Федеральное государственное бюджетное образовательное учреждение высшего образования

«Уфимский государственный авиационный технический университет»

Информатики												
100	1	2	3	4	5	6	7	8	9	10	11	12
90												
80												
70												
60												
50												
40												
30												
20												
10												
0												
ОТЧІ	ET	-										
по лабораторной	й ра	або	те.	№ 1	3							
ет параметров и х	кар	акт	ери	істі	ик Х	КРД	Д»					_
			_									_
												_
	100 90 80 70 60 50 40 30 20 10 0 ОТЧ	100 1 90 80 80 70 60 50 40 30 20 10 10 0 OTHET по лабораторной р	100 1 2 90 80 70 80 70 60 50 40 30 20 10 0 10 0 0 OTHET по лабораторной рабо	100 1 2 3 90 80 70 60 60 60 50 40 60 30 20 60 10 10 10 0 0 0		100 1 2 3 4 5 90 80 70 60 60 60 60 60 60 60 60 60 60 60 60 60	100 1 2 3 4 5 6 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	100 1 2 3 4 5 6 7 90 80	100 1 2 3 4 5 6 7 8 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	100 1 2 3 4 5 6 7 8 9 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	100 1 2 3 4 5 6 7 8 9 10 90 80 70 70 70 70 70 70 70 70 70 70 70 70 70	100 1 2 3 4 5 6 7 8 9 10 11 90 80 70 70 70 70 70 70 7

по дисциплине Основы конструкции объектов ОТС

1306.5581308.000 ПЗ

(обозначение документа)

Группа СТС-407	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Гараев Д.Н.			
Консультант	Минасов Ш. М.			
Принял				

Содержание

ОТЧЕТ		7
Введение.		3
Ход работ	Ы	4
1.1 Heo6	оходимые формулы	4
1.2 Реше	ение	5
Заключени	ие	.10
Список ли	тературы	.11

					1306.5581308.000 ПЗ								
Изм.	Лист	№ докум	Подп	Дата	100010001000110								
Раз	раб	Гараев Д.Н.			5 C No.40	Лит	Лист	Листов					
Про	вер.	Минасов Ш. М.			Лабораторная работа №13	2 1		11					
					«Расчет параметров и характеристик ЖРД»								
Н. к	контр				характеристик жед»	УГАТУ, СТС-40							
Vme	R												

Введение

Целью лабораторной работы является закрепление знаний и получение практических навыков расчета параметров и характеристик жидкостного ракетного двигателя.

Необходимо решить задачу согласно варианту №8. Ниже приведена таблица с данными для расчетов.

Тип	V _{xap} ,	M_0 ,	n_{x0}	Топливо	p ₀ ,	n _c	φΣ	рн,	Парам.	Диапазон	
РД	м/с	T			МПа			МПа	вариации	вариации	
	Маршевые ДУ для ракетоносителей первой ступени										
ЖРД	1400	30	1,2	$O_2 + H_2$	7	80	0,93	0,03	n_c	50100	

И	зм.	Лист	№ докум	Подп	Дата

Ход работы

1.1 Необходимые формулы

Для начала расчета приведем все необходимые формулы из методических указаний:

- Тяга двигателя: $P=\stackrel{ullet}{m}u_a+F_a(p_a-p_n);$ или $P=p_0F_{\kappa\rho}K_{\rho};$
- Полный импульс тяги: $I_n = \int\limits_0^{t_p} P(t) dt;$
- Удельный импульс тяги: $I_{y\partial} = P / m$;
- Секундный массовый расход: $\dot{m} = \frac{a_k p_0 F_{\kappa p}}{\sqrt{R_c T_0}}$;
- Масса топлива: $t_p = I_n / I_{yo}$;
- Время работы двигателя: $t_p = I_n / P$;
- Скорость продуктов сгорания на срезе сопла: $u_a = \sqrt{\frac{2k}{k-1} \cdot R_z T_z \Big[1 (1/\varepsilon_c)^{(k-1)/k} \, \Big]};$
- Степень расширения сопла по давлению: $\varepsilon_c = p_0 / p_a$;
- Геометрическая степень расширения сопла: $n_c = F_a / F_{\kappa p}$;
- Коэффициент тяги: $K_p = \left\{ a_k \sqrt{\frac{2k}{k-1} \left[1 \left(\frac{1}{\varepsilon_c} \right)^{\frac{k-1}{k}} \right]} + n_c \left(\frac{1}{\varepsilon_c} \frac{p_{_H}}{p_0} \right) \right\};$
- Удельный импульс тяги: $I_{y\partial} = U_a + \frac{\sqrt{R_{\varepsilon}T_0}}{a_k} n_c \left(\frac{1}{\varepsilon_c} \frac{p_{\scriptscriptstyle H}}{p_0}\right)$.

Изм.	Лист	№ докум	Подп	Дата

1.2 Решение

Теперь необходимо воспользоваться электронной таблицей MS Exel, где протабулируем все необходимые формулы.

Рассчитаем коэффициент в выражении для расхода, степень расширения сопла по давлению и коэффициент тяги, по формулам, приведенным выше.

Дан	10			
Двигатель	Двигатель ЖРД		ak=	0,644619
Vxap, M/C	1400		Ec=	1057,61
Мо, кг	30000		K _P =	1,620867
nxo	1,2			
ро, МПа	7			
φΣ	0,93			
рп, МПа	0,03			
nc	80			
k	1,18			
RrTr, Дж/кг	2280000			
g, m/c	9,8			

Рисунок 1 – Расчеты

Далее с помощью полученных данных проведем расчеты согласно заданному значению $n_{\rm c}$.

Расчет	Расчеты						
ak=	0,644619						
Sc=	1057,61						
Κμ=	1,620867						
Ua=	4422,679	M/c					
Іуд=	3796,75						
Іудф=	3530,977						
Іудп=	35126656						
mi=	9251,77	КГ					
P _{ip} =	352800						
t _p =	99,56535	сек					
m=	92,92158	кг/с					
p _i =	0,006619	Па					
F _i p=	0,025666	M^2					
Fa=	2,053242	M^3					
P ₀ =	410962,3	Н					

Рисунок 2 - Продолжение расчетов

Теперь на основе написанных формул можно составить таблицу табуляции. Для этого необходимо провести расчеты с новыми значениями n_c из диапазона 50...100 с шагом 1.

Изм	Лист	№ докум	Подп	Дата

nc .	āk	ð:	Кр	Us	Іуд	Іудф	Іудп	m _t	Prp	tρ	m	Pa	Fxp	Fa	Po
50	0,64462	585,301	1,71152	4310,93	4009,09	3728,45	3,5E+07	8842,58	352800	100,484	88	0,01196	0,02617	1,30855	379362
51	0.64462	600,074	1,70892	4315.91	4003	3722,79	3,5E+07	8853.81	352800	100,459	88,1338	0.01167	0.02615	1.33355	380377
52	0.64462	614,923	1,70628	4320,76	3996,82	3717,04	3,5E+07	8865,24	352800	100,433	88,2702	0,01138	0,02613	1,35854	381394
53	0.64462	629,846	1.7036	4325.5	3990.55	3711.21	3.5E+07	8876.88	352800	100,407	88,4089	0.01111	0.0261	1.38351	382413
54	0.64462	644,842	1,70089	4330,13	3984,19	3705,29	3,5E+07	8888,71	352800	100,381	88,5501	0.01086	0.02608	1,40847	383433
55	0.64462	659,909	1,69813	4334,65	3977,74	3699.3	3,5E+07	8900,72	352800	100,354	88,6936	0.01061	0.02606	1,43341	384456
56	0.64462	675,048	1,69535	4339.08	3971,22	3693.23	3,5E+07	8912.92	352800	100,326	88,8393	0.01037	0.02604	1,45834	385480
57	0.64462	690,257	1.69253	4343.4	3964,61	3687.09	3,5E+07	8925.3	352800	100,299	88,9872	0.01014	0.02602	1,48326	386507
58	0,64462	705,536	1,68968	4347,63	3957,94	3680,88	3,5E+07	8937,85	352800	100,27	89,1374	0,00992	0,026	1,50816	387536
59	0,64462	720,882	1,6868	4351,77	3951,19	3674,6	3,5E+07	8950,57	352800	100,242	89,2896	0,00971	0,02598	1,53306	388568
60	0,64462	736,296	1,68389	4355,83	3944,37	3668,26	3,5E+07	8963,46	352800	100,213	89,4439	0,00951	0.02597	1,55794	389602
61	0,64462	751,777	1,68095	4359,8	3937,49	3661.86	3,5E+07	8976,5	352800	100,184	89,6003	0.00931	0,02595	1,5828	390639
62	0,64462	767,323	1,67798	4363.69	3930.54	3655.4	3,5E+07	8989,71	352800	100,154	89,7587	0.00912	0.02593	1,60766	391679
63	0,64462	782,935	1,67499	4367,5	3923,53	3648,88	3,5E+07	9003,08	352800	100,124	89,919	0,00894	0,02591	1,6325	392721
64	0.64462	798,611	1,67197	4371,24	3916,46	3642,31	3,5E+07	9016,59	352800	100,094	90.0813	0,00877	0.0259	1,65733	393766
65	0,64462	814,35	1,66893	4374,9	3916,46	3635,69	3,5E+07	9030,26	352800	100,063	90,0813	0,00877	0,02588	1,68215	394815
66	0,64462	830,152	1,66587	4378.5	3909,34	3633,69	3,5E+07	9030,26	352800	100,063	90,2434	0.00843	0,02586	1,70696	395867
$\overline{}$	_							and the space						-,	
67 68	0,64462	846,016 861,942	1,66278	4382,03 4385,49	3894,93 3887,64	3622,28 3615,51	3,5E+07 3,5E+07	9058,03	352800	100,001 99,9693	90,5794	0,00827	0,02585	1,73176	396921 397979
$\overline{}$		_	_					9072,13	352800					1,75655	
69	0,64462	877,928	1,65654	4388,89	3880,31	3608,69	3,5E+07	9086,37	352800	99,9374	90,9207	0,00797	0,02582	1,78133	399041
70	0,64462	893,975	1,65339	4392,23	3872,92	3601,82	3,5E+07	9100,75	352800	99,9051	91,094	0,00783	0,0258	1,80609	400106
71	0,64462	910,081	1,65021	4395,51	3865,49	3594,91	3,5E+07	9115,26	352800	99,8724	91,2691	0,00769	0,02579	1,83085	401174
72	0,64462	926,245	1,64702	4398,74	3858,02	3587,96	3,5E+07	9129,91	352800	99,8395	91,4459	0,00756	0,02577	1,8556	402247
73	0,64462	942,468	1,64381	4401,91	3850,5	3580,97	3,5E+07	9144,7	352800	99,8063	91,6244	0,00743	0,02576	1,88034	403322
74	0,64462	958,748	1,64059	4405,02	3842,94	3573,93	3,5E+07	9159,61	352800	99,7728	91,8047	0,0073	0,02574	1,90506	404402
75	0,64462	975,086	1,63734	4408,09	3835,34	3566,86	3,5E+07	9174,65	352800	99,7389	91,9867	0,00718	0,02573	1,92978	405485
76	0,64462	991,48	1,63408	4411,1	3827,7	3559,76	3,5E+07	9189,83	352800	99,7048	92,1703	0,00706	0,02572	1,95449	406573
77	0,64462	1007,93	1,6308	4414,07	3820,01	3552,61	3,5E+07	9205,12	352800	99,6704	92,3557	0,00694	0,0257	1,97919	407664
78	0,64462	1024,44	1,6275	4416,98	3812,3	3545,44	3,5E+07	9220,55	352800	99,6357	92,5427	0,00683	0,02569	2,00388	408759
79	0,64462	1041	1,62419	4419,85	3804,54	3538,22	3,5E+07	9236,1	352800	99,6006	92,7313	0,00672	0,02568	2,02857	409859
80	0,64462	1057,61	1,62087	4422,68	3796,75	3530,98	3,5E+07	9251,77	352800	99,5654	92,9216	0,00662	0,02567	2,05324	410962
81	0,64462	1074,28	1,61753	4425,46	3788,92	3523,7	3,5E+07	9267,56	352800	99,5298	93,1135	0,00652	0,02565	2,07791	412070
82	0,64462	1091	1,61417	4428,2	3781,07	3516,39	3,5E+07	9283,48	352800	99,4939	93,307	0,00642	0,02564	2,10256	413182
83	0,64462	1107,77	1,6108	4430,9	3773,17	3509,05	3,5E+07	9299,52	352800	99,4578	93,5022	0,00632	0,02563	2,12721	414299
84	0,64462	1124,6	1,60742	4433,56	3765,25	3501,68	3,5E+07	9315,67	352800	99,4213	93,6989	0,00622	0,02562	2,15185	415420
85	0,64462	1141,48	1,60402	4436,18	3757,3	3494,29	3,5E+07	9331,95	352800	99,3846	93,8973	0,00613	0,02561	2,17649	416545
86	0,64462	1158,41	1,60062	4438,76	3749,31	3486,86	3,5E+07	9348,34	352800	99,3477	94,0973	0,00604	0,02559	2,20111	417675
87	0,64462	1175,39	1,59719	4441,31	3741,3	3479,41	3,5E+07	9364,85	352800	99,3104	94,2988	0,00596	0,02558	2,22573	418810
88	0,64462	1192,42	1,59376	4443,81	3733,26	3471,93	3,5E+07	9381,48	352800	99,2729	94,5019	0,00587	0,02557	2,25034	419949
89	0,64462	1209,51	1,59032	4446,29	3725,19	3464,42	3,5E+07	9398,22	352800	99,2351	94,7067	0,00579	0,02556	2,27494	421093
90	0,64462	1226,64	1,58686	4448,73	3717,09	3456,89	3,5E+07	9415,08	352800	99,197	94,913	0,00571	0,02555	2,29953	422242
91	0,64462	1243,82	1,58339	4451,13	3708,97	3449,34	3,5E+07	9432,06	352800	99,1587	95,1209	0,00563	0,02554	2,32412	423396
92	0,64462	1261,05	1,57991	4453,51	3700,82	3441,76	3,5E+07	9449,15	352800	99,1201	95,3303	0,00555	0,02553	2,3487	424554
93	0,64462	1278,33	1,57642	4455,85	3692,64	3434,16	3,5E+07	9466,35	352800	99,0812	95,5414	0,00548	0,02552	2,37327	425718
94	0,64462	1295,65	1,57292	4458,16	3684,44	3426,53	3,5E+07	9483,67	352800	99,042	95,754	0,0054	0,02551	2,39784	426886
95	0,64462	1313,03	1,56941	4460,44	3676,22	3418,88	3,5E+07	9501,1	352800	99,0026	95,9682	0,00533	0,0255	2,4224	428060
96	0,64462	1330,45	1,56589	4462,69	3667,97	3411,21	3,5E+07	9518,65	352800	98,9629	96,184	0,00526	0,02549	2,44695	429239
97	0,64462	1347,92	1,56236	4464,91	3659,7	3403,52	3,5E+07	9536,3	352800	98,9229	96,4013	0,00519	0,02548	2,4715	430423
98	0,64462	1365,44	1,55882	4467,1	3651,41	3395,81	3,5E+07	9554,07	352800	98,8827	96,6203	0,00513	0,02547	2,49603	431613
	0.64462	1383	1,55527	4469,27	3643,09	3388,08	3,5E+07	9571,96	352800	98,8422	96,8408	0,00506	0,02546	2,52057	432807
99					-	_									

Рисунок 3 - Протабулированные данные

Построим графики зависимостей степени расширения по давлению (Рисунок 4), скорости истечения продуктов сгорания u_a (Рисунок 5), удельного импульса тяги $I_{yд}$ (Рисунок 6) и тяги двигателя от геометрической степени расширения сопла (Рисунок 7).

Изм.	Лист	№ докум	Подп	Дата

Рисунок 4 - Зависимость расширения сопла по давлению от геометрической степени расширения сопла

Рисунок 5 - Зависимость скорости сопла по давлению от геометрической степени расширения сопла

Изм	Лист	№ докум	Подп	Дата

Рисунок 6 - Зависимость удельного импульса тяги от геометрической степени расширения сопла

Рисунок 7 - Зависимость фактической тяги двигателя от геометрической степени расширения сопла

Изм.	Лист	№ докум	Подп	Дата

Из построенных графиков можно сделать вывод, что зависимость степени расширения по давлению имеет положительный линейный характер, скорости истечения продуктов сгорания u_a и тяги двигателя — экспоненциальный, удельного импульса тяги $_{\rm lyg}$ — отрицательный линейный.

Изм	Лист	№ докум	Подп	Дата

Заключение

В результате выполнения лабораторной работы № 13 были рассчитаны следующие параметры:

- скорость продуктов сгорания на срезе сопла $u_a = 4422,68 \text{ м/c}$;
- идеальное и реальное значения удельного импульса тяги $I_{yд} = 3796,75$ м/с и $I_{yд}$ реал = $I \cdot \phi_{\Sigma} = 3530,98$ м/с;
- полный импульс тяги $I_{\rm n} = 35126656,11$ м/с;
- масса топлива $m_T = 9251,77$ кг;
- секундный массовый расход m = 92,921 кг/c;
- тягу двигателя P = 352800 H;
- время работы $t_p = 99,57$ с;
- площади критического и выходного сечения сопла $F_{\kappa p} = 0.026 \text{ m}^2$ и $F_a = 2.053 \text{ m}^2$;
- давление продуктов сгорания на срезе сопла ра = 0,00662 MПа.

Были построены графики зависимостей степени расширения по давлению, скорости истечения продуктов сгорания u_a , удельного импульса тяги $I_{yд}$ и тяги двигателя от геометрической степени расширения сопла.

Из построенных графиков можно сделать вывод, что зависимость степени расширения по давлению имеет положительный линейный характер, скорости истечения продуктов сгорания u_a и тяги двигателя — экспоненциальный, удельного импульса тяги $_{\text{Іуд}}$ — отрицательный линейный.

Изм.	Лист	№ докум	Подп	Дата

1. Расчет параметров и характеристик ракетных двигателей/ В.П. Белов; Балт. гос. техн. ун-т. – Спб., 2013-47 с.

Изм	Лист	№ докум	Подп	Дата