Flow Networks

- A flow network is a directed graph G = (V, E) with the following characteristics
 - ▶ There are two special vertices *s* and *t* in *V*, called the source and sink, respectively
 - ▶ Each edge (u, v) in E has an associated nonnegative capacity c(u, v)
 - We do not allow any self-loops in E
 - It is convenient to assume that if edge (u, v) belongs to E, then so does edge (v, u)
 - Where necessary, we introduce such an edge (v, u) with c(v, u) = 0

Flows

- ▶ A flow f in a given flow network G = (V, E) assigns a nonnegative value f(u, v) to each edge (u, v) in E such that the following conditions are satisfied
 - ▶ Capacity constraints: For each edge (u, v) in E, we have $0 \le f(u, v) \le c(u, v)$
 - ▶ Flow conservation constraints: For each vertex v in $V \setminus \{s,t\}$ we have

$$\sum_{(u,v)\in E} f(u,v) = \sum_{(v,u)\in E} f(v,u)$$

▶ For any subsets X and Y of V, let f(X, Y) denote

$$\sum_{(u,v)\in E: u\in X, v\in Y} f(u,v)$$

Cuts

- A cut in a given flow network G = (V, E) is a partition of V into an ordered pair of sets (S, T) such that s belongs to S and t belongs to T
- ► How many cuts does *G* have?

The Net Flow Across a Cut

- Let f be a flow and let (S, T) be a cut in a given flow network G = (V, E)
- We define the net flow of f across cut (S, T) as

$$f(S,T)-f(T,S)$$

Comparing The Net Flow Across Two "Similar" Cuts

- ▶ Let f be a flow and let (S, T) and (S', T') be two cuts in a given flow network G = (V, E) such that $|S \oplus S'| = 1$
- ▶ Lemma 1: The net flow of f across (S, T) is equal to the net flow of f across (S', T')
 - Let v denote the lone vertex in $S \oplus S'$, and assume without loss of generality that S' = S + v

$$f(S,T) - f(T,S)$$
= $(f(S+v,T) - f(\{v\},T)) - (f(T,S+v) - f(T,\{v\}))$
= $f(S',T) - f(T,S') - f(\{v\},T) + f(T,\{v\})$
= $(f(S',T-v) + f(S',\{v\})) - (f(T-v,S') + f(\{v\},S')) - f(\{v\},T') + f(T',\{v\})$
= $f(S',T') - f(T',S') - f(\{v\},V) + f(V,\{v\})$
= $f(S',T') - f(T',S')$

Comparing The Net Flow Across Distinct Cuts

- Let f be a flow and let (S, T) and (S', T') be two cuts in a given flow network G = (V, E)
- ▶ Lemma 2: The net flow of f across (S, T) is equal to the net flow of f across (S', T')
 - ▶ Follows from repeated application of Lemma 1

The Value of a Flow

- Let f be a flow in a given flow network G = (V, E)
- ▶ We can define the value of flow f as the net flow out of s
 - ▶ This is equal to the net flow of f across cut $({s}, V s)$
 - ▶ By Lemma 2, this is equal to the net flow of f across any cut (S, T)

The Maximum Flow Problem

- ► The maximum flow problem asks us to determine a flow of maximum value in a given flow network *G*
- Such a flow is said to be a maximum flow in G
- We will eventually prove the existence of a maximum flow in G
 - ► A priori, it is unclear whether a maximum flow is guaranteed to exist, even in the special case of integer capacities

The Capacity of a Cut

- Let (S, T) be a cut in a given flow network G = (V, E)
- ▶ The capacity of cut (S, T) is defined as

$$\sum_{(u,v)\in E: u\in S, v\in T} c(u,v)$$

The Minimum Cut Problem

- ► The minimum cut problem asks us to determine a cut of minimum capacity in a given flow network *G*
- ▶ Such a cut is said to be a minimum cut in G
- Since there are only a finite number of cuts, a minimum cut is guaranteed to exist

"Max Flow < Min Cut"

- Let f be a flow and (S, T) be a cut in a given flow network G = (V, E)
- ► The net flow of f across cut (S, T) is at most the capacity of cut (S, T)
 - ▶ The net flow of f across cut (S, T) is f(S, T) f(T, S), which is at most f(S, T)
 - ▶ The capacity of cut (S, T) is

$$\sum_{(u,v)\in E: u\in S, v\in T} c(u,v) \geq \sum_{(u,v)\in E: u\in S, v\in T} f(u,v) = f(S,T)$$

- ▶ Thus the value of f is at most the capacity of any cut
- Thus the value of a maximum flow is at most the capacity of a minimum cut

Ford-Fulkerson Algorithm: High-Level Plan

- We wish to compute a maximum flow (and also a minimum cut) in a given flow network
- Starting with the "all-zeros flow" (which is feasible), we will iteratively apply two techniques
 - ► A technique to determine whether a given flow network admits a flow of positive value, and if so, to find such a flow
 - ▶ Given a flow f for a flow network G, a technique to construct a "residual network" G_f that faithfully models the "leftover capacity" in G after introducing flow f
 - In particular, the "sum" of f and a maximum flow in G_f should correspond to a maximum flow in G

Determining a Flow of Positive Value

- We wish to determine whether a given flow network G = (V, E) admits a flow of positive value, and if so, to find such a flow
- We can use breadth-first search (BFS) or depth-first search (DFS) to determine (in linear time) whether there is a (simple) directed path P of positive-capacity edges from s to t
- ▶ If so, we can obtain a flow f of positive value in G
 - lackbox Let Δ denote the minimum capacity of any edge on P
 - ▶ Set f(u, v) to Δ for each edge on P, and to zero for all other edges
 - ▶ The value of flow f is Δ
- ▶ What if there is no such path *P*?

Determining that the Value of a Maximum Flow is Zero

- ▶ Let *S* denote the set of all vertices *v* such that there is a directed path of positive-capacity edges from *s* to *v* in *G*, and assume that the sink *t* does not belong to *S*
- ▶ Let T denote $V \setminus S$
- lacktriangle Observe that (S, T) is a cut in G with capacity zero
- ▶ Hence the value of a maximum flow in *G* is zero
- ▶ Thus the all-zeros flow is a maximum flow in *G*

The Residual Network with Respect to a Flow

- Let f be a flow in a given flow network G = (V, E)
- ▶ We define another flow network $G_f(V, E)$, called the residual network of G with respect to f
 - ► Flow networks *G* and *G*^f differ only in terms of the edge capacities
- For any edge (u, v) in E, we define the residual capacity of (u, v), denoted $c_f(u, v)$, as c(u, v) f(u, v) + f(v, u)
 - ▶ Note that $c_f(u, v) \ge 0$ since $f(u, v) \le c(u, v)$ and $f(v, u) \ge 0$
 - ▶ Note that $c_f(u, v) + c_f(v, u) = c(u, v) + c(v, u)$

"Canonical" Flows

- Let G = (V, E) be a given flow network and let 0 denote the all-zeros flow in G
- For any two functions g and h mapping E to the nonnegative reals, we define $g \oplus h$ as the function that maps each edge (u,v) in E to $f(u,v) \min(f(u,v),f(v,u))$ where f=g+h (pointwise sum)
 - Note that \oplus is associative and commutative, and $f \oplus g = f \oplus g \oplus 0$
- ▶ Let f be a flow in G
 - ▶ Note that $f \oplus 0$ is a flow in G and value $(f \oplus 0) = \text{value}(f)$
 - ▶ We say that f is canonical if $f = f \oplus 0$
 - ▶ Equivalently, f is canonical if for any edge (u, v) in E, we have f(u, v) = 0 or f(v, u) = 0

The Residual Network Models the Leftover Capacity

- Let f be a flow in a given flow network G = (V, E)
- ▶ Lemma 3: If f' is a flow in the residual network G_f then $f'' = f \oplus f'$ is a flow in G and value(f'') = value(f) + value(f')
- Let \hat{f} map each edge (u, v) in E to f(v, u)
- ▶ Lemma 4: If f' is a flow in G, then $f'' = \hat{f} \oplus f'$ is a flow in the residual network G_f and value(f'') = value(f') − value(f)

Proof of Lemma 3

- Our main task is to verify that f" satisfies the upper bound constraints on capacity
 - Assume without loss of generality that f is canonical
 - Let (u, v) and (v, u) be a pair of edges in E, and assume without loss of generality that f(v, u) = 0
 - ▶ We have $f(u, v) + f'(u, v) \le f(u, v) + c_f(u, v) = c(u, v) + f(v, u) = c(u, v)$; thus $f''(u, v) \le c(u, v)$
 - We have $f(v, u) + f'(v, u) = f'(v, u) \le c_f(v, u) = c(v, u) f(v, u) + f(u, v) = c(v, u) + f(u, v)$
 - ▶ Since $f(v, u) + f'(v, u) \le c(v, u) + f(u, v)$ and $f(u, v) + f'(u, v) \ge f(u, v)$, the definition of \oplus implies that $f''(v, u) \le c(v, u)$
- ▶ It is easy to see that f'' is nonnegative and satisfies flow conservation, and that value(f'') = value(f) + value(f')

Proof of Lemma 4

- Our main task is to verify that f" satisfies the upper bound constraints on capacity
 - Assume without loss of generality that f is canonical
 - Let (u, v) and (v, u) be a pair of edges in E, and assume without loss of generality that f(u, v) = 0
 - ▶ We have $\hat{f}(u, v) + f'(u, v) \le f(v, u) + c(u, v) = c_f(u, v) + f(u, v) = c_f(u, v)$; thus $f''(u, v) \le c_f(u, v)$
 - ▶ Since $\hat{f}(v, u) + f'(v, u) = f'(v, u) \le c(v, u)$ and $\hat{f}(u, v) + f'(u, v) \ge f(v, u)$, the definition of \oplus implies that $f''(v, u) \le c(v, u) f(v, u)$
 - ► Since $c(v, u) f(v, u) = c_f(v, u) f(u, v) = c_f(v, u)$, we have $f''(v, u) \le c_f(v, u)$
- ▶ It is easy to see that f'' is nonnegative and satisfies flow conservation, and that value(f'') = value(f') value(f)

Relating Maximum Flows in G and G_f

- ▶ Lemma 5: If f is a flow in a given flow network G and f' is a maximum flow in the residual network G_f , then $f'' = f \oplus f'$ is a maximum flow in G
 - ▶ Lemma 3 implies that f" is a flow in G and value(f") = value(f) + value(f')
 - ▶ Let f_0 be an arbitrary flow in G
 - ▶ Lemma 4 implies that $f_0' = \hat{f} \oplus f_0$ is a flow in G_f and $value(f_0') = value(f_0) value(f)$
 - ▶ Since f' is a maximum flow in G_f , we have value(f') \geq value(f'_0)
 - ► Hence $value(f'') value(f) = value(f') \ge value(f'_0) = value(f_0) value(f)$
 - ▶ Thus value(f'') ≥ value(f_0)

Augmenting Paths

- Let f be a flow in a given flow network G = (V, E)
- ► An augmenting path in the residual network *G_f* is a directed path of positive-capacity edges from *s* to *t*

Characterization of the Set of Maximum Flows

- Let f be a flow in a given flow network G = (V, E)
- ▶ Lemma 6: Flow f is a maximum flow in G if and only if there is no augmenting path in G_f
 - ▶ If there is an augmenting path in G_f , then the value of a maximum flow in G_f is positive and hence Lemma 3 implies that f is not a maximum flow in G
 - If there is no augmenting path in G_f, then the all-zeros flow is a maximum flow in G_f, and Lemma 5 implies that f is a maximum flow in G

Using a Maximum Flow to Compute a Minimum Cut

- Let f be a maximum flow in a given flow network G = (V, E)
- ► Run BFS (or DFS) from *s* in the subgraph of *G_f* corresponding to the edges with positive residual capacity
- ▶ Let S denote the set of vertices reached
- ▶ Let T denote $V \setminus S$, which includes t
- ▶ For each edge (u, v) such that u belongs to S and v belongs to T, we have $c_f(u, v) = 0$
 - ► Hence f(u, v) = c(u, v) and f(v, u) = 0
- ▶ Thus the capacity of cut (S, T) is equal to the net flow of f across (S, T), which in turn is equal to the value of f
- Since the value of a maximum flow is at most the capacity of a minimum cut, we deduce that (S, T) is a minimum cut

Towards the Max-Flow Min-Cut Theorem

- ▶ Let *G* be a given flow network
- ► The argument given on the previous slide also shows that if a maximum flow in G exists, then the value of a maximum flow in G is equal to the capacity of a minimum cut in G

The Ford-Fulkerson Maximum Flow Algorithm

- ▶ Initialize f to the all-zeros flow
- ▶ While there is an augmenting path P in G_f
 - Let $\Delta > 0$ denote the minimum residual capacity of any edge on P
 - ▶ Let f_0 denote the flow in G_f that assigns Δ units of flow to each edge on P, and no flow to the remaining edges
 - ▶ Update f to $f \oplus f_0$

(Partial) Correctness of the Ford-Fulkerson Algorithm

- ► Lemma 7: If the algorithm terminates, then it does so with *f* equal to a maximum flow
 - ▶ Initially, f is a flow in G (the all-zeros flow)
 - By Lemma 3, the algorithm maintains the invariant that f is a flow in G
 - The claim follows by Lemma 6

Remark: A Recursive Variant of Ford-Fulkerson

- ▶ If there is no augmenting path in *G*, return the all-zeros flow
- ▶ Let P denote an augmenting path in G
- Let $\Delta > 0$ denote the minimum capacity of any edge on P
- Let f denote the flow in G that assigns Δ units of flow to each edge on P, and no flow to the remaining edges
- Recursively compute a maximum flow f' in G_f
- ▶ Return $f \oplus f'$

The Special Case of Integer Capacities

- Lemma 8: If the edges capacities are integers, then the Ford-Fulkerson algorithm terminates with an integer maximum flow after a finite number of iterations
 - We can prove by induction on the number of iterations that all of the flow values and residual capacities computed during the course of the algorithm are integers
 - ▶ Each iteration increases the value of *f* by at least 1
 - Since the edge capacities are finite, the value of a maximum flow is finite
- ► Lemma 8 implies that every integer instance of the maximum flow problem admits an integer maximum flow