Ciencias Naturales y Tecnología:

Introducción a la Computación Cuántica

Fecha: 8/1/2020

Por: Luis Daniel Benavides Navarro, Ph.D. (luis.benavides@escuelaing.edu.co)

Sergio Alfonso Tello Lee, M. Sc. (sergio.tello@escuelaing.edu.co)

Descripción

El curso explora los conceptos y retos de la computación cuántica por medio de actividades de aprendizaje activo tanto en computadores clásicos como en computadores cuánticos. Al final del curso el estudiante tendrá un conocimiento esencial de los fundamentos de la computación cuántica y podrá desarrollar e implementar algoritmos cuánticos conocidos en el computador cuántico de IBM. Adicionalmente, se espera que al final del curso, el estudiante pueda argumentar sobre la importancia de la computación cuántica, sus diferencias y similitudes con la computación clásica, y sus alcances e implicaciones en las explicaciones fundamentales del universo.

Libro de texto

Noson S. Yanofsky, Mirco A. Mannucci. *Quantum Computing for Computer Scientists*. Cambridge University Press. 2013 (First published 2008).

Forma de Evaluación

Artefacto	Valor
Participación en clase con discusiones,	15% de la nota: (5% cada tercio)
ejercicios, quices y actividades.	
Retos de programación, modelos	35% de la nota: 10%(1er tercio), 10% (2do Tercio),
computacionales. Experimentos.	15% (3er Tercio)
Parciales de Tercio	50% de la nota: 15% (1er tercio), 15% (2do Tercio),
	20% (3er Tercio)
TOTAL	100%

Cronograma

Semana	Descripción	Laboratorios	Proyectos
	Números complejos:	Números complejos – Ejercicios de	Calculadora números
1	Secciones 1.1, 1.2, 1.3	programación	complejos – Java / Python
2	Espacios vectoriales complejos: 2.1, 2.2, 2.3	Espacios vectoriales complejos – Ejercicios de programación	
3	Espacios vectoriales complejos: 2.4, 2.5	Espacios vectoriales complejos – Ejercicios de programación	
4	Espacios vectoriales complejos: 2.6, 2.7	Espacios vectoriales complejos – Ejercicios de programación	Calculadora de Matrices – Java / Python

	Demo de desarrollos.		
5	Parcial		
	Sistemas		
	determinísticos y		
	probabilísticos:3.1,	Laboratorio – Ejercicios de	
6	3.2	programación	
	Sistemas cuánticos:	Laboratorio – Ejercicios de	
7	3.3	programación	
	Sistemas cuánticos:	Laboratorio – Ejercicios de	
8	3.4	programación	
		Introducción al computador cuántico	Simulador de sistema
9	Estados cuánticos: 4.1	de IBM	cuántico – Java / Python
	Demo de desarrollos.		
10	Parcial		
11	Observables: 4.2	Laboratorio IBM-Q	
	Medidas, dinámica y		
	sistemas		
12	cuánticos:4.3, 4.4 ,4.5	Laboratorio IBM-Q	
			Experimentos básicos en
13	Bits y Qbits:5.1, 5.2	Laboratorio IBM-Q	IBM-Q
	Compuertas		
14	cuánticas:5.3, 5.4	Laboratorio IBM-Q	
4.5	Al	Labarrataria IRMA O	Algoritmos complejos en
15	<u> </u>	Laboratorio IBM-Q	IBM-Q
16	Demo de desarrollos		
17	Examen final		

Proyectos

El objetivo de los proyectos es desarrollar y consolidar los conceptos del curso por medio de una actividad de aprendizaje activo, construyendo programas y simuladores en el computador para apoyar la investigación y enseñanza de la computación cuántica.

Material complementario

Libros

Phillip Kaye, Raymond Laflamme, Michele Mosca. *An Introduction to Quantum Computing*. Oxford University Press. 2006.

Michael A. Nielsen, Isaac L. Chuang. *Quantum Computation and Quantum Information* (10th Anniversary edition). Cambridge University Press. 2016.

Videos

Las clases de David Deutsch sobre computación cuántica que se encuentran en: http://www.quiprocone.org/Protected/DD_lectures.htm