UNIDAD TEMÁTICA 5: Arboles Binarios II

PRÁCTICOS DOMICILIARIOS INDIVIDUALES -2

Ejercicio #1

Dadas las siguientes claves y sus frecuencias de búsquedas con y sin éxito $(a_i \ y \ b_j)$ escribir todos los posibles árboles binarios y los "costos" de los mismos. ¿Cuál es el árbol óptimo?

Claves: BEGIN, END, IF

Frecuencias de éxito 3,2,5

Frecuencias de no éxito: 2, 1, 1, 6

	0	1	2	3
k		BEGIN	END	IF
а		3	2	5
b	2	1	1	6

$$BEGIN = B$$
; $END = E$; $IF = I$

$$P = \sum_{i=1}^{i=n} h_i * a_i + \sum_{j=1}^{j=n} h_j * b_j$$

Árbol A:

$$P = (3*1 + 2*2 + 5*3) + (2*2 + 1*3 + 1*4 + 6*4) = 22 + 35 = 57$$

Árbol B:

$$P = (3*3 + 2*2 + 5) + (2*4 + 1*4 + 1*3 + 6*2) = 18 + 27 = 45$$

Árbol C:

$$P = (3*2 + 2*3 + 5*1) + (2*3 + 1*4 + 1*4 + 6*2) = 17 + 26 = 43$$

Árbol D:

$$P = (3*1 + 2*3 + 5*2) + (2*2 + 1*4 + 1*4 + 6*3) = 19 + 30 = 49$$

Árbol E:

$$P = (3*2 + 2*1 + 5*2) + (2*3 + 1*3 + 1*3 + 6*3) = 18 + 30 = 48$$

• El árbol óptimo es el **Árbol C**.