Multiplexerek

A több bemenetről 1 kimenetre választó adatirányítókat multiplexereknek nevezzük. Egy általános blokkvázlat az alábbi ábrán látható:

A címbitekkel kiválasztott bemenet jele kerül a kimenetre. A multiplexereknél a ponált kimenet gyakoribb. Nézzünk egy 4-ről 1-re multiplexert, vegyük sorra, milyen bemenetekkel rendelkezik, és melyiknek mi a szerepe. Elsőként egy szemléletes ábra egy 4-ről 1-re multiplexer működésére:

Kapcsolóállás	A ₁	A ₀	Y=
1	0	0	Do
2	0	1	D ₁
3	1	0	D ₂
4	1	1	D ₃

,							
Ť	. 1 6 1	1 /1, 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 1	. 1	//1 ·· 1/ ·	igazságtábláját:
۱r	11112 tel	l az alfaliin <i>k</i>	meatervezenda	/I_I_re mill	finlover:	MIIRAGECT	1007000tabla1at
- 11	iun ici	i az amanum	. IIICEICI VCZCIIUO	1- 1-10 IIIu1	ирислеі.	mukoucsi	igazsagiabiaiai.

\overline{E}	В	A	Y
0	0	0	I_0
0	0	1	I_1
0	1	0	I_2
0	1	1	I_3
1	X	X	0

- \overline{E} : Engedélyező bemenet, 0 értéke esetén engedélyezve van a MUX működése, vagyis a B, A szelekciós bemenetekkel kiválasztott indexű adatbemenet (I_{BA}) jele kerül a kimenetre (Y) \overline{E} 1-es értéke esetén a kimenet értéke a szelekciós bemenetek értékétől függetlenül 0 lesz (ez felépítés függő).
- **B, A**: szelekciós bemenetek. Súlyozzuk a bemeneteket $B\equiv 2^1$, $A\equiv 2^0$, és így mint 2 biten előállítunk 4 különböző értéket, amelyek a 0, 1, 2, 3. Ezek a bemenetek határozzák meg, hogy melyik indexű bemenet I_0 , I_1 , I_2 , vagy I_3 jele kerül a kimenetre.
- Io, I1, I2, I3: adatbemenetek, a B, A szelekciós bemenetek választják ki, hogy melyik indexű adatbemenet jele kerül a kimenetre.

Nézzük meg egy ilyen 4-ről az 1-re multiplexer egy lehetséges totem poole kimenetű megvalósítását: A teljes tokot (74.153) bemutatjuk, ezért látható az ábrán 2 teljesen egyforma multiplexer.

Az ÉS kapuk bemenetére az \bar{E} , és a B, A bemeneteket úgy kell bekötni, hogy engedélyezés esetén a B, A szelekciós bemenetek által kiválasztott indexű I bemenet jele kerüljön az Y kimenetre. Az ÉS kapu kimenete 0 lesz, ha bármelyik bemenete 0, ezért az \bar{E} , B, A bemeneteket ennek megfelelően kell bekötni, tehát 1-esként. Nézzük az első ÉS kaput, ahova az I_0 van bekötve. Az igazságtábla szerint, ha I_0 van kiválasztva, akkor \bar{E} , B, A mindegyike 0, tehát, hogy 1-esként kerüljenek az ÉS kapu bemenetére meg kell őket negálni. Vegyük a második ÉS kaput. Ide az I₁ indexű bemenet van kötve. Az igazságtábla szerint ekkor $\bar{E} = 0$, B = 0, A = 1, ennek megfelelően \bar{E} , B bemeneteket negáltan, míg az A bemenetet ponáltan visszük az ÉS kapu bemenetére. A 3. ÉS kapuba az I2 jel van bevezetve. Az igazságtábla szerint, ha ez a bemenet van kiválasztva, akkor $\bar{E} = 0$, B = 1, A = 0. Amelyik bemenet 0, azt negáltan, amelyik 1 azt ponáltan visszük az adott ÉS kapu bemenetére. Vegyük az utolsó ÉS kaput, ahova az I₃ bemenet van kötve. Az igazságtábla szerint, ha ez a bemenet van kiválasztva, akkor $\bar{E} = 0$, B = 1, A = 1. Így tehát az \bar{E} jelet negáltan, míg a B, A bemeneteket ponáltan kötjük az ÉS kapu bemenetére. Ha az $\bar{E}=0$, akkor a kiválasztott indexű adatbemenet jele kerül a kimenetre, ha $\bar{E} = 1$, akkor valamennyi ÉS kapu kimenete 0 lesz, mivel az engedélyező jel negáltan kerül az összes ÉS kapu bemenetére. Így a VAGY kapu minden bemenete 0 lesz, tehát a kimenete is 0 lesz. Ez most egy totem poole kimenetű megvalósítás, de nyitott kollektoros és tri-state kimeneti megoldás is lehet. Sőt ezeknél a kimeneteknél kihasználva, hogy bizonyos feltételek mellett összeköthetők, némileg a kapcsolás is egyszerűsödik. Ezekre a kidolgozott feladatok között talál példát.

Demultiplexerek

Az egy bemenetről több kimenetre választó adatirányítókat demultiplexereknek nevezzük. A demultiplexereknél a negált kimenettípus a gyakoribb változat. Egy lehetséges blokkvázlat:

A címbitek által kiválasztott kimenetre kerül a bemenet jele. Nézzük meg egy 1-ről a 4-re demultiplexer lehetséges felépítését, és a működési igazságtábláját, előtte azonban egy szemléletes ábrát mutatunk be a demultiplexer működésére:

Kapcsolóállás	A ₁	A ₀	Kimenet
1	0	0	Y ₀ =D
2	0	1	Y ₁ =D
3	1	0	Y ₂ =D
4	1	1	Y ₃ =D
		-	

 $\overline{\textbf{\textit{E}}}$: engedélyező bemenet, 0 értéke esetén engedélyezve van a demultiplexer működése, vagyis a B, A szelekciós bemenetek által kiválasztott indexű Y kimenetre kerül 0, a többi kimenetre

1-es. Ha 1-es értékű az engedélyező bemenet, akkor függetlenül a B, A szelekciós bemenetek értékétől az összes kimenet 1-es lesz.

B, A: szelekciós bemenetek. Súlyozzuk a bemeneteket, B≡2¹, A≡2⁰, így mint 2 bites értékek indexül szolgálnak az Y kimeneteknek. Ha engedélyezve van a demultiplexer működése, akkor az általuk kiválasztott indexű kimenetre 0 kerül, a többire 1.

 $\overline{Y_0}$, $\overline{Y_1}$, $\overline{Y_2}$, $\overline{Y_3}$ kimenetek. A B, A szelekciós bemenetek választják ki, hogy melyik indexű kimenetre kerüljön 0, feltéve, hogy engedélyezve van a demultiplexer működése.

Az ÉS-NEM kapu kimenetén egyszer van 0, ha minden bemenete 1-es. Ahhoz, hogy a szelekciós bemenetek által kiválasztott indexű kimenet 0 legyen, az kell, hogy a kimenetet megvalósító ÉS-NEM kapu valamennyi bemenete 1-es legyen. Nézzük az igazságtáblát. Amikor B és A is 0, akkor az Y₀ van kiválasztva ($\bar{E} = B = A = 0$), tehát ennek kell 0-nak lennie, így a hozzá tartozó ÉS-NEM kapu valamennyi bemenetének 1-nek kell lennie, ezért valamennyi jelet negáltan kell bevezetni az Y₀-t megvalósító ÉS-NEM kapuba. Amikor B=0 és A=1, akkor az Y₁ van kiválasztva ($\bar{E} = B = 0, A = 1$), tehát ennek kell 0-nak lennie, így a hozzá tartozó ÉS-NEM kapu valamennyi bemenetének 1-nek kell lennie, ezért, \bar{E} , B jelet negáltan, míg az A jelet ponáltan kell bevezetni az Y₁-t megvalósító ÉS-NEM kapuba. Amikor B=1 és A=0, akkor az Y₂ van kiválasztva ($\bar{E} = A = 0, B = 1$), tehát ennek kell 0-nak lennie, így a hozzá tartozó ÉS-NEM kapu valamennyi bemenetének 1-nek kell lennie, ezért, \bar{E} , A jelet negáltan, míg a B jelet ponáltan kell bevezetni az Y₂-t megvalósító ÉS-NEM kapuba. Amikor B=1 és A=1, akkor az Y₃ van kiválasztva ($\bar{E} = 0, B = A = 1$), tehát ennek kell 0-nak lennie, így a hozzá tartozó ÉS-NEM kapu valamennyi bemenetének 1-nek kell lennie, ezért, \bar{E} jelet negáltan, míg az A, B jeleket ponáltan kell bevezetni az Y₃-t megvalósító ÉS-NEM kapuba.