

MATRIZ DE DESIGN INSTRUCIONAL

Nome Curso	Modelagem e Simulação de Sistemas a Eventos Dinâmicos (ESTEMT001)					
Público Alvo	Alunos do 5º período de Eng. Controle e Automação.					
Objetivo Geral	Aprese	Apresentar aos alunos os princípios e técnicas de modelagem, simulação de sistemas a eventos discretos.				
Ementa	Introduc autôma Petri: d nível. F intelige	Introdução, histórico e definição de sistemas à eventos discretos. Teoria do controle supervisório por autômatos finitos e redes de Petri. Modelagem e simulação de Sistemas a Eventos Discretos via redes de Petri: definições, classificação, propriedades, verificação e validação. Redes de Petri estendidas e de alto nível. Projeto de controladores programáveis para SED: aplicações em manufatura flexível e sistemas inteligentes. Tradução de redes de Petri para programação de automação: para linguagem IEC 61131-3 compatível e microprocessadores.				
Carga Horária	60 hora	IS				
Aulas	Carga Horária	Objetivos Específicos	Materiais	Estratégias de Aprendizagem	Avaliações	
MÓDULO 1:	Introdução					
AT1. Introdução, histórico e definição de sistemas à eventos discretos. Data: 04/05.	15	 Apresentar o histórico e visão geral de sistemas a eventos discretos. 	Aula teórica 1 em pdf e gravação da aula (googleclass). Capítulo 1 do livro do autor Couto.	Leitura e estudo do material em pdf e assistir a vídeo aula 1. Leitura do capítulo 1 do livro-texto do autor Couto.		
2. AT2. Definição de sistemas à eventos discretos. Data: 06/05.		 Apresentar e estudar as definições à eventos discretos. 	 Aula teórica 2 em pdf e gravação da aula (googleclass). Capítulo 1 do livro do autor Couto. 	 Leitura e estudo do material em pdf e assistir a vídeo aula 2. Leitura do capítulo 1 do livro-texto do autor Couto. Resolução da Tarefa 1: Lista de exercícios 1. 	Postagem da Tarefa 1 no Googleclass. (1,0 ponto) na AP1.	
 AT3. Definição de sistemas à eventos discretos: aplicações. Data: 11/05. 		 Estudar as definições e classificação e exemplos de aplicações de sistemas a eventos discretos. 	Aula teórica 3 em pdf e gravação da aula (googleclass). Capítulo 1 do livro do autor Couto.	 Leitura e estudo do material em pdf e assistir a vídeo aula 3. Leitura do capítulo 1 do livro-texto do autor Couto. 		

. <u></u>				
4. AT4. Teoria do controle supervisório por autômatos finitos: definições, leis de formação e propriedades. Data: 13/05.	Apresentar a teoria do controle supervisório por autômatos finitos.	 Aula teórica 4 em pdf e gravação da aula (googleclass). Capítulo 2 do livro do Miyagi. 	Leitura e estudo do material em pdf e assistir a vídeo aula 4. Leitura do capítulo 2 do livro-texto do autor Miyagi.	
5. AT5. Teoria do controle supervisório por autômatos finitos: exemplos de aplicação. Data: 18/05.	 Apresentar aplicações de aplicação do controle supervisório via autômatos finitos. 	 Aula teórica 5 em pdf e gravação da aula (googleclass). 	Leitura e estudo do material pdf e assistir a vídeo aula 5.	
6. AT6. Teoria do controle supervisório por autômatos finitos: relação entre autômatos finitos e as redes de Petri, definições e análise. Data: 20/05.	 Apresentar e estudar a teoria de controle supervisório por redes de Petri: relação autômatos finitos x redes de Petri. 	Aula teórica 6 em pdf e gravação da aula (googleclass).	Leitura e estudo do material pdf e assistir a vídeo aula 6.	
7. AT7. Teoria do controle supervisório por redes de Petri: definições, leis de formação e propriedades. Data: 25/05.	 Apresentar as definições, leis de formação e propriedades das redes de Petri, na teoria do controle supervisório. 	 Aula teórica 7 em pdf e gravação da aula (googleclass). Capítulo 2 do livro do autor Miyagi. 	 Leitura e estudo do material em pdf e assistir a vídeo aula 7. Leitura do capítulo 2 do livro-texto do autor Miyagi. 	
8. AT8. Teoria do controle supervisório por redes de Petri: ex. de aplicações, o portão de entrada /saída automático. Data: 27/05.	 Apresentar exemplos de aplicações do controle supervisório por redes de Petri: portão de entrada/saída automático. 	 Aula teórica 8 em pdf e gravação da aula (googleclass). 	Leitura e estudo do material pdf e assistir a vídeo aula 8.	
9. AT9. Teoria do controle supervisório por redes de Petri: ex. de aplicações, o semáforo de controle sequencial. Data: 01/06.	 Apresentar exemplos de aplicações do controle supervisório por redes de Petri: semáforo de controle sequencial. 	 Aula teórica 9 em pdf e gravação da aula (googleclass). Capítulo 2 do livro do autor Couto. 	 Leitura e estudo do material pdf e assistir a vídeo aula 9. Leitura do capítulo 2 do livro- texto do autor Couto. Resolução da Tarefa 2: Lista de exercícios 2. 	Postagem da Tarefa 2 no Googleclass. (1,0 ponto) na AP1.

10. AT10. Teoria do controle supervisório por redes de Petri: exemplos de aplicações, o controle do trem de inverno. Data: 03/06.	 Apresentar exemplos de aplicações do controle supervisório por redes de Petri: o controle do trem de inverno. 	 Aula teórica 10 em pdf e gravação da aula (googleclass). 	Leitura e estudo do material pdf e assistir a vídeo aula 10.	
11. AP1. Aula simulação computacional: Modelagem e simulação de controle supervisório a eventos discretos com redes de Petri. Data: 08/06.	 Apresentar o ambiente Pipe 4.3.0: desenvolvimento de modelagem e simulação de sistemas a eventos discretos por redes de Petri. 	 Aula prática remota 1, de simulação no ambiente Pipe 4.3.0: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 11. Resolução da Tarefa 3: Lista de ex.3. 	Postagem da Tarefa 3 no Googleclass. (1,0 ponto) na AP1.
12. Primeira Avaliação Escrita. Data: 10/06.	Avaliar o conhecimento adquirido dos alunos sobre o conteúdo ministrado, no módulo 1.	Prova escrita programada a ser aplicada online no horário da aula e no ambiente "meet" do Googlecass.	Resolução individual e postagem da prova no repositório do ambiente Googleclas da disciplina.	Postagem da Primeira prova escrita (5,0 pontos) na AP1, no Googleclass

MÓDULO 2:	Modelag	jem e simulação			
13. AT11. Modelagem e simulação de Sistemas via redes de Petri: definições, leis de disparo e matriz de estados. Data:15/06.	20	Apresentar as definições, leis de disparo e matriz de estados de redes de Petri.	 Aula teórica 11 em pdf e gravação da aula (googleclass). Capítulo 8 do livro do autor Couto. 	Leitura e estudo do material em pdf e assistir a vídeo aula 13. Leitura do capítulo 8 do livro-texto do autor Couto.	
14. AT12. Modelagem e simulação de Sistemas via redes de Petri: simulação dinâmica, propriedades, verificação de propriedades e validação. Data: 17/06.		 Apresentar a simulação dinâmica, propriedades, verificação de propriedades e validação de modelos de redes de Petri. 	 Aula teórica 12 em pdf e gravação da aula (googleclass). Capítulo 9 do livro do autor Couto. 	 Leitura e estudo do material em pdf e assistir a vídeo aula 14. Leitura do capítulo 9 do livro-texto do autor Couto. 	
15. AP2. Aula simulação computacional: Modelagem e simulação de redes de Petri, workflow, verificação de propriedades e validação. Data:22/06.		Desenvolver no Pipe 4.3.0: modelagem e simulação de redes de Petri, workflow, verificação de propriedades e validação de modelos.	 Aula prática remota 2, de simulação no ambiente Pipe 4.3.0: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 15. Resolução da Tarefa 4: Lista de ex.4. 	Postagem da Tarefa 4 no Googleclass. (1,0 ponto) na AP1.
16. AT13. Redes de Petri estendidas e de alto nível. Data: 24/06.		 Apresentar as redes de Petri estendidas: temporizadas e hierárquicas e o uso de Tags coloridos. Abordar de forma introdutória as redes de Petri coloridas. 	 Aula teórica 13 em pdf e gravação da aula (googleclass). Capítulo 4 do livro-texto do Miyagi. 	 Leitura estudo do material em pdf e assistir a vídeo aula 16. Leitura do capítulo 4 do livro- texto do autor Miyagi. 	
17. AP3 Aula simulação computacional: Modelagem e simulação de redes de Petri: hierarquia, redes temporizadas e tags coloridos. Data: 29/06.		 Desenvolver no Pipe 4.3.0: modelagem e simulação de redes de Petri: redes temporizadas, hierarquia, e tags coloridos. 	 Aula prática remota 3, de simulação no ambiente Pipe 4.3.0: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 17. Resolução da Tarefa 5: Lista de ex. 5. 	Postagem da Tarefa 5 no Googleclass. (1,0 ponto) na AP1

MÓDULO 3:	Control	e programável			
18. AT14. Projeto de controladores programáveis para automação: aplicações em manufatura flexível. Parte 1. Data: 01/07.	15	 Apresentar e desenvolver o projeto de controladores programáveis para automação: aplicações em manufatura flexível. 	 Aula teórica 14 em pdf e gravação da aula (googleclass). Capítulo 5 do livro do autor Miyagi. 	Leitura e estudo do material em pdf e assistir a vídeo aula 18 Leitura do capítulo 5 do livro-texto do autor Miyagi.	
19. AP4. Aula simulação comp.: controladores programáveis para manufatura flexível. Data: 06/07.		Desenvolver no Pipe 4.3.0: Controladores programáveis para manufatura flexível.	 Aula prática remota 4, de simulação no ambiente Pipe 4.3.0: roteiro em pdf e aula gravada. 	 Participar e desenvolver roteiro da aula prática, assistir aula gravada 19. Resolução da Tarefa 6: Lista de ex.6. 	Postagem da Tarefa 6 no Googleclass. (1,0 ponto) na AP2.
20. AT15. Projeto de controladores programáveis para automação: aplicações em manufatura flexível. Parte 2. Data: 08/07.		 Apresentar e desenvolver o projeto de controladores programáveis para automação: aplicações em manufatura flexível. 	 Aula teórica 15 em pdf e gravação da aula (googleclass). Capítulo 11 do livro do autor Miyagi. 	Leitura e estudo do material em pdf e assistir a vídeo aula 20. Leitura do capítulo 11 do livro-texto do autor Miyagi.	
21.AT16. Projeto de controladores programáveis para automação: aplicações em sistemas inteligentes. Data: 13/07.		Apresentar e desenvolver o projeto de controladores programáveis para automação: sistemas inteligentes.	Aula teórica 16 em pdf e gravação da aula (googleclass). Capítulo 5 do livro-texto do Couto.	Leitura e estudo do material em pdf e assistir a vídeo aula 21. Leitura do capítulo 5 do livro-texto do autor Couto.	
Data: 13/07.					

22. AP5. Aula simulação computacional: Controladores supervisórios aplicados em manufatura flexível e sistemas inteligentes. Data: 15/07.	 Desenvolver no Pipe 4.3.0: controladores programáveis aplicados em manufatura flexível e sistemas inteligentes. 	 Aula prática remota 5, de simulação no ambiente Pipe 4.3.0: roteiro em pdf e aula gravada. 	Participar e desenvolver roteiro da aula prática, assistir aula gravada 22. Resolução da Tarefa 7: Lista de ex.7.	Postagem da Tarefa 7 no Googleclass. (1,0 ponto) na AP2.
23. Segunda Avaliação Escrita. Data: 20/07.	Avaliar o conhecimento adquirido dos alunos sobre o conteúdo ministrado, nos módulos 2 e 3.	Prova escrita programada a ser aplicada online no horário da aula e no ambiente "meet" do Googlecass.	Resolução individual e postagem da prova no repositório do ambiente Googleclas da disciplina.	Postagem da Segunda prova escrita (5,0 pontos) na AP2, no Googleclass.

MÓDULO 4:	Relações de a	nalogias			
24. AT17. Tradução de redes de Petri para programação de automação: para linguagem IEC 61131-3 compatível. Data: 22/07.	ana trac mod par pro	resentar as relações de alogias aplicadas na dução do fluxo de delos em redes de Petri: a linguagem de gramação IEC 61131-3 npatível.	 Aula teórica 17 em pdf e gravação da aula (googleclass). Capítulo 11 do livro do autor Couto. 	Leitura e estudo do material em pdf e assistir a vídeo aula 24. Leitura do capítulo 11 do livro-texto do autor Couto.	
25. AT18. Tradução de redes de Petri para programação de automação: para linguagem IEC 61131-3 compatível. Parte 2. Data: 24/07.	ana trac mod par pro	resentar as relações de alogias aplicadas na dução do fluxo de delos em redes de Petri: a linguagem de gramação IEC 61131-3 npatível.	 Aula teórica 18 em pdf e gravação da aula (googleclass). Capítulo 11 do livro do autor Couto. 	Leitura e estudo do material em pdf e assistir a vídeo aula 25. Leitura do capítulo 11 do livro do autor Couto.	
26.AT19. Tradução de redes de Petri para programação de automação: para microprocessadores. Data:27/07.	ana trac mo par	resentar as relações de alogias aplicadas na dução do fluxo de delos em redes de Petri: a programação em proprocessadores.	 Aula teórica 19 em pdf e gravação da aula (googleclass). 	Leitura e estudo do material em pdf e assistir a vídeo aula 26.	
27.AP6. Aula simulação computacional: Estudo de caso aplicado para projeto de controle programável com redes de Petri, tradução para programação IEC 61131-3 compatível. Parte 1. Data:29/07.	no red pro	senvolver no Pipe 4.3.0 e Isagraph: Tradução de es de Petri para gramação em linguagem 61131-3.	 Aula prática remota 6, de simulação nos ambientes Pipe 4.3.0 e Isagraph: roteiro em pdf e aula gravada. 	Participar e desenvolver roteiro da aula prática, assistir aula gravada 27. Resolução da Tarefa 8: Lista de ex.8.	Postagem da Tarefa 8 no Googleclass. (1,0 ponto) na AP2.

28.AP7. Aula simulação computacional: Estudo de caso aplicado para projeto de controle programável com redes de Petri, tradução para programação IEC 61131-3 compatível. Parte 2. Data: 31/07.	Desenvolver no Pipe 4.3.0 e no Isagraph: Tradução de redes de Petri para programação em linguagem IEC 61131-3.	Aula prática remota 7, de simulação nos ambientes Pipe 4.3.0 e Isagraph: roteiro em pdf e aula gravada.	Participar e desenvolver roteiro da aula prática, assistir a aula gravada 28. Resolução da Tarefa 9: Lista de ex.9.	Postagem da Tarefa 9 no Googleclass. (1,0 ponto) na AP2.
29.AP8. Aula simulação computacional: Estudo de caso aplicado para projeto de controle programável com redes de Petri, tradução para programação em microprocessadores. Data: 03/08.	Desenvolver no Pipe 4.3.0 e no Isagraph: Tradução de redes de Petri para programação em microprocessadores.	Aula prática remota 8, de simulação nos ambientes Pipe 4.3.0 e Colab: roteiro em pdf e aula gravada.	Participar e desenvolver roteiro da aula prática, assistir a aula gravada 29. Resolução da Tarefa 10: Lista de ex.10.	Postagem da Tarefa 10 no Googleclass. (1,0 ponto) na AP2
30. Avaliação Final . Data:05/08.	 Avaliar o conhecimento adquirido dos alunos que não conseguiram a média parcial. Assunto: conteúdo do módulo 4. 	Prova escrita programada a ser aplicada online no horário da aula e no ambiente "meet" do Googlecass.	 Resolução individual e postagem da prova no repositório do ambiente Googleclas da disciplina. 	Postagem da Prova Final (10,0 pontos) na média final no Googleclass.

*Método de cálculo de notas:

-AP1= primeira prova escrita (5,0) + Tarefa1(1,0) + Tarefa2 (1,0) + Tarefa3(1,0) + Tarefa4(1,0) + Tarefa5(1,0).

-AP1= segunda prova escrita (5,0) + Tarefa6 (1,0) + Tarefa7(1,0) + Tarefa8(1,0) + Tarefa9(1,0) + Tarefa10(1,0).

Média parcial:
$$M_p = \frac{Ap_1 + Ap_2}{2} \ge 8.0$$
 Média final: $M_f = \frac{2*M_p + Prova_{final}}{3}$