Computational Analytical Mechanics

SIMULATION | NUMERICAL SOLUTIONS FOR THE EULER-LAGRANGE EQUATION

In the following exercises, you will solve numerically the Euler-Lagrange equation for each generalized coordinate. Plotting these solutions, using the given initial conditions and within the given time ranges, you will be simulating the dynamics of these systems.

Use $|\vec{g}| = 9.81 \,\mathrm{m\,s^{-2}}$ for the magnitude of the acceleration due to gravity.

Exercises marked with (*) have extra difficulty, don't hesitate to ask for help.

1. Atwood machine

Time from $t=0\,\mathrm{s}$ to $t=10\,\mathrm{s}$. Parameters and initial conditions: $\ell_{\mathrm{rope}} > 150\,\mathrm{m},\ R=0.5\,\mathrm{m},$

$$m_1 = 8 \,\mathrm{kg}, \, m_2 = 1 \,\mathrm{kg}, \, m_p = 4 \,\mathrm{kg},$$

- b) Pendulum with free support [Landau §5 ex. 2]
- c) Double pendulum [Landau §5 ex. 1]

Time from t = 0 s to t = 10 s. Parameters and initial conditions:

(a)
$$m = 3 \text{ kg}, \ \ell = 2 \text{ m}, \ \varphi(t = 0) = \frac{\pi}{4}, \ \dot{\varphi}(t = 0) = 0.$$

(b)
$$m_1 = 3 \text{ kg}, m_2 = 1 \text{ kg}, \ell = 2 \text{ m}, x(t=0) = 1 \text{ m}, \dot{x}(t=0) = 0.5 \text{ m s}^{-1}, \phi(t=0) = \frac{\pi}{8}, \dot{\phi}(t=0) = 0.5 \text{ m}$$

(c)
$$m_1 = 3 \text{ kg}, m_2 = 1 \text{ kg}, \ell_1 = 1 \text{ m}, \ell_2 = 1 \text{ m}, \phi_1(t=0) = \frac{\pi}{8}, \dot{\phi}_1(t=0) = 0, \phi_2(t=0) = \frac{\pi}{4}, \dot{\phi}_2(t=0) = -\frac{\pi}{16} \text{s}^{-1}.$$

3. Pendulum of linked beads moving on rigid thin wires

Time from t=0 s to t=10 s. Parameters and initial conditions: $m_1=m_2=m=2$ kg, l=2 m, $\theta(t=0)=\frac{\pi}{4}, \dot{\theta}(t=0)=0$.

Computational Analytical Mechanics

4. (*) Compound Atwood machine [Marion ex. 7.8]

Time from t=0s to t=5s. Parameters and initial conditions: $\ell_{\text{top}}=15\,\text{m},\ R_{\text{top pulley}}=0.5\,\text{m},\ \ell_{\text{bottom}}=15\,\text{m},\ R_{\text{bottom pulley}}=0.5\,\text{m},\ m_1=1\,\text{kg},\ m_2=2\,\text{kg},\ m_3=3\,\text{kg},\ M_{\text{top pulley}}=4\,\text{kg},\ M_{\text{bottom pulley}}=4\,\text{kg},\ y(t=0)=1\,\text{m},\ \dot{y}_1(t=0)=0,\ y_2(t=0)=2\,\text{m},\ \dot{y}_2(t=0)=0$

