

8. Motion control – Independant joint control Kim Mathiassen

Lecture overview

- The control problem
- Joint space control
- Decentralized control
- Computed torque feedforward control

8.1 The control problem

- Trajectory tracing / point-to-point control
- Mechanical design influence control scheme
- Driving system
- Two general control schemes
 - Joint space control
 - Operational space control

Joint space control

- Two subproblems
 - Inverse kinematics
 - Joint space control scheme

Operational space control

- Global approach
 - Greater algorithmic complexity
 - Inverse kinematics embedded into the feedback loop

8.2 Joint space control

- Derive dynamic model of manipulator and drives
 - Velocity (voltage) controlled system
 - Torque (current) controlled system

Derive dynamic model of manipulator and drives

$$K_r^{-1} \tau = K_t i_a$$

$$v_a = R_a i_a + K_v \dot{q}_m$$

$$v_a = G_v v_c.$$
(8.4)
$$(8.5)$$

Derive dynamic model of manipulator and drives

Derive dynamic model of manipulator and drives

$$B(q)\ddot{q} + C(q, \dot{q})\dot{q} + F\dot{q} + g(q) = u$$
(8.7)

$$\mathbf{F} = \mathbf{F}_v + \mathbf{K}_r \mathbf{K}_t \mathbf{R}_a^{-1} \mathbf{K}_v \mathbf{K}_r \tag{8.8}$$

$$\boldsymbol{u} = \boldsymbol{K}_r \boldsymbol{K}_t \boldsymbol{R}_a^{-1} \boldsymbol{G}_v \boldsymbol{v}_c. \tag{8.9}$$

$$\boldsymbol{\tau} = \boldsymbol{K}_r \boldsymbol{K}_t \boldsymbol{R}_a^{-1} (\boldsymbol{G}_v \boldsymbol{v}_c - \boldsymbol{K}_v \boldsymbol{K}_r \dot{\boldsymbol{q}}). \tag{8.11}$$

Velocity controlled system

- Deriving proportional relationship
- If the following assumptions hold
 - The elements of K_r are much greater than unity (transmission)
 - The elements of R_a are very small
 - The values of the torque τ are not too large
- Then it can be assumed that

$$\boldsymbol{\tau} = \boldsymbol{K}_r \boldsymbol{K}_t \boldsymbol{R}_a^{-1} (\boldsymbol{G}_v \boldsymbol{v}_c - \boldsymbol{K}_v \boldsymbol{K}_r \dot{\boldsymbol{q}}). \tag{8.11}$$

$$G_v v_c \approx K_v K_r \dot{q}.$$
 (8.12)

Velocity controlled system

Velocity controlled system

- Observations

- The joint velocities are proportional to the control voltages
- It is independent of manipulator parameters
 - Inherent robustness with respect to manipulator model
- All matrices in 8.12 are diagonal, this implies that the joint velocity og the i-th joint only depends on the i-th control velocity
 - Suitable for decentralized control

$$G_v v_c \approx K_v K_r \dot{q}.$$
 (8.12)

Velocity controlled system

- Drawbacks

- If the desired manpulator motion requires large joint velocities and/or accelarations
 - Assumptions no longer holds
- Another scheme is to use inverse dynamics techniques
 - This requires accurate knowledge of the manipulator dynamic model
 - Neccessary to know the evolution of the motion of all the joints
 - Centralized control structure

Torque controlled system

$$\boldsymbol{\tau} = \boldsymbol{K}_r \boldsymbol{K}_t \boldsymbol{R}_a^{-1} \boldsymbol{G}_v \boldsymbol{v}_c - \boldsymbol{K}_r \boldsymbol{K}_t \boldsymbol{R}_a^{-1} \boldsymbol{K}_v \boldsymbol{K}_r \dot{\boldsymbol{q}}. \tag{8.15}$$

- If the above equation is used the control voltages depend on torque values and joint velocities
- The relationship depends on the parameters K_t , K_v and R_a^{-1} , which are influenced by the operating conditions of the motors

Torque controlled system

Instead considering a current control driving system

$$i_a = G_i v_c, \tag{8.16}$$

This replaces (8.5) in the previous calculations

$$\boldsymbol{v}_a = \boldsymbol{R}_a \boldsymbol{i}_a + \boldsymbol{K}_v \dot{\boldsymbol{q}}_m \tag{8.5}$$

This yields

$$\tau = u = K_r K_t G_i v_c \tag{8.17}$$

- The system is now torque controlled
- Redused dependency of motor parameters

Torque controlled system

Summary

- Velocity controlled generator
 - Decentralized control systems
 - Feedback control systems
 - Velocity controlled generator
- Torque controlled generator
 - Centralized control
 - Feedforward of inverse dynamics
 - Still requires feedback of the trajectory

8.3 Decentralized control

- Controlling each joint independently
- Easier control schemes
- Single input/single output system

Deriving a linear decoupled model

Based on the dynamic model

$$B(q)\ddot{q} + C(q,\dot{q})\dot{q} + F_v\dot{q} + g(q) = \tau$$
 (8.1) Inserting

$$\boldsymbol{K}_r \boldsymbol{q} = \boldsymbol{q}_m, \tag{8.2}$$

Yields

$$K_r^{-1}B(q)K_r^{-1}\ddot{q}_m + K_r^{-1}C(q,\dot{q})K_r^{-1}\dot{q}_m + K_r^{-1}F_vK_r^{-1} + K_r^{-1}g(q) = \tau_m.$$
(8.18)

Error in above equation: q_dot missing for viscous friction

Deriving a linear decoupled model

 Diagonal elements of B consists of constant and configuration dependent terms

$$\boldsymbol{B}(\boldsymbol{q}) = \bar{\boldsymbol{B}} + \Delta \boldsymbol{B}(\boldsymbol{q}) \tag{8.19}$$

- \bar{B} Diagonal matrix with constant elements representing average inertia at each joint
- $\Delta B(q)$ Configuration dependant terms

Deriving a linear decoupled model

Using this yields a simplified model

$$\boldsymbol{K}_r^{-1}\bar{\boldsymbol{B}}\boldsymbol{K}_r^{-1}\ddot{\boldsymbol{q}}_m + \boldsymbol{F}_m\dot{\boldsymbol{q}}_m + \boldsymbol{d} = \boldsymbol{\tau}_m \tag{8.20}$$

Viscous friction

$$\boldsymbol{F}_m = \boldsymbol{K}_r^{-1} \boldsymbol{F}_v \boldsymbol{K}_r^{-1} \tag{8.21}$$

Configuration dependent contribution

$$d = K_r^{-1} \Delta B(q) K_r^{-1} \ddot{q}_m + K_r^{-1} C(q, \dot{q}) K_r^{-1} \dot{q}_m + K_r^{-1} g(q)$$
(8.22)

UiO • Department of Technology Systems

University of Oslo NONLINEAR COUPLED

DECOUPLED

8.3.1 Independant Joint Control

- An effective rejection of the disturbance d is ensured by
 - A large amplifier gain before the point of intervention of the disturbance
 - Integral action in the controller to cancel gravitational components
- This suggest a proportional-integral (PI) controller

General independent joint control

PI-controller

$$C(s) = K_c \frac{1 + sT_c}{s};$$
 (8.23)

- Offers zero error at steady state for a constant disturbance
- Stabilizing with a real root at $s = -1/T_c$

Analysing position feedback controller

$$C_P(s) = K_P \frac{1 + sT_P}{s}$$
 $C_V(s) = 1$ $C_A(s) = 1$ $k_{TV} = k_{TA} = 0.$

Position feedback transfer functions

$$\frac{\Theta_m(s)}{\Theta_r(s)} = \frac{\frac{1}{k_{TP}}}{1 + \frac{s^2(1 + sT_m)}{k_m K_P k_{TP}(1 + sT_P)}},$$

$$W(s) = \frac{\frac{1}{k_{TP}}(1 + sT_P)}{\left(1 + \frac{2\zeta s}{\omega_n} + \frac{s^2}{\omega_n^2}\right)(1 + s\tau)},$$

$$k_m = \frac{1}{k_m} \qquad T_m = \frac{R_a I_m}{k_m k_t} \tag{5.12}$$

(8.24)

Root locus plots

Position feedback disturbance

$$\frac{\Theta_m(s)}{D(s)} = -\frac{\frac{sR_a}{k_t K_P k_{TP} (1 + sT_P)}}{1 + \frac{s^2 (1 + sT_m)}{k_m K_P k_{TP} (1 + sT_P)}},$$
(8.25)

Disturbance rejection factor

$$X_R = K_P k_{TP}$$

The rejection is determined by the gain Kp. It is not advisable to increase Kp too much, as this could lead to oscillations.

Analysing position and velocity feedback controller

$$C_P(s) = K_P$$
 $C_V(s) = K_V \frac{1 + sT_V}{s}$ $C_A(s) = 1$ $k_{TA} = 0;$

Forward path

$$P(s) = \frac{k_m K_P K_V (1 + sT_V)}{s^2 (1 + sT_m)},$$

Choose $T_V = T_m$, to cancel pole

Position and velocity feedback transfer functions

$$\frac{\Theta_m(s)}{\Theta_r(s)} = \frac{\frac{1}{k_{TP}}}{1 + \frac{sk_{TV}}{K_Pk_{TP}} + \frac{s^2}{k_m K_P k_{TP} K_V}},$$
(8.28)

$$W(s) = \frac{\frac{1}{k_{TP}}}{1 + \frac{2\zeta s}{\omega_n} + \frac{s^2}{\omega_n^2}}.$$
 (8.29)

Root locus plot

Position and velocity feedback disturbance and control design

$$\frac{\Theta_m(s)}{D(s)} = -\frac{\frac{sR_a}{k_t K_P k_{TP} K_V (1 + sT_m)}}{1 + \frac{sk_{TV}}{K_P k_{TP}} + \frac{s^2}{k_m K_P k_{TP} K_V}},$$
(8.32)

Disturbance rejection factor

$$X_R = K_P k_{TP} K_V \tag{8.33}$$

Designing control parameters

$$K_V k_{TV} = \frac{2\zeta \omega_n}{k_m}$$

$$K_P k_{TP} K_V = \frac{\omega_n^2}{k_m}.$$
(8.30)

Position, velocity and acceleration feedback controller

$$C_P(s) = K_P$$
 $C_V(s) = K_V$ $C_A(s) = K_A \frac{1 + sT_A}{s}$.

Position, velocity and acceleration feedback controller transfer functions

$$\frac{\Theta_m(s)}{\Theta_r(s)} = \frac{\frac{1}{k_{TP}}}{1 + \frac{sk_{TV}}{K_Pk_{TP}} + \frac{s^2(1 + k_m K_A k_{TA})}{k_m K_P k_{TP} K_V K_A}},$$
(8.35)

Assuming

$$T_A = T_m,$$
 or

$$k_m K_A k_{TA} T_A \gg T_m \qquad k_m K_A k_{TA} \gg 1.$$

Root locus plot

Position, velocity and acceleration disturbance and control design

$$\frac{\Theta_m(s)}{D(s)} = -\frac{\frac{sR_a}{k_t K_P k_{TP} K_V K_A (1 + sT_A)}}{1 + \frac{sk_{TV}}{K_P k_{TP}} + \frac{s^2 (1 + k_m K_A k_{TA})}{k_m K_P k_{TP} K_V K_A}}.$$
(8.36)

Disturbance rejection factor

$$X_R = K_P k_{TP} K_V K_A,$$

Designing control parameters

$$\frac{2K_P k_{TP}}{k_{TV}} = \frac{\omega_n}{\zeta} \tag{8.39}$$

$$k_m K_A k_{TA} = \frac{k_m X_R}{\omega_n^2} - 1 (8.40)$$

$$K_P k_{TP} K_V K_A = X_R. (8.41)$$

Implementation issues

- Position and velocity are easily available
- Acceleration is more expensive to measure
- May use filters to estimate acceleration
- This may degenerate the performance

8.3.2 Decentralized Feedforward Compensation

- Tracking performance of previous shemes are degraded if the trajectory has high values of speed and acceleration
- To handle this problem we introduce a decentralized feedforward compensation

Position feedback with decentralized feedforward

Position and velocity feedback with decentralized feedforward

Position, velocity and acceleration feedback with decentralized feedforward

Remarks

- Computing time derivative of the trajectory is generally not a problem
- As the number of nested feedback loops increases, less knowledge og the model is required
- Saturation blocks are placed to limit physical quantities during trancients

Using only position feedback for decentralized feedforward compensation

- The three control schemes may be reduced to only use position feedback and regulators with standard actions
- The two solution are equivalent in terms of disturbance rejection and trajectory tracking
- Tuning the controllers become less streight forwards
- The posibility of setting saturation blocks is lost

Position feedback (PI)

Position and velocity feedback (PID)

Position, velocity and acceleration feedback (PIDD^2)

8.4 Computed Torque Feedforward Control

Define the tracking error

$$e(t) = \vartheta_{md}(t) - \vartheta_{m}(t)$$

Then looking at the error dynamics

$$a_2'\ddot{e} + a_1'\dot{e} + a_0'e + a_{-1}'\int_{-1}^{t} e(\varsigma)d\varsigma = \frac{R_a}{k_t}d.$$

- The trajectory is asymtotically tracked only if the disturbance term is zero
- Error dynamics is how the error evloves over time, ekspressed as a differential equation

Introducing a centralized feedforward action

- The disturbance was introduced as a simplification of the robot's dynamics
- Using an inverse model strategy a feedforward action may be introduced

$$d_d = K_r^{-1} \Delta B(q_d) K_r^{-1} \ddot{q}_{md} + K_r^{-1} C(q_d, \dot{q}_d) K_r^{-1} \dot{q}_{md} + K_r^{-1} g(q_d), \quad (8.45)$$

 D_d represents the required torque to compensate for the disturbance (hence the name computed torque)

UiO Department of Technology Systems

University of Oslo

Remarks

- The centralized feedforward action compensate for nonlinear coupling terms due to inertia, Coriolis, centrifugal and gravitational forces.
- Possible to use a partial feedforward action with most relevant contributions
 - Gravitational forces
 - Inertia
- For repetetive trajectories the feedforward action may be computed offline

Overview of controllers

Tracking type	Controller	Feedback	Feedforward	Chapter
Regulation	PI (position)	Position	-	8.3.1
Regulation	PI (velocity)	Position, Velocity		8.3.1
Regulation	PI (acceleration)	Position, Velocity, Acceleration		8.3.1
Trajectory tracking	PI (position)	Position	Velocity, Acceleration	8.3.2
Trajectory tracking	PI (velocity)	Position, Velocity	Velocity, Acceleration	8.3.2
Trajectory tracking	PI (acceleration)	Position, Velocity, Acceleration	Velocity, Acceleration	8.3.2
Trajectory tracking	PI (position)	Position	Velocity, Acceleration	8.3.2
Trajectory tracking	PID (position)	Position	Velocity, Acceleration	8.3.2
Trajectory tracking	PIDD^2 (position)	Position	Velocity, Acceleration	8.3.2
Trajectory tracking	PIDD^2 (acceleration)	Position	Velocity, Acceleration, Inverse model	8.4

Summary

- Three decentralized control schemes for point-to-point control
- Three decentralized control schemes for trajectory tracking using decentralized feedforward compensation
- Three decentralized control schemes for trajectory tracking using only position feedback and regulators with standard action
- One decentralized control schemes for trajectory tracking also using a centralized feedforward action

Exercises

- 8.1-8.3
- 8.4-8.6 (not completely covered by the lecture)