МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.6.1 «Спектральный анализ электрических сигналов»

Студент группы Б02-109

Назарчук Анна

1. Аннотация

В работе исследованы спектры периодических сигналов: модулированный по амплитуде, прямоугольные импульсы и цуги. Проверены теоретические зависимости параметров спектра на практике.

2. Введение

Многие практические задачи описания поведения некоторой системы во времени зачастую сводятся к выяснению связи между "сигналом подаваемым на "вход"системы (обозначим его как f(t)), и её реакцией на "выходе"g(t)). Суть спектрального метода состоит в представлении произвольного воздействия в виде суперпозиции откликов на некоторые элементарные слагаемые. Данный метод используются для анализа многих сигналов, поэтому необходимо экспериментально ознакомиться с ним, сгенерировать и получить на осциллографе спектры различных периодических сигналов, проверить экспериментально соотношение неопределенности и отношения амплитуд гармоник при модулированных по амплитуде сигналах.

3. Методика измерений

Для экспериментальной проверки соотношения неопределенностей необходимо его сформулировать [1]:

$$\Delta\omega \cdot \Delta t \sim 2\pi \tag{1}$$

Для проверки соотношения неопределенностей работа разделена на три равноценные части, в каждой из которых сгенерирован сигнал определенной формы, обработан с помощью цифрового осциллографа, проверены соотношения неопределенности с помощью курсорных измерений. 1. Первая часть работы заключалась в исследовании спектра периодической последовательности прямоугольных импульсов (пример показан на рисунке 4). Теоретически рассчитано значение коэффициентов c_n [1]:

Рис. 1: Пример периодической последовательности прямоугольных импульсов из [1]

$$c_n = \frac{\sin(\pi n \tau/T)}{\pi n} \tag{2}$$

2. Вторая часть работы состояла в исследовании спектра периодической последовательности цугов гармонических колебаний (пример показан на рисунке 2). Теоретически известен спектр сигнала [1]:

$$F(\omega) = \frac{\tau}{2T} \left[\frac{\sin(\omega - \omega_0)\tau/2}{(\omega - \omega_0)\tau/2} + \frac{\sin(\omega + \omega_0)\tau/2}{(\omega + \omega_0)\tau/2} \right]$$
(3)

Рис. 2: Пример периодической последовательности цуг из [1]

Рис. 3: Пример модулированного по амплитуде сигнала из [1]

3. Последняя часть заключалась в исследовании спектра гармонических сигналов, модулированных по амплитуде (пример показан на рисунке 3). Теоретический вид сигнала [1]:

$$f(t) = a_0 \cos(\omega_0 t) + \frac{ma_0}{2} \cos(\omega_0 + \Omega)t + \frac{ma_0}{2} \cos(\omega_0 - \Omega)t$$
(4)

4. Измерения и обработка данных

Исследования спектра периодической последовательности прямоугольных импульсов

Для исследования периодической последовательности прямоугольных импульсов на генераторе создан сигнал с разными параметрами, по которому на экране осциллографа получается спектр (рис. 4)

При $\nu_{\text{повт}} = 700\Gamma$ ц проведены измерения ширины спектра. Результаты представлены в таблице 1 и на рисунке 5.

Рассчитан коэффициент наклона прямой:

$$k = 0.9997 \pm 0.0039 \tag{5}$$

Полученное значение близко к 1, что подтверждает соотношение неопределенностей.

Для сравнения экспериментальных и теоретических значений спектра для одного из сигналов (a) рассчитана теоретическую зависимость и изображена на графике 6. Теоретический и экспериментальный спектр похожи.

4.1. Исследование спектра периодической последовательности цугов гармонических колебаний

Для исследования спектра периодической последовательности цугов гармонических колебаний на генераторе создан сигнал последовательности синусоидальных цугов с разными

с) $\nu_{\text{повт}} = 700 \Gamma ц, \tau = 50 \text{мкс}$

d) $\nu_{\text{повт}} = 1000\Gamma$ ц, $\tau = 70$ мкс

Рис. 4: Спектры последовательностей прямоугольных импульсов при разных частотах повторения и длительности импульса

Таблица 1: Зависимость ширины спектра от длительности спектра для последовательности прямоугольных импульсов при $\nu_{\text{повт}} = 700 \Gamma$ ц

$\Delta \nu$, Hz	τ , MKC
50200	20
25200	40
17200	60
13000	80
10200	100
8600	120
7400	140
6600	160
5800	180
5000	200

параметрами, по которому на экране осциллографа получен спектр. (рис. 7)

Для проверки соотношения неопределенностей для данного сигнала при фиксированной длительности импульсов $\tau=50$ мкс измерены расстояния между соседними спектральными компонентами от периода повторения импульсов (табл. 2, рис. 8)

Теоретически известно ([1]) точки должны хорошо ложиться на прямую, однако из графика видно, что это не так. Проблема заключается в снятии данных (был выбран

Рис. 5: Зависимость ширины спектра от длительности спектра для последовательности прямоугольных импульсов

Рис. 6: Теоретический спектр прямоугольных импульсов из [1]

е) $\nu = 70$ к Γ ц, T = 1мс, N = 5

b) $\nu = 50 \text{к} \Gamma \text{ц}, T = 1 \text{мc}, N = 3$

d) $\nu = 30$ к Γ ц, T = 1мс, N = 5

Рис. 7: Вид спектра для периодической последовательности цугов при разных частотах несущей $\nu_0=50$ кГц, периодах повторения T=1 мс, числах периодов в одном импульсе N=5

неверный канал при курсорных измерениях). Поэтому подтвердить справедливость соотношения неопределенности невозможно.

Таблица 2: Зависимость расстояния между соседними спектральными компонентами от периода повторения импульсов при $\nu_0=50$ к Γ ц и N=5

T, ms	$\delta \nu$, Hz
0.2	6250
1	2778
1.5	4167
2	1042
2.5	1190
3	735
3.5	893
4	1000
4.5	1042
5	1190

Рис. 8: Зависимость расстояния между соседними спектральными компонентами от периода повторения импульсов

4.2. Исследование спектра гармонических сигналов, модулированных по амплитуде

Для исследования спектра гармонических сигналов, модулированных по амплитуде на генераторе создан сигнал, модулированный по амплитуде, по которому на экране осциллографа получается спектр (9). Измерена с помощью осциллографа глубину модуляции:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} = \frac{1.54 - 0.04}{1.54 + 0.04} = 0.5$$
, чтосходится сустановленным нагенераторе (6)

Для проверки теоретической зависимости, изменяя глубину модуляции, измерена $\frac{a_{\text{бок}}}{a_{\text{осн}}}$ (табл. $\frac{3}{3}$ и рис. $\frac{10}{3}$).

Рис. 9: Спектр сигнала, модулированного по амплитуде, при частоте несущей $\nu_0=50$ кГц, частоте модуляции $\nu_{\text{мод}}=2$ кГц

Таблица 3: Зависимость $\frac{a_{\rm fok}}{a_{\rm och}}$ от m при частоте несущей $\nu_0=50$ к Γ ц, частоте модуляции $\nu_{\rm mon}=2$ к Γ ц

- мод		
m	а_бок	а_центр
50	186	738
10	38	738
20	74	738
30	110	738
40	150	738
60	222	738
70	258	738
80	298	738
90	334	738
100	370	738

Определен коэффициент наклона прямой:

$$k = 0.502 \pm 0.002 \tag{7}$$

Результат сходится с предсказанным теоретически (0.5).

Рис. 10: Зависимость $\frac{a_{\rm fok}}{a_{\rm och}}$ от m при частоте несущей $\nu_0=50$ к Γ ц, частоте модуляции $\nu_{\rm мод}=2$ к Γ ц

5. Выводы

- 1. При исследовании последовательности прямоугольных импульсов получена зависимость ширины спектра от длительности импульса, что подтверждает соотношение неопределенностей для данного вида сигнала: $\tau \cdot \Delta \nu \sim 1$.
- 2. Проверены теоретические расчеты спектра при прямоугольных импульсах (теоретическая и экспериментальная картины схожи).
- 3. При обработке данных от спектра периодической последовательности цугов была обнаружена ошибка при снятии данных, что не позволило проверить соотношение неопределенностей.
- 4. Получен угол наклона графика зависимости $\frac{a_{60\text{к}}}{a_{\text{осн}}}$ от m (0.5), подтверждено теоретическое значение этого угла (0.5).

Список используемой литературы

[1] Никулин М.Г., Попов П.В., Нозик А.А. и др. Лабораторный практикум по общей физике: учеб. пособие. В трех томах. Т. 2. Электричество и магнетизм