Exercise 1

- i) Want to show $[a,b] = \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$. We have $a-\frac{1}{n}>a,b+\frac{1}{n}< b, \forall n$. Which implies $[a,b]\subseteq (a-\frac{1}{n},b+\frac{1}{n}), \forall n$ which implies $[a,b]\subseteq \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$. Now take $x\not\in [a,b]$, consider the case x>b. As $n\to\infty,b+\frac{1}{n}\to b$. By A.P. we can say $\exists N\in\mathbb{N}$ s.t. $b+\frac{1}{N}< x$, so $x\not\in (a-\frac{1}{N},b+\frac{1}{N})$. Analogous for the case x<a. Finally $x\not\in [a,b]\Rightarrow x\not\in \cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})$ giving us $\cap_{n=1}^{\infty} (a-\frac{1}{n},b+\frac{1}{n})\subseteq [a,b]$.
- i) Want to show $(a,b) = \bigcup_{n=1}^{\infty} (a+\frac{1}{n},b-\frac{1}{n})$. We have $a+\frac{1}{n}>a, b-\frac{1}{n}< b, \forall n$. Which implies $(a+\frac{1}{n},b-\frac{1}{n})\subseteq (a,b), \forall n$ which implies $\cap_{n=1}^{\infty} (a+\frac{1}{n},b-\frac{1}{n})\subseteq (a,b)$. Now take $x\in (a,b)$. By A.P. $\exists N\in\mathbb{N} \text{ s.t. } x>(a+\frac{1}{N}), x<(b-\frac{1}{N})$. So $x\in (a+\frac{1}{N},b-\frac{1}{N})\Rightarrow x\in \bigcup_{n=1}^{\infty} (a+\frac{1}{n},b-\frac{1}{n})$, giving us $(a,b)\subseteq \bigcup_{n=1}^{\infty} (a+\frac{1}{n},b-\frac{1}{n})$.

Exercise 6

Take $\Omega = \{a, b, c\}$, $\mathbb{A} = \{\emptyset, \Omega, \{a, b\}, \{c\}\}$. Let $f : \Omega \to \mathbb{R}$ such that f(a) = f(c) = 1, f(b) = -1. Then we have that f is not measurable as, when considering $A_{\alpha} = \{x \in \Omega : f(x) < \alpha\}$, take $\alpha = 1$ then $A_{\alpha} = \{b\} \notin \mathbb{A}$. Now we have |f(a)| = |f(b)| = |f(c)| = 1, $f^2(a) = f^2(b) = f^2(c) = 1$, so for both

$$A_{\alpha} = \begin{cases} \Omega, & \alpha > 1 \\ \emptyset, & \alpha \le 1 \end{cases} \Rightarrow \forall \alpha, A_{\alpha} \in \mathbb{A}$$

Hence both |f|, f^2 are measurable.

Exercise 10

- i) Want to show $f^{-1}(\emptyset) = \emptyset$ Suppose to the contrary that $\exists x \in f^{-1}(\emptyset)$. This would imply $f(x) \in \emptyset$ which is a contradiction. Hence $f^{-1}(\emptyset)$ has no elements and thus $f^{-1}(\emptyset) = \emptyset$.
- ii) Want to show $f^{-1}(\Omega_2) = \Omega_1$ We have $f^{-1}(\Omega_2) = \{ w \in \Omega_1 : f(w) \in \Omega_2 \}$, and by the definition of f, $\forall w \in \Omega_1, f(w) \in \Omega_2$. So trivially we have $f^{-1}(\Omega_2) = \Omega_1$.
- iii) Want to show $f^{-1}E\backslash F=f^{-1}(E)\backslash f^{-1}(F).$

$$x \in f^{-1}(E \backslash F) \iff f(x) \in E \land f(x) \not\in F$$

$$\iff x \in f^{-1}(E) \land x \not\in f^{-1}(F)$$

$$\iff x \in f^{-1}(E) \backslash f^{-1}(F)$$

iv) Want to show $f^{-1}(\cup_{\alpha} E_{\alpha}) = \cup_{\alpha} f^{-1}(E_{\alpha})$

$$x \in f^{-1}(\cup_{\alpha} E_{\alpha}) \iff f(x) \in \cup_{\alpha} E_{\alpha}$$

 $\iff f(x) \in E_{\alpha_{1}} \text{ for some } \alpha_{1}$
 $\iff x \in f^{-1}(E_{\alpha_{1}})$
 $\iff x \in \cup_{\alpha} f^{-1}(E_{\alpha})$

v) Want to show $f^{-1}(\cap_{\alpha} E_{\alpha}) = \cap_{\alpha} f^{-1}(E_{\alpha})$

$$x \in f^{-1}(\cap_{\alpha} E_{\alpha}) \iff f(x) \in \cap_{\alpha} E_{\alpha}$$

$$\iff f(x) \in E_{\alpha} \quad \forall \alpha$$

$$\iff x \in f^{-1}(E_{\alpha})$$

$$\iff x \in \cap_{\alpha} f^{-1}(E_{\alpha})$$