Oops All Algebra: Homework III

Mathcamp 2025

Problem 1 (recommended). Convince yourself that any functor $F : \Delta^{op} \to SET$ satisfies the simplicial identities, and conversely that any simplicial set determines such a functor, i.e. that these are equivalent definitions.

Problem 2 (recommended). Let X be a simplicial set with unique fillers of all inner horns. In class, we defined the 1-truncation $\tau_1 X$ of X as the category whose objects are the 0-simplices X_0 and whose morphisms are the 1-simplices, with sources and targets given by the face maps, identities by the degeneracies, and composition by the inner horn fillers. Show that $X \cong N\tau_1 X$. (Hint: once you have defined maps $f_n : X_n \to (N\tau_1 X)_n$ for each n, show that they are bijections via induction on n.)

Problem 3 (recommended). Convince yourself that a category C is a groupoid, i.e. that all its morphisms are isomorphisms, if and only if NC has unique fillers of all horns.

Problem 4 (optional, Homotopy Hypothesis II). On Homework II, we defined the *singular simplicial set* and *geometric realization*, functors

Top
$$\stackrel{\text{Sing}}{\longleftrightarrow}$$
 sSet.

(a) Show that if *X* is a simplicial set and *Y* is a topological space, then there is a bijection

$$\text{Top}_1(|X|, Y) \cong \text{sSet}_1(X, \text{Sing } Y).$$

(If you know what a natural transformation is, show that this bijection is natural in X and Y, i.e. that there is an adjunction $|-| \dashv Sing$.)

(b) A *Kan complex* is a simplicial set *K* with (not necessarily unique) fillers of all horns, i.e. so that any map $\Lambda_i^n \to K$ admits a lift

$$\begin{array}{ccc}
\Delta^n & --- & K. \\
\uparrow & & \\
\Lambda_j^n & & \\
\end{array}$$

Show that the singular simplicial complex of any topological space is a Kan complex. (Hint: use the previous part.)

- (c) Define a simplicial map $\eta_X : X \to \text{Sing } |X|$.
- (d) Say that a simplicial map is a *weak equivalence* if its induced map on geometric realizations is a homotopy equivalence. A standard result in simplicial homotopy theory, sometimes called *Milnor's theorem*, states that η_X is a weak equivalence for any X.

Explain why this fact, together with part (b), justifies the tagline "spaces mod homotopy are the same as Kan complexes."

There is a much more elegant way to state this: there is an equivalence of ∞ -categories from the ∞ -category of topological spaces to the ∞ -category of Kan complexes. Unfortunately, proving this result requires more simplicial homotopy theory than we have time for, so this will have to suffice.

Tomorrow, we will show that ∞ -groupoids are also the same as Kan complexes, completing the proof of the homotopy hypothesis.

1

Problem 5 (optional, requires a bit more category theory background). Recall that $N : CAT \to SSET$ can be defined on objects by $(NC)_n = CAT_1([n], C)$, and Sing : $TOP \to SSET$ can be defined by $(Sing X)_n = TOP_1(\Delta^n, X)$. In this exercise we will explore the similarity between functors defined in this way.

- (a) Let C be any (small) category, and let \hat{C} be the category of functors $C^{op} \to SET$. Define a functor $y : C \to \hat{C}$, called the *Yoneda embedding*, which sends c to the functor $C_1(-,c)$.
- (b) Let \mathcal{E} be any other category, and let $F: C \to \mathcal{E}$ be a functor. Define a functor $G: \mathcal{E} \to \hat{C}$, called the *restricted Yoneda embedding* or the *F-relative nerve*, which sends e to the functor $C_1(F-,e)$.
- (c) Suppose that \mathcal{E} has coproducts and some notion of quotient ("coequalizers"). Define a functor $\hat{F}: \hat{C} \to \mathcal{E}$, called the *Yoneda extension* or the *F-relative realization*, which sends a functor $P: C^{\text{op}} \to \text{SET}$ to the "coend"

$$\left(\bigsqcup_{c \in C, x \in Pc} Fc\right) / \sim .$$

To define the relation ~, we instead give two maps into this coproduct, whose images ~ should identify:

$$\bigsqcup_{f:c \to c' \in C, x \in Pc'} Fc \longrightarrow \bigsqcup_{c \in C, x \in Pc} Fc.$$

The top map sends the copy of Fc indexed by $(f, x \in Pc')$ via the identity to the copy indexed by $(c, Pf(x) \in Pc)$. The bottom map sends the copy of Fc indexed by $(f, x \in Pc')$ to the copy of Fc' indexed by $(c', x \in Pc')$ via the map $Ff : Fc \to Fc'$. Explain how this reduces to the geometric realization in the case that $C = \Delta$, $\mathcal{E} = \text{Top}$, and F sends [n] to $|\Delta^n|$.

This is a construction of the left Kan extension of F along y; in fact Kan invented Kan extensions in order to study this situation. Here are some facts, which I don't dare ask you to prove without significantly more category theory. First, there is a natural isomorphism $\hat{F} \circ y \cong F$. Second, F is unique (up to isomorphism) with this property; another way to say this is that \hat{C} is the free cocompletion of C. Third, there is an adjunction $\hat{F} \dashv G$.

(d) Consider the functor $\Delta \to CAT$ which sends the ordinal [n] to the category [n]. What is the Yoneda extension of this functor?