Lecture 4 Numerical methods of 1st order differential equations

Where a differential equation and known boundary conditions are given, an approximate solution may be obtained by applying a numerical method. There are a number of such numerical methods available and the simplest of these is called Euler's method.

Euler's method

At Point Q at Figure 2:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \cdots$$

Which a statement called Taylor's series and it will be closer looked at in a lecture later on in the module.

For now, if we say h is the interval between the two ordinates y_0 and y_1 as shown in Figure 3, and if $f(a) = y_0$ and $y_1 = f(a + h)$, then Euler's method states:

f(a + h) = f(a) + hf'(a) $y_1 = y_0 + h(y')_0$

i.e.

Figure 2

The approximation used with Euler's method is to take only the first two terms of Taylor's series.

Hence if y_0 , h and $(y')_0$ are known, y_1 , which is an approximate value for the function at Q in Fig. 3, can be calculated. Euler's method is demonstrated in the worked problems following.

Example 1. Obtain a numerical solution of the differential equation

$$\frac{dy}{dx} = 3(1+x) - y$$

given the initial conditions that x = 1 when y = 4, for the range x = 1.0 to x = 2.0 with intervals of 0.2. Draw the graph of the solution

$$\frac{dy}{dx} = y' = 3(1+x) - y$$

With h = 0.2, $x_0 = 1$ and $y_0 = 4$, $(y')_0 = 3(1 + 1) - 4 = 2$.

By Euler's method:

$$y_n = y_{n-1} + h(y')_{n-1}$$

Hence

$$y_1 = 4 + (0.2)(2) = 4.4$$

At point Q in Fig. 3, $x_1 = 1.2, y_1 = 4.4$

Figure 3

Continuing the calculation:

$$(y')_1 = 3(1 + x_1) - y_1$$

 $(y')_1 = 3(1 + 1.2) - 4.4 = 2.2$

If the values of x, y and y' found for point Q, are regarded as new starting values of x_0 , y_0 , $(y')_0$, the above process can be repeated and values found for the point R shown in Fig. 4

Figure 4

Thus at point R,

$$y_2 = 4.4 + (0.2)(2.2) = 4.84$$

When $x_2 = 1.4$ and $y_2 = 4.84$,

$$(y')_2 = 3(1 + 1.4) - 4.84 = 2.36$$

This step by step Euler's method can be continued and it is easiest to list the results in a table:

	x_0	<i>y</i> ₀	$(y')_0$
1. 2. 3. 4. 5. 6.	1 1.2 1.4 1.6 1.8 2.0	4 4.4 4.84 5.312 5.8096 6.32768	2 2.2 2.36 2.488 2.5904

For line 4, where $x_3 = 1.6$:

$$y_3 = 4.84 + (0.2)(2.36) = 5.312$$

 $(y')_3 = 3(1 + 1.6) - 5.312 = 2.488$

For line 5, where $x_4 = 1.8$:

$$y_4 = 5.312 + (0.2)(2.488) = 5.8096$$

 $(y')_4 = 3(1 + 1.8) - 5.8096 = 2.5904$

For line 6, where $x_5 = 2.0$:

$$y_5 = 5.8096 + (0.2)(2.5904) = 6.32768$$

(As the range is 1.0 to 2.0 there is no need to calculate $(y')_0$ in line 6).

The particular solution is given by the value of *y* against *x*.

A graph of the solution of

$$\frac{dy}{dx} = 3(1+x) - y$$

with the initial conditions x = 1 when y = 4 is shown in Fig. 5.

Figure 5

The Runge-Kutta method

The Runge-Kutta method for solving first order differential equations is widely used and provides a high degree of accuracy. Again, as with the two previous methods, the Runge-Kutta method is a step-by-step process where results are tabulated for a range of values of x. Although several intermediate calculations are needed at each stage, the method is fairly

straightforward. The 7 step procedure for the Runge-Kutta method, without proof, is as follows:

To solve the differential equation $\frac{dy}{dx} = f(x,y)$ given the initial condition $y = y_0$ at $x = x_0$ for a range of values of $x = x_0(h)x_n$:

- 1. Identify x_0 , y_0 and h, and values of x_1 , x_2 , x_3 ,
- 2. Evaluate $k_1 = f(x_n, y_n)$ starting with n = 0
- 3. Evaluate $k_2 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1\right)$
- 4. Evaluate $k_3 = f\left(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_2\right)$
- 5. Evaluate $k_4 = f(x_n + h, y_n + hk_3)$
- 6. Use the values determined from steps 2 to 5 to evaluate: $y_{n+1} = y_n + \frac{h}{6}\{k_1 + 2k_2 + 2k_3 + k_4\}$
- 7. Repeat steps 2 to 6 for n = 1, 2, 3, ...

Thus, step 1 is given, and steps 2 to 5 are intermediate steps leading to step 6. It is usually most convenient to construct a table of values. The Runge-Kutta method is demonstrated in the following worked problems.

Example 2. Use the Runge-Kutta method to solve the differential equation:

$$\frac{dy}{dx} = y - x$$

in the range 0(0.1)0.5, given the initial conditions that at x = 0, y = 2

Using the above procedure:

1. $x_0 = 0$, $y_0 = 2$ and since h = 0.1, and the range is from x = 0 to x = 0.5, then $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$, $x_4 = 0.4$, and $x_5 = 0.5$

Let n = 0 to determine y_1 :

2.

$$k_1 = f(x_0, y_0) = f(0, 2);$$

Since

$$\frac{dy}{dx} = y - x$$
 $k_1 = f(0, 2) = 2 - 0 = 2$

3.

$$k_2 = f\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_1\right)$$

$$k_2 = f\left(0 + \frac{0.1}{2}, 2 + \frac{0.1}{2}(2)\right)$$

$$k_2 = f\left(0.05, 2.1\right) = 2.1 - 0.05 = 2.05$$

4.

$$k_3 = f\left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}k_2\right)$$

 $k_3 = f\left(0 + \frac{0.1}{2}, 2 + \frac{0.1}{2}(2.05)\right)$

$$k_3 = f(0.05, 2.1025) = 2.1025 - 0.05 = 2.0525$$

5.

$$k_4 = f(x_0 + h, y_0 + h k_3)$$

 $k_4 = f(0 + 0.1, 2 + 0.1(2.0525))$

$$k_3 = f(0.1, 2.20525) = 2.20525 - 0.1 = 2.10525$$

6.

$$y_{n+1} = y_n + \frac{h}{6} \{k_1 + 2k_2 + 2k_3 + k_4\}$$

When n = 0

$$y_1 = y_0 + \frac{h}{6} \{k_1 + 2k_2 + 2k_3 + k_4\}$$

$$y_1 = 2 + \frac{0.1}{6} \{2 + 2(2.05) + 2(2.0525) + 2.10525\} = 2 + \frac{0.1}{6} \{12.31025\} = 2.205171$$

Let n = 1 to determine y_2 :

2.

$$k_1 = f(x_1, y_1) = f(0.1, 2.205171);$$

Since

$$\frac{dy}{dx} = y - x$$
 $k_1 = f(0.1, 2.205171) = 2.205171 - 0.1 = 2.105171$

3.

$$k_2 = f\left(x_1 + \frac{h}{2}, y_1 + \frac{h}{2}k_1\right)$$

$$k_2 = f\left(0.1 + \frac{0.1}{2}, 2.205171 + \frac{0.1}{2}(2.105171)\right)$$

$$k_2 = f\left(0.15, 2.31042955\right) = 2.31042955 - 0.15 = 2.160430$$

4.

$$k_3 = f\left(x_1 + \frac{h}{2}, y_1 + \frac{h}{2}k_2\right)$$

 $k_3 = f\left(0.1 + \frac{0.1}{2}, 2.205171 + \frac{0.1}{2}(2.160430)\right)$

$$k_3 = f(0.15, 2.3131925) = 2.3131925 - 0.15 = 2.163193$$

5.

$$k_4 = f(x_1 + h, y_1 + h k_3)$$

 $k_4 = f(0.1 + 0.1, 2.205171 + 0.1 (2.163193))$

$$k_3 = f(0.2, 2.421490) = 2.421490 - 0.2 = 2.221490$$

6.

$$y_{n+1} = y_n + \frac{h}{6} \{k_1 + 2k_2 + 2k_3 + k_4\}$$

When n = 1

$$y_2 = y_1 + \frac{h}{6} \{k_1 + 2k_2 + 2k_3 + k_4\}$$

$$y_2 = 2.205171 + \frac{0.1}{6} \{2.105171 + 2(2.160430) + 2(2.163193) + 2.221490\} = \mathbf{2.421403}$$

In a similar manner y_3 , y_4 and y_5 can be calculated and the results are shown in the following table:

n	x_n	k_1	k ₂	<i>k</i> ₃	k ₄	y_n
0	0					2
1	0.1	2.0	2.05	2.0525	2.10525	2.205171
2	0.2	2.105171	2.160430	2.163193	2.221490	2.421403
3	0.3	2.221403	2.282473	2.285527	2.349956	2.649859
4	0.4	2.349859	2.417339	2.420726	2.491932	2.891824
5	0.5	2.491824	2.566415	2.570145	2.648838	3.148720

If we would to use Euler's method on the same question and compare the results, the following would be found:

x	Euler's method y	Runge-Kutta method y	Exact value $y = x + 1 + e^x$
0	2	2	2
0.1	2.2	2.205171	2.205170918
0.2	2.41	2.421403	2.421402758
0.3	2.631	2.649859	2.649858808
0.4	2.8641	2.891824	2.891824698
0.5	3.11051	3.148720	3.148721271

It is seen from the table that the Runge-Kutta method is exact, correct to 5 decimal places.