老北京 Sine-Gordon 方程

温尊

定理 1. 考虑 k > 0, 设 ϕ 满足 Sine-Gordon 方程 $\phi_{uu} - \phi_{vv} = \sin \phi$, 则存在 \mathbb{R}^3 中 Gauss 曲率为 $K = -k^2$ 的曲面使得 ϕ 为每点两个渐近方向的夹角.

证明. 由于无脐点, 考虑曲率线参数, 假设曲面第一基本形式和第二基本形式为

$$I = A^2 dudu + B^2 dvdv, II = \kappa_1 A^2 dudu + \kappa_2 B^2 dvdv,$$

那么 $\omega_1 = Adu$, $\omega_2 = Bdv$, $\omega_{13} = \kappa_1 Adu$, $\omega_{23} = \kappa_2 Bdv$, 假设联络形式 $\omega_{12} = pdu + qdv$, 由于 $d\omega_1 = \omega_2 \wedge \omega_{21}$, $d\omega_2 = \omega_1 \wedge \omega_{12}$ 待定系数得到 $p = -\frac{A_v}{B}$, $q = \frac{B_u}{A}$, 则

$$\omega_{12} = -\frac{A_v}{B}du + \frac{B_u}{A},$$

由 Codazzi 方程得到

$$(\kappa_1 - \kappa_2)A_v + (\kappa_1)_v A = 0, (\kappa_2 - \kappa_1)B_u + (\kappa_2)_u B = 0.$$

我们现在由于 $\kappa_1\kappa_2 = -k^2$,假设 $\kappa_1 = k\tan\frac{\phi}{2}, \kappa_2 = -k\cot\frac{\phi}{2}$,则 $\kappa_1 - \kappa_2 = \frac{k}{\sin\frac{\phi}{2}\cos\frac{\phi}{2}}$,带入 Codazzi 得到 $(\log A)_v = (\log\cos\frac{\phi}{2})_v, (\log B)_u = (\log\sin\frac{\phi}{2})_u$,那么 $A = a(u)\cos\frac{\phi}{2}, B = b(v)\sin\frac{\phi}{2}$,做参数变换 $u' = k\int a(u)du, v' = k\int b(v)dv$,仍记作 u, v,则得到曲面第一基本形式和第二基本形式为

$$I = \frac{1}{k^2} \left(\cos^2 \frac{\phi}{2} du du + \sin^2 \frac{\phi}{2} dv dv \right), II = \frac{1}{k} \cos \frac{\phi}{2} \sin \frac{\phi}{2} (du du - dv dv),$$

下面再证明渐近方向夹角是 ϕ . 显然渐近方向为 $du = \pm dv$, 则为 (du, dv) = (1, 1) 和 $\delta u, \delta v) = (1, -1)$ 两个方向, 计算夹角得到 $\cos \psi = \cdots = \cos^2 \frac{\phi}{2} - \sin^2 \frac{\phi}{2} = \cos \phi$, 于是 得证.

最后由于此时 $\omega_{12} = \frac{1}{2}(\phi_v du + \phi_u dv)$, $\omega_{13} = \sin \frac{\phi}{2} du$, $\omega_{23} = -\cos \frac{\phi}{2} dv$, 只需验证满足 Gauss 方程即可证明曲面存在. 带入得知 Gauss 方程等价于 $\phi_{uu} - \phi_{vv} = \sin \phi$, 正是 Sine-Gordon 方程, 于是得证.