

SEQUENCE LISTING

<10> Aehle, Wolfgang
Ramer, Sandra W
Schellenberger, Volker

<120> Generation of Stabilized Proteins by Combinatorial Consensus Mutagenesis

<130> GC816

<140> US 10/688,255
<141> 2003-10-16

<160> 86

<170> PatentIn version 3.2

<210> 1
<211> 5069
<212> DNA
<213> Artificial Sequence

<220>
<223> plasmid PCB04

<400> 1

gagtcgtatt acaattcaact ggccgtcggtt ttacaacgtc gtgactggga aaaccctggc	60
gttacccaac ttaatcgctt tgcagcacat ccccctttcg ccagctggcg taatagcgaa	120
gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcgat atggacgcgc	180
cctgtacggc cgcattaagc gcggcggggtg tggtggttac ggcgcagcgtg accgttacac	240
ttggccagcgcc cctagcgccc gtcctttcg ctttttccc ttcccttctc gccacgttgc	300
ccggctttcc ccgtaagct ctaaatcggg ggctccctt agggttccga tttagtgctt	360
tacggcacct cgaccggaaa aaacttgatt agggatgg ttcacgtatgg gggccatcg	420
cctgtatagac ggttttcgc ctttgcgtt gggatccac gtttttaat agtggactct	480
tgttccaaac tggaaacaaca ctcaacccta tctcggtcta ttctttgtat ttataaggga	540
ttttggcgat ttccggctat tggtaaaaaa atgagctgtat ttaacaaaaa tttaacgcga	600
attttaacaa aatattaacg cttacaattt cctgtatgcgg tattttctcc ttacgcatct	660
gtgcgggtatt tcacaccgca tatggtgac ttcgttacatc atctgtctcg atggcgata	720
gttaagccag ccccgacacc cgccaaacacc cgctgacgcg ccctgacggg cttgtctgct	780
cccgccatcc gtttacagac aagctgtgac cgttccggg agctgcatgt gtcaagagg	840
ttcacccgtca tcaccgaaac gcgcgagacg aaaggccctc gtgatacgcc tattttata	900
ggtaatgtc atgataataa tggtttctta gacgtcagggt ggcactttc gggaaatgt	960
gcccggaaacc cctattgtt tattttctta aatacattca aatatgtatc cgctcatgag	1020
acaataaccc tggccagca tcacccgacg cacttgcgc cgaataaata cctgtacgg	1080
aagatcaattt cgcagaataa ataaatctt gtttccctgt tgataccggg aaggccctgg	1140
ccaaacctttt gcgaaaatgt gacgttgc ggcacgtaa aggttccaaat ttttaccata	1200
atgaaataag atcactaccg ggcgtatattt ttgagttatc gagatttca ggagctaagg	1260
aagctaaaat ggagaaaaaa atcactggat ataccaccgt tgatatatcc caatggcatc	1320
gttaaagaaca ttttggca tttcgttacatg ttgcgtcaatg tacctataaac cagaccgttc	1380
agctggatatt tacggccctt taaagaccc taaagaaaaaa taagcacaag ttttatccgg	1440
cctttattca cattttgcc cgcctgtatc atgcgtatcc ggaattccgt atggcaatga	1500
aagacgggtt gctgggtata tgggatagtgtt acacccttgc ttacaccgtt ttccatgagc	1560
aaactgaaac gtttccatcg ctctggagtg aataccacga cgatttccgg cagtttctac	1620
acatataattt gcaagatgtg gcgtgttaacg gtgaaaacct ggcctatcc cctaaagggt	1680
ttatttgagaa tatgttttc gtctcagccaa atccctgggt gagtttccacc agtttgatt	1740
taaacgtggc caatatggac aacttcttgc ccccggtttt caccatggc aaatattata	1800

cgcaaggcga	caaggtgctg	atgccgctgg	cgattcaggt	tcatcatgcc	gtctgtatg	1860
gcttccatgt	cggcagaatg	cttaatgaat	tacaacagta	ctgcgatgag	tggcagggcg	1920
ggcgtaaaag	acagatcgct	gagataggtg	cctcaactgat	taagcattgg	taactgtcag	1980
accaagtta	ctcatatata	cttagatgg	atttaaaact	tcattttaa	ttaaaagga	2040
tctaggtgaa	gatccctttt	gataatctca	tgaccaaaaat	cccttaacgt	gagtttcgt	2100
tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttctttagat	ccttttttc	2160
tgcgctaat	ctgctgcttg	caaacaaaaa	aaccaccgt	accagcgtg	gtttgttgc	2220
cggatcaaga	gctaccaact	cttttccga	aggtaactgg	cttcagcaga	gcccagatac	2280
caaatactgt	tcttcgtatg	tagccgtatg	taggcccacca	cttcaagaac	tctgttagcac	2340
cgcc tacata	cctcgctctg	ctaattcctgt	taccagtggc	tgctgccagt	ggcataagt	2400
cgtgttac	cgggtggac	tcaagacgt	agttaccgg	taaggcgcag	cggcgggct	2460
gaacgggggg	ttcgtgcaca	cagcccagct	tggagcgaac	gacctacacc	gaactgagat	2520
acttacagcg	tgagctatga	gaaagcgcac	cgcttccga	agggagaaag	gcccacaggt	2580
atccggtaag	cggcagggtc	gaaacaggag	agcgcacgag	ggagcttcca	gggggaaacg	2640
cctggtatct	ttatagtcct	gtcgggttgc	gccacctctg	acttgagcgt	cgattttgt	2700
gatgctcgtc	agggggcgg	agcctatgaa	aaaacgcac	caacgcgccc	tttttacgg	2760
tcctggcctt	ttgctggcct	tttgcctaca	tgtttttcc	tgcgatattcc	cctgattctg	2820
tggataaccg	tattaccgcc	tttgagttag	ctgataccgc	tcgcccgcag	cgaacgcaccg	2880
agcgcagcga	gtcagtgagc	gaggaagcgg	aagagcgcac	aatacgcaaa	ccgcctctcc	2940
ccgcgcgttg	ggcattcat	taatgcagct	ggcacgacag	gttcccgcac	tggaaagcgg	3000
gcagtgagcg	caacgcatt	aatgtgagtt	agctactca	ttaggcacccc	caggcttac	3060
actttatgt	tccggctcg	atgttgtgt	gaattgttag	cgagataacaa	tttcacacag	3120
gaaacagcta	tgaccatgat	tacgccaac	tatttagtg	acactataga	atactcaac	3180
ttaagaagga	gatatacata	tgaaaaagg	actattcgca	attccactag	tcgttccctt	3240
ctattctcac	tctaccccg	tgtcagaaaa	acagctggcg	gaggtggtcg	cgaatacgt	3300
taccccgctg	atgaaagcac	agagtgttcc	aggcatggcg	gtggccgtt	tttacaggg	3360
aaaacccgac	tattacacat	ttggcaaggc	cgatatcg	gcaataaac	ccgttacgccc	3420
tcagaccctg	ttcgagctgg	tttctataag	taaaaccc	accggcg	ttttaggtggg	3480
tgccattgct	cgcggtaaa	tttcgctgaa	cgatcggtg	accagatact	ggccacagct	3540
gacgggcaag	cagtggcagg	gtattcgat	gctgatctc	gccacctaca	ccgcgtggcg	3600
cctggcgcta	caggtaccgg	atgaggtcac	ggataacgc	tccctgtc	gttttatca	3660
aaactggca	ccgcagtgaa	agcctggc	aacgcgtt	tacgccaac	ccagcatcg	3720
tcttttgg	gcgctggcg	tcaaacc	tggcatgccc	tatgagcagg	ccatgacgac	3780
gcgggtcctt	aagccctca	agctggacca	tacctggatt	aacgtgcga	aagcggaaaga	3840
ggcgcattac	gcctgggct	atcgtgacgg	taaagcgg	cgcg	tttgcgc	3900
ggatgcacaa	gcctatggcg	tgaaaaacc	cgtcaggat	atggcgaact	gggtcatgg	3960
caacatggcc	ccggagaac	ttgctgatc	ctca	caggcatcg	cgctggcg	4020
gtcgctac	tggcgtatcg	ggtcaatgt	tcagg	gttgc	ttactg	4080
gcccgtggag	gcaaaacac	ttgtcgagg	cagc	gaggtgc	tttgcgc	4140
gcccgtggca	gaagtgaatc	caccggctcc	cccgt	gcgtc	tttgc	4200
tggctctact	ggcgggttt	gatcctact	ggc	cataaa	aaagcgtt	4260
tgtgatgctc	gcaatac	gctatccgaa	ccc	gttgc	tttgc	4320
cctagaggcg	ctacagggt	gcggatcg	gtt	ggaggc	tttgc	4380
ttagcccg	gtgc	tcact	acact	tttgc	tttgc	4440
aggccaaatcg	tctgac	ctca	act	ggc	ggc	4500
ttctggc	ggct	ctg	gg	gg	gg	4560
tgagggaggg	ggttccgg	gtgg	ctcg	tttgc	tttgc	4620
aaacgctaa	aaggggct	tgacc	aaaa	tttgc	tttgc	4680
taaaggcaaa	cttgattctg	tcg	act	tttgc	tttgc	4740
tgacgttcc	ggc	ctg	at	tttgc	tttgc	4800
ccaaatggct	caagtcgg	tcg	act	tttgc	tttgc	4860
tttacctcc	ctcc	cttca	tttgc	tttgc	tttgc	4920
atatgaattt	tctattgatt	gtg	aaaa	tttgc	tttgc	4980
tttatatgtt	gccac	ttt	tttgc	tttgc	tttgc	5040
ggagtctaa	taagaattc	ccctatag				5069

<210> 2
<211> 120
<212> PRT
<213> Artificial Sequence

<220>
<223> CAB1 heavy chain

<400> 2

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr
1 5 10 15
Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser
20 25 30
Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile
35 40 45
Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
50 55 60
Gln Gly Lys Ala Thr Phe Thr Thr Asp Thr Ser Ser Asn Thr Ala Tyr
65 70 75 80
Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95
Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln
100 105 110
Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 3
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> CAB1 linker

<400> 3

Gly Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 4
<211> 110
<212> PRT
<213> Artificial Sequence

<220>
<223> CAB1 light chain

<400> 4

Glu Asn Val Leu Thr Gln Ser Pro Ala Ile Met Ser Ala Ser Pro Gly
1 5 10 15
Glu Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met
20 25 30
His Trp Phe Gln Gln Lys Pro Gly Thr Ser Pro Lys Leu Trp Ile Tyr

35	40	45
Ser Thr Ser Asn Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser		
50	55	60
Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Arg Met Glu Ala Glu		
65	70	75
Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Arg Ser Ser Tyr Pro Leu Thr		
85	90	95
Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala Ala Thr		
100	105	110

<210> 5
<211> 360
<212> PRT
<213> Artificial Sequence

<220>
<223> BLA

<400> 5

Leu Val Ser Glu Lys Gln Leu Ala Glu Val Val Ala Asn Thr Ile Thr		
1	5	10
Pro Leu Met Lys Ala Gln Ser Val Pro Gly Met Ala Val Ala Val Ile		
20	25	30
Tyr Gln Gly Lys Pro His Tyr Tyr Phe Gly Lys Ala Asp Ile Ala		
35	40	45
Ala Asn Lys Pro Val Thr Pro Gln Thr Leu Phe Glu Leu Gly Ser Ile		
50	55	60
Ser Lys Thr Phe Thr Gly Val Leu Gly Gly Asp Ala Ile Ala Arg Gly		
65	70	75
80		
Glu Ile Ser Leu Asp Asp Ala Val Thr Arg Tyr Trp Pro Gln Leu Thr		
85	90	95
Gly Lys Gln Trp Gln Gly Ile Arg Met Leu Asp Leu Ala Thr Tyr Thr		
100	105	110
Ala Gly Gly Leu Pro Leu Gln Val Pro Asp Glu Val Thr Asp Asn Ala		
115	120	125
Ser Leu Leu Arg Phe Tyr Gln Asn Trp Gln Pro Gln Trp Lys Pro Gly		
130	135	140
Thr Thr Arg Leu Tyr Ala Asn Ala Ser Ile Gly Leu Phe Gly Ala Leu		
145	150	155
160		
Ala Val Lys Pro Ser Gly Met Pro Tyr Glu Gln Ala Met Thr Thr Arg		
165	170	175
Val Leu Lys Pro Leu Lys Leu Asp His Thr Trp Ile Asn Val Pro Lys		
180	185	190
Ala Glu Glu Ala His Tyr Ala Trp Gly Tyr Arg Asp Gly Lys Ala Val		
195	200	205
Arg Val Ser Pro Gly Met Leu Asp Ala Gln Ala Tyr Gly Val Lys Thr		
210	215	220
Asn Val Gln Asp Met Ala Asn Trp Val Met Ala Asn Met Ala Pro Glu		
225	230	235
240		
Asn Val Ala Asp Ala Ser Leu Lys Gln Gly Ile Ala Leu Ala Gln Ser		
245	250	255
Arg Tyr Trp Arg Ile Gly Ser Met Tyr Gln Gly Leu Gly Trp Glu Met		
260	265	270
Leu Asn Trp Pro Val Glu Ala Asn Thr Val Val Glu Thr Ser Phe Gly		
275	280	285

Asn	Val	Ala	Leu	Ala	Pro	Leu	Pro	Val	Ala	Glu	Val	Asn	Pro	Pro	Ala
290					295					300					
Pro	Pro	Val	Lys	Ala	Ser	Trp	Val	His	Lys	Thr	Gly	Ser	Thr	Gly	Gly
305						310				315					320
Phe	Gly	Ser	Tyr	Val	Ala	Phe	Ile	Pro	Glu	Lys	Gln	Ile	Gly	Ile	Val
						325				330					335
Met	Leu	Ala	Asn	Thr	Ser	Tyr	Pro	Asn	Pro	Ala	Arg	Val	Glu	Ala	Ala
						340				345					350
Tyr	His	Ile	Leu	Glu	Ala	Leu	Gln								
					355					360					

<210> 6
<211> 5178
<212> DNA
<213> Artificial Sequence

<220>
<223> pME27.1 plasmid

<400> 6							
aggaattatac	atataaaaata	cctgctgccg	accgctgctg	ctggctcgct	gctcctcgct		60
gcccagccgg	ccatggccca	ggtgaaactg	cagcagtctg	gggcagaact	tgtgagggtca		120
gggacctca	tcaagggtgc	ctgcacagct	tctggcttca	acattaaaga	ctcttatatg		180
cactgggtga	ggcaggggccc	tgaacagggc	ctggagtgga	ttggatggat	tgatcctgag		240
aatgggtata	ctgaatatgc	cccgaagtcc	cagggcaagg	ccacttttac	tacagacaca		300
tcctccaaca	cagcctaccc	gcagctcagc	agcctgacat	ctgaggacac	tgcgtctat		360
tattgtatag	aggggactcc	gactgggccc	tactactttg	actactgggg	ccaagggacc		420
acggtcaccc	tctccctcagg	ttggaggcggt	tcaggcggag	gtggctctgg	cggtggcgga		480
tcagaaaaatg	tgctcaccca	gtctccagca	atcatgtctg	catctccagg	ggagaagggtc		540
accataacct	gcagtgccag	ctcaagtgt	agttacatgc	actggttcca	gcagaagcca		600
ggcacttctc	ccaaactctg	gatttatagc	acatccaacc	tggcttctgg	agtccctgt		660
cgcttcagtg	gcagtggtac	ttggacctct	tactctctca	caatcagccg	aatggaggct		720
gaagatgctg	ccacttatta	ctgccagcaa	agatcttagtt	accacttcac	gttcgggtct		780
ggcaccaagc	tggagctgaa	acggggccggcc	acaccgggt	cagaaaaaaca	gctggcgag		840
gtggtcgcga	atacgattac	cccgctgatg	aaagccccgt	ctgttccagg	catggcggtg		900
gccgttattt	atcaggaaa	accgcactat	tacacatttg	gcaaggccga	tatcgccggcg		960
aataaaacccg	ttacgcctca	gaccctgttc	gagctgggtt	ctataagtaa	aaccttcacc		1020
ggcgttttag	gtggggatgc	cattgctcgc	ggtgaaattt	cgctggacga	tgcgtgtacc		1080
agataactggc	cacagctgac	gggcaagcag	tggcagggtt	ttcgtatgt	ggatctcgcc		1140
acctacaccc	ctggccggct	gccgctacag	gtaccggatg	aggtcacgga	taacgcctcc		1200
ctgctgcgt	tttatcaaaa	ctggcagccg	cagtggaaac	ctggcacaac	gcgtctttac		1260
gccaacgcca	gcatcggtct	ttttgggtgcg	ctggcggtca	aaccttctgg	catgccctat		1320
gagcaggcca	tgacgacgcg	gtcccttaag	ccgctcaagc	tggaccatac	ctggattaaac		1380
gtgcccggaaag	cggaagaggc	gcattacgccc	tgggctatc	gtgacggtaa	agcgggtgcgc		1440
gttgcggccgg	gtatgctgga	tgcacaagcc	tatggcgtga	aaaccaacgt	gcagggatatg		1500
gccaactggg	tcatggcaaa	catggcgccg	gagaacgttg	ctgatgcctc	acttaaggcag		1560
ggcatcgccgc	tggcgagtc	gcgctactgg	cgtatcggtt	caatgtatca	gggtctgggc		1620
tgggagatgc	tcaactggcc	cgtggaggccc	aacacgggtt	tcgagacag	ttttggtaat		1680
gtagcaactgg	cgccgttgcc	cgtggcagaa	gtaatccac	cggtcccccc	ggtcaaagcg		1740
tcctgggtcc	ataaaaacggg	ctctactggc	gggttggca	gctacgtggc	cttattcct		1800
gaaaaggcaga	tcggatttgt	gatgctcgcc	aatacaagct	atccgaaccc	ggcacgcgtt		1860
gaggcgccat	accatatcct	cgaggcgcta	cagtaggaat	tcgagctccg	tgcacaagct		1920
tgcggccgca	ctcgagatca	aacgggctag	ccagccagaa	ctcgccccgg	aagaccccga		1980
ggatgtcgag	caccaccacc	accaccactg	agatccggct	gctaacaag	ccgaaagga		2040
agctgagttt	gctgctgcca	ccgctgagca	ataactagca	taaccccttgc	gggcctctaa		2100
acgggtcttg	aggggtttt	tgctgaaagg	aggaactata	tccggatttg	cgaatggac		2160

gcgcctgta	gcggcgcatt	aagcgccgcg	ggtgtggtgg	ttacgcgcag	cgtgaccgct	2220
acacttgc	gcgcctagc	ccccgcctc	ttcgcttct	tcccttc	tctcgccacg	2280
ttccggct	ttcccgtca	agctcta	aaaaactt	cggggctcc	ctttagggtt	2340
gcttacgc	acctcgaccc	caaaaactt	gattagggtg	atggttcacg	tagtgggcca	2400
tcgcctgat	agacggttt	tcgcctt	acgttggagt	ccacgttctt	taatagtgg	2460
ctctgttcc	aaactggAAC	aacactcaac	cctatctcg	tctattctt	tgatttataa	2520
gggatTTG	cgatttcggc	ctattggtt	aaaaatgagc	tgatTTAA	aaaatttaac	2580
gcaatttta	acaaaatatt	aacgcttaca	atttcgtat	gcccgtatTTT	ctccttacgc	2640
atctgtgcgg	tatTCACAC	cgcataatgtt	gcactctcg	tacaatctgc	tctgtatGCCG	2700
catagttaa	ccagccccga	cacCCGCCAA	cacCCGCTGA	CGCGCCCTGA	CGGGCTTGTC	2760
tgctccggc	atccgttac	agacaagctg	tgaccgttc	CGGGAGCTGC	ATGTGTCAGA	2820
ggTTTcacc	gtcatcacCG	aaacgcgcga	gacgaaagg	cctcgtgata	CGCCTATT	2880
tataggtta	tgtcatgata	ataatggtt	cttagacgtc	aggtggact	tttccgggaa	2940
atgtgcgcgg	aaccctatt	tgtttatttt	tctaaataca	ttcaaatatg	tatccgtc	3000
tgagacaata	accctgtggc	agcatcaccc	gacgcactt	gcccgaata	aatacctgtg	3060
acggaagatc	acttcgcaga	ataaataaaat	cctgtgtcc	ctgttgatac	cgggaaagccc	3120
tgggccaact	tttggcgaaa	atgagacgtt	gatccgcacg	taagagg	ttttttcac	3180
cataatgaaa	taagatca	accggggcgta	tttttgagt	tatcgagatt	ttcaggagct	3240
aaggaagcta	aaatggagaa	aaaaatca	ggatatacca	ccgttgat	atccaaatgg	3300
catcgtaaag	aacatttga	ggcatttca	tcagttg	aatgtacca	taaccagacc	3360
gttcagctgg	atattacggc	ctttttaaag	accgtaaaga	aaaataagca	caagtttat	3420
ccggccttta	ttcacattt	tgcccgcctg	atgaatg	atccggatt	ccgtatggca	3480
atgaaagacg	gtgagctgg	gatatggat	agtgttca	cttgc	cgtttccat	3540
gagcaaactg	aaacgtttc	atcgctctgg	agtgaatacc	acgacgattt	ccggcagtt	3600
ctacacat	attcgc	aga	tgtggcg	tacgtgaaa	acctggctta	3660
gggttattt	agaatatgtt	ttcgtctca	gccaatcc	gggtgagtt	caccagttt	3720
gatTTaaacg	tggccaaat	atgg	ttcgc	tttgcac	gggcaat	3780
tatacgcaag	g	g	gtgtatgc	tttgc	tttgc	3840
gatggcttcc	atgtcg	cg	atgtcg	tttgc	tttgc	3900
ggcggggcg	aaagacagat	cgctgagata	ggtgc	tttgc	tttgc	3960
tcagaccaag	tttactcata	tatactttag	attgattt	aacttcattt	ttaattt	4020
aggatctagg	tgaagatc	tttgc	tttgc	tttgc	tttgc	4080
tcgttccact	gagcgtc	cac	tttgc	tttgc	tttgc	4140
tttctgc	taatctg	cttgc	tttgc	tttgc	tttgc	4200
ttgcccggatc	aagagctacc	aactt	tttgc	tttgc	tttgc	4260
ataccaaata	ctgttctt	agtgt	tttgc	tttgc	tttgc	4320
gcacccgc	catac	tc	tttgc	tttgc	tttgc	4380
aagtctgtc	ttaccgg	tttgc	tttgc	tttgc	tttgc	4440
gggtgaacgg	gggttgc	cacacag	tttgc	tttgc	tttgc	4500
agatacctac	agcgt	gag	tttgc	tttgc	tttgc	4560
aggtatccgg	taagcgg	cg	tttgc	tttgc	tttgc	4620
aacgcctggt	atctt	tat	tttgc	tttgc	tttgc	4680
ttgtgtatgc	cgtc	cac	tttgc	tttgc	tttgc	4740
cgttcc	cctt	tttgc	tttgc	tttgc	tttgc	4800
tctgtggata	accgt	tat	tttgc	tttgc	tttgc	4860
accgagcgc	gcg	act	tttgc	tttgc	tttgc	4920
ctccccgcgc	gttggcc	gttggcc	tttgc	tttgc	tttgc	4980
gcgggc	agc	gca	tttgc	tttgc	tttgc	5040
ttacacttta	tgcttccggc	tcgtatgtt	tgtgaaattt	tgagcggata	acaatttac	5100
acaggaaaca	gctat	gacca	tgattac	tgat	tgat	5160
aagctt	tct	ta	tgat	tgat	tgat	5178

<210> 7
 <211> 80
 <212> PRT
 <213> Artificial Sequence

<220>

<223> consensus mutation

<400> 7

Gln Val Lys Leu Gln Gln Ser Gly Ala Glu Leu Val Arg Ser Gly Thr
1 5 10 15
Ser Val Lys Leu Ser Cys Thr Ala Ser Gly Phe Asn Ile Lys Asp Ser
20 25 30
Tyr Met His Trp Leu Arg Gln Gly Pro Glu Gln Gly Leu Glu Trp Ile
35 40 45
Gly Trp Ile Asp Pro Glu Asn Gly Asp Thr Glu Tyr Ala Pro Lys Phe
50 55 60
Gln Gly Lys Ala Thr Phe Thr Asp Thr Ser Ser Asn Thr Ala Tyr
65 70 75 80

<210> 8

<211> 80

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus mutation

<400> 8

Leu Gln Leu Ser Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys
1 5 10 15
Asn Glu Gly Thr Pro Thr Gly Pro Tyr Tyr Phe Asp Tyr Trp Gly Gln
20 25 30
Gly Thr Thr Val Thr Val Ser Ser Gly Gly Gly Ser Gly Gly Gly
35 40 45
Gly Ser Gly Gly Gly Ser Glu Asn Val Leu Thr Gln Ser Pro Ala
50 55 60
Ile Met Ser Ala Ser Pro Gly Glu Lys Val Thr Ile Thr Cys Ser Ala
65 70 75 80

<210> 9

<211> 84

<212> PRT

<213> Artificial Sequence

<220>

<223> consensus mutation

<400> 9

Ser Ser Ser Val Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Thr
1 5 10 15
Ser Pro Lys Leu Trp Ile Tyr Ser Thr Ser Asn Leu Ala Ser Gly Val
20 25 30
Pro Ala Arg Phe Ser Gly Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr
35 40 45
Ile Ser Arg Met Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln

50 55 60
Arg Ser Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu
65 70 75 80
Lys Arg Ala Ala

<210> 10
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 10
cgcgtcttta cgccaaactcc agcatcggtc ttttg 36

<210> 11
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 11
ggattAACGT gCCGAAATCG gaAGAGGCGC attAC 35

<210> 12
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 12
gCTATCGTGA CGGTAAACCG GTGCGCGTT CGCCG 35

<210> 13
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 13
gCTGGCGGAG GTGGTCGACA ATACGATTAC CCCGCT 36

<210> 14
<211> 36

```

<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 14
accgcactat tacacatatg gcaaggccga tatcgc 36

<210> 15
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 15
agtcgcgcta ctggcgtgtc gggtaatgt atcag 35

<210> 16
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 16
cttattcct gaaaagcagc tcggatttgt gatgctcg 40

<210> 17
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 17
ctgttcgagc tggttctgt aagtaaaacc ttcac 37

<210> 18
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 18
agtggcaggg tattcgtctg ctggatctcg ccacc 35

```

<210> 19
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 19
ctatggcgtg aaaaccacccg tgcaggatat ggcga 35

<210> 20

<400> 20
000

<210> 21

<400> 21
000

<210> 22
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 22
acgtgcagga tatggcgcbc tgggtcatgg ccaaca 36

<210> 23
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 23
gttaaggtagc gctagcggcg ttgcccgtgg cagaag 36

<210> 24
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 24
tgaccagata ctggccagag ctgacgggca agcag 35

```

<210> 25
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 25
cggtatgct ggatgcagaa gcctatggcg tgaaaac 37

<210> 26
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 26
ggacgatgcg gtgaccaaacttggccaca gctga 35

<210> 27
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 27
agcagtggca gggttattact atgctggatc tcgcca 36

<210> 28
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 28
aggcacggtaacggccctgctgcgtttatc 36

<210> 29
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

```

<400> 29		
tctcgccacg ccagtacag aaaaacagct ggccgg		35
<210> 30		
<211> 37		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 30		
gagaacgttg ctgatgccac acttaagcag ggcatcg		37
<210> 31		
<211> 36		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 31		
cttgctctgc tctcgccgcg ccagtgtcag aaaaac		36
<210> 32		
<211> 37		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 32		
caaggctatg gcgtgaaatc caacgtgcag gatatgg		37
<210> 33		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 33		
tgtgatgctc gcgaataaaa gctatccgaa cccgg		35
<210> 34		
<211> 35		
<212> DNA		
<213> Artificial Sequence		

<220>		
<223> primer		
<400> 34		35
tggcgtgaaa accaacgcgc aggatatggc gaact		
<210> 35		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 35		35
ccgtggaggc aaacacgctg gtcgagggca gcgac		
<210> 36		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 36		35
tggaggcaaa cacggtgatc gagggcagcg acagt		
<210> 37		
<211> 39		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 37		39
aaaaaacagc tggcggagat cgtcgcgaaat acgattacc		
<210> 38		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 38		35
tgatgaaagc acagagtatt ccaggcatgg cggtg		
<210> 39		

<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 39	
accttctggc atgcccttg agcaggccat gacga	35
<210> 40	
<211> 35	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 40	
gggaaaacctg cactattca catttggcaa ggccg	35
<210> 41	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 41	
cttgctctgc tctcgccgct ccagtgtcag aaaaac	36
<210> 42	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 42	
caggaaacag ctatgac	17
<210> 43	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 43	
gccgctcaag ctggaccata	20

<210> 44
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 44
gaaaaacagc tggcggagat cgtcgcgaaat acgattacc 39

<210> 45
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 45
tgatgaaagc acagagtatt ccaggcatgg cggtg 35

<210> 46
<211> 35
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 46
ggacgatgcg gtgaccaaatactggccaca gctga 35

<210> 47
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 47
acgtgcagga tatggcgcg tgggtcatgg ccaaca 36

<210> 48
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 48		
gagaacgttg ctgatgccac acttaagcag ggcac		37
<210> 49		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 49		
agtgcgccta ctggcgtgtc gggtcaatgt atcag		35
<210> 50		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 50		
ccgtggaggc aaacacgctg gtcgaggga gcgac		35
<210> 51		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 51		
tggaggcaaa cacggtgatc gagggcagcg acagt		35
<210> 52		
<211> 35		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> primer		
<400> 52		
tgtgatgctc gcgaataaaa gctatccgaa cccgg		35
<210> 53		
<211> 41		
<212> DNA		
<213> Artificial Sequence		

```

<220>
<223> primer

<400> 53
ccgtggaggc aaacacgctg atcgaggca ggcacagtaa g 41

<210> 54
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 54
cgcccatggc ccaggtgcag ctgcagcagt ctggggc 37

<210> 55
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 55
ctggggcaga acttgtgaaa tcagggacct cagtcaa 37

<210> 56
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 56
gggcagaact tgtgaggccg gggacctcag tcaagtt 37

<210> 57
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 57
aacttgtgag gtcagggggc tcagtcaagt tgtcctg 37

<210> 58

```

```

<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 58
gcacagcttc tggcttcacc attaaagact cctata 37

<210> 59
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 59
cagcttctgg cttcaacttt aaagactcct atatgca 37

<210> 60
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 60
cttctggctt caacatttagc gactcctata tgcactg 37

<210> 61
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 61
actcctataat gcactgggtg aggcaggggc ctgaaca 37

<210> 62
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 62
tgcactgggtt gaggcaggcg cctgaacagg gcctgga 37

```

<210> 63
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 63
ggtgaggca gggcctggc cagggcctgg agtggat 37

<210> 64
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 64
ccccgaagt ccaggccgt gccactttta ctacaga 37

<210> 65
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 65
cgaagttcca gggcaagttc actttacta cagacac 37

<210> 66
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 66
tccaggcCAA ggccactatt actacagaca catcctc 37

<210> 67
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 67	
gcaaggccac ttttactcgc gacacatcct ccaacac	37
<210> 68	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 68	
ttactacaga cacatccaaa aacacagcct acctgca	37
<210> 69	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 69	
ctgccgtcta ttatttgtcg gaggggactc cgactgg	37
<210> 70	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 70	
ccgtctatta ttgtaatcgc gggactccga ctgggcc	37
<210> 71	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> primer	
<400> 71	
ctggcggtgg cggatcacag aatgtgctca cccagtc	37
<210> 72	
<211> 37	
<212> DNA	
<213> Artificial Sequence	

<220>
<223> primer

<400> 72
gcgggtggcgg atcagaaaagc gtgctcaccc agtctcc 37

<210> 73
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 73
gaaaaatgtgc tcacccagcc gccagcaatc atgtctgc 38

<210> 74
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 74
tgctcaccca gtctccaaggc atcatgtctg catctcc 37

<210> 75
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 75
cccagtctcc agcaatcggt tctgcatttc cagggga 37

<210> 76
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 76
tgtctgcattc tccagggcag aaggtcacca taacctg 37

<210> 77

```

<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 77
ctgcatctcc agggagacc gtcaccataa cctgcag 37

<210> 78
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 78
taagttacat gcactggcac cagcagaagc caggcac 37

<210> 79
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 79
gcacttctcc caaactcggtg atttatagca catccaa 37

<210> 80
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 80
tggcttctgg agtccctgat cgcttcagtg gcagtgg 37

<210> 81
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 81
ctcgcttcag tggcagtaaa tctgggacct cttactc 37

```

```

<210> 82
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 82
gtggatctgg gacctctgcg tctctcacaa tcagccg 37

<210> 83
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 83
ctctcacaaat cagccgactg gaggctgaag atgctgc 37

<210> 84
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 84
aatggaggc tgaagatgaa gccacttatt actgcca 37

<210> 85
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

<400> 85
aggctgaaga tgctgccat tattactgcc agcaaag 37

<210> 86
<211> 37
<212> DNA
<213> Artificial Sequence

<220>
<223> primer

```

<400> 86
acccactcac gttcggtggc ggcaccaagc tggagct

37

FIGURE 10.

Translation of CAB1 human consensus	1	(1) QVKLQQSGAELVRSGTSVKLSCTASGENIKDSYMHWLROGPEQGLEWIGNDPENGDEYAPKFGKATEFTTDTSSNTAY (1) Q K P G TES V A G	80
Translation of CAB1 human consensus	81	(81) LQLSSLTSEDТАVYYCNEГPTGПYYFDYwGQГTTVTVSSGGGGGGGGSENVLTQSPAIMSASPGEKVITCSA (81) AR QS P S V QT	160
Translation of CAB1 human consensus	161	(161) SS SV SY MH W EQ K P GT SP K L WI Y STS NL AS GP AR F SG SG STS Y LT IS R M B E DA AT YY C Q R S S Y PL T FG AG T K L R AA (161) Y D K A L E D G	240