ENGINEERING TEST REPORT

900 MHz OEM DTS Module Model No.: ASP-000030-00 FCC ID: YTGG1XX08P25DRCM

Applicant:

Aeryon Labs Inc 584 Colby Drive Unit 1 Waterloo, Ontario Canada N2V 1A2

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Digital Modulation Systems (DTS) Operating in 902 - 928 MHz Band

UltraTech's File No.: AERY-005AF15C247

This Test report is Issued under the Authority of Tri M. Luu, BASc Vice President of Engineering UltraTech Group of Labs

Date: November 11, 2010

Report Prepared by: Dan Huynh Tested by: Mr. Hung Trinh

Issued Date: November 11, 2010 Test Dates: July 14 & November 11, 2010

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: wic@ultratech-labs.com, Email: wic@ultratech-labs.com, Email: wic@ultratech-labs.com, Email: www.ultratech-labs.com, <a href="ww

 $ar{L}$

FCC

91038

1309

46390-2049

NvLap Lab Code 200093-0

SL2-IN-E-1119R

TABLE OF CONTENTS

EXHIBIT	1.	INTRODUCTION	1
1.1.			
1.2.		ED SUBMITTAL(S)/GRANT(S)	
1.3.	NORM.	ATIVE REFERENCES	1
EXHIBIT	2.	PERFORMANCE ASSESSMENT	2
2.1.	CLIEN	INFORMATION	2
2.2.	EQUIP	MENT UNDER TEST (EUT) INFORMATION	2
2.3.		FECHNICAL SPECIFICATIONS	
2.4.	ANTEN	NA DESCRIPTION	3
2.5.	LIST O	FEUT'S PORTS	3
2.6.	ANCIL	LARY EQUIPMENT	3
EXHIBIT	3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	4
3.1.		TE TEST CONDITIONS	
3.2.		TIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	
EXHIBIT	4.	SUMMARY OF TEST RESULTS	5
4.1.		ION OF TESTS	
4.2.	APPLIC	ABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	5
4.3.	MODIF	ICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	5
EXHIBIT	5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	6
5.1.	TEST P	ROCEDURES	6
5.2.	MEASU	FREMENT UNCERTAINTIES	6
5.3.		REMENT EQUIPMENT USED	
5.4.	ESSEN'	FIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER	6
5.5.		CONDUCTED OUTPUT POWER - DTS [§ 15.247(B)(3)]	
5.6.		MITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]	
5.7.	RFEXE	OSURE REQUIRMENTS [§§ 15.247(1), 1.1310 & 2.1091]	
EXHIBIT	6.	TEST EQUIPMENT LIST	17
EXHIBIT	7.	MEASUREMENT UNCERTAINTY	18
7.1.	LINEC	ONDUCTED EMISSION MEASUREMENT UNCERTAINTY	18
7.2		TED EMISSION ME A SUDEMENT UNCEDTAINTY	

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.247
Title:	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15
Purpose of Test:	Class II Permissive Change filing for additional antenna and co-location with FCC ID: YTGG1XXDRCM08P25 and operating in DTS mode only.
Test Procedures:	American National Standards Institute ANSI C63.10 - American National Standard for Testing Unlicensed Wireless Devices
Environmental Classification:	[x] Commercial, industrial or business environment [] Residential environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
47 CFR Parts 0-19	2009	Code of Federal Regulations (CFR), Title 47 – Telecommunication
ANSI C63.10	2009	American National Standard for Testing Unlicensed Wireless Devices
ANSI C63.4	2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 & EN 55022	2008-09, Edition 6.0 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances
KDB Publication No. 558074	2005	Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Aeryon Labs Inc.	
Address:	584 Colby Drive Unit 1 Waterloo, Ontario Canada N2V 1A2	
Contact Person:	Mr. Stephen Marchetti Phone #: 519-489-6726 x213 Fax #: 519-489-6726 Email Address: stephen@aeryon.com	

MANUFACTURER		
Name:	Microhard Systems Inc.	
Address:	#17, 2135 - 32nd Avenue N.E. Calgary, Alberta Canada T2E 6Z3	
Contact Person:	Mr. Hany Shenouda Phone #: 403 248-0028 Fax #: 403 248-2762 Email Address: shenouda@microhardcorp.com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Aeryon Labs Inc.
Product Name:	900 MHz OEM DTS Module
Model Name or Number:	ASP-000030-00
Serial Number:	Test Sample
Type of Equipment:	Digital Transmission System
Input Power Supply Type:	External Regulated DC Sources
Primary User Functions of EUT:	Spread Spectrum OEM Transceiver.

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	MobileBase Station (fixed use)	
Intended Operating Environment:	Commercial, industrial or business environment	
Power Supply Requirement: 3.3 VDC		
RF Output Power Rating:	0.001 to 1 W	
Operating Frequency Range:	903.75 - 926.25 MHz	
RF Output Impedance:	50 Ω	
Duty Cycle:	Continuous	
Antenna Connector Type:	MMCX	

2.4. ANTENNA DESCRIPTION

Manufacturer:	Aeryon Labs Inc
Type:	900 MHz Sleeve Dipole
Model: Aeryon Scout 900Mhz	
Frequency Range:	915 MHz +/- 15 MHz
Impedance: 50Ω	
Gain (dBi):	2

2.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	RF IN/OUT Port	1	MMCX	Shielded coaxial cable with unique coupling connectors
2	DC Supply & I/O Port	1	Pin Header	No cable, direct connection

2.6. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Test Jig	
Brand name:	Aeryon Labs Inc.	
Connected to EUT's Port:	I/O Port	

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power Input Source:	3.3 VDC

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	Each of lowest, middle and highest channel frequencies transmits continuously for emissions measurements.
Special Test Software & Hardware:	Special software provided by the applicant was installed to allow the EUT to operate at each channel frequency continuously. For example, the transmitter will be operated at each of lowest, middle and highest frequencies individually continuously during testing.
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of normal intended use.

Transmitter Test Signals	
Frequency Band(s):	903.75 - 926.25 MHz
Frequency(ies) Tested: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	903.75, 915.75 and 926.25 MHz
RF Power Output: (measured maximum output power at antenna terminals)	1 Watt (conducted)
Normal Test Modulation:	2-level FSK at 1.3 Mbps
Modulating Signal Source:	Internal

FCC ID: YTGG1XX08P25DRCM

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2011-05-01.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Section(s)	Test Requirements	Compliance (Yes/No)
15.207(a)	Power Line Conducted Emissions	See note
15.247(a)(2)	6 dB Bandwidth	See note
15.247(b)(3)	Peak Conducted Output Power - DTS	Yes
15.247(d)	Band-Edge and RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	See note
15.247(d), 15.209 & 15.205	Transmitter Spurious Radiated Emissions	Yes
15.247(e), (f)	Power Spectral Density	See note
15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093	RF Exposure	Yes
NOTE: Tests are	not required for this Class II Permissive Change.	

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

FCC ID: YTGG1XX08P25DRCM

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.10 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Please refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER

The ASP-000030-00 is a high-performance embedded wireless data transceiver. Operating in the 902 - 928 MHz ISM band, this module is capable of providing reliable wireless data transfer between almost any type of equipment which uses an asynchronous serial interface. The small-size and superior RF performance of this module make it ideal for many applications.

5.5. PEAK CONDUCTED OUTPUT POWER - DTS [§ 15.247(b)(3)]

5.5.1. Limit(s)

§ 15.247(b)(3): For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

§15.247(b)(4): The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.5.2. Method of Measurements & Test Arrangement

KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247)

5.5.3. Test Arrangement

5.5.4. Test Data

Frequency (MHz)	Peak Conducted Power (dBm)	Peak EIRP (dBm) (see note)	Peak Conducted Power Limit (dBm)	EIRP Limit (dBm)
903.75	29.90	31.90	30	36
915.75	29.69	31.69	30	36
926.25	29.49	31.49	30	36

Note: The EIRP value shall be derived by adding the maximum antenna gain to measured peak conduct power value.

Plot 5.5.4.1. Peak Conducted Output Power

Plot 5.5.4.2. Peak Conducted Output Power

Plot 5.5.4.3. Peak Conducted Output Power

5.6. TRANSMITTER SPURIOUS RADIATED EMISSIONS AT 3 METERS [§§ 15.247(d), 15.209 & 15.205]

5.6.1. Limit

§ 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Section 15.205(a) - Restricted Bands of Operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42-16.423	399.9-410	4.5–5.15
1 0.495–0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125–4.128	25.5-25.67	1300–1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0-9.2
4.20725–4.20775	73–74.6	1645.5-1646.5	9.3-9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25-13.4
6.31175–6.31225	123–138	2200-2300	14.47-14.5
8.291–8.294	149.9–150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625–8.38675	156.7-156.9	2655–2900	22.01-23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29–12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975–12.52025	240-285	3345.8–3358	36.43-36.5
12.57675–12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Section 15.209(a) Field Strength Limits within Restricted Frequency Bands --

Tield Strength Linnts within Nestricted Frequency Bands						
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)				
0.009 - 0.490 0.490 - 1.705 1.705 - 30.0 30 - 88 88 - 216 216 - 960	2,400 / F (kHz) 24,000 / F (kHz) 30 100 150 200	300 30 30 3 3 3				
Above 960	500	3				

File #: AERY-005AF15C247

² Above 38.6

5.6.2. Method of Measurements

KDB Publication No. 558074 - Guidance on Measurements for Digital Transmission Systems (47 CFR 15.247) and ANSI C63.10.

5.6.3. Test Arrangement

5.6.3.1. General Test Configuration for Transmitters Radiated Spurious Emissions and Co-location, Opened Enclosure

5.6.3.2. Test Configuration for Co-location Transmitters Radiated Emissions, Closed Enclosure

5.6.4. Test Data

5.6.4.1. Simultaneous Transmission Data (900 MHz Module with 2 dBi 900MHz Sleeve Antenna and 2.4 GHz WLAN Module with 2 dBi 2.4 GHz Folding Dipole Board Mount Antenna)

Test Freque	encies:	915.75 MF	915.75 MHz and 2437 MHz			
Power Setti	ng:	Highest po	Highest power setting for both modules			
Frequency	Test Range:	30 MHz –	30 MHz – 25 GHz			
Comments:		Tests were performed in the configurations specified in sections 5.6.3.1 and 5.6.3.2 of the present document.				
Frequency (MHz)	RF RF Antenna Limit Limit requency Peak Level Avg Level Plane 15.209 15.247 Margin Pass/					
No intermodulation product levels were detected in excess of 20 dB below the specified limit.						

5.6.4.2. Transmitter Spurious Radiated Emissions from 900 MHz Module with 2 dBi 900MHz Sleeve Dipole Antenna

Test Freque	ency:	903.75 M	Hz				
Test Condit	ions:	DTS mod	DTS mode				
Test Freque	ency Range:	30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBμV/m)	Margin (dB)	Pass/ Fail
903.75	125.18	-	V				
903.75	123.53		Н				
2711.25	48.87	34.69	Н	54.0	105.2	-19.3	Pass*
3615.00	49.78	36.37	V	54.0	105.2	-17.6	Pass*
3615.00	47.99	35.18	Н	54.0	105.2	-18.8	Pass*
NOTE 1: All other spurious emissions and harmonics are more than 20 dB below the applicable limit.							
NOTE 2:	* = Emission v	vithin the restr	ricted frequenc	cy bands.			

Test Freque	ency:	915.75 M	Hz				
Test Condit	ions:	DTS mod	е				
Test Freque	ency Range:	30 MHz – 10 GHz					
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
915.75	122.05		٧				
915.75	121.35		Н				
3663.00	48.20	34.80	V	54.0	102.1	-19.2	Pass*
3663.00	48.19	36.64	Н	54.0	102.1	-17.4	Pass*
NOTE 1: All other spurious emissions and harmonics are more than 20 dB below the applicable limit.							
NOTE 2:	NOTE 2: * = Emission within the restricted frequency bands.						

Test Freque	ency:	927.6 MH	lz				
Test Condit	ions:	DTS mode					
Test Freque	ency Range:	30 MHz –	- 10 GHz				
Frequency (MHz)	RF Peak Level (dBµV/m)	RF Avg Level (dBµV/m)	Antenna Plane (H/V)	Limit 15.209 (dBµV/m)	Limit 15.247 (dBµV/m)	Margin (dB)	Pass/ Fail
926.25	121.36		٧				
926.25	119.12		Н				
3705.00	50.71	37.57	V	54.0	101.4	-16.4	Pass*
3705.00	48.16	36.00	Н	54.0	101.4	-18.0	Pass*
NOTE 1:	All other couri	oue omiccione	and harmon	ice are more t	han 20 dB hale	ow the applied	abla limit

NOTE 1: All other spurious emissions and harmonics are more than 20 dB below the applicable limit.

NOTE 2: * = Emission within the restricted frequency bands.

5.7. RF EXPOSURE REQUIRMENTS [§§ 15.247(i), 1.1310 & 2.1091]

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation.

FCC 47 CFR § 1.1310:

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(A) Limits for Occupational/Controlled Exposures								
0.3–3.0	614	1.63	*(100)	6				
3.0–30	1842/f	4.89/f	*(900/f ²)	6				
30–300	61.4	0.163	1.0	6				
300–1500			f/300	6				
1500–100,000			5	6				
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure					
0.3–1.34	614	1.63	*(100)	30				
1.34–30	824/f	2.19/f	*(180/f ²)	30				
30–300	27.5	0.073	0.2	30				
300-1500			f/1500	30				
1500–100,000			1.0	30				

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

5.7.1. Method of Measurements

Refer to Sections 1.1310, 2.1091

In order to demonstrate compliance with MPE requirements (see Section 2.1091), the following information is typically needed:

- (1) Calculation that estimates the minimum separation distance (20 cm or more) between an antenna and persons required to satisfy power density limits defined for free space.
- (2) Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement
- (3) Any caution statements and/or warning labels that are necessary in order to comply with the exposure limits
- (4) Any other RF exposure related issues that may affect MPE compliance

Calculation Method of RF Safety Distance:

$$S = \frac{P \cdot G}{4 \cdot \pi \cdot r^2} = \frac{EIRP}{4 \cdot \pi \cdot r^2}$$

Where: P: power input to the antenna in mW

EIRP: Equivalent (effective) isotropic radiated power

S: power density mW/cm²

G: numeric gain of antenna relative to isotropic radiator

r: distance to centre of radiation in cm

5.7.2. RF Evaluation

Evaluation of RF Exposure Compliance Requirements					
RF Exposure Requirements	Compliance with FCC Rules				
Minimum calculated separation distance between antenna and persons required: *15 cm (see note)	Manufacturer' instruction for separation distance between antenna and persons required: 23 cm.				
Antenna installation and device operating instructions for installers (professional/unskilled users), and the parties responsible for ensuring compliance with the RF exposure requirement	Antenna installation and device operating instructions shall be provided to installers to maintain and ensure compliance with RF exposure requirements.				
Caution statements and/or warning labels that are necessary in order to comply with the exposure limits	Refer to User's Manual for RF Exposure Information.				
Any other RF exposure related issues that may affect MPE compliance	None.				

NOTE:

Antenna No.	1	2	Total
Frequency (MHz)	903.75	2412	
MPE Limit (mW/cm ²)	0.60	1.00	
Power (W)	1.000	0.063	1.063
Antenna Gain (dBi)	2.00	2.00	
EIRP (W)	1.585	0.099	1.68

The minimum separation distance between the antenna and bodies of users are calculated using the following formula:

$$r = \sqrt{\frac{P \cdot G}{4 \cdot \pi \cdot S}} = \sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}}$$

 $S = 0.60 \text{ mW/cm}^2 \text{ (Worst Case)}; EIRP = 1.68 \text{ W} = 1680 \text{ mW}$

(Minimum Safe Distance, r) =
$$\sqrt{\frac{EIRP}{4 \cdot \pi \cdot S}} = \sqrt{\frac{1680}{4 \cdot \pi \cdot (0.60)}} \approx 15cm$$

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz with external mixer	10 Aug 2010
Power Meter	Hewlett Packard	8900D	2131A01044	100 kHz – 18 GHz	24 Jun 2011
Spectrum Analyzer	Hewlett Packard	8593EM	3412A00103	9 kHz – 26.5 GHz	5 Oct 2010
RF Amplifier	Com-Power	PA-103A	161243	10 MHz – 1 GHz	2 Nov 2011
RF Amplifier	Hewlett Packard	84498	3008A00769	1 – 26.5 GHz	2 Nov 2011
Horn Antenna	ETS-Lindgren	360-09	00118385	18 – 26.5 GHz	1 Jul 2011
Horn Antenna	Emco	3155	9701-6570	1 – 18 GHz	20 Nov 2010
Biconnilog Antenna	ETS-Lindgren	3142B	1575	26 MHz – 2 GHz	25 Apr 2011
High Pass Filter	K&L	11SH10-1500/T8000	2	Cut off 900 MHz	Cal.on use
High Pass Filter	K&L	11SH10-4000/T12000	4	Cut off 2.4 GHz	Cal.on use
Attenuator	Narda	4768-20	-	DC - 40 GHz	Cal.on use

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (150 kHz – 30 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 1.57	<u>+</u> 1.8
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.14	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} \sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration