Minimum Error Entropy

Lesson

- Our measure should not depend upon outlier value
- In general, data values should not be used

No more X axis

- We'll work with Y axis
- i.e. not with data values rather with frequency of data values

A metric does not depend upon data values

- Entropy
- Doesn't depend on X-axis

$$\sum_{i=1}^{r} p_i \log_2 \frac{1}{p_i} = -\sum_{i=1}^{r} p_i \log_2 p_i$$

Coin tossing e.g 1

- Fair coin tossing
- Head \rightarrow 1 & Tail \rightarrow -1
- P(1) = P(-1) = 0.5
- Entropy = 1 bit

Coin tossing e.g 2

- Fair coin tossing
- Head \rightarrow 1 & Tail \rightarrow 3
- P(1) = P(3) = 0.5
- Entropy = 1 bit

Entropy does not depend on X-axis values

Data values do not affect¹

Data = {900, 120, 90, 110, 115, 125, 95, 105, 110, 100}

Data values do nor affect²

Data = {<u>1800</u>, 120, 90, 110, 115, 125, 95, 105, 110, 100}

Hypothesis

 Compared to mean square error, entropy can handle the outliers effectively

Adaptive system with cost function as MSE

Least mean square error

Adaptive system with cost function as entropy

Minimum error entropy

Error as a random variable

- X: explanatory variable
- Y = f(x,w): generated output
- Z: response or desired output
- Error variable = z f(x)

Least MSE - Schematic

Squared error =
$$[(z(n) - f(\mathbf{w}, x(n)))^2]$$

MEE

Cost function (MSE and MEE)

MSE deals with $E(error^2)$

MEE deals with P(error)

i.e. entropy =
$$-\sum p(error).\log(p(error))$$

i.e. –E(log(P(error))

Expectation of data and PMF/PDF

Not to confuse the moments of the PMF with the moments of the data

Minimum Error entropy

- We have decided to fit using y=m.x
- x=[---, ---, ---,, ---]
- t=[---, ---, ---,, ---]
- Choose m
- 1. Predict y=[---, ---, ---,, ---]
- 2. Find out error
- 3. e=[---, ---, ---,, ---]
- 4. Estimate error pdf:
- p(e)=[---, ---, ---,, ---]
- 5. Use p(e) to compute entropy (H(e))
- 6. Use p(e) to compute expectation (E(e))
- Change m; repeat from 1 to 6
- Plot H(e) versus m and E(e) versus m

Error entropy criterion

- Goal of adaptation is to remove as much uncertainty as possible from the error signal
 - Change y(n) in a way to reduce the entropy of e(n)
 - i.e. Adjust weights of adaptive system in a way to reduce H(e(n))

MEE – visual representation

Example 1

Fit with y = m.x + c

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 1$
 $MSE = 173.97$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 1.5$
 $MSE = 46.49$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 1.75$
 $MSE = 13.78$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 2$
 $MSE = 1.76$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 2.25$
 $MSE = 10.42$

Squared error versus m

		-599	-500	3
Error frequencies		-499	-400	1
		-399	-300	2
13	-157	-299	-200	2
18	-158	-199	-100	4
3	-202	-99	0	5
-7	-380	1	100	3
-3	-278	101	200	0
-48	-478	201	300	0
-52	-356	301	400	0
-73	-543	401	500	0
-122	-500	501	600	0
-108	-747	601	700	0
		701	800	

Plotting error distribution

Error distribution

Fit with
$$y = m.x + c$$

$$C = 0$$

$$m = 1$$

Entropy =
$$2.228$$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 1.5$

Entropy =
$$1.2954$$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 1.75$

Entropy =
$$0.721928$$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 2.25$

Entropy =
$$0.747584$$

Fit with
$$y = m.x + c$$

 $C = 0$
 $m = 2.5$

Entropy =
$$1.468994$$

Validation (not correlation – correntropy)

- X: input; Z: target; and Y:prediction
- Through MEE we got Y
- How close Z and Y?
- If it is MSE then correlation
 - We want more correlation
- Since it is MEE we use correntropy
 - We want more correntropy

Correntropy between two random variables, Y and Z

$$v(Z,Y) = E_{ZY}[G_{\sigma}(Z-Y)] = \int \int G_{\sigma}(z-y)p(z,y)dzdy$$

