Heep Least Squares Analysis For Coincidence Data

September 27, 2019

Carlos Yero

System of Linear Equations for H(e,e'p)

$$dW^{calc} = \frac{\partial W}{\partial E_b} E_b \mathbf{a_0} + \frac{\partial W}{\partial E_f} E_f \mathbf{a_1} + \frac{\partial W}{\partial \theta_e} \mathbf{a_2} = dW_{obs} + \epsilon_{dW}$$

$$dE^{calc}_m = \frac{\partial E_m}{\partial E_b} E_b \mathbf{a_0} + \frac{\partial E_m}{\partial E_f} E_f \mathbf{a_1} + \frac{\partial E_m}{\partial \theta_e} \mathbf{a_2} = dE_{m_{obs}} + \epsilon_{dE_m}$$

$$a_1 = \frac{dE_f}{E_f}$$

$$dP^{calc}_{mx} = \frac{\partial P_{mx}}{\partial E_b} E_b \mathbf{a_0} + \frac{\partial P_{mx}}{\partial E_f} E_f \mathbf{a_1} + \frac{\partial P_{mx}}{\partial \theta_e} \mathbf{a_2} = dP_{mx_{obs}} + \epsilon_{dP_{mx}}$$

$$a_2 = d\theta_e$$

$$dP^{calc}_{mz} = \frac{\partial P_{mz}}{\partial E_b} E_b \mathbf{a_0} + \frac{\partial P_{mz}}{\partial E_f} E_f \mathbf{a_1} + \frac{\partial P_{mz}}{\partial \theta_e} \mathbf{a_2} = dP_{mz_{obs}} + \epsilon_{dP_{mz}}$$

$$\mathbf{Measured}_{variations} \mathbf{Predicted}_{variations}$$

$$\mathbf{Re-write}_{and} \mathbf{Parameters}_{in} \mathbf{matrix}$$

$$\mathbf{Measured}_{variations} \mathbf{Predicted}_{observed}$$

$$\mathbf{Measured}_{variations} \mathbf{Predicted}_{observed}$$

- To further constrain the beam energy, final electron energy and angle, in addition to the variations in W, the variations in missing energy and momenta were also considered.
- ONLY variations in W from beam energy, e- momentum and angle were considered

In Matrix Notation: (Over-Determined System)

$$\begin{bmatrix} \frac{\sum \partial W}{\partial E_b} E_b & \frac{\sum \partial W}{\partial E_f} E_f & \frac{\sum \partial W}{\partial \theta_e} \\ \frac{\sum \partial E_m}{\partial E_b} E_b & \frac{\sum \partial E_m}{\partial E_f} E_f & \frac{\sum \partial E_m}{\partial \theta_e} \\ \frac{\sum \partial P_{mx}}{\partial E_b} E_b & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \\ \frac{\sum \partial P_{mx}}{\partial E_b} E_b & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \\ \frac{\sum \partial P_{mz}}{\partial E_b} E_b & \frac{\sum \partial P_{mz}}{\partial E_f} E_f & \frac{\sum \partial P_{mz}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mobs}}{\partial P_{mobs}} \\ \frac{\sum \partial P_{mx}}{\partial E_b} E_b & \frac{\sum \partial P_{mz}}{\partial E_f} E_f & \frac{\sum \partial P_{mz}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dE_{mobs} \\ \frac{\sum \partial P_{mz}}{\partial P_{mz}} E_b & \frac{\sum \partial P_{mz}}{\partial E_f} E_f & \frac{\sum \partial P_{mz}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_b & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_b & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_b & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial E_f} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial \theta_e} \end{bmatrix} \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \\ \mathbf{a_2} \end{bmatrix} = \begin{bmatrix} \sum_{rus} dW_{obs} \\ \frac{\sum \partial P_{mx}}{\partial P_{mx}} E_f & \frac{\sum \partial P_{mx}}{\partial P_{mx}} E$$

The coefficients are summed over all runs (only 3 in this case)

$$\mathbf{C}\overrightarrow{\mathbf{a}} = \overrightarrow{\mathbf{b}} + \hat{\epsilon}$$

Solve for: $\overrightarrow{Ca} \cong \overrightarrow{b}$ via Single-Value Decomposition

(SEE NEXT TWO SLIDES FOR OVERVIEW OF SVD)

Solution of systems of linear equations

Author: Vladimir Volkov

Solution of systems of linear equations

Solution by least squares using normal equations:

$$D^TD A = D^T B$$
,
 $A=(D^TD)^{-1} D^T B$

Errors

Solution by least squares using SVD:

$$D = U S V^{T};$$

 $U^{T} U S V^{T} A = U^{T} B$; because $U^{T}U = E$, and E play role of a unity in multiplications:

$$S V^T A = U^T B;$$
 $S^{-1}S = E$, then

 $V^T A = S^{-1} U^T B$; critical operation - inversion of S_{ii}

$$A = V S^{-1} U^T B$$
 because $V V^T = E$

 $\mathbf{A} = \sum_{i=1}^{M} \left(\frac{\mathbf{U}_{(i)} \cdot \mathbf{B}}{S_i} \right) \mathbf{V}_{(i)} \pm \frac{1}{S_1} \mathbf{V}_{(1)} \pm \dots \pm \frac{1}{S_m} \mathbf{V}_{(m)} \qquad \boldsymbol{\sigma}_{a_j}^2 = \sum_{i=1}^{M} \left(\frac{\mathbf{V}_{ji}}{S_i} \right)^2$

Author: Vladimir Volkov

Getting the Residuals and Chi2

• Once the optimum parameters, (vector a) have been determined by SVD, the residuals and chi2 can be calculated as follows:

$$\hat{\epsilon} = \mathbf{C} \overrightarrow{\mathbf{a}} - \overrightarrow{\mathbf{b}} \longrightarrow \mathbf{Residuals} \qquad \text{One can think of this matrix as the inverse of the covariant matrix} \\ \chi^2 \equiv \hat{\epsilon}^T \mathbf{N}^{-1} \hat{\epsilon} \longrightarrow \begin{bmatrix} \epsilon_{dW} \\ \epsilon_{Em} \\ \epsilon_{Pm_z} \\ \epsilon_{Pm_z} \end{bmatrix} \qquad \qquad 0 \qquad 0 \qquad 0 \\ \mathbf{N}^{-1} = \begin{bmatrix} 1/\sigma_{dW_{obs}}^2 & 0 & 0 & 0 \\ 0 & 1/\sigma_{dEm_{obs}}^2 & 0 & 0 \\ 0 & 0 & 1/\sigma_{dPmx_{obs}}^2 & 0 \\ 0 & 0 & 0 & 1/\sigma_{dPmx_{obs}}^2 \end{bmatrix}$$

where the $\sigma_{i_{abs}}$ are the measured errors and assumed to be independent of each other

Expanding chi2 in matrix form, one obtains:

$$\chi 2 = \frac{\epsilon_{dW}^2}{\sigma_{dW_{obs}}^2} + \frac{\epsilon_{dE_m}^2}{\sigma_{dE_{m_{obs}}}^2} + \frac{\epsilon_{dP_{mx}}^2}{\sigma_{dP_{mx_{obs}}}^2} + \frac{\epsilon_{dP_{mz}}^2}{\sigma_{dP_{mz_{obs}}}^2}$$

Getting the Covariance Matrix of the Parameters

The covariance matrix can be determined from:

- ${f C} \overrightarrow{a} = \overrightarrow{b} + \widehat{\epsilon}$
- \cdot the inverse of the data error matrix N^{-1}

$$\mathbf{COV_M} = (\mathbf{C^TN^{-1}C})^{-1}$$

The covariance matrix depends only on:

- The measured data errors
- The experimental model

Getting the Correlation Matrix

The correlation matrix can be determined by dividing the covariance by the diagonal elements as follows:

$$ext{Cor}_{ij} = rac{ ext{Cov}_{ij}^{(i,j)} ext{ element of the Covariance Matrix}}{ ext{Cov}(i) ext{Cov}(j)}$$
Covariance
Diagonal elements (i), (j)

For the special case of i=j, the diagonal elements are 1 which indicates they are 100% correlated with themselves

Results from H(e,e'p) Coincidence Data

Measured data and error for each of the 4 elastic runs (only the 1st three runs considered)

```
//Define the measured DATA, SIMC variables
Double_t Wdata[4] = {9.42152e-01, 9.40229e-01, 9.43825e-01, 9.55773e-01};
Double_t Wdata_err[4] = {9.71583e-05, 3.77469e-04, 6.01623e-05, 4.13486e-05};
Double t Wsimc[4] = \{9.44690e-01, 9.44480e-01, 9.43591e-01, 9.42933e-01\};
Double t Wsimc err[4] = \{1.38566e-04, 6.68696e-05, 2.81437e-05, 2.23158e-05\};
Double t Emdata[4] = \{6.58010e-03, 5.28983e-03, 6.26642e-03, 5.32021e-03\};
Double t Emdata err[4] = \{4.69566e-05, 1.47900e-04, 3.65940e-05, 4.14000e-05\};
Double t Emsimc[4] = \{5.51066e-03, 6.06886e-03, 6.58531e-03, 6.47356e-03\};
Double_t Emsimc_err[4] = {9.05496e-05, 3.84833e-05, 1.74941e-05, 1.37620e-05};
Double_t PmXdata[4] = \{-1.29097e-03, -9.93560e-04, -5.53961e-04, 7.13300e-03\};
Double_t PmXdata_err[4] = \{3.30069e-05, 1.75464e-04, 2.87979e-05, 2.08787e-05\};
Double t PmXsimc[4] = \{-5.88228e-04, -5.91870e-04, -6.80114e-04, -1.02935e-03\};
Double t PmXsimc_err[4] = \{7.19549e-05, 2.48719e-05, 2.31853e-05, 1.11287e-05\};
Double_t PmZdata[4] = {5.77521e-03, 5.42333e-03, 5.33585e-03, 3.43146e-03};
Double_t PmZdata_err[4] = \{7.85239e-05, 1.13337e-04, 3.97398e-05, 3.45173e-05\};
Double_t PmZsimc[4] = \{5.82773e-03, 6.50794e-03, 6.35112e-03, 6.02246e-03\};
Double_t PmZsimc_err[4] = \{1.06200e-04, 2.89548e-05, 1.55699e-05, 1.62459e-05\};
```

Data Errors Seem to be too small, which can make chi2 artificially large. Would it be better to consider the sigma from the gaussian fit as the error?

Results from H(e,e'p) Coincidence Data

```
****COVARIANCE MATRIX****
3x3 matrix is as follows
           0
       5.858e-08 7.221e-08 -1.409e-08
       7.221e-08 8.904e-08 -1.738e-08
      -1.409e-08 -1.738e-08 3.419e-09
=== Optimized Parameters ===
total equations x total runs = 4x3 = 12 observations, # parameters = 3, dof = 9
chi2 = 126.145 chi2/dof = 14.0161
dEb / Eb = -0.000410038
dEf / Ef = -0.000448075
                                          The error on the electron
dth_e = 0.000164275
                                           Angle seems too good
                                         (This is probably related to
=== Uncertainty in Parameters ===
dEb / Eb = 0.000242029
                                   The unrealistically small data errors)
dEf / Ef = 0.000298391
dth_e [rad] = 5.84754e-05
                                     Could we use the sigma from the
                                        Fit as the error of the mean?
****CORRELATION MATRIX****
3x3 matrix is as follows
                                  2
           0
                                -0.9958
                      0.9999
   0
          0.9999
                                 -0.996
   2
         -0.9958
                      -0.996
```