Heuristische Lösungsverfahren für Stacking-Probleme mit Transportkosten

Tim Bohne

30. Januar 2019

AG Kombinatorische Optimierung

Übersicht

- Stacking-Probleme
- 2 Nebenbedingungen
- 3 Problemstellungen / Testdaten
- 4 Heuristiken / Vergleiche
- 6 Ausblick

- Im Umfeld von Lagerhallen und Container-Terminals
- Eintreffende Items müssen Stacks zugeordnet werden, sodass bestimmte Nebenbedingungen respektiert werden
- Storage Area ist in fixierten Stacks organisiert, die eine limitierte gemeinsame Stack Kapazität besitzen
- Es wird nur der Loading-Prozess betrachtet

Literatur Überblick

- Kim et al. (2000): Deriving decision rules to locate export containers in container yards
- Kang et al. (2006): Deriving stacking strategies for export containers with uncertain weight information
- **Delgado et al. (2012)**: A constraint programming model for fast optimal stowage of container vessel bays
- Jaehn (2013): Positioning of loading units in a transshipment yard storage area
- Bruns et al. (2015): Complexity results for storage loading problems with stacking constraints
- Le et al. (2016): MIP-based approaches for robust storage loading problems with stacking constraints

Aufbau der Storage Area bestehend aus m fixierten Stacks, die jeweils b Level enthalten:

VON OBEN BETRACHTET

-1	$pos_{1,1}$	<i>pos</i> _{2,1}	pos _{3,1}	 S_m
L_1	DOS1 1	DOS0 1	DOS2 1	DOS 1
L_2	$pos_{1,2}$	pos _{2,2}	pos _{3,2}	 $pos_{m,2}$
L_b	pos _{1,b}	pos _{2,b}	pos _{3,b}	 $pos_{m,b}$

VON DER SEITE BETRACHTET

Parameter	Semantik
n	Anzahl der Items
m	Anzahl der Stacks
Ь	Stack Kapazität
1	Menge der Items $I := \{1, 2,, n\}$

I.d.R. gilt $\textit{\textbf{m}} < \textit{\textbf{n}}$, außerdem muss $\textit{\textbf{n}} \leq \textit{\textbf{bm}}$ gelten.

Formulierung des Problems

```
Items: I = \{1, ..., n\}
Stacks: Q = \{1, ..., m\}
Stack Kapazität: b
```

Stacking Constraints: s_{ij} Placement Constraints: t_{iq}

Das Ziel ist, jedes Item $i \in I$ genau einem Stack $q \in Q$ zuzuweisen, wobei die Stacking Constraints s_{ij} , die Placement Constraints t_{iq} und die Stack Kapazität b respektiert werden und ggf. eine Zielfunktion optimiert wird.

7

Stacking Constraints

- Schwerere Items dürfen nicht auf leichteren platziert werden
- Größere Items dürfen nicht auf kleineren platziert werden
- Items bestimmter Materialien / Zielorte dürfen nicht aufeinander gestapelt werden

Sämtliche Stacking Constraints werden in einer Binärmatrix ${m S}=({m s_{ij}})_{n \times n}$ kodiert, wobei:

$$m{s_{ij}} = egin{cases} 1, & ext{wenn } m{i} ext{ direkt auf } m{j} ext{ gestapelt werden darf} \ 0, & ext{sonst} \end{cases}$$

Stacking Constraints

Diese Matrix lässt sich als gerichteter Graph mit n Knoten $i \in I$ und Kanten $i \to j$ für alle $s_{ij} = 1$ repräsentieren.

$$m{S} = \left(egin{array}{cccc} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 0 \end{array}
ight)$$

Constraint Matrix

Resultierender Graph

Transportkosten

- Kranbetriebskosten, Wartezeiten, Arbeitszeiten, ...
- ullet Jeder Stack $oldsymbol{q}$ hat eine fixierte Position $oldsymbol{F_q}$ in der Storage Area
- Jedes Item i hat eine geg. Original position O_i auf dem Fz.

Die Kosten werden in einer Matrix $oldsymbol{C} = (oldsymbol{c_{iq}})_{n imes m}$ kodiert.

$$c_{iq} \coloneqq d_{man}(O_i, F_q)$$

Placement Constraints

- Länge / Gewicht der Items und Eigenschaften der Stacks
- Spezielle Anforderungen der Items (Kühlcontainer, ...)
- Tendenziell mehr erlaubt als verboten (rand(0, 1) zu restriktiv)
- Über sehr hohe Kostenwerte umgesetzt

In Binärmatrix $T = (t_{iq})_{n \times m}$ kodiert, wobei:

$$t_{iq} = \begin{cases} 1, & \text{wenn Item } i \text{ in Stack } q \text{ platziert werden darf} \\ 0, & \text{sonst} \end{cases}$$

Für die Transportkosten-Matrix $oldsymbol{C} = (oldsymbol{c_{iq}})_{n imes m}$ gilt:

$$m{c_{iq}} = egin{cases} \dot{c_{iq}} = egin{cases} \dot{c_{iq}} & \dot{c_{iq}} = 1 \ \infty, & ext{sonst} \end{cases}$$

Problemstellungen

Stack-Kapazitäten: b = 2, 3, (4)

- ullet Zulässigkeitsproblem b=2 mit s_{ij} und t_{iq} NP-vollständig
- ullet Zulässigkeitsproblem b=3 mit s_{ij} NP-vollständig

Instanzgrößen:

- klein (s) (≤ 100 ltems)
- mittel (m) (pprox 300 Items)
- groß (I) (pprox 500 ltems)

Ziel: Sämtliche Items sollen möglichst günstig eingelagert werden.

Zielfunktion: Minimierung der Transportkosten

Zulässigkeit und geringe Laufzeit haben Priorität.

Testdaten-Generierung

- Anzahl der Instanzen: 20
- Anzahl der Items: n
- Stack Kapazität: b
- Anzahl der Stacks: $m = \lceil n/b \rceil + 20\%$
- Stacking Constraints: Zwei Varianten (V2)
- Placement Constraints: 70% erlaubt
- Kosten: Manhattan-Metrik
 - Item- und Stackpositionen (x, y)
 - Item- und Stack-Längen, Item- und Stack-Breiten
 - Distanz zwischen Storage Area und Fahrzeug

MIP Formulierungen

s.t.

Bin-Packing-Formulierung

$$min \quad \sum_{i \in I} \sum_{q \in Q} c_{iq} x_{iq} \tag{1}$$

$$\sum_{q \in Q} x_{iq} = 1 \qquad \forall i \in I$$

$$\sum_{i \in I} x_{iq} \le b \qquad \forall q \in Q$$
(2)

$$x_{iq} + x_{jq} \le 1$$
 $\forall \{i, j\} \notin A$ (4)
 $x_{iq} \in \{0, 1\}$ $\forall i \in I, q \in Q$ (5)

3-Index-Formulierung

$$min \quad \sum_{i \in I} \sum_{q \in Q} \sum_{l \in I} c_{iq} x_{iql} \tag{6}$$

$$s.t. \quad \sum_{q \in Q} \sum_{l \in L} x_{iql} = 1 \qquad \forall i \in I$$
 (7)

$$\sum_{i \in I} x_{iql} \le 1 \qquad \forall q \in Q, l \in L$$
 (8)

$$\sum_{j\in I|i\rightarrow j} x_{jq(l-1)} - x_{iql} \ge 0 \qquad \forall i \in I, q \in Q, l \in L \setminus \{1\}$$
 (9)

$$x_{iql} \in \{0,1\} \qquad \forall i \in I, q \in Q, l \in L$$
 (10)

Exkurs: Maximum-Cardinality-Matching (MCM)

Ungerichteter Graph ${m G}=({m V},{m E})$

Eine Menge $\mathbf{M} \subseteq \mathbf{E}$ heißt Matching, wenn keine zwei Kanten aus \mathbf{M} einen Knoten gemeinsam haben.

Falls ${\it M}$ eine maximale Kardinalität unter allen Matchings von ${\it G}$ hat, wird dies als ${
m MCM}$ bezeichnet.

Exkurs: Minimum-Weight-Perfect-Matching (MWPM)

- Matching, welches sämtliche Knoten enthält
- Jeder Knoten ist inzident zu genau einer Kante des Matchings
- Günstigstes Perfect Matching basierend auf den Kantenkosten

Konstruktive Heuristik (b = 2)

- Stacking-Constraint-Graph generieren
- MCM berechnen, Kanten als Item-Paare interpretieren
- Bipartiten Graph generieren:
 - 1 Items (Item-Paare, Unmatched-Items)
 - Stacks
- MWPM berechnen, Kanten als Stackzuweisungen interpretieren
- Ggf. Reihenfolge der Items innerhalb der Stacks anpassen

$$\mathbf{l} := \{0, 1, 2, 3, 4, 5, 6\}$$
 $\mathbf{b} := 2$ $\mathbf{m} := 4$

$$b := 2$$

STACKING-CONSTRAINT-GRAPH

	S ₁	S ₂	S ₃	S ₄
L_1	0	4	2	1
L_2		5	3	6

Zulässige Zuweisungen (ggf. Item-Reihenfolge korrigieren)

Vergleich der b = 2 Solver (s)

Zeitlimit 1s

Zeitlimit 3s

Zeitlimit 5s

	BinP	3ldx
Optimal	0%	35%
Laufzeit		Ø 0.9s
Abweichung		Ø 2.0%

	BinP	3ldx
Optimal	10%	100%
Laufzeit	Ø 3.0s	Ø 1.1s
Abweichung	Ø 4.7%	Ø 0.0%

	BinP	3ldx
Optimal	90%	100%
Laufzeit	Ø 3.9s	Ø 1.1s
Abweichung	Ø 0.4%	Ø 0.0%

2Cap-Heuristik

Abweichung vom Optimum: Ø 2.0%

Laufzeit: Ø 0.02s

Vergleich der b = 2 Solver (m)

Zeitlimit 1min

Zeitlimit 10 min

Zeitlimit 20*min*

	BinP	3ldx
Optimal	0%	50%
Laufzeit		Ø 55.4s
Abweichung		Ø 0.8%

	BinP	3ldx
Optimal	10%	100%
Laufzeit	Ø 581.6s	Ø 73.7s
Abweichung	Ø 0.6%	Ø 0.0%

	BinP	3ldx
Optimal	100%	100%
Laufzeit	Ø 869.6s	Ø 107.8s
Abweichung	Ø 0.0%	Ø 0.0%

2Cap-Heuristik

Abweichung vom Optimum: Ø 0.8%

Laufzeit: Ø 0.1s

Vergleich der b = 2 Solver (I)

Zeitlimit 15min

Zeitlimit 30*min*

Zeitlimit 45*min*

	BinP	3ldx
Optimal	0%	70%
Laufzeit		Ø 728.0s
Abweichung		Ø 0.53%

	BinP	3ldx
Optimal	0%	85%
Laufzeit		Ø 977.2s
Abweichung		Ø 0.0%

	BinP	3ldx
Optimal	0%	100%
Laufzeit		Ø 1185.9s
Abweichung		Ø 0.0%

2Cap-Heuristik

Abweichung vom Optimum: Ø 0.6%

Laufzeit: Ø 0.7s

Konstruktive Heuristik (b = 3)

- Item-Paare bilden (MCM(ITEMS))
- Item-Tripel bilden (MCM(PAIRS, UNMATCHEDITEMS))
- Verbleibende Item-Paare zu Tripeln mergen
- Item-Paare bilden (MCM(REMAININGITEMS))
- Verbleibende Items als "unmatched" betrachten
- Bipartiten Graph generieren:
 - 1 Items (Item-Tripel, Item-Paare, Unmatched-Items)
 - Stacks
- MWPM berechnen, Kanten als Stackzuweisungen interpretieren
- Ggf. Reihenfolge der Items innerhalb der Stacks anpassen

$$I := \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$
 $b := 3$ $m := 4$

$$\underbrace{0, 2}_{0, 2} \underbrace{1, 9}_{3, 4} \underbrace{5, 6}_{5, 6} \underbrace{7}_{8}$$

ITEM-PAARE UND UNMATCHED-ITEMS

 MCM aus Item-Paaren und Unmatched-Items

ITEM-TRIPEL, ITEM-PAARE UND UNMATCHED-ITEMS

$$(0,2)$$
 $(1,9)$ $(5,6)$ $(0,5,6)$ $(2,1,9)$

ITEM-PAARE MERGE-ERGEBNIS

Vergleich der b = 3 Solver (s)

Zeitlimit 3s

Zeitlimit 5s

Zeitlimit 10s

	BinP	3ldx
Optimal	40%	5%
Laufzeit	Ø 2.9s	Ø 2.9s
Abweichung	Ø 1.7%	Ø7.8%

	BinP	3ldx
Optimal	100%	50%
Laufzeit	Ø 3.1s	Ø 4.0s
Abweichung	Ø 0.0%	Ø 1.2%

	BinP	3ldx
Optimal	100%	85%
Laufzeit	Ø 3.1s	Ø 5.6s
Abweichung	Ø 0.0%	Ø 0.5%

3Cap-Heuristik

Abweichung vom Optimum: Ø 2.65%

Laufzeit: Ø 0.01s

Vergleich der b = 3 Solver (m)

Zeitlimit 10min

Zeitlimit 20 min

Zeitlimit 30*min*

	BinP	3ldx
Optimal	20%	10%
Laufzeit	Ø 583.7s	Ø 554.3 <i>s</i>
Abweichung	Ø 0.2%	Ø 0.01%

	BinP	3ldx
Optimal	100%	30%
Laufzeit	Ø 791.4s	Ø 795.4s
Abweichung	Ø 0.0%	Ø 0.0%

	BinP	3ldx
Optimal	100%	35%
Laufzeit	Ø 766.4s	Ø 874.0s
Abweichung	Ø 0.0%	Ø 0.0%

3Cap-Heuristik

Abweichung vom Optimum: Ø 1.02%

Laufzeit: Ø 0.2s

Vergleich der b = 3 Solver (I)

Zeitlimit 30min

Zeitlimit 45 min

Zeitlimit 60*min*

	BinP	3ldx
Optimal	0%	0%
Laufzeit		
Abweichung		

	BinP	3ldx
Optimal	0%	0%
Laufzeit		
Abweichung		

	BinP	3ldx
Optimal	-tbd-	-tbd-
Laufzeit	-tbd-	-tbd-
Abweichung	-tbd-	-tbd-

3Cap-Heuristik

Abweichung vom Optimum: tbd

Laufzeit: Ø 1.0s

Ausblick

- Konstruktive Heuristik für b = 4 entwickeln
- Verbesserungsverfahren implementieren
- Realistischere Test-Instanzen basierend auf Briskorn (2018)
- Einfluss von *m* auf die Schwierigkeit des Problems untersuchen (+20%, +30%, ...)
- Evaluation