微分几何第三次习题课

黄天一

USTC

更新: 2023年10月25日

目录

 1 作业解答
 1

 2 补充习题
 9

 3 补充内容: 高斯绝妙定理, Theorema Egregium!
 17

1 作业解答

作业1证明:在正则曲面的任一点,任意两个相互正交的切向量的法曲率之和为常数.

证明. 任取正交单位向量 $v, w \in T_pS$.

- (1) 如果两个主曲率都为 κ , 那么 $k_n(v) = k_n(w) = \kappa \Rightarrow k_n(v) + k_n(w) = 2\kappa$ 为常数.
- (2) 如果两个主曲率 κ_1, κ_2 不相等, 此时主方向相互正交. 设 v 与 e_1 的夹角为 θ , 那么由 Euler 公式可得

$$k_n(v) = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta, \ k_n(w) = \kappa_2 \cos^2 \theta + \kappa_1 \sin^2 \theta.$$

这时 $k_n(v) + k_n(w) = \kappa_1 + \kappa_2 = 2H$ 为常数.

注 这个习题其实给出了 H 的另一种平均意义, 即 $H(p) = \frac{1}{2}(k_n(v) + k_n(w))$, 其中 $v, w \in T_pS$ 为任意两个正交的单位切向量. 事实上, 我们还可以推广得到更多的平均意义. 见补充习题 1.

作业 2 设曲面 S 由方程 $x^2 + y^2 - f(z) = 0$ 给定, f 满足 f(0) = 0, $f'(0) \neq 0$. 证明: S 在点 (0,0,0) 处的法曲率为常数.

评论 第一想法可能是考虑 S 的参数化 $r(\theta, z) = (f(z)\cos\theta, f(z)\sin\theta, z)$, 但具体计算时会发现这个似乎行不通. 本质原因是因为 f(0) = 0 导致 r_{θ} 在 z = 0 时是恒为零的, 所以在这个局部坐标下 S 非正则. 故需要考虑其他的参数化.

证明. 由隐函数定理可得在 z=0 附近 f 是局部微分同胚, 设 g 为 f 的反函数, 那么 $g'(w)=\frac{1}{f'(g(w))}\Rightarrow g'(0)=\frac{1}{f'(0)}$. 此时在 (0,0,0) 附近 S 的一个正则参数化为

$$r(x,y) = (x, y, g(x^2 + y^2)).$$

计算可得 $r_x = (1, 0, 2xg'(x^2 + y^2)), r_y = (0, 1, 2yg'(x^2 + y^2)),$ 从而

$$r_x(0,0) = (1,0,0), r_y(0,0) = (0,1,0) \Rightarrow n(0,0) = (0,0,1).$$

继续求导可得

$$r_{xx}(0,0) = (0,0,2g'(0)), r_{xy} = (0,0,0), r_{yy} = (0,0,2g'(0)).$$

由此可得

$$E = G = 1, F = 0, L = N = 2g'(0) = \frac{2}{f'(0)}, M = 0.$$

任取单位向量 $v = \lambda r_x(0,0) + \mu r_v(0,0) = (\lambda,\mu,0) \in T_{(0,0,0)}S$, 计算可得

$$k_n(v) = L\lambda^2 + N\mu^2 = \frac{2}{f'(0)}(\lambda^2 + \mu^2) = \frac{2}{f'(0)}.$$

作业 3 定义 $III = \langle dn, dn \rangle$ 为曲面的第三基本形式,证明: KI - 2HII + III = 0.

证明. 这题固然可以暴力计算, 但利用 Weingarten 变换可以极大地简化我们的证明. 根据 Weingarten 变换 \mathcal{W} 的性质可得

$$III = \langle -\mathcal{W}(dr), -\mathcal{W}(dr) \rangle = \langle dr, \mathcal{W}^2(dr) \rangle.$$

注意到 \mathcal{W} 的特征多项式为 $\varphi_W(\lambda) = \lambda^2 - 2H\lambda + K$, 由 Cayley-Hamilton 定理可得 $\mathcal{W}^2 = 2H\mathcal{W} - K\mathcal{I}$, 因此

$$\mathrm{III} = \langle \mathrm{d}r, -2H\,\mathrm{d}n - K\,\mathrm{d}r \rangle = 2H\,\mathrm{II} - K\,\mathrm{I}\,.$$

作业 4 设曲面 S_1 和 S_2 的交线 C 的曲率为 κ , 曲线 C 在曲面 S_i 上的法曲率为 k_i (i = 1, 2). 若沿 C, S_1 和 S_2 的法向夹角为 θ , 证明:

$$\kappa^2 \sin^2 \theta = k_1^2 + k_2^2 - 2k_1 k_2 \cos \theta.$$

证明. 给定 C 上一点 p. 设 $p = r(s_0)$ 点处曲面 S_i 的单位法向量为 $n_i(i = 1, 2)$, C 的主法向量为 $N = n(s_0)$, 单位切向量为 $t(s_0)$, 那么

$$k_i = \langle \dot{t}(s_0), n_i \rangle = \kappa \langle N, n_i \rangle, \ i = 1, 2.$$

我们记 N, n_i 的夹角为 $\theta_i \in [0, \pi]$, 则有

$$\cos \theta_i = \frac{k_i}{\kappa}, \sin \theta_i = \sqrt{1 - \frac{k_i^2}{\kappa^2}}.$$

注意到 $\theta_1 - \theta_2$ 与 θ 至多相差一个符号, 所以

$$\cos \theta = \cos(\theta_1 - \theta_2) = \frac{k_1 k_2}{\kappa^2} + \sqrt{1 - \frac{k_1^2}{\kappa^2}} \sqrt{1 - \frac{k_2^2}{\kappa^2}}.$$

整理可得

$$(\kappa^2 \cos \theta - k_1 k_2)^2 = (\kappa^2 - k_1^2)(\kappa^2 - k_2^2) \Rightarrow \kappa^2 \sin^2 \theta = k_1^2 + k_2^2 - 2k_1 k_2 \cos \theta.$$

作业 5 求曲面 z = f(x, y) 的平均曲率和 Gauss 曲率.

证明. 该曲面的参数化为 r(u,v) = (u,v,f(u,v)). 计算可得

$$r_u = (1, 0, f_u), r_v = (0, 1, f_v).$$

所以曲面的第一基本形式为

$$I(u,v) = (1 + f_u^2) du \otimes du + f_u f_v (du \otimes dv + dv \otimes du) + (1 + f_v^2) dv \otimes dv.$$

计算可得单位法向量为

$$n = \frac{r_u \wedge r_v}{|r_u \wedge r_v|} = \left(-\frac{f_u}{\sqrt{1 + |\nabla f|^2}}, -\frac{f_v}{\sqrt{1 + |\nabla f|^2}}, \frac{1}{\sqrt{1 + |\nabla f|^2}}\right).$$

又因为 $r_{uu} = (0, 0, f_{uu}), r_{uv} = (0, 0, f_{uv}), r_{vv} = (0, 0, f_{vv}),$ 所以

$$II(u,v) = \frac{1}{\sqrt{1+|\nabla f|^2}} (f_{uu} du \otimes du + f_{uv} (du \otimes dv + dv \otimes du) + f_{vv} dv \otimes dv).$$

所以 Gauss 曲率为

$$K = \frac{LN - M^2}{EG - F^2} = \frac{\det D^2 f}{(1 + |\nabla f|^2)^{\frac{3}{2}}}.$$

平均曲率为

$$H = \frac{LG - 2MF + NE}{2(EG - F^2)} = \frac{f_{uu}(1 + f_v^2) - 2f_{uv}f_uf_v + f_{vv}(1 + f_u^2)}{2(1 + |\nabla f|^2)}.$$

图 1: 曲面 $r(u,v) = (u^3, v^3, u + v)$ 的示意图

作业 6 求曲面 $r(u,v) = (u^3, v^3, u + v)$ 上抛物点的轨迹.

证明. 计算可得 $r_u = (3u^2, 0, 1), r_v = (0, 3v^2, 1),$ 所以

$$n = \frac{r_u \wedge r_v}{|r_u \wedge r_v|} = f(u, v)(-v^2, u^2, 3u^2v^2).$$

这里 f(u,v) > 0 是用于归一化的函数, 在本题内不需要这个量的具体表达式. 又因为

$$r_{uu} = (6u, 0, 0), r_{uv} = (0, 0, 0), r_{vv} = (0, 6v, 0),$$

所以 $L = -6f(u, v)uv^2$, M = 0, $N = 6f(u, v)u^2v$, 从而 $LN - M^2 = -36f(u, v)^2(uv)^3$. 由此可得抛物点对应的参数满足 u = 0 或 v = 0, 曲线轨迹为 $\Gamma_1 : \gamma(u) = (u^3, 0, u)$ 和 $\Gamma_2 : \gamma(v) = (0, v^3, v)$.

作业 7 求曲面 r(u,v) = (a(u+v),b(u-v),4uv) 的 Gauss 曲率、平均曲率、主曲率及对 应的主方向.

证明. 计算可得 $r_u = (a, b, 4v), r_v = (a, -b, 4u),$ 所以

$$I(u, v) = (a^{2} + b^{2} + 16v^{2}) du \otimes du + (a^{2} - b^{2} + 16uv)(du \otimes dv + dv \otimes du) + (a^{2} + b^{2} + 16u^{2}) dv \otimes dv.$$

计算可得 $r_{uu}=r_{vv}=(0,0,0), r_{uv}=(0,0,4),$ 并且单位法向量为

$$n = \frac{(2b(u+v), 2a(v-u), -ab)}{(4(b^2(u+v)^2 + a^2(v-u)^2) + a^2b^2)^{\frac{1}{2}}}.$$

由此可得

$$II(u,v) = -\frac{4ab}{(4(b^2(u+v)^2 + a^2(v-u)^2) + a^2b^2)^{\frac{1}{2}}} (du \otimes dv + dv \otimes du).$$

因此

$$K = \frac{LN - M^2}{EG - F^2} = -\frac{4a^2b^2}{(4(b^2(u+v)^2 + a^2(v-u)^2) + a^2b^2)^2}.$$

$$H = \frac{LG - 2MF + NE}{2(EG - F^2)} = -\frac{ab(a^2 - b^2 + 16uv)}{(4(b^2(u+v)^2 + a^2(v-u)^2) + a^2b^2)^{\frac{3}{2}}}.$$

下面我们求主曲率和主方向. 注意到 L=N=0, 所以 Weingarten 变换 \mathcal{W} 在基 (r_u,r_v) 下的矩阵表示为

$$W = \begin{pmatrix} 0 & M \\ M & 0 \end{pmatrix} \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} = \frac{M}{EG - F^2} \begin{pmatrix} -F & E \\ G & -F \end{pmatrix} \triangleq \frac{M}{EG - F^2} A.$$

不难求得矩阵 A 的特征值为

$$\lambda_{1,2} = -F \pm \sqrt{EG} = -(a^2 - b^2 + 16uv) \pm \sqrt{(a^2 + b^2 + 16u^2)(a^2 + b^2 + 16v^2)}.$$

所以 W 的特征值, 亦即两个主曲率为

$$\kappa_{1,2} = \frac{M\lambda_{1,2}}{EG - F^2} = \frac{ab((a^2 - b^2 + 16uv) \mp \sqrt{(a^2 + b^2 + 16u^2)(a^2 + b^2 + 16v^2)})}{(4(b^2(u+v)^2 + a^2(v-u)^2) + a^2b^2)^{\frac{3}{2}}}.$$

两个主方向即为 A 对应 λ_1, λ_2 的单位特征向量, 计算可得

$$e_{1,2} = \frac{\sqrt{E}r_u \pm \sqrt{G}r_v}{|\sqrt{E}r_u \pm \sqrt{G}r_v|}.$$

作业 8 设曲面 S: r = r(u,v) 上没有抛物点, $n \in S$ 的法向量. 曲面 $\tilde{S}: \tilde{r}(u,v) = r(u,v) + \lambda n(u,v)$ (常数 λ 充分小) 称为 S 的平行曲面.

- 1. 证明: S 和 \tilde{S} 在对应点的切平面平行.
- 2. 可以选取 \tilde{S} 的单位法向 \tilde{n} , 使得 \tilde{S} 的 Gauss 曲率和平均曲率分别为

$$\tilde{K} = \frac{K}{1 - 2\lambda H + \lambda^2 K}, \ \tilde{H} = \frac{H - \lambda K}{1 - 2\lambda H + \lambda^2 K}.$$

证明. (1) 求导可得 $\tilde{r}_u = r_u + \lambda n_u$, $\tilde{r}_v = r_v + \lambda n_v$. 因为 $n_u, n_v \in T_p S$, 所以 \tilde{r}_u, \tilde{r}_v 生成的 \tilde{S} 的切平面与对应点处 S 的切平面平行.

(2) \tilde{S} 的单位法向只能是 n 或 -n, 我们不妨先取 $\tilde{n}=n$, 如果 \tilde{H} 与待求结果相差一个符号, 则取 -n 即可. 设 T_pS 上的 Weingarten 变换为 W, 在基 $\{r_u, r_v\}$ 下的矩阵表示为 W; 再设 $T_q\tilde{S}$ 上的 Weingarten 变换为 \tilde{W} , 在基 $\{\tilde{r}_u, \tilde{r}_v\}$ 下的矩阵表示为 \tilde{W} . 此时有

$$\tilde{W} \begin{pmatrix} \tilde{r}_u \\ \tilde{r}_v \end{pmatrix} = W \begin{pmatrix} r_u \\ r_v \end{pmatrix} = \begin{pmatrix} -n_u \\ -n_v \end{pmatrix}.$$

由于 $\tilde{r}_u = (\mathcal{I} - \lambda \mathcal{W}) r_u$, $\tilde{r}_v = (\mathcal{I} - \lambda \mathcal{W}) r_v$, 所以

$$\begin{pmatrix} \tilde{r}_u \\ \tilde{r}_v \end{pmatrix} = \begin{pmatrix} (\mathcal{I} - \lambda \mathcal{W}) r_u \\ (\mathcal{I} - \lambda \mathcal{W}) r_v \end{pmatrix} = (I - \lambda W) \begin{pmatrix} r_u \\ r_v \end{pmatrix}.$$

代回第一式即可得

$$\tilde{W} = W(I - \lambda W)^{-1}.$$

设 $W = (w_{ij})_{1 \leq i,j \leq 2}$,那么 $I - \lambda W = (\delta_{ij} - \lambda w_{ij})_{1 \leq i,j \leq 2}$,结合 det W = K, tr W = 2H 可得

$$\det(I - \lambda W) = (1 - \lambda w_{11})(1 - \lambda w_{22}) - \lambda^2 w_{12} w_{21} = 1 - 2\lambda H + \lambda^2 K.$$

这说明

$$\tilde{K} = \frac{\det W}{\det(I - \lambda W)} = \frac{K}{1 - 2\lambda H + \lambda^2 K}.$$

又因为

$$W(I - \lambda W)^{-1} = \frac{1}{\det(I - \lambda W)} \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} 1 - \lambda w_{22} & \lambda w_{12} \\ \lambda w_{21} & 1 - \lambda w_{11} \end{pmatrix}$$
$$= \frac{1}{\det(I - \lambda W)} \begin{pmatrix} w_{11} - \lambda \det W & * \\ * & w_{22} - \lambda \det W \end{pmatrix}.$$

所以

$$\tilde{H} = \frac{1}{2} \operatorname{tr} W (I - \lambda W)^{-1} = \frac{\frac{1}{2} \operatorname{tr} W - \lambda \det W}{\det(I - \lambda W)} = \frac{H - \lambda K}{1 - 2\lambda H + \lambda^2 K}.$$

作业9 证明: 曲面 S: r = r(u, v) 的参数曲线是曲率线的充要条件是 F = M = 0.

证明. 若 S 的参数曲线是曲率线, 则每点 r(u,v) 处 $e_1 = \frac{r_v}{\sqrt{E}}, e_2 = \frac{r_v}{\sqrt{G}}$ 都是 S 在该点处的两个正交主方向. 由此首先可得

$$0 = \langle e_1, e_2 \rangle = \frac{\langle r_u, r_v \rangle}{\sqrt{EG}} = \frac{F}{\sqrt{EG}} \Rightarrow F = 0.$$

另一方面,也有

$$We_1 = \kappa e_1 \Rightarrow -n_u = \kappa_1 r_u$$
.

所以
$$M = -\langle r_v, n_u \rangle = \sqrt{EG} \kappa_1 \langle e_1, e_2 \rangle = 0.$$

如果 F = M = 0, 那么 W 在 (r_u, r_v) 下的矩阵表示是对角阵, 所以 r_u, r_v 均为特征向量, 故参数曲线是曲率线.

作业 10 曲面 S 上的一个切向称之为渐近方向, 是指沿该方向的法曲率为 0.S 上的一条 曲线 C 为渐近线, 是指它的切向总为渐近方向. 证明: 曲面 S: r = r(u,v) 的参数曲线是 渐近线当且仅当 L = N = 0.

证明. 计算可得 r_u, r_v 方向的法曲率分别为

$$k_n\left(\frac{r_u}{\sqrt{E}}\right) = \left\langle \mathcal{W}\left(\frac{r_u}{\sqrt{E}}\right), \frac{r_u}{\sqrt{E}}\right\rangle = \frac{1}{E}\langle -n_u, r_u \rangle = \frac{L}{E},$$

$$k_n = \left(\frac{r_v}{\sqrt{G}}\right) = \left\langle \mathcal{W}\left(\frac{r_v}{\sqrt{G}}\right), \frac{r_v}{\sqrt{G}} \right\rangle = \frac{1}{G} \langle -n_v, r_v \rangle = \frac{N}{G}.$$

这就说明参数曲线为渐近线当且仅当 L = N = 0.

作业11 证明: 若曲面的切平面过定点,则该曲面是锥面.

注 这题的叙述不太严谨,事实上我们只需要给出局部的刻画即可. 如果学过微分流形,会意识到我们其实是在找曲面的局部坐标 (u,v), 使得曲面的局部表示为锥面的参数表示. 换言之, 我们要证明这个曲面在每一点附近都是某个锥面的子曲面.

证明. 任取曲面 S 上一点 p, 则在 p 附近曲面可以视为光滑函数 F(x,y,z) 的水平集, 即 F(x,y,z)=0 的解集. 不妨设曲面的切平面所过的定点为原点, 由于 ∇F 为曲面的法向量, 所以 $\langle \nabla F, (x,y,z) \rangle = 0$, 即 $xF_x + yF_y + zF_z = 0$. 由此可得

$$\frac{\mathrm{d}}{\mathrm{d}t}F(tx,ty,tz) \equiv 0 \Rightarrow F(tx,ty,tz) = F(x,y,z), \ \forall t,x,y,z.$$

这说明如果 $(x,y,z) \in S$, 则对于 1 附近的实数 t, 总有 $(tx,ty,tz) \in S^1$. 现在我们选取 $p = (x_0,y_0,z_0)$ 附近的参数获得 S 的锥面参数化. 不妨设 $F_z \neq 0$, 以及 $x_0 \neq 0^2$, 这时我们固定 x_0 , 则 $(x_0,y,z) \in S \Leftrightarrow F(x_0,y,z) = 0$, 结合 $F_z \neq 0$ 可由隐函数定理局部解出 z = f(y). 这时我们断言 p 点附近 S 可参数化为 $r(u,v) = v(x_0,u,f(u))$, 从而为锥面. 事实上, 任取 $(x,y,z) \in S$ 为 p 附近一点, 其中 $x \neq 0$, 那么 $(x_0,\frac{x_0y}{x},\frac{x_0z}{x})$ 也是 S 上一点, 这时 $\frac{x_0z}{x} = f(\frac{x_0y}{x})$. 因此

$$(x,y,z) = \left(\frac{x}{x_0} \cdot x, \frac{x}{x_0} \cdot \frac{x_0 y}{x}, \frac{x}{x_0} f\left(\frac{x_0 y}{x}\right)\right) = r\left(\frac{x_0 y}{x}, \frac{x}{x_0}\right).$$

由此即证.

作业12 证明: 直纹面是可展曲面当且仅当沿直母线, 曲面的法向不变.

证明. 考虑直纹面 S: r(u,v) = a(u) + vb(u), 我们只需证 S 可展当且仅当 n_v 恒为零.

如果 S 可展, 那么 $K = -\frac{M^2}{EG-F^2}$ 恒为零, 所以 $\langle r_u, n_v \rangle = -M = 0$. 另一方面, 由于 $r_{vv} = 0$, 所以 $\langle r_v, n_v \rangle = -\langle r_{vv}, n \rangle = 0$. 由此即可得 n_v 恒为零.

如果 n_v 恒为零, 则 $M = -\langle r_u, n_v \rangle$ 恒为零, 从而 K = 0, 即 S 可展.

¹直观上来看, 这个结论说明 S 在局部由一簇过定点的直线 (上的线段) 构成, 所以大致就是锥面了.

 $^{^{2}}$ 如果 $x_{0} = 0$, 那么曲面 S 在 p 附近就是平面的一部分.

作业 13 若曲面 z = f(x) + g(y) 是极小曲面,证明:除相差一个常数外,它可以写成

$$z = \frac{1}{a} \log \frac{\cos ay}{\cos ax}.$$

这个曲面称为 Scherk 曲面.

评论 这里所指的"相差一个常数"还指变量 x, y 可以变化任意常数. 另外不考虑平面情形.

图 2: Scherk 曲面 $z = \log \frac{\cos y}{\cos x}$

证明. 根据作业 5, 或者根据极小曲面方程可得 F(x,y) = f(x) + g(y) 是

$$F_{xx}(1+F_y^2) - 2F_{xy}F_xF_y + F_{yy}(1+F_x^2) = 0$$

的分离解. 代入整理可得

$$f''(x)(1+g'(y)^2)+g''(y)(1+f'(x)^2)=0 \Rightarrow \frac{f''(x)}{1+f'(x)^2}=-\frac{g''(y)}{1+g'(y)^2}=a.$$

这里 a 为非零常数 (a=0 对应平面情形). 由于允许相差一个常数, 下面的积分我们都略去积分常数. 对于 f 所满足的方程, 我们令 h(x)=f'(x), 则有 $h'(x)+a(1+h(x)^2)=0$, 求解可得 $h(x)=\tan ax$. 所以 $f(x)=\int h(x)\,\mathrm{d}x=\frac{1}{a}\log|\cos ax|$. 类似地, 可以求解得到 $g(y)=-\frac{1}{a}\log|\cos ay|$, 所以

$$z = f(x) + g(y) = \frac{1}{a} \log \left| \frac{\cos ax}{\cos ay} \right|.$$

注 这个绝对值其实也是可以去掉的, 例如我们在 (x,y) = (0,0) 附近讨论. 回忆选取曲面的参数表示时总要求局部坐标 (x,y) 定义在区域 (连通开集) 上, 所以只需考虑区域

$$\left\{ (x,y) : |x| < \frac{\pi}{2|a|}, |y| < \frac{\pi}{2|a|} \right\}$$

上的参数表示(尽管我们求出的表达式在其他区域上也定义了曲面片,但与上述区域上的曲面片是"断开"的). 这也是题干不标明绝对值的原因.

2 补充习题

习题 1 设 S 为 \mathbb{E}^3 中的正则曲面, $p \in S$. H 为 S 的平均曲率.

(1) 设 $v_0, \cdots, v_{m-1} \in T_pS$ 为单位向量, 使得 v_j 与主方向 e_1 的夹角为 $j^{\frac{2\pi}{n}}$. 那么

$$H(p) = \frac{1}{m} \sum_{i=0}^{m-1} k_n(v_i).$$

(2) 设 $v(\theta)$ 为 T_pS 中与主方向 e_1 成 θ 夹角的单位向量. 那么

$$H(p) = \frac{1}{2\pi} \int_0^{2\pi} k_n(v(\theta)) d\theta.$$

证明. (1) 由 Euler 公式可得

$$k_n(v_j) = \kappa_1 \cos^2 \frac{2j\pi}{m} + \kappa_2 \sin^2 \frac{2j\pi}{m}.$$

注意到

$$\sum_{j=0}^{m-1} \cos^2 \frac{2j\pi}{m} = \sum_{j=0}^{m-1} \frac{1 + \cos \frac{4j\pi}{m}}{2} = \frac{m}{2} + \frac{1}{2} \operatorname{Re} \left(\sum_{j=0}^{m-1} e^{\frac{4j\pi}{m}} i \right) = \frac{m}{2}.$$

$$\sum_{j=0}^{m-1} \sin^2 \frac{2j\pi}{m} = \sum_{j=0}^{m-1} \frac{1 - \cos \frac{4j\pi}{m}}{2} = \frac{m}{2}.$$

所以 $\frac{1}{m} \sum_{0}^{m-1} k_n(v_j) = \frac{\kappa_1 + \kappa_2}{2} = H.$

(2) 由 Euler 公式可得

$$k_n(v(\theta)) = \kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta.$$

积分可得

$$\int_0^{2\pi} k_n(v(\theta)) d\theta = \kappa_1 \int_0^{2\pi} \frac{1 + \cos 2\theta}{2} d\theta + \kappa_2 \int_0^{2\pi} \frac{1 - \cos 2\theta}{2} d\theta$$
$$= \pi(\kappa_1 + \kappa_2) = 2\pi H.$$

习题 2 (2017 刘世平班) 设 S: r = r(u,v) 正则曲面片. 任意给定 $p \in M$, 设 $n \not p$ 点处 S 的单位法向量, 并任意选定单位切向量 $X \in T_pS$. 设 n_ϕ $\not p$ 点处的单位向量, 满足 $\langle n_\phi, X \rangle = 0$, 且与 n 的夹角为 $\phi \in (0,\pi]$. 记 Π 为 X, n_ϕ 张成的平面, Π 与 S 相截得到曲线 C_ϕ . 如果在平面上取定 $\{X, n_\phi\}$ 给出的定向, 此时设 C_ϕ 的曲率为 κ_ϕ . 证明: $k_n(X) = \kappa_\phi \cos \phi$.

注 这题还应要求 $n_{\phi} \notin T_p S$, 不然 Π 即为切平面 $T_p S$, 这时 Π 与 S 有可能仅仅交于 p 点.

证明. 我们设 C_{ϕ} : r = r(s) 为弧长参数表示, 且 $p = r(s_0)$. 由于 C_{ϕ} 的单位切向量 $t(s_0) \in \Pi \cap T_pS$, 所以 $t(s_0) = X$ (因为 Π 与 T_pS 的交集即为过 p 沿 X 方向的直线). 设 $N(s_0)$ 为 C_{ϕ} 在 p 处的主法向量, 那么 $N(s_0) = n_{\phi}$. 由 Frenet 方程可得 $\ddot{r}(s_0) = \kappa_{\phi}n_{\phi}$, 因此

$$k_n(X) = \langle \ddot{r}(s_0), n \rangle = \langle \kappa_{\phi} n_{\phi}, n \rangle = \kappa_{\phi} \cos \phi.$$

习题 3 (20 张希班) 设 C 为正则曲线 S 上的一条正则曲线, 如果由 C 上每点处曲面法线 生成的直纹面的 Gauss 曲率恒为零, 求证: C 为曲率线.

证明. 设 S 的参数表示为 r=r(u,v), C:r(s)=r(u(s),v(s)) 为弧长参数表示. 这时所述的直纹面参数表示为

$$\Sigma : \tilde{r}(s,\lambda) = r(s) + \lambda n(s),$$

这里 n(s) = n(u(s), v(s)) 表示 r(s) 处 S 的单位法向量. 注意到 $\mathcal{W}(\dot{r}(s)) = -\dot{n}(s)$, 要证明 C 是曲率线, 只需证明 $\dot{r}(s)$ 总为主方向, 只需证明 $\dot{n}(s)$ 总与 $\dot{r}(s)$ 共线.

计算可得 $\tilde{r}_s = \dot{r}(s) + \lambda \dot{n}(s)$, $\tilde{r}_{\lambda} = n(s)$, 所以 Σ 的单位法向量为

$$\tilde{n} = \frac{(\dot{r}(s) + \lambda \dot{n}(s)) \wedge n(s)}{|\tilde{r}_s \wedge \tilde{r}_{\lambda}|},$$

又因为 $\tilde{r}_{s\lambda} = \dot{n}(s)$, $\tilde{r}_{\lambda\lambda} = 0$, 所以 Σ 的 Gauss 曲率为

$$\tilde{K} = \frac{-M^2}{|\tilde{r}_s \wedge \tilde{r}_{\lambda}|^2} = -\frac{\langle \dot{n}(s), (\dot{r}(s) + \lambda \dot{n}(s)) \wedge n(s) \rangle}{|\tilde{r}_s \wedge \tilde{r}_{\lambda}|^3} = -\frac{(\dot{n}(s), \dot{r}(s), n(s))}{|\tilde{r}_s \wedge \tilde{r}_{\lambda}|^3}.$$

 \tilde{K} 恒为零说明 $\dot{n}(s)$, $\dot{r}(s)$, n(s) 三者共面. 而 $\dot{n}(s)$, $\dot{r}(s)$ 都与 n(s) 正交, 所以 $\dot{n}(s)$ 与 $\dot{r}(s)$ 共线.

习题 4 (do Carmo, 20 韦勇班) 设 S: r = r(u,v) 为 \mathbb{E}^3 中的无脐点曲面, $\alpha(s) = r(u(s),v(s))$ 是 S 上的一条弧长参数正则曲线, $p = \alpha(s_0) \in S$. 设 $t = \dot{\alpha}(s_0) \in T_pS$ 为曲线在 p 处的切向量, $h \in T_pS$ 为曲面在 p 点处与 t 正交的单位切向量, 使得 $\{t,h\}$ 与曲面的定向相同, 即 $t \wedge h = n$, 其中 n 为 S 的单位法向量. 定义曲线 $\alpha(s)$ 在 p 点处的测地挠率为

$$\tau_g = \left\langle \frac{\mathrm{d}n}{\mathrm{d}s}(s_0), h \right\rangle.$$

- 1. 设 $e_1, e_2 \in T_pS$ 为 S 在 p 点处的主方向, 使得 $\{e_1, e_2, n\}$ 构成右手系, 并且对应的主 曲率分别为 κ_1, κ_2 . 设 e_1 与 t 的夹角为 φ , 证明: $\tau_q = (\kappa_1 \kappa_2) \cos \varphi \sin \varphi$.
- 2. 证明: $C \in S$ 上的一条曲率线当且仅当 τ_g 恒为零.
- 3. 设 τ 为 C 的挠率, \tilde{n} 为 C 的单位主法向量. 设 \tilde{n} 和 n 的夹角为 θ , 证明: $\frac{d\theta}{ds} = \tau \tau_g$.

证明. (1) 由于 $\{e_1, e_2, n\}$ 和 $\{t, h, n\}$ 都构成右手系, 所以

$$t = \cos \varphi e_1 + \sin \varphi e_2, \ h = -\sin \varphi e_1 + \cos \varphi e_2.$$

结合 Weingarten 变换可得

$$\tau_g = \langle -(\mathcal{W}t)(s_0), h \rangle$$

$$= \langle -\kappa_1 \cos \varphi e_1 - \kappa_2 \sin \varphi e_2, -\sin \varphi e_1 + \cos \varphi e_2 \rangle$$

$$= (\kappa_1 - \kappa_2) \cos \varphi \sin \varphi.$$

由此即证.

- (2) 如果 C 是 S 的曲率线, 那么 t(s) 恒为主方向 e_1 或 e_2 , 亦即 φ 恒为 0 或 $\frac{\pi}{2}$. 由 (1) 中结论可得 τ_g 恒为零. 反之, 如果 τ_g 恒为零, 则 $\varphi = 0$ 或 $\frac{\pi}{2}$, 所以 C 为 S 的曲率线.
- (3) 设曲线 C 的副法向量为 b, 由于 $\{t, h, n\}$ 和 $\{t, \tilde{n}, b\}$ 构成右手系, 所以

$$\tilde{n} = \cos \theta n + \sin \theta h, \ b = -\sin \theta n + \cos \theta h.$$

注意到 $\cos \theta = \langle \tilde{n}, n \rangle$, 两边关于 s 求导可得

$$-\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}s} = \left\langle \frac{\mathrm{d}\tilde{n}}{\mathrm{d}s}, n \right\rangle + \left\langle \tilde{n}, \frac{\mathrm{d}n}{\mathrm{d}s} \right\rangle$$
$$= \left\langle -\kappa t + \tau b, n \right\rangle + \left\langle \tilde{n}, f(s)t + \tau_g h \right\rangle$$
$$= (\tau_g - \tau)\sin\theta.$$

由此即证.

习题 5 (20 韦勇班) 考虑 Ennerper 曲面

$$r(u,v) = (3u(1+v^2) - u^3, 3v(1+u^2) - v^3, 3(u^2 - v^2)).$$

- 1. 证明: Ennerper 曲面是极小曲面.
- 2. 证明: Ennerper 曲面的曲率线都是平面曲线.
- 3. 求 Ennerper 曲面上的渐近线, 并证明渐近曲线处处正交.

图 3: Ennerper 曲面示意图

证明. (1) 计算可得

$$r_u = (3(1+v^2) - 3u^2, 6uv, 6u), r_v = (6uv, 3(1+u^2) - 3v^2, -6v).$$

由此可得 Ennerper 曲面的第一基本形式为

$$I(u,v) = 9(1 + u^2 + v^2)^2 (du \otimes du + dv \otimes dv).$$

又因为单位法向量为

$$n = \frac{r_u \wedge r_v}{|r_u \wedge r_v|} = \left(-\frac{2u}{1 + u^2 + v^2}, \frac{2v}{1 + u^2 + v^2}, \frac{1 - u^2 - v^2}{1 + u^2 + v^2}\right),$$

并且 $r_{uu} = (-6u, 6v, 6)$, $r_{uv} = (6v, 6u, 0)$, $r_{vv} = (6u, -6v, -6)$, 所以 Ennerper 曲面的第二 基本形式为

$$II(u, v) = 6(du \otimes du - dv \otimes dv).$$

综合 I, II 的表达式即可得 Ennerper 曲面的平均曲率恒为零, 从而是极小曲面.

(2) 注意到 F=M=0, 所以 Ennerper 曲面的曲率线即为参数曲线. u-参数曲线形如 $r(u)=(3u(1+v_0^2)-u^2,3v_0(1+u^2)-v_0^3,3(u^2-v_0^2))$, 计算可得

$$r'(u) = 3((1 + v_0^2 - u^2), 2v_0u, 2u), \ r''(u) = 6(-u, v_0, 1), \ r'''(u) = 6(-1, 0, 0),$$

所以

$$(r', r'', r''') = 108 \begin{vmatrix} 1 + v_0^2 - u^2 & 2v_0u & 2u \\ -u & v_0 & 1 \\ -1 & 0 & 0 \end{vmatrix} = 0,$$

这说明 u-参数曲线的挠率恒为零, 所以为平面曲线. 类似可证 v-参数曲线也是平面曲线.

(3) 设 C: r(s) = r(u(s), v(s)) 是 Ennerper 曲面上的弧长参数曲线, 那么 $\dot{r}(s) = r_u \frac{\mathrm{d}u}{\mathrm{d}s} + r_v \frac{\mathrm{d}v}{\mathrm{d}s}$ 为曲面的单位切向量, 所以 $\dot{r}(s)$ 的法曲率为

$$L\left(\frac{\mathrm{d}u}{\mathrm{d}s}\right)^{2} + 2M\frac{\mathrm{d}u}{\mathrm{d}s}\frac{\mathrm{d}v}{\mathrm{d}s} + N\left(\frac{\mathrm{d}v}{\mathrm{d}s}\right)^{2} = 6\frac{\mathrm{d}(u+v)}{\mathrm{d}s}\frac{\mathrm{d}(u-v)}{\mathrm{d}s}.$$

由此可得, Ennerper 曲面上的渐近曲线为直线 $u \pm v = \text{const}$ 的像. 在一点 $p = r(u_0, v_0)$ 处, 两条渐近曲线为 $u \pm v = u_0 + v_0$ 的像, 它们在 p 点处的切向量分别为 $r_u - r_v$ 和 $r_u + r_v$, 由 E = G 且 F = 0 即可得渐近曲线正交.

习题 6 (21 韦勇班) 设 S: r = r(u, v) 为正则曲面, $K \to S$ 的 Gauss 曲率, $H \to S$ 的平均曲率.

- 1. 若 θ 为双曲点 $p \in S$ 处两个渐近方向的夹角,证明: $\tan \theta = \frac{\sqrt{-K(p)}}{H(p)}$.
- 2. 若 S 的 Gauss 曲率恒负,则对于 S 上任一渐近曲线 C, 其挠率 τ 满足 $|\tau| = \sqrt{-K}$.

证明. (1) 设 $X \in T_pS$ 为单位渐近方向, 与主方向 e_1 的夹角为 $\alpha \in [0, \pi]$, 这里我们设 $\kappa_1 > 0, \kappa_2 < 0$. 则由 Euler 公式可得 $0 = k_n(X) = \kappa_1 \cos^2 \alpha + \kappa_2 \sin^2 \alpha$, 由此可以确定两个渐近方向 X_1, X_2 , 对应的夹角 α_1, α_2 满足 $\tan \alpha_1 = -\tan \alpha_2 = \sqrt{-\frac{\kappa_1}{\kappa_2}}$.

如图所示, 注意到 $\theta = \alpha_2 - \alpha_1^3$, 所以计算可得

$$\tan \theta = \tan(\alpha_2 - \alpha_1) = \frac{\tan \alpha_2 - \tan \alpha_1}{1 + \tan \alpha_2 \tan \alpha_1} = \frac{-2\sqrt{-\frac{\kappa_1}{\kappa_2}}}{1 + \frac{\kappa_1}{\kappa_2}} = \frac{\sqrt{-K}}{H}.$$

最后一步成立是因为我们初始选取 $\kappa_2 < 0$.

 3 从图中可以看到 $-X_{2}$ 也是渐近方向, 这时 X_{1} 与 $-X_{2}$ 夹角的正切值要多一个负号, 所以原题结论多一个 \pm 会更严谨些.

(2) 我们设 $C: r = r(u(s), v(s)) = r(s), t(s), \tilde{n}(s), b(s)$ 分别为单位切向量、单位主法向量、单位副法向量,n(s) 为曲面 S 沿 C 的单位法向. 因为 C 是渐近曲线,所以 $0 = \langle \ddot{r}(s), n(s) \rangle = \langle \kappa(s)\tilde{n}(s), n(s) \rangle$, 这说明 n(s) 与 $t(s), \tilde{n}(s)$ 均正交,所以 $b(s) = \pm n(s)$. 设 t(s) 与主方向 e_1 的夹角为 α , 则 $t(s) = \cos \alpha e_1 + \sin \alpha e_2$, 从而

$$\frac{\mathrm{d}b}{\mathrm{d}s} = \pm \frac{\mathrm{d}n}{\mathrm{d}s} = \mp \mathcal{W}\left(\frac{\mathrm{d}r}{\mathrm{d}s}\right) = \mp (\kappa_1 \cos \alpha e_1 + \kappa_2 \sin \alpha e_2).$$

由 (1) 可得 $\tan \alpha = \pm \sqrt{-\frac{\kappa_1}{\kappa_2}}$, 所以

$$\cos^2 \alpha = \frac{1}{1 + \tan^2 \alpha} = \frac{\kappa_2}{\kappa_2 - \kappa_1}, \ \sin^2 \alpha = 1 - \cos^2 \alpha = -\frac{\kappa_1}{\kappa_2 - \kappa_1}.$$

因此由 Frenet 方程可得

$$|\tau|^2 = \left| \frac{\mathrm{d}b}{\mathrm{d}s} \right|^2 = \kappa_1^2 \cos^2 \alpha + \kappa_2^2 \sin^2 \alpha = -\kappa_1 \kappa_2 = -K.$$

习题7 讨论直纹极小曲面的分类.

证明. 考虑直纹面 S: r(u,v) = a(u) + vb(u). 为了简化我们之后的计算, 需要挑选一些 "方便"的参数.

- (1) 首先, 我们可以设 |a'(u)| = 1, 不然选取 $\tilde{u} = \int_{u_0}^u |a'(\xi)| d\xi$ 为 a 的弧长参数即可.
- (2) 其次, 我们可以设 |b(u)|=1. 如若不然, 则选取 $\tilde{v}=v|b(u)|$, 此时 $r=a(u)+\tilde{v}\tilde{b}(u)$, 其中 $\tilde{b}(u)=\frac{b(u)}{|b(u)|}$ 的模长为 1.
- (3) 最后, 我们可以设 a' 与 b 正交. 如若不然, 考虑 $\tilde{a}(u) = a(u) \lambda(u)b(u)$, 其中 $\lambda(u)$ 为 待定的光滑函数. 这时

$$\langle \tilde{a}', b \rangle = \langle a', b \rangle - \lambda \langle b', b \rangle - \lambda' \langle b, b \rangle = \langle a', b \rangle - \lambda'.$$

我们取 $\lambda(u) = \int_{u_0}^u \langle a'(\xi), b(\xi) \rangle d\xi$, 以及 $\tilde{v} = v + b(u)$, 此时 $r = \tilde{a}(u) + \tilde{v}b(u)$, 这里 $\langle \tilde{a}', b \rangle = 0$.

综上所述, 我们可以设 S 满足: (1) |a'| = |b| = 1, (2) $\langle a', b \rangle = 0$. 计算可得

$$r_u = a' + vb', \ r_v = b, \ n = \frac{(a' + vb') \wedge b}{|(a' + vb') \wedge b|},$$

 $r_{uu} = a'' + vb'', \ r_{uv} = b', \ r_{vv} = 0.$

结合初始假设计算可得

$$E = |a' + vb'|^2, F = 0, G = 1,$$

$$L = \frac{(a'' + vb'', a' + vb', b)}{|(a' + vb') \wedge b|}, \ M = \frac{(b', a' + vb', b)}{|(a' + vb') \wedge b|}, \ N = 0.$$

由此可得, S 是直纹面当且仅当

$$0 = H = \frac{LG - 2MF + NE}{2(EG - F^2)} = \frac{L}{2(EG - F^2)} \Leftrightarrow L = 0.$$

这又可以化简为

$$0 = (a'' + vb'', a' + vb', b) = (a'', a', b) + v((b'', a', b) + (a'', b', b)) + v^{2}(b'', b', b).$$

然后又等价于

$$\begin{cases} (a'', a', b) = 0, & (1) \\ (b'', a', b) + (a'', b', b) = 0, & (2) \\ (b'', b', b) = 0. & (3) \end{cases}$$

现在我们通过上述运动方程及初始假设确定曲线 a(u) 和 b(u) 即可. 设 a(u) 的单位切向量、单位主法向量、单位副法向量分别为 T, N, B, 曲率和挠率分别为 κ 和 τ . 由于 u 是 a(u) 的弧长参数, 方程 (1) 即为

$$\kappa(N, T, b) = 0.$$

- (I) 如果 $\kappa = 0$, 这时 a(u) 表示一条直线.
- (i) b' = 0, 这时 b 是常向量, 从而 S 为平面的一部分.
- (ii) $b' \neq 0$, 这时由 |b(u)| = 1 可得 b(u) 表示一段圆弧, 从而 S 是正螺面的一部分.

注 一般螺面是某个曲线 C 绕某直线 L 匀速旋转,同时朝 L 的方向匀速平移形成的曲面. 如果 C 是与 L 正交的直线,则称此时的螺面为正螺面. 经一个合同变换,正螺面的参数表示可写为

$$r(u, v) = (v \cos u, v \sin u, bu).$$

(II) 如果 $\kappa \neq 0$, 那么 (N, T, b) = 0, 从而 N, T, b 共面. 又因为 b = a' = T 正交, 所以 $b = \pm N$. 不妨设 b = N, 则

$$b' = -\kappa T + \tau B, \ b'' = -\dot{\kappa}T + \dot{\tau}B - (\kappa^2 + \tau^2)N.$$

代入(2)可得

$$0 = (-\dot{\kappa}T + \dot{\tau}B - (\kappa^2 + \tau^2)N, T, N) + (\kappa N, -\kappa T + \tau B, N) = \dot{\tau}.$$

所以挠率 τ 是常数. 再代入 (3) 可得

$$0 = (-\dot{\kappa} + \dot{\tau}B - (\kappa^2 + \tau^2)N, -\kappa T + \tau B, N) = \dot{\kappa}\tau - \kappa \dot{\tau}.$$

再分两种情况讨论.

- (a) $\tau = 0$, 此时 a(u) 是平面曲线, b = N 与 a(u) 共面. 所以这时 S 是平面的一部分.
- (b) $\tau \neq 0$, 那么 $\dot{\kappa} \kappa \dot{\tau} = \tau^2 \frac{d}{du} (\frac{\kappa}{\tau}) = 0$, 这时 κ, τ 均为常数, 由曲线论基本定理可得 a(u) 是圆柱螺线, 在一个合同变换下可以写为

$$a(u) = (a\cos u, a\sin u, bu).$$

对应地 $b(u) = N(u) = (-\cos u, -\sin u, 0)$, 所以

$$r(u,v) = ((a-v)\cos u, (a-v)\sin u, bu),$$

今 $\tilde{v} = a - v$ 可知此时 S 是正螺面的一部分.

图 4: 正螺面 $r(u,v) = (v\cos u, v\sin u, u)$ 示意图

习题 8 设无脐点曲面 S 的 Gauss 曲率恒为零. 证明:

1. (20 张希班) S 上局部存在参数 (u,v), 使得曲面的两个基本形式为

$$I = E du \otimes du + dv \otimes dv$$
, $II = L du \otimes du$.

2. S 在每点附近都是可展直纹曲面.

证明. (1) 任取 $p \in S$, 由于 p 非脐点, 所以可以在 p 附近取出正交的单位主方向场 e_1, e_2 , 并由 K=0 可以不妨设 κ_2 恒为零. 根据上次作业中的习题三 12 题, 我们可以选取局部 参数 (ζ,ξ) , 使得 r_{ζ} , r_{ξ} 分别和 e_1,e_2 共线, 从而 (ζ,ξ) 是曲率线网. 这样就有 F=M=0. 另一方面, 由于 $n_{\xi}=-\mathcal{W}r_{\xi}=-\kappa_2r_{\xi}=0$, 所以 $N=\langle r_{\xi},n_{\xi}\rangle=0$. 下面我们先说明 $|r_{\xi}|_{\zeta}=0$.

注意到 $r_{\xi} = |r_{\xi}|e_2$,所以 $r_{\xi\zeta} = |r_{\xi}|_{\zeta}e_2 + |r_{\xi}|e_{2,\zeta}$. 两边与 e_2 作内积可得只需证 $|r_{\xi}|_{\zeta} = \langle r_{\xi\zeta}, e_2 \rangle$ 为零. 首先整理可得

$$\langle r_{\xi\zeta}, e_2 \rangle = \partial_\xi \langle r_\zeta, e_2 \rangle - \langle r_\zeta, e_{2,\xi} \rangle = - \langle r_\zeta, e_{2,\xi} \rangle.$$

由于 S 无脐点, 所以在 p 附近 κ_1 总不为零. 因此 $r_\zeta = -\frac{1}{\kappa_1} n_\zeta$, 所以只需证 $\langle n_\zeta, e_{2,\xi} \rangle$ 为零. 注意到 $n_\xi = 0$, 我们有

$$\langle n_{\zeta}, e_{2,\xi} \rangle = \partial_{\xi} \langle -\kappa_1 r_{\zeta}, e_2 \rangle - \langle n_{\zeta\xi}, e_2 \rangle = 0,$$

由此即证, 所以 $G = G(\xi)$ 只依赖于参数 ξ . 我们作局部参数变换

$$u = \zeta, \ v = \int_{\xi_0}^{\xi} \sqrt{G(s)} \, \mathrm{d}s,$$

可以看到 r_u 和 r_v 分别与 r_ζ, r_ξ 平行, 所以 (u,v) 仍为曲率线网, 并且类似 $n_v=0$. 此外, 还有 $|r_v|=\frac{|r_\xi|}{|v_\varepsilon|}=1$, 即证.

(2) 首先由 $n_v = -\kappa_2 r_v = 0$ 可得 $\langle r_{vv}, n \rangle = -\langle r_v, n_v \rangle = 0$. 另一方面, 由 $|r_v| = 1$ 可得 $\langle r_{vv}, r_v \rangle = 0$, 且

$$\langle r_{vv}, r_u \rangle = \partial_v \langle r_v, r_u \rangle - \langle r_v, r_{uv} \rangle = -\frac{1}{2} \partial_u \langle r_v, r_v \rangle = 0.$$

综上所述, 有 $r_{vv} = 0$, 积分两次可得 r(u,v) = a(u) + vb(u), 所以 S 局部为直纹面, 结合 K = 0 可得 S 局部为可展直纹曲面.

3 补充内容: 高斯绝妙定理, Theorema Egregium!

本节我们来探讨"内蕴"与"外蕴"的问题. 如果几何对象 M 一个几何量"只依赖于 M 自身的结构,而与 M 外界的全空间无关",则称这个几何量是内蕴 (intrinsic) 的. 例如,我们在中学学过的平面几何,以及球面几何都是内蕴几何⁴. 对于 \mathbb{E}^3 中的正则曲面,每点处的切平面 T_pS 就是内蕴的⁵. 这就说明曲面的第一基本形式其实是内蕴几何量.

另一方面,如果某个几何量与M嵌入外界空间的方式有关,就称这个几何量是外蕴 (extrinsic)的.还是以 \mathbb{E}^3 中的正则曲面为例,曲面的法向量场就是外蕴的,类似地第二基本形式,以及平均曲率也是外蕴量.

从直观上来看, 我们在定义 Gauss 曲率时, 借助了曲面的第二基本形式, 这似乎说明 Gauss 曲率也是外蕴的. 但是, Gauss 通过具体的计算发现: Gauss 曲率可以写成第一基本形式系数 E, F, G 的表达式, 它其实是内蕴的几何量 (即 Gauss 绝妙定理)! 也就是说,

⁴球面几何量都只依赖于球面自身的黎曼度量结构.

⁵定义一个正则曲面 (或者更一般的光滑流形) 的切向量, 可以通过取过 p 点的曲线切向量、或者定义导子的方式, 这两类方式都与曲面 (流形) 外部的背景空间是无关的.

Gauss 曲率刻画了曲面内在的弯曲程度, 而平均曲率刻画了曲面嵌入到空间中的弯曲程度.

我们可以以一个简单的例子来说明上述结论. 考虑一个二维的长方形 $[0,2\pi] \times [0,1]$, 它自然是平坦的, Gauss 曲率和平均曲率都为零, 并且第一基本形式为 $I=dx\otimes dx+dy\otimes dy$, 第二基本形式为零. 现在我们把这个长方形弯曲成一个圆柱面, 即进行了变换 $(x,y)\mapsto (\cos x,\sin x,y)$. 这时计算可得圆柱面的第一基本形式仍然为 $I=dx\otimes dx+dy\otimes dy$, 但是第二基本形式却为 $II=-dx\otimes dx$, 不再为零! 事实上, 将长方形 "卷成" 圆柱面这个操作没有影响每点附近的内蕴结构, 但改变了曲面嵌入外界空间的方式. 所以第一基本形式没有改变, 而第二基本形式改变了. 此时, 圆柱面的平均曲率为 $H=-\frac{1}{2}$, 不再为零. 这说明, 圆柱面是内蕴平坦的 (K=0), 但嵌入到 \mathbb{E}^3 中不再是平坦的 $(H\neq 0)$.

$$K = 0$$

$$H = 0$$

$$K = 0$$

这也说明内蕴和外蕴的弯曲是不同的. 在 Gauss 绝妙定理之后, 内蕴几何发展为黎曼几何 (Riemann geometry), 而外蕴几何发展为子流形几何 (submanifold geometry). 现在,让我们回到对 Gauss 绝妙定理的讨论.

定理 3.1 (高斯绝妙定理, Theorema Egregium) 正则曲面 S 的 Gauss 曲率 K 是内蕴量.

Gauss 绝妙定理是古典微分几何历史上的伟大丰碑. 它的证明方法很多, 同学们将会在第四/五章学习利用幺正标架和联络形式的证明, 即 Gauss 方程 $d\omega_{12} = -K\omega_1 \wedge \omega_2$. 这里, 我们介绍 Gauss 的原始证明, 这也是最初等、最直接的证法.

为了进一步整理 Gauss 曲率 K 的表达式, 我们首先要整理第二基本形式系数 L, M, N. 根据定义可得

$$L = \langle r_{uu}, n \rangle = \left\langle r_{uu}, \frac{r_u \wedge r_v}{|r_u \wedge r_v|} \right\rangle = \frac{1}{|r_u \wedge r_v|} \det \begin{pmatrix} r_{uu} \\ r_u \\ r_v \end{pmatrix} = \frac{1}{\sqrt{EG - F^2}} \det \begin{pmatrix} r_{uu} \\ r_u \\ r_v \end{pmatrix}.$$

类似地,我们可以得到

$$M = \frac{1}{\sqrt{EG - F^2}} \det \begin{pmatrix} r_{uv} \\ r_u \\ r_v \end{pmatrix}, \ N = \frac{1}{\sqrt{EG - F^2}} \det \begin{pmatrix} r_{vv} \\ r_u \\ r_v \end{pmatrix}.$$

注意到取转置的操作不改变行列式, 所以有

$$K = \frac{LN - M^{2}}{EG - F^{2}}$$

$$= \frac{1}{(EG - F^{2})^{2}} \left[\det \begin{pmatrix} r_{uu} \\ r_{u} \\ r_{v} \end{pmatrix} \det \begin{pmatrix} r_{vv} & r_{u}^{T} & r_{v}^{T} \end{pmatrix} - \det \begin{pmatrix} r_{uv} \\ r_{u} \\ r_{v} \end{pmatrix} \det \begin{pmatrix} r_{uv} & r_{u}^{T} & r_{v}^{T} \end{pmatrix} \right]$$

$$= \frac{1}{(EG - F^{2})^{2}} \left[\begin{vmatrix} \langle r_{uu}, r_{vv} \rangle & \langle r_{uu}, r_{u} \rangle & \langle r_{uu}, r_{v} \rangle \\ \langle r_{v}, r_{vv} \rangle & \langle r_{u}, r_{u} \rangle & \langle r_{u}, r_{v} \rangle \end{vmatrix} - \begin{vmatrix} \langle r_{uv}, r_{uv} \rangle & \langle r_{uv}, r_{u} \rangle & \langle r_{uv}, r_{v} \rangle \\ \langle r_{v}, r_{vv} \rangle & \langle r_{v}, r_{u} \rangle & \langle r_{v}, r_{v} \rangle \end{vmatrix} - \frac{\langle r_{uv}, r_{uv} \rangle & \langle r_{uv}, r_{u} \rangle & \langle r_{uv}, r_{v} \rangle \\ \langle r_{v}, r_{uv} \rangle & \langle r_{v}, r_{u} \rangle & \langle r_{v}, r_{v} \rangle \end{vmatrix} \right].$$

化简暂时停止, 现在我们来看看上面行列式的各项是否是内蕴的. 显然的几项是

$$\langle r_u, r_u \rangle = E, \ \langle r_u, r_v \rangle = \langle r_v, r_u \rangle = F, \ \langle r_v, r_v \rangle = G.$$

然后是比较简单的几项

$$\langle r_{uu}, r_u \rangle = \frac{1}{2} \partial_u \langle r_u, r_u \rangle = \frac{E_u}{2}, \ \langle r_v, r_{vv} \rangle = \frac{1}{2} \partial_v \langle r_v, r_v \rangle = \frac{G_v}{2}.$$
$$\langle r_{uv}, r_u \rangle = \frac{1}{2} \partial_v \langle r_u, r_u \rangle = \frac{E_v}{2}, \ \langle r_{uv}, r_v \rangle = \frac{1}{2} \partial_u \langle r_v, r_v \rangle = \frac{G_u}{2}.$$

再然后是需要灵机一动的几项

$$\langle r_{uu}, r_v \rangle = \partial_u \langle r_u, r_v \rangle - \langle r_u, r_{uv} \rangle = F_u - \frac{E_v}{2}.$$
$$\langle r_u, r_{vv} \rangle = \partial_v \langle r_u, r_v \rangle - \langle r_{uv}, r_v \rangle = F_v - \frac{G_u}{2}.$$

最后就是令人恼火的两项了: $\langle r_{uu}, r_{vv} \rangle$ 和 $\langle r_{uv}, r_{uv} \rangle$. 如果仍沿用上面的操作, 根本无法把这两项化为 E, F, G 的形式. 但是, 如果我们再灵机一动, 可以尝试把这两项合在一起, 看看它们的和/差是否是内蕴的. 为此, 我们需要用线性代数里的小技巧, 把 K 的表达式化为

$$K = \frac{1}{(EG - F^2)^2} \begin{bmatrix} \left| \langle r_{uu}, r_{vv} \rangle - \langle r_{uv}, r_{uv} \rangle & \langle r_{uu}, r_{u} \rangle & \langle r_{uu}, r_{v} \rangle \\ \langle r_{u}, r_{vv} \rangle & \langle r_{u}, r_{u} \rangle & \langle r_{u}, r_{v} \rangle \\ \langle r_{v}, r_{vv} \rangle & \langle r_{v}, r_{u} \rangle & \langle r_{v}, r_{v} \rangle \end{bmatrix} - \begin{bmatrix} 0 & \langle r_{uv}, r_{u} \rangle & \langle r_{uv}, r_{v} \rangle \\ \langle r_{u}, r_{uv} \rangle & \langle r_{u}, r_{u} \rangle & \langle r_{u}, r_{v} \rangle \\ \langle r_{v}, r_{uv} \rangle & \langle r_{v}, r_{u} \rangle & \langle r_{v}, r_{v} \rangle \end{bmatrix}.$$

(可以直接用 Laplace 展开验证). 而令人兴奋的是, 我们可以用同样的技巧化简这个差项:

$$\langle r_{uu}, r_{vv} \rangle - \langle r_{uv}, r_{uv} \rangle = (\partial_u \langle r_u, r_{vv} \rangle) - \langle r_u, r_{uvv} \rangle - (\partial_v \langle r_u, r_{uv} \rangle - \langle r_u, r_{vuv} \rangle)$$
$$= \partial_u \left(F_v - \frac{G_u}{2} \right) - \frac{E_{vv}}{2} = F_{uv} - \frac{G_{uu}}{2} - \frac{E_{vv}}{2}.$$

这其实就已经得到 K 的内蕴性了! 为了使整个计算完美无瑕, 我们最后来把所有项的表达式代入 K 的计算式中, 就可以得到

$$4(EG - F^{2})^{2}K = 4 \begin{vmatrix} F_{uv} - \frac{1}{2}G_{uu} - \frac{1}{2}E_{vv} & \frac{1}{2}E_{u} & F_{u} - \frac{E_{v}}{2} \\ F_{v} - \frac{1}{2}G_{u} & E & F \\ \frac{1}{2}G_{v} & F & G \end{vmatrix} - 4 \begin{vmatrix} 0 & \frac{1}{2}E_{v} & \frac{1}{2}G_{u} \\ \frac{1}{2}E_{v} & E & F \\ \frac{1}{2}G_{u} & F & G \end{vmatrix}$$

$$= E(E_{v}G_{v} - 2F_{u}G_{v} + G_{u}^{2}) + F(E_{u}G_{v} + 4F_{u}F_{v} - 2F_{u}G_{u} - 2E_{v}F_{v} - E_{v}G_{u}) + G(E_{u}G_{u} - 2E_{u}F_{v} + E_{v}^{2}) + G(E_{u}G_{v} - F^{2})(2F_{uv} - G_{uu} - E_{vv}).$$

(非常美结论, 爱来自 USTC)