ChIP-Seq Workflow

Oxford Biomedical Data Science Training Programme

ChIP-seq

- **Ch**romatin **i**mmuno**p**recipitation combined with high throughput **seq**uencing
- Method used to study DNA-protein interactions
 - Crosslink proteins and DNA
 - Lyse cells and shear DNA
 - Enrich for protein / epitope of interest using antibody
 - Reverse crosslinks and purify DNA
 - Add adaptors and sequence DNA
- Used for:
 - Transcription factors
 - Chromatin marks

ChIP-seq Analyses

- Identify transcription factor binding sites
 - Genomic context promotors, enhancers
 - Target genes
 - New sequence motifs
 - Differential binding (e.g. during development, different conditions)
- Chromatin state
 - Combination of chromatin marks to infer functional state
 - Active, poised, repressed

Sources of Bias

- Starting material
 - Do you have enough material? ChIP-seq is a population average need many cells for robust results
 - Is this consistent between replicates/conditions you are testing?
- Fragmentation of the library
 - Requires optimization tissue / target specific
 - Sonication
 - · open chromatin shears more easily
 - Enzymatic
 - Mnase, Tagmentation sequence bias
- Immunoprecipitation
 - Antibody is it specific? Is it efficient?
 - Use a cocktail of antibodies
 - Target different epitopes of the same protein
 - Avoid epitope masking
- Batch effects
 - starting material, fragmentation, antibody...

ChIP-seq Controls

- Mock
 - No chromatin just the antibody of interest
- No Antibody
 - Chromatin but IP with IgG
- Input control
 - Chromatin not immuno-precipitated
- Spike in
 - External control e.g. Drosophila DNA

Very little material Worth sequencing?

Fragmentation bias
A lot of material – deeper sequencing
One input per sample

Normalise for large changes across conditions

Sequencing Considerations

- Single-end or paired-end
 - Paired end better for removal of duplicates
- Read length
 - Long enough for unique mapping
- Sequencing depth
 - Greater for input (2x IP)
 - Greater for broad peaks e.g. H3K27me3
 - Encode guidelines
 - Narrow 20m mapped reads
 - Broad 45m mapped reads

ChIP-seq Analysis Workflow

Mapping QC

- Read mapping statistics
 - > 90% mapping
 - Mapping context intergenic / promoter regions
- Read filtering
 - Mitochondrial reads
 - Duplicates
 - Multi-mapping reads
 - Reads that are not properly paired (map too far apart)

Check numbers lost at each filter

Peak Calling

- Identify regions of the genome with more reads than control or local background regions
- Pool samples for peak calling
 - Better coverage
 - Increase peak calling ability
 - Look at overall properties of dataset
 - Especially useful for inputs
- Caveats
 - Samples should be of similar depth
 - If not one sample might influence peak calling more than the others
 - Down-sampling may be required

Peak Calling Tools

- MACS2
 - most widely used
 - Broad & Narrow marks
- SICER good for broad peaks
- LanceOtron machine-learning approach
- Homer, SPP, PeakRanger...

Peak Calling QC

- Reproducibility
 - Overlap replicates (Bedtools) & keep peaks 2+ samples
- Irreproducible Discovery Rate
 - Peter Bickle/ Anshul Kundaje (Encode Project)
 - Rank peaks on p-value
 - Identify reproducible peaks based on correlation of ranks
- Filter out black-listed regions

Peak Annotation

- Genomic context
 - Promoter, enhancer, CpG island, repeat, exon, intron
 - Enrichment in different feature classes
 - Homer
 - GREAT http://great.stanford.edu/public/html/
- Target genes
 - Nearest neighbour (GREAT, Homer)

Differential Binding

- featureCounts
 - Count reads under peaks in each condition
 - Can also test all regions using a window approach
- DESeq2 / edgeR
 - Treat like RNAseq data
 - Must have >=3 replicates
- R-package Diffbind provides a wrapper for both counting and statistical analysis
 - Black box
 - Limited flexibility

Motif Analysis

- Look for enrichment in short sequences within peaks
- Compare with known transcription factor motifs
- Location of motif within peaks
- Proportion of peaks containing motif
- Co-occurring motifs

The MEME Suite

Motif-based sequence analysis tools

http://meme-suite.org/

HOMER Motif Analysis

http://homer.ucsd.edu/homer/motif/

Viewing Peaks

- Bam
 - Checkout the raw reads
 - Very memory intensive
- Bedcoverage
 - Breaks genome into regions and gives coverage score
 - Can make using Bedtools
 - Plain text
 - Less memory intensive then bam
- Bigwig
 - Like bedcoverage but compressed & indexed for random access
 - Faster, less memory intensive

Exercise

- Download data from:
- https://www.cell.com/cell-reports/pdf/S2211-1247(17)31705-9.pdf
- https://www.ebi.ac.uk/ena/data/view/PRJNA262583
- Experimental design:
 - 2 x Dexamethasone treated
 - 2 x untreated
 - All ChIP samples have an input control
 - Samples: SRX716927 SRX716934
- Build a pipeline to:
 - Call peaks (MACS2)
 - Filter blacklisted peaks (Bedtools)
 - Count reads under peaks (Bedtools)
 - Compare replicate overlap (Bedtools)
 - Annotate peaks (Homer)
 - Motif analysis (Homer)
 - View outputs (IGV)