1. [10 points] Convert the given ε -NFA to DFA.

Closure

90: {203

91: {21,92

92: {223

93: {23,94}

94: {943

	£*	6	£*
90	q_0	Ø	$\sqrt{\frac{8}{3}}$
9,	92	93	{a ₁ , a ₂ ? {a ₃ , a ₄ ?
92	92	93	{q3,943
93	91	$\left egin{array}{c} a_1 \\ \emptyset \end{array} \right $	291,923 Ø
94	ay	Ø	Ø

2. [10 points] Minimize the following DFA using Myhill Nerode theorem and verify using state elimination method.

	[[2	3	4	S
	_	_			
2	X	Ú	_	(
3	•		_		_
L	`	•	\times	_	_
5	X	X	X	$ \lambda $	

$$S(1,2) = S(1,a) = 2 S(1,b) = 3$$

$$S(2,a) = 3 S(2,b) = 5$$

$$S(1,4) = S(1,a) = 2 S(1,b) = 3$$

$$S(1,a) = 3 S(1,b) = 5$$

$$S(2,4) = S(2,a) = 3 S(2,b) = 5$$

$$S(4,a) = 3 S(4,b) = 5$$

$$S(4,a) = 3 S(4,b) = 5$$

$$(2,4) = (1,3)$$

$$S(1,3) = S(1,a) = 2 \quad S(1,b) = 3$$

$$S(3,a) = 4 \quad S(3,b) = 3$$

$$S(2,3) = S(2,a) = 3 \quad S(2,b) = 3$$

$$S(3,a) = 4 \quad S(3,b) = 3$$

$$S(3,4) = S(3,a) = 4 \quad S(3,b) = 3$$

$$S(4,a) = 3 \quad S(4,b) = 5$$

0 eqv. \{1,2,3,4} \{5\} 1 eqv. \{1,3\} \{2,4\} 2 eqv. \{1,3\} \{2,4\} \{2,4\} \{2,4\}

3. [5 points] Construct a minimum state automaton for the following transition diagram,

2933

4. [10 points] Minimize the following DFA using Myhill Nerode theorem,

S(A,B): S(A,O:B &A,T)	CF
S (B, 0)= 65(B,1)=	

	Д	B	C	0	E	-	6	
Ā	-	1		_	_		_	_
B	X	1	(_	_		_	<u> </u>
6	X	X	_)	1	_		
D	×	•	X	_	_			
E	•	X	X	X	_	_	_	_
F	X	*	X	4	X	,)	_	
6	×	*	X	•	X	*	_	
H	X	•	X	X	×	>	X	_
S(A,0) = S(A,0) = B S(A,1) = F S(D,0) = C S(D,1) = G								
S(A,E) = S(A,O) = B S(A,I) = F S(E,O) = H S(E,I) = F								
8(A,	S(A,F) = S(A,O) = B S(A,I) = F S(F,O) = C S(F,I) = G							

$$S(F,G): S(F,O): C$$
 $S(F,I): G$ $S(F,I):$

5. [5 points] Convert the given ε -NFA to DFA.

STATES	INPUTS				
SIAIES	ε	а	b	С	
=>p	{q,r}	{Ф}	{q}	{r}	
q	{Ф}	{p}	{r}	{p,q}	
*r	Φ	Φ	Φ	Φ	

STATES	INPUTS			
SIAIES	3	а	b	С
=>p	{q,r}	{Ф}	{q}	{r}
q	{Ф}	{p}	{r}	{p,q}
*r	Φ	Ф	Φ	Φ

C/0	sur e	
P:	ξp, q,	r}

4.	< 4 5	
	6.7	
V'	3 13	

	£*	Q	£*
Ρ	P 9 V	Ø P Ø	\$p,q,r} Ø
9	2	P	{p,q,v}
r	r	Ø	Ø

	£*	Ь	5*
P	LQL	9 ××	9 Y B
q	9	Y	r
7	7	Ø	8

	£*	C	5*
P	Per	> 098	(2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
9	9	P	ξρ,q,r} q
r	Y	Ø	Ø

	N	FA		
		0	Ь	C
P)	{p,q,r}	{a,r}	{p.q.r}
q	,	{p,q,r}	٢	{p,q,r}
r		Ø	Ø	8

 ε,b

Ka,c

	a	Ь	C
4 P	par	qr	par
* Par	pqr	qr	par
* 9r	par	٢	par
4	par	V	par
Ar	Ø	Ø	Ø
Ø	Ø	Ø	T Ø

6.	[5 points] Convert the given Λ -NFA to DFA.
Ο.	[o points] convert the given it in it to bit.

Q	δ (q , Λ)	δ (q , 0)	δ(q, 1)
→ ^A	δ (q , Λ) {B,D}	{ A }	ф
В	ф	{ c }	{ E }
С	ф	ф	{ B }
D	ф	{ E }	{ D }
★ ^E	ф	ф	ф

closure:
A SABDS
B: \ B \ B \
(:53)
D: \{ D\}
F:SEZ

	£*	0	£*
A	A B D	4 J (T)	{A,B,D}
B	B	С	С
C	C	Ø	Ø
D	\mathcal{D}	E	E
E	E	Ø	$ \not \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $

	[E *]	1	[8*
A	A B D	D E D	ØU D
3	B	E	E
C	C	В	В
P	D	D	D
E	E	Ø	

NFA		
A B C D	E E E E E E	₹D,E} E B D

7. [5 points] Convert the given NFA to DFA.

Input State	0	1
→p	{p, q}	р
q	r	r
r	s	_
★ s	s	s

