MÉMOIRE DE RECHERCHE

Approximation numérique d'ordre élevé de l'équation de Saint Venant

Auteurs :
Brice GONEL
Romain PINGUET

Professeur encadrant : Thomas REY

Table des matières

1	Descr	ription et dérivation des équations	4
	1.1	Description des équations	4
	1.2	Dérivation des équations	4
		Les équations d'Éuler	4
		Dérivation du système de Saint-Venant	5
2	Déco	uverte du modèle et premières propriétés qualitatives	8
3	Le scl	héma de Rusanov	12
	3.1	Présentation du schéma et résultats de convergence	12
		Approche naïve : Flux centré	12
		Flux de Lax-Friedrichs	13
		Flux de Rusanov	13
	3.2	Validation de l'implémentation avec des tests	14
		Quelques exemples	14
		Convergence des solutions	16
		Influence du pas spatial et convergence de la solution	16
		Influence du pas temporel	16
A	Anne	xes	18
	A.1	Le code : implémentation du schéma de Rusanov	18

Les équations de Saint-Venant modélisent le comportement d'un écoulement en eau peu profonde, comme un canal ou un bord de plage. Ces équations, introduites à la fin des années 1880, sont extrêmement bien adaptées à modélisation et à la simulation numérique de phénomènes catastrophiques, comme les inondations ou les tsunamis.

1 Description et dérivation des équations

Ici, il s'agit d'énoncer les équations, de décrire les différentes quantités en jeu (h, u, q et Z) et d'expliquer comment on peut arriver à ces équations.

1.1 Description des équations

Le système de Saint-Venant avec terme source (qui est aussi désigné par le nom « équations d'écoulements en eau peu profonde ») est le suivant :

$$\frac{\partial h}{\partial t}(t,x) + \frac{\partial q}{\partial x}(t,x) = 0 \tag{1}$$

$$\frac{\partial q}{\partial t}(t,x) + \frac{\partial}{\partial x}(\frac{q^2(t,x)}{h(t,x)} + g\frac{h^2(t,x)}{2}) = -gh(t,x)\frac{\partial Z}{\partial x}(x)$$
 (2)

Celui-ci permet de décrire un écoulement d'eau unidirectionnel où h(t,x) > 0 représente la hauteur d'eau, u(t,x) désigne la vitesse du fluide, q(t,x) = h(t,x)u(t,x) le débit du fluide et Z(x) la topographie du canal; $t \ge 0$ étant le temps, $x \in \mathbb{R}$ la position spatiale dans le cours d'eau et g la constante de gravitation.

Dans ce système, Z ne dépend pas du temps t. On fait ainsi l'hypothèse que le fond ne s'érode pas au cours du temps; ce qui parait raisonnable dans de nombreuses situations (un fond rocheux sur une courte durée, par exemple).

1.2 Dérivation des équations

Rappelons la règle de Leibniz qui permet de calculer la dérivée par rapport à x d'une fonction de la forme $\int_{a(x)}^{b(x)} f(x,t) dt$.

Proposition 1 (Règle de Leibniz). Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que f et $\frac{\partial f}{\partial x}$ soient continues sur \mathbb{R} , et soient a et b deux fonctions dérivables de \mathbb{R} dans \mathbb{R} . Alors, l'intégrale paramétrique F définie sur \mathbb{R} par : $F(x) = \int_{a(x)}^{b(x)} f(x,y) \, \mathrm{d}y$ est dérivable et :

$$F'(x) = f(x, b(x))b'(x) - f(x, a(x))a'(x) + \int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, y) \, dy.$$
 (3)

Les équations d'Euler

Dans ce paragraphe, nous allons d'abord parler des équations d'Euler. Ce sont des équations qui forment un système hyperbolique non-linéaire. Les équations expriment des lois de conservation qui gouvernent la dynamique des fluides. C'est à partir de ces équations, et moyennant certaines hypothèses, que nous allons dériver les équations de Saint-Venant. Notons $\rho(x,y,z,t)$ la masse volumique du fluide, p(x,y,z,t) la pression, u(x,y,z,t) la composante selon l'axe O(x) de la vitesse,

v(x,y,z,t) sa composante selon l'axe (Oy) et w(x,y,z,t) sa composante selon l'axe (Oz). Nous noterons alors par la suite $\mathbf{V}=(u,v,w)$ le vecteur vitesse dont les composantes sont les vitesses u,v et w.

Les trois équations d'Euler sont les suivantes :

$$(\rho u)_t + (\rho u^2 + p)_x + (\rho uv)_y + (\rho uw)_z = 0, (4)$$

$$(\rho v)_t + (\rho u v)_x + (\rho v^2 + p)_y + (\rho v w)_z = 0, (5)$$

$$(\rho w)_t + (\rho u w)_x + (\rho v w)_y + (\rho w^2 + p)_z = 0.$$
(6)

L'équation (4) est celle qui va nous servir à dériver la deuxième équation de Saint-Venant énoncée. A ces 3 équations, on associe aussi parfois l'équation

$$\rho_t + \text{div}(\rho \mathbf{V}) = \rho_t + (\rho u)_x + (\rho v)_y + (\rho w)_z = 0, \tag{7}$$

loi de conservation qui va nous servir pour dériver la première équation du système.

Dérivation du système de Saint-Venant

Définition 1. Soit V = (u, v, w) la vitesse définie comme avant. Soit f une fonction qui dépend de t, x, y et z. On définit (et on note) la dérivée particulaire de f par $\frac{\partial f}{\partial t} = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial y} + w \frac{\partial f}{\partial z}$.

Voici les hypothèses nécessaires à la dérivation des équations de Saint-Venant :

- (H1): Le fluide est incompressible,
- **(H2)** : h, u et v sont invariantes selon l'axe (Oy) (puisqu'il s'agit d'étudier un canal, on ramène l'étude au plan (y = 0) en négligeant les variations selon la largeur du canal),
- **(H3)**: La vitesse u est constante selon l'axe (Oz),
- **(H4)** : la topographie *Z* est constante au cours du temps.

Nous utiliserons aussi les conditions de passage suivantes :

— **(H5)**:
$$\frac{D}{Dt}(Z + h - z) = 0$$
 en z = Z+h,

— **(H6)**:
$$\frac{D}{Dt}(Z-z) = 0$$
 en z = Z.

La première condition **(H5)** traduit l'hypothèse que la composante normale de la vitesse à la surface est nulle, autrement dit qu'il n'y a pas de flux entrant par la surface de l'eau. La deuxième **(H6)** traduit le même phénomène mais au niveau du fond de l'eau.

D'après (H1), on peut sortir ρ des dérivées. Alors (4) se réécrit en

$$u_t + (u^2)_x + (uv)_y + (uw)_z = -\frac{1}{\rho}p_x.$$
 (8)

En supposant **(H2)** on a que les quantités h et u sont invariantes selon l'axe (Oy). Dans ces conditions, le terme $(uv)_y$ est nul et on obtient :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(u^2) + \frac{\partial}{\partial z}(uw) = -\frac{1}{\rho}\frac{\partial p}{\partial x}.$$
 (9)

Maintenant, on intègre entre z = Z et z = Z + h:

$$\int_{Z}^{Z+h} \left[\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (u^{2}) \right] dz + [uw]_{Z}^{Z+h} = -\frac{1}{\rho} \int_{Z}^{Z+h} \frac{\partial P}{\partial x} dz.$$
 (10)

Le terme $[uw]_Z^{Z+h}$ disparaît étant donné que la vitesse verticale w est nulle à la surface libre et au fond.

Avec la règle de Leibniz, on a d'une part :

$$\frac{\partial}{\partial t} \int_{Z}^{Z+h} u \, dz = \int_{Z}^{Z+h} \frac{\partial u}{\partial t} \, dz + u(z = Z+h) \frac{\partial}{\partial t} (Z+h) - u(z = Z) \frac{\partial Z}{\partial t}
= \int_{Z}^{Z+h} \frac{\partial u}{\partial t} \, dz + u(z = Z+h) \frac{\partial h}{\partial t},$$
(11)

la suppression du terme $\frac{\partial Z}{\partial t}$ venant de l'hypothèse **(H4)** selon laquelle le fond Z est constant au cours du temps.

Et d'autre part on a :

$$\frac{\partial}{\partial x} \int_{Z}^{Z+h} u^2 dz = \int_{Z}^{Z+h} \frac{\partial}{\partial x} (u^2) dz + u^2 (z = Z+h) \frac{\partial}{\partial x} (Z+h) - u^2 (z = Z) \frac{\partial Z}{\partial x}.$$
 (12)

Donc en injectant (11) et (12) dans (10) on obtient :

$$\frac{\partial}{\partial t} \left[\int_{Z}^{Z+h} u \, dz \right] - u(z = Z+h) \frac{\partial h}{\partial t} + \frac{\partial}{\partial x} \left[\int_{Z}^{Z+h} u^{2} \, dz \right] - u^{2}(z = Z+h) \frac{\partial}{\partial x} (Z+h)
+ u^{2}(z = Z) \frac{\partial Z}{\partial x} = -\frac{1}{\rho} \int_{Z}^{Z+h} \frac{\partial p}{\partial x} \, dz.$$
(13)

Si l'on suppose que la vitesse u est constante selon l'axe (Oz), on a que $\int_Z^{Z+h} u \, dz = uh$ et $\int_Z^{Z+h} u^2 \, dz = u^2h$, et donc :

$$\frac{\partial}{\partial t}(uh) + \frac{\partial}{\partial x}(u^2h) - u(z = Z + h)(\frac{\partial h}{\partial t} + u(z = Z + h)\frac{\partial}{\partial x}(Z + h)) = -\frac{1}{\rho} \int_{Z}^{Z + h} \frac{\partial p}{\partial t} dz.$$
(14)

Une simplification s'effectue grâce à **(H5)**. $\frac{D}{Dt}(Z+h-z)=0$ en z=Z+h équivaut à $\frac{\partial h}{\partial t}+u\frac{\partial Z}{\partial x}+u\frac{\partial h}{\partial x}=0$ en z=Z+h (en utilisant les invariances et le fait que la vitesse

verticale w est nulle à la surface libre). Et donc :

$$\frac{\partial h}{\partial t} + u(z = Z + h) \frac{\partial}{\partial x} (Z + h) = 0.$$

L'équation 14 se réduit alors en

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x}(hu^2) = -\frac{1}{\rho} \int_{Z}^{Z+h} \frac{\partial p}{\partial x} dz.$$
 (15)

Encore une fois avec la règle de Leibniz et utilisant la formule d'équilibre hydrostatique :

$$\frac{\partial}{\partial x} \int_{Z}^{Z+h} p \, dz = \int_{Z}^{Z+h} \frac{\partial p}{\partial x} \, dz + p(Z+h) \frac{\partial}{\partial x} (Z+h) - p(Z) \frac{\partial Z}{\partial x} = \int_{Z}^{Z+h} \frac{\partial p}{\partial x} \, dz - \rho g h \frac{\partial Z}{\partial x},$$

la pression étant considérée égale à 0 à la surface de l'eau. En utilisant encore cette formule on a :

$$\int_{Z}^{Z+h} \frac{\partial p}{\partial x} dz = \frac{\partial}{\partial x} (\rho g h \times h) + \rho g h \frac{\partial Z}{\partial x}$$

$$= \rho (g \frac{\partial}{\partial x} (h^{2}) + g h \frac{\partial Z}{\partial x}). \tag{16}$$

Et en combinant 15 et 16 on arrive à la deuxième équation de Saint-Venant en remplaçant le second membre :

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} + g \frac{h^2}{2} \right) = -gh \frac{\partial Z}{\partial x}.$$
 (17)

Pour obtenir la première équation, partons de $\overline{7}$ et intégrons entre z=Z et z=Z+h:

$$\int_{Z}^{Z+h} (u_x + v_y) dz + w|_{z=Z+h} - w|_{z=Z} = 0.$$
 (18)

Les conditions (H5) et (H6) donnent :

$$\left[\frac{\partial(Z+h)}{\partial t} + u \cdot \frac{\partial(Z+h)}{\partial x} + v \cdot \frac{\partial(Z+h)}{\partial y} - w\right]|_{z=Z+h} = 0, \tag{19}$$

$$[u.Z_x + v.Z_y + w]|_{z=Z} = 0. (20)$$

Et grâce à la formule de Leibniz, en réinsérant 19 et 20 dans 18, on a finalement :

$$\frac{\partial(Z+h)}{\partial t} + \frac{\partial}{\partial x} \int_{Z}^{Z+h} u \, dz + \frac{\partial}{\partial y} \int_{Z}^{Z+h} v \, dz. \tag{21}$$

Nous pouvons davantage simplifier cette équation en observant que u et v sont indépendants de z, ainsi que Z indépendant du temps. Cette équation devient donc :

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(u.h) + \frac{\partial}{\partial y}(v.h) = 0, \tag{22}$$

soit la première équation de Saint Venant.

Les deux équations 22 et 17 forment un système d'équations aux dérivées partielles d'inconnues h et q (ou h et u). Etant données des conditions de bord et des conditions initiales, on doit pouvoir justifier qu'il existe une unique solution que l'on peut calculer numériquement à l'aide d'un schéma de type éléments finis.

2 Découverte du modèle et premières propriétés qualitatives

Proposition 2. La vitesse u vérifie la loi de conservation hyperbolique scalaire suivante :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} + g(Z + h) \right) = 0 \tag{23}$$

Démonstration. Puisque q = h.u, la dérivée spatiale de q s'écrit :

$$\frac{\partial q}{\partial x} = u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} \tag{24}$$

et la dérivée temporelle :

$$\frac{\partial q}{\partial t} = u \frac{\partial h}{\partial t} + h \frac{\partial u}{\partial t} \tag{25}$$

Alors en utilisant l'équation 1 du système, la dérivée temporelle donne aussi la relation

$$\frac{\partial q}{\partial t} = -u \frac{\partial q}{\partial x} + h \frac{\partial u}{\partial t} \tag{26}$$

La loi de conservation que l'on cherche à montrer est alors une réécriture de l'équation 2 du système. On a en effet :

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} (\frac{q^2}{h} + g \frac{h^2}{2}) = -gh \frac{\partial Z}{\partial x}$$

En développant la dérivée par rapport à x et en utilisant (26) :

$$-u\frac{\partial q}{\partial x} + h\frac{\partial u}{\partial t} + u^2\frac{\partial h}{\partial x} + 2hu\frac{\partial u}{\partial x} + gh\frac{\partial h}{\partial x} = -gh\frac{\partial Z}{\partial x}$$

$$\Leftrightarrow -u\frac{\partial q}{\partial x} + h\frac{\partial u}{\partial t} + u^2\frac{\partial h}{\partial x} + 2hu\frac{\partial u}{\partial x} + gh\frac{\partial h}{\partial x} + gh\frac{\partial Z}{\partial x} = 0$$

$$\Leftrightarrow u\left[-\frac{\partial q}{\partial x} + \frac{h}{u}\frac{\partial u}{\partial t} + u\frac{\partial h}{\partial x}\right] + h\left[u\frac{\partial u}{\partial x} + \frac{\partial}{\partial x}(\frac{u^2}{2} + g(Z+h))\right] = 0$$

$$\Leftrightarrow u \left[-\frac{\partial q}{\partial x} + \frac{h}{u} \frac{\partial u}{\partial t} + u \frac{\partial h}{\partial x} + h \frac{\partial u}{\partial x} \right] + h \left[\frac{\partial}{\partial x} (\frac{u^2}{2} + g(Z + h)) \right] = 0$$

D'après (24), une simplification s'opère dans les crochets de gauche et on obtient :

$$u\left[\frac{h}{u}\frac{\partial u}{\partial t}\right] + h\left[\frac{\partial}{\partial x}(\frac{u^2}{2} + g(Z+h))\right] = 0$$

Il suffit alors de diviser par h > 0 pour obtenir le résultat (23).

Pour la suite, posons :

$$\mathbf{U} = \begin{pmatrix} h \\ q \end{pmatrix} \in \mathbb{R}^2, \ \mathbf{F}(\mathbf{U}) = \begin{pmatrix} q \\ \frac{q^2}{h} + g \frac{h^2}{2} \end{pmatrix} \in \mathbb{R}^2 \text{ et } \mathbf{B}(\mathbf{U}) = \begin{pmatrix} 0 \\ -gh \frac{\partial Z}{\partial x} \end{pmatrix} \in \mathbb{R}^2.$$

U désigne le vecteur inconnu, F(U) la fonction flux et B(U) le terme source. Avec ces notations, le système de départ se réécrit :

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x}(\mathbf{F}(\mathbf{U})) = \mathbf{B}(\mathbf{U})$$

Nous allons faire l'hypothèse que $Z\equiv 0$. Les résultats que nous allons montrer à partir de maintenant ne seront valables que pour une topographie Z nulle. En particulier, l'utilisation du schéma de Rusanov hors de ce cadre relèvera d'une démarche empirique.

Proposition 3. Posons le vecteur $\mathbf{W} = (h, u)^T$ (variable dite non conservative). W vérifie le système quasi-linéaire suivant :

$$\frac{\partial \mathbf{W}}{\partial t} + \mathbf{A}(\mathbf{W}) \frac{\partial \mathbf{W}}{\partial x} = 0$$

avec $\mathbb{A}(\mathbf{W})$ définie par :

$$\mathbb{A}(\mathbf{W}) = \begin{pmatrix} u & h \\ g & u \end{pmatrix}.$$

Démonstration. On a
$$\frac{\partial \mathbf{W}}{\partial t} = \begin{pmatrix} h_t \\ u_t \end{pmatrix}$$
 et $\frac{\partial \mathbf{W}}{\partial x} = \begin{pmatrix} h_x \\ u_x \end{pmatrix}$.

En effectuant le produit matriciel et en sommant les termes dans l'équation $\frac{\partial \mathbf{W}}{\partial t} + \mathbf{A}(\mathbf{W})\frac{\partial \mathbf{W}}{\partial x} = 0$ on obtient

$$\begin{pmatrix} h_t + uu_x + hu_x \\ u_t + gh_x + uu_x \end{pmatrix} = \begin{pmatrix} h_t + q_x \\ u_t + (gh + u^2)_x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

En utilisant la première équation du système (1) et la loi de conservation (23) dans le cas $Z \equiv 0$.

Proposition 4. *La matrice* $\mathbb{A}(W)$ *est diagonalisable et on a :*

$$\mathbb{P}(\mathbf{W})^{-1}\mathbb{A}(\mathbf{W})\mathbb{P}(\mathbf{W}) = \mathbb{D}(\mathbf{W})$$

оù

$$\mathbb{D}(\mathbf{W}) = \begin{pmatrix} u + \sqrt{gh} & 0 \\ 0 & u - \sqrt{gh} \end{pmatrix} \text{ et } \mathbb{P}(\mathbf{W}) = \begin{pmatrix} \frac{\sqrt{h}}{\sqrt{g}} & -\frac{\sqrt{h}}{\sqrt{g}} \\ 1 & 1 \end{pmatrix}.$$

Démonstration. Le résultat est direct en faisant le produit matriciel si on connait les expressions de $\mathbb{D}(W)$ et $\mathbb{P}(W)$. Dans le cas contraire, on procède comme suit :

On détermine les valeurs propres de la matrice $\mathbb{A}(\mathbf{W})$, ce qui conduit à chercher les racines du polynôme (d'indéterminée λ) suivant :

$$\det(\mathbb{A}(\mathbf{W}) - \lambda I) = \begin{vmatrix} u - \lambda & h \\ g & u - \lambda \end{vmatrix} = (u - \lambda)^2 - gh.$$

Or puisque g et h sont > 0,

$$(u - \lambda)^2 - gh = 0 \Leftrightarrow \lambda u + \sqrt{gh}$$
 ou $\lambda u - \sqrt{gh}$

et comme la matrice admet deux valeurs propres distinctes, elle est diagonalisable. La matrice diagonale est alors

$$\mathbb{D}(\mathbf{W}) = \begin{pmatrix} u + \sqrt{gh} & 0\\ 0 & u - \sqrt{gh} \end{pmatrix}.$$

Il reste à déterminer la matrice de passage $\mathbb{P}(\mathbf{W})$. Il s'agit de trouver $\begin{pmatrix} a \\ b \end{pmatrix}$ un vecteur propre associé à $u + \sqrt{gh}$ et $\begin{pmatrix} c \\ d \end{pmatrix}$ un vecteur propre associé à $u - \sqrt{gh}$.

Pour le vecteur propre associé à $u + \sqrt{gh}$:

$$\mathbb{A}(\mathbf{W}) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} u & h \\ g & u \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (u + \sqrt{gh}) \begin{pmatrix} a \\ b \end{pmatrix}$$

Il s'agit d'un système lié donc il est équivalent de raisonner sur la première équation :

$$au + bh = au + a\sqrt{gh}$$

$$\Leftrightarrow bh = a\sqrt{gh}$$

et on voit que $\binom{a}{b} = \binom{\sqrt{h}/\sqrt{g}}{1}$ convient.

De même, pour le vecteur propre associé à $u - \sqrt{gh}$:

Cette fois on arrive à

$$cu + dh = cu - c\sqrt{gh}$$

$$\Leftrightarrow dh = -c\sqrt{gh}$$

et on voit que $\begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} -\sqrt{h}/\sqrt{g} \\ 1 \end{pmatrix}$ convient.

D'où finalement:

$$\mathbb{P}(\mathbf{W}) = \begin{pmatrix} \frac{\sqrt{h}}{\sqrt{g}} & -\frac{\sqrt{h}}{\sqrt{g}} \\ 1 & 1 \end{pmatrix}.$$

Proposition 5. La matrice jacobienne de F admet deux valeurs propres distinctes $\lambda_1(U)$ et $\lambda_2(U)$ qui sont égales aux valeurs propres de $\mathbb{A}(W)$.

Démonstration. La matrice jacobienne de F est la suivante :

$$J_{\mathbf{F}}(h,q) = \begin{pmatrix} 0 & 1\\ -\frac{q^2}{h^2} + gh & \frac{2q}{h} \end{pmatrix}$$

Pour déterminer les valeurs propres de cette matrice, il faut calculer les racines du polynôme donné par

$$\det(J_{\mathbf{F}}(h,q)) = \begin{vmatrix} 0 - \lambda & 1 \\ -\frac{q^2}{h^2} + gh & \frac{2q}{h} - \lambda \end{vmatrix}$$

et

$$-\lambda(\frac{2q}{h} - \lambda) + \frac{q^2}{h^2} - gh = 0$$

$$\Leftrightarrow \lambda^2 - 2u\lambda + u^2 - gh = 0.$$

Puisque $\Delta = 4u^2 - 4(u^2 - gh) = 4gh > 0$, il y a deux racines distinctes

$$\lambda_1(\mathbf{U}) = \frac{2u + 2\sqrt{gh}}{2}$$
 et $\lambda_2(\mathbf{U}) = \frac{2u - 2\sqrt{gh}}{2}$.

En simplifiant par 2 au numérateur et dénominateur, on voit qu'il s'agit des valeurs propres de $\mathbb{A}(\mathbf{W})$.

Les expressions de ces valeurs propres vont être utiles par la suite : elles vont en effet apparaître de façon explicite dans le schéma que nous allons utiliser; et donc dans le code de l'implémentation.

Plus précisément : le système d'EDP de Saint-Venant est tel que la matrice jacobienne du flux admet deux valeurs propres distinctes. On parle alors de système hyperbolique. Dans ce contexte, on peut appliquer le schéma dit de Rusanov, auquel est

associé une condition CFL qui assure la stabilité. Nous allons développer ce point dans la partie suivante consacrée à ce schéma.

3 Le schéma de Rusanov

3.1 Présentation du schéma et résultats de convergence

Divisons tout d'abord notre espace et notre temps avec les pas Δx et Δt , respectivement. On cherche à discrétiser l'équation :

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x}(\mathbf{F}(\mathbf{U})) = 0$$
 Équation sans terme source.

On pose ainsi U_i^n l'approximation de U autour de la position x_i à l'étape t^n . On peut donc noter :

$$U_i^n = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} U(x, t^n) \, dx$$

En intégrant le premier terme de 3.1 entre $x_{i-1/2}$ et $x_{i+1/2}$, on a grâce à un développement de Taylor :

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{\partial \mathbf{U}}{\partial t} dx = \int_{x_{i-1/2}}^{x_{i+1/2}} \frac{U(x, t^{n+1}) - U(x, t^n)}{\Delta t} dx = \Delta x \frac{U_i^{n+1} - U_i^n}{\Delta t}.$$

Et en intégrant le second terme de 3.1 :

$$\int_{x_{i-1/2}}^{x_{i+1/2}} \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} dx = F(U(x_{i+1/2})) - F(U(x_{i-1/2})) = \mathcal{F}_{i+1/2} - \mathcal{F}_{i-1/2}.$$

On peut faire l'hypothèse que le flux de U passant en $x_{i+1/2}$, soit $\mathcal{F}_{i+1/2}$, dépend uniquement de U_i et U_{i+1} . On a finalement :

$$\frac{U_i^{n+1} - U_i^n}{\Delta t} + \frac{\mathcal{F}_{i+1/2}^n - \mathcal{F}_{i-1/2}^n}{\Delta x} = 0.$$

Toute la question est donc de savoir comment approcher le flux numérique $\mathcal{F}_{i+1/2}^n$ en fonction de U_i^n et U_{i+1}^n . On notera par la suite que $\mathcal{F}_{i+1/2}^n = f(U_i^n, U_{i+1}^n)$

Approche naïve: Flux centré

On pourrait d'abord penser à approcher le flux $\mathcal{F}_{i+1/2}^n$ par la moyenne entre x_i et x_{i+1} :

$$\mathcal{F}_{i+1/2} = \frac{F(U_i) + F(U_{i+1})}{2}$$

Et ainsi:

$$U_i^{n+1} = U_i^n - \frac{\Delta t}{2\Delta x} (F(U_{i+1}^n) - F(U_{i-1}^n))$$

Malheureusement, ce flux est instable comme le prouvent ces simulations de rupture de barrage :

Les oscillations du débit Q est amplifié au cours du temps. (Peut être essayer une autre simulation histoire de pas reprendre toutes celles du bouquin)

Flux de Lax-Friedrichs

Essayons maintenant avec un terme supplémentaire :

$$\mathcal{F}_{i+1/2} = \frac{F(U_i) + F(U_{i+1})}{2} - \alpha \frac{U_{i+1} - U_i}{2}$$
 avec $\alpha = \frac{\Delta x}{\Delta t}$

On a donc la formule suivante pour calculer U_i^{n+1} :

$$U_i^{n+1} = U_i^n - \frac{\Delta t}{\Delta x} \left(\frac{F(U_{i-1}) + F(U_{i+1})}{2} - \alpha \frac{U_i - U_{i-1}}{2} - \frac{F(U_{i+1}) + F(U_i)}{2} + \alpha \frac{U_{i+1} - U_i}{2} \right)$$

En simplifiant, car $\alpha \frac{\Delta t}{\Delta x} = 1$, on trouve que :

$$U_i^{n+1} = \frac{U_{i+1}^n + U_{i-1}^n}{2} - \frac{\Delta t}{2\Delta x} (F(U_{i+1}^n) - F(U_{i-1}^n))$$

On verra dans la section suivante que l'on peut choisir α plus finement et ayant les bonnes propriétés en fonction des valeurs propres du système étudié.

Flux de Rusanov

Revenons tout d'abord aux critères de choix d'un flux numérique. Deux conditions sont importantes : la consistance et la stabilité.

Définition : On dit que le schéma est consistant avec le système étudié si :

$$f(U,U) = U \quad \forall U$$

Définition : On dit que le schéma est stable s'il préserve un domaine convexe invariant noté C, autrement dit, que les erreurs ne soient pas amplifiées :

$$U_i^n \in C \Rightarrow U_i^{n+1} \in C$$

En choisissant une valeur d' α bien posée dans le flux de Lax-Friedrichs, on obtient le flux de Rusanov :

$$\mathcal{F}_{i+1/2} = \frac{F(U_i) + F(U_{i+1})}{2} - \alpha \frac{U_{i+1} - U_i}{2}$$

avec
$$\alpha = \sup_{U=U_i, U_{i+1} \neq 1, 2} \sup |\lambda_j(U)|$$

Ce flux numérique vérifie bien les conditions de consistance et de stabilité.

3.2 Validation de l'implémentation avec des tests

Dans cette partie, nous allons effectuer des tests de notre implémentation (dont le code est en annexe). Dans un premier temps, nous allons comparer nos résultats à des tests trouvés dans des ouvrages de référence. Dans un second temps, nous allons observer numériquement la convergence des solutions calculées.

Quelques exemples

Le test du lac

Voyons d'abord un premier test trivial : en prenant une hauteur d'eau plate et un débit initial identiquement égal à zéro, on s'attend à ce que l'eau reste plate au cours du temps. On vérifie alors avec les plots de la figure... que le schéma fonctionne bien sur cet exemple.

Le test de la goutte d'eau

Partons maintenant de la condition initiale suivante : une bosse d'eau au milieu du domaine sans débit initial.

Intuitivement, on s'attend à ce que la « goutte » tombe et forme deux vagues qui partent vers chacun des deux bords du domaine. C'est aussi ce que nous dit la référence [1] à la page 257. Et effectivement, voici ce que l'on observe (après environ 3 secondes et 8 secondes) :

Le test de la rupture de barrage

Regardons maintenant un dernier test classique dans la littérature : la rupture de barrage.

L'eau forme une courbe en escalier (d'une seule marche) comme si elle était contenue dans une digue. On observe son évolution comme si la digue disparaissait juste après l'instant initial; d'où le nom de rupture de barrage. On observe le résultat suivant :

Ce résultat est conforme à ce que l'on observe dans [1] page 259. La dynamique des solutions obtenues par notre implémentation est donc la bonne sur ces quelques tests.

Convergence des solutions

D'abord nous allons observer numériquement la convergence de la solution numérique. Nous allons voir que lorsque le nombre N grandit, les courbes de h et q on tendance à se rapprocher d'une courbe limite. Puis nous regarderons l'influence du pas spatial. En particulier, nous verrons ce qu'il se passe lorsque la condition CFL n'est pas vérifiée.

Influence du pas spatial et convergence de la solution

Influence du pas temporel

Voici des représentations de la solution à différents instants (approximativement t = 0, 5, 10, 15 et 20 secondes) avec pas de temps égal 0.5τ , τ et 2τ :

On remarque immédiatement l'influence du pas temporel sur la conservation de la quantité d'eau. Plus le pas est choisi petit et meilleure est la conservation. On observe une dynamique similaire pour les deux cas qui respectent la condition CFL (τ et 0.5τ). Néanmoins, les évolutions sont quelque peu différentes (la vague issue de la rupture de barrage se déplace plus lentement lorsque le pas de temps est 0.5τ ; cette différence dans les deux solutions obtenues vient peut être du fait que la condition doit être respectée strictement). Lorsque la condition CFL n'est pas vérifiée, l'évolution est très différente.

On retrouve le même phénomène dans le cas de la goutte d'eau qui tombe au centre du repère : voici les représentations pour t=0,10,20,30 secondes, avec un pas de temps égal à 0.5τ , τ et 2τ .

De même, plus le pas temporel est faible, plus la quantité d'eau est conservée au cours du temps. On remarque aussi que la quantité d'eau est bien conservée quand la vague est au centre du repère. Cependant, quand elle atteint le bord et disparait

aux limites, la quantité d'eau baisse brutalement (il suffit de comparer la quantité entre t=0 s et t=20 s puis la quantité entre t=20 s et t=30 s).

A Annexes

A.1 Le code : implémentation du schéma de Rusanov

Voici le code à partir duquel nous avons obtenu les graphes du rapport. Ce code permet aussi de générer des fichier .gif et ainsi de visualiser les évolutions (hauteur d'eau et débit) au cours du temps.

Importations

```
[1]: import math as math # Pour les fonctions math import matplotlib.pyplot as plt # Pour l'affichage des graphes from matplotlib.backends.backend_agg import FigureCanvasAgg as → FigureCanvas
from matplotlib.figure import Figure import numpy as np # Pour les tableaux numpy import imageio # Pour faire des .gif
```


Paramètres du problème

```
[2]: g=1 # Constante gravitationnelle

xMin=0 # Bord gauche du domaine
xMax=100 # Bord droit du domaine

N=512 # Nombre de points (strictement à l'intérieur)
# Donc au total, on considère N+2 points avec les bords
h=(xMax-xMin)/(N+1) # Pas du maillage spatial

Tmax=10 # Temps final de la simulation
t=0 # Temps dans la simulation
n=0 # Nombre d'itérations
```

Conditions initiales et Topographie

Dans la cellule ci-dessous, nous définissons la discrétisation de l'axe des abscisses \mathbf{X} , ainsi que la topographie \mathbf{Z} et les profils initiaux de la hauteur d'eau h et du débit q. Le code en commentaire correspond à différentes initialisations possibles. Pour le suite, notons $\mathbf{U} = \begin{pmatrix} h \\ q \end{pmatrix} \in \mathbb{R}^2$ le vecteur inconnu.

```
[3]: X=np.linspace(xMin,xMax,N+2) # Discrétisation de [xMin, xMax]
    U=np.ones([2,N+2]) # discrétisation du vecteur (h, q)
    Uprime=np.zeros([2,N+2]) # Va servir d'intermédiaire de calcul
    Z=np.zeros(N+2) # Discrétisation du fond Z
    # Définitions de Z -----
    # Conditions initiales avec Z en créneau :
    \# Z[(N+2)//5:2*(N+2)//5]=0.3
    \# Z[3*(N+2)//5:4*(N+2)//5]=0.3
    # Conditions initiales avec Z en bosse C infini :
    \# Z=1/(1+.1*(X-50)**2)
    # Conditions initiales avec Z en escalier descendant :
    \# Z[0:(N+2)//4]=.75
    # Z[(N+2)//4:3*(N+2)//4]=0.25
    # Conditions initiales avec Z en tangente hyperbolique :
    # Z=np.tanh(5-X)/2+.5
    # Définitions du h initial -----
    # Hauteur de l'eau en escalier
    U[0,0:(N+2)//3]=3-Z[:(N+2)//3]
    # U[0, (N+2)//3:N+2]=1.25-Z[(N+2)//3:N+2]
    # Hauteur de l'eau constante
    # U[0,:]=1-Z
    # Hauteur de l'eau en bosse
    \# U[0,:]=1+2/(1+.05*(X-50)**2)-Z
    # Définitions du q initial -----
    # Débit de l'eau constant
    U[1,:]=0
```

Nombre de sauvegardes durant la simulation

Quelques variables qui vont nous servir pour enregistrer des étapes de la simulation, sans pour autant les sauvegarder toutes. Sans ça, le nombre d'images à sauver deviendrait vite trop important.

```
[4]: nSauvegarde=10 # Nombre de sauvegardes au cours de la simulation tSauvegarde=[False for i in range(nSauvegarde)] images=[] j=0 # Nombre de sauvegardes déjà effectuées
```

Affichage des images

La fonction ci-dessous permet de gérer l'affichage de la solution. Elle est suivie d'un test. Les graphes qui s'affichent sont ceux de h et q à t=0.

```
[5]: def affiche_U(t):
         t_int=round(t,4) # Troncature de t après la 4eme décimale
         fig,axs=plt.subplots(2,1,figsize=(12,8))
         fig.suptitle("t = "+str(t_int), style='italic', size=30)
         fig.tight_layout()
         plt.rc('font', size=20)
         h_z=U[0,:]+Z
         axs[0].plot(X,h_z)
         axs[0].set_title("h",fontweight="bold",pad=15)
         axs[0].set_xlim([xMin,xMax])
         axs[0].set_ylim([0,4])
         axs[0].fill_between(X,Z,step="pre",alpha=0.5,color="grey")
         axs[1].plot(X,U[1,:])
         axs[1].set_title("q", fontweight="bold",pad=15)
         axs[1].set_xlim([xMin,xMax])
         axs[1].set_ylim([-4,4])
         # axs[1].set_xlabel("Quantité d'eau : "+str(round(sum(U[0,:
      \rightarrow])*h,2)))
         plt.show()
     affiche_U(0) # Test d'affichage de la solution
```


Sauvegarde des images

enregistre_U effectue un traitement identique à *affiche_U*. La seule différence est qu'elle enregistre le plot dans le répertoire courant plutôt que de l'afficher.

```
[6]: def enregistre_U(n,t):
         t_int=round(t,4) # Troncature de t après la 4eme décimale
         fig,axs=plt.subplots(2,1,figsize=(12,8))
         fig.suptitle("t = "+str(t_int), style='italic', size=30)
         fig.tight_layout()
         plt.rc('font',size=20)
         h_z = U[0,:]+Z
         axs[0].plot(X,h_z)
         axs[0].set_title("h", fontweight="bold", pad=15)
         axs[0].set_xlim([xMin,xMax])
         axs[0].set_ylim([0,4])
         axs[0].fill_between(X,Z,step="pre",alpha=0.5,color="grey")
         axs[1].plot(X,U[1,:])
         axs[1].set_title("q", fontweight="bold", pad=15)
         axs[1].set_xlim([xMin,xMax])
         axs[1].set_ylim([-4,4])
         # axs[1].set_xlabel("Quantité d'eau : "+str(round(sum(U[0,:
      \rightarrow])*h,2)))
         # To remove the huge white borders
         axs[0].margins(0)
         axs[1].margins(0)
         fig.canvas.draw()
         image_from_plot=np.frombuffer(fig.canvas.tostring_rgb(),__
      →dtype=np.uint8)
         image_from_plot=image_from_plot.reshape(fig.canvas.
      \rightarrowget_width_height()[::-1]+(3,))
         images.append(image_from_plot)
         #Sauvegarde dans un fichier .png
         plt.savefig("etape"+str(n)+".png")
```

```
plt.close()
enregistre_U(0,0)
```

Fonctions qui interviennent dans le schéma

 $\mathbf{U}=inom{h}{q}\in\mathbb{R}^2$ est le vecteur inconnu. Les différentes fonctions du schéma qu'il s'agit d'implémenter sont $\mathbf{F}(\mathbf{U})$, $\mathbf{B}(\mathbf{U})$ et $\mathcal{F}^n_{i+\frac{1}{2}}$. Rappelons les différentes définitions :

$$\mathbf{F}(\mathbf{U}) = \begin{pmatrix} q \\ \frac{q^2}{h} + g \frac{h^2}{2} \end{pmatrix} \in \mathbb{R}^2 \text{ et } \mathbf{B}(\mathbf{U}) = \begin{pmatrix} 0 \\ -g h \frac{\partial Z}{\partial x} \end{pmatrix} \in \mathbb{R}^2.$$

F(U) désigne la fonction flux et B(U) le terme source. Avec ces notations, le système de départ se réécrit :

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial}{\partial x}(\mathbf{F}(\mathbf{U})) = \mathbf{B}(\mathbf{U}).$$

Et si l'on suppose que $Z \equiv 0$, alors le schéma s'écrit simplement :

$$\frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t^n} + \frac{\mathcal{F}_{i+\frac{1}{2}}^n - \mathcal{F}_{i-\frac{1}{2}}^n}{\Delta x_i} = 0$$

Avec

$$\mathcal{F}_{i+\frac{1}{2}}^{n} = \frac{\mathbf{F}(\mathbf{U}_{i}^{n}) + \mathbf{F}(\mathbf{U}_{i+1}^{n})}{2} - \max_{j \in \{i,i+1\}} \max_{k \in \{1,2\}} |\lambda_{k}(\mathbf{U}_{j}^{n})| \frac{\mathbf{U}_{i+1}^{n} - \mathbf{U}_{i}^{n}}{2}.$$

En prenant une topographie Z non triviale, on peut essayer de prendre le même schéma en rajoutant le terme source. Si l'on a accès à la dérivée Z' de Z, le schéma s'écrit alors :

$$\frac{\mathbf{U}_i^{n+1} - \mathbf{U}_i^n}{\Delta t^n} + \frac{\mathcal{F}_{i+\frac{1}{2}}^n - \mathcal{F}_{i-\frac{1}{2}}^n}{\Delta x_i} = \begin{pmatrix} 0 \\ -gh_i Z_i' \end{pmatrix}$$

ou bien en utilisant des différences finies centrées pour approcher les dérivées :

$$\frac{\mathbf{U}_{i}^{n+1} - \mathbf{U}_{i}^{n}}{\Delta t^{n}} + \frac{\mathcal{F}_{i+\frac{1}{2}}^{n} - \mathcal{F}_{i-\frac{1}{2}}^{n}}{\Delta x_{i}} = \begin{pmatrix} 0\\ -gh_{i}\frac{Z_{i+1} - Z_{i-1}}{2\Delta x_{i}} \end{pmatrix}$$

```
[7]: # Fonction F du schéma :
    # Entrée : vecteur U = (h, q) (type numpy.ndarray)
    # Sortie : F(U) (type numpy.ndarray)
    def F(U):
        return np.array([U[1],U[1]**2/U[0]+g*U[0]**2/2])

# Fonction B du schéma :
    # Entrées : * vecteur U = (h, q) (type numpy.ndarray)
```

```
* valeur dxZ de la dérivée spatiale de Z
# Sortie : B(U) (type numpy.ndarray)
def B(U,i):
             return np.array([0,-g*U[0]*(Z[i+1]-Z[i-1])/2])
# Fonction qui retourne la valeur propre max en module
# Entrées : * U solution discrétisée (type numpy.ndarray de taille_
  \rightarrow 2*(N+2)
                                          * indice i de la position spatiale
# Sortie : max_j max_k / lambda_k(U_j^n) / lam
def vmax(U,i):
             res = abs(U[1,i]/U[0,i]+math.sqrt(g*U[0,i]))
             res = \max(\text{res}, \text{abs}(U[1,i]/U[0,i]-\text{math.sqrt}(g*U[0,i])))
             res = \max(\text{res}, abs(U[1, i+1]/U[0, i+1] + \text{math.sqrt}(g*U[0, i+1])))
             res = \max(\text{res}, \text{abs}(U[1, i+1]/U[0, i+1] - \text{math.sqrt}(g*U[0, i+1])))
             return res
# Fonction flux numérique :
# Entrées : * U solution discrétisée (type numpy.ndarray de taille
 \rightarrow 2*(N+2))
                                         * indice i de la position spatiale
# Sortie : F_{i+1/2}^n
def F_ronde(U,i):
             return (F(U[:,i])+F(U[:,i+1]))/2-vmax(U,i)*(U[:,i+1]-U[:,i])/2
```

Boucle de résolution numérique

Une fois le pas de temps Δt^n déterminé selon le critère qui garanti le respect de la conditions CFL, on passe du temps t^n au temps t^{n+1} suivant la relation explicite suivante :

$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \Delta t^{n} \frac{\mathcal{F}_{i+\frac{1}{2}}^{n} - \Delta t^{n} \mathcal{F}_{i-\frac{1}{2}}^{n}}{\Delta x_{i}} + \Delta t^{n} \begin{pmatrix} 0 \\ -gh_{i} \frac{Z_{i+1} - Z_{i-1}}{2\Delta x_{i}} \end{pmatrix}$$

```
[8]: while(t<Tmax): # Tant que le temps max n'est pas atteint :

    M = vmax(U, 0)
    for i in range(1, N+1):
        M = max(M, vmax(U, i))

    # Pour assurer la stabilité, tau doit être inférieur à h/(2*_\cup \limes max(vp))
    tau = 0.8*h/(2*M)

for i in range(1, N+1):
    Uprime[:,i] = U[:,i]+tau/h*(F_ronde(U,i-1)-F_ronde(U,i))
    Uprime[:,i] -= tau*B(U[:,i],i)</pre>
U = Uprime
```

```
# Conditions aux bords
U[:,0] = U[:,1]
U[:,N+1] = U[:,N]

t+=tau
n+=1

if (t > Tmax/nSauvegarde*j and (j<nSauvegarde) and (not_u)
-tSauvegarde[j])):
    enregistre_U(n,t)
    #affiche_U()
    tSauvegarde[j]=True
    j+=1

print("Nombre d'itérations : " + str(n))
imageio.mimsave('movie.gif', images)
print("Gif Sauvegardé dans le dossier sous le nom : movie.gif")</pre>
```

Nombre d'itérations : 269 Gif Sauvegardé dans le dossier sous le nom : movie.gif

Bibliographie

- [1] R. LEVEQUE, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2004
- [2] E. TORO, Riemann Solvers and Numerical Methods for Fluid Dynamic, Springer, 2009
- [3] WIKIPEDIA, Intégrale paramétrique