H1 Randomized Quicksort

- recursive divide and conquer algorithm
- Input: set S of n distinct keys
- Output: the keys of S in increasing order

```
def rqs(S):
    if size(S) == 0:
        return
    if size(S) == 1:
        return S[0]
    pivot = uniform_random_element(S)
    Sl = set()
    Sr = set()
    for item in S:
        if item < pivot:
            insert(Sl, item)
        else:
            insert(Sr, item)
    return rqs(Sl) + [pivot] + rqs(Sr)</pre>
```

H2 Analysis

- keys k_1,k_2 are only compared if one of them is the pivot for their partition
- keys are compared at most once
 - as a result, RQS makes at most $\binom{n}{2}$ comparisons, so it runs in $\mathcal{O}(n^2)$ time
 - worst case actually is $O(n^2)$ time

• if keys end up in different partitions, they are never compared

H₃ Expected (average case) running time

Let C be the total number of comparisons

$$\mathsf{define}\ c_{ij} = \left\{ \begin{matrix} 0 & \text{if}\ z_i\ \text{not compared with}\ z_j \\ 1 & \text{otherwise} \end{matrix} \right.$$

$$_{ ext{H4}}$$
 Lemma: $E(c_{ij}) = P(z_i ext{ is compared to } z_j) = rac{2}{j-i+1}$

note that z_i and z_{i+1} are always compared because there is no pivot between them

$$\mathsf{let}\, Z_{ij} = z_i, z_{i+1}, \dots, z_j$$

consider the first time p is chosen from Z_{ij} (must happen because $\left|Z_{ij}\right|>1$)

Case 1: $z_i , so they are separated into different partitions$

ullet don't care, because then z_i and z_j are not compared

Case 2: $z_i = p$ or $z_j = p$

- probability $\frac{2}{|Z_{ij}|} = \frac{2}{j-i+1}$
- since the $\,p\,$ is compared against every value in $\,Z_{ij}$, $\,z_i\,$ and $\,z_j\,$ get compared in this case

H4 Proof of average case running time

$$E(C) = E\left(\sum_{1 \leq i < j \leq n} c_{ij}
ight) = \sum_{1 \leq i < j \leq n} E(c_{ij})$$

$$=\sum_{i=1}^{n-1}\sum_{j=i+1}^nrac{2}{j-i+1}$$
 (by lemma)

let k = j - i, then

$$=2\sum_{i=1}^{n-1}\sum_{k=1}^{n-i}\frac{1}{k+1}$$

$$\leq 2\sum_{i=1}^n\sum_{k=1}^nrac{1}{k}$$

$$\leq 2\sum_{i=1}^n H_n$$
 (H_n is the $n^{ ext{th}}$ harmonic number)

$$\in \mathcal{O}(n\log(n))$$