Inferência Estatística Introdução

E.F.T¹

¹EACH-USP Universidade de São Paulo

ACH2053

Outline

- Relembrando Amostras Aleatórias
 - Definição de a.a.
 - Exemplos de a.a.
- Estatísticas Suficientes
 - Estatísticas Suficientes
 - Limitações no uso de estatísticas suficientes
 - Limitações no uso de estatísticas suficientes
- Stimadores Não Viesados
 - Estimadores N\u00e3o Viesados

Outline

- Relembrando Amostras Aleatórias
 - Definição de a.a.
 - Exemplos de a.a.
- Estatísticas Suficientes
 - Estatísticas Suficientes
 - Limitações no uso de estatísticas suficientes
 - Limitações no uso de estatísticas suficientes
- Estimadores Não Viesados
 - Estimadores Não Viesados

Definição de a.a.

As varíaveis aleatórias $X_1, ..., X_n$ são chamada de *amostra* aleatória de tamanho n da população com distribuição $f(x|\theta)$ se:

- as variáveis X₁,..., X_n são mutuamente independentes e
- a f.d.p. ou f.p. de cada marginal X_i for a mesma $(f(x_i|\theta))$ para cada i = 1, ..., n.

A partir da definição acima, a f.d.p. conjunta ou a f.p.conjunta de $X_1, ..., X_n$ é dada por

$$f(X_1, ..., X_n | \theta) = f(\mathbf{X} | \theta) = f(X_1 | \theta) ... f(X_n | \theta) = \prod_{i=1}^n f(X_i | \theta)$$
 (1)

Definição de a.a.

As varíaveis aleatórias $X_1, ..., X_n$ são chamada de *amostra* aleatória de tamanho n da população com distribuição $f(x|\theta)$ se:

- as variáveis X₁,..., X_n são mutuamente independentes e
- a f.d.p. ou f.p. de cada marginal X_i for a mesma $(f(x_i|\theta))$ para cada i = 1, ..., n.

A partir da definição acima, a f.d.p. conjunta ou a f.p.conjunta de $X_1, ..., X_n$ é dada por

$$f(X_1,...,X_n|\theta) = f(\mathbf{X}|\theta) = f(X_1|\theta)...f(X_n|\theta) = \prod_{i=1}^n f(X_i|\theta)$$
 (1)

Outline

- Relembrando Amostras Aleatórias
 - Definição de a.a.
 - Exemplos de a.a.
- Estatísticas Suficientes
 - Estatísticas Suficientes
 - Limitações no uso de estatísticas suficientes
 - Limitações no uso de estatísticas suficientes
- Estimadores N\u00e3o Viesados
 - Estimadores Não Viesados

Amostragem de uma Bernoulli

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Bernoulli com parâmetro desconhecido θ (0 $\leq \theta \leq$ 1). Para quaiquer valores observados $x_1,...,x_n$ onde a f.p. de cada x_i é:

$$f(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$

onde x_i só pode ser 0 ou 1.

Desta forma, a f.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} = \theta^y (1-\theta)^{n-y}$$

Amostragem de uma Bernoulli

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Bernoulli com parâmetro desconhecido θ (0 $\leq \theta \leq$ 1). Para quaiquer valores observados $x_1,...,x_n$ onde a f.p. de cada x_i é:

$$f(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$

onde x_i só pode ser 0 ou 1.

Desta forma, a f.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} = \theta^y (1-\theta)^{n-y}$$

Amostragem de uma Bernoulli

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Bernoulli com parâmetro desconhecido θ (0 $\leq \theta \leq$ 1). Para quaiquer valores observados $x_1,...,x_n$ onde a f.p. de cada x_i é:

$$f(x_i|\theta) = \theta^{x_i}(1-\theta)^{1-x_i}$$

onde x_i só pode ser 0 ou 1.

Desta forma, a f.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^{\sum_{i=1}^n x_i} (1-\theta)^{n-\sum_{i=1}^n x_i} = \theta^y (1-\theta)^{n-y}$$

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(0, \theta)$ com parâmetro desconhecido θ $(\theta > 0)$. Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \begin{cases} \frac{1}{\theta} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \begin{cases} \frac{1}{\theta^n} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(0, \theta)$ com parâmetro desconhecido θ $(\theta > 0)$. Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \begin{cases} \frac{1}{\theta} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \begin{cases} \frac{1}{\theta^n} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(0, \theta)$ com parâmetro desconhecido θ $(\theta > 0)$. Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \begin{cases} \frac{1}{\theta} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \begin{cases} \frac{1}{\theta^n} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(0, \theta)$ com parâmetro desconhecido θ $(\theta > 0)$. Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \begin{cases} \frac{1}{\theta} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \begin{cases} \frac{1}{\theta^n} & \text{para} \quad 0 \le x_i \le \theta \\ 0 & \text{c.c.} \end{cases}$$

Amostragem de uma Poisson

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição de Poisson com parâmetro desconhecido θ ($\theta > 0$). Para quaiquer valores observados $x_1, ..., x_n$ onde a f.p. de cada x_i é:

$$f(x_i|\theta) = \frac{e^{-\theta}\theta^{x_i}}{x_i!}$$

onde x_i pode assumir valores inteiros Desta forma, a f.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1, ..., x_n | \theta) = f_n(\mathbf{x} | \theta) = \prod_{i=1}^n f(x_i | \theta) = \prod_{i=1}^n \frac{e^{-\theta} \theta^{x_i}}{x_i!}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \left(\prod_{i=1}^n \frac{1}{x_i!}\right) e^{-n\theta} \theta^{\sum_{i=1}^n x_i} = \left(\prod_{i=1}^n \frac{1}{x_i!}\right) e^{-n\theta} \theta^y$$

Amostragem de uma Poisson

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Poisson com parâmetro desconhecido θ ($\theta > 0$). Para quaiquer valores observados $x_1,...,x_n$ onde a f.p. de cada x_i é:

$$f(x_i|\theta) = \frac{e^{-\theta}\theta^{x_i}}{x_i!}$$

onde x_i pode assumir valores inteiros Desta forma, a f.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \frac{e^{-\theta}\theta^{x_i}}{x_i!}$$

$$f_{n}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_{i}|\theta) = (\prod_{i=1}^{n} \frac{1}{x_{i}!}) e^{-n\theta} \theta^{\sum_{i=1}^{n} x_{i}} = (\prod_{i=1}^{n} \frac{1}{x_{i}!}) e^{-n\theta} \theta^{y}$$

Amostragem de uma Poisson

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição de Poisson com parâmetro desconhecido θ ($\theta > 0$). Para quaiquer valores observados $x_1, ..., x_n$ onde a f.p. de cada x_i é:

$$f(x_i|\theta) = \frac{e^{-\theta}\theta^{x_i}}{x_i!}$$

onde x_i pode assumir valores inteiros Desta forma, a f.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \frac{e^{-\theta}\theta^{x_i}}{x_i!}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^{\sum_{i=1}^n x_i} = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^y$$

Amostragem de uma Exponencial

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Exponencial com parâmetro desconhecido θ ($\theta > 0$). Para quaiquer valores observados $x_1,...,x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \theta e^{-\theta x_i}$$

Desta forma, a f.d.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \theta e^{-\theta x_i}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i} = \theta^n e^{-\theta y}$$

Amostragem de uma Exponencial

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Exponencial com parâmetro desconhecido θ ($\theta > 0$). Para quaiquer valores observados $x_1,...,x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \theta e^{-\theta x_i}$$

Desta forma, a f.d.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta)=f_n(\mathbf{x}|\theta)=\prod_{i=1}^n f(x_i|\theta)=\prod_{i=1}^n \theta e^{-\theta x_i}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i} = \theta^n e^{-\theta y}$$

Amostragem de uma Exponencial

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Exponencial com parâmetro desconhecido θ ($\theta > 0$). Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \theta e^{-\theta x_i}$$

Desta forma, a f.d.p.conjunta de $x_1, ..., x_n$ será:

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \prod_{i=1}^n \theta e^{-\theta x_i}$$

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = \theta^n e^{-\theta \sum_{i=1}^n x_i} = \theta^n e^{-\theta y}$$

Amostragem de uma Normal

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Normal com média desconhecido θ ($-\infty < \theta < \infty$) e variância σ^2 conhecida. Para quaiquer valores observados $x_1,...,x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \frac{1}{(2\pi)^{1/2}\sigma}e^{\left[-\frac{(x_i-\theta)^2}{2\sigma^2}\right]}$$

para $-\infty < x_i < \infty$.

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n \frac{1}{(2\pi)^{1/2}\sigma} e^{\left[-\frac{(x_i-\theta)^2}{2\sigma^2}\right]}$$
(2)

Amostragem de uma Normal

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Normal com média desconhecido θ ($-\infty < \theta < \infty$) e variância σ^2 conhecida. Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \frac{1}{(2\pi)^{1/2}\sigma}e^{\left[-\frac{(x_i-\theta)^2}{2\sigma^2}\right]}$$

para $-\infty < x_i < \infty$.

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n \frac{1}{(2\pi)^{1/2}\sigma} e^{\left[-\frac{(x_i-\theta)^2}{2\sigma^2}\right]}$$
(2)

Amostragem de uma Normal

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Normal com média desconhecido θ ($-\infty < \theta < \infty$) e variância σ^2 conhecida. Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\theta) = \frac{1}{(2\pi)^{1/2}\sigma}e^{\left[-\frac{(x_i-\theta)^2}{2\sigma^2}\right]}$$

para $-\infty < x_i < \infty$.

$$f(x_1,...,x_n|\theta) = f_n(\mathbf{x}|\theta) = \prod_{i=1}^n \frac{1}{(2\pi)^{1/2}\sigma} e^{\left[-\frac{(x_i-\theta)^2}{2\sigma^2}\right]}$$
(2)

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Gamma com parâmetros α e β com (α > 0 e β > 0). Para quaiquer valores observados $x_1,...,x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} e^{-\beta x_i} & \text{para} \quad x > 0\\ 0 & \text{para} \quad x \le 0 \end{cases}$$
(3)

Sabe-se que para esta distribuição, o valor esperado e a variância para qualquer variável X_i é

$$E[X] = \frac{\alpha}{\beta} \tag{4}$$

$$Var(X) = \frac{\alpha}{\beta^2} \tag{5}$$

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição Gamma com parâmetros α e β com ($\alpha > 0$ e $\beta > 0$). Para quaiquer valores observados $x_1, ..., x_n$ onde a f.d.p. de cada x_i é:

$$f(x_i|\alpha,\beta) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x_i^{\alpha-1} e^{-\beta x_i} & \text{para} \quad x > 0\\ 0 & \text{para} \quad x \le 0 \end{cases}$$
(3)

Sabe-se que para esta distribuição, o valor esperado e a variância para qualquer variável X_i é

$$E[X] = \frac{\alpha}{\beta} \tag{4}$$

$$E[X] = \frac{\alpha}{\beta}$$
 (4)
 $Var(X) = \frac{\alpha}{\beta^2}$

$$f(x_{1},...,x_{n}|\theta) = f_{n}(\mathbf{x}|\theta)$$

$$= \prod_{i=1}^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x_{i}^{\alpha-1} e^{-\beta x_{i}}$$

$$= \frac{\beta^{n\alpha}}{\Gamma^{n}(\alpha)} (\prod_{i=1}^{n} x_{i})^{\alpha-1} e^{-\beta \sum_{i=1}^{n} x_{i}}$$
(6)

$$f(x_{1},...,x_{n}|\theta) = f_{n}(\mathbf{x}|\theta)$$

$$= \prod_{i=1}^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x_{i}^{\alpha-1} e^{-\beta x_{i}}$$

$$= \frac{\beta^{n\alpha}}{\Gamma^{n}(\alpha)} (\prod_{i=1}^{n} x_{i})^{\alpha-1} e^{-\beta \sum_{i=1}^{n} x_{i}}$$
(6)

$$f(x_{1},...,x_{n}|\theta) = f_{n}(\mathbf{x}|\theta)$$

$$= \prod_{i=1}^{n} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x_{i}^{\alpha-1} e^{-\beta x_{i}}$$

$$= \frac{\beta^{n\alpha}}{\Gamma^{n}(\alpha)} (\prod_{i=1}^{n} x_{i})^{\alpha-1} e^{-\beta \sum_{i=1}^{n} x_{i}}$$
(6)

Amostragem de uma Beta

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Beta com parâmetros α e β com (α > 0 e β > 0). Para quaiquer valores observados $x_1,...,x_n$ a f.d.p. de cada x_i é:

$$f(x_i|\alpha,\beta) = \begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x_i^{\alpha-1} (1-x_i)^{\beta-1} & \text{para} \quad 0 < x < 1\\ 0 & \text{c.c} \end{cases}$$
(7)

Sabe-se que para esta distribuição, o valor esperado e a variância para qualquer variável X_i é

$$E[X] = \frac{\alpha}{\alpha + \beta} \tag{8}$$

$$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
 (9)

Amostragem de uma Beta

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Beta com parâmetros α e β com (α > 0 e β > 0). Para quaiquer valores observados $x_1,...,x_n$ a f.d.p. de cada x_i é:

$$f(x_i|\alpha,\beta) = \begin{cases} \frac{1(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x_i^{\alpha-1} (1-x_i)^{\beta-1} & \text{para} \quad 0 < x < 1\\ 0 & \text{c.c.} \end{cases}$$
(7)

Sabe-se que para esta distribuição, o valor esperado e a variância para qualquer variável X_i é

$$E[X] = \frac{\alpha}{\alpha + \beta} \tag{8}$$

$$Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
 (9)

Outline

- Relembrando Amostras Aleatórias
 - Definição de a.a
 - Exemplos de a.a.
- Estatísticas Suficientes
 - Estatísticas Suficientes
 - Limitações no uso de estatísticas suficientes
 - Limitações no uso de estatísticas suficientes
- Estimadores N\u00e3o Viesados
 - Estimadores Não Viesados

As v.a. $X_1, ..., X_n$ formam uma a.a. Sabe-se que a sua distribuição conjunta $f_n(\mathbf{x}|\theta)$ tem a seguinte forma para algum valor particular de $\theta \in \Omega$:

$$f_n(\mathbf{x}|\theta) = f(x_1|\theta)...f(x_n|\theta)$$
 (10)

Em outras palavras, sabe-se que a conjunta de $X_1, ..., X_n$ é membro da família que contém todas as f.d.p do tipo $f_n(\mathbf{x}|\theta)$ para todos os possíveis valores de $\theta \in \Omega$. O problema de estimar o valor de θ pode ser visto como a seleção por inferência de uma particular distribuição nesta família que gerou as observações $X_1, ..., X_n$.

Qualquer função a valores reais $T = r(X_1, ..., X_n)$ das observações na a.a. é chamada de *estatística*.

As estatísticas mais comuns são:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
: Média da amostra $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$: Variância da amostra $X_{(1)} = min(X_1, ..., X_n)$: o menor valor da amostra $X_{(n)} = max(X_1, ..., X_n)$: o maior valor da amostra $X_{(i)} = i$ -ésima maior observação da amostra

Qualquer função a valores reais $T = r(X_1, ..., X_n)$ das observações na a.a. é chamada de *estatística*. As estatísticas mais comuns são:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
: Média da amostra $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$: Variância da amostra $X_{(1)} = \min(X_1, ..., X_n)$: o menor valor da amostra $X_{(n)} = \max(X_1, ..., X_n)$: o maior valor da amostra $X_{(i)} = \text{i-ésima maior observação da amostra}$

Para qualquer valor fixado de $\theta \in \Omega$, a distribuição de qualquer estatística T pode ser derivada da conjunta de $X_1, ..., X_n$. Em geral, esta distribuição dependerá de θ , desta maneira,

haverá uma família de distribuições para T correspondentes aos diferentes possíveis valores de $\theta \in \Omega$.

Para qualquer valor fixado de $\theta \in \Omega$, a distribuição de qualquer estatística T pode ser derivada da conjunta de $X_1, ..., X_n$. Em geral, esta distribuição dependerá de θ , desta maneira, haverá uma família de distribuições para T correspondentes aos diferentes possíveis valores de $\theta \in \Omega$.

Definição de Estatística Suficiente

Se dois indivíduos A e B devem estimar o valor de um parâmetro θ , A pode observar os valores de $X_1,...,X_n$ e B não pode observar os mesmos, mas apenas o valor de certa estatística $T = r(X_1,...,X_n)$.

Em geral A será capaz de achar melhores estimadores do que B pois pode escolher qualquer função das observações $X_1, ..., X_n$ como estimador de θ .

Se dois indivíduos A e B devem estimar o valor de um parâmetro θ , A pode observar os valores de $X_1,...,X_n$ e B não pode observar os mesmos, mas apenas o valor de certa estatística $T = r(X_1,...,X_n)$.

Em geral A será capaz de achar melhores estimadores do que B pois pode escolher qualquer função das observações $X_1, ..., X_n$ como estimador de θ .

Se dois indivíduos A e B devem estimar o valor de um parâmetro θ , A pode observar os valores de $X_1,...,X_n$ e B não pode observar os mesmos, mas apenas o valor de certa estatística $T = r(X_1,...,X_n)$.

Em geral A será capaz de achar melhores estimadores do que B pois pode escolher qualquer função das observações $X_1, ..., X_n$ como estimador de θ .

No entanto, algumas vezes B será capaz de estimar como A. Em esse problema, a função $T = r(X_1, ..., X_n)$ em algum sentido, sumariza toda a informação contida na a.a. tal que o conhecimento dos valores individuais de $X_1, ..., X_n$ será irrelevante na busca de um bom estimador de θ . A estatística T tendo esta propriedade é chamada de *estatística suficiente*.

Formalmente, se T é uma estatística e t é um valor particular de T, então a distribuição condicional de $X_1, ..., X_n$ dado que T=t, pode ser calculada da equação 10 que em geral depende de θ . Desta forma, para cada valor de t existe uma família de possíveis distribuições condicionais correspondentes aos diferentes valores possíveis de $\theta \in \Omega$. Poderia acontecer no entanto, que para cada valor de t, a distribuição condicional de t, ..., t, dado que t é a mesma para todos os valores de t. Neste caso, é dito que t é uma t estatística suficiente para o parâmetro t.

Uma estatística suficiente T é considerada uma sumarização de toda a informação relevante sobre θ contida na amostra $X_1, ..., X_n$. Se o indivíduo B pode observar T (e T é uma estatística suficiente) e não os valores individuais de $X_1, ..., X_n$ então, a distribuição condicional de $X_1, ..., X_n$ dado que T = t é completamente conhecida para qualquer valor observado t e não depende do valor desconhecido θ . Portanto, para qualquer valor de t que poderia ser observado, o indivíduo B pode gerar n variáveis aleatórias $X'_1, ..., X'_n$ de acordo com esta distribuição condicional conjunta. Este processo de gerar as variáveis $X'_1, ..., X'_n$ é chamado de aleatorização auxiliar.

Quando é observado T e logo gerado $X_1',...,X_n'$ de acordo com uma especificada distribuição condicional conjunta, segue que para qualquer valor de $\theta \in \Omega$, a marginal conjunta de $X_1',...,X_n'$ será a mesma da conjunta $X_1,...,X_n$.

A diferença entre uma estatística suficiente de uma não suficiente pode ser explicado da seguinte forma: A aleatorização auxiliar usada para gerar as variáveis $X_1', ..., X_n'$ após a observação da estatística suficiente T não requer conhecimento sobre o valor de θ . Se T não for suficiente, a aleatorização auxiliar poderia não acontecer , pois a distribuição condicional conjunta de $X_1, ..., X_n$ para um dado valor de T envolve o valor de θ e este valor é desconhecido.

Quando é observado T e logo gerado $X_1',...,X_n'$ de acordo com uma especificada distribuição condicional conjunta, segue que para qualquer valor de $\theta \in \Omega$, a marginal conjunta de $X_1',...,X_n'$ será a mesma da conjunta $X_1,...,X_n$.

A diferença entre uma estatística suficiente de uma não suficiente pode ser explicado da seguinte forma: A aleatorização auxiliar usada para gerar as variáveis $X_1',...,X_n'$ após a observação da estatística suficiente T não requer conhecimento sobre o valor de θ . Se T não for suficiente, a aleatorização auxiliar poderia não acontecer , pois a distribuição condicional conjunta de $X_1,...,X_n$ para um dado valor de T envolve o valor de θ e este valor é desconhecido.

Suponha que o indivíduo A quem observa os valores de $X_1,...,X_n$ planeja usar um estimador particular $\delta(X_1,...,X_n)$ para estimar θ , e B observa o valor de T e gera $X_1',...,X_n'$ que tem a mesma distribuição conjunta de $X_1,...,X_n$. Portanto, se B usa o estimador $\delta(X_1',...,X_n')$, segue que a distribuição de probabilidade do estimador de B será a mesma da distribuição de probabilidade do estimador de A.

Critério de Fatorização

Seja $X_1,...,X_n$ uma a.a de uma distribuição com f.d.p ou f.p $f(x|\theta)$, onde $\theta \in \Omega$ é desconhecido. Uma estatística $T = r(X_1,...,X_n$ é suficiente para θ se e somente se a distribuição conjunta $f_n(\mathbf{x}|\theta)$ pode ser fatorada como segue para todos os valores de $\mathbf{x} = (x_1,...,x_n)$ e todos os valores de $\theta \in \Omega$:

$$f_n(\mathbf{x}|\theta) = \mathbf{u}(\mathbf{x})v[r(\mathbf{x}), \theta]$$
 (11)

u depende de **x** mas não de θ e a função v depende de θ mas a dependência é nos valores observados **x** a través da estatística $r(\mathbf{x})$.

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Poisson com média θ desconhecida ($\theta > 0$). Mostraremos que $T = \sum_{i=1}^n X_i$ é uma estatística suficiente para θ .

Para qualquer conjunto de inteiros não negativos $x_1, ..., x_n$ a f.p conjunta $f_n(\mathbf{x}|\theta)$ de $X_1, ..., X_n$ é:

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^{\sum_{i=1}^n x_i} = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^y$$

onde
$$y = \sum_{i=1}^{n} x_i$$

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Poisson com média θ desconhecida ($\theta > 0$). Mostraremos que $T = \sum_{i=1}^n X_i$ é uma estatística suficiente para θ .

Para qualquer conjunto de inteiros não negativos $x_1, ..., x_n$ a f.p conjunta $f_n(\mathbf{x}|\theta)$ de $X_1, ..., X_n$ é:

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^{\sum_{i=1}^n x_i} = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^{y}$$

onde
$$y = \sum_{i=1}^{n} x_i$$
.

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição de Poisson com média θ desconhecida ($\theta > 0$). Mostraremos que $T = \sum_{i=1}^n X_i$ é uma estatística suficiente para θ .

Para qualquer conjunto de inteiros não negativos $x_1, ..., x_n$ a f.p conjunta $f_n(\mathbf{x}|\theta)$ de $X_1, ..., X_n$ é:

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n f(x_i|\theta) = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^{\sum_{i=1}^n x_i} = (\prod_{i=1}^n \frac{1}{x_i!}) e^{-n\theta} \theta^{y}$$

onde
$$y = \sum_{i=1}^{n} x_i$$
.

Pode-se ver que $f_n(\mathbf{x}|\theta)$ pode ser expressado como a equação 11 como o produto de uma função que não depende de θ e uma função que depende de θ mas esta dependência é no vetor observado \mathbf{x} através do valor de y. Segue que $T = \sum_{i=1}^{n} X_i$ é uma estatística suficiente para θ .

Exemplo: Amostragem de uma Distribuição contínua

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. de uma distribuição contínua com a seguinte f.d.p.

$$f(x|\theta) = \begin{cases} \theta x^{\theta-1} & \text{para} \quad 0 < x < 1 \\ 0 & \text{c.c.} \end{cases}$$
 (12)

assuma que o valor do parâmetro θ é desconhecido ($\theta > 0$). Mostraremos que $T = \prod_{i=1}^{n} X_i$ é uma estatística suficiente para θ .

Exemplo: Amostragem de uma Distribuição contínua

Para $0 < x_i < 1 \ (i = 1, ..., n)$ a f.d.p. conjunta $f_n(\mathbf{x}|\theta)$ de $X_1, ..., X_n$ é:

$$f_n(\mathbf{x}|\theta) = \theta^n (\prod_{i=1}^n x_i)^{\theta-1}$$
 (13)

Se, pelo menos um valor de x_i estiver fora do intervalo $0 < x_i < 1$, então $f_n(\mathbf{x}|\theta) = 0$ para cada $\theta \in \Omega$. Observamos que o lado direito da equação 13 depende de \mathbf{x} através do valor do produto $\prod_{i=1}^n x_i$. Portanto, se considerarmos $u(\mathbf{x}) = 1$ e $r(\mathbf{x}) = \prod_{i=1}^n x_i$, então $f_n(\mathbf{x}|\theta)$ pode ser considerada fatorada. Segue-se então que a estatística $T = \prod_{i=1}^n X_i$ é suficiente para θ .

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Normal com média desconhecido μ ($-\infty < \theta < \infty$) e variância σ^2 conhecida. Mostramos que $T = sum_{i=1}^n X_i$ é uma estatística suficiente para μ .

Para $-\infty < x_i < \infty \ (i = 1, ..., n)$ a f.d.p.conjunta de $X_1, ..., X_n$ é

$$f_n(\mathbf{x}|\mu) = \prod_{i=1}^n \frac{1}{(2\pi)^{1/2}\sigma} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$
 (14)

que pode ser rescrita como

$$f_n(\mathbf{x}|\mu) = \frac{1}{(2\pi)^{n/2}\sigma^n} exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2) exp(\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2})$$
(15)

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Normal com média desconhecido μ ($-\infty < \theta < \infty$) e variância σ^2 conhecida. Mostramos que $T = sum_{i=1}^n X_i$ é uma estatística suficiente para μ .

Para $-\infty < x_i < \infty \ (i = 1, ..., n)$ a f.d.p.conjunta de $X_1, ..., X_n$ é

$$f_n(\mathbf{x}|\mu) = \prod_{i=1}^n \frac{1}{(2\pi)^{1/2}\sigma} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$
 (14)

que pode ser rescrita como

$$f_n(\mathbf{x}|\mu) = \frac{1}{(2\pi)^{n/2}\sigma^n} exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2) exp(\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2})$$
(15)

Suponha que as v.a. $X_1,...,X_n$ formam uma a.a. de uma distribuição Normal com média desconhecido μ ($-\infty < \theta < \infty$) e variância σ^2 conhecida. Mostramos que $T = sum_{i=1}^n X_i$ é uma estatística suficiente para μ .

Para $-\infty < x_i < \infty \ (i=1,...,n)$ a f.d.p.conjunta de $X_1,...,X_n$ é

$$f_n(\mathbf{x}|\mu) = \prod_{i=1}^n \frac{1}{(2\pi)^{1/2}\sigma} \exp\left[-\frac{(x_i - \mu)^2}{2\sigma^2}\right]$$
 (14)

que pode ser rescrita como

$$f_n(\mathbf{x}|\mu) = \frac{1}{(2\pi)^{n/2}\sigma^n} exp(-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2) exp(\frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2})$$
(15)

pode se notar que $f_n(\mathbf{x}|\mu)$ pode ser expressado como o produto de uma função que não depende de μ e uma função que depende de \mathbf{x} através do valor de $\sum_{i=1}^n x_i$. Portanto, pelo critério de fatorização, $T = \sum_{i=1} nX_i$ é uma estatística suficiente para μ .

Desde que $T = \sum_{i=1} nX_i = n\bar{x}_n$ podemos estabelecer de forma equivalente, que fator final da equação 15 depende de $x_1, ..., x_n$ através do valor de \bar{x}_n , o que implica que $T = \bar{X}_n$ é uma estatística suficiente para μ .

pode se notar que $f_n(\mathbf{x}|\mu)$ pode ser expressado como o produto de uma função que não depende de μ e uma função que depende de \mathbf{x} através do valor de $\sum_{i=1}^n x_i$. Portanto, pelo critério de fatorização, $T = \sum_{i=1} nX_i$ é uma estatística suficiente para μ .

Desde que $T=\sum_{i=1}nX_i=n\bar{x}_n$ podemos estabelecer de forma equivalente, que fator final da equação 15 depende de $x_1,...,x_n$ através do valor de \bar{x}_n , o que implica que $T=\bar{X}_n$ é uma estatística suficiente para μ .

Outline

- Relembrando Amostras Aleatórias
 - Definição de a.a.
 - Exemplos de a.a.
- Estatísticas Suficientes
 - Estatísticas Suficientes
 - Limitações no uso de estatísticas suficientes
 - Limitações no uso de estatísticas suficientes
- Estimadores Não Viesados
 - Estimadores N\u00e3o Viesados

Limitações no uso de Estatísticas Suficientes

A existência e a forma da estatística suficiente em um determinado problema depende de *maneira crítica* da forma da função assumida pela f.d.p. ou f.p. Uma estatística que é suficiente quando a f.d.p. é $f(x|\theta)$ pode não ser suficiente quando é assumido que a f.d.p. é $g(x|\theta)$, mesmo que $g(x|\theta)$ possa ser similar a $f(x|\theta)$ para cada valor de $\theta \in \Omega$.

Limitações no uso de estatísticas suficientes

Suponha que um pesquisador está em dúvida quanto à forma exata da f.d.p. em um problema específico, mas assume por conveniência que a f.d.p é $f(x|\theta)$, suponha também que a estatística T é suficiente sob essa suposição. Por causa da incerteza do pesquisador quanto à forma exata da f.d.p. ele desejaria usar um estimador de θ que "funciona" razoávelmente bem para uma ampla variedade de f.d.p´s., mesmo que o estimador selecionado não apresente o requerimento que deveria depender nas observações somente através da estatística T.

Um estimador que "funciona" bem para uma ampla variedade de possíveis f.d.p´s., mesmo que não seja necessáriamente o melhor estimador disponível para qualquer particular família de f.d.p´s. é chamado de *estimador robusto*.

Limitações no uso de estatísticas suficientes

Suponha que um pesquisador está em dúvida quanto à forma exata da f.d.p. em um problema específico, mas assume por conveniência que a f.d.p é $f(x|\theta)$, suponha também que a estatística T é suficiente sob essa suposição. Por causa da incerteza do pesquisador quanto à forma exata da f.d.p. ele desejaria usar um estimador de θ que "funciona" razoávelmente bem para uma ampla variedade de f.d.p´s., mesmo que o estimador selecionado não apresente o requerimento que deveria depender nas observações somente através da estatística T.

Um estimador que "funciona" bem para uma ampla variedade de possíveis f.d.p´s., mesmo que não seja necessáriamente o melhor estimador disponível para qualquer particular família de f.d.p´s. é chamado de *estimador robusto*.

Outline

- Relembrando Amostras Aleatórias
 - Definição de a.a.
 - Exemplos de a.a.
- Estatísticas Suficientes
 - Estatísticas Suficientes
 - Limitações no uso de estatísticas suficientes
 - Limitações no uso de estatísticas suficientes
- Estimadores N\u00e3o Viesados
 - Estimadores Não Viesados

Definição

Seja $X_1,...,X_n$ uma a.a de uma distribuição com f.d.p ou f.p $f(x|\theta)$, onde $\theta \in \Omega$ é desconhecido. Neste tipo de problemas, é desejável usar um estimador $\delta(X_1,...,X_n)$ que, com alta probabilidade, seja proximo ao valor de θ , i.e, um estimador δ cujo valor mude com o valor de θ , de tal forma que sem interesar qual seja o valor verdadeiro de θ , a distribuição de probabilidade de δ está concentrado ao redor deste valor.

Definição

Um estimador $\delta(X_1,...,X_n)$ é um estimador não viesado do parâmetro θ se $E_{\theta}[\delta(X_1,...,X_n)] = \theta$, para cada possível valor de θ .

Em outras palavras, um estimador de um parâmetro θ é não viesado se sua esperança é igual ao valor desconhecido do verdadeiro valor de θ .

 \bar{X}_n é um estimador não viesado da média desconhecida θ de uma normal, pois $E_{\theta}[\bar{X}_n] = \theta$ para $-\infty < \theta < \infty$.

Se $X_1,...,X_n$ forma uma a.a. de uma distribuição arbitrária, para a qual a média μ é desconhecida, a média amostral sempre será um estimador não viesado de μ pois é sempre verdade que $E(\bar{X}_n) = \mu$.

 \bar{X}_n é um estimador não viesado da média desconhecida θ de uma normal, pois $E_{\theta}[\bar{X}_n] = \theta$ para $-\infty < \theta < \infty$. Se $X_1, ..., X_n$ forma uma a.a. de uma distribuição arbitrária, para a qual a média μ é desconhecida, a média amostral sempre será um estimador não viesado de μ pois é sempre verdade que $E(\bar{X}_n) = \mu$.

Se definirmos

$$S_0^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$
 (16)

para tentar demonstrar se é ou não um estimador não viesado de σ^2 , então usaremos a identidades:

$$\sum_{i=1}^{n} (X_i - \mu)^2 = \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 + n(\bar{X}_n - \mu)^2$$
 (17)

então segue que

$$E[S_0^2] = E[\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2]$$
 (18)

$$= E[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}] - E[(\bar{X}_{n}-\mu)^{2}]$$
 (19)

Como cada observação X_i tem média μ e variância σ^2 , então: $E[(X_i - \mu)^2] = \sigma^2$ para i = 1, ..., n. Desta forma:

$$E[\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\mu)^{2}] = \frac{1}{n}\sum_{i=1}^{n}E[(X_{i}-\mu)^{2}] = \frac{1}{n}n\sigma^{2} = \sigma^{2}$$
 (20)

Como \bar{X}_n tem média μ e variância σ^2/n

$$E[(\bar{X}_n - \mu)^2] = var(\bar{X}_n) = \sigma^2/n$$
 (21)

Segue-se então que

$$E(S_0^2) = \sigma^2 - \frac{1}{n}\sigma^2 = \frac{n-1}{n}\sigma^2$$
 (22)

O estimador não viesado de σ^2 será então:

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$