CMOS OPEN ENDED

3 BIT PARALLEL ADDER USING CMOS AND PSEUDO NMOS LOGIC

Team 23
Yatirajgouda Patil - 01FE21BEC083
Gajanan Puranik - 01FE21BEC102
Pratham Naik - 01FE21BEC103

CMOS LOGIC:

Fig a. Full adder Schematic

Fig b. Full adder Symbol

Fig c. 3-bit parallel adder test circuit

PSEUDO NMOS LOGIC:

Fig a. Full adder Schematic

Fig b. Full adder symbol

Fig c.3-bit parallel adder test circuit

RESULTS:

• CMOS LOGIC:

• PSEUDO NMOS LOGIC:

CONCLUSION:

	CMOS LOGIC	PSEUDO NMOS
		LOGIC
Delay(td)	228.3 ps	154.3 ps
Power	886.3 mW	907.4mW
Area (no of transistors)	84	54

- Pseudo nmos logic is better compared to cmos logic in delay time
- Cmos logic is better compared to pseudo nmos in terms of average power
- Pseudo nmos occupies less area compared to cmos logic
- Overall Pseudo nmos logic is better than cmos logic for the design of 3 bit parallel adder.