- 1. На аукционе участвуют n игроков. Пусть функция распределения сигналов имеет вид $F(x) = x^a$ на [0;1], где a это некая константа, $a \ge 1$.
 - (a) Найдите MR(x). Является ли MR(x) возрастающей?
 - (b) Постройте оптимальный аукцион.

$$MR(x) = x - \frac{1 - x^a}{ax^{a-1}} = x\left(1 + \frac{1}{a}\right) - \frac{1}{ax^{a-1}}$$
 (1)

Даже без производной видно, что функция возрастает. Оптимальным будет аукцион второй цены с резервной ценой:

$$r = \left(\frac{1}{a+1}\right)^{1/a} \tag{2}$$

- 2. Петя переезжает на новую квартиру, поэтому продает свои старые шкаф и комод (варианта взять их с собой у него нет). Потенциальных покупателей двое. Первый покупатель знает значение X_1 , второй значение X_2 . Величины X_1 и X_2 независимы и равномерны на [0;1]. Полезности первого игрока: от шкафа 0.5, от комода $0.8X_1$, от шкафа и комода $0.5 + X_1$. Полезности второго игрока: от шкафа 0.8, от комода $0.8 + 0.8X_2$
 - (a) Четко опишите механизм VCG применительно к этой задаче.
 - (b) Какова средняя прибыль продавца при использовании механизма VCG?

Составляем табличку:

	(Ш,К)	(К,Ш)	(КШ,-)	(-,ШК)
Покупатель 1	0.5	$0.8X_{1}$	$0.5 + X_1$	0
Покупатель 2	X_2	0.8	0	$0.8 + 0.8X_2$
Сумма	$0.5 + X_2$	$0.8 + 0.8X_1$	$0.5 + X_1$	$0.8 + 0.8X_2$

Покупатели одновременно декларируют свои значения X_i . Мы знаем, что в механизме VCG им будет оптимально говорить правду. Механизм VCG максимизирует сумму полезностей. В данном случае мы замечаем, что $0.8 + 0.8X_1 > 0.5 + X_1$ при любых $X_1 \in [0;1]$. И аналогично для X_2 . Поэтому правило выбора решения имеет вил:

Если $X_1 > X_2$, то комод — первому, и шкаф — второму. Если $X_1 < X_2$, то комод и шкаф — второму.

Осталось правило платежей:

Если $X_1 > X_2$, то первый платит $0.8X_2$, а второй $-0.5 + 0.2X_1$.

Если $X_1 < X_2$, то первый платит 0, а второй — $0.5 + X_1$.

Получаем выручку продавца:

$$R = (0.5 + 0.2X_1 + 0.8X_2)1_{X_1 > X_2} + (0.5 + X_1)1_{X_1 < X_2}$$
(3)

Находим:

$$E(X_1 1_{X_1 > X_2}) = \int_0^1 \int_0^{x_1} x_1 \cdot 1 \cdot dx_2 dx_1 = 1/3$$
 (4)

Аналогично, $E(X_1 1_{X_1 < X_2}) = 1/6$.

Получаем, что средняя выручка равна:

$$E(R) = 0.5 \cdot \frac{1}{2} + 0.2 \cdot \frac{1}{3} + 0.8 \cdot \frac{1}{6} + 0.5 \cdot \frac{1}{2} + \frac{1}{6} = \frac{13}{15}$$
 (5)

- 3. Есть n городов. Рядом с одним из них нужно построить мусоросжигательный завод. Жители города рядом с которым будет построен завод получат отрицательную полезность $U_i = -X_i$. Остальные получат полезность 0. Величины $X_i \sim U[0;1]$ и независимы. Каждый город знает свое X_i .
 - (a) Опишите механизм VCG применительно к этой задаче. Т.е. предполагается, что игроки объявляют числа $b_i \in [0;1]$ и механизм должен определять, у какого города строить завод и какие платежи должны сделать игроки в зависимости от b_i .
 - (b) Выпишите функцию плотности для компенсации, которую получают жители города рядом с которым будет построен мусоросжигательный завод.
 - (c) Сходится ли баланс у механизма VCG в этом случае? Если нет, то сколько в среднем нужно вложить средств извне в этот механизм?
 - (d) Что больше: компенсация или ущерб от строительства завода в механизме VCG?

Каждый город одновременно декларирует свой ущерб.

Правило принятия решения: завод построить рядом с городом, сообщившим наименьший ущерб.

Правило платежей: Город рядом с которым строят завод должен получить компенсацию в размере минимума ущербов остальных городов. Остальные города ничего не платят и не получают.

Автоматически получаем, что механизм VCG требует вливания средств извне. Т.к. компенсация равна не самому маленькому ущербу, а ущербу второму по малости, то: компенсация всегда больше ущерба.

Функция плотности: $p(y) = n \cdot 1 \cdot (n-1)y(1-y)^{n-2}$.

Средняя компесация равна (для взятия интеграла можно сделать замену z = 1 - y):

$$E(K) = \int_0^1 y \cdot n(n-1)y(1-y)^{n-2} dy = \frac{2}{n+1}$$
 (6)

- 4. Кнопочный аукцион и три игрока. Ценности V_1, V_2 и V_3 равномерны на [0;1] и независимы. Первый и второй игрок знают значение своих ценностей, т.е. $X_1 = V_1$ и $X_2 = V_2$. А третий игрок не знает!
 - (а) Что собой представляют стратегии игроков в этом случае? Почему их можно упростить?
 - (b) Найдите равновесие Нэша

Поскольку третий игрок ничего не знает, а только видит, сколько игроков осталось в игре, то его стратегия описывается двумя числами, b_3^3 и b_3^2 . Эти числа говорят, до какой цены давить кнопку, если в игре осталось три и два игрока.

Стратегия первого игрока описывается тремя функциями: $b_1^3(x)$ — до какой цены давить кнопку, если в игре три игрока, $b_1^{2a}(x,p)$ — до какой цены давить кнопку, если в игре двое: я и второй; $b_1^{2b}(x,p)$ — до какой цены давить кнопку, если в игре двое: я и третий. Стратегия второго игрока имеет такой же вид.

Поскольку ценности независимы, то никакой полезной информации от наблюдения за ценами выхода других игроков мы не получаем. Следовательно, стратегию третьего игрока можно заменить одним числом b_3 , а стратегию первого — одной функцией $b_1(x)$.

Получаем аукцион второй цены. Игроки ориентируются на ожидаемый выигрыш. Поэтому с точки зрения третьего игрока его ценность равна 0.5. Т.е. равновесие Нэша имеет вид $b_3 = 0.5$; $b_1(x) = x$; $b_2(x) = x$.