Tianjin International Engineering Institute

Formal Languages and Automata

Lesson 4: Nondeterministic Finite Automata

Marc Gaetano Edition 2018

Example from last lesson

• Construct a DFA over alphabet $\{0, 1\}$ that accepts those strings that end in 101

Would be easier if...

- Suppose we could guess when the string we are reading has only 3 symbols left
- Then we could simply look for the sequence 101 and accept if we see it

Nondeterminism

- Nondeterminism is the ability to make guesses, which we can later verify
- Informal nondeterministic algorithm for language of strings that end in 101:
 - I. Guess if you are approaching end of input
 - 2. If guess is yes, look for 101 and accept if you see it
 - 3. If guess is no, read one more symbol and go to step I

Nondeterministic finite automaton

 This is a kind of automaton that allows you to make guesses

 Each state can have zero, one, or more transitions out labeled by the same symbol

Semantics of guessing

- State q_0 has two transitions labeled 1
- Upon reading 1, we have the choice of staying in q_0 or moving to q_1

Semantics of guessing

- State q₁ has no transition labeled 1
- Upon reading 1 in q_1 , we die; upon reading 0, we continue to q_2

Semantics of guessing

- State q₃ has no transition going out
- Upon reading anything in q_3 , we die

Meaning of automaton

Formal definition

- A nondeterministic finite automaton (NFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ where
 - -Q is a finite set of states
 - $-\Sigma$ is an alphabet
 - $-\delta: \mathcal{Q} \times \Sigma \rightarrow \text{subsets of } \mathcal{Q} \text{ is a transition function}$
 - $-q_0 \in \mathcal{Q}$ is the initial state
 - $F \subseteq Q$ is a set of accepting states (or final states).
- Only difference from DFA is that output of δ is a set of states

Example

alphabet $\Sigma = \{0, 1\}$ start state $Q = \{q_0, q_1, q_2, q_3\}$ initial state q_0 accepting states $F = \{q_3\}$

transition function δ :

		inputs		
		0	1	
states	\mathbf{q}_0	$\{q_0\}$	$\{q_0, q_1\}$	
	q_1	$\{q_2\}$	Ø	
	q_2	Ø	$\{q_3\}$	
	q_3	Ø	Ø	

Language of an NFA

The language of an NFA is the set of all strings for which there is some path that, starting from the initial state, leads to an accepting state as the string is read left to right.

Example

- 1101 is accepted, but 0110 is not

NFAs are as powerful as DFAs

- Obviously, an NFA can do everything a DFA can do
- But can it do more?

NFAs are as powerful as DFAs

- Obviously, an NFA can do everything a DFA can do
- But can it do more?

Theorem

A language L is accepted by some DFA if and only if it is accepted by some NFA.

Proof of theorem

- To prove the theorem, we have to show that for every NFA there is a DFA that accepts the same language
- We will give a general method for simulating any NFA by a DFA
- Let's do an example first

Simulation example

General method

	NFA	DFA
states	q_0, q_1, \ldots, q_n	\emptyset , $\{q_0\}$, $\{q_1\}$, $\{q_0,q_1\}$,, $\{q_0,,q_n\}$ one for each subset of states in the NFA
initial state	q_0	$\{q_0\}$
transitions	δ	$\delta'(\{q_{i1},,q_{ik}\}, a) =$ $\delta(q_{i1}, a) \cup \cup \delta(q_{ik}, a)$
accepting states	$F \subseteq \mathcal{Q}$	$F' = \{S: S \text{ contains some state in } F\}$

Proof of correctness

Lemma

After reading n symbols, the DFA is in state $\{q_{i1},...,q_{ik}\}$ if and only if the NFA is in one of the states $q_{i1},...,q_{ik}$

- Proof by induction on n
- At the end, the DFA accepts iff it is in a state that contains some accepting state of NFA
- By lemma, this is true iff the NFA can reach an accepting state

Alphabet = $\{a\}$

Alphabet = $\{a\}$

 $\begin{bmatrix} a & a \end{bmatrix}$

All input is consumed

 $\begin{bmatrix} a & a \end{bmatrix}$

Input cannot be consumed

NFA acceptance

An NFA accepts a string

if there is a computation path of the NFA that accepts the string

i.e., all the input string is processed and the automaton is in an accepting state

NFA acceptance

aa is accepted by the NFA:

"accept" $q_1 \xrightarrow{a} q_2$ $q_0 \xrightarrow{a} q_3$

because this computation accepts aa

this computation is ignored

a

a

Second Choice

Input cannot be consumed

Input cannot be consumed

NFA rejection

An NFA rejects a string:

if there is no computation of the NFA that accepts the string.

For **each** computation path:

- All the input is consumed and the automaton is in a non accepting state
 OR
- The input cannot be consumed

NFA rejection

a is rejected by the NFA:

All possible computations lead to rejection

NFA rejection

aaa is rejected by the NFA:

All possible computations lead to rejection

Spontaneous transition with NO input consumed

input tape head does not move

Automaton changes state

all input is consumed

String aa is accepted

(read head doesn't move)

Input cannot be consumed Automaton halts

"reject" $q_0 \xrightarrow{a} q_1 \xrightarrow{\varepsilon} q_2 \xrightarrow{a} q_3$

String aaa is rejected

Language accepted: $L = \{aa\}$

Another String

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Another ε -NFA Example

Another ε -NFA Example

Language accepted

$$L(M) = \{\varepsilon, 10, 1010, 101010, \dots\}$$

$$= \{10\}^*$$

$$q_0$$

$$q_1$$

$$q_2$$

$$(redundant state)$$

The Language of an NFA

The language accepted by M is:

$$L(M) = \{w_1, w_2, ..., w_n\}$$

Where for each w_n

$$\delta(q_0, w_m) = \{q_i, ..., q_k, ..., q_j\}$$

and there is some $q_k \in F$ (accepting state)

The Language of an NFA

Machine M_1 is equivalent to machine M_2 if and only if

$$L(M_1) = L(M_2)$$

Languages
accepted
by NFAs

Regular
Languages

Languages
accepted
by DFAs

NFAs and DFAs have the same computation power, namely, they accept the same set of languages

Proof: we need to show

Languages Regular accepted Languages by NFAs **AND** Languages Regular accepted Languages

Proof: Step 1

Every DFA is trivially a NFA

Any language accepted by a DFA is also accepted by a NFA

Proof: Step 2

Any NFA can be converted to an equivalent DFA

Any language accepted by a NFA is also accepted by a DFA

Conversion of NFA to DFA

Conversion of NFA to DFA

$$\delta(q_0,b) = \emptyset$$

empty set

Input: an NFA M

Output: an equivalent DFA M^{\prime}

The NFA has states

$$q_0, q_1, q_2, \dots$$

The DFA has states from the power set

$$\emptyset$$
, $\{q_0\}$, $\{q_1\}$, $\{q_0, q_1\}$, $\{q_1, q_2, q_3\}$,

$$L(M) = L(M')$$

STEP 1 Initial state of NFA: q_0

$$\delta(q_0,\varepsilon) = \{q_0,\dots\}$$

Initial state of DFA: $\{q_0, \dots\}$

STEP 2 For every DFA's state $\{q_i, q_j, ..., q_m\}$ compute in the NFA

$$\begin{array}{c}
\delta\left(q_{i},a\right) \\
\cup \delta\left(q_{j},a\right) \\
\dots \\
\cup \delta\left(q_{m},a\right)
\end{array}$$
Union
$$= \left\{q'_{k},q'_{l},...,q'_{n}\right\}$$

$$\cup \delta\left(q_{m},a\right)$$

add transition to DFA

$$\delta'(\{q_i, q_j, ..., q_m\}, a) = \{q'_k, q'_l, ..., q'_n\}$$

STEP 3 Repeat STEP 2 for every state in DFA and symbols in alphabet until no more states can be added in the DFA

STEP 4 For any DFA state $\{q_i, q_j, ..., q_m\}$

if some q_j is accepting state in NFA then, $\{q_i, q_j, ..., q_m\}$ is accepting state in DFA

