Cours 3 - La régression logistique

Neila Mezghani

10 janvier 2022

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

Introduction

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- 2 La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

Mise en contexte (1/3)

- Certains algorithmes de régression peuvent être utilisés pour la classification.
- La régression logistique (appelée également régression logit) permet de déterminer la probabilité qu'une observation appartienne à une classe particulière.
- La régression logistique fournit la probabilité du résultat (la logistique du résultat) au lieu du résultat lui même.

Mise en contexte (2/3)

- Autrement dit, dans la régression logistique, ce n'est pas la réponse binaire (malade/pas malade) qui est directement modélisée, mais la probabilité de réalisation d'une des deux modalités (être malade par exemple).
- Si la probabilité estimée est supérieure à 50%, alors le modèle prédit que l'observation appartient à cette classe en particulier : appelée classe positive, d'étiquette « 1 »
- Sinon il prédit que l'observation appartient à l'autre classe : appelée classe négative, d'étiquette « 0 »

Mise en contexte (3/3)

- Exemples d'applications du modèle de régression logistique binomiale :
 - Achat ou non d'un produit
 - Bon ou mauvais client
 - Echec ou succès dans un examen
 - Absence ou présence d'une pathologie

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

Retour sur le modèle de régression linéaire (1/2)

Un modèle linéaire effectue une prédiction en calculant simplement une somme pondérée des variables d'entrée tout en y ajoutant un terme constant :

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n \tag{1}$$

avec

- \hat{y} est la valeur prédite
- n est le nombre de variables
- θ_j est le j ème paramètre du modèle.

Retour sur le modèle de régression linéaire (2/2)

L'équation (1) peut s'écrire de manière générale (forme vectorielle) :

$$\hat{\mathbf{y}} = h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta} \cdot \mathbf{x} \tag{2}$$

dans cette équation :

- θ est le vecteur des paramètres du modèle. Il regroupe à la fois θ_0 et les coefficients de pondération θ_1 à θ_n des variables.
- \mathbf{x} est le vecteur des valeurs d'une observation, contenant les valeurs x_0 à x_n , où x_0 est toujours égal à 1.
- $\theta \cdot \mathbf{x}$ est le produit scalaire de θ et \mathbf{x} .

Vers la régression logistique...(1/2)

- La différence entre la régression linéaire et la régression logistique est que cette dernière fournit la probabilité du résultat (la logistique du résultat) au lieu du résultat lui même.
- La probabilité estimée par le modèle de régression logistique :

$$\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\mathbf{x}^T \boldsymbol{\theta}) \tag{3}$$

 σ est une fonction sigmoide

⇒ La question qui se pose : Comment estimer ces probabilités?

a fonction logistique a fonction de coût ntrainement du modèle de régression logistique

La régression logistique

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

La fonction logistique (1/9)

- ullet La fonction logistique $\sigma(t)$ est une fonction sigmoïde dont les valeurs sont comprises entre 0 et 1.
- La fonction logistique est définie par :

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

$$\sigma(t) \left\{ egin{array}{ll} < 0.5 & {
m si} \ t < 0 \ \geq 0.5 & {
m si} \ t \geq 0 \end{array}
ight.$$

La fonction logistique (2/9)

• L'équation de régression linéaire est :

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n \tag{4}$$

Si applique la fonction sigmoide, on obtient :

$$\hat{p}(x) = rac{1}{1 + e^{-(heta_0 + heta_1 x_1 + ... + heta_n x_n)}}$$

avec θ_0 le biais et $\theta_1,...\theta_n$ les coefficients de pondération des variables x

La fonction logistique (3/9)

ullet Dans le cas d'une seule caractéristique x, l'équation de la courbe logistique est alors :

$$\hat{p}(x) = rac{1}{1 + e^{-(heta_0 + heta_1 x)}}$$

avec θ_0 le biais et θ_1 le coefficient de pondération de la variable x

La fonction logistique (4/9)

On obtient les différentes courbes logistiques pour différentes valeurs de θ_0 et θ_1

La fonction logistique (5/9)

• Le modèle de régression logistique permet d'estimer la probabilité qu'une observation x appartienne à la classe positive via la probabilité :

$$\hat{\boldsymbol{p}} = h_{\boldsymbol{\theta}}(\mathbf{x}) = \sigma(\mathbf{x}^T \boldsymbol{\theta})$$

• Une fois la probabilité estimée, on peut faire une prédiction en se basant sur le modèle de régression logistique :

$$\hat{\mathbf{y}} = \left\{ egin{array}{ll} 0 & ext{si } \hat{p} < 0.5 \ 1 & ext{si } \hat{p} \geq 0.5 \end{array}
ight.$$

La fonction logistique (6/9)

$$\sigma(t) = \frac{1}{1+e^{-t}} \qquad \hat{y} = \begin{cases} 0 & \text{si } \hat{p} < 0.5 \\ 1 & \text{si } \hat{p} \ge 0.5 \end{cases}$$

Exemples : Si
$$t=1.4$$
 alors $\sigma(t)=0.8=80\% \implies \hat{y}=1$
Si $t=-2.5$ alors $\sigma(t)=0.07=7\% \implies \hat{y}=0$

La fonction logistique (7/9)

La probabilité qu'une observation x appartienne à la classe positive suit une loi de Bernouilli :

$$P(Y = y) = \sigma(t)^{y} \times (1 - \sigma(t))^{1-y}$$

$$0.8 \quad \sigma(t) = \frac{1}{1 + e^{-t}}$$

$$0.2 \quad 0.0 \quad 0.2 \quad 0.0 \quad 0.0$$

La fonction logistique (8/9)

- Le but est donc de déterminer le meilleur modèle possible c-à-d le modèle qui fait les plus petites erreurs entre les valeurs réelles et les valeurs prédites.
- Le modèle de régression logistique étant le modèle qui permet d'estimer la probabilité qu'une observation x appartienne à la classe positive via la probabilité :

$$\hat{\boldsymbol{p}} = h_{\boldsymbol{\theta}}(\mathbf{x}) = \sigma(\mathbf{x}^T \boldsymbol{\theta})$$

La fonction logistique (9/9)

⇒ besoin d'une fonction cout qui permet de mesurer les erreurs entre les valeurs réelles et les valeurs prédites.

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

La fonction de coût : la fonction log loss

 La fonction coût mesurée sur l'ensemble des données d'entrainement que nous allons utilisé pour la régression logistique est la fonction log loss :

$$J(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)}) \right]$$
 (5)

avec

- $y^{(i)}$ la classe de l'observation i
- m le nombre d'observations
- $\hat{p}^{(i)}$ la probabilité que l'observation $x^{(i)}$ appartienne à la classe positive

Origine de la fonction log loss (1/5)

 En statistique, la vraisemblance (Likelihood) est un paramètre qui permet d'évaluer la performance d'un modèle par sa plausibilité vis-à-vis des données réelles

$$L = \prod_{i=1}^{m} P(Y = y_i) \tag{6}$$

• Pour m observations, en utilisant la loi de Bernouilli on obtient :

$$L = \prod_{i=1}^m P(Y = y_i) = \prod_{i=1}^m a_i^{y_i} imes (1 - a_i)^{1 - y_i}$$

Origine de la fonction log loss (2/5)

- ◆ La vraisemblance étant un produit de probabilité = produit de nombres compris entre 0 et 1 ⇒ le résultat risque de s'approcher trop de la valeur nulle.
- Pour éviter de converger vers 0, on utilise une fonction logarithmique pour transformer les produit en des sommes.

$$\log(L) = \log\left(\prod_{i=1}^{m} a_i^{y_i} \times (1 - a_i)^{1 - y_i}\right) \tag{7}$$

Origine de la fonction log loss (3/5)

• La transformation en utilisant une fonction logartithmique ne pose pas de problème parce que c'est une fonction monotone croissante :

$$a < b \implies \log(a) < \log(b)$$

 \implies Déterminer le maximum de la vraissemblance revient à déterminer le maximum du log vraissemblance (LL).

Origine de la fonction log loss (4/5)

On aura alors :

$$\begin{split} LL &= \log(L) \\ &= \log \Big(\prod_{i=1}^m a_i^{y_i} \times (1 - a_i)^{1 - y_i} \Big) \\ &= \sum_{i=1}^m \log \Big(a_i^{y_i} \times (1 - a_i)^{1 - y_i} \Big) \\ &= \sum_{i=1}^m y_i \log(a_i) + (1 - y_i) \log(1 - a_i) \end{split}$$

Origine de la fonction log loss (5/5)

- Rappelons qu'on cherche à maximiser la vraisemblance (Likelihood) ou bien à minimiser sa fonction négative (— la fonction)
- On peut également multiplier par un facteur de normalisation (multiplier par $\frac{1}{m}$)
- On obtient alors la fonction log loss :

$$\mathcal{L} = -\frac{1}{m} \sum_{i=1}^{m} y_i \log(a_i) + (1 - y_i) \log(1 - a_i)$$
 (8)

Comment faire pour minimiser cette fonction cout?

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

Entrainement (1/3)

• La fonction coût est donné par :

$$J(\boldsymbol{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)}) \right]$$
(9)

• L'objectif de l'entrainement est de déterminer la valeur de θ qui minimise cette fonction $J(\theta)$?

 \implies Comment déterminer la valeur de θ ?

Entrainement (2/3)

- La fonction de coût log loss est convexe

 i'identification d'un minimum global est assuré si on utilise l'algorithme de descente de gradient.
- Conditions:
 - Il faut choisir un taux d'apprentissage pas trop grand
 - Il faut choisir un nombre d'itération suffisamment grand

Entrainement (3/3)

• La dérivée partielle de la fonction de coût par rapport au j^{ieme} paramètre du modèle θ_i peut être calculé selon :

$$\frac{\partial}{\partial \theta_{j}} J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\left(\sigma(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}) - \mathbf{y}^{(i)}\right)}_{\text{Erreur de prédiction}} \underbrace{\mathbf{x}_{j}^{(i)}}_{\text{Valeur de la j ième variable}}$$
(10)

 Ensuite, on procède par une descente de gradient ordinaire ou stochastique ou mini-lots

Exemple sur la régression logistique (1/11)

- Soit l'ensemble des données Iris qui comprend 150 observations de fleurs d'iris décrites par la longueur et la largeur des sépales et des pétales.
- Trois espèces différentes sont incluses Iris setosa, Iris versicolor et Iris virginica
- Pour illustrer la régression logistique, nous allons considérer la classe cible de l'espèce virginica en se basant sur la largeur du pétale (Petal width)

Exemple sur la régression logistique (2/11)

- La première étape sera d'affecter l'étiquette « 1 » aux observations dont la classe est Iris virginica et l'étiquette « 0 » aux autres classes Not Iris virginica.
- Ensuite nous entrainons le modèle de régression logistique en utilisant sklearn.linear_model.LogisticRegression

Exemple sur la régression logistique (3/11)

Variation de Petal width en fonction de Petal length

Exemple sur la régression logistique (4/11)

Variation de la classe cible Y en fonction de Petal length

Exemple sur la régression logistique (5/11)

Entrainement du modèle de régression logistique

```
from sklearn.linear_model import LogisticRegression
# instantiate the model
log_reg = LogisticRegression()
# fit the model with data
log_reg.fit(X, y)
```

Les paramètres du modèle (les coefficients) sont stockés dans log_reg.coef_ log_reg.intercept_ comprend la constante ajoutée à la fonction de décision.

Exemple sur la régression logistique (6/11)

Dans notre cas, on obtient : log_reg.coef_ = 4.33 log_reg.intercept_ = -7.19

Ce qui veut dire que la probabilité est estimé selon :

$$\hat{p} = rac{1}{1 + e^{-(heta_0 + heta_1 x)}} = rac{1}{1 + e^{-(-7.19 + 4.33 x)}}$$

La probabilité peut être estimé également selon :

from sklearn.linear_model import LogisticRegression $X_{new} = np.linspace(0, 3, 1000).reshape(-1, 1)$ $y_{proba} = log_{reg.predict_proba(X_{new})}$

Exemple sur la régression logistique (7/11)

Génération d'un ensemble de valeurs aléatoires dans l'intervalle [0, 3] cm et calcul la valeur prédite de la probabilité pour représenter la courbe de régression

Exemple sur la régression logistique (8/11)

Probabilités estimées et frontière de décision avec la variable Petal width :

Exemple sur la régression logistique (9/11)

La fonction log_reg.predict permet de prédire la variable cible :

```
log_reg.predict([[1.7], [1.5], [2], [3]])
array([1, 0, 1, 1])
```

Exemple sur la régression logistique (10/11)

Frontière de décision linéaire avec les deux variables Petal width et Petal length

Exemple sur la régression logistique (11/11)

Frontière de décision avec les deux variables Petal width et Petal length

rincipe de la régression softmax a fonction cout ntrainement de la régression softma:

Régression softmax

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

Principe de la régression softmax (1/4)

- La régression softmax, ou régression logistique multinomiale est considérée comme étant un modèle de régression logistique généralisé = Il permet de traiter plusieurs classes directement sans avoir à entraîner plusieurs classificateurs binaires puis à les combiner
- Étant donné une observation x, le modèle de régression softmax calcule d'abord un score $s_k(x)$ pour chaque classe k, puis estime la probabilité de chaque classe en appliquant aux scores la fonction softmax

$$s_k(\mathbf{x}) = (\boldsymbol{\theta}^{(k)})^T \mathbf{x} \tag{11}$$

Principe de la régression softmax (2/4)

$$s_k(x) = (\boldsymbol{\theta}^{(k)})^T \mathbf{x}$$

- Cette formule ressemble à celle qui permet de calculer la prédiction en régression linéaire
- La différence importante est que chaque classe possède un vecteur de paramètres $\theta^{(k)}$ qui lui est spécifique.
- ullet Tous ces vecteurs constituent les lignes de la matrice de paramètres Θ .

Principe de la régression softmax (3/4)

• Une fois le score de chaque classe calculé, la probabilité est estimé en appliquant aux scores la fonction softmax.

$$\hat{p}_k = \sigma(s(x))_k = \frac{\exp(s_k(x))}{\sum_{j=1}^K \exp(s_j(x))}$$
(12)

avec:

- K le nombre de classes. $j \in [1, K]$
- s(x) un vecteur contenant les scores de chaque classe pour l'observation x.
- $\sigma(s(x))_k$ est la probabilité estimée que l'observation x appartienne à la classe k compte tenu des scores de chaque classe pour cette observation.

Principe de la régression softmax (4/4)

• À partir des probabilités d'appartenance à chaque classe, le classificateur de régression softmax prédit la classe ayant la plus forte probabilité estimée :

$$\hat{\mathbf{y}} = \arg\max_{\mathbf{k}} \sigma(\mathbf{s}(\mathbf{x}))_{\mathbf{k}} = \arg\max_{\mathbf{k}} \mathbf{s}_{\mathbf{k}}(\mathbf{x}) = \arg\max_{\mathbf{k}} \left((\boldsymbol{\theta}^{(\mathbf{k})})^T \mathbf{x} \right)$$
 (13)

 $rg \max$ renvoie la valeur de k qui maximise la probabilité estimée $\sigma(s(\mathbf{x}))_k$

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

La fonction cout : L'entropie croisée (1/2)

- L'objectif est d'avoir un modèle qui estime une forte probabilité pour la classe ciblée et par conséquent de faibles probabilités pour les autres classes.
- En statistique, on utilise fréquemment l'entropie croisée (cross entropy) pour mesurer l'adéquation entre un ensemble de probabilités estimées d'appartenance à des classes et les classes ciblées.

La fonction cout : L'entropie croisée (2/2)

• La fonction de coût d'entropie croisée est donné par :

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log \left(\hat{p}_k^{(i)} \right)$$
 (14)

avec

ullet $y_k^{(i)}$ la probabilité cible que la i ème observation appartienne à la classe k

Plan du cours

- Introduction
 - Mise en contexte
 - Retour sur le modèle de régression linéaire
- La régression logistique
 - La fonction logistique
 - La fonction de coût
 - Entrainement du modèle de régression logistique
- Régression softmax
 - Principe de la régression softmax
 - La fonction cout
 - Entrainement de la régression softmax

Entrainement

- ullet L'objectif de l'entrainement est de déterminer la matrice Θ qui minimise la fonction cout.
- Le vecteur gradient par rapport à $\theta(k)$ de la fonction de coût d'entropie croisée est donné par :

$$\nabla_{\boldsymbol{\theta}^{(k)}} = \frac{1}{m} \sum_{i=1}^{m} \left(\hat{p}_k^{(i)} - y_k^{(i)} \right) \mathbf{x}^{(i)}$$
 (15)

ullet Une fois le vecteur gradient de chaque classe déterminé, on peut utiliser la descente de gradient pour déterminer la matrice Θ

Exemple sur la régression logistique softmax (1/6)

- Pour illustrer la régression logistique multinomiale, nous allons considérer les trois espèces différentes d'Iris setosa, Iris versicolor et Iris virginica
- On considère les deux variables Petal width et Petal length

Exemple sur la régression logistique softmax (2/6)

L'entrainement du modèle de régression logistique softmax se fait avec LogisticRegression en fixant l'hyperparamètre multi_class à la valeur multinomial

```
from sklearn.linear_model import LogisticRegression
X = iris["data"][:, (2, 3)]
y = iris["target"]
softmax_reg = LogisticRegression(multi_class="multinomial",
solver="lbfgs", C=10, random_state=42)
softmax_reg.fit(X, y)
```

Exemple sur la régression logistique softmax (3/6)

- Pour illustrer la régression logistique multinomiale, nous allons considérer les trois espèces différentes d'Iris setosa, Iris versicolor et Iris virginica
- On considère les deux variables Petal width et Petal length

Exemple sur la régression logistique softmax (4/6)

Frontières de décision avec les deux variables Petal width et Petal length (différentes zones)

Exemple sur la régression logistique softmax (5/6)

La fonction $log_reg.predict$ permet de prédire la variable cible : $softmax_reg.predict([[5, 2], [4, 1], [1, 2], [7, 3], [7, 0.5]])$ array([2, 1, 0, 2, 2])

Exemple sur la régression logistique softmax (6/6)

Les probabilités pour la classe Iris versicolor est représentées par des courbes. Exemple : la ligne étiquetée 0.450 représente la frontière des 45 % de probabilité.

A l'intersection des 3 zones, la probabilité est 1/3=33%