Probabilistic Analysis & Randomized Algorithms

Probabilistic (Average-Case) Analysis and Randomized Algorithms

- Two different but similar analyses
 - Probabilistic analysis of a deterministic algorithm
 - Analysis of a Randomized algorithm
- Tools from probability theory
 - Indicator variables
 - Linearity of expectation
- Example Problems/Algorithms
 - Hiring problem (Chapter 5)
 - Biased coin
 - Sorting/Quicksort (Chapter 7)
 - Hat Check Problem
 - Online Hiring Problem

Probabilistic (Average-Case) Analysis

- Algorithm is deterministic; for a fixed input, it will run the same every time
- Analysis Technique
 - Assume a probability distribution for your inputs
 - Analyze item of interest over the distribution
- Caveats
 - Specific inputs may have much worse performance
 - If the distribution is wrong, analysis may give misleading picture

Randomized Algorithm

- "Randomize" the algorithm; for a fixed input, it will run differently depending on the result of random "coin tosses"
- Randomization examples/techniques
 - Randomize the order that candidates arrive
 - Randomly select a pivot element
 - Randomly select from a collection of deterministic algorithms
- Key points
 - Works well with high probability on every input
 - May fail on every input with low probability

Key Analysis Tools

- Indicator variables
 - Suppose we want to study random variable X that represents a composite of many random events
 - Define a collection of "indicator" variables X_i that focus on individual events; typically $X = \sum X_i$
- Linearity of expectations
 - Let X, Y, and Z be random variables s.t. X = Y + Z
 - Then E[X] = E[Y+Z] = E[Y] + E[Z]
- Recurrence Relations

Hiring Problem

- Input
 - A sequence of n candidates for a position
 - Each has a distinct quality rating that we can determine in an interview
- Algorithm
 - Current = 0;
 - For k = 1 to n
 - If candidate(k) is better than Current, hire(k) and Current = k;
- Cost:
 - Number of hires
- Worst-case cost is n

Analyze Hiring Problem

- Assume a probability distribution
 - Each of the n! permutations is equally likely
- Analyze item of interest over probability distribution
 - Define random variables
 - Let X = random variable corresponding to # of hires
 - Let X_i = "indicator variable" that ith interviewed candidate is hired
 - Value 0 if not hired, 1 if hired
 - $_{\circ} X = \sum_{i=1 \text{ to } n} X_{i}$
 - $\bullet E[X_i] = ?$
 - o Explain why:
 - $E[X] = E[\Sigma_{i=1 \text{ to } n} X_i] = \Sigma_{i=1 \text{ to } n} E[X_i] = ?$
 - o Key observation: linearity of expectations

Alternative analysis

- Analyze item of interest over probability distribution
 - Let X_i = indicator random variable that the ith best candidate is hired
 - o 0 if not hired, 1 if hired
 - Questions
 - Relationship of X to X_i?
 - \circ E[X_i] = ?
 - $\circ \ \Sigma_{i=1 \text{ to } n} E[X_i] = ?$

Questions

- What is the probability you will hire n times?
- What is the probability you will hire exactly twice?
- Biased Coin
 - Suppose you want to output 0 with probability ½ and 1 with probability ½
 - You have a coin that outputs 1 with probability p and 0 with probability 1-p for some unknown 0 < p < 1
 - Can you use this coin to output 0 and 1 fairly?
 - What is the expected running time to produce the fair output as a function of p?