Ricerca Operativa M

I Esercitazione

Tutor: Alberto Locatelli

- albero.locatelli@unimore.it
- albero.locatelli3@unibo.it

Dipartimento di Informatica - Scienza e Ingegneria - Università di Bologna

Problema:

Un'azienda chimica produce due tipi di composto, A e B. Il profitto del composto A è il doppio di quello del composto B. Per motivi di mercato non si possono produrre più di 2 tonnellate di composto A. Ogni tonnellata di composto A o B contiene un quintale di sostanza base di cui sono disponibili 3 quintali. Ogni tonnellata di composto A richiede un quintale di sostanza chimica e ogni tonnellata di composto B richiede 2 quintali. In tutto sono disponibili 5 quintali di sostanza chimica.

1

- 1. Definire il modello LP che determina la produzione di massimo profitto.
- 2. Porre il modello in forma standard e risolverlo con l'algoritmo del simplesso e la regola di Bland (inserendo il minimo numero di variabili artificiali). Dire esplicitamente qual'è la soluzione trovata.
- 3. Disegnare con cura la regione ammissibile.

Soluzione

Variabili decisionali:

- x_1 : quantità di composto A da produrre (espresso in tonnellate)
- x₂: quantità di composto B da produrre (espresso in tonnellate)

Vincoli:

Non si possono produrre più di 2 tonnellate di composto A:

$$x_1 \le 2$$

 Ogni tonnellata di composto A o B contiene un quintale di sostanza base di cui sono disponibili 3 quintali:

$$x_1 + x_2 \le 3$$

 Ogni tonnellata di composto A richiede un quintale di sostanza chimica e ogni tonnellata di composto B richiede 2 quintali. In tutto sono disponibili 5 quintali di sostanza chimica:

$$x_1 + 2x_2 \le 5$$

Variabili non negative:

$$x_1, x_2 \ge 0$$

Modello:

Il profitto del composto A è il doppio di quello del composto B.

$$\max z = 2x_1 + x_2$$

$$x_1 \le 2$$

$$x_1 + x_2 \le 3$$

$$x_1 + 2x_2 \le 5$$

$$x_1, x_2 \ge 0$$

 $r_1: x_1=2;$

 $r_1: x_1=2;$

 $x_1 \le 2$;

 $r_2: x_1 + x_2 = 3;$

 $r_2: x_1 + x_2 = 3;$

 $x_1 + x_2 \le 3$;

 $r_3: x_1+2x_2=5;$

 $r_3: x_1 + 2x_2 = 5;$

 $x_1 + 2x_2 \le 5$;

Regione amissibile

Forma standard

$$\begin{aligned} \max z &=& 2x_1 + x_2 \\ & x_1 \leq 2 \\ & x_1 + x_2 \leq 3 \\ & x_1 + 2x_2 \leq 5 \\ & x_1, x_2 \geq 0 \end{aligned}$$

$$\min z &=& -2x_1 - x_2 \\ & x_1 + x_3 &= 2 \\ & x_1 + x_2 + x_4 &= 3 \\ & x_1 + 2x_2 & + x_5 = 5 \\ & x_1, x_2, x_3, x_4, x_5 \geq 0 \end{aligned}$$

Tableau

$$\min z = -2x_1 - x_2$$

$$x_1 + x_3 = 2$$

$$x_1 + x_2 + x_4 = 3$$

$$x_1 + 2x_2 + x_5 = 5$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Tableau corrispondente:

La base $\mathcal{B} = \{A_3, A_4, A_5\}$ induce immediatamente la soluzione di base ammissibile di partenza x = (0, 0, 2, 3, 5).

Soluzione iniziale: $\alpha = (0,0)$

Regola di Bland

	0	-2		0	0	0
$x_3 =$	2	1	0	1	0	0
$x_4 =$	3	1	1	0	1	0
$x_3 = x_4 = x_5 = x_5 = x_5$	5	1	2	0	0	1

19 Entra in base la colonna di indice j=1 essendo quella di indice minimo fra quelle con costo relativo negativo.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i:y_{i1}>0} \frac{y_{i0}}{y_{i1}} = \min\{\frac{2}{1}, \frac{3}{1}, \frac{5}{1}\}$$

da cui si ottiene i = 1.

La colonna A_1 entra in base e A_3 esce dalla base. La nuova base è $\mathcal{B} = \{A_1, A_4, A_5\}$ con pivot l'elemento $y_{11} = 1$.

Si ottiene:

La nuova base $\mathcal{B} = \{A_1, A_4, A_5\}$ induce la soluzione di base ammissibile x = (2, 0, 0, 1, 3).

Soluzione corrente: $\beta = (2,0)$

Regola di Bland

Il costo relativo $\overline{c}_2 = -1$ è l'unico costo relativo negativo e dunque la variabile che entrerà in base avrà indice j = 2.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i: y_{i2} > 0} \frac{y_{i0}}{y_{i2}} = \min\{\frac{1}{1}, \frac{3}{2}\}$$

da cui si ottiene i = 2.

La colonna A_2 entra in base e A_4 esce dalla base. La nuova base è $\mathcal{B} = \{A_1, A_2, A_5\}$ e con pivot l'elemento $y_{22} = 1$.

Si ottiene:

La nuova base $\mathcal{B} = \{A_1, A_2, A_5\}$ induce la soluzione di base ammissibile x = (2, 1, 0, 0, 1).

Soluzione corrente: $\gamma=(2,1)$

Soluzione ottima

				1	1	0
$x_1 =$	2	1	0	1	0	0
$x_2 =$	1	0	1	-1	1	0
$x_1 = x_2 = x_5 = x_5 = x_5$	1	0	0	1 -1 1	-2	1

Per il Teorema 4.2 (Criterio di ottimalità), essendo $\overline{c}_j \geq 0 \ \forall j$ allora la soluzione di base ammissibile x = (2, 1, 0, 0, 1) è ottima.

La soluzione ottima consiste dunque nel produrre:

- 2 tonnellate di composto A;
- 1 tonnellata del composto B;

ottenendo un profitto pari a 5 volte il profitto di una tonnellata del composto B.

Regione amissibile

Problema:

Un'azienda produce due tipi di prodotto, X e Y. Il profitto dato da una tonnellata del prodotto Y è il doppio di quello dato da una tonnellata del prodotto X. La produzione di una tonnellata di X o Y richiede 2 ore di utilizzo di un impianto che può essere utilizzato per un massimo di 9 ore al giorno. Per motivi di mercato non si possono produrre più di 2 tonnellate di composto Y al giorno. Infine, la produzione giornaliera del prodotto X non può superare quella del tipo Y di più di una tonnellata.

- 1. Definire il modello LP che determina la produzione di massimo profitto.
- 2. Risolvere il modello con l'algoritmo del simplesso facendo pivoting sulla variabile avente costo relativo minore. Dire esplicitamente qual'è la soluzione trovata.
- 3. Disegnare con cura la regione ammissibile.

Soluzione

Variabili decisionali:

- x_1 : quantità di prodotto X da produrre (espresso in tonnellate)
- x_2 : quantità di prodotto Y da produrre (espresso in tonnellate)

Vincoli:

La produzione di una tonnellata di X o Y richiede 2 ore di utilizzo di un impianto che può essere utilizzato per un massimo di 9 ore al giorno:

$$2x_1 + 2x_2 \le 9$$

• Non si possono produrre più di 2 tonnellate di composto Y al giorno:

$$x_2$$
 ≤ 2

La produzione giornaliera del prodotto X non può superare quella del tipo Y di più di una tonnellata:

$$x_1 \leq x_2 + 1$$

Variabili non negative:

$$x_1, x_2 \ge 0$$

Modello:

Il profitto dato da una tonnellata del prodotto Y è il doppio di quello dato da una tonnellata del prodotto X.

$$\max z = x_1 + 2x_2$$

$$2x_1 + 2x_2 \le 9$$

$$x_2 \le 2$$

$$x_1 \le x_2 + 1$$

$$x_1, x_2 \ge 0$$

Regione Ammissibile

Regione Ammissibile

Forma standard

$$\max z = x_1 + 2x_2$$

$$2x_1 + 2x_2 \le 9$$

$$x_2 \le 2$$

$$x_1 \le x_2 + 1$$

$$x_1, x_2 \ge 0$$

$$\begin{aligned} \min z &= & -x_1 - 2x_2 \\ & 2x_1 + 2x_2 + x_3 &= 9 \\ & x_2 & + x_4 &= 2 \\ & x_1 - x_2 & + x_5 &= 1 \\ & x_1 \ , \ x_2 \ , \ x_3 \ , \ x_4 \ , \ x_5 &\geq 0 \end{aligned}$$

Tableau

$$\min z = -x_1 - 2x_2
 2x_1 + 2x_2 + x_3 = 9
 x_2 + x_4 = 2
 x_1 - x_2 + x_5 = 1
 x_1, x_2, x_3, x_4, x_5 \ge 0$$

Tableau corrispondente:

La base $\mathcal{B} = \{A_3, A_4, A_5\}$ induce immediatamente la soluzione di base ammissibile di partenza x = (0, 0, 9, 2, 1).

Soluzione iniziale: $\alpha = (0,0)$

Facciamo, come richiesto, pivoting sulla variabile avente costo relativo minore.

Entra in base la colonna di indice j = 2 essendo quella con costo relativo minore.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i: y_2 > 0} \frac{y_{i0}}{y_{i2}} = \min\{\frac{9}{2}, \frac{2}{1}\}$$

da cui si ottiene i = 2.

La colonna A_2 entra in base e A_4 esce dalla base. La nuova base è $\mathcal{B} = \{A_3, A_2, A_5\}$ con pivot l'elemento $y_{22} = 1$.

Si ottiene:

La nuova base $\mathcal{B} = \{A_3, A_2, A_5\}$ induce la soluzione di base ammissibile x = (0, 2, 5, 0, 3).

Soluzione corrente: $\beta = (0, 2)$

Il costo relativo $\bar{c}_1 = -1$ è l'unico costo relativo negativo e dunque la variabile che entrerà in base avrà indice j = 1.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i: y_{i1} > 0} \frac{y_{i0}}{y_{i1}} = \min\{\frac{5}{2}, \frac{3}{1}\}$$

da cui si ottiene i = 1.

La colonna A_1 entra in base e A_3 esce dalla base. La nuova base è $\mathcal{B} = \{A_1, A_2, A_5\}$ e con pivot l'elemento $y_{11} = 2$.

Si ottiene:

La nuova base $\mathcal{B} = \{A_1, A_2, A_5\}$ induce la soluzione di base ammissibile $x = (\frac{5}{2}, 2, 0, 0, \frac{1}{2}).$

Soluzione corrente: $\gamma = (\frac{5}{2}, 2)$

Soluzione ottima

	<u>13</u>	0	0	$\frac{1}{2}$	1	0
$x_1 =$	<u>5</u> 2	1	0	$\frac{1}{2}$	-1	0
$x_2 =$	2	0	1	0	1	0
$x_5 =$	$\frac{1}{2}$	0	0	$-\frac{1}{2}$	2	1

Per il Teorema 4.2 (Criterio di ottimalità), essendo $\overline{c}_j \geq 0 \ \forall j$ allora la soluzione attuale $x = (\frac{5}{2}, 2, 0, 0, \frac{1}{2})$ è ottima. La soluzione ottima consiste dunque nel produrre:

- 2,5 tonnellate del prodotto X;
- 2 tonnellata del prodotto Y;

ottenendo un profitto pari a $\frac{13}{2}$ volte il profitto di una tonnellata del prodotto X.

Regione Ammissibile

Esercizio 3

Esercizio 3

Problema:

Un'azienda produce lotti di 2 composti 1 e 2 usando due tipi di sostanze chimiche, A e B. Ogni lotto di 1 richiede 3 tonnellate di A e 3 tonnellate di B. Ogni lotto di 2 richiede 6 tonnellate di A e 3 tonnellate di B. Per motivi di mercato non si possono produrre più di 3 lotti di 1. Non è possibile inoltre utilizzare più di 12 tonnellate della sostanza A e più di 9 tonnellate della sostanza B. Infine, ogni lotto di 1 dà un profitto pari a $12\,000 \in \mathbb{R}$ e ogni lotto di 2 dà un profitto pari a $15\,000 \in \mathbb{R}$

Esercizio 3

- 1. Definire il modello LP che determina la produzione di massimo profitto (espresso in migliaia di euro).
- Porre il modello in forma standard e risolverlo con l'algoritmo del simplesso e la regola di Bland (inserendo il minimo numero di variabili artificiali). Dire esplicitamente qual'è la soluzione trovata.
- 3. Disegnare con cura la regione ammissibile.

Soluzione

Variabili decisionali:

- x_1 : numero di lotti di 1 da produrre
- x₂: numero di lotti di 2 da produrre

Vincoli:

Ogni lotto di 1 richiede 3 tonnellate di A e 3 tonnellate di B. Ogni lotto di 2 richiede 6 tonnellate di A e 3 tonnellate di B.

• Non è possibile utilizzare più di 12 tonnellate della sostanza A:

$$3x_1 + 6x_2 \le 12$$

• Non è possibile utilizzare più di 9 tonnellate della sostanza B:

$$3x_1 + 3x_2 \le 9$$

• Non si possono produrre più di 3 lotti di 1:

$$x_1 \le 3$$

Variabili non negative:

$$x_1, x_2 \ge 0$$

Modello:

Ogni lotto di 1 dà un profitto pari a 12 000 \in e ogni lotto di 2 dà un profitto pari a 15 000 \in .

$$\max z = 12x_1 + 15x_2$$
$$3x_1 + 6x_2 \le 12$$
$$3x_1 + 3x_2 \le 9$$
$$x_1 \le 3$$
$$x_1, x_2 \ge 0$$

Regione Ammissibile

Regione Ammissibile

Forma standard

$$\max z = 12x_1 + 15x_2$$

$$3x_1 + 6x_2 \le 12$$

$$3x_1 + 3x_2 \le 9$$

$$x_1 \le 3$$

$$x_1, x_2 \ge 0$$

Tableau

$$\begin{array}{rllrrr} \min & -12x_1 - 15x_2 \\ & 3x_1 + 6x_2 + x_3 & = 12 \\ & 3x_1 + 3x_2 & + x_4 & = 9 \\ & x_1 & + x_5 = 3 \\ & x_1 \; , & x_2 \; , \; x_3 \; , \; x_4 \; , \; x_5 \geq 0 \end{array}$$

Tableau corrispondente:

		-12	-15	0	0	0
$x_3 = x_4 = x_4 = x_4$	12	3	6	1	0	0
$x_4 =$	9	3	3	0	1	0
$x_5 =$	3		0	0	0	1

La base $\mathcal{B} = \{A_3, A_4, A_5\}$ induce immediatamente la soluzione di base ammissibile di partenza x = (0, 0, 12, 9, 3).

Soluzione iniziale: $\alpha = (0,0)$

Regola di Bland

	0	-12	-15	0	0	0
$x_3 = x_4 = x_4 = x_4$	12	3	6	1	0	0
$x_4 =$	9	3	3	0	1	0
$x_5 =$	3	1	0	0	0	1

Entra in base la colonna di indice j=1 essendo quella di indice minimo fra quelle con costo relativo negativo.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i: y_{i1} > 0} \frac{y_{i0}}{y_{i1}} = \min\{\frac{12}{3}, \frac{9}{3}, \frac{3}{1}\}$$

da cui si ottiene i = 2.

La colonna A_1 entra in base e A_4 esce dalla base. La nuova base è $\mathcal{B} = \{A_3, A_1, A_5\}$ con pivot l'elemento $y_{21} = 3$.

Si ottiene:

La nuova base $\mathcal{B} = \{A_3, A_1, A_5\}$ induce la soluzione di base ammissibile x = (3, 0, 3, 0, 0).

Soluzione corrente: $\beta = (3,0)$

Regola di Bland

	36	0	-3	0	4	0
$x_3 =$	3	0	3	1	-1	0
$x_1 =$	3	1	1	0	$\frac{1}{3}$	0
$x_5 =$	0	0	-1	0	$-\frac{1}{3}$	1

Il costo relativo $\overline{c}_2 = -3$ è l'unico costo relativo negativo e dunque la variabile che entrerà in base avrà indice j = 2.

Calcoliamo l'indice della colonna che esce dalla base:

$$\vartheta_{\max} = \min_{i: y_2 > 0} \frac{y_{i0}}{y_{i2}} = \min\{\frac{3}{3}, \frac{3}{1}\}$$

da cui si ottiene i = 1.

La colonna A_2 entra in base e A_3 esce dalla base. La nuova base è $\mathcal{B} = \{A_2, A_1, A_5\}$ e con pivot l'elemento $y_{12} = 3$.

Si ottiene:

	39	0	0	1	3	0
$x_2 =$	1	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	0
$x_1 =$	2	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	0
$x_5 =$	1	0	0	$\frac{1}{3}$	$-\frac{2}{3}$	1

La nuova base $\mathcal{B} = \{A_2, A_1, A_5\}$ induce la soluzione di base ammissibile x = (2, 1, 0, 0, 1).

Soluzione corrente: $\gamma = (2,1)$

Soluzione ottima

	39	0	0	1	3	0
$x_2 =$	1	0	1	1 3	$-\frac{1}{3}$	0
$x_1 =$	2	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	0
$x_5 =$	1	0	0	$\frac{1}{3}$	$-\frac{2}{3}$	1

Per il Teorema 4.2 (Criterio di ottimalità), essendo $\overline{c}_j \geq 0 \ \forall j$ allora la soluzione di base ammissibile x = (2, 1, 0, 0, 1) è ottima.

La soluzione ottima consiste dunque nel produrre:

- 2 lotti di composto 1;
- 1 lotto di composto 2;

ottenendo un profitto pari a 39 000 €.

Regione Ammissibile

