Subatomic Physics II

Problem Set 4

Due on October 28, 2021, 23:59

Problem 4.1: Deep inelastic lepton-nucleon scattering

The HERA particle collider at DESY in Hamburg provided collisions between electrons ($E_e = 30 \text{ GeV}$) and protons ($E_p = 900 \text{ GeV}$). Consider neutral-current scattering reactions: $ep \to eX$, where X denotes any hadronic system. Among other things, the energy E_0 and polar scattering angle θ_e of the scattered electron were measured by the detectors H1 and ZEUS surrounding the two HERA interaction regions.

- Express the variables Q^2 , x and y in terms of E_e , E_p , E_0 , θ_e using relativistic kinematics. (3pt)
- Express the variables Q^2, x, y and W^2 in terms of the Mandelstam variables s, t and u. (1pt)
- What should be the energy reached by an electron beam hitting a solid proton target to have the same centre-of-mass energy as HERA? (1pt)

Problem 4.2: Structure functions

- The integral of combinations of DIS structure functions over the entire range [0, 1] allowed gives rise to several interesting so-called "sum rules". Find an expression in terms of the PDF for the following sum rules, based on the quark-parton model: (2pt)
 - Adler $S_A = \int_0^1 \frac{dx}{x} (F_2^{\nu n} F_2^{\nu p})$
 - Gottfried $S_G = \int_0^1 \frac{dx}{x} (F_2^{ep} F_2^{en})$

What do you expect as outcome? (1pt)

• The Adler sum rule is experimentally better satisfied than the Gottfried sum rule. Can you think of a reason why? (2pt)