

Machine Learning

Problem formulation

Example: Predicting movie ratings

→ User rates movies using one to five stars

		Jero			->	
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	_ →	****
Love at last	5	5	0	6	L	J
Romance forever	5	34. 5	(3)0	0	$\rightarrow n$	v_u = no. users
Cute puppies of love	?)5	4	0	(7)0		m = no. movies
Nonstop car chases	0		1-2	- ''	r(i,	j) = 1 if user j has rated movie i
Swords vs. karate	10		15	(3) 4.	$y^{(i)}$	
					19	user j to movie i
$n_u =$	4	$n_m = 5$			V	(defined only if
				6	T	r(i, j) = 1

Machine Learning

Content-based recommendations

Content-based recommender systems

 \Rightarrow For each user j, learn a parameter $\underline{\theta^{(j)}} \in \mathbb{R}^3$. Predict user j as rating rhovie $\underline{(\theta \otimes h)} hx^{(i)}$ stars. $\underline{\ } \underline{\ } \underline{\$

$$\chi^{(3)} = \begin{bmatrix} \frac{1}{0.99} \\ \frac{1}{0} \end{bmatrix} \Leftrightarrow \Theta^{(1)} = \begin{bmatrix} \frac{1}{0} \\ \frac{5}{0} \end{bmatrix} \quad (\Theta^{(1)})^{T} \chi^{(3)} = 5 \times 0.99$$

$$= 4.95$$

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- \rightarrow $x^{(i)}$ = feature vector for movie i
- \rightarrow For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})$
- $\rightarrow \underline{m^{(j)}}$ = no. of movies rated by user j

To learn $\theta^{(j)}$:

To learn
$$\underline{\theta}^{(j)}$$
:
$$\frac{1}{2} \sum_{i \in r(i,j)=1}^{k} \frac{\left((0^{(i)})^T (x^{(i)}) - y^{(i,j)} \right)^2}{\left((0^{(i)})^T (x^{(i)}) - y^{(i,j)} \right)^2} + \frac{\lambda}{2} \sum_{i \in r}^{k} \left(0^{(i)} \right)^2$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2 (6(1) (0(n))

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
Love at last	5	5	0	0	0.9	0	_
Romance forever	5	?	?	0	1.0	0.01	
Cute puppies of love	?	4	0	?	0.99	0	
Nonstop car chases	0	0	5	4	0.1	1.0	
Swords vs. karate	0	0	5	?	0	0.9	

Problem motivation

Problem n	notivat	,10 n			1	1	X=[
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
X Love at last	7 5	>> 5	<u>~ 0</u>	7 0	11.0	A 0-1	o – i
Romance forever	5	,	,	0	?	j	x0= [
Cute puppies of love	?	4	0	?	?	?	(0-0)
Nonstop car chases	0	0	5	4	?	?	×(1)
Swords vs. karate	0	0	5	?	?	?	~ · · · · · · · · · · ·
$\Rightarrow \boxed{\theta^{(1)} =}$	$\theta^{(2)}$	$1 = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix},$	$\theta^{(3)} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\theta^{(4)} =$	$= \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix}$	9 ^(j) (7x"x"("0) 2x"x"("0) 0x"x"("0) 0x"x"("0)

Optimization algorithm

Given $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$, to learn $\underline{x^{(i)}}$:

$$\implies \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $\underline{x^{(1)},\dots,x^{(n_m)}}$ (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

Given
$$\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Machine Learning

Collaborative filtering algorithm

Collaborative filtering optimization objective

- $\Rightarrow \text{Given } x^{(1)}, \dots, x^{(n_m)}, \text{ estimate } \theta^{(1)}, \dots, \theta^{(n_u)}; \\ \Rightarrow \left[\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \left\{ \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1}^{n_u} ((\theta^{(j)})^T x^{(i)} y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (\theta^{(j)}_k)^2 \right\} \right]$
- \Rightarrow Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, estimate $x^{(1)}, \dots, x^{(n_m)}$:
 - $= \sum_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{i=1}^n \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{k=1$
 - Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$\underbrace{(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})}_{(1)} = \underbrace{\frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2}_{(1)} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n} (x_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(i)})^2}_{i=1} + \underbrace{\frac{\lambda}{2} \sum_{i=1}^{n_u} (\theta_k^{(i)})^2}_{$$

Collaborative filtering algorithm

 \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.

Xoci xeR, oeR"

⇒ 2. Minimize $J(x^{(1)},...,x^{(n_m)},\theta^{(1)},...,\theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,...,n_u, i=1,...,n_m$:

every
$$j=1,\ldots,n_u,t=1,\ldots,n_m$$
:
$$x_k^{(i)}:=x_k^{(i)}-\alpha\left(\sum_{j:r(i,j)=1}((\theta^{(j)})^Tx^{(i)}-y^{(i,j)})\theta_k^{(j)}+\lambda x_k^{(i)}\right)$$

$$\theta_k^{(j)}:=\theta_k^{(j)}-\alpha\left(\sum_{i:r(i,j)=1}((\theta^{(j)})^Tx^{(i)}-y^{(i,j)})x_k^{(i)}+\lambda \theta_k^{(j)}\right)$$
 For a user with parameters θ , and a movie with (learned)

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta}^T \underline{x}$.

$$\left(\bigcirc_{(i)}^{(i)} \right)^{\mathsf{T}} \left(\times_{(i)}^{(i)} \right)$$

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	,
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	1	^	1	1

$$Y = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Collaborative filtering / X (ii) ' <

$$(Q_{\partial J})_{a}(x_{(i)})$$

Predicted ratings:

$$[\theta^{(1)}]^T(x^{(n_m)}) \quad (\theta^{(2)})^T(x^{(n_m)}) \quad \dots \quad (\theta^{(n_u)})^T(x^{(n_m)})$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} - \\ \\ -(x^{(n_{m_1})})^{T} - \end{bmatrix}$$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find
$$\underline{\text{movies } j}$$
 related to $\underline{\text{movie } i}$?

Small $\| \mathbf{x}^{(i)} - \mathbf{x}^{(j)} \| \rightarrow \mathbf{movie} \ i$ and i are "similar"

5 most similar movies to movie i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Implementational detail: Mean normalization

Users who have not rated any movies

					V						
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)		- -	L	0	0	
→ Love at last	_5	5	0	0	5 0		5 5	5 2	$\frac{0}{2}$	0	?
Romance forever	5	;	?	0		$oldsymbol{V}$	$\frac{9}{2}$: 1		$\frac{0}{2}$	$\frac{\cdot}{2}$
Cute puppies of love	?	4	0	?	? 0	I =		4	U 5	: 1	· 2
Nonstop car chases	0	0	5	4	. S □		0	0	5	4 0	; 2
Swords vs. karate	0	0	5	?	5 0		Lυ	U	3	U	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j) = 1 \\ }} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=$$

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? & 2 & 5 \\ 5 & ? & ? & 0 & ? & ? & 2 \\ ? & 4 & 0 & ? & ? & 2 & 2 \\ 0 & 0 & 5 & 4 & ? & 2 & 2 \\ 0 & 0 & 5 & 0 & ? & 2 & 2 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

$$\Rightarrow (O^{(i)})^{T}(\chi^{(i)}) + \mu_{i}$$

User 5 (Eve):