NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA END SEMESTER EXAMINATION, 2018 BTech 3rd Semester

SUBJECT: Digital System Design

FULL MARKS: 50

DEPT. CODE: CS 2001

Duration of Examination: 3Hours

Number of pages: 1

Answer **Any FIVE.** Figures at the right hand margin indicate marks All parts of a question should be answered at one place

Q.No.	Question	Marks		
1	 (a) Design a mod 10 asynchronous counter using T flip flops. (b) Convert a SR flip flop to D flip flop. (c) Find the 15's and 16's complement of following hexadecimal numbers. (i) 76 (ii) 7B.A 			
2	 (a) Differentiate between Ring counter and Johnson counter. Write the sequence of stages for a 5 bit Johnson counter. (b) Analyze the sequential circuit with two T type flip flops, which is specified by the following state equations. Z = A A (t+1) = x' y + xB B (t+1) = xB + Ax' (c) Implement a half subtractor using multiplexer. Use block diagram of multiplexer. 	[4+4+2]		
3	 (a) Design a serial binary adder logic circuit. (b) Draw the logic diagram of a 1:16 DEMUX using 1:4 DEMUXes. Use block diagrams. (c) In a number system, if 41/3 = 13, find its base. 	[5+3+2]		
4.	 (a) Design a sequence detector with D flip flops to detect the sequence 101011. (b) Design a 2 bit comparator with suitable decoder. (c) Find the Gray codes for (15)₁₀ and (14)₁₀ 	[5+3+2]		
5	 (a) Design a synchronous counter with JK flip flops that goes through states 3, 4, 6, 7, 3 and so on. Check whether the counter is self-starting? Modify the circuit such that whenever the counter goes to an invalid state, it comes back to state 3. (b) Design a full subtractor using two half subtractors and an OR gate. (c) What is the range of signed decimal values that can be represented in a byte? Justify your answer. 			
6.	 (a) Design a sequence generator using shift register to generates the sequence 1101011. Use D flip flops. (b) Design a combinational logic circuit with four input variables that will produce logic 1 output when the number of 1's in the inputs is even. (c) Perform the following subtractions using excess-3 code (i) 276 - 175 (ii) 57.6 - 27.8 	[5+3+2]		