Ciência da Computação **GBC043 Sistemas de Banco de Dados**

Linguagens formais de Consulta Modelo Relacional

Profa. Maria Camila Nardini Barioni

camila.barioni@ufu.br

Bloco B - sala 1B137

O que foi visto até agora ...

Introdução a BD

- Conceitos de BD e SGBD
- Níveis de Abstração de BD: visão (conceitual), lógico, físico

Modelo Relacional

- Modelo Entidade-Relacionamento (MER)/ Extendido
- Modelo Relacional: conceitos e terminologias
 - Tabela, registros, chave primária, chave estrangeira, etc.
- Mapeamento do MER -Ext para M-Relacional
- Normalização de Relações
- HOJE (e próximas aulas)
 - Linguagens Formais de Consulta
- LINGUAGEM SQL
 - DDL e DML
 - Gatilhos e Procedimentos Armazenados

- Transações
 - Controle de Concorrência
 - Recuperação de BD

Introdução

Relembrando:

- Um modelo de dados inclui um conjunto de OPERAÇÕES para manipular um banco de dados além dos CONCEITOS de modelagem necessários para a estruturação do BD.
- OPERAÇÕES: Linguagem de Consulta
- O que é LINGUAGEM DE CONSULTA?
 - É uma linguagem por meio da qual os usuários obtém informações do banco de dados
 - Linguagens de mais ALTO NÍVEL que as linguagens de programação tradicionais
 - Exemplo SQL Structured Query Language
- O que é LINGUAGEM FORMAL DE CONSULTA?

Introdução

O Modelo Relacional possui duas linguagens formais:

- Álgebra Relacional (procedural)
 - Na linguagem PROCEDURAL o usuário deve ensinar ao sistema uma seqüência de operações no BD para obter o resultado desejado
- Cálculo Relacional (não-procedural)
 - Na linguagem NÃO-PROCEDURAL, o usuário descreve a informação desejada sem fornecer um procedimento específico para a obtenção dessas informações

Álgebra Relacional

- Modelo de dados inclui
 - Conceitos para a definição das restrições e estrutura do BD
 - Conjunto de operações para manipular o BD
- Algebra relacional
 - Maneira teórica de se manipular o BD relacional
- Importância
 - Fundamento formal para as operações no modelo relacional
 - Base para implementar e otimizar consultas em SGBDR
 - Introduz conceitos incorporados na SQL

Álgebra Relacional

- Linguagem de consulta procedural
 - usuários especificam os dados necessários e como obtê-los
- Consiste de um conjunto de operações
 - entrada: uma ou duas relações
 - saída: uma nova relação resultado

Operações

- Fundamentais
 - seleção
 - projeção
 - produto cartesiano
 - renomear
 - união
 - diferença de conjuntos

- Adicionais
 - intersecção de conjuntos
 - junção natural
 - divisão
 - atribuição
 - podem ser geradas a partir das operações fundamentais
 - facilitam a construção de consultas

Classificação das Operações

- Unárias *
 - seleção
 - projeção
 - renomear

operam sobre uma única relação

- ♦ Binárias ◆
 - produto cartesiano
 - união
 - diferença de conjuntos
 - intersecção de conjuntos
 - junção natural
 - divisãooperam sobre duasrelações

Relações

```
cliente (<u>nro_cli</u>, nome_cli, end_cli, saldo, vendedor)

vendedor (<u>cod_vend</u>, nome_vend)

pedido (<u>nro_ped</u>, data, nro_cliente(cliente.nro_cli))

pedido_peca (<u>nro_ped</u>, <u>nro_peca(peca.nro_peca)</u>)

peca (<u>nro_peca</u>, descricao_peca)
```

Seleção

Seleciona tuplas da relação argumento que satisfaçam à condição de seleção

σ_{condição_seleção} (relação argumento)

- pode envolver operadores de comparação (=, <, ≤, >, ≥, ≠)
- pode combinar condições usando-se ∧, ∨, ¬

- relação
- resultado de alguma operação da álgebra relacional

Seleção

• Produz um subconjunto horizontal de uma relação

Relação Cliente

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Liste toda a informação da relação cliente referente ao cliente de número 4.

$$\sigma_{\text{nro_cli} = 4}$$
 (cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

nro_cli	nome_cli	end_cli	saldo	cod_vend
4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Liste toda a informação da relação cliente para clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
4	Rodrigo	Rua X	137,00	2

grau: mesmo grau da relação argumento

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Vale lembrar...

- ♦ As condições booleanas ^(and), v (or) e ¬ (not) têm sua interpretação conforme segue:
 - (cond1 ^ cond 2)
 - é verdadeira se <u>ambas</u> cond1 e cond2 forem verdadeiras
 - caso contrário é falsa
 - (cond1 v cond 2)
 - verdadeira se cond1 ou cond2 ou ambas forem verdadeiras
 - caso contrário é falsa
 - **■** (¬ cond)
 - verdadeira se cond for <u>falsa</u>
 - caso contrário é falsa

Projeção

Produz uma nova relação contendo um subconjunto vertical da relação argumento, sem duplicações

π _{lista_atributos} (relação argumento)

- lista de atributos
- os atributos são separados por vírgula

- relação
- resultado de alguma operação da álgebra relacional

Projeção

- Extrai atributos (Colunas) específicos de uma relação específica
- Produz um subconjunto **vertical** de uma relação

Projeção

 π pi

Liste o número e o nome de todos os clientes

π nro_cli, nome_cli (cliente)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Relação resultado

grau: número de atributos listados em lista_atributos

nro_cli	nome_cli
1	Márcia
2	Cristina
3	Manoel
4	Rodrigo

número de tuplas: menor ou igual ao número de tuplas da relação argumento

Liste o endereço de todos os clientes

π_{end_cli} (cliente)

end_cli
Rua X
Avenida 1
Avenida 3

Relação Resultante

- sem repetição

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Operações Propriedades dos operadores unários

- A operação de Seleção é comutativa
 - $\quad \quad \sigma_{< condição-A>}(\sigma_{< condição-B>})$
- ◆ Uma seqüência de seleções pode ser executada em qualquer ordem, ou pode ser transformada numa única seleção com uma condição conjuntiva (termos cujo valor é VERDADEIRO ou FALSO, ligados pelo operador ∧ (AND))
 - $\quad \quad \sigma_{< condição-1>}(\sigma_{< condição-2>}(\dots(\sigma_{< condição-n>}(R))))$
 - $\sigma_{\text{condição-1}} \land \text{condição-2} \land \cdots \text{condição-n}(R)$

Operações Propriedades dos operadores unários

- A operação de Projeção não é comutativa
- Se Se lista_atribs_B> contém lista_atribs_A>, então ambas as expressões seguintes são corretas, e vale a igualdade:
 - $\blacksquare \pi_{\text{<lista atribs_A>}} (\pi_{\text{<lista atribs_B>}} R) = \pi_{\text{<lista atribs_A>}} R$

Liste o número e o nome de todos os clientes que possuam saldo devedor inferior a 200,00 reais e morem na Rua X.

Passos

- realizar uma operação de <u>seleção</u> para criar uma nova relação que contém somente aqueles clientes com o saldo e o endereço apropriados;
- realizar uma <u>projeção</u> sobre a relação resultante do passo anterior, restringindo o resultado desejado às colunas indicadas.

Primeiro passo

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

Segundo passo

π nro_cli, nome_cli (primeiro passo)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
4	Rodrigo	Rua X	137,00	2

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

$$\pi_{\text{nro_cli, nome_cli}}$$
 ($\sigma_{\text{saldo_dev} < 200,00 ^{\text{end_cli}} = \text{"Rua X"}}$ (cliente))

Relação Resultado

nro_cli	nome_cli
1	Márcia
4	Rodrigo

Atribuição

- Funcionalidades
 - associa uma relação argumento a uma relação temporária
 - permite o uso da relação temporária em expressões subseqüentes

relação temporária ← relação argumento

 resultado de alguma operação da álgebra relacional

relação

Liste o número e o nome de todos os clientes que possuam saldo inferior a R\$ 200,00 e que morem na Rua X.

```
\pi_{\text{nro\_cli, nome\_cli}} (\sigma_{\text{saldo\_dev} < 200,00 ^ end\_cli} = \text{``Rua X''} (cliente))
```

- Usando atribuição
 - temp $\leftarrow \sigma_{\text{saldo_dev} < 200,00 ^ end_cli = "Rua X"}$ (cliente)
 - $\blacksquare \pi_{\text{nro_cli, nome_cli}}$ (temp)

Atribuição

- Características adicionais
 - permite renomear os atributos de relações intermediárias e final
 - R(código, nome) $\leftarrow \pi_{\text{nro cli, nome cli}}$ (temp)
- Observações
 - não adiciona potência adicional à álgebra relacional
 - geralmente utilizada para expressar consultas complexas

Renomear

- Renomeia
 - nome da relação
 - nomes dos atributos da relação
 - nome da relação e nomes dos atributos

Renomear

Exemplos

- ρ comprador (cliente)
- ρ_(código, nome, rua, saldo, vendedor) (cliente)
- ρ comprador (código, nome, rua, saldo, vendedor) (cliente)

Observação

 indicada para ser utilizada quando uma relação é usada mais do que uma vez para responder à consulta

Produto Cartesiano

- Combina tuplas de duas relações (quaisquer)
- Tuplas da relação resultante
 - todas as combinações de tuplas possíveis entre as relações participantes

relação argumento 1 x relação argumento 2

- relação
- resultado de alguma operação da álgebra relacional

Produto Cartesiano

 Utilizado quando se necessita obter dados presentes em duas ou mais relações

Relações Cliente e Vendedor

cliente (nro cli, nome_cli, end_cli, saldo, cod_vend)

nro_cli	nome_cli	end_cli	saldo	cod_vend
1	Márcia	Rua X	100,00	1
2	Cristina	Avenida 1	10,00	1
3	Manoel	Avenida 3	234,00	1
4	Rodrigo	Rua X	137,00	2

vendedor (cod vend, nome_vend)

cod_vend	nome_vend	
1	Adriana	
2	Roberto	

Cliente x Vendedor

nro_cli	nome_cli	end_cli	saldo	cliente. cod_vend	vendedor.c od_vend	nome_vend
1	Márcia	Rua X	100,00	1	1	Adriana
1	Márcia	Rua X	100,00	1	2	Roberto
2	Cristina	Avenida 1	10,00	1	1	Adriana
2	Cristina	Avenida 1	10,00	1	2	Roberto
3	Manoel	Avenida 3	234,00	1	1	Adriana
3	Manoel	Avenida 3	234,00	1	2	Roberto
4	Rodrigo	Rua X	137,00	2	1	Adriana
4	Rodrigo	Rua X	137,00	2	2	Roberto

grau: número de atributos de cliente + número de atributos de vendedor

número de tuplas: número de tuplas de cliente * número de tuplas de vendedor

Exemplo 1

- Considere as seguintes relações
 - usuário (<u>cliente nome</u>, gerente_nome)
 - cliente (<u>cliente nome</u>, rua, cidade)

cliente_nome	gerente_nome
Márcia	Manoel
Rodrigo	Maria

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá

Liste o nome de todos os usuários atendidos pelo gerente Manoel, assim como as cidades nas quais eles vivem

- Primeiro passo
 - determinar quem são os usuários atendidos pelo gerente Manoel

temp₁
$$\leftarrow \pi$$
 _{cliente_nome} ($\sigma_{gerente_nome = "Manoel"}$ (usuario))

relação resultado temp₁

DICA: Selecionar "menos" tuplas antes de fazer o Produto Cartesiano

cliente_nome

Márcia

- Segundo passo
 - realizar o produto cartesiano das relações temp₂ ← temp₁ x cliente
 - relação resultado temp₂

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade
Márcia	Márcia	Rua X	Itambé
Márcia	Rodrigo	Rua X	Maringá

Terceiro passo

eliminar informações inconsistentes
 temp₃ ← σ temp_{1.cliente_nome} = cliente.cliente_nome
 (temp₂)

■ relação resultado temp₃

temp ₁ . cliente_nome	cliente. cliente_nome	rua	cidade
Márcia	Márcia	Rua X	Itambé

- Quarto passo
 - exibir as informações solicitadas

 $\pi_{\text{temp1.cliente_nome, cidade}}$ (temp3)

relação resultado

temp ₁ . cliente_nome	cidade
Márcia	Itambé

Exemplo 2

- Considere a seguinte relação
 - cliente (<u>cliente nome</u>, rua, cidade)

cliente_nome	rua	cidade
Márcia	Rua X	Itambé
Rodrigo	Rua X	Maringá
Cristina	Rua XTZ	Maringá
Sofia	Rua X	Maringá
Ricardo	Rua AAA	Itambé

Liste o nome dos clientes que moram na mesma rua e na mesma cidade que Rodrigo

- Primeiro passo
 - determinar o nome da rua e o nome da cidade na qual Rodrigo mora

temp₁
$$\leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente_nome} = \text{``Rodrigo''}} (\text{cliente}))$$

relação resultado temp₁

rua	cidade	
Rua X	Maringá	

- Segundo passo
 - realizar o produto cartesiano das relações temp₂ ← temp₁ x cliente
 - relação resultado temp₂

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Rodrigo	Rua X	Maringá
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- Terceiro passo
 - eliminar informações indesejadas

$$temp_3 \leftarrow \sigma_{cliente_nome <> "Rodrigo"} (temp_2)$$

relação resultado temp₃

temp ₁ .rua	temp ₁ .cidade	cliente_nome	cliente.rua	cliente.cidade
Rua X	Maringá	Márcia	Rua X	Itambé
Rua X	Maringá	Cristina	Rua XTZ	Maringá
Rua X	Maringá	Sofia	Rua X	Maringá
Rua X	Maringá	Ricardo	Rua AAA	Itambé

- Quarto passo
 - exibir as informações solicitadas

```
\pi cliente_nome (\sigma temp<sub>1</sub>.rua = cliente.rua \sim temp<sub>1</sub>.cidade = cliente.cidade (temp<sub>3</sub>))
```

relação resultado

cliente nome

Sofia

Discussão

Resposta original

```
\begin{split} \text{temp}_1 \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{``Rodrigo''}}(\text{cliente})) \\ \text{temp}_2 \leftarrow \text{temp}_1 \text{ x cliente} \\ \text{temp}_3 \leftarrow \sigma_{\text{cliente\_nome} <> \text{``Rodrigo''}}(\text{temp}_2) \\ \pi_{\text{cliente\_nome}} (\sigma_{\text{temp}_1.\text{rua} = \text{cliente.rua} \land \text{temp}_1.\text{cidade} = \text{cliente.cidade}}(\text{temp}_3)) \end{split}
```

Operação de atribuição

```
temp_{1}(rua\_rodrigo, cidade\_rodrigo) \leftarrow \\ \pi_{rua,cidade}(\sigma_{cliente\_nome = ``Rodrigo''}(cliente)) \\ temp_{2} \leftarrow temp_{1} \ x \ cliente \\ temp_{3} \leftarrow \sigma_{cliente\_nome <> ``Rodrigo''}(temp_{2}) \\ \pi_{cliente\_nome}(\sigma_{rua\_rodrigo = rua \land cidade\_rodrigo = cidade}(temp_{3}))
```

Discussão

Operação renomear (1)

```
\begin{split} \text{temp}_1 &\leftarrow \pi_{\text{rua,cidade}} \left( \sigma_{\text{cliente\_nome} = \text{``Rodrigo''}} (\text{cliente}) \right) \\ \text{temp}_2 &\leftarrow \rho_{\text{(rua\_rodrigo,cidade\_rodrigo)}} \left( \text{temp1} \right) \text{ x cliente} \\ \text{temp}_3 &\leftarrow \sigma_{\text{cliente\_nome}} <> \text{``Rodrigo''}} \left( \text{temp}_2 \right) \\ \pi_{\text{cliente\_nome}} \left( \sigma_{\text{rua\_rodrigo} = \text{rua}} \wedge \text{cidade\_rodrigo} = \text{cidade}} \left( \text{temp}_3 \right) \right) \end{split}
```

Operação renomear (2)

```
temp<sub>1</sub> \leftarrow \pi_{\text{rua,cidade}} (\sigma_{\text{cliente\_nome} = \text{``Rodrigo''}} (cliente))

temp<sub>2</sub> \leftarrow \rho_{\text{dados\_rodrigo(rua\_rodrigo,cidade\_rodrigo)}} (temp1) x cliente

temp<sub>3</sub> \leftarrow \sigma_{\text{cliente\_nome}} (\sigma_{\text{rua\_rodrigo}} = \sigma_{\text{cliente\_nome}})

\sigma_{\text{cliente\_nome}} (\sigma_{\text{rua\_rodrigo}} = \sigma_{\text{cidade\_rodrigo}} = \sigma_{\text{cidade}} (temp<sub>3</sub>))
```

Bibliografia

- Elmasri, Ramez; Navathe, Shamkant B. Sistemas de banco de dados. 4 ed. São Paulo: Addison Wesley, 2005, 724 p. Bibliografia: p. [690]-714.
- Material Didático produzido pelos professores Cristina Dutra de Aguiar Ciferri e Caetano Traina Júnior