1 Dos monocapas de grafeno separadas d en ϵ_2 , en contacto con ϵ_1

Figure 1: Dos monocapas de grafeno separadas d. El espacio intermedio es ϵ_2 ; arriba y abajo hay ϵ_1 (dieléctricos no dispersivos).

Descripción. Dos monocapas de grafeno separadas una distancia 2d. El espacio entre las dos monocapas está relleno con un material de constante dieléctrica ε_2 . Tanto la monocapa superior como la inferior están en contacto con el dieléctrico ε_1

Ecuación característica.

$$\frac{e^{2dk_x} \left[\left(\epsilon_1 + \epsilon_2 \right) \omega^2 - 2 c k_x \omega_D \right]^2 - \left[\left(\epsilon_2 - \epsilon_1 \right) \omega^2 + 2 c k_x \omega_D \right]^2}{c k_x \omega} = 0.$$
 (1)

Soluciones analíticas (relaciones de dispersión).

$$\omega_1^2(k_x)_{PPG-2} = \frac{2 c k_x \omega_D \sinh\left(\frac{d k_x}{2}\right)}{\epsilon_1 \sinh\left(\frac{d k_x}{2}\right) + \epsilon_2 \cosh\left(\frac{d k_x}{2}\right)}$$
(2)

$$\omega_2^2(k_x)_{PPG-2} = \frac{2c k_x \omega_D \cosh\left(\frac{d k_x}{2}\right)}{\epsilon_1 \sinh\left(\frac{d k_x}{2}\right) + \epsilon_2 \cosh\left(\frac{d k_x}{2}\right)}$$
(3)

Asíntotas. Límite $k_x \to 0$. Escribiendo $x = \frac{dk_x}{2}$ y usando $\sinh x \approx x$, $\cosh x \approx 1$:

$$\omega_1^2(k_x)_{PPG-2} \approx \frac{2ck_x\omega_D x}{\epsilon_1 x + \epsilon_2} \to \frac{c d \omega_D}{\epsilon_2} k_x^2 \quad \Rightarrow \quad \omega_1(k_x) \sim \sqrt{\frac{c d \omega_D}{\epsilon_2}} k_x,$$

$$\omega_2^2(k_x)_{PPG-2} \approx \frac{2ck_x\omega_D}{\epsilon_1 x + \epsilon_2} \to \frac{2c\omega_D}{\epsilon_2} k_x \quad \Rightarrow \quad \omega_2(k_x) \sim \sqrt{\frac{2c\omega_D}{\epsilon_2}} k_x^{1/2}.$$

Límite $k_x \to \infty$. Con $\sinh x \sim \cosh x \sim \frac{1}{2}e^x$:

$$\omega_{1,2}^2(k_x)_{PPG-2} \to \frac{2\,c\,k_x\,\omega_D}{\epsilon_1 + \epsilon_2}.$$

Agrupaciones.

- Ramas: ω_1 (antisimétrica, $\propto k_x$ a $k_x \to 0$) y ω_2 (simétrica, $\propto \sqrt{k_x}$ a $k_x \to 0$).
- Asíntota común en $k_x \to \infty$: $\omega_{\infty PPG-2}^2 = \frac{2ck_x\omega_D}{\epsilon_1 + \epsilon_2}$.

Figure 2: Relaciones de dispersión $\omega_{1,2}(k_x)_{PPG-2}ysusas$ íntotasen $k_x \to 0$ y $k_x \to \infty$.