Database security

Advantages of using databases

- Shared access
 - · Many users use one common, centralized data set
- Minimal redundancy
 - Individual users do not have to collect and maintain their own sets of data
- Data consistency
 - · A change to a data value affects all users of the data value
- Data integrity
 - Data values are protected against accidental or malicious undesirable changes
- Controlled access
 - Only authorized users are allowed to view or to modify data values

Security requirements (1/2)

- Physical integrity
 - Immunity to physical problems
 - e.g. power failures
 - Ability to reconstruct the database if destroyed in a catastrophe
- Logical integrity
 - Structure is preserved
- Element integrity
 - · Data in each element is accurate
- Auditability
 - It is possible to track who or what has accessed (or modified) which elements in the database

Security requirements (2/2)

- Access control
 - A user/role is allowed to access only authorized data/queries
 - Different users/roles can be restricted to different modes
 - e.g. read or write
- User authentication
 - · Every user/role is positively identified
 - Fundamental for audit trails and for permissions to access data
- Availability
 - Users/roles can access the database in general and all the data for which they are authorized

Two-phase updates

- * Problem
 - Failures during updates may render databases incoherent
 - Requirement → atomicity (from ACID)
 - Logical integrity problem
- Solution: Atomicity with two-phase updates

Two-phase update

- 1st phase: intent phase
 - The DBMS gathers resources it needs to perform the update
 - It does everything to prepare for the update, but makes no changes to the database
 - · Committing: writes a commit flag to the database
 - Point of no return
 - After, the DBMS begins making permanent changes
- 2nd phase: commit phase
 - Makes the permanent changes in the database
 - It lasts until finishing all changes prepared in the first phase
 - When it finishes, the database changed to a new stable, coherent state

Redundancy / internal consistency

- Error detection and correction codes
 - Parity bits, Hamming codes, cyclic redundancy checks
 - · Can be applied to different data elements
 - Fields, records, entire database
 - More space
 - To store error detection/correction information
- Shadow fields
 - Duplication of fields or records
 - Requires substantial storage space

Concurrency / consistency

- Accesses by two users of the same DBMS must be constrained so that neither interferes with each other
 - · Simple locking: multiple readers, one writer
 - But simple locking may not be enough on query-update cycles

Solution

- Treat every query-update cycle as a single atomic operation (a transaction)
 - e.g. flight booking
- Synchronization should be applied to transactions
 - Two concurrent transactions cannot write (and sometimes read) the same field/record

Monitors

- DBMS unit responsible for the DB structural integrity
 - Checks entered values to ensure their consistency with field, record or database consistency constraints
- Types of monitors
 - Range comparisons
 - Tests is values belong to an acceptable range
 - State constraints
 - Describe the condition of the entire database
 - e.g. the commit flag
 - Impose integrity restriction rules
 - e.g. to detect duplicate records
 - Transition constraints
 - Describe required conditions before changing the database

Database activity monitoring

- DBMS usage supervision
 - To detect abuses
 - To detect unusual/suspect activity or operations
- DBMS independent
 - Not part of the DBMS
 - External observation of DBMS activity
- Monitoring sensors
 - Network activity
 - Local SQL commands performed
 - Log analysis

Sensitive data

- Data requiring (extra) protection
 - From loss (disclosure)
 - From misuse
 - From modification
 - From unauthorized access
- Risks
 - Privacy and welfare of individuals
 - Business activities
 - Security-related activities

Sensitive data

- Some databases contain sensitive data
 - Data that should not be made public
 - e.g. clinical records of patients
- Sensitivity depends on: BD purpose + DB data
 - · Some record fields, entire records/tables, entire database
 - e.g. personal health record (HER) with all detected pathologies, treatments and interventions
 - e.g. clinical records of an AIDS table
 - e.g. defense-related databases
- Complexity
 - · Simple cases: all or nothing
 - Everything sensitive, nothing sensitive
 - · Complicated cases: part of the DB elements are sensitive
 - In some cases, sensitivity is extended to the simple existence of a field data or record

Sensitive data:

Factors that make data sensitive

- Inherently sensitive
 - · The value itself may be so revealing that it is sensitive
- From a sensitive source
 - · The value may reveal the identity of its source
- Declared sensitive
 - The value was explicitly declared sensitive
- Belongs to a sensitive record
 - · Value of a record was explicitly marked as sensitive
- Sensitive given previously disclosed information
 - By itself, the data is not sensitive, but together with other data, the whole can be sensitive

Types of disclosures (of sensitive data)

- Exact data
 - The exact value of a sensitive datum
 - The most serious disclosure

* Bounds

- Sensitive data item is > lower bound or < upper bound
- · Sometimes bounds are used to protect (hide) sensitive data
 - By providing bounds to elements instead of their exact value
- Negative result
 - By getting a negative result for a query on a sensitive value, a user can conclude that the value has a particular set of values
 - e.g. from a list of effective voters we can conclude who didn't vote

Types of disclosures (of sensitive data)

Existence

- The existence of a sensitive field in a record can be, by itself, sensitive information
 - Because it may reveal a hidden data gathering & processing activity

Probable value

 By crossing the results of several queries we can infer a probability for an element value

Inference

- Definition
 - · A way to infer, or derive, sensitive data from non-sensitive data

Inference attacks

Direct attack

- Uses queries with a blend of selection rules that use sensitive fields and non-sensitive fields
- The DBMS can be deceived by the selection rules with nonsensitive fields, which are not intended to select particular records

Indirect attack

- Inference of particular values from statistical values computed over several records
 - Counts, sums, averages

Inference attacks

Tracker attack

- The database may conceal data when a small number of records make up the large proportion of the data revealed
- A tracker attack can fool the DBMS by using different queries that reveal data and, by combining the results, the attacker can get the desired information

K-anonymity

L. Sweeney, "K-anonymity: A Model for Protecting Privacy", Int. Journal on Uncertainty, Fuzziness and Knowledge-based Systems. 2002

- Definition
 - No query can deliver an anonymity set with less than k entries
 - The anonymity set is the set of all possible subjects
- Privacy-critical attributes
 - · (Unique) identifiers
 - · Quasi-identifiers
 - When combined can produce unique tuples
 - Sensitive attributes
 - Potentially unique per subject
 - Disease, salary, crime committed

Multilevel security: Goal

- Tag information items with security classifications
 - · e.g unclassified, confidential, secret, top secret
- Tag queries with security levels
 - The security level of the entity responsible for the query
- Prevent queries from observing values of fields with a different security classification

Security

Or from observing meaningful values

Multilevel security: Poli-instanciation

- A record with a particular key field may be duplicated in different security levels
 - Possibly with different values
- This reduces the precision of the database information
 - The correctness of the information depends on the entity performing the query
 - Duplicates know can legitimately occur

Multilevel security: Separation strategies (1)

- Partitioning
 - · Different security levels, different databases
 - · Queries are directed to the appropriate DB
- Advantages
 - Easy to implement
- Disadvantages
 - Redundancy of information
 - Problems in the access to records with fields with different security levels

Multilevel security: Separation strategies (2)

- Encryption
 - Fields are encrypted with a security-level key
- Advantages
 - · Single database, same database structure
- Disadvantages
 - Decryption on each query with the adequate security level key
 - Randomized encryption: equal fields should not produce the same cryptogram
 - Otherwise statistics and known-plaintext attacks disclose values
 - Solution: different keys per record or different IVs per record
 - No encrypted values should be updated by providing another encrypted value

Multilevel security: Separation strategies (3)

- Integrity lock
 - Each data item is formed by three parts:
 - Data item, sensitivity label, checksum
 - · The sensitivity label should be
 - Unforgeable (cannot be changed)
 - Unique (cannot be copied to another data item)
 - Concealed (cannot be observed)
- Advantages
 - Can use a regular DBMS
 - Trusted stored procedures are enough to implement them
- Disadvantages
 - Space for storing sensitivity labels and checksums

Laws for the protection of personal data

- * Each country has its how set of laws
 - There is not a global consensus
- * In Portugal this is supervised by CNPD
 - Comissão Nacional de Proteção de Dados
 - All data processing involving personal data gathered from individuals needs to be <u>submitted</u> to CNPD for authorization
- European Directive for Data Protection
 - To be applyed from May 25, 2018

