olcure slide non si fanno

Architettura degli Elaboratori a.a. 2021 – 2022

Il meccanismo di interruzione del processore RISC-V

Eccezioni

Eccezione

- trasferimento del flusso di controllo non legato strettamente al codice utente
- Il sistema gestisce l'eccezione eseguendo il "Gestore dell'eccezione"

Esempio

- l'utente preme un tasto e questo interrompe l'esecuzione del programma utente
- la CPU esegue un "gestore della pressione di un tasto" che legge un codice corrispondente al tasto e lo trasferisce in un buffer relativo ai tasti premuti

Comportamento del calcolatore

- Il programma in esecuzione deve essere
 - sospeso e poi riattivato
 - il calcolatore salva il punto del codice (Program Counter) in cui si è verificata l'eccezione (1)
- Il controllo passa quindi al "Gestore dell'Eccezione" (Exception Handler)
 - Il gestore dell'eccezione deve rimediare alla situazione
 - A seconda del tipo di eccezione, il gestore esegue azioni diverse
 - il calcolatore identifica e salva la causa dell'eccezione (2)
- RISC-V: registri speciali SEPC e SCAUSE
 - (1) SEPC l'indirizzo del codice in cui si verifica l'eccezione
 - (2) **SCAUSE** la causa dell'eccezione

Tipo di Eccezioni

Evento Asincrono

Interrupt (e.g., I/O)

Errore

(e.g., overflow)

Evento Sincrono

Environment Call

(o "Trap" o "System Call")

Environment break

(debug)

L'eccezione permette alle applicazioni di avere accesso al calcolatore in modo controllato, attraverso codice che sta nel sistema operativo.

- Modalità supervisor (kernel mode): durante l'eccezione il calcolatore esegue codice del sistema operativo
- Modalità user (user mode):
 Le applicazioni vengono eseguite in modalità user, senza poter fare accesso alle risorse privilegiate hardware del calcolatore

Interrupt, errore, ecall, ebreak

Interrupt (interruzione)

- Eccezione causata da eventi esterni
 - Pressione di un tasto, movimento del mouse ecc.
- Asincrona rispetto all'esecuzione del programma
- Gestione fra istruzioni di un altro programma

Errore

- Eccezione causata da eventi interni
 - Condizioni eccezionali (overflow, divisione per zero) ecc.
- Sincrona rispetto all'esecuzione del programma

Environment Call (istruzione ecall del RISC-V)

- Eccezione (sincrona) causata da richiesta di un Servizio di Sistema
 - Stampa di un messaggio, lettura di un intero ecc.

Environment Break (istruzione ebreak del RISC-V)

Eccezione (sincrona) causata da motivi diagnostici o debugging

Exception Handler

- Il gestore dell'eccezione deve evitare di modificare lo stato dell'applicazione
 - I contenuti di TUTTI i registri x1...x31 (e anche f0...f31) NON devono essere alterati
- Il gestore dell'eccezione deve essere eseguito in una modalità protetta (kernel mode)
- Le eccezioni devono essere servite una alla volta
 - e.g., disabilitando le eccezioni, se il gestore dell'eccezione lo ritiene opportuno può riabilitarle

Exception Handler

- Metodi di implementazione
 - Salto diretto all'indirizzo della routine di gestione
 - Vettore di Interruzione
- RISC-V: il gestore dell'eccezione salva i registri che usa (e.g., salvando i registri temporanei nello stack)
- Vengono automaticamente impostati 2 bit che indicano la modalità supervisor ed eccezioni disabilitate

Salto diretto

- Salto diretto ad un indirizzo specifico
 - PC ← base
 - RISC-V: indirizzo base nel registro speciale STVEC
- Non è necessario prelevare l'indirizzo della routine di gestione (più veloce)
- Nella routine di gestione occorre analizzare la causa dell'eccezione

Vettore di Interruzione

- Tabella con gli indirizzi delle handler per ogni causa
 - PC ← MEM [base + cause*4]
 - RISC-V, ma anche 370, 68000, Vax, 80x86, ...

Salvataggio dello stato

solo citate in generale

- Salvataggio sullo stack (Push)
 - Vax, 68k, 80x86 (intero set dei registri)
 - RISC-V, MIPS (solo i registri necessari, potenzialmente zero)
- Registri ausiliari (Shadow Registers)
 - M88k, ARM
- Salvataggio in registri speciali
 - RISC-V, MIPS
 - Registri Speciali: EPC, CAUSE, STATUS, TVAL (o BadVaddr), ...

Solo base

Eccezioni nel RISC-V

- **SEPC**l'indirizzo dell'istruzione "colpevole"
- SSTATUS

 bit di abilitazione globale degli interrupt
- SCAUSE i bit 63 e [3:0] codificano le possibili sorgenti di eccezione
- STVAL (Supervisor Trap Value)
 l'indirizzo di memoria al quale si è verificato un riferimento di memoria "sbagliato" (anche chiamato "BadVAddr")
- SIP (Supervisor Pending Interrupts) monitoraggio degli interrupt in attesa
- SIE (Supervisor Interrupt Enable)
 Abilitazioni più fini per gli interrupt
- STVEC (Supervisor Trap Vector) indirizzo base della lista dei «vettori di interrupt»
- SSCRATCH: registro per salvataggi temporanei

Eccezioni nel RISC-V

• **STATUS** registro CSR 0x100

• **SEPC** registro CSR 0x141

• **SCAUSE** registro CSR 0x142

• **STVAL** registro CSR 0x143

• **SIP** registro CSR 0x144

• SIE registro CSR 0x104

• **STVEC** registro CSR 0x105

• **SSCRATCH** registro CSR 0x140

- Registri speciali a 64 bit: fanno parte di un banco interno di registri chiamati 'CSR' o CONTROL-STATUS REGISTERS
- Al verificarsi di un'eccezione, il controllo della CPU modifica: SEPC, SSTATUS, SCAUSE, PC

Solo Cumogito-

Esempio: SCAUSE Register

63 3 0
Int Code

- Int (1 bit) se vale 1, la sorgente è un interrupt, se vale 0 la sorgente è una eccezione
- Code (4 bits) codifica la ragione dell'eccezione
 - 0 Instruction address misaligned
 - 2 Illegal instruction
 - 3 Breakpoint
 - 4 Load address misaligned
 - 5 Load address fault
 - 6 Store address misaligned
 - 7 Store address fault
 - 8 Environment call from U-mode
 - 9 Environment call from S-mode
 - C Instruction page fault

Ad esempio: opcode diversi da lw, sw, (R-type), beq, ecc.

. . .

Le istruzioni speciali

Tipo	Nome simbolico	Nome esteso
Accesso ai registri CSR	CSRRWI	Lettura/scrittura immediata CSR
	CSRRSI	Lettura/impostazione immediata CSR
	CSRRCI	Lettura/azzeramento immediato CSR
	CSRRW	Lettura/scrittura CSR
	CSRRS	Lettura/impostazione CSR
	CSRRC	Lettura/azzeramento CSR
Sistema	ECALL	Chiamata di ambiente
	EBREAK	Breakpoint di ambiente
	SRET	Ritorno da eccezione del supervisore
	WFI	Attesa di interrupt

CSRRW t0, stvec, t1

carica in t0 stvec e lo aggiorna con t1