Homework 3

(1) 针对习题3.1文法,给出(a,(a,(a)))的最左推导、最右推导(并用下划线标出右句型句柄)和分析树。

最左推导: $S \Rightarrow (\underline{L}) \Rightarrow (\underline{L}, \underline{S}) \Rightarrow (\underline{S}, S) \Rightarrow (\underline{a}, S) \Rightarrow (a, (\underline{L})) \Rightarrow (a, (\underline{L}, \underline{S})) \Rightarrow (a, (\underline{S}, S)) \Rightarrow (a, (\underline{a}, S)) \Rightarrow (a, (a, (\underline{L}))) \Rightarrow (a, (a, (\underline{S}))) \Rightarrow (a, (a, (\underline{a}))) \Rightarrow (a, (a, (\underline{a}))) \Rightarrow (a, (a, (\underline{a}))) \Rightarrow (a, (a, (\underline{a}))) \Rightarrow (\underline{L}, (\underline{L}, \underline{S})) \Rightarrow (\underline{L}, (\underline{L}, \underline{S})) \Rightarrow (\underline{L}, (\underline{L}, (\underline{L}))) \Rightarrow (\underline{L}, (\underline{L}, (\underline{a}))) \Rightarrow (\underline{L}, (\underline{L}, (\underline{a}))) \Rightarrow (\underline{L}, (\underline{a}, (a))) \Rightarrow (\underline{L}, (\underline{L}, (\underline{a}))) \Rightarrow (\underline{L}, (\underline{L},$

(2) 习题3.5。

串if expr1 then if expr2 then S1 else if expr3 then S2 else S3,存在如下两种最左推导的分析树。

因此是二义的。

(3) 为以下文法构造LR(1)分析表:

- (1) S→aSb
- (2) S→A
- (3) A→aA
- (4) A→ε

FIRST(S)= $\{a, \epsilon\}$ FIRST(A)= $\{a, \epsilon\}$ FOLLOW(S)= $\{b, \$\}$ FOLLOW(A)= $\{b, \$\}$

状态	LR(1)项目	后继符号	后继状态
10	[S'→·S,\$]	S	I1
	[S→·A,\$]	Α	12
	[S→·aSb,\$]	а	13
	[A→·aA,\$]	а	13
	[A→·,\$]	\$	
11	[S'→S·,\$]	\$	
12	[S→A·,\$]	\$	
13	[S→a·Sb,\$]	S	14
	[S→·aSb,b]	а	15
	[S→·A,b]	A	16
	[A→·aA,b/\$]	а	15
	[A→·,b/\$]	\$	
	[A→a·A,\$]	A	16
14	[S→aS·b,\$]	b	17
15	[S→a·Sb,b]	S	18
	[S→·aSb,b]	а	15
	[S→·A,b]	Α	19
	[A→·aA,b/\$]	а	15
	[A→·,b/\$]	\$	
	[A→a·A,b/\$]	A	19
16	[S→A·,b]	\$	

状态	LR(1)项目	后继符号	后继状态
	[A→aA·,\$]	\$	
17	[S→aSb·,\$]	\$	
18	[S→aS·b,b]	b	I10
19	[S→A·,b]	\$	
	[A→aA·,b/\$]	\$	
I10	[S→aSb·,b]	\$	

分析表如下:

状态	Action			Goto	
	а	b	\$	S	Α
0	s3		r4	1	2
1			acc		
2			r2		
3	s5	r4	r4	4	6
4		s7			
5	s5	r4	r4	8	9
6		r2	r3		
7			r1		
8		s10			
9		r2/r3	r3		
10		r1			

(4) 给出接受以下文法的活前缀且以LR(0)项目为状态的NFA,以及相应文法的SLR(1)分析表。

(1)	S→BE

(2) B→bB

(3) B→a

 $FIRST(S)=\{a,b\}$

 $FIRST(B)=\{a,b\}$

 $FOLLOW(S)=\{\epsilon\}$

FOLLOW(B)= $\{a,b,\epsilon\}$

状态	LR(0)项目	后继符号	后继状态
10	S'→·S	S	I1
	S→·BB	В	12
	B→·bB	b	13
	В→∙а	а	14
l1	S'→S·	\$	
12	S→B·B	В	15
	B→·bB	b	13
	В→∙а	а	14
13	B→b·B	В	16
	B→·bB	b	13
	В→∙а	а	14
14	В→а·	\$	
15	S→BB·	\$	
16	B→bB·	\$	

分析表如下:

状态	Action			Goto	
	а	b	\$	S	В
0	s4	s3		1	2
1			acc		
2	s4	s3			5
3	s4				6
4	r3	r3			
5					
6	r2	r2			

(5) 习题3.11, 并描述该文法产生的语言, 再给出该文法的递归下降分析程序。

(1)	S→aBS	bAS	۱٤
-----	-------	-----	----

(2) A→bAA|a

(3) B→aBB|b

 $FIRST(S)=\{a,b,\epsilon\}$

 $FIRST(A)=\{a,b\}$

 $FIRST(B)=\{a,b\}$

FOLLOW(S)={\$}

 $FOLLOW(A) = \{a,b,\$\}$

FOLLOW(B)={a,b,\$}

	а	b	\$
S	S→aBS	S→bAS	S→ε
Α	A→a	A→bAA	
В	B→aBB	B→b	

产生的语言为空串或a和b数量相等的任意ab的串。

```
void S(){
    if(lookhead=='a'){
        match('a');
        B();
        S();
    }
    else if(lookhead=='b'){
        match('b');
        A();
        S();
    }
    else return ;
}
void A(){
    if(lookhead=='a'){
        match('a');
    }
    else if(lookhead=='b'){
        match('b');
       A();
        A();
    }
    else error();
}
void B(){
    if(lookhead=='b'){
        match('b');
    }
    else if(lookhead=='a'){
        match('a');
        B();
        B();
    }
    else error();
}
```

(6) 习题3.21, 3.24

3.21 (a)

- (0) S→AaAb
- (1) S→BbBa
- (2) A→ε
- (3) B→ε

 $FIRST(S)=\{a,b\}$

 $FIRST(A)=\{\epsilon\}$

 $FIRST(B)=\{\epsilon\}$

FOLLOW(S)={\$}

 $FOLLOW(A)=\{a,b\}$

FOLLOW(B)={a,b}

FIRST(AaAb)={a},FIRST(BbBa)={b},这两个集合的交为空集,且都不包含ε,因此该文法是LL(1)文法。

状态	LR(0)项目	后继符号	后继状态
10	S'→·S	S	I1
	S→·AaAb	Α	12
	S→·BbBa	В	13
	A→·	\$	
	B→·	\$	
I1	S'→S·	\$	
12	S→A·aAb	а	14
13	S→B·bBa	b	15
14	S→Aa·Ab	Α	16
	A→·	\$	
15	S→Bb·Ba	В	17
	B→·	\$	
16	S→AaA·b	b	18
17	S→BbB·a	а	19
18	S→AaAb·	\$	

状态	LR(0)项目	后继符号	后继状态
19	S→BbBa·	\$	

SLR(1)分析表如下:

状态	Action		Goto		
	а	b	\$ S	Α	В
0	r2/r3	r2/r3		2	3

此处已经说明该文法不是SLR(1)文法,因此分析表不需要填写完整。

3.21 (b)

LL(1)文法中, 非终结符A面临当前输入符号a时即可作出唯一的产生式的选择决定, 也就是说, 不会面临归约归约冲突, 此外产生式不含左递归且具有相同左部的产生式不含左因子, 相当于移进和归约的过程是不需要选择的, 也就是不会面临冲突的。LR(1)也是从左往右看, 并且只看下一个符号, 再进行相应的动作。LR(1)比LL(1)拥有了更多的信息, 在看到一个符号时, 根据搜索符进行移进或规约动作。LL(1)文法的分析过程没有选择, 那么根据搜索符的含义可知, LR(1)文法的分析过程能做到同样的分析, 也就是LL(1)分析的每个步骤的移进或归约都有LR(1)分析中对应的一步。因此LL(1)文法是可以被LR(1)的分析过程正确分析的, LL(1)文法都是LR(1)文法。

3.24

- (1) S→Aa
- (2) S→bAc
- (3) S→Bc
- (4) S→bBa
- (5) A→d
- (6) B→d

 $FIRST(S)=\{b,d\}$

 $FIRST(A)=\{d\}$

 $FIRST(B)=\{d\}$

FOLLOW(S)={\$}

 $FOLLOW(A) = \{a,c\}$

FOLLOW(B)={a,c}

状态	LR(1)项目	后继符号	后继状态
10	[S'→·S,\$]	S	I1
	[S→·Aa,\$]	A	12
	[S→·bAc,\$]	b	13
	[S→·Bc,\$]	В	14
	[S→·bBa,\$]	b	13
	[A→·d,a]	d	15
	[B→·d,c]	d	15
l1	[S'→S·,\$]	\$	
12	[S→A·a,\$]	а	16
13	[S→b·Ac,\$]	A	17
	[A→·d,c]	d	18
	[S→b·Ba,\$]	В	19
	[B→·d,a]	d	18
14	[S→B·c,\$]	С	I10
15	[A→d·,a]	\$	
	[B→d·,c]	\$	
16	[S→Aa·,\$]	\$	
17	[S→bA·c,\$]	С	I11
18	[A→d·,c]	\$	
	[B→d·,a]	\$	
19	[S→bB·a,\$]	а	I12
I10	[S→Bc·,\$]	\$	
I11	[S→bAc·,\$]	\$	
I12	[S→bBa·,\$]	\$	

LR(1)分析表如下:

状态	Action					Goto		
	а	b	С	d	\$	S	А	В
0		s3		s5		1	2	4
1					acc			
2	s6							
3				s8			7	9
4			s10					
5	r5		r6					
6					r1			
7			s11					
8	r6		r5					
9	s12							
10					r3			
11					r2			
12					r4			

分析表中未出现冲突,因此是LR(1)文法。 注意到I5和I8是同心集,合并后得到I58:

状态	项目	后继符号	后继状态
158	[A→d·,a/c]	\$	
	[B→d·,a/c]	\$	

显然I58在计算分析集的过程中,会出现归约归约冲突。因此该文法不是LALR(1)文法。

(7) 指出其中语句1所对应的汇编代码;给语句2中表达式添加嵌套小圆括号()来表示计算次序,越内层越优先计算;再给出每层()所对应的主要汇编代码。例如,(p)将是最内层括号。

```
int *p = &i;//语句1
```

对应的汇编代码为

```
addi a5,s0,-24
sw a5,-20(s0)
```

语句2

```
++(*(p++));
```

以下分别给出p++,*(),++()对应的汇编代码

```
lw a5, -20(s0) # 加载p的地址到 a5
addi a4, a5, 4 # 计算p++, 即将p指向下一个地址
sw a4, -20(s0) # 更新p的值到栈中

lw a4, 0(a5) # 取出p++之前的地址所指向的值*(p++)

addi a4, a4, 1 # 对上一步取出的值加一++(*(p++))
sw a4, 0(a5) # 将自增后的值存回到原地址中
```