

7.4 用矢积表示刚体上点的速度与加速度

1. 用矢量表示角速度与角加速度

角速度矢

沿刚体的转轴。画出一个矢量

 $\omega = \omega k$ (其中k为轴z的单位

矢) , ω 称为刚体的角速度矢。

角加速度矢

同样,可以用矢量 α=αk表示刚体的角加速度, 它也是滑动矢量,沿转轴z画 出。它的大小表示角加速度 的模,它的指向则决定于α 的正负。

$$\boldsymbol{\omega} = \omega \boldsymbol{k} = \frac{\mathrm{d}\varphi}{\mathrm{d}t} \boldsymbol{k}$$

$$\boldsymbol{\alpha} = \alpha \boldsymbol{k} = \frac{\mathrm{d}\omega}{\mathrm{d}t} \boldsymbol{k} = \frac{\mathrm{d}\omega}{\mathrm{d}t}$$

2. 用矢积表示刚体上点的速度

大小

$$v = \omega \times r$$

定轴转动刚体内任一点M的速度 ν 的大小为 $|
u|=R|\omega|$ 。由

于
$$R = r \sin \theta$$
,因而 $|v| = R|\omega| = |\omega| r \sin \theta$

方向

根据矢积的定义,矢积 $\omega \times r$ 的模也等于 $|\omega|r\sin\theta$,它的方向也与速度 ν 的方向一致。 故有矢积表达式

$$v = \omega \times r$$

定轴转动刚体内任一点的速度,可以由刚体的角速度矢与该点的矢径的矢积表示。

3. 用矢积表示刚体上点的加速度

$$v = \omega \times r$$

将上式左右两边对时间求矢导数。左端的导数为点M的加速度,

而右端的导数为

$$\frac{\mathrm{d}\boldsymbol{\omega}}{\mathrm{d}t} \times \boldsymbol{r} + \boldsymbol{\omega} \times \frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} = \boldsymbol{\alpha} \times \boldsymbol{r} + \boldsymbol{\omega} \times \boldsymbol{v}$$

$$\boldsymbol{\xi} \boldsymbol{\eta} \boldsymbol{\alpha} \times \boldsymbol{r}$$

大小

$$|\boldsymbol{\alpha} \times \boldsymbol{r}| = |\alpha| r \sin \theta = R |\alpha| = |a_{\rm t}|$$

方向

$$|\boldsymbol{\alpha} \times \boldsymbol{r}| = |\alpha| r \sin \theta = R |\alpha| = |a_{\rm t}|$$

这矢积垂直由转轴z和转动半径 O_1 M决定的平面 OO_1M ,它的指向与图中自点O 画出的矢量一致。

可见,矢积 $\alpha \times r$ 按大小和方向都与点M的切向加速度 a_t 相同。

故有矢积表达式

$$a_{t} = \alpha \times r$$

矢积 ω×ν

方向

$$|\boldsymbol{\omega} \times \boldsymbol{v}| = |\boldsymbol{\omega} \boldsymbol{v}| = R\boldsymbol{\omega}^2 = a_{\rm n}$$

这矢积同时垂直于刚体的转轴和点M的速度v,即沿点M的转动半径R,并且按照右手规则它是由点M指向轴心 O_1 。

可见,矢积 $\mathbf{o} \times \mathbf{v}$ 表示了点M的法 向加速度 a_n ,即有矢积表达式

$$a_{\rm n} = \omega \times v$$

于是,得点M的总加速度的矢积表达式

$$a = a_{t} + a_{n} = \alpha \times r + \omega \times v$$

定轴转动刚体内任一点的切向加速度,可由刚体的角加速度矢与该点矢径的矢积表示,而法向(向心)加速度,则由刚体的角速度矢与该点速度的矢积表示。

例题1 刚体以角速度 ω 绕定轴Oz转动,其上固连有动坐标系O'x'y'z'(如图),试求由O'点画出的动系轴向单位矢i',j',k'端点A,B,C的速度。

 $\frac{\mathbf{F}_{\mathbf{r}}}{\mathbf{F}_{\mathbf{r}}}$ 先求端点 \mathbf{A} 的速度。设 \mathbf{A} 点的矢径 为 \mathbf{r}_{A} 则 \mathbf{A} 点的速度为

$$\mathbf{v}_A = \frac{\mathrm{d}\mathbf{r}_A}{\mathrm{d}t}$$

A点是定轴转动刚体内的一点,由式有

$$\boldsymbol{v}_A = \boldsymbol{\omega} \times \boldsymbol{r}_A$$

可见
$$\frac{\mathrm{d} \boldsymbol{r}_A}{\mathrm{d} t} = \boldsymbol{\omega} \times \boldsymbol{r}_A$$
 , 但这里有 $\boldsymbol{r}_A = \boldsymbol{i}'$,

故
$$\mathbf{v}_A = \frac{\mathrm{d}\mathbf{i}'}{\mathrm{d}t} = \boldsymbol{\omega} \times \mathbf{i}'$$

同理可得 v_B 和 v_C 的矢量表达式。

于是得到一组公式

$$\frac{\mathrm{d}\mathbf{i'}}{\mathrm{d}t} = \boldsymbol{\omega} \times \mathbf{i'}$$

$$\frac{\mathrm{d}\boldsymbol{j'}}{\mathrm{d}t} = \boldsymbol{\omega} \times \boldsymbol{j'}$$

$$\frac{\mathrm{d}\boldsymbol{k'}}{\mathrm{d}t} = \boldsymbol{\omega} \times \boldsymbol{k'}$$

它称为泊松公式。

谢谢!