Para poder encontrar que ton mayor debe ser Ry a R5 primero determinamos ganancias de ambas funciones de transferencia: $G_1 = \frac{\left\| \frac{5}{\omega_{3\eta}} \right\|}{\left\| \left(1 + \frac{5}{\omega_{12}} \right) \left(1 + \frac{5}{\omega_{2\eta}} \right) \right\|} = \frac{f_{3\eta}}{\left\| 1 + \frac{5}{\omega_{12}} \right\| \cdot \left\| 1 + \frac{5}{\omega_{3\eta}} \right\|}$ $=\frac{f/f_{34}}{\left[\left(\frac{1}{f}+\left(\frac{f}{f_{34}}\right)^{2}\right)\left(\frac{1}{f}+\left(\frac{f}{f_{34}}\right)\right)\right]}=\frac{f\cdot f_{12}}{\left(\left(\frac{1}{f_{12}}+\left(\frac{3}{f}\right)\left(\frac{1}{f_{34}}+\left(\frac{3}{f}\right)\right)\right)/f_{12}}$ $G_{2} = \frac{\left\| \frac{S}{\omega_{34}} \right\|}{\left\| \left(1 + \frac{R_{u}}{R_{2}} + \frac{S}{\omega_{34}} \right) \left(1 + \frac{S}{\omega_{12}} \right) - \frac{R_{u}}{R_{2}} \right\|} = \frac{\left\| \frac{S}{\omega_{34}} \right\|}{\left\| 1 + \frac{R_{u}}{R_{z}} + \frac{R_{u}}{R_{z}} + \frac{S}{\omega_{34}} + \frac{S}{\omega_{12}} - \frac{R_{1}}{R_{2}} + \frac{S^{2}}{\omega_{34}} \right\|}$ = \frac{\fir\f{\frac{\frac{\frac{\fir}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac = \fix\frac{\fix\frac{1}{24 - \frac{1}{2}^2 + \frac{1}{2}\frac{1}{24\left(\frac{1}{2} + \frac{\Red}{R^2}\right) + \frac{1}{12}\frac{2}{12}} = \frac{\frac{1}{2} + \frac{1}{2} \left(\frac{2}{34} + \frac{2}{2}\right) + \frac{1}{2} \frac{2}{34} \frac{2}{\text{Ru}} + 2\frac{2}{34} \frac{2}{\text{Ru}} + 2\frac{2}{34} \frac{2}{\text{Ru}} G2 = (((() 2 + (2) (() 2 + (2) + () 2) + (() 2) (() 3) + (() 3) (

Por lo tanto queremos que el siguiente termino se aproxime a cero:

Ru
$$\left(\frac{2}{34} + 2\int_{12} \frac{1}{34}\right) \approx 0$$

Ra

Ry \Rightarrow Ry $\left(\frac{2}{34} + 2\int_{12} \frac{1}{34}\right)$

Conclusion: No solomente es dependencia de Ra y Ra también se involveran las frecuencias de corte

Se tomaron las frecuncias de corte con valores fijos de 100 Hz y 10kHz respectivamente a filtro pasa baja y pasa alta, Se desarrollo un script de python para poder modelar las magnitudes de ganancia con respecto al domino de la frecuencia de ambas funciones, y se fue variando la proporcion ente R4 y R2:

La linea roja es la cual queremos aproximarnos por lo tanto se mantiene fija en ambos casos. La linea verde nos describe el error entre ambas lineas.

R4/R2 = 10

La linea azul con forme la proporcionalidad entre R4 y R2 va disminuyendo esta se iba ajustando a linea roja.

Es por eso que se grafico el error relative porcentual con respect a R4/R2, y en efecto se puede observar que cuando se acerca a 0 la relacion R4 R2 el error se aproxima a cero.

Para poder despreciar la relacion R4 R2, se aplicara la siguiente condicion, si la ganancia maxima de la funcion llega a la ganancia de corte de la function que queremos llegar, este sera el umbral de aceptacion.

$$||M_1(fc)|| = -3dB||M_1|| = ||M_{2MAX}||$$

Por lo tanto se debe cumplir esta condicion

$$0.701||M_1|| < ||M_2|| < ||M_{1MAX}||$$

Incorporando lo establecido lo anexamos al script y nos arroja que cuando tiene una proporcion a 1 este ya cumple la condicion dada.

K4/K2 = 0.996	0./0/*Max_Gain1 = 0.0069999999999999999999999999999999999	Max_Gainz = 0.00/00824022/4849/4
R4/R2 = 0.997	$0.707*Max_Gain1 = 0.0069999999999999999999999999999999999$	Max_Gain2 = 0.007006485401829813
R4/R2 = 0.998	0.707*Max_Gain1 = 0.006999999999999999	Max_Gain2 = 0.007004731893711571
R4/R2 = 0.999	0.707*Max_Gain1 = 0.006999999999999999	Max_Gain2 = 0.007002979701482379
R4/R2 = 1.0 8	0.707*Max_Gain1 = 0.0069999999999999999999999999999999999	Max_Gain2 = 0.0070012288234972495
R4/R2 = 1.001	0.707*Max_Gain1 = 0.006999999999999999	Max_Gain2 = 0.006999479258114074
R4/R2 = 1.002	0.707*Max_Gain1 = 0.006999999999999999	Max_Gain2 = 0.006997731003693615
R4/R2 = 1.003	0.707*Max_Gain1 = 0.006999999999999999	Max_Gain2 = 0.006995984058599499
R4/R2 = 1.004	0.707*Max_Gain1 = 0.006999999999999999	Max_Gain2 = 0.006994238421198211
R4/R2 = 1.005	0.707*Max Gain1 = 0.0069999999999999999999999999999999999	Max Gain2 = 0.0069924940898590865