ML-Summary / Mauro Schegg / 1

1 Problems ML can solve

1.1 Supervised learning

- · Decision making processes (supervised learning)
- It's called supervised learning because a "teacher" provides the input and output

1.1.1 Examples

- Reading the handwritten postalcode from an envelope
- · Detecting credit card fraud

1.2 Unsupervided learning

only the input is given, not the output

1.2.1 Examples

- · Identifying topic in a set of blog posts
- · Segmenting customer in groups with similar preferences

1.3 Nomenclature

- rows → samples or data point
- columns → features

1.4 Knowing your Task and Data

· you need to understand what your data is and which algorithm work

1.4.1 Keep in mind

- What question am I trying to answer? Can my Data answer it?
- What is the best way to phrase my question as a ML problem?
- Have I collected enough data to represent the problem I want to solve?
- How will I measure success in my application
- How will it interact with other parts of my research or business $w[0] \cdot x[0] =$ one feature product?

2 First Example

- Classifying iris flowers → classification Problem
- The three different species of flowers are different classes
- · for a specific data point/ sample, it's called a label

2.1 k-Nearest Neighbors

• We can choose k Neighbors that are closest to the new point and then choose the majority amongst those.

2.2 Interface of a supervised mode

- · fit-methode
- predict-methode score-methode

3 Supervised Learning

- · when we have input/ ouput pairs
- · requires human effort to build the training sets

3.1 Classification and Regression

two major types of supervise learning

3.1.1 Classification

- · Goals is to predict class labels from a predefined list of possibilities binary Classification:
- When there are exactly two possibilities e.g. yes/no multi classification:
- · More than two possibilities

- The goal is to predict a continuous number.
- predicting someone's salary with their age, job, education and where
- If it doesn't matter if the value is a small margin of like \$39'990 when we expected \$40'000 it's a regression task.

3.1.3 Generalization, Overfitting and Underfitting

Generalization:

- · When we build a Model on the training data that can accurately predict unseen data \rightarrow it's able to **generalize**.
- When we over or undefit generalization is bad.

Overfitting:

• Is when you fit the model to close to the particularities of the training 3.8 Linear models for classification

Underfitting:

· Is when you make the model to simple

Sweet Spot:

· Is between under- and overfitting. This is the Model we want to make

3.2 Relation of Model Complexity to Dataset Size

- The more variety of data you have, the more complex your model can be without overfitting
- Never underestimate the power of more data

3.3 Supervised Machine Learning Algorithms

- · A bigger k makes the prediction smoother
- But pay attention to not Overfitting
- KNN is not often used in reality
- KNN doesn't work well with sparse datasets (a lot of 0 in the table) • It doesn't work well dataset that have a lot (hundreds of features)

3.4 Linear Regression

- \hat{y} = prediction
- w = weights
- h = offset

3.4.1 Pros

- linear regression is powerful for multiple features
- good if you have more features than samples

3.4.2 convention

For training data always _ like coef_, intercept_

3.4.3 Coefficient of determination/ fitting

- A way R^2 to measure how good the model predicts.
- If R^2 for the training and test data are close together, we are likely underfitting.
- · If there are a lot of features, there is a high possibility of overfitting.

- · basic principle is the same as in linear regression
- one addition is that we want the weights w to be as small as possible.
- it restricts coefficients to be close to zero

3.5.1 Regularization

- this addition (constraint) is the first example for regularization-
- regularization means restricting a model to avoid overfitting.

3.5.2 conclusion

- ridge regression is a trade-off the training-score is lower while the testscore is higher
- for small datasets, ridge is far superior to linear regression
- the smaller the dataset, the more important is regularization

3.6 Lasso

- · like ridge it restricts coefficients to be close
- some coefficients are exactly zero → some features are ignored Having zeros can make a model easier and reveal the important

· When you have to choose between Ridge and Lasso, choose Ridge only if you have a lot of features and expect only a few of them to matter or you want to simplify choose Lasso.

3.7 FlasticNet

- · Combines Ridge and Lasso
- In Practice use this!!!

3.8.1 Binary classification

- $\hat{y} = w[0] \cdot x[0] + w[1] \cdot x[1] + ... + w[p] \cdot x[p] + b > 0$
- If the function is smaller than zero, we predict the class -1 if it's bigger than zero, we predict the class +1
- It separates two class with a line, plan or hyperplane.

3.8.2 Logistic regression (classification!)

- · Is used to classify in a model.
- · For data with fewer features it may look weak, but the more features there are the stronger it gets.
- Higer C → lower regularization → more overfitting.
- Multiclass classification possible

3.8.3 Liner models for multiclass classification

- · Most linear regression models are for binary classification.
- It's possible to use a binary classification model for multiclass classification with the one-vs.-rest approach

3.8.3.1 How it works

- · Multiple binary models comparing one class to all the others.
- Then to find the class every binary model is run. The one with the highest score on its single class is chosen.

classification confidence formula:

- $\bullet \ \, \underline{w}[0] \cdot x[0] + w[1] \cdot x[1] + \ldots + w[p] \cdot x[p] + b$
- The one with the highest $w[0] \cdot x[0] + w[1] \cdot x[1] + ... + w[p] \cdot x[p] + b$ is

3.8.3.2 Linear SVC classifier

· A way to make multiclass classification.

3.8.4 Strengths, weaknesses and parameters

- Main parameter of linerar models is the **regularization** parameter either called alpha in regression models or C in the classification models.
- alpha ↑ or C ↓ means a simple model
- Usually alpha and C are searched for on a log-scale.
- The default is L2-regularization
- Only a few of your features are important or the inpretability of your
- model is important → L1-regularization.
- Fast to train and predict
- They scale well for large datasets They work well with spare datasets
- Very BIG datasets use SGDClassifier, SGDRegressor

3.9 Naive Bayer Classifiers

- Similar to the linear models but faster.
- Worse Generalization than LogisticRegression or LinearSVC

- The average and sometimes the standard deviation of each feature is calculated.
- The class where the statistics match the best is chosen.

3.10 Decision Trees

- Widely used models for classification and regression
- · terminal nodes (leafs) at the end

3.10.1 How it works

• It's asking yes/no question like is feature i larger than value a.

Is a Person Fit?

- One Test splits the data along a line parallel to an axis.
- Multiple test build a decision tree.
- If the data points of a **leaf** share all the same target value it's calles
- The leafs are scanned till the right box is found. Then the majority is chosen as the class.

3.10.2 Controlling complexity

How to stop overfitting:

- There are to common ways, either pre-pruning or post-pruning pre-pruning:
- Stopping the creation of the tree early

post-pruning:

- Building a complex tree and then removing or collapsing nodes with little information.
- The top split is the most important.

3.10.3 Summarizing a tree

feature importance:

- To understand which features are most important to predict the class. · Sum is always 1
- · If the feature importance is low, that doesn't mean the feature is uninformative, it just means it wasn't picked.
- In contrast to the linear models, feature importance are always positive and don't encode which class a feature is indicative. It just shows which are most important to come to the conclusion.

3.10.4 Short commings

Decision trees are not able to predict data that is outside the training

3.10.5 Strengths, weaknesses and parameters

Parameters:

· pre-pruning with max_depth, max_leaf_nodes or min samples_leaf Strengths:

- Easy to visualize and understand
- The algorithms are invariant to scaling of data.
- Good if features are on completely different scales.

Weaknesses: · They tend to overfit.

· That's why we use ensemble of decision tress etc.

3.11 Ensembles of decision trees

· Ensembles are methods that combine multiple ML models to create more powerful.

3.11.1 Random forest

· A way to reduce the overfitting of a normal decision tree.

3.11.1.1 How it works

chines)

- collection of decision trees (each is a little bit different)
- · Each tree overfits in different ways, by averaging the results overfitting
- Random forests get their name from injecting randomness into the tree build. So that each tree is different.

- 3.11.1.2 How to build random forests
- · Decide how many trees you want to build. Create bootstrap sample by creating a data set with the same num-
- ber of samples, but some are missing and some will be repeated. · Creating the tree but not choosing the best test of all features, just the
- best of a random subset. For a high max_features the trees will be very similar, for a low one they
- will be very different. For regression, each tree makes a prediction, then the average is taken to make the decision. • For **classification**, a *soft voting* strategy is used. Each algorithm gives

a probability for each possible output. The highest average is chosen. 3.11.1.3 Strengths, weaknesses and parameters

3.11.2 Gradient boosted regression trees (gradient boosting ma-