3.16 Soit $n \in \mathbb{N}$.

- 1) $n \ge 1$ implique $n+1 \ge 2 > 0$, si bien que $\frac{1}{n+1} > 0$ et $\left(\frac{1}{n+1}\right)^n > 0$. On a ainsi montré que $u_n > 0$.
- 2) $n \ge 1$ implique $n+1 \ge 2$, de sorte que $\frac{1}{n+1} \le \frac{1}{2}$ et finalement $\left(\frac{1}{n+1}\right)^n \le \left(\frac{1}{2}\right)^n = \frac{1}{2^n}$.

On a donc prouvé que $u_n \leqslant \frac{1}{2^n}$

On constate tout d'abord que $0 < u_n \leqslant \frac{1}{2^n}$, ensuite que $\lim_{n \to +\infty} 0 = 0$ et enfin que $\lim_{n \to +\infty} \frac{1}{2^n} = 0$. Le théorème des gendarmes permet de conclure que $\lim_{n \to +\infty} u_n = 0$.