LMTD-RRT Learning Poster

(Reference: Knuth, Craig, et al. "Planning with learned dynamics: Probabilistic guarantees on safety and reachability via lipschitz constants." IEEE Robotics and Automation Letters 6.3 (2021): 5129-5136.)

1. Benchmark Dataset

2. Obtain Learned Dynamics

3. Bound Model Error in Trusted Domain

Initialization:

$$S_D = \{(\bar{x}, \bar{u}) \in S | || f(\bar{x}, \bar{u}) - g(\bar{x}, \bar{u})|| \le \mu + a\sigma \}$$

$$r = \mu + a\sigma$$

1st Upper Bound_

Loop:

Lipschitz

Constant

Determine

$$D = \bigcup_{(\bar{x}, \bar{u}) \subset S_D} B_r(\bar{x}, \bar{u})$$

$$V = \bigcup_{(\bar{x}, \bar{u}) \subset S_D} D_r(x, u)$$

 $O = \bigcup_{i \in S_D} D_r(x, u)$

$$D \cap \Psi$$
 Divide V_S pairwise sample sets, each set has N_L pairs of i.i.d.: $\{z_j\}_{j=1}^{N_S} = \{z_{1,j}, ..., z_{i,j}, ..., z_{N_L,j}\}_{j=1}^{N_S}, \quad z_{i,j} = \{z_1^{i,j}, z_2^{i,j}\} = \{(x, u)_1^{i,j}, (x, u)_2^{i,j}\}$

$$\{z_{j}\}_{j=1}^{N_{S}} = \{z_{1,j}, \dots, z_{i,j}, \dots, z_{N_{L},j}\}_{j=1}^{N_{S}}, \quad z_{i,j} = \{z_{1}^{i,j}, z_{2}^{i,j}\} = \{(x, u)_{1}^{i,j}, (x, u)_{2}^{i,j}\}$$
Estimate
$$\{z_{j}\}_{j=1}^{N_{S}} \rightarrow \text{Lipschitz Constants} \rightarrow \{L_{f-q}^{j}\}_{j=1}^{N_{S}} \rightarrow L \text{ Converge to Reverse Weibull} \rightarrow \{\gamma_{j}\}_{j=1}^{N_{S}}$$

->Maximum Likehood to N_s Sets-> $\hat{\gamma}$, ξ

if KS-test(
$$\hat{\gamma}$$
):

 $L_{f-g} = \hat{L}_{f-g} = \hat{\gamma} + \Phi^{-1}(\rho)^{\xi}$ Overestimate with Probability ρ $L_{f-g} \ge 1 \to fail$

Trusted
$$\epsilon = L_{f-g}b_T + e_T$$
Domain If $r > \epsilon$: return r and D

Use $D \cap \Psi$ to obtain L_{g_0} and L_{g_1}

else: $r \leftarrow \epsilon + \alpha$

Difficult to check when planning:

$$\bigcup_{(\bar{x},\bar{u})\in\mathcal{W}} \mathcal{B}_r(\bar{x},\bar{u}) \supset \mathcal{B}_{\epsilon}(x,u)$$

Hard to check planned points within D_{ϵ}

2nd Upper Bound

Overestimate

 L_{f-g}

Somehow

Conservative

1. Find the nearest neighbor

2. Check $||(x,u)-(\bar{x},\bar{u})|| \le r-\epsilon$

4. Motion Planning with One Step Feedback Law

Build RRT Tree in Loop (Then construct path after building the tree):

- 1. Sample new state x_{new}
- 2. Check staying inside trusted domain:
 - a. Find the nearest neighbor $x_{neighbor}$ in S_x
 - b. Check distance between x_{new} and $x_{neighbor}$ no more than $r \epsilon$
 - c. Find nearest neighbor $x = x_{near}$ of x_{new} in RRT tree \mathcal{T}
 - d. For each \tilde{u} , find the "NN" $(x_{neighbor}, \tilde{u})$ in S_D , check distance between (x_{near}, \tilde{u}) and $(x_{neighbor}, \tilde{u})$ no more than $r \epsilon$
 - e. For each x_{next} and it's "NN" neighbor in S_x , check distance $\leq r \epsilon$
 - 3. Next state prediction in $N_{samples}$ times loop: a. Sample \tilde{u}
 - b. Check current state-action pair staying inside trusted domain.
 - c. Check one step feedback law:
 - c.1 Perturbed linear equation:

$$x_{next} = g(\tilde{x}, \tilde{u}) = (g_0(x) + \Delta_0) + (g_1(x) + \Delta_1)\tilde{u}, \|\Delta_0\| \le L_{g_0}\epsilon, \|\Delta_1\| \le L_{g_1}\epsilon$$

- c.2 $A = g_1(x) + \Delta_1$, $b = x_{next} (g_0(x) + \Delta_0)$ -> Constrained least squares: $\min_{\tilde{u} \in u} ||A\tilde{u} - b||_2^2$
- c.3 Bound \tilde{u} to satisfy $||u \tilde{u}|| \le \frac{||g_1(x)^+||(||\Delta_1|| ||u|| + ||\Delta_0||)}{1 ||g_1(x)^+|| ||\Delta_1||}$
- d. Check next state staying inside trusted domain
- e. Check x_{next} within X_{safe} f. Check newly predicted x_{next} closer to x_G , replace old prediction if true $g. \mathcal{T} \leftarrow \mathcal{T} \cup \{x_{best}\}$

ensuring safety

and invariance

5. Supplements and Personal Thinking

Supplement: Proof of perturbed linear equation:

- 1. Since $||g_0(\tilde{x}) g_0(x)|| \le L_{g_0}||\tilde{x} x||$: $g_0(\tilde{x}) \le g_0(x) + L_{g_0}||\tilde{x} x||$
- 2. Since x = f(x', u'), $\tilde{x} = f(\tilde{x}', \tilde{u}')$ an $\forall (x, u) \in D$ $f(x, u) = g(x, u) + \delta$, $\|\delta\| \le \epsilon$ $g_0(\tilde{x}) \le g_0(x) + L_{g_0}\epsilon$
- 3. Same to g_1 , then:

$$g(\tilde{x}, \tilde{u}) \le (g_0(x) + L_{g_0}\epsilon) + (g_1(x) + L_{g_1}\epsilon)\tilde{u}$$

Personal thinking about shortages and future work:

- 1. Noise and real-world sys -> Lipschitz constants big -> radius of B_{ϵ} shrink -> too conservative:
 - a. Actually twice upper bound and overestimate confidence lead to somehow conservative.
 - b. And planning limit in D_{ϵ} can lead to further more conservative.
 - c. Fortunately, let $L_{f-g} < 1$ can ease this conservatism.
 - d. Maybe noise sampling and randomness modeling will be needed.
 - 2. This work under hypothesis that the true dynamics are deterministic. For stochastic dynamics, estimating the Lipschitz constant of mean dynamics and appropriate noise modeling are necessary (mentioned in paper).
 - 3. More complicated modeling for extending to underactuated sys (mentioned in paper).
 - 4. Normalization can be more considered (mentioned at MIT seminar).
 - 5. Use Lipschitz constants estimation for estimating uncertainty of ensembles (learning and planning algorithms ensembles), so that better bridging motion planning and learning (at MIT seminar).
 - 6. Much hypothesis (need prune), it is strictly restricted and hard for true sys applying.