Sequential Data Modeling

"Linear Dynamical Systems"

Basic Techniques

Markov model

Discrete latent variables

Mixture model (e.g., GMM) $z_1 \quad z_2 \quad z_3 \quad \dots$ $x_1 \quad x_2 \quad x_3 \quad \dots$

hidden Markov model (HMM) $z_1 \qquad z_2 \qquad z_3 \qquad \cdots$ $x_1 \qquad x_2 \qquad x_3 \qquad \cdots$

Continuous latent variables

Linear Dynamical Systems (LDS)

Basic Techniques

Discrete latent variables

(hidden Markov model (HMM)) $z_1 \qquad z_2 \qquad z_3 \qquad \cdots$ $x_1 \qquad x_2 \qquad x_3 \qquad \cdots$

Continuous latent variables

Assume Unobservable Data Sequence

Extraction of an underlying data sequence from observable data

How to Model Sequential Data?

- To model sequential data...
 - Need to consider sample order
 - Need to model a very high-dimensional space of joint data over a sequence
 - Need to deal with various lengths of sequential data

How to model this p.d.f.?

Linear Dynamical Systems

- Markov process to model a sequence of continuous latent variables
- Linear equation to model state transition and mapping from a state space into an observation space

p.d.f.s in Linear Dynamical Systems

- Sequence of observation data: $x_{1:T} = \{x_1, x_2, \dots, x_T\}$
- Sequence of latent variables : $z_{1:T} = \{z_1, z_2, \dots, z_T\}$
- p.d.f. of observation data:

$$p(\mathbf{x}_{1:T}) = \int p(\mathbf{x}_{1:T} \mid \mathbf{z}_{1:T}) p(\mathbf{z}_{1:T}) d\mathbf{z}_{1:T}$$
 Marginalization over a sequence of latent variables

$$= \int \left[\prod_{t=1}^{T} p(\mathbf{x}_{t} \mid \mathbf{z}_{t}) \right] \left[p(\mathbf{z}_{1}) \prod_{t=2}^{T} p(\mathbf{z}_{t} \mid \mathbf{z}_{t-1}) \right] d\mathbf{z}_{1:T}$$

Emission
$$p.d.f.s$$
:
$$p(\mathbf{x}_t | \mathbf{z}_t) = \mathcal{N}(\mathbf{x}_t; \mathbf{W}\mathbf{z}_t, \mathbf{\Sigma})$$

Transition p.d.f.s:

$$\begin{cases} p(\boldsymbol{z}_{t} | \boldsymbol{z}_{t-1}) = \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{A}\boldsymbol{z}_{t-1}, \boldsymbol{\Gamma}) & t \geq 2 \\ p(\boldsymbol{z}_{1}) = \mathcal{N}(\boldsymbol{z}_{1}; \boldsymbol{\mu}_{0}, \boldsymbol{P}_{0}) & t = 1 \end{cases}$$

Kalman Filtering

Propagate uncertainty from past to future

How to Recursively Calculate Likelihood?

Likelihood function for the observation data sequence:

See appendix

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z} = \mathcal{N} \left(\mathbf{x}; \widetilde{\mathbf{W}} \widetilde{\mathbf{A}}^{-1} \widetilde{\mathbf{z}}_{0}, \widetilde{\mathbf{W}} \widetilde{\mathbf{A}}^{-1} \widetilde{\mathbf{T}} \widetilde{\mathbf{A}}^{-1} \widetilde{\mathbf{W}}^{\mathsf{T}} + \widetilde{\boldsymbol{\Sigma}} \right)$$

Batch-type calculation (w/ all data over an sequence) is assumed but **frame-by-frame calculation** will be required in some applications, such as real-time signal processing...

Original form of the likelihood function:

$$p(\mathbf{x}_{1:T}) = \int p(\mathbf{x}_{1:T} \mid \mathbf{z}_{1:T}) p(\mathbf{z}_{1:T}) d\mathbf{z}_{1:T}$$

$$= \int \left[\prod_{t=1}^{T} p(\mathbf{x}_{t} \mid \mathbf{z}_{t}) \right] \left[p(\mathbf{z}_{1}) \prod_{t=2}^{T} p(\mathbf{z}_{t} \mid \mathbf{z}_{t-1}) \right] d\mathbf{z}_{1:T}$$

$$\mathbf{z}_{1} \qquad \mathbf{z}_{2} \qquad \mathbf{z}_{3} \qquad \mathbf{z}_{T}$$

Kalman Filtering (Forward Algorithm)

• Posterior p.d.f.s given all past observation data (i.e., $p(z_t \mid x_{1:t}) = \alpha(z_t)$) determined in Kalman filtering

Prediction and Update

Prediction step

• Predict distribution of latent variables at frame t from all past observation data

Update step

 Update distribution of latent variables at frame t using current observation data as well as all past observation data

• Predicted *p.d.f.*

$$p(z_{t} | x_{1:t-1}) = \int p(z_{t} | z_{t-1}) p(z_{t-1} | x_{1:t-1}) dz_{t} = \mathcal{N}(z_{t}; \mu_{t|t-1}, P_{t|t-1})$$

Predicted mean : $\mu_{t|t-1} = A\mu_{t-1}$

Predicted covariance: $P_{t|t-1} = AP_{t-1}A^{\mathsf{T}} + \Gamma$

• Updated *p.d.f.*

Posterior ∝ Likelihood x Prior

$$\alpha(\boldsymbol{z}_{t}) = p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t}) = \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{\mu}_{t}, \boldsymbol{P}_{t}) \propto p(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{t}) p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t-1})$$

Kalman gain matrix : $\boldsymbol{K}_{t} = \boldsymbol{P}_{t|t-1} \boldsymbol{W}^{\mathsf{T}} (\boldsymbol{W} \boldsymbol{P}_{t|t-1} \boldsymbol{W}^{\mathsf{T}} + \boldsymbol{\Sigma})^{-1}$

Updated mean : $\boldsymbol{\mu}_t = \boldsymbol{\mu}_{t|t-1} + \boldsymbol{K}_t (\boldsymbol{x}_t - \boldsymbol{W} \boldsymbol{\mu}_{t|t-1})$

Updated covariance : $P_t = (I - K_t W) P_{t|t-1}$ Error between predicted

Error between predicted and observed data

Likelihood Calculation

Conditional p.d.f. of observation data

$$\begin{aligned} p(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{1:t-1}) &= \int p(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{t}) p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t-1}) \mathrm{d}\boldsymbol{z}_{t} = \mathcal{N} \big(\boldsymbol{x}_{t} ; \boldsymbol{W} \boldsymbol{\mu}_{t|t-1}, \boldsymbol{W} \boldsymbol{P}_{t|t-1} \boldsymbol{W}^{\mathsf{T}} + \boldsymbol{\Sigma} \big) \\ &= \text{Emission } p.d.f. : p(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{t}) = \mathcal{N} \big(\boldsymbol{x}_{t} ; \boldsymbol{W} \boldsymbol{z}_{t}, \boldsymbol{\Sigma} \big) \\ &= \text{Predicted } p.d.f. : p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t-1}) = \mathcal{N} \big(\boldsymbol{z}_{t} ; \boldsymbol{\mu}_{t|t-1}, \boldsymbol{P}_{t|t-1} \big) \end{aligned}$$

Recursive likelihood calculation

$$p(\mathbf{x}_{1:T}) = p(\mathbf{x}_1)p(\mathbf{x}_2 \mid \mathbf{x}_1)p(\mathbf{x}_3 \mid \mathbf{x}_1, \mathbf{x}_2) \cdots p(\mathbf{x}_{T-1} \mid \mathbf{x}_{1:T-2})p(\mathbf{x}_T \mid \mathbf{x}_{1:T-1})$$

$$p(\mathbf{x}_1, \mathbf{x}_2)$$

$$p(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$$

$$p(\mathbf{x}_{1:T-1})$$

Kalman Smoothing

Improve inference considering all data

How to Calculate Posterior w/ All Data?

Posterior p.d.f.s given all past observation data determined in Kalman

filtering

• How to calculate posterior p.d.f.s calculated w/ all observation data?

Kalman Smoothing (Backward Algorithm)

• Calculate smoothed p.d.f. at frame t using both smoothed p.d.f. at frame t+1 and updated p.d.f. at frame t determined in Kalman filtering

See appendix

Kalman smoothing

$$\gamma(\boldsymbol{z}_{t}) = \mathcal{N}\left(\boldsymbol{z}_{t}; \hat{\boldsymbol{\mu}}_{t}, \hat{\boldsymbol{P}}_{t}\right)$$

$$\boldsymbol{J}_t = \boldsymbol{P}_t \boldsymbol{A}^\mathsf{T} \boldsymbol{P}_{t+1|t}^{-1}$$

Smoothed mean:

$$\hat{oldsymbol{\mu}}_t = oldsymbol{\mu}_t + oldsymbol{J}_t ig(\hat{oldsymbol{\hat{\mu}}}_{t+1} - oldsymbol{\mu}_{t+1|t}ig)$$

Smoothed covariance:

$$\hat{\boldsymbol{P}}_{t} = \boldsymbol{P}_{t} + \boldsymbol{J}_{t} \left(\hat{\boldsymbol{P}}_{t+1} - \boldsymbol{P}_{t+1|t} \right) \boldsymbol{J}_{t}^{\mathsf{T}}$$

Model Training

EM Algorithm

Likelihood function

$$p(\mathbf{x}_{1:T} \mid \lambda) = \int p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \lambda) d\mathbf{z}_{1:T}$$

$$= \int \left[\prod_{t=1}^{T} p(\mathbf{x}_{t} \mid \mathbf{z}_{t}, \{\mathbf{W}, \boldsymbol{\Sigma}\}) \right] \left[p(\mathbf{z}_{1} \mid \{\boldsymbol{\mu}_{0}, \boldsymbol{P}_{0}\}) \prod_{t=2}^{T} p(\mathbf{z}_{t} \mid \mathbf{z}_{t-1}, \{\boldsymbol{A}, \boldsymbol{\Gamma}\}) \right] d\mathbf{z}_{1:T}$$

Iterative maximization of lower bound

$$\ln p(\mathbf{x}_{1:T} \mid \lambda) = \ln \int p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \lambda) d\mathbf{z}_{1:T}$$

$$\geq \int q(\mathbf{z}_{1:T}) \ln \frac{p(\mathbf{x}_{1:T}, \mathbf{z}_{1:T} \mid \lambda)}{q(\mathbf{z}_{1:T})} d\mathbf{z}_{1:T} = \mathcal{L}(q, \lambda)$$

E-step: Set q to the posterior p.d.f. calculated w/ current model parameters

$$\hat{q}(\boldsymbol{z}_{1:T}) = p(\boldsymbol{z}_{1:T} \mid \boldsymbol{x}_{1:T}, \boldsymbol{\lambda}_{\text{old}})$$

M-step: Maximize auxiliary function with respect to model parameters

$$\hat{\lambda} = \arg\max_{\lambda} \int \hat{q}(z_{1:T}) \ln\{p(x_{1:T}, z_{1:T} \mid \lambda)\} dz_{1:T}$$

E-Step: Update q

- Calculation of posterior p.d.f.s using a model parameter set λ_{old}
 - Posterior p.d.f. of z_t calculated in Kalman smoothing

$$\hat{q}(\boldsymbol{z}_{t}) = p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:T}, \boldsymbol{\lambda}_{\text{old}}) = \gamma(\boldsymbol{z}_{t}) = \mathcal{N}(\boldsymbol{z}_{t}; \hat{\boldsymbol{\mu}}_{t}, \hat{\boldsymbol{P}}_{t})$$

• Joint posterior p.d.f. of z_{t-1} and z_t also calculated in Kalman smoothing

$$\hat{q}(\boldsymbol{z}_{t-1}, \boldsymbol{z}_{t}) = p(\boldsymbol{z}_{t-1}, \boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:T}, \boldsymbol{\lambda}_{\text{old}})$$

$$= \mathcal{N} \begin{bmatrix} \boldsymbol{z}_{t-1} \\ \boldsymbol{z}_{t} \end{bmatrix}; \begin{bmatrix} \hat{\boldsymbol{\mu}}_{t-1} \\ \hat{\boldsymbol{\mu}}_{t} \end{bmatrix}, \begin{bmatrix} \hat{\boldsymbol{P}}_{t-1} & \boldsymbol{J}_{t-1} \hat{\boldsymbol{P}}_{t} \\ \hat{\boldsymbol{P}}_{t} \boldsymbol{J}_{t-1}^{\mathsf{T}} & \hat{\boldsymbol{P}}_{t} \end{bmatrix}$$

Note that
$$\hat{q}(z_t) = \int \hat{q}(z_{t-1}, z_t) dz_{t-1}$$

M-Step: Update λ

Maximization of the following auxiliary function

$$Q(\lambda_{\text{old}}, \lambda) = \int \hat{q}(z_{1:T}) \left\{ \sum_{t=1}^{T} \frac{\ln p(x_{t} \mid z_{t}, \lambda)}{1} + \frac{\ln p(z_{1} \mid \lambda)}{2} + \sum_{t=2}^{T} \frac{\ln p(z_{t} \mid z_{t-1}, \lambda)}{3} \right\} dz_{1:T}$$

$$= \int \hat{q}(z_{1:T}) \left\{ \sum_{t=1}^{T} \frac{1}{2} \ln \left| \Sigma^{-1} \right| - \frac{1}{2} (x_{t} - Wz_{t})^{T} \Sigma^{-1} (x_{t} - Wz_{t}) \right.$$

$$+ \frac{1}{2} \ln \left| P_{0}^{-1} \right| - \frac{1}{2} (z_{1} - \mu_{0})^{T} P_{0}^{-1} (z_{1} - \mu_{0})$$

$$+ \sum_{t=2}^{T} \frac{1}{2} \ln \left| \Gamma^{-1} \right| - \frac{1}{2} (z_{t} - Az_{t-1})^{T} \Gamma^{-1} (z_{t} - Az_{t-1}) \right\} dz_{1:T}$$

$$(3)$$

Expansion of Auxiliary Function

$$Q(\lambda_{\text{old}}, \lambda) = \frac{1}{2} \left\{ T \ln \left| \boldsymbol{\Sigma}^{-1} \right| - \text{tr} \left[\boldsymbol{\Sigma}^{-1} \left\langle \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\mathsf{T}} \right\rangle_{1:T} + \boldsymbol{W}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{W} \left\langle \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{1:T} \right.$$

$$\left. - \boldsymbol{\Sigma}^{-1} \boldsymbol{W} \left\langle \left\langle \boldsymbol{z}_{t} \right\rangle \boldsymbol{x}_{t}^{\mathsf{T}} \right\rangle_{1:T} - \left\langle \left\langle \boldsymbol{z}_{t} \right\rangle \boldsymbol{x}_{t}^{\mathsf{T}} \right\rangle_{1:T} \boldsymbol{W}^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} \right] \right.$$

$$\left. + \ln \left| \boldsymbol{P}_{0}^{-1} \right| - \text{tr} \left[\boldsymbol{P}_{0}^{-1} \left\langle \boldsymbol{z}_{1} \boldsymbol{z}_{1}^{\mathsf{T}} \right\rangle + \boldsymbol{P}_{0}^{-1} \boldsymbol{\mu}_{0} \boldsymbol{\mu}_{0}^{\mathsf{T}} \right] + \left\langle \boldsymbol{z}_{1} \right\rangle^{\mathsf{T}} \boldsymbol{P}_{0}^{-1} \boldsymbol{\mu}_{0} + \boldsymbol{\mu}_{0}^{\mathsf{T}} \boldsymbol{P}_{0}^{-1} \left\langle \boldsymbol{z}_{1} \right\rangle \right.$$

$$\left. + (T - 1) \ln \left| \boldsymbol{\Gamma}^{-1} \right| - \text{tr} \left[\boldsymbol{\Gamma}^{-1} \left\langle \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{2:T} + \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Gamma}^{-1} \boldsymbol{A} \left\langle \boldsymbol{z}_{t-1} \boldsymbol{z}_{t-1}^{\mathsf{T}} \right\rangle_{2:T} \right.$$

$$\left. - \boldsymbol{\Gamma}^{-1} \boldsymbol{A} \left\langle \boldsymbol{z}_{t-1} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{2:T} - \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\Gamma}^{-1} \left\langle \boldsymbol{z}_{t-1} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{2:T} \right] \right\}$$

Expectation:

$$egin{aligned} \left\langle oldsymbol{z}_t
ight
angle &= \hat{oldsymbol{\mu}}_t \ \left\langle oldsymbol{z}_t oldsymbol{z}_t^{\mathsf{T}}
ight
angle &= \hat{oldsymbol{P}}_t + \hat{oldsymbol{\mu}}_t \hat{oldsymbol{\mu}}_t^{\mathsf{T}} \ \left\langle oldsymbol{z}_{t-1} oldsymbol{z}_t^{\mathsf{T}}
ight
angle &= oldsymbol{J}_{t-1} \hat{oldsymbol{P}}_t + \hat{oldsymbol{\mu}}_{t-1} \hat{oldsymbol{\mu}}_t^{\mathsf{T}} \end{aligned}$$

Sufficient statistics:

$$egin{aligned} \left\langle oldsymbol{z}_t oldsymbol{z}_{1:T}^{\mathsf{T}}
ight
angle_{1:T} &= \sum_{t=1}^T \left\langle oldsymbol{z}_t oldsymbol{z}_t^{\mathsf{T}}
ight
angle_{1:T} &= \sum_{t=1}^T \left\langle oldsymbol{z}_t
ight
angle_{1:T} &= \sum_{t=1}^T \left\langle oldsymbol{z}_t
ight
angle_{1:T} &= \sum_{t=1}^T oldsymbol{x}_t oldsymbol{x}_t^{\mathsf{T}} \ \left\langle oldsymbol{z}_t oldsymbol{z}_{1:T} &= \sum_{t=1}^T oldsymbol{x}_t oldsymbol{x}_t^{\mathsf{T}} \ \left\langle oldsymbol{z}_t oldsymbol{x}_t^{\mathsf{T}}
ight
angle_{1:T} &= \sum_{t=1}^T oldsymbol{x}_t oldsymbol{x}_t^{\mathsf{T}} \ \left\langle oldsymbol{z}_t oldsymbol{x}_t^{\mathsf{T}}
ight
angle_{1:T} &= \sum_{t=1}^T oldsymbol{x}_t oldsymbol{x}_t^{\mathsf{T}} \ \left\langle oldsymbol{z}_t oldsymbol{z}_t^{\mathsf{T}} oldsymbol{z}_{1:T} &= \sum_{t=1}^T oldsymbol{z}_t^{\mathsf{T}} oldsymbol{z}_t^{\mathsf{T}} oldsymbol{z}_{1:T} &= \sum_{t=1}^T oldsymbol{z}_t^{\mathsf{T}} oldsymbol{z}_t^{\mathsf{T}} oldsymbol{z}_{1:T} &= \sum_{t=1}^T oldsymbol{z}_t^{\mathsf{T}} oldsymbol{z}_t^{\mathsf{$$

ML Estimates of Model Parameters

Initial parameters of transition p.d.f.

$$\hat{\boldsymbol{\mu}}_0 = \langle \boldsymbol{z}_1 \rangle$$

$$\hat{\boldsymbol{P}}_{0} = \left\langle \boldsymbol{z}_{1} \boldsymbol{z}_{1}^{\mathsf{T}} \right\rangle - \hat{\boldsymbol{\mu}}_{0} \hat{\boldsymbol{\mu}}_{0}^{\mathsf{T}}$$

Parameters of transition p.d.f.

$$\hat{m{A}} = \left\langle m{z}_t m{z}_{t-1}^\mathsf{T}
ight
angle_{2:T} \left\langle m{z}_{t-1} m{z}_{t-1}^\mathsf{T}
ight
angle_{2:T}^{-1}$$

$$\hat{\boldsymbol{\varGamma}} = \frac{1}{T-1} \left(\left\langle \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{2:T} + \hat{\boldsymbol{A}} \left\langle \boldsymbol{z}_{t-1} \boldsymbol{z}_{t-1}^{\mathsf{T}} \right\rangle_{2:T} \hat{\boldsymbol{A}}^{\mathsf{T}} - \hat{\boldsymbol{A}} \left\langle \boldsymbol{z}_{t-1} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{2:T} - \left\langle \boldsymbol{z}_{t} \boldsymbol{z}_{t-1}^{\mathsf{T}} \right\rangle_{2:T} \hat{\boldsymbol{A}}^{\mathsf{T}} \right)$$

Parameters of emission p.d.f.

$$\hat{\boldsymbol{W}} = \left\langle \boldsymbol{x}_{t} \left\langle \boldsymbol{z}_{t} \right\rangle^{\mathsf{T}} \right\rangle_{1:T} \left\langle \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{1:T}^{-1}$$

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{T} \left(\left\langle \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\mathsf{T}} \right\rangle_{1:T} + \hat{\boldsymbol{W}} \left\langle \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\mathsf{T}} \right\rangle_{1:T} \hat{\boldsymbol{W}}^{\mathsf{T}} - \hat{\boldsymbol{W}} \left\langle \left\langle \boldsymbol{z}_{t} \right\rangle \boldsymbol{x}_{t}^{\mathsf{T}} \right\rangle_{1:T} - \left\langle \boldsymbol{x}_{t} \left\langle \boldsymbol{z}_{t} \right\rangle^{\mathsf{T}} \right\rangle_{1:T} \hat{\boldsymbol{W}}^{\mathsf{T}} \right)$$

Appendix

Derivation of p.d.f. of observation data

Emission p.d.f. $p(x_{1:T}|z_{1:T})$

Vector form to represent a data sequence

• Emission p.d.f. of the observation sequence vector

App: 1

Transition $p.d.f. p(z_{1:T})$ (1)

• Transition p.d.f. of the latent variable sequence vector z

$$p(oldsymbol{z}_{1:T}) = p(oldsymbol{z}_1) \prod_{t=2}^T p(oldsymbol{z}_t \mid oldsymbol{z}_{t-1})$$
 Mean vector
$$= \mathcal{N} egin{bmatrix} oldsymbol{z}_1 \\ oldsymbol{z}_2 \\ \vdots \\ oldsymbol{z}_T \end{bmatrix}; egin{bmatrix} oldsymbol{I} \\ A \\ \vdots \\ oldsymbol{z}_{T-1} \end{bmatrix}, egin{bmatrix} oldsymbol{p}_0 \\ oldsymbol{z}_1 \\ \vdots \\ oldsymbol{z}_{T-1} \end{bmatrix}, egin{bmatrix} oldsymbol{p}_0 \\ oldsymbol{z}_1 \\ \vdots \\ oldsymbol{z}_{T-1} \end{bmatrix}$$

Subtraction of mean vector from z (i.e., z – {mean vector}):

$$\begin{bmatrix} \boldsymbol{z}_1 \\ \boldsymbol{z}_2 \\ \vdots \\ \boldsymbol{z}_T \end{bmatrix} - \begin{bmatrix} \boldsymbol{I} \\ A \\ \ddots \\ A \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu}_0 \\ \boldsymbol{z}_1 \\ \vdots \\ \boldsymbol{z}_{T-1} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I} \\ -A & \boldsymbol{I} \\ & \ddots & \ddots \\ & & -A & \boldsymbol{I} \end{bmatrix} \begin{bmatrix} \boldsymbol{z}_1 \\ \boldsymbol{z}_2 \\ \vdots \\ \boldsymbol{z}_T \end{bmatrix} - \begin{bmatrix} \boldsymbol{\mu}_0 \\ \boldsymbol{\theta} \\ \vdots \\ \boldsymbol{\sigma} \end{bmatrix}$$
Same variables

Transition $p.d.f. p(z_{1:T})$ (2)

Likelihood Function: $p.d.f. p(\mathbf{x}_{1:T}) | z_1 + z_2 |$

• p.d.f. of the observation sequence vector x:

$$p(\mathbf{x}) = \int p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

$$= \int \mathcal{N}(\mathbf{x}; \widetilde{W}\mathbf{z}, \widetilde{\boldsymbol{\Sigma}}) \mathcal{N}(\mathbf{z}; \widetilde{\boldsymbol{A}}^{-1} \widetilde{\boldsymbol{\mu}}_0, \widetilde{\boldsymbol{A}}^{-1} \widetilde{\boldsymbol{\Gamma}} \widetilde{\boldsymbol{A}}^{-T}) d\mathbf{z}$$

$$= \mathcal{N}(\mathbf{x}; \widetilde{\boldsymbol{W}} \widetilde{\boldsymbol{A}}^{-1} \widetilde{\boldsymbol{\mu}}_0, \widetilde{\boldsymbol{W}} \widetilde{\boldsymbol{A}}^{-1} \widetilde{\boldsymbol{\Gamma}} \widetilde{\boldsymbol{A}}^{-T} \widetilde{\boldsymbol{W}}^T + \widetilde{\boldsymbol{\Sigma}})$$

$$\begin{cases} \boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_1^\mathsf{T}, \boldsymbol{x}_2^\mathsf{T}, \cdots, \boldsymbol{x}_T^\mathsf{T} \end{bmatrix}^\mathsf{T} \\ \boldsymbol{z} = \begin{bmatrix} \boldsymbol{z}_1^\mathsf{T}, \boldsymbol{z}_2^\mathsf{T}, \cdots, \boldsymbol{z}_T^\mathsf{T} \end{bmatrix}^\mathsf{T} \end{cases}$$

Appendix

Derivation of *p.d.f.*s in Kalman Filtering

Forward Algorithm (Kalman Filtering)

• Likelihood function factorized into conditional *p.d.f.*s

$$p(\mathbf{x}_{1:T}) = p(\mathbf{x}_1)p(\mathbf{x}_2 \mid \mathbf{x}_1)p(\mathbf{x}_3 \mid \mathbf{x}_{1:2})p(\mathbf{x}_4 \mid \mathbf{x}_{1:3})\cdots p(\mathbf{x}_t \mid \mathbf{x}_{1:t-1})\cdots p(\mathbf{x}_T \mid \mathbf{x}_{1:T-1})$$

$$p(\mathbf{x}_{t} | \mathbf{x}_{1:t-1}) = \int p(\mathbf{x}_{t}, \mathbf{z}_{t} | \mathbf{x}_{1:t-1}) d\mathbf{z}_{t}$$
$$= \int p(\mathbf{x}_{t} | \mathbf{z}_{t}) p(\mathbf{z}_{t} | \mathbf{x}_{1:t-1}) d\mathbf{z}_{t}$$

App:5

Derivation of $p(z_t | x_{1:t-1})$

Predicted distribution on the state space

$$p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t-1}) = \int p(\boldsymbol{z}_{t} \mid \boldsymbol{z}_{t-1}) p(\boldsymbol{z}_{t-1} \mid \boldsymbol{x}_{1:t-1}) d\boldsymbol{z}_{t}$$
Transition $p.d.f. = \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{A}\boldsymbol{z}_{t-1}, \boldsymbol{\Gamma})$

Assumed to be $\mathcal{N}(\boldsymbol{z}_{t-1}; \boldsymbol{\mu}_{t-1}, \boldsymbol{P}_{t-1})$ (Its derivation will be given later.)

$$= \int \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{A}\boldsymbol{z}_{t-1}, \boldsymbol{\Gamma}) \mathcal{N}(\boldsymbol{z}_{t-1}; \boldsymbol{\mu}_{t-1}, \boldsymbol{P}_{t-1}) d\boldsymbol{z}_{t-1}$$

$$= \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{A}\boldsymbol{\mu}_{t-1}, \boldsymbol{A}\boldsymbol{P}_{t-1}\boldsymbol{A}^{\mathsf{T}} + \boldsymbol{\Gamma})$$

$$= \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{\mu}_{t|t-1}, \boldsymbol{P}_{t|t-1})$$

$$: \quad \boldsymbol{\mu}_{t|t-1} = \boldsymbol{A}\boldsymbol{\mu}_{t-1} \\ = \boxed{}$$

$$P_{1|0} = P_0$$

Predicted covariance :
$$P_{t|t-1} = AP_{t-1}A^{T} + \Gamma$$

Derivation of $p(\mathbf{x}_t | \mathbf{x}_{1:t-1})$

Likelihood function

(i.e., predicted distribution on the observation space)

$$p(\boldsymbol{x}_{t} \mid \boldsymbol{x}_{1:t-1}) = \int p(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{t}) p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t-1}) d\boldsymbol{z}_{t}$$
Predicted distribution
$$= \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{\mu}_{t|t-1}, \boldsymbol{P}_{t|t-1})$$

$$= \int \mathcal{N}(\boldsymbol{x}_{t}; \boldsymbol{W}\boldsymbol{z}_{t}, \boldsymbol{\Sigma}) \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{\mu}_{t|t-1}, \boldsymbol{P}_{t|t-1}) d\boldsymbol{z}_{t}$$

$$= \mathcal{N}(\boldsymbol{x}_{t}; \boldsymbol{W}\boldsymbol{\mu}_{t|t-1}, \boldsymbol{W}\boldsymbol{P}_{t|t-1}, \boldsymbol{W}\boldsymbol{P}_{t|t-1}, \boldsymbol{V}\boldsymbol{T} + \boldsymbol{\Sigma})$$

Derivation of $\alpha(z_t) = p(z_t | x_{1:t})$

Updated distribution on the state space

$$\alpha(\boldsymbol{z}_{t}) \propto p(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{t}) p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t-1})$$
Posterior \infty Likelihood x Prior
$$= p(\boldsymbol{x}_{t} \mid \boldsymbol{z}_{t}) \int \{p(\boldsymbol{z}_{t} \mid \boldsymbol{z}_{t-1}) \alpha(\boldsymbol{z}_{t-1})\} d\boldsymbol{z}_{t-1}$$

$$[p(\boldsymbol{z}_{t} \mid \boldsymbol{z}_{t-1}) = \boldsymbol{z}_{t-1}]$$

Assuming that $\alpha(\boldsymbol{z}_{t}) = \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{\mu}_{t}, \boldsymbol{P}_{t})$

$$\begin{cases} p(\mathbf{z}_t \mid \mathbf{z}_{t-1}) = \mathcal{N}(\mathbf{z}_t; A\mathbf{z}_{t-1}, \boldsymbol{\Gamma}) \\ p(\mathbf{x}_t \mid \mathbf{z}_t) = \mathcal{N}(\mathbf{x}_t; W\mathbf{z}_t, \boldsymbol{\Sigma}) \end{cases}$$

$$\frac{\mathcal{N}(\boldsymbol{z}_{t};\boldsymbol{\mu}_{t},\boldsymbol{P}_{t}) \propto \mathcal{N}(\boldsymbol{x}_{t};\boldsymbol{W}\boldsymbol{z}_{t},\boldsymbol{\Sigma}) \int \left\{ \mathcal{N}(\boldsymbol{z}_{t};\boldsymbol{A}\boldsymbol{z}_{t-1},\boldsymbol{\Gamma}) \mathcal{N}(\boldsymbol{z}_{t-1};\boldsymbol{\mu}_{t-1},\boldsymbol{P}_{t-1}) \right\} d\boldsymbol{z}_{t-1}}{\mathcal{N}(\boldsymbol{z}_{t-1};?\boldsymbol{z}_{t}+?,?) \mathcal{N}(\boldsymbol{z}_{t};?,?)}$$

Kalman gain matrix : $\boldsymbol{K}_t = \boldsymbol{P}_{t|t-1} \boldsymbol{W}^{\mathsf{T}} \left(\boldsymbol{W} \boldsymbol{P}_{t|t-1} \boldsymbol{W}^{\mathsf{T}} + \boldsymbol{\Sigma} \right)^{-1}$

 $: \; \boldsymbol{\mu}_{t} = \boldsymbol{\mu}_{t|t-1} + \boldsymbol{K}_{t} (\boldsymbol{x}_{t} - \boldsymbol{W} \boldsymbol{\mu}_{t|t-1})$ Updated mean

Updated covariance : $P_t = (I - K_t W) P_{t|t-1}$ Error between predicted

and observed data

Appendix

Derivation of p.d.f.s in Kalman Smoothing

Backward Algorithm (Kalman Smoothing)

• Posterior
$$p.d.f.$$
 of z_t , $i.e.$, $p(z_t \mid x_{1:T}) = \int p(z_t, z_{t+1} \mid x_{1:T}) dz_{t+1}$

$$p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:T}) = p(\boldsymbol{z}_{t} \mid \boldsymbol{x}_{1:t}) \int \frac{p(\boldsymbol{z}_{t+1} \mid \boldsymbol{x}_{1:T}) p(\boldsymbol{z}_{t+1} \mid \boldsymbol{z}_{t})}{p(\boldsymbol{z}_{t+1} \mid \boldsymbol{x}_{1:T}) p(\boldsymbol{z}_{t+1} \mid \boldsymbol{z}_{t})} d\boldsymbol{z}_{t+1}$$

Derivation of $\gamma(z_t) = p(z_t|x_{1:T})$

$$\gamma(\boldsymbol{z}_{t}) = \alpha(\boldsymbol{z}_{t}) \int \frac{\gamma(\boldsymbol{z}_{t+1}) p(\boldsymbol{z}_{t+1} \mid \boldsymbol{z}_{t})}{p(\boldsymbol{z}_{t+1} \mid \boldsymbol{x}_{1:t})} d\boldsymbol{z}_{t+1}$$

Assuming that $\gamma(z_t) = \mathcal{N}(z_t; \hat{\boldsymbol{\mu}}_t, \hat{\boldsymbol{P}}_t)$

$$\mathcal{N}(\boldsymbol{z}_{t}; \hat{\boldsymbol{\mu}}_{t}, \hat{\boldsymbol{P}}_{t}) = \mathcal{N}(\boldsymbol{z}_{t}; \boldsymbol{\mu}_{t}, \boldsymbol{P}_{t}) \int \frac{\mathcal{N}(\boldsymbol{z}_{t+1}; \hat{\boldsymbol{\mu}}_{t+1}, \hat{\boldsymbol{P}}_{t+1}) \mathcal{N}(\boldsymbol{z}_{t+1}; \boldsymbol{A}\boldsymbol{z}_{t}, \boldsymbol{\Gamma})}{\mathcal{N}(\boldsymbol{z}_{t+1}; \boldsymbol{\mu}_{t+1|t}, \boldsymbol{P}_{t+1|t})} d\boldsymbol{z}_{t+1}$$

$$\mathcal{N}(\boldsymbol{z}_{t+1}; ? \boldsymbol{z}_{t} + ?, ?) \mathcal{N}(\boldsymbol{z}_{t}; ?, ?)$$

$$\mathcal{N}(\boldsymbol{z}_{t}; ?, ?)$$

$$\boldsymbol{J}_t = \boldsymbol{P}_t \boldsymbol{A}^\mathsf{T} \boldsymbol{P}_{t+1|t}^{-1}$$

Smoothed mean : $\hat{\boldsymbol{\mu}}_t = \boldsymbol{\mu}_t + \boldsymbol{J}_t (\hat{\boldsymbol{\mu}}_{t+1} - \boldsymbol{\mu}_{t+1|t})$

Smoothed covariance : $\hat{\boldsymbol{P}}_t = \boldsymbol{P}_t + \boldsymbol{J}_t \Big(\hat{\boldsymbol{P}}_{t+1} - \boldsymbol{P}_{t+1|t} \Big) \boldsymbol{J}_t^{\mathsf{T}}$

Tips: Matrix Inversion Lemma

• Condition 1: Matrix A and its inverse matrix A^{-1} are given.

$$A =$$

$$A^{-1} =$$

• Condition 2: Fluctuation generated on a lower-dimensional subspace vNv^{T} is added to the matrix A.

$$\mathbf{v}\mathbf{N}\mathbf{v}^{\mathrm{T}} = \mathbf{I}^{\mathrm{T}}$$
 +

• Under these conditions, an inverse matrix $(A + vNv^T)^{-1}$ can be calculated as follows:

Calculation of an inverse matrix on a lower dimensional space