

Model Development Phase Template

Date	05 July 2025
Team ID	SWTID1749835721
Project Title	HematoVision- Blood Cell Classification using Transfer Learning
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
#import and building the MobileNetV2 model
def build_mobilenetv2():
    base_model = MobileNetV2(weights='imagenet', include_top=False, input_shape=IMG_SIZE + (3,))
    base_model.trainable = False # freeze base
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dropout(DROPOUT_RATE)(x)
    output = Dense(NUM_CLASSES, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=output)
    model.compile(optimizer=Adam(LEARNING_RATE), loss='categorical_crossentropy', metrics=['accuracy'])
    return model
#import and building the ResNet50 model
def build_resnet50():
   base_model = ResNet50(weights='imagenet', include_top=False, input_shape=IMG_SIZE + (3,))
   base_model.trainable = False
   x = base_model.output
   x = GlobalAveragePooling2D()(x)
   x = Dropout(DROPOUT_RATE)(x)
    output = Dense(NUM_CLASSES, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=output)
    model.compile(optimizer=Adam(LEARNING_RATE), loss='categorical_crossentropy', metrics=['accuracy'])
    return model
```


Model Validation and Evaluation Report:

```
#import and building the VGG16 model
def build_vgg16():
    base_model = VGG16(weights='imagenet', include_top=False, input_shape=IMG_SIZE + (3,))
    base_model.trainable = False
    x = base_model.output|
    x = Flatten()(x)
    x = Dropout(DROPOUT_RATE)(x)
    output = Dense(NUM_CLASSES, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=output)
    model.compile(optimizer=Adam(LEARNING_RATE), loss='categorical_crossentropy', metrics=['accuracy'])
    return model
```

```
#import and building the InceptionV3 model
def build_inceptionv3():
    base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=IMG_SIZE + (3,))
    base_model.trainable = False
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dropout(DROPOUT_RATE)(x)
    output = Dense(NUM_CLASSES, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=output)
    model.compile(optimizer=Adam(LEARNING_RATE), loss='categorical_crossentropy', metrics=['accuracy'])
    return model
```

lassification_report(y_					
precision	test, pred)) recall f1-	-score	support		<pre>print(confusion_matrix(y_test, pred))</pre>
CNOPHIL 0.96 PHOCYTE 1.00 PNOCYTE 1.00 PROPHIL 0.98 DECCUracy Decro avg 0.98 Detector avg 0.98	0.98 1.00 1.00 0.96	0.97 1.00 1.00 0.97 0.98 0.98 0.98	726 746 781 735 2988 2988 2988	98.5 %	array ([[712 0 0 14] [0 746 0 0] [0 0 781 0] [31 0 1 703]])
PHOC NOC ROP accu acro	PHIL 0.96 EYTE 1.00 EYTE 1.00 HHIL 0.98 Hracy D avg 0.98 H avg 0.98	PHIL 0.96 0.98 EYTE 1.00 1.00 EYTE 1.00 1.00 PHIL 0.98 0.96 Bracy	PHIL 0.96 0.98 0.97 EYTE 1.00 1.00 1.00 EYTE 1.00 1.00 1.00 HHIL 0.98 0.96 0.97 Bracy 0.98 0.98 0.98 Bracy 0.98 0.98 0.98	PHIL 0.96 0.98 0.97 726 EYTE 1.00 1.00 1.00 746 EYTE 1.00 1.00 1.00 781 HHIL 0.98 0.96 0.97 735 Bracy 0.98 0.98 0.98 2988 Bracy 0.98 0.98 0.98 2988 Bracy 0.98 0.98 0.98 2988	PHIL 0.96 0.98 0.97 726 EYTE 1.00 1.00 1.00 746 EYTE 1.00 1.00 781 HIL 0.98 0.96 0.97 735 WHIL 0.98 0.96 0.97 735 WHIL 0.98 0.98 0.98 2988 I avg 0.98 0.98 0.98 2988

	<pre>print(classification_report(y_test, pred))</pre>						<pre>print(confusion_matrix(y_test, pred))</pre>
ResNet50	precision recall f1-score support					1	, , , , , , , , , , , , , , , , , , ,
	EOSINOPHIL LYMPHOCYTE MONOCYTE NEUTROPHIL	0.92 0.91 0.89 0.93	0.89 0.92 0.88 0.92	0.90 0.91 0.88 0.92	726 746 781 735	91.0%	array([[652
	accuracy macro avg weighted avg	0.91 0.91	0.90 0.91		2988 2988 2988		
	Accuracy of th	e model: 91	.0%				
	print(classificat	ion_report(y_	test, pred))			
InceptionV3		precision	recall	f1-score	support		<pre>print(confusion_matrix(y_test, pred))</pre>
	EOSINOPHIL LYMPHOCYTE MONOCYTE NEUTROPHIL accuracy	0.91 0.90 0.88 0.91	0.89 0.91 0.87 0.90	0.90 0.91 0.88 0.90	726 746 781 735	90.0%	array([[648
	macro avg weighted avg	0.90 0.90	0.89 0.90	0.90 0.90	2988 2988		
	Accuracy of th	e model: 90	.0%				
	<pre>print(classification_report(y_test, pred))</pre>						
VGG16		precision	recall	f1-score	support		<pre>print(confusion_matrix(y_test, pred))</pre>
	EOSINOPHIL LYMPHOCYTE MONOCYTE NEUTROPHIL	0.89 0.88 0.86 0.88	0.86 0.89 0.85 0.87	0.87 0.89 0.85 0.88	726 746 781 735	87.0%	array([[624 14 48 40] [20 664 30 32] [52 36 662 31] [40 24 36 635]])
	accuracy macro avg weighted avg	0.88 0.88	0.87 0.87	0.87 0.87 0.87	2988 2988 2988		
	Accuracy of th	e model: 87	.0%				