Demailly type approximation for general currents. The regularization theorem of Dinh–Sibony [DS04] seems too weak for our purposes.

Appendix A

Convex functions and convex bodies

chap:convex

We recall some basic facts about convex functions in this section. Our basic reference is [Roc70]. The results in this appendix can be applied to concave functions after considering their negatives.

A.1 The notion of convex functions

Let *N* be a real vector space of finite dimension.

Definition A.1.1 Let $F: N \to [-\infty, \infty]$ be a function. The *epigraph* of F is defined as the following set

$$\operatorname{epi} F := \{(n, r) \in N \times \mathbb{R} : r \geq F(n)\}.$$

def:convexfun

Definition A.1.2 A *convex function* on N is a function $F: N \to [-\infty, \infty]$ such that the epigraph epi F is a convex subset of $N \times \mathbb{R}$.

The *effective domain* of F is the set

$$Dom F := \{ n \in N : F(n) < \infty \}.$$

A convex function F on N such that $\operatorname{Dom} F \neq \emptyset$ and $F(n) \neq -\infty$ for all $n \in N$ is said to be *proper*.

The set of convex functions on N is denoted by Conv(N). The subset set of proper convex functions is denoted by $Conv^{prop}(N)$.

The following characterization of convex functions is well-known.

lma:charconvex

Lemma A.1.1 Let $F: N \to [-\infty, \infty]$. Then F is convex if and only if the following condition holds: suppose that $n, r \in N$ and $a, b \in \mathbb{R}$ such that a > F(n), b > F(r), then for any $t \in (0, 1)$, we have

$$F(tn + (1-t)r) < ta + (1-t)b$$
.

See [Roc70], Theorem 4.2] for the proof.

ex:charconvex

Example A.1.1 Let $A \subseteq N$ be a convex subset. Then the *characteristic function* $\chi_A \colon N \to \{0, \infty\}$ of A is defined by

$$\chi_A(n) := \begin{cases} 0, & n \in A; \\ \infty, & n \notin A. \end{cases}$$

The function χ_A lies in Conv(N).

ex:suppfun

Example A.1.2 Let M be the dual vector space of N and $P \subseteq M$ be a convex subset. The support function $Supp_P \in Conv(N)$ of P is defined as follows:

$$\operatorname{Supp}_{P}(n) := \sup \{ \langle m, n \rangle : m \in P \}.$$

It is well-known that convexity is preserved by a number of natural operations. We recall a few to fix the notation.

Definition A.1.3 Let $F_1, \ldots, F_m \in \text{Conv}^{\text{prop}}(N)$ $(m \in \mathbb{Z}_{>0})$. We define their *infimal convolution* $F_1 \square \cdots \square F_m \in \text{Conv}(N)$ as follows:

$$F_1 \square \cdots \square F_m(n) := \inf \left\{ \sum_{i=1}^m F_i(n_i) : n_i \in \mathbb{N}, \sum_{i=1}^m n_i = n \right\}.$$

The fact $F_1 \square \cdots \square F_m \in \text{Conv}(N)$ is proved in [Roc70] (Roc70, Theorem 5.4]. One should note that $F_1 \square \cdots \square F_m$ is not always proper.

prop:supconv

Proposition A.1.1 *Let* $\{F_i\}_{i\in I}$ *be a non-empty family in* Conv(N). *Then* $\sup_{i\in I} F_i \in Conv(N)$.

This follows from [Roc70, Theorem 5.5]. In particular, this allows us to introduce

def:LCE

Definition A.1.4 Let $f: N \to [-\infty, \infty]$. The *lower convex envelope* of f is defined as

$$CE f := \sup\{F \in Conv(N) : F \le f\}.$$

It follows from Proposition A.1.1 that $CE f \in Conv(N)$.

def:convwedge

Definition A.1.5 Given a non-empty family $\{F_i\}_{i\in I}$ in Conv(N), we define

$$\bigwedge_{i \in I} F_i := CE \left(\inf_{i \in I} F_i \right).$$

When the family I is finite, say $I = \{1, ..., m\}$, we also write

$$F_1 \wedge \cdots \wedge F_m = \bigwedge_{i \in I} F_i.$$

def:convlor

Definition A.1.6 Given a non-empty family $\{F_i\}_{i\in I}$ in Conv(N), we define

$$\bigvee_{i\in I} F_i := \sup_{i\in I} F_i.$$

When the family *I* is finite, say $I = \{1, ..., m\}$, we also write

$$F_1 \vee \cdots \vee F_m = \bigvee_{i \in I} F_i.$$

Recall that $\bigvee_{i \in I} F_i \in \text{Conv}(N)$ by Proposition A.1.1.

prop:concavhull

Proposition A.1.2 *Let* $F_1, \ldots, F_m \in \text{Conv}^{\text{prop}}(N)$, then

$$F_1 \wedge \cdots \wedge F_m(x) = \inf \left\{ \sum_{i=1}^m \lambda_i F_i(x_i) : x_i \in \text{Dom}(F_i), \right.$$

$$\lambda_i \in [0, 1], \sum_{i=1}^m \lambda_i = 1, \sum_{i=1}^m \lambda_i x_i = x$$
.

See $\frac{\text{Roc}70}{(\text{Roc}70)}$, Theorem 5.6] for the more general result.

lma:convdecnet

Lemma A.1.2 Let $\{F_i\}_{i\in I}$ be a decreasing net in Conv(N). Then $\inf_{i\in I} F_i \in Conv(N)$.

Proof Write $F = \inf_{i \in I} F_i$. We shall apply the characterization in Lemma A.1.1. Take $n, r \in N$, $a, b \in \mathbb{R}$ such that a > F(n), b > F(r) and $t \in (0, 1)$. We need to show that

$$F(tn + (1-t)r) < ta + (1-t)b. (A.1)$$

{eq:convtemp1}

By definition, there exists $j \in I$ such that for any $i \ge I$ with $i \ge j$, we have

$$a > F_i(n), \quad b > F_i(r).$$

It follows from Lemma A.1.1 that

$$F_i(tn + (1-t)r) < ta + (1-t)b$$

for any $i \ge j$. Since F_i is decreasing in i, we conclude (A.1).

def:convexclosure

Definition A.1.7 Let $F \in \text{Conv}(N)$. The *closure* $\text{cl } F \in \text{Conv}(N)$ of F is defined as follows: if $F(n) = -\infty$ for some $n \in N$, then $\text{cl } F := -\infty$. Otherwise, we define cl F as the lower semicontinuity regularization of F.

A convex function $F \in \text{Conv}(N)$ is *closed* if F = cl F. In other words, $F \in \text{Conv}(N)$ if one of the following conditions hold:

- (1) $F \equiv -\infty$;
- (2) $F \equiv \infty$;
- (3) *F* is proper and lower semi-continuous.

Proposition A.1.3 Let $F \in \text{Conv}(N)$ be a closed convex function. Then F is the supremum of all affine functions lying below F.

See [Roc70, Theorem 12.1].

Theorem A.1.1 Let $F \in \text{Conv}^{\text{prop}}(N)$. Then cl F is a closed proper convex function. Moreover, cl F agrees with F except possibly on the relative boundary of Dom F.

See [Roc70], Theorem 7.4].

def:partialorderconv

Definition A.1.8 Given $F, F' \in \text{Conv}(N)$, we write $F \leq F'$ if there is $C \in \mathbb{R}$ such that

$$F \leq F' + C$$
.

We say $F \sim F'$ if $F \leq F'$ and $F' \leq F$ both hold.

A.2 Legendre transform

sec:Leg

Let *N* be a real vector space of finite dimension and *M* be the dual vector space. The pairing $M \times N \to \mathbb{R}$ will be denoted by $\langle \bullet, \bullet \rangle$.

def:Legendregeneral

Definition A.2.1 Let $F \in \text{Conv}(N)$ be a convex function. We define the *Legendre transform* of F as the function $F^* \in \text{Conv}(M)$:

$$F^*(m) := \sup_{n \in N} \left(\langle m, n \rangle - F(n) \right) = \sup_{n \in \text{RelInt Dom } F} \left(\langle m, n \rangle - F(n) \right).$$

The latter equality follows from [Roc70, Corollary 12,2,2].

Recall the well-known Legendre–Fenchel duality [Roc70, Theorem 12.2].

thm:Legendredual

Theorem A.2.1 Let $F \in \text{Conv}(N)$. Then F^* is a closed convex function. The function F^* is proper if and only if F is.

Moreover, we have $(\operatorname{cl} F)^* = F^*$ and

$$F^{**} = c1 F$$
.

ex:suppfundual

Example A.2.1 Let $P \subseteq M$ be a closed convex subset. Then

$$\operatorname{Supp}_P^* = \chi_P, \quad \chi_P^* = \operatorname{Supp}_P.$$

See [Roc70, Theorem 13.2].

Definition A.2.2 Let $F \in Conv(N)$ and $n \in N$. An element $m \in M$ is a *subgradient* of F at n if

$$F(n') \ge F(n) + \langle n' - n, m \rangle, \quad \forall n' \in \mathbb{N}.$$
 (A.2) {eq:subgrad}

The set of subgradients of F at n is denoted by $\nabla F(n)$.

More generally, for any subset $E \subseteq N$, we write

$$\nabla F(E) = \bigcup_{n \in E} \nabla F(n).$$

Definition A.2.3 Given $F, F' \in \text{Conv}(N)$, we write $F \leq_P F'$ if

$$\overline{\nabla F(N)} \subseteq \overline{\nabla F'(N)}.$$

We write $F \sim_P F'$ if $F \leq_P F'$ and $F' \leq_P F$.

Theorem A.2.2 *Suppose that* $F \in Conv^{prop}(N)$. *Then the following hold:*

- (1) For any $n \notin \text{Dom } F$, $\nabla F(n) = \emptyset$;
- (2) for any $n \in \text{RelInt Dom } F$, $\nabla F(n) \neq \emptyset$; Moreover, for any $n' \in N$, we have

$$\partial_{n'}F(n) = \sup \{\langle n', m \rangle : m \in \nabla F(n)\};$$

(3) for $n \in N$, the set $\nabla F(n)$ is bounded if and only if $n \in \text{Int Dom } F$.

For the proof, we refer to [Roc70, Theorem 23.4].

prop:gradDomFstar

Proposition A.2.1 *Let* $F \in Conv^{prop}(N)$. *Then*

$$\nabla F(N) \subseteq \text{Dom } F^*$$
.

If moreover F is closed, we have

$$\operatorname{RelInt}\operatorname{Dom}F^*\subseteq\nabla F(N). \tag{A.3} \quad \{\operatorname{eq:relintdomFstar}\}$$

In particular, if F is a proper closed convex function on N, then

$$\overline{\nabla F(N)} = \overline{\mathrm{Dom}\,F^*}.$$

Proof Suppose that $m \in \nabla F(n)$ for some $n \in N$, it follows that (A.2) holds. In particular,

$$\langle m, n' \rangle - F(n') \le \langle m, n \rangle - F(n).$$

It follows that

$$F^*(m) \le \langle m, n \rangle - F(n) < \infty$$

 $F^*(m) \le \langle m, n \rangle - F(n) < \infty.$ (A.3) is proved in Roc70, Corollary 23.5.1]. For the last assertion, it suffices to observe that $\overline{\text{RelInt Dom } F^*} = \overline{\text{Dom } F^*}$.

prop:Legendretranssup

Proposition A.2.2 *Let* $\{F_i\}_{i\in I}$ *be a non-empty family in* $Conv^{prop}(N)$. *Then*

$$\left(\bigwedge_{i\in I}F_i\right)^* = \bigvee_{i\in I}F_i^*, \quad \left(\bigvee_{i\in I}\operatorname{cl}F_i\right)^* = \operatorname{cl}\bigwedge_{i\in I}F_i^*.$$

If I is finite and $\overline{\text{Dom } F_i}$ is independent of the choice of $i \in I$, then

$$\left(\bigvee_{i\in I}F_i\right)^* = \bigwedge_{i\in I}F_i^*.$$

Recall that \land is defined in Definition A.1.5 and \lor in Definition A.1.6. See [Roc70, Theorem 16.5] for the proof.

prop:sumLegendre

Proposition A.2.3 Let $F_1, \ldots, F_r \in \text{Conv}^{\text{prop}}(N)$ $(r \in \mathbb{Z}_{>0})$. Assume that

$$\bigcap_{i=1}^{r} \operatorname{RelInt} \operatorname{Dom}(F_i) \neq \emptyset,$$

then

$$\left(\sum_{i=1}^r F_i\right)^*(m) = \inf \left\{ \sum_{i=1}^r F_i^*(m_i) : m_1, \dots, m_r \in M, \sum_{i=1}^r m_i = m \right\}.$$

prop:Fsuppchar

Proposition A.2.4 *Let* $P \subseteq M$ *be a convex body* I *and* $F \in Conv^{prop}(N)$. *The following are equivalent:*

- (1) $F \leq \operatorname{Supp}_{P}$;
- (2) Dom F = N and $F^*|_{M \setminus P} \equiv \infty$;
- (3) Dom F = N and $\nabla F(N) \subseteq P$.

Moreover, under these conditions,

$$F(n) - \operatorname{Supp}_{P}(n) \le F(0), \quad \forall n \in \mathbb{N}.$$
 (A.4) {eq:Fsupequal}

Proof (1) \implies (2). It is clear that $\operatorname{Dom} F = N$ since $\operatorname{Dom} \operatorname{Supp}_P = N$. From $F \leq \operatorname{Supp}_P$ and Example A.2.1, we know that

$$\chi_P = \operatorname{Supp}_P^* \leq F^*$$
.

So ii follows.

- $(2) \implies (3)$. This follows from Proposition A.2.1.
- (3) \implies (1). Taken $n \in N$, we know that F is locally Lipschitz [Roc70, Theorem 10.4], so we can compute

$$F(n) - F(0) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} F(tn) \, \mathrm{d}t = \int_0^1 \langle \nabla F(tn), n \rangle \, \mathrm{d}t$$
$$\leq \int_0^1 \mathrm{Supp}_P(n) \, \mathrm{d}t = \mathrm{Supp}_P(n).$$

In particular, (A.4) also follows.

¹ Here a convex body refers to a non-empty closed convex subset, not necessarily having non-empty interior.

A.3 Classes of convex functions

Let N be a real vector space of finite dimension and M be the dual vector space.

We shall fix a convex body $P \subseteq M$.

The following classes are introduced in [BB13].

def:convexPfucntions

Definition A.3.1 We define the set $\mathcal{P}(N, P)$ as the set of proper convex functions $F \in \text{Conv}(N)$ such that $F \leq \text{Supp}_{P}$.

We define the set $\mathcal{E}^{\infty}(N, P)$ as the set of closed convex functions $F \in \text{Conv}(N)$ such that $F \sim \text{Supp}_P$.

We define the set $\mathcal{E}(N, P)$ as follows: suppose that Int $P = \emptyset$, then $\mathcal{E}(N, P) := \mathcal{P}(N, P)$; otherwise, let

$$\mathcal{E}(N, P) = \left\{ F \in \mathcal{P}(N, P) : P = \overline{\nabla F(N)} \right\}.$$

Observe that for any $F \in \mathcal{P}(N, P)$, we have Dom F = N and F is necessarily closed.

Proposition A.3.1 We have

$$\mathcal{E}^{\infty}(N,P) \subseteq \mathcal{E}(N,P) \subseteq \mathcal{P}(N,P).$$

Proof When $\operatorname{Int} P = \emptyset$, the assertion is clear. We assume that $\operatorname{Int} P \neq \emptyset$. The second inclusion follows from definition. We only hand the first inequality. Take $F \in \mathcal{E}^{\infty}(N,P)$. By definition, $F \sim \operatorname{Supp}_P$ and hence $F^* \sim \chi_P$. It follows that $P = \operatorname{Dom} F^*$.

By Proposition A.2.4, we already know that

$$\nabla F(N) \subseteq P = \text{Dom } F^*$$
.

On the other hand, by Proposition A.2.1, we have

Int
$$P \subseteq \nabla F(N)$$
.

So it follows that

$$P = \overline{\nabla F(N)}$$
.

Proposition A.3.2 For any $F \in \mathcal{E}^{\infty}(N, P)$, we have $F^*|_{M \setminus P} \equiv \infty$ and F^* is bounded on P.

Proof From $F \sim \operatorname{Supp}_P$, we take the Legendre transform to get $F^* \sim \operatorname{Supp}_P^* = \chi_P$, where we applied Example A.2.1.

Definition A.3.2 We endow the topology of pointwise convergence on $\mathcal{P}(N, P)$. Note that this topology coincides with the compact-open topology.

Proposition A.3.3 Let $F \in \mathcal{P}(N, P)$. Then there is a decreasing sequence $F_j \in \mathcal{E}^{\infty}(N, P) \cap C^{\infty}(N)$ converging to F.

prop:regularizationconvex

See [BB13], Lemma 2.2].

We observe that the point $0 \in N$ plays a special role since it does in the definition of the support function.

Proposition A.3.4 *For any* $F \in Conv(N, P)$, *we have*

$$\max_{N}(F - \operatorname{Supp}_{P}) = F(0).$$

Proof It follows from (A.4) that

$$\sup_{N} (F - \operatorname{Supp}_{P}) \le F(0).$$

The equality is clearly obtained at $0 \in N$.

A.4 Monge-Ampère measures

Let N be a free Abelian group of finite rank (i.e. a lattice) and M be its dual lattice. There is a canonical Lebesgue type measure on $M_{\mathbb{R}}$, denoted by d vol, normalized so that the smallest cubes in M have volume 1. Similarly, the canonical measure on $N_{\mathbb{R}}$ is normalized in the same way and is denoted by d vol as well.

We will write

$$N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}, \quad M_{\mathbb{R}} = M \otimes_{\mathbb{Z}} \mathbb{R}.$$

def:realMA

Definition A.4.1 Let $F \in \text{Conv}(N_{\mathbb{R}})$, we define the *real Monge–Ampère measure* $\text{MA}_{\mathbb{R}} F$ as the Borel measure on $N_{\mathbb{R}}$ given as follows: for each Borel measurable set $E \subseteq N_{\mathbb{R}}$, define

$$\mathrm{MA}_{\mathbb{R}} F(E) \coloneqq n! \int_{\nabla F(E)} \mathrm{d} \, \mathrm{vol} \, .$$

prop:smoothMAreal

Proposition A.4.1 Suppose that $F \in C^{1,1}(N_{\mathbb{R}}) \cap \text{Conv}(N_{\mathbb{R}})$, fix an identification $N = \mathbb{Z}^n$, then

$$MA_{\mathbb{R}} F = n! \cdot \det \nabla^2 F d \text{ vol }.$$

See Fig17, Example 2.2].

Proposition A.4.2 Let $P \in M_{\mathbb{R}}$ be a convex body and $F \in \mathcal{P}(N_{\mathbb{R}}, P)$. Then $F \in \mathcal{E}(N_{\mathbb{R}}, P)$ if and only if

$$\int_{M_{\mathbb{R}}} MA_{\mathbb{R}} F = n! \text{ vol } P.$$
(A.5) {eq:cvxfullmass}

Proof By definition of $MA_{\mathbb{R}}$, (A.5) is equivalent to

$$\operatorname{vol} \overline{\nabla F(N_{\mathbb{R}})} = \operatorname{vol} P.$$

We first handle the case where Int $P \neq \emptyset$. By Proposition A.2.4, the latter is equivalent to

$$\overline{\nabla F(N_{\mathbb{R}})} = P.$$

Now assume that Int $P = \emptyset$, then vol $\overline{\nabla F(N)} = \text{vol } P = 0$ by Proposition A.2.4. The assertion is clear.

thm:realMAcont

Theorem A.4.1 Let $F, F_j \in \mathcal{P}(N_{\mathbb{R}}, P)$ $(j \in \mathbb{Z}_{>0})$. Assume that $F_j \to F$, then $\mathrm{MA}_{\mathbb{R}}(F_j)$ converges to $\mathrm{MA}_{\mathbb{R}}(F)$ weakly.

See Fig17, Proposition 2.6].

There is a well-known comparison principle.

thm:convcomp

Theorem A.4.2 Let $F, F' \in \mathcal{P}(N_{\mathbb{R}}, P)$. Assume that $F \leq F'$, then

$$\overline{\nabla F(N_{\mathbb{R}})} \subseteq \overline{\nabla F'(N_{\mathbb{R}})}.$$

$$\int_{N_{\mathbb{R}}} \mathrm{MA}_{\mathbb{R}}(F) \leq \int_{N_{\mathbb{R}}} \mathrm{MA}_{\mathbb{R}}(F').$$

See [BB13], Lemma 2.5].

A.5 Separation lemmata

lma:polybdd

Lemma A.5.1 Let $\alpha, \beta_1, \dots, \beta_m \in \mathbb{Z}^n$. Let Δ be the polytope generated by β_1, \dots, β_m . Then the following are equivalent:

(1)

$$|z^{\alpha}|^2 \left(\sum_{i=1}^m |z^{\beta_i}|^2\right)^{-1} \tag{A.6}$$

is a bounded function on \mathbb{C}^{*n} .

(2) $\alpha \in \Delta$.

Proof (2) \Longrightarrow (1). Write $\alpha = \sum_i t_i \beta_i$, where $t_i \in [0, 1], \sum_i t_i = 1$. Then

$$\begin{split} |z^{\alpha}|^2 \left(\sum_{i=1}^m |z^{\beta_i}|^2 \right)^{-1} &= \prod_i |z^{\beta_i}|^{2t_i} \left(\sum_{i=1}^m |z^{\beta_i}|^2 \right)^{-1} \\ &\leq \prod_i \sum_j |z^{\beta_j}|^{2t_i} \left(\sum_{i=1}^m |z^{\beta_i}|^2 \right)^{-1} \leq 1. \end{split}$$

(1) \Longrightarrow (2). Assume that $\alpha \notin \Delta$. Let H be a hyperplane that separates α and Δ . Say H is defined by $a_1x_1 + \cdots + a_nx_n = C$. Set

$$z(t) \coloneqq (t^{a_1}, \ldots, t^{a_n}).$$

Then clearly (A.6) evaluated at z(t) is not bounded.

lma:polybdd2

Lemma A.5.2 Let $\beta_1, \ldots, \beta_m \in \mathbb{N}^n$ and $\beta \in \mathbb{R}^n$. Then the following are equivalent

- (1) $\log \sum_{i=1}^{m} e^{x \cdot \beta_i} (x, \beta)$ is bounded from below. (2) β is in the convex hull of the β_i 's.

Proof The proof follows the same pattern as Lemma A.5.1.

Appendix B

Pluripotential theory on unibranch spaces

chap:unib

In this appendix, we extend the theory in the book to compact unibranch Kähler spaces.

B.1 Complex spaces

A complex space is assumed to be reduced, Hausdorff and paracompact in the whole book.

def:primdiv

Definition B.1.1 A *prime divisor* over an irreducible complex space Z is a connected smooth hypersurface $E \subseteq X'$, where $X' \to Z$ is a proper bimeromorphic morphism with X' smooth. Such a morphism $X' \to Z$ is also called a *resolution* of Z. The *center* of the prime divisor is defined as the image of E in Z.

Two prime divisors $E_1 \subseteq X_1'$ and $E_2 \subseteq X_2'$ over Z are *equivalent* if there is a common resolution $X'' \to X$ dominating both X_1' and X_2' such that the strict transforms of E_1 and E_2 coincide.

The set Z^{div} is the set of pairs (c, E), where $c \in \mathbb{Q}_{>0}$ and E is an equivalence class of a prime divisor over Z. For simplicity, we will denote the pair (c, E) by $c \text{ ord}_E$, although one should not really think of this object as a valuation unless Z is projective and irreducible.

Note that a prime divisor on Z does not always define a prime divisor over Z if Z is singular.

Definition B.1.2 A complex space X is *unibranch* if for all $x \in X$, the local ring $O_{X,x}$ is unibranch.

It is shown in the arXiv version of Xia23Mabuchi [Xia23a, Remark 2.7] that when X is a projective variety, this notion coincides with the corresponding algebraic notion of unibranchness.

thm:Zariskimain

Theorem B.1.1 (Zariski's main theorem) Let $\pi: Y \to X$ be a proper bimeromorphic morphism between complex spaces. Assume that X is unibranch, then π has connected fibers.

We refer to Dem85, Proof of Théorème 1.7].

def:modif

Definition B.1.3 A *modification* of a compact complex space *X* is a finite composition of blow-ups with smooth centers.

thm:HironakaChow

Theorem B.1.2 (Hironaka's Chow lemma) Suppose that X is a compact complex space. Then every proper bimeromorphic morphism to X can be dominated by a modification.

This follows from the proof of Hir75, Corollary 2].

thm:res

Theorem B.1.3 *Let* X *be a compact complex space. Then there is a modification* $\pi: Y \to X$ *such that* Y *is smooth.*

See [BM97, Wlo09 [BM97, W lo09].

cor:primerealization

Corollary B.1.1 Let X be a compact complex space and E be a prime divisor over X. Then there is a modification $\pi: Y \to X$ such that Y is smooth and E can be realized as a prime divisor on Y.

B.2 Plurisubharmonic functions

Let *X* be a complex space.

Definition B.2.1 A function $\varphi: X \to [-\infty, \infty)$ is *plurisubharmonic* if

- (1) φ is not identically $-\infty$ on any irreducible component of X, and
- (2) for any $x \in X$, there is an open neighbourhood V of x in X, a domain $\Omega \subseteq \mathbb{C}^N$, a closed immersion $V \hookrightarrow \Omega$ and a plurisubharmonic function $\tilde{\varphi} \in \mathrm{PSH}(\Omega)$ such that $\varphi|_{\Omega \cap V} = \tilde{\varphi}|_{\Omega \cap V}$.

The set of plurisubharmonic functions on X is denoted by PSH(X).

Similarly, if θ is a smooth closed¹ real (1,1)-form on X, then a function $\varphi \colon X \to [-\infty, \infty)$ is θ -plurisubharmonic if for any $x \in X$, there is an open neighbourhood V of x in X, a domain $\Omega \subseteq \mathbb{C}^N$, a closed immersion $V \hookrightarrow \Omega$ and a smooth function g on Ω such that $\theta = (\mathrm{dd}^c g)|_{V \cap \Omega}$ and $g + \varphi|_V \in \mathrm{PSH}(V)$.

thm:FN

Theorem B.2.1 (Fornaess–Narasimhan) Let $\varphi: X \to [-\infty, \infty)$ be a function. Assume that φ is not identically $-\infty$ on any irreducible component of X, then the following are equivalent:

(1) φ is psh;

¹ Here *closed* means that locally θ is defined by a closed form under a local embedding.

(2) φ is usc and for any morphism $f: \Delta \to X$ from the open unit disk Δ in $\mathbb C$ to X such that $f^*\varphi$ is not identically $-\infty$, the pull-back $f^*\varphi$ is psh.

If further more X is unibranch, then these conditions are equivalent to

(3) $\varphi \in PSH(X^{Reg})$, locally bounded from above near X^{Sing} and $\varphi = \varphi^*$.

cor:PSH

Corollary B.2.1 Let $\pi: Y \to X$ be a proper bimeromorphic morphism between compact Kähler spaces. Let θ be a smooth closed real (1,1)-form on X. Assume that X is unibranch, then the pull-back induces a bijection

$$\pi^* : PSH(X, \theta) \xrightarrow{\sim} PSH(Y, \pi^*\theta).$$

See Dem85, Théorème 1.7] for the details.

thm:GRexten2

Theorem B.2.2 (Grauert–Remmert) Let X be a unibranch complex space and Z be an analytic subset in X and $\varphi \in PSH(X \setminus Z)$. Then the function φ admits an extension to PSH(X) in the following two cases:

- (1) The set Z has codimension at least 2 everywhere.
- (2) The set Z has codimension at least 1 everywhere and is locally bounded from above on an open neighbourhood of Z.

In both cases, the extension is unique and is given by

$$\varphi(x) = \overline{\lim}_{X \setminus Z \ni y \to x} \varphi(y), \quad x \in X.$$
 (B.1) {eq:GRextvarphi}

Proof The problem is local in natural. By the local description of complex spaces [GR84, Section 3.4], we may assume that there is a domain $\Omega \subseteq \mathbb{C}^n$, a finite s-sheet branched covering $\Phi: X \to \Omega$ with branched locus contained in a proper analytic subset $V \subseteq \Omega$. We may assume that X is connected, $n \ge 1$ and $Z \subseteq \Phi^{-1}(V)$.

We first prove the uniqueness in both cases. For this purpose, we may assume that $Z = \Phi^{-1}(V)$. Fix $z \in Z$, we can find a complex line L passing through $\Phi(z)$ such that $L \cap V \cap B = \{\Phi(z)\}$, where B is a small open ball centered at $\Phi(z)$. After shrinking Ω , we may choose one isomorphic copy L' of $L \cap B \setminus \{z\}$ in an neighbourhood of z. Since φ restricts to a subharmonic function on $L' \cap \{z\}$, it follows that the value of $\varphi(z)$ is uniquely determined.

(2) Let ψ be the function defined in (B.1). We claim that $\psi \in PSH(X)$. Since ψ clear extends φ , so our assertion is proved.

Let $f: \Delta \to X$ be a morphism. Due to Theorem B.2.1, we only need to show that $f^*\psi$ is subharmonic. We may assume that f is non-constant, so that $\Phi \circ f$ has full rank outside a discrete subset $S' \subseteq \Delta$.

Step 1. We show that after enlarging S' to a larger discrete subset, $f^*\psi$ is subharmonic outside S'. We may assume that $0 \notin S'$ and it suffices to show that $f^*\psi$ is subharmonic near 0 outside a discrete subset.

For this purpose, after shrinking Δ , we may assume that $\Phi \circ f$ has full rank everywhere. After shrinking Ω and Δ , we may furthermore assume that

- (1) $A = \Phi \circ f(\Delta)$ is an analytic subset of Ω of dimension 1, and
- (2) f(0) is the only preimage of $\Phi(f(0))$ with respect to Φ .

Thanks to the first condition, we may then find a discrete subset $S'' \subseteq A$ such that Φ restricts to an unbranched covering on $A \setminus S''$.

Now it would suffice to show that

$$\psi \in \mathrm{PSH}(\Phi^{-1}(A \setminus S'')).$$
 (B.2) {eq:psipshtemp1}

Let $x \in A \setminus S''$. After further shrinking Ω around x (and replacing X by the corresponding connected component), we may assume that each point in $A \setminus S''$ has exactly one preimage in X. By an elementary argument (see [GR56, Hilfssatz 6]), the fibral integration $\Phi_* \psi \in PSH(\Omega)$ and (B.2) follows.

Step 2. We show that $f^*\psi$ is subharmonic near S'. Let $z \in S'$, it suffices to show that $f^*\psi$ is subharmonic in an open neighbourhood of z.

After shrinking Φ along $\Phi \circ f(z)$, we may assume that X is connected and $\Phi^{-1}(\Phi \circ f(z))$ consists only of f(z). Let $\eta \in \mathrm{PSH}(\Omega)$ be the fibral integration of ψ along Φ . Then $f^*\Phi^*\eta \in \mathrm{SH}(\Delta)$ and

$$\overline{\lim_{w \to z}} \frac{1}{s} f^* \Phi^* \eta(w) = f^* \psi(z).$$

Assume that

$$\overline{\lim}_{w \to z} f^* \varphi(w) < f^* \psi(z),$$

then

$$\overline{\lim_{w \to z}} \, \frac{1}{s} f^* \Phi^* \eta(w) \le \frac{1}{s} \, \overline{\lim_{w \to z}} \, f^* \varphi(w) + \frac{s-1}{s} f^* \psi(z) < f^* \psi(z),$$

which is a contradiction. It follows that

$$f^*\psi = (f^*\psi)^* \in SH(\Delta).$$

(1) If suffices to show that φ is locally bounded near Z. Suppose that this fails. Then by (2) we can find $z \in Z$ and $x_i \in X \setminus (Z \cup V)$ $(i \ge 1)$ such that

$$\lim_{i\to\infty}\varphi(x_i)=\infty.$$

Let L be a complex line passing through $\Phi(z)$ intersecting $(\Phi(Z) \cup V) \cap B$ only at $\Phi(z)$, where $B \in B'$ are two small open balls centered at $\Phi(z)$. We can find a sequence of lines L_i passing through $\Phi(x_i)$ converging to L such that $L_i \cap (B' \cap \Phi(Z)) = \emptyset$ while $L_i \cap (B' \cap V)$ is discrete. The Φ restricts to a branched covering over $B' \cap L_i$ for all $i \geq 1$. Adding a constant to φ , we may assume that $\varphi|_{\Phi^{-1}(L \cap \partial B)} < 0$. We can then find an open neighbourhood U of $\Phi^{-1}(L \cap \partial B)$ so that $\varphi|_U < 0$. For large i we have $\Phi^{-1}(L_i \cap \partial B) \subseteq U$, it follows from the maximum principle that $\varphi(x_i) \leq 0$, which is a contradiction.

B.3 Extensions of the results in the smooth setting

Let X be an irreducible unibranch compact Kähler space of dimension n. Let θ be a closed real smooth (1,1)-form on X. We say the cohomology class $[\theta]$ is big if for any proper bimeromorphic morphism $\pi: Y \to X$ from a compact Kähler manifold Y, $[\pi^*\theta]$ is big.

The non-pluripolar products can be defined exactly as in Chapter 2 and the results in that chapter holds *mutadis mutandis*.

The results in Chapter 3 can be also be easily extended. The definition of the P-envelope remains unchanged. As for the \mathcal{I} -envelope, we define

Definition B.3.1 Given $\varphi \in \mathrm{PSH}(X,\theta)$, we define $P_{\theta}[\varphi]_{\mathcal{I}} \in \mathrm{PSH}(X,\theta)$ as the unique element with the following property: if $\pi \colon Y \to X$ is a proper bimeromorphic morphism from a compact Kähler manifold Y, then

$$\pi^* P_{\theta} [\varphi]_{\mathcal{I}} = P_{\pi^* \theta} [\pi^* \varphi]_{\mathcal{I}}.$$

It follows from Corollary B.2.1 and Proposition 3.2.5 that $P_{\theta}[\varphi]_{I}$ is independent of the choice of π and is well-defined. The other results can be easily extended.

Chapter 4 and Chapter 6 can be extended without big changes. The only exception is Theorem 6.2.6, where we do not have the notion of multiplier ideal sheaves. So we do not know how to extend this theorem.

Chapter 7 can be extended execpt for Section 7.3 for the same reason as above.

The trace operator defined in Chapter 8 can be extended as long as Y is not contained in X^{Sing} using the embedded resolution. In general, due to the lack of Demailly regularization, we do not know how to define the trace operator.

Chapter 9 can be extended easily.

Chapter 10 is easy to extend since the partial Okounkov bodies are bimeromorphically invariant in the sense of Theorem 10.3.2.

Chapter 11 is unchanged, since we always take projective limits with respect to all models in that section.

Chapter 13 can be extended except for the parts involving the trace operator.

Chapter 14 can be easily extended by considering a resolution.

I do not know how to extend the results in Chapter 5 and Chapter 12 to the singular setting.

Appendix C Almost semigroups

chap:almostsg

We introduce and study almost semigroups. In particular, we will define the Okounkov bodies of almost semigroups.

C.1 Convex bodies

Fix $n \in \mathbb{N}$.

def:convbodies

Definition C.1.1 A *convex body* in \mathbb{R}^n is a non-empty compact convex set.

We allow a convex body to have empty interior.

We write \mathcal{K}_n for the set of convex bodies in \mathbb{R}^n .

def:Hausdorffmetric

Definition C.1.2 The *Hausdorff metric* between $K_1, K_2 \in \mathcal{K}_n$ is given by

$$d_{\text{Haus}}(K_1, K_2) := \max \left\{ \sup_{x_1 \in K_1} \inf_{x_2 \in K_2} |x_1 - x_2|, \sup_{x_2 \in K_2} \inf_{x_1 \in K_1} |x_1 - x_2| \right\}.$$

It is well-known that the metric space $(\mathcal{K}_n, d_{\text{Haus}})$ is complete. We will need the following fundamental theorem:

thm:Blaschke

Theorem C.1.1 (Blaschke selection theorem) *The metric space* (K_n, d_{Haus}) *is locally compact.*

We refer to $\frac{\text{Sch}_{14}^4}{\text{Sch}_{9}^3}$, Theorem 1.8.7] for details.

thm:contvol

Theorem C.1.2 *The Lebesgue volume* vol: $\mathcal{K}_n \to \mathbb{R}_{\geq 0}$ *is continuous.*

See [Sch14 [Sch93, Theorem 1.8.20].

thm: Hausconvcond

Theorem C.1.3 *Let* K_i , $K \in \mathcal{K}_n$ $(i \in \mathbb{N})$. Then $K_i \xrightarrow{d_{\text{Haus}}} K$ if and only if the following conditions hold:

(1) each point $x \in K$ is the limit of a sequence $x_i \in K_i$, and

(2) the limit of any convergent sequence $(x_{i_j})_{j\in\mathbb{N}}$ with $x_{i_j} \in K_{i_j}$ lies in K, where i_j is a strictly increasing sequence in $\mathbb{Z}_{>0}$.

See Sch14 [Sch93, Theorem 1.8.8].

lma:latcvb

Lemma C.1.1 Let $K \in \mathcal{K}_n$ be a convex body with positive volume and $K' \in \mathcal{K}_n$. Assume that for some large enough $k \in \mathbb{Z}_{>0}$, K' contains $K \cap (k^{-1}\mathbb{Z})^n$, then $K' \supseteq K^{n^{1/2}k^{-1}}$.

Proof Let $x \in K^{n^{1/2}k^{-1}}$, by assumption, the closed ball B with center x and radius $n^{1/2}k^{-1}$ is contained in K. Observe that x can be written as a convex combination of points in $B \cap (k^{-1}\mathbb{Z})^n$, which are contained in K' by assumption. It follows that $x \in K'$.

Given a sequence of convex bodies K_i ($i \in \mathbb{N}$), we set

$$\underline{\lim_{i\to\infty}} K_i = \overline{\bigcup_{i=0}^{\infty} \bigcap_{j\geq i} K_j}.$$

Suppose K is the limit of a subsequence of K_i , we have

$$\underline{\lim_{i\to\infty}} K_i\subseteq K. \tag{C.1} \quad \text{{eq:liminflimsup}}$$

This is a simple consequence of Theorem C.1.3.

lma:Hausdorffconvslice

Lemma C.1.2 *Let* $K \subseteq \mathbb{R}^n$ *be a convex body. Let*

$$t_{\min} := \min\{t \in \mathbb{R} : \{x_1 = t\} \cap K \neq \emptyset\}, \quad t_{\max} := \max\{t \in \mathbb{R} : \{x_1 = t\} \cap K \neq \emptyset\}.$$

Then for $t \in [t_{\min}, t_{\max}]$, the map

$$t \mapsto \{x_1 = t\} \cap K$$

is continuous with respect to the Hausdorff metric.

Here x_1 denotes the first coordinate in \mathbb{R}^n .

Proof We may assume that $t_{\min} < t_{\max}$ as otherwise there is nothing to prove.

For each $t \in [t_{\min}, t_{\max}]$, we write $K_t = \{x_1 = t\} \cap K$. Let $t_j \to t$ be a convergent sequence in $[t_{\min}, t_{\max}]$, we want to show that K_{t_j} converges to K_t with respect to the Hausdorff metric. Recall that this amounts to the following two assertions:

- (1) For each convergent sequence $x_j \in K_{t_j}$ with limit x, we have $x \in K_t$;
- (2) Given any $x \in K_t$, up to replacing t_j by a subsequence, we can find $x_j \in K_{t_j}$ converging to x.

The first assertion is obvious. Let us prove the second. Take $x = (t, x') \in K_t$. Up to replacing t_j by a subsequence and taking the symmetry into account, we may assume that $t_j > t$ for all t. In particular, $t < t_{\text{max}}$.

We can find a point $y = (y^1, y') \in K$ such that $y^1 > t$ (for example, there is always such a point with $y^1 = t_{\text{max}}$). Replacing t_j by a subsequence, we may assume that $t_j \in (t, y^1)$ for all j. Then it suffices to take

$$x_j = \frac{y^1 - t_j}{y^1 - t} x + \frac{t_j - t}{y^1 - t} y.$$

lma:intconvexset

Lemma C.1.3 Let $D_j \subseteq \mathbb{R}^n$ $(j \ge 1)$ be a decreasing sequence of convex sets. Assume that vol $\bigcap_i D_i > 0$, then

$$\bigcap_{j=1}^{\infty} D_j = \bigcap_{j=1}^{\infty} \overline{D_j}.$$

Proof The \subseteq direction is clear. By convexity, it suffices to show that both sides have the same positive volume. As the boundary of convex sets has zero Lebesgue measure, it follows that the volumes of both sides are equal to $\lim_{i\to\infty} \operatorname{vol} D_i$.

Definition C.1.3 Let $K, K' \in \mathcal{K}_n$, their *Minkowski sum* is given by

$$K + K' := \{x + x' : x \in K, x' \in K'\}.$$

Proposition C.1.1 *The Minkowski sum* $\mathcal{K}_n \times \mathcal{K}_n \to \mathcal{K}_n$ *is continuous.*

thm:BrunnMin

Theorem C.1.4 (Brunn–Minkowski) Let $K, K' \in \mathcal{K}_n$, then for any $t \in (0, 1)$, we have

$$\operatorname{vol}((1-t)K'+tK) \ge (\operatorname{vol} K')^{(1-t)}(\operatorname{vol} K)^t.$$

In other words, the volume is log concave. See Sch14 [Sch93, Page 372].

C.2 The Okounkov bodies of almost semigroups

sec:clo

Fix an integer $n \ge 0$. Fix a closed convex cone $C \subseteq \mathbb{R}^n \times \mathbb{R}_{\ge 0}$ such that $C \cap \{x_{n+1} = 0\} = \{0\}$. Here x_{n+1} is the last coordinate of \mathbb{R}^{n+1} .

C.2.1 Generalities on semigroups

Write $\hat{S}(C)$ for the set of subsets of $C \cap \mathbb{Z}^{n+1}$ and S(C) for the set of sub-semigroups $S \subseteq C \cap \mathbb{Z}^{n+1}$. For each $k \in \mathbb{N}$ and $S \in \hat{S}(C)$, we write

$$S_k := \{x \in \mathbb{Z}^n : (x, k) \in S\}.$$

Note that S_k is a finite set by our assumption on C.

We introduce a pseudometric on $\hat{S}(C)$ as follows:

$$d_{\rm sg}(S, S') := \overline{\lim_{k \to \infty}} k^{-n} (|S_k| + |S'_k| - 2|(S \cap S')_k|).$$

Here | • | denotes the cardinality of a finite set.

lma:dps

Lemma C.2.1 The above defined d_{sg} is a pseudometric on $\hat{S}(C)$.

Proof Only the triangle inequality needs to be argued. Take $S, S', S'' \in \hat{S}(C)$. We claim that for any $k \in \mathbb{N}$,

$$|S_k| + |S_k'| - 2|S_k \cap S_k'| + |S_k''| + |S_k''| - 2|S_k'' \cap S_k'| \ge |S_k| + |S_k''| - 2|S_k \cap S_k''|$$

From this the triangle inequality follows. To argue the claim, we rearrange it to the following form:

$$|S'_k| - |S_k \cap S'_k| \ge |S'_k \cap S''_k| - |S_k \cap S''_k|,$$

which is obvious.

Given $S, S' \in \hat{S}(C)$, we say S is equivalent to S' and write $S \sim S'$ if $d_{sg}(S, S') = 0$. This is an equivalence relation by Lemma C.2.1.

lma:dBil

Lemma C.2.2 Given $S, S', S'' \in \hat{S}(C)$, we have

$$d_{Sg}(S \cap S'', S' \cap S'') \le d_{Sg}(S, S').$$

In particular, if $S^i, S'^i \in \hat{S}(C)$ $(i \in \mathbb{N})$ and $S^i \to S$, $S'^i \to S'$, then

$$S^i \cap S'^i \to S \cap S'$$
.

Proof Observe that for any $k \in \mathbb{N}$,

$$|S_k \cap S_k''| - |S_k \cap S_k' \cap S_k''| \le |S_k| - |S_k \cap S_k'|$$

The same holds if we interchange S with S'. It follows that

$$|S_k \cap S_k''| + |S_k' \cap S_k''| - 2|S_k \cap S_k' \cap S_k''| \le |S_k| + |S_k'| - 2|S_k \cap S_k'|$$

The first assertion follows.

Next we compute

$$d_{\operatorname{sg}}(S^i \cap S'^i, S \cap S') \le d_{\operatorname{sg}}(S^i \cap S'^i, S^i \cap S') + d_{\operatorname{sg}}(S^i \cap S', S \cap S')$$

$$\le d_{\operatorname{sg}}(S'^i, S') + d_{\operatorname{sg}}(S^i, S)$$

and the second assertion follows.

The volume of $S \in \mathcal{S}(C)$ is defined as

$$\operatorname{vol} S := \lim_{k \to \infty} (ka)^{-n} |S_{ka}| = \overline{\lim}_{k \to \infty} k^{-n} |S_k|,$$

where a is a sufficiently divisible positive integer. The existence of the limit and its independence from a both follow from the more precise result [KK12, Theorem 2].

lma:vollip

Lemma C.2.3 *Let* $S, S' \in \mathcal{S}(C)$, then

$$|\operatorname{vol} S - \operatorname{vol} S'| \le d_{\operatorname{sg}}(S, S').$$

Proof By definition, we have

$$d_{SG}(S, S') \ge \text{vol } S + \text{vol } S' - 2 \text{vol}(S \cap S').$$

It follows that
$$\operatorname{vol} S - \operatorname{vol} S' \leq d_{\operatorname{sg}}(S, S')$$
 and $\operatorname{vol} S' - \operatorname{vol} S \leq d_{\operatorname{sg}}(S, S')$.

We define $\overline{S}(C)$ as the closure of S(C) in $\hat{S}(C)$ with respect to the topology defined by the pseudometric d. By Lemma C.2.3, vol: $S(C) \to \mathbb{R}$ admits a unique 1-Lipschitz extension to

vol:
$$\overline{S}(C) \to \mathbb{R}$$
. (C.2) {eq:volex}

lma:volcompa

Lemma C.2.4 Suppose that $S, S' \in \overline{S}(C)$ and $S \subseteq S'$. Then

$$\operatorname{vol} S \leq \operatorname{vol} S'$$
.

Proof Take sequences S^j , S'^j in S(C) such that $S^j \to S$, $S'^j \to S'$. By Lemma C.2.2, after replacing S^j by $S^j \cap S'^j$, we may assume that $S^j \subseteq S'^j$ for each j. Then our assertion follows easily.

C.2.2 Okounkov bodies of semigroups

Given $S \in \hat{S}(C)$, we will write $C(S) \subseteq C$ for the closed convex cone generated by $S \cup \{0\}$. Moreover, for each $k \in \mathbb{Z}_{>0}$, we define

$$\Delta_k(S) := \operatorname{Conv} \left\{ k^{-1} x \in \mathbb{R}^n : x \in S_k \right\} \subseteq \mathbb{R}^n.$$

Here Conv denotes the convex hull.

Definition C.2.1 Let S'(C) be the subset of S(C) consisting of semigroups S such that S generates \mathbb{Z}^{n+1} (as an Abelian group).

Note that for any $S \in \mathcal{S}'(C)$, the cone C(S) has full dimension (i.e. the topological interior is non-empty). Given a full-dimensional subcone $C' \subseteq C$, it is clear that $C' \cap \mathbb{Z}^{n+1} \in \mathcal{S}'(C)$.

This class behaves well under intersections:

lma:intersecS'

Lemma C.2.5 Let $S, S' \in \mathcal{S}'(C)$. Assume that $vol(S \cap S') > 0$, then $S \cap S' \in \mathcal{S}'(C)$.

The lemma obviously fails if $vol(S \cap S') = 0$.

Proof We first observe that the cone $C(S) \cap C(S')$ has full dimension since otherwise $\operatorname{vol}(S \cap S') = 0$. Take a full-dimensional subcone C' in $C(S) \cap C(S')$ such that C' intersects the boundary of $C(S) \cap C(S')$ only at 0. It follows from [KK12, Theorem 1] that there is an integer N > 0 such that for any $x \in \mathbb{Z}^{n+1} \cap C'$ with Euclidean norm no less than N lies in $S \cap S'$. Therefore, $S \cap S' \in S'(C)$.

We recall the following definition from [KK12].

def:Okokk

Definition C.2.2 Given $S \in \mathcal{S}'(C)$, its *Okounkov body* is defined as follows

$$\Delta(S) := \{ x \in \mathbb{R}^n : (x, 1) \in C(S) \}.$$

thm:HausOkoun

Theorem C.2.1 For each $S \in \mathcal{S}'(C)$, we have

$$\operatorname{vol} S = \lim_{k \to \infty} k^{-n} |S_k| = \operatorname{vol} \Delta(S) > 0. \tag{C.3}$$
 {eq:volWvolDelta}

Moreover, as $k \to \infty$ *,*

$$\Delta_k(S) \xrightarrow{d_{\text{Haus}}} \Delta(S).$$
 (C.4) {eq:Hauscon}

This is essentially proved in [WN14], Lemma 4.8], which itself follows from a theorem of Khovanskii [Kho92]. We remind the readers that (C.3) fails for a general $W \in \mathcal{S}(C)$, see [KK12], Theorem 2].

Proof The equalities (C.3) follow from the general theorem [KK12, Theorem 2]. It remains to prove (C.4). By the argument of [WN14, Lemma 4.8], for any compact set $K \subseteq \operatorname{Int} \Delta(S)$, there is $k_0 > 0$ such that for any $k \ge k_0$, $\alpha \in K \cap (k^{-1}\mathbb{Z})^n$ implies that $\alpha \in \Delta_k(S)$.

In particular, taking $K = \Delta(S)^{\delta}$ for any $\delta > 0$ and applying Lemma C.1.1, we find

$$d_{\text{Haus}}(\Delta(S), \Delta_k(S)) \le n^{1/2} k^{-1} + \delta$$

when k is large enough. This implies (C.4).

cor:dist

Corollary C.2.1 Let $S, S' \in \mathcal{S}'(C)$. Assume that $vol(S \cap S') > 0$, then we have

$$d_{sg}(S, S') = vol(S) + vol(S') - 2 vol(S \cap S').$$

Proof This is a direct consequence of Lemma C.2.5 and (C.3).

lma:regularizat

lma:Deltaindclass

Lemma C.2.6 Given $S \in \mathcal{S}'(C)$, we have $S \sim \text{Reg}(S)$.

Recall that the regularization Reg(S) of S is defined as $C(S) \cap \mathbb{Z}^{n+1}$.

Proof Since S and Reg(S) have the same Okounkov body, we have vol S = vol Reg(S) by Theorem C.2.1. By Corollary C.2.1 again,

$$d_{sg}(\text{Reg}(S), S) = \text{vol Reg}(S) - \text{vol } S = 0.$$

Lemma C.2.7 Let $S, S' \in \mathcal{S}'(C)$. Assume that $d_{sg}(S, S') = 0$, then $\Delta(S) = \Delta(S')$.

Proof Observe that $vol(S \cap S') > 0$, as otherwise

$$d_{Sg}(S, S') \ge \operatorname{vol} S + \operatorname{vol} S' > 0$$
,

which is a contradiction.

It follows from Lemma C.2.5 that $S \cap S' \in S'(C)$. It suffices to show that $\Delta(S) = \Delta(S \cap S')$. In fact, suppose that this holds, since vol $\Delta(S') = \text{vol } S' = \text{vol } \Delta(S)$, the inclusion $\Delta(S') \supseteq \Delta(S \cap S') = \Delta(S)$ is an equality.

By Lemma C.2.2, we can therefore replace S' by $S \cap S'$ and assume that $S \supseteq S'$. Then clearly $\Delta(S) \supseteq \Delta(S')$. By (C.3),

$$\operatorname{vol} \Delta(S) = \operatorname{vol} \Delta(S') > 0.$$

Thus,
$$\Delta(S) = \Delta(S')$$
.

lma:Sprimeint

Lemma C.2.8 Suppose that $S^i \in \mathcal{S}'(C)$ is a decreasing sequence such that

$$\lim_{i\to\infty} \operatorname{vol} S^i > 0.$$

Then there is $S \in \mathcal{S}'(C)$ such that $S^i \to S$.

In general, one cannot simply take $S = \bigcap_i S^i$. For example, consider the sequence $S^i = S^1 \cap \{x_{n+1} \ge i\}$.

Proof By Lemma C.2.6, we may replace S^i by its regularization and assume that $S^i = C(S^i) \cap \mathbb{Z}^{n+1}$. We define

$$S = \left(\bigcap_{i=1}^{\infty} C(S^i)\right) \cap \mathbb{Z}^{n+1}.$$

Since $\bigcap_{i=1}^{\infty} C(S^i)$ is a full-dimensional cone by assumption, we have $S \in \mathcal{S}'(C)$. By Corollary C.2.1 and Theorem C.2.1, we can compute the distance

$$d_{sg}(S, S^i) = \text{vol } S^i - \text{vol } S = \text{vol } \Delta(S^i) - \text{vol } \Delta(S),$$

which tends to 0 by construction.

C.2.3 Okounkov bodies of almost semigroups

subsec:Okobalmosg

Definition C.2.3 We define $\overline{S'(C)}_{>0}$ as elements in the closure of S'(C) in $\hat{S}(C)$ with positive volume. An element in $\overline{S'(C)}_{>0}$ is called an *almost semigroup* in C.

Recall that the volume here is defined in (C.2).

Our goal is to prove the following theorem:

290

thm:Okocont

Theorem C.2.2 The Okounkov body map $\Delta: \mathcal{S}'(C) \to \mathcal{K}_n$ as defined in Definition C.2.2 admits a unique continuous extension

$$\Delta \colon \overline{\mathcal{S}'(C)}_{>0} \to \mathcal{K}_n.$$
 (C.5) {eq:Deltagensg}

Moreover, for any $S \in \overline{S'(C)}_{>0}$, we have

$$\operatorname{vol} S = \operatorname{vol} \Delta(S)$$
. (C.6) {eq:volWfinal}

Proof The uniqueness of the extension is clear as long as it exists. Moreover, (C.6) follows easily from Theorem C.2.1 and Theorem C.1.2 by continuity. It remains to argue the existence of the continuous extension. We first construct an extension and prove its continuity.

Step 1. We construct the desired map (C.5). Let $S \in \overline{S'(C)}_{>0}$. We wish to construct a convex body $\Delta(S) \in \mathcal{K}_n$.

Let $S^i \in \mathcal{S}'(C)$ be a sequence that converges to S such that

$$d_{\rm sg}(S^i, S^{i+1}) \le 2^{-i}$$
.

For each $i, j \ge 0$, we introduce

$$S^{i,j} = S^i \cap S^{i+1} \cdots \cap S^{i+j}.$$

Then by Lemma C.2.2,

$$d_{\text{sg}}(S^{i,j}, S^{i,j+1}) \le 2^{-i-j}.$$

Take $i_0 > 0$ large enough so that for $i \ge i_0$, vol $S^i > 2^{-1}$ vol S and $2^{2-i} < \text{vol } S$ and hence

$$\operatorname{vol} S^{i} - \operatorname{vol} S^{i,j} \leq d_{\operatorname{sg}}(S^{i,0},S^{i,1}) + d_{\operatorname{sg}}(S^{i,1},S^{i,2}) + \dots + d_{\operatorname{sg}}(S^{i,j-1},S^{i,j}) \leq 2^{1-i}.$$

It follows that vol $S^{i,j} > 2^{-1}$ vol $S - 2^{1-i} > 0$ whenever $i \ge i_0$. In particular, by Lemma C.2.5, $S^{i,j} \in \mathcal{S}'(C)$ for $i \ge i_0$.

By Lemma C.2.8, for $i \ge i_0$, there exists $T^i \in \mathcal{S}'(C)$ such that $S^{i,j} \to T^i$ as $j \to \infty$. Moreover,

$$d_{\rm sg}(T^i,S) = \lim_{j \to \infty} d_{\rm sg}(S^{i,j},S) \le \lim_{j \to \infty} d_{\rm sg}(S^{i,j},S^i) + d_{\rm sg}(S^i,S) \le 2^{1-i} + d_{\rm sg}(S^i,S).$$

Therefore, $T^i \to S$. We then define

$$\Delta(S) \coloneqq \overline{\bigcup_{i=i_0}^{\infty} \Delta(T^i)}.$$

In other words, we have defined

$$\Delta(S) := \underline{\lim}_{i \to \infty} \Delta(S^i).$$

(C.9)

This is an honest limit: if Δ is the limit of a subsequence of $\Delta(S^i)$, then $\Delta(S) \subseteq \Delta$ by (C.1). Comparing the volumes, we find that equality holds. So by Theorem C.1.1,

$$\Delta(S) = \lim_{i \to \infty} \Delta(S^i). \tag{C.7}$$
 {eq:deltawtemp}

Next we claim that $\Delta(S)$ as defined above does not depend on the choice of the sequence S^i . In fact, suppose that $S'^i \in S'(C)$ is another sequence satisfying the same conditions as S^i . The same holds for $R^i := S^{i+1} \cap S'^{i+1}$. It follows that

$$\lim_{i \to \infty} \Delta(R^i) \subseteq \lim_{i \to \infty} \Delta(S^i).$$

Comparing the volumes, we find that equality holds. The same is true with $S^{\prime i}$ in place of S^i . So we conclude that $\Delta(S)$ as in (C.7) does not depend on the choices we made.

Step 2. It remains to prove the continuity of Δ defined in Step 1. Suppose that $S^i \in \overline{S'(C)}_{>0}$ is a sequence with limit $S \in \overline{S'(C)}_{>0}$. We want to show that

$$\Delta(S^i) \xrightarrow{d_{\text{Haus}}} \Delta(S).$$
 (C.8) {eq:temp5}

We first reduce to the case where $S^i \in \mathcal{S}'(C)$. By (C.7), for each i, we can choose $T^i \in \mathcal{S}'(C)$ such that $d_{sg}(S^i, T^i) < 2^{-i}$ and $d_{Haus}(\Delta(S^i), \Delta(T^i)) < 2^{-i}$. If we have shown $\Delta(T^i) \xrightarrow{d_{\text{Haus}}} \Delta(S)$, then (C.8) follows immediately.

Next we reduce to the case where $d_{sg}(S^i, S^{i+1}) \leq 2^{-i}$. In fact, thanks to Theorem C.1.1, in order to prove (C.8), it suffices to show that each subsequence of $\Delta(S^i)$ admits a subsequence that converges to $\Delta(S)$. Hence, we easily reduce to the required case.

After these reductions, (C.8) is nothing but (C.7).

Remark C.2.1 As the readers can easily verify from the proof, for any $S \in \mathcal{S}'(C)_{>0}$ there is $S' \in \mathcal{S}'(C)$ such that $S \sim S'$.

Corollary C.2.2 Suppose that $S, S' \in \overline{S'(C)}_{>0}$ with $S \subseteq S'$, then

Proof Let $S^j, S'^j \in S'(C)$ be elements such that $S^j \to S, S'^j \to S'$. Then it follows from Lemma C.2.2 that $S^j \cap S'^j \to S$. Since vol is continuous, for large $j, S^j \cap S'^j$ has positive volume and hence lies in S'(C) by Lemma C.2.5. We may therefore replace S^j by $S^j \cap S'^j$ and assume that $S^j \subseteq S'^j$. Hence, (C.9) follows from the continuity of Δ proved in Theorem C.2.2.

 $\Delta(S) \subseteq \Delta(S')$.

Remark C.2.2 As the readers can easily verify, the construction of Δ is independent of the choice of C in the following sense: Suppose that C' is another cone satisfying the same assumptions as C and $C' \supseteq C$, then the Okounkov body map $\Delta \colon \mathcal{S}'(C')_{>0} \to \mathcal{K}_n$ is an extension of the corresponding map (C.5). We will constantly use this fact without further explanations.

cor:Okocomp

Index

Symbols	$PSH^{NA}(X, \theta)_{>0}$ 161
	$PSH^{NA}(X, \theta; \phi)$ 161
$B_{v,\varphi,\upsilon}^{k}$ 254	$PSH_{tor}(X, \omega)$ 85
E_{θ}^{ϕ} 55	QPSH(X) 24
$E_{\theta,K}[\varphi](v)$ 243	$\operatorname{Res}_Y I$ 23
$E_{\theta,K}[\varphi]_I(v)$ 243	$SH(\Omega)$ 4
$E_{\theta} = \frac{55}{55}$	Sing $T = 212$
F_{φ} 222	$\operatorname{Sing}_X T$ 212
$P_{\theta+\omega'}^{\varphi}[\bullet]_I$ 231	$TC(X, \theta)_{>0}$ 151
$P_{\theta+\omega}[\bullet]_I$ 233	$TC(X, \theta; \phi)$ 151
$P_{\theta,K}[\varphi](v)$ 243	$TC(\Delta)$ 202
$P_{\theta}[\Gamma]_{I}$ 161	$TC^1(X, \theta; \phi)$ 153
$P_{\theta}[\varphi]$ 46	$TC^1(\Delta)$ 202
$P_{\theta}[\varphi]_{I}$ 58	$TC^{\infty}(X, \theta; \phi)$ 153
$V_{\theta} = \frac{39}{}$	$TC^{\infty}(\Delta)$ 202
<i>Y</i> • 173	$\operatorname{Tr}_{Y}(T)$ 134
BM(K, v) 253	$\operatorname{Tr}_Y(\varphi)$ 134
Bir(X) 209	Trop 83
$DH(\Delta_{\bullet})$ 206	$\beta_{\nu,\varphi,\upsilon}^{k}$ 254
$DH(\Gamma)$ 240	$cor(Y_{\bullet}, \pi)$ 176
$\Delta(\omega,\varphi)$ 91	$\mathrm{dd^c}\varphi_1\wedge\cdots\wedge\mathrm{dd^c}\varphi_p$ 36
$\Delta(\theta, \varphi)$ 222	$\ell \vee \ell'$ 75
$\Delta_k(\theta,\varphi)$ 178	$\mathbb{D}(T)$ 212
$\Delta_{Y_{\bullet}}(T)$ 192	E 74
$\Delta_{Y_{\bullet}}(\alpha)$ 191	$\mathbf{E}(\Delta_{\bullet})$ 202
$\Delta_{\nu}(L)$ 180	\mathbf{E}^{ϕ} 74, 153
$\Delta_{\nu}(L,h)$ 181	$\mathcal{E}(X,\theta;\phi)$ 54
$\Delta_{k,T}(L)$ 179	$\mathcal{E}^1(X,\theta;\phi)$ 54
$\Delta_{k,T}(\theta,\varphi)$ 179	$\mathcal{E}^{\infty}(X,\theta;\phi)$ 54
$\Gamma(\theta,\varphi)$ 178	$\mathcal{E}^{\theta}_{[\varphi],K}$ 249
$\Gamma^{\infty}(\theta,\varphi)$ 179	$I(\varphi)$ 21
Γ_{max} 232	$I_{\infty}(\varphi)$ 27
PSH(X) 6	$\mathcal{L}_{k,\varphi}$ 255
$PSH(X, \theta) = 24$	$\mathcal{R}(X,\theta)$ 73
$PSH(X, \theta; \phi)$ 54	$\mathcal{R}(X,\theta;\phi)$ 73
$PSH(\Omega)$ 4	$\mathcal{R}^1(X,\theta)$ 73
$PSH^{NA}(X, \theta)$ 231	$\mathcal{R}^1(X,\theta;\phi)$ 73

294 Index

$\mathcal{R}^{\infty}(X, \theta)$ 73 $\mathcal{R}^{\infty}(X, \theta; \phi)$ 73 $\mathcal{Z}_{+}(X)$ 29	P-envelope 46 relative P-envelope 243
$\mathcal{Z}_+(X,\alpha)$ 29	G
$ \begin{array}{cccc} \nu(\varphi,E) & 21 \\ \nu(\varphi,F) & 21 \\ \nu(\varphi,x) & 20 \\ \nu_{Y_{\bullet}} & 173 \\ \nu_{Y_{\bullet}}(T) & 174 \\ \sim_{I} & 57 \\ \varphi \wedge \psi & 45 \end{array} $	generic Lelong number 21 geodesic 69 subgeodesic 65 geodesic ray 73 bounded geodesic ray 73 geodesic ray with finite energy 73
$\varphi \le \psi 24$ $\varphi \le_P \psi 99$	Н
$\varphi \leq_I \psi$ 102 $\varphi \sim \psi$ 24 $\text{vol } \Gamma$ 233 $\text{vol } \mathbb{D}$ 211	Hermitian form 30 singular Hermitian form 31 Hermitian line bundle 31 Hermitian metric 31
$\operatorname{vol} \theta_{\varphi} = \frac{59}{\operatorname{vol}(\theta, \varphi)} = \frac{59}{\operatorname{vol}(\theta, \varphi)}$	I
d_S 107	I-equivalence 57 I -more singular 102
admissible flag 173	K
В	Kähler currents 29
b-divisor	L
Cartier b-divisor 209 big Cartier b-divisor 210 nef Cartier b-divisor 210 singularity b-divisor 212 Weil b-divisor 209 nef Weil b-divisor 210 pseudo-effective Weil b-divisor 210	Legendre transform 154, 203 inverse Legendre transform 203 Lelong number 19 line bundle Hermitian big line bundle 129 Hermitian pseudoeffective line bundle 129
Bernstein–Markov measure 253	M
birational model 209 C	Minkowski sum 285 Monge–Ampère energy 55 multiplier ideal sheaf 21
class big class 29	N
pseudo-effective class 29 complexification 65	Newton body 91, 222
D	Observator hadra 180 101
Duistermaat–Heckman measure 206, 240 E	Okounkov body 180, 191 partial Okounkov body 181 Okounkov test curve bounded Okounkov test curve 202 Okounkov test curve with finite energy 202
envelope	P
I-envelope 58, 161 relative I -envelope 243	P-more singular 99

Index 295

P-singularity type 99	S
partial Bergman kernels 253	
partial Bergman measures 254	set
partial Donaldson functional 255	co-pluripolar set 7
partial equilibrium energy 249	non-pluripolar set 7
partial Okounkov body 192	pluripolar set 7
plurifine topology 13, 18	singularities
plurisubharmonic function 4,6	analytic singularities 25
quasi-plurisubharmonic function 24	gentle analytic singularities 27
plurisubharmonic metric 32	neat analytic singularities 25
polar locus 30	log singularities 26
positive currents 29	singularity divisor 211
potential	singularity type 29
I-good potential 124	smooth flag 174
I-model potential 58	subharmonic function 3
model potential 47	
potential with finite energy 55	T
potential with full mass 55	
potential with minimal singularities 55	test curve 151
potential with relative finite energy 54	bounded test curve 153
potential with relative full mass 54	I-model test curve 161
potential with relatively minimal singularities	Okounkov test curve 202
54	test curve with finite energy 153
product	test function 203
Bedford–Taylor product 36	bounded test function 203
non-pluripolar product 37, 38	test function with finite energy 203
	thin subset 14
Q	trace operator 134
quasi-equisingular approximation 27	V
1 1 0 11	
R	valuation 174
	volume 59, 211, 233
radial Monge–Ampère energy 74	•
real Monge–Ampère measure 274	W
restriction ideal 23	
rooftop operator 45	weighted subset 253

BB10	BB10.	Robert Berman and Sébastien Boucksom. Growth of balls of holomorphic sections
DDIO	DD 10.	and energy at equilibrium. <i>Invent. Math.</i> , 181(2):337–394, 2010.
BB13	BB13.	Robert J. Berman and Bo Berndtsson. Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. <i>Ann. Fac. Sci. Toulouse Math.</i> (6), 22(4):649–711, 2013.
BBGHdJ21	BBGHdJ21.	A. Botero, J. I. Burgos Gil, D. Holmes, and R. de Jong. Chern–Weil and Hilbert–Samuel formulae for singular hermitian line bundles, 2021.
BBGHdJ22	BBGHdJ22.	A. Botero, J. I. Burgos Gil, D. Holmes, and R. de Jong. Rings of Siegel–Jacobi forms of bounded relative index are not finitely generated, 2022.
ВВЈ21	BBJ21.	Robert J. Berman, Sébastien Boucksom, and Mattias Jonsson. A variational approach to the Yau-Tian-Donaldson conjecture. <i>J. Amer. Math. Soc.</i> , 34(3):605–652, 2021.
BBWN11	BBWN11.	Robert Berman, Sébastien Boucksom, and David Witt Nyström. Fekete points and convergence towards equilibrium measures on complex manifolds. <i>Acta Math.</i> ,
BDPP13	BDPP13.	207(1):1–27, 2011. Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira
BEGZ10	BEGZ10.	dimension. <i>J. Algebraic Geom.</i> , 22(2):201–248, 2013. Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi. Monge-Ampère equations in big cohomology classes. <i>Acta Math.</i> , 205(2):199–262, 2010.
Ber11	Ber09.	Robert J. Berman. Bergman kernels and equilibrium measures for line bundles over projective manifolds. <i>Amer. J. Math.</i> , 131(5):1485–1524, 2009.
Ber14	Ber14.	Robert J. Berman. Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. <i>Comm. Math. Phys.</i> , 327(1):1–47, 2014.
BFJ08	BFJ08.	Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Valuations and plurisubharmonic singularities. <i>Publ. Res. Inst. Math. Sci.</i> , 44(2):449–494, 2008.
BFJ09	BFJ09.	Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Differentiability of volumes of divisors and a problem of Teissier. <i>J. Algebraic Geom.</i> , 18(2):279–308, 2009.
BGL24	BGL24.	Sébastien Boucksom, Vincent Guedj, and Chinh H. Lu. Volumes of Bott-Chern classes, 2024.
BGPS14	BGPS14.	José Ignacio Burgos Gil, Patrice Philippon, and Martín Sombra. Arithmetic geometry of toric varieties, Metrics, measures and heights, <i>Astérisque</i> , pages vi+222, 2014.
BM97	BM97.	Edward Bierstone and Pierre D. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. <i>Invent. Math.</i> , 128(2):207–302, 1997.
Bon98	Bon98.	Laurent Bonavero. Inégalités de morse holomorphes singulières. <i>J. Geom. Anal.</i> , 8(3):409–425, 1998.
Bou02	Bou02a.	S. Boucksom. <i>Cônes positifs des variétés complexes compactes</i> . PhD thesis, Université Joseph-Fourier-Grenoble I, 2002.

Bou02b	Bou02b.	Sébastien Boucksom. On the volume of a line bundle. <i>Internat. J. Math.</i> , 13(10):1043–1063, 2002.
Bou17	Bou17.	Sébastien Boucksom. Singularities of plurisubharmonic functions and multiplier ideals. http://sebastien.boucksom.perso.math.cnrs.fr/notes/L2.pdf, 2017.
Bre65	Bre65.	Marcel Brelot. Éléments de la théorie classique du potentiel. "Les cours de Sorbonne", 3e cycle. Centre de Documentation Universitaire, Paris, 1965. 3e édition.
Bre72	Bre72.	Marcel Brelot. Les étapes et les aspects multiples de la théorie du potentiel. <i>Enseign. Math.</i> (2), 18:1–36, 1972.
BT76	BT76.	Eric Bedford and B. A. Taylor. The Dirichlet problem for a complex Monge-Ampère equation. <i>Invent. Math.</i> , 37(1):1–44, 1976.
BT82	BT82.	Eric Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. <i>Acta Math.</i> , 149(1-2):1–40, 1982.
BT87	BT87.	Eric Bedford and B. A. Taylor. Fine topology, Šilov boundary, and $(dd^c)^n$. J. Funct. Anal., 72(2):225–251, 1987.
Cao14	Cao14.	Junyan Cao. Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds. <i>Compos. Math.</i> , 150(11):1869–1902, 2014.
Car83	Car83.	Lennart Carleson. Selected problems on exceptional sets. In <i>Selected reprints</i> , Wadsworth Math. Ser., pages iv+100. Wadsworth, Belmont, CA, 1983.
CDG03	CDG03.	David M. J. Calderbank, Liana David, and Paul Gauduchon. The Guillemin formula and Kähler metrics on toric symplectic manifolds. <i>J. Symplectic Geom.</i> , 1(4):767–784, 2003.
CDM17	CDM17.	JunYan Cao, Jean-Pierre Demailly, and Shin-ichi Matsumura. A general extension theorem for cohomology classes on non reduced analytic subspaces. <i>Sci. China Math.</i> , 60(6):949–962, 2017.
CFKLRS17	CFK ⁺ 17.	Ciro Ciliberto, Michal Farnik, Alex Küronya, Victor Lozovanu, Joaquim Roé, and Constantin Shramov. Newton-Okounkov bodies sprouting on the valuative tree. <i>Rend.</i>
CGSZ19	CGSZ19.	Circ. Mat. Palermo (2), 66(2):161–194, 2017. Dan Coman, Vincent Guedj, Sibel Sahin, and Ahmed Zeriahi. Toric pluripotential theory. Ann. Polon. Math., 123(1):215–242, 2019.
CLS11	CLS11.	David A. Cox, John B. Little, and Henry K. Schenck. <i>Toric varieties</i> , volume 124 of <i>Graduate Studies in Mathematics</i> . American Mathematical Society, Providence, RI,
Da17	Dar17.	2011. Tamás Darvas. Weak geodesic rays in the space of Kähler potentials and the class $\mathcal{E}(X,\omega)$. <i>J. Inst. Math. Jussieu</i> , 16(4):837–858, 2017.
DDNL18big	DDNL18a.	Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. L^1 metric geometry of big cohomology classes. <i>Ann. Inst. Fourier (Grenoble)</i> , 68(7):3053–3086, 2018.
DDNL18mono	DDNL18b.	Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity. <i>Anal. PDE</i> , 11(8):2049–2087, 2018.
DDNL18fullmass	DDNL18c.	Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. On the singularity type of full mass currents in big cohomology classes. <i>Compos. Math.</i> , 154(2):380–409, 2018.
DDNL19log	DDNL21a.	Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity. <i>Math. Ann.</i> , 379(1-2):95–132, 2021.
DDNLmetric	DDNL21b.	Tamás Darvas, Eleonora Di Nezza, and Hoang-Chinh Lu. The metric geometry of singularity types. <i>J. Reine Angew. Math.</i> , 771:137–170, 2021.
DDNLsurv	DDNL23.	Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. Relative pluripotential theory on compact kähler manifolds, 2023.
Dem85	Dem85.	Jean-Pierre Demailly. Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. <i>Mém. Soc. Math. France (N.S.)</i> , page 124, 1985.
Dem12	Dem12a.	Jean-Pierre Demailly. <i>Analytic methods in algebraic geometry</i> , volume 1 of <i>Surveys of Modern Mathematics</i> . International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
DemBook	Dem12b.	Jean-Pierre Demailly. Complex analytic and differential geometry, 2012. Available on personal website, link.

Dem15	Dem15.	Jean-Pierre Demailly. On the cohomology of pseudoeffective line bundles. In <i>Complex geometry and dynamics</i> , volume 10 of <i>Abel Symp.</i> , pages 51–99. Springer, Cham,
Deng17	Den17.	2015. Ya Deng. Transcendental Morse inequality and generalized Okounkov bodies. <i>Algebr.</i>
DEGA	DE22	Geom., 4(2):177–202, 2017.
DF20	DF22.	Nguyen-Bac Dang and Charles Favre. Intersection theory of nef <i>b</i> -divisor classes. <i>Compos. Math.</i> , 158(7):1563–1594, 2022.
EGAIV-2	DG65.	Jean Dieudonné and Alexendre Grothendieck. Éléments de géométrie algébrique: IV.
		Étude locale des schémas et des morphismes de schémas, Seconde partie, volume 24.
		Institut des hautes études scientifiques, 1965.
DNT19	DNT21.	Eleonora Di Nezza and Stefano Trapani. Monge-Ampère measures on contact sets.
DDC01	DDC01	Math. Res. Lett., 28(5):1337–1352, 2021.
DPS01	DPS01.	Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Pseudo-effective line bundles on compact Kähler manifolds. <i>Internat. J. Math.</i> , 12(6):689–741, 2001.
DR22	DR22.	Ruadhai Dervan and Rémi Reboulet. Ding stability and Kähler–Einstein metrics on
DILLL	DRZZ.	manifolds with big anticanonical class, 2022.
DRWNXZ	DRWN+23.	Tamás Darvas, Rémi Reboulet, David Witt Nyström, Mingchen Xia, and Kewei Zhang.
		Transcendental okounkov bodies, 2023.
DS04	DS04.	Tien-Cuong Dinh and Nessim Sibony. Regularization of currents and entropy. <i>Ann.</i>
DCAC	DC06	Sci. École Norm. Sup. (4), 37(6):959–971, 2004.
DS06	DS06.	Tien-Cuong Dinh and Nessim Sibony. Distribution des valeurs de transformations méromorphes et applications. <i>Comment. Math. Helv.</i> , 81(1):221–258, 2006.
DX21	DX21.	Tamás Darvas and Mingchen Xia. The volume of pseudoeffective line bundles and
		partial equilibrium. Geometry & Topology (to appear), 2021.
DX22	DX22.	Tamás Darvas and Mingchen Xia. The closures of test configurations and algebraic
		singularity types. Adv. Math., 397:Paper No. 108198, 56, 2022.
DX24	DX24.	Tamás Darvas and Mingchen Xia. The trace operator of quasi-plurisubharmonic
DXZ23	DXZ23.	functions on compact Kähler manifolds, 2024. Tamás Darvs, Mingchen Xia, and Kewei Zhang. A transcendental approach to
DALLS	DALLS.	non-Archimedean metrics of pseudoeffective classes. Commentarii Mathematici
		Helvetici(to appear), 2023.
DZ22	DZ22.	T. Darvas and K. Zhang. Twisted kähler–einstein metrics in big classes, 2022.
ELMNP05	ELM+05.	Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea
		Popa. Asymptotic invariants of line bundles. <i>Pure Appl. Math. Q.</i> , 1(2):379–403,
EMSW06	EMW06.	2005. Said El Marzguioui and Jan Wiegerinck. The pluri-fine topology is locally connected.
LIISWGO	LIVI VV OO.	Potential Anal., 25(3):283–288, 2006.
Fig17	Fig17.	Alessio Figalli. The Monge-Ampère equation and its applications. Zurich Lectures in
		Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017.
Fin22	Fin22.	Siarhei Finski. On the metric structure of section ring, 2022.
FK18	FK18.	Kazuhiro Fujiwara and Fumiharu Kato. Foundations of rigid geometry. I. EMS
FM21	FM21.	Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2018. Osamu Fujino and Shin-ichi Matsumura. Injectivity theorem for pseudo-effective line
11121	11/121.	bundles and its applications. <i>Trans. Amer. Math. Soc. Ser. B</i> , 8:849–884, 2021.
FN80	FsN80.	John Erik Fornæ ss and Raghavan Narasimhan. The Levi problem on complex spaces
		with singularities. Math. Ann., 248(1):47–72, 1980.
Fuj23	Fuj23.	Osamu Fujino. Relative Bertini type theorem for multiplier ideal sheaves. <i>Osaka J.</i>
CTT 1 A	CHO4	Math., 60(1):207–226, 2023. Phillip Griffiths and Joseph Harris, Principles of alcohoris accompany, Wiley Classics.
GH14	GH94.	Phillip Griffiths and Joseph Harris. <i>Principles of algebraic geometry</i> . Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.
GK20	GK20.	Patrick Graf and Tim Kirschner. Finite quotients of three-dimensional complex tori.
		Ann. Inst. Fourier (Grenoble), 70(2):881–914, 2020.
GR56	GR56.	Hans Grauert and Reinhold Remmert. Plurisubharmonische Funktionen in komplexen
		Räumen. <i>Math. Z.</i> , 65:175–194, 1956.

CAS	GR84.	Hans Grauert and Reinhold Remmert. Coherent analytic sheaves, volume 265
		of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1984.
SHC6	Gro60.	Alexander Grothendieck. Techniques de construction en géométrie analytique. VI.
Direc	Grooo.	étude locale des morphismes: germes d'espaces analytiques, platitude, morphismes
		simples. Séminaire Henri Cartan, 13(1):1–13, 1960.
Gui94	Gui94.	Victor Guillemin. Kaehler structures on toric varieties. J. Differential Geom.,
		40(2):285–309, 1994.
GZ05	GZ05.	Vincent Guedj and Ahmed Zeriahi. Intrinsic capacities on compact Kähler manifolds. <i>J. Geom. Anal.</i> , 15(4):607–639, 2005.
GZ07	GZ07.	Vincent Guedj and Ahmed Zeriahi. The weighted Monge-Ampère energy of quasi-
0207	0207.	plurisubharmonic functions. J. Funct. Anal., 250(2):442–482, 2007.
GZ15	GZ15.	Qi'an Guan and Xiangyu Zhou. Effectiveness of Demailly's strong openness conjecture
		and related problems. <i>Invent. Math.</i> , 202(2):635–676, 2015.
GZ17	GZ17.	Vincent Guedj and Ahmed Zeriahi. Degenerate complex Monge-Ampère equations,
		volume 26 of EMS Tracts in Mathematics. European Mathematical Society (EMS),
		Zürich, 2017.
Har	Har77.	Robin Hartshorne. Algebraic geometry, volume No. 52 of Graduate Texts in Mathe-
TT-1 1 4	II: 14	matics. Springer-Verlag, New York-Heidelberg, 1977.
Hiep14	Hie14.	Pham Hoang Hiep. The weighted log canonical threshold. C. R. Math. Acad. Sci.
Hir75	Hir75.	Paris, 352(4):283–288, 2014. Heisuke Hironaka. Flattening theorem in complex-analytic geometry. Amer. J. Math.,
1111 7 3	1111/5.	97:503–547, 1975.
His12	His12.	Tomoyuki Hisamoto. Restricted Bergman kernel asymptotics. Trans. Amer. Math.
		Soc., 364(7):3585–3607, 2012.
HK76	HK76.	W. K. Hayman and P. B. Kennedy. Subharmonic functions. Vol. I, volume No. 9
		of London Mathematical Society Monographs. Academic Press [Harcourt Brace
		Jovanovich, Publishers], London-New York, 1976.
HPS18	HPS18.	C. Hacon, M. Popa, and C. Schnell. Algebraic fiber spaces over abelian varieties: around
		a recent theorem by Cao and Păun. In Local and global methods in algebraic geometry,
		volume 712 of <i>Contemp. Math.</i> , pages 143–195. Amer. Math. Soc., [Providence], RI, 2018.
HTW23	HTW23.	Yan He, Johannes Testorf, and Xu Wang. Ross–Witt Nyström correspondence and
***************************************	111 (, 20,	Ohsawa—Takegoshi extension, 2023.
Ino22	Ino22.	Eiji Inoue. Entropies in μ -framework of canonical metrics and K-stability, II –
		Non-archimedean aspect: non-archimedean μ -entropy and μ K-semistability, 2022.
Jow10	Jow10.	Shin-Yao Jow. Okounkov bodies and restricted volumes along very general curves.
		Adv. Math., 223(4):1356–1371, 2010.
Kho92	Kho92.	A. G. Khovanskii. The Newton polytope, the Hilbert polynomial and sums of finite
TZ 1 E	IZ: 1.5	sets. Funktsional. Anal. i Prilozhen., 26(4):57–63, 96, 1992.
Kim15	Kim15.	Dano Kim. Equivalence of plurisubharmonic singularities and Siu-type metrics. <i>Monatsh. Math.</i> , 178(1):85–95, 2015.
Kis78	Kis78.	Christer O. Kiselman. The partial Legendre transformation for plurisubharmonic
1(1570	11370.	functions. Invent. Math., 49(2):137–148, 1978.
KK12	KK12.	Kiumars Kaveh and A. G. Khovanskii. Newton-Okounkov bodies, semigroups of
		integral points, graded algebras and intersection theory. Ann. of Math. (2), 176(2):925–
		978, 2012.
K191	Kli91.	Maciej Klimek. Pluripotential theory, volume 6 of London Mathematical Society
		Monographs. New Series. The Clarendon Press, Oxford University Press, New York,
		1991. Oxford Science Publications.
Lel45	Lel45.	Pierre Lelong. Les fonctions plurisousharmoniques. Ann. Sci. École Norm. Sup. (3),
T MOO	I M00	62:301–338, 1945.
LM09	LM09.	Robert Lazarsfeld and Mircea Mustață. Convex bodies associated to linear series. <i>Ann. Sci. Éc. Norm. Supér.</i> (4). 42(5):783–835, 2009

Sci. Éc. Norm. Supér. (4), 42(5):783–835, 2009.

77	3.5 .00	
Mat89	Mat89.	Hideyuki Matsumura. <i>Commutative ring theory</i> , volume 8 of <i>Cambridge Studies in Advanced Mathematics</i> . Cambridge University Press, Cambridge, second edition, 1989.
		Translated from the Japanese by M. Reid.
MM07	MM07.	Xiaonan Ma and George Marinescu. Holomorphic Morse inequalities and Bergman
		kernels, volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
MZ23	MZ23.	Xiankui Meng and Xiangyu Zhou. On the restriction formula. J. Geom. Anal.,
		33(12):Paper No. 369, 30, 2023.
PT18	PT18.	Mihai Păun and Shigeharu Takayama. Positivity of twisted relative pluricanonical
Rau15	Rau15.	bundles and their direct images. <i>J. Algebraic Geom.</i> , 27(2):211–272, 2018. Hossein Raufi. Singular hermitian metrics on holomorphic vector bundles. <i>Ark. Mat.</i> ,
Radis	Rau13.	53(2):359–382, 2015.
Rie26	Rie26.	Frédéric Riesz. Sur les Fonctions Subharmoniques et Leur Rapport à la Théorie du
		Potentiel. Acta Math., 48(3-4):329–343, 1926.
Roc70	Roc70.	R. Tyrrell Rockafellar. <i>Convex analysis</i> . Princeton Mathematical Series, No. 28.
7005	D.CO.F	Princeton University Press, Princeton, N.J., 1970.
RS05	RS05.	Alexander Rashkovskii and Ragnar Sigurdsson. Green functions with singularities along complex spaces. <i>Internat. J. Math.</i> , 16(4):333–355, 2005.
RWN14	RWN14.	Julius Ross and David Witt Nyström. Analytic test configurations and geodesic rays. J.
241112.2	10001011	Symplectic Geom., 12(1):125–169, 2014.
Sch14	Sch93.	Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclo-
		pedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
0: 74	G: 7 4	1993.
Siu74	Siu74.	Yum Tong Siu. Analyticity of sets associated to Lelong numbers and the extension of
Tru22	Tru22.	closed positive currents. <i>Invent. Math.</i> , 27:53–156, 1974. Antonio Trusiani. Kähler-Einstein metrics with prescribed singularities on Fano
11022	11422.	manifolds. J. Reine Angew. Math., 793:1–57, 2022.
Tru23	Tru23.	Antonio Trusiani. A relative Yau-Tian-Donaldson conjecture and stability thresholds,
		2023.
Vu19	Vu19.	Duc-Viet Vu. Locally pluripolar sets are pluripolar. <i>Internat. J. Math.</i> , 30(13):1950029,
Vu20	Vu21.	13, 2019. Duc-Viet Vu. Relative non-pluripolar product of currents. <i>Ann. Global Anal. Geom.</i> ,
VUZU	vuzi.	60(2):269–311, 2021.
Wlo09	W lo09.	Jaros law W lodarczyk. Resolution of singularities of analytic spaces. In <i>Pro-</i>
		ceedings of Gökova Geometry-Topology Conference 2008, pages 31-63. Gökova
		Geometry/Topology Conference (GGT), Gökova, 2009.
WN 14	WN14.	David Witt Nyström. Transforming metrics on a line bundle to the Okounkov body.
Xia21	Xia21.	Ann. Sci. Éc. Norm. Supér. (4), 47(6):1111–1161, 2014. Mingchen Xia. Partial Okounkov bodies and Duistermaat–Heckman measures of
AIAZI	Alazi.	non-Archimedean metrics. Geometry&Topology (to appear), 2021.
XiaBer	Xia22a.	Mingchen Xia. Analytic Bertini theorem. <i>Math. Z.</i> , 302(2):1171–1176, 2022.
Xia22	Xia22b.	Mingchen Xia. Non-pluripolar products on vector bundles and Chern-Weil formulae.
**! 00 1	TT: 00	Math. Ann., 2022.
Xia23Mabuchi	Xia23a.	Mingchen Xia. Mabuchi geometry of big cohomology classes. <i>J. Reine Angew. Math.</i> ,
Xia230perations	Xia23b.	798:261–292, 2023. Mingchen Xia. Operations on transcendental non-Archimedean metrics, 2023.
XiaPPT	Xia23c.	Mingchen Xia. Pluripotential-theoretic stability thresholds. <i>Int. Math. Res. Not. IMRN</i> ,
		pages 12324–12382, 2023.