现代电子技术与系统

华东理工大学自动化系

刘笛(徐汇校区实验十九楼1005)

Tel: 18939810219 Email: liudi@ecust.edu.cn

电子技术

电子技术:根据电子学的原理,应用电子器件设计和制造某种特定功能的电子电路,通过对电子信号的处理来解决实际问题的一门技术

电子技术的发展

- 1883年,美国著名发明家爱迪生,发现了热电子效应-爱迪生效应,这是一种通过热激发发射载流子的现象。原理是:提供给载流子的热能使它们能够克服束缚位能(在金属材料中,这束缚位能也被称为功函数或逸出功)。通过热发射产生的载流子可能是电子或者离子。产生电子的热发射被称为热电子发射。
- 1904年,英国电机工程师、物理学家约翰·安布罗斯·弗莱明(John Ambrose Fleming)利用热电子效应制成了电子管(二极管),并证实了电子管具有"阀门"作用,它首先被用于无线电检波。

电子技术的发展

• 1904年,英国电机工程师、物理学家约翰·安布罗斯·弗莱明(John Ambrose Fleming)利用热电子效应制成了电子管(二极管),并证实了电子管具有 "阀门"作用,它首先被用于无线电检波。

电子二极管原理

真空电子二极管

电子技术的发展

- 1906年,美国的德弗雷斯在弗莱明的二极管中放进了第三个电极一栅极,发明了电子三极管,这是早期电子技术上最重要的里程碑。1904年,英国电机工程师、物理学家约翰·安布罗斯·弗莱明(John Ambrose Fleming)利用热电子效应制成了电子管(二极管),并证实了电子管具有"阀门"作用,它首先被用于无线电检波。
- 1911年开始,随着电子管技术进步与推广应用,电子技术开始发展起来。电子管的缺点是成本高,制造繁,体积大,耗电多。
- 1929年,已经取得一种晶体管的专利。但是,限于当时的技术水平,制造这种器件的材料达不到足够的纯度,这种晶体管无法制造出来。

电子技术的发展

- 1947年12月16日,美国贝尔实验室研制出一种点接触型的锗晶体管。在为这种器件命名时,布拉顿想到它的电阻变换特性,即它是靠一种从"低电阻输入"到"高电阻输出"的转移电流来工作的,于是取名为trans-resister(转换电阻),后来缩写为transister,中文译名就是晶体管,也称为"半导体器件"或"固体器件"。
- 1950年,第一只"面结型晶体管"问世了,它的性能与肖克莱原来设想的完全一致。今天的晶体管,大部分仍是这种面结型晶体管。
- 1951年,有了商品,这是出现分立元件的又一个里程碑。

电子技术的发展

 1958年,在德州仪器公司的实验室里,实现了把电子器件集成在一块半导体 材料上的构想。第一片集成电路只有4个晶体管。集成电路的出现和应用, 标志着电子技术发展到了一个新的阶段。

电子技术的发展

- 1960年,集成电路处于"小规模集成"阶段,每个半导体芯片上有不到100个元器件。
- 1966年, 进入"中规模集成"阶段, 每个芯片上有100到1000个元器件。
- 1969年, 进入"大规模集成"阶段, 每个芯片上的元器件达到10000左右。
- 1975年, 跨入"超大规模集成"阶段, 每个芯片上的元器件多达10000个以上, 已经进入"微电子"时代。
- 从1960年至1980年的二十年间,芯片上元器件的"集成度"增加了1000000倍, 每年递增率约为2倍。

电子技术的发展

摩尔定律:多年以来,电子制造技术的发展都遵循摩尔定律。即当芯片价格不变时,集成电路上可容纳的元器件的数目约每隔18-24个月便会增加一倍,技术性能也随之提升一倍。

随着集成电路集成度进一步提升,从芯片的制造来看,7nm是物理极限。一旦晶体管大小低于这一数字,它们在物理形态上就会非常集中,以至于产生量子隧穿效应,为芯片制造带来巨大挑战。

摩尔定律还准吗?

信息电子技术与电力电子技术

模拟信号与数字信号

◆ 模拟信号是时间上和数值上都连续的信号

模拟信号与数字信号

◆ 数字信号在时间上和数值上都是离散的、不连续的 每一次的增减变化都是某个最小量的整数倍

特征: 幅度(大小)随时间变化是不连续的,是断续的

模拟电子技术与数字电子技术

模拟电子技术:分析、处理 连续的电信号

如:讲话的音频信号;电视图象信号;温度、流量、压力变换 而成的电信号等

数字电子技术:分析、处理 不连续(离散)的电信号如:雷达信号、电报信号、电视信号中的同步信号、脉冲信号等

◆分析和设计的方法以及所用的数学工具都有显著不同

电子系统

所谓电子系统,就是由若干个相互关联、相互作用的基本电子 电路组成的电路整体称为**电子系统**。

课程性质

电子技术与电子系统 课程介绍

课程内容

课程目标

能熟练地运 用基础知识 和理论对各 类电路进行 分析

掌握数字系统硬件分析, 设计和开发的基本技能

熟悉典型的 放大电路与 数字电路的 组成与特点 能根据应用 需求用合适 的集成电路 芯片完成各 种逻辑部件 的设计

重视实践环节

课程特点与学习方法

使用教材

朱小明等. 模拟电路与数字电路(第3版). 人民邮电出版社

电子技术与电子系统 课程介绍

夏宇闻. Verilog数字系统设计教程(第4版). 北京航天大学出版社

课程考核

理论学时

56学时

实践学时

48学时

考核方式

40%平时成绩+60%闭卷笔试

平时成绩

50%作业+50%实验

晶体管的发明

- ●1947年12月16日贝尔实验室晶体管小组成员Brattain观察到流经两根导线间锗晶体的电流被放大,奠定了晶体管的发明
- ●发明晶体管是三位科学家长期合作的结果:
 - ·John Bardeen(理论物理学家,曾作为低温超导理论的创始人获1972年诺贝尔物理学奖)提出了表面态理论
 - •Walter H Brattain(天才的实验家,博士,在贝尔实验室工作了33年)设计了晶体管放大器实验
 - •Willian Shockley(博士,才华横溢的领导者,发明了结型晶体管,他支持创建了Intel公司)给出了实现放大器的基本设想
- ➤晶体管的发明,宣布了信息时代的到来,这三位晶体管之父,因此获**1956**年诺贝尔物理学奖

- ●1950年,结型晶体管诞生
- ●1950年, R 0hl和肖特莱发明了离子注入工艺
- ●1951年,场效应晶体管发明
- ●1956年, CS Fuller发明了扩散工艺
- ●1958年,仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了 集成电路,开创了世界微电子学的历史
- ●1960年, H H Loor和E Castellani发明了光刻工艺
- ●1962年,美国RCA公司研制出MOS场效应晶体管
- ●1963年, F. M. Wanlass和C. T. Sah首次提出CMOS技术, 今天, 95%以上的 集成电路芯片都是基于CMOS工艺
- ●1964年, Intel摩尔提出摩尔定律, 预测晶体管集成度将会每18个月增加1倍
- ●1966年,美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列 (50门)
- ●1971年, Intel推出1kb动态随机存储器(DRAM), 标志着大规模集成电路出现

- ●1971年,全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺, 这是一个里程碑式的发明
- ●1974年, RCA公司推出第一个CMOS微处理器1802
- ●1976年, 16kb DRAM和4kb SRAM问世
- ●1978年,64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14 万个晶体管,标志着超大规模集成电路(VLSI)时代的来临
- ●1979年, Intel推出5MHz 8088微处理器, IBM基于8088推出全球第一台PC
- ●1981年, 256kb DRAM和64kb CMOS SRAM问世
- ●1984年,日本宣布推出1Mb DRAM和256kb SRAM
- ●1988年, 16M DRAM问世, 1平方厘米大小的硅片上集成有3500万个晶体管, 标志着进入VLSI阶段
- ●1989年, 1Mb DRAM进入市场
- ●1989年,486微处理器推出,25MHz,1 μm工艺,后来50MHz芯片采用 0.8 μm工艺

- ●1992年,64M位随机存储器问世
- ●1993年, 66MHz奔腾处理器推出, 采用0.6 µ m 工艺
- ●1995年, Pentium Pro, 133MHz, 采用0.6-0.35 µ m 工艺
- ●1997年, 300MHz奔腾 II 问世, 采用0. 25 μ m 工艺
- ●1999年,奔腾Ⅲ问世,450MHz,采用0.25 μ m 工艺,后采用0.18 μ m 工艺
- ●2000年, 1Gb RAM投放市场
- ●2000年, 奔腾4问世, 1.5GHz, 采用0.18 µ m 工艺
- ●2001年, Intel宣布2001年下半年采用0.13 μ m 工艺
- ●2003年,奔腾4 E系列推出,采用90nm工艺
- ●2005年, intel 酷睿2系列上市, 采用65nm工艺
- ●2007年,基于全新45nm工艺的intel酷睿2 E7/E8/E9上市
- ●2009年, intel酷睿i系列全新推出, 创纪录采用了领先的32mm工艺,

- ●1992年,64M位随机存储器问世
- ●1993年, 66MHz奔腾处理器推出, 采用0.6 µ m 工艺
- ●1995年, Pentium Pro, 133MHz, 采用0.6-0.35 µ m 工艺
- ●1997年, 300MHz奔腾 II 问世, 采用0. 25 μ m 工艺
- ●1999年,奔腾Ⅲ问世,450MHz,采用0.25 μ m 工艺,后采用0.18 μ m 工艺
- ●2000年, 1Gb RAM投放市场
- ●2000年, 奔腾4问世, 1.5GHz, 采用0.18 µ m 工艺
- ●2001年, Intel宣布2001年下半年采用0.13 μ m 工艺
- ●2003年,奔腾4 E系列推出,采用90nm工艺
- ●2005年, intel 酷睿2系列上市, 采用65nm工艺
- ●2007年,基于全新45nm工艺的intel酷睿2 E7/E8/E9上市
- ●2009年, intel酷睿i系列全新推出, 创纪录采用了领先的32mm工艺,

- ●2009年9月底,在旧金山秋季IDF 2009论坛上,Intel第一次向世人展示了22nm工艺晶圆,并宣布将在2011年下半年发布相关产品
- ●每台22nm光刻工艺设备最低为3000万美元

Intel总裁兼CEO Paul Otellini展示 22nm晶圆

- ●Intel2012年推出22nm工艺,骄傲地指出,22nm技术将继续延续摩尔定律之路
- ●2013年、展示了14nm Broadwell CPU

历史发展: CPU

以Intel公司的CPU为例:

1971年, Intel公司生产出世界上第一个微处理器——4004

●面积: 4mm×3mm

●集成度: 共2300个晶体管

●工作频率: 108KHz

●工艺制程: 10um

●总线宽度: 4bits

●存储容量: 640bytes

意义重大:为以后"使用通用的硬件设计作为基础,用软件来实现不同的功能"这一设计思想开辟了道路

4004微处理器的发明人Ted Hoff因此被英国《经济学家》杂志列为"第二次世界大战以来最有影响的七位科学家之一"

历史发展: CPU

- ●1972年和1974年, Intel公司研制出8080和8085处理器, 它们是8位微 处理器
- ●1978年, Intel公司生产出16位的微处理器, 并命名为8086
- ●1985年, Intel公司推出80386, 这是一种32位微处理器芯片, 内部包含了27.5万个晶体管, 时钟频率为12.5MHz, 后逐步提高到33MHz
- ●1993年InteI推出了全新一代的高性能处理器∞∞奔腾
- ●1996年推出了最新一代的第六代X86系列CPU∞∞奔腾Pro
- ●1997年5月, 推出Pentium II 处理器
- ●1998年,为了占领低端市场,推出Celeron处理器
- ●1998与1999年间,在高端的、基于RISC的工作站和服务器上,Intel 公司推出了新一款Pentium || Xeon
- ●1999年初,推出了新一代处理器Pentium III
- ●2000年, Intel公司发布集成4200万个晶体管的Pentium 4处理器
- ●2006年,英特尔-酷睿2双核处理器,随后的四核以及八核

历史发展: CPU

2008年11月, Intel发布了最新的Core i7台式机处理器目前最豪华的台式机处理器——Core i7 980x(至尊版)处理器:

●面积: 248mm₂

●集成度:共11.7亿个晶体管

●工作频率: 3.33GHz

●工艺制程: 32nm

●总线宽度: 64bits

●最大内存: 24GB

1、摩尔定律

集成电路的发展规律:摩尔定律(Moore Law)

--- Min. transistor feature size decreases by 0.7X every three years

--- True for at least 30 years! (first published in 1965)

后人对摩尔定律加以扩展:

集成电路的发展:工艺每三年升级一代,集成 度每三年翻两番,特征线宽约缩小30%左右,逻辑电路(以CPU为代表)的工作频率提高约30%

■ 以Intel的微处理器为例,说明集成电路的发展符合Moore 定律

第一个CPU: 4004

时间: 1971年

工艺: NMOS

晶体管个数: 2300

频率: 108KHz

Moore定律(CPU的发展)

Intel 8080 CPU

第一块8位微处

理器

时间: 1974

晶体管数: 8000

Moore定律(CPU的发展)

Intel 8086 CPU 1978年

IBM PC的心脏

晶体管数: 29000

Moore定律(CPU的发展)

Intel 80286 CPU

1982年

晶体管数:

120000

时钟频率:

10/12.5MHz

Moore定律(CPU的发展)

Intel 80386 CPU

发布时间: 1985

工艺: HNMOS

晶体管数: 27.5万

时钟频率: 20~40

Moore定律(CPU的发展)

Intel 80486 CPU

时间: 1989

工艺: BiCMOS

晶体管数: 118万

时钟频率:33~

Moore定律(CPU的发展)

Intel Pentium CPU

发布日期: 1992年10月

工艺: 0.8um BiCMOS

晶体管数: 310万

时钟频率: 66/60~

120Mhz

Moore定律(CPU的发展)

Intel Pentium Pro CPU

发布日期: 1995年11月

工艺: 0.6/0.35um

CMOS

晶体管数:550万

时钟频率: 150 ~ 200

Moore定律(CPU的发展)

Intel Pentium II CPU

发布日期: 1997年5月

工艺: 0.35/0.25 um

CMOS

晶体管数:750万

时钟频率: 233~450

Moore定律(CPU的发展)

Intel Pentium III CPU

发布日期: 1999年2月

工艺: 0.18um CMOS

晶体管数: 2400万

时钟频率: 450~1000

Moore定律(CPU的发展)

发布时间: 2000年

11月

工艺:

0.18/0.13um CMOS

晶体管数: 4200万

时钟频率: 1.7 ~

3.06GHz

结论:

- 1、功耗问题制约着集成电路的进一步发展
- 2、考虑到功耗问题,想要增大集成度就必须降低工作频率, 想要增加工作频率就必须降低集成度,因此两者之间存 在一个折中
- 3、22nm技术以下,需要新的材料和制造工艺来降低栅极和 沟道的电荷泄漏以及需要改变已有MOSFET的结构

