ບົດທີ1: ບົດນຳເຂົ້າສູ່ວັດສະດຸວິສະວະກຳ (Introduction to Engineering Materials)

ຈຸດປະສົງ

ຮູ້ຄວາມສຳຄັນ, ປະຫວັດ, ປະເພດແລະການໃຊ້ງານ ຂອງວັດສະດຸວິສະວະກຳ

- ຄວາມສຳຄັນຂອງວັດສະດຸວິສະວະກຳ
- ປະຫວັດຂອງວັດສະດຸຍຸກຕ່າງໆ
- ປະເພດຂອງວັດສະດຸວິສະວະກຳ
- ການໃຊ້ງານຂອງວັດສະດຸວິສະວະກຳ
- ຄວາມສຳພັນລະຫວ່າງໂຄງສ້າງ, ຂະບວນການຜະລິດ, ຄຸນສົມບັດ ແລະ ການນຳໃຊ້ຂອງວັດສະດຸ

1.1 ຄວາມໝາຍຂອງວັດສະດຸວິສະວະກຳ

ວັດສະດຸ (material) ໝາຍເຖິງສານທີ່ປະກອບຫຼືເຮັດຂື້ນມາເພື່ອໃຊ້ງານດ້ານ ຕ່າງໆຕາມທີ່ເຮົາຕ້ອງການ ສານຕ່າງໆທີ່ມາປະກອບກັນທາງເຄມີແລ້ວກາຍເປັນວັດ ສະດຸ, ສິ່ງເຫຼົ່ານີ້ອາດເກີດຂື້ນເອງຈາກທຳມະຊາດເຊັ່ນ: ໂຄງສ້າງທາງເຄມີຂອງໄມ້ ເປັນໂພລິເມີທີ່ຕົ້ນໄມ້ສ້າງຂື້ນເອງ, ສ່ວນພາດສະຕິກທີ່ເຮົາໃຊ້ໃນຊິວິດປະຈຳວັນເປັນ ໂພລີເມີທີ່ຜ່ານການສັງເຄາະຂື້ນມາໂດຍມະນຸດ

ວັດສະດຸວິສະວະກຳ (engineering material) ເປັນສິ່ງທີກ່ງວຂ້ອງກັບການໃຊ້ ຫຼັກການພື້ນຖານແລະການປະຍຸກຄວາມຮູ້ຂອງວັດສະດຸເພື່ອປັບປຸງແລະພັດທະນາ ຄຸນສົມບັດຂອງວັດສະດຸແລ້ວນຳມາຕະລິດເປັນຕະລິດຕະພັນທີ່ນຳມາໃຊ້ໃນສັງຄົມ. ສ່ວນວັດສະດຸສາດ (materials science) ເປັນສິ່ງກ່ງວກັບການຄົ້ນຄົ້ວາຫາຄວາມຮູ້ ຂັ້ນພື້ນຖານທີ່ກ່ງວກັບລັກສະນະໂຄງສ້າງພາຍໃນ ລວມເຖິງຄຸນສົມບັດ ແລະ ຂະບວນ ການຕະລິດວັດສະດຸຕ່າງ

ປະຫວັດແລະຄວາມສຳຄັນຂອງວັດສະດຸ

- ຄວາມສຳຄັນຂອງວັດສະດຸຕໍ່ການພັດທະນາຄວາມກ້າວ ໜ້າຂອງມະນຸດ
 - ຍຸກຫີນ (stone age) ຍ້ອນຫຼັງໄປປະມານ 2,5 ລ້ານປີ
 ມະນຸດໃຊ້ຫີນເປັນອາວຸດໃນການລ່າສັດ
 - ຍຸກບຣອນ (Bronze age) ຫຼື ສຳລິດ (2,000-1,000 B.C) ຍຸກນີ້ຖືເປັນພື້ນຖານການເກີດຂຶ້ນຂອງສາດທາງດ້ານ ໂລຫະວິທະຍາຂອງ ໂລຫະປະສົມ (Bronze= Cu + Zn, Sn, Al, Mn, etc.)
 - ຍຸກເຫຼັກ (Iron age) (1,000-1 B.C) ເຫຼັກໄດ້ມີບົດບາດ
 ໃນການນຳມາໃຊ້ແທນ ບຣອນ

ຄວາມສຳພັນຂອງ ໂຄງສ້າງ, ຄຸນສົມບັດ, ຂະບວນການ ຜະລິດ ການນຳໃຊ້ ຂອງວັດສະດຸວິສະວະກຳ

ຮູບທີ 1.1 ຄວາມສຳພັນຂອງໂຄງສ້າງ - ຄຸນສົມບັດ - ຂະບວນການຜະລິດ - ການນຳໃຊ້ ຂອງວັດສະດຸວິສະວະກຳ

1.1.2 ໂຄງສ້າງຂອງວັດສະດຸ

ຮູບທີ 1.2 ການແບ່ງລະດັບຂອງໂຄງສ້າງຂອງວັດສະດຸ (a) ໂຄງສ້າງອະຕອມ (b) ໂຄງສ້າງຜຶກ (c) ໂຄງສ້າງແກນເຫຼັກ (d) ໂຄງສ້າງຫຼາຍເຟດຂອງເຫຼັກຫຼໍ່ສີຂາວ

1.3 ປະເພດຂອງວັດສະດຸ

ຕາຕະລາງທີ1.1 ຕົວຢ່າງຂອງຄຸນນະສົມບັດແລະການໃຊ້ງານວັດສະດຸແຕ່ລະປະເພດ

ປະເພດຂອງວັດສະດຸ	ການໃຊ້ງານ	ຄຸນສົມບັດ
ໂລຫະ (Metal) -ທອງແດງ - ເຫຼັກຫຼໍ່ສີເທົາ - ເຫຼັກກ້າປະສົມ	ລວດສາຍ ໄຟຟ້າ ຊີ້ນສ່ວນເຄື່ອງຍົນ ເຄື່ອງມືຕ່າງໆ	ຊັກນຳໄຟຟ້າໄດ້ດີ ຂຶ້ນຮູບດີ ຫຼໍ່ຂຶ້ນຮູບງ່າຍ ກຶງ-ກັດງາຍ ຮັບແຮງສັ່ນສະເທືອນດີ ປັບປຸງຄຸນສົມບັດທາງຄວາມແຂງແຮງໂດຍຄວາມ ຮ້ອນໄດ້ດີ
เ <mark>สธามิก (Ceramic)</mark> -SiO ₂ – Na ₂ O-CaO -Al ₂ O ₃ , MgO, SiO ₂	ແວ່ນແກ້ວ ວັດສະດຸທິນໄຟ ຂອງເຕົາຫຼອມ ໂລຫະ	ໃສ ເປັນສະນວນຄວາມຮ້ອນ ເປັນສະນວນຄວາມຮ້ອນ, ມີຈຸດເປືອຍສູງ, ບໍ່ເຮັດ ປະຕິກິລິຍາກັບນ້ຳ
-ແບລງມໄທທາເນດ	ອຸປະກອນສົງ ສັນຍານຂອງ ເຄື່ອງສງງ	ປ່ງນສັນຍານສູງເປັນເອເລັກໂຕຣນິກ

1.3 ປະເພດຂອງວັດສະດຸ

ຕາຕະລາງທີ1.1 ຕົວຢ່າງຂອງຄຸນນະສົມບັດແລະການໃຊ້ງານວັດສະດຸແຕ່ລະປະເພດ

ປະເພດຂອງວັດສະດຸ	ການໃຊ້ງານ	ຄຸນສົມບັດ
ໂພລີເມີ (Polymer) - ໂພລີເອທິລີນ - ອີພອກຊີ - ຟີນໍລິກ	ຕະລິດຕະພັນໃສ່ອາຫານ ເຄືອບແຕ່ນວົງຈອນ ເຮັດກາວຕິດໄມ້ອັດ	ຂື້ນຮູບເປັນແຜ່ນບາງໄດ້ງ່າຍ, ໜຽວດີ ເປັນສະນວນກັນໄຟຟ້າ,ຕ້ານທານຄວາມຊຸ່ມ ແຂງແຮງຕ້ານທານຄວາມຊຸ່ມ
ວັດສະດຸສານເຄິ່ງຕົວນຳ (Semiconductor) - ຊິລິຄອນ -GaAs	ເຮັດທານຊິດເຕີແລະແຜງ ວົງຈອນ ເຮັດເສັ້ນໄຍແກ້ວນຳແສງ	ປ່ຽນແປງຄວາມນຳໄຟຟ້າໄດ້ ປ່ຽນສັນຍນໄຟຟ້າເປັນແສງໄດ້
ວັດສະດຸປະສົມ (Composite) -ແຄຟາຍ-ອີພອກຊີ -ທັງສະເຕນຄາໄບປະສົມ ໂຄບອນ	ສິ້ນສ່ວນຍົນ ເຮັດໃບມີດຕັດສຳລັບງານ ກຶງ-ກັດ	ມີອັດຕາແຂງແຮງຕໍ່ນ້ຳໜັກສູງ ມີຄວາມແຂງສູງ

1.3 ປະເພດຂອງວັດສະດຸ

ຮູບທີ 1.3 ການປງບທງບຄວາມແຂງແຮງຂອງວັດສະດຸແຕ່ລະປະເພດ

1.1.3 ໂລຫະ (Metal)

• ຄຸນນະສົມບັດທົ່ວໄປ

- ນຳໄຟຟ້າແລະຄວາມຮ້ອນໄດ້ດີ
- ມີຄວາມແຂງແຮງສູງ
- ໜ່ວແລະຂຶ້ນຮູບໄດ້ດີ

• ການນຳໃຊ້

- ວຸງກໂຄງສ້າງຫຼືວງກທີ່ຕ້ອງການຮອງຮັບແຮງ
- ເຄື່ອງຈັກກົນ
- ໂລຫະມັກມີການໃຊ້ງານໃນລັກສະນະເປັນໂລຫະປະສົມ

ຮູບທີ 1.4 ເຄື່ອງຍົນໄອພົນ

1.3.2 ເຊລາມິກ (Ceramic)

• ຄຸກກະສົມບັດທົ່ວໄປ

- ແຂງແລະຜ່ອຍ
- ເປັນສະນວນໄຟຟ້າແລະ ຄວາມຮອນ
- ທຶນຄວາມຮ້ອນສູງ
- ທຶນການລຸ້ຍຮັງນຶການນຳໃຊ້

- สะมอมไฟฟ้าและถอาม ຮອນ
- ວັດສະດຸທົນໄຟ– ສຸກຂະພັນພາຍໃນບ້ານ

ຮູບທີ 1.5 ເຄື່ອງຍົນແກັດເທີບາຍທີ່ໃຊ້ເປັນ ສ່ວນປະກອບ

1.3.3 ໂພລີເມີ (Polymer)

• ຄຸນສົມບັດທົ່ວໄປ

- มำไฟฟ้าได้ต่ำ
- ນຳຄວາມຮ້ອນຕ່ຳ
- ຄວາມແຂງແຮງຕຳ

• ການນຳໃຊ້

- ละมอมฑุ้มสาย ไฟฟ้า
- ทั่ง้ำ
- ຊິ້ນສ່ວນລົດ

ຮູບທີ 1.6 ຂະບວນການ ໂພລີເມີ ໄລເຊເຊິນ ເກີດຂຶ້ນ ໂດຍການທີ່ ໂມເລກຸນຂະໜາດນ້ອຍ ມາເຊື່ອມຕໍ່ກັນເປັນຂະໜາດ ໃຫ່ຍເທີ ໂມພາດ ສະຕິກ ຈະມີການເຊື່ອມຕໍ່ ໂມເລກຸນເປັນ ສາຍ ໂຊ່ຍາວໆ, ສ່ວນເທີ ໂມເຊັດຕິງຈະມີ ການເຊື່ອມຕໍ່ກັນແບບງ່າຍ

1.3.4 ວັດສະດຸເຄິ່ງຕົວນຳ (Semicoductor)

• ຄຸນນະສົມບັດທົ່ວໄປ

- ຄວາມນຳໄຟຟ້າສາມາດຄວບຄຸມໄດ້
- ປ່ງນສັນໄຟຟ້າເປັນແສງໄດ້

• ການນຳໃຊ້

- ທານຊິດເຕີ, ໄດໂອດ
- ແຕງວົງຈອນລວມ (ໄອຊີ)
- ງານທາງດ້ານການສື່ສານ

ຮູບທີ 1.7 ແຕງວົງຈອນລວມ

1.3.5 ວັດສະດຸປະສົມ

ຄຸນນະສົມບັດທົ່ວໄປ

- ຮັດມາຈາກວັດສະດຸຫຼາຍກວ່າ 2 ຊະນິດທີ່ມີ ຄຸນສົມບັດແຕກຕ່າງກັ້ນ, ຄຸນນະສົມບັດທີ່ໄດ້ ຂື້ນມາໃໝ່ຈະແຕກຕ່າງຈາກຄຸນນະສົມບັດ ເດີມ
- ນ້ຳໜັກເບົາ, ແຂງແຮງ, ໜຸງວ ແລະ ທົນ ອຸນຫະພູມສູງ

• ການໃຂ້ງານ

- ເບຕິງ, ໄມ້ອັດ, ໄຍແກ້ວເສີມແຮງ
- ໃບພັດເຮລີຄອບເຕີ
- ຊິ້ນສ່ວນຂອງຍົນ

ຮູບທີ 1.8 ພາບສະແດງຊີ້ນສ່ວນຂອງຍານອາ ວະກາດທີ່ໃຊ້ວັດສະດຸປະສົມຊະນິດຕ່າງໆເປັນ ລະບົບທີ່ໃຊ້ປ້ອງກັນຄວາມຮ້ອນທີ່ເກີດຂະນະບິນ ເຂົ້າມາໃນບັນຍະກາດໂລກ