Tidy Data with

- 1. Open 03-Tidy.Rmd
- 2. Run the setup chunk

Tidy Data

A data set is **tidy** iff:

- 1. Each variable is in its own column
- 2. Each case is in its own row
- 3. Each value is in its own cell

table1 is tidy

The data is a subset of the data contained in the World Health Organization Global Tuberculosis Report

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

6 rows

Tidy data is easy to manipulate

The data is a subset of the data contained in the World Health Organization Global Tuberculosis Report

country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>	rate <dbl></dbl>
Afghanistan	1999	745	19987071	0.0000372741
Afghanistan	2000	2666	20595360	0.0001294466
Brazil	1999	37737	172006362	0.0002193930
Brazil	2000	80488	174504898	0.0004612363
China	1999	212258	1272915272	0.0001667495
China	2000	213766	1280428583	0.0001669488

6 rows

table1 %>%
mutate(rate = cases/population)

table2 isn't tidy

contains two
variables

country <chr></chr>	year type <int> <chr></chr></int>	count <int></int>
Afghanistan	1999 cases	745
Afghanistan	1999 population	19987071
Afghanistan	2000 cases	2666
Afghanistan	2000 population	20595360
Brazil	1999 cases	37737
Brazil	1999 population	172006362
Brazil	2000 cases	80488
Brazil	2000 population	174504898
China	1999 cases	212258
China	1999 population	1272915272
1-10 of 12 rows		Previous

It's hard to manipulate

Is bp_systolic tidy? What are the variables?

subject_id <dbl></dbl>	time_1 <dbl></dbl>	time_2 <dbl></dbl>	time_3 <dbl></dbl>	
1	120	118	121	
2	125	131	NA	
3	141	NA	NA	

Is bp_systolic tidy? What are the variables?

	subject_id <dbl></dbl>	time_1 <dbl></dbl>	time_2 <dbl></dbl>	time_3 <dbl></dbl>	Æ. ∧ ×
	1	120	118	121	
	2	125	131	NA	
	3	141	NA	NA	
3 rows				Variables:	
				subject	
				time	
				 systolic block 	ood pressure

bp_systolic2 is tidy

subject_id <dbl></dbl>	time <dbl></dbl>	systolic <dbl></dbl>
1	1	120
1	2	118
1	3	121
2	1	125
2	2	131
3	1	141

6 rows

Using bp_systolic2 with group_by(), and summarise():

- Find the average systolic blood pressure for each subject
- Find the last time each subject was measured

```
bp_systolic2 %>%
  group_by(subject_id) %>%
  summarise(avg_sys = mean(systolic),
  last_measurement = max(time))
```

subject_id <dbl></dbl>	avg_sys <dbl></dbl>	last_measurement <dbl></dbl>
1	119.6667	3
2	128.0000	2
3	141.0000	1

tidyr

A tidyverse package that reshapes the layout of tabular data.

tidyr verbs

Move values into column names with spread()

Move column names into values with gather()

Split a column with separate() or separate_rows()

Unite columns with unite()

gather()

Toy Data

```
01-Reshaping-Data.Rmd *
1 - ---
  2 title: "Reshaping Data"
  3 output: html_notebook
  6 - ```{r setup}
                           cases <- tribble(</pre>
  7 library(tidyverse)
    # Toy data
                              ~Country, ~"2011", ~"2012", ~"2013",
    cases <- tribble(</pre>
      ~Country, ~"2011", ~"2012"
 11
                                     "FR",
                                                   7000,
                                                                  6900,
                                                                                  7000,
 12
                7000,
                      6900
 13
         "DE",
                5800,
                                     "DE",
                                                                                 6200,
                                                    5800, 6000,
 14
         "US", 15000,
 15
                                     "US",
                                                  15000,
                                                                 14000,
                                                                                13000
 16
    pollution <- tribble(</pre>
 17
 18
          ~city, ~size, ~amour
      "New York", "large",
 19
      "New York", "small",
 20
 21
      "London", "large",
                          22,
      "London", "small",
 22
                         16,
 23
      "Beijing", "large",
                         121,
 24
       "Beijing", "small",
 25 )
 26
 27
 28 bp_systolic <- tribble(</pre>
     ~ subject_id, ~ time_1, ~ time_2, ~ time_3,
 30
              1, 120,
                            118,
                                    121,
```

Quiz

What are the variables in cases?

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Quiz

What are the variables in cases?

- Country
- Year
- Count

On a sheet of paper, draw how the cases data set would look if it had the same values grouped into three columns: country, year, n

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country
FR

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

	_			
13		Country	Year	n
00		FR	2011	7000
00		DE	2011	5800
000				

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Ygar	
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DΞ	2012	6000
US	2012	14000
FR	2013	7000
	2013	6200
	2013	13000

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Country	Year	n
FR	2011	7000
DE	2011	5800
US	2011	15000
FR	2012	6900
DE	2012	6000
US	2012	14000
FR	2013	7000
DE	2013	6200
US	2013	13000

Countr	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

1 2

Country	Year	n	
FR	2011	7000	
DE	2011	5800	
US	2011	15000	
FR	2012	6900	
DE	2012	6000	
US	2012	14000	
FR	2013	7000	
DE	2013	6200	
US	2013	13000	

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

key (former column names)

Country	Year	n	
FR	2011	7000	
DE	2011	5800	
US	2011	15000	
FR	2012	6900	
DE	2012	6000	
US	2012	14000	
FR	2013	7000	
DE	2013	6200	
US	2013	13000	

Country	2011	2012	2013
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

key value (former cells)

Country	Year	n	
FR	2011	7000	
DE	2011	5800	
US	2011	15000	
FR	2012	6900	
DE	2012	6000	
US	2012	14000	
FR	2013	7000	
DE	2013	6200	
US	2013	13000	

gather()

```
cases %>% gather(key = "year", value = "n", 2:4)
```

data frame to reshape

name of the new key column

(a character string)

name of the new value column

(a character string)

numeric indexes of columns to collapse

(or names)

gather()

cases %>% gather("year", "n", 2:4)

numeric indexes

Country <chr></chr>	2 2011 <dbl></dbl>	2012 <dbl></dbl>	2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

gather()

cases %>% gather("year","n", "2011", "2012", "2013") names 2011 2012 2013 2011 2012 2013 Country <dbl> <dbl> <chr> <dbl> FR 7000 6900 7000 DE 5800 6000 6200 13000 US 15000 14000

gather()

```
cases %>% gather("year","n", -Country)
```

Everything except...

Country <chr></chr>	Not Country 2011 <dbl></dbl>	Not Country 2012 <dbl></dbl>	Not Country 2013 <dbl></dbl>
FR	7000	6900	7000
DE	5800	6000	6200
US	15000	14000	13000

Your Turn 4

Use **gather()** to reorganize **table4a** into three columns: country, year, and cases.

	country <chr></chr>	1999 <int></int>	2000 <int></int>
1	Afghanistan	745	2666
2	Brazil	37737	80488
3	China	212258	213766

table4a %>%
 gather(key = "year", value = "n", 2:3)

country <chr></chr>	year <chr></chr>	n <int></int>
Afghanistan	1999	745
Brazil	1999	37737
China	1999	212258
Afghanistan	2000	2666
Brazil	2000	80488
China	2000	213766

6 rows

table4a %>%
gather(key = "year", value = "n", 2:3, convert = TRUE)

country <chr></chr>	year <int></int>	n <int></int>	
Afghanistan	1999	745	
Brazil	1999	37737	
China	1999	212258	
Afghanistan	2000	2666	
Brazil	2000	80488	
China	2000	213766	

6 rows

spread()

Toy Data

```
☐ ABC Question | Preview + ② + ② Insert + □ □ □ Run + □ → □ ...
  2 title: "Tidy Data"
  3 output: html_notebook
  6 - ```{r setup}
  7 library(tidyverse)
  8 library(babynames)
                        pollution <- tribble(</pre>
 10 # Toy data
                                    ~city, ~size, ~amount,
 11 cases <- tribble(</pre>
      ~Country, ~"2011",
         "FR", 7000,
                            "New York", "large",
                                                                        23,
  14
               5800,
         "US", 15000,
                            "New York", "small",
                                                                        14,
  16
  17
                               "London", "large",
     pollution <- tribble(
                                                                        22,
 19
         ~city, ~size,
      "New York", "large",
                               "London", "small",
                                                                        16,
      "New York", "small",
       "London", "large",
                              "Beijing", "large",
                                                                        121,
       "London", "small",
       "Beijing", "large",
  25
       "Beijing", "small",
                             "Beijing", "small",
                                                                        56
 26
  27
 28 x <- tribble(
      ~x1, ~x2,
 33 "D", 3,
 35 )
1:1 Garage Tidy Data $
                                             R Markdown $
```

Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

Quiz

What are the variables in pollution?

city	particle size	amount (µg/m³)
New York	large	> 23 A
New York	small	14
Lordon	large	>22
Lordon	small	16
Beling	large	121
Beying	small	56

- City
- Amount of large particulate
- Amount of small particulate

Your Turn 5

On a sheet of paper, draw how this data set would look if it had the same values grouped into three columns: *city*, *large*, *small*

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
------	-------	-------

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New Yor	23	14
London	22	16
Beijing	121	56

key (new column names)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

key value (new cells)

city	size	amount
New York	large	23
New York	small	14
London	large	22
London	small	16
Beijing	large	121
Beijing	small	56

city	large	small
New York	23	14
London	22	16
Beijing	121	56

spread()

```
pollution %>% spread(key = size, value = amount)
```

data frame to reshape

column to use for keys
(becomes new
column names)

column to use for values

(becomes new column cells)

pollution %>% spread(size, amount)

```
city large small
      city size amount
                                                         56
                                       Beijing
                                                 121
                     23
1 New York large
                                                  22
                                                        16
                                        London
                     14
2 New York small
                                    3 New York 23
                                                        14
                     22
   London large
                     16
   London small
                    121
  Beijing large
   Beijing small
                     56
```


Your Turn 6

Use **spread()** to reorganize **table2** into four columns: *country*, *year*, *cases*, and *population*.

			a 众 ×
country <chr></chr>	year type <int> <chr></chr></int>	count <int></int>	
Afghanistan	1999 cases	745	
Afghanistan	1999 population	19987071	
Afghanistan	2000 cases	2666	
Afghanistan	2000 population	20595360	
Brazil	1999 cases	37737	
Brazil	1999 population	172006362	

table2 %>%

spread(key = type, value = count)

	country <chr></chr>	year <int></int>	cases <int></int>	population <int></int>
1	Afghanistan	1999	745	19987071
2	Afghanistan	2000	2666	20595360
3	Brazil	1999	37737	172006362
4	Brazil	2000	80488	174504898
5	China	1999	212258	1272915272
6	China	2000	213766	1280428583

6 rows

Reshaping verbs in tidyr

Move values into column names with spread()

Move column names into values with gather()

Split a column with separate() or separate_rows()

Unite columns with unite()

Tidy Data with

