Project presentation

Course: S3-D-CODE Calculation Code

Student: Aurora Jahan

Project topic

Simulating a Lead cooled fast reactor (LFR) using a lumped parameter coupled neutronics and thermal hydraulics model along with a PID controller

Reactor description

- Fast-neutron reactor cooled by liquid lead
- Based on the European Lead-cooled
 System (ELSY) DEMO design
- 24 ductless fuel assemblies
- 28×28 square lattice.
- Primary circuit lead: pool > core > hot collector > 8 parallel pipes > 8 pump + SG modules (containing HXs) > pool
- Secondary circuit water/steam: pump +
 SG module > turbine > recuperator
 (deposits energy) > precooler >
 compressor 1 > intercooler > compressor
 2 > recuperator (gains energy) > pump +
 SG module

Reactor description

Nominal parameters employed in this work for the LFR (Bortot et al., 2011).

Parameter	Value	Units	Parameter	Value	Units
Thermal-hydraulics			Neutronics (BoC/EoC)		
Core thermal power, \dot{Q}_0	300	MW	β	319/323	pcm
Fuel average temperature, T_f	900	°C	eta_1	6.142/6.224	pcm
Core coolant inlet temperature, Tc in	400	°C	β_2	71.40/72.33	pcm
Core coolant outlet temperature, Tc out	480	°C	β_3	34.86/35.34	pcm
Core coolant mass flow rate, Γ_c	25757	kg s ⁻¹	β_4	114.1/115.5	pcm
Total number of fuel assemblies	24		β_5	69.92/70.75	pcm
Pins per fuel assembly	744		β_6	22.68/22.89	pcm
Total core fuel mass, mf	2132	kg	λ_1	0.0125/0.0125	s^{-1}
Total core coolant mass, m_c	5429	kg	λ_2	0.0292/0.0292	s ⁻¹
Fuel specific heat, c_f	376	$J kg^{-1} K^{-1}$	λ_3	0.0895/0.0895	s^{-1}
Primary coolant specific heat, c_c	146	$J kg^{-1} K^{-1}$	λ_4	0.2575/0.2573	s^{-1}
SG lead mass, m_{SG}	25757	kg	λ_5	0.6037/0.6025	s^{-1}
Hot leg time constant, τ_{HL}	5.17	s	λ_6	2.6688/2.6661	s^{-1}
Cold leg time constant, τ_{CL}	67.5	s	Λ	0.8066/0.8498	μs
SG saturated water temperature, T_{Sat}	357	°C	α_D	-0.15/-0.17	pcm K ⁻¹
			α_C	-1.2267/-1.995	pcm K ⁻¹
			α_A	-0.0429/-0.2374	pcm K ⁻¹
			α_R	-0.7741/-0.7144	pcm K ⁻¹

The 6 group non-linear model

$$\frac{d\psi(t)}{dt} = \frac{(\rho - \beta)}{\Lambda} \psi(t) + \sum_{i=1}^{6} \frac{\beta_i}{\Lambda} \eta_i(t)$$

$$\frac{d\eta_i(t)}{dt} = \lambda_i \psi(t) - \lambda_i \eta_i(t) ; i = 1, ..., 6$$

$$\rho = \alpha_h h + (\alpha_D + \alpha_A) (T_f - T_f^0) + (\alpha_C + \alpha_R) (T_c - T_c^0)$$

$$\frac{dT_f}{dt} = \frac{P^0}{K\tau_f} - \frac{1}{\tau_f} (T_f - T_c)$$

$$\frac{dT_c}{dt} = \frac{1}{\tau_c} (T_f - T_c) - \frac{2}{\tau_0} (T_c - T_{in})$$

$$T_{out} = 2T_c - T_{in}$$

Where $\psi(t) = \frac{P(t)}{P^0}$, $\eta_i(t) = \frac{C_i(t)}{C^0}$, $\tau_f = \frac{M_f C_f}{K}$, $\tau_c = \frac{M_c C_c}{K}$, $\tau_0 = \frac{M_c}{G}$.

Step 1: Linearization of the model

The 6 group linear model

$$\frac{d\delta\psi}{dt} = \frac{\beta}{\Lambda}\delta\psi + \sum_{i=1}^{6} \frac{\beta_{i}}{\Lambda}\delta\eta_{i}$$

$$\frac{d\delta\eta_{i}}{dt} = \lambda_{i}\delta\psi - \lambda_{i}\delta\eta_{i} \; ; \; i = 1, ..., 6$$

$$\delta\rho = \alpha_{h}\delta h + (\alpha_{D} + \alpha_{A})\delta T_{f} + (\alpha_{C} + \alpha_{R})\delta T_{c}$$

$$\frac{d\delta T_{f}}{dt} = \frac{P^{0}}{K\tau_{f}} - \frac{\delta T_{f}}{\tau_{f}} + \frac{\delta T_{c}}{\tau_{f}}$$

$$\frac{d\delta T_{c}}{dt} = \frac{\delta T_{f}}{\tau_{c}} - (\frac{2}{\tau_{0}} + \frac{1}{\tau_{c}})\delta T_{c} + \frac{2}{\tau_{0}}\delta T_{in}$$

$$\delta T_{out} = 2\delta T_{c} - \delta T_{in}$$

Where
$$\psi(t) = \frac{P(t)}{P^0}$$
, $\eta_i(t) = \frac{C_i(t)}{C_i^0}$, $\tau_f = \frac{M_f C_f}{K}$, $\tau_c = \frac{M_c C_c}{K}$, $\tau_0 = \frac{M_c}{G}$.

State space representation

$$\underline{\dot{X}} = \underline{\underline{A}}.\underline{X} + \underline{\underline{B}}.\underline{U}$$

$$\underline{Y} = \underline{\underline{C}}.\underline{X} + \underline{\underline{D}}.\underline{U}$$

where state variables
$$X = \begin{pmatrix} \psi \\ \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \\ \eta_5 \\ \eta_6 \\ T_f \\ T_c \end{pmatrix}$$
, inputs $U = \begin{pmatrix} h \\ T_{in} \end{pmatrix}$, and outputs $Y = \begin{pmatrix} \psi \\ \eta_1 \\ \eta_2 \\ \eta_3 \\ \eta_4 \\ \eta_5 \\ \eta_6 \\ T_f \\ T_c \\ T_{out} \\ \rho \end{pmatrix}$

State space representation (cont.)

$$A = \begin{pmatrix} -\frac{\beta}{\Lambda} & \frac{\beta_1}{\Lambda} & \frac{\beta_2}{\Lambda} & \frac{\beta_3}{\Lambda} & \frac{\beta_4}{\Lambda} & \frac{\beta_5}{\Lambda} & \frac{\beta_6}{\Lambda} & \frac{\alpha_f}{\Lambda} & \frac{\alpha_c}{\Lambda} \\ \lambda_1 & -\lambda_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_2 & 0 & -\lambda_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ \lambda_3 & 0 & 0 & -\lambda_3 & 0 & 0 & 0 & 0 & 0 \\ \lambda_4 & 0 & 0 & 0 & -\lambda_4 & 0 & 0 & 0 & 0 \\ \lambda_5 & 0 & 0 & 0 & 0 & -\lambda_5 & 0 & 0 & 0 \\ \lambda_6 & 0 & 0 & 0 & 0 & 0 & -\lambda_6 & 0 & 0 \\ \frac{P^0}{K\tau_f} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{-1}{\tau_f} & \frac{1}{\tau_f} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{2}{\tau_0} + \frac{1}{\tau_c} \end{pmatrix} \right) B = \begin{pmatrix} \frac{\alpha_h}{\Lambda} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{2}{\tau_0} \end{pmatrix}$$

$$D = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ \alpha_h & 0 \end{pmatrix}$$

Eigenvalues

Eigenvalues (cont.)

Eigenvalues (cont.)

Stability map

Stability map

Step 2: Solving the non-linear model

Step input of control rod height

Part 1: verifying the stability of the non-linear model by running it with various alpha_C and alpha_f values from the stability map

Stable regions

Alpha_c = -1 pcm/K, alpha_f = -1 pcm/K

Alpha_c = -3 pcm/K, alpha_f = -0.5 pcm/K

Alpha_c = 1 pcm/K, alpha_f = -1.5 pcm/K

Unstable regions

Alpha_c = 0 pcm/K, alpha_f = 1 pcm/K

Alpha_c = 2 pcm/K, alpha_f = 2 pcm/K

Unstable region: an interesting phenomenon

Alpha_c = -2 pcm/K, alpha_f = 0.5 pcm/K, dh = 1 cm

Alpha_c = -2 pcm/K, alpha_f = 0.5 pcm/K, dh = 3 cm

Part 2: plotting the variables in the output vector

Response of the reactor

Step 3: Developing a PID controller for the reactor system

PID controller

6 group controlled non-linear model

$$\frac{d\psi(t)}{dt} = \frac{(\rho - \beta)}{\Lambda} \psi(t) + \sum_{i=1}^{6} \frac{\beta_i}{\Lambda} \eta_i(t)$$

$$\frac{d\eta_i(t)}{dt} = \lambda_i \psi(t) - \lambda_i \eta_i(t) ; i = 1, ..., 6$$

$$\rho = \alpha_h (K_p e + K_I E) + (\alpha_D + \alpha_A) (T_f - T_f^0) + (\alpha_C + \alpha_R) (T_c - T_c^0)$$

$$\frac{dT_f}{dt} = \frac{P^0}{K \tau_f} - \frac{1}{\tau_f} (T_f - T_c)$$

$$\frac{dT_c}{dt} = \frac{1}{\tau_c} (T_f - T_c) - \frac{2}{\tau_0} (T_c - T_{in})$$

$$T_{out} = 2T_c - T_{in}$$

$$\frac{de}{dt} = -\frac{d\psi}{dt}$$

$$\frac{dE}{dt} = e$$

Where
$$\psi(t) = \frac{P(t)}{P^0}$$
, $\eta_i(t) = \frac{C_i(t)}{C_i^0}$, $\tau_f = \frac{M_f C_f}{K}$, $\tau_c = \frac{M_c C_c}{K}$, $\tau_0 = \frac{M_c}{G}$, $e(t) = P_{ref} - P(t)$, and $E = \int_0^t e(\tau) d\tau$.

Studying the stability

Studying the stability (cont.)

$K_p = 7.5e-6$, $K_l = 7.5e-7$; 20 MW increase in 20 minutes

$K_p = 7.5e-6$, $K_l = 7.5e-7$; a closer look

$K_p = 7.5e-6$, $K_l = 7.5e-7$; a closer look (cont.)

$K_p = 7.5e-6$, $K_l = 7.5e-7$; a closer look (cont.)

$K_p = 2e-6$, $K_l = 9e-6$; another stable pair

$K_p = -7.5e-4$, $K_l = 7.5e-7$; a little nuclear bomb

Summary

- We started with a 6 group non-linear coupled neutronics and thermal hydraulics model for an LFR
- 2. We linearized the model to study the eigenvalues and stability
- 3. We checked if the non-linear model agreed with the stability study
- We solved the non-linear model to study the reactor's response to a step input in the control rod position
- 5. We developed a PID controller for the control rod height
- 6. We studied the stability in terms of K_P and K_I values.
- 7. We adjusted the K_p and K_l values to obtain a 1 MW/min increase in power
- 8. We made sure that the controlled did not produce a power overshoot
- 9. We looked at some interesting phenomena to gain insight into the dynamics of the reactor model

Thank you! ♥