Register					
Number					

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110 (An Autonomous Institution, Affiliated to Anna University, Chennai) Computer Science and Engineering **Continuous Assessment Test -2 Question Paper** Degree & Branch B.E VII Semester **Subject Code & Name** UCS1727- GPU Computing Regulation: 2018 2023-2024 **Academic Year** Batch 2020-2024 **Date** 18.10.2023 FN ODD Time: 08:10 - 09:40 AM **Answer All Questions** Maximum: 50 Marks (90 Minutes)

(K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating)

CO1:	Understand GPU architecture (K2)
CO2:	Write programs using CUDA, identify issues and debug them (K3)
CO3:	Implement efficient algorithms in GPUs for common application kernels such as matrix multiplication (K3)
CO4:	Write simple programs using OpenCL (K3)
CO5:	Write an efficient parallel program for a given problem(K3).

$Part - A (6 \times 2 = 12 Marks)$

1	K1	What are eager evaluation and lazy evaluation?	CO2	2.1.2 2.2.2 13.1.1
2	K1	What is speculative execution?	CO2	1.4.1 2.1.2 2.2.2
3	K3	Identify the CUDA API call used to retrieve GPU device properties?.	CO2	2.1.2 13.3.2
4	K1	What is loop invariant analysis?.	CO2	2.1.2 2.2.2
5	K1	What does the term "cache coherence" refer to, and what are the available approaches to address cache coherence?	СОЗ	2.2.2 13.1.1 13.1.2
6	К3	A CUDA kernel performs the following operation $C[z] = A[y] * B[x]$ Identify whether the kernel is memory bound or arithmetic bound? Justify your answer.	CO3	1.4.1 2.1.2 13.3.1

$Part - B (3 \times 6 = 18 Marks)$

7	К3	Explain the role and application of CUDA ballots in GPU programming. Develop a code snippet in which CUDA ballots prove advantageous for coordinating threads. .	CO2	1.4.1 2.2.2 13.1.2 13.3.1
8	K3	Apply the concept of loop fusion for the following code snippet and demonstrate how it improves performance. unsigned int i,j; a = 0; for (i=0; i<100; i++) { a += b * c * i; } d = 0; for (j=0; j<200; j++) { d+= e * f }	CO2	1.4.1 2.2.2 13.1.1
9	K3	Apply the concept of loop unrolling for the following loop structure demonstrate how loop unrolling will improve performance in parallel programming. for (i=1; i<=1000; i++) $X[i] = X[i] + S;$ X is an array whose starting address is stored in the register R1 R2 contains the terminal address of an array x S is a constant stored in the register F2	CO2	1.3.1 1.4.1 2.2.2 13.3.1

 $Part - C (2 \times 10 = 20 Marks)$

10	K2					
		(OR)				
11	K2	Describe the challenges related to algorithmic aspects in CUDA programming.	CO3	1.3.1 1.4.1 2.2.2 13.3.1 13.3.2		
12	К3	Create a CUDA program that employs the Binary Search technique to locate an element within an array.	CO2	1.4.1 2.1.2 2.2.2 13.3.1 13.3.2		
		(OR)				
13	К3	Develop a CUDA program that populates an array with values ranging from 0 to num_elements. Additionally, set up four streams to run concurrently on four different GPU devices. The objective is to measure the following metrics for each of the four GPU devices: • The duration it takes to transfer data from the CPU to the GPU. • The time required to execute the kernel operation. • The time it takes to copy the results back from the GPU to the CPU • The total execution time of the entire operation	CO2	1.4.1 2.1.2 2.2.2 13.3.1 13.3.2		