General information and requirements for Programming Task 4

Task 1: Bisection Method for Root-Finding

Write a program to implement the Bisection Method to find a root of a given function. The function and the interval [a, b] will be provided as inputs.

${\bf Requirements:}$

- 1. The function is $f(x) = x^3 6x^2 + 11x 6$.
- 2. Input: Initial interval [a, b], tolerance (ϵ) .
- 3. Output: Approximate root of the function.
- 4. Stop when $|f(c)| < \epsilon$, where $c = \frac{a+b}{2}$.

Additional Questions:

- 1. How does the choice of [a, b] affect convergence?
- 2. Test your program with [a, b] = [1, 2] and $\epsilon = 10^{-6}$.

Task 2: Golden Section Method for Unimodal Function Optimization

Write a program to implement the Golden Section Method to find the minimum of a unimodal function.

Requirements:

- 1. The function is $f(x) = (x-2)^2 + 3$.
- 2. Input: Interval [a, b], tolerance (ϵ) .
- 3. Output: Approximate x_{\min} and $f(x_{\min})$.
- 4. Stop when the interval length is smaller than ϵ .

Additional Questions:

- 1. Why does the Golden Section Method work only for unimodal functions?
- 2. Test your program with [a, b] = [0, 5] and $\epsilon = 10^{-4}$.

Task 3: Gradient Ascent Method for Maximizing a Function

Write a program to implement the **Gradient Ascent Method** to find the maximum of a differentiable function.

Requirements:

- 1. The function is $f(x) = -x^2 + 4x + 1$.
- 2. Input: Initial guess x_0 , learning rate (α) , and number of iterations (N).
- 3. Output: Approximate x_{max} and $f(x_{\text{max}})$.
- 4. Use the derivative f'(x) = -2x + 4.

Additional Questions:

1. How does the choice of α affect convergence?

2. Test your program with $x_0 = 0$, $\alpha = 0.1$, and N = 100.

${\bf Report}$

Deliverables:

- 1. Use Template as previous
- 2. Code files with proper comments.
- 3. A short report (1-2 pages) explaining:
 - The logic behind each method.
 - \bullet Observations about convergence and results for each task.
 - Challenges faced during implementation.