Goal

Simulate an arbitrary initial circumstance and see what happens

Constants

k = 100

 $l_0=1$

m = 1

g = 9.8

Duration: 20s

Framerate: $25 \mathrm{fps}$

Initial Values

l = 1.2

 $\dot{l} = 0$

 $\theta = 1$

 $\dot{\theta} = 0$

Results

In which ME stands for mechanical energy, T_{rad} stands for radical kinetic energy, T_{tan} stands for tangential kinetic energy, V_{elas} stands for elastic potential energy, V_{grav} stands for gravitational potential energy.

The average calculated mechanical energy is $-4.300729771926146\,\mathrm{J}$

The Root Mean Square Error of mechanical energy is 0.06163391174116638

the standard deviation of mechanical energy is $\ 0.003870907691326819$

Therefore the calculated energy is close enough to the theoretical energy, meaning the energy of this system conserves and the simulation has a high accuracy.