Esercizio 2.1

1) Determinare una grammatica che genera il seguente linguaggio:

$$L = \{a^n b^n \mid n > 0\}$$

e dimostrare questo risultato.

2) Che tipo di grammatica genera L?

1)
$$G = (X, V, S, P)$$

$$X = \{a, b\}, \qquad V = \{S\}, \qquad P = \left\{S \underset{(1)}{\longrightarrow} aSb, S \underset{(2)}{\longrightarrow} ab\right\}$$

Dobbiamo dimostrare che L = L(G).

i) $L(G) \subset L$

Sia w una stringa derivabile da S (in G).

$$w \in L(G) \stackrel{def}{\Leftrightarrow} S \stackrel{*}{\Rightarrow} w, \ w \in X^*$$

Procediamo per induzione sulla lunghezza della derivazione di <math>w da S. Denoto con n la lunghezza della derivazione di w da S.

Passo base

n = 1

 $S \underset{(2)}{\Longrightarrow} ab$ è l'unica derivazione di lunghezza n = 1 che genera stringhe di soli terminali.

È immediato verificare che $ab \in L$.

Passo induttivo

Dimostriamo che, per ogni n > 1, se supponiamo che il seguente enunciato è vero:

"se
$$w' \in L(G)$$
, $S \stackrel{n-1}{\Rightarrow} w'$ (w' è derivabile in $n-1$ passi da S)

allora
$$w' \in L$$
"

allora anche l'enunciato:

"se
$$w \in L(G)$$
, $S \stackrel{n}{\Rightarrow} w$ allora $w \in L$ "

risulta vero.

Consideriamo:

$$w \in L(G)$$
, con $S \stackrel{n}{\Rightarrow} w$.

Per definizione (di derivabilità in n passi), esiste una sequenza di forme di frase $w_1, w_2, ..., w_n$ con $w_n = w$, tale che w_1 deriva direttamente da S e, per ogni i (i = 1, 2, ..., n-1), w_{i+1} deriva direttamente da w_i .

$$S \Rightarrow w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_n = w$$

È immediato osservare che il primo passo della derivazione è dato dalla applicazione della produzione (1) di G (altrimenti otterremmo la stringa ab, priva di nonterminali ed avremmo finito. Ma allora n = 1).

Si ha dunque:

$$S \Longrightarrow aSb \Longrightarrow^{n-1} w_n = w$$

Per ipotesi di induzione, ogni stringa derivabile da S in n-1 passi è una parola di L. Dunque, da S è possibile derivare in n-1 passi una stringa del tipo: $w' = a^k b^k$, k > 0.

Più precisamente, $w' = a^{n-1}b^{n-1}$, poiché:

$$S \stackrel{k}{\Longrightarrow} a^k S b^k, \ k > 0.$$

Ma allora la stringa:

$$aw'b = aa^{n-1}b^{n-1}b = a^nb^n$$

è ancora una stringa di L ed inoltre è derivabile da S in n passi.

Si ha, infatti:

$$S \Longrightarrow aSb \Longrightarrow aw'b = a^nb^n = w$$

Risulta così dimostrato $L(G) \subset L$.

ii) $L \subset L(G)$

Sia w una parola di L. Procediamo per induzione sulla lunghezza della stringa w.

Passo base

Prendiamo in considerazione la parola di L di lunghezza minima.

$$n = 1 \Leftrightarrow |w| = 2$$
 $w = ab$

Dobbiamo dimostrare che: $S \Rightarrow ab$.

Banale. Applichiamo la produzione (2) di G ed otteniamo che w = ab è direttamente derivabile da S.

$$S \underset{(2)}{\Longrightarrow} ab$$

Passo induttivo

Dimostriamo che, per ogni n > 1, se supponiamo che il seguente enunciato è vero:

"se
$$w' \in L$$
, $|w'| = 2(n-1)$ allora $S \stackrel{*}{\Rightarrow} w'$ "

allora anche il seguente enunciato:

"se
$$w \in L$$
, $|w| = 2n$ allora $S \stackrel{*}{\Rightarrow} w$ "

risulta vero.

Sia w una parola su X tale che:

$$w \in L$$
, $|w| = 2n$, $n > 1$.

Ovviamente, $w = a^n b^n$ (unica parola di L di lunghezza 2n). Nella (ipotetica) derivazione di w da S, devo necessariamente applicare la produzione (1) di G, come 1° passo (altrimenti riotterrei la parola ab).

Dunque:

$$S \Rightarrow_{(1)} aSb$$
 (a)

Per ipotesi di induzione, ogni parola di L di lunghezza 2(n-1) è derivabile da S (in G). Dunque, anche $w' = a^{n-1}b^{n-1}$ è derivabile da S:

$$S \stackrel{*}{\Rightarrow} w' = a^{n-1}b^{n-1} \tag{b}$$

Ne consegue che $w = a^n b^n$ è derivabile da S e la relativa derivazione è ottenuta applicando in successione (a) e (b).

$$S \underset{(a)}{\Rightarrow} aSb \underset{(b)}{\Rightarrow} aw'b = aa^{n-1}b^{n-1}b = w$$

Dunque, $L \subset L(G)$ e

$$L = L(G)$$

2) G è una grammatica libera da contesto.