Review

Solving problems by searching

- 1. Problem-Solving Agents
 - 1.1 Well-defined problems and solutions
 - 1.2 Formulating problems
- 2. Example problems
 - 2.1 Toy problems
 - 2.2 Real-world problems

Fifth week learning tasks

Solving problems by searching

- 3. Searching for Solutions
 - Shortest Path Problem by Tree Search
 - Shortest Path Problem by Graph Search
- 4. Uninformed Search Strategies
 - Breadth-first Search
 - Uniform-cost Search
 - Depth-first Search → Depth-limited Search
 - Iterative Deepening Depth-first Search
 - Bidirectional Search

EXERCISES

- **3.10** Define in your own words the following terms: state, state space, search tree, search node, goal, action, transition model, and branching factor.
- **3.15** Which of the following are true and which are false? Explain your answers.
 - a. Depth-first search always expands at least as many nodes as A* search with an admissible heuristic.
 - **b**. h(n) = 0 is an admissible heuristic for the 8-puzzle.
 - **c**. A* is of no use in robotics because percepts, states, and actions are continuous.
 - **d**. Breadth-first search is complete even if zero step costs are allowed.
 - e. Assume that a rook can move on a chessboard any number of squares in a straight line, vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an admissible heuristic for the problem of moving the rook from square A to square B in the smallest number of moves.

Recommended videos

1. Depth first and breadth first - graph calculation (https://www.bilibili.com/video/av53045157/)

