Relational Calculus

S Ranbir Singh @ CS344

Chapter 4: Database Management System, 3rd Ed. Ramakrishnan & Gehrke

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, coloT: string)

Reserves (sid: integer, bid: integer, day: date)

Find names of sailors who've reserved boat #103

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

An Instance of Boats

sid	্বশ্র	rationa	nno
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

An Instance of Sailors

sid	bid	day
22	101	10/10/98
<u>22</u>	102	10/10/98
<u>22</u>	103	10/8/98
22	104	10/7/98
<u>31</u>	<u>102</u>	11/10/98
<u>31</u>	103	11/6/98
<u>31</u>	<u>104</u>	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

An Instance of Reserves

Relational Algebra: $\pi_{sname}(\sigma_{bid=103}(\text{Re}\textit{serves}) \triangleleft Sailors))$

Relational Calculus

- Comes in two flavours:
 - <u>Tuple relational calculus</u> (TRC)
 - <u>Domain relational calculus</u> (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 - TRC: Variables range over (i.e., get bound to) tuples.
 - DRC: Variables range over domain elements (= field values).
- Expressions in the calculus are called formulas.
- An answer tuple is essentially an assignment of constants to variables that make the formula evaluate to *true*.

Tuple Relational Calculus

- Query: {T | P(T)}
 - T is tuple variable
 - P(T) is a formula that describes T
 - Result, the set of all tuples t for which P(t) evaluates True.
- Ex: Find all sailors with a rating above 7.

```
\{S \mid S \in Sailors \land S.rating > 7\}
```

- Atomic formula
 - $R \in \text{Re } l$
 - R.a op S.b , op is one of $<,>,=,\leq,\geq,\neq$
 - R.a op constant

TRC

- Formula
 - Any atomic formula
 - $\neg p, p \land q, p \lor q, p \Longrightarrow q$ where p and q are formula
 - $\exists R(p(R))$ where variable R is tuple variable
 - $\forall R(p(R))$ where variable R is tuple variable
- Example: Find the names and ages of sailors with a rating above 7

$$\{P \mid \exists S \in Sailors(S.rating > 7 \land P.name = S.name \land P.age = S.age)\}$$

Free and Bound Variables

- The use of quantifiers $\exists X$ and $\forall X$ in a formula is said to bind X in the formula
 - A variable that is not bound is free

- Query: {T | P(T)}
- The variable that appears on the left side of | should be the only free variable in the formula P(T)

Selection and Projection Operations

• Find all sailors with a rating above 7

```
{S \mid S \in Sailors \land S.rating > 7}
```

Selection and Projection Operations

Find all sailors with a rating above 7

```
{S \mid S \in Sailors \land S.rating > 7}
```

Find the names and ages of sailors with a rating above 7

```
\{P \mid \exists S \in Sailors(S.rating > 7 \land P.name = S.name \land P.age = S.age)\}
```

Union Operations

• Find all sailors with a rating above 7 and reserve boat #103

```
\{S \mid S \in Sailors \land S.rating > 7 \land \exists R \in Re\ serve(R.sid = S.sid \land R.bid = \#103)\}
```

Use of existence join two relations

• Find all sailors who have reserved all boats

Find all sailors S such that for all the Boats there exists a tuple in Reserve showing that sailor S has a reservation in R

Find all sailors who have reserved all boats

Find all sailors S such that for all the Boats there exists a tuple in Reserve showing that sailor S has a reservation in R

```
\{S \mid S \in Sailors \land \\ \forall B \in Boats(\exists R \in Re\ serve(R.sid = S.sid \land B.bid = R.bid))\}
```

• Find all sailors who have reserved all RED boats

Find all sailors S such that if there are RED boats they are always reserved by S

Find all sailors who have reserved all RED boats

Find all sailors S such that if there are RED boats they are always reserved by S

```
\{S \mid S \in Sailors \land \\ \forall B(B \in Boats \land \\ B.color = RED \Rightarrow \exists R \in Re \ serve(R.sid = S.sid \land B.bid = R.bid))\}
```

Find all sailors who have reserved all RED boats

Find sailors S such that, for all boats B, either the boat is not red or a Reserves tuple shows that sailor S has reserved boat B.

```
\{S \mid S \in Sailors \land \\ \forall B(B \in Boats \land \\ B.color \neq RED \lor \exists R \in Re\ serve(R.sid = S.sid \land B.bid = R.bid))\}
```

Unsafe Queries, Expressive Power

• It is possible to write syntactically correct calculus queries that have an infinite number of answers! Such queries are called <u>unsafe</u>.

• e.g.,
$$\left\{ S \mid \neg \left[S \in Sailors \right] \right\}$$

• It is known that every query that can be expressed in relational algebra can be expressed as a **safe query** in DRC / TRC; the converse is also true.

Domain Relational Calculus

• Query has the form:

$$\left\{ \langle x1, x2, ..., xn \rangle \mid p(\langle x1, x2, ..., xn \rangle) \right\}$$

- * *Answer* includes all tuples $\langle x1, x2, ..., xn \rangle$ that make the *formula* $p(\langle x1, x2, ..., xn \rangle)$ be *true*.
- * Formula is recursively defined, starting with simple atomic formulas (getting tuples from relations or making comparisons of values), and building bigger and better formulas using the logical connectives.

DRC Formulas

Atomic formula:

- $\langle x1, x2, ..., xn \rangle \in Rname$ or X op Y, or X op constant op is one of $<,>,=,\leq,\geq,\neq$

• Formula:

- an atomic formula, or
- $\bullet \neg p, p \land q, p \lor q$, where p and q are formulas, or
- $\exists X (p(X))$, where variable X is *free* in p(X), or
- $\forall X (p(X))$, where variable X is *free* in p(X)

Find all sailors with a rating above 7

$$\{\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7\}$$

- The condition $\langle I, N, T, A \rangle \in Sailors$ ensures that the domain variables I, N, T and A are bound to fields of the same Sailors tuple.
- The term $\langle I,N,T,A\rangle$ to the left of `|' (which should be read as *such that*) says that every tuple $\langle I,N,T,A\rangle$ that satisfies T>7 is in the answer.

Find sailors rated > 7 who've reserved boat #103

$$\left\{ \langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \\ \exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land Br = 103 \right) \right\}$$

- We have used \exists Ir, Br, D (...) as a shorthand for \exists Ir $\Big(\exists Br \Big(\exists D (...)\Big)\Big)$
- Note the use of ∃ to find a tuple in Reserves that `joins with' the Sailors tuple under consideration.

Find sailors rated > 7 who've reserved a red boat

$$\left\{ \langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land T > 7 \land \\ \exists Ir, Br, D \left(\langle Ir, Br, D \rangle \in Reserves \land Ir = I \land \\ \exists B, BN, C \left(\langle B, BN, C \rangle \in Boats \land B = Br \land C = 'red' \right) \right\}$$

Find sailors who've reserved all boats

$$\begin{cases}
\langle I, N, T, A \rangle | \langle I, N, T, A \rangle \in Sailors \land \\
\forall \langle B, BN, C \rangle \in Boats \\
\left(\exists \langle Ir, Br, D \rangle \in Reserves(I = Ir \land Br = B)\right)
\end{cases}$$

Summary

Select Operation

$$R = (A, B)$$

Relational Algebra:

$$\sigma_{B=17}(r)$$

Tuple Calculus:

$$\{t \mid t \in r \land B = 17\}$$

Domain Calculus:

$$\{ \langle a, b \rangle \mid \langle a, b \rangle \in r \land b = 17 \}$$

Project Operation

$$R = (A, B)$$

Relational Algebra:

$$\Pi_A(\mathbf{r})$$

Tuple Calculus:

$$\{t \mid \exists p \in r (t[A] = p[A])\}\$$

Domain Calculus:

$$\{ \langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r) \}$$

Combining Operations

$$R = (A, B)$$

Relational Algebra: $\Pi_A(\sigma_{B=17}(r))$

Tuple Calculus: $\{t \mid \exists \ p \in r \ (t[A] = p[A] \land p[B] = 17)\}$

Domain Calculus: $\{\langle a \rangle \mid \exists b \ (\langle a, b \rangle \in r \land b = 17)\}$

Natural Join

$$R = (A, B, C, D)$$
 $S = (B, D, E)$

Relational Algebra: $r \bowtie s$

$$\Pi_{r.A,r.B,r.C,r.D,s.E}(\sigma_{r.B=s.B \land r.D=s.D} (r \times s))$$

Tuple Calculus: $\{t \mid \exists \ p \in r \ \exists \ q \in s \ (t[A] = p[A] \land t[B] = p[B] \land \}$

$$t[C] = p[C] \land t[D] = p[D] \land t[E] = q[E] \land$$

$$p[B] = q[B] \land p[D] = q[D])$$

Domain Calculus: $\{\langle a, b, c, d, e \rangle \mid \langle a, b, c, d \rangle \in r \land \langle b, d, e \rangle \in s\}$

Union

$$R = (A, B, C)$$
 $S = (A, B, C)$

Relational Algebra: $r \cup s$

Tuple Calculus: $\{t \mid t \in r \lor t \in s\}$

Domain Calculus: $\{\langle a, b, c \rangle | \langle a, b, c \rangle \in r \lor \langle a, b, c \rangle \in s\}$

Intersection

$$R = (A, B, C)$$
 $S = (A, B, C)$

Relational Algebra: $r \cap s$

Tuple Calculus: $\{t \mid t \in r \land t \in s\}$

Domain Calculus: $\{\langle a, b, c \rangle | \langle a, b, c \rangle \in r \land \langle a, b, c \rangle \in s\}$

Set Difference

$$R = (A, B, C)$$
 $S = (A, B, C)$

Relational Algebra: r - s

Tuple Calculus: $\{t \mid t \in r \land t \notin s\}$

Domain Calculus: $\{\langle a, b, c \rangle | \langle a, b, c \rangle \in r \land \langle a, b, c \rangle \notin s\}$

Cartesian/Cross Product

$$R = (A, B)$$
 $S = (C, D)$

Relational Algebra: $r \times s$

Tuple Calculus:
$$\{t \mid \exists \ p \in r \ \exists \ q \in s \ (t[A] = p[A] \land t[B] = p[B] \land \\ t[C] = q[C] \land t[D] = q[D]) \}$$

Domain Calculus: $\{\langle a, b, c, d \rangle \mid \langle a, b \rangle \in r \land \langle c, d \rangle \in s\}$

Division

$$R = (A, B)$$
 $S = (B)$

Relational Algebra: $r \div s$

Tuple Calculus:
$$\{t \mid \exists \ p \in r \ \forall \ q \in s \ (p[B] = q[B] \Rightarrow t[A] = p[A]) \}$$

Domain Calculus: $\{ \langle a \rangle \mid \langle a \rangle \in r \land \forall \langle b \rangle (\langle b \rangle \in s \Rightarrow \langle a, b \rangle \in r) \}$

Use of the Universal Quantifier

```
salary = (employee, salary-amount)
```

To find the maximum salary-amount:

(Extended) Relational Algebra: max_{salary-amount}(salary)

Tuple Calculus:

$$\{t \mid \forall p \in \text{salary} \Rightarrow p[\text{salary-amount}] \leq t[\text{salary-amount}]\}$$

Domain Calculus:

$$\{ \langle s \rangle \mid \exists e (\langle e, s \rangle \in \text{salary} \land \forall e1, s1 (\langle e1, s1 \rangle \in \text{salary} \Rightarrow s1 \leq s)) \}$$