Analyse de fonctions (II)

Mahendra Mariadassou 6 décembre 2016

Introduction

Plan du cours

- · Domaine d'étude
- · Limites, continuité, dérivabilité et variations
- · Comparaison locale de fonction
- Etude locale des fonctions
- · Retour sur la limite

Objectifs

- · Savoir étudier les variations d'une fonctions
- · Résoudre problèmes d'optimisation
- · Savoir trier des ordres de grandeur
- · Approfondir la notion de limite

Domaine d'étude d'une fonction: parité

En général une fonction f est donnée par son expression f(x). Pour se ramener à une application il faut détérminer le domaine de définition D_f de f, c'est à dire l'ensemble des x pour lesquels l'expression f(x) a du sens.

une fonction f est dite paire (resp. impaire) lorsque

- · D_f est stable par passage à l'opposé, c'est à dire que si $x \in D_f$, alors $-x \in D_f$.
- au $orall x \in D_f f(-x) = f(x)$ (resp. $orall x \in D_f f(-x) = -f(x)$)

Exemples

• cos(x) est paire, sin(x) est impaire.

Domaine d'étude d'une fonction: parité

- · Si f est paire, le graphe C_f de f est symétrique par rapport à l'axe (Oy). Si f est dérivable, sa dérivée est impaire.
- · Si f est impaire, le graphe C_f de f est symétrique par rapport au point (0,0). De plus, si $0 \in D_f$, alors f(0)=0. Si f est dérivable, sa dérivée est paire.

Fonction paire

Fonction impaire

Fonction nulle

Une fonction est dite identiquement nulle sur un ensemble I lorsque

$$\forall x \in I, f(x) = 0$$

Périodicité

une fonction f est dite périodique de période T>0 lorsque

- · D_f est stable par translation, c'est à dire que si $x \in D_f$, alors $x + T \in D_f$.
- $\forall x \in D_f f(x+T) = f(x)$

En général, on utilise la périodicité pour n'étudier f que sur une période et la parité pour ne l'étudier que sur une moitité du domaine de définition (par exemple $D_f \cap \mathbb{R}_+$).

Fonction périodique

Exercices

Donner le doaine de définition et les éventuelles (im)parité/périodicité des fonctions suivantes:

$$f(x) = e^x + e^{-x}$$

$$f(x) = e^x - e^{-x}$$

$$f(x) = x + \ln(x)$$

•
$$f(x) = e^{x} \frac{x+1}{x-1}$$

•
$$f(x) = \ln \left| \frac{x+1}{x-1} \right|$$

$$f(x) = \ln(\cos(x))$$

$$f(x) = \ln|\cos(x)|$$

$$f(x) = e^{\tan(x)} - \tan(x)$$

Limite: Définition

$\bar{\mathbb{R}}$ et la notion de voisinage

Dans la suite, $a \in \mathbb{R}$ signifie que a est un réel, ou $+\infty$ ou $-\infty$.

En analyse, beaucoup de notions sont **locales**: il suffit de connaître f "autour" de a pour savoir si elle est continue/dérivable/de classe \mathcal{C}^k en a. Pour formaliser cette notion de proximité, on va définir la notion de "voisinage de a".

Soit P(x) un propriété portant sur $x\in\mathbb{R}$, (par exemple P(x) = "x>10") et $a\in\bar{\mathbb{R}}$.

Voisinage d'un point

- P(x) est vraie au voisinage de $+\infty$ si il existe $A \in \mathbb{R}$ tel que P(x) est vraie pour tout $x \in [A, +\infty[$. Autrement dit, P(x) est vraie pour x suffisamment grand.
- P(x) est vraie au voisinage de $-\infty$ si il existe $A \in \mathbb{R}$ tel que P(x) est vraie pour tout $x \in]-\infty,A]$. Autrement dit, P(x) est vraie pour x suffisamment petit.
- P(x) est vraie au voisinage de $a \in \mathbb{R}$ si il existe $\delta > 0$ tel que P(x) est vraie pour tout $x \in]a \delta, a + \delta[$. Autrement dit, P(x) est vraie pour x suffisamment proche de a.

Voisinage à gauche, à droite

- P(x) est vraie au voisinage de $a \in \mathbb{R}$ à droite si il existe $\delta > 0$ tel que P(x) est vraie pour tout $x \in]a, a + \delta[$. Autrement dit, P(x) est vraie pour x suffisamment proche de a tout étant strictement supérieur à a.
- P(x) est vraie au voisinage de $a \in \mathbb{R}$ à gauche si il existe $\delta > 0$ tel que P(x) est vraie pour tout $x \in]a \delta, a[$. Autrement dit, P(x) est vraie pour x suffisamment proche de a tout étant strictement inférieur à a.

Remarques

Les notions de voisinage à droite de $+\infty$ et à gauche de $-\infty$ n'ont pas de sens (pourquoi?). La notion de voisinage permet de mettre en évidence le caractère local d'une propriété.

Voisinage illustration

Au tableau

Limite infinie à l'infini.

Soit $f:A\to B$ une fonction numérique. On suppose que f est définie au voisinage de $+\infty$ (resp. $-\infty$).

Limite infinie en $\pm \infty$

On dit que f tend vers $+\infty$ en $+\infty$, noté $\lim_{+\infty} f = +\infty$, si pour tout réel M (arbitrairement grand), f(x) est plus grand que M pour x assez grand (proche de ∞).

$$orall M \in \mathbb{R}, \exists A \in \mathbb{R} ext{ tel que } orall x \in D_f, x \in]A, +\infty[\Rightarrow f(x) > M$$

On dit que f tend vers $-\infty$ en $+\infty$, noté $\lim_{+\infty} f = +\infty$, si pour tout réel M (arbitrairement petit), f(x) est plus petit que M pour x assez grand (proche de ∞)

$$orall M \in \mathbb{R}, \exists A \in \mathbb{R} ext{ tel que } orall x \in D_f, x \in]A, +\infty[\Rightarrow f(x) < M$$

Limite finie à l'infini.

Soit $l \in \mathbb{R}$.

On dit que f tend vers l en $+\infty$, noté $\lim_{+\infty} f = l$, si pour tout réel $\varepsilon > 0$ (arbitrairement proche de 0), f(x) est proche de l à moins de ε pour x assez grand (proche de ∞).

$$\forall \varepsilon > 0, \exists A \in \mathbb{R} ext{ tel que } \forall x \in D_f, x \in]A, +\infty[\Rightarrow |f(x) - l| \leq \varepsilon$$

Exemple

Exercices

Écrire la définition formelle (avec des quantificateurs) de

- · $\lim_{-\infty} f = +\infty$
- $\cdot \ \lim_{-\infty} f = -\infty$
- · $\lim_{-\infty} f = l$

Limite infinie en un point

Soit f une fonction et D_f son domaine de définition. Soit $a \in \mathbb{R}$ tel que

- $a \in D_f$ (f est alors définie en a)
- · a est une borne de a (f est définie sur un voisinage de a mais pas en a)

Pour la limite infinie, $a \notin D_f$. On dit que f tend vers $+\infty$ en a, noté $\lim_a f = +\infty$, si pour tout réel M (arbitrairement grand), f(x) est plus grand que M pour x assez proche de a).

$$orall M \in \mathbb{R}, \exists \delta > 0 ext{ tel que } orall x \in D_f, |x-a| \leq \delta \Rightarrow f(x) > M$$

Limite finie en un point

On dit que f tend vers l en a, noté $\lim_a f = l$, si pour tout réel $\varepsilon > 0$ (arbitrairement proche de 0), f(x) est proche de l (à ε près) pour x assez proche de a).

$$orall arepsilon > 0, \exists \delta > 0 ext{ tel que } orall x \in D_f, |x-a| \leq \delta \Rightarrow |f(x)-l| \leq arepsilon$$

Exemple

Limite à gauche/à droite en un point

Soit f définie au voisinage à gauche de a. On dit que f tend vers l à gauche en a, noté $\lim_{a^-} f = l$, si pour tout réel $\varepsilon > 0$ (arbitrairement proche de 0), f(x) est proche de l (à ε près) pour x assez proche de a par valeurs inférieures).

$$\forall \varepsilon > 0, \exists \delta > 0 ext{ tel que } \forall x \in D_f, x \in]a - \delta, a[\Rightarrow |f(x) - l| \leq \varepsilon$$

On a une définition similaire pour $\lim_{a^+} f$, la limite à droite en a (voir exercices).

Exercices

Écrire la définition formelle (avec des quantificateurs) de

- · $\lim_a f = -\infty$
- · $\lim_{a^-} f = +\infty$
- · $\lim_{a^+} f = +\infty$
- · $\lim_{a^+} f = l$

Unicité de la limite

Soit $a \in \mathbb{R}$. Si f admet une limite en a (resp. une limite à gauche ou une limite à droite), alors cette limite est unique.

Soit $a \in \mathbb{R}$. Si f admet une limite en a et est définie en a, alors cette limite est forcément f(a).

Soit $a \in \mathbb{R}$ et f définie au voisinage de a (sauf peut-être en a).

- Si f n'est pas définie en a, f admet une limite en a si et seulement si elle admet une limite à gauche et une limite à droite en a et que ces limites sont égales.
- Si f est définie en a, f admet une limite en a si et seulement si elle admet une limite à gauche et une limite à droite en a et que ces limites sont égales à f(a).

Opération sur les limites