IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2018**

EEE/EIE PART I: MEng, BEng and ACGI

Corrected copy

ANALYSIS OF CIRCUITS

Friday, 1 June 10:00 am

Time allowed: 2:00 hours

There are THREE questions on this paper.

Answer ALL questions. Q1 carries 40% of the marks. Questions 2 and 3 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

D.M. Brookes

Second Marker(s): P. Georgiou

ANALYSIS OF CIRCUITS

Information for Candidates:

Numerical answers must be given as fully evaluated decimal values and not as unevaluated arithmetic expressions.

Notation

The following notation is used in this paper:

- 1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the root-mean-square (or RMS) phasor voltage by $\widetilde{X} = \frac{X}{\sqrt{2}}$. The complex conjugate of X is X^* .
- Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the complex impedance or phasor value.
- 3. Times are given in seconds unless otherwise stated.
- 4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and logarithmic axes for frequency and magnitude.
- 5. The real and imaginary parts of a complex number, X, are written $\Re(X)$ and $\Im(X)$ respectively.

1. a) Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.

4 4 2 4 4 4 2 4

Figure 1.1

Figure 1.2

- b) Use the principle of superposition to find the voltage X in Figure 1.2. [5]
- c) Draw the Thévenin equivalent circuit of the two-terminal network in Figure 1.3 and find the values of its components. [5]

Figure 1.3

Figure 1.4

- Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for Z in terms of X and Y.
- Determine R_1 and R_2 in Figure 1.5 so that Y = 0.25X and the parallel combination of R_1 and R_2 has an impedance of 75 Ω . [5]

Figure 1.5

f) The circuit of Figure 1.6 shows a 50 Hz voltage source, with RMS voltage phasor $\tilde{V}=230$, driving a load of impedance $Z_L=20+10j\Omega$ through a line of impedance $Z_T=0.2+0.8j\Omega$. Calculate the complex power, $\tilde{V}\times\tilde{I}^*$, absorbed by (i) Z_T and (ii) Z_L .

Figure 1.6

Figure 1.7

Determine the gain, $\frac{Y}{X}$, for the block diagram shown in Figure 1.7. The rectangular blocks are drawn with inputs at the left and outputs at the right and have gains of F, G and H respectively. The open circles represents adder/subtractors whose inputs have the signs indicated on the diagram and whose outputs are V and Y respectively.

Figure 1.8

Figure 1.9

h) Figure 1.9 shows a transmission line of length 8m that is terminated in a resistive load with reflection coefficient $\rho = -0.6$. The line has a propagation velocity of $u = 2 \times 10^8 \,\text{m/s}$. At time t = 0, a forward-travelling (i.e. left-to-right) pulse arrives at X with amplitude 5 V and duration 100 ns, as shown in Figure 1.8.

Draw a dimensioned sketch of the waveform at Y, a point 4m from the end of the line, for $0 \le t \le 200$ ns. Assume that no reflections occur at point X. [5]

The frequency response of a highpass filter circuit is given by

$$H(j\omega) = \frac{k(j\omega)^2}{(j\omega)^2 + 2\zeta\omega_0 j\omega + \omega_0^2}$$

where k, ζ and ω_0 are positive real numbers and ω is in rad/s.

- a) i) Give a simplified expression for the value of $H(j\omega)$ at the frequency $\omega = \omega_0$. [2]
 - ii) Determine the low and high frequency asymptotes of $H(j\omega)$. [2]
 - iii) By finding the squared magnitudes of the numerator and denominator expressions in $H(j\omega)$, show that [5]

$$|H(j\omega)|^2 = \frac{k^2}{\left(\frac{\omega_0^2}{\omega^2} - 1\right)^2 + 4\zeta^2 \frac{\omega_0^2}{\omega^2}}.$$

- iv) By writing the denominator of the previous expression in terms of $x = \frac{\omega_0^2}{\omega^2}$, show that the denominator has a minimum when $x = 1 2\zeta^2$. Hence determine the value of ω at which $|H(j\omega)|$ is maximum and the value of $|H(j\omega)|$ at this frequency. [5]
- b) Assuming $\omega_0 = k = 1$, draw a dimensioned sketch showing the magnitude response, $|H(j\omega)|$, in dB for the two cases: (A) $\zeta = 0.1$ and (B) $\zeta = 0.5$. Show both lines on the same set of axes. For each case, calculate the maximum value of $|H(j\omega)|$ in dB and the frequency, ω_p , at which it occurs. [6]
- In the highpass filter circuit of Figure 2.1, the opamp is ideal, the capacitors have value C and the resistors have values P, Q, R and (k-1)R respectively.

i) Explain why
$$Y = kV$$
. [1]

ii) By applying Kirchoff's current law at nodes U and V show that the transfer function $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$ is given by [6]

$$H(j\omega) = \frac{kPQC^2(j\omega)^2}{PQC^2(j\omega)^2 + (2P + (1-k)Q)Cj\omega + 1}.$$

Determine simplified expressions for ζ and ω_0 when $H(j\omega)$ is written in the form given at the start of the question. [3]

Figure 2.1

3. The diode in Figure 3.1 has a forward voltage of 0.7 V when it is conducting. The voltage waveforms at nodes X and Y are x(t) and y(t) respectively and the diode current is i(t) as shown.

Figure 3.1

Figure 3.2

Figure 3.3

- a) Assuming that node X is connected to a voltage source, calculate the time constant of the circuit when (a) the diode is conducting and (b) the diode is non-conducting.
- b) If x(t) has a constant voltage of 10 V, determine the steady-state values of i(t) and y(t). [3]
- Suppose $x(t) = \begin{cases} 0 & t < 0 \\ 10 & t \ge 0 \end{cases}$. Determine an expression for y(t) for $t \ge 0$. [4]
- d) Suppose now that x(t) = s(t) as shown in Figure 3.2 where s(t) is a positive-valued squarewave of period $T = 100 \,\mu s$ and amplitude 10 V.
 - Determine an expression for y(t) for $0 \le t < 0.5T$ assuming that the diode is conducting throughout this interval and that the value of y at the start of the interval is y(0) = A. Hence, derive and simplify an equation relating A and B where B = y(0.5T) is the value of y at the end of the interval. [4]
 - ii) Determine an expression for y(t) for $0.5T \le t < T$ assuming that the diode is non-conducting throughout this interval and that the value of y at the start of the interval is y(0.5T) = B. Hence derive and simplify a second equation relating A and B assuming that the value of y at the end of the interval is y(T) = A.
 - iii) By combining the equations determined in parts i) and ii), determine the numerical values of both A and B. [2]
 - iv) Sketch a dimensioned graph of y(t) for $t \in [0, 200 \,\mu\text{s}]$. [3]
- e) Suppose now that $R_2 = 500 \,\mathrm{k}\Omega$ and that $x(t) = (1 + 0.2 \cos(2\pi f t)) \, s(t)$ is a modulated squarewave as illustrated in Figure 3.3 for $f = 600 \,\mathrm{Hz}$.
 - i) Assuming that $y(t) \le 11.3$, determine an upper bound on the current through R_2 . [1]
 - ii) Explain why the average value of i(t) must equal the average current through R_2 . Hence find an upper bound on the average voltage across R_1 during the times that the diode is conducting. [3]
 - Sketch the waveform y(t) for a modulating frequency of f = 20 Hz. It is not necessary to calculate the value of y(t) precisely. [3]

