zh

C-Level Intensivseminar KI & Machine Learning

SUVA, 14. Oktober 2019

Thilo Stadelmann

Was→ Warum?→ Wozu?→ Wohin?

1

Was versteht man unter KI und Machine Learning?

Zürcher Fachhochschule

Was ist künstliche Intelligenz?

thinking

"The exciting new effort to make computers think... machines with minds. in the full and literal sense."

"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solving,

"The study of mental faculties through the use of computational models.

"The study of the computation make it possible to percent make it possible to percent

humanly

rationally

"The study of **how to make computers**

acting

Was gehört zu künstlicher Intelligenz?

Zürcher Fachhochschule

Eine Machine Learning Landkarte

«...gives computers the ability to learn without being explicitly programmed.»

black box / explanatory

Grundprinzip im Deep Learning: Feature Vektoren (Merkmale) automatisch lernen

...

Classical image processing

Using Convolutional Neual Networks (CNNs)

Takes raw pixels in, learns features automatically!

Zürcher Fachhochschule

Was→ Warum?→ Wozu?→ Wohin?

2

Warum macht man das? → Nutzen und Wirkung

Zürcher Fachhochschule

Zwischenfazit: Einsatzmöglichkeiten & Erfolgsfaktoren

KI: maschinelles Lösen von komplexen (=kann bisher nur der Mensch) Aufgabenstellungen

ML: ein Werkzeug für KI; findet Lösungsweg anhand Input-Output Beispielen von Menschen

Zürcher Fachhochschule

Zwischenfazit: Einsatzmöglichkeiten & Erfolgsfaktoren

KI: maschinelles Lösen von komplexen (=kann bisher nur der Mensch) Aufgabenstellungen

ML: ein Werkzeug für KI; findet Lösungsweg anhand Input-Output Beispielen von Menschen

→ Automatisierung komplexer, redundanter Prozesse basierend auf (hoch-dim. Sensor-)Daten

Beispiele aus der angewandten Forschung

...mit lokalen Industriepartnern (KMUs)

[!] DEEPIMPACT

Gesichtserkennung für Stadionzutritt

• Nutzen: Robustes Personenidentifikationssystem

· Wirkung: Unterstützung bei Entwicklung; Datenqualität schränkte ein

Automatische Artikelsegmentierung

- Nutzen: vollautomatisches Produkt in niedrigem Preissegment
- Wirkung: Einführung dank Teamausbau geglückt

Visuelle Qualitätskontrolle in Produktion

Wirkung: 5 Jahre nach Start ist entwickelte Technologie grösstes Asset

Was→ Warum?→ Wozu?→ Wohin?

3

Wozu führt das jetzt? → Potentiale und Risiken

Zürcher Fachhochschule

Globale Relevanz künstlicher Intelligenz

Marktgrösse (Hardware, Software, Services): in 2018 ca. \$21.5 Mrd. → \$190.6 Mrd. in 2025¹

Nationale Strategien²:

Talente, Forschung, ...

- 1) Siehe https://www.marketsandmarkets.com/PressReleases/artificial-intelligence.asp (2017)
- 2) Siehe https://asgard.vc/global-ai/ (2017)

Zürcher Fachhochschule

zh

Beispiel: Machbar vs. gefährlich

https://www.cultofmac.com/495088/avoid-potentially-deadly-ai-app/

Beispiel: Markterfolg vs. regulatorische Hürden Technologie: Recommender Systems

Zurich University of Applied Sciences

zh

Beispiel: Statistik vs. Bias

Technologie: Machine Learning

See also: Nassim Nicholas Talib, «The Black Swan: The Impact of the Highly Improbable», 2007

it

Beispiel: künstl. Intelligenz vs. natürl. Dummheit Technologie: Machine Learning mit nachgelagerten Regeln

Gefahren durch KI?

- KI ist per Definition eine "dual use Technology"
 → siehe Report von Brundage et al., 2018
- Aber: "natürliche Dummheit" ist die grössere Bedrohung
- Algorithmische Ethik und erklärbare KI sind in den letzten Jahren zu einem top Forschungsfeld geworden – nicht wegen der unkalkulierbaren Risiken per se, sondern:

Was→ Warum?→ Wozu?→ Wohin?

4

Wohin kann das einmal führen? Trends, auch in branchenähnlichen Betrieben

Zürcher Fachhochschule

Trend: Entwickeln für "algorithmic fairness" Der FAT ML Code of Conduct

See http://www.fatml.org/resources/principles-for-accountable-algorithms

Purpose

- Help developers to build algorithmic systems in publicly accountable ways
- Accountability: the obligation to report, explain, or justify algorithmic decision-making & mitigate any negative social impacts or potential harms

Premise

• A human ultimately responsible for decisions made/informed by an algorithm

Principles

Responsibility, Explainability, Accuracy, Auditability, Fairness

Make available somebody who will take care of adverse individual / societal effects Explain any algorithmic decision in non-technical terms to end users

Report all sources of uncertainty / error in algorithms & data

Enable 3rd parties to **probe**& understand system

behavior

Ensure algorithmic **decisions are not discriminatory** w.r.t. to people groups

Making it actionable

- Publish a Social Impact Statement
- ...use above principles as a guiding structure
- ...revisit three times during development process: at design stage, pre-launch, post-launch

Trend: Entwickeln für Interpretierbarkeit

Interpretability is required.

Helps the developer in «debugging», needed by the user to trust

 y visualizations of learned features, training process, learning curves etc. should be «always on»

Epochs

DNN training on the Information Plane

a learning curve

feature visualization

Stadelmann, Amirian, Arabaci, Arnold, Duivesteijn, Elezi, Geiger, Lörwald, Meier, Rombach & Tuggener (2018). *«Deep Learning in the Wild»*. ANNPR'2018. Schwartz-Ziv & Tishby (2017). *«Opening the Black Box of Deep Neural Networks via Information»*. https://distill.pub/2017/feature-visualization/, https://stanfordmlgroup.github.io/competitions/mura/

Trend: "Document recognition" anstatt Analyse rein strukturierter Daten

Documents

- Ubiquitous in human communication and every scenario involving an office
- Somewhat structured for human expert; unstructured w.r.t machines
- Great use case for various AI techniques, including computer vision techniques

Own scientific community

• IAPR's biannual Intl. Conference on Document Analysis & Recognition (ICDAR): character & symbol recognition, printed/handwritten text recognition, graphics analysis & recognition, document analysis & understanding, historical documents & digital libraries, document based forensics, camera & video based scene text analysis

Beispiele aus der (lokalen) Wirtschaft

Beispiele aus der (lokalen) Wirtschaft (contd.)

Zwischenfazit: Entkopplung

Grösse der Idee ≠ Grösse des Unternehmens

...KMUs können bauen was auch immer sie mögen (gegeben Know-how, Daten und einen interessanten Business Case)

Technologie ist branchenunabhängig

...was neue Kooperationen und Allianzen ermöglicht, z.B.

Swiss Alliance for Data-Intensive Services

Zurich University

Zwischenfazit (contd.): Geschwindigkeit

Durchschnittliche Zeit von Publikation bis Anwendung im Projekt: ca. 3 Monate

Aussicht: Disruption

...selbst bei völliger Stagnation des technischen Fortschritts

- 1. Hypothese: Einsatz (aktueller) KI wird sich massiv ausbreiten (Zeitrahmen: 5 Jahre)
- Indikator: KI-Fortschritt momentan hauptsächlich Industriegetrieben (Gewinnaussicht); Konsumenten kaufen "beguem"; diese Incentivierung "hält den Motor am Laufen"
- 2. Hypothese: Dies wird unsere Gesellschaften umwälzen
- Kernfragen: Wie verteilt sich der algorithmisch (hauptsächlich bei Grosskonzernen) erwirtschaftete Gewinn? Wie verteilt sich neue Freizeit und Alltagserleichterung?
- 3. Hypothese: Grösste Frage wird der Umgang miteinander sein (nicht der Umgang mit KI)
- Argument: KI (etc.) "for the common good" ist ein wichtiges Thema; entscheidend wird jedoch sein, wie wir als Gesellschaften die Regeln für das digitalisierte Zusammenleben (s.o.) gestalten

Siehe auch: Stockinger, Braschler & Stadelmann. "Lessons Learned from Challenging Data Science Case Studies". In: Braschler et al. (Eds), "Applied Data Science - Lessons Learned for the Data-Driven Business", Springer, 2019.

Schlussfolgerungen

- KI automatisiert einzelne, komplexe, aber redundante Prozesse (meist mittels ML auf menschengenerierten Beispielen)
- Deep Learning hat zu Paradigmenwechsel in *Mustererkennungsaufgaben* geführt
- Die Zeit vom Grundlagenresultat zur praktischer Anwendung beträgt wenige Monate
- Das Zeitfenster zu handeln ist beträgt wenige Jahre (<5) → Disruption

Zu mir:

Prof. KI/ML, Scientific Director ZHAW digital

Email: <u>stdm@zhaw.ch</u>
 Telefon: 058 934 72 08

Web: https://stdm.github.io/

Twitter: @thilo_on_data

LinkedIn: thilo-stadelmann

Mehr zum Thema:

- Data+Service Alliance: www.data-service-alliance.ch
- Zusammenarbeit: <u>datalab@zhaw.ch</u>