BANA 7047 - Prof. Yan Yu Individual Case II

Last Name: BADRE

First Name: SHASHANK

UCID: M12383328

European Employment Data

Summary

European Employment Data shows the percentage employed in different industries in Europe countries during 1979. In European Employment Data set there are 26 observations and 10 variables. The purpose of examining this data is to get insight into patterns of employment amongst European countries in 1970s.

I have sampled a European Employment data set that contains 90% of original data. The dimensions for the sampled data set is 23 observations and 10 variables. I have scaled all variables except Country and for country variable I have created dummy variables by using MLR library in R.

Using Average silhouette width and Elbow method I found that K=3 is best to apply Kmeans clustering. After applying K=3 for K means clustering I have got 3 clusters and summary statistics for variables belonging to each of these clusters can be seen below.

cluster	Agr	Min	Man	PS	Con	SI	Fin	SPS	TC
1	25.77	2.07	28.90	0.93	8.30	8.51	1.13	17.13	7.29
2	12.23	0.89	26.86	0.94	8.65	16.04	5.11	22.70	6.61
3	57.75	1.10	12.35	0.60	3.85	5.80	6.20	8.60	3.60

Table: Summary statistics for K=3 Kmeans clustering

I have also done hierarchical clustering on this data set. The distance method used is "ward" to calculate the distance between records in the data set for Hierarchical clustering. I have cut dendrogram in such a way that we get 3 clusters. The summary statistics for variables belonging to each of these clusters can be seen below.

cluster	Agr	Min	Man	PS	Con	SI	Fin	SPS	TC
1.00	14.17	0.87	26.24	0.91	8.61	15.74	4.93	21.92	6.61
2.00	23.17	2.32	30.78	0.98	8.33	8.02	0.92	18.15	7.38
3.00	57.75	1.10	12.35	0.60	3.85	5.80	6.20	8.60	3.60

Table: Summary statistics for Hierarchical clustering

Cincinnati Zoo Data

Summary

Data set in excel sheet "qry_Food_by_Month.xls" is taken from Cincinnati Zoo data. It consists of 55 observations and 7 columns. I have used clustering technique to get insight into patterns in this data set. Using Average silhouette width and Elbow method I found that K=3 is best to apply for Kmeans clustering. After applying K=3 for K means clustering I have got 2 clusters and summary statistics for variables belonging to each of these clusters can be seen below.

cluster	Oct, 10	Nov, 10	Dec, 10	Jan, 11	Feb, 11	Mar, 11
1	158.2558	75.97674	110.5581	17.53488	28.7907	67.25581
2	1133.4167	398.66667	466.3333	70.08333	146.8333	449.0833

I have also done hierarchical clustering on this data set. The distance method used is "ward" to calculate the distance between records in the data set for Hierarchical clustering. I have cut dendrogram in such a way that we get 2 clusters. The summary statistics for variables belonging to each of these clusters can be seen below.

cluster	Oct10	Nov10	Dec10	Jan11	Feb11	Mar11
1	101.5294	43.23529	49.35294	8.529412	14.73529	40.26471
2	807.3333	313.38095	412.95238	62.142857	119	329.14286

Association:

Food_4_association data set contains 19076 observations and 118 variables. We will use this data set to understand association i.e. for market basket analysis. This analysis will allow us to know which items are frequently brought together.

1hs		rhs	support	confidence	lift	count
[1] {Small.Pink.LemonadeFood}	=>	{Chicken.Nugget.BasketFood}				
[2] {Side.of.CheeseFood}	=>	{Cheese.ConeyFood}	0.004665548	0.6846154	25.91215	89
[3] {Side.of.CheeseFood}	=>	{Hot.DogFood}	0.006290627	0.9230769	21.60566	120
[4] {Hot.Chocolate.Souvenir.RefillFood}	=>	{Hot.Chocolate.SouvenirFood}	0.014992661	0.5596869	13.18097	286
[5] {Cheese.ConeyFood,						
Side.of.CheeseFood}	=>	{Hot.DogFood}	0.004351017	0.9325843	21.82819	83
[6] {Hot.DogFood,						
Side.of.CheeseFood}	=>	{Cheese.ConeyFood}	0.004351017	0.6916667	26.17903	83

- o Above rules shows items sets wherein lift is greater than 10
- More the lift then more is the strong association between items

Classification using SPSS Modeler

Summary

German credit score data has records that are classified as good credit and bad credit. We will use this data set to train our model to predict whether a test record is a good credit or bad credit. German credit score data set consists of 1000 observations and 21 features. Variable "Response" is the dependent variable in this data set. Response variable 0 indicate "good credit risk" and 1 indicates "bad credit risk".

German credit score data set was split randomly in 80 % train data set and 20 % test data set. Predictive models were built using train data set and then measures were noted for IN sample data set. I have predicted values for test data set and then measured Out of sample measures. Following table gives the result obtained from Logistic Regression method, Classification Tree method, General Additive Model method, Neural Network and Linear Discriminant Analysis method.

Method	Misclassifi	cation rate	Area under Curve		
	In Sample	Out of Sample	In Sample	Out of Sample	
Classification Tree	0.42	0.44	0.694	0.688	
Logistic Regression	0.21	0.28	0.836	0.799	
Neural Network	0.23	0.29	0.813	0.753	

Best model for predicting good credit and bad credit for German Credit Score data is found to be Logistic Regression Model. Final LDA model has misclassification rate of 0.21 for In sample data and 0.28 for Out of sample data, which is lowest as compared to all other models.

1. European Employment Data

European Employment Data shows the percentage employed in different industries in Europe countries during 1979. In European Employment Data set there are 26 observations and 10 variables. The structure for this data set is given below.

- o Country: Name of country. This variable is factor data type.
- o Agr: Percentage employed in agriculture. This variable is numeric in data type.
- o Min: Percentage employed in mining. This variable is numeric in data type.
- Man: Percentage employed in manufacturing. This variable is numeric in data type.
- PS: Percentage employed in power supply industries. This variable is numeric in data type.
- Con: Percentage employed in construction. This variable is numeric in data type.
- o SI: Percentage employed in service industries. This variable is numeric in data type.
- o Fin: Percentage employed in finance. This variable is numeric in data type.
- SPS: Percentage employed in social and personal services. This variable is numeric in data type.
- TC: Percentage employed in transport and communications. This variable is numeric in data type.

Now let us look at the summary of the data set.

```
Min
          Country
                          Agr
                                                             Man
                             : 2.70
                                              :0.100
                                                               : 7.90
Austria
              : 1
                     Min.
                                      Min.
                                                       Min.
Belgium
                                      1st Qu.:0.525
               : 1
                     1st Qu.: 7.70
                                                       1st Qu.:23.00
Bulgaria
               : 1
                     Median :14.45
                                      Median :0.950
                                                       Median :27.55
Czechoslovakia: 1
                     Mean
                             :19.13
                                      Mean
                                              :1.254
                                                       Mean
                                                               :27.01
               : 1
Denmark
                     3rd Qu.:23.68
                                      3rd Qu.:1.800
                                                       3rd Qu.:30.20
EGermany
               : 1
                             :66.80
                                              :3.100
                                                               :41.20
(Other)
               :20
```

```
Fin
                                                                           SPS
      PS
                      Con
                                         SI
                                                           : 0.500
Min.
       :0.1000
                 Min.
                         : 2.800
                                   Min.
                                          : 5.20
                                                    Min.
                                                                     Min.
                                                                             : 5.30
                                   1st Qu.: 9.25
1st Qu.:0.6000
                 1st Qu.: 7.525
                                                    1st Qu.: 1.225
                                                                     1st Qu.:16.25
                 Median : 8.350
Median :0.8500
                                   Median :14.40
                                                    Median : 4.650
                                                                     Median :19.65
                         : 8.165
                                                           : 4.000
Mean
       :0.9077
                 Mean
                                   Mean
                                           :12.96
                                                    Mean
                                                                     Mean
                                                                             :20.02
3rd Qu.:1.1750
                 3rd Qu.: 8.975
                                   3rd Qu.:16.88
                                                    3rd Qu.: 5.925
                                                                      3rd Qu.:24.12
       :1.9000
                                                                             :32.40
Max.
                         :11.500
                                           :19.10
                                                           :11.300
                 Max.
                                   Max.
                                                    Max.
                                                                     Max.
```

```
TC
Min. :3.200
1st Qu.:5.700
Median :6.700
Mean :6.546
3rd Qu.:7.075
Max. :9.400
```

Now, I have sampled a European Employment data set that contains 90% of original data. The dimensions for the sampled data set is 23 observations and 10 variables. I have scaled all variables except Country and for country variable I have created dummy variables by using MLR library in R.

I have started K means clustering by specifying initially 5 clusters. The number of observations in each cluster is given below.

For K = 5:

Cluster Number	1	2	3	4	5
Number of records	5	5	6	2	5

Figure: Clusters for k = 5

To understand the best possible K for clustering, I have applied elbow method and silhouette analysis. It has been found from these plots that best possible K for clustering is K = 2.

Fig: Elbow Method on European Employment Data set

Fig: Silhoutte Analysis on European Employment Data set

As silhouette width is highest for K = 3. Hence we use K = 3 for our final analysis.

Cluster Number	1	2	3
Number of records	7	14	2

Fig: K=3 Kmeans clustering

The summary statistics for K=3 Kmeans clustering is given below.

cluster	Agr	Min	Man	PS	Con	SI	Fin	SPS	TC
1	25.77	2.07	28.90	0.93	8.30	8.51	1.13	17.13	7.29
2	12.23	0.89	26.86	0.94	8.65	16.04	5.11	22.70	6.61
3	57.75	1.10	12.35	0.60	3.85	5.80	6.20	8.60	3.60

Hierarchical Clustering on European Employment Data set

The distance method used is "ward" to calculate the distance between records in the data set for Hierarchical clustering.

Cluster Dendrogram

Fig: Dendrogram using ward method.

We cut dendrogram in such a way that we get 3 clusters. The number of records for each cluster is given below.

Cluster Number	1	2	3
Number of records	15	6	2

Fig: Clusters obtained using Hierarchical clustering

Summary statistics for 3 clusters are given below.

cluster	Agr	Min	Man	PS	Con	SI	Fin	SPS	TC
1.00	14.17	0.87	26.24	0.91	8.61	15.74	4.93	21.92	6.61
2.00	23.17	2.32	30.78	0.98	8.33	8.02	0.92	18.15	7.38
3.00	57.75	1.10	12.35	0.60	3.85	5.80	6.20	8.60	3.60

2. Cincinnati Zoo Data

Data set in excel sheet "qry_Food_by_Month.xls" is taken from Cincinnati Zoo data. It consists of 55 observations and 7 columns. The structure for this data set is given below.

- NickName: This variable is of character data type
- Oct, 10: This variable is of numeric data type
- o Nov, 10: This variable is of numeric data type
- O Dec, 10: This variable is of numeric data type
- o Jan, 11: This variable is of numeric data type
- o Feb, 11: This variable is of numeric data type
- o Mar, 11: This variable is of numeric data type

This data set does not need scaling as the numeric variables have the same scale.

Let us look at the summary for this data set.

NickName	Oct, 10	Nov, 10	Dec, 10
Length:55		Min. : 2.0	Min. : 0.0
class :character	1st Qu.: 39	1st Qu.: 26.0	1st Qu.: 5.5
Mode :character	Median : 154	Median : 66.0	Median : 56.0
	Mean : 371	Mean :146.4	Mean : 188.2
	3rd Qu.: 524	3rd Qu.:265.5	3rd Qu.: 275.0
	Max. :2002	Max. :597.0	Max. :1089.0
Jan, 11	Feb, 11	Mar, 11	
Min. : 0.0	Min. : 0.00	Min. : 0.0	
1st Qu.: 0.0	1st Qu.: 0.00	1st Qu.: 15.0	
Median : 8.0	Median : 11.00	Median : 48.0	
Mean : 29.0	Mean : 54.55	Mean :150.6	
3rd Qu.: 50.5	3rd Qu.: 93.50	3rd Qu.:232.5	
Max. :186.0	Max. :279.00	Max. :785.0	

K-means Clustering

I have applied K means clustering on this data set by specifying K=3 initially.

Cluster Number	1	2	3
Number of records	8	37	10

Table: Number observations for each cluster

Thus, above table shows that there are 8 records in cluster in 1, 37 records in cluster number 2 and 10 records in cluster number 3.

I have used elbow method and silhouette analysis to understand the optimal length of K for clustering.

Fig: Elbow method

Fig: Silhouette Analysis

From elbow method and silhouette analysis, we can conclude the optimal K for clustering is 2.

I have used K=2 for K means clustering and the results of clusters can be seen below.

Cluster Number	1	2
Number of records	43	12

Fig: K=2 Kmeans clustering

The summary statistics for K=2 Kmeans clustering is given below.

cluster	Oct, 10	Nov, 10	Dec, 10	Jan, 11	Feb, 11	Mar, 11
1	158.2558	75.97674	110.5581	17.53488	28.7907	67.25581
2	1133.4167	398.66667	466.3333	70.08333	146.8333	449.0833

Hierarchical Clustering

The distance method used is "ward" to calculate the distance between records in the data set for Hierarchical clustering.

We cut dendrogram in such a way that we get 2 clusters. The number of records for each cluster is given below.

Cluster Number	1	2
Number of records	34	21

Fig: Dendrogram

The summary statistics for Hierarchical clustering is given below.

cluster	Oct10	Nov10	Dec10	Jan11	Feb11	Mar11
1	101.5294	43.23529	49.35294	8.529412	14.73529	40.26471
2	807.3333	313.38095	412.95238	62.142857	119	329.14286

Association:

Food_4_association data set contains 19076 observations and 118 variables. We will use this data set to understand association i.e. for market basket analysis. This analysis will allow us to know which items are frequently brought together.

Figure: Item Frequency Plot

 Above plot shows frequently purchased items i.e. items that are present in more than 10% of transactions in the data set

After using apriori algorithm for market basket analysis on the data set at support level of 0.3% and confidence level of 50%, we get a set of 40 rules.

	nspect(subset(food_rule lhs	es,	<pre>size(food_rules)>3)) rhs</pre>	support	confidence	lift	count
[1]	{Krazy.KritterFood,						
	Medium.DrinkFood,						
	Slice.of.PeppFood}	=>	{Slice.of.CheeseFood}	0.003250157	0.5535714	3.437477	62
[2]	{Medium.DrinkFood,						
	Slice.of.PeppFood,		(clica of characteria)	0.003145313	0 6000000	2 725701	
Гол	Small.DrinkFood} {Medium.DrinkFood,	=>	{Slice.of.CheeseFood}	0.003145313	0.6000000	3./25/81	60
[3]	Slice.of.CheeseFood.						
	Small.DrinkFood}	=>	{Slice.of.PeppFood}	0.003145313	0.5172414	4.191545	60

- Above snapshot shows association of items having size more than 3
- Support is number of percentage of transactions that include both antecedent and consequent item sets
- Confidence is number of transactions with all items in both item sets divided by number of transactions with the antecedent item set
- o It can be inferred that when kritter food, drink food and pepp food are bought together then there is 55% chance of buying slice of cheese food along with these items

	1hs		rhs	support	confidence	lift	count
[1]	{Hot.Chocolate.Souvenir.RefillFood}	=>	{Hot.Chocolate.SouvenirFood}	0.01499266	0.5596869	13.180972	286
[2]	{ToppingFood}	=>	{Ice.Cream.ConeFood}	0.02856993	0.9981685	8.947868	545
[3]	{Chicken.TendersFood}	=>	{French.Fries.BasketFood}	0.01729922	0.7586207	7.771992	330
[4]	{CheeseburgerFood}	=>	{French.Fries.BasketFood}	0.01687985	0.7931034	8.125264	322
[5]	{GatoradeFood,						
	Slice.of.PeppFood}	=>	{Slice.of.CheeseFood}	0.01011743	0.5830816	3.620724	193
[6]	{Medium.DrinkFood,						
	Slice.of.PeppFood}	=>	{Slice.of.CheeseFood}	0.01362969	0.5273834	3.274858	260
[7]	{Bottled.WaterFood,						
	Slice.of.PeppFood}	=>	{Slice.of.CheeseFood}	0.01069407	0.5151515	3.198903	204

o Above rules specify items wherein support is greater than 10%

	1hs		rhs	support	confidence	lift	count
[1]	{Small.Pink.LemonadeFood}	=>	{Chicken.Nugget.BasketFood}	0.003355001	0.5925926	16.03446	64
[2]	{Side.of.CheeseFood}	=>	{Cheese.ConeyFood}	0.004665548	0.6846154	25.91215	89
[3]	{Side.of.CheeseFood}	=>	{Hot.DogFood}	0.006290627	0.9230769	21.60566	120
[4]	{Hot.Chocolate.Souvenir.RefillFood}	=>	{Hot.Chocolate.SouvenirFood}	0.014992661	0.5596869	13.18097	286
[5]	{Cheese.ConeyFood,						
	Side.of.CheeseFood}	=>	{Hot.DogFood}	0.004351017	0.9325843	21.82819	83
[6]	{Hot.DogFood,						
	Side.of.CheeseFood}	=>	{Cheese.ConeyFood}	0.004351017	0.6916667	26.17903	83

- o Above rules shows items sets wherein lift is greater than 10
- o More the lift then more is the strong association between items

Scatter plot for 40 rules

Fig: Scatter plot for association rules

Graph for 10 rules

size: support (0.003 - 0.015) color: lift (9.341 - 26.179)

Fig: Graph for 10 rules

Below plot shows association rules grouped in a matrix form.

3. Classification using SPSS Modeler

German credit score data has records that are classified as good credit and bad credit. We will use this data set to train our model to predict whether a test record is a good credit or bad credit. German credit score data set consists of 1000 observations and 21 features. Variable "Response" is the dependent variable in this data set. Response variable 0 indicate "good credit risk" and 1 indicates "bad credit risk".

Classification Tree Model

Response1 = 1

Logistic Regression Model

Response1 = 1

Neural Network Model

SPSS Diagram

