Devoir à la maison n° 17

À rendre le 31 mars

I. Nombre de surjections d'un ensemble sur un autre

Soit E et F deux ensembles finis, non vides, de cardinaux respectifs n et p. On note S_n^p le nombre de surjections de E sur F.

- 1) Calculer S_n^1 , S_n^n , ainsi que S_n^p pour p > n.
- 2) On suppose $p \leq n$, montrer que

$$S_n^p = p(S_{n-1}^{p-1} + S_{n-1}^p).$$

Avec $a \in E$, on pourra s'intéresser aux surjections de $E \setminus \{a\}$ sur F.

- 3) Soit $0 \le j \le p$. Déterminer en fonction des S_n^k le nombre d'applications de E dans F prenant exactement j valeurs distinctes.
- 4) Montrer que, pour tout $n \ge 1$ et tout $p \ge 1$,

$$S_n^p = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} k^n.$$

II. Un exercice de dénombrement

Soit $n \in \mathbb{N}^*$ et $p \in \mathbb{N}$, on note Σ_n^p le nombre de n-uplets $(x_1, \ldots, x_n) \in \mathbb{N}^n$ tels que $x_1 + \cdots + x_n = p$.

- 1) Déterminer $\Sigma_n^0, \Sigma_n^1, \Sigma_n^2, \Sigma_1^p$ et Σ_2^p .
- 2) Établir que

$$\forall n \in \mathbb{N}^*, \forall p \in \mathbb{N}, \ \Sigma_{n+1}^p = \Sigma_n^0 + \Sigma_n^1 + \dots + \Sigma_n^p.$$

3) En déduire que

$$\Sigma_n^p = \binom{n+p-1}{p}.$$

— FIN —