Implementación Digital y Sintonización de Controladores en Tiempo Discreto

Andrés Mora 1

¹Universidad Técnica Federico Santa María, Valparaíso, Chile

Primavera 2019

Contents

- 📵 Implementación Digital de Controladores Utilizando PWM
 - Implementación Digital [1]
 - The Pulse-Transfer Function [2]
- oxtime2 Sintonización de Controladores en Dominio z
 - Lazo de Corriente
 - Lazo de Velocidad
- References

Contents

- 1 Implementación Digital de Controladores Utilizando PWM
 - Implementación Digital [1]
 - The Pulse-Transfer Function [2]
- $oxed{2}$ Sintonización de Controladores en Dominio z
 - Lazo de Corriente
 - Lazo de Velocidad
- References

- La planta esta constituida por el convertidor, el sistema y el filtro pasabajos para evitar *aliasing*.
- El modulador no solo se utiliza para sintetizar la tensión deseada, sino que también para sincronizar todo el proceso digital (mediciones, ejecución de algoritmos y calculo de actuaciones).
- ullet Define frecuencia de muestreo $f_{
 m s}$ (relacionada con frecuencia de *carrier* $f_{
 m cr}$)
- Se requiere conocer modelo discreto de la planta vista por el procesador H(z).

- La planta esta constituida por el convertidor, el sistema y el filtro pasabajos para evitar *aliasing*.
- El modulador no solo se utiliza para sintetizar la tensión deseada, sino que también para sincronizar todo el proceso digital (mediciones, ejecución de algoritmos y calculo de actuaciones).
- ullet Define frecuencia de muestreo $f_{
 m s}$ (relacionada con frecuencia de *carrier* $f_{
 m cr}$)
- Se requiere conocer modelo discreto de la planta vista por el procesador H(z).

- La planta esta constituida por el convertidor, el sistema y el filtro pasabajos para evitar *aliasing*.
- El modulador no solo se utiliza para sintetizar la tensión deseada, sino que también para sincronizar todo el proceso digital (mediciones, ejecución de algoritmos y calculo de actuaciones).
- ullet Define frecuencia de muestreo $f_{
 m s}$ (relacionada con frecuencia de *carrier* $f_{
 m cr}$)

- Muestreo y cómputo no puede realizarse en un tiempo igual a cero.
- La actuación se almacena en un
- Sistema digital inherentemente

- La actuación que se aplica durante $k+1 < t \le k+2$ se determina con las
- Esto se modela como un retardo de transporte e^{-sh} que en el plano z es
- Se define $z \triangleq e^{sh}$.

- Muestreo y cómputo no puede realizarse en un tiempo igual a cero.
- La actuación se almacena en un registro a la espera de la siguiente interrupción.
- Sistema digital inherentemente incorpora un retardo asociado al periodo de muestreo $T_{\rm s}$.

- La actuación que se aplica durante $k+1 < t \le k+2$ se determina con las mediciones realizadas en el instante k.
- \bullet Esto se modela como un retardo de transporte e^{-sh} que en el plano z es directamente $z^{-1}.$
- Se define $z \triangleq e^{sh}$.

Contents

- Implementación Digital de Controladores Utilizando PWM
 - Implementación Digital [1]The Pulse-Transfer Function [2]
- $oxed{2}$ Sintonización de Controladores en Dominio z
 - Lazo de Corriente
 - Lazo de Velocidad
- References

- Es posible diseñar controlador en tiempo continuo y luego discretizar el controlador para su implementación en tiempo discreto (dominio z).
- Para diseñar el controlador directamente en z, se requiere conocer modelo de la planta vista por el procesador H(z).
- H(z) es conocida como *Pulse-Transfer Function* (PTF) y caracteriza las respuesta discreta del sistema.
- ullet Una forma de hacerlo es calculando TZ de $\mathcal{L}^{-1}\{H_{zoh}(s)G(s)\}$ según

$$H(z) = \mathcal{Z}\left\{\frac{1 - e^{-hs}}{s}G(s)\right\} = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$$

- Es posible diseñar controlador en tiempo continuo y luego discretizar el controlador para su implementación en tiempo discreto (dominio z).
- Para diseñar el controlador directamente en z, se requiere conocer modelo de la planta vista por el procesador H(z).
- H(z) es conocida como *Pulse-Transfer Function* (PTF) y caracteriza las respuesta discreta del sistema.
- ullet Una forma de hacerlo es calculando TZ de $\mathcal{L}^{-1}ig\{H_{zoh}(s)G(s)ig\}$ según

$$H(z) = \mathcal{Z}\left\{\frac{1 - e^{-hs}}{s}G(s)\right\} = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$$

Forma analítica

$$H(z) = \mathcal{Z}\left\{\frac{1 - e^{-hs}}{s}G(s)\right\} = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$$
(1)

• Consideremos una planta de primer orden $G(s)=1/(\tau s+1)$. Entonces, según Tabla 2.3 en [3]

$$\mathcal{Z}\left\{\frac{G(s)}{s}\right\} = \frac{z}{z-1} \frac{1 - e^{-h/\tau}}{z - e^{-h/\tau}}$$

ullet De acuerdo con (1), la TF en el dominio z vista por el sistema digital es

$$\frac{1}{\tau_{s+1}} \longrightarrow H(z) = \frac{1 - e^{-h/\tau}}{z - e^{-h/\tau}}$$
 (2)

Forma analítica

$$H(z) = \mathcal{Z}\left\{\frac{1 - e^{-hs}}{s}G(s)\right\} = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}$$
(1)

• Consideremos una planta de primer orden $G(s)=1/(\tau s+1)$. Entonces, según Tabla 2.3 en [3]

$$\mathcal{Z}\left\{\frac{G(s)}{s}\right\} = \frac{z}{z-1} \frac{1 - e^{-h/\tau}}{z - e^{-h/\tau}}$$

ullet De acuerdo con (1), la TF en el dominio z vista por el sistema digital es

$$\frac{1}{\tau s + 1} \longrightarrow H(z) = \frac{1 - e^{-h/\tau}}{z - e^{-h/\tau}}$$
 (2)

- En caso de utilizar filtro antialiasing $(f_c \le f_s/2)$, este también tiene que incluirse para obtener H(z). En este caso G(s) = H(s)F(s)
- Afortunadamente, en MATLAB existe una herramienta (c2d) que permite calcular directamente H(z) a partir de G(s).
- La aproximación ZOH de un PI tiene la forma

$$C(s) = k_c \frac{(\tau_c s + 1)}{\tau_c s} \longrightarrow C(z) = k_c \frac{z - n_c}{z - 1}$$
(3)

donde $n_c = 1 - h/\tau_c$

- En caso de utilizar filtro antialiasing $(f_c \le f_s/2)$, este también tiene que incluirse para obtener H(z). En este caso G(s) = H(s)F(s)
- Afortunadamente, en MATLAB existe una herramienta (c2d) que permite calcular directamente H(z) a partir de G(s).
- La aproximación ZOH de un PI tiene la forma

$$C(s) = k_c \frac{(\tau_c s + 1)}{\tau_c s} \longrightarrow C(z) = k_c \frac{z - n_c}{z - 1}$$
(3)

donde $n_c = 1 - h/\tau_c$.

Contents

- 🚺 Implementación Digital de Controladores Utilizando PWM
 - Implementación Digital [1]
 - The Pulse-Transfer Function [2]
- oxtime 2 Sintonización de Controladores en Dominio z
 - Lazo de Corriente
 - Lazo de Velocidad
- References

- Según (2), un sistema de 1er orden muestreado con ZOH tiene una FT $H(z)=rac{n_o}{z-d_o}$, donde $d_o={
 m e}^{-h/ au_p}$ y $n_o=k_p(1-d_o)$.
- Si la frecuencia de muestreo $f_{\rm s}$ es mucho más rápida que los modos naturales más rápidos del sistema ($f_{\rm s}\gg 2\pi f_{\rm n}$).

$$H_{LC}(z) = \frac{\mathbf{k_c} n_o(z - n_c)}{z^2 + (\mathbf{k_c} n_o - d_o - 1)z + (d_o - \mathbf{k_c} n_o n_c)}$$
(4)

- La ganancia de lazo cerrado para $\omega=0$ es $H_{LC}(z=1)=1$. Entonces no hay error en estado estacionario $(\Longrightarrow r(k)=y(k))$.
- ¿Cómo ajustar k_c y n_c dados ζ , ω_n y T_s ?

- Según (2), un sistema de 1er orden muestreado con ZOH tiene una FT $H(z) = \frac{n_o}{z-d}$, donde $d_o = e^{-h/\tau_p}$ y $n_o = k_p(1-d_o)$.
- ullet Si la frecuencia de muestreo $f_{
 m s}$ es mucho más rápida que los modos naturales más rápidos del sistema $(f_s \gg 2\pi f_n)$.

$$H_{LC}(z) = \frac{\mathbf{k_c} n_o(z - n_c)}{z^2 + (\mathbf{k_c} n_o - d_o - 1)z + (d_o - \mathbf{k_c} n_o n_c)}$$
(4)

- La ganancia de lazo cerrado para $\omega = 0$ es $H_{LC}(z=1) = 1$. Entonces no hay error en estado estacionario ($\Longrightarrow r(k) = y(k)$).
- i Cómo ajustar k_c y n_c dados ζ , ω_n y T_s ?

- Según (2), un sistema de 1er orden muestreado con ZOH tiene una FT $H(z)=rac{n_o}{z-d_o}$, donde $d_o={
 m e}^{-h/ au_p}$ y $n_o=k_p(1-d_o)$.
- Si la frecuencia de muestreo $f_{\rm s}$ es mucho más rápida que los modos naturales más rápidos del sistema ($f_{\rm s}\gg 2\pi f_{\rm n}$).

$$H_{LC}(z) = \frac{\mathbf{k_c} n_o(z - n_c)}{z^2 + (\mathbf{k_c} n_o - d_o - 1)z + (d_o - \mathbf{k_c} n_o n_c)}$$
(4)

- La ganancia de lazo cerrado para $\omega=0$ es $H_{LC}(z=1)=1$. Entonces no hay error en estado estacionario $(\Longrightarrow r(k)=y(k))$.
- ullet ¿Cómo ajustar k_c y n_c dados ζ , $\omega_{
 m n}$ y $T_{
 m s}$?

FT Lazo cerrado para PI + planta primer orden

$$H_{LC}(z) = \frac{k_o(z - n_c)}{z^2 + (k_o - d_o - 1)z + (d_o - k_o n_c)}$$

• Consideremos el sistema en tiempo continuo

$$\frac{\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2} \tag{5}$$

Los polos del sistema discreto correspondiente estan dados por

$$z^2 + a_1 z + a_2 = 0 (6)$$

donde

$$a_1 = -2e^{-\zeta\omega_n T_s} \cos\left(\omega_n T_s \sqrt{1-\zeta^2}\right)$$

$$a_2 = e^{-2\zeta\omega_n T_s}$$

• Entonces los parámetros deseados serán:

$$k_c = \frac{a_1 + d_o + 1}{n_o}$$
 ; $n_c = \frac{d_o - a_2}{a_1 + d_o + 1}$ (7)

FT Lazo cerrado para PI + planta primer orden

$$H_{LC}(z) = \frac{k_o(z - n_c)}{z^2 + (k_o - d_o - 1)z + (d_o - k_o n_c)}$$

• Consideremos el sistema en tiempo continuo

$$\frac{\omega_{\rm n}^2}{s^2 + 2\zeta\omega_{\rm n}s + \omega_{\rm n}^2} \tag{5}$$

Los polos del sistema discreto correspondiente estan dados por

$$z^2 + a_1 z + a_2 = 0 (6)$$

donde

$$a_1 = -2e^{-\zeta\omega_n T_s} \cos\left(\omega_n T_s \sqrt{1-\zeta^2}\right)$$

$$a_2 = e^{-2\zeta\omega_n T_s}$$

• Entonces los parámetros deseados serán:

$$k_c = \frac{a_1 + d_o + 1}{n_o}$$
 ; $n_c = \frac{d_o - a_2}{a_1 + d_o + 1}$ (7)

Contents

- 📵 Implementación Digital de Controladores Utilizando PWM
 - Implementación Digital [1]
 - The Pulse-Transfer Function [2]
- $oxed{2}$ Sintonización de Controladores en Dominio z
 - Lazo de Corriente
 - Lazo de Velocidad
- References

Lazo de Velocidad: H(z) de un integrador

• Lazo de velocidad en FOC la planta es $G(s)=k_{\omega}/s$, donde

$$k_{\omega} = \frac{p}{J} k_T L_m i_{mr}^*$$

• Entonces, según Tabla 2.3 en [3]

$$\mathcal{Z}\left\{\frac{G(s)}{s}\right\} = \mathcal{Z}\left\{\frac{k_{\omega}}{s^2}\right\} = k_{\omega}\frac{zh}{(z-1)^2}$$

ullet De acuerdo con (1), la TF en el dominio z vista por el sistema digital de un integrador es:

$$\frac{k_{\omega}}{s} \longrightarrow H(z) = \frac{h}{z - 1} \tag{8}$$

• Notar que esta PTF tiene la misma forma que la PTF de un sistema de primer orden (2).

Lazo de Velocidad: H(z) de un integrador

• Lazo de velocidad en FOC la planta es $G(s)=k_{\omega}/s$, donde

$$k_{\omega} = \frac{p}{J} k_T L_m i_{mr}^*$$

• Entonces, según Tabla 2.3 en [3]

$$\mathcal{Z}\left\{\frac{G(s)}{s}\right\} = \mathcal{Z}\left\{\frac{k_{\omega}}{s^2}\right\} = k_{\omega}\frac{zh}{(z-1)^2}$$

ullet De acuerdo con (1), la TF en el dominio z vista por el sistema digital de un integrador es:

$$\frac{k_{\omega}}{s} \longrightarrow H(z) = \frac{h}{z - 1} \tag{8}$$

• Notar que esta PTF tiene la misma forma que la PTF de un sistema de primer orden (2).

Lazo de Velocidad

FT Lazo cerrado para PI + Integrado

$$H_{LC}(z) = \frac{k_o(z - n_c)}{z^2 + (k_o - d_o - 1)z + (d_o - k_o n_c)}$$
; $d_o = 1$

• Entonces utilizando (7) con $d_o=1$ y $n_o=hk_\omega$, los parámetros deseados para el Pl de velocidad serán:

$$k_c = \frac{a_1 + 2}{hk_\omega}$$
 ; $n_c = \frac{1 - a_2}{a_1 + 2}$ (9)

• Si consideramos que la salida del PI es la referencia de torque T_e^* , entonces $n_0=h/J$ y los parámetros deseados serán:

$$k_c = J \frac{a_1 + 2}{h} \quad ; \quad n_c = \frac{1 - a_2}{a_1 + 2}$$
 (10)

A. Mora

Lazo de Velocidad

FT Lazo cerrado para PI + Integrador

$$H_{LC}(z) = \frac{k_o(z - n_c)}{z^2 + (k_o - d_o - 1)z + (d_o - k_o n_c)}$$
; $d_o = 1$

• Entonces utilizando (7) con $d_o = 1$ y $n_o = hk_\omega$, los parámetros deseados para el PI de velocidad serán:

$$k_c = \frac{a_1 + 2}{hk_\omega}$$
 ; $n_c = \frac{1 - a_2}{a_1 + 2}$ (9)

• Si consideramos que la salida del PI es la referencia de torque T_e, entonces $n_0 = h/J$ y los parámetros deseados serán:

$$k_c = J \frac{a_1 + 2}{h}$$
 ; $n_c = \frac{1 - a_2}{a_1 + 2}$ (10)

Implementación Digital y Sintonización de Controladores en Tiempo Discreto

15/18

Lazo de Velocidad: Comentarios finales

- Considerando que se desprecia el polo en el origen, la respuesta real del sistema será levemente diferente a la esperada por diseño (siempre que $f_{\rm s}\gg 2\pi f_{\rm n}$).
- El método de diseño se enfoca en asignar los polos de lazo cerrado del sistema controlado y no considera los ceros de lazo cerrado.
- Sin embargo, permite una sencilla parametrización de los controladores en términos de la frecuencia de muestreo (altamente relacionada con las pérdidas del convertidor), coeficiente de amortiguamiento y frecuencia natural no amortiguada.
- Para un diseño más acabado, se sugiere utilizar la herramienta ritool de MATLAB.

References

R. P. Aguilera, P. Acuna, G. Konstantinou, S. Vazquez, and J. I. Leon, "Chapter 2 - basic control principles in power electronics: Analog and digital control design," in *Control of Power Electronic Converters and Systems* (F. Blaabjerg, ed.), pp. 31 – 68, Academic Press, 2018.

K. Ogata, Discrete-Time Control Systems (2nd Edition). Pearson, 1995.

K. J. Astrom and B. Wittenmark, Basic Control Principles in Power Electronics.

Prentice Hall, 2002.

Implementación Digital y Sintonización de Controladores en Tiempo Discreto

Andrés Mora 1

¹Universidad Técnica Federico Santa María, Valparaíso, Chile

Primavera 2019

