Assignment-4

SMSSPAM Classification

AssignmentDate	15 November2022
Team id	PNT2022TMID30815
Project name	Real time communication system powered by AI for specially abled.
MaximumMarks	2 Marks

TASKS:

- 1. Downloadthedataset
- 2. Importrequired library

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow
import nltk
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
import string
from tensorflow.keras.preprocessing import sequence
from keras.models import Model, Sequential
from keras.preprocessing.text import Tokenizer
from keras.optimizers import Adam, RMSprop
from keras.layers import Input, Embedding, LSTM, Dense, Flatten, Dropout
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
```

3. ReaddatasetanddoPre-processing

4 ham Nah I don't think he goes to usf, he lives aro...

Read Dataset

```
df = pd.read_csv(r"C:\Users\manok\Documents\Sem_7\HX5001-HX6001\Assignment\Assignment_4\spam.csv", encoding='latin-1')
df.head()
                                              v2 Unnamed: 2 Unnamed: 3 Unnamed: 4
0 ham
           Go until jurong point, crazy.. Available only ...
                                                        NaN
                                                                     NaN
                                                                                  NaN
                          Ok lar... Joking wif u oni...
                                                                     NaN
                                                                                  NaN
1 ham
                                                        NaN
2 spam Free entry in 2 a wkly comp to win FA Cup fina...
                                                        NaN
                                                                     NaN
                                                                                  NaN
3 ham U dun say so early hor... U c already then say...
                                                        NaN
                                                                     NaN
                                                                                  NaN
```

NaN

NaN

```
df.shape
(5572, 5)
```

Drop Unwanted Column

```
df = df.drop(["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"], axis=1)
df = df.rename(columns={"v2" : "Text", "v1":"Label"})
```

```
df.head()
```

Label		Text
0	ham	Go until jurong point, crazy Available only
1	ham	Ok lar Joking wif u oni
2	spam	Free entry in 2 a wkly comp to win FA Cup fina
3	ham	U dun say so early hor U c already then say
4	ham	Nah I don't think he goes to usf, he lives aro

Remove Duplicate and Null Data

```
df.isnull().sum()

Label  0
Text  0
dtype: int64

df.duplicated().sum()
```

```
df = df.drop_duplicates(keep='first')
df.duplicated().sum()
```

0

```
df.shape
(5169, 2)
```

Normalizing the case, Removing the unwanted punctuations, Remove Stopwords

```
ps = PorterStemmer()
```

```
def transform_text(text):
   text = text.lower()
   text = nltk.word_tokenize(text)
   y = []
   for i in text:
       if i.isalnum():
           y.append(i)
   text = y[:]
   y.clear()
   for i in text:
       if i not in stopwords.words('english') and i not in string.punctuation:
           y.append(i)
   text = y[:]
   y.clear()
   for i in text:
       y.append(ps.stem(i))
   return " ".join(y)
```

```
df['Transformed_Text'] = df['Text'].apply(transform_text)
```

```
df.head()
```

	Label	Text	Transformed_Text	
0	ham	Go until jurong point, crazy Available only	go jurong point crazi avail bugi n great world	
1	ham	Ok lar Joking wif u oni	ok lar joke wif u oni	
2	spam	Free entry in 2 a wkly comp to win FA Cup fina	free entri 2 wkli comp win fa cup final tkt 21	
3	ham	U dun say so early hor U c already then say	u dun say earli hor u c alreadi say	
4	ham	Nah I don't think he goes to usf, he lives aro	nah think goe usf live around though	

Counting Words

```
avg_words_len=round(sum([len(i.split()) for i in df['Text']])/len(df['Text']))
print(avg_words_len)
# avg_words_len=200
```

15

```
s = set()
for sent in df['Transformed_Text']:
   for word in sent.split():
        s.add(word)
total_words_length=len(s)
print(total_words_length)
# total_words_length=2000
```

4. Create model

```
x = df.Transformed_Text
y = df.Label
le = LabelEncoder()
y = le.fit_transform(y)
y = y.reshape(-1,1)

# y = df['Label'].values

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.18, random_state=10)
x_train.shape, y_train.shape, x_test.shape, y_test.shape

((4238,), (4238, 1), (931,), (931, 1))

model = Sequential()
```

5. Addlayers

```
tokenizer = Tokenizer(num_words = total_words_length, lower = True)
tokenizer.fit_on_texts(x_train)
sequences = tokenizer.texts_to_sequences(x_train)
x_train = sequence.pad_sequences(sequences, maxlen = avg_words_len)
```

Input Layer

```
# model.add(Input(shape=(1), dtype=tf.string))
# model.add(Input(name='inputs', shape=[avg_words_len]))

model.add(Embedding(total words length, 50, input length = avg words len))
```

LSTM Layer

```
model.add(LSTM(64))
```

Hidden Layer

```
model.add(Dense(64, activation = "relu"))

model.add(Flatten())

model.add(Dropout(0.2))

model.add(Dense(32, activation = "relu"))
```

Output Layer

```
model.add(Dense(1, activation = 'sigmoid'))
```

Model Summary

```
model.summary()
```

Model: "sequential"

Layer(type)	OutputShape	Param#
embedding(Embedding)	(None, 15, 50)	336800
lstm(LSTM)	(None, 64)	29440
dense (Dense)	(None, 64)	4160
flatten(Flatten)	(None, 64)	0
dropout(Dropout)	(None, 64)	0
dense_1 (Dense)	(None, 32)	2080
dense_2(Dense)	(None, 1)	33

Totalparams: 372,513
Trainableparams: 372,513
Non-trainableparams: 0

6. Compilethemodel

```
adam = Adam(learning_rate = 0.001, beta_1 = 0.85, beta_2 = 0.97, epsilon = 1e-07)
model.compile(loss = "binary_crossentropy", optimizer = adam, metrics = ["accuracy"])
```

7. Fitthemodel

```
epochs=5
   history = model.fit(x_train, y_train, epochs = epochs, validation_steps=0.18, batch_size=10)
Epoch1/5
ccuracy:
0.9552Epoch2/5
0.9887Epoch3/5
curacy:
0.9941Epoch4/5
curacy:
0.9969Epoch5/5
curacy: 0.9988
```

8. Savethemodel

```
model.save("spam_analysis.h5")
```

```
9. Testthemodel
  test sequences = tokenizer.texts to sequences(x test)
  x_test = sequence.pad_sequences(test_sequences, maxlen=avg_words_len)
  accuracy = model.evaluate(x_test, y_test)
 30/30 [=================] - 2s 10ms/step - loss: 0.2072 - accuracy: 0.9731
  def predict(message):
     txt = tokenizer.texts_to_sequences(message)
     txt = sequence.pad_sequences(txt, maxlen=avg_words_len)
     pred = model.predict(txt)
     if pred>0.5:
         print("spam")
     else:
         print("Harm")
  review1 = ["think he goes"]
  predict(review1)
 1/1 [======] - 1s 1s/step
 Harm
```

```
1/1 [======= ] - 0s 46ms/step
Harm
```

review2 = ["Go until jurong point"]

predict(review2)