

Statistical Characterisation of Porous Media at the Pore Scale

Covariance Analysis

Student:

Lukas Mosser

Supervisors:

Professor Olivier Dubrule

Professor Martin Blunt

Presentation Outline

- Two-Point Probability Function
- Nomenclature
 - Covariance
 - Covariance Function
 - Normalized Covariance Function
 - Mean Grain Size
 - Characteristic Pore Size
- Covariance Analysis
 - Beadpack, Ketton, Estaillades, Doddington, Bentheimer

Two - Point Probability Function Algorithm

```
Algorithm A.1 Algorithm for computing volume fraction for phase i
                                                                      \triangleright Let's define the image as \Omega
  Read the image:
  Read the x, y and z dimensions;
                                                                          \triangleright Let's say W, H, and D
  N_{\text{pixels},i} = 0;
  for 0 \le a < W do
      for 0 \le b \le H do
         for 0 \le c < D do
             if \Omega(a, b, c) == i then
                 N_{\text{pixels},i}++;
         end for
      end for
  end for
                                                                         After Pant 2016, PhD thesis
  \phi_i = N_{\text{pixels},i}/(WHD);
```

Procedure after Jin et. Al DOI: 10.1103/PhysRevE.93.013122

- Compute in each image direction for each pixel
 - directional two point probability function
- Average all directional two point probability functions
 - Averaged two point probability function

Nomenclature

Nomenclature after Ohser and Schladitz: 3D Images of Materials Structure

Remark 6.1

In various textbooks the covariance function is also called the two-point probability function or the two-point correlation function, see e. g. [361]. Sometimes it is called the auto-correlation function but this conflicts with the usual notation of stochastics where the autocorrelation function is the normalized covariance function $\text{cov}_V/(V_V-V_V^2)$. In stochastic geometry the function $C(x)=\mathbb{P}(\{0,x\}\in\mathcal{\Xi})$ is known as the covariance of the random closed set $\mathcal{\Xi}$. It follows that $C(x)=\text{cov}_V(x)+V_V^2$.

- $Two-Point\ Probability\ Function=Covariance=C(x)$
- Covariance Function = $cov_V(r) = C(x) \phi^2$
- Normalized Covariance Function = $\frac{cov_V(r)}{\phi \phi^2}$
- Mean Grain Size $r_m = First \ Local \ Minimum \ of \ C(x)$
- Characteristic Pore Size $r_m = \phi(\phi 1) / \frac{d}{dr} cov(r)|_{r=0}$

Imperial College London

Summary of Results

- Beadpack
 - Isotropic
 - Equal mean grain size in x, y, z-directions
- Ketton:
 - Anisotropic behavior grain size between 159 and 204 μm
 - Well defined local minima to determine mean grain size
- Estaillades:
 - Difficult to determine mean grain size
 - Varies strong between directional and averaged covariance
- Doddington:
 - Anisotropic covariance and mean grain size
 - Distinct normalized covariance function, nearly exponential
- Bentheimer:
 - Isotropic covariance and therefore mean grain size
 - Position of local minima same
 - Different absolute values of covariance at first minimum

Beadpack - Covariance Analysis

Voxel Size μ m/voxel Image Size: 500 voxel³

Mean Grain Size r_m		
	pixels	μm
x - Direction	34	
y - Direction	33	
z-Direction	33	
Averaged	33	
Ratio	0.99	

Char. Pore Size $r_{ m c}$		
	pixels	μm
x - Direction	15	
y-Direction	15	
z-Direction	15	
Averaged	15	
Ratio	1.0	

Beadpack - Covariance

Beadpack - Covariance Function

Beadpack - Normalized Covariance Function

Imperial College London

Ketton – Covariance Analysis

Voxel size $3\mu m/voxel$ Image Size: $500 voxel^3$

Mean Grain Size r_m		
	pixels	μm
x - Direction	53	159
y-Direction	68	204
z-Direction	59	177
Averaged	57	174
Ratio	0.78	

Char. Pore Size $r_{ m c}$		
	pixels	μm
x - Direction	16	48
y-Direction	18	54
z-Direction	18	54
Averaged	17	51
Ratio	0.89	

Ketton – Covariance

Ketton-Covariance Function

Ketton - Normalized Covariance Function

Estaillades – Covariance Analysis

Voxel size $3.31\mu m/voxel$

Image Size: 500 *voxel*³

Mean Grain Size r_m		
	pixels	μm
x-Direction	143	473
y-Direction	135	446
z-Direction	102	337
Averaged	145	479
Ratio	0.71	

Char. Pore Size $r_{ m c}$		
	pixels	μm
x - Direction	14	46
y-Direction	14	46
z-Direction	14	46
Averaged	14	46
Ratio	1.0	

Estaillades – Covariance

Estaillades - Covariance Function

Estaillades - Normalized Covariance Function

Doddington – Covariance Analysis

Voxel size 3.31µm/voxel

Image Size: $500 \ voxel^3$

Mean Grain Size r_m		
	pixels	μm
x-Direction	61	201
y-Direction	49	162
z-Direction	41	135
Averaged	91	301
Ratio	0.67	

Char. Pore Size $r_{ m c}$			
	pixels	μm	
x - Direction	14	46	
y-Direction	15	49	
z-Direction	15	49	
Averaged	15	49	
Ratio	0.93		

Doddington - Covariance

Doddington – Covariance Function

Doddington - Normalized Covariance Function

Imperial College London

Bentheimer – Covariance Analysis

Voxel size $3.5 \mu m/voxel$

 $Image\ Size: 500\ voxel^3$

Mean Grain Size r_m		
	pixels	μm
x-Direction	29	97
y-Direction	29	97
z-Direction	29	97
Averaged	29	97
Ratio	1.0	

Char. Pore Size $r_{ m c}$		
	pixels	μm
x - Direction	12	40
y-Direction	12	40
z-Direction	12	40
Averaged	12	40
Ratio	1.0	

Bentheimer – Covariance

Bentheimer - Covariance Function

Bentheimer - Normalized Covariance Function

