CSE 431/531: Algorithm Analysis and Design

Fall 2022

Homework 1 Solutions

Instructor: Shi Li Deadline: 9/25/2022

Your Name: _____ Your Student ID: ____

Problems	1	2	3	Total
Max. Score	20	30	30	80
Your Score				

Problem 1. Asymptotic Notations.

(1a) For each pair of functions f(n) and g(n) in the following table, indicate whether $f(n) = O(g(n)), f(n) = \Omega(g(n))$ and $f(n) = \Theta(g(n))$ respectively.

f(n)	g(n)	0	Ω	Θ
$\log_2(n^3)$	$10\log_2(\sqrt{n})$	yes	yes	yes
$5n^2 + n$	$n \log n$	no	yes	no
$\boxed{10n^2 + n + 10}$	n^3	yes	no	no
e^n	2^{2n}	yes	no	no

(1b) Prove $\lceil 10n\sqrt{n} \rceil = O(n\sqrt{n})$ using the definition of the *O*-notation. For every $n \ge 1$, we have $\lceil 10n\sqrt{n} \rceil \le 10n\sqrt{n} + 1 \le 11n\sqrt{n}$. Therefore, $\lceil 10n\sqrt{n} \rceil = O(n\sqrt{n})$.

In the following two problems, we assume every vertex is incident to at least one edge. So we have n = O(m). Then the running time O(n + m) on the slides becomes O(m).

Problem 2: Cycle Detection in (undirected) graphs A cycle in an undirected graph G = (V, E) is a sequence of $t \geq 3$ different vertices v_1, v_2, \dots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \dots, t-1$ and $(v_t, v_1) \in E$. Given the linked-list representation of an (undirected) graph G = (V, E), design an O(m)-time algorithm to decide if G contains a cycle or not; if it contains a cycle, output one (you only need to output one cycle). To output the cycle, you can just output v_1, v_2, \dots, v_t .

If the correctness of the algorithm is easy to see from your pseudo-code, then there is no need to prove the correctness separately. However, you should briefly mention why the algorithm runs in time O(m).

We use BFS to Find if a cycle exists in an undirected graph. If we find one edge not in the BFS trees, then we found a cycle. The algorithm is called FindCycleUndirected

Algorithm 1 FindCycleUndirected()

```
1: create arrays par and queue, mark all vertices in V as "unvisited"

2: for every vertex s \in V do

3: if s is unvisited then FindCycleFrom(s)

4: print("no cycle exists")
```

Algorithm 2 FindCycleFrom(s)

```
1: head \leftarrow 1, tail \leftarrow 1, queue[1] \leftarrow s, mark s as "visited"
2: while head \le tail do
       v \leftarrow queue[head], head \leftarrow head + 1
3:
       for all neighbours u of v do
4:
            if u is "unvisited" then
5:
                tail \leftarrow tail + 1, queue[tail] \leftarrow u, par[u] \leftarrow v
6:
7:
                \max u as "visited"
            else if u \neq par[v] then
                                                                                        ▶ Found a Cycle
8:
                PrintCycle(u, v) and exit the whole algorithm
9:
```

Algorithm 3 PrintCycle(u, v)

```
1: create an array isancestor with isancestor[w] = false for every w \in V

2: w \leftarrow u

3: while w \neq s do w \leftarrow par[w], isancestor[w] \leftarrow true

4: w \leftarrow v, create an array path, path[1] \leftarrow v, L \leftarrow 1

5: while isancestor[w] = false do w \leftarrow par[w], L \leftarrow L + 1, path[L] \leftarrow w

6: x \leftarrow u

7: while x \neq w do print(x) x \leftarrow par[x]

8: for i \leftarrow L downto 1 do print(x) x \leftarrow par[x]
```

We elaborate on the procedure $\operatorname{PrintCycle}(u,v)$. We need to find the lowest common ancestor w of u and v in the BFS tree. Then the edge (u,v), the path from u to w in the tree, the path from w to v, and the edge (u,v) form a cycle. In Step 1-3, we create an array isancestor that indicate if a vertex is a strict ancestor of u or not. In Step 4-5, we start from v and follow the parent array, until we find the first vertex w with isancestor[w] = true. This w is the lowest common ancestor of u and v. At the same time, the array path will contain the vertices in the path from v to w in the BFS tree. In Step 6-7, we print the vertices in the path from u to w (do not print w). In Step 8, we print the path from w to v; that is, we print the array path in the reverse order.

The running time of the algorithm excluding the procedure PrintCycle is O(m). The bottleneck comes from Step 4-9 in FindCycleFrom(s). In one iteration of the while loop, the running time of Step 4-9 is $O(d_v)$, where v is the vertex we handle in the iteration, and d_v is its degree in G. Every v is handled at most once during the whole algorithm. So, the overall running time of Step 4-9 is $\sum_{v \in V} O(d_v) = O(m)$.

In PrintCycle(u, v), every step has running time O(n). So, its running time is O(n). Overall the running time is O(m+n) = O(m).

Problem 3: Cycle Detection in directed graphs A cycle in a directed graph G = (V, E) is a sequence of $t \ge 2$ different vertices v_1, v_2, \dots, v_t such that $(v_i, v_{i+1}) \in E$ for every $i = 1, 2, \dots, t-1$ and $(v_t, v_1) \in E$. Given the linked-list representation of a directed graph G = (V, E), design an O(m)-time algorithm to decide if G contains a cycle or not; if it contains a cycle, output one (you only need to output one cycle). To output the cycle, you can just output v_1, v_2, \dots, v_t .

If the correctness of the algorithm is easy to see from your pseudo-code, then there is no need to prove the correctness separately. However, you should briefly mention why the algorithm runs in time O(m).

Figure 1: Cycles in undirected and directed graphs are denoted as red edges. (1, 2, 5, 3) is a cycle in the undirected graph. (1, 2, 5, 6, 7, 3) is a cycle in the directed graph. However, (1, 2, 5, 8, 3) is not a cycle in the directed graph.

Remark In a cycle of a directed graph, the directions of the edges have to be consistent. See Figure 1. So, converting a directed graph to a undirected graph and then using algorithm for Problem 2 does not give you a correct algorithm for Problem 3.

We use topological ordering to find if a cycle exists in a directed graph. If we can topologically sort all the n vertices, then there is no directed cycle, otherwise there is a directed cycle.

Algorithm 4 FindCycleDirected()

1: create an array d with d[v] = 0 for every $v \in V$ 2: **for** every edge $(u, v) \in E$ **do** $d[v] \leftarrow d[v] + 1$ 3: $head \leftarrow 1, tail \leftarrow 0$, **for** every $v \in V$ with d[v] = 0 **do**: $tail \leftarrow tail + 1, queue[tail] \leftarrow v$ 4: **while** $head \leq tail$ **do** 5: $v \leftarrow Q[head], head \leftarrow head + 1$ 6: **for** every outgoing edge (v, u) of u **do** 7: $d[u] \leftarrow d[u] - 1$ 8: **if** d[u] = 0 **then** $tail \leftarrow tail + 1, queue[tail] \leftarrow u$ 9: **if** tail < n **then** PrintCycle() **else** print ("no cycle exists")

Algorithm 5 PrintCycle()

```
1: for every v \in V do if d[v] > 0 then break
    \triangleright If a vertex has d[v] = 0 then v was removed in the topological ordering procedure.
2: create two arrays trace and position, and let position[v] \leftarrow 0 for every v \in V.
3: L \leftarrow 1, trace[1] \leftarrow v, where[v] \leftarrow 1
4: while true do
        for every incoming edge (u, v) of v do if d[u] > 0 then break
5:
        if position[u] = 0 then
6:
            L \leftarrow L + 1, trace[L] \leftarrow u, position[u] \leftarrow L, v \leftarrow u
 7:
        else
                                                                                       ▶ Found a cycle
8:
            for i \leftarrow L down to position[u] do print(trace[i])
9:
            break
10:
```

In FindCycleDirected(), we try to topologically sort the vertices of the graph. In the end, if we sort all the n vertices, then the graph does not contain a cycle; otherwise it contains a cycle and we call PrintCycle(). If a vertex v has d[v] = 0 after the topological ordering algorithm, then v is sorted and thus removed from the graph.

In PrintCycle(), we find a vertex v with d[v] > 0 (Step 1). In the while loop, we find an incoming edge (u, v) of v such that u is not removed (Step 5), let v be u (Step 7) and repeat. We stop and print the cycle if we encountered a same vertex (Step 8-10). In the algorithm, the trace array keeps track of the vertices we visited in this procedure, and position[w] indicates the position of w in the trace array (position[w] = 0 if w is not in the trace array.)

If we do not count the running time for PrintCycle(), then then running time of FindCycleDirected() is O(m). Step 6-8 for a vertex v has running time $O(d_v^{\text{out}})$, where $O(d_v^{\text{out}})$ is the out-degree of v. Every vertex v is handled once in the while loop, so overall the running time of FindCycleDirected() is $\sum_{v \in V} O(d_v^{\text{out}}) = O(m)$.

For PrintCycle(), Step 5 has running time $O(d_v^{\text{in}})$ in one iteration of the while loop, where d_v^{in} is the in-degree of v. Each v is handled only once in the while loop, so the running time of the while loop is $\sum_{v \in V} O(d_v^{\text{in}}) = O(m)$.