```
1. Multiple y format (LR)
 X_train <- read.csv("ModelData/X_train2.csv")[,-1]; Y_train <- read.csv("ModelData/Y_train2.csv")[,-1]</pre>
 X_val <- read.csv("ModelData/X_val2.csv")[,-1]; Y_val <- read.csv("ModelData/Y_val2.csv")[,-1]</pre>
 X_test <- read.csv("ModelData/X_test2.csv")[,-1]; Y_test <- read.csv("ModelData/Y_test2.csv")[,-1]</pre>
 colnames(Y_train) <- c("Y1","Y2","Y3","Y4","Y5","Y6","Y7")
 Data_train <- cbind(Y_train,X_train); #head(Data_train); dim(Data_train)</pre>
 colnames(Y_val) <- c("Y1","Y2","Y3","Y4","Y5","Y6","Y7")
 Data_val <- cbind(Y_val, X_val); #head(Data_val); dim(Data_val)</pre>
 colnames(Y_test) <- c("Y1","Y2","Y3","Y4","Y5","Y6","Y7")
 Data_test <- cbind(Y_test,X_test); #head(Data_test); dim(Data_test)</pre>
1.1. Linear regression without interactions
 m1 <- lm(cbind(Data_train$Y1,Data_train$Y2,Data_train$Y3,Data_train$Y4,Data_train$Y5,Data_train$Y6,Data_train$Y7)
 ~ . , Data_train[,-c(1:7)])
 #summary(m1)
 #cat("MSE:", mean(m1$residuals^2))
 #cat("RMSE:", sqrt(mean(m1$residuals^2)))
 y_pred <- predict(m1, Data_val)</pre>
 y_real <- Y_val</pre>
 y_pred <- rbind(y_pred[,1],y_pred[,2],y_pred[,3],y_pred[,4],y_pred[,5],y_pred[,6],y_pred[,7])</pre>
 y_real <- rbind(y_real[,1],y_real[,2],y_real[,3],y_real[,4],y_real[,5],y_real[,6],y_real[,7])</pre>
 cat("MSE:", mean((y_real-y_pred)^2))
 ## MSE: 0.1117158
 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))
 ## RMSE: 0.3342391
 y_pred <- predict(m1, Data_test)</pre>
 y_real <- Y_test</pre>
 y_pred <- rbind(y_pred[,1],y_pred[,2],y_pred[,3],y_pred[,4],y_pred[,5],y_pred[,6],y_pred[,7])</pre>
 y_real <- rbind(y_real[,1],y_real[,2],y_real[,3],y_real[,4],y_real[,5],y_real[,6],y_real[,7])</pre>
 cat("MSE:", mean((y_real-y_pred)^2))
 ## MSE: 0.09493806
 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))
 ## RMSE: 0.3081202
2. One y format, "all var & station" interactions (LR, LASSO, Ridge, Decision Tree)
 Train <- read.csv("ModelData/Train2 long.csv"); #head(Train); dim(Train)</pre>
 Val <- read.csv("ModelData/Val2_long.csv"); #head(Val); dim(Val)</pre>
 Test <- read.csv("ModelData/Test2 long.csv"); #head(Test); dim(Test)</pre>
 # categorical var
 for(i in c(4:6)){
```

```
Train[,i] <- as.character(Train[,i])</pre>
 Val[,i] <- as.character(Val[,i])</pre>
 Test[,i] <- as.character(Test[,i])</pre>
library(dplyr)
## Attaching package: 'dplyr'
```

filter, lag ## The following objects are masked from 'package:base': ## intersect, setdiff, setequal, union scaling_back <- group_by(Test, mrt_station)%>% summarise(median=median(original mrt flow),iqr=IQR(original mrt flow)) Test <- merge(Test,scaling_back)</pre> Train \leftarrow Train[,-3]; Val \leftarrow Val[,-3]; Test \leftarrow Test[,-3] #summary(Train); summary(Val); summary(Test) 2.1. Linear regression with interactions lr_model <- lm(mrt_flow~ . * mrt_station, Train)</pre> #lr_model <- lm(mrt_flow ~ . * mrt_station, rbind(Train, Val))</pre> #summary(lr_model) #cat("MSE:", mean(m1\$residuals^2)) #cat("RMSE:", sqrt(mean(m1\$residuals^2))) y pred <- predict(lr model, Val)</pre>

The following objects are masked from 'package:stats':

##

be misleading y_real <- Val\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.104414 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3231316

Warning in predict.lm(lr model, Val): prediction from a rank-deficient fit may

y_pred <- predict(lr_model, Test[,-c(30:31)])</pre>

RMSE: 0.2617391

Original RMSE: 494.7286

2.2. LASSO with interactions

cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

RMSE: 0.3192557

RMSE: 0.2648535

Original RMSE: 539.6949

y_pred <- predict(ridge_model, x)</pre>

y_real <- Val\$mrt_flow</pre>

RMSE: 0.2576585

y <- Train\$mrt_flow</pre>

library(glmnet)

MSE: 0.06627837

21736.49162

mrt_station

1704.84437

716.73295

283.58198

94.74418

pm2.5_avg

Original RMSE: 301.4344

48.81502

pm10

relative_humidity

sunshine_duration

month

21515.46961

1648.53914

522.52496

256.31721

windspeed

93.77009

so2_avg

so2

44.62035

nox

set.seed(1)

Original RMSE: 481.8453

2.4. Elastic (combine LASSO and Ridge) with interactions

f <- as.formula(mrt_flow ~ . * mrt_station) # using .*. for all interactions x <- model.matrix(f, Train)[,-1] # using model.matrix to take advantage of f

ridge_model <- glmnet(x, y, alpha=1, lambda=ridge_best_lambda)</pre>

x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val))[,-1][-(1:nrow(Train)),]</pre>

Warning in predict.lm(lr_model, Test[, -c(30:31)]): prediction from a ## rank-deficient fit may be misleading y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.06850735 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

f <- as.formula(mrt_flow ~ .* mrt_station) # using .*. for all interactions y <- Train\$mrt_flow</pre> $x \leftarrow model.matrix(f, Train)[,-1] \# using model.matrix to take advantage of f$ #y <- rbind(Train, Val)\$mrt_flow</pre> #x <- model.matrix(f, rbind(Train, Val))[,-1] # using model.matrix to take advantage of f</pre> library(glmnet) ## Loading required package: Matrix

cat("Original RMSE:", sqrt(mean(((y_real*Test\$iqr+Test\$median) - (y_pred*Test\$iqr+Test\$median))^2)))

Loaded glmnet 4.1-7 lasso_kfold <- cv.glmnet(x, y, alpha=0, nfolds=10)</pre> lasso_best_lambda <- lasso_kfold\$lambda.min</pre> lasso model <- glmnet(x, y, alpha=0, lambda=lasso_best_lambda)</pre> x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val))[,-1][-(1:nrow(Train)),]</pre> y_pred <- predict(lasso_model, x)</pre> y_real <- Val\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.1019242

x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train,Test[,-c(30:31)]))[,-1][-(1:nrow(Train)),]</pre> #x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val, Test))[,-1][-(1:nrow(rbind(Train, Val))),]</pre> y pred <- predict(lasso model, x)</pre> y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.07014739 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

cat("Original RMSE:", sqrt(mean(((y_real*Test\$iqr+Test\$median) - (y_pred*Test\$iqr+Test\$median))^2)))

2.3. Ridge with interactions f <- as.formula(mrt flow ~ .* mrt station) # using .*. for all interactions y <- Train\$mrt flow x <- model.matrix(f, Train)[,-1] # using model.matrix to take advantage of f #y <- rbind(Train, Val)\$mrt flow</pre> #x <- model.matrix(f, rbind(Train, Val))[,-1] # using model.matrix to take advantage of f</pre> library(glmnet) ridge_kfold <- cv.glmnet(x, y, alpha=1, nfolds=10)</pre> ridge_best_lambda <- ridge_kfold\$lambda.min</pre>

cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.100222 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3165786 x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train,Test[,-c(30:31)]))[,-1][-(1:nrow(Train)),]</pre> #x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val, Test))[,-1][-(1:nrow(rbind(Train, Val))),]</pre> y_pred <- predict(ridge_model, x)</pre> y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.06638792 cat("RMSE:", sqrt(mean((y_real-y_pred)^2)))

cat("Original RMSE:", sqrt(mean(((y_real*Test\$iqr+Test\$median) - (y_pred*Test\$iqr+Test\$median))^2)))

elastic model <- glmnet(x, y, alpha=0.05, lambda=0.01) # choose alpha and beta by the performance in val

x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train, Val))[,-1][-(1:nrow(Train)),]</pre> y_pred <- predict(elastic_model, x)</pre> y real <- Val\$mrt flow cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.09878929 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.3143076 x <- model.matrix(mrt_flow ~.*mrt_station, rbind(Train,Test[,-c(30:31)]))[,-1][-(1:nrow(Train)),] y_pred <- predict(elastic_model, x)</pre> y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2))

cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.2574459 cat("Original RMSE:", sqrt(mean(((y_real*Test\$iqr+Test\$median) - (y_pred*Test\$iqr+Test\$median))^2))) ## Original RMSE: 486.4082 2.5. Regression tree (decision tree) library(rpart) set.seed(1) dt_model <- rpart(mrt_flow~., Train, cp=0.000004) # choose cp by the performance in val #summary(dt_model) #printcp(dt_model); plotcp(dt_model) dt_model\$variable.importance bike_flow hour previous_mrt_flow no

1768.69502

1163.52528

335.46342

124.11705

85.13969

pm10_avg

42.35497

status

air_pressure

no2

aqi

12988.46256

1245.69957

341.15955

174.65703 winddirec

93.05271

43.77014

pm2.5

precipitation

co_8hr

day_in_a_week

o3_8hr air_temperature

24.42436 41.24490 23.61094 19.64605 setdiff((dt_model\$frame\$var), "<leaf>") # variables used ## [1] "bike_flow" "hour" "mrt_station" ## [4] "previous_mrt_flow" "day_in_a_week" "air_pressure" ## [7] "aqi" "relative_humidity" "month" ## [10] "no2" "pm2.5" "pm10" ## [13] "no" "pm10_avg" "nox" ## [16] "o3_8hr" "winddirec" "sunshine_duration" ## [19] "precipitation" "air_temperature" "co" "so2" ## [22] "o3" "windspeed" "pm2.5_avg" ## [25] "co_8hr" "so2_avg" y_pred <- predict(dt_model, Val)</pre> y_real <- Val\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.05324942

cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.2307584 y_pred <- predict(dt_model, Test[,-c(30:31)])</pre> y_real <- Test\$mrt_flow</pre> cat("MSE:", mean((y_real-y_pred)^2)) ## MSE: 0.02402419 cat("RMSE:", sqrt(mean((y_real-y_pred)^2))) ## RMSE: 0.1549974

cat("Original RMSE:", sqrt(mean(((y real*Test\$iqr+Test\$median) - (y pred*Test\$iqr+Test\$median))^2)))