Problème. Pseudo-inversibilité.

Partie A. Matrices pseudo-inversibles.

1. Unicité de la pseudo-inverse.

(a) On a supposé que B_1 et B_2 vérifiaient toutes les deux les trois propriétés des pseudo-inverses de A. L'associativité du produit matriciel va nous être utile. D'une part,

$$AB_1AB_2 = (AB_1A)B_2 = AB_2.$$

D'autre part,

$$AB_1AB_2 = (AB_1)(AB_2) = (B_1A)(B_2A) = B_1(AB_2A) = B_1A = AB_1.$$

On a bien obtenu $AB_1 = AB_2$.

(b) Attention à la tentation de « simplifier par A » : cette matrice n'est pas inversible! On remarque, en revanche que le point (iii) ne nous a servi à rien pour l'instant...

La question précédente donne $AB_1 = AB_2$. En multipliant à gauche par B_1 , on obtient $B_1AB_1 = B_1AB_2$, soit d'après (iii),

$$B_1 = B_1 A B_2$$
.

D'autre part, par commutation, la question précédente donne aussi $B_1A = B_2A$. En multipliant à droite par B_2 , on obtient

$$B_1 A B_2 = B_2 A B_2 = B_2.$$

On a prouvé

$$B_1 = B_1 A B_2 = B_2,$$

il y a bien unicité de la pseudo-inverse.

La pseudo-inverse de A sera désormais notée A^* lorsqu'elle existe.

2. Pseudo-inversibilité et inversibilité.

(a) Soit M une matrice inversible de $M_n(\mathbb{R})$.

On a que $MM^{-1} = I_n = M^{-1}M$ (i). De plus,

$$MM^{-1}M = I_nM = M \quad (ii).$$

Enfin,

$$M^{-1}MM^{-1} = I_nM^{-1} = M^{-1}$$
 (iii).

Ceci montre que notre matrice M est pseudo-inversible et que $M^* = M^{-1}$.

(b) La matrice 0_n étant la matrice nulle de $M_n(\mathbb{K})$, il est facile de vérifier que

$$\begin{cases} 0_{n}0_{n} & = 0_{n}0_{n} & (i) \\ 0_{n}0_{n}0_{n} & = 0_{n} & (ii) \text{ et } (iii) \end{cases}$$

Ceci montre que 0_n est pseudo-inversible et que $0_n^* = 0_n$.

3. Pseudo-inversibilité des matrices diagonales.

Posons
$$N = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 0 \end{pmatrix}$$
.

Calculer avec des matrices diagonales est aisé: il est facile de vérifier que

$$MN = NM$$
, $MNM = M$, $NMN = N$.

Ceci montre que M est pseudo-inversible, d'inverse $M^* = N$. Montrer que M est pseudo-inversible et donner M^* .

Généralisons. Soit $D = \text{Diag}(d_1, \dots, d_n)$. On définit $D' = \text{Diag}(d'_1, \dots, d'_n)$, en posant

$$\forall k \in [1, n] \quad d'_k = \begin{cases} d_k^{-1} & \text{si } d_k \neq 0 \\ 0 & \text{si } d_k = 0 \end{cases}$$

On a

$$DD'D = \text{Diag}(d_1d'_1d_1, \cdots, d_nd'_nd_n).$$

Soit $k \in [1, n]$.

— Si $d_k = 0$, alors $d_k d'_k d_k = 0 = d_k$;

— et si $d_k \neq 0$, alors $d_k d'_k d_k = d_k d_k^{-1} d_k = d_k$.

Ceci prouve que DD'D = D, et montre le point (ii) de la définition de pseudonilpotence. On laisse au lecteur le soin de vérifier (i) et (iii). Ceci achèvera de démontrer que D est pseudo-inversible et que $D^* = D'$.

4. Pseudo-inversibilité et nilpotence.

 $\overline{\text{Soit } N \text{ une matrice nilpotente et}}$ pseudo-inversible.

Notons p le plus petit entier k tel que $N^k=0$. On a donc $p\in\mathbb{N}^*,\ N^p=0$ et $N^{p-1}=0$.

Supposons maintenant que $N \neq 0$. Alors $p \geq 2$.

En suivant l'indication de l'énoncé, on calcule

$$N^*N^p = N^*NN^{p-1} = NN^*N^{p-1} = (NN^*N)N^{p-2} = NN^{p-2} = N^{p-1}.$$

Puisque $N^p = 0$, on obtient $N^{p-1} = 0$, ce qui est en contradiction avec la minimalité de p. On a donc prouvé par l'absurde que N = 0.

Partie B. Matrices semblables.

- 1. Réflexivité. Soit $A \in M_n(\mathbb{R})$. On a $A = I_n A I_n$ et puisque I_n est inversible et est son propre inverse, on a $A = I_n^{-1} A I_n$, ce qui donne $A \sim A$.
 - Symétrie. Soient $A, B \in M_n(\mathbb{R})$ telles que $A \sim B$. Il existe donc une matrice P de $GL_n(\mathbb{R})$ telle que $A = P^{-1}BP$. En multipliant à gauche par P et à droite par P^{-1} , on obtient

$$PAP^{-1} = \underbrace{PP^{-1}}_{=I_n} B \underbrace{P^{-1}P}_{=I_n},$$

ce que l'on réécrit

$$B = (P^{-1})^{-1}AP^{-1}.$$

Puisque $P^{-1} \in GL_n(\mathbb{R}, \text{ on a bien que } B \sim A.$

• Transitivité. Soient $A, B, C \in M_n(\mathbb{R})$ telles que $A \sim B$ et $B \sim C$. Alors,

$$\exists P \in GL_n(\mathbb{R}) : A = P^{-1}BP \quad \text{ et } \quad \exists Q \in GL_n(\mathbb{R}) : B = Q^{-1}CQ.$$

On a donc

$$A = P^{-1}BP = P^{-1}(Q^{-1}CQ)P = (P^{-1}Q^{-1})C(QP).$$

Posons R = QP. Cette matrice est inversible comme produit de matrices inversibles, d'inverse $R^{-1} = P^{-1}Q^{-1}$. On a donc $A = R^{-1}CR$, ce qui donne $A \sim C$.

2. La classe d'équivalence de la matrice nulle 0_n est l'ensemble des matrices s'écrivant $P^{-1}0_nP$, avec P inversible : cet ensemble est réduit à la matrice nulle. Si A est inversible, sa classe d'équivalence

$$\{P^{-1}AP, P \in GL_n(\mathbb{R})\}$$

ne contient que des matrices inversibles, comme produit de matrices inversibles.

3. Soient A et B deux matrices semblables : $\exists P \in GL_n(\mathbb{R}) \quad A = P^{-1}BP$.

$$\operatorname{Tr}(A) = \operatorname{Tr}(P^{-1}BP)$$

= $\operatorname{Tr}(BPP^{-1})$ en utilisant $\forall (X,Y) \in M_n(\mathbb{R})$ $\operatorname{Tr}(XY) = \operatorname{Tr}(YX)$
= $\operatorname{Tr}(B)$.

4. La matrice nulle a la même trace que la matrice $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Elles ne sauraient être semblables, puisque dans la classe d'équivalence de la matrice nulle, il n'y a que la matrice nulle.

Partie C. Une diagonalisation.

- 1. En échelonnant : P est inversible et $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.
- 2. On calcule PA puis PAP^{-1} et on obtient $PAP^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix}$.

Notons D la matrice diagonale obtenue. On a $A = P^{-1}DP$: A est semblable à D.

3. On va proposer un candidat pour la pseudo-inverse.

Posons $B = P^{-1}D^*P$. On a par exemple

$$ABA = (P^{-1}DP)(P^{-1}D^*P)(P^{-1}DP) = P^{-1}(DD^*D)P = P^{-1}DP = A.$$

On vient de vérifier le point (ii) de la définition de pseudo-inversibilité. On laisse au lecteur le soin de vérifier les points (i) et (iii). Ceci prouve que A est pseudo-inversible, et que $B = P^{-1}D^*P$.

Partie D. (***) Pseudo-inversibles... dans un anneau quelconque!

- 1. Si a s'écrit pu avec p et u comme il faut, il est facile de vérifier que a est pseudo-inversible, de pseudo-inverse pu^{-1} .
 - Réciproquement, supposons a pseudo-inversible, de pseudo-inverse b.

Posons p = ab. On a $p^2 = (aba)b = ab = p$. Ceci implique notamment p(1-p) = 0. On a aussi pa = aba = a, d'où (1-p)a = a(1-p) = 0.

De même et pb = abb = bab = b d'où (1 - p)b = b(1 - p) = 0.

Posons u = a + 1 - p et u' = b + 1 - p.

On a $uu' = ab + a(1-p) + b(1-a) + (1-p)^2 = ab + 0 + 0 + 1 - 2p + p^2 = p + 1 - 2p + p = 1$.

On montre de même que u'u=1. Ceci prouve que $u\in U(A)$. De plus,

$$pu = ab(a+1-p) = aba + 0 = a$$
 et $up = (a+1-p)ab = aba + 0 = a$.

2. Sq a pseudo-inversible. Sq a : $p^2=p,\ u\in U(A)\ pu=up,\ {\rm et}\ a=pu.$ Posons

$$G = \{ pv \mid v \in U(A) \text{ et } pv = vp \}.$$

On vérifie que G est un groupe, c'est-à-dire un magma associatif et unifère (de neutre p) dans lequel tout élément pv est symétrisable (de symétrique pv^{-1}).

 \bullet Sqaest élément d'un groupe pour le produit, dont on note e le neutre. Soit b le symétrique de a dans ce groupe. L'élément a est pseudo-inversible d'inverse b car

$$ab = e = ba$$
, $aba = ea = a$ $bab = be = b$.

Exercice 1 Groupe où tous les éléments sont d'ordre 2.

1. Soient g et g' deux éléments de G. L'élément $g \star g'$ est d'ordre 2 par hypothèse, donc $(g \star g')^2 = e$. Ceci se récrit (pas de parenthèses car \star est associative).

$$g \star g' \star g \star g' = e.$$

Composons à gauche par g et à droite par g'. On obtient

$$g^2 \star g' \star g \star (g')^2 = g \star g'$$
 donc $e \star g' \star g \star e = g \star g'$ soit $g \star g' = g' \star g$

- 2. (a) Utilisons la caractérisation des sous-groupes.
 - Le neutre e appartient à $H \cup gH$ puisqu'il appartient à H (qui est un sousgroupe).
 - Soient x et x' dans $H \cup gH$. Montrons que $x \star x' \in H \cup gH$. Quatre cas :
 - Cas où x et x' appartiennent à H.
 - Alors $x \star x' \in H$ puisque H est un sous-groupe de G.
 - Cas où $x \in H$ et $x' \in gH$. Il existe alors $(h, h') \in H^2$ tel que x = h et $x' = q \star h$. Alors

$$x \star x' = h \star (g \star h') = g \star (h \star h'),$$

(on a utilisé l'associativité et le fait que G est abélien, comme prouvé en question 1). Puisque $h\star h'\in H$ (H étant un sous-groupe), on a $x\star x'\in qH$.

- Cas où $x \in gH$ et $x' \in H$.
 - On se ramène au cas précédent puisque x et x' commutent.
- Cas où $x \in gH$ et $x' \in gH$. Il existe alors $(h, h') \in H^2$ tel que $x = g \star h$ et $x' = g \star h$. Alors

$$x \star x' = (g \star h) \star (g \star h') = g^2 \star (h \star h') = h \star h'.$$

(on a utilisé l'associativité, le fait que G est abélien et $g^2=e$). On a donc $x\star x'\in gH$.

Dans les quatre cas $x \star x' \in H \cup gH$.

- Soient $x \in H \cup gH$. Deux cas :
 - Cas où $x \in H$.

 $\overline{\text{Alors } x^{-1} \in H}$ puisque H est un sous-groupe.

— Cas où $x \in gH$.

 $\overline{\text{Alors il existe } h} \in H \text{ tel que } x = g \star h. \text{ On a donc}$

$$x^{-1} = (g \star h)^{-1} = h^{-1} \star g^{-1} = g^{-1} \star h^{-1} = g \star h^{-1}.$$

(on a utilisé à la dernière égalité que g est d'ordre 2). Puisque $h \star h' \in H$, on a $x^{-1} \in gH$.

Dans les deux cas $x^{-1} \in H \cup gH$.

Par caractérisation, $H \cup gH$ est un sous-groupe de G

(b) • On va d'abord prouver que la réunion est disjointe. Supposons qu'il existe un élément x dans $H \cap (gH)$. Alors, il existe $(h, h') \in H^2$ tel que x = h et $x = g \star h$. On a donc

$$h = g \star h'$$
 donc $g = h \star (h')^{-1}$.

Puisque h et h' appartiennent à H, sous-groupe de G, on obtient $g \in H$, ce qui est en contradiction avec l'hypothèse faite sur cet élément.

Puisque l'union est disjointe, on a

$$|H \cup gH| = |H| + |gH|.$$

• On va maintenant prouver que |gH| = |H|. Il suffit pour cela d'exhiber une bijection entre ces deux ensembles Posons

$$\varphi: \left\{ \begin{array}{ccc} H & \to & gH \\ h & \mapsto & g \star h \end{array} \right. \quad \text{et} \quad \psi: \left\{ \begin{array}{ccc} gH & \to & H \\ x & \mapsto & g^{-1} \star x \end{array} \right..$$

(on écrit g^{-1} plutôt que g pour plus de clarté mais ces deux éléments sont égaux). On a $\psi \circ \varphi = \mathrm{id}_H$ et $\varphi \circ \psi = \mathrm{id}_{gH}$, ce qui prouve la bijectivité de φ .

On peut désormais conclure que $|H \cup gH| = 2 \times |H|$.

3. Supposons que G est fini.

Soit H un sous-groupe dont le cardinal est une puissance de 2 de valeur maximale. Cela existe car il existe au moins un sous-groupe dont le cardinal est une puissance de 2 : c'est le sous-groupe trivial $\{e\}$. De plus, le cardinal de H est majoré par celui de G, qui est fini.

Supposons que $H \neq G$. Alors, on peut considérer un élément g dans $G \setminus H$. La question 3 donne alors que $H \cup gH$ est un sous-groupe de G de cardinal $2 \times |H|$: son cardinal est donc aussi une puissance de 2, ce qui est en contradiction avec la maximalité supposée pour le cardinal de H.

Par l'absurde, nous avons établi que H = G et donc que

le cardinal de G est une puissance de 2.

Exercice 2.

1. $\{2,4,7\} \in \mathcal{Q}_3(E_8)$ et $\{2,4,5\} \in \mathcal{P}_3(E_8) \setminus \mathcal{Q}_3(E_8)$.

2. On a $y_1 = x_1 + 1 - 1 = x_1 \ge 1$. On a bien $1 \le y_1$. Soit $i \in [1, p-1]$. On a

$$y_{i+1} - y_i = (x_{i+1} + 1 - (i+1)) - (x_i + 1 - i) = x_{i+1} - x_i - 1.$$

Or, puisque $x_{i+1} - x_i > 0$ et que $x_{i+1} - x_i \neq 1$ (puisque les entiers x_i et x_{i+1} ne sont pas consécutifs), on a $x_{i+1} - x_i \geq 2$, puis

$$y_{i+1} - y_i \ge 1$$
.

On a bien $y_i < y_{i+1}$. De plus, $y_p = x_p + 1 - p$, et puisque $x_p \le n$, on a $y_p \le n + 1 - p$. On a bien démontré

$$1 \le y_1 < y_2 < \cdots y_p \le n + 1 - p$$
.

3. Lorsque 2p > n + 1, le cardinal de $Q_p(E_n)$ vaut 0 car cet ensemble est vide. En effet, si $Q_p(E_n)$ est non vide et contient une p-combinaison $\{x_1, \ldots, x_p\}$, la question précédente montre que l'ensemble E_{n+1-p} contient les p entiers deux à deux distincts y_1, \ldots, y_p . Ceci amène

$$p \le n + 1 - p$$
 soit $2p \le n + 1$.

4. Posons

$$F: \left\{ \begin{array}{ccc} \mathcal{Q}_p(E_n) & \to & \mathcal{P}_p(E_{n+1-p}) \\ \{x_1, \dots, x_p\} & \mapsto & \{y_1, \dots, y_p\} \end{array} \right.$$

où les deux p-combinaisons utilisées pour décrire la fonction sont écrites dans l'ordre, et où les y_i ont été définis comme dans la question 2.

On va justifier que F est une bijection.

Soit $\{y_1,\ldots,y_p\}\in\mathcal{P}_p(E_{n+1-p}).$

• Supposons qu'il existe $\{x_1, \ldots, x_p\}$ (écrit dans l'ordre) un antécédent par F de $\{y_1, \ldots, y_p\}$. Alors, par définition de F, on a

$$\forall i \in [1, p] \quad y_i = x_i + 1 - i \quad \text{soit} \quad x_i = y_i + i - 1.$$

Ceci donne l'unicité de l'antécédent $\{x_1,\ldots,x_p\}:F$ est injective.

• Pour $i \in [1, p]$, on pose $x_i = y_i + i - 1$. On vérifie que $\{x_1, \dots, x_p\} \in \mathcal{Q}_p(E_n)$. Tout d'abord, remarquons que

$$\forall i \in [1, p-1] \quad x_{i+1} - x_i = (y_{i+1} + i + 1 - 1) - (y_i + i - 1) = y_{i+1} - y_i + 1.$$

Or, puisque les y_i sont des entiers deux à deux distincts, on a

$$\forall i \in [1, p-1] \quad x_{i+1} - x_i \ge 2.$$

Les éléments de $\{x_1, \ldots, x_p\}$ sont donc écrits dans l'ordre et l'ensemble ne contient pas de paire d'entiers consécutifs. On a bien vérifié que $\{x_1, \ldots, x_p\} \in \mathcal{Q}_p(E_n)$ et c'est pas construction un antécédent de $\{y_1, \ldots, y_p\}$: F est surjective.

5. Puisqu'il existe une bijection entre les ensembles $Q_p(E_n)$ et $\mathcal{P}_p(E_{n+1-p})$, ils ont même cardinal. Ainsi,

$$|\mathcal{Q}_p(E_n)| = |\mathcal{P}_p(E_{n+1-p})| = \binom{n+1-p}{p}.$$

6. Il s'agit de calculer le cardinal de $Q_5(E_{49+1-5})$. D'après la question précédente,

$$|\mathcal{Q}_5(E_{45})| = \binom{45}{5}.$$

7. On calcule

$$|\mathcal{Q}_5(E_{45})| = \frac{45 \times 44 \times 43 \times 42 \times 41}{5 \times 4 \times 3 \times 2 \times 1} = 3^2 \times 7 \times 11 \times 41 \times 43.$$