

GIRRAWEEN HIGH SCHOOL

2021 PRACTICE TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

MATHEMATICS EXTENSION 1

General Instructions

- Reading time 10 minutes
- Working time 2 hours
- Write using black pen
- NESA approved calculators may be used.
- In section II, Show relevant mathematical reasoning and/or calculations

Total marks: 70

Section I – 10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 60 marks

- Attempt all questions
- Allow about 1 hour and 45 minutes for this section

Upload your answers as a single PDF in your google classroom in the assignment folder.

SECTION 1

10 marks

Attempt questions 1 - 10

Allow about 15 minutes for this section

- 1. Given the vectors x = 5i + 3j and y = -2i 5j. The magnitude and direction of x + y is
 - (A) 3.6; 326°
 - **(B)** 3.6; 34°
 - (C) 3.6; 146°
 - **(D)** 3.6; 214°
- 2. In the expansion of $(2x+k)^6$, the coefficients of x and x^2 are equal. What is the value of k?
 - **(A)** 5
- **(B)** 6
- **(C)** 11
- **(D)** 12
- 3. The coefficient of x^{-5} in the expansion of $\left(2x^2 \frac{1}{x}\right)^{20}$ is
 - **(A)**-77520
- **(B)** -155040
- **(C)** -248064
- **(D)** -496128

4. The domain and inverse of $f(x) = 4 \log_e(x+3) - 2$ are

(A)
$$x > 3; \quad y = e^{\frac{x+2}{4}} - 3$$

(B)
$$x > -3; \ y = e^{\frac{x+2}{4}} - 2$$

(C)
$$x > -3; y = e^{\frac{x+2}{4}} - 3$$

(D)
$$x > 3; \quad y = e^{\frac{x+2}{4}} - 2$$

5. Consider the parametric equation $x = 5\cos\theta - 2$ and $y = 5\sin\theta + 3$. Which of these is the corresponding cartesian equation?

(A)
$$x^2 - 4x + y^2 - 6y = 12$$

(B)
$$x^2 + 4x + y^2 + 6y = 12$$

(C)
$$x^2 - 4x + y^2 + 6y = 12$$

(D)
$$x^2 + 4x + y^2 - 6y = 12$$

6. What is the derivative of $y = \cos^{-1}\left(\frac{x}{4}\right)$

(A)
$$-\frac{1}{\sqrt{16-x^2}}$$
 (B) $-\frac{2}{\sqrt{16-x^2}}$

(C)
$$-\frac{4}{\sqrt{16-x^2}}$$
 (D) $-\frac{6}{\sqrt{16-x^2}}$

7. What is the domain and range of $f(x) = 2\sin^{-1}\left(\frac{x}{2}\right)$?

(A)
$$D:-2 \le x \le 2$$
, $R:-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

(B)
$$D: -2 \le x \le 2, R: -\pi \le y \le \pi$$

(C)
$$D: -\frac{1}{2} \le x \le \frac{1}{2}, R: -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

(D)
$$D: -\frac{1}{2} \le x \le \frac{1}{2}, R: -\pi \le y \le \pi$$

8. $\int \sin^2 3x \, dx$ is equal to which of the following?

(A)
$$\frac{x}{2} - \frac{\sin 6x}{3} + C$$

(B)
$$\frac{x}{2} - \frac{\sin 6x}{6} + C$$

$$(C) \quad \frac{x}{2} - \frac{\sin 6x}{9} + C$$

(D)
$$\frac{x}{2} - \frac{\sin 6x}{12} + C$$

- 9. What is the value of k such that $\int_{0}^{k} \frac{dx}{1 + (x 1)^{2}} = \frac{\pi}{2}$
 - **(A)** $2\sqrt{3}$
- **(B)** $\sqrt{3}$
- **(C)** 2
- **(D)** 1
- 10. Which of the following is a factor of $2x^4 4x^3 10x^2 + 12x$?
 - **(A)** x + 1
- **(B)** x-2
- (C) x-3
- **(D)** x + 4

Section II

60 marks

Attempt all questions

Allow about 1 hour and 45 minutes for this section

Start each question on a new page in the answer booklet provided.

Your responses should include relevant mathematical reasoning and /or calculations.

Question 11 (12 marks)

Marks

1

(a) Solve
$$\frac{6}{5x-2} \le 2$$

(b) Prove that
$$\cot 2x + \cot x = \frac{\sin 3x}{\sin 2x \sin x}$$

(c) Use the substitution
$$u = \ln 3x$$
, to find $\int \frac{dx}{x(\ln 3x)^2}$

(d) Let
$$f(x) = \frac{2x}{\sqrt{1-x^2}}$$

(i) For what values of x is
$$f(x)$$
 undefined?

(ii) Find $\int_{0}^{\frac{1}{2}} \frac{2xdx}{\sqrt{1-x^2}}$ using the substitution $x = \sin u$.

Question 12 (12 marks)

- (a) (i) Express $5 \sin x + 12 \cos x$ in the form $A \sin(x + \alpha)$ where $0 \le \alpha \le \frac{\pi}{2}$ (Give the value of α in radians, correct to 2 decimal places)
- (ii) Hence solve $5\sin x + 12\cos x = 8$ for $0 \le x \le \pi$ (Give the value or values of x in radians correct to 2 decimal places)
- **(b)** Six people attend a dinner party.
- (i) In how many different ways can they be arranged around a round table?
- (ii) In how many different ways can they be arranged if a particular couple mustsit together?
- (iii) What is the probability that, if the people are seated at random, the couple are sitting apart from each other?
- (c) Use mathematical induction to prove that

$$(1^2 + 1) 1! + (2^2 + 1) 2! + (3^2 + 1) 3! + \dots + (n^2 + 1) n! = n (n + 1)!$$
 for all positive integers $n \ge 1$.

Question 13 (12 marks)

(a)

The region in the first quadrant bounded by the curve $y = \tan^{-1}(x-1)$ and the y – axis between the lines y = 0 and $y = \frac{\pi}{4}$ is rotated through one complete revolution about the y – axis.

(i) Show that the volume V of the solid of revolution is given by

$$V = \pi \int_{0}^{\frac{\pi}{4}} (1 + \tan y)^{2} dy.$$
 1

(ii) Hence find the value of V in simplest exact form.

(b) A particle is projected from a point O with velocity V m/s at an angle θ to the horizontal. At any time t seconds the horizontal and vertical components of displacement are given by $x = Vt\cos\theta$ and $y = Vt\sin\theta - \frac{1}{2}gt^2$ where g is the acceleration due to gravity.

Show that the cartesian equation of the path is given by $y = x \tan \theta - \frac{gx^2}{2V^2} (1 + \tan^2 \theta)$

(c) A particle is projected from O with velocity $60 \, m/s$ at an angle α to the horizontal. T seconds later, another particle is projected from O with velocity $60 \, m/s$ at an angle β . To the horizontal where $\beta < \alpha$. The two particles collide 240 metres horizontally from O and at a height of 80 metres above O. Taking $g = 10 \, m/s^2$ and using results from (b)

- (i) Show that $\tan \alpha = 2$ and $\tan \beta = 1$.
- (ii) Find the value of T in simplest exact form.

Question 14 (12 marks)

(a) (i) Differentiate
$$y = x \cos^{-1} x - \sqrt{1 - x^2}$$
.

- (ii) Hence calculate the exact value of $\int_{0}^{\frac{1}{2}} \cos^{-1} x dx$
- **(b)** Solve $x^4 5x^3 9x^2 + 81x 108 = 0$, given that $P(x) = x^4 5x^3 9x^2 + 81x 108$ has a triple zero.
- (c) A bottle of medicine which is initially at a temperature of $10^{\circ}C$ is placed into a room which has a constant temperature of $25^{\circ}C$. The medicine warms at a rate proportional to the difference between the temperature of the room and the temperature (T) of the medicine. That is, T satisfies the equation $\frac{dT}{dt} = -k(T-25)$
- (i) Show that $T = 25 + Ae^{-kt}$ is a solution of this equation.
- (ii) If the temperature of the medicine after 10 minutes is 16°C, find its temperature after 40 minutes.

Question 15 (12 marks)

- (a) For what value(s) of m are the vectors $\binom{10m-17}{3}$ and $\binom{m}{2}$ perpendicular? 3
- **(b)** Consider the vectors given by u = bi + 2j and w = 2i + bj where b is a real number. If the acute angle between the two vectors is 60°, find the two possible values for b. 4
- (c) Consider the quadrilateral ABCD. The midpoints of AB, BC, CD and DA are M, N, Pand Q respectively.

Let
$$\overrightarrow{AB} = \underline{a}$$
, $\overrightarrow{BC} = \underline{b}$, $\overrightarrow{CD} = \underline{c}$ and $\overrightarrow{DA} = \underline{d}$

(i) Prove that a+b+c+d=0

(ii) Hence prove that MNPQ is a parallelogram. 3

2

END OF TEST