Predicting NBA Championship Winners Using Data from Past Championship Series

Ravi G and Rohit K

3/8/2022

Background:

Every year, the National Basketball Association (NBA) ends the season with a series of championship games between the two best teams in the league. The series is a best-of-7, where the first team to win 4 games is the winner of the series. The championship is a very important accolade, both teams and players are compared by the number of championships they have won. In these comparisons, statistics like field goal percentage, offensive rebounds, steals, and blocks can be used to determine a team's performance and be an indicator of how much better one team is than another.

Statistics in the NBA are highly analyzed, very often before a championship game to try to predict the outcome of the game. Our group wants to create a model that will be able to predict whether or not a team wins the NBA championship given the team's statistics during the NBA finals game. We want to find weights for each statistic that can show us how important each statistic is to predicting the overall winner, which helps our group conduct a greater analysis of how different focuses and strategies can affect the outcome of NBA games. Our group believes that certain statistics such as field goal percentage, turnovers, and offensive rebounds will be prevalent in winning NBA teams.

Data:

The dataset with which we want to create our model is the NBA Finals Team Stats dataset on Kaggle uploaded by Dave Rosenman. The dataset contains final data from 1980 to 2018, and is divided into two tables. The first table contains the data of each winning team and the second contains the losing team. Each observation includes data points like field goals made, field goals attempted, three point shots made, free throws made, total rebounds, assists, steals, turnovers, blocks, and many other statistics that will be covered in the data summary. The data takes averages from each game in the series, and its an average of the performance of the team in this category across all the games played in the series.

The NBA Finals Team Stats Dataset has been analyzed and used to create models by several Kaggle Users. One project to note is a report written by Ziyu Liu (insert citation here) called "Three pointers win championships", in which the author creates a model to see if the number of three point shots made by a team can predict whether or not the team wins the championship. In the study, the model achieves an accuracy of 59%. This tells us that, while three point shots are important, more statistics are required to be able to create a more accurate model.

In order to create the dataset we are using in this study, we started with two separate datasets, one for all of the series winners (NBA Champions) and one of the runner-ups. We created a new column win with a 1 if the team won the series and a 0 if the team lost. This will be our predictor variable for the model. Next, we combined the two datsets and randomized the order of the entries. Our goal is to first analyze each of

the variables to determine which will be the most useful in creating our model, then going through several iterations of models before choosing the most accurate one.

These are the libraries that will be used to create this model:

```
library(tidyverse)
library(broom)
library(pROC)
library(plotROC)
library(rms)
library(caret)
```

Exploratory Data Analysis

We started by creating the dataset we wish to use for this study (using the process mentioned in the Data section).

```
champs_data <- read_csv("data/champs_series_averages.csv")</pre>
## New names:
## * '' -> ...1
## Rows: 38 Columns: 22
## Delimiter: ","
## chr (2): Status, Team
## dbl (20): ...1, Year, PTS, FG, FGA, FGP, TP, TPA, TPP, FT, FTA, FTP, ORB, DR...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
runnerups_data <- read_csv("data/runner_ups_series_averages.csv")</pre>
## New names:
## * '' -> ...1
## Rows: 38 Columns: 22
## -- Column specification -----
## Delimiter: ","
## chr (2): Status, Team
## dbl (20): ...1, Year, PTS, FG, FGA, FGP, TP, TPA, TPP, FT, FTA, FTP, ORB, DR...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
```

```
champs_data <- champs_data %>%
  mutate(win = "1")
runnerups_data <- runnerups_data %>%
  mutate(win = "0")
```

```
all_data <- rbind(champs_data, runnerups_data)</pre>
```

Next, we eliminated some variables that we did not wish to explore or view the effect they would have on the model. This includes statistics like FTA (Free Throw Attempts), TPA (Three Point Attempts), BLK (Blocks). Some of these statistics describe the attempts to make a point, however the statistics describing how many points were made in that fashion would be a much more accurate tool in the model. Others simply do not happen often enough to quantifiable change the course of a championship series.

```
useful_data = subset(all_data, select = -c(...1, Year, Status, Team, FT, FTA, FTP, TRB) )
```

Now, we can start our EDA. First, we check the plots of each variable for both the losers and the winners to make sure each distribution is roughly normal.

Point Distribution

Point Distribution

FG Made Distribution

FG Made Distribution

FG Attempted Distribution

FG Attempted Distribution

FG Percentage Distribution

FG Percentage Distribution

Three Point Distribution

Three Point Distribution

Point Distribution


```
ggplot(data = useful_data %>% filter(win == 0), aes(x = TPA)) + geom_histogram(binwidth = 3) +
    labs(x = "TPA",
        y = "Count",
        title = "TP Attempted Distribution")
```

TP Attempted Distribution

TP Percentage Distribution

TP Percentage Distribution

Offensive Rebounds Distribution

Offensive Rebounds Distribution

Defensive Rebound Distribution

Defensive Rebound Distribution

Assists Distribution

Assists Distribution


```
ggplot(data = useful_data %>% filter(win == 1), aes(x = STL)) + geom_histogram(binwidth = 1) +
    labs(x = "STL",
        y = "Count",
        title = "Steals Distribution")
```

Steals Distribution

Steals Distribution

Block Distribution

Block Distribution

Turnovers Distribution

Turnovers Distribution

Personal Foul Distribution

Personal Foul Distribution

Creating the Model

Model Refinement

Now that we have checked that the distributions of the variables are somewhat normal, we can create a model and check the residuals. Our model will be a binomial model (only options are 0 ad 1). The first step will be to plot the residuals of each variable in the model to check the linearity assumption. Then, we will plot the Cook's distance and remove any high-leverage points. Finally, the VIF will be checked and any variables with a high VIF will be removed from the model.

```
useful_data$win <- as.factor(useful_data$win)
model <- glm(win ~ PTS + FG + FGA + FGP + TP + TPA + TPP + ORB + DRB + AST + STL + BLK + TOV + PF, usef
summary(model)</pre>
```

```
##
## Call:
     glm(formula = win ~ PTS + FG + FGA + FGP + TP + TPA + TPP + ORB +
              DRB + AST + STL + BLK + TOV + PF, family = binomial, data = useful_data)
##
## Deviance Residuals:
                Min
                                       10
                                                   Median
                                                                                 30
                                                                                                   Max
## -2.09816 -0.55087 -0.01365
                                                                      0.65435
                                                                                           1.95116
##
## Coefficients:
                                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -11.37225
                                                        91.05303
                                                                           -0.125
                                                                                           0.90061
## PTS
                                   0.05827
                                                          0.11315
                                                                              0.515
                                                                                           0.60658
## FG
                                   0.36495
                                                          2.31146
                                                                              0.158 0.87454
## FGA
                                                          1.05228
                                                                           -0.605
                                 -0.63662
                                                                                            0.54519
## FGP
                                   0.33684
                                                          1.96123
                                                                              0.172
                                                                                             0.86363
                                                                              0.202 0.83962
## TP
                                   0.14958
                                                          0.73911
## TPA
                                   0.01954
                                                          0.27121
                                                                              0.072 0.94257
## TPP
                                                                              0.496 0.61956
                                   0.04157
                                                          0.08372
## ORB
                                   0.98424
                                                          0.30193
                                                                              3.260 0.00111
## DRB
                                   0.46885
                                                          0.19354
                                                                              2.422 0.01542 *
## AST
                                 -0.02027
                                                                           -0.143
                                                          0.14192
                                                                                           0.88642
                                                                              2.385
## STL
                                   0.71154
                                                          0.29829
                                                                                            0.01706 *
                                                                              0.035
## BLK
                                  0.01150
                                                          0.33301
                                                                                            0.97246
## TOV
                                 -0.25649
                                                          0.19228
                                                                          -1.334 0.18223
## PF
                                 -0.05103
                                                          0.15307 -0.333 0.73887
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
              Null deviance: 105.358 on 75 degrees of freedom
## Residual deviance: 58.324
                                                               on 61 degrees of freedom
## AIC: 88.324
## Number of Fisher Scoring iterations: 6
model_data <- augment(model, useful_data)</pre>
head(model_data)
## # A tibble: 6 x 21
##
              PTS
                            FG
                                       FGA
                                                   FGP
                                                                  TP
                                                                            TPA
                                                                                         TPP
                                                                                                     ORB
                                                                                                                  DRB
                                                                                                                              AST
                                                                                                                                           STL
                                                                                                                                                       BLK
                                                                                                                                                                    TOV
          <dbl> 
                                                  48.9 0
## 1 110.
                         45
                                     92
                                                                        0.667
                                                                                         0
                                                                                                   17.2
                                                                                                               34.2
                                                                                                                            26.7
                                                                                                                                        9.17
                                                                                                                                                    6.17
## 2 96.5
                        40.2
                                    85.3 47.1 0.5
                                                                        2.83
                                                                                       17.6
                                                                                                   16.7
                                                                                                               30.7
                                                                                                                            22.8 6.67
                                                                                                                                                     5.33
                                                                                                                                                                16.8
                         45.5
                                    91.8
                                                 49.5 0.167 1.5
                                                                                                                29
                                                                                                                                                     7
## 3 112.
                                                                                       11.1
                                                                                                   18.3
                                                                                                                            31.3 10.7
                                                                                                                                                                  19.3
## 4 110.
                         43
                                     88.5
                                                 48.6 0
                                                                         0.75
                                                                                         0
                                                                                                   18
                                                                                                                30
                                                                                                                            26
                                                                                                                                       11
                                                                                                                                                     8
                                                                                                                                                                  17
## 5 116
                         42
                                     92.9 45.2 1.29
                                                                        3.29
                                                                                       39.1
                                                                                                  17.4
                                                                                                               30
                                                                                                                            24.1 9.86
                                                                                                                                                   4.57
                                                                                                                                                                 15.9
## 6 116.
                         46.3 90.5 51.2 1.33 3.83
                                                                                       34.8 11
                                                                                                                31.7 32
                                                                                                                                         9.17 4
                                                                                                                                                                  12.5
## # ... with 8 more variables: PF <dbl>, win <fct>, .fitted <dbl>, .resid <dbl>,
## # .std.resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>
```

Residual Plot of Points

Residual Plot of Field Goals

Residual Plot of Field Goal Atter

Residual Plot of Points 50 45 45 Residual Plot of Points

Residual Plot of Three Pointers


```
ggplot(data = model_data, aes(x=.resid, y=TPA)) + geom_point() +
labs(x="Residuals",
    y="Three Point Attempts",
    title="Residual Plot of Three Point Attemps")
```

Residual Plot of Three Point Atte


```
ggplot(data = model_data, aes(x=.resid, y=TPP)) + geom_point() +
labs(x="Residuals",
    y="Three Point Percentage",
    title="Residual Plot of Three Point %")
```

Residual Plot of Three Point %

Residual Plot of Offensive Rebo

Residual Plot of Defensive Rebo

Residual Plot of Assists

Residual Plot of Steals

Residual Plot of Blocks

Residual Plot of Turnovers

Residual Plot of PF

The residual plots for each variable appear to be random and evenly dispersed, which means that the linearity assumption is satisfied. Before we can test the accuracy of the model, we must also explore how these observations affect the model, and how the variables used in the model affect each other. First, we can plot the leverage (.cooksd) of each observation to see if there are any high-leverage data points.

Cook's Distance of each Obser

filter_data <- filter(model_data, .cooksd < 0.125)</pre>

It is obvious that there are two high-leverage data points. If we use a threshold of 0.125, we can eliminate these two high-leverage points to make the model better at prediction. After this, the model must be trained on the newly-filtered data.

```
filter_data <- select(filter_data, 1:15)</pre>
filter_model <- glm(win ~ PTS + FG + FGA + FGP + TP + TPA + TPP + ORB + DRB + AST + STL + BLK + TOV + P
summary(filter_model)
##
## Call:
   glm(formula = win ~ PTS + FG + FGA + FGP + TP + TPA + TPP + ORB +
##
       DRB + AST + STL + BLK + TOV + PF, family = binomial, data = filter_data)
##
##
  Deviance Residuals:
##
        Min
                    1Q
                          Median
                                         30
                                                  Max
##
   -2.12838
             -0.32438
                        -0.00962
                                    0.66696
                                              2.05077
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
  (Intercept) -13.34302
                            98.44346
                                       -0.136
                                               0.89218
##
                                       -0.266
## PTS
                 -0.03651
                             0.13731
                                               0.79033
## FG
                             2.46225
                                        0.422
                  1.03938
                                               0.67293
## FGA
                 -1.02089
                             1.12581
                                       -0.907
                                               0.36451
## FGP
                 0.30264
                             2.11119
                                        0.143
                                               0.88601
## TP
                 -0.32034
                             0.89001
                                       -0.360
                                               0.71890
                                        0.854
## TPA
                  0.28922
                             0.33879
                                               0.39328
## TPP
                 0.09593
                             0.10564
                                        0.908
                                               0.36384
##
  ORB
                  1.30905
                             0.41405
                                        3.162
                                               0.00157 **
## DRB
                                        2.522
                  0.72101
                             0.28588
                                               0.01166
  AST
                 -0.05620
                             0.18053
                                       -0.311
                                               0.75559
##
## STL
                  1.20375
                                        2.835
                                               0.00458 **
                             0.42457
## BLK
                 0.16852
                             0.38747
                                        0.435
                                               0.66362
## TOV
                 -0.29451
                             0.21214
                                       -1.388
                                               0.16506
## PF
                 -0.01274
                             0.18549
                                       -0.069
                                               0.94523
                   0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
## Signif. codes:
##
```

```
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 102.532 on 73 degrees of freedom
## Residual deviance: 47.107 on 59 degrees of freedom
## AIC: 77.107
##
## Number of Fisher Scoring iterations: 7

filter_data <- augment(filter_model, filter_data)</pre>
```

We must first re_train the model on the filter data The next step is to check how the variables interact with each other. To measure this, we want to calculate the Variable Inflation Factor, or VIF.

```
vif(filter_model)
```

##	PTS	FG	FGA	FGP	TP	TPA
##	14.554416	1116.928102	468.327785	307.483725	68.519839	65.480931
##	TPP	ORB	DRB	AST	STL	BLK
##	5.335238	8.903163	3.340391	4.573557	2.795145	1.839274
##	TOV	PF				
##	1.638405	2.045241				

These values for VIF are extremely high because there are variables that measure similar statistics. However, because there are columns like FG, FGA, and FGP which represent field goals made, field goal attempts, and field goal percentage; a high VIF is not a concern for these variables. The same logic can be applied to TP, TPA and TPP, which measure the three point attempts and the three point percentage. Therefore, we will proceed with measuring the success of the model.

Model Assessment and Prediction

```
final_model <- filter_model</pre>
```

Now that the model has been refined, we can check the accuracy of the model, make predictions about NBA games, and draw conclusions about which statistics are most important in the NBA finals.

Our first step is to check the accuracy of the model. To do this, we will first create an ROC curve and calculate the best threshold for pred that we can use to make predictions.

```
roc_curve <- roc(filter_data, win, .fitted, plot=TRUE)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases</pre>
```



```
threshold <- coords(roc_curve, "best", ret = "threshold")
print(threshold)</pre>
```

```
## threshold
## 1 -0.3855574
```

The ideal threshold has been shown as -0.3855574. Using this threshold, we can create a confusion matrix and draw conclusions about the accuracy of the model.

```
filter_data <- mutate(filter_data, pred = ifelse(.fitted > -0.3855574, 1, 0))
filter_data$pred <- as.factor(filter_data$pred)
confusionMatrix(filter_data$pred, filter_data$win)</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
  Prediction 0 1
##
            0 31
##
            1 7 34
##
##
                  Accuracy : 0.8784
##
                    95% CI: (0.7816, 0.9429)
##
       No Information Rate: 0.5135
##
       P-Value [Acc > NIR] : 3.013e-11
##
##
##
                     Kappa: 0.7575
##
##
   Mcnemar's Test P-Value: 0.1824
##
##
               Sensitivity: 0.8158
##
               Specificity: 0.9444
            Pos Pred Value: 0.9394
##
##
            Neg Pred Value: 0.8293
##
                Prevalence: 0.5135
##
            Detection Rate: 0.4189
##
      Detection Prevalence: 0.4459
##
         Balanced Accuracy: 0.8801
```

```
##
## 'Positive' Class : 0
##
```

The accuracy of the model is 87.84%.

Number of Fisher Scoring iterations: 7

Conclusion

```
summary(final_model)
##
## Call:
##
   glm(formula = win ~ PTS + FG + FGA + FGP + TP + TPA + TPP + ORB +
       DRB + AST + STL + BLK + TOV + PF, family = binomial, data = filter_data)
##
##
  Deviance Residuals:
##
        Min
                    1Q
                                         3Q
                          Median
                                                  Max
                                              2.05077
## -2.12838
            -0.32438
                        -0.00962
                                    0.66696
##
##
   Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
##
  (Intercept) -13.34302
                            98.44346
                                       -0.136
                                               0.89218
## PTS
                                       -0.266
                 -0.03651
                             0.13731
                                               0.79033
## FG
                  1.03938
                             2.46225
                                        0.422
                                               0.67293
                                       -0.907
## FGA
                 -1.02089
                             1.12581
                                               0.36451
## FGP
                  0.30264
                             2.11119
                                        0.143
                                               0.88601
## TP
                 -0.32034
                             0.89001
                                       -0.360
                                               0.71890
## TPA
                  0.28922
                             0.33879
                                        0.854
                                               0.39328
  TPP
                  0.09593
                             0.10564
                                        0.908
                                               0.36384
## ORB
                  1.30905
                             0.41405
                                        3.162
                                               0.00157 **
## DRB
                  0.72101
                             0.28588
                                        2.522
                                               0.01166
## AST
                 -0.05620
                             0.18053
                                       -0.311
                                               0.75559
## STL
                  1.20375
                             0.42457
                                        2.835
                                               0.00458 **
## BLK
                 0.16852
                             0.38747
                                        0.435
                                               0.66362
                 -0.29451
                                       -1.388
  TOV
                             0.21214
                                               0.16506
## PF
                 -0.01274
                             0.18549
                                       -0.069
                                               0.94523
##
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
##
       Null deviance: 102.532
                                on 73
                                        degrees of freedom
## Residual deviance:
                       47.107
                                on 59
                                        degrees of freedom
   AIC: 77.107
##
```

By using this model, we can predict whether or not an NBA team won a finals series given their statistics from the series with an accuracy of 87.64%, making the model useful (better than guessing win or lose for each year). To refine this model more, we can perform the same analysis on all 22 variables given from the original data set, and have a solution for the high VIF found due to the similarity of some measurements during games.

Observations

It is worth noting that, while the coefficients for most variables make sense (ie. turnovers having a negative coefficient and field goals having a positive coefficient), others have a surprising effect on the model.

For example, the coefficients for points (PTS) and assists (AST) are both negative, implying that more points and more assists indicate a lesser likelihood that a team won the game. This can be attributed to the fact that basketball is a game that cannot be won by statistics: even if a team scores a high number of points, a bad defense can still lose them the series.

Some variables with high coefficients include: Offensive Rebounds (ORB), Steals (STL), and Field Goals Made(FG). These all seem to be good at indicating whether or not teams won the series, which is fascinating because they cover different aspects of the game. A team cannot solely rely on shooting, defense, or size (in the case of offensive rebounds) to win a championship; they must have all aspects of the game.