Topological Ring Theory

S. William

1 Basic Concepts

We show the definition of topological rings.

Definition 1.1 (**Topological Ring**) A ring R with a topological structure is a topological ring if the operators $-,*:R\times R\to R$ are continuous. It is separated, when its topology is separated (Hausdorff space).

We show some obvious facts.

Fact 1.1 *1.* R is an Abelian group with +;

- 2. A subring M and quotient ring R/J of R is also topological rings with topological structure inherited from R; R/J is separated iff J is closed;
- 3. The closure M of a subring M is also a topological ring. A direct product of topological rings is a topological ring in a natural way;
- 4. For a separated ring, we define completion \tilde{R} (also separated) of R regarding R as a uniform space. And we have an extension \tilde{R}/R .

Example 1.1 \mathbb{R} is a topological ring (complete, separated), and $\mathbb{R} = \tilde{\mathbb{Q}}$. So \mathbb{C} is.

Example 1.2 $\mathbb{R}^{n \times n}$ is a topological ring (complete, separated). So $\mathbb{C}^{n \times n}$ is.

Definition 1.2 (*J*-adic topology) J is an ideal of a communative tring R, then set $\{J^m, m \in \mathbb{N}\}$ forms a fundamental system of neighbourhoods of 0 that generates so-called J-adic topology. It is separated if $\bigcap_m J^m = \{0\}$.

Example 1.3 The p-adic topology on the integers is an example of an (p)-adic topology.

TopRing denotes the category of topological rings with continuous homomorphisms as its morphisms.

2 Top on Homomorphism

Homomorphism set $\operatorname{Hom}(R,S)$ is a ring, $\phi\psi(a) = \phi(a)\psi(a), (\phi+\psi)(a) = \phi(a) + \psi(a)$. Let $M(A,V) = \{\phi \in \operatorname{Hom}(R,S) \mid \phi[A] \subset V\}$. If $A \in \mathcal{G}, V \in \mathcal{B}$, then M(A,V) form a top basis of $\operatorname{Hom}(R,S)$, where \mathcal{G} is directed (e.g. $\mathcal{G} = \mathcal{K}$).