R Programming Mini Project Output

Code Output:-************************* # Data Cleaning / Data Wrangling install.packages("tidyverse") https://cran.rstudio.com/bin/windows/Rtools/ Installing package into 'C:/Users/Puneetraj Makhija/Documents/R/win-library/3.6' (as 'lib' is unspecified) trying URL 'https://cran.rstudio.com/bin/windows/contrib/3.6/tidyverse_1.3.0.zip' Content type 'application/zip' length 440148 bytes (429 KB) downloaded 429 KB library(tidyverse) > library(tidyvérse) -- Attaching packages - v ggplot2 3.3.0 v p ----- tidyverse 1.3.0 --0.3.3 v purrr v tibble 2.1.3 v tidyr 1.0.2 v dplyr 0.8.5 v stringr 1.4.0 v forcats 0.5.0 v readr 1.3.1 ----- tidyverse_conflicts() ---- Conflicts ---x dplyr::filter() masks stats::filter() x dplyr::lag() masks stats::lag() df<- read.csv("C:/Users/Puneetraj Makhija/Desktop/R Programming/MiniProject/104 ICCWorldCup.csv", stringsAsFactors = FALSE) str(df) > df<- read.csv("C:/Users/Puneetraj Makhija/Desktop/R Programming/MiniProject/</pre> 104_ICCWorldCup.csv", stringsAsFactors = FALSE) str(df) > str(dT)
'data.frame': 2587 obs. of 16 variables: "GS Chappell " "RW Marsh " "G Boycott " ... \$ Plaver : chr "AUS" "AUS" "ENG" "ENG" \$ Country chr : int \$ Starting_Year \$ Ending_Year 1983 1984 1981 1982 1980 1981 1974 12 13 10 11 9 10 3 4 6 1 ...
74 92 36 24 16 28 6 7 20 3 ...
"72" "76" "34" "22" ...
"14" "15" "4" "3" ...
"2331" "1225" "1082" "757" ...
"138*" "66" "105" "131" ...
"40.18" "20.08" "36.06" "39.84" ...
"3079" "1489" "2020" "1134" ...
"75.7" "82.26" "53.56" "66.75" ...
"3" "0" "1" "1" ...
"14" "4" "9" "5" ...
"7" "7" "1" "0" ... : int \$ Span_in_Years \$ Matches_Played : int \$ Innings_Batted : chr \$ Not_Outs : chr \$ Runs_Scored chr \$ Highest_Innings_Score : chr : chr \$ Batting_Average : chr \$ Balls_Faced \$ Batting_Strike_Rate : chr \$ Hundreds_Scored : chr

\$ Runs_Scored_above_50_or._50: chr

: chr

\$ Ducks_Scored

```
#Cleaning data by converting character to Numeric in Not Outs
df$Innings Batted = as.numeric(substring(df$Innings Batted,1))
#Cleaning data by converting character to Numeric in Runs Scored
df$Runs Scored = as.numeric(substring(df$Runs Scored,1))
#Cleaning data by converting character to Numeric in Highest Innings Score
df$Highest Innings Score = as.numeric(substring(df$Highest Innings Score,1))
#Cleaning data by converting character to Numeric in Batting Average
df$ Batting Average = as.numeric(substring(df$Batting Average,1))
#Cleaning data by converting character to Numeric in Balls Faced
df$ Balls Faced = as.numeric(substring(df$Balls Faced ,1))
#Cleaning data by converting character to Numeric in Batting Strike Rate
df$ Batting Strike Rate = as.numeric(substring(df$Batting Strike Rate ,1))
#Cleaning data by converting character to Numeric in Hundreds Scored
df$ Hundreds Scored = as.numeric(substring(df$Hundreds Scored ,1))
#Cleaning data by converting character to Numeric in Runs Scored above 50 or. 50
df$ Runs Scored above 50 or. 50 = as.numeric(substring(df$
Runs Scored above 50 or. 50,1))
#Cleaning data by converting character to integer in Ducks Scored
df$ Ducks Scored = as.numeric(substring(df$Ducks Scored,1))
> #Cleaning data by converting character to Numeric in Not_Outs
> df$Not_Outs = as.numeric(substring(df$Not_Outs,1))
```

Warning message:

```
NAs introduced by coercion
> #Cleaning data by converting character to Numeric in Highest_Innings_Score
> df$Highest_Innings_Score = as.numeric(substring(df$Highest_Innings_Score ,1
))
Warning message:
NAs introduced by coercion
> #Cleaning data by converting character to Numeric in Not_Outs
> df$Not_Outs = as.numeric(substring(df$Not_Outs,1))
> #Cleaning data by converting character to Numeric in Runs_Scored
 df$Runs_Scored = as.numeric(substring(df$Runs_Scored,1))
Warning message:
NAs introduced by coercion
 #Cleaning data by converting character to Numeric in Highest_Innings_Score
 df$Highest_Innings_Score = as.numeric(substring(df$Highest_Innings_Score ,1
))
> #Cleaning data by converting character to Numeric in Batting_Average
> df$ Batting_Average = as.numeric(substring(df$Batting_Average ,1))
Warning message:
NAs introduced by coercion
> #Cleaning data by converting character to Numeric in Balls_Faced
> df$ Balls_Faced = as.numeric(substring(df$Balls_Faced ,1))
Warning message:
NAs introduced by coercion
> #Cleaning data by converting character to Numeric in Batting_Strike_Rate
> df$ Batting_Strike_Rate = as.numeric(substring(df$Batting_Strike_Rate ,1))
Warning message:
NAs introduced by coercion
> #Cleaning data by converting character to Numeric in Hundreds_Scored
> df$ Hundreds_Scored = as.numeric(substring(df$Hundreds_Scored ,1))
Warning message:
NAs introduced by coercion
> #Cleaning data by converting character to Numeric in Runs_Scored_above_50_or
> df$ Runs_Scored_above_50_or._50 = as.numeric(substring(df$ Runs_Scored_abov
e_50_or._50 ,1))
Warning message:
NAs introduced by coercion
> #Cleaning data by converting character to integer in Ducks_Scored
> df$ Ducks_Scored = as.numeric(substring(df$Ducks_Scored ,1))
Warning message:
NAs introduced by coercion
#check if any missing values in Starting Year column of df
is.na(df$Starting Year)
#how many missing values
sum(is.na(df\Starting Year))
> #how many missing values
> sum(is.na(df$Starting_Year))
[1] 0
```

```
#summarise function for distinct values
df %>% summarise(n= n distinct(Starting Year))
> #summarise function for distinct values
 df %>% summarise(n= n_distinct(Starting_Year))
1 50
#To Check the no. of missing values in Ending Year
df %>% summarise(count = sum(is.na(Ending Year)))
> #To Check the no. of missing values in Ending_Year
 df %>% summarise(count = sum(is.na(Ending_Year)))
  count
#To Check the no. of missing values in Span in Years
df %>% summarise(count = sum(is.na(Span in Years)))
> #To Check the no. of missing values in Span_in_Years
> df %>% summarise(count = sum(is.na(Span_in_Years)))
  count
#To Check the no. of missing values in Matches Played
df %>% summarise(count = sum(is.na(Matches Played)))
 #To Check the no. of missing values in Matches_Played
 df %>% summarise(count = sum(is.na(Matches_Played)))
  count
      0
#To Check the no. of missing values in Innings Batted
df %>% summarise(count = sum(is.na(Innings Batted)))
   #There are 93 missing/null values in Innings Batted
    #Therefore we replace the missing values with mean
 df <- df %>% mutate(Innings Batted
=replace(Innings Batted,is.na(Innings Batted),mean(Innings Batted,na.rm = TRUE)))
#To Check the no. of missing values in Not Outs
df %>% summarise(count = sum(is.na(Not Outs)))
```

```
#Therefore we replace the missing values with mean
  df <- df %>% mutate(Not Outs
           =replace(Not Outs,is.na(Not Outs),mean(Not Outs,na.rm = TRUE)))
#To Check the no. of missing values in Highest Innings Score
df %>% summarise(count = sum(is.na( Highest Innings Score)))
  #There are 882 missing/null values in Highest Innings Score
  #Therefore we replace the missing values with mean
  df <- df %>% mutate( Highest Innings Score
              =replace( Highest_Innings_Score,is.na( Highest_Innings_Score),mean(
Highest Innings Score,na.rm = TRUE)))
#To Check the no. of missing values in Batting Average
df %>% summarise(count = sum(is.na( Batting Average)))
  #There are 213 missing/null values in Batting Average
  #Therefore we replace the missing values with mean
  df <- df %>% mutate( Batting Average
              =replace(Batting Average,is.na(Batting Average),mean(
Batting Average,na.rm = TRUE)))
#To Check the no. of missing values in Balls Faced
df %>% summarise(count = sum(is.na( Balls Faced)))
  #There are 93 missing/null values in Balls Faced
  #Therefore we replace the missing values with mean
```

#There are 93 missing/null values in Not Outs

```
df <- df %>% mutate( Balls Faced
              =replace(Balls Faced,is.na(Balls Faced),mean(Balls Faced,na.rm =
TRUE)))
#To Check the no. of missing values in Balls Faced
df %>% summarise(count = sum(is.na( Balls Faced)))
  #There are 93 missing/null values in Balls Faced
  #Therefore we replace the missing values with mean
  df <- df %>% mutate( Balls Faced
              =replace(Balls Faced,is.na(Balls Faced),mean(Balls Faced,na.rm =
TRUE)))
#To Check the no. of missing values in Batting Strike Rate
df %>% summarise(count = sum(is.na( Batting Strike Rate)))
  #There are 102 missing/null values in Batting Strike Rate
  #Therefore we replace the missing values with mean
  df <- df %>% mutate( Batting Strike Rate
              =replace( Batting Strike Rate, is.na( Batting Strike Rate), mean(
Batting Strike Rate,na.rm = TRUE)))
#To Check the no. of missing values in Hundreds Scored
df %>% summarise(count = sum(is.na( Hundreds Scored)))
```

```
#There are 93 missing/null values in Hundreds_Scored 
#Therefore we replace the missing values with mean
```

```
df <- df %>% mutate( Hundreds Scored
             =replace( Hundreds Scored, is.na( Hundreds Scored), mean(
Hundreds Scored,na.rm = TRUE)))
  getwd()
#To Check the no. of missing values in Runs_Scored_above_50 or. 50
df %>% summarise(count = sum(is.na( Runs Scored above 50 or. 50)))
  #There are 93 missing/null values in Runs Scored above 50 or. 50
  #Therefore we replace the missing values with mean
  df <- df %>% mutate( Runs Scored above 50 or. 50
             =replace(Runs Scored above 50 or. 50,is.na(
Runs Scored above 50 or. 50),mean(Runs Scored above 50 or. 50,na.rm = TRUE)))
#To Check the no. of missing values in Ducks Scored
df %>% summarise(count = sum(is.na( Ducks Scored )))
  #There are 93 missing/null values in Ducks Scored
  #Therefore we replace the missing values with mean
  df <- df %>% mutate( Ducks Scored
             =replace( Ducks Scored ,is.na( Ducks Scored ),mean( Ducks Scored ,na.rm
= TRUE)))
********************************
```

#EDA

```
#set the wkd dir
```

```
setwd("C:/Users/Puneetraj Makhija/Desktop/R Programming/MiniProject") getwd
```

```
# PART 1 - Summary Analysis
# An approach to unearth, summarize
# and visualize the important characteristics of a dataset.
# Important properties to look at:
# - Dimensions and size of dataset
# - Structure and variables
# - Types of variables
# - Frequencies and Mode
# - Percentiles
# - Measures of location/central tendency: Mean, Median
# - Measures of spread: Range, Variation
# - Measures of shape: Skewness, Kurtosis
# - etc
df
class(df)
> class(df)
[1] "data.frame"
dim(df)
> dim(df)
[1] 2587
             16
```

names(df) #or

colnames(df)

<pre>> colnames(df)</pre>		
[1] "Player"	"Country"	"Starting_Year"
[4] "Ending_Year"	"Span_in_Years"	"Matches_Played"
[7] "Innings_Batted"	"Not_Outs"	"Runs_Scored"
[10] "Highest_Innings_Score"	"Batting_Average"	"Balls_Faced"
[13] "Batting_Strike_Rate"	"Hundreds_Scored"	"Runs_Scored_above_50_
or50"		
[16] "Ducks_Scored"		

object.size(df)

> object.size(df) 473096 bytes

head(df)

<u> </u>	hea	adı	٠H٠	F٦

	Country Star	ting_Year End	ding_Year Span	_in_Years Match	es_Played Innings
_Batted Not_Outs 1 GS Chappell	AUS	1971	1983	12	74
72 14 2 RW Marsh 76 15	AUS	1971	1984	13	92
76 15 3 G Boycott 34 4	ENG	1971	1981	10	36
4 KWR Fletcher 22 3	ENG	1971	1982	11	24
5 IM Chappell 16 2	AUS	1971	1980	9	16
6 KD Walters 24 6	AUS	1971	1981	10	28
	hest_Inning	s_Score Batti	ing_Average Ba	lls_Faced Batti	ng_Strike_Rate Hu
1 2331 3		NA	40.18	3079	75.70
2 0 1225		66	20.08	1489	82.26
3 1082 1		105	36.06	2020	53.56
- 4 757 1		131	39.84	1134	66.75
5 0 673		86	48.07	874	77.00
6 513 0		59	28.50	732	70.08
Runs_Scored_abo		0 Ducks_Score .4	ed 7		
2 3		4 9	7 1		
4 5		5 8 2	0 0 1		
6		2	1		

summary(df)

> summary(df) Player Length:2587 Class :character Mode :character	Country Length:2587 Class :character Mode :character	Starting_Year Min. :1971 1st Qu.:1991 Median :2003 Mean :2000 3rd Qu.:2010 Max. :2020	Ending_Year Min. :1971 1st Qu.:1996 Median :2007 Mean :2004 3rd Qu.:2016 Max. :2020	Span_in_Years Min. : 0.000 1st Qu.: 0.000 Median : 3.000 Mean : 4.124 3rd Qu.: 7.000 Max. :23.000	Matches_Played Min. : 1.00 1st Qu.: 4.00 Median : 12.00 Mean : 36.05 3rd Qu.: 41.00 Max. : 463.00
Innings_Batted	Not Outs R	uns_Scored		S_Score Batting_A	
Length:2587	Min. : 0.0 Mi	n. : 0.0	Min. : 0.00	Min. :	0.00
Class :character	1st Qu.: 0.0 1s	t Qu.: 24.0	1st Qu.: 24.00	1st Qu.:	9.09

```
Median :
Mean :
                                                                              Median :
Mean :
                    Median : 2.0
Mean : 5.5
                                                       Median : 47.79
Mean : 47.79
 Mode :character
                                               114.0
                                                                                       17.75
                                               676.8
                                                                              Mean
                                                       3rd Qu.: 51.00
Max. :264.00
                     3rd Qu.: 6.0
                                               582.0
                                                                                        24.63
                                    3rd Qu.:
                                                                              3rd Qu.:
                            :84.0
                                            :18426.0
                                                                              Max.
                                                                                      :145.00
                    Batting_Strike_Rate Hundreds_Scored Min.: 0.00 Min.: 0.0000 1st Qu.: 50.00 1st Qu.: 0.0000
  Balls_Faced
                                                           Runs_Scored_above_50_or._50 Ducks_Scored
                                        Min. : 0.0000
1st Qu.: 0.0000
Median : 0.0000
                                                                                        Min. : 0.000
1st Qu.: 0.000
             0.0
                                                           Min. : 0.000
1st Qu.: 0.000
 Min. :
1st Qu.:
            45.0
 Median: 181.0
Mean: 905.8
3rd Qu.: 800.5
Max.: 21367.0
                   Median : 63.55
Mean : 63.55
                                                           Median : 0.000
                                                                                         Median : 1.000
                                                                                         Mean : 2.474
3rd Qu.: 3.000
                                               : 0.7269
                                        Mean
                                                           Mean
                                                                                         Mean
                    3rd Qu.:
                                         3rd Qu.: 0.0000
                                                           3rd Qu.:
                                                                   :96.000
                                                :49.0000
                                        Max.
                                                           Max.
                                                                                         Max.
str
> str
function (object, ...)
UseMethod("str")
<bytecode: 0x000001f9021fb650>
<environment: namespace:utils>
#Starting Year
#returns mean, missing values are removed, if #na.rm=TRUE.
mean(df$Starting Year, na.rm=TRUE)
> mean(df$Starting_Year, na.rm=TRUE)
[1] 2000.043
median(df$Starting Year, na.rm=TRUE)
> median(df$Starting_Year, na.rm=TRUE)
[1] 2003
range(df$Starting Year,na.rm=TRUE)
> range(df$Starting_Year,na.rm=TRUE)
[1] 1971 2020
var(df$Starting Year,na.rm=TRUE)
> var(df$Starting_Year,na.rm=TRUE)
[1] 176.5144
sd(df$Starting Year, na.rm=TRUE)
> sd(df$Starting_Year, na.rm=TRUE)
[1] 13.28587
quantile(df\$Starting Year, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Starting_Year, probs=seq(0,1,0.25),na.rm=TRUE)
                50%
                     75% 100%
1971 1991 2003 2010 2020
```

:34.000

```
fivenum(df$Starting Year)
> fivenum(df$Starting_Year)
[1] 1971 1991 2003 2010 2020
#Ending Year
mean(df$Ending Year, na.rm=TRUE)
> mean(df$Ending_Year, na.rm=TRUE)
[1] 2004.167
median(df$Ending Year, na.rm=TRUE)
> median(df$Ending_Year, na.rm=TRUE)
[1] 2007
range(df$Ending Year,na.rm=TRUE)
> range(df$Ending_Year.na.rm=TRUE)
[1] 1971 2020
var(df$Ending Year,na.rm=TRUE)
> var(df$Ending_Year,na.rm=TRUE)
[1] 170.4439
sd(df$Ending Year, na.rm=TRUE)
> sd(df$Ending_Year, na.rm=TRUE)
[1] 13.05542
quantile(df\$Ending Year, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Ending_Year, probs=seq(0,1,0.25),na.rm=TRUE)
  0% 25% 50% 75% 100%
1971 1996 2007 2016 2020
fivenum(df$Ending Year)
> fivenum(df$Ending_Year)
[1] 1971 1996 2007 2016 2020
#Span in Years
mean(df$Span in Years, na.rm=TRUE)
> mean(df$Span_in_Years, na.rm=TRUE)
[1] 4.124082
median(df$Span in Years, na.rm=TRUE)
> median(df$Span_in_Years, na.rm=TRUE)
[1] 3
range(df$Span in Years,na.rm=TRUE)
```

```
> range(df$Span_in_Years,na.rm=TRUE)
[1] 0 23
var(df$Span in Years,na.rm=TRUE)
> var(df$Span_in_Years,na.rm=TRUE)
[1] 19.54492
sd(df$Span in Years, na.rm=TRUE)
> sd(df$Span_in_Years, na.rm=TRUE)
[1] 4.420964
quantile(df$Span in Years, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Span_in_Years, probs=seq(0,1,0.25),na.rm=TRUE)
  0% 25% 50% 75% 100%
     0
               7
fivenum(df$Span in Years)
> fivenum(df$Span_in_Years)
[1] 0 0 3 7 23
#Matches Played
mean(df$Matches Played, na.rm=TRUE)
> mean(df$Matches_Played, na.rm=TRUE)
[1] 36.04639
median(df$Matches Played, na.rm=TRUE)
> median(df$Matches_Played, na.rm=TRUE)
[1] 12
range(df$Matches Played,na.rm=TRUE)
> range(df$Matches_Played,na.rm=TRUE)
[1]
    1 463
var(df$Matches Played,na.rm=TRUE)
> var(df$Matches_Played,na.rm=TRUE)
[1] 3392.76
```

```
sd(df$Matches Played, na.rm=TRUE)
> sd(df$Matches_Played, na.rm=TRUE)
[1] 58.2474
quantile(df$Matches Played, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Matches_Played, probs=seq(0,1,0.25),na.rm=TRUE)
 0% 25%
           50%
               75% 100%
       4
            12
                 41 463
   1
fivenum(df$Matches Played)
> fivenum(df$Matches_Played)
[1]
         4 12 41 463
    1
#Not Outs
mean(df$Not Outs, na.rm=TRUE)
> mean(df$Not_Outs, na.rm=TRUE)
[1] 5.499599
median(df$Not Outs, na.rm=TRUE)
> median(df$Not_Outs, na.rm=TRUE)
[1] 2
range(df$Not Outs,na.rm=TRUE)
> range(df$Not_Outs,na.rm=TRUE)
[1] 0 84
var(df$Not Outs,na.rm=TRUE)
> var(df$Not_Outs,na.rm=TRUE)
[1] 84.42904
sd(df$Not Outs, na.rm=TRUE)
> sd(df$Not_Outs, na.rm=TRUE)
[1] 9.188528
quantile(df$Not Outs, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Not_Outs, probs=seq(0,1,0.25),na.rm=TRUE)
  0% 25% 50% 75% 100%
             2
   0
       0
                  6
```

```
fivenum(df$Not Outs)
> fivenum(df$Not_Outs)
[1] 0 0 2 6 8
#Runs Scored
mean(df$Runs Scored, na.rm=TRUE)
> mean(df$Runs_Scored, na.rm=TRUE)
[1] 676.7823
median(df$Runs Scored, na.rm=TRUE)
> median(df$Runs_Scored, na.rm=TRUE)
[1] 114
range(df$Runs Scored,na.rm=TRUE)
> range(df$Runs_Scored,na.rm=TRUE)
       0 18426
[1]
var(df$Runs Scored,na.rm=TRUE)
> var(df$Runs_Scored,na.rm=TRUE)
[1] 2521937
sd(df$Runs Scored, na.rm=TRUE)
> sd(df$Runs_Scored, na.rm=TRUE)
[1] 1588.061
quantile(df$Runs Scored, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Runs_Scored, probs=seq(0,1,0.25),na.rm=TRUE)
              50%
                   75% 100%
   0%
        25%
         24
                    582 18426
    0
              114
fivenum(df$Runs Scored)
> fivenum(df$Runs_Scored)
[1]
        0
             24
                        582 18426
                  114
# Highest Innings Score
mean(df$Highest Innings Score, na.rm=TRUE)
> mean(df$Highest_Innings_Score, na.rm=TRUE)
[1] 47.78592
```

```
median(df$Highest Innings Score, na.rm=TRUE)
> median(df$Highest_Innings_Score, na.rm=TRUE)
[1] 47.78592
range(df$Highest Innings Score,na.rm=TRUE)
> range(df$Highest_Innings_Score,na.rm=TRUE)
[1]
     0 264
var(df$Highest Innings Score,na.rm=TRUE)
> var(df$Highest_Innings_Score,na.rm=TRUE)
[1] 1176.754
sd(df$Highest Innings Score, na.rm=TRUE)
> sd(df$Highest_Innings_Score, na.rm=TRUE)
[1] 34.30385
quantile(df$Highest Innings Score, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Highest_Innings_Score, probs=seq(0,1,0.25),na.rm=TRUE)
       0%
                25%
                           50%
                                     75%
                                              100%
  0.00000 24.00000 47.78592 51.00000 264.00000
fivenum(df$Highest Innings Score)
> fivenum(df$Highest_Innings_Score)
      0.00000 24.00000 47.78592 51.00000 264.00000
[1]
#Batting Average
mean(df$Batting Average, na.rm=TRUE)
> mean(df$Batting_Average, na.rm=TRUE)
[1] 18.28585
median(df$Batting Average, na.rm=TRUE)
> median(df$Batting_Average, na.rm=TRUE)
[1] 17.75
range(df$Batting Average,na.rm=TRUE)
> range(df$Batting_Average,na.rm=TRUE)
[1]
     0 145
var(df$Batting Average,na.rm=TRUE)
> var(df$Batting_Average,na.rm=TRUE)
[1] 149.6689
sd(df$Batting Average, na.rm=TRUE)
> sd(df$Batting_Average, na.rm=TRUE)
[1] 12.23392
quantile(df$Batting Average, probs=seq(0,1,0.25),na.rm=TRUE)
```

```
> quantile(df$Batting_Average, probs=seq(0,1,0.25),na.rm=TRUE)
                  50% 75%
  0.00
         9.09 17.75 24.63 145.00
fivenum(df$Batting Average)
> fivenum(df$Batting_Average)
              9.09 17.75 24.63 145.00
[1]
      0.00
#Balls Faced
mean(df$Balls Faced, na.rm=TRUE)
> mean(df$Balls Faced, na.rm=TRUE)
[1] 905.8027
median(df$Balls Faced, na.rm=TRUE)
> median(df$Balls Faced, na.rm=TRUE)
[1] 181
range(df$Balls Faced,na.rm=TRUE)
> range(df$Balls Faced,na.rm=TRUE)
[1] 0 21367
var(df$Balls Faced,na.rm=TRUE)
> var(df$Balls Faced,na.rm=TRUE)
[1] 4100631
sd(df$Balls Faced, na.rm=TRUE)
> sd(df$Balls Faced, na.rm=TRUE)
[1] 2025.001
quantile(df$Balls Faced, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Balls Faced, probs=seq(0,1,0.25),na.rm=TRUE)
  0%
             50% 75% 100%
       25%
 0.0 45.0 181.0 800.5 21367.0
fivenum(df$Balls Faced)
> fivenum(df$Balls Faced)
[1] 0.0 45.0 181.0 800.5 21367.0
# Batting Strike
mean(df$Batting Strike Rate, na.rm=TRUE)
> mean(df$Batting_Strike_Rate, na.rm=TRUE)
[1] 63.55337
median(df$Batting Strike Rate, na.rm=TRUE)
> median(df$Batting_Strike_Rate, na.rm=TRUE)
```

```
[1] 63.55337
range(df$Batting Strike Rate,na.rm=TRUE)
> range(df$Batting_Strike_Rate,na.rm=TRUE)
     0.00 328.57
var(df$Batting Strike Rate,na.rm=TRUE)
> var(df$Batting_Strike_Rate,na.rm=TRUE)
[1] 675.7612
sd(df$Batting Strike Rate, na.rm=TRUE)
> sd(df$Batting_Strike_Rate, na.rm=TRUE)
[1] 25.99541
quantile(df$Batting Strike Rate, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Batting_Strike_Rate, probs=seq(0,1,0.25),na.rm=TRUE)
                           50%
       0%
                25%
                                     75%
                                              100%
  0.00000
           50.00000 63.55337
                               77.06500 328.57000
fivenum(df$Batting Strike Rate)
> fivenum(df$Batting_Strike_Rate)
[1]
      0.00000 50.00000 63.55337
                                    77.06500 328.57000
# Hundreds Scored
mean(df$Hundreds Scored, na.rm=TRUE)
median(df$Hundreds Scored, na.rm=TRUE)
> median(df$Hundreds_Scored, na.rm=TRUE)
[1] 0
range(df$Hundreds Scored,na.rm=TRUE)
> range(df$Hundreds_Scored,na.rm=TRUE)
[1] 0 49
var(df\$Hundreds Scored.na.rm=TRUE)
> var(df$Hundreds_Scored,na.rm=TRUE)
[1] 8.361581
sd(df$Hundreds Scored, na.rm=TRUE)
> sd(df$Hundreds_Scored, na.rm=TRUE)
[1] 2.89164
quantile(df$Hundreds Scored, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Hundreds_Scored, probs=seq(0,1,0.25),na.rm=TRUE)
                75% 100%
     25%
           50%
  0%
                      49
fivenum(df$Hundreds Scored
> fivenum(df$Hundreds_Scored)
[1] 0 0 0 0 49
```

```
mean(df$Ducks Scored, na.rm=TRUE)
> mean(df$Ducks_Scored, na.rm=TRUE)
[1] 2.474338
median(df$Ducks Scored, na.rm=TRUE)
> median(df$Ducks_Scored, na.rm=TRUE)
[1] 1
range(df$Ducks Scored,na.rm=TRUE)
> range(df$Ducks_Scored,na.rm=TRUE)
[1] 0 34
var(df$Ducks Scored,na.rm=TRUE)
> var(df$Ducks_Scored,na.rm=TRUE)
[1] 14.22732
sd(df$Ducks Scored, na.rm=TRUE)
> sd(df$Ducks_Scored, na.rm=TRUE)
[1] 3.771912
quantile(df$Ducks Scored, probs=seq(0,1,0.25),na.rm=TRUE)
> quantile(df$Ducks_Scored, probs=seq(0,1,0.25),na.rm=TRUE)
 0% 25% 50% 75% 100%
                 3 34
       0
            1
fivenum(df$Ducks Scored)
> fivenum(df$Ducks_Scored)
[1] 0 0 1 3 34
# PART 2 - Descriptive Analysis
# Extension of Summary Analysis.
# Generally, both overlap each other.
```

#Ducks Scored

```
# Helps in analysing large amounts of data
# in simple and structured manner.
# Involves numerical and graphical methods
# to analyse the dataset.
# Refers to measures of distribution, shape, central tendency
# and variability of a dataset with respect
# to continuous variables mainly.
# Skewness: Refers to the symmetry (or asymmetry) of a distribution.
# - Can be positive or negative.
# - Positive value: Distribution is right-skewed
# i.e. mean is greater than median.
# - Negative value: Distribution is left-skewed
# i.e. mean is less than median.
#Calculating skewness
SIY <- df$Span in Years
MP <- df$Matches Played
IS<- df$Innings Batted
NO<- df$Not Outs
RS<- df$Runs Scored
HIS<- df$Highest Innings Score
BA<- df$Batting Average
BF<- df$Balls Faced
BSR<- df$Batting Strike Rate
HS<- df$Hundreds Scored
RSA<- df$Runs Scored above 50 or. 50
DS<- df$Ducks Scored
```

install.packages("moments")

```
library(moments)
skewness(SIY)
> skewness(SIY)
[1] 1.053648
skewness(MP)
> skewness(MP)
[1] 2.968275
skewness(IS)
> skewness(IS)
[1] 5.130879
skewness(NO)
> skewness(NO)
[1] 3.130879
skewness(RS)
> skewness(RS)
[1] 4.447134
skewness(HIS)
> skewness(HIS)
[1] 1.366548
skewness(BA)
> skewness(BA)
[1] 1.42563
skewness(BF)
> skewness(BF)
[1] 4.228021
skewness(BSR)
> skewness(BSR)
[1] 0.7584338
skewness(HS)
> skewness(HS)
[1] 7.472802
```

```
skewness(RSA)
> skewness(RSA)
[1] 4.566868
skewness(DS)
> skewness(DS)
[1] 2.866744
# Kurtosis: Refers to the tailedness (heavy-tailed or light-tailed)
# of data relative to a normal distribution.
# - Can be positive or negative.
# - Positive value: Positive or high value kurtosis
# indicates tails or outliers. Said to be leptokurtic.
#
# - Negative value: Negative kurtosis indicates a
# flat data distribution (light tails or lack of outliers).
# Said to be platykurtic.
#
# - The normal distribution has zero kurtosis
# (or Pearson's kurtosis as 3). Said to be mesokurtic.
#calculation of kurtosis
kurtosis(SIY) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(SIY) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 3.412724
kurtosis(MP) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(MP) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 13.68285
kurtosis(IS) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(IS) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 12.68285
kurtosis(NO) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(NO) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 15.42966
```

```
kurtosis(RS) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(RS) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 27.94169
kurtosis(HIS) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(HIS) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 5.828927
kurtosis(BA) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(BA) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 9.523326
kurtosis(BF) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(BF) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 25.06735
kurtosis(BSR) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(BSR) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 9.410634
kurtosis(HS) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(HS) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 79.5539
kurtosis(RSA) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(RSA) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
Γ17 28.35597
kurtosis(DS) #reports Pearson's (proper) kurtosis (> or < 3)
> kurtosis(DS) #reports Pearson's (proper) kurtosis (> or < 3)</pre>
[1] 13.93426
***********************
#Data visualization in R
# R has 3 plotting systems
#1. Base plotting system
#2. Lattice plotting system
#3. GGplot2
```

```
install.packages("ggplot2")
library(ggplot2)
install.packages("ggthemes")
library(ggthemes)
library(tidyverse)
#ggplot2
#gg stands for grammer of graphics
#components of graphics:
#1. Data: The dataset being summarized
#2. Aesthetics: Variables mapped to visual cues, such as x-axis and y-axis values
and color, shape, size etc.
#3. Geometry: The type of plot (scatterplot, boxplot, barplot, histogram, qqplot, s
mooth density, etc.)
#4. Facets: Groups by which we divide the data
df<- read.csv("C:/Users/Puneetraj Makhija/Desktop/R Programming/MiniProject
/104 ICCWorldCup.csv", stringsAsFactors = FALSE)
str(df)
> str(df)
 data.frame': 2587 obs. of 16 variables:
                                      "GS Chappell ""RW Marsh""G Boycott "
"AUS" "AUS" "ENG" ...
 $ Player
                               : chr
 $ Country
                               : chr
```

```
$ Country

$ Starting_Year

$ Ending_Year

$ Span_in_Years

$ Matches_Played

$ Innings_Batted

$ Not_Outs

$ Runs_Scored

$ Highest_Innings_Score

$ Batting_Average

$ Balls_Faced

$ Ratting_Strike_Rate
                                                    : int
                                                    : int
                                                   : int
                                                   : chr
                                                   : num
                                                   : num
                                                  : num
                                                    : num
                                                   : num
$ Batting_Strike_Rate : num
$ Hundreds Scored : num
                                                    : num 3 0 1 1 0 0 0 0 0 0 ...

0: num 14 4 9 5 8 2 3 2 1 0 ...

: num 7 7 1 0 0 1 0 0 2 0 ...
$ Hundreds_Scored
                                                    : num
$ Runs_Scored_above_50_or._50: num
$ Ducks_Scored
```

#BoxPlot

ggplot(data=df, aes(y=Country))+ geom_bar(col="white", fill="red") + labs(title
="Number of Matches Played", y = "Country", x = "No. of Matches")

> ggplot(data=df, aes(y=Country))+ geom_bar(col="white", fill="red") + labs(title ="Number of Matches Played", y = "Country", x = "No. of Matches")

#Frequency Plot

```
ggplot(data=df, aes(Span_in_Years))+ geom_freqpoly(color="blue",size=2) + la
bs( y = "No. Of Years", x = "Duration Of Player") + theme_classic()
> ggplot(data=df, aes(Span_in_Years))+ geom_freqpoly(color="blue",size=2) + l
abs( y = "No. Of Years", x = "Duration Of Player") + theme_classic()
```


#Jitter

ggplot(data=df, aes(x=Matches_Played,y=Not_Outs, color= Country))+ geom_jit
ter()

> ggplot(data=df, aes(x=Matches_Played,y=Not_Outs, color= Country))+ geom_jitt
er()

#Histogram

ggplot(data=df, aes(x=as.numeric(Batting_Average))) + geom_histogram(bins=6
0, fill="orange",color="Black") + labs(x="Batting_Average",y="No. of Matches")

> ggplot(data=df, aes(x=as.numeric(Batting_Average))) + geom_histogram(bins=60
, fill="orange",color="Black") + labs(x="Batting_Average",y="No. of Matches")

#Barplot

ggplot(data=df,

aes(x=as.numeric(Span_in_Years),y=as.numeric(Runs_Scored)))+ geom_bar(stat
= "identity",fill="blue") + labs(title=" Years v/s Runs Scored",x="Span in
Years",y="Runs Scored")

> ggplot(data=df, aes(x=as.numeric(Span_in_Years),y=as.numeric(Runs_Scored)))+
geom_bar(stat = "identity",fill="blue") + labs(title=" Years v/s Runs Scored",
x="Span in Years",y="Runs Scored")

#Scatter Plot

ggplot(data=df, aes(x=Balls_Faced,y=Runs_Scored,color= Span_in_Years)) +
geom_point() +scale_color_gradient(low="blue", high="red") + ggtitle("Runs
Scored over his Career") + theme_classic()

> ggplot(data=df, aes(x=Balls_Faced,y=Runs_Scored,color= Span_in_Years)) + ge
om_point() +scale_color_gradient(low="blue", high="red") + ggtitle("Runs Score
d over his Career") + theme_classic()

#Box Plot

```
\begin{split} & ggplot(data=df, aes(x=Starting\_Year,y=Batting\_Strike\_Rate)) + geom\_boxplot(fill="blue") \\ & + ylim(0,130) + theme(plot.background = element\_rect(fill = "lightblue")) + theme(panel.bor der = element\_blank(), \\ & panel.grid.major = element\_blank(), \\ & panel.grid.minor = element\_blank(), \\ & axis.line = element\_line(size = 1, \\ & colour = "black")) + labs(title = "Boxplot of Batting Strike Rate",x="Starting Year",y="Batin g Strike Rate") \end{split}
```


ggplot(data=df, aes(x=Country, y=Hundreds_Scored))+ geom_bar(stat = "identit
y", fill="white") + theme_dark() + theme(panel.border = element_blank(), panel
.grid.major = element_blank(),panel.grid.minor = element_blank(), axis.line = el
ement_line(size = 1colour = "black")) + labs(title = "Hundreds Scored",y="No.
of Hundreds")

Hundreds Scored

Multiple Linear Regression

```
input <- df[,c("Innings Batted","Runs Scored","Batting Average")]
# Create the relationship model.
model <- lm(formula = Runs Scored~Innings Batted*Batting Average, data = i
nput)
# Show the model.
print(model)
call:
lm(formula = Runs_Scored ~ Innings_Batted * Batting_Average,
    data = input)
Coefficients:
                      Innings_Batted -0.7157
(Intercept)
                                                        Batting_Average
-6.9887
                                                              -0.3039
Innings_Batted:Batting_Average
                          0.8838
# Get the Intercept and coefficients as vector
# elements.
a<- coef(model)[1]
XIB <- coef(model)[2]
XBA <- coef(model)[3]
print(a)
> print(a)
(Intercept)
  -6.988657
print(XIB)
> print(XIB)
Innings_Batted
    -0.7157235
print(XBA)
> print(XBA)
Batting_Average
     -0.30389\overline{17}
```

```
newdata <- data.frame(Innings Batted=29,Batting Average=100.000)
       Y <- predict(model,newdata)
       print(Y)
       > print(Y)
          2504.811
       #Expected value should be 2900 but the actual value is calculated and observed t
       o be 2504.811
       #Hence the error is 396
       install.packages("caTools")
       library(caTools)
       split <- sample.split(df,SplitRatio=0.8)
      split
       > split
                TRUE
                          TRUE
                                   TRUE FALSE
                                                      TRUE
                                                                TRUE
                                                                         TRUE
                                                                                  TRUE FALSE
                                                                                                      TRUE
                                                                                                               TRUE
       TRUE FALSE
                          TRUE
                                   TRUE FALSE
       train data <- subset(df,split==TRUE)
       test data <- subset(df, split==FALSE)
       #to check correlation
       dt <- as.data.frame(apply(df,2,as.numeric))
       cr <- cor(dt)
       cr
    cr
                             Player Country Starting_Year Ending_Year Span_in_Years Matches_Played Innings_Batted
Player
Country
                                  NΔ
                                                                            -0.2180544
0.1167271
                                                                                                           -0.09824892
                                               1.000000000
                                                                                            -0.1080891
0.1535579
                                                             0.94381227
Starting_Year
                                  NΔ
                                               0.943812274
                                                             1.00000000
                                                                                                           0.14630110
Ending_Year
Span_in_Years
                                  NA
                                          NA
                                              -0.218054422
                                                                             1.0000000
                                                                                                           0.72729484
                                  NA
                                                             0.11672710
                                                                             0.7782964
0.7272948
Matches_Played
                                              -0.108089065
                                                                                             1.0000000
                                  NΑ
Innings_Batted
                                              -0.098248922
                                                             0.14630110
                                                                                             0.9631505
                                                                                                           1.00000000
                                                             0.12675886
0.13271791
0.16107748
Not_Outs
                                  NA
                                          NA
                                              -0.098588139
                                                                             0.6706047
                                                                                             0.8666750
                                                                                                           0.78452635
                                                                             0.6048359
                                              -0.070847443
0.011187368
                                                                                             0.8591427
0.4699850
                                                                                                           0.94679852
0.52628100
Runs_Scored
Highest_Innings_Score
                                          NΑ
                                  NA
Batting_Average
Balls_Faced
                                               0.002151976
                                                             0.09286446
                                                                             0.2677681
                                                                                             0.3340959
                                                                                                           0.41006236
                                  NA
                                          NA
                                               -0.098398595
                                                             0.10878319
                                                                             0.6169516
                                                                                             0.8551511
Batting_Strike_Rate
                                               0.182682248
                                                                                                           0.73152306
Hundreds_Scored
                                              -0.013325394
                                                             0.12714438
                                                                             0.4155117
                                                                                             0.6416517
                                                                             0.5520251
0.7076334
Runs_Scored_above_50_or._50
                                              -0.068308046
                                                             0.11741879
                                                                                             0.8040178
                                                                                                           0.90163261
                                              -0.068167200
                                                             0.17025585
                                                                                                           0.85612211
Ducks_Scored
                                                                                             0.8827396
                                Not_Outs Runs_Scored Highest_Innings_Score Batting_Average Balls_Faced Batting_Strike_Rate
NA NA NA NA NA
Player
                                                                                                -0.0983986
0.1087832
                                                                  0.01118737
0.16107748
Starting_Year
                              -0.09858814
                                          -0.07084744
                                                                                  0.002151976
                                           0.13271791
                                                                                  0.092864459
Ending_Year
                              0.12675886
                                                                  0.44205279
                                           0.60483586
                                                                                  0.267768122
                                                                                                 0.6169516
0.8551511
0.9440287
                                                                                                                      0.2061806
Span_in_Years
Matches_Played
Innings_Batted
                              0.67060466
                                                                  0.46998495
0.52628100
                                           0.85914265
0.94679852
                              0.86667497
                                                                                  0.334095932
                                                                                                                      0.2279646
0.2318666
                              0.78452635
                                                                                  0.410062359
Not_Outs
                                                                                  0.233679549
```

```
Hundreds_Scored
Runs_Scored_above_50_or._50
                                                                                                    0.1619106
                                                                                  0.8308300
                                    0.97973106
                                                                      0.483596752
                                                                                  0.9787727
                          0.57324936
                                                        0.50714152
                                                                                                    0.1863005
                          0.73506199
                                    0.71589569
Ducks_Scored
                                                        0.42500042
                                                                      0.214470319
                                                                                  0.7117517
                                                                                                    0.1840740
                         Hundreds_Scored Runs_Scored_above_50_or._50 Ducks_Scored
Country
                             -0.01332539
0.12714438
                                                      -0.06830805
                                                                  -0.0681672
Starting_Year
                                                      0.11741879
                                                                   0.1702559
0.7076334
Ending_Year
Span_in_Years
Matches_Played
                             0.41551170
                                                      0.55202509
                                                      0.80401783
                                                                   0.8827396
                             0.64165167
Innings_Batted
                                                       0.90163261
                                                                   0.8561221
Not_Outs
                             0.39392093
                                                      0.57324936
                                                                   0.7350620
                                                      0.97973106
0.50714152
0.48359675
                                                                   0.7158957
0.4250004
                             0.86757568
Runs_Scored
Highest_Innings_Score
Batting_Average
                             0.40651296
                                                                   0.2144703
Balls_Faced
                                                                   0.7117517
                             0.83082998
                                                      0.97877269
Batting_Strike_Rate
Hundreds_Scored
                                                                   0.1840740
                             1.00000000
                                                      0.82208328
                                                                   0.5259969
Runs_Scored_above_50_or._50
                             0.82208328
                                                       1.0000000
                                                                   0.6541400
                                                                   1.0000000
Ducks_Scored
                             0.52599693
                                                      0.65413997
      model <- lm(Runs Scored~Innings Batted*Batting Average,dt)
      summary(model)
      call:
      lm(formula = Runs_Scored ~ Innings_Batted * Batting_Average,
           data = dt
      Residuals:
                                Median
            Min
                          10
                                                             Max
                    -15.24
      -2265.73
                                   9.27
                                                        1373.39
      Coefficients:
                                                 Estimate Std. Error t value Pr(>|t|)
                                               -6.988657
                                                               6.316782
      (Intercept)
                                                                             -1.106 0.268682
                                                                                                   ***
                                               -0.715723
                                                               0.207019
                                                                             -3.457 0.000555
      Innings_Batted
                                                                             -1.034 0.301219
                                                -0.303892
                                                               0.293885
      Batting_Average
                                                                                                  ***
      Innings_Batted:Batting_Average 0.883774
                                                               0.005928 149.090
                           0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
      Signif. codes:
      Residual standard error: 156.8 on 2370 degrees of freedom
         (213 observations deleted due to missingness)
                                 0.991,
      Multiple R-squared:
                                                Adjusted R-squared:
      F-statistic: 8.684e+04 on 3 and 2370 DF,
                                                             p-value: < 2.2e-16
      predicted <- predict(model, test_data)</pre>
      predicted
                                               13
                                                               16
                                                                               20
                                                                                              25
        739.7687479
                        224.3701427
                                         7.9524467
                                                         4.6888716
                                                                                      256.5728035
                                                                                 NA
      29.1977174
                                  41
                                                  45
                                                                 48
                                                                                 52
                                                                                                 57
       2342.7762039
                        842.4729981
                                       270.5396075
                                                       341.4906310
                                                                       230.9177421
                                                                                      130.9267598
      175.7383045
                       52.7010437
                                                 77
                  68
                                                                 80
                                                                                 84
                                                                                                 89
         49.4757511
                         28.1713120
                                          4.0209777
                                                        -3.9052715
                                                                        -7.7043801
                                                                                      376.0068324
      112.9342363
                      45.0033631
```

109

112

116

121

Runs_Scored

Balls_Faced

Batting_Average

Highest_Innings_Score

Batting_Strike_Rate

100

128

125

0.62852888

0.28435001

0.23367955

0.62534507 0.18874022

0.39392093

1.00000000

0.53757608

0.48152627

0.98993164

0.21334939

0.86757568

0.53757608

1.00000000

0.63712374

0.52733935

0.36042626

0.46405435

0.481526268

1.000000000

0.479792463

0.431617762

0.406512964

0.9899316

0.5273394

0.4797925

1.0000000

0.1851710

0.2133494

0.3604263

0.4316178

0.1851710

1.0000000

23.0293910 24.4729487 135.1292436 150.4894652	-5.4927903	4942.5666555	466.6102669	250.9960781	
132 137	141	144	148	153	
157 160 78.6306260 36.6390730	29.6349686	2.6013268	4.6888716	-4.7609620	
-7.6882752 3881.6552607 164 169	173	176	180	185	
189 192 532.1930910 244.5329638	1.5737395	-4.2250852	2215.3405616	483.4483617	
112.7626863 64.0308992 196 201	205	208	212	217	
221 224 26.2377069 14.9984024	8475.9444328	2922.7193803	962.5230790	116.5345019	
52.1861568 191.0667002 228 233	237	240	244	249	
253 256 46.8265527 NA	NA	6622.7572969	571.2302413	173.5988044	
158.0144110 20.5826465 260 265	269	272	276	281	
285 288 6.4980619 -1.1018204	-6.7883962	-7.1244976	NA	794.5126880	
651.1176835 525.5614599 292 297	301	304	308	313	
317 320 180.6778216 118.5336372	8.7120154	-1.1018204	-6.5446151	2355.2140176	
54.5171311 29.5068288 324 329	333	336	340	345	
349 352 -5.9647327 4650.8241099	852.5607614	752.5895266	157.9909375	133.2439313	
33.1179268 -4.7609620 356 361	365	368	372	377	
381 384 1548.2565301 677.3038545	703.0379060	265.4762247	193.6732315	80.4157839	
77.1352446 171.2778475 388 393	397	400	404	409	
413 416 28.5250272 47.0424329		-6.5446151	5649.1661573	690.9792887	
261.7067738 226.3622837 420 425	429				
445 448 78.1987835 33.7057815	-4.0291337				
50.7236576 29.9567166 452 457	461	464		473	
477 480 -0.1579357 NA					
122.5534548 94.9478805 484 489	493	496	500	505	
509 512 33.8925790 40.0627074				NA NA	
NA 3413.7768000 516 521	525	528	532	537	
541 544 1256.8832215 778.2695168	229.5959365				1
999.4422697 2127.8536545 548 553	557	560	564	569	_
573 576 532.7183945 434.6379862		76.2391895			
16.6859114 -2.8916612 580 585	589	592	596	601	
605 608 NA 4391.6777823				NA	5
290.8222973 1619.2753973 612 617	621	624	628	633	J
637 640 842.9222671 431.0208638		75.2474752			
-4.8049677 NA				665	
644 649 669 672 11954.8623440 1296.8721673	653	656	184 7337001		
NA 6169.2194916 676 681				10.2719766 697	
701 704	685	688	692		
6412.9042043 1192.3492988 53.1569454 37.9550237					
708 713 733 736	717	720	724	729	

14.3384807 -4.0291337 174.7099850 138.5093572	-7.7043801	6543.4101385	2713.2071320	756.7071923	
740 745	749	752	756	761	
765 768 133.9370683 21.3807730	-5.4927903	-7.7043801	9117.5603212	1631.1327217	
881.9223846 511.6023297 772 777	781	784	788	793	
	89.6918175	61.8604240	76.2391895	10.3616040	
4.1395668 30.5825167 804 809	813	816	820	825	
829 832 -3.2973054 -6.5446151	NA	2524.6015314	1473.4662134	945.5962449	
453.8284658 145.6602850 836 841	845	848	852	857	
	2.5573211	40.1203618	0.3618362	-7.1244976	8
631.9223362 5805.3658295 868 873	877	880	884	889	
893 896 3228.7123087 1610.0069827	1125.5598899	611.2050358	483.4239208	287.6230304	
258.6459505 191.8629938 900 905	909	912	916	921	
925 928 201.6542146 87.0845970	99.9776040	112.7960805	30.5825167	13.7512714	
156.4430933 19.3893722 932 937	941	944	948	953	
957 960 3.2891494 NA	-9.1358270	NA	2717.9603305	503.9545832	
393.9617138 309.8636940 964 969	973	976	980	985	
989 992 284.2155242 86.2088837	70.3539910	93.5470068	21.9602274	32.7902826	
2.5097340 -5.3848502 996 1001	1005	1008	1012	1017	
1021 1024 -6.5446151 9848.3294951	1613.0416036	1300.3533310	986.3974642	325.8531938	
316.0420571 99.7692989 1028 1033	1037	1040	1044	1049	
	22.7085244	1.8254928	-2.5654771	NA	7
396.1972417 3457.7535837 1060 1065	1069	1072	1076	1081	
1085 1088 1647.2152757 728.3494711	310.3515702	348.2268772	112.6530135	42.0037118	
30.5825167 28.5126456 1092 1097	1101	1104	1108	1113	
1117 1120 6.4980619 -1.3256729	0.7716410	-2.5866771	-4.0291337	13806.5977697	5
553.7648315 1200.9208474 1124 1129	1133	1136	1140	1145	
1149 1152 1017.8546333 543.2442886	389.9477047	197.4201796	67.4153985	30.7704960	
NA 4.7528060 1156 1161 1181 1184	1165	1168	1172	1177	
-6.9564469 3185.5231480	2285.8688144	1719.0237701	1316.6616265	1310.2362561	
487.7170376 209.3720115 1188 1193 1213 1216	1197	1200	1204	1209	
187.6604796 115.3206055	37.8127884	45.0789331	14.1226004	-3.2973054	
NA NA 1220 1225 1245 1248	1229	1232	1236	1241	
5588.1935526 1083.0675552 91.9151331 101.1512469	703.4828494	350.1126973	532.8459488	169.8051712	
1252 1257 1277 1280	1261	1264	1268	1273	
31.0986252 48.2971845 NA 4893.3510866	21.1170632	163.2093948	NA	NA	
1284 1289 1309 1312	1293	1296	1300	1305	
1940.8716951 863.9808829 133.7000981 98.6895732	674.8094983	582.9753482	401.7698911	154.4756591	
133.7000981 98.6895732 1316 1321 1341 1344	1325	1328	1332	1337	
1344					

7 2707717	49.0999225			11.6536130	35.0614980	
7.3707717 - 1348 1373	1353	1357	1360	1364	1369	
-2.4854378	1376 0.2538961 L845.1432148		NA	5123.6931170	2464.1596231	1
1380	1385	1389	1392	1396	1401	
881.0926503	624.0697844	197.9680098	205.1139932	216.0727139	90.3813588	
86.6757291 1412	1417	1421	1424	1428	1433	
73.0242499	9.1437759	22.3166855	4.7528060	1.8254928	4.7528060	
1444	NA 1449	1453	1456	1460	1465	
	5897.4072168	2337.0633765	907.6261647	792.3532130	199.2003538	
	1481	1485	1488	1492	1497	
	1504 -7.1244976	8793.7890248	6317.7662517	2512.2759094	1162.2914022	
845.1527702 1508	1513	1517	1520	1524	1529	
719.7235866	1536 559.3205435	513.5116574	416.0966538	439.9126226	421.8159761	
1540	242.7817261 1545	1549	1552	1556	1561	
1565 205.3281442	149.2450313	207.2710149	212.9826840	78.4937636	170.0598839	
	1577	1581	1584	1588	1593	
1597 76.8407249	1600 38.9865037	35.6064530	118.1287806	0.4139745	19.0333422	
76.8407249 NA -6.95644 1604	1609	1613	1616	1620	1625	
1029 _7 7043801	1032 2055 2502427	1159.3845363	1091.9159791	446.2796754	232.8007242	
1636	107.2989340 1641	1645	1648	1652	1657	
197.4114071	47.0024650		40.2562394	22.4703235	6.4980619	
0.3618362 - 1668	1673	1677	1680	1684	1689	
	1696 12288.8690177	2523.3555747	2056.8670585	1285.7717134	933.7995876	
581.4439381 1700	592.2059817 1705 1728	1709	1712	1716	1721	
	451.4432589	206.4037177	257.8452133	110.4131105	89.8382152	
71.1964306 1732 1757	75.8472864 1737	1741	1744	1748	1753	
67.6973033		71.7323073	NA	5.4846344	1.8254928	
NA -4.80496 1764 1789	1769 1792	1773	1776	1780	1785	
-6.2246186 840.8333485	-9.1358270	NA	NA	3242.2145879	2255.9736161	1
1796 1821	1801 1824	1805	1808	1812	1817	
819.7313613 105.1148794	633.7770036 84.9196897	383.8098282	235.9297111	210.2420373	138.4175037	
1828 1853	1833 1856	1837	1840	1844	1849	
41.3442215	43.6488472	40.3541233	NA	-1.8336487	0.2538961	
NA 1860 1885	NA 1865 1888	1869	1872	1876	1881	
	5888.0771988 274.6167254	3158.2314470	1737.8861615	911.2554385	683.0061053	
1892 1917	1897 1920	1901	1904	1908	1913	
	185.2628942 31.2665154	69.1040405	93.6908200	63.3675529	35.3553700	
1924 1949	1929 1952	1933	1936	1940	1945	
1343	1337					

12.7657021 421.2230819	3.0732692	19.9895079	5.2839176	-7.1244976	2831.2178576	1
1956	1961	1965	1968	1972	1977	
	1984 308.6545024 91.8400646	170.6655771	214.6143230	93.6708913	102.2254843	
1988	1993	1997	2000	2004	2009	
5.6222327	NA	38.7045347	-4.2250852	-6.6203456	NA	2
767.9752635 15 2020	2025	2029	2032	2036	2041	
		193.6732315	293.7490749	215.3184329	-0.1659079	
2052	2057	2061	2064	2068	2073	
6008.5172306		1399.9567320	1054.7997821	726.5931417	383.9760986	
209.3720115 1 2084	2089	2093	2096	2100	2105	
198.3234113		76.2391895	78.1097920	56.2385965	NA	
2116	3.2973054 2121	2125	2128	2132	2137	
-6.5446151	2144 NA	1781.0394274	1813.9917230	976.6309705	646.9882936	
514.3116404 3 2148	2153	2157	2160	2164	2169	
309.6975937		241.3299022	255.8950738	197.2166618	128.7960929	
55.0194559 6 2180	56.2429738 2185	2189	2192	2196	2201	
	2208	16.6859114		NA	NA	
NA 2212	NA 2217	2221	2224	2228	2233	
	2240		291.1114163	212.0089462	113.5005997	
90.6915681 1 ² 2244	43.2668229	2253			2265	
	2272		0.9938570			
NA 1753.697529 2276	97	2285		2292		
	2304 571.7411068	408.0958430		146.9731930	160.7980297	
101.1375022	41.3442215	2317	2320	2324	2329	
	2336 28.8805797	11.5313885	9.1437759	11.9910499	NA NA	
-7.7043801 2340	NA 2345	2349	2352	2356	2361	
2365	2343 2368 411.6476189	473.3519249		404.2226511	108.4855304	
	47.9771636 2377	2381	2384	2388	2393	
2397 2	2400					
	NA		NA	NA 2420	-4.8049677	
	2409 2432	2413	2416	2420	2425	
	29.3778873	171.1714948	78.6945604	59.6193552	68.0036512	
	2441	2445	2448	2452	2457	
	9.8756042 -7.6882752	4.0209777	8.0421182	4.7528060	-3.6452028	
	2473 2496	2477	2480	2484	2489	
-7.7043801 203.8101064	282.3217570 107.2989340	235.1972910	178.4335732	143.7788869	142.8882245	
2500	2505 2528	2509	2512	2516	2521	
95.3404086	68.5051687 12.8820980	81.2402576	42.0760499	102.5946503	20.1212006	
2532	2537 2560	2541	2544	2548	2553	

6.2127993 19.3893722 3.2891494 7.1194930 -0.3699921 NA
6.3044741 -5.9647327
2564 2569 2573 2576 2580 2585
-6.5446151 NA NA NA NA NA -4.8049677

plot(test_data\$Runs_Scored,type = "l",lty=1.8, col="green")

