LITERATURE SURVEY

Team id : PNT2022TMID40374

Team Size : 5

Team Leader : YESWANTH D

Team Member: ABIMANYU K

Team Member: NIMALRAJ V

Team Member: RAJKUMAR P

Team Member: SIVAGURUSAKTHIVEL B

1	PAPER TITLE	Rahul R Zaveri, Prof. Pramila M. Chawan "The International Research Journal of
		Engineering and Technology" vol. 07, issue:
		10, 2020. Dr. Anupam Bhatia and
		RaunakSulekh [1]
	PROBLEM DEFINITION	In this study, Naive Bayes was applied to
	PROBLEM DEFINITION	predict the performance of the dataset.
		Rapid miner 7.6.001 is a tool, which was
		used to explore, statistically analyze, and
		mine the data.
	METHODOLOGY/ALGORITHM	"Predictive Model for Parkinson's Disease
		through Naive Bayes Classification"
	ADVANTAGES	The Naive Bayes model performs with 98.5
	ADVANTAGES	% accuracy, and 99.75% of precision.
	DISADVANTAGES	The SNN Algorithm is Best for Different
	DISADVANTAGES	classes , but for more accuracy need to be
		used more Best algorithm

2	PAPER TITLE	Carlo Ricciardi, et al [2] "Using gait analysis" parameters to classify Parkinsonism: A data mining approach"
	PROBLEM DEFINITION	In this system, Random Forest is used for classification along with comparing it with Gradient Boosted Trees. These results are being categorized into 3 different categories namely PSP
	METHODOLOGY/ALGORITHM	Random Forest algorithm and Gradient Boosted Tress are used
	ADVANTAGES	De Novo Parkinson's Disease and Stable Parkinson's Disease with their accuracy being as high as 86.4% as compared to Gradient Boosted Trees which were accurate to a meagre 70%. Also the precision rate of Random Forest was maximum of 90 % against Gradient Boosted Trees which were around maximum of 85%.
	DISADVANTAGES	The accuracy is not necessary to predict the Parkinson's Disease

3	PAPER TITLE	MehrbakhshNilashi et al [3] "A hybrid intelligent system for the prediction of Parkinson's Disease progression using Machine Learning techniques"
	PROBLEM DEFINITION	It was intended to understand how the different types of preprocessing steps could affect the prediction accuracy of the classifier
	METHODOLOGY/ALGORITHM	In this system a method was proposed for the UPDRS (Total-UPDRS and Motor-UPDRS) prediction using machine learning. ISVR was used to predict the Total-UPDRS and Motor-UPDRS. SOM and NIPALS were used for clustering and data dimensionality reduction
	ADVANTAGES	The results show that the method combining SOM, NIPALS, and ISVR techniques was effective in predicting the Total-UPDRS and Motor-UPDRS.
	DISADVANTAGES	The Algorithm used is difficult to predict and edit for future use

4	PAPER TITLE	Aravind Kumar Tiwari [4] "Machine Learning based Approaches for Prediction of Parkinson's Disease,"
	PROBLEM DEFINITION	In this system, minimum redundancy maximum relevance feature selection algorithms were used to select the most important feature among all the features to predict Parkinson's disease.
	METHODOLOGY/ALGORITHM	Minimum Redundancy Maximum Relevance Feature Selection Algorithms were used
	ADVANTAGES	This system of feature selection along with Random Forests provided an accuracy of 90.3% and precision of 90.2%.
	DISADVANTAGES	The accuracy is not neccesaary to predict the Parkinson's Disease more properly

5	PAPER TITLE	DraganaMiljkovic et al [6] "Machine Learning and Data Mining Methods for Managing Parkinson's Disease"
	PROBLEM DEFINITION	In this system, based on the initial patients examination and medications taken, the Predictor part was able to predict each Parkinson's Disease symptom separately covering 15 different Parkinson's Disease symptoms in total.
	METHODOLOGY/ALGORITHM	In the process of classifying the Parkinson's Disease dataset using the ANN based MLP classifier
	ADVANTAGES	The accuracy of prediction ranges from 57.1% to 77.4% depending on the symptom where the highest accuracy is achieved from tremor detection. 7)
	DISADVANTAGES	Data Mining using those algorithm is very difficult and Accuracy is poor