EITQ

Circuit and Quantum Complexity

Renaud Vilmart

Quantum Complexity??

- Quantum Turing Machines
 - ightharpoonup 1st versions : Assume any small-sized unitary \implies uncomputable
 - ▶ How do we "read" information from the quantum tape?
 - More natural to use circuits
- How do we define complexity classes with circuits?
- ► Is there a quantum version of **P** or **BPP**?
- Is there a quantum version of NP?
- Can we compare classical and quantum complexity classes?
- ▶ What if we allow "exotic" physics?

Presentation Plan

(Quantum) Complexity via Circuits

Exotic Physics

Classical Complexity of Quantum Problems

Circuit Complexity for "Easy" Problems

Uniform Circuit Families

Poly-time DTM

Definition (Uniform Family of Circuits)

- ▶ A gate of the form $g: n \to m$ with $n, m \in \mathbb{N}$ has name g, has n inputs and m outputs. Let \mathcal{G} be a set of gates.
- $\mathcal{V}_k := \{x_i : 0 \to 1 \mid 0 < i \le k\}$ is a set of k variables
- $ightharpoonup \mathcal{O} := \{o_i : 1 \to 0\}$ a set of "outputs"
- ▶ A circuit is a directed (edge-ordered) acyclic graph G = (V, E) and a labelling function $V \to \mathcal{G} \cup \mathcal{V} \cup \mathcal{O}$, such that if $v \mapsto g : n \to m$, then v has n incoming edges and m outgoing edges
- ▶ $(C_n)_{n \in \mathbb{N}}$ is a poly-time uniform family of circuits if there exists a poly-time Turing machine \mathcal{M} that produces C_n on word $1 \cdot \stackrel{n}{\cdots} 1$.

A Circuit-Based Definition of P and NP

Definition (Reversible Circuit)

A reversible circuit is a boolean circuit composed of the logic gates:

A Circuit-Based Definition of P and NP

Definition (Reversible Circuit)

A reversible circuit is a boolean circuit composed of the logic gates:

 $\exists (C_n)_{n\in\mathbb{N}}$ a poly-sized uniform family of reversible boolean circuits, such that in:

A Circuit-Based Definition of P and NP

Definition (Reversible Circuit)

A reversible circuit is a boolean circuit composed of the logic gates:

$$L \in \mathbf{P}$$
: $L \in \mathbf{NP}$:

 $\exists (C_n)_{n\in\mathbb{N}}$ a poly-sized uniform family of reversible boolean circuits, such that in:

- ▶ If input $\in L$ and prover honest, first output is $|1\rangle$
- ▶ If input $\notin L$, first output is $|0\rangle$

A Circuit-Based Definition of BPP and MA

We denote $\underbrace{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\underline{\underline{}}}$ a (uniform) random bitstring generator.

A Circuit-Based Definition of BPP and MA

We denote 10° a (uniform) random bitstring generator.

 $L \in \mathbf{BPP}$: $L \in \mathbf{MA}$:

 $\exists (C_n)_{n\in\mathbb{N}}$ a poly-sized uniform family of reversible boolean circuits, such that in:

A Circuit-Based Definition of BPP and MA

We denote $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ a (uniform) random bitstring generator.

$$L \in \mathbf{BPP}$$
: $L \in \mathbf{MA}$:

 $\exists (C_n)_{n\in\mathbb{N}}$ a poly-sized uniform family of reversible boolean circuits, such that in:

- ▶ If input ∈ L and prover honest, $\Pr[\text{first output is } |1\rangle] \ge \frac{2}{3}$
- ▶ If input $\notin L$, $\Pr[\text{first output is } |1\rangle] \leq \frac{1}{3}$

Bounded-error Quantum Polynomial (BQP) and Quantum Merlin Arthur QMA

Definition (Quantum Circuit)

A quantum circuit is a reversible circuit augmented with 1-qubit (computable) unitaries and Z-measurements:

$$-U - : |x\rangle \mapsto U |x\rangle \qquad - \nearrow =$$

Bounded-error Quantum Polynomial (BQP) and Quantum Merlin Arthur QMA

Definition (Quantum Circuit)

A quantum circuit is a reversible circuit augmented with 1-qubit (computable) unitaries and Z-measurements:

$$-U-:|x\rangle\mapsto U|x\rangle$$
 $-x=$

 $L \in \mathbf{BQP}$:

 $L \in \mathbf{QMA}$:

 $\exists (C_n)_{n\in\mathbb{N}}$ a poly-sized uniform family of quantum circuits, such that in:

Bounded-error Quantum Polynomial (BQP) and Quantum Merlin Arthur QMA

Definition (Quantum Circuit)

A quantum circuit is a reversible circuit augmented with 1-qubit (computable) unitaries and Z-measurements:

$$-U$$
 $: |x\rangle \mapsto U|x\rangle$ $-x$

$$L \in \mathbf{BQP}$$
:

$$L \in \mathbf{QMA}$$
:

 $\exists (C_n)_{n\in\mathbb{N}}$ a poly-sized uniform family of quantum circuits, such that in:

$$\vdots$$
 C_n \vdots \vdots prover \vdots C_n \vdots

- ▶ If input ∈ L and prover honest, $\Pr[\text{first output is } |1\rangle] \ge \frac{2}{3}$
- ▶ If input $\notin L$, $\Pr[\text{first output is } |1\rangle] \leq \frac{1}{3}$

Some BQP and QMA Problems

BQP:

- ► Prime factorisation
- Evaluation of Jones polynomials at k'th root of unity
- ▶ Sampling from the solution of a linear system Ax = b

Some **BQP** and **QMA** Problems

BQP:

- Prime factorisation
- Evaluation of Jones polynomials at k'th root of unity
- ightharpoonup Sampling from the solution of a linear system Ax = b

QMA:

Quantum circuit SAT:

Given C a quantum circuit, $p \in [0,1]$ a probability, does there exist $|\psi\rangle$ such that:

- Checking if quantum circuit is not identity
- Local Hamiltonian minimal eigenvalue
- Detecting insecure quantum encryption

Presentation Plan

(Quantum) Complexity via Circuits

Exotic Physics

Classical Complexity of Quantum Problems

Circuit Complexity for "Easy" Problems

Definition (Postselection)

Postselection (or postselected measurement) is a measurement of which we <u>choose</u> the outcome (provided it does not have probability 0): $--\langle 0|$.

Definition (Postselection)

Postselection (or postselected measurement) is a measurement of which we <u>choose</u> the outcome (provided it does not have probability 0): $--\langle 0|$.

PostBQP: BQP with postselection

Definition (Postselection)

Postselection (or postselected measurement) is a measurement of which we <u>choose</u> the outcome (provided it does not have probability 0): $--\langle 0|$.

PostBQP: BQP with postselection

Theorem (Aaronson)

PostBQP = PP

Definition (Postselection)

Postselection (or postselected measurement) is a measurement of which we <u>choose</u> the outcome (provided it does not have probability 0): $--\langle 0|$.

PostBQP: BQP with postselection

Theorem (Aaronson)

PostBQP = PP

The order of application of postselected measurement w.r.t. usual measurement is important.

E.g., with
$$|EPR\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$
:

 $\operatorname{Meas}_1 \circ \langle 0|_2 | EPR \rangle = |0\rangle$ but $\langle 0|_2 \circ \operatorname{Meas}_1 | EPR \rangle$ is not always defined.

 $F(p_1,...,p_n)$ SAT formula. Check if F(True,...,True)=True. If yes, F is satisfiable. Otherwise, define $\tilde{F}:=F\vee (p_1\wedge...\wedge p_n)$. Notice that \tilde{F} is satisfiable and has exactly one more solution than F.

 $F(p_1,...,p_n)$ SAT formula. Check if $F(\mathit{True},...,\mathit{True}) = \mathit{True}$. If yes, F is satisfiable. Otherwise, define $\tilde{F} := F \vee (p_1 \wedge ... \wedge p_n)$. Notice that \tilde{F} is satisfiable and has exactly one more solution than F. Compute:

 $F(p_1,...,p_n)$ SAT formula. Check if F(True,...,True)=True. If yes, F is satisfiable. Otherwise, define $\tilde{F}:=F\vee (p_1\wedge...\wedge p_n)$. Notice that \tilde{F} is satisfiable and has exactly one more solution than F. Compute:

Check if $(a_0, ..., a_n) = (True, ..., True)$. Do the computation twice.

- ▶ If $(a_0, ..., a_n) = (True, ..., True)$ both times, reject
- ▶ If $(a_0, ..., a_n) \neq (True, ..., True)$, accept (and $(a_0, ..., a_n)$ is a solution)

 $F(p_1,...,p_n)$ SAT formula. Check if $F(\mathit{True},...,\mathit{True}) = \mathit{True}$. If yes, F is satisfiable. Otherwise, define $\tilde{F} := F \vee (p_1 \wedge ... \wedge p_n)$. Notice that \tilde{F} is satisfiable and has exactly one more solution than F. Compute:

Check if $(a_0, ..., a_n) = (True, ..., True)$. Do the computation twice.

- ▶ If $(a_0, ..., a_n) = (True, ..., True)$ both times, reject
- ▶ If $(a_0, ..., a_n) \neq (True, ..., True)$, accept (and $(a_0, ..., a_n)$ is a solution)

If F unsat., $(a_0, ..., a_n)$ will be (True, ..., True) everytime, so we reject with proba 1.

 $F(p_1,...,p_n)$ SAT formula. Check if F(True,...,True)=True. If yes, F is satisfiable. Otherwise, define $\tilde{F}:=F\vee (p_1\wedge...\wedge p_n)$. Notice that \tilde{F} is satisfiable and has exactly one more solution than F. Compute:

Check if $(a_0, ..., a_n) = (True, ..., True)$. Do the computation twice.

- ▶ If $(a_0, ..., a_n) = (True, ..., True)$ both times, reject
- ▶ If $(a_0, ..., a_n) \neq (True, ..., True)$, accept (and $(a_0, ..., a_n)$ is a solution)

If F unsat., $(a_0,...,a_n)$ will be (True,...,True) everytime, so we reject with proba 1. If F is sat., $(a_0,...,a_n)$ has $\leq \frac{1}{4}$ proba of being (True,...,True) both times, so the probability we accept is $\geq \frac{3}{4} > \frac{2}{3}$.

Exotic Physics: Non-linearity

Theorem (Gisin)

Introducing non-linear corrections into quantum mechanics allows for supraliminal communications.

Theorem (Abrams, Lloyd)

Nonlinear quantum mechanics implies polynomial-time solution for **NP-complete** and **#P-complete** problems.

Proof sketch:

- create state $\frac{(2^n-s)|0\rangle+s|1\rangle}{N}$
- use non-linearity to separate cases s = 0 and $s \neq 0$ exponentially fast

Presentation Plan

(Quantum) Complexity via Circuits

Exotic Physics

Classical Complexity of Quantum Problems

Circuit Complexity for "Easy" Problems

Oracles, Classical Simulation

Definition ($P^{\#P}$)

Class of problems solvable by a poly-time deterministic Turing machine with access to a #P oracle (i.e. where we are allowed to solve a #P problem in time $\mathcal{O}(1)$).

Postselected measurements can be represented in the perfect-matching-counting framework, hence:

$$\mathsf{BQP} \subseteq \mathsf{PostBQP} = \mathsf{PP} \subseteq \mathsf{P}^{\#\mathsf{P}}$$

- ightharpoonup Planar matchgate quantum circuits (with postselections) ightarrow P
- ightharpoonup Clifford circuits (with postselections) ightharpoonup P

Unitarity Checking

- ► Setup:
 - Quantum circuit C with postselections
- Question:

Does C implement a unitary operator?

Theorem

Unitarity checking is **coNP-hard**.

Postselection Removal

- Setup:
 - Quantum circuit C with postselections
 - Promise that C implements a unitary operator U
- Output:

A circuit C' without postselection that implements U

Theorem (de Beaudrap, Kissinger, van de Wetering)

Postselection removal is #P-hard.

Hermiticity Checking

- ► Setup:
 - Quantum circuit C with postselections
- Question:

Does C implement a Hermitian operator?

Theorem

Hermiticity checking is **coNP-hard**.

Presentation Plan

(Quantum) Complexity via Circuits

Exotic Physics

Classical Complexity of Quantum Problems

Circuit Complexity for "Easy" Problems

Bounded Fanin Circuits

Definition (NC)

A problem is in \mathbf{NC}^{i} if there exists a family of boolean circuits:

- ▶ composed of gates with fanin ≤ 2
- of polynomial size
- of depth $\mathcal{O}(\log^i(n))$

that solve it.

$$NC := \bigcup_{i} NC^{i}$$
.

For these classes and the following, adding \mathbf{u} as a suffix means we ask that the family of circuits be <u>uniform</u> (e.g. \mathbf{uNC}^i).

E.g.: Computing the parity of 1s in a bitstring is in NC^1 .

Unbounded Fanin Circuits

Definition (AC)

A problem is in AC^i if there exists a family of boolean circuits:

- where AND and OR gates have unbounded fanin
- ▶ of polynomial size
- ▶ of depth $\mathcal{O}(\log^i(n))$

that solve it.

$$AC := \bigcup_{i} AC^{i}$$
.

E.g.: Deciding if all symbols in a bitstring are 1 is in AC^0 . Remark: rather sensitive to the chosen gate set.

$$NC^i \subseteq AC^i \subseteq NC^{i+1}$$

Quantum Circuits with Unbounded Fanin

Definition (QAC)

A family of unitaries $(U_n)_{n\in\mathbb{N}}$ acting on n qubits is in \mathbf{QAC}^i if there exists a family of quantum circuits:

- composed of 1-qubit gates and unbounded fanin Toffoli gates
- of depth $\mathcal{O}(\log^i(n))$

that implements it.

$$\mathbf{QAC} := \bigcup_{i} \mathbf{QAC}^{i}.$$

Well studied, but not well understood.

Open problem: is $|x_1,...,x_n,b\rangle \mapsto |x_1,...,x_n,b\oplus x_1\oplus...\oplus x_n\rangle$ in **QAC**⁰?

Overview of Complexity Classes

