НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет ПИиКТ

Информатика Лабораторная работа № 2

Выполнил студент

Набокова Алиса Владиславовна

Группа № Р3120

Преподаватель: Болдырева Елена Александровна

г. Санкт-Петербург

Оглавление

Задание:	2
Отчет:	3
Задание 1 Номер 75 Номер 5 Номер 47	3
Номер 75	4
Номер 5	4
Номер 47	5
Номер 34	5
Задание 2 Номер 89	1
Номер 89	1
Пункт 3 и 6	1
Пункт 8	2
Вывод:	1
Список литературы:	1
CCo	

Вариант: 91

Задание:

С помощью схемы декодирования классического кода Хэмминга (7;4) и (15;11) показать имеются ли в принятом сообщении ошибки, и если имеются, то какие

Отчет:

Задание 1

Для проверки принятого сообщения используем схему декодирования классического кода Хэмминга (7;4)

	1	2	3	$\mid 4 \mid$	5	6	7	
2^k	r_1	r_2	i_1	r_3	i_2	i_3	i_4	S
1	X		X		X		X	s_1
2		X	X			X	X	s_2
4				X	X	X	X	s_3

Рассчитаем синдромы полученного сообщения

Формулы расчёта синдромов можно получить из таблицы, таким образом

$$S1 = r1 + i1 + i2 + i4$$

$$S2 = r2 + i1 + i3 + i4$$

$$S3 = r3 + i2 + i3 + i4$$

Где i – информационный бит; r – проверочный бит чётности; S – синдром последовательности (набор контрольных сумм информационных и проверочных разрядов);

+ - исключающее «ИЛИ»

Контрольная сумма разрядов считается путём подсчёта количества единиц. Если единиц чётное количество, то результатом будет 0, иначе 1. Таким образом происходит деление с остатком суммы на 2(1+1)%2=0; (1+0)%2=1

Из полученных значений синдрома смотрим по таблице, какой бит содержится в ненулевых синдромах. Инвертируем ошибочный бит и получаем правильную последовательность

Номер 75

51	
75) 0101101 = 515255 => 0005 xa	B wurone 13
51 = r1 @ i1 @ i2 @ i4 = 0 @ 0 @ 1 @	£1=0
52 = r2@i1@i3@i4 = 1@0000	⊕ L = 0
53 = 13 + 12 + 13 + 14 = 1+ 1+00	€1=1
ucxognal moregosate 1640	e76:
0100101	

Номер 5

Номер 47
47) 0100011 = 010 = > omos ra B ausone ra
s1 = r1⊕ i1⊕ i2⊕ i4 = 0⊕ 0⊕ 0€ L = 0
$52 = r_2 \oplus i_2 \oplus i_3 \oplus i_4 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$
$53 = 13 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 1 = 0$
ucxognal nocreposate1640 cTb:
0000011

Номер 34

34)
$$O110010 = 111 = 7$$
 omuSxa B chursone 14

 $S1 = r1 \oplus i1 \oplus i2 \oplus i4 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$
 $S2 = r2 \oplus i1 \oplus i3 \oplus i4 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$
 $S3 = r2 \oplus i2 \oplus i3 \oplus i4 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$
 $UC \times OGRAP ROCKE GOBATENSHO CTO:$

Задание 2 Для проверки принятого сообщения используем схему декодирования классического кода Хэмминга (15;11)

	1	2	3	$\mid 4 \mid$	5	6	7	8	9	10	11	12	13	14	
2^k	r_1	r_2	i_1	r_3	i_2	i_3	i_4	r_4	i_5	i_6	i_7	i_8	i_9	i_{10}	S
1	X		X		X		X		X		X		X		s_1
2		X	X			X	X			X	X			X	s_2
4				X	X	X	X					X	X	X	s_3
8								X	X	X	X	X	X	X	s_4

Следуем тем же действиям, что и в первом задании

Номер 89

Пункт 3 и 6

Схема декодирования классического кода Хэмминга (7;4)

Схема декодирования классического кода Хэмминга (15;11)

Схема декодирования кода Хэмминга позволяет обнаруживать и исправлять ошибки в передаваемых данных.

Основные компоненты схемы кода Хэмминга:

- информационные биты (і): биты, содержащие сами передаваемые данные.
- контрольные биты (r): дополнительные биты, которые добавляются к информационным битам.

Процесс декодирования:

- 1. Полученное кодовое слово проверяется на наличие ошибок путем расчета контрольной суммы.
- 2. Если значения контрольных битов не совпадают с ожидаемыми значениями, это указывает на наличие ошибок.
- 3. Ошибочные биты можно идентифицировать по значениям контрольных битов.
- 4. Инвертирование ошибочных битов позволяет исправить ошибку.
- 5. Информационные биты кодового слова получаются и выводятся в виде декодированного сообщения.

Пункт 8

В восьмом задании требовалось сложить номера всех 5 вариантов заданий. Умножить полученное число на 4. Принять данное число как число информационных разрядов в передаваемом сообщении. Вычислить для данного числа минимальное число проверочных разрядов и коэффициент избыточности

Вывод:

В ходе проделанной работы был освоен код Хэмминга, а также навыки:

- Понимания и использования схем декодирования классического кода Хэмминга (7;4) и (15;11)
- Выявление ошибок в побитовой передаче данных

Список литературы:

- 1. Орлов С. А., Цилькер Б. Я. Организация ЭВМ и систем: Учебник для вузов. 2-е изд. СПб.: Питер, 2011. 688 с.: ил.
- 2. Алексеев Е.Г., Богатырев С.Д. Информатика. Мультимедийный электронный учебник.
 - Режим доступа: http://inf.e- alekseev.ru/text/toc.html.