IOWA STATE UNIVERSITY College of Engineering

Linear-Operator-based Data-Driven Approach for Uncertainty Propagation and Reachability Analysis in Power Systems

<u>Amar</u>sagar Reddy Ramapuram Matavalam Research Assistant Professor, Iowa State University, <u>amar@iastate.edu</u>

Collaborators : Umesh Vaidya, Venkataramana Ajjarapu

Presented at Conference on Decision and Control 2021 Workshop on Uncertainty Management in Power System Dynamics

Support from department of energy grant DE-OE-0000876 is gratefully acknowledged

Introduction

- The problem of uncertainty propagation and quantification is of interest across the various discipline of science and engineering
- Examples include power systems, fluid dynamics, robotics, and biological systems
- Typically, uncertainty arises from
 - Parametric uncertainty in the system model
 - Unknown initial state after a random disturbance
 - Uncertainty in inputs to the system
- Focus in presentation on data-driven uncertainty propagation and reachability analysis arising from uncertainty in the initial condition
- The problem of uncertainty propagation and reachability analysis is complicated due to the nonlinear nature of dynamics involved in these applications

Motivation for Data-driven

- It is not always possible to get the dynamical equations of an underlying system –
 intractable, privacy, etc.
- We can observe data from simulations/experiments non-intrusively
- Popular methods for non-intrusive uncertainty propagation include:
 - Monte-Carlo (MC) based methods [1]
 - Polynomial chaos (PC) based methods [2,3,4]
- These methods have drawbacks scalability is the key issue
 - MC need many nonlinear simulations of the dynamical system
 - PC alleviates this drawback but needs <u>new simulations if uncertainty set is</u> <u>modified</u>

^[1] P. Baraldi and E. Zio, "A combined monte carlo and possibilistic approach to uncertainty propagation in event tree analysis," *Risk Analysis: An International Journal*, vol. 28, no. 5, pp. 1309–1326, 2008.

^[2] D. Xiu and G. E. Karniadakis, "Modeling uncertainty in flow simulations via generalized polynomial chaos," Journal of comp. physics, vol. 187, no. 1, pp. 137–167, 2003.

^[3] H. N. Najm, "Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics," Annual review of fluid mechanics, vol. 41, pp. 35–52, 2009.

^[4] Y. Xu, L. Mili, A. Sandu, M. R. von Spakovsky, and J. Zhao, "Propagat-ing uncertainty in power system dynamic simulations using polynomialchaos," IEEE Transactions on Power Systems, vol. 34, no. 1, pp. 338–348, 2018...

Contribution

- Novel data-driven approach for uncertainty propagation and reachability analysis using moments
- The proposed approach relies on the linear lifting of a nonlinear system provided by linear Koopman [5] and Perron-Frobenius [6] (P-F) operators
- Demonstrate how the P-F and Koopman operators can be used for the propagation of moments in a linear manner
- Results are presented for
 - Simple nonlinear dynamical systems
 - Power system with complex dynamics

[5] B. Koopman and J. v. Neumann, "Dynamical systems of continuous spectra," Proceedings of the National Academy of Sciences of the United States of America, vol. 18, no. 3, p. 255, 1932

^[6] C. W. Rowley, I. Mezic, S. Bagheri, P. Schlatter, and D. S. Henningson, "Spectral' analysis of nonlinear flows," Journal of fluid mechanics, vol. 641, pp. 115–127, 2009

Operator - Definition

- An Operator is a Map from one set of functions to another set of functions
- Eg –Differentiation is an operator. We can define it from \mathcal{C}^{∞} to \mathcal{C}^{∞}
- It is an infinite dimensional linear operator
- We can represent the operator by an 'infinite' matrix
- If we restrict our basis to polynomials in one dimension,

$$M = \frac{df}{dx} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 2 & 0 & 0 & \dots \\ 0 & 0 & 0 & 3 & 0 & \dots \\ 0 & 0 & 0 & 0 & 4 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

Linear Operator Theoretic Framework -I

Consider the Dynamical system:

$$x_{t+1} = F(x_t) \quad x_t \in X \subset \mathbb{R}^N$$

• The Koopman operator $(\mathcal{K} \text{ or } \mathbb{U}_F)$ of F operates on functions in \mathcal{F} and propagates it by one time step using the dynamics F: $[\mathbb{U}_F \varphi](x) = \varphi(F(x))$

[7] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, "A data-driven approximation of the koopman operator: Extending dynamic mode decomposition," Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–1346, 2015.

Linear Operator Theoretic Framework-II

Consider the Dynamical system:

$$x_{t+1} = F(x_t)$$
 $x_t \in X \subset \mathbb{R}^N$

The P-F operator of F operates on the space of measures

$$\mathbb{P}_F:\mathcal{M}(X)\to\mathcal{M}(X)$$

• The P-F operator propagates uncertainty in initial conditions captured through measure or probability density function.

Linear Operator Theoretic Framework - III

- P-F and Koopman operators satisfy linearity properties [5,6] adding & scaling
- The P-F and Koopman operators are infinite dimensional operators for generic systems
- Finite dimensional approximation (matrix representations) can be estimated using data from simulations and experiments
- These finite dimension approximations can then be used for observer synthesis
 & control synthesis valid over large regions of state-space
- Linear observers and controls designed for the lifted model translate to nonlinear observers and controls in the original state space

[5] B. Koopman and J. v. Neumann, "Dynamical systems of continuous spectra," Proceedings of the National Academy of Sciences of the United States of America, vol. 18, no. 3, p. 255, 1932

^[6] C. W. Rowley, I. Mezic, S. Bagheri, P. Schlatter, and D. S. Henningson, "Spectral' analysis of nonlinear flows," Journal of fluid mechanics, vol. 641, pp. 115–127, 2009

Linear Operator Theoretic Framework -IV

The P-F and Koopman operators are dual to each other as follows

$$\langle \mathbb{U}_F \varphi, \mu \rangle = \int_X [\mathbb{U}_F \varphi](x) d\mu(x) = \int_X \varphi(x) d[\mathbb{P}_F \mu](x) = \langle \varphi, \mathbb{P}_F \mu \rangle$$

- For an observable φ & measure μ , propagating φ and taking inner product with μ is same as propagating μ and taking the inner product with φ .
- The inner products of any function φ with a measure μ are the moments of the measure with respect to the function
- So, there is an inherent relation between the moments and these linear operators

Relation between Moments and Linear Operators

- Let $\mu_0(x)$ be the measure corresponding to the initial density function and let the moments computed w.r.t. to basis functions i.e., $\Psi(x) = [\Psi_1(x), \dots, \Psi_N(x)]$
- Moments of the initial measure $\mu_0(x)$ corresponding to these basis functions are

$$m_0^k = \int \Psi_k(x) \ d\mu_0(x) = \langle \Psi_k, \mu_0 \rangle, k = 1, 2 ..., N$$

The moments are propagated in time as follows

$$\begin{split} m_1^k &= \langle \Psi_k, \mu_1 \rangle = \langle \Psi_k, \mathbb{P}_F \mu_0 \rangle = \langle \mathbb{U}_F \Psi_k, \mu_0 \rangle \\ m_{t+1}^k &= \langle \Psi_k, \mu_{t+1} \rangle = \langle \Psi_k, \mathbb{P}_F \mu_t \rangle = \langle \mathbb{U}_F \Psi_k, \mu_t \rangle \end{split}$$

- Using the linearity of Koopman operator the moment propagation can be expressed as $\mathbf{m}_{t+1} = \mathcal{K}\mathbf{m}_t$
- Where $\mathbf{m}_t = [m_t^1, \dots, m_t^K, \dots]$ and $\mathcal{K} : \mathbb{R}^\infty \to \mathbb{R}^\infty$ Generally infinite dimensional Can be finite for special systems

Simple Numerical Example

Consider the following 2-D dynamical system

$$\begin{aligned}
 x_1^{t+1} &= \rho x_1^t \\
 x_2^{t+1} &= \mu x_2^t + (\rho^2 - \mu)c(x_1^t)^2
 \end{aligned}$$

- With basis functions $\Psi = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 \end{bmatrix}$ for lifting the system
- Consider the matrix **K**, We can observe that the $\Psi^{t+1} = \mathbf{K}^T \cdot \Psi^t$

$$\mathbf{K} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \rho & 0 & 0 \\ 0 & 0 & \mu & 0 \\ 0 & 0 & (\rho^2 - \mu)c & \rho^2 \end{bmatrix}$$

• Thus, \mathbf{K}^T is the matrix representation of the Koopman operator and is finite for this system

Simple Numerical Example

Consider any initial uncertainty set and estimate the uncertainty set at each time

instant for the future

- Both moments are identical MC needs explicit simulations; Koopman is matrix multiplication; **speed up of > 100x**
- PC needs new simulations (fewer than MC) if initial uncertainty set is modified while the Koopman matrix once identified can be used for any uncertainty set

Data-Driven Approximation of Koopman Operator

- Consider discrete-time system $x_{t+1} = F(x_t)$
- Define a domain of interest in the state space and randomly select initial points in the domain and record time series data

$$\{x_1, \dots, x_t, \dots, x_M\}, \quad x_t \to x_{t+1}$$

• Lift the system by calculating the value of the observables $\Psi(x)$ for each point on the recorded trajectories

$$\mathbf{\Psi}(x) = [\Psi_1(x), \dots, \Psi_N(x)]$$

• Rewrite $y_m = x_{m+1}$ and solve the following optimization problem for the finite approximation of the Koopman operator for deterministic system with finitely many basis functions

$$\min_{\mathbf{K}} \| \mathbf{G}\mathbf{K} - \mathbf{A} \|_F, \quad \mathbf{K}^* = \mathbf{G}^{\dagger} \mathbf{A}$$

$$\mathbf{G} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{\Psi}(x_m)^{\top} \mathbf{\Psi}(x_m), \quad \mathbf{A} = \frac{1}{M} \sum_{m=1}^{M} \mathbf{\Psi}(x_m)^{\top} \mathbf{\Psi}(y_m)$$

Steps for data-driven Moment Propagation

- Identify a good Koopman approximation K through offline analysis
- Sample sufficient initial conditions from a given uncertainty set
- Estimate the initial moments from the initial uncertainty set
- Calculate moments at future times sequentially using $m_{t+1} = \mathbf{K}^T \cdot m_t$
- Data-driven moment propagation is basically matrix multiplication very fast
- Contrastingly, the MC based moment propagation is computate intensive
- The key idea is that we use *deterministic* simulations to learn **K** and then use this to propagate *uncertainty*.

A. R. Ramapuram Matavalam; U. Vaidya; V. Ajjarapu, "Data-Driven Approach for Uncertainty Propagation and Reachability Analysis in Dynamical Systems", Proceedings of American Control Conference 2020

Results – Bi-Stable Toggle

Consider the 2-D bi-stable toggle system

$$\dot{x}_1 = \frac{1}{1 + x_2^{3.55}} - 0.5x_1 \qquad \dot{x}_2 = \frac{1}{1 + x_1^{3.53}} - 0.5x_2$$

- This system has 2 equilibria (0.16,2) & (2,0.161)
- The region of interest for this system is $(x_1, x_2) \in (0, 2.5) \times (0, 2.5)$
- Based on our experiments, using monomials with degree up to 4 (a total of 15 functions) and a scaling factor of 3 gave a good Koopman matrix, i.e.

$$\Psi(x) = \begin{bmatrix} 1 & \frac{x_1}{3} & \frac{x_2}{3} & \frac{x_1^2}{9} & \frac{x_1x_2}{9} & \frac{x_2^2}{9} & \cdots & \frac{x_2^4}{81} \end{bmatrix}$$

 Identification of the Koopman matrix took around 300 trajectories of 50 time steps of 0.2s

Results - Bi-Stable Toggle (cont.)

- As there are 2 equilibrium points, two different initial uncertainty sets with different shapes are used to verify the data-driven methodology
 - A circle centered at (0.4, 0.8) with radius 0.2
 - A square given by $(1.2, 1.4) \times (0.5, 0.7)$
- The <u>same</u> Koopman matrix is used for the moment propagation even though they are in different regions of attraction
- Comparing MC based moments and Koopman moments time acceleration > 100x

Power system example – 9 bus + HVDC

System information

- Simulated in PSAT in MATLAB Full DAE
- The generators are 4th order machines
- The AVR is a 3rd order Type II exciter
- The HVDC is 3rd order device
- Total number of dynamic states in the system are 27
- Loads are constant power type

Scenarios considered

- Initial Gen 2 & 3 rotor angle states have assumed to be uncertain
- Multiple uncertainty sets are considered
 - Scenario 1: Uniform PDF in a circle
 - Scenario 2: Uniform PDF in a square
 - Scenario 3: non-uniform PDF in a non-convex shape
- Uncertainty propagates to other states due to the system dynamics
- The dictionary functions are monomials with degree up to 2 total 378 func.
 - Mean and Variance of each state
 - Covariance between each pair of states
- The Koopman matrix is estimated using 500 random initial conditions with 50 time-steps of 0.02 seconds

Scenarios considered

- Initial Gen 2 & 3 rotor angle states have assumed to intial uncertainty
- Multiple uncertainty sets are considered
 - Scenario 1: Uniform PDF in a circle
 - Scenario 2: Uniform PDF in a square
 - Scenario 3: non-uniform PDF in a non-convex shape
- The dictionary functions are monomials with degree up to 2 total 378 func.
- The Koopman matrix is estimated using 500 random initial conditions with 50 time-steps of 0.02 seconds

Scenario -1: Behavior of Gen 2 & 3 rotor angle

Scenario -1: Behavior of States of AVR at Gen-3

Scenario -1: Bounding Region using Est. Moments

x - axis: δ_{gen-2} ; y - axis: δ_{gen-3}

 $x - axis: V_{r_{1AVR-3}}; \quad y - axis: V_{f_{AVR-3}}$

Scenarios considered

- Initial Gen 2 & 3 rotor angle states have assumed to intial uncertainty
- Multiple uncertainty sets are considered
 - Scenario 1: Uniform PDF in a circle
 - Scenario 2: Uniform PDF in a square
 - Scenario 3: non-uniform PDF in a non-convex shape
- The dictionary functions are monomials with degree up to 2 total 378 func.
- The Koopman matrix is estimated using 500 random initial conditions with 50 time-steps of 0.02 seconds

Scenario -2: Behavior of Gen 2 & 3 rotor angle

Scenario -2: Behavior of States of AVR at Gen-3

Scenario -2: Bounding Region using Est. Moments

$$x - axis$$
: δ_{gen-2} ; $y - axis$: δ_{gen-3}

$$x - axis: V_{r_{1AVR-3}}; \quad y - axis: V_{f_{AVR-3}}$$

Iowa State University

Scenarios considered

- Initial Gen 2 & 3 rotor angle states have assumed to intial uncertainty
- Multiple uncertainty sets are considered
 - Scenario 1: Uniform PDF in a circle
 - Scenario 2: Uniform PDF in a square
 - Scenario 3: non-uniform PDF in a non-convex shape
- The dictionary functions are monomials with degree up to 2 total 378 func.
- The Koopman matrix is estimated using 500 random initial conditions with 50 time-steps of 0.02 seconds

Scenario -3: Bounding Region using Est. Moments

Scenarios 2 & 3: Bounding Region using Est. Moments for two HVDC states

Reachability

- Reachability analysis is concerned with computing rigorous approximations of the set of states reachable by a dynamical system.
- In the previous results, a gaussian assumption is used to get the ellipsoid of each pair of states at 3σ standard deviation
- A different approach is to use compactly supported dictionary functions such as radial basis functions they can be used as indicator functions

Results - Dubin Car

• Characterize the reachable set in a 3-D system where v and ω are controls given by a feedback law

$$\dot{x} = \nu \cos \theta
\dot{y} = \nu \sin \theta
\dot{\theta} = \omega$$

$$\begin{bmatrix} \nu \\ \omega \end{bmatrix} = \begin{bmatrix} \nu_{dx} \cos(\theta) + \nu_{dy} \sin(\theta) \\ \frac{1}{b} (\nu_{dy} \cos(\theta) - \nu_{dx} \sin(\theta)) \end{bmatrix}$$

- The region of interest is $(x_1, x_2, \theta) \in (-4,6) \times (-4,6) \times (-1.5,1.5)$
- For performing reachability analysis, 1-D Gaussian radial basis functions (RBFs) are used as dictionary functions with their centers equally spaced on the individual axis in the domain of interest
- We used 12 RBFs with their centers equally spaced along each axis (a total of 36 dictionary functions)

Results – Dubin Car (cont.)

• Initial uncertainty set of a cylinder along the θ axis with a height of 2, a radius of 1 and centered at the origin

• The initial uncertainty set along with the reachable sets at t = 2s & t = 4s are

plotted below

• Variation of θ decreases with time, variation of y increases with time and the variation of x is more or less constant with time

Results – Dubin Car (cont.)

- The pdf of the uncertainty set can be estimated from the moments as the dictionary functions are radial basis functions with less intersecting support
- The support of the estimated PDF always contains the support of the true PDF
- Thus, it seems to provide a conservative estimate of the true variation of the respective state – no correlations for now
- Comparing MC and Koopman time acceleration > 100x
- Next steps are to extend this approach to power systems

A. R. Ramapuram Matavalam; U. Vaidya; V. Ajjarapu, "Data-Driven Approach for Uncertainty Propagation and Reachability Analysis in Dynamical Systems", Proceedings of American Control Conference 2020

34

Conclusion and Future Directions

- First use of linear operator theoretic framework for uncertainty propagation and reachability analysis in a dynamical system
- The proposed framework provides a systematic method to exploit offline simulations/data to perform uncertainty propagation
- Further, the **linearity** implies that the computation time for uncertainty propagation is much faster than MC and PC based methods (>100x-20x)
- For power systems, the generator states seem to be more 'linear' than the excitation controls and HVDC behavior
- We are in the process of extending the method to larger dimensional systems
- Scalability remains a challenge data required to learn K for large systems seems to increase exponentially

Relevant Papers

- A. R. Ramapuram Matavalam; U. Vaidya; V. Ajjarapu, "Data-Driven Approach for Uncertainty Propagation and Reachability Analysis in Dynamical Systems", Proceedings of American Control Conference 2020
- A. R. Ramapuram Matavalam; U. Vaidya; V. Ajjarapu, "Propagating Uncertainty in Power System Initial Conditions using Data-Driven Linear Operators", to be Submitted to IEEE Power and Energy System Letters

IOWA STATE UNIVERSITY College of Engineering

Thanks for you attention! Questions?

amar@iastate.edu