Física I:

TRABAJO Y ENERGÍA

Docente: Lic. Jose Luis Mamani Cervantes

Trabajo

Si un cuerpo se mueve con un DESPLAZAMIENTO Δx mientras una FUERZA CONSTANTE \vec{F} actúa sobre el y en la dirección MOVIMIENTO

$$W = \int \vec{F} \cdot d\vec{r}$$

Definición de trabajo

$$[W] = [Nm] = [J]$$
 Unidades en el Sistema Internacional

Donde:

$$\vec{F} = F_x i + F_y j + F_z k$$
 \Rightarrow $d\vec{r} = dx i + dy j + dz k$

Trabajo en Coordenadas Cartesianas

$$\vec{F} \cdot d\vec{r} = (F_x i + F_y j + F_z k) \cdot (dx i + dy j + dz k)$$

$$\vec{F} \cdot d\vec{r} = F_x dx + F_y dy + F_z dz$$

$$\int \vec{F} \cdot d\vec{r} = \int (F_x dx + F_y dy + F_z dz)$$

$$\int \vec{F} \cdot d\vec{r} = \int F_x dx + \int F_y dy + \int F_z dz$$

En tres dimensiones

$$W = \vec{F} \cdot \Delta \vec{X}$$

$$W = F\Delta x \cos \theta$$

Ejemplo: calcular el trabajo total sobre el bloque de masa M, como se ve en la figura:

El trabajo total será la suma del trabajo relazado por todas las fuerzas presentes en el bloque de masa M

$$W_T = W_F + W_N + W_{Mg} + W_{f_r}$$

Definición de fuerza conservativa

Se dice que una fuerza es conservativa Si es independiente de la trayectoria seguida por la partícula cuando se mueve de un punto 1 a otro punto 2

Si la fuerza es conservativa

$$W_{C1} = W_{C2}$$

 W_{C1} Trabajo camino uno C1

$$W = \oint_C \vec{F} \cdot d\vec{r} = 0$$

 W_{C2} Trabajo camino dos C2

Definición de fuerza NO conservativa

Las fuerzas disipativas es toda fuerza es aquella que no cumple con la definición de fuerza conservativa

Si la fuerza es NO conservativa

$$W_{C1} \neq W_{C2}$$

Como ejemplo tenemos:

Si depende de la trayectoria

$$W = \oint_C \vec{F} \bullet d\vec{r} \neq 0$$

- ✓ las fuerzas de rozamientos
- ✓ Las fuerzas de deformación no elásticas