第22届全国青少年信息学奥林匹克联赛

CCF-NOIP-2016

提高组(复赛) 第二试

竞赛时间: 2016年11月20日 8:30~12:00

题目名称	组合数问题	蚯蚓	愤怒的小鸟
题目类型	传统型	传统型	传统型
目录	problem	earthworm	angrybirds
可执行文件名	problem	earthworm	angrybirds
输入文件名	problem.in	earthworm.in	angrybirds.in
输出文件名	problem.out	earthworm.out	angrybirds.out
每个测试点时限	1.0秒	1.0秒	2.0秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	20	20
每个测试点分值	5	5	5

提交源程序文件名

对于C++ 语言	problem.cpp	earthworm.cpp	angrybirds.cpp
对于C 语言	problem.c	earthworm.c	angrybirds.c
对于Pascal 语言	problem.pas	earthworm.pas	angrybirds.pas

编译选项

对于C++ 语言	-lm	-lm	-lm
对于C 语言	-lm	-lm	-lm
对于Pascal 语言			

注意事项:

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 除非特殊说明,结果比较方式均为忽略行末空格及文末回车的全文比较。
- 3. C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 4. 全国统一评测时采用的机器配置为: CPU AMD Athlon(tm) II x2 240 processor, 2.8GHz, 内存4G, 上述时限以此配置为准。
- 5. 只提供Linux格式附加样例文件。
- 6. 评测在NOI Linux下进行。
- 7. 编译时不打开任何优化选项。

组合数问题 (problem)

【问题描述】

组合数 C_n^m 表示的是从 n 个物品中选出 m 个物品的方案数。举个例子,从 (1,2,3) 三个物品中选择两个物品可以有 (1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 C_n^m 的一般公式:

$$C_n^m = \frac{n!}{m!(n-m)!}$$

其中 $n! = 1 \times 2 \times \cdots \times n$ 。

小葱想知道如果给定 n,m 和 k ,对于所有的 $0 \le i \le n, 0 \le j \le \min(i,m)$ 有多少对 (i,j) 满足 C_i^j 是 k 的倍数。

【输入格式】

从文件problem.in 中读入数据。

第一行有两个整数 t,k, 其中 t 代表该测试点总共有多少组测试数据, k 的意义见【问题描述】。

接下来t行每行两个整数n,m,其中n,m的意义见【问题描述】。

【输出格式】

输出到文件problem.out中。

t 行,每行一个整数代表所有的 $0 \le i \le n, 0 \le j \le \min(i, m)$ 中有多少对 (i, j) 满足 C_i^j 是 k 的倍数。

【样例1输入】

1 2

3 3

【样例1输出】

1

【样例1说明】

在所有可能的情况中,只有 $C_2^1 = 2$ 是 2 的倍数。

【样例2输入】

2 5

4 5

6 7

【样例2输出】

0

7

【子任务】

测试点	n	m	k	t
1	_ 2	- 2	= 2 = 1	
2	≤ 3	≤ 3	= 3	$\leq 10^4$
3	- 7	≤ 7	= 4	= 1
4	- <u>≤</u> 7		= 5	$\leq 10^4$
5	<u>≤ 10</u>	z 10	= 6	= 1
6	≥ 10	≤ 10	= 7	$\leq 10^4$
7	<u> </u>	≤ 100	= 8	= 1
8	≤ 20	≥ 100	= 9	$\leq 10^4$
9	≤ 25	≤ 2000	= 10	= 1
10	≥ 23		= 11	$\leq 10^4$
11	≤ 60	≤ 20	= 12	= 1
12		≤ 20	= 13	$\leq 10^4$
13	≤ 100	≤ 25	= 14	= 1
14		\(\sim 23\)	= 15	$\leq 10^4$
15		≤ 60	= 16	= 1
16		≥ 00	= 17	$\leq 10^4$
17		≤ 100	= 18	= 1
18	≤ 2000	≥ 100	= 19	$\leq 10^4$
19		< 2000	= 20	= 1
20		≤ 2000	= 21	$\leq 10^4$

蚯蚓 (earthworm)

【问题描述】

本题中,我们将用符号 [c] 表示对 c 向下取整,例如: [3.0] = [3.1] = [3.9] = 3 。 蛐蛐国最近蚯蚓成灾了! 隔壁跳蚤国的跳蚤也拿蚯蚓们没办法,蛐蛐国王只好去请神刀手来帮他们消灭蚯蚓。

蛐蛐国里现在共有n只蚯蚓(n为正整数)。每只蚯蚓拥有长度,我们设第i只蚯蚓的长度为 a_i (i=1,2,...,n),并保证所有的长度都是<u>非负</u>整数(即:可能存在长度为0的蚯蚓)。

每一秒,神刀手会在所有的蚯蚓中,准确地找到最长的那一只(如有多个则任选一个)将其切成两半。神刀手切开蚯蚓的位置由常数 p (是满足 0 的有理数)决定,设这只蚯蚓长度为 <math>x ,神刀手会将其切成两只长度分别为 $\lfloor px \rfloor$ 和 $x - \lfloor px \rfloor$ 的蚯蚓。特殊地,如果这两个数的其中一个等于 0 ,则这个长度为 0 的蚯蚓也会被保留。此外,除了刚刚产生的两只新蚯蚓,其余蚯蚓的长度都会增加 q (是一个非负整常数)。

蛐蛐国王知道这样不是长久之计,因为蚯蚓不仅会越来越多,还会越来越长。蛐蛐国王决定求助于一位有着洪荒之力的神秘人物,但是救兵还需要m秒才能到来...... (m为非负整数)

蛐蛐国王希望知道这 m 秒内的战况。具体来说,他希望知道:

- m 秒内,每一秒被切断的蚯蚓被切断前的长度(有 m 个数);
- • m 秒后,所有蚯蚓的长度(有 n + m 个数)。

蛐蛐国王当然知道怎么做啦! 但是他想考考你......

【输入格式】

从文件earthworm.in 中读入数据。

第一行包含六个整数 n, m, q, u, v, t, 其中: n, m, q 的意义见【问题描述】; u, v, t 均为正整数; 你需要自己计算 p = u/v (保证 0 < u < v); t 是输出参数,其含义将会在【输出格式】中解释。

第二行包含n个非负整数,为 a_1,a_2,\ldots,a_n ,即初始时n只蚯蚓的长度。

同一行中相邻的两个数之间,恰好用一个空格隔开。

保证 $1 \le n \le 10^5$, $0 \le m \le 7 \times 10^6$, $0 < u < v \le 10^9$, $0 \le q \le 200$, $1 \le t \le 71$, $0 \le a_i \le 10^8$ 。

【输出格式】

输出到文件earthworm.out 中。

第一行输出 $\left\lfloor \frac{m}{t} \right\rfloor$ 个整数,按时间顺序,依次输出第t秒,第2t秒,第3t秒,……被切断蚯蚓(在被切断前)的长度。

第二行输出 $\left\lfloor \frac{n+m}{t} \right\rfloor$ 个整数,输出 m 秒后蚯蚓的长度,需要按从大到小的顺序,依次输出排名第 t ,第 2t ,第 3t , … … 的长度。

同一行中相邻的两个数之间,恰好用一个空格隔开。即使某一行没有任何数需要输出,你也应输出一个空行。

请阅读样例来更好地理解这个格式。

【样例1输入】

3 7 1 1 3 1

3 3 2

【样例1输出】

3 4 4 4 5 5 6

6 6 6 5 5 4 4 3 2 2

【样例1说明】

在神刀手到来前: 3只蚯蚓的长度为3,3,2。

1秒后:一只长度为3的蚯蚓被切成了两只长度分别为1和2的蚯蚓,其余蚯蚓的长度增加了1。最终4只蚯蚓的长度分别为(1,2),4,3。括号表示这个位置刚刚有一只蚯蚓被切断。

2秒后:一只长度为4的蚯蚓被切成了1和3。5只蚯蚓的长度分别为:2,3,(1,3),4。

3秒后:一只长度为4的蚯蚓被切断。6只蚯蚓的长度分别为:3,4,2,4,(1,3)。

4秒后:一只长度为4的蚯蚓被切断。7只蚯蚓的长度分别为:4,(1,3),3,5,2,4。

5秒后:一只长度为5的蚯蚓被切断。8只蚯蚓的长度分别为:5,2,4,4,(1,4),3,5。

6秒后:一只长度为5的蚯蚓被切断。9只蚯蚓的长度分别为: (1,4),3,5,5,2,5,4,6。

7秒后: 一只长度为6的蚯蚓被切断。10只蚯蚓的长度分别为: 2,5,4,6,6,3,6,5,(2,4)。

所以,7秒内被切断的蚯蚓的长度依次为3,4,4,5,5,6。7秒后,所有蚯蚓长度从大到小排序为6,6,5,5,4,4,3,2,2。

【样例2输入】

3 7 1 1 3 2

3 3 2

【样例2输出】

4 4 5

6 5 4 3 2

【样例2说明】

这个数据中只有t=2与上个数据不同。只需在每行都改为每两个数输出一个数即可。

虽然第一行最后有一个6没有被输出,但是第二行仍然要重新从第二个数再开始输出。

【样例3输入】

3 7 1 1 3 9

3 3 2

【样例3输出】

2

【样例3说明】

这个数据中只有 t = 9 与上个数据不同。 注意第一行没有数要输出,但也要输出一个空行。

【子任务】

- 测试点1~3满足 m = 0。
- 测试点 $4 \sim 7$ 满足 $n, m \leq 1,000$ 。
- 测试点8~14满足q=0, 其中测试点8~9还满足 $m \le 10^5$ 。
- 测试点15~18满足 $m \le 3 \times 10^5$ 。
- 测试点19~20没有特殊的约定,参见原始的数据范围。
- 测试点1 ~ 12, 15 ~ 16 还满足 $v \le 2$, 这意味着 u,v 的唯一可能的取值是 u=1,v=2, 即 p=0.5。这可能会对解决问题有特殊的帮助。

每个测试点的详细数据范围见下表。

测试点	n	m	t	a_i	v	q
1	= 1					
2	$= 10^3$	= 0				
3	$= 10^5$					= 0
4	= 1		_ 1		≤ 2	
5	$= 10^3$	$= 10^3$	$0^3 \qquad = 1 \qquad \leq 10^6$			
6	= 1	= 10		$\leq 10^{6}$		≤ 200
7	$= 10^3$					≥ 200
8	$= 5 \times 10^4$	$= 5 \times 10^4$				
9		$= 10^5$	= 2	≤ 10 ⁷		
10		$= 2 \times 10^6$	= 21			
11	$= 10^5$	$= 2.5 \times 10^6$	= 26			= 0
12		$= 3.5 \times 10^6$	= 36			
13		$= 5 \times 10^6$	= 51			
14		$= 7 \times 10^6$	= 71		$\leq 10^9$	
15	$= 5 \times 10^4$	$= 5 \times 10^4$	= 1		≤ 2	
16		$=1.5\times10^5$	= 2			
17	$= 10^5 = 3.5$	$= 10^5$	= 3	≤ 10 ⁸	≤ 10°	< 200
18		$= 3 \times 10^5$	= 4			≤ 200
19		$= 3.5 \times 10^6$	= 36			
20		$= 7 \times 10^6$	= 71			

愤怒的小鸟 (angrybirds)

【问题描述】

Kiana最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 (0,0) 处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 $y = ax^2 + bx$ 的曲线,其中 a,b 是Kiana指定的参数,且必须满足 a < 0。

当小鸟落回地面(即 x 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为 (x_i, y_i) 。

如果某只小鸟的飞行轨迹经过了 (x_i, y_i) ,那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过 (x_i, y_i) ,那么这只小鸟飞行的全过程就不会对第 i 只小猪产生任何影响。

例如,若两只小猪分别位于 (1,3) 和 (3,3) , Kiana可以选择发射一只飞行轨迹为 $y = -x^2 + 4x$ 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

【输入格式】

从文件angrybirds.in 中读入数据。

第一行包含一个正整数T,表示游戏的关卡总数。

下面依次输入这 T 个关卡的信息。每个关卡第一行包含两个非负整数 n, m ,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的 n 行中,第 i 行包含两个正实数 x_i, y_i ,表示第 i 只小猪坐标为 (x_i, y_i) 。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m=0,表示Kiana输入了一个没有任何作用的指令。

如果m=1,则这个关卡将会满足:至多用[n/3+1]只小鸟即可消灭所有小猪。

如果 m = 2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 $\lfloor n/3 \rfloor$ 只小猪。

保证 $1 \le n \le 18$, $0 \le m \le 2$, $0 < x_i, y_i < 10$,输入中的实数均保留到小数点后两位。

上文中,符号 [c] 和 [c] 分别表示对 c 向上取整和向下取整,例如: [2.1] = [2.9] = [3.0] = [3.0] = [3.1] = [3.9] = 3。

【输出格式】

输出到文件angrybirds.out中。

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小 鸟数量。

【样例1输入】

2

2 0

1.00 3.00

3.00 3.00

5 2

1.00 5.00

2.00 8.00

3.00 9.00

4.00 8.00

5.00 5.00

【样例1输出】

1

1

【样例1说明】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同, 2 只小猪分别位于 (1.00, 3.00) 和 (3.00, 3.00),只需发射一只飞行轨迹为 $y = -x^2 + 4x$ 的小鸟即可消灭它们。

第二个关卡中有 5 只小猪,但经过观察我们可以发现它们的坐标都在抛物线 $y = -x^2 + 6x$ 上,故Kiana只需要发射一只小鸟即可消灭所有小猪。

【样例2输入】

- 3
- 2 0
- 1.41 2.00
- 1.73 3.00
- 3 0
- 1.11 1.41
- 2.34 1.79
- 2.98 1.49
- 5 0
- 2.72 2.72
- 2.72 3.14
- 3.14 2.72
- 3.14 3.14
- 5.00 5.00

【样例2输出】

- 2
- 2
- 3

【样例3输入】

- 1
- 10 0
- 7.16 6.28
- 2.02 0.38
- 8.33 7.78
- 7.68 2.09
- 7.46 7.86
- 5.77 7.44
- 8.24 6.72
- 4.42 5.11
- 5.42 7.79
- 8.15 4.99

【样例3输出】

6

【子任务】

数据的一些特殊规定如下表:

测试点编号	n	m	T	
1	≤ 2		≤ 10	
2	≥ ∠		≤ 30	
3			≤ 10	
4	≤ 3		≤ 30	
5	≤ 4		≤ 10	
6	<u>> 4</u>	= 0	≤ 30	
7	≤ 5	= 0		
8	≤ 6		≤ 10	
9	≤ 7			
10	≤ 8			
11	≤ 9		≤ 30	
12	≤ 10			
13	- 12	= 1	≥ 30	
14	≤ 12	= 2		
15		= 0		
16	≤ 15	= 1	≤ 15	
17		= 2		
18		= 0		
19	≤ 18	= 1	≤ 5	
20		= 2		