

Ingegneria Informatica

Multistart k-means

OPTIMIZATION METHODS

Docente:
Fabio Schoen

Studente:
Paula Mihalcea

Indice

1 Introduzione

La presente relazione costituisce una breve descrizione dell'implementazione di un algoritmo di ottimizzazione globale, il **multistart**, nel linguaggio di programmazione Python, e la sua applicazione ad un problema di clustering utilizzando l'algoritmo di ottimizzazione locale **k-means**.

2 Dataset

Tutti i problemi di ottimizzazione necessitano di alcuni dati su cui lavorare, che si tratti di una funzione obiettivo oppure di una raccolta di osservazioni. Nel presente progetto è stato scelto, per semplicità, di generare un dataset di punti casuali da utilizzare come base su cui applicare l'algoritmo; tali punti saranno variamente raggruppati in un numero predeterminato di cluster, per sfruttare k-means al massimo delle sue potenzialità.

In particolare, la funzione gen_dataset() restituisce un dataframe (libreria Pandas) secondo i seguenti parametri specificabili dall'utente:

- points: n°di punti da generare in ogni cluster (default: 1000);
- features: n°di caratteristiche da assegnare ad ogni punto (default: 2);
- k: n°di cluster da generare (default: 2);
- center_range: range delle coordinate che verranno casualmente assegnate ai centri dei cluster; determina l'ampiezza dello spazio in cui verrano generati i punti (default: 5000);
- scale_low: deviazione standard minima per la generazione dei punti (default: 500):
- scale_high: deviazione standard massima per la generazione dei punti (default: 1000);
- plot: se posto a True, genera e visualizza il grafico del dataset creato, se i suoi punti hanno due caratteristiche (default: False).

La funzione consiste in un loop principale che comincia creando un centro e prosegue aggiungendo points punti intorno ad esso, secondo una distribuzione normale con i parametri specificati in precedenza (le variabili $scale_low$ e $scale_high$ determinano il loro grado di sparsità). Creato così un cluster, lo si aggiunge al dataset e si ricomincia il loop per generare quello successivo, per k volte. Infine, se il numero di caratteristiche delle osservazioni è pari a 2 e la variabile plot è posta a plot True, allora la funzione plotta il dataset in un grafico bidimensionale e lo visualizza (fig. plot).

Figura 1: Esempio di dataset generato con gen_dataset() (parametri di default).

3 Multistart

L'algoritmo k-means necessita, prima di entrare nel loop principale, di una fase di inizializzazione in cui, secondo qualche criterio, vengano scelti i centroidi iniziali. Ai fini di utilizzare un approccio di ottimizzazione globale, la versione implementata in questo progetto prevede una scelta casuale¹ di k punti entro il range delle coordinate dei centri (center_range) sommato alla deviazione standard massima (scale_high), secondo l'algoritmo multistart.

In particolare, la funzione gen_rand_centroids(k, features, center_range, scale) ritorna una matrice di centroidi con queste caratteristiche.

4 K-means

4.1 Inizializzazione

L'algoritmo **k-means**² viene dunque inizializzato tramite **multistart**. Prima di procedere con il loop principale, tuttavia, viene aggiunta al dataset una colonna finale

¹Utilizzando una distribuzione uniforme.

²Implementato ad hoc per il progetto, senza l'utilizzo di librerie che lo contenessero già.

contenente il cluster di appartenenza di ogni punto (l'etichetta), calcolato grazie alla funzione label (dataset, centroids, k, features). Essa calcola la distanza euclidea di ogni punto da ognuno dei k cluster presenti nel dataset³, e individua per ognuno quella più breve, determinando in questo modo il cluster a cui assegnarlo.

4.2 Loop principale

A questo punto, avendo tutti i dati necessari, è possibile avviare il loop principale dell'algoritmo k-means. Questo consiste in un ciclo infinito che calcola, per ogni cluster, la posizione media dei centroidi in base ai punti presenti in esso, ed aggiorna poi nel dataset con i dati così ottenuti la colonna delle etichette, invocando nuovamente la funzione label(). Le iterazioni si fermano dunque quando i centroidi non vengono più spostati (fig. ??).

Figura 2: Il dataset di fig. ?? dopo le iterazioni di k-means.

5 Conclusioni

L'algoritmo implementato dimostra un'ottima capacità di clustering dei dati, in particolar modo se la deviazione standard fornita nei parametri iniziali è bassa.

³Attraverso la funzione ausiliaria centroid_distance(dataset, centroids, k).

K-means, tuttavia, non è stato ottimizzato per la velocità di esecuzione (essendo stato implementato ad hoc e parzialmente esulante dallo scopo del progetto), per cui risulta assai lento per dataset contenenti un numero totale di osservazioni superiore a 15.000, anche su macchine di fascia alta.

6 Esempi

Seguono alcuni esempi di grafici creati a partire da dataset a due features con 100 punti per cluster e deviazione compresa tra 500 e 1000.

Figura 3: k = 1

Figura 4: k = 2

Figura 5: k = 3

Figura 6: k = 4

Figura 7: k = 5

Figura 8: k = 10