

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sem-V

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	L	T	P	0	${f E}$	L	T	P	Total
Code										
	Analog and Digital Communication	3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
		Component		ISE	ISE (%) N		2 (%)	ESE (%)		Total
EC301	Communication	Theory			20		0	60		100
		Laboratory		8	80		-	2	0	100

Pre-requi	site Course Codes, if any.	EC202: Electronic Devices
		MA203: Probability and Stochastic Processes
		EC207: Signals and Systems
Course O	bjective: The objective is to	equip the students with basic knowledge for analyzing analog
and digita	al communication systems	ranging from data networks and internet to mobile data
communic	cation systems such as cellula	r and WiFi systems. Specifically, the students will learn how
to manage	e communication system reso	ources including bandwidth and power by selecting a proper
signaling	and/or analog/pulse/digital mo	dulation scheme
Course O	utcomes (CO): At the end of	the course students will be able to
EC301.1	Describe various entities of a	analog, pulse, and digital communication system.
EC301.2	Apply concepts of signals a	and systems to analyze behavior of modulated signals in time
	domain, frequency domain a	nd signal space.
EC301.3	Analyze and compute syst	em performance measures such as efficiency, bit rate and
	bandwidth of various analog	, pulsed and digital modulation methods.
EC301.4	Analyze the behavior of a	various analog, pulse, and digital modulation schemes in
	presence of noise.	
EC301.5	Compare various modulation	and demodulation techniques.
EC301.6	Examine various wired and	l wireless applications and further infer health, safety, and
	environment aspects of wired	d and wireless systems.
	•	

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2
EC301.1	3				1				1	-		1
EC301.2	2	2			3				3	3		
EC301.3	2	2			3				3	3		1

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC301.4	3	3		3				3	3	1
EC301.5	2	2		3				3	3	
EC301.6	1	1			1	1	1	3	3	3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC301.1	2	2				
EC301.2	2	2		2	1	
EC301.3	2	2		2	1	
EC301.4	2	2		2	1	
EC301.5	2	2				
EC301.6	1	1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember✓	Understand✓	Apply✓	Analyze√	Evaluate	Create

Modul e No.	Unit No.	Topics	Ref	Hrs.
1	Title	Continuous-Wave Modulation	1	
	1.1	Review of signals and systems, Frequency domain		08
		representation of signals, classification of Frequency		
		spectrum, Need for modulation, Block diagram of an analog		
		and digital communication system.		
	1.2	Amplitude modulation, Linear modulation schemes,		
		Frequency translation,FDM		
	1.3	Frequency modulation, Spectral characteristics of angle		
		modulated signals, Generation of FM signals: Indirect		
		method, FM demodulation: Frequency discriminator		
	1.4	Super heterodyne receiver		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

2	Title	Pulse Modulation	1	06
	2.1	Sampling process. Pulse Amplitude modulation, SNR, Noise BW trade off		
	2.2	Pulse code modulation (PCM),Differential pulse code		
		modulation.		
	2.2	Delta modulation, Noise considerations in PCM, Time Division multiplexing, Digital Multiplexers		
3		Source Coding and Error correction coding	1	08
	3.1	Uncertainty, Information, Entropy, Source coding theorem, Huffmann encoding, Shannon Fano coding		
	3.2	Discrete memory less channels, Channel capacity Theorem, Linear block codes, Convolutional codes (Shift Register		
		approach and Code tree)		
4	Title	Baseband Pulse Transmission	1,2	8
	4.1	Based band receiver, Probability of error of integrate and dump receiver, Matched filter, optimum filter		
	4.2	Line coding and Power spectral density (PSD) of line codes, Inter symbol Interference and Nyquist criterion, Raised cosine filter,		
	4.3	Duobinary encoding, Introduction to linear and adaptive equalization		
5	Title	Pass band Digital Modulation schemes	1,2	12
	5.1	BPSK,DPSK,QPSK,M-aryPSK,QAM,BFSK,M-ary FSK,MSK-Principle of working, PSD and Signal space analysis		
	5.2	Digital Modulation tradeoffs, Probability of Error evaluations of various modulations.(derivation not expected)		
	5.3	Synchronization and Carrier Recovery for Digital modulation.		
6	Self Study	a.Case study (any one) b. Research article (any one)		06
	1	<u> </u>	 Total	42+06

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Simulation and implementation of double sideband full carrier for various modulation index.

(Autonomous Institute Affiliated to University of Mumbai)

2	Implement the frequency modulation circuit to obtain FM waveforms and calculate modulation index
3	Analyze effect of pre-emphasis and de-emphasis on FM waveforms.
4	Implementation of natural sampling and reconstruction of waveforms
5	Implementation and detection of pulse amplitude modulation.
6	Implementation of Binary Phase Shift Keying.
7	Implementation of Binary Frequency shift keying.
8	Duo binary Encoder.
9	Simulation of digital modulation scheme and analysis of Power spectral density.
10	Simulation and analysis of signal space of various modulations in presence of noise.
11	Signal transmission through Raised cosine filter and eye pattern analysis.
12	Simulation of OFDM.
13	Mini project in analog/pulse/digital modulation methods.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Communications Systems	Fourth	Haykin S	John Wiley	2001
				and Sons	
2	Principles of Communication Systems	Second	Taub H. and Schilling D. L	Tata McGraw Hill	2001

Reference Books

IXCICICI	actificing books									
Sr. No	Title	Edition	Authors	Publisher	Year					
1	Digital	Third	Haykin S	John Wiley	2001					
	Communication.			and Sons						
2.	Communication	Fourth	Proakis J. G.	Pearson	2002					
	Systems Engineering		and Salehi M.	Education						
3.	Digital and Analog Communication	Fourth	B.P.Lathi	Oxford	2017					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	0	E	L	T	P	Total
		3	0	2	6	11	3	0	1	4
PC		Examinatio				n Scheme				
	Control Systems	Component		ISI	ISE (%)		MSE (%)		SE (%)	Total
EC302		The	ory		20		20		60	100
		Laboratory			80				20	100

Pre-requi	site Course Codes, if any. MA101: Engineering Calculus			
_	MA102: Differential Equations and Complex Analysis			
	EC 101: Digital Systems and Microprocessors			
	EC 203: Probability and Stochastic Processes			
	EC 204: Electronic Instruments and Measurement Lab			
Course O	bjectives: To develop a system for real life application by applying the concepts of control			
system the	eory and allied techniques for system performance evaluation.			
Course O	utcomes (CO): At the end of the course students will be able to			
EC302.1	Classify different types of control systems, component of control system and formulate			
EC302.1	mathematical modeling of the given system.			
EC302.2	Apply various methods for representation of the given control system.			
EC302.3	Analyze the transient and steady state behavior of given system for standard test inputs.			
EC302.4				
EC302.5	Discuss the concept of controllability and observability using state variable model.			
EC302.6	Evaluate the system performance with the use of compensators & controllers.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC302.1	3				2			3	3	2	2	2
EC302.2		3			2			3	3	2	2	2
EC302.3		3			2			3	3	2	2	2
EC302.4		3			2			3	3	2	2	2
EC302.5		3			2			3	3	2	2	2
EC302.6	3				2	2		3	3	2	2	2

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC302.1	1	1	2		-	
EC302.2	1	1	2		-	
EC302.3	1	1	2		2	
EC302.4	1	1	2		2	
EC302.5	1	1	2		2	
EC302.6	1	1	2		2	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

Modul e No.	Unit No.	Topics	Ref.	Hrs.
1	Title	Introduction to control system and system Modeling		
	1.1	Introduction to control system:	1,2	10
		Definition of system, Notion of feedback, Open loop and closed		
		loop systems; feedback and feed forward control structure;		
		Examples of control systems.		
	1.2	Dynamic Response: Standard test signals; Transient and steady	1,2	
		state behavior of first and second order systems; Generalized		
		error coefficients, steady state errors in feedback control systems		
	1.2	and their types.	1.2	_
	1.3	Control System Modeling: Types of model's Impulse response	1,2	
		model, State variable model, Transfer function model, Modeling of electrical systems and translational mechanical systems.		
2	Title	Representation of Control System and State Space Analysis		10
	2.1	Block diagram representation of systems, Block diagram	1,2	- 10
	2.1	reduction methods, closed loop transfer function, signal flow	1,2	
		graph. Mason's gain rule		
	2.2	State Space Analysis: Concepts of state space, State equations,	1,2	
		State transition matrix, properties of state transition matrix,		
		Solution of homogeneous systems.		
	2.3	Controllability and Observability: Concept of controllability,	3,4	
		Controllability analysis of LTI systems, Concept of observability,		
		Observability analysis of LTI systems using Kalman approach.		

(Autonomous Institute Affiliated to University of Mumbai)

3	Title	Time Domain System Stability Analysis		8
	3.1	Concepts of Stability Concept of absolute, relative and robust stability	1,2	
	3.2	Routh-Hurwitz stability criteria	1,2	
	3.3	Root Locus Analysis: Root-locus concepts; General rules for	1,2	
		constructing root-locus, Root-locus analysis of control systems.		
4	Title	Frequency Domain System Stability Analysis		8
	4.1	Relation between time and frequency response	1,2	
	4.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode	1,2	
		plot; Stability analysis by using Gain and phase margins on the Bode plots		
	4.3	Polar plots, Nyquist stability criterions; Nyquist plot; Gain and phase margins.	1,2	
5	Title	Compensators & Controllers		6
	5.1	Types of compensators, Realization of basic compensators	1,2	
		-cascade compensation in time domain and frequency domain.		
	5.2	Controllers : Concept of ON/OFF controllers; Concept of P, PI, PD and PID Controllers.	1,2	
	5.3	Advanced Control Systems: Introduction to Robust Control, Adaptive control and Model predictive control, Neuro-fuzzy controllers.	3,4	
6	Self-	Examples on open loop and closed loop control system,	1,2,3,	
	Stud	Modeling of rotational mechanical systems, Pole placement using	4,5	
	y	state feedback Popov–Belevitch–Hautus (PBH) test in state space, Design of lag, lead and lag-lead compensator using Bode plot and Root locus techniques, Design of real-life applications of control system.		
	•		Total	42

Laboratory Component:

Exp. No.	Experiment Details	Marks CO
1	To obtain the characteristics of control system components:	05
	i. To plot the Synchro transmitter characteristics and Synchro transmitter and receiver as an error detector.	CO1
	ii. To plot characteristics of Potentiometer and its loading effect for different	
	conditions of load.	
2	To demonstrate the working of real-life feedback control system and obtain	05
	their characteristics:	CO1
	i. To plot Speed torque characteristic of DC servo motor.	
	ii. To determine the line and load regulation characteristics of AC servo	
	voltage stabilizer at different line and load conditions and observe the	
	mechanism of AC voltage stabilization as an example of closed control	
	system.	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3	To develop a program in Matlab/Scilab/LabVIEW:	05
	i. To define the given closed loop transfer function of system and plot their	CO2
	poles & zeros on s-plane.	
	ii. To reduce the given control system block diagram or signal flow graph.	
4	To develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the step response of a given first/second order control system and	CO3
	obtain its time domain parameters from this step response. Compare these	
	results with mathematical calculations.	
	ii. To determine step response for a Type 0, Type 1, Type 2 systems and find	
	error coefficients.	
	iii. To find solution for a given control system described by its state space	
	equation in terms of state transition matrix, zero input response, zero state	
	response, complete response.	
5	Develop a program in Matlab/Scilab/LabVIEW:	10
	i. To obtain the root locus of a system described by its Transfer Function with	CO4
	unity feedback, Comment on the stability of this given control system.	
	Compare these results with mathematical calculations.	
	ii. To find gain margin and phase margin of the system described by its	
	Transfer Function with unity feedback using Bode/Nyquist plot. Comment on	
	the stability of this given control system. Compare these results with	
	mathematical calculations.	
6	Develop a program in Matlab/Scilab/LabVIEW:	10
-	i. To find whether a given control system described by its state space equation	CO5
	is controllable or not, observable or not, to find rank of matrix and using rank	
	comment on system controllability and observability.	
	ii. To design a controller and observer via state space.	
7	Evaluate the effect of Compensator/PID controller on performance of the	5
-	control system.	CO6

ISE Evaluation: CO1-CO6

Mini-Project: Identify the model of control system for real life application and demonstrate controlling action for the same.

This is group activity. Students will form a group of minimum 3 students. Students will develop the block diagram of the system first, then design each block using appropriate components. Simulate the complete block diagram using any tool like Matlab, Scilab or LabVIEW. The duration of this activity is a complete semester, but evaluation will be done in phases and rubrics designed. In the first phase students will develop the block diagram for the given problem statement. In the second phase students will develop the block diagram and simulate each of the block diagrams and test it for input-output relationship. In the third phase students will interface all the designed blocks to obtain final input-output relationship of the system. Hardware implementation is optional.

(Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems Engineering	Fifth	I. J. Nagrath, M. Gopal	New Age	2012
				International	
2	Modern Control Engineering	Fifth	Ogata. K	Prentice Hall	2010
				of India	

Reference Books

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Control Systems: Principle and design	First	M. Gopal	Tata McGraw Hill	1998
2	Modern Control System	Eleventh	Richard C. Dorf and Robert H. Bishop	Pearson	2013
3	Control Systems Engineering	Sixth	Norman Nise	John Wiley & Sons	2011
4	Linear Control System Analysis and Design: Conventional and Modern	First	Constantine H. Houpis and John J. D'Azzo	Mcgraw-Hill	1975

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	L	T	P	О	E	L	T	P	Total
Code										
		3	0	2	5	10	3	0	1	4
PC		Examination Scheme								
PC	Digital Signal	Compo	Component ISE (%)		MSE (%)		ES	SE	Total	
	Processing	_						(%	(o)	
EC303	_	Theor	ry	2	0	2	20	6	0	100
		Labora	tory	8	0			2	0	100

Pre-requisit	e Course Codes, if any.	EC207: Signals and Systems					
Course Obje	ective: To develop mathematic	cal foundation of system and design digital filters					
Course Outo	Course Outcomes (CO): At the end of the course students will be able to						
EC303.1	Classify and perform various	Classify and perform various operations on signals and systems.					
EC303.2	Apply DFT properties and illustrate FFT algorithms.						
EC303.3	Apply Z Transform on discre	ete time signals.					
EC303.4	Analyze LTI System using Z	Z Transform.					
EC303.5	Design and Realize Digital filters.						
EC303.6	Analyze Multirate Signal Pro	ocessing.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC303.1	3	1	2		2							
EC303.2	1	1	2		2							
EC303.3	1	1	2		2							
EC303.4	1	1	2		2							
EC303.5	1	1	2		2							
EC303.6	1	1	2		2							2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC303.1		2				2	
EC303.2		2				2	
EC303.3		2				2	
EC303.4		2				2	
EC303.5		2				2	
EC303.6		1				2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create

Modul	Unit No.	Topics	Ref.	Hrs.
e No.	Title	Overview of Discrete Time Signals	6,7,8	
1	1.1	Sampling of Continuous Time Signal, Standard Discrete Time	0,7,0	08
	1.1	Signals: Impulse Signal, Unit Step, Unit Ramp, Sinusoidal, Exponential.		
	1.2	Classification of Signals: Deterministic and non-deterministic, Periodic and a periodic, Symmetric (even) and Asymmetric (odd), Energy and Power, Causal and Anti-causal signals.		
	1.3	Operations of Signals: Shifting, Scaling, Time Reversal, Addition and Multiplication, Convolution (Linear and Circular), Correlation		
2	Title	Discrete Fourier Transform (DFT)	1, 3	12
	2.1	Discrete Time Fourier transform (DTFT), Discrete Fourier Transform (DFT), Properties of DFT, Inverse DFT.		
	2.2	Fast Fourier Transform: Radix-2 Decimation in Time Fast Fourier Transform (DIT-FFT) and Decimation in Frequency Fast Fourier Transform (DIF-FFT) algorithms, Real and Complex Calculations using FFT, Linear and Circular Convolution using FFT,		
	2.3	Filtering of long data sequence, Overlap Add Method, Overlap Save Method		
3	Title	Z-Transform	6,7	04
	3.1	Z-Transform of discrete time signals, Properties of Z-Transform, Relation between Z-Transform and DTFT,		
	3.2	Inverse Z-Transform, Long division Method, Partial Fraction Expansion Method		
4	Title	Linear Time Invariant (LTI) Systems	1,4	08
	4.1	Classification of systems: Static and dynamic, time variant and time invariant, linear and nonlinear, causal and non-causal, stable and unstable systems.		
	4.2	Impulse Response, Transfer Function, Differential Equation, Stability of Systems, Frequency Response, Solution of Differential Equation using Z-Transform		
	4.3	LTI systems as frequency-selective filters like; Low pass, High pass, Band pass, Invertibility of LTI systems, Minimum-phase, Maximum-phase, Mixed-phase systems		

(Autonomous Institute Affiliated to University of Mumbai)

5	Title	Design of Digital filters and Implementation	1,2	10
	5.1	Design of Infinite Impulse Response (IIR) filters using Impulse		
		Invariant Method and Bilinear Transformation Method,		
		Butterworth and Chebyshev Type I filter design.		
	5.2	Concepts of Finite Impulse Response (FIR) filter, symmetric and anti-symmetric FIR filter, FIR filter design using Window method and Frequency sampling method.		
	5.3	Realization structures for IIR and FIR filters using direct Form Realization, cascade, parallel structures; Linear Phase Realization, Frequency Sampling Realization.		
6	Self-S	1.Multirate Signal Processing: Down-sampling and	1,5	*5
	tudy	Up-sampling by integer factors; Decimator and Interpolator, Sampling rate conversion by non-integer factor. 2. Application of Filter: Sub-band filters.	·	
			Total	42+*
				5

Laboratory Component

Laborat	ory Component
Sr. No	Title of the Experiment
1	Discrete Convolution and Correlation
2	Discrete Fourier Transform
3	Fast Fourier Transform
4	Linear Filtering using Overlap Add Method/ Overlap Save Method.
5	Design of Butterworth IIR Filter using Impulse invariant method
6	Design of Butterworth IIR Filter using Bilinear Transformation method
7	Linear phase FIR Filter design using Windowing method
8	Linear phase FIR Filter design using Frequency sampling method
9	Multirate Signal Processing
10	Mini Project on real Time DTSP application

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processing:	Fourth	J. Proakis, D. G.	Pearson	2014
	Principles, Algorithms and		Manolakis, and D. Sharma	Education	
	Applications				
2	Digital Signal Processing	Fourth	Ramesh Babu	Scitech	2014
3	Digital Signal Processing	-	S.Salivahanan, A	Tata	2010
			Vallavaraj, C Gnanapriya	McGraw Hill	

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Signals and Systems	Second	Second Alan V Oppenheim, Alan		2002
			S, Willsky and A Hamid		
			Nawab		
2	Signals and Systems	Third	Simon Haykin and Barry	John Wiley	2002
			Van Veen	& Sons	
3	Theory and	Second	L. R. Rabiner and B. Gold	Prentice-H	2006
	Applications of Digital			all	
	Signal Processing			all	
4	Multirate Systems and	First	P.P. Vaidyanathan,	Pearson	1992
	Filter Banks				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	Course (Category)	Course Name	Т	Teaching Scheme (Hrs/week)					Credits Assigned			
	Code		L	T	P	0	E	L	T	P	Total	
	PC	Electromagnetic Engineering	3	0	2	6	11	3	0	1	4	
			Examination Scheme									
			Componen		IS	ISE (%)		MSE		E (%)	Total	
			1				(%)					
	EC304		The	ory		20		20		60	100	
			Labor	Laboratory 80		80				20	100	

Pre-requisi	te Course Codes, if any.	MA101: Engineering Calculus			
		MA102: Differential Equations and Complex Analysis			
		MA201: Linear Algebra			
Course Ob	jective: To teach fundamental	ls of Electromagnetic Waves			
Course Outcomes (CO): At the end of the course students will be able to					
EC304.1	Apply basic laws of electromagnetic and Maxwell's equations.				
EC304.2		I waves and travelling of waves in free space as well as			
	media.				
EC304.3	Solve problems related to th	e propagation of electromagnetic waves.			
EC304.4	Discuss the types of antenna	s and their parameters.			
EC304.5	Discuss types of radio wave	propagation.			
EC304.6	Design applications using E	lectromagnetic Waves theory.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC304.1	1	1	2		2					3		
EC304.2	1	1	2		2							
EC304.3	1	1	2		2					3		
EC304.4	1	1	3		2					1		
EC304.5	1	1	2		2							
EC304.6	1	1	3		2					2		3

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC304.1		2			2	
EC304.2		2			2	
EC304.3		2			2	
EC304.4		2			2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC304.5	2		2	
EC304.6	1		1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

$\mathbf{Remember} \sqrt{}$	Understand $\sqrt{}$	Apply $$	Analyze√	Evaluate	Create

Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Coordinate system transformation and vector calculus		
	1.1	Cartesian, cylindrical and spherical coordinate, Differential length,	2	3
		area and volume, line surface and volume integrals.		
	1.2	Del Operator, Gradient of scalar, Divergence of a vector and		
		Divergence Theorem, Curl of a Vector and Stoke's Theorem,		
		Laplacian Theorem, Classification of a Vector Field.		
2	Title	Basic Laws of Electromagnetic and Maxwells Equations	1	9
	2.1	Coulombs law, Electric fields due to continuous charge distributions,		
		Gauss law and its applications, Electric potential (Magnetic vector		
		potential and Electrical Scalar Potential), relationship between E and		
		V, Poisson and Laplace equations, Bio-Savarts law, Amperes law.		
	2.2	Boundary conditions for static electric and magnetic fields		
	2.3	Faradays Law, Displacement current, Maxwells Equations: Integral		
		and differential form for static and time varying fields and its		
		interpretation		
3	Title	Electromagnetic Wave Propagation	1,2	9
	3.1	Wave equation: Derivation and its solution in Cartesian co-ordinates.		
	3.2	Solution of wave equations: Partially conducting media, perfect		
		dielectrics and good conductors, Concept of Skin Depth.		
	3.3	Electromagnetic Power: Poynting Vector and power flow in free		
		space and in dielectric, conducting media.		
	3.4	Polarization of wave: Linear, Circular and Elliptical.		
	3.5	Propagation in different media: Behavior of waves for normal and		
		oblique incidence in dielectrics and conducting media.		
4	Title	Waveguide	1,2	6
	4.1	Wave propagation in parallel plane waveguide (No derivation		
		expected), Analysis of waveguide general approach (No derivation		
		expected), in waveguide.		
	4.2	Rectangular waveguide, Modal propagation in rectangular		
		waveguide, Surface currents on the waveguide walls, Field		
		visualization, Attenuation.		
5	Title	Transmission Lines	1,2	9

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.1	Power frequency lines: Representation, losses and efficiency in power lines, effect of length, calculation of inductance and						
		apacitance.						
		Radio frequency lines: Representation, propagation constant, attenuation constant, phase constant, group velocity, input impedance, characteristic impedance, trade-off between attenuation and power transfer, reflection coefficient, standing wave ratio, VSWR, ISWR, ABCD parameters of transmission line.						
	5.2	Smith Chart: Impedance locus diagram, impedance matching.						
6	Title	Applications of Electromagnetics	2,3	6				
	Self-	Xerography. Laser printer, Faraday's cage, lightning, RF MEMS,	1,2,	06				
	Stud	Magnetic levitation, Metamaterials, RFID, Stealth aircraft, remote	6					
	у	sensing, radio astronomy, EMI and Electromagnetic Compatibility,						
		Different types of antennas.						
Total				42				

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment								
1	Basic operations on scalar and vectors								
	Working with Numbers: Scalars and Vectors using any simulation platform or Python.								
	Working with Complex Numbers using any simulation platform or Python.								
	Working with Matrices using any simulation platform or Python.								
2	Curl and Divergence								
	Numerical Computation of Divergence and Curl.								
	Numerical Computation of Divergence and Curl for a Current Carrying Wire.								
3	Write a program that displays the distribution of the electric potential due to an electric dipole with a moment located at the origin of a spherical coordinate system.								
4	Numerical Integration and Calculating the Electric Field from a Ring of Charge.								
5	3-D and 2-D radiation patterns of a Hertzian dipole using MATLAB/Python.								
6	Antenna parameters								
	Visualization of a wireless system with two antennas.								
	Radiation patterns of a small loop antenna.								
	Radiation patterns of a quarter-wave monopole.								
7	Waveguide: Verify the relationship between wavelength of an EM wave in air and inside a								
	rectangular waveguide.								
8	Simulating the Two-ray Propagation Model in any simulation platform or Python.								
9	Using Virtual Lab: Introduction to Smith chart and its application for the unknown								
	impedance measurement using virtual lab IIT K								
10	Measurement of Frequency and wavelength of a waveguide using Microwave bench setup.								
11	Using Virtual Lab: Study of field pattern of various modes inside a rectangular waveguide								
	using virtual lab IIT K								
12	Case Study- The student is required to develop a simple tool to carry out unit conversions								

(Autonomous Institute Affiliated to University of Mumbai)

Text Books:

Sr. No.	Title	Title Edition Authors		Publisher	Year
1	Electromagnetic Waves	Third	R.K. Shevgaonkar	Tata McGraw Hill	2009
2	Principles of	Sixth	Matthew N.O.	Oxford International	2015
	Electromagnetics		Sadiku	Student	

Reference Books:

Sr. No.	Title	Edition	Authors	Publisher	Year
1	Engineering	Third	W.H. Hayt, and J.A.	McGrawHill	2006
	Electromagnetics		Buck		
2	Electromagnetic Waves and	Second	Edward C. Jordan	Pearson	2006
	Radiating Systems		and Keth G. Balmin	Publications	
3	Engineering	Third	Nathan Ida	Springer	2015
	Electromagnetics			Publications	
4	Antennas & Wave	Fourth	J.D. Kraus, R.J.	McGrawHill	2011
	Propagation		Marhefka, and A.S.		
			Khan		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	T	P	0	E	L	T	P	Total
	Java Programming Lab	0	1	2	1	4	0	1	1	2
(SBC)		Examination					on Scheme			
		Component		ISI	ISE (%)		MSE (%)		E (%)	Total
EC305A		Theory								
		Laboratory			50				50	100

Pre-requis	site Course Codes, if any.	CS101: Problem Solving using Imperative Programming					
		CS102: Problem Solving using OOPs					
Course C	Course Objective: To learn Object-Oriented programming paradigm using Java programmir						
	language.						
Course Outcomes (CO): At the end of the course students will be able to							
EC305.1	Demonstrate programming us	sing basic constructs of JAVA.					
EC305.2	Apply Inheritance and polym	orphism for a given scenario.					
EC305.3	Apply abstraction and except	Apply abstraction and exception handling to create an efficient program.					
EC305.4	Use Generic classes and colle	ection for solving problem.					
EC305.5	Develop a mini project based	on the real-world problem.					

Note:

#= oral exam-20 marks and Lab experiment-30 marks

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC305.1	3				2							2
EC305.2	2				2							2
EC305.3	2				2							2
EC305.4	2				2							2
EC305.5	2	1	1	1	2	1			2	2		2

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

^{*=} Tutorial-50 marks and Mini Project-50 marks (Preferably based on real-world problem statement from Industry/Academia/Research)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC305.1		2		2		
EC305.2		2		2		
EC305.3		2		2		
EC305.4		2		2		
EC305.5		2		2		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create√

1.1 Fundamentals of Java Programming: Classes, JDK, JRE, JVM, Unicode system, I/O using Scanner class and Buffered Reader class. 1.2 Instance variables, Methods, Constructors. 1.3 Object class, Nested class, Access Specifiers, Abstract Classes and Wrapper Classes. 2 Title OOP Concepts Mapping to JAVA 2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)	Modul e No.	Unit No.	Topics	Ref.	Hrs.
1.1 Fundamentals of Java Programming: Classes, JDK, JRE, JVM, Unicode system, I/O using Scanner class and Buffered Reader class. 1.2 Instance variables, Methods, Constructors. 1.3 Object class, Nested class, Access Specifiers, Abstract Classes and Wrapper Classes. 2 Title OOP Concepts Mapping to JAVA 2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		Title	Introduction to JAVA	1,2,3	3
class. 1.2 Instance variables, Methods, Constructors. 1.3 Object class, Nested class, Access Specifiers, Abstract Classes and Wrapper Classes. 2 Title OOP Concepts Mapping to JAVA 2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		1.1			
1.3 Object class, Nested class, Access Specifiers, Abstract Classes and Wrapper Classes. 2 Title OOP Concepts Mapping to JAVA 2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)					
and Wrapper Classes. 2 Title OOP Concepts Mapping to JAVA 2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		1.2	Instance variables, Methods, Constructors.		
2.1 Inheritance (IS – A), Aggregation & Composition (Has – A) Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		1.3	1 3		
Method overloading & overriding, this, super, final keyword, Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)	2	Title	OOP Concepts Mapping to JAVA	1,2,3	4
Static. 2.2 Autoboxing and Unboxing, Polymorphism. 2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		2.1			
2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)					
2.3 Packages and Interfaces: Package concept, creating user defined package, Access control protection, Interface. 3 Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		2.2	Autoboxing and Unboxing, Polymorphism.		
Title Exception Handling and Multithreading 3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		2.3	Packages and Interfaces: Package concept, creating user defined		
3.1 Try and catch block, Multiple catch block, Nested try, finally block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)					
block, Throw, Throws keywords, Exception propagation, Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)	3			1,2,3	4
Custom exception. 3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		3.1	1		
3.2 Create thread using Thread and Runnable class. Thread methods, schedule, sleep, join, Thread priority, Thread group, perform multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)					
multiple tasks using multiple thread Thread synchronization. 4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)		3.2	Create thread using Thread and Runnable class. Thread methods,		
4 Title Generics and Collection 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)					
 4.1 Creating Generic Classes, Generic Methods, Bounded Type 4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.) 	4	752.41		1.0.0	
4.2 Collection's framework, methods of collection interface (Array list, Linked list, Queue etc.)	4			1,2,3	3
list, Linked list, Queue etc.)					
		4.2	· · ·		
			list, Linked list, Queue etc.)	Total	14

(Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any.

Sr. No	Title of the Experiment
1	Program on I/O using command line arguments, scanner class, Buffered Reader etc.
2	Program on Constructor, types of constructors and constructor overloading.
3	Program on Polymorphism, Runtime polymorphism.
4	Program on Inheritance, Abstract Class, Interface.
5	Program on Nested Class, Aggregation, Composition.
6	Program on Multithreading.
7	Program on Exception Handling. (built in and User defined)
8	Program on Package and access modifiers.
9	Program on Generics
10	Program on Collection

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Java Programming	First	Ralph	Tata	2009
	From the Group Up		Bravaco, Shai	McGraw-Hill	
			Simoson		
2	Java The Complete	Eleventh	Herbert	Tata	2019
	Reference		Schildt	McGraw-Hill	

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	An introduction to	Third	Jaime Nino,	Wiley Student	2008
	Programming and Object		Frederick A. Hosch	Edition	
	Oriented Design using Java				
2	Java Programming A	First	C Xavier	Tata	2011
	Practical Approach			McGraw-Hill	
3	Java TM Programming	Fourth	Ken Arnold, James	The (Java	2005
	Language		Gosling, David	Series) by Sun	
			Holmes		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	O	E	L	T	P	Total
	Internet of Things Laboratory		1	2	2	5		1	1	2
SBC		Examination					on Scheme			
		Comp	onent	IS	SE%	M	ISE%	ES	E%	Total
EC305B		The	eory							
		Laboratory			75				25	100

Pre-requisit	e Course Codes, if any.	EC101: Digital Systems and Microprocessors
		EC201: Computer Architecture and Organization
		EC206: Microcontrollers
Course Obj	ective: This course provide	es an introduction to the fundamental concepts, technologies,
data commu	nication protocols, data anal	lytics, security and applications of the Internet of Things
(IoT).		
Course Out	comes (CO): After success	ful completion of the course, student will be able to
EC305B.1	Identify the key challenge	es and opportunities in IoT development and deployment.
EC305B.2	Acquire real world signals concept of IoT	s and perform remote process monitoring utilizing the
EC305B.3	Apply appropriate commu	unication protocols for IoT devices.
EC305B.4	Evaluate security risks and	d apply relevant measures to protect IoT systems

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC305B.1	2	2	2									
EC305B.2	2	2	2	2								
EC305B.3	2	2	2	2								
EC305B.4	2	2	2	2								

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

CO	PEO1	PEO2	PEO3	PSO1	PSO2
EC305B.1	1	1	1		
EC305B.2	1	1	1		
EC305B.3	1	1	1		
EC305B.4	1	1	1		

BLOOM'S Levels Targeted (Pl. Tick appropriate)

mber Understand	Apply	Analyze	Evaluate	Create
------------------	-------	---------	----------	--------

Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Fundamentals of IOT Systems:		04
	1.1	Evolution of Internet of Things, Enabling Technologies, IoT Architectures: M2M, IoT configurations, IoT architecture and components, Gateways, Fog computing, Edge and Cloud in IoT, Functional blocks of an IoT ecosystem, Sensors, Actuators, Smart Objects and Connecting Smart Objects	1,2	
2		Functionality based IoT Protocol Organization:		07
	2.1	Connectivity (6LoWPAN), Communication/ Transport: WiFi, Bluetooth, Zigbee, Z-wave, Data Protocols: MQTT, CoAP, Websocket, Node. Device Management: JSON-LD, Web Thing Model, Multilayer Framework.	3	
3	Title	Security, trust, and privacy issues in IoT		03
	3.1	IoT security challenges and vulnerabilities, Authentication and access control in IoT, Distributed Denial of service (DDoS), Privacy considerations and regulation	3	
		Self study on Industrial IoT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries,IOT application in Home automation, Agriculture, Healthcare.	1,2	
			Total	14

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Reference Books

Sr. No.	Title	Edition	Author	Publisher	Year
1	Internet of Things: Architecture and Design Principles	First edition	Raj Kamal	McGraw Hill Education	2017
2	Internet of Things, "A Hands on Approach		Vijay Madisetti, ArshdeepBahga	UniversityPress	,2015.
3	The Internet of Things: Enabling Technologies, Platforms and Use Cases	-	Pethuru Raj and Anupama C. Raman	CRC Press	2017

Suggested List of Laboratory Experiments:

- 1. Getting started with IoT development board in the IDE and GPIO Interfacing and programming
- 2. IoT Sensor Integration: Design and implement a small-scale IoT system that includes sensors such as temperature, humidity, and light sensors. Collect data from these sensors and transmit it wirelessly to a central hub or cloud platform for analysis and visualization.
- 3. Communication Protocols:
 - Implement a simple IoT system using different communication protocols (e.g., MQTT, CoAP).
 - Set up a broker or server to handle the communication between IoT devices.
 - Develop programs on IoT devices to publish and subscribe to sensor data using the chosen protocol.
- 4. Controlling devices remotely using Bluetooth link, WiFi link
- 5. IoT Data Analytics:
 - Collect real-time sensor data from IoT devices or use publicly available IoT datasets.
 - Perform data preprocessing, cleaning, and transformation.
 - Apply data analytics techniques such as clustering or regression to extract insights from the IoT data.
- 6. IoT Security and Privacy:
 - Explore security vulnerabilities in an IoT system.
 - Implement security measures such as encryption, authentication, and access control.
 - Conduct penetration testing to identify and address potential security risks.
- 7. IoT Application Development:
 - Choose an IoT application domain (e.g., smart home, healthcare, agriculture).
 - Develop a prototype application using appropriate hardware components, sensors, and actuators.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- Integrate the application with cloud services or a mobile app for remote monitoring and control.
- 8. Development of Android applications suitable for IoT
- 9. Implementing certificate keys to make your application secure on the cloud
- 10. Developing Voice App for IoT device

Sem-VI

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teachin	Teaching Scheme (Hrs/week)				Credits Assigned			
(Category) Code	Course Name	L	T	P	0	E	L	T	P	Total
		3	0	2	6	11	3	0	1	4
PC	Fundamentals of			E	xamiı	nation	Schem	e		
	Antenna	Compo	IS	ISE		MSE		ESE	Total	
EC306		Theory		7	75		75		150	300
		Labora	tory	50					50	100

Pre-requisit	te Course Codes, if any.	EC304: Electromagnetic Waves			
Course Obj	ective: The objective of the	course is to provide a fundamental understanding of			
Antennas					
Course Outcomes (CO): At the end of the course students will be able to					
EC306.1	Calculate the fundamental parameters of Antenna.				
EC306.2	Describe fundamental the	ory of antennas.			
EC306.3	Select antenna based on ap	pplications.			
EC306.4	Evaluate antenna based or	n applications.			
EC306.5	Design Antenna Arrays.				
EC306.6	Design antenna based on g	given requirements.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC306.1	2	3						2	2	2		
EC306.2	2	3						2	2	2		
EC306.3		2						2	2	2		
EC306.4		2		2				2	2	2		
EC306.5		2		2				2	2	2		
EC306.6	2	1						2	2	2		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
EC306.1		2				-	
EC306.2		2				2	
EC306.3		2				2	
EC306.4		2				2	
EC306.5		2				2	
EC306.6		1				1	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create	
----------	------------	-------	---------	----------	--------	--

Module	Unit	Topics	Ref	Hrs.
No.	No.		•	
1 (CO1)		Fundamental Concepts:	1	08
	1.1	Introduction, types of Antennas, Radiation mechanism, Poynting		
		vector, Steradian concept, Power intensity		
	1.2	Antenna Parameter: Radiation pattern, Radiation power density,		
		Radiation Intensity, Gain, Directivity, HPBW, FNBW, Beam		
		efficiency, Bandwidth, Polarization, Input Impedance, Reflection		
		coefficient, Return loss, VSWR, Antenna Efficiency, Effective		
		Aperture, Communication link and Friis transmission equation.		
2 (CO2,		Radiation from wires and loops	1	10
CO3)	2.1	Introduction, Infinitesimal dipole: Radiation zones, Total radiated		1
		power, Radiation resistance, Directivity, Effective area, Short dipole,		
		Finite-length dipole: Radiated power, Radiation resistance,		
		Directivity, Effective area, Half-wave dipole and its properties, Loop		
		antenna.		
3 (CO3,		Aperture Antennas	1	06
CO4)	3.1	Introduction, Field equivalence principle, Love's equivalence		
		principle, Electrical and magnetic conductor equivalence principle,		
		Computation of field quantities of aperture antenna, Relation between wire and aperture antennas, Horn antenna design principle.		
4 (CO5)		Antenna Arrays	1	10
,	4.1	Introduction, Two-element array, Example problems, Pattern		
		multiplication concept, N-element array, Uniform array, Array factor,		
		Broad-side and end-fire arrays, Phased array, Directivity and pattern		
		characteristic of linear uniform array, non-uniform array, Binomial		
		array, Dolph-Chebyshev array concept, Design principle of		
		Chebyshev array and examples, Planar arrays		
5 (CO6)		Microstrip Antennas		
	3.1	Introduction: Rectangular Patch, Circular Patch, Parametric study,	1,4	08
		Circularly polarized antennas, Axial Ratio, MSA suspended		
		Configuration.		
	3.2	MSA Arrays and Feed Networks, Corporate and Series Feeds		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6 (Self	Advanced A	Antennas:					06		
Study)	Reflector ar	ntenna, Dielec	etric Resonate	or antenna, Metama	terial based				
	antennas,	Wearable	antenna,	Reconfigurable	antennas,				
	Ultra-wideb	Ultra-wideband antennas, Smart Antennas							
	•					Total	42		

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Design a Dipole Antenna using HFSS
2	Design a monopole Antenna using HFSS
3	Design a Horn Antenna using HFSS
4	Design a Helical Antenna using HFSS
5	Design a Microstrip Patch Antenna
6	To calculate and infer various fundamental parameters of antenna like Radiation pattern, Radiation power density, Radiation Intensity, Gain, Directivity, HPBW and FNBW using Scilab.
7	To calculate the power delivered to the Receiver Antenna.
8	To design a Pyramidal Horn Antenna in E-plane and H-plane
9	To show Pattern Multiplication phenomena in an Antenna using two infinitesimal dipoles.
10	To design Array factor pattern of N-element of uniform amplitude of Broadside Array.
11	To design Array factor pattern of N-element of uniform amplitude of End-fire Array
12	To design Array factor pattern of N-element of non-uniform amplitude of Broadside / End-fire Array using Binomial Array method.
13	To design Array factor pattern of N-element of non-uniform amplitude of Broadside /End-fire Array using DolphTschebyscheff Array method.

Text Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antenna Theory: Analysis	Constantine A.	Fourth	Wiley	1982
	and Design	Balanis			

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books:

S. N.	Title	Authors	Edition	Publisher	Year
1	Antennas & Wave	J.D. Kraus, R.J.	Fourth	McGraw Hill	2011
	Propagation	Marhefka, and			
		A.S. Khan			
2	Handbook of Microstrip	R. James and P.S.	Third	Peter	1989
	Antennas	Hall		Peregrinus	
3	Antennas and Radio Wave	R. E. Collin	Fourth	McGraw-Hill	1985
	Propagation				
4	Broadband Microstrip	Girish Kumar and	First	Artech House	2003
	antennas	K.P. Ray			

(Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teachi	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	T	P	О	E	L	T	P	Total	
	Computer Communication Networks	3	-	2	5	10	3	-	1	4	
PC		Examination Scheme									
		Component		ISE		M	SE	ESE		Total	
EC307		Theory		75		7	' 5	150		300	
2007		Laboratory		50			-	50		100	

Pre-requisi	te Course Codes, if any.	EC301: Analog and Digital Communication							
,	Course Objective: The objective of the course is to provide a fundamental understanding of ComputerCommunication networks.								
Course Out	tcomes (CO): At the end of	the course students will be able to							
EC307.1	Apply Conceptual underst telecom networks.	tanding and functional aspects of computer communication and							
EC307.2	Analyze design and confispecific need for commun	igure small and medium sized computer network that meets a ications.							
EC307.3		rks and analyze the simulation results including troubleshoot arring at layers of TCP/IP model.							
EC307.4	Apply the principles behind and security issues.	nd the Modern Network approaches such as SDN NFV and IoT							

CO-PO Correlation Matrix: (1-Weak, 2-Medium, 3-Strong)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC307.1	3	3										
EC307.2			3	2	3							2
EC307.3			3		3	2						
EC307.4	2	2							3	3		3

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix: (1-Weak, 2-Medium 3-Strong)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC307.1		2				
EC307.2		2		3		
EC307.3		2			3	
EC307.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create

	Compo		D 0	**
Modu le No.	Unit No.	Topics	Ref	Hr s.
1	Title	Fundamental of Computer Networks	1	08
	1.1	Basic definitions. Networking devices. Layering architecture: The OSI model. Description of layers.		
	1.2	The Internet protocols TCP/IP protocol suit, IP Protocol and address. What is the Internet? Delay in the Internet (trace route and ping). History of the Internet. Security in the Internet.		
2	Title	Enterprise Network Design	2	06
	2.1	Network requirements, Planning and Design, Structured Wiring and Structured Network Design consist of Core Layer, Distribution Layer, and Access.		
	2.2	Network Design methodology & Network Design considerations Core La yer Technologies. Investigating Server Farms and Security Integrating, Remote Sites into the Network Design.		
3	Title	Transport and Application Layer	1,3	06
	3.1	Transport Protocols introduction. Reliable data transfer - Stop-and-wait and Go-back-N design and evaluation. TCP and UDP semantics and syntax. TCP RTT estimation. Principles of congestion control - efficiency and fairness, reactive and proactive. Socket's programming A simple client-server implementation.		
	3.2	Application layer: Application layer protocols, Client-server as a key model. Web, HTTP, FTP, SMTP, POP3, and DNS. Peer-to-peer file sharing networks.		

(Autonomous Institute Affiliated to University of Mumbai)

4	Title	Software Defined Network and Network Function Visualization	5	10
	4.1	Network Requirements - The SDN Approach - SDN- and NFV-Related		
		Standards - SDN Data Plane - OpenFlow Logical Network Device -		
		OpenFlow Protocol - SDN Control Plane Architecture - REST API -		
		SDN Application Plane Architecture.		
	4.2	NFV Concepts - NFV Reference Architecture - NFV Infrastructure -		
		Virtualized Network Functions - NFV Management and Orchestration -		
		NFV Use Cases - SDN and NFV		
5	Title	Internet of Things (IoT) SECURITY	1,3	10
	5.1	Threats and attacks. Symmetric and public key cryptography. IPsec-		
		Authentication Header-Encapsulating security payload,		
	5.2	Secure sockets-Secure Socket Layer (SSL) - Firewalls and Internet		
		access- Packet filter firewall- Proxy firewall- VPNs - Mobile IP -		
		Header Compression – Voice over IP –		
	Title	Networks		5
6	Self-	Types of Networks, Transmission media, Network Topologies		
	Study			
Total				42

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Network Lab set up
2	IP Networking & Network Commands: ifconfig, ping, traceroute, netstat, arp ,nslookup dig & route etc.
3	Network Protocol Analyzers: TCPDUMP & Wireshark
4	Installation & Configuration of Web Server (at least four) using open-source tool
5	Network Socket Programming
6	Installation and configuration of open-source Network simulator software
7	Firewall Implementation (IPTABLES)
8	Implementation of SDN
9	Implementation of VPN
10	Cryptography using open source tools/Crypt tools and open SSL

(Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	TCP/IP protocol suit	Fourth	Behrouz A. Forouzan (Author)	McGraw Hill Education	2009
2	Introducing Network Design Concepts	-	CCNA Discovery Learning Guide	-	-
3	Computer Networking: A Top-Down Approach	Fifth	J. F. Kurose and K. W. Ross	Prentice Hall	2009
4	Data Communication and Networking	Fourth	B.A.Forouzan	McGraw Hill	2017
5	Information Security: Principles and Practice	First	Deven Shah	Wiley	2007

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud		William Stallings	Addison-Wesley ISBN: 9780134175393	2015
2	Computer Networks	Fifth	A.Tanenbaum	Pearson Education	2013
3	Data and Computer Communications	Tenth	William Stallings	Pearson Education	2013

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teachi	Credits Assigned								
Code	Course Name	L	T	P	О	E	L	T	P	Total	
		2	-	2	2	6	2	-	1	3	
PE-1	Mobile and Wireless Communication	Examination Scheme									
		Compo	ISE N		M	SE	ES	SE	Total		
EC311	Communication	Theo	ry	5	0	5	50	1()0	200	
(IT11)		Laboratory		50		-			0	100	

Pre-requisi	ite Course Codes, if any.	EC307: Computer Communication Network					
Course Objective: The objective of the course is to provide a fundamental understanding of Mobile and Wireless Communication.							
Course Outcomes (CO): At the end of the course students will be able to							
EC311.1	Demonstrate the ability to and service provided.	Demonstrate the ability to discuss wireless communication concepts, system capacity and service provided.					
EC311.2	Evaluate various path loss a	nd fading effects.					
EC311.3	Analyze losses, multipath et systems.	ffects, architecture, and protocols of 3G,4G and 5G					
EC311.4	Compare various operationa	l aspects of Wireless Personal Area Networks.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC311.1	2		2									
EC311.2			2	2	2				2	2		
EC311.3	3				2				2	2		2
EC311.4	2	2										

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC311.1		2				
EC311.2		2	2			
EC311.3		2	2			
EC311.4		2				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand√ Apply √ Analyze√	Evaluate	Create
---------------------------------------	----------	--------

Module	Unit No.	Topics		Hrs
1	Title	Introduction to mobile communication		5
	1.1	Frequency Division Multiple access, Time Division Multiple access, Spread Spectrum Multiple access, Space Division Multiple access, and OFDM.		
	1.2	Frequency reuse, channel assignment strategies, handoff strategies, interference and system capacity, trunking and grade of service, improving the capacity of cellular systems and related design problems		
2	Title	Mobile Radio Propagation	2,3	10
	2.1	Introduction to radio wave propagation, reflection, diffraction, scattering. Indoor and Outdoor propagation Models. Practical Link Budget Design using path loss models.		
	2.2	Small-Scale Multipath propagation, small scale multipath measurements, types of small-scale fading, fading effects due to Doppler spread. Statistical models for multipath fading		

(Autonomous Institute Affiliated to University of Mumbai)

		channels-Clarks model,2-day Rayleigh fading model, Saleh and Valenzuela indoor model.		
3	Title	3G UMTS Network, 4G LTE and 5G Technologies	4	8
	3.1	UMTS network architecture, Protocol Structure, Channel Structure, Frame slots and symbols, modulation, coding, multiple antenna techniques, WCDMA, Modulation, Handoff and Power Control.		
	3.2	4G LTE network Architecture, LTE Radio Access, Radio-Interface Architecture, Physical Transmission Resources, Downlink and Uplink Physical-Layer Processing, Scheduling and Rate Adaptation.5G Concepts and Architectures, Network Slicing Architecture, mm Wave communication, multiple Cell Types.		
4	Title	Personal Area Network Technologies	3	5
	4.1	Bluetooth: concepts of Piconet , scatternet etc., protocol stack, link types, security, network connection establishments, usage models, etc.		
	4.2	Wifi and ZigBee: components, architecture, network topologies, protocol stack etc.		
5	Self-St udy	Rayleigh fading model, Saleh and Valenzuela indoor model. UWB and RFID: technical requirements, components and characteristics, applications.	2,3	4*
		Total (* Not Inc	luded)	28

Laboratory Components:

Sr. No	Title of the experiment
1	Study of GSM modem: i] Install and configure minicom, wvdial & AT Commands ii] Python scripting.

(Autonomous Institute Affiliated to University of Mumbai)

2	Channel Allocation Techniques
3	Modulation Techniques using GNU Radio.
4	Spread Spectrum Modulation, OFDM Modulation.
5	Wireless Path Loss Computations: i] Free-space Propagation Path Loss Modelii] Indoor Propagation Model - Okumura Model etc
6	Wireless Path Loss Computations: iii] Outdoor Propagation Model - Hata Model etc
7	Open-Source LTE/EPC Network Simulation using NS-3, Omnet++
8	Open-Source Personal Area Network simulation using NS-3, Omnet++
9	Millimeter Wave (5G) Network, WiFi Network simulation usingNS-3, Omnet++
10	Virtual Lab.

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communications	Third	Theodore S. Rappaport	Prentice Hall of India, PTR publication	-
2	Wireless Communications	Second	Andreas Molisch	Wiley	-
3	Wireless Network Evolution 2G-3G	Third	Vijay Garg	Pearson Education	
4	4 G Roadmap and Emerging Communication Technologies	Second	Young Kyun Kim and Ramjee Prasad	Artech house	

(Autonomous Institute Affiliated to University of Mumbai)

Reference Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Wireless Communication	Second	Singhal	ТМН	
2	Mobile Communication	Second	C.Y Lee	Wiley	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching	Sche	me (H	[rs./w	eek)	(Credit	s Assi	gned
(Category Code	Course Name	L	Т	P	0	E	L	T	P	Total
		2	0	2	6	11	2	0	1	3
PE-II	2.6	Examination Scheme								
	Microwave Communication	Compon	ent	ISE	C	MS	E	ES	SE	Total
EC312	Communication	Theory	y	50		50)	10	00	200
(IT12)		Laboratory		50				5	0	100

Pre-requi	site Course Codes, if any.	EC304: Electromagnetic Waves					
Course O	Course Objective: The objective of the course is to provide a fundamental understanding of						
Microwav	e Communication						
Course O	utcomes (CO): At the end of t	the course students will be able to					
EC312.1	1 1 1 0	derstand nature of Microwave Signal and their corresponding					
	guiding structures.						
EC312.2	Identify Passive Waveguide C	Components, Sources and Detectors					
EC312.3	Analyze Passive Waveguide (Components, Sources and Detectors					
EC312.4	Compute amplifier and filter	design parameters on the basis of application/requirement.					
EC312.5	Justify choice of amplifier and filter design parameter.						
EC312.6	Design Microwave System co	omponents.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC312.1	3	3	3	1	3					3		
EC312.2	2	2	2	2	3					3		
EC312.3	2	2	2	2	3					3		
EC312.4	2	2	2	2	3					3		
EC312.5	2	2	2	2	3					3		
EC312.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC312.1		2			-	
EC312.2		2			-	
EC312.3		2			2	
EC312.4		2			2	
EC312.5		2			2	
EC312.6		1				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand√	Apply√	Analyze√	Evaluate	Create

Theory Component

Modul	Unit	Topics	Ref	Hrs.
e No.	No.	•		
1	Introduction to Microwave Engineering			
	1.1	Lumped and Distributed Elements, Frequency Bands, Characteristics,		
		Application, Advantages and disadvantages		
	1.2	Rectangular and circular waveguides: TE, TM modes, dominant mode		
	1.3	Microwave Components: Resonators, re-entrant cavities, scattering		
		parameters, tees, hybrid ring, directional couplers, phase shifters,		
		terminations, attenuators, ferrite devices such as isolators, gyrators,		
		and circulators.		
2	2 Microwave Tubes and semiconductor devices		1	10
	2.1	Two Cavity Klystron and Reflex Klystron, Helix Travelling Wave		
		Tube, Cross Field Amplifier, Cylindrical Magnetron.		
	2.2	PIN Diode, Varactor Diode, Schottky Diode, Gunn Diode, Tunnel		
		Diode, IMPATT Diodes.		
3		Microwave Amplifiers and Filters	1	08
	3.1	Two port power gain and stability		
	3.2	Microwave Low pass Filter design		
4(Self		Microwave Frequency Applications:		06
Study)		Radars, Biomedical Devices, Drying materials, Microwave		
		Tomography, Satellite Communication		
			Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments using both hardware and software are expected)

Sr. No	Title of the Experiment
1	Model and simulate rectangular waveguide in CAD to study EM wave propagation within it.
2	Model and simulate circular waveguide in CAD to study EM wave propagation within it.
3	Design of Waveguide H-plane TEE using CAD
4	Design of Directional Coupler Using CAD
5	Design of Low pass Filter using CAD
6	Implementation of a technical paper using CAD
7	Microwave bench setup (CO1) A) Introduction to the lab B) Identification of waveguide and
	its components. How to determine the parameters for each component by looking at the data

(Autonomous Institute Affiliated to University of Mumbai)

	sheet. C) Klystron setup and characterization plotting Vr vs Vo D) Frequency and						
	wavelength measurement of the signal generated by klystron						
8	Determination of parameters of passive components using Bench and VNA. Analysis of						
	comparative study to be submitted.						
9	Determine the frequency and wavelength in a rectangular waveguide using direct and						
	indirect measurement.						
10	Design of Planar Hybrid Ring using CAD						

Textbooks:

S. N.	Title	Authors	Edition	Publisher	Year
1	Microwave Engineering	David M Pozar	Fourth	John Wiley & Sons	2012
2	Microwave Devices and Circuits	Samuel Y Liao	Third	Pearson Education	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					Credits Assigned			
(Category)	Course Name	L	T	P	0	E	L	T	P	Total
Code										
	Speech and	2	0	2	8	8	2	0	1	3
PE-I		Examination Scheme								
FE-I		Componen		ISE M		MS	SE	ES	SE	Total
		t								
EC321 (1T21)	Audio Processing	Theory	7	50		50		100		200
		Laborator		50				50		100
		\mathbf{y}								

Pre-requis	site Course Codes, if any.	EC303: Digital Signal Processing				
Course O	bjective: To familiarize the bas	sic & advance mechanisms of speech and audio processing				
Course O	Course Outcomes (CO): At the end of the course students will be able to					
EC321.1	21.1 Apply concepts of speech coding.					
EC321.2	Analyze Audio Perception &	Analyze Audio Perception & psycho-acoustic model.				
EC321.3	Demonstrate parametric repression of speech.	esentation, time domain & frequency domain representation				
EC321.4	Analysis of predictive method	ds of speech.				
EC321.5	Develop systems for various	applications of speech & audio processing.				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC321.1	2											
EC321.2		2										
EC321.3			2									
EC321.4			2		2							
EC321.5					2							

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC321.1	2			2		
EC321.2	2			2		
EC321.3		2			2	
EC321.4		2			2	
EC321.5		2			2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply√	Analyze√	Evaluate√	Create

Theory Component

Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Mechanics of speech		•
	1.1	Speech production: Mechanism of speech production, Acoustic phonetics – Digital models for speech signals -Sampling speech signals, basics of quantization, delta modulation, and Differential PCM	1,2	8
	1.2	Signal Processing Models of Audio Perception: Basic anatomy of hearing System. Auditory Filter Banks, Psycho-acoustic analysis: Critical Band Structure, Absolute Threshold of Hearing, Simultaneous Masking, Temporal Masking, Quantization Noise Shaping, MPEG psycho-acoustic model.	1,2	
2	Title	Time domain methods for speech processing		8
	2.1	Time domain parameters of Speech signal – Methods for extracting the parameters Energy, Average Magnitude, zero crossing Rate – Silence Discrimination using ZCR and energy	1,2	
	2.2	Short Time Auto Correlation Function – Pitch period estimation using Auto Correlation Function.	4	
3	Title	Frequency domain method for speech processing	1,2	8
	3.1	Short Time Fourier analysis: Fourier transform and linear filtering interpretations.	4	
	3.2	Sampling rates - Spectrographic displays - Pitch and formant extraction - Analysis by Synthesis - Analysis synthesis systems: Phase vocoder, Channel Vocoder.	2,3	
	3.3	Homomorphic speech analysis: Cepstral analysis of Speech, Formant and Pitch Estimation, Homomorphic Vocoders, Speech coding, speech enhancement.	3,5	
4	Title	Linear predictive analysis, synthesis of speech	3,5	4
	4.1	Basic Principles of linear predictive analysis – Auto correlation method – Covariance method.		
	4.2	Solution of LPC equations – Cholesky method – Durbin's Recursive algorithm.		
	4.3	Application of LPC parameters – Pitch detection using LPC parameters – Formant analysis – VELP – CELP, Speech synthesis: basics of articulatory, source-filter, and concatenative synthesis – VOIP.		

(Autonomous Institute Affiliated to University of Mumbai)

5	Self Study	Audio compression methods, Audio quality analysis, Spatial Audio Perception and rendering, Speaker identification and		
	Study	verification		
			Total	28

Laboratory Component

Sr No.	Experiment Title
1	Speech production
2	Analysis of speech signal
3	Short-time spectrum analysis of speech
4	Spectrographic analysis of speech
5	Linear prediction analysis of speech
6	Formant synthesis
7	Cepstral analysis of speech
8	Analysis by synthesis of speech
9	Manual speech signal-to-symbol transformation
10	Speaker Analysis /speaker recognition

Text Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Speech Communications: Human & Machine	Second	Douglas O'Shaughnessy	IEEE Press, Hardcover 2/e, ISBN: 0780334493.	1999
2	Discrete-Time Speech Signal Processing	First	Thomas F, Quatieri,	Prentice Hall /Pearson Education	2004

Reference Books:

11010101	ice Dooks.				
Sr.	Title	Edition	Authors	Publisher	Year
No					
1	Speech Processing and Synthesis Toolboxes	First	Donald G. Childers	John Wiley &Sons,September ISBN:0471349593	1999
2	Fundamentals of Speech Recognition	First	L.R. Rabiner and B. H. Juang	Prentice Hall	2009

(Autonomous Institute Affiliated to University of Mumbai)

3	Speech and Audio Signal	Second	Ben Gold and	John Wiley and	2011
	Processing		Nelson Morgan	Sons Inc., Singapore	2011
4	Discrete Time Processing	First	J.R. Deller,	John Wiley, IEEE Press	
	of Speech Signals		J.H.L. Hansen		1999
			and J.G. Proakis		
5	Digital Processing of Speech Signals	First	L.R.Rabiner and R.W.Schaffer .	Prentice Hall	1979

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching	g Sche	cheme (Hrs/week)			Credits Assigned			
(Category)	Course Name	L	T	P	0	E	L	T	P	Total
Code										
PE-II		2	0	2	4	4	2	0	1	3
	DSP Processors	Examination Scheme								
1 12-11		Componen		ISE		MSE		ESE		Total
		t								
EC322 (1T22)		Theory	y	50		50		100		200
		Laborator		50				50		100
		y								

Pre-requis	site Course Codes, if any. EC303: Digital Signal Processing					
Course Ob	Course Objective: To develop implementation of DSP algorithms using DSP Processor					
Course Outcomes (CO): At the end of the course students will be able to						
EC322.1	Evaluate different types of errors in DSP implementation.					
EC322.2	Describe architectures of TMS320XX devices.					
EC322.3	Explore various interfacing devices to DSP Processors.					
EC322.4	Demonstrate Fast DSP algorithms using DSP processor					
EC322.5	Develop DSP application using DSP hardware.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	2											
EC322.2		2	1									
EC322.3		2	1									
EC322.4	2				1							
EC322.5			2					1	1	1		1

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1		2		2		
EC322.2		2		2		
EC322.3		2		2		
EC322.4		2		2		
EC322.5		2		2		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	✓ Apply	✓ Analyze	✓ Evaluate	Create
---------------------	----------------	------------------	-------------------	--------

Theory Component

	Compone			**
Modul e No.	Unit No.	Topics	Ref.	Hrs
1	Title	Computational Accuracy in DSP Implementations		
	1.1	Number formats for signals and coefficients in DSP systems. Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.	1,2	04
	1.2	Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors.	1,2	
2	Title	Programmable DSP Hardware		08
	2.1	Processing Architectures (von Neumann, Harvard), DSP core algorithms (FIR, IIR, Convolution, Correlation, FFT).	1,2	
	2.2	IEEE standard for Fixed- and Floating-Point Computations, Special Architectures Modules used in Digital Signal Processors (like MAC unit, Barrel shifters), On-Chip peripherals, DSP benchmarking.	1,2	
3	Title	Structural and Architectural Considerations		06
	3.1	Parallelism in DSP processing, Texas Instruments TMS320 Digital Signal Processor Families, Fixed Point &floating-Point TI DSP Processors.	1,2	
	3.2	Data Addressing modes, Memory space of Processors, Program Control, instructions, and programming of TMS320XX Processors.	1,2	
	3.3	On-Chip Peripherals, Interrupts of TMS320XX processors, Pipeline operation of TMS320XX Processors.	1,2	
4	Title	VLIW Architecture		06
	4.1	Current DSP Architectures, GPUs as an alternative to DSP Processors.	1,2	
	4.2	Code Composer Studio, Mixed C and Assembly Language programming, on-chip peripherals, Simple applications developments as an embedded environment.	1,2	
	4.3	Peripherals to Programmable DSP Devices: Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).	1,2	
5	Title	Hardware implementation of DSP Algorithms		04
	5.1	The Q-notation, FIR Filters, IIR Filters, Interpolation Filters, Decimation Filters, PID Controller, Adaptive Filters	1,2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.2	An FFT Algorithm for DFT Computation, A Butterfly Computation, Overflow and scaling, Bit-Reversed index generation		
6	Self-S tudy	A CODEC interface circuit, A CODEC-DSP interface example.		
			Total	28

Laboratory Component

Sr. No	Title of the Experiment
1	Harmonic Generation
2	FIR Filtering
3	IIR Filtering
4	Fast Fourier Transform Algorithm
5	Linear Filtering Algorithm
6	Sensor Interface
7	ADC-DAC Interface
8	Real Time Audio Signal Processing
9	Real time Biomedical Signal Processing
10	Real Time Power Signal Processing

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Signal Processors, Architecture, Programming and Applications.	First	B. Venkata Ramani and M. Bhaskar	Tata McGraw Hill (TMH) Publication 2004	2004
2	DSP Implementation using DSP microprocessor with Examples from TMS32C54XX	First	Avtar Singh, S.Srinivasan	Thomson Publication	2004

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	DSP Processor	First	Phil Lapsley,	Wiley	1997
	Fundamentals,		Jeff Bier,	Publication	
	Architectures & Features		AmitShoham,		
			Edward A. Lee		
2	Digital Signal Processors Architectures, Implementation and Application	First	Sen M. Kuo&WoonSergGan,	Pearson	2009

(Autonomous Institute Affiliated to University of Mumbai)

3	Architectures for Digital Signal Processing	First	Peter Pirsch,	Wiley Publication	1998
4	Digital Signal Processing	Second	S. Salivahanan A. Vallavaraj G. Gnanapriya	Tata McGraw Hill Publication	2001

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	ing Sch	eme	(Hrs/v	veek)	C	redit	s Assi	igned
(Category) Code	Course Name	L	T	P	0	E	L	T	P	Total
		2	0	2	2	6	2	0	1	3
PE-I	Information			Examination Scheme						
	theory and	Comp	onent	I	SE	MSI	E	E	SE	Total
EC331 (1X)	coding	The	ory	50		50		10	00	200
, , ,			atory	4	50			5	60	100

Pre-requis	site Course Codes, if any.	EC301: Analog and digital communication						
_		EC307: Computer Communication Networks						
Course Ob	Course Objective: To introduce the principles and applications of information theory. To teach							
study how	information is measured in ter	rms of probability and entropy. To teach coding schemes,						
including e	error correcting codes.							
Course Ou	itcomes (CO): At the end of a	the course students will be able to						
	T							
EC331.1	Interpret information theory concepts and compute the capacity of various types of							
	channels.							
EC331.2	Construct various source codes and error correction codes.							
EC331.3	Examine information theor	y and coding algorithms.						
	Estimate various performance	ca narameters of information theory and error correction						
EC331.4 Estimate various performance parameters of information theory and error correct coding algorithms.								
	coding argorithms.							
EC331.5	Survey various error correct	ion codes used in wired and wireless applications.						
		11						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO 1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC331.1	3											
EC331.2	3		2		2							
EC331.3	3		2	2	2				2	2		
EC331.4	3	3			1							
EC331.5	1	1			1				1	1		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC331.1		2				
EC331.2		2	2			
EC331.3		2	2	3		
EC331.4		1				
EC331.5		1				

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	✓ Understand	✓ Apply	✓ Analyze	Evaluate	Create

Theory Component

Theory	Compo	ment					
Modul	Unit	Topics	Ref	Hrs.			
e No.	No.						
1		Information theory and source coding	1,2	8			
	1.1	Block diagram and sub-system description of a digital communication system, measure of information and properties, entropy and its properties, differential entropy and mutual information kraft inequality, optimal codes, bounds on optimal code length, kraft inequality for uniquely decodable codes.					
	1.2	Source Coding, Shannon's Source Coding Theorem, Huffman Source Coding and its second and third order extensions, Shannon Fano coding, Lempel Ziv coding.					
	1.3	Shannon's Channel capacity: discrete memoryless channels and capacity, examples of channel capacity, symmetric channels, AWGN channel and, fading channels, properties of channel capacity, channel coding theorem.					
2		Linear Block Codes	1,2	6			
	2.1	Generator and Parity check Matrices, Encoding circuits, Syndrome					
		and Error Detection, Minimum Distance Considerations, Error					
		detecting and Error correcting capabilities.					
	2.2	Standard array and Syndrome decoding.					

(Autonomous Institute Affiliated to University of Mumbai)

	2.3	Hamming Codes, Reed – Muller codes, Golay code, Product codes]	
		and Interleaved codes.		
3		Cyclic Codes	1,2	6
	3.1	Introduction, Generator and Parity check Polynomials, Systematic Cyclic codes – Encoding and decoding using Feedback shift register circuits and polynomial method.		
	3.2	Generator matrix for Cyclic codes, Syndrome computation and Error detection.		
	3.3	Meggitt decoder, Cyclic Hamming codes, Golay code, Shortened cyclic codes.		
4		Convolutional Codes	1,2	8
	4.1	Graphical representation for encoding and decoding using code tree, trellis, state diagram.		
	4.2	Polynomial and time domain method, Viterbi decoding	=	
	4.3	Introduction to Turbo coding and LDPC codes		
5(Self Study)		Case study (any one): Golay codes, turbo codes, LDPC codes, Reed Solomon codes, BCH codes		4
-	1	·	Total	28

Laboratory Components:

Sr. No	Title of the Experiment
1	Write a simulation program to test shannon's source coding, channel coding and channel capacity theorem.
2	Write a program to encode and decode a text file and determine the code efficiency using Shannon – Fano coding and Huffman Coding
3	Write a program to construct Lempel Ziv Coding and decoding and examine its code efficiency
4	Write a program to examine BER performance of linear block code for a coded and uncoded BPSK communication system in AWGN channel
5	Write a program to examine BER performance of cyclic codes for a coded and uncoded BPSK and QPSK communication system in AWGN channel
6	Write a program to examine BER performance of BPSK modulated linear block coded communication system in AWGN channel and fading channel
7	Write a program to examine BER performance of convolutional encoder in a coded and

(Autonomous Institute Affiliated to University of Mumbai)

	uncoded communication system based on 802.11a standard with and without AWGN channel
8	Write a program to examine BER performance of convolutional encoder in a coded and uncoded OFDM system with and without AWGN channel
9	Write a program to examine BER performance of convolutional encoder in a coded and uncoded OFDM system with and without fading channels
10	Simulation either turbo codes/RS codes/ LDPC codes/BCH codes and test their error correction capability.

Textbooks:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Digital Communication	Fourth	Haykin Simon	John Wiley and	2014
	Systems		-	Sons, New Delhi	
2	Modern Digital and Analog Communication Systems	Fourth	Lathi B Pand Ding Z	Oxford University Press	2009

Reference Books:

Sr. No	Title	Edition	Authors	Publisher	Year
1	Information Theory and Reliable Communication		R. G. Gallager	Wiley, ISBN-13: 978-0471290483	1968
2	Introduction to Coding and Information Theory		Roman, Steven	Springer, ISBN 978-0-387-94704-4	
3	Error Control Coding	Second	Shu Lin & Daniel J. Costello	Prentice Hall	2004
4	Error Control Systems for Digital Communication and Storage		S. B Wicker	Prentice Hall International	1995
5	Digital Communication: Fundamentals and applications	Second	Sklar B, and Ray P. K	Pearson, India	2009
6	Information theory, Coding and Cryptography		Ranjan Bose	TMH publication, ISBN: 978-0-07-0669017	2008

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs./week)						Credits Assigned			
(Category)	Course Name	L	T	P	O	E	L	T	P	Total	
Code											
		2	0	2	6	11	2	0	1	3	
PE-II	Ontical Fibor	Examination Scheme									
	Optical Fiber Communication	Compor	nent	ISE		MSE		ESE		Total	
EC332 (1Y)	Communication	Theory		50		50		100		200	
		Laborat	tory	50			50			100	

Pre-requi	site Course Codes, if any.	AS101: Engineering Physics			
		EC304: Electromagnetic Waves			
Course O	bjective: The objective of the	course is to provide an understanding of usage of optical fiber			
for comm	unication.				
Course O	utcomes (CO): At the End of	the course students will be able to			
EC322.1	Apply EM Wave theory to understand nature of Optical Signal and their corresponding guiding structures.				
EC322.2	Identify Passive Optical Com	ponents, Sources and Detectors.			
EC322.3	Analyze Passive Optical Com	ponents, Sources and Detectors.			
EC322.4	Evaluate losses in the optical	systems.			
EC322.5	Compare different Optical Ne	etworks.			
EC322.6	Design optical Link Budget s	ystem.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
EC322.1	3	3	3	1	3					3		
EC322.2	2	2	2	2	3					3		
EC322.3	2	2	2	2	3					3		
EC322.4	2	2	2	2	3					3		
EC322.5	2	2	2	2	3					3		
EC322.6	3	3	3		3					3		

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PSO1	PSO2	PSO3
EC322.1		2			2	
EC322.2		2			2	
EC322.3		2			2	
EC322.4		2			2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

EC322.5	2		2	
EC322.6	2		1	

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember√	Understand $\sqrt{}$	$\mathbf{Apply}\sqrt{}$	Analyze√	Evaluate	Create

Theory Component

Modul	Unit	Topics	Ref	Hrs.
e No.	No.		•	
1		Optical communication fundamentals	1	10
	1.1	Block diagram of Optical Communication system, advantages, loss		
		and bandwidth window, ray theory transmission, total internal		
		reflection, acceptance angle, numerical aperture, skew rays and meridional rays		
	1.2	EM waves, modes in planar guide, phase and group velocities, types of fiber according to refractive index profile and mode transmission.		
	1.3	Couplers, Isolators, circulators, multiplexers, filters, fiber gratings,		
		Fabry Perot filters, arrayed waveguide grating, switches and		
		wavelength converters		
2		Optical communication Components	1	08
	2.1	Sources (LED, LASER), Detectors (PIN, APD) and Amplifiers		
3		Optical Networks and losses in the system	1	10
	3.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal dispersion, waveguide dispersion, dispersion and pulse broadening, dispersion shifted, and dispersion flattened fibers, and nonlinear effects Measurements of attenuation, dispersion and OTDR		
	3.2	Optical Networks: Link budget, SONET, SDH, WDM, DWDM		
4(Self Study)		Review of latest optical fiber application and research		06
	-		Total	28

Laboratory Component, if any. (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Setup of Optical fiber communication link and measurement of Bit Error Rate (BER) and
	Eye pattern analysis
	A) Setup of analog fiber optic communication link
	B) Setup of digital fiber optic communication link

(Autonomous Institute Affiliated to University of Mumbai)

	C)Measurement of Bit Error Rate
	D)Study and measurement of Eye pattern
2	Measurement of Numerical Aperture (NA) of optical fiber
3	Measurement of Losses in Optical Fiber
4	Study characteristic of LED and Photo detector in optical fiber communication link.
5	To verify the Brewster's law and to find the Brewster's angle
6	Michelson's Interferometer- Refractive index of glass plate: To determine the refractive index of a thin glass plate.
7	To Demonstrate the working of LASER using Phet virtual Lab
8	Measure propagation loss in plastic fiber and to measurethe bending loss.
9	Plotting optical link power budget.
10	Mini project on optical network.

Textbooks:

ICALD					
S. N.	Title	Authors	Edition	Publisher	Year
1	Optical Fiber Communication	John M. Senior	Fourth	Prentice Hall of India Publication	2013
2	Optical Fiber Communication	Gred Keiser	Third	Mc-Graw Hill Publication	2012
3	Optical Networks: A Practical Perspective	Rajiv Ramaswamy and Kumar N. Sivarajan	Third	Elsevier Publication	2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

PROGRAM ELECTIVE COURSES

Assumptions

- Some Elective courses may be of interest to the students of both the branches.
- 4 Electives are sufficient to specialize in a particular vertical/thread/area.

TD/ PE	PE1	PE2	PE3	PE4	PE5	PE6
THREAD 1: Communication	T11: Information Theory & Coding	T12: Optical Fiber Communication	T13: Microwave Communicati	T14: Space Communication	T11, T12, T21,	T11, T12,
THREAD 2:	T21:	T22:	on T23:	on Technologies T24:	T22, T31,	T22,
Signal Processing	Speech and Audio Processing	Wavelet Transform	Image & Video Processing	Principles Soft Computing	T32,	T32, T41,
THREAD 3: VLSI & Embedded Systems	T31: Digital CMOS VLSI Design	T32: Real Time Embedded Systems	T33: Semiconducto r Technologies	T34: Mixed VLSI Design	T42, X, Y P, Q	T42, X, Y P, Q
THREAD 4: Power Electronics and Energy Systems	T41: Control of Power Electronics Converters	T42: Electric Motor Drive Systems	T43: Embedded & Digital Control of PE Systems	T44: Selected topic in Power Electronics & Drives		
GENERAL	X: Computer Communication Network (Cat2) T11, T12, T21, T22, T31, T32, T41, T42	Y: Fundamentals of Antenna (Cat2) T11, T12, T21, T22, T31, T32, T41, T42	P: Artificial Intelligence & Machine Learning T13, T14 T23, T24 T33, T34 T43, T44	Q: Telecomm Network Operations & Management T13, T14 T23, T24 T33, T34 T43, T44		