MATH 42 MIDTERM 1 20 FEBRUARY 2015

Name	:	So	lut	io	n	S

- The time limit is 50 minutes.
- No calculators or notes are permitted.
- Each problem is worth 5 points.

1	/5	2	/5
3	/5	4	/5
5	/5	6	/5
Σ			/30

(1) Find all prime numbers p between 1 and 100 such that $p \equiv -1 \pmod{15}$.

The numbers conquent to - I mod 15 between 1 and 100 are:

14,29, 44.59, 74,89

Of these, 3 are even. But the rest turn out to be prime.

29,59.89

- (2) Recall that a primitive Pythagorean triple consists of three positive integers (a, b, c) such that
 - $a^2 + b^2 = c^2$, and
 - there are no common factors of a, b and c.

Find a primitive Pythagorean triple such that a = 15.

We wish to solve

$$15^{2} + b^{2} = c^{2}$$

ie. $15^{2} = (c+b)(c-b)$.

Since c.b should have no common factor. neither should c+b, c-b. Therefore there are two ways to find solutions:

$$\begin{cases} c+b = 5^{2} \\ c-b = 3^{2} \end{cases}$$

$$\Rightarrow \begin{cases} c = \frac{25+9}{2} = 17 \\ b = \frac{25-9}{2} = 8 \end{cases}$$

$$\Rightarrow \begin{cases} c = \frac{225+1}{2} = 113 \\ b = \frac{225-1}{2} = 112 \end{cases}$$

$$(a,b,c) = (15,8,17)$$

$$(a,b,c) = (15,112,113)$$

Both are PPT's, and in fact there are the only possible choices.

Remark. Both can be found easily by the recipe (st. $\frac{s^2+t^2}{2}$).

The logic above follows the logic of how this recipewas found.

(3) Compute the greatest common divisor of 1106 and 203.

$$|106-5.203| = |106-1015| = 91$$

$$203-2.91 = 203-182$$

$$= 21$$

$$91-4.21 = 91-84$$

$$= 7$$

$$21-3.7 = 0.$$
Hence $q.d(1106.203)$

$$= q.d(203.91)$$

$$= q.d(91.21)$$

$$= q.d(7.0) = 7.$$

(4) Solve the following congruence.

$$28x \equiv 3 \pmod{149}$$

Applying the (extended) Euclidean algorithm to 28 and 149:

$$[9] = (149) - 5 \cdot (28)$$

$$[1] = (28) - 3 \cdot [9] = (28) - 3 \cdot [(149) - 5 \cdot (28)]$$

$$= 16 \cdot (28) - 3(149).$$

Thus 16.28 = 1 mod 149. Therefore

(5) Suppose that a, b, c are positive integers such that gcd(a, b) = 1. Prove that if a divides bc, then a divides c.

Solution 1

Since $gcd(a_1b)=1$, there exist $x,y\in\mathbb{Z}$ s.t. ax+by=1. Then

$$cax + cby = c$$

 $a \cdot (cx + \frac{bc}{a} \cdot y) = 2c$

Since a/bc, LeT. So cx+LyeT, so cir a multiple of a.

Solution 2

Make use of unique factorization into primes. Then a, b.c can be written

Then the albe means that be ET; it too can be factored into primes. By uniqueness, this factorization includes qui, qm, r., -, r. except that each pi, ..., Pe has been removed from the list. Since qual(a,b)=1, no prime pi equals a prime qi; so in fact each pi occurs (the right number of times) in the factorization of c alone. Hence alc.

(6) Suppose that you enter a store carrying a large supply of 6 dollar coins. The shopkeeper is able to make change using 28 dollar coins and 63 dollar coins. Find a way that you can purchase a 1 dollar item.

For partial credit, you may first assume that both you and the shopkeeper have a large supply of all three types of coins (6,28, and 63) and solve the problem in this context.

This amounts to solving

For full credits we require X,4,270. For partial credit, they can be negative integers as well. I saw a number of nice solutions; here are a couple.

Solution 1 Try to choose 4.7 Pinst. As long as 61(284+632+1), there will be a working choice of x. So we require

$$28y+63z = -1 \mod 6$$
 (reducing 288.63) $(-2y+3z = 3 \mod 6)$

One solin is y=Z, z=1. Then we should take

$$X = \frac{28 \cdot 2 + 63 \cdot 1 + 1}{6} = \frac{120}{6} = \frac{20}{10}$$

So you can pay 20 16 coins, and receive 2 \$28 coins and 1 \$63 coin in change.

Solution 2 Notice that you can:

a) . Pay \$2: by giving 5 \$6 coins and gettins 1 \$28 back

1) . Get \$3 back: by giving 10\$6 coins and getting 1\$63 coin back.

So you can do (a) twice and then do (b) once.

This amounts to giving 20 \$6 coins and getting 2 \$28 coins and a \$63 coin back.

In general One can prove that all solutions (positive & negative) have the form: x=20+14k+21h) for k.h&Z. I often saw there choices: 4=2+3k (ZO,Z,1) (76, 5, 5) 2=1+Zh (160,32,1)

(additional space for work)