Endomorphismes auto-adjoints

Exercice 1. $A^2 = 0$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose ${}^tA = A$ et $A^2 = 0$. Montrer que A = 0.

Exercice 2. Comatrice d'une matrice symétrique

Soit $M \in \mathcal{M}_n(\mathbb{R})$ symétrique. Montrer que com(M) est aussi symétrique. La réciproque est-elle vraie?

Exercice 3. Base non orthonormée

Soit $\mathcal{B}=(e_1,\ldots,e_n)$ une base arbitraire d'un ev euclidien E,G la matrice de Gram des $e_i,f\in\mathcal{L}(E)$ et M sa matrice dans \mathcal{B} .

- 1) Montrer que f est auto-adjoint si et seulement si ${}^{t}MG = GM$.
- 2) Montrer que f est orthogonal si et seulement si ${}^tMGM = G$.

Exercice 4. $autoadjoint \Rightarrow linéaire$

Soit E un ev préhilbertien et $u: E \to E$ telle que : $\forall x, y \in E$, $(u(x) \mid y) = (x \mid u(y))$. Montrer que u est linéaire.

Exercice 5. Diagonalisation de matrices symétriques

Diagonaliser dans une base orthonormée :

1)
$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 5 & 0 \\ 2 & 0 & 7 \end{pmatrix}$$
. 2) $A = \frac{1}{9} \begin{pmatrix} 23 & 2 & -4 \\ 2 & 26 & 2 \\ -4 & 2 & 23 \end{pmatrix}$.

Exercice 6. Diagonalisation de $C^{t}C$

Soient $a_1, \ldots, a_n \in \mathbb{R}$ et $M = (a_i a_i) \in \mathcal{M}_n(\mathbb{R})$. Montrer que M est diagonalisable et déterminer ses éléments propres.

Exercice 7. Décomposition en projections orthogonales

Soit φ l'endomorphisme de matrice dans la base canonique de \mathbb{R}^4 : $M = \begin{pmatrix} 2 & 0 & 0 & 3 \\ 0 & 2 & 3 & 0 \\ 0 & 3 & 2 & 0 \\ 3 & 0 & 0 & 2 \end{pmatrix}$.

Montrer qu'il existe des projections orthogonales p, q et des réels λ , μ tels que : $\varphi = \lambda p + \mu q$, $p \circ q = 0$, $p + q = \mathrm{id}_E$.

Exercice 8. $2XP'(X) + (X^2 - 1)P''(X)$

Soit $E = \mathbb{R}_n[X]$. On pose pour $P,Q \in E: (P \mid Q) = \int_{-1}^1 P(t)Q(t) \, \mathrm{d}t$ et on considère

$$u:$$

$$\begin{cases} E & \longrightarrow & \mathbb{R}[X] \\ P(X) & \longmapsto & 2XP'(X) + (X^2 - 1)P''(X). \end{cases}$$

- 1) Montrer que l'on définit un produit scalaire et que u est un endomorphisme.
- 2) Montrer que u est diagonalisable et que si P_k, P_ℓ sont des vecteurs propres de valeurs propres distinctes, alors $(P_k \mid P_\ell) = 0$.
- 3) Éléments propres de u pour n=3?

Exercice 9. $(X^2 - 1)P'' + (2X + 1)P'$

Pour
$$P, Q \in \mathbb{R}_n[X]$$
 on pose $(P \mid Q) = \int_{t=-1}^1 \sqrt{\frac{1-t}{1+t}} P(t) Q(t) dt$ et $\Phi(P) = (X^2 - 1)P'' + (2X + 1)P'$.

- Vérifier que (P | Q) existe et qu'on définit ainsi un produit scalaire sur R_n[X].
 Montrer que pour ce produit scalaire, Φ est auto-adjoint (calculer ∫_{t=-1}¹ (1-t)^{3/2} (1+t)^{1/2} P''(t)Q(t) dt par parties).
- 3) Déterminer les valeurs propres de Φ et montrer qu'il existe une base propre de degrés étagés.

Exercice 10. Ker $u + \operatorname{Im} u = E$

Soit E un ev euclidien et $u \in \mathcal{L}(E)$ auto-adjoint. Montrer que $\operatorname{Ker} u \stackrel{\perp}{\oplus} \operatorname{Im} u = E$.

Exercice 11. $u \circ v$ autoadjoint?

Soient E euclidien et $u, v \in \mathcal{L}(E)$ auto-adjoints. Montrer que $u \circ v$ est auto-adjoint si et seulement si $u \circ v = v \circ u$.

Exercice 12. Composée de projecteurs

Soient p, q deux projecteurs orthogonaux dans un espace euclidien E.

- 1) Montrer que $p \circ q \circ p$ est auto-adjoint.
- **2)** Montrer que $(\operatorname{Im} p + \operatorname{Ker} q) \stackrel{\perp}{\oplus} (\operatorname{Ker} p \cap \operatorname{Im} q) = E$.
- 3) En déduire que $p \circ q$ est diagonalisable.

Exercice 13. Autoadjoint et orthogonal

Soit E un espace euclidien. Quels sont les endomorphismes de E à la fois auto-adjoints et orthogonaux?

Exercice 14. Spectre et rang d'une matrice antisymétrique

Soit $M \in \mathcal{M}_n(\mathbb{R})$ antisymétrique et f l'endomorphisme de \mathbb{R}^n canoniquement associé à M.

- 1) Montrer que les valeurs propres de M sont imaginaires pures.
- 2) Montrer que Ker $f \perp \text{Im } f$. En déduire que $g = f_{\mid \text{Im } f}$ est un isomorphisme de Im f.
- 3) Montrer que g^2 est diagonalisable. En déduire que rg(M) est pair.

Exercice 15. Racine carrée

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique définie positive. Montrer qu'il existe une unique matrice $B \in \mathcal{M}_n(\mathbb{R})$ symétrique définie positive telle que $B^2=A$. Calculer B lorsque $A=\begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$.

Exercice 16. $A = {}^{t}BB$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A est symétrique définie positive si et seulement s'il existe $B \in GL_n(\mathbb{R})$ telle que $A = {}^{t}BB$.

Exercice 17. Décomposition de Cholesky

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique définie positive.

- 1) Montrer qu'il existe une matrice T triangulaire supérieure telle que $A = {}^{t}TT$. Montrer que T est unique si on impose la condition : $\forall i, T_{ii} > 0$.
- **2)** Application: Montrer que det $A \leq \prod_{i=1}^{n} a_{ii}$.

Exercice 18. Mineurs principaux positifs

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique. Pour $1 \leq p \leq n$, on note Δ_p le déterminant de la sous-matrice $(a_{ij})_{i,j \in [1,p]}$.

- 1) Montrer que si A est définie positive, alors tous les déterminants Δ_p sont strictement positifs.
- 2) Réciproque : on suppose $\Delta_1 > 0, \ldots, \Delta_n > 0$. Montrer qu'il existe une matrice B triangulaire supérieure inversible telle $A = {}^{t}BB$. En déduire que A est définie positive.

Exercice 19. q positive $\Rightarrow q(x) = ||u(x)||^2$

Soit E un espace euclidien et q une forme quadratique positive. Montrer qu'il existe un endomorphisme u auto-adjoint tel que : $\forall x \in E, q(x) = ||u(x)||^2$.

Exercice 20. A symétrique et $A^k = I$

Soit $A \in \mathcal{M}_n(\mathbb{R})$ symétrique telle qu'il existe $k \in \mathbb{N}^*$ tel que $A^k = I$. Montrer que $A^2 = I$.

Exercice 21. $\sum_{i,j} a_{ij}^2$ Soit $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R})$ symétrique de valeurs propres $\lambda_1, \ldots, \lambda_n$. Montrer que $\sum_{i,j} a_{ij}^2 = \sum_i \lambda_i^2$.

Exercice 22. u autoadjoint et tr(u) = 0

Soient E un ev euclidien et $u \in \mathcal{L}(E)$ auto-adjoint tel que tr(u) = 0.

- 1) Montrer qu'il existe un vecteur x non nul tel que $u(x) \perp x$.
- **2)** En déduire qu'il existe une base orthonormée (e_i) telle que : $\forall i, (u(e_i) \mid e_i) = 0$.

Exercice 23. Matrices symétriques commutant

Soit (A_i) une famille de matrices $n \times n$ réelles symétriques commutant deux à deux. Montrer qu'il existe une matrice symétrique A et des polynômes P_i tels que : $\forall i, A_i = P_i(A)$.

Exercice 24. Valeurs propres de AB

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ symétriques, B définie positive. Montrer que les valeurs propres de AB sont réelles.

Exercice 25. $tr(AB) \leq tr(A) tr(B)$

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ symétriques positives. Montrer que $0 \leqslant \operatorname{tr}(AB) \leqslant \operatorname{tr}(A)\operatorname{tr}(B)$.

Exercise 26. $det(A + B) \ge det(A) + det(B)$

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ symétriques définies positives. Montrer que $\det(A+B) \geqslant \det(A) + \det(B)$.

Exercice 27. f quelconque, il existe une BON dont l'image est orthogonale

Soient E un espace euclidien et $f \in \mathcal{L}(E)$. Montrer qu'il existe une base orthonormée (e_1, \ldots, e_n) dont l'image par f est une famille orthogonale.

Exercice 28. Quotients de Rayleigh

Soient E un espace euclidien, $f \in \mathcal{L}(E)$ auto-adjoint et $\lambda_1 \leqslant \lambda_2 \leqslant \ldots \leqslant \lambda_n$ ses valeurs propres.

- 1) Montrer: $\forall x \in E$, $\lambda_1 ||x||^2 \leqslant (f(x) | x) \leqslant \lambda_n ||x||^2$.
- 2) Montrer que si l'une de ces deux inégalités est une égalité pour un vecteur $x \neq 0$, alors x est vecteur propre de f.
- 3) Soit (e_1, \ldots, e_n) une base orthonormée de E telle que pour tout $i: (f(e_i) \mid e_i) = \lambda_i$. Montrer que : $\forall i, f(e_i) = \lambda_i e_i$.

Exercice 29. sp(A+B)

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ symétriques, λ, λ' leurs plus petites valeurs propres et μ, μ' leurs plus grandes valeurs propres. Montrer que toute valeur propre de A + B est comprise entre $\lambda + \lambda'$ et $\mu + \mu'$.

Exercice 30. Comparaison de valeurs propres

Soient E un espace euclidien, $h \in \mathcal{L}(E)$ autoadjoint, $x_0 \in E$ unitaire, p la projection orthogonale sur $\text{vect}(x_0)$, et f = h + p. On note $\lambda_1 \leqslant \ldots \leqslant \lambda_n$ les valeurs propres de h et $\mu_1 \leqslant \ldots \leqslant \mu_n$ celles de f. Montrer que $\lambda_1 \leqslant \mu_1 \leqslant \ldots \leqslant \lambda_n \leqslant \mu_n$.

Exercice 31. Mines P' 1996

Soit E un espace euclidien et $f \in \mathcal{L}(E)$.

- 1) Montrer: Ker $f = \text{Im } f \Rightarrow f + f^* \in GL(E)$.
- 2) Montrer la réciproque lorsque l'on a $f^2 = 0$.

Exercice 32. Rayon spectral

Soient E un espace euclidien et $f \in \mathcal{L}(E)$. Montrer que $|||f|||^2 = \max\{\lambda \text{ tq } \lambda \in \text{sp}(f^* \circ f)\}.$

Exercice 33. Calcul de norme $\mathbb{R}^n \longrightarrow \mathbb{R}^n$ Soit $f: \begin{cases} \mathbb{R}^n \longrightarrow \mathbb{R}^n \\ (x_1, \dots, x_n) \longmapsto (x_1 - x_n, x_2 - x_1, \dots, x_n - x_{n-1}). \end{cases}$ Avec la structure euclidienne canonique de \mathbb{R}^n , calculer la norme de f.

Exercice 34. Décomposition polaire d'un endomorphisme

Soient E un ev euclidien et $f \in \mathcal{L}(E)$.

- 1) En considérant l'endomorphisme $f^* \circ f$, montrer que si f est inversible alors f se décompose de manière unique sous la forme $f = u \circ h$ avec u orthogonal et h autoadjoint positif.
- 2) Si f est non inversible, montrer qu'une telle décomposition existe mais n'est pas unique (on rappelle que $\mathcal{O}(E)$ est compact).
- 3) Montrer que l'application $f \mapsto (u, h)$ est continue sur GL(E).

Exercice 35. Endomorphismes normaux

Soit E un espace vectoriel hermitien. Un endomorphisme $u \in \mathcal{L}(E)$ est dit normal si u et u^* commutent.

- 1) Soit u normal, montrer que si F est un sous-espace propre de u alors F^{\perp} est stable par u. En déduire que u est diagonalisable en base orthonormale. La réciproque est-elle vraie ?
- 2) Soit $u \in \mathcal{L}(E)$. Montrer l'équivalence entre les propriétés suivantes :
 - (1) u est normal.
 - $(2) \ \forall x \in E, \|u(x)\| = \|u^*(x)\|.$
 - (3) Tout sev stable par u est stable par u^* .
 - (4) Si un sev F est stable par u alors F^{\perp} est stable par u.
 - (5) Il existe $P \in \mathbb{C}[X]$ tel que $u^* = P(u)$.

Exercice 36. ||u(x)|| = ||v(x)||

Soit E un espace euclidien et $u, v \in \mathcal{L}(E)$. Montrer l'équivalence :

$$(\forall x \in E, \|u(x)\| = \|v(x)\|) \Leftrightarrow (\exists w \in \mathcal{O}(E) \text{ tq } u = w \circ v).$$

Exercice 37. $(u(x) \mid x)$ est réel

Soit E un ev hermitien et $u \in \mathcal{L}(E)$. Montrer que $u = u^*$ si et seulement si pour tout $x \in E$, $(u(x) \mid x)$ est réel.

Exercice 38. Inégalité

Soient E un espace euclidien et $u \in \mathcal{L}(E)$ autoadjoint positif.

Montrer:
$$\forall x \in E, ||u(x)||^4 \leq (x | u(x)) \times (u(x) | u^2(x)).$$

Exercice 39. Série d'autoadjoints positifs

Soit H un espace de Hilbert et (u_n) une suite d'endomorphismes de H autoadjoints positifs continus telle que la suite $(u_0 + \ldots + u_n)$ est bornée dans $\mathcal{L}_c(H)$. Montrer que pour tout $x \in H$ la série $\sum_{n=0}^{\infty} u_n(x)$ est convergente.

Exercice 40. Mines MP 2000

Soit $A \in M_n(\mathbb{R})$ telle que $A^3 = {}^t AA$. A est-elle diagonalisable dans $M_n(\mathbb{R})$, dans $M_n(\mathbb{C})$?

Exercice 41. Centrale MP 2000 (avec Maple)

Soit E un espace euclidien, u et v deux endomorphismes auto-adjoints de E, u étant défini positif.

- 1) Montrer qu'il existe un unique endomorphisme w tel que $u \circ w + w \circ u = v$. Que peut-on dire de w?
- 2) On suppose E de dimension 3, rapporté à une base orthonormale dans laquelle u et v ont pour matrices respectives $A = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 3 \end{pmatrix}$. Déterminer w.

respectives
$$A = \begin{pmatrix} 1 & 4 & -1 \\ 1 & -1 & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 3 \end{pmatrix}$. Determiner w .

3) On revient au cas général. Si v est défini positif, que dire de w ? Si w est défini positif, que dire

Exercice 42. Polytechnique MP* 2000

Soit E un espace euclidien et s une symétrie de E.

1) Que dire de $s^* \circ s$?

de v?

- 2) Un polynôme P est dit réciproque si $P(X) = X^n P(1/X)$, pour P de degré n. Montrer que : $P(X) = \det(X \operatorname{id} + s^* \circ s)$ est un polynôme réciproque.
- 3) Montrer que $P(1) \ge 2^n$. A quelle condition y a-til égalité? Y a-t-il des conditions sur s?
- 4) Soit la matrice $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$, carrée, d'ordre n, symétrique définie positive, où A_1 et A_4 sont carrées d'ordres respectifs p et q. Montrer que $\det(A) \leq \det(A_1) \det(A_4)$.

Exercice 43. Cachan MP* 2000

On note P l'ensemble des fonctions réelles f polynomiales par morceaux, continues sur [0,1] et vérifiant f(0) = f(1) = 0. Si f et g sont des fonctions de P, on note $(f \mid g) = \int_{t=0}^{1} f'(t)g'(t) dt$.

- 1) Que dire de P muni de cette application?
- 2) Montrer que si $x \in [0,1]$, il existe $g_x \in P$ telle que $\forall f \in P$, $(g_x \mid f) = f(x)$.
- 3) On considère n réels vérifiant : $0 < x_1 < x_2 < \ldots < x_n < 1$ et on donne n réels $(\alpha_i)_{i \in [\![1,n]\!]}$. On pose $\varphi(f) = \|f\|^2 + \sum_{i=1}^n (f(x_i) \alpha_i)^2$ et on demande de trouver le minimum de φ sur P.

Exercice 44. Centrale MP 2002

- 1) Que peut-on dire de l'adjoint d'un projecteur orthogonal d'un espace euclidien? Réciproque?
- 2) Soit p un projecteur d'un espace euclidien tel que $p \circ p^* = p^* \circ p$. Montrer que p est un projecteur orthogonal.

Exercice 45. IIE MP 2004

Soit $E = \mathcal{C}([0,1],\mathbb{R})$ muni du produit scalaire défini par $(f \mid g) = \int_0^1 fg$.

Soient u, v les endomorphismes de E définis par $u(f)(x) = \int_0^x f \, \mathrm{et} \, v(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, v(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, \mathrm{et} \, u(f)(x) = \int_x^1 f \, u(f)(x) \, \mathrm{et} \, u(f)(x)$

- **1)** Montrer que (u(f) | g) = (f | v(g)).
- 2) Déterminer les valeurs propres de $u \circ v$.

Exercice 46. Centrale MP 2004

Soit E un espace euclidien de dimension n et p endomorphismes autoadjoints u_1, \ldots, u_p . Soit q_i la forme quadratique associée à u_i ($q_i(x) = (u_i(x) \mid x)$). On suppose :

$$\forall x \in E, \ q_1(x) + \ldots + q_p(x) = ||x||^2 \text{ et } rg(u_1) + \ldots + rg(u_p) = n.$$

- 1) Montrer que $u_1 + \ldots + u_p = \mathrm{id}_E$.
- **2)** Montrer que $\operatorname{Im}(u_1) \oplus \ldots \oplus \operatorname{Im}(u_p) = E$.
- 3) Montrer que les u_i sont en fait des projecteurs orthogonaux et que la somme précédente est orthogonale.

Exercice 47. Mines MP 2005

Soit A matrice réelle ; montrer que A est diagonalisable ssi il existe S symétrique réelle définie positive telle que ${}^t\!A = SAS^{-1}$.

Exercice 48. Rayon spectral, Centrale MP 2006

Soient A, B des matrices de $\mathcal{M}_n(\mathbb{R})$ symétriques et $f: \begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ t & \longmapsto \max(\operatorname{sp}(A+tB)). \end{cases}$ Montrer que f est convexe.

Exercice 49. ENS 2014

Soit $E = \mathcal{C}([a, b], \mathbb{R})$ muni du produit scalaire usuel et de la norme associée. Soit $u \in \mathcal{L}(E)$ un endomorphisme symétrique laissant stable tous les sev $\mathbb{R}_n[X]$ (considérés comme des sous-espaces de E). Montrer qu'il existe une famille échelonnée (P_n) de polynômes propres pour u telle que pour toute fonction $f \in E$, on ait $f = \sum_{n=0}^{\infty} (P_n \mid f) P_n$.

Exercice 50. Endomorphismes à spectres positifs, Mines 2013

E est un espace euclidien, f et g deux endomorphismes symétriques dont les spectres sont inclus dans \mathbb{R}^+ . Exprimer $\ker(f+g)$ et $\operatorname{Im}(f+g)$ en fonction de $\ker f$, $\ker g$, $\operatorname{Im} f$, $\operatorname{Im} g$.

Exercice 51. Spectre de la partie symétrique, TPE MP 2012

Soit $A \in \mathcal{M}_n(\mathbb{R})$, A_s sa partie symétrique et $\alpha_1 \leq \ldots \leq \alpha_n$ les valeurs propres de A_s . Montrer que toute valeur propre réelle de A est comprise entre α_1 et α_n .

Exercice 52. Mines 2016

Soit E un espace euclidien et $u \in \mathcal{L}(E)$ auto-adjoint tel que $\operatorname{sp}(u) \subset \mathbb{R}^{+*}$.

- 1) Montrer que $\forall x, y \in E, (x \mid y)^2 \leq (x \mid u(x))(y \mid u^{-1}(y)).$
- 2) Soit e un vecteur unitaire.

Montrer l'existence et déterminer la valeur de $\delta_e = \inf\{(x \mid u(x)) \text{ tq } x \in E, (x \mid e) = 1\}.$

3) Déterminer, sous réserve d'existence, $\inf\{\delta_e \text{ tq } ||e|| = 1\}.$

Exercice 53. CCP 2017

Pour tout x dans un espace euclidien E, on considère u(x) = (a|x)a + (b|x)b avec a et b unitaires linéairement indépendants.

- 1) Montrer que u est un endomorphisme symétrique.
- **2)** Déterminer Ker(u).
- 3) Déterminer les valeurs propres et les vecteurs propres de u.

Exercice 54. Mines 2017

Soit $A \in S_n(\mathbb{R})$. Montrer que les valeurs propres de A sont positives si et seulement si pour toute matrice $B \in S_n(\mathbb{R})$ de valeurs propres positives on a $\operatorname{tr}(AB) \geqslant 0$.

Exercice 55. Centrale 2017

On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire canonique. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On définit $\varphi_A : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ par : $\forall M \in \mathcal{M}_n(\mathbb{R}), \varphi_A(M) = {}^t A M A$.

- 1) Montrer que : $\forall A, B \in \mathcal{M}_n(\mathbb{R}), \varphi_{AB} = \varphi_B \circ \varphi_A$.
- **2)** Soit $A \in O_n(\mathbb{R})$.
 - a) Montrer que φ_A induit une bijection de $O_n(\mathbb{R})$ et $S_n(\mathbb{R})$ sur eux-mêmes.
 - b) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que : $\forall P \in \mathcal{M}_n(\mathbb{R}), P \in M^{\perp}$ si et seulement si $\varphi_A(P) \in \varphi_A(M)^{\perp}$.
- 3) Soit $n \ge 2$ pair. Soit H un hyperplan de $\mathcal{M}_n(\mathbb{R})$. Montrer que H contient une matrice symétrique et orthogonale. Que dire en dimension impaire?

Exercice 56. Centrale 2017

Soit $M \in S_n(\mathbb{R})$ et $\lambda_1 \leqslant \ldots \leqslant \lambda_n$ ses valeurs propres. Soit f tel que $M = M_{\beta}(f)$, β base canonique de \mathbb{R}^n .

- 1) Montrer que pour tout vecteur x unitaire on a $\lambda_1 \leqslant (f(x)|x) \leqslant \lambda_n$. Montrer que $(f(x)|x) = \lambda_1$ si et seulement si $f(x) = \lambda_1 x$. Montrer que $(f(x)|x) = \lambda_n$ si et seulement si $f(x) = \lambda_n x$.
- 2) On suppose de plus que M a tous ses coefficients strictement positifs.
 - a) Soit u unitaire tel que $f(u) = \lambda_n u$ et \overline{u} le vecteur des coordonnées de u prises en valeur absolue. Montrer que $f(\overline{u}) = \lambda_n \overline{u}$.
 - b) Montrer que les coordonnées de \overline{u} sont strictement positives. En déduire que l'espace propre associé à λ_n est de dimension 1.
 - c) Montrer que pour tout $1 \leq i \leq n$, $|\lambda_i| \leq \lambda_n$.

xercice 5. 1)
$$P = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}, D = \text{diag}(3, 6, 9).$$
2) $P = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}, D = \text{diag}(3, 3, 2).$

2)
$$P = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix}, D = \text{diag}(3, 3, 2).$$

Exercice 6.

Si tous les a_i sont nuls, M = 0.

Sinon, $M = C^t C \Rightarrow E_0 = C^{\perp}$ et $E_{\nu} = \text{vect}(C)$ avec $\nu = ||C||^2$.

Mercice 7.
$$M = 5 \begin{pmatrix} 1/2 & 0 & 0 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \end{pmatrix} - \begin{pmatrix} 1/2 & 0 & 0 & -1/2 \\ 0 & 1/2 & -1/2 & 0 \\ 0 & -1/2 & 1/2 & 0 \\ -1/2 & 0 & 0 & 1/2 \end{pmatrix}.$$

Exercice 8.

2)
$$u$$
 est autoadjoint pour (|).
3) $P_0 = 1, P_2 = X, P_6 = 3X^2 - 1, P_{12} = 5X^3 - 3X.$

Exercice 9.

3)
$$\lambda_k = k(k+1)$$
.

Exercice 12.

3) $(p \circ q)_{|\operatorname{Im} p} = (p \circ q \circ p)_{|\operatorname{Im} p}$ est diagonalisable et $(p \circ q)_{|\operatorname{Ker} q + (\operatorname{Ker} p \cap \operatorname{Im} q)} = 0$ donc tout vecteur de Eest somme de vecteurs propres pour $p \circ q$.

Exercice 15.
$$B = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}.$$

Exercice 18.

2) Récurrence : pour n = 1 c'est évident.

Recurrence: pour
$$n = 1$$
 c'est evident.
 $n - 1 \Rightarrow n : A = \begin{pmatrix} A' & C' \\ {}^tC' & \alpha \end{pmatrix}$ avec $A' = {}^tB'B'$.
On cherche $B = \begin{pmatrix} B' & X' \\ 0 & x \end{pmatrix}$ d'où : $X' = {}^tB'^{-1}C'$ et $x^2 = \alpha - {}^tX'X' = \frac{\det A}{\det A'} > 0$.

Exercice 22.

1) Soit (u_1, \ldots, u_n) une base propre pour u. On prend $x = u_1 + \ldots + u_n$.

2) On norme x et on le complète en une base orthonormée. La matrice de u dans cette base est symétrique, de trace nulle, et la diagonale commence par 0. On termine par récurrence.

Exercice 24.

$$ABX = \lambda X \Rightarrow {}^{t}X{}^{t}BABX = \lambda {}^{t}XBX.$$

Exercice 25.

Se ramener au cas où A est diagonale.

Exercice 26.

Il existe P inversible telle que $A = {}^{t}PP$ et $B = {}^{t}PB'P$ avec B' symétrique définie positive.

Alors $A + B = {}^tP(I + B')P$ et $\det(I + B') = \prod (1 + \beta_i) \ge 1 + \prod \beta_i$.

Exercice 27.

Soit \mathcal{B} une BON fixée, $M = \operatorname{Mat}_{\mathcal{B}}(f)$, \mathcal{B}' la BON cherchée et P la matrice de passage de \mathcal{B} à \mathcal{B}' . On veut que ${}^tM'M'$ soit diagonale avec $M' = {}^tPMP$, cad ${}^tP\,{}^tMMP$ diagonale.

Exercice 30.

Soit (h_i) une base diagonale pour h, $H_i = \text{vect}\{h_1, \dots, h_i\}$ et (f_i) , F_i idem pour f. Pour $x \in F_k \cap H_{k-1}^{\perp}$, $\lambda_k \|x\|^2 + (x \mid x_0)^2 \leq (h(x) \mid x) + (x \mid x_0)^2 = (f(x) \mid x) \leq \mu_k \|x\|^2$. Pour $x \in H_{k+1} \cap F_{k-1}^{\perp} \cap x_0^{\perp}$, $\mu_k \|x\|^2 \leq (f(x) \mid x) = (h(x) \mid x) \leq \lambda_{k+1} \|x\|^2$.

Exercice 31.

- 1) Si $f(x)+f^*(x)=0$ alors $f(x)\in \operatorname{Im} f\cap \operatorname{Im} f^*=\operatorname{Im} f\cap (\operatorname{Ker} f)^{\perp}=\operatorname{Im} f\cap (\operatorname{Im} f)^{\perp}$ donc $f(x)=f^*(x)=0$ et $x\in \operatorname{Ker} f\cap \operatorname{Ker} f^*=\operatorname{Ker} f\cap (\operatorname{Ker} f)^{\perp}$.
- 2) $f^2 = 0 \Rightarrow \operatorname{Im} f \subset \operatorname{Ker} f$. $f + f^* \in GL(E) \Rightarrow \operatorname{Im} f + \operatorname{Im} f^* = \operatorname{Im} f + (\operatorname{Ker} f)^{\perp} = E \Rightarrow \dim \operatorname{Im} f \geqslant \dim \operatorname{Ker} f$.

Exercice 33.

 $f = \operatorname{id} - r \text{ où } r(x_1, \dots, x_n) = (x_n, x_1, \dots, x_{n-1}). \text{ Donc } f^* \circ f = 2\operatorname{id} - r - r^{-1} \text{ a pour valeurs propres less nombres } 2 - 2\cos(2k\pi/n), \ k \in \llbracket 0, n-1 \rrbracket \text{ et } \llbracket f \rrbracket = \begin{cases} 2 & \text{si } n \text{ est pair } \\ 2\cos(\pi/2n) & \text{si } n \text{ est impair.} \end{cases}$

Exercice 37.

$$((u - u^*)(x) \mid x) = 0.$$

Exercice 38.

Orthodiagonaliser et appliquer l'inégalité de Cauchy-Schwarz.

Exercice 39

Soit $K = \sup\{\|u_0 + \ldots + u_n\|\}$ et $x \in H$. On note $v_{p,q} = \sum_{n=p}^q u_n$ pour $p \leqslant q$. La série $\sum (u_n(x) \mid x)$ est convergente (termes positifs, sommes partielles majorées) donc elle vérifie le critère de Cauchy : $(v_{p,q}(x) \mid x) \underset{p,q \to \infty}{\longrightarrow} 0$.

Comme $v_{p,q}$ est positif, il vérifie l'inégalité de Cauchy-Schwarz :

$$|(v_{p,q}(x) \mid y)|^2 \le (v_{p,q}(x) \mid x)(v_{p,q}(y) \mid y) \le 2K||y||^2(v_{p,q}(x) \mid x).$$

En particulier pour $y=v_{p,q}(x)$ on obtient : $||v_{p,q}(x)||^2 \le 2K(v_{p,q}(x)\mid x)$ donc la série $\sum u_n(x)$ est de Cauchy.

Rmq. exemple où $\sum u_n$ ne converge pas dans $\mathcal{L}_c(H)$: $H = \ell^2(\mathbb{N})$ et u_n = projection orthogonale sur $\langle e_n \rangle$ où $e_n(p) = \delta_{n,p}$. $\sum u_n$ converge simplement et non uniformément vers l'identité.

Exercice 40.

 ${}^t\!AA$ est \mathbb{R} -diagonalisable donc annule un polynôme P scindé à racines simples. A annule le polynôme $P(X^3)$, donc est \mathbb{C} -diagonalisable si 0 n'est pas racine de P ce que l'on peut imposer si A est inversible.

Si A n'est pas inversible, soit P(X) = XQ(X) avec $Q(0) \neq 0$.

On a $\mathbb{R}^n = \text{Ker}(A^3) \oplus \text{Ker}(Q(A^3))$ et $\text{Ker}(A^3) = \text{Ker}(A^3) = \text{Ker}(A)$ donc $AQ(A^3) = 0$ et A est encore \mathbb{C} -diagonalisable.

Contre-exemple pour la \mathbb{R} -diagonalisabilité : prendre une rotation d'angle $2\pi/3$ dans le plan.

Exercice 41.

- 1) On se place dans une base propre pour u, soient U, V, W les matrices associées avec $U = \operatorname{diag}(\lambda_i)$. On doit donc résoudre $(\lambda_i + \lambda_j)W_{ij} = V_{ij}$ d'où l'existence, l'unicité et la symétrie de w.
- 2) > A := matrix([[4,1,1],[1,4,-1],[1,-1,4]]);
 B := matrix([[0,0,-1],[0,0,1],[-1,1,3]]);
 > eigenvals(A); eigenvects(A);
 > P := transpose(matrix([[1, 0, 1], [1, 1, 0],[-1, 1, 1]]));
 > A1 := evalm(P^(-1)&*A&*P); B1 := evalm(P^(-1)&*B&*P);
 > C1 := matrix(3,3);
 > for i from 1 to 3 do
 for j from 1 to 3 do C1[i,j] := B1[i,j]/(A1[i,i]+A1[j,j]) od od;
 > C := evalm(P&*C1&*P^(-1)); evalm(A&*C+C&*A-B);
 $\Rightarrow C = \frac{1}{140}\begin{pmatrix} 11 & -11 & -33 \\ -11 & 11 & 33 \\ -33 & 33 & 69 \end{pmatrix}.$
- 3) Si v est défini positif : on a $(v(x) \mid x) = 2(u(x) \mid w(x))$ donc si λ est une valeur propre de w et x est un vecteur propre associé, on a $\lambda = \frac{(v(x) \mid x)}{2(u(x) \mid x)} > 0$ d'où w est défini positif.

Cas w défini positif et v non positif : $U = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $W = \begin{pmatrix} 1 & 1 \\ 1 & 1+x \end{pmatrix}$, $V = \begin{pmatrix} 2 & 3 \\ 3 & 4x+4 \end{pmatrix}$ avec $0 < x < \frac{1}{8}$.

Exercice 42.

- 1) c'est un endomorphisme autoadjoint positif de déterminant 1.
- 2) $X^n \det(\operatorname{id}/X + s^* \circ s) = \det(\operatorname{id} + Xs^* \circ s) = \det(s^* \circ (\operatorname{id} + Xs^* \circ s) \circ s) = \det(s^* \circ s + X \operatorname{id}).$
- 3) $s^* \circ s$ est diagonalisable avec des valeurs propres (λ_i) réelles positives deux à deux inverses pour la même multiplicité. $P^2(1) = \prod_{1 \leq i \leq n} (1 + \lambda_i)(1 + 1/\lambda_i)$ et $(1 + x)(1 + 1/x) \geq 4$ pour tout x > 0 avec égalité ssi x = 1.
 - Si $P(1) = 2^n$ alors toutes les valeurs propres de $s^* \circ s$ valent 1 et $s^* \circ s$ est diagonalisable donc $s^* \circ s = \mathrm{id}$ et s est une symétrie orthogonale. La réciproque est immédiate.
- 4) Se ramener au cas $A_4 = I$ puis calculer det A par pivotage.

Exercice 43.

- 1) Que c'est un espace préhilbertien.
- **2)** $g_x(t) = \min(t(1-x), x(1-t))$
- 3) On note $g_i = g_{x_i} : (g_1, \ldots, g_n)$ est libre par considération des points anguleux, donc engendre un ev G de dimension n. Soit $f \in P : f = f_0 + f_1$ avec $f_0 \in G$ et $f_1 \in G^{\perp}$. Alors $\varphi(f) = \varphi(f_0) + ||f_1||^2$ donc φ est minimale en f ssi $\varphi_{|G}$ est minimale en f_0 et $f_1 = 0$. Désormais on suppose $f_1 = 0$ et $f \in G$.

L'application:

$$u: \begin{cases} G & \longrightarrow & \mathbb{R}^n \\ f & \longmapsto & (f(x_1), \dots, f(x_n)) = ((f \mid g_1), \dots, (f \mid g_n)) \end{cases}$$

est un isomorphisme linéaire. Soit v l'endormophisme autoadjoint défini positif de \mathbb{R}^n (pour le produit scalaire canonique) tel que : $\forall t \in \mathbb{R}^n$, $(t \mid v(t)) = ||u^{-1}(t)||^2$.

On a donc en notant $\alpha = (\alpha_1, \dots, \alpha_n)$ et $\beta = (\mathrm{id} + v)^{-1}(\alpha)$:

$$\forall t \in \mathbb{R}^n, \ \varphi(u^{-1}(t)) = (t \mid v(t)) + (t - \alpha \mid t - \alpha)$$
$$= (t \mid (\mathrm{id} + v)(t)) - 2(t \mid \alpha) + (\alpha \mid \alpha)$$
$$= (t - \beta \mid (\mathrm{id} + v)(t - \beta)) + (\alpha \mid \alpha - \beta).$$

id+v est autoadjoint défini positif donc le minimum de φ est atteint pour $f=u^{-1}(\beta)$ (solution unique) et vaut $(\alpha \mid \alpha - \beta)$.

Exercice 44.

- 1) p est un projecteur orthogonal $\Leftrightarrow p$ est un projecteur et $p = p^* \Leftrightarrow p^*$ est un projecteur orthogonal.
- 2) p et p^* commutent donc Ker p et Im p sont stables par p et par p^* , d'où $p^*_{|\operatorname{Ker} p} = (p_{|\operatorname{Ker} p})^* = 0_{\operatorname{Ker} p}$ et $p^*_{|\operatorname{Im} p} = (p_{|\operatorname{Im} p})^* = \operatorname{id}_{\operatorname{Im} p}$. Ainsi $p = p^*$ ce qui implique Ker $p \perp \operatorname{Im} p$.

Exercice 45.

2) On a pour $f, g \in E$: $u \circ v(f) = g \Leftrightarrow g$ est C^2 , g(0) = g'(1) = 0 et g'' = -f. En particulier $u \circ v$ est injectif, 0 n'est pas valeur propre de $u \circ v$.

Pour $\lambda \in \mathbb{R}^*$ et $f \in E$ on a $u \circ v(f) = \lambda f$ si et seulement si f est de la forme $x \mapsto ae^{\alpha x} + be^{-\alpha x}$ avec $\alpha^2 = -1/\lambda$ et $a+b=a\alpha e^{\alpha}-b\alpha e^{-\alpha}=0$. On obtient $f \neq 0$ en prenant $a \neq 0$, b=-a et $\alpha=i\pi(\frac{1}{2}+k)$, $k \in \mathbb{Z}$. Donc $\operatorname{sp}(u \circ v) = \left\{\frac{1}{\pi^2(\frac{1}{2}+k)^2}, \ k \in \mathbb{Z}\right\}$.

Exercice 46.

- 1) $u_1 + \ldots + u_p$ est l'endomorphisme autoadjoint associé à $q_1 + \ldots + q_p$.
- 2) $\operatorname{Im}(u_1) + \ldots + \operatorname{Im}(u_p) \supset \operatorname{Im}(u_1 + \ldots + u_p) = E$ et la somme des dimensions est égale à dim E donc la somme des sous-espaces est directe.
- 3) On a $\operatorname{Ker}(u_1) = \{x \in E \text{ tq } x = u_2(x) + \ldots + u_p(x)\} \subset \operatorname{Im}(u_2 + \ldots + u_p) = \operatorname{Im}(u_2) \oplus \ldots \oplus \operatorname{Im}(u_p) \text{ et les deux termes extrêmes ont même dimension, d'où } \operatorname{Ker}(u_1) = \operatorname{Im}(u_2) \oplus \ldots \oplus \operatorname{Im}(u_p).$ Comme u_1 est autoadjoint, $\operatorname{Im}(u_1) \perp \operatorname{Ker}(u_1)$ ce qui prouve l'orthogonalité de la somme. De plus $\operatorname{Im}(u_1) \subset \operatorname{Ker}(u_j)$ pour $j \geqslant 1$ donc $q_1(x) = \|x\|^2$ pour tout $x \in \operatorname{Im}(u_1)$. En appliquant 1) à $\operatorname{Im}(u_1)$ on obtient $u_1(x) = x$ pour tout $x \in \operatorname{Im}(u_1)$ ce qui prouve que u_1 est un projecteur, et c'est un projecteur orthogonal car autoadjoint.

Exercice 47.

 $A = P^{-1}DP \Rightarrow {}^tA = ({}^tPP)A(P^{-1}tP^{-1}).$ S définie positive $\Rightarrow \exists P \in GL_n(\mathbb{R})$ tq $S = {}^tPP$, donc ${}^tA = SAS^{-1} \Rightarrow {}^tA = {}^tPM{}^tP^{-1}$ avec $M = PAP^{-1}$, d'où ${}^tM = M$ est diagonale.

Exercice 48.

Pour A symétrique réelle on a $\max(\operatorname{sp}(A)) = \sup\{(x \mid Ax)/\|x\|^2, x \in \mathbb{R}^n \setminus \{0\}\}$ donc f est la borne supérieure des fontions affines $t \mapsto ((x \mid Ax) + t(x \mid Bx))/\|x\|^2$ lorsque x décrit $\mathbb{R}^n \setminus \{0\}$. En tant que sup de fonctions convexes, c'est une fonction convexe.

Exercice 49.

 $u_{|\mathbb{R}_n[X]}$ est symétrique et laisse stable $\mathbb{R}_{n-1}[X]$ donc aussi son orthogonal dans $\mathbb{R}_n[X]$ qui est de dimension 1. Soit P_n un polynôme de norme 1 dans cet orthogonal. Par construction, P_n est propre pour u, de degré n et la suite (P_n) est orthonormale. C'est une suite totale car $\mathbb{R}[X]$ est dense dans E pour $\|\cdot\|_{\infty}$ donc aussi pour $\|\cdot\|_{2}$.

Exercice 50.

Soit $x \in \ker(f+g)$. On a alors (f(x)+g(x)|x)=0=(f(x)|x)+(g(x)|x). Or f et g sont symétriques, donc (f(x)+g(x)|x)=0 si et seulement si (f(x)|x)=(g(x)|x)=0. Si $0,\lambda_2,\ldots,\lambda_p$ sont les valeurs propres de f et si $x=\sum_{i=1}^p x_i$ $(x_i\in E_{\lambda_i}(f))$ on a $(f(x)|x)=\sum_{i=1}^p \lambda_i ||x_i||^2$. On en déduit que (f(x)|x)=0 si et seulement si f(x)=0. On en déduit que $\ker(f+g)\subset\ker f\cap\ker g$. L'inclusion inverse est claire, donc $\ker(f+g)=\ker f\cap\ker g$. Pour des sous-espaces vectoriels F,G d'un espace euclidien on a $(F+G)^\perp=F^\perp\cap G^\perp$ (vrai même dans un préhilbertien). On passe aux orthogonaux et on obtient $(F\cap G)^\perp=F^\perp+G^\perp$. L'endomorphisme f+g est symétrique donc $\operatorname{Im}(f+g)=(\ker(f+g))^\perp=(\ker f)^\perp+(\ker g)^\perp=\operatorname{Im} f+\operatorname{Im} g$ (car f et g sont symétriques).

Exercice 51.

Si $AX = \lambda X$ alors $\lambda ||X||^2 = (X|AX) = (X|A_sX)$ est compris entre $\alpha_1 ||X||^2$ et $\alpha_n ||X||^2$.

Exercice 52.

- 1) Par orthodiagonalisation, il existe $v \in \mathcal{L}(E)$ auto-adjoint tel que $u = v^2$. En posant y = u(z) il s'agit de prouver que $(v(x) \mid v(z))^2 \leq (v(x) \mid v(x))(v(z) \mid v(z))$ ce qui est un cas particulier de l'inégalité de Cauchy-Schwarz.
- **2)** Prendre $y = e : \delta_e = 1/(e \mid u^{-1}(e)).$
- 3) Décomposer e sur une base orthonormale propre pour u. On obtient $\min(\operatorname{sp}(u))$.

Exercice 53.

- 1) $x \mapsto (a|x)a$ et $x \mapsto (b|x)b$ le sont (projections orthogonales sur $\langle a \rangle$ et $\langle b \rangle$).
- **2)** Ker(u) = $\{a, b\}^{\perp}$.
- 3) 0 sur Ker(u), $1 \pm (a|b)$ sur vect($a \pm b$).

Exercice 54.

A étant symétrique réelle, on peut l'orthodiagonaliser : $A = PDP^{-1}$ avec $P \in O(n)$ et D diagonale. Si B est une matrice quelconque, alors B et $P^{-1}BP = {}^tPBP$ sont simultanément symétriques à valeurs propres positives. De plus, $\operatorname{tr}(AB) = \operatorname{tr}(D(P^{-1}BP))$. Donc l'énoncé est inchangé si on remplace A par D.

Si D a une valeur propre $d_{ii} < 0$ alors en prenant $B = E_{ii}$ on trouve $tr(DB) = d_{ii} < 0$. Par contraposée, si $tr(DB) \ge 0$ pour toute matrice B symétrique à valeurs propres positives, alors D est aussi à valeurs propres positives.

Si les valeurs propres de D sont positives : soit $S = \sqrt{D}$ la matrice diagonale à coefficients positifs telle que $S^2 = D$ et soit $B \in S_n(\mathbb{R})$ à valeurs propres positives. On a $\operatorname{tr}(DB) = \operatorname{tr}(S^2B) = \operatorname{tr}(SBS)$ et SBS est une matrice symétrique réelle donc diagonalisable. Soit $\lambda \in \operatorname{sp}(SBS)$, X un vecteur propre associé et Y = SX. On a $\lambda^t XX = {}^t X(SBS)X = {}^t YBY \geqslant 0$ (décomposer Y sur une base orthonormale propre pour B). Ainsi $\lambda = {}^t YBY/{}^t XX \geqslant 0$ et donc SBS est elle aussi à valeurs propres positives. Il en résulte $\operatorname{tr}(DB) \geqslant 0$.

Exercice 55.

3) Pour n pair, on note B une matrice dirigeant H^{\perp} , que l'on décompose en $B = B_s + B_a$ avec B_s symétrique et B_a antisymétrique. Soit $A \in O_n(\mathbb{R})$ telle que $\varphi_A(B_s)$ soit diagonale : $\varphi_A(B_a)$ est encore antisymétrique donc pour toute matrice $P \in O_n(\mathbb{R}) \cap S_n(\mathbb{R})$, on a $P \perp \varphi_A(B_a)$. On peut de plus choisir P de sorte que $P \perp \varphi_A(B_s)$, par exemple P = (la matrice anti-diagonale de 1). Alors $Q = \varphi_A^{-1}(P)$ est symétrique, orthogonale, et dans H.

Pour n impair, la propriété est fausse : si H est l'hyperplan constitué des matrices de trace nulle, alors H ne contient aucune matrice qui soit à la fois orthogonale et symétrique (ce serait la matrice d'une symétrie orthogonale par rapport à un sev F et donc sa trace vaudrait $n-2\dim(F)\neq 0$).

Exercice 56.

- 1) Soit (e_1, \ldots, e_n) une base orthonormale propre pour f et x un vecteur unitaire. On a $(f(x)|x) = \sum_{i=1}^n \lambda_i x_i^2$, donc $\lambda_1 \sum_{i=1}^n x_i^2 \leqslant (f(x)|x) \leqslant \lambda_n \sum_{i=1}^n x_i^2$, ou encore $\lambda_1 \leqslant (f(x)|x) \leqslant \lambda_n$. On suppose $(f(x)|x) = \lambda_1$. Soit j tel que $\lambda_j > \lambda_1$. Si $x_j \neq 0$ alors $\lambda_j x_j^2 > \lambda_1 x_j^2$ puis $(f(x)|x) > \lambda_1$. On en déduit que si $x_j \neq 0$ alors $\lambda_j = \lambda_1$ et donc $f(x) = \lambda_1 x$. La réciproque est évidente. On montre de même que $(f(x)|x) = \lambda_n$ si et seulement si $f(x) = \lambda_n x$.
- 2) a) On a $|(f(u)|u)| = |^t UMU| = |\sum_{1 \leqslant i,j \leqslant n} m_{i,j} u_i u_j| \leqslant \sum_{1 \leqslant i,j \leqslant n} m_{i,j} |u_i| |u_j| = (f(\overline{u})|\overline{u})$ et donc on a $|\lambda_n| \leqslant (f(\overline{u})|\overline{u}) \leqslant \lambda_n$. On en déduit que $\lambda_n \geqslant 0$ et que $(f(\overline{u})|\overline{u}) = \lambda_n$, puis $f(\overline{u}) = \lambda_n \overline{u}$.
 - b) On suppose que $\overline{u}_i = 0$. On a alors $0 = \lambda_n \overline{u}_i = \sum_{j \neq i} m_{i,j} \overline{u}_j$. Or tous les $m_{i,j}$ sont > 0, donc pour tout $j \neq i$, $\overline{u}_j = 0$ puis $\overline{u} = 0$ ce qui est impossible. Par conséquent les coordonnées de \overline{u} sont strictement positives et donc toutes les coordonnées d'un vecteur propre associé à λ_n sont non nulles. Soit v un tel vecteur. On suppose que la famille (u,v) est libre. Alors le vecteur $v \frac{v_1}{u_1}u$ est non nul et est vecteur propre associé à λ_n . Or sa première coordonnée est nulle, ce qui est impossible. On en déduit que l'espace propre associé à λ_n est de dimension 1.
 - c) On a pour tout X unitaire $|{}^tXMX| \leq {}^t|X|M|X| \leqslant \lambda_n$. Soit λ une valeur propre de M et X un vecteur propre unitaire associé. On a $|\lambda| = |{}^tXMX| \leqslant \lambda_n$.