

Introduction to Combinatorics

Dat Tran (FMI, Leipzig University)
SoSe 2020 (Day 10 - 09/06/2020)

Contents

- Introduction to Graph theory
 - Connectivity (continue)

Connectivity (continue)

Definition

If v and w are non-adjacent vertices in G, $\kappa_G(v, w)$ is the smallest number of vertices whose removal separates v from w, that is, disconnects G leaving v and w in different components. A cutset that separates v and w is called a separating set for v and w. $p_G(v, w)$ is the maximum number of internally disjoint paths between v and w.

Example

Theorem

If v and w are non-adjacent vertices in G then $\kappa_G(v, w) = p_G(v, w)$.

Connectivity (continue)

Theorem (Menger's Theorem)

If G has at least k + 1 vertices, then G is k-connected if and only if between every two vertices u and v there are k pairwise internally disjoint paths.

Theorem (The Handle Theorem)

Suppose G is 2-connected and K is a 2-connected proper subgraph of G. Then there are subgraphs L and H (the handle) of G such that L is 2-connected, L contains K, H is a simple path, L and H share exactly the endpoints of H, and G is the union of L and H.

Connectivity (continue)

Definition

A block in a graph G is a maximal induced subgraph on at least two vertices without a cutpoint.

Example

B: maximal induced soulograph
[V(B)] > 2

without ast point.

Theorem

The blocks of G partition the edges.

Proof.

In fact, if twe V(b2) UV(B2): B-w is disconnected.

Theorem

If G is connected but not 2-connected, then every vertex that is in two blocks is a cutpoint of G.

G [[1/23, 1/27, 1/2]]

$$\frac{1}{4} \frac{1}{2} \lim \left(\frac{1}{2} \frac{1}{2} \right) = \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \frac{1}{2} \right) = \frac{1}{2} \frac$$

· KG(u,u) & PG(u,v). Induction on n=N(G)

