FUNKAMATEUR - Bauelementeinformation

8-Bit-A/D- und -D/A-Umsetzer für I²C-Bus

PCF8591

Grenzwerte

Parameter	Kurzzeichen	min.	max.	Einheit
Betriebsspannung	U_{B}	-0,5	8	V
Eingangsspannung	U_{E}	-0,5	$U_{B}+0,5$	V
Eingangsstrom	$I_{\rm E}$		±10	mA
Ausgangsstrom	I_A		±20	mA
Gesamtverlustleistung	P_{Vges}		300	mW
Verlustleistung je Ausgang	P_{VA}		100	mW
Betriebstemperatur	T_B	-40	85	°C

Kurzcharakteristik

- Betriebsspannung 2,5 bis 6 V
- serielle Datenübertragung und Steuerung via I²C-Bus
- vier analoge, programmierbare Eingänge; ein analoger Ausgang
- durch 3-Bit-Adressierung bis zu acht Schaltkreise an einem Bus einsetzbar
- im DIP16-, SO16-Gehäuse verfügbar

Kennwerte $(U_{B1} = 2,5...6 \text{ V}, U_{B2} = 0 \text{ V}, T_B = -40...+85 \text{ °C})$

Parameter	Kurzzeich	en min.	typ.	max.	Einheit
Spannungsversorgung					
Betriebsspannung	U_B	2,5		6	V
Betriebsstrom bei $f_{SCL} = 100 \text{ kH}$	Iz				
U _A aktiv	I_B		0,45	1	mA
U _A inaktiv	I_B		125	250	μA
Betriebsruhestrom					
bei $U_E = U_B$, $R_L = \infty$	I_{B0}		1	15	μA
Spannung für Power-on-Reset	U_{POR}	0,8		2	V
D/A-, A/D-Umsetzer					
Ausgangsspannung					
bei R _L = ∞	U_A	U_{B2}		U_{B1}	V
bei $R_L = 10 \text{ k}\Omega$	U_{A}	U_{B2}		$0.9 \cdot \mathrm{U_{B1}}$	V
Ausgangs-Offset-Fehler	U_{AO}			50	mV
Eingangsspannung	U_{E}	U_{B2}		U_{B1}	V
Eingangs-Offset-Fehler	U_{EO}			20	mV
I ² C-Bus					
Eingangsspannung, Low-Pegel	U_{EL}	0		$0.3 \cdot U_B$	V
Eingangsspannung, High-Pegel	U_{EH}	$0.7 \cdot U_B$	1	U_{B1}	V
Taktfrequenz	f_{SCL}	0,75		1,25	MHz

Beschreibung

Der PCF8591 ist ein 8-Bit-Analog/ Digital- und -Digital/Analog-Umsetzer mit vier Analogeingängen und einem Analogausgang, bei dem über den zweiadrigen, bidirektionalen I²C-Bus die Steuerung und Datenübertragung erfolgt. Durch die drei Adressanschlüsse A0, A1 und A2 ist ein Betrieb von bis zu acht Schaltkreisen an einem Bus möglich.

Die maximale Geschwindigkeit bei der A/D- und D/A-Umsetzung ist durch die Taktfrequenz des I²C-Busses festgelegt.

Hersteller

Philips semiconductors www.semiconductors.philips.com

Blockschaltbild

Bild 1: Blockschaltbild des PCF8591

Anschlussbelegung

Pin 1...4: Analogeingänge (U_{E0}...U_{E3})

Pin 5...7: Adresseingänge (A0...2)

Pin 8: negative Betriebsspannung (U_{B2})

Pin 9: serielle Datenleitung (SDA)

Pin 10: serielle Taktleitung (SCL)

Pin 11: Oszillator (OSC)

Pin 12: Schalter für Oszillator (EXT)

Pin 13: Masse, analog (AGND)

Pin 14: Spannungsreferenz (U_{Ref})

Pin 15: Analogausgang (U_A)

Pin 16: positive Betriebsspannung (U_{B1})

Bild 2: Pinbelegung (DIP16)

Wichtige Diagramme

SCL Datenleitung stabil; Daten gültig änderung

Bild 3: Start- und Stoppbedingungen auf dem I²C-Bus

Bild 4: Bit-Transfer und Gültigkeit der Daten

Bild 5: Slave-Adressen eines PCF8591

Funktion

Ein I²C-Bus dient der Zweiwege-Zweidrahtübertragung zwischen unterschiedlichen Schaltkreisen oder Modulen. Die beiden Verbindungsleitungen bezeichnet man als serielle Datenleitung (SDA) und seriellen Takt (SCL). Über Pull-up-Widerstände sind sie an die positive Betriebsspannung zu legen. Ein Gerät, das eine Nachricht ausgibt, ist ein Sender das, das eine Nachricht aufnimmt, ein Empfänger. Als Master wird das Gerät bezeichnet, das die Übertragung steuert -Slave bezeichnet das gesteuerte Gerät.

• Bit-Transfer

Je Taktimpuls wird ein Datenbit übertragen. Während der Takt auf High liegt, müssen die zu übertragenden Daten stabil am Schaltkreis anliegen.

• Start-Stopp-Bedingungen

Ist der Bus nicht belegt, liegen an SDA und SCL High-Pegel an. Die Übertragung beginnt, wenn die Datenleitung auf Low umschaltet und die Taktleitung noch auf High liegt (Startbedingung). Ein Übergang der SDA-Leitung von Low auf High bei High-Pegel an SCL beendet die Übertragung wieder (Stoppbedingung).

• Referenzspannung

Zur A/D- und D/A-Umsetzung ist eine stabile externe Referenz U_{Ref} erforderlich, für die sowohl eine Gleichspannung als auch niederfrequente Wechselspannung nutzbar ist. Im letzteren Fall arbeitet der D/A-Umsetzer als Einquadranten-Multiplizierer.

Oszillator

Soll der interne Oszillator zur Takterzeugung für die A/D-Umsetzung herangezogen werden, ist der Steuereingang EXT mit der Betriebsspannung zu verbinden.

• Adress- und Steuerbyte

– 4 unsym. Eingänge

Die ersten acht übertragenen Bits sind das Adressbyte, das aus festem und programmierbarem Teil besteht und die Kennzeichnung der Richtung der nachfolgenden Datenübertragung enthält. Durch den zweiten 8-Bit-Block werden die Funktionen der Ein-/Ausgänge und der jeweils ausgewählte Kanal bestimmt. - Analogausgang aktiv

x1xxxxxx

xx00xxxx

 3 sym. Eingänge 	xx01xxxx
 2 unsym. Eingänge 	
und 1 sym. Eingang	xx10xxxx
 2 sym. Eingänge 	xx11xxxx
 automatisch nächsten 	
Kanal wählen	xxxxx1xx
– Kanal 0	xxxxxx00
– Kanal 1	xxxxxx01
- Kanal 2	xxxxxx10
- Kanal 3	xxxxxxx11

Applikationsschaltung

Bild 6: Nutzung des PCF8591 zur Übertragung analoger Eingangssignale verschiedener Quellen über einen I²C-Bus