## **Diabetes Prediction Logistic Regression Model**

#### Installs:

pip install pandas pip install scikit-learn pip install matplotlib pip install seaborn

Dataset: <a href="https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/data">https://www.kaggle.com/datasets/iammustafatz/diabetes-prediction-dataset/data</a>

I used a diabetes prediction dataset (100,000 entries) which is a collection of medical and demographic data from patients, with their diabetes status. All features: age, gender, body mass index (BMI), hypertension, heart disease, smoking history, HbA1c level, and blood glucose level. But, I only manually extracted four continuous features (age, BMI, HbA1c level, and blood glucose level) from this dataset. The binary target was whether the patient was positive or negative for diabetes. I loaded the dataset using the pandas library, in which I use the function read\_csv().

**Training/Test Data Splits:** I used the sklearn.model\_selection function train\_test\_split() to use a random 20% of the dataset for testing, and the remaining for training.

**Model Training:** I used the sklearn.linear\_model functions SGDClassifier() with log\_loss parameter indicating logistic regression, alongside with fit() to fit the training data using this logistic regression model. Also, I used sklearn.pipeline make\_pipeline(), and sklearn.preprocessing StandardScaler() to make the training and testing streamlined and feature scaled.

**Model Predictions:** I used the sklearn.linear\_model predict() function to perform classification on both the training and test vectors. I also used predict\_proba() to get the probability estimates for these vectors as well.

**Model Accuracy:** I used the sklearn.metrics function accuracy\_score() to pass the training & test data with it's classification predictions to get a more precise model accuracy as the training and test accuracy were very close: **Training Accuracy** = 0.9608, **Test Accuracy** = 0.9583. As you can see the model generalized very well, accuracy dropped of by only 0.25%. Comparing these results with the NBC model: **Training Accuracy** = 0.95685, **Test Accuracy** = 0.95585. As you can see the model generalized better, accuracy dropped of by only 0.1% vs 0.25% comparitively suggesting slightly more overfitting from the logistic regression model. But the overall test accuracy was still better than the NBC model by 0.245%.

# Classification Report (Compared with NBC):

#### **Test Data:**

|              | precision    | recall       | f1-score     | support |
|--------------|--------------|--------------|--------------|---------|
| 0            | 0.96         | 0.99         | 0.98         | 18292   |
| 1            | 0.91 (+0.06) | 0.57 (-0.02) | 0.69 (+0.01) | 1708    |
| accuracy     |              |              | 0.96         | 20000   |
| macro avg    | 0.93 (+0.02) | 0.79 (-0.01) | 0.84         | 20000   |
| weighted avg | 0.95 (+0.01) | 0.96         | 0.95         | 20000   |

Sensitivity (Test Data): 57% (down 2%)

Specificity (Test Data): 99%

Log Loss (Test Data): 0.12027655485716757 (down 1%)

### **Training Data:**

| 9 24.43.     |              |              |              |         |  |  |
|--------------|--------------|--------------|--------------|---------|--|--|
|              | precision    | recall       | f1-score     | support |  |  |
| 0            | 0.96         | 1.00 (+0.01) | 0.98         | 73208   |  |  |
| 1            | 0.85 (+0.07) | 0.59 (-0.01) | 0.72 (+0.02) | 6792    |  |  |
| accuracy     |              |              | 0.96         | 80000   |  |  |
| macro avg    | 0.94 (+0.03) | 0.79         | 0.85 (+0.01) | 80000   |  |  |
| weighted avg | 0.96 (+0.01) | 0.96         | 0.96 (+0.01) | 80000   |  |  |

Sensitivity (Training Data): 59% (down 1%) Specificity (Training Data): 100% (up 1%)

Log Loss (Training Data): 0.117290095780991859 (up 1%)

#### **NEXT PAGE**

### **Correlation Heat Map:**



I used the corr() function to evaluate the dataset, and matplotlib.pyplot / seaborn to visualize the correlation matrix. As you can see there is definitely a correlation between diabetes and HbA1c\_levels, blood glucose levels, age, and bmi.