Commitment, Competition, and Preventive Care Provision

Anran Li

Cornell University

8/7/24 DSE Conference **7 out of 10** deaths in US are caused by preventable diseases. (CDC, 2021)

Motivation

- Preventive care: prevention, early detection, disease management (Kenkel, 2000)
 - o Vaccines, cancer screenings, monitor blood sugar level for diabetes patients, ...

- Increases life expectancy, reduces future costs (CDC, 2021; USPSTF, 2021)
 - Vaccines prevent diseases, death; diabetes care prevents diabetic complications; ...

- Under-provided/utilized compared to govt./medical guidelines (ACA, 2010; HHS, 2023)
 - o lead to an extra disease burden of over a trillion dollars annually (Devol et al., 2007)

→ What leads to prevention underprovision in equilibrium?

Investment Externalities

- Key friction: investment externalities from insurer competition
 Insurer competition + consumer turnover (lack of consumer commitment)
 - → Insurers do not internalize all future returns
 - ightarrow Insurers reduce preventive investment in consumers' health

⇒ Key trade-off: investment externalities (low investment) vs. market power (high prices)

Q: How does insurer competition affect investment, health, and welfare?

This Paper

- Q: How does insurer competition affect investment, health, and welfare?
- 1. New evidence (regression)
- Consumer turnover reduces insurers' preventive investment (nationwide exchange)
- 2. New framework (model)
- Dynamic insurer competition with endogenous quality & endogenous health (UT)
- 3. New insight (simulation)
- Efficiency losses from competition due to investment externalities can be substantial
- \circ Policy options: consider price-invest. tradeoff + role of govt. mandate

Empirical Setting

- The individual exchange market
- Direct consumer-insurer interactions
- \circ High consumer turnover: in/out exchanges (30%) + across insurers within mkt. (20%)
- Preventive care → intertemporal incentives
- \circ Study procedures: well-known to save future costs + guidelines available to measure
- Mandatory coverage, free to consumers
- Low utilization/provision compared to medical guidelines (20pp gap)
- Data
- Insurance product choice, claims records: Utah All Payer Claims Data
- Preventive utilization, investment: CMS quality rating system, medical loss ratio

Motivating Evidence of Investment Externalities

- 1. Insurers are important in prevention utilization
- Insurer invest: remind, educate consumers + incentivize providers
- Quasi-experiment: Insurer exit, compare utilization before/after, switcher/stayer
- \circ Move to insurer w. 1pp \uparrow utilization \rightarrow consumer's utilization prob. \uparrow 0.9pp

Motivating Evidence of Investment Externalities

- 1. Insurers are important in prevention utilization
- Insurer invest: remind, educate consumers + incentivize providers
- Quasi-experiment: Insurer exit, compare utilization before/after, switcher/stayer
- o Move to insurer w. 1pp ↑ utilization → consumer's utilization prob. ↑ 0.9pp
- 2. Insurers reduce prevention provision in response to consumer turnover
- $\circ\,$ Regress investment on share of consumers retained on the exchange, at state-year level
- \circ IV for turnover: national-industry job hiring (shift) + industry-st. employment (share)
- 1 pp \uparrow retention \rightarrow 0.79 pp \uparrow utilization, \$5.3 \uparrow per member preventive investment

Equilibrium Model - Insurance Demand

$$u_{ijt} = \underbrace{(\alpha_0 + \alpha_1 \mu_{it-1}) p_{jt}}_{\text{price sensitivity}} + \underbrace{(\rho_0 + \rho_1 \mu_{it-1}) e_{jt}}_{\text{prevention pref.}} + \underbrace{\gamma \mu_{it-1} co_{-ins_j}}_{\text{out-of-pocket}} + \underbrace{\eta 1 [d_{it-1} \neq j]}_{\text{inertia}} + \theta X_{jt} + \xi_{jt} + \epsilon_{ijt}$$
by health status by health status expenses

- Forces
- Repeated choices, do not commit to stay with one insurer
- Key Primitives
- \circ Inertia η
- \circ Preference for price α , preventive care ρ , medical expenses γ

Equilibrium Model - Insurance Supply

$$V_f(\vec{s}_{t-1}, \vec{\mu}_{t-1}) = \max_{\vec{p}_{ft}, x_{ft}} \left\{ \underbrace{\pi_{ft}(\vec{s}_{t-1}, \vec{\mu}_{t-1}, \vec{x}_t, \vec{p}_t)}_{\text{flow profit}} + \underbrace{\beta \int V_f(\vec{s}_t, \vec{\mu}_t) \underbrace{g_f(\vec{s}_t, \vec{\mu}_t | \vec{s}_{t-1}, \vec{\mu}_{t-1}, \vec{x}_t, \vec{p}_t)}_{\text{expected future profit}} \right\}$$

- Forces
- \circ Invest x_{ft} : tradeoff static costs higher future profits, lower health risks
- \circ Price p_{ft} : tradeoff market power investment externalities
- Key Primitives
- o Investment cost $x_f(e_{ft})$: dollar expenses in prevention \rightarrow utilization
- Returns to prevention $g(\mu_t|\mu_{t-1},e_{ft})$: current health + utilization \rightarrow next period health

Equilibrium Model - Insurance Supply

$$V_f(\vec{s}_{t-1}, \vec{\mu}_{t-1}) = \max_{\vec{p}_{ft}, x_{ft}} \left\{ \underbrace{\pi_{ft}(\vec{s}_{t-1}, \vec{\mu}_{t-1}, \vec{x}_t, \vec{p}_t)}_{\text{flow profit}} + \underbrace{\beta \int V_f(\vec{s}_t, \vec{\mu}_t) \underbrace{g_f(\vec{s}_t, \vec{\mu}_t | \vec{s}_{t-1}, \vec{\mu}_{t-1}, \vec{x}_t, \vec{p}_t)}_{\text{expected future profit}} \right\}$$

- Oblivious assumption for MPNE
- Keep track of "average" enrollees of every competitor
- \circ State space: vector of market shares $ec{s}_{t-1}$, average health status by insurer $ec{\mu}_{t-1}$
- Computation: extended trilinear interpolation, polynomial approximations, etc
- Novelty: dynamic quality incentives + endogenous population health

Key Market Features Implied by Model Estimates

- 1. Consumers
- Relatively price elastic, -5.47
- Low willingness-to-pay for prevention
- \circ No meaningful diff. in preference for prevention by health o not effective selection tool
- 2. Insurers
- Cost savings motives dominate static market share motives for investment
- Costly preventive investment, ↑ 3-4 times from \$174 to achieve govt. targets
- \circ Consumer turnover impact investment returns, \uparrow competitor \rightarrow 28.1% \downarrow cost savings
- 3. Model fit: predicted effects of retention on investment match reduced-form well

↑ invest: ↓ turnover, capture more returns + no free riding

• \sim **p**: \uparrow investment, \downarrow MC $\approx \uparrow$ markup

• \downarrow health risk: invest. per insured + share of insured cons. who receive prevention

• ~ CS: welfare distortions of underinvestment about same size as high pricing power

ullet health risks, \sim CS: hold for a reasonable range of returns to prevention parameter

→ Efficiency losses of competition from investment externalities can be substantial

• Next, what policies can improve investment and welfare?

Policy Simulation: Investment Mandates

• Investment mandate could resolve insurers' prisoners' dilemma

Policy Simulation: Investment Mandates

ullet Optimal mandate: cost savings vs. premium increases o consider invest.-price tradeoff

Policy Comparison

Direct quality regulation is most effective in addressing investment externalities

Conclusion

- Summary: efficiency losses of competition due to investment externalities
- New evidence: consumer turnover reduces insurers' preventive investment
- o New framework: dynamic insurer competition with endogenous prod. char. & health
- New insight: importance of long-run quality incentives; tradeoff w. market power
- Policy implications: direct quality regulation can improve investment, welfare

Thank you!

anran.li@cornell.edu