

Department of Computer Engineering

Experiment No. 2

Analyze the Titanic Survival Dataset and Apply appropriate

Regression Technique

Date of Performance:29/07/24

Date of Submission:

Department of Computer Engineering

Aim: Analyze the Titanic Survival Dataset and Apply appropriate Regression Technique.

Objective: Able to perform various feature engineering tasks, apply logistic regression on the given dataset and maximize the accuracy.

Theory:

Logistic Regression was used in the biological sciences in early twentieth century. It was then used in many social science applications. Logistic Regression is used when the dependent variable(target) is categorical and is binary in nature. In order to perform binary classification the logistic regression techniques makes use of Sigmoid fuction.

For example,

To predict whether an email is spam (1) or (0)

Whether the tumor is malignant (1) or not (0)

Consider a scenario where we need to classify whether an email is spam or not. If we use linear regression for this problem, there is a need for setting up a threshold based on which classification can be done. Say if the actual class is malignant, predicted continuous value 0.4 and the threshold value is 0.5, the data point will be classified as not malignant which can lead to serious consequence in real time.

Department of Computer Engineering

From this example, it can be inferred that linear regression is not suitable for classification problem. Linear regression is unbounded, and this brings logistic regression into picture. Their value strictly ranges from 0 to 1.

Dataset:

The sinking of the Titanic is one of the most infamous shipwrecks in history.

On April 15, 1912, during her maiden voyage, the widely considered "unsinkable" RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren't enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others.

In this challenge, we ask you to build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

Variable	Definition	Key				
survival	Survival	0 = No, 1 = Yes				
pclass	Ticket class	1 = 1st, 2 = 2nd, 3 = 3rd				

Department of Computer Engineering

sex	Sex	
Age	Age in years	
sibsp	# of siblings / spouses aboard the Titanic	
parch	# of parents / children aboard the Titanic	
ticket	Ticket number	
fare	Passenger fare	
cabin	Cabin number	
embarke d	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton

Variable Notes

pclass: A proxy for socio-economic status (SES)

1st = Upper, 2nd = Middle, 3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...,

Sibling = brother, sister, stepbrother, stepsister

Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...

Parent = mother, father

Child = daughter, son, stepdaughter, stepson

Some children travelled only with a nanny, therefore parch=0 for them.

Department of Computer Engineering

Code:

```
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.linear_model import
LogisticRegression from sklearn.model_selection
import train_test_split from sklearn.metrics
import accuracy_score

data = pd.read_csv("/content/titanic.csv")
print(data)
```

	Pass	sengerId	Surv	ived	Pclass	\
Θ	1	Θ		3		
1	2	1		1		
2	3	1		3		
3	4	1		1		
4	5		Θ		3	
886		887		0	2	
887		888		1	1	
888		889		0	3	
889		890		1	1	
890		891		0	3	

Name	Sex	Age
SibSp		
Braund, Mr. Owen Harris	male	22.0
Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0
Heikkinen, Miss. Laina	female	26.0
Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0
ruticite, mis. sucques neath (Effy may rect)	i cilia cc	33.0
Allen, Mr. William Henry	male	35.0

Department of Computer Engineering

		•••		
			_	
386		Montvila, Rev. Juozas	ma Le	27.0
387		Graham, Miss. Margaret Edith	female	19.0
388		Johnston, Miss. Catherine Helen "Carrie"	female	NaN
389		Behr, Mr. Karl Howell	male	26.0
390		Dooley, Mr. Patrick	male	32.0
Parch		Ticket Fare Cabin Embarked		
0	0	A/5 21171 7.2500 NaN S		
1	0	PC 17599 71.2833 C85 C		
_	J	10 11000 1112000 000		

2	0	STON/C	2. 3	10128	2 7	.9250	9 N	aN	S	
3	0			11380	3 53	1000	O C1	23	S	
4	0			37345	0 8	.0500	9 N	aN	S	
886		0		21	1536	13.	0000	NaN		S
887		0		11	L2053	30.	0000	B42		S
888		2	V	V./C.	6607	23.	4500	NaN		S
889		0		11	1369	30.	0000	C148		С
890		0		37	0376	7.	7500	NaN		Q
[891	row	ıs x 12	col	umns]						

```
le=LabelEncoder()
le.fit(data["Sex"])
data["Sex"]=le.transform(data["Sex"])
print(data["Sex"])
0
       1
1
       0
2
       0
3
       0
4
886
         1
887
888
         0
889
         1
890
Name: Sex, Length: 891, dtype: int64
```


Department of Computer Engineering

```
data["Age"].fillna(data["Age"].mean(), inplace=True) x =
data[["Pclass", "Sex", "Age", "SibSp", "Parch", "Fare"]]
y = data["Survived"]

model = LogisticRegression()
x_train, x_test, y_train, y_test
=
train_test_split(x,y,random_state=10,test_size=0
.1) model.fit(x_train,y_train) y_pred =
model.predict(x_test)
print(accuracy_score(y_test,y_pred))
0.8
```

Conclusion:

a machine learning process to predict survival rates on the Titanic using a logistic regression model. The data was preprocessed by filling in missing values and encoding categorical features like gender. The model was then trained and tested, yielding an accuracy of 80%. This indicates the model's capability to predict survival based on factors like passenger class, age, gender, and fare..