```
In [1]: #importing the libraries
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
```

```
In [2]: #Reading the dataset
    df=pd.read_csv('day.csv')
    df.head()
```

#### Out[2]:

|   | instant | dteday     | season | yr | mnth | holiday | weekday | workingday | weathersit | ten      |
|---|---------|------------|--------|----|------|---------|---------|------------|------------|----------|
| 0 | 1       | 01-01-2018 | 1      | 0  | 1    | 0       | 1       | 1          | 2          | 14.11084 |
| 1 | 2       | 02-01-2018 | 1      | 0  | 1    | 0       | 2       | 1          | 2          | 14.90259 |
| 2 | 3       | 03-01-2018 | 1      | 0  | 1    | 0       | 3       | 1          | 1          | 8.05092  |
| 3 | 4       | 04-01-2018 | 1      | 0  | 1    | 0       | 4       | 1          | 1          | 8.20000  |
| 4 | 5       | 05-01-2018 | 1      | 0  | 1    | 0       | 5       | 1          | 1          | 9.30520  |

#### 1. Inspecting the dataframe

```
In [3]: # Check the number of rows and columns in the dataframe
df.shape
```

Out[3]: (730, 16)

# In [4]: # Check the column-wise info of the dataframe df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 730 entries, 0 to 729
Data columns (total 16 columns):

| #    | Column       | Non-Null Count | Dtype     |
|------|--------------|----------------|-----------|
| 0    | instant      | 730 non-null   | int64     |
| 1    | dteday       | 730 non-null   | object    |
| 2    | season       | 730 non-null   | int64     |
| 3    | yr           | 730 non-null   | int64     |
| 4    | mnth         | 730 non-null   | int64     |
| 5    | holiday      | 730 non-null   | int64     |
| 6    | weekday      | 730 non-null   | int64     |
| 7    | workingday   | 730 non-null   | int64     |
| 8    | weathersit   | 730 non-null   | int64     |
| 9    | temp         | 730 non-null   | float64   |
| 10   | atemp        | 730 non-null   | float64   |
| 11   | hum          | 730 non-null   | float64   |
| 12   | windspeed    | 730 non-null   | float64   |
| 13   | casual       | 730 non-null   | int64     |
| 14   | registered   | 730 non-null   | int64     |
| 15   | cnt          | 730 non-null   | int64     |
| dtyp | es: float64( | 4), int64(11), | object(1) |
| memo | ry usage: 91 | .4+ KB         |           |

## In [5]: # Check the summary for the numeric columns df.describe()

#### Out[5]:

|       | instant    | season     | yr         | mnth       | holiday    | weekday    | workingday |
|-------|------------|------------|------------|------------|------------|------------|------------|
| count | 730.000000 | 730.000000 | 730.000000 | 730.000000 | 730.000000 | 730.000000 | 730.000000 |
| mean  | 365.500000 | 2.498630   | 0.500000   | 6.526027   | 0.028767   | 2.995890   | 0.690411   |
| std   | 210.877136 | 1.110184   | 0.500343   | 3.450215   | 0.167266   | 2.000339   | 0.462641   |
| min   | 1.000000   | 1.000000   | 0.000000   | 1.000000   | 0.000000   | 0.000000   | 0.000000   |
| 25%   | 183.250000 | 2.000000   | 0.000000   | 4.000000   | 0.000000   | 1.000000   | 0.000000   |
| 50%   | 365.500000 | 3.000000   | 0.500000   | 7.000000   | 0.000000   | 3.000000   | 1.000000   |
| 75%   | 547.750000 | 3.000000   | 1.000000   | 10.000000  | 0.000000   | 5.000000   | 1.000000   |
| max   | 730.000000 | 4.000000   | 1.000000   | 12.000000  | 1.000000   | 6.000000   | 1.000000   |

# In [6]: #visualize missing values if any import klib klib.missingval\_plot(df)

No missing values found in the dataset.

```
In [7]: # Converting date to Pandas datetime format
df['dteday'] = pd.to_datetime(df['dteday'])
```

In [8]: df.head()

#### Out[8]:

|   | instant | dteday     | season | yr | mnth | holiday | weekday | workingday | weathersit | ten      |
|---|---------|------------|--------|----|------|---------|---------|------------|------------|----------|
| 0 | 1       | 2018-01-01 | 1      | 0  | 1    | 0       | 1       | 1          | 2          | 14.11084 |
| 1 | 2       | 2018-02-01 | 1      | 0  | 1    | 0       | 2       | 1          | 2          | 14.90259 |
| 2 | 3       | 2018-03-01 | 1      | 0  | 1    | 0       | 3       | 1          | 1          | 8.05092  |
| 3 | 4       | 2018-04-01 | 1      | 0  | 1    | 0       | 4       | 1          | 1          | 8.20000  |
| 4 | 5       | 2018-05-01 | 1      | 0  | 1    | 0       | 5       | 1          | 1          | 9.3052(  |

#### 2. Data Cleaning and Analysis

#### Out[9]:

|   | instant | dteday     | season | yr | mnth | holiday | weekday | workingday | weathersit | ten      |
|---|---------|------------|--------|----|------|---------|---------|------------|------------|----------|
| 0 | 1       | 2018-01-01 | spring | 0  | Jan  | 0       | Mon     | 1          | Neutral    | 14.11084 |
| 1 | 2       | 2018-02-01 | spring | 0  | Jan  | 0       | Tue     | 1          | Neutral    | 14.90259 |
| 2 | 3       | 2018-03-01 | spring | 0  | Jan  | 0       | Wed     | 1          | Best       | 8.05092  |
| 3 | 4       | 2018-04-01 | spring | 0  | Jan  | 0       | Thu     | 1          | Best       | 8.20000  |
| 4 | 5       | 2018-05-01 | spring | 0  | Jan  | 0       | Fri     | 1          | Best       | 9.30520  |

#### Note: For the column weathersit, the alias is

#### Best:

Clear, Few clouds, Partly cloudy, Partly cloudy

#### **Neutral:**

Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

#### Bad:

Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds

#### Worse:

Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

```
In [10]: #The column 'instant' is very insignificant. Hence dropping that co
         df=df.drop('instant',axis=1)
         df.shape
```

Out[10]: (730, 15)

```
In [11]: #Inserting a new variable day in the dataframe.
         df.insert(4,'day','')
         df['day']=pd.DatetimeIndex(df['dteday']).day
         df.head()
```

#### Out[11]:

|   | dteday     | season | yr | mnth | day | holiday | weekday | workingday | weathersit | temp      |
|---|------------|--------|----|------|-----|---------|---------|------------|------------|-----------|
| 0 | 2018-01-01 | spring | 0  | Jan  | 1   | 0       | Mon     | 1          | Neutral    | 14.110847 |
| 1 | 2018-02-01 | spring | 0  | Jan  | 1   | 0       | Tue     | 1          | Neutral    | 14.902598 |
| 2 | 2018-03-01 | spring | 0  | Jan  | 1   | 0       | Wed     | 1          | Best       | 8.050924  |
| 3 | 2018-04-01 | spring | 0  | Jan  | 1   | 0       | Thu     | 1          | Best       | 8.200000  |
| 4 | 2018-05-01 | spring | 0  | Jan  | 1   | 0       | Fri     | 1          | Best       | 9.305237  |

```
In [12]: print('-----')
       print(df.day.value_counts())
       print('----')
       print(df.workingday.value_counts())
       print('----')
       print(df.weekday.value_counts())
         -----day values-----
       16
            24
       15
            24
            24
       2
       3
            24
       4
            24
       5
            24
       6
            24
       7
            24
            24
       8
       9
            24
       10
            24
       11
            24
            24
       12
       13
            24
       14
            24
       1
            24
       17
            24
       18
            24
       19
            24
            24
       20
       21
            24
       22
            24
            24
       23
       24
            24
       25
            24
       26
            24
            24
       27
       28
            24
            22
       30
            22
       29
       31
            14
       Name: day, dtype: int64
       -----workingday values-----
       1
           504
       0
           226
       Name: workingday, dtype: int64
       -----weekday values-----
            105
       Mon
       Tue
            105
       Wed
            104
       Fri
            104
       Sun
            104
       Thu
            104
       Sat
            104
       Name: weekday, dtype: int64
```

```
In [13]: #dropping dteday
df=df.drop('dteday', axis=1)
df.shape

Out[13]: (730, 15)
```

#### **Visualization**

#### 2.1 Univariate Analysis

```
In [14]: # Univariate analysis of few seemingly significant categorical vari
ables:
univariate_categorical_cols=['season','holiday','workingday','weath
ersit']
plt.style.use('ggplot')
for column in univariate_categorical_cols:
    plt.figure(figsize=(10,4))
    plt.subplot(121)
    df[column].value_counts().plot(kind='bar')
    plt.title(column)
```









```
In [15]: print('Number of holidays in 2018: ',len(df[(df['holiday']==1) & (d
f['yr']==0)]))
print('Number of holidays in 2019: ',len(df[(df['holiday']==1) & (d
f['yr']==1)]))
```

Number of holidays in 2018: 10 Number of holidays in 2019: 11

#### Inferences:

- 1. Even though the margin is minimum, the number of days in fall is maximum and winter is minimum. Number of days as per season in decreasing order: Fall, Summer, Spring, Winter.
- 2. The number of public holidays is 21 in 2 years. Number of holidays in 2018 and 2019 are 10 and 11 respectively
- 3. The number of non-working days(Public holidays+weekends) is slightly less than half the number of working days which can be favourable for bike renting for exploring different places during non working days but can be non-favourable as well since the daily commute to office during the working days can be hampered.
- 4. Weather situation is mostly best case scenario and neutral compared to bad and worse which is favourable for renting bikes.

```
In [16]: # Univariate analysis of few seemingly significant continuous varia
    bles:
    univariate_numerical_cols=df.select_dtypes(include=np.number)
    univariate_numerical_cols=list(univariate_numerical_cols)
    univariate_numerical_cols
    univariate_continuous_var=[i for i in univariate_numerical_cols if
    i not in ['yr',
    'mnth',
    'day',
    'holiday',
    'weekday',
    'workingday']]
    univariate_continuous_var
```

Out[16]: ['temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered', 'cnt']

```
In [17]: for column in univariate_continuous_var:
    plt.figure(figsize=(20,5))
    plt.subplot(121)
    sns.distplot(df[column])
    plt.title(column)
```















#### Inferences:

- 1. Values of temperature and feeling temperature are differently distributed.
- 2. Humidity is almost randomly distributed with a mean of around 61-63.
- 3. The KDE of windspeed is almost a normal distribution with a right skew because of a few days with windspeed over 30.
- 4. The spread of casual users is not normally distributed where as that of registered users is normally distributed ultimately leading to cnt to be spread normally distributed.

#### 2.2 Bivariate Analysis

In [18]: df\_continuous=df[univariate\_continuous\_var]

In [19]: #Bivariate analysis of continuos variables with cnt
sns.pairplot(df\_continuous,diag\_kind='kde')
plt.show()



#### Inference

- 1. Huge corelation between temp and atemp. Hence only one of the 2 variables will be in the model.
- 2. temp/atemp shows some linear relationship with cnt.
- 3. hum and windspeed doesn't show much of a linear relationship with cnt.
- 4. Casual and registered shows linear relationship with cnt out of which the linear relationship shown by registered users is very significant.
- 5. Rest there are not any significant linear relationships.

```
In [20]: #Bivariate analysis of categorical variables with cnt
         plt.figure(figsize=(30,48))
         plt.subplot(8,2,1)
         sns.boxplot(x='yr', y='cnt', data=df)
         plt.subplot(8,2,2)
         sns.barplot(x='season', y='cnt', data=df)
         plt.subplot(8,2,3)
         sns.boxplot(x='holiday', y='cnt', data=df)
         plt.subplot(8,2,4)
         sns.boxplot(x='weathersit', y='cnt', data=df)
         plt.subplot(8,2,5)
         sns.barplot(x='weathersit', y='windspeed', data=df)
         plt.subplot(8,2,6)
         sns.boxplot(x='workingday', y='cnt', data=df)
         plt.subplot(8,2,7)
         sns.barplot(x='mnth', y='windspeed', data=df)
         plt.subplot(8,2,8)
         sns.barplot(x='season', y='windspeed', data=df)
         plt.subplot(8,2,9)
         sns.lineplot(x='day', y='cnt', data=df)
         plt.subplot(8,2,10)
         sns.boxplot(x = 'mnth', y = 'cnt', data = df)
         plt.subplot(8,2,11)
         sns.barplot(x='mnth', y='cnt', data=df)
         plt.subplot(8,2,12)
         sns.barplot(x='weekday', y='cnt', data=df)
         plt.subplot(8,2,13)
         sns.barplot(x='mnth', y='casual', data=df)
         plt.subplot(8,2,14)
         sns.barplot(x='weekday', y='casual', data=df)
         plt.subplot(8,2,15)
         sns.barplot(x='mnth', y='registered', data=df)
         plt.subplot(8,2,16)
         sns.barplot(x='weekday', y='casual', data=df)
         plt.show()
```



```
In [21]: print('------Winter Months-----')
      print('Months')
      print(df[df['season']=='winter'].mnth.value_counts())
      print('----')
      print('Months')
      print(df[df['season']=='spring'].mnth.value_counts())
      print('-----')
      print('Months')
      print(df[df['season']=='summer'].mnth.value_counts())
      print('-----')
      print('Months')
      print(df[df['season']=='fall'].mnth.value_counts())
      -----Winter Months-----
      Months
      0ct
           62
      Nov
           60
           40
      Dec
      Sep
           16
      Name: mnth, dtype: int64
      -----Spring Months-----
      Months
      Jan
           62
      Feb
           56
      Mar
           40
      Dec
           22
      Name: mnth, dtype: int64
      -----Summer Months-----
      Months
      May
            62
      Apr
            60
      June
            40
      Mar
            22
      Name: mnth, dtype: int64
      -----Fall Months-----
      Months
            62
      Aug
      Jul
            62
      Sep
            44
      June
            20
```

Name: mnth, dtype: int64

#### Inferences

- 1. The cnt in the year 2019 was way more than that in 2018. The 75th percentile of the cnt in 2018 is almost equivalent to 25 percentile in 2019.
- 2. Number of bikes booked according to seasons in a decreasing order: Fall, Summer, Winter and Spring.
- 3. The trend of increasing use of bike starts from january(lowest) till June then stays almost the same till september and then starts dropping. There's a scope to increase the bike usage in the months from january till May and from October to december. The drop of bike usage from october till December might be explained by the winter season and less bike usage from January to April might be explained by higher windspeed.
- 4. Days of the week doesn't matter much. Almost similar number of bikes are rented same number of times everyday in a week but Monday and tuesday have relatively less bookings.
- 5. The average count of bikes rented is more during non-public holidays.
- 6. The average count of bikes rented when the weather is situation is 'Clear, Few clouds, Partly cloudy, Partly cloudy' or 'Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist' termed as 'Best' and 'Neutral' is much more compared to other situations termed as 'Bad' and 'Worse'- Wind speed during the bad weather situations is more than 'Best' and 'neautral' weather situations and hence more number of bikes are rented in such situations.
- 7. The line-graph trend shows that the count of bikes rented is least from 1st-4th day, peaks from 6th-10th day in a month and again dips till 13th day and kind of stays almost constant throughout the month.
- **8.** There was a drop of bike rents by casual users in the winters and in the first 2 months of spring and less drop in the registered users. These people may be regular office going people or fitness enthusiasts.





Since we have casual+registered=cnt and inferences are built from casual and registered records, let's drop them since these columns seem irrelevant for the model. Also it is a given that increasing casual or registered users both will be profitable factor for the business.

```
In [23]: df=df.drop(['casual', 'registered'],axis=1)
    df.head()
```

Out [23]:

|   | season | yr | mnth | day | holiday | weekday | workingday | weathersit | temp      | atemp    |    |
|---|--------|----|------|-----|---------|---------|------------|------------|-----------|----------|----|
| 0 | spring | 0  | Jan  | 1   | 0       | Mon     | 1          | Neutral    | 14.110847 | 18.18125 | 81 |
| 1 | spring | 0  | Jan  | 1   | 0       | Tue     | 1          | Neutral    | 14.902598 | 17.68695 | 6! |
| 2 | spring | 0  | Jan  | 1   | 0       | Wed     | 1          | Best       | 8.050924  | 9.47025  | 4: |
| 3 | spring | 0  | Jan  | 1   | 0       | Thu     | 1          | Best       | 8.200000  | 10.60610 | 5! |
| 4 | spring | 0  | Jan  | 1   | 0       | Fri     | 1          | Best       | 9.305237  | 11.46350 | 4: |

Also temp and atemp are very highly corelated and their respective colinearities with cnt are also same. Hence dropping atemp since feeling temperature can be relatively less accurate compared to temperature.

```
In [24]: df=df.drop('atemp',axis=1)
```

In [25]: df.head()

#### Out [25]:

|   | season | yr | mnth | day | holiday | weekday | workingday | weathersit | temp      | hum     | wiı |
|---|--------|----|------|-----|---------|---------|------------|------------|-----------|---------|-----|
| 0 | spring | 0  | Jan  | 1   | 0       | Mon     | 1          | Neutral    | 14.110847 | 80.5833 | 1(  |
| 1 | spring | 0  | Jan  | 1   | 0       | Tue     | 1          | Neutral    | 14.902598 | 69.6087 | 16  |
| 2 | spring | 0  | Jan  | 1   | 0       | Wed     | 1          | Best       | 8.050924  | 43.7273 | 16  |
| 3 | spring | 0  | Jan  | 1   | 0       | Thu     | 1          | Best       | 8.200000  | 59.0435 | 1(  |
| 4 | spring | 0  | Jan  | 1   | 0       | Fri     | 1          | Best       | 9.305237  | 43.6957 | 12  |

#### 3. Preparing data for modelling

```
In [26]: #Creating Dummy variables

def dummies(x,dataframe):
    temp = pd.get_dummies(dataframe[x], drop_first = True)
    dataframe = pd.concat([dataframe, temp], axis = 1)
    dataframe.drop([x], axis = 1, inplace = True)
    return dataframe
# Applying the function to the bikeSharing

df = dummies('season',df)
  df = dummies('mnth',df)
  df = dummies('weekday',df)
  df = dummies('weathersit',df)
  df.head()
```

#### Out [26]:

|   | yr | day | holiday | workingday | temp      | hum     | windspeed | cnt  | spring | summer | ( |
|---|----|-----|---------|------------|-----------|---------|-----------|------|--------|--------|---|
| 0 | 0  | 1   | 0       | 1          | 14.110847 | 80.5833 | 10.749882 | 985  | 1      | 0      |   |
| 1 | 0  | 1   | 0       | 1          | 14.902598 | 69.6087 | 16.652113 | 801  | 1      | 0      |   |
| 2 | 0  | 1   | 0       | 1          | 8.050924  | 43.7273 | 16.636703 | 1349 | 1      | 0      |   |
| 3 | 0  | 1   | 0       | 1          | 8.200000  | 59.0435 | 10.739832 | 1562 | 1      | 0      |   |
| 4 | 0  | 1   | 0       | 1          | 9.305237  | 43.6957 | 12.522300 | 1600 | 1      | 0      |   |

5 rows × 30 columns

In [27]: df.shape

Out[27]: (730, 30)

In [28]: df.describe()

Out [28]:

|       | yr         | day        | holiday    | workingday | temp       | hum        | windspeed  |
|-------|------------|------------|------------|------------|------------|------------|------------|
| count | 730.000000 | 730.000000 | 730.000000 | 730.000000 | 730.000000 | 730.000000 | 730.000000 |
| mean  | 0.500000   | 15.720548  | 0.028767   | 0.690411   | 20.319259  | 62.765175  | 12.763620  |
| std   | 0.500343   | 8.802278   | 0.167266   | 0.462641   | 7.506729   | 14.237589  | 5.195841   |
| min   | 0.000000   | 1.000000   | 0.000000   | 0.000000   | 2.424346   | 0.000000   | 1.500244   |
| 25%   | 0.000000   | 8.000000   | 0.000000   | 0.000000   | 13.811885  | 52.000000  | 9.041650   |
| 50%   | 0.500000   | 16.000000  | 0.000000   | 1.000000   | 20.465826  | 62.625000  | 12.125325  |
| 75%   | 1.000000   | 23.000000  | 0.000000   | 1.000000   | 26.880615  | 72.989575  | 15.625589  |
| max   | 1.000000   | 31.000000  | 1.000000   | 1.000000   | 35.328347  | 97.250000  | 34.000021  |

8 rows × 30 columns

#### 3.1 Spliting the data into test and train

```
In [29]: import sklearn
from sklearn.model_selection import train_test_split

df_train, df_test= train_test_split(df,train_size=0.7, random_state =100)
    print(df_train.shape)
    print(df_test.shape)

(510, 30)
    (220, 30)
```

#### 3.2 Rescalling the features:

In [30]: #Rescaling even the target variables since a target variable with a
large spread of values, in turn, may result
#in large error gradient values causing weight values to change dra
matically, making the learning process unstable.

from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()

need\_rescale=['temp','hum','windspeed','cnt']
df\_train[need\_rescale]=scaler.fit\_transform(df\_train[need\_rescale])
df\_train.describe()

#### Out [30]:

|             | yr         | day        | holiday    | workingday | temp       | hum        | windspeed  |
|-------------|------------|------------|------------|------------|------------|------------|------------|
| count       | 510.000000 | 510.000000 | 510.000000 | 510.000000 | 510.000000 | 510.000000 | 510.000000 |
| mean        | 0.507843   | 15.631373  | 0.025490   | 0.711765   | 0.537440   | 0.650480   | 0.320883   |
| std         | 0.500429   | 8.852724   | 0.157763   | 0.453386   | 0.225858   | 0.145846   | 0.169803   |
| min         | 0.000000   | 1.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   | 0.000000   |
| 25%         | 0.000000   | 8.000000   | 0.000000   | 0.000000   | 0.339853   | 0.538643   | 0.199179   |
| 50%         | 1.000000   | 16.000000  | 0.000000   | 1.000000   | 0.542596   | 0.653714   | 0.296763   |
| <b>75</b> % | 1.000000   | 23.000000  | 0.000000   | 1.000000   | 0.735215   | 0.754830   | 0.414447   |
| max         | 1.000000   | 31.000000  | 1.000000   | 1.000000   | 1.000000   | 1.000000   | 1.000000   |

8 rows × 30 columns

#### 3.3 Splitting train dataset into X and y

```
In [31]: y_train=df_train.pop('cnt')
X_train=df_train
```

#### 4. Model Building

```
In [32]: #Since the total number of variables are 30, using RFE to calculate
          the best 15 variables to be used for model building
          from sklearn.feature_selection import RFE
          from sklearn.linear_model import LinearRegression
          lm=LinearRegression()
          lm.fit(X_train,y_train)
          rfe=RFE(lm, 15)
          rfe=rfe.fit(X_train,y_train)
          list(zip(X_train.columns,rfe.support_,rfe.ranking_))
Out [32]:
         [('yr', True, 1),
           ('day', False, 15),
           ('holiday', True, 1),
           ('workingday', False, 3),
           ('temp', True, 1), ('hum', True, 1),
           ('windspeed', True, 1),
           ('spring', True, 1),
           ('summer', True, 1), ('winter', True, 1),
           ('Aug', False, 9),
           ('Dec', True, 1), ('Feb', False, 2),
           ('Jan', True, 1),
           ('Jul', True, 1),
           ('June', False, 11),
           ('Mar', False, 14),
           ('May', False, 8),
           ('Nov', True, 1),
           ('Oct', False, 12),
           ('Sep', True, 1),
           ('Mon', False, 7),
           ('Sat', False, 4),
           ('Sun', False, 5),
           ('Thu', False, 13),
           ('Tue', False, 6),
           ('Wed', False, 10),
           ('Best', True, 1),
           ('Neutral', True, 1)]
In [33]: | col = X_train.columns[rfe.support_]
          col
         Index(['yr', 'holiday', 'temp', 'hum', 'windspeed', 'spring', 'summe
Out [33]:
          r',
                  'winter', 'Dec', 'Jan', 'Jul', 'Nov', 'Sep', 'Best', 'Neutral
          '],
                dtype='object')
```

0

0

1

0

0

0

0

0

0

- (

- (

```
In [34]: X_train.columns[~rfe.support_]
Out[34]: Index(['day', 'workingday', 'Aug', 'Feb', 'June', 'Mar', 'May', 'Oct
          ', 'Mon',
                  'Sat', 'Sun', 'Thu', 'Tue', 'Wed'],
                 dtype='object')
In [35]: X_train_rfe=X_train[X_train.columns[rfe.support_]]
          X_train_rfe.head()
Out [35]:
               yr holiday
                            temp
                                     hum windspeed spring summer winter Dec
                                                                            Jan
                                                                                 Jul No
           576
                       0 0.815169 0.725633
                                           0.264686
                                                                          0
                                                                               0
           426
               1
                       0 0.442393 0.640189
                                           0.255342
                                                       1
                                                               0
                                                                      0
                                                                          0
                                                                               0
                                                                                   0
           728
                       0 0.245101 0.498067
                                           0.663106
                                                        1
                                                               0
                                                                      0
                                                                          1
                                                                               0
                                                                                   0
               1
                                                                                       - (
```

0.188475

0.380981

0

0

After minimizing the number of variables using RFE, using statsmodel to build an optimized model.

0 0.395666 0.504508

0 0.345824 0.751824

**482** 1

**111** 0

```
#Defining 2 functions model and VIF to train model and calculate VI
In [36]:
         F repeatatively.
         import statsmodels.api as sm
         def model(X,y):
             X=sm.add_constant(X)
             lm_model=sm.OLS(y,X).fit()
             print(lm_model.summary())
             return X
         from statsmodels.stats.outliers_influence import variance_inflation
         _factor
         def VIF(X):
             vif=pd.DataFrame()
             vif['Features']=X.columns
             vif['VIF']=[variance_inflation_factor(X.values, i) for i in ran
         ge(X.shape[1])]
             vif['VIF']=round(vif['VIF'],2)
             vif=vif.sort_values(by='VIF', ascending=False)
             return vif
```

**First Model:** 

```
In [37]: #Training the first model
X_train1=model(X_train_rfe,y_train)
```

#### OLS Regression Results

| ========              | ========   | ========    | =====       | ===== |                | ======= |
|-----------------------|------------|-------------|-------------|-------|----------------|---------|
| ========              |            |             |             |       |                |         |
| Dep. Variab<br>0.845  | le:        |             | cnt         | R–sqı | uared:         |         |
| Model:                |            |             | OLS .       | Adj.  | R-squared:     |         |
| 0.840                 |            |             |             |       |                |         |
| Method:<br>179.4      |            | Least Squa  | res         | F–sta | ntistic:       |         |
| Date:                 | Th         | u, 28 Jan 2 | 021         | Prob  | (F-statistic): |         |
| 8.15e-189<br>Time:    |            | 22:03       | :09         | Log-L | ikelihood:     |         |
| 514.19                | <b>+</b> : |             | F10         | ATC.  |                |         |
| No. Observa<br>-996.4 | CIONS:     |             | 510         | AIC:  |                |         |
| Df Residual -928.6    | s:         |             | 494         | BIC:  |                |         |
| Df Model:             |            |             | 15          |       |                |         |
| Covariance            |            | nonrob      | ust         |       |                |         |
|                       | ========   | =======     | =====       | ===== | ==========     | ======  |
| ========              | coef       | std err     |             | t     | P> t           | [0.025  |
| 0.975]                |            |             |             |       |                |         |
|                       |            |             |             |       |                |         |
| const<br>0.167        | 0.0732     | 0.048       | 1.          | 540   | 0.124          | -0.020  |
| yr                    | 0.2304     | 0.008       | 28.         | 487   | 0.000          | 0.215   |
| 0.246                 |            |             | _           |       |                |         |
| holiday<br>-0.041     | -0.0911    | 0.026       | -3.         | 557   | 0.000          | -0.141  |
| temp<br>0.554         | 0.4815     | 0.037       | 13.         | 005   | 0.000          | 0.409   |
| hum                   | -0.1622    | 0.038       | -4.         | 291   | 0.000          | -0.236  |
| -0.088 windspeed      | -0.1887    | 0.026       | -7.         | 315   | 0.000          | -0.239  |
| -0.138 spring         | -0.0613    | 0.021       | -2.         | 881   | 0.004          | -0.103  |
| -0.019                |            |             |             |       |                |         |
| summer<br>0.072       | 0.0423     | 0.015       | 2.          | 761   | 0.006          | 0.012   |
| winter<br>0.137       | 0.1019     | 0.018       | 5.          | 656   | 0.000          | 0.067   |
| Dec                   | -0.0355    | 0.018       | -2.         | 024   | 0.043          | -0.070  |
| -0.001<br>Jan         | -0.0434    | 0.018       | -2.         | 393   | 0.017          | -0.079  |
| -0.008<br>Jul         | -0.0553    | 0.018       | -3.         | 030   | 0.003          | -0.091  |
| -0.019                |            |             |             |       |                |         |
| Nov<br>-0.002         | -0.0387    | 0.019       | -2 <b>.</b> | 057   | 0.040          | -0.076  |
| Sep                   | 0.0755     | 0.017       | 4.          | 466   | 0.000          | 0.042   |
| 0.109<br>Best         | 0.2465     | 0.026       | 9.          | 331   | 0.000          | 0.195   |
| 0.298<br>Neutral      | 0.1922     | 0.025       | 7           | 687   | 0.000          | 0.143   |
| Hearine               | 011322     | 01023       | , .         | 507   | 01000          | 01173   |

#### 0.241

\_\_\_\_\_\_ Omnibus: 66.656 Durbin-Watson: 2.025 Prob(Omnibus): 0.000 Jarque-Bera (JB): 161.040 Skew: -0.682 Prob(JB): 1.07e-35 5.392 Cond. No. Kurtosis: 26.0

\_\_\_\_\_\_

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [38]: #Calculating Variance Inflation Factor VIF(X\_train1)

#### Out[38]:

| Features  | VIF                                                                               |
|-----------|-----------------------------------------------------------------------------------|
| const     | 143.15                                                                            |
| Best      | 10.36                                                                             |
| Neutral   | 8.95                                                                              |
| spring    | 5.27                                                                              |
| temp      | 4.42                                                                              |
| winter    | 3.83                                                                              |
| summer    | 2.77                                                                              |
| hum       | 1.92                                                                              |
| Nov       | 1.77                                                                              |
| Jan       | 1.68                                                                              |
| Dec       | 1.50                                                                              |
| Jul       | 1.49                                                                              |
| Sep       | 1.34                                                                              |
| windspeed | 1.21                                                                              |
| yr        | 1.04                                                                              |
| holiday   | 1.03                                                                              |
|           | const Best Neutral spring temp winter summer hum Nov Jan Dec Jul Sep windspeed yr |

In [39]: #VIF of Best > 10. But according to experience it seems people are
more likely to use bikes in the best weather situations
# andhence seems significant.
#Let's drop Dec to see the difference in the significance of other
variables and R squared
X\_train1=X\_train1.drop('Dec',axis=1)

#### **Second Model:**

In [40]: X\_train1=model(X\_train1,y\_train)

### OLS Regression Results

| ========                  | ======= | ========     | =====     | =====        |                | ======= |
|---------------------------|---------|--------------|-----------|--------------|----------------|---------|
| Dep. Variab               | le:     |              | cnt       | R-squ        | uared:         |         |
| 0.844<br>Model:           |         |              | 0LS       | Adj.         | R-squared:     |         |
| 0.839<br>Method:          |         | Least Squa   | rec       | F_c+s        | atictic.       |         |
| 190.8                     |         | Least Squa   | 165       | 1-510        | acistic.       |         |
| Date:<br>4.41e-189        | Т       | hu, 28 Jan 2 | 021       | Prob         | (F-statistic): |         |
| Time:                     |         | 22:03        | :09       | Log-l        | _ikelihood:    |         |
| 512.08<br>No. Observa     | tions:  |              | 510       | AIC:         |                |         |
| -994.2<br>Df Residual     | s:      |              | 495       | BIC:         |                |         |
| -930.6                    |         |              | 1.4       |              |                |         |
| Df Model:                 | Tyne:   | nonrob       | 14<br>s.t |              |                |         |
|                           |         |              |           | =====        | -=======       | ======= |
| ========                  | _       |              |           |              |                | _       |
| 0.975]                    | coef    | std err      |           | t            | P> t           | [0.025  |
|                           |         |              |           |              |                |         |
| const                     | 0.0629  | 0.047        | 1         | . 326        | 0.185          | -0.030  |
| 0.156                     |         |              |           |              |                |         |
| yr<br>0₌246               | 0.2302  | 0.008        | 28        | .371         | 0.000          | 0.214   |
| holiday<br>-0.042         | -0.0920 | 0.026        | -3        | <b>.</b> 582 | 0.000          | -0.142  |
| temp<br>0.575             | 0.5055  | 0.035        | 14        | .369         | 0.000          | 0.436   |
| hum                       | -0.1697 | 0.038        | -4        | . 497        | 0.000          | -0.244  |
| -0.096<br>windspeed       | -0.1858 | 0.026        | -7        | .190         | 0.000          | -0.237  |
| -0.135<br>spring          | -0.0562 | 0.021        | -2        | .652         | 0.008          | -0.098  |
| -0.015<br>summer          | 0.0479  | 0.015        | 3         | .168         | 0.002          | 0.018   |
| 0.078<br>winter           | 0.0972  | 0.018        | 5         | .421         | 0.000          | 0.062   |
| 0.132<br>Jan              | -0.0341 | 0.018        | -1        | .936         | 0.053          | -0.069  |
| 0.001<br>Jul              | -0.0559 | 0.018        | -3        | .057         | 0.002          | -0.092  |
| -0.020<br>Nov             | -0.0236 | 0.017        | -1        | .362         | 0.174          | -0.058  |
| 0.010<br>Sep              | 0.0802  | 0.017        | 4         | .775         | 0.000          | 0.047   |
| 0.113<br>Best             | 0.2404  | 0.026        | 9         | .131         | 0.000          | 0.189   |
| 0.292<br>Neutral<br>0.237 | 0.1876  | 0.025        | 7         | .511         | 0.000          | 0.139   |
|                           |         |              |           |              |                |         |

```
========
                                60.634
                                         Durbin-Watson:
Omnibus:
2.047
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
138.746
                                         Prob(JB):
Skew:
                                -0.640
7.44e-31
Kurtosis:
                                 5.211
                                         Cond. No.
25.9
```

========

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### In [41]: VIF(X\_train1)

#### Out [41]:

|    | Features  | VIF    |
|----|-----------|--------|
| 0  | const     | 141.50 |
| 13 | Best      | 10.23  |
| 14 | Neutral   | 8.88   |
| 6  | spring    | 5.20   |
| 3  | temp      | 3.97   |
| 8  | winter    | 3.76   |
| 7  | summer    | 2.68   |
| 4  | hum       | 1.90   |
| 9  | Jan       | 1.57   |
| 10 | Jul       | 1.49   |
| 11 | Nov       | 1.49   |
| 12 | Sep       | 1.31   |
| 5  | windspeed | 1.21   |
| 1  | yr        | 1.04   |
| 2  | holiday   | 1.03   |

```
In [42]: #R squared remained almost the same. Variable Nov seems insignificant
```

```
In [43]: X_train1=X_train1.drop('Nov',axis=1)
```

#### Third model

In [44]: X\_train1=model(X\_train1,y\_train)

### OLS Regression Results

| ========                  |          | •             | •           |       | ==========     |         |
|---------------------------|----------|---------------|-------------|-------|----------------|---------|
| Dep. Variab               | le:      | (             | cnt         | R–sqı | uared:         |         |
| 0.843<br>Model:           |          | (             | DLS         | Adj.  | R-squared:     |         |
| 0.839<br>Method:          |          | Least Squa    | res         | F-sta | atistic:       |         |
| 205.0<br>Date:            | TI       | nu. 28 Jan 20 | 021         | Prob  | (F-statistic): |         |
| 7.59e-190<br>Time:        |          | 22:03:        |             |       | Likelihood:    |         |
| 511.13                    |          |               |             |       | LIKE CINOUL    |         |
| No. Observat              |          | 5             |             | AIC:  |                |         |
| Df Residuals<br>-935.0    | 5:       | 2             | 196         | BIC:  |                |         |
| Df Model:                 | -        |               | 13          |       |                |         |
|                           |          | nonrobι<br>   |             | ====  | ==========     | ======= |
| =======                   |          |               |             |       |                |         |
| 0.975]                    | coef     | std err       |             | t     | P> t           | [0.025  |
|                           |          |               |             |       |                |         |
| const<br>0.150            | 0.0572   | 0.047         | 1.          | 210   | 0.227          | -0.036  |
| yr                        | 0.2301   | 0.008         | 28.         | 339   | 0.000          | 0.214   |
| 0.246<br>holiday          | -0.0963  | 0.026         | -3 <b>.</b> | 773   | 0.000          | -0.146  |
| -0.046<br>temp            | 0.5124   | 0.035         | 14.         | 706   | 0.000          | 0.444   |
| 0.581<br>hum              | -0.1681  | 0.038         | -4.         | 452   | 0.000          | -0.242  |
| -0.094<br>windspeed       | -0.1874  | 0.026         | -7 <b>.</b> | 253   | 0.000          | -0.238  |
| -0.137 spring             | -0.0519  | 0.021         | -2.         | 476   | 0.014          | -0.093  |
| -0.011<br>summer          | 0.0502   | 0.015         | 3.          | 336   | 0.001          | 0.021   |
| 0.080<br>winter           | 0.0919   | 0.018         | 5.          | 247   | 0.000          | 0.057   |
| 0.126<br>Jan              | -0.0333  | 0.018         | -1.         | 892   | 0.059          | -0.068  |
| 0.001<br>Jul              | -0.0556  | 0.018         | -3.         | 039   | 0.003          | -0.092  |
| -0.020<br>Sep             | 0.0827   | 0.017         | 4.          | 951   | 0.000          | 0.050   |
| 0.116<br>Best             | 0.2392   | 0.026         | 9.          | 084   | 0.000          | 0.187   |
| 0.291<br>Neutral<br>0.236 | 0.1866   | 0.025         | 7.          | 469   | 0.000          | 0.138   |
| =========                 | ======== | =========     | =====       | ====  | ===========    | ======  |
| Omnibus:                  |          | 58.6          | 533         | Durb  | in-Watson:     |         |

35 of 59

```
2.057
Prob(Omnibus): 0.000 Jarque-Bera (JB):
131.919
Skew: -0.626 Prob(JB):
2.26e-29
Kurtosis: 5.154 Cond. No.
25.8
```

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

#### In [45]: VIF(X\_train1)

#### Out [45]:

|    | Features  | VIF    |
|----|-----------|--------|
| 0  | const     | 140.41 |
| 12 | Best      | 10.21  |
| 13 | Neutral   | 8.87   |
| 6  | spring    | 5.08   |
| 3  | temp      | 3.89   |
| 8  | winter    | 3.59   |
| 7  | summer    | 2.65   |
| 4  | hum       | 1.90   |
| 9  | Jan       | 1.57   |
| 10 | Jul       | 1.49   |
| 11 | Sep       | 1.30   |
| 5  | windspeed | 1.21   |
| 1  | yr        | 1.04   |
| 2  | holiday   | 1.02   |

```
In [46]: #R squared remained almost the same. Variable Jan seems insignificant
```

```
In [47]: X_train1=X_train1.drop('Jan',axis=1)
```

#### **Fourth Model**

In [48]: X\_train1=model(X\_train1,y\_train)

| =========                  | ======== | 015 Ke        | _     |              | =========      | ======= |
|----------------------------|----------|---------------|-------|--------------|----------------|---------|
| ======<br>Dep. Variable    | e:       | ,             | cnt   | R–squa       | ared:          |         |
| 0.842                      |          |               | 01.6  |              |                |         |
| Model:<br>0.838            |          |               | 0LS   | Adj. I       | R-squared:     |         |
| Method:<br>220.6           |          | Least Squa    | res   | F–sta        | tistic:        |         |
| Date:<br>2.95e-190         | TI       | nu, 28 Jan 20 | 021   | Prob         | (F-statistic): |         |
| Time: 509.29               |          | 22:03         | :09   | Log-L        | ikelihood:     |         |
| No. Observat: -992.6       | ions:    | !             | 510   | AIC:         |                |         |
| Df Residuals               | :        | •             | 497   | BIC:         |                |         |
| Df Model:                  |          |               | 12    |              |                |         |
| Covariance Ty              | ype:     | nonrob        |       |              |                |         |
|                            | =======  | ========      | ===== | ======       | ========       | ======= |
| =======                    | cnef     | std err       |       | +            | P> t           | [0.025  |
| 0.975]                     | COCT     | Sea err       |       | _            | 15 [6]         | [01025  |
|                            |          |               |       |              |                |         |
| const                      | 0.0478   | 0.047         | 1     | .015         | 0.311          | -0.045  |
| 0.140<br>yr                | 0.2294   | 0.008         | 28    | .208         | 0.000          | 0.213   |
| 0.245<br>holiday<br>-0.047 | -0.0969  | 0.026         | -3    | .787         | 0.000          | -0.147  |
| temp<br>0.596              | 0.5299   | 0.034         | 15    | .728         | 0.000          | 0.464   |
| hum<br>-0.098              | -0.1726  | 0.038         | -4    | .569         | 0.000          | -0.247  |
| windspeed<br>-0.132        | -0.1822  | 0.026         | -7    | .074         | 0.000          | -0.233  |
| spring<br>-0.015           | -0.0564  | 0.021         | -2    | .700         | 0.007          | -0.097  |
| summer<br>0.083            | 0.0531   | 0.015         | 3     | <b>.</b> 536 | 0.000          | 0.024   |
| winter<br>0.132            | 0.0976   | 0.017         | 5     | .643         | 0.000          | 0.064   |
| Jul<br>-0.021              | -0.0572  | 0.018         | -3    | .123         | 0.002          | -0.093  |
| Sep<br>0.116               | 0.0833   | 0.017         | 4     | .973         | 0.000          | 0.050   |
| Best<br>0.289              | 0.2369   | 0.026         | 8     | .983         | 0.000          | 0.185   |
| Neutral<br>0.233           | 0.1843   | 0.025         | 7     | .364         | 0.000          | 0.135   |
| =========                  | =======  | ========      | ===== | =====        | ========       | ======  |
| =======<br>Omnibus:        |          | 57.           | 486   | Durbi        | n-Watson:      |         |
| 2.051<br>Prob(Omnibus      | ):       | 0.0           | 000   | Jarque       | e-Bera (JB):   |         |

38 of 59

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# In [49]: VIF(X\_train1)

## Out [49]:

|    | Features  | VIF    |
|----|-----------|--------|
| 0  | const     | 138.87 |
| 11 | Best      | 10.19  |
| 12 | Neutral   | 8.85   |
| 6  | spring    | 5.02   |
| 3  | temp      | 3.61   |
| 8  | winter    | 3.48   |
| 7  | summer    | 2.62   |
| 4  | hum       | 1.89   |
| 9  | Jul       | 1.48   |
| 10 | Sep       | 1.30   |
| 5  | windspeed | 1.19   |
| 1  | yr        | 1.03   |
| 2  | holiday   | 1.02   |

```
In [50]: #All the variables seems significant now after evaluating P>|t| and
VIF

#R squared from model summary is 0.842
r2=0.842

#Calculating adjusted R squared:
n = X_train1.shape[0]

# Number of features (predictors, p) is the shape along axis 1
p = X_train1.shape[1]

# We find the Adjusted R-squared using the formula
adjusted_r2 = 1-(1-r2)*(n-1)/(n-p-1)
adjusted_r2
```

Out [50]: 0.8378588709677419

The variables Best has a VIF slightly greater than 10. But best case weather scenario must be kept while building the model. Hence considering the above model to be the ideal one. But let's drop a few more variables to see the changes in R squared, F-statistic and Prob (F-statistic) and if we could come up with a better model

```
In [51]: X_train1=X_train1.drop('Best',axis=1)
```

Fifth Model

In [52]: X\_train1=model(X\_train1,y\_train)

| ========              | ========= | =========     | =====    |       | ======================================= | ======= |
|-----------------------|-----------|---------------|----------|-------|-----------------------------------------|---------|
|                       | 1         |               |          |       |                                         |         |
| Dep. Variab<br>0.816  | ite:      | CI            | nt P     | k–squ | ared:                                   |         |
| Model:                |           | 01            | LS A     | Adj.  | R-squared:                              |         |
| 0.812<br>Method:      |           | Least Square  | es F     | -sta  | tistic:                                 |         |
| 201.1                 |           | Least Squar   |          | 3 00  |                                         |         |
| Date:<br>3.01e-175    | Th        | u, 28 Jan 202 | 21 F     | Prob  | (F-statistic):                          |         |
| Time:                 |           | 22:03:        | 10 L     | _og–L | ikelihood:                              |         |
| 470.93<br>No. Observa | tions:    | 5:            | 10 A     | AIC:  |                                         |         |
| -917.9<br>Df Residual | .s:       | 49            | 98 E     | BIC:  |                                         |         |
| -867 <b>.</b> 0       |           |               |          |       |                                         |         |
| Df Model:             | Type:     |               | 11<br>c+ |       |                                         |         |
|                       |           |               |          | ====  | :========                               | ======= |
| ========              |           |               |          |       |                                         |         |
| 0.0751                | coef      | std err       |          | t     | P> t                                    | [0.025  |
| <b>0.</b> 975]        |           |               |          |       |                                         |         |
|                       |           |               |          |       |                                         |         |
| const                 | 0.3419    | 0.037         | 9.3      | 366   | 0.000                                   | 0.270   |
| 0.414<br>yr           | 0.2299    | 0.009         | 26.2     | 257   | 0.000                                   | 0.213   |
| 0.247                 |           |               |          |       |                                         |         |
| holiday<br>-0.033     | -0.0869   | 0.028         | -3.1     | L58   | 0.002                                   | -0.141  |
| temp<br>0.639         | 0.5685    | 0.036         | 15.7     | 795   | 0.000                                   | 0.498   |
| hum                   | -0.3057   | 0.037         | -8.1     | L69   | 0.000                                   | -0.379  |
| •                     | -0.2292   | 0.027         | -8.4     | 140   | 0.000                                   | -0.283  |
| -0.176 spring         | -0.0430   | 0.022         | -1.9     | 915   | 0.056                                   | -0.087  |
| 0.001<br>summer       | 0.0602    | 0.016         | 3.7      | 721   | 0.000                                   | 0.029   |
| 0.092                 |           |               |          |       |                                         |         |
| winter<br>0.139       | 0.1028    | 0.019         | 5.5      | 523   | 0.000                                   | 0.066   |
| Jul<br>-0.024         | -0.0631   | 0.020         | -3.1     | L96   | 0.001                                   | -0.102  |
| Sep                   | 0.0815    | 0.018         | 4.5      | 519   | 0.000                                   | 0.046   |
| 0.117<br>Neutral      | -0.0220   | 0.011         | -2.0     | 062   | 0.040                                   | -0.043  |
| -0.001                |           |               |          |       |                                         |         |
| ========              |           |               |          |       |                                         |         |
| Omnibus: 2.033        |           | 95.89         | 95 D     | Durbi | n-Watson:                               |         |
| Prob(Omnibu           | s):       | 0.00          | 00 J     | Jarqu | e-Bera (JB):                            |         |
| 249.907<br>Skew:      |           | -0.93         | 33 F     | Prob( | JB):                                    |         |
|                       |           |               |          |       |                                         |         |

42 of 59

5.41e-55 Kurtosis: 19.2

5.877 Cond. No.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [53]: #The value of R squared decreased and value of F-statistic dropped significantly which shows that the fourth model was more #fit then the fifth. Still trying to drop spring to see if better m odel can be achieved.

In [54]: VIF(X\_train1)

Out [54]:

|    | Features  | VIF   |
|----|-----------|-------|
| 0  | const     | 71.84 |
| 6  | spring    | 4.99  |
| 3  | temp      | 3.56  |
| 8  | winter    | 3.48  |
| 7  | summer    | 2.61  |
| 4  | hum       | 1.60  |
| 9  | Jul       | 1.48  |
| 11 | Neutral   | 1.39  |
| 10 | Sep       | 1.30  |
| 5  | windspeed | 1.14  |
| 1  | yr        | 1.03  |
| 2  | holiday   | 1.01  |

In [55]: X\_train1=X\_train1.drop('spring',axis=1)

Sixth Model

In [56]: X\_train1=model(X\_train1,y\_train)

| ========         | ========    | =======       | =====       | =====        |                | ======= |
|------------------|-------------|---------------|-------------|--------------|----------------|---------|
| ========         | _           |               |             |              |                |         |
| Dep. Variab      | le:         |               | cnt         | R–squ        | uared:         |         |
| 0.815            |             |               | 01.6        | A -1 -       | D              |         |
| Model:           |             |               | 0LS         | Adj.         | R-squared:     |         |
| 0.811<br>Method: |             | Loact Saua    | roc         | E cts        | otictic.       |         |
| 219.7            |             | Least Squares |             | 1-510        | ILISTIC.       |         |
| Date:            | Th          | u 28 1an 2    | <b>0</b> 21 | Proh         | (F-statistic): |         |
| 1.22e-175        |             | iu, 20 Juli 2 | 021         | 1100         | (I Statistic): |         |
| Time:            |             | 22:03         | :10         | Loa-l        | _ikelihood:    |         |
| 469.06           |             |               |             | - 3          |                |         |
| No. Observa      | tions:      |               | 510         | AIC:         |                |         |
| -916.1           |             |               |             |              |                |         |
| Df Residual      | .S <b>:</b> |               | 499         | BIC:         |                |         |
| -869.5           |             |               |             |              |                |         |
| Df Model:        | _           |               | 10          |              |                |         |
|                  | Type:       |               |             |              |                |         |
| ==========       |             | ========      | =====       | =====        |                | ======= |
|                  |             | std err       |             | +            | P> t           | [0.025  |
| 0.975]           | 6061        | Sta CII       |             |              | 17   6         | [01023  |
|                  |             |               |             |              |                |         |
|                  |             |               |             |              |                |         |
| const            | 0.2961      | 0.028         | 10          | .704         | 0.000          | 0.242   |
| 0.350            |             |               |             |              |                |         |
| yr               | 0.2289      | 0.009         | 26          | .118         | 0.000          | 0.212   |
| 0.246            | 0.000       |               | _           | 242          | 0.004          | 0 110   |
| holiday          | -0.0886     | 0.028         | -3          | <b>.</b> 213 | 0.001          | -0.143  |
| -0.034           | a 6100      | 0 024         | 25          | 761          | 0 000          | 0 572   |
| temp<br>0.667    | 0.6198      | 0.024         | 25          | . /01        | 0.000          | 0.573   |
| hum              | -0.3124     | 0.037         | _8          | 361          | 0.000          | -0.386  |
| -0 <b>.</b> 239  | 013124      | 01037         | U           | . 501        | 01000          | 0.300   |
| windspeed        | -0.2340     | 0.027         | -8          | .631         | 0.000          | -0.287  |
| -0.181           |             |               |             |              |                |         |
| summer           | 0.0819      | 0.012         | 7           | .096         | 0.000          | 0.059   |
| 0.105            |             |               |             |              |                |         |
| winter           | 0.1312      | 0.011         | 11          | <b>.</b> 562 | 0.000          | 0.109   |
| 0.153            |             |               |             |              |                |         |
| Jul              | -0.0558     | 0.019         | -2          | .872         | 0.004          | -0.094  |
| -0.018           | 0.0014      | 0 017         | -           | 270          | 0.000          | 0 057   |
| Sep              | 0.0914      | 0.017         | 5           | .279         | 0.000          | 0.057   |
| 0.125<br>Neutral | -0.0207     | 0.011         | 1           | 022          | 0 054          | 0 012   |
| 0.000            | -0.0207     | 0.011         | -1          | . 933        | 0.054          | -0.042  |
| ========         |             |               | =====       | =====        |                | ======  |
| ========         |             |               |             |              |                |         |
| Omnibus:         |             | 93.           | 118         | Durbi        | in-Watson:     |         |
| 2.045            |             |               |             |              |                |         |
| Prob(Omnibu      | ıs):        | 0.            | 000         | Jarqu        | ue-Bera (JB):  |         |
| 227.239          |             |               |             | ,            |                |         |
| Skew:            |             | -0.           | 931         | Prob         | (JB):          |         |
| 4.53e-50         |             |               |             |              |                |         |
| Kurtosis:        |             | 5.            | 689         | Cond.        | NO.            |         |
|                  |             |               |             |              |                |         |

#### 16.4

## Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [57]: #The value of R squared remained the same but the value of F-statis tic has increased and almost similar to our ideal fourth model. #This can be our another ideal model. #Even though Neutral is one more vital variable for our ideal fourt h model, its p-value is higher. #Let's try to drop that variable.

In [58]: VIF(X\_train1)

#### Out [58]:

|    | Features  | VIF   |
|----|-----------|-------|
| 0  | const     | 41.04 |
| 4  | hum       | 1.59  |
| 3  | temp      | 1.58  |
| 8  | Jul       | 1.43  |
| 10 | Neutral   | 1.39  |
| 6  | summer    | 1.33  |
| 7  | winter    | 1.28  |
| 9  | Sep       | 1.19  |
| 5  | windspeed | 1.13  |
| 1  | yr        | 1.03  |
| 2  | holiday   | 1.01  |
|    |           |       |

In [59]: X\_train1=X\_train1.drop('Neutral',axis=1)

#### **Seventh Model**

In [60]: X\_train1=model(X\_train1,y\_train)

| ========               | =======    |             | ======     | =====       |                | ======= |
|------------------------|------------|-------------|------------|-------------|----------------|---------|
| Dep. Variab            | 16.        |             | cnt        | D. car      | ıared:         |         |
| 0.814                  | te:        |             | cnt        | K-Sqt       | uareu:         |         |
| Model:                 |            |             | 0LS        | Adi.        | R-squared:     |         |
| 0.810                  |            |             | 020        | , .a., .    | . oqua. cu:    |         |
| Method:                |            | Least Squ   | iares      | F-sta       | atistic:       |         |
| 242.4                  |            | ·           |            |             |                |         |
| Date:                  | ٦          | Thu, 28 Jan | 2021       | Prob        | (F-statistic): |         |
| 4.86e-176              |            |             |            |             |                |         |
| Time:                  |            | 22:0        | 3:10       | Log-l       | _ikelihood:    |         |
| 467.16                 |            |             | <b>540</b> |             |                |         |
| No. Observa            | tions:     |             | 510        | AIC:        |                |         |
| -914.3<br>Df Residual  | <b>.</b> . |             | E O O      | DTC.        |                |         |
| -872.0                 | 5:         |             | 500        | BIC:        |                |         |
| Df Model:              |            |             | 9          |             |                |         |
| Covariance             | Tyne:      | nonro       |            |             |                |         |
|                        |            |             |            | =====       | ==========     | ======= |
| ========               |            |             |            |             |                |         |
|                        | coef       | std err     |            | t           | P> t           | [0.025  |
| 0.975]                 |            |             |            |             |                |         |
|                        |            |             |            |             |                |         |
|                        | 0.2000     | 0 027       | 11         | <b>FF</b> 2 | 0.000          | 0 257   |
| const                  | 0.3098     | 0.027       | 11         | . 552       | 0.000          | 0.257   |
| 0.362<br>yr            | 0.2278     | 0 000       | 25         | 070         | 0.000          | 0.211   |
| 0.245                  | 0.2270     | 0.009       | 23         | . 970       | 0.000          | 0.211   |
| holiday                | -0.0868    | 0.028       | -3         | . 139       | 0.002          | -0.141  |
| -0.032                 | 0.000      | 01020       |            | - 133       | 01002          | 0.1.1   |
| temp                   | 0.6283     | 0.024       | 26         | . 480       | 0.000          | 0.582   |
| 0 <b>.</b> 675         |            |             |            |             |                |         |
| hum                    | -0.3492    | 0.032       | -10        | . 838       | 0.000          | -0.412  |
| -0.286                 |            |             |            |             |                |         |
| windspeed              | -0.2380    | 0.027       | -8         | .778        | 0.000          | -0.291  |
| -0.185                 | 0 0040     | 0.040       | _          | 046         |                | 0.050   |
| summer                 | 0.0812     | 0.012       | /          | .016        | 0.000          | 0.058   |
| 0.104<br>winter        | 0.1334     | 0.011       | 11         | . 788       | 0.000          | 0.111   |
| 0.156                  | 0.1334     | 0.011       | 11         | . / 00      | 0.000          | 0.111   |
| Jul                    | -0.0553    | 0.019       | -2         | .841        | 0.005          | -0.094  |
| -0.017                 | 0.0333     | 0.013       | _          | .011        | 01005          | 0.03.   |
| Sep                    | 0.0910     | 0.017       | 5          | . 240       | 0.000          | 0.057   |
| 0.125                  |            |             |            |             |                |         |
| ========               | =======    |             |            | =====       |                | ======= |
| ========               |            |             |            |             |                |         |
| Omnibus:               |            | 87          | <b>662</b> | Durbi       | in-Watson:     |         |
| 2.031                  | - ) -      |             |            | 7           | Dana (3D).     |         |
| Prob(Omnibu<br>196.855 | S):        | V           | 0.000      | Jarqu       | ue-Bera (JB):  |         |
| Skew:                  |            | _6          | 909        | Prob        | (1R).          |         |
| 1.79e-43               |            | _ <b>v</b>  | 1.909      | FIUD        | (30).          |         |
| Kurtosis:              |            |             | 441        | Cond.       | . No.          |         |
| 14.5                   |            | _           |            | 20.101      | · ····         |         |
| =========              | ========   | :=======    | ======     | =====       |                | ======= |
|                        |            |             |            |             |                |         |

========

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

## In [61]: VIF(X\_train1)

## Out[61]:

|   | Features  | VIF   |
|---|-----------|-------|
| 0 | const     | 38.36 |
| 3 | temp      | 1.53  |
| 8 | Jul       | 1.43  |
| 6 | summer    | 1.33  |
| 7 | winter    | 1.27  |
| 9 | Sep       | 1.19  |
| 4 | hum       | 1.18  |
| 5 | windspeed | 1.13  |
| 1 | yr        | 1.03  |
| 2 | holiday   | 1.01  |
|   |           |       |

This model again has lesser R squared than the fourth model but the F-statistic is much more than that.

There are 2 models that can be considered as the best fits:

Fourth model and the Seventh model

# 5. Residual Analysis of the trained data

```
In [62]: #Rebuilding the seventh model
lm_model7=sm.OLS(y_train,X_train1).fit()
y_train_pred7=lm_model7.predict(X_train1)
```

```
In [63]: %matplotlib inline
fig = plt.figure()
sns.distplot((y_train - y_train_pred7), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)  # Plot
heading
plt.xlabel('Errors', fontsize = 18)
```

## Out[63]: Text(0.5, 0, 'Errors')

## **Error Terms**



In [64]: #Rebuilding the fourth model
 X\_train\_rfe=sm.add\_constant(X\_train\_rfe)
 X\_train\_rfe.head()

## Out [64]:

|     | const | yr | holiday | temp     | hum      | windspeed | spring | summer | winter | Dec | Jan | • |
|-----|-------|----|---------|----------|----------|-----------|--------|--------|--------|-----|-----|---|
| 576 | 1.0   | 1  | 0       | 0.815169 | 0.725633 | 0.264686  | 0      | 0      | 0      | 0   | 0   |   |
| 426 | 1.0   | 1  | 0       | 0.442393 | 0.640189 | 0.255342  | 1      | 0      | 0      | 0   | 0   |   |
| 728 | 1.0   | 1  | 0       | 0.245101 | 0.498067 | 0.663106  | 1      | 0      | 0      | 1   | 0   |   |
| 482 | 1.0   | 1  | 0       | 0.395666 | 0.504508 | 0.188475  | 0      | 1      | 0      | 0   | 0   |   |
| 111 | 1.0   | 0  | 0       | 0.345824 | 0.751824 | 0.380981  | 0      | 1      | 0      | 0   | 0   |   |

```
In [65]: X_train_rfe.drop(['Dec','Nov','Jan'], axis=1, inplace=True)
X_train_rfe.head()
```

Out [65]:

|     | const | yr | holiday | temp     | hum      | windspeed | spring | summer | winter | Jul | Sep | В |
|-----|-------|----|---------|----------|----------|-----------|--------|--------|--------|-----|-----|---|
| 576 | 1.0   | 1  | 0       | 0.815169 | 0.725633 | 0.264686  | 0      | 0      | 0      | 1   | 0   |   |
| 426 | 1.0   | 1  | 0       | 0.442393 | 0.640189 | 0.255342  | 1      | 0      | 0      | 0   | 0   |   |
| 728 | 1.0   | 1  | 0       | 0.245101 | 0.498067 | 0.663106  | 1      | 0      | 0      | 0   | 0   |   |
| 482 | 1.0   | 1  | 0       | 0.395666 | 0.504508 | 0.188475  | 0      | 1      | 0      | 0   | 0   |   |
| 111 | 1.0   | 0  | 0       | 0.345824 | 0.751824 | 0.380981  | 0      | 1      | 0      | 0   | 0   |   |

Columns of X\_train\_rfe are similar to the fourth model

```
In [66]: lm_model4=sm.OLS(y_train,X_train_rfe).fit()
   y_train_pred4=lm_model4.predict(X_train_rfe)
```

```
In [67]: fig = plt.figure()
    sns.distplot((y_train - y_train_pred4), bins = 20)
    fig.suptitle('Error Terms', fontsize = 20) # Plot
    heading
    plt.xlabel('Errors', fontsize = 18)
```

Out[67]: Text(0.5, 0, 'Errors')





Residual Analysis shows that error terms for both the models gives almost a normal distribution but the R squared value is better for the fourth model compared to the seventh model. Also normality of error distribution is slightly better for fourth model compared to seventh model.

Hence selecting the fourth model for prediction.

## 6. Making Predictions

## 6.1 Preparing data for prediction.

In [68]: df\_test.head()

#### Out [68]:

|     | yr | day | holiday | workingday | temp      | hum     | windspeed | cnt  | spring | summer |  |
|-----|----|-----|---------|------------|-----------|---------|-----------|------|--------|--------|--|
| 184 | 0  | 7   | 1       | 0          | 29.793347 | 63.7917 | 5.459106  | 6043 | 0      | 0      |  |
| 535 | 1  | 20  | 0       | 1          | 32.082500 | 59.2083 | 7.625404  | 6211 | 0      | 1      |  |
| 299 | 0  | 27  | 0       | 0          | 19.270000 | 81.2917 | 13.250121 | 2659 | 0      | 0      |  |
| 221 | 0  | 8   | 0       | 1          | 31.433347 | 42.4167 | 13.417286 | 4780 | 0      | 0      |  |
| 152 | 0  | 6   | 0       | 0          | 29.315000 | 30.5000 | 19.583229 | 4968 | 0      | 1      |  |

5 rows × 30 columns

In [69]: #rescaling columns from the list need\_rescale=['temp','hum','windsp eed','cnt']

df\_test[need\_rescale]=scaler.transform(df\_test[need\_rescale])

df\_train.head()

## Out [69]:

|     | yr | day | holiday | workingday | temp     | hum      | windspeed | spring | summer | winter |   |
|-----|----|-----|---------|------------|----------|----------|-----------|--------|--------|--------|---|
| 576 | 1  | 31  | 0       | 1          | 0.815169 | 0.725633 | 0.264686  | 0      | 0      | 0      | - |
| 426 | 1  | 3   | 0       | 0          | 0.442393 | 0.640189 | 0.255342  | 1      | 0      | 0      |   |
| 728 | 1  | 30  | 0       | 1          | 0.245101 | 0.498067 | 0.663106  | 1      | 0      | 0      |   |
| 482 | 1  | 28  | 0       | 0          | 0.395666 | 0.504508 | 0.188475  | 0      | 1      | 0      |   |
| 111 | 0  | 22  | 0       | 0          | 0.345824 | 0.751824 | 0.380981  | 0      | 1      | 0      |   |

5 rows × 29 columns

17/08/22, 11:44 pm

In [70]: df\_test.describe()

#### Out[70]:

|       | yr         | day        | holiday    | workingday | temp       | hum        | windspeed  |
|-------|------------|------------|------------|------------|------------|------------|------------|
| count | 220.000000 | 220.000000 | 220.000000 | 220.000000 | 220.000000 | 220.000000 | 220.000000 |
| mean  | 0.481818   | 15.927273  | 0.036364   | 0.640909   | 0.558718   | 0.638221   | 0.313293   |
| std   | 0.500809   | 8.700715   | 0.187620   | 0.480828   | 0.233187   | 0.148694   | 0.159584   |
| min   | 0.000000   | 1.000000   | 0.000000   | 0.000000   | 0.046591   | 0.261915   | -0.042808  |
| 25%   | 0.000000   | 9.000000   | 0.000000   | 0.000000   | 0.355429   | 0.529197   | 0.198843   |
| 50%   | 0.000000   | 15.500000  | 0.000000   | 1.000000   | 0.558172   | 0.625590   | 0.300126   |
| 75%   | 1.000000   | 24.000000  | 0.000000   | 1.000000   | 0.755981   | 0.743798   | 0.402718   |
| max   | 1.000000   | 31.000000  | 1.000000   | 1.000000   | 0.984424   | 1.002146   | 0.807474   |

8 rows × 30 columns

#### 6.2 Prediction with model 4

In [71]: y\_test=df\_test.pop('cnt')
 X\_train\_rfe=X\_train\_rfe.drop('const',axis=1)
 X\_test\_model4=df\_test[X\_train\_rfe.columns]
 X\_test\_model4.head()

#### Out [71]:

|     | yr | holiday | temp     | hum      | windspeed | spring | summer | winter | Jul | Sep | Best | Ne |
|-----|----|---------|----------|----------|-----------|--------|--------|--------|-----|-----|------|----|
| 184 | 0  | 1       | 0.831783 | 0.657364 | 0.084219  | 0      | 0      | 0      | 1   | 0   | 0    |    |
| 535 | 1  | 0       | 0.901354 | 0.610133 | 0.153728  | 0      | 1      | 0      | 0   | 0   | 1    |    |
| 299 | 0  | 0       | 0.511964 | 0.837699 | 0.334206  | 0      | 0      | 1      | 0   | 0   | 0    |    |
| 221 | 0  | 0       | 0.881625 | 0.437098 | 0.339570  | 0      | 0      | 0      | 0   | 0   | 1    |    |
| 152 | 0  | 0       | 0.817246 | 0.314298 | 0.537414  | 0      | 1      | 0      | 0   | 0   | 1    |    |

In [72]: | X\_test\_model4.shape

Out[72]: (220, 12)

In [73]: #Adding constant to dataframe
X\_test\_model4=sm.add\_constant(X\_test\_model4)

In [74]: #Prediction
y\_test\_pred\_model4=lm\_model4.predict(X\_test\_model4)

```
In [75]: #Calculating Test data R-squared:
    from sklearn.metrics import r2_score
    r2=r2_score(y_test, y_test_pred_model4)
    print(r2)

0.8151738700604121

In [76]: #Calculating adjusted R squared:
    n = X_test_model4.shape[0]

# Number of features (predictors, p) is the shape along axis 1
    p = X_test_model4.shape[1]

# Calculating Adjusted R-squared using the formula
```

adjusted\_r2 = 1-(1-r2)\*(n-1)/(n-p-1)

Out[76]: 0.8035100851613118

adjusted\_r2

Train R squared: 0.842

Train Adjusted R squared: 0.8378588709677419

Test R squared: 0.8378588709677419

Test Adjusted R squared: 0.8035100851613118

```
In [77]: #Checking Homoscedasticity for train and test data
    plt.figure(figsize=(12,8))
    plt.subplot(1,2,1)
    sns.scatterplot(y=y_train - y_train_pred4, x=y_train_pred4)
    plt.subplot(1,2,2)
    sns.scatterplot(y=y_test - y_test_pred_model4, x=y_test_pred_model
    4)
    plt.show()
```



There is no clustering or pattern below or above 0.0 on the Y-axis. This model is giving best results compared to other 6 models formed earlier while training.

```
In [78]: # Evaluating the Algorithm
    from sklearn import metrics
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y
    _test_pred_model4))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_t
        est_pred_model4))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_erro
        r(y_test, y_test_pred_model4)))
```

Mean Absolute Error: 0.0695347736271711 Mean Squared Error: 0.008837328237214432 Root Mean Squared Error: 0.094007064826078

Lower values of MAE, MSE and RMSE shows vouches for the good performance of the model.

```
In [79]: # understanding the spread.
fig = plt.figure()
sns.scatterplot(y_test,y_test_pred_model4)
fig.suptitle('y_test vs y_pred', fontsize=20) # Plot h
eading
plt.xlabel('y_test', fontsize=18) # X-labe
l
plt.ylabel('y_test_pred_model4', fontsize=16)
```

Out[79]: Text(0, 0.5, 'y\_test\_pred\_model4')



Based on the very close value of R squared and Adjusted R squared values of the train and test data sets and based on y\_test and y\_pred graph, it can be infereed that the our linear regression model has the below equation for it's best fitted line:

cnt= 0.0478 + 0.2294 yr -0.0969 holiday + 0.5299 temp -0.1726 hum -0.1822 windspeed -0.0564 spring + 0.0531 summer+ 0.0976 winter -0.0572 Jul + 0.0833 sept + 0.2369 (Clear, Few clouds, Partly cloudy, Partly cloudy) + 0.1843 (Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist)

temp-166075999050671060

In [80]: print(lm\_model4.summary())

| =========            | ======== | 025 Reç      | •     |               | =========     | =======         |  |
|----------------------|----------|--------------|-------|---------------|---------------|-----------------|--|
| =======              |          |              |       | R-squared:    |               |                 |  |
| 0.842                |          |              | ·     |               |               |                 |  |
| Model:<br>0.838      |          | (            | DLS   | Adj.          | R-squared:    |                 |  |
| Method:              |          | Least Squar  | res   | F-sta         | tistic:       |                 |  |
| 220.6<br>Date:       | Thu      | u. 28 Jan 20 | 021   | Prob          | (F-statistic) | :               |  |
| 2.95e-190            |          |              |       |               |               |                 |  |
| Time:<br>509.29      |          | 22:03        | 12    | Log-L         | ikelihood:    |                 |  |
| No. Observat: -992.6 | ions:    |              | 510   | AIC:          |               |                 |  |
| Df Residuals         | :        | 4            | 197   | BIC:          |               |                 |  |
| -937.5<br>Df Model:  |          |              | 12    |               |               |                 |  |
| Covariance Ty        | ype:     | nonrobu      |       |               |               |                 |  |
| ==========           | =======  | ========     | ====  | =====         | :========     | =======         |  |
| 0.0751               | coef     | std err      |       | t             | P> t          | [0.025          |  |
| 0.975]<br>           |          |              |       |               |               |                 |  |
|                      | 0 0470   | 0.047        | 1     | 015           | 0.311         | -0.045          |  |
| const<br>0.140       | 0.0470   | 0.047        | 1     | .013          | 0.311         | -0.043          |  |
| yr<br>0.245          | 0.2294   | 0.008        | 28    | .208          | 0.000         | 0.213           |  |
| holiday              | -0.0969  | 0.026        | -3    | . 787         | 0.000         | -0.147          |  |
| -0.047<br>temp       | 0.5299   | 0.034        | 15    | <b>.</b> 728  | 0.000         | 0.464           |  |
| 0.596                |          |              |       |               |               |                 |  |
| hum<br>-0.098        | -0.1726  | 0.038        | -4    | <b>.</b> 569  | 0.000         | -0 <b>.</b> 247 |  |
| windspeed            | -0.1822  | 0.026        | -7    | .074          | 0.000         | -0.233          |  |
| -0.132<br>spring     | -0.0564  | 0.021        | -2    | .700          | 0.007         | -0.097          |  |
| -0.015<br>summer     | 0.0531   | 0.015        | 3     | <b>.</b> 536  | 0.000         | 0.024           |  |
| 0.083                |          |              |       |               |               |                 |  |
| winter<br>0.132      | 0.0976   | 0.017        | 5     | .643          | 0.000         | 0.064           |  |
| Jul                  | -0.0572  | 0.018        | -3    | .123          | 0.002         | -0.093          |  |
| -0.021<br>Sep        | 0.0833   | 0.017        | 4     | .973          | 0.000         | 0.050           |  |
| 0.116                | 0.2260   | 0.026        | 0     | 002           | 0.000         | 0 105           |  |
| Best<br>0.289        | 0.2369   | 0.026        | 8     | .983          | 0.000         | 0.185           |  |
| Neutral<br>0.233     | 0.1843   | 0.025        | 7     | .364          | 0.000         | 0.135           |  |
| a.533                | ======== | ========     | ====  | =====         | :========     | =======         |  |
| =======<br>Omnibus:  |          | 57.4         | 186   | Durhi         | .n-Watson:    |                 |  |
| 2.051                |          |              |       |               |               |                 |  |
| Prob(Omnibus         | 0.0      | 000          | Jarqu | ue-Bera (JB): |               |                 |  |

#### Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

# **Hypothesis Testing**

Null hypothesis states that there is no relationship between the X variables and the Y variables meaning the coefficients of the independent variables is zero. From the final model summary, it is evident that all our coefficients are not equal to zero which means We REJECT the NULL HYPOTHESIS

#### The company should focus on the following factors:

- 1. People are less likely to use their service at low or extreme temperatures. So either the company can function to half the capacity or minimum capacity to reduce operational costs for better profits and provide service for regular registered customers mostly. Similarly in days with increase in humidity and windspeed. Discounts or offers won't help as well since it's inconvenient to commute using bikes in such situations.
- 2. There will be increase in the number of users with increase in year since people will start adapting to renting bikes more often. There might be chances that because of covid just been around the corner, the trend might not follow immediately but giving a year more will definitely see rise in number of users.
- 3. People are more likely to use their service in the best or the neutral weather environments i.e;Clear, Few clouds, Partly cloudy, Partly cloudy OR Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist.

59 of 59