

date 06/24/2019

page 1 of 10

SERIES: PYBJ6 | **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- up to 6 W isolated output
- 2:1 input voltage range
- single regulated output
- output short circuit, over current, over voltage protection
- efficiency up to 86%
- DIP and SMT mounting styles
- available with or without case
- 1500 Vdc isolation

MODEL	inț volt	out tage	output voltage		tput rent	output power	ripple & noise¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PYBJ6-D12-S5	12	9~18	5	0	1200	6	100	81
PYBJ6-D12-S12	12	9~18	12	0	500	6	100	84
PYBJ6-D12-S15	12	9~18	15	0	400	6	100	85
PYBJ6-D24-S3	24	18~36	3.3	0	1500	4.95	100	79
PYBJ6-D24-S5	24	18~36	5	0	1200	6	100	83
PYBJ6-D24-S12	24	18~36	12	0	500	6	100	85
PYBJ6-D24-S15	24	18~36	15	0	400	6	100	86

Notes:

- 1. From $5 \sim 100\%$ load, nominal input, 20 MHz bandwidth oscilloscope, with 10 μ F tantalum and 1 μ F ceramic capacitors on the output. From $0 \sim 5\%$ load, ripple and noise is <5% Vo.
- 2. Measured at nominal input voltage, full load.
- $3. \ All \ specifications \ are \ measured \ at \ Ta=25^{\circ}C, \ humidity < 75\%, \ nominal \ input \ voltage, \ and \ rated \ output \ load \ unless \ otherwise \ specified.$

PART NUMBER KEY

INPUT

parameter	conditions/description	on	min	typ	max	units
operating input voltage	12 Vdc input models 24 Vdc input models		9 18	12 24	18 36	Vdc Vdc
start-up voltage	12 Vdc input models 24 Vdc input models				9 18	Vdc Vdc
surge voltage	12 Vdc input models for 1 second max 24 Vdc input models for 1 second max		-0.7 -0.7		25 50	Vdc Vdc
under voltage shutdown	12 Vdc input models 24 Vdc input models		5.5 13	6.5 15		Vdc Vdc
current	12 Vdc input models	5 Vdc output models 12 Vdc output models 15 Vdc output models			633 610 603	mA mA mA
	24 Vdc input models	3.3 Vdc output models 5 Vdc output models 12 Vdc output models 15 Vdc output models			268 308 302 298	mA mA mA mA
remote on/off (CTRL) ⁴	turn on (CTRL pin pulled low to GND (0~0.3 Vdc)) turn off (CTRL pin open or pulled high (2.0~12 Vdc)) input current when switched off			5	10	mA
filter	Pi filter					
no load power consumption			0.12		W	

Notes: 4. The voltage of the CTRL pin is referenced to input GND pin.

OUTPUT

parameter	conditions/description	min	typ	max	units
	3.3 Vdc output models 5 Vdc output models			1,800 1,000	μF μF
maximum capacitive load ⁵	12 Vdc output models 15 Vdc output models			680 470	μF μF
voltage accuracy	from 0% to full load		±1	±3	%
line regulation	from low line to high line, full load		±0.2	±0.5	%
load regulation ⁶	from 5% to full load		±0.5	±1	%
adjustability	see application notes		±5		%
switching frequency ⁷	PWM mode 330		330		kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
transient response deviation	25% load step change, nominal input voltage 3.3, 5 Vdc output models ±5 all other output models ±3		•	±8 ±5	% %
temperature coefficient	at full load ±0		±0.03	%/°C	

Note:

^{5.} Tested at input voltage range and full load. 6. At $0 \sim 100\%$ load, the max load regulation is $\pm 5\%$. 7. Value is based on full load. At loads <50%, the switching frequency decreases with decreasing load for efficiency improvement.

Additional Resources: Product Page | 3D Model | PCB Footprint

CUI Inc | SERIES: PYBJ6 | DESCRIPTION: DC-DC CONVERTER

date 06/24/2019 | page 3 of 10

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection	output shut down	110		160	%
over current protection	hiccup, auto recovery	110	140	200	%
short circuit protection	hiccup, continuous, auto recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units		
	input to output for 1 minute at 5 mA	500			Vac		
	input to case ⁸ for 1 minute at 5 mA	500			Vac		
isolation voltage	output to case ⁸ for 1 minute at 5 mA	500			Vac		
	input to output for 1 minute at 1 mA	1,500			Vdc		
	input to case ⁸ for 1 minute at 1 mA	1,500			Vdc		
	output to case ⁸ for 1 minute at 1 mA	1,500			Vdc		
	input to output at 500 Vdc	100			$M\Omega$		
isolation resistance	input to case ⁸ at 500 Vdc	100			MΩ		
	output to case ⁸ at 500 Vdc	100			MΩ		
isolation capacitance	input to output, 100 kHz / 0.1 V	input to output, 100 kHz / 0.1 V 1,000					
safety approvals	UL 62368-1, IEC 62368-1, EN 62368-1	UL 62368-1, IEC 62368-1, EN 62368-1					
conducted emissions	CISPR32/EN55032, class A (no external circuit	CISPR32/EN55032, class A (no external circuit); class B (external circuit required, see Figure 3)					
radiated emissions	CISPR32/EN55032, class B (external circuit re	CISPR32/EN55032, class B (external circuit required, see Figure 4)					
ESD	IEC/EN61000-4-2, contact ±6 kV, class B	IEC/EN61000-4-2, contact ±6 kV, class B					
radiated immunity	IEC/EN61000-4-3, 10 V/m, class A						
EFT/burst	IEC/EN61000-4-4, ±2 kV, class B (external cir	cuit required, see F	igure 2)				
surge	IEC/EN61000-4-5, line-line ±2 kV, class B (ex	IEC/EN61000-4-5, line-line ±2 kV, class B (external circuit required, see Figure 2)					
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A						
MTBF	as per MIL-HDBK-217F, 25°C	as per MIL-HDBK-217F, 25°C 1,000,000			hours		
RoHS	yes						

Note: 8. Only applies to versions with case.

ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10~150 Hz, for 90 minutes on each axis		5		G

DERATING CURVES

Temperature Derating Curve (Output Load vs. Ambient Temperature)

SOLDERABILITY

parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds 300		°C		
wave soldering ⁹	see wave soldering profile 260		°C		
reflow soldering ¹⁰	see reflow soldering profile Maximum duration >217°C is 60 seconds. For actual application, refer to IPC/JEDEC J-STD-020D.1		°C		

Note: 9. For DIP models only. 10. For SMT models only.

MECHANICAL

parameter	conditions/description min typ		typ	max	units
DIP without case: 31.60 x 18.10 x 6.10 [1.244 x 0.713 x 0.240 inch]			mm		
dimensions	DIP with case: $32.60 \times 19.10 \times 6.80$ [1.283 \times 0.752 \times 0.268 inch] SMT without case: $31.60 \times 18.10 \times 6.30$ [1.244 \times 0.713 \times 0.248 inch]			mm mm	
	SMT with case: $32.60 \times 19.10 \times 7.00 [1.283 \times 0.752 \times 0.276 \text{ inch}]$			mm	
case material	aluminum alloy				
weight	models without case		4.7		g
Weight	models with case		5.7		g

MECHANICAL DRAWING (DIP WITHOUT CASE)

units: mm [inch]

tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	CTRL	
3	GND	
4	0V	
5	trim	
6	+Vo	

Top View

MECHANICAL DRAWING (DIP WITH CASE)

units: mm [inch]

tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	CTRL	
3	GND	
4	0V	
5	trim	
6	+Vo	

Note: Grid 2.54*2.54mm Recommended PCB Layout

MECHANICAL DRAWING (SMT WITHOUT CASE)

units: mm [inch]

tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	CTRL	
3	GND	
4	0V	
5	trim	
6	+Vo	

MECHANICAL DRAWING (SMT WITH CASE)

units: mm [inch]

tolerance: $\pm 0.50[\pm 0.020]$

pin section tolerance: $\pm 0.10[\pm 0.004]$

PIN CONNECTIONS		
PIN	Function	
1	Vin	
2	CTRL	
3	GND	
4	0V	
5	trim	
6	+Vo	

APPLICATION CIRCUIT

This series has been tested according to the following recommended circuit (Figure 1) before leaving the factory. If you want to further reduce the input and output ripple, you can increase the input and output capacitors or select capacitors of low equivalent impedance provided that the capacitance is less than the maximum capacitive load of the model.

Figure 1

Table 1

Vout	Cin	Cout
(Vdc)	(µF)	(µF)
3.3/5/12/15	10	10

EMC RECOMMENDED CIRCUIT

Figure 2

Table 2

Recomm	Recommended External Circuit Components		
Vin (Vdc)	12, 24		
FUSE	choose according to actual input current		
MOV	S20K30		
C0	680 μF / 100 V		
C1	330 μF / 25 V		
C2	10 μF / 25 V		

Figure 3

Table 3

Recomm	Recommended External Circuit Components	
Vin (Vdc)	12, 24	
C1, C2	4.7 μF / 50 V	
L	4.7 μH	
C3	10 μF / 25 V	

Figure 4

Table 4

Recomm	Recommended External Circuit Components		
Vin (Vdc)	12, 24		
C0	4.7 μF / 50 V		
C1	4.7 μF / 50 V		
C2	4.7 μF / 50 V		
C3	10 μF / 25 V		
LCM	3.3 mH		
CY1, CY2	1000 pF / ≥2000 Vdc		

APPLICATION NOTES

Output voltage trimming Leave open if not used.

Figure 5

Application Circuit for Trim pin (part in broken line is the interior of models)

Formula for Trim Resistor

up:
$$R_T = \frac{aR_2}{R_2-a} - R_3$$
 $a = \frac{Vref}{Vo' - Vref} \cdot R_1$

down:
$$R_T = \frac{aR_1}{R_1-a} - R_3$$
 $a = \frac{Vo' - Vref}{Vref} \cdot R_2$

Note: Value for R1, R2, R3, and Vref refer to Table 5 R_T : Trim Resistor

a: User-defined parameter, no actual meanings

Vo': The trim up/down voltage

Table 5

Model No.	R1 (kΩ)	R2 (kΩ)	R3 (kΩ)	Vref (V)
PYBJ6-D12-S5	2.94	2.87	10	2.5
PYBJ6-D12-S12	11	2.87	15	2.5
PYBJ6-D12-S15	14.5	2.87	15	2.5
PYBJ6-D24-S3	4.8	2.87	12	1.24
PYBJ6-D24-S5	2.94	2.87	15	2.5
PYBJ6-D24-S12	11.0	2.87	33	2.5
PYBJ6-D24-S15	14.5	2.87	15	2.5

PACKAGING

units: mm

Inner Carton Size: 292 x 135 x 100 mm Outer Carton Size: 610 x 285 x 125 mm

Outer Carton QTY: 200 pcs

Additional Resources: Product Page | 3D Model | PCB Footprint

CUI Inc | SERIES: PYBJ6 | DESCRIPTION: DC-DC CONVERTER date 06/24/2019 | page 10 of 10

REVISION HISTORY

rev.	description	date
1.0	initial release	06/24/2019

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.