Game Theory

Lecture notes for MATH11090 & MATH09002

Peter Richtárik

University of Edinburgh

November 16, 2010

1 / 24

Learning in Games

So far we have

- studied one-shot games (static games) only
 - no repetition
 - no chance to learn what the other person is doing
 - players just choose their pure (mixed) strategies once, get a payoff (expected payoff) and GAME OVER
- assumed that strategies and payoffs are known to all players in advance

These assumptions (no repetition, known payoffs) may be unrealistic

- Many games are played repeatedly
- Payoffs are not known

We will study repeated game-playing with unknown payoffs using a very intuitive, flexible and powerful algorithm:

- Weighted Majority Algorithm (WM), and its generalized version
- Multiplicative Weights Update Algorithm (MWU)

We will apply the results we get to show that natural game-playing strategies in matrix games converge to the value of the game

Example 1: Premier League Betting (1)

You want to bet on football games in the Premier League.

There are 20 teams, each is playing 38 matches:

$$T = (38 \times 20)/2 = 380$$
 matches

3 / 24

Current League Table

LE	Α	GUE TABLE					(B	ARC	LAY	S PF	REM	IER	LEA	GUE	Ø	
	_	d 18:03 14 th Hovember 2010				Hom	e		ı		AM	ay	y l			
POS		HAME	P	w	D	L	F	Α	w	D	L	F	A	GD	PTS	
1	-	(B) Chelsea	13	6	0	1	17	3	3	1	2	11	5	+20	28	
Z	•	arsenal Arsenal	13	4	0	2	15	6	4	Z	1	11	6	+14	26	
3	•	Man Utd	13	5	1	0	15	5	1	6	0	11	10	+11	25	
4	-	🕌 Manchester City	13	3	3	1	7	5	3	1	Z	8	5	+5	22	
5	-	Bolton	13	Z	3	1	10	8	Z	4	1	11	11	+2	19	
6	*	sunderland	13	3	3	0	7	3	1	4	Z	8	10	+2	19	
7	•	Tottenham	13	3	3	1	11	7	Z	1	3	7	10	+1	19	
8	•	₩ Hewcastle	13	2	Z	3	15	9	3	1	Z	6	7	+5	18	
9	-	Aston Villa	13	3	4	0	10	5	1	1	4	5	13	-3	17	
10		Stoke City	13	4	1	2	11	8	1	0	5	4	10	-3	16	
11		👼 Liverpool	13	3	Z	1	9	6	1	Z	4	4	11	-4	16	
12	-	WBA	13	3	Z	1	8	6	1	Z	4	8	16	-6	16	
13	-	💆 Everton	13	Z	3	2	9	8	1	3	Z	5	5	+1	15	
14		№ Blackburn	13	Z	Z	2	6	6	Z	1	4	9	12	-3	15	
15		Blackpool	13	1	Z	2	9	10	3	1	4	10	16	-7	15	
16	-	Fulham	13	Z	3	1	8	6	0	5	Z	5	7	0	14	
17		wigan Athletic	13	Z	3	3	6	15	1	Z	Z	4	6	-11	14	
18		Birmingham	13	Z	3	1	6	5	0	4	3	8	12	-3	13	
19		₩ wolves	13	2	Z	3	9	11	0	1	5	4	12	-10	9	
20		West Ham Utd	13	1	3	3	7	11	0	3	3	4	11	-11	9	

Secret Subliminal Slide

The Best Team Ever

5 / 24

Example 1: Premier League Betting (2)

Before every match you bet on a team:

- ► If you are wrong you lose
- If you are right you win

You can make your decisions using the **predictions of** n **experts** (game analysts, coaches):

- ► Each will tell you who they think will win
- ▶ It may be that all of them are very good or very poor, their judgment may be random or correlated, . . .
- You do not know who is the "best"
- ▶ In fact, who is the **best expert** will only be known in **hindsight** and will depend on T: someone who was good in the first week (T = 7) could be a big loser after 1 year (T = 365) and vice versa

Example 2: Buy or Sell?

7 / 24

Example 2: Buy or Sell?

You hold a stock and want to decide whether to buy or sell.

- ► Every day for *T* days you predict whether the price of your stock goes up or down
- ▶ You buy or sell depending on your predictions
 - ► If your prediction is wrong you lose
 - ► If your prediction is right you gain
- ➤ You can make your decisions using the predictions of *n* experts (market analysts, computer programs, . . .)

How Can You Make Use of the Experts' Predictions?

Possible answers:

- On each day, do what the majority of the experts say
 - ▶ fails when most "experts" make poor predictions
- Wait some time, observe the experts, and then stick with the one who was best
 - it's possible that he/she was just lucky and will give poor predictions in the future
- ▶ What experts? These folks surely know much less about football than you do!
 - Of course, this is the way to go!
 - ▶ But: we would not have any math to talk about, so let's pretend this option is not available

Weighted Majority solves the problems using a **combination** of the two ideas:

- ▶ In each time period we will consider advice of all experts BUT
- each expert's advice will be weighted according to his past success

9 / 24

Weighted Majority Algorithm

- 1. At time t=1 assign unit weight to all experts: $w_i^1=1, i=1,\ldots,n$
- 2. Compute
 - 2.1 $p_i^t = w_i^t / \sum_j w_j^t$ for all i (note that $\sum_i p_i^t = 1$)
 - 2.2 $P_a^t = \text{sum of } p_i^t \text{ over experts } i \text{ predicting outcome } a$
 - 2.3 $P_b^t = \text{sum of } p_i^t \text{ over experts } i \text{ predicting outcome } b$
- 3. Decide (bet, invest) based on **weighted majority** (breaking ties arbitrarily):
 - 3.1 If $P_a^t > P_b^t$, assume a will happen and act (invest, bet) accordingly
 - 3.2 If $P_b^t > P_a^t$, assume b will happen and act (invest, bet) accordingly
- 4. Observe the outcome (a happened or b happened).
 - 4.1 If you guessed wrong, you incur a loss of 1.
 - 4.2 If you guessed right, you incur no loss.
- 5. Shrink the weights of the experts who were wrong
 - 5.1 $w_i^{t+1} = w_i^t$ if expert i was right
 - 5.2 $w_i^{t+1} = (1 \epsilon)w_i^t$ if expert *i* was wrong
- 6. Proceed to time $t \leftarrow t+1$ and go to step 2

WM Algorithm: Choice of the Learning Rate (1)

Parameter ϵ can be thought of as a learning rate:

- ▶ Small ϵ (close to 0) = learning slowly because
 - $(1-\epsilon)$ will be close to 1 and hence
 - weights of failing experts will be decreased very slowly
- ▶ Large ϵ (close to 1) = learning fast because
 - $(1-\epsilon)$ will be close to 0 and hence
 - weights of failing experts will be decreased very fast

11 / 24

Weighted Majority Algorithm: An Excel Example (1)

	Α	В	C	D	E	F	G	Н	1	J	K	L	М	N	О	Р	Q	
1		epsilon=	0.0)50		T=25												
2		REALITY			EXP	RTS			ME									
3		Outcome	Predictions			Loss			Weights (w)			Norma	lized wei	ghts (p)	WA	WM Prediction	Loss	
4	t		Ехр 1	Exp 2	Ехр 3	Exp 1 Exp 2 Exp 3		Ехр 3	Ехр 1 Ехр 2 Ехр 3			Ехр 1	Exp 2	Ехр 3				
5	1	1	1	0	0	0	1	1	1.0000	1.0000	1.0000	0.3333	0.3333	0.3333	0.3333	0	1	
6	2	1	1	1	0	0	0	1	1.0000	0.9500	0.9500	0.3448	0.3276	0.3276	0.6724	1	0	
7	3	1	0	1	0	1	0	1	1.0000	0.9500	0.9025	0.3506	0.3330	0.3164	0.3330	0	1	
8	4	1	1	0	0	0	1	1	0.9500	0.9500	0.8574	0.3445	0.3445	0.3109	0.3445	0	1	
9	5	1	1	1	0	0	0	1	0.9500	0.9025	0.8145	0.3562	0.3384	0.3054	0.6946	1	0	
10	6	1	1	0	0	0	1	1	0.9500	0.9025	0.7738	0.3617	0.3436	0.2946	0.3617	0	1	
11	7	1	1	0	1	0	1	0	0.9500	0.8574	0.7351	0.3737	0.3372	0.2891	0.6628	1	0	
12	8	1	1	1	0	0	0	1	0.9500	0.8145	0.7351	0.3801	0.3259	0.2941	0.7059	1	0	
13	9	1	1	0	0	0	1	1	0.9500	0.8145	0.6983	0.3857	0.3307	0.2835	0.3857	0	1	
14	10	1	1	0	0	0	1	1	0.9500	0.7738	0.6634	0.3980	0.3241	0.2779	0.3980	0	1	
15	11	1	0	0	0	1	1	1	0.9500	0.7351	0.6302	0.4103	0.3175	0.2722	0.0000	0	1	
16	12	1	1	1	0	0	0	1	0.9025	0.6983	0.5987	0.4103	0.3175	0.2722	0.7278	1	0	
17	13	1	1	0	0	0	1	1	0.9025	0.6983	0.5688	0.4160	0.3219	0.2622	0.4160	0	1	
18	14	1	1	0	0	0	1	1	0.9025	0.6634	0.5404	0.4285	0.3150	0.2565	0.4285	0	1	
19	15	1	1	0	0	0	1	1	0.9025	0.6302	0.5133	0.4411	0.3080	0.2509	0.4411	0	1	
20	16	1	1	0	0	0	1	1	0.9025	0.5987	0.4877	0.4538	0.3010	0.2452	0.4538	0	1	
21	17	1	1	0	0	0	1	1	0.9025	0.5688	0.4633	0.4665	0.2940	0.2395	0.4665	0	1	
22	18	1	1	0	0	0	1	1	0.9025	0.5404	0.4401	0.4793	0.2870	0.2337	0.4793	0	1	
23	19	1	0	0	0	1	1	1	0.9025	0.5133	0.4181	0.4921	0.2799	0.2280	0.0000	0	1	
24	20	1	1	0	0	0	1	1	0.8574	0.4877	0.3972	0.4921	0.2799	0.2280	0.4921	0	1	
25	21	1	1	0	0	0	1	1	0.8574	0.4633	0.3774	0.5049	0.2728	0.2222	0.5049	1	0	
26	22	1	1	1	0	0	0	1	0.8574	0.4401	0.3585	0.5177	0.2658	0.2165	0.7835	1	0	
27	23	1	1	0	0	0	1	1	0.8574	0.4401	0.3406	0.5234	0.2687	0.2079	0.5234	1	0	
28	24	1	1	0	0	0	1	1	0.8574	0.4181	0.3235	0.5362	0.2615	0.2023	0.5362	1	0	
29	25	1	1	0	1	0	1	0	0.8574	0.3972	0.3074	0.5489	0.2543	0.1968	0.7457	1	0	
30		Total Loss				3	19	23									15	

Weighted Majority Algorithm: An Excel Example (2)

	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q
1		epsilon=	0.5	500		T=25											
2		REALITY			EXP	ERTS											
3		Outcome	Pr	edictio	ns	Loss			Weights (w)			Norma	lized wei	ghts (p)	WA	WM Prediction	Loss
4	t		Exp 1	Exp 2	Ехр 3	Exp 1	Exp 2	Ехр 3	Exp 1	Exp 2	Ехр 3	Ехр 1	Ехр 2	Ехр 3			
5	1	1	1	0	0	0	1	1	1.0000	1.0000	1.0000	0.3333	0.3333	0.3333	0.3333	0	1
6	2	1	1	1	0	0	0	1	1.0000	0.5000	0.5000	0.5000	0.2500	0.2500	0.7500	1	0
7	3	1	0	1	0	1	0	1	1.0000	0.5000	0.2500	0.5714	0.2857	0.1429	0.2857	0	1
8	4	1	1	0	0	0	1	1	0.5000	0.5000	0.1250	0.4444	0.4444	0.1111	0.4444	0	1
9	5	1	1	1	0	0	0	1	0.5000	0.2500	0.0625	0.6154	0.3077	0.0769	0.9231	1	0
10	6	1	1	0	0	0	1	1	0.5000	0.2500	0.0313	0.6400	0.3200	0.0400	0.6400	1	0
11	7	1	1	0	1	0	1	0	0.5000	0.1250	0.0156	0.7805	0.1951	0.0244	0.8049	1	0
12	8	1	1	1	0	0	0	1	0.5000	0.0625	0.0156	0.8649	0.1081	0.0270	0.9730	1	0
13	9	1	1	0	0	0	1	1	0.5000	0.0625	0.0078	0.8767	0.1096	0.0137	0.8767	1	0
14	10	1	1	0	0	0	1	1	0.5000	0.0313	0.0039	0.9343	0.0584	0.0073	0.9343	1	0
15	11	1	0	0	0	1	1	1	0.5000	0.0156	0.0020	0.9660	0.0302	0.0038	0.0000	0	1
16	12	1	1	1	0	0	0	1	0.2500	0.0078	0.0010	0.9660	0.0302	0.0038	0.9962	1	0
17	13	1	1	0	0	0	1	1	0.2500	0.0078	0.0005	0.9679	0.0302	0.0019	0.9679	1	0
18	14	1	1	0	0	0	1	1	0.2500	0.0039	0.0002	0.9837	0.0154	0.0010	0.9837	1	0
19	15	1	1	0	0	0	1	1	0.2500	0.0020	0.0001	0.9918	0.0077	0.0005	0.9918	1	0
20	16	1	1	0	0	0	1	1	0.2500	0.0010	0.0001	0.9959	0.0039	0.0002	0.9959	1	0
21	17	1	1	0	0	0	1	1	0.2500	0.0005	0.0000	0.9979	0.0019	0.0001	0.9979	1	0
22	18	1	1	0	0	0	1	1	0.2500	0.0002	0.0000	0.9990	0.0010	0.0001	0.9990	1	0
23	19	1	0	0	0	1	1	1	0.2500	0.0001	0.0000	0.9995	0.0005	0.0000	0.0000	0	1
24	20	1	1	0	0	0	1	1	0.1250	0.0001	0.0000	0.9995	0.0005	0.0000	0.9995	1	0
25	21	1	1	0	0	0	1	1	0.1250	0.0000	0.0000	0.9997	0.0002	0.0000	0.9997	1	0
26	22	1	1	1	0	0	0	1	0.1250	0.0000	0.0000	0.9999	0.0001	0.0000	1.0000	1	0
27	23	1	1	0	0	0	1	1	0.1250	0.0000	0.0000	0.9999	0.0001	0.0000	0.9999	1	0
28	24	1	1	0	0	0	1	1	0.1250	0.0000	0.0000	0.9999	0.0001	0.0000	0.9999	1	0
29	25	1	1	0	1	0	1	0	0.1250	0.0000	0.0000	1.0000	0.0000	0.0000	1.0000	1	0
30		Total Loss				3	19	23									5

13 / 24

Weighted Majority Algorithm: A Theorem

Theorem (Weighted Majority)

Let m_i^t (m^t) denote the number of mistakes that expert i makes (you make) in the first t predictions. Let $0 < \epsilon \le \frac{1}{2}$ be the learning rate. Then for all i and t the following inequality holds

$$m^t \leq \frac{2 \ln n}{\epsilon} + 2(1+\epsilon)m_i^t.$$

In particular, this holds for the best expert i (which has minimum m_i^t).

This means that:

- You won't make many more mistakes than the best expert in hindsight
- That is, you are able to learn which experts are right and wrong

WM Algorithm: Choice of the Learning Rate (2)

Minimizing the number of mistakes: The WM theorem gives the upper bound on the number of mistakes

$$F(\epsilon) = \frac{2 \ln n}{\epsilon} + 2(1 + \epsilon) m_{i(t)}^t,$$

where i(t) is the best expert at time t (the one with fewest mistakes).

Function $F(\epsilon)$

- ▶ is **convex** (since $F''(\epsilon) \ge 0$ for $\epsilon > 0$)
- ▶ has a global minimum at ϵ' satisfying $F'(\epsilon') = 0$: $\epsilon' = \sqrt{\frac{\ln n}{m_{i(t)}^t}}$
- is decreasing on $(0, \epsilon']$ and increasing on $[\epsilon', \infty)$

However, we are interested in the minimum ϵ^* of F on $(0, \frac{1}{2}]$:

▶ If $\epsilon' \leq \frac{1}{2}$ (4 ln $n \leq m_{i(t)}^t$), then $\epsilon^* = \epsilon'$ and

$$F(\epsilon^*) = 4\sqrt{m_{i(t)}^t \ln n} + 2m_{i(t)}^t$$

▶ If $\epsilon' > \frac{1}{2}$ (4 ln $n > m_{i(t)}^t$), then $\epsilon^* = \frac{1}{2}$ and $F(\epsilon^*) = 4 \ln n + 3 m_{i(t)}^t$

15 / 24

WM Algorithm: Choice of the Learning Rate (3)

$$\epsilon' \leq \frac{1}{2}$$

$$(4 \ln n \leq m_{i(t)}^t)$$

$$\epsilon^* = \epsilon' = \sqrt{\frac{\ln n}{m_{i(t)}^t}}$$

$$\epsilon' > \frac{1}{2}$$

$$(4 \ln n > m_{i(t)}^t)$$

$$\epsilon^* = \frac{1}{2}$$

Proof of the Weighted Majority Theorem (1)

Proof.

Let $W^t = \sum_i w_i^t$. If you make a mistake at time t, then a weighted majority of the experts must have made a wrong prediction.

- ► Let *A*^t be the total weight at time *t* of the experts who did NOT make a mistake
- Let B^t be the total weight at time t of the experts who DID make a mistake

Then $W^{t+1}=A^t+(1-\epsilon)B^t\leq (1-\frac{\epsilon}{2})(A^t+B^t)=(1-\frac{\epsilon}{2})W^t$ for all t, and hence

$$W^{t} \leq (1 - \frac{\epsilon}{2})^{m^{t}} W^{1} = (1 - \frac{\epsilon}{2})^{m^{t}} n.$$

However, we also know that

$$(1-\epsilon)^{m_i^t}=w_i^t\leq W^t.$$

Putting these two inequalities together, we get

$$(1-\epsilon)^{m_i^t} \leq (1-rac{\epsilon}{2})^{m^t} n.$$
 (#)

Proof of the Weighted Majority Theorem (2)

Proof (Continued).

Taking logarithms on both sides of (#) gives

$$m^t \leq rac{\ln n}{-\ln(1-rac{\epsilon}{2})} + m_i^t rac{\ln(1-\epsilon)}{\ln(1-rac{\epsilon}{2})}.$$

We have obtained a bound on m^t now!

We could have stated the theorem like this, but all the logarithms hinder proper insight into the dependence of the expression on ϵ . We can simplify this though, by using (three times!) the inequality

$$-x - x^2 \le \ln(1 - x) \le x,$$

which holds for $0 \le x \le \frac{1}{2}$.

17 / 24

Limitations of the Weighted Majority Setup

Four main limitations:

- ▶ At each time step t, a decision is made deterministically (this is analogous to playing pure strategies)
- ► There are **only two decisions** to be made at every *t* (this is analogous to having two pure strategies only)
- ► There are only two possible outcomes (this corresponds to the column player having just two pure strategies at every t)
- ► The loss is binary, depending on which of the two events occurred (this corresponds to the payoff matrix B containing only zeros and ones)

19 / 24

Overcoming the Limitations

We will now describe a generalized version of WM, called the Multiplicative Weights Update Algorithm, in which

- At each time step t, a decision is made probabilistically (this is analogous to playing mixed strategies)
- ▶ There is an arbitrary finite number of decisions $i^t \in S_1$ to be made at each time t (this is analogous to having n pure strategies)
- The number of outcomes $j^t \in S_2$ at time t is arbitrary (even infinite!) (corresponds to the column player having an arbitrary—even infinite—number of strategies at each t)
- ▶ The loss $B(i^t, j^t)$ is arbitrary (this corresponds to having an arbitrary payoff matrix B in a matrix game, not just a zero-one matrix)

We will assume that $-\rho \le B(i^t, j^t) \le +\rho$ for all t for some $\rho > 0$ which we will refer to as the width parameter.

Multiplicative Weights Update Algorithm

Problem solving was always one of Martha's greatest talents...

21 / 24

Multiplicative Weights Update (MWU) Algorithm: Generalized Weighted Majority

- 1. At time t=1 assign unit weight to all experts: $w_i^t=1, i=1,\ldots,n$
- 2. Compute probabilities $p_i^t = w_i^t / \sum_j w_j^t$ for all $i = 1, \dots, n$
- 3. Follow the advice of expert i (play strategy i) with probability p_i^t
- 4. Observe the outcome j^t and incur expected loss

$$B(p^t, j^t) = \sum_{i=1}^n p_i^t B(i, j^t)$$

5. Update the weights of all experts *i* in a multiplicative way:

$$w_i^{t+1} = \begin{cases} w_i^t (1-\epsilon)^{B(i,j^t)/\rho} & \text{if } B(i,j^t) \ge 0 \\ w_i^t (1+\epsilon)^{-B(i,j^t)/\rho} & \text{if } B(i,j^t) < 0. \end{cases}$$

6. Proceed to time $t \leftarrow t+1$ and go to step 2

MWU: The Main Result

Theorem (Multiplicative Weights Update)

Let $0<\epsilon\leq \frac{1}{2}$ be a learning rate. Then the output of the MWU algorithm satisfies the inequality

$$\sum_{t=1}^{T} B(p^t, j^t) \leq \frac{\rho \ln n}{\epsilon} + (1+\epsilon) \sum_{\substack{t: B(i, j^t) \geq 0 \\ loss \ of \ expert \ i}} B(i, j^t) + (1-\epsilon) \sum_{\substack{t: B(i, j^t) < 0 \\ negative \ loss \ of \ expert \ i}} B(i, j^t)$$

for any expert i and time T.

Proof.

Similar to the proof of Weighted Majority.

23 / 24

MWU: A Crucial Consequence

Corollary

Fix any $\delta>0$ and let $\epsilon=\min\{\frac{\delta}{4\rho},\frac{1}{2}\}$ and $T=\frac{16\rho^2\ln n}{\delta^2}$. Then

$$\frac{1}{T} \sum_{t=1}^{T} B(p^{t}, j^{t}) \le \delta + \frac{1}{T} \sum_{t=1}^{T} B(i, j^{t}) \quad \text{for all} \quad i.$$
 (#0)

This statement says how many plays (time steps T), following the MWU method, are needed for the average expected loss of the row player in a repeated game-play against a column player (nature picking the outcomes), to be guaranteed to be within a small additive constant δ of the average loss of his best pure response (i minimizing the right-hand side) to the mixed strategy of the column player formed from the actual observed frequencies of his pure strategies (outcomes).

