Problem Set 2 Solution

March 17, 2020

Question 1

a.

b. Let $k, n \in \mathbb{Z}^+$, and $p \in \mathbb{N}$. Assume Prime(p), and $p^k < n < p^k + p$.

Then, p^k can either be divided by 1 or p by fact 3.

Since, $p^k < n < p^k + p$, n cannot be written in multiples of p.

Then, it follows from the definition of divisibility that $p \nmid n$.

Since $p \nmid n$, but $1 \mid p^k$ and $1 \mid n$, $gcd(p^k, n) = 1$.

c. Predicate Logic: $\forall m \in \mathbb{Z}, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N} \ n > n_0 \land gcd(n, n+m) = 1$

Since there are infinitely many primes by fact 4, let Prime(n) and n > m.

Since Prime(n), by fact 3, n can either be divided by 1 or n.

Since $n \mid n$, but $n \nmid m$, $n \nmid (n+m)$, and n can't be chosen as the greatest common divisor of n and n+m.

Since $gcd(n, n+m) \neq n$ but $1 \mid n$ and $1 \mid (n+m), gcd(n, n+m) = 1$.

Then, it follows from above that the statement $\forall m \in \mathbb{Z}, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N}$ $n > n_0 \land gcd(n, n + m) = 1$ is true. Question 2

Question 3