COSC 290 Discrete Structures

Lecture 24: Partial orders and equivalence relations

Prof. Michael Hay

Monday, Apr. 2, 2018

Colgate University

Plan for today

- 1. Closures
- 2. Equivalence relations and partial orders
- 3. Hasse diagram

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

• symmetric closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

transitive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

 transitive closure: (hint: what does R ∘ R give you?)

Poll: towards transitive closure

Consider the *parentOf* relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is $parentOf \circ parentOf$?

- A) ancestorOf
- B) grandParentOf
- C) parentOf
- D) childOf
- E) grandChildOf
- F) descendantOf

Bonus question for you to consider during the discussion period: what is $parentOf \cup (parentOf \circ parentOf)$?

Computing the transitive closure

Input: Relation $R \subseteq A \times A$.

Output: smallest $R' \supseteq R$ that is *transitive*

- 1: R' := R
- 2: repeat
- 3: $new := (R \circ R') R'$
- 4: $R' := R' \cup new$
- 5: **until** |new| = 0
- 6: **return** R'

Example (Applying transitive closure algorithm)

Let's apply the algorithm to this example:

Exercise

Input: Relation $R \subseteq A \times A$.

Output: smallest $R' \supseteq R$ that is *transitive*

- 1: R' := R
- 2: repeat
- 3: $new := (R \circ R') R'$
- 4: $R' := R' \cup new$
- 5: **until** |new| = 0
- 6: **return** R'

Exercise: working in groups, apply the algorithm to this graph. How many times does the loop repeat?

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

· transitive closure:

$$R' = R \cup (R \circ R) \cup ((R \circ R) \circ R) \cup \cdots$$

Equivalence relations and partial orders

Recall: relation properties

For relation *R* on $A \times A$.

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- **antiS** antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \notin R$.
 - **T** transitive: for every $a, b, c \in A$, if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$, then $\langle a, c \rangle \in R$.

Special relation: equivalence relation

Relation R on A is an equivalence relation if it is reflexive, symmetric, transitive.

Special relation: equivalence relation

Relation *R* on *A* is an equivalence relation if it is reflexive, symmetric, transitive.

Conventions: use \equiv as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \equiv b$ instead of $\langle a, b \rangle \in \equiv$.

Special relation: equivalence relation

Relation R on A is an equivalence relation if it is reflexive, symmetric, transitive.

Conventions: use \equiv as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \equiv b$ instead of $\langle a, b \rangle \in \equiv$.

Intuition: equivalence relations behave like =.

Equivalence classes

When *R* is an equivalence relation on *A*, the elements of *A* be can be partitioned into equivalence classes. (See book for formal definition.)

Equivalence classes

When *R* is an equivalence relation on *A*, the elements of *A* be can be partitioned into equivalence classes. (See book for formal definition.)

Example (Equivalence classes)

Let *R* denote the equivalence relation on $\{0,1,2,\ldots,10\}$ where $\langle a,b\rangle\in R$ if $(a\bmod 2)=(b\bmod 2)$

The equivalence classes are:

Equivalence classes

When *R* is an equivalence relation on *A*, the elements of *A* be can be partitioned into equivalence classes. (See book for formal definition.)

Example (Equivalence classes)

Let *R* denote the equivalence relation on $\{0,1,2,\ldots,10\}$ where $\langle a,b\rangle\in R$ if $(a\bmod 2)=(b\bmod 2)$

The equivalence classes are:

- { 0, 2, 4, 6, 8, 10 }
- { 1, 3, 5, 7, 9 }

Exercise

Let $S := \{0,1\}^3$ be the set of length 3 bitstrings. Consider the two binary relations R_1 and R_2 on S defined as follows:

- 1. $(x,y) \in R_1$ if x and y are identical or reverses of each other. For example, if $x = b_1b_2 \dots b_n$, we say that $\text{reverse}(x) = b_nb_{n-1} \dots b_1$. Then, $(x,y) \in R_1$ iff x = y or x = reverse(y).
- 2. $(x,y) \in R_2$ if x and y are rearrangements/permutations of each other. For example, if $x = b_1b_2 \dots b_n$, then $(x,y) \in R_2$ iff there exists some bijection $p : \{1, \dots, n\} \to \{1, \dots, n\}$ such that $y = b_{p(1)}b_{p(2)} \dots b_{p(n)}$.

Exercise

Let $S := \{0,1\}^3$ be the set of length 3 bitstrings. Consider the two binary relations R_1 and R_2 on S defined as follows:

- 1. $(x,y) \in R_1$ if x and y are identical or reverses of each other. For example, if $x = b_1b_2 \dots b_n$, we say that $\text{reverse}(x) = b_nb_{n-1} \dots b_1$. Then, $(x,y) \in R_1$ iff x = y or x = reverse(y).
- 2. $(x,y) \in R_2$ if x and y are rearrangements/permutations of each other. For example, if $x = b_1b_2 \dots b_n$, then $(x,y) \in R_2$ iff there exists some bijection $p : \{1, \dots, n\} \to \{1, \dots, n\}$ such that $y = b_{p(1)}b_{p(2)} \dots b_{p(n)}$.

Working in small groups, write out the equivalence classes for R_1 and R_2 .

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Example (Partial order)

The *prefixOf* relation is a partial order:

- "a" ≺ "aa"
- "aa" ≤ "aardvark"

Note: not all pairs comparable: "a" $ot \leq$ "b" and "b" $ot \leq$ "a"

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be incomparable.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be incomparable.

Example (Strict partial order)

The *ancestorOf* relation (ancestor is parent or (recursively) parent of ancestor):

- "DT" \prec "Don Jr"
- "Hanns Drumpf" ≺ "DT" (#makedonalddrumpfagain)

Poll: partial order

Relation \leq is a partial order if it is reflexive, antisymmetric, transitive.

Consider two relations on a set of track runners:

- $a \leq_1 b$ if the number of races in which a competed is no more than the number in which b competed.
- $a \leq_2 b$ if the total amount of time (measured in nanoseconds with laser precision so that ties are impossible) that a ran is no more than the total amount of time that b ran.

Is \leq_1 a partial order? Is \leq_2 a partial order?

- A) Yes, Yes
- B) Yes, No
- C) No, Yes
- D) No, No

Hasse diagram

Hasse diagram

A partial order \leq on A can be drawn using a Hasse diagram.

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and *layout* nodes "by level" if $a \leq b$ for $a \neq b$, then a is placed *lower* than b

Example: isSubstringOf relation on the strings $\{a, b, c, ab, bc, abc, cd\}$.

Exercise: draw Hasse diagram

Complete the following exercise: on a piece of paper, draw a Hasse diagram for the relation on $A := \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ for the relation $R \subseteq A \times A$ where

$$R := \{ \langle x, y \rangle \in A \times A : y \bmod x = 0 \}$$

- Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and *layout* nodes "by level" if $a \leq b$ for $a \neq b$, then a is placed *lower* than b

Example partial order

A to do list,

[attendClass, sleep, borrowBook, eat, brushTeeth, study]

with constraints:

- borrowBook ≤ study
- study \leq attendClass
- sleep \leq attendClass
- eat ≺ brushTeeth
- $brushTeeth \leq sleep$

What should you do first? Brush teeth? Eat? Borrow book?

Total order

Relation *R* is a total order if it is a partial order where every pair is comparable (either $\langle a,b\rangle \in R$ or $\langle b,a\rangle \in R$).

A total order can be written succinctly as an ordered list.

Is previous example a total order?

Topological ordering

Given a partial order \leq , a topological ordering is a total order \leq_{total} that is *consistent* with \leq .

(See book for formal definition of consistent; see earlier lectures for algorithms for topological sort.)