Lineární algebra

Báze a souřadnice

Matěj Dostál

ČVUT v Praze

21. října 2024

Základní souřadnicové úlohy

V prostoru \mathbb{R}^2 nad \mathbb{R} máme dánu (uspořádanou) bázi

$$B=\left(\begin{pmatrix}2\\1\end{pmatrix},\begin{pmatrix}2\\2\end{pmatrix}\right).$$

- 1. Pro vektor $\mathbf{v} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$ zjistěte jeho souřadnice vzhledem k bázi B, tedy zjistěte $\mathbf{coord}_B(\mathbf{v})$.
- 2. O vektoru **w** víte, že $\mathbf{coord}_B(\mathbf{w}) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Spočtěte **w**.

Souřadnicová vlastnost a báze

V prostoru \mathbb{R}^2 nad \mathbb{R} je dán seznam vektorů $B=(\mathbf{b}_1,\mathbf{b}_2)$. *Nevíme* o něm, zda je to báze \mathbb{R}^2 . Naopak víme, že pro každý vektor $\mathbf{v}\in\mathbb{R}^2$ existuje právě jedna dvojice skalárů $a_1,a_2\in\mathbb{R}$ taková, že

$$a_1\mathbf{b}_1+a_2\mathbf{b}_2=\mathbf{v}.$$

Ukažte, že z této vlastnosti plyne, že B je báze \mathbb{R}^2 .

Exchange lemma

Nechť $B=(\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3)$ je báze prostoru \mathbb{R}^3 nad \mathbb{R} . Ukažte, že pro vektor $\mathbf{v}\in\mathbb{R}^3$ se souřadnicemi

$$\mathbf{coord}_B(\mathbf{v}) = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

platí následující tvrzení:

Seznam $(\mathbf{b}_1, \mathbf{b}_2, \mathbf{v})$ je bází \mathbb{R}^3 právě tehdy, když $v_3 \neq 0$.

Dostali jste seznam k vektorů z lineárního prostoru \mathbb{R}^n nad \mathbb{R} . Pro každou z variant

- ▶ k < n</p>
- ightharpoonup k = n
- k > n

rozhodněte, zda následující tvrzení musí platit, může platit či nemůže platit:

- 1. Daný seznam je lineárně nezávislý.
- 2. Daný seznam generuje \mathbb{R}^n .
- 3. Daný seznam je bází \mathbb{R}^n .

Své tvrzení neformálně zdůvodněte.

Seznam vektorů $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, kde

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix},$$

tvoří bázi \mathbb{R}^3 nad \mathbb{R} .

- 1. Promyslete, jak dokázat, že daný seznam skutečně tvoří bázi \mathbb{R}^3 .
- 2. Každý z vektorů **u**, **v** a **w**

$$\mathbf{u} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

lze zapsat jako lineární kombinaci vektorů \mathbf{v}_1 , \mathbf{v}_2 a \mathbf{v}_3 . Spočtěte tyto lineární kombinace.

Spojení a součet lineárních podprostorů

Ať W_1, W_2 jsou lineární podprostory L nad \mathbb{F} . Spojení $W_1 \vee W_2$ je definováno jako span $(W_1 \cup W_2)$. Součet $W_1 + W_2$ je definován jako $\{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}$. Ukažte, že

$$W_1 \vee W_2 = W_1 + W_2.$$