H1B Data Exploration

Barry Ke, Angela Qiao

Oct 29, 2018

Introduction

- Motivation
- Exploratory data analysis
- Data analysis: wage
 - ▶ LASSO regression: optimization problem
 - ► Coordinate descent
 - Result
- Data analysis: status prediction
 - ▶ Logistic regression with L1 panelty: optimization problem
 - Quadratic approximation
 - Alternative: Newton's method
 - Result

References

- Jerome Friedman, Trevor Hastie and Robert Tibshirani.
 Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software Vol 33. P1-22. 2010
- Andreas C. Müller and Sarah Guido. Introduction to Machine Learning with Python. O'Reilly Media. Inc. 2016.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag New York. 2009. 9781449369897
- Bureau of Labor Statistics, Department of Labor OFLC Performance Data. 2018.
- Anna Maria Mayda, Francesc Ortega, Giovanni Peri, Kevin Shih and Chad Sparber. The Effect of the H-1b Quota on Employment and Selection of Foreign-Born Labor. NBER Working Paper No. w23902. 2017.
- Statistical package: scikit-learn

Motivation

- ▶ 19% of students at Columbia are international students
- 88.9% of Columbia College and Columbia Engineering -Undergrad degree earners are employed or in grad school
- \$70,000 median starting salary for working graduates of Columbia College and Columbia engineering

Data Set used

- https://www.foreignlaborcert.doleta.gov/ performancedata.cfm#dis
- ► Labor Condition Application ("LCA") disclosure data from UNITED STATES DEPARTMENT OF LABOR

H1B Process Introduction

What is H1B?

- H-1B is a temporary (nonimmigrant) visa category that allows employers to petition for highly educated foreign professionals to work in specialty occupations that require at least a bachelor's degree or the equivalent.
- Jobs in fields such as mathematics, engineering, and technology often qualify
- Duration: Three years

H1B Process Introduction

Employer Qualification

▶ Employers must attest, on a labor condition application (LCA) certified by the Department of Labor (DOL), that employment of the H-1B worker will not adversely affect the wages and working conditions of similarly employed U.S. workers.

Data cleaning

Data before 2015	Additional data after 2015
Date	Total number of employee
Employer Name	Firm's founding year
Location	Education level
Economic sector	University
Job title	Major
Wage	Prior working experience (months)
Citizenship	

Table 1: Variables included

Itab:my_Iabel

Box plot of wages by job level

Box plot of wages by sector

Box plot of wages by year

Number of applications by citizenship

Number of applications by firm

Number of applications by job level

Number of applications by sector

Number of applications by states

Number of applications by year

Percentage change relative to 2008

Linear model

Main objective:

- Understand how wages are related to each features
- Predict whether an H1-B case will be denied

We use linear models for both regression and classification problem

- Feature selection with L1 penalty
- Regression: LASSO
- Classification: Logistic regression with L1 penalty

LASSO: optimization problem

- ▶ Response variable $Y \in R$ and predictor vector $X \in R^p$
- ▶ N observation pairs (x_i, y_i)
- For simplicity assume variables are standardized $\sum_{i=1}^{N} x_{ij} = 0$, and $\frac{1}{N} \sum_{i=1}^{N} x_{ij}^2 = 1$

LASSO solves the following problem

$$\min_{(\beta_0,\beta)\in\mathbb{R}^{p+1}} R_{\lambda}(\beta_0,\beta) = \min_{(\beta_0,\beta)\in\mathbb{R}^{p+1}} \left[\frac{1}{2N} \sum_{i=1}^{N} (y_i - \beta_0 - x_i^T \beta)^2 + \lambda P(\beta)\right]$$

where

$$P(\beta) = ||\beta||_{\mathbb{L}_1} = \sum_{j=1}^{p} |\beta_j|$$

LASSO: coordinate descent

Coordinate descent: partially optimize with respect to one coordinate, assuming other coefficients are known.

- ▶ Suppose we have estimates $\tilde{\beta}_0$ and $\tilde{\beta}_l$ for $l \neq j$, and we wish to partially optimize with respect to β_j .
- We want the gradient at $\beta_j=\tilde{\beta}_j$. Because of L1 penalty, it only exists if $\tilde{\beta}_j\neq 0$

LASSO: coordinate descent

If $\tilde{\beta}_j > 0$,

$$\frac{\partial R_{\lambda}}{\partial \beta_{j}}|_{\beta=\tilde{\beta}} = -\frac{1}{N} \sum_{i=1}^{N} x_{ij} (y_{i} - \tilde{\beta}_{0} - x_{i}^{T} \tilde{\beta}) + \lambda$$

If $\tilde{\beta}_j < 0$,

$$rac{\partial R_{\lambda}}{\partial eta_{j}}|_{eta = ilde{eta}} = -rac{1}{N} \sum_{i=1}^{N} x_{ij} (y_{i} - ilde{eta}_{0} - x_{i}^{T} ilde{eta}) - \lambda$$

LASSO: CD naive update scheme

Because we assume standardization $\frac{1}{N} \sum x_{ij}^2 = 1$

$$\tilde{\beta}_j \leftarrow S(\frac{1}{N} \sum_{i=1}^N x_{ij} (y_i - \tilde{y}_i^{(j)}), \lambda)$$

where

- $\tilde{y}_i^{(j)} = \tilde{\beta}_0 + \sum_{l \neq j} x_{il} \tilde{\beta}_l$ is the fitted value excluding x_{ij} , and thus $y_i \tilde{y}_i^{(j)}$ is the partial residual of fitting β_j .
- $S(z, \gamma)$ is the soft-thresholding operator with value

$$sign(z)(|z|-\gamma)_+$$

Many coefficients will remain 0 in updating, thus no need to change (feature selection).

LASSO Application: Wage Regression

Two models:

- ▶ Data from 2008 to 2017
 - ▶ Features: sector, state, citizenship, job level, pay unit, year
- Data from 2015 to 2017
 - Features: sector, state, citizenship, job level, pay unit, year, major, education level, ownership interest, prior job experience, employer's founding year, employer's total employee number

Use 10-fold cross validation and grid search for best λ

Feature selection from wage: pre2015

Feature selection from wage: post2015

Regularization path

Wage regression: conclusion

- ► Pre-2015 most important features: Healthcare, California, Washington, Job level IV, New York, Massachusetts
- ▶ Pre-2015 negative contributors: Job level I and II, Educational services, Philippines, Japan, Year 2008
- Post-2015 added features: Medicine and surgery major, petroleum engineering major, Law major, pharmacy major
- ▶ Post-2015 negative contributors: Graphic Design major, Social work major, Fashion Design Major, Communications major

Status prediction

Classification with 2 states, use logistic regression with L1 penalty. Let y = 0, 1 be the response variable, logistic regression model:

$$Pr(y = 1|x) = \frac{1}{1 + e^{-(\beta_0 + x^T \beta)}}$$

 $Pr(y = 0|x) = 1 - Pr(y = 1|x) = \frac{1}{1 + e^{(\beta_0 + x^T \beta)}}$

Logistic regression: Maximum likelihood

Let $p(x_i) = Pr(y = 1|x_i)$, the maximum log likelihood problem for logistic regression with L1 penalty is given as

$$\max_{(\beta_0,\beta)\in\mathbb{R}^{p+1}} \left[\frac{1}{N} \sum_{i=1}^{N} \{ y_i \log p(x_i) + (1-y_i) \log(1-p(x_i)) \} - \lambda P_{\mathbb{L}_1}(\beta) \right]$$

Let's call the un-penalized likelihood function $\ell(\beta_0,\beta)$

$$\ell(\beta_0, \beta) = \frac{1}{N} \sum_{i=1}^{N} y_i (\beta_0 + x_i^T \beta) - \log(1 + e^{(\beta_0 + x_i^T \beta)})$$

Logistic regression: quadratic approximation

Let $\tilde{\beta}_0$ and $\tilde{\beta}$ be current estimators, we do Taylor expansion of the likelihood function about current estimate

$$\ell_{Q}(\beta_{0},\beta) := -\frac{1}{2N} \sum_{i=1}^{N} w_{i}(z_{i} - \beta_{0} - x_{i}^{T}\beta)^{2} + \mathcal{O}(||\beta - \tilde{\beta}||^{2})$$

where

$$z_i = \tilde{\beta}_0 + x_i^T \tilde{\beta} + \frac{y_i - \tilde{p}(x_i)}{\tilde{p}(x_i)(1 - \tilde{p}(x_i))}$$

$$w_i = \tilde{p}(x_i)(1 - \tilde{p}(x_i))$$

Logistic regression: Coordinate descent

Now the problem becomes

$$\min_{(\beta_0,\beta)\in\mathbb{R}^{p+1}}[-\ell_Q(\beta_0,\beta)+\lambda P_{\mathbb{L}}(\beta)]$$

It is similar to the optimization problem in LASSO:

$$\min_{(\beta_0,\beta)\in\mathbb{R}^{p+1}} \left[\frac{1}{2N}\sum_{i=1}^{N}(y_i - \beta_0 - x_i^T\beta)^2 + \lambda P_{\mathbb{L}}(\beta)\right]$$

and can be solved using the coordinate descent update scheme

Alternative: Newton's method

For single variable convex function f(x), if we want to find its minimum, the update is given by

$$x^{i} = x^{i-1} - \frac{f'(x^{i-1})}{f''(x^{i-1})}$$

If the function is multivariate,

$$\mathbf{x}^{i} = x^{i-1} - (\nabla^{2} f(\mathbf{x}^{i-1}))^{-1} \nabla f(\mathbf{x}^{i-1})$$

It it optimizing using the knowledge of second order derivative. Better solution but computationally costly.

Newton's Method: Logistic regression with L1 penalty

$$\begin{split} & \min_{(\beta_0,\beta) \in \mathbb{R}^{p+1}} [-\ell_Q(\beta_0,\beta) + \lambda P_{\mathbb{L}}(\beta)] \\ &= \min_{(\beta_0,\beta) \in \mathbb{R}^{p+1}} [\frac{1}{2N} \sum_{i=1}^N w_i (z_i - \beta_0 - x_i^T \beta)^2 + \lambda P_{\mathbb{L}}(\beta) \end{split}$$

In matrix form,

$$f = \frac{1}{2N} (\mathbf{Z} - \mathbf{X}\beta)^T \mathbf{W} (\mathbf{Z} - \mathbf{X}\beta) + \lambda P_{\mathbb{L}}(\beta)$$

The gradient of f:

$$\nabla f = -\frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{W} \mathbf{Z} + \frac{1}{N} \mathbf{X}^{\mathsf{T}} \mathbf{W} \mathbf{X} \beta + \lambda \frac{\partial P_{\mathbb{L}}(\beta)}{\partial \beta}$$

The Hessian is given by

$$abla^2 f = rac{1}{N} \mathbf{X}^T \mathbf{W} \mathbf{X}^T$$

Logistic regression application: Status prediction

We use the data from 2015 to 2017, excluding data points with empty features (in total 191693 observations).

- ► Features: wage, sector, job level, pay unit, state, education level, job experience, major, employer's founding year, ownership interest, employee number
- ► Two status: certified (184308) and denied (7385)

Since the dataset is very unbalanced, we need to do random sampling.

Status prediction: random sampling

Model evaluation: AUC (Area under ROC curve) We want to find the parameter λ such that it maximize the AUC of the model

- Generate a list of $\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$
- ▶ For each λ_i :
 - Oversampling from denied class
 - Undersampling from certified class
 - ► For each sample:
 - Use coordinate descent method to compute MLE of penalized LogReg with quadratic approximation of each sample
 - Calculate AUC for each model
 - ightharpoonup Calculate average AUC and call it the score of λ_i
- ▶ Find the λ_i with the highest average AUC

Status prediction: result

Status prediction: result

Status prediction: conclusion

- Status prediction most important factors: education level PHD, Major Computer science, Major electronic, Major medicine, Major electronic engineering, Retail Sector, Finance Sector
- Status prediction negative contributors: Educational level associate, educational services sector, State Oregon, Educational level non, Major in education
- Original sample gives the best performance

Future

- ► For the field
- ► For us