FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

MSP Statistika a pravděpodobnost

Semestrální projekt

Zpracoval: Attila Lakatos (xlakat01)

Čísla zadání: 6, 15

Cvičení - skupina: čtvrtek, 09:00

Datum: 30. listopadu 2019

Zadání projektu z předmětu MSP

Každý student obdrží na cvičení konkrétní data (čísla ze seznamu), pro které vypracuje projekt. K vypracování můžete použít libovolné statistické programy.

- 1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.
- a) Proveďte roztřídění statistického souboru, vytvořte tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.
- b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.
- c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.
- d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.
- e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.
- f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.
- g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

Návod: Oba soubory zpracujte neroztříděné. Testujte nejprve rovnost rozptylů odchylek před a po seřízení stroje. Podle výsledku pak zvolte vhodný postup pro testování rovnosti středních hodnot odchylek před a po seřízení stroje.

- 2. Měřením dvojice (*Výška*[cm], *Váha*[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data_př. 2.
- a) Vypočtěte bodový odhad koeficientu korelace.
- Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.
- c) **Regresní analýza -** data proložte přímkou: $V \acute{a} h a = \beta_0 + \beta_1 \cdot V \acute{y} š k a$
 - 1) Bodově odhadněte β_0 , β_1 a rozptyl s^2 .
 - 2) Na hladině významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, \quad H_A: \beta_0 \neq -100,$$

 $H: \beta_1 = 1, \quad H_A: \beta_1 \neq 1,$

 Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

Termín pro odevzdání práce je 11 týden výuky zimního semestru ve cvičení.

1 Vypracování

1. Při kontrole výrobků byla sledována odchylka X [mm] jejich rozměru od požadované velikosti. Naměřené hodnoty tvoří statistický soubor v listu Data_př. 1.

	Sta	tistický soubor
1	-0.15	
2	0.19	
3	0.49	
4	0.63	
5	-0.56	
6	-0.43	
7	0.02	
8	-0.17	
9	0.56	
10	0.25	
11	0.29	
12	-0.42	
13	-0.66	
14	0.72	
15	-0.87	
16	-0.38	
17	-0.18	
18	0.75	
19	-0.25	
20	-0.07	
21	0.47	
22	-0.23	
23	-1.04	
24	0.34	
25	0.00	

26	-0.28
27	-0.23
28	-0.37
29	-0.86
30	-0.43
31	0.26
32	-0.87
33	-0.36
34	0.50
35	-0.44
36	-1.05
37	-0.76
38	-0.23
39	-0.22
40	0.45
41	-0.10
42	-0.01
43	0.19
44	0.29
45	-0.07
46	-0.60
47	0.44
48	-0.70
49	-0.06
50	0.09

	Uspořáda	aný statistický sou
1	-1.05	
2	-1.04	
3	-0.87	
4	-0.87	
5	-0.86	
6	-0.76	
7	-0.70	
8	-0.66	
9	-0.60	
10	-0.56	
11	-0.44	
12	-0.43	
13	-0.43	
14	-0.42	
15	-0.38	
16	-0.37	
17	-0.36	
18	-0.28	
19	-0.25	
20	-0.23	
21	-0.23	
22	-0.23	
23	-0.22	
24	-0.18	
25	-0.17	

bor _	
26	-0.15
27	-0.10
28	-0.07
29	-0.07
30	-0.06
31	-0.01
32	0.00
33	0.02
34	0.09
35	0.19
36	0.19
37	0.25
38	0.26
39	0.29
40	0.29
41	0.34
42	0.44
43	0.45
44	0.47
45	0.49
46	0.50
47	0.56
48	0.63
49	0.72
50	0.75

a) Proveď te roztřídění statistického souboru, vytvoř te tabulku četností a nakreslete histogramy pro relativní četnosti a relativní kumulativní četnosti.

$$x_{(1)} = \min_{i} x_i = -1.05$$

$$x_{(n)} = \max_{i} x_i = 0.75$$

Variační obor:
$$\langle x_{(1)}, x_{(n)} \rangle = \langle -1, 05; 0, 75 \rangle$$

Rozpětí:
$$x_{(n)} - x_{(1)} = 1.8$$

Počet tříd:
$$m=11$$
 (zvoleno)

Délka třídy:
$$\frac{x_{(n)}-x_{(1)}}{m}=0.163636$$

tříd	xi-	xi+	střed třídy	Komulat čet.	četnost	Relat. Čet.	Relat. Kum. Čet
1	-1.0500	-0.8864	-0.9682	2	2	0.04	0.04
2	-0.8864	-0.7228	-0.8046	6	4	0.08	0.12
3	-0.7228	-0.5592	-0.641	10	4	0.08	0.20
4	-0.5592	-0.3956	-0.4774	14	4	0.08	0.28
5	-0.3956	-0.2320	-0.3138	19	5	0.10	0.38
6	-0.2320	-0.0684	-0.1502	29	10	0.20	0.58
7	-0.0684	0.0952	0.0134	34	5	0.10	0.68
8	0.0952	0.2588	0.177	37	3	0.06	0.74
9	0.2588	0.4224	0.3406	41	4	0.08	0.82
10	0.4224	0.5860	0.5042	47	6	0.12	0.94
11	0.5860	0.7500	0.668	50	3	0.06	1.00

b) Vypočtěte aritmetický průměr, medián, modus, rozptyl a směrodatnou odchylku.

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -0,1224$$

medián:
$$\widetilde{x} = \frac{1}{2} * (-0.17 + -0.15) = 0, 16$$

modus: $\hat{x} = -0.23(TODO)$

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0.21728624$$

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0.466139721542801$$

c) Vypočtěte bodové odhady střední hodnoty, rozptylu a směrodatné odchylky.

Bodový odhad střední hodnoty:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -0,1224$$

Bodový odhad rozptylu:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = 0.22172065306122$$

Bodový odhad směrodatné odchylky:
$$s=\sqrt{\frac{1}{n-1}\sum\limits_{i=1}^n(x_i-\overline{x})^2}=0.470872225833319$$

d) Testujte předpoklad o výběru z normálního rozdělení Pearsonovým (chí-kvadrát) testem na hladině významnosti 0,05.

třída	xi-	xi+	střed třídy	Kumulat čet.	četnost	Teor. Čet	roz^2/teor čet
1	-1000	-0.6	-500.3	9	9	7.76113493	0.19775286441
2	-0.6	-0.42	-0.51	14	5	5.42323332	0.03302945614
3	-0.42	-0.24	-0.33	19	5	6.88516286	0.51615903341
4	-0.24	-0.06	-0.15	30	11	7.5661443	1.55843776314
5	-0.06	0.12	0.03	34	4	7.19681862	1.42002318432
6	0.12	0.3	0.21	40	6	5.92531533	0.00094135067
7	0.3	1000	500.15	50	10	9.24219064	0.06213624604

Testovací kritérium: $t = \sum_{j=1}^{m} \frac{(f_j - \hat{f}_j)^2}{\hat{f}_j} = 3.788479898122,$

 $\chi^2_{1-\alpha}$ pro k=7-2-1stupňů volnosti: 9,488,

doplněk kritického oboru: $\overline{W_{\alpha}} = \langle 0, \chi^2_{1-\alpha} \rangle = \langle 0, 9, 488 \rangle$.

Protože $t \in \overline{W_{\alpha}}$, tedy hypotéza: $X \sim N(-0, 1224; 0, 22172065306)$ se nezamítá .

e) Za předpokladu (bez ohledu na výsledek části d)), že statistický soubor byl získán náhodným výběrem z normálního rozdělení, určete intervalové odhady střední hodnoty, rozptylu a směrodatné odchylky se spolehlivostí 0,95 a 0,99.

Předpoklad: $X \sim N(\mu, \sigma^2), \sigma^2$ - neznámé

Bodový odhad střední hodnoty: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = -0,1224$

Bodový odhad rozptylu: $s^2=\frac{1}{n-1}\sum i=1^n(x_i-\overline{x})^2=0.22172065306122$

Bodový odhad směrodatné odchylky: $s = \sqrt{\frac{1}{n-1}\sum i = 1^n(x_i - \overline{x})^2} = 0.470872225833319$

Intervalový odhad parametru μ :

0,975 kvantil Studentova rozdělení $t_{1-\frac{\alpha}{2}}$ s k=n-1=50-1=49 stupni volnosti = 2,009575237

0,995 kvantil Studentova rozdělení $t_{1-\frac{\alpha}{2}}$ s k=n-1=50-1=49 stupni volnosti = 2,6779951964

$$\alpha = 0,05: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle -0, 256220406; 0, 011420406 \right\rangle$$

$$\alpha = 0,01: \left\langle \overline{x} - t_{1-\alpha/2} \frac{s}{\sqrt{n}}; \overline{x} + t_{1-\alpha/2} \frac{s}{\sqrt{n}} \right\rangle = \left\langle -0.300731419; 0.055931419 \right\rangle$$

Intervalový odhad parametru σ^2 :

0,975 kvantil Pearsova rozdělení $\chi^2_{\alpha/2}$ s k=n-1=50-1=49stupni volnosti = 31,55491646

0,975 kvantil Pearsova rozdělení $\chi^2_{1-\alpha/2}$ s k=n-1=50-1=49stupni volnosti = 70,22241357

0,995 kvantil Pearsova rozdělení $\chi^2_{\alpha/2}$ s k=n-1=50-1=49stupni volnosti = 27,24934921

0,995 kvantil Pearsova rozdělení $\chi^2_{1-\alpha/2}$ s k=n-1=50-1=49stupni volnosti=78,23070806

$$\alpha = 0,05: \left\langle \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}; \frac{(n-1)s^2}{\chi^2_{\alpha/2}} \right\rangle = \left\langle 0.154712882; 0.344298551 \right\rangle$$

$$\alpha = 0,01: \left\langle \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}; \frac{(n-1)s^2}{\chi^2_{\alpha/2}} \right\rangle = \left\langle 0.138875287; 0.39869987 \right\rangle$$

Intervalový odhad parametru σ :

$$\alpha = 0,05 : \left\langle \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}; \sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} \right\rangle = \left\langle \sqrt{0.154712882}; \sqrt{0.344298551} \right\rangle = \left\langle 0.393335584; 0.586769589 \right\rangle$$

$$\alpha = 0,01: \left\langle \sqrt{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}}; \sqrt{\frac{(n-1)s^2}{\chi^2_{\alpha/2}}} \right\rangle = \left\langle \sqrt{0.138875287}; \sqrt{0.39869987} \right\rangle = \left\langle 0.372659747; 0.631426852 \right\rangle$$

f) Testujte hypotézu optimálního seřízení stroje, tj. že střední hodnota odchylky je nulová, proti dvoustranné alternativní hypotéze, že střední hodnota odchylky je různá od nuly, a to na hladině významnosti 0,05.

Studentův jednovýběrový test:

Testujeme hypotézu $H_0: \mu = 0:$

testovací kritérium:
$$t=\frac{\overline{x}-\mu_0}{s}\sqrt{n}=\frac{\overline{x}-0}{s}\sqrt{n}=-1.838075496$$

doplněk kritického oboru: $\overline{W_{\alpha}} = \left\langle -t_{1-alpha/2}, t_{1-\alpha/2} \right\rangle$ pro alternativní hypotézu: $H_A: \mu \neq \mu_0, 0, 975$ kvantil Studentova rozdělení $t_{1-\alpha/2}$ s k=n-1=50-1=49 stupni volnosti = 2,009575237

$$\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle = \left\langle -2,009575237, 2,0095752 \right\rangle$$

 $\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle = \left\langle -2,009575237, 2,0095752 \right\rangle$ Protože $t \in \overline{W_{\alpha}}$, tak hypotéza $H_0: \mu = 0$ se nezamítá a alternativní hypotéza $H_A: \mu \neq 0$ se zamítá.

g) Ověřte statistickým testem na hladině významnosti 0,05, zda seřízení stroje ovlivnilo kvalitu výroby, víte-li, že výše uvedený statistický soubor 50-ti hodnot vznikl spojením dvou dílčích statistických souborů tak, že po naměření prvních 20-ti hodnot bylo provedeno nové seřízení stroje a pak bylo naměřeno zbývajících 30 hodnot.

	x:1:20 - X
1	-0.15
2	0.19
3	0.49
4	0.63
5	-0.56
6	-0.43
7	0.02
8	-0.17
9	0.56
10	0.25
11	0.29
12	-0.42
13	-0.66
14	0.72
15	-0.87
16	-0.38
17	-0.18
18	0.75
19	-0.25
20	-0.07

	x21:50 - Y
21	0.47
22	-0.23
23	-1.04
24	0.34
25	0.00
26	-0.28
27	-0.23
28	-0.37
29	-0.86
30	-0.43
31	0.26
32	-0.87
33	-0.36
34	0.50
35	-0.44
36	-1.05
37	-0.76
38	-0.23
39	-0.22
40	0.45
41	-0.10
42	-0.01
43	0.19
44	0.29
45	-0.07
46	-0.60
47	0.44
48	-0.70
49	-0.06
50	0.09

	X	Y
n	20	30
průměr	-0,012	-0,196
rozptyl s^2	0,218736	0,20277733
směr_odch	0,46769221	0,45030804

Test rovnosti rozptylů – F-test:

Testujeme hypotézu $H_0: \sigma_X^2 = \sigma_Y^2:$

testovací kritérium:
$$t = \frac{s^2(X)}{s^2(Y)} = \frac{0,218736}{0,20277733} = 1.078700464$$

doplněk kritického oboru: $\overline{W_{\alpha}} = \left\langle F_{\alpha/2}(n-1,m-1), F_{1-\alpha/2}(n-1,m-1) \right\rangle$ pro $H_A: \sigma_X^2 \neq \sigma_Y^2, F_{\alpha/2}(k_1,k_2), F_{1-\alpha/2}(k_1,k_2)$ jsou kvantily Fischerova-Snedecorova rozdělení s $k_1=n-1$ a $k_2=m-1$ stupni volnosti.

$$F_{\alpha/2}(19,29) = 0,416329667$$

$$F_{1-\alpha/2}(19,29) = 2,231274$$

$$\left\langle F_{\alpha/2}(n-1,m-1), F_{1-\alpha/2}(n-1,m-1) \right\rangle = \left\langle 0, 416329667, 2, 231274 \right\rangle$$

Protože $t \in \overline{W_{\alpha}}$, tedy hypotéza $H_0: \sigma_X^2 = \sigma_Y^2$ se nezamítá.

Studentův dvouvýběrový test:

Testujeme hypotézu $H_0: \mu_X - \mu_Y$ za podmínky $\sigma_X^2 = \sigma Y^2$

testovací kritérium:
$$t = \frac{\overline{x} - \overline{y} - \mu_0}{\sqrt{(n-1)s^2(X) + (m-1)s^2(Y)}} \sqrt{\frac{n*m(n+m-2)}{n+m}} = 1.393918382$$

doplněk kritického oboru: $\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \text{ pro } H_A : \mu_X - \mu_Y \neq 0, \right.$

 $t_{1-\alpha/2}$ - kvantil Studentova rozdělení sk=n+m-2=20+30-2=48stupni volnosti.

$$t_{1-\alpha/2} = 2,010634758$$

$$\overline{W_{\alpha}} = \left\langle -t_{1-\alpha/2}, t_{1-\alpha/2} \right\rangle = \left\langle -2, 010634758; 2, 010634758 \right\rangle$$

Protože $t \in \overline{W_{\alpha}}$, tedy hypotéza: $H_0: \mu_X - \mu_Y = 0$ se nezamítá.

2. Měřením dvojice (Výška[cm], Váha[kg]) u vybraných studentů z FIT byl získán dvourozměrný statistický soubor zapsaný po dvojicích v řádcích v listu Data př. 2.

15					
Př. 2					
X -Výška [cm] Y - Váha [k					
184	79				
153	62				
163	79				
199	80				
152	44				
169	56				
159	61				
177	75				
160	66				
190	110				
158	42				
198	83				
175	72				
180	92				
173	60				
178	66				
161	57				
188	94				
160	52				
170	52				

$$n = 20$$

$$\bar{x} = 172, 35$$

$$\overline{y} = 69,172607489$$

$$\sum_{i=1}^{n} x_i^2 = 597981$$

$$\sum_{i=1}^{n} y_i^2 = 101528,70165$$

$$\sum_{i=1}^{n} x_i y_i = 242013,65983$$

a) Vypočtěte bodový odhad koeficientu korelace.

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n * \overline{x} * \overline{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n * \overline{x}^2\right) \left(\sum_{i=1}^{n} x_i^2 - n * \overline{y}^2\right)}} = 0,7506810259$$

b) Na hladině významnosti 0,05 testujte hypotézu, že náhodné veličiny Výška a Váha jsou lineárně nezávislé.

Testujeme hypotézu $H_0: \rho = 0:$

testovací kritérium:
$$t = \frac{|r|\sqrt{n-2}}{\sqrt{1-r^2}} = 4,8207045282$$

doplněk kritického oboru: $\overline{W_{\alpha}}=\left\langle 0,t_{1-\alpha/2}\right\rangle$ pro alternativní hypotézu: $H_A: \rho \neq 0,$

$$t_{1-\alpha/2}(n-2) = t_{0.975}(20-2) = 2,100922037$$

Protože $t\notin \overline{W_{\alpha}},$ tedy hypotéza: $H_0: \rho=0$ se zamítá.

c) Regresní analýza - data proložte přímkou: Váha = $\beta_0 + \beta_1 *$ Výška

xi	yi	Xi^2	Yi^2	xi*yi
184	79	33856	6273.41343	14573.6984
153	62	23409	3825.43927	9463.07074
163	79	26569	6231.89365	12867.602
199	80	39601	6410.12783	15932.5915
152	44	23104	1920.5741	6661.30198
169	56	28561	3159.68743	9499.67539
159	61	25281	3771.52838	9764.63051
177	75	31329	5696.0685	13358.5976
160	66	25600	4372.12621	10579.5289
190	110	36100	12152.1433	20944.9844
158	42	24964	1785.93608	6677.13324
198	83	39204	6884.37638	16428.4842
175	72	30625	5135.59761	12541.0397
180	92	32400	8444.53781	16540.9499
173	60	29929	3591.09678	10367.1566
178	66	31684	4297.78368	11669.2321
161	57	25921	3305.00847	9255.76169
188	94	35344	8815.48075	17651.4688
160	52	25600	2717.66847	8341.0019
170	52	28900	2738.21357	8895.75023
3447	1383.4521498	597981	101528.702	242013.66
172.35	69.172607489			

Suma průměr

Tedy:

$$n = 20,$$

$$\sum_{i=1}^{n} x_i = 3447, \sum_{i=1}^{n} y_i = 1383, 4521498,$$

$$\sum_{i=1}^{n} x_i^2 = 597981, \sum_{i=1}^{n} y_i^2 = 101528, 702,$$

$$\sum_{i=1}^{n} x_i * y_i = 242013, 66.$$

$$det(H) = n \sum_{i=1}^{n} xi^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} = 77811$$

1) Bodově odhadněte β_0, β_1 a rozptyl s^2 .

$$b_2 = \frac{1}{\det(h)} \left(n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i \right) = 0,9190684646$$

$$b_1 = \overline{y} - b_2 * \overline{x} = -89,22884239$$

$$y = b_1 + b_2 * x = -89,22884239 + 0,9190684646x$$

$$S_{min}^* = \sum_{i=1}^n y_i^2 - b_1 \sum_{i=1}^n y_i - b_2 \sum_{i=1}^n x_i y_i = 2545,4127125$$

$$s^2 = \frac{S_{min}^*}{n-2} = \frac{S_{min}^*}{20-2} = 141,41181736$$

2) Na hladin ě významnosti 0,05 otestujte hypotézy:

$$H: \beta_0 = -100, H_A: \beta_0 \neq -100,$$

$$h^{11} = \frac{\sum_{i=1}^{n} x_i^2}{\det(H)} = 7,68504453097891$$

$$t = \frac{b_1 - (-100)}{s\sqrt{h^{11}}} = 0,326735508653823$$

$$t_{1-\alpha/2}(n-2) = t_{0.975}(20-2) = 2,100922037$$

$$t\in \overline{W}=\left\langle -2,100922037,2,100922037\right
angle$$
, a tedy $H:eta_1=-100$ se nezamítá

$$H: \beta_1 = 1, H_A: \beta_1 \neq 1,$$

$$h_{22} = \frac{n}{\det(H)} = 0.000257033067304$$

$$t = \frac{b_2 - 1}{s * \sqrt{h^{22}}} = -0.424502672132561$$

$$t_{1-\alpha/2}(n-2) = t_{0.975}(20-2) = 2{,}100922037$$

$$t \in \overline{W} = \left\langle -2, 100922037, 2, 100922037 \right\rangle$$
, a tedy $H: \beta_2 = 1$ se nezamítá

³⁾ Vytvořte graf bodů spolu s regresní přímkou a pásem spolehlivosti pro individuální hodnotu výšky.

	Výpočet pásu spolehlivosti							
	stredni y individualni y							
хi	yi	dolni	horni	dolni	horni	h*		
150	48.6314273	38.0792357	59.1836189	21.5109072	75.751947374	0.1783938004		
155	53.226769623	44.3103391	62.1432001	26.6998664	79.753672847	0.1273727365		
160	57.822111946	50.360317	65.2839069	31.7481355	83.896088365	0.089203326		
165	62.417454269	56.1027332	68.7321753	36.6482951	88.186613433	0.0638855689		
170	67.012796592	61.3475794	72.6780138	41.3950577	92.630535523	0.0514194651		
175	71.608138915	65.9217221	77.2945557	45.9857035	97.230574355	0.0518050147		
180	76.203481238	69.8318525	82.5751099	50.4203179	101.98664462	0.0650422177		
185	80.798823561	73.2568322	88.340815	54.7017836	106.89586355	0.091131074		
190	85.394165884	76.3837673	94.4045645	58.8355299	111.95280185	0.1300715837		
195	89.989508207	79.3351853	100.643831	62.8290874	117.14992902	0.1818637468		
200	94.58485053	82.1806747	106.989026	66.691528	122.47817302	0.2465075632		

