Corrigé de la feuille d'exercices 14

1 Divisibilité dans \mathbb{N}

Exercice 1. Méthode 1:

Montrons par récurrence que pour tout $n \in \mathbb{N}$, 7 divise $3^{2n} - 2^n$.

- Pour n = 0, 7 divise 0.
- Soit $n \in \mathbb{N}$, supposons que 7 divise $3^{2n} 2^n$. Alors, il existe $k \in \mathbb{N}$ tel que $3^{2n} - 2^n = 7k$. On a alors:

$$3^{2(n+1)} - 2^{n+1} = 3^{2n} \times 9 - 2 \times 2^n$$

$$= (2^n + 7k) \times 9 - 2 \times 2^n$$

$$= 2^n (9 - 2) + 9 \times 7k$$

$$= 7(2^n + 9k)$$

et $2^n + 9k \in \mathbb{N}$. Donc 7 divise $3^{2(n+1)} - 2^{n+1}$.

• Ainsi, pour tout $n \in \mathbb{N}$, 7 divise $3^{2n} - 2^n$.

Méthode 2 :

Pour n = 0, 7 divise 0. Soit $n \in \mathbb{N}^*$,

$$3^{2n} - 2^n = 9^n - 2^n = 7 \times \sum_{k=0}^{n-1} 9^k 2^{n-1-k},$$

avec
$$\sum_{k=0}^{n-1} 9^k 2^{n-1-k} \in \mathbb{N}$$
.

Ainsi, pour tout $n \in \mathbb{N}$, 7 divise $3^{2n} - 2^n$.

Exercice 2. 1. • Pour n = 2, $2^{2^2} - 6 = 2^4 - 6 = 16 - 6 = 10$ qui est divisible par 10.

• Soit $n \ge 2$, supposons que $2^{2^n} - 6$ est divisible par 10. Ainsi, il existe $k \in \mathbb{N}$ tel que $2^{2^n} - 6 = 10k$. On a alors :

$$2^{2^{n+1}} - 6 = 2^{2^n \times 2} - 6$$

$$= (2^{2^n})^2 - 6$$

$$= (10k+6)^2 - 6$$

$$= 100k^2 + 120k + 36 - 6$$

$$= 100k^2 + 120k + 30$$

$$= 10 \times (10k^2 + 12k + 3)$$

et $10k^2 + 12k + 3 \in \mathbb{N}$. Ainsi, 10 divise $2^{2^{n+1}} - 6$.

- On a montré que pour tout $n \in \mathbb{N}$, 10 divise 2^{2^n} est vraie.
- 2. Méthode 1 : Soit $n \in \mathbb{N}^*$, $2^{3n} 1 = 8^n 1^n = 7 \times \sum_{k=0}^{n-1} 8^k$, avec $\sum_{k=0}^{n-1} 8^k \in \mathbb{N}$.

Ainsi, pour tout $n \in \mathbb{N}$, 7 divise $2^{3n} - 1$.

Méthode 2 : On montre ce résultat par récurrence.

• Pour n = 0, $2^0 - 1 = 0$ et 7 divise 0.

• Soit $n \in \mathbb{N}^*$, supposons que 7 divise $2^{3n} - 1$. Ainsi, il existe $k \in \mathbb{N}$ tel que $2^{3n} - 1 = 7k$. On a alors:

$$2^{3(n+1)} - 1 = 8 \times 2^{3n} - 1$$

$$= 8 \times (7k+1) - 1$$

$$= 7 \times 8k + 7$$

$$= 7(8k+1)$$

et $8k + 1 \in \mathbb{N}*$.

La propriété est donc vraie au rang n+1.

• Ainsi, on a montré que pour tout $n \in \mathbb{N}$, 7 divise $2^{3n} - 1$.

Exercice 3. Soit $n \in \mathbb{N}$, on a : $2n^2 - n - 6 = (n+3)(2n-7) + 15$. Ainsi,

$$\frac{2n^2 - n - 6}{n + 3} \in \mathbb{Z} \iff 2n - 7 + \frac{15}{n + 3} \in \mathbb{Z}$$

$$\iff \frac{15}{n + 3} \in \mathbb{Z}$$

$$\iff n + 3 \text{ divise } 15$$

Or, $\mathcal{D}(15) = \{1, 3, 5, 15\}.$ Ainsi,

$$\frac{2n^2 - n - 6}{n + 3} \in \mathbb{Z} \quad \Longleftrightarrow \quad n + 3 = 3 \text{ ou } n + 3 = 5 \text{ ou } n + 3 = 15$$

$$\iff \quad n = 0 \text{ ou } n = 2 \text{ ou } n = 12$$

Ainsi, l'ensemble des entiers solutions est : $\{0, 2, 12\}$.

Exercice 4. Soit $n \in \mathbb{Z}$. Par l'absurde, supposons que $\frac{21n-3}{4} \in \mathbb{Z}$ et $\frac{15n-2}{4} \in \mathbb{Z}$.

Posons $k_1 = \frac{21n-3}{4}$ et $k_2 = \frac{15n-2}{4}$. On a alors, $21n-3 = 4k_1$ et $15n-2 = 4k_2$ d'où $1 = 4(k_2-k_1)+6n$. Ainsi, $1 = 2\left(2(k_2-k_1)+3n\right)$ et $\left(2(k_2-k_1)+3n\right)$ et \left \mathbb{Z} donc 2 divise 1 Absurde.

Ainsi, ces deux quantités ne sont pas simultanément dans \mathbb{Z} .

1. On sait que 10=9+1. Soit $k\in\mathbb{N},$ par le binôme de Newton, on a : Exercice 5.

$$10^k = (9+1)^k = \sum_{i=0}^k \binom{k}{i} 9^i = 3q_k + 1$$

où
$$q_k = 3\sum_{i=1}^k \binom{k}{i} 9^{i-1}$$
 si $k \ge 1$ et $q_0 = 0$.

$$n = \sum_{k=0}^{p} a_k 10^k = \sum_{k=0}^{p} a_k (3q_k + 1) = 3 \sum_{k=0}^{p} q_k a_k + \sum_{k=0}^{p} a_k.$$

D'où

$$3|n \iff 3|\left(3\sum_{k=0}^{p}q_{k}a_{k} + \sum_{k=0}^{p}a_{k}\right)$$

$$\iff 3|\sum_{k=0}^{p}a_{k}$$

L'entier n est donc multiple de 3 si et seulement si $\sum_{k=0}^{p} a_k$ est multiple de 3.

2. Soit $k \in \mathbb{N}$

$$10^k = (9+1)^k = \sum_{i=0}^k \binom{k}{i} 9^i = 9r_k + 1$$

où
$$r_k = \sum_{i=1}^k \binom{k}{i} 9^{i-1}$$
 si $k \ge 1$ et $r_0 = 0$.

$$n = \sum_{k=0}^{p} a_k 10^k = \sum_{k=0}^{p} a_k (9r_k + 1) = 9 \sum_{k=0}^{p} r_k a_k + \sum_{k=0}^{p} a_k.$$

D'où

$$9|n \iff 9|\left(9\sum_{k=0}^{p}r_{k}a_{k} + \sum_{k=0}^{p}a_{k}\right)$$

$$\iff 9|\sum_{k=0}^{p}a_{k}$$

L'entier n est donc multiple de 9 si et seulement si $\sum_{k=0}^{r} a_k$ est multiple de 9.

3. On remarque que 10 = 11 - 1. Soit $k \in \mathbb{N}$, par le binôme de Newton on a :

$$10^{k} = (11-1)^{k} = \sum_{i=0}^{k} {k \choose i} 11^{i} (-1)^{k-i} = 11s_{k} + (-1)^{k}$$

où
$$s_k = \sum_{i=1}^{k-1} {k \choose i} 11^{i-1} (-1)^{k-i}$$
 si $k \ge 2$, $s_0 = 0$ et $s_1 = 1$.

$$n = \sum_{k=0}^{p} a_k 10^k = \sum_{k=0}^{p} a_k (11s_k + (-1)^k) = 11 \sum_{k=0}^{p} s_k a_k + \sum_{k=0}^{p} (-1)^k a_k.$$

D'où

$$11|n \iff 11|\left(11\sum_{k=0}^{p} s_k a_k + \sum_{k=0}^{p} (-1)^k a_k\right)$$

$$\iff 11|\sum_{k=0}^{p} (-1)^k a_k$$

L'entier n est donc multiple de 11 si et seulement si $\sum_{k=0}^{p} (-1)^k a_k$ est multiple de 11.

Exercice 6. Soient $q_1, q_2, r_1, r_2 \in \mathbb{N}$ tels que : $\begin{cases} a = q_1(a-b) + r_1 \text{ avec } 0 \leq r_1 < a - b \\ b = q_2(a-b) + r_2 \text{ avec } 0 \leq r_2 < a - b \end{cases}$ D'où $a - b = (a - b)(q_1 - q_2) + r_1 - r_2$. Ainsi, $(a - b)(1 - q_1 + q_2) = r_1 - r_2$ donc a - b divise $r_1 - r_2$. Donc il existe $k \in \mathbb{N}$ tel que $r_1 - r_2 = (a - b)k$ et $-(a - b) < r_1 - r_2 < a - b$ donc -(a - b) < k(a - b) < a - b. Or, $a - b \neq 0$. Donc -1 < k < 1. Ainsi, k = 0 donc $r_1 - r_2 = 0$. On en déduit donc que $(a - b) = (a - b)(q_1 - q_2)$. Or, $a \neq b$ donc $1=q_1-q_2.$

2 PGCD et PPCM

Exercice 7. Soit $n \in \mathbb{N}^*$.

$$\exists (q_1, q_2) \in \mathbb{N}^2, \begin{cases} 4373 = q_1 n + 8 \text{ et } 0 \le 8 < n \\ 826 = q_2 n + 7 \text{ et } 0 \le 7 < n \end{cases} \iff \exists (q_1, q_2) \in \mathbb{N}^2, \begin{cases} 4368 = q_1 n \\ 819 = q_2 n \\ n > 8 \end{cases}$$
$$\iff \begin{cases} n|4368 \\ n|819 \\ n > 8 \end{cases}$$
$$\iff \begin{cases} n|pgcd (4368, 819) \\ n > 8 \end{cases}$$

Or, pgcd(4365, 819) = 9.

En effet: $4365 = 5 \times 819 + 270$

 $819 = 3 \times 270 + 9$

 $270 = 9 \times 30 + 0$.

Ainsi, pgcd (4365, 819) = 9 d'après l'algorithme d'Euclide. Ainsi,

$$\exists (q_1, q_2) \in \mathbb{N}^2, \begin{cases} 4373 = q_1 n + 8 \text{ et } 0 \le 8 < n \\ 826 = q_2 n + 7 \text{ et } 0 \le 7 < n \end{cases} \iff n = 9$$

Ainsi l'unique solution du problème est 9.

Exercice 8. Soit $n \in \mathbb{N}^*$

$$\exists (q_1, q_2) \in \mathbb{N}^2, \begin{cases} 6381 = q_1 n + 8 \text{ et } 0 \le 9 < n \\ 3954 = q_2 n + 7 \text{ et } 0 \le 6 < n \end{cases} \iff \exists (q_1, q_2) \in \mathbb{N}^2, \begin{cases} 6372 = q_1 n \\ 3948 = q_2 n \\ n > 9 \end{cases}$$
$$\iff \begin{cases} n | 6372 \\ n | 3948 \\ n > 9 \end{cases}$$
$$\iff \begin{cases} n | pgcd (6372, 3948) \\ n > 9 \end{cases}$$

Or, pgcd(4365, 3948) = 12. Ainsi,

$$\exists (q_1, q_2) \in \mathbb{N}^2, \begin{cases} 6381 = q_1 n + 8 \text{ et } 0 \le 9 < n \\ 3954 = q_2 n + 7 \text{ et } 0 \le 6 < n \end{cases} \iff n = 12$$

Ainsi l'unique solution du problème est 12.

Exercice 9. Pour calculer le pgcd de a = 9100 et b = 1848, on utilise l'algorithme d'Euclide.

On obtient:

 $9100 = 1848 \times 4 + 1708$

 $1848 = 1708 \times 1 + 140$

 $1708 = 140 \times 12 + 28$

 $140 = 28 \times 5 + 0.$

Ainsi, pgcd (9100, 1848) = 28.

On procède de même pour $a=n^3+2n$ et $b=n^4+3n^2+1$ avec $n\in\mathbb{N}^*.$

 $n^4 + 3n^2 + 1 = (n^3 + 2n) \times n + n^2 + 1.$

Or, $n^3 + 2n = n(n^2 + 2) \ge n^2 + 2 > n^2 + 1$. Ainsi, $n^2 + 1$ est bien le reste dans la division euclidienne de $n^4 + 3n^2 + 1$ par $n^3 + 2n$.

 $n^3 + 2n = (n^2 + 1) \times n + n \text{ avec } n < 2n \le n^2 + 1.$

1er cas : si n = 1

 $n^2 + 1 = 2 = n \times 2 + 0$. Ainsi, le dernier reste non nul est n = 1. Donc pgcd $(n^4 + 3n^2 + 1, n^3 + 2n) = 1$.

2nd : **si** n > 1

 $n^2 + 1 = n \times n + 1$ et $n = 1 \times n + 0$. Ainsi, dans ce cas aussi, on obtient : $pgcd(n^4 + 3n^2 + 1, n^3 + 2n) = 1$.

Exercice 10. Par homogénéité du pgcd, on a : pgcd(mn, (2m+1)n) = npgcd(m, 2m+1).

Or, pgcd(m, 2m + 1)|m| et pgcd(m, 2m + 1)|2m + 1 ainsi pgcd(m, 2m + 1)|(2m + 1 - 2m) donc pgcd(m, 2m + 1)|1. Ainsi, pgcd(m, 2m + 1) = 1.

Donc pgcd (mn, (2m+1)n) = n.

Exercice 11. Soit $n \in \mathbb{N}^*$. On pose : $a = n^2 + 3n$ et $b = n^2 + 5n + 6$

- 1. Notons $\delta = \operatorname{pgcd}(n, n+2)$. Alors, δ divise n+2-n=2. Ainsi, $\delta = 1$ ou $\delta = 2$. Si n est pair alors 2 divise n et 2 divise n+2 donc 2 divise δ . Ainsi, $\delta = 2$. Si n est impair, 2 ne divise pas n donc 2 ne divise pas δ . Ainsi, $\delta = 1$.
- 2. On remarque que a = n(n+3) et b = (n+3)(n+2). Ainsi, par homogénéité du pgcd, on a : pgcd (a,b) = pgcd(n(n+3),(n+3)(n+2)) = (n+3)pgcd(n,n+2). Donc d'après la question précédente, on a :
 - si n est pair, pgcd (a, b) = 2(n + 3)
 - si n est impair, pgcd(a,b) = n(n+3).

Exercice 12. Soient a, b deux entiers tels que a < b.

Notons $\delta = \operatorname{pgcd}(a, b)$ (a et b étant non nuls, $\delta \neq 0$).

Par définition du PGCD, il existe $(a',b') \in \mathbb{N}^2$ tel que $a = \delta a'$ et $b = \delta b'$. De plus, comme $a \leq b$, on en déduit que a' < b'.

De plus, $\delta = \operatorname{pgcd}(a, b) = \operatorname{pgcd}(\delta a', \delta b') = \delta \operatorname{pgcd}(a', b')$ par homogénéité du pgcd. Comme $\delta \neq 0$, on a $1 = \operatorname{pgcd}(a', b')$. Enfin, on sait également que $ab = \operatorname{ppcm}(a, b) \times \operatorname{pgcd}(a, b)$. Ainsi :

$$\operatorname{ppcm}(a,b) = 21\operatorname{pgcd}(a,b) \iff \operatorname{ppcm}(a,b) \times \operatorname{pgcd}(a,b) = 21\operatorname{pgcd}(a,b)^2 \quad (\operatorname{car} \operatorname{pgcd}(a,b) \neq 0)$$

$$\iff ab = 21\operatorname{pgcd}(a,b)^2$$

$$\iff \delta^2a'b' = 21\delta^2$$

$$\iff a'b' = 21$$

Or, les diviseurs de 21 sont $\mathcal{D}(21) = \{1, 3, 7, 21\}$. Ainsi,

$$\operatorname{ppcm}(a,b) = 21\operatorname{pgcd}(a,b) \iff \iff (a',b') = (1,21) \text{ ou } (a',b') = (3,7)$$

On obtient finalement que l'ensemble des couples solutions est $\{(\delta, 21\delta), \delta \in \mathbb{N}^*\} \cup \{(3\delta, 7\delta), \delta \in \mathbb{N}^*\}$.

Exercice 13. Soit $x, y \in \mathbb{N}^2$. On sait que $x | \operatorname{ppcm}(x, y)$ et $y | \operatorname{ppcm}(x, y)$.

Déterminons les diviseurs de 105.

On a $\mathcal{D}(105) = \{1, 3, 5, 7, 15, 21, 35, 105\}.$

On a donc :

$$\begin{cases} x+y=56 \\ \text{ppcm}(x,y)=105 \end{cases} \iff \begin{cases} x,y \in \mathcal{D}(105) \\ x+y=56 \end{cases}$$
$$\iff (x,y)=(21,35) \text{ ou } (y,x)=(35,21)$$

Ainsi, l'ensemble des solutions est :

$$\{(21,35),(35,21)\}.$$

3 Nombres premiers

Exercice 14. Soient $a, n \in \mathbb{N}^*$ et soit p un nombre premier. Supposons que $p|a^n$.

Si a=1 alors, $a^n=1$ et on obtient une contradiction avec le fait que p divise a^n car $p \ge 2$. Ainsi, $a \ne 1$.

Considérons la décomposition de a en produit de nombres premiers : $a=\prod_{i=1}^r q_i^{\alpha_i}$ où $r\in\mathbb{N}^*,\ q_1,...,q_r$ des nombres premiers 2 à 2 distincts et $\alpha_1,...,\alpha_r\in\mathbb{N}^*$.

On a alors : $a^n = \prod_{i=1}^r q_i^{n\alpha_i}$. Par unicité de la décomposition en facteurs premiers, ceci est la décomposition de a^n .

Comme $p|a^n$, on en déduit qu'il existe $i_0 \in [1, r]$ tel que $p = q_{i_0}$ et $\alpha_{i_0} \neq 0$. Donc $\alpha_{i_0} \geq 1$. Ainsi, $n\alpha_{i_0} \geq n$ donc finalement, on en déduit que $q_{i_0}^n|a^n$ c'est à dire $p^n|a^n$.

Exercice 15. On utilise la décomposition en éléments premiers.

On sait que $140 = 2^2 \times 5 \times 7$ et $28 = 2^2 \times 7$. Soit $b \in \mathbb{N}^*$.

$$\begin{array}{lll} \text{ppcm}\,(b,28) = 140 &\iff & \exists \alpha_2, \alpha_5, \alpha_7 \in \mathbb{N}, b = 2^{\alpha_2} \times 5^{\alpha_5} \times 7^{\alpha_7} \text{ et} \\ & \max(2,\alpha_2) = 2, \ \max(0,\alpha_5) = 1, \ \max(1,\alpha_7) = 1 \\ & \iff & \exists \alpha_2 \in \{0,1,2\}, \exists \alpha_7 \in \{0,1\}, b = 2^{\alpha_2} \times 5 \times 7^{\alpha_7} \\ & \iff & b \in \{5,10,20,35,70,140\} \end{array}$$

Ainsi, l'ensemble des solutions est :

$$\{5, 10, 20, 35, 70, 140\}.$$

Exercice 16. Soit n un entier supérieur ou égal à 2.

Soit $k \in [2, n]$, n! + k est divisible par k donc n'est pas premier.

Ainsi, aucun des entiers compris entre n! + 2 et n! + n n'est premier. Il y a donc entre deux nombres premiers des « trous » aussi grands que l'on veut.

La première occurrence de 5 entiers consécutifs non premiers est 24, 25, 26, 27, 28.

Exercice 17. Par l'absurde, supposons que l'ensemble des nombres premiers est fini : $\mathbb{P} = \{p_1, p_2, \dots, p_k\}$.

Considérons alors l'entier $N = \left(\prod_{i=1}^k p_i\right) + 1$. Par la proposition précédente, N est divisible par un nombre premier.

Ainsi, il existe $l \in [1, k]$ tel que p_l divise N. De plus, p_l divise le produit $\prod_{i=1}^k p_i$, donc p_l divise $N - \prod_{i=1}^k p_i$. Ainsi, $p_l | 1$. Ce qui est impossible puisque $p_l \ge 2$.

Exercice 18. Soit $n \in \mathbb{N}^*$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ sa décomposition en produit de facteurs premiers.

1. Soit $d \in \mathbb{N}^*$.

$$d|n \iff \exists (\beta_1, \beta_2, ..., \beta_r) \in [0, \alpha_1] \times [0, \alpha_2] \times ... [0, \alpha_r], \ d = p_1^{\beta_1} p_2^{\beta_2} ... p_r^{\beta_r}$$

Ainsi, pour former un diviseurs de n, pour tout $k \in [1, r]$, on choisit $\beta_k \in [0, \alpha_k]$: donc on a $\alpha_k + 1$ possibilités. Il y a donc $\prod_{k=1}^{r} (\alpha_k + 1)$ diviseurs de n.

2. Réflexion: k=1

$$\begin{split} S(n) &= \sum_{(\beta_1,\beta_2,\dots,\beta_r) \in [\![0,\alpha_1]\!] \times [\![0,\alpha_2]\!] \times \dots [\![0,\alpha_r]\!]} p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r} \\ &= \sum_{\beta_1=0}^{\alpha_1} \sum_{\beta_2=0}^{\alpha_2} \dots \sum_{\beta_r=0}^{\alpha_r} p_1^{\beta_1} p_2^{\beta_2} \dots p_r^{\beta_r} \\ &= \left(\sum_{\beta_1=0}^{\alpha_1} p_1^{\beta_1}\right) \times \left(\sum_{\beta_2=0}^{\alpha_2} p_2^{\beta_2}\right) \times \dots \times \left(\sum_{\beta_r=0}^{\alpha_r} p_r^{\beta_r}\right) \end{split}$$

Or, pour tout $k \in [1, r]$, $p_k \neq 1$. Ainsi,

$$S(n) = \frac{p_1^{\alpha_1+1}-1}{p_1-1} \times \frac{p_2^{\alpha_2+1}-1}{p_2-1} \times \ldots \times \frac{p_r^{\alpha_r+1}-1}{p_r-1} = \prod_{k=1}^r \frac{p_k^{\alpha_k+1}-1}{p_k-1}.$$

Preuve:

Montrons que:

$$\forall r \in \mathbb{N}^*, \ S(p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}) = \prod_{k=1}^r \frac{p_k^{\alpha_k+1} - 1}{p_k - 1}.$$

• Pour r=1, les diviseurs de $p_1^{\alpha_1}$ sont : $1,p_1,...,p_1^{\alpha_1}.$ Ainsi :

$$S(p_1^{\alpha_1}) = \sum_{k=0}^{\alpha_1} p_1^k = \frac{p_1^{\alpha_1+1} - 1}{p_1 - 1}$$

(somme des termes consécutifs d'une suite géométrique). La propriété est donc vérifiée pour r=1.

• Soit $r \in \mathbb{N}^*$, supposons que $S\left(p_1^{\alpha_1}...p_r^{\alpha_r}\right) = \prod_{k=1}^r \frac{p_k^{\alpha_k+1}-1}{p_k-1}$.

Notons $d_1,...d_N$ les diviseurs de $p_1^{\alpha_1}...p_r^{\alpha_r}$. Ainsi l'ensemble des diviseurs de $p_1^{\alpha_1}...p_r^{\alpha_r}p_{r+1}^{\alpha_{r+1}}$ est :

$$\{d_i p_{r+1}^k \mid i \in [1, N], k \in [0, \alpha_{k+1}]\}$$

On a donc:

$$\begin{split} S(n) &= \sum_{i=1}^{N} \sum_{k=0}^{\alpha_{r+1}} d_i p_{r+1}^k \\ &= \left(\sum_{i=1}^{N} d_i\right) \times \left(\sum_{k=0}^{\alpha_{r+1}} p_{r+1}^k\right) \\ &= S\left(p_1^{\alpha_1} ... p_r^{\alpha_r}\right) \times \frac{p_{r+1}^{\alpha_{r+1}+1}-1}{p_{r+1}-1} \\ &= \left(\prod_{k=1}^{r} \frac{p_k^{\alpha_k+1}-1}{p_k-1}\right) \times \frac{p_{r+1}^{\alpha_{r+1}+1}-1}{p_{r+1}-1} \\ &= \prod_{k=1}^{r+1} \frac{p_k^{\alpha_k+1}-1}{p_k-1} \end{split}$$

3. Soit $m, n \in \mathbb{N}^*$ premiers entre eux. Soit $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ et $m = q_1^{\beta_1} q_2^{\beta_2} \dots q_r^{\beta_s}$ leur décomposition respective en facteurs premiers avec p_1, p_2, \dots, p_r , q_1, q_2, \dots, q_s deux à deux distincts. En effet, m et n sont premiers entre eux donc n'ont aucun facteur en commun. La décomposition de mn en facteurs premiers est donc : $mn = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r} q_1^{\beta_1} q_2^{\beta_2} \dots q_r^{\beta_s}$ (par unicité). D'après la question précédente :

$$S(mn) = \prod_{i=1}^{s} \frac{q_i^{\beta_i+1} - 1}{q_i - 1} \prod_{j=1}^{r} \frac{p_j^{\alpha_j+1} - 1}{p_j - 1} = S(m)S(n)$$

4 Dénombrement

Exercice 19. Posons $f: \begin{array}{ccc} E & \rightarrow & \mathcal{P}(E) \\ x & \mapsto & \{x\} \end{array}$ et montrons que f est injective.

En effet, soient $x, y \in E$. Supposons que $\{x\} = \{y\}$. On a alors x = y

Ainsi, f est injective.

Comme $\mathcal{P}(E)$ est fini, on en déduit que E est finie et on a : Card $(E) \leq \text{Card}(\mathcal{P})(E)$ car f est injective.

Exercice 20. Soient E et F deux ensembles, soit $f: E \to F$ une application.

1. Supposons que E est fini.

Posons
$$g: E \to f(E)$$

 $x \mapsto f(x)$.

On a directement que g est surjective. Or, E est fini donc f(E) est fini et $\operatorname{Card}(f(E)) \leq \operatorname{Card}(E)$. On a alors :

$$\begin{aligned} \operatorname{Card}\left(f(E)\right) &= \operatorname{Card}\left(E\right) & \text{ ssi } & g \text{ est bijective } \\ & \text{ ssi } & g \text{ est injective } & \operatorname{car} q \text{ surjective } \\ & \text{ ssi } & f \text{ est injective } \end{aligned}$$

- 2. On suppose E fini et f surjective, alors F = f(E). Ainsi, d'après la question précédente, F est fini et $\operatorname{Card}(F) \leq \operatorname{Card}(E)$ avec égalité si et seulement si f est injective. Or, on a déjà supposé f surjective. Ainsi, on a égalité si et seulement si f est bijective.
- 3. On suppose que f est injective et f(E) fini. Alors l'application $g: E \to f(E) \\ x \mapsto f(x)$ est injective car f l'est et surjective. Elle est donc bijective. Ainsi, comme f(E) est fini, E est fini et Card(E) = Card(f(E)).

Exercice 21. Méthode 1 : $\mathcal{P}(E)$ est la réunion disjointe des $\{X \in \mathcal{P}(E), \operatorname{Card}(X) = k\}$ pour $k \in [0, n]$. Donc

$$\sum_{X \in \mathcal{P}[E)} \operatorname{Card}(X) = \sum_{k=0}^{n} \sum_{\substack{X \in \mathcal{P}(E) \\ \operatorname{Card}(X) = k}} \operatorname{Card}(X)$$

$$= \sum_{k=0}^{n} \sum_{\substack{X \in \mathcal{P}(E) \\ \operatorname{Card}(X) = k}} k$$

$$= \sum_{k=0}^{n} k \left(\sum_{\substack{X \in \mathcal{P}(E) \\ \operatorname{Card}(X) = k}} 1 \right)$$

$$= \sum_{k=0}^{n} k \operatorname{Card}(\{X \in \mathcal{P}(E), \operatorname{Card}(X) = k\})$$

$$= \sum_{k=0}^{n} k \binom{n}{k}$$

Soit $k \in [1, n]$, on a:

$$k \binom{n}{k} = k \frac{n!}{(n-k)!k!} = \frac{n!}{(n-k)!(k-1)!} = \frac{n!}{(n-1-(k-1))!(k-1)!} = n \frac{(n-1)!}{(n-1-(k-1))!(k-1)!} = n \binom{n-1}{k-1}$$

Ainsi,

$$\sum_{X \in \mathcal{P}[E)} \operatorname{Card}(X) = \sum_{k=1}^{n} n \binom{n-1}{k-1}$$
$$= n \sum_{k=1}^{n} \binom{n-1}{k-1}$$
$$= n \sum_{k=0}^{n-1} \binom{n-1}{k}$$
$$= n 2^{n-1}$$

d'après le binôme de Newton.

Méthode 2:

Notons
$$S = \sum_{X \in \mathcal{P}(E)} \operatorname{Card}(X)$$
. On remarque tout d'abord que : $\begin{pmatrix} \mathcal{P}(E) & \to & \mathcal{P}(E) \\ X & \mapsto & C_E^X \end{pmatrix}$ est bijective.

Ainsi,
$$S = \sum_{Y \in \mathcal{P}(E)}^{X \in \mathcal{P}(E)} \operatorname{Card}(Y) = \sum_{X \in \mathcal{P}(E)} \operatorname{Card}(C_E^X)$$
. Ainsi :

$$\begin{split} 2S &= \sum_{X \in \mathcal{P}(E)} \operatorname{Card}\left(X\right) + \sum_{X \in \mathcal{P}(E)} \operatorname{Card}\left(C_E^X\right) \\ &= \sum_{X \in \mathcal{P}(E)} \left(\operatorname{Card}\left(X\right) + \operatorname{Card}\left(C_E^X\right)\right) \\ &= \sum_{X \in \mathcal{P}(E)} \operatorname{Card}\left(X \cup C_E^X\right) \\ &= \sum_{X \in \mathcal{P}(E)} \operatorname{Card}\left(E\right) \quad \operatorname{car}\left(X \cup C_E^X\right) = E \text{ et } C \text{ et } C_E^X \text{ sont disjoints} \\ &= \sum_{X \in \mathcal{P}(E)} n \\ &= 2^n n \end{split}$$

Ainsi, $S = n2^{n-1}$.

Exercice 22. Soit E un ensemble fini de cardinal $n \ge 1$.

• Notons
$$S_1 = \sum_{(X,Y)\in P(E)^2} \operatorname{Card}(X\cap Y)$$
. On remarque tout d'abord que : $V(E) \to \mathcal{P}(E) \to \mathcal{P}(E)$ est bijective.

Donc
$$S_1 = \sum_{(X,Y)\in P(E)^2} \operatorname{Card}\left(C_E^X \cap Y\right)$$

Donc
$$S_1 = \sum_{(X,Y)\in P(E)^2} \operatorname{Card}(C_E^X \cap Y).$$

De même, $S_1 = \sum_{(X,Y)\in P(E)^2} \operatorname{Card}(X \cap C_E^Y).$

Enfin,
$$S_1 = \sum_{(X,Y)\in P(E)^2}^{(X,Y)\in P(E)^2} \operatorname{Card}\left(C_E^X \cap C_E^Y\right).$$

Ainsi, on a :

$$4S_{1} = \sum_{(X,Y)\in P(E)^{2}} \operatorname{Card}(X\cap Y) + \sum_{(X,Y)\in P(E)^{2}} \operatorname{Card}(C_{E}^{X}\cap Y) + \sum_{(X,Y)\in P(E)^{2}} \operatorname{Card}(X\cap C_{E}^{Y}) + \sum_{(X,Y)\in P(E)^{2}} \operatorname{Card}(C_{E}^{X}\cap C_{E}^{Y})$$

$$= \sum_{(X,Y)\in P(E)^{2}} \left(\operatorname{Card}(X\cap Y) + \operatorname{Card}(C_{E}^{X}\cap Y) + \operatorname{Card}(X\cap C_{E}^{Y}) + \operatorname{Card}(C_{E}^{X}\cap C_{E}^{Y})\right)$$

$$= \sum_{(X,Y)\in P(E)^2} \left(\operatorname{Card}\left(X\cap Y\right) + \operatorname{Card}\left(C_E^X\cap Y\right) + \operatorname{Card}\left(X\cap C_E^Y\right) + \operatorname{Card}\left(C_E^X\cap C_E^Y\right) \right)$$

Or,
$$(X \cap Y)$$
, $(C_E^X \cap Y)$, $(X \cap C_E^Y)$, $(C_E^X \cap C_E^Y)$ sont disjoints et $(X \cap Y) \cup (C_E^X \cap Y) \cup (X \cap C_E^Y) \cup (C_E^X \cap C_E^Y) = Y \cup C_E^Y = E$.

$$4S_1 = \sum_{(X,Y) \in P(E)^2} \text{Card}(E) = \sum_{X \in P(E)} \sum_{Y \in P(E)} n = n \left(\sum_{X \in P(E)} 1 \right) \left(\sum_{Y \in P(E)} 1 \right) = n2^n \times 2^n$$

• Notons
$$S_2 = \sum_{(X,Y) \in P(E)^2} \operatorname{Card}(X \cup Y)$$
. On a : $S_2 = \sum_{(X,Y) \in P(E)^2} (\operatorname{Card}(X) + \operatorname{Card}(Y) - \operatorname{Card}(X \cap Y))$. Ainsi, en utilisant le résultat de la question précédente et de l'exercice précédent, on a :

$$\begin{split} S_2 &= \sum_{X \in P(E)} \sum_{Y \in P(E)} \left(\operatorname{Card}\left(X\right) + \operatorname{Card}\left(Y\right) - \operatorname{Card}\left(X \cap Y\right) \right) \\ &= \left(\sum_{X \in P(E)} \sum_{Y \in P(E)} \operatorname{Card}\left(X\right) \right) + \left(\sum_{X \in P(E)} \sum_{Y \in P(E)} \operatorname{Card}\left(Y\right) \right) - \left(\sum_{X \in P(E)} \sum_{Y \in P(E)} \operatorname{Card}\left(X \cap Y\right) \right) \\ &= \left(\sum_{X \in P(E)} \operatorname{Card}\left(X\right) \right) \left(\sum_{Y \in P(E)} 1 \right) + \left(\sum_{X \in P(E)} 1 \right) \left(\sum_{Y \in P(E)} \operatorname{Card}\left(Y\right) \right) - \left(\sum_{X \in P(E)} \sum_{Y \in P(E)} \operatorname{Card}\left(X \cap Y\right) \right) \\ &= n2^{n-1} \times 2^n + n2^{n-1} \times 2^n - n2^{2n-2} \\ &= n2^{2n-1} + n2^{2n-1} - n2^{2n-2} = n2^{2n-2}(2+2-1) \\ &= 3n2^{2n-2} \end{split}$$

1. Choisir une partir de E ne contenant ni a ni b revient à choisir une partie de $E \setminus \{a, b\}$.

Or, Card $(E \setminus \{a,b\}) = n-2$. Ainsi, il y a 2^{n-2} parties de $E \setminus \{a,b\}$ donc 2^{n-2} parties ne contenant ni a ni b.

2. Méthode 1:

Il y a 2^n partie de E.

Choisir une partie de E qui ne contient pas a revient à choisir une partie de $E \setminus \{a\}$. Or, Card $(E \setminus \{a\}) = n - 1$. Ainsi, il y a 2^{n-1} parties qui en contiennent pas a.

Notons E_1 l'ensemble des parties de E qui contiennent a et E_2 l'ensemble des parties qui ne contiennent pas a. On a : $E = E_1 \cup E_2$ et cette union est disjointe. Ainsi, $Card(E) = Card(E_1) + Card(E_2)$. Donc, il y a $2^n - 2^{n-1}$ parties qui contiennent a.

Méthode 2:

Pour construire une partie X de E qui contient a, on décompose : $X = \{a\} \cup X'$ où $X' \in \mathcal{P}(E \setminus \{a\})$.

- On choisit l'élément a de E: 1 choix.
- On choisit une partie X' de $\mathcal{P}(E \setminus \{a\}) : 2^{n-1}$ possibilité.

Donc au total : 2^{n-1} possibilités.

1. On a : Card $(\mathcal{F}(E,F)) = 5^4 = 625$.

2. Seule la valeur en 2 est imposée, il y a donc 3 possibilités pour f(1), 3 possibilités pour f(3) et 3 possibilités pour f(4). Soit au total $5^3 = 125$ possibilités.

3. On a 5 possibilités pour f(1), 5 possibilités pour f(2), 5 possibilités pour f(4). En revanche, $f(3) \in F \setminus \{f(1)\}$. Ainsi, une fois f(1) choisi, on a 4 possibilités pour f(1).

Soit au total $4 \times 5^3 = 4 \times 125 = 500$ possibilités.

- 4. On a Card (E) ≠ Card (F), donc il n'existe pas d'application bijective de E dans F. Plus précisément, Card (E) < Card (F) donc il n'existe aucune application surjective de E dans F. Interessons-nous au nombre d'injections de E dans F. D'après le cours, il y a 5 × 4 × 3 × 2 = 120 applications injectives de E dans F.
- 5. Si f est strictement croissante, alors f(1) vaut 1 ou 2.
 - Si f(1) = 2 alors on a pour tout $k \in [2, 4]$, f(k) = k + 1. Donc, il n'y a une seule application strictement croissante telle que f(1) = 2.
 - Si f(1) = 1, il y a trois positions possible pour une incrémentation de 1 et une application telle que : $\forall i \in [1, 4], f(i) = i$.

Ainsi, il y a 5 applications strictement croissante de E dans F.

Exercice 25. 1. (a) On tire simultanément cinq boules parmi les 15, il y a donc $\binom{5}{15}$ tirages possibles (pas d'ordre).

- (b) On choisit simultanément :
 - 2 boules blanches parmi les $5: \binom{5}{2}$
 - 2 boules noires parmi les 10 : $\binom{10}{3}$

Soit au total : $\binom{5}{2}\binom{10}{3}$ tirages correspondents.

2. (a) On choisit successivement et sans remise 5 boules parmi les 15 (ordre pris en compte et pas de répétition possible).

Ainsi, il y $\frac{15!}{10!}$ tirages possibles.

- (b) On commence par choisir 2 boules blanches parmi les $5: \binom{5}{2}$ possibilités
 - et 3 boules noires parmi les 10 : $\binom{10}{3}$ possibilités.
 - $\bullet\,$ Il reste à ordonner ces différentes boules : 5 ! possibilités.

Soit au total : $\binom{5}{2} \times \binom{10}{3} \times 5! = 120$ tirages.

Exercice 26. 1. Pour constituer un menu : on choisit :

- une entrée : 4 possibilités
- un plat : 3 possibilités
- un dessert : 2 possibilités

Soit au total, il y a donc $4 \times 3 \times 2 = 24$ menus possibles.

- 2. Un podium correspond à une 3-liste d'éléments distincts de l'ensemble des coureurs (pas de répétitions et l'ordre pris en compte). Ainsi, il y a $\frac{8!}{5!} = 8 \times 7 \times 6 = 336$ podiums possibles.
- 3. Un rangement correspond à une 5-liste $(\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5)$, où pour tout $k \in [1, 5]$, $\alpha_k \in \{1, 2, 3\}$ désigne l'urne dans laquelle on a rangé la boule k. Ainsi, le nombre de rangement de ces 5 boules vaut 3^5 .
- 4. (a) Un rangement des ces tomes correspond à une permutation de ces n tomes (bijection de [1, n] dans [1, n]). Il y en a n!.
 - (b) Pour ranger les tomes 1 et 2 côte à côte et dans cet ordre :
 - on place le tome 1 à une position $k \in [1, n-1]$, toutes sauf la dernière pour placer le tome 2 à sa droite.
 - On place le tome 2 : 1 possibilité
 - On place ensuite les n-2 tomes restants dans les n-2 places restantes : (n-2)! possibilités (nombre de façons de permuter ces n-2 objets).

Soit au total : $(n-1) \times (n-2)! = (n-1)!$ rangements.

- 5. (a) Il y a 26^3 mots de trois lettres (26 lettres dans l'alphabet) (nombre de 3 listes d'éléments de l'alphabet) et 25^3 mots de 3 lettres ne contenant pas de e (25 possibilités pour chaque lettre). Par passage au complémentaire on obtient $:26^3 25^3$ mots de 3 lettres avec au moins un e.
 - (b) Un mot de 3 lettres avec au plus un e a aucun e ou exactement un e (ces deux sous ensembles sont disjoints).

- Il y a 25^3 mots de 3 lettres sans e.
- ullet Pour former un mot de 3 lettres avec exactement un e :
 - trois position pour la place du e: le mot s'écrit sous la forme $e\alpha\beta$ ou $\alpha e\beta$ ou $\alpha\beta e$ avec α , β deux lettres différentes de e.
 - Et $25^2 \times 1$ possibilités de mots avec un e à une place fixée.

Soit au total : 3×25^2 mots contenant exactement un e.

Finalement, on obtient : $25^3 + 3 \times 25^2 = 17500$ mots de 3 lettres avec au plus un e.

- 6. (a) Un anagramme de MATHS peut être vu comme une permutation de ses 5 lettres qui sont bien toutes distinctes. Il y a donc 5! anagrammes de MATHS.
 - (b) Les lettres ne jouent pas ici toutes le même rôle, puisque, permuter les deux O donne le même mot. Pour former une anagramme de MOTO, on choisit successivement:
 - 2 positions parmi les 4 possibles pour placer les deux O, soit $\binom{4}{2} = 6$.
 - 1 position parmi les 2 restantes pour placer le M, soit $\binom{2}{1} = 2$.
 - 1 position pour le T qui ne peut aller que sur la seule place restante, soit 1 possibilité.

Par conséquent, il y a $6 \times 2 = 12$ anagrammes de MOTO.

On peut évidemment retrouver ce résultat en commençant par placer le M ou le T.

- (c) On procède comme précédemment : Pour former une anagramme de TARATATA, on choisit successivement :
 - 4 position parmi les 8 possibles pour placer les quatre A, soit $\binom{8}{4}$.
 - 3 positions parmi les 5 restantes pour placer les trois T, soit $\binom{5}{2}$.
 - 1 position pour le R qui ne peut aller que sur la seule place restante, soit 1 possibilité.

Par conséquent, il y a $\binom{8}{4} \times \binom{5}{3} = 280$ anagrammes de TARATATA.

Exercice 27. Soient $n, k \in \mathbb{N}$ tels que $2 \le k \le n$.

- 1. (a) On tire simultanément k boules dans une urne qui en contient n (pas d'ordre et pas de répétitions). Il y a
 - donc \$\binom{n}{k}\$ tirages possibles.
 (b) Soit \$p \in \binom{k}{n}\$. La boule \$p\$ étant fixée, on choisit les \$k-1\$ autres boules parmi les boules numérotées de 1 à \$p-1\$. Il y a \$\binom{p-1}{k-1}\$ possibilités pour ce choix : d'où \$\binom{p-1}{k-1}\$ tirages.
 (a) On tire successivement et sans remise \$k\$ boules dans un ensemble de \$n\$ boules. Un tel tirage peut donc \$n!\$ tirages.
- être représenté par une k-liste d'éléments distincts de l'ensemble des n boules. Il y a donc $\frac{n!}{(n-k)!}$ tirages possibles.
 - (b) Méthode 1:
 - on a pioche la boule 1 en premier,
 - il y a n-1 possibilités pour la deuxième,
 - n-2 pour la troisième,
 - ...,
 - n (k+1) pour la k-ième.

Au total, il y a ainsi $\frac{(n-1)!}{(n-k)!}$ tirages possibles.

Une fois que l'on a pioché la boule 1 en premier, il reste k-1 tirages à effectuer dans un ensemble de n-1 boules (car pas de remise). Donc il y a : $\frac{(n-1)!}{(n-1-(k-1))!} = \frac{(n-1)!}{(n-k)!}$ possibilités.

- 3. (a) On tire successivement et avec remise k boules dans une urne qui en contient n. Un tel tirage correspond à une k-liste d'un ensemble à n éléments. Il y a donc n^k tirages possibles (ordre pris en compte et répétitions possibles).
 - On commence par choisir deux numéros i et j entre 1 et $n: \binom{n}{2}$ possibilités.

• On compte le nombres de tirages où les numéros seuls les i et j apparaissent et où ces deux numéros apparaissent.

Pour chacun des k tirages, on choisit une boule parmi les deux numéros i ou $j:2^k$ possibilité. Il faut exclure les deux séries de tirages qui ne donnent que des i ou que des j.

Il y a donc 2^k-2 tirages où les numéros seuls les i et j apparaissent et où ces deux numéros apparaissent.

Soit au total : $\binom{n}{2}(2^k-2) = n(n-1)(2^{k-1}-1)$ tirages au total où deux numéros exactement apparaissent.

Exercice 28. Notons A l'ensemble des entiers pairs de E et B l'ensemble des entiers impairs.

- 1. Pour définir une partie de E de cardinal p contenant un et un seul entier pair :
 - on choisit un élément de $A: \begin{pmatrix} a \\ 1 \end{pmatrix}$ possibilités.
 - on choisit p-1 élément de $B: \binom{n-a}{p-1}$ possibilités.

D'où au total $a \binom{n-a}{p-1}$ possibilités. 2. On note $E_p = \{X \in \mathcal{P}(E), \operatorname{Card}(X) = p\}$.

Notons C l'ensemble des parties de E_p contenant au moins un entier pair. $E_p \setminus C$ est l'ensemble des parties de E_p ne contenant aucune entier pair. Donc $E_p \setminus C$ est l'ensemble des parties de B de cardinal p.

Or, Card
$$(C) = \operatorname{Card}(E_p) - \operatorname{Card}(E_p \setminus C)$$
 et Card $(E_p \setminus C) = \binom{n-a}{p}$ donc Card $(C) = \binom{n}{p} - \binom{n-a}{p}$.

Exercice 29. Soit E un ensemble fini de cardinal n.

1. Notons $E_1 = \{(X, Y) \in \mathcal{P}(E)^2 | X \subset Y\}.$

Pour former un couple de E_1 , on effectue le dénombrement suivant :

- choix $Y \in \mathcal{P}(E)$ de cardinal $k \in [0, n] : \binom{n}{k}$ possibilités.
- choix de $X \in \mathcal{P}(Y)$: 2^k possibilités.

Soit au total:

Card
$$(E_1) = \sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n$$

d'après le binôme de Newton.

2. Notons $E_2 = \{(X, Y) \in \mathcal{P}(E)^2 \mid X \cap Y = \emptyset\}.$

On remarque tout d'abord que $E_2 = \{(X, Y) \in \mathcal{P}(E)^2 \mid X \subset C_E^Y\}.$

Pour former un couple de E_2 , on effectue le dénombrement suivant :

- choix $Y \in \mathcal{P}(E)$ de cardinal $k \in [0, n]$: $\binom{n}{k}$ possibilités.
- choix de $X \in \mathcal{P}(C_E^Y)$: on a Card $(C_E^Y) = \text{Card}(E) \text{Card}(Y) = n k \text{ donc } 2^{n-k} \text{ possibilit\'es.}$

Soit au total:

Card
$$(E_2) = \sum_{k=0}^{n} \binom{n}{k} 2^{n-k} = 3^n$$

d'après le binôme de Newton.

3. Notons $E_3=\{(X,Y,Z)\in\mathcal{P}(E)^3\mid X\subset Y\subset Z\}.$ Pour former un triplet de E_2 , on effectue le dénombrement suivant :

- choix de $Z \in \mathcal{P}(E)$ de cardinal $k \in [0, n] : \binom{n}{k}$ possibilités.
- choix du couple $(X,Y) \in \mathcal{P}(Z)^2$ tel que $X \subset Y : 3^k$ possibilités d'après la question 1

Soit au total:

Card
$$(E_3) = \sum_{k=0}^{n} \binom{n}{k} 3^k = 4^n$$

d'après le binôme de Newton.

Exercice 30. Une application strictement croissante est injective.

Ainsi, si p > n, il n'y a aucune application strictement croissante de [1, p] dans [1, n].

Supposons désormais $p \leq n$.

Pour construire une application de [1, p] dans [1, n]:

- On commence par choisir f([1,p]) qui est une partie de [1,n] à p éléments : $\binom{n}{n}$ possibilités.
- A chacun de cet ensemble f([1,p]) correspond une seule application strictement croissante (celle qui vérifie f(1) < f(2) < ... < f(p)) : 1 possibilités

Soit au total $\binom{n}{n}$ applications strictement croissantes de [1, p] dans [1, n].

Exercice 31. Soit $N \in \mathbb{N}^*$.

• Nombre de partition en deux parties.

Les partitions en deux éléments sont de la forme $\{A, C_E^A\}$ où $A \in \mathcal{P}(E) \setminus \{E, \emptyset\}$. Commençons par dénombrer l'ensemble : $E_1 = \{(A, C_E^A) \mid A \in \mathcal{P}(E) \setminus \{\emptyset, E\}\}$. Pour définir un couple $(A, C_E^A) \in \mathcal{P}(E)^2$, il suffit de choisir $A \in \mathcal{P}(E) \setminus \{\emptyset, E\} : 2^n - 2$ possibilités. Ainsi, Card $(E_1) = 2^n - 2$.

Notons $E_2 = \{\{A, C_E^A\} \mid A \in \mathcal{P}(E) \setminus \{\emptyset, E\}\}$. On a Card $(E_2) = \frac{\operatorname{Card}(E_1)}{2!}$.

En effet, il nous faut diviser par le nombre de permutations que l'on peut effectuer au sein de notre couple. Ainsi, $Card(E_2) = 2^{n-1} - 1$ et il y a $2^{n-1} - 1$ partitions de E en deux parties.

Nombre de partition en trois parties.

Les partitions en trois éléments sont de la forme $\{A, B, C_{C_E^A}^B\}$ où $A \in \mathcal{P}(E) \setminus \{E, \emptyset\}$ et $B \in \mathcal{P}(C_E^A) \setminus \{C_E^A, \emptyset\}$. Commençons par dénombrer l'ensemble : $F_1 = \{(A, B, C_E^A) \mid A \in \mathcal{P}(E) \setminus \{\emptyset, E\}, B \in \mathcal{P}(C_E^A) \setminus \{C_E^A, \emptyset\}\}$.

Pour former un triplet, on effectue le dénombrement suivant :

- choix de $A \in \mathcal{P}(E)$ de cardinal $k \in [1, n-1]$: $\binom{n}{k}$ possibilités.
- choix de $B \in \mathcal{P}(C_E^A) \setminus \{C_E^A, \emptyset\}$: on a Card $(C_E^A) = \text{Card}(E) \text{Card}(A) = n k$. Ainsi on a : $2^{n-k} 2$ choix
- \bullet Une fois A et B fixées, $C^B_{C^A_\alpha}$ est entièrement déterminé : 1 possibilité

Soit au total:

$$\operatorname{Card}(F_1) = \sum_{k=1}^{n-1} \binom{n}{k} (2^{n-k} - 2)$$

$$= \left(\sum_{k=0}^{n} \binom{n}{k} (2^{n-k} - 2)\right) - (2^n - 2) - (2^0 - 2)$$

$$= \left(\sum_{k=0}^{n} \binom{n}{k} 2^{n-k}\right) - 2 \left(\sum_{k=0}^{n} \binom{n}{k}\right) - 2^n + 3$$

$$= 3^n - 2 \times 2^n - 2^n + 3 \quad \text{d'après le binôme de Newton}$$

$$= 3^n - 3 \times 2^n + 3$$

Notons $F_2 = \{\{A, B, C_E^A\} \mid A \in \mathcal{P}(E) \setminus \{\emptyset, E\}, B \in \mathcal{P}(C_E^A) \setminus \{C_E^A, \emptyset\}\}$. On a Card $(F_2) = \frac{\operatorname{Card}(F_1)}{3!}$. En effet, il nous faut diviser par le nombre de permutations que l'on peut effectuer au sein de notre triplet. Ainsi, $\operatorname{Card}(F_2) = \frac{3^n - 3 \times 2^n + 3}{6} = \frac{1}{2}3^{n-1} - 2^{n-1} + \frac{1}{2}$ et il y a $\frac{1}{2}3^{n-1} - 2^{n-1} + \frac{1}{2}$ partitions de E en trois

parties.