Théorie des langages : THL CM 5

Uli Fahrenberg

EPITA Rennes

S5 2021

Aperçu

Programme du cours

- Langages rationnels
- Automates finis
- Langages algébriques, grammaires hors-contexte, automates à pile
- Parsage LL, partie 1
- Parsage LL, partie 2
- TP 1: flex

QCM 2

- Parsage LR
- TP 2, 3 : flex & bison

La dernière fois : parsage

Problème de parsage

Pour une grammaire hors contexte G, construire un algorithme de parsage qui

- pour un mot w, decide si $w \in L(G)$,
- et dans le cas $w \in L(G)$, retourne l'arbre de dérivation.
- arbre de dérivation de $w \triangleq sémantique$ de w

Nos algorithmes de parsage devrait

- pouvoir traiter des grammaires non-ambiguës
- avoir une complexité linéaire en taille d'entrée
- lire w de gauche à droite sans retour arrière

Language Trouble

anglais	français	Uli	
parsing	analyse syntaxique	parsage	
parse tree	arbre d'analyse	arbre de parsage	

Language Trouble

anglais	français	Uli	Fabrice
parsing	analyse syntaxique	parsage	parsing
parse tree	arbre d'analyse	arbre de parsage	AST

Abstract Syntax Tree

La dernière fois : parsage LL(1)

- approche descendante
- lire le mot w de gauche à droite / Left-to-right
 - sans passer à l'arrière
- construire une dérivation gauche / Leftmost
- en accordant, à chaque pas, le premier symbole de w avec le côté droit d'une production
 - donc avec lookahead 1
- parsage LL(k) : lookahead k / « fenêtre de k lexèmes »
- peu utilisé

La dernière fois : algorithme LL(1)

- lacktriangledown entrée : une grammaire hors contexte $G=(N,\Sigma,P,S)$
 - si-dessous, $V = N \cup \Sigma$
 - éliminer récursion à gauche dans G; factoriser G à gauche
- calculer NULL
 - NULL = $\{A \in N \mid A \Rightarrow^* \varepsilon\}$
- construire la table FIRST
 - FIRST(A) = { $a \in \Sigma \mid \exists w \in V^* : A \Rightarrow^* aw$ }
- construire la table FOLLOW
 - FOLLOW(A) = $\{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha A a \beta\}$
- onstruire la TABLE de parsage :
 - **1** pour chaque production $X \to w$ (n):
 - pour chaque $a \in FIRST(w)$: TABLE $(X, a) += \{n\}$
 - $oldsymbol{0}$ si $w \in \mathsf{NULL}$ ou $w = \varepsilon$:
 - pour chaque a ∈ FOLLOW(X) : TABLE(X, a) += {n}

La dernière fois : LL(1)

Définition (8.5)

G est LL(1) si chaque TABLE(A, a) contient au maximum une production.

$$Z \rightarrow XYZ$$
 (1)

$$X \rightarrow a$$
 (3)

$$\mid Y$$
 (4)

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$Z \rightarrow XYZ$$
 (1)

$$X \rightarrow a$$
 (3)

$$|Y|$$
 (4)

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

 $NULL = \{X, Y\}$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \to b$$
 (5)
 $\mid \varepsilon$ (6)

$$NULL = \{X, Y\}$$

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$Y \rightarrow b$$
 (5)
 $\mid \varepsilon$ (6)

$$\begin{array}{c|c} A & \mathsf{FOLLOW}(A) \\ \hline X & a, b, c \\ \hline \end{array}$$

$$Y \mid a, b, c$$

$$\mathsf{NULL} = \{X, Y\}$$

14/19

$$Z \rightarrow XYZ$$
 (1)

$$\mid c$$
 (2)

$$X \to a \tag{3}$$
$$\mid Y \tag{4}$$

$$Y \rightarrow b$$
 (5)

$$\mid \varepsilon$$
 (6)

$$\mathsf{NULL} = \{X, Y\}$$

Exemples

Exemple (tableau)

$$S \to FS$$
 (1)

$$Q$$
 (2)

$$|'('S')'S$$
 (3)

$$F \rightarrow '!'$$
 (4)

$$0 \rightarrow '$$
?' (5)

« Une session est une séquence de faits suivi par une question; sous-sessions sont permis »

Exemple (tableau)

$$Z \rightarrow S$$
\$

$$S \rightarrow LQ$$

$$| '('S')'S$$

 $L \rightarrow FL$

$$F \rightarrow$$
 '!'

$$Q
ightarrow$$
'?'

Plus ça change, ...

Implémentation

Grammaire:

$$S \to F$$
 (1)

$$|'('S'+'F')'|$$
 (2)

$$F \rightarrow 'a'$$
 (3)

Simple parseur en Python:

