RSA algorithm in text and image encryption/decryption

To encrypt a message, P, compute $C = P^e \pmod{n}$. To decrypt C, compute $P = C^d \pmod{n}$.

Let us consider another example:

Let
$$P$$
 is the numerical value of message.
Encoded message, $C = P^e \pmod{n}$
Decoded message, $P = C^d \pmod{n}$

$$p = 3, q = 11$$

$$n = pq = 33, z = (p-1)(q-1) = 20$$

d = 7, since 20 and 7 does not have common factor

Now $7e = 1 \mod 20$ which provides e = 3

$$C = P^3 \pmod{33}$$
 which provides encoded value C

Plaintext (P)		Ciphertext (C)		After decryption		
Symbolic	Numeric	P ³	P ³ (mod 33)	C ⁷	C ⁷ (mod 33)	Symbolic
Cymbolic	<u>ramene</u>		<u>(11104 00)</u>	<u> </u>	<u> </u>	Cymbolic
S	19	6859	28	13492928512	19	S
U	21	9261	21	1801088541	21	U
Z	26	17576	20	1280000000	26	Z
Α	01	1	1	1	01	Α
Ν	14	2744	5	78125	14	Ν
Ν	14	2744	5	78125	14	Ν
E	05	125	26	8031810176	05	E
		~				

Sender's computation

Receiver's computation

```
e = 3; n = 33; d = 7; %RSA parameters
y='JAHANGIRNAGAR'; %input string
z = double(y); %ASCII values
S=z-60; %to reduce size of the integer
for i=1:length(z)
                            The value of S must
Encrypt(i) = mod(S(i)^e, n);
                            be less than n
end
char(Encrypt) % encrypted string
Encrypt=double(Encrypt);
for j=1:length(z)
Decrypt(j) = mod(Encrypt(j)^d, n);
end
Recover = char(Decrypt + 60) %increase the decoded value by 60
```

RSA In Image Encryption and Decryption

```
clear all
close all
e = 3; n = 33; d = 7; N=256;
I=imread('peppers.png');
I=rgb2gray(I);
I=imresize(I,[N, N]);
subplot(2,2,1)
imshow(I)
title('Original Image')
```

```
I=double(I);
R=mod(I,16);
%Remainder of the image
for i=1:N
for j=1:N
Q(i,j)=uint8((I(i,j)/16)-0.5);
% Quiescent of the image
end
end
```

```
Q = double(Q);
for i = 1:N
for j = 1:N
Qe(i, j) = mod(Q(i, j)^e, n);
Re(i, j) = mod(R(i, j) \wedge e, n);
%Decryption of image
Qd(i, j) = mod((Qe(i, j))^{\wedge}d, n);
Rd(i, j) = mod((Re(i, j))^{\wedge}d, n);
end
end
```

```
Rec = Qd*16+Rd;
subplot(2,2,2)
imshow(uint8(Qe))
title('Encrypted Quiescent Image')
subplot(2,2,3)
imshow(uint8(Re))
title('Encrypted Remainder Image')
subplot(2,2,4)
imshow(uint8(Rec))
title('Decrypted Image')
```

Original Image

Encrypted Quiescent Image

Encrypted Remainder Image

Decrypted Image

I=imread('peppers.png');

I1=I(:,:,1); %red plate

I2=I(:,:,2); % green plate

I3=I(:,:,3); %blue plate

subplot(2,2,1)

imshow(I1)

title('Red plate')

subplot(2,2,2)

imshow(I2)

title('Green plate')

subplot(2,2,3)

imshow(I3)

title('Blue plate')

Y = cat(3,I1,I2,I3);

subplot(2,2,4)

imshow(Y)

title('RGB image')

Try for RGB image

Red plate

Green plate

Blue plate

RGB image

