HW 2

MTH 344-001 Winter 2022

Randi Bolt

1/28/2022

1.

- (a) $2, 5 \in H$, but $1 + 5 = 6 \notin H$
- (b) Any positive number say $a > 0 \in H$, but their inverse -a does not exist in H.
- (c) Let $(a_1, a_2), (b_1, b_2) \in H$, then by the definition given $a_2 = \sqrt{a_1}$. So, $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (a_1 + b_1, \sqrt{a_1} + \sqrt{b_1}) \notin H$. Since a_1 and b_1 cannot be factored out of the $\sqrt{}$, it is not closed under coordinate-wise addition and therefore H is not a subgroup of G.

2.

(a)

Proof:

Let $H = \{3^m 4^n | m, n \in \mathbb{Z}\}.$

We want to show that $H \leq G = \mathbb{R}^*$.

- i. Since $3 \cdot 4 = 3^1 4^1$, then the identity 1 is in H.
- ii. Let $a_1, a_2, b_1, b_2 \in H$. Then by definition $(a_1, a_2) = 3^{a_1} 4^{a_2}$ and $(b_1, b_2) = 3^{b_1} 4^{b_2}$. So, $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2) = (3^{a_1}b_1^a 4^{a_2}b_2) = (3^{a_1}3^{b_1}4^{a_2}4^{b_2}) = (3^{a_1}4^{a_2}3^{b_1}4^{b_2}) \in H$. \Rightarrow H is closed under multiplication.
- iii. Let $a_1, a_2 \in H$. Then by definition $(a_1, a_2) = 3^{a_1} 4^{a_2}$. So, $-(a_1, a_2) = (-a_1, -a_2) = 3^{-a_1} 4^{-a_2} = \frac{1}{3^{a_1}} \frac{1}{4^{a_2}} \in H$. \Rightarrow H is closed under inverses.

Completing the proof that $H \leq G$ \square .

(b)

Proof:

Let $H = \{(x, y)|y = -3x\}.$

We want to show that $H \leq G = \mathbb{R} \times \mathbb{R}$.

i. Since $0 = -3 \cdot 0$, the identity (0,0) is in H.

- ii. Let $a_1, a_2, b_1, b_2 \in H$. Then by definition $a_2 = -3a_1$ and $b_2 = -3b_1$. So, $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (a_1 + b_1, -3a_1 3b_1) = (a_1 + b_1, -3(a_1 + b_1)) \in H$. \Rightarrow H is closed under coordinatewise addition.
- iii. Let $a_1, a_2 \in H$. Then by definition $a_2 = -3a_1$. So, $-(a_1, a_2) = (-a_1, -a_2) = (-a_1, -(-3a_1)) = (-a_1, -3(-a_1)) \in H$. \Rightarrow H is closed under inverses.

Completing the proof that $H \leq G$ \square .

3.

Let G be a group. We say that elements $a, x \in G$ commute if ax = xa. Prove that if a and x commute, then a^{-1} and x also commute, i.e. $a^{-1}x = xa^{-1}$.

Proof:

$$ax = xa \Leftrightarrow axa^{-1} = xaa^{-1}$$

$$\Leftrightarrow axa^{-1} = x$$

$$\Leftrightarrow a^{-1}axa^{-1} = a^{-1}x$$

$$\Leftrightarrow xa^{-1} = a^{-1}x$$

$$\Leftrightarrow a^{-1}x = xa^{-1}$$
(1)

Therefore $a, x \in G$ commutes \square .

4.

Let G be a group. The *center* of G is the set C of all elements of G that commute with every other element of G:

$$C = \{ g \in G | xg = gx \forall x \in G \}.$$

Prove that C is a subgroup of G. (Hint: Use problem 3 when showing C is closed under inverses.)

Proof:

Let $C = \{g \in G | xg = gx \forall x \in G\}.$

We want to show that $C \leq G$.

- i. Since $g = g \cdot e = e \cdot g$, the identity e = 1 is in C.
- ii. Let $a_1, a_2, b_1, b_2 \in C$. Then by definition $a_1b_1 = b_1a_1$ and $a_2b_2 = b_2a_2$. So, $(a_1, a_2)(b_1, b_2) = (a_1b_1, a_2b_2) = (b_1a_1, b_2a_2) \in C$. \Rightarrow C is closed under multiplication.
- iii. Let $a_1, a_2 \in C$. Then by definition $a_1a_2 = a_2a_1$. So, $-(a_1a_2) = -(a_2a_1)$. We also showed in 3 that if $ax = xa \Rightarrow a^{-1}x = xa^{-1}$. Therefore C is closed underinverses.

5.

Let H be a subgroup of G and let $a \in G$ be a constant. Show that

$$K = \{aha^{-1}|h \in H\}$$

is also a subgroup of G.

Proof:

- i. Since $H \leq G$, $e \in H$. Then $e = aea^{-1} \in K$.
- ii. Let $x,y \in K$. Then $x = a_1h_1a_1^{-1}$ and $y = a_2h_2a_2^{-1}$ for some $a_1,a_2 \in G$ and $h_1,h_2 \in H$. So, $xy^{-1} = (a_1h_1a_1^{-1})(a_2h_2a_2^{-1})^{-1} = a_1h_1a_1^{-1}a_2^{-1}h_2^{-1}a_2$. $\Rightarrow xy^{-1} \in K \Rightarrow K \leq G$ \square .

6.

- (a) Prove that f_a is a bijection.
- i. Suppose $x_1, x_2 \in G$, $f(x_1) = f(x_2)$. Then $f(x_1) = f(x_2) \Rightarrow ax_1 = ax_2 \Rightarrow x_1 = x_2$. So, f is one-to-one.
- ii. Choose any $x \in G$ such that $a^{-1}x \in G$. Then $f(a^{-1}x) = a(a^{-1}x) = (aa^{-1})x = x$. So, f is also onto.
- (b) Show that $f_a \circ f_b = f_{ab}$.

Define $f: G \to G$ where $f_a(x) = ax$ and $f_b(x) = bx$. Then $f_a \circ f_b$: $(f_a \circ f_b)(x) = f_a(f_b(x)) = f_a(bx) = abx$. Therefore $f_{ab} = abx$.

(c) Find a formula for f_a^{-1} .

$$y = f(x) \Rightarrow y = ax$$

$$\Rightarrow a^{-1}y = x$$

$$\Rightarrow x = a^{-1}y$$

$$\Rightarrow f^{-1}(x) = a^{-1}y$$
(2)