Lezioni di Ricerca Operativa

Università degli Studi di Salerno

Lezione n° 2: Richiami di Algebra vettoriale.

- Operazioni sui vettori
- Combinazione lineare, combinazione conica, combinazione convessa
- Indipendenza lineare tra vettori
- Base di uno spazio

Vettori

Definizione (Vettore): Prende il nome di vettore ad *n* componenti reali una *n*-pla ordinata di numeri reali.

Esempio: La coppia $\underline{x} = [-1 \ 4.3]$ è un esempio di vettore a 2 componenti, la prima è $x_1 = -1$ e la seconda è $x_2 = 4.3$

Definizione (Vettore colonna): Prende il nome di vettore colonna il vettore le cui componenti sono disposte lungo una linea verticale (colonna). Lo si indica con la seguente notazione:

$$\underline{x} = \begin{bmatrix} 3 \\ -1 \end{bmatrix} x_1$$

$$x_2 \quad \text{vettore colonna di dimensione } n=3$$

$$x_3$$

Vettori

Definizione (Vettore riga): Prende il nome di vettore riga il vettore le cui componenti sono disposte lungo una linea orizzontale (riga). Lo si indica con la seguente notazioni:

$$x_1$$
 x_2 x_3 x_3 x_4 = $\begin{bmatrix} 3 - 1 & 7 \end{bmatrix}$ vettore riga di dimensione $n=3$

Definizione (Trasposizione): Si chiama trasposizione l'operazione unaria che trasforma un vettore riga (colonna) in un vettore colonna (riga).

$$\underline{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ -4 \\ -6 \\ 7 \end{bmatrix} \qquad \underline{x}^T = \begin{bmatrix} 1 & 2 & 3 & -4 & -6 & 7 \end{bmatrix}$$

Vettori

Definizione (Vettore nullo): Prende il nome di vettore nullo, e lo si indica con $0^T = [0 \ 0 \dots 0]$, il vettore le cui componenti sono tutte nulle.

Definizione (i-esimo vettore fondamendale): Prende il nome di *i*-esimo vettore fondamentale, e lo si indica con

$$\underline{\mathbf{e}_{i}}^{T} = [0 \ 0 \ ... 1 \ ... \ 0],$$

il vettore avente tutte le componenti nulle tranne la *i*-esima che è uguale a 1.

Definizione (Scalare): Prende il nome di scalare un qualsiasi numero reale.

Operatori \leq , \geq , \neq sui vettori

Siano \underline{u} e \underline{v} due vettori di \mathbb{R}^n .

Le notazioni $\underline{u} \leq \underline{v}$ e $\underline{u} \geq \underline{v}$ corrispondono alle disuguaglianze componente per componente ossia:

$$\underline{u} \le \underline{v} \iff u_i \le v_i \qquad i = 1, ..., n$$
 $\underline{u} \ge \underline{v} \iff u_i \ge v_i \qquad i = 1, ..., n$

Esempio:

$$\underline{u} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \le \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} = \underline{v}$$

Invece, la notazione $\underline{u} \neq \underline{v}$ è definita in questo modo:

$$\underline{u} \neq \underline{v} \iff \exists i : u_i \neq v_i$$

Esempio: vettori di dimensione 2

Dato un sistema di assi cartesiani, ogni vettore $\underline{x}^T = (p_1, p_2)$ può essere rappresentato nel sistema tramite un **punto** (p_1, p_2) oppure da una **segmento** che connette l'origine degli assi al punto (p_1, p_2) (in questo corso il punto di applicazione di un vettore sarà (quasi) sempre l'origine degli assi [0 0]).

Esempio: vettori fondamentali di dimensione 2

In figura sono rappresentati i due vettori fondamentali \underline{e}_1 ed \underline{e}_2 di \mathbb{R}^2 .

Caratteristiche di un vettore

Ogni vettore è caratterizzato da:

- un modulo, cioè la lunghezza del vettore;
- una direzione, data dalla retta sulla quale giace il vettore;
- un verso, uno dei due alternativi sulla retta direzione del vettore.

Moltiplicazione per uno scalare

$$\underline{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \quad \Longrightarrow \quad 2\underline{x} = 2\begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

$$2\underline{x} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

$$\underline{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$x_1$$

Addizione di vettori: regola del parallelogramma

$$\underline{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \underline{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \underline{x} + \underline{w} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

Sottrazione tra vettori: regola del parallelogramma

$$\underline{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \qquad \underline{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \qquad \underline{x} - \underline{w} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

Prodotto Interno (o prodotto scalare) tra vettori

$$\underline{x}^T \underline{w} = x_1 w_1 + x_2 w_2 + \dots + x_n w_n$$

$$\underline{x}^T = [0,2] \quad \underline{w} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \quad \underline{x}^T \underline{w} = 0 \cdot 3 + 2 \cdot 4 = 8$$

Per il prodotto scalare vale la proprietà commutativa ossia:

$$\underline{x}^T \underline{w} = \underline{w}^T \underline{x}$$

Combinazione LINEARE tra vettori

Un vettore \underline{y} è combinazione LINEARE dei vettori $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ se esistono dei coefficienti reali $\lambda_1, \lambda_2, ..., \lambda_n$ tali che:

$$\underline{y} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \ldots + \lambda_n \underline{v}_n$$

 \underline{y} è combinazione lineare di \underline{v}_1 e \underline{v}_2 ?

I valori di λ_1 e λ_2 sono maggiori o minori di 1?

Esempio 1 $\underline{\mathbf{y}} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2$ $\lambda_1 < 0$ $\lambda_2 > 1$

Esempio 2

Esempio 3

$$\lambda_1 > 1$$
$$\lambda_2 = 0$$

Esempio 4

$$\underline{\mathbf{y}} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2$$

Se $\underline{v}_1 = k\underline{v}_2$, allora non esistono due coefficienti λ_1 e λ_2 per i quali vale $\underline{v} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2$

Combinazione CONICA tra vettori

Un vettore \underline{y} è combinazione CONICA dei vettori $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_n$ se esistono dei coefficienti reali $\lambda_1, \lambda_2, \ldots, \lambda_n$ tali che:

1.
$$\lambda_1$$
, λ_2 ,..., $\lambda_n \ge 0$

2.
$$\underline{y} = \lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + ... + \lambda_n \underline{v}_n$$

Combinazione CONVESSA tra vettori

Un vettore \underline{y} è combinazione CONVESSA dei vettori $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_n$ se esistono dei coefficienti reali $\lambda_1, \lambda_2, \ldots, \lambda_n$ tali che:

1.
$$\lambda_1, \lambda_2, \ldots, \lambda_n \geq 0$$

$$2. \lambda_1 + \lambda_2 + \ldots + \lambda_n = 1$$

3.
$$\underline{\mathbf{y}} = \lambda_1 \underline{\mathbf{v}}_1 + \lambda_2 \underline{\mathbf{v}}_2 + \ldots + \lambda_n \underline{\mathbf{v}}_n$$

Lineare indipendenza tra vettori

I vettori $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ sono LINEARMENTE INDIPENDENTI se

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \ldots + \lambda_n \underline{v}_n = \underline{0} \qquad \Longleftrightarrow \qquad \lambda_1 = 0, \ \lambda_2 = 0, \ \ldots, \ \lambda_n = 0$$

In altre parole, se $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ sono linearmente indipendenti allora **l'unico modo** per ottenere il vettore nullo, dalla loro combinazione lineare, è quello di porre tutti i coefficienti λ a zero.

I vettori $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ sono LINEARMENTE DIPENDENTI se esistono $\lambda_1, \lambda_2, ..., \lambda_n$ non tutti nulli, tali che

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \ldots + \lambda_n \underline{v}_n = \underline{0}$$

Lineare indipendenza tra vettori ESEMPIO

$$\underline{v}_1^T = \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} \qquad \underline{v}_2^T = \begin{bmatrix} -1 \ 1 \ -1 \end{bmatrix} \qquad \underline{v}_3^T = \begin{bmatrix} 0 \ 3 \ 2 \end{bmatrix}$$

sono linearmente dipendenti perché

$$\lambda_1 \underline{v}_1 + \lambda_2 \underline{v}_2 + \lambda_3 \underline{v}_3 = \underline{0}$$
 quando $\lambda_1 = \lambda_2 = 1$ e $\lambda_3 = -1$

$$\frac{\underline{v}_1}{1 * \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 1 * \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} - 1 * \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Lineare indipendenza tra vettori in particolare...

I vettori $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ sono LINEARMENTE DIPENDENTI se uno di essi può essere espresso come combinazione lineare degli altri.

$$\begin{bmatrix} 1\\2\\3 \end{bmatrix} + \begin{bmatrix} -1\\1\\-1 \end{bmatrix} = \begin{bmatrix} 0\\3\\2 \end{bmatrix}$$

Lineare indipendenza tra vettori

y, \underline{v}_1 e \underline{v}_2 sono linearmente DIPENDENTI

Spazio generato

Un insieme di vettori \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k di dimensione n genera l'insieme di vettori di \mathbb{R}^n , se ogni vettore in \mathbb{R}^n può essere rappresentato come combinazione lineare dei vettori \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k .

Base di uno spazio

Def.

Un insieme di vettori $\underline{v}_1, \underline{v}_2, ..., \underline{v}_k$ in \mathbb{R}^n è una BASE di \mathbb{R}^n se valgono le due seguenti condizioni:

- **1.** \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k generano \mathbb{R}^n
- **2.** Se uno solo dei vettori viene rimosso, i rimanenti k-1 vettori non generano \mathbb{R}^n

Base di uno spazio

Proprietà 1.

Un insieme di vettori \underline{v}_1 , \underline{v}_2 , ..., \underline{v}_k in \mathbb{R}^n è una BASE di \mathbb{R}^n se e solo se:

- **1.** k = n
- 2. $\underline{v}_1, \underline{v}_2, ..., \underline{v}_k$ sono linearmente indipendenti

Def.

Il numero di vettori che formano una base per \mathbb{R}^n è detto <u>dimensione</u> dello spazio \mathbb{R}^n .

$$\underline{v}_1^T = [1\ 0]$$

$$\underline{v}_2^T = [-1\ 3] \qquad \underline{v}_3^T = [2\ 1]$$

$$\underline{v}_3^T = [2\ 1]$$

 \underline{v}_1 , \underline{v}_2 , \underline{v}_3 generano \mathbb{R}^2 ?

 \underline{v}_1 , \underline{v}_2 , \underline{v}_3 sono una base di \mathbb{R}^2 ?

 \underline{v}_1 , \underline{v}_2 sono una base per \mathbb{R}^2 ?

 \underline{v}_2 , \underline{v}_3 sono una base per \mathbb{R}^2 ?

 \underline{v}_2 , \underline{v}_4 sono una base per \mathbb{R}^2 ?

Esercizio

Dati i seguenti vettori in \mathbb{R}^3

$$\underline{v}_1^T = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}
\underline{v}_2^T = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}
\underline{v}_3^T = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

- 1. Verificare che costituiscano una base;
- 2. Determinare i coefficienti λ tramite i quali è possibile esprimere il vettore $\underline{y}^T=[2\ 4\ 1]$ tramite i vettori $\underline{v}_1, \, \underline{v}_2, \, \underline{v}_3$.