COGNOMS:	GRUP:
NOM:	

EXAMEN FINAL D'EC 13 de juny de 2014

L'examen consta de 9 preguntes, que s'han de contestar als mateixos fulls de l'enunciat. No oblidis posar el teu nom i cognoms a tots els fulls. La duració de l'examen és de 180 minuts. Les notes i la solució es publicaran al Racó el dia 23 de juny. La revisió es farà presencialment el 25 de juny.

Pregunta 1. (1 punt)

Un sistema computador treballa a una freqüència de rellotge de 1 GHz i disposa d'una memòria cache (MC) que utilitza una política d'escriptura immediata sense assignació. Els temps representatius del sistema de memòria són $t_h = 1$ cicle i $t_{block} = 149$ cicles.

En aquest computador s'executa un programa de 100 milions d'instruccions, les quals generen 150 milions de referències a memòria. S'ha observat que un 20% de les referències són d'escriptura i que la taxa d'encerts a MC és d'un 90%. El temps total d'execució del programa és 2 s. i la potència dissipada és de 2 W.

a)	Determina	quin	seria el	CPI _{ideal}	d'aquest	sistema	computador
,		1		IUCAI	- I		1

b) Si la freqüència del computador s'incrementés a 2 GHz, calcula quin seria el temps d'execució del mateix programa i la potència dissipada.

Pregunta 2. (1,20 punts)

Considera un sistema format per un processador amb adreces de 16 bits i una memòria cache (MC) amb la següent configuració:

capacitat total: 4 blocsmida del bloc: 16 bytescorrespondència directa

• escriptura retardada amb assignació

En un moment donat l'estat de la part de control de la MC és:

índex MC	V	D	etiqueta
0	1	1	1
1	1	1	0
2	1	0	2
3	1	0	3

a)	Indica (en hexadecimal) els números de bloc de memòria principal (MP) que hi ha guardats	a
	la MC.	

b) Indica una adreça de memòria (en hexadecimal) de la següent referència a tractar que provoqui un encert a la MC.

c) Considera que la propera referència a tractar és una escriptura a l'adreça 0x0190. Indica quin serà l'estat final de la part de control de la MC després de tractar-la.

índex MC	V	D	etiqueta
0			
1			
2			
3			

Quants bytes es transfereixen de MP cap a MC durant la gestió d'aquesta referència?

Quants bytes es transfereixen de MC cap a MP durant la gestió d'aquesta referència?

d) Considera ara que la MC és totalment associativa, amb reemplaçament LRU, i amb la mateixa capacitat total i mida de bloc. Sabent que les darreres referències que s'han tractat són: 0x000E, 0x00FE, 0x00AC, 0x000A, 0x0018 i 0x00CE, indica quines són les etiquetes (en hexadecimal) que hi ha guardades a la part de control de la MC.

I .		
I .		
I .		
I .		
I .		
I .		
I .		
I .		

COGNOMS:	GRUP:
NOM:	

Pregunta 3. (0,60 punts)

Sigui el següent diagrama del multiplicador seqüencial de nombres naturals de 4 bits anàleg al que s'ha estudiat durant el curs, el qual calcula el producte amb 8 bits:

Suposem que amb aquest circuit multipliquem els números binaris de 4 bits 1001 (multiplicand) i 1011 (multiplicador). Completa la següent taula, que mostra els valors en binari dels registres P, MD, i MR després de la inicialització i després de cada iteració, afegint tantes iteracions com facin falta:

iter.			P	(Pro	ducte	e)			MD (Multiplicand)					MR (Multiplicador)				
ini	0	0	0	0	0	0	0	0							1	0	1	1
1																		
2																		
										•						•		

Pregunta 4. (1,50 punts)

Donada la següent declaració de funcions en C:

Quins elements de subr1 (paràmetres, variables locals i càlculs intermedis) s'han de guardar en registres de tipus segur \$s?

Dibuixa el bloc d'activació de subr1 (sobre el diagrama que tens a la dreta), especificant-hi la posició on apunta el registre \$sp un cop reservat l'espai corresponent a la pila, així com el nom de cada registre i/o variable, i la seva posició (desplaçament relatiu al \$sp).

Tradueix a MIPS la subrutina subr1.

COGNOMS: NOM:	GRUP:
Pregunta 5. (1,20 punts)	
Considera que el contingut dels registres \$f4 i \$f6 és 0x40 8 que s'executa la instrucció MIPS: add.s \$f0,\$f4,\$f6 . pit de guarda, un d'arrodoniment i un de "sticky", i que arreas equidistant), contesta les següents preguntes:	Suposant que el sumador/restador té 1
Quina és la mantissa (en binari) i l'exponent (en decimal) d	dels nombres que hi ha a \$f4 i \$f6?
mantissa (binari)	exponent (decimal)
\$f4: ,	
\$f6:	
Omple les següents caselles mostrant l'operació op (+/-), le	es cadenes de bits a operar, i el resultat:
on —	G R S
op , l	
Resultat després de re-normalitzar (si cal):	exponent
	G R S (decimal)
Resultat després d'arrodonir:	exponent (decimal)
Quin és el valor de \$£0 en hexadecimal després d'executar	la instrucció ?
\$f0 = 0x	

COGNOMS:	GRUP:
NOM:	

Pregunta 7. (1 punt)

Posa una X al costat de cada una de les següents afirmacions (a la columna V si és Verdadera o a la columna F si és Falsa). Suposem en tots els casos que es fa referència a un processador MIPS com l'estudiat a classe. Cada resposta correcta suma 0,1 punts; les respostes no contestades no es tenen en compte; <u>cada resposta incorrecta resta 0,1 punts</u>; i la puntuació total mínima és 0.

	Afirmació	V	F
1	La rutina RSE coneix la causa (codificada) de l'excepció perquè aquesta se li passa com a paràmetre en \$a0 (paràmetre ExcCode).		
2	En un processador amb adreces de 32 bits, una cache associativa de 2 vies, de 256KB i blocs de 16 bytes, s'han de dedicar 15 bits a etiqueta (TAG), 13 a número d'entrada (conjunt) i 4 a desplaçament.		
3	Dividir per 2 un número enter en complement a 2 que estigui a \$t0 és sempre equivalent a fer: sll \$t0,\$t0,1		
4	Es pot produir més d'una excepció per fallada de TLB en l'execució d'una instrucció.		
5	En les memòries cache que utilitzen escriptura immediata s'ha de posar el <i>dirty bit</i> a 1 només quan hi ha un encert d'escriptura.		
6	El temps de penalització en cas de fallada d'escriptura d'una memòria cache d'escriptura immediata sense assignació és zero segons el model estudiat.		
7	Si s'executa un mateix programa en dues memòries cache diferents, però les dues de correspondència directa, sempre tindrà una major taxa d'encerts la que tingui els blocs de mida més gran.		
8	Un sistema que tingués una memòria cache més gran que la memòria principal mai tindria fallades.		
9	Un processador sense TLB pot suportar memòria virtual.		
10	Si una subrutina f està declarada com void f(float *p) el paràmetre p s'ha de passar en el registre \$f12.		

Pregunta 8. (1 punt)

Donat el següent codi en alt nivell:

Completa el següent codi en assemblador del MIPS, que fa el mateix que el programa donat, però que utilitza la tècnica d'accés seqüencial, on \$t0 és el punter als elements M[i][j], \$t1 és el punter als elements M[4][i+j] i \$t3 conté l'adreça de la matriu tal que no hi ha d'arribar el punter \$t0 i, per tant, serveix per controlar la finalització del bucle.

```
main:
            $t0,
                                         # punter a M[i][j]
    1a
            $t1,
                                         # punter a M[4][i+j]
    la
    la
            $t3,
                                         # adreça límit punter $t0
bucle:
    bgeu $t0,$t3, fibucle
    lw $t2,0($t1)
    sw $t2,0($t0)
    addiu $t0,$t0,
    addiu $t1,$t1,
    b bucle
fibucle:
    jr $ra
```

COGNOMS:	GRUP:
NOM:	

Pregunta 9. (1 punt)

Donades les següents declaracions de variables globals, emmagatzemades a memòria a partir de l'adreça 0x10010000:

```
v1:.word 0x0100100C, 0x10010010
v2:.half 5,-2, 0x1234
v3:.byte 1
v4:.dword 0x1111
v5:.word 0x89AB
v6:.dword 0xAE8
```

a) Omple la següent taula amb el contingut de memòria en hexadecimal. Les posicions de memòria sense inicialitzar s'han de posar a 0.

@Memòria	Dada	@Memòria	Dada	@Memòria	Dada	@Memòria	Dada
0x10010000		0x10010010		0x10010020		0x10010030	
0x10010001		0x10010011		0x10010021		0x10010031	
0x10010002		0x10010012		0x10010022		0x10010032	
0x10010003		0x10010013		0x10010023		0x10010033	
0x10010004		0x10010014		0x10010024		0x10010034	
0x10010005		0x10010015		0x10010025		0x10010035	
0x10010006		0x10010016		0x10010026		0x10010036	
0x10010007		0x10010017		0x10010027		0x10010037	
0x10010008		0x10010018		0x10010028		0x10010038	
0x10010009		0x10010019		0x10010029		0x10010039	
0x1001000A		0x1001001A		0x1001002A		0x1001003A	
0x1001000B		0x1001001B		0x1001002B		0x1001003B	
0x1001000C		0x1001001C		0x1001002C		0x1001003C	
0x1001000D		0x1001001D		0x1001002D		0x1001003D	
0x1001000E		0x1001001E		0x1001002E		0x1001003E	
0x1001000F		0x1001001F		0x1001002F		0x1001003F	

b) Quin és el valor final del registre \$\pmu_2\$, en hexadecimal, després d'executar el següent fragment de codi?

```
la $t0, v1+4
lw $t1, 0($t0)
lw $t2, 8($t1)
lb $t3, 16($t1)
xor $t2, $t3, $t2
```

```
$t2 = 0x
```