Ocena poziomu stresu na podstawie danych ze smart watcha

Podstawowe informacje:

- 1. Klasyfikacja poziomu stresu w zakresie 0-2
- 2. Dane biometryczne ciała (typ float oraz int)
- 3. Przetwarzanie danych: konwersja jednostek, normalizacja, one-hot encoding atrybutu decyzyjnego
- 4. Model porównawczy regresja logistyczna
- 5. Strojenie NN metodą early stopping
- 6. Propozycje hiperparametrów modeli:
 - a. 10-10-5-3 epochs=20 batch=8
 - b. 128-128-64-32-3 epochs=20 batch=8 z regularyzacją

	Humidity	Temperature	Step count	Stress Level
0	21.33	90.33	123	1
1	21.41	90.41	93	1
2	27.12	96.12	196	2
3	27.64	96.64	177	2
4	10.87	79.87	87	0

2001 x 4

Rozkład atrybutów

Wstępne przetwarzanie danych

	Humidity	Temperature	Step count	Stress Level
0	21.33	90.33	123	1
1	21.41	90.41	93	1
2	27.12	96.12	196	2
3	27.64	96.64	177	2
4	10.87	79.87	87	0

	Humidity	Temperature	Step count
0	0.5665	0.5665	0.615
1	0.5705	0.5705	0.465
2	0.8560	0.8560	0.980
3	0.8820	0.8820	0.885
4	0.0435	0.0435	0.435

Modele baseline

Miara ewaluacyjna: Dokładność

KNN: 1.0

Log Reg: 0.9975

DNN 10-10-5-3 Acc: 0.9975

DNN 128-128-64-32-3 (dropout i L2) Acc: 0.9676

DNN 3-3

Acc: 0.9975

Podsumowanie

KNN: 1.0

Log Reg: 0.9975

DNN 10-10-5-3: 0.9975

DNN 128-128-64-32-3: 0.9676

DNN 3-3: 0.9975

Wnioski

- 1. Zarówno podstawowe modele ML jak i sieci neuronowe osiągnęły b. dobre wyniki
- 2. Użycie bardziej zaawansowanych modeli niekoniecznie wiąże się z lepszymi wynikami
- 3. Ze względu na niską złożoność danych:
 - a. Do osiągnięcia dobrych wyników wystarczyła sieć z jedną warstwą ukrytą
 - b. Nie udało się przetrenować sieci neuronowych

Dziękuję za uwagę!