Lab Report of BIM3019

MD Simulation

Name: HU Linfeng

ID: 120090473

Start date: 4th Mar.

Question 1:You should now have a look of 1AKI on RCSB Protein Data Bank to know what's inside the 1aki.pdb. According to the PDB, what is the resolution of this structure? Does this protein exist as a monomer or dimer?

Answer:

The screen shot of the webpage of 1AKI in PCSB Protein Data Bank (https://www.rcsb.org/structure/1AKI) is as follows:

The title shows that 1AKI is the structure of the orthorhombic form of hen egg-white lysozyme at 1.5 angstrom resolution

In the webpage, we can also find:

Experimental Data Snapshot

Method: X-RAY DIFFRACTION

Resolution: 1.50 Å R-Value Work: 0.212

Which also indicates the resolution of this structure is 1.5 angstrom, the protein exist as monomer.

Question 2: Read the gro file format on the webpage:

https://manual.gromacs.org/archive/5.0.3/online/gro.html

Answer the following questions:

(a) How many atoms are inside this protein?

Answer:

In the Setup directory, input command "vi protein.gro"

We can see the content:

guest@dell-Vostro-3671-China-HDD-Protection: ~/BIM3019/120090473/BIM3019/Week5/Setup

```
Gnomes, ROck Monsters And Chili Sauce
1960
    1LYS
                          3.536
                                   2.234
                                           -1.198
              H1
                          3.612
                                   2.288
                                           -1.236
                                   2.214
              H2
                          3.470
                                           -1.270
              Н3
                     4
5
6
7
8
9
                                           -1.125
                          3.492
                                     286
                                           -1.143
              CA
                          3.589
                                   2.107
                                   2.055
              HA
                          3.633
                                           -1.216
                                   2.144
    1LY
              CB
                          3.687
                                            -1.031
             HB1
                                   2. 195
                          3.763
                                           -1.070
             HB2
                                   2.201
                                           -0. 964
    1LYS
                          3.639
                                   2.025
    1LYS
              CG
                    10
                          3.745
                                           -0.956
             HG1
    1LYS
                    11
                          3.676
                                           -0.894
                                   1.989
                    12
13
    1LYS
             HG2
                          3.770
                                   1.954
                                           -1.023
                          3.869
                                   2.065
                                           -0.877
    1LYS
              CD
                    14
15
              71
                          3.945
                                   2.083
    1LYS
                                           -0.940
             H 5
    1LYS
                          3.849
                                   2.147
                                           -0.824
                    16
                          3.906
                                   1.951
                                           -0.784
             HE
                                           -0.708
    1LYS
                    17
                          3.841
                                   1.946
                                   1.864
                          3.906
    1LYS
             HE2
                                           -0.833
              NZ
                          4.042
    1LYS
                    19
                                   1.977
                                           -0.730
             HZ1
                    20
    1LYS
                          4.069
                                   1.903
                                           -0.668
                    ?1
2
    1LYS
             HZ2
                          4.108
                                   1.982
                                           -0.806
    1LYS
             HZ3
                          4.042
                                   2.064
                                           -0.680
                    2
2
2
2
2
2
5
                                   2.026
    1LYS
               C
                          3.474
                                           -1.084
                                   2.081
                          3.395
                                           -1.008
                          3.474
                                   1.896
                                           -1.104
                    26
    2VAL
                          3.536
                                   1.860
                                           -1.174
    2VAL
              CA
                    27
                          3.390
                                   1.800
                                           -1.033
               1963L,
                       88.275C
```

We can see the number 1960 on the second row, which indicates 1960 atoms are in this protein.

(b) What is the 2^{nd} residue in this protein?

Answer:

	1LYS			3. 395		-1.008
	2VAL	N	25	3.474	1.896	-1.104
١	2VAL	Н	26	3. 536	1.860	-1.174
١	_ , , , , ,			3.390	1.800	-1.033
ľ	protein.	gro" 196	3L,	88275C		

We can see "2VAL" here, which means the second residue is Valine (Val).

(c) Does the atom number start from 1 or from 0?

Answer:

As the screenshot shown, the number starts from 1.

Gnomes,	R0ck	Mon	sters	And	Chi	li Sauce	
1960							
1LYS	5	N	1	3. 5	536	2.234	-1.198
1LYS	5	H1	2	3.6	512	2.288	-1.236
1LYS		H2	3	3. 4	170	2.214	-1.270
1LYS	5	Н3	4	3. 4	192	2.286	-1.125
1LYS	S	CA	5		589	2.107	-1.143
1LYS	5	HA	6	3.6	533	2.055	-1.216
1LYS	5	CB	7	3. 6	587	2.144	-1.031

(d) The 7th atom has the atom name CB. Draw the residue structure and indicate which atom is CB.

Answer:

From BIM2005, we learned the basic structural of amino acid. We label the chiral center as CA (also, from the content in the protein.gro, CA, CB, CG, CD is $C\alpha$, C β , $C\gamma$, $C\delta$ correspondingly). Since we can find HZ1, HZ2, HZ3 and H1, H2, H3, the two amino group are all protonated, thus, the residue structure should be:

CB is the first heavy atom on the side chain, which is labelled in red on the structure.

(e) What are the coordinates of the $C\alpha$ atom of the second residue?

Answer:

1LYS	0	24	3. 395	2.081	-1.008
2VAL	N	25	3.474	1.896	-1.104
2VAL	Н	26	3. 536	1.860	-1.174
2VAL	CA	27	3.390	1.800	-1.033
2VAL	HA	28	3. 317	1.852	-0.990
2VAL	CB	29	3.314	1.703	-1. 123

The coordinates (unit: nm, in xyz form) of $C\alpha$ is (3.390, 1.800, -1.033).

Question 3: Are all atoms restrained? Compare the atom number in posre.itp and in topol.top to see which atoms are excluded.

Answer:

Knowing that the posre.itp is the position restraints file, the topol.top is the topology file.

Screenshots of partial content of posre.itp and topol.top (reserved as #topol.top.1# after the tutorial) are as follows:

Where figure Q3.A is partial screenshot of posre.itp, Figure Q3.B is partial screenshot of topol.top (reserved as #topol.top.1#). We can tell that in the position restraints file (posre.itp), the number of atoms are listed as 1, 5, 7, 10... which indicates **only some of the atoms are restrained**. In the topology file, the first part of content is atoms, where contain all the information of 1960 atoms. **Thus, not all atoms are restrained, only some of the atoms are restrained**.

Question 4: Load the protein.gro generated by Gromacs and answer the following questions:

(a) How many disulfide bond do you find? List the cysteine pairs that can form disulfide bonds.

Answer:

4 disulfide bond can be found. The systein pairs are: CYS80-CYS64, CYS76-CYS94, CYS30-CYS115 and CYS6-CYS127.

(b) Show a figure of the protein with a clear secondary structure and all disulfide bond. Describe how you made the figure.

Answer:

The figure can be shown as:

Step:

- 1. Load protein.gro in VMD. Select Graphic→Representation.
- 2. Type in "backbone", show it by Lines; type in "sulfur", show it by CPK.
- 3. In main VMD, choose "Mouse→Label→Atom." Then left click the yellow

balls (sulfur atoms) to label the Cys residues.

- 4. Adjust the angle of view by mouse until find a suitable angle.
- Select "File→Render→Tachyon" and we can have a bmp file in the VMD folder.
- (c) Histidine has 3 possible protonation states. What are they?

Answer:

From BIM2005, we learned that the N on the side chain of Histidine can be protonated:

As the picture shown here, when $N_{\delta 1}$ is protonated, it is called HID; when $N_{\delta 2}$ is protonated, it is called HIE; when both $N_{\delta 1}$ and $N_{\delta 2}$ are protonated, it is called HIP.

(d) Is there any histidine? What is its protonation state?

Answer:

By checking the content of protein.gro, there is a Histidine residue by checking the sequence:

15HIS	N	229	3.968	2.325	0.546
15HIS	Н	230	3.914	2.249	0.510
15HIS	CA	231	3.908	2.459	0.553
15HIS	HA	232	3. 988	2.519	0.554
15HIS	CB	233	3.822	2.492	0.428
15HIS	HB1	234	3.773	2.410	0.398
15HIS	HB2	235	3.757	2.564	0.450
15HIS	CG	236	3.908	2.539	0.317
15HIS	ND1	237	3.946	2.464	0.209
15HIS	CD2	238	3.974	2.657	0. 299
15HIS	HD2	239	3.966	2.739	0.356
15HIS	CE1	240	4.021	2.531	0. 126
15HIS	HE1	241	4.049	2.504	0.034
15HIS	NE2	242	4.052	2.642	0. 189
15HIS	HE2	243	4. 124	2.706	0. 160
15HIS	C	244	3.831	2.486	0.681
15HIS	0	245	3. 761	2. 588	0.695

We can see that on $N_{\delta 1}$ there is no H atom, on $N_{\epsilon 2}$ there is HE2. Thus we can conclude that the histidine residue is in $N_{\epsilon 2}$ protonated state (HIE).

Question 5: Answer the following 2 questions:

(a) In the editconf command, we use the flag -d to assign the distance from solute to box to be 1.0. What is the unit of this 1.0?

Answer:

From the screenshot of the process, we can tell that the unit should be **nanometer**.

(b) Why do we use -d 1.0 instead of -d 0.2? (Hint: Consider what will happen if you use -d 0.2 with the periodic boundary conditions.) Give your answer along this line.

Answer:

We need to create a box such that we can have an equivalent surrounding environment of atoms as if it were in the bulk. If we use -d 0.2, the periodic boundary condition may cause one atom interact with atoms in the adjacent block (i.e. it calculates the forces on itself and its replicas, which is not a possible case), since the cutoff radius should be large enough to avoid the possibility of the above situation.

Question 6: Compare the topol.top before and after adding solvent. (The old topol.top is renamed to #topol.top.1#) Do you fine anything different in the topol.top file after solvation?

Answer:

After the whole MD simulation, the topol.top in the question becomes '#topol.top.2#'. Thus, in Linux, we use "cd 120090473/BIM3019/Week5/Setup". We can find all

topology files are in this directory.

Use command diff '#topol.top.1#' '#topol.top.2#' to differ, we have:

We can tell that the later topology file set the condition: protein in water. After the solvation, the condition of the environment is set to be "protein in water", with solvent around the protein.

Question 7: Show the EM.png you got. Is the energy minimization working for you? How can you tell from the plot?

Answer:

The EM.png I obtain is:

The lowest potential energy approach to -600000 kJ/mol. It works well. The potential energy drops sharply at first and then slowly levels off at -600000 kJ/mol.

Question 8: Copy the plot.gpl and modify it to plot the temperature.xvg. Show your temperature.png file. How does the system temperature change over time? What's the temperature value?

Answer:

The temperature.png I obtain is:

During the whole MD process, the temperature fluctuates irregularly between 295.5K and 304K. The temperature value is between 295.5K (approximately) and 304K.

Question 9: Look at the nvt.mdp file:

(a) Is the POSRES flag defined? What does it do?

Answer:

```
title = OPLS Lysozyme NVT equilibration
define = -DPOSRES ; position restrain the protein
```

From the content in nvt.mdp file, we can tell that **POSRES flag is defined**. Its function is to **set the position condition that restrain the protein**.

(b) What was the integrator used?

Answer:

```
integrator = md ; leap-frog integrator
```

We run the MD simulation by using the leap-frog integrator.

(c) What was the step size (dt)?

Answer:

```
nsteps = 50000 ; 2 * 50000 = 100 ps dt = 0.002 ; 2 fs
```

The step size (dt) here is 2 fs.

(d) How many steps did we use?

Answer:

```
nsteps = 50000 ; 2 * 50000 = 100 ps dt = 0.002 ; 2 fs
```

The step here is 50000 steps.

(e) How long did we propagate the system (in ps)?

Answer:

```
nsteps = 50000 ; 2 * 50000 = 100 \text{ ps} dt = 0.002 ; 2 \text{ fs}
```

The time is given by **steps multiplies step size**, from the content of the file, we propagate the system **in 100ps**.

Question 10: Use the plot.gpl to plot pressure.xvg and density.xvg. Show your Figures. What should the average pressure and the average density be? Do the results agree with your expectation?

Answer:

We can tell that Figure Q10-1 is the figure about the pressure, Q10-2 is the figure about the Density during the MD simulation.

```
<====== ############ ==>
        <==== A V E R A G E S ====>
        <== ########### ======>
       Statistics over 50001 steps using 501 frames
 Energies (kJ/mol)
     Bond
              Angle Proper Dih. Ryckaert-Bell.
                                                U-14
              3.72252e+03 2.48148e+02 1.82835e+03 2.67655e+03
 1.45562e+03
 Coulomb-14
                LJ (SR) Disper. corr. Coulomb (SR) Coul. recip.
              9.41782e+04 -4.57856e+03 -6.49365e+05 3.04201e+03
 7.74597e+03
Position Rest.
              Potential Kinetic En. Total Energy Conserved En.
 4.67347e+02 -5.38579e+05 8.55849e+04 -4.52994e+05 -4.52618e+05
 Temperature Pres. DC (bar) Pressure (bar) Constr. rmsd
 2.99962e+02 -2.26964e+02 -4.21817e+00 0.00000e+00
```

By checking the npt.log, we can tell that the average pressure is -4.21817 bar.

Edit the plot.gpl file:

By using "# mean value" part we can have the average value of the density during the MD simulation process.

Then use the "gnuplot plot.gpl" to see the output:

```
uest@dell-Vostro-3671-China-HDD-Protection: 7/BIM3019/120090473/BIM3019/NPT$ gnuplot plot.gp
   er chisq
0 1.0552371826e+08
1 1.1488510116e+04
2 1.3460292246e+03
3 1.3460291252e+03
                              delta/lim lambda avg
                                              1.00e+00
                               0.00e+00
                                                                1.000000e+00
                               -9. 18e+08
                                               1.00e-01
                                                                1.013122e+03
                               -7. 54e+05
-7. 39e-03
                                                                1. 023142e+03
                                               1.00e-03
                                                                1.023143e+03
                              delta/lim lambda
After 3 iterations the fit converged.
final sum of squares of residuals : 1346.03
rel. change during last iteration : -7.38518e-08
degrees of freedom
                               (FIT_NDF)
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf)
variance of residuals (reduced chisquare) = WSSR/ndf
rms of residuals
                                                                             : 3.66883
                                                                             : 13.4603
Final set of parameters
                                                 Asymptotic Standard Error
                      = 1023.14
                                                +/-0.3651
                                                                        (0.03568\%)
```

Thus the average value of density should be 1023.14 (kg/m³).

Basically, the results agree with my expectations.

Resource availability:

All the content of the report can be found in Github website:

(https://github.com/HULinfengHideki/BIM3019 Gromacs MD Tutorial).

All of the content is obtained by WinSCP, which can be found in computer terminal in school. A exception is "npt.trr" is so large that it cannot be update normally.