Termin zajęć Miernictwo II Poniedziałek -TN - 13:15Osoby wykonujące ćwiczenie: Grupa nr: Andrzej Szyper Piotr Przychodzeń Tytuł ćwiczenia: **Ćwiczenie nr:** POMIAR SYGNAŁÓW PRZEMIENNYCH I IMPULSOWYCH 5 Ocena: Data wykonania ćwiczenia 24-03-2025 Data oddania sprawozdania 06-04-2025 Oświadczam, że zapoznałem/łam się ze niniejszym sprawozdaniem i uważam je za poprawnie wykonane: Piotr Przychodzeń Andrzej Szyper Oświadczam/y iż poniższe sprawozdanie zostało wykonane przeze mnie/nas samodzielnie:

Andrzej Szyper

.....

Piotr Przychodzeń

.....

CELE ĆWICZENIA:

- Zapoznanie się z podstawowymi parametrami woltomierzy i amperomierzy AC (z różnymi typami przetworników).
- Rozpoznawanie i prawidłowe stosowanie pojęć: amplituda, napięcie międzyszczytowe, wartość średnia, średnia z modułu, wartość skuteczna.
- Analiza parametrów typowych sygnałów sinus, prostokąt, trójkąt
- Właściwości i zastosowanie przebiegów o modulowanej szerokości impulsów (PWM)
- Umiejętność szacowania niepewności pomiarów.

WYPOSAŻENIE POMIAROWE:

- Generator sygnałowy
- Mierniki prądu i napięcia w zależności od konfiguracji stanowiska:
 - multimetr HP 3478A
 - multimetr Meratronik V560
- Oscyloskop (do podglądu mierzonych przebiegów)
- Generator PWM z driverem i obciążeniem regulowanym

Dokumentacja mierników:

```
3.2. Pomiar napięć przemiennych
 - podzakresy
                                               100 mV, 1 V, 10 V, 100 V,
                                               1000 V
                                               650 V /U x f ≤ 2 x 10 /
 - maks. napięcie mierzone
 - uchyb pomiaru w zakresie
   częstotliwości
   30 Hz ... 10 kHz
                                               +0,5% w.m.
                                                            +0,2% w.z.
   10 kHz ... 100 kHz
                                                            +0,5% w.z.
                                               +5% w.m.
3.1. Pomiar napięć stałych
                                              100 mV, 1 V, 10 V, 100 V,
- podzakresy
                                              1000 V
- maks. napięcie mierzone
                                              650 V
- uchyb pomiaru
                                              +0,1% w.m.
  podzakresy 100 mV i 1 V
                                                           +0,05% w.z.
  podzakresy 10 V, 100 V, 1000 V
                                              +0,2% w.m.
                                                           +0.05% w.z.
- prąd wejściowy
                                              500 pA
- rezystancja wejściowa
                                              10 MΩ +1%
- tłumienie zakłóceń równoległych
  z rezystancją 1 k\Omega w obwodzie
  zacisku "LO"
                                              80 dB dla napięcia stałego
                                              i napięcia o częstotliwości
sieci zasilającej /50 Hz+1%/
- czas ustalania się wskazań
                                              3 s
```

Rys. 1 Dokumentajca niepewności miernika Meratronic V560

Measurement Accuracy:

± (% of reading + number of counts)

Auto-zero ON. 5½ digit display. Accuracy is specified for sinewave inputs only, >10% of full scale.

1 Year, Cal. Temp. ±5°C

Input Frequency	300mV	Ranges 3V, 30V	300V		
20Hz-50Hz 50Hz – 100Hz 100Hz – 20kHz 20kHz – 50kHz 50kHz – 100kHz 100kHz – 300kHz	1.14 + 163 0.46 + 163 0.20 + 120 0.38 + 205 1.20 + 840	1.14 + 102 0.46 + 103 0.20 + 70 0.26 + 140 0.87 + 780 10.1 + 3720 (30V Range Only)			

Rys 2. Dokumentajca niepewności miernika HP 3478A dla napięcia prądów przemiennych

Measurement Accuracy:

± (% of reading + number of counts) Auto-zero ON

5½ Digit Mode:

	Cal. Temp ±1°C	Cal. Temp. ±5°C				
Range	24 Hours	90 Day	1 Year			
30mV	0.025 + 40	0.0275 + 40	0.035 + 40			
300mV	0.004 + 4	0.005 + 5	0.007 + 5			
3 V	0.003 + 2	0.004 + 2	0.006 + 2			
30 V	0.004 + 3	0.005 + 4	0.007 + 4			
300 V	0.004 + 2	0.005 + 2	0.007 + 2			

Rys 3. Dokumentajca niepewności miernika HP 3478A dla napięcia prądów stałych

ZADANIE 1 - POMIAR NAPIĘCIA PRZEMIENNEGO

Zestawienie układu pomiarowego.

Pomiar odbywa w układzie jak na poniższym rysunku – źródłem sygnału jest generator funkcyjny, do którego wyjścia dołączone są multimetry i oscyloskop do podglądu sygnału.

Rys. 4. Schemat pomiarowy

Przebieg pierwszego pomiaru:

Na generatorze ustawiono typ sygnału na sygnał sinusoidalny o napięciu zgodnym ze wskazówkami prowadzącego – 3Vpp i częstotliwości 50Hz. Wykonano pomiar wszystkimi wskazanymi miernikami. Zapisano wartości. Zmieniono napięcie sygnału na kolejne wartość: 1Vpp, 2Vpp, 5Vpp, 10Vpp, 20Vpp. Zapisano i porównano wskazania poszczególnych mierników. Pomiary wykonano dla różnych zakresów mierników (3478A – 3V, 30V, 300V; V560 – 10V, 100V, 1000V).

Tab.1 Pomiar napięcia sinusoidalnego dla różnych wartości wejściowych i różnych zakresów mierników

			Częstotliwo	sć [Hz]: 50			
Wartość międzyszczy	Izyszczy Miernik HP 3478A (True RMS)				∕liernik V56	0	Wartość oczekiwana
towa Upp	rvi – inapięcie iniepewnojzakies įv			napięcie	•	zakres [V]	RMS [V] =
2*Umax	[V]	ść [V]		[V]	ść [V]		Umax/√2 :
	1.06478	0.00760	3	1.067	0.015	10	1.06066
3	1.0658	0.01290	30	1.07	0.119	100	
	1.079	0.06624	300	1.1	1.158	1000	
	1.76883	0.01223	3	1.767	0.017	10	
5	1.7705	0.01754	30	1.77	0.121	100	1.76777
	1.782	0.07103	300	1.8	1.160	1000	
	0.35539	0.00293	3	0.348	0.013	10	
1	0.3567	0.00824	30	0.35	0.116	100	0.35355
	0.378	0.06146	300	0.5	1.156	1000	
2	0.71255	0.00528	3	0.715	0.014	10	0.70711

	0.7138	0.01059	30	0.72	0.118	100	
	0.729	0.06386	300	0.7	1.157	1000	
10	ovld		3	3.54	0.022	10	
	3.5492	0.02925	30	3.55	0.126	100	3.53553
	3.559	0.08314	300	3.6	1.165	1000	
	ovld		3	7.046	0.032	10	
20	7.058	0.05234	30	7.06	0.136	100	7.07106781
	7.071	0.10706	300	7.1	1.175	1000	

LEGENDA:							
ovld Overload - wartość mierzona większa niż zakres pomiarowy							
Niepewność nie jest popraw	Niepewność nie jest poprawnie określona w specyfikacji dla wyników <10% zakresu (3478A)						
Niepewność tego samego rz	Niepewność tego samego rzędu wielkości co wynik (V560)						
Niepewność większa niż wynik (V560)							

Przebieg drugiego pomiaru:

Ustawiono napięcie wskazane przez prowadzącego - 8 Vpp i wykonano pomiar dla kolejnych częstotliwość: 10Hz, 50Hz, 100Hz, 500Hz, 1000Hz, 5000Hz, 10k Hz, 50k Hz, 100k Hz, 500kHz. Po Pomiary wykonano dla różnych zakresów mierników (3478A – 3V, 30V, 300V; V560 – 10V, 100V, 1000V).

Tab.2 Pomiar napięcia sinusoidalnego dla różnych częstotliwości i zakresów mierników

	Wartość szczytowa [Upp]: 8 V								
Częstotliw	Miernik 3478A				Miernik V560	Wartości oczekiwane			
ość [Hz]:	Napięcie [V]	Niepewno ść [V]:	Zakres [V]	Napięci e [V]	Niepeweność [V]:	RMS [V] = Umax/√2 :			
	2.62526		3	2.804	#VALUE!	10			
10	2.7461		30	2.43	0.12248486	100	2.83		
	2.803		300	1.1	1.157875965	1000			
	2.84495	0.01931	3	2.841	0.019748266	10			
50	2.8461	0.02462	30	2.85	0.123697295	100	2.83		
	2.857	0.07835	300	2.9	1.163072117	1000			

	2.84586	0.00815	3	2.841	0.019748266	10	
100	2.8464	0.01351	30	2.86	0.123726163	100	2.83
	2.855	0.06705	300	3.1	1.163649468	1000	
	2.84571	0.00815	3	2.841	0.019748266	10	
500	2.8466	0.01351	30	2.87	0.12375503	100	2.83
	2.857	0.06714	300	3.1	1.163649468	1000	
	2.84597	0.00815	3	2.841	0.019748266	10	
1000	2.8466	0.01351	30	2.86	0.123726163	100	2.83
	2.857	0.06714	300	3.1	1.163649468	1000	
	2.84678	0.00816	3	2.839	0.019742492	10	
5000	2.8473	0.01351	30	2.85	0.123697295	100	2.83
	2.86	0.06714	300	3	1.163360792	1000	
	2.84599	0.00815	3	2.835	0.019730945	10	
10k	2.8462	0.01351	30	2.83	0.12363956	100	2.83
	2.871	0.06714	300	2.9	1.163072117	1000	
	2.84613	0.00508	3	2.818	0.019681871	10	
50k	2.8507	0.01236	30	2.64	0.123091077	100	2.83
	3.009	0.08813	300	1.8	1.159896691	1000	
	2.84366	0.01236	3	2.822	0.019693418	10	
100k	2.8754	0.08535	30	2.44	0.122513727	100	2.83
	2.418	0.08669	300	0.9	1.157298615	1000	
	2.04033		3	2.563	0.018945749	10	
500k	2.5182		30	1.2	0.118934155	100	2.83
	1.263		300	0.6	1.156432589	1000	

LEGENDA:								
Niepewność nie jest określona w specyfikacji dla tych zakresów (3478A)								
Niepewność nie je	Niepewność nie jest poprawnie określona w specyfikacji dla wyników <10% zakresu (3478A)							
Niepewność tego	Niepewność tego samego rzędu wielkości co wynik (V560)							
Niepewność większa niż wynik (V560)								

Przebieg trzeciego pomiaru:

Dla wybranych przez prowadzącego częstotliwości (50Hz, 500Hz, 1000Hz, 5000Hz) dokonano pomiarów dla sygnału sinusoidalnego, prostokątnego (o wypełnieniu 50%) i trójkątnego symetrycznego o tej samej amplitudzie: 5V.

Wyniki zapisano w tabeli.

Tab.3 Pomiary napięcia dla różnych kształtów sygnału na różnych częstotliwościach

	W	artość mięc	dzyszczytowa	[Upp]: 10V			
Тур	częstotliwość	HP3478A	(zakres 30V)	V560 (za	Wartości		
przebiegu:	[Hz]:	napięcie [V]:	niepewność [V]:	napięcie [V]:	niepewność [V]:	oczekiwane RMS [V]	
sinusoidalny	50	3.5473	0.0292	3.548	0.022		
	500	3.5480	0.0081	3.543	0.022	3.536	
	1000	3.5486	0.0081	3.543	0.022		
	5000	5	0.0098	3.541	0.022		
	50	4.9407		5.482		F 00	
prostokatny	500	4.9387		5.475			
prostokątny	1000	4.9381		5.474		5.00	
	5000	4.9335		5.464			
	50	2.9129		2.803			
tráikatny	500	2.9144		2.799		2.887	
trójkątny	1000	2.9148		2.799			
	5000	2.9155		2.798			

---- Niepewność nie jest określona w specyfikacji dla tych kształtów

Poza tym - dopuszczalne jest przyłozenie, pomiędzy zaciski HI i 10 bez ograniczen czasowych, napięc stałych lub przemiennych sinusoidalnych 650 V RMS na podzakresach 10 V, 100 V, 1000 V pomiaru napięc stałych i przemiennych.

Składowa stała sygnału przy pomiarze napięc przemiennych nie powinna przekraczac 300 V.

Rys. 5 Fragment dokumentacji miernika V560

Measurement Accuracy:

± (% of reading + number of counts)
Auto-zero ON. 5½ digit display. Accuracy is specified for sinewave inputs only, > 10% of full scale.
1 Year, Cal. Temp. ± 5°C

Rys. 6 Fragment dokumentacji miernika HP 3478A

Niepewność pomiarowa dla 1.3.4, 1.3.5:

Niepewność dla napięcia obliczono za pomocą wzoru odczytanego z dokumentacji multimetru V560 w zależności od ustawionego zakresu, wraz z którym zmieniła się rozdzielczość:

 $\Delta U = (0,0114*Upp + 102*(0,00001*Z/3))/\sqrt{3} = (0,0114*1,06478 + 102*(0,00001*3/3))/\sqrt{3} = 0,00760 \text{ V}$ Oraz analogicznie dla multimetru V560:

 $\Delta U = (U^* 0, 5\% + range * 0, 2\%)/\sqrt{3}$ (0,005*1,07 + 0,002*100)/ $\sqrt{3} \approx 0$, 0119V

Wartości oczekiwane dla 1.3.4, 1.3.5:

Urms = $Umax/\sqrt{2} = 1,5/\sqrt{2} = 1,06066$

Niepewność odczytu dla 1.4:

Niepewność dla napięcia obliczono podobnie jak w poprzednim ćwiczeniu za pomocą wzorów odczytanych z dokumentacji multimetrów, a więc dla 3478A:

 $\Delta U = (U^* 1,14\% + 102^*0,0001) / \sqrt{3}$ $\Delta U = (3,5473^* 1,14\% + 102^*0,0001) / \sqrt{3} = 0,0292 V$

Oraz analogicznie dla multimetru V562:

 $\Delta U = (0,005*U + 0,002*10) / \sqrt{3}$ $\Delta U = (0,005*3,548 + 0,002*10) / \sqrt{3} = 0,022$

Wartości oczekiwane dla 1.4:

Urms = $Umax/\sqrt{2} = 5/\sqrt{2} = 3,536$

Wnioski

Miernik HP 3478A był na ogół bardziej dokładny niż miernik V560. Wyniki z obu mierników były zbliżone do wyników oczekiwanych.

Wartość napięcia wejściowego ani częstotliwość nie miały wpływu na dokładność pomiaru (z wyjątkiem 10Hz i 500kHz, które były mniej dokładne dla obu mierników, w szczególności dla HP 3487A, w którym nie ma takich zakresów pomiarowych).

Duży wpływ miał natomiast dobór zakresu pomiarowego - najdokładniejsze wyniki były na najmniejszych możliwych zakresach (ale większych niż wartość mierzona), przy większych zakresach niepewność też się bardzo zwiększała.

Kształt sygnału także nie miał wpływu na dokładność pomiarów, były one w miarę zgodne z wartością oczekiwaną wyliczoną ze wzorów dla danego kształtu.

ZADANIE 2 – PARAMETRY PRZEBIEGÓW Z MODULACJĄ PWM

Modulacja PWM (modulacja szerokości impulsów – Pulse Width Modulation) jest podstawą działania większości zasilaczy impulsowych oraz układów cyfrowej regulacji napięcia stałego. Układ taki wykorzystuje właściwość unipolarnego (czyli o jednej polaryzacji) przebiegu prostokątnego o zmiennym wypełnieniu. Wartość skuteczna takiego przebiegu jest wprost proporcjonalna do pierwiastka z wypełnienia przebiegu (czyli stosunku czasu trwania impulsu do okresu przebiegu), a wartość średnia – wprost do wypełnienia przebiegu.

Pomiar przebiegu PWM o zmiennym wypełnieniu.

Realizacja zadania:

Włączono generator PWM. Do wyjścia **WYJŚCIE GENERATORA PWM (gniazdo BNC)** podłączono oscyloskop i multimetry.

Przyciskami FREQ ustawiono częstotliwość zadaną przez prowadzącego: 500Hz.

Przyciskami DUTY ustawić wypełnienie na 50% - odczytano wartości napięć na Multimetrach.

Powtórzono pomiar dla 100% i dla kolejnych wypełnień: 10%, 30%, 60%, 75%, 90%.

Tab. 4 Pomiary napięcia średniego sygnału prostokątnego PWM o zmiennym wypełnieniu

		Wartość	szczyto	wa [Umax]]: 3V, f:50	0 Hz		
Wypełnie	3478A			V560			Wartości oczekiwane	
nie [%]:	napięcie [V]:	niepewnoś ć [V]:	zakres [V]:	napięcie [V]:				Uśr [V]
10	0.32844	0.00004	3	0.334	0.006	10	0.94868	0.3
30	0.93185	0.00008	3	0.938	0.007	10	1.64317	0.9
50	1.53525	0.00011	3	1.543	0.008	10	2.12132	1.5
60	1.83708	0.00013	3	1.845	0.009	10	2.32379	1.8

75	2.28954	0.00016	3	2.298	0.010	10	2.59808	2.25
90	2.74226	0.00018	3	2.751	0.011	10	2.84605	2.7
100	3.0429	0.00025	30	3.052	0.011	10	3.00000	3

Niepewności pomiarowe:

Dla 3478A:

 $\Delta U = 0,00006*U + 0,00001*2 = 0,00006*0,32844 + 0,00001*2 = 0,00004 V$

Dla V560:

 $\Delta U = =0,002*U + 0,0005*Z = 0,002*0,334 + 0,0005*10 = 0,006$

Wartości oczekiwane:

 $Urms = Umax*\sqrt{(wypelnienie \times 0,01)} = 3*\sqrt{(10\times 0,01)} = 0,94868 V$ $U\acute{s}r = Umax*wypelnienie * 0,01 = 0,3 V$

Symulacja pracy zasilacza regulowanego

Celem ćwiczenia jest praktyczne poznanie zasady pracy typowego zasilacza impulsowego PWM o napięciu wyjściowym regulowanym przez zmianę wypełnienia PWM.

W największym uproszczeniu zasilacz taki można potraktować jako układ PWM o stałej amplitudzie impulsów i zmiennym wypełnieniu. Wypełnienie zależy od oczekiwanego napięcia wyjściowego i jest sterowane albo ręcznie albo z układu sprzężenia zwrotnego porównującego napięcie na wyjściu zasilacza z napięciem zadanym.

Pomiarom zostanie poddany układ z poniższego rysunku:

Rys. 7 Układ symulujący zasilacz regulowany

Układ reprezentuje rzeczywisty zasilacz – układ zbliżony do dowolnego zasilacza impulsowego – np. ładowarki do telefonu. Driver jest układem wykonawczym pozwalającym uzyskać oczekiwaną moc na wyjściu.

Robc to obciążenie zasilacza – w ćwiczeniu – żarówka.

Zmieniając wypełnienie przebiegu – DUTY – można na wyjściu układu uzyskać dowolne napięcie od 0 do napięcia zasilania drivera – w ten sposób uzyskuje się zasilacz regulowany Uwaga: napięcie wyjściowe takiego zasilacza ma kształt przebiegu prostokątnego i dla uzyskania "czystego" napięcia stałego w rzeczywistych układach stosuje się na wyjściu filtr dolnoprzepustowy "wygładzający" napięcie.

Realizacja zadania:

Do wyjścia drivera na makiecie podłączono żarówkę oraz woltomierze – mierniki HP i V560 przełączono na pomiar napięcia stałego. Zmieniono wypełnienie PWM od 10 do 100% w zadanych krokach – obserwowano jasność świecenia żarówki oraz zapisano wyniki pomiaru wartości średniej i skutecznej napięcia.

Tab. 5 Pomiary układu zasilacza regulowanego z obciążeniem

	Napięcie wejściowe Umax = 12V									
Miernik:	34	478A	V	560	Obliczenia teoretyczne (wartości oczekiwane)					
Wypełnienie [%]:	Napięcie średnie DC [V]:	Niepewność dla U [V]:	Natężenie [mA]:	Natężenie Niepewność [mA]: dla I [mA]:		Uśr [V]	Rezystancja obciążenia [Ω] (z pomiarów)			
100	12	0.0009	335.1	2.2	12.0000	12	35.81			

75	9.2266	0.0007	275.7	1.9	10.3923	9	33.47
50	6.2054	0.0005	206.6	1.5	8.4853	6	30.04
25	3.1952	0.0003	127.4	1.1	6.0000	3	25.08
10	1.3959	0.0001	71.5	0.9	3.7947	1.2	19.52

Niepewności pomiarowe:

Urms = $Umax*\sqrt{(wype{lnienie}*0,01)} = 12*\sqrt{(100*0,01)} = 12 V$ Uśr = $Umax*wype{lnienie}*0,01 = 12*100*0,01 = 12V$

Rezystancja obciążenia [Ω] (z pomiarów):

 $R = U/I = 12V/(335,1mA/1000) = 35,81 \Omega$

Wnioski:

Pomiar przy wypełnieniu 100% był bardziej dokładny przy użyciu miernika HP 3478A. Wyniki z obu mierników były zbliżone do wartości oczekiwanych.

W trybie DC mierniki mierzyły wartość średnią sygnału pulsacyjnego.

Pomiary rezystancji obciążenia wydają się zmniejszać dokładność wraz ze zmniejszaniem wypełnienia sygnału.

W trakcie pomiarów można było zauważyć, że żarówka (obciążenie) zmieniała swoją jasność wraz ze zmianą wypełnienia sygnału - dzięki zmianie wypełnienia można było regulować napięcie na żarówce.