Mathematical Preliminaries

Yinyu Ye

Department of Management Science and Engineering

Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Vectors and Norms

- Real numbers: \mathcal{R} , \mathcal{R}_+ , int \mathcal{R}_+
- n-dimensional Euclidean space \mathbb{R}^n , \mathbb{R}^n_+ , int \mathbb{R}^n_+
- Component-wise: $\mathbf{x} \geq \mathbf{y}$ means $x_j \geq y_j$ for j = 1, 2, ..., n
- 0: vector of all zeros; and e: vector of all ones
- Inner-product of two vectors:

$$\mathbf{x} \bullet \mathbf{y} := \mathbf{x}^T \mathbf{y} = \sum_{j=1}^n x_j y_j$$

• Euclidean norm: $\|\mathbf{x}\|_2 = \sqrt{\mathbf{x}^T \mathbf{x}}$, Infinity-norm: $\|\mathbf{x}\|_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\}$, p-norm: $\|\mathbf{x}\|_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$

- The dual of the p norm, denoted by $\|.\|^*$, is the q norm, where $\frac{1}{p}+\frac{1}{q}=1$
- Column vector:

$$\mathbf{x} = (x_1; x_2; \dots; x_n)$$

Row vector:

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

- Transpose operation: A^T
- A set of vectors $\mathbf{a}_1,...,\mathbf{a}_m$ is said to be linearly dependent if there are scalars $\lambda_1,...,\lambda_m$, not all zero, such that the linear combination

$$\sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}$$

ullet A linearly independent set of vectors that span \mathbb{R}^n is a basis.

Hyper plane and Half-spaces

$$H = \{\mathbf{x} : \mathbf{a}\mathbf{x} = \sum_{j=1}^{n} a_j x_j = b\}$$

$$H^+ = \{ \mathbf{x} : \mathbf{a}\mathbf{x} = \sum_{j=1}^n a_j x_j \le b \}$$

$$H^- = \{ \mathbf{x} : \mathbf{a}\mathbf{x} = \sum_{j=1}^n a_j x_j \ge b \}$$

Figure 1: Plane and Half-Spaces

System of Linear Equations

Solve for $\mathbf{x} \in \mathcal{R}^n$ from:

$$\mathbf{a}_{1}\mathbf{x} = b_{1}$$

$$\mathbf{a}_{2}\mathbf{x} = b_{2}$$

$$\cdots \cdot \cdot \cdot$$

$$\mathbf{a}_{m}\mathbf{x} = b_{m}$$

$$\Rightarrow A\mathbf{x} = \mathbf{b}$$

Figure 2: System of Linear Equations

Fundamental theorem of linear equations

Theorem 1 Let $A \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. The system $\{\mathbf{x} : A\mathbf{x} = \mathbf{b}\}$ has a solution if and only if that $A^T\mathbf{y} = \mathbf{0}$ and $\mathbf{b}^T\mathbf{y} \neq 0$ has no solution.

A vector \mathbf{y} , with $A^T\mathbf{y} = 0$ and $\mathbf{b}^T\mathbf{y} \neq 0$, is called an infeasibility certificate for the system.

It is also called the alternative system theorem, that is, exactly one of the two systems, $\{\mathbf{x}: A\mathbf{x} = \mathbf{b}, \}$ and $\{\mathbf{y}: A^T\mathbf{y} = \mathbf{0}, \ \mathbf{b}^T\mathbf{y} \neq 0\}$, is feasible.

Example Let A=(1;-1) and $\mathbf{b}=(1;1).$ Then, $\mathbf{y}=(1/2;1/2)$ is an infeasibility certificate.

Gaussian elimination method

$$\begin{pmatrix} a_{11} & A_{1.} \\ 0 & A' \end{pmatrix} \begin{pmatrix} x_1 \\ x' \end{pmatrix} = \begin{pmatrix} b_1 \\ b' \end{pmatrix}.$$

$$A = L \begin{pmatrix} U & C \\ 0 & 0 \end{pmatrix}$$

Matrices and Norms

- Matrix: $\mathbb{R}^{m \times n}$, ith row: a_i , jth column: a_{ij} , ijth element: a_{ij}
- A_I denotes the submatrix of A whose rows belong to index set I, A_J denotes the submatrix whose columns belong to index set J, A_{IJ} denotes the submatrix whose rows belong to index set I and columns belong to index set J.
- Determinant: det(A), Trace: tr(A)
- The operator norm of ||A||,

$$||A||^2 := \max_{0 \neq x \in \mathcal{R}^n} \frac{||Ax||^2}{||x||^2}$$

- All-zero matrix: 0, and identity matrix: I
- Diagonal matrix: $X = diag(\mathbf{x})$

- Symmetric matrix: $Q = Q^T$
- Positive Definite: $Q \succ 0$ iff $\mathbf{x}^T Q \mathbf{x} > 0$, for all $\mathbf{x} \neq \mathbf{0}$
- Positive Semidefinite: $Q \succeq 0$ iff $\mathbf{x}^T Q \mathbf{x} \geq 0$, for all \mathbf{x}
- Null space: $\mathcal{N}(A)$, Range space: $\mathcal{R}(A)$:

Theorem 2 The null space and range space of a matrix are perpenticular to each other.

Symmetric Matrix Space

- n-dimensional symmetric matrix space: \mathcal{M}^n
- Inner Product:

$$X \bullet Y = \mathrm{tr} X^T Y = \sum_{i,j} X_{i,j} Y_{i,j}$$

Frobenius norm:

$$||X||_f = \sqrt{\operatorname{tr} X^T X}$$

• Positive semidefinite matrix set: \mathcal{M}^n_+ , Positive definite matrix set: $\operatorname{int} \mathcal{M}^n_+$

Affine and Convex Combination

 $S \subset \mathbb{R}^n$ is affine if

$$[\mathbf{x}, \mathbf{y} \in S \text{ and } \alpha \in R] \Longrightarrow \alpha x + (1 - \alpha)y \in S.$$

When ${\bf x}$ and ${\bf y}$ are two distinct points in R^n and α runs over R ,

$$\{\mathbf{z} : \mathbf{z} = \alpha \mathbf{x} + (1 - \alpha) \mathbf{y}\}\$$

is the line set determined by x and y.

When $0 \le \alpha \le 1$, it is called the convex combination of \mathbf{x} and \mathbf{y} and it is the line segment between \mathbf{x} and \mathbf{y} .

Convex Sets

- Set notations: $x \in \Omega$, $y \notin \Omega S \cup T$, $S \cap T$
- Ω is said to be a convex set if for every $\mathbf{x}^1, \mathbf{x}^2 \in \Omega$ and every real number $\alpha \in [0,1]$, the point $\alpha \mathbf{x}^1 + (1-\alpha)\mathbf{x}^2 \in \Omega$.
- \bullet The convex hull of a set Ω is the intersection of all convex sets containing Ω
- Intersection of convex sets is convex

Proof of convex set

- All solutions to the system of linear equations, $\{x: Ax = b\}$, form a convex set.
- All solutions to the system of linear inequalities,

$$\{\mathbf{x}: A\mathbf{x} \leq \mathbf{b}\}$$

, form a convex set.

- All solutions to the system of linear equations and inequalities, $\{x: Ax = b, x \geq 0\}$, form a convex set.
- Ball is a convex set: for $\mathbf{y} \in \mathcal{R}^n$ and r > 0,

$$B(\mathbf{y}, r) = \{\mathbf{x} : \|\mathbf{x} - \mathbf{y}\| \le r\}$$

Ellipsoid is a convex set: for a positive definite matrix Q,

$$E(\mathbf{y}, Q) = \{\mathbf{x} : (\mathbf{x} - \mathbf{y})^T Q(\mathbf{x} - \mathbf{y}) \le 1\}$$

More proof of convex set

Consider the set B of all b, for fixed A and c, such that the following linear program is feasible:

minimize
$$\mathbf{c}^T\mathbf{x}$$
 subject to $A\mathbf{x} = \mathbf{b},$ $\mathbf{x} \geq \mathbf{0}.$

Show that B is a convex set.

Convex Cones

- A set C is a cone if $\mathbf{x} \in C$ implies $\alpha \mathbf{x} \in C$ for all $\alpha > 0$
- A convex cone is cone plus convex-set.
- Dual cone:

$$C^* := \{ \mathbf{y} : \mathbf{y} \bullet \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \in C \}$$

 $-C^*$ is also called the polar of C.

Cone Examples

- Example 2.1: The n-dimensional non-negative orthant, $\mathcal{R}^n_+ = \{\mathbf{x} \in \mathcal{R}^n : \mathbf{x} \geq \mathbf{0}\}$, is a convex cone.
- Example 2.2: The set of all positive semi-definite matrices in \mathcal{M}^n , \mathcal{M}^n_+ , is a convex cone, called the positive semi-definite matrix cone
- Example 2.3: The set $\{(t; \mathbf{x}) \in \mathcal{R}^{n+1} : t \ge ||\mathbf{x}|| \}$ is a convex cone in \mathcal{R}^{n+1} , called the second-order cone.
- Example 2.4: The set $\{(t; \mathbf{x}) \in \mathcal{R}^{n+1} : t \ge ||\mathbf{x}||_p\}$ is a convex cone in \mathcal{R}^{n+1} , called the p-order cone.

Polyhedral Convex Cones

 \bullet A cone C is (convex) polyhedral if C can be represented by

$$C = \{ \mathbf{x} : A\mathbf{x} \le 0 \}$$

for some matrix A.

Figure 3: Polyhedral and non-polyhedral cones.

• The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.

Real Functions

- Continuous functions *C*
- Weierstrass theorem: a continuous function $f(\mathbf{x})$ defined on a compact set (bounded and closed) $\Omega \subset \mathcal{R}^n$ has a minimizer in Ω .
- ullet The least upper bound or supremum of f over Ω

$$\sup\{f(\mathbf{x}): \mathbf{x} \in \Omega\}$$

and the greatest lower bound or infimum of f over $\boldsymbol{\Omega}$

$$\inf\{f(\mathbf{x}): \mathbf{x} \in \Omega\}$$

• A function $f(\mathbf{x})$ is called homogeneous of degree k if $f(\alpha \mathbf{x}) = \alpha^k f(\mathbf{x})$ for all $\alpha \geq 0$.

Let $\mathbf{c} \in \mathcal{R}^n$ be given and $\mathbf{x} \in \operatorname{int} \mathcal{R}^n_+$. Then $\mathbf{c}^T \mathbf{x}$ is homogeneous of

degree 1 and

$$\phi(\mathbf{x}) = n \log(\mathbf{c}^T \mathbf{x}) - \sum_{j=1}^n \log x_j$$

is homogeneous of degree 0.

Let $C \in \mathcal{M}^n$ be given and $X \in \operatorname{int} \mathcal{M}^n_+$. Then $\mathbf{x}^T C \mathbf{x}$ is homogeneous of degree 2, $C \bullet X$ and $\det(X)$ are homogeneous of degree 1 and n, respectively; and

$$\Phi(X) = n \log(C \bullet X) - \log \det(X)$$

is homogeneous of degree 0.

• The gradient vector C^1 :

$$\nabla f(\mathbf{x}) = \{\partial f/\partial x_i\}, \text{ for } i = 1, ..., n.$$

• The Hessian matrix C^2 :

$$\nabla^2 f(\mathbf{x}) = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\} \quad \text{for} \quad i = 1, ..., n; \ j = 1, ..., n.$$

- Vector function: $\mathbf{f} = (f_1; f_2; ...; f_m)$
- The Jacobian matrix of f is

$$abla \mathbf{f}(\mathbf{x}) = \left(egin{array}{c}
abla f_1(\mathbf{x}) \\
abla f_2(\mathbf{x}) \\
abla f_m(\mathbf{x}) \end{array}
ight).$$

Convex Functions

• f convex function iff for $0 \le \alpha \le 1$,

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).$$

ullet The level set of convex function f

$$L(z) = \{ \mathbf{x} : f(\mathbf{x}) \le z \}$$

is a convex set.

Proof of convex function

Consider the minimal-objective function of ${\bf b}$ for fixed A and ${\bf c}$:

$$z(\mathbf{b}) :=$$
 minimize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b},$ $\mathbf{x} \geq \mathbf{0}.$

Show that $z(\mathbf{b})$ is a convex function in \mathbf{b} for all feasible \mathbf{b} .

Theorems on functions

Taylor's theorem or the mean-value theorem:

Theorem 3 Let $f \in C^1$ be in a region containing the line segment $[\mathbf{x}, \mathbf{y}]$. Then there is a α , $0 \le \alpha \le 1$, such that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})(\mathbf{y} - \mathbf{x}).$$

Furthermore, if $f \in C^2$ then there is a α , $0 \le \alpha \le 1$, such that

$$f(\mathbf{y}) = f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x}) + (1/2)(\mathbf{y} - \mathbf{x})^T \nabla^2 f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y})(\mathbf{y} - \mathbf{x}).$$

Theorem 4 Let $f \in C^1$. Then f is convex over a convex set Ω if and only if

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in \Omega$.

Theorem 5 Let $f \in C^2$. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is positive semi-definite throughout Ω .

Known Inequalities

- Cauchy-Schwarz: given $\mathbf{x}, \mathbf{y} \in \mathcal{R}^n$, $\mathbf{x}^T \mathbf{y} \leq \|\mathbf{x}\| \|\mathbf{y}\|$.
- Arithmetic-geometric mean: given x > 0,

$$\frac{\sum x_j}{n} \ge \left(\prod x_j\right)^{1/n}.$$

• Harmonic: given x > 0,

$$\left(\sum x_j\right)\left(\sum 1/x_j\right) \ge n^2.$$

Linear least-squares problem

Given $A \in \mathbb{R}^{m \times n}$ and $\mathbf{c} \in \mathbb{R}^n$,

$$(LS) \quad \text{minimize} \quad \|A^T\mathbf{y} - \mathbf{c}\|^2$$
 subject to $\quad \mathbf{y} \in \mathcal{R}^m.$

$$AA^T\mathbf{y} = A\mathbf{c}$$
 or $\mathbf{y} = (AA^T)^{-1}A\mathbf{c}$

with the projection:

$$A^T \mathbf{y} = A^T (AA^T)^{-1} A\mathbf{c}$$

Projection matrix:
$$P = A^T (AA^T)^{-1} A$$
 or $P = I - A^T (AA^T)^{-1} A$

Figure 4: Projection of ${\bf c}$ onto a subspace

Choleski decomposition method

$$AA^T = L\Lambda L^T$$

$$L\Lambda L^T y^* = Ac$$

Solving ball-constrained linear problem

$$(BP)$$
 minimize $\mathbf{c}^T\mathbf{x}$ subject to
$$A\mathbf{x}=0, \ \|\mathbf{x}\|^2 \leq 1,$$

 \mathbf{x}^* minimizes (BP) if and only if there always exists a \mathbf{y} such that they satisfy

$$AA^Ty = Ac,$$

and if $c - A^T y \neq 0$ then

$$\mathbf{x}^* = -(\mathbf{c} - A^T \mathbf{y}) / \|\mathbf{c} - A^T \mathbf{y}\|;$$

otherwise any feasible \mathbf{x} is a solution.

Solving ball-constrained linear problem

$$(BD) \quad \text{minimize} \quad \mathbf{b}^T \mathbf{y}$$

$$\text{subject to} \quad \|A^T \mathbf{y}\|^2 \leq 1.$$

The solution y^* for (BD) is given as follows: Solve

$$AA^T\bar{\mathbf{y}} = b$$

and if $ar{\mathbf{y}}
eq \mathbf{0}$ then set

$$\mathbf{y}^* = -\bar{\mathbf{y}}/\|A^T\bar{\mathbf{y}}\|;$$

otherwise any feasible y is a solution.

System of nonlinear equations

Given $f(x): \mathbb{R}^n \to \mathbb{R}^n$, the problem is to solve n equations for n unknowns:

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}.$$

Given a point \mathbf{x}^k , Newton's Method sets

$$f(\mathbf{x}) \simeq f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)(\mathbf{x} - \mathbf{x}^k) = \mathbf{0}.$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - (\nabla f(\mathbf{x}^k))^{-1} f(\mathbf{x}^k)$$

or solve for direction vector \mathbf{d}_x :

$$\nabla f(\mathbf{x}^k)\mathbf{d}_x = -f(\mathbf{x}^k)$$
 and $\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{d}_x$.

Figure 5: Newton's method for root finding

The quasi Newton method

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha(\nabla f(\mathbf{x}^k))^{-1} f(\mathbf{x}^k)$$

where scalar $\alpha \geq 0$ is called step-size. More generally

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha M^k f(\mathbf{x}^k)$$

where M^k is an $n \times n$ symmetric matrix. In particular, if $M^k = I$, the method is called the gradient method, where f is viewed as the gradient vector of a real function.

Convergence and Big O

- $\bullet \ \{\mathbf{x}^k\}_0^\infty$ denotes a seqence $\mathbf{x}^0,\mathbf{x}^1,\mathbf{x}^2,...,\mathbf{x}^k,....$
- ullet $\mathbf{x}^k
 ightarrow ar{\mathbf{x}}$ iff

$$\|\mathbf{x}^k - \bar{\mathbf{x}}\| \to 0$$

- $g(x) \ge 0$ is a real valued function of a real nonnegative variable, the notation g(x) = O(x) means that $g(x) \le \bar{c}x$ for some constant \bar{c} ;
- $g(x) = \Omega(x)$ means that $g(x) \ge \underline{c}x$ for some constant \underline{c} ;
- $g(x) = \theta(x)$ means that $\underline{c}x \leq g(x) \leq \overline{c}x$.
- \bullet g(x) = o(x) means that g(x) goes to zero faster than x does:

$$\lim_{x \to 0} \frac{g(x)}{x} = 0$$