Лекция 9. Условные законы распределения. Многомерное нормальное распределение

Велищанский Михаил Александрович

Московский Государственный Технический Университет имени Н.Э. Баумана

Москва, 2023

Условные законы распределения. Условный ряд распределения

Пусть (X,Y) — двумерная дискретная CB, X и Y принимают значения x_i $i=\overline{1,n}$ и y_j $j=\overline{1,m}$ соответственно. Тогда закон распределения можно задать набором

вероятностей $p_{ij} = P\{X = x_i, Y = y_j\}, \forall i, j.$

Законы распределения каждой координаты имеют вид

$$p_{Xi} = P\{X = x_i\} = \sum_{j=1}^{m} p_{ij}, \ p_{Yj} = P\{Y = y_j\} = \sum_{i=1}^{n} p_{ij}.$$

Определение

Для двумерной дискретной случайной величины (X, Y) условной вероятностью π_{ij} $i=\overline{1,n},\ j=\overline{1,m}$ того, что случайная величина X примет значение x_i при условии $Y = y_j$, называют условную вероятность события $\{X=x_i\}$ при условии ${Y = y_i}:$

$$\pi_{ij} = P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{Yj}}.$$

Условные законы распределения. Условный ряд распределения

Определение

Набор вероятностей π_{ij} , $i=\overline{1,n}$, характеризует условное распределение дискретной случайной величины X при условии $Y=y_j$.

Аналогично определяют условную вероятность π_{ij}^* того, что случайная величина Y примет значение y_j при условии $X=x_i$:

$$\pi_{ij}^* = P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{Xi}}.$$

Обычно условное распределение дискретной СВ X при условии, что дискретная СВ Y примет все возможные значения задают при помощи таблицы, аналогичной таблице для задания закона распределения двумерного дискретного случайного вектора.

Ввести условную функцию распределения случайной величины X при условии Y=y по формуле

$$F_X(x|Y=y) = \frac{P\{X < x, Y=y\}}{P\{Y=y\}}$$

не представляется возможным, т.к., к примеру, $P\{Y=y\}=0$ для непрерывной случайной величины Y.

Поэтому для непрерывной СВ вместо события Y=y рассматривают событие $y\leqslant Y< y+\Delta y$ при $\Delta y\to 0$. Пусть случайный вектор (X,Y) имеет непрерывную совместную плотность распределения f(x,y) и, следовательно, маргинальные плотности распределения СВ X и Y

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy \text{ in } f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx,$$

которые также будем считать непрерывными.

Определим условную вероятность $\{X < x\}$ при условии $\{y \leqslant Y < y + \Delta y\}$ как

$$P\{X < x | y \leqslant Y < y + \Delta y\} = \frac{P\{X < x, y \leqslant Y < y + \Delta y\}}{P\{y \leqslant Y < y + \Delta y\}} = \frac{F(x, y + \Delta y) - F(x, y)}{F(y + \Delta y) - F(y)} = \frac{\int\limits_{y + \Delta y}^{y + \Delta y} \int\limits_{x}^{x} f(u, v) du}{\int\limits_{y + \Delta y}^{y + \Delta y} \int\limits_{y}^{x} f_{Y}(v) dv}$$

При сделанных предположений функция $\int\limits_{-\infty}^{\infty}f(u,v)du$ является

непрерывной. Поэтому, согласно теореме о среднем значении,

$$\int_{y}^{y+\Delta y} dv \int_{-\infty}^{x} f(u,v)du = \Delta y \int_{-\infty}^{x} f(u,\xi)du, \int_{y}^{y+\Delta y} f_{Y}(v)dv = f_{Y}(\eta)\Delta y$$

и, следовательно,

$$\mathbf{P}\{X < x | y \leqslant Y < y + \Delta y\} = \frac{\int\limits_{-\infty}^{x} f(u, \xi) du}{f_Y(\eta)},$$

где ξ и η — некоторые числа, заключенные между y и $y+\Delta y$. Тогда условная функция распределения имеет вид:

$$F_X(x|Y=y) = \lim_{\Delta y \to 0} \mathbf{P}\{X < x|y \leqslant Y < y + \Delta y\} = \int_{\Delta y \to 0}^{x} f(u,\xi) du$$
$$= \lim_{\Delta y \to 0} \frac{\int_{-\infty}^{x} f(u,\xi) du}{f_Y(\eta)}.$$

Таким образом, по определению, имеем

$$F_X(x|Y=y) = \frac{1}{f_Y(y)} \int_{-\infty}^x f(u,y) du.$$

Условная функция плотности распределения

Определение

Условной плотностью распределения случайной величины X, координаты случайного вектора (X,Y), при условии, что случайная величина Y приняла фиксированное значение y, называют функцию $f_X(x|y)$, определяемую соотношением

$$f_X(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

Определение

Условное распределение (для дискретной случайной величины), условная функция распределения и условная плотность распределения (для непрерывных случайных величин) называют условными законами распределения.

Пример

Пусть случайные величины X_1 и X_2 — координаты точки падения частицы, случайно брошенной в круг радиуса R с центром в начале координат.

Случайный вектор (X_1, X_2) имеет плотность распределения

$$f(x_1, x_2) = \begin{cases} 0, & x_1^2 + x_2^2 > R^2; \\ \frac{1}{\pi R^2}, & x_1^2 + x_2^2 \leq R^2. \end{cases}$$

Найдем условную плотность распределения СВ X_1 при условии $X_2 = x_2$.

Маргинальная плотность распределения $f_{X_2}(x_2)$ имеет вид

$$f_{X_2}(x_2) = \begin{cases} 0, & |x_2| > R; \\ 2\sqrt{R^2 - x_2^2}, & |x_2| \le R. \end{cases}$$

. .

Пример (продолжение)

Тогда, при $|x_2| ≤ R$, имеем

$$f_{X_1}(x_1|x_2) = \frac{f(x_1, x_2)}{f_{X_2}(x_2)} = \begin{cases} 0, & |x_1| > \sqrt{R^2 - x_2^2}; \\ \frac{1}{2\sqrt{R^2 - x_2^2}}, & |x_1| \leq \sqrt{R^2 - x_2^2}. \end{cases}$$

Следовательно, случайная величина X_1 при условии $X_2 = x_2$ равномерно распределена на $[-\sqrt{R^2-x_2^2},\sqrt{R^2-x_2^2}].$

Если $|x_2| > R$ то условная плотность распределения $f_{X_1}(x_1|x_2)$ не определена, однако СВ X2 не может быть больше R по модулю.

Двумерное нормальное распределение

Пусть координаты X_1 и X_2 случайного вектора (X_1, X_2) являются случайными величинами, распределенными по нормальному закону, т.е.

$$f_{X_1}(x) = \varphi_{m_1,\sigma_1}(x) = \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{(x - m_1)^2}{2\sigma_1^2}\right),$$

$$f_{X_2}(x) = \varphi_{m_2,\sigma_2}(x) = \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{(x - m_2)^2}{2\sigma_2^2}\right).$$

Если X_1 и X_2 — независимые случайные величины, то $f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1)f_{X_2}(x_2)$ и плотность **двумерного** нормального распределения имеет вид

$$f_{X_1X_2}(x_1,x_2) = \frac{1}{(\sqrt{2\pi})^2 \sigma_1 \sigma_2} \exp\left(-\frac{(x_1-m_1)^2}{2\sigma_1^2} - \frac{(x_2-m_2)^2}{2\sigma_2^2}\right).$$

Двумерное нормальное распределение

Вектор $\overrightarrow{X} = (X_1, X_2)$ имеет (невырожденное) двумерное нормальное распределение, если его плотность распределения имеет вид

$$f_{X_1X_2}(x_1,x_2) = \frac{1}{(\sqrt{2\pi})^2 \sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^{-\frac{1}{2}Q(x_1-m_1,x_2-m_2)},$$

где

$$Q(y_1, y_2) = \frac{1}{1 - \rho^2} \left(\frac{y_1^2}{\sigma_1^2} - \frac{2\rho y_1 y_2}{\sigma_1 \sigma_2} + \frac{y_2^2}{\sigma_2^2} \right)$$

— положительно определенная квадратичная форма, т.е $Q(y_1,y_2)>0\ \forall (y_1,y_2)\in\mathbb{R}^2:\ (y_1,y_2)\neq (0,0)$.

Можно показать:

$$m_1 = MX_1, m_2 = MX_2, \sigma_1^2 = DX_1, \sigma_2^2 = DX_2, \rho = \frac{\text{cov}(X_1, X_2)}{\sigma_1 \sigma_2}.$$

11 us 19

Двумерное нормальное распределение

Представим $Q(y_1, y_2)$ в матричной форме $Q(\vec{y}) = \vec{y} \, \Sigma^{-1} \, \vec{y}^T$, где

$$ec{y}=(y_1,y_2),\; \Sigma^{-1}=rac{1}{1-
ho^2}\left(egin{array}{ccc} rac{1}{\sigma_1^2} & -rac{
ho}{\sigma_1\sigma_2} \ -rac{
ho}{\sigma_1\sigma_2} & rac{1}{\sigma_2^2} \end{array}
ight)$$
 — обратная

матрица к ковариационной матрице $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$.

Поскольку $\det \Sigma = \sigma_1^2 \sigma_2^2 (1-\rho^2)$ то окончательно получаем:

$$f_{\vec{X}}(\vec{x}) = \frac{1}{(\sqrt{2\pi})^2 (\det \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(\vec{x} - \vec{m})\Sigma^{-1}(\vec{x} - \vec{m})^T},$$

где
$$\vec{x} = (x_1, x_2)$$
, $\vec{m} = (m_1, m_2)$.

Определение

Случайный вектор $\vec{X} = (X_1, \dots, X_n)$ имеет многомерное нормальное распределение с вектором математических ожиданий $\vec{m} = (m_1, \dots, m_n)$ и ковариационной матрицей $\Sigma = (\sigma_{ij})$ $i, j = \overline{1, n}$, если его функция плотности имеет вид

$$f_{\vec{X}}(\vec{x}) = \frac{1}{(\sqrt{2\pi})^n (\det \Sigma)^{\frac{1}{2}}} e^{-\frac{1}{2}(\vec{x} - \vec{m})\Sigma^{-1}(\vec{x} - \vec{m})^T}.$$

Если
$$\Sigma = \Sigma^{-1} = E$$
 и $\vec{m} = (0, \dots, 0)$, то

$$f_{X_1...X_n}(x_1,...,x_n)=\frac{1}{(\sqrt{2\pi})^n}e^{-\frac{1}{2}(x_1^2+...+x_n^2)}.$$

Такую функцию плотности называют плотностью стандартного многомерного нормального распределения. Многомерное нормальное распределение. Геометрическая интерпретация плотности нормального распределения

В 2-мерном случае функция $f_{X_1X_2}(x_1, x_2)$ задает некоторую поверхность в \mathbb{R}^3 .

Рис. 1: Линим уровня $f_{X_1X_2}(x_1,x_2) = a$

Линии уровня данной поверхности имеют вид: $f_{X_1X_2}(x_1,x_2)=a$ или $Q(x_1-m_1,x_2-m_2)=b$, где $b=-2\ln\{2\pi a(\det\Sigma)^{\frac{1}{2}}\}$.

Уравнение $Q(x_1 - m_1, x_2 - m_2) = b$ представляют собой семейство эллипсов при разных значениях b.

Оси симметрии $O'x_1'$ и $O'x_2'$ проходят через т. $O'(m_1,m_2)$, их

направления совпадают с направлениями собственных векторов e_i i=1,2 матрицы Σ^{-1} , соответствующие собственным значениям λ_i .

14 42 10

Многомерное нормальное распределение. Геометрическая интерпретация

плотности нормального распределения

Рис. 2: Линии уровня $f_{X_1X_2}(x_1,x_2) = a$

В системе координат $O'x_1'x_2'$ случайный вектор (X_1', X_2') имеет нормальное распределение

с
$$\vec{m}'=(0,0)$$
 и $\Sigma'=\begin{pmatrix}\sigma_1'^2&0\\0&\sigma_2'^2\end{pmatrix}$, где $\sigma_1'=\frac{1}{\sqrt{\lambda_1}}$, $\sigma_2'=\frac{1}{\sqrt{\lambda_2}}$.

Если ввести новую систему координат $x_i'' = \sigma_i' x_i' \ i = 1, 2$, то в в

 $O'x_1''x_2''$ случайный вектор (X_1'', X_2'') будет иметь двумерное стандартное нормальное распределение.

В случае n>2 $f_{\vec{\chi}}(\vec{x})=a$ в силу положительной определенности матрица Σ задает семейство n-мерных эллипсоидов, называемых эллипсоидами рассеивания, с осями симметрии называемыми осями рассеивания.

Свойства плотности многомерного нормального распределения

Теорема

- 1. Закон распределения координаты X_i $i = \overline{1}$, n случайного вектора \vec{X} , имеющего n-мерное нормальное распределение c $\vec{m} = (m_1, \ldots, m_n)$ и $\Sigma = (\sigma_{ij})$, является нормальным c параметрами m_i и σ_i .
- 2. Если ковариационная матрица Σ случайно вектора \vec{X} , распределенного по невырожденному нормальному закону, является диагональной, то координаты вектора X_1, \ldots, X_n являются независимыми случайными величинами.
- 3. Если вектор $\vec{X} = (X_1, \dots, X_n)$ имеет нормальный закон распределения с $\vec{m} = (m_1, \dots, m_n)$ и матрицей ковариаций Σ , то $\vec{X}' = (X_1, \dots, X_{n-1})$ также распределен по нормальному закону с $\vec{m}' = (m_1, \dots, m_{n-1})$ и Σ' , полученной из Σ вычеркиванием последних строки и столбца.

Многомерное нормальное распределение. Пример

Пример

Пусть двумерный случайный вектор (X,Y) имеет нормальное распределение $c\ (m_1,m_2)$ и

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \qquad (\sigma_1, \ \sigma_2 > 0, \quad -1 < \rho < 1).$$

Найдем условную плотность распределения случайной величины X при условии Y=y.

Так как

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\frac{(x-m_1)^2}{\sigma_1^2} - \frac{2\rho(x-m_1)(y-m_2)}{\sigma_1\sigma_2} + \frac{(y-m_2)^2}{\sigma_2^2}\right)\right\},$$

$$f_Y(y) = \frac{1}{\sigma_2\sqrt{2\pi}} e^{-(y-m_2)^2/(2\sigma_2^2)},$$

17

Многомерное нормальное распределение. Пример

Пример (продолжение)

$$f_X(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{1}{\sigma_1 \sqrt{2\pi(1-\rho^2)}} \exp\left\{-\frac{1}{2\sigma_1^2(1-\rho^2)} \left[x - \left(m_1 + \frac{\rho\sigma_1(y-m_2)}{\sigma_2}\right)\right]^2\right\}.$$

Таким образом, условное распределение X при условии Y=y также является нормальным распределением c математическим ожиданием $g(y)=m_1+\rho\frac{\sigma_1}{\sigma_2}(y-m_2)$ и средним квадратичным отклонением $\sigma_{X|y}=\sigma_1\sqrt{1-\rho^2}$. Аналогично условное распределение Y при условии X=x является нормальным c математическим ожиданием $h(x)=m_2+\rho\frac{\sigma_2}{\sigma_1}(x-m_1)$ и средним квадратичным отклонением $\sigma_{Y|x}=\sigma_2\sqrt{1-\rho^2}$.

Многомерное нормальное распределение. Линия регрессии

Определение

Функцию g(y) = M(X|y) называют функцией регрессии, или просто регрессией, случайной величины X на случайную величину Y, а ее график — линией регрессии случайной величины X на случайную величину Y, или X на Y.