Lecture 4 Portfolio Mathematics and Capital Allocation

Recap from Last Lecture

- Expected vs. Realized Return & Risk
 - Expected: μ , σ^2 , Realized: R(r), s²
- Value at Risk (VaR)
 - Another measure of risk, works well for any distribution
- Riskfree Prospects & the Risk Premium
- Risk Preferences & Returns Utility

Risk: Averse, Neutral, Loving

- Utility function: $U = E(r) 1/2 A\sigma^2$
 - Risk averse: A > 0 (usual case)
 - Risk neutral: A = 0
 - Risk loving: A < 0

Utility Indifference: Risk Averse

Utility Indifference: The return-risk combinations that are equally agreeable (i.e., generate the same utility level) to a given investor.

Utility Indifference: Risk Neutral

Utility Indifference: Risk Loving

Utility Indifference Curve

Mean-Variance Criterion

Outline of Today's Lecture

- Risk & Return for Security Portfolios
- Allocation Decision Levels
- Complete Portfolio Return & Risk
- The Capital Allocation Line

Expected Portfolio Return

• Expected Portfolio Return, $E(r_P)$

$$E(r_P) = w_1 E(r_1) + w_2 E(r_2)$$

where w_1 and w_2 are portfolio weights, or the fraction of wealth the investor puts into each security.

• E.g., Invest \$25 in r_1 and \$75 in r_2 :

$$w_1 = 25/100$$
, $w_2 = 75/100$

Example

 Suppose you have \$100 to invest, which you split equally between stocks 1 & 2:

$$w_1 = $50/$100 = 50\% = w_2$$

$$E(r_P) = w_1 E(r_1) + w_2 E(r_2)$$
$$E(r_P) = 0.50(4\%) + 0.50(8\%) = 6\%$$

This portfolio is expected to return 6%.

Portfolio Variance

• Portfolio Variance, $\sigma_P^2 = E[r_P - E(r_P)]^2$

$$\sigma_{P}^{2} = E[w_{1}r_{1} + w_{2}r_{2} - E(w_{1}r_{1} + w_{2}r_{2})]^{2}$$

$$= E[w_{1}r_{1} - E(w_{1}r_{1}) + w_{2}r_{2} - E(w_{2}r_{2})]^{2}$$

$$= E[w_{1}r_{1} - E(w_{1}r_{1})]^{2} + E[w_{2}r_{2} - E(w_{2}r_{2})]^{2}$$

$$+ 2E[(w_{1}r_{1} - E(w_{1}r_{1}))(w_{2}r_{2} - E(w_{2}r_{2}))]$$

Portfolio Variance

$$\sigma_P^2 = Var(w_1 r_1) + Var(w_2 r_2) + 2Cov(w_1 r_1, w_2 r_2)$$

= $w_1^2 Var(r_1) + w_2^2 Var(r_2) + 2w_1 w_2 Cov(r_1, r_2)$

$$\sigma_P^2 = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1 w_2 \sigma_{12}$$

where $\sigma_{12} = \text{Cov}(r_1, r_2)$, which we call

the covariance of the securities.

Covariance

Measures if two variables move together

$$\sigma_{12} = \text{Cov}(r_1, r_2) = \text{E}[((r_1 - \text{E}(r_1))((r_2 - \text{E}(r_2)))]$$

If $\sigma_{12} > 0$, they are **positively** related

If σ_{12} < 0, they are **negatively** related

If $\sigma_{12} = 0$, they are **unrelated**

• Note that $\sigma_{22} = \sigma_2^2 = E[(r_2 - E(r_2))]^2$ means variance is a variable's own covariance

Correlation: ρ

A normalized measure of covariance

•
$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2}$$

 $0 < \rho_{12} \le 1 \rightarrow Variables$ are **positively** correlated

$$\rho_{12} = 0 \rightarrow \text{Variables uncorrelated}$$

 $-1 \le \rho_{12} < 0 \rightarrow \text{Variables are negatively correlated}$

Outline of Today's Lecture

- ✓ Risk & Return for Security Portfolios
- Allocation Decision Levels
- Complete Portfolio Return & Risk
- The Capital Allocation Line

Allocation Decision Levels

Allocation Weights Example

Outline of Today's Lecture

- ✓ Risk & Return for Security Portfolios
- ✓ Allocation Decision Levels
- Complete Portfolio Return & Risk
- The Capital Allocation Line

Complete Portfolio Return

$$E(r_C) = yE(r_P) + (1 - y)r_f$$

$$\Rightarrow \qquad \mathsf{E}(r_C) = r_f + y[\mathsf{E}(r_P) - r_f]$$

Riskfree return: reward for inflation and deferred consumption without risk.

Risk
weight
(quantity
of risk
taken)

Risk premium: reward for taking risk (price of risk)

Complete Portfolio Risk

$$\sigma_C^2 = y^2 \sigma_P^2 + (1 - y)^2 \sigma_f^2 + 2y(1 - y)\sigma_{Pf}$$

But $\sigma_{Pf} = \sigma_f^2 = 0$ by definition, so:

$$\sigma_C^2 = y^2 \sigma_P^2$$
 $\rightarrow \sigma_C = y \sigma_P$

- Suppose $E(r_P) = 15\%$, $\sigma_P = 22\%$, $r_f = 7\%$:
- 1. $E(r_C) = r_f + y[E(r_P) r_f] = 7\% + y8\%$, and

$$2. \sigma_C = y22\%$$

Possible Complete Portfolios

Outline of Today's Lecture

- ✓ Risk & Return for Security Portfolios
- ✓ Allocation Decision Levels
- ✓ Complete Portfolio Return & Risk
- The Capital Allocation Line

The Capital Allocation Line

Reference

- Investments book
 - Chapters 5-6