3000788 Intro to Comp Molec Biol

Lecture 3: DNA sequencing applications

August 23, 2022

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Next-Generation Sequencing (NGS)

DNA polymerization

deoxynucleotide (dNTP)

http://www.onlinebiologynotes.com/sangers-method-genesequencing/

https://www.khanacademy.org

High throughput from parallel reactions

Roche & Ion Torrent wells

1) Adapter-ligated ssDNA library

2) Clonal amplification on 28 micron beads ... emulsion PCR

3) Beads deposited on PicoTiterPlate wells

Illumina's flow cell

http://training.bioinformatics.ucdavis.edu

Pyrosequencing

a) A pyrosequencing reaction

Limitation of pyrosequencing

Illumina / Solexa

- Enable paired-end sequencing
- Improve mappability
- Identify splice junction
- Identify gene fusion
- Identify translocation

 Resulting covalentlybound DNA fragments are bound to the flow cell surface in a random pattern Single-strand flops over to hybridize to adjacent adapter, forming a bridge

 dsDNA synthesized from primer in hybridized adapter

 dsDNA bridge is denatured

- Single strands flop over to hybridize to adjacent adapters, forming bridges
- dsDNA synthesized by polymerases

 Bridge amplification cycles repeated many times

Illumina / Solexa DNA amplification

 Improve sensitivity by sequencing clusters of the amplified DNA molecules deriving from the same original DNA

Multi-step DNA polymerization

Pros and cons

Platform	Read Length	Run Time	Gb/ Run	Advantage	Disadvantage
454 (Pyrosequencing)	400+	1 day	0.7	Long read length	Homopolymer error Single-ended only
Illumina	50-300	10 days	600	Low cost per base	Short reads Long run time
Ion Torrent	200-400	2 hrs	100	Fast run times	Homopolymer error

Tradeoffs

Sanger

- 1000 bp, low throughput

454 and Ion Torrent

- 400+ bp, medium throughput

Illumina

<300 bp, high throughput</p>

Use cases

Sanger

Validate sequences

454 Pyrosequencing

Metagenomics

Ion Torrent

Fast turn-around situation

Del Chierico et al. Methods in Molecular Biology 2015

Illumina

- Whole-genome
- Practically anything...

3rd Generation Sequencing (Long-Read)

Single-Molecule Real-Time (SMRT) sequencing

Zero-mode waveguide (ZMW)

Phospholinked nucleotide

Images from Pacific Biosciences

- Faster, more durable DNA polymerase
- Small wells with single DNA molecule
 - Zero-mode waveguide = nanophotonic confinement structure
 - Allow monitoring of fluorescence signal from individual reaction
- No amplification = direct quantification of DNA/RNA abundance

Video data

- Compared to image data from Illumina platform
- Video gives time information → identification of modified DNA/RNA

High error rate

ICCGGAGCGACGCGTACGATTAAAGCACGTACTGCGTATGCGTATCCCTAGCTTGCTAGGCTAGTATGCTAGATTAAAGCTC GTACTGC**A**TATG**T**GTATGCCTAGCTAGCTAGG**A**TAG**C**ATGCTAGATTAAAGCT GTACCGCGTATGCGTATGCCAGGTAGCTAGGCTAGTATGCT PCCGGATCTACGCGTACGATTAAAGCTAGTACTGCGTATGCGTTTTGCCTATGTAGCTA $ext{PCCGGATCGACGTGTACGATTAGCTCTTACTGCGTATACGTATGCCTAGGTAGCTAGGCTAGTATGCTAGATTAAAGCTCGAAC1}$ $\mathtt{PCT}_{\mathsf{GGATCGACGCGTACGACAGCTCGTACTGTGTATGCGTATGCCTAGCTCGCTACGCTAGTATGCTC}$ ${ t PCC}{ t C}{ t GATCGACGCGT}{ t IC}{ t GATTAAAGCTCGT}{ t C}{ t T}{ t A}{ t T}{ t G}{ t C}{ t C}{ t T}{ t A}{ t G}{ t C}{ t C}{ t T}{ t A}{ t G}{ t C}{ t C}{ t T}{ t A}{ t G}{ t C}{ t C}{ t T}{ t A}{ t G}{ t C}{ t C}{ t T}{ t A}{ t G}{ t C}{ t C}{ t T}{ t A}{ t C}{ t C}{ t C}{ t T}{ t A}{ t C}{ t C}{ t C}{ t C}{ t T}{ t C}{ t C}{ t T}{ t C}{ t C}{ t C}{ t T}{ t C}{ t C}{ t T}{ t C}{ t C}{ t C}{ t T}{ t C}{ t$ PCCGGATCGGCGCGTACGATTAAAGCTCGTACTGCGGATGCGTATGCCTAGCTGGCTAGGCGAGTATGCTAGATGAAAGGTCGTAC1

- 5-15% error compared to 0.01% of Illumina
- How do we solve this?

Circular consensus sequencing

- Circular extension of each DNA molecule
- Read the extended molecules = multiple resequencing of the original sequence
- Take the consensus (majority vote)
- P(correct base in >k of N passes) \sim Binomial

Images from Pacific Biosciences

Read length >> 10kb

Resolve repetitive region

~20% of human genome

Resolve haplotype

Nanopore

Basecalling with deep neural networks

- Trained using data from synthetic DNA
- 14% base error
- Improved to 3-5% using bioinformatics and machine learning

Rang, Kloosterman, and de Ridder. Genome Biology 2018

Portability & fast turn-around time

	Flongle	MinION	GridION (5 flow cells)	PromethION (48 flow cells)
		www.	OF THE STATE OF	O O
Maximum run time	16 hours	72 hours	72 hours	64 hours
Theoretical 1D maximum yield	Up to 3.3 Gb	Up to 40 Gb	Up to 200 Gb	Up to 15 Tb
Current 1D maximum yield	Up to 2 Gb	Up to 30 Gb	Up to 150 Gb	Up to 8.6 Tb
Available channels	Up to 126	Up to 512	Up to 2,560	Up to 144,000

Read length up to Mb

Real-time data

- Real time ionic flow signals
- Ability to manipulate individual pore and terminate unwanted reads
- Rapid decision making (no need to wait for the full 16-72hr run)

Detection of modified nucleotides

Geralde et al. Nature Methods 15, 201-206 (2017)

- Modified nucleotides = different 3D structure = different change in ionic flow
- Trained using synthetic nucleotides

Combining short and long read data

Applications of DNA/RNA sequencing

Sequencing scope

Cost = Base Pair = Scope x Depth

Reduced scope

- Exome sequencing = exons only
- Amplicon sequencing = selected loci
 - 16S rRNA, RDRP gene
 - (Cancer) gene panels

Reduced depth

- Ultra-low pass
 - Detect chromosomal copy alternation
 - Estimate tumor fraction

Euskirchen, P. et al. Acta Neuropathol 134:691-703 (2017)

Enrichment for targeted sequencing

https://en.wikipedia.org/wiki/Exome_sequencing

Chromatin immunoprecipitation

Park et al. Nat Rev Genet 10:669-680 (2009)

DNA-bound protein / histone modification

DNA adenine methylatransferase (DamID)

https://marshall-lab.org/damid/

- Dam attached to protein of interest
- Methylation of GATC
- DpnI/DpnII enzymes

Bisulfite sequencing

Assay for transposase-accessible chromatin (ATAC)

Transposase with sequencing adapter insertion into open chromatin

Targetting bound or unbound chromatin

Chromatin conformation capture

Cross-link proximal DNA \rightarrow join ends from different regions \rightarrow sequencing

Chromatin interaction analysis with paired-end tag

RNA secondary structure

Sequencing application key points

- Scope of sequencing = enrich target DNA
- DNA-binding protein = antibody pull-down
- Detection of DNA modification
- Targeting bound / unbound DNA
- Enzyme specificity

Any question?

- See you again on August 25th 1-2:30pm