Lecture 13 & 14 & 15: Searching Networks

Power-law networks

Poisson networks

How would you search for a node here?

What about here?

gnutella network fragment

Gnutella network

50% of the files in a 700 node network can be found in < 8 steps

And here?

Source: http://maps.google.com

Source: http://maps.google.com

How people find shortest paths

- How to choose among hundreds of acquaintances?
- Remember the stories about small-world networks!

Strategy:

 Simple greedy algorithm - each participant chooses correspondent who is closest to target with respect to the given property

Models

- Geographical by Kleinberg (2000)
- hierarchical groups by Watts, Dodds, Newman (2001), Kleinberg(2001)
- high degree nodes by Adamic, Puniyani, Lukose, Huberman (2001), Newman(2003)

Spatial search

Kleinberg, 'The Small World Phenomenon, An Algorithmic Perspective' (Proc. 32nd ACM Symposium on Theory of Computing, 2000) (Nature 2000)

"The geographic movement of the [message] from Nebraska to Massachusetts is striking. There is a progressive closing in on the target area as each new person is added to the chain"

S.Milgram 'The small world problem', Psychology Today 1,61,1967

nodes are placed on a lattice and connect to nearest neighbors additional links placed with $p_{uv} \sim d_{uv}^{-r}$

When r=0, links are randomly distributed, ASP ~ log(n), n size of grid When r=0, any decentralized algorithm is at least $a_0 n^{2/3}$

When r<2, expected time at least $\alpha_r n^{(2-r)/3}$

Overly localized links on a lattice

When r>2 expected search time ~ $N^{(r-2)/(r-1)}$

Links balanced between long and short range

When r=2, expected time of a decentralized algorithm is at most C (log N)²

Testing search models on real social networks

- Use a well defined network:
- HP Labs email correspondence over 3.5 months
 - Edges are between individuals who sent at least 6 email messages each way
 - 450 users
 - median degree = 10
 - mean degree = 13
 - average shortest path = 3
- Node properties specified:
 - degree
 - geographical location
 - position in organizational hierarchy
- Can greedy strategies work?

Strategy 1: high degree search

Power-law degree distribution of all senders of email passing through HP labs

Filtered network (at least 6 messages sent each way)

Degree distribution no longer power-law, but Poisson

Strategy 2: communication across corporate geography

87 % of the 4000 links are between individuals on the same floor

source: Adamic and Adar, How to search a social network, Social Networks, 27(3), p.187-203, 2005.

Cubic distance vs. probability of being linked

LiveJournal

- LiveJournal provides an API to crawl the friendship network + profiles
 - friendly to researchers
 - great research opportunity
- basic statistics
 - Users
 - How many users, and how many of those are active?
 - Total accounts: 9980558
 - ... active in some way: 1979716
 - ... that have ever updated: 6755023
 - ... updating in last 30 days: 1300312
 - updating in last 7 days: 751301
 - ... updating in past 24 hours: 216581

Predominantly female & young demographic

• Male: 1370813 (32.4%)

• Female: 2856360 (67.6%)

Unspecified: 1575389

Geographic Routing in Social Networks

- David Liben-Nowell, Jasmine Novak, Ravi Kumar,
 Prabhakar Raghavan, and Andrew Tomkins (PNAS 2005)
- data used
 - Feb. 2004
 - 500,000 LiveJournal users with US locations
 - giant component (77.6%) of the network
 - clustering coefficient: 0.2

Degree distributions

- The broad degree distributions we've learned to know and love
 - full network
 - × geographically known subset

Source: http://www.tomkinshome.com/andrew/papers/science-blogs/pnas.pdf

Results of a simple greedy geographical algorithm

- Choose source s and target t randomly
- Try to reach target's city not target itself
- At each step, the message is forwarded from the current message holder u to the friend v of u geographically closest to t

stop if d(v,t) > d(u,t)13% of the chains are completed pick a neighbor at random in the same city if possible, else stop 80% of the chains are completed ²⁷

Source: http://www.tomkinshome.com/andrew/papers/science-blogs/pnas.pdf

the geographic basis of friendship

- $\delta = d(u,v)$ the distance between pairs of people
- The probability that two people are friends given their distance is equal to
 - $P(\delta) = \varepsilon + f(\delta)$, ε is a constant independent of geography
 - ϵ is 5.0 x 10⁻⁶ for LiveJournal users who are very far apart

Source: http://www.tomkinshome.com/andrew/papers/science-blogs/pnas.pdf distance δ (km)

the geographic basis of friendship

- The average user will have ~ 2.5 non-geographic friends
- The other friends (5.5 on average) are distributed according to an approximate 1/distance relationship
- But 1/d was proved not to be navigable by Kleinberg, so what gives?

Navigability in networks of variable geographical density

- Kleinberg assumed a uniformly populated 2D lattice
- But population is far from uniform
- population networks and rank-based friendship
 - probability of knowing a person depends not on absolute distance but on relative distance (i.e. how many people live closer) Pr[u ->v] ~ 1/rank_u(v)

what if we don't have geography?

does community structure help?

Review: hierarchical small-world models

Individuals classified into a hierarchy, h_{ij} = height of the least common ancestor.

$$p_{ij} \sim b^{-\alpha h_{ij}}$$

e.g. state-county-city-neighborhood industry-corporation-division-group

<u>Theorem</u>: If α = 1 and outdegree is polylogarithmic, can s ~ O(log n)

Group structure models:

Individuals belong to nested groups q = size of smallest group that v,w belong to

$$f(q) \sim q^{-\alpha}$$

<u>Theorem:</u> If α = 1 and outdegree is polylogarithmic, can

33

 $s \sim O(\log n)$

Kleinberg, 'Small-World Phenomena and the Dynamics of Information', NIPS 14, 2001

Hierarchical models with multiple hierarchies

individuals belong to hierarchically nested groups

multiple independent hierarchies h=1,2,..,H coexist corresponding to occupation, geography, hobbies, religion...

Example of search path

hierarchical distance = 5

search path distance = 4

Probability of linking vs. distance in hierarchy

in the 'searchable' regime: $0 < \alpha < 2$ (Watts, Dodds, Newman 2001) ³⁶

Searching the Web

Why Web Search?

- Search is the main motivation for the development of the Web
 - people post information because they want it to be found
 - people are conditioned to searching for information on the Web ("Google it")
 - The main tool is text search
 - directories cover less than 0.05% of the Web
 - 13% of traffic is generated by search engines
- Great motivation for academic and research work
 - Information Retrieval and data mining of massive data
 - Graph theory and mathematical models
 - Security and privacy issues

Classical Information Retrieval (IR)

Implicit Assumptions

- fixed and well structured corpus of manageable size
- trained cooperative users
- controlled environment

Classic Relevance

- For each query Q and document D assume that there exists a relevance score S(D,Q)
 - score average over all users U and contexts C
- Rank documents according to S(D,Q) as opposed to S(D,Q,U,C)
 - Context ignored
 - Individual users ignored

Models

- Boolean model: retrieve all documents that contain the query terms
 - rank documents according to some term-weighting scheme
- Term-vector model: docs and queries are vectors in the term space
 - rank documents according to the cosine similarity
- Term weights
 - tf × idf : (tf = term frequency, idf = log of inverse document frequency – promote rare terms)

Measures

- Precision: percentage of relevant documents over the returned documents
- Recall: percentage of relevant documents over all existing relevant documents

IR Concepts - Boolean Model

- Boolean model: Data is represented as a 0/1 matrix
- Query: a boolean expression
 - the ∧ world ∧ war
 - the ∧ (world ∨ civil) ∧war
- Return all the results that match the query
 - docs D₁ and D₂
- How are the documents ranked?

	the	civil	world	war
D ₁	1	1	1	1
D ₂	1	1	1	1
D_3	1	0	0	1

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
 - frequency of term i in document j

	the	civil	world	war
D ₁	1	1	1	1
D ₂	1	1	1	1
D_3	1	0	0	1

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
 - frequency of term i in document j

	the	civil	world	war
D ₁	100	20	5	25
D ₂	200	20	50	40
D_3	150	0	0	50

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
 - frequency of term i in document j
 - normalized by max

	the	civil	world	war
D ₁	1	0.20	0.05	0.25
D ₂	1	0.10	0.25	0.20
D_3	1	0	0	0.33

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
- not all words are interesting
 - df_i = document
 frequency of term i

	the	civil	world	war
D ₁	1	0.20	0.05	0.25
D_2	1	0.10	0.25	0.20
D_3	1	0	0	0.33
df	1	0.66	0.66	1

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
- not all words are interesting
 - df_i = document frequency of term i
 - idf_i = inverse document frequency
 - $idf_i = log (1/df_i)$

	the	civil	world	war
D ₁	1	0.20	0.05	0.25
D_2	1	0.10	0.25	0.20
D_3	1	0	0	0.33
idf	0	0.17	0.17	0

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
- idf_i = inverse
 document frequency
- $W_{ij} = tf_{ij} \times idf_{i}$

	the	civil	world	war
D ₁	0	0.034	0.008	0
D ₂	0	0.017	0.042	0
D ₃	0	0	0	0

- Assess the importance w_{ij} of term in a document j
- tf_{ij} = term frequency
- idf_i = inverse document frequency
- $w_{ij} = tf_{ij} \times idf_i$
- Query: "the civil war"
 - document D₁ is more important

	the	civil	world	war
D ₁	0	0.034	0.008	0
D ₂	0	0.017	0.042	0
D_3	0	0	0	0

IR Concepts – Vector model

- Documents are vectors in the term space (weighted by wii), normalized on the unit sphere
- Query: "the civil war"
 - Q is a mini document vector
- Similarity of Q and D is the cosine of the angle between Q and D
 - returns a set of ranked results

	the	civil	world	war
D ₁	0	0.97	0.22	0
D ₂	0	0.37	0.92	0
D_3	0	0	0	0

Q 0	1	1	0
-----	---	---	---

IR Concepts – Measures

- There are A relevant documents to the query in our dataset.
- Our algorithm returns D documents.
- How good is it?
- Precision: Fraction of returned documents that are relevant

$$\mathsf{P} = \frac{\mathsf{D} \cap \mathsf{A}}{\mathsf{D}}$$

Recall: Fraction of all relevant documents that are returned

$$R = \frac{|D \cap A|}{A}$$

- They ask a lot but they offer little in return
 - Make ill-defined queries
 - short (2.5 avg terms, 80% <3 terms AV, 2001)
 - imprecise terms
 - poor syntax
 - low effort
 - Unpredictable
 - wide variance in needs/expectations/expertise
 - Impatient
 - 85% look one screen only (mostly "above the fold")
 - 78% queries not modified (one query per session)
- ...but they know how to spot correct information
 - follow "the scent of information"...

- Immense amount of information
 - 2008, Google: 100(!) Billion pages,
 - fast growth rate (double every 8-12 months)
 - Huge Lexicon: 10s-100s millions of words
- Highly diverse content
 - many different authors, languages, encodings
 - different media (text, images, video)
 - highly un-structured content
- Static + Dynamic ("the hidden Web")
- Volatile
 - crawling challenge

Rate of change [CGM00]

average rate of change

average rate of change per domain

Rate of Change [FMNW03]

Rate of change per domain. Change between two successive downloads

Rate of change as a function of document length

Other corpus characteristics

- Links, graph topology, anchor text
 - this is now part of the corpus!
- Significant amount of duplication
 - ~30% (near) duplicates [FMN03]
- Spam!
 - 100s of million of pages
 - Add-URL robots

- Static documents
 - text, images, audio, video, etc
- Dynamic documents ("the invisible Web")
 - dynamic generated documents, mostly database accesses
- Extracts of documents, combinations of multiple sources
 - www.googlism.com

The evolution of Search Engines

- First Generation text data only
 - word frequencies, tf × idf

1995-1997: AltaVista Lycos, Excite

- Second Generation text and web data
 - Link analysis
 - Click stream analysis
 - Anchor Text

1998 - now : Google leads the way

- Third Generation the need behind the query
 - Semantic analysis: what is it about?
 - Integration of multiple sources

Still experimental

- Context sensitive
 - personalization, geographical context, browsing context

First generation Web search

- Classical IR techniques
 - Boolean model
 - ranking using tf × idf relevance scores
- good for informational queries
- quality degraded as the web grew
- sensitive to spamming

Second generation Web search

- Boolean model
- Ranking using web specific data
 - HTML tag information
 - click stream information (Direct Hit)
 - people vote with their clicks
 - directory information (Yahoo! directory)
 - anchor text
 - link analysis

Link Analysis Ranking

- Intuition: a link from q to p denotes endorsement
 - people vote with their links
- Popularity count
 - rank according to the incoming links
- PageRank algorithm
 - perform a random walk on the Web graph. The pages visited most often are the ones most important. (n: total number of pages, F(q): number of outbound links on page q, a: damping factor)

$$PR(p) = a \sum_{q \to p} \frac{PR(q)}{|F(q)|} + (1-a)\frac{1}{n}$$

Link Analysis: Intuition

- A link from page p to page q denotes endorsement
 - page p considers page q an authority on a subject
 - mine the web graph of recommendations
 - assign an authority value to every page

Link Analysis Ranking (LAR) Algorithms

- Start with a collection of web pages
- Extract the underlying hyperlink graph
- Run the LAR algorithm on the graph
- Output: an authority weight for each node

Algorithm input

- Query independent: rank the whole Web
 - PageRank (Brin and Page 98) was proposed as query independent
- Query dependent: rank a small subset of pages related to a specific query
 - Hyperlink-Induced Topic Search (HITS) was proposed as query dependent (Kleinberg 98)

Root Set

Social network analysis

- Evaluate the centrality of individuals in social networks
 - degree centrality
 - the (weighted) degree of a node
 - Closeness centrality (distance centrality)
 - the average (weighted) distance of a node to the rest in the graph $D_c(v) = \frac{1}{\sum_{u,v} d(v,u)}$
 - betweenness centrality
 - the average number of (weighted) shortest paths that use node v

$$B_{c}(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Random walks on undirected graphs

- In the stationary distribution of a random walk on an undirected graph, the probability of being at node i is proportional to the (weighted) degree of the vertex
- Random walks on undirected graphs are not "interesting" as compared to directed graphs!

Counting paths – Katz 53

- The importance of a node is measured by the weighted sum of paths that lead to this node
- A^m[i,j] = number of paths of length m from i to j
- Compute

$$P = bA + b^{2}A^{2} + \cdots + b^{m}A^{m} + \cdots = (I - bA)^{-1} - I$$

- converges when b < λ₁(A)
- Rank nodes according to the column sums of the matrix

- Impact factor (E. Garfield 72)
 - counts the number of citations received for papers of the journal in the previous two years
- Pinsky-Narin 76
 - perform a random walk on the set of journals
 - P_{ij} = the fraction of citations from journal i that are directed to journal j

InDegree algorithm

- Rank pages according to in-degree
 - $W_i = |B(i)|$

- 1. Red Page
- 2. Yellow Page
- 3. Blue Page
- 4. Purple Page
- 5. Green Page

PageRank algorithm [BP98]

- Good authorities should be pointed by good authorities
- Random walk on the web graph
 - pick a page at random
 - with probability 1- α jump to a random page
 - with probability α follow a random outgoing link
- Rank according to the stationary distribution

$$PR(p) = \alpha \sum_{q \to p} \frac{PR(q)}{|F(q)|} + (1 - \alpha) \frac{1}{n}$$

- 1. Red Page
- 2. Purple Page
- 3. Yellow Page
- 4. Blue Page
- 5. Green Page₇₄

Random walks

- Random walks on graphs correspond to Markov Chains
 - The set of states S is the set of nodes of the graph G
 - The transition probability matrix P is the probability that we follow an edge from one node to another

$$\mathsf{P} = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix}$$

State probability vector

- The vector $q^t = (q^t_1, q^t_2, ..., q^t_n)$ that stores the probability of being at state i at time t
 - q_i^0 = the probability of starting from state i

$$q^t = q^{t-1} P$$

An example

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$q^{t+1}_1 = 1/3 \ q^t_4 + 1/2 \ q^t_5$$
 $q^{t+1}_2 = 1/2 \ q^t_1 + q^t_3 + 1/3 \ q^t_4$
 $q^{t+1}_3 = 1/2 \ q^t_1 + 1/3 \ q^t_4$
 $q^{t+1}_4 = 1/2 \ q^t_5$
 $q^{t+1}_5 = q^t_2$

- Vanilla random walk
 - make the adjacency matrix stochastic and run a random walk

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

- What about sink nodes?
 - what happens when the random walk moves to a node without any outgoing inks?

- Replace these row vectors with a vector v
 - typically, the uniform vector

$$P' = \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 1/2 & 0 \end{bmatrix}$$

$$P' = P + dv^{T} \qquad d = \begin{cases} 1 & \text{if i is sink} \\ 0 & \text{otherwise} \end{cases}$$

- How do we guarantee irreducibility (a directed graph is irreducible if, given any two vertices, there exists a path from the first vertex to the second)?
 - add a random jump to vector v with probability a
 - typically, to a uniform vector

$$\mathsf{P''} = \alpha \begin{bmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/2 & 0 & 0 & 0 & 1/2 \end{bmatrix} + (1-\alpha) \begin{bmatrix} 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \\ 1/5 & 1/5 & 1/5 & 1/5 & 1/5 \end{bmatrix}$$

A PageRank algorithm

 Performing Vanilla power method is now too expensive – the matrix is not sparse

$$q^{0} = v$$

$$t = 1$$

$$repeat$$

$$q^{t} = (P'')^{T} q^{t-1}$$

$$\delta = \|q^{t} - q^{t-1}\|$$

$$t = t + 1$$

$$until \delta < \epsilon$$

Efficient computation of $y = (P'')^T x$

$$y = aP^{T}x$$

$$\beta = ||x||_{1} - ||y||_{1}$$

$$y = y + \beta v$$

P = normalized adjacency matrix $P' = P + dv^{T}$, where d_{i} is 1 if i is sink and 0 o.w. $P'' = \alpha P' + (1-\alpha)uv^{T}$, where u is the vector of all 1s

Prestige

- adjacency matrix A
 - if document cites document A(u,v) = 1
 - Otherwise A(u,v) = 0
- prestige score

$$p(u) = \sum_{v} A(v, u) p(v)$$

Computing prestige

$$P' = A^T P$$

Eigen decomposition

$$\lambda P = A^T P$$

$$1.325 \begin{pmatrix} 0.548 \\ 0.414 \\ 0.726 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0.548 \\ 0.414 \\ 0.726 \end{pmatrix} \qquad \lambda = 1.325$$

$$P = \begin{pmatrix} 0.548 & 0.414 & 0.726 \end{pmatrix}^{T}$$

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \qquad A^{T} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

$$\lambda P = A^{T} P$$
 $\lambda = 1.325$
 $P = (0.548 \ 0.414 \ 0.726)^{T}$

Power Iteration

$$P \leftarrow P_0$$

Loop:

$$Q \leftarrow P$$

$$P \leftarrow A^T Q$$

$$P \leftarrow \frac{1}{\|P\|}P$$

• While $\|P-Q\|>\varepsilon$

PageRank once more

- "Random web surfer" keeps clicking on hyperlinks at random with uniform probability
- Implements random walk on the web graph
- Page u links to N_u web pages
- Probability of visiting page v will be 1/N_u
- Amount of prestige that page ν receives from page u is $1/N_{II}$ of the prestige of u

Propagation of PageRank R(u)

$$R(u) = \lambda \sum_{v} \frac{A(v, u)R(v)}{N_{v}}$$

$$N_{v} = \sum_{w} A(v, w)$$

Calculation of PageRank

$$A = \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\lambda P = A^T P$$

$$A = \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \lambda P = A^{T} P \\ 0.4 \\ 0.2 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0.5 & 0 & 0 \\ 0.5 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0.4 \\ 0.2 \\ 0.4 \end{pmatrix}$$

$$Norm \|X\|_{\bullet} = x_{1} + x_{2} + \dots$$

Norm
$$||X||_1 = x_1 + x_2 + \dots + x_n$$

$$P^T = (0.666 \ 0.333 \ 0.666)$$

Norm
$$||X||_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$$

$$P^T = \begin{pmatrix} 2 & 1 & 2 \end{pmatrix}$$

Integers

Research on PageRank

- Specialized PageRank
 - personalization [BP98]
 - instead of picking a node uniformly at random favor specific nodes that are related to the user
 - topic sensitive PageRank [H02]
 - compute many PageRank vectors, one for each topic
 - estimate relevance of query with each topic
 - produce final PageRank as a weighted combination
- Updating PageRank [Chien et al 2002]
- Fast computation of PageRank
 - numerical analysis tricks
 - node aggregation techniques
 - dealing with the "Web frontier"

•

Hubs and Authorities [K98]

- Authority is not necessarily transferred directly between authorities
- Pages have double identity
 - hub identity
 - authority identity
- Good hubs point to good authorities
- Good authorities are pointed by good hubs

HITS Algorithm (Klienberg 1998)

- Initialize all weights to 1.
- Repeat until convergence
 - O operation: hubs collect the weight of the authorities

$$h_i = \sum_{i:i \to i} a_j$$

• I operation: authorities collect the weight of the hubs

$$a_i = \sum_{j: j \to i} h_j$$

Normalize weights under some norm

HITS and eigenvectors

- The HITS algorithm is a power-method eigenvector computation
 - in vector terms a^t = A^Th^{t-1} and h^t = Aa^{t-1}
 - so $a = A^TAa^{t-1}$ and $h^t = AA^Th^{t-1}$
 - The authority weight vector a is the eigenvector of A^TA and the hub weight vector h is the eigenvector of AA^T
 - Why do we need normalization?
- The vectors a and h are singular vectors of the matrix A

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

weight of node p is proportional to the number of (BF)ⁿ paths that leave node p

after n iterations

- The HITS algorithm favors the most dense community of hubs and authorities
 - Tightly Knit Community (TKC) effect

after normalization with the max element as $n \rightarrow \infty$

- Perform a random walk alternating between hubs and authorities
- SALSA: Scoring ALgorithm for Spectral Analysis

- Start from an authority chosen uniformly at random
 - e.g. the red authority

- Start from an authority chosen uniformly at random
 - e.g. the red authority
- Choose one of the in-coming links uniformly at random and move to a hub
 - e.g. move to the yellow authority with probability 1/3

- Start from an authority chosen uniformly at random
 - e.g. the red authority
- Choose one of the in-coming links uniformly at random and move to a hub
 - e.g. move to the yellow authority with probability 1/3
- Choose one of the out-going links uniformly at random and move to an authority
 - e.g. move to the blue authority with probability 1/2

- In matrix terms
 - A_c = the matrix A where columns are normalized to sum to 1
 - A_r = the matrix A where rows are normalized to sum to 1
 - p = the probability state vector
- The first step computes
 - $y = A_c p$
- The second step computes

•
$$p = A_r^T y = A_r^T A_c p$$

- Or, the transition matrix
 - $P = A_r A_c^T$

$$y_2 = 1/3 p_1 + 1/2 p_2$$

 $p_1 = y_1 + 1/2 y_2 + 1/3 y_3$

- The SALSA performs a random walk on the authority (right) part of the bipartite graph
 - There is a transition between two authorities if there is a BF path between them

$$P(i,j) = \sum_{\substack{k:k \to j \\ i \to k}} \frac{1}{\text{in}(i)} \frac{1}{\text{out}(k)}$$

- Stationary distribution of SALSA
 - authority weight of node i =
 fraction of authorities in the hub-authority community of i

fraction of links in the community that point to node i

X

Reduces to InDegree for single community graphs

The BFS algorithm [BRRT01]

- BFS: breadth-first search
- Rank a node according to the reachability of the node
- Create the neighborhood by alternating between Back and Forward steps
- Apply exponentially decreasing weight as you move further away

Implicit properties of the HITS algorithm

- Symmetry
 - both hub and authority weights are defined in the same way (through the sum operator)
 - reversing the links, swaps values
- Equality
 - the sum operator assumes that all weights are equally important

Authority Threshold AT(k) algorithm

- Small authority weights should not contribute to the computation of the hub weights
- Repeat until convergence
 - O operation: hubs collect the k highest authority weights

$$h_i = \sum_{j:i\to j} a_j : a_j \in F_k(i)$$

I operation: authorities collect the weight of hubs

$$a_i = \sum_{j: j \to i} h_j$$

Normalize weights under some norm

Norm(p) algorithm

- Small authority weights should contribute less to the computation of the hub weights
- Repeat until convergence
 - O operation: hubs compute the p-norm of the authority weight vector

$$h_i = \left(\sum_{j:i\to j} a_j^{p}\right)^{1/p} = \left\|\overrightarrow{F(i)}\right\|_p$$

I operation: authorities collect the weight of hubs

$$a_i = \sum_{j:j \to i} h_j$$

Normalize weights under some norm

The MAX algorithm

- A hub is as good as the best authority it points to
- Repeat until convergence
 - O operation: hubs collect the highest authority weight

$$h_i = \max_{j:i \to j} a_j$$

I operation: authorities collect the weight of hubs

$$a_i = \sum_{j:j \to i} h_j$$

- Normalize weights under some norm
- Special case of AT(k) (for k=1) and Norm(p) ($p=\infty$)

Dynamical Systems

 Discrete Dynamical System: The repeated application of a function g on a set of weights

```
Initialize weights to w^0
For t=1,2,...
w^t=g(w^{t-1})
```

- LAR algorithms: the function g propagates the weight on the graph G
- Linear vs Non-Linear dynamical systems
 - eigenvector analysis algorithms (PageRank, HITS) are linear dynamical systems
 - AT(k), Norm(p) and MAX are non-linear

Some experimental results

- 34 different queries
- user relevance feedback
 - high relevant/relevant/non-relevant
- measures of interest
 - "high relevance ratio"
 - "relevance ratio"
- Data available at

http://www.cs.toronto.edu/~tsap/experiments

Aggregate Statistics

	AVG HR	STDEV HR	AVG R	STDEV R
HITS	22%	24%	45%	39%
PageRank	24%	14%	46%	20%
In-Degree	35%	22%	58%	29%
SALSA	35%	21%	59%	28%
MAX	38%	25%	64%	32%
BFS	43%	18%	73%	19%

Aggregate Statistics

	AVG HR	STDEV HR	AVG R	STDEV R
HITS	22%	24%	45%	39%
PageRank	24%	14%	46%	20%
In-Degree	35%	22%	58%	29%
SALSA	35%	21%	59%	28%
MAX	38%	25%	64%	32%
BFS	43%	18%	73%	19%

Aggregate Statistics

	AVG HR	STDEV HR	AVG R	STDEV R
HITS	22%	24%	45%	39%
PageRank	24%	14%	46%	20%
In-Degree	35%	22%	58%	29%
SALSA	35%	21%	59%	28%
MAX	38%	25%	64%	32%
BFS	43%	18%	73%	19%

HITS and the TKC effect

"recipes"

- 1. (1.000) HonoluluAdvertiser.com URL: http://www.hawaiisclassifieds.com
- 2. (0.999) <u>Gannett Company, Inc.</u> URL: http://www.gannett.com
- 3. (0.998) <u>AP MoneyWire</u> URL: http://apmoneywire.mm.ap.org
- 4. (0.990) <u>e.thePeople : Honolulu Advertiser</u> URL: http://www.e-thepeople.com/
- 5. (0.989) News From The Associated Press URL: http://customwire.ap.org/
- 6. (0.987) <u>Honolulu Traffic</u> URL: http://www.co.honolulu.hi.us/
- 7. (0.987) News From The Associated Press URL: http://customwire.ap.org/
- 8. (0.987) News From The Associated Press URL: http://customwire.ap.org/
- 9. (0.987) News From The Associated Press URL: http://customwire.ap.org/
 - 10. (0.987) News From The Associated Press URL: http://customwire.ap.org/

MAX – "net censorship"

- 1. (1.000) <u>EFF: Homepage</u> URL: http://www.eff.org
- 2. (0.541) <u>Internet Free Expression Alliance</u> URL: http://www.ifea.net
- 3. (0.517) The Center for Democracy and Technology URL: http://www.cdt.org
- 4. (0.517) <u>American Civil Liberties Union</u> URL: http://www.aclu.org
- 5. (0.386) <u>Vtw Directory Page</u> URL: http://www.vtw.org
- 6. (0.357) PEACEFIRE URL: http://www.peacefire.org
- 7. (0.277) Global Internet Liberty Campaign Home Page URL: http://www.gilc.org
- 8. (0.254) <u>libertus.net: about censorship and free speech</u> URL: http://libertus.net
- 9. (0.196) <u>EFF Blue Ribbon Campaign Home Page</u> URL: http://www.eff.org/blueribbon.html
- 10. (0.144) <u>The Freedom Forum</u> URL: http://www.freedomforum.org

MAX – "affirmative action"

- 1. (1.000) <u>Copyright Information</u>
 URL: http://www.psu.edu/copyright.html
- 2. (0.447) PSU Affirmative Action
 URL: http://www.psu.edu/dept/aaoffice
- 3. (0.314) Welcome to Penn State's Home on the Web URL: http://www.psu.edu
- 4. (0.010) <u>University of Illinois</u> URL: http://www.uiuc.edu
- 5. (0.009) <u>Purdue University-West Lafayette, Indiana</u> URL: http://www.purdue.edu
- 6. (0.008) <u>UC Berkeley home page</u> URL: http://www.berkeley.edu
- 7. (0.008) <u>University of Michigan</u> URL: http://www.umich.edu
- 8. (0.008) The University of Arizona URL: http://www.arizona.edu
- 9. (0.008) <u>The University of Iowa Homepage</u> URL: http://www.uiowa.edu
- 10. (0.008) <u>Penn: University of Pennsylvania</u> URL: http://www.upenn.edu

PageRank

 1. (1.000) WCLA Feedback URL: http://www.janeylee.com/wcla

 2. (0.911) <u>Planned Parenthood Action Network</u> URL: http://www.ppaction.org/ppaction/

 3. (0.837) Westchester Coalition for Legal Abortion URL: http://www.wcla.org

 4. (0.714) <u>Planned Parenthood Federation</u> URL: http://www.plannedparenthood.org

 5. (0.633) GeneTree.com Page Not Found URL: http://www.qksrv.net/click

• 6. (0.630) <u>Bible.com Prayer Room</u> URL: http://www.bibleprayerroom.com

 7. (0.609) <u>United States Department of Health</u> URL: http://www.dhhs.gov

8. (0.538) <u>Pregnancy Centers Online</u> URL: http://www.pregnancycenters.org

 9. (0.517) <u>Bible.com Online World</u> URL: http://bible.com

■ 10. (0.516) National Organization for Women URL: http://www.now.org

link-spam structure

Theoretical Analysis of LAR algorithms [BRRT05]

- Why bother?
 - Plethora of LAR algorithms: we need a formal way to compare and analyze them
 - Need to define properties that are useful
 - sensitivity to spam
 - Need to discover the properties that characterize each LAR algorithm

A Theoretical Framework

 A Link Analysis Ranking Algorithm is a function that maps a graph to a real vector

$$A:G_n \to \mathbb{R}^n$$

- G_n: class of graphs of size n
- LAR vector the output A(G) of an algorithm A on a graph
- G_n : the class of all possible graphs of size n
- Comparing LAR vectors:

$$W_1 = [1 0.8 0.5 0.3 0]$$

 $W_2 = [0.9 1 0.7 0.6 0.8]$

• How close are the LAR vectors w₁, w₂?

Distance between LAR vectors

• Geometric distance: how close are the numerical weights of vectors w₁, w₂?

$$d_{1}(w_{1}, w_{2}) = \sum |w_{1}[i] - w_{2}[i]|$$

$$w_{1} = [1.0 \ 0.8 \ 0.5 \ 0.3 \ 0.0]$$

$$w_{2} = [0.9 \ 1.0 \ 0.7 \ 0.6 \ 0.8]$$

$$d_{1}(w_{1}, w_{2}) = 0.1 + 0.2 + 0.2 + 0.3 + 0.8 = 1.6$$

- Rank distance: how close are the ordinal rankings induced by the vectors w_1 , w_2 ?
 - Kendal's τ distance $d_r(w_1, w_2) = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}$

Rank distance

$$W_1 = [1 0.8 0.5 0.3 0]$$

$$W_2 = [0.9 \ 1 \ 0.7 \ 0.6 \ 0.8]$$

Ordinal Ranking of vector w₁

Ordinal Ranking of vector w₂

$$d_r(w_1, w_2) = \frac{3}{5*4/2} = 0.3$$

Rank distance of partial rankings

Rank distance of partial rankings

Charge penalty p for each pair (i,j) of nodes such that w₁[i] ≠ w₁[j] and w₂[i] = w₂[j]

Rank distance of partial rankings

- Extreme value p = 1
 - charge for every potential conflict
- Extreme value p = 0
 - charge only for inconsistencies
 - problem: not a metric
- Intermediate values 0
 - Details [FMNKS04] [T04]
 - Interesting case p = 1/2

Stability: graph distance

- Intuition: a small change on a graph should cause a small change on the output of the algorithm.
- Definition: Link distance between graphs G=(P,E) and G'=(P,E')

$$d_{\ell}(G,G') = |E \cup E'| - |E \cap E'|$$

Stability

- $C_k(G)$: set of graphs G' such that $d_{\ell}(G,G') \leq k$
- Definition: Algorithm A is stable if $\limsup_{n \to \infty} \max_{G \in C_k(G)} d_1(A(G),A(G')) = 0$
- Definition: Algorithm A is rank stable if $\limsup_{n \to \infty} \max_{G} d_r(A(G),A(G')) = 0$
- Results
 - InDegree algorithm is stable and rank stable on the class G_n
 - HITS and Max are neither stable nor rank stable on the class G_n

Stability of PageRank

- Perturbations to unimportant nodes have small effect on the PageRank values [NZJ01][BGS03]
- Lee Borodin model [LB03]
 - upper bounds depend on authority and hub values
 - PageRank, Randomized SALSA are stable
 - HITS, SALSA are unstable
- Open question: Can we derive conditions for the stability of PageRank in the general case?

Similarity

Definition: Two algorithms A_1 , A_2 are similar if

$$\lim_{n \to \infty} \frac{\max_{G \in G_n} d_1(A_1(G), A_2(G))}{\max_{w_1, w_2} d_1(w_1, w_2)} = 0$$

Definition: Two algorithms A_1 , A_2 are rank similar if

$$\underset{n\to\infty}{lim}\underset{G\in G_n}{max}\,d_r\big(A_1(G),A_2(G)\big)\!=\!0$$

- Definition: Two algorithms A_1 , A_2 are rank equivalent if $\max_{G \in G_n} d_r(A_1(G), A_2(G)) = 0$
- **Results:**
 - No pairwise combination of InDegree, SALSA, HITS and MAX algorithms is similar, or rank similar on the class of all possible graphs G_n 132

Monotonicity

 Monotonicity: Algorithm A is strictly monotone if for any nodes x and y

$$B_N(x) \subset B_N(y) \Leftrightarrow A(G)[x] < A(G)[y]$$

■ Locality: An algorithm A is strictly rank local if, for every pair of graphs G=(P,E) and G'=(P,E'), and for every pair of nodes x and y, if $B_G(x)=B_{G'}(x)$ and $B_G(y)=B_{G'}(y)$ then

$$A(G)[x] < A(G)[y] \Leftrightarrow A(G')[x] < A(G')[y]$$

the relative order of the nodes remains the same

The InDegree algorithm is strictly rank local

Label Independence

- Label Independence: An algorithm is label independent if a permutation of the labels of the nodes yields the same permutation of the weights
 - the weights assigned by the algorithm do not depend on the labels of the nodes

Axiomatic characterization of the InDegree algorithm [BRRT05]

 Theorem: Any algorithm that is strictly rank local, strictly monotone and label independent is rank equivalent to the InDegree algorithm.

Axiomatic characterization

- All three properties are needed
 - locality
 - PageRank is also strictly monotone and label independent
 - monotonicity
 - consider an algorithm that assigns 1 to nodes with even degree, and 0 to nodes with odd degree
 - label independence
 - consider and algorithm that gives the more weight to links that come from some specific page (e.g. the Yahoo page)

Self-edge axiom

Algorithm A satisfies the self-edge axiom if the following is true: If page a is ranked at least as high as page b in a graph G(V,E), where a does not have a link to itself, then a should be ranked higher than b in G(V,E u {v,v})

Vote by committee axiom

• Algorithm A satisfies the vote by committee axiom if the following is true: If page a links to pages b and c, then the relative ranking of all the pages should be the same as in the case where the direct links from a to b and c are replaced by links from a to a new set of pages which link (only) to b and c

Vote by committee (example)

Collapsing axiom

• If there is a pair of pages a and b that link to the same set of pages, but the set of pages that link to a and b are disjoint, then if a and b are collapsed into a single page (a), where links of b become links of a, then the relative rankings of all pages (except a and b) should remain the same.

Collapsing axiom (example)

Proxy axiom

• If there is a set of k pages with the same importance that link to a, and a itself links to k other pages, then by dropping a and connect the pages in N(a) and P(a), the relative ranking of all pages (excluding a) should remain the same

Proxy axiom (example)

Axiomatic Characterization of PageRank Algorithm [AT04]

 The PageRank algorithm satisfies label independence, self-edge, vote by committee, collapsing and proxy axioms.

Rank Aggregation

- Given a set of rankings $R_1, R_2, ..., R_m$ of a set of objects $X_1, X_2, ..., X_n$ produce a single ranking R that is in agreement with the existing rankings
- Examples: Voting
 - rankings R₁,R₂,...,R_m are the voters, the objects X₁,X₂,...,X_n are the candidates.

Examples

Combining multiple scoring functions

- rankings $R_1, R_2, ..., R_m$ are the scoring functions, the objects $X_1, X_2, ..., X_n$ are data items.
 - Combine the PageRank scores with term-weighting scores
 - Combine scores for multimedia items
 - color, shape, texture
 - Combine scores for database tuples
 - find the best hotel according to price and location

Combining multiple sources

- rankings $R_1, R_2, ..., R_m$ are the sources, the objects $X_1, X_2, ..., X_n$ are data items.
 - meta-search engines for the Web
 - distributed databases
 - P2P sources

Variants of the problem

- Combining scores
 - we know the scores assigned to objects by each ranking, and we want to compute a single score
- Combining ordinal rankings
 - the scores are not known, only the ordering is known
 - the scores are known but we do not know how, or do not want to combine them
 - e.g. price and star rating

- Each object X_i has m scores (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an

aggregate scoring function f(r_{i1},r_{i2},...,r_{im})

	R_1	R_2	R_3
X_1	1	0.3	0.2
X_2	0.8	0.8	0
X_3	0.5	0.7	0.6
X ₄	0.3	0.2	8.0
X ₅	0.1	0.1	0.1

- Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 - f(r_{i1},r_{i2},...,r_{im}) =
 min{r_{i1},r_{i2},...,r_{im}}

	R_1	R_2	R_3	R
X_1	1	0.3	0.2	0.2
X_2	0.8	0.8	0	0
X ₃	0.5	0.7	0.6	0.5
X ₄	0.3	0.2	8.0	0.2
X ₅	0.1	0.1	0.1	0.1

- Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 - $f(r_{i1}, r_{i2}, ..., r_{im}) = max\{r_{i1}, r_{i2}, ..., r_{im}\}$

	R_1	R_2	R_3	R
X_1	1	0.3	0.2	1
X_2	0.8	8.0	0	8.0
X_3	0.5	0.7	0.6	0.7
X ₄	0.3	0.2	8.0	8.0
X ₅	0.1	0.1	0.1	0.1

- Each object X_i has m scores
 (r_{i1},r_{i2},...,r_{im})
- The score of object X_i is computed using an aggregate scoring function f(r_{i1},r_{i2},...,r_{im})
 - $f(r_{i1}, r_{i2}, ..., r_{im}) = r_{i1} + r_{i2} + ... + r_{im}$

	R_1	R_2	R_3	R
X_1	1	0.3	0.2	1.5
X_2	0.8	0.8	0	1.6
X_3	0.5	0.7	0.6	1.8
X ₄	0.3	0.2	0.8	1.3
X ₅	0.1	0.1	0.1	0.3

Top-k

- Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f
- top-k: a set T of k objects such that f(r_{j1},...,r_{jm}) ≤ f(r_{j1},...,r_{im}) for every object X_i in T and every object X_j not in T
- Assumption: The function f is monotone
 - $f(r_1,...,r_m) \le f(r_1',...,r_m')$ if $r_i \le r_i'$ for all i
- Objective: Compute top-k with the minimum cost

Cost function

- We want to minimize the number of accesses to the scoring lists
- Sorted accesses: sequentially access the objects in the order in which they appear in a list
 - cost C_s
- Random accesses: obtain the cost value for a specific object in a list
 - cost C_r
- If s sorted accesses and r random accesses minimize s
 C_s + r C_r

R_1			
X_1	1		
X_2	8.0		
X_3	0.5		
X_4	0.3		
X ₅	0.1		

R_2			
X_2	8.0		
X ₃	0.7		
X_1	0.3		
X ₄	0.2		
X ₅	0.1		

R_3				
X_4	8.0			
X_3	0.6			
X_1	0.2			
X ₅	0.1			
X_2	0			

Compute top-2 for the sum aggregate function

R_1				
X_1	1			
X_2	8.0			
X_3	0.5			
X_4	0.3			
X ₅	0.1			

R_2				
X_2	8.0			
X_3	0.7			
X_1	0.3			
X ₄	0.2			
X ₅	0.1			

R_3				
X_4	8.0			
X_3	0.6			
X_1	0.2			
X_5	0.1			
X ₂	0			

F	\mathbf{k}_1		R_2		R_2		R	3
X_1	1		X_2	0.8	X_4	0.8		
X_2	8.0		X_3	0.7	X_3	0.6		
X_3	0.5		X_1	0.3	X_1	0.2		
X ₄	0.3		X_4	0.2	X ₅	0.1		
X ₅	0.1		X ₅	0.1	X_2	0		

R	1	R_2		R_3	
X_1	1	X_2	8.0	X ₄	0.8
X_2	0.8	X ₃	0.7	X ₃	0.6
X ₃	0.5	X_1	0.3	X_1	0.2
X_4	0.3	X_4	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X_2	0

R	1	R	R_2		R	R_3	
X_1	1	X_2	8.0		X ₄	0.8	
X_2	0.8	X ₃	0.7		X ₃	0.6	
X ₃	0.5	X_1	0.3		X_1	0.2	
X ₄	0.3	X ₄	0.2		X ₅	0.1	
X ₅	0.1	X ₅	0.1		X_2	0	

R	1	R_2		R	3
X_1	1	X_2	8.0	X_4	0.8
X_2	8.0	X_3	0.7	X_3	0.6
X_3	0.5	X_1	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X_2	0

Perform random accesses to obtain the scores of all seen objects

R	1	R_2		R_3	
X_1	1	X_2	0.8	X_4	0.8
X_2	0.8	X_3	0.7	X_3	0.6
X ₃	0.5	X_1	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X_2	0

3. Compute score for all objects and find the top-k

R	1	R_2		R_3	
X_1	1	X_2	8.0	X_4	0.8
X_2	0.8	X_3	0.7	X_3	0.6
X ₃	0.5	X_1	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X_2	0

R					
X_3	1.8				
X_2	1.6				
X_1	1.5				
X_4	1.3				

 X₅ cannot be in the top-2 because of the monotonicity property

$$f(X_5) \le f(X_1) \le f(X_3)$$

R	1	R_2		R_3	
X_1	1	X_2	8.0	X ₄	0.8
X_2	0.8	X_3	0.7	X_3	0.6
X ₃	0.5	X_1	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X_2	0

R					
X_3	1.8				
X_2	1.6				
X_1	1.5				
X_4	1.3				

1. Access the elements sequentially

R_1				
X_1	1			
X_2	8.0			
X_3	0.5			
X_4	0.3			
X_5	0.1			

R_2					
X_2	0.8				
X_3	0.7				
X_1	0.3				
X_4	0.2				
X_5	0.1				

R_3				
X_4	8.0			
X_3	0.6			
X_1	0.2			
X_5	0.1			
X_2	0			

1. At each sequential access

 Set the threshold t to be the aggregate of the scores seen in this access

R	1	R_2		R_3	
X_1	1	X_2	0.8	X ₄	0.8
X_2	8.0	X_3	0.7	X_3	0.6
X ₃	0.5	X_1	0.3	X_1	0.2
X ₄	0.3	X_4	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X_2	0

t = 2.6

- 1. At each sequential access
 - b. Do random accesses and compute the score of the objects seen

R	1	R_2		R	3
X_1	1	X_2	0.8	X ₄	8.0
X_2	0.8	X_3	0.7	X_3	0.6
X_3	0.5	X_1	0.3	X_1	0.2
X ₄	0.3	X ₄	0.2	X ₅	0.1
X ₅	0.1	X ₅	0.1	X ₂	0

1 – 2.0				
X_1	1.5			
X_2	1.6			
X ₄	1.3			

- 1. At each sequential access
 - c. Maintain a list of top-k objects seen so far

R	1		R_2		R_2		R	3
X_1	1		X_2	8.0	X_4	0.8		
X ₂	0.8		X_3	0.7	X_3	0.6		
X ₃	0.5		X_1	0.3	X_1	0.2		
X ₄	0.3		X ₄	0.2	X ₅	0.1		
X ₅	0.1		X ₅	0.1	X_2	0		

τ = 2.6

X_2	1.6
X_1	1.5

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

R	1		R_2		R_2		R	3
X_1	1		X_2	0.8	X ₄	0.8		
X_2	0.8		X_3	0.7	X_3	0.6		
X ₃	0.5		X_1	0.3	X_1	0.2		
X_4	0.3		X_4	0.2	X ₅	0.1		
X ₅	0.1		X ₅	0.1	X_2	0		

- 1. At each sequential access
 - d. When the scores of the top-k are greater or equal to the threshold, stop

F	R_1		R_2		R_2		R	3
X_1	1		X_2	0.8	X ₄	0.8		
X_2	0.8		X_3	0.7	X_3	0.6		
X_3	0.5		X_1	0.3	X_1	0.2		
X ₄	0.3		X_4	0.2	X ₅	0.1		
X ₅	0.1		X ₅	0.1	X_2	0		

t =	1.0
X_3	1.8
X ₂	1.6

2. Return the top-k seen so far

F	R_1		R_2		R_2		R_2		R_3	
X_1	1		X_2	0.8	X ₄	0.8				
X_2	0.8		X_3	0.7	X_3	0.6				
X ₃	0.5		X_1	0.3	X_1	0.2				
X ₄	0.3		X_4	0.2	X ₅	0.1				
X ₅	0.1		X ₅	0.1	X_2	0				

ι –	1.0
X ₃	1.8
X	1.6

Combining rankings

- In many cases the scores are not known
 - e.g. meta-search engines scores are proprietary information
- ... or we do not know how they were obtained
 - one search engine returns score 10, the other 100. What does this mean?
- ... or the scores are incompatible
 - apples and oranges: does it make sense to combine price with distance?
- In this cases we can only work with the rankings
- Input: a set of rankings $R_1, R_2, ..., R_m$ of the objects $X_1, X_2, ..., X_n$. Each ranking R_i is a total ordering of the objects
 - for every pair X_i, X_i either X_i is ranked above X_i or X_i is ranked above X_i
- Output: A total ordering R that aggregates rankings
 R₁,R₂,...,R_m

- A voting system is a rank aggregation mechanism
- Long history and literature
 - criteria and axioms for good voting systems
- The Condorcet criterion
 - if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- Extended Condorcet criterion
 - if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- Not all voting systems satisfy the Condorcet criterion!

- Unfortunately the Condorcet winner does not always exist
 - irrational behavior of groups

	V_1	V_2	V_3
1	A	В	С
2	В	С	Α
3	С	Α	В

$$A > B$$
 $B > C$ $C > A$

	V_1	V_2	V_3
1	Α	D	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

	V_1	V_2	V_3
1	A	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

	V_1	V_2	V_3
1	Α	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

	V_1	V_2	V_3
1	Α	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

Resolve cycles by imposing an agenda

	V_1	V ₂	V_3
1	Α	D	Е
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

C is the winner

Resolve cycles by imposing an agenda

	V_1	V ₂	V_3
1	A	D	Ш
2	В	Е	Α
3	С	Α	В
4	D	В	С
5	Е	С	D

But everybody prefers A or B over C

- The voting system is not Pareto optimal
 - there exists another ordering that everybody prefers
- Also, it is sensitive to the order of voting

Elect first whoever has more 1st position votes

voters	10	8	7
1	Α	С	В
2	В	Α	С
3	С	В	Α

Does not find a Condorcet winner (C in this case)

Plurality with runoff

 If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	Α	С	В	В
2	В	Α	С	Α
3	С	В	A	С

first round: A 10, B 9, C 8

second round: A 18, B 9

winner: A

Plurality with runoff

 If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

voters	10	8	7	2
1	Α	С	В	Α
2	В	Α	С	В
3	С	В	Α	С

change the order of A and B in the last column

first round: A 12, B 7, C 8

second round: A 12, C 15

winner: C!

Positive Association axiom

- Plurality with runoff violates the positive association axiom
- Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

Borda Count

- For each ranking, assign to object X, number of points equal to the number of objects it defeats
 - first position gets n-1 points, second n-2, ..., last 0 points
- The total weight of X is the number of points it accumulates from all rankings

voters	3	2	2
1 (3p)	A	В	С
2 (2p)	В	С	D
3 (1p)	С	D	Α
4 (0p)	D	Α	В

A:
$$3*3 + 2*0 + 2*1 = 11p$$
B: $3*2 + 2*3 + 2*0 = 12p$
C: $3*1 + 2*2 + 2*3 = 13p$
D: $3*0 + 2*1 + 2*2 = 6p$

Does not always produce Condorcet winner

Borda Count

Assume that D is removed from the vote

voters	3	2	2
1 (2p)	Α	В	С
2 (1p)	В	С	Α
3 (0p)	С	Α	В

A:
$$3*2 + 2*0 + 2*1 = 7p$$

B: $3*1 + 2*2 + 2*0 = 7p$
C: $3*0 + 2*1 + 2*2 = 6p$

Changing the position of D changes the order of the other elements!

Independence of Irrelevant Alternatives

- The relative ranking of X and Y should not depend on a third object Z
 - heavily debated axiom

- The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
 - follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

Arrow's Impossibility Theorem

- There is no voting system that satisfies the following axioms
 - Universality
 - all inputs are possible
 - Completeness and Transitivity
 - for each input we produce an answer and it is meaningful
 - Positive Assosiation
 - Independence of Irrelevant Alternatives
 - Non-imposition
 - Non-dictatoriship
- KENNETH J. ARROW Social Choice and Individual Values (1951). Won Nobel Prize in 1972

Kemeny Optimal Aggregation

- Kemeny distance $K(R_1,R_2)$: The number of pairs of nodes that are ranked in a different order (Kendall-tau)
 - number of bubble-sort swaps required to transform one ranking into another
- Kemeny optimal aggregation minimizes

$$K(R_1, R_1, ..., R_m) = \sum_{i=1}^{m} K(R_i, R_i)$$

- Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
 - maximum likelihood interpretation: produces the ranking that is most likely to have generated the observed rankings
- ...but it is NP-hard to compute
 - easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

Locally Kemeny optimal aggregation

 A ranking R is locally Kemeny optimal if there is no bubble-sort swap that produces a ranking R' such that

$$K(R,R_1,...,R_m) \le K(R',R_1,...,R_m)$$

- Locally Kemeny optimal is not necessarily Kemeny optimal
- Definitions apply for the case of partial lists also
- Locally Kemeny optimal aggregation can be computed in polynomial time
 - At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

Rank Aggregation algorithm [DKNS01]

- Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- How do we select the initial aggregation?
 - Use another aggregation method
 - Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

Spearman's footrule distance

 Spearman's footrule distance: The difference between the ranks R(i) and R'(i) assigned to object i

$$F(R,R') = \sum_{i=1}^{n} |R(i) - R'(i)|$$

Relation between Spearman's footrule and Kemeny distance

$$K(R,R') \le F(R,R') \le 2K(R,R')$$

Find the ranking R, that minimizes

$$F(R,R_1,\ldots,R_m) = \sum_{i=1}^{m} F(R,R_i)$$

- The optimal Spearman's footrule aggregation can be computed in polynomial time
 - It also gives a 2-approximation to the Kemeny optimal aggregation
- If the median ranks of the objects are unique then this ordering is optimal

F	R_1	
1	Α	
2	В	
3	С	
4	D	

R_2	
1	В
2	Α
3	D
4	С

R_3	
1	В
2	С
3	Α
4	D

R	
1	В
2	Α
3	С
4	D

A: (1,2,3)
B: (1,1,2)
C: (3,3,4)
D: (3,4,4)

Access the rankings sequentially

R_1	
1	Α
2	В
3	С
4	D

R_2	
1	В
2	Α
3	D
4	С

R_3	
1	В
2	С
3	Α
4	D

R			
1			
2			
3			
4			

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

	R_1		R_2		R_2		ı	\mathbf{R}_3
1	Α		1	В	1	В		
2	В		2	Α	2	С		
3	С		3	D	3	Α		
4	D		4	С	4	D		

R			
1	В		
2			
3			
4			

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

	R_1		R_2		R_2			R_3
1	Α		1	В	1	В		
2	В		2	Α	2	С		
3	С		3	D	3	Α		
4	D		4	С	4	D		

R				
1	В			
2	Α			
3				
4				

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

	R_1		R_2		R_2			R_3
1	Α		1	В	1	В		
2	В		2	Α	2	С		
3	С		3	D	3	Α		
4	D		4	С	4	D		

R				
1	В			
2	Α			
3	С			
4				

- Access the rankings sequentially
 - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

	R_1		R_2		R_2			\mathbf{R}_3
1	Α		1	В	1	В		
2	В		2	Α	2	С		
3	С		3	D	3	Α		
4	D		4	С	4	D		

R				
1	В			
2	Α			
3	С			
4	D			

The Spearman's rank correlation

Spearman's rank correlation

$$S(R,R') = \sum_{i=1}^{n} (R(i) - R'(i))^{2}$$

- Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
 - Computable in polynomial time

- "Networks, Crowds, and Markets" by Easley and Kleinberg (Chapters 13 and 14)
- Adamic and Adar, How to search a social network, Social Networks, 27(3), p.187-203, 2005.
- David Liben-Nowell, Jasmine Novak, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins, Geographical routing in social networks, Proceedings of the National Academy of USA, 102(33), p.11623-11628, 2005.