1 Exercise 2

1.1 Naïve reconstruction

Run "XRMA_matrix_comp.m" with N = 16. Matrix A is sparse matrix:

Data with crime and without crime are shown in the below figure. The absolute differences are shown in the right figure.

Naïve reconstruction of data with inverse-crime and without inverse-crime is shown in the below figure. We can see that the results are useless in case the measurement has noise.

1.2 TSVD

Decompose A to [U S V]. The decay of singular values is shown in below figure. The singular values decrease dramatically from the element 160.

Picard plot: The decay speed of singular value σ_i and $|\langle u_i, b \rangle|$. We can see that the Picard condition break after around k=150, when $|\langle u_i, b \rangle|$ starts having increase trend.

Reconstructed image in relation to number of truncated value

From observation, a good result is reconstructed with truncate value $k{\sim}130$. The relative error graph shows that the errors are quite same with k=30: 150. This may be the results of low resolution of test problem and high noise.

2 Exercise 3

2.1 Simulate tomographic data

Shepp-Logan phantom at size 128x128

Dummy data

Dummy measurement

2.2 Reconstruction using back-projection

Filtered back-projection reconstruction: error 29%

2.3 CGLS

Modify CGLS by replacing: Ax by radon(x, theta) and A'b by iradon(b, theta).

Constructed by CGLS

Residual error continues to decrease, but stay quite large

The L-curve is not formed

Relative error continues decreasing but still stay quite large.

2.4 Discrepancy principle

Pick k that's

$$||Ax_k - b||_2 > v_{dp}||e||_2 > ||Ax_{k+1} - b||_2$$

Here noise level is 1%: $\|e\|_2 = 0.01 \|b\|_2 = 0.33$

However, there is an error in implementation of CGLS that keep residual error high. I have not fix this.

2.5 Matrix-free X-ray tomography

Tikhonov regularization: error 33%

2.6 Total variation regularization

Approximate TV: error 27%

There is some jumps in the objective function.

2.7 Summary

Total variation gives the best solution because the target is piecewise constant.