Intervals, Transformations, and Slope Solution (version 30)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-8,0) \cup (4,6)$
Negative	$(0,4) \cup (6,7)$
Increasing	$(-8, -6) \cup (3, 5)$
Decreasing	$(-6,3) \cup (5,7)$
Domain	(-8,7)
Range	(-3,6)

Intervals, Transformations, and Slope Solution (version 30)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=21$ and $x_2=33$. Express your answer as a reduced fraction.

\overline{x}	g(x)
21	49
33	64
49	33
64	21

$$\frac{f(33) - f(21)}{33 - 21} = \frac{64 - 49}{33 - 21} = \frac{15}{12}$$

The greatest common factor of 15 and 12 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{5}{4}$$

2