King Saud University College of Computer and Information Sciences Computer Science Department

Course Code:	CSC 339		
Course Title:	Theory of Computation		
Semester:	2 nd (1443)		
Exercises Cover Sheet:	Homework#1		
Due-Date :	Thursday 24 March 11:59		

Name

/ 10

ID

Course Learning Outcomes		Relevant Question No	Full Mark	Student Mark	
CLO 1	Identify regular and non-regular languages (K1)	Part 1	3		
CLO 2	Identify decidable and non-decidable, NP-complete, and reducible problems (K1)				
CLO 3	Produce computing-based solutions using regular expressions, and context free grammar (K2)	Part 2	4		
CLO 4	Design different machine models (DFA, NFA, PDA, TM) (S1)	Part 3	3		
CLO 5	Evaluate the language accepted by a machine, a regular expression, and a context free grammar (S1)				
CLO 6	Evaluate the time and space complexity of a Turing machine (S1)				

Question 1

 \boldsymbol{L} is not a regular language.

Prove that $L = \{w \in \{0,1\} \text{ and } w \text{ has more } 1 \text{ s than } 0 \text{ s } \}$ is not a regular language using the pumping lemma.
Assume that L Fegual v. Language
Since L is anfinit, we can use the pumping lemma.
Let m be the Critical length of L
Pick a string w such that $w \in L$ and length $1 \times 1 $
We can write w =X.y.Z
such that: xy
y
Complete the prove: $M = X Y Z \longrightarrow 0$: Os os os os os 11111111 11
Thus y=0k 12kcm
from pumping lemma xy'Z EL 170
w= xy2Z = 00000000000000000000000000000000000
$O^{m+k} I^{m+l} \in L$

Question 2

a.	Answer each	part for the	following	context-free	grammar G

$$\begin{split} R &\rightarrow XRX \mid S \\ S &\rightarrow aTb \mid bTa \\ T &\rightarrow XTX \mid X \mid \lambda \\ X &\rightarrow a \mid b \end{split}$$

- 1. What are the variables of G?
- 2. What are the terminals of G?
- 3. Which is the start variable of G?
- 4. Give three strings in L(G).
- 4. Give times strings in E(G).
- 5. Give three strings *not* in L(G).
- 6. True or False: T ⇒* aba.7. True or False: T ⇒ aba.
- 8. True or False:T⇒T.
- 9. True or False:T⇒* T.
- 10. True or False: $XXX \Rightarrow^* aba$.
- 11. True or False: $X \Rightarrow^* aba$.
- 12. True or False: $T \Rightarrow^* XX$.
- 13. True or False:T⇒* XXX.
- 14. True or False: $S \Rightarrow^* \epsilon$.
- 15. Give a description in English of L(G).

(1) R,X,S,T; (2)a,b; (3) R; (4) Three strings in L(G) are ab,ba, and aab; (5) Three strings not in L(G) are a, b, and ϵ ; (6) True; (7) False; (8) False; (9) True; (10) True; (11) False; (12) True; (13) True; (14) False; (15) L(G) consists of all strings over a and b that are not palindromes.

- b. Construct a CFG to generate the following languages over $\Sigma = \{0,1\}$:
 - 1. $L=\{w | w \text{ contains at least three } 1s \}$

$$S \rightarrow X1X 1X 1X 1X
X \rightarrow OX | 1X | X
2. || L = {0^{2n}1^{n} | n > 0}| | OR || S \rightarrow cox 1
X \rightarrow cox 1 | X \rightarrow co$$

Commented [HAA1]: خطأ متكرر عدم إضافة Xفي البدااية أو النهاية

Commented [HAA2]: $S \rightarrow \lambda$ خطأ منكرر إضافة $S \rightarrow 00X1$ $X \rightarrow \lambda$

هذه القاعدة generates one string only

c. Give a CFG that generates the same language as the regular expression

$$(a + b)^*(a^* + (ba)^*)$$

$$5 \rightarrow AB$$

$$C \rightarrow aC \mid \lambda$$

Question 3

Design push-down automaton that recognises the following languages.

a.
$$\frac{|L| = \{a^n b a^n \mid n \ge 0\}|}{\alpha_1 \lambda \to \alpha}$$

b. $L2=\{a^{2n}b^{3n} \mid n \ge 0\}$

Commented [HAA3]: ملاحظة لا حاجة لإضافة transition لهذه PDA لهذه b وstring لأن أقصر

لهذه الفقرة أكثر من طريقة حل :[HAA4] Commented [HAA4] push string in to stack وهذه أبسطها بالاستفادة من إمكانية

لكن المهم في الحل أن تقبل جميع stringالتي تنتمي ل L

c. $[L3 = \{ a^{i}b^{j}c^{k} \mid i, j, k \ge 0 \text{ and } i + j = k \}]$ $(3, \lambda \to \chi) \qquad (5, \chi \to \lambda)$ $(3, \lambda \to \lambda) \qquad (4, \lambda \to \lambda)$

خطأمتكرر :[Commented [HAA5]

الانتقال من 1pل q2 لا يجب أن يكون على أساس وجود ال b وضع A→X (مايلزم أن تحتوي stringعلى dوهذا غير صحيح