기술통계 연습문제(1) - 풀이

패키지 참조

```
import sys
import numpy as np
import seaborn as sb
from pandas import read_excel, DataFrame, merge
from matplotlib import pyplot as plt
```

폰트 및 그래프 크기 설정

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwi
plt.rcParams["font.size"] = 10
plt.rcParams["figure.figsize"] = (7, 4)
plt.rcParams["axes.unicode_minus"] = False
```

문제 1

데이터 가져오기

```
df1 = read_excel("https://data.hossam.kr/D02/kings_life.xlsx", index_
df1
```

	수명
왕	
태조	73
정종	62
태종	45
세종	53
문종	38

. 10. 오진 11	수명
왕	
단종	16
세조	51
예종	28
성종	37
연산	30
중종	56
인종	30
명종	33
선조	56
광해	66
인조	54
효종	40
현종	33
숙종	59
경종	36
영조	82
정조	48
순조	44
헌종	22
철종	32
고종	67
순종	52

수명에 대한 기술 통계량

df1.describe()

	수명
count	27.000000
mean	46.037037
std	16.173296
min	16.000000
25%	33.000000
50%	45.000000
75%	56.000000
max	82.000000

상자그림

```
plt.figure()
sb.boxplot(data=df1)
plt.show()
plt.close()
```


알 수 있는 사실

- 1. 총 27명의 왕에 대한 수명은 16~82 사이의 범위를 갖고 있으며 평균 수명은 46세이다.
- 2. 중앙값은 45이며 1사분위 수는 33, 3사분위 수는 56으로 나타났다.
- 3. 상자그림을 통해 이상치는 없음을 확인할 수 있다.

문제 2

데이터 가져오기

df2 = read_excel("https://data.hossam.kr/D02/stock.xlsx")
df2

	구분	주가
0	F	120
1	K	165
2	K	147
3	F	144
4	K	135
5	K	161
6	K	102
7	K	165
8	K	170
9	F	147
10	F	235
11	F	161
12	F	139
13	F	150
14	F	157
15	K	173
16	F	139
17	F	150
18	F	157
19	K	173
20	F	163

	구분	주가
21	K	145
22	K	129
23	K	145

각각 필요한 데이터를 추출하여 분석하는 경우

```
df2_1 = df2.query("구분=='K'")
df2_1.reset_index(drop=True, inplace=True)
df2_1
```

	구분	주가
0	K	165
1	K	147
2	K	135
3	K	161
4	K	102
5	K	165
6	K	170
7	K	173
8	K	173
9	K	145
10	K	129
11	K	145

```
df2_2 = df2.query("¬\==='F'")
df2_2.reset_index(drop=True, inplace=True)
df2_2
```

0 F 120		구분	주가
	0	F	120

	구분	주가
1	F	144
2	F	147
3	F	235
4	F	161
5	F	139
6	F	150
7	F	157
8	F	139
9	F	150
10	F	157
11	F	163

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
sb.boxplot(data=df2_1, y="주가", ax=ax1)
sb.boxplot(data=df2_2, y="주가", ax=ax2)
ax1.set_ylim(80, 240)
ax2.set_ylim(80, 240)
plt.show()
plt.close()
```


데이터 프레임을 새로 생성해서 분석하는 경우

```
df2_final = DataFrame({"K": df2_1['주가'], "F": df2_2['주가']}) df2_final
```

	K	F
0	165	120
1	147	144
2	135	147
3	161	235
4	102	161
5	165	139
6	170	150
7	173	157
8	173	139
9	145	150
10	129	157
11	145	163

```
plt.figure()
sb.boxplot(data=df2_final)
plt.show()
plt.close()
```


알 수 있는 사실

- 1. 주가의 변동 폭은 F 보다 K 가 더 크다.
- 2. K 는 폭락 지점이 보이고, F 는 상승 지점이 보인다.

문제 3

데이터 가져오기

df3 = read_excel("https://data.hossam.kr/D02/grape.xlsx")
df3

	비료종류	수확량
0	А	39.3
1	В	11.4
2	А	26.6
3	А	23.7
4	В	25.8
5	А	28.5
6	А	24.2
7	А	17.9

	비료종류	수확량
8	В	16.5
9	В	21.1
10	А	24.3

```
df3_1 = df3.query("비료종류=='A'")
df3_1.set_index('비료종류', inplace=True)
df3_1
```

	수확량
비료종류	
Α	39.3
Α	26.6
Α	23.7
Α	28.5
Α	24.2
Α	17.9
Α	24.3

```
df3_2 = df3.query("비료종류=='B'")
df3_2.set_index('비료종류', inplace=True)
df3_2
```

	수확량
비료종류	
В	11.4
В	25.8
В	16.5
В	21.1

```
desc1 = df3_1.describe()
desc2 = df3_2.describe()
```

merge(desc1, desc2, left_index=True, right_index=True, suffixes=('_A'

	수확량_A	수확량_B
count	7.000000	4.00000
mean	26.357143	18.70000
std	6.578211	6.17252
min	17.900000	11.40000
25%	23.950000	15.22500
50%	24.300000	18.80000
75%	27.550000	22.27500
max	39.300000	25.80000

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
sb.boxplot(data=df3_1, y="수확량", ax=ax1)
sb.boxplot(data=df3_2, y="수확량", ax=ax2)
ax1.set_ylim(10, 40)
ax2.set_ylim(10, 40)
plt.show()
plt.close()
```


알 수 있는 사실

1. 평균값을 비교 했을 때 A 비료를 사용하는 것이 B를 사용하는 것 보다 더 많은 수확량을 보 인다. 2. 수확량 분포는 B 비료를 사용하는 것이 더 넓게 분포된 것으로 보아 A를 사용하는 것이 더 안정적이다.

문제 4

데이터 가져오기

df4 = read_excel("https://data.hossam.kr/D02/analysis_grade.xlsx")
df4

	학과	점수
0	С	54
1	Α	52
2	Α	37
3	С	41
4	Α	67
5	С	43
6	Α	73
7	С	51
8	С	55
9	Α	15
10	С	52
11	А	18
12	Α	23
13	Α	10
14	С	48
15	А	39
16	С	51
17	С	82
18	Α	41

	학과	점수
19	А	46
20	Α	64
21	Α	74
22	Α	33
23	Α	28
24	С	90
25	С	54
26	Α	52
27	С	53
28	Α	51
29	А	78
30	А	30
31	А	44

그룹별 데이터

```
df4_1 = df4.query("학과=='A'")
df4_1.reset_index(drop=True, inplace=True)
df4_1.describe()
```

	점수
count	20.000000
mean	43.750000
std	20.229928
min	10.000000
25%	29.500000
50%	42.500000
75%	55.000000
max	78.000000

```
df4_2 = df4.query("학과=='C'")
df4_2.reset_index(drop=True, inplace=True)
df4_2.describe()
```

점수
12.000000
56.166667
14.689720
41.000000
50.250000
52.500000
54.250000
90.000000

상자그림

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
sb.boxplot(data=df4_1, y="점수", ax=ax1)
sb.boxplot(data=df4_2, y="점수", ax=ax2)
ax1.set_ylim(0, 100)
ax2.set_ylim(0, 100)
plt.show()
plt.close()
```


알 수 있는 사실

- 1. 학생 정원은 A학과가 20명, C학과가 12명이다.
- 3. 평균 점수는 C학과가 더 높다.
- 4. 사분위 수의 분포로 A학과보다 C학과 학생들의 학업 성취도가 더 높다.

문제 5

데이터 가져오기

df5 = read_excel("https://data.hossam.kr/D02/stat_comp_grade.xlsx")
df5

	전공	중간고사	기말고사
0	STAT	34	86
1	STAT	50	77
2	STAT	75	74
3	COMP	76	96
4	COMP	61	78
5	COMP	65	40
6	COMP	31	68
7	STAT	47	57
8	STAT	94	82
9	COMP	49	57
10	STAT	38	53
11	STAT	65	70
12	STAT	47	60
13	STAT	88	95
14	COMP	80	85
15	COMP	87	90

	전공	중간고사	기말고사
16	STAT	92	95
17	STAT	70	80
18	STAT	78	85
19	СОМР	76	85

(1) 전공에서 STAT를 1로, COMP를 2로 변환한 레이블을 적용하라.

```
df5['전공'] = np.where(df5['전공'] = 'STAT', 1, 2)
df5['전공'] = df5['전공'].astype('category')
df5
```

	전공	중간고사	기말고사
0	1	34	86
1	1	50	77
2	1	75	74
3	2	76	96
4	2	61	78
5	2	65	40
6	2	31	68
7	1	47	57
8	1	94	82
9	2	49	57
10	1	38	53
11	1	65	70
12	1	47	60
13	1	88	95
14	2	80	85
15	2	87	90
16	1	92	95

	전공	중간고사	기말고사
17	1	70	80
18	1	78	85
19	2	76	85

(2) 중간고사 및 기말고사 성적에 대한 각종 기술통계량을 구하고, 분석 결과 를 토대로 하여 알 수 있는 사실을 하나 이상 제시하라.

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))
sb.boxplot(data=df5, y="중간고사", ax=ax1)
sb.boxplot(data=df5, y="기말고사", ax=ax2)
ax1.set_ylim(0, 100)
ax2.set_ylim(0, 100)
plt.show()
plt.close()
```


df5.describe()

	중간고사	기말고사
count	20.000000	20.000000
mean	65.150000	75.650000
std	19.647619	15.597824
min	31.000000	40.000000
25%	48.500000	66.000000

	중간고사	기말고사
50%	67.500000	79.000000
75%	78.500000	85.250000
max	94.000000	96.000000

전반적으로 중간고사 점수보다 기말고사 점수가 높다.

(3) 중간고사 및 기말고사 성적에 대한 히스토그램을 그리고, 분석 결과를 토 대로 하여 알 수 있는 사실을 하나 이상 제시하라.

```
hist1, bins1 = np.histogram(df5['중간고사'], bins=5)
bins1 = np.round(bins1, 1)
bins1
```

```
array([31. , 43.6, 56.2, 68.8, 81.4, 94. ])
```

```
hist2, bins2 = np.histogram(df5['기말고사'], bins=5)
bins2 = np.round(bins2, 1)
bins2
```

```
array([40. , 51.2, 62.4, 73.6, 84.8, 96.])
```

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
sb.histplot(data=df5, x="중간고사", bins=5, ax=ax1, kde=True)
sb.histplot(data=df5, x="기말고사", bins=5, ax=ax2, kde=True)
ax1.set_xticks(bins1)
ax1.set_xticklabels(bins1)
ax2.set_xticks(bins2)
ax2.set_xticklabels(bins2)
plt.show()
plt.close()
```


분포곡선으로 보아 기말고사에서 성적이 오른 학생이 존재한다.

(4) 전공별로 중간고사 및 기말고사 성적에 대한 히스토그램을 그리고, (3)번의 결과와 비교 하라.

	전공	중간고사	기말고사
0	1	34	86
1	1	50	77
2	1	75	74
7	1	47	57
8	1	94	82
10	1	38	53
11	1	65	70
12	1	47	60
13	1	88	95
16	1	92	95
17	1	70	80
18	1	78	85

COMP_df

	전공	중간고사	기말고사
3	2	76	96
4	2	61	78
5	2	65	40
6	2	31	68
9	2	49	57
14	2	80	85
15	2	87	90
19	2	76	85

```
bins_list = [0, 20, 40, 60, 80, 100]
```

```
stat_hist1, stat_bins1 = np.histogram(STAT_df['중간고사'], bins=bins_l stat_bins1 = np.round(stat_bins1, 1) stat_bins1
```

```
array([ 0, 20, 40, 60, 80, 100])
```

```
stat_hist2, stat_bins2 = np.histogram(STAT_df['기말고사'], bins=bins_l stat_bins2 = np.round(stat_bins2, 1) stat_bins2
```

```
array([ 0, 20, 40, 60, 80, 100])
```

```
compu_hist1, compu_bins1 = np.histogram(STAT_df['중간고사'], bins=bins compu_bins1 = np.round(compu_bins1, 1) compu_bins1
```

```
array([ 0, 20, 40, 60, 80, 100])

compu_hist2, compu_bins2 = np.histogram(STAT_df['기말고사'], bins=bins compu_bins2 = np.round(compu_bins2, 1) compu_bins2
```

```
array([ 0, 20, 40, 60, 80, 100])
```

```
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(12, 8))
sb.histplot(data=STAT_df, x="중간고사", bins=bins_list, ax=ax1, kde=Tr
ax1.set_xticks(stat_bins1)
ax1.set_xticklabels(stat_bins1)

sb.histplot(data=STAT_df, x="기말고사", bins=bins_list, ax=ax2, kde=Tr
ax2.set_xticks(stat_bins2)
ax2.set_xticklabels(stat_bins2)

sb.histplot(data=COMP_df, x="중간고사", bins=bins_list, ax=ax3, kde=Tr
ax3.set_xticks(compu_bins1)
ax3.set_xticklabels(compu_bins1)

sb.histplot(data=COMP_df, x="기말고사", bins=bins_list, ax=ax4, kde=Tr
ax4.set_xticks(compu_bins2)
ax4.set_xticklabels(compu_bins2)
plt.show()
plt.close()
```


통계학은 전반적으로 학생들의 점수가 고르게 분포되어 있지만 컴퓨터과의 경우 고득점자 그룹이 존재하는 것으로 나타났다.