STRY' ENTERED AT 11:54:52 ON 07 FEB 2002

E SILVER ION/CN 14 S SILVER ION ?/CN E SILVER IONS/CN

CAPLUS' ENTERED AT 11:55:36 ON 07 FEB 2002

12483 S L1 OR (AG OR SILVER) (W) ION L2 17 S L2 AND (ANTIBOD? OR ANTIGEN) L3

CAPLUS COPYRIGHT 2002 ACS ANSWER 1 OF 17 2001:592182 CAPLUS ACCESSION NUMBER:

135:161519 DOCUMENT NUMBER:

Manuf. superparamagnetic particles and TITLE:

applications

Pilgrimm, Herbert INVENTOR(S):

PATENT ASSIGNEE(S): Germany

U.S., 6 pp., Cont.-in-part of U.S. Ser. No. SOURCE:

776,131.

CODEN: USXXAM

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

L1

PAT	ENT 1	10.		KI	ND	DATE				API	PLIC	CATI	ON N	0.	DATE	· 	
DE -	 62741 44278 96036	321.		B: A: A:		2001 1996 1996	0201			DE	199	4-4	0053 4278 E102	21	1999 1994 1995	0727	
		-		CH,	DE,	DK,	ES,	FR,	GB	, (GR,	IE,	IT,	LU,	MC,	NL,	PT,
	77277 77277	-		A: B:		1997 2000				ΕP	199	95-9	2763	5	1995	0727	
		AT,	BE,	CH,		FR, 1998	GB,	IT,					0536	8	1995	0727	
AT	19108 59289	36				2000 1999				US	199	97-7	2763 7613	1	1995 1997	0108	
PRIORITY	APPI	LN.	INFO	.:					WO	199	95-6		28		1994 1995	0727	
												7761 1309		AZ Ā	1997 1993		

Superparamagnetic particles consist of superparamagnetic 1-domain AB particles and aggregates of superparamagnetic 1-domain particles to whose surfaces are bound inorg. and optionally org. substances optionally having further binding sites for coupling to tissue-specific binding substances, diagnostic or pharmacol. active substances. The superparamagnetic particles consist of a mixt. of small superparamagnetic 1-domain particles with a particle size from 3-50 nm and stable, degradable aggregates of small superparamagnetic 1-domain particles with a particle size from 10-1000 nm. They are made of Fe hydroxide, Fe oxide hydrate, Fe oxides, Fe mixed oxides or Fe to the surface of which are bound silicate group contg. substances among the orthosilicic acids and their condensation products and phosphate-group contg. substances among the ortho- or metaphosphoric acids and their condensation products. substances may have further binding sites.

14701-21-4, Silver ion, processes IT

RL: PEP (Physical, engineering or chemical process); PROC (Process) (condensation product with ortho-, metaphosphoric acid; process for manuf. and applications of superparamagnetic particles) THERE ARE 14 CITED REFERENCES AVAILABLE REFERENCE COUNT: 14

FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

CAPLUS COPYRIGHT 2002 ACS ANSWER 2 OF 17 2001:457222 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

135:73538

TITLE:

Silver ion microplates for

immunoassays

AUTHOR(S):

Bonen, Matthew R.; Hoffman, Steven A.; Garcia,

Antonio A.

CORPORATE SOURCE:

Arizona State Univ., Tempe, AZ, USA

SOURCE:

BioTechniques (2001), 30(6), 1340-1351 CODEN: BTNQDO; ISSN: 0736-6205

Eaton Publishing Co. PUBLISHER:

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Microplate wells can be coated with silver ions using glutaraldehyde as a spacer mol. and thiourea as a complexing ligand. Microwells contg. surface silver ions are shown to immobilize biotin-labeled horseradish peroxidase (HRP) in active form, while showing very little affinity for the unlabeled enzyme. These plates can also immobilize biotin-labeled antibodies that exhibit bioactivity after immobilization. Silver ions are needed for the complexation of the biotinylated enzyme or antibody because microwells modified to contain surface amine or thiourea mols. do not immobilize appreciable amts. of the labeled proteins. A max. surface coverage for biotin-labeled HRP of 40 ng/cm2 and an immobilization binding const. of Km = 8.times.109/M are detd. from serial dilns. in a microplate. Detection of as little as 6.7 fmol HRP is achieved using anti-bodies immobilized on the silver ion-modified microplates. Active antibody surface densities were estd. to be between 130 and 260 nm2/antibody mol. Background binding of HRP to the modified silver ion microplates was very low, allowing for reasonably

accurate detection between 10-14 and 10-11 mol HRP. REFERENCE COUNT:

THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

CAPLUS COPYRIGHT 2002 ACS ANSWER 3 OF 17

28

ACCESSION NUMBER:

CORPORATE SOURCE:

2001:95269 CAPLUS

DOCUMENT NUMBER:

135:149468

TITLE:

A comparison of silver ion

to streptavidin coated microplates

AUTHOR(S):

Bonen, M. R.; Garcia, A. A.; Hoffman, S. A.

Department of Chemical and Materials

Engineering, Arizona State University, Tempe,

AZ, 85287-6006, USA

SOURCE:

J. Microbiol. Methods (2001), 44(2), 113-120

CODEN: JMIMDQ; ISSN: 0167-7012

PUBLISHER:

Elsevier Science Ireland Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Searcher :

Shears

308-4994

Direct comparisons are made between covalently linked streptavidin AB and silver ion coated microplates. Both coatings can immobilize biotinylated mols. Silver ion coated microplate wells can immobilize 1.8 times higher amts. of biotin labeled horseradish peroxidase. The quantitation range and capacity for the capture of horseradish peroxidase using biotin labeled horseradish peroxidase are also greater for silver ion coated microplates. Approx. twice as many anti-horseradish peroxidase antibodies can be immobilized per well using silver ion coated microplates. Higher capacities are presumed to be due to the smaller footprint of silver ions as compared to streptavidin. A direct comparison between the two coatings for a .beta.-galactosidase ELISA showed that while the silver ion coated microplates gave higher readings, the streptavidin coated microplates exhibited smaller well-to-well variation. However, higher well to well variation for the silver microplates is attributed to the high d. of anti-.beta.galactosidase antibodies on the microplates and the weak binding of clone GAL-13 to .beta.-galactosidase, rather than the silver coating. These studies suggest silver ion coated microplates are a desirable alternative to streptavidin plates for quant. immunoassays. THERE ARE 18 CITED REFERENCES AVAILABLE

18 REFERENCE COUNT: FOR THIS RECORD. ALL CITATIONS AVAILABLE

IN THE RE FORMAT

ANSWER 4 OF 17 CAPLUS COPYRIGHT 2002 ACS 2000:260137 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

132:276300

TITLE:

Immobilized silver immunoassay system Garcia, Antonio A.; Bonen, Matthew R.

INVENTOR(S): PATENT ASSIGNEE(S):

Arizona Board of Regents, USA PCT Int. Appl., 37 pp.

SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000021665	A1	20000420	WO 1999-US23902	19991014
W: CA, US				
RW: AT, BE,	CH, CY	, DE, DK, ES,	FI, FR, GB, GR, IE	, IT, LU, MC,
NL, PT,	SE			
EP 1121198	A1	20010808	EP 1999-956547	19991014
R: AT, BE,	CH, DE	, DK, ES, FR,	GB, GR, IT, LI, LU	, NL, SE, MC,
PT, IE,	FI			
PRIORITY APPLN. INFO	· :		US 1998-104263 P	19981014
			US 1999-145786 P	19990727
			WO 1999-US23902 W	19991014

Bioassay plates having silver ions immobilized AB on them are useful in immunoassays for detection of antibodies or antigens. The bioassay plates are prepd. by amine derivatization of (e.g., polystyrene) microtiter plates, followed by reaction with polymd. glutaraldehyde, reaction with thiourea and complexation with Ag+ ions.

The plates can bind biotinylated capture antibodies or antigens for use in immunoassay systems, esp. std. ELISAs (enzyme-linked immunosorbent assays).

14701-21-4, Silver ion, biological ΙT

RL: BUU (Biological use, unclassified); TEM (Technical or engineered material use); BIOL (Biological study); USES (Uses)

(immobilized silver immunoassay system)

REFERENCE COUNT:

THERE ARE 6 CITED REFERENCES AVAILABLE FOR 6 THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 5 OF 17 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1999:392536 CAPLUS

DOCUMENT NUMBER:

131:212867

TITLE:

Selection of Human Metalloantibodies from a

Combinatorial Phage Single-Chain

Antibody Library

AUTHOR(S):

Gao, Changshou; Bruemmer, Oliver; Mao, Shenlan;

Janda, Kim D.

CORPORATE SOURCE:

Department of Chemistry, The Scripps Research Institute and The Skaggs Institute for Chemical

Biology, La Jolla, CA, 92037, USA

SOURCE:

J. Am. Chem. Soc. (1999), 121(27), 6517-6518

CODEN: JACSAT; ISSN: 0002-7863

PUBLISHER:

American Chemical Society

DOCUMENT TYPE:

Journal English

LANGUAGE: In this report the authors describe the isolation of metal ion binding antibodies. The immobilized phosphorodithioate ligand (1) was utilized as the parent metallo-panning agent while a single-chain antibody library was constructed from the blood of 50 healthy volunteers. The resulting phage scFv antibody library was then panned against three metal ion pool mixts. and immobilized 1. Clones from the single-chain antibody library were found to bind to only metals from the combinatorial pool 3 (La3+, Hg2+, Cd2+, Cu2+). Ten of these clones were picked from pool 3 and examd. for their binding to microtiter wells of an amine surface strip plate coated with 1 and to those coated with 1-pool 3. Two clones (HM3 and HM5) were chosen for further examn. as they showed the greatest affinity to 1-pool 3 vs. 1 alone on the basis of phage ELISA. The scFv fragments of HM3 and HM5 were excised, cloned into the PIWPY vector, and sol. single-chain was overexpressed and purified to homogeneity. Sequencing of HM3 and HM5 revealed greater than 90% homol. between the light chains. In contrast, their heavy chains differed significantly within the complementary detg. regions.

14701-21-4, biological studies ΙT

RL: BPR (Biological process); BIOL (Biological study); PROC (Process)

(selection of human metalloantibodies from a combinatorial phage single-chain antibody library)

REFERENCE COUNT:

THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

25

ACCESSION NUMBER:

ANSWER 6 OF 17 CAPLUS COPYRIGHT 2002 ACS 1999:370734 CAPLUS

> 308-4994 Shears Searcher :

DOCUMENT NUMBER:

131:179342

TITLE:

A Fe3+/DNA complex induces an anti-human immunodeficiency virus factor(s) in CD4+

lymphocyte cell lines

AUTHOR(S):

Nossik, D.; Kaplina, E.; Nossik, N.; Kalnina, L.: Tsutsumi, R.; Miura, Y.; Sera, K.; Itoh, C.;

Sato, S.; Lvov, D.

CORPORATE SOURCE:

D.I. Ivanovsky Institute of Virology, Russian Academy of Medical Sciences, Moscow, 123098,

Russia

SOURCE:

Acta Virol. (Engl. Ed.) (1999), 43(1), 25-30

CODEN: AVIRA2; ISSN: 0001-723X

PUBLISHER:

Slovak Academic Press Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Numerous cytokines and chemokines are involved in inflammatory and immune response. Whereas some of them inhibit virus replication in vitro directly or increase the patients' T4-lymphocyte level, other effects are not so clear. Using human immunodeficiency virus (HIV) and cell cultures we have studied the antiviral effect of complexes of salmon DNA with metals and of a new factor(s) (antiviral factor, AVF) induced in cells by the complexes. The Fe3+/DNA complex possessed the highest antiviral activity. It was found that MT-2, MT-4, CEM and Jurkat cells treated with the complexes secreted AVF which inhibited the replication of nine HIV-1 isolates, was noncytotoxic and stimulated cell proliferation. AVF did not inactivate HIV. The mol. mass anal. of AVF showed that its antiviral activity is assocd. with its fraction of Mr of 3 K. Reverse transcription-polymerase chain reaction (RT-PCR) anal. of mRNA from MT-4 cells treated with the complexes showed an increase in the the expression of genes for interleukin-1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF-alpha) and TNF-beta while expression of genes for IL-1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12; 35p, 40p, IL-13, GMCSF, GSF and RANTES was not detected at all. However, the anti-HIV activity of the cell culture supernatant in vitro cannot be explained by mere presence of the inflammatory substances mentioned above, because they do not possess such activity and their Mr is higher than that of AVF. Our findings raise the possibility that AVF(s) may be involved in the mechanism of cell resistance against HIV.

14701-21-4D, Silver cation, DNA complex, biological studies IT RL: BAC (Biological activity or effector, except adverse); BIOL (Biological study)

(antiviral effect of complexes of salmon DNA with metals and of antiviral factor induced in cells by the complexes)

REFERENCE COUNT:

THERE ARE 26 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 7 OF 17 CAPLUS COPYRIGHT 2002 ACS

26

ACCESSION NUMBER: DOCUMENT NUMBER:

1998:424396 CAPLUS 129:99391

TITLE:

Functionalized polymers and copolymers of norbornene, 7-oxanorbornene, and norbornadiene

for air and wastewater treatment

INVENTOR(S):

PATENT ASSIGNEE(S):

Buchmeiser, Michael Rudolf; Bonn, Gunther Karl Buchmeiser, Michael Rudolf, Austria; Bonn,

Gunther Karl

SOURCE:

PCT Int. Appl., 36 pp.

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

German

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND DATE	APPLICATION NO.	DATE
WO 9827423	A1 19980625	WO 1997-AT278	19971217
	, CH, DE, DK, ES,	FI, FR, GB, GR, IE, IT	LU, MC, NL,
PT, SE AT 9602209	A 19980115	AT 1996-2209	19961218
AT 404099 EP 888537	B 19980825 A1 19990107	EP 1997-948632	19971217
R: AT, BE PRIORITY APPLN. INF		AT 1996-2209 WO 1997-AT278	19961218 19971217

GI

Functionalized polymers or copolymers of norbornene, 7-oxanorbornene AB or norbornadiene were prepd. and used as compns. for sepn. processes (e.g., absorbents), such as chromatog., solid-phase extn., or electrophoresis, esp. for air and wastewater treatment. The polymers are of general formulas I and II [A and B are H, C1-18-alkyl, alkyloxy, aryl, aryloxy, alkenyl, alkylaryl, arylalkyl, arylalkenyl-, hydroxyalkyl, (poly)-hydroxyphenyl, hydroxyalkylaryl, aminoalkyl, (C1-18)-mono- or di(C1-18-alkyl)aminoalkyl, C1-18-cyanoalkyl, cyanoaryl, carboxylate, C1-18-alkylcarboxylate, alkylcarboxyl, N, N-dipyridylamino, halo, N-C1-18-alkyl-N, Ndipyridylamino, N, N-dipyridylcarbamido, or C1-18-alkyl-N, Ndipyridylcarboximido; and X = O or CH2.]. Preferably, A and B are carboxylate, dipyridylamino, or dipyridylamido, as well as N-substituted 7-oxanorborn-2-enedicarboximide and The polymers can contain (as part norborn-2-ene-5,6-dicarboximide. of the A and B functionality) a chelating agent (e.g., hydroxyquinoline), a hapten, or an enzyme for antigenantibody reactions, or the material can coated onto an inorg. (SiO2, Al2O3, TiO2, ZrO2) or an org. (styrene-divinylbenzene copolymer) support.

14701-21-4, Silver ion(1+), processes IT RL: POL (Pollutant); REM (Removal or disposal); OCCU (Occurrence);

> (removal of, from water; functionalized polymers and copolymers of norbornene, 7-oxanorbornene, and norbornadiene for air and wastewater treatment)

ANSWER 8 OF 17 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1997:397784 CAPLUS

127:107672 DOCUMENT NUMBER:

Non-instrumental immunoassay for TITLE: antibodies to HIV-1 and HIV-2

Benitez, Jesus; Ganzo, Oscar; Leal, Vladimir; AUTHOR(S): Gavilondo, Jorge; Novoa, Lidia; Rivero, Juan;

Lopez, Grisell; Rodriguez, Jose L.; Nunez, Zoe Division Immunotechnology Diagnostics, Center

CORPORATE SOURCE: Genetic Engineering Biotechnology, Havana, Cuba

Biotecnol. Apl. (1997), 14(2), 114-116 CODEN: BTAPEP; ISSN: 0864-4551 SOURCE:

Sociedad Iberolatinoamericana de Biotecnologia PUBLISHER:

Aplicada a la Salud

Journal DOCUMENT TYPE: English LANGUAGE:

The aim here was to develop a simple visual immunoassay for AB

antibodies to HIV-1 and HIV-2 using the proprietary AuBioDOT technol., and a combination of 2 HIV-1 (p24r and gp41r) recombinant

antigens and a HIV-2 synthetic peptide (pep36) as coating. The sequential incubations of the coated AuBioDOT slides with serum,

a protein A-colloidal gold conjugate, and a silver

ion enhancer result in dark color metallic deposits in the

reaction areas incubated with the pos. samples. The whole procedure takes 40 min and needs no incubation equipment.

ANSWER 9 OF 17 CAPLUS COPYRIGHT 2002 ACS

1995:667394 CAPLUS ACCESSION NUMBER: 123:51720

DOCUMENT NUMBER: Visual immunoassay method for the detection of TITLE:

ligands, based on the use of opaque plastic

supports

Santizo Lesoailla, Carlos A.; De La C. INVENTOR(S):

Lesoaailla Buitrago, Lissett

Centro de Ingenieria Genetica y Biotecnologia, PATENT ASSIGNEE(S):

Cuba

Can. Pat. Appl., 26 pp. SOURCE:

CODEN: CPXXEB

DOCUMENT TYPE:

Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

KIND DATE APPLICATION NO. DATE PATENT NO. _____ CA 1993-2105515 19930903 CA 2105515 AA 19950304

The present invention is related to the field of immunol., and AB particularly to an immunoassay for ligand detection in body fluids using plastic supports. The tech. objective of the invention consists of a manual immunoassay that provides high sensitivity, specificity, and reagent economy for the detection of ligands in body fluids by using opaque white plastic supports. The latter contain either antigens or antibodies,

immobilized in shallow microwells. The detection of the resp.

ligand-binding partners (antibodies or antigens,

resp.) is done with reagents conjugated with monodisperse colloidal gold, with the signal amplified "in situ" by phys. developers, based on silver ions. The samples and all liq.

> Shears 308-4994 Searcher :

reagents are placed in contact with the microwells, finally obtaining metallic colored insol. reactions of very high contrast that can be easily interpreted visually. This method can be employed for the detection of any type of antigen (including small mols. with discrete epitope structure) or antibody (e.g., antibodies to human immunodeficiency virus type 1 or to Toxoplasma gondii).

L3 ANSWER 10 OF 17 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1995:498492 CAPLUS

DOCUMENT NUMBER: 122:234849

TITLE: Visual immunoassay method for the detection of

ligands, based on the use of opaque plastic

supports.

INVENTOR(S): Santiago Laecaille, Carlos A.; Lescaille

Buitrago, Lissett de La C.

PATENT ASSIGNEE(S): Centro de Ingenieria Genetic y Biotecnologia,

Cuba

SOURCE: Eur. Pat. Appl., 13 pp.

CODEN: EPXXDW

DOCUMENT TYPE:

Patent English

LANGUAGE: En FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

EP 643307 A1 19950315 EP 1993-500124 19930914

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LI, LU, MC, NL,

PT, SE

JP 07120470 A2 19950512 JP 1993-245382 19930930 PRIORITY APPLN. INFO.: EP 1993-500124 19930914

PRIORITY APPLN. INFO.: The present invention is related to the field of immunol., and deals esp. with an immunoassay for ligand detection in body fluids using plastic supports. The tech. objective of this invention consists of a manual immunoassay method which provides high sensitivity, specificity, and reagent economy for the detection of ligands in body fluids using opaque white plastic supports. The latter contain either antigens or antibodies immobilized in shallow microwells. The detection of the resp. ligand-binding partner (antibodies or antigens) is evidenced by using reagents conjugated with monodisperse colloidal gold, with the signal amplified "in situ" by phys. developers based on silver ions. The samples and all liq. reagents are placed in contact with the microwells, finally obtaining metallic colored reactions of very high contrast than can be easily interpreted visually. This method can be employed for the detection of any type of antigen (including small mols. with discrete epitope structure) or antibody. Examples are given for the detection of antibodies against HIV-1 and against Toxoplasma gondii.

L3 ANSWER 11 OF 17 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1993:678676 CAPLUS

DOCUMENT NUMBER: 119:278676

TITLE: Synthesis of biofunctional fine materials - biointeraction and clinical application of

synthetic material

Aono, M.; Yamamoto, K.; Hotta, M.; Hirofuji, T.; AUTHOR(S):

Yamaki, M.

Sch. Dent., Asahi Univ., Gifu, 501-02, Japan CORPORATE SOURCE:

New Funct. Mater. (1993), Volume B, 369-73. SOURCE:

Editor(s): Tsuruta, Teiji. Elsevier: Amsterdam,

Neth.

CODEN: 59NKAJ

DOCUMENT TYPE:

Conference

LANGUAGE:

English

The antibacterial action of SiO2 filler implanting Ag AR ion on oral streptococci found in dental plaque, the application of glass ceramic typodont tooth, synthesis of glass ceramics by the sol-gel process, and the effects of glass ceramics on human polymorphonuclear leukocytes (PMNs) were studied. As a result, the four representative oral streptococci (S. mutans, S. sanguis, S. mitis, and S. salivarius) showed growth inhibition by SiO2 filler implanting Ag ion. Bioram-M may be a useful typodont tooth, esp. suitable for enamel substitute in the cutting exercise. Newly prepd. TiO2-SiO2 glass powders are refractive-index-adjustable fillers, suitable for various types of visible-light-cured dental resins. Glass ceramics affects the expression of cell surface antigens and H2O2 prodn. of

PMNs and may activate PMNs. ANSWER 12 OF 17 CAPLUS COPYRIGHT 2002 ACS

1992:465931 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER:

117:65931

TITLE:

Direct measurement of low density lipoprotein in

whole blood by silver-enhanced gold-labelled

immunoassay

Patel, Nishith; Rocks, Bernard F.; Iversen, S. AUTHOR(S):

Andrew

CORPORATE SOURCE:

Clifford Riley Dep. Chem. Pathol., R. Sussex

County Hosp., Brighton, BN2 5BE, UK

SOURCE:

Ann. Clin. Biochem. (1992), 29(3), 283-6

CODEN: ACBOBU; ISSN: 0004-5632

DOCUMENT TYPE:

Journal

LANGUAGE:

English

A competitive silver-enhanced gold-labeled immunoassay (SEGLISA) has been developed for the direct measurement of low-d. lipoprotein (LDL) in whole blood. Immobilized LDL and sample LDL compete for Quantitation of the bound added antibody. antibody/antigen complex is achieved by the addn. of gold-labeled antiimmunoglobulin G followed by enhancement of absorbance by addn. of silver ions. Whole-blood samples from fasting patients were assayed directly for LDL by the procedure and the corresponding plasma samples were assayed for total cholesterol, high-d. lipoprotein and triglycerides followed by the indirect calcn. of LDL cholesterol. The correlation between the two methods was good (r = 0.82) and the SEGLISA exhibited good precision.

CAPLUS COPYRIGHT 2002 ACS ANSWER 13 OF 17

ACCESSION NUMBER:

1991:510014 CAPLUS

DOCUMENT NUMBER:

115:110014

TITLE:

Silver-enhanced gold-labelled immunoassay for

analyte determination in body fluids

INVENTOR(S):

Rocks, Bernard Francis; Bailey, Michael Philip;

Bertram, Vanessa M. R.

PATENT ASSIGNEE(S):

United Kingdom Secretary of State for Health,

London, UK

PCT Int. Appl., 63 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE:

Patent

LANGUAGE:

English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

APPLICATION NO. KIND DATE DATE PATENT NO. WO 9101003 A1 19910124 WO 1990-GB1046 19900706

W: AT, AU, BB, BG, BR, CA, CH, DE, DK, ES, FI, GB, HU, JP, KP,

KR, LK, LU, MC, MG, MW, NL, NO, RO, SD, SE, SU, US

RW: AT, BE, BF, BJ, CF, CG, CH, CM, DE, DK, ES, FR, GA, GB, IT,

LU, ML, MR, NL, SE, SN, TD, TG

AU 1990-59480 19900706 A1 19910206 AU 9059480 EP 1990-917909 19900706 19920422 EP 481020

EP 481020 В1 19960313

R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, LU, NL, SE AT 1990-917909 19900706 E 19960315 19890706 GB 1989-15512 PRIORITY APPLN. INFO.:

WO 1990-GB1046 19900706

A Ag-enhanced Au-labeled immunogold assay (SEGLISA) capable of detg. levels of target analytes such as antigens, antibodies, and drugs in physiol. fluids, including whole blood samples, is disclosed. The assay is particularly suited for the detn. of the presence and/or amt. of HIV (human immunodeficiency virus) and Rubella antibodies and provides a permanent result of less equivocal nature than prior ELISA assays. By use of a Ag-contg. enhancer soln., the Au is completely visualized to provide a dark brown to dense black deposit of Ag on the Au which may be produced in an amt. proportional to the amt. of Au-labeled reagent bound to the solid-phase specific binding reagent. For HIV antibody detn. in whole blood, a test sample was dild., added to microtiter wells precoated with inactivated HIV antigens, and incubated at 37.degree. for 60 min, followed by incubation with IgG-Au conjugate at 37.degree. for 60 min and treatment with a Ag-contg. enhancer. After washing with distd. water, the absorbance of the wells were read at 450 nm. Kits for the immunoassay also are claimed.

ANSWER 14 OF 17 CAPLUS COPYRIGHT 2002 ACS L3

1990:512000 CAPLUS ACCESSION NUMBER:

113:112000 DOCUMENT NUMBER:

Electropolymer-coated microelectrodes TITLE:

Wallace, Gordon George INVENTOR(S):

Wollongong Uniadvice Ltd., Australia PATENT ASSIGNEE(S):

PCT Int. Appl., 40 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent

English LANGUAGE:

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

APPLICATION NO. DATE PATENT NO. KIND DATE

WO 9002829 A1 19900322 WO 1989-AU381 19890907

W: AU, JP, US

RW: AT, BE, CH, DE, FR, GB, IT, LU, NL, SE

AU 8942264 A1 19900402 AU 1989-42264 19890907
PRIORITY APPLN. INFO.: AU 1988-294 19880907
WO 1989-AU381 19890907

The manuf. of microelectrodes, layer-coated with polymers by electropolymn., is disclosed. The polymeric layers are preferably derived from pyrrole, thiophene, etc. monomers by galvanostatic, potentiostatic, or potentiodynamic oxidn. of the monomer. An extension of the invention allows for the prodn., at low potential, of polymers with low counter ion content (less conductive ions) or with low affinity ions, both of which may be readily exchanged by ion-exchange techniques for useful agents such as proteins, antibodies, antigens, and drugs in .gtoreq.1 layer. These incorporated materials are control-released by applying a cathodic potential to the microelectrode or used in assays. Polypyrrole microelectrodes incorporating Cl- as the counter ion were grown galvanostatically and used to detect Ag+ in soln.

L3 ANSWER 15 OF 17 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1961:137760 CAPLUS

DOCUMENT NUMBER: 55:137760
ORIGINAL REFERENCE NO.: 55:26052f-g

TITLE: Preparation of metal-protein complexes for

electron microscopy

AUTHOR(S): Roycraft, Elizabeth; Brown, Ray K.

CORPORATE SOURCE: New York State Dept. of Health, Albany

SOURCE: N.Y. State Dept. Health, Ann. Rept. Div. Labs.

and Research (1960) 73-4

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AB Cr label was applied in stages alternating with H2S to human serum albumin after treatment with 20 moles of N-acetyl-DL-homocysteine thiolactone in the presence of Ag ion and subsequent removal of the Ag. This suggests that a lattice occurred in which 1 Cr atom was linked through 1 S atom to the protein and through 2 S atoms to other Cr atoms. The albumin so prepd. was water-sol., contained 4.6% Cr in agreement with calcns. and still reacted with its antibody. Electron micrographs showed particles of appropriate size and no. not present in the controls.

L3 ANSWER 16 OF 17 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1917:12096 CAPLUS

DOCUMENT NUMBER: 11:12096
ORIGINAL REFERENCE NO.: 11:2505a-d

TITLE: Therapeutic iontophoresis

AUTHOR(S): Koller, H.

SOURCE: J. Am. Med. Assoc. (1917), 68, 1878

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AB K. describes extensive expts. made with the ions of heavy metals, by passing them through dead animal membranes and through rabbit ears. The use of Cu or Zn on a large surface, as for example the vagina, should be avoided, but Ag is well adapted for such use, the AgCl formed by contact of the Ag ion with Cl of body fluids being insol. and hence non-toxic. It appears that heavy

metals in ion form can penetrate into and pass along in the body, but they are kept from doing harm by an antibody an actual anti- ion colloid. At the moment of the discharge the ion becomes active and by forming salts induces pptn. of the colloid, that is, exerts a caustic action. A general pptn. of colloid in the course of Hg or Ag treatment is attended with symptoms of poisoning. If the conditions regulating the migration and discharge of the heavy metals in the body could be controlled a new field would be opened in therapeutics.

ANSWER 17 OF 17 CAPLUS COPYRIGHT 2002 ACS

1917:12095 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 11:12095 ORIGINAL REFERENCE NO.: 11:2505a-d

TITLE: Therapeutic iontophoresis

AUTHOR(S): Koller, H.

Correspondenz-Blatt fur Schweizer Aerzte (1917), SOURCE:

47, two installments 485,513

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

K. describes extensive expts. made with the ions of heavy metals, by AB passing them through dead animal membranes and through rabbit ears. The use of Cu or Zn on a large surface, as for example the vagina, should be avoided, but Ag is well adapted for such use, the AgCl formed by contact of the Ag ion with Cl of body fluids being insol. and hence non-toxic. It appears that heavy metals in ion form can penetrate into and pass along in the body, but they are kept from doing harm by an antibody an actual anti- ion colloid. At the moment of the discharge the ion becomes active and by forming salts induces pptn. of the colloid, that is, exerts a caustic action. A general pptn. of colloid in the course of Hg or Ag treatment is attended with symptoms of poisoning. If the conditions regulating the migration and discharge of the heavy metals in the body could be controlled a new field would be opened in therapeutics.

DUPLICATE 1 ANSWER 1 OF 17 MEDLINE

2002013731 MEDLINE ACCESSION NUMBER:

21307923 PubMed ID: 11414228 DOCUMENT NUMBER: Silver ion microplates for TITLE:

immunoassays.

Bonen M R; Hoffman S A; Garcia A A AUTHOR:

Arizona State University, Tempe, AZ, USA. BIOTECHNIQUES, (2001 Jun) 30 (6) 1340-4, 1346-51. CORPORATE SOURCE:

SOURCE:

Journal code: 8306785. ISSN: 0736-6205.

PUB. COUNTRY: United States

(EVALUATION STUDIES)

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

Priority Journals FILE SEGMENT:

200201 ENTRY MONTH:

Entered STN: 20020121 ENTRY DATE:

Last Updated on STN: 20020125

Entered Medline: 20020114

Microplate wells can be coated with silver ions AB using glutaraldehyde as a spacer molecule and thiourea as a complexing ligand. Microwells containing surface silver ions are shown to immobilize biotin-labeled horseradish peroxidase (HRP) in active form, while showing very little affinity for the unlabeled enzyme. These plates can also immobilize biotin-labeled antibodies that exhibit bioactivity after immobilization. Silver ions are needed for the complexation of the biotinylated enzyme or antibody because microwells modified to contain surface amine or thiourea molecules do not immobilize appreciable amounts of the labeled proteins. A maximum surface coverage for biotin-labeled HRP of 40 ng/cm2 and an immobilization binding constant of $Km = 8 \times 10(9)/M$ are determined from serial dilutions in a microplate. Detection of as little as 6.7 fmol HRP is achieved using antibodies immobilized on the silver ion-modified microplates. Active antibody surface densities were estimated to be between 130 and 260 nm2/antibody molecule. Background binding of HRP to the modified silver ion microplates was very low, allowing for reasonably accurate detection between 10(-14) and 10(-11) mol HRP.

ANSWER 2 OF 17 EMBASE COPYRIGHT 2002 ELSEVIER SCI. B.V.

ACCESSION NUMBER:

CORPORATE SOURCE:

2001332460 EMBASE

TITLE:

Sodium ion cycle in bacterial pathogens: Evidence

from cross-genome comparisons.

AUTHOR:

Hase C.C.; Fedorova N.D.; Galperin M.Y.; Dibrov P.A. P.A. Dibrov, Department of Microbiology, Faculty of

Science, University of Manitoba, Winnipeg, Man. R3T

2N2, Canada. dibrovp@ms.umanitoba.ca

SOURCE:

Microbiology and Molecular Biology Reviews, (2001)

65/3 (353-370).

Refs: 228

ISSN: 1092-2172 CODEN: MMBRF7

COUNTRY:

United States

DOCUMENT TYPE: FILE SEGMENT:

Journal; General Review Microbiology 004

Drug Literature Index 037 Adverse Reactions Titles 038

LANGUAGE:

English SUMMARY LANGUAGE: English

Analysis of the bacterial genome sequences shows that many human and animal pathogens encode primary membrane Na(+) pumps, Na(+)-transporting dicarboxylate decarboxylases or Na(+)-translocating NADH: ubiquinone oxidoreductase, and a number of Na(+)-dependent permeases. This indicates that these bacteria can utilize Na(+) as a coupling ion instead of or in addition to the H(+) cycle. This capability to use a Na(+) cycle might be an important virulence factor for such pathogens as Vibrio cholerae, Neisseria meningitidis, Salmonella enterica serovar Typhi, and Yersinia pestis. In Treponema pallidum, Chlamydia trachomatis, and Chlamydia pneumoniae, the Na(+) gradient may well be the only energy source for secondary transport. A survey of preliminary genome sequences of Porphyromonas gingivalis, Actinobacillus

actinomycetemcomitans, and Treponema denticola indicates that these oral pathogens also rely on the Na(+) cycle for at least part of their energy metabolism. The possible roles of the Na(+) cycling in

the energy metabolism and pathogenicity of these organisms are reviewed. The recent discovery of an effective natural antibiotic, korormicin, targeted against the Na(+)-translocating NADH: ubiquinone oxidoreductase, suggests a potential use of Na(+) pumps as drug targets and/or vaccine candidates. The antimicrobial potential of other inhibitors of the Na(+) cycle, such as monensin, Li(+) and Ag(+) ions, and amiloride derivatives, is discussed.

L5 ANSWER 3 OF 17 MEDLINE DUPLICATE 2

ACCESSION NUMBER: 2001353756 MEDLINE

DOCUMENT NUMBER: 21112318 PubMed ID: 11165340
TITLE: A comparison of silver ion to streptavidin coated microplates.

AUTHOR: Bonen M R; Garcia A A; Hoffman S A

CORPORATE SOURCE: Department of Chemical and Materials Engineering, Arizona State University, Tempe, AZ 85287-6006, USA.

SOURCE: JOURNAL OF MICROBIOLOGICAL METHODS, (2001 Mar 1) 44

(2) 113-20.

Journal code: DA7; 8306883. ISSN: 0167-7012.

PUB. COUNTRY: Netherlands

(EVALUATION STUDIES)

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 200106

ENTRY DATE: Entered STN: 20010625

Last Updated on STN: 20010625

Entered Medline: 20010621

Direct comparisons are made between covalently linked streptavidin AB and silver ion coated microplates. Both coatings can immobilize biotinylated molecules. Silver ion coated microplate wells can immobilize 1.8 times higher amounts of biotin labeled horseradish peroxidase. The quantitation range and capacity for the capture of horseradish peroxidase using biotin labeled horseradish peroxidase are also greater for silver ion coated microplates. Approximately twice as many anti-horseradish peroxidase antibodies can be immobilized per well using silver ion coated microplates. Higher capacities are presumed to be due to the smaller footprint of silver ions as compared to streptavidin. A direct comparison between the two coatings for a beta-galactosidase ELISA showed that while the silver ion coated microplates gave higher readings, the streptavidin coated microplates exhibited smaller well-to-well variation. However, higher well to well variation for the silver microplates is attributed to the high density of anti-beta-galactosidase antibodies on the microplates and the weak binding of clone GAL-13 to beta-galactosidase, rather than the silver coating. These studies suggest silver ion coated microplates are a desirable alternative to streptavidin plates for quantitative immunoassays.

L5 ANSWER 4 OF 17 WPIDS COPYRIGHT 2002 DERWENT INFORMATION LTD

ACCESSION NUMBER: 2000-317882 [27] WPIDS

DOC. NO. NON-CPI: N2000-238563 DOC. NO. CPI: C2000-096247

TITLE: Bioassay plate for detecting antigens and

antibodies in immunoassays has
silver ions immobilized on the

plate surface.

DERWENT CLASS: INVENTOR(S):

A89 B04 D16 J04 P42 S03 BONEN, M R; GARCIA, A A (UYAR-N) UNIV ARIZONA STATE

PATENT ASSIGNEE(S): COUNTRY COUNT:

21

PATENT INFORMATION:

PATENT N	NO KIND	DATE	WEEK	LA	PG

WO 2000021665 A1 20000420 (200027)* EN 37

RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

W: CA US

EP 1121198 A1 20010808 (200146) EN

R: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

APPLICATION DETAILS:

PATENT NO K	IND	AP	PLICATION	DATE
WO 2000021665 EP 1121198	A1 A1	EP	1999-US23902 1999-956547 1999-US23902	19991014 19991014 19991014

FILING DETAILS:

PATENT NO	KIND	PATENT NO
EP 1121198	Al Based on	WO 200021665

PRIORITY APPLN. INFO: US 1999-145786P 19990727; US 1998-104263P 19981014

AN 2000-317882 [27] WPIDS

AB WO 200021665 A UPAB: 20000606

NOVELTY - A bioassay plate with silver ions

immobilized on its surface, is new.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) a method for detecting an antigen comprising:
- (a) incubating a multi-well bioassay plate with silver ions immobilized on its surface with a biotinylated antibody that has specificity for the antigen to provide a plate with the antibody immobilized on its surface;
- (b) incubating the plate with a solution containing the antigen;
 - (c) washing the plate with an aqueous solution;
- (d) incubating the plate with a labeled antibody having specificity for the antigen;
 - (e) washing the plate with an aqueous solution; and
- (f) detecting the label, where any detection of the label is indicative of the presence of the **antigen**;
- (2) a method for detecting a first antibody comprising:
- (a) incubating a multi-well bioassay plate with silver ions immobilized on its surface with a biotinylated antigen that is reactive with the first antibody

to provide a plate with the antigen immobilized on its surface;

(b) incubating the plate with an aqueous solution containing the first antibody;

(c) washing the plate with an aqueous solution;

(d) incubating the plate with an aqueous solution containing a labeled second antibody that binds to the first antibody;

(e) washing the plate with an aqueous solution; and

- (f) detecting the label, where any detection of the label is indicative of the presence of the first antibody;
- (3) a kit (I) for the detection of a first antibody comprising a first container containing a bioassay plate with silver ions immobilized on its surface;
- (4) a kit (II) for the detection of an antigen comprising a first container containing a bioassay plate with silver ions immobilized on its surface; and
 - (5) an apparatus for activating microplates comprising:

(a) a housing;

- (b) a reagent addition/withdrawal chamber disposed in the housing which includes reagent and wash storage containers in communication with a manifold that is in communication with dispense lines disposed to deliver wash and reagent to a microplate and further includes aspirate lines disposed to aspirate spent reagent from the microplate that are in communication with the manifold in communication with a waste container;
- (c) an incubation chamber disposed in the housing which includes a device for vertically delivering a non-reactive sealing plate to the microplate and a device for heating and agitating the microplate; and
- (d) a device for horizontally conveying a microplate into and out of the addition/withdrawal chamber and between the addition/withdrawal chamber and the incubation chamber.
- USE The plate is used in immunoassay systems for detecting antibodies or antigens e.g. enzyme linked immunosorbent assays. The apparatus provides an automated process for using the plates.

ADVANTAGE - The silver coated plates are more sensitive than the streptavidin-coated plates used previously.

Dwg.0/11

SCISEARCH COPYRIGHT 2002 ISI (R) ANSWER 5 OF 17 L5

2000:452779 SCISEARCH ACCESSION NUMBER:

THE GENUINE ARTICLE: 323BR

NAD(P)(+)-glycohydrolase from human spleen: a TITLE:

multicatalytic enzyme

Orsomando G; Polzonetti V; Natalini P (Reprint) AUTHOR:

UNIV CAMERINO, DIPARTIMENTO SCI MORFOL & BIOCHIM CORPORATE SOURCE: COMPARATE, VIA CAMERINI 2, I-62032 CAMERINO, MC, ITALY (Reprint); UNIV CAMERINO, DIPARTIMENTO SCI

MORFOL & BIOCHIM COMPARATE, I-62032 CAMERINO, MC,

ITALY

COUNTRY OF AUTHOR:

SOURCE:

COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY

B-BIOCHEMISTRY & MOLECULAR BIOLOGY, (MAY 2000) Vol.

126, No. 1, pp. 89-98.

Publisher: PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5

1GB, ENGLAND. ISSN: 0305-0491.

DOCUMENT TYPE:

Article; Journal

FILE SEGMENT: LANGUAGE:

LIFE English

REFERENCE COUNT:

ABSTRACT IS AVAILABLE IN THE ALL AND IALL FORMATS AΒ

NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD(+) and NADP(+), the enzyme catalyzed the hydrolysis of several NAD(+) analogues and the pyridine base exchange reaction with conversion of NAD(+) into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD(+) and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a K-m value for NAD(+) of 26 mu M. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition. (C) 2000 Elsevier Science Inc. All rights reserved.

1.5

DERWENT INFORMATION LTD ANSWER 6 OF 17 WPIDS COPYRIGHT 2002

ACCESSION NUMBER:

2000-170769 [15] WPIDS

DOC. NO. NON-CPI: DOC. NO. CPI:

N2000-126977 C2000-052998

TITLE:

Modulating migration of dendritic cells between

peripheral tissue and lymphatic vessels.

DERWENT CLASS:

B04 D16 S03

INVENTOR(S):

BEAULIEU, S; MULLER, W A; RANDOLPH, G J; STEINMAN,

PATENT ASSIGNEE(S):

(CORR) CORNELL RES FOUND INC; (UYRQ) UNIV

ROCKEFELLER

COUNTRY COUNT:

PATENT INFORMATION:

PATENT	NO	KIND	DATE	WEEK	LA	PG

A1 19991209 (200015)* EN 69 WO 9962537

RW: AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

W: AU CA JP

A 19991220 (200021) AU 9944237

APPLICATION DETAILS:

LILL DIVI	KIND	APPLICATION	DATE
WO 9962537	A1	WO 1999-US12681	
AU 9944237	A	AU 1999-44237	

FILING DETAILS:

PATENT NO	KIND	PATENT NO
AU 9944237	A Based on	WO 9962537

19990603; US 1998-90781 PRIORITY APPLN. INFO: US 1999-90781

19980604

AN 2000-170769 [15] WPIDS

AB

WO 9962537 A UPAB: 20000323

NOVELTY - Migration of dendritic cells (DC) from peripheral tissue to lymphatic vessels is modulated by treating DC with an agent (I) that alters activity of the DC membrane proteins p-glycoprotein (pgP) and/or tissue factor (TF).

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (a) modifying development of immunity or an immune response in a mammal by contacting DC with (I);
- (b) identification of (I) by determining the extent to which a test compound, able to interact with pgP and/or TF, modulates DC migration in vivo or in vitro;
- (c) identifying agents (Ia) that modulate pgP activity in DC;(d) increasing migration of monocytes (or derived cells) bytreating then with an agent that increases pgP activity; and

(e) treating chronic inflammation by method (d).

ACTIVITY - Immunomodulatory; anti-inflammatory; anti-allergic; anti-arthritic; antiviral; anticancer.

MECHANISM OF ACTION - (I) control migration of DC (a process essential for inducing an immune response, and implicated in development of adverse immune responses), also migration of monocytes from foci of chronic inflammation. Mice were injected intravenously with 50 mg/ml MK571 (known antagonists of pgP), then 4 hours later a fluorescein isothiocyanate (FITC) solution applied to a shaved region on the back. After 24 hours, draining nodes were excised and analyzed for content of FITC-labeled DC. Treatment with MK571 reduced accumulation of DC in these lymph nodes by 64%.

USE - The method is used

- (i) to suppress immunity/immune responses, particularly against an allergen, for treatment and prevention of organ transplant rejection, guest versus host disease, autoimmune diseases (specifically rheumatoid arthritis and psoriasis), atopic diseases (specifically contact dermatitis, food allergy, allergic rhinitis or conjunctivitis, asthma or eczema) or infection with human immune deficiency virus;
- (ii) in co-administration with an **antigen** (of bacterial, viral, parasitic or tumor origin) to increase development of **antigen**-specific immunity; and
- (iii) to inhibit migration of monocytes, or derived cells, for treatment of chronic inflammation, specifically rheumatoid arthritis, artherosclerosis or granulomatous diseases.

 Dwg.0/11

L5 ANSWER 7 OF 17 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1996:65633 BIOSIS DOCUMENT NUMBER: PREV199698637768

TITLE: Detection of A and M type immunoglobulins specific

for Toxoplasma gondii by using colloidal gold

labelled polyclonal antibodies.

AUTHOR(S): Rojas, Yolanda; Santizo, Carlos; Legra, Martha Elena;

Collazo, Jose

CORPORATE SOURCE: Div. de Inmunotecnol. Diagn., Cent. de Ingenieria

Genet. Biotecnol., Apartado 6162, C.P. 10600, La

Habana 6 Cuba

SOURCE: Biotecnologia Aplicada, (1995) Vol. 12, No. 2, pp.

108-111.

DOCUMENT TYPE: Article LANGUAGE: Spanish

SUMMARY LANGUAGE: Spanish; English

In this article we describe the use of colloidal gold labeled polyclonal antibodies for the identification of A and M type immunoglobulins specific for Toxoplasma gondii in human serum samples. The competitive inhibition produced by immunoglobulins G was removed by the adsorption of sea with Protein A-Sepharose. The use of colloidal gold labeled antibodies and the subsequent amplification of the reaction with silver ions, made possible the observation of the antigen—antibody reaction using the conventional optic microscope. The sensitivity and specificity of the system are 100% and 96.5% respectively.

L5 ANSWER 8 OF 17 MEDLINE

ACCESSION NUMBER: 94215216 MEDLINE

DOCUMENT NUMBER: 94215216 PubMed ID: 8162620 TITLE: Effects of silver ions (Ag+) on

contractile ring function and microtubule dynamics

during first cleavage in Ilyanassa obsoleta.

AUTHOR: Conrad A H; Stephens A P; Paulsen A Q; Schwarting S

S; Conrad G W

CORPORATE SOURCE: Mount Desert Island Biological Laboratory, Salsbury

Cove, Maine.

SOURCE: CELL MOTILITY AND THE CYTOSKELETON, (1994) 27 (2)

117-32.

Journal code: CRD; 8605339. ISSN: 0886-1544.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

FILE SEGMENT: Priority Journals

ENTRY MONTH: 199405

ENTRY DATE: Entered STN: 19940606

Last Updated on STN: 19970203 Entered Medline: 19940526

The terminal phase of cell division involves tight constriction of AB the cleavage furrow contractile ring, stabilization/elongation of the intercellular bridge, and final separation of the daughter cells. At first cleavage, the fertilized eggs of the mollusk, Ilyanassa obsoleta, form two contractile rings at right angles to each other in the same cytoplasm that constrict to tight necks and partition the egg into a trefoil shape. The cleavage furrow contractile ring (CF) normally constricts around many midbody microtubules (MTs) and results in cleavage; the polar lobe constriction contractile ring (PLC) normally constricts around very few MTs and subsequently relaxes without cleavage. In the presence of Ag+ ions, the PLC 1) begins MT-dependent rapid constriction sooner than controls, 2) encircles more MTs than control egg PLCs, 3) elongates much more than control PLCs, and 4) remains tightly constricted and effectively cleaves the polar lobe from the egg. If Ag(+)-incubated eggs are returned to normal seawater at trefoil, tubulin fluorescence disappears from the PLC neck and the neck relaxes. If nocodazole, a drug that depolymerizes MTs, is added to Ag(+)-incubated eggs during early PLC constriction, the PLC is not stabilized and eventually relaxes. However, if nocodazole is added to Ag(+)-incubated eggs at trefoil, tubulin fluorescence disappears from the PLC neck but the neck remains

constricted. These results suggest that Ag+ accelerates and gradually stabilizes the PLC constriction by a mechanism that is initially MT-dependent, but that progressively becomes MT-independent.

DUPLICATE 3 ANSWER 9 OF 17 MEDLINE

MEDLINE 94311918 ACCESSION NUMBER:

PubMed ID: 8037745 94311918 DOCUMENT NUMBER:

Induction of the putative copper ATPases, CopA and TITLE:

CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+

extrusion by CopB.

Odermatt A; Krapf R; Solioz M AUTHOR:

Department of Clinical Pharmacology, University of CORPORATE SOURCE:

Berne, Switzerland.

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, SOURCE:

(1994 Jul 15) 202 (1) 44-8.

Journal code: 9Y8; 0372516. ISSN: 0006-291X.

United States PUB. COUNTRY:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English

Priority Journals FILE SEGMENT: GENBANK-Z46807

OTHER SOURCE: ENTRY MONTH: 199408

Entered STN: 19940825 ENTRY DATE:

Last Updated on STN: 19970203

Entered Medline: 19940815

The two P-type ATPases CopA and CopB are effecting regulation of cellular copper activity in Enterococcus hirae. With

antibodies against these ATPases, we showed on Western blots

the simultaneous induction of CopA and CopB by copper or

silver ions. Copper contents of wild type and

mutant cells lacking either CopA, CopB or both enzymes were measured by atomic absorption. Strains disrupted in copB showed clearly

enhanced copper contents. Mutants lacking CopB also lost the ability of energy dependent efflux of silver ions. Our

results demonstrate that CopA and CopB are under the same genetic control and support the proposal that CopB is a copper and silver exporting ATPase.

DUPLICATE 4 MEDLINE ANSWER 10 OF 17

92303943 MEDLINE ACCESSION NUMBER:

92303943 PubMed ID: 1610102 DOCUMENT NUMBER:

Direct measurement of low density lipoprotein in TITLE:

whole blood by silver-enhanced gold-labelled

immunoassay.

Patel N; Rocks B F; Iversen S A AUTHOR:

Clifford Riley Department of Chemical Pathology, CORPORATE SOURCE:

Royal Sussex County Hospital, Brighton, UK.

ANNALS OF CLINICAL BIOCHEMISTRY, (1992 May) 29 (Pt SOURCE:

3) 283-6.

Journal code: 52Y; 0324055. ISSN: 0004-5632.

ENGLAND: United Kingdom PUB. COUNTRY:

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE: English Priority Journals

FILE SEGMENT:

ENTRY MONTH: 199207 Entered STN: 19920731 ENTRY DATE:

Last Updated on STN: 19970203

Entered Medline: 19920722

AB A competitive silver-enhanced gold-labelled immunoassay has been developed for the direct measurement of low density lipoprotein (LDL) in whole blood. Immobilized LDL and sample LDL compete for added antibody. Quantitation of the bound antibody /antigen complex is achieved by the addition of gold-labelled anti-immunoglobulin G followed by enhancement of absorbance by addition of silver ions.

Whole-blood samples from fasting patients were assayed directly for LDL by the procedure and the corresponding plasma samples were assayed for total cholesterol, high density lipoprotein and triglycerides followed by the indirect calculation of LDL cholesterol. The correlation between the two methods was good (r = 0.82) and the SEGLISA exhibited good precision.

L5 ANSWER 11 OF 17 WPIDS COPYRIGHT 2002 DERWENT INFORMATION LTD

ACCESSION NUMBER:

1991-051400 [07] WPIDS

DOC. NO. NON-CPI:

1991-051400 [07] WPIDS N1991-039766

DOC. NO. CPI:

C1991-021860

TITLE:

Silver-enhanced gold-labelled immunoassay - esp.

useful for determn. of HIV and Rfubella

antibodies.

DERWENT CLASS:

B04 D16 J04 S03

INVENTOR(S):

BAILEY, M P; BERTRAM, V M R; ROCKS, B F; BERTRAM, V

М

33

PATENT ASSIGNEE(S):

(UKHE-N) UK SEC FOR HEALTH

COUNTRY COUNT:

PATENT INFORMATION:

PATENT	NO	KIND	DATE	WEEK	LA	PG

WO 9101003 A 19910124 (199107)*

RW: AT BE CH DE DK ES FR GB IT LU NL OA SE

W: AT AU BB BG BR CA CH DE DK ES FI HU JP KP KR LK LU MC MG MW

NL NO RO SD SE SU US

AU 9059480 A 19910206 (199119)

EP 481020 A 19920422 (199217) EN 59

R: AT BE CH DE DK ES FR GB IT LI LU NL SE

EP 481020 B1 19960313 (199615) EN 32

R: AT BE CH DE DK ES FR GB IT LI LU NL SE

DE 69025940 E 19960418 (199621)

APPLICATION DETAILS:

PATENT NO K	CIND	APPLICATION	DATE
EP 481020	A	EP 1990-917909	19900706 19900706
EP 481020	B1	EP 1990-917909 WO 1990-GB1046	19900706
DE 69025940	E	DE 1990-625940 EP 1990-917909	19900706 19900706
		WO 1990-GB1046	19900706

FILING DETAILS:

PATENT NO	KIND	PATENT NO
EP 481020	A Based on	WO 9101003

EP 481020 B1 Based on WO 9101003 DE 69025940 E Based on EP 481020 Based on WO 9101003

PRIORITY APPLN. INFO: GB 1989-15512 19890706

AN 1991-051400 [07] WPIDS

AB WO 9101003 A UPAB: 19930928

Immunogold assays are visually enhanced by exposing the completed immunogold assay tests to a soln. of silver ions, whereby silver is nucleated onto at least a portion of the gold, and then relating the presence and/or amt. of nucleated silver to the presence and/or amt. of the target analyte (I). Also claimed is a method for determining the presence or quantity of (I) in a fluid by: (a) immobilising a specific binding agent (II), with which (I) will combine specifically, on a solid substrate; (c) exposing to a sec. binding agent, capable of binding to the specifically combined (I), and to which colloidal gold particles have been bound; (d) exposing to a soln. contg. silver ions so that nucleation occurs; and (e) relating the presence and/or amt. of nucleated silver to (I). The gold particles may also be bound to (II), omitting the sec. binding agent. Assay Kits are also provided.

USE/ADVANTAGE - The assay is esp. useful for determn. of HIV and Rubella antibodies. The silver enhanced gold-labelled immunogold assay (SEGLISA) has several advantages, providing a higher degree of sensitivity than prior art ELISA and immunogold assays, with an absorbence improvement of 100 times. (59pp Dwg.No 1/21)@

ABEO EP 481020 A UPAB: 19930928

Immunogold assays are visually enhanced by exposing the completed immunogold assay tests to a soln. of **silver ions**, whereby silver is nucleated onto at least a portion of the gold, and then relating the presence and/or amt. of nucleated silver to the presence and/or amt. of the target analyte (I).

Also claimed is a method for determining the presence or quantity of (I) in a fluid by: (a) immobilising a specific binding agent (II), with which (I) will combine specifically, on a solid substrate; (c) exposing to a sec. binding agent capable of binding to the specifically combined (I), and to which colloidal gold particles have been bound; (d) exposing to a soln. contg. silver ions so that nucleation occurs; and (e) relating the presence and/or amt. of nucleated silver to (I). The gold particles may also be bound to (II), omitting the sec. binding agent. Assay kits are also provided.

USE/ADVANTAGE - The assay is esp. useful for determn. of HIV and Rubella antibodies. The silver enhanced gold-labelled immunogold assay (SEGLISA) has several advantages, providing a higher degree of sensitivity that prior art ELISA and immunogold assay, with an absorbence improvement of 100 times.

ABEQ EP 481020 B UPAB: 19960417

A method for visually, and/or photometrically and/or colorimetrically enhancing immunogold assays which employ specific binding agents immobilised onto solid substrates and which are carried out upon whole blood comprising exposing completed immunogold assay tests to a solution comprising silver ions, whereby silver is nucleated onto at least a portion of the gold, and then relating the presence and/or amount of nucleated silver to the presence and/or amount of the target analyte.

Dwg.1/21

ANSWER 12 OF 17 JICST-EPlus COPYRIGHT 2002 JST L5

ACCESSION NUMBER:

910295735 JICST-EPlus

TITLE:

Inhibitory effect of human sailva and silver nitrate on the in vitro infectivity of human immunodeficiency

virus.

AUTHOR:

SHIMIZU FUMIO

CORPORATE SOURCE:

Tohoku Univ., Faculty of Dentistry

SOURCE:

Nippon Shika Igakkaishi (Journal of the Japanese Association for Dental Science), (1991) vol. 10, pp. 108-112. Journal Code: Y0002A (Fig. 4, Tbl. 3, Ref.

9)

ISSN: 0286-164X

PUB. COUNTRY:

Japan

DOCUMENT TYPE:

Journal; Article

LANGUAGE:

Japanese

STATUS:

New

Human immunodeficiency virus(HIV) is the etiologic agent of the AΒ human acquired immunodeficiency syndrome(AIDS). The presence of HIV in human saliva of people with AIDS-related complex and of healthy homosextual male has been reported from several laboratories. In addition, HIV was recently detected in dental pulp of a patient with AIDS. Several epidemiologic researches, however, indicated that very few HIV-transmission via dental treatment was reported. It was then hypothesized that inhibitory agent(s) may exist in saliva. In this experiment, the in vitro effect of human saliva on the infectivity of HIV was examined. In addition, the effect of silver nitrate on the infectivity of HIV was determined. It was found that whole saliva had an antiviral activity against HIV. The activity was seen at 37.DEG.C. of the incubation temperature, but was not seen at 4.DEG.C.. This activity was stable by preheating of saliva at 56.DEG.C. for 30min, but was destroyed by dialyzing of saliva, indicating that the inhibitory agent(s) in saliva apparently did not involve complement-like factor(s) nor interferon. It was also shown that the antiviral activity was not due to antibody against HIV, since the subjects had not antibody against HIV. These data suggest that saliva may have an important role in the defense mechanisms against HIV infection via oral cavity. HIV was inactivated by silver nitrate in the concentration-, time-, and temperature-dependent fashion. Fifty percent reduction of the infectivity of HIV was seen at concentration of 0.072mM (0.0012%). Infectivity of HIV was inactivated by 60% in 1min, and 99.9 percent which was maximal, in 15min. Several data indicated that Ag -ion contributed to the inactivation of HIV. These data suggest that siler nitrate can be used to inactivate HIV when soft tissues are contaminated by HIV. (author abst.)

ANSWER 13 OF 17 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC. L5

DUPLICATE 5

ACCESSION NUMBER: 1992:503490 BIOSIS

DOCUMENT NUMBER:

BA94:122015

TITLE:

DOUBLE LECTIN AND IMMUNOLABELLING FOR TRANSMISSION

ELECTRON MICROSCOPY PRE AND POST-EMBEDDING

APPLICATION USING THE BIOTIN-STREPTAVIDIN SYSTEM AND

COLLOIDAL GOLD-SILVER STAINING.

AUTHOR(S):

PETTITT J M; HUMPHRIS D C

CORPORATE SOURCE:

DEP. PATHOL. AND IMMUNOL., MONASH UNIVERSITY MED.

SCH., COMMERCIAL RD., PRAHRAN, VICTORIA 3181,

Shears 308-4994 Searcher

AUSTRALIA.

HISTOCHEM J, (1991) 23 (1), 29-37. SOURCE:

CODEN: HISJAE. ISSN: 0018-2214.

FILE SEGMENT: BA; OLD English LANGUAGE:

Pre- and post-embedding methods are described that can be used for AB consecutive localization of two intracellular cytoplasmic binding sites in cells and tissues embedded in acrylic plastic for transmission electron microscopy. Both applications make use of the biotin-streptavidin system with colloidal gold detector particles and involve silver staining of the first gold signal to a predetermined size. Silver augmentation effectively masked any free binding sites on the biotinylated molecule and on the streptavidin complex of the first labelling reaction, thereby allowing a second cycle with the same detection system. Execellent ultrastructural localization was obtained with silver lactate as the silver ion donor in the developing solution, and the enhancement treatment did not destroy or even visibly reduce target site reactivity for the subsequently applied probe. Using these methods it was possible to achieve specific double lectin and immunological labelling; they could, however, be adapted to dual or multiple-labelling procedures with any biotinylated molecules.

L5 ANSWER 14 OF 17 MEDLINE

ACCESSION NUMBER: 89054113 MEDLINE

PubMed ID: 3192604 DOCUMENT NUMBER: 89054113

Cross-linked silver-impregnated skin for burn wound TITLE:

management.

Ersek R A; Denton D R AUTHOR:

University of Texas Health Science Center, San CORPORATE SOURCE:

Antonio.

JOURNAL OF BURN CARE AND REHABILITATION, (1988 SOURCE:

Sep-Oct) 9 (5) 476-81.

Journal code: HLK; 8110188. ISSN: 0273-8481.

PUB. COUNTRY: United States

Journal; Article; (JOURNAL ARTICLE)

English LANGUAGE:

Priority Journals; Nursing Journals FILE SEGMENT:

198901 ENTRY MONTH:

ENTRY DATE: Entered STN: 19900308

Last Updated on STN: 19970203 Entered Medline: 19890106

Biological skin is effective in restoring the missing water vapor AB barrier and promoting healing in burn wounds. Its effectiveness in wound management has been limited, however, by its inherently limited antibacterial properties and the fact that it is sometimes rejected before healing is complete, even reversing previous beneficial effects. Limited availability and storage difficulties have posed further problems. Impregnation of biological skin with silver ions has been proven to provide a potent bactericidal effect directly at the wound surface. We hypothesized that aldehyde cross-linking of silver-impregnated skin would mask the histocompatibility sites from the recipient's immune system. This has been demonstrated previously with aldehyde cross-linking of allografts and xenografts, prolonging retention sufficiently to permit complete wound healing. Commercially available skin was treated with an aldehyde compound and impregnated with silver. Initial studies of this cross-linked skin for treatment of burn

wounds showed average retention to be between 117 and 161 days, far exceeding that of any untreated skin. It was subsequently found that the aldehyde cross-linking permitted impregnation with higher concentrations of silver than had previously been possible--2,600 to 2,830 ppm as compared to an average of 1,020 to 1,350 ppm in previously available silver-impregnated skin. This results in a more potent, immediate antibacterial effect at the wound surface and an extended period of time-release antibacterial action before the silver is exhausted. The antibacterial properties of this aldehyde cross-linked silver-impregnated skin are effective in decontaminating even grossly infected wounds and in protecting against contamination of clean wounds from adjacent infected areas or external sources. (ABSTRACT TRUNCATED AT 250 WORDS)

DUPLICATE 6 MEDLINE ANSWER 15 OF 17 L5

ACCESSION NUMBER:

90211865 MEDLINE

DOCUMENT NUMBER:

PubMed ID: 3273406 90211865

TITLE:

Colored silver-intensified gold technique for light

microscopy.

AUTHOR:

Bertsch J A; Bialecki V; Emmons R; Korytko L

CORPORATE SOURCE:

Laboratory and Research Products Division, Eastman

SOURCE:

Kodak Company, Rochester, NY 14650. BIOTECHNIQUES, (1988 May) 6 (5) 448-50, 453.

Journal code: AN3; 8306785. ISSN: 0736-6205.

PUB. COUNTRY:

United States

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

199005

ENTRY DATE:

Entered STN: 19900622

Last Updated on STN: 19970203

Entered Medline: 19900514

The development of silver-intensified immunogold-labeled AB antibodies for light microscopy described by Fritz et al.

(4) has been investigated. Principles and chemistries used in color photographic science have been applied to immunogold enhancement. In this technique, colloidal gold acts as the catalytic center for the reduction of silver ions to metallic silver with subsequent color development in the presence of hydroquinone. Silver ions and hydroquinone are adsorbed onto the surface of colloidal gold. The reduction of silver ions to metallic silver is further catalyzed by autometallography. The colored-SIG technique offers several advantages. It has sensitivity comparable to the silver-intensified gold (SIG) method and greater sensitivity than immunoenzymatic procedures, takes approximately one hour, results in one of three color reaction products (magenta, cyan, or yellow), and produces better contrast between the reaction products and the background

(Figure 1). Thus, this method should prove useful in double- and

even triple-staining procedures. MEDLINE ANSWER 16 OF 17

DUPLICATE 7

ACCESSION NUMBER:

82024023 MEDLINE

DOCUMENT NUMBER: TITLE:

82024023 PubMed ID: 6269593

AUTHOR:

L5

Formation of silver plastocyanin in Scenedesmus.

Bohner H; Sandmann G; Boger P

SOURCE:

BIOCHIMICA ET BIOPHYSICA ACTA, (1981 Jun 12) 636 (1)

65-9.

Shears 308-4994 Searcher :

Journal code: AOW; 0217513. ISSN: 0006-3002.

PUB. COUNTRY:

Netherlands

Journal; Article; (JOURNAL ARTICLE)

LANGUAGE:

English

FILE SEGMENT:

Priority Journals

ENTRY MONTH:

198112

ENTRY DATE:

Entered STN: 19900316

Last Updated on STN: 19970203 Entered Medline: 19811215

Silver ions up to 5 microM do not affect growth AB of the green microalga Scenedesmus acutus. They induce formation of protein species precipitable by an antibody specific against plastocyanin. The metal is incorporated into a part of the induced protein in competition with copper. Bismuth, lead and molybdenum had no effect. The amount of both silver- and copper-containing plastocyanins so formed apparently regulates concurrently inhibition of soluble plastidic cytochrome c-553. The silver-copper competition for the build-up of blue plastocyanin can be shown with intact cells, not with isolated algal plastocyanin.

ANSWER 17 OF 17 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER:

1977:169414 BIOSIS

DOCUMENT NUMBER:

BA63:64278

TITLE:

PURIFICATION AND PROPERTIES OF HUMAN BRAIN ALPHA-L

FUCOSIDASE.

AUTHOR(S):

ALHADEFF J A; JANOWSKY A J

SOURCE:

J NEUROCHEM, (1977) 28 (2), 423-428.

CODEN: JONRA9. ISSN: 0022-3042.

FILE SEGMENT:

BA; OLD

LANGUAGE:

L7

Unavailable

Human brain .alpha.-L-fucosidase was extracted and the soluble portion was purified 9388-fold with 25% yield by a 2-step affinity chromatographic procedure utilizing agarose-.epsilon.-aminocaproylfucosamine. Isoelectric focusing revealed that all 7 isoelectric forms of the enzyme were purified. Trace amounts of 8 glycosidases, with hexosaminidase being the largest contaminant (1% by activity) were found in the purified .alpha.-L-fucosidase preparation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a single subunit of MW 51,000 .+-. 2500. The purified enzyme has a pH optimum of 4.7 with a suggested 2nd optimum of 6.6. The apparent Michaelis constant and maximal velocity of the purified enzyme with respect to the p-nitrophenyl substrate were 0.44 mM and 10.7 .mu.mol/min per mg protein, respectively. Ag2+ and Hg2+ completely inactivated the enzyme at concentrations of 0.1-0.3 mM. Antibodies made previously against purified human liver .alpha.-L-fucosidase cross-reacted with the purified brain .alpha.-L-fucosidase and gave a single precipitin line coincident with that from purified liver .alpha.-L-fucosidase. At least the

soluble portion of brain .alpha.-L-fucosidase is apparently identical to human liver .alpha.-L-fucosidase.

CAPLUS, MEDLINE, BIOSIS, EMBASE, WPIDS, CONFSCI, SCISEARCH, JICST-EPLUS, JAPIO' ENTERED AT 12:02:34 ON 07 FEB 2002) - Author(5)

16412 S GARCIA A?/AU

13 S (BOMEN M? OR BONEN M?)/AU

12 S L6 AND L7

32 S (L6 OR L7) AND L2

32 S L8 OR L9

416 DUPLICATES REMOVED)

CAPLUS COPYRIGHT 2002 ACS L11 ANSWER 1 OF 16

DUPLICATE 1

ACCESSION NUMBER:

2001:457222 CAPLUS

DOCUMENT NUMBER: TITLE:

135:73538 Silver ion microplates for

immunoassays

AUTHOR(S):

PUBLISHER:

Bonen, Matthew R.; Hoffman, Steven A.;

Garcia, Antonio A.

CORPORATE SOURCE:

Arizona State Univ., Tempe, AZ, USA BioTechniques (2001), 30(6), 1340-1351 CODEN: BTNQDO; ISSN: 0736-6205

SOURCE:

Eaton Publishing Co.

DOCUMENT TYPE:

Journal

English LANGUAGE:

Microplate wells can be coated with silver ions using glutaraldehyde as a spacer mol. and thiourea as a complexing ligand. Microwells contg. surface silver ions are shown to immobilize biotin-labeled horseradish peroxidase (HRP) in active form, while showing very little affinity for the unlabeled enzyme. These plates can also immobilize biotin-labeled antibodies that exhibit bioactivity after immobilization. Silver ions are needed for the complexation of the biotinylated enzyme or antibody because microwells modified to contain surface amine or thiourea mols. do not immobilize appreciable amts. of the labeled proteins. A max. surface coverage for biotin-labeled HRP of 40 ng/cm2 and an immobilization binding const. of Km = 8.times.109/M are detd. from serial dilns. in a microplate. Detection of as little as 6.7 fmol HRP is achieved using anti-bodies immobilized on the **silver ion-**modified microplates. Active antibody surface densities were estd. to be between 130 and 260 nm2/antibody mol. Background binding of HRP to the modified

silver ion microplates was very low, allowing for reasonably accurate detection between 10-14 and 10-11 mol HRP. THERE ARE 28 CITED REFERENCES AVAILABLE REFERENCE COUNT: 28

FOR THIS RECORD. ALL CITATIONS AVAILABLE

DUPLICATE 2

IN THE RE FORMAT

L11 ANSWER 2 OF 16 CAPLUS COPYRIGHT 2002 ACS

2001:95269 CAPLUS

ACCESSION NUMBER: DOCUMENT NUMBER:

135:149468

TITLE:

A comparison of silver ion

to streptavidin coated microplates

AUTHOR(S):

Bonen, M. R.; Garcia, A. A.;

Hoffman, S. A.

CORPORATE SOURCE:

Department of Chemical and Materials

Engineering, Arizona State University, Tempe,

AZ, 85287-6006, USA

SOURCE:

J. Microbiol. Methods (2001), 44(2), 113-120

CODEN: JMIMDQ; ISSN: 0167-7012

PUBLISHER:

Elsevier Science Ireland Ltd.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

Direct comparisons are made between covalently linked streptavidin and silver ion coated microplates. Both

coatings can immobilize biotinylated mols. Silver

ion coated microplate wells can immobilize 1.8 times higher

amts. of biotin labeled horseradish peroxidase. The quantitation

range and capacity for the capture of horseradish peroxidase using biotin labeled horseradish peroxidase are also greater for silver ion coated microplates. Approx. twice as many anti-horseradish peroxidase antibodies can be immobilized per well using silver ion coated microplates. Higher capacities are presumed to be due to the smaller footprint of silver ions as compared to streptavidin. A direct comparison between the two coatings for a .beta.-galactosidase ELISA showed that while the silver ion coated microplates gave higher readings, the streptavidin coated microplates exhibited smaller well-to-well variation. However, higher well to well variation for the silver microplates is attributed to the high d. of anti-.beta.-galactosidase antibodies on the microplates and the weak binding of clone GAL-13 to .beta.-galactosidase, rather than the silver coating. These studies suggest silver ion coated microplates are a desirable alternative to streptavidin plates for quant. immunoassays.

REFERENCE COUNT:

THERE ARE 18 CITED REFERENCES AVAILABLE 18 FOR THIS RECORD. ALL CITATIONS AVAILABLE.

IN THE RE FORMAT

DUPLICATE 3 L11 ANSWER 3 OF 16 CAPLUS COPYRIGHT 2002 ACS

2000:260137 CAPLUS ACCESSION NUMBER:

132:276300 DOCUMENT NUMBER:

Immobilized silver immunoassay system TITLE:

Garcia, Antonio A.; Bonen, INVENTOR(S):

Matthew R.

Arizona Board of Regents, USA PATENT ASSIGNEE(S):

PCT Int. Appl., 37 pp. SOURCE:

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION: DAMENIO NO

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2000021665	A1	20000420	WO 1999-US23902	19991014
W: CA, US RW: AT, BE,	CH, CY,	DE, DK, ES,	FI, FR, GB, GR, IE,	, IT, LU, MC,
NL, PT, EP 1121198		20010808	EP 1999-956547	19991014
D. 300 DD	OH DE	DV EC ED	CD CD TT T.T T.II	NI. SE MC

R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,

PT, IE, FI PRIORITY APPLN. INFO.: US 1998-104263 P 19981014 US 1999-145786 P 19990727

WO 1999-US23902 W 19991014

Bioassay plates having silver ions immobilized AB on them are useful in immunoassays for detection of antibodies or antigens. The bioassay plates are prepd. by amine derivatization of (e.g., polystyrene) microtiter plates, followed by reaction with polymd. glutaraldehyde, reaction with thiourea and complexation with Ag+ ions. The plates can bind biotinylated

capture antibodies or antigens for use in immunoassay systems, esp.

std. ELISAs (enzyme-linked immunosorbent assays).

THERE ARE 6 CITED REFERENCES AVAILABLE FOR REFERENCE COUNT: THIS RECORD. ALL CITATIONS AVAILABLE IN

THE RE FORMAT

L11 ANSWER 4 OF 16 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 4 2000:207661 CAPLUS ACCESSION NUMBER: 132:345112 DOCUMENT NUMBER: Immobilization of silver ions TITLE: onto paramagnetic particles for binding and release of a biotin-labeled oligonucleotide

Ramirez-Vick, Jaime E.; Garcia; Antonio AUTHOR(S): A.; Lee, James

Lawrence Berkeley Laboratory, Berkeley, CA, USA React. Funct. Polym. (2000), 43(1,2), 53-62 CODEN: RFPOF6; ISSN: 1381-5148 CORPORATE SOURCE:

SOURCE:

Elsevier Science B.V. PUBLISHER:

Journal DOCUMENT TYPE: English LANGUAGE:

Paramagnetic particles with amino functional groups can be derivatized using glutaraldehyde and thiourea in order to immobilize silver ions. The silver immobilization procedure did not alter the surface morphol. of the particles according to Tapping mode AFM imaging. Rutherford backscattering showed that silver resides on the particle surface while iron is present throughout the particle. Particle-Induced X-Ray Emission spectroscopy detd. that the derivatized particles have a silver capacity of 7%. Paramagnetic particles contg. immobilized silver ions have an affinity binding const. of the order 108 for mono- and tri-biotin-labeled oligonucleotide with primary sequence 3'-GCCCCTTTTTAAAAACCCCG-5' while the original amino particles have little affinity for the oligonucleotide. Measurement of binding and release was enabled by attaching either fluorescein isothioocyanate (FITC) to the 3'-end or Texas Red or fluorescein phosphoramidite (FAM) to the 5'-end of the oligonucleotide. Up to a 97% release of the FAM labeled biotinylated oligonucleotide from the

particle surface can be achieved using an aq. soln. of thiodiglycol. THERE ARE 11 CITED REFERENCES AVAILABLE REFERENCE COUNT: 11 FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L11 ANSWER 5 OF 16 CAPLUS COPYRIGHT 2002 ACS ACCESSION NUMBER: 2000:560451 CAPLUS

133:132023 DOCUMENT NUMBER:

Immobilized silver ions as TITLE:

the basis of a highly sensitive microplate

immunoassay system

Bonen, Matthew Richard AUTHOR(S):

Arizona State University, USA CORPORATE SOURCE:

(1999) 174 pp. Avail.: UMI, Order No. DA9950229 SOURCE:

From: Diss. Abstr. Int., B 2000, 60(11),

5639-5640

Dissertation DOCUMENT TYPE:

LANGUAGE: English

AB Unavailable

L11 ANSWER 6 OF 16 CAPLUS COPYRIGHT 2002 ACS

1999:144030 CAPLUS ACCESSION NUMBER:

Affinity recovery of DNA using silver TITLE:

Garcia, A. A.; Ramirez-Vick, J.; AUTHOR(S):

> Shears 308-4994 Searcher :

Perusich, S.; Lopez, G.

CORPORATE SOURCE: Department of Chemical, Bio & Materials

Enigneering, Arizona State University, Tempe,

AZ, 85287-6006, USA

SOURCE: Book of Abstracts, 217th ACS National Meeting,

Anaheim, Calif., March 21-25 (1999), BIOT-016. American Chemical Society: Washington, D. C.

CODEN: 67GHA6

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE: English

AB Free silver ions have been known to bind

strongly and specifically to purine bases on nucleotides, esp.

guanine ($\log K = 6$), while not interacting with phosphate or sugar groups. Until recently this interaction has not been exploited for

oligonucleotide and DNA sepn. because free silver

ions ppt. form soln. in the presence of phosphate and chloride ions. By immobilizing silver ions

through complexation with a soft ligand such as thiourea,

paramagnetic particles can be used to recover oligonucleotides by first binding them from phosphate buffered saline ($log\ K = 7.6$)

followed by unbinding using thiodiglycol for a max. recovery of 97%. Results with lambda phage DNA are compared to the results for a 20mer oligonucleotide.

L11 ANSWER 7 OF 16 SCISEARCH COPYRIGHT 2002 ISI (R)

ACCESSION NUMBER: 1999:300836 SCISEARCH

THE GENUINE ARTICLE: 176JN

TITLE: Affinity recovery of DNA using silver

ions.

AUTHOR: Garcia A A (Reprint); RamirezVick J;

Perusich S; Lopez G

CORPORATE SOURCE: ARIZONA STATE UNIV, DEPT CHEM BIO & MAT ENGN, TEMPE,

AZ 85287

COUNTRY OF AUTHOR: USA

SOURCE:

ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY

(21 MAR 1999) Vol. 217, Part 1, pp. 16-BIOT. Publisher: AMER CHEMICAL SOC, 1155 16TH ST, NW,

WASHINGTON, DC 20036. ISSN: 0065-7727.

DOCUMENT TYPE: Conference; Journal

LANGUAGE: English

REFERENCE COUNT: 0

L11 ANSWER 8 OF 16 BIOSIS COPYRIGHT 2002 BIOLOGICAL ABSTRACTS INC.

ACCESSION NUMBER: 1999:169418 BIOSIS DOCUMENT NUMBER: PREV199900169418

TITLE: Affinity recovery of DNA using silver

ions.

AUTHOR(S): Garcia, A. A.; Ramirez-Vick, J.; Perusich,

S.; Lopez, G.

CORPORATE SOURCE: Dep. Chem., Bio Materials Eng., Arizona State Univ.,

Tempe, AZ 85287-6006 USA

SOURCE: Abstracts of Papers American Chemical Society, (1999)

Vol. 217, No. 1-2, pp. BIOT 016.

Meeting Info.: 217th National Meeting of the American

Chemical Society Anaheim, California, USA March

21-25, 1999 American Chemical Society

. ISSN: 0065-7727.

DOCUMENT TYPE:

Conference

LANGUAGE:

English

L11 ANSWER 9 OF 16 CAPLUS COPYRIGHT 2002 ACS

1998:554972 CAPLUS

ACCESSION NUMBER: DOCUMENT NUMBER:

129:272606

TITLE:

Recovery of an oligonucleotide using

silver ions immobilized onto

paramagnetic particles

AUTHOR(S):

Ramirez-Vick, Jaime E.; Garcia, Antonio

A.; Lee, James

CORPORATE SOURCE:

Lawrence Berkeley Laboratory, Berkeley, CA, USA

SOURCE:

Prep. Biochem. Biotechnol. (1998), 28(3),

243-260

CODEN: PBBIF4; ISSN: 1082-6068

PUBLISHER:

Marcel Dekker, Inc.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

A 3'-GCCCCTTTTTAAAAACCCCG-5' oligonucleotide can be recovered from aq. soln. using paramagnetic particles contg. immobilized silver ions. Binding and elution expts. were conducted by attaching either fluorescein isothiocyanate (FITC) to the 3'-end or Texas Red or fluorescein phosphoramidite (FAM) to the 5'-end of the oligonucleotide. For the 5'-end FAM labeled oligonucleotide, a binding const. of 4.2.times.107 was measured at pH 7 using phosphate buffer. The percent of bound FAM labeled oligonucleotide eluted from the paramagnetic particles was found to be 97% using an aq. soln. of thiodiglycol. While the FAM mol. by itself does not bind to the silver activated paramagnetic particles, the choice of fluorescent label affects binding affinities and

L11 ANSWER 10 OF 16 CAPLUS COPYRIGHT 2002 ACS

DUPLICATE 6

DUPLICATE 5

ACCESSION NUMBER:

elution recoveries.

1998:133155 CAPLUS

DOCUMENT NUMBER:

128:279836

TITLE:

Comparison of retention and binding behavior of

dUTP and biotin-conjugated dUTP using an

immobilized silver ion chromatography support

AUTHOR(S):

Agarwal, Sanjay; Garcia, Antonio A.;

Miles, Dale

CORPORATE SOURCE:

DEPARTMENT OF CHEMICAL, BIO AND MATERIALS ENGINEERING, ARIZONA STATE UNIVERSITY, TEMPE,

AZ, 85287-6006, USA

SOURCE:

Sep. Sci. Technol. (1998), 33(1), 1-18

CODEN: SSTEDS; ISSN: 0149-6395

PUBLISHER:

Marcel Dekker, Inc.

DOCUMENT TYPE:

Journal

LANGUAGE:

English

A gel filtration chromatog. packing was modified to contain immobilized silver ions in order to study the retention and binding behavior of biotin-labeled b-dUTP vs. dUTP. The immobilized silver column retains unlabeled dUTP (with the retention time depending on sodium chloride concn. in the mobile phase), but no affinity binding is evident with dUTP. In the absence of sodium chloride, dUTP was seen to have a retention time of 66 min using a 10.3-mL immobilized silver column, while b-dUTP is fully bound to the immobilized silver column. Approx. 90% of b-dUTP

is recovered when b-dUTP is applied to the immobilized silver column using 10-3 M PBS and eluted using 0.2 M NaCl in the mobile phase. These results demonstrate the potential for using silver ions in immobilized soft metal affinity chromatog. (ISMAC) in order to selectively target biotin labeled mols. An anal. of the data yielding math. models with specific focus on the interaction between chloride and silver ions is provided in order to guide method development for other biotin-labeled oligonucleotides.

L11 ANSWER 11 OF 16 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER:

1997:161819 CAPLUS

TITLE:

Reversible complexation of biotin labeled cells

and oligonucleotides using immobilized

silver ions.

AUTHOR(S):

Garcia, Antonio A.; Ramirez-Vick,

Jaime; Johnson, Sarah; Agarwal, Sanjay

CORPORATE SOURCE:

College Engneering, Arizona State University,

Tempe, AZ, 85287-6006, USA

SOURCE:

Book of Abstracts, 213th ACS National Meeting, San Francisco, April 13-17 (1997), I&EC-151. American Chemical Society: Washington, D. C.

CODEN: 64AOAA

DOCUMENT TYPE:

Conference; Meeting Abstract

English LANGUAGE:

Non-radioactive labeling of biol. mols. has become quite popular during the past 16 yr mostly due to advances in mol. biol. and more

specifically due to the development of biotin-streptavidin methods and the increasing sophistication of immunol. methods. These non-radioactive labeling techniques also provided opportunities for purifying complex, protein or biol. fluids for clin. diagnostics and com. prodn. We have developed a substitute for streptavidin using a simple metallo-org. mol. which: (1) is less expensive; (2) is stable at room temp.; (3) is inherently free from bacterial contamination due to the use of silver ions; and (4) can be used to reversibly bind biotin conjugates using very mild,

biocompatible conditions. Our latest results for selective binding of biotin labeled oligonucleotides and T cells as well as elution using NaCl will be discussed.

L11 ANSWER 12 OF 16 SCISEARCH COPYRIGHT 2002 ISI (R)

ACCESSION NUMBER:

97:271897 SCISEARCH

THE GENUINE ARTICLE: WP187

TITLE:

Reversible complexation of biotin labeled cells and

oligonucleotides using immobilized silver

ions.

AUTHOR:

Garcia A A (Reprint); RamirezVick J;

Johnson S; Agarwal S

CORPORATE SOURCE:

ARIZONA STATE UNIV, TEMPE, AZ 85287

COUNTRY OF AUTHOR:

USA

SOURCE:

ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY

(13 APR 1997) Vol. 213, Part 2, pp. 151-IEC. Publisher: AMER CHEMICAL SOC, 1155 16TH ST, NW,

WASHINGTON, DC 20036.

ISSN: 0065-7727.

DOCUMENT TYPE:

Conference; Journal

LANGUAGE:

English

REFERENCE COUNT:

L11 ANSWER 13 OF 16 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1996:169525 CAPLUS

DOCUMENT NUMBER: 124:317806

TITLE: Utilization of Soft Acid/Base Interactions in

Low Molecular Weight Biochemical Separations

AUTHOR(S): Garcia, Antonio A.; Kim, Dong-Hoon;

Miles, Dale R.

CORPORATE SOURCE: Department of Chemical Bio Materials

Engineering, Arizona State University, Tempe,

AZ, 85287-6006, USA

SOURCE: Ind. Eng. Chem. Res. (1996), 35(4), 1097-106

CODEN: IECRED; ISSN: 0888-5885

DOCUMENT TYPE: Journal LANGUAGE: English

Categorization of acid/base interactions using hard soft acid base (HSAB) theory suggested that sulfur-contg. low mol. wt. biol. mols. could be specifically targeted for reversible complexation using soft metal ions. A viable method of employing soft metal ions for biosepns. is to immobilize Ag(I) and Pt(II) ions using a soft ligand such as thiourea. This immobilization chem. allows for the use of Ag(I) columns that are stable in the presence of chloride and phosphate ions in the mobile phase, and it enhances the complexation chem. of Ag(I) and Pt(II) ions toward solutes which are soft bases. Because chloride ions are soft bases, NaCl can be used for competitive elution. However, in amino acid sepns., electrostatic and hydrophobic interactions influence the selectivity and capacity of Aq(I) and Pt(II) columns. A detailed study of the effects of Aq(I) ion loading and pH on the retention time of methionine, histidine, and tryptophan illustrates the need for accounting for Lewis acid/base, electrostatic, and hydrophobic interactions in biol. mol. sepns.

L11 ANSWER 14 OF 16 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1996:217428 CAPLUS

TITLE: Recovery of biotin-labeled oligonucleotides

using soft metal affinity interactions. Ramirez-Vick, Jaime E.; Garcia, Antonio

A.

CORPORATE SOURCE: Department Chemical, Bio & Materials

Engineering, Arizona State University, USA

SOURCE: Book of Abstracts, 211th ACS National Meeting, New Orleans, LA, March 24-28 (1996), BTEC-033.

American Chemical Society: Washington, D. C.

CODEN: 62PIAJ

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE: English

AUTHOR(S):

AB Recent expts. have shown the feasibility of using immobilized Ag(I) ions for the reversible binding of biotin-labeled oligonucleotide dUTP (i.e., biotin-16-2'-Deoxy-uridine-5'-triphosphate) from phosphate buffer. A novel media using paramagnetic particles was developed for immobilizing the Ag(I) so that the silver ions are stable in the presence of NaCl. A comparison of batch affinity binding of biotin labeled dUTP with a com. available media contg. immobilized streptavidin (Dynabeads M-280 Streptavidin, Dynal Inc., Lake Success, NY) showed that the paramagnetic media contg. Ag(I) had equiv. specificity for binding the biotin labeled oligonucleotide (b-dUTP) over its unlabeled counterpart. However,

in the presence of 0.01 M NaCl the paramagnetic media contg. Ag(I) did not bind b-dUTP suggesting that elution of b-UTP can be performed using relatively mild conditions. The possibility of regenerating these soft metal ion particles will result in substantial cost savings to large labs. since stereptavidin paramagnetic beads have become essential in biomedical research and their cost can be as much as \$2.50 per template in DNA sequencing (Dynal Inc., 1994). This paper will discuss the use of this novel media for reversible binding of biotin labeled oligonucleotides.

L11 ANSWER 15 OF 16 CAPLUS COPYRIGHT 2002 ACS DUPLICATE 7

ACCESSION NUMBER: 1995:686646 CAPLUS

DOCUMENT NUMBER: 123:51400

TITLE: Retention Behavior of Amino Acids Using

Immobilized Ag(I) Chromatography

AUTHOR(S): Kim, Dong-Hoon; Garcia, Antonio A.

CORPORATE SOURCE: Department of Chemical Bio and Materials

Engineering, Arizona State University, Tempe,

AZ, 85287-6006, USA

SOURCE: Biotechnol. Prog. (1995), 11(4), 465-7

CODEN: BIPRET; ISSN: 8756-7938

DOCUMENT TYPE: Journal LANGUAGE: English

AB A math. description of retention times for several amino acids on a polyacrylamide resin contg. immobilized Ag(I) is presented in this paper. Immobilization of Ag(I) ions onto a chromatog. support allows for the expansion of immobilized metal affinity chromatog. (IMAC) to include soft acid/soft base interactions. For the retention of methionine, histidine, and tryptophan, a math. model is presented that rationalizes the retention behavior of these amino acids on a Ag(I) column as a function of silver ion loading and pH. The pH effect is important in that methionine is retained longer than histidine at pH values below 5, while at pH 7 histidine is retained longer than methionine. The effects of nonspecific interactions with the modified polymer, electrostatic interactions, and soft acid/soft base interactions are also taken into account by the model. This approach may also be useful for modeling the retention times of amino acids on other types of IMAC columns.

L11 ANSWER 16 OF 16 CAPLUS COPYRIGHT 2002 ACS

ACCESSION NUMBER: 1995:142805 CAPLUS

DOCUMENT NUMBER: 122:22838

TITLE: Immobilization of silver and platinum ions for

metal affinity chromatography

AUTHOR(S): Garcia, A. A.; Kim, D. H.; Miles, D.

R.

CORPORATE SOURCE: Department of Chemical, Bio and Materials

Engineering, Arizona State University, Tempe,

AZ, 85287-6006, USA

SOURCE: React. Polym. (1994), 23(2/3), 249-59

CODEN: REPLEN; ISSN: 0923-1137

DOCUMENT TYPE: Journal LANGUAGE: English

AB Ag(I) or Pt(II) are immobilized onto a polyacrylamide resin using a glutaraldehyde/thiourea activation procedure. Wet chem. expts. and XPS indicate that metal ion immobilization is due to chem. complexation with thiourea. Immobilization using thiourea results

in significantly lower metal loss from the solid phase as compared to ion exchange immobilization and allows for the use of chloride and phosphate salts in the mobile phase. The immobilized Ag(I)resin retains amino acids in the order: histidine > methionine tryptophan tyrosine > phenylalanine > asparagine > proline; using a phosphate buffer mobile phase at pH 7. At pH 4.7, methionine is retained longer on the Ag(I) resin than histidine. The affinity of methionine for the immobilized Pt(II) resin is greater giving the order: methionine (not eluted) tryptophan > tyrosine > histidine = phenylalanine; using a phosphate mobile phase at pH 7.

=> fil hom FILE 'HOME' ENTERED AT 12:06:11 ON 07 FEB 2002

SEARCH REQUEST FORM

Scientific and Technical Information Center

59742

Requester's Full Name: <u>MY-CHAU TRAN</u> Examiner #: Art Unit: <u>164/</u> Phone Number 30 <u>5-6999</u> Serial Nu Mail Box and Bldg/Room Location: <u>CMI, 7E12</u> Results Format Presentation	78933 Date: 2/6/02 umber: 09/807, 663 ferred (circle): PAPER DISK E-MAIL
If more than one search is submitted, please prioritize searches in	order of need. $m \epsilon g$
Please provide a detailed statement of the search topic, and describe as specifically as p Include the elected species or structures, keywords, synonyms, acronyms, and registry utility of the invention. Define any terms that may have a special meaning. Give exam known. Please attach a copy of the cover sheet, pertinent claims, and abstract.	numbers, and combine with the concept or apples or relevant citations, authors, etc, if
Title of Invention: Immobilized Silver Immun	10assay System
Title of Invention: Immobilized Silver Immur Inventors (please provide full names): ANTONIO, A. Garcia	; Matthew R. Bomen
Earliest Priority Filing Date: 10 14 1998	
For Sequence Searches Only Please include all pertinent information (parent, child, divisio appropriate serial number.	onal, or issued patent numbers) along with the
Please perform: 1) Inventor	search
@ A Hacked	claims.
	Thank-you
Charles Charles	of Contact
	COLIN LEGISTAL STATES