In [20]: import pandas as pd
world_happiness=pd.read_csv(r'C:\Users\hp\Downloads\world_happiness.csv')
world_happiness

Out[20]:		Unnamed: 0	country	social_support	freedom	corruption	generosity	gdp_per_cap	life_€
	0	1	Finland	2.0	5.0	4.0	47.0	42400	8
	1	2	Denmark	4.0	6.0	3.0	22.0	48300	8
	2	3	Norway	3.0	3.0	8.0	11.0	66300	8
	3	4	Iceland	1.0	7.0	45.0	3.0	47900	8
	4	5	Netherlands	15.0	19.0	12.0	7.0	50500	8
	•••								
	138	139	Rwanda	144.0	21.0	2.0	90.0	2110	6
	139	140	Tanzania	131.0	78.0	34.0	49.0	2980	6
	140	141	Afghanistan	151.0	155.0	136.0	137.0	1760	6
	141	142	Central African Republic	155.0	133.0	122.0	113.0	794	5
	142	143	South Sudan	148.0	154.0	61.0	85.0	1860	5

143 rows × 9 columns

```
In [21]: # Create a scatterplot of happiness_score vs. life_exp and show
    sns.scatterplot(x="life_exp",y="happiness_score",data=world_happiness)
# Show plot
    plt.show()
```



```
import matplotlib.pyplot as plt
import seaborn as sns
# Create scatterplot of happiness_score vs life_exp with trendline
sns.lmplot(x='life_exp', y='happiness_score', data=world_happiness, ci=None)
# Show plot
```

```
plt.show()

# Correlation between life_exp and happiness_score
cor = WH['life_exp'].corr (world_happiness['happiness_score'])
print(cor)
```


0.7802249053272062

```
In [23]: # Create a scatterplot of happiness_score vs. life_exp and show
sns.scatterplot(x="life_exp",y="happiness_score",data=world_happiness)

# Show plot
plt.show()
# Scatterplot of gdp_per_cap and life_exp
sns.scatterplot(x='gdp_per_cap', y='life_exp', data=world_happiness)

# Show plot
plt.show()

# Correlation between gdp_per_cap and life_exp
cor = world_happiness['gdp_per_cap'].corr(world_happiness["life_exp"])
```



```
In [24]: # Scatterplot of gdp_per_cap and life_exp
sns.scatterplot(x='gdp_per_cap', y='life_exp', data=world_happiness)

# Show plot
plt.show()

# Correlation between gdp_per_cap and life_exp
cor = world_happiness['gdp_per_cap'].corr(world_happiness["life_exp"])
print(cor)
```


0.7019547642148015

```
import numpy as np
# Create log_gdp_per_cap column
world_happiness['log_gdp_per_cap'] = np.log(world_happiness['gdp_per_cap'])

# Scatterplot of log_gdp_per_cap and happiness_score
sns.scatterplot(x='log_gdp_per_cap',y='happiness_score', data=world_happiness)
plt.show()

# Calculate correlation
cor = world_happiness['log_gdp_per_cap'].corr(world_happiness['happiness_score'])
print(cor)
```


0.8043146004918288

In []:	
In []:	