Anderson acceleration for first-order methods

 $\label{eq:michael Garstka} \underline{\text{Michael Garstka}}^1 \cdot \text{Mark Cannon}^1 \cdot \text{Paul Goulart}^1$ ${}^1\text{University of Oxford, UK}$

(virtual) Journal Club, Control Group 26th February 2021

Motivation

When are we using first-order methods?

- non-smooth, large-scale, constrained, (possibly distributed) optimisation problems
- Gradient method, Proximal gradient, Douglas-Rachford / ADMM, ISTA, Consensus, etc.

Motivation / Overview

- o Gradient descent
- Proximal gradient method
- o Douglas-Rachford/ADMM
- Alternating projection method
- $[\ldots]$

- o Broyden methods
- o Anderson acceleration
- Line search

Motivation / Overview

- o Gradient descent
- Proximal gradient method
- o Douglas-Rachford/ADMM
- Alternating projection method
- [...]

- o Broyden methods
- Anderson acceleration
- Line search

First-order methods

Gradient method:

minimize f(v)

with $v \in \mathbb{R}^n$, f strongly convex and strongly smooth with Lipschitz constant L

$$v_{k+1} = v_k - \alpha \nabla f(v)$$

First-order methods

Proximal gradient method:

$$\mathsf{minimize}\, f(v) + g(v)$$

with $v\in\mathbb{R}^n$, $f\colon\mathbb{R}^n\to R$ (CCP) and differentiable and $g\colon\mathbb{R}^n\to R\cup\{\infty\}$ (CCP)

$$v_{k+1} = \mathbf{prox}_g(v_k - \alpha \nabla f(v_k))$$

using the proximity operator:

$$\mathbf{prox}_g(y) \coloneqq \operatorname*{argmin}_v \left(g(v) + \frac{1}{2} \|v - y\|^2 \right).$$

First-order methods

Douglas-Rachford splitting:

$$\mathsf{minimize}\, f(v) + g(v)$$

with $v \in \mathbb{R}^n$, $f,g \colon \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)

$$\begin{split} v^k &= \mathbf{prox}_g(z^k) \\ y^k &= \mathbf{prox}_f(2v^k - z^k) \\ z^{k+1} &= z^k + 2\alpha(y^k - v^k) \end{split}$$

Nonexpansive operators

Definition (Nonexpansive operator)

An operator (function) $F \colon \mathcal{D} \to \mathbb{R}^n$ has a Lipschitz constant L if it holds:

$$||Fx - Fy|| \le L||x - y||, \quad \forall x, y \in \mathcal{D}.$$

When L=1, F is called *nonexpansive* and when L<1, F is called *contractive*.

Finding fixed-points

Fixed-points

We define the set of fixed points of a mapping $F: \mathcal{D} \to \mathbb{R}^n$:

Fix
$$F := \{v \in \operatorname{dom} F \mid v = Fv\}$$
.

Theorem (Banach-Picard fixed point theorem*)

Let (\mathcal{X}, d) be a complete metric space and let $F : \mathcal{X} \to \mathcal{X}$ be Lipschitz continuous with constant $L \in [0, 1[$. Given $v_0 \in \mathcal{X}$, set

$$v_{k+1} = Fv_k.$$

Then there exists $v \in \mathcal{X}$ such that the following hold:

- v is the unique fixed point of F. the mapping is contractive. the sequence $(v_k)_{k\in\mathbb{N}}$ converges linearly to v^* .

Finding fixed-points

• What about nonexpansive operators, e.g.

$$v = Fv, F = \begin{bmatrix} \cos(\frac{\pi}{3}) & -\sin(\frac{\pi}{3}) \\ \sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) \end{bmatrix}?$$

Krasnoselskii-Mann iteration

The Krasnoselskii-Mann iteration

$$v_{k+1} = (1 - \alpha_k)v_k + \alpha_k F v_k,$$

with $\alpha_n \in (0,1)$ converges to a unique fixed point for nonexpansive operators.

Operator building blocks

- Identity operator: $Id = \{(x, x) \mid x \in \mathbb{R}^n\}$
- Inverse operator: $F^{-1} = \{(x, y) \mid (y, x) \in F\}$
- Subdifferential operator: $\partial f = \{(x,g) \mid x \in \mathbb{R}^n, \forall z \in \mathbb{R}^n, \ f(z) \geq f(x) + g^\top(z-x)\}$
- Zero: $0 \in F(x) \to \text{find } x \in \mathbb{R}^n \text{ s.t. } (x,0) \in F$

Resolvent and Cayley operator

- Resolvent operator of $F: R_F = (\operatorname{Id} + \alpha F)^{-1}$
- Cayley operator of F: $C_F = 2R_F \operatorname{Id}$

- Nonexpansive for monotone F
- Resolvent of ∂f : $R_{\partial f}(x) = (\operatorname{Id} + \alpha \partial f)^{-1}(x) = \operatorname{prox}_f(x)$
- Solutions of $0 \in F(x) \Leftrightarrow \text{Fixed points of } R_F \text{ and } C_F$:

$$0 \in F(x) \Leftrightarrow x \in (\mathsf{Id} + \alpha F)(x) \Leftrightarrow x = (\mathsf{Id} + \alpha F)^{-1}(x)$$
$$x = R_F(x) \Leftrightarrow x = 2R_F(x) - x = C_F(x)$$

*from survey paper: Ryu and Boyd (2016)

Gradient method:

minimize f(v)

with $v \in \mathbb{R}^n$, f strongly convex and strongly smooth with Lipschitz constant L

$$\Leftrightarrow 0 = \nabla f(v) \Leftrightarrow v = (\operatorname{Id} - \alpha \nabla f)(v)$$

Gradient method:

 $\mathsf{minimize}\, f(v)$

with $v \in \mathbb{R}^n$, f strongly convex and strongly smooth with Lipschitz constant L

$$\Leftrightarrow 0 = \nabla f(v) \Leftrightarrow v = (|\mathsf{Id} - \alpha \nabla f|)(v)$$

- $(\operatorname{Id} \alpha \nabla f)$ has Lipschitz constant $\hat{L} = |1 \alpha L|$
- contractive for $\alpha \in (0, 2/L)$

Proximal gradient method:

$$minimize f(v) + g(v)$$

with $v\in\mathbb{R}^n$, $f\colon\mathbb{R}^n\to R$ (CCP) and differentiable and $g\colon\mathbb{R}^n\to R\cup\{\infty\}$ (CCP)

$$\begin{split} 0 \in (\nabla f + \partial g)(v) &\Leftrightarrow 0 \in (\operatorname{Id} + \alpha \partial g)(v) - (\operatorname{Id} - \alpha \nabla f)(v) \\ &\Leftrightarrow (\operatorname{Id} + \alpha \partial g)(v) \ni (\operatorname{Id} - \alpha \nabla f)(v) \\ v &= (\operatorname{Id} + \alpha \partial g)^{-1}(\operatorname{Id} - \alpha \nabla f)(v) \\ v &= R_{\partial g}(\operatorname{Id} - \alpha \nabla f)(v) = \operatorname{prox}_g(v - \alpha \nabla f(v)) \end{split}$$

Proximal gradient method:

minimize
$$f(v) + g(v)$$

with $v \in \mathbb{R}^n$, $f : \mathbb{R}^n \to R$ (CCP) and differentiable and $g : \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)

$$\begin{split} 0 &\in (\nabla f + \partial g)(v) \Leftrightarrow 0 \in (\operatorname{Id} + \alpha \partial g)(v) - (\operatorname{Id} - \alpha \nabla f)(v) \\ &\Leftrightarrow (\operatorname{Id} + \alpha \partial g)(v) \ni (\operatorname{Id} - \alpha \nabla f)(v) \\ v &= (\operatorname{Id} + \alpha \partial g)^{-1}(\operatorname{Id} - \alpha \nabla f)(v) \\ v &= R_{\partial g} \left(\operatorname{Id} - \alpha \nabla f \right)(v) = \operatorname{prox}_g(v - \alpha \nabla f(v)) \\ &\operatorname{contractive for } \alpha \in (0, 2/L) \end{split}$$

Proximal gradient method:

minimize
$$f(v) + g(v)$$

with $v \in \mathbb{R}^n$, $f : \mathbb{R}^n \to R$ (CCP) and differentiable and $g : \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)

$$\begin{split} 0 \in (\nabla f + \partial g)(v) &\Leftrightarrow 0 \in (\operatorname{Id} + \alpha \partial g)(v) - (\operatorname{Id} - \alpha \nabla f)(v) \\ &\Leftrightarrow (\operatorname{Id} + \alpha \partial g)(v) \ni (\operatorname{Id} - \alpha \nabla f)(v) \\ v &= (\operatorname{Id} + \alpha \partial g)^{-1}(\operatorname{Id} - \alpha \nabla f)(v) \\ v &= R_{\partial g} \left(\operatorname{Id} - \alpha \nabla f\right)(v) = \operatorname{prox}_g(v - \alpha \nabla f(v)) \end{split}$$

nonexpansive for CCP g

Douglas-Rachford splitting:

$$\mathsf{minimize}\, f(v) + g(v)$$

with
$$x \in \mathbb{R}^n$$
, $f,g \colon \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)
$$\Leftrightarrow 0 \in (\partial f + \partial g)(v) \Leftrightarrow z = ((1-\alpha)\operatorname{Id} + \alpha C_{\partial f}C_{\partial g})(z), \ v = R_{\partial g}(z)$$

$$\begin{split} v^k &= \mathbf{prox}_g(z^k) \\ y^k &= \mathbf{prox}_f(2v^k - z^k) \\ z^{k+1} &= (1-\alpha)z^k + \alpha(2(y^k - v^k) - z^k) \end{split}$$

Douglas-Rachford splitting:

$$minimize f(v) + g(v)$$

with
$$x \in \mathbb{R}^n$$
, $f,g \colon \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)

$$\Leftrightarrow 0 \in (\partial f + \partial g)(v) \Leftrightarrow z = ((1 - \alpha)\mathsf{Id} + \alpha C_{\partial f} C_{\partial g})(z), \ v = R_{\partial g}(z)$$

$$\begin{aligned} v^k &= \boxed{\mathbf{prox}_g(z^k)} \\ y^k &= \mathbf{prox}_f(\boxed{2v^k - z^k}) \\ z^{k+1} &= (1-\alpha)z^k + \alpha(2(y^k - v^k) - z^k) \end{aligned}$$

Douglas-Rachford splitting:

$$minimize f(v) + g(v)$$

with
$$x \in \mathbb{R}^n$$
, $f, g \colon \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)

$$\Leftrightarrow 0 \in (\partial f + \partial g)(v) \Leftrightarrow z = ((1 - \alpha)\mathsf{Id} + \alpha C_{\partial f} C_{\partial g})(z), \ v = R_{\partial g}(z)$$

$$\begin{aligned} v^k &= \mathbf{prox}_g(z^k) \\ y^k &= \left[\mathbf{prox}_f(2v^k - z^k) \right] \\ z^{k+1} &= (1-\alpha)z^k + \alpha(\left[2(y^k - v^k) + z^k \right]) \end{aligned}$$

Douglas-Rachford splitting:

$$\mathsf{minimize}\, f(v) + g(v)$$

with
$$x \in \mathbb{R}^n$$
, $f,g \colon \mathbb{R}^n \to R \cup \{\infty\}$ (CCP)

$$\Leftrightarrow 0 \in (\partial f + \partial g)(v) \Leftrightarrow z = \boxed{((1-\alpha)\mathsf{Id} + \alpha C_{\partial f} C_{\partial g})(z), \, v = R_{\partial g}(z)}$$

$$\begin{split} v^k &= \mathbf{prox}_g(z^k) \\ y^k &= \mathbf{prox}_f(2v^k - z^k) \\ z^{k+1} &= \left(1 - \alpha)z^k + \alpha(2(y^k - v^k) - z^k) \right) \end{split}$$

Method	Fixed point iteration
Gradient method	$x^{k+1} = (\operatorname{Id} - \alpha \nabla f)(x^k)$
\hookrightarrow Dual ascent	
Proximal point method	$x^{k+1} = R_A(x^k) = (Id + \alpha A)^{-1}$
\hookrightarrow Method of multipliers	
\hookrightarrow Iterative refinement	
Forward-backward splitting	$x^{k+1} = R_B(x^k - \alpha A x^k)$
\hookrightarrow Proximal gradient method	
\hookrightarrow Alternating projection m	ethod
\hookrightarrow Projected gradient metho	od
\hookrightarrow Iterative shrinkage-thresh	nolding algorithm (ISTA)
Peaceman-Rachford splitting	$z^{k+1} = C_A C_B(z^k)$, $x^{k+1} = R_B(z^{k+1})$
Douglas-Rachford splitting	$z^{k+1} = 1/2Id + 1/2C_A C_B(z^k)$
	$x^{k+1} = R_B(z^{k+1})$
$\hookrightarrow ADMM$	
\hookrightarrow Consensus	

- Gradient descent
- Proximal gradient method
- o Douglas-Rachford/ADMM
- Alternating projection method
- $[\ldots]$

- o Broyden methods
- Anderson acceleration
- Line search

Quasi-Newton methods

• Our algorithm:

$$v_{k+1} = (1 - \alpha_k)v_k + \alpha_k T(v_k) = g(v_k)$$

• Define residual operator:

$$f(v) \coloneqq v - g(v)$$

Newton method:

$$v_{k+1} = v_k - J_f(v_k)^{-1} f(v_k)$$

• Quasi-Newton method:

$$v_{k+1} = v_k - B_f(v_k)^{-1} f(v_k)$$
 or $v_{k+1} = v_k - H_f(v_k) f(v_k)$

Broyden's second method

• Improve the approximation of inverse Jacobian $H_k \approx J^{-1}(v_k)$ by taking the solution to the secant equation that is a minimal modification to H_k .

minimize
$$\|H_{k+1} - H_k\|_F^2$$
 subject to
$$H_{k+1} \underbrace{(f_{k+1} - f_k)}_{=\Delta f_k} = \underbrace{v_{k+1} - v_k}_{=\Delta v_k}$$

Analytic solution yields Broyden's second method:

$$v_{k+1} = v_k - H_k(v_k) f(v_k) H_{k+1} = H_k + \frac{\Delta v_k - H_k \Delta f_k}{\|\Delta f_k\|^2} \Delta f_k^{\top},$$

Generalized Broyden's second method

• Now: Satisfy m multiple secant equations at the same time:

$$H_k \Delta f_i = \Delta v_i$$
, for $i = k - m, \dots, k - 1$

In matrix form:

$$H_k \mathcal{F}_k = \mathcal{V}_k$$

where
$$\mathcal{F}_k = [\Delta f_{k-m} \cdots \Delta f_{k-1}]$$
, $\mathcal{V}_k = [\Delta v_{k-m} \cdots \Delta v_{k-1}] \in \mathbb{R}^{n \times m}$

• One can derive a rank-m update for the inverse Jacobian H_k which minimizes $\|H_k - H_{k-m}\|_F^2$:

$$H_k = H_{k-m} + (\mathcal{V}_k - H_{k-m}\mathcal{F}_k)(\mathcal{F}_k^{\top}\mathcal{F}_k)^{-1}\mathcal{F}_k^{\top}.$$

Generalized Broyden's second method

This gives the update formula for v_{k+1}

$$v_{k+1} = v_k - H_k f_k$$

= $v_k - H_{k-m} f_k - (\mathcal{V}_k - H_{k-m} \mathcal{F}_k) (\mathcal{F}_k^{\top} \mathcal{F}_k)^{-1} \mathcal{F}_k^{\top} f_k$
= $v_k - H_{k-m} f_k - (\mathcal{V}_k - H_{k-m} \mathcal{F}_k) \gamma_k$

with $\gamma_k = \operatorname{argmin}_{\gamma} \lVert \mathcal{F}_k \gamma - f_k \rVert_2.$

Pros:

- superlinear convergence in practice
- cheap update rule, efficient QR decomposition
- only need access to iterates

Cons:

- inverse has to stay well defined
- only local convergence guarantees

Anderson Acceleration

• Given fixed point problem g(v)=v and the residual f(v)=v-g(v)

```
Input: v_0 and fixed-point iteration g\colon\mathbb{R}^n\to\mathbb{R}^n. for k=0,1,... do  | \text{ Set } m_k=\min\{m,k\}; \\ \text{ Select } m_k+1 \text{ weights } \alpha_j \text{ that satisfy } \sum_{j=0}^{m_k} \alpha_j=1; \\ \text{ Update } v_{k+1}=\sum_{j=0}^{m_k} \alpha_j g(v_{k-m_k+j});
```

end

• Choose weights α_j to minimize weighted residuals:

$$\begin{array}{ll} \text{minimize} & \|\sum_{j=0}^{m_k} \alpha_j f(v_{k-m_k+j})\|_2^2 \\ \text{subject to} & \sum_{j=0}^{m_k} \alpha_j = 1 \end{array}$$

Anderson Acceleration as a Broyden (type-II) update

• Constrained minimization problem:

minimize
$$\|\sum_{j=0}^{m_k} \alpha_j f(v_{k-m_k+j})\|_2^2$$
 subject to $\sum_{j=0}^{m_k} \alpha_j = 1$

• This can be rewritten as an unconstrained least squares problem:

$$\gamma_k = \operatorname*{argmin}_{\gamma} \lVert \mathcal{F}_k \gamma - f_k \rVert_2^2 = (\mathcal{F}_k^\top \mathcal{F}_k)^{-1} \mathcal{F}_k^\top f_k$$

with

- $\alpha_0 = \gamma_0$, $\alpha_i = \gamma_i \gamma_{i-1}$, $\alpha_{m_k} = 1 \gamma_{m_k-1}$
- $\mathcal{F}_k = [\Delta f_{k-m} \cdots \Delta f_{k-1}]$ (as before)

Anderson Acceleration as a Broyden (type-II) update

$$v_{k+1} = \sum_{j=0}^{m_k} \alpha_j g(v_{k-m_k+j})$$

$$= g(v_k) - \sum_{i=0}^{m_k-1} \gamma_i \left(g(v_{k-m_k+i+1}) - g(v_{k-m_k+i}) \right)$$

$$= v_k - f_k - (\mathcal{V}_k - \mathcal{F}_k) \gamma_k$$

$$= v_k - \underbrace{\left(I + (\mathcal{V}_k - \mathcal{F}_k) (\mathcal{F}_k^\top \mathcal{F}_k)^{-1} \mathcal{F}_k^\top \right)}_{=H_k} f_k$$

from previous slides:

- $\bullet \ f(v) = v g(v)$
- $\mathcal{V}_k := [\Delta v_{k-m} \cdots \Delta v_{k-1}]$
- $\mathcal{F}_k \coloneqq [\Delta f_{k-m} \cdots \Delta f_{k-1}]$
- $\gamma = (\gamma_0, \dots, \gamma_{m_k-1})$ $\alpha_j = \gamma_j - \gamma_{j-1}$
- $\gamma_k = (\mathcal{F}_k^{\top} \mathcal{F}_k)^{-1} \mathcal{F}_k^{\top} f_k$

• AA is performing a rank-m Broyden (type-II) update of I, and H_k minimizes $\|H_k-I\|_F$.

Our ADMM-algorithm

minimize
$$\frac{1}{2}x^{\top}Px + q^{\top}x$$
 subject to
$$Ax + s = b$$

$$s \in \mathcal{K}$$

Our algorithm $v^{k+1}=g_{\rho}(v^k)$: $x^k=\Pi_{\mathbb{R}^n\times\mathcal{K}}(v^k)$ $y^k=\mathrm{argmin}\{f(y)+\frac{\rho}{2}\|y-2x^k+v^k\|_2^2\}$ $v^{k+1}=v^k+2\alpha(y^k-x^k)$

Safeguarded acceleration

```
Input: v_0, fixed-point iteration g_a : \mathbb{R}^n \to \mathbb{R}^n
while f(v_k) < \epsilon do
      Accelerate: v_k^{acc} = v_k - (I + (\mathcal{V}_k - \mathcal{F}_k)(\mathcal{F}_k^\top \mathcal{F}_k)^{-1} \mathcal{F}_k^\top) f_k;
     ADMM step: v_{k+1}^{acc} = g_{\rho}(v_k^{acc});
     if ||f(v_k^{acc})|| \le \tau ||f(v_{k-1})|| then
           v_{k+1} = v_k^{acc}
      else
            Safeguarding step: v_{k+1} = q_o(v_k);
      end
      \mathcal{V}_{k+1} \leftarrow [\mathcal{V}_k, \Delta v_k], \, \mathcal{F}_{k+1} \leftarrow [\mathcal{F}_k, \Delta f_k];
      if history full then
            delete history;
      end
end
```

Hardware: Oxford ARC-HTC 16 logical Intel Xeon E5-2560 cores, 64GB RAM

Table: Maros Meszaros QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	75	1042 (125)	1.62s (0.21s)	
accelerated	97	711 (109)	1.10s (0.21s)	

Table: Ferreau MPC QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	256	765 (125)	0.018 (0.0021s)	0
accelerated	278	355 (85)	0.013 (0.0021s)	24 %

Table: Maros Meszaros QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	75	1042 (125)	1.62s (0.21s)	0
accelerated	97	711 (109)	1.10s (0.21s)	22 %

Table: Ferreau MPC QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	256	765 (125)	0.018 (0.0021s)	0
accelerated	278	355 (85)	0.013 (0.0021s)	24 %

Table: Maros Meszaros QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	75	1042 (125)	1.62s (0.21s)	0
accelerated	97	711 (109)	1.10s (0.21s)	22%

Table: Ferreau MPC QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	256	765 (125)	0.018 (0.0021s)	0
accelerated	278	355 (85)	0.013 (0.0021s)	24%

Table: Maros Meszaros QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	75	1042 (125)	1.62s (0.21s)	0
accelerated	97	711 (109)	1.10s (0.21s)	22 %

Table: Ferreau MPC QP set, $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	256	765 (125)	0.018 (0.0021s)	0
accelerated	278	355 (85)	0.013 (0.0021s)	24%

Table: Portfolio Optimisation (QP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla accelerated	10 10	` ,	178s (140s) 70s (41.5s)	0 3.1 %
accelerated	10	1022 (918)	70s (41.5s)	3.1 %

Table: Sparse PCA (SDP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	9	5396 (5750)	97.7s (76.4s)	0
accelerated		744 (736)	14.6s (13.1s)	13%

Table: Portfolio Optimisation (QP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	10	3460 (3550)	178s (140s)	0
accelerated	10	1022 (918)	70s (41.5s)	3.1 %

Table: Sparse PCA (SDP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	9	5396 (5750)	97.7s (76.4s)	0
accelerated	9	744 (736)	14.6s (13.1s)	13%

Table: Portfolio Optimisation (QP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	10	3460 (3550)	178s (140s)	0
accelerated	10	1022 (918)	70s (41.5s)	3.1 %

Table: Sparse PCA (SDP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	9		97.7s (76.4s)	0
accelerated	9	744 (736)	14.6s (13.1s)	13%

Table: Portfolio Optimisation (QP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	10	3460 (3550)	178s (140s)	0
accelerated	10	1022 (918)	70s (41.5s)	3.1 %

Table: Sparse PCA (SDP), $\epsilon=1e^{-6}$, memory size: 10

algorithm	solved	iter	solve time	% acc time
vanilla	9	5396 (5750)	97.7s (76.4s)	0
accelerated	9	744 (736)	14.6s (13.1s)	13%

Table: Mittelmann SDP collection, $\epsilon=1e^{-5}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	15	1740 (1375)	207s (35.9s)	0
accelerated	22	809 (629)	97.6s (52.55s)	3.1 %

algorithm	solved	iter	solve time	% acc time
vanilla	16	1695 (1400)	38s (26.5s)	0
accelerated	21	275 (254)	7.9s (6.9s)	3.1%

Table: Mittelmann SDP collection, $\epsilon=1e^{-5}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	15	1740 (1375)	207s (35.9s)	0
accelerated	22	809 (629)	97.6s (52.55s)	3.1 %

algorithm	solved	iter	solve time	% acc time
vanilla	16	1695 (1400)	38s (26.5s)	0
accelerated	21	275 (254)	7.9s (6.9s)	3.1%

Table: Mittelmann SDP collection, $\epsilon=1e^{-5}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	15	1740 (1375)	207s (35.9s)	0
accelerated	22	809 (629)	97.6s (52.55s)	3.1 %

algorithm	solved	iter	solve time	% acc time
vanilla	16	1695 (1400)	38s (26.5s)	0
accelerated	21	275 (254)	7.9s (6.9s)	3.1%

Table: Mittelmann SDP collection, $\epsilon=1e^{-5}$, memory size: 10

algorithm	solved	iter*	solve time*	% acc time
vanilla	15	1740 (1375)	207s (35.9s)	0
accelerated	22	809 (629)	97.6s (52.55s)	3.1 %

algorithm	solved	iter	solve time	% acc time
vanilla	16	1695 (1400)	38s (26.5s)	0
accelerated	21	275 (254)	7.9s (6.9s)	3.1%

Implementation in COSMO v0.8

```
COSMO v0.8.0 - A Quadratic Objective Conic Solver
                          Michael Garstka
                 University of Oxford, 2017 - 2021
Problem: x \in \mathbb{R} \setminus \{2\},
          constraints: A ∈ R^{3x2} (4 nnz).
          matrix size to factor: 5x5,
          Floating-point precision: Float64
Sets:
          Roy of dim: 3
Settings: € abs = 1.0e-05, € rel = 1.0e-05,
          € prim inf = 1.0e-04. € dual inf = 1.0e-04.
          \rho = 0.1, \sigma = 1e-06, \alpha = 1.6,
          max iter = 5000.
          scaling iter = 10 (on).
          check termination every 25 iter.
          check infeasibility every 40 iter.
          KKT system solver: ODLDL
Acc:
          Anderson Type2{ORDecomp}.
          Memory size = 5. RestartedMemory.
          Safequarded: true, tol: 2.0
Setup Time: 0.04ms
Tter:
        Objective:
                         Drimal Dec.
                                          Dual Res:
                                                           Pho:
        -7.8808e-03
                         1.0079e+00
                                          2.0033e+02
                                                           1.0000e-01
        1 88886+88
                         1 57120-16
                                          8 88180-16
                                                           1 00000-01
SSS Results
Status: Solved
Iterations: 26 (incl. 1 safeguarding iter)
Optimal objective: 1.88
Runtime: 0.001s (0.7ms)
```

Code and Documentation

https://github.com/oxfordcontrol/COSMO.jl https://github.com/oxfordcontrol/COSMOAccelerators.jl

Getting Started IuMP Interface Linear System Solver

Acceleration Custom Cone Constraint

Chordal Decomposition

Model Undates Arbitrary Precision

Performance Tips

User Guide / Acceleration

O Edit on GitHub 10

Acceleration

By default COSMO's ADMM algorithm is wrapped in a safeguarded acceleration method to achieve faster convergence to higher precision. COSMO uses accelerators from the COSMOAccelerators.il package.

By default, the solver uses the accelerator type AndersonAccelerator (T. Type2 (ORDecomp). RestartedMemory. NoRegularizer). This is the classic type-II Anderson acceleration method where the least squares subproblem is solved using an updated OR method. Moreover, the method is restarted, i.e. the history of iterates is deleted, after mem steps and no regularisation for the least-squares method is used.

In addition, the method is safeguarded (safeguard = true), i.e. the residual-norm of the accelerated point can not deviate too much from the current point. Otherwise, the point is discarded and the ADMM algorithm performs a normal step instead

The acceleration method can be altered as usual via the solver settings and the accelerator keyword. To deactive acceleration pass an EmptyAccelerator:

settings = COSMO.Settings(accelerator = EmptyAccelerator)

To use the default accelerator but with a different memory size (number of stored iterates) use:

settings = COSMO.Settings(accelerator = with_options(AndersonAccelerator, mem = 15))

Conclusion:

- Acceleration effective for large QPs and SDPs
- Increased robustness and reduced solve times
- Works with ρ adaptation and chordal decomposition

Conclusion:

- Acceleration effective for large QPs and SDPs
- Increased robustness and reduced solve times
- Works with ρ adaptation and chordal decomposition

Open questions:

- Most effective acceleration variant
- Alternative safeguarding strategies
- Apply acceleration only to part of the operator
- Delayed acceleration
- Line search along Anderson direction

Conclusion:

- Acceleration effective for large QPs and SDPs
- Increased robustness and reduced solve times
- Works with ρ adaptation and chordal decomposition

Questions?

Open questions:

- Most effective acceleration variant
- Alternative safeguarding strategies
- Apply acceleration only to part of the operator
- Delayed acceleration
- Line search along Anderson direction