

Computer Vision Foundations

Girish Gore www.linkedin.com/in/datascientistgirishgore

About Me

Professional Experience

- → 10+ Years of Industry Experience (5+ Y: SAS Analytics ,3+ Y : Cognizant , 2+: Start Ups)
- → Artificial Intelligence, Algorithms , Analytics & Data Products
- → Data Scientist by passion
- → Founder two companies
 - ThinkBiggerAnalytics in India (Data Science Consulting Firm)
 - Recent Reomnify in Singapore (Data Product in Location Intelligence)

Training Experience

250 + Learners

- → Mentor in Data Science at SpringBoard, SF
- → Adjunct Faculty : Machine & Deep Learning Using Python at Aegis School Of Data Science
- → Adjunct Faculty: Advanced Deep Learning at Great Learning
- → 5+Y Training Corporates & Executives with experience ranging from 5 years to 25+ years

Hobbies

- → Playing Tennis , Foodie (btw a pure Vegetarian :))
- → Meditation & Vedic Philosophy

Computer Vision Foundations

- Basic Computer Vision
 - Computer Vision an Introduction
 - Fundamentals of Image Processing
- Convolutional Neural Networks
 - CNN Architectures
- Transfer Learning & Applications

Pre Requisites

- Machine Learning Overall Process Understanding
 - Deep Learning Foundations

Computer Vision is the science & technology of computers that can see

Surveillance and security

Medical and scientific images

Challenges in feature extraction in images

Computer Vision Applied

Computer Vision Applied

Image Source: Microsoft.com

Computer Vision Tasks

Computer Vision Tasks ... more ...

- Style Transfer
- Object Tracking
- Image ReConstruction
- Image Synthesis

ImageNet Competition- Classification Task History

2012: AlexNet. First CNN to win.

- 8 layers, 61 million parameters

2013: ZFNet

- 8 layers, more filters

2014:VGG

- 19 layers

2014: GoogLeNet

- "Inception" modules
- 22 layers, 5million parameters

2015: ResNet

- 152 layers

How computers view images?

What the computer sees

167	153	174	168	190	152	129	151	172	161	155	156
166	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34		10	10	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	257	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	58	74	206
188	88	179	209	185	215	211	168	139	75	20	168
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	36	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	236	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	208	138	243	234
195	206	129	207	177	121	123	200	175	13	96	278

An image is just a matrix of numbers [0,255]! i.e., 1080×1080×3 for an RGB image

The goal of computer vision is to bridge the gap between pixels & "meaning" they convey

Common Problems we can solve

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

Images as Tensors

A scalar image has 2° - 1 integer values

$$u 2 \{0, 1, ..., 2^{a} - 1\}$$

• a: level (bit)

- Ex. If 8 bit (a=8), image spans from 0 to 1
 - 0 black
 - 255 white
- Ex. If 1 bit (a=1), it is binary image, 0 and

Curse of Dimensionality

Dimensions = 1 Points = 4

Dimensions = 2Points = 4^2

Images as Functions

- An Image as a function f from \mathbb{R}^2 to \mathbb{R}^M :
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$

Domain range support

• A color image:
$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Filtering

Form a new image whose pixels are a combination of original pixel values

Goals:

- Extract useful information from the images
 Features (edges, corners, blobs...)
 - Modify or enhance image properties
 super-resolution; de-noising

Filtering Ex: Moving Average

In summary

• Replaces each pixel with an average of its neighborhood.

 Achievesmoothing effect (remove sharp features)

		h	
1	1	1	1
1 9	1	1	1
	1	1	1

Filtering Ex: Moving Average greatlearning Average

A 2D moving average over a 3 * 3 window of neighbourhood

$$g[n,m] = \frac{1}{9} \sum_{k=n-1}^{m+1} \sum_{l=m-1}^{m+1} f[k,l]$$

$$= \frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f[n-k, m-l]$$

$$(f*h)[m,n] = \frac{1}{9} \sum_{k,l} f[k,l] h[m-k,n-l]$$

Filtering Ex: Image Segmentation greatlearning Ex: Image Segmentation

Image segmentation based on very basic threshold

$$g[n, m] = \begin{cases} 255, & f[n, m] > 100 \\ 0, & \text{otherwise.} \end{cases}$$

Derivative: Rate Of Change

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x) - f(x - \Delta x)}{\Delta x} = f'(x) = f_x$$

$$\frac{df}{dx} = \frac{f(x) - f(x-1)}{1} = f'(x)$$
Backward Difference

$$\frac{df}{dx} = f(x) - f(x-1) = f'(x)$$

Forward Difference

$$\frac{df}{dx} = f(x) - f(x+1) = f'(x)$$

Central Difference

$$\frac{df}{dx} = f(x+1) - f(x-1) = f'(x)$$

Derivative Mask

$$f(x) = 10$$
 15 10 10 25 20 20 20 $f'(x) = 0$ 5 -5 0 15 -5 0 0 $f''(x) = 0$ 5 -10 5 15 20 5

Backward Difference Mask [-1,1]

Forward Difference Mask [1,-1]

Central Difference Mask [-1,0,1]

Derivotive 2 Dimension

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$|\nabla f(x,y)| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction
$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

Derivotive 2 Dimension

Given function

Gradient vector

$$\nabla f(x, y) = \begin{bmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$

Gradient magnitude

$$|\nabla f(x,y)| = \sqrt{f_x^2 + f_y^2}$$

Gradient direction
$$\theta = \tan^{-1} \frac{f_x}{f_y}$$

Understanding Filters

0	0	0	
0	1	0	
0	0	0	

0	0	0
1	0	0
0	0	0

0	0	0
1	0	0
0	0	0

1	1	1	
1	1	1	
1	1	1	

	1	1	1
- -)	1	1	1
	1	1	1

	1	1	1	
$*\frac{1}{25}$	1	1	1	=
	1	1	1	

	1	1	1	
$*\frac{1}{25}$	1	1	1	
	1	1	1	

Filtering examples - Gaussian

Filtering example – Gaussian vs. Smoothing

Gaussian Smoothing

Smoothing by Averaging

Filtering example – Noise filtering

Gaussian Smoothing

Smoothing by Averaging

Filtering example – Noise filtering

Gaussian Noise

After averaging

After Gaussian Smoothing

Computer Vision Yesterday & Today

Deep Learning

References

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

He, Kaiming, et al. "Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition." arXiv preprint arXiv:1406.4729 (2014). [PDF]

- LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324
- Fei-Fei, Li, et al. "What do we perceive in a glance of a real-world scene?." Journal of vision 7.1 (2007):
- Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection."
- Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE, 2005.•
- Felzenszwalb, Pedro, David McAllester, and Deva Ramanan. "A discriminatively trained, multiscale, deformable part model."
- Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008
- Everingham, Mark, et al. "The pascal visual object classes (VOC) challenge." International Journal of Computer Vision 88.2 (2010): 303-338.
- Deng, Jia, et al. "Imagenet: A large-scale hierarchical image database." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.

Ryssakovsky, Olga, et al. "Imagenet Large Scale Visual Recognition Challenge." arXiv:1409.0575. [PDF]