

AD-A041 255 COLD REGIONS RESEARCH AND ENGINEERING LAB HANOVER N H F/G 13/2
EVALUATION OF STABILITY OF EARTH-FILL DAM BASED ON STRENGTH OF --ETC(U)
JUL 77 G I KUZNETSOV

UNCLASSIFIED

CRREL-TL-628

NL

| OF |
AD
A041255

END
DATE
FILMED
7-77

TL 628

Draft Translation 628

July 1977

(12)

ADA 041255

EVALUATION OF
STABILITY OF EARTH-FILL DAM BASED ON
STRENGTH OF FROZEN ZONES OF ITS PROFILE

G. I. Kuznetsov

AD NO.
DDC FILE COPY

CORPS OF ENGINEERS, U.S. ARMY
COLD REGIONS RESEARCH AND ENGINEERING LABORATORY
HANOVER, NEW HAMPSHIRE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE
JAN 73

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(14)

CRREL-7L-628

DRAFT TRANSLATION 628

(6)

ENGLISH TITLE: EVALUATION OF STABILITY OF EARTH-FILL DAM BASED ON
STRENGTH OF FROZEN ZONES OF ITS PROFILE

(10)

AUTHOR: G.I. Kuznetsov

(11) Jul 77

(12) 8p.

SOURCE: No source, p.182-187.

Translated by Office of the Assistant Chief of Staff for Intelligence for
U.S. Army Cold Regions Research and Engineering Laboratory, 1977, 5p.

NOTICE

The contents of this publication have been translated as presented in the original text. No attempt has been made to verify the accuracy of any statement contained herein. This translation is published with a minimum of copy editing and graphics preparation in order to expedite the dissemination of information. Requests for additional copies of this document should be addressed to the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.

037100

113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128
129	130	131	132	133	134	135	136
137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152
153	154	155	156	157	158	159	160
161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176
177	178	179	180	181	182	183	184
185	186	187	188	189	190	191	192
193	194	195	196	197	198	199	200
201	202	203	204	205	206	207	208
209	210	211	212	213	214	215	216
217	218	219	220	221	222	223	224
225	226	227	228	229	230	231	232
233	234	235	236	237	238	239	240
241	242	243	244	245	246	247	248
249	250	251	252	253	254	255	256
257	258	259	260	261	262	263	264
265	266	267	268	269	270	271	272
273	274	275	276	277	278	279	280
281	282	283	284	285	286	287	288
289	290	291	292	293	294	295	296
297	298	299	300	301	302	303	304
305	306	307	308	309	310	311	312
313	314	315	316	317	318	319	320
321	322	323	324	325	326	327	328
329	330	331	332	333	334	335	336
337	338	339	340	341	342	343	344
345	346	347	348	349	350	351	352
353	354	355	356	357	358	359	360
361	362	363	364	365	366	367	368
369	370	371	372	373	374	375	376
377	378	379	380	381	382	383	384
385	386	387	388	389	390	391	392
393	394	395	396	397	398	399	400
401	402	403	404	405	406	407	408
409	410	411	412	413	414	415	416
417	418	419	420	421	422	423	424
425	426	427	428	429	430	431	432
433	434	435	436	437	438	439	440
441	442	443	444	445	446	447	448
449	450	451	452	453	454	455	456
457	458	459	460	461	462	463	464
465	466	467	468	469	470	471	472
473	474	475	476	477	478	479	480
481	482	483	484	485	486	487	488
489	490	491	492	493	494	495	496
497	498	499	500	501	502	503	504
505	506	507	508	509	510	511	512
513	514	515	516	517	518	519	520
521	522	523	524	525	526	527	528
529	530	531	532	533	534	535	536
537	538	539	540	541	542	543	544
545	546	547	548	549	550	551	552
553	554	555	556	557	558	559	560
561	562	563	564	565	566	567	568
569	570	571	572	573	574	575	576
577	578	579	580	581	582	583	584
585	586	587	588	589	590	591	592
593	594	595	596	597	598	599	600
601	602	603	604	605	606	607	608
609	610	611	612	613	614	615	616
617	618	619	620	621	622	623	624
625	626	627	628	629	630	631	632
633	634	635	636	637	638	639	640
641	642	643	644	645	646	647	648
649	650	651	652	653	654	655	656
657	658	659	660	661	662	663	664
665	666	667	668	669	670	671	672
673	674	675	676	677	678	679	680
681	682	683	684	685	686	687	688
689	690	691	692	693	694	695	696
697	698	699	700	701	702	703	704
705	706	707	708	709	710	711	712
713	714	715	716	717	718	719	720
721	722	723	724	725	726	727	728
729	730	731	732	733	734	735	736
737	738	739	740	741	742	743	744
745	746	747	748	749	750	751	752
753	754	755	756	757	758	759	760
761	762	763	764	765	766	767	768
769	770	771	772	773	774	775	776
777	778	779	780	781	782	783	784
785	786	787	788	789	790	791	792
793	794	795	796	797	798	799	800
801	802	803	804	805	806	807	808
809	810	811	812	813	814	815	816
817	818	819	820	821	822	823	824
825	826	827	828	829	830	831	832
833	834	835	836	837	838	839	840
841	842	843	844	845	846	847	848
849	850	851	852	853	854	855	856
857	858	859	860	861	862	863	864
865	866	867	868	869	870	871	872
873	874	875	876	877	878	879	880
881	882	883	884	885	886	887	888
889	890	891	892	893	894	895	896
897	898	899	900	901	902	903	904
905	906	907	908	909	910	911	912
913	914	915	916	917	918	919	920
921	922	923	924	925	926	927	928
929	930	931	932	933	934	935	936
937	938	939	940	941	942	943	944
945	946	947	948	949	950	951	952
953	954	955	956	957	958	959	960
961	962	963	964	965	966	967	968
969	970	971	972	973	974	975	976
977	978	979	980	981	982	983	984
985	986	987	988	989	990	991	992
993	994	995	996	997	998	999	1000

A

B

1. Strength of Prefrozen Core of Permafrost Plate

When planning a permafrost dam it is necessary to consider that the freezing of its lower wedge due to natural cooling of the surface of the lower slopes and the transfer of cold from the permafrost curtain may take several years (at least 3-4) if the soil is not allowed to freeze layer by layer during the filling process.

The width of the frozen core of a permafrost dam should be sufficient to ensure stability if the reservoir fills before the thrust prism is completely frozen and the core receives the total dynamic pressure on the dam. It is recommended that the total stability of an earth-fill dam with a frozen core be evaluated on the basis of the approximate plane [possibly displacement] (Figure 1) under the following simplifying assumptions:

the width of the frozen core b is constant through the height of the dam;

the thawed soil that is filled in the body of the lower prism, to the time of [possibly complete] freezing of the core to width b , retains a positive temperature in a substantial part of its volume;

thawing of the glacial permafrost soil to depth h_{fr} occurs in the base of the thaw zone of the lower prism due to [two words illegible].

The thawing ice-saturated soil of the foundation of the lower prism, which exists in the supersaturated state, exhibits [one word illegible] zero resistance to displacement;

under the influence of the heat of the reservoir, or [two words illegible] during the construction period, by the time of completion of the core [three words illegible] of the upper wedge, thawing of the [one word illegible] soil occurs to a depth h_{fr} , the angle of internal friction and the [one word illegible] of the thawing soil, due to their low [possibly values], are assumed to be equal to zero for the purposes of approximate calculation;

Figure 1. [HHT=Normal backwater level].

during [one word illegible] of the upper wedge of thawed [possibly compacted] soil, the lateral pressure of the soil on its [possibly frozen] surface [one or two words illegible] core may be assumed equal to zero, since thermal subsidence of the thawing foundation is accompanied by the formation of straining stresses and subsidence cracks at the interface between the soil of the upper wedge and the top face of the core;

above the NPG [Normal backwater level] the core does not experience lateral pressure from the frozen layer of soil on the crest;

during erection of the upper prism with permafrost soils that are structurally unstable after thawing, it is necessary to consider in the calculation the lateral pressure of the supersaturated soil mass with zero internal friction angle and adhesion;

the core may be displaced in some plane S-S under the influence of the hydrostatic pressure of water and lateral pressure of the [possibly curtain] soil of the upper prism;

the plane S-S is located at depth h_s , for which the values ϕ_{th} , C_{th} of the thawed layer h_{th} may be assumed equal to zero;

the lower thrust prism, since it has no adhesion with the base due to the equality to zero of the values ϕ_{th} , C_{th} in the contact layer of the thawing soil of the floor, from the time of its complete freezing does not contribute to the resistance to displacing forces -- the lateral pressure of the soil of the upper prism and hydrostatic pressure of water;

the resistance of the frozen soil of the core to displacement R_{dis}^H is taken in accordance with SNIP [Construction norms and regulations] P-B. 6-66 for the average calculated temperature of the permafrost wall at depth h_s .

The approximate evaluation of the resistance of the permafrost core to displacement in plane S-S, corresponding to the time of zero displacement resistance of the lower thrust prism, may be found on the basis of the following formulas:

a) for the case of the absence of lateral pressure from the soil of the upper thrust prism

[$c_g = \text{dis}$]

$$\frac{\rho}{2} > \frac{\gamma_m h_s}{2(\gamma_w h_s + R_{cg})^2} \quad (1)$$

b) for the case of the simultaneous action of hydrostatic pressure and lateral pressure from the thawing soil mass

[$\beta = w$; $\beta \beta \beta = \text{cur}$]

$$\frac{\rho}{2} > \frac{\gamma_m^2 (\gamma_{\text{cur}} + \gamma_w)}{2(\gamma_w h_s + R_{cg})^2} \quad (2)$$

where γ_m is the density of the permafrost soil of the core, kg/m^3 ; γ_w is the density of water, kg/m^3 ; h_s is the depth of the water that saturates the upper slope, m; γ_{cur} is the density of the curtain soil of the upper wedge, kg/m^3 .

2. Stability of Frozen Soil Layer on Lower Slope of Thawed Dam

During calculations of the strength of a thawed earth-fill dam it is necessary to examine the version of the failure of drainage and loss of water impermeability of antifiltration systems, when hydrostatic pressure and the pressure of the soil of the thaw zone are absorbed by the waterproof frozen layers on the lower contour of the lower thrust prism.

The resistance of the frozen soil layer of the lower slope to surfacing under the influence of the hydrostatic pressure of the water that saturates the thaw zone of the dam in the case of failure of antifiltration and drainage systems, should be estimated under the following simplifying conditions (Figure 2a, b):

the thickness of the frozen layer is assumed to be constant through the length of the slope and equal to b , in meters;

the broken profile of the slope is drawn as a straight line, inclined to the horizon at angle α ;

in the absence of through [possibly thawing] in the base of the slope and drainage tunnel in the body of the dam, filtration water does not seep onto the slope outside of the slope freezing zone and the freezing soil layer merges with the permafrost foundation soils;

hydrostatic pressure W is transmitted to the base of the permafrost layer through the entire length l and displacement (surfacing) of the mass

of frozen slope in the direction of action of force W occurs on the planes A-A and B-B. The forces of resistance to displacement are the weight of the mass P (the value P_w , the projection of force P onto the direction of action of force W , is taken into consideration in the calculation) and the resistance of the frozen soil to displacement R_{dis}^H , determined in accordance with SNIP P-B.6-66, depending on the calculated temperature of the frozen layer, averaged through thickness b . It is recommended in the calculation to use the minimum values of R_{dis}^H , corresponding to the period of maximum development of the seasonal thaw layer on the slope.

Figure 2.

For the state of ultimate equilibrium (when the [one word illegible] has a stability coefficient equal to unity), the depth of freezing, from the condition of stability of the frozen layer, for the case when hydrostatic pressure is transmitted to its base, should satisfy the condition

$$b > \frac{\gamma_m f^2}{\gamma_m h \cos \alpha + R_{dis}^H \sin \alpha}, \quad (3)$$

where γ_m is the density of the frozen soil of the slope, kg/m^3 ; R_{dis}^H is the resistance of the frozen soil to the displacement, kg/m^2 .

The [possibly weight] of [one word illegible] of the slope and [one word illegible] of the seasonal layer to depth [illegible], are not considered in the calculation.

If the depth of freezing of the upper slope, established by the [one word illegible] of the temperature mode of the dam, is less than b, determined on the basis of the recommended approximation procedure, then, to ensure the stability of the slope under conditions of inevitable, but insignificant freezing in terms of thickness, it is necessary to [one word illegible] from coarse-grain soil or rock fill.

In the presence of unfrozen natural infrared thaw under the lower wedge, or in the presence of water in the lower reach [one word illegible] base of the slope of a thawed dam, failure of internal drainage and antifiltration systems may lead to the development of [one word illegible] filtration flow and deep thawing of the base of the lower wedge (Figure 2a). In this case it is necessary, when analyzing the strength of a frozen layer, to emphasize its [one or two words illegible] with permafrost foundation soils, and the action of forces of [one word illegible] need be considered only in plane A-A.

The usual calculations of the filtration resistance of the soils in the base of a dam are carried out for the section [three letters illegible]. The [possibly dynamic] characteristics of the seepage zone of the pressure-exerting filtration flow should be determined by the [four letter abbreviation illegible] method. [One word illegible] possibility of [possibly correcting] the dynamic pressure distribution on the [possibly lower] [possibly contour] of the water-impermeable layer (section [two letters illegible] in Figure 2b).

The time required for natural freezing of the slope to depth b, sufficient for absorbing the hydrostatic pressure in accordance with the recommended calculation technique, is determined in consideration of the assumption that freezing of the "[possibly thawed]" mass of a dam during the initial period of operation is not attributed to filtration.