2.1: The Tangent and Velocity Problems

The Tangent Problem

A secant line of a curve f passes through two distinct points, P and Q on f. A tangent line of a curve f at a point P touches but does not cross f at P.

The slope $m_{PQ} = \frac{f(x) - f(a)}{x - a}$ of the secant line passing through P(a, f(a)) and Q(x, f(x)) approaches the slope m of the tangent line to f at P as $x \to a$,

$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

Equivalently, letting x = a + h,

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Example 1. Find the equation of the tangent line to the parabola $y = x^2$ at x = 1.

The Velocity Problem

The average velocity v_{ave} of an object over a given time interval $[t_1, t_2]$ is the change in position s divided by the change in time,

$$v_{ave} = \frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}$$

The **instantaneous velocity** v of an object at a given time t = a is the limit as t approaches a of the average velocity over the time interval [a, t],

$$v = \lim_{t \to a} \frac{s(t) - s(a)}{t - a}.$$

Equivalently, letting t = a + h,

$$v = \lim_{h \to 0} \frac{s(a+h) - s(a)}{h}.$$

Example 2. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by $y = 10t - 1.86t^2$.

- a) Find the average velocity over the given time intervals i) [1, 2] ii) [1, 1.5] iii) [1, 1.1] iv) [1, 1.01] v) [1, 1.001]
- b) Estimate the instaneous velocity at t = 1.

Example 3. The table shows the position of a cyclist

t (seconds)	0	1	2	3	4	5
s (meteres)	0	1.4	5.1	10.7	17.7	25.8

- a) Find the average velocity for each time period i) [1,3] ii) [2,3] iii) [3,4] iv) [3,5]
- b) Estimate the instantaneous velocity at t = 3 by averaging the slopes of the secant lines adjacent to t = 3.