Edge: Hough transform

Dr. Tushar Sandhan

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

J•Linking

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

J•Linking

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

J•Linking

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

J • Linking

- Edges so far (operators, Canny)
 - o consider prior info about gradient behaviour
 - o do not consider anything about object shape, structure
 - o how did we get clear boundary edges previously?

J•Linking

- Image derivatives
 - o input image f(x, y)
 - o (optional) smoothed $f_s(x, y)$
 - o get the gradients $g_x(x,y)$, $g_y(x,y)$
 - \circ get thresholded edge map M_T

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

- Image derivatives
 - o input image f(x, y)
 - o (optional) smoothed $f_s(x, y)$
 - o get the gradients $g_x(x,y)$, $g_y(x,y)$
 - \circ get thresholded edge map M_T

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f_s(x,y) = G(x,y) \star f(x,y)$$

- Image derivatives
 - o input image f(x, y)
 - o (optional) smoothed $f_s(x, y)$
 - o get the gradients $g_x(x, y)$, $g_y(x, y)$
 - \circ get thresholded edge map M_T

$$G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$f_s(x,y) = G(x,y) \star f(x,y)$$

$$g_x(x,y) = \partial f_s(x,y)/\partial x$$
 $g_y(x,y) = \partial f_s(x,y)/\partial y$

- Image derivatives
 - o input image f(x, y)
 - o (optional) smoothed $f_s(x, y)$
 - o get the gradients $g_x(x, y)$, $g_y(x, y)$
 - \circ get thresholded edge map M_T

$$f_s(x,y) = G(x,y) \star f(x,y)$$

 $G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$

$$g_x(x,y) = \partial f_s(x,y)/\partial x$$

$$g_{y}(x,y) = \partial f_{s}(x,y)/\partial y$$

$$M_s(x,y) = \|\nabla f_s(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

- Image derivatives
 - o input image f(x, y)
 - o (optional) smoothed $f_s(x, y)$
 - o get the gradients $g_x(x,y)$, $g_y(x,y)$
 - \circ get thresholded edge map M_T

$$f_s(x,y) = G(x,y) \star f(x,y)$$

 $G(x,y) = e^{-\frac{x^2 + y^2}{2\sigma^2}}$

$$g_x(x,y) = \partial f_s(x,y)/\partial x$$

$$g_{y}(x,y) = \partial f_{s}(x,y)/\partial y$$

$$M_s(x,y) = \|\nabla f_s(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

$$\alpha(x,y) = \tan^{-1} \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$$

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - o shape is defined as a function and parametrized

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - shape is defined as a function and parametrized

- Shape detection
 - plat fruits
 plucking
 autonomous
 robots

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - shape is defined as a function and parametrized

- Shape detection
 - plat fruits plucking autonomous robots

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - shape is defined as a function and parametrized

- Shape detection
 - plat fruits plucking autonomous robots

Lines

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - shape is defined as a function and parametrized

- Shape detection
 - plat fruits plucking autonomous robots

Lines

Hough Transform

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - shape is defined as a function and parametrized

- Shape detection
 - plat fruits
 plucking
 autonomous
 robots

Lines

- Hough Transform
 - a space of parameters

- Hough transform (HT)
 - o considers shape of the object as prior info.
 - shape is defined as a function and parametrized

- Shape detection
 - plat fruits
 plucking
 autonomous
 robots

Lines

- Hough Transform
 - a space of parameters

- Hough transform duality
 - Lines in the image space becomes a point in the Hough space
 - A point in the image space becomes _____ in the Hough space

- Hough transform duality
 - Lines in the image space becomes a point in the Hough space
 - A point in the image space becomes _____ in the Hough space

Hough space voting

courtesy: W. Hoff

- Hough space voting
 - o initialize accumulator A(m,b) → 0

- Hough space voting
 - o initialize accumulator $A(m,b) \rightarrow 0$

- Hough space voting
 - o initialize accumulator A(m,b) → 0
 - o for each edge element, increment all cells that satisfy b = -xm + y

- Hough space voting
 - o initialize accumulator $A(m,b) \rightarrow 0$
 - o for each edge element, increment all cells that satisfy b=-xm+y
 - o local maxima in A(m,b) correspond to lines

- Hough space voting
 - o initialize accumulator A(m,b) → 0
 - o for each edge element, increment all cells that satisfy b = -xm + y
 - local maxima in A(m,b) correspond to lines
 - is there any issue here?

- Hough space voting
 - o initialize accumulator $A(m,b) \rightarrow 0$
 - o for each edge element, increment all cells that satisfy b = -xm + y
 - o local maxima in A(m,b) correspond to lines
 - is there any issue here?

•

ı

- Hough space voting
 - o initialize accumulator $A(m,b) \rightarrow 0$
 - o for each edge element, increment all cells that satisfy b = -xm + y
 - local maxima in A(m,b) correspond to lines
 - is there any issue here?
 - for vertical lines

ī

- Hough space voting
 - o initialize accumulator $A(m,b) \rightarrow 0$
 - o for each edge element, increment all cells that satisfy b = -xm + y
 - local maxima in A(m,b) correspond to lines
 - is there any issue here?
 - for vertical lines
 - $M \rightarrow \infty$

Horizontal lines

$$\theta = 0^{o}$$

Horizontal lines

$$\theta = 0^{o}$$

Horizontal lines

$$\theta = 0^{o}$$

Vertical lines

$$\theta = 90^{\circ}$$

Horizontal lines

$$\theta = 0^{o}$$

Vertical lines

$$\theta = 90^{\circ}$$

- Ranges:
 - θ ∈ [−90°, 90)
 - $\rho \in [-dmax, +dmax]$
 - o dmax?

EE604: IMAGE PROCESSING

Horizontal lines

$$\theta = 0^{o}$$

Vertical lines

$$\theta = 90^{\circ}$$

- Ranges:
 - $\theta \in [-90^{\circ}, 90)$
 - $\rho \in [-dmax, +dmax]$
 - o dmax?

HT example:

HT example:

HT example:

HT example: with a greater noise

HT example: with a greater noise

HT example: with a greater noise

- HT example: with a greater noise
 - tackling the noise

- HT example: with a greater noise
 - tackling the noise

- Image processing in the Hough space
 - smoothing
 - thresholding
 - zoom in the space
 - o re-quantize zoomed space
 - redo HT in zoomed space

input

input

input

Hough transform

bright spot in HT corresponds to?

input

Hough transform

- bright spot in HT corresponds to?
- can circles be detected?

input

Hough transform

- bright spot in HT corresponds to?
- can circles be detected?
- why does Hough image is not the same size as input?

input

Hough transform

Input

Input

Input Sobel

Input Sobel

Equation of circle

Equation of circle

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is known: (2D Hough Space)

Accumulator Array A(a,b)

Equation of circle

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is known: (2D Hough Space)

Accumulator Array A(a,b)

- Approx. object's size are known
 - o radius is known

Equation of circle

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

If radius is known: (2D Hough Space)

Accumulator Array A(a,b)

- Approx. object's size are known
 - o radius is known

- If radii are not known, exhaustively search all possibilities
- Pseudocode:

```
: A( ) = 0

: \forall (x, y)

: if M_T(x, y)

: \forall (a, b)

: r = sqrt\{ (x - a)^2 + (y - b)^2 \}

: A(a, b, r) + +

: find \ maximas \ in \ A( )
```


For any arbitrary shape

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

x'

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

$$x' = rcos(\pi - \alpha) = -rsin(\alpha)$$

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

$$x' = rcos(\pi - \alpha) = -rsin(\alpha)$$

 y'

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

$$x' = r\cos(\pi - \alpha) = -r\sin(\alpha)$$

$$y' = rsin(\pi - \alpha) = -rcos(\alpha)$$

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

$$x' = r\cos(\pi - \alpha) = -r\sin(\alpha)$$

$$y' = rsin(\pi - \alpha) = -rcos(\alpha)$$

$$x_c = x + rcos(\alpha)$$

 $y_c = y + rsin(\alpha)$

For any arbitrary shape

$$x = x_c + x'$$
 or $x_c = x - x'$
 $y = y_c + y'$ or $y_c = y - y'$

$$x' = r\cos(\pi - \alpha) = -r\sin(\alpha)$$

$$y' = rsin(\pi - \alpha) = -rcos(\alpha)$$

$$x_c = x + rcos(\alpha)$$

 $y_c = y + rsin(\alpha)$

Edge Direction	$\vec{r} = (r, \alpha)$
ϕ_1	$\vec{r}_1^{\ 1}, \vec{r}_2^{\ 1}, \vec{r}_3^{\ 1}$
ϕ_2	\vec{r}_{1}^{2} , \vec{r}_{2}^{2}

Ref: Mathworks & prof Nayar

Ref: Mathworks & prof Nayar

Ref: Mathworks & prof Nayar

Ref: Mathworks & prof Nayar

Ref: Mathworks & prof Nayar

Space complexity

- Space complexity
 - With k quantized bins, it exponentially increases with number of parameters $n \rightarrow k^n$

- Space complexity
 - With k quantized bins, it exponentially increases with number of parameters $n \rightarrow k^n$
 - Separate quantization for each dimension can be performed

- Space complexity
 - With k quantized bins, it exponentially increases with number of parameters $n \rightarrow k^n$
 - Separate quantization for each dimension can be performed

Time complexity

- Space complexity
 - With k quantized bins, it exponentially increases with number of parameters $n \rightarrow k^n$
 - Separate quantization for each dimension can be performed

- Time complexity
 - Voting is linearly proportional to # of edge points
 - Time complexity is constant in # of edge points detected

Hough transform: other shapes

	parameters	
Line	ρ, θ	xcosθ+ysinθ=ρ
Circle	x ₀ , y ₀ , ρ	$(x-x_0)^2+(y-y_0)^2=r^2$
Parabola	x ₀ , y ₀ , ρ, θ	$(y-y_0)^2=4\rho(x-x_0)$
Ellipse	x_0, y_0, a, b, θ	$(x-x_0)^2/a^2+(y-y_0)^2/b^2=1$

Conclusion

- Hough Transform

Conclusion

- Hough Transform

- ☐ It's tolerant to noise in some extent and highly tolerant to the missing points in an edge
- ☐ Space complexity increases with the number of parameters
- ☐ Hough space is quantized
 - finer the quantization,
 - more accurate the edge det. will be,
 - but slower will be the procc. speed

Conclusion

Hough Transform

- ☐ It's tolerant to noise in some extent and highly tolerant to the missing points in an edge
- ☐ Space complexity increases with the number of parameters
- ☐ Hough space is quantized
 - finer the quantization,
 - more accurate the edge det. will be,
 - but slower will be the procc. speed

