Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/KR04/002400

International filing date: 20 September 2004 (20.09.2004)

Document type: Certified copy of priority document

Document details: Country/Office: KR

Number: 10-2004-0022717

Filing date: 01 April 2004 (01.04.2004)

Date of receipt at the International Bureau: 08 October 2004 (08.10.2004)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 : 특허출원 2004년 제 0022717 호

Application Number 10-2004-0022717

출 원 년 월 일 : 2004년 04월 01일 Date of Application APR 01, 2004

출 원 인 : 주식회사 씨티전자

Applicant(s) C T Electronics Co., Ltd.

2004 년 10 월 7 일

특 허 청 [전] COMMISSIONER [88] 【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2004.04.01

【발명의 명칭】 정보통신기기용 소형 카메라장치

【발명의 영문명칭】 SMALL CAMERA DEVICE FOR COMMUNICATION MACHINE

【출원인】

【명칭】 주식회사 씨티전자

【출원인코드】 1-2001-046670-0

【대리인】

【성명】 남상선

【대리인코드】 9-1998-000176-1

【포괄위임등록번호】 2003-045059-8

【발명자】

【성명의 국문표기】 조상화

【성명의 영문표기】 CHO,SANG HWA

【주민등록번호】 690419-1476827

【우편번호】 421-809

【주소】 경기도 부천시 오정구 삼정동 364 부천테크노파크 101동

801호

【국적】 KR

【발명자】

【성명의 국문표기】 윤화섭

【성명의 영문표기】 YOON,HWA SUP

【주민등록번호】 690419-1476827

【우편번호】 421-809

【주소】 경기도 부천시 오정구 삼정동 364 부천테크노파크 101동

801호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규

정에 의한 출원심사 를 청구합니다. 대리인

남상선 (인)

【수수료】

【기본출원료】 0 면 38,000 원

【가산출원료】 15 면 0 원

【우선권주장료】 0 건 0 원

【심사청구료】 6 항 301,000 원

【합계】 339,000 원

【감면사유】 소기업 (70%감면)

【감면후 수수료】 101,700 원

【첨부서류】 1. 소기업임을 증명하는 서류_1통

【요약서】

【요약】

정보통신기기용 소형 카메라장치가 개시된다. 개시된 카메라장치는, 베이스와, 베이스에 고정되는 이미지센서와, 피사체의 영상을 특정의 배율로 변환시키는 다수의 렌즈들로 이루어지고 이미지센서와 광축이 정열된 상태로 광축 방향으로 유동되도록설치된 렌즈모듈과, 베이스 또는 렌즈모듈 중 일측에 권선되어 고정된 코일과, 베이스 또는 렌즈모듈 중 나머지 일측에 고정되는 마그네트와, 마그네트의 자속을 코일로 유도하여 코일에 전원이 인가될 때 렌즈모듈을 광축방향으로 구동시키는 전자력을 발생시키기 위한 요크와, 코일에 전원을 인가하기 위한 제어부로 이루어진다. 이러한소형 카메라장치는, 마그네트와 코일을 동력원으로 하여 렌즈모듈의 포커싱을 조정함으로써, 카메라장치의 크기를 소형화시킬 수 있다.

【대표도】

도 2

【색인어】

정보통신기기, 카메라, 포커싱

【명세서】

【발명의 명칭】

정보통신기기용 소형 카메라장치{SMALL CAMERA DEVICE FOR COMMUNICATION MACHINE}

【도면의 간단한 설명】

도 1은 종래 정보통신기기용 카메라장치의 사시도,

도 2는 본 발명의 일실시예인 카메라장치의 분해 사시도,

도 3은 도 2의 결합상태 단면도,

도 4는 도 2의 결합상태 사시도,

도 5는 도 3의 사용상태 단면도이다.

〈도면의 주요부분에 대한 부호의 설명〉

100: 베이스 102: 제 1결합공

110: 이미지센서 120: 렌즈모듈

122: 렌즈 124: 하우징

126: 가이드공 140: 제 1마그네트

145: 요크 150: 코일

160: 가이드축 170: 압축스프링

180: 커버 182: 개방공

184: 제 2결합공

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 정보통신기기용 소형 카메라장치에 관한 것으로, 특히 카메라의 가동 렌즈군을 구동시키는 구동부를 마그네트와 코일간에 발생하는 전자력을 이용하는 방 식을 적용하여 구성함으로써, 카메라장치의 크기를 소형화시키면서도 신속하고 정밀 한 오토포커싱이 이루어지도록 하기 위한 것이다.
- 최근에는 휴대폰, PDA, 휴대용 PC 등 정보통신기기에 카메라장치를 설치하여 화 상통신을 가능하게 하고 있다.
- 그런데 이러한 정보통신기기들은 소형이므로 이에 설치되는 카메라장치 또한 소형화되어야 한다. 이러한 소형화에 따른 설계 제약 때문에 종래에 알려진 정보통신기 기용 소형 카메라장치들은 구성이 간단한 고정렌즈 방식을 채택하게 되었다.
- <18> 이러한 카메라장치로서, 종래의 한 예를 도 1에 도시한다.
- 이 카메라장치는, 렌즈조립체 (10)와 이미지센서 (30)로 이루어지고, 렌즈조립체 (10)는 이미지센서 (30)의 상방에 특정한 간격을 두고 고정 설치된다. 즉, 이 카메라 장치는 고정배율 및 공정초점 촬영만이 가능한 것이다.
- <20> 이미지센서(30)는 렌즈조립체(10)를 통과한 피사체의 영상을 전기신호로 변환하여 플렉시블 피씨비(40)를 통하여 카메라장치가 설치되는 정보통신기기의 제어부에 전달하고 있다.

- -21> 그런데 이러한 카메라장치로 다른 거리에 있는 피사체를 각각 촬영할 경우 초점이 맞지 않아서 촬영된 영상이 흐릿하게 보이게 된다. 이것을 해소하기 위해서는 렌즈조립체(10)의 포커싱을 조절하여 화상을 선명하게 해야 한다.
- <22> 그러나, 종래의 카메라장치는 소형화시키기 위한 설계 제약 때문에 렌즈조립체 (10)와 이미지센서(30) 간의 간격을 고정한 방식으로 되어 있어서, 포커싱 조정이 불가능하므로 촬영된 영상의 선명도가 떨어지는 문제점이 있었다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로, 본 발명의 목적은 카메라의 가동렌즈군을 구동시키는 구동부를 마그녜트와 코일간에 발생하는 전자력을 이용하는 방식을 적용하여 구성함으로써, 카메라장치의 크기를 소형화시키면서도 신속하고 정밀한 오토포커싱이 이루어지도록 하기 위한 것이다.

【발명의 구성 및 작용】

《24》 상기와 같은 목적을 달성하기 위한 본 발명은, 베이스: 상기 베이스에 고정되는 이미지센서: 피사체의 영상을 특정의 배율로 변환시키는 다수의 렌즈들로 이루어지고, 상기 이미지센서와 광축이 정열된 상태로 상기 광축 방향으로 유동되도록 설치된 렌즈모듈: 상기 베이스 또는 상기 렌즈모듈 중 일측에 권선되어 고정된 코일: 상기 베이스 또는 상기 렌즈모듈 중 나머지 일측에 고정되는 마그네트: 상기 마그네트의 자속을 상기 코일로 유도하여, 상기 코일에 전원이 인가될 때 상기 렌즈모듈을 광축 방향으로 구동시키는 전자력을 발생시키기 위한 요크: 및 상기 코일에 전원을 인가하기 위한 제어부를 포함하여 이루어진다.

- <25> 상기 제어부는, 상기 코일에 약한 전류를 인가하여 상기 렌즈모듈을 미세한 폭으로 이동시킴으로써, 상기 렌즈모듈을 구성하는 각 렌즈들을 통과하여 상기 이미지 센서에 촬상되는 영상의 초점을 선명하게 한다.
- <26> 상기 정보통신기기용 소형 카메라장치는, 상기 가동렌즈군이 광축방향으로 이동하도록 가이드하기 위한 가이드수단을 더 포함하여 이루어진다.
- <27> 상기 가이드수단은, 상기 베이스에 광축방향으로 고정되며 상기 렌즈모듈에 형성된 가이드공에 광축 방향으로 슬라이드 가능하게 결합되는 가이드축으로 이루어진다.
- <28> 상기 정보통신기기용 소형 카메라장치에는, 상기 렌즈모듈을 초기 위치로 복원 시키는 복원수단이 설치된다.
- <29> 상기 복원수단은, 상기 렌즈모듈의 주위를 덮는 커버에 지지되어 상기 렌즈모듈에 탄성력을 가하는 압축스프링으로 이루어진다.
- <30> 이하에서는 본 발명에 따른 정보통신기기용 카메라장치의 바람직한 실시예를 첨 부도면을 참조하여 상세히 설명한다.
- <31> 도 2는 본 발명의 일실시예인 카메라장치의 분해 사시도이고, 도 3은 도 2의 결합상태 단면도이며, 도 4는 도 2의 결합상태 사시도이다.
- <32> 본 실시예의 카메라장치는, 베이스(100); 베이스(100)에 고정되는 이미지센서 (110); 피사체의 영상을 특정의 배율로 변환시키는 다수의 렌즈(122)들로 이루어지고 , 이미지센서(110)와 광축이 정열된 상태로 광축 방향으로 유동되도록 설치된 렌즈모 듈(120); 베이스(100) 또는 렌즈모듈(120) 중 일측에 권선되어 고정된 코일(150); 베

이스(100) 또는 렌즈모듈(120) 중 나머지 일측에 고정되는 마그네트(140); 마그네트 (140)의 자속을 코일(150)로 유도하여, 코일(150)에 전원이 인가될 때 렌즈모듈(120)을 광축방향으로 구동시키는 전자력을 발생시키기 위한 요크(145); 및 코일(150)에 전원을 인가하기 위한 제어부로 이루어진다.

- <33> 렌즈모듈(120)은 피사체의 영상을 특정 배율로 변환시키기 위한 다수의 렌즈 (122)와, 이 렌즈(122)들을 고정하기 위한 하우징(124)으로 이루어진다.
- <34> 코일(150)은 원통형으로 권선되어 하우징(124)의 외주면에 부착되고, 요크(145) 는 원형통으로 제작되어 코일(150)의 내부에 위치한다.
- 그리고 마그네트(140)도 원형으로 이루어지고, 상방이 N극성을 갖도록 착자된다 . 따라서 마그네트(140)로부터 나온 자속은 요크(145)를 지나 코일(150)을 관통한 다음 하방의 S극으로 복귀한다. 이 과정에서 전류의 방향에 따라 코일(150)을 상승시키 거나 하강시키는 전자력이 발생한다.
- <36> 제어부는, 코일(150)에 약한 전류를 인가하여 렌즈모듈(120)을 미세한 폭으로 이동시킴으로써, 렌즈모듈(120)을 구성하는 각 렌즈(122)들을 통과하여 이미지센서 (110)에 촬상되는 영상의 초점을 선명하게 한다.
- 의가 그리고 베이스(100)에 결합되어서 렌즈모듈(120)과 코일(150) 및 마그네트(140)를 덮어서 보호하기 위한 커버(180)가 구비된다. 커버(180)의 상단에는 렌즈모듈
 (120)의 각 렌즈(122)에 빛을 통과시키기 위한 개방공(182)이 형성된다.
- <38> 한편, 가동렌즈(122)군이 광축방향으로 이동하도록 가이드하기 위한 가이드수단을 갖는다. 이러한 가이드수단은, 베이스(100)에 광축방향으로 고정되며 렌즈모듈

(120)의 하우징(122)에 형성된 가이드공(126)에 광축 방향으로 슬라이드 가능하게 결합되는 가이드축(160)으로 이루어진다. 가이드축(160)의 하단부는 베이스(100)의 제 1결합공(102)에 결합되고, 상단부는 커버(180)의 제 2결합공(184)에 결합된다.

- <39> 렌즈모듈(120)을 초기 위치로 복원시키는 복원수단이 설치된다. 이러한 복원수단은, 렌즈모듈(120)의 주위를 덮는 커버(180)에 지지되어 렌즈모듈(120)에 탄성력을 가하는 압축스프링(170)으로 이루어진다.
- 한편, 이미지센서(110)와 코일(150)을 제어하는 제어부는 정보통신기기의 본체 내에 내장하고, 와이어나 플렉시블 피씨비를 통하여 이미지센서(110)와 코일(150)에 접속한다. 그리고 정보통신기기의 키패드에는 이미지센서(110)를 구동시키는 촬영 버 튼을 구비한다.
- <41> 이와 같이 본 실시예의 카메라장치는, 이미지센서(110)를 동작시키기 위한 촬영 버튼이 눌러지면, 제어부는 먼저 코일(150)에 전원을 인가하여 렌즈모듈(120)을 구 동시킴으로써, 렌즈모듈(120)을 통과하여 이미지센서(110)에 촬상되는 피사체의 영상 을 선명하게 하는 포커싱 작업을 수행한다.
- 본 실시예의 카메라장치는, 복잡한 기어장치를 사용하여 포커싱을 실행하는 대형의 카메라장치와 달리, 마그네트(140)와 코일(150)간에 발생하는 전자력으로 렌즈모듈(120)을 구동시킨다. 따라서 본 실시예의 카메라장치의 크기를 소형화하는 것이가능해져서 휴대폰 등의 소형 정보통신기기에 적용하는 것이 가능해진다.

- <43> 이러한 카메라장치를 휴대폰에 적용할 경우, 카메라장치를 본체나 폴더의 어느 곳이나 설치하는 것이 가능하고, 폴더를 본체로부터 회전시키기 위한 힌지통체내에 설치하는 것도 가능하다.
- <44> 이하에서는 상기와 같은 구성을 갖는 카메라장치의 작용을 설명한다.
- <45> 도 2는 본 실시예인 카메라장치의 동작전의 상태를 나타낸 단면도이고, 도 5는 동작후의 상태를 나타낸 단면도이다.
- <46> 렌즈모듈 (120)은 평상시 도 3과 같이 초기위치에 고정된다. 즉, 압축스프링 (170)이 렌즈모듈 (120)을 이미지센서 (110) 측으로 밀어서 안정된 상태를 유지한다.
- <47> 이때 정보통신기기에 설치된 키패드를 통하여 촬영 버튼을 누르면, 제어부는 먼저 코일(150)에 전원을 인가하여 렌즈모듈(120)을 구동시킴으로써, 렌즈모듈(120)을 통과하여 이미지센서(110)에 촬상되는 피사체의 영상을 선명하게 하는 포커싱 작업을수행한다.
- 조일(150)에 전원이 인가되면, 마그네트(140)로부터 발생되어 요크(145)로 이동한 자속의 영향으로 코일(150)이 부상하는 방향으로 전자력이 발생된다. 이러한 전자력에 의해 렌즈모듈(120)은 압축스프링(170)의 탄성력을 극복하고 부상하여 자유롭게 진동할 수 있는 상태가 된다.
- <49> 이어서 제어부는 코일(150)한 인가하는 전류의 방향을 미세하게 조정하여 렌즈모듈(120)을 미세하게 상승시키거나 하강시켜 렌즈모듈(120)을 통과하는 이미지센서 (110)에 촬상되는 영상의 포커싱에러를 보정한다.

<50> 렌즈모듈(120)의 전방에 위치하는 피사체의 영상은 렌즈모듈(120)을 통과하여이미지센서(110)에서 전기적인 시그녈로 변환되어 플렉시블 피씨비를 통하여 본체내의 제어부로 전송된다.

【발명의 효과】

- 이상에서 설명한 바와 같이 본 발명은, 카메라장치의 구동부를 마그네트와 코일을 이용하여 가동렌즈군을 이동시키는 방식으로 함으로써, 카메라장치의 구성의 간소화와 크기의 소형화를 달성할 수 있다. 따라서 소형의 사이즈를 요하는 휴대폰과 같은 정보통신기기에 화질이 우수한 줌기능을 가진 카메라장치를 공급할 수 있게 된다.
- 이상에서는 본 발명을 하나의 실시예로써 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없 이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형이 가능할 것이다.

【특허청구범위】

【청구항 1】

베이스;

상기 베이스에 고정되는 이미지센서;

피사체의 영상을 특정의 배율로 변환시키는 다수의 렌즈들로 이루어지고, 상기 이미지센서와 광축이 정열된 상태로 상기 광축 방향으로 유동되도록 설치된 렌즈모듈 ;

상기 베이스 또는 상기 렌즈모듈 중 일측에 권선되어 고정된 코일;

상기 베이스 또는 상기 렌즈모듈 중 나머지 일측에 고정되는 마그네트;

상기 마그네트의 자속을 상기 코일로 유도하여, 상기 코일에 전원이 인가될 때 상기 렌즈모듈을 광축방향으로 구동시키는 전자력을 발생시키기 위한 요크; 및

상기 코일에 전원을 인가하기 위한 제어부를 포함하여 이루어지는 정보통신기기용 소형 카메라장치.

【청구항 2】

청구항 1에 있어서, 상기 제어부는,

상기 코일에 약한 전류를 인가하여 상기 렌즈모듈을 미세한 폭으로 이동시킴으로써, 상기 렌즈모듈을 구성하는 각 렌즈들을 통과하여 상기 이미지센서에 촬상되는 영상의 초점을 선명하게 하는 것을 특징으로 하는 정보통신기기용 소형 카메라장치.

【청구항 3】

청구항 1에 있어서, 상기 정보통신기기용 소형 카메라장치는, 상기 가동렌즈군이 광축방향으로 이동하도록 가이드하기 위한 가이드수단을 더 포함하여 이루어지는 것을 특징으로 하는 정보통신기기용 소형 카메라장치.

【청구항 4】

청구항 3에 있어서, 상기 가이드수단은, 상기 베이스에 광축방향으로 고정되며 상기 렌즈모듈에 형성된 가이드공에 광축 방향으로 슬라이드 가능하게 결합되는 가이 드축으로 이루어지는 것을 특징으로 하는 정보통신기기용 소형 카메라장치.

【청구항 5】

청구항 1에 있어서, 상기 정보통신기기용 소형 카메라장치에는, 상기 렌즈모듈을 초기 위치로 복원시키는 복원수단이 설치된 것을 특징으로 하는 정보통신기기용소형 카메라장치.

【청구항 6】

청구항 5에 있어서, 상기 복원수단은, 상기 렌즈모듈의 주위를 덮는 커버에 지지되어 상기 렌즈모듈에 탄성력을 가하는 압축스프링으로 이루어지는 것을 특징으로하는 정보통신기기용 소형 카메라장치.

- 170

[도 3]

[도 4]

[도 5]

