Ch 10.3: Convolutional Neural Nets

Lecture 32 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Weds, Dec 6, 2022

Announcements

Last time:

- Multilayer
- pyTorch

This lecture:

CNNs

Announcements:

Project due Friday

Section 1

Last time: Neural Nets

MNIST

0123456789 0123456789 0123456789

Neural network architecture for MNIST

MNIST learning

Section 2

Convolutional Neural Network

Last time: Flattening the image

$$\begin{pmatrix} 1 & 1 & 0 \\ 4 & 2 & 1 \\ 0 & 2 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 \\ 1 \\ 0 \\ 4 \\ 2 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

Example data set: CIFAR100 Data

- 60,000 images: 50K training, 10K test
- Labels with 20 super classes (e.g. aquatic mammals)
- 5 classes per super class (beaver, dolphin, otter, seal, whale)
- Images are 32x32

Dr. Munch (MSU-CMSE) Weds, Dec 6, 2022 9 / 22

Image channel data

10 / 22

Dr. Munch (MSU-CMSE) Weds, Dec 6, 2022

CNNs

11 / 22

Or. Munch (MSU-CMSE) Weds, Dec 6, 2022

Convolution layer

Convolution Filter

Original Image:

Convolution filter:

$$\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$$

Convolved Image

$$\begin{bmatrix} a\alpha + b\beta + d\gamma + e\delta & b\alpha + c\beta + e\gamma + f\delta \\ d\alpha + e\beta + g\gamma + h\delta & e\alpha + f\beta + h\gamma + i\delta \\ g\alpha + h\beta + j\gamma + k\delta & h\alpha + i\beta + k\gamma + l\delta \end{bmatrix}$$

Convolution Filter Example

Same example, different filter

What is the convolved image?

Filter:

 $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$

Convolution filter: Bigger example

Dr. Munch (MSU-CMSE) Weds, Dec 6, 2022

Convolution layer

Or. Munch (MSU-CMSE) Weds, Dec 6, 2022

More notes on convolution

r. Munch (MSU-CMSE) Weds, Dec 6, 2022

Pooling layers

Max pool
$$\begin{bmatrix} 1 & 2 & 5 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 1 & 3 & 4 \\ 1 & 1 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$

Putting it together to make a CNN

https://poloclub.github.io/cnn-explainer/

Dr. Munch (MSU-CMSE) Weds, Dec 6, 2022

Coding

TL;DR

Feed Forward Neural Net

$$A_k = h_k(X) = g(w_{k0} + \sum_{j=1}^p w_{kj}X_j),$$

- Combines input data using learned weights
- Linear combo of those to get output
- Sometimes softmax to get probability of classification

CNN

- Specialized NN
- Gets next layer via
 - Convolution layer
 - Pooling Layer
 - Fully connected layer

Next time

Lec#	Date			Reading	Homeworks
	Wed	Nov 29	Midterm #3		
32	Fri	Dec 1	Multi Layer NN	10.2	
33	Mon	Dec 4	CNN	10.3	
34	Wed	Dec 6	Unsupervised Learning & Clustering	12.1, 12.4	
35	Fri	Dec 8	Virtual: Project office hours		Project due