Университет ИТМО

Факультет программной инженерии и компьютерной техники Образовательная программа системное и прикладное программное обеспечение

Лабораторная работа №4 По дисциплине "Основы профессиональной деятельности" Вариант 9400

> Выполнил студент группы Р3109 Евграфов Артём Андреевич Проверила: Ткешелашвили Нино Мерабиевна

Содержание

1. Задание варианта 9400	2
2. Описание программы	2
3. ОП и ОДЗ исходных данных и результата	4
4. Трассировка	4
5. Вывол	5

1. Задание варианта 9400

ODC:	+ 0200		OEA:	EE0B	1	691:	AC01
ODD:	EE18	1	0EB:	AE08	ĺ	692:	F204
ODE:	AE14		OEC:	0740	ı	693:	F003
ODF:	0740		OED:	0C00	1	694:	7E08
0E0:	0C00		OEE:	D691	1	695:	F004
0E1:	D691		0EF:	0800	1	696:	F803
0E2:	0800		0F0:	6E05	1	697:	4C01
0E3:	6E12		0F1:	EE04	1	698:	6E05
0E4:	EE11		0F2:	0100		699:	CE01
0E5:	AE0F		0F3:	ZZZZ		69A:	AE02
0E6:	0C00		0F4:	YYYY		69B:	EC01
0E7:	D691		0F5:	XXXX	1	69C:	0A00
0E8:	0800		0F6:	00EF	1	69D:	063F
0E9:	4E0C	ı			ı	69E:	00EF

2. Описание программы

Адрес	Содержимое	Мнемоника	Комментарии
0DC	0200	CLA	Очистка аккумулятора
0DD	EE18	ST (IP + 18)	Загружаем $AC = 0000_{16}$ в ячейку $(0F6)$, то есть
			обнуляем R
0DE	AE14	LD (IP + 14)	Инициализируем AC значением Z
0DF	0740	DEC	Декрементируем АС
0E0	0C00	PUSH	Кладём AC на вершину стека, $SP = 7FF_{16}$,
			(7FF) = Z - 1
0E1	D691	CALL 691	Вызываем подпрограмму, $SP = 7FE_{16}$, $(7FE) =$
			00E2 ₁₆ (на вершине стека адрес следующей коман-
			ды после отработки функции)
0E2	0800	POP	AC = f(Z - 1), SP = 000
0E3	6E12	SUB (IP + 12)	Вычитаем из $AC (0F6) = 0000$, AC не меняется
0E4	EE11	ST (IP + 11)	(0F6) = AC = f(Z - 1)
0E5	AE0F	LD (IP + 16)	Инициализируем AC значением X
0E6	0C00	PUSH	Кладём AC на вершину стека, $SP = 7FF_{16}$,
			(7FF) = X, (7FE) = 00E2
0E7	D691	CALL 691	Вызываем подпрограмму, $SP = 7FE_{16}$, $(7FE) =$
			$00E8_{16}$
0E8	0800	POP	AC = f(X), SP = 000
0E9	4E0C	$\mathrm{ADD}\;(\mathrm{IP}+12)$	AC = f(X) + f(Z - 1)
0EA	EE0B	ST (IP + 11)	(0F6) = AC = f(Z - 1) + f(X)
0EB	AE08	LD (IP + 8)	Инициализируем АС значением Ү
0EC	0740	DEC	Декрементируем Ү
0ED	0C00	PUSH	Кладём AC на вершину стека, $SP = 7FF_{16}$,
			(7FF) = Y - 1, (7FE) = 00E8
0EE	D691	CALL 691	Вызываем подпрограмму, $SP = 7FE_{16}$, $(7FE) =$
			$00EF_{16}$
0EF	0800	POP	AC = f(Y - 1), SP = 000

Адрес	Содержимое	Мнемоника	Комментарии
0F0	6E05	SUB (IP + 5)	Вычитаем из $AC(0F6) = f(Z - 1) + f(X), AC = f(Y)$
			-1) - f(Z - 1) - f(X)
0F1	EE04	ST (IP + 4)	$ \begin{array}{c} -1) - f(Z - 1) - f(X) \\ (0F6) = AC = f(Y - 1) - f(Z - 1) - f(X) \end{array} $
0F2	0100	HLT	Остановка программы
0F3	ZZZZ	Z	Число, аргумент функции
0F4	YYYY	Y	Число, аргумент функции
0F5	XXXX	X	Число, аргумент функции
0F6	00EF	R	Число, значение выражения
691	AC01	LD (SP + 1)	Загружаем в АС значение аргумента (элемент сте-
			ка по адресу 7FF), обновляем флаги состояния
692	F204	BNS $(IP + 4)$	Если аргумент ф-ции < 0, то переходим на (697)
693	F003	BZS (IP + 3)	Если аргумент ф-ции = 0, то переходим на (697)
694	7E08	CMP (IP + 8)	Если аргумент > 0, то устанавливаем флаги по
			результату $AC - 063F_{16}$
695	F004	BZS (IP + 4)	Если аргумент ф-ции равен 063F ₁₆ , то переходим
			на (69А)
696	F803	BLT (IP + 3)	Если аргумент ф-ции меньше $063F_{16}$, но > 0 , то
			переходим на (69А)
697	4C01	ADD (SP + 1)	Если аргумент ≤ 0 или $> 063F_{16}$, то прибавляем
			к АС аргумент (то есть умножим на 2 АС)
698	6E05	SUB (IP + 5)	После умножения на 2 вычитаем из АС значение
			$00\mathrm{EF}_{16}$
699	CE01	JUMP (IP + 1)	После вычитания переходим на ячейку (69В). Те-
			перь $AC = 2 \cdot aргумент - 00EF_{16}$
69A	AE02	LD (IP + 2)	Если аргумент $\in (0;063F_{16}]$, то инициализируем
			AC значением 063F ₁₆
69B	EC01	ST (SP + 1)	Загружаем в 7FF значение AC
69C	0A00	RET	Выходим из подпрограммы, следующая команда
			выполнится по адресу из 7FE (вершина стека), те-
			перь $SP = 7FF$
69D	063F	A	Константа для сравнения 1599 ₁₀
69E	00EF	В	Константа для вычитания 23910

Программа вычисляет следующее значение: R = f(Y - 1) - f(Z - 1) - f(X), где

$$\mathrm{R}=\mathrm{f}(\mathrm{Y}$$
 - $\mathrm{1})$ - $\mathrm{f}(\mathrm{Z}$ - $\mathrm{1})$ - $\mathrm{f}(\mathrm{X})$, где

$$f(n) = \begin{cases} 1599, & n \in (0, 1599] \\ 2n - 239, & n \in (-\infty, 0] \cup (1599, +\infty) \end{cases}$$

3. ОП и ОДЗ исходных данных и результата

3.1. Область представления

Х, Ү, Z, R, А, В – 16-ричные знаковые числа

3.2. Область определения

```
A=063F_{16}=1599_{10} (константа) 
 B=00EF_{16}=239_{10} (константа) 
 Основная программа вычисляет выражение R=f(Y - 1) - f(Z - 1) - f(X)
```

При значении $n \leq 1599$ и n > 0 функция вернёт 1599, то есть при вводе любого значения из этих промежутков не произойдёт переполнения.

При n>1599 или $n\le 0$ функция она вернёт 2n - 239. Найдем ОДЗ для аргумента функции в этом случае:

$$min(R) = -2^{15} = -32768$$

 $max(R) = 2^{15} - 1 = 32767$

Тогда значение f по модулю не должно превышать $\lfloor \frac{32767}{3} \rfloor = 10922$ (очевидно f принимает такое значение).

$$max(n) = \lfloor \frac{10922 + 239}{2} \rfloor = 5580$$

 $min(n) = \lfloor \frac{-10922 + 239}{2} \rfloor = -5341$

При вышеуказанных значениях аргумента значение R не переполнится, но из-за того, что числа целые, $R \geq (-5341 \cdot 2 - 239) \cdot 3 = -32763$ и $R \leq (5580 \cdot 2 - 239) \cdot 3 = 32763$. Итого:

$$\left\{ \begin{array}{l} R \in [-32763; 32763] \\ X \in [-5341; 5580] \\ Y, Z \in [-5340; 5581] \end{array} \right.$$

4. Трассировка

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
ODC	0200	ODC	0000	000	0000	000	0000	0000	004	0100		
ODC	0200	ODD	0200	ODC	0200	000	OODC	0000	004	0100		
ODD	EE18	ODE	EE18	0F6	0000	000	0018	0000	004	0100	0F6	0000
ODE	AE14	ODF	AE14	0F3	7DCF	000	0014	7DCF	000	0000		
ODF	0740	0E0	0740	ODF	0740	000	OODF	7DCE	001	0001		
0E0	0C00	0E1	0C00	7FF	7DCE	7FF	00E0	7DCE	001	0001	7FF	7DCE
0E1	D691	691	D691	7FE	00E2	7FE	D691	7DCE	001	0001	7FE	00E2
691	ACO1	692	ACO1	7FF	7DCE	7FE	0001	7DCE	001	0001		
692	F204	693	F204	692	F204	7FE	0692	7DCE	001	0001		
693	F003	694	F003	693	F003	7FE	0693	7DCE	001	0001		
694	7E08	695	7E08	69D	063F	7FE	8000	7DCE	001	0001		
695	F004	696	F004	695	F004	7FE	0695	7DCE	001	0001		
696	F803	697	F803	696	F803	7FE	0696	7DCE	001	0001		
697	4C01	698	4C01	7FF	7DCE	7FE	0001	FB9C	OOA	1010		
698	6E05	699	6E05	69E	00EF	7FE	0005	FAAD	009	1001		
699	CE01	69B	CE01	699	069B	7FE	0001	FAAD	009	1001		
69B	EC01	69C	EC01	7FF	FAAD	7FE	0001	FAAD	009	1001	7FF	FAAD
69C	0A00	0E2	0A00	7FE	00E2	7FF	069C	FAAD	009	1001		
0E2	0800	0E3	0800	7FF	FAAD	000	00E2	FAAD	009	1001		
0E3	6E12	0E4	6E12	0F6	0000	000	0012	FAAD	009	1001		
0E4	EE11	0E5	EE11	0F6	FAAD	000	0011	FAAD	009	1001	0F6	FAAD
0E5	AEOF	0E6	AEOF	0F5	0640	000	000F	0640	001	0001		
0E6	0C00	0E7	0C00	7FF	0640	7FF	00E6	0640	001	0001	7FF	0640
0E7	D691	691	D691	7FE	00E8	7FE	D691	0640	001	0001	7FE	00E8

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
691	ACO1	692	AC01	7FF	0640	7FE	0001	0640	001	0001		
692	F204	693	F204	692	F204	7FE	0692	0640	001	0001		
693	F003	694	F003	693	F003	7FE	0693	0640	001	0001		
694	7E08	695	7E08	69D	063F	7FE	8000	0640	001	0001		
695	F004	696	F004	695	F004	7FE	0695	0640	001	0001		
696	F803	697	F803	696	F803	7FE	0696	0640	001	0001		
697	4C01	698	4C01	7FF	0640	7FE	0001	0C80	000	0000		
698	6E05	699	6E05	69E	00EF	7FE	0005	0B91	001	0001		
699	CE01	69B	CE01	699	069B	7FE	0001	0B91	001	0001		
69B	EC01	69C	EC01	7FF	0B91	7FE	0001	0B91	001	0001	7FF	0B91
69C	OAOO	0E8	0A00	7FE	00E8	7FF	069C	0B91	001	0001		
0E8	0800	0E9	0800	7FF	0B91	000	00E8	0B91	001	0001		
0E9	4EOC	OEA	4EOC	0F6	FAAD	000	000C	063E	001	0001		
OEA	EEOB	0EB	EEOB	0F6	063E	000	000B	063E	001	0001	0F6	063E
0EB	AE08	0EC	AE08	0F4	0012	000	8000	0012	001	0001		
OEC	0740	OED	0740	0EC	0740	000	00EC	0011	001	0001		
OED	0C00	OEE	0C00	7FF	0011	7FF	OOED	0011	001	0001	7FF	0011
OEE	D691	691	D691	7FE	00EF	7FE	D691	0011	001	0001	7FE	00EF
691	ACO1	692	ACO1	7FF	0011	7FE	0001	0011	001	0001		
692	F204	693	F204	692	F204	7FE	0692	0011	001	0001		
693	F003	694	F003	693	F003	7FE	0693	0011	001	0001		
694	7E08	695	7E08	69D	063F	7FE	8000	0011	800	1000		
695	F004	696	F004	695	F004	7FE	0695	0011	800	1000		
696	F803	69A	F803	696	F803	7FE	0003	0011	800	1000		
69A	AE02	69B	AE02	69D	063F	7FE	0002	063F	000	0000		
69B	EC01	69C	EC01	7FF	063F	7FE	0001	063F	000	0000	7FF	063F
69C	0A00	OEF	0A00	7FE	00EF	7FF	069C	063F	000	0000		
OEF	0800	0F0	0800	7FF	063F	000	00EF	063F	000	0000		
0F0	6E05	0F1	6E05	0F6	063E	000	0005	0001	001	0001		
OF1	EE04	0F2	EE04	0F6	0001	000	0004	0001	001	0001	0F6	0001
0F2	0100	0F3	0100	0F2	0100	000	00F2	0001	001	0001		

5. Вывод

В ходе данной лабораторной работы я:

Познакомился с реализацией подпрограмм в БЭВМ

Познакомился с такой структурой данных, как стек

Закрепил знания о режимах адресации в БЭВМ, изучал относительную адресацию относительно вершины стека