

# Sequence Alignment



#### **Evolution**





### **Evolutionary Rates**





# Sequence conservation implies function





#### Alignment is the key to

- Finding important regions
- Determining function
- Uncovering evolutionary events



### **Sequence Alignment**



# AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

#### **Definition**

Given two strings

$$x = x_1 x_2 ... x_M, y = y_1 y_2 ... y_N,$$

an <u>alignment</u> is an assignment of gaps to positions 0,..., N in x, and 0,..., N in y, so as to line up each letter in one sequence with either a letter, or a gap in the other sequence

### What is a good alignment?



AGGCTAGTT,

AGCGAAGTTT

AGGCTAGTT-

6 matches, 3 mismatches, 1 gap

**AGCGAAGTTT** 

AGGCTA-GTT-

AG-CGAAGTTT

7 matches, 1 mismatch, 3 gaps

AGGC-TA-GTT-

AG-CG-AAGTTT

7 matches, 0 mismatches, 5 gaps

### **Scoring Function**



Sequence edits:

**AGGCCTC** 

Mutations

**AGGACTC** 

Insertions

**AGGGCCTC** 

Deletions

AGG.CTC

Alternative definition:

minimal edit distance

"Given two strings x, y, find minimum # of edits (insertions, deletions, mutations) to transform one string to the other"

#### **Scoring Function:**

Match: +m

Mismatch: -s

Gap: -d

Score  $F = (\# \text{ matches}) \times m - (\# \text{ mismatches}) \times s - (\# \text{gaps}) \times d$ 

## How do we compute the best alignment?







Too many possible alignments:

(exercise)

### Alignment is additive



#### **Observation:**

The score of aligning

 $X_1, \dots, X_M$ 

 $y_1, \dots, y_N$ 

is additive

Say that

 $X_1...X_i$ 

 $X_{i+1}...X_{M}$ 

aligns to

 $y_1 \dots y_i$   $y_{j+1} \dots y_N$ 

The two scores add up:

$$F(x[1:M], y[1:N]) = F(x[1:i], y[1:j]) + F(x[i+1:M], y[j+1:N])$$

### **Dynamic Programming**



- There are only a polynomial number of subproblems
  - Align  $x_1...x_i$  to  $y_1...y_i$
- Original problem is one of the subproblems
  - Align x<sub>1</sub>...x<sub>M</sub> to y<sub>1</sub>...y<sub>N</sub>
- Each subproblem is easily solved from smaller subproblems
  - We will show next

#### Let

$$F(i, j) = optimal score of aligning  $x_1, \dots, x_i$   
 $y_1, \dots, y_i$$$

F: Dynamic Programming table

# **Dynamic Programming (cont'd)**



#### Notice three possible cases:

1. 
$$x_i$$
 aligns to  $y_j$   
 $x_1 \dots x_{i-1}$   $x_i$   
 $y_1 \dots y_{j-1}$   $y_j$ 

F(i, j) = F(i - 1, j - 1) + 
$$\begin{cases} m, & \text{if } x_i = y_j \\ -s, & \text{if not} \end{cases}$$

2. 
$$x_i$$
 aligns to a gap

$$x_1, \dots, x_{i-1}$$
  $x_i$   
 $y_1, \dots, y_i$  -

$$F(i, j) = F(i - 1, j) - d$$

3.  $y_j$  aligns to a gap

$$x_1, \dots, x_i$$
 -  $y_1, \dots, y_{i-1}$   $y_i$ 

$$F(i, j) = F(i, j - 1) - d$$

### **Dynamic Programming (cont'd)**



How do we know which case is correct?

#### **Inductive assumption:**

$$F(i, j - 1), F(i - 1, j), F(i - 1, j - 1)$$
 are optimal

Then,

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i - 1, j) - d \\ F(i, j - 1) - d \end{cases}$$

Where 
$$s(x_i, y_j) = m$$
, if  $x_i = y_j$ ; -s, if not

### Example



$$x = AGTA$$
  
 $y = ATA$ 



# Procedure to output Alignment

- Follow the backpointers
- When diagonal, OUTPUT x<sub>i</sub>, y<sub>i</sub>
- When up,
   OUTPUT y<sub>i</sub>
- When left,
   OUTPUT x<sub>i</sub>

AGTA A-TA

#### The Needleman-Wunsch Matrix





Every nondecreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

### The Needleman-Wunsch Algorithm



#### Initialization.

$$F(0, 0)$$
 = 0  
 $F(0, j)$  = - j × d  
 $F(i, 0)$  = - i × d

#### Main Iteration. Filling-in partial alignments

For each 
$$i = 1$$
..... $M$ 
For each  $j = 1$ ..... $N$ 

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) & [case 1] \\ F(i - 1, j) - d & [case 2] \\ F(i, j - 1) - d & [case 3] \end{cases}$$

$$Ptr(i, j) = \begin{cases} DIAG, & \text{if } [case 1] \\ LEFT, & \text{if } [case 2] \\ UP, & \text{if } [case 3] \end{cases}$$

3. <u>Termination.</u> F(M, N) is the optimal score, and from Ptr(M, N) can trace back optimal alignment

#### **Performance**



• Time:

O(NM)

Space:

O(NM)

Later we will cover more efficient methods

## A variant of the basic algorithm:



 Maybe it is OK to have an unlimited # of gaps in the beginning and end:

Then, we don't want to penalize gaps in the ends

### Different types of overlaps





#### **Example:**

2 overlapping "reads" from a sequencing project



#### **Example:**

Search for a mouse gene within a human chromosome

### The Overlap Detection variant





#### Changes:

#### 1. Initialization

For all i, j,  

$$F(i, 0) = 0$$
  
 $F(0, j) = 0$ 

#### 2. Termination

$$F_{OPT} = \max \begin{cases} \max_{i} F(i, N) \\ \max_{i} F(M, j) \end{cases}$$

## The local alignment problem



$$x = x_1 \dots x_M$$

$$y = y_1, \dots, y_N$$

Find substrings x', y' whose similarity (optimal global alignment value) is maximum



### Why local alignment



Genes are shuffled between genomes



# The Smith-Waterman algorithm



#### **Idea**: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

**Initialization**: 
$$F(0, j) = F(i, 0) = 0$$

Iteration: 
$$F(i, j) = \max \begin{cases} 0 \\ F(i - 1, j) - d \\ F(i, j - 1) - d \\ F(i - 1, j - 1) + s(x_i, y_j) \end{cases}$$



## The Smith-Waterman algorithm



#### **Termination**:

1. If we want the best local alignment...

$$F_{OPT} = \max_{i,j} F(i, j)$$

Find F<sub>OPT</sub> and trace back

If we want all local alignments scoring > t

Complicated by overlapping local alignments



Waterman-Eggert '87: find all non-overlapping local alignments with minimal recalculation of the DP matrix

# Scoring the gaps more accurately



#### Current model:

Gap of length n incurs penalty n×d

However, gaps usually occur in bunches

Concave gap penalty function  $\gamma(n)$  (aka Convex - $\gamma(n)$ ):

 $\gamma(n)$ : for all n,  $\gamma(n + 1) - \gamma(n) \le \gamma(n) - \gamma(n - 1)$ 





# Convex gap dynamic programming



**Initialization:** same

**Iteration:** 

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ \max_{k=0...i-1} F(k, j) - \gamma(i - k) \\ \max_{k=0...j-1} F(i, k) - \gamma(j - k) \end{cases}$$

Termination: same

**Running Time:**  $O(N^2M)$  (assume N>M)

Space: O(NM)

### Compromise: affine gaps





To compute optimal alignment,

At position i, j, need to "remember" best score if gap is open best score if gap is not open

- F(i, j): score of alignment  $x_1...x_i$  to  $y_1...y_j$ <u>if</u>  $x_i$  aligns to  $y_i$
- G(i, j): score  $\underline{if}$  x<sub>i</sub> aligns to a gap after y<sub>j</sub>
- H(i, j): score **if**  $y_i$  aligns to a gap after  $x_i$
- V(i, j) = best score of alignment  $x_1...x_i$  to  $y_1...y_i$

### Needleman-Wunsch with affine gaps



### Why do we need matrices F, G, H?

Because, perhaps

(it is best to align  $x_i$  to  $y_j$  if we were aligning only  $x_1...x_i$  to  $y_1...y_j$  and not the rest of x, y),

but on the contrary

$$G(i, j) - e > V(i, j) - d$$

(i.e., had we "fixed" our decision that  $x_i$  aligns to  $y_j$ , we could regret it at the next step when aligning  $x_1...x_{i+1}$  to  $y_1...y_i$ )

- Add -d

$$G(i+1, j) = F(i, j) - d$$

Add -e

$$G(i+1, j) = G(i, j) - e$$

## Needleman-Wunsch with affine gaps



#### **Initialization:**

$$V(i, 0) = -d - (i - 1) \times e$$
  
 $V(0, i) = -d - (i - 1) \times e$ 

#### <u>Iteration:</u>

$$V(i, j) = max{ F(i, j), G(i, j), H(i, j) }$$

$$F(i, j) =$$

$$F(i, j) = V(i - 1, j - 1) + s(x_i, y_j)$$

G(i, j) = max 
$$\begin{cases} V(i - 1, j) - d \\ G(i - 1, j) - e \end{cases}$$

$$H(i, j) = \max \begin{cases} V(i, j-1) - d \\ H(i, j-1) - e \end{cases}$$

#### Termination:

V(i, j) has the best alignment

Time? Space?

### To generalize a bit...



... think of how you would compute optimal alignment with this gap function



### **Bounded Dynamic Programming**



Assume we know that x and y are very similar

**Assumption:** 
$$\# gaps(x, y) < k(N)$$

Then, 
$$x_i$$
  
| implies  $|i-j| < k(N)$   
|  $y_j$ 

We can align x and y more efficiently:

Time, Space: 
$$O(N \times k(N)) << O(N^2)$$

### **Bounded Dynamic Programming**





#### **Initialization:**

F(i,0), F(0,j) undefined for i, j > k

#### **Iteration:**

For i = 1...MFor j = max(1, i - k)...min(N, i+k)

$$F(i, j) = \max \begin{cases} F(i - 1, j - 1) + s(x_i, y_j) \\ F(i, j - 1) - d, \text{ if } j > i - k(N) \\ F(i - 1, j) - d, \text{ if } j < i + k(N) \end{cases}$$

#### Termination: same

Easy to extend to the affine gap case

#### **Outline**



Linear-Space Alignment

BLAST – local alignment search

Ultra-fast alignment for (human) genome resequencing