## Конспект к экзамену по билетам (математический анализ) (3-й семестр)

Латыпов Владимир (конспектор)

t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com

Лимар Иван Александрович (лектор) https://t.me/limvan

21 февраля 2023 г.

## Оглавление

| Оглавление |                                       | 2 |
|------------|---------------------------------------|---|
| 0.1        | Как работать с этим сжатым конспектом | 3 |
| 0.2        | Определения                           | 5 |

ОГЛАВЛЕНИЕ 3

## 0.1. Как работать с этим сжатым конспектом

Составлено в соответствии с лекциями весны 2023

## 0.2. Определения

**Определение** (Веростностное пространство). Это пространство с *вероятностной* (то есть P(X)=1) мерой: мера должна быть счётно-аддитивной функцией  $2^X \to [0,\infty)$  на  $\sigma$ -алгебре.

Используется «птичий язык»:

$$AB \stackrel{\text{def}}{=} A \cap B$$
$$A + B \stackrel{\text{def}}{=} A \cup B$$
$$\overline{A} \stackrel{\text{def}}{=} A^{\complement}$$

Почему определяем на какой-то странной сигма-алгебре, а не на полной  $(2^X)$ ?

В случае с  $\mathbb{R}^n$  — на всём не получится сделать адекватную меру, так как, например, если в  $\mathbb{R}$  объявим  $\mu[0,1]=1$ , то множество Витали будет неизмеримо.

(Вспомним из матана, что вообще любая мера, инвариантая относительно сдвига, на той же сигма-алгебре — в константу раз отличается от меры Лебега).

**Определение** (Вероятностное пространство *в широком смысле*). Теперь работаем в алгебре, а мера — счётно-дизъюнктно аддитивна на множествах, объединение которых уже лежит в алгебре.

**Теорема 1** (Единственность стандартного распространения). *...веростностной меры с веростностного пространства в широком смысле на вероятностное пространство в обычном, а именно — на .* 

$$igg|$$
Доказательство. Как легко видеть,  $igg| \bigoplus_{k \in S} \left( \mathfrak{K}^{\mathbb{F}^{lpha}(i)} \right)_{i \in \mathcal{U}_k} igg| \preccurlyeq \aleph_1$  при  $[\mathfrak{H}]_{\mathcal{W}} \cap \mathbb{F}^{lpha}(\mathbb{N}) 
eq \emptyset$ .

Замечание. Из матана известно, что достаточно потребовать первоначальное задание меры на полукольце и сигма-конечности, чтобы она совпадала со стандартным распространением на сигма-алгебре измеримых.

Пример. Примеры веростностных пространств:

- 1. Дискретное: состоит из элементарных исходов, у каждого вес.  $\mathbb{A}=2^{\Omega}$ ,  $P(A)=\sum_{w\in A}w$ 
  - а) Броски монеты до первого орла
  - b) Модель классической вероятности:  $\forall i: w_i = \frac{1}{n}$ . Колчичество элементарных исходов в событии считается комбинаторикой. Пример: шарики и перегородки кодируют k-элементные мультимножества n объектов или же n-кортежи длины k.

ОГЛАВЛЕНИЕ 4

2. Геометрическая вероятность.  $\Omega\subset\mathbb{R}^n,\Omega\in\mathbb{A}_n$ ,  $P(A)=\frac{P(A)}{P(\Omega)}$ . Пример: вычисление  $\pi$  Монте-Карловскими бросками иголки (считаем меру допустимого множества, интегрируя его сечение по проекции).

Свойство 0.2.1 (Элементарные свойства веростности). • Монотонность

• 
$$P(\overline{A}) = 1 - P(A)$$

- Включения-исключения
- Полуаддитивность



**Теорема 2** (Равносильность непрерывности и счётной аддитивности объёма). *Утверждения равносильны:* 

- 1. *P* мера
- 2. P объём, непрерывный снизу
- 3. Р объём, непрерывный сверху

Доказательство.  $2 \Leftrightarrow 3$ : инвертируем.

 $(2,3)\Leftrightarrow 1$ : разбиваем на кольца, остаток сходящегося ряда  $\to 0$ .