Chapitre 1

Pourcentages

Proportionnalité et pourcentage

Définition 1)

Définition:

Un pourcentage est un rapport de proportionnalité ramené sur 100.

Exemple:

Si, dans une classe de 25 élèves, 40 % sont des garçons, combien représentent-ils ?

	Totalité	Partie
Nombre d'élèves	25	
Pourcentage	100	40

On dispose alors de nombreux outils de calcul:

Le coefficient de	Le rapport de la « partie » au	On prend une fraction	Le produit en croix :
proportionnalité est 4.	40	40	25×40
$40 \div 4 = 10$	« tout » est de $\frac{40}{100}$. Donc	$(\frac{40}{100})$ de 25 :	100
	40	40	
	$\frac{100}{100} = \frac{25}{25}$	$\frac{40}{100} \times 25$	

Il y a donc 10 garçons dans la classe.

Propriété:

Pour prendre les p % d'une grandeur a, on effectue le calcul $a \times \frac{p}{100}$.

Généralisation:

Pour prendre x % de y % d'une grandeur a, on effectue le calcul $a \times \frac{y}{100} \times \frac{x}{100}$.

Exemple:

Dans la classe de l'exemple précédent 60 % des garçons ont des lunettes, donc le nombre de garçons avec des

lunettes est
$$25 \times \frac{40}{100} \times \frac{60}{100} = 6$$
.

Il y a donc 6 garçons avec des lunettes.

2) <u>Détermination d'un pourcentage</u>

On se pose cette fois le problème inverse (calculer un pourcentage à partir des données « brutes »).

Exemple:

Si, dans une classe de 25 élèves, 10 élèves sont des garçons, quel pourcentage représentent-ils ?

	Totalité	Partie
Nombre d'élèves	25	10
Pourcentage	100	

$$\frac{10}{25} \times 100 = 40$$

Les garçons représentent donc 40 % des élèves de la classe.

Propriété:

Pour trouver le pourcentage que a représente par rapport à b, on effectue le calcul $\frac{a}{b} \times 100$

3) Addition et comparaison de pourcentage

Propriétés:

- On ne peut additionner des pourcentages que lorsque les parties portent sur le même ensemble de référence et n'ont pas d'éléments en commun.
- Deux pourcentages portant sur le **même ensemble de référence** sont dans le même ordre que les effectifs correspondants ; sinon on ne peut rien dire.

Exemples:

• Dans un groupe, il y a 40 garçons dont 70 % ont 18 ans et 90 filles dont 40 % ont 18 ans.

On ne peut pas ajouter les pourcentages pour obtenir la part des jeunes de 18 ans : il faut passer par les effectifs.

Il y a 28 garçons et 36 filles de 18 ans (donc le pourcentage

est:
$$\frac{(28+36)}{(40+90)} \times 100$$
).

On ne peut pas ajouter les pourcentages pour obtenir la part de filles brunes qui portent des jupes.

On manque ici d'informations.

II. Pourcentage d'évolution et coefficient multiplicateur

1) Pourcentage d'augmentation et de diminution

Propriétés:

• Augmenter une grandeur de a %, où $a \ge 0$, revient à multiplier cette grandeur par $\left(1 + \frac{a}{100}\right)$.

• Diminuer une grandeur de b %, où $b \ge 0$, revient à multiplier cette grandeur par $\left(1 - \frac{b}{100}\right)$.

Exemples:

- Un volume de 32 L augmente de 5 %. $32+32 \times \frac{5}{100} = 32 \left(1 + \frac{5}{100}\right) = 32 \times 1,05 = 33,6$.
- Un jeu valant 120 €diminue de 10 %. $120-120 \times \frac{10}{100} = 120 \left(1 \frac{10}{100}\right) = 120 \times 0.9 = 108$.

2) <u>Coefficient multiplicateur</u>

Définition:

Lorsque l'on connaît une valeur initiale V_i , qui subit une évolution, et sa valeur finale V_f , le coefficient multiplicateur est le quotient $\frac{V_f}{V_i}$.

Remarques:

- $\left(1 + \frac{a}{100}\right)$ et $\left(1 \frac{b}{100}\right)$ sont les **coefficients multiplicateurs** correspondant à, respectivement, une augmentation de a % ou une diminution de b %.
- A partir du coefficient multiplicateur on peut obtenir le pourcentage p d'évolution.

Exemple : $V_i = 1200$ et $V_f = 1134$, donc le coefficient multiplicateur vaut $\frac{1134}{1200} = 0,945$

et
$$0.945 = \left(1 - \frac{p}{100}\right) = \left(\frac{100}{100} - \frac{p}{100}\right) = \left(\frac{100 - p}{100}\right)$$
.

Donc $p = 100 - 0.945 \times 100 = 100 - 94.5 = 5.5$. La valeur a diminué de 5.5 %.

3) <u>Différentes formes d'évolution</u>

Évolution	Expression	Hausse	Baisse
Valeur initiale et valeur finale	V _i et V _f	$V_i = 120 \text{ et } V_f = 13838$	$V_i = 1000 \ V_f = 864$
Variation absolue (dans l'unité de la valeur)	$\Delta V = V_f - V_i$	138 - 120 = 18 hausse de 18 €	864 – 1000 = –136 baisse de 136 €
Coefficient multiplicateur (sans unité, écriture décimale)	$CM = \frac{V_f}{V_i}$	$\frac{138}{120}$ =1,15	$\frac{864}{1000}$ = 0,864
Variation relative (sans unité, écriture décimale)	$\frac{\Delta V}{V_i} = \frac{V_f - V_i}{V_i}$	$\frac{138 - 120}{120} = \frac{18}{120} = 0,15$	$\frac{864 - 1000}{1000} = -\frac{138}{1000} = -0,138$
Pourcentage d'évolution (sans unité, en %)	$p = CM \times 100 - 100$	1,15×100-100=15 augmentation de 15%	0,864×100-100=-13,6 diminution de 13,6 %
Indice base 100 au départ (sans unité, écriture décimale)	$I = \frac{V_f}{V_i} \times 100$	$\frac{138}{120} \times 100 = 115$	$\frac{864}{1000} \times 100 = 86,4$

Utilisation du site de l'INSEE:

- Calcul du taux de croissance
- Indice des prix

III. Evolutions successives

Propriété:

Lorsqu' une valeur subit des évolutions successives (hausses et/ou baisses), le **coefficient multiplicateur global** est le produit des coefficients multiplicateurs de chaque évolution.

Exemples:

• Augmenter une grandeur de 30%, puis de 40% ne revient pas à l'augmenter globalement de 70%!

En fait, on la multiplie par $\left(1+\frac{30}{100}\right)=1,3$ puis par 1,4. Ce qui revient à la multiplier en tout par $1,3\times1,4=1,82$. Ce qui correspond à une hausse de 82 %.

• Une population urbaine de 20000 habitants en fin 2005 augmente de 8 % sur l'année 2006, de 4,5% sur l'année 2007, de 0,6 % sur l'année 2008 et diminue de 1,5 % sur l'année 2009.

On désire connaître la population fin 2009.

En fin 2005	20000	×1,08
En fin 2006	$20000 \times 1,08 = 21600$	
En fin 2007	$21600 \times 1,045 = 22572$	×1,045 ×1,006
En fin 2008	22572×1,006=22707	
En fin 2009	$22707 \times 0,985 = 22366$	×0,985

Ainsi la population de fin $20\overline{05}$ a été multipliée par $1,08\times1,045\times1,006\times0,985\simeq1,1183$, soit une augmentation de 11,83%.

Remarques:

- Des pourcentages d'évolutions successives ne s'additionnent jamais.
- Une hausse de 10 % suivie d'une hausse de 20 % donne la même valeur qu'une hausse de 20 % suivie d'une hausse de 10 % car :

$$V_i \times 1,10 \times 1,20 = V_i \times 1,20 \times 1,10$$

- n évolutions de t % successives et identiques, correspondent à un coefficient multiplicateur global : $\left(1 + \frac{t}{100}\right)^n$.
- Une hausse de *t* % suivie d'une baisse de même ordre *t* % ne redonne pas la valeur initiale.

Exemple:

Un article valant 100 €augmente de 25 % puis diminue de 25 %.

Sa valeur est
$$100 \times \left(1 + \frac{25}{100}\right) \times \left(1 - \frac{25}{100}\right) = 100 \times 1,25 \times 0,75 = 93,75$$
. Soit une baisse de 6,25 %

Pour revenir à la valeur initiale après une hausse de 25 %, il faut un coefficient multiplicateur de $\frac{1}{1.25}$ = 0,8 , soit une baisse de 20 %.