This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) Compound of the general A compound of formula I

$$R^{11} - A_{a} - Z^{11} - O_{b} - D_{d} - Y^{11}$$
 $Y^{12} - Y^{13}$

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, in which one or more CH₂ groups in this radical may each be are optionally replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

a is 0, 1 or 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

W denotes >CH- or >C=;

$$\overline{}$$

B and D, independently of one another, stand for

$$- \sum_{i=1}^{L^1} \sum_{i=1}^{L^2} \frac{1}{i!}$$

b and d, independently of one another, are 0 or 1;

denotes =O, =C(SR¹²)(SR¹³), =CF₂, -H, -F, -Cl, -Br, -I, -CN, -OH, -SH, -CO-R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(-SR¹³)X⁻, -B(OR¹⁶)(OR¹⁷), -BF₃⁻Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which, in addition, one or more CH₂ groups may each be are optionally replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

Y¹² and Y¹³, independently of one another, denote H or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which, in addition, one or more CH₂ groups may each be are optionally replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

 L^{1} , L^{2} and L^{3} , independently of one another, denote H or F;

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a - $(CH_2)_p$ -unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH_2 groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

R¹⁴ denotes OH, O-aryl, O-aralkyl, O-alkyl, Cl, Br, aryl, aralkyl or alkyl;

R¹⁵ denotes aryl, aralkyl or a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, in which alkyl radical one or more CH₂ groups in this alkyl radical may each be are optionally replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

 R^{16} and R^{17} denote H or an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

R¹⁸, R¹⁹ and R²⁰, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms;

Cat⁺ is an alkali metal cation or a quaternary ammonium cation;

and

X is a weakly coordinating anion;

with the proviso

that W denotes >CH- if $b+d \neq 0$;

that Y¹¹ does not denote =O, =C(SR¹²)(SR¹³) or =CF₂ if Y¹¹ is connected to B

$$D = \begin{bmatrix} L^1 \\ L^2 \end{bmatrix}$$

that Y^{11} denotes -H, -I, -OH, -SH, -CO₂R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(SR¹³)X, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH₂ groups have each been replaced, independently of one another, by -C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another and alkyl does not stand for

$$\begin{array}{c|c} & & & L^1 \\ \hline & & & & L^2 \\ \hline & & & L^3 \\ \hline & & & L^2 \\ \end{array}$$

alkoxy, if W is connected directly to d is 0 or 1;

that B does not stand for if d = 1; and that A can adopt identical or different meanings if a is 2.

2. (Withdrawn and Currently Amended) Compound A compound according to Claim 1, characterised in that wherein

- (Currently Amended) Compound A compound according to Claim 1, characterised in that wherein
 - a is 0.
- (Currently Amended) Compound A compound according to Claim 1, eharacterised in that wherein
 Y¹² and Y¹³ denote H.
- (Currently Amended) Compound A compound according to Claim 1, characterised in that wherein
 Z¹¹ represents a single bond, -CF₂O- or -OCF₂-.

- 6. (Currently Amended) Gompound A compound according to Claim 1, characterised in that wherein
 - R¹¹ denotes an unbranched halogenated or unsubstituted alkyl radical having 1 to 7 carbon atoms.
- (Withdrawn and Currently Amended) Compound A compound according to
 Claim 1, characterised in that wherein
 Y¹¹ denotes = O, =C(SR¹²)(SR¹³) or =CF₂.
- 8. (Currently Amended) Compound A compound according to Claim 1, characterised in that wherein

 (Withdrawn and Currently Amended) Compound A compound according to Claim 1, characterised in that wherein

- 10. (Currently Amended) Compound A compound according to Claim 1, characterised in that whereinb is 0 and d is 0.
- (Currently Amended) Compound A compound according to Claim 1, characterised in that wherein b is 1 and d is 0.
- (Withdrawn and Currently Amended) Compound A compound according to Claim 1, characterised in that wherein b is 1 and d is 1.
- 13. (Withdrawn and Currently Amended) Process A process for the preparation of a preparing a compound of claim 1, which is a compound of the formula IA

$$R^{11} - A_a - Z^{11} - O W - Y^{11}$$
IA

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or

is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, $-CH_2-CH_2-$, $-CF_2-CF_2-$, $-CF_2-CH_2-$, $-CH_2-$ CF₂-, $-CH_2-$ O-, $-O-CH_2-$, $-CF_2-$ O- or $-O-CF_2-$;

W denotes >C=:

 Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

characterised in that comprising

reacting a compound of the formula II

$$R^{11}$$
 A_a Z^{11} CHO

in which R^{11} , A, a and Z^{11} are as defined above for the <u>compound of</u> formula IA, is reacted

in a reaction step (A1)

(A1) in the presence of a base with a compound of the formula III

$$R^{31}O$$
 Y^{12}
 Y^{13}
 Y^{13}

in which Y¹² and Y¹³ are as defined above for the <u>compound of</u> formula IA, and R³¹ denotes an alkyl radical having 1 to 15 carbon atoms, to give a compound of the formula IV

$$R^{11}$$
 A_a Z^{11} $COOR^{31}$ V^{12} V^{13}

in which R¹¹, A, a, Z¹¹, Y¹² and Y¹³ are as defined above for the <u>compound of</u> formula IA, and R³¹ is as defined above for the <u>compound of</u> formula III; and subsequently <u>converting</u>, in a reaction step (A2),

(A2) the compound of the formula IV is converted into the a compound of formula IA1

$$R^{11} - A_a - Z^{11} - O$$
IA1

and optionally converting, in a reaction step (A3),

(A3) the compound of the formula IA1 is converted into the a compound of formula IA2

$$R^{11}$$
 A_a Z^{11} CF_2 IA2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, denote an alkyl radical having 1 to 15 carbon atoms; or optionally <u>converting</u>, in a reaction step (A3'),

(A3') the compound of the formula IA1 is converted into the a compound of

formula IA3

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where R²³ is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or Si(CH₃)₃ or Si(CH₂CH₃)₃, and R¹² and R¹³ are as defined above for the <u>compound of</u> formula IA, in the presence of a strong base.

14. (Withdrawn and Currently Amended) Process for the preparation of a A process for preparing a compound of claim 1, which is a compound of the formula IB

$$R^{11} - A_a - Z^{11}$$
 $Y^{12} - Y^{13} + Z^{11}$
 $Y^{13} + Z^{11} + Z^{11}$
 $Y^{13} + Z^{11} + Z$

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

Y¹¹ denotes -H, -F, -Cl, -Br, -I, -CN, -OH or -B(OR¹⁶)(OR¹⁷);

Y¹² and Y¹³, independently of one another, denote H or alkyl;

 L^{1} , L^{2} and L^{3} , independently of one another, denote H or F; and

R¹⁶ and R¹⁷, independently of one another, denote H or an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a

- $(CH_2)_p$ - unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH_2 groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; characterised in that, comprising

reacting, in a reaction step (B1),

(B1) a compound of the formula IA1

$$R^{11} - A_a - Z^{11} - O$$
IA1

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the <u>compound of</u> formula IB, is reacted with a compound of the formula V

$$M \longrightarrow Q$$
 V

in which L^1 , L^2 and L^3 are as defined above for the <u>compound of</u> formula IB, M denotes Li, Cl-Mg, Br-Mg or I-Mg, and Q denotes H, F, Cl, Br, I or CN, with formation of the <u>a</u> compound of the formula IB1

$$R^{11} - A_a - Z^{11}$$
 Q IB1

in which R¹¹, A, a, Z¹¹, Y¹², Y¹³, L¹, L² and L³ are as defined for the <u>compound</u> of formula IB, and Q is as defined for the <u>compound of</u> formula V; and optionally <u>reacting</u>, in a reaction step (B2),

(B2) the compound of the formula IB1 in which Q denotes Br is reacted with B(OR¹⁶)(OR¹⁷)(OR²⁴), where R¹⁶, R¹⁷ and R²⁴ are an unbranched or

branched alkyl radical having 1 to 15 carbon atoms, or with HB(OR¹⁶)(OR¹⁷), where R¹⁶ and R¹⁷ denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms, in the presence of an alkyllithium base, to give the a compound of the formula IB2

$$R^{11}$$
 A_a Z^{11} A_a A_a

and optionally converting, in a reaction step (B3),

(B3) the compound of formula IB2 is converted into the a compound of formula IB3

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with an aqueous acid; and/or optionally <u>converting</u>, in a reaction step (B4),

(B4) the compound of formula IB2 or the compound of formula IB3 is converted into the a compound of formula IB4

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with hydrogen peroxide in alkaline or acidic solution.

15. (Withdrawn and Currently Amended) Process for the preparation of a A process for preparing a compound of claim 1, which is a compound of the

general formula IC

$$R^{11} - A_a - Z^{11}$$
 Y^{12} Y^{13} Y^{13}

in which

 R^{11} denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow .

is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

represents a single bond, -CH2-CH2-, -CF2-CF2-, -CF2-CH2-, -CH2-CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

denotes =0, = $C(SR^{12})(SR^{13})$ or = CF_2 ; \mathbf{Y}^{11}

Y¹² and Y¹³, independently of one another, denote H or alkyl; and

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a - $(CH_2)_p$ - unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH2 groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

characterised in that, comprising

converting, in a reaction step (C1),

(C1)the a compound of the formula IB4

in which R¹¹, A, a, Z¹¹, Y¹² and Y¹³ are as defined above for the compound of

formula IC, and L¹, L² and L³ denote H, is converted into the a compound of formula IC1

$$R^{11} - A_a - Z^{11}$$
 Y^{12} Y^{13} IC1

using hydrogen in the presence of a transition-metal catalyst; and optionally <u>converting</u>, in a reaction step (C2),

(C2) the compound of formula IC1 is converted into the a compound of formula IC2

$$R^{11}$$
 A_a Z^{11} CF_2 CF_2 CF_2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, are an alkyl radical having 1 to 15 carbon atoms; or optionally <u>converting</u>, in a reaction step (C2'),

(C2') the compound of the formula IC1 is converted into the a compound of formula IC3

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where R²³ is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or Si(CH₃)₃ or Si(CH₂CH₃)₃, and R¹² and R¹³ are as defined above for the <u>compound of</u> formula IC, in the presence of a strong base.

16. (Withdrawn and Currently Amended) Process for the preparation of a A process for preparing a compound of claim 1, which is a compound of the formula ID

$$R^{11}$$
 A_a $Z_{Y^{12}}$ A_a A_a

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂- CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

L¹, L² and L³, independently of one another, denote H or F;

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion;

characterised in that, comprising

reacting, in a reaction step (D1),

(D1) a compound of the formula IB1

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^{1} , L^{2} and L^{3} are as defined for the <u>compound</u> of formula ID, and Q denotes H or Br,

is reacted with an organometallic base and CO2 to give the \underline{a} compound \underline{of} formula ID1

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the <u>compound</u> of formula ID;

and optionally converting, in a reaction step (D2),

(D2) the compound of formula ID1 is converted into the a compound of formula ID2

$$R^{11}$$
 A_a Z^{11} A_a Z^{11} A_a A

in the presence of an acid HX using HSR¹² and HSR¹³ or using HSR¹²R¹³SH.

17. (Withdrawn and Currently Amended) Process for the preparation of a A process for preparing a compound of claim 1, which is a compound of the formula IE

$$R^{11}$$
 A_a Z^{11} Y^{12} Y^{13} IE

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

$$N$$
 N N

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

 Z^{11} represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂CF₂-, -CH₂-O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p-unit, where p=2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be are optionally substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion;

characterised in that, comprising

converting, in a reaction step (E1),

(E1) the a compound of the formula ID1

$$R^{11} - A_{a} - Z^{11}$$

$$Y^{12} \qquad Y^{13} \qquad L^{3} \qquad L^{2}$$

$$ID1$$

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the <u>compound of</u> formula IE, and L^1 , L^2 and L^3 denote H,

is converted into the a compound of formula IE1

$$R^{11}$$
 A_a Z^{11} O CO_2H IE1

using hydrogen in the presence of a transition-metal catalyst; and optionally <u>converting</u>, in a reaction step (E2),

(E2) the compound of the formula IE1 is converted into the a compound of formula IE2

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

in the presence of an acid HX using HSR¹² and HSR¹³ or using HSR¹²R¹³SH.

18. (New) A compound according to claim 1, which is a compound of one of the following formulae

$$R^{11} - A_a - Z^{11}$$
 O II

$$R^{11} - A_a - Z^{11} - O - SR^{12}$$

$$R^{11} - A_a - Z^{11} \longrightarrow O$$

$$R^{11} - A_a - Z^{11}$$
 SR^{13} I5

$$R^{11}$$
 A_a Z^{11} CF_2 I6

$$R^{11} - A_{\overline{a}} - Z^{11} \longrightarrow 0$$
 I7

$$R^{11} - A_a - Z^{11}$$
 SR^{12} SR^{13} SR^{13}

$$R^{11}$$
 A_a Z^{11} CF_2 CF_2

$$R^{11} - A_a - Z^{11}$$
 \longrightarrow SR^{13} X^{-} I11

$$R^{11}$$
 A_a Z^{11} CO_2H I12

$$R^{11} - A_a - Z^{11}$$
 $S^T R^{12}$ $S^T R^{13}$ III3

$$R^{11}$$
 A_a Z^{11} CO_2H I14

$$R^{11}$$
 A_a Z^{11} A_a Z^{11} X^T I15

$$R^{11} - A_a - Z^{11}$$
 $I17$

wherein R^{11} , A, a, Z^{11} , Y^{11} , L^1 , L^2 , L^3 , R^{12} , R^{13} and X^- have the meanings indicated for the compound of formula I.

19. (New) A compound according to claim 1, which is a compound of one of the following formulae

$$C_{n}H_{2n+1} \longrightarrow O \qquad I1a$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I1b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I2a$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I2b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I2b$$

$$C_{n}H_{2n+1} \longrightarrow F \qquad I3a$$

$$C_{n}H_{2n+1} \longrightarrow F \qquad I3b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad F \qquad I3b$$

$$C_{n}H_{2n+1} \longrightarrow O \qquad I4a$$

I5a

 C_nH_{2n+1}

$$C_nH_{2n+1}$$
 I5b

$$C_nH_{2n+1}$$

$$C_nH_{2n+1}$$

$$C_nH_{2n+1}$$
 O I7a

$$C_nH_{2n+1}$$
 I8a

$$C_nH_{2n+1}$$
 [19a]

$$C_nH_{2n+1}$$
 CO_2H I10a

$$C_nH_{2n+1}$$
 CO_2H I10b

$$C_nH_{2n+1}$$
 CO_2H I10c

$$C_nH_{2n+1}$$
 X^{-} II11a

$$C_nH_{2n+1}$$
 Illib

$$C_nH_{2n+1}$$
 Illic

$$C_nH_{2n+1}$$
 CO_2H I12a

$$C_nH_{2n+1}$$
 CO_2H II12b

$$C_nH_{2n+1}$$
 I13a

$$C_nH_{2n+1}$$
 I13b

$$C_nH_{2n+1}$$
 CO_2H I14a

$$C_nH_{2n+1}$$
 I15a

$$C_nH_{2n+1}$$

O

H F

$$C_nH_{2n+1}$$
 O
 $B(OH)_2$
 H, F

$$C_nH_{2n+1}$$

I16c

$$C_nH_{2n+1}$$
 C_nH_{2n+1}
 $B(OH)_2$
 $B(OH)_3$
 $B(OH)_4$
 $B(OH)_4$
 $B(OH)_5$
 $B(OH)_5$
 $B(OH)_5$
 $B(OH)_5$
 $B(OH)_5$
 $B(OH)_5$

wherein n is an integer of 1 to 7.

20. (New) A compound according to claim 10, wherein C_nH_{2n+1} is straight-chain.