V Appello 11 dicembre 2009

nome: cognome:

- Scrivete in modo CHIARO. Elaborati illegibili non saranno considerati.
- Non si contano le brutte copie.
- Specificate la logica in cui fate le derivazioni.
- Specificate le regole derivate che usate e che non sono menzionate nel foglio allegato al compito.
- Ricordatevi di ESPLICITARE l'uso della regola dello scambio sia a destra che a sinistra del sequente.
- Ricordatevi di LABELLARE LE DERIVAZIONI CON LE REGOLE USATE (se non lo fate perdete punti!)
- Mostrare se i sequenti di seguito sono derivabili o meno in LI e LC:

4 punti			
$\vdash \neg\neg(A \to B) \to (A \to \neg\neg B)$		si' in LI	poichè si deriva cosi'
		no in LI	poichè
		si' in LC	poichè si deriva cosi'
		no in LC	poichè
4 punti			
$\vdash (A \lor B) \lor C \to A\&(B \lor C)$		si' in LI	poichè si deriva cosi'
		no in LI	poichè
		si' in LC	poichè si deriva cosi'
		no in LC	poichè
5 punti	,		
$\exists x (\neg C(x) \& (A \to C(x))) \vdash \neg \forall x C(x) \lor A$		si' in LI	poichè si deriva cosi'
	J	no in LI	poichè
		si' in LC	poichè si deriva cosi'
	l	no in LC	poichè
x non compare in A			

(8 punti)

$$\begin{cases} &\text{si' in LI} &\text{poichè si deriva cosi'} \\ &\text{no in LI} &\text{poichè} \\ &\text{si' in LC} &\text{poichè si deriva cosi'} \\ &\text{no in LC} &\text{poichè} \end{cases}$$

• Formalizzare in sequente le argomentazioni di seguito. Si provi inoltre la loro correttezza sia in logica intuizionista LI che classica LC facendo riferimento ai calcoli per LI e LC che trovate in allegato:

(12 punti)

Non si dà il caso che non esista qualcuno che ammiri Paola.

C'è qualcuno che ammira Paola.

si consiglia di usare:

A(x,y)=x ammira y

Paola=p

corretto in LI	sì	no
corretto in LC	sì	no

Quelli che sono sportivi non sono pigri.

Esistono pigri che non sono sportivi.

si consiglia di usare:

P(x)=xè pigro

S(x)=x è sportivo

corretto in LI	sì	no
corretto in LC	sì	no

• (8 punti)

Formalizzare la seguente argomentazione in sequente e derivare quest'ultimo in LI:

Nell'astuccio ho la penna che mi hai regalato e c'è solo quella.

Nell'astuccio c'è un'unica penna.

ove si consiglia di usare:

P(x) = la penna x sta nell'astuccio.

r=penna che mi hai regalato

- (14 punti) Provare se sono o non sono derivabili nell'aritmetica di Heyting HA= LI + comp_{sx} + comp_{dx}:
 - 8. $\vdash \exists y \ \forall x \ y = x \cdot y$
 - $-9. \vdash 5 = 2 \cdot 0$
 - 10. $\vdash \exists x \ \forall y \ (s(x) = s(y) \rightarrow y = x)$
 - 11. $\vdash 2 \cdot 4 = s(2 \cdot 3 + 1)$
- (18 punti) Siano T_{an}^i e T_{an}^c le teoria ottenute rispettivamente estendendo LI e LC con composizioni dx e sx con la formalizzazione dei seguenti assiomi:
 - Ax1. Furia è nella stalla.
 - Ax2. Non si dà il caso che in cortile non ci sia nessuno.
 - Ax3. Nella stalla ci sono il cavallo di Berto e il cavallo di Martino.
 - Ax4. Il cavallo di Berto non è un cavallo di razza.
 - Ax5. Furia è un cavallo di razza.
 - Ax6. Se ci fosse qualcuno in cortile allora questo sarebbe Spirit.

si consiglia di usare:

S(x) = xè nella stalla

R(x)= x è un cavallo di razza

C(x) = x è in cortile

b=cavallo di Berto

m=cavallo di Martino

f=Furia

s=Spirit

Derivare:

- 7. C'è un cavallo di razza nella stalla. (in T_{st}^i)
- 8. Furia è diverso dal cavallo di Berto. (in T_{st}^i)
- 9. Non si dà il caso che nessuno sia nella stalla. (in T_{st}^i)
- 10. Se il cavallo di Berto fosse di razza allora il cavallo di Berto sarebbe Spirit. (in ${\cal T}^i_{an})$
- 11. Spirit è in cortile. (in T_{an}^c)
- (3 punti) Dare la definizione induttiva dell'insieme delle derivazioni di $L^{\perp,\forall}$ con costante \perp e connettivo \forall di LI. Enunciare il loro principio di induzione.
- (4 punti)

Dimostrare per induzione sulle derivazioni di $L^{\perp,\forall}$ che

"se $\Gamma \vdash \Delta$ è derivabile in $L^{\perp,\forall}$ allora Γ contiene almeno una formula"

• Risolvere la seguente equazione definitoria (8 punti):

 $\Gamma \vdash A \circ B \circ C$ sse $\Gamma \vdash C$ e $\Gamma \vdash A$ e $\Gamma \vdash B$

• L' equazione sopra è risolvibile in LI con composizioni a destra e a sinistra senza aggiungere un nuovo connettivo? è risolvibile in LC con composizioni a destra e a sinistra senza aggiunta di un nuovo connettivo? (ovvero l'esercizio consiste nel dire se $A \circ B \circ C$ è definibile in LI con composizioni e in caso positivo occorre mostrare che la definizione considerata di $A \circ B \circ C$ soddisfa in LI con composizioni l'equazione sopra; lo stesso dicasi per LC). (8 punti)