Entrega: Curso De Datos Extremales

Laura Montaldo, CI: 3.512.962-7

2024-02-09

Índice

Resumen		
Motivación y objetivo del estudio	4	
Marco Teórico	6	
Teoría asintótica clásica y las distribuciones extremales y sus dominios de atracción	6	
Definición 1: Las distribuciones extremales	7	
Definición 2: Distribución extremal asintótica	12	
Definición 3: Supremo esencial de una variable aleatoria o distribución	12	
Definición 4: Distribución max-estables	14	
Referencias bibliográficas	16	

Resumen

Your abstract goes here.

Motivación y objetivo del estudio

Los índices de S&P son una familia de índices de renta variable diseñados para medir el rendimiento del mercado de acciones en Estados Unidos que cotizan en bolsas estadounidenses. Ésta familia de índices está compuesta por una amplia variedad de índices basados en tamaño, sector y estilo. Los índices están ponderados por el criterio float-adjusted market capitalization (FMC). Además, se disponen de índices ponderados de manera equitativa y con límite de capitalización de mercado, como es el caso del S&P 500. Este este sentido, el S&P500 entraría en el conjunto de índices ponderados por capitalización bursátil ajustada a la flotación (ver S&P Dow Jones Indices). El mismo mide el rendimiento del segmento de gran capitalización del mercado estadounidense. Es considerado como un indicador representativo del mercado de renta variable de los Estados Unidos, y está compuesto por 500 empresas constituyentes.

Se busca crear un indicador de una posible crisis bursátil. Como variable de referencia de toma la relación de precios al cierre de ayer sobre la de hoy

$$Indicador_{t} = \frac{Precio_{t-1}}{Precio_{t}}, \quad \text{para } t = 1, ..., T$$
 (1)

Interpretación del Indicador:

- Si el $Indicador_t \leq 1$, el precio de cierre de hoy es mayor o igual que el de ayer, lo cual podría ser considerado una señal positiva.
- Si el $Indicador_t > 1$, el precio de cierre de hoy es menor que el de ayer, lo cual podría considerarse una señal de alerta.

En las siguiente figura @ref(fig:plot1) se muestra la evolución histórica desde la fecha 03/01/1928 hasta 08/12/2023 del precio al cierre del día del indicar S&P 500.

¹En inglés se llaman equity indices

Marco Teórico

Teoría asintótica clásica y las distribuciones extremales y sus dominios de atracción

Siguiendo a Perera et al. (2021) se dice que tenemos datos extremos cuando cada dato corresponde al máximo o mínimo de varios registros. Son un caso particular de evento raro o gran desviación respecto a la media.

Asumiremos que nuestros datos son iid (independientes e idénticamente distribuidos, son dos suposiciones juntas). Esta doble suposición suele no ser realista en aplicaciones concretas (ninguna de sus dos componentes, incluso) pero para comenzar a entender la teoría clásica, la utilizaremos por un tiempo.

Si tenemos datos $X_1, ..., X_n$ iid con distribución F, entonces $X_n^* = \max(X_1, ..., X_n)$ tiene distribución F_n^* dada por $F_n^*(t) = F(t)_n$. Si conocemos la distribución F conoceríamos la distribución F_n^* , pero en algunos casos la lectura que queda registrada es la del dato máximo y no la de cada observación que dio lugar al mismo, por lo que a veces ni siquiera es viable estimar F. Pero aún en los casos en que F es conocida o estimable, si n es grande, la fórmula de F_n^* puede resultar prácticamente inmanejable. En una línea de trabajo similar a la que aporta el Teorema Central del Límite en la estadística de valores medios, un teorema nos va a permitir aproximar F_n^* por distribuciones más sencillas. Este es el Teorema de Fischer-Tippet-Gnedenko (FTG, para abreviar) que presentaremos en breve.

Como $X_1,...,X_n$ iid, definimos $Y_i=-X_i$ para todo valor de i, entonces $Y_1,...,Y_n$ iid y además $\min(X_1,...,X_n)=-\max(Y_1,...,Y_n)$ la teoría asintótica de los mínimos de datos iid se reduce a la de los máximos, razón por la que nos concentramos aquí en estudiar el comportamiento asintótico de los máximos exclusivamente.

Definición 1: Las distribuciones extremales

Las distribuciones extremales son tres: la distribución de Gumbel; la distribución de Weibull; la distribución de Fréchet.

Distribución de Gumbel Se dice que una variable tiene distribución de Gumbel si su distribución es:

$$\Lambda(x) = exp\{-e^{-x}\}$$
 para todo x real

Distribución de Weibull Se dice que una variable tiene distribución de Weibull de orden $\alpha > 0$ si su distribución es:

$$\Psi_{\alpha}(x) = \begin{cases} exp - (-x)^{\alpha} & si \ x < 0 \\ 1 & \text{en otro caso} \end{cases}$$

Distribución de Fréchet Se dice que una variable tiene distribución de Fréchet de orden $\alpha > 0$ si su distribución es:

$$\Phi_{\alpha}(x) = \begin{cases} exp\{-x^{-\alpha}\} & si \; x > 0 \\ 0 & \text{en otro caso} \end{cases}$$

Teorema 1: Relaciones entre las versiones standard de las distribuciones extremales X tiene distribución $\Phi_{\alpha}(x)$ si y sólo si (-1/X) tiene distribución $\Psi_{\alpha}(x)$ si y sólo si $log(X^{\alpha})$ tiene distribución Λ .

Teorema 2: Algunos datos de las distribuciones extremales

Parte 1 Si X tiene distribución $\Lambda^{(\mu,\beta)}$ entonces tiene:

- a) Valor esperado: $E(X) = \mu + \beta \gamma$, donde γ es la constante de Euler-Mascheroni, cuyo valor aproximado es 0.5772156649.
- b) Moda: μ
- c) Mediana: $\mu \beta \log(\log 2) \approx \mu 0.36651\beta$.
- d) Desviación estándar: $\beta \pi \sqrt{6} \approx 1.2825 \beta$.
- e) Si $X^+ = \max(X,0)$, entonces E(X+k) es finito para todo valor de k natural.
- f) Para simular computacionalmente X, se puede tomar U uniforme en (0,1) y hacer $X = \mu \beta \log(-\log U)$.

Parte 2 Si X tiene distribución $\Psi_{\alpha}^{(\mu,\beta)}$ entonces tiene:

- a) Valor esperado: $E(X) = \mu + \beta \Gamma(1 + 1/\alpha)$.
- b) Moda: μ si $\alpha \le 1$ y $\mu \beta \{(\alpha 1)/\alpha\}^{(1/\alpha)}$ si $\alpha > 1$.
- c) Mediana: $\mu \beta \log(2)^{(1/\alpha)}$.
- d) Desviación estándar: $\beta \{\Gamma(1+2/\alpha) \Gamma(1+1/\alpha)^2\}^{1/2}$.

Parte 2 Si X tiene una distribución $\Phi_{\alpha}^{(\mu,\beta)}$ entonces se tiene:

- a) Valor esperado: $E(X) = \mu + \beta \Gamma(1-1/\alpha)$ si $\alpha > 1$, ∞ en caso contrario.
- b) Moda: $\mu + \beta \Gamma(1 1/\alpha)$ si $\alpha > 1$.
- c) Mediana: $\mu + \beta \log(2)^{(-1/\alpha)}$.
- d) Desviación estándar: $\beta |\Gamma(1-2/\alpha)-\Gamma(1-1/\alpha)^2|$ si $\alpha>2,~\infty$ si $1<\alpha\leq 2.$

Teorema 3: Fischer-Tippet-Gnedenko (FTG) Si $X_1,...,X_n$ iid con distribución F "continua", llamamos F_n^* a la distribución de $max(X_1,...,X_n)$ y n es grande, entonces existen μ real y $\beta>0$ tales que alguna de las siguientes tres afirmaciones es correcta:

- 1) F_n^* se puede apromixar por la distribución de $\mu + \beta Y$ con Y variable con distribución Λ .
- 2) Existe $\alpha > 0$ tal que F_n^* se puede aproximar por la distribución de $\mu + \beta Y$ con Y variable con distribución Φ_{α} .
- 3) Existe $\alpha > 0$ tal que F_n^* se puede aproximar por la distribución de $\mu + \beta Y$ con Y variable con distribución Φ_{α} .

Lo anterior equivale a decir que la distribución del máximo de datos continuos e iid, si n es grande, puede aproximarse por una Gumbel, una Fréchet o una Weibull. Una aproximación será válida dependiendo de la distribución de F. En este sentido, cuando F sea normal entonces F_n^* se puede aproximar como una Gumbel. Cuando F sea uniforme, se puede aproximar F_n^* como una Weibull y cuando F sea Cauchy entonces F_n^* se puede aproximar por una Fréchet.

Más precisamente, cuál de las tres aproximaciones es la aplicable depende de la cola de F (los valores de F(t) para valores grandes de t). En concreto, Weibull aparece cuando F es la distribución de una variable acotada por arriba (como la Uniforme), Gumbel para distribuciones de variables no acotadas por arriba pero con colas muy livianas (caso Exponencial y Normal) y Fréchet para colas pesadas (caso Cauchy)².

Como consecuencia del FTG cuando se tengan datos máximos, las distribuciones maximales podrían ser candidatas de uno de los ajustes si

- la cantidad de registros es lo suficientemente grande
- los registros son iid aunque con versiones más generales del FTG este supuesto puede no cumplirse

 $^{^2}$ Si bien la hipótesis de continuidad de F no es esencial, si F tiene la distribución Binomial o Poisson, por ejemplo, no se puede aplicar ninguna de las tres aproximaciones anteriores.

Como la mayoría de tests de ajustes suponen datos iid, se van a realizar dos tests de aleatoriedad³ a los datos:

- Runs up and down
- Spearman correlation of ranks

Se emplea la prueba de ajuste χ^2 que requiere seleccionar una partición más o menos arbitraria de la recta real de intervalos siendo importante que en cada intervalo haya una cantidad lo suficientemente importante de datos de la muestra. En este sentido, se pueden tomar como extremos de los intervalos los quintiles empíricos de la muestra. Cabe mencionar que este test requiere estimar parámetros por el método de Máxia Verosimilitud Categórica.

Cabe mencionar que para este estudio la distribución de la variable a incorporar en este estudio no tiene que ser degenerada, es decir H(t) = 0 ó H(t) = 1.

³En inglés se expresa como randomness

Definición 2: Distribución extremal asintótica

Si $X_1,...,X_n$ es iid con distribución F diremos que H no-degenerada es la Distribución Extremal Asintótica (DEA) de F^4 , si existen dos sucesiones de números reales, d_n y $c_n>0$, tales que la distribución de

$$\frac{\max(X_1, \dots, X_n) - d_n}{c_n} \tag{2}$$

tiende a H cuando n tiende a infinito.

Definición 3: Supremo esencial de una variable aleatoria o distribución

Si X tiene distribución F, se llama supremo esencial de X, denotado como M_X o, indistintamente, supremo esencial de F, denotado MF a

$$M_X = M_F = \sup\{t/F(t) < 1\} \tag{3}$$

Observación:

- Si F es U(a,b), $M_F = b$
- Si F es $Bin(m,p),\,M_F=m$
- Si F es Normal, Exponencial, Cauchy o Poisson, M_F es infinito.

Teorema 4 Si $X_1,...,X_n$ es iid con distribución F cualquiera, entonces, para n tendiendo a infinito,

$$X_n^* = M_F = \max(X_1,...,X_n) \ tiende \ a \ M_F \eqno(4)$$

Observación:

El resultado anterior vale incluso si M_F es infinito, pero si M_F es finito, como X^*n-M_F tiende a cero, por analogía con el Teorema Central del Límite para

 $^{^{4}}$ Lo que equivale a decir que F tiene $DEA\ H$.

promedios, buscaríamos una sucesión $c_n>0$ y que tienda a cero de modo tal que $(X^*n-M_F)/c_n$ tienda a una distribución no-degenerada y de allí surge buscar la DEA.

Teorema 5 Si F es una distribución con M_F finito, y para X con distribución F se cumple que

$$P(X = M_F) > 0$$

entonces F NO admite DEA.

Observación:

Si F es Bin(m,p), $M_F=m$. Si X tiene distribución F, entonces $P(X=M_F)=P(X=m)=p_m>0$, asi que la distribución Bin(m,p) NO admite DEA, no se puede aproximar la distribución del máximo de una muestra iid de variables Bin(m,p).

El Teorema anterior es un caso particular del próximo.

Teorema 6 Si F es una distribución con M_F finito o infinito que admite DEA, y X tiene distribución F, entonces el límite cuando t tiende a M_F por izquierda de $P(X > t)/P(X \ge t)$ debe ser 1.

Observación:

- Si F es una distribución de Poisson de parámetro $\lambda > 0, M_F$ es infinito.
- Si k es un natural, entonces:

$$\frac{P(X > k)}{P(X \ge k)} = \frac{P(X \ge k + 1)}{P(X \ge k)}$$

$$= 1 - \frac{P(X = k)}{P(X \ge k)} \approx 1 - \left(1 - \frac{\lambda}{k}\right)$$
(5)

que tiende a 0 cuando k tiende a infinito, por lo cual F NO admite DEA, o sea que no se puede aproximar el máximo de una sucesión iid de variables de Poisson.

Observación:

El Teorema 6 brinda una condición NECESARIA pero NO SUFICIENTE para DEA. Un ejemplo de ello lo aportó Von Mises, mostrando que la distribución

$$F(x) = 1 - e^{(-x - sen(x))}$$

cumple con la condicion del Teorema 6 pero no admite DEA.

Definición 4: Distribución max-estables

Si dada una F distribución, X con distribución F, k natural arbitrario y $X_1,...,X_k$ es iid con distribución F, existen reales a_k , b_k tales que $\max(X_1,...,X_k)$ tiene la misma distribución que a_kX+b_k , F se dice $\max\text{-estable}$.

El Teorema FTG resulta de superponer los dos siguientes teoremas:

Teorema 7

- a) Si F admite DEAH, entonces H es max-estable.
- b) Si H es max-estable, es la DEA de sí misma.

Teorema 8 Una distribución es max-estable si y solo si es extremal⁵. El Teorema 7 es bastante intuitivo y análogo a los teoremas de Lévy sobre distribuciones estables en aproximaciones asintóticas de las distribuciones de sumas. Para el Teorema 8 haremos enseguida un ejercicio sencillo que nos ayudará a hacerlo creíble. Luego precisaremos, para terminar con esta parte, cómo son las distribuciones que tienen por DEA cada uno de los tres tipos de distribuciones extremales. Para eso precisamos recordar algunas definiciones, como la siguiente.

Obsrvación:

Si F y G son dos distribuciones, tienen colas equivalentes si $M_F = M_G$ y cuando t tiende a M_F por izquierda, (1 - F(t))/(1 - G(t)) tiende a un

⁵O sea Gumbel, Weibull o Fréchet

valor c>0. Recordando ahora cómo se calcula la distribución del máximo de dos variables independientes, es muy sencillo calcular la distribución del $\max\{X,Y\}$, cuando X e Y son independientes y cada una de ellas es una distribución extremal.

Se tiene el siguiente resultado:

\overline{X}	Y	$\max(X,Y)$
Weibull	Weibull	Weibull
Weibull	Gumbel	Cola equivalente Gumbel
Weibull	Fréchet	Fréchet
Gumbel	Weibull	Cola equivalente Gumbel
Gumbel	Gumbel	Gumbel
Gumbel	Fréchet	Cola equivalente Fréchet
Fréchet	Weibull	Fréchet
Fréchet	Gumbel	Cola equivalente Fréchet
Fréchet	Fréchet	Fréchet

- Las extremales son max-estables: tomar máximos de dos del mismo tipo queda en el mismo tipo.
- Gumbel es más pesada que Weibull. En la cola, que es lo que cuenta para máximos, prima Gumbel.
- Fréchet es más pesada que Gumbel y mucho más pesada que Weibull.

Referencias bibliográficas

Perera, G., Segura, A., Crisci, C., 2021. Curso de estadística de datos extremales, cap. 1 a cap. 5.