

Conversão de entidades

Entidade forte converte-se numa tabela

loan = (loan_number, amount)

- atributos simples mantêm-se
- · chave é a mesma da entidade

IST • DEI • Bases de Dados

3

Conversão de entidades

 Entidade fraca inclui uma coluna extra com a chave primária da entidade identificadora

dispensa conversão da associação identificadora

IST • DEI • Bases de Dados

Conversão de associações

 Associação "muitos-para-muitos" converte-se numa tabela com chaves primárias e atributos descritivos

borrower = (customer_id, loan_number)

- chave primária da tabela é conjunto das chaves
- Associações n-árias são tratadas de modo semelhante
 - se houver seta essa entidade não faz parte da chave

IST • DEI • Bases de Dados

5

Conversão de associações

- Associações "um-para-muitos" ou "muitos-para-um"
 - pode não ser necessário criar uma tabela
 - · exemplo
 - existe participação total do lado "muitos"
 - adicionar o atributo branch_name à tabela account

ST • DEI • Bases de Dados

Conversão de associações

- Associação "um-para-um"
 - pode não ser necessário criar uma tabela
 - qualquer um dos lados pode ter uma chave estrangeira
 - se a participação for parcial, aparecem nulls

IST • DEI • Bases de Dados

Conversão de atributos

- Atributos compostos
 - representados como atributos individuais
 - · exemplo
 - customer com name composto (first_name e last_name)
 - resulta em name.first_name e name.last_name

IST - DEL - Pasas do Dados

Conversão de atributos

- Atributos multi-valor
 - necessária tabela adicional ≈ "um-para-muitos"
 - chave primária da entidade *E* e valor do atributo *M*
 - · exemplo: dependentes

employee_dependent_names = (employee_id, dname)

- para um funcionário com chave primária 123-45-6789 e dependentes João e Teresa
 - ('123-45-6789', 'João') e ('123-45-6789', 'Teresa')

Bases de Dados

Conversão de especialização/generalização

- Método 1
 - tabela para a entidade genérica
 - tabela para cada entidade específica, com chave para a entidade genérica

person(<u>name</u>, street, city)

customer(<u>name</u>, credit_rating)

employee(<u>name</u>, salary)

· desvantagem: informação dispersa

IST • DEI • Bases de Dados

Conversão de especialização/generalização

- Método 2
 - repetir os atributos em cada tabela

person(name, street, city)
customer(name, street, city, credit_rating)
employee(name, street, city, salary)

- se a especialização for total, super-classe parece dispensável
 - mas continua a ser necessária para chaves estrangeiras!
- · desvantagem: redundância

Bases de Dados

11

Conversão de agregação

- Criar uma nova tabela, contendo:
 - chave primária da associação agregada
 - · chave primária da entidade associada
 - · atributos descritivos

IST • DEI • Bases de Dados

Bases de dados relacionais

- Estrutura de uma base de dados relacional
 - conjunto de tabelas com nome único
 - · cada tabela guarda entidades desse tipo
- Dentro das tabelas
 - · cada coluna é um atributo da entidade
 - · cada linha contém os valores desses atributos
- Cada tabela estabelece uma <u>relação</u> entre um conjunto de valores

IST • DEI • Bases de Dados

Exemplo

- A relação "conta bancária" (account)
 - exemplo de atributos: número, agência, saldo

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

IST • DEI • Bases de Dados

47

Atributos

- Cada atributo tem um domínio
 - o conjunto de valores possíveis
- Para o exemplo anterior
 - · agência conjunto de todas as localidades
 - cada linha é um <u>tuplo</u> (v₁, v₂, v₃)
 - cada v_i tem domínio D_i
- Uma relação contem apenas um sub-conjunto de

$$D_1 \times D_2 \times ... \times D_n$$

IST • DEI • Bases de Dados

Tuplos				
Para o ¡t[acc	A-101 A-102 A-201 A-215 A-217 A-222 A-305 Ao contém 7 tuporimeiro tuplo teount_number] = "L	Downtown Perryridge Brighton Mianus Brighton Redwood Round Hill Dlos #A-101"	500 400 900 700 750 700 350	
	IST • DEI • Ba	ses de Dados		1

Esquema ■ Esquema vs. instância · conteúdo da relação num determinado instante • analogia com linguagens de programação relação ≈ variável esquema da relação ≈ tipo Esquema da relação account_number | branch_name | balance A-101 A-102 Downtown 400 Perryridge A-201 A-215 A-217 A-222 A-305 900 700 Brighton Mianus 750 700 Brighton Redwood Round Hill account_schema = (account_number, branch_name, balance)

A relaç	ção "agência"	(branch)		
branc	h_schema = (b	ranch_name, i	branch_city	/, assets)
	branch_name	branch_city	assets	
	Brighton	Brooklyn	7100000	
	Downtown	Brooklyn	9000000	
	Mianus	Horseneck	400000	
	North Town	Rye	3700000	
	Perryridge	Horseneck	1700000	
	Pownal	Bennington	300000	
	Redwood	Palo Alto	2100000	
	Round Hill	Horseneck	8000000	
	IST • D	El • Bases de Dados		

3	o "cliente" (d	,	
customer_	schema = (custor	mer_name, custo	mer_street, custo
	customer_name	customer_street	customer_city
	Adams	Spring	Pittsfield
	Brooks	Senator	Brooklyn
	Curry	North	Rye
	Glenn	Sand Hill	Woodside
	Green	Walnut	Stamford
	Hayes	Main	Harrison
	Johnson	Alma	Palo Alto
	Jones	Main	Harrison
	Lindsay	Park	Pittsfield
	Smith	North	Rye
	Turner	Putnam	Stamford
	Williams	Nassau	Princeton

	A	"'' I / I	*/- X	
	A relação	"titular" (depos	itor)	
	deposi	tor_schema = (custor	mer_name, account_n	number)
		customer_name	account_number	
		Hayes	A-102	
51.1		Johnson	A-101	
-		Johnson	A-201	
		Jones	A-217	
		Lindsay	A-222	
		Smith	A-215	
		Turner	A-305	
		IST • DEI • Bases d	e Dados	

	A relação "empréstimo" (<i>loan</i>)						
	loai	n_schema = (loan_i	number, branch_na	me, amount)			
		loan_number	branch_name	amount			
45		L-11	Round Hill	900			
		L-14	Downtown	1500			
		L-15	Perryridge	1500			
		L-16	Perryridge	1300			
		L-17	Downtown	1000			
		L-23	Redwood	2000			
		L-93	Mianus	500			
					25		

A relação	"devedor" (<i>borr</i>	ower)	
borrow	rer_schema = (custo	mer_name, loan_i	number)
	customer_name	loan_number	
	Adams	L-16	
	Curry	L-93	
	Hayes	L-15	
	Jackson	L-14	
	Jones	L-17	
	Smith	L-11	
	Smith	L-23	
	Williams	L-17	

Notas

- A ordem dos tuplos é irrelevante
- Podiam existir valores null
- Assume-se que os clientes n\u00e3o t\u00e8m nomes iguais
- Assume-se que pode haver clientes com conta mas sem empréstimo, ou vice-versa, ou nenhuma das coisas

IST • DEI • Bases de Dados

27

Chaves

- Como distinguir tuplos?
 - não pode haver 2 tuplos exactamente iguais
 - super-chave
 - o conjunto de atributos que identificam univocamente
 - · chave candidata
 - conjunto mínimo de atributos
 - chave primária
 - a chave candidata escolhida
 - normalmente prefere-se um atributo separado por si só
 - atenção aos atributos (supostamente) únicos

IST • DEI • Bases de Dados

