Software-Intensive Systems Producibility Research

ENT OF

Mr. Robert Gold

Associate Director, Software and Embedded Systems

DUSD (S&T)

May 2, 2006

Presentation Overview

Agenda

- DoD's needs for producing Software-Intensive Systems
 - F-22, SBIRS High
 - Future Developments
- Current efforts to address Software-Intensive Systems (SIS) Producibility
- Envisioned program

DoD's SIS Challenge

"DoD estimates that it spends about 40% of its RDT&E budget on software - \$21B for FY2003" – GAO

F-22

SBIRS-High

"[Software] continues to grow in importance in our weapons systems - and remains a significant contributor to program cost, schedule and performance shortfalls." -- Pete Aldridge

Opportunities for Improvement

- Development tools do not adequately provide system-level awareness
 - Start-up, shut-down, reconfiguration
 - Establish, track, assess system-level properties
 - Reliability, Resource utilization, Deadlines etc.
 - Enforcement of design principles during development
- Development details still dominated by expert involvement and peer reviews

Capability Provided by Software in DoD Systems is Increasing but so are the Challenges...

Ref: Defense Systems Management College

DoD Software is Growing in Size and Complexity

Total Onboard Computer Capacity (OFP)

Opportunities for Improvement

- Software and System development tool suites must:
 - Automate tasks not done consistently well by humans
 - Code generation
 - Enforcement of architectural policies
 - Provide consolidated system-awareness
 - Service, resource and application prioritization
 - Design trade-offs
 - Simplify testing and verification

Army Future Combat System Challenges

- "The software task alone is five times larger than that required for Joint Strike Fighter and ten times larger than the F-22, which after two decades is finally meeting its software requirements."
 - Congressman Curt Weldon, House Armed Services Committee tactical air and land forces subcommittee hearing April 1, 2004 as quoted in <u>Defense News</u> April 12, 2004

- •Emphasis on network dependence
- •V&V will be difficult

Opportunities for Improvement

- Development environments for net-reliant embedded systems must:
 - Readily embrace emerging data and knowledge management strategies
 - Automatically facilitate and assess interoperability protocol implementation compatibility
 - Address system-of-systems design
 - Properties-in-the-large, composeability, security
 - Accommodate data and functional uncertainties associated with ad-hoc networks and transient application relationships
- System-of-Systems Verification

Emerging Interests

- Software Assurance
 - Ensuring applications and infrastructure are free from vulnerabilities and malware
- Open Technology Development
 - Open Source
 - Open Standards

Overview – Existing Program

Workshops

- #1 Establish Overall Research Agenda
 - Held May 17/18 2005 ZAI, Rosslyn VA
- #2 Establish Research Goals, Infrastructure Requirements
 - Held July 2005 UC Berkeley
- #3 Industry Transition & Motivation
 - Scheduled for May 17-19 2006
 - ZAI Rosslyn VA
 - Include Gov/Industry Exec Session May 19

National Academies Study

- FY05-07 (2 year effort),
 - Independent expert committee (15), Workshops,
 Interim & Final reports
- Assess
 - Progress in tech base
 - R&D organization
 - Tech transition
 - Long-term SIS maintenance and evolution
- Recommend National-scale SIS S&T investments
 - Collaborate with other Federal investments

Systems and Software Test Track

Purpose

 Bring researchers together with developers and development artifacts to 'test drive' emerging technologies and techniques

Activities

– FY06 – Phase 1 Planning and Definition (6 mos)

• Scope, funding estimate, programmatics

- FY07 Implementation
 - Establish facility
 - Begin populating with developer products,
- FY08 -
 - Full operations
 - Allow researchers to apply innovative tools, technologies and techniques

Other On-going Activities

STTR topics

- Error Handling paths and policies analysis
- Security Escorts for Not-Yet-Trusted software
- Software System Reliability Analysis
- Assessing Interoperability
 Through Cross-Domain
 Protocol Compatibility
 Analysis
- HPEC-SI
 - Signal processing library

SBIR Topics

- Design Visualization
- Malicious Code Diffuser
- Robust Complex Systems
- Software Test Engineering:
 Analysis of Trace Semantics
- A Software Hub for High Assurance Model-Driven Development and Analysis
- Software Verification
- Open Technology Development
 - Blend of open source and open systems approaches

What We Need . . .

- A 7 year, \$20-32M per year investment in software-intensive systems development technologies
 - Research
 - Testing
 - Transition

Return on Investment (ROI)

Combined Improvement ROI			
	10% Improvement in Productivity	20% Improvement in Productivity	50% Improvement in Productivity
10% Reduction in Rework	7:1	11:1	21:1
20% Reduction in Rework	9:1	14:1	24:1
50% Reduction in Rework	16:1	20:1	30:1

Assumptions

- New effort, 7 year investment
- Calculated for 10 future acquisition programs
- Based on estimated industry productivity¹ and rework for DoD systems²

^{1 –} DACS Software Tech News Volume 7, Number 2 Article "Industry Software Cost, Quality and Productivity Benchmarks" by Donald Reifer, June 2004

^{2 -} GAO report 04393, title "Stronger Management Practices Are Needed to Improve DOD's Software-Intensive Weapon Acquisitions", dated March 2004

DoD Software S&T

- Current State of Play:
 - Research investments tailing off
 - Government expertise-base has atrophied
 - Software tools and techniques sometimes developed by acquisition programs themselves
 - CMU Software Engineering Institute focused on SWE process and transition, not advancing technology base
- Missed Opportunities: No DoD-wide approach to
 - Working with acquisition programs to address common SW technology issues
 - Developing standards (e.g., CORBA, UML)
 - Engaging 3rd-party software vendors (e.g., Rational (IBM), Mathworks, Green Hills Software)

What about Industry?

- Industry investments are usually inappropriate for DoD problems
 - Research is targeted for specific products, not general long-term improvements
 - Focused on selling software products quality and reliability are lower priorities
 - Global resourcing for research and development limits applicability to DoD
- For Defense contractors -
 - Software may not be a direct profit driver
 - Software technologies difficult to retain as company IP

Envisioned Program Overview

Description:

- Reinvigorate SIS development research and provide dedicated efforts to demonstrate and transition improvements to acquisition programs
- Enable DoD engineers and industry partners to develop and acquire SIS with reasonable and repeatable cost, schedule and performance

• **Benefit:** What is the benefit to the Department?

- Increase efficiency, reduce cost and schedule overruns, and reduce critical failures associated with software for warfighting and management
- Successful development of software that meets our growing expectations in software program size and complexity

Major Elements:

- Research Technologies, Tools and Techniques
- Systems and Software Test Track
- Transition

Previous DoD S&T Investments Have Had a Major Impact

Examples:

- Real-Time Computing: an Efficient Principled Approach to Process Task Coordination and Schedulability
- MoBIES: Model-Based Integration of Embedded Software for Design and Testing
- Quorum: Quality-of-Service Middleware for Robust, Portable Mission-Critical Applications capable of Adapting to the Dynamic, Uncertain Conditions of Network-Centric Warfare

Call for Action

- DoD needs to reinvigorate its investments in software and systems development technologies
 - Increased dependence on software
 - Common problem for acquisition programs
- This Cross-Component issue necessitates a jointly coordinated effort
 - We welcome cooperation with Industry,
 Academia and other Federal agencies