Lección 3: Predicción

Módulo 4: Introducción al análisis de regresión

Magdalena Cornejo

Se desea estimar la demanda de un producto a partir de la base de datos de Excel demanda.xlsx, la cual contiene datos 28 ciudades sobre:

- consumo (miles de unidades físicas)
- precio (en pesos)
- ingreso (per capita, en miles de pesos)
- publicidad (en millones de pesos)
- precio_competencia (en pesos)

A continuación se reportan los resultados de la regresión:

Estadísticas de la regresión				
Coeficiente de correlación múltiple	0.97			
Coeficiente de determinación R^2	0.94			
R^2 ajustado	0.93			
Error típico	3.61			
Observaciones	28			

ANÁLISIS DE VARIANZA

	Grados de	Grados de Suma de		_	Valor crítico	
	libertad cuadrados		los cuadrados	r	de F	
Regresión	4	4812.44	1203.11	92.34	0.00	
Residuos	23	299.66	13.03			
Total	27	5112.11				

	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%
Intercepción	47.96	11.40	4.21	0.00	24.39	71.54
precio	-1.61	0.51	-3.15	0.00	-2.67	-0.55
ingreso	0.88	0.34	2.59	0.02	0.18	1.59
publicidad	0.36	0.06	6.00	0.00	0.24	0.49
precio_competencia	-0.09	0.17	-0.53	0.60	-0.44	0.26

Si la empresa está interesada en lanzar su producto en una nueva ciudad:

- con un ingreso per capita de \$29 mil,
- a un precio de \$16,
- invirtiendo \$60 millones en publicidad, y
- sabiendo que el precio de la competencia es de \$19.

¿Cuál es la demanda esperada de este producto en la nueva ciudad?

Si la empresa está interesada en lanzar su producto en una nueva ciudad:

- con un ingreso per capita de \$29 mil,
- a un precio de \$16,
- invirtiendo \$60 millones en publicidad, y
- sabiendo que el precio de la competencia es de \$19.

¿Cuál es la demanda esperada de este producto en la nueva ciudad?

Recomendación:

- Re-estimar el modelo sin el precio de la competencia (no significativo y con signo contrario a lo esperado)
- Reemplazar los valores específicos de esta ciudad en la regresión para obtener el valor esperado ($\widehat{consumo} = 118.3$).

Predicción

Cuando sustituimos los valores específicos de X en la regresión estimado obtuvimos un **valor esperado** de y dados dichos valores de X.

Sean $c_1, c_2, ..., c_k$ valores específicos de cada una de las Xs, el parámetro que se desea estimar es:

$$\theta = \beta_0 + \beta_1 c_1 + \beta_2 c_2 + \dots + \beta_k c_k$$

$$= E(Y/X_1 = c_1, X_2 = c_2, ..., X_k = c_k)$$

cuyo estimador será:

$$\widehat{\theta} = \widehat{\beta}_0 + \widehat{\beta}_1 c_1 + \widehat{\beta}_2 c_2 + \dots + \widehat{\beta}_k c_k$$

Intervalo de Confianza para la Predicción

Para obtener un intervalo de confianza de θ , necesitamos calcular el error estándar de su estimador $(\widehat{\theta})$.

Para ello, realizaremos el siguiente procedimiento:

• Escribimos β_0 (la constante) como:

$$\beta_0 = \theta - \beta_1 c_1 - \beta_2 c_2 - \dots - \beta_k c_k$$

2 Reemplazamos en el modelo de regresión:

$$y_i = \theta + \beta_1(X_{1i} - c_1) + \beta_2(X_{2i} - c_2) + ... + \beta_k(X_{ki} - c_k) + \varepsilon_i$$

Stimamos dicho modelo por MCO. ¡La nueva constante estimada es el valor predicho y su error estándar nos permitirá armar el intervalo!

Aplicación

- Utilice el archivo de Excel: demanda.xlsx.
- Realice la estimación de la demanda del producto por MCO (sin considerar el precio de la competencia).
- Obtenga la predicción puntual de la demanda para la nueva ciudad en la que desea incursionar donde:
 - ▶ ingreso: \$29 mil
 - ▶ precio: \$16
 - publicidad: \$60 millones
- Obtenga el intervalo de confianza de dicha predicción.