Assignment 1

Tuesday, September 27, 2022

11:24 AM

TEST YOURSELF____

Answers to Test Yourself questions are located at the end of each section.

- An and statement is true when, and only when, both components are ______.
- 2. An *or* statement is false when, and only when, both components are ______.
- Two statement forms are logically equivalent when, and only when, they always have ______.
- De Morgan's laws say (1) that the negation of an and statement is logically equivalent to the

statement in which each component is, and
(2) that the negation of an or statement is logically
equivalent to the statement in which each
component is

- 5. A tautology is a statement that is always _____.
- 6. A contradiction is a statement that is always

Screen clipping taken: 9/27/2022 11:25 AM

***46.** Let the symbol \oplus denote *exclusive or*; so $p \oplus q \equiv (p \lor q) \land \sim (p \land q)$. Hence the truth table for $p \oplus q$ is as follows:

p	q	$p \oplus q$
T	T	F
T	F	T
F	T	T
F	F	F

- **a.** Find simpler statement forms that are logically equivalent to $p \oplus p$ and $(p \oplus p) \oplus p$.
- **b.** Is $(p \oplus q) \oplus r \equiv p \oplus (q \oplus r)$? Justify your answer.
- **c.** Is $(p \oplus q) \land r \equiv (p \land r) \oplus (q \land r)$? Justify your answer.

In 48 and 49 below, a logical equivalence is derived from Theorem 2.1.1. Supply a reason for each step.

48.
$$(p \land \sim q) \lor (p \land q) \equiv p \land (\sim q \lor q)$$
 by $\underline{(a)}$
 $\equiv p \land (q \lor \sim q)$ by $\underline{(b)}$
 $\equiv p \land \mathbf{t}$ by $\underline{(c)}$
 $\equiv p$ by $\underline{(d)}$

Therefore, $(p \land \sim q) \lor (p \land q) \equiv p$.

49.
$$(p \lor \sim q) \land (\sim p \lor \sim q)$$

 $\equiv (\sim q \lor p) \land (\sim q \lor \sim p)$ by $\underline{(a)}$
 $\equiv \sim q \lor (p \land \sim p)$ by $\underline{(b)}$
 $\equiv \sim q \lor c$ by $\underline{(c)}$
 $\equiv \sim q$ by $\underline{(d)}$

Therefore, $(p \lor \sim q) \land (\sim p \lor \sim q) \equiv \sim q$.

Use Theorem 2.1.1 to verify the logical equivalences in 50–54. Supply a reason for each step.

50.
$$(p \land \sim q) \lor p \equiv p$$
 51. $p \land (\sim q \lor p) \equiv p$

52.
$$\sim (p \vee \sim q) \vee (\sim p \wedge \sim q) \equiv \sim p$$

53.
$$\sim ((\sim p \land q) \lor (\sim p \land \sim q)) \lor (p \land q) \equiv p$$

54.
$$(p \land (\sim (\sim p \lor q))) \lor (p \land q) \equiv p$$

Screen clipping taken: 9/27/2022 11:27 AM

Use De Morgan's laws to write negations for the statements in 25–30.

- Hal is a math major and Hal's sister is a computer science major.
- 26. Sam is an orange belt and Kate is a red belt.
- The connector is loose or the machine is unplugged.
- 28. The train is late or my watch is fast.
- This computer program has a logical error in the first ten lines or it is being run with an incomplete data set.
- The dollar is at an all-time high and the stock market is at a record low.

Screen clipping taken: 9/27/2022 11:31 AM