# Introducción a la Programación 1

#### Dinámica

- ¿Quiénes somos?
  - Lucas Luppani: lucas.luppani@ing.austral.edu.ar
  - Martin Gutierrez: martin.gutierrez@ing.austral.edu.ar
  - Juan Longo: juan.longo@ing.austral.edu.ar
- ¿Cuál va a ser la dinámica?
  - Teóricas
  - Prácticas
  - Quizzes
- 2 parciales.

## Agenda de hoy

- Arquitectura de computadoras.
- Sistemas operativos.
- Lenguajes de programación.
- ¿Qué es un algoritmo?

# Arquitectura de Computadoras

## Boole, Babbage & Von Neumann

- Lógica booleana por Boole
- Arquitectura básica por Babbage:
  - Unidad de Control
  - Unidad de Memoria
  - Unidad Aritmética Lógica
- Mantener programas y datos en memoria por Von Neumann

#### Si o No

- Boole elaboró un álgebra y una lógica soportada por un sistema númerico base 2.
- Todo puede descomponerse en pasos lógicos donde la respuesta es siempre:
  - SI o NO (prendido/apagado, on/off, "1" o "0")
  - Solo estos dos tipos de respuesta
- Con ellos enunció una serie de Tablas de Verdad.

# **NOT (NO IGUAL)**

| A | NOT A |
|---|-------|
| 0 | 1     |
| 1 | 0     |



# AND (Y)

| A | В | A AND B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 1       |



# OR (O)

| A | В | A OR B |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 1      |



# XOR (O exclusivo)

| A | В | A XOR B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |



# NAND (NOT AND)

| Α | В | A NAND B |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 1        |
| 1 | 0 | 1        |
| 1 | 1 | 0        |



# NOR (NOT OR)

| A | В | A NOR B |
|---|---|---------|
| 0 | 0 | 1       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 0       |



## Puertas Lógicas

- Cada puerta lógica corresponde a una tabla de verdad
- Los circuitos se diseñan usando las puertas lógicas
- Así se pueden hacer circuitos que:
  - Sumen, comparen, almacenen datos
  - Siempre binarios

#### Semisumador

Tabla de verdad para una suma

| Α | В | A+B | Acumulador |
|---|---|-----|------------|
| 0 | 0 | 0   | 0          |
| 0 | 1 | 1   | 0          |
| 1 | 0 | 1   | 0          |
| 1 | 1 | 0   | 1          |

- La columna ¿a qué tabla corresponde?
- ¿Y la columna?

#### **Circuito Semisumador**



#### Circuito Semisumador Problemas

- Solo sirve para sumas exclusivamente 2 bits, 2 cifras binarias.
- No sirve para sumar 2 números de varias cifras binarias.
- Supongamos que quiero sumar:
  - 0 10100110 + 01100111
- Pareciera que poniendo 8 circuitos como el anterior bastaría pero...

#### Circuito Sumador - Tabla de Verdad

| А | В | AC-a | S | AC |
|---|---|------|---|----|
| 0 | 0 | 0    | 0 | 0  |
| 0 | 0 | 1    | 1 | 0  |
| 0 | 1 | 0    | 1 | 0  |
| 0 | 1 | 1    | 0 | 1  |
| 1 | 0 | 0    | 1 | 0  |
| 1 | 0 | 1    | 0 | 1  |
| 1 | 1 | 0    | 0 | 1  |
| 1 | 1 | 1    | 1 | 1  |

#### **Circuito Sumador**



#### Circuito Sumador

- Por esta razón, el circuito anterior se llama Semisumador.
  - No tiene en cuenta el arrastre del acumulador anterior.
  - Solo sirve para la primer cifra.
- Para las otras 7 cifras hay que usar Sumadores.
- No son solo 2 Semisumadores
  - Se los combina con una OR.

## Arquitectura de Babbage

- Lo anterior apunta a cómo funcionan las piezas elementales
- Desde un aspecto más funcional, distinguimos tres partes:
  - Unidad de Control (UC)
  - Unidad Aritmética y Lógica (UAL)
  - Unidad de Memoria Central u Operativa (UMC)

#### **Unidad de Control**

- Centro nervioso de la computadora:
  - Se controlan y gobiernan operaciones.



#### **Unida de Control - Partes**

- 1. Registro de Control de Secuencia (RCS)
  - a. Contiene siempre la dirección de memoria de la próxima instrucción a ejecutar.
- 2. Registro de Instrucción (RI)
  - a. Contiene la instrucción que se está ejecutando en cada momento.
  - b. Formato: código de operación (CO) más los operandos (O).

#### **Unida de Control - Partes**

#### 3. Decodificador (D)

a. Extrae y analiza la instrucción y da las señales para ejecutarla.

#### 4. Reloj (R)

a. Proporciona el "ritmo" de la ejecución de los distintos pasos.

#### 5. Secuenciador (S)

a. Ordenes elementales que sincronizadas por el reloj ejecutan la instrucción.

# Unidad Aritmética Lógica (UAL)



#### **UAL - Partes**

- 1. Banco de Registros (BR)
  - a. Son 16, 32 o 64 registros de tipo general, sirven para situar datos antes de cada operación.
- 2. Registros de Operandos (ROs)
  - a. Contienen los datos que serán procesados inmediatamente por los circuitos operadores.
- 3. Circuitos Operadores (CIROP)
  - a. Realizan las operaciones aritméticas y lógicas.

#### **UAL - Partes**

- 4. Registro de Resultado (RR)
  - a. Guarda el resultado de la operación inmediatamente hecha.
- 5. Señalizadores de Estado (SE)
  - a. Serie de elementos biestables (bits) que señalan condiciones sobre la última operación realizada.
- 6. Cache Interno (CI)
  - a. Guarda datos o instrucciones de uso frecuente.

# Unidad de Memoria (UM)



#### **Unidad de Memoria**

- Casilleros o carpetas
  - Donde se almacena 1 byte (8 bits).
- Cada uno tiene una dirección individual
- Se la conoce como RAM (Random Access Memory)
  - o Es volátil.

# Unidad de Memoria - Capacidad

- Su capacidad se mide en bytes:
  - 1 Byte (8 bits)
  - $\circ$  1024 bytes (2<sup>10</sup> bytes) = 1Kb (1 Kilobyte)
  - 1024 Kb = 1Mb (1 Megabyte)
  - 1024 Mb = 1Gb (1 Gigabyte)
  - 1024 Gb = 1Tb (1 Terabyte)

#### **Unidad de Memoria - Partes**

- 1. Registro de Dirección de Memoria (RDM)
  - a. Contiene la dirección de memoria que es requerida por la UC (ya sea para leer o escribir).
- 2. Registro de Intercambio de Memoria (RIM)
  - a. Almacena la información que fue leída o que va a ser escrita en la dirección de memoria en RDM.
- 3. Selector de Memoria (SM)
  - a. Tras una orden (lectura o escritura) conecta la posición de memoria en el RDM con el RIM.

## Busqueda de una Instrucción



## Ejecución de una instrucción



# ¿Qué es un Sistema Operativo?

#### Definición

- En un dispositivo (hardware) existen múltiples recursos.
  - o CPU, memoria, red, etc.
- Por otro lado, existen múltiples aplicaciones (software) que quieren utilizar esos recursos.
- Un S.O. es un software que administra los recursos disponibles en un dispositivo.

## **Aplicaciones**

- Computadoras.
- Teléfonos móviles.
- Autos.
- Calculadoras.
- Embebidos.

#### Usos

- Dos grandes tipos de uso:
  - o Servicios.
  - Usuario final.
- Servicios: para uso en servidores principalmente.
- Usuario final: los que ustedes utilizan diariamente.

### Windows & Unix

- Para usuarios finales, mayormente basados en estos dos:
  - Windows.
    - Versiones: XP, Vista, Win 7, Win 8, Win 10.
    - Orientado principalmente a uso doméstico.
  - UNIX: Linux, OS X, BSD, etc.
    - Favorito de los desarrolladores.

### Windows & Unix - Desarrollo



### **Uso - Desktop y Laptops**





### **Uso - Móviles + Tablets**





### PCs vs Móviles

#### Worldwide Devices Shipments by Device Type, 2015-2018 (Millions of Units)

| Device Type                               | 2015  | 2016  | 2017  | 2018  |
|-------------------------------------------|-------|-------|-------|-------|
| Traditional PCs (Desk-Based and Notebook) | 246   | 232   | 226   | 219   |
| Ultramobiles (Premium)                    | 45    | 55    | 74    | 92    |
| PC Market                                 | 290   | 287   | 299   | 312   |
| Ultramobiles (Basic and Utility)          | 196   | 195   | 196   | 198   |
| <b>Computing Devices Market</b>           | 486   | 482   | 495   | 510   |
| Mobile Phones                             | 1,910 | 1,959 | 1,983 | 2,034 |
| Total Devices Market                      | 2,396 | 2,441 | 2,478 | 2,545 |

Note: The Ultramobile (Premium) category includes devices such as Microsoft's Windows 8 Intel x86 products and Apple's MacBook Air. The Ultramobile (Basic and Utility Tablets) category includes devices such as, iPad, iPad mini, Samsung Galaxy Tab S 10.5, Nexus 7 and Acer Iconia Tab 8.

Source: Gartner (January 2016)

Businesses Will Adopt Windows 10 Earlier and Boost the PC Market in 2017

### **Tendencias**

| MONTH           | WINDOWS | MAC   | LINUX |
|-----------------|---------|-------|-------|
| March, 2012     | 92.48%  | 6.54% | 0.98% |
| April, 2012     | 92.49%  | 6.53% | 0.98% |
| May, 2012       | 92.53%  | 6.44% | 1.03% |
| June, 2012      | 92.23%  | 6.72% | 1.05% |
| July, 2012      | 92.01%  | 6.97% | 1.02% |
| August, 2012    | 91.77%  | 7.13% | 1.10% |
| September, 2012 | 91.73%  | 7.16% | 1.11% |
| October, 2012   | 91.67%  | 7.16% | 1.17% |
| November, 2012  | 91.45%  | 7.30% | 1.25% |
| December, 2012  | 91.74%  | 7.07% | 1.19% |
| January, 2013   | 91.71%  | 7.08% | 1.21% |
| February, 2013  | 91.62%  | 7.17% | 1.21% |
| March, 2013     | 91.89%  | 6.94% | 1.17% |
| April, 2013     | 91.78%  | 7.01% | 1.21% |
| May, 2013       | 91.67%  | 7.07% | 1.26% |
| June, 2013      | 91.51%  | 7.20% | 1.28% |
| July, 2013      | 91.56%  | 7.19% | 1.25% |
| August, 2013    | 91.19%  | 7.28% | 1.52% |
| September, 2013 | 90.81%  | 7.54% | 1.65% |
| October, 2013   | 90.66%  | 7.73% | 1.61% |
| November, 2013  | 90.88%  | 7.56% | 1.56% |
| December, 2013  | 90.73%  | 7.54% | 1.73% |
| January, 2014   | 90.74%  | 7.66% | 1.59% |
| February, 2014  | 90.84%  | 7.68% | 1.48% |

| MONTH           | WINDOWS | MAC   | LINUX |  |
|-----------------|---------|-------|-------|--|
| March, 2014     | 90.94%  | 7.57% | 1.49% |  |
| April, 2014     | 90.80%  | 7.62% | 1.58% |  |
| May, 2014       | 90.99%  | 7.39% | 1.62% |  |
| June, 2014      | 91.53%  | 6.73% | 1.74% |  |
| July, 2014      | 91.68%  | 6.64% | 1.68% |  |
| August, 2014    | 91.58%  | 6.74% | 1.67% |  |
| September, 2014 | 91.98%  | 6.38% | 1.64% |  |
| October, 2014   | 91.53%  | 7.05% | 1.41% |  |
| November, 2014  | 91.48%  | 7.27% | 1.25% |  |
| December, 2014  | 91.45%  | 7.21% | 1.34% |  |
| January, 2015   | 91.56%  | 7.11% | 1.34% |  |
| February, 2015  | 91.57%  | 6.90% | 1.53% |  |
| March, 2015     | 91.22%  | 7.28% | 1.50% |  |
| April, 2015     | 91.11%  | 7.36% | 1.52% |  |
| May, 2015       | 91.07%  | 7.35% | 1.57% |  |
| June, 2015      | 90.85%  | 7.54% | 1.61% |  |
| July, 2015      | 90.65%  | 7.67% | 1.68% |  |
| August, 2015    | 90.84%  | 7.53% | 1.63% |  |
| September, 2015 | 90.54%  | 7.72% | 1.74% |  |
| October, 2015   | 90.42%  | 8.00% | 1.57% |  |
| November, 2015  | 91.39%  | 6.99% | 1.62% |  |
| December, 2015  | 91.32%  | 7.02% | 1.66% |  |
| January, 2016   | 90.61%  | 7.68% | 1.71% |  |
| February, 2016  | 90.45%  | 7.76% | 1.78% |  |

# ¿Qué es un Lenguaje de Programación?

### Definición de Lenguaje

- En un sistema de comunicación estructurado para el que existe un contexto de uso
  - Lenguaje humano
  - Lenguaje animal
  - Lenguaje formal
    - Construcciones artificiales humanas
    - Se usan en matemática, música, **programación**...

### Lenguaje de Programación

- Lenguaje formal diseñado para expresar procesos que son llevados a cabo por máquinas
- Pueden usarse para crear programas que controlen el comportamiento de una máquina
- Todos los símbolos, caracteres y reglas de uso que permiten a las personas "comunicarse" con las computadoras

### **Diferentes Lenguajes**

- Un lenguaje resuelve un problema específico
- Existe una diversa cantidad de problemas
  - Cuando se acuerda una forma de resolverlo, se esta acordando un lenguaje
  - Existe entonces una diversa cantidad de lenguajes

### Lenguajes de Programación

- Existen varios cientos de lenguajes y dialectos de programación diferentes
- Aunque todos los lenguajes de programación tienen un conjunto de instrucciones que permiten realizar dichas operaciones, existe una marcada diferencia en los símbolos, caracteres y sintaxis.
  - o Ejemplos: HTML, CSS, JS, JAVA, C, etc.

### Clasificaciones

- Lenguajes de bajo nivel
  - Diseñados para hardware específico
  - Totalmente dependientes de la máquina
- Lenguajes de alto nivel
  - Más cercanos al lenguaje natural
  - Permiten al programador olvidarse del funcionamiento interno de la máquina

## ¿Qué es un algoritmo?