Node-screening tests for the ℓ_0 -penalized least-squares problem

Theo Guyard * , Cedric Herzet † , Clement Elvira ‡ ICASSP 2022

^{*} Univ Rennes, INSA Rennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France

[†] INRIA Rennes-Bretagne Atlantique, Campus de Beaulieu, 35000 Rennes, France

[‡] SCEE/IETR UMR CNRS 6164, CentraleSupélec, 35510 Cesson Sévigné, France

Table of contents

- 1. The ℓ_0 -penalized least-squares problem
- 2. Branch-and-bound algorithms
- 3. Node-screening tests
- 4. Some numerical results

problem

The ℓ_0 -penalized least-squares

Sparse-linear problem

Ingredients of the problem:

- An observation $y \in \mathbb{R}^m$
- A dictionary $A = [a_i]_{i=1}^n \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Sparse-linear problem

Ingredients of the problem:

- An observation $y \in \mathbb{R}^m$
- A dictionary $A = [a_i]_{i=1}^n \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Objectives:

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse

Sparse-linear problem

Ingredients of the problem:

- An observation $y \in \mathbb{R}^m$
- A dictionary $A = [a_i]_{i=1}^n \in \mathbb{R}^{m \times n}$ (columns \equiv atoms)

Objectives:

- Approximate the observation as a linear combination of the atoms
- The linear combination must be sparse

Problem

Find x sparse such that $y \simeq Ax$

The vector x weights each atom in the approximation.

ℓ_0 -penalized problem

Idea: Solve the problem

ℓ_0 -penalized least-squares

$$p^{\star} = \begin{cases} \min & \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0} \\ \text{s.t.} & \|\mathbf{x}\|_{\infty} \le M \end{cases}$$
 (P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

ℓ_0 -penalized problem

Idea: Solve the problem

ℓ_0 -penalized least-squares

$$p^{*} = \begin{cases} \min & \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0} \\ \text{s.t.} & \|\mathbf{x}\|_{\infty} \le M \end{cases}$$
 (P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

Problem
$$(P)$$
 $\xrightarrow{\text{reformulation}}$ Mixed-Integer Program

ℓ_0 -penalized problem

Idea: Solve the problem

ℓ_0 -penalized least-squares

$$p^{*} = \begin{cases} \min & \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{0} \\ \text{s.t.} & \|\mathbf{x}\|_{\infty} \le M \end{cases}$$
 (P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

Problem
$$(P)$$
 $\xrightarrow{\text{reformulation}}$ Mixed-Integer Program

Properties:

- Quadratic objective
- Linear constraints
- Continuous and integer variables
- Combinatorial problem
- Can be addressed with Branch-and-Bound (BnB) algorithms

Branch-and-bound algorithms

Branch-and-bound principle

Idea:

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
- → In a nutshell : explore a decision tree and prune uninteresting nodes

Branch-and-bound principle

Idea:

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
- → In a nutshell : explore a decision tree and prune uninteresting nodes

Node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \bar{\mathcal{S}})$ where :

- S_0 : indices of x fixed to zero
- ullet \mathcal{S}_1 : indices of x fixed to non-zero
- ullet $ar{\mathcal{S}}$: indices not fixed yet

Branch-and-bound principle

Idea:

- Enumerate all feasible solutions
- Use rules to discard irrelevant candidates
- → In a nutshell : explore a decision tree and prune uninteresting nodes

Node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \bar{\mathcal{S}})$ where :

- S_0 : indices of x fixed to zero
- ullet \mathcal{S}_1 : indices of x fixed to non-zero
- \bullet $\bar{\mathcal{S}}$: indices not fixed yet

Processing node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \bar{\mathcal{S}})$

Question: Does any global solution matches the current constraints?

Processing node $\nu = (S_0, S_1, \bar{S})$

Question: Does any global solution matches the current constraints?

Relaxed problem at node ν

$$p_{I}^{\nu} = \begin{cases} \min & \frac{1}{2} \| y - Ax \|_{2}^{2} + \frac{\lambda}{M} \| x_{\bar{S}} \|_{1} + \lambda |\mathcal{S}_{1}| \\ \text{s.t.} & \| x \|_{\infty} \leq M, \ x_{\mathcal{S}_{0}} = 0 \end{cases}$$
 (P_{I}^{ν})

Let p_u be an upper bound on p^* . If $p_u < p_l^{\nu}$, then no optimizers of (P) can match the constraints of node ν .

Exploration and pruning process

Exploration and pruning process

Node-screening tests

Dual problem

Question: Is it possible to detect nodes that cannot yield a global optimizers without processing them?

Dual problem

Question: Is it possible to detect nodes that cannot yield a global optimizers without processing them?

Dual problem at node ν

$$\max_{\mathbf{u} \in \mathbb{R}^m} \left\{ \mathbf{D}^{\nu}(\mathbf{u}) \triangleq \frac{1}{2} \|\mathbf{y}\|_2^2 - \frac{1}{2} \|\mathbf{y} - \mathbf{u}\|_2^2 - \sum_{i \in \bar{\mathcal{S}}} [\gamma(\mathbf{a}_i^\mathsf{T} \mathbf{u})]_+ - \sum_{i \in \mathcal{S}_1} \gamma(\mathbf{a}_i^\mathsf{T} \mathbf{u}) \right\} \ (D^{\nu})$$

Dual problem

Question: Is it possible to detect nodes that cannot yield a global optimizers without processing them?

Dual problem at node ν

$$\max_{\mathbf{u} \in \mathbb{R}^m} \left\{ \mathbf{D}^{\nu}(\mathbf{u}) \triangleq \frac{1}{2} \|\mathbf{y}\|_2^2 - \frac{1}{2} \|\mathbf{y} - \mathbf{u}\|_2^2 - \sum_{i \in \bar{\mathcal{S}}} [\gamma(\mathbf{a}_i^\mathsf{T} \mathbf{u})]_+ - \sum_{i \in \mathcal{S}_1} \gamma(\mathbf{a}_i^\mathsf{T} \mathbf{u}) \right\} \ (D^{\nu})$$

- One common term
- Terms corresponding to the current constraints
- The "pivot" function is defined as $\gamma(t) = M|t| \lambda$

Dual objective link

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

At node ν , let i be an unfixed index. Then $\forall u \in \mathbb{R}^m$,

$$\begin{split} \mathrm{D}^{\nu \cup \{x_i = 0\}}(\mathbf{u}) &= \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_i^\mathsf{T}\mathbf{u})]_+ \\ \mathrm{D}^{\nu \cup \{x_i \neq 0\}}(\mathbf{u}) &= \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_i^\mathsf{T}\mathbf{u})]_- \end{split}$$

Dual objective link

Direct consequence : The objective of two consecutive nodes differs from one term.

Dual objective link

At node ν , let i be an unfixed index. Then $\forall u \in \mathbb{R}^m$,

$$\begin{split} \mathrm{D}^{\nu \cup \{x_i = 0\}}(\mathbf{u}) &= \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_i^\mathsf{T}\mathbf{u})]_+ \\ \mathrm{D}^{\nu \cup \{x_i \neq 0\}}(\mathbf{u}) &= \mathrm{D}^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_i^\mathsf{T}\mathbf{u})]_- \end{split}$$

- $\forall u, D^{\nu}(u) \leq p_{l}^{\nu}$: the dual objective can also be used to prune nodes.
- At a given node, we may be able to prune subnodes without processing them.

Node-screening test

Node-screening test

Given an upper bound p_u on p^* and a dual point $u \in \mathbb{R}^m$,

$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{+} > p_{u} \implies \text{Fix } x_{i} \neq 0 \text{ at node } \nu$$

 $D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{-} > p_{u} \implies \text{Fix } x_{i} = 0 \text{ at node } \nu$

Node-screening test

Node-screening test

Given an upper bound p_u on p^* and a dual point $u \in \mathbb{R}^m$,

$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{+} > p_{u} \implies \text{Fix } x_{i} \neq 0 \text{ at node } \nu$$
$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{-} > p_{u} \implies \text{Fix } x_{i} = 0 \text{ at node } \nu$$

Practical use : If a node-screening test is passed at node ν , one can immediately fix a new variable at this node.

Node-screening test

Node-screening test

Given an upper bound p_u on p^* and a dual point $u \in \mathbb{R}^m$,

$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{+} > p_{u} \implies \text{Fix } x_{i} \neq 0 \text{ at node } \nu$$
$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{-} > p_{u} \implies \text{Fix } x_{i} = 0 \text{ at node } \nu$$

Practical use : If a node-screening test is passed at node ν , one can immediately fix a new variable at this node.

Nesting property : If multiple node-screening tests are passed, the corresponding variables can be fixed simultaneously.

Consequence of passing a node-screening test

Consequence : Less nodes are explored by the BnB algorithm.

Synthetic setups:

- 1. Generate the dictionary randomly (low or high correlation)
- 2. Generate a k-sparse vector x^*
- 3. Set $y = Ax^* + noise$
- 4. Tune λ and M to (hopefully) recover x^* by solving (P)

Synthetic setups:

- 1. Generate the dictionary randomly (low or high correlation)
- 2. Generate a k-sparse vector x^*
- 3. Set $y = Ax^* + noise$
- 4. Tune λ and M to (hopefully) recover x^* by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a tailored BnB with node-screening tests.

Synthetic setups:

- 1. Generate the dictionary randomly (low or high correlation)
- 2. Generate a k-sparse vector x^*
- 3. Set $y = Ax^* + noise$
- 4. Tune λ and M to (hopefully) recover x^* by solving (P)

Methods compared : CPLEX (commercial solver), a tailored BnB and a tailored BnB with node-screening tests.

		CPLEX		BnB		BnB+scr	
Corr.	Sparsity	Nodes	Time	Nodes	Time	Nodes	Time
Low	k = 3	16	13.13	19	0.29	15	0.18
	k = 5	96	25.89	70	1.5	56	0.75
	k = 7	292	60.84	180	5.14	152	3.02
High	k = 3	76	1.73	79	0.38	60	0.26
	k = 5	1,424	10.18	965	6.39	725	4.18
	k = 7	17,647	106.45	10,461	79.29	7,881	52.16