Edición de Circuitos en Electric VLSI y simulación en gnucap

Leandro Marsó

Córdoba

elleandro@gmail.com

11 de marzo de 2015

Contenido

Edición de Circuitos Esquemáticos

Creación de una librería

Creamos la librería que contendrá las celdas que vamos a diseñar:

 $\mathsf{File} \to \mathsf{New} \; \mathsf{library}$

Y elegimos el nombre analog

Nueva Celda

Creamos el esquemático de la nueva celda, con el nombre **nmosMin**:

 $Cell \rightarrow New Cell. Y en View: elegimos schematic$

Instanciar un transistor

Vamos a la pestaña Components y seleccionamos un transistor nmos de cuatro terminales y lo instanciamos en el plano de trabajo:

Editar propiedades

Para cambiar las propiedades del transistor hacemos **Ctrl-I** y cambiamos el nombre del transistor, y dejamos el ancho y largo en 2:

Conectar y crear puertos

Ahora vamos a crear puertos y exportarlos para ejemplificar el uso del simulador y una convención para los nombres.

Conectamos el drenador haciendo click izquierdo sobre el mismo y luego hacemos click derecho sobre otro lado para conectar: Nombramos el cable haciendo click izquierdo exactamente en el centro del mismo y luego **Ctrl-I** para cambiarle el nombre:

Creación del layout

Verificación de equivalencia entre el esquemático y el layout (LVS)

Comprobación de errores de DRC

Extracción de los parásitos del layout

Simulación del esquemático y del layout extraído

Caracterización de los transistores de canal N y P por medio de simulación (familia de curvas de Id/Vds)

Simulaciones de punto de operación

Análisis AC

Régimen transitorio

Transformada de Fourier

Alternativas de Interacción con circuitos digitales

Fin