

IN JECTIVE, SUBJECTIVE AND BISECTIVE

ONE TO ONE

A function f (from set A to B) is surjective if and only if for every y in B, there is at least one x in A such that f(x) = y, in other words f is surjective if and only if f(A) = B.

WJECTIVE AND SUB*SECT*IVE AT THE SAME TIME

STRICTLY INCREASING AND STRICTLY DEGREASING FUNCTIONS

A function f is **injective** if and only if whenever f(x) = f(y), x = y.

A function f (from set A to B) is **bijective** if, for every y in B, there is exactly one x in A such that f(x) = y Alternatively, f is bijective if it is a **one-to-one correspondence** between those sets, in other words both **injective and surjective**

E L'ESPONENTE DA w=6X

DARE ALLA BASE PER OTTENERE LARGOMENTO

$$Lo6_{0} + Lo6_{0} = Lo6_$$

c06 w=x

POTENZE

$$\omega'/6' = \left(\frac{\omega}{6}\right)'$$

$$\left(\frac{\omega}{6}\right)^{-\frac{1}{2}} = \left(\frac{\omega}{\omega}\right)^{\frac{1}{2}}$$

TRIGONOMETRIA

α(gradi)	$\alpha(\text{rad})$	sinα	cosα	tana	cota
0°	0	0	1	0	∞
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$
90°	$\frac{\pi}{2}$	1	0	× ×	0

$$SIN\left(\frac{\pi}{2}-x\right) = SIN\left(\frac{\pi}{2}+x\right) = \cos x$$

$$(\cos x)^2 = \frac{1}{1 + (\tan x)^2}$$