What is Machine Learning?

- Many different forms of "Machine Learning"
 - We focus on the problem of prediction
- Want to make a prediction based on observations
 - Vector **X** of *m* observed variables: <X₁, X₂, ..., X_m>
 - $_{\circ}$ X₁, X₂, ..., X_m are called "input features/variables"
 - Also called "independent variables," but this can be misleading!
 - $X_1, X_2, ..., X_m$ need not be (and usually are not) independent
 - Based on observed X, want to predict unseen variable Y
 - Y called "output feature/variable" (or the "dependent variable")
 - Seek to "learn" a function g(X) to predict Y: $\hat{Y} = g(X)$
 - When Y is discrete, prediction of Y is called "classification"
 - When Y is continuous, prediction of Y is called "regression"

A (Very Short) List of Applications

- Machine learning widely used in many contexts
 - Stock price prediction
 - Using economic indicators, predict if stock will go up/down
 - Computational biology and medical diagnosis
 - Predicting gene expression based on DNA
 - Determine likelihood for cancer using clinical/demographic data
 - Predict people likely to purchase product or click on ad
 - "Based on past purchases, you might want to buy..."
 - Credit card fraud and telephone fraud detection
 - Based on past purchases/phone calls is a new one fraudulent?
 - Saves companies billions(!) of dollars annually
 - Spam E-mail detection (gmail, hotmail, many others)

What is Bayes Doing in My Mail Server?

This is spam:

Let's get Bayesian on your spam:

0.9 RCVD IN PBL RBL: Received via a relay in Spamhaus PBL [93.40.189.29 listed in zen.spamhaus.org] 1.5 URIBL_WS_SURBL Contains an URL listed in the WS SURBL blocklist [URIs: recragas.cn] 5.0 URIBL JP_SURBL Contains an URL listed in the JP SURBL blocklist [URIs: recragas.cn] 5.0 URIBL OB SURBL Contains an URL listed in the OB SURBL blocklist [URIs: recragas.cn] 5.0 URIBL SC SURBL Contains an URL listed in the SC SURBL blocklist [URIs: recragas.cn]

[URIs: recragas.cn]

[score: 1.0000]

(49.5 hits, 7.0 required)

Contains an URL listed in the URIBL blacklist

BODY: Bayesian spam probability is 99 to 100%

Who was crazy enough to think of that?

2.0 URIBL BLACK

8.0 BAYES_99

Spam, Spam... Go Away!

The constant battle with spam

- Spam prevalence: % of all incoming Gmail traffic (before filtering) that is spam
- Missed spam: % of total spam reported by Gmail users

As the amount of spam has increased, Gmail users have received less of it in their inboxes, reporting a rate less than 1%.

"And machine-learning algorithms developed to merge and rank large sets of Google search results allow us to combine hundreds of factors to classify spam."

Source: http://www.google.com/mail/help/fightspam/spamexplained.html

Training a Learning Machine

- We consider statistical learning paradigm here
 - We are given set of N "training" instances
 - $_{\circ}$ Each training instance is pair: (<x₁, x₂, ..., x_m>, y)
 - Training instances are previously observed data
 - $_{\circ}$ Gives the output value *y* associated with each observed vector of input values $< x_1, x_2, ..., x_m >$
 - Learning: use training data to specify g(X)
 - \circ Generally, first select a parametric form for g(X)
 - \circ Then, estimate parameters of model g(X) using training data
 - For regression, usually want g(X) that minimizes $E[(Y g(X))^2]$
 - Mean squared error (MSE) "loss" function. (Others exist.)
 - \circ For classification, generally best choice of $g(X) = \arg \max \hat{P}(Y \mid X)$

The Machine Learning Process

- Training data: set of N pre-classified data instances
 - \circ N training pairs: $(<x>^{(1)},y^{(1)}), (<x>^{(2)},y^{(2)}), ..., (<x>^{(N)}, y^{(N)})$
 - Use superscripts to denote i-th training instance
- Learning algorithm: method for determining g(X)
 - $_{\circ}$ Given a new input observation of $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - \circ Use g(X) to compute a corresponding output (prediction)
 - $_{\circ}$ When prediction is discrete, we call g(X) a "classifier" and call the output the predicted "class" of the input

A Grounding Example: Linear Regression

- Predict real value Y based on observing variable X
 - Assume model is linear: $\hat{Y} = g(X) = aX + b$
 - Training data
 - Each vector X has one observed variable: <X₁> (just call it X)
 - Y is continuous output variable
 - $_{\circ}$ Given N training pairs: $(<x>^{(1)},y^{(1)}), (<x>^{(2)},y^{(2)}), ..., (<x>^{(N)}, y^{(N)})$
 - Use superscripts to denote i-th training instance
 - Determine a and b minimizing $E[(Y g(X))^2]$
 - First, minimize objective function:

$$E[(Y - g(X))^{2}] = E[(Y - (aX + b))^{2}] = E[(Y - aX - b)^{2}]$$

Don't Make Me Get Non-Linear!

- Minimize objective function $E[(Y-aX-b)^2]$
 - Compute derivatives w.r.t. a and b

$$\frac{\partial}{\partial a} E[(Y - aX - b)^{2}] = E[-2X(Y - aX - b)] = -2E[XY] + 2aE[X^{2}] + 2bE[X]$$

$$\frac{\partial}{\partial b} E[(Y - aX - b)^{2}] = E[-2(Y - aX - b)] = -2E[Y] + 2aE[X] + 2b$$

Set derivatives to 0 and solve simultaneous equations:

$$a = \frac{E[XY] - E[X]E[Y]}{E[X^2] - (E[X])^2} = \frac{Cov(X,Y)}{Var(X)} = \rho(X,Y)\frac{\sigma_y}{\sigma_x}$$
$$b = E[Y] - aE[X] = \mu_y - \rho(X,Y)\frac{\sigma_y}{\sigma_x}\mu_x$$

- Substitution yields: $Y = \rho(X,Y) \frac{\sigma_y}{\sigma_x} (X \mu_x) + \mu_y$
- Estimate parameters based on observed training data:

$$\hat{Y} = g(X = x) = \hat{\rho}(X, Y) \frac{\hat{\sigma}_{y}}{\hat{\sigma}_{x}} (x - \overline{X}) + \overline{Y}$$

A Simple Classification Example

- Predict Y based on observing variables X
 - X has discrete value from {1, 2, 3, 4}
 - ∘ X denotes temperature range today: <50, 50-60, 60-70, >70
 - Y has discrete value from {rain, sun}
 - Y denotes general weather outlook tomorrow
 - Given training data, estimate joint PMF: $\hat{p}_{X,Y}(x,y)$
 - Note Bayes' Thm.: $P(Y | X) = \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{p_{X|Y}(x | y)p_Y(y)}{p_X(x)}$
 - For new X, predict $\hat{Y} = g(X) = \arg \max \hat{P}(Y \mid X)$
 - Note $p_x(x)$ is not affected by choice of y, yielding:

$$\hat{Y} = g(X) = \underset{y}{\operatorname{arg max}} \, \hat{P}(Y \mid X) = \underset{y}{\operatorname{arg max}} \, \hat{P}(X, Y) = \underset{y}{\operatorname{arg max}} \, \hat{P}(X \mid Y) \hat{P}(Y)$$

Estimating the Joint PMF

- Given training data, compute joint PMF: $p_{X,Y}(x, y)$
 - MLE: count number of times each pair (x, y) appears
 - MAP using Laplace prior: add 1 to all the MLE counts
 - Normalize to get true distribution (sums to 1)
 - Observed 50 data points:

Y	1	2	3	4
rain	5	3	2	0
sun	3	7	10	20

$$\hat{p}_{MLE} = \frac{\text{count in cell}}{\text{total # data points}}$$

ĥ -	count in cell +1
$p_{Laplace} =$	total # data points + total # cells

\ v		I			
Y	1	2	3	4	<i>p</i> _Y (y)
rain	0.10	0.06	0.04	0.00	0.20
sun	0.06	0.14	0.20	0.40	0.80
$p_{\chi}(x)$	0.16	0.20	0.24	0.40	1.00

X	Lapl				
Y	1	2	3	4	<i>p</i> _Y (y)
rain	0.103	0.069	0.052	0.017	0.241
sun	0.069	0.138	0.190	0.362	0.759
$p_{\chi}(x)$	0.172	0.207	0.242	0.379	1.00

Classify New Observation

- Say today's temperature is 75, so X = 4
 - Recall X temperature ranges: <50, 50-60, 60-70, >70
 - Prediction for Y (weather outlook tomorrow)

$$\hat{Y} = \arg \max \hat{P}(X, Y) = \arg \max \hat{P}(X \mid Y)\hat{P}(Y)$$

MLE estimate					I	, \	Lapla	ce (MA	AP) est	imate	I
YX	1	2	3	4	p _Y (y)	YX	1	2	3	4	<i>p</i> _Y (y)
rain	0.10	0.06	0.04	0.00	0.20	rain	0.103	0.069	0.052	0.017	0.241
sun	0.06	0.14	0.20	0.40	0.80	sun	0.069	0.138	0.190	0.362	0.759
$p_{\chi}(x)$	0.16	0.20	0.24	0.40	1.00	$p_{\chi}(x)$	0.172	0.207	0.242	0.379	1.00

- What if we asked what is probability of rain tomorrow?
 - MLE: absolutely, positively no chance of rain!
 - Laplace estimate: small chance → "never say never"

Classification with Multiple Observables

- Say, we have m input values $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Note that variables $X_1, X_2, ..., X_m$ can be dependent!
 - In theory, could predict Y as before, using

$$\hat{Y} = \underset{v}{\operatorname{arg max}} \hat{P}(X, Y) = \underset{v}{\operatorname{arg max}} \hat{P}(X \mid Y) \hat{P}(Y)$$

- o Why won't this necessarily work in practice?
- Need to estimate $P(X_1, X_2, ..., X_m \mid Y)$
 - $_{\circ}$ Fine if *m* is small, but what if m = 10 or 100 or 10,000?
 - \circ Note: size of PMF table is <u>exponential</u> in m (e.g. $O(2^m)$)
 - Need ridiculous amount of data for good probability estimates!
 - Likely to have many 0's in table (bad times)
- Need to consider a simpler model

Naive Bayesian Classifier

- Say, we have m input values $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Assume variables X₁, X₂, ..., X_m are <u>conditionally</u> <u>independent</u> given Y
 - $_{\circ}$ Really don't believe $X_1, X_2, ..., X_m$ are conditionally independent
 - Just an approximation we make to be able to make predictions
 - This is called the "Naive Bayes" assumption, hence the name
 - Predict Y using $\hat{Y} = \underset{y}{\operatorname{arg max}} P(X, Y) = \underset{y}{\operatorname{arg max}} P(X \mid Y) P(Y)$
 - o But, we now have:

$$P(X|Y) = P(X_1, X_2, ..., X_m|Y) = \prod_{i=1}^{m} P(X_i|Y)$$
 by conditional independence

- Note: computation of PMF table is <u>linear</u> in m : O(m)
 - Don't need much data to get good probability estimates

Naive Bayes Example

- Predict Y based on observing variables X₁ and X₂
 - X₁ and X₂ are both indicator variables
 - X₁ denotes "likes Star Wars", X₂ denotes "likes Harry Potter"
 - Y is indicator variable: "likes Lord of the Rings"
 - $_{\circ}$ Use training data to estimate PMFs: $\hat{p}_{X_i,Y}(x_i,y),~\hat{p}_Y(y)$

Y X ₁	0	1	MLE estimates	YX ₂	0	1	MLE estimates	Y	#	MLE est.
0	3	10	0.10 0.33	0	5	8	0.17 0.27	0	13	0.43
1	4	13	0.13 0.43	1	7	10	0.23 0.33	1	17	0.57

- Say someone likes Star Wars $(X_1 = 1)$, but not Harry Potter $(X_2 = 0)$
- Will they like "Lord of the Rings"? Need to predict Y:

$$\hat{Y} = \arg \max_{x} \hat{P}(\mathbf{X} | Y) \hat{P}(Y) = \arg \max_{x} \hat{P}(X_1 | Y) \hat{P}(X_2 | Y) \hat{P}(Y)$$

"All Your Bayes Are Belong To Us"

Y X ₁	0	1	MLE estimates	YX ₂	0	1	MLE estimates	Y	#	MLE est.
0	3	10	0.10 0.33	0	5	8	0.17 0.27	0	13	0.43
1	4	13	0.13 0.43	1	7	10	0.23 0.33	1	17	0.57

Prediction for Y is value of Y maximizing P(X, Y):

$$\hat{Y} = \underset{y}{\text{arg max }} \hat{P}(\mathbf{X} | Y) \hat{P}(Y) = \underset{y}{\text{arg max }} \hat{P}(X_1 | Y) \hat{P}(X_2 | Y) \hat{P}(Y)$$

- Compute P(X, Y=0): $\hat{P}(X_1 = 1 | Y = 0)\hat{P}(X_2 = 0 | Y = 0)\hat{P}(Y = 0)$ = $\frac{\hat{P}(X_1 = 1, Y = 0)}{\hat{P}(Y = 0)} \frac{\hat{P}(X_2 = 0, Y = 0)}{\hat{P}(Y = 0)} \hat{P}(Y = 0) \approx \frac{0.33}{0.43} \frac{0.17}{0.43} 0.43 \approx 0.13$
- Compute P(X, Y=1): $\hat{P}(X_1 = 1 | Y = 1)\hat{P}(X_2 = 0 | Y = 1)\hat{P}(Y = 1)$ = $\frac{\hat{P}(X_1 = 1, Y = 1)}{\hat{P}(Y = 1)} \frac{\hat{P}(X_2 = 0, Y = 1)}{\hat{P}(Y = 1)} \hat{P}(Y = 1) \approx \frac{0.43}{0.57} \frac{0.23}{0.57} 0.57 \approx 0.17$
- Since P(X, Y=1) > P(X, Y=0), we predict Ŷ = 1

Email Classification

- Want to predict if an email is spam or not
 - Start with the input data
 - $_{\circ}$ Consider a lexicon of *m* words (Note: in English *m* ≈ 100,000)
 - ∘ Define *m* indicator variables $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Each variable X_i denotes if word i appeared in a document or not
 - Note: m is huge, so make "Naive Bayes" assumption
 - Define output classes Y to be: {spam, non-spam}
 - Given training set of N previous emails
 - ∘ For each email message, we have a training instance: $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$ noting for each word, if it appeared in email
 - Each email message is also marked as spam or not (value of Y)

Training the Classifier

Given N training pairs:

$$(\langle x\rangle^{(1)},y^{(1)}), (\langle x\rangle^{(2)},y^{(2)}), \ldots, (\langle x\rangle^{(N)}, y^{(N)})$$

- Learning
 - Estimate probabilities P(Y) and each P(X_i | Y) for all i
 - Many words are likely to not appear at all in given set of email
 - Laplace estimate: $\hat{p}(X_i = 1 | Y = spam)_{Laplace} = \frac{(\# \text{ spam emails with word } i) + 1}{\text{total } \# \text{ spam emails } + 2}$
- Classification
 - For a new email, generate $\mathbf{X} = \langle X_1, X_2, ..., X_m \rangle$
 - Classify as spam or not using: $\hat{Y} = \arg \max \hat{P}(X \mid Y)\hat{P}(Y)$
 - Employ Naive Bayes assumption: $\hat{P}(X \mid Y) = \prod_{i=1}^{m} \hat{P}(X_i \mid Y)$

How Does This Do?

- · After training, can test with another set of data
 - "Testing" set also has known values for Y, so we can see how often we were right/wrong in predictions for Y
 - Spam data
 - Email data set: 1789 emails (1578 spam, 211 non-spam)
 - First, 1538 email messages (by time) used for training
 - Next 251 messages used to test learned classifier

Criteria:

- <u>Precision</u> = # correctly predicted class Y/ # predicted class Y
- Recall = # correctly predicted class Y / # real class Y messages

	Spa	am	Non-spam		
	Precision	Precision	Recall		
Words only	97.1%	94.3%	87.7%	93.4%	
Words + add'l features	100%	98.3%	96.2%	100%	