

ÁREA 1 - Faculdade de Ciência e Tecnologia Cursos de Engenharia Cálculo Diferencial e Integral I Professor: Álvaro Fernandes Serafim

Apostila de limites e derivadas

"Uma grande descoberta envolve a solução de um grande problema, mas há uma semente de descoberta na solução de qualquer problema. Seu problema pode ser modesto; porém, se ele desafiar a sua curiosidade e fizer funcionar a sua capacidade inventiva, e caso você o resolva sozinho, então você poderá experimentar a tensão e o prazer do triunfo da descoberta"

George Polya

Última atualização: 02/06/2006

Índice

Limite e continuidade	3
Noção intuitiva de limite	3
Tabelas de aproximações	
Cálculo de uma indeterminação do tipo 0/0	
Definição intuitiva de limite	
Propriedades dos limites	
Limites infinitos	
Limites no infinito	
Expressões indeterminadas.	
Limite fundamental exponencial.	
Limite fundamental trigonométrico	
Funções limitadas.	
Continuidade	
Aplicação 1: Problema da área sob o arco de uma parábola	
Aplicação 2: Problema do circuito <i>RL</i> em série	
r ···,···	
Derivada	
A reta tangente	
A reta normal	
A derivada de uma função num ponto	
Derivadas laterais	
Regras de derivação	
Derivada da função composta (Regra da cadeia)	
Derivada da função inversa	
Derivada das funções elementares	
Derivada da função exponencial.	
Derivada da função logarítmica	
Derivada das funções trigonométricas	
Derivada das funções trigonométricas inversas	
Tabela de derivadas	
Derivadas sucessivas	
Derivada na forma implícita	
Derivada de uma função na forma paramétrica	
Diferencial	51
Aplicações da derivada	53
A regra de L'Hospital	52
Interpretação cinemática da derivada	
Taxa de variação	
Análise gráfica das funções	
Máximos e mínimos	
Funções crescentes e decrescentes	
Critérios para determinar os extremos de uma função	
± .	
Concavidade e inflexãoAssíntotas horizontais e verticais	
Esboço gráficoProblemas de otimização	
1 1001011143 UC UHHHZAYAU	

Limite e continuidade

Noção Intuitiva de limite

Considere a função $f(x) = x^2 - 1$. Esta função está definida para todo $x \in \Re$, isto é, qualquer que seja o número real c, o valor f(c) está bem definido.

Exemplo 1. Se x = 2 então $f(2) = 2^2 - 1 = 3$. Dizemos que a *imagem* de x = 2 é o valor f(2) = 3.

Graficamente:

Considere agora uma outra função $g(x) = \frac{x^2 - 1}{x - 1}$. Esta função está definida $\forall x \in \Re - \{I\}$. Isto significa que não podemos estabelecer uma imagem quando x assume o valor 1.

$$g(1) = \frac{1^2 - 1}{1 - 1} = \frac{0}{0}$$
???

 $\frac{\theta}{\theta}$ simboliza uma **indeterminação matemática**. Outros tipos de indeterminações matemáticas serão tratados mais adiante.

Qual o comportamento gráfico da função *g* quando *x* assume valores *muito próximos* de *1*, porém diferentes de *1*?

A princípio o estudo do limite visa estabelecer o comportamento de uma função numa *vizinhança* de um ponto (que pode ou não pertencer ao seu domínio). No caso da função f, qualquer valor atribuído a x determina uma única imagem, sem problema algum. Mas na função g, existe o ponto x = 1 que gera a indeterminação.

Estudemos os valores da função $g(x) = \frac{x^2 - I}{x - I}$ quando x assume valores próximos (numa vizinhança) de I, mas *diferente* de I. Para isto vamos utilizar *tabelas de aproximações*.

Tabelas de aproximações

As tabelas de aproximações são utilizadas para aproximar o valor da imagem de uma função (se existir) quando a variável *x* se aproxima de um determinado ponto.

Atribuindo a *x* valores próximos de *1*, porém **menores** do que *1*: (tabela A)

Ī	х	0	0,5	0,75	0,9	0,99	0,999	0,9999
	g(x)	1	1,5	1,75	1,9	1,99	1,999	1,9999

Atribuindo a x valores próximos de 1, porém **maiores** do que 1: (tabela B)

x	2	1,5	1,25	1,1	1,01	1,001	1,0001
g(x)	3	2,5	2,25	2,1	2,01	2,001	2,0001

Observemos que podemos tornar g(x) tão próximo de 2 quanto desejarmos, bastando para isso tomarmos x suficientemente próximo de I. De outra forma, dizemos:

"O limite da função g(x) quando x se aproxima de (tende a) 1 é igual a 2".

Simbolicamente escrevemos: $\lim_{x \to 1} g(x) = 2$ ou $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$.

Observações:

- 1) Os dois tipos de aproximações que vemos nas tabelas A e B são chamados de limites laterais.
- * Quando x tende a 1 por valores menores do que 1 (tabela A), dizemos que x tende a 1 pela esquerda, e denotamos simbolicamente por $x \to I^-$. Temos então que:

$$\lim_{x \to I^{-}} g(x) = 2$$
 ou $\lim_{x \to I^{-}} \frac{x^{2} - 1}{x - 1} = 2$

Obs: O sinal negativo no expoente do n^{0} *I* simboliza apenas que *x* se aproxima do número *I* pela esquerda.

* Quando x tende a I por valores **maiores** do que I (tabela B), dizemos que x tende a I **pela direita**, e denotamos simbolicamente por $x \to I^+$. Temos então que:

$$\lim_{x \to I^{+}} g(x) = 2 \quad \text{ou} \quad \lim_{x \to I^{+}} \frac{x^{2} - 1}{x - 1} = 2$$

Obs: O sinal positivo no expoente do n° *I* simboliza apenas que *x* se aproxima do número *I* pela direita.

- 2) Se a função g se aproximasse de valores **distintos** à medida que x se aproximasse lateralmente de l, pela esquerda e pela direita, então diríamos que o limite da função g **não existiria neste ponto**, simbolicamente $\lim_{x\to l} g(x)$.
- 3) O limite da função g(x) quando x se aproxima de I, somente existe se os limites laterais são iguais. Simbolicamente:

$$\lim_{x \to l} g(x) = 2 \text{ se, e somente se, } \lim_{x \to l^{-}} g(x) = \lim_{x \to l^{+}} g(x) = 2.$$

Será necessário sempre construir *tabelas de aproximações* para determinar o limite de uma função, caso ele exista?

Não! Há uma forma bem mais simples, como veremos a seguir.

Cálculo de uma indeterminação do tipo $\frac{\theta}{\theta}$

Sempre que nos depararmos com uma indeterminação do tipo $\frac{\theta}{\theta}$, deveremos **simplificar*** a expressão da função envolvida. Logo após, calculamos o limite da função substituindo, na expressão já simplificada, o valor de x.

* Para simplificar a expressão você deve utilizar fatoração, racionalização, dispositivo prático de *Briot-Ruffîni* para dividir polinômios, etc...

Vejamos os exemplos seguintes.

Exemplo 2. Determine
$$\lim_{x \to I} g(x)$$
, onde $g(x) = \frac{x^2 - I}{x - I}$.

Observe que $g(I) = \frac{0}{0}$ que é uma **indeterminação matemática!** Quando a variável x está cada vez mais próxima de I, a função g está cada vez mais próxima de quanto? Devemos então simplificar a expressão da função g e depois fazer a substituição direta.

$$g(x) = \frac{x^2 - I}{x - I} = \frac{(x - I)(x + I)}{x - I} = (x + I), \forall x \neq I$$
 Então:

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2. \quad \text{Logo, } \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

Chegamos à mesma conclusão da análise feita pelas tabelas de aproximações, porém de uma forma mais rápida e sistemática.

Não mais utilizaremos as tabelas de aproximações para casos semelhantes a este!!

Vale lembrar que a expressão $\lim_{x\to I} \frac{x^2-I}{x-I} = 2$ significa que a função $g(x) = \frac{x^2-I}{x-I}$ está tão próxima de 2 assim como x está suficientemente próximo de I, porém **diferente** de I. Graficamente podemos verificar isso:

Gráfico da função $g(x) = \frac{x^2 - 1}{x - 1}$, $\forall x \neq 1$.

$$\begin{cases} x \to l^- \Rightarrow y \to 2 \\ x \to l^+ \Rightarrow y \to 2 \end{cases} \Leftrightarrow \lim_{x \to l} \frac{x^2 - l}{x - l} = 2$$

5

Exemplo3. Determine $\lim_{x\to 1} \frac{\sqrt{x}-1}{x^2-1}$ (observe a indeterminação matemática $\frac{0}{0}$).

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1} = \lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1} \cdot \frac{\sqrt{x} + 1}{\sqrt{x} + 1} = \lim_{x \to 1} \frac{(x - 1)}{(x - 1)(x + 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{(x + 1)(\sqrt{x} + 1)} = \frac{1}{4}.$$

Se você construir as tabelas de aproximações, constatará que g(x) está cada vez mais próximo de 1/4 a medida que x se aproxima de 1.

Exemplo 4. Determine $\lim_{x\to 2} \frac{x^3-8}{3x^2-12}$ (observe a indeterminação matemática $\frac{0}{0}$).

$$\lim_{x \to 2} \frac{x^3 - 8}{3x^2 - 12} = \lim_{x \to 2} \frac{(x^3 - 2^3)}{3(x^2 - 4)} = \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 4)}{3(x - 2)(x + 2)} = \lim_{x \to 2} \frac{(x^2 + 2x + 4)}{3(x + 2)} = \frac{12}{12} = 1$$

Definição intuitiva de limite.

Seja f uma função definida num intervalo $I \subset \Re$ contendo a, exceto possivelmente no próprio a. Dizemos que o limite de f(x) quando x se aproxima de a é $L \in \Re$, e escrevemos $\lim_{x \to a} f(x) = L$, se, e somente se, os **limites laterais** à esquerda e à direita de a são iguais à L, isto é, $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = L$. Caso contrário, dizemos que o limite não existe, em símbolo $\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = \lim_{x \to a} f(x)$.

Proposição (unicidade do limite).

Se $\lim_{x\to a} f(x) = L_1$ e $\lim_{x\to a} f(x) = L_2$, então $L_1 = L_2$. Se o limite de uma função num ponto existe, então ele é único.

Principais propriedades dos limites.

Se $\lim_{x\to a} f(x)$ e $\lim_{x\to a} g(x)$ existem, e k é um número real qualquer, então:

a)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$
.

b)
$$\lim_{x \to a} k. f(x) = k. \lim_{x \to a} f(x)$$
.

c)
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
.

d)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0.$$

e)
$$\lim_{x\to a} k = k$$
.

Exemplo 5. Calcule $\lim_{x\to 2} \frac{3x^2-6}{2x+4}$ usando as propriedades.

$$\lim_{x \to 2} \frac{3x^2 - 6}{2x + 4} = \lim_{x \to 2} \frac{3(x^2 - 2)}{2(x + 2)} = \frac{3}{2} \cdot \lim_{x \to 2} \frac{x^2 - 2}{x + 2} = \frac{3}{2} \cdot \frac{\lim_{x \to 2} x^2 - 2}{\lim_{x \to 2} x + 2} = \frac{3}{2} \cdot \frac{2}{4} = \frac{3}{4}.$$

Obteríamos este resultado substituindo diretamente: $\lim_{x\to 2} \frac{3x^2-6}{2x+4} = \frac{3\cdot 2^2-6}{2(2)+4} = \frac{12-6}{4+4} = \frac{6}{8} = \frac{3}{4}$.

Atividades (grupo 1).

Calcule os limites abaixo:

a)
$$\lim_{x \to -2} \frac{4 - x^2}{2 + x}$$

b)
$$\lim_{x\to 3} \frac{x^2 - 4x + 3}{x^2 - x - 6}$$

c)
$$\lim_{x \to 1} \frac{x^3 - 1}{5x - 5}$$

d)
$$\lim_{x \to -2} \frac{8 + x^3}{4 - x^2}$$

e)
$$\lim_{x\to 2} \frac{x^4 - 16}{8 - x^3}$$

f)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

g)
$$\lim_{x \to -1} \frac{1 - x^2}{x + \sqrt{2 + x}}$$

h)
$$\lim_{x\to 7} \frac{2-\sqrt{x-3}}{x^2-49}$$

i)
$$\lim_{x \to 4} \frac{3 - \sqrt{5 + x}}{1 - \sqrt{5 - x}}$$

Atividades (grupo 2).

Calcule os limites indicados:

a)
$$f(x) = \begin{cases} x^2 - l, & x \le 0 \\ x + l, & x > 0 \end{cases}$$
,

calcule: $\lim_{x \to -l} f(x)$, $\lim_{x \to 2} f(x)$ e $\lim_{x \to 0} f(x)$.

b)
$$g(x) = \begin{cases} x^2, & x \neq 2 \\ 3, & x = 2 \end{cases}$$
,

calcule: $\lim_{x\to 2} g(x)$.

c)
$$h(x) = \begin{cases} 4 - x^2, & x < 1 \\ 5 - 2x, & x > 1 \end{cases}$$
,

calcule: $\lim_{x \to I} h(x)$.

d)
$$l(x) = \begin{cases} 2^x, & x < 0 \\ 1 - x^2, & 0 \le x < 2 \\ 2x - 6, & x \ge 2 \end{cases}$$

d) $l(x) = \begin{cases} 2^{x}, & x < 0 \\ 1 - x^{2}, & 0 \le x < 2 \\ 2x - 6, & x \ge 2 \end{cases}$ calcule: $\lim_{x \to 0} l(x), \lim_{x \to 2} l(x), \lim_{x \to -\infty} l(x)$ e $\lim_{x \to +\infty} l(x)$.

Limites infinitos

Quando resolvemos um limite e não encontramos como resposta valores numéricos, mas sim infinito $(+\infty \text{ ou } -\infty)$, dizemos então que o limite é infinito.

Exemplo 6. Calcule $\lim_{x \to -1} \frac{x^2 - 1}{x - 1}$.

Neste caso, quando fazemos a substituição de x por -1 na expressão $\frac{x^2-1}{x-1}$, encontramos $\frac{0}{-2}=0$.

Esta não é uma situação especial. Sempre que na substituição de x ocorrer $\frac{0}{k}$, $k \neq 0$, o resultado do limite será sempre zero, naturalmente.

E se na substituição do valor de x ocorrer $\frac{k}{\theta}$, $k \neq 0$?

Vamos analisar esta situação num caso particular e depois formalizar uma regra.

Exemplo 7. Estude o seguinte limite: $\lim_{x\to 0} \frac{1}{x}$.

Devemos analisar os limites laterais. Vamos recorrer às tabelas de aproximações:

Aproximação do zero pela direita (notação $x \rightarrow 0^+$)

x	1	0,1	0,01	0,001	0,0001
f(x)=1/x	1	10	100	1000	10.000

Cada vez que tomamos x suficientemente próximo de zero (pela direita), f(x) = 1/x cresce indefinidamente. Simbolizamos esta situação assim:

$$\lim_{x\to 0^+} \frac{1}{x} = +\infty$$

Aproximação do zero pela esquerda (notação $x \rightarrow 0^-$)

x	-1	-0,1	-0,01	-0,001	-0,0001
f(x)=1/x	-1	-10	-100	-1000	-10.000

Cada vez que tomamos x suficientemente próximo de zero (pela esquerda), f(x) = 1/x decresce indefinidamente. Simbolizamos esta situação assim:

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

Conclusão: Como os limites laterais são distintos, então $\frac{1}{x}$.

Veja ao lado o gráfico da função f(x) = 1/x.

Regra (generalização)

Se no cálculo de um limite ocorrer uma situação do tipo $\frac{k}{\theta}$, $k \neq \theta$, então:

$$\begin{cases} \frac{k}{0^+} = +\infty, k > 0 & \text{e} \quad \frac{k}{0^+} = -\infty, k < 0. \\ \\ \frac{k}{0^-} = -\infty, k > 0 & \text{e} \quad \frac{k}{0^-} = +\infty, k < 0. \end{cases}$$

Desta tabela podemos perceber que $\frac{k}{\pm \infty} = 0$. Se o denominador tende ao infinito com o numerador constante, a razão se aproxima de zero. Como veremos agora.

Limites no infinito

Estamos interessados agora em estabelecer o comportamento de uma função quando a variável x cresce indefinidamente ($x \to +\infty$) ou quando ela decresce indefinidamente ($x \to -\infty$). Em algumas situações, a função se aproxima de um valor numérico (figura 1), noutros pode também crescer indefinidamente (figura 2) ou decrecer indefinidamente (figura 3).

Exemplo 8.

Na figura 1:
$$\lim_{x \to +\infty} \left(\frac{1}{x} + 1 \right) = 0 + 1 = 1$$
, na figura 2: $\lim_{x \to +\infty} (x + 1) = +\infty$ e na figura 3: $\lim_{x \to +\infty} (-x^2 + 4) = -\infty$.

A tabela abaixo apresenta situações de soma e produto de infinitos que usaremos com freqüencia.

$$\begin{cases} (\pm \infty) \cdot (\pm \infty) = +\infty \\ (\mp \infty) \cdot (\pm \infty) = -\infty \end{cases}$$

$$(\pm \infty) + (\pm \infty) = \pm \infty$$

$$(\pm \infty) - (\pm \infty) = ? \quad \text{indeterminação!}$$
e se $k \in \Re^*$, então
$$\begin{cases} (\pm \infty) \cdot k = \pm \infty, \text{se } k > 0 \\ (\pm \infty) \cdot k = \mp \infty, \text{se } k < 0 \\ (\pm \infty) + k = \pm \infty \end{cases}$$

Vale ressaltar ainda que, se *n* é um *natural não nulo*, então:

$$\lim_{x \to +\infty} x^n = +\infty \qquad \text{e} \qquad \lim_{x \to -\infty} x^n = \begin{cases} +\infty, n \text{ par.} \\ -\infty, n \text{ impar.} \end{cases}$$

Atividades (grupo 3). Calcule os limites:

a)
$$\lim_{x \to 2} \frac{x^2}{x - 2}$$

b)
$$\lim_{x \to 3} \frac{2x - 4}{(x - 3)^2}$$

c)
$$\lim_{x \to 3} \frac{2x - 7}{(x - 3)^2}$$

b)
$$\lim_{x \to 3} \frac{2x - 4}{(x - 3)^2}$$
 c) $\lim_{x \to 3} \frac{2x - 7}{(x - 3)^2}$ d) $\lim_{x \to +\infty} \frac{5}{3x^2} - 2x^3 + 6$

Atividades (grupo 4). Calcule os limites:

a)
$$\lim_{x \to 5^+} \frac{3-x}{x-5}$$

a)
$$\lim_{x \to 5^{+}} \frac{3-x}{x-5}$$
 b) $\lim_{x \to 2^{-}} \frac{3-x}{x^2+x-6}$ c) $\lim_{x \to -5^{-}} \frac{x^2-10}{2x+10}$ d) $\lim_{x \to 1^{+}} \frac{x-2}{x^2+x-2}$

c)
$$\lim_{x \to -5^{-}} \frac{x^2 - 10}{2x + 10}$$

d)
$$\lim_{x \to l^+} \frac{x-2}{x^2 + x - 2}$$

Expressões indeterminadas

Vimos que $\frac{\theta}{\alpha}$ é uma expressão de **indeterminação matemática**. Também são:

$$\frac{\infty}{\infty}$$
, $\infty - \infty$, $\theta \times \infty$, I^{∞} , θ^{θ} e ∞^{θ} .

Vamos analisar os quatro primeiros casos. Os outros serão tratados em capítulos posteriores.

A indeterminação do tipo $\frac{\infty}{2}$.

Exemplo 9. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} \frac{x^3 + 1}{5x^2 + 3}$$

b)
$$\lim_{x \to +\infty} \frac{x^2 + 1}{x^4 + x}$$

c)
$$\lim_{x \to +\infty} \frac{1+x^2}{x^2+x}$$

Podemos observar que estas expressões geram indeterminações do tipo $\frac{\infty}{\infty}$, pois quando $x \to +\infty$ as expressões do numerador e denominador também tendem $a + \infty$. Não podemos afirmar, a priori, o valor delas. Vejamos:

$$\lim_{x \to +\infty} \frac{x^{3} + 1}{5x^{2} + 3} = \lim_{x \to +\infty} \frac{x^{3} \left(1 + \frac{1}{x^{3}}\right)}{5x^{2} \left(1 + \frac{3}{5x^{2}}\right)} = \lim_{x \to +\infty} \frac{x \left(1 + \frac{1}{x^{3}}\right)}{5 \left(1 + \frac{3}{5x^{2}}\right)} = \frac{\lim_{x \to +\infty} x \left(1 + \frac{1}{x^{3}}\right)}{\lim_{x \to +\infty} 5 \left(1 + \frac{3}{5x^{2}}\right)} = \frac{+\infty(1 + 0)}{5(1 + 0)} = \frac{+\infty}{5} = +\infty$$

$$\text{b)} \lim_{x \to +\infty} \frac{x^2 + 1}{x^4 + x} = \lim_{x \to +\infty} \frac{x^2 \left(I + \frac{1}{x^2} \right)}{x^4 \left(I + \frac{1}{x^3} \right)} = \lim_{x \to +\infty} \frac{\left(I + \frac{1}{x^2} \right)}{x^2 \left(I + \frac{1}{x^3} \right)} = \frac{\lim_{x \to +\infty} \left(I + \frac{1}{x^2} \right)}{\lim_{x \to +\infty} x^2 \left(I + \frac{1}{x^3} \right)} = \frac{(I + 0)}{+ \infty (I + 0)} = \frac{I}{+ \infty} = 0.$$

c)
$$\lim_{x \to +\infty} \frac{6x^2 + 1}{3x^2 + x} = \lim_{x \to +\infty} \frac{6x^2 \left(1 + \frac{1}{6x^2}\right)}{3x^2 \left(1 + \frac{1}{3x}\right)} = \lim_{x \to +\infty} \frac{6\left(1 + \frac{1}{6x^2}\right)}{3\left(1 + \frac{1}{3x}\right)} = \frac{6}{3} \cdot \frac{\lim_{x \to +\infty} \left(1 + \frac{1}{6x^2}\right)}{\lim_{x \to +\infty} \left(1 + \frac{1}{3x}\right)} = \frac{6}{3} \cdot \frac{(1+0)}{(1+0)} = 2$$

Observamos que nas três situações analisadas as indeterminações do tipo $\frac{\infty}{\infty}$ produziram **respostas**

distintas (como era esperado, por isso que é indeterminação!) Você deve ter notado que para resolver indeterminações deste tipo a idéia é colocar o termo de maior grau em evidência no numerador e no denominador.

Atividades (grupo 5).

1. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} \frac{2x^3 - 1}{5x^3 + x + 1}$$
 b) $\lim_{x \to +\infty} \frac{x^5 + 3x^2}{2x + 1}$ c) $\lim_{x \to -\infty} \frac{x^2 + 2x^3}{5x + 3 - x^4}$ d) $\lim_{x \to -\infty} \frac{x^2}{1 - 5x^2}$

b)
$$\lim_{x \to +\infty} \frac{x^5 + 3x^2}{2x + 1}$$

c)
$$\lim_{x \to -\infty} \frac{x^2 + 2x^3}{5x + 3 - x^4}$$

d)
$$\lim_{x \to -\infty} \frac{x^2}{1 - 5x^2}$$

A indeterminação do tipo ∞ - ∞

Exemplo 10. Calcule os limites abaixo:

a)
$$\lim_{x\to +\infty} x^2 - x^3$$
.

b)
$$\lim_{x \to -\infty} 5x^2 + x$$
.

Podemos observar que estas expressões geram indeterminações do tipo ∞ - ∞, mas não podemos afirmar, a priori, o valor delas. Vejamos:

Usando a mesma técnica da indeterminação anterior...

a)
$$\lim_{x \to +\infty} x^2 - x^3 = \lim_{x \to +\infty} -x^3 \left(-\frac{1}{x} + 1 \right) = -\infty (0+1) = -\infty (1) = -\infty$$
.

b)
$$\lim_{x \to -\infty} x + 5x^2 + 7 = \lim_{x \to -\infty} 5x^2 \left(\frac{1}{5x} + 1 + \frac{7}{5x^2} \right) = +\infty (0 + 1 + 0) = +\infty (1) = +\infty.$$

Atividades (grupo 6).

1. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} x^5 - x^3 + 2x$$
.

b)
$$\lim_{x \to -\infty} x^4 + 5x - 6$$
.

A indeterminação do tipo $0 \times \infty$

Exemplo 11. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} \frac{2}{x^3} (x^2 + 1)$$
.

b)
$$\lim_{x \to +\infty} \frac{3}{\sqrt{x}}(x)$$
.

Podemos observar que estas expressões geram indeterminações do tipo $\mathbf{0} \times \infty$, mas não podemos afirmar, a priori, o valor delas. Vejamos:

a)
$$\lim_{x\to +\infty} \frac{2}{x^3} (x^2 + 1) = \lim_{x\to +\infty} \frac{2x^2 + 2}{x^3} = \dots$$
 Transformamos a indeterminação $\mathbf{0} \times \infty$ em ∞ / ∞ . Daí você já sabe!

... =
$$\lim_{x \to +\infty} \frac{2x^2 + 2}{x^3} = ... = 0$$
.

b) $\lim_{x\to +\infty} \frac{3}{\sqrt{x}}(x) = \lim_{x\to +\infty} \frac{3x}{\sqrt{x}} = \dots$ Novamente transformamos a indeterminação para ∞ / ∞ . Usando a técnica da racionalização:

... =
$$\lim_{x \to +\infty} \frac{3x}{\sqrt{x}} = \lim_{x \to +\infty} \frac{3x}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x}} = \lim_{x \to +\infty} \frac{3x\sqrt{x}}{x} = \lim_{x \to +\infty} 3\sqrt{x} = 3(+\infty) = +\infty$$
.

Atividades (grupo 7).

1. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} (x^2 + 3)$$
. b) $\lim_{x \to 5^+} (\frac{2}{x-5}) (x^2 - 25)$.

Limite fundamental exponencial (a indeterminação do tipo 1[∞])

O número *e* tem grande importância em diversos ramos das ciências, pois está presente em vários fenômenos naturais, por exemplo: Crescimento populacional, crescimento de populações de bactérias, desintegração radioativa (datação por carbono), circuitos elétricos, etc. Na área de economia, é aplicado no cálculo de juros.

Foi o Matemático Inglês *Jonh Napier* (1550-1617) o responsável pelo desenvolvimento da teoria logarítmica utilizando o número *e* como base. O número *e* é irracional, ou seja, não pode ser escrito sob forma de fração, e vale aproximadamente:

$$e \cong 2,7182818$$

Como o número e é encontrado em diversos fenômenos naturais, a função exponencial $f(x) = e^x$ é considerada uma das funções mais importantes da matemática, merecendo atenção especial de cientistas de diferentes áreas do conhecimento humano.

Proposição:
$$\lim_{x \to \pm \infty} \left(1 + \frac{1}{x} \right)^x = e$$
.

A prova desta proposição envolve noções de séries. Utilizaremos o recurso das tabelas de aproximações e gráfico para visualizar este resultado.

Tabela

x	$f(x) = \left(1 + \frac{1}{x}\right)^x$
100	2,7048
1000	2,7169
100.000	2,7182
:	
$x \to +\infty$	$f(x) \to e$

Faça uma tabela para $x \to -\infty$.

Gráfico:

Exemplo 12. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{5x}$$
. b) $\lim_{x \to -\infty} \left(1 - \frac{3}{x} \right)^{4x}$.

Nestes dois casos percebemos indeterminações do tipo 1^{∞} . Vejamos as soluções...

a)
$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^{5x} = \lim_{x \to +\infty} \left[\left(1 + \frac{1}{x} \right)^x \right]^5 = \left[\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x \right]^5 = e^5$$
.

b) Neste caso, usaremos uma mudança de variável...

Faça x = -3t. Se $x \to -\infty$ então $t \to +\infty$.

$$\operatorname{Logo}, \lim_{x \to -\infty} \left(1 - \frac{3}{x} \right)^{4x} = \lim_{t \to +\infty} \left(1 - \frac{3}{-3t} \right)^{4(-3t)} = \lim_{t \to +\infty} \left(1 + \frac{1}{t} \right)^{-12t} = \left[\lim_{t \to +\infty} \left(1 + \frac{1}{t} \right)^{t} \right]^{-12t} = e^{-12}.$$

Atividades (grupo 8).

1. Calcule os limites abaixo:

a)
$$\lim_{x \to +\infty} \left(1 + \frac{7}{x} \right)^{2x}$$
. b) $\lim_{x \to -\infty} \left(1 - \frac{2}{x} \right)^{5x}$. c) $\lim_{x \to +\infty} \left(\frac{x+I}{x-I} \right)^{2x}$.

Consequências importantes do limite fundamental exponencial:

i)
$$\lim_{x \to 0} (1+x)^{1/x} = e$$
. ii) $\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a), \ a > 0 \ e \ a \neq 1$.

Atividades (grupo 9). Resolva os dois limites acima com as sugestões a seguir:

- No item (i) faça a mudança de variável $x = \frac{1}{t}$ e use o limite fundamental exponencial.
- No item (ii) faça a mudança de variável $a^x 1 = t$ e use o item (i).

Atividades (grupo 10).

1. Resolva os limites abaixo:

a)
$$\lim_{x \to 0} (1+2x)^{1/x}$$
. b) $\lim_{x \to 0} \frac{3^x - 1}{x}$. c) $\lim_{x \to 0} \frac{e^x - 1}{4x}$. d) $\lim_{x \to 0} \frac{e^x - 2^x}{x}$.

Limite fundamental trigonométrico

O limite fundamental trigonométrico trata de um limite cuja indeterminação é do tipo $\frac{\theta}{\theta}$ envolvendo a função trigonométrica y = sen(x). Este limite é muito importante, pois com ele resolveremos outros problemas.

Proposição:
$$\lim_{x\to 0} \frac{sen(x)}{x} = 1$$
.

A função
$$f(x) = \frac{sen(x)}{x}$$
 é par, isto é, $f(-x) = f(x)$, $\forall x \neq 0$, pois

$$f(-x) = \frac{sen(-x)}{-x} = \frac{-sen(x)}{-x} = \frac{sen(x)}{x} = f(x).$$

Se $x \to 0^+$ ou $x \to 0^-$, f(x) apresenta o mesmo valor numérico.

Vamos utilizar a tabela de aproximação para verificar este resultado.

Tabela

x	$f(x) = \frac{sen(x)}{x}$
10.1	0.9983341664683
±0,1 ±0,01	0.9999833334167
±0,001	0,999998333333
±0,0001	0,999999983333
$\pm 0,00001$ $\pm 10^{-10}$	0,99999999933 0,999999999999
:	:
$x \to 0$	$f(x) \rightarrow I$

Visualizando o gráfico da função $f(x) = \frac{sen(x)}{x}$, podemos perceber também este resultado...

Exemplo 13. Calcule os limites abaixo:

a)
$$\lim_{x\to 0} \frac{sen(2x)}{x}$$

b)
$$\lim_{x\to 0} \frac{sen(5x)}{sen(3x)}$$
.

a)
$$\lim_{x\to 0} \frac{sen(2x)}{x}$$
. b) $\lim_{x\to 0} \frac{sen(5x)}{sen(3x)}$. c) $\lim_{x\to 0} \frac{cos(x)-1}{x}$. d) $\lim_{x\to 0} \frac{tg(x)}{x}$.

d)
$$\lim_{x\to 0} \frac{tg(x)}{x}$$
.

Soluções:

a)
$$\lim_{x\to 0} \frac{sen(2x)}{x} = \lim_{x\to 0} 2 \cdot \frac{sen(2x)}{2x} = 2 \cdot \lim_{x\to 0} \frac{sen(2x)}{2x} = \dots$$

Faça 2x = t. Se $x \to 0$ então $t \to 0$. Logo:

... =
$$2 \cdot \lim_{t \to 0} \frac{sen(t)}{t} = 2(1) = 2$$
.

De uma forma geral, $\forall k \in \Re^*$, $\lim_{x \to 0} \frac{sen(kx)}{kx} = 1$. Vamos usar este resultado agora:

b)
$$\lim_{x \to 0} \frac{sen(5x)}{sen(3x)} = \lim_{x \to 0} \frac{\frac{sen(5x)}{5x} \cdot 5x}{\frac{sen(3x)}{3x} \cdot 3x} = \frac{5}{3} \cdot \frac{\lim_{x \to 0} \frac{sen(5x)}{5x}}{\lim_{x \to 0} \frac{sen(3x)}{3x}} = \frac{5}{3} \cdot \frac{1}{1} = \frac{5}{3}.$$

c)
$$\lim_{x\to 0} \frac{\cos(x)-1}{x} = \lim_{x\to 0} \frac{\cos(x)-1}{x} \cdot \frac{\cos(x)+1}{\cos(x)+1} = \lim_{x\to 0} \frac{\cos^2(x)-1}{x[\cos(x)+1]} = \lim_{x\to 0} \frac{-\sin^2(x)}{x[\cos(x)+1]} = \lim_{x\to 0} \frac{-\sin^2(x)}{x[\cos(x)+1]} = \lim_{x\to 0} \frac{\cos^2(x)-1}{x[\cos(x)+1]} = \lim_{$$

$$= \lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} \cdot \frac{-\operatorname{sen}(x)}{\cos(x) + I} = I\left(\frac{0}{I+I}\right) = 0.$$

d)
$$\lim_{x \to 0} \frac{tg(x)}{x} = \lim_{x \to 0} \frac{sen(x)}{x \cos(x)} = \lim_{x \to 0} \frac{sen(x)}{x} \cdot \frac{1}{\cos(x)} = \lim_{x \to 0} \frac{sen(x)}{x} \cdot \lim_{x \to 0} \frac{1}{\cos(x)} = I\left(\frac{1}{I}\right) = I.$$

Atividades (grupo 11).

1. Resolva os limites abaixo usando o limite trigonométrico fundamental:

a)
$$\lim_{x\to 0} \frac{sen(4x)}{3x}$$

b)
$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2}$$

a)
$$\lim_{x\to 0} \frac{sen(4x)}{3x}$$
. b) $\lim_{x\to 0} \frac{1-cos(x)}{x^2}$. c) $\lim_{x\to 0} \frac{2e^x + 6sen(x) - 2}{3x}$. d) $\lim_{x\to 0} \frac{6x - sen(x)}{2x + 3sen(x)}$

d)
$$\lim_{x\to 0} \frac{6x-sen(x)}{2x+3sen(x)}$$
.

Funções limitadas

Definição: Uma função y = f(x) é chamada limitada, se existe uma constante $k \in \mathbb{R}^*$, tal que $|f(x)| \le k$, $\forall x \in D(f)$, isto é , $-k \le f(x) \le k$, $\forall x \in D(f)$. Em outras palavras, y = f(x) possui o conjunto imagem contido num intervalo de extremos reais.

Obs.: D(f) significa o domínio da função f.

Exemplo 14. Algumas funções limitadas e seus gráficos.

Proposição: Se $\lim_{\substack{x \to a \\ \text{ou} \\ x \to \pm \infty}} f(x) = 0$ e g(x) é uma função limitada, então $\lim_{\substack{x \to a \\ \text{ou} \\ x \to \pm \infty}} f(x) \cdot g(x) = 0$.

Exemplo 15.

a) Calcule
$$\lim_{x \to +\infty} \frac{sen(x)}{x}$$
.

Solução:

$$\lim_{x \to +\infty} \frac{sen(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \cdot sen(x) = * = 0$$

* Usando a proposição: Se $x \to +\infty$ então $\frac{1}{x} \to 0$. Como a função sen(x) é limitada, então o resultado é zero.

Gráfico da função $f(x) = \frac{sen(x)}{x}$:

Observe que as oscilações vão reduzindo a sua amplitude quando $x \to +\infty$. O resultado do limite permanece o mesmo se $x \to -\infty$.

b) Calcule
$$\lim_{x\to +\infty} \frac{\cos(x)}{x}$$
.

Solução: de forma análoga...

$$\lim_{x \to +\infty} \frac{\cos(x)}{x} = \lim_{x \to +\infty} \frac{1}{x} \cdot \cos(x) = 0.$$

Gráfico da função $f(x) = \frac{\cos(x)}{x}$:

Observe que, da mesma forma que a função anterior, as oscilações vão reduzindo a sua amplitude quando $x \to +\infty$. O resultado do limite permanece o mesmo se $x \to -\infty$.

c) Calcule
$$\lim_{x \to +\infty} \left(\frac{x+1}{x^2+1} \right) \cdot \cos(x)$$
.

$$\lim_{x \to +\infty} \left(\frac{x+1}{x^2+1} \right) = 0 \quad \text{(Por quê?) e } \cos(x) \text{ é uma função limitada. Logo, } \lim_{x \to +\infty} \left(\frac{x+1}{x^2+1} \right) \cdot \cos(x) = 0.$$

Gráfico da função $f(x) = \left(\frac{x+1}{x^2+1}\right) \cdot cos(x)$:

Atividades (grupo 12).

1. Resolva os limites abaixo usando o conceito de função limitada:

a)
$$\lim_{x \to -\infty} e^x \cdot sen(x)$$
.

b)
$$\lim_{x\to+\infty} \frac{3\cos(x)+2^x}{2^x}$$
.

Continuidade

Definição: Seja x_0 um ponto do domínio de uma função f. Dizemos que f é contínua no ponto x_0 se:

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Exemplo 16. A função do exemplo I (pág. 3) é contínua no ponto $x_0 = 2$, pois $\lim_{x \to 2} f(x) = f(2) = 3$. Na verdade esta função é contínua em \Re , isto é, em todos os pontos da reta (do seu domínio).

Exemplo 17. Algumas funções que **não são** contínuas no ponto x_0 :

Pois...

a) não existe $\lim_{x\to x_0} f(x)$, apesar de $f(x_0)$ existir, neste caso $f(x_0)=L$;

b) existe $\lim_{x \to x_0} f(x)$, isto é $\lim_{x \to x_0} f(x) = L_I$. Existe $f(x_0)$, neste caso $f(x_0) = L_2$, mas $\lim_{x \to x_0} f(x) \neq f(x_0)$;

c) não existe $\lim_{x\to x_0} f(x)$, apesar de $f(x_0)$ existir, neste caso $f(x_0) = L$.

Exemplo 18. Verifique se as funções abaixo são contínuas nos pontos indicados:

a)
$$f(x) = \begin{cases} \frac{x^2 - 16}{8 - 2x}, & x \neq 4 \\ 2x - 4, & x = 4 \end{cases}$$
 b) $g(x) = \begin{cases} \frac{1 - x^2}{\sqrt{x} - 1}, & x > 1 \\ \frac{2x^2 - 2}{1 - x}, & x < 1 \\ 1 - 5x, & x = 1 \end{cases}$

Soluções: a) Calculando o limite, temos: $\lim_{x\to 4} \frac{x^2-16}{8-2x} = \lim_{x\to 4} \frac{(x-4)(x+4)}{2(4-x)} = \lim_{x\to 4} -\frac{(x+4)}{2} = -4$. Calculando a imagem, temos: f(4)=2(4)-4=4. Como $\lim_{x\to 4} f(x)\neq f(4)$, então a função não é contínua (ou descontínua) no ponto $x_0=4$.

b) Calculando o limite, temos:

$$\lim_{x \to I^{+}} \frac{1 - x^{2}}{\sqrt{x} - I} = \lim_{x \to I^{+}} \frac{(1 - x)(1 + x)}{\sqrt{x} - I} \cdot \frac{\sqrt{x} + I}{\sqrt{x} + I} = \lim_{x \to I^{+}} \frac{(1 - x)(1 + x)(\sqrt{x} + I)}{x - I} = \lim_{x \to I^{+}} -(1 + x)(\sqrt{x} + I) = -4$$

$$\lim_{x \to I^{-}} \frac{2x^{2} - 2}{1 - x} = \lim_{x \to I^{-}} \frac{2(x^{2} - 1)}{1 - x} = 2\lim_{x \to I^{-}} \frac{(x - 1)(x + 1)}{1 - x} = 2\lim_{x \to I^{-}} -(x + 1) = 2(-2) = -4$$

Como os limites laterais são iguais, temos que $\lim_{x \to 1} g(x) = -4$.

Calculando a imagem, temos: g(1) = 1 - 5(1) = -4.

Como $\lim_{x \to 1} g(x) = g(1)$, então a função é contínua no ponto $x_0 = 1$.

Atividades (grupo 13).

Determine, se possível, a constante $a \in \Re$ de modo que as funções abaixo sejam contínuas no ponto x_o , sendo:

a)
$$f(x) = \begin{cases} 3ax^2 + 2, x < 1 \\ x - 2, x \ge 1 \end{cases} (x_o = 1).$$

b)
$$g(x) = \begin{cases} ax^2 + 2, x \neq 1 \\ a^2, x = 1 \end{cases} (x_o = 1).$$

Atividades (grupo 14).

Determine, se possível, as constantes $a \in B \in \mathbb{R}$ de modo que as funções abaixo sejam contínuas no ponto x_o , sendo:

c)
$$f(x) = \begin{cases} 3x - 3, x > -3 \\ ax, x = -3 \\ bx^2 + 1, x < -3 \end{cases} (x_o = -3).$$

Propriedades das funções contínuas.

Se as funções f e g são contínuas em um ponto x_0 , então:

- i) $f \pm g$ é contínua em x_0 ;
- ii) $f \cdot g$ é contínua em x_0 ;
- iii) f / g é contínua em x_0 desde que $g(x_0) \neq 0$.

1. Problema da **área** sob o arco da parábola $y = x^2$ no intervalo [0, 1] (Figura 1). Método dos retângulos.

Figura 1.

Dividindo o intervalo [0, 1] em n subintervalos, cada subintervalo terá comprimento 1/n:

$$l^{\varrho}$$
 subintervalo $\left[0, \frac{1}{n}\right]$, 2^{ϱ} subintervalo $\left[\frac{1}{n}, \frac{2}{n}\right]$,

$$3^{\underline{o}}$$
 subintervalo $\left[\frac{2}{n}, \frac{3}{n}\right]$, ..., $n^{\underline{o}}$ subintervalo $\left[\frac{n-1}{n}, \frac{n}{n}\right]$. Obs.: $\frac{n}{n} = 1$.

Vamos construir retângulos (Figura 2) cujas bases são ao subintervalos e cujas alturas são as imagens dos extremos direito* de cada subintervalo pela função $y = x^2$:

* a altura pode ser calculada sobre qualquer ponto do subintervalo, neste caso foi tomado o extremo direito.

Figura 2.

Figura 3.

Calculando as área desses retângulo (A = b.h), obtemos:

$$A_1 = \frac{1}{n} \cdot \frac{1^2}{n^2}, \quad A_2 = \frac{1}{n} \cdot \frac{2^2}{n^2}, \quad A_3 = \frac{1}{n} \cdot \frac{3^2}{n^2}, \quad \dots, \quad A_n = \frac{1}{n} \cdot \frac{n^2}{n^2}.$$

A área total desses retângulos (A_{t_n}) nos dá uma aproximação da área (Figura 1) que queremos calcular:

$$A_{t_n} = \sum_{i=1}^n A_i = \frac{1}{n} \left(\frac{1^2}{n^2} + \frac{2^2}{n^2} + \frac{3^2}{n^2} + \dots + \frac{n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2} \right) = \frac{1}{n} \left(\frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^2}$$

$$= \frac{1}{n} \left(\frac{n(n+1)(2n+1)}{6n^2} \right) = \frac{n(n+1)(2n+1)}{6n^3}.$$

Obs.: A soma $1^2 + 2^2 + 3^2 + ... + n^2$ é conhecida pela fórmula [n(n+1)(2n+1)]/6.

Vejamos alguns resultados para alguns valores crescentes de *n*:

n	6 (Figura 3)	10	100	1.000	10.000	100.000
A_{t_n}	0,421296	0,385000	0,338350	0,333834	0,333383	0,333338

A área exata que estamos procurando (Figura 1) é calculada pelo limite:

$$\lim_{n \to +\infty} A_{T_n} = \lim_{n \to +\infty} \frac{n(n+1)(2n+1)}{6n^3} = \frac{1}{3} = 0, \overline{3} . \quad \text{(Calcule este limite e mostre que é igual a 1/3)}$$

2. Problema do circuito RL em série.

No circuito da figura 4, temos uma associação em série de um resistor (símbolo R) e um indutor (símbolo L). Da segunda lei de Kirchhoff (lei das voltagens) e do estudo das equações diferenciais, pode-se mostrar que a corrente i no circuito é dada por

$$i(t) = \frac{E}{R} + c.e^{-\left(\frac{R}{L}\right)t} , \qquad (1)$$

onde E é uma bateria de voltagem fixa, c é uma constante real e t é o tempo.

Unidade de resistência: ohm. Unidade de indutância: henry.

Exercício 1: Se uma bateria de 12 volts é conectada a um circuito em série (como na fig. 4) no qual o indutor é de 1/2 henry e o resistor é de 10 ohms, determine o valor da constante c e a corrente i(t). Considere a corrente inicial e o tempo inicial iguais a zero.

Exercício 2: Determine $\lim_{t\to +\infty} i(t)$, sendo i(t) da equação (1).

Obs.: Quando $t \to +\infty$ o termo $c.e^{-\left(\frac{R}{L}\right)t}$ da equação (1) se aproxima de zero. Tal termo é usualmente denominado de *corrente transitória*. A razão E/R é chamada de *corrente estacionária*. Após um longo período de tempo, a corrente no circuito é governada praticamente pela lei de Ohm E = Ri.

Derivada

A reta tangente.

Suponha que a reta r da figura vá se aproximando da circunferência até tocá-la num **único** ponto.

Na situação da figura 4, dizemos que a reta *r* é *tangente* a circunferência no ponto *P*.

Exemplos de *retas tangentes* (no ponto *P*) a algumas curvas:

Na figura 7, apesar da reta tocar a curva em dois pontos, ela tangencia a curva em *P*, como na figura 4.

Estas retas tocam *suavemente* as curvas nos pontos *P* indicados.

Exemplos de retas que **não são tangentes** (no ponto *Q*) a algumas curvas:

Estas retas não tocam suavemente as curvas nos pontos indicados como no exemplo da circunferência (fig. 4). Elas "cortam", "penetram" as curvas.

Vamos determinar a equação da reta tangente a uma função (uma curva) num ponto do seu domínio.

Seja y = f(x) uma curva definida no intervalo (a,b). Considere $P(x_o, y_o)$, sendo $y_o = f(x_o)$, um ponto fixo e Q(x, y) um ponto m'ovel, ambos sobre o gráfico de f.

Seja s a reta que passa pelos pontos $P \in Q$.

Seja t a *reta tangente* ao gráfico de f no ponto P.

$$\Delta y = y - y_o$$
$$\Delta x = x - x_o$$

Considerando o triângulo retângulo PTO, obtemos o coeficiente angular da reta s como

$$tg(\beta) = \frac{\Delta y}{\Delta x} = \frac{y - y_o}{x - x_o}.$$

Suponha que o ponto Q mova-se **sobre o gráfico de** f em direção ao ponto P. Desta forma, a reta s se aproximará da reta t. O ângulo β se aproximará do ângulo α , e então, a $tg(\beta)$ se aproximará da $tg(\alpha)$. Usando a notação de limites, é fácil perceber que

$$\lim_{O\to P} tg(\beta) = tg(\alpha).$$

Mas quando $Q \to P$ temos que $x \to x_o$. Desta forma, o limite acima fica

$$\lim_{Q \to P} tg(\beta) = tg(\alpha) \quad \Leftrightarrow \quad \lim_{x \to x_o} \frac{y - y_o}{x - x_o} = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o} = tg(\alpha).$$

Assim
$$\lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o} = tg(\alpha).$$

Definição: Seja y = f(x) uma curva e $P(x_o, y_o)$ um ponto sobre o seu gráfico. O coeficiente angular m da reta tangente ao gráfico de f no ponto P é dado pelo limite

$$m = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}$$
, quando este existir.

$$m = tg(\alpha)$$

$$y_o = f(x_o)$$

Equação da reta tangente

Podemos agora determinar a equação da reta tangente t, pois já conhecemos o seu coeficiente angular e um ponto do seu gráfico $P(x_o, y_o)$.

A equação da reta tangente t é:

- a) $(y y_o) = m(x x_o)$, se o limite que determina m existir;
- b) A reta vertical $x = x_o$ se $\lim_{x \to x_o} \frac{f(x) f(x_o)}{x x_o}$ for infinito.

Exemplo 19. Determine a equação tangente a parábola $f(x) = x^2$ no ponto de abscissa $x_0 = 1$.

Solução: Temos que determinar dois termos y_o e m.

$$y_o = f(x_o) \Rightarrow y_o = f(1) = I^2 = I$$
.

$$m = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o} = \lim_{x \to I} \frac{f(x) - f(I)}{x - I} = \lim_{x \to I} \frac{x^2 - I}{x - I} = \dots = 2.$$

Logo a equação da reta tangente é (y-1)=2(x-1) ou y=2x-1.

Equação da reta normal

Definição: Seja y = f(x) uma curva e $P(x_o, y_o)$ um ponto sobre o seu gráfico. A reta normal (n) ao gráfico de f no ponto P é a reta **perpendicular** a reta tangente (t).

- A equação da reta normal é $(y y_o) = \frac{-1}{m}(x x_o)$, sendo que $m = \lim_{x \to x_o} \frac{f(x) f(x_o)}{x x_o} \neq 0$.
- Se m = 0, então a equação da reta normal é a reta vertical $x = x_o$.
- Se $\lim_{x \to x_o} \frac{f(x) f(x_o)}{x x_o}$ for infinito, então a reta normal é horizontal e tem equação $y = y_o$.

Atividades (grupo 15).

Determine a equação da *reta tangente* e da *reta normal* ao gráfico das funções abaixo nos pontos indicados. Esboce os gráficos das funções com as retas.

- a) $f(x) = x^3$ no ponto de abscissa $x_0 = I$.
- b) $f(x) = \sqrt{x}$ no ponto de abscissa $x_o = 4$.

A derivada de uma função num ponto

O limite $\lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}$ é muito importante, por isso receberá uma denominação especial.

Definição: Seja y = f(x) uma função e x_o um ponto do seu domínio. Chama-se derivada da função f no ponto x_o e denota-se $f'(x_o)$ (lê-se f linha de x_o), o limite

$$f'(x_o) = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}$$
, quando este existir.

Forma alternativa para derivada:

Se fizermos $\Delta x = x - x_o$, obtemos a seguinte forma para $f'(x_o)$:

$$f'(x_o) = \lim_{\Delta x \to 0} \frac{f(x_o + \Delta x) - f(x_o)}{\Delta x}$$

Outras notações para a derivada da função y = f(x) num ponto x qualquer:

- y'(x) (lê-se: y linha de x);
- $D_x f$ (lê-se: derivada da função f em relação à x);
- $\frac{dy}{dx}$ (lê-se: derivada de y em relação à x).

Exemplo 20. Dada a função $f(x) = x^2 - x + 1$, determine f'(2). Use as **duas formas** da definição.

$$\Rightarrow$$
 Usando $f'(x_o) = \lim_{x \to x_o} \frac{f(x) - f(x_o)}{x - x_o}$:

$$f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^2 - x + 1 - 3}{x - 2} = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{x - 2} = \lim_{x \to 2} (x + 1) = 3.$$

$$\Rightarrow$$
 Usando $f'(x_o) = \lim_{\Delta x \to 0} \frac{f(x_o + \Delta x) - f(x_o)}{\Delta x}$:

$$f'(2) = \lim_{\Delta x \to 0} \frac{f(2+\Delta x) - f(2)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(2+\Delta x)^2 - (2+\Delta x) + 1 - 3}{\Delta x} = \lim_{\Delta x \to 0} \frac{4+4\Delta x + \Delta x^2 - 2 - \Delta x - 2}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(2+\Delta x) - f(2)}{\Delta x}$$

$$=\lim_{\Delta x\to 0}\frac{3\Delta x+\Delta x^2}{\Delta x}=\lim_{\Delta x\to 0}\frac{\Delta x\big(3+\Delta x\big)}{\Delta x}=\lim_{\Delta x\to 0}\big(3+\Delta x\big)=3+0=3\;.$$

Teorema: Toda função derivável num ponto é contínua neste ponto.

Atividades (grupo 16).

- 1. Determine a equação da reta tangente à curva $y = 5 x^2$, que seja perpendicular à reta y = 3 + x.
- 2. Determine a equação da reta normal à curva $y = x^3$, que seja paralela à reta 3y + x = 0.

Derivadas laterais

Lembre-se que o limite de uma função num ponto somente existe se os limites laterais existem e são iguais. Como a derivada de uma função num ponto é um limite, esta derivada somente existirá em condições análogas.

Definição: Seja y = f(x) uma função e x_o um ponto do seu domínio. A derivada à **direita** de f em x_o , denotada por $f_+'(x_o)$ é definida por

$$f_{+}'(x_o) = \lim_{x \to x_o^+} \frac{f(x) - f(x_o)}{x - x_o}.$$

Definição: Seja y = f(x) uma função e x_o um ponto do seu domínio. A derivada à **esquerda** de f em x_o , denotada por $f_-'(x_o)$ é definida por

$$f_{-}'(x_o) = \lim_{x \to x_o^{-}} \frac{f(x) - f(x_o)}{x - x_o}.$$

Uma função é derivável num ponto quando as derivadas laterais (a direita e a esquerda) existem e são iguais neste ponto.

Exemplo 21. Considere a função f(x) = |x+I|. Mostre que esta função é contínua no ponto x = -I mas não é derivável neste ponto.

 $f \in \text{continua neste ponto pois } \lim_{x \to -1} f(x) = \lim_{x \to -1} |x + I| = |-1 + I| = |0| = 0 = f(-1).$

Sabemos que $f(x) = |x+I| = \begin{cases} x+1, x > -1 \\ -x-1, x < -1 \end{cases}$. Vamos calcular f'(-1): 0, x = -1

$$f_{+}'(-1) = \lim_{x \to -l^{+}} \frac{f(x) - f(-1)}{x + l} = \lim_{x \to -l^{+}} \frac{x + l - 0}{x + l} = \lim_{x \to -l^{+}} \frac{x + l}{x + l} = \lim_{x \to -l^{+}} (1) = 1.$$

$$f_{-}'(-1) = \lim_{x \to -l^{-}} \frac{f(x) - f(-1)}{x + l} = \lim_{x \to -l^{-}} \frac{-x - l - 0}{x + l} = \lim_{x \to -l^{-}} \frac{-(x + 1)}{x + l} = \lim_{x \to -l^{-}} (-1) = -1.$$

Como as derivadas laterais são distintas concluímos que não existe f'(-1).

Veja o gráfico da função f(x) = |x + I|.

Obs.: Quando as derivadas laterais existem e são diferentes num ponto, dizemos que este é um ponto anguloso do gráfico da função. Neste caso, não existe reta tangente num ponto anguloso.

No exemplo acima a função f(x) = |x+I| tem um ponto anguloso em x = -I.

Atividades (grupo 17). Verifique se a função abaixo tem derivada no ponto x_o . Este ponto é anguloso? Esboce o gráfico da função e constate.

a)
$$f(x) = \begin{cases} I - x^2, & x > 0 \\ e^x, & x \le 0 \end{cases}$$
 no ponto $x_o = 0$.
b) $g(x) = \begin{cases} x^2 + x + 1, & x > 0 \\ e^x, & x \le 0 \end{cases}$ no ponto $x_o = 0$.

Regras de derivação

Vamos apresentar algumas regras que irão facilitar o cálculo das derivadas das funções sem recorrer a definição.

1. Derivada de uma função constante.

Se f(x) = c, c é uma constante real, então f'(x) = 0.

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{c - c}{\Delta x} = \lim_{\Delta x \to 0} 0 = 0.$$

2. Derivada da função potência.

Se *n* é um inteiro positivo e $f(x) = x^n$, então $f'(x) = nx^{n-1}$.

Prova:
$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x + \Delta x)^n - x^n}{\Delta x}$$

Usando o *Binômio de Newton* para expandir $(x + \Delta x)^n$, obtemos

$$f'(x) = \lim_{\Delta x \to 0} \frac{\left[x^n + nx^{n-1} \Delta x + \frac{n(n-1)}{2!} x^{n-2} (\Delta x)^2 + \dots + nx (\Delta x)^{n-1} + (\Delta x)^n \right] - x^n}{\Delta x} =$$

$$=\lim_{\Delta x\to 0}\frac{\Delta x \left[nx^{n-1}+\frac{n(n-1)}{2!}x^{n-2}(\Delta x)+...+nx(\Delta x)^{n-2}+(\Delta x)^{n-1}\right]}{\Delta x}=$$

$$= \lim_{\Delta x \to 0} \left[nx^{n-l} + \frac{n(n-l)}{2!} x^{n-2} (\Delta x) + ... + nx (\Delta x)^{n-2} + (\Delta x)^{n-l} \right] = nx^{n-l}.$$

Exemplo 22. Calcule as derivadas das funções abaixo:

a)
$$f(x) = x$$
 b) $f(x) = x^2$ c) $f(x) = x^5$

a)
$$f(x) = x^{1} \implies f'(x) = 1x^{1-1} = 1$$
. Logo $f'(x) = 1$.

b)
$$f(x) = x^2 \implies f'(x) = 2x^{2-1} = 2x$$
. Logo $f'(x) = 2x$.

c)
$$f(x) = x^5 \implies f'(x) = 5x^{5-1} = 5x^4$$
. Logo $f'(x) = 5x^4$.

Obs.: Se n for um número inteiro negativo ou racional o resultado contínua válido.

Atividades (grupo 18).

- 1. Mostre, usando a **regra** e a **definição**, que a derivada da função $f(x) = x^{-1}$ é $f'(x) = -x^{-2}$.
- 2. Mostre, usando a **regra** e a **definição**, que a derivada da função $f(x) = \sqrt{x}$ é $f'(x) = \frac{1}{2\sqrt{x}}$.

3. Derivada do produto de uma constante por uma função.

Se f(x) é uma função derivável e c é uma constante real, então a função g(x) = cf(x) tem derivada dada por g'(x) = cf'(x).

Prova:
$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{cf(x + \Delta x) - cf(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0} \frac{c[f(x + \Delta x) - f(x)]}{\Delta x} = \lim_{\Delta x \to 0$$

$$= c \cdot \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = cf'(x).$$

Exemplo 23. Se $f(x) = 5x^3$ então $f'(x) = 5(3x^2) = 15x^2$.

4. Derivada de uma soma de funções.

Se f(x) e g(x) são função deriváveis, então a função h(x) = f(x) + g(x) tem derivada dada por h'(x) = f'(x) + g'(x).

Pesquise a demonstração deste resultado num livro de cálculo.

Exemplo 24. Se
$$f(x) = 4x^3 + 3x^2 - x + 5$$
 então $f'(x) = 12x^2 + 6x - 1$.

5. Derivada de um produto de funções.

Se f(x) e g(x) são função deriváveis, então a função $h(x) = f(x) \cdot g(x)$ tem derivada dada por $h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$.

Pesquise a demonstração deste resultado num livro de cálculo.

Exemplo 25.

Se
$$f(x) = (x^3 - x)(2 - x)$$
 então $f'(x) = (3x^2 - 1)(2 - x) + (x^3 - x)(0 - 1) = -4x^3 + -6x^2 + 2x - 2$.

6. Derivada de um quociente de funções.

Se f(x) e g(x) são função deriváveis, então a função $h(x) = \frac{f(x)}{g(x)}$ tem derivada dada por $h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$.

Pesquise a demonstração deste resultado num livro de cálculo.

Exemplo 26. Se
$$f(x) = \frac{5x^2 - 8}{2x}$$
 então $f'(x) = \frac{(10x) \cdot (2x) - (5x^2 - 8) \cdot (2)}{4x^2} = \dots = \frac{5x^2 + 8}{2x^2}$.

Atividades (grupo 19).

1. Usando as regras de derivação, calcule as derivadas das funções abaixo:

a)
$$f(x) = x^{-2} + 3x + 1$$
.

b)
$$f(x) = (x^8)/(x+3)$$
.

c)
$$f(x) = (3x^4 + x)(6 - x)$$
.

d)
$$f(x) = (x^2 - 3)/2x^3$$

d)
$$f(x) = (x^2 - 3)/2x^3$$
. e) $f(x) = \frac{5x - 3}{2} + \sqrt[3]{x}$. f) $f(x) = x^{1/4}(2 - x)$.

f)
$$f(x) = x^{1/4} (2-x)$$

g)
$$f(x) = \frac{\sqrt{x}}{x+1} + x^{-2} + 6$$
. h) $f(x) = \frac{2x}{x^{-2}}$.

h)
$$f(x) = \frac{2x}{x^{-2}}$$

i)
$$f(x) = \sqrt[4]{x^3} (1 - x^2)$$
.

2. Determine os valores das constantes a e b na parábola $f(x) = ax^2 + b$ de modo que a reta de equação y = 8x + 4 seja tangente a parábola no ponto x = 2.

Derivada da função composta (Regra da cadeia)

Até o momento sabemos derivar a função $g(x) = x^3$ e também a função f(x) = 2x + 1. Considere agora a função composta $gof(x) = g(f(x)) = (2x+1)^3$. Como poderemos obter a derivada da função composta gof(x) sem desenvolver o Binômio? A regra que veremos agora estabelece uma forma de obter a derivada da função composta em termos das funções elementares $f \in g$.

Regra da cadeia

Se y = g(u), u = f(x) e as derivadas $\frac{dy}{du}$ e $\frac{du}{dx}$ existem, então a função composta y = gof(x) = g(f(x)) tem derivada dada por

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \quad \text{ou} \quad \boxed{y'(x) = y'(u) \cdot u'(x)} \quad \text{ou} \quad \boxed{gof'(x) = g'(f(x)) \cdot f'(x)}.$$

As três formas acima são equivalentes, mudam apenas as notações.

Exemplo 27. Calcule a derivada das funções abaixo:

a)
$$y = (2x+1)^3$$

b)
$$y = \sqrt{5x + 3}$$

c)
$$y = \left(\frac{x}{1-3x}\right)^5$$

Para calcular a derivada dessas funções, precisamos identificar as funções elementares y = g(u) e u = f(x) (cujas derivadas conhecemos) que formam a função composta e aplicar a regra.

a)
$$y = (2x+1)^3$$

$$\begin{cases} y = u^3 \\ u = 2x + I \end{cases}$$

Então
$$y'(x) = y'(u) \cdot u'(x) \implies y'(x) = 3u^2 \cdot 2 = 3(2x+1)^2 \cdot 2 = 6(2x+1)^2$$
.

Logo
$$v'(x) = 6(2x+1)^2$$
.

b)
$$y = \sqrt{5x + 3}$$

$$\begin{cases} y = \sqrt{u} \\ u = 5x + 3 \end{cases}$$

Então
$$y'(x) = y'(u) \cdot u'(x) \implies y'(x) = \frac{1}{2\sqrt{u}} \cdot (5) = \frac{5}{2\sqrt{5x+3}}$$
. Logo $y'(x) = \frac{5}{2\sqrt{5x+3}}$.

c)
$$y = \left(\frac{x}{1 - 3x}\right)^5$$

$$\begin{cases} y = u^5 \\ u = \frac{x}{1 - 3x} \end{cases}$$

Então
$$y'(x) = y'(u) \cdot u'(x) \implies y'(x) = 5u^4 \cdot \left[\frac{(1)(1-3x) - (x)(-3)}{(1-3x)^2} \right] =$$

$$= 5\left(\frac{x}{1-3x}\right)^4 \cdot \left[\frac{(1)(1-3x)-(x)(-3)}{(1-3x)^2}\right] = \frac{5x^4}{(1-3x)^6}.$$

Logo
$$y'(x) = \frac{5x^4}{(1-3x)^6}$$
.

Proposição: Se f(x) é uma função derivável e n é um número inteiro não nulo, então

$$\frac{d}{dx}[f(x)]^n = n[f(x)]^{n-1}.f'(x)$$

Prova: Fazendo $y = u^n$, onde u = f(x) e aplicando a regra da cadeia, temos

$$y'(x) = y'(u) \cdot u'(x) \implies y'(x) = nu^{n-1} \cdot f'(x) \implies y'(x) = n[f(x)]^{n-1} \cdot f'(x).$$

A proposição continua válida se *n* for um número racional não nulo.

Exemplo 28. Calcule a derivada da função $y = 4 \cdot \sqrt[3]{l + x - x^3}$.

Podemos escrever $y = 4(I + x - x^3)^{I/3}$ e calcular a derivada usando a proposição acima:

$$y'(x) = 4 \cdot \frac{1}{3} (1 + x - x^3)^{-2/3} \cdot (1 - 3x^2).$$

Obs: Com a regra da proposição acima poderíamos calcular todos os exercícios do exemplo 27. Mas a regra da cadeia é mais completa, ela possibilitará a resolução de outros problemas mais complicados...

Atividades (grupo 20). Calcule a derivada das funções abaixo:

a)
$$y = (2 - x^3)^6$$
.

b)
$$y = (x^4 - 2)^{-3}$$
.

c)
$$y = \sqrt{2x - 3}$$
.

d)
$$y = \frac{(I-3x)^2}{(I+5x)}.$$

e)
$$y = \frac{(2x)^4}{(1-x)^3}$$

f)
$$y = \frac{\sqrt[3]{I + 4x}}{x + I}$$

Derivada da função inversa

Se uma função y = f(x) admite uma função inversa $x = f^{-1}(y)$, então a função inversa tem derivada dada por

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0.$$

Sabemos que $f^{-l}of(x) = x$. Aplicando a regra da cadeia, obtemos que $(f^{-l})'(f(x)) \cdot f'(x) = 1$, daí $(f^{-l})'(y) = \frac{1}{f'(x)}$, desde que $f'(x) \neq 0$.

Exemplo 29. Seja $y = f(x) = 5x^3$. Calcule a derivada $(f^{-1})'(40)$ invertendo a função e usando a regra da derivada da inversa.

⇒ Invertendo a função:

$$y = f(x) = 5x^{3} \implies x = f^{-1}(y) = \sqrt[3]{\frac{y}{5}} = \left(\frac{y}{5}\right)^{1/3}. \quad \text{Assim } (f^{-1})'(y) = \frac{1}{3} \left(\frac{y}{5}\right)^{-2/3} \cdot \frac{1}{5}$$

$$\text{Logo } (f^{-1})'(40) = \frac{1}{3} \left(\frac{40}{5}\right)^{-2/3} \cdot \frac{1}{5} = \frac{1}{15} (8)^{-2/3} = \frac{1}{15(8)^{2/3}} = \frac{1}{60}.$$

⇒ Usando a regra da derivada da inversa:

Se
$$y = 40$$
 e $y = f(x) = 5x^3$, então $x = \sqrt[3]{\frac{40}{5}} = \sqrt[3]{8} = 2$. Como $f'(x) = 15x^2$, obtemos

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$
 \Rightarrow $(f^{-1})'(40) = \frac{1}{f'(2)} = \frac{1}{15(2)^2} = \frac{1}{60}$

Atividades (grupo 21).

1. Seja y = f(x) = 5x - 3. Calcule a derivada $(f^{-1})'(2)$ usando a regra da derivada da inversa.

2. Seja $y = f(x) = x^2$, x > 0. Calcule a derivada $(f^{-l})'(3)$ usando a regra da derivada da inversa.

Derivada das funções elementares.

Vamos agora apresentar as derivadas das funções elementares do cálculo. São elas as funções exponenciais, logarítmicas, trigonométricas e trigonométricas inversas.

1. Derivada da função exponencial.

Proposição: Se $f(x) = a^x$, $(a > 0 \ e \ a \ne 1)$, então $f'(x) = a^x \ln(a)$.

Prova:
$$f'(x) = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^x}{\Delta x} = \lim_{\Delta x \to 0} \frac{a^x (a^{\Delta x} - 1)}{\Delta x} = \lim_{\Delta x \to 0} a^x \cdot \lim_{\Delta x \to 0} \frac{(a^{\Delta x} - 1)}{\Delta x} = a^x \ln(a)$$
.

Lembre-se que $\lim_{\Delta x \to 0} \frac{\left(a^{\Delta x} - I\right)}{\Delta x} = ln(a)$ é uma consequência importante do limite fundamental exponencial (item ii pág. 14).

Caso particular: Se $f(x) = e^x$, então $f'(x) = e^x \ln(e) = e^x$, onde e^x é o número neperiano.

Exemplo 30. Determine a deriva da função $y = 6e^{\sqrt{x}}$.

Usando a regra da cadeia, obtemos:

$$\begin{cases} y = 6e^u \\ u = \sqrt{x} \end{cases} \quad y'(x) = y'(u) \cdot u'(x) = 6e^u \cdot \frac{1}{2\sqrt{x}} = \frac{3e^{\sqrt{x}}}{\sqrt{x}}.$$

Atividades (grupo 22).

1. Calcule a derivada das funções abaixo:

a)
$$f(x) = 2^{x+1}$$
. b) $f(x) = e^{2x}$. c) $f(x) = 3x^2 \cdot e^{5x+1}$. d) $f(x) = \frac{1-x^2}{e^{x^2}}$.

2. Calcule a área do triângulo retângulo sombreado na figura abaixo, sabendo-se que n é a *reta* normal a $f(x) = e^x$ no ponto de abscissa $x_0 = 1$.

2. Derivada da função logarítmica.

Proposição: Se
$$f(x) = log_a(x)$$
, $(a > 0 \ e \ a \ne 1)$, então $f'(x) = \frac{1}{x \ln(a)}$.

Prova: A função logarítmica $y = f(x) = log_a(x)$ é a inversa da função exponencial $x = f^{-1}(y) = a^y$. Podemos então usar o resultado da derivada da função inversa para determinar f'(x). Assim:

$$f'(x) = \frac{1}{(f^{-l})'(y)} = \frac{1}{a^y \ln(a)} = \frac{1}{x \ln(a)}.$$

Caso particular: Se
$$f(x) = ln(x)$$
, então $f'(x) = \frac{1}{x \ln(e)} = \frac{1}{x}$.

Exemplo 31. Determine a deriva da função $y = \frac{e^{4x+1}}{\ln(x)}$.

Usando a regra da derivada do quociente $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ e a regra da cadeia na função exponencial, obtemos:

$$y' = \frac{\left(e^{4x+1} \cdot 4\right) [\ln(x)] - \left(e^{4x+1}\right) \left(\frac{1}{x}\right)}{[\ln(x)]^2}$$

Atividades (grupo 23).

1. Calcule a derivada das funções abaixo:

a)
$$f(x) = 4 \log_2(5x)$$
. b) $f(x) = \ln(2x+1)$. c) $f(x) = e^{3x} \cdot \ln(\sqrt{x})$. d) $f(x) = \frac{\ln(3x)}{e^{-2x}}$.

3. Derivada das funções trigonométricas.

Proposição:

a)
$$y = sen(x)$$
 \Rightarrow $y' = cos(x)$.

b)
$$y = cos(x)$$
 \Rightarrow $y' = -sen(x)$

b)
$$y = cos(x)$$
 \Rightarrow $y' = -sen(x)$.
c) $y = tg(x)$ \Rightarrow $y' = sec^2(x)$.

d)
$$y = \cot g(x)$$
 \Rightarrow $y' = -\cos ec^2(x)$.

e)
$$y = sec(x)$$
 \Rightarrow $y' = sec(x)tg(x)$.

f)
$$y = \cos ec(x) \implies y' = -\cos ec(x)\cot g(x)$$
.

Prova: Vamos provar os itens (a), (c) e (e). Os outros itens têm demonstrações análogas e ficam como exercício.

a) y = sen(x). Aplicando a definição...

$$y' = \lim_{\Delta x \to 0} \frac{sen(x + \Delta x) - sen(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{sen(x)cos(\Delta x) + sen(\Delta x)cos(x) - sen(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \frac{sen(\Delta x)cos(x) + sen(x)[cos(\Delta x) - 1]}{\Delta x} = \lim_{\Delta x \to 0} \frac{sen(\Delta x)cos(x)}{\Delta x} + \lim_{\Delta x \to 0} \frac{sen(x)[cos(\Delta x) - 1]}{\Delta x} =$$

$$= cos(x) \cdot \lim_{\Delta x \to 0} \frac{sen(\Delta x)}{\Delta x} + sen(x) \cdot \lim_{\Delta x \to 0} \frac{cos(\Delta x) - 1}{\Delta x} = cos(x) \cdot (1) + sen(x) \cdot (0) = cos(x).$$

Lembre-se que $\lim_{\Delta x \to 0} \frac{sen(\Delta x)}{\Delta x} = 1$ é o limite trigonométrico fundamental e $\lim_{\Delta x \to 0} \frac{cos(\Delta x) - 1}{\Delta x} = 0$ foi resolvido no exemplo 13 (c) da pág. 15.

c)
$$y = tg(x)$$

Como $tg(x) = \frac{sen(x)}{cos(x)}$ e já sabemos a derivada função sen(x), podemos aplicar a derivada do quociente:

$$y' = \frac{\cos(x)\cos(x) - \sin(x)[-\sin(x)]}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = \sec^2(x).$$

Lembre-se que $\cos^2(x) + \sin^2(x) = 1$ é a relação trigonométrica fundamental.

e)
$$y = sec(x)$$

Como $sec(x) = \frac{1}{cos(x)}$ e sabendo-se que a derivada da função cos(x) é -sen(x), podemos aplicar a derivada do quociente:

$$y' = \frac{(0)\cos(x) - (1)[-\sin(x)]}{\cos^{2}(x)} = \frac{(1)\sin(x)}{\cos^{2}(x)} = \frac{1}{\cos(x)} \cdot \frac{\sin(x)}{\cos(x)} = \sec(x)tg(x).$$

Exemplo 32. Calcule a derivada das funções compostas abaixo:

a)
$$y = sen(3x^2)$$
. b) $y = cos^3(x)$. c) $y = tg(\sqrt{x}) \cdot e^{5x}$. d) $y = \frac{tg(x) - 1}{sec(x)}$.

Soluções:

a)
$$y = sen(3x^2)$$

Usando a regra da cadeia, obtemos:

$$\begin{cases} y = sen(u) \\ u = 3x^2 \end{cases} \quad y'(x) = y'(u) \cdot u'(x) = cos(u) \cdot 6x = 6x \cos(3x^2).$$

b)
$$y = cos^3(x)$$

Usando a regra da cadeia, obtemos:

$$\begin{cases} y = u^3 \\ u = \cos(x) \end{cases} \quad y'(x) = y'(u) \cdot u'(x) = 3u^2 \cdot [-sen(x)] = -3 sen(x) \cos^2(x).$$

c)
$$y = tg(\sqrt{x}) \cdot e^{5x}$$

Usando a regra da derivada do produto $(f \cdot g)' = f'g + fg'$ e a regra da cadeia, obtemos:

$$y' = sec^{2}\left(\sqrt{x}\right)\left(\frac{1}{2\sqrt{x}}\right)e^{5x} + tg\left(\sqrt{x}\right)e^{5x} \cdot (5).$$

d)
$$y = \frac{tg(x) - 1}{sec(x)}$$

Usando a regra da derivada do quociente $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ e a regra da cadeia, obtemos:

$$y' = \frac{\left[sec^{2}(x)\right]\left[sec(x)\right] - \left[tg(x) - 1\right]\left[sec(x)tg(x)\right]}{sec^{2}(x)}$$

Mostre que esta expressão é igual a $y' = \frac{tg(x) + 1}{sec(x)}$. Simplifique-a utilizando a relação trigonométrica $1 + tg^2(x) = sec^2(x)$ se necessário.

Atividades (grupo 24).

1. Calcule a derivada das funções abaixo:

a)
$$f(x) = 3x + sec(x^2)$$
.

d)
$$f(x) = \frac{sen(x)}{1 + cot g(x)}$$
.

b)
$$f(x) = sen(x)cos(2x)$$
.

e)
$$f(x) = \cos ec(\frac{x+1}{x-1})$$
.

c)
$$f(x) = tg(\sqrt[3]{x})$$
.

f)
$$f(x) = cos\left(\frac{e^x}{x}\right)$$
.

4. Derivada das funções trigonométricas inversas

Proposição:

a)
$$y = arcsen(x)$$
 \Rightarrow $y' = \frac{1}{\sqrt{1-x^2}}$.

b)
$$y = arccos(x)$$
 \Rightarrow $y' = \frac{-1}{\sqrt{1-x^2}}$.

c)
$$y = arctg(x)$$
 \Rightarrow $y' = \frac{1}{1+x^2}$.

d)
$$y = \operatorname{arc} \cot g(x)$$
 \Rightarrow $y' = \frac{-1}{1+x^2}$.

e)
$$y = arc sec(x)$$
 \Rightarrow $y' = \frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1.$

f)
$$y = \arccos ec(x)$$
 \Rightarrow $y' = \frac{-1}{|x|\sqrt{x^2 - 1}}, |x| > 1$.

Prova: Vamos provar os itens (a), (c) e (e). Os outros itens têm demonstrações análogas e ficam como exercício.

a) Seja $f: [-1,1] \to [-\pi/2,\pi/2]$ definida por y=f(x)=arcsen(x). Esta função tem como inversa a função $x=f^{-1}(y)=sen(y)$. Podemos então usar o resultado da derivada da função inversa para determinar f'(x). Assim:

$$f'(x) = \frac{1}{f^{-1}(y)} = \frac{1}{\cos(y)} = \frac{1}{\sqrt{1 - \sin^2(y)}} = \frac{1}{\sqrt{1 - x^2}}.$$

Observe que $y \in [-\pi/2, \pi/2]$. Neste caso o sinal da função cos(y) é positivo. Usando a relação trigonométrica fundamental $cos^2(y) + sen^2(y) = I$, obtemos $cos(y) = \sqrt{I - sen^2(y)}$.

c) Seja $f: \Re \to (-\pi/2, \pi/2)$ definida por y = f(x) = arctg(x). Esta função tem como inversa a função $x = f^{-1}(y) = tg(y)$. Podemos então usar o resultado da derivada da função inversa para determinar f'(x). Assim:

$$f'(x) = \frac{1}{f^{-1}(y)} = \frac{1}{\sec^2(y)} = \frac{1}{1 + tg^2(y)} = \frac{1}{1 + x^2}.$$

Lembre-se que $sec^2(y) = I + tg^2(y)$.

e) Seja y = arc sec(x). Podemos reescrever esta expressão como $y = arccos(\frac{1}{x})$, |x| > 1. Usando o item (b) da proposição a regra da cadeia, obtemos:

$$y' = \frac{-1}{\sqrt{1 - \left(\frac{1}{x}\right)^2}} \cdot \left(\frac{-1}{x^2}\right) = \frac{1}{x^2 \sqrt{\frac{x^2 - 1}{x^2}}} = \frac{1}{x^2 \sqrt{\frac{x^2 - 1}{\sqrt{x^2}}}} = \frac{1}{x^2 \sqrt{\frac{x^2 - 1}{|x|}}} = \frac{|x|}{x^2 \sqrt{x^2 - 1}} = \frac{1}{|x|\sqrt{x^2 - 1}}.$$

Obs.: lembre-se que $\left(\frac{1}{x}\right)' = \frac{-1}{x^2}$.

Exemplo 33. Calcule a derivada das funções abaixo:

a)
$$y = arcsen(2x-1)$$
. b) $y = arctg\left(\frac{1-x^2}{1+x^2}\right)$.

Solução:

a) y = arcsen(2x - 1). Usando a regra da cadeia, obtemos:

$$\begin{cases} y = arcsen(u) \\ u = 2x - 1 \end{cases} y'(x) = y'(u) \cdot u'(x) = \frac{1}{\sqrt{1 - u^2}} \cdot (2) = \frac{2}{\sqrt{1 - (2x - 1)^2}}.$$

b) $y = arctg\left(\frac{I - x^2}{I + x^2}\right)$. Novamente a regra da cadeia...

$$\begin{cases} y = arctg(u) \\ u = \frac{1 - x^2}{1 + x^2} \end{cases} \quad y'(x) = y'(u) \cdot u'(x) = \left(\frac{1}{1 + u^2}\right) \cdot \left[\frac{(-2x)(1 + x^2) - (1 - x^2)(2x)}{(1 + x^2)^2}\right] = 0$$

$$= \left[\frac{1}{I + \left(\frac{I - x^2}{I + x^2} \right)^2} \right] \cdot \left[\frac{-4x}{\left(I + x^2 \right)^2} \right]$$
 simplifique esta expressão e mostre que é igual a $\frac{-2x}{I + x^4}$.

$$Logo y'(x) = \frac{-2x}{1+x^4}.$$

Atividades (grupo 25).

Determine a derivada das funções:

a)
$$y = arccos(x^2 - 1)$$
.
b) $y = 3x \cdot arctg(e^x)$.

Tabela de derivadas

Vamos fazer um resumo das derivadas das principais funções vistas até aqui. Nesta tabela u é uma função derivável na variável x. São constantes reais c, n e a.

(1)
$$v = c \Rightarrow v' = 0$$

(11)
$$y = sec(u) \Rightarrow y' = sec(u)tg(u).u'$$

(2)
$$v = x^n \Rightarrow v' = nx^{n-1}$$

(12)
$$y = \cos ec(u) \Rightarrow y' = -\cos ec(u)\cot g(u).u'$$

(3)
$$y = u^n \implies y' = n.u^{n-1}.u'$$

(13)
$$y = arc sen(u) \Rightarrow y' = \frac{u'}{\sqrt{1 - u^2}}$$

(4)
$$y = a^u \Rightarrow y' = a^u . ln(a).u'$$

(14)
$$y = arc \cos(u) \Rightarrow y' = -\frac{u'}{\sqrt{1-u^2}}$$

(5)
$$y = log_a(u), \Rightarrow y' = \frac{u'}{u. ln(a)}$$

(15)
$$y = arc tg(u) \Rightarrow y' = \frac{u'}{1 + u^2}$$

(6)
$$y = ln(u), (u > 0) \Rightarrow y' = \frac{u'}{u}$$

(16)
$$y = arc \cot(u) \Rightarrow y' = -\frac{u'}{1+u^2}$$

(7)
$$y = sen(u) \Rightarrow y' = cos(u).u'$$

(17)
$$y = arc \sec(u), |u| > 1 \Rightarrow y' = \frac{u'}{|u|\sqrt{u^2 - 1}}$$

(8)
$$y = cos(u) \Rightarrow y' = -sen(u).u'$$

(18)
$$y = arc \operatorname{cosec}(u), |u| > 1 \Rightarrow y' = -\frac{u'}{|u|\sqrt{u^2 - 1}}$$

(9)
$$y = tg(u) \Rightarrow y' = sec^2(u).u'$$

(10)
$$y = \cot g(u) \Rightarrow y' = -\cos ec^2(u).u'$$

Regras operacionais

Se *u* e *v* são funções deriváveis, então:

1)
$$v = u \pm v \implies v' = u' \pm v'$$

2)
$$y = u \cdot v \implies y' = u' \cdot v + u \cdot v'$$

3)
$$y = \left(\frac{u}{v}\right) \implies y' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

Derivadas sucessivas

Em algumas aplicações precisamos derivar uma função mais de uma vez. Se uma função y = f(x) for derivável, isto é, existe f'(x), podemos pensar na derivada de f'(x) e assim sucessivamente.

Definimos e denotamos as derivadas sucessivas de uma função y = f(x) de acordo com a tabela abaixo:

Como lê-se:	Notação:
$l^{\underline{a}}$ derivada ou derivada de $l^{\underline{a}}$ ordem	$f'(x)$ ou $\frac{dy}{dx}$
$2^{\underline{a}}$ derivada ou derivada de $2^{\underline{a}}$ ordem	$f''(x) ou \frac{d^2y}{dx^2}$
$3^{\underline{a}}$ derivada ou derivada de $3^{\underline{a}}$ ordem	$f'''(x) ou \frac{d^3y}{dx^3}$
$4^{\underline{a}}$ derivada ou derivada de $4^{\underline{a}}$ ordem	$f^{(4)}(x) ou \frac{d^4y}{dx^4}$
:	:
n^a derivada ou derivada de n^a ordem	$f^{(n)}(x) ou \frac{d^n y}{dx^n}$

Justificativa para as notações:

- f''(x) = [f'(x)]', f'''(x) = [f''(x)]', a partir da quarta derivada usamos o cardinal.
- $\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$, $\frac{d^3y}{dx^3} = \frac{d}{dx} \left(\frac{d^2y}{dx^2} \right)$, e assim successivamente.

Exemplo 34.

a) Se
$$f(x) = x^4 + 2x - 1$$
, então:

$$f'(x) = 4x^{3} + 2$$

$$f''(x) = 12x^{2}$$

$$f'''(x) = 24x$$

$$f^{(4)}(x) = 24$$

$$f^{(5)}(x) = 0$$

•••

$$f^{(n)}(x) = 0$$
, para todo $n \ge 5$.

b) Se $f(x) = e^{2x}$, então:

$$f'(x) = 2e^{2x}$$

$$f''(x) = 4e^{2x}$$

$$f^{\prime\prime\prime}(x) = 8e^{2x}$$

$$f'''(x) = 8e^{2x}$$
$$f^{(4)}(x) = 16e^{2x}$$

$$f^{(n)}(x) = 2^n e^{2x}$$
.

c) Se f(x) = sen(x), então:

$$f'(x) = cos(x)$$

$$f''(x) = -sen(x)$$

$$f'''(x) = -\cos(x)$$

$$f^{(4)}(x) = sen(x)$$

$$f^{(n)}(x) = \begin{cases} \cos(x), & n = 1,5,9,... \\ -sen(x), & n = 2,6,10,... \\ -cos(x), & n = 3,7,11,... \\ sen(x), & n = 4,8,12,... \end{cases}$$

Atividades (grupo 26).

1. Calcule as derivadas sucessivas até a ordem n indicada.

a)
$$y = 3x^4 - 2x - 9$$
, $n = 4$.

b)
$$y = ax^3 + bx^2 + cx + d$$
, $n = 3$.

c)
$$y = \frac{1}{1-x}$$
, $n = 3$.

d)
$$y = sen(-5x)$$
, $n = 5$.

e)
$$y = ln(1 - x^2)$$
, $n = 3$.

2. Calcule
$$f_{(\pi)}^{(99)}$$
, sendo $f(x) = e^{3x} + sen(2x)$.

Derivada na forma implícita

Até agora sabemos derivar funções que são expressas na forma y = f(x). Agora iremos determinar uma maneira de derivar expressões que não tenham a variável y isolada (explicitada) em um dos membros. São exemplos dessas expressões $x^2 + y^2 = 1$, $xy^2 + ln(y) = 4$, etc. Em algumas situações é inconveniente ou até mesmo impossível de explicitar a variável y nessas expressões. O método da *derivação implícita* permite encontrar a derivada de uma expressão desta forma, sem a necessidade de explicitá-la.

Uma função na forma y = f(x), onde a variável y aparece isolada no primeiro membro é chamada de função explícita. Entretanto, algumas vezes as funções estão definidas por equações nas quais a variável y não está isolada. Por exemplo

$$2y + x^2y + I = x$$

não está na forma explícita y = f(x). Mesmo assim, esta equação ainda define y como uma função de x, pois podemos escrevê-la como

$$y = \frac{x - l}{x^2 + 2}.$$

Caso quiséssemos calcular y', poderíamos utilizar esta última expressão.

Uma equação em x e y pode definir mais do que uma função. Por exemplo $x^2 + y^2 = I$ que representa graficamente uma circunferência de centro (0,0) e raio unitário (figura 1). Explicitando a variável y encontramos duas funções

$$y = \pm \sqrt{1 - x^2} \ .$$

A função $y = +\sqrt{1-x^2}$ representa a semicircunferência superior (figura 2) e $y = -\sqrt{1-x^2}$ representa a semicircunferência inferior (figura 3).

figura 1

figura 2

figura 3

Caso quiséssemos calcular y', poderíamos utilizar uma das expressões $y = \pm \sqrt{1 - x^2}$. Ainda neste caso é possível explicitar a variável y, mesmo sabendo que parte do gráfico é suprimido neste processo.

Às vezes o processo para explicitar a variável y é bastante longo e trabalhoso, como é o caso da expressão

$$x^3 + y^3 - 3xy = 0$$

e até mesmo impossível por qualquer método elementar, como neste caso

$$sen(xy) - y = 0.$$

O método da derivação implícita permitirá encontrar a derivada y' sem a necessidade de explicitar a função como y = f(x).

Definição: Uma expressão na forma F(x,y) = 0 define implicitamente uma função y = f(x) se o gráfico de y = f(x) coincide com alguma parte do gráfico de F(x,y) = 0.

Exemplo 35. Exemplos de funções definidas implicitamente:

a)
$$2y + x^2y + 1 - x = 0$$
.

b)
$$x^2 + y^2 - l = 0$$
.

c)
$$x^3 + y^3 - 3xy = 0$$
.

d)
$$sen(xy) - y = 0$$
.

Vamos agora mostrar como obter a derivada y', nos casos do exemplo 35, sem explicitar y. Usaremos a *regra da cadeia* para derivar os termos da expressão F(x,y)=0 que envolvem y.

a) $2y + x^2y + 1 - x = 0$. Esta expressão define y como uma função de x implicitamente, logo:

$$\frac{d}{dx}(2y+x^2y+I-x) = \frac{d}{dx}(0)$$

Derivamos ambos os membros em relação a x.

$$\frac{d}{dx}(2y) + \frac{d}{dx}(x^2y) + \frac{d}{dx}(1-x) = 0$$

Derivada de uma soma de funções.

$$2\frac{dy}{dx} + 2xy + x^2 \frac{dy}{dx} + \left(-1\right) = 0$$

Observe que usamos a derivada de um produto em $\frac{d}{dx}(x^2y)$.

$$2y' + 2xy + x^2y' - I = 0$$

Apenas mudamos os símbolos: $\frac{dy}{dx} = y'(x) = y'$.

$$y'(x^2+2)=1-2xy$$

$$y' = \frac{1 - 2xy}{x^2 + 2}.$$

Poderíamos obter a derivada y' derivando diretamente $y = \frac{x-1}{x^2+2}$. Vejamos:

$$y' = \frac{(1)(x^2 + 2) - (x - 1)(2x)}{(x^2 + 2)^2} = \frac{x^2 + 2 - 2x^2 + 2x}{(x^2 + 2)^2} = \frac{2 + 2x - x^2}{(x^2 + 2)^2}, \text{ logo } y' = \frac{2 + 2x - x^2}{(x^2 + 2)^2}.$$

Você pode estar se perguntando:

Obtivemos $y' = \frac{2 + 2x - x^2}{(x^2 + 2)^2}$, mas anteriormente calculamos $y' = \frac{1 - 2xy}{x^2 + 2}$. Estas expressões são distintas?

Obviamente não, pois se fizermos $y = \frac{x-1}{x^2+2}$ na expressão $y' = \frac{1-2xy}{x^2+2}$, vamos obter $y' = \frac{2+2x-x^2}{\left(x^2+2\right)^2}$:

$$y' = \frac{1 - 2x \left(\frac{x - 1}{x^2 + 2}\right)}{x^2 + 2} = \frac{1 - \left(\frac{2x^2 - 2x}{x^2 + 2}\right)}{x^2 + 2} = \frac{\left(\frac{x^2 + 2 - 2x^2 + 2x}{x^2 + 2}\right)}{x^2 + 2} = \frac{2 + 2x - x^2}{\left(x^2 + 2\right)^2}.$$

Atenção: Não é necessário verificar se as derivadas calculadas nas formas explícita e implícita coincidem, mesmo porque em alguns casos não é possível mesmo isolar a variável y.

Caso queiramos calcular o valor da derivada y' num ponto, por exemplo $x_o = 2$, basta encontrarmos o valor da imagem y_o , substituindo x_o na expressão $2y + x^2y + 1 - x = 0$. Depois calculamos y' com estes dois valores, pois $y' = \frac{1 - 2xy}{x^2 + 2}$ depende de **duas variáveis**. Vejamos:

$$2y_o + x_o^2 y_o + 1 - x_o = 0 \implies 2y_o + 4y_o + 1 - 2 = 0 \implies y_o = \frac{1}{6}$$

$$y' = \frac{1 - 2x_o y_o}{x_o^2 + 2} = \frac{1 - 2(2)(\frac{1}{6})}{2^2 + 2} = \frac{1}{18}.$$

Observe que encontramos este mesmo valor usando $y' = \frac{2 + 2x - x^2}{(x^2 + 2)^2}$ no ponto $x_0 = 2$:

$$y' = \frac{2+2(2)-2^2}{(2^2+2)^2} = \frac{2}{36} = \frac{1}{18}$$
.

Mas lembre-se: nem sempre é possível isolar a variável y para calcular y'.

b)
$$x^2 + y^2 - 1 = 0$$
.

$$\frac{d}{dx}(x^2+y^2-1) = \frac{d}{dx}(0) \qquad \Rightarrow \qquad 2x + \frac{d}{dx}(y^2) + 0 = 0 \qquad \Rightarrow \qquad 2x + 2yy' = 0 \qquad \Rightarrow \qquad y' = -\frac{x}{y}.$$

c)
$$x^3 + y^3 - 3xy = 0$$
.

$$\frac{d}{dx}(x^3 + y^3 - 3xy) = \frac{d}{dx}(0) \qquad \Rightarrow \qquad 3x^2 + \frac{d}{dx}(y^3) - 3\frac{d}{dx}(xy) = 0 \qquad \Rightarrow$$

$$3x^{2} + 3y^{2}y' - 3[(1)y + xy'] = 0 \implies y'(3y^{2} - 3x) = 3y - 3x^{2} \implies y' = \frac{3y - 3x^{2}}{3y^{2} - 3x} \implies y' = \frac{y - x^{2}}{y^{2} - x}.$$

d)
$$sen(xy) - y = 0$$
.

$$\frac{d}{dx}(sen(xy)-y) = \frac{d}{dx}(0) \quad \Rightarrow \quad \frac{d}{dx}sen(xy) - \frac{d}{dx}(y) = \frac{d}{dx}(0) \quad \Rightarrow \quad cos(xy)[(1)y + xy'] - y' = 0$$

$$\Rightarrow y\cos(xy) + xy'\cos(xy) - y' = 0 \Rightarrow y' = -\frac{y\cos(xy)}{x\cos(xy) - 1}.$$

Vejamos alguns exemplos que ocorrem com maior frequência em derivação implícita:

$$\frac{d}{dx}(y^n) = ny^{n-1} \cdot y'.$$

$$\frac{d}{dx}[tg(y)] = sec^2(y) \cdot y'.$$

$$\frac{d}{dx} \left[e^y \right] = e^y \cdot y'.$$

$$\frac{d}{dx}[ln(y)] = \frac{1}{y} \cdot y'.$$

$$\frac{d}{dx}[arctg(y)] = \frac{1}{1+v^2} \cdot y'.$$

Atividades (grupo 27).

1. Determine a derivada y' das curvas dadas *implicitamente* por:

a)
$$x^2 + y^2 = 4$$

b)
$$xy^2 + 2y^3 = x - 2y$$

b)
$$xy^2 + 2y^3 = x - 2y$$
 c) $x^2y^2 + x sen(y) = 0$

d)
$$e^{xy} = x + y - 3$$

e)
$$y^3 - \frac{x - y}{x + y} = 0$$

$$f) tg(y) = xy - I$$

2. Determine a equação da reta tangente e da reta normal ao gráfico de cada função abaixo, nos pontos indicados.

a)
$$ln(y) = x + y^2$$
 no ponto $P(-1,1)$.

b)
$$x^3 = y \cdot 2^y$$
, no ponto em que a normal é vertical.

c)
$$6x^2 + 13y^2 = 19$$
 (elipse), nos pontos onde a normal é paralela à reta $26x - 12y - 7 = 0$.

3. Seja C a circunferência dada *implicitamente* por $x^2 + y^2 = 1$ e t a reta tangente à C no ponto de abscissa $x_o = \sqrt{2}/2$, como mostra a figura abaixo. Calcule o valor da área sombreada.

4. Determine a área do triângulo AOB na figura abaixo sabendo-se que r é a reta tangente a curva C, dada *implicitamente* por $e^{xy} + 2\cos(x^2 - 1) = 3x$, no ponto A(1, 0).

Derivada de uma função na forma paramétrica

Função na forma paramétrica

Sejam $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ funções de uma mesma variável $t, t \in [a, b]$.

A cada valor de t no intervalo [a,b] corresponde um único par P(x(t),y(t)) no plano cartesiano. Se as funções x=x(t) e y=y(t) forem contínuas, quando t variar de a até b, o ponto P descreverá uma curva no plano.

As equações $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ são chamadas de *equações paramétricas* da curva e t é chamado de parâmetro.

Se a função x = x(t) admite uma inversa t = t(x), podemos escrever y = y(t(x)), eliminando o parâmetro t. Neste caso, temos y como uma função de x, isto é, y = y(x).

Mesmo quando a função x = x(t) não admite inversa, em alguns casos, podemos obter uma forma *implícita* da curva, eliminando o parâmetro t de forma conveniente.

Dizemos que as equações $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ definem a forma paramétrica de uma curva plana.

Exemplo 36.

a) As equações $\begin{cases} x=t+1 \\ y=2t \end{cases}$, $t \in \Re$, definem a reta de equação y=2x-2. Para verificar isto basta isolar o parâmetro t na equação x=t+1 e substituir em y=2t.

b) As equações $\begin{cases} x = I - t \\ y = t^2 - I \end{cases}$, $t \in \Re$, definem a parábola de equação $y = x^2 - 2x$. Para verificar isto basta isolar o parâmetro t na equação x = I - t e substituir em $y = t^2 - I$.

c) As equações $\begin{cases} x = 2\cos(t) \\ y = 2\sin(t) \end{cases}$, $t \in [0, 2\pi]$, definem a circunferência de equação $x^2 + y^2 = 4$.

Pois as equações $x = 2\cos(t)$ e $y = 2\sin(t)$ satisfazem $x^2 + y^2 = 4$, para todo $t \in \Re$.

$$x^{2} + y^{2} = [2\cos(t)]^{2} + [2\sin(t)]^{2} = 4\cos^{2}(t) + 4\sin^{2}(t) = 4(\cos^{2}(t) + \sin^{2}(t)) = 4$$

Observe neste caso que a função $x = 2\cos(t)$ não admite inversa no intervalo $t \in [0, 2\pi]$ e a forma encontrada para a curva foi implícita.

Caso geral: $\begin{cases} x = x_o + a\cos(t) \\ y = y_o + a\sin(t) \end{cases}, \ t \in [0, 2\pi], \ a > 0, \ \text{definem a circumferencia de equação}$

$$(x-x_0)^2 + (y-y_0)^2 = a^2$$
.

Prove!

d) Forma paramétrica da Elipse:

 $\begin{cases} x = x_o + a\cos(t) \\ y = y_o + b\sin(t) \end{cases}, \ t \in [0, 2\pi], \ a \neq b \text{ e ambos positivos, definem a elipse de equação}$

$$\frac{(x-x_o)^2}{a^2} + \frac{(y-y_o)^2}{b^2} = I.$$

Pois
$$cos(t) = \frac{(x - x_o)}{a}$$
, $sen(t) = \frac{(y - y_o)}{b}$ e $cos^2(t) + sen^2(t) = 1$.

Vamos ver agora como obter a derivada de uma função na forma paramétrica.

Seja $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ a forma paramétrica que define y como uma função de x.

Suponha que as funções y = y(t), x = x(t) e a sua inversa t = t(x) sejam deriváveis.

Podemos então obter a composta y = y(t(x)) e aplicar a regra da cadeia para calcular y'(x):

$$y'(x) = y'(t) \cdot t'(x).$$

Vimos no estudo da derivada da função inversa que $t'(x) = \frac{1}{x'(t)}$. Daí, temos que

$$y'(x) = y'(t) \cdot \frac{1}{x'(t)} = \frac{y'(t)}{x'(t)}.$$

 $y'(x) = \frac{y'(t)}{x'(t)}$ é a derivada de uma função na forma paramétrica.

Exemplo 36.

a) Calcule a derivada y'(x) da função y=y(x) definida na forma paramétrica por $\begin{cases} x=3t-5\\ y=l-6t \end{cases}, t\in\Re\ .$

$$y'(x) = \frac{y'(t)}{x'(t)} = \frac{-6}{3} = -2$$
.

Poderíamos obter este resultado eliminado o parâmetro t, obtendo a função y = y(x) e calculando diretamente y'(x):

$$x = 3t - 5 \implies t = \frac{x + 5}{3} \therefore y = 1 - 6\left(\frac{x + 5}{3}\right) = -2x - 9$$
. Daí, $y'(x) = -2$.

b) Calcule a derivada y'(x) da função y=y(x) definida na forma paramétrica por $\begin{cases} x=I-t\\ y=t^2+t \end{cases}, t\in\Re.$

$$y'(x) = \frac{y'(t)}{x'(t)} = \frac{2t+1}{-1} = -2t-1$$
.

Para obter a derivada em função de x, basta substituir t por l-x:

$$y'(x) = -2t - 1 \implies y'(x) = -2(1 - x) - 1 = 2x - 3 : y'(x) = 2x - 3$$

Observe que novamente poderíamos obter este resultado eliminado o parâmetro t, obtendo a função $y = (I - x)^2 + (I - x)$ e calculando y'(x) = 2(I - x)(-1) + -I = 2x - 3.

c) Determine a equação da reta tangente a elipse $\begin{cases} x = 1 + 2\cos(t) \\ y = 2 + 4\sin(t) \end{cases}$, $t \in [0,2\pi]$ no ponto $t = \frac{\pi}{4}$.

A equação da reta tangente é $y - y_o = y'(x - x_o)$.

Cálculo de
$$x_o$$
: $x_o = 1 + 2\cos\left(\frac{\pi}{4}\right) = 1 + 2\frac{\sqrt{2}}{2} = 1 + \sqrt{2}$.

Cálculo de
$$y_o$$
: $y_o = 2 + 4 sen\left(\frac{\pi}{4}\right) = 2 + 4 \frac{\sqrt{2}}{2} = 2 + 2\sqrt{2} = 2(1 + \sqrt{2}).$

Cálculo de y' no ponto $t = \frac{\pi}{4}$:

$$y' = \frac{y'(t)}{x'(t)} = \frac{4\cos(t)}{-2\sin(t)} = -2\cot g(t)$$
. $\therefore y' = -2\cot g(\frac{\pi}{4}) = -2(1) = -2$.

Logo, a reta tangente é igual a $y - 2(l + \sqrt{2}) = -2(x - l - \sqrt{2})$ ou $y = -2x + 4(l + \sqrt{2})$.

49

Gráfico:

Atividades (grupo 28).

1. Calcule a derivada y'(x) das funções definidas parametricamente nos pontos indicados.

a)
$$\begin{cases} x = sen2t \\ y = cos 3t \end{cases}, t = \frac{\pi}{3}.$$

b)
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}, t = \frac{\pi}{6}.$$

2. Determine a equação da reta tangente e da reta normal ao gráfico de cada função abaixo, nos pontos indicados.

a)
$$\begin{cases} x = sen t \\ y = sen 2t \end{cases}, t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right],$$

b)
$$\begin{cases} x = 6t(1+t^2)^{-l} \\ y = 6t^2(1+t^2)^{-l} \end{cases}, 0 \le t \le l,$$
 no ponto de abscissa $\frac{12}{5}$.

no ponto $t = \frac{\pi}{6}$.

3. Determine o valor da área sombreada na figura abaixo. Sabe-se que r é a reta tangente a elipse

$$C: \begin{cases} x = 2\cos(t) \\ y = sen(t) \end{cases}, t \in [0, 2\pi], \text{ no ponto } t = \frac{\pi}{3}.$$

Obs.: A área da elipse é dada pela fórmula $A = \pi ab$, onde a e b são os comprimentos dos semieixos.

Diferencial

Até agora $\frac{dy}{dx}$ tem sido visto apenas como uma simples notação para a derivada de uma função y = f(x) em relação a variável x, isto é, $\frac{dy}{dx} = y'(x) = f'(x)$. O que faremos agora é interpretar $\frac{dy}{dx}$ como um quociente entre dois acréscimos (diferenciais).

Acréscimos e decréscimos

Se a partir de um determinado valor x somarmos ou subtrairmos um determinado valor $\Delta x \in \Re^*$, estaremos fazendo um acréscimo ou decréscimo na variável x.

$$x - \nabla x$$
 x $x + \nabla x$

Nesta figura temos que $\Delta x > 0$.

Sem perda de generalidade, podemos supor $\Delta x > 0$ para a nossa análise.

Seja y = f(x) uma função derivável e Δx um acréscimo na variável x.

Definição: O diferencial de x, denotado por dx, é o valor do acréscimo Δx , isto é, $dx = \Delta x$.

Considere t a reta tangente ao gráfico de y = f(x) no ponto x. Seja α o ângulo de inclinação de t.

Definição: O diferencial de y, denotado por dy, é o acréscimo na ordenada da reta tangente t, correspondente ao acréscimo dx em x.

$$f(x + dx)$$

$$y = f(x)$$

$$\alpha \quad dx$$

$$x \quad x + dx \quad x$$

$$\Delta y = f(x + dx) - f(x)$$

De acordo com a figura podemos observar que o quociente $\frac{dy}{dx} = tg(\alpha)$. Mas $tg(\alpha) = f'(x)$, pois esta é a interpretação geométrica da derivada. Logo

$$\frac{dy}{dx} = f'(x) \implies dy = f'(x) \cdot dx$$

O acréscimo dy pode ser visto como uma aproximação para Δy . Esta aproximação é tanto melhor quanto menor for o valor de dx. Isto é,

se
$$dx \rightarrow 0$$
, então $\Delta y - dy \rightarrow 0$.

Daí podemos dizer que $\Delta y \approx dy$ se dx for bem pequeno.

Como $\Delta y = f(x + dx) - f(x)$ e $dy = f'(x) \cdot dx$, obtemos que

$$f(x+dx)-f(x)\approx f'(x)\cdot dx$$
, ou seja, $f(x+dx)\approx f'(x)\cdot dx+f(x)$

Exemplo 37.

1. Calcule o diferencial dy das funções abaixo:

a)
$$y = x^3 + 2x$$
.

b)
$$y = sen(x^2)$$
.

c)
$$y = ln(sec(x))$$
.

Soluções:

a)
$$dy = (3x^2 + 2)dx$$
.

b)
$$dy = 2x \cos(x^2) dx$$
.

c)
$$dy = tg(x)dx$$
.

2. Calcule um valor aproximado para $(19.9)^2$ usando diferenciais.

Solução:

Podemos pensar na função $f(x) = x^2$ onde queremos calcular um valor aproximado para f(19.9).

Para isto vamos utilizar $f(x + dx) \approx f'(x) \cdot dx + f(x)$, onde podemos fazer x = 20 e dx = -0.1.

$$f'(x) = 2x$$
.

Daí,

$$f(x+dx) \approx f'(x) \cdot dx + f(x)$$

$$f(20 + (-0,1)) \approx f'(20) \cdot (-0,1) + f(20)$$

$$f(19.9) \approx 2(20) \cdot (-0.1) + 20^2 = 40 \cdot (-0.1) + 400 = -4 + 400 = 396$$
. Logo $f(19.9) \approx 396$.

O valor exato é *396,01*.

Lembre-se: quanto menor o valor de dx, melhor é a aproximação.

Atividades (grupo 29).

1. Encontre Δy e dy para os valores dados nas funções abaixo e compare os resultados $(\Delta y \cong dy)$:

a)
$$y = 5x^2 - 6x$$
; $\Delta x = 0.02$; $x = 0$

a)
$$y = 5x^2 - 6x$$
; $\Delta x = 0.02$; $x = 0$.
b) $y = \frac{2x+1}{x-1}$; $\Delta x = 0.1$; $x = -1$.

2. Usando diferencial, calcule um valor *aproximado* para: a) 12.5^2 . b) 4.1^3 . c) $\sqrt{13}$.

Aplicações da derivada

A regra de L'Hospital

Esta regra permite calcular certos tipos de limites (cujas indeterminações são do tipo $\frac{0}{0}$ ou $\frac{\infty}{\infty}$) aplicando as regras de derivação.

Sejam f e g funções deriváveis num intervalo aberto I, exceto possivelmente, num ponto $a \in I$. Suponha que $g'(x) \neq 0$, $\forall x \in I$ e $x \neq a$.

a) Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
 e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L;$$

b) Se
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty$$
 e $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$, então

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = L.$$

Exemplo 38.

Calcule os limites abaixo usando a regra de L'hospital.

a)
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$
. b) $\lim_{x \to 1} \frac{x^4 + x - 2}{x^2 - 1}$. c) $\lim_{x \to 0} \frac{sen(x) - x}{e^x + e^{-x} - 2}$. d) $\lim_{x \to +\infty} \frac{e^x}{x^2}$. e) $\lim_{x \to 0^+} (x^2 + 2x)^x$

Soluções:

a)
$$\lim_{x\to 0} \frac{e^x-1}{x}$$
. (verifique a indeterminação do tipo $\frac{\theta}{\theta}$)

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} = 1.$$

b)
$$\lim_{x\to 1} \frac{x^4+x-2}{x^2-1}$$
 . (verifique a indeterminação do tipo $\frac{\theta}{\theta}$)

$$\lim_{x \to 1} \frac{x^4 + x - 2}{x^2 - 1} = \lim_{x \to 1} \frac{4x^3 + 1}{2x} = \frac{5}{2}.$$

c)
$$\lim_{x\to 0} \frac{sen(x)-x}{e^x+e^{-x}-2}$$
. (verifique a indeterminação do tipo $\frac{0}{0}$)

$$\lim_{x\to 0} \frac{sen(x)-x}{e^x+e^{-x}-2} = \lim_{x\to 0} \frac{cos(x)-1}{e^x-e^{-x}}$$
 Observe que ainda há uma indeterminação do tipo $\frac{0}{0}$.

Neste caso podemos continuar aplicando a regra...

$$\lim_{x \to 0} \frac{\cos(x) - 1}{e^x - e^{-x}} = \lim_{x \to 0} \frac{-\sin(x)}{e^x + e^{-x}} = -\frac{0}{2} = 0 \text{ Logo, } \lim_{x \to 0} \frac{\sin(x) - x}{e^x + e^{-x} - 2} = 0.$$

d)
$$\lim_{x\to +\infty}\frac{e^x}{x^2}$$
 . (verifique a indeterminação do tipo $\frac{\infty}{\infty}$)

$$\lim_{x\to +\infty} \frac{e^x}{x^2} = \lim_{x\to +\infty} \frac{e^x}{2x}$$
 Observe que ainda há uma indeterminação do tipo $\frac{\infty}{\infty}$

Neste caso podemos continuar aplicando a regra...

$$\lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to 0} \frac{e^x}{2} = +\infty . \text{ Logo, } \lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty .$$

e) $\lim_{x\to 0^+} (x^2+2x)^x$. Verifique que a indeterminação agora é do tipo 0^0 . Neste caso, precisamos transformá-la em 0/0 ou ∞/∞ para poder aplicar a regra de L'Hospital. Vamos usar duas propriedades dos logarítimos. São elas: $\ln(a^x) = x \ln(a)$ e $e^{\ln(x)} = x$.

$$\lim_{x \to 0^{+}} (x^{2} + 2x)^{x} = \lim_{x \to 0^{+}} e^{\ln(x^{2} + 2x)^{x}} = \lim_{x \to 0^{+}} e^{x \ln(x^{2} + 2x)} = \lim_{x \to 0^{+}} e^{\frac{\ln(x^{2} + 2x)}{l/x}} = \lim_{x \to 0^{+}} e^{\frac{\frac{2x + 2}{x^{2} + 2x}}{l/x}} = \lim_{x \to 0^{+}} e^{-\frac{2x^{3} + 2x^{2}}{x^{2} + 2x}} = \lim_{x \to 0^{+}} e^{-\frac{2x^{3$$

Podemos aplicar esta mesma técnica para resolvermos indeterminações do tipo ∞^{θ} .

Atividades (grupo 30).

Calcule os seguintes limites usando a regra de *L'hospital*:

a)
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - sen x}$$
. b) $\lim_{x\to 2} \frac{sen(\pi x)}{2 - x}$. c) $\lim_{x\to \pi/2} sec(x) - tg(x)$. d) $\lim_{x\to 0^+} [1 + sen(x)]^{2/x}$.

Interpretação cinemática da derivada

Vamos agora interpretar a derivada do ponto de vista da cinemática, que estuda o movimento dos corpos. Veremos que a *velocidade* e a *aceleração* de um corpo podem ser determinadas através das derivadas de primeira e segunda ordem, respectivamente, quando conhecemos a função horária do movimento do corpo.

Velocidade. Considere um corpo que se move em linha reta e seja s = s(t) a sua função horária, isto é, o espaço percorrido em função do tempo. O deslocamento do corpo no intervalo de tempo t e $t + \Delta t$ é definido por $\Delta s = s(t + \Delta t) - s(t)$.

A *velocidade média* do corpo neste intervalo de tempo é definida por $v_m = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t}$

A velocidade média do corpo não dá uma informação precisa sobre a velocidade em cada instante do movimento no intervalo de tempo t e $t+\Delta t$. Para obtermos a *velocidade instantânea* do corpo no instante t, precisamos calcular a velocidade média em intervalos de tempo cada vez menores, isto é, fazendo $\Delta t \rightarrow 0$.

A *velocidade instantânea* do corpo no instante *t* é definida por

$$v(t) = \lim_{\Delta t \to 0} v_m = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{s(t + \Delta t) - s(t)}{\Delta t} = s'(t). \text{ Assim, } v(t) = s'(t).$$

A velocidade instantânea v(t) é a primeira derivada da função horária s(t).

Aceleração. De forma análoga ao conceito de velocidade vem o de aceleração:

A aceleração média do corpo no intervalo de tempo $t e t + \Delta t$ é definida por

$$a_m = \frac{\Delta v}{\Delta t} = \frac{v(t + \Delta t) - v(t)}{\Delta t}.$$

A aceleração instantânea do corpo no instante t é definida por

$$a(t) = \lim_{\Delta t \to 0} a_m = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t} = v'(t). \text{ Assim, } \boxed{a(t) = v'(t)}.$$

Como v(t) = s'(t) podemos escrever a aceleração instantânea como a segunda derivada dos espaço em relação ao tempo. Assim a(t) = s''(t).

Obs.: No M.R.U.V. a função horária é do segundo grau $s(t) = s_o + v_o(t) + \frac{at^2}{2}$, sendo constantes s_o o espaço inicial, v_o a velocidade inicial e a a aceleração do movimento. Neste caso, a velocidade instantânea é dada por $v(t) = s'(t) = v_o + at$ e a aceleração instantânea é dada por a(t) = v'(t) = a.

Exemplo 39.

- a) Suponha que um corpo em movimento retilíneo tenha função horária definida por $s(t) = 12t 2t^2$ e no instante t = 0 ele inicia o movimento. Considere o espaço medido em metros e o tempo em segundos. Determine:
- i) a velocidade média do corpo no intervalo de tempo [1,3];
- ii) a velocidade do corpo no instante t = 1;
- iii) a aceleração média do corpo no intervalo de tempo [1,3];
- iv) a aceleração do corpo no instante t = 1.

Solução:

i)
$$v_m = \frac{\Delta s}{\Delta t} = \frac{s(t + \Delta t) - s(t)}{\Delta t} = \frac{s(3) - s(1)}{3 - 1} = \frac{18 - 10}{2} = \frac{8}{2} = 4m / s$$
.

ii)
$$v(t) = s'(t) = 12 - 4t$$
 : $v(1) = 12 - 4 = 8m/s$.

iii)
$$a_m = \frac{\Delta v}{\Delta t} = \frac{v(t + \Delta t) - v(t)}{\Delta t} = \frac{v(3) - v(1)}{3 - 1} = \frac{0 - 8}{2} = -4m/s^2$$
.

iv)
$$a(t) = s''(t) = -4$$
 : $a(3) = -4m/s^2$.

- **b)** Uma partícula em movimento retilíneo tem a função horária dada por $s(t) = 2t^3 21t^2 + 60t + 3$. Considere o espaço medido em metros e o tempo em segundos. Determine:
- i) Em que instante a partícula pára, isto é, tem velocidade nula?
- ii) Determine a aceleração da partícula no instante t = 4.5s.

Solução:

i)
$$v(t) = s'(t) = 6t^2 - 42t + 60 \implies v(t) = 6(t^2 - 7 + 10) = 6(t - 2)(t - 5)$$
.

 $v(t) = 0 \iff 6(t-2)(t-5) = 0 \iff t = 2s$ ou t = 5s. Assim a particula tem velocidade nula nos instantes t = 2s e t = 5s.

ii)
$$a(t) = s''(t) = 12t - 42$$
 \therefore $a(4,5) = 12(4,5) - 42 = 12m/s^2$.

Atividades (grupo 31).

- 1. Do solo um projétil é disparado verticalmente para cima. Sua altura (em metros) é dada em função do tempo (em segundos) por $h(t) = 160t 10t^2$. Determine:
- i) As funções velocidade e aceleração do projétil;
- ii) Em que instante t > 0 o projétil pára?
- iii) Quantos segundos dura todo o trajeto do projétil?
- iv) Com que velocidade e aceleração o projétil atingirá o solo?
- 2. A equação do movimento de uma partícula é $s(t) = \sqrt[3]{t+2}$, s em metros e t em segundos. Determine:
- i) o instante em que a velocidade é de 1/12 m/s;
- ii) a distância percorrida até este instante;
- iii) a aceleração da partícula quando t = 2s.
- 3. A equação horária do movimento retilíneo de uma partícula é $s(t) = \frac{4}{15} \sqrt{(t+4)^5} \frac{t^3}{6} + t^2$. Considere s em metros e t em segundos. Determine em que instante t > 0 a **aceleração** da partícula é **nula**.

Taxa de variação

Vimos na seção anterior que se s=s(t) é a função horária do movimento retilíneo de um corpo, a $velocidade \ média$ é dada por $v_m=\frac{\Delta s}{\Delta t}$ e a $velocidade \ instantânea$ é a dada pela derivada $v(t)=s'(t)=\lim_{\Delta t\to 0}\frac{\Delta s}{\Delta t}=\lim_{\Delta t\to 0}\frac{s(t+\Delta t)-s(t)}{\Delta t}$. Da mesma forma, a $aceleração \ média$ é $a_m=\frac{\Delta v}{\Delta t}$ e a $aceleração \ instantânea$ é dada pela derivada $a(t)=v'(t)=\lim_{\Delta t\to 0}\frac{\Delta v}{\Delta t}=\lim_{\Delta t\to 0}\frac{v(t+\Delta t)-v(t)}{\Delta t}$.

As $raz\~oes$ v_m e a_m são exemplos de taxas médias de variação num intervalo e as razões $v(t) = s'(t) = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$ e $a(t) = v'(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t}$ são exemplos de taxas instantâneas de variação num ponto, ou simplesmente taxas de variação num ponto.

Definição: De uma forma geral, se y = f(x) é uma função, a razão $\frac{\Delta y}{\Delta x}$ é chamada de **taxa média de variação** da função f no intervalo $[x, x + \Delta x]$ e a derivada $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ é chamada de **taxa de variação** da função f no ponto x.

"Toda taxa de variação pode ser interpretada como uma derivada".

Interpretando a derivada desta forma, podemos resolver diversos problemas das ciências que envolvem razões instantâneas de variação.

Exemplo 40. Suponha que um óleo derramado através da ruptura do tanque de um navio se espalhe em forma circular cujo raio cresce a uma taxa de 2m/h. Com que velocidade a área do derramamento está crescendo no instante em que o raio atingir 60m?

Solução:

A taxa com que o raio cresce é de 2m/h. Podemos interpretar e denotar esta taxa de variação como $\frac{dr}{dt} = 2m/h$.

Queremos calcular a taxa com que a área cresce em relação ao tempo. Podemos denotar esta taxa de variação como $\frac{dA}{dt}$. A área do derramamento é circular, logo $A = \pi r^2$.

Queremos calcular $\frac{dA}{dt}$ e temos $\frac{dr}{dt}$. A **regra da cadeia** relaciona estas razões através de $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$. Assim, $\frac{dA}{dt} = 2\pi r \cdot 2 = 4\pi r$. Quando o raio atingir 60m a área do derramamento estará crescendo a uma taxa de $4\pi(60)m^2/h = 240\pi m^2/h$.

Diretrizes para resolver problemas de taxa de variação

- 1. Desenhe uma figura para auxiliar a interpretação do problema;
- 2. Identifique e denote as taxas que são conhecidas e a que será calculada;
- 3. Ache uma equação que relacione a quantidade, cuja taxa será encontrada, com as quantidades cujas taxas são conhecidas;
- 4. Derive esta equação em relação ao tempo, ou use a regra da cadeia, ou a derivação implícita para determinar a taxa desconhecida;
- 5. Após determinada a taxa desconhecida, calcule-a em um ponto apropriado.

Exemplo 41. Um tanque de água tem a forma de um cone circular invertido com base de raio 2m e altura igual a 4m. Se a água está sendo bombeada dentro do tanque a uma taxa de $2m^3/min$, encontre a taxa na qual o nível da água está elevando quando a água está a 3m de profundidade.

Dado $\frac{dV}{dt} = 2 m^3 / min$, devemos encontrar $\frac{dh}{dt}$ quando h = 3m. As grandezas V e h estão relacionadas pela equação $V = \frac{1}{3} \pi r^2 h$, que é o volume do cone. Para obter o volume V como função da altura h, podemos eliminar a variável r usando semelhança de triângulos:

$$\frac{r}{h} = \frac{2}{4}$$
 \Rightarrow $r = \frac{h}{2}$. Assim, $V = \frac{1}{3}\pi \left(\frac{h}{2}\right)^2 h = \frac{\pi}{12}h^3$.

Derivando ambos os lados em relação ao tempo t, obtemos

$$\frac{dV}{dt} = \frac{dV}{dh} \cdot \frac{dh}{dt} \iff \frac{dV}{dt} = \frac{\pi}{12} 3h^2 \cdot \frac{dh}{dt} \iff \frac{dh}{dt} = \frac{4}{\pi h^2} \cdot \frac{dV}{dt}.$$

Substituindo $\frac{dV}{dt} = 2 m^3 / min$ e h = 3m, temos

$$\frac{dh}{dt} = \frac{4}{\pi 3^2} \cdot 2 = \frac{8}{9\pi} \approx 0.28 \, \text{m/min} .$$

Atividades (grupo 32).

- 1) Uma bola de neve esférica é formada de tal maneira que o seu volume aumenta à razão de $8 cm^3/min$. Com que velocidade aumenta o raio no instante em que a bola tem 4 cm de diâmetro?
- 2) Um automóvel que viaja à razão de 30 m/s, aproxima-se de um cruzamento. Quando o automóvel está a 120 m do cruzamento, um caminhão que viaja à razão de 40 m/s atravessa o cruzamento. O automóvel e o caminhão estão em rodovias que formam um ângulo reto uma com a outra. Com que velocidade afastam-se o automóvel e o caminhão 2s depois do caminhão passar pelo cruzamento?
- 3) Uma escada com 13m de comprimento está apoiada numa parede vertical e alta. Num determinado instante a extremidade inferior, que se encontra a 5m da parede, está escorregando, afastando-se da parede a uma velocidade de 2 m/s. Com que velocidade o topo da escada está deslizando neste momento?
- 4) Um balão está a 60 m acima do solo e se eleva verticalmente à razão de 5 m/s. Um automóvel passa por baixo do balão viajando à 12 m/s. Com que velocidade varia, um segundo depois, a distância entre o balão e o automóvel?
- 5) Despeja-se água num recipiente de forma cônica, à razão de 8 cm³/min. O cone tem 20 cm de profundidade e 10 cm de diâmetro em sua parte superior. Se existe um furo na base, e o nível da água está subindo à razão de 1 mm/min, com que velocidade a água estará escoando quando esta estiver a 16 cm do fundo?
- 6) Um lado de retângulo está crescendo a uma taxa de 17 cm/min e o outro lado está decrescendo a uma taxa de 5 cm/min. Num certo instante, os comprimentos desses lados são 10 cm e 7 cm, respectivamente. A área do retângulo está crescendo ou decrescendo nesse instante? A que velocidade?
- 7) Dois resistores variáveis R_1 e R_2 são ligados em paralelo. A resistência total R é calculada pela equação $1/R = (1/R_1) + (1/R_2)$. Se R_1 e R_2 estão aumentando às taxas de $0.01 \ ohm/s$ e $0.02 \ ohm/s$ respectivamente, a que taxa varia R no instante em que $R_1 = 30 \ ohms$ e $R_2 = 90 \ ohms$?
- 8) Um triângulo isósceles tem os lados iguais com 15 cm cada um. Se o ângulo θ entre eles varia à razão de $\pi/90 \, rad$ por minuto, determine a variação da área do triângulo quando $\theta = \pi/6 \, rad$.

Análise gráfica das funções

Máximos e mínimos

Definição: Uma função y = f(x) tem um *ponto de máximo relativo* em $x = x_0$, se existe um intervalo aberto A, contendo x_0 , tal que $f(x_0) \ge f(x)$, para todo $x \in A$.

 $f(x_0)$ é chamado de *valor máximo relativo*.

Definição: Uma função y = f(x) tem um **ponto de mínimo relativo** em $x = x_1$, se existe um intervalo aberto B, contendo x_1 , tal que $f(x_1) \ge f(x)$, para todo $x \in B$.

 $f(x_1)$ é chamado de *valor mínimo relativo*.

Exemplo 42. A função $f(x) = x^4 - 4x^2$ tem um ponto de máximo relativo em x = 0 e dois pontos de mínimos relativos em $x = \pm \sqrt{2}$. O valor máximo relativo é y = 0 e o valor mínimo relativo é y = -4.

A proposição seguinte permite encontrar os possíveis *pontos de extremos relativos* (máximos relativos ou mínimos relativos) de uma função.

Proposição: Seja y = f(x) uma função definida num intervalo aberto I = (a,b). Se f tem um extremo relativo em $k \in I$ e f'(x) existe para todo $x \in I$, então f'(k) = 0.

Podemos interpretar geometricamente esta proposição da seguinte forma:

A reta tangente ao gráfico de f no ponto x = k é **horizontal**, visto que f'(k) = 0.

Definição: Um ponto $c \in D(f)$ tal que f'(c) = 0 ou f'(c) não existe é chamado de **ponto** crítico de f.

Se houverem extremos relativos numa função, estes ocorrem em ponto críticos.

Exemplo 43. Algumas funções e seus pontos críticos.

a)

 $y = x^3$

b)

y = |x - I| + 2

c)

 $y = (x-1)^2 + 1$

Observações:

- No exemplo a) f'(0) = 0, mas x = 0 não é um ponto de extremo da função.
- No exemplo b) não existe f'(1), mas x = 1 é um ponto de extremo (mínimo relativo) da função
- No exemplo c) f'(1) = 0 e x = 1 é um ponto de extremo (mínimo relativo) da função.

Uma função y = f(x) pode admitir num intervalo (a,b) mais do que um ponto de extremo relativo. O *maior valor* da função num intervalo é chamado de *valor máximo absoluto*. Analogamente, o *menor valor* é chamado de *valor mínimo absoluto*.

 x_o é o ponto de máximo absoluto de f; $f(x_o)$ é o valor máximo absoluto de f; x_I é o ponto de mínimo absoluto de f; $f(x_I)$ é o valor mínimo absoluto de f.

Algumas funções podem não apresentar extremos relativos num intervalo. Por exemplo $y = x, x \in (-2,2)$.

Funções crescentes e decrescentes

Definição: Uma função y = f(x), definida num intervalo I, é *crescente* neste intervalo se para quaisquer $x_0, x_1 \in I$, $x_0 < x_1$, temos que $f(x_0) < f(x_1)$. (ver Fig. 1)

Definição: Uma função y = f(x), definida num intervalo I, é *decrescente* neste intervalo se para quaisquer $x_0, x_1 \in I$, $x_0 < x_1$, temos que $f(x_0) > f(x_1)$. (ver Fig. 2)

Podemos identificar os intervalos onde uma função é crescente ou decrescente através do estudo do sinal da derivada da função. Segue a proposição.

Proposição: Seja f uma função contínua no intervalo [a,b] e derivável no intervalo (a,b).

- a) Se f'(x) > 0 para todo $x \in (a,b)$, então $f \in crescente$ em [a,b];
- b) Se f'(x) < 0 para todo $x \in (a,b)$, então $f \in decrescente$ em [a,b].

Noção geométrica:

a) Se a função derivada é positiva para todo $x \in (a,b)$ então, geometricamente, a reta tangente tem inclinação positiva para todo $x \in (a,b)$.

$$f'(x) = tg(\alpha) > 0 \implies 0 < \alpha < 90^{\circ}$$
.

b) Se a função derivada é negativa para todo $x \in (a,b)$ então, geometricamente, a reta tangente tem inclinação negativa para todo $x \in (a,b)$.

$$f'(x) = tg(\alpha) < 0 \implies 90^{\circ} < \alpha < 180^{\circ}.$$

Exemplo 44. Determine os intervalos de crescimento e decrescimento da função $f(x) = x^4 - 4x^2$.

Solução: Vamos analisar o sinal da derivada desta função.

$$f'(x) = 4x^3 - 8x = 4x(x^2 - 2).$$

Logo:

f é *crescente* para todo $x \in [-\sqrt{2}, 0] \cup [\sqrt{2}, +\infty]$, pois a derivada é *positiva* nestes intervalos. f é *decrescente* para todo $x \in [-\infty, -\sqrt{2}] \cup [0, \sqrt{2}]$, pois a derivada é *negativa* nestes intervalos.

Observe o gráfico da função $f(x) = x^4 - 4x^2$ no exemplo 42.

Critérios para determinar os extremos de uma função

Teorema: (Critério da primeira derivada para determinação de extremos)

Seja f uma função contínua num intervalo fechado [a,b] que possui derivada em todo ponto do intervalo (a,b), exceto possivelmente num ponto k:

a) Se f'(x) > 0 para todo x < k e f'(x) < 0 para todo x > k, então f tem um **máximo relativo** em k;

sinal de
$$f'(x)$$
 $++++$ k

b) Se f'(x) < 0 para todo x < k e f'(x) > 0 para todo x > k, então f tem um **mínimo relativo** em k;

sinal de
$$f'(x)$$
 $\xrightarrow{-----}$ x

Interpretação geométrica:

a) A função f é *crescente* para todo x < k, pois f'(x) > 0 e é *decrescente* para todo x > k, pois f'(x) < 0. Desta forma, f assume um ponto de *máximo relativo* em x = k.

b) A função f é *decrescente* para todo x < k, pois f'(x) < 0 e é *crescente* para todo x > k, pois f'(x) > 0. Desta forma, f assume um ponto de *mínimo relativo* em x = k.

Exemplo 45. Determine os extremos da função $f(x) = x^4 - 4x^2$.

Como vimos no exemplo anterior o sinal de f'(x) é $\frac{-}{\sqrt{2}} + \frac{+}{\sqrt{2}} + \frac{+}{\sqrt{2}}$.

Então, de acordo com a proposição, $x = \pm \sqrt{2}$ são ponto de mínimo relativo e x = 0 é ponto de máximo relativo. Observe o gráfico da função $f(x) = x^4 - 4x^2$ no exemplo 42.

O seguinte teorema também é utilizado para determinação de extremos de uma função. Ele é aplicado quando a análise do sinal da primeira derivada não é imediata (simples).

Teorema: (Critério da segunda derivada para determinação de extremos)

Seja f uma função derivável num intervalo (a,b) e k um ponto crítico de f neste intervalo, isto é, f'(k) = 0. Então:

a)
$$f''(k) < 0 \implies f \text{ tem um } maximo \text{ relativo em } k$$
;

b)
$$f''(k) > 0 \implies f \text{ tem um } minimo \text{ relativo } \text{em } k$$
.

Exemplo 46. Determine os extremos da função $f(x) = x^4 - 4x^2$, usando o teste da segunda derivada.

$$f'(x) = 4x^3 - 8x = 4x(x^2 - 2)$$
. Os pontos críticos de f são $x_0 = 0$, $x_1 = \sqrt{2}$ e $x_2 = -\sqrt{2}$.

$$f''(x) = 12x^2 - 8$$
.

$$f''(0) = -8 < 0$$
, logo $x_0 = 0$ é ponto de máximo relativo.

$$f''(\sqrt{2}) = 16 > 0$$
, logo $x_1 = \sqrt{2}$ é ponto de mínimo relativo.

$$f''(-\sqrt{2}) = 16 > 0$$
, logo $x_2 = -\sqrt{2}$ é ponto de mínimo relativo.

Este resultado está de acordo com o exemplo 45.

Exemplo 47. Determine os extremos da função $f(x) = ln(x) - x^2$, x > 0, usando o teste da segunda derivada.

$$f'(x) = \frac{1}{x} - 2x.$$

$$f'(x) = 0 \implies \frac{1}{x} - 2x = 0 \implies \frac{1}{x} = 2x \implies x^2 = \frac{1}{2} \implies x = \pm \frac{\sqrt{2}}{2}$$
. Como $x > 0$, temos que $x = \frac{\sqrt{2}}{2}$

é o ponto crítico de f.

Vamos agora determinar o sinal de $f''\left(\frac{\sqrt{2}}{2}\right)$:

$$f''(x) = -\frac{1}{x^2} - 2$$
. Assim $f''(\frac{\sqrt{2}}{2}) = -4 < 0$ e então $x = \frac{\sqrt{2}}{2}$

é ponto de máximo relativo de f.

Veja o gráfico da função $f(x) = ln(x) - x^2$, x > 0 ao lado.

Concavidade e ponto de inflexão

Sabemos que a parábola $y = ax^2 + bx + c$, $a \ne 0$, tem concavidade voltada para cima quando a > 0 e concavidade voltada para baixo quando a < 0. Não existe mudança de concavidade nos gráficos destas funções. Situação diferente acontece em y = sen(x) ou y = cos(x), onde verificamos essas mudanças. Os pontos de mudança de concavidade são chamados de *pontos de inflexão*. Através da derivada (segunda) podemos determinar os intervalos onde uma função tem concavidade voltada para cima ou para baixo e os pontos de inflexão. Estes conceitos são úteis no esboço gráfico de uma curva.

Definição: Dizemos que uma função f tem **concavidade voltada para cima** (**C.V.C**) num intervalo (a,b) se f' é crescente neste intervalo. Em outras palavras, se o gráfico da função estiver acima de qualquer reta tangente.

Figura 1

Definição: Dizemos que uma função f tem **concavidade voltada para baixo** (C.V.B) num intervalo (a,b) se f' é decrescente neste intervalo. Em outras palavras, se o gráfico da função estiver abaixo de qualquer reta tangente.

Figura 2

Através do estudo do sinal da segunda derivada podemos determinar os intervalos onde uma função tem concavidade voltada para cima ou para baixo. Vejamos a seguinte proposição.

Proposição: Seja f uma função contínua e derivável até a segunda ordem no intervalo (a,b):

a) Se f''(x) > 0 para todo $x \in (a,b)$, então f tem concavidade voltada para cima em (a,b);

b) Se f''(x) < 0 para todo $x \in (a,b)$, então f tem concavidade voltada para baixo em (a,b).

Prova:

a) Como f''(x) > 0 para todo $x \in (a,b)$, então f'(x) é crescente em (a,b). Desta forma, o gráfico de f tem o aspecto do gráfico da figura 1 anterior. De forma análoga prova-se o item b.

Definição: Um ponto P(k, f(k)) do gráfico de uma função contínua f é chamado de **ponto de inflexão** (**P.I.**) se ocorre uma mudança de concavidade na passagem por P.

Para verificar a existência de um ponto de inflexão P(k, f(k)) no gráfico de uma função f, basta verificar a mudança de sinal da segunda derivada na passagem por k.

Observe simbolicamente como isto ocorre:

Na figura 3 temos	Na figura 4 temos
sinal de $f''(x) = \frac{CVB}{k} = \frac{CVC}{k}$	sinal de $f''(x) \xrightarrow{CVC} CVB$ k

Exemplo 48.

Determine os intervalos onde a função $f(x) = x^4 - 4x^2$ tem concavidade voltada para cima, para baixo e os pontos de inflexão.

Temos que $f'(x) = 4x^3 - 8x$ e $f''(x) = 12x^2 - 8$.

$$f''(x) > 0 \implies 12x^2 - 8 > 0 \implies x^2 > \frac{8}{12} = \frac{2}{3} \implies x > \sqrt{\frac{2}{3}} \text{ ou } x < -\sqrt{\frac{2}{3}}.$$

$$f''(x) < 0 \implies 12x^2 - 8 < 0 \implies x^2 < \frac{8}{12} = \frac{2}{3} \implies -\sqrt{\frac{2}{3}} < x < \sqrt{\frac{2}{3}}$$

sinal de
$$f''(x) \xrightarrow{+++} - - \xrightarrow{+++} - \sqrt{\frac{2}{3}}$$

Assim, f tem C.V.C. no intervalo $\left(-\infty, -\sqrt{2}/\sqrt{3}\right) \cup \left(\sqrt{2}/\sqrt{3}, +\infty\right)$ e tem C.V.B. em $\left(-\sqrt{2}/\sqrt{3}, \sqrt{2}/\sqrt{3}\right)$. Os pontos de inflexão ocorrem nas abscissa $x_0 = -\frac{\sqrt{2}}{\sqrt{3}}$ e $x_1 = \frac{\sqrt{2}}{\sqrt{3}}$.

Assíntotas horizontais e verticais

Em algumas aplicações práticas, encontramos gráficos que se aproximam de uma reta.

Estas retas são chamadas de assíntotas.

Vamos tratar mais detalhadamente das assíntotas horizontais e verticais.

Definição: A reta de equação x = k é uma *assintota vertical* do gráfico de uma função y = f(x), se pelo menos uma das seguintes afirmações for verdadeira:

i)
$$\lim_{x \to k^+} f(x) = +\infty$$
;

ii)
$$\lim_{x \to k^{-}} f(x) = +\infty$$
;

iii)
$$\lim_{x \to k^+} f(x) = -\infty$$
;

iv)
$$\lim_{x \to k^{-}} f(x) = -\infty$$
.

Exemplo 49

a) A reta de equação x = 0 é assíntota vertical da função y = ln(x), pois $\lim_{x \to 0^+} ln(x) = -\infty$.

Observe o gráfico da função y = ln(x):

b) A reta de equação x = 1 é assíntota vertical da função $y = \frac{l}{(x-l)^2}$, pois $\lim_{x \to l} \frac{1}{(x-l)^2} = +\infty$.

Observe o gráfico da função $y = \frac{l}{(x-l)^2}$:

Definição: A reta de equação y = k é uma *assíntota horizontal* do gráfico de uma função y = f(x), se pelo menos uma das seguintes afirmações for verdadeira:

i)
$$\lim_{x\to +\infty} f(x) = k$$
;

ii)
$$\lim_{x \to -\infty} f(x) = k$$
.

Exemplo 50

a) A reta de equação y = 1 é assíntota horizontal da função $y = \frac{x^2 - 1}{1 + x^2}$, pois $\lim_{\substack{x \to +\infty \text{out} \\ x \to +\infty}} \frac{x^2 - 1}{1 + x^2} = 1$.

Observe o gráfico da função $y = \frac{x^2 - 1}{1 + x^2}$:

b) A reta de equação y = 0 é assíntota horizontal da função $y = \frac{sen(x)}{x}$, pois $\lim_{\substack{x \to +\infty \\ \text{ou} \\ x}} \frac{sen(x)}{x} = 0$.

Graficamente podemos perceber que as oscilações vão reduzindo a sua amplitude e o gráfico da função $y = \frac{sen(x)}{x}$ vai se aproximando da reta y = 0.

Percebemos neste exemplo que a assintota horizontal toca o gráfico da função.

Esboços de gráficos

Utilizando todos os resultados da análise gráfica das funções, podemos resumir numa tabela os procedimentos para esboçar o gráfico de uma função.

Passos	Procedimento
1 <u>o</u>	Encontrar o domínio da função;
2 <u>°</u>	Calcular os pontos de interseção da função com os eixos (quando não requer muito cálculo);
3 <u>°</u>	Calcular os pontos críticos da função;
4 <u>o</u>	Determinar os intervalos de crescimento e decrescimento da função;
5 <u>o</u>	Encontrar os pontos de máximos e mínimos relativos da função;
6 <u>o</u>	Determinar a concavidade e os pontos de inflexão;
7 <u>°</u>	Determinar as assíntotas horizontais e verticais (se existirem);
8 <u>o</u>	Esboçar o gráfico.

Exemplo 51. Esboce o gráfico da função
$$y = f(x) = \frac{x}{x^2 - I}$$
.

1º passo (Domínio):

$$x^2 - 1 \neq 0 \implies x^2 \neq 1 \implies x \neq \pm \sqrt{1} \implies x \neq \pm 1$$
. Logo $D(f) = \Re - \{-1, 1\}$.

2º passo (Pontos de interseção com os eixos):

$$\begin{cases} \operatorname{com o eixo} x & (\operatorname{faça} y = 0) : 0 = \frac{x}{x^2 - 1} \implies x = 0. \text{ Logo temos o ponto } (0, 0). \\ \operatorname{com o eixo} y & (\operatorname{faça} x = 0) : y = \frac{0}{0^2 - 1} \implies y = 0. \text{ O mesmo ponto } (0, 0). \end{cases}$$

3º passo (Pontos críticos):

$$f'(x) = \frac{I(x^2 - I) - x(2x)}{(x^2 - I)^2} = \dots = \frac{-x^2 - I}{(x^2 - I)^2}.$$

$$f'(x) = 0 \iff \frac{-x^2 - 1}{(x^2 - 1)^2} = 0 \iff -x^2 - 1 = 0 \iff x^2 = -1$$
. Não existem pontos críticos,

pois não existe $x \in \Re$ tal que $x^2 = -1$.

4º passo (Intervalos de crescimento e decrescimento):

$$f'(x) = \frac{-x^2 - I}{(x^2 - I)^2}$$
. Estudando o sinal da derivada...

A função é decrescente $\forall x \in \Re - \{-1, 1\}$.

5º passo (Pontos de máximos e mínimos relativos):

Como o sinal de f'(x) não muda (é sempre negativo), então não existem extremos relativos para f.

6º passo (Concavidade e pontos de inflexão):

$$f''(x) = \frac{(-2x)(x^2 - I)^2 - (-x^2 - I)(2)(x^2 - I)(2x)}{(x^2 - I)^4} = \dots = \frac{(2x)(x^2 + 3)}{(x^2 - I)^3}.$$

Estudando o sinal da segunda derivada...

$$f \text{ tem } C.V.C. \ \forall x \in (-1, \ \theta) \cup (1, +\infty).$$

$$f \text{ tem } C.V.B. \ \forall x \in (-\infty, -1) \cup (0, 1).$$

Como x = -1 e x = 1 não fazem parte do domínio da função f, então o único ponto de inflexão é x = 0 pois f'' muda de sinal quando passa por ele.

7º passo (Assíntotas horizontais e verticais):

$$Vertical: \begin{cases} \lim_{x \to I^{+}} \frac{x}{x^{2} - 1} = \lim_{x \to I^{+}} \frac{x}{(x + 1)(x - 1)} = \frac{1}{(2)(0^{+})} = \frac{1}{0^{+}} = +\infty. \\ \lim_{x \to I^{-}} \frac{x}{x^{2} - 1} = \lim_{x \to I^{-}} \frac{x}{(x + 1)(x - 1)} = \frac{1}{(2)(0^{-})} = \frac{1}{0^{-}} = -\infty. \end{cases}$$

$$\begin{cases} \lim_{x \to I^{+}} \frac{x}{x^{2} - 1} = \lim_{x \to I^{+}} \frac{x}{(x + 1)(x - 1)} = \frac{-1}{(0^{+})(-2)} = \frac{1}{0^{+}} = +\infty. \\ \lim_{x \to -I^{+}} \frac{x}{x^{2} - 1} = \lim_{x \to -I^{-}} \frac{x}{(x + 1)(x - 1)} = \frac{-1}{(0^{-})(-2)} = \frac{1}{0^{-}} = -\infty. \end{cases}$$
A reta $x = -1$ é assíntota.
$$\begin{cases} \lim_{x \to -I^{-}} \frac{x}{x^{2} - 1} = \lim_{x \to -I^{-}} \frac{x}{(x + 1)(x - 1)} = \frac{-1}{(0^{-})(-2)} = \frac{1}{0^{-}} = -\infty. \end{cases}$$

Horizontal:
$$\begin{cases} \lim_{x \to +\infty} \frac{x}{x^2 - l} = (L'Hospital) = \lim_{x \to +\infty} \frac{1}{2x} = 0. \\ \lim_{x \to -\infty} \frac{x}{x^2 - l} = (L'Hospital) = \lim_{x \to -\infty} \frac{1}{2x} = 0. \end{cases}$$
 A reta $y = 0$ é assíntota.

8º passo (Esboço do gráfico):

Reunindo todos o elementos calculados, podemos agora traçar o gráfico:

Atividades (grupo 33)

Pontos críticos.

1. Determinar os pontos críticos das seguintes funções, se existirem.

a)
$$f(x) = 3x + 2$$
.

d)
$$f(x) = e^x - x$$
.

b)
$$f(x) = x^2 - 3x + 8$$
.

b)
$$f(x) = x^2 - 3x + 8$$
. e) $f(x) = x/(x^2 - 4)$.

c)
$$f(x) = 3 - x^3$$
.

f)
$$f(x) = 4x^3 - 12x^2$$
.

Crescimento e decrescimento.

2. Determinar os intervalos nos quais as funções a seguir são crescentes ou decrescentes.

a)
$$f(x) = 2x - 1$$
.

e)
$$f(x) = x \cdot e^{-x}$$
.

b)
$$f(x) = 3x^2 + 6x + 7$$
.

f)
$$f(x) = x + \frac{1}{x}$$
.

c)
$$f(x) = x^3 + 2x^2 - 4x + 2$$
.

g)
$$f(x) = 2\cos(x) + \sin(2x), x \in [0, 2\pi].$$

d)
$$f(x) = e^{-x}$$
.

h)
$$f(x) = x^2/(x-1)$$
.

Pontos de extremos relativos.

3. Encontrar os pontos de máximos e mínimos relativos das seguintes funções, se existirem.

a)
$$f(x) = x^3 + 3x^2 + 1$$
.

d)
$$f(x) = 5x^5 - 25x^3$$
.

b)
$$f(x) = 8x^2 - 4x^3$$
.

e)
$$f(x) = (x-1)/(x+1)$$
.

c)
$$f(x) = (x^3/3) + (x^2/2) - 6x + 5$$
.

f)
$$f(x) = xe^x$$
.

de Encontre os pontos máximos mínimos relativos da função $f(x) = 2sen(x) + cos(2x), x \in [0, 2\pi]$, usando o critério da segunda derivada.

Concavidade e ponto de inflexão.

5. Determinar os intervalos onde as funções têm concavidade voltada para cima (C.V.C.) e concavidade voltada para baixo (C.V.B.). Determine também os pontos de inflexão (P.I.).

a)
$$f(x) = x^3 - 2x^2 + x + 1$$
.

d)
$$f(x) = (x^2 - I)^2$$
.

b)
$$f(x) = 3x^4 - 4x^3 + 6$$
.

e)
$$f(x) = \sqrt[5]{x} - 1$$
.

c)
$$f(x) = 2x^6 - 6x^4$$
.

f)
$$f(x) = xe^x$$
.

Assíntotas.

6. Determine as assíntotas horizontais e verticais das funções abaixo, se existirem.

a)
$$f(x) = x^3 - 3x^2 + 2$$
.

d)
$$f(x) = \frac{-x^2}{x^2 - x - 2}$$
.

b)
$$f(x) = \frac{2x^2}{9-x^2}$$
.

e)
$$f(x) = \frac{sen(x)}{x}$$
.

c)
$$f(x) = \frac{x-2}{x+9}$$
.

f)
$$f(x) = \frac{ln(x)}{\sqrt[3]{x}}$$
.

Esboço gráfico.

7. Para cada função a seguir, determine (se possível): o domínio, as interseções com os eixos, as assíntotas horizontais e verticais, os intervalos de crescimento e decrescimento, os máximos e mínimos relativos, os intervalos onde o gráfico tem concavidade para cima e onde o gráfico tem concavidade para baixo, os pontos de inflexão e o esboço gráfico.

Obs: Para confirmar a sua resposta, construa os gráficos utilizando um software matemático.

a)
$$f(x) = 10 + 12x - 3x^2 - 2x^3$$
.

d)
$$f(x) = e^{-x^2}$$
.

b)
$$f(x) = (x+1)/(x-1)$$
.

e)
$$f(x) = x . ln(x)$$
.

c)
$$f(x) = -x^4 + 6x^2 - 3$$
.

f)
$$f(x) = e^x/x$$
.

Problemas de otimização

Agora apresentaremos os problemas de otimização. Nestes problemas buscamos soluções que são *ótimas*, do ponto de vista matemático. Por exemplo: uma empresa deseja produzir potes cilíndricos de *300ml* para armazenar certo tipo de produto. Sabe-se que estes potes devem ter *área total mínima* para reduzir o custo de impressão dos rótulos. De todos os cilindros de volume igual a *300ml*, qual possui *menor área total (raio da base e altura)*? Devemos então buscar uma solução que minimize a área total do cilindro, reduzindo assim o custo de impressão dos rótulos nos potes. Variados problemas práticos, semelhantes a esse, em diversos ramos do conhecimento, são resolvidos com o auxílio das derivadas.

Iniciaremos resolvendo este problema.

Exemplo 52. De todos os cilindros de volume igual a 300ml, qual possui menor área total (raio da base e altura)?

Abrindo o cilindro nós temos

Sabe-se que o volume do cilindro é $V = \pi r^2 h$ e a área total é $A = 2\pi r^2 + 2\pi r h$.

Queremos determinar os valores do raio (r) da base e a altura (h) de um cilindro de $300 \, ml$ de volume (V) que possua mínima área total (A).

Já sabemos determinar o ponto de mínimo de uma função através dos dois critérios vistos, mas a função área possui duas variáveis r e h. Poderemos resolver este problema isolando uma das variáveis em $V = \pi r^2 h$ (com V = 300) e substituí-la em $A = 2\pi r^2 + 2\pi r h$.

$$300 = \pi r^2 h \quad \Rightarrow \quad h = \frac{300}{\pi r^2}.$$

Temos então que $A = 2\pi r^2 + 2\pi r \frac{300}{\pi r^2} = 2\pi r^2 + \frac{600}{r}$. Conseguimos então tornar a função área como função de uma única variável. Vamos determinar o ponto crítico desta função:

$$A' = 4\pi r - \frac{600}{r^2}$$
. Resolvendo agora a equação $A' = 0$:

$$4\pi r - \frac{600}{r^2} = 0 \implies 4\pi r = \frac{600}{r^2} \implies r^3 = \frac{600}{4\pi} \implies r = \sqrt[3]{\frac{600}{4\pi}} \approx 3.6 \, \text{cm}$$

Como
$$A''\left(\sqrt[3]{\frac{600}{4\pi}}\right) > 0$$
 (verifique!), temos que $r = \sqrt[3]{\frac{600}{4\pi}}$ é ponto de mínimo da função A (pelo 2^{o}

critério para determinação de extremos). Substituindo $r = \sqrt[3]{\frac{600}{4\pi}}$ em $h = \frac{300}{\pi r^2}$, obtemos $h \approx 7,2cm$.

Diretrizes para resolução de problemas de otimização

- 1. Leia cuidadosamente o problema. Esboce uma figura para auxiliar a sua interpretação;
- 2. Identifique e denomine com variáveis as quantidades informadas no problema;
- 3. Determine algumas relações (ou fórmulas) entre as variáveis;
- 4. Determine qual variável deve ser otimizada (maximizada ou minimizada). Expresse esta variável como função de *uma* das outras variáveis;
- 5. Determine o ponto crítico da função obtida o item anterior;
- 6. Determine o(s) extremo(s) com o auxílio dos critérios da l^a e 2^a derivadas.

Exemplo 53. Determine as dimensões (base e altura) do retângulo de *área máxima* que pode ser inscrito em um semicírculo de raio constante *a*, como mostra a figura.

Podemos dizer que este retângulo tem base igual a b e altura igual a h.

a é o raio do semicírculo.

Queremos maximizar a área do retângulo A=bh, sabendo-se que as variáveis b e h obedecem o teorema de Pitágoras $\left(\frac{b}{2}\right)^2+h^2=a^2$. Podemos então tornar a função área como função de uma única variável (b), pois $h=\sqrt{a^2-\left(\frac{b}{2}\right)^2}=\frac{\sqrt{4a^2-b^2}}{2}$:

$$A = b \cdot \frac{\sqrt{4a^2 - b^2}}{2} = \frac{1}{2} \cdot b\sqrt{4a^2 - b^2}$$
. Lembre-se que a é uma constante!

Resolvendo a equação A'(b) = 0, obtemos:

$$A' = \left(\frac{1}{2}\right)\sqrt{4a^2 - b^2} + \frac{b}{2} \cdot \frac{-2b}{2\sqrt{4a^2 - b^2}} = \frac{\sqrt{4a^2 - b^2}}{2} - \frac{b^2}{2\sqrt{4a^2 - b^2}}.$$

$$A'=0 \Leftrightarrow \frac{\sqrt{4a^2-b^2}}{2} = \frac{b^2}{2\sqrt{4a^2-b^2}} \Leftrightarrow 4a^2-b^2=b^2 \Leftrightarrow 2b^2=4a^2 \Leftrightarrow$$

$$\Leftrightarrow b = \sqrt{2a^2} \Leftrightarrow b = a\sqrt{2}$$
.

Substituindo
$$b = a\sqrt{2}$$
 em $h = \frac{\sqrt{4a^2 - b^2}}{2}$, obtemos $h = \frac{a\sqrt{2}}{2}$.

Verifique que realmente $b=a\sqrt{2}$ é o ponto de máximo da função área $A=\frac{1}{2}\cdot b\sqrt{4a^2-b^2}$ usando o critério da segunda deriva $A''(b=a\sqrt{2})<0$.

Atividades (grupo 34)

- 1) De todos os retângulos de comprimento fixo L, qual possui maior área? Determine a base e a altura de tal retângulo.
- 2) Uma reta variável passando por P(1,2) corta o eixo Ox em A(a,0) e o eixo Oy em B(0,b). Determine o triângulo OAB de área mínima, para a e b positivos.
- 3) Dentre os retângulos com base no eixo Ox e vértices superiores sobre a parábola $y = 12 x^2$, determine o de área máxima (base e altura).

- 4) Uma fábrica produz x milhares de unidades mensais de um determinado artigo. Se o custo de produção é dado por $C(x) = 2x^3 + 6x^2 + 18x + 6$ e a receita obtida na venda é dada por $R(x) = 60x 12x^2$, determinar o número ótimo de unidades que *maximiza* o lucro L. Obs.: Lucro = Receita Custo, isto é, L(x) = R(x) C(x).
- 5) Usando uma folha quadrada de cartolina, de lado igual a 60 cm, deseja-se construir uma caixa sem tampa, cortando seus cantos em quadrados iguais e dobrando convenientemente a parte restante. Determinar o lado dos quadrados que devem ser cortados de modo que o volume da caixa seja o maior possível.

- 6) A potência P de uma bateria de um automóvel é dada por $P = VI I^2R$, sendo I a corrente para uma voltagem V e resistência interna da bateria R. São constantes V e R. Que corrente corresponde à potência $m\acute{a}xima$?
- 7) O departamento de trânsito de uma cidade, depois de uma pesquisa, constatou que num dia normal da semana à tarde, entre 2 e 7 horas, a velocidade do tráfego é de aproximadamente $V(t) = 2t^3 27t^2 + 108t 35$ quilômetros por hora, onde t é o número de horas transcorridas após o meio dia. A que horas do intervalo de 2 às 7 o tráfego flui mais rapidamente e a que horas flui mais lentamente, e com que velocidade?
- 8) Faz-se girar um triângulo retângulo de hipotenusa dada H em torno de um de seus catetos, gerando um cone circular reto. Determine o cone de volume máximo (raio da base e altura).
- 9) Um gerador de corrente elétrica tem uma força eletromotriz de ε volts e uma resistência interna de r ohms. ε e r são constantes. Se R ohms é uma resistência externa, a resistência total é (r + R) ohms e se P watts é a potência então, $P = (\varepsilon^2 R)/(r + R)^2$. Qual o valor de R que consumirá o *máximo* de potência? Interprete o resultado.
- 10) Corta-se um pedaço de arame de comprimento L em duas partes. Com uma das partes faz-se uma circunferência e com a outra um quadrado. Determine o raio da circunferência e o lado do quadrado para que a soma das áreas compreendidas pelas duas figuras seja minima.
- 11) Um construtor deseja construir um depósito com as seguintes características: capacidade de 30 m^3 , teto plano, base retangular cuja largura é três quartos do comprimento. O custo por metro quadrado do material é de R\$ 36,00 para o chão, R\$ 204,00 para os lados e R\$ 102,00 para o teto. Quais as dimensões do depósito que *minimizarão* o custo?