Exemple 1. Résoudre l'équation $e^{-0.5x+1} - 2 = 0$.

L'équation s'écrit : $e^{-0.5x+1} = 2$. En prenant le logarithme népérien de chaque membre, on obtient : $-0.5x+1 = \ln 2$,

d'où, successivement : - 0,5x = $\ln 2 - 1$; $x = \frac{\ln 2 - 1}{-0.5} = 2(1 - \ln 2)$.

L'équation proposée admet une solution : $x = 2(1 - \ln 2)$; $x \approx 0.61$.

Exemple 2. Résoudre l'inéquation 2 $\ln (x + 4) > \ln (2 - x)$

On doit avoir x + 4 > 0 et 2 - x > 0 soit -4 < x < 2. On écrit : $\ln(x + 4)^2 > \ln(2 - x)$ d'où $(x + 4)^2 > 2 - x$

c'est-à-dire: $x^2 + 8x + 16 > 2 - x$ d'où $x^2 + 9x + 14 > 0$. Dans \mathbb{R} . l'équation $x^2 + 9x + 14 = 0$ a pour solutions: $x_1 = -7$; $x_2 = -2$.

Dans \mathbb{R} , on a $x^2 + 9x + 14 > 0$ pour x tel que x < -7 ou x > -2.

On doit avoir – 4 < x < 2, donc l'inéquation proposée a pour solutions les réels x tels que – 2 < x < 2.

Exemple 3. Résoudre l'équation $e^x - 10 = -3e^{2x}$.

L'équation s'écrit : $3e^{2x} + e^x - 10 = 0$ soit $3(e^x)^2 + e^x - 10 = 0$. En posant $X = e^x$, on obtient l'équation du second degré $3X^2 + X - 10 = 0$.

En posant $X = e^{\lambda}$, on obtient i equation du second degre $3\lambda^{2} + \lambda^{2} = 10^{-2}$

Cette équation a pour solutions dans $\mathbb{R}: X_1 = -2$ et $X_2 = \frac{5}{3}$.

Il faut alors résoudre les équations d'inconnue $x : e^x = -2$; $e^x = \frac{5}{3}$.

- L'équation $e^x = -2$ n'a pas de solution, car $e^x > 0$.

- L'équation $e^x = \frac{5}{3}$ a pour solution : $x = \ln \frac{5}{3}$.

Donc l'équation proposée a une seule solution : $x = \ln \frac{5}{3}$; $x \approx 0.51$.