Estadística II. Laboratorio 2

Febrero 2024

1. Máxima Verosimilitud

1. Sean $X_1 = k_1$, $X_2 = k_2$, ..., $X_n = k_n$ elementos de una muestra alatoria de tamaño n de una función de probabilidad del tipo Poisson, es decir:

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!} \tag{1}$$

Para $k=0,1,2,\ldots$, donde λ es un paramétro desconocido. Determine el estimador de Máxima Verosimilitud $\hat{\lambda}$ asociado a la muestra antes mencionada.

2. Sean x_1, x_2, \ldots, x_n una muestra aleatoria de n elementos de una función de densidad de probabilidad dada por X = Z + Y. Donde Z y Y son variables aleatorias independientes e identicamente distribuidas con una función de probabilidad exponencial:

$$f(z) = \frac{1}{\theta} e^{-\frac{z}{\theta}} \text{ para } z > 0$$

$$f(y) = \frac{1}{\theta} e^{-\frac{y}{\theta}} \text{ para } y > 0$$

De esta forma, tenemos que X = Z + Y (la suma de dos exponenciales) será una función de densidad gamma dada por:

$$f(x) = \begin{cases} \frac{1}{\theta^2} x e^{-\frac{x}{\theta}} & \text{para } x > 0\\ 0 & \text{en cualquier otro caso} \end{cases}$$
 (2)

Determine el estimador de máxima verosimilitud de $\hat{\theta}$ para la muestra antes mencionada.

3. Supongamos una muestra aleatoria de tamaño n que proviene de una población caracterizada por una función de densidad dada por una normal con dos paramétros (μ, σ^2) :

$$f(z) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(z-\mu)^2}{\sigma^2}}$$
 (3)

Para un dominio dado por $-\infty < z < \infty$, y las siguientes condiciones: $-\infty < \mu < \infty$ y $\sigma^2 > 0$. Determine los estimadores de máxima verosimilitud para $\hat{\mu}$ y $\hat{\sigma^2}$.

2. Método de momentos

1. Use el método de momentos para estimar θ en la siguiente función de densidad de probabilidad:

$$f(x) = \begin{cases} (\theta^2 + \theta)x^{\theta - 1}(1 - x) & \text{para } 0 \le y \le 1\\ 0 & \text{en cualquier otro caso} \end{cases}$$
(4)

Asuma que tiene una muestra es aleatoria de tamaño n.

2. Utilice el método de momentos para estimar λ a partir de una muestra aleatoria de tamaño n y que fue tomada de una población con función de densidad de probabilidad dada por:

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{para } x \ge 0\\ 0 & \text{en cualquier otro caso} \end{cases}$$
 (5)