Санкт-Петербургский государственный университет Прикладная математика и информатика

Отчет по учебной практ	ике 3 (научно-	-исследовательской	гработе) (семест	(p 6)
Метод Монте-Карло	SSA для м	ИНОГОМЕРНЫХ	ВРЕМЕННЫХ	РЯДОВ

Выполнил:

Потешкин Егор Павлович группа 20.Б04-мм

Научный руководитель:

к.ф.-м.н., доцент

Голяндина Нина Эдуардовна

Кафедра Статистического Моделирования

Оглавление

Введен	име	3
Глава 1	1. Метод MSSA	4
1.1.	Описание метода	4
1.2.	Модификации метода	6
1.3.	Выбор длины окна	7
Глава 2	2. Метод Monte-Carlo MSSA	9
2.1.	Постановка задачи	9
2.2.	Одиночный тест	9
2.3.	Множественный тест	10
2.4.	Выбор векторов для проекции	11
2.5.	Численное сравнение методов	12
Заключ	чение	17

Введение

TODO

Глава 1

Метод MSSA

1.1. Описание метода

Метод Multivariate Singular Spectrum Analysis (сокращенно MSSA) состоит из четырех этапов: вложения, разложения, группировки и диагонального усреднения. Пусть $N_d>2,\ d=1,\ldots,D.$ Рассмотрим вещественнозначные ненулевые одномерные временные ряды $F^{(d)}=(f_1^{(d)},f_2^{(d)},\ldots,f_{N_d}^{(d)}).$ Составим из этих рядов $F=\{F^{(d)}\}_{d=1}^D-D$ -канальный временной ряд с длинами $N_d,\ d=1,\ldots,D.$

1.1.1. Вложение

Выберем параметр L, называемый длиной окна, $1 < L < \min(N_1, \dots, N_D)$. Для каждого ряда $F^{(d)}$ рассмотрим $K_d = N - L + 1$ векторов вложения $X_i^{(d)} = (f_{i-1}^{(d)}, \dots, f_{i+L-2}^{(d)})^{\mathrm{T}}$, $1 \le j \le K_d$ и составим траекторную матрицу $\mathbf{X}^{(d)} = [X_1^{(d)} : \dots : X_{K_d}^{(d)}]$. Обозначим $K = \sum_{d=1}^D K_d$. Результатом этапа вложения является матрица размера $L \times K$

$$\mathbf{X} = [\mathbf{X}^{(1)} : \dots : \mathbf{X}^{(D)}]. \tag{1.1}$$

1.1.2. Разложение

Задача этапа разложения — разбить траекторную матрицу \mathbf{X} в сумму матриц ранга 1. В базовой версии MSSA используется сингулярное разложение (SVD).

Положим ${\bf S}={\bf X}{\bf X}^{\rm T}$. Пусть λ_i — собственные числа, а U_i — ортонормированная система векторов матрицы ${\bf S}$. Упорядочим λ_i по убыванию и найдем p такое, что $\lambda_p>0$, а $\lambda_{p+1}=0$. Тогда

$$\mathbf{X} = \sum_{i=1}^{p} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}} = \sum_{i=1}^{p} \mathbf{X}_i,$$

где $V_i = \mathbf{X}^{\mathrm{T}} U_i / \sqrt{\lambda_i}$. Тройку $(\sqrt{\lambda_i}, U_i, V_i)$ принято называть i-й собственной тройкой сингулярного разложения, $\sqrt{\lambda_i}$ — сингулярным числом, U_i — левым сингулярным вектором, а V_i — правым сингулярным вектором. Отметим, что левые сингулярные векторы имеют размерность L, а правые сингулярные вектора — размерность K.

1.1.3. Группировка

На этом шаге множество индексов $I=\{1,\ldots,p\}$ разбивается на m непересекающихся множеств I_m,\ldots,I_m и матрица ${\bf X}$ представляется в виде суммы

$$\mathbf{X} = \sum_{k=1}^{m} \mathbf{X}_{I_k},$$

где
$$\mathbf{X}_{I_k} = \sum_{i \in I_k} \mathbf{X}_i$$
.

1.1.4. Диагональное усреднение

Финальным шагом MSSA является преобразование каждой матрицы \mathbf{X}_{I_k} , составленной в разделе 1.1.3, в D-канальный временной ряд.

Пусть $\mathbf{Y} = (y_{ij})$ — матрица размера $L \times K$. Положим $L^* = \min(L, K)$, $K^* = \max(L, K)$ и N = L + K - 1. Пусть $y_{ij}^* = y_{ij}$, если L < K, и $y_{ij}^* = y_{ji}$ иначе. Диагональное усреднение переводит матрицу \mathbf{Y} в ряд g_1, \ldots, g_N по формуле

$$g_k = \begin{cases} \frac{1}{k} \sum_{m=1}^k y_{m,k-m+1}^*, & \text{при } 1 \leqslant k < L^* \\ \frac{1}{L^*} \sum_{m=1}^{L^*} y_{m,k-m+1}^*, & \text{при } L^* \leqslant k \leqslant K^* \\ \frac{1}{N-k+1} \sum_{m=k-K^*+1}^{N-K^*+1} y_{m,k-m+1}^*, & \text{при } K^* < k \leqslant N \end{cases}$$

Из (1.1) следует, что \mathbf{X}_{I_k} можно представить в следующем виде:

$$\mathbf{X}_{I_k} = [\mathbf{X}_{I_k}^{(1)} : \ldots : \mathbf{X}_{I_k}^{(D)}].$$

Тогда, чтобы получить D-канальный временной ряд, применим диагональное усреднение к каждой матрице $\mathbf{X}_{I_k}^{(d)},\ d=1,\dots,D.$

1.1.5. Частный случай

При D=1 F — одномерный временной ряд, и приведенный выше алгоритм совпадает с алгоритмом Basic SSA, описанный в работе (TODO ссылка).

1.2. Модификации метода

1.2.1. Тёплицев MSSA

В случае анализа стационарных рядов можно улучшить базовый метод, используя другое разложение. Для начала введем следующее понятие.

Определение 1. Пусть $F = (f_1, \dots, f_N)$ — одномерный временной ряд и L — фиксированное. **Тёплицевой** L-ковариационной матрицей называют матрицу $\widetilde{\mathbf{C}}$ с элементами

$$\widetilde{c}_{ij} = \frac{1}{N - |i - j|} \sum_{n=1}^{N - |i - j|} f_n f_{n+|i-j|}, \quad 1 \leqslant i, j \leqslant L.$$

Пусть теперь $F=\{F^{(d)}\}_{d=1}^D-D$ -канальный временной ряд , каждый канал которого имеет одинаковую длину $N,\,K=N-L+1.$ Тогда можно получить разложение ${\bf X}$ двумя способами:

1. Пусть $\widetilde{\mathbf{C}}_1, \dots, \widetilde{\mathbf{C}}_D$ — тёплицевы матрицы для каждого канала. Рассмотрим $\widetilde{\mathbf{C}} = \sum_{d=1}^D \widetilde{\mathbf{C}}_d$. Найдем ортонормированные собственные векторы H_1, \dots, H_L матрицы $\widetilde{\mathbf{C}}$ и разложим траекторную матрицу \mathbf{X} следующим образом:

$$\mathbf{X} = \sum_{i=1}^{L} \sigma_i H_i Q_i^{\mathrm{T}},\tag{1.2}$$

где $Z_i = \mathbf{X}^T U_i, \ Q_i = Z_i / \|Z_i\| \$ и $\sigma_i = \|Z_i\|.$

2. Можно рассмотреть блочную матрицу размера $DK \times DK$:

$$\mathbf{T} = egin{pmatrix} \mathbf{T}_{1,1} & \mathbf{T}_{1,2} & \cdots & \mathbf{T}_{1,D} \ \mathbf{T}_{2,1} & \mathbf{T}_{2,2} & \cdots & \mathbf{T}_{2,D} \ dots & dots & \ddots & dots \ \mathbf{T}_{D,1} & \mathbf{T}_{D,D} & \cdots & \mathbf{T}_{D,D} \end{pmatrix}.$$

Элементы каждого блока \mathbf{T}_{lk} имеют вид

$$t_{ij}^{(lk)} = \frac{1}{\tilde{N}} \sum_{n=\max(1,1+i-j)}^{\min(N,N+i-j)} f_n^{(l)} f_{n+j-i}^{(k)}, \quad 1 \leqslant i, j \leqslant K,$$

где $\tilde{N}=\min(N,N+i-j)-\max(1,1+i-j)+1$. Найдя ортонормированные собственные векторы Q_1,\dots,Q_{DK} матрицы ${\bf T}$, получаем разложение

$$\mathbf{X} = \sum_{i=1}^{DK} \sigma_i H_i Q_i^{\mathrm{T}},\tag{1.3}$$

где $Z_i = \mathbf{X}Q_i, \ H_i = Z_i/\|Z_i\|$ и $\sigma_i = \|Z_i\|.$

Шаги группировки и диагонального усреднения можно оставить в том виде, в котором они представлены в разделе 1.1.3 и в разделе 1.1.4.

Для конкретности, будем называть первый метод Sum, а второй — Block. Стоит отметить, что в Sum собственные векторы матрицы $\widetilde{\mathbf{C}}$ — аналоги левых сингулярных векторов матрицы \mathbf{X} , в то время как в Block собственные векторы матрицы \mathbf{T} — аналоги правых сингулярных векторов.

1.3. Выбор длины окна

Посмотрим на точность базового и модифицированных методов, для разных значений параметра L, на подобии работы (**TODO** ссылка). Рассмотрим следующий двух-канальный временной ряд: $(F^{(1)}, F^{(2)}) = (H^{(1)}, H^{(2)}) + (N^{(1)}, N^{(2)})$, где $H^{(1)}, H^{(2)}$ — гармоники, а $N^{(1)}, N^{(2)}$ — независимые реализации гауссовского белого шума. Γ ауссовский белый шум — стационарный случайный процесс, имеющий нормальное распределение. Как и в (**TODO** ссылка), пусть N = 71, дисперсия шумовых компонент $\sigma^2 = 25$, число повторений равно 10000. Рассмотрим 2 случая:

Случай 1	L = 12	L = 24	L = 36	L = 48	L = 60
MSSA	3.18	1.83	1.59	1.47	2.00
SSA	3.25	2.01	2.00	2.01	3.25
Sum	3.17	1.75	1.44	1.32	1.33
Block	1.39	1.26	1.25	1.33	1.97
Случай 2	L = 12	L = 24	L = 36	L = 48	L = 60
Случай 2 MSSA	L = 12 6.91	L = 24 3.77	L = 36 3.07	L = 48 2.88	L = 60 3.84
MSSA	6.91	3.77	3.07	2.88	3.84
MSSA SSA	6.91 3.23	3.77 2.01	3.07 2.00	2.88	3.84

Таблица 1.1. MSE восстановления сигнала.

1. Одинаковые периоды:

$$h_n^{(1)} = 30\cos(2\pi n/12), \quad h_n^{(2)} = 20\cos(2\pi n/12), \quad n = 1, \dots N.$$

2. Разные периоды:

$$h_n^{(1)} = 30\cos(2\pi n/12), \quad h_n^{(2)} = 20\cos(2\pi n/8), \quad n = 1, \dots N.$$

В таблице 1.1 представлены результаты восстановления сигнала для разных L. Данные для методов SSA и MSSA были взяты из работы (TODO ссылка). Наиболее точные результаты для каждого метода были выделенны жирным шрифтом. Как видим из таблицы 1.1, в обоих случаях метод Sum показывал наилучший результат для L > (N+1)/2, в то время как метод Block наиболее точен при длине окна, близкой к половине длины рядя, причем оба метода в случае одинаковых периодов показывают лучше результат, чем MSSA.

Глава 2

Метод Monte-Carlo MSSA

2.1. Постановка задачи

Рассмотрим задачу поиска сигнала (не случайной составляющей) в многоканальном временном ряде. Нулевая гипотеза H_0 — отсутствие сигнала (ряд состоит из чистого шума). Тогда альтернатива H_1 — ряд содержит сигнал, например, периодическая составляющая.

Определение 2. Случайный вектор $\boldsymbol{\xi} = (\xi_1, \dots, \xi_N)$ называют красным шумом с параметрами φ и δ , если $\xi_n = \varphi \xi_{n-1} + \delta \varepsilon_n$, где $0 < \varphi < 1$, ε_n — белый гауссовский шум со средним значением 0 и дисперсией 1 и ξ_1 имеет нормальное распределение с нулевым средним и дисперсией $\delta^2/(1-\varphi^2)$.

В данной главе под шумом будем подразумевать именно красный. Также будем рассматривать только односторонние критерии.

2.2. Одиночный тест

Пусть $\boldsymbol{\xi} = \{\boldsymbol{\xi}^{(d)}\}_{d=1}^D - D$ -канальный красный шум. Зафиксируем длину окна L и обозначим траекторную матрицу ряда $\boldsymbol{\xi}$ как $\boldsymbol{\Theta}$. Рассмотрим вектор $W \in \mathbb{R}^L$ такой, что $\|W\| = 1$. Введем величину

$$p = \|\mathbf{\Theta}^{\mathrm{T}} W_k\|^2.$$

Статистикой критерия является величина

$$\widehat{p} = \|\mathbf{X}^{\mathrm{T}}W\|^2.$$

Если вектор W — синусоида с частотой ω , то \widehat{p} отражает вклад частоты w в исходный ряд.

Рассмотрим алгоритм статистического критерия проверки наличия сигнала в ряде с проекцией на один вектор W, описанный в работе (TODO).

Алгоритм 1. Одиночный тест

1. Построить статистику критерия \hat{p} .

- 2. Построить доверительную область случайной величины p: интервал от нуля до γ -квантиля.
- 3. Если \widehat{p} не попадает в построенный интервал H_0 отвергается.

Построенная доверительная область называется *прогнозируемым интервалом* с уровнем доверия γ .

В большинстве случаев, распределение p неизвестно. Поэтому оно оценивается методом Монте-Карло: берется G реализаций случайной величины ξ , для каждой вычисляется p и строится эмпирическое распределение. В связи с этим описанный выше алгоритм называют методом Monte-Carlo SSA.

2.3. Множественный тест

Пусть теперь частоты периодических компонент неизвестны (что не редкость на практике), но известен диапазон частот и нужно проверить, что в ряде присутствует сигнал с хотя бы одной частотой из заданного диапазона. Тогда нулевая гипотеза H_0 о том, что ряд не содержит сигнала ни на одной из частот из рассматриваемого диапазона, а альтернатива H_1 —ряд содержит сигнал с хотя бы одной частотой, принадлежащей рассматриваемому диапазону.

Пусть W_1, \dots, W_H — вектора для проекции. В таком случае нужно построить H предсказательных интервалов по выборкам $P_k = \{p_{ki}\}_{i=1}^G$ с элементами

$$p_{ki} = \|\mathbf{\Xi}_i^{\mathrm{T}} W_k\|^2, \quad i = 1, \dots, G; \ k = 1, \dots, H,$$
 (2.1)

где G — количество суррогатных реализаций $\boldsymbol{\xi},\; \boldsymbol{\Xi}_i$ — траекторная матрица i-й реализации $\boldsymbol{\xi}.$

В работе (TODO) подробна описана роблема многократного тестирования, когда вероятность ложного обнаружения периодической составляющей для одной из рассматриваемых частот (групповая ошибка І рода) неизвестна и значительно превышает заданный уровень значимости (частота ошибок одиночного теста), и ее решение. Приведем модифицированный алгоритм построения критерия в случае множественного тестирования, который будем использовать в дальнейшем.

Алгоритм 2. Multiple MC-SSA

- 1. Для $k=1,\ldots,H$ вычисляется статистика \widehat{p}_k , выборка $P_k=\{p_{ki}\}_{i=1}^G$, ее среднее μ_k и стандартное отклонение σ_k .
- 2. Вычисляется $\eta = (\eta_1, \dots, \eta_G)$, где

$$\eta_i = \max_{1 \le k \le H} (p_{ki} - \mu_k) / \sigma_k, \quad i = 1, \dots, G.$$

- 3. Находится q_k как выборочный $(1-\alpha)$ -квантиль η .
- 4. Нулевая гипотеза не отвергается, если

$$\max_{1 \le k \le H} (\widehat{p}_k - \mu_k) / \sigma_k < q.$$

5. Если H_0 отвергнута, вклад W_k (и соответствующей частоты) существеннен, если \widehat{p}_k превосходит $\mu_k + qw_k\sigma_k$. Таким образом, $[0, \mu_k + qw_k\sigma_k]$ считаются скорректированными интервалами прогнозирования.

2.4. Выбор векторов для проекции

Для начала отметим, что в одномерном случае можно рассматривать как проекции на собственные вектора, так и на факторные— не имеет значения, поскольку это ни на что кроме размерности не влияет. А в многомерном случае это не так по построению матрицы (1.1), поэтому их нужно рассматривать по-отдельности.

Перечислим основные способы выбора векторов для проекции. Первый вариант — рассматривать собственные вектора теоретической матрицы красного шума. При рассмотрении собственных векторов матрица, разложение которой дает эти собственные векторы имеет вид $\sum_{d=1}^{D} \{\varphi^{|i-j|}\}_d$, а при рассмотрении факторных векторов матрица имеет вид $\mathrm{diag}_{d=1,\dots,D}\{\varphi^{|i-j|}\}_d$. Такой вариант в обоих случаях дает точный критерий при любой длине окна.

Второй вариант — рассматривать собственные или факторные вектора матрицы **X**. Этот вариант вообще радикальный, но, используя поправку, описанную в работе (TODO ссылка), можно сделать такой критерий точным.

Определение 3. ROC-кривая — это кривая, задаваемая параметрически

$$\begin{cases} x = \alpha_I(\alpha) \\ y = \beta(\alpha) \end{cases}, \quad \alpha \in [0, 1],$$

где $\alpha_I(\alpha)$ — функция зависимости ошибки первого рода α_I от уровня значимости α , $\beta(\alpha)$ — функция зависимости мощности β от уровня значимости α .

С помощью ROC-кривых можно сравнивать по мощности неточных (в частности радикальных) критериев. Отметим, что для точного критерия ROC-кривая совпадает с графиком мощности.

2.5. Численное сравнение методов

В одномерном случае было установлено, что если вместо SVD разложения матрицы **X** использовать тёплицево, то радикальность критерия уменьшается. Установим, что будет в многомерном случае, если использовать модификации, описанные в разделе 1.2.1. Пусть количество каналов равно двум, количество суррогатных реализаций красного шума G=1000. Для оценки ошибки первого рода, будем рассматривать красный шум с параметрами $\varphi=0.7$ и $\delta=1$, а для оценки мощности будет рассматривать

$$f_n^{(1)} = f_n^{(2)} = \cos(2\pi\omega n), \quad n = 1, \dots, 100,$$

где $\omega = 0.075$.

Построим графики ошибки первого рода и ROC-кривые для каждой длины окна $L=10,\,20,\,50,\,80,\,90.$ Будем воспринимать ROC-кривую как график мощности критерия, к которому была применена поправка, описанная в (TODO ссылка).

На рис. 2.1 и 2.2 векторы для проекции были взяты из разложения (1.2). На рис. 2.1 видно, что при L>20 метод радикальный, а наибольшая мощность достигается при L=90. На рис. 2.2 отчетливо заметно, что метод радикальный для всех L. Наибольшая мощность наблюдается при L=90, но отметим, что из-за слишком большой ошибки первого рода построить ROC-кривую на промежутке [0,3) для L=50 и на всем промежутке для L=10 и L=20 не получилось.

На рис. 2.3 и 2.4 векторы для проекции были взяты из разложения (1.3). Если рассматривать проекцию на собственные векторы, то на рис. 2.3 видно, что метод радикальный, а наиболее оптимальным значением длины окна будет L=20. Проекция на факторные векторы также дает радикальный критерий, как видно на рис. 2.4. Наибольшая мощность наблюдается при L=80, но из-за слишком большой ошибки первого рода ROC-кривую для L=10 и L=20, для которых метод, предположительно, имеет бо́льшую мощность, удалось построить не на всем промежутке.

Рис. 2.1. Сравнение методов Sum и базового MSSA (проекция на собственные векторы).

Рис. 2.2. Сравнение методов Sum и базового MSSA (проекция на факторные векторы).

Рис. 2.3. Сравнение методов Block и базового MSSA (проекция на собственные векторы).

Рис. 2.4. Сравнение методов Block и базового MSSA (проекция на факторные векторы).

Заключение

TODO