Topic 22

22 Different kinds of LDs

- 22.1 Introduction
- 22.2 Short Cavity FP
- 22.3 DBR
- 22.4 DFB
- **22.5 VCSEL**
- 22.6 Wavelength Tuning

Introduction (i)

- Previous slides:
- 1. Dispersion limits bit rate and long distance

 $\Delta \delta t = L \Delta \lambda D$ $B \propto 1 / (L \Delta \lambda D)$

A maximum pulse broadening of 50% of the bit slot: BL =1/($2\Delta\lambda D$)

2. Transmission – need a narrow linewidth to minimise pulse broadening

Introduction (ii)

- We also need a narrow linewidth emitter in order to maximise WDM capacity
- Optical Band width

$$\left|\Delta \nu\right| = \left(\frac{c}{\lambda^2}\right) \left|\Delta \lambda\right|$$

Laser line width is 0.8 nm (~100 GHz), a single optical fibre can carry 50 pulses

- Temperature stability
- Single mode

Single Mode Laser – widely spaced FP modes

Previous slides show:

$$m\lambda/2 = nL$$

 $\Delta\lambda = \lambda^2/2 nL$

- Make the spacing large enough so that only one lasing mode is allowed
- Requirements: mode spacing ≥ gain spectrum width

- For example: refractive index ~3, λ_0 = 1.55 um, if $\Delta\lambda$ required: 20nm
- The cavity length: $\Delta \lambda = \lambda^2/2nL$
- So L=20 μm

Problems to overcome -

$$g_{th} = \frac{1}{\Gamma} \left[\alpha_i + \frac{1}{2L} \ln(\frac{1}{R_1 \cdot R_2}) \right]$$

- L is so small that mirror reflectivity needs to increase, ensuring low losses
- High power: need large current through small volume cooling problems?
- Cleavage: extremely difficult (Recently, laser cleaving)
- try cleaving 20 μ m from a 100 μ m thick semiconductor.... analogous to braking 5mm thick chocolate into 1mm slices

Bragg Gratings

Previously we have known: Fibre Bragg gratings can be used as a

wavelength selective filter

•The selective wavelength must meet the requirements in order to form constructive interference between the reflected beams

$$\lambda = 2 \cdot n_{eff} \cdot d$$

where n_{eff}: the average refractive index of the material; d: grating period.

• If d is fixed, only λ meeting the above equation can be selected

The idea can be used for the fabrication of a single wavelength laser

- Grating in the gain region (active region):
- Grating outside the gain region (active region): DBR laser

Distributed Bragg Reflector (DBR) Laser

- •Bragg condition: $\lambda_B = 2 n_{avg} d / m$, where m=1,2....., and d: period
- Only allowed wavelengths: when the wavelength satisfies the Bragg condition to form constructive interference

For example to design DBR/DFB structure (i.e., d: period)

$$\lambda_{\text{Bragg}} = 2n_{\text{avg}}d/m$$
 \Rightarrow $d = m\lambda_{\text{Bragg}}/2n_{\text{avg}}$

Choose the 1st order: m = 1, $\lambda_{Bragg} = 1.55um$, $n_{eq} = 3$

Therefore, we can obtain: d ~ 250nm

• The period required is on the nanometre scale (think how to fabricate)

Distributed Feedback Laser

•Bragg condition: $\lambda_B = 2 n_{eq} d / m$, where m = 1, 2, ..., and d: period Usually use <math>m=1. $m \neq 1$ not on gain peak.

Basically, when the lasing λ is close to λ_B , such lasing wavelength is allowed

In reality, it is not so simple. The special grating:

- (1) It modifies the **refractive index** periodically
- (2) It also modifies the gain in the active region periodically

<u>Distributed Feedback Laser – Coupling Strength</u>

- A detailed calculation is complicated, depending on Coupling Strength, i.e., the fraction of optical power reflected:
- (1) Thickness of the waveguiding layer; (2) Depth of the grating pitch; (3) Length of the grating region
- Introduction of a coupling constant (based on perturbation assumption) $\kappa = \pi \Delta n_{eq} / \lambda_B$

Increase κ by increasing index contrast – thicker grating layer, closer to optical mode, etc.

DFB Modes – Emission Spectra

R=0 R=0

- •In reality, the allowed wavelengths are close to λ_{Bragg} , but **not exactly \lambda_{\text{Bragg}}**
- Lasing at two modes on either side of

$$\lambda_{\text{Bragg}}$$

$$\lambda = \lambda_{\rm Bragg} \pm \frac{\left(m + \frac{1}{2}\right)}{2nL} \lambda^{2}_{\rm Bragg}$$

• Stop band width is function of κ

It is still not good enough as two modes are allowed

Single mode DFB laser

- Introducing additional $\pi/2$ phase shift to get single mode operation (introduce "defect" or destroy "symmetry" in order to lift degeneracy)
- 1- Put phase shift in grating
- 2- Make one facet a high reflecting mirror

grating with $\lambda/4$ phase shifter

DFB laser Fabrication (i)

Combination of epitaxial overgrowth and nanofabrication techniques

(1) Partial epitaxial growth of laser structure (interrupted at guiding layer just above active region):

MBE or MOCVD

(2) Designing/patterning grating structure: holography or e-beam lithography

(3) Fabricating grating structure: dry-etching or wetting etching

(4) Completing epitaxial growth: MBE or MOCVD

DBR laser Fabrication (ii)

- Easier than fabrication of DFB, and epitaxial overgrowth is unnecessary
- (1) Design/patterning grating structure:
- (2) Fabricating grating structure:

holography or e-beam lithography dry-etching or wetting etching

DFB Performance

Compared with other laser diodes

- Extremely narrow linewidth
- Wavelength set by grating less sensitive to temperature

Both meet requirements for the DWDM application very well

Vertical Cavity Surface Emitting Laser (VCSELs) (i)

So far, we have known a number of laser diodes:

- (1) F-P laser
- (2) DBR laser
- (3) DFB laser

Basically, they are (1) under an edging-emitting configuration; and

(2) based on an optical cavity on the ten or hundred micrometre scale

- Surface emitting laser
- Cavity length: wavelength
 scale (~ λ)
- DBR on top and bottom (reflectivity~100%)

Vertical Cavity Surface Emitting Laser (VCSELs) (ii)

- Both bottom and top DBRs require:
- (1) ~100% reflectivity;

$$R = \left[\frac{(n_{h1}/n_{L2})^{2N} - 1}{(n_{h1}/n_{L2})^{2N} + 1} \right]^{2}$$

(2) Many pairs required: each pair consisting of **two layers** with an optical thickness $1/2\lambda$, i.e., $1/2\lambda = n_1d_1 + n_2d_2$

where n₁ and n₂: refractive indices; and d₁ and d₂: thickness for each layer

- (3) Optical cavity (L): $m(n\lambda)$, where m: integer, n: refractive index
- For example: d_1 and d_2 : ~120 -130 nm (if λ =1.55 μ m, n_1 and n_2 :~3.2/3.0)

Fabrication of VCSELs

- Ease fabrication in a two dimensional array
- Laser beam shape: best due to a circularly symmetric confinement, thus
 offering excellent coupling with optical fibre
- Challenge: material growth due to the requirement of many pairs of DBR
- Sheffield team has achieved the shortest wavelength VCSELs

Materials and Applications

- •1.3um 1.65 um
 -InP based materials, AlInGaAs, GaInAsP alloys
 ~MANs ~ 1300nm systems
 (~10GBit/s ~10km 1300nm DFB)
 (~1 Gbit/s ~few km 1310nm FP)
 ~WANs ~1550nm systems
 (~10GBit/s ~40km 1550nm DFB)
- •850nm
- -GaAs based materials (AlGaAs, InGaAs alloys) ~LANs e.g. 10GBit/s over ~300m
- •980nm-EDFA Pump laser
- GaAs based materials (AlGaAs/InGaAs)

Wavelength Tuneable Lasers

For DWDM it is desirable to have wavelength tuneable lasers

- Need to compensate for the ageing of laser wavelength shift with age
- Need to reduce component inventory both manufacturer and in field
- Also many applications in gas sensing, spectroscopy, etc.

Tuning Methods

1) Alter cavity gain spectrum

- short cavity laser
 with thermal or free carrier tuning of gain spectrum peak wavelength
- •Increased current changes λ_{Bragg} for mirrors thermal and free carrier effects
- •Thermal tuning allows gain spectrum change

2) Alter allowed modes Extra cavity

3. Alter allowed modes and gain 22

Summary Topic 22

- Narrow linewidth of laser emission is desirable (DWDM, dispersion)
- A number of possibilities exist short cavity F-P,
 DFB, DBR, VCSEL, all with their relative advantages and disadvantages
- Tuneable wavelength is also desirable ...DWDM
- Various possibilities exist tune gain spectrum, lasing modes, or both

Tutorial Questions

- T22.1 Describe the possible optical modes of a laser diode and how they may be controlled to obtain a single mode laser.
- T22.2 Review the different methods to obtain a single longitudinal mode laser.
- T22.3 Why is a tuneable single-mode laser desirable? How may this be achieved?

T22.4

- (a) A laser diode has length 100 μ m, operates at 1300nm, has effective refractive index of 3.5. What is the F-P mode spacing?
- (b) For this laser both facets have a reflectivity of 0.5. Assuming no internal loss, calculate the threshold gain of the laser.