Methods and analysis of TF-DNA binding data

BIO311 02/02/2017

Outline

- Experimental designs
- Review experimental protocol
- Data analysis from raw scans to binding peaks
- Finding binding motifs MEME
- Integrated analysis

ChIP-chip experiments and computational analysis

- 1. _____does each TF bind _____?
- 2. _____does each TF bind ______?
- 3. To answer these questions, need to grow cells

ChIP-chip cell harvest

Overview: ChIP-chip to determine TF binding locations

Protein-DNA interaction map

ChIP-chip / ChIP-seq experimental protocol

• W	Ihat are the steps of the protocol?
1.	with formaldehyde
2.	(Wash)
3.	Cell
4.	Sonication (shear into)
5.	(enrich for TF-DNA of interest), wash, elute,
6.	Separate
7.	purification
8.	Prepare DNA for
9.	Label with(IP DNA = one color; randomly sheared genomic DNA = other color)
10.	Microarray (or seq)

ChIP-chip data analysis: from raw data to binding lists

How exactly was this done?

- http://younglab.wi.mit.edu/regulator_network/
- Supplementary data: www.sciencemag.org/cgi/content/full/298/5594/799/DC1

Preprocessing

- Raw spot intensities
- Background subtraction
- Normalizing
- Ratio calculation

ChIP-chip data analysis: an example

Reiss et al., 2008 BMC Bioinformatics 24(3):396

ChIP-chip data analysis: Pick peaks

In your projects

- You will receive data that has already been pre-processed (ratios, p-values, and genes assigned)
- Why will you need to analyze this further in the context of gene expression?

Biological questions

- Are the genes we think are regulated based on gene expression data also bound by the TF?
- Do TF binding events result in a change in gene expression?
- If genes do not overlap between the two datasets, what could this mean?

Integrated analysis: GE + ChIP-chip data

What additional information would ChIP-chip / -seq under different environmental conditions tell us?

Important consideration: ChIP-chip under varying conditions

bound activator

(B)

POSITIVE REGULATION bound activator protein promotes transcription

RNA polymerase

Integrated analysis: ChIP-chip + GE + cisregulatory binding sequences

Combinatorial complexity

- Heterodimerization
- Binding of different transcription factors to same regulatory region

Figure 7-57. Molecular Biology of the Cell, 4th Edition.

Quantifying combinatorial relationships

Figure 2, Lee et al., 2002.

Gene regulatory network

Figure 5, Lee et al., 2002

MOTIFS

Fig. 3. Examples of network motifs in the yeast regulatory network. Regulators are represented by

Lee et al., 2002, Science 298:799

Main conclusions of the study?

 Recurringgive clues to 	
--	--

- TFs regulate other _____, providing a link between different cellular processes.
- Combining global ______data with ______binding data allows building a network with good biological significance with no prior knowledge.

• Many other studies have been done in other organisms (humans, mice, bacteria, flies, etc etc) that have similar conclusions.

Evaluating the ChIP-chip / -seq method

• Drawbacks (also called "caveats") of the approach? What future studies does this open up?

Why is this method so important?