Image compression using k-means clustering algorithm

Mert ÇIKLA CmpE 530

Boğaziçi University

December 8, 2016

Digital Images

Images are represented by pixels and RGB values. Some cameras use up to 48bits to represent each pixel. 3×16 bits for each color 281.5 trillion colors mean a typical 20 megapixel image would require without any compression;

48bits
$$\times$$
 2 \cdot 10⁶ \approx 30megabytes

We do not need 281.5 trillion colors in most cases. Most of them are redundant.

Image processing and k-means

k-means can reduce and choose the colors to represent an image.

- Turn the colors used in image into a 2D array
- Use k-means on the array to form clusters
- Each cluster is now a color and we can now use k pixels to represent the image

Image processing examples:1

$$k = 20$$

Image processing examples:2

Grayscale image with k = 15 colors

Effect of different k and under/over fitting

Original Image

Compressed Image with k=5, under fit for most situations

Compressed Image with k=50

Compressed Image with k=200

Compressed Image with k=200 and the original

Even with a k = 200, data required to represent each pixel reduces to 8 from 48

Original image is compressed to \approx %16 to its size.