SUB-CYCLOTOMICS

HAO CHEN, KRISTIN LAUTER AND KATE STANGE

1. Introduction

We restrict our attention to subfields of cyclotomic fields $\mathbb{Q}(\zeta_m)$, where we assume m is odd and squarefree. The Galois group $Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q})$ is canonically isomorphic to $(\mathbb{Z}/m\mathbb{Z})^*$.

Notation: for each subgroup H of $G = (\mathbb{Z}/m\mathbb{Z})^*$, we use $K_{m,H}$ to denote the fixed field

$$K_{m,H} := \mathbb{Q}(\zeta_m)^H$$
.

The extension $K_{m,H}/\mathbb{Q}$ is Galois of degree $n = \frac{\varphi(m)}{|H|}$; a prime q splits completely in $K_{m,H}$ if and only if $q \pmod{m} \in H$. In general, the degree of a prime q in $K_{m,H}$ is equal to the order of [q] in the quotient group G/H.

Every field of form $K_{m,H}$ comes with a canonical normal integral basis, whose embedding matrix is easy to compute. More precisely, let C denote a set of coset representatives of the group G/H. For $c \in C$, set

$$w_c = \sum_{h \in H} \zeta_m^{hc}.$$

Then we have

Proposition 1.1. $w = (w_c)_{c \in C}$ is a \mathbb{Z} -basis of $R = \mathcal{O}_K$. Let $\zeta = \exp(2\pi i/m)$. Then the canonical embedding embedding matrix of w is

$$(A_w)_{i,j} = \sum_{h \in H} \zeta^{hij}.$$

Proposition 1.2. By spherical symmetry and the property of the normal integral basis, the error distribution $D \pmod{\mathfrak{q}}$ is independent of the choice of \mathfrak{q} .

2. Searching

We search for vulnerable instances among fields of form $K_{m,H}$. The search is done by generating actual RLWE samples from the instance and run χ^2 attack (Algorithm) on these samples. Success of the attack would indicate vulnerability. Our field search requires sampling efficiently from a discrete Gaussian $D_{\Lambda,\sigma}$ for which we choose the method outlined in [GPV].

In table, we list some vulnerable instance we found. The columns are as follows. Note that we ommitted the prime ideal \mathfrak{q} due to Lemma . and t denotes the running time in seconds.

$$\label{eq:Hamiltonian} \begin{split} & H = subgroup \ of \ (Z/2805Z)^* of order 32 generated by [1684, 1618] degree of field = 40 q = 67, degree of q = \\ & 2 sigma_0 = 1.000000000000000tdmultiplier = 4.000000000000000degree of freedom = 4488 number of samples = \\ & 22445 success?: True Time = 2.844 \end{split}$$

Table 2.1. Vulnerable sub-cyclotomic RLWE instances found by search

m	generators of H	n	q	f	σ_0	no. samples used	running time (in secs)
2805	[1684, 1618]	40	67	2	1	22445	12569.2
	[90320, 18514, 43405]					26934	17323.4
15015	[12286, 2003, 11936]	60	43	2	1	11094	3813

1