WHAT IS CLAIMED IS:

1.	In a digital intermediate frequency downconversion circuit for
downconverting in-phase and quadrature signal components of a digitized communication	
signal, a method for processing the in-phase and quadrature signal components of the digital	
signal comprising:	

processing a single serial digital bit stream formed of the in-phase and quadrature signal components through a set of simple logic to produce a digital representation of downconverted in-phase and quadrature components; and

recombining the digital representation of the downconverted in-phase and quadrature components with a reconstruction filter in a manner to obtain a digital representation of a baseband signal substantially free of image artifacts.

 The method according to claim 1 further including the steps of: employing an oversampled digital word of four bits in length from a source digital oscillator as a reference signal;

supplying digital signal mixers with said reference signal to achieve at least sixteen levels of accuracy as a sine wave mixing signal without significant phase or amplitude error;

mixing the digitized serial bit stream according to a clock with output of a four-bit wide table representing the reference signal;

recombining digitally the in-phase and quadrature signals to obtain a digitally combined signal; and

binary weighting the combined signal into a digital reconstruction filter to produce a downconverted signal is unaffected by resistor tolerance.

 In a digital IF downconversion circuit for downconverting in-phase and quadrature signal components of a digitized communication signal, a processor for inphase and quadrature signal components of the digital signal comprising:

logic for processing a single serial digital bit stream formed of the in-phase and quadrature signal components to produce a digital representation of downconverted inphase and quadrature components; and

a digital reconstruction filter for recombining the digital representation of the downconverted in-phase and quadrature components in a manner to obtain a digital representation of a baseband signal substantially free of image artifacts.

10 to pr11 and

1	4. The circuit according to claim 3 further including:
2	a source digital oscillator supplying digital signal mixers with an oversampled
3	digital word of four bits in length to achieve at least sixteen levels of accuracy for a sine wave
4	mixing signal without significant phase or amplitude error.
	5. The circuit according to claim 1 further including resistor means
1	
2	coupled to input of the digital reconstruction filter for binary weighting the digital
3	recombined signal produce a downconverted signal is unaffected by resistor tolerance.
1	 A method of image rejection processing of a received RF signal,
2	comprising:
3	performing downconversion of the received RF signal to produce analog I and
4	Q signals; and
5	for each of the analog I signal and the analog Q signal:
6	oversampling the analog signal to obtain an oversampled digital signal
7	producing a periodic oversampled digital reference signal; and
8	logically combining the digital signal with the digital reference signal
9	to produce an image-canceled digital baseband signal.
1	7. The method of claim 6, comprising:
	converting the digital baseband signal to an analog baseband signal.
2	converting the digital baseband signal to an analog baseband signal.
1	 An image reject circuit apparatus comprising:
2	a first frequency downconversion circuit employing a first local oscillator for
3	downconverting in-phase and quadrature signal components of a digitized communication
4	signal to a first intermediate frequency;
5	sigma delta converters for generating an in phase digital bit stream and a
6	quadrature phase digital bit stream;
7	a digital in-phase and quadrature phase second local oscillator;
8	mixing circuitry for mixing respective single serial digital bit stream in-phase
9	signal and single serial digital bit stream quadrature phase signal through a set of logic gates

to produce a digital representation of downconverted in-phase and quadrature components;

12	weighting resistances in series with the outputs of the logic gates for
13	combining the digital representation of the downconverted in-phase and quadrature
14	components according to value in an in-phase signal and in a quadrature phase signal; and
15	reconstruction filters to recover in-phase and quadrature phase baseband
16	signals from said downconverted in-phase and quadrature components substantially free of
17	image artifacts.
1	9. The image reject circuit apparatus according to claim 8 wherein said
2	mixing circuitry comprises, for each significant bit;
3	first and second exclusive-OR gates coupled to receive as first input an in
4	phase digital bit stream and as second inputs a high accuracy sine function bit stream and a
5	high accuracy cosine function bit stream;
6	third and fourth exclusive-OR gates coupled to receive as first input a
7	quadrature phase digital bit stream and as second inputs a high accuracy sine function bit
8	stream;
18	first OR gate for logically adding the outputs of the first and second XOR
10	gates for the in-phase channel;
	first AND gate for logically multiplying the outputs of the first and second
12	XOR gates for the in-phase channel;
11 12 13 14	second OR gate for logically adding the outputs of the third and fourth XOR
14	gates for the quadrature phase channel; and
15	second AND gate for logically multiplying the outputs of the third and fourth
16	XOR gates for the quadrature phase channel.
1	10. The circuit apparatus according to claim 9 wherein the reconstruction
2	filter comprises:
3	weighting resistors for each output of each of the first and second AND gates
4	and first and second OR gates, said weighting resistors defining a binary weight for its
5	corresponding bit;
6	a first lowpass filter means at a first combining node of the first AND gate and
7	first OR gate;
8	a second lowness filter means at a second combining node of the second AND

gate and second OR gate;

10	wherein each said weighting resistor of the in-phase channel is connected to
11	said first lowpass filter; and
12	wherein each said weighting resistor of the quadrature phase channel is
13	connected to said second filter
14	to yield respective analog I and Q channel signals at baseband.