FINAL EXAM REVIEW - MATH 4341

1. Proofs of Theorems

- (1) A closed subspace of a compact space is compact.
- (2) A compact subspace of a Hausdorff space is closed.
- (3) Suppose $f: X \to Y$ be a continuous map and X is compact. Then the image $f(X) \subset Y$ is compact. If furthermore Y is Hausdorff and f is a bijection, then f is a homeomorphism.
- (4) (The tube lemma) Let X and Y be topological spaces where Y is compact. If N is an open set of $X \times Y$ which contains $\{x_0\} \times Y$ for some $x_0 \in X$, then N contains a tube $W \times Y$, where $W \subset X$ is a neighborhood of x_0 .
- (5) Let X_1, \ldots, X_n be topological spaces. Then $\prod_{i=1}^n X_i$ is compact if and only if X_i is compact for all i.
- (6) A topological space X is compact if and only if any collection \mathcal{C} of closed subsets of X with the finite intersection property satisfies $\bigcap_{C \in \mathcal{C}} C \neq \emptyset$.
- (7) If X is first countable, then compactness of X implies sequential compactness.
- (8) A set $A \subset \mathbb{R}^n$ is compact if and only if it is closed and bounded.
- (9) If X is compact and $f: X \to \mathbb{R}$ is continuous, there are x_1 and x_2 with $f(x_1) = \sup f(X)$, $f(x_2) = \inf f(X)$.
- (10) The *n*-sphere S^n is compact.
- (11) \sim_p (path homotopy) is an equivalence relation.
- (12) Let γ be a path from p to q in some space X, and let γ' be a path from q to r. Then the operation $[\gamma] \star [\gamma'] = [\gamma \star \gamma']$ is well-defined.
- (13) The operation \star has the following properties for all paths γ , γ' , and γ'' in a topological space X:
 - (i) $[\gamma] \star ([\gamma'] \star [\gamma'']) = ([\gamma] \star [\gamma']) \star [\gamma'']$ when both are defined,
 - (ii) $[\gamma] \star [e_q] = [e_p] \star [\gamma] = [\gamma]$, if γ is a path from p to q,
 - (iii) $[\gamma] \star [\overline{\gamma}] = [e_p]$, $[\overline{\gamma}] \star [\gamma] = [e_q]$, if γ is a path from p to q.
- (14) Let $f: X \to Y$ and $g: Y \to Z$ be continuous maps, and let $x \in X$. Then
 - (i) $f_*: \pi_1(X, x) \to \pi_1(Y, f(x))$ is a well-defined homomorphism,
 - (ii) $(g \circ f)_* = g_* \circ f_*$, and if id : $X \to X$ denotes the identity, then id_{*} : $\pi_1(X,x) \to \pi_1(X,x)$ is the identity on $\pi_1(X,x)$.
 - (iii) Finally, if f is a homeomorphism, then f_* is an isomorphism.
- (15) We have $\pi_1(S^1) = \mathbb{Z}$, but S^n is simply-connected for $n \geq 2$.
- (16) (Brouwer fixed point theorem) Every continuous map $h: D^2 \to D^2$ has a fixed point, that is, a point $x \in D^2$ with h(x) = x.
- (17) \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for $n \neq 2$.

2. Problems

- (1) Examples in lecture notes (chapters 6 and 7).
- (2) Homework 9, 10, 11.