

Cours d'algorithmique

I.	DÉFINITIONS	4
a.	Définition d'un algorithme :	
b.	Définition d'un algorigramme :	
Quelqu 1. 2. 3. 4. 5. 6.	ues symboles utilisés dans la construction d'un algorigramme : Symbole général Renvoi Sous-programme Entrée-Sortie Commentaire Branchement	4
II.	L' ALGORITHME :	5
	Le langage de description d'algorithme	
III.	STRUCTURE D'UN ALGORITHME	5
 a. 1. 2. 3. 4. 	Représentation: L'en-tête Les déclarations Le corps Les commentaires:	5
IV.	DÉCLARATION DE CONSTANTES, DE VARIABLES ET DE STRUCTURES	6: 6
a.	Les constantes :	
b.	Les variables :	
c.	Les structures :	
٧.	DÉCLARATION DE PROCÉDURES ET DE FONCTIONS :	7
a.	La procédure :	
b. 1.	La fonction: Les paramètres:	
VI. 1. 2. 3. 4. 5.	L'entier Le réel Le booléen Le caractère La chaîne de caractères	8
VII.	LES OPÉRATEURS	9
9	Onérateurs sur les entiers et les réels	

b.	Opérateurs sur les entiers et les booléens	
c.	Opérateurs sur les caractères et les chaînes	
d.	Priorité des opérateurs	
e.	L'affectation	
VIII.	LES STRUCTURES ALGORITHMIQUES FONDAMENTALES :	10
a.	Caractéristique de la structure linéaire	10
b.	Caractéristique de la structure alternative	10
c.	Caractéristique de la structure de choix	11
d.	Caractéristique de la structure itérative	12

I. Définitions

a. Définition d'un algorithme :

C'est un ensemble de règles opératoires rigoureuses, ordonnant à un processeur d'exécuter dans un ordre déterminé un nombre fini d'opérations élémentaires ; il oblige à une programmation structurée.

Un algorithme est écrit en utilisant un langage de description d'algorithme (LDA). L'algorithme ne doit pas être confondu avec le programme proprement dit.

b. Définition d'un algorigramme :

C'est une représentation graphique de l'algorithme. Pour le construire, on utilise des symboles normalisés.

Quelques symboles utilisés dans la construction d'un algorigramme :

SYMBOLE	DESIGNATION	SYMBOLE	DESIGNATION
Symboles de traitement		Symboles auxiliaires	
	Symbole général Opération ou groupe d'opérations sur des données, instructions, pour laquelle il n'existe aucun symbole normalisé.		Renvoi Symbole utilisé deux fois pour assurer la continuité lorsqu'une partie de ligne de liaison n'est pas représentée.
	Sous-programme Portion de programme considérée comme une simple opération.		Début, fin , interruption Début, fin ou interruption d'un algorigramme.
	Entrée-Sortie Mise à disposition d'une information à traiter ou enregistrement d'une information traitée.	[Commentaire Symbole utilisé pour donner des indications sur les opérations effectuées.
Symbole de test			
Branchement Exploitation de conditions variables impliquant un choix parmi plusieurs. Les différents symboles sont reliés entre lignes de liaisons.		sont reliés entre eux par des	

Sens conventionnel des liaisons

Le sens général des lignes de liaison doit être :

- De haut en bas
- De gauche à droite

Lorsque le sens général ne peut pas être respecté, des pointes de flèche à cheval sur la ligne indiquent le sens utilisé.

II. L'algorithme:

a. Le langage de description d'algorithme

Ce langage utilise un ensemble de *mots clés* et de *structures* permettant de décrire de manière complète, claire, l'ensemble des opérations à exécuter sur des données pour obtenir des résultats ; on n'hésitera donc pas à agrémenter l'algorithme de nombreux commentaires.

L'avantage d'un tel langage est de pouvoir être facilement transcrit dans un langage de programmation structuré (Pascal, C...)

III. Structure d'un algorithme

a. Représentation :

1. L'en-tête

Il permet tout simplement d'identifier un algorithme.

2. Les déclarations

C'est une liste exhaustive des objets, grandeurs utilisés et manipulés dans le corps de l'algorithme; cette liste est placée en début d'algorithme.

3. Le corps

Dans cette partie de l'algorithme, sont placées les tâches (instructions, opérations...) à exécuter.

4. Les commentaires :

Pour permettre une interprétation aisée de l'algorithme, l'utilisation de commentaires est vivement conseillée.

Mot clé : co ... fco

Voir exemple 2

IV. Déclaration de constantes, de variables et de structures :

a. Les constantes :

Elles représentent des chiffres, des nombres, des caractères, des chaînes de caractères, ... dont *la valeur ne peut pas être modifiée* au cours de l'exécution de l'algorithme.

Mot clé : const

b. Les variables :

Elles peuvent stocker des chiffres des nombres, des caractères, des chaînes de caractères,... dont *la valeur peut être modifiée* au cours de l'exécution de l'algorithme.

Mot clé : var

Les constantes et les variables sont définies dans la partie déclarative par deux caractéristiques essentielles, à savoir :

- L'identificateur : c'est le nom de la variable ou de la constante. Il est composé de lettres et de chiffres
- Le type : il détermine la nature de la variable ou de la constante (entier, réel, booléen, chaîne de caractères...)

Pour pouvoir envisager des exemples d'utilisation, il faut introduire dès à présent l'instruction d'affectation ; elle s'écrit de la façon suivante :

identificateur de variable ← valeur ;

←: symbole d'affectation (ou assignation)

L'affectation se fait toujours en deux temps :

évaluation de l'expression située à droite du symbole
 affectation du résultat à l'identificateur de variable
 ainsi dans l'instruction d'affectation suivante y

 2°) on affecte

c. Les structures :

Elles permettent de rassembler plusieurs variables ou constantes sous un même identificateur ; on parle aussi d'entités ou d'objets.

Mot clé: struct

V. Déclaration de procédures et de fonctions :

a. La procédure :

C'est un ensemble d'instructions référencé par un nom, et dont l' «exécution» est provoquée par le simple énoncé de ce nom.

Mot clé: proc

b. La fonction:

Comme pour la procédure, l' «exécution» d'une fonction est provoquée par la simple évocation de son nom, à la différence qu'elle se voit assigner une valeur dont le type doit être défini.

Mot clé : fonc

~

Procédures et fonctions sont des groupes de tâches à effectuer. L' intérêt de grouper ces tâches est de permettre :

- une lecture plus facile de l'algorithme principal(appelé également ordonnancement).
- de développer de manière indépendante des parties d'algorithmes dont l'emploi multiple au sein de l'algorithme principal est ainsi rendu plus aisé.

→ Voir exemple 2

1. Les paramètres :

Pour fournir à une procédure les informations qui doivent être traitées, et pour que la procédure puisse fournir en contrepartie des résultats, on utilise des paramètres. On distinguera trois types de paramètres:

• les *paramètres entrants* peuvent être consultés (et éventuellement modifiés) à l'intérieur de la procédure

- les *paramètres sortants* dont la valeur est déterminée à l'intérieur de la procédure et utilisable après l'appel à la procédure
- les *paramètres mixtes* ont une valeur à l'entrée dans la procédure, valeur qui peut être modifiée à l'intérieur de celle-ci, la modification étant répercutée à l'extérieur de la procédure

VI.Les types de base

Nous avons vu qu'une des deux caractéristiques des constantes et des variables était leur type.

Nous considérerons cinq types de base :

1. L'entier

notation

45, 36, -564, 0 ... en décimal 45h, 0FBh, 64h ... en hexadécimal % 10101111, %1011 ... en binaire

Mot clé : entier

2. Le réel

-3.67, 4.2569, -564.0,18.36 10 e⁻⁶...

Mot clé: réel

3. Le booléen

Il ne peut prendre que deux états : VRAI ou FAUX

Mot clé: booléen

4. Le caractère

`a', `A','*','7','z','!'....

Mot clé: car

5. La chaîne de caractères

'électronique', 'cd ROM de 80mn'...

Mot clé : chaîne

VII. Les opérateurs

a. Opérateurs sur les entiers et les réels

Arithmétiques	
+	Addition
-	Soustraction
*	Multiplication
/	Division
DIV	Division entière
\uparrow	Puissance

comparaisons		
>	Supérieur	
<	Inférieur	
≥	Supérieur ou égal	
≤	Inférieur ou égal	
=	Egal	
≠	Egal Différent	

b. Opérateurs sur les entiers et les booléens

Fonctions logiques	
Mot clé	
<u>et</u>	Fonction ET
<u>ou</u>	Fonction OU
<u>oux</u>	Fonction OU exclusif
<u>non</u>	Fonction NON
non et	Fonction NON ET
non ou	Fonction NON OU
>>	Décalage à droite
<<	Décalage à gauche

Fonctions de comparaison pour les booléens	
=	Egal
≠	Différent

c. Opérateurs sur les caractères et les chaînes

Fonctions de concaténation	Voir exemple 3
+ Concaténation	Voli exemple 3

Fonctions de comparaison pour les chaînes	
=	Egalité
≠	Différent
>	Supérieur Inférieur
<	Inférieur

d. Priorité des opérateurs

Priorité à la multiplication et à la division.

e. L'affectation

Elle permet d'affecter une valeur à une variable.

Syntaxe : *identificateur de la variable* \leftarrow expression ;

L'expression est une suite d'opérations sur des constantes ou des variables déjà déclarées.

VIII. Les structures algorithmiques fondamentales :

Les opérations élémentaires relatives à la résolution d'un problème peuvent, en fonction de leur enchaînement être organisées suivant quatre familles de structures algorithmiques fondamentales.

- structures linéaires
- structures alternatives
- structures de choix
- structures itératives (ou répétitives)

a. Caractéristique de la structure linéaire

La structure linéaire se caractérise par une suite d'actions à exécuter successivement dans l'ordre énoncé.

Notation : faire action ;

Voir exemple 4

b. Caractéristique de la structure alternative

La structure alternative n'offre que deux issues possibles à la poursuite de l'algorithme et s'excluant mutuellement.

On peut rencontrer deux types de structures alternatives :

1. une structure alternative complète

Dans cette structure l'exécution d'un des deux traitements distincts ne dépend que du résultat d'un test effectué sur la condition qui peut être une variable ou un événement ;

Page - 10 -

c. Caractéristique de la structure de choix

La structure de choix permet, en fonction de plusieurs conditions de type booléen, d'effectuer des actions différentes suivant les valeurs que peut prendre une même variable.

d. Caractéristique de la structure itérative

La structure itérative répète l'exécution d'une opération ou d'un traitement.

On considérera 2 cas:

premier cas : Le nombre de répétitions n'est pas connu ou est variable.

On distingue 2 structures de base :

structure RÉPÉTER JUSQU'À

Dans cette structure, le traitement est exécuté une première fois puis sa répétition se poursuit jusqu'à ce que la condition soit vérifiée.

Par traitement on entend:

- soit une structure isolée,
- soit une succession d'instructions.

L'action est toujours exécutée au moins une fois.

Notation : <u>répéter</u> action;

jusqu'à condition vraie;

Voir exemple 8

Voir exemple 9

structure TANT QUE ... FAIRE...

Dans cette structure, on commence par tester la condition ; si elle est vérifiée, le traitement est exécuté.

Par traitement on entend:

- soit une structure isolée,
- soit une succession d'instructions.

CONDITION
ACTION

L'action peut ne jamais être exécutée .

Notation: tant que condition faire action; ftant que ;

deuxième cas : le nombre de répétitions est connu.

structure POUR...DE..À.. FAIRE...

Dans cette structure, la sortie de la boucle d'itération s'effectue lorsque le nombre souhaité de répétition est atteint.

On utilise donc une variable (ou indice) de contrôle d'itération caractérisée par :

- sa valeur initiale,
- sa valeur finale,
- son pas de variation.

Si la valeur finale de l'indice est inférieure à sa valeur initiale le pas de variation est négatif, la structure est dite « pour décroissante » (Figure 1); dans le cas contraire, le pas est positif et la structure est dite « pour croissante » (Figure 2).

Figure 1 Figure 2

V: variable

Vi : valeur initiale de V Vf : valeur finale de V


```
Exemple 1:
algorithme exemple1;
<u>const</u>
        abscisse c'est 10;
        ordonnée c'est 30;
        vrai <u>c'est</u> 1;
        faux c'est 0;
<u>var</u>
        entier x, y;
<u>struct</u>
        disque c'est
                 entier abs,ord ; co centre du disque fco
                 entier rayon;
                 entier couleur;
                 booléen visible;
fstruct
début
fin algorithme exemple1.
Exemple 2:
algorithme exemple2;
const
var
        <u>chaîne</u> chaîne_lue ;
<u>struct</u>
<u>fstruct</u>
proc
        afficher une chaîne de caractères(chaîne machaîne);
                                                                          paramètre entrant
fonc
        lire n caractères d'une chaîne(chaîne machaîne <u>,entier</u> depuis la position <u>, entier</u> n) :chaîne ;
<u>début</u>
                                                                                          paramètre sortant
        chaîne_lue ← lire n caractères d'une chaîne(BEPEL ,0, 3) ;
        afficher une chaîne de caractère(chaîne_lue);
fin algorithme exemple2.
Exemple 3:
`A'+'ller'
                         donne comme résultat après concaténation : 'Aller'
'alpha'+'numérique'
                         donne comme résultat après concaténation : 'alphanumérique'
```

Mise en marche d'un équipement

Avant de procéder à la mise en service d'un équipement, il est nécessaire d'effectuer un certains nombre d'opérations indispensables à son bon fonctionnement :

- a) montée en température : mise en route de l'accélérateur de chauffage AC ;
- b) distribution d'air comprimé : ouverture de l'électrovanne d'admission EV.
- c) mise en route du dispositif de lubrification : *pompe d'arrosage P sous tension.*

Compléter l'algorithme suivant :

```
algorithme Mise en service d'un équipement ;
```

```
const Marche <u>c'est</u> 1;
Arrêt <u>c'est</u> 0;
```

var

AC <u>co</u> Accélérateur de chauffage <u>fco</u> ;

EV co Electrovanne d'admission d'air fco

P co Pompe de lubrification fco

EQ <u>co</u> Equipement <u>fco</u>

début

fin algorithme Mise en service d'un équipement .

Tri de sacs

A la sortie de l'atelier de conditionnement d'une usine de fabrication d'engrais, un

même convoyeur à bande transporte indifféremment des sacs de 25 kg et des sacs de 50 kg.

Un dispositif de tri automatique dirige ces sacs vers deux zones distinctes de stockage D1 et D2.

Construire l'algorithme correspondant :

algorithme tri automatique;

const

<u>var</u>

<u>début</u>

fin algorithme tri automatique.

Ouverture de la porte d'un garage

Le capteur de présence de la voiture du propriétaire du garage déclenche l'ouverture automatique de la porte et uniquement dans ce cas.

Construire l'algorithme correspondant : <u>algorithme</u> ouverture automatique; const

<u>début</u>

<u>var</u>

fin algorithme ouverture automatique.

Exemple 8

Utilisation d'un four à micro ondes

Un four à micro ondes doit fonctionner pendant un temps $t_{\rm f}$ égal au temps $t_{\rm p}$, programmé par l'utilisateur.

Compléter l'algorithme suivant :

```
algorithme durée de fonctionnement du four ;
```

```
\begin{array}{ll} \underline{var} \\ t_f & \underline{co} \text{ temps de chauffe } \underline{fco} \text{ ;} \\ t_p & \underline{co} \text{ temps programmé } \underline{fco} \\ \underline{fonc} \\ mesurer le temps de chauffe() : tf ; \\ \underline{d\acute{e}but} \end{array}
```

fin algorithme durée de fonctionnement du four.

Exemple 9

Embouteillage

Dans une usine de fabrication de jus de fruits, les bouteilles sont conditionnées par six, après contrôle, sous un film plastique rétractable:

```
Compléter l'algorithme suivant :

algorithme Mise sous film plastique ;

var
V co Nombre de bouteilles à conditionner fco

proc
contrôler() ;
début
```

fin algorithme Mise sous film plastique .