

Laboratório de Sistemas Embarcados e Distribuídos

Entrada e Saída Parte I

Revisão	Data	Responsável	Descrição
0.1	-X-	Prof. Cesar Zeferino	Primeira versão
0.2	06/2020	Prof. Cesar Zeferino	Revisão do modelo

Observação: Este material foi produzido por pesquisadores do Laboratório de Sistemas Embarcados e Distribuídos (LEDS – Laboratory of Embedded and Distributed Systems) da Universidade do Vale do Itajaí e é destinado para uso em aulas ministradas por seus pesquisadores.

Objetivo

 Conhecer os conceitos relacionados ao funcionamento dos barramentos e ao acesso aos dispositivos de E/S

Conteúdo

- Fundamentos do barramento
- Interfaceamento com dispositivos de E/S
- Acesso Direto à Memória

Bibliografia

- □ PATTERSON, David A.; HENNESSY, John L. Armazenamento e outros tópicos de E/S. *In*: _____. **Organização e projeto de computadores**: a interface hardware/software. 4. ed. Rio de Janeiro: Campus, 2014. cap. 6.
- Edições anteriores
 - □ Patterson e Hennessy (2005, cap. 7)
 - □ Patterson e Hennessy (2000, cap. 7)

- Entrada-e-Saída (E/S)
 - Parte do computador responsável pela transferência de informações com o usuário ou com outros computadores
- Requisitos de sistemas de E/S
 - Sistemas de E/S devem ser confiáveis
 - □ Falhas de comunicação em redes e de armazenamento em discos devem ser mínimas
 - Sistemas de E/S devem ter <u>desempenho</u> satisfatório
 - A confiabilidade é mais importante que o desempenho
- Expansão da capacidade de armazenamento
 - Sistemas computacionais exigem sistemas de armazenamento expansíveis

Sistema computacional

 O processador e a memória são interligados a dispositivos de E/S por meio de um barramento e de controladores de E/S

Características dos dispositivos de E/S

- Comportamento
 - Entrada (somente leitura)
 - Saída (somente escrita)
 - Armazenamento (leitura e escrita)
- Parceria
 - Com um humano
 - Com outra máquina
- Taxa de dados
 - Taxa de pico em que os dados transferidos entre o dispositivo de E/S e a memória principal ou o processador.

			•
Dispositivo	Comportamento	Parceria	Taxa de dados (Mbit/s)
Teclado	Entrada	Humano	0,0001
Mouse	Entrada	Humano	0,0038
Entrada de voz	Entrada	Humano	0,264
Entrada de som	Entrada	Máquina	3,0
Scanner	Entrada	Máquina	3,2
Saída de voz	Saída	Humano	0,264
Saída de som	Saída	Humano	8,0
Impressora a laser	Saída	Humano	3,2
Monitor gráfico	Saída	Humano	800 – 8.000
Modem	Entrada ou saída	Máquina	0,016 - 0,064
Rede LAN	Entrada ou saída	Máquina	100 – 1.000
Rede LAN sem fio	Entrada ou saída	Máquina	11 – 54
Disco óptico	Armazenamento	Máquina	80,0
Fita magnética	Armazenamento	Máquina	32,0
Disco Magnético	Armazenamento	Máquina	240 – 2.560

- Definição de barramento (bus)
 - □ É um link de comunicação compartilhado que utiliza um conjunto de fios para conectar diversos subsistemas
- Vantagens do barramento
 - Versatilidade, baixo custo e reusabilidade
- Desvantagens do barramento
 - Representa um gargalo de comunicação que limita a vazão máxima de E/S
- Limitações do barramento
 - Velocidade limitada pelo comprimento do barramento e pelo número de dispositivos conectados

Importante
Devido às
limitações de
desempenho do
barramento, ele
começou a ser
substituído por
redes chaveadas,
tanto na
comunicação
entre chips
quanto na
comunicação
intra-chip

- Desafio de projeto
 - □ Sistema de barramento que atenda as demandas do processador e também conecte uma grande quantidade de dispositivos de E/S

- □ Um barramento é formado por linhas (fios) de
 - Controle: sinalizam solicitações e confirmações, bem como o tipo de informação nas linhas de dados
 - Dados: transportam dados, endereços e comandos complexos
- Requer um protocolo (conjunto de regras) para gerenciar o seu compartilhamento
- Transação de barramento
 - Sequência de operações de barramento que inclui uma requisição e pode incluir uma resposta, ambas podendo transportar dados
 - Exemplo
 - 1. Enviar endereço
 - 2. Receber ou enviar dados

- □ Tipos básicos de transações
 - Transação de leitura
 - transfere dados da memória para o processador ou para um dispositivo de E/S
 - Transação de escrita
 - transfere do processador ou de um dispositivo de E/S para a memória
- Operações de entrada e de saída
 - Operação de entrada
 - Entrar dados do dispositivo para a memória
 - Operação de saída
 - Sair com dados para o dispositivo a partir da memória

Os passos de uma operação de saída

Os passos de uma operação de entrada

- Tipos básicos de barramento
 - Barramento processador-memória
 - Curtos
 - Alta velocidade
 - Alta largura de banda
 - Usando na conexão entre a memória e o processador
 - Barramento de E/S
 - Longos
 - Suportam uma faixa de larguras de banda
 - Suportam muitos tipos de dispositivos
 - Barramento backplane
 - São barramentos que suportam a coexistência de CPUs, memórias e dispositivos de entrada-e-saída em um único barramento

Exemplos de sistemas de barramento

Barramento síncrono

- Inclui um sinal de clock nas linhas de controle e um protocolo fixo para comunicação relativa ao clock
- Barramento processador-memória (ex. leitura da memória)
 - □ Ciclo 1: CPU envia endereço e comando de leitura para a mem.
 - □ Ciclo 2 4: Wait states (tempo de espera do acesso à memória)
 - Ciclo 5: Memória envia dado lido à CPU
- □ Barramento de E/S PCI (ex. de escrita no dispositivo)
 - □ Ciclo 1: Controladora PCI envia endereço do dispositivo
 - □ Ciclo 2: Controladora PCI envia o dado a ser escrito no dispositivo
 - Ciclos de wait state podem ser necessários
- Desvantagens
 - Dispositivo tem que operar na freqüência do clock do barramento
 - O barramento não pode ser longo

- Barramento assíncrono
 - Ao invés do clock, utiliza um protocolo de handshaking (aperto de mão) para coordenar o seu uso
 - Pode acomodar um grande variedade de dispositivos de diferentes velocidades
 - É extensível
 - Pode ser estendido sem qualquer preocupação com problemas de variação de clock ou sincronismo

Protocolo de handshaking

- Consiste de uma série de etapas para coordenar as transferências em barramentos assíncrono em que o emissor e o receptor só prosseguem para a próxima etapa quando as duas partes concordarem que a etapa atual foi concluída
- Exemplo Handshake baseado em três linhas de controle
 - ReqLeitura (ReadReq)
 - DadoPronto (DataRdy)
 - Confirmação (Ack)

Protocolo de handshaking

- Arbitragem do barramento
 - Os componentes conectados ao barramento são classificados como
 - Mestre: pode iniciar uma transação, controlando o barramento
 - Escravo: deve responder a uma transação e não controla o barramento
 - Mestre/Escravo: pode atuar como mestre ou como escravo
 - A arbitragem de um barramento consiste em decidir qual componente mestre terá direito ao controle do barramento quando mais de um mestre quer iniciar uma transação ao mesmo tempo
 - A arbitragem é feita por um árbitro que
 - Recebe requisições dos mestres
 - 2. Seleciona uma requisição com base em algum critério
 - 3. Envia um sinal de garantia (grant) de uso ao mestre selecionado

Arbitragem do barramento

- Requisitos para o projeto do árbitro
 - Dispositivos devem ter prioridades no acesso ao barramento
 - Todo dispositivo deve ter acesso garantido ao barramento
- Tipos básicos de esquemas de arbitragem
 - Arbitragem daisy chain
 - Arbitragem centralizada com requisições em paralelo
 - Arbitragem distribuída com acesso por auto seleção
 - Arbitragem distribuída com acesso por detecção de colisão

Arbitragem Daisy Chain

Arbitragem centralizada

Características de barramentos de E/S Alto desempenho x Baixo custo

Opção	Alto desempenho	Baixo custo
Tamanho do barramento	Linhas separadas para endereços e dados	Multiplexação das linhas de endereços e de dados
Tamanho dos dados	Ex. 32 bits	Ex. 8 bits
Modo Burst (Múltiplas words/transação)	Sim	Não
Multimestre	Sim	Não
Clock	Síncrono	Assíncrono

Características	PCI	SCSI
Tipo de barramento	Backplane	E/S
Largura básica do barramento de dados (sinais)	32 a 64	8 a 32
Multiplexação de end/dados	Sim	Sim
Multimestre	Sim	Sim
Arbitragem	Centralizada (req. em paralelo)	Distribuída (por auto-seleção)
Largura de banda máxima teórica	133 a 512 MB/s	5 a 40 MB/s
Número máximo de dispositivos	Até 1024	7 a 31
Tamanho máximo do barramento (fio de cobre)	0,5 m	25 m
Nome do padrão	PCI	ANSI X3.131

Características	Firewire (1394)	USB 2.0
Tipo de barramento	E/S	E/S
Largura básica do barramento de dados (sinais)	4	2
Clock	Assíncrono	Assíncrono
Largura de banda máxima teórica	50 MB/s (Firewire 400) 100 MB/s (Firewire 800)	0,2 MB/s 1,5 MB/s 60 MB/s
Conectável a quente	Sim	Sim
Número máximo de dispositivos	63	127
Tamanho máximo do barramento (fio de cobre)	4,5 m	5 m
Nome do padrão	IEEE 1394, 1394b	USB Implementors Forum

- Como uma solicitação de E/S de um usuário é transformada em um comando de dispositivo e comunicada ao dispositivo?
- Como os dados são realmente transferidos de ou para um local da memória?
- Qual é o papel do sistema operacional?

Funções necessárias ao SO

- Controle de acesso aos dispositivos (ex. arquivos do usr)
- 2. Abstração do acesso aos dispositivos (APIs)
- 3. Tratamento de interrupções geradas pelos dispositivos
- 4. Balancear o uso dos dispositivos e melhorar a vazão do sistema

□ Tipos de comunicação SO-dispositivos necessárias

- 1. O SO deve ser capaz de enviar comandos aos dispositivos
- 2. O dispositivo deve ser capaz de enviar notificações ao SO
- Os dados precisam ser transferidos entre a memória e um dispositivo de E/S

- Endereçamento do dispositivo
 - E/S mapeada em memória
 - □ Esquema de E/S em que partes do espaço de endereçamento são atribuídas a dispositivos de E/S e leituras e escritas nesses endereços são interpretadas como comandos aos dispositivos de E/S
 - Instruções de E/S
 - □ Instruções dedicadas usadas para dar um comando a um dispositivo de E/S e que especifica o número do dispositivo e a word de comando (ou local da word de comando na memória)

- Comunicação com o processador
 - Polling
 - □ Verifica periodicamente o status de um dispositivo de E/S para determinar a necessidade de atender o dispositivo
 - □ Tem melhor previsibilidade de tempo (bom para sistemas de tempo real), mas desperdiça o tempo do processador

- Comunicação com o processador
 - E/S controlada por interrupção
 - □ Emprega interrupções para indicar ao processador que um dispositivo precisa de atenção
 - □ Uma interrupção é um evento que desvia o fluxo de execução do programa para uma rotina que atenda à necessidade do dispositivo que gerou a interrupção
 - □ Um interrupção é **assíncrona** à execução da instrução e não impede o término da instrução
 - □ Cada dispositivo pode ter um nível de prioridade diferente para o atendimento da sua interrupção

- Identificando a fonte de uma interrupção
 - Interrupções vetorizadas
 - Registrador de causa
- Níveis de prioridade
 - Exceções tem prioridade maior que interrupções
 - Interrupções de dispositivos mais rápidos têm prioridade maior que a dos dispositivos mais lentos
- Registradores Status e Cause do MIPS

Acesso Direto à Memória (DMA – Direct Memory Access)

Definição

□ É um mecanismo de que oferece a um controlador de dispositivo a capacidade de transferir dados diretamente da memória ou para ela sem envolver o processador

Funcionamento

- O controlador de DMA é um dispositivo mestre/escravo que trabalha da seguinte forma
 - 1. O processador configura o controlador de DMA indicando
 - Dispositivo alvo da transferência (ex. disco)
 - Endereço inicial da memória
 - Número de bytes a transferir
 - 2. O DMA torna-se mestre e requisita o acesso ao barramento. Após receber o grant ele gera os sinais necessários, indicando o tipo de operação (rd/wr) e o endereço da memória
 - Qdo a transferência termina o controlador de DMA interrompe o processador e informa se obteve êxito na operação

Acesso Direto à Memória (DMA – Direct Memory Access)

Aspectos avançados

- A utilização de DMA em computadores com sistemas de memória que incluem cache e/ou memória virtual traz complicações adicionais referentes à garantia da coerência dos dados mantidos na memória e na cache, bem como no acesso e na transferência de páginas durante uma falta de página
- □ Recomenda-se a leitura das páginas 451-452 da 3a edição do livro texto, nas quais esse problema é discutido