一、填空题(共14小题,15个空,每空3分,共45分)

1. 极限
$$\lim_{\substack{x \to 1 \\ y \to 0}} \frac{\ln(1+x^3y^4)}{y^2[1-\cos(xy)]} =$$

2. 方程 $y'' - 8y' + 16y = e^{4x}$ 对应的齐次方程通解为_____;

非齐特解形式设为_____

- 3. 已知 $f(x) = \int_{1}^{2x} f\left(\frac{t}{2}\right) dt + 2x 3$,则 f(x) =______
- 4. 设函数 f(u) 可微,且 $f'(0) = \frac{1}{2}$,则 $z = f(4x^2 y^2)$ 在点 (1, 2) 处的全微分

dz =

- 5. 函数 $u = xy^2 + z^3 xyz$ 在点 P(1,1,2)处方向导数的最大值为
- 6. 函数 $z = x^3 + y^3 3x^2 3y^2$ 的极小值点是_____
- 7. 曲线 $\begin{cases} x-y+z=2\\ z=x^2+y^2 \end{cases}$ 在点(1,1,2)处的法平面方程为_____
- 8. 交换积分顺序 $\int_0^1 dx \int_0^x f(x,y) dy + \int_1^2 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy =$
- 9. 设 $xy^2 \iint_D f(x,y) dx dy = f(x,y) + 1$. 函数 f(x,y) 在区域 $D: 0 \le x \le 1$, $0 \le y \le 1$ 上连续,则 $\iint_D f(x,y) dx dy = ______$
- 10. 设 Σ : $z = \sqrt{R^2 x^2 y^2}$ 取下侧,则 $\iint_{\Sigma} \frac{x \, dy \, dz + y \, dz \, dx + z \, dx \, dy}{\sqrt{x^2 + y^2 + z^2}} = \underline{\hspace{1cm}}$
- 11. 设一质点在力 $\vec{F} = (-y, x)$ 作用下,在平面上沿O(0,0),A(0,3),B(2,0) 构成的三角形的边L 依顺时针方向从原点回O到原点O,则力 \vec{F} 所做的功为______
- 12. $\forall a_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$, 则级数 $\sum_{n=1}^{\infty} \frac{1}{n} (a_n + a_{n+2})$ 的和为_____
- 13. 函数 $f(x) = 3^x$ 展成 x 2 的幂级数为 _____

14. 函数 $f(x) = \pi x + x^2 (-\pi < x < \pi)$ 的傅里叶展开式中,其系数 $b_5 = -\pi$
二、 单选题 (共 15 小题,每小题 2 分,共 30 分
1. 方程 $x^2 + y^2 - 2x + 4y = 0$ 在空间的轨迹是 ()
(A) 球面; (B) 椭圆抛物面; (C) 圆; (D) 圆柱面
2. 若非零向量 \vec{a} , \vec{b} 满足 $\left \vec{a}-\vec{b}\right =\left \vec{a}+\vec{b}\right $,则必有 ().
(A) \vec{a}, \vec{b} 平行; (B) \vec{a}, \vec{b} 垂直; (C) $ \vec{a} = \vec{b} $; (D) $\vec{a} = \vec{b}$.
3. 极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^3y^2}{(x^2+y^4)^2}$ ().
(A) 等于 0; (B) 等于 1; (C) 等于 2; (D) 不存在.
4. 设 $z = \frac{y}{f(x^2 + y^2)}$, 其中 $f(u)$ 可微, 则 $\frac{1}{y} \frac{\partial z}{\partial y} - \frac{1}{x} \frac{\partial z}{\partial x} = ($)
(A) $-\frac{z}{y}$; (B) $\frac{z}{y}$; (C) $\frac{z}{y^2}$; (D) $-\frac{z}{y^2}$.
5. 曲面 $z = 4 - x^2 - y^2$ 上与 $2x + 2y + z = 0$ 垂直的的法线方程为 ()
(A) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{1}$; (B) $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-4}{1}$;
(C) $\frac{x-1}{-2} = \frac{y-1}{2} = \frac{z-2}{1}$; (D) $\frac{x-1}{-2} = \frac{y-1}{2} = \frac{z-4}{1}$.
6. 已知 $y = f(x)$ 在 x 处的增量 $\Delta y = \frac{y\Delta x}{1+x^2} + \alpha$,其中 $\Delta x \to 0$ 时 α 是比 Δx 高阶
的无穷小,且 $f(0) = \pi$. 则 $f(1) = $ ()
(A) π ; (B) 2π ; (C) $e^{\frac{\pi}{4}}$; (D) $\pi e^{\frac{\pi}{4}}$.
7. 设 y_1, y_2, y_3 是微分方程 $y'' + py' + qy = f(x)$ 的三个线性无关的解, C_1, C_2
是任意常数,则 $y = C_1 y_1 + C_2 y_2 + (1 - C_1 - C_2) y_3$ ()
(A)是此方程的解,但不是它的通解; (B) 不是此方程的解;
(C) 是此方程的通解; (D) 是此方程的特解.

8. 二元函数 f(x,y) 在原点 (0,0) 可微的一个充分条件是().

(A)
$$\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = 0 \perp \lim_{y\to 0} \frac{f(0,y)-f(0,0)}{y} = 0;$$

(B)
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} = 0$$
;

(C)
$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{f(x,y) - f_x(0,0)x - f_y(0,0)y - f(0,0)}{\sqrt{x^2 + y^2}}$$
 存在;

(D)
$$\lim_{x\to 0} f'_x(x,0) = f'_x(0,0) \perp \lim_{y\to 0} f'_y(0,y) = f'_y(0,0).$$

9. 设
$$D: x^2 + y^2 \le 1$$
. 则 $\iint_D (x - y)^2 d\sigma = ($)

(A)
$$\pi$$
;

(B)
$$\frac{1}{3}\pi$$

(A)
$$\pi$$
; (B) $\frac{1}{3}\pi$; (C) $\frac{1}{2}\pi$; (D) $\frac{1}{4}\pi$.

(D)
$$\frac{1}{4}\pi$$

10. 下列展开
$$I = \iiint_{\Omega} f(z) dv$$
, $\Omega: x^2 + y^2 + z^2 \le 2z$ 成累次积分中错误的是(

(A) "三次积分法"
$$I = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} f(z) dz;$$

(B) "先二后一法"
$$I = \int_0^2 f(z) dz \int_0^{2\pi} d\theta \int_0^{\sqrt{2z-z^2}} r dr;$$

(C) "柱坐标法"
$$I = \int_0^{2\pi} d\theta \int_0^1 r dr \int_{1-\sqrt{1-r^2}}^{1+\sqrt{1-r^2}} f(z) dz;$$

(D) "球坐标法"
$$I = \int_0^{2\pi} d\theta \int_0^{\pi/2} \sin\varphi d\varphi \int_0^{2\cos\varphi} f(r\cos\varphi) r^2 dr$$

11. 设 $\Sigma: x-y+z=1$ 在第一卦限取上侧,则把 $\iint_{\Sigma} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy$ 化成对面积的曲面积分为 (

(A)
$$\frac{1}{\sqrt{3}}\iint_{\Sigma} \left(-P+Q-R\right) dS;$$
 (B) $\frac{1}{\sqrt{3}}\iint_{\Sigma} \left(P+Q-R\right) dS$

(C)
$$\frac{1}{\sqrt{3}}\iint_{\Sigma} (P-Q+R) dS$$
;; (D) $\frac{1}{\sqrt{3}}\iint_{\Sigma} (P+Q+R) dS$

12. 设曲线
$$\Gamma$$
:
$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = \frac{3}{2} \end{cases}$$
 , 则 $\oint_{\Gamma} (2yz + 2xz + 2xy) ds = ($)

(A)
$$\pi$$
;

(B)
$$\frac{5}{4}\pi$$

(C)
$$\frac{3}{4}\pi$$

(A)
$$\pi$$
; (B) $\frac{5}{4}\pi$; (C) $\frac{3}{4}\pi$; (D) $\frac{1}{4}\pi$.

13. 设
$$\sum_{n=1}^{\infty} (-1)^n 2^n a_n$$
 收敛,则两个级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1+n}{n^2}$, $\sum_{n=1}^{\infty} a_n$ 的敛散性为(

(A)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1+n}{n^2}$$
 条件收敛且 $\sum_{n=1}^{\infty} a_n$ 绝对收敛; (B)两个都条件收敛,

(C)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1+n}{n^2}$$
 绝对收敛且 $\sum_{n=1}^{\infty} a_n$ 条件收敛; (D)两个都绝对收敛.

14. 设级数
$$\sum_{n=1}^{\infty} (-1)^n a_n = 3$$
, $\sum_{n=1}^{\infty} a_{2n-1} = 6$. 则 $\sum_{n=1}^{\infty} a_n = ($

(A)
$$9;$$

(D) 18.

15. 设 grad
$$u(x,y) = (x^2 + 2xy^2, kx^2y - 3y^2)$$
,则常数 k 和一个 $u(x,y)$ 是(

(A)
$$k = 2$$
, $u(x, y) = x^3 + x^2y^2 - y^3$; (B) $k = 4$, $u(x, y) = x^3 + x^2y^2 - y^3$;

(B)
$$k = 4$$
, $u(x, y) = x^3 + x^2y^2 - y^3$:

(C)
$$k = 2$$
, $u(x, y) = \frac{1}{3}x^3 + x^2y^2 - y^3$; (D) $k = 4$, $u(x, y) = \frac{1}{3}x^3 + x^2y^2 - y^3$

(D)
$$k = 4$$
, $u(x, y) = \frac{1}{3}x^3 + x^2y^2 - y$

1. 求幂级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$$
 的和函数.

2. 在位于第一卦限的球面
$$x^2 + y^2 + z^2 = 5R^2$$
 $(R > 0)$ 上求一点 M , 使得函数 $u = \ln(xyz^3)$ 在该点取得最大值.

四、应用题(共1小题,共5分)

1. 计算
$$I = \iint_{\Sigma} xy^2 \, dy \, dz + yz \, dz \, dx + zx^2 \, dx \, dy$$
. 其中 Σ 由圆柱面 $x^2 + y^2 = 1$ 介于 $0 \le z \le 3 + x^2 + y^2$ 间的部分取外侧,和椭圆抛物面 $z = 3 + x^2 + y^2$ 含在 $x^2 + y^2 = 1$ 内的部分取上侧两部分组成.

=,

题	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
答案	1 11	В	D	С	A	D	С	В	С	A	С	В	A	С	С

$$\because \frac{\partial^2 u}{\partial x \partial y} = 4xy, \quad \frac{\partial^2 u}{\partial y \partial x} = 2kxy$$
 是多元初等函数,
$$\therefore \frac{\partial^2 u}{\partial x \partial y}, \frac{\partial^2 u}{\partial y \partial x}$$
 连续,故相等

$$k = 2$$
, $du(x, y) = (x^2 + 2xy^2) dx + (2x^2y - 3y^2) dy$

$$u(x,y) = \int_{(0,0)}^{(x,y)} (x^2 + 2xy^2) dx + (2x^2y - 3y^2) dy$$

$$= \int_0^x x^2 dx + \int_0^y (2x^2y - 3y^2) dy = \frac{1}{3}x^3 + x^2y^2 - y^3 + C$$

$$\cancel{\text{pradu}} = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) \Rightarrow \frac{\partial u}{\partial x} = x^2 + 2xy^2, \quad \frac{\partial u}{\partial y} = 2x^2y - 3y^2$$

$$\frac{\partial u}{\partial x} = x^2 + 2xy^2 \Rightarrow u = \frac{1}{3}x^3 + x^2y^2 + C(y)$$

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left[\frac{1}{3} x^3 + x^2 y^2 + C(y) \right] = 2x^2 y + C'(y) = 2x^2 y - 3y^2$$

$$\Rightarrow C'(y) = -3y^2 \Rightarrow C(y) = -y^3 + C, \quad \therefore \quad u(x,y) = \frac{1}{3}x^3 + x^2y^2 - y^3 + C$$

三、1. 解:
$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1/n}{1/(n+1)} = 1$$
,

$$S(x) = -x + \frac{x^2}{2} - \frac{x^3}{3} + \dots + (-1)^n \frac{x^n}{n} + \dots, \quad x \in (-1,1)$$

$$S'(x) = -1 + x - x^{2} + x^{3} - \dots + (-1)^{n} x^{n} + \dots = \frac{-1}{1+x}, \quad x \in (-1,1)$$

$$\Rightarrow S(x) = S(x) - S(0) = \int_{0}^{x} S'(x) dx = -\int_{0}^{x} \frac{1}{1+x} dx = -\ln(1+x), \quad x \in (-1,1)$$

$$x = 1 \text{ iff}, \quad \sum_{n=1}^{\infty} (-1)^{n} \frac{x^{n}}{n} = \sum_{n=1}^{\infty} (-1)^{n} \frac{1}{n} \text{ iff}, \quad x = -1 \text{ iff}, \quad \sum_{n=1}^{\infty} (-1)^{n} \frac{x^{n}}{n} = \sum_{n=1}^{\infty} \frac{1}{n} \text{ iff}, \quad x = -1 \text{ iff},$$

2. **M**: $F = \ln(xyz^3) + \lambda(x^2 + y^2 + z^2 - 5R^2)$

$$\begin{cases} \frac{\partial F}{\partial x} = \frac{1}{x} + 2\lambda x = 0 \\ \frac{\partial F}{\partial y} = \frac{1}{y} + 2\lambda y = 0 \\ \frac{\partial F}{\partial \lambda} = \frac{3}{z} + 2\lambda z = 0 \\ x^2 + y^2 + z^2 - 5R^2 = 0 \end{cases} \Rightarrow 得到唯一驻点: x = y = R, z = \sqrt{3}R$$

由题意点 $(R,R,\sqrt{3}R)$ 就是 u 的最大值点.

四、解: 圆柱面与椭圆抛物面的交线在 z=4 的平面上,在 xy 面上的投影是圆 $x^2+y^2=1$ 。

作辅助面 $\Sigma_1: z=0, \ D_{xy}: x^2+y^2 \le 1$,取下侧。由 Gauss 公式得:

$$I = \bigoplus_{\Sigma + \Sigma_1} - \iint_{\Sigma_1}$$

=
$$\iiint_{\Omega} (z + x^2 + y^2) dx dy dz - \iint_{\Sigma_1} xy^2 dy dz + yz dz dx + zx^2 dx dy$$

而 z=0 垂直于 yz, zx 面, 故
$$\iint_{\Sigma_1} xy^2 dy dz = \iint_{\Sigma_1} yz dz dx = 0$$
,

$$I = \iiint_{\Omega} (z + x^2 + y^2) \, dx \, dy \, dz - \iint_{D_{xy}} 0 \cdot x^2 \, dx \, dy = \iiint_{\Omega} (z + x^2 + y^2) \, dx \, dy \, dz$$

用柱坐标法

$$I = \int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{0}^{3+r^{2}} (z+r^{2}) dz = 2\pi \int_{0}^{1} r \left(\frac{1}{2}z^{2}+r^{2}z\right) \Big|_{0}^{3+r^{2}} dr$$

$$=2\pi\int_0^1 r\left(\frac{1}{2}(3+r^2)^2+r^2(3+r^2)\right)dr=2\pi\int_0^1 (\frac{9}{2}r+6r^3+\frac{3}{2}r^5)dr=8\pi$$