Solutions of exercises in Chapter 7

 $\overline{\text{E7.1}}$ Let \overline{M} be a field, A a subfield, and $a \in M$. Suppose that a is algebraic over A in the usual sense of field theory. Show that a is algebraic over A in the model-theoretic sense.

Let f(x) be a polynomial with coefficients in A such that f(a) = 0. Let $\varphi(x, \overline{b})$ be the formula f(x) = 0, where \overline{b} is the system of coefficients of f(x).

E7.2 Let $\overline{M} = (\omega, <)$. Show that every element of ω is algebraic over \emptyset .

For any $m \in \omega$ let $\varphi(x)$ be the formula "There are exactly m elements less than x."

$$\overline{\text{E7.3}}$$
 Let $\overline{A} = ([\omega]^2, R)$, where

$$R = \{(a, b) : a, b \in [\omega]^2, a \neq b \text{ and } a \cap b \neq \emptyset\}.$$

- (i) Show that $\{a \in [\omega]^2 : (a, \{0, 1\}) \in R\}$ is neither finite nor cofinite.
- (ii) Infer from (i) that $[\omega]^2$ is not minimal.
- (iii) If f is a permutation of ω , define $f^+: [\omega]^2 \to [\omega]^2$ by setting $f^+(a) = f[a]$ for any $a \in [\omega]^2$. Show that f^+ is an automorphism of \overline{A} .
- (iv) Let $X = \{a \in [\omega]^2 : 0 \in a \text{ and } a \cap \{1,2\} = \emptyset\}$. Show that X is definable in \overline{A} with parameters.
 - (v) Show that X is minimal.
- (i): For each m > 1 we have $(\{0, m\}, \{0, 1\}) \in R$, so the set is not finite. Also, for each m > 1 we have $(\{m, m + 1\}, \{0, 1\}) \notin R$, so the set is not cofinite.
 - (ii): The set is definable with parameters, since it is

$$\{a \in [\omega]^2 : \overline{A} \models \mathbf{R}a\{0,1\}\}.$$

- (iii): f^+ is one-one, since f[a] = f[b] implies that $a = f^{-1}[f[a]] = f^{-1}[f[b]] = b$. f^+ maps onto $[\omega]^2$ since for any $a \in [\omega]^2$ we have $f[f^{-1}[a]] = a$. Now suppose that $a, b \in [\omega]^2$. Suppose that aRb. Then $a \neq b$ and $a \cap b \neq \emptyset$. Hence $f[a] \neq f[b]$ and $f[a] \cap f[b] \neq \emptyset$, so $f^(a)Rf^+(b)$. The converse is similar.
 - (iv): $X = \{a \in [\omega]^2 : \overline{A} \models aR\{0,1\} \land \neg (aR\{1,2\}) \land \neg (a = \{1,2\})\}.$
- (v): For any m>2 we have $\{0,m\}\in X$, so X is infinite. Now suppose that Z is first-order definable with parameters, and $X\cap Z$ is infinite; we want to show that $X\setminus Z$ is finite. Say $Z=\{b\in [\omega]^2: \overline{A}\models \varphi(\overline{c},b)\}$, where \overline{c} is a finite sequence of elements of $[\omega]^2$. We claim that

$$X\backslash Z\subseteq \{\{0,n\}:n\in \bigcup\mathrm{rng}(\overline{c})\}.$$

To prove this, take any $\{0,n\} \in X \setminus Z$. Thus $n \notin \{0,1,2\}$. Suppose that $n \notin \bigcup \operatorname{rng}(\overline{c})$. Since $X \cap Z$ is infinite, there is a p such that $p \notin \{0,1,2,n\} \cup \bigcup \operatorname{rng}(\overline{c})\}$ and $\{0,p\} \in X \cap Z$. Let f be the transposition (n,p), considered as a permutation of ω . Then f induces an automorphism f^+ of A, defined by $f^+(a) = f[a]$, for any $a \in A$, as above. Note that $f^+(u) = u$ for each $u \in \operatorname{rng}(\overline{c})$. Now $A \models \varphi(\overline{c}, \{0,p\})$, so it follows that $A \models \varphi(\overline{c}, \{0,n\})$. Hence $\{0,n\} \in Z$, contradiction.

E7.4 Let V be an infinite vector space over a finite field F. We consider V as a structure $(V, +, f_a)_{a \in F}$, where $f_a(v) = av$ for any $v \in V$ and $a \in F$. Show that V is minimal.

Suppose that X is definable with parameters; say

$$X = \{ a \in A : A \models \varphi(\overline{c}, a) \}.$$

Let Y be the span of $\operatorname{rng}(\overline{c})$. Thus Y is finite. We claim that $X \subseteq Y$ or $A \setminus X \subseteq Y$. Suppose that $X \not\subseteq Y$; choose $x \in X \setminus Y$. Take any $y \in A \setminus Y$. Let B be a basis for Y. Both x and y are not in Y, and thus there exist bases B', B'' of A such that $B \subseteq B', B'', x \in B'$, and $y \in B''$. Hence there is a one-one function f from B' onto B'' such that f is the identity on B and f(x) = y. Now f extends to an automorphism of A and it follows that $y \in X$. So we have shown that $A \setminus Y \subseteq X$. Hence $A \setminus X \subseteq Y$, as desired.

E7.5 (continuing exc. 7.4) Prove that for any subset A of V, acl(A) = span(A).

First suppose that $b \in \text{span}(A)$. Then there exist $a_0, \ldots, a_{n-1} \in A$ and $\varepsilon \in {}^nF$ such that $b = \varepsilon_0 a_0 + \cdots + \varepsilon_{n-1} a_{n-1}$. The formula $x = \varepsilon_0 a_0 + \cdots + \varepsilon_{n-1} a_{n-1}$ shows that $b \in \text{acl}(A)$.

Now suppose that $b \in \operatorname{acl}(A)\backslash \operatorname{span}(A)$; we want to get a contradiction. Say $\overline{V} \models \varphi(b, \overline{a})$ and $\varphi(\overline{V}, \overline{a})$ is finite, where $\overline{a} \in A$. Thus $b \notin \operatorname{span}(\overline{a})$. Choose c not in $\operatorname{span}(a)$ and also $c \notin \varphi(\overline{V}, \overline{a})$. Then there is an automorphism f of \overline{V} such that $f \circ \overline{a}$ is the identity and f(b) = c. Then $\overline{V} \models \varphi(c, \overline{a})$, contradiction.

E7.6] (continuing excs. 7.4, 7.5) By exercise 7.4 and Lemma 7.2, the following holds in \overline{V} : if $a \in \text{span}(A \cup \{b\}) \setminus \text{span}(A)$, then $b \in \text{span}(A \cup \{a\})$. Prove this statement using ordinary linear algebra.

Assume the hypothesis. Then we can write $a = \varepsilon_0 c_0 + \cdots + \varepsilon_{n-1} c_{n-1} + \delta b$ with each $c_i \in A$. Since $a \notin \text{span}(A)$, we must have $\delta \neq 0$. Then

$$b = a + -\varepsilon_0 c_0 + \dots + -\varepsilon_{n-1} c_{n-1},$$

which shows that $b \in \text{span}(A \cup \{a\})$.

E7.7 Give an example of a set Γ of sentences and two sentences φ and ψ , such that, $\Gamma \models \varphi$ iff $\Gamma \models \psi$ but $\Gamma \not\models (\varphi \leftrightarrow \psi)$.

Let \mathscr{L} have just one non-logical symbol, a unary relation symbol **P**. Let $\Gamma = \emptyset$, $\varphi = \exists x \mathbf{P} x$, $\psi = \exists x \neg \mathbf{P} x$. Then $\not\models \varphi$, using the structure (ω, \emptyset) . Also $\not\models \psi$, using the structure $(\{0\}, \{0\})$. Hence $\Gamma \models \varphi$ iff $\Gamma \models \psi$. Finally $\not\models (\varphi \leftrightarrow \psi)$, using the structure (ω, \emptyset) .

E7.8 Show that for Γ a set of sentences and for sentences φ, ψ , if $\Gamma \models \varphi \leftrightarrow \psi$ then $\Gamma \models \varphi$ iff $\Gamma \models \psi$.

Assume the hypothesis, and suppose that $\Gamma \models \varphi$. Suppose that \overline{M} is a model of Γ . Since $\Gamma \models \varphi \leftrightarrow \psi$ and $\Gamma \models \varphi$, it follows that $\Gamma \models \psi$. Similarly in the other direction.

E7.9 Prove that the following two conditions are equivalent:

$$\overline{(i)} \ \overline{M} \models \varphi[a] \ iff \overline{M} \models \psi[a].$$

(ii)
$$\overline{M} \models (\varphi \leftrightarrow \psi)[a]$$
.

Obvious.

E7.10 Prove that the following two conditions are equivalent, for any sentences φ, ψ :

$$\overline{(i)} \ \overline{M} \models \varphi \ \text{iff} \ \overline{M} \models \psi.$$

(ii)
$$\overline{M} \models (\varphi \leftrightarrow \psi)$$
.

Obvious.

E7.11 In the language with no non-logical symbols, show that ω is an indiscernible set in ω .

Given $\varphi(\overline{x})$ and two sequences \overline{a} and \overline{b} of distinct elements of ω , there is a permutation f of ω such that $f \circ \overline{a} = \overline{b}$. Thus $\omega \models \varphi(\overline{a})$ iff $\omega \models \varphi(\overline{b})$. Now use exercise E7.9.

E7.12 (Continuing exercises 7.4, 7.5, 7.6) Let $A = \{w_1, w_2\}$, two members of V, and let $b = w_1$. Thus $b \in \text{span}(A)$. According to Lemma 7.8, $\text{tp}^{\overline{V}}(b/A)$ is isolated. Give a formula $\varphi(v_0, \overline{a})$ with $\overline{a} \in A$ which isolates $\text{tp}^{\overline{V}}(b/A)$.

Let φ be $v_0 = w_1$. Thus $\varphi \in \operatorname{tp}^{\overline{V}}(b/A)$. Suppose that $\psi \in \operatorname{tp}^{\overline{V}}(b/A)$. Then $\overline{V} \models \psi(w_1)$, and hence $\overline{V} \models \forall v_0 [\varphi \to \psi]$.

E7.13 Suppose that \overline{M} is an infinite structure, $\varphi(v_0)$ is a formula with at most v_0 free, and $\varphi(\overline{M})$ is infinite. Show that \overline{M} has a proper elementary extension \overline{N} such that $(\overline{M}, \overline{N})$ is not a Vaughtian pair.

Let L be the language of \overline{M} , and expand the language L_M by adding another individual constant d. Then every finite subset of

$$\mathrm{Eldiag}(\overline{M}) \cup \{a \neq d : a \in \varphi(\overline{M})\} \cup \{\varphi(d)\}\$$

has a model, so the result follows by the compactness theorem and Theorem 6.15.