AIFA: Stochastic Planning MDP [Policy Iteration]

09/04/2024

Koustav Rudra

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy Evaluation:
 - calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy Improvement:
 - update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Introduction to Learning

09/04/2024

Koustav Rudra

Paradigms of Learning

Supervised Learning

- Both inputs and outputs are given
- The outputs are provided by experts

Reinforcement Learning

- The agent receives some evaluation of actions
- E.g., fine for giving a wrong chess move

Unsupervised Learning

- No Label, no feedback
- Have to learn pattern from the inputs

Supervised Learning: Classification

Supervised Learning: Regression

Supervised Learning "right answers" given

Regression: Predict continuous valued output (price)

Features

- Often the individual observations are analyzed into a set of quantifiable properties which are called features
 - categorical well-defined finite set of values
 - nominal (e.g. A, B, AB or O, for blood types)
 - ordinal (e.g. large, medium, small)
 - dichotomous (e.g. male, female)
 - integer-valued (e.g. the number of words in a text)
 - real-valued (e.g. height)

Supervised Learning: Classification

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering

Unsupervised Learning

Terminology

• **Features:** The number of distinct traits that can be used to describe each item in a quantitative manner

• Feature vector: n-dimensional vector of numerical features that represent some object

• Instance Space X: Set of all possible objects describable by features

• Example (x,y): Instance x with label y=f(x)

Concept Learning

Concept Learning Task

• Target concept: "days on which Jack should enjoy sports"

	Sky	AirTemp	Humidit y	Wind	Water	EnjoySp ort
1	Sunny	Warm	Normal	Strong	Warm	Yes
2	Sunny	Warm	High	Strong	Warm	Yes
3	Rainy	Cold	High	Strong	Warm	No
4	Sunny	Warm	High	Strong	Cool	Yes

Concept Learning Task: Example

- $X = \{1, 2, 3, 4\}$
 - Set of all possible days
- Features: <Sky, AirTemp, Humidity, Wind, Water>
- Target concept (c) is to be learned
 - c(x)=1 if EnjoySport = Yes
 - c(x)=0 if EnjoySport = No
 - c : EnjoySport: $X \rightarrow \{0, 1\}$
- Training data D: $\{(1,1), (2,1), (3,0), (4,1)\}$

Hypothesis Space and Inductive Learning

Concept Learning

- Given examples of a data point $D = \{(x, c(x))\}$
- Find out a hypothesis $h: X \to \{0, 1\}$
 - h basically approximates c
- Hypothesis Space: $H = \{h_1, h_2, h_3, ..., h_n\}$
- Objective:
 - Find out a hypothesis h in H such that $h(x)=c(x) \forall x$

Hypothesis Space

- Set of all legal hypothesis defined by the chosen feature set and the chosen hypothesis language
- The space of all hypotheses that can, in principle, be output by a *learning algorithm*
- One way to think about a supervised learning machine is as a device that explores a "hypothesis space"
 - Each setting of the parameters in the machine is a different hypothesis about the function that maps input vectors to output vectors
- Given a set of data points, hypothesis $h \in H$ is the output of a learning algorithm

Hypothesis Space: Example

- $X = \{1, 2, 3, 4\}$
 - Set of all possible days
- Features: <Sky, AirTemp, Humidity, Wind, Water>
- h_1 : AirTemp = "cold" and Humidity = "high"
- h_2 : Sky = "sunny" and Water = "cool"

Inductive Learning

- Inductive learning: Inducing a general function from training examples
 - Construct hypothesis h to agree with c on the training examples
 - A hypothesis is consistent if it agrees with <u>all training</u> examples
 - A hypothesis said to generalize well if it correctly predicts the value of y for novel example
- Inductive Learning is an ill Posed Problem:
 - Unless we see all possible examples the data is not sufficient for an inductive learning algorithm to find a unique solution

Inductive Learning Hypothesis

• Any hypothesis h found to approximate the target function \mathbf{c} well over a sufficiently large set of training examples D will also approximate the target function well over other unobserved examples

Learning Issues

- What are good hypothesis spaces?
- Algorithms that work with the hypothesis spaces
- How to optimize accuracy over future data points
- How can we have confidence in the result? (How much training data?)

Linear Regression

09/04/2024

Koustav Rudra

Dataset of living area and price of houses in a city

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	:

This is a training set.

How can we learn to predict the prices of houses of other sizes in the city, as a function of their living area?

Dataset of living area and price of houses in a city

Living area (feet 2)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
÷	:

Example of supervised learning problem

When the target variable we are trying to predict is continuous, regression problem

Dataset of living area and price of houses in a city

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	÷

```
m = number of training examples

x's = input variables / features

y's = output variables / "target" variables

(x,y) - single training example

(x<sup>i</sup>, y<sup>i</sup>) - specific example (i<sup>th</sup> training example)

i is an index to training set
```

How to use the training set?

How to represent hypothesis h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i are **parameters**

- θ_0 is zero condition
- θ_1 is gradient

 θ : vector of all the parameters

We assume y is a linear function of x Univariate linear regression How to learn the values of the parameters?

Digression: Multivariate linear regression

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

How to represent hypothesis h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i are parameters

- θ_0 is zero condition
- θ_1 is gradient

We assume y is a linear function of x Univariate linear regression How to learn the values of the parameters θ_i ?

Intuition of hypothesis function

- We are attempting to fit a straight line to the data in the training set
- Values of the parameters decide the equation of the straight line
- Which is the best straight line to fit the data?

Intuition of hypothesis function

- Which is the best straight line to fit the data?
- How to learn the values of the parameters θ_i ?
- Choose the parameters such that the prediction is close to the actual y-value for the training examples

How good is the prediction given by the straight line?

Cost function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

- Measure of how close the predictions are to the actual y-values
- Average over all the m training instances
- Squared error cost function $J(\theta)$
- Choose parameters θ so that $J(\theta)$ is minimized

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$$

For simplicity, assume Θ_0 is a constant

Minimizing a function

- For now, let us consider some arbitrary function (not necessarily a cost function)
- Analytical minimization not scalable to complex functions of hundreds of parameters
- Algorithm called gradient descent
 - Efficient and scalable to thousands of parameters
 - Used in many applications of minimizing functions

Have some function $J(\theta_0, \theta_1)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$

Outline:

- Start with some θ_0, θ_1
- Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum
- Iterative method, similar to Newton-Raphson method for solving equations

If the function has multiple local minima, where one starts can decide which minimum is reached

Gradient descent algorithm

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \qquad \begin{subarray}{c} (\text{simultaneously update} \\ j = 0 \text{ and } j = 1) \end{subarray} }
```

α is the learning rate – more on this later

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 := temp0$$

$$\theta_1 := temp1$$

Incorrect:

$$\begin{array}{c} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \theta_0 := \operatorname{temp0} \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} \end{array}$$

For simplicity, let us first consider a function of a single variable

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If the derivative is positive, reduce value of θ_1

If the derivative is negative, increase value of θ_1

The learning rate

- Do we need to change learning rate over time?
 - \circ No, Gradient descent can converge to a local minimum, even with the learning rate α fixed
 - Step size adjusted automatically

- But, value needs to be chosen judiciously
 - \circ If α is too small, gradient descent can be slow to converge
 - o If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent for univariate linear regression

Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 1 \text{ and } j = 0)$$

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent for univariate linear regression

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$$
 update
$$\theta_0 \text{ and } \theta_1$$
 simultaneously
$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

"Batch" Gradient Descent

- "Batch": Each step of gradient descent uses all the training examples
 - At each estimate gradient on a batch of m samples

• There are other variations like "stochastic gradient descent" (used in learning over huge datasets)

What about multiple local minima?

 The cost function in linear regression is always a convex function – always has a single global minimum

• So, gradient descent will always converge

Linear Regression for multiple variables

Multiple features (variables).

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
• • •	• • •	• • •	• • •	• • •

Multiple features (variables).

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
• • •	• • •	•••	• • •	• • •

Notation:

```
\eta = number of features. m = number of training examples \chi^{(i)} = input (features) of i^{th} training example.
```

 $x_{j}^{(i)}$ = value of feature j in i^{th} training example.

Hypothesis:

For univariate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

For multi-variate linear regression:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$

Hypothesis: $h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

Parameters: $\theta_0, \theta_1, \dots, \theta_n$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat
$$\Big\{$$

$$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta_0,\dots,\theta_n)$$
 $\Big\}$ (simultaneously update for every $j=0,\dots,n$)

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

simultaneously update $heta_i$ for

$$j = 0, \dots, n$$

. . .

Gradient Descent

Previously (n=1):

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update θ_0, θ_1)

}

New algorithm $(n \ge 1)$:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

simultaneously update $heta_j$ for

$$j = 0, \dots, n$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

. .

Practical aspects of applying gradient descent

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

Normalization wrt the maximum value:

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Feature Scaling

Idea: Make sure features are on a similar scale.

E.g.
$$x_1$$
 = size (0-2000 feet²)
 x_2 = number of bedrooms (1-5)

Mean normalization:

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$).

Other types of normalization:

$$x_1 = \frac{size - 1000}{2000}$$

$$x_2 = \frac{\#bedrooms - 2}{5}$$

$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

Is gradient descent working properly?

- Plot how $J(\theta)$ changes with every iteration of gradient descent
- For sufficiently small learning rate, $J(\theta)$ should decrease with every iteration
- If not, learning rate needs to be reduced
- However, too small learning rate means slow convergence

When to end gradient descent?

- Example convergence test:
- Declare convergence if $J(\theta)$ decreases by less than 0.001 in an iteration (assuming $J(\theta)$ is decreasing in every iteration)

Types of Regression Models

Thank You