

5.2 Multi-level lot-sizing

Two-stage lot-sizing

Axsäter, 9.2.1 Silver et al., 11.3

Approaches

- Sequential planning
 - Determine Q_R
 - Determine $Q_W = nQ_R$ for given Q_R

$$C_R(Q_R) = \frac{d}{Q_R} A_R + \frac{h_R}{2} Q_R \quad Q_R^* = \sqrt{\frac{2dA_R}{h_R}}$$

$$C_W(n) = \frac{d}{nQ_R} A_W + \frac{h_W}{2} Q_R(n-1)$$

$$C_W(n+1) \le C_W(n) \Leftrightarrow n(n+1) \le \frac{A_W h_R}{A_R h_W}$$

$$n^* = \min \left\{ n | n(n+1) \ge \frac{A_W h_R}{A_R h_R} \right\}$$

Simultaneous planning

$$C(n, Q_R) = \frac{d}{nQ_R} A_W + \frac{d}{Q_R} A_R + \frac{h_W}{2} Q_R(n-1) + \frac{h_R}{2} Q_R$$

$$Q_R^*(n) = \sqrt{\frac{2d\left(\frac{A_W}{n} + A_R\right)}{nh_W + h_R - h_W}} \quad C^*(n) = \sqrt{2d\left(\frac{A_W}{n} + A_R\right)(nh_W + h_R - h_W)}$$

$$C(n+1) \le C(n) \Leftrightarrow n(n+1) \le \frac{A_W}{A_R} \frac{h_R - h_W}{h_W}$$

$$n^* = \min\left\{n|n(n+1) \ge \frac{A_W}{A_R} \frac{h_R - h_W}{h_W}\right\}$$

Example

Data

- Demand per year: d=1000
- Fixed cost: A_W =10, A_R =15
- Inventory holding cost per unit per year: $h_W = 0.24$; $h_R = 1.2$

Results

- Independent planning
 - Q_W = 288.68; Q_R = 158.11; C = 69.28+189.74 = 259.02
- Sequential planning
 - n = 2; $Q_W = 316.22$; $Q_R = 158.11$; C = 50.6 + 189.74 = 240.33
- Simultaneous planning
 - n=2; $Q_R=166.67$; $Q_W=333.33$; C=50+190=240

5.3 Dynamic lot-sizing

Dynamic multi-level lot-sizing

Assumptions

- As in Wagner-Whitin model
 - Item specific setup cost A_k and holding cost h_k
- Dynamic demands for final products d_{it}
- k=1,2,...,K: stock keeping units at several stages
 - V(k): set of predecessor stockpoints
 - Input coefficients a_{ii}

Planning problem

- Decision variables
 - q_{kt} Lot-size (Production quantity) for item k in t
 - y_{kt} Inventory level for item k at the end of period t
 - γ_{kt} Setup indicator, γ_{kt} =1 if a lot is placed for item k in period t, γ_{kt} =0 otherwise
- Cost minimization
- Constraints

Model

Mixed-integer Linear Programming

$$\min \sum_{t=1}^{T} \sum_{k=1}^{K} (A_k \cdot \gamma_{kt} + h_k \cdot y_{kt})$$

$$y_{kt} = y_{k,t-1} + q_{kt} - d_{kt} \quad k \in E; t = 1,2,...,T$$

$$y_{kt} = y_{k,t-1} + q_{kt} - \sum_{j \in N(k)} a_{kj}q_{jt} \quad k \notin E; t = 1,2,...,T$$

$$q_{kt} \leq M\gamma_{kt} \qquad k = 1,2,...,K; t = 1,2,...,T$$

$$y_{k0} = y_{kT} = 0$$

$$q_{kt}, y_{kt} \geq 0, \ \gamma_{kt} \in \{0,1\} \quad k = 1,2,...,K; t = 1,2,...,T$$

Dynamic multi-echelon lot-sizing heuristics

- Algorithm
 - Cost adjustment on each echelon level
 - Treat the upper echelon level as a single level planning problem (Wagner/Whitin)
 - Resulting replenishments represent demand for the next echelon
 - Consider the next echelon again as a single level planning problem

Approach

Cost adjustment heuristic:

Total cost:
$$C(Q_W, Q_R) = \frac{D}{Q_R} \left(A_R + \frac{A_W}{n} \right) + \frac{Q_R}{2} \left((n-1)h_W + h_R \right)$$

Adjusted ordering cost:
$$\hat{A}_R = A_R + \frac{A_W}{n}$$

Adjusted holding cost:
$$\hat{h}_R = (n-1)h_W + h_R$$

Good estimate:
$$n = \max \left[\sqrt{\frac{A_W (h_R - h_W)}{A_R h_W}}, 1 \right]$$

Example

- Demands over the next 6 month: 750, 100, 50, 100, 400, 1000
- Serial two-stage process: one warehouse, one retailer
- Setup cost: A_W =700, A_R = 500

Results:

Inventory holding cost per unit and month: $h_{W}=2$, $h_{R}=3$										
			1	2	3	4	5	6	Cost	Total Cost
Results:	Level by level Wagner Whitin	Retailer	900	0	0	100	400	1000	2600	— 5300
	Algorithm	Warehouse	1000	0	0	0	400	1000	2700	
	Cost adjustment Heuristic + WW	Retailer	1000	0	0	0	400	1000	3000	— 5100
	Algorithm	Warehouse	1000	0	0	0	400	1000	2100	
	Cost adjustment Heuristic + Silver-	Retailer	900	0	0	100	400	1000	2600	F400
Logistics & SCM Inventory Mana	Meal Heuristic	Warehouse	900	0	0	100	400	1000	2800	– 5400

Assumptions

- Retailer and warehouse, in series
- L_i lead time for replenishment at location i
- D stochastic demand, mean μ , standard deviation σ , pdf f, cdf F
- D(L) cumulative demand over L periods, mean L μ , variance L σ^2
- Inventory holding cost h_i at location i per unit and unit of time
- Inventory at the retailer is reviewed every R periods, decisions at earlier stages are coordinated directly
- Safety stocks are only meant to cover "maximum reasonable demand" at a location, depending on predetermined internal service levels $\alpha_{\rm i}$
- Normally distributed demand:
 - maximum reasonable demand at stage i in a period of length t: $t\mu + k_i \sigma \sqrt{t}$
 - k_i is the safety factor that corresponds to the service level α_i

Base-stock-system

Base-stock-system

Optimization problem

- Decision variables
 - Service times, safety stock coverage times
- Minimize safety stock holding costs

$$\min C = h_W k_W \sigma \sqrt{L_W - ST_W} + h_R k_R \sigma \sqrt{ST_W + L_R + R}$$
s.t. $0 \le ST_W \le L_W$

- Optimality property: concave minimization problem
 - Optimality of bang-bang solutions (extreme points)
 - $ST_W = 0 \text{ or } ST_W = L_W$

Example

Data

$$- \mu = 20, \sigma = 8$$

$$-L_{R}=1;L_{W}=5;$$

$$-\alpha_{i}$$
=95%, k=1.645

- Holding cost $h_R = 0.024$; $h_W = 0.0048$

Result

$$- C(ST_W = L_W) = 0.024*34.82 = 0.836$$

$$- C(ST_W=0)=0.0048*29.43+0.024*18.61=0.588$$

Clark-Scarf-model

Axsäter, 10.1

- Serial system
- Discrete time periods, stock reviewed every period
- L_i lead time for replenishment at location i
- D stochastic demand, mean μ , standard deviation σ , pdf f, cdf F
- D(L) cumulative demand over L periods, mean L μ , variance L σ^2
- Backorder penalty b per unit and unit of time
- Inventory holding cost h_i at location i per unit and unit of time

Sequence of events

- Location 1 orders from an external supplier with infinite capacity
- Outstanding order from supplier arrives at location 1
- Location 2 orders from location 1
- Delivery from location 1 arrives at location 2
- Demand realization at location 2
- Evaluation of holding and shortage (backorder) costs

Optimization problem

- Decision: Echelon-order-up-to levels S_i
- Objective: minimize expected average backorder and inventory holding costs
- Approach, consider:
 - at location 1: order at time t, cost at time t+L₁
 - at location 2: order at time t+L₁, cost at time t+L₁+L₂
- Note that a demand occurring in period t, affects location 2 still in period t, but location 1 in period t+1

Analysis

- Say we are at time t
- Echelon 1 raises echelon inventory position to S₁
 (external supplier can always deliver)
 - Echelon stock at time t+L₁, **before** the demand arrival: $IL_1^e = S_1 D(L_1)$
 - Costs at echelon 1 are incurred at time t+L₁
- Echelon 2 raises inventory position to S₂, if echelon 1 provides sufficient supply
 - Also happens before the demand arrival
 - Installation stock level at location 1 at time $t+L_1: L_1^i = L_1^e S_2 = S_1 D(L_1) S_2$
 - **Realized** inventory position S at location 2 after ordering: $S = min(S_2, S_1 D(L_1))$
 - Costs at echelon 2 are incurred at time t+L₁+L₂
 - Stock level then: $S D(L_2+1)$

Average cost analysis

Stage 1

$$C_1(S_1, S_2) = h_1 E(S_1 - D(L_1) - S_2)^+$$

$$= h_1 \int_0^{S_1 - S_2} (S_1 - S_2 - d) f_{L_1}(d) dd$$

• Stage 2

$$C_2(S_1, S_2) = h_2 E((S - D(L_2 + 1))^+) + bE((S - D(L_2 + 1))^-)$$

$$= h_2 \int_0^S (S - d) f_{L_2 + 1}(d) dd + b \int_S^\infty (d - S) f_{L_2 + 1}(d) dd$$

Optimal solution

• Stage 2
$$F_{L_2+1}(S_2) = \frac{h_1 + b}{h_2 + b}$$

• Stage 1
$$\int_{0}^{S_2} F_{L_1}(S_1 - x) f_{L_2 + 1}(x) dx = \frac{b}{h_2 + b}$$

Example

- $L_1=L_2=5$, $\mu=10$, $\sigma=5$, b=10, $h_1=1$, $h_2=1.5$
- Computation
 - Normal distribution, numerical integration
 - $-S_2^*=81, S_1^*=129.7$
 - Use of Excel

METRIC

Axsäter, 10.2

- METRIC: A multi-echelon technique for recoverable item control (Sherbrooke, 1968)
- Assumptions
 - One warehouse, multiple retailers
 - Independent Poisson demand processes at the retailers with rate λ_i
 - Complete backordering
 - Continuous review base-stock policies
 - Retailer orders are filled by the warehouse on a FCFS basis

Analysis - warehouse

- Demand process at the warehouse
 - Poisson process with rate equal to sum of retailer rates: $\lambda_0 = \sum_{i=1}^{N} \lambda_i$
- Distribution of the warehouse inventory level: $P(IL_0 = j) = P(D_0(L_0) = S_0 j) = \frac{(\lambda_0 L_0)^{S_0 j}}{(S_0 j)!} e^{-\lambda_0 L_0}, j \le S_0$
- Average on-hand inventory level at the warehouse: $E(IL_0^+) = \sum_{j=1}^{S_0} jP(IL_0 = j)$

$$E(IL_0) = E(IL_0^+) - E(IL_0^-)$$

• Average backorder at the warehouse: $E(IL_0^-) = \sum_{j=-\infty}^{-1} (-j) P(IL_0 = j) = E(IL_0^+) - (S_0 - \lambda_0 L_0)$

Analysis - retailer

- Retailer lead time: stochastic due to delays from the warehouse
 - Approximation: replace stochastic lead time by its mean: $\overline{L}_i = L_i + \frac{E(IL_0^-)}{\lambda_0}$

Little's law: Avg. queue length = arrival rate * avg. waiting time

- Distribution of the inventory level: $P(IL_i = j) = P(D_i(\overline{L}_i) = S_i j) = \frac{(\lambda_i L_i)^{S_i j}}{(S_i j)!} e^{-\lambda_i \overline{L}_i}, j \leq S_i$
- Average inventory and backorder: $E(IL_i^+) = \sum_{j=1}^{S_i} jP(IL_i = j), \quad E(IL_i^-) = E(IL_i^+) (S_i \lambda_i \overline{L_i})$

Optimization

Axsäter, 10.4

- Notation
 - h_i inventory holding cost at location i=0,1,...,N
 - b_i backorder cost per unit and unit of time at location i=0,1,...,N (typically, b_0 =0)
 - $-C_0(S_0)$ average holding cost at the warehouse
 - C_i(S_i) average holding and backorder cost at retailer i
 - C average system costs per unit time
- Expression

$$C = C_0(S_0) + \sum_{i=1}^{N} (h_i E(IL_i^+) + b_i E(IL_i^-))$$

Properties and algorithm

- Convexity of objective function for given S₀
- Bounds on inventory level at retailer
 - Lower: find S_i for lowest possible lead time L_i
 - Upper: find S_i for largest possible lead time L₀+L_i
 - Independent optimization for each retailer by successively increasing S_i
- $L_i = L_i + \frac{-(1-i)^2}{\lambda_0}$

- Warehouse parameter S₀
 - Not necessarily convex
 - Bounds in inventory level at warehouse
 - Lower: Optimize w.r.t. to upper bounds on S_i
 - Upper: Optimize w.r.t. to lower bounds on S_i
 - Enumeration of values

Exact analysis

Distribution of backorders at the warehouse

$$P(IL_0 = -k) = P(D_0(L_0) = S_0 + k) = \frac{(\lambda_0 L_0)^{S_0 + k}}{(S_0 + k)!} e^{-\lambda_0 L_0}$$

Distribution of backorders from retailer i at the warehouse

$$P(B_i = j) = \sum_{k=j}^{\infty} P(IL_0 = -k) \binom{k}{j} \left(\frac{\lambda_i}{\lambda_0}\right)^j \left(\frac{\lambda_0 - \lambda_i}{\lambda_0}\right)^{k-j}, j > 0$$

$$P(B_i = 0) = 1 - \sum_{j=1}^{\infty} P(B_i = j)$$

Exact distribution of the inventory level at a retailer

$$P(IL_{i} = j) = P(B_{i} + D_{i}(L_{i}) = S_{i} - j) = \sum_{k=0}^{S_{i} - j} P(B_{i} = k) \frac{(\lambda_{i} L_{i})^{S_{i} - j - k}}{(S_{i} - j - k)!} e^{-\lambda_{i} L_{i}}, \quad j \leq S_{i}$$

Example METRIC

- Serial supply chain
- (S-1,S) base stock policy
- Poisson customer demand with $\lambda=5$
- Cost parameters

$$-h_0=1, h_1=2, b_0=0, b_1=10$$

$$-L_0=L_1=1$$

Evaluation

- $S_0 = 5, S_1 = 5$
- Warehouse analysis

$$- E(IL+)=0.88, E(IL-)=0.88$$

$$- E(L)=1.175$$

Retailer analysis

$$- E(IL+)=0.55, E(IL-)=1.43$$

• Cost (C) = 16.30

h0	1											
h1	2											
b	10											
LO	1											
L1	1											
Lambda	5											
S0	5											
S1	5											
L1_bar	1.17546737											
		W	AREHOUSE						RETAILER			SUPPLY CHAIN
d	p{D=d} S-			E[IL_0+]	0.877337	d	p{D=d}	S-d	d-S	E[IL+]	0.554046	
	0 0.006737947	5	0	E[IL_0-]	0.877337	-	0 0.002802			E[IL-]	1.431383	
	1 0.033689735	4	0	L J			1 0.01647					
	2 0.084224337	3	0	C0(S0)			2 0.048399			Ci(S0,Si)		С
	3 0.140373896	2	0	0.877337			3 0.094819			15.42192		16.30
	4 0.17546737	1	0				4 0.139321					
4			0				5 0.163767					
	5 0.17546737	0	0									
	5 0.17546737 6 0.146222808	0								_		
	6 0.146222808		1 2				6 0.160419	C	1			
		0	1						1 2			

Example - optimization

Bounds for retailer

$$- L=1: S_1=7$$

$$- L=2: S_1=13$$

METRIC

$$-S_0=2, S_1=11, C^*=8.96$$

$$-S_0=3, S_1=10, C^*=8.63$$

$$-S_0=4, S_1=9, C^*=8.42$$

$$-S_0=5, S_1=8, C^*=8.53$$

$$-S_0=6, S_1=7, C^*=9.19$$

h0	1										
h1	2										
b	10				S1_lower	S1_upper		S_0 S_1	С		
LO	1				7	13		0	13 9.869673	3	
L1	1							1	12 9.395685	,	
Lambda	5				—	\		2	11 8.959367	7	
					S0_upper	S0_lower		3	10 8.611765		
S0	0				6	0		4	9 8.422805	<u>, </u>	
S1	13							5	8 8.526411		
L1_bar	2							6	7 9.199882	2	
		WAF	REHOUSE					RETAILER			SUPPLY CHAIN
d	p{D=d}	S-d d-S		E[IL_0+]	0			d-S	E[IL+]	3.322473	
	0 0.006737947	0	0	E[IL_0-]	5	0 4.53999E-05			E[IL-]	0.322473	
	1 0.033689735	0	1			1 0.000453999	12	0			
	2 0.084224337	0	2	C0(S0)		2 0.002269996	11	. 0	Ci(S0,Si)		С
	3 0.140373896	0	3	0		3 0.007566655	10	0	9.869673		9.869673
	4 0.17546737	0	4			4 0.018916637					
	5 0.17546737	0	5			5 0.037833275	8	0			
	6 0.146222808	0	6			6 0.063055458					
	7 0.104444863	0	7			7 0.090079226					
	8 0.065278039	0	8			8 0.112599032		0			
	9 0.036265577		9			9 0.125110036					
	10 0.018132789		10			10 0.125110036					
	11 0.008242177		11			11 0.113736396					
]1	0.00343424	0	12			12 0.09478033	1	. 0			
i											