Лабораторная работа №5 Исследование процесса разрядки конденсатора

Цель работы – исследование процесса разрядки конденсатора на активное сопротивление, определение времени релаксации, оценка емкости конденсатора.

Приборы и принадлежности: лабораторная установка, источник питания, микроамперметр, исследуемый конденсатор, секундомер.

Электрический конденсатор или просто конденсатор – это устройство, способное накапливать и отдавать (перераспределять) электрические заряды. Конденсатор состоит из двух или более проводников (обкладок), разделенных слоем диэлектрика. Как правило, расстояние между обкладками, равное толщине диэлектрика, мало по сравнению с линейными размерами обкладок, поэтому электрическое поле, возникающее при подключении обкладок к источнику с напряжением U, практически полностью сосредоточено между обкладками. В зависимости от формы обкладок конденсаторы бывают плоские, цилиндрические, сферические.

Основной характеристикой конденсатора является его емкость \mathbf{C} , которая численно равна заряду \mathbf{Q} одной из обкладок при напряжении, равном единице:

$$C = Q / U$$

Пусть конденсатор емкостью С включен в электрическую цепь (рис.1),

Puc.1

содержащую источник постоянного напряжения U_0 , ключ K и резистор (активное сопротивление) R. При замыкании ключа K конденсатор зарядится до напряжения U_0 . Если затем ключ K разомкнуть, то конденсатор начнет разряжаться через резистор R и в цепи возникнет электрический ток I. Этот ток изменяется со временем. Считая процессы, происходящие в цепи, квазистационарными, применим для данной цепи законы постоянного тока.

Найдем зависимость разрядного тока I от времени t. Для этого воспользуемся вторым правилом Кирхгофа применительно к цепи R -C (рис.2). Тогда получим:

Рис.2
$$\mathbf{U}_{\mathbf{C}} - \mathbf{U}_{\mathbf{R}} = \mathbf{0}, \quad \mathbf{Q}/\mathbf{C} = \mathbf{IR},$$
 (1)

где I — электрический ток в цепи, Q — заряд конденсатора C. Подставив в уравнение (1) значение силы разрядного тока I = - dQ / dt, получим дифференциальное уравнение первого порядка с разделяющимися переменными:

$$\frac{dQ}{dt} = -\frac{Q}{RC}.$$
 (2)

После интегрирования уравнения (2) находим

$$\mathbf{Q}(\mathbf{t}) = \mathbf{Q}_0 \mathbf{e}^{-\mathbf{t}/\tau},\tag{3}$$

где Q_0 — начальное значение заряда конденсатора, $\tau = RC$ — постоянная, имеющая размерность времени. Она называется временем релаксации. Через время τ , заряд на конденсаторе убывает в е раз.

Продифференцировав уравнение (3), найдем закон изменения разрядного тока **I**(t):

$$\mathbf{I}(\mathbf{t}) = \frac{\mathbf{Q}_0}{\tau} \cdot \mathbf{e}^{-\mathbf{t}/\tau}.$$

Или

$$\mathbf{I}(\mathbf{t}) = \mathbf{I} \,_{0} \mathbf{e}^{-\mathbf{t}/\tau} \,, \tag{4}$$

где $\mathbf{I_0} = \frac{\mathbf{Q_0}}{\tau}$ - начальное значение силы тока, т.е. тока при $\mathbf{t} = 0.$

На рис.3 построены две зависимости разрядного тока **I** от времени **t**, соответствующие двум различным значениям активного сопротивления \mathbf{R}_1 и \mathbf{R}_2 ($\mathbf{\tau}_1 < \mathbf{\tau}_2$).

Рис.3

Описание лабораторной установки

В данной лабораторной работе предлагается исследовать процесс разрядки конденсатора на экспериментальной установке, схема которой показана на рис.4.

Рис.4

Она состоит из источника постоянного напряжения U_0 , емкости C, резисторов R_1 , R_2 , R_3 и микроамперметра. Так как резисторы R_1 , R_2 , R_3 включены последовательно, активное сопротивление цепи можно изменять при помощи перемычек Π , замыкая поочередно накоротко резисторы R_1 , R_2 или оба вместе.

Порядок измерений. Обработка результатов измерений

- 1. Соберите электрическую цепь по схеме рис. 4 и по заданию преподавателя выберите необходимое значение сопротивления цепи ${\bf R}$.
- 2. Замкните ключ K и зарядите конденсатор C до напряжения U_0 . При полной зарядке конденсатора микроамперметр покажет максимальное значение тока I_0 .
- 3. Разомкните ключ **K** и одновременно включите секундомер. Измерьте время **t**₀, в течение которого показания микроамперметра уменьшатся в 10 раз. Определите интервал времени Δ **t** \approx **t**₀ / 10.
- 4. Вновь замкните ключ ${\bf K}$ и зарядите конденсатор.
- 5. Разомкните ключ **K** и зафиксируйте показания микроамперметра через интервалы времени Δ **t**, 2Δ **t**, 3Δ **t**, и т.д. до времени 10 Δ **t**. Такие измерения проделайте три раза, и результаты занесите в табл.1.

Вычислите $\overline{\mathbf{I}}$ (среднее значение тока) и отношение $\overline{\mathbf{I}}/\mathbf{I}_0$.

Таблица 1

t,c	0	Δt	$2\Delta t$	3∆t	4∆t	5∆t	6∆t	7∆t	8∆t	9∆t	10∆t
I_1											
I_2											
I_3											
Ī											
\overline{I}/I_0											

- 6. Опыты повторите три раза для различных значений **R**.
- 7. По результатам измерений постройте график зависимости отношения $\bar{\mathbf{I}}/\mathbf{I_0}$ от времени (см. формулу 4), и определите из графика постоянную $\boldsymbol{\tau}=\mathbf{RC}$. Оцените погрешность $\boldsymbol{\sigma_{\tau}}$ (см. приложение 1).
- 8. Зная значения τ и \mathbf{R} , найдите емкость конденсатора $\mathbf{C} = \tau / \mathbf{R}$. Оцените погрешность $\sigma_{\mathbf{c}}$.
- 9. Запишите окончательный результат с погрешностью: $\overline{\mathbf{C}} \pm \boldsymbol{\sigma}_{\overline{\mathbf{c}}}$.

Контрольные вопросы:

- 1. Что называется конденсатором? Выведите формулу емкости плоского конденсатора.
- 2. Выведите формулы (3) и (4).
- 3. Оцените, какое тепло выделяется в цепи при разрядке конденсатора в Вашем эксперименте.
- 4. Выведите формулу емкости сферического конденсатора.