

Градиентный спуск:

 $\min_{x \in \mathbb{R}^n} f(x)$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & строго выпуклая (или PL)
$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$	
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{arepsilon} \sim \mathcal{O}\left(rac{1}{arepsilon} ight)$	$k_{arepsilon} \sim \mathcal{O}\left(arkappa \log rac{1}{arepsilon} ight)$

Градиентный спуск:

 $\min_{x \in \mathbb{R}^n} f(x)$

 $f(x) x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & строго выпуклая (или PL)
$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right)$	$\ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right)$

Для гладкой строго выпуклой функции мы имеем:

$$f(x^k)-f^*\leq \left(1-\frac{\mu}{L}\right)^k(f(x^0)-f^*).$$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является ее касательной в точке x=0, мы имеем:

$$1-x \leq e^{-x}$$

Градиентный спуск:

 $\min_{x \in \mathbb{D}^n} f(x)$

 $x^{k+1} = x^k - \alpha^k \nabla f(x^k)$

$ f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right) \qquad \ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right) \qquad f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{k}\right) \qquad \ x^k - x^*\ ^2 \sim \mathcal{O}\left(\left(1 - \frac{1}{k}\right)\right) \\ k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{2}\right) \qquad k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{2}\right) \qquad k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{2}\right) $	выпуклая (негладкая)	гладкая (невыпуклая)	гладкая & выпуклая	гладкая & строго выпуклая (или PL)
(ε^2) (ε) (ε)	$f(x^k) - f^* \sim \mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$\ \nabla f(x^k)\ ^2 \sim \mathcal{O}\left(\frac{1}{k}\right)$ $k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon}\right)$	$\begin{split} f(x^k) - f^* &\sim \mathcal{O}\left(\frac{1}{k}\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\frac{1}{\varepsilon}\right) \end{split}$	$\begin{split} \ x^k - x^*\ ^2 &\sim \mathcal{O}\left(\left(1 - \frac{\mu}{L}\right)^k\right) \\ k_\varepsilon &\sim \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right) \end{split}$

 $f(x^k) - f^* \le \left(1 - \frac{\mu}{T}\right)^k (f(x^0) - f^*).$

Для гладкой строго выпуклой функции мы имеем:

$$-f^{*}$$
).

$$-f^*$$
). $\varepsilon = f$

Обратите внимание, что для любого x, поскольку e^{-x} выпуклая и 1-x является ее касательной в точке

 $1 - x \le e^{-x}$

$$\varepsilon = f(x^{k_{\varepsilon}}) - f^* \le \left(1 - \frac{\mu}{L}\right)^{k_{\varepsilon}} (f(x^0) - f^*)$$
$$\le \exp\left(-k_{\varepsilon} \frac{\mu}{L}\right) (f(x^0) - f^*)$$

касательной в точке
$$k_\varepsilon \ge \varkappa \log \frac{f(x^0) - f^*}{\varepsilon} = \mathcal{O}\left(\varkappa \log \frac{1}{\varepsilon}\right)$$

x=0, мы имеем:

Вопрос: Можно ли добиться лучшей скорости сходимости, используя только информацию первого порядка?

♥ ೧ 0

Вопрос: Можно ли добиться лучшей скорости сходимости, используя только информацию первого порядка? **Да, можно.**

େ ଚ ଚ

Нижние оценки

େ ପ ବ

Нижние оценки

выпуклая (негладкая)	гладкая (невыпуклая) 1	гладкая $\&$ выпуклая 2	гладкая & строго выпуклая (или PL)
$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)$	$\mathcal{O}\left(\frac{1}{k^2}\right)$	$\mathcal{O}\left(\frac{1}{k^2}\right)$	$\mathcal{O}\left(\left(1-\sqrt{\frac{\mu}{L}}\right)^k\right)$
$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\varepsilon^2}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\frac{1}{\sqrt{\varepsilon}}\right)$	$k_{\varepsilon} \sim \mathcal{O}\left(\sqrt{\varkappa}\log\frac{1}{\varepsilon}\right)$

¹Carmon, Duchi, Hinder, Sidford, 2017 ²Nemirovski, Yudin, 1979

 $f o \min_{x,y,z} \, \diamondsuit_{\Box \lor}$ Нижние оценки

Черный ящик

Итерация градиентного спуска:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Черный ящик

Итерация градиентного спуска:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Рассмотрим семейство методов первого порядка, где

$$x^{k+1} \in x^0 + \mathsf{Lin}\left\{
abla f(x^0),
abla f(x^1), \dots,
abla f(x^k)
ight\} \qquad f$$
 - гладкая $x^{k+1} \in x^0 + \mathsf{Lin}\left\{ q_0, q_1, \dots, q_k
ight\}$, где $q_i \in \partial f(x^i) \qquad f$ - негладкая

(1)

Черный ящик

Итерация градиентного спуска:

$$\begin{split} x^{k+1} &= x^k - \alpha^k \nabla f(x^k) \\ &= x^{k-1} - \alpha^{k-1} \nabla f(x^{k-1}) - \alpha^k \nabla f(x^k) \\ &\vdots \\ &= x^0 - \sum_{i=0}^k \alpha^{k-i} \nabla f(x^{k-i}) \end{split}$$

Рассмотрим семейство методов первого порядка, где

$$x^{k+1} \in x^0 + \mathsf{Lin}\left\{
abla f(x^0),
abla f(x^1), \dots,
abla f(x^k)
ight\} \qquad f$$
 - гладкая $x^{k+1} \in x^0 + \mathsf{Lin}\left\{ g_0, g_1, \dots, g_k
ight\}$, где $g_i \in \partial f(x^i) \qquad f$ - негладкая (1)

Чтобы построить нижнюю оценку, нам нужно найти функцию f из соответствующего класса такую, что любой метод из семейства 1 будет работать не быстрее, чем нижняя оценка.

i Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

i Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

• Неважно, какой метод градиентного спуска вы используете, всегда существует функция f, при применении на ней вашего метода градиентного спуска, нижняя оценка скорости сходимости $\mathcal{O}\left(\frac{1}{1.2}\right)$.

⊕ ი ⊘

i Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k: 1 \le k \le \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- ullet Неважно, какой метод градиентного спуска вы используете, всегда существует функция f, при применении на ней вашего метода градиентного спуска, нижняя оценка скорости сходимости $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.

i Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- ullet Неважно, какой метод градиентного спуска вы используете, всегда существует функция f, при применении на ней вашего метода градиентного спуска, нижняя оценка скорости сходимости $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- ullet Обратите внимание, что эта граница $\mathcal{O}\left(rac{1}{L^2}
 ight)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(rac{1}{L}
 ight)$. Два возможных варианта:

Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- ullet Неважно, какой метод градиентного спуска вы используете, всегда существует функция f, при применении на ней вашего метода градиентного спуска, нижняя оценка скорости сходимости $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- ullet Обратите внимание, что эта граница $\mathcal{O}\left(rac{1}{L^2}
 ight)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(rac{1}{L}
 ight)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.

i Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- Неважно, какой метод градиентного спуска вы используете, всегда существует функция f, при применении на ней вашего метода градиентного спуска, нижняя оценка скорости сходимости $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта граница $\mathcal{O}\left(\frac{1}{k^2}\right)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(\frac{1}{k}\right)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.
 - b. Метод градиентного спуска не является оптимальным для этой задачи.

∌ດ 🛭

Theorem

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет :

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

- ullet Неважно, какой метод градиентного спуска вы используете, всегда существует функция f, при применении на ней вашего метода градиентного спуска, нижняя оценка скорости сходимости $\mathcal{O}\left(\frac{1}{L^2}\right)$.
- Ключом к доказательству является явное построение специальной функции f.
- Обратите внимание, что эта граница $\mathcal{O}\left(\frac{1}{L^2}\right)$ не соответствует скорости градиентного спуска $\mathcal{O}\left(\frac{1}{L}\right)$. Два возможных варианта:
 - а. Нижняя оценка не является точной.
 - Метод градиентного спуска не является оптимальным для этой задачи.

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

ullet Пусть n=2k+1 и $A\in \mathbb{R}^{n imes n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

ullet Пусть n=2k+1 и $A\in \mathbb{R}^{n imes n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

• Обратите внимание, что

$$x^{T}Ax = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^TAx \geq 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$\begin{split} x^TAx &= 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 - 2x_2x_3 \\ &= x_1^2 + x_1^2 - 2x_1x_2 + x_2^2 + x_2^2 - 2x_2x_3 + x_3^2 + x_3^2 \\ &= x_1^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2 + x_3^2 \geq 0 \end{split}$$

• Пусть n=2k+1 и $A\in\mathbb{R}^{n\times n}$.

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix}$$

Обратите внимание, что

$$x^TAx = x_1^2 + x_n^2 + \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

Следовательно, $x^T A x > 0$. Также легко увидеть, что $0 \prec A \prec 4I$.

Пример, когда n=3:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Нижняя оценка:

$$x^T A x = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1 x_2 - 2x_2 x_3$$

$$=x_1^2+(x_1-x_2)^2+(x_2-x_3)^2+x_3^2\geq 0$$

Верхняя оценка

 $x^{T}Ax = 2x_{1}^{2} + 2x_{2}^{2} + 2x_{3}^{2} - 2x_{1}x_{2} - 2x_{2}x_{3}$ $<4(x_1^2+x_2^2+x_2^2)$

$$(x_2^2 + x_3^2)$$

$$x_2^2 + x_3^2$$

$$x_2^2 + x_3^2$$

 $x_2^2 + 2x_3^2$

$$x_2 + x_3$$

 $2x^2 \pm 2x$

$$(x_2^2 + x_3^2)$$

 $(x_2^2 + 2x_3^2)$

$$x_2^2 + x_3^2$$
)
 $2x^2 + 2x^2$

$$0 \le 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3$$

 $0 < x_1^2 + x_1^2 + 2x_1x_2 + x_2^2 + x_2^2 + 2x_2x_3 + x_3^2 + x_3^2$

 $=x_1^2+x_1^2-2x_1x_2+x_2^2+x_2^2-2x_2x_2+x_2^2+x_2^2$

$$0 \leq x_1^2 + (x_1 + x_2)^2 + (x_2 + x_3)^2 + x_3^2$$

ullet Определим следующую L-гладкую выпуклую функцию: $f(x)=rac{L}{4}\left(rac{1}{2}x^TAx-e_1^Tx
ight)=rac{L}{8}x^TAx-rac{L}{4}e_1^Tx.$

- Определим следующую L-гладкую выпуклую функцию: $f(x) = \frac{L}{4} \left(\frac{1}{2} x^T A x e_1^T x \right) = \frac{L}{8} x^T A x \frac{L}{4} e_1^T x.$
- ullet Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- ullet Определим следующую L-гладкую выпуклую функцию: $f(x)=rac{L}{4}\left(rac{1}{2}x^TAx-e_1^Tx
 ight)=rac{L}{8}x^TAx-rac{L}{4}e_1^Tx.$
- ullet Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

• Гипотеза: $x_i^* = a + bi$ (вдохновленная физикой). Проверьте, что удовлетворяется второе уравнение, в то время как a и b вычисляются из первого и последнего уравнений.

⊕ 0 ∅

- ullet Определим следующую L-гладкую выпуклую функцию: $f(x) = rac{L}{4} \left(rac{1}{2} x^T A x e_1^T x
 ight) = rac{L}{8} x^T A x rac{L}{4} e_1^T x.$
- ullet Оптимальное решение x^* удовлетворяет $Ax^*=e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- ullet Гипотеза: $x_i^*=a+bi$ (вдохновленная физикой). Проверьте, что удовлетворяется второе уравнение, в то время как a и b вычисляются из первого и последнего уравнений.
- Решение:

$$x_i^* = 1 - \frac{i}{n+1},$$

- Определим следующую L-гладкую выпуклую функцию: $f(x) = \frac{L}{4}\left(\frac{1}{2}x^TAx e_1^Tx\right) = \frac{L}{8}x^TAx \frac{L}{4}e_1^Tx$.
- Оптимальное решение x^* удовлетворяет $Ax^* = e_1$, и решение этой системы уравнений дает:

$$\begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} x_1^* \\ x_2^* \\ x_3^* \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ x_n^* \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \quad \begin{cases} 2x_1^* - x_2^* = 1 \\ -x_i^* + 2x_{i+1}^* - x_{i+2}^* = 0, \ i = 2, \dots, n-1 \\ -x_{n-1}^* + 2x_n^* = 0 \end{cases}$$

- ullet Гипотеза: $x_i^*=a+bi$ (вдохновленная физикой). Проверьте, что удовлетворяется второе уравнение, в то время как a и b вычисляются из первого и последнего уравнений.
- Решение:

$$x_i^* = 1 - \frac{i}{n+1},$$

И целевое значение равно

$$f(x^*) = \frac{L}{8} {x^*}^T A x^* - \frac{L}{4} \langle x^*, e_1 \rangle = -\frac{L}{8} \langle x^*, e_1 \rangle = -\frac{L}{8} \left(1 - \frac{1}{n+1}\right).$$

• Предположим, что мы начинаем с $x^0=0$. Запросив у оракула градиент, мы получаем $g_0=-e_1$. Тогда, x^1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x^1 равны нулю, кроме первой, поэтому

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Предположим, что мы начинаем с $x^0=0$. Запросив у оракула градиент, мы получаем $g_0=-e_1$. Тогда, x^1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x^1 равны нулю, кроме первой, поэтому

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации мы снова запрашиваем у оракула градиент и получаем $g_1 = Ax^1 - e_1$. Тогда, x^2 должен лежать на линии, генерируемой e_1 и $Ax^1 - e_1$. Все компоненты x^2 равны нулю, кроме первых двух, поэтому

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Предположим, что мы начинаем с $x^0=0$. Запросив у оракула градиент, мы получаем $g_0=-e_1$. Тогда, x^1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x^1 равны нулю, кроме первой, поэтому

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации мы снова запрашиваем у оракула градиент и получаем $g_1 = Ax^1 - e_1$. Тогда, x^2 должен лежать на линии, генерируемой e_1 и $Ax^1 - e_1$. Все компоненты x^2 равны нулю, кроме первых двух, поэтому

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Предположим, что мы начинаем с $x^0=0$. Запросив у оракула градиент, мы получаем $g_0=-e_1$. Тогда, x^1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x^1 равны нулю, кроме первой,

поэтому

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации мы снова запрашиваем у оракула градиент и получаем $g_1 = Ax^1 - e_1$. Тогда, x^2 должен лежать на линии, генерируемой e_1 и $Ax^1 - e_1$. Все компоненты x^2 равны нулю, кроме первых двух, поэтому

$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Из-за структуры матрицы A можно показать, что после k итераций все последние n-k компоненты x^k равны нулю.

• Предположим, что мы начинаем с $x^0=0$. Запросив у оракула градиент, мы получаем $g_0=-e_1$. Тогда, x^1 должен лежать на линии, генерируемой e_1 . В этой точке все компоненты x^1 равны нулю, кроме первой.

$$x^1 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• На второй итерации мы снова запрашиваем у оракула градиент и получаем $g_1 = Ax^1 - e_1$. Тогда, x^2 должен лежать на линии, генерируемой e_1 и $Ax^1 - e_2$. Все компоненты

генерируемой
$$e_1$$
 и Ax^1-e_1 . Все компоненты x^2 равны нулю, кроме первых двух, поэтому
$$\begin{bmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{bmatrix} \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Rightarrow x^2 = \begin{bmatrix} \bullet \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

• Из-за структуры матрицы A можно показать, что после k итераций все последние n-k компоненты x^k равны нулю.

• Однако, поскольку каждая итерация x^k , произведенная

нашим методом, лежит в $S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ (т.е.

$$x^{(k)} = \begin{bmatrix} \bullet \\ \bullet \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ k \\ k+1 \\ \vdots \\ 0 \end{bmatrix}$$

имеет нули в координатах $k+1,\dots,n$), она не может "достичь" полного оптимального вектора x^* . Другими словами, даже если бы мы выбрали лучший возможный

словами, даже если оы мы выорали лувектор из
$$S_k$$
, обозначаемый
$$\tilde{x}^k = \arg\min_{x \in S_k} f(x),$$

 $x\in S_k$ его целевое значение $f(\tilde{x}^k)$ будет строго хуже, чем $f(x^*)$

поэтому

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x^k) \ge f(\tilde{x}^k).$$

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x^k) \geq f(\tilde{x}^k).$$

Следовательно,

$$f(x^k) - f(x^*) \geq f(\tilde{x}^k) - f(x^*).$$

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x^k) \ge f(\tilde{x}^k).$$

• Следовательно,

$$f(x^k) - f(x^*) \geq f(\tilde{x}^k) - f(x^*).$$

• Аналогично, для оптимума исходной функции, мы имеем $\tilde{x}_i^k = 1 - \frac{i}{k+1}$ и $f(\tilde{x}^k) = -\frac{L}{8}\left(1 - \frac{1}{k+1}\right)$.

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x^k) \ge f(\tilde{x}^k).$$

Следовательно.

$$f(x^k) - f(x^*) \ge f(\tilde{x}^k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $\tilde{x}_i^k = 1 \frac{i}{k+1}$ и $f(\tilde{x}^k) = -\frac{L}{8} \left(1 \frac{1}{k+1}\right)$.
- Теперь мы имеем:

$$f(x^k) - f(x^*) \ge f(\tilde{x}^k) - f(x^*)$$

(2)

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_{ι} , мы имеем

$$f(x^k) \ge f(\tilde{x}^k).$$

Следовательно.

$$f(x^k) - f(x^*) \ge f(\tilde{x}^k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $\tilde{x}_i^k=1-\frac{i}{k+1}$ и $f(\tilde{x}^k)=-\frac{L}{8}\left(1-\frac{1}{k+1}\right)$.
- Теперь мы имеем:

$$\begin{split} f(x^k) - f(x^*) &\geq f(\tilde{x}^k) - f(x^*) \\ &= -\frac{L}{8} \left(1 - \frac{1}{k+1}\right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1}\right)\right) \end{split}$$

(2)

 $f \to \min_{x,y,z}$ Нижние оценки

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x^k) \ge f(\tilde{x}^k).$$

Следовательно.

$$f(x^k) - f(x^*) \ge f(\tilde{x}^k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $\tilde{x}_i^k = 1 \frac{i}{k+1}$ и $f(\tilde{x}^k) = -\frac{L}{2}\left(1 \frac{1}{k+1}\right)$.
- Теперь мы имеем:

$$f(x^{k}) - f(x^{*}) \ge f(\tilde{x}^{k}) - f(x^{*})$$

$$= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right)$$

$$= \frac{L}{8} \left(\frac{1}{k+1} - \frac{1}{n+1} \right) = \frac{L}{8} \left(\frac{n-k}{(k+1)(n+1)} \right)$$

 $f \to \min_{x,y,z}$ Нижние оценки

(2)

• Поскольку $x^k \in S_k = \text{Lin}\{e_1, e_2, \dots, e_k\}$ и \tilde{x}^k является лучшим возможным приближением к x^* в S_k , мы имеем

$$f(x^k) \ge f(\tilde{x}^k).$$

Следовательно.

$$f(x^k) - f(x^*) \ge f(\tilde{x}^k) - f(x^*).$$

- Аналогично, для оптимума исходной функции, мы имеем $\tilde{x}_i^k = 1 \frac{i}{k+1}$ и $f(\tilde{x}^k) = -\frac{L}{2}\left(1 \frac{1}{k+1}\right)$.

• Теперь мы имеем:
$$f(x^k) - f(x^*) \ge f(\tilde{x}^k) - f(x^*)$$

$$= -\frac{L}{8} \left(1 - \frac{1}{k+1} \right) - \left(-\frac{L}{8} \left(1 - \frac{1}{n+1} \right) \right)$$

$$= \frac{L}{8} \left(\frac{1}{k+1} - \frac{1}{n+1} \right) = \frac{L}{8} \left(\frac{n-k}{(k+1)(n+1)} \right)$$
 (2)

 $\stackrel{n=2k+1}{=} \frac{L}{16(k+1)}$

• Теперь мы ограничиваем $R = ||x^0 - x^*||_2$:

$$\|x^0 - x^*\|_2^2 = \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\leq \frac{(n+1)^3}{2}$$

• Теперь мы ограничиваем $R = ||x^0 - x^*||_2$:

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \end{split}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\leq \frac{(n+1)^3}{2}$$

• Теперь мы ограничиваем $R = ||x^0 - x^*||_2$:

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \end{split}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\leq \frac{(n+1)^3}{3}$$

• Теперь мы ограничиваем $R = ||x^0 - x^*||_2$:

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\leq \frac{(n+1)^3}{2}$$

• Теперь мы ограничиваем $R = \|x^0 - x^*\|_2$:

$$\begin{split} \|x^0 - x^*\|_2^2 &= \|0 - x^*\|_2^2 = \|x^*\|_2^2 = \sum_{i=1}^n \left(1 - \frac{i}{n+1}\right)^2 \\ &= n - \frac{2}{n+1} \sum_{i=1}^n i + \frac{1}{(n+1)^2} \sum_{i=1}^n i^2 \\ &\leq n - \frac{2}{n+1} \cdot \frac{n(n+1)}{2} + \frac{1}{(n+1)^2} \cdot \frac{(n+1)^3}{3} \\ &= \frac{n+1}{3} \stackrel{n=2k+1}{=} \frac{2(k+1)}{3}. \end{split}$$

• Следовательно,

$$k+1 \geq \frac{3}{2}\|x^0 - x^*\|_2^2 = \frac{3}{2}R^2$$

Заметим, что

(3)

$$\begin{split} \sum_{i=1}^{n} i &= \frac{n(n+1)}{2} \\ \sum_{i=1}^{n} i^2 &= \frac{n(n+1)(2n+1)}{6} \\ &\leq \frac{(n+1)^3}{3} \end{split}$$

Наконец, используя (2) и (3), мы получаем:

$$\begin{split} f(x^k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \\ &= \frac{3LR^2}{32(k+1)^2} \end{split}$$

♥೧0

Наконец, используя (2) и (3), мы получаем:

$$\begin{split} f(x^k) - f(x^*) &\geq \frac{L}{16(k+1)} = \frac{L(k+1)}{16(k+1)^2} \\ &\geq \frac{L}{16(k+1)^2} \frac{3}{2} R^2 \\ &= \frac{3LR^2}{32(k+1)^2} \end{split}$$

Это завершает доказательство с желаемой скоростью $\mathcal{O}\left(\frac{1}{L^2}\right)$.

Нижние оценки для гладкого случая

і Гладкий выпуклый случай

Существует функция f, которая является L-гладкой и выпуклой, так что любой метод 1 для любого $k:1\leq k\leq \frac{n-1}{2}$ удовлетворяет:

$$f(x^k) - f^* \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

1 Гладкий строго выпуклый случай

Для любого x^0 и любого $\mu>0, \varkappa=\frac{L}{\mu}>1$, существует функция f, которая является L-гладкой и μ -строго выпуклой, так что для любого метода из формы 1 удовлетворяет:

$$\|x^k - x^*\|_2 \ge \left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1}\right)^k \|x^0 - x^*\|_2$$

$$f(x^k) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\varkappa} - 1}{\sqrt{\varkappa} + 1} \right)^{2k} \|x^0 - x^*\|_2^2$$

Ускорение для квадратичных функций

Результат сходимости для квадратичных функций

Предположим, что мы имеем задачу минимизации строго выпуклой квадратичной функции, решаемую методом градиентного спуска:

$$f(x) = \frac{1}{2} x^T A x - b^T x \qquad x^{k+1} = x^k - \alpha_k \nabla f(x^k).$$

i Theorem

Градиентный спуск с шагом $\alpha_k = \frac{2}{n+L}$ сходится к оптимальному решению x^* со следующей гарантией:

$$\|x^{k+1} - x^*\|_2 = \left(\frac{\varkappa - 1}{\varkappa + 1}\right)^k \|x^0 - x^*\|_2 \qquad f(x^{k+1}) - f(x^*) = \left(\frac{\varkappa - 1}{\varkappa + 1}\right)^{2k} \left(f(x^0) - f(x^*)\right)$$

где $\varkappa = \frac{L}{\mu}$ является числом обусловленности A.

Число обусловленности и

Сходимость из первых принципов

$$f(x) = \frac{1}{2}x^TAx - b^Tx \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Пусть x^* будет единственным решением системы линейных уравнений Ax = b и пусть $e_k = \|x_k - x^*\|$, где $x_{k+1} = x_k - \alpha_k (Ax_k - b)$ определяется рекурсивно, начиная с некоторого x_0 , и α_k является шагом, который мы определим позже.

$$e_{k+1} = (I - \alpha_k A) e_k.$$

Полиномы

Вышеуказанный расчет дает нам $e_k = p_k(A)e_0$, где p_{ι} является полиномом

$$p_k(a) = \prod_{i=1}^k (1 - \alpha_i a).$$

Мы можем ограничить норму ошибки как

$$||e_k|| \le ||p_k(A)|| \cdot ||e_0||$$
.

Сходимость из первых принципов

$$f(x) = \frac{1}{2}x^TAx - b^Tx \qquad x_{k+1} = x_k - \alpha_k \nabla f(x_k).$$

Пусть x^* будет единственным решением системы линейных уравнений Ax = b и пусть $e_{\iota} = \|x_{\iota} - x^*\|$, где $x_{k+1} = x_k - \alpha_k (Ax_k - b)$ определяется рекурсивно, начиная с некоторого x_0 , и α_k является шагом, который мы определим позже.

$$e_{k+1} = (I - \alpha_k A) e_k.$$

Полиномы

Вышеуказанный расчет дает нам $e_k = p_k(A)e_0$, где p_{ι} является полиномом

$$p_k(a) = \prod_{i=1}^k (1 - \alpha_i a).$$

Мы можем ограничить норму ошибки как

$$||e_k|| \le ||p_k(A)|| \cdot ||e_0||$$
.

Поскольку A является симметричной матрицей с собственными значениями в $[\mu, L]$,:

$$\|p_k(A)\| \leq \max_{\mu \leq a \leq L} |p_k(a)| \ .$$

Это приводит к интересной проблеме: среди всех полиномов, удовлетворяющих $p_k(0) = 1$, мы ищем полином, величина которого как можно меньше в интервале $[\mu, L]$.

Наивное решение состоит в том, чтобы выбрать равномерный шаг $\alpha_k = \frac{2}{\mu + L}$. Благодаря этому $|p_k(\mu)| = |p_k(L)|.$

$$\|e_k\| \leq \left(1 - \frac{1}{\varkappa}\right)^k \|e_0\|$$

Это точно та же скорость, которую мы доказали в предыдущей лекции для любой гладкой и строго выпуклой функции.

Давайте посмотрим на этот полином поближе. На правом рисунке мы выбираем $\alpha = 1$ и $\beta = 10$ так. что $\kappa=10$. Следовательно, соответствующий интервал равен [1, 10].

Наивное решение состоит в том, чтобы выбрать равномерный шаг $\alpha_k = \frac{2}{\mu + L}$. Благодаря этому $|p_k(\mu)| = |p_k(L)|.$

$$\|e_k\| \leq \left(1 - \frac{1}{\varkappa}\right)^k \|e_0\|$$

Это точно та же скорость, которую мы доказали в предыдущей лекции для любой гладкой и строго выпуклой функции.

Давайте посмотрим на этот полином поближе. На правом рисунке мы выбираем $\alpha = 1$ и $\beta = 10$ так. что $\kappa=10$. Следовательно, соответствующий интервал равен [1, 10].

Наивное решение состоит в том, чтобы выбрать равномерный шаг $\alpha_k = \frac{2}{\mu + L}$. Благодаря этому $|p_k(\mu)| = |p_k(L)|.$

$$\|e_k\| \leq \left(1 - \frac{1}{\varkappa}\right)^k \|e_0\|$$

Это точно та же скорость, которую мы доказали в предыдущей лекции для любой гладкой и строго выпуклой функции.

Давайте посмотрим на этот полином поближе. На правом рисунке мы выбираем $\alpha = 1$ и $\beta = 10$ так. что $\kappa=10$. Следовательно, соответствующий интервал равен [1, 10].

Наивное решение состоит в том, чтобы выбрать равномерный шаг $\alpha_k=\frac{2}{\mu+L}.$ Благодаря этому $|p_k(\mu)|=|p_k(L)|.$

$$\|e_k\| \leq \left(1 - \frac{1}{\varkappa}\right)^k \|e_0\|$$

Это точно та же скорость, которую мы доказали в предыдущей лекции для любой гладкой и строго выпуклой функции.

Давайте посмотрим на этот полином поближе. На правом рисунке мы выбираем $\alpha=1$ и $\beta=10$ так, что $\kappa=10.$ Следовательно, соответствующий интервал равен [1,10].

Наивное решение состоит в том, чтобы выбрать равномерный шаг $\alpha_k = \frac{2}{\mu + L}$. Благодаря этому $|p_k(\mu)| = |p_k(L)|.$

$$\|e_k\| \leq \left(1 - \frac{1}{\varkappa}\right)^k \|e_0\|$$

Это точно та же скорость, которую мы доказали в предыдущей лекции для любой гладкой и строго выпуклой функции.

Давайте посмотрим на этот полином поближе. На правом рисунке мы выбираем $\alpha = 1$ и $\beta = 10$ так. что $\kappa=10$. Следовательно, соответствующий интервал равен [1, 10].

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем масштабировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0) = 1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Давайте построим стандартные полиномы Чебышёва (без масштабирования):

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем масштабировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0) = 1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Давайте построим стандартные полиномы Чебышёва (без масштабирования):

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем масштабировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0) = 1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Давайте построим стандартные полиномы Чебышёва (без масштабирования):

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем масштабировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Давайте построим стандартные полиномы Чебышёва (без масштабирования):

Полиномы Чебышёва дают оптимальный ответ на поставленный вопрос. При соответствующем масштабировании они минимизируют абсолютное значение на заданном интервале $[\mu,L]$, одновременно удовлетворяя нормировочному условию p(0)=1.

$$\begin{split} T_0(x) &= 1 \\ T_1(x) &= x \\ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x), \qquad k \geq 2. \end{split}$$

Давайте построим стандартные полиномы Чебышёва (без масштабирования):

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны масштабировать их на интервал $[\mu, L]$.

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны масштабировать их на интервал $[\mu, L]$.

преобразование:

Мы будем использовать следующее аффинное

$$x = \frac{L + \mu - 2a}{L - \mu}, \quad a \in [\mu, L], \quad x \in [-1, 1].$$

Обратите внимание, что x=1 соответствует $a=\mu$, x=-1 соответствует a=L и x=0 соответствует $a=\frac{\mu+L}{2}$. Это преобразование гарантирует, что поведение полинома Чебышёва на интервале [-1,1]отражается на интервале $[\mu, L]$

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны масштабировать их на интервал $[\mu, L]$.

Мы будем использовать следующее аффинное преобразование:

$$x=\frac{L+\mu-2a}{L-\mu},\quad a\in [\mu,L],\quad x\in [-1,1].$$

Обратите внимание, что x=1 соответствует $a=\mu$, x=-1 соответствует a=L и x=0 соответствует $a = \frac{\mu + L}{2}$. Это преобразование гарантирует, что поведение полинома Чебышёва на интервале [-1,1]отражается на интервале $[\mu, L]$

В нашем анализе ошибок мы требуем, чтобы полином был равен 1 в 0 (т.е. $p_k(0)=1$). После применения преобразования значение T_k в точке, соответствующей a=0, может не быть 1. Следовательно, мы умножаем на обратную величину T_k в точке

$$\frac{L+\mu}{L-\mu}, \qquad \text{что обеспечивает} \qquad P_k(0) = T_k \left(\frac{L+\mu-0}{L-\mu}\right) \cdot T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} = 1.$$

Оригинальные полиномы Чебышёва определены на интервале [-1,1]. Чтобы использовать их для наших целей, мы должны масштабировать их на интервал $[\mu,L]$.

Мы будем использовать следующее аффинное преобразование:

 $f \to \min_{x,y,z}$ Ускорение для квадратичных функций

$$x = \frac{L + \mu - 2a}{L - \mu}, \quad a \in [\mu, L], \quad x \in [-1, 1].$$

В нашем анализе ошибок мы требуем, чтобы полином был равен 1 в 0 (т.е. $p_k(0)=1$). После применения преобразования значение T_k в точке, соответствующей a=0, может не быть 1. Следовательно, мы умножаем на обратную величину T_k в точке

$$rac{L+\mu}{L-\mu},$$
 что обеспечивает $P_k(0) = T_k\left(rac{L+\mu-0}{L-\mu}
ight) \cdot T_k\left(rac{L+\mu}{L-\mu}
ight)^{-1} = 1.$

Давайте построим полиномы Чебышёва с масштабированием

$$P_k(a) = T_k \left(\frac{L + \mu - 2a}{L - \mu} \right) \cdot T_k \left(\frac{L + \mu}{L - \mu} \right)^{-1}$$

и наблюдаем, что они гораздо лучше ведут себя, чем наивные полиномы в отношении величины в интервале $[\mu, L]$.

Обратите внимание, что x = 1 соответствует $a = \mu$,

поведение полинома Чебышёва на интервале [-1,1]

отражается на интервале $[\mu, L]$

x=-1 соответствует a=L и x=0 соответствует $a=\frac{\mu+L}{2}$. Это преобразование гарантирует, что

Мы можем видеть, что максимальное значение полинома Чебышёва на интервале $[\mu, L]$ достигается в точке $a=\mu$. Следовательно, мы можем использовать следующую верхнюю оценку:

$$\|P_k(A)\|_2 \leq P_k(\mu) = T_k\left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Мы можем видеть, что максимальное значение полинома Чебышёва на интервале $[\mu,L]$ достигается в точке $a=\mu$. Следовательно, мы можем использовать следующую верхнюю оценку:

$$\|P_k(A)\|_2 \leq P_k(\mu) = T_k\left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Используя определение числа обусловленности $\varkappa=\frac{L}{u}$, мы получаем:

$$\|P_k(A)\|_2 \leq T_k \left(\frac{\varkappa+1}{\varkappa-1}\right)^{-1} = T_k \left(1+\frac{2}{\varkappa-1}\right)^{-1} = T_k \left(1+\epsilon\right)^{-1}, \quad \epsilon = \frac{2}{\varkappa-1}.$$

Мы можем видеть, что максимальное значение полинома Чебышёва на интервале $[\mu,L]$ достигается в точке $a=\mu$. Следовательно, мы можем использовать следующую верхнюю оценку:

$$\|P_k(A)\|_2 \leq P_k(\mu) = T_k\left(\frac{L+\mu-2\mu}{L-\mu}\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(1\right) \cdot T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1} = T_k\left(\frac{L+\mu}{L-\mu}\right)^{-1}$$

Используя определение числа обусловленности $\varkappa=\frac{L}{u}$, мы получаем:

$$\|P_k(A)\|_2 \leq T_k \left(\frac{\varkappa+1}{\varkappa-1}\right)^{-1} = T_k \left(1+\frac{2}{\varkappa-1}\right)^{-1} = T_k \left(1+\epsilon\right)^{-1}, \quad \epsilon = \frac{2}{\varkappa-1}.$$

Следовательно, нам нужно только понять значение T_k в $1+\epsilon$. Это то, откуда берется ускорение. Мы будем ограничивать это значение сверху величиной $\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)$.

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+\epsilon)|$ снизу.

Чтобы ограничить $|P_k|$ сверху, мы должны ограничить $|T_k(1+\epsilon)|$ снизу.

1. Для любого x > 1, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

Чтобы ограничить $|P_{k}|$ сверху, мы должны ограничить $|T_{k}(1+\epsilon)|$ снизу.

1. Для любого x > 1, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

Чтобы ограничить $|P_{k}|$ сверху, мы должны ограничить $|T_{k}(1+\epsilon)|$ снизу.

1. Для любого x > 1, полиномы Чебышёва первого рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

3. Теперь, пусть $\phi = \operatorname{arccosh}(1 + \epsilon)$,

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$$

Чтобы ограничить $|P_{k}|$ сверху, мы должны ограничить $|T_{k}(1+\epsilon)|$ снизу.

- 1. Для любого x > 1, полиномы Чебышёва первого 4. Следовательно.
 - рода могут быть записаны как

$$\begin{split} T_k(x) &= \cosh\left(k \operatorname{arccosh}(x)\right) \\ T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right). \end{split}$$

Помните, что:

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

3. Теперь, пусть $\phi = \operatorname{arccosh}(1 + \epsilon)$,

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$$

$$\begin{split} T_k(1+\epsilon) &= \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right) \\ &= \cosh\left(k\phi\right) \\ &= \frac{e^{k\phi} + e^{-k\phi}}{2} \ge \frac{e^{k\phi}}{2} \\ &= \frac{\left(1 + \sqrt{\epsilon}\right)^k}{2} \end{split}$$

$$=\frac{\left(1+\sqrt{\epsilon}\right)^k}{2}.$$

Чтобы ограничить $|P_{k}|$ сверху, мы должны ограничить $|T_{k}(1+\epsilon)|$ снизу.

1. Для любого x > 1, полиномы Чебышёва первого 4. Следовательно.

рода могут быть записаны как

$$T_k(x)=\cosh\left(k\operatorname{arccosh}(x)\right)$$

$$T_k(1+\epsilon) = \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right).$$

$$T_k(1+\epsilon) = \cosh(\kappa \arccos(1+\epsilon))$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \operatorname{arccosh}(x) = \ln(x + \sqrt{x^2 - 1}).$$

3. Теперь, пусть
$$\phi = \operatorname{arccosh}(1+\epsilon)$$
,

 $f \to \min_{x,y,z}$ Ускорение для квадратичных функций

3. Іеперь, пусть
$$\phi = \operatorname{arccosh}(1+\epsilon)$$
,

$$c^{\phi} = 1 + c + \sqrt{2c + c^2} > 1 + c$$

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} > 1 + \epsilon$$

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$$

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$$

$$e^{\phi} = 1 + \epsilon + \sqrt{2\epsilon + \epsilon^2} \ge 1 + \sqrt{\epsilon}.$$

Наконец, мы получаем:

 $T_k(1+\epsilon) = \cosh\left(k \operatorname{arccosh}(1+\epsilon)\right)$

 $=\frac{e^{k\phi}+e^{-k\phi}}{2}\geq \frac{e^{k\phi}}{2}$

 $=\cosh(k\phi)$

 $=\frac{(1+\sqrt{\epsilon})^k}{2}$.

 $||e_k|| \le ||P_k(A)|| ||e_0|| \le \frac{2}{(1+\sqrt{\epsilon})^k} ||e_0||$

 $\leq 2\left(1+\sqrt{\frac{2}{\varkappa-1}}\right)^{-k}\|e_0\|$

 $\leq 2\exp\left(-\sqrt{\frac{2}{\varkappa-1}}k\right)\|e_0\|$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускорения. Переформулируя рекурсию в терминах наших масштабированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x) \\$$

Принимая во внимание, что $x = \frac{L + \mu - 2a}{L}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L+\mu-2a}{L-\mu}\right) T_k \left(\frac{L+\mu}{L-\mu}\right)^{-1} \\ T_k \left(\frac{L+\mu-2a}{L-\mu}\right) &= P_k(a) T_k \left(\frac{L+\mu}{L-\mu}\right) \end{split}$$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускорения. Переформулируя рекурсию в терминах наших масштабированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$

Принимая во внимание, что $x = \frac{L + \mu - 2a}{L}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L + \mu - 2a}{L - \mu} \right) T_k \left(\frac{L + \mu}{L - \mu} \right)^{-1} & T_{k-1} \left(\frac{L + \mu - 2a}{L - \mu} \right) = P_{k-1}(a) T_{k-1} \left(\frac{L + \mu}{L - \mu} \right) \\ T_k \left(\frac{L + \mu - 2a}{L - \mu} \right) &= P_k(a) T_k \left(\frac{L + \mu}{L - \mu} \right) & T_{k+1} \left(\frac{L + \mu - 2a}{L - \mu} \right) = P_{k+1}(a) T_{k+1} \left(\frac{L + \mu}{L - \mu} \right) \\ P_{k+1}(a) t_{k+1} &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) t_k - P_{k-1}(a) t_{k-1}, \text{ where } t_k = T_k \left(\frac{L + \mu}{L - \mu} \right) \\ P_{k+1}(a) &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) \frac{t_k}{t_{k+1}} - P_{k-1}(a) \frac{t_{k-1}}{t_{k+1}} \end{split}$$

Из-за рекурсивного определения полиномов Чебышёва мы непосредственно получаем итерационную схему ускорения. Переформулируя рекурсию в терминах наших масштабированных полиномов Чебышёва, мы получаем:

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$

Принимая во внимание, что $x = \frac{L + \mu - 2a}{L}$, и:

$$\begin{split} P_k(a) &= T_k \left(\frac{L + \mu - 2a}{L - \mu} \right) T_k \left(\frac{L + \mu}{L - \mu} \right)^{-1} & T_{k-1} \left(\frac{L + \mu - 2a}{L - \mu} \right) = P_{k-1}(a) T_{k-1} \left(\frac{L + \mu}{L - \mu} \right) \\ T_k \left(\frac{L + \mu - 2a}{L - \mu} \right) &= P_k(a) T_k \left(\frac{L + \mu}{L - \mu} \right) & T_{k+1} \left(\frac{L + \mu - 2a}{L - \mu} \right) = P_{k+1}(a) T_{k+1} \left(\frac{L + \mu}{L - \mu} \right) \\ P_{k+1}(a) t_{k+1} &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) t_k - P_{k-1}(a) t_{k-1}, \text{ where } t_k = T_k \left(\frac{L + \mu}{L - \mu} \right) \\ P_{k+1}(a) &= 2 \frac{L + \mu - 2a}{L - \mu} P_k(a) \frac{t_k}{t_{k+1}} - P_{k-1}(a) \frac{t_{k-1}}{t_{k+1}} \end{split}$$

Поскольку мы имеем $P_{k+1}(0) = P_k(0) = P_{k-1}(0) = 1$, получаем рекуррентную формулу вида:

$$P_{h+1}(a) = (1 - \alpha_h a) P_h(a) + \beta_h \left(P_h(a) - P_{h-1}(a) \right).$$

♥ 0 0

Перегруппируя члены, мы получаем:

$$\begin{split} P_{k+1}(a) &= (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) &= 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \end{split}$$

Перегруппируя члены, мы получаем:
$$P_{k+1}(a) = (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) = 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \\ \begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu}\frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}, \end{cases}$$

$$t_{k-1}(a),$$
 $t_{k}(a) - \frac{t_{k-1}}{t_{k+1}} F$

$$\begin{split} \beta_k &= \frac{c_{k-1}}{t_{k+1}}, \\ \alpha_k &= \frac{4}{L - \mu} \frac{t_k}{t_{k+1}}, \\ 1 + \beta_k &= 2 \frac{L + \mu}{L - \mu} \frac{t_k}{t_{k+1}}. \end{split}$$

Перегруппируя члены, мы получаем:
$$P_{k+1}(a) = (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) = 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \\ \begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu}\frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}, \end{cases}$$

$$\begin{split} \beta_k &= \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k &= \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1 + \beta_k &= 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{split}$$

Мы почти закончили :) Помним, что $e_{k+1} = P_{k+1}(A)e_0$. Также обратим внимание, что мы работаем с квадратичной задачей, поэтому мы можем предположить $x^* = 0$ без ограничения общности. В этом случае $e_0 = x_0$ u $e_{k+1} = x_{k+1}$.

$$\begin{split} x_{k+1} &= P_{k+1}(A)x_0 = \left(I - \alpha_k A\right)P_k(A)x_0 + \beta_k\left(P_k(A) - P_{k-1}(A)\right)x_0 \\ &= \left(I - \alpha_k A\right)x_k + \beta_k\left(x_k - x_{k-1}\right) \end{split}$$

Перегруппируя члены, мы получаем:
$$P_{k+1}(a) = (1+\beta_k)P_k(a) - \alpha_k a P_k(a) - \beta_k P_{k-1}(a), \\ P_{k+1}(a) = 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{4a}{L-\mu}\frac{t_k}{t_{k+1}}P_k(a) - \frac{t_{k-1}}{t_{k+1}}P_{k-1}(a) \\ \begin{cases} \beta_k = \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k = \frac{4}{L-\mu}\frac{t_k}{t_{k+1}}, \\ 1+\beta_k = 2\frac{L+\mu}{L-\mu}\frac{t_k}{t_{k+1}}, \end{cases}$$

$$\begin{split} \beta_k &= \frac{t_{k-1}}{t_{k+1}}, \\ \alpha_k &= \frac{4}{L-\mu} \frac{t_k}{t_{k+1}}, \\ 1 + \beta_k &= 2 \frac{L+\mu}{L-\mu} \frac{t_k}{t_{k+1}} \end{split}$$

Мы почти закончили :) Помним, что $e_{k+1} = P_{k+1}(A)e_0$. Также обратим внимание, что мы работаем с квадратичной задачей, поэтому мы можем предположить $x^*=0$ без ограничения общности. В этом случае $e_0 = x_0$ u $e_{k+1} = x_{k+1}$.

$$\begin{split} x_{k+1} &= P_{k+1}(A)x_0 = \left(I - \alpha_k A\right)P_k(A)x_0 + \beta_k\left(P_k(A) - P_{k-1}(A)\right)x_0 \\ &= \left(I - \alpha_k A\right)x_k + \beta_k\left(x_k - x_{k-1}\right) \end{split}$$

Для квадратичной задачи мы имеем $abla f(x_k) = Ax_k$, поэтому мы можем переписать обновление как:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k) + \beta_k \left(x_k - x_{k-1} \right)$$

Ускорение из первых принципов

27

Метод тяжелого шарика

Колебания и ускорение

Давайте представим идею импульса, предложенную Поляком в 1964 году. Вспомним, что обновление импульса имеет вид

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

Давайте представим идею импульса, предложенную Поляком в 1964 году. Вспомним, что обновление импульса имеет вид

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha\Lambda\hat{x}_k + \beta(\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha\Lambda + \beta I)\hat{x}_k - \beta\hat{x}_{k-1}$$

Давайте представим идею импульса, предложенную Поляком в 1964 году. Вспомним, что обновление импульса имеет вид

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha\Lambda\hat{x}_k + \beta(\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha\Lambda + \beta I)\hat{x}_k - \beta\hat{x}_{k-1}$$

Это можно переписать как

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Trajectories with Contour Plot

Heavy Ball with a 3.5e-01 and p 3.0e-01

Stort Ploft

Optimal Foot

Давайте представим идею импульса, предложенную Поляком в 1964 году. Вспомним, что обновление импульса имеет вид

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha\Lambda\hat{x}_k + \beta(\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha\Lambda + \beta I)\hat{x}_k - \beta\hat{x}_{k-1}$$

Это можно переписать как

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Давайте используем следующую нотацию $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Следовательно, $\hat{z}_{k+1} = M\hat{z}_k$, где матрица итерации M имеет вид:

Trajectories with Contour Plot

Давайте представим идею импульса, предложенную Поляком в 1964 году. Вспомним, что обновление импульса имеет вид

$$x^{k+1} = x^k - \alpha \nabla f(x^k) + \beta (x^k - x^{k-1}).$$

В нашем (квадратичном) случае это

$$\hat{x}_{k+1} = \hat{x}_k - \alpha \Lambda \hat{x}_k + \beta (\hat{x}_k - \hat{x}_{k-1}) = (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}$$

Это можно переписать как

$$\begin{split} \hat{x}_{k+1} &= (I - \alpha \Lambda + \beta I) \hat{x}_k - \beta \hat{x}_{k-1}, \\ \hat{x}_k &= \hat{x}_k. \end{split}$$

Давайте используем следующую нотацию $\hat{z}_k = \begin{bmatrix} \hat{x}_{k+1} \\ \hat{x}_k \end{bmatrix}$. Следовательно, $\hat{z}_{k+1} = M\hat{z}_k$, где матрица итерации M имеет вид:

$$M = \begin{bmatrix} I - \alpha \Lambda + \beta I & -\beta I \\ I & 0_d \end{bmatrix}.$$

Летол тяжелого шарика

Обратим внимание, что M является матрицей 2d imes 2d с 4 блочно-диагональными матрицами размера d imes dвнутри. Это означает, что мы можем переупорядочить порядок координат, чтобы сделать Mблочно-диагональной. Обратите внимание, что в уравнении ниже, матрица M обозначает то же самое, что и в обозначении выше, за исключением описанной перестановки строк и столбцов. Мы используем эту небольшую неточность ради ясности.

Обратим внимание, что M является матрицей $2d \times 2d$ с 4 блочно-диагональными матрицами размера $d \times d$ внутри. Это означает, что мы можем переупорядочить порядок координат, чтобы сделать M блочно-диагональной. Обратите внимание, что в уравнении ниже, матрица M обозначает то же самое, что и в обозначении выше, за исключением описанной перестановки строк и столбцов. Мы используем эту небольшую неточность ради ясности.

Рис. 1: Иллюстрация переупорядочения матрицы ${\cal M}$

где $\hat{x}_k^{(i)}$ является i-й координатой вектора $\hat{x}_k \in \mathbb{R}^d$ и M_i обозначает 2×2 матрицу. Переупорядочение позволяет нам исследовать динамику метода независимо от размерности. Асимптотическая скорость сходимости 2d-мерной последовательности векторов \hat{z}_k определяется наихудшей скоростью сходимости среди его блока координат. Следовательно, достаточно исследовать оптимизацию в одномерном случае.

Для i-й координаты с λ_i как i-е собственное значение матрицы W мы имеем:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

Для i-й координаты с λ_i как i-е собственное значение матрицы W мы имеем:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

Метод будет сходиться, если ho(M) < 1, и оптимальные параметры могут быть вычислены путем оптимизации спектрального радиуса

$$\alpha^*, \beta^* = \arg\min_{\alpha,\beta} \max_i \rho(M_i) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2.$$

Для i-й координаты с λ_i как i-е собственное значение матрицы W мы имеем:

$$M_i = \begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix}.$$

Метод будет сходиться, если ho(M) < 1, и оптимальные параметры могут быть вычислены путем оптимизации спектрального радиуса

$$\alpha^*, \beta^* = \arg\min_{\alpha,\beta} \max_i \rho(M_i) \quad \alpha^* = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \beta^* = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2.$$

Можно показать, что для таких параметров матрица M имеет комплексные собственные значения, которые образуют комплексно-сопряженную пару, поэтому расстояние до оптимума (в этом случае, $\|z_k\|$), как правило, не будет монотонно уменьшаться.

Квадратичная сходимость метода тяжелого шарика

Мы можем явно вычислить собственные значения M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Мы можем явно вычислить собственные значения M_i :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Когда α и β оптимальны (α^*, β^*), собственные значения являются комплексно-сопряженной парой $(1+\beta-\alpha\lambda_i)^2-4\beta\leq 0$, T.E. $\beta\geq (1-\sqrt{\alpha\lambda_i})^2$.

Мы можем явно вычислить собственные значения M_{i} :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Когда α и β оптимальны (α^*, β^*), собственные значения являются комплексно-сопряженной парой $(1+\beta-\alpha\lambda_i)^2-4\beta<0$. T.e. $\beta>(1-\sqrt{\alpha\lambda_i})^2$.

$$\mathrm{Re}(\lambda^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \mathrm{Im}(\lambda^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}; \quad |\lambda^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

Мы можем явно вычислить собственные значения M_{i} :

$$\lambda_1^M, \lambda_2^M = \lambda \left(\begin{bmatrix} 1 - \alpha \lambda_i + \beta & -\beta \\ 1 & 0 \end{bmatrix} \right) = \frac{1 + \beta - \alpha \lambda_i \pm \sqrt{(1 + \beta - \alpha \lambda_i)^2 - 4\beta}}{2}.$$

Когда α и β оптимальны (α^*, β^*), собственные значения являются комплексно-сопряженной парой $(1+\beta-\alpha\lambda_i)^2-4\beta<0$. T.e. $\beta>(1-\sqrt{\alpha\lambda_i})^2$.

$$\mathrm{Re}(\lambda^M) = \frac{L + \mu - 2\lambda_i}{(\sqrt{L} + \sqrt{\mu})^2}; \quad \mathrm{Im}(\lambda^M) = \frac{\pm 2\sqrt{(L - \lambda_i)(\lambda_i - \mu)}}{(\sqrt{L} + \sqrt{\mu})^2}; \quad |\lambda^M| = \frac{L - \mu}{(\sqrt{L} + \sqrt{\mu})^2}.$$

И скорость сходимости не зависит от шага и равна $\sqrt{\beta^*}$.

i Theorem

Предположим, что f является квадратичной μ -строго выпуклой L-гладкой квадратичной функцией, тогда метод тяжелого шарика с параметрами

$$\alpha = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}, \beta = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$$

сходится линейно:

$$\|x_k - x^*\|_2 \le \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k \|x_0 - x^*\|_2$$

Глобальная сходимость метода тяжелого шарика ³

i Theorem

Предположим, что f является гладкой и выпуклой и что

$$\beta \in [0,1), \quad \alpha \in \left(0, \frac{2(1-\beta)}{L}\right).$$

Тогда последовательность $\{x_k\}$, генерируемая итерациями тяжелого шарика, удовлетворяет

$$f(\overline{x}_T) - f^\star \leq \left\{ \begin{array}{l} \frac{\|x_0 - x^\star\|^2}{2(T+1)} \left(\frac{L\beta}{1-\beta} + \frac{1-\beta}{\alpha}\right), & \text{if } \alpha \in \left(0, \frac{1-\beta}{L}\right], \\ \frac{\|x_0 - x^\star\|^2}{2(T+1)(2(1-\beta)-\alpha L)} \left(L\beta + \frac{(1-\beta)^2}{\alpha}\right), & \text{if } \alpha \in \left[\frac{1-\beta}{L}, \frac{2(1-\beta)}{L}\right), \end{array} \right.$$

где \overline{x}_T среднее Чезаро последовательности итераций, т.е.

$$\overline{x}_T = \frac{1}{T+1} \sum_{k=0}^{T} x_k.$$

 $^{^3}$ Глобальная сходимость метода тяжелого шарика для выпуклой оптимизации, Euhanna Ghadimi et.al.

Глобальная сходимость метода тяжелого шарика ⁴

i Theorem

Предположим, что f является гладкой и строго выпуклой и что

$$\alpha \in (0,\frac{2}{L}), \quad 0 \leq \beta < \frac{1}{2} \left(\frac{\mu \alpha}{2} + \sqrt{\frac{\mu^2 \alpha^2}{4} + 4(1 - \frac{\alpha L}{2})} \right).$$

Тогда последовательность $\{x_k\}$, генерируемая итерациями тяжелого шарика, сходится линейно к единственному оптимальному решению x^\star . В частности,

$$f(x_k) - f^* \le q^k (f(x_0) - f^*),$$

где $q \in [0, 1)$.

 $^{^4}$ Глобальная сходимость метода тяжелого шарика для выпуклой оптимизации, Euhanna Ghadimi et.al.

• Обеспечивает ускоренную сходимость для строго выпуклых квадратичных задач

- Обеспечивает ускоренную сходимость для строго выпуклых квадратичных задач
- Локально ускоренная сходимость была доказана в оригинальной статье.

- Обеспечивает ускоренную сходимость для строго выпуклых квадратичных задач
- Локально ускоренная сходимость была доказана в оригинальной статье.
- \bullet Недавно 5 было доказано, что глобальное ускорение сходимости для метода не существует.

- Обеспечивает ускоренную сходимость для строго выпуклых квадратичных задач
- Локально ускоренная сходимость была доказана в оригинальной статье.
- ullet Недавно 5 было доказано, что глобальное ускорение сходимости для метода не существует.
- Метод не был чрезвычайно популярен до ML-бума.

- Обеспечивает ускоренную сходимость для строго выпуклых квадратичных задач
- Локально ускоренная сходимость была доказана в оригинальной статье.
- ullet Недавно 5 было доказано, что глобальное ускорение сходимости для метода не существует.
- Метод не был чрезвычайно популярен до ML-бума.
- Сейчас он фактически является стандартом для практического ускорения методов градиентного спуска, даже для невыпуклых задач (обучение нейронных сетей)

Ускоренный градиентный метод Нестерова

Концепция ускоренного градиентного метода Нестерова

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1}) \\ \begin{cases} y_{k+1} = x_k + \beta (x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$$

Концепция ускоренного градиентного метода Нестерова

$$x_{k+1} = x_k - \alpha \nabla f(x_k) \qquad x_{k+1} = x_k - \alpha \nabla f(x_k) + \beta (x_k - x_{k-1})$$

Давайте определим следующие обозначения

$$x^+ = x - \alpha
abla f(x)$$
 Градиентный шаг $d_k = eta_k (x_k - x_{k-1})$ Импульс

Тогда мы можем записать:

$$x_{k+1} = x_k^+$$
 Градиентный спуск $x_{k+1} = x_k^+ + d_k$ Метод тяжелого шарика $x_{k+1} = (x_k + d_k)^+$ Ускоренный градиентный метод Нестерова

 $\begin{cases} y_{k+1} = x_k + \beta(x_k - x_{k-1}) \\ x_{k+1} = y_{k+1} - \alpha \nabla f(y_{k+1}) \end{cases}$ Polyak momentum

Nesterov momentum

Сходимость в общем случае

i Theorem

Предположим, что $f:\mathbb{R}^n o \mathbb{R}$ является выпуклой и L-гладкой. Ускоренный градиентный метод Нестерова (NAG) предназначен для решения задачи минимизации, начиная с начальной точки $x_0 =$ $y_0 \in \mathbb{R}^n$ и $\lambda_0 = 0$. Алгоритм выполняет следующие шаги:

Обновление градиента:
$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

Экстраполяция:
$$x_{k+1} = (1 - \gamma_k) y_{k+1} + \gamma_k y_k$$

Вес экстраполяции:
$$\lambda_{k+1} = \frac{1+\sqrt{1+4\lambda_k^2}}{2}$$

Вес экстраполяции:
$$\gamma_k = \frac{1-\lambda_k}{\lambda_{k+1}}$$

Последовательность $\{f(y_k)\}_{k\in\mathbb{N}}$, генерируемая алгоритмом, сходится к оптимальному значению f^* со скоростью $\mathcal{O}\left(\frac{1}{L^2}\right)$, в частности:

$$f(y_k) - f^* \le \frac{2L\|x_0 - x^*\|^2}{k^2}$$

Сходимость в общем случае

i Theorem

Предположим. Что $f:\mathbb{R}^n o\mathbb{R}$ является μ -строго выпуклой и L-гладкой. Ускоренный градиентный метод Нестерова (NAG) предназначен для решения задачи минимизации, начиная с начальной точки $x_0 = y_0 \in \mathbb{R}^n$ и $\lambda_0 = 0$. Алгоритм выполняет следующие шаги:

Обновление градиента:
$$y_{k+1} = x_k - \frac{1}{L} \nabla f(x_k)$$

Экстраполяция:
$$x_{k+1} = (1+\gamma_k)y_{k+1} - \gamma_k y_k$$

Вес экстраполяции:
$$\gamma_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$$

Последовательность $\{f(y_k)\}_{k\in\mathbb{N}}$, генерируемая алгоритмом, сходится к оптимальному значению f^* линейно.

$$f(y_k) - f^* \leq \frac{\mu + L}{2} \|x_0 - x^*\|_2^2 \exp\left(-\frac{k}{\sqrt{\kappa}}\right)$$

Численные эксперименты

Выпуклые квадратичные задачи (т.е. линейная регрессия)

Convex quadratics: n=60, random matrix, $\mu=0$, L=10

Строго выпуклые квадратичные задачи (т.е. регуляризованная линейная регрессия)

Strongly convex quadratics: n=60, random matrix, $\mu=1$, L=10

Строго выпуклые квадратичные задачи (т.е. регуляризованная линейная регрессия)

Strongly convex quadratics: n=60, random matrix, $\mu=1$, L=1000

Строго выпуклые квадратичные задачи (т.е. регуляризованная линейная регрессия)

Strongly convex quadratics: n=1000, random matrix, $\mu=1$, L=1000

Strongly convex binary logistic regression. mu=1.

Strongly convex binary logistic regression. mu=1.

Strongly convex binary logistic regression. mu=1.

