Go, change the world

Academic year 2023-2024 (Even Sem) **DEPARTMENT OF**

	COI	MPUTER SCIENCE	& ENGINEERING	J		
,	Date	August 2024	6		60	
Course Code		CS241AT	Duration	120 Mi		1in
	R/MNV					
	DISCRET	TE MATHEMATICAL STRUC (Common to CSE, IS		TORIC	S	
		Marks	вт	со		
1.1	Let G be the set by a*b=a+b+ab	. 1	1	1		
1.2	If the binary ope * a b c d	1	1	1		
1.3	Let $G = (Z_{12}, +)$ H.	1	3	2		
1.4	A binary symmethe code word 1	1	2	2		
1.5	Let E: $Z_2^3 \rightarrow Z_2^0$ D: $Z_2^9 \rightarrow Z_2^3$ is r for which D(r)	1	2	1		
1.6	Let G be the Pe	1	2	2		
1.7	What is the valu	1 .	2	3		
1.8	If 5 colors are a	1	3	2		
1.9	Find the centroi	1	2	2		
1.10	Find the center	l	2	2		

	PART-B			
2a.	In a group $(G, *)$, prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a, b \in G$.	05	3	2
2b.	Show that $(Z_{12}, +)$ is a cyclic group and find all its generators.	05	4	3
3a.	Let G be a group and let a be any fixed element of G. Show that the function f: $G \rightarrow G$ defined by $f(x) = axa^{-1}$, for $x \in G$, is an isomorphism.	05	3	2
3b.	Let E: WDC be an encoding function with the set of messages $W \subseteq Z_2^m$ and the set of code words $E(W)=C\subseteq Z_2^n$, where $m < n$. For $k \in Z^+$, we can detect transmission errors of weight $\le k$ iff the minimum distance between code words is at least $k+1$. Prove this.	05	2	3
4a.	Define the encoding function E: $Z_2^3 \rightarrow Z_2^6$ by means of the parity check matrix $ \begin{array}{c} 1 \ 0 \ 1 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \end{array} $ i. Determine all code words. ii. What is the error detection and correction capability? iii. Decode the received words 000011, 111100.	06	2	2
4b.	i. If $x \in Z_2^{10}$, determine $ S(x, 1) $, $ S(x, 2) $, $ S(x, 3) $. ii. For $n, k \in Z^+$ with $1 \le k \le n$, if $x \in Z_2^n$, what is $ S(x, k) $?	04	3	2
5a.	Find $P(G, \lambda)$ for the graph shown below.	06	3	4
5b.	Give an example of a connected graph that has i. Neither an Euler circuit nor a Hamilton cycle. ii. An Euler circuit but no Hamilton cycle. iii. No Euler circuit but has Hamilton cycle. iv. Both Euler circuit and a Hamilton cycle.	04	1	1
6a.	Prove that in every tree $ V = E +1$.	05	2	3
6b.	By applying the decomposition theorem, find the number of spanning trees for the graph shown below.	05	3	4

BT-Blooms Taxonomy, CO-Course Outcomes, M-Marks

Marks Distribution	Particulars	COI	CO2	CO3	CO4	CO5	Ll	L2	L3	L4	L5	L6
	Max Marks	7	26	16	11	-	6	22	27	5	-	-