fatiando a terra

Construindo uma base para ensino e pesquisa de geofísica

LEONARDO UIEDA

leouieda.com

historico

~2009 - projeto modelagem direta grav-mag

juntar código matérias (inversão) dissertação, extra

reutilizar

muita

re-implementação

repetição eva a erros

1 código

++ usuários

1 código

++ brogramadores

biblioteca

(funções, classes, etc)

puthon

fácil de aprender rápido de implementar

github.com

Restructured the repos. Made fatiando python package with directmods,...

Restructured the repos. Made fatiando python package with directmods,...

test.py

5 years ago

5 years ago

github.com

github.com

controle de versão (VCS)

git/mercurial

software-carpentry.org

VO.0.1

(pré-beta-dev-testing)

curso de inversão IAG 02/2011

github.com/pinga-lab/inversao-iag-2012

Home Development

Download

Help

Gallery

Docs

Blog

Google+

Example Gallery

Some of the functionality already implemented:

Moulder - 2D gravimetric direct modeling

Inversion of synthetic vertical seismic profile data

Straight-ray travel-time tomography of large models using sparse linear algebra

Straight-ray travel-time tomography

Simple inversion for the relief of tha 2D triangular basin

... and also a trapezoidal basin

Gravity anomaly _____ Gravity anomaly

H2015

An easy and flexible way to perform and implement geophysical data analysis.

All from inside the powerful Python language.

Fatiando is built on top of the Scipy ecosystem: Numpy, Cython, matplotlib, Mayavi, etc. Current capabilities include:

- Data processing
- Generate synthetic data
- Forward modeling
- Inversion
- 2D and 3D visualization

~700 downloads/mês

código no GitHub

contribuidores

fatiando

diversos métodos inversão inversão visualização

biblioteca

```
pacotes > módulos > funções/classes
```

fatiando/

gravmag/ seismic/ inversion/ vis/ gridder
mesher
utils
constants
datasets

pacotes

<u>módulos</u>

demo 1

Anomalia Bouguer de um prisma

IPython notebook

ipython.org

demo 2

Prisma poligonal e interatividade

aulas

exploração ção interatividade

modelos dados sintéticos dados reais

IPython

+

fatiando

exemplo 1

modelagem direta

exemplo 2

anomalia magnética

exemplo 3

ondas sísmicas

pesquisa

criação de métodos de inversão

minimizar

$$\phi(ar{p}) = \sum_{i=1}^{N} [d_i^o - d_i(ar{p})]^2$$

exemplo:

Método de Newton

$$abla^2\Phi \ \Delta ar p = -
abla\Phi$$

Hessiana

gradiente

aproximação

$$abla^2\Phipproxar{ar{J}}^Tar{ar{J}}$$

Jacobiana

regularização

$$\Gamma(ar{p}) = \sum_{i=1}^N [d_i^o - d_i(ar{p})]^2 + \mu \sum_{j=1}^M p_j^2$$

regularização

$$\Gamma(ar{p}) = \sum_{i=1}^N [d_i^o - d_i(ar{p})]^2 + \mu \sum_{j=1}^M p_j^2$$

$$\left(
abla^2\Phi + \mu
abla^2\Theta
ight) \; \Deltaar{p} = -
abla\Phi -
abla\Theta$$

Hessiana

gradiente

componentes:

modelagem direta Jacobiana Hessiana gradiente minimização regularização

componentes:

modelagem direta Jacobiana Hessiana gradiente minimização regularização

genérico

componentes:

modelagem direta implementar **Jacobiana** Hessiana gradiente minimização regularização

esses

genérico

fatiando.inversion

demo 1

Ajuste de reta

demo 2

Inversão grav para relevo de bacia 2D

conclusão

construir

em cima do nosso trabalho

grupo de pesquisa

pinga-lab.org

People

Vanderlei C. Oliveira Jr.

Researcher

Fillipe Claudio Lopes Siqueira

PhD student

André Luis Albuquerque dos Reis

MSc Student

Leonardo Uieda

Professor

Victor do Couto Pereira

MSc student

Valéria C. F. Barbosa

Researcher

Marlon Cabrera Hidalgo Gato

MSc student

artigos novos

método no fatiando testes e aplicações em IPython notebooks

Papers >

Estimation of the total magnetization direction of approximately spherical bodies

by Oliveira Jr, V. C., D. P. Sales, V. C. F. Barbosa, and L. Uieda (2015)

This article is unpublished and is currently undergoing peer-review.

Info

Article Level Metrics

Abstract

multiple sources with different magnetization directions. It neither requires the prior computation of any transformation like reduction to the pole nor the use of regularly spaced data on a horizontal grid. The method contains flexibility to be implemented as a linear or non-linear inverse problem, which results, respectively, in a least squares or robust estimate of the components of the magnetization vector of the sources. c data show the robustness of our method against interfering anomalies and errors in the location of the sources' centre. Besides, we show the feasibility of applying the upward continuation to interpret non-spherical sources. Applications to field data over the Goiás Alkaline Province (GAP), Brazil, show the good performance of our method in estimating geological meaningful magnetization directions. The results obtained for a region of the GAP, near from the alkaline complex of Diorama, suggest the presence of non-outcropping sources marked by strong remanent magnetization with inclination and declination close to -70.35° and -19.81°, respectively. This estimated magnetization direction leads to predominantly positive reduced-to-the-pole anomalies, even for other region of the GAP, in the alkaline complex of Montes Claros de Goiás. These results show that the non-outcropping sources near from the alkaline complex of Diorama have almost the same magnetization direction of that ones in the alkaline complex of Montes Claros de Goiás, strongly suggesting that these sources have emplaced the crust almost within the same geological time interval.

We have developed a fast total-field anomaly inversion to estimate the magnetization direction of multiple sources with approximately spherical shape and known centres. Our method can be applied to interpret

Review

Total magnetization estimation methods

(fatiando.gravmag.magdir)

Estimation of the total magnetization vector of homogeneous bodies.

It estimates parameters related to the magnetization vector of homogeneous bodies.

Algorithms

DipoleMagDir: This class estimates the Cartesian components of the magnetization vector of homogeneous dipolar bodies with known center. The
estimated magnetization vector is converted to dipole moment, inclination (positive down) and declination (with respect to x, North).

class fatiando.gravmag.magdir.DipoleMagDir(x, y, z, data, Inc, dec, points)

[source]

Bases: fatiando.inversion.base.Misfit

Estimate the magnetization vector of a set of dipoles from magnetic total field anomaly.

By using the well-known first-order approximation of the total field anomaly (Blakely, 1996, p. 179) produced by a set of dipoles, the estimation of the Cartesian components of the magnetization vectors is formulated as linear inverse problem. After estimating the magnetization vectors, they are converted to dipole moment, inclination (positive down) and declination (with respect to x, North).

Reference

Blakely, R. (1996), Potential theory in gravity and magnetic applications: CUP

Note

Assumes x = North, y = East, z = Down.

Parameters:

. x, y, z: 1d-arrays

The x, y, z coordinates of each data point.

share reuse remix

Entre em contato

fatiando.github.io

pinga-lab.org