Тест-требования

Цель: Проверить корректность работы метода CalculateFuelConsumption, который рассчитывает расход топлива для заданного пути между двумя точками на карте.

Требования:

- 1. Корректность расчета расхода топлива:
- Метод должен корректно рассчитывать расход топлива для существующего пути между двумя точками.
- Ожидаемый результат должен соответствовать формуле.

^{2.} Обработка отсутствующих путей:

- Метод должен корректно обрабатывать ситуацию, когда путь между точками не существует (расстояние равно double.PositiveInfinity).
- [•] В этом случае метод должен возвращать double.PositiveInfinity.

3. Проверка граничных значений:

- Метод должен корректно работать с минимальными и максимальными значениями расстояний и расхода топлива.
- ^{4.} Проверка некорректных входных данных:
 - Метод должен корректно обрабатывать ситуации, когда входные данные некорректны (например, отрицательные значения расстояний или расхода топлива).

Тест-план

Объект тестирования: Meтод CalculateFuelConsumption.

Область тестирования:

- Позитивные тесты: проверка корректности расчета расхода топлива.
- Негативные тесты: проверка обработки отсутствующих путей и некорректных входных данных.

Тестовые сценарии:

- ^{1.} Позитивный тест: Корректность расчета расхода топлива
 - Описание: Проверить, что метод корректно рассчитывает расход топлива для существующего пути.
 - **•** Входные данные:

- * Матрица расстояний: {{0, 0.94, double.PositiveInfinity}, {0.94, 0, 0.66}, {double.PositiveInfinity, 0.66, 0}}
- Расход топлива: 10.0 литров на 100 км
- Начальная точка: 0
- * Конечная точка: 1
- **Ожидаемый результат:** 0.094 литра
- ^{2.} Негативный тест: Обработка отсутствующих путей
 - Описание: Проверить, что метод возвращает double. Positive Infinity, если путь между точками не существует.
 - Входные данные:
 - * Матрица расстояний: {{0, double.PositiveInfinity, double.PositiveInfinity}, {double.PositiveInfinity, 0, 0.66}, {double.PositiveInfinity, 0.66, 0}}
 - Расход топлива: 10.0 литров на 100 км
 - [•] Начальная точка: 0
 - * Конечная точка: 1
 - Ожидаемый результат: double.PositiveInfinity
- ^{3.} Тест граничных значений: Минимальные и максимальные значения
 - Описание: Проверить, что метод корректно работает с минимальными и максимальными значениями расстояний и расхода топлива.
 - Входные данные:
 - * Матрица расстояний: {{0, 0.001, double.PositiveInfinity}, {0.001, 0, 1000}, {double.PositiveInfinity, 1000, 0}}
 - Расход топлива: 0.1 и 1000.0 литров на 100 км
 - Начальная точка: 0
 - * Конечная точка: 1
 - Ожидаемый результат: Корректный расчет расхода топлива для заданных значений.
- ^{4.} Негативный тест: Обработка некорректных входных данных
 - Описание: Проверить, что метод корректно обрабатывает отрицательные значения расстояний или расхода топлива.
 - Входные данные:
 - * Матрица расстояний: {{0, -0.94, double.PositiveInfinity}, {-0.94, 0, 0.66}, {double.PositiveInfinity, 0.66, 0}}
 - Расход топлива: -10.0 литров на 100 км
 - Нэпэ прпэа топкэ. О

пачальная гочка. О

- *Конечная точка: 1
- Ожидаемый результат: Метод должен выбросить исключение или вернуть ошибку.

Критерии завершения тестирования:

- Все тестовые сценарии успешно выполнены.
- Ошибки исправлены, и повторное тестирование прошло успешно.

Ресурсы:

- Разработчики и тестировщики, участвующие в проекте.
- * Среда выполнения тестов (например, Visual Studio, GitHub Actions).