UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MAT1100 — Kalkulus

Eksamensdag: Fredag 10. desember 2010.

Tid for eksamen: 09:00-13:00.

Oppgavesettet er på 4 sider.

Vedlegg: Formelsamling, svarark.

Tillatte hjelpemidler: Godkjent kalkulator.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Første del av eksamen innholder 10 flervalgsoppgaver som teller 3 poeng hver. Det er bare ett riktig svaralternativ på hver av disse oppgavene. Hvis du svarer galt, eller lar være å svare, får du null poeng. Du blir altså ikke "straffet" for å gjette.

Svarene føres på eget svarark og leveres sammen med resten av besvarelsen. Andre del av eksamen inneholder tradisjonelle oppgaver. I denne delen teller hver av de 7 delspørsmålene 10 poeng. I andre del av eksamen må du begrunnne hvordan du har kommet fram til resultatene dine. Svar som ikke er begrunnet, får 0 poeng selv om de er riktige. Lykke til!

Del 1

Oppgave 1. (3 poeng). Den partiellderiverte $\frac{\partial f}{\partial y}$ til funksjonen

$$f(x,y) = \ln(1+x^2+y^2)$$
er

A
$$1/(1+x^2+y^2)$$

B
$$2y/(1+x^2+y^2)$$

C
$$2y/(1+x^2+y^2)^2$$

D
$$2y \ln(1 + x^2 + y^2)$$

E
$$1/(1+2y)$$

Oppgave 2. (3 poeng). Funksjonen

$$f(x, y, z) = x^2 + y^2 - 2z,$$

vokser i punktet (1,-1,0)raskest i retningen

A
$$(1,2,0)$$

B
$$(2,2,-2)$$

$$\mathbf{C}$$
 $(-2,2,-2)$

D
$$(1,-1,-1)$$

$$\mathbf{E}$$
 (0, 0, 1)

(Fortsettes på side 2.)

Oppgave 3. (3 poeng). Den retningsderiverte $f'(\mathbf{a}; \mathbf{r})$ til funksjonen $f(x,y) = \cos(x^2 + y^2)$ når $\mathbf{a} = (\sqrt{\pi}/2, \sqrt{\pi}/2)$ og $\mathbf{r} = (\sqrt{\pi}, \sqrt{\pi})$ er

- $\mathbf{B} \pi$
- $\mathbf{C} \sqrt{\pi}$
- \mathbf{D} -2
- \mathbf{E} -2π

Oppgave 4. (3 poeng). Arealet til parallellogrammet utspent av vektorene (2, -3) og (1, 2) er

- **A** 1
- \mathbf{B} 3
- \mathbf{C} 5
- **D** 7
- **E** 9

Oppgave 5. (3 poeng). Den inverse til matrisen

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$$
 er

- $\mathbf{B} \quad \frac{1}{3} \begin{pmatrix} -1 & 2 \\ 0 & -3 \end{pmatrix}$ $\mathbf{C} \quad \frac{1}{3} \begin{pmatrix} -3 & 2 \\ 0 & -1 \end{pmatrix}$ $\mathbf{D} \quad \frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}$

Oppgave 6. (3 poeng). Integralet

$$\int_0^1 x\sqrt{1-x^2} \, dx \text{ er}$$

- **A** 1/3
- **B** 1/2
- $C \ 2/3$
- \mathbf{D} 1
- **E** 3/2

Oppgave 7. (3 poeng). Den deriverte til funksjonen (definert for x > 1)

$$f(x) = \int_{\ln(x)}^{x} t \sin(t) dt$$
 er

- $\mathbf{A} = 0$
- $\mathbf{B} \ x \sin(x) \ln(x) \sin(\ln(x))$
- $\mathbf{C} \quad x\sin(x) + \ln(x)\cos(\ln(x))/x$
- $\mathbf{D} \ x \sin(x) \ln(x) \sin(\ln(x))/x$
- E Funksjonen er ikke deriverbar

Oppgave 8. (3 poeng). Volumet til parallellepipedet uspent av vektorene (1,1,1), (1,1,-1) og (0,2,0) er

- **A** 5
- **B** 4
- **C** 3
- \mathbf{D} 2
- \mathbf{E} 1

Oppgave 9. (3 poeng). Funksjonen

$$f(x) = \int_0^x \frac{\sin(t)}{t} dt, \ x \ge 0,$$

- A er konveks
- **B** har lokale maksimum i $x = (2n+1)\pi$, n = 0, 1, 2, 3, ...
- C har lokale minimum i $x = (2n+1)\pi$, n = 0, 1, 2, 3, ...
- **D** har vendepunkt i $x = n\pi$, n = 1, 2, 3, ...
- E er voksende

Oppgave 10. (3 poeng). Følgen gitt ved $a_0 = 0$,

$$a_{n+1} = \frac{1}{1+a_n}$$
 for $n \ge 0$, er konvergent.

Da blir grensen $\lim_{n\to\infty} a_n$ lik

- $\mathbf{A} = 0$
- **B** $\frac{1}{2}(\sqrt{5}-1)$
- $\mathbf{C} \quad \frac{1}{2}(-\sqrt{5}-1)$
- $\mathbf{D} \quad \frac{1}{2}\sqrt{2}$
- $\mathbf{E} \ e/2$

Del 2

Oppgave 11.

a) (10 poeng). Regn ut det ubestemte integralet

$$\int \ln(1+x^2) \, dx.$$

b) (10 poeng). Regn ut det uegentlige integralet

$$\int_0^\infty \sin(x)e^{-x} \, dx.$$

Oppgave 12. (10 poeng). Skissér området i det komplekse planet gitt ved at $Re(iz) \ge |z|^2$.

Oppgave 13. (10 poeng). Sett

$$f(x) = \frac{1}{2}x |x|, \quad x \in \mathbb{R}.$$

Hvor er f deriverbar? Hvor er f konveks og hvor er f konkav?

Oppgave 14. (10 poeng). Sett

$$L_n = \lim_{x \to 0^+} x (\ln(x))^n, \quad n = 0, 1, 2, 3, \dots$$

Finn L_0 , og vis rekursjonsformelen $L_n = -nL_{n-1}$. Bruk dette til å finne L_n .

Oppgave 15. La A være 3×3 matrisen

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

- a) (10 poeng). Regn ut A^2 , A^3 og A^4 .
- **b)** (10 poeng). Finn en formel for A^n , og bevis denne formelen ved induksjon.

SLUTT