Ontology based Multi Label Text Classification

Student

Saba Sabrin

Supervisor

M.Sc. Wael Alkhatib

Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab

Agenda

Background

Motivation

Related Work

Proposed Method

Result and Evaluation

Conclusion

Future Work

Background

Ontology

- Nature of being, Domain knowledge
- is-a, part-of type relational data

Background

Multi Label Classification (MLC)

- Assignment of multiple labels or tags on a piece of data i.e. text, image, audio.
- Our focus: Document classification

Problem transformation methods

- Binary relevance
- Ranking
- Hierarchy based

Algorithm adaptation methods

- AdaBoost
- k-nearest neighborhood (kNN)
- Decision tree
- Neural Network (BP-MLL)

Traditional Multi-Label Text Classification

Motivation

Challenges	Traditional MLC	Ontology-based MLC
Higher number of feature extraction		
Inter-Feature relationship consideration	X	
Dependency between Document Features and Label Features	×	
No Training for New Label		
Reduced Training complexity		
Improves performance on Low Frequent Label		

Motivation

Related Work

Ontology-Based Multi-Label Text Classification of Construction Regulatory Documents

Related Work

Training-less Ontology-based Text Categorization

RDF based static Ontology

External knowledge used for building inter-related Domain & Label Ontology

Proposed Improvement

Domain Ontology extraction using NLP techniques

Scalability, Adaptability

Label Ontology extraction using statistical techniques

Proposed Architecture

Process Workflow

NP = Noun Phrase (*Example*: current social services)

Data Pre-Processing

Dataset

- EUR- Lex; Collection of documents about European Union law
- Numer of documents = 19,348
- Number of Labels = approx. ~ 4000

- Official journal, Treaties, International agreements, Legislation
- Case law and parliamentary question

Stop-word Removal

- Remove frequent and non-discriminative words
 - Example: the, every, all, both
- Remove Domain related high frequent words such as
 - Example: behalf
- Remove Numbers, Dates, Symbols, One-letter words

Process Workflow

A1. Domain Ontology

Semantic Feature Extraction

- Captures meaningful relations between concepts
- Lexico Syntactic Patterns, Hearst Patterns

(Adj | Noun) + Noun

NP such as NP, * (or | and) NP

Feature representation

Community: (4, 8, 3)

- Extracted Semantic Relations = 26332
- Stanford NLP Parser is used to extract NPs

A2. Domain Ontology

Syntactic Feature Extraction

- Grammatical or lingustic specialized relations between document terms
- Syntactic Typed dependencies (Stanford Dependencies)

Feature representation

Commission: (6, 5, and = 2, including = 1,within = 1, such as = 5, instead of = 1)

- Extracted unique Syntactic Features near about 15 million
- Stanford Typed Dependencies used for extracting relations

Workflow

Label Ontology

- Frequency Analysis performed on all the extracted Noun Phrases (features)
- Feature Selection Approach
 - Correlation Coefficient
 - Gain Ratio
- Top features are selected based on Ranking
- Weka Feature Selection Tool is used for implementation.

Document Frequency of NPs

Workflow

A1. Ontology Matching

A2. Ontology Matching

Direct Matching

Sub-Concept Matching

Feature Graph Matching

Ontology-based Multi-Label Classifier

- Classification approach: Unsupervised Binary Relevance
- Classification Algorithm
 - Instance based grouping of Relevant and Irrelevant Document
 - Distance score measured using total document feature scores and label feature ranking scores

Evaluation of Classifier Performance

Evaluation Metrics

• Precision =
$$\frac{TP}{TP + FP}$$

• Recall =
$$\frac{TP}{TP + FN}$$

$$F - Measure = 2* \frac{Precision*Recall}{Precision+Recall}$$

Evaluation performed on all Documents


```
TP = True Positive
FP = False Positive
TN = True Negative
FN = False Negative
```

Evaluation Criteria

- Experimental Threshold Analysis conducted on the distance score
- Multiple evaluation criterias are considered in single sets
- Example: TFIDF_200_2 → TFIDF based 200 document features are selected and matched with Label Feature's syntactic graph of depth 2

Selection Criteria	Range of Values
Gain Ratio	0.15, 0.20, 0.25
	top = {200, 300}
Number of Document Features	100, 150, 200
Document Feature Selection Type	TFIDF, Semantic
Syntactic Graph Depth	2, 3, 4

Most Frequent Label Performance

■ Precision ■ Recall ■ F Measure

■ Precision ■ Recall ■ F - Measure

Most Frequent Label Performance

Label Feature Selection = Gain Ratio

Comparative Analysis

A1. Least Frequent Label Performance

Performance comparison criteria

- Label Feature Selection = Correlation
- Document Feature Selection = TFIDF, Semantic

Label Feature Selection = Gain Ratio

A2. Least Frequent Label Performance

Label Feature Selection = Gain Ratio Document Feature Selection = TFIDF Syntactic Graph Depth = 4 Number of Terms = 200

Comparative Performance

B1. Least Frequent Label Performance

Label Feature Selection = Gain Ratio {200_0.15, 200_0.20, 200_0.25}, Correlation Syntactic Graph Depth = 4

Threshold Evaluation

Conclusion

- The extraction of Domain Ontology solely based on NLP techniques shows good performance.
- The extraction of Label Ontology based on Statistical techniques is challenging due to the current tool time complexity but, performs well with the Domain Ontology matching process.
- The Ontology Matching process based on heuristical graph techniques shows more scope for improvement.
- Multi-Label classification is possible solely based on the ontological information and performs better on low frequent labels whereas, traditional Multi-Label classification approach failed.

Future Work

- Generalization of threshold for all Labels to develop Ontology based unsupervised MLC algorithm
- Adding Lexical Database knowledge to domain ontology for amplifying the ontology quality to improve classification performance

- Using more feature selection techniques for better label feure extraction
- Adding more NLP techniques to filter out unnecessary words and phrases.

Thank you for your attention! Questions?

