a presentation on

BOOLEAN ALGEBRA

team LONELY HEARTS CLUB

table of CONTENTS

- BOOLEAN FUNCTIONS & EXPRESSIONS
- IDENTITIES OF BOOLEAN ALGEBRA
- DUALITY
- SUM OF PRODUCTS EXPANSION
- FUNCTIONAL COMPLETENESS
- LOGIC GATES
- ADDERS
- K MAPS
- QUINE-MCCLUSKEY

Shajiratul Yakeen

THE BASICS

The entire field of Boolean Algebra is based on 2 elements

0

1

and 3 operations

and

or 4

not -

BOOLEAN EXPRESSIONS

Any finite combinations of Boolean elements and Boolean operators

Always evaluates to either 0 or 1

BOOLEAN FUNCTIONS

$$B = \{0,1\}$$

$$B^{n} = \{(x_{1}, x_{2}, ..., x_{n}) : x_{i} \in B \text{ for } 1 \le i \le n\}$$

$$F: B^n \rightarrow B$$

e.g.
$$F(x,y,z) = xy + \overline{z}$$

Samia Zaman

IDENTITIES

NAME	IDENTITY
Law of the Double Complement	$\overline{\overline{x}} = x$
Idempotent Law	x + x = x $x \cdot x = x$
Domination Law	x + 1 = 1 x.0 = 0
De Morgan's Law	$(\overline{x.y}) = \overline{x} + \overline{y}$ $(\overline{x + y}) = \overline{x}.\overline{y}$

IDENTITIES

The Absorption Law

$$x.(x+y) = x$$

$$\mathbf{x.(x+y)} = (x+0).(x+y)$$
 | Identity Law |
 $= x + 0.y$ | Distributive Law |
 $= x + y.0$ | Commutative Law |
 $= x + 0$ | Domination Law |
 $= \mathbf{x}$ | Identity Law

Mostafijur Rahman

DUALS

$$x.(y+1) \rightarrow x+(y.0)$$

 $\overline{x}.1+(\overline{y}+z) \rightarrow (\overline{x}+0).(\overline{y}.z)$

DUALITY PRINCIPLE

$$F = F^{D}$$

* independent of the function F

Tasmia Rahman

MINTERM

$$y = x$$
 $y = \overline{x}$

LITERAL

$$x_1x_2...x_n$$

SUM OF PRODUCTS EXPANSION

$$F = \overline{x}\overline{y}z + x\overline{y}\overline{z} + xy\overline{z}$$

* aka Conjunctive Normal Form

kazi Nafi

FUNCTIONAL COMPLETENESS

1
$$\left\{ \begin{array}{c} \bullet & + & + \\ \end{array} \right\}$$

2 $\left\{ \begin{array}{c} \bullet & - \\ \end{array} \right\}$

since $x+y=\overline{x}\overline{y}$ (De Morgan's Law)

3 $\left\{ \begin{array}{c} \end{array} \right\}$

since $\overline{x}=x|x, \ xy=(x|y)|(x|y)$

Zinath Tasmia

LOGIC GATES

The 3 basic gates

NOT

input	output
Х	x
0	1
1	0

AND

inp	out	output
х	у	x+y
0	0	0
0	1	0
1	0	0
1	1	1

OR

inț	out	output
х	у	x+y
0	0	0
0	1	1
1	0	1
1	1	1

COMBINATION OF GATES

AN APPLICATION

Majority Voting Circuit

х	0	0	0	0	1	1	1	1
У	0	0	1	1	0	0	1	1
z	0	1	0	1	0	1	0	1
М	0	0	0	1	0	1	1	1

TRUTH TABLE

$$M = xy+yz+zx$$

Rifat Sultana

HALF ADDER

HALF ADDER

inp	out	out	put
х	у	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

TRUTH TABLE

CIRCUIT

FULL ADDER

	input	1	out	put
х	у	Ci	S	C _{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$s = xyc_i + xyc_i + xyc_i + xyc_i$$

$$c_{i+1} = xyc_i + xyc_i + xyc_i + xyc_i$$

TRUTH TABLE

SOP EXPANSION

CIRCUIT

Tanzeem Ahmed

K MAP

Working Principle:

- select nxn K Map (n = number of variables)
- 2. put 1s and 0s
- 3. identify blocks
- 4. cover the blocks
- 5. express function

K MAP

for 2 variables

 y
 y

 x
 xy
 xy

 x
 xy
 xy

for 3 variables

	yz	ӯZ	ÿ̄Z̄	ӯz
X	xyz	xȳz	xÿ̄z̄	хӯz
X	хуz	хуz̄	x ȳz	х̄ӯz

for 4 variables

	yz	ȳz̄	ӯ̄̄	ӯz
wx	xyzw	xȳzw	xÿ̄zw	xÿzw
ѿх	xyzw	xyzw	xÿzw	xyzw
w̄x̄	_ xyzw	 xyzw	 xyzw	 xyzw
wx̄	xyzw	- xyzw	 xyzw	 xyzw

K MAP

e.g.
$$xy+\overline{x}y = y$$

by Irteza Asif

Working Principle:

- 1. arrange minterms
- 2. identify single-bit changes
- 3. repeat until we get all prime implicants
- 4. make prime implicant table
- 5. compare the prime implicants
- select the essentials

for 2 variables

Group of 1s	String	Minterm
0	00	х̄ӯ
1	01	Хy
1	10	хÿ
2	11	ху

for 3 variables

Group of 1s	String	Minterm
0	000	⊼ӯ̄₹
	001	Σ̄ӯz
1	010	ΣӯZ
	100	xȳz̄
	011	хуz
2	101	xȳz
	110	xȳz
3	111	xyz

e.g. **XYZ+XŸZ+XYZ+XŸZ**

Group of 1s	String	Minterm				_		
0	000	⊼ӯ̄z̄		String	Minterm		Chuina	V.
2	011	-Xyz	-	-11	-yz -	-	String	Mi
Ζ	101	×ÿz		1-1	-XZ-		1	
3	111	×yz						

e.g.
$$xyz+x\overline{y}z+\overline{x}yz+\overline{x}\overline{y}\overline{z} = z+\overline{x}\overline{y}\overline{z}$$

	Minterms							Minterms		
	xyz	х у z	xyz	xyz				xyz	х у z	xyz
ESP					\rightarrow	ESP	z	~	✓	~
$\overline{x}\overline{y}\overline{z}$						LSF	xyz			

Step 1 Step 2

#