Problem 2.1

Given sequence $A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2, \dots, 2, 0, 2, 3)$, find the number of zeros in the sequence.

Solution

In the patterns below, ? denotes any non-zero digit.

9 18
18
162
6
243
54
18
4
9
3
526

Answer

526

Problem 2.2

How many ways are there to choose two squares on a 10×10 board so that they would not have any adjacent corners or edges?

Solution

I will map all the cases on a 10×10 markdown board.

- O example chosen square;
- X adjacent square that cannot be chosen;
- V other possible chosen squares;
- Z X or V.

Case 1, the first chosen square is a corner:

	1	2	3	4	5	6	7	8	9	10
1	0	Χ								V
2	Χ	Χ								
3	•	•		•	•	•	•	•		•
4										
5	•	•		•	•	•	•	•		•
6	•	•			•	•	•	•		•
7	•	•		•	•	•	•	•		•
8	•	•					•			•
9	•	•			•		•			•
10	V									V

There are 4 corners in total and 100-4=96 ways to choose the second square $n_{corners}=4\times 96=384$.

Case 2, the first chosen square is an edge:

	1	2	3	4	5	6	7	8	9	10
1	Χ	0	Z	٧	V	٧	٧	٧	V	
2	Z	X	Χ				•			V

	1	2	3	4	5	6	7	8	9	10
3	V	•								V
4	V					•				V
5	V									V
6	V								•	V
7	V									V
8	V			•	•					V
9	V	•					•	•		V
10		V	V	V	V	V	V	V	V	•

There are 32 edges in total and 100-6=94 ways to choose the second square $n_{edges}=32 imes 94=3008$.

Case 3, the first chosen square is one of the centers:

	1	2	3	4	5	6	7	8	9	10
1	Χ	Χ	Χ	•			•	•	•	
2	Χ	0	Z	V	٧	٧	V	٧	٧	
3	Χ	Z	Z	V	V	V	V	V	V	
4		V	V	V	V	V	V	V	V	
5		٧	٧	V	٧	٧	V	V	٧	
6		V	V	٧	٧	٧	٧	٧	V	
7		V	V	٧	٧	V	٧	٧	V	
8		V	V	٧	٧	٧	٧	٧	V	
9		V	V	V	V	V	V	V	V	
10	•	•	•	•	•		•	•	•	

There are 64 centers in total and 100-9=91 ways to choose the second square $n_{centers}=64 imes$

$$91 = 5824$$
.

Here it has to be noted that the order of the chosen squares does not matter, therefore the final result will be the sum of all n-s **divided by 2.**

Total
$$n=rac{1}{2}(n_{corners}+n_{edges}+n_{centers})=rac{1}{2}(5824+3008+384)=4608$$

Answer

4608

Problem 2.3

Subproblem A

Prove that $(A_1 \setminus A_2) \times (B_1 \setminus B_2) \subseteq (A_1 \times B_1) \setminus (A_2 \times B_2)$ is true for any sets A_1, A_2, B_1, B_2 .

Solution

Assuming that $\forall n_k, m_k \in \mathbb{N}$, define the following:

- $a_{0,n_k} \in A_1, A_2$;
- $a_{1,n_k}\in A_1$ and $a_{1,n}\notin A_2$;
- $a_{2,n_k} \in A_2$ and $a_{2,n}
 otin A_1$;
- $b_{0,n_k} \in B_1, B_2$;
- $b_{1,n_k}\in B_1$ and $b_{1,n}\notin B_2$;
- $b_{2,n_k}\in B_2$ and $b_{2,n}
 otin B_1$;
- ullet $A_1=(a_{1,1},a_{1,2},\ldots,a_{1,n_1},a_{0,1},a_{0,2},\ldots,a_{0,n_0});$
- ullet $A_2=(a_{2,1},a_{2,2},\ldots,a_{2,n_2},a_{0,1},a_{0,2},\ldots,a_{0,n_0});$
- $B_1=(b_{1,1},b_{1,2},\ldots,b_{1,m_1},b_{0,1},b_{0,2},\ldots,b_{0,m_0})$;
- $B_2 = (b_{2,1}, b_{2,2}, \dots, b_{2,m_2}, b_{0,1}, b_{0,2}, \dots, b_{0,m_0}).$

Then, considering

- $A_1 \setminus A_2 = \{a_{1,1}, a_{1,2}, \dots, a_{1,n_1}\};$
- $B_1 \setminus B_2 = \{b_{1,1}, b_{1,2}, \dots, b_{1,m_1}\};$

Evaluate the **lefthand side** of the statement above:

$$(A_1 \setminus A_2) imes (B_1 \setminus B_2) = \{(a_{1,1},b_{1,1}), (a_{1,1},b_{1,2}), \ldots, (a_{1,1},b_{1,m_1}), \ (a_{1,2},b_{1,1}), (a_{1,2},b_{1,2}), \ldots, (a_{1,2},b_{1,m_1}), \ \ldots, \ \ldots, \ \ldots, \ \ldots, \ \ldots, \ \ldots, \ (a_{1,n_1},b_{1,1}), (a_{1,n_1},b_{1,2}), \ldots, (a_{1,n_1},b_{1,m_1})\}$$

Now, to evaluate the **righthand side** of the statement above, first calculate the following:

And then, considering the above, the following:

This makes it obvious that $(A_1 \setminus A_2) \times (B_1 \setminus B_2) \subseteq (A_1 \times B_1) \setminus (A_2 \times B_2)$ is true as every single item from the set on the lefthand side of the statement is included in the righthand side set regardless of the fact whether sets A_1, A_2, B_1, B_2 intersect or not, q. e. d.

Subproblem B

Is $(A_1 \times B_1) \setminus (A_2 \times B_2) \subseteq (A_1 \setminus A_2) \times (B_1 \setminus B_2)$ true for any sets A_1, A_2, B_1, B_2 ?

Solution

As shown above, $(A_1 \times B_1) \setminus (A_2 \times B_2)$ always contains all elements from $(A_1 \setminus A_2) \times (B_1 \setminus B_2)$.

 $(A_1 \times B_1) \setminus (A_2 \times B_2)$ also contains elements from $A_1 \cap B_2$ and $A_2 \cap B_1$, which proves the reversed statement $(A_1 \times B_1) \setminus (A_2 \times B_2) \subseteq (A_1 \setminus A_2) \times (B_1 \setminus B_2)$ false unless $A_1 \cap B_2 = \{\emptyset\}$ or $A_2 \cap B_1 = \{\emptyset\}$ \Rightarrow the statement is irreversible.

Answer

False

Problem 2.4

For any whole positive n, prove the equation:

$$n \cdot 2^{0} + (n-1) \cdot 2^{1} + (n-2) \cdot 2^{2} + \dots + 1 \cdot 2^{n-1} = 2^{n+1} - 2 - n$$

Solution

Check whether the equation is true for n = 1 (**induction base**):

$$1 \cdot 2^0 = 2^{1+1} - 2 - 1$$
$$1 = 1$$

State the **induction hypothesis**:

$$n \cdot 2^0 + (n-1) \cdot 2^1 + (n-2) \cdot 2^2 + \dots + 1 \cdot 2^{n-1} = 2^{n+1} - 2 - n$$

To check whether the induction hypothesis holds for n+1 (**induction step**), add the following expression to both parts of the equation:

$$2^0 + 2^1 + 2^2 + \dots + 2^{n-1} + 2^n$$

Therefore, we get:

$$(n+1)\cdot 2^0 + n\cdot 2^1 + (n-1)\cdot 2^2 + \dots + 2\cdot 2^{n-1} + 1\cdot 2^n = 2^0 + 2^1 + 2^2 + \dots + 2^{n-1} + 2^n + 2^{n+1} - 2 - n$$

Rewriting $2^0 + 2^1 + 2^2 + \dots + 2^{n-1} + 2^n$ in binary, we get $1_2 + 10_2 + 100_2 + \dots + 1\underbrace{000\dots0}_n$, which is equal to $\underbrace{111\dots1}_{n+1}$. Therefore, $2^0 + 2^1 + 2^2 + \dots + 2^{n-1} + 2^n = 2^{n+1} - 1$.

Rewrite the equation further:

$$(n+1)\cdot 2^0+n\cdot 2^1+(n-1)\cdot 2^2+\cdots+2\cdot 2^{n-1}+1\cdot 2^n= \ =2^0+2^1+2^2+\cdots+2^{n-1}+2^n+2^{n+1}-2-n=2^{n+2}-1-2-n= \ =2^{n+2}-2-(n+1)\Rightarrow \ n\cdot 2^0+(n-1)\cdot 2^1+(n-2)\cdot 2^2+\cdots+1\cdot 2^{n-1}=2^{n+1}-2-n$$

q. e. d.