Package 'oec'

August 3, 2016

Type Pack	age
Title The	Observatory of Economic Complexity
Version 1.	0.6
Date 2016	-08-03
Author M	auricio Vargas S. <mauriciovargas@ug.uchile.cl></mauriciovargas@ug.uchile.cl>
	r Mauricio Vargas S. <mauriciovargas@ug.uchile.cl></mauriciovargas@ug.uchile.cl>
URL http	://atlas.media.mit.edu/en/, https://github.com/pachamaltese/oec/
_	n Use The Observatory of Economic Complexity's API from R console to obtain internal trade data to create spreadsheets (csv format) and D3plus visualizations.
License M	IT + file LICENSE
LazyData	TRUE
jsonl plyr, servr RoxygenN	table, ite,
_	
	ec-package
	ountries_list
_	emos
ge	etdata
hs	92_2char
hs	92_6char
	92_8char
	s_colors
	stall_d3plus
	etwork
	etwork.comparison
	tc_rev2_2char
	tc rev2 4char

stackedareaplot.comparison10treemap11

2 oec-package

Index 12

oec-package

OEC: The Observatory of Economic Complexity

Description

Use The Observatory of Economic Complexity's API from R console to obtain international trade data to create spreadsheets (csv format) and D3Plus visualizations.

Details

The functions provided within this package are:

barchart.comparison Creates a bar chart to compare up to five years.

install_d3plus Installs D3 and D3plus.

demos Copies the demo file.

getdata Downloads and processes the data from the API.

network Creates a network for a given year.

network.comparison Creates a network to compare two years.

stackedareaplot.comparison Creates a stacked area plot to compare up to five years.

treemap Creates a treemap for a given year.

The datasets provided within this package are:

countries_list A list of all the countries in the world and its respective country code.

hs92_2char HS92 groups. This file is used to create spreadsheets and visualizations with trade data.

hs92_6char HS92 products (6 characters codes). This file is used to create spreadsheets and visualizations with trade data.

hs92_8char HS92 products (8 characters codes). This file is used to create spreadsheets and visualizations with trade data.

hs_colors HS92 colors. This file is used to create spreadsheets and visualizations based on trade data.

sitc_rev2_2char SITC (rev. 2) groups. This file is used to create spreadsheets and visualizations with trade data.

sitc_rev2_4char SITC (rev. 2) products (4 characters codes). This file is used to create spread-sheets and visualizations with trade data.

sitc_colors SITC (rev. 2) colors. This file is used to create spreadsheets and visualizations with trade data.

barchart.comparison 3

barchart.comparison Creates a bar chart to compare two years

Description

Creates a bar chart to compare two years

Usage

barchart.comparison(ORIGIN, DESTINATION, VARIABLE, CLASSIFICATION, YEAR, STEP)

Arguments

ORIGIN is the country code of origin (e.g. "chl" for Chile)

DESTINATION is the country code of origin (e.g. "chn" for China)

VARIABLE is the variable to visualize and it can be "imports", "exports" or "exchange"

(trade exchange)

CLASSIFICATION refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

YEAR is the initial year and the OEC's API ranges from 1962 to 2014

STEP is the distance between the years to compare (e.g if my year is 2010 and the

distance is 2, then the function creates a chart comparing 2006, 2008, 2010,

2012 and 2014)

Value

Creates an HTML file with a bar chart visualization that compares two given years.

Examples

barchart.comparison(chl, chn, exports, 6, 2010, 2)

countries_list A list of all the countries

Description

A list of all the countries in the world and its country code. You need the country code (e.g. chl) to obtain data of a country (e.g Chile)

Usage

countries_list

4 getdata

Format

A data frame with 262 observations on the following 2 variables.

country the full names of the countries country_code the ids of the countries

Examples

countries_list

demos

Copies the demo file

Description

Copies the demo file

Usage

demos()

Value

Copies a file named demo_examples.R to the working directory.

Examples

demos()

getdata

Downloads and processes the data from the API

Description

Downloads and processes the data from the API

Usage

```
getdata(ORIGIN, DESTINATION, CLASSIFICATION, YEAR)
```

Arguments

ORIGIN is the country code of origin (e.g. "chl" for Chile)

DESTINATION is the country code of origin (e.g. "chn" for China)

CLASSIFICATION refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

YEAR is the year and the OEC's API ranges from 1962 to 2014

hs92_2char 5

Examples

```
# Run countries_list() to display the full list of countries
# Chile is "chl" and China is "chn"

# Download Chile (chl) and China (chn) trade data (imports, export and trade balance)
getdata("chl", "chn", 6, 2010)

# Download trade data from OEC's API (HS92 6 characters product lists)
getdata("chl", "chn", 6, 2010)

# Download trade data from OEC's API (SITC rev.2 4 characters product lists)
getdata("chl", "chn", 4, 2010)
```

hs92_2char

HS92 groups

Description

HS92 groups. This file is used to create the visualizations.

Usage

hs92_2char

Format

A data frame with 22 observations on the following 2 variables.

```
group Contains the H292 groups (e.g. animal products, vegetable products, etc) group_id Contains the associated codes of every group (e.g. animal products is 01)
```

Examples

hs92_2char

hs92_6char

HS92 products (6 characters)

Description

HS92 products (6 characters). This file is used to create the visualizations.

Usage

hs92_6char

6 hs92_8char

Format

A data frame with 1242 observations on the following 4 variables.

```
product Contains the H292 products' names (e.g. horses, bovine, pigs, etc) group Contains the H292 groups (e.g. animal products, vegetable products, etc) product_id Contains the associated codes of every product (e.g. horses is 010101) group_id Contains the associated codes of every group (e.g. animal products is 01)
```

Examples

hs92_6char

hs92_8char

HS92 products (8 characters)

Description

HS92 products (8 characters). This file is used to create the visualizations.

Usage

hs92_8char

Format

A data frame with 5040 observations on the following 4 variables.

```
product Contains the H292 products' names (e.g. horses, bovine, pigs, etc) group Contains the H292 groups (e.g. animal products, vegetable products, etc) product_id Contains the associated codes of every product (e.g. horses is 010101) group_id Contains the associated codes of every group (e.g. animal products is 01)
```

Examples

hs92_8char

hs_colors 7

hs_colors

HS92 colors

Description

HS92 colors. This file is used to create the visualizations.

Usage

hs_colors

Format

A data frame with 21 observations on the following 2 variables.

group Contains the H292 groups (e.g. animal products, vegetable products, etc)

color Contains the associated colors of every group (e.g. mineral products is #330000)

Examples

hs_colors

install_d3plus

Installs D3 and D3plus

Description

Installs D3 and D3plus

Usage

install_d3plus()

Value

Copies a folder named d3plus to the working directory and it contains the js files and icons to make the visualizations

Examples

install_d3plus()

8 network.comparison

network	Creates a network for a given year

Description

Creates a network for a given year

Usage

```
network(ORIGIN, DESTINATION, CLASSIFICATION, YEAR)
```

Arguments

ORIGIN is the country code of origin (e.g. "chl" for Chile)

DESTINATION is the country code of origin (e.g. "chn" for China)

CLASSIFICATION refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

YEAR is the year and the OEC's API ranges from 1962 to 2014

Value

Creates an HTML file with a network visualization for a given year.

Examples

```
network(chl, chn, 6, 2014)
```

network.comparison

Creates a network to compare two years

Description

Creates a network to compare two years

Usage

```
network.comparison(ORIGIN, DESTINATION, CLASSIFICATION, YEAR1, YEAR2)
```

Arguments

ORIGIN is the country code of origin (e.g. "chl" for Chile)

DESTINATION is the country code of origin (e.g. "chn" for China)

CLASSIFICATION refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

YEAR1 is the initial year and the OEC's API ranges from 1962 to 2014
YEAR2 is the final year and the OEC's API ranges from 1962 to 2014

sitc_colors 9

Value

Creates an HTML file with a network visualization that compares two given years.

Examples

```
network.comparison(chl, chn, 6, 2010, 2014)
```

sitc_colors

SITC (rev. 2) colors

Description

SITC (rev. 2) colors. This file is used to create the visualizations.

Usage

hs_colors

Format

A data frame with 36 observations on the following 2 variables.

```
group Contains the SITC (rev. 2) groups (e.g. machinery, electronics, etc)
```

color Contains the associated colors of every group (e.g. machinery is #17bcef)

Examples

sitc_colors

sitc_rev2_2char

SITC (rev. 2) groups

Description

SITC (rev. 2) groups. This file is used to create the visualizations.

Usage

hs92_2char

Format

A data frame with 36 observations on the following 2 variables.

```
group Contains the SITC (rev. 2) groups (e.g. machinery, electronics, etc)
```

group_id Contains the associated codes of every group (e.g. machinery is 10)

Examples

```
sitc_rev2_2char
```

sitc_rev2_4char

SITC (rev. 2) products (4 characters)

Description

SITC (rev. 2) products (4 characters). This file is used to create the visualizations.

Usage

```
sitc_rev2_4char
```

Format

A data frame with 1242 observations on the following 5 variables.

product Contains the H292 products' names (e.g. initiating devices, polymerization ion exchangers, etc)

group Contains the H292 groups (e.g. machinery, electronics products, etc)

product_id Contains the associated codes of every product (e.g. initiating devices is 5722)

group_id Contains the associated codes of every group (e.g. machinery is 10)

id Contains the associated extended codes of every group (e.g. machinery is 105722 that is group code + product code)

Examples

```
sitc_rev2_4char
```

stackedareaplot.comparison

Creates a stacked area plot to compare two years

Description

Creates a stacked area plot to compare two years

Usage

```
stackedareaplot.comparison(ORIGIN, DESTINATION, VARIABLE, CLASSIFICATION, YEAR)
```

Arguments

ORIGIN is the country code of origin (e.g. "chl" for Chile)

DESTINATION is the country code of origin (e.g. "chn" for China)

VARIABLE is the variable to visualize and it can be "imports", "exports" or "exchange"

(trade exchange)

CLASSIFICATION refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

YEAR is the initial year and the OEC's API ranges from 1962 to 2014

treemap 11

Value

Creates an HTML file with a stacked area plot visualization that compares two given years.

Examples

```
stackedareaplot.comparison(chl, chn, exports, 6, 2010)
```

treemap

Creates a treemap for a given year

Description

Creates a treemap for a given year

Usage

```
treemap(ORIGIN, DESTINATION, VARIABLE, CLASSIFICATION, YEAR)
```

Arguments

ORIGIN is the country code of origin (e.g. "chl" for Chile)

DESTINATION is the country code of origin (e.g. "chn" for China)

VARIABLE is the variable to visualize and it can be "imports", "exports" or "exchange"

(trade exchange)

CLASSIFICATION refers to the trade classification that can be "6" (HS92 6 characters) or "8" (HS92

8 characters) for the year 1995 and going or "4" (SITC rev.2 4 characters) for

the year 1962 and ongoing

YEAR is the year and the OEC's API ranges from 1962 to 2014

Value

Creates an HTML file with a treemap visualization for a given year.

Examples

```
treemap(chl, chn, exports, 6, 2014)
```

Index

```
*Topic datasets
    countries_list, 3
    hs92_2char, 5
    hs92_6char, 5
    hs92_8char, 6
    hs_colors, 7
    sitc_colors, 9
    sitc_rev2_2char, 9
    sitc_rev2_4char, 10
*Topic functions
    barchart.comparison, 3
    demos, 4
    getdata, 4
    install_d3plus, 7
    network, 8
    network.comparison, 8
    {\it stacked areaplot.comparison}, 10
    treemap, 11
barchart.comparison, 2, 3
countries_list, 2, 3
demos, 2, 4
getdata, 2, 4
hs92_2char, 2, 5
hs92_6char, 2, 5
hs92_8char, 2, 6
hs\_colors, 2, 7
install_d3plus, 2, 7
network, 2, 8
network.comparison, 2, 8
oec-package, 2
sitc\_colors, 2, 9
sitc_rev2_2char, 2, 9
sitc_rev2_4char, 2, 10
stackedareaplot.comparison, 2, 10
treemap, 2, 11
```