Constraint Programming

Alice Raffaele, Matteo Zavatteri, Romeo Rizzi

MathDecisions 2021-2022

Outline

- Constraint networks
- 2 Global constraints
- More expressiveness
- Modeling CSPs

Reference books

More online:

http://www.constraint-programming.com/people/regin/papers/global.pdf

https://www.minizinc.org (have a look at MiniZinc Handbook)

Constraint Networks

Formal definition

A constraint network is a triple $N = \langle X, D, C \rangle$, where:

- **1** $X = \{x_1, \dots, x_n\}$ is a finite set of *(decision) variables*
- **2** $D = \{D_1, \ldots, D_n\}$ is a set of associated domains.
- 3 C is a finite set of *constraints*. Each constraint is a relation $R_{i,...,k}$ (defined over the set of variables $\{x_i,...,x_k\}$ such that $R_{i,...,k} \subseteq D_i \times \cdots \times D_k$.

To ease notation, scopes and tuples are "ordered" with respect to variable indexes.

Formal specification

- $X = \{x_1, x_2\}, D = \{D_1, D_2\}$
- $D_1 = D_2 = \{a, b\}$
- $C = \{R_{1,2}\}$, where $R_{1,2} = \{(a,b),(b,a)\}$ (i.e., $x_1 \neq x_2$)

Consistency

Consistency

A constraint network is consistent if there exists a solution. That is, if every variable can be assigned a value from its domain such that all constraints are eventually satisfied.

Given a solution $x_1 = v_1, \ldots, x_n = v_n$, a constraint $R_{p,\ldots,z}$ is satisfied, if $(v_p,\ldots,v_z) \in R$, where $x_p = v_p,\ldots,x_z = v_z$ are in the solution.

$$\begin{array}{ccc}
\{a,b\} & \{a,b\} \\
\hline
x_1 &
\end{array}$$

Solution: $x_1 = a$, $x_2 = b$

A few problems associated to constraint networks

Given a constraint network N, we might address the following problems:

Decision problems:

Constraint networks

0000000000

- Is *N* consistent/inconsistent?
- Does N admit at least/at most/exactly k different solutions?
- Is there an assignment satisfying at least k constraints?

Search problems:

- Find a consistent assignment
- Find 2,3,etc different consistent assignments
- Find all consistent assignments
- How many different consistent assignments does N admit?
- Find an assignment maximizing the number of satisfied constraints

Search for 1 solution: backtracking

Assume a recursive algorithm that assigns variables according to the order of their indexes.

The algorithm stops as soon as it finds a solution

$$\begin{array}{cccc}
\{a,b\} & \{a,b\} \\
\hline
x_1 & \neq \\
\hline
x_2 & \\
\end{array}$$

Solution 1: $x_1 = a$, $x_2 = b$

Search for 2 solutions: keep searching up to the 2nd

Solution 1: $x_1 = a$, $x_2 = b$ Solution 2: $x_1 = b$, $x_2 = a$

Search for all solutions: keep searching up to the end

Solution 1: $x_1 = a$, $x_2 = b$ Solution 2: $x_1 = b$, $x_2 = a$

Filtering domains: node consistency

Node consistency

A variable x_i is node consistent if for each $v \in D_i$ we have that $(v) \in R_i$.

 $\{a, \frac{b}{c}, c\}$

$$R_i = \{(a), (c)\}$$

- x_i is not node consistent as $b \notin R_i$
- Removing b from D_i makes x_i node consistent

Rationale: every solution must satisfy R_i and $x_i = b$ just doesn't.

Filtering domains: arc consistency

Arc consistency

A pair of different variables x_i, x_j is arc consistent if for each $v_i \in D_i$ there exists $v_i \in D_i$ such that $(v_i, v_i) \in R_{ii}$.

$$\begin{array}{ccc}
\{a,c\} & \{a,\frac{\mathbf{b}}{\mathbf{b}},c\} \\
x_i & = & x_j
\end{array}$$

- x_i, x_j are not arc consistent. $(a, b) \notin R_{i,j}$, $(c, b) \notin R_{i,j}$
- Removing *b* from D_j makes x_i, x_j arc consistent.

Rationale: every solution must satisfy $R_{i,j}$ and $x_j = b$ (whatever x_i) just doesn't.

Filtering domains: path consistency

Path consistency

A pair of variables x_i, x_j is path consistent with another variable x_k $(x_i \neq x_j \neq x_k)$ if for each $v_i \in D_i$, $v_j \in D_j$ with $(v_i, v_j) \in R_{ij}$, there exists $v_k \in D_k$ such that $(v_i, v_k) \in R_{ik}$ and $(v_i, v_k) \in R_{jk}$

- Arc consistent!
- Not path consistent. $x_i = a$, $x_j = b$ cannot be extended to any $x_k = v_k$ where $v_k \in \{a, b\}$.
- The network is actually inconsistent.

Path consistency is not enough!

Constraint networks

0000000000

- Path consistent!
- Yet, the network is actually inconsistent.
- All variables must get different values. Four variables. Three values.
- Examples like this extend to networks with n variables, n − 1 values in each domain and a "≠" constraint between any pair of distinct variables.
- Enforcing consistency on n variables says nothing for n + 1 variables.

Node, arc and path consistency are *pruning techniques* to rule out (even many) values from domains. But eventually, we still need to search.

Global constraints

Take home message: Global constraints = compact constraints

- they encapsulate several constraints in a single one
- they avoid writing an explicit relation of many, many tuples
- they typically involve several variables
- they allow for the specification of "high level" constraints

Examples:

- all_different (x_1, \ldots, x_n)
- . . .

all_different

All different

A solution $x_1 = v_1, \ldots, x_n = v_n$ to a constraint network satisfies an all_different (x_i, \ldots, x_j) iff $v_i \neq \ldots \neq v_j$.

 $all_different(x_1, x_2, x_3, x_4)$

$$x_1 = a$$
, $x_2 = b$, $x_3 = c$, $x_4 = d$

all_different, more formally

A possible formal definition

all_different (x_1, \ldots, x_n) is equivalent to a relation $R_{1,\ldots,n}$ such that for each tuple $(v_1,\ldots,v_n)\in R$, it holds that $|\{v_i\mid v_i\in (v_1,\ldots,v_n)\}|=n$.

$$\{a,b,c,d\}$$

$$\{a,b,c,d\}$$
 (x_1)

$$(x_3)$$

 $all_different(x_1, x_2, x_3, x_4)$

$$R_{1,2,3,4} = \{(a,b,c,d), (a,b,d,c), (a,c,b,d), (a,c,d,b), (a,d,b,c), (a,d,c,b), (b,a,c,d), (b,a,d,c), (b,c,a,d), (b,c,d,a), (b,d,a,c), (b,d,c,a), (c,a,b,d), (c,a,d,b), (c,b,a,d), (c,b,d,a), (c,d,a,b), (c,d,a,c), (d,b,a,c), (d,b,a,c), (d,b,c,a), (d,c,a,b), (d,b,a,c), (d,b,c,a), (d,c,a,b), (d,b,a,c), (d,b,c,a), (d,c,a,b), (d,c,a,b), (d,b,a,c), (d,b,c,a), (d,c,a,b), (d,c,$$

$$(d, b, a, c), (d, b, c, a), (d, c, a, b), (d, c, b, a)$$

$$x_1 = c$$
, $x_2 = a$, $x_3 = b$, $x_4 = d$

Boosting expressiveness maintaining complexity

Main complexity result

Deciding consistency of (classic) constraint networks is NP-complete.

• it is easy to see that the problem remains NP-complete even if we add global constraints or we turn a set of constraints into a boolean formula where global constraints and relations play the role of boolean atoms (provided that, given a solution, the satisfaction of each atom can be checked in polynomial time).

$$F ::= R_{i,...,k} \mid \text{global_constraint}(...) \mid \neg F \mid (F) \mid F \Box F$$
 where $\Box \in \{\land, \lor, \Rightarrow, \Leftrightarrow, ...\}$

 $\{a,b,c,d\}$ x_1

Let $x_i = v_j$ be a short for $R_i = \{(v_j)\}$ (i.e., a further constraint language improvement!). The formula:

$$all_different(x_1, x_2, x_3) \land (x_1 = a \lor x_3 = c) \land x_2 = d \land (x_1 = a \Rightarrow x_2 = c)$$

is satisfied by the solution $x_1 = b$, $x_2 = d$, $x_3 = c$

The solution (certificate of yes) can still be checked in polynomial time!

Humanizing relations by means of formulae

Consider the following constraint language:

$$F ::= x = v \mid (F) \mid F \land F \mid F \lor F$$

Wouldn't it be enough to encode a set of constraints $R_{i,...,z}$? (yes!)

Consider a constraint network $N = \langle X, D, C \rangle$ where:

- $X = \{x_1, x_2, x_3\}$
- $D_1 = D_2 = D_3 = \{a, b\}$
- $C = \{R_2, R_{13}, R_{123}\}$, where $R_2 = \{(b)\}$, $R_{13} = \{(a, a), (b, a), (b, b)\}$, $R_{123} = \{(a, b, a), (b, a, b)\}$

C can be encoded in a (DNF) formula $F \equiv \underbrace{F_2}_{R_2} \wedge \underbrace{F_{13}}_{R_{13}} \wedge \underbrace{F_{123}}_{R_{123}}$, where:

- $F_2 \equiv (x_2 = b)$
- $F_{13} \equiv ((x_1 = a \land x_3 = a) \lor (x_1 = b \land x_3 = a) \lor (x_1 = b \land x_3 = b))$
- $F_{123} \equiv ((x_1 = a \land x_2 = b \land x_3 = a) \lor (x_1 = b \land x_2 = a \land x_3 = b))$

In general $R_{i,...,z}$ can be encoded in $F \equiv (\bigvee_{(v_i,...,v_z) \in R_{i,...,z}} (x_i = v_i \land \cdots \land x_z = v_z))$

Modeling constraint satisfaction problems (CSP)

In what follows, we will:

- start with the definition of some problem in natural and formal language
- 2 model it in the input language of MiniZinc
- 3 push a button to search for one (or more) solution(s)

In this order. This is what we are going to do.

MiniZinc

Constraint networks

https://www.minizinc.org

- MiniZinc is a free and open-source constraint modeling language that allows you to write models that are compiled into FlatZinc: an input language that is understood by a wide range of solvers.
- MiniZinc is developed at item Monash University MonashUniversity in collaboration with Data61 Decision Sciences https://research.csiro.au/data61/tag/decision-sciences/ and the University of Melbourne https://unimelb.edu.au.
- MiniZinc is available for Windows, Linux and MacOS. Have a look at https://www.minizinc.org/software.html, download and install it on your computer.

Modeling CSPs: Map coloring

Can you color this map by using red, green and blue so that any two adjacent regions have different colors?

Constraint Network formulation

Modeling CSPs: Map coloring

Solution to the corresponding constraint network

Back to the map!

Graph K-Coloring Problem

Input. A graph G = (V, E) and a positive integer K.

Output. yes iff there exists $f: V \to \{1, .., K\}$ s.t. $f(u) \neq f(v)$ for each $(u, v) \in E$

Example. G = (V, E), where $V = \{x_1, x_2, x_3, x_4\}$ and

 $E = \{(x_1, x_3), (x_1, x_4), (x_3, x_4), (x_2, x_4)\}$ and K = 3.

$$f(x_1) = r$$
, $f(x_2) = g$, $f(x_3) = g$, $f(x_4) = b$.

Optimization version: Forget about K. Minimize the number of used colors.