Homework 2

Question 1

- a) Variables: *K1, K2, Q1, Q2*Domain (same for all variables): Di={1, 2, 3, 4} (rows of the 4x4 chess board)
 Constraints:
 - rows 1 and 2 must each contain a knight, and rows 3 and 4 must each contain a queen
 - no two pieces attack each other:
 - The **Knight** piece can **move** forward, backward, left or right two squares and must then **move** one square in either perpendicular direction. The **Knight** piece can only **move** to one of up to eight positions on the board.

(1)
$$|K_1 - K_2| \neq 2$$

(2)
$$|K_2 - Q_3| \neq 1$$

(3)
$$|K_1 - Q_3| \neq 1$$

(4)
$$|K_2 - Q_4| \neq 1$$

- Queen can be moved any number of unoccupied squares in a straight line
 - No knight can be in the same column as a Queen:

(6)
$$K_i \neq Q_j$$

(7)
$$Q_3 \neq Q_4$$

■ No knight can be in diagonal to the Queen:

(8)
$$|K_i - Q_j| \neq |i - j|$$

(9)
$$|Q_3 - Q_4| \neq |i - j|$$

Constraint graph

b)
$$\{(K_1, K_2), (K_2, K_1), (K_1, Q_1), (Q_1, K_1), (K_2, Q_2), (Q_2, K_2), (K_1, Q_2), (Q_2, K_1), (Q_1, Q_2), (Q_2, Q_1), (K_2, Q_1), (Q_1, K_2)\}$$

Question 2

a)

b)

No, You can't guarantee a win you can guarantee not losing By observing the min - max graph, we can see that there will be guaranteed at least a draw.

i) 5 (5 truths) ii) 0 (all contradiction) iii) 2^5 (2^5 models)

i) Valid

A	В	С	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

ii)Valid

A	В	С	Output
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Both propositions result in tautology (all true)