

SEQUENCE LISTING

<110> Allison, Anthony

<120> MODIFIED ANNEXIN PROTEINS AND METHODS FOR TREATING VASO-OCCLUSIVE SICKLE-CELL DISEASE

- <130> SURR.113
- <150> 60/400,718
- <151> 2002-08-02
- <150> 10/080,370
- <151> 2002-02-21
- <160> 9
- <170> PatentIn version 3.2
- <210> 1
- <211> 957
- <212> DNA
- <213> Homo sapiens
- <400> 1

gcacaggttc	tcagaggcac	tgtgactgac	ttccctggat	ttgatgagcg	ggctgatgca	60
gaaactcttc	ggaaggctat	gaaaggcttg	ggcacagatg	aggagagcat	cctgactctg	120
ttgacatccc	gaagtaatgc	tcagcgccag	gaaatctctg	cagcttttaa	gactctgttt	180
ggcagggatc	ttctggatga	cctgaaatca	gaactaactg	gaaaatttga	aaaattaatt	240
gtggctctga	tgaaaccctc	tcggctttat	gatgcttatg	aactgaaaca	tgccttgaag	300
ggagctggaa	caaatgaaaa	agtactgaca	gaaattattg	cttcaaggac	acctgaagaa	360
ctgagagcca	tcaaacaagt	ttatgaagaa	gaatatggct	caagcctgga	agatgacgtg	420
gtgggggaca	cttcagggta	ctaccagcgg	atgttggtgg	ttctccttca	ggctaacaga	480
gaccctgatg	ctggaattga	tgaagctcaa	gttgaacaag	atgctcaggc	tttatttcag	540
gctggagaac	ttaaatgggg	gacagatgaa	gaaaagttta	tcaccatctt	tggaacacga	600
agtgtgtctc	atttgagaaa	ggtgtttgac	aagtacatga	ctatatcagg	atttcaaatt	660
gaggaaacca	ttgaccgcga	gacttctggc	aatttagagc	aactactcct	tgctgttgtg	720
aaatctattc	gaagtatacc	tgcctacctt	gcagagaccc	tctattatgc	tatgaaggga	780
gctgggacag	atgatcatac	cctcatcaga	gtcatggttt	ccaggagtga	gattgatctg	840
tttaacatca	ggaaggagtt	taggaagaat	tttgccacct	ctctttattc	catgattaag	900
ggagatacat	ctggggacta	taagaaagct	cttctgctgc	tctgtggaga	agatgac [.]	957

<210> 2 <211> 957 <212> DNA <213> Homo sapie	ens		
<220> <221> CDS <222> (1)(957)			
<400> 2	ana anc act ata ac	t gac ttc cct gga ttt	gat gag 48
		r Asp Phe Pro Gly Phe	3 33
1 5		10 10	15
		g gct atg aaa ggc ttg s Ala Met Lys Gly Leu 30	
		g aca tcc cga agt aat u Thr Ser Arg Ser Asn 45	
		g act ctg ttt ggc agg s Thr Leu Phe Gly Arg 60	
	_	t gga aaa ttt gaa aaa r Gly Lys Phe Glu Lys 75	
Val Ala Leu Met L		t tat gat gct tat gaa u Tyr Asp Ala Tyr Glu 90	
		t gaa aaa gta ctg aca n Glu Lys Val Leu Thr 5 110	
		g aga gcc atc aaa caa u Arg Ala Ile Lys Gln 125	
gaa gaa gaa tat g	gge tea age etg ga	a gat gac gtg gtg ggg	gac act 432
Glu Glu Glu Tyr G 130	Gly Ser Ser Leu Gl 135	u Asp Asp Val Val Gly 140	Asp Thr
		g gtt ctc ctt cag gct l Val Leu Leu Gln Ala 155	
Asp Pro Asp Ala G		t caa gtt gaa caa gat a Gln Val Glu Gln Asp 170	

gct tta ttt cag gct gga gaa ctt aaa tgg ggg aca gat gaa gaa aag Ala Leu Phe Gln Ala Gly Glu Leu Lys Trp Gly Thr Asp Glu Glu Lys 180 185 190	576												
ttt atc acc atc ttt gga aca cga agt gtg tct cat ttg aga aag gtg Phe Ile Thr Ile Phe Gly Thr Arg Ser Val Ser His Leu Arg Lys Val 195 200 205	624												
ttt gac aag tac atg act ata tca gga ttt caa att gag gaa acc att Phe Asp Lys Tyr Met Thr Ile Ser Gly Phe Gln Ile Glu Glu Thr Ile 210 215 220	672												
gac cgc gag act tct ggc aat tta gag caa cta ctc ctt gct gtt gtg Asp Arg Glu Thr Ser Gly Asn Leu Glu Gln Leu Leu Leu Ala Val 225 230 235 240	720												
aaa tct att cga agt ata cct gcc tac ctt gca gag acc ctc tat tat Lys Ser Ile Arg Ser Ile Pro Ala Tyr Leu Ala Glu Thr Leu Tyr Tyr 245 250 255	768												
gct atg aag gga gct ggg aca gat gat cat acc ctc atc aga gtc atg	816												
Ala Met Lys Gly Ala Gly Thr Asp Asp His Thr Leu Ile Arg Val Met 260 265 270													
gtt tcc agg agt gag att gat ctg ttt aac atc agg aag gag ttt agg Val Ser Arg Ser Glu Ile Asp Leu Phe Asn Ile Arg Lys Glu Phe Arg 275 280 285	864												
aag aat ttt gcc acc tct ctt tat tcc atg att aag gga gat aca tct Lys Asn Phe Ala Thr Ser Leu Tyr Ser Met Ile Lys Gly Asp Thr Ser 290 295 300	912												
ggg gac tat aag aaa gct ctt ctg ctg ctc tgt gga gaa gat gac Gly Asp Tyr Lys Lys Ala Leu Leu Leu Cys Gly Glu Asp Asp 305 310 315	957												
<210> 3 <211> 319 <212> PRT <213> Homo sapiens													
<400> 3													
Ala Gln Val Leu Arg Gly Thr Val Thr Asp Phe Pro Gly Phe Asp Glu 1 10 15													
Arg Ala Asp Ala Glu Thr Leu Arg Lys Ala Met Lys Gly Leu Gly Thr 20 25 30													
Asp Glu Glu Ser Ile Leu Thr Leu Leu Thr Ser Arg Ser Asn Ala Gln 35 40 45													

Arg Gln Glu Ile Ser Ala Ala Phe Lys Thr Leu Phe Gly Arg Asp Leu Leu Asp Asp Leu Lys Ser Glu Leu Thr Gly Lys Phe Glu Lys Leu Ile Val Ala Leu Met Lys Pro Ser Arg Leu Tyr Asp Ala Tyr Glu Leu Lys His Ala Leu Lys Gly Ala Gly Thr Asn Glu Lys Val Leu Thr Glu Ile Ile Ala Ser Arg Thr Pro Glu Glu Leu Arg Ala Ile Lys Gln Val Tyr Glu Glu Tyr Gly Ser Ser Leu Glu Asp Asp Val Val Gly Asp Thr Ser Gly Tyr Tyr Gln Arg Met Leu Val Val Leu Leu Gln Ala Asn Arg Asp Pro Asp Ala Gly Ile Asp Glu Ala Gln Val Glu Gln Asp Ala Gln Ala Leu Phe Gln Ala Gly Glu Leu Lys Trp Gly Thr Asp Glu Glu Lys Phe Ile Thr Ile Phe Gly Thr Arg Ser Val Ser His Leu Arg Lys Val Phe Asp Lys Tyr Met Thr Ile Ser Gly Phe Gln Ile Glu Glu Thr Ile Asp Arg Glu Thr Ser Gly Asn Leu Glu Gln Leu Leu Ala Val Val Lys Ser Ile Arg Ser Ile Pro Ala Tyr Leu Ala Glu Thr Leu Tyr Tyr Ala Met Lys Gly Ala Gly Thr Asp Asp His Thr Leu Ile Arg Val Met

Val Ser Arg Ser Glu Ile Asp Leu Phe Asn Ile Arg Lys Glu Phe Arg 285 275 280 Lys Asn Phe Ala Thr Ser Leu Tyr Ser Met Ile Lys Gly Asp Thr Ser 290 Gly Asp Tyr Lys Lys Ala Leu Leu Leu Leu Cys Gly Glu Asp Asp 310 305 <210> 4 <211> 2016 <212> DNA <213> Artificial Sequence <220> <223> primer <220> <221> misc_feature <222> (45)..(45) <223> n = a, c, t, or g <220> <221> misc_feature (1000)..(1002) <222> <223> n = a, c, t, or g <220> <221> misc_feature <222> (1051)..(1053) <223> n = a, c, t, or g <400> 4 60 atggactaca aagacgatga cgacaagctt gcggccgcga attcngccct gcgcggcacc 120 qtqaccqact tctccggctt cgacggccgc gccgacgccg aggtgctgcg caaggccatg 180 aaqqqcctqq qcaccqacqa ggactccatc ctgaacctgc tgaccgcccg ctccaacgcc 240 cagcgccagc agatcgccga ggagttcaag accctgttcg gccgcgacct ggtgaacgac 300 atgaagtccg agctgaccgg caagttcgag aagctgatcg tggccctgat gaagccctcc cgcctgtacg acgcctacga gctgaagcac gccaagctgg gcgccggcac cgacgagaag 360 gtgctgaccg agatcatcgc ctcccgcacc cccgaggagc tgcgcgccat caagcaggcc 420 tacgaggagg agtacggctc caacctggag gacgacgtgg tgggcgacac ctccggctac 480 taccagegea tgetggtggt getgetgeag gecaacegeg acceegacae egecategae 540

gacgcccagg tggagctgga cgcccaggcc ctgttccagg ccggcgagct gaagtggggc

600

accgacgagg agaagttcat caccatcctg ggcacccgct ccgtgtccca cctgcgccgc 660 720 gtgttcgaca agtacatgac catctccggc ttccagatcg aggagaccat cgaccgcgag 780 acctccggca acctggagaa cctgctgctg gccgtggtga agtccatccg ctccatcccc 840 gcctacctgg ccgagaccct gtactacgcc atgaagggcg ccggcaccga cgaccacacc 900 ctgatccgcg tgatcgtgtc ccgctccgag atcgacctgt tcaacatccg caaggagttc 960 cgcaagaact tcgccacctc cctgtactcc atgatcaagg gcgacacctc cggcgactac 1020 aaqaaqqccc tqctqctqct gtgcggcggc gaggacgacn nnagatctcg atcgggcctg 1080 gaggtgctgt tccagggccc cggaagtact nnngccctgc gcggcaccgt gaccgacttc 1140 teeggetteg aeggeegege egaegeegag gtgetgegea aggeeatgaa gggeetggge 1200 accgacgagg actccatcct gaacctgctg accgcccgct ccaacgccca gcgccagcag atcgccgagg agttcaagac cctgttcggc cgcgacctgg tgaacgacat gaagtccgag 1260 ctgaccggca agttcgagaa gctgatcgtg gccctgatga agccctcccg cctgtacgac 1320 1380 qcctacqaqc tqaaqcacqc caagctgggc gccggcaccg acgagaaggt gctgaccgag 1440 atcatcgcct cccgcacccc cgaggagctg cgcgccatca agcaggccta cgaggaggag tacggctcca acctggagga cgacgtggtg ggcgacacct ccggctacta ccagcgcatg 1500 1560 ctggtggtgc tgctgcaggc caaccgcgac cccgacaccg ccatcgacga cgcccaggtg gagetggaeg eccaggeet gttecaggee ggegagetga agtggggeae egaegaggag 1620 1680 aagttcatca ccatcctggg cacccgctcc gtgtcccacc tgcgccgcgt gttcgacaag 1740 tacatgacca tctccggctt ccagatcgag gagaccatcg accgcgagac ctccggcaac 1800 ctqqaqaacc tqctgctggc cgtggtgaag tccatccgct ccatccccgc ctacctggcc 1860 gagaccctgt actacgccat gaagggcgcc ggcaccgacg accacaccct gatccgcgtg 1920 atcgtgtccc gctccgagat cgacctgttc aacatccgca aggagttccg caagaacttc gccacctccc tgtactccat gatcaagggc gacacctccg gcgactacaa gaaggccctg 1980 2016 ctgctgctgt gcggcggcga ggacgactaa taataa

<210> 5

<211> 2016

<212> DNA

<213> Artificial Sequence

<220>

<223> primer

```
<220>
<221>
      CDS
<222>
       (1)..(2016)
<220>
<221>
      misc_feature
<222>
       (45)..(45)
<223>
      n = a, c, t, or g
<220>
<221>
     misc_feature
<222>
      (1000)..(1002)
<223>
      n = a, c, t, or g
<220>
<221>
      misc_feature
<222>
      (1051)..(1053)
<223> n = a, c, t, or g
<400> 5
atg gac tac aaa gac gat gac gac aag ctt gcg gcc gcg aat tcn gcc
                                                                       48
Met Asp Tyr Lys Asp Asp Asp Lys Leu Ala Ala Ala Asn Xaa Ala
                5
                                                                       96
ctg cgc ggc acc gtg acc gac ttc tcc ggc ttc gac ggc cgc gcc gac
Leu Arg Gly Thr Val Thr Asp Phe Ser Gly Phe Asp Gly Arg Ala Asp
            20
                                                                      144
gcc gag gtg ctg cgc aag gcc atg aag ggc ctg ggc acc gac gag gac
Ala Glu Val Leu Arg Lys Ala Met Lys Gly Leu Gly Thr Asp Glu Asp
tcc atc ctg aac ctg ctg acc gcc cgc tcc aac gcc cag cgc cag cag
                                                                      192
Ser Ile Leu Asn Leu Leu Thr Ala Arg Ser Asn Ala Gln Arg Gln Gln
                                                                      240
atc gcc gag gag ttc aag acc ctg ttc ggc cgc gac ctg gtg aac gac
Ile Ala Glu Glu Phe Lys Thr Leu Phe Gly Arg Asp Leu Val Asn Asp
65
                    70
                                         75
                                                                      288
atg aag tcc gag ctg acc ggc aag ttc gag aag ctg atc gtg gcc ctg
Met Lys Ser Glu Leu Thr Gly Lys Phe Glu Lys Leu Ile Val Ala Leu
                                    90
                85
atg aag ccc tcc cgc ctg tac gac gcc tac gag ctg aag cac gcc aag
                                                                      336
Met Lys Pro Ser Arg Leu Tyr Asp Ala Tyr Glu Leu Lys His Ala Lys
            100
ctg ggc gcc ggc acc gac gag aag gtg ctg acc gag atc atc gcc tcc
                                                                      384
Leu Gly Ala Gly Thr Asp Glu Lys Val Leu Thr Glu Ile Ile Ala Ser
        115
                            120
                                                                      432
cgc acc ccc gag gag ctg cgc gcc atc aag cag gcc tac gag gag gag
Arg Thr Pro Glu Glu Leu Arg Ala Ile Lys Gln Ala Tyr Glu Glu Glu
                                             140
    130
                        135
```

						gac Asp										480
						gtg Val										528
						cag Gln										576
						tgg Trp										624
						gtg Val 215										672
						ttc Phe										720
				_		aac Asn	_									768
						ctg Leu										816
						cac His										864
			_	_		aac Asn 295		-	_			_				912
_			_			atg Met		_		_						960
						ctg Leu										1008
						ctg Leu										1056
_	_					gac Asp										1104
gcc	gag	gtg	ctg	cgc	aag	gcc	atg	aag	ggc	ctg	ggc	acc	gac	gag	gac	1152

Ala	Glu 370	Val	Leu	Arg	Lys	Ala 375	Met	Lys	Gly	Leu	Gly 380	Thr	Asp	Glu	Asp		
														cag Gln		120	0
	_	_			_		-							aac Asn 415		124	8
														gcc Ala		129	6
_	_			_	_		_	_			_	_		gcc Ala	_	134	4
														gcc Ala		139	2
														gag Glu		144	0
														ggc Gly 495		148	8
	_	-	_	_			_	_	-			_	_	ccc Pro		153	6
														ctg Leu		158	4
														atc Ile		163	2
														gac Asp		168	0
														cgc Arg 575		172	8
				_			_							tcc Ser		177	6
														atg Met		182	4

595 600 605

ggc gcc ggc acc gac gac cac acc ctg atc cgc gtg atc gtg tcc cgc 1872 Gly Ala Gly Thr Asp Asp His Thr Leu Ile Arg Val Ile Val Ser Arg 615 620 tcc gag atc gac ctg ttc aac atc cgc aag gag ttc cgc aag aac ttc 1920 Ser Glu Ile Asp Leu Phe Asn Ile Arg Lys Glu Phe Arg Lys Asn Phe 625 630 635 1968 gcc acc tcc ctg tac tcc atg atc aag ggc gac acc tcc ggc gac tac Ala Thr Ser Leu Tyr Ser Met Ile Lys Gly Asp Thr Ser Gly Asp Tyr 650 655 645 2016 aag aag gcc ctg ctg ctg tgc ggc ggc gag gac gac taa taa taa Lys Lys Ala Leu Leu Leu Cys Gly Glu Asp Asp <210> 6 <211> 669 <212> PRT <213> Artificial Sequence <220> <221> misc_feature (15)..(15) <222> The 'Xaa' at location 15 stands for Ser. <223> <220> <221> misc_feature <222> (334)..(334) The 'Xaa' at location 334 stands for Lys, Asn, Arg, Ser, Thr, <223> Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu, Tyr, Trp, Cys, or Phe. <220> <221> misc_feature <222> (351)..(351)The 'Xaa' at location 351 stands for Lys, Asn, Arg, Ser, Thr, <223> Ile, Met, Glu, Asp, Gly, Ala, Val, Gln, His, Pro, Leu, Tyr, Trp, Cys, or Phe. <220> <223> primer <400> Met Asp Tyr Lys Asp Asp Asp Lys Leu Ala Ala Ala Asn Xaa Ala

Leu Arg Gly Thr Val Thr Asp Phe Ser Gly Phe Asp Gly Arg Ala Asp 20 25 30

5

Ala Glu Val Leu Arg Lys Ala Met Lys Gly Leu Gly Thr Asp Glu Asp

10

15

35 40 45

Ser	Ile	Leu	Asn	Leu	Leu	Thr	Ala	Arg	Ser	Asn	Ala	Gln	Arg	Gln	Gln
	50					55					60				

- Ile Ala Glu Glu Phe Lys Thr Leu Phe Gly Arg Asp Leu Val Asn Asp 65 70 75 80
- Met Lys Ser Glu Leu Thr Gly Lys Phe Glu Lys Leu Ile Val Ala Leu 85 90 95
- Met Lys Pro Ser Arg Leu Tyr Asp Ala Tyr Glu Leu Lys His Ala Lys
 100 105 110
- Leu Gly Ala Gly Thr Asp Glu Lys Val Leu Thr Glu Ile Ile Ala Ser 115 120 125
- Arg Thr Pro Glu Glu Leu Arg Ala Ile Lys Gln Ala Tyr Glu Glu Glu 130 135 140
- Tyr Gly Ser Asn Leu Glu Asp Asp Val Val Gly Asp Thr Ser Gly Tyr 145 150 155 160
- Tyr Gln Arg Met Leu Val Val Leu Leu Gln Ala Asn Arg Asp Pro Asp 165 170 175
- Thr Ala Ile Asp Asp Ala Gln Val Glu Leu Asp Ala Gln Ala Leu Phe 180 185 190
- Gln Ala Gly Glu Leu Lys Trp Gly Thr Asp Glu Glu Lys Phe Ile Thr 195 200 205
- Ile Leu Gly Thr Arg Ser Val Ser His Leu Arg Arg Val Phe Asp Lys 210 215 220
- Tyr Met Thr Ile Ser Gly Phe Gln Ile Glu Glu Thr Ile Asp Arg Glu 225 230 235 240
- Thr Ser Gly Asn Leu Glu Asn Leu Leu Leu Ala Val Val Lys Ser Ile 245 250 255
- Arg Ser Ile Pro Ala Tyr Leu Ala Glu Thr Leu Tyr Tyr Ala Met Lys 260 265 270

Gly Ala Gly Thr Asp Asp His Thr Leu Ile Arg Val Ile Val Ser Arg Ser Glu Ile Asp Leu Phe Asn Ile Arg Lys Glu Phe Arg Lys Asn Phe Ala Thr Ser Leu Tyr Ser Met Ile Lys Gly Asp Thr Ser Gly Asp Tyr Lys Lys Ala Leu Leu Leu Cys Gly Glu Asp Asp Xaa Arg Ser Arg Ser Gly Leu Glu Val Leu Phe Gln Gly Pro Gly Ser Thr Xaa Ala Leu Arg Gly Thr Val Thr Asp Phe Ser Gly Phe Asp Gly Arg Ala Asp Ala Glu Val Leu Arg Lys Ala Met Lys Gly Leu Gly Thr Asp Glu Asp Ser Ile Leu Asn Leu Leu Thr Ala Arg Ser Asn Ala Gln Arg Gln Gln Ile Ala Glu Glu Phe Lys Thr Leu Phe Gly Arg Asp Leu Val Asn Asp Met Lys Ser Glu Leu Thr Gly Lys Phe Glu Lys Leu Ile Val Ala Leu Met Lys Pro Ser Arg Leu Tyr Asp Ala Tyr Glu Leu Lys His Ala Lys Leu Gly Ala Gly Thr Asp Glu Lys Val Leu Thr Glu Ile Ile Ala Ser Arg Thr Pro Glu Glu Leu Arg Ala Ile Lys Gln Ala Tyr Glu Glu Glu Tyr Gly Ser Asn Leu Glu Asp Asp Val Val Gly Asp Thr Ser Gly Tyr

Tyr Gln Arg Met Leu Val Val Leu Leu Gln Ala Asn Arg Asp Pro Asp 500 505 510

Thr Ala Ile Asp Asp Ala Gln Val Glu Leu Asp Ala Gln Ala Leu Phe 515 520 525

Gln Ala Gly Glu Leu Lys Trp Gly Thr Asp Glu Glu Lys Phe Ile Thr 530 540

Ile Leu Gly Thr Arg Ser Val Ser His Leu Arg Arg Val Phe Asp Lys 545 550 555 560

Tyr Met Thr Ile Ser Gly Phe Gln Ile Glu Glu Thr Ile Asp Arg Glu 565 570 575

Thr Ser Gly Asn Leu Glu Asn Leu Leu Leu Ala Val Val Lys Ser Ile 580 585 590

Arg Ser Ile Pro Ala Tyr Leu Ala Glu Thr Leu Tyr Tyr Ala Met Lys 595 600 605

Gly Ala Gly Thr Asp Asp His Thr Leu Ile Arg Val Ile Val Ser Arg 610 620

Ser Glu Ile Asp Leu Phe Asn Ile Arg Lys Glu Phe Arg Lys Asn Phe 625 630 635 640

Ala Thr Ser Leu Tyr Ser Met Ile Lys Gly Asp Thr Ser Gly Asp Tyr 645 650 655

Lys Lys Ala Leu Leu Leu Cys Gly Gly Glu Asp Asp 660 665

<210> 7

٠.,

<211> 30

<212> DNA

<213> artificial sequence

<220>

<223> primer

<220>

<221> misc_feature

```
<222> (1)..(30)
<223> primer
<400> 7
                                                                       30
acctgagtag tcgccatggc acaggttctc
<210> 8
<211> 36
<212> DNA
<213> artificial sequence
<220>
<223> primer
<400> 8
                                                                       36
cccgaattca cgttagtcat cttctccaca gagcag
<210> 9
<211> 8
<212> PRT
<213> Artificial
<220>
<223> synthetic fusion peptide
<400> 9
Asp Tyr Lys Asp Asp Asp Lys
```