|             | GREEDY ALGORITHMS                                                                    |
|-------------|--------------------------------------------------------------------------------------|
|             | * Make locally optimal choices<br>* Prove that they lead to globally optimal Solms.  |
|             | Inkrval Schedning                                                                    |
|             | Set $I = \{(B(i), f(i))   1 \leq i \leq n\}$                                         |
|             | Goal: Find a largest set I'E I of non-overlapping intervals                          |
|             | (8(i),f(i)) $(s(j),f(j))$                                                            |
| O (ns)-hime | I & Soln Ie soln                                                                     |
| algorithm   | opt among all opt among all intervals intervals other than that don't overlap with I |
|             | intervals other than that don't overlap with I                                       |
|             |                                                                                      |
|             | Greedy 1: Choose the interval with the shortest time min f(i) - S(b), add to I'      |
|             | Greedy choice gives 1                                                                |
|             | OPT is 2                                                                             |
|             |                                                                                      |
|             | Ex: Prove that Greedy I always gives a value k<br>S. + k > OPT/2                     |
|             |                                                                                      |
|             |                                                                                      |
|             |                                                                                      |

|   | Greedy 2: Choose the interval that intersects with fewest other intervals                                                                                             |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( | Greedy choice: 3  OPT: 4                                                                                                                                              |
|   | Greedy 3: Choose the interval with the earliest finish time                                                                                                           |
|   | * 3 optimal sons. that are not obtained by<br>greedy Choices                                                                                                          |
|   | Theorem: Let I' be the set of intervals obtained by greedy choice 3. Let OPT be an optimal                                                                            |
|   | Theorem: Let I' be the set of intervals obtained by greedy choice 3. Let OPT be an optimal  Set of intervals.  Then IZ'I=10PT1  I'= {i1, i2,, ik} OPT = {j1, j2,, jm} |
|   | Claim: $\forall x \leq k$ $f(i_x) \leq f(j_x)$ Sorted in increasing finish times  Why does Claim => Theorem?                                                          |
|   | then 2' would have  k ik+1 added jk+1  added jk+1                                                                                                                     |
|   | contradicts maximality of I'                                                                                                                                          |

