Climate Variability

November 11, 2019

Variability

Forced vs Internal

external factors

interactions between elements of climate system

Climate **modes**: internal variability that manifests in patterns and structures, typically defined by an **index**

Teleconnections: variability correlations between remote regions

Variability Timescales

Timescale

	days	years			thousands of years			millions of years			
	h/d	W	m	у	10 y	10 ² y	10 ³ y	10⁴y	10 ⁵ y	10 ⁶ y	10 ⁹ y
Weather											
Land surface											
Ocean mixed layer											
Sea ice											
Volcanos											
Vegetation											
Thermocline				$\overline{\mathbf{O}}$							
Mountain glaciers											
Deep ocean											
Ice sheets											
Orbital forcing											
Tectonics											
Weathering											
Solar "constant"											

Marshall and Plumb 2008

MJO: Madden-Julien Oscillation

ENSO: El Nino Southern

Oscillation

NAO: North Atlantic Oscillation

SAM: Southern Annular Mode

PDO: Pacific Decadal Oscillation

AMO: Atlantic Meridional

Oscillation

Variability Modes

Walker Circulation

Southern Oscillation Index, "SOI":

$$\frac{10}{\sigma_{\Delta SLP}} \Delta SLP_{Pacific} = \frac{10}{\sigma_{\Delta SLP}} (SLP^*_{Tahiti} - SLP^*_{Darwin})$$

$$SOI > 0$$

warmer water

thermocline

colder water upwelling

El Nino Anomaly

Southern Oscillation Index, "SOI":

$$\frac{10}{\sigma_{\Delta SLP}} \Delta SLP_{Pacific} = \frac{10}{\sigma_{\Delta SLP}} (SLP^*_{Tahiti} - SLP^*_{Darwin})$$

$$SOI < 0$$

El Nino Index, "Nino3.4":

$$\overline{SST}^*(5S - 5N, 170W - 120W)$$

$$Nino3.4 > 0.4^{\circ}C$$

120 W

Tahiti

warmer water

thermocline

colder water

upwelling

El Nino Anomaly

El Nino Southern Oscillation Warmer water (ENSO) termocline

Southern Oscillation Index, "SOI":

$$\frac{10}{\sigma_{\Delta SLP}} \Delta SLP_{Pacific} = \frac{10}{\sigma_{\Delta SLP}} (SLP^*_{Tahiti} - SLP^*_{Darwin})$$

$$SOI < 0$$

El Nino Index, "Nino3.4": $\overline{SST}^*(5S - 5N, 170W - 120W)$ $Nino3.4 > 0.4^{\circ}C$

100

120 99

Tahiti

colder water

upwelling

- Nino 1+2 (0-10S, 90W-80W)
- Nino 3 (5S-5N, 150W-90W)
- Nino 4 (5S-5N, 160E-150W)
- Mino 3.4 (5S-5N, 170W-120W), 5-month running mean, +/-0.4C

ENSO Time Series

ENSO Animations

El Nino

https://www.esrl.noaa.gov/psd/map/clim/sst_olr/old_sst/sst_8283_a nim.shtml

La Nina

https://www.esrl.noaa.gov/psd/map/clim/sst_olr/old_sst/sst_8889_a nim.shtml

ENSO Signal

December 1988

La Niña

ENSO Signal

North Atlantic Oscillation

Positive mode (NAO > 0): increased precipitation and "storminess" over

central Europe

Negative mode (NAO < 0): more zonal flow, cold air brougth across Mediterranean region

North Atlantic Oscillation, "NAO":
$$\Delta \frac{SLP^*_{NAtlantic}}{\sigma} = \frac{SLP^*_{Azores}}{\sigma} - \frac{SLP^*_{Iceland}}{\sigma}$$

North Atlantic Oscillation

Southern Annular Mode

Positive mode (SAM > 0): poleward shift and strengthening of surface winds, enhanced divergence and upwelling

Negative mode (SAM < 0): equatorward shift and weakening of surface winds, reduced divergence and upwelling

Southern Annular Mode, "SAM": $\Delta SLP_{Socean} = SLP^*_{40S} - SLP^*_{65S}$

40S

65S

Southern Annular Mode

Pacific Decadal Oscillation

Positive mode (PDO > 0): warm northern Pacific

Negative mode (PDO < 0): cool northern Pacific

Pacific Decadal Oscillation, "PDO": $\overline{SST}^*(20-70N, Pacific)$

Atlantic Meridional Oscillation

Positive mode (PDO > 0): warm northern Atlantic

Negative mode (*PDO* < 0): cool northern Atlantic

Atlantic Meridional Oscillation, "AMO": $\overline{SST}^*(0-60N,Atlantic)$