Кейс стади 1

Задача классификации. Поиск причины дефекта в металле. Тесты на согласие: поиск распределения. Проблема мультиколлинеарности. Проблема несбалансированности классов. Пример решения задачи классификации с помощью RandomForest. Метрики классификации: precision, recall, F1. Принцип минимальных компонент, PCA. Кросс-валидация. ROC-кривая.

Юстина Иванова

Специалист по Анализу Данных

Инженер-программист МГТУ им. Баумана

Master of Science in Artificial Intelligence
University of Southampton

Специалист по анализу данных в компании ОЦРВ.

Юстина Иванова студент-аспирант University of Bolzano

Датасет Faulty Steel Plates.

Boxplot → выбросы.

https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.DataFrame.boxplot.html

Удаление элементов вне интерквартильного интервала..

https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.DataFrame.boxplot.html

Удаление элементов вне квантилей 20% и 80%.

https://pandas.pydata.org/pandas-docs/version/0.23/generated/pandas.DataFrame.boxplot.html

Тесты на согласие: какое это распределение?

нормальное

экспоненциальное

экспоненциальное

Удаление мультиколлинеарности

Классическое Обучение

Классификация

Множество допустимых ответов конечно. Их называют метками классов (class label). Класс — это множество всех объектов с данным значением метки.

Проблема несбалансированности классов.

Дерево решений.

Давать ли кредит?

Дерево Решений

Случайный лес.

Метрики классификации

Precision

Recall

F1-мерамера

$$F_{eta} = (1 + eta^2) \cdot rac{precision \cdot recall}{(eta^2 \cdot precision) + recall}$$

Принцип минимальных компонент.

Поиск ортогональных проекций с наибольшим рассеянием

Кросс-валидация

Оцениваем модель на нескольких тестовых данных

Метрики классификации: ROC-кривая

Позволяет определить порог, при котором мы будем отделять один класс от другого

ROC-кривая

Идеальная модель — порог 50%

Модель с некотороыми ошибками — порог выбирается в зависимости от допускаемых ошибок

Регрессия

Отличается тем, что допустимым ответом является действительное число или числовой вектор.

Спасибо за внимание!

