Problem statement:

To predict the rainfall basd on various features on the dataset

```
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import seaborn as sns

In [80]:

df=pd.read_csv(r"C:\Users\DELL\Downloads\rainfall in india.csv")
```

Out[80]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	
0	ANDAMAN & NICOBAR ISLANDS	1901	49.2	87.1	29.2	2.3	528.8	517.5	365.1	481.1	332.6	388.5	558.2	33.6	3373.2	136.3	560.3	11
1	ANDAMAN & NICOBAR ISLANDS	1902	0.0	159.8	12.2	0.0	446.1	537.1	228.9	753.7	666.2	197.2	359.0	160.5	3520.7	159.8	458.3	2
2	ANDAMAN & NICOBAR ISLANDS	1903	12.7	144.0	0.0	1.0	235.1	479.9	728.4	326.7	339.0	181.2	284.4	225.0	2957.4	156.7	236.1	1:
3	ANDAMAN & NICOBAR ISLANDS	1904	9.4	14.7	0.0	202.4	304.5	495.1	502.0	160.1	820.4	222.2	308.7	40.1	3079.6	24.1	506.9	1!
4	ANDAMAN & NICOBAR ISLANDS	1905	1.3	0.0	3.3	26.9	279.5	628.7	368.7	330.5	297.0	260.7	25.4	344.7	2566.7	1.3	309.7	11
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	10
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	10
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	!
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	i
4116 rows × 19 columns																		

Data preprocessing

In [81]:

df.head()

Out[81]:

SUBDIVISION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC ANNUAL Jan- Mar- Jun-

SUBDIVISION YEAR JAN FEB MAR APR MAY JUL AUG SEP OCT NOV DEC ANNUAL Feb May Sep ANDAMAN & NICOBAR 0 1901 49.2 87.1 29.2 2.3 528.8 517.5 365.1 481.1 332.6 388.5 558.2 33.6 3373.2 136.3 560.3 1696.3 **ISLANDS** ANDAMAN & NICOBAR 1902 0.0 159.8 12.2 $0.0 \quad 446.1 \quad 537.1 \quad 228.9 \quad 753.7 \quad 666.2 \quad 197.2 \quad 359.0 \quad 160.5$ 3520.7 159.8 458.3 2185.9 **ISLANDS** ANDAMAN & 1903 12.7 144.0 $1.0 \quad 235.1 \quad 479.9 \quad 728.4 \quad 326.7 \quad 339.0 \quad 181.2 \quad 284.4 \quad 225.0$ 2 NICOBAR 0.0 2957.4 156.7 236.1 1874.0 **ISLANDS** ANDAMAN & NICOBAR 0.0 202.4 304.5 495.1 502.0 160.1 820.4 222.2 308.7 24.1 506.9 1977.6 1904 9.4 40.1 3079.6 3 14.7 **ISLANDS** ANDAMAN & NICOBAR 1905 1.3 0.0 3.3 26.9 279.5 628.7 368.7 330.5 297.0 260.7 25.4 344.7 2566.7 1.3 309.7 1624.9 **ISLANDS**

In [82]:

df.tail()

Out[82]:

	SUBDIVISION	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	Jan- Feb	Mar- May	Ju S
4111	LAKSHADWEEP	2011	5.1	2.8	3.1	85.9	107.2	153.6	350.2	254.0	255.2	117.4	184.3	14.9	1533.7	7.9	196.2	1013
4112	LAKSHADWEEP	2012	19.2	0.1	1.6	76.8	21.2	327.0	231.5	381.2	179.8	145.9	12.4	8.8	1405.5	19.3	99.6	1119
4113	LAKSHADWEEP	2013	26.2	34.4	37.5	5.3	88.3	426.2	296.4	154.4	180.0	72.8	78.1	26.7	1426.3	60.6	131.1	1057
4114	LAKSHADWEEP	2014	53.2	16.1	4.4	14.9	57.4	244.1	116.1	466.1	132.2	169.2	59.0	62.3	1395.0	69.3	76.7	958
4115	LAKSHADWEEP	2015	2.2	0.5	3.7	87.1	133.1	296.6	257.5	146.4	160.4	165.4	231.0	159.0	1642.9	2.7	223.9	860

In [83]:

df.shape

Out[83]:

(4116, 19)

In [84]:

df.columns

Out[84]:

M

In [85]: ▶

```
df.describe()
```

Out[85]:

	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SE
count	4116.000000	4112.000000	4113.000000	4110.000000	4112.000000	4113.000000	4111.000000	4109.000000	4112.000000	4110.0000
mean	1958.218659	18.957320	21.805325	27.359197	43.127432	85.745417	230.234444	347.214334	290.263497	197.3619
std	33.140898	33.585371	35.909488	46.959424	67.831168	123.234904	234.710758	269.539667	188.770477	135.4083
min	1901.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.400000	0.000000	0.000000	0.1000
25%	1930.000000	0.600000	0.600000	1.000000	3.000000	8.600000	70.350000	175.600000	155.975000	100.5250
50%	1958.000000	6.000000	6.700000	7.800000	15.700000	36.600000	138.700000	284.800000	259.400000	173.9000
75%	1987.000000	22.200000	26.800000	31.300000	49.950000	97.200000	305.150000	418.400000	377.800000	265.8000
max	2015.000000	583.700000	403.500000	605.600000	595.100000	1168.600000	1609.900000	2362.800000	1664.600000	1222.0000
4										•

In [86]:

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4116 entries, 0 to 4115
Data columns (total 19 columns):
#
    Column
                  Non-Null Count
                                  Dtype
0
     SUBDIVISION 4116 non-null
                                  object
 1
     YEAR
                  4116 non-null
                                   int64
                  4112 non-null
                                   float64
 2
     JAN
 3
     FFB
                                  float64
                  4113 non-null
 4
     MAR
                  4110 non-null
                                   float64
 5
                  4112 non-null
     APR
                                  float64
 6
     MAY
                  4113 non-null
                                  float64
 7
     JUN
                  4111 non-null
                                   float64
                  4109 non-null
 8
     JUL
                                   float64
 9
     AUG
                  4112 non-null
                                  float64
 10
     SEP
                  4110 non-null
                                   float64
```

OCT 4109 non-null float64 11 12 NOV 4105 non-null float64 13 DEC 4106 non-null float64 14 ANNUAL 4090 non-null float64 15 Jan-Feb 4110 non-null float64 Mar-May 4107 non-null 16 float64 17 Jun-Sep 4106 non-null float64 18 Oct-Dec 4103 non-null float64

dtypes: float64(17), int64(1), object(1)

memory usage: 611.1+ KB

In [87]:

df.isnull().any()

Out[87]:

SUBDIVISION False YEAR False JAN True FEB True MAR True APR True MAY True JUN True JUL True AUG True SEP True OCT True NOV True DEC True ANNUAL True Jan-Feb True Mar-May True Jun-Sep True Oct-Dec True dtype: bool

M

```
M
In [88]:
df.fillna(method='ffill',inplace=True)
In [89]:
df.isnull().sum()
Out[89]:
SUBDIVISION
               0
YEAR
               0
               0
JAN
FEB
               0
MAR
               0
APR
               0
               0
MAY
JUN
               0
JUL
               0
AUG
               0
SEP
               0
OCT
NOV
               0
DEC
ANNUAL
               0
Jan-Feb
               0
Mar-May
               0
Jun-Sep
               0
Oct-Dec
               0
dtype: int64
In [90]:
                                                                                                                             M
df['ANNUAL'].value_counts()
Out[90]:
ANNUAL
790.5
          4
770.3
          4
1836.2
          4
          4
1024.6
1926.5
          3
443.9
          1
689.0
          1
605.2
          1
509.7
1642.9
          1
Name: count, Length: 3712, dtype: int64
In [91]:
df['Jan-Feb'].value_counts()
Out[91]:
Jan-Feb
0.0
        238
         80
0.1
         52
0.2
0.3
         38
         32
0.4
23.3
          1
95.2
          1
76.9
          1
66.5
          1
69.3
Name: count, Length: 1220, dtype: int64
```

```
M
In [92]:
df['Mar-May'].value_counts()
Out[92]:
Mar-May
         29
0.0
0.1
         11
0.3
8.3
         11
11.5
246.3
248.1
          1
151.3
          1
249.5
223.9
          1
Name: count, Length: 2262, dtype: int64
In [93]:
                                                                                                                           M
df['Jun-Sep'].value_counts()
Out[93]:
Jun-Sep
          4
434.3
334.8
          4
573.8
          4
613.3
1082.3
          3
301.6
          1
380.9
409.3
229.4
958.5
Name: count, Length: 3683, dtype: int64
In [94]:
                                                                                                                           M
df['Oct-Dec'].value_counts()
Out[94]:
Oct-Dec
0.0
         15
0.1
0.5
         13
0.6
         12
0.7
         11
191.5
124.5
          1
139.1
41.5
555.4
Name: count, Length: 2389, dtype: int64
```

Exploratory Data Analysis

```
6/15/23, 11:31 AM
                                                                 Rainfall - Jupyter Notebook
 In [95]:
                                                                                                                               M
 df=df[['JAN','FEB','MAR','APR','DEC']]
  sns.heatmap(df.corr(),annot=True)
 plt.show()
                                                                  - 1.0
   AN
                     0.46
                                          0.21
           1
                                0.4
                                                     0.22
                                                                   0.9
                                                                  - 0.8
                                          0.37
                                                     0.13
          0.46
                      1
                                                                   0.7
                                                                   0.6
   MAR
                     0.58
                                          0.56
                                                     0.13
          0.4
                                1
                                                                   0.5
                                                                   0.4
          0.21
                     0.37
                                                     0.14
                                                                   0.3
          0.22
                     0.13
                               0.13
                                          0.14
                                                      1
                                                                   0.2
          JAN
                     FEB
                               MAR
                                          APR
                                                     DEC
                                                                                                                               M
  In [96]:
 df.columns
 Out[96]:
  Index(['JAN', 'FEB', 'MAR', 'APR', 'DEC'], dtype='object')
                                                                                                                               M
  In [97]:
 x=df[["FEB"]]
 y=df["JAN"]
 Linear Regression
 In [98]:
                                                                                                                               M
 from sklearn.model_selection import train_test_split
 X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
  In [99]:
  from sklearn.linear_model import LinearRegression
 reg=LinearRegression()
  reg.fit(X_train,y_train)
 print(reg.intercept_)
 coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
 coeff_
  9.650666612303553
 Out[99]:
       coefficient
```

```
FEB
      0.442278
```

M In [100]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.1793580786264921

In [101]:
predictions=reg.predict(X_test)

In [102]:

Out[102]:

plt.scatter(y_test,predictions)

<matplotlib.collections.PathCollection at 0x1d2e7ad5510>

In [103]:

df500=df[:][:500]
sns.lmplot(x="FEB",y="JAN",order=2,ci=None,data=df500)
plt.show()


```
In [104]:
                                                                                                                           M
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
Out[104]:
▼ LinearRegression
LinearRegression()
In [105]:
                                                                                                                           M
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='black')
plt.plot(X_test,y_pred,color='red')
plt.show()
 600
 500
 400
 300
 200
 100
    0
        0
                           100
                                     150
                                              200
                                                        250
                                                                  300
In [106]:
                                                                                                                           M
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
```

r2=r2_score(y_test,y_pred) print("R2 Score:",r2)

R2 Score: 0.12641715885952964

Ridge Regression

```
In [107]:
                                                                                                                           M
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
In [108]:
                                                                                                                           M
features= df.columns[0:5]
target= df.columns[-5]
In [109]:
                                                                                                                           M
x=np.array(df['JAN']).reshape(-1,1)
y=np.array(df['FEB']).reshape(-1,2)
```

```
In [110]:
                                                                                                                                                     M
x= df[features].values
y= df[target].values
x_{train,x_{test,y_{train,y_{test=train_{test_{split}}}}} x_{train,x_{test_{size=0.3,random_{state=17}}}}
                                                                                                                                                     M
In [111]:
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
In [112]:
                                                                                                                                                     M
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
 Ridge Model:
the train score for ridge model is0.999999999874192
the test score for ridge model is0.9999999998833
In [113]:
                                                                                                                                                     M
lr=LinearRegression()
```

```
In [114]:

ure(figsize= (10,10))
t(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color="red",label=r'Ridge;$\alpha=10$',zorder=t(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='LinearRegression')
cks(rotation = 90)
end()
w()
4
```


Lasso Regression

```
In [115]:

print("\n Lasso Model:\n")
lasso=Lasso(alpha=10)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9999207747038827 The test score for ls model is 0.9999206791315255 In [116]:

pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="bar")

Out[116]:

<Axes: >

In [117]:

from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))

0.999999999999921

0.99999999999991

```
In [118]:
                                                                                                                                                                                                                                                                      M
ure(figsize= (10,10))
t(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker="*",markersize=5,color="red",label=r'Ridge;$\alpha=10$',zorder=t(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'lasso;$\alpha=grid$')
t(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="green",label='LinearRegression')
cks(rotation = 90)
end()
w()
```


Elastic Net

```
M
from sklearn.linear_model import ElasticNet
eln=ElasticNet()
eln.fit(x,y)
print(eln.coef_)
print(eln.intercept_)
print(eln.score(x,y))
```

```
[9.99098574e-01 0.00000000e+00 3.02728910e-05 0.00000000e+00
```

^{0.00000000}e+00]

^{0.016258606966612632}

^{0.9999992160905338}

In [121]:

y_pred_elastic =eln.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)

0.0008816302333951295

Conclusion:

we have done only linear regression and ridge and lasso among that we yield highest accuracy in lasso and ridge mo del.we prefer lasso model

