Mini Problems 15

- 1. Let $\{x_n\}_{n\geq 1}$ be a sequence in \mathbb{R}^2 that converges to some point. Prove that the set $\{x_n\}_{n\geq 1}$ is Jordan measurable, with measure 0.
- **2.** Suppose that you have sets $S \subseteq T \subseteq \mathbb{R}^n$ (where n=1 or 2, or higher; it doesn't matter) and that you know T is Jordan measurable with m(T)=0. Show that S is also Jordan measurable, and that m(S)=0 as well. This can be done using nothing but the definition of Jordan measure. In particular, this implies the following fact: If $S \subseteq \mathbb{R}$ is any set, then $S \times \{0\}$ is Jordan measurable with measure 0 as a subset of \mathbb{R}^2 , even though S might not be Jordan measurable in \mathbb{R} .
- **3.** Prove that the set of integers $\mathbb{Z} \subseteq \mathbb{R}$ is not Jordan measurable, directly from the definition. Find an example of a bounded subset of \mathbb{R} which is not Jordan measurable (if you are stuck, such an example can be found in the class notes).
- **4.** Let $S \subseteq [a,b]$ be some set. Prove that if $\int_a^b \chi_S$ exists and is equal to 0 then S is Jordan measurable with measure 0.