Spectrum analyzers

FFT-based

heterodyning-based

Band selectable analysis with FFT instruments

□digital heterodyning:

□ processing chain

Real-time bandwidth of digital spectrum analyzers

Amplitude

□real time

□not real time

cont.

Due to the real-time condition $t_P < t_R = 2N \cdot \frac{1}{f_S}$, for a given N, the processing time t_P fixes a lower limit to the time interval Δt_R between two subsequent records:

$$\Delta t_R = 2N \cdot \frac{1}{f_S} > t_P$$

therefore
$$\frac{N}{t_P} > \frac{f_S}{2}$$

 \Box we know that $f_s/2$ is the bandwidth of the FFT analysis, thus the upper limit of the bandwidth that can be processed in real-time, that is the real-time-bandwidth, is

$$RTBW = \frac{f_s}{2} = \frac{N}{t_P}$$

☐ to increase the RTBW we need more processing power resulting in higher costs

Transient analysis

- □a transient must be acquired entirely without interruptions
- □a long transient having high frequency components requires a wide RTBW because, in this case we need a long-time record coupled with a high sample rate

Overlapping

□ a high RTBW makes it possible to anticipate the spectrum analysis by overlapping the time-records on the time axis

Real-time spectrum analyzer

Spectrum maps

