

Description

Image

Caption

Super light luggage with magnesium sheet faces and extruded edging.

The material

Magnesium is a metal almost indistinguishable from aluminum in color, but of lower density. It is the lightest of the light-metal trio (with partners aluminum and titanium) and light it is: a computer case made from magnesium is barely two thirds as heavy as one made from aluminum. It, aluminum and magnesium are the mainstays of airframe engineering. Only beryllium is lighter, but its expense and potential toxicity limit its use to special applications only. Magnesium is flammable, but this is only a problem when it is in the form of powder or very thin sheet. It costs more than aluminum but nothing like as much as titanium. Magnesium and its alloys have a hexagonal crystal structure (unlike aluminum) restricting their ability to be rolled or forged at room temperature. They can however be extruded, forged and rolled above 350 C. This partly accounts for the low consumption of wrought products -- they account for about 25% of Mg alloy consumption.

Composition (summary)

Mg+alloying elements, e.g. Al, Mn, Si, Zn, Cu, Li, rare earth elements

A			
/-Anara	nra	norti.	^-
Genera		.,	

General properties				
Density	93.6	-	122	lb/ft^3
Price	* 1.42	-	1.56	USD/lb
Date first used	1950			
Mechanical properties				
Young's modulus	6.09	-	6.82	10^6 psi
Shear modulus	2.32	-	2.76	10^6 psi
Bulk modulus	5.08	-	5.95	10^6 psi
Poisson's ratio	0.29	-	0.31	·
Yield strength (elastic limit)	16.7	-	59.5	ksi
Tensile strength	26.8	-	65.3	ksi
Compressive strength	16.7	-	59.5	ksi
Elongation	3.5	-	18	% strain
Hardness - Vickers	43	-	135	HV
Fatigue strength at 10^7 cycles	* 13.1	-	32.6	ksi
Fracture toughness	* 10.9	-	16.4	ksi.in^0.5
Mechanical loss coefficient (tan delta)	9e-4	-	0.02	
Thermal properties				
Melting point	836	-	1.2e3	°F

Wrought magnesium alloys

Maximum service temperature	248	-	392	°F	
Minimum service temperature	-118	-	-63.7	°F	
Thermal conductor or insulator?	Good conductor				

Thermal conductivity 28.9 - 72.8 BTU.ft/h.ft^2.F Specific heat capacity 0.228 - 0.253 BTU/lb.°F Thermal expansion coefficient 13.7 - 15.6 µstrain/°F

Electrical properties

Electrical conductor or insulator?

Good conductor

Electrical resistivity 4.15 - 15 µohm.cm

Optical properties

Transparency Opaque

Processability

Castability 4 - 5
Formability 2 - 3
Machinability 5
Weldability 4
Solder/brazability 2 - 3

Durability: water and aqueous solutions

Water (fresh) Excellent
Water (salt) Limited use
Soils, acidic (peat) Limited use
Soils, alkaline (clay) Limited use
Wine Limited use

Durability: acids

Acetic acid (10%) Limited use Acetic acid (glacial) Unacceptable Citric acid (10%) Limited use Hydrochloric acid (10%) Unacceptable Hydrochloric acid (36%) Unacceptable Hydrofluoric acid (40%) Acceptable Nitric acid (10%) Unacceptable Unacceptable Nitric acid (70%) Phosphoric acid (10%) Unacceptable Phosphoric acid (85%) Unacceptable Sulfuric acid (10%) Unacceptable Sulfuric acid (70%) Unacceptable

Durability: alkalis

Sodium hydroxide (10%)

Sodium hydroxide (60%)

Acceptable

Acceptable

Durability: fuels, oils and solvents

Excellent Amyl acetate Benzene Excellent Excellent Carbon tetrachloride Excellent Chloroform Limited use Crude oil Excellent Diesel oil Lubricating oil Excellent Paraffin oil (kerosene) Excellent

Wrought magnesium alloys

Petrol (gasoline)	Excellent
Silicone fluids	Excellent
Toluene	Excellent
Turpentine	Excellent
Vegetable oils (general)	Excellent
White spirit	Excellent

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Excellent
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)

Fluorine (gas)

O2 (oxygen gas)

Sulfur dioxide (gas)

Limited use
Acceptable
Unacceptable
Excellent

Durability: built environments

Industrial atmosphereAcceptableRural atmosphereExcellentMarine atmosphereLimited useUV radiation (sunlight)Excellent

Durability: flammability

Flammability Non-flammable

Durability: thermal environments

Tolerance to cryogenic temperatures

Tolerance up to 150 C (302 F)

Acceptable
Tolerance up to 250 C (482 F)

Tolerance up to 450 C (842 F)

Tolerance up to 850 C (1562 F)

Tolerance above 850 C (1562 F)

Unacceptable
Unacceptable
Unacceptable
Unacceptable

Geo-economic data for principal component

Annual world production 5.61e5 ton/yr Reserves 2.36e15 - 2.5e15 I. ton

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 3.19e4	-	3.51e4	kcal/lb
CO2 footprint, primary production	* 33.6	-	37.1	lb/lb
Water usage	* 112	-	123	gal(US)/lb
Eco-indicator 99	790			millipoints/kg

Material processing: energy

Extrusion, foil rolling energy	* 1.27e3	-	1.4e3	kcal/lb
Rough rolling, forging energy	* 649	-	717	kcal/lb
Wire drawing energy	* 4.67e3	-	5.16e3	kcal/lb
Metal powder forming energy	* 2.17e3	-	2.62e3	kcal/lb
Vaporization energy	* 1.57e6	-	1.73e6	kcal/lb

Coarse machining energy (per unit wt removed) Fine machining energy (per unit wt removed) Grinding energy (per unit wt removed) Non-conventional machining energy (per unit wt removed)	* 144 * 978 * 1.91e3 1.57e4	- - -	2.1e3	kcal/lb kcal/lb kcal/lb kcal/lb
Material processing: CO2 footprint				
Extrusion, foil rolling CO2	* 0.877	-	0.97	lb/lb
Rough rolling, forging CO2	* 0.449	_	0.497	lb/lb
Wire drawing CO2	* 3.23	-	3.57	lb/lb
Metal powder forming CO2	* 1.6	-	1.94	lb/lb
Vaporization CO2	* 1.08e3	-	1.2e3	lb/lb
Coarse machining CO2 (per unit wt removed)	* 0.0998	-	0.11	lb/lb
Fine machining CO2 (per unit wt removed)	* 0.678	-	0.749	lb/lb
Grinding CO2 (per unit wt removed)	* 1.32	-	1.46	lb/lb
Non-conventional machining CO2 (per unit wt removed)	10.8	-	12	lb/lb
Material recycling: energy, CO2 and recycle fr	raction			
Embodied energy, recycling	* 4.89e3	-	5.4e3	kcal/lb
CO2 footprint, recycling	* 3.54	-	3.92	lb/lb
Recycle fraction in current supply	9.2	-	11.4	%
Downcycle	✓			
Combust for energy recovery	×			
Landfill	✓			
Biodegrade	×			
Toxicity rating	Non-toxic	:		

A renewable resource? Environmental notes

Magnesium is the fifth most abundant metal in the Earth's crust, and the third in its oceans - and it can be extracted economically from both (the Dead Sea, thick with dissolved salts - is the best source of all). But its extraction is very energy intensive, consuming three times more per unit weight than commodity polymers and nearly twice as much as aluminum. It can be recycled, and doing this uses barely one fifth as much energy.

Supporting information

Design guidelines

Magnesium has a low density, good mechanical damping, much better thermal conductivity than steel, less good electrical conductivity than copper and aluminum, but still good. It survives well in the protected environment of a house or office, but it corrodes badly in salt water and acids; even sweat is enough to tarnish it, requiring coatings for protection. It is easy to machine, but because of its low stiffness, parts must be firmly clamped while doing so. Magnesium alloys are designed for specific forming purposes: AZ31B, for instance, is designed for extrusions. Most magnesium alloys can be welded using TIG or MIG methods; and soldering and adhesive bonding are both feasible. Spot and seam welds are possible but only in low stress applications; riveting is better, provided aluminum rivets are used to avoid galvanic corrosion.

Technical notes

The classification system of the American Society for Testing Materials (ASTM) is the most widely used. In this system, the first two letters indicate the principal alloying elements, thus: A = aluminum, C = copper, E = rare earths, K = zirconium, L = lithium, M = manganese, S = silicon, Z = zinc. The letter corresponding to the element present in the greatest quantity is used first; if they are equal, they are listed alphabetically. The letters are followed by numbers that list the amount of the principal alloying elements in weight % rounded to the nearest whole number; thus AZ91 means the alloy 90% Mg, 9% Al and 1% Zn; LA141 means the alloy 85% Mg, 14% Li and 1% Al.

Phase diagram

Phase diagram description

Wrought magnesium alloys are based on alloys of magnesium (Mg) with 3 - 8% aluminum (Al), some with additions of zinc, manganese or copper. This is the magnesium - aluminum phase diagram.

Typical uses

Aerospace; automotive; sports goods such as bicycles; nuclear fuel cans; vibration damping and shielding of machine tools; engine case castings; crank cases; transmission housings; automotive wheels; ladders; housings for electronic equipment, particularly mobile phone and portable computer chassis; camera bodies; office equipment; marine hardware and lawnmowers.

Tradenames

Electron, Dowmetal, Revere alloy, Eclipsalloy

Links

Reference

ProcessUniverse

Producers