

明 細 書

ノイズ除去回路

技術分野

[0001] 本発明は、ノイズ除去回路に関する。

背景技術

[0002] ラジオ放送の受信、例えば車載AM受信機でAM放送を受信する場合、車両の電動ミラー やワイパーなどからの影響で発生するイグニッショノイズのように時間幅の短く振幅の大きいパルス状のノイズ(以下パルスノイズとする)が受信信号に重畠されることがある。このパルスノイズが受信機から出力されるのは聴感上好ましくない。

[0003] そこでノイズ除去回路は、AM検波で得られる音声信号から、このようなパルスノイズの発生期間を補間することでパルスノイズを除去する。この際の補間の方法として、パルスノイズ発生期間をパルスノイズ発生前の音声信号のレベルで保持する補間方法と、パルスノイズ発生期間を、その前後の音声信号のレベルで直線的につなぐ補間方法などがある。

[0004] なお、このような補間を行うため、従来のノイズ除去回路では、フロントエンドの処理(以下FE処理とする)でパルスノイズの発生を検出したノイズ検出信号を入力し、そのノイズ検出信号に基づいて音声信号のパルスノイズの発生期間を補間していた。このノイズ検出信号は、中間周波信号をレベル検波して得られる信号から、HPF(ハイパスフィルタ)でノイズ成分を抽出し、所定の閾値との大小比較を行うことで生成される。

[0005] また、特許文献1には、発生する中間周波信号の値を所定時間前に発生した中間周波信号の値で予測し、予測した値と実際に発生した値との差分と、所定の閾値との大小比較に基づいてパルスノイズの発生を検出する線形予測による検出を用いる方法が提案されている。

特許文献1:特開2000-278153号公報

[0006] <関連出願の相互参照>

この出願は、2004年3月30日に出願した日本特許出願2004-99358に基づい

て優先権を主張し、その内容を本願に援用する。

発明の開示

発明が解決しようとする課題

[0007] 電界強度が弱いと、弱電界によって発生するノイズが増加する。そのため、FE処理では弱電界の場合、弱電界によるノイズとパルスノイズとの検出精度が悪くなり、パルスノイズの発生を誤検出することがあった。そのため、FE処理によるパルスノイズ検出に基づいて補間処理を行うノイズ除去回路では、FE処理の弱電界での検出精度が不十分であり、実際に音声信号が発生しているにもかかわらず、当該音声信号の発生期間をパルスノイズと誤って補間することがあった。

[0008] 一方、線形予測は、後述するように、処理量を減らすため複数段のIF部での周波数変換によって周波数を落とした中間周波信号を用いて、パルスノイズの検出を行う。そのため、検出の対象となる中間周波信号の情報量がFE処理に比べて低下した。

[0009] また、線形予測は、所定時間幅における中間周波信号の変動に基づいて、極端に大きい変動の中間周波信号が入力されるのを検出する。そのため、線形予測によるパルスノイズ検出では、無音に近い中間周波信号のレベルが続いた状態で、変調度が高く時間幅の短い信号の入力があると、音声信号ではなくパルスノイズであると誤検出することがあった。このように、線形予測によるパルスノイズ検出に基づいて補間処理を行うノイズ除去回路も、実際に音声信号が発生しているにもかかわらず、当該音声信号の発生期間をパルスノイズと誤って補間することがあった。

[0010] 本発明は、パルスノイズを検出した信号を電界強度に応じて選択的に適用することで、電界強度の強弱にかかわらずパルスノイズを精度よく除去できるノイズ除去回路を提供することを目的とする。

課題を解決するための手段

[0011] 本発明に係る主たる発明は、受信信号の中間周波信号をレベル検波して得られる、パルスノイズの発生を示す第1検出信号に応じて、前記受信信号に重畠されたパルスノイズの発生期間を補間するノイズ除去処理部を備えたノイズ除去回路において、所定時刻における前記中間周波信号の値を、当該中間周波信号の所定時間前に発生した中間周波信号に基づいて予測する予測部と、前記所定時刻における予

想した前記中間周波信号の値と発生した前記中間周波信号の値の差分と所定の閾値との大小比較を行うことで前記パルスノイズの発生を示す第2検出信号を出力する検出部と、前記中間周波信号に基づいて得られる電界強度信号に応じて、前記第1検出信号と第2検出信号を選択的に、前記パルスノイズの発生期間を補間するための信号として、前記ノイズ除去処理部に出力するノイズ除去制御部と、を備えたことを特徴とする。

[0012] 本発明の他の特徴については、添付図面及び本明細書の記載により明らかとなる。
。

発明の効果

[0013] 本発明によれば、第1検出信号と第2検出信号を電界強度に応じて選択的に用いることで、電界強度の強弱にかかわらず、パルスノイズを精度よく除去することができる。

図面の簡単な説明

[0014] [図1]本発明のノイズ除去回路を使用したAM受信機のブロック図である。
[図2]本発明のFE検出部の構成を示すブロック図である。
[図3]本発明のノイズ除去回路を示すブロック図である。
[図4]電界強度と、予測誤差との関係を説明するための図である。
[図5]電界強度と閾値設定の関係を示す図である。
[図6]本発明のノイズ除去制御部の動作を説明するためのフローチャート図である。
[図7]直線補間にについて説明するための図である。

符号の説明

[0015]	10 FE部	12 第1IF部
	14 第2IF部	16 第3IF部
	18 検波回路	20 ノイズ除去回路
	22 低周波增幅回路	24 AGC回路
	30 FE検出回路	32 レベル検波部
	34 HPF	36 比較部
	38 閾値設定部	40 線形予測部

42 ノイズ除去制御部 44 ノイズ除去処理部
46 バッファ部 50 予測部
52 検出部

発明を実施するための最良の形態

[0016] 以下の本発明の実施の形態では、AM受信機に本発明のノイズ除去回路を適用した場合について説明する。

[0017] ===AM受信機構成==

図1は、本発明のノイズ除去回路を使用したAM受信機の構成の一例を示すプロック図である。同図に示すAM受信機は、フロントエンド(以下FEとする)部10、第1中間周波(Intermediate Frequency:以下IFとする)部12、第2IF部14、第3IF部16、検波回路18、ノイズ除去回路20、低周波增幅回路22、AGC回路24、FE検出回路30を備えている。

[0018] FE部10は、アンテナ1で受信した受信信号を、次段の第1IF部12で必要とするレベルの信号になるように増幅する。このとき、目的以外の信号やノイズなどの雑音を増幅しないように、目的とする受信信号やその受信信号が含まれる周波数帯域に限定した増幅を行う。

[0019] 第1IF部12は、搬送波周波数の変換を行う機能を有し、受信信号周波数を周波数変調するための局部発振信号を出力する局部発振回路(不図示)と、受信信号と局部発振信号とを混合する混合回路(不図示)と、を備えている。そしてIF信号部12は、受信信号を所定の中間周波数(例えば、10、7MHz)に変換する。さらにその中間周波数を中心周波数とするバンドパスフィルタ(BPF:不図示)によって所望の信号のみ抽出し、その後、增幅回路(不図示)で増幅し、第1IF信号として出力する。

[0020] 第2IF部14は、第1IF信号の周波数を周波数変調するための局部発振信号を出力する局部発振回路(不図示)と、第1IF信号と局部発振信号とを混合する混合回路(不図示)と、を備えている。そして第2IF部14は、第1IF信号を所定の中間周波数(例えば、450kHz)に変換する。さらにその中間周波数を中心周波数とするバンドパスフィルタ(BPF:不図示)によって所望の信号のみ抽出し、その後、增幅回路(不図示)で増幅し、第2IF信号として出力する。

[0021] 第3IF部16は、第2IF信号の周波数を周波数変調するための局部発振信号を出力する局部発振回路(不図示)と、第2IF信号と局部発振信号とを混合する混合回路(不図示)と、を備えている。そして第3IF部16は、第2IF信号を所定の中間周波数(例えば、9kHz)に変換する。さらにその中間周波数を中心周波数とするバンドパスフィルタ(BPF:不図示)によって所望の信号のみ抽出し、その後、增幅回路(不図示)で増幅し、第3IF信号として出力する。

[0022] AGC回路24は、第3IF信号の振幅に比例したAGC制御電圧(以下シグナルメータ信号とする)を発生させる。そして、シグナルメータ信号を第1IF部12の入力にフィードバックすることにより、第1IF部12の増幅率の利得を制御する。また、AGC回路24は、シグナルメータ信号から得られる電界強度を示す電界強度信号をノイズ除去回路20に出力する。

[0023] FE検出回路30は、第1IF信号をレベル検波することでパルスノイズの検出を行うとともに、パルスノイズの発生を示すノイズ検出信号(『第1検出信号』)をノイズ制御回路20に出力する(FE処理)。検波回路18は、第3IF信号から搬送波成分を取り除き、もとの変調信号である音声信号を出力する。ノイズ除去回路20は、第3IF信号、ノイズ検出信号、電界強度信号に応じて、音声信号におけるパルスノイズの発生期間を補間し、音声信号からパルスノイズを除去する。低周波増幅回路22は、音声信号を増幅するとともにスピーカー3に必要な電力を供給する。

[0024] 以上の構成のAM受信機においてアンテナ1で受信された受信信号は、フロントエンド部10で高周波域が増幅された後、第1IF部12、第2IF部14、第3IF部16で局部発振信号が混合されて中間周波数変換が行われる。そして、第3IF部16から出力される第3IF信号が検波回路18で検波されることにより音声信号が得られる。得られた音声信号は、ノイズ除去回路20で、第3IF信号、ノイズ除去信号及び電界強度信号に基づいて重畠しているパルスノイズが除去され、低周波増幅回路22で増幅されてスピーカー3から出力される。

[0025] なお、本実施の形態におけるAM受信機は、IF信号をデジタル化して検波するDSP(デジタルシグナルプロセッサ)構成とする。図1の構成のAM受信機の場合、第3IF信号がデジタル処理された後、検波回路18で検波される。

本実施の形態では、IF部を3段構成にしたが、3段以外、例えば2段としてもよい。また、シグナルメータ信号は、第1IF信号から発生させてもよいし、第2IF信号から発生させてもよい。

さらに、電界強度信号をFE検出回路30から得るようにもよい。

[0026] ===FE検出回路30の構成=====

図2は、FE検出回路30の構成の一例を示すブロック図である。

FE検出回路30は、レベル検波部32と、ハイパスフィルタ(HPF)34と、比較部36と、閾値設定部38とを備えている。レベル検波部32は、入力される第1IF信号(例えば10、7MHz)のレベル検波を行う。HPF34は、レベル検波部32の出力のうちノイズ成分を通過させる。閾値設定部38は、パルスノイズの発生を判定するための閾値を、比較部36に設定する。

比較部36は、HPF34を通過した信号の値と閾値設定部38で設定された閾値との大小比較を行う。そして、HPF34を通過した信号の方が閾値設定部38からの信号より大きい場合は、例えば“HIGH”のノイズ検出信号を出力する。一方、HPF34を通過した信号の方が閾値設定部38からの信号より小さい場合は、例えば“LOW”的ノイズ検出信号を出力する。

[0027] このような構成によってFE検出回路30は、入力される第1IF信号にパルスノイズを検出した場合には、例えば“HIGH”的ノイズ検出信号を出し、第1IF信号にパルスノイズを検出しなかつた場合には、例えば“LOW”的ノイズ検出信号を出力する。よって、ノイズ検出信号の“HIGH”、“LOW”に応じて、パルスノイズを補間することができる。

[0028] ===ノイズ除去回路20の構成=====

図3は、本発明のノイズ除去回路20の構成を示すブロック図である。

本発明のノイズ除去回路20は、線形予測部40と、ノイズ除去制御部42と、ノイズ除去処理部44とを備えている。線形予測部40は、第3IF信号と電界強度信号に基づいてパルスノイズの発生を検出し、パルスノイズの発生を示す線形予測検出信号を出力する。なお、線形予測部40は、予測部50と、検出部52を備えている。

[0029] 予測部50は、所定時刻における第3IF信号の値を、当該第3IF信号の所定時間前

に発生した第3IF信号の値に基づいて予測する。

検出部52は、予測部50で予測された第3IF信号の値と発生した第3IF信号の値との差分と、所定の閾値との大小比較を行うことによって、パルスノイズの発生を示す線形予測検出信号(請求項1乃至5の『第2検出信号』および請求項6の『検出信号』)を出力する。

[0030] ノイズ除去制御部42は、線形予測検出信号とノイズ検出信号を電界強度に応じて選択的に出力する。ノイズ除去処理部44は、ノイズ除去制御部42の出力に応じて音声信号のパルスノイズの発生期間を補間して出力する。また、ノイズ除去処理部44は、デジタルデータとして入力される所定時間分の音声信号を蓄えておくバッファ部46を備えている。

[0031] このように、ノイズ除去回路20は、入力した第3IF信号の線形予測でパルスノイズの発生を示す線形予測検出信号を生成するとともに、この線形予測検出信号とノイズ検出信号を電界強度に応じてパルスノイズを補間するための信号として選択的に用いて音声信号のパルスノイズ発生期間を補間する。よって、ノイズ除去処理部44に入力される音声信号のパルスノイズの検出精度を向上することができ、パルスノイズの発生期間を正確に補間することができる。

[0032] ===線形予測部40の動作=====

線形予測部40の予測部50は、第3IF信号の値を、所定時間前に発生した第3IF信号の値に基づいて、一般的な前向き線形予測の式で予測する。そして、検出部52は、予測部50で予想した値と実際に発生した第3IF信号との値の差分を算出するとともに、その差分の値とパルスノイズの発生を検出するための閾値との大小比較を行う。

[0033] 入力される第3IF信号にパルスノイズが重畠していると、差分が閾値よりも大きくなる。このとき線形予測部40は、パルスノイズの検出を示す、例えば“HIGH”の線形予測検出信号を出力する。一方、第3IF信号の差分が閾値よりも小さい場合、線形予測部40は、パルスノイズの未検出を示す、例えば“LOW”の線形予測検出信号を出力する。よって、線形予測検出信号の“HIGH”、“LOW”に応じて、パルスノイズを補間することができる。

[0034] なお、本発明のノイズ除去回路20の検出部52は、第3IF信号の差分と比較を行うための閾値を、電界強度信号の大きさに応じて変更することができる。

[0035] 図4は、電界強度と、予測誤差との関係の一例を説明するための図である。予測誤差とは、所定時間前に発生した第3IF信号の振幅値から予測部50で予想した第3IF信号の値と、実際に発生した第3IF信号の値との差分のことである。なお、図4(a)は電界強度が強の場合、図4(b)は電界強度が弱の場合を示している。また、m1、m2は検出部52で第3IF信号の差分と大小比較を行うために設定される閾値である。

[0036] 図4(a)に示すように、強電界では音声信号に含まれるパルスノイズ以外のノイズ成分が小さくなる。よってパルスノイズが発生した期間以外の予測誤差が小さくなり、パルスノイズを閾値m1で検出することができる。

[0037] 一方、図4(b)に示すように、電界強度が弱くなると、音声信号にパルスノイズ以外のノイズ成分が大きくなる。すると、予測誤差の全体的なレベルが上昇し、例えば図4(a)で設定していた閾値m1よりも上昇する。この場合、閾値m1ではパルスノイズを検出できなくなる。本発明のノイズ除去回路20の検出部52では、このように電界強度が弱くなると、閾値m1より値の大きい閾値m2に変更を行う。

[0038] 図5は、本発明のノイズ除去回路20の検出部52における閾値設定と、電界強度の関係の一例を示す図である。同図に示すように、本発明のノイズ除去回路20の検出部52は、電界強度が所定の範囲で、電界強度が弱くなるにつれて閾値が大きくなるように閾値を設定する。

このように、電界強度が弱くなるにつれて閾値を大きくすることによって、弱電界においてもパルスノイズの検出を精度よく行うことが可能となる。

[0039] なお、本実施の形態では、図5に示すように検出部52の閾値を、電界強度と一次関数の関係となるように設定したが、一次関数以外の設定であってもよく、電界強度が弱くなるにつれて閾値が大きくなるように設定されればよい。

また、本実施の形態では、線形予測の処理量を少なくするため、周波数を低くした第3IF信号を用いて線形予測をしたが、第3IF信号以外のIF信号で線形予測を行つてもよい。

[0040] ==ノイズ除去制御部42の動作==

図6は、本発明のノイズ除去回路20のノイズ除去制御部42の動作の一例を説明するためのフローチャートである。

[0041] まず、ノイズ除去制御部42は、線形予測検出信号、ノイズ検出信号、電界強度信号を入力する(S601)。入力された電界強度信号が示す電界強度が、例えば30dB μ V(『第1電界強度』)以下の弱電界の場合(S602:YES)には、FE検出回路30の検出精度が悪くなるので、ノイズ除去制御部42は、パルスノイズの発生期間を補間するための信号として線形予測検出信号を出力する(S603)。そして受信終了か否かを判定するステップ609を行う。

[0042] 入力された電界強度信号が示す電界強度が30dB μ Vより大きい場合(S602:NO)は、電界強度が、例えば60dB μ V(『第2電界強度』)以下か否かを判定するステップ604を行う。電界強度が60dB μ V以下の場合には(S604:YES)、何れの検出方法でもパルスノイズ検出が可能であるので線形予測検出信号とノイズ検出信号の何れか一方を出力する(S605)。そして受信終了か否かを判定するステップ609を行う。

[0043] ステップ604で、電界強度が60dB μ Vより大きい場合(S604:NO)は、電界強度が80dB μ V(『第3電界強度』)以下か否かを判定するステップ606を行う。電界強度が60dB μ Vより大きく80dB μ V以下の場合には(S606:YES)、情報量の少ない線形予測よりFE検出回路30の検出の方が、パルスノイズ検出の精度が良くなるので、ノイズ検出信号を出力する(S607)。そして受信終了か否かを判定するステップ609を行う。

[0044] 入力された電界強度信号が示す電界強度が、例えば80dB μ Vより大きい場合(S606:NO)は、音声信号のレベルに比べてノイズのレベルが小さくなる。この場合、パルスノイズの誤検出による誤動作を防止するため、線形予測検出信号、ノイズ検出信号をともに出力しない(S608)。そして、受信終了か否かを判定するステップ609を行う。受信終了でなければ(S609:NO)線形予測検出信号、ノイズ検出信号、電界強度信号を入力するステップ601に戻る。受信終了の場合(S609:YES)はノイズ低減制御処理を終了する。

[0045] ==ノイズ除去処理部44の動作==

ノイズ除去処理部44は、ノイズ低減制御部42からの出力がマルチパスノイズ検出を示す“HIGH”となることに基づいて、音声信号のパルスノイズ発生期間を補間処理、例えば直線補間を行う。

[0046] この直線補間の場合、ノイズ除去処理部44は、入力される音声信号の周波数に応じて、パルスノイズ発生期間を補間するための補間幅を設定する。音声信号が低周波数の場合では補間幅を長くし(例えば10サンプル)、高周波数の場合では補間幅を短くする(例えば5サンプル)。補間幅が短い5サンプルの場合には、パルスノイズの検出に相当するサンプルの前後2サンプルずつを含めた5サンプルを補間処理することになる。

[0047] 図7は、直線補間で5サンプル分の音声信号を補間処理する場合について説明するための図である。

[0048] 時刻t3(振幅y3)においてノイズ除去制御部42からノイズ検出を示す“HIGH”が入力されると、3サンプル前のtaの振幅ya、および3サンプル後のtbの振幅ybに基づいてta～tb間の5サンプル分の補間処理が行われる。

[0049] この補間幅ta～tb間の5サンプルの信号レベルをそれぞれy1～y5とすると、

$$y_1 = (yb - ya) / 6 + ya$$

$$y_2 = 2 \times (yb - ya) / 6 + ya$$

$$y_3 = 3 \times (yb - ya) / 6 + ya$$

$$y_4 = 4 \times (yb - ya) / 6 + ya$$

$$y_5 = 5 \times (yb - ya) / 6 + ya$$

となる。このy1～y5によって、図7の点線に示すように音声信号のパルスノイズの発生期間を直線的に補間処理することができ、音声信号からパルスノイズを除去することができる。

[0050] なお、ノイズ除去処理部44は、デジタル信号として入力された音声信号の所定時間分、例えば1サンプル16ビットのデータを100サンプル分、蓄えておくバッファ部46を備えているので、このように音声信号の直線補間を行う際、パルスノイズ検出より前のデータの処理を行うことが可能である。

さらに、補間処理後の音声信号にローパスフィルタ(LPF)処理を行うことによって、

補間された部分と補間されていない部分の不連続性を抑制することができる。

このように、ノイズ除去制御部42から出力される信号に基づいてノイズ除去処理部44で音声信号の補間をすることによって、音声信号からパルスノイズを除去することができる。なお、ノイズ除去処理部44で行う補間は、直線補間以外であってもよい。

[0051] 以上、説明したように、本発明のノイズ除去回路20は、電界強度に応じて線形予測検出信号とノイズ検出信号を選択してパルスノイズを補間するための信号とすることで、電界強度の強弱にかかわらずパルスノイズの検出精度を向上させることができる。そして、電界強度が弱い場合(例えば、 $30\text{dB}\mu\text{V}$ 以下)には線形予測検出信号を選択し、電界強度が強い場合(例えば $60\text{dB}\mu\text{V}$ より大)にはノイズ検出信号を選択するというように、電界強度に適した検出信号を選択することで、検出精度を向上させることができる。

[0052] また、電界強度が中電界の場合(例えば $30\sim60\text{dB}\mu\text{V}$)には、線形予測検出信号とノイズ検出信号の何れか一方を、パルスノイズを補間するための信号とすることで効果的に検出精度を向上させることができる。

[0053] さらに、電界強度がかなり強い場合(例えば $80\text{dB}\mu\text{V}$ より大)には、線形予測検出信号とノイズ検出信号をともに出力しないことで、パルスノイズの誤検出に基づく誤動作を防止することができる。

[0054] なお、AM受信機でこのように電界強度に応じて線形予測検出信号とノイズ検出信号を選択的に適用することで、電界強度にかかわらずパルスノイズの検出精度を向上させることができる。

[0055] また、電界強度に応じて線形予測の閾値を変更することで、弱電界でも線形予測を精度良く行うことができる。

[0056] 以上、本発明にかかるノイズ除去回路の例示的なそして現時点で好適とされる実施例を詳細に説明したが、本発明の概念は、種々変更して実施し適用することができ、また付属の請求の範囲は先行技術によって限定されることは別として、種々の変形例を含むものである。

請求の範囲

[1] 受信信号の中間周波信号をレベル検波して得られる、パルスノイズの発生を示す第1検出信号に応じて、前記受信信号に重畠されたパルスノイズの発生期間を補間するノイズ除去処理部を備えたノイズ除去回路において、
所定時刻における前記中間周波信号の値を、当該中間周波信号の所定時間前に発生した中間周波信号に基づいて予測する予測部と、
前記所定時刻における予想した前記中間周波信号の値と発生した前記中間周波信号の値の差分と所定の閾値との大小比較を行うことで前記パルスノイズの発生を示す第2検出信号を出力する検出部と、
前記中間周波信号に基づいて得られる電界強度信号に応じて、前記第1検出信号と第2検出信号を選択的に、前記パルスノイズの発生期間を補間するための信号として、前記ノイズ除去処理部に出力するノイズ除去制御部と、
を備えたことを特徴とするノイズ除去回路。

[2] 前記ノイズ除去制御部は、
前記電界強度信号が、所定の第1電界強度以下を示す場合、前記パルスノイズの発生期間を補間するための信号として、第2検出信号を前記ノイズ除去処理部に出力する出力することを特徴とする請求項1に記載のノイズ除去回路。

[3] 前記ノイズ除去制御部は、
前記電界強度信号が、前記第1電界強度より強電界の第2電界強度より大きいことを示す場合、前記パルスノイズの発生期間を補間するための信号として、第1検出信号を前記ノイズ除去処理部に出力することを特徴とする請求項1または2に記載のノイズ除去回路。

[4] 前記ノイズ除去制御部は、
前記電界強度信号が、前記第1電界強度より大きく前記第2電界強度以下であることを示す場合、前記パルスノイズの発生期間を補間するための信号として、前記第1検出信号と第2検出信号の何れか一方を、前記ノイズ除去処理部に出力することを特徴とする請求項1乃至3の何れかに記載のノイズ除去回路。

[5] 前記ノイズ除去制御部は、

前記電界強度信号が、前記第2電界強度より強電界の第3電界強度より大きいことを示す場合、前記第1検出信号と第2検出信号を共に出力しないことを特徴とする請求項3に記載のノイズ除去回路。

[6] 前記受信信号は、AM受信信号であることを特徴とする請求項1乃至5の何れかに記載のノイズ除去回路。

[7] 所定時刻における前記中間周波信号の値を、当該中間周波信号の所定時間前に発生した中間周波信号に基づいて予測する予測部と、

前記所定時刻における予想した前記中間周波信号の値と発生した前記中間周波信号の値の差分と所定の閾値との大小比較を行うことで前記パルスノイズの発生を示す検出信号を出力する検出部と、

受信信号の検波結果に重畠されたパルスノイズの発生期間を前記検出信号に基づいて補間するノイズ除去処理部と、

を備えたノイズ除去回路において、

前記検出部は、

前記中間周波信号に基づいて得られる電界強度信号に応じて、所定の電界強度の範囲において、前記電界強度信号が弱くなるにつれて前記閾値が大きくなるように設定することを特徴とするノイズ除去回路。

[図1]

[図2]

[図3]

[図4]

[図5]

[図6]

[図7]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/002897

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl⁷ H04B1/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ H04B1/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Jitsuyo Shinan Toroku Koho	1996-2005
Kokai Jitsuyo Shinan Koho	1971-2005	Toroku Jitsuyo Shinan Koho	1994-2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 4-297134 A (Fujitsu Ten Ltd.), 21 October, 1992 (21.10.92), Fig. 16 & US 5303415 A1 & EP 526662 A1 & WO 92-16056 A1 & CA 2081353 A & AU 642342 B & DE 69219691 T	1-6
A	JP 2000-278153 A (Sanyo Electric Co., Ltd.), 06 October, 2000 (06.10.00), Abstract (Family: none)	1-6
X	JP 2002-64389 A (Fujitsu Ten Ltd.), 28 February, 2002 (28.02.02), Par. Nos. [0020], [0021], [0084] (Family: none)	7

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier application or patent but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search
10 May, 2005 (10.05.05)Date of mailing of the international search report
24 May, 2005 (24.05.05)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/JP2005/002897**Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

The same or corresponding technical feature of claims 1, 7 is "a predicting section for predicting the value of the intermediate frequency signal at a predetermined time on the basis of the intermediate frequency signal generated before the predetermined time of the intermediate frequency signal and a detecting section for comparing the difference in magnitude between the predicted value of the intermediate frequency signal at the predetermined time and the generated intermediate signal with a predetermined threshold and thereby outputting a second detection signal representing the occurrence of the pulse noise".

However, this same or corresponding (Continued to extra sheet.)

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/002897

Continuation of Box No.III of continuation of first sheet(2)

technical feature is known by the disclosure of JP 2000-278153 A.

Therefore, there exists no same or corresponding special technical feature in claims 1, 7. Consequently, the claims define two inventions.

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl.⁷ H 04 B 1 / 1 0

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl.⁷ H 04 B 1 / 1 0

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922—1996年
日本国公開実用新案公報	1971—2005年
日本国実用新案登録公報	1996—2005年
日本国登録実用新案公報	1994—2005年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	J P 4-297134 A (富士通テン株式会社) 1992. 10. 21, 図16 & U S 5303415 A1 & E P 526662 A1 & W O 92-16056 A1 & C A 2081353 A & A U 642342 B & D E 69219691 T	1-6
A	J P 2000-278153 A (三洋電機株式会社) 2000. 10. 06, 要約欄 (ファミリーなし)	1-6

□ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示す
もの

「E」国際出願日前の出願または特許であるが、国際出願日
以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行
日若しくは他の特別な理由を確立するために引用す
る文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって
出願と矛盾するものではなく、発明の原理又は理論
の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明
の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以
上の文献との、当業者にとって自明である組合せに
よって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

10. 05. 2005

国際調査報告の発送日

24. 5. 2005

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

江口 能弘

5W 8125

電話番号 03-3581-1101 内線 3576

C (続き) . 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	J P 2 0 0 2 - 6 4 3 8 9 A (富士通テン株式会社) 2 0 0 2 . 0 2 . 2 8 , 【0020】 , 【0021】 , 【0084】 (ファミリーなし)	7

第II欄 請求の範囲の一部の調査ができないときの意見（第1ページの2の続き）

法第8条第3項（PCT 17条(2)(a)）の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 請求の範囲_____は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、
2. 請求の範囲_____は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3. 請求の範囲_____は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第III欄 発明の単一性が欠如しているときの意見（第1ページの3の続き）

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1と請求の範囲7の同一または対応する技術的特徴は、「所定時刻における前記中間周波信号の値を、当該中間周波信号の所定時間前に発生した中間周波信号に基づいて予測する予測部と、前記所定時刻における予想した前記中間周波信号の値と発生した前記中間周波信号の値の差分と所定の閾値との大小比較を行うことで前記パルスノイズの発生を示す第2検出信号を出力する検出部」である。

しかし、この同一または対応する技術的特徴は、特開2000-278153号公報により知られている。

したがって、請求の範囲1と請求の範囲7に同一または対応する特別な技術的特徴が存在しない。
したがって、請求の範囲には2の発明が記載されている。

1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2. 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- 追加調査手数料の納付と共に出願人から異議申立てがあった。
- 追加調査手数料の納付と共に出願人から異議申立てがなかった。