## THE PHYSICAL LAYER



Fig. 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)-(e) Successive approximations to the original signal.

| Bps   | T (msec) | First harmonic (Hz) | # Harmonics sent |
|-------|----------|---------------------|------------------|
| 300   | 26.67    | 37.5                | 80               |
| 600   | 13.33    | 75                  | 40               |
| 1200  | 6.67     | 150                 | 20               |
| 2400  | 3.33     | 300                 | 10               |
| 4800  | 1.67     | 600                 | 5                |
| 9600  | 0.83     | 1200                | 2                |
| 19200 | 0.42     | 2400                | 1                |
| 38400 | 0.21     | 4800                | 0                |

Fig. 2-2. Relation between data rate and harmonics.



Fig. 2-3. (a) Category 3 UTP. (b) Category 5 UTP.



Fig. 2-4. A coaxial cable.



Fig. 2-5. (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles. (b) Light trapped by total internal reflection.



Fig. 2-6. Attenuation of light through fiber in the infrared region.



Fig. 2-7. (a) Side view of a single fiber. (b) End view of a sheath with three fibers.

| Item                    | LED       | Semiconductor laser      |
|-------------------------|-----------|--------------------------|
| Data rate               | Low       | High                     |
| Fiber type              | Multimode | Multimode or single mode |
| Distance                | Short     | Long                     |
| Lifetime                | Long life | Short life               |
| Temperature sensitivity | Minor     | Substantial              |
| Cost                    | Low cost  | Expensive                |

Fig. 2-8. A comparison of semiconductor diodes and LEDs as light sources.



Fig. 2-9. A fiber optic ring with active repeaters.



Fig. 2-10. A passive star connection in a fiber optics network.



Fig. 2-11. The electromagnetic spectrum and its uses for communication.



Fig. 2-12. (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth. (b) In the HF band, they bounce off the ionosphere.



Fig. 2-13. The ISM bands in the United States.





Fig. 2-14. Convection currents can interfere with laser communication systems. A bidirectional system with two lasers is pictured here.



Fig. 2-15. Communication satellites and some of their properties, including altitude above the earth, round-trip delay time, and number of satellites needed for global coverage.

| Band | Downlink | Uplink  | Bandwidth | Problems                 |
|------|----------|---------|-----------|--------------------------|
| L    | 1.5 GHz  | 1.6 GHz | 15 MHz    | Low bandwidth; crowded   |
| S    | 1.9 GHz  | 2.2 GHz | 70 MHz    | Low bandwidth; crowded   |
| С    | 4.0 GHz  | 6.0 GHz | 500 MHz   | Terrestrial interference |
| Ku   | 11 GHz   | 14 GHz  | 500 MHz   | Rain                     |
| Ka   | 20 GHz   | 30 GHz  | 3500 MHz  | Rain, equipment cost     |

Fig. 2-16. The principal satellite bands.



Fig. 2-17. VSATs using a hub.



Fig. 2-18. (a) The Iridium satellites form six necklaces around the earth. (b) 1628 moving cells cover the earth.



Fig. 2-19. (a) Relaying in space. (b) Relaying on the ground.



Fig. 2-20. (a) Fully-interconnected network. (b) Centralized switch. (c) Two-level hierarchy.



Fig. 2-21. A typical circuit route for a medium-distance call.



Fig. 2-22. The relationship of LATAs, LECs, and IXCs. All the circles are LEC switching offices. Each hexagon belongs to the IXC whose number is in it.



Fig. 2-23. The use of both analog and digital transmission for a computer to computer call. Conversion is done by the modems and codecs.



Fig. 2-24. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase modulation.



Fig. 2-25. (a) QPSK. (b) QAM-16. (c) QAM-64.



Fig. 2-26. (a) V.32 for 9600 bps. (b) V32 bis for 14,400 bps.



Fig. 2-27. Bandwidth versus distance over category 3 UTP for DSL.



Fig. 2-28. Operation of ADSL using discrete multitone modulation.



Fig. 2-29. A typical ADSL equipment configuration.



Fig. 2-30. Architecture of an LMDS system.



Fig. 2-31. Frequency division multiplexing. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel.



Fig. 2-32. Wavelength division multiplexing.



Fig. 2-33. The T1 carrier (1.544 Mbps).



Fig. 2-34. Delta modulation.



Fig. 2-35. Multiplexing T1 streams onto higher carriers.



Fig. 2-36. Two back-to-back SONET frames.

| SONET      |         | SDH     | Da      | Data rate (Mbps) |          |  |
|------------|---------|---------|---------|------------------|----------|--|
| Electrical | Optical | Optical | Gross   | SPE              | User     |  |
| STS-1      | OC-1    |         | 51.84   | 50.112           | 49.536   |  |
| STS-3      | OC-3    | STM-1   | 155.52  | 150.336          | 148.608  |  |
| STS-9      | OC-9    | STM-3   | 466.56  | 451.008          | 445.824  |  |
| STS-12     | OC-12   | STM-4   | 622.08  | 601.344          | 594.432  |  |
| STS-18     | OC-18   | STM-6   | 933.12  | 902.016          | 891.648  |  |
| STS-24     | OC-24   | STM-8   | 1244.16 | 1202.688         | 1188.864 |  |
| STS-36     | OC-36   | STM-12  | 1866.24 | 1804.032         | 1783.296 |  |
| STS-48     | OC-48   | STM-16  | 2488.32 | 2405.376         | 2377.728 |  |
| STS-192    | OC-192  | STM-64  | 9953.28 | 9621.504         | 9510.912 |  |

Fig. 2-37. SONET and SDH multiplex rates.



Fig. 2-38. (a) Circuit switching. (b) Packet switching.



Fig. 2-39. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.

| Item                               | Circuit switched | Packet switched |
|------------------------------------|------------------|-----------------|
| Call setup                         | Required         | Not needed      |
| Dedicated physical path            | Yes              | No              |
| Each packet follows the same route | Yes              | No              |
| Packets arrive in order            | Yes              | No              |
| Is a switch crash fatal            | Yes              | No              |
| Bandwidth available                | Fixed            | Dynamic         |
| Time of possible congestion        | At setup time    | On every packet |
| Potentially wasted bandwidth       | Yes              | No              |
| Store-and-forward transmission     | No               | Yes             |
| Transparency                       | Yes              | No              |
| Charging                           | Per minute       | Per packet      |

Fig. 2-40. A comparison of circuit-switched and packet-switched networks.



Fig. 2-41. (a) Frequencies are not reused in adjacent cells. (b) To add more users, smaller cells can be used.



Fig. 2-42. (a) A D-AMPS channel with three users. (b) A D-AMPS channel with six users.



Fig. 2-43. GSM uses 124 frequency channels, each of which uses an eight-slot TDM system.



Fig. 2-44. A portion of the GSM framing structure.

Six examples:

$$S_1 \cdot C = (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1)/8 = 1$$
  
 $S_2 \cdot C = (2 + 0 + 0 + 0 + 2 + 2 + 0 + 2)/8 = 1$   
 $S_3 \cdot C = (0 + 0 + 2 + 2 + 0 - 2 + 0 - 2)/8 = 0$   
 $S_4 \cdot C = (1 + 1 + 3 + 3 + 1 - 1 + 1 - 1)/8 = 1$   
 $S_5 \cdot C = (4 + 0 + 2 + 0 + 2 + 0 - 2 + 2)/8 = 1$   
 $S_6 \cdot C = (2 - 2 + 0 - 2 + 0 - 2 - 4 + 0)/8 = -1$   
(d)

Fig. 2-45. (a) Binary chip sequences for four stations. (b) Bipolar chip sequences. (c) Six examples of transmissions. (d) Recovery of station C's signal.



Fig. 2-46. An early cable television system.



Fig. 2-47. (a) Cable television. (b) The fixed telephone system.



Fig. 2-48. Frequency allocation in a typical cable TV system used for Internet access.



Fig. 2-49. Typical details of the upstream and downstream channels in North America.