

# DACON 2022 AI 대학원 챌린지

백신 및 면역치료제 개발을 위한 항원-항체 반응 예측 solution

[Private: 0.76034]

중앙대학교 석사과정 윤건일 rjsdlf45@gmail.com

# **Contents**

- 1. Preprocessing
- 2. Modeling
- 3. Framework
- 4. Experimental setup validation
- 5. Experimental result

#### ① Sequence Modeling

• Left antigen(64), epitope(128), right antigen(64) protein sequence modeling ESM(Pretrained-model)[1] 이용

#### ② CT-CTD Feature extraction[2]

- Epitope, antigen sequence 데이터로부터 feature extraction
- Conjoint Triad (CT) features: 7x7x7 features for each sequence
- Composition-Transition-Distribution (CTD): 13x3, 13x3x5 features for each sequence

#### ③ Counting Feature extraction[3]

- Epitope, antigen sequence 데이터로부터 feature extraction
- Single, Double features: frequency of amino acids and dipeptides
- 20+400 features for each sequence

### **Sequence Modeling – ESM**

- ESM pretrained model(Encoder)에 left antigen 64, epitope 128, right antigen 64를 각각 입력해서 embedding 추출 (각 1280 features)
- 각 sequence embedding을 concatenate해서 feature로 사용 (3840 features)



#### ② CT-CTD features

- CT features : amino acids를 7개 group으로 나눠 연속된 3개(Triad)의 그룹 번호 frequency features
- Window size 3으로 sliding window를 통해 그룹번호 111부터 777까지 총 343개의 feature을 얻음

| Group1  | Group2 | Group3 | Group4     | Group5     | Group6 | Group7     |
|---------|--------|--------|------------|------------|--------|------------|
| A, G, V | С      | D, E   | F, I, L, P | H, N, Q, W | K, R   | M, S, T, Y |



$$CT = (f_{111}, f_{112}, ..., f_{776}, f_{777})$$

**343 (7x7x7) features** 

#### **② CT-CTD features**

- · CTD features: Composition, Transition, Distribution feature 로 추출
- 13개 구조적, 물리화학적 특성으로 각 특성마다 3개의 그룹(1, 2, 3)으로 분류

| Attellenden               | Division   |                  |            |  |  |  |
|---------------------------|------------|------------------|------------|--|--|--|
| Attributes                | Group1     | Group2           | Group3     |  |  |  |
| hydrophobicity_PRAM900101 | RKEDQN     | GASTPHY          | CLVIMFW    |  |  |  |
| hydrophobicity_ARGP820101 | QSTNGDE    | RAHCKMV          | LYPFIW     |  |  |  |
| Hydrophobicity_ZIMJ680101 | QNGSWTDERA | HMCKV            | LPFYI      |  |  |  |
| hydrophobicity_PONP930101 | KPDESNQT   | GRHA             | YMFWLCVI   |  |  |  |
| hydrophobicity_CASG920101 | KDEQPSRNTG | AHYMLV           | FIWC       |  |  |  |
| hydrophobicity_ENGD860101 | RDKENQHYP  | SGTAW            | CVLIMF     |  |  |  |
| hydrophobicity_FASG890101 | KERSQD     | NTPG             | AYHWVMFLIC |  |  |  |
| norm waals volume         | GASCTPD    | NVEQIL           | MHKFRYW    |  |  |  |
| polarity                  | LIFWCMVY   | PATGS            | HQRKNED    |  |  |  |
| polarizability            | GASDT      | CPNVEQIL         | KMHFRYW    |  |  |  |
| charge                    | KR         | ANCQGHILMFPSTWYV | DE         |  |  |  |
| secondary struct          | EALMQKRH   | VIYCWFT          | GNPSD      |  |  |  |
| solvent access            | ALFCGIVW   | RKQEND           | MPSTHY     |  |  |  |

#### 2 CT-CTD features

- 각 그룹 번호에 맞게 특성마다 새로운 시퀀스 부여
- Composition feature는 각 attribute division의 비율들 -> 13x3 features
- Transition feature는 그룹간 transition 비율을 의미 -> 13x3 features
- Distribution feature는 각 그룹의 position 위치(1, 25%, 50%, 75%, 100%) -> 13x3x5 features



### **3** Counting Feature extraction

Protein sequence에서 20개의 amino acids 와 400개의 dipeptides frequency를 추출



## Model

#### ① Tabnet[4]

- AAAI에 발표된 Tabular 데이터 학습 모델로 최근 여러 대회에서 RF, XGBoost, LGBM 등의 트리 기반 모델들보다 좋은 성능을 보여주고 있음
- Feature Transformer 와 Attentive transformer 기반의 모델 구조를 통해 Tabular data에서 딥러닝 모델의 성능을 크게 끌어올린 모델
- Sparse matrix를 이용해 masking하고 학습하며 중요 feature를 스스로 학습할 수 있는 모델



## Model

## ② LightGBM

- 다른 트리 기반 학습 모델보다 빠르게 학습되고, 많은 데이터에 대해 강력함
- Leaf-wise 확장을 통해 level-wise 확장 모델보다 빠르게 loss를 수렴시킴
- 데이터가 LGBM이 학습하기에 충분히 많기(190k)때문에 Overfitting될 확률이 낮고 정확도에 초점을 맞출 수 있음



## **Framework**



## **Experimental setup**

#### ✓ Feature Combination

- ESM-embedding feature는 epitope를 기준으로 antigen을 slice 하기 때문에 같은 antigen이더라도 다른 정보를 가짐
- CT-CTD feature와 Counting Feature는 epitope 전체와 antigen 전체 서열에 대해 적용하기 때문에 같은 antigen에서는 feature가 같음
- ESM-embedding을 기본적으로 적용하되, CT-CTD feature 혹은 Counting Feature의 조합으로 결과 를 확인하고 최종 모델을 결정





## **Experimental setup**

#### ✓ Model validation

- K-fold cross validation을 이용해 전체 train data를 활용함과 동시에 robust한 모델 구축
- Tabnet 모델은 5-fold cross validation을 적용하고 soft-voting으로 결과 예측
- LGBM 모델은 5-fold stratified cross validation을 적용해 fold 마다 label 비율을 유지시켜 validation 신뢰성을 높임





## **Experimental result**

- ✓ ESM embedding feature와 Tabnet을 이용한 모델이 가장 높은 성능을 보임
- ✓ CT-CTD feature와 CNT feature와 PCA/AE를 적절히 사용하면 좋은 모델을 구성할 수 있을 것이라고 생각함
- ✓ Tabnet과 LGBM의 ensemble과 threshold를 조절하면 성능 향상을 기대해볼 수 있음

#### Result table

| Features          | Model  | PCA(CT-CTD) | PCA(CNT) | K-folds        | CV     | Public LB | Private LB |
|-------------------|--------|-------------|----------|----------------|--------|-----------|------------|
| ESM + Cat         | Tabnet | N/A         | N/A      | 5              | 0.8560 | 0.7537    | 0.7603     |
|                   | LGBM   | N/A         | N/A      | 5 (stratified) | 0.8171 | 0.7076    | 0.7094     |
| ESM + CTCTD + Cat | Tabnet | 0           | N/A      | 5              | 0.8601 | 0.7356    | 0.7379     |
|                   | LGBM   | 300         | N/A      | 5 (stratified) | 0.8155 | 0.7066    | 0.7090     |
| ESM + CNT + Cat   | Tabnet | N/A         | 0        | 5              | 0.8610 | 0.6686    | 0.6729     |
|                   | LGBM   | N/A         | 300      | 5 (stratified) | 0.8200 | 0.7058    | 0.7087     |

# Thank you

#### References

- [1] Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., ... & Fergus, R. (2021). Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. *Proceedings of the National Academy of Sciences*, *118*(15), e2016239118.
- [2] Sharma, A., & Singh, B. (2020). AE-LGBM: Sequence-based novel approach to detect interacting protein pairs via ensemble of autoencoder and LightGBM. *Computers in Biology and Medicine*, *125*, 103964.
- [3] Mu, Z., Yu, T., Liu, X., Zheng, H., Wei, L., & Liu, J. (2021). FEGS: a novel feature extraction model for protein sequences and its applications. *BMC bioinformatics*, 22(1), 1-15.
- [4] Arik, S. Ö., & Pfister, T. (2021, May). Tabnet: Attentive interpretable tabular learning. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 35, No. 8, pp. 6679-6687).