FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČNÍ TECHNICKÉ V BRNĚ

Typografie a publikování – 2. projekt Sazba dokumentů a matematických výrazů

13. dubna 2013 Martin Janyš

Úvod

V této úloze si vyzkoušíme sazbu titulní strany, matematických vzorců, prostředí a dalších textových struktur obvyklých pro technicky zaměřené texty (například rovnice (1) nebo definice 1.1 na straně 1).

Na titulní straně je využito sázení nadpisu podle optického středu s využitím zlatého řezu. Tento postup byl probírán na přednášce.

1 Matematický text

Nejprve se podíváme na sázení matematických symbolů a výrazů v plynulém textu. Pro množinu V označuje $\operatorname{card}(V)$ kardinalitu V. Pro množinu V reprezentuje V^* volný monoid generovaný množinou V s operací konkatenace. Prvek identity ve volném monoidu V^* značíme symbolem ε . Nechť $V^+ = V^* - \{\varepsilon\}$. Algebraicky je tedy V^+ volná pologrupa generovaná množinou V s operací konkatenace. Konečnou neprázdnou množinu V nazvěme abeceda. Pro $w \in V^*$ označuje |w| délku řetězce w. Pro $W \subseteq V$ označuje occur(w,W) počet výskytů symbolů z W v řetězci w a $\operatorname{sym}(w,i)$ určuje i-tý symbol řetězce w; například $\operatorname{sym}(abcd,3) = c$.

Nyní zkusíme sazbu definic a vět s využitím balíku amsthm.

Definice 1.1. Bezkontextová gramatika je čtveřice G = (V, T, P, S), kde V je totální abeceda, $T \subseteq V$ je abeceda terminálů, $S \in (V-T)$ je startující symbol a P je konečná množina pravidel tvaru $q \colon A \to \alpha$, kde $A \in (V-T)$, $\alpha \in V^*$ a q je návěští tohoto pravidla. Nechť N = V - T značí abecedu neterminálů. Pokud $q \colon A \to \alpha \in P$, γ , $\delta \in V^*$ provádí derivační krok z $\gamma A \delta$ do $\gamma \alpha \delta$ podle pravidla $q \colon A \to \alpha$, symbolicky píšeme $\gamma A \delta \Rightarrow \gamma \alpha \delta$ [$q \colon A \to \alpha$] nebo zjednodušeně $\gamma A \delta \Rightarrow \gamma \alpha \delta$. Standardním způsobem definujeme \Rightarrow^m , kde $m \geq 0$. Dále definujeme tranzitivní uzávěr \Rightarrow^+ a tranzitivně-reflexivní uzávěr \Rightarrow^* .

Algoritmus můžeme uvádět podobně jako definice textově, nebo využít pseudokódu vysázeného ve vhodném prostředí (například algorithm2e).

Algoritmus 1.2. Ověření bezkontextovosti gramatiky. Mějme gramatiku G = (N, T, P, S).

- 1. Pro každé pravidlo $p \in P$ proveď test, zda p na levé straně obsahuje právě jeden symbol z N.
- 2. Pokud všechna pravidla splňují podmínku z kroku 1, tak je gramatika G bezkontextová.

Definice 1.3. Jazyk definovaný gramatikou G definujeme jako $L(G) = \{w \in T^* \mid S \Rightarrow^* w\}.$

1.1 Podsekce obsahující větu

Definice 1.4. Nechť L je libovolný jazyk. L je bezkontextový jazyk, když a jen když L = L(G), kde G je libovolná bezkontextová gramatika.

Definice 1.5. Množinu $\mathcal{L}_{CF} = \{L | L \text{ je bezkontextový jazyk}\}$ nazýváme *třídou bezkontextových jazyků*.

Veta 1. Nechť $L_{abc} = \{a^n b^n c^n | n \geq 0\}$. Platí, že $L_{abc} \notin \mathcal{L}_{CF}$.

Důkaz. Důkaz se provede pomocí Pumping lemma pro bezkontextové jazyky, kdy ukážeme, že není možné, aby platilo, což bude implikovat pravdivost věty 1. □

2 Rovnice a odkazy

Složitější matematické formulace sázíme mimo plynulý text. Lze umístit několik výrazů na jeden řádek, ale pak je třeba tyto vhodně oddělit, například příkazem \quad.

$$x^{2}\sqrt{y_{0}^{3}}$$
 $\mathbb{N} = \{1, 2, 3, \ldots\}$ $x^{y^{y}} \neq x^{yy}$ $z_{i_{j}} \not\equiv z_{ij}$

V rovnici (1) jsou využity tři typy závorek s různou explicitně definovanou velikostí.

$$x = -\left\{ \left[(a+b)^{c} * d \right] + 1 \right\}$$

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{r} p_{i}(x_{i}-x)^{2}}$$
(1)

V této větě vidíme, jak vypadá implicitní vysázení limity $\lim_{n\to\infty} f(n)$ v normálním odstavci textu. Podobně je to i s dalšími symboly jako \sum_1^n či $\bigcup_{A\in\mathcal{B}}$. V případě vzorce $\lim_{x\to 0} \frac{\sin x}{x} = 1$ jsme si vynutili méně úspornou sazbu příkazem \limits.

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \tag{2}$$

$$\overline{\overline{A} \wedge \overline{B}} = \overline{\overline{A} \vee B} \tag{3}$$

3 Složené zlomky

Při sázení složených zlomků dochází ke zmenšování použitého písma v čitateli a jmenovateli. Toto chování není vždy žádoucí, protože některé zlomky potom mohou být obtížně čitelné.

V těchto případech je možné ručně nastavit standardní stupeň písma v podvýrazech pomocí \displaystyle u vysázených vzorců nebo pomocí \textstyle u vzorců, které jsou součástí textu. Srovnejte:

$$\frac{\frac{a^{2}}{x+y} - \frac{\frac{a}{b}}{x-y}}{\frac{a+b}{a-b} - 1} \qquad \frac{\frac{a^{2}}{x+y} - \frac{\frac{a}{b}}{x-y}}{\frac{a+b}{a-b} - 1}$$

Tento postup lze použít nejen u zlomků.

$$\prod_{i=0}^{m-1} (n-i) = \underbrace{n(n-1)(n-2)\dots(n-m+1)}_{m \text{ je počet činitelů}}$$

4 Matice

Pro sázení matic se velmi často používá prostředí array a závorky (\left, \right).

$$\mathbf{A} = \begin{bmatrix} a+b & a-b \\ \widehat{c+b} & \widetilde{b} \\ \overrightarrow{a} & AC \\ \alpha & \aleph \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$\begin{vmatrix} k & l \\ m & n \end{vmatrix} = kn - lm$$

Prostředí array lze úspěšně využít i jinde.

$$\binom{n}{k} = \begin{cases} 0 & \text{pro } k > c \text{ nebo } k > n \\ \frac{n!}{k!(n-k)!} & \text{pro } 0 \le k \le n \end{cases}$$

5 Závěrem

V případě, že budete potřebovat vyjádřit matematickou konstrukci nebo symbol a nebude se Vám dařit jej nalézt v samotném LATEXu, doporučuji prostudovat možnosti balíku maker $\mathcal{A}_{M}\mathcal{S}$ -LATEX. Analogická poučka platí obecně pro jakoukoli konstrukci TEXu.