Modelação e Simulação

2022/2023

J. Miranda Lemos

Professor Catedrático do IST

Elementos de estudo

- Slides
- Séries de problemas para auto-estudo
- Bibliografia (algo dispersa)

Avaliação

- Exame (2 datas, frequentadas livremente, conta a melhor nota)
- Trabalhos de laboratório (3 trabalhos, pesos iguais, grupos de 4, nota individual, discussão no final de cada trabalho)
- Aprovação: mínimo 8 no exame.
- Nota final 0,5T+0,5L

Ver os anúncios sobre a inscrição nos laboratórios.

Modelos e Simulação

Um modelo de um sistema é outro sistema, mais simples e (muito) mais barato de construir, cujo comportamento é uma imagem do sistema que se pretende estudar/projectar.

Estudando o comportamento do modelo podemos antecipar o comportamento do sistema original. Os modelos são assim fundamentais, quer para o projecto, quer para a verificação de que o sistema projectado cumpre as especificações.

Modelos Físicos (analógicos)

Exemplo clássico: modelos de portos marítimos, pretende-se estudar a maneira como a distribuição de correntes de água é afectada pela construção dos molhes do porto.

Um modelo analógico do estuário do Tejo Lab. Nacional de Engenharia Civil

Modelo de uma ponte Prof. Edgar Cardoso

O prof. Edgar Cardoso (1913-2000), ver

https://110.tecnico.ulisboa.pt/arquivos/episodio-35-a-maquete-da-ponte-da-arrabida/

https://pt.wikipedia.org/wiki/Edgar_Cardoso

foi um projetista de pontes de renome mundial. Em Portugal projetou, entre outras, a ponte da Arrábida no Porto, a ponte da Figueira da Foz e a ponte sobre o rio Guadiana, em Vila Real de Santo António. O seu último trabalho foi a ponte ferroviário de S. João, sobre o rio Douro, trabalho que realizou já com 80 anos de idade.

verificação dos seus projetos, baseados em modelos analógicos (quer dizer, modelos à escala reduzida) em que realizada ensaios e medições, que depois complementava com cálculos numéricos simples.

Um problema com os modelos físicos: o que é que estamos a simular? Exemplo: Destruição do molhe oeste do porto de Sines em 1978

28/02/1978 Fotografia: Vitor Simões

Um molhe construído com tetrápodes

Ao fazer um modelo à escala, podemos escalar a forma ou a resistência, mas não ambas simultaneamente.

Um estudo efetuado pelo LNEC afirmava que o molhe do porto de Sines, construído com tetrápodes de cimento resistia a ondas de até 30m. No entanto, o molhe foi destruído por ondas de 17m.

A questão é que o estudo admitia que os tetrápodes não se danificavam pelo efeito das ondas. No modelo em escala reduzida, os tetrápodes eram muito mais resistentes, proporcionalmente, do que os do sistema real. O mar começou por danificar os tetrápodes e depois literalmente varreu-os.

Modelos matemáticos

Uma possibilidade é escrever as equações matemáticas que representam o nível da água e os momentos por ela criados, em função do tempo e do espaço.

Nesta disciplina estuda-se a construção de modelos matemáticos.

Modelos guiados pelo tempo

O estado evolui quando o tempo passa.

Descritos por equações diferenciais ou de diferenças.

Exemplo: circuito elétrico RC.

Modelos guiados por acontecimentos

Exemplo: no jogo do Monopólio o que determina a progressão não é o tempo, mas o evento (ou acontecimento) de se lançarem os dados.

Modelos baseados em agentes (1)

O jogo do monopólio pode ser modelado através da evolução do estado de cada jogador individual, representado pela marca (atenção: a posição da marca só por si não é um estado).

Podemos representar cada jogador por uma entidade denominada agente cujo estado evolui ao longo do tempo de acordo com as regras de transição do jogo. Para simular o jogo de Monopólio, há duas alternativas:

- Escrever as equações que traduzem a probabilidade de se estar em cada estado ao longo do tempo e usá-las na simulação
- Considerar a evolução de um agente individualmente e simular a evolução do seu estado.

Modelos baseados em agentes (2)

Podemos explorar a simulação baseada em agentes de várias maneiras:

- Simular repetidamente a evolução do estado de um agente único ao longo de um grande número de jogadas, e fazer médias (isto é um exemplo do método de Monte Carlo).
- Considerar vários agentes, cada um correspondente a um jogador, e as suas interações (comprar e vender propriedades).

Modelos baseados em agentes (3)

Na simulação baseada em agentes, o foco são os objetos individuais, o seu comportamento (a evolução ao longo do tempo do seu estado) e a sua interação.

Um modelo baseado em agentes consiste assim em objetos individuais que interagem de um modo que reflete as suas relações mútuas.

Tipos de modelos

- Guiados pelo tempo (ex. circuito elétrico)
- Guiados por acontecimentos (ex. Monopólio)
- Híbridos (ex. robô com impactos, sistema com falhas)
- Baseados em agentes
- Dimensão finita (descritos por ODE's ou equações de diferenças)
- Dimensão infinita (descritos por PDE, ex. a temperatura numa barra)
- Tempo contínuo
- Tempo discreto

Exemplos de aplicação

Dão-se a seguir alguns exemplos de aplicações da modelação e simulação. Seria possível dar muito mais exemplos.

Os exemplos dados mostram a grande diversidade de campos de aplicação, desde os sistemas biológicos até às redes de comunicação.

Frequentemente é possível abordar estes problemas de modelação com técnicas diferentes.

Por exemplo, pode modelar-se a infeção por COVID-19 com equações diferenciais, mas também com agentes.

Otimização da produção de energia num campo de colectores solares

Como construir modelos de um campo de colectores solares que permitam estudar a otimização da sua operação para produção de energia?

Otimização da terapia da infecção pelo HIV-1

Como construir modelos matemáticos que ajudem os médicos a definir terapias otimizadas para o tratamento da infeção pelo HIV-1 com o objetivo de reduzir a carga viral mantendo a toxicidade do tratamento aplicado baixa?

Otimização do funcionamento do servidor Apache

Como desenvolver um modelo que relacione as variáveis de configuração de um servidor Apache com as que caracterizam o seu desempenho por forma a permitir otimizar o seu funcionamento quando ligado à Internet?

A crise dos mísseis de Cuba

Em Outubro de 1962, face à instalação de mísseis da União Soviética em Cuba, o presidente dos USA John F. Kennedy teve de tomar a difícil decisão de os mandar bombardear e destruir, o que poderia levar a uma guerra mundial, ou não.

Como simular a interação dos membros da Comissão e prever o resultado final da decisão, a partir das opiniões de cada um e o seu grau de persuasão nas conversas bilaterais nos encontros "de corredor"?

Simulation of very large scale integrated circuits

How to simulated very large scale electrical circuits, such as the one of the Pentium micro-computer, with half a million of components?

How to reduce the order of the model, keeping the important variables available in the simulation?

Simulação de redes de potência complexas

Como simular redes de potência complexas?

A tendência das redes de potência é que os tradicionais "consumidores" sejam também produtores.

Os modelos podem ajudar a otimizar a produção (garantir o equilíbrio entre

a produção e o consumo, minimizando as fontes poluentes).

Projeto de sistemas robóticos

Como modelar um sistema robótico, que relaciona as tensões elétricas aplicadas aos motores com o movimento das várias partes, por forma a projetar um controlador para o seu movimento?

Como modelar o fluxo de informação por forma a prever (e otimizar) tempos de espera?

Do modelo à simulação

- Construir um modelo: Escrever as equações cuja solução são as variáveis de interesse do sistema
 - Posições das juntas de um braço robot
 - Temperatura de um forno
 - 0 ...
- Estas equações são equações diferenciais ou de diferenças. A sua solução são funções do tempo que exprimem a evolução no tempo das variáveis físicas.
- Simulação: Integrar as equações para obter as variáveis.

Software para simulação

Há software de vários tipos para a programação eficiente de simuladores. Exemplos:

- SIMULINK (sistemas dinâmicos e controlo)
- MODELICA (Uma linguagem para descrever sistemas físicos complexos)
- Easy 5 (Boeing) (semelhante ao MODELICA)
- SPICE (simulação de circuitos e sistemas eletrónicos)

Enquanto no SIMULINK se descrevem as equações do sistema, nos restantes ambientes de simulação descreve-se o sistema físico e as equações são descritas automaticamente.

SIMULINK

O SIMULINK representa as equações que modelam o sistema através de diagramas de blocos. É um standard na indústria automóvel e aeroespacial.

MODELICA

Há bibliotecas de modelos de diversos tipos que podem ser usados para construir modelos mais complexos.

Exemplo: Modelação de um sistema de potência com o MODELICA

EASY 5

Descrição do modelo semelhante à do MODELICA. Desenvolvido pela Boeing.

SPICE (Simulação de circuitos e sistemas eletrónicos)

Objectivo da disciplina

Dotar os alunos das ferramentas que permitem construir modelos matemáticos de sistemas dinâmicos em campos diversificados da Tecnologia (incluindo as Biotecnologias e Biomedicina) e das Ciências e analisar o seu comportamento.

Sistema real

Equações do modelo

Modelo em computador

Resultados Análise/simulação

Porquê estudar Modelação e Simulação

A Engenharia tem por objecto criar novos "objectos", ou modificar os existentes, por forma a contribuir para o Progresso da Humanidade.

O projecto dos novos sistemas baseia-se *sempre* em modelos, que podem ser mais ou menos complexos.

Os progressos recentes na tecnologia ligada a campos como as Energias Renováveis, as Comunicações e a Saúde (entre outros) requerem do Engenheiro a capacidade de desenvolver modelos que dependem de conhecimentos interdisciplinares.

Os modelos estão, pois, no núcleo da actividade do Engenheiro, ou porque os desenvolve, ou porque deles se serve.

Sumário da disciplina

- 1 Modelos e Simulação (uma visão geral introdutória)
- 2 Modelos entrada/saída e modelos de estado
- 3 Análise do modelo
- 4 Modelos de base física
- 5 Modelos baseados em dados
- 6 Modelos de sistemas de acontecimentos discretos
- 7 Simulação baseada em agentes
- 8 Método de Monte Carlo
- 8 Modelos de sistemas híbridos
- 9 Modelos de sistemas distribuídos
- 10 Métodos numéricos