HOMEWORK 25

Note: * marked problems might be slightly more difficult or interesting than the unmarked ones.

- (1) Show that every homomorphism $\pi_1(S^1) \to \pi_1(S^1)$ can be realized as the induced homomorphism ϕ_* of a map $\phi: S^1 \to S^1$.
- (2)* Let X be any topological space. Show that the cone $\tilde{C}X$ is locally (path-)connected if and only if X is.
- (3) Show that $j_X: X \to \tilde{C}X$ is a closed embedding.
- (4) Complete the proof that cone \tilde{C} is a functor from Top to Top.
- (5)* Let X be the space $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \subseteq \mathbb{R}$. Form the cone $\tilde{C}X$. We know from class that this is contractible.
 - (i) Try to draw a picture of $\tilde{C}X$ and get a feel for it.
 - (ii) Prove or disprove: $\tilde{C}X$ cannot be embedded in any \mathbb{R}^n .
 - (iii) Consider $0 \in X \subseteq \tilde{C}X$. Show that $\{0\} \subseteq \tilde{C}X$ is a deformation retract in a weak sense as we have discussed in class, that is, there is a homotopy $H: \tilde{C}X \times I \to \{0\}$ such that H(x,0) = x and $H(x,1) \in \{0\}$ for all $x \in X$, but that it is NOT a deformation retract as we have defined it.
 - (iv) Form the space

$$\tilde{C}^2X := \frac{\tilde{C}X \cup \tilde{C}X}{0 \sim 0}$$

by identifying the two respective $0 \in \tilde{C}X$. Show that even if each copy of $\tilde{C}X$ is contractible, \tilde{C}^2X is not contractible. (You cannot simply contract one cone first and then the other!) (Note: This part might be more difficult than the others. But at least try to get a feel for what goes wrong.)

(6) Show that the inclusion of groups $O(n) \subseteq GL_n(\mathbb{R})$ is a deformation retract for $n \geq 1$.