Correction du Travaux Dirigés N°2 Représentation de l'information

Exercice Complémentaire : (Conversions)

Ecrire les nombres suivants dans les bases 2, 8, 10 et 16 :

 $7F_{(16)}$ 11000001(2) 1000001(2) 13(10) 755(8) 11000000110111110(2)

Correction:

1111111(2)	177(8)	127(10)	$7F_{(16)}$
11000001(2)	301(8)	193(10)	$C1_{(16)}$
1000001(2)	101(8)	65(10)	41(16)
1101(2)	15(8)	13(10)	0D(16)
111101101(2)	755(8)	493(10)	$1ED_{(16)}$
1100000011011110(2)	140336(8)	49374(10)	$C0DE_{(16)}$

Exercice N° 1:

Exprimez le nombre décimal 100 dans les bases de 2 à 9 et en hexadécimal

Correction:

Base 2	1100100
Base 3	10201
Base 4	1210
Base 5	400
Base 6	244
Base 7	202
Base 8	144
Base 9	121
Base 16	64

Exercice N° 2:

Multiplier 10011011 et 11001101 en binaire.

Correction:

Exercice N° 3:

Convertir le nombre décimal 8,625 en virgule flottante suivant la norme IEEE 754

Correction:

• Conversion de 8,625 en binaire : $8,625 \Rightarrow 1000,101$ car

o Partie entière : 8 => 1000

o Partie décimale : 0,625 => 0,101

• Normalisation : $1000,101 = 1000,101 \times 2^0 = 0,1000101 \times 2^4$

Architecture Des Ordinateurs

- Normalisation IEEE 754 : $1000,101 = 1,0001010 \times 2^3$ (de la forme 1,xxxx où xxx = pseudo mantisse)
- Décomposition du nombre en ses divers éléments :
 - o Bit de signe : $\mathbf{0}$ (Nombre >0)
 - \circ Exposant sur 8 bits biaisé à 127 => 3 + 127 = 130 => 10000010
 - o Pseudo mantisse sur 23 bits : **000 101**0 00000000 00000000

Signe	Exposant biaisé	Pseudo mantisse						
0	100 0001 0	$000\ 1010\ 0000\ 0000\ 0000\ 0000$						

Exercice N° 4:

Donnez la traduction à laquelle correspond le mot de 4 octets codé en hexadécimal suivant : 49 55 50 31, selon qu'on le lit comme :

- un entier signé,
- un entier représenté en complément à 2,
- un nombre représenté en virgule flottante simple précision suivant la norme IEEE 754,
- une suite de caractères ASCII (représentés chacun sur 8 bits, le bit de plus fort poids étant inutilisé et codé à 0)

Correction:

Hexadécimal		4	9	5		5	5	0	3	1		
Binaire	0	100	1001	0 1	01	0101	0101	0000	0011	0001		
Entier signé	+	1 230	0 327 8	5 7								
Complément à 2	+	1 230 327 857										
	0	100	1001	0	101	0101	0101	0000	0011	0001		
	+	Exp b	iaisé : 1	46	Pseudo mantisse: 101 0101 0101 000 0011 0001							
IEEE 774		Exp:	146 - 1	27 = 19	Mantisse: 1, 101 0101 0101 0000 0011 0001							
		+ 1, 101 0101 0101 0000 0011 0001 x 2 ¹⁹										
$+ 1101 \ 0101 \ 0101 \ 0000 \ 0011, \ 0001 \ x \ 2^0 \implies 873 \ 731, \ 0625$												
ASCII		I			U		P		1			

Exercice N° 5:

Soient les 2 nombres codés suivant la norme IEEE 754 et représentés en hexadécimal : 3EE00000 et 3D800000

Calculez en la somme et donnez le résultat sous forme IEEE 754 et sous forme décimale. Même question avec les nombres : C8 80 00 00 et C8 00 00 00.

Correction:

Somme de 3EE00000 et 3D800000

Hexadécimal		3 E		E	E 0		0	0	0	
Binaire	0	011	1110	1	110	0000	0000	0000	0000	0000
IEEE 774	+ Exp biaisé : 125 Pseudo mantisse : 110 0000 0000 0000 0000 0000 Exp : 125–127 = -2 Mantisse : 1, 110 0000 0000 0000 0000 0000									
	+ 1, 110 x 2 ⁻² (=> 0,4375 en décimal)									

Hexadécimal		3 D			8	0	0	0	0	0
Binaire	0	011 1101 1		000	0000	0000	0000	0000	0000	
IEEE 774	Exp biaisé : 123 Pseudo mantisse : 000 0000 0000 0000 0000 0000 Pseudo mantisse : 1, 000 0000 0000 0000 0000 0000 0000									
	+ 1,0 x 2 ⁻⁴ (=> 0,0625 en décimal)									

Architecture Des Ordinateurs

$$\overline{(1,110 \times 2^{-2}) + (1,0 \times 2^{-4})} = (1,110 \times 2^{-2}) + (0,010 \times 2^{-2})
= (1,110 + 0,010) \times 2^{-2} = 10,0 \times 2^{-2} = 1,0 \times 2^{-1}$$

	$+1,0 \times 2^{-1}$ (=> 0, 5 en décimal)									
IEEE 774	+	Exp : = -	Exp: $= -1$ Mantisse: 1, 0							
	•	Biaisé :- 1	1+127 =	126 Ps	Pseudo mantisse: 000 0000 0000 0000 0000 0000					
Binaire	0	011	1111	0 00	0000	0000	0000	0000	0000	
Hexadécimal		3 F 0 0 0 0 0 0								

Somme de C8 80 00 00 et C8 00 00 00

Hexadécimal	С		8	8		0	0	0	0	0
Binaire	1	100	00 1000 1			0000	0000	0000	0000	0000
	_ Exp biaisé : 145								000 0000 0000	
IEEE 774 Exp: 145 – 127 = 18 Mantisse: 1,000 0000 0000 0000 0000							000 0000			
	-1,0 x 2 ¹⁸ (-262 144 en décimal)									

Hexadécimal		С	8		0	0	0	0	0	0
Binaire	1	100	1000	0	000	0000	0000	0000	0000	0000
IEEE 774	Exp biaisé : 1442 Pseudo mantisse : 000 0000 0000 0000 0000 0000									
			-1,0	x 2 ¹	⁷ (- 131	072en d	lécimal))		

$$(-1,.0 \times 2^{18}) + (-1,0 \times 2^{17}) = (-1,.0 \times 2^{18}) + (-0,1 \times 2^{18}) = -1,1 \times 2^{18}$$

			- 1,10	$\times 2^{18}$	en dé	écimal)				
IEEE 774	_	Exposant = 18			Mantisse : 1, 10					
		Biaisé: 18 + 127= 145			Pseudo mantisse : 100 0000 0000 0000 0000 0000					
	1	100	1000	1	100	0000	0000	0000	0000	0000
Hexadécimal		C 8 (3	0	0	0	0	0

Exercice N° 6:

Convertissez les quantités suivantes en valeurs IEEE à virgule flottante simple précision :

$$A = 128$$
 $B = -32.75$ $C = 18.125$

Correction:

Exercice N° 7:

Quelles valeurs sont représentées par les nombres IEEE à virgule flottante en simple précision présentés ci-après:

Correction:

A = -0.046875

 $B = 1.539 \times 10^{13}$

C = -30.0

Exercice N° 9:

Supposez un ordinateur 11 bits avec les nombres réels représentés selon le format suivant, avec l'exposant biaisé:

Pour les valeurs 45.125 et –12.0625 donnez:

- a. la représentation de chaque opérande
- b. l'erreur de la représentation

Correction:

45.125 = 0'1100'011010 erreur = 0.125-12.0625 = 1'1010'100000 erreur = 0.0625