考研高数常用公式整理

导数公式:

$$(tgx)' = \sec^2 x$$

$$(ctgx)' = -\csc^2 x$$

$$(sec x)' = \sec x \cdot tgx$$

$$(csc x)' = -\csc x \cdot ctgx$$

$$(arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(arctgx)' = \frac{1}{1 + x^2}$$

$$(log_a x)' = \frac{1}{x \ln a}$$

$$(arcctgx)' = -\frac{1}{1 + x^2}$$

基本积分表:

$$\int tgx dx = -\ln|\cos x| + C$$

$$\int ctgx dx = \ln|\sin x| + C$$

$$\int \sec x dx = \ln|\sec x + tgx| + C$$

$$\int \csc x dx = \ln|\csc x - ctgx| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x - x} \right| + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right| + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arctan \frac{x}{a} + C$$

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \frac{n-1}{n} I_{n-2}$$

$$\int \sqrt{x^{2} + a^{2}} dx = \frac{x}{2} \sqrt{x^{2} + a^{2}} + \frac{a^{2}}{2} \ln(x + \sqrt{x^{2} + a^{2}}) + C$$

$$\int \sqrt{x^{2} - a^{2}} dx = \frac{x}{2} \sqrt{x^{2} - a^{2}} - \frac{a^{2}}{2} \ln|x + \sqrt{x^{2} - a^{2}}| + C$$

$$\int \sqrt{a^{2} - x^{2}} dx = \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \arcsin \frac{x}{a} + C$$

三角函数的有理式积分:

$$\sin x = \frac{2u}{1+u^2}$$
, $\cos x = \frac{1-u^2}{1+u^2}$, $u = tg\frac{x}{2}$, $dx = \frac{2du}{1+u^2}$

三角函数公式:

· 和差角公式:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \quad \sin \alpha \sin \beta$$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \quad tg\alpha \cdot tg\beta}$$

$$ctg(\alpha \pm \beta) = \frac{ctg\alpha \cdot ctg\beta}{ctg\beta \pm ctg\alpha}$$

· 和差化积公式:

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = 2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

· 倍角公式:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = 2\cos^{2}\alpha - 1 = 1 - 2\sin^{2}\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\cot 2\alpha = \frac{\cot^{2}\alpha - 1}{2\cot 2\alpha}$$

$$\cot 2\alpha = \frac{\cot^{2}\alpha - 1}{1-3\cot^{2}\alpha}$$

• 半角公式:

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$tg\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{\sin\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$$

$$ctg\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \frac{\sin\alpha}{\sin\alpha} = \frac{\sin\alpha}{1-\cos\alpha}$$

• 正弦定理:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
 • 余弦定理: $c^2 = a^2 + b^2 - 2ab\cos C$

•余弦定理:
$$c^2 = a^2 + b^2 - 2ab\cos C$$

• 反三角函数性质:
$$\arcsin x = \frac{\pi}{2} - \arccos x$$
 $\operatorname{arctgx} = \frac{\pi}{2} - \operatorname{arcctgx}$

高阶导数公式——莱布尼兹(Leibniz)公式:

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

$$= u^{(n)} v + nu^{(n-1)} v' + \frac{n(n-1)}{2!} u^{(n-2)} v'' + \frac{n(n-1)}{k!} u^{(n-k)} v^{(k)} + uv^{(n)}$$

中值定理与导数应用:

拉格朗日中值定理: $f(b) - f(a) = f'(\xi)(b-a)$

柯西中值定理:
$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

 $\exists F(x) = x$ 时,柯西中值定理就是拉格朗日中值定理。

曲率:

弧微分公式: $ds = \sqrt{1 + {y'}^2} dx$,其中 $y' = tg\alpha$

平均曲率: $\overline{K} = \left| \frac{\Delta \alpha}{\Delta s} \right| \Delta \alpha$:从M点到M'点,切线斜率的倾角变化量; Δs : MM 弧长。

M点的曲率:
$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{d\alpha}{ds} \right| = \frac{|y''|}{\sqrt{(1 + {y'}^2)^3}}$$
.

直线: K = 0;

半径为a的圆: $K = \frac{1}{a}$.

定积分的近似计算:

矩形法:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{n} (y_0 + y_1 + \dots + y_{n-1})$$

梯形法: $\int_{a}^{b} f(x) \approx \frac{b-a}{n} [\frac{1}{2} (y_0 + y_n) + y_1 + \dots + y_{n-1}]$
抛物线法: $\int_{a}^{b} f(x) \approx \frac{b-a}{3n} [(y_0 + y_n) + 2(y_2 + y_4 + \dots + y_{n-2}) + 4(y_1 + y_3 + \dots + y_{n-1})]$

定积分应用相关公式:

功: $W = F \cdot s$

水压力: $F = p \cdot A$

引力: $F = k \frac{m_1 m_2}{r^2}$, k为引力系数

函数的平均值: $\overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

均方根:
$$\sqrt{\frac{1}{b-a}}\int_{a}^{b}f^{2}(t)dt$$

空间解析几何和向量代数:

空间2点的距离:
$$d = \left| M_1 M_2 \right| = \sqrt{\left(x_2 - x_1 \right)^2 + \left(y_2 - y_1 \right)^2 + \left(z_2 - z_1 \right)^2}$$
 向量在轴上的投影: $\Pr{j_u \overrightarrow{AB}} = \left| \overrightarrow{AB} \right| \cdot \cos{\varphi}, \varphi \not\in \overrightarrow{AB}$ 与 u 轴的夹角。

向量在轴上的投影:
$$\Pr j_u AB = |AB| \cdot \cos \varphi, \varphi \in AB = u$$
轴的夹角

$$\Pr j_u(a_1 + a_2) = \Pr ja_1 + \Pr ja_2$$

$$a \cdot b = |a| \cdot |b| \cos \theta = a_x b_x + a_y b_y + a_z b_z$$
,是一个数量,

两向量之间的夹角:
$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

$$c = a \times b = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}, |c| = |a| \cdot |b| \sin \theta.$$
例:线速度: $v = w \times r$.

向量的混合积:
$$[abc] = (a \times b) \cdot c = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = |a \times b| \cdot |c| \cos \alpha, \alpha$$
为锐角时,

代表平行六面体的体积。

平面的方程:

1、点法式:
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
, 其中 $n=\{A,B,C\},M_0(x_0,y_0,z_0)$

2、一般方程:
$$Ax + By + Cz + D = 0$$

3、截距世方程:
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

平面外任意一点到该平面的距离:
$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

空间直线的方程:
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$$
,其中 $s = \{m,n,p\}$;参数方程:
$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

二次曲面:

1、椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2、抛物面:
$$\frac{x^2}{2p} + \frac{y^2}{2q} = z, (p, q 同号)$$

3、双曲面:

单叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

双叶双曲面: $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ (马鞍面)

多元函数微分法及应用

全微分:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$

全微分的近似计算: $\Delta z \approx dz = f_x(x, y)\Delta x + f_y(x, y)\Delta y$

多元复合函数的求导法:

$$z = f[u(t), v(t)] \qquad \frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial t}$$
$$z = f[u(x, y), v(x, y)] \qquad \frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$

当u = u(x, y), v = v(x, y)时,

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \qquad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

隐函数的求导公式:

隐函数
$$F(x, y) = 0$$
, $\frac{dy}{dx} = -\frac{F_x}{F_y}$, $\frac{d^2y}{dx^2} = \frac{\partial}{\partial x}(-\frac{F_x}{F_y}) + \frac{\partial}{\partial y}(-\frac{F_x}{F_y}) \cdot \frac{dy}{dx}$

隐函数
$$F(x, y, z) = 0$$
, $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

隐函数方程组:
$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases} \qquad J = \frac{\partial(F, G)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

$$\frac{\partial u}{\partial x} = -\frac{1}{J} \cdot \frac{\partial (F, G)}{\partial (x, v)} \qquad \frac{\partial v}{\partial x} = -\frac{1}{J} \cdot \frac{\partial (F, G)}{\partial (u, x)}$$

$$\frac{\partial u}{\partial y} = -\frac{1}{J} \cdot \frac{\partial (F, G)}{\partial (y, v)} \qquad \frac{\partial v}{\partial y} = -\frac{1}{J} \cdot \frac{\partial (F, G)}{\partial (u, y)}$$

微分法在几何上的应用:

空间曲线
$$\begin{cases} x = \varphi(t) \\ y = \psi(t)$$
在点 $M(x_0, y_0, z_0)$ 处的切线方程:
$$\frac{x - x_0}{\varphi'(t_0)} = \frac{y - y_0}{\psi'(t_0)} = \frac{z - z_0}{\omega'(t_0)} \end{cases}$$

在点M处的法平面方程: $\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$

若空间曲线方程为:
$$\begin{cases} F(x,y,z) = 0\\ G(x,y,z) = 0 \end{cases}$$
,则切向量 $T = \{ \begin{vmatrix} F_y & F_z\\ G_y & G_z \end{vmatrix}, \begin{vmatrix} F_z & F_x\\ G_z & G_x \end{vmatrix}, \begin{vmatrix} F_x & F_y\\ G_x & G_y \end{vmatrix} \}$

曲面F(x, y, z) = 0上一点 $M(x_0, y_0, z_0)$,则:

- 1、过此点的法向量: $n = \{F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0)\}$
- 2、过此点的切平面方程: $F_x(x_0, y_0, z_0)(x-x_0) + F_y(x_0, y_0, z_0)(y-y_0) + F_z(x_0, y_0, z_0)(z-z_0) = 0$

3、过此点的法线方程:
$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$

方向导数与梯度:

函数z = f(x,y)在一点p(x,y)沿任一方向l的方向导数为: $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}\cos\varphi + \frac{\partial f}{\partial y}\sin\varphi$ 其中 φ 为x轴到方向l的转角。

函数
$$z = f(x, y)$$
在一点 $p(x, y)$ 的梯度: $\operatorname{grad} f(x, y) = \frac{\partial f}{\partial x}i + \frac{\partial f}{\partial y}j$

它与方向导数的关系是: $\frac{\partial f}{\partial l} = \operatorname{grad} f(x,y) \cdot e$,其中 $e = \cos \varphi \cdot i + \sin \varphi \cdot j$,为l方向上的单位向量。

$$\therefore \frac{\partial f}{\partial l}$$
是grad $f(x,y)$ 在 l 上的投影。

多元函数的极值及其求法:

设
$$f_x(x_0,y_0)=f_y(x_0,y_0)=0$$
,令: $f_{xx}(x_0,y_0)=A$, $f_{xy}(x_0,y_0)=B$, $f_{yy}(x_0,y_0)=C$
$$\begin{cases} AC-B^2>0$$
时, $\begin{cases} A<0,(x_0,y_0)$ 为极大值
$$AC-B^2<0$$
时, 无极值
$$AC-B^2=0$$
时, 不确定

重积分及其应用:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D'} f(r\cos\theta, r\sin\theta)rdrd\theta$$

曲面
$$z = f(x, y)$$
的面积 $A = \iint_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dxdy$

平面薄片的重心:
$$\bar{x} = \frac{M_x}{M} = \frac{\iint\limits_{D} x \rho(x,y) d\sigma}{\iint\limits_{D} \rho(x,y) d\sigma}, \qquad \bar{y} = \frac{M_y}{M} = \frac{\iint\limits_{D} y \rho(x,y) d\sigma}{\iint\limits_{D} \rho(x,y) d\sigma}$$

平面薄片的转动惯量: 对于
$$x$$
轴 $I_x = \iint_D y^2 \rho(x,y) d\sigma$, 对于 y 轴 $I_y = \iint_D x^2 \rho(x,y) d\sigma$

平面薄片(位于xoy平面)对z轴上质点M(0,0,a),(a>0)的引力: $F=\{F_x,F_y,F_z\}$,其中:

$$F_{x} = f \iint_{D} \frac{\rho(x, y)xd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}, \qquad F_{y} = f \iint_{D} \frac{\rho(x, y)yd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}, \qquad F_{z} = -fa \iint_{D} \frac{\rho(x, y)xd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}$$

曲线积分:

第一类曲线积分(对弧长的曲线积分):

设
$$f(x,y)$$
在 L 上连续, L 的参数方程为: $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $(\alpha \le t \le \beta)$,则:

$$\int_{L} f(x,y)ds = \int_{\alpha}^{\beta} f[\varphi(t),\psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt \quad (\alpha < \beta) \qquad \text{特殊情况:} \begin{cases} x = t \\ y = \varphi(t) \end{cases}$$

第二类曲线积分(对坐标的曲线积分):

设
$$L$$
的参数方程为 $\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases}$,则:

$$\int_{\mathcal{C}} P(x, y) dx + Q(x, y) dy = \int_{\mathcal{C}} \{P[\varphi(t), \psi(t)] \varphi'(t) + Q[\varphi(t), \psi(t)] \psi'(t)\} dt$$

两类曲线积分之间的关系: $\int_{L} Pdx + Qdy = \int_{L} (P\cos\alpha + Q\cos\beta)ds$,其中 α 和 β 分别为L上积分起止点处切向量的方向角。

- •平面上曲线积分与路径无关的条件:
- 1、G是一个单连通区域;
- 2、P(x,y),Q(x,y)在G内具有一阶连续偏导数,且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 。注意奇点,如(0,0),应减去对此奇点的积分,注意方向相反!
- •二元函数的全微分求积:

在
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 时, $Pdx + Qdy$ 才是二元函数 $u(x, y)$ 的全微分, 其中:

$$u(x, y) = \int_{(x_0, y_0)}^{(x, y)} P(x, y) dx + Q(x, y) dy$$
, 通常设 $x_0 = y_0 = 0$.

曲面积分:

对面积的曲面积分:
$$\iint_{\Sigma} f(x,y,z)ds = \iint_{D_{xy}} f[x,y,z(x,y)] \sqrt{1+z_x^2(x,y)+z_y^2(x,y)} dxdy$$
 对坐标的曲面积分: $\iint_{\Sigma} P(x,y,z) dydz + Q(x,y,z) dzdx + R(x,y,z) dxdy$,其中:
$$\iint_{\Sigma} R(x,y,z) dxdy = \pm \iint_{D_{xy}} R[x,y,z(x,y)] dxdy, \quad \text{取曲面的上侧时取正号};$$

$$\iint_{\Sigma} P(x,y,z) dydz = \pm \iint_{D_{yz}} P[x(y,z),y,z] dydz, \quad \text{取曲面的前侧时取正号};$$

$$\iint_{\Sigma} Q(x,y,z) dzdx = \pm \iint_{D_{xx}} Q[x,y(z,x),z] dzdx, \quad \text{取曲面的右侧时取正号}.$$
 两类曲面积分之间的关系: $\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy = \iint_{\Sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma) ds$

高斯公式:

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dv = \bigoplus_{\Sigma} P dy dz + Q dz dx + R dx dy = \bigoplus_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds$$

高斯公式的物理意义 ——通量与散度:

散度: $\operatorname{div} v = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$,即: 单位体积内所产生 的流体质量,若 $\operatorname{div} v < 0$,则为消失...

通量:
$$\iint_{\Sigma} A \cdot n ds = \iint_{\Sigma} A_n ds = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds$$
,

因此,高斯公式又可写 成:
$$\iint_{\Omega} \operatorname{div} A dv = \oint_{\Sigma} A_n ds$$

斯托克斯公式——曲线积分与曲面积分的关系:

$$\iint\limits_{\Sigma} (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}) dy dz + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}) dz dx + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint\limits_{\Gamma} P dx + Q dy + R dz$$

上式左端又可写成:
$$\iint_{\Sigma} \begin{vmatrix} dydz & dzdx & dxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \iint_{\Sigma} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

空间曲线积分与路径无关的条件: $\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}$, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

旋度:
$$rotA = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

向量场A沿有向闭曲线 Γ 的环流量: $\oint_{\Gamma} Pdx + Qdy + Rdz = \oint_{\Gamma} A \cdot t \, ds$

常数项级数:

等比数列:
$$1+q+q^2+ + q^{n-1} = \frac{1-q^n}{1-q}$$

等差数列:
$$1+2+3+ + n = \frac{(n+1)n}{2}$$

调和级数:
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{n}$$
 是发散的

级数审敛法:

1、正项级数的审敛法 — —根植审敛法(柯西判别法):

设:
$$\rho = \lim_{n \to \infty} \sqrt[n]{u_n}$$
, 则
$$\begin{cases} \rho < 1 \text{时,级数收敛} \\ \rho > 1 \text{时,级数发散} \\ \rho = 1 \text{时,不确定} \end{cases}$$

2、比值审敛法:

设:
$$\rho = \lim_{n \to \infty} \frac{U_{n+1}}{U_n}$$
, 则
$$\begin{cases} \rho < 1 \text{时,级数收敛} \\ \rho > 1 \text{时,级数发散} \\ \rho = 1 \text{时,不确定} \end{cases}$$

3、定义法:

$$s_n = u_1 + u_2 + u_n$$
; $\lim_{n \to \infty} s_n$ 存在,则收敛;否则发散。

交错级数 $u_1 - u_2 + u_3 - u_4 + ($ 或 $-u_1 + u_2 - u_3 + , u_n > 0$)的审敛法——莱布尼兹定理: 如果交错级数满足 $\begin{cases} u_n \geq u_{n+1} \\ \lim_{n \to \infty} u_n = 0 \end{cases}$ 那么级数收敛且其和 $s \leq u_1$,其余项 r_n 的绝对值 $|r_n| \leq u_{n+1}$ 。

绝对收敛与条件收敛

 $(1)u_1 + u_2 + u_n + \mu_n$, 其中 u_n 为任意实数;

$$(2)|u_1|+|u_2|+|u_3|+ +|u_n|+$$

如果(2)收敛,则(1)肯定收敛,且称为绝对收敛级数;

如果(2)发散,而(1)收敛,则称(1)为条件收敛级数。

调和级数:
$$\sum \frac{1}{n}$$
发散,而 $\sum \frac{(-1)^n}{n}$ 收敛;
级数: $\sum \frac{1}{n^2}$ 收敛;

$$p$$
级数: $\sum \frac{1}{n^p} \quad \begin{cases} p \le 1 \text{ 时发散} \\ p > 1 \text{时收敛} \end{cases}$

幂级数:

$$1+x+x^2+x^3+$$
 $+x^n+$ $\begin{vmatrix} |x|<1$ 时,收敛于 $\frac{1}{1-x}$ $|x|\ge1$ 时,发散

求收敛半径的方法: 设
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
, 其中 a_n , a_{n+1} 是(3)的系数,则 $\left(\begin{array}{c} \rho \neq 0$ 时, $R = \frac{1}{\rho} \\ \rho = 0$ 时, $R = +\infty$ $\rho = +\infty$ 时, $R = 0$

一些函数展开成幂级数:

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \frac{m(m-1)}{n!}x^{n} + (-1 < x < 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + (-\infty < x < +\infty)$$

欧拉公式:

$$e^{ix} = \cos x + i \sin x$$

$$= \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2}$$

傅立叶级数:

余弦级数: $b_n = 0$, $a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx dx$ n = 0,1,2 $f(x) = \frac{a_0}{2} + \sum a_n \cos nx$ 是偶函数

微分方程的相关概念:

一阶微分方程: y' = f(x,y) 或 P(x,y)dx + Q(x,y)dy = 0 可分离变量的微分方程: 一阶微分方程可以化为g(y)dy = f(x)dx的形式,解法: $\int g(y)dy = \int f(x)dx$ 得: G(y) = F(x) + C称为隐式通解。 齐次方程: 一阶微分方程可以写成 $\frac{dy}{dx} = f(x,y) = \varphi(x,y)$,即写成 $\frac{y}{x}$ 的函数,解法: