Real gases

Compressibility

The compressibility of a gas is defined by

$$Z = \frac{pV_m}{RT}$$
 $V_m = V/n = \text{molar volume}$

- If the gas behaves ideally, then Z=1 at all pressures and temperatures.
- For real gases, however, Z varies with pressure, and deviates from its ideal value

Argon Compressibility

273 K

$$Z = pV_m/RT$$

Intermolecular Forces

Light blue represents the V_{eff}

At low pressure, the effective volume of the container and the measured volume are almost the same because V_{meas} - nb $\simeq V_{meas}$. At high pressures, the volume of the molecules themselves becomes a significant fraction of the measured volume so the effective volume is less than the measured volume.

van der Waals Equation

$$p = \frac{RT}{V_m - b} - \frac{a}{V_m^2}$$

van der Waals Equation

$$(p+a/V_m^2)(V_m-b)=nRT$$

•
$$V_{m,eff} = V_m - b$$
 repulsion

van der Waals Equation of State:

$$\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT \qquad P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

Redlich-Kwong Equation of State:

$$\left[P + \frac{n^2 a}{T^{1/2}V(V+nb)} \right] (V-nb) = nRT$$

Virial Equation of State:

$$P = \frac{nRT}{V} \left(1 + \frac{B}{V} + \frac{C}{V^2} + \dots \right)$$

van der Waals constants

	a (dm ⁶ atm mole ⁻¹)	b (dm mole ⁻¹)
He	0.034	0.0237
Ar	1.345	0.0322
N_2	1.390	0.0391
O_2	1.360	0.0318
CO_2	3.592	0.0427

Successive Approximation

$$V_{m} = \frac{RT}{p + \frac{a}{V_{m}^{2}}} + b$$

- "Solve" the van der Waals equation for V.
- Use an intial estimate to evaluate the right hand side.
- Use this calculated value of V as a better estimate.
- Repeat till converged.

Excluded volume per molecule = $\frac{1}{2}(\frac{4}{3}pd^3) = \frac{1}{2}[\frac{4}{3}(2r)^3] = 4(\frac{4}{3}pr^3)$ Thus the excluded volume per molecule is 4 times the actual volume of the

Parameter "b" in vdW equation can be viewed as "excluded" volume in a gas

sample due to the presence of molecules. It is "excluded" in a sense that in the

presence of one molecule another molecule cannot move. The effective volume of

The volume in which a pair of molecules cannot move because of each other's

where r is the radius of the molecule if we can treat it as a sphere.

The "b" term is the excluded volume per mole of molecules. Therefore

 $b = 4^{\circ} N_{A}^{\circ} (\frac{4}{3} pr^{3})$

and, knowing the value of b, one can estimate the radius of atom or

presence has radius of molecular diameter $\mathbf{d} = 2\mathbf{r}$. Thus

 $\frac{4}{2}\mathbf{p}r^3$

one molecule is

molecule.

Ideal Gas Isotherms

van der Waals Isotherms - Ar

