Unsupervised techniques:

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes:

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

Supervised techniques:

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

Supervised techniques: learning relationship between inputs and a labeled set of outputs.

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

Supervised techniques: learning relationship between inputs and a labeled set of outputs.

e.g. opinion mining:

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

<u>Supervised</u> techniques: learning relationship between inputs and a <u>labeled</u> set of outputs.

e.g. opinion mining: what makes a critic like or dislike a movie $(y \in \{0,1\})$?

Unsupervised techniques: learning (hidden or latent) structure in unlabeled data.

e.g. PCA of legislators's votes: want to see how they are organized—by party? by ideology? by race?

<u>Supervised</u> techniques: learning relationship between inputs and a <u>labeled</u> set of outputs.

e.g. opinion mining: what makes a critic like or dislike a movie $(y \in \{0,1\})$?

label some examples of each category

label some examples of each category

e.g. some reviews that were positive (y = 1), some that were negative (y = 0)

label some examples of each category

e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal,

label some examples of each category

e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal, some that were conservative.

label some examples of each category

e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal, some that were conservative.

train a 'machine' on these examples (e.g. logistic regression),

label some examples of each category

e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal, some that were conservative.

train a 'machine' on these examples (e.g. logistic regression), using the features (DTM, other stuff) as the 'independent' variables.

label some examples of each category

e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal, some that were conservative.

train a 'machine' on these examples (e.g. logistic regression), using the features (DTM, other stuff) as the 'independent' variables.

e.g. does the commentator use the word 'fetus' or 'baby' in discussing abortion law?

label some examples of each category

- e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal, some that were conservative.
- train a 'machine' on these examples (e.g. logistic regression), using the features (DTM, other stuff) as the 'independent' variables.
 - e.g. does the commentator use the word 'fetus' or 'baby' in discussing abortion law?
- classify use the learned relationship—some f(x)—to predict the outcomes of documents ($y \in \{0,1\}$, review sentiment)

label some examples of each category

- e.g. some reviews that were positive (y = 1), some that were negative (y = 0); some statements that were liberal, some that were conservative.
- train a 'machine' on these examples (e.g. logistic regression), using the features (DTM, other stuff) as the 'independent' variables.
 - e.g. does the commentator use the word 'fetus' or 'baby' in discussing abortion law?
- classify use the learned relationship—some f(x)—to predict the outcomes of documents ($y \in \{0,1\}$, review sentiment) not in the training set.

idea: set of pre-defined words with specific connotations that allow us to classify documents

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

→ common in opinion mining/sentiment analysis,

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

→ common in opinion mining/sentiment analysis, and in coding events or manifestos.

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

→ common in opinion mining/sentiment analysis, and in coding events or manifestos.

Often derived from supervised learning techniques

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

→ common in opinion mining/sentiment analysis, and in coding events or manifestos.

Often derived from supervised learning techniques and often used in supervised learning problems, as a starting point.

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

→ common in opinion mining/sentiment analysis, and in coding events or manifestos.

Often derived from supervised learning techniques and often used in supervised learning problems, as a starting point.

so we'll cover them here.

idea: set of pre-defined words with specific connotations that allow us to classify documents automatically, quickly and accurately.

→ common in opinion mining/sentiment analysis, and in coding events or manifestos.

Often derived from supervised learning techniques and often used in supervised learning problems, as a starting point.

so we'll cover them here.

Aim Typically we are trying to do one of two closely related things:

Aim Typically we are trying to do one of two closely related things:

1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)

Aim Typically we are trying to do one of two closely related things:

1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)

e.g. this review is 'positive',

Aim Typically we are trying to do one of two closely related things:

1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)

e.g. this review is 'positive', this speech is 'liberal'

()

Aim Typically we are trying to do one of two closely related things:

- 1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)
- e.g. this review is 'positive', this speech is 'liberal'
 - 2 Measure extent to which document is associated with given category

Classification with Dictionary Methods

Aim Typically we are trying to do one of two closely related things:

- 1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)
- e.g. this review is 'positive', this speech is 'liberal'
 - 2 Measure extent to which document is associated with given category
- e.g. this review is generally 'positive', but has some negative elements.

Classification with Dictionary Methods

Aim Typically we are trying to do one of two closely related things:

- 1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)
- e.g. this review is 'positive', this speech is 'liberal'
 - 2 Measure extent to which document is associated with given category
- e.g. this review is generally 'positive', but has some negative elements.

We have a pre-determined list of words, the (weighted) presence of which helps us with (1) and (2).

Classification with Dictionary Methods

Aim Typically we are trying to do one of two closely related things:

- 1 Categorize documents as belonging to a certain class (mutually exclusive? jointly exhaustive?)
- e.g. this review is 'positive', this speech is 'liberal'
 - 2 Measure extent to which document is associated with given category
- e.g. this review is generally 'positive', but has some negative elements.

We have a pre-determined list of words, the (weighted) presence of which helps us with (1) and (2).

We have a set of key words, with attendant scores,

We have a set of key words, with attendant scores, e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- → the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- → the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.

i.e. for document i and words m = 1, ..., M in the dictionary,

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- ightarrow the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.
- i.e. for document i and words m = 1, ..., M in the dictionary,

tone of document $i = \sum_{m=1}^{M} \frac{s_m w_{im}}{N_i}$

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- ightarrow the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.
- i.e. for document i and words m = 1, ..., M in the dictionary,

tone of document
$$i = \sum_{m=1}^{M} \frac{s_m w_{im}}{N_i}$$

where s_m is the score of word m

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- ightarrow the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.
- i.e. for document i and words m = 1, ..., M in the dictionary,

tone of document
$$i = \sum_{m=1}^{M} \frac{s_m w_{im}}{N_i}$$

- where s_m is the score of word m
 - and w_{im} is the number of occurrences of the mth dictionary word in the document i

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- ightarrow the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.
- i.e. for document i and words m = 1, ..., M in the dictionary,

tone of document
$$i = \sum_{m=1}^{M} \frac{s_m w_{im}}{N_i}$$

- where s_m is the score of word m
 - and w_{im} is the number of occurrences of the mth dictionary word in the document i
 - and N_i is the total number of all dictionary words in the document.

We have a set of key words, with attendant scores,

- e.g. for movie reviews: 'terrible' is scored as -1; 'fantastic' as +1
- ightarrow the relative rate of occurrence of these terms tells us about the overall tone or category that the document should be placed in.
- i.e. for document i and words m = 1, ..., M in the dictionary,

tone of document
$$i = \sum_{m=1}^{M} \frac{s_m w_{im}}{N_i}$$

- where s_m is the score of word m
 - and w_{im} is the number of occurrences of the mth dictionary word in the document i
 - and N_i is the total number of all dictionary words in the document.
 - → just add up the number of times the words appear and multiply by the score (normalizing by doc dictionary presence)

() February 20, 2018

(Simple) Example: Barnes' review of The Big Short

(Simple) Example: Barnes' review of *The Big Short*

Director and co-screenwriter Adam McKay (Step Brothers) bungles a great opportunity to savage the architects of the 2008 financial crisis in The Big Short, wasting an A-list ensemble cast in the process. Steve Carell, Brad Pitt, Christian Bale and Ryan Gosling play various tenuously related members of the finance industry, men who made made a killing by betting against the housing market, which at that point had superficially swelled to record highs. All of the elements are in place for a lacerating satire, but almost every aesthetic choice in the film is bad, from the U-Turn-era Oliver Stone visuals to Carell's sketch-comedy performance to the cheeky cutaways where Selena Gomez and Anthony Bourdain explain complex financial concepts. After a brutal opening half, it finally settles into a groove, and there's a queasy charge in watching a credit-drunk America walking towards that cliff's edge, but not enough to save the film.

Retain words in Hu & Liu Dictionary...

Director and co-screenwriter Adam McKay (Step Brothers) bungles a great opportunity to savage the architects of the 2008 financial crisis in The Big Short, wasting an A-list ensemble cast in the process. Steve Carell, Brad Pitt, Christian Bale and Ryan Gosling play various tenuously related members of the finance industry, men who made made a killing by betting against the housing market, which at that point had superficially swelled to record highs. All of the elements are in place for a lacerating satire, but almost every aesthetic choice in the film is bad, from the U-Turn-era Oliver Stone visuals to Carell's sketch-comedy performance to the cheeky cutaways where Selena Gomez and Anthony Bourdain explain complex financial concepts. After a brutal opening half, it finally settles into a groove, and there's a queasy charge in watching a credit-drunk America walking towards that cliff's edge, but not enough to save the film.

Retain words in Hu & Liu Dictionary...

great savage crisis wasting tenuously killing superficially swelled bad complex drunk enough

brutal

negative 11

negative 11 positive 2

```
negative 11 positive 2 total 13
```

```
negative 11 positive 2 total 13
```

tone =
$$\frac{2-11}{13} = \frac{-9}{13}$$

negative 11 positive 2 total 13

tone =
$$\frac{2-11}{13} = \frac{-9}{13}$$

