



# Advanced Control of a Flexible Multipurpose Continuous Pharmaceutical Tablet Manufacturing Process

R. Ramachandran, R. Singh, A. Sahay

Engineering Research Center for Structured Organic Particulate Systems
Department of Chemical & Biochemical Engineering
Rutgers University, USA













## Flexible multipurpose tablet manufacturing process



Wet Granulation





Enable:
Continuous
FLEXIBLE
multipurpose
platform

Ref.: Singh, R., Boukouvala, F., Jayjock, E., Ramachandran, R. Ierapetritou, M., Muzzio, F. (2012). PharmPro Magazine, 28 June, 2012, http://www.pharmpro.com/articles/2012/06/busi ness-Flexible-Multipurpose-Continuous-Processing/.





## Continuous direct compaction tablet manufacturing pilot plant



**Ref.: Singh, R.,** Boukouvala, F., Jayjock, E., Ramachandran, R. Ierapetritou, M., Muzzio, F. (2012). GMP news, European Compliance Academic (ECE), August, 2012, http://www.gmp-compliance.org.





## Systematic methodology (Hybrid MPC-PID control scheme)



Singh, R., Ierapetritou, M., Ramachandran, R. (2013). European Journal of Pharmaceutics and Biopharmaceutics, http://dx.doi.org/10.1016/j.ejpb.2013.02.019.







## **Steps 1 - 2: Control loops and controller configurations**







## Steps 1-2: Control variables and actuators pairing







## **Steps 1 - 2: Control loops and configurations**

| Critical process | Controlled variables           | Intermediate actuator            | Final actuator                     | Control          | Control     | Control scheme 3    |
|------------------|--------------------------------|----------------------------------|------------------------------------|------------------|-------------|---------------------|
| points           |                                |                                  |                                    |                  |             |                     |
| Blender          | Total flow rate                | API flow rate (y <sub>12</sub> ) | Rotation speed of API              | Cascade PID      | MPC         | Hybrid MPC-PID      |
|                  | (y <sub>11</sub> )             |                                  | feeder (u <sub>1</sub> )           |                  |             |                     |
|                  | RSD (y <sub>21</sub> )         | Lubricant flow rate              | Rotation speed of                  | Cascade PID      | Cascade PID | Cascade PID         |
|                  |                                | (y <sub>22</sub> )               | lubricant feeder (u <sub>2</sub> ) |                  |             |                     |
|                  | API composition                | -                                | Rotation speed of                  | Single loop      | Single loop | Single loop control |
|                  | (y <sub>3</sub> )              |                                  | blender (u <sub>3</sub> )          | control PID      | control PID | PID                 |
|                  | API Excipient                  | -                                | Rotation speed of                  | Ratio controller | Ratio       | Ratio controller    |
|                  | ratio (y <sub>4</sub> )        |                                  | excipient feeder (u <sub>4</sub> ) |                  | controller  |                     |
| Tablet           | Tablet weight                  | Pre-compression                  | Feed volume (u <sub>5</sub> )      | Cascade PID      | MPC         | Hybrid MPC-PID      |
| press            | (y <sub>51</sub> )             | pressure (y <sub>52</sub> )      |                                    |                  |             |                     |
|                  | Tablet                         | Hardness (y <sub>62</sub> ),     | Punch displacement                 | Cascade PID      | MPC         | Hybrid MPC-PID/     |
|                  | dissolution (y <sub>61</sub> ) | Main compression                 | (u <sub>6</sub> )                  |                  |             | Cascade PID         |
|                  |                                | force (y <sub>63</sub> )         |                                    |                  |             |                     |

- 1. Singh, R., Ierapetritou, M., Ramachandran, R. (2012). An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. International Journal of Pharmaceutics, 438 (1-2), 307-326.
- 2. Ramachandran, R., Arjunan, J., Chaudhury, A, Ierapetritou, M. (2012). Model-Based Control Loop Performance Assessment of a Continuous Direct Compaction Pharmaceutical Processes. *J. Pharm. Innov.*, *6*(*3*), 249-263.
- 3. Singh, R., Gernaey, K. V., Gani, R., (2010). ICAS-PAT: A Software for Design, Analysis & Validation of PAT Systems. Computers & Chemical Engineering, 34(7), 1108-1136.







## Step 4. Design MPC: Hybrid MPC-PID (set point tracking)



#### Note:

- Final actuator: Rotational speed of API feeder
- Slave controller: PID







## Step 4. Design MPC: Hybrid MPC-PID (set point tracking)





#### Note:

- Final actuator: Powder feed rate
- Slave controller: PID







## Step 4. Design MPC: Hybrid MPC-PID (disturbances rejection)



#### Note:

- Final actuator: Rotational speed of API feeder
- Slave controller: PID





## **Step 5: Performance evaluation (set point tracking)**

#### Control variable: Total flow rate from blender







#### **Step 6: Designed control system**









## **Step 7: Controller implementation**







## Integration of gPROMS with DeltaV control system









## Step 7: Control interface (DeltaV control system)







## Implemented MPC in DeltaV control system









## Closed-loop performance (model-based)







## **Closed-loop performance (in plant)**





#### **Conclusions**

- **A** hybrid MPC-PID controller has been designed for continuous direct compaction tablet manufacturing process
- **❖** The performance of hybrid control system has been compared with the regulatory control system as well as MPC alone and found to be better
- Set-point tracking and disturbances rejection ability of control strategy has been analyzed
- **❖** The current and future work includes the implementation of hybrid control system in NSF-ERC pilot plant facility





#### References

- 1. Singh, R., Ierapetritou, M., Ramachandran, R. (2012). An engineering study on the enhanced control and operation of continuous manufacturing of pharmaceutical tablets via roller compaction. International Journal of Pharmaceutics, 438 (1-2), 307-326.
- Singh, R., Ierapetritou, M., Ramachandran, R. (2013). System-wide hybrid model predictive control of a continuous pharmaceutical tablet manufacturing process via direct compaction. European Journal of Pharmaceutics and Biopharmaceutics, http://dx.doi.org/10.1016/j.ejpb.2013.02.019.
- 3. Singh, R., Boukouvala, F., Jayjock, E., Ramachandran, R. Ierapetritou, M., Muzzio, F. (2012). Flexible Multipurpose Continuous Processing. PharmPro Magazine, 28 June, 2012, http://www.pharmpro.com/articles/2012/06/business-Flexible-Multipurpose-Continuous-Processing/.
- 4. Singh, R., Boukouvala, F., Jayjock, E., Ramachandran, R. Ierapetritou, M., Muzzio, F. (2012). Flexible Multipurpose Continuous Processing of Pharmaceutical Tablet Manufacturing Process. GMP news, European Compliance Academic (ECE), http://www.gmp-compliance.org/ecanl\_503\_0\_news\_3268\_7248\_n.html
- 5. Ramachandran, R., Arjunan, J., Chaudhury, A, Ierapetritou, M. (2012). Model-Based Control Loop Performance Assessment of a Continuous Direct Compaction Pharmaceutical Processes. J. Pharm. Innov., 6(3), 249-263.
- 6. Ramachandran, R., Chaudhury, A. (2011). Model-based design and control of continuous drum granulation processes. Chemical Engineering Research & Design, 90(8), 1063-1073.
- Singh, R., Gernaey, K. V., Gani, R. (2010). ICAS-PAT: A Software for Design, Analysis & Validation of PAT Systems. Computers & Chemical Engineering, Volume 34, Issue 7, 1108-1136.
- 8. Hsu, S., Reklaitis, G.V., Venkatasubramanian, V. (2010). Modeling and control of roller compaction for pharmaceutical manufacturing. Part II: Control and system design. J. Pharm. Innov., 5(3), 24-36.
- 9. Singh, R., Ierapetritou, M., Ramachandran, R. (2012). Model-based feedback control of a continuous pharmaceutical tablet manufacturing process via wet granulation. Chemical Engineering Science, under review.



#### <u>Acknowledgements</u>

- ❖ This work is supported by the National Science Foundation Engineering Research Center on Structured Organic Particulate Systems (ERC-SOPS), through Grant NSF-ECC 0540855.
- ERC-SOPS colleagues for useful discussions. Carlos Velazquez (UPRM)
- The authors would also like to acknowledge Pieter Schmal (PSE) and Howard Stomato (BMS)

Thank you!

**QUESTIONS?**