Introduction to

SPEECH PROCESSING

P. C. Pandey

EE Dept., IIT Bombay

References

- 1. L. R. Rabiner and R. W. Schafer, *Digital Processing of Speech Signals*, Pearson Education, 2004
- 2. B. Gold and N. Morgan, Speech and Audio Signal Processing, John Wiley, 2002
- 3. D. O'Shaughnessy, Speech Communications: Human and Machine, Universities Press, 2001

Speech communication

- Speech production
 - Propagation of the acoustic wave
 - Speech perception by the listener

Applications of speech processing

- Generation
- Transmission & storage (coding, speech enhancement)
- Reception (speaker & speech recognition, quality assessment)
- Aids for the disabled

Applications of speech processing

Reception

- □ Analysis for studying speech signal
- □ Diagnostic aid for speech disorders
- ☐ Speaker identification & quality assessment
- □ Speech recognition
- Aids for the hearing impaired
 - □ Variable rate playback
 - ☐ Visual / tactile displays
 - □ Effective use of residual hearing
 - □ Electrical stimulation of auditory nerve

Speech units

- Words
 - Syllables
 - Phonemes
 - Sub-phonemic events

Speech transcription (scripts and alphabet systems)

- PictographicAlphabetic
- PhonemicSyllabic

International Phonetic Alphabet (IPA)

अ /^/, आ /a/, क़ /k/, ख़ /k^h/, श् // /, etc.

Efficiency of phonemic transcription

Measurement of information

Information: mean logarithmic probability (MLP).

For a set of messages $x_1, x_2 \dots x_n$ with probabilities $p_1, p_2 \dots p_n$, information

$$I = \text{MLP}(x_i) = \sum_{i=1}^{n} p_i \log_2(1/p_i) \text{ bits}$$

If the messages occur at the rate of M messages/s, then the rate of information is

$$C = M I$$
 bits/s

Phonemic transcription of speech

Consider speech generated from phonemic transcription (written text). No of phonemes in English = 42.

Considering them equiprobable, p = 1/42

$$I = \sum_{i=1}^{42} p_i \log_2 (1/p_i) = 5.39 \text{ bits}$$

For conversational speech, with 10 phonemes/s. C = M I = 53.9 bits/s. Considering actual phoneme probabilities, I = 4.9 bits and C = 49 bits/s Considering relatedness of sequence of phonemes, $C \approx 45$ bits/s

Channel capacity requirements

Channel capacity of an analog channel, with signal power S, noise power N, and bandwidth $B \, \mathrm{Hz}$,

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$
 bits/s

For conventional analog telephony,

$$B = 3 \text{ kHz}$$
, SNR = 30 dB \rightarrow S/N = 1000

$$C = 3 \times 10^3 \log_2 \left(1 + 1000\right) \approx 30 \text{ k bits/s}$$

Now consider good quality speech Digitization (without any data compression techniques)

- 12 bit quantization $(2^{12} = 4096 \text{ levels})$
- Sampling rate = 10 k samples/s

Channel capacity required for digital transmission

$$C = (10 \times 10^3)\log_2 2^{12} = 120 \text{ k bits/s}$$

Thus we have three different estimates for channel capacity requirements for speech

- Analog telephony (3 kHz bandwidth, 30 dB SNR): 30 k bits/s
- Digital transmission (12-bit, 10 k samples/s, no encoding): 120 k bits/s
- Phonemic transcription: \approx 45 bits/s

Auditory system

Peripheral auditory system

External ear: pinna and auditory canal (sound collection)

- → Middle ear : ear drum and middle ear bones (impedance matching)
 - → Inner ear : cochlea (analysis and transduction)
 - → Auditory nerve (transmission of neural impulses)
- Central auditory system (information interpretation)

Peripheral auditory system (outer, middle, and inner ear).

(Adapted from Flanagan (1972a), Fig. 4.1.)

A longitudinal section through the uncoiled cochlea

(Source: Pickles (1982), Fig. 3.1.(C))

The mechanism of speech production

A schematic diagram of the human vocal mechanism

A schematic representation of the vocal apparatus. (Adapted from Rabiner & Schafer (1978), Fig. 3.2)

Pitch : F_0 (rate of vibration of vocal cords)

Formant frequencies: F_1 , F_2 , ... (resonance frequencies of vocal tract filter)

Phonemic features

- Modes of excitation
 - Glottal: voiced unvoiced (aspiration)
 - Frication (constriction in vocal tract) : voiced unvoiced
- Movement of articulators
 - Continuant (steady vocal tract): vowels, nasal stops, fricatives
 - Non-continuant (changing vocal tract): diphthongs, semivowels, plosives (oral stops)
- Place of articulation
 - bilabial, labio-dental, linguo-dental, alveolar, palatal, velar, gluttoral
- Changes in F_o

Classification of English phonemes

Classification		of	Engl	lish f	Phonemes
Vowe!s	α	I A U	e ow o		(front) (mid) (back)
Diphthongs	aI eI	oI oU	all ju		
Semi-vonvels	γ ω	l J		Ç	liguid) glide)
Consonants	ь Р	d *	g K	voiced 7 unvoic	pasal stops blosives ed blosives
	v	5 z 9 s	3 h	voiced Unvoice	fricative ed fricative
	h	дз Ц	Y(ज्) (-र)	voiced unvoiced whisbei	affricate affricate
				,	

Classification of Hindi phonemes

```
Classification of Hindi Phonemes
   short vowels:
                                        3
   long vowels:
                             377
                                        35
   Diphthongs:
                 (front)
                                          (back)
  semi vowels:
                        17. 21 (V) (U)
unvoiced_plosives
                                          क (unaspirated)
                                          & (aspirated)
                                         IT (unaspirated)
                                         ET (aspirated)
nasals
                                ष् र डु
affricates
                                           (unvoiced)
(voiced)
foricatives
                                        & (unvoiced)
        कछा ग घडे
        च छ ज झत्र
           ठ उ ढ ज
```

Suprasegmental features

- Intonation
- Rhythm (syllable stressing)
 Carriers
 - Changes in intensity
 - Syllable duration
 - Changes in voice pitch
- Visual features
 Partial information on place of articulation

Short-time speech analysis

Speech analysis techniques

- Time domain analysis
 - Intensity

- Zero crossing rate
- Autocorrelation
 AMDF
- Frequency domain analysis
 - Filter bank analysis
 - Spectrographic displays
 - F₀ estimation and tracking
- Short-time Fourier analysis
- Formant estimation & tracking
- Separation of excitation and vocal tract filter effects
 - Cepstral analysis
 - Linear predictive coding (LPC)

P. C. Pandey / Introduction to Speech Processing / Jan. 2008

Multi-resolution spectrographic analysis

Analog analysis Spectral analysis using bandpass filter & demodulator

$$s(t) \longrightarrow |S_t(f)|_{dB}$$

 $\Delta f = 300 \text{ Hz}$ (wideband), 45 Hz (narrow band)

Digital analysis

Short-time Fourier transform:
$$X(n,k) = \sum_{m=0}^{N-1} w(m)x(n-m)e^{-j2\pi \frac{mk}{N}}$$

Hamming window:
$$w(n) = 0.54 - 0.46 \cos \left(2\pi \frac{nt \frac{L}{2}}{L-1} \right), -\frac{L}{2} \le n \le \frac{L}{2}$$

$$S_{dB}(n,k) = 20 \log(|X(n,k)|/X_{ref})$$

For $f_s = 10$ k Sa/s, $L = 43 \rightarrow \Delta f \square 300$ Hz
 $L = 289 \rightarrow \Delta f = 45$ Hz

• Change in resolution, implemented by padding L-sample segment with N-L zero valued samples, and using N-point DFT. Pre-emphasis for boosting high-frequency components.

Vowel triangle

The vowel triangle.

Spectrograms for English phonemes

(vowels or /aCa/ syllable)

Manner	Voicing	Place of articulation			
	_	Back	Mid	Front	
Oral stop	unvoiced	k	t	р	
	voiced	g	d	b	
Nasal stop	unvoiced	×	×	×	
	voiced	ng	n	m	
Oral fricative	unvoiced	(sh)	S	f	
	voiced	(zh)	Z	V	
Nasal fricative	unvoiced	×	×	×	
	voiced	×	×	×	

Cepstral analysis

We can use "log" transformation for deconvolution and separation of excitation & vocal tract filter parameters.

$$x(n) \xrightarrow{Z} X(z) \xrightarrow{\log} \hat{X}(z) \xrightarrow{Z^{-1}} \hat{x}(n)$$

$$\hat{x}(n) = Z^{-1} \left[\log \left\{ X(z) \right\} \right]$$

$$\log \left[S(z) \right] = \log E(z) + \log V(z)$$

$$\downarrow Z^{-1}$$

$$\hat{s}(n) = \hat{e}(n) + \hat{v}(n)$$

Linear predictive coding (LPC)

- Excitation e(n): modeled as an impulse or random noise.
- Vocal tract filter transfer function V(z): modeled as an all-pole filter (AR model).
- Inverse filter A(z): all-zero filter (FIR or MA filter), with parameters estimated for minimizing $\mathcal{E}(n)$ in LMS sense.

Result

- Error $\mathcal{E}(n)$ acquires the characteristics of the excitation function
- Inverse filter coefficients, obtained by solving a set of linear equations, approximate the vocal tract filter coefficients.

Speech production

$$e(n) \longrightarrow S(n)$$

$$V(z) = \frac{1}{1 - A(z)} = \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$

$$e(n) = s(n) - \sum_{k=1}^{p} a_k s(n-k)$$

Linear prediction model

$$\hat{s}(n) = \sum_{k=1}^{p} \overset{\wedge}{a_k} s(n-k)$$

$$\varepsilon(n) = s(n) - \hat{s}(n)$$

$$= s(n) - \sum_{k=1}^{p} \overset{\wedge}{a_k} s(n-k)$$