

Quality Control of NGS data

FastQ files

```
@HWUSI-EAS100R:6:73:941:1973#0/1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCA
CAGTTT
! ' '* ( ( ( ( ***+) ) %%%++) (%%%%) .1***-
+*'')) **55CCF>>>>CCCCCCC65
1st row: sequence identifier (machine ID, x-y coordinates,
additional info)
2<sup>nd</sup> row: The actual sequence
3rd row: starts with "+" and optionally the same identifier as in
the 1st row
4th row: Quality score for each base in read
```

Phred Quality Scores

A quality value Q is an integer representation of the probability p that the corresponding base call is incorrect.

$$Q = -10 \log_{10} P$$
 \longrightarrow $P = 10^{\frac{-Q}{10}}$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10000	99.99%
50	1 in 100000	99.999%

FastQC

FastQC

Bad qualities:

Good qualities:

What is QC?

- Different NGS application have their own problem areas and requires their own QC strategy
- Today: Focus on QC for whole genome sequencing
- For variant calling it is important to look at quality score distribution, sequence length distribution and duplication levels.
- Thursday: More details on QC for RNA-seq

FastQC

