Computer Vision

6. Texture, Local Feature Points and Descriptors

I-Chen Lin

College of Computer Science
National Yang Ming Chiao Tung University

Objective

- Key issue: How do we find or match important features in images?
- ► Topics:
 - ► Texture and image features.
 - Pyramid of steerable filters.
 - ► SIFT

Some contents are from the reference lecture notes or project pages:

- D. Lowe, Lecture note "Distinctive Image Features from Scale-Invariant Keypoints", UBC, CA.
- O. Pele, the presentation slides of "SIFT: Scale Invariant Feature Transform."
- Prof. D. Lowe, Computer Vision, UBC, CA.
- Prof. T. Darrell, Computer Vision and Applications, MIT.
- Prof. D.A. Forsyth, Computer Vision, UIUC.
- http://graphics.cs.cmu.edu/people/efros/research/EfrosLeung.html

Object instance recognition

Image matching from photo collection

N. Snavely et al., "Photo Tourism: Exploring Photo Collections in 3D," Proc. ACM SIGGRAPH'06.

Tracking and correspondence

M.Brown, D.G. Lowe, "Recognising Panoramas," Proc. ICCV'03.

Texture

- We have taught how to find the import points, such as corners.
- Our next step is to analyze the local appearances for matching, tracking and so on.
- ► How to capture the essence of texture?

Repeated/structured

stochastic

Both?

Texture analysis

Compare textures and decide whether they are of the same "stuff".

Representing textures

- Observation
 - ► textures are made up of sub-elements, repeated over a region with similar statistical properties.
- Texture representation
 - Find the sub-elements, and represent their statistics ?!
- What filters can find the sub-elements?
 - Human vision suggests spots and oriented filters at a variety of different scales
- What statistics?
 - Mean of each filter response over region
 - Other statistics can also be useful

Derivative of Gaussian filters

Derivatives of Gaussian filters measure magnitudes and direction of image gradients.

Texture representation

Figure 9.6 of D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall.

Different scales

Figure 9.6 of D.A. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Prentice Hall.

Different scales

0 0 - 0

Responses of different scales

Multiscale with a Gaussian pyramid

Laplacian operation

2D Laplacian operation

$$\triangle f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

	1	
1	-4	1
	1	

Fig. from https://docs.opencv.org/3.4/d5/db5/tutorial_laplace_operator.html

The Laplacian pyramid

- Building a Laplacian pyramid:
 - First, create a Gaussian pyramid
 - ► Take the difference between one Gaussian pyramid level and the next
- A close approximation to the Laplacian.
- The coarsest level is the same as that in the Gaussian pyramid.
- Band pass filters: each level represents a different band of spatial frequencies
- Reconstructing the original image:
 - Reconstruct the Gaussian pyramid starting at top layer

The Laplacian pyramid

Create pyramid

Collapse pyramid

Figures from: http://sepwww.stanford.edu/ ~morgan/texturematch/paper_html/node3.html

Gaussian pyramid

The corresponding Laplacian pyramid

Oriented pyramids

Laplacian pyramid is orientation independent.

Apply an oriented filter to determine orientations at

each layer

Pyramid-based texture analysis/synthesis

Gabor filters

- Gabor filters: Product of a Gaussian with sine or cosine
 - Considering local spatial frequency

► Top row shows anti-symmetric (or odd) filters, bottom row the symmetric (or even) filters.

$$G_{antisymmetric}(x,y) = \sin(k_0x + k_1y) \exp{-\left\{\frac{x^2 + y^2}{2\sigma^2}\right\}}$$

$$G_{Symmetric}(x, y) = \cos(k_x x + k_y y) \exp{-\left\{\frac{x^2 + y^2}{2\sigma^2}\right\}}$$

Fundamental correspondence problems

- ► Feature matching for :
 - Scale
 - Rotation
 - Perspective
 - Occlusion
 - Illumination
 - Etc.

Scale Invariant Feature Transform

SIFT: by D.G.Lowe, UBC

- Transform image data into scale-invariant coordinates relative to local features
- ➤ Conf.: "Object Recognition from Local Scale-invariant Features," *Proc. Intl. Conf. Computer Vision (ICCV)*, vol.2, pp. 1150-1157, 1999. (citation 22162 at March 2022)
- ▶ Journal: "Distinctive Image Features from Scale-invariant Keypoints," *Intl. J. Computer Vision (IJCV)*, 60(2):91-110, 2004. (citation 66116 at March 2022)

SIFT (cont.)

- Detection and description of local features.
- Procedures:
 - Detection of scale-space.
 - Keypoint localization.
 - Orientation assignment.
 - Local descriptor of keypoint.

How to find the best scale-space?

Mikolajczyk [2002] found that the maxima and minia of scaled-normalized Laplacian-of-Gaussian produce the best notation of scale.

$$\sigma^2 \nabla^2 G$$

Automatic scale selection (Lindeberg et al., 1996)

Automatic scale selection

Find the extreme of Laplacian or DoG.

Laplacian of Gaussian (LoG)

Gaussian:

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}}$$

$$\frac{\partial G_{\sigma}(x,y)}{\partial x} = \frac{\partial}{\partial x} \left(\frac{1}{2\pi\sigma^{2}} e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}} \right) = \frac{1}{2\pi\sigma^{2}} \cdot \frac{\partial}{\partial x} e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}} = \frac{-x}{2\pi\sigma^{4}} \cdot e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}}$$

$$\frac{\partial^{2} G_{\sigma}(x,y)}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{-x}{2\pi\sigma^{4}} \right) \cdot e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}} + \frac{-x}{2\pi\sigma^{4}} \cdot \frac{\partial}{\partial x} \left(e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}} \right)$$

$$= \frac{-1}{2\pi\sigma^{4}} \cdot e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}} + \frac{-x}{2\pi\sigma^{4}} \cdot e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}} \cdot \frac{x}{-\sigma^{2}} = \left(\frac{x^{2}-\sigma^{2}}{2\pi\sigma^{6}} \right) \cdot e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}}$$

$$\frac{\partial^{2} G_{\sigma}(x,y)}{\partial y^{2}} = \left(\frac{y^{2}-\sigma^{2}}{2\pi\sigma^{6}} \right) \cdot e^{\frac{x^{2}+y^{2}}{-2\sigma^{2}}}$$

LoG:
$$LoG \equiv \Delta G_{\sigma}(x, y) = \frac{\partial^2 G_{\sigma}(x, y)}{\partial x^2} + \frac{\partial^2 G_{\sigma}(x, y)}{\partial y^2} = \left(\frac{x^2 + y^2 - 2\sigma^2}{2\pi\sigma^6}\right) \cdot e^{\frac{x^2 + y^2}{-2\sigma^2}}$$

Using Lapacian or DoG

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
Goal (Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

$$G_{\sigma}(x, y) = \frac{1}{2\pi\sigma^2} e^{\frac{x^2 + y^2}{-2\sigma^2}}$$

Approximate of LoG

Instead of direct evaluation, LoG can be approximated as:

$$\sigma \nabla^{2} G = \frac{\partial G}{\partial \sigma} \approx \frac{G(k\sigma) - G(\sigma)}{k\sigma - \sigma}$$

$$= \frac{-2\sigma^{2} + x^{2} + y^{2}}{2\pi\sigma^{5}} e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

$$= \frac{-2\sigma^{2} + x^{2} + y^{2}}{2\pi\sigma^{5}} e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

$$= \sigma \frac{-2\sigma^{2} + x^{2} + y^{2}}{2\pi\sigma^{6}} e^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

$$= \sigma \nabla^{2} G$$

We only calculate the difference-of-Gaussian if k is a constant, e.g. $\sqrt{2}$.

$$G(k\sigma)-G(\sigma)\approx (k-1)\sigma^2\nabla^2G$$

Scale-space construction

Figure from O. Pele, the presentation slides of "SIFT: Scale Invariant Feature Transform."

Finding the extremes

- Construct difference of Gaussian(DOG) first.
- Choose all extremes within 3x3x3 neighborhood.

$$\begin{array}{rcl} D(x,y,\sigma) & = & (G(x,y,k\sigma) - G(x,y,\sigma)) * I(x,y) \\ & = & L(x,y,k\sigma) - L(x,y,\sigma). \end{array}$$

Finding the extremes

- > s+3 filtered images are evaluated in an octave.
- For instance, $s = k^2 = 2$,

Accurate keypoint localization

There are still plenty of points, some of them are not good enough.

- ▶ The locations of keypoints may be not accurate.
 - ► Pixel-level accuracy.

Eliminating edge or improper points.

Keypoint localization

While approximating scale-space function, $D(x, y, \sigma)$ by quadratic Talyor expansion,

$$D(\vec{x}) = D + \frac{\partial D^T}{\partial \vec{x}} \vec{x} + \frac{1}{2} \vec{x}^T \frac{\partial^2 D^T}{\partial \vec{x}^2} \vec{x}$$

▶ Determine the location of extremum by $\frac{\partial D(x)}{\partial x} = 0$

$$\hat{x} = -\frac{\partial^2 D}{\partial \vec{x}^2} \frac{\partial D}{\partial \vec{x}} \qquad D(\hat{x}) = D + \frac{1}{2} \frac{\partial D}{\partial \vec{x}} \hat{x}$$

Keypoint: Removing unstable extremes

Remove $D(\hat{x})$ smaller than 0.03 (image values in [0,1]).

(stable D)

536 keypoints (valid ratio of eigen values)

Keypoints: Eliminating edge points

- Reject points with strong edge response in one direction only.
- ➤ Similar to Harris corner remove points with a large principal curvature across the edge but a small one in the perpendicular direction.
- ► The principal curvatures can be calculated from a Hessian function

$$\mathbf{H} = \left[egin{array}{ccc} D_{xx} & D_{xy} \ D_{xy} & D_{yy} \end{array}
ight]$$

Keypoint localization

Harris corner use the 2nd order moment matrix.

$$A = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix}$$

► SIFT and SURF uses the Hessian matrix (principal curvatures) for efficiency.

$$H(x,\sigma) = \begin{bmatrix} L_{xx}(x,\sigma) & L_{xy}(x,\sigma) \\ L_{xy}(x,\sigma) & L_{yy}(x,\sigma) \end{bmatrix} \approx \begin{bmatrix} D_{xx}(x,\sigma) & D_{xy}(x,\sigma) \\ D_{xy}(x,\sigma) & D_{yy}(x,\sigma) \end{bmatrix}$$

Keypoints: Eliminating edge points (cont.)

- \triangleright α , β are the large and small eigen values of H.
- ► Tr(H) = α + β , Det(H) = $\alpha\beta$, $r = \alpha/\beta$
- To check if ratio of principal curvatures is below some threshold, e.g. r_{th} =10, check:

$$\frac{Tr(H)^{2}}{Det(H)} = \frac{(r+1)^{2}}{r} < \frac{(r_{th}+1)^{2}}{r_{th}}$$

536 keypoints (valid ratio of eigen values)

729 keypoints (stable D)

(d)

Local descriptor

After extracting keypoints, the next goal is to find an appropriate descriptor for the local area.

- Should be robust to:
 - Rotation/Perspective transformation
 - ► Illumination change
 - Noise

Should be compact and easily for matching.

Orientation assignment

► The keypoint descriptor can be represented relative to this orientation and therefore achieve invariance to image rotation.

Figure from: Jonas Hurrelmann, Ofir Pele's slides.

Compute magnitude and orientation on the Gaussian smoothed images L:

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1} \left(\frac{(L(x,y+1) - L(x,y-1))}{(L(x+1,y) - L(x-1,y))}\right)$$
42

Orientation assignment (cont.)

- Consider a window a σ , 1.5 times of the keypoint scale.
- An orientation histogram with 36 bins for 360°.
 - Weighted by magnitude and Gaussian window.
 - ▶ Any peak within 80% of the highest peak is used to create a keypoint with that orientation.
 - ▶ Near 15% assigned multiple orientations, but contribute significantly to the stability.

 More accurate orientation by parabola fitting of 3 histogram values closest to each peak.

SIFT descriptor

- Each point has position (x, y), scale σ , gradient magnitude m, orientation ϑ .
- Local feature descriptor:
 - ▶ Based on 16*16 patches
 - ▶ 4*4 subregions
 - ▶ 8 bins in each subreg

4*4*8=128 dimensions in total

weighted by a Gaussian function.

Image gradients

Keypoint descriptor

Application: Object recognition

- ▶ The SIFT features of training images are extracted and stored.
- For a query image
 - Extract SIFT feature
 - Efficient nearest neighbor indexing
 - 3 keypoints, Geometry verification (affine)

Application: Object recognition

Applications: Image alignment

