大沙 1 1

一. 英轻目的

掌握测量电子电荷 e 值的方法,并证明所有电荷都是基本电荷 e 的整数倍二、实验厚理

用喷雾器将油雾喷入两块平行电极极之间,由滴因摩擦帮电,当两电极极未加压时,油油受重力作用降落,做加速运动,但随即受到空气黏滞力作用减速当空气黏滞力下,和浮力下与重力 mg 的合力平衡时,油滴以为速下降 mg-F4-F2=0

当阿平行叛闰加有电压U时,两极之间将产生电场E=岩、带有电荷?的油渍受到电场力?E作用。当?E>mg,当两力方向租反时,油酒向上运动。当油油速度增大到心时、油酒匀造上升、Fr=6元7aVe、则 mg+Fr-Fr- ?E=o即、崇元031g+6元7aVe-崇元031g-?E=o,可得油酒节电量?=18元亡(清)=岁(省+Ve)

当 a 与平均自由经入量级接近时, 斯托克斯定律应进行修正: Fr = 62 anv

地 导教师 	
1日寸纸帅位寸:	

联系方式:

-V-EE	rish:	实验名称:	实验日期:	在	F	-
HE	级:	tel. M. riving			^{/3}	🖰
70-20	-A.	教学班级:	学号:	姓	夕.	

实验时取匀连下降和上升距离相同,设剂上,测出下降与上升时间均, te. Vg= 七、Ve= 七

$$N = \frac{18\pi}{\sqrt{2}} \left(\frac{1}{1+\frac{1}{12}} \right)^{\frac{2}{1}} = \frac{18\pi}{\sqrt{2}} \left(\frac{1}{1+\frac{1}{12}} \right)^{\frac{2}{12}} d$$

静态法厚理:调节平行极极电压,使油滴静止, Ve=0. te→∞.

在吴轻中用不同油滴测量,其带电量表示为9.,92,---.9;,经分析可发现,这些量基都是基本电荷量的e的整数信,即9i=nixe, ni=11, ±2, ±3---这就证明3存在着最小的电荷单位——电子电荷e,

三. 实验内容与步骤

1.测量练习,

以键程制上极极的电压极性, kz键控制上极极电压大小. 当kz键分于中间位置,即"平衡"档时,可用平衡电压调节电位器控制平衡电压的高低。当电键打向"提升"档时, 本机自动在该平衡电压的基础上增加 200~300 V 的提升电压。而打向"OV" 档时, 上极极电压为 OV

课程名称:	edward for the				
班 级:	实验名称:	实验日期:	年	月	E
	教学班级:	学 号:	姓	名:	
2.正式测量					
*用 "平復丁" 法	测量、可将正调	平档三约-上之间1	4 h /4 -		·
校"计时/停"按钮	生作 15 16 10年	平便J的油滴用ki	键移到	"起之"	浅上,
按"计时/停"按钮将向"平海运动距离"=0	维元·	被何"OV"档。油油	面到达"多	总"时,	迅速
and the second s		T 11 10 71 36 46 4 14 1	1 11 10	m L ' al L	. h
	-3 ~ 0 - 1.3 m o H	此可确定 Va 将结	果代入公	式 可求	£9
"动态"法要求	分别测出南油流	上升时间te 名下;	fe 7 1	1/ 0	
公式,即可确定?	值	一十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十十	沙时间了	,将结果1	4×
		ml 旦 7.5 A 12 1.00	1 1 to 1 T	//	
油海(コなま)公	71000000000000000000000000000000000000	则量7/2,选择5颗	川凋(半	(到法)、2	、榖
值 我将任里上小	刘进行沙重。承	出每颗油酒的带电	重9及电台	子 也 有 e B	4重
但,11岁%不过公	从 但 进行 比 较, 永	出测量结果的不确定	及阻。		
W女士士.		指导	教师签字:		

ntu

. H

iere

of tv

leus

ectio

实验名称: 班级: 实验日期: 教学班级: 年 月 日 学 号: 姓

			_ 专 号:	姓 名:
246	V · 特(v)	tg (5)	V模(v)	te(5)
2	246		434	10-99
3	246	8.32	43 400	11-26
4	246	8-64	434	11.36
7	246	8-66 B.49	434	11.10
		~ I I	434	11-38
	V平衡(V)	tgcs)	V担针(v)	tecs)
.1	126/30	11-35	317	= 77
2	130	11-60		7.77
3	130	11.29	317	7-80
4			317	7.65
5	130	11.71	317	7-86
	130	11.70	317	7-60
1	V F 绝可(v)	tg(s)	V担升(v)	t(s)
	142	14.59	330	11.52
2	142	14.64	33 0	12.20
3	142	14.35	330	12.11
Ť	142	14.55	330	11-96
5	142	14.45	330	12.03

联系方式:

指导教师签字:_

平衡法:

U _{平衡} (V)	t _q (s)	V _g (m/s)						
246	000		q(C)	n	e(C)	误差	油滴半径/m	K值
246	8.32		1.28E-18	8	1.606E-19	0.258%	1.201E-06	8.407E-15
246			IOL 10	9	1.587E-19	-0.920%	1.243E-06	8.434E-15
246	8.64			8	1.684E-19	5.146%	1.219E-06	8.419E-15
	8.66	1.73E-04	1.34E-18	8	1.678E-19	4.771%	1.218E-06	8.418E-15
246	8.49	1.77E-04	1.38E-18	9	1.538E-19	-3.970%	1.230E-06	8.426E-15
200		平均值	1.36E-18	8	1.619E-19	1.057%		0.4201-10

U _{平衡} (V)	t _o (s)	V _o (m/s)	q(C)	n	e(C)	误差	24.24.47.	u#
130	11.35	1.32E-04	1.67E-18	10	1.671E-19		油滴半径/m	K值
130	11.6		1.62E-18	10	1.615E-19	4.289% 0.819%	1.064E-06	8.305E-15
130	11.29		1.68E-18	11	1.531E-19	-4.408%	1.052E-06 1.067E-06	8.295E-15 8.307E-15
130	11.71		1.59E-18	10	1.592E-19	-0.649%	1.007E-06	8.291E-15
130	11.7	1.28E-04	1.59E-18	10	1.594E-19	-0.517%	1.047E-06	8.292E-15
		平均值	1.63E-18	10	1.601E-19	-0.093%		J.LJZL 10

U _{平数} (V)	t _g (s)	V _g (m/s)	q(C)	n	e(C)	误差	油滴半径/m	K值
142	14.59	1.03E-04	1.03E-18	6	1.725E-19	7.648%	9.384E-07	8.188E-15
142	14.64	1.02E-04	1.03E-18	6	1.715E-19	7.075%	9.368E-07	8.187E-15
142	14.35	1.05E-04	1.06E-18	7	1.517E-19	-5.312%	9.462E-07	8.196E-15
142	14.55	1.03E-04	1.04E-18	6	1.732E-19	8.110%	9.397E-07	8.190E-15
142	14.45	1.04E-04	1.05E-18	7	1.501E-19	-6.332%	9.429E-07	8.193E-15
		平均值	1.04E-18	6	1.638E-19	2.238%	1	

动态法

U _{迎升} (V)	(s)	1 _e (5)	V _g (m/s)	V _p (m/s)	q(C)	ń	e(C)	误差	油滴半径/m	K值
434	8.91	10.99	1.68E-04	1.36E-04	1.32E-18	8	1.648E-19	2.901%	1.2E-06	8.407E-15
434	8.32	11.26	1.80E-04	1.33E-04	1.41E-18	9	1.564E-19	-2.342%	1.24E-06	8.434E-15
434	8.64	11.36	1.74E-04	1.32E-04	1.34E-18	8	1.681E-19	4.928%	1.22E-06	
434	8.66	11.1	1.73E-04	1.35E-04	1.35E-18	8	1.694E-19	5.718%		
434	8.49	11.38	1.77E-04	1.32E-04	1.37E-18	9	1.523E-19	-4.960%	1.23E-06	
				平均值	1.36E-18	8	1.622E-19	1.249%		0.1202-10

U _{BH} (V)	t _p (s)	L _e (S)	Visit							
317	11.35	7.77	V ₀ (m/s)	V _e (m/s)	q(C)	n	e(C)	误差	11 34 41 67 .	1470
317	11.6	7.8	1.32E-04	001-04	1.69E-18	11	1.533E-19		油滴半径/m	
317	11.29	7.65			1.65E-18	10	1.647E-19	-4.325% 2.833%	1.06E-06	8.305E-15 8.295E-15
317	11.71			-02 04	1.71E-18	11	1.555E-19	-2.943%	1.05E-06	8.307E-15
317	11.7	7.86			1.63E-18	10	1.625E-19	1.444%	1.05E-06	8.291E-15
118		7.6	1.28E-04	1.97E-04	1.66E-18	10	1.660E-19	3.604%	1.05E-06	8.292E-15
				平均值	1.67E-18	10	1.604E-19	0.122%		
U _{提升} (V)	t _o (s)	t _e (s)	V _o (m/s)	V _e (m/s)	q(C)	n	200	3P *	*********	K值
330	14.59	11.52	1.03E-04		1.01E-18	6	e(C)	误差	油滴半径/m	Control of the Control
330	14.64	12.2	1.02E-04	1.23E-04	9.74E-19	6	1.682E-19 1.624E-19	4.987% 1.365%	9.38E-07	8.188E-15 8.187E-15
330	14.35	12.11	1.05E-04	1.24E-04	9.98E-19	6	1.664E-19	3.863%	9.37E-07 9.46E-07	
330	14.55	11.96	1.03E-04		9.91E-19	6	1.652E-19	3.115%	9.4E-07	8.190E-15
330	14.45	12.03	1.04E-04	1.25E-04	9.95E-19	6	1.658E-19	3.506%	9.43E-07	8.193E-15
12000	10 30	PERMIT.		平均值	9.94E-19	6	1.656E-19	3.367%		

同一个油酒,对比两种方法的测量结果平衡法测出的平均误差要小于动态法,平衡法更加精确,

买验日期: 学 号:____

V超升(V)

434

434

434

434

- 434

te (5)

10,99

11.26

11.36

11-10

11.38

tg (s)

8.91

8.32

8.64

3.66

8.49

动态法计算

$$Q = \sqrt{\frac{97\sqrt{9}}{2pg}} \qquad n = \frac{9}{e}$$

$$n = \frac{q}{e}$$

$$e = \frac{q}{n}$$

$$k = \frac{1872}{\sqrt{2 \times 1981 \times 9.801}} \left(\frac{1.83 \times 10^{-5} \times 1.6 \times 10^{-3}}{1 + \frac{8.22 \times 10^{-3}}{1.013 \times 10^{3} \times 1.2 \times 10^{-6}}} \right)^{\frac{3}{2}} \times \frac{1}{5} \times 10^{-3} = 8.407 \times 10^{-15}$$

$$n = \frac{1.32 \times 10^{-18}}{1.602 \times 10^{-19}} = 8$$

$$e = \frac{9}{n} = 1.648 \times 10^{-19}$$

联系方式:

RF

m

指导教师签字:

北京理工大学良乡校区管理处监制

电话: 81382088

理名称:_

实验名称:

教学班级:

实验日期:

年

月

序号2:

$$\alpha = \sqrt{\frac{9 \times 1.83 \times 10^{-5} \times 1.5 \times 10^{-3}}{2 \times 981 \times 9.801 \times 8.32}} = 1.24 \times 10^{-6} \text{ m}$$

$$K = \frac{18\pi}{\sqrt{2\times981\times9.801}} \left(\frac{1.83\times10^{-5}\times1.5\times10^{-3}}{1+\frac{8.22\times10^{-3}}{1.013\times10^{5}\times1.24\times10^{-6}}} \right)^{\frac{3}{2}} \times 5\times10^{-3} = 8.434\times10^{-15}$$

$$9 = 8.434 \times |0^{-15} \left(\frac{1}{8.32} + \frac{1}{11.26} \right) \left(\frac{1}{8.32} \right)^{\frac{1}{2}} / 434 = 4 \pm 1.41 \times |0^{-18}| C$$

$$n = \frac{1.41 \times 10^{-18}}{1.602 \times 10^{-19} = 9}$$

$$e(c) = \frac{1.41 \times 10^{-18}}{9} = 1.564 \times 10^{-19} c$$

序号3:

$$\alpha = \sqrt{\frac{9 \times 1.83 \times 10^{-5} \times 1.5 \times 10^{-3}}{2 \times 981 \times 9.801 \times 8.64}} = 1.22 \times 10^{-6} \text{ m}$$

$$k = \frac{18\pi}{\sqrt{2\times981\times9.801}} \left(\frac{1.83\times10^{-5}\times1.5\times10^{-3}}{1+\frac{8.22\times10^{-3}}{1.013\times10^{5}\times1.22\times10^{-6}}} \right) \times 5\times10^{-3} = \frac{8.419\times10^{-15}}{1.34\times10^{-18}c}$$

$$\eta = \frac{1.34 \times 10^{-18}}{1.602 \times 10^{-19}} = 8$$

$$ecc) = \frac{1.34 \times 10^{-18}}{8} = 1.681 \times 10^{-19}$$

联系方式:

指导教师签字:

平程名称: 实验名称: 级: 实验日期:_____ 年____ 月

教学班级:

$$K = \frac{18\pi}{\sqrt{2\times981\times9.801}} \left(\frac{1.83\times10^{-5}\times1.5\times10^{-3}}{1+\frac{8.22\times10^{-3}}{1.013\times10^{5}\times1.22\times10^{-6}}} \right) = 8.418\times10^{-15}$$

$$Q = 8.418 \times |0^{-15} \left(\frac{1}{8.66} + \frac{1}{11.10} \right) \left(\frac{1}{8.66} \right)^{\frac{1}{2}} / 343 = 1.35 \times |0^{-18} |$$

$$N = \frac{1.345 \times |0^{-18}|}{1.602 \times |0^{-19}|} = 8 \qquad \forall ecc) = \frac{1.35 \times |0^{-18}|}{8} = 1.69 \times |0^{-19}| c$$

$$Ve = \left| \frac{1.694 - 1.602}{1.693} \right| \times |00\%| = 5.718\%$$

序号5:
$$Q = \sqrt{\frac{9 \times 1.83 \times |0^{-5} \times 1.5 \times |0^{-3}|}{2 \times 981 \times 9.801 \times 8.49}} = 1.23 \times |0^{-6} m$$

$$k = \frac{18\pi}{\sqrt{2\times9.81\times9.801}} \left(\frac{1.83\times10^{-5}\times1.5\times10^{-3}}{1+\frac{8.22\times10^{-3}}{1.013\times10^{5}\times1.23\times10^{-6}}} \right) = 8.426\times10^{-15}$$

$$9 = 8.426 \times 10^{-15} \left(\frac{1}{8.49} + \frac{1}{11.38} \right) \left(\frac{1}{8.49} \right)^{\frac{1}{2}/343} = 1.37 \times 10^{-18} c$$

$$n = \frac{1.37 \times 10^{-18}}{1.602 \times 10^{-19}} = 9$$

$$ecc) = \frac{1.37 \times 10^{-18}}{9} = 1.523 \times 10^{-19} c$$

联系方式: 指导教师签字:

一沙贝万

果程	名称:	实验 夕45			
班	级:	二 实验名称:	实验日期:		
	7	教学班级:	.W. 🗖	地	

思考题:

- 1. 晚粉 油滴带电的电量和符号都是不一样的,在油滴下 落过程中, 会受到周围电荷的库仑力 空气流动形成的风使滴滴移动 喷油后未关闭小孔,内部关犯测区有率危进入,使油滴 编辑。
 - 2-26-10中的电压是提升电压, 26-11中的U是平衡电压, 两看均与油滴的重力和电荷量联手在一起

联系方式: 指导教师签字: