Classificação dos $\mathfrak{sl}_2(\mathbb{C})$ -módulos de peso irredutíveis

João Antonio Francisconi Lubanco Thomé* Bacharelado em Matemática - UFPR

jolubanco@gmail.com

Prof. Dr. Matheus Batagini Brito (Orientador)
Departamento de Matemática - UFPR

mbrito@ufpr.br

Palavras-chave: álgebras de Lie, representações, classificação dos $\mathfrak{sl}_2(\mathbb{C})$ -módulos.

Resumo

No estudo da álgebra abstrata, muitas vezes é importante e eficiente trabalhar com suas representações. Para o caso particular de álgebras de Lie semi-simples de dimensão finita, a teoria de representação de $\mathfrak{sl}_2(\mathbb{C})$ desempenha um papel crucial. Neste trabalho focamos no estudo das representações da álgebra de Lie $\mathfrak{sl}_2(\mathbb{C})$ e classificamos todos os seus módulos de peso irredutíveis.

Diremos que um módulo sobre $\mathfrak{sl}_2(\mathbb{C})$, ou um $\mathfrak{sl}_2(\mathbb{C})$ -módulo, é um espaço vetorial V com três operadores lineares fixados, E, F e H em V satisfazendo as seguintes relações:

(i)
$$EF - FE = H$$

(ii)
$$HE - EH = 2E$$

(iii)
$$HF - FH = -2F$$

Além disso, utilizaremos duas classes importantes de módulos: os irredutíveis e os de peso. Diremos que um $\mathfrak{sl}_2(\mathbb{C})$ -módulo V é *irredutível* se os únicos submódulos de V são os triviais e um $\mathfrak{sl}_2(\mathbb{C})$ -módulo V é dito *módulo de peso* se

$$V = \bigoplus_{\lambda \in \mathbb{C}} V_{\lambda}$$

onde $V_{\lambda} = \{v \in V : H(v) = \lambda v\}$ para $\lambda \in \mathbb{C}$. Por fim, a classificação será dada a partir de quatro famílias de módulos, e para fazer suas construções definiremos as ações dos operadores E, F e H nos elementos da base, a partir dos diagramas abaixo, onde

^{*}Bolsista do Programa PET-Matemática.

as flechas simples representam as ações de E, as flechas duplas as ações de F e as pontilhadas as ações de H.

 $V^{(n)}$: onde $a_i = i(n-i)$ com $n \in \mathbb{N}$

 $M(\lambda)$: onde $a_i = i(\lambda - i + 1)$ com $\lambda \in \mathbb{C}$.

 $\overline{M}(\lambda)$: onde $b_i = -i(\lambda + i - 1)$ com $\lambda \in \mathbb{C}$.

 $V(\xi,\tau)$: onde $a_{\lambda}=\frac{1}{4}(\tau-(\lambda+1)^2)$ com $\xi\in\mathbb{C}/2\mathbb{Z}$, $\lambda\in\xi$ e $\tau\in\mathbb{C}$.

Tais diagramas serão cruciais na classificação dos $\mathfrak{sl}_2(\mathbb{C})$ -módulos, pois analisaremos como os operadores E e F agem nos elementos da base de um módulo de peso V. Assim, a partir da construção destes módulos, temos o seguinte resultado de classificação.

Teorema 1 (Classificação dos $\mathfrak{sl}_2(\mathbb{C})$ -Módulos de Peso Irredutíveis) Cada $\mathfrak{sl}_2(\mathbb{C})$ -módulo de peso irredutível é isomorfo a um dos seguintes módulos:

- (i) $V^{(n)}$ para algum $n \in \mathbb{N}$.
- (ii) $M(\lambda)$ para algum $\lambda \in \mathbb{C} \backslash \mathbb{N}_0$.
- (iii) $\overline{M}(-\lambda)$ para algum $\lambda \in \mathbb{C} \backslash \mathbb{N}_0$.
- (iv) $V(\xi,\tau)$ para algum $\xi \in \mathbb{C}/2\mathbb{Z}$ e $\tau \in \mathbb{C}$ tal que $\tau \neq (\mu+1)^2$ para todo $\mu \in \xi$.

Referências

- [1] MAZORCHUK, V. Lectures on $\mathfrak{sl}_2(\mathbb{C})$ -modules. Imperial College Price, 2009.
- [2] SAN MARTIN, L.A.B. Álgebras de Lie. 2. ed. Campinas, SP: Unicamp, 2010.
- [3] ROMAN, S. Advanced Linear Algebra. Springer-Verlag, 1992.