Condition of Two Parallel Lines

Two lines in a plane are said to be **parallel** if their direction vectors are scalar multiples of each other.

Let's define the **direction vector** of a line. A direction vector \vec{d} of a line is any vector that is parallel to the line. If two lines have direction vectors \vec{d}_1 and \vec{d}_2 , then the lines are parallel if and only if:

$$ec{d}_1 = k \cdot ec{d}_2$$

where k is a scalar (a real number). This means that the components of \vec{d}_1 and \vec{d}_2 must be proportional.

Example 1:

Consider two lines with direction vectors $\vec{d_1}=2\vec{i}+3\vec{j}$ and $\vec{d_2}=4\vec{i}+6\vec{j}$. Are these lines parallel?

Solution: Notice that $ec{d}_2=2\cdotec{d}_1.$ Since $ec{d}_2$ is a scalar multiple of $ec{d}_1$, the lines are parallel.

Example 2:

Determine if the lines with direction vectors $ec{d_1}=3ec{i}-2ec{j}$ and $ec{d_2}=-6ec{i}+4ec{j}$ are parallel.

Solution: Observe that $\vec{d}_2 = -2 \cdot \vec{d}_1$. Since \vec{d}_2 is a scalar multiple of \vec{d}_1 , the lines are parallel.