Discounted UCB

Levente Kocsis and Csaba Szepesvári

MTA SZTAKI, Hungary

UCB1-tuned

Discounted UCB1-tuned

Experiments

Other algorithms

Conclusions

UCB1-tuned+

$$s_{it} = \sum_{\tau=0}^{t} \mathbb{I}(I_{\tau} = i) x_{\tau}$$

$$n_{it} = \sum_{\tau=0}^{t} \mathbb{I}(I_{\tau} = i)$$

$$\mu_{it} = s_{it}/n_{it} \qquad n_{t} = \sum_{i} n_{it}$$

$$I_{t+1} = \underset{i}{\operatorname{argmax}} \left(\mu_{it} + \sqrt{\frac{\max(\mu_{it}(1 - \mu_{it}), 0.002) \ln n_{t}}{n_{it}}} \right)$$

Discounted UCB1-tuned+

$$s_{it} = \sum_{\tau=0}^{t} \mathbb{I}(I_{\tau} = i) \gamma^{t-\tau} x_{\tau}$$

$$n_{it} = \sum_{\tau=0}^{t} \mathbb{I}(I_{\tau} = i) \gamma^{t-\tau}$$

$$\mu_{it} = s_{it}/n_{it} \qquad n_{t} = \sum_{i} n_{it}$$

$$I_{t+1} = \underset{i}{\operatorname{argmax}} \left(\mu_{it} + \sqrt{\frac{\max(\mu_{it}(1 - \mu_{it}), 0.002) \ln n_{t}}{n_{it}}} \right)$$

Experiments: Task 1 (averaged over 1000 seeds)

Experiments: Task 1 (averaged over test seeds)

Experiments: Task 2 (averaged over 1000 seeds)

Experiments: Task 2 (averaged over test seeds)

Experiments: Task 3 (averaged over 1000 seeds)

Experiments: Task 3 (averaged over test seeds)

Other algorithms

- ▶ line fitting
- discounted UCB + exploiting periodicity
- ► adaptive discounted UCB

Conclusions

- Challenging challenge
- ► Task 4(?): mixing task 1 and 2
- Regret bounds depending on how fast the response rate vary?
- Universal algorithms (algorithms adapting to response rate)