Theorem:

If the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M>0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML or $(\forall M \in \mathbb{N})(|Ma_n - ML| < \varepsilon)$.

Proof:

By contradiction.

Given $\varepsilon > 0$.

Assume the negation is correct:

$$(\exists M \in \mathbb{N})(|Ma_n - ML| \ge \varepsilon)$$

Rearranged:

$$|a_n - L| \ge \frac{\varepsilon}{M}$$

But we know that $|a_n - L| < \varepsilon$, therefore we can find N large enough so that

$$|a_{\scriptscriptstyle N}-L|<rac{\varepsilon}{M}$$
 . This is a contradiction, hence the theorem is proved.