

Formale Grundlagen der Informatik

11

Pushdown-Automaten (Kellerautomaten)

Universitate Para

Recap: Ein einfacher Parser

- Aufbau eines Ableitungsbaums von der Wurzel zum Eingabewort ("Top-Down-Parsing")
- Arbeitet stets am linken Ende der bisher gefundenen Satzform
 - Terminal: Abhaken
 - Nichtterminal: Aktivieren (also als nächstes Ersetzen)
- Aufbau einer Linksableitung

$$E \Longrightarrow_L \operatorname{id} * E \Longrightarrow_L \operatorname{id} * \operatorname{id}$$

- Backtracking bei Fehlern
- Implementierung mit einem Stack (linkes Symbol am Top)

$$E \rightarrow id + E \mid id * E \mid id$$

Stack	Eingabe	Aktion
E	id * id	$E \rightarrow id + E$
id + E	id * id	Terminal
+E	* id	Backtrack
E	id * id	$E \rightarrow id * E$
id * E	id * id	Terminal
*E	* id	Terminal
E	id	$E \rightarrow id + E$
id + E	id	Terminal
+EHenning Bordihn	$oldsymbol{\mathcal{E}}$ Formale Grundlagen der Informatik	Backtrack

$$E \rightarrow id + E \mid id * E \mid id$$

Stack	Eingabe	Aktion
\overline{E}	id	E o id * E
id * E	id	Terminal
*E	${\cal E}$	Backtrack
E	id	E o id
id	id	Terminal
ε	${\cal E}$	ACCEPT

statt
Backtracking
kann auch
nichtdeterministisch
die nächste
Regel "geraten"
werden

ACCEPT wenn Stack leer <u>und</u> alle Eingabesymbole abgehakt/gelesen

- arbeiten wie NEA (Nichtdeterminismus statt Backtracking)
- speichern zusätzliche Information in einem Pushdown
 - kann (nur) das Top-Symbol lesen
 - ersetzt Top-Symbol durch eine Zeichenkette
 - durch ε , wenn Top-Symbol gelöscht werden soll ("pop")
 - Transition hängt ab von
 - 1. Zustand
 - 2. Eingabesymbol
 - 3. Top-Symbol im Pushdown
- Arbeit bei leerem Keller nicht möglich → initiales Kellersymbol

Pushdown-Automaten – Definition

Ein Pushdown-Automat (PDA) / Kellerautomat ist ein 7-Tupel

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F).$$

Dabei ist

- Q eine endliche Menge von Zuständen,
- ullet Σ ein Alphabet der Eingabesymbole,
- Γ ein Alphabet der Kellersymbole,
- $q_0 \in Q$ der Startzustand,
- $\# \in \Gamma$ das initiale Kellersymbol,
- $F \subseteq Q$ die Menge der akzeptierenden Zustände,
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$ die Überführungsfunktion.

Pushdown-Automaten – Veranschaulichung

Eingabeband

- Sei $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$ ein PDA.
- Zustand: Paar aus $Q \times \Gamma$.
- Konfiguration: Zustand plus unverbrauchte Eingabe
 - \triangleright Tripel aus $Q \times \Gamma \times \Sigma^*$
- Konfigurationsübergang:

$$(q, aw, Z\alpha) \vdash (p, w, \beta\alpha)$$
 falls $(p, \beta) \in \delta(q, a, Z)$ $(a \in \Sigma \cup \{\varepsilon\})$

- $\triangleright \beta$ ersetzt das Top-Symbol Z
- I ist die reflexive und transitive Hülle von ⊢
- $\stackrel{i}{\vdash}$ für i aufeinanderfolgende Konfigurationsübergänge

PDA – akzeptierte Sprache

Sei
$$M = (Q, \Sigma, \Gamma, \delta, q_0, \#, F)$$
 ein PDA.

Der PDA M akzeptiert eine Sprache ...

1. ... durch akzeptierenden Zustand:

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w, \#) \vdash^* (f, \varepsilon, \gamma) \text{ für ein } f \in F \text{ und ein } \gamma \in \Gamma^* \}$$

2. ... durch leeren Keller:

$$N(M) = \{ w \in \Sigma^* \mid (q_0, w, \#) \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon) \text{ für ein } p \in Q \}$$

$$L = \{ ww^R \mid w \in \{0,1\}^* \}$$

$$M_1 = (\{q_0, q_1, q_2\}, \{0,1\}, \{0,1, \#\}, \delta_1, q_0, \#, \{q_2\})$$
 mit

$$\delta_1(q_0, 0, \#) = \{(q_0, 0\#)\}\$$

$$\delta_1(q_0, 0, 0) = \{(q_0, 00), (q_1, \varepsilon)\}$$

$$\delta_1(q_0, 0, 1) = \{(q_0, 01)\}\$$

$$\delta_1(q_1, 0, 0) = \{(q_1, \varepsilon)\}$$

$$\delta_1(q_1, \varepsilon, \#) = \{(q_2, \#)\}$$

$$\delta(q, a, Z) = \emptyset$$
 sonst

$$\delta_1(q_0, 1, \#) = \{(q_0, 1\#)\}\$$

$$\delta_1(q_0, 1, 0) = \{(q_0, 10)\}\$$

$$\delta_1(q_0, 1, 1) = \{(q_0, 11), (q_1, \varepsilon)\}$$

$$\delta_1(q_1, 1, 1) = \{(q_1, \varepsilon)\}$$

$$\delta_1(q_0, \varepsilon, \#) = \{(q_2, \#)\}$$

$$\rightarrow L(M_1) = L$$

PDA - Beispiel (1), Berechnungen

... für 0110

$$(q_0, 0110, \#) \vdash (q_0, 110, 0\#) \vdash (q_0, 10, 10\#)$$

 $\vdash (q_1, 0, 0\#) \vdash (q_1, \varepsilon, \#) \vdash (q_2, \varepsilon, \#)$

$$(q_0, 0110, \#) \vdash (q_0, 110, 0\#) \vdash (q_0, 10, 10\#) \vdash (q_0, 0, 110) \vdash (q_0, \varepsilon, 0110) \times$$

$$(q_0, 0110, \#) \vdash (q_2, 0110, \varepsilon) \times$$

$$L = \{ ww^R \mid w \in \{0,1\}^* \}$$

$$M_2 = (\{q_0, q_1\}, \{0,1\}, \{0,1, \#\}, \delta_2, q_0, \#, \emptyset)$$
 mit

$$\delta_2(q_0, 0, \#) = \{(q_0, 0\#)\}\$$

$$\delta_2(q_0, 0, 0) = \{(q_0, 00), (q_1, \varepsilon)\}$$

$$\delta_2(q_0, 0, 1) = \{(q_0, 01)\}\$$

$$\delta_2(q_1, 0, 0) = \{(q_1, \varepsilon)\}$$

$$\delta_2(q_1, \varepsilon, \#) = \{(q_1, \varepsilon)\}$$

$$\delta(q, a, Z) = \emptyset$$
 sonst

$$\delta_2(q_0, 1, \#) = \{(q_0, 1\#)\}\$$

$$\delta_2(q_0, 1, 0) = \{(q_0, 10)\}\$$

$$\delta_2(q_0, 1, 0) = \{(q_0, 11), (q_1, \varepsilon)\}$$

$$\delta_2(q_1, 1, 1) = \{(q_1, \varepsilon)\}$$

$$\delta_2(q_0, \varepsilon, \#) = \{(q_0, \varepsilon)\}$$

$$\rightarrow$$
 $N(M_1) = L$

Akzeptierende Zustand vs. leerer Keller

```
Satz 11.1. Zu jedem PDA M=(Q,\Sigma,\Gamma,\delta,q_0,\#,F) kann ein PDA M'=(Q\cup\{q_0',q_e\},\Sigma,\Gamma\cup\{\$\},\delta',q_0',\$,F) mit L(M)=N(M') konstruiert werden.
```

Beweis:

- 1. $\delta'(q'_0, \varepsilon, \$) = \{(q_0, \#\$)\}$ // Übergang in Anfangskonfiguration von M
- 2. Für alle $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $Z \in \Gamma$: $\delta(q, a, Z) \subseteq \delta'(q, a, Z)$ // Simulation von M
- 3. Für alle $f \in F$, $Z \in \Gamma \cup \{\$\}$: $(q_e, \varepsilon) \in \delta'(f, \varepsilon, Z)$ // möglicher Start der ...
- 4. Für alle $Z \in \Gamma \cup \{\$\}: (q_e, \varepsilon) \in \delta'(q_e, \varepsilon, Z)$ // ... Keller-Entleerung
- ➤ Markierung \$, falls M Keller leert, obwohl Eingabe nicht akzeptiert wird!

Akzeptierende Zustand vs. leerer Keller

$$w \in L(M) \Leftrightarrow (q_0, w, \#) \stackrel{*}{\vdash_{M}} (f, \varepsilon, \gamma) \text{ für ein } f \in F \text{ und ein } \gamma \in \Gamma^*$$

$$\Leftrightarrow (q'_0, w, \$) \vdash_{M'} (q_0, w, \#\$) \text{ // mit Regel 1.}$$

$$\vdash_{M'}^* (f, \varepsilon, \gamma\$) \text{ // mit Regeln 2.}$$

Dann gilt $(f, \varepsilon, \gamma \$) \vdash_{M'}^* (q_e, \varepsilon, \varepsilon)$ und somit $w \in N(M')$.

Da diese Berechnung nur möglich ist, falls $f \in F$, gilt $w \in N(M')$ nur falls $w \in L(M)$.

Akzeptierende Zustand vs. leerer Keller

Satz 11.2. Zu jedem PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,\#,F)$ kann ein PDA M' mit L(M')=N(M) konstruiert werden.

Beweisskizze: O.B.d.A. kann $F = \emptyset$ angenommen werden.

Setzen $M = (Q \cup \{q'_0, f\}, \Sigma, \Gamma \cup \{\$\}, \delta', q'_0, \$, \{f\});$

- 1. $\delta'(q'_0, \varepsilon, \$) = \{(q_0, \#\$)\}$ // Übergang in Anfangskonfiguration von M
- 2. Für alle $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, $Z \in \Gamma$: $\delta(q, a, Z) = \delta'(q, a, Z)$ // Simulation
- 3. Für alle $q \in Q$: $(f, \varepsilon) \in \delta'(q, \varepsilon, \$)$ // Akzeptieren wenn M leeren Keller hat

 $w \in L(M') \Leftrightarrow w \in N(M)$ analog zum Beweis von Satz 11.1.

Definition. Ein PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,\#,F)$ heißt **deterministisch (DPDA)**, wenn

- 1. $|\delta(q, a, Z)| \le 1$ für alle $q \in Q, a \in \Sigma \cup \{\varepsilon\}, Z \in \Gamma$ und
- 2. wenn $\delta(q, \varepsilon, Z) \neq \emptyset$, dann $\delta(q, a, Z) = \emptyset$ für alle $a \in \Sigma$.

Beispiel:
$$M = (\{q_0, q_1, q_2\}, \{a, b\}, \{A, \#\}, \delta, q_0, \#, \{q_0\})$$
 mit

$$\delta(q_0, a, \#) = (q_1, A\#)$$

$$\delta(q_1, b, A) = (q_2, \varepsilon)$$

$$\delta(q_2, \varepsilon, \#) = (q_0, \varepsilon)$$

$$\delta(q_1, a, A) = (q_1, AA)$$

$$\delta(q_2, b, A) = (q_2, \varepsilon)$$

$$\delta(q, a, Z) = \emptyset$$
 sonst

$$L(M) = ?$$

Satz 11.3. Zu jeder kfG G kann ein PDA M konstruiert werden, sodass N(M) = L(G) gilt.

Idee: Folgen Prinzip des Parsers für kfG

- Simulation einer Linksableitung im Keller
- Topsymbol ist am weitesten links stehendes Symbol der Satzform
 - falls Nichtterminal: mit nichtdeterministisch gewählter Regel ersetzen
 - falls Terminal: Vergleich mit nächstem Symbol der Eingabe
- akzeptieren mit leerem Keller
- benötigen keine Unterscheidung von Zuständen

Satz 11.3. Zu jeder kfG G kann ein PDA M konstruiert werden, sodass N(M) = L(G) gilt.

Beweis: Gegeben sei die kfG G = (N, T, P, S). Konstruieren den PDA $M = (\{q\}, T, N \cup T, \delta, q, S, \emptyset)$,

 $\delta(q, a, a) = \{(q, \varepsilon)\} \text{ für alle } a \in T,$

 $\delta(q, \varepsilon, A) = \{ (q, \alpha) \mid A \to \alpha \in P \}.$

Zeigen $S \stackrel{*}{\Longrightarrow}_L v\gamma$ in G gdw. $(q, v, S) \vdash^* (q, \varepsilon, \gamma)$ in M.

Dann folgt für alle $w \in T^*$: $S \stackrel{*}{\Longrightarrow} w$ gdw. $(q, w, S) \vdash^* (q, \varepsilon, \varepsilon)$, also $w \in L(G)$ gdw. $w \in N(M)$.

Für alle $i \geq 0$ gilt: Falls $(q, v, S) \vdash^i (q, \varepsilon, \gamma)$, dann $S \stackrel{*}{\Longrightarrow}_L v\gamma$:

- I.A.: i = 0. Gilt mit $v = \varepsilon$ und $\gamma = S$.
- I.V.: Falls $(q, v, S) \vdash^i (q, \varepsilon, \gamma)$, dann $S \stackrel{*}{\Rightarrow}_L v\gamma$.
- I.S.: Angenommen $(q, v, S) \vdash^{i+1} (q, \varepsilon, \gamma)$.
 - **1. Fall:** Im letzten Schritt wurde eine Transition der Form $(q, \varepsilon) \in \delta(q, a, a)$ für ein $a \in T$ angewandt. Dann gibt es ein y, sodass v = ya und $(q, ya, S) \vdash^i (q, a, a\gamma) \vdash (q, \varepsilon, \gamma)$. Somit gilt auch $(q, y, S) \vdash^i (q, \varepsilon, a\gamma)$. Nach I.V. gilt dann $S \stackrel{*}{\Rightarrow}_L ya\gamma$, also $S \stackrel{*}{\Rightarrow}_L v\gamma$.

Für alle $i \geq 0$ gilt: Falls $(q, v, S) \vdash^i (q, \varepsilon, \gamma)$, dann $S \stackrel{*}{\Longrightarrow}_L v\gamma$:

- I.A.: i = 0. Gilt mit $v = \varepsilon$ und $\gamma = S$.
- I.V.: Falls $(q, v, S) \vdash^i (q, \varepsilon, \gamma)$, dann $S \stackrel{*}{\Rightarrow}_L v\gamma$.
- I.S.: Angenommen $(q, v, S) \vdash^{i+1} (q, \varepsilon, \gamma)$.
 - **2. Fall:** Im letzten Schritt wurde eine Transition der Form $(q, \alpha) \in \delta(q, \varepsilon, A)$ für ein $A \to \alpha \in P$ angewandt. Dann gibt es ein γ' , sodass $\gamma = \alpha \gamma'$ und $(q, v, S) \vdash^i (q, \varepsilon, A\gamma') \vdash (q, \varepsilon, \alpha \gamma')$.

Nach I.V. gilt dann $S \stackrel{*}{\Rightarrow}_L vA\gamma'$ und $vA\gamma' \Longrightarrow_L v\alpha\gamma'$. Somit gilt $S \stackrel{*}{\Rightarrow}_L v\gamma$.

Für alle $i \geq 0$ gilt: Falls $S \stackrel{i}{\Longrightarrow}_{L} v\gamma$, dann $(q, v, S) \stackrel{*}{\vdash} (q, \varepsilon, \gamma)$:

- I.A.: i = 0. Gilt mit $v = \varepsilon$ und $\gamma = S$.
- I.V.: Falls $S \stackrel{i}{\Longrightarrow}_L v\gamma$, dann $(q, v, S) \stackrel{*}{\vdash} (q, \varepsilon, \gamma)$.
- I.S.: Falls $S \stackrel{i+1}{\Longrightarrow}_L v\gamma$, dann gibt es ein $y \in T^*$ und eine Regel $A \to \alpha$ in P, so dass $S \stackrel{i}{\Longrightarrow}_L yA\gamma' \Longrightarrow_L y\alpha\gamma'$.

Sei $\alpha = z\beta$, $z \in T^*$ und $\beta \in \{\varepsilon\} \cup N(N \cup T)^*$, sodass yz = v und $\beta \gamma' = \gamma$.

Nach I.V.: $(q, y, S)
in (q, \varepsilon, A\gamma')$. Da $(q, \alpha) \in \delta(q, \varepsilon, A)$, gilt $(q, \varepsilon, A\gamma') \vdash (q, \varepsilon, \alpha\gamma')$ und $(q, \varepsilon, \alpha\gamma') = (q, \varepsilon, z\beta\gamma')$.

Mit $\delta(q, a, a) = \{(q, \varepsilon)\}$ für alle $a \in T$ gilt $(q, yz, S) \stackrel{*}{\vdash} (q, z, z\beta\gamma') \stackrel{*}{\vdash} (q, \varepsilon, \beta\gamma')$, also $(q, v, S) \stackrel{*}{\vdash} (q, \varepsilon, \gamma)$.

Satz 11.4. Zu jedem PDA M kann eine kfG G konstruiert werden, sodass L(G) = N(M) gilt.

Idee:

- G hat Nichtterminale der Form [q, A, p], $p, q \in Q, A \in \Gamma$, sodass der PDA M das Kellersymbol A vom Keller löscht, wenn er vom Zustand q in den Zustand p geht. Der Keller wird dabei nie unter dieses Vorkommen von A gelöscht.
- Aus dem Nichtterminal [q, A, p] werden genau die terminalen Wörter w abgeleitet, für die $(q, w, A) \vdash^* (p, \varepsilon, \varepsilon)$ gilt.
- \triangleright Die Menge der terminalen Wörter, die aus den Nichtterminalen der Form $[q_0, \#, p]$ abgeleitet werden (p beliebiger Zustand), ist die Sprache N(M).

einfachster Fall:

$$(p,\varepsilon) \in \delta(q,a,A) \quad (a \in \Sigma \cup \{\varepsilon\})$$

- \blacktriangleright Eingabe a lesen ist für M eine Möglichkeit, das Kellersymbol A zu löschen und dabei von q in p überzugehen
- \triangleright Fügen Regel $[q, A, p] \rightarrow a$ hinzu.
- Nächst einfacher Fall: $(r,B) \in \delta(q,a,A) \quad (a \in \Sigma \cup \{\epsilon\})$
- \triangleright Fügen Regel $[q, A, p] \rightarrow a[r, B, p]$ hinzu.

nächst einfacher Fall:

$$(r, B_1B_2) \in \delta(q, a, A) \quad (a \in \Sigma \cup \{\varepsilon\})$$

- ightharpoonup A wird beim Lesen von a durch B_1B_2 ersetzt. Dabei geht M in den Zustand r über.
- Nun muss B_1 durch Lesen eines Wortes u gelöscht werden, wobei M in einen Zustand s übergeht.
 - Dann muss B_2 durch Lesen eines Wortes v gelöscht werden, wobei M von s in p geht.
- ightharpoonup Regeln $[q,A,p]
 ightharpoonup a[r,B_1,s][s,B_2,p]$ für alle $s \in Q$

Satz 11.4. Zu jedem PDA A kann eine kfG G konstruiert werden, sodass L(G) = N(A) gilt.

Konstruktion: Gegeben ein PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,\#,F)$. Konstruieren eine kfG $G=(V,\Sigma,P,S)$, wobei

- $V = {S} ∪ { [q,A,p] | q,p ∈ Q,A ∈ Γ } und$
- *P* folgende Regeln enthält:
 - $S \rightarrow [q_0, \#, p]$ für alle $p \in Q$,
 - $[q, A, q_{m+1}] \rightarrow a[q_1, B_1, q_2][q_2, B_2, q_3] \dots [q_m, B_m, q_{m+1}]$ für alle $q, q_1, q_2, \dots, q_{m+1} \in Q, \ a \in \Sigma \cup \{\epsilon\}, \ A, B_1, B_2, \dots, B_m \in \Gamma,$ falls $(q_1, B_1B_2 \dots B_m) \in \delta(q, a, A)$. (Falls m = 0: $[q, A, q_1] \rightarrow a$.)

Beweis

der Korrektheit wieder durch zwei Induktionsbeweise

$$M = (\{q_0, q_1\}, \{a, b\}, \{A, \#\}, \delta, q_0, \#, \emptyset) \text{ mit}$$

$$\delta(q_0, a, \#) = \{(q_0, A\#)\}$$

$$\delta(q_0, b, A) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, b, A) = \{(q_1, \varepsilon)\}$$

$$\delta(q_1, e, \#) = \{(q_1, \varepsilon)\}$$

$$L(M) = ?$$

$$G = (N, T, P, S) \text{ mit}$$

$$N = \{S, [q_0, A, q_0], [q_0, A, q_1], [q_1, A, q_0], [q_1, A, q_1], [q_0, \#, q_0], [q_0, \#, q_1], [q_1, \#, q_0], [q_1, \#, q_1]\}$$

$$T = \{a, b\}$$

Geben nur die Regeln in P an, die von S aus erreichbar sind.

$$S \rightarrow [q_0, \#, q_0] \mid [q_0, \#, q_1]$$

$$\begin{split} &[q_0,\#,q_0] \to a[q_0,A,q_0][q_0,\#,q_0] \\ &[q_0,\#,q_0] \to a[q_0,A,q_1][q_1,\#,q_0] \\ &[q_0,\#,q_1] \to a[q_0,A,q_0][q_0,\#,q_1] \\ &[q_0,\#,q_1] \to a[q_0,A,q_1][q_1,\#,q_1] \end{split}$$

wegen
$$\delta(q_0, a, \#) = \{(q_0, A\#)\}$$

$$\begin{aligned} & [q_0,A,q_0] \rightarrow a[q_0,A,q_0][q_0,A,q_0] \\ & [q_0,A,q_0] \rightarrow a[q_0,A,q_1][q_1,A,q_0] \\ & [q_0,A,q_1] \rightarrow a[q_0,A,q_0][q_0,A,q_1] \\ & [q_0,A,q_1] \rightarrow a[q_0,A,q_1][q_1,A,q_1] \end{aligned}$$

wegen
$$\delta(q_0, a, \#) = \{(q_0, AA)\}$$

$$[q_0, A, q_1] \to b$$
$$[q_1, A, q_1] \to b$$
$$[q_1, \#, q_1] \to \varepsilon$$

wegen
$$\delta(q_0, b, A) = \{(q_1, \varepsilon)\}$$

wegen $\delta(q_1, b, A) = \{(q_1, \varepsilon)\}$
wegen $\delta(q_1, \varepsilon, \#) = \{(q_1, \varepsilon)\}$

$$S \rightarrow [q_0, \#, q_0] \mid [q_0, \#, q_1]$$

$$[q_0, \#, q_0] \rightarrow a[q_0, A, q_0][q_0, \#, q_0]$$

$$[q_0, \#, q_0] \to a[q_0, A, q_1][q_1, \#, q_0]$$

$$[q_0, \#, q_1] \rightarrow a[q_0, A, q_0][q_0, \#, q_1]$$

$$[q_0, \#, q_1] \rightarrow a[q_0, A, q_1][q_1, \#, q_1]$$

$$[q_0, A, q_0] \rightarrow a[q_0, A, q_0][q_0, A, q_0]$$

$$[q_0, A, q_0] \rightarrow a[q_0, A, q_1][q_1, A, q_0]$$

$$[q_0, A, q_1] \rightarrow a[q_0, A, q_0][q_0, A, q_1]$$

$$[q_0, A, q_1] \rightarrow a[q_0, A, q_1][q_1, A, q_1]$$

$$[q_0, A, q_1] \to b$$

$$[q_1, A, q_1] \rightarrow b$$

$$[q_1,\#,q_1]\to\varepsilon$$

$$(q_0, aabb, \#) \vdash (q_0, abb, A\#) \vdash (q_0, bb, AA\#)$$

 $\vdash (q_1, b, A\#) \vdash (q_1, \varepsilon, \#) \vdash (q_1, \varepsilon, \varepsilon)$

$$S \Longrightarrow [q_0, \#, q_1]$$

$$\Rightarrow a[q_0, A, q_1][q_1, \#, q_1]$$

$$\Rightarrow aa[q_0, A, q_1][q_1, A, q_1][q_1, \#, q_1]$$

$$\Rightarrow aab[q_1, A, q_1][q_1, \#, q_1]$$

$$\Rightarrow aabb[q_1, \#, q_1]$$

$$\Rightarrow aabb$$

Folgerung 11.5. Die folgenden drei Aussagen sind äquivalent:

- 1. *L* ist eine kontextfreie Sprache.
- 2. $L = L(M_1)$ für einen PDA M_1 .
- 3. $L = N(M_2)$ für einen PDA M_2 .