MATH 7752 Homework 6

James Harbour

March 18, 2022

Problem 1

(a) Prove that two 3×3 matrices over some field F are similar if and only if they have the same minimal and characteristic polynomials. Is the same true for 4×4 matrices?

Proof. The forward direction is clear and true for $n \times n$ matrices, so suppose that $A, B \in M_3(F)$ such that $\mu_A = \mu_B = \mu$ and $\chi_A = \chi_B = \chi$. Let $\alpha_1 | \cdots | \alpha_m$ and $\beta_1 | \cdots | \beta_n$ be the invariant factors for A and B respectively. As $\sum \deg(\alpha_i) = 3$ and $\sum \deg(\beta_i) = 3$, it follows that $m, n \leq 3$. To show that A and B are similar, it suffices to show that their invariant factors are the same as then their RCFs would be the same.

Suppose, without loss of generality, that $m \ge n$. If m = n = 1, then $\alpha_1 = \chi = \beta_1$. If n = 1 and m > 1, then

$$\alpha_1 \cdots \alpha_{m-1} \mu = \chi = \beta_1 = \mu \implies \alpha_1 \cdots \alpha_{m-1} = 1$$

contradicting that the invariant factors are nonunits.

If m = n = 2, then $\alpha_1 \mu = \beta_1 \mu \implies \alpha_1 = \beta_1$.

If m=3 and n=2, then all the α_i 's are degree one monic whence successive divisibility forces them to be equal, say $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$ with α monic of degree 1. But then $\alpha^2 = \alpha_1 \alpha_2 = \beta_1$, whence β_1 is degree 2 and β_2 is degree at least 2, contradicting that their degrees sum to 3.

If m = n = 3, then each of the α_i 's are equal to some linear α and each of the β_i 's are equal to some linear β . Moreover, $\alpha = \alpha_3 = \mu = \beta_3 = \beta$, so all of the invariant factors are the same.

The same is not true for 4×4 matrices. Consider the matrices

$$A = \begin{pmatrix} 1 & 1 & & \\ & 1 & & \\ & & 1 & 1 \\ & & & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & 1 \\ & & & 1 \end{pmatrix}$$

Then $\chi_A = (x-1)^4 = \chi_B$ and $\mu_A = (x-2)^2 = \mu_B$; however, A and B are already in RCF and not equal, so they are not similar.

(b) A matrix A is called idempotent if $A^2 = A$. Prove that two idempotent $n \times n$ matrices are similar if and only if they have the same rank. **Hint:** What is the minimal polynomial of an idempotent matrix? How does rank relate to eigenvalue 0?

Proof. Note that a matrix M being idempotent implies that $x^2 - x \in \text{Ann}(M)$, so $\mu_M | x^2 - x$ whence $\mu_M \in \{x, x - 1, x^2 - x\}$. Let A, B be two idempotent $n \times n$ matrices.

The forward direction is true in general, so it suffices to show the reverse direction. Suppose that A and B have the same rank $0 \le k \le n$. If k = 0, then A = B = 0 whence A, B are equal and thus similar, so suppose $k \ne 0$. By the rank-nullity theorem, $\dim(E_0(A)) = n - \operatorname{rk}(A) = n - k = n - \operatorname{rk}(B) = \dim(E_0(B))$. By idempotence, $\mu_A, \mu_B \in \{x, x - 1, x^2 - x\}$. If either μ_A or μ_B is x, then the corresponding matrix is 0 whence k = 0 contradicting that $k \ne 0$. Thus $\mu_A, \mu_B \in \{x - 1, x^2 - x\}$. If either μ_A or μ_B is x - 1 then the corresponding matrix is the identity whence it does not have 0 as an eigenvalue and thus $0 = \dim(E_0(A)) = \dim(E_0(B))$. Note that the other minimal polynomial cannot be $x^2 - x$ as otherwise the eigenspace corresponding to zero would have positive dimension. Thus in this case both matrices are the identity and thus similar. Lastly, suppose that $\mu_A = x^2 - x = x(x - 1) = \mu_B$. Then all Jordan blocks in the JCF of A,B have size 1. As A,B have the same dimensions of their 0-eigenspaces, it follows that they have the same number of 0 blocks. But then they have the same number of 1 blocks as this is the only other eigenvalue and all blocks have size 1. Thus, they have the same JCF and are similar.

Problem 2

Let F be an algebraically closed field and V a finite dimensional F-vector space.

(a) Let $S, T \in \mathcal{L}(V)$ such that ST = TS. Let λ be an eigenvalue of S and $E_{\lambda}(S) \leq V$ be the corresponding eigenspace of S. Prove that $E_{\lambda}(S)$ is a T-invariant subspace.

Proof. Let $v \in E_{\lambda}(S)$, so $Sv = \lambda v$. Then

$$S(Tv) = (ST)(v) = (TS)(v) = T(Sv) = T(\lambda v) = \lambda \cdot (Tv)$$

so $Tv \in E_{\lambda}(S)$. Thus $T(E_{\lambda}(S)) \subseteq E_{\lambda}(S)$.

(b) Assume that $T \in \mathcal{L}(V)$ is diagonalizable and let $W \leq V$ be a T-invariant subspace. Prove that $T|_W \in \mathcal{L}(W)$ is also diagonalizable.

Proof. Since T is diagonalizable, $E_{\lambda}(T) = V_{\lambda}(T)$ for all $\lambda \in \operatorname{Spec}(T)$. Let $\lambda \in \operatorname{Spec}(T|_W) \subseteq \operatorname{Spec}(T)$ and $w \in W_{\lambda}(T|_W)$. Then, for some $k \in \mathbb{N}$, $(T - \lambda I)^k(w) = (T|_W - \lambda I|_W)^k(w) = 0$. Hence $w \in V_{\lambda}(T) = E_{\lambda}(T)$. But $w \in W$ so then $w \in E_{\lambda}(T|_W)$ whence $E_{\lambda}(T|_W) = W_{\lambda}(T|_W)$. So $T|_W$ is diagonalizable. \square

(c) Assume again that $S, T \in \mathcal{L}(V)$ such that ST = TS. Prove that there exists a basis Ω of V such that $[T]_{\Omega}$, and $[S]_{\Omega}$ are both diagonal.

Proof. I am quite sure that this claim is false as stated, so I will add the assumption that S, T are both diagonalizable.

Then as S is diagonalizable,

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(S)} V_{\lambda}(S) = \bigoplus_{\lambda \in \operatorname{Spec}(S)} E_{\lambda}(S).$$

Fix $\lambda \in \operatorname{Spec}(S)$. By part (a), $E_{\lambda}(S)$ is T-invariant whence part (b) implies that $T|_{E_{\lambda}(S)}$ is diagonalizable. So

$$E_{\lambda}(S) = \bigoplus_{\delta \in \operatorname{Spec}(T|_{E_{\lambda}(S)})} E_{\delta}(T|_{E_{\lambda}(S)}).$$

Now we write

$$V = \bigoplus_{\lambda \in \operatorname{Spec}(S)} \bigoplus_{\delta \in \operatorname{Spec}(T|_{E_{\lambda}(S)})} E_{\delta}(T|_{E_{\lambda}(S)}).$$

Since this sum is direct, we may form a basis for V from bases for $E_{\delta}(T|_{E\lambda(S)})$ over this double direct sum, whence this basis is both an eigenbasis for T and S.

(d) Give an example of a vector space V with $\dim_F(V) \geq 3$ and two commuting linear transformations $S, T \in \mathcal{L}(V)$ such that NO basis Ω of V exists such that both $[T]_{\Omega}$, and $[S]_{\Omega}$ are in JCF.

Proof. Consider the matrices

$$S = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad T = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Note that ST and TS are both the zero matrix so these matrices commute. Moreover, S is already in JCF and the JCF of T is precisely S. Thus, if we pick a basis bringing T into JCF, we would end up knocking S out of JCF and vice versa.

Problem 3

Find the number of distinct conjugacy classes in the group $GL_3(\mathbb{Z}/2\mathbb{Z})$, and specify one element in each conjugacy class.

Proof. Fix $A \in GL_3(\mathbb{Z}/2\mathbb{Z})$. Let $\alpha_1|\cdots|\alpha_m = \mu_A$ be the invariant factors for A. Then $\deg(\alpha_1) + \cdots + \deg(\alpha_m) = 3$ and $\alpha_1 \cdots \alpha_m = \chi_A$. As $\det(A) \neq 0$, it follows that $\det(A) = 1$ so $\chi_A(x) = x^3 + ax^2 + bx + 1$.

 $\underline{a=0,\ b=0}$: $\chi_A(x)=x^3+1=(x+1)(x^2+x+1)$. Both x+1 and x^2+x+1 are irreducible over $\mathbb{Z}/2\mathbb{Z}$, so each $\alpha_i\in\{x+1,x^2+x+1,x^3+1\}$. Note that $\alpha_m=x+1,x^2+x+1$ are both impossible as they are both not equal to the characteristic polynomial and thus irreducibility would force lower factors to equal α_m and thus would miss the other respective factor. So $\alpha_m=x^3+1$, whence m=1 and A is similar to

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

 $\underline{a=1,\ b=0}$: $\chi_A(x)=x^3+x^2+1$. This polynomial is irreducible over \mathbb{Z}_2 and already degree 3, so m=1 and A is similar to

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

 $\underline{a=0,\ b=1}$: $\chi_A(x)=x^3+x+1$. This polynomial is irreducible over \mathbb{Z}_2 and already degree 3, so m=1 and A is similar to

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

 $\underline{a=1,\ b=1}$: $\chi_A(x)=x^3+x^2+x+1=(x+1)^3$. In this case, via partitions of 3 we have either m=1 so $\alpha_1=\chi_A,\ m=2$ and $\alpha_1=x+1$ and $\alpha_2=(x+1)^2$, or m=3 and $\alpha_1=\alpha_2=\alpha_3=x+1$. Hence A is similar

to one of the following:

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Problem 4

Let V be an n-dimensional vector space over an algebraically closed field and $T \in \mathcal{L}(V)$. Assume that T has just one eigenvalue λ and just one Jordan block. Let $S = T - \lambda I$.

(a) Prove that $\operatorname{rk}(S^k) = n - k$, for all $0 \le k \le n$. Deduce that $\operatorname{Im}(S^k) = \ker(S^{n-k})$, for all $0 \le k \le n$.

Proof. Note that $n_T(k,\lambda) = 1$ for $0 \le k \le n$ by assumption.

We induct on $0 \le k \le n$. For k = 0, $S^0 = I$ so $\operatorname{rk}(S^0) = n = n - 0$.

Now suppose $0 < k \le n$ and that the claim holds for k - 1. On one hand, by the induction hypothesis $\operatorname{rk}(S^{k-1}) = n - (k-1)$. On the other hand

$$1 = n_T(k,\lambda) = \operatorname{rk}((T-\lambda I)^{k-1}) - \operatorname{rk}((T-\lambda I)^k) = \operatorname{rk}(S^{k-1}) - \operatorname{rk}(S^k) = n - k + 1 - \operatorname{rk}(S^k) \implies \operatorname{rk}(S^k) = n - k.$$

To see that $\operatorname{Im}(S^k) = \ker(S^{n-k})$, note that by the rank nullity theorem we have

$$\dim \ker(S^{n-k}) = n - \operatorname{rk}(S^{n-k}) = n - (n - (n-k)) = n - k = \operatorname{rk}(S^k) = \dim \operatorname{Im}(S^k),$$

so it suffices to show that $\operatorname{Im}(S^k) \subseteq \ker(S^{n-k})$.

Take $w \in \text{Im}(S^k)$. Then $w = S^k v$ for some $v \in V$. Noting that $\text{rk}(S^n) = 0 \implies S^n = O$, we have that $S^{n-k}w = S^{n-k}(S^kv) = S^nv = Ov = 0$, so $w \in \text{ker}(S^{n-k})$.

(b) Let $v \in V$ be any vector which lies outside of $\text{Im}(S) = \ker(S^{n-1})$. Prove that $\{S^{n-1}v, \ldots, Sv, v\}$ is a Jordan basis for T.

Proof. As $v \notin \ker(S^{n-1})$, we have that $S^{n-1}v \neq 0$ whilst

$$(T - \lambda I)S^{n-1}v = S^n v = Ov = 0 \implies T(S^{n-1}v) = \lambda \cdot (S^{n-1}v).$$

If $0 \le k < n - 1$,

$$(T - \lambda I)S^k v = S(S^k v) = S^{k+1}v \implies T(S^k v) = \lambda S^k v + S^{k+1}v$$

Hence, $\Omega = \{S^{n-1}v, \dots, Sv, v\}$ is a Jordan chain. For ease of notation, let $v_k = S^k v$ for $0 \le k \le n-1$. Then for each $0 \le k \le n-1$, $(T-\lambda I)^{n-k}v_k = 0$ and $(T-\lambda I)^{n-k-1}$ so $v_k \in \ker(T-\lambda I)^{n-k} \setminus \ker(T-\lambda I)^{n-(k+1)}$. Moreover, we have the series

$$0 = \ker(T - \lambda I)^{n-n} \subseteq \ker(T - \lambda I)^{n-(n-1)} \subseteq \cdots \subseteq \ker(T - \lambda I)^{n-1} \subseteq \ker(T - \lambda I)^{n-0} = V_{\lambda}(T) = V_{\lambda}(T)$$

so at each step we add in a vector linearly independent from the previously added vectors, whence induction implies that Ω is a linearly independent set and thus a basis by dimensionality. As Ω is a Jordan chain, it follows that $[T]_{\Omega} = J(n, \lambda)$.

Problem 6

Compute the Jordan canonical form and a Jordan basis for each of the following matrices over Q:

(a)
$$\begin{pmatrix} -1 & 3 & 0 \\ 0 & 2 & 0 \\ 2 & 1 & -1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 0 \end{pmatrix}$.

(a):

Proof. First we compute the characteristic polynomial of A:

$$\chi_A(x) = \det(xI - A) = (x - 2)(x + 1)^2$$

so $\operatorname{Spec}(A) = \{-1, 2\}$. Now we find the number of Jordan blocks corresponding to each eigenvalue via computing the corresponding eigenspaces and consequently their dimensions.

Note that $E_{-1}(A) = \ker(A+I) = \operatorname{span}\left\{\begin{pmatrix} 0\\0\\1 \end{pmatrix}\right\}$ and $E_{2}(A) = \ker(A-2I) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$. As $\dim(E_{-1}(A)) = 1$ and the power of x+1 in χ_{A} is 2 (the sum of the sizes of the blocks), it follows that JCF(A) has one -1-block of size 2 and thus we are forced to have

$$JCF(A) = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

To find a Jordan basis, note that dim $V_{-1}(A) = 2$ as it is the sum of the sizes of all the -1-blocks in JCF(A). To obtain a Jordan cycle, we solve for a w such that $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = (A+I)w$. We compute that $w = \begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}$ works as a solution, whence we obtain an actual basis for $V_{-1}(A)$ by dimensionality. Hence, our Jordan basis is

$$\left\{ \begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

(b):

Proof. First we compute the characteristic polynomial of B:

$$\chi_B(x) = \det \begin{pmatrix} x - 1 & 1 & -1 \\ -1 & x + 1 & -1 \\ -1 & 1 & x \end{pmatrix} = x^3$$

so $\operatorname{Spec}(B) = \{0\}$. We now compute eigenspaces and generalized eigenspaces. We compute that $E_0(B) = \ker(B) = \operatorname{span}\left\{\begin{pmatrix} 1\\0\\0 \end{pmatrix}\right\}$, so $\dim(E_0(B)) = 1$ whence there is one 0-block and thus

$$JCF(A) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Let $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. We seek nonzero $v_1, v_0 \in V_0(B)$ such that $v_2 = Av_1$ and $v_1 = Av_0$. We compute that the choices $v_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ and $v_0 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ possess the desired properties. Thus our Jordan basis is given by

$$\left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \ \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}.$$

Problem 7

Let $F = \mathbb{F}_3$ be the field with 3 elements and let $A \in M_{12}(\mathbb{F}_3)$. Suppose that A satisfies all the following assumptions:

- rk(A) = 10, $rk(A^2) = 9$, $rk(A^3) = 9$.
- $\operatorname{rk}(A I) = 12$.
- $\operatorname{rk}(A I) = 12$. $\operatorname{rk}(A 2I) = 9$, $\operatorname{rk}((A 2I)^2) = 7$, $\operatorname{rk}((A 2I)^3) = 6$.
- (a) Assume in addition that the characteristic polynomial $\chi_A(x)$ splits completely over F (i.e. it splits into linear factors in F[x]). Find the Jordan canonical form of A.

Proof. For brevity, we write $n(k,\lambda) = n_A(k,\lambda)$. Recall that $n_A(k,\lambda) = \text{rk}((A-\lambda I)^{k-1}) - \text{rk}((A-\lambda I)^k)$ gives the number of Jordan blocks corresponding to λ of size at least k. We compute,

$$n(1,0) = \text{rk}(I) - \text{rk}(A) = 12 - 10 = 2$$

$$n(2,0) = \text{rk}(A) - \text{rk}(A^2) = 10 - 9 = 1$$

$$n(3,0) = \text{rk}(A^2) - \text{rk}(A^3) = 9 - 9 = 0$$

whence we have one 0-block of size 1, and one 0-block of size 2,

$$n(1,1) = \text{rk}(I) - \text{rk}(A - I) = 12 - 12 = 0$$

giving that 1 is not an eigenvalue of A, and

$$n(1,2) = \operatorname{rk}(I) - \operatorname{rk}(A - 2I) = 12 - 9 = 3$$

$$n(2,2) = \operatorname{rk}(A - 2I) - \operatorname{rk}((A - 2I)^2) = 9 - 7 = 2$$

$$n(3,2) = \operatorname{rk}((A - 2I)^2) - \operatorname{rk}((A - 2I)^3) = 7 - 6 = 1$$

implying that we have one 2-block of size 1, one 2-block of size 2, and the remaining space given by a single 2-block of size 12 - (2 + 1 + 2 + 1) = 6.

(b) Find all possible RCF's of matrices A satisfying all the bullet assumptions, but not necessarily the extra assumption in (a).

Proof. Write $V = \mathbb{F}_3^{12}$. Then, writing V_A in invariant factor form:

$$V_A \cong \frac{F[x]}{(\alpha_1(x))} \oplus \frac{F[x]}{(\alpha_2(x))} \oplus \cdots \oplus \frac{F[x]}{(\alpha_m(x))}$$

In elementary divisor form, this becomes

$$V_A \cong \frac{F[x]}{(x)} \oplus \frac{F[x]}{(x^2)} \oplus \frac{F[x]}{((x-2))} \oplus \frac{F[x]}{((x-2)^2)} \oplus \frac{F[x]}{((x-2)^k)} \oplus \frac{F[x]}{(p(x))}$$

where $p(x) \in \mathbb{F}_3[x]$, $k \ge 3$, and there is no factor corresponding to x - 1 as $\operatorname{rk}(A - I) = 12$ implies that 1 is not an eigenvalue of A. Note that $\mu_A = x^2(x-2)^k p(x)$. As $12 = \sum \operatorname{deg}(\alpha_i) = 1 + 2 + 1 + 2 + k + \operatorname{deg}(p) \Longrightarrow k = 6 - \operatorname{deg}(p) \le 6$.

 $\underline{k=3}$: Then $\deg(p)=6-3=3$, whence p must be irreducible as otherwise it would have a linear fact and thus contribute an eigenspace which we have already filled by rank restrictions. Hence, the RCFs appear in corresponding partitions of the factors $x^2(x-2)^3$ into lower α_i 's with successive division and degrees summing to 12.

 $\underline{k=4}$: The deg(p)=6-4=2, whence p must be irreducible by the above logic. Hence, the RCFs appear in corresponding partitions of the factors $x^2(x-2)^4$ into lower α_i 's with successive division and degrees summing to 12.

 $\underline{k=5}$: Then $\deg(p)=1$, which is impossible as then we would get another addition to the already filled eigenspace.

 $\underline{k=6}$: Then $\deg(p)=0$, so p=1. The RCFs appear then in corresponding partitions of the factors $x^2(x-2)^6$ in the lower α_i 's to obtain total degree sum of 12.