Ondas Custicas SMM OMCOS

Alunos:

Marcelo Elias de Araújo Júnior

Isadora Caetano de Almeida

Professor:

Alberico Bloheim de Carvalho Junior

Universidade Federal de Segipe | Física Comuptacional | 2023

Introdução

Ondas sonoras são ondas senoidais transmitidas quando um meio vibra em frequências captáveis pelo ouvido humano. Existem diversos tipos de ondas sonoras, cada uma com formatos específicos.

Harmônicos

Os harmônicos são múltiplos inteiros da frequência fundamental de uma onda ou sistema vibratório. Em outras palavras, se a frequência fundamental é f, o n-ésimo harmônico terá uma frequência de nf, onde n é um número inteiro positivo.

Soma de Harmônicos

Podemos obter qualquer forma de onda periódica através da soma de harmônicos. Como cada harmônico contribui para o sinal original com sua própria amplitude e fase, a combinação correta de harmônicos é capaz de reproduzir qualquer sinal periódico com precisão.

Representação por série de Fourier

Matematicamente, essa soma é representada por uma série de Fourier do seno

$$f(x) = \sum_{n=1}^{\infty} b_n \sin rac{n \pi x}{L}$$

O número "n" representa a ordem do harmônico a ser somado, e o coeficientes An representa a amplitude do harônico "n"

Alguns exemplos de ondas:

Senóide

$$f(x) = \sum_{n=1}^{\infty} b_n \sin rac{n \pi x}{L}$$

Quadrada

$$f(x) = \frac{4}{\pi} \sum_{n=1,3,5,...}^{\infty} \frac{1}{n} \sin(\frac{n \pi x}{L}).$$

Triangular

$$f(x) = \frac{8}{\pi^2} \sum_{n=1,3,5,\dots}^{\infty} \frac{(-1)^{(n-1)/2}}{n^2} \sin\left(\frac{n\pi x}{L}\right).$$

Dente-de-Serra
$$f(x) = \frac{1}{2} - \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n \pi x}{L}\right)$$

Sroposta

Iremos demonstrar diversos exemplos de ondas e seus harmônicas somadas por séries de Fourier, por meio do SciLab, e um exemplo prático no final.

Código Utilizado

```
A = input("Digite as amplitudes dos harmônicos entre colchetes e separadas por espaço: ");
n = length(A); // Número de harmônicos
disp("Escolha o tipo de onda:");
disp("1 - Onda tradicional")
disp("2 - Onda triangular");
disp("3 - Onda quadrada");
disp("4 - Onda dente de serra");
option = input("");
 = linspace(0,%pi,1000)
 // Cálculo da onda
y = zeros(1, length(t));
for i=1:n
    k = i*2-1; // Ordem do harmônico
    if option == 1 then
        y = y + A(i)*sin(2*%pi*i*t);
        titulo = "Onda resultante da soma dos harmônicos senoidais"
    elseif option == 2 then
        y = y + A(i)*((8/\%pi^2)*(-1)^((i - 1)/2)/(i^2))*sin(2*\%pi*i*t)
        titulo = "Onda triangular resultante"
    elseif option == 3 then
        y = y + A(i)*sin(2*%pi*k*t)/(2*k-1);
        titulo = "Onda quadrada resultante"
    elseif option == 4 then
        y = y + A(i)*((1/2)*(1/i*%pi)*sin(2*%pi*i*t))
        titulo = "Onda dente de serra resultante"
        end
// Plotagem do resultado
plot(t, y);
xlabel('Tempo');
ylabel('Amplitude');
xtitle(titulo);
```

Exemplo: soma de ondas senoidais e triangulares

$$A1 = 4$$
 $A2 = 8$
 $A3 = 15$
 $A4 = 16$
 $A5 = 23$
 $A6 = 42$

Resencias

https://en.wikipedia.org/wiki/File:Waveforms.svg

https://en.wikipedia.org/wiki/Fourier_series

https://mathworld.wolfram.com/FourierSeriesSquareWave.html

https://mathworld.wolfram.com/FourierSeriesTriangleWave.html

https://mathworld.wolfram.com/FourierSeriesSawtoothWave.html

Universidade Federal de Segipe | Física Comuptacional | 2023 -

Obrigado Sala Atemeans and