

Complex Numbers

Why

We want to find roots of negative numbers

Definition

A complex number is an ordered pair of real numbers. The real part of a complex number is its first coordinate. The imaginary part of a complex number is its second coordinate.

The complex conjugate (or just conjugate) of a complex number z is the complex number whose real part matches z and whose imaginary part is the additive inverse of z. The complex conjugate of a real number (imaginary part is zero) is the real number. In other words, the complex conjugate of a complex number with no imaginary part is the same complex number.

Notation

Let z be a complex number. We denote the real part of z by $\mathbf{Re}(z)$, read "real of z," and the imaginary part by $\mathbf{Im}(z)$, read "imaginary of z." If z = (a, b), then $\mathbf{Re}(z) = a$ and $\mathbf{Im}(z) = b$.

We denote the complex conjugate of the complex number $z \in \mathbf{C}$ by $z^* \in \mathbf{C}$. Another common notation, not used in these sheets is \overline{z} or \overline{z} . If there exists $a, b \in \mathbf{R}$ so that z = (a, b), then $z^* = (a, -b)$.

