
Basic Earned Value Management for Program Managers

Eleanor Haupt
ASC/ FMCE

Training Objectives

- Understand basic concepts
- How to evaluate performance
- How to manage using Earned Value

need to
answer:

does EVMS =

common sense project
management???

What We'll Cover...

- Who, what, where, when and why
- Basic EVMS terms
- Earned value and the project management cycle
 - Planning
 - Executing
 - Controlling
- Managing with earned value data
- Closing Thoughts

- References (for further reading)

Who, What, Where, When

&

Why

Why use EVMS?

Life without EVMS

- Given:
 - total budget of \$100,000
 - 12 month effort
 - produce 20 units
- Status:
 - spent to date: \$64,000
 - time elapsed: 6 months
 - units produced: 8 complete, 2 partial
- **How are you doing, and how do you know how you are doing?**
- **How far along are you? (64%, 50%, >40%)**

Why do we need Early Warning?

Course corrections are easier
when you have time to make
small adjustments

It's too late when you're this
close to the iceberg!

Why use EVMS?

- Early and accurate identification of trends and problems
- Accurate picture of contract status
 - cost, schedule, and technical
- Basis for course correction
- Supports mutual goals of contractor and customer
 - bring project in on schedule and cost

What is EVMS?

EVMS is the primary project management tool...

that integrates the **technical**, **schedule**, and **cost** parameters of the contract.

The **project manager** is the primary tool in the EVMS toolbox.

What is the process?

- The contractor establishes a management control system
 - May be required to show that system meets 32 criteria
- An integrated baseline plan is established
 - work is defined, scheduled, and resources are allocated
- Work and resources are driven down to lowest level for execution
- A work authorization system is set up that controls changes to the baseline
- Budgets are “earned” as work is completed = EARNED VALUE
- Status provided against baseline
 - schedule and cost variances are isolated
- Problem assistance
 - early warning
 - corrective plans
- Early insight provided into final estimated cost

Who's Who in EVMS

• Primary <u>Users</u>	Program/Project Managers Technical Staff and IPTs
• Primary <u>Implementers</u>	EVMS specialists control account administrators
• Executive Agent (compliance)	Defense Contract Management Command (DCMC) (EVMS Center)
• DoD Policy	OSD/AT&L (SA/PM)
• Air Force Policy	SAF/AQX

EVMS Criteria

- **Major DoD Programs**
 - Contractor's management control system must meet certain criteria
 - DoD needs accurate and timely data
 - Don't impose a specific system
 - Acceptance of management system performed by DCMC
- OSD adopted ***industry developed*** EVMS Standard
 - ANSI/EIA-748-1998, Earned Value Management Systems
 - 32 criteria
 - 5 major groups

I	Organization (5)
II	Planning & Budgeting (10)
III	Accounting (6)
IV	Analysis (6)
V	Revisions and Access to Data (5)

A Spectrum of Implementation

Where

*with judgement

All \$ are BY96

Basic EVMS Terms

EVMS measures progress

Progress = Movement Forward

*to measure progress,
there must be a standard
against which the forward
movement may be compared*

*EVMS establishes a baseline
to measure progress*

What do we measure progress against?

- Performance measurement baseline
 - budget that is spread over . . .
 - time, to accomplish the scope of
 - work
 - and against which progress can be measured
- Earned Value is key concept
 - how much progress did I make against my original plan?
 - expressed in dollars or hours

Five Basic Elements

BCWS	Budgeted Cost of Work Scheduled
BCWP	Budgeted Cost of Work Performed
ACWP	Actual Cost of Work Performed
BAC	Budget at Completion
EAC	Estimate at Completion

Total Budget

What is the total job supposed to cost?

What is the value of the contract at cost?

Budgeted Cost of Work Scheduled (BCWS)

Month 1
BCWS = \$1,000

Month 2
BCWS = \$1,000

Month 3
BCWS = \$1,000

Month 4
BCWS = \$1,000

Month 5
BCWS = \$1,000

each dollar of BCWS represents a specific dollar of work scope

Budgeted Cost of Work Scheduled (BCWS)

Month 1
BCWS = \$1,000

Month 2
BCWS = \$1,000

Month 3
BCWS = \$1,000

Month 4
BCWS = \$1,000

Month 5
BCWS = \$1,000

Total Budget = \$5,000
Total BCWS = \$5,000

BCWS is aggregated and summed as the performance measurement baseline

Budgeted Cost of Work Performed (BCWP)

the **EARNED VALUE** concept

We're at the end of the second month, but only 1 section of track is complete. Value of work performed = \$1,000

You earn value the same way as it was budgeted in baseline

Schedule Variance

BUDGET BASED

BC	WS
BC	WP

of the work I scheduled to have done,
how much did I budget for it to cost?

of the work I actually performed,
how much did I budget for it to cost?

SCHEDULE VARIANCE is the difference between work scheduled
and work performed (expressed in terms of budget dollars)

formula: $SV \$ = BCWP - BCWS$

example: $SV = BCWP - BCWS = \$1,000 - \$2,000$

$SV = -\$1,000$ (negative = behind schedule)

Schedule Variance

Budget at Completion (BAC)

- when all work has been phased, cumulative BCWS = BAC
e.g., $\$5,000 = \$5,000$

At the end...

- At the end of the contract, when all work has been completed:
 - I've "earned" all of my budget (\$5,000)
 - BCWP (cumulative) = \$5,000
 - BCWS (cumulative) = \$5,000
 - therefore, schedule variance (\$) = 0
 - Formal schedule will reflect whether milestones were achieved on time
- Example:
 - I finished late, but I did finish
 - SV (\$) = \$ 0
 - Formal schedule shows a 5 month actual delay in completing the contract

Actual Cost of Work Performed (ACWP)

Labor came to \$1,300,
and materials cost
\$1,100. That first section
of track cost \$2,400!

actual expenditures vs. budget

Cost Variance

of the work I actually performed,
how much did I budget for it to cost?

of the work I actually performed,
how much did it actually cost?

COST VARIANCE is the difference between budgeted cost
and actual cost

formula: $CV \$ = BCWP - ACWP$

example: $CV = BCWP - ACWP = \$1,000 - \$2,400$
 $CV = -\$1,400$ (negative = cost overrun)

Cost Variance

Estimate at Completion (EAC)

Variance at Completion (VAC)

B AC

what the **total** job is supposed to cost

E AC

what the **total** job is expected to cost

VARIANCE AT COMPLETION is the difference between what the total job is supposed to cost and what the total job is now expected to cost.

FORMULA: $VAC = BAC - EAC$

Example: $VAC = \$5,000 - \$7,500$
 $VAC = - \$2,500$ (negative = overrun)

Variance at Completion (VAC)

VAC = Budget at Completion - Estimate at Completion
= BAC - EAC

FIVE BASIC PERFORMANCE DATA QUESTIONS & ANSWERS

QUESTION

How much work should be done?

How much work is done?

How much did the is done work cost?

What was the total job supposed to cost?

What do we now expect the total job to cost?

ANSWER

Budgeted Cost for Work Scheduled

Budgeted Cost for Work Performed

Actual Cost of Work Performed

Budget at Completion

Estimate at Completion

ACRONYM

BCWS

BCWP

ACWP

BAC

EAC

BCWP Allows Isolation of Schedule and Cost Variances

schedule variance = $BCWP - BCWS$ = negative number
cost variance = $BCWP - ACWP$ = negative number

behind schedule,
over cost

Pop Quiz

schedule variance = BCWP - BCWS =
cost variance = BCWP - ACWP =

→ _____ schedule,
_____ cost

Earned Value Management and the Project Management Cycle

Project Management Processes

Initiating	Recognizing that a project or phase should begin and committing to do so
Planning	Devising and maintaining a workable scheme to accomplish the business need that the project was undertaken to address
Executing	Coordinating people and other resources to carry out the plan
Controlling	Ensuring that project objectives are met by monitoring and measuring progress and taking corrective action when necessary
Closing	Formalizing acceptance of the project or phase and bringing it to an orderly end

How does EVMS fit into Program Management?

EVMS fits naturally into the Project Management Cycle

Planning

Planning is a 3 Step Process

1. DEFINE THE WORK AND ORGANIZE TEAMS

2. SCHEDULE THE WORK

3. ALLOCATE BUDGETS

CONTRACT BUDGET BASE

Organizing

- Objectives of organizing
 - establish a clear picture of the total project work scope
 - do we know what all of the work is?
 - assign responsibility to the right people

The Organizing Process

- Process
 - **Step 1:** define the authorized work using a work breakdown structure (WBS)
 - “decompose the work” into manageable chunks
 - provides a framework for
 - program and technical planning
 - cost estimating and resource allocation
 - performance measurements and status reporting
 - **Step 2:** define the organizational structure
 - **Step 3:** assign a single chunk of work to a single manager
 - **control account manager (CAM)**

Organizing the Work and Teams

- **Customer responsibility**
 - Define upper levels of the WBS (to level 3)
 - MIL-HDBK-881, Work Breakdown Structure
 - Write initial WBS dictionary and include in request for proposal
 - Specify performance reporting levels
- **Contractor responsibility**
 - Extend WBS to level where work is performed
 - define the elements
 - extend WBS dictionary
 - Identify organizational structure
 - include major subcontractors

Assigning Work

Control Account

- Control Account - where the work is done
 - Intersection of WBS and organization
- Develop Responsibility Assignment Matrix (RAM)
 - contractor developed
 - Assigns work and resources at lowest level (control account)
 - Establishes responsibility for WBS elements
 - Control Account Manager (CAM)
 - include responsibility for overhead

sum of all control accounts (BAC) = complete statement of work

Integration at the lowest level

- **Control Account - the key control point**
 - integrates:
 - work scope
 - WBS element
 - organization
 - work authorization
 - schedule
 - time phased budget (BCWS)
 - actual cost accumulation (ACWP)
 - earned value determination (BCWP)
 - variance analysis (cost and schedule)
 - calculation and explanation
 - corrective action
 - estimate at completion (EAC)

Case Study

Part 1

Contract Award

- You are the program manager, I. M. Taz
- You just won a contract to eliminate varmints within the state of Arizona
 - birds (tweetie and road runner types)
 - small animals
- You have an organization of highly trained specialists
 - L. M. Fudd
 - Sil Vester the cat
 - Wile E. Coyote
 - Daffie Duck (your deputy and the CAM for management)
- You have allocated the following budgets from your \$50,000 award
 - wascally rabbits (\$5,000)
 - squirrels (\$5,000)
 - tweetie birds (\$20,000)
 - road runners (\$10,000)
 - program management (\$10,000)

Organize the work

- Build a simple work breakdown structure

Organize the workers

- Build a simple organization breakdown structure

Build a RAM and allocate work

	Sil Vester	L. M. Fudd	Wile E. Coyote	Daffie Duck
1.1.1 wascally wabbits				
1.1.2 squirrels				
1.2.1 tweetie birds				
1.2.2 road runner				
1.3 program management				

Build a RAM and allocate work

	Sil Vester	L. M. Fudd	Wile E. Coyote	Daffie Duck
1.1.1 wascally wabbits		\$5,000		
1.1.2 squirrels		\$5,000		
1.2.1 tweetie birds	\$20,000			
1.2.2 road runner			\$10,000	
1.3 program management				\$10,000

What makes a good control account?

- **Rules of Thumb for Control Account size**

- integrated cost and schedule baseline
 - three legged stool
 - legs (cost, schedule, technical) are equal
- homogeneity of work
- what is logical to manage every day
- look at:
 - character of work
 - breakout of labor
 - span of control
- typically
 - 6 - 18 months for discrete effort
 - level of effort can be longer

So, what's in a Control Account?

Work Package

- **Development of Control Account Plans**
 - MAY break down the control account budget into smaller work packages
- **Work Packages**
 - subset of control account
 - reasonably short in duration
 - single element of cost (e.g., labor)
 - single technique for earning value
 - consistent with detail schedules
 - has same characteristics as control account
 - scope of work
 - milestone completion criteria
 - single performing organization
 - start and end dates

Work Package Characteristics

- discrete and measurable
- products or accomplishments
- examples:
 - design drawing package
 - conduct design review
 - install rudder
- rolling wave
 - detailed plans made for near term work packages
 - planning packages are for future work and are not detailed
 - CAMs periodically plan another increment of work packages
- open vs. closed packages

Ways of Earning Value

- **Earned Value techniques**
 - **Discrete**
 - physical, tangible end product
 - **Apportioned**
 - discrete, dependent on another discrete work package
 - example: quality assurance
 - planned as historical estimating factor (e.g., 7%)
 - **Level of Effort**
 - no tangible end product
 - basis of measurement: time
 - when clock starts ticking, you automatically accumulate earned value
 - no schedule variance
 - example: management personnel
- **Should be a quantitative and discrete way to measure the work**
- **May tie in with success criteria or technical measure**
 - e.g., successful completion of a specific test, reliability growth curve

Be Discrete!

- **Discrete EV Techniques:**

<u>Method</u>	<u>How Value is Earned</u>
0/100	no EV at opening, 100% EV at close of WP
50/50	50% EV at opening, 50% EV at close of WP
Units Completed	same budget value for identical units
Equivalent Units	planned unit standards, allows partial credit
Weighted Milestone	each milestone weighted based on planned resources ideal to have a milestone each month
Percent Complete	subjective (least desirable)

Material Concerns

- **Material and Subcontracts**

- Earned Value: taken no earlier than receipt

define
order
→ receipt
payment
to inventory
usage

- accurate cost accumulation and assignment to contract
 - should perform price and usage variances
 - should match earned value to payment period
 - otherwise, take estimated actuals to avoid artificial cost variance

Scheduling

- **Scheduling system characteristics**
 - complete
 - all work included
 - formal
 - everyone uses same schedule
 - traceable
 - vertical (Master, Intermediate, Detail)
 - horizontal (between tasks)
 - consistent
 - identifies sequence of tasks, interdependencies

CASE STUDY

Part 2

Contract SOW

SOW Paragraph 1.2.2:

The contractor shall design, build, and install a system to capture and eliminate the species “Road Runner” within the state of Arizona.

Contractor’s Winning Design:

The basic system shall consist of five miles of road, a fake tunnel painted on a side of the mountain, plus a device to drop an anvil on the Road Runner.

BEEP BEEP INDUSTRIES

CONTROL ACCOUNT AUTHORIZATION

Control Account: Roadrunner

Control Account Manager: Wile E. Coyote

Reason for Issue: Contract to rid Arizona of all unwanted creatures,
F33657-96-C-0221

Scope Description: Perform scope in accordance with Statement of Work.
WBS Element 1.2.2

Schedule Requirement: Perform in accordance with Control Account Plan

Budget Authorization: \$10,000

Schedule Information

- The contract was awarded in Month 1, and will be complete by the end of Month 6.
- You can begin building the road immediately, and plan on it taking about one month to complete one mile of road.
- It will take approximately three months to develop, build, and quality test the anvil support mechanism (ASM).
- You should begin the ASM install during the last month of the build cycle, during quality test. The ASM will take three months to install, and should be the last item completed on the contract, in Month 6.
- Based on past experience, you believe that it will take you two months to paint the fake tunnel. You will start it one month before the anvil support mechanism (ASM) begins installation.
- The anvil supplier, Acme Anvils, has been a good supplier for you in the past. The anvil is commercial off-the-shelf equipment. You need delivery one month before the install is complete.

Budget Estimate - BAFO

	<u>Budget Estimate</u>
1. Procure anvil (sole source - ACME Anvil)	\$1,500
2. Paint fake tunnel	\$1,000
3. Build 5 miles of road	\$3,000
4. Develop and build anvil support mechanism (ASM) – design drawings complete & signed off (CDR) (Milestone 1) – build unit (Milestone 2) – quality test (Milestone 3)	\$3,000 (\$1,000) (\$1,000) (\$1,000)
5. Install system on-site	\$1,500
Total	\$10,000

	EV Techniques	0/100, 50/50, Units Complete, % Complete, Milestones
--	---------------	---

CONTROL ACCT. TITLE: Roadrunner

CONTROL ACCOUNT MANAGER: Wile E. Coyote

BUDGET: \$10,000

TIER I MILESTONE		KT AWD					KT COMP		
WP#	WORK DESCRIPTION	EV METHOD	MONTH 1	MONTH 2	MONTH 3	MONTH 4	MONTH 5	MONTH 6	TOTAL BAC
1	Procure Anvil	BCWS BCWP							
2	Paint Fake Tunnel	BCWS BCWP							
3	Build Road	BCWS BCWP							
4	Build ASM	BCWS BCWP							
5	Install ASM	BCWS BCWP							
TOTAL CONTROL ACCOUNT PLAN		BCWS BCWP							
Schedule Variance		month							
		cumulative							
Actual Costs									
Cost Variance		month							
		cumulative							

EV Techniques	0/100, 50/50, Units Complete, % Complete, Milestones
---------------	---

CONTROL ACCT. TITLE: Roadrunner

CONTROL ACCOUNT MANAGER: Wile E. Coyote

BUDGET: \$10,000

TIER I MILESTONE		KT AWD					KT COMP			
WP#	WORK DESCRIPTION	EV METHOD	MONTH 1	MONTH 2	MONTH 3	MONTH 4	MONTH 5	MONTH 6	TOTAL BAC	
1	Procure Anvil	BCWS					1,500		1,500	
		BCWP								
2	Paint Fake Tunnel	BCWS			500	500			1,000	
		BCWP								
3	Build Road	BCWS	600	600	600	600	600		3,000	
		BCWP	△	△	△	△	△			
4	Build ASM	BCWS		1,000	1,000	1,000	1,000		3,000	
		BCWP		△ 1	△ 2	△ 3				
5	Install ASM	BCWS				500	500	500	1,500	
		BCWP				△				
TOTAL CONTROL ACCOUNT PLAN		BCWS	600	1,600	2,100	2,600	2,600	500	10,000	
		BCWP								

Schedule Variance	month							
	cumulative							

Actual Costs								

Cost Variance	month							
	cumulative							

basic rules of the road...

- **value is earned using the same method as it was planned**
- **sum of the work packages equals the control account budget**
- **sum of the control accounts equals the budget baseline**
- **span of lower tier schedules supports upper schedules**

More Acronyms!

at the total contract level....

UB Undistributed Budget

- = authorized work held at top level until it can be planned in detail
(will eventually have performance measurement)

PMB Performance Measurement Baseline

- = time phased budget plan
- = detailed planning + UB

MR Management Reserve

- = amount withheld at top level for control purposes
(no performance measurement)
- = used for unforeseen changes that are within scope of the contract

CBB Contract Budget Base

- = PMB + MR
- = contract at cost

Rolling Up the Work

Plans are in place..

- The baseline is now in place
 - you've broken down all the work
 - assigned it to teams
 - scheduled the work and integrated the schedules,
 - and assigned budget resources.....
 - schedules and budgets roll up to match the contract
- Let's take the time to evaluate the realism of the baseline
 - Integrated Baseline Review (IBR)
 - joint contractor/government team
 - within 6 months of contract award or major change

I'd rather be
doing an IBR

Case Study IBR

Historical Data from other Beep Beep programs

1. Average historical cost per mile of road = \$750
2. Contractor has no experience in painting tunnels.
3. Contractor has never worked in this part of the country before.
4. Price of raw aluminum on the open market just recently skyrocketed due to heavy demand.

- Did we fully plan all work? Do we understand the work?
- Do we have a reasonable schedule, with logic indicated?
- Do we have enough budget?
- Are the earned value techniques valid?
- Is the program manager paying attention?

- Bottom line: where are the risks to the program?

Execute!

Authorizing the Work

- Can only charge to open work packages
 - contractor system sets procedure
- Contractor maintains baseline log which tracks:
 - distribution of budget from Undistributed Budget (UB) to control accounts
 - distribution of Management Reserve (MR)
 - additions of authorized work
 - total equals Contract Budget Base
- Contract changes incorporated in disciplined manner
 - cannot start work without authorization or budget
- Baseline changes are controlled
 - Internal replanning
 - Over Target Baseline, Over Target Schedule

more rules of the road...

- cannot move budget and work independently
- cannot use management reserve to cover overruns
- may replan open work packages as necessary
 - contractor sets internal policy
 - maintain valid performance information
- cannot change budgets or costs for completed work
 - except to fix errors

Case Study

Part 3

EV Update and End of Month Actuals

- Month 1: 1 section of road built (\$700)
- Month 2: Design drawings were completed and signed off (\$980)
1 section of road built (\$720)
- Month 3: The work package for the fake tunnel was opened (\$200)
A labor strike prevented a section of road from being built (\$300)
The ASM began to be built, but the unit was not complete (\$800)
- Month 4: The tunnel was not completed (\$400)
The crew went back on the job, and got paid overtime. 2 road sections built for \$1500.
Milestone 2 for the ASM was finally complete. Quality test was pushed out 1 month. (\$400)
The install of the ASM was delayed, due to the delay in build.
The anvil was ordered.
- Month 5: The anvil was delivered and final cost was \$1,700.
The tunnel was complete (painted). (\$500)
The last section of road was built for \$700.
Qual test completed. (\$1,900)
The CAM estimated that the install was approximately 20% complete (\$400)
- Month 6: Additional work crews were hired, and the installation was completed.
The additional crews cost an additional \$1,000. (\$2,100 total)

				EV Techniques	0/100, 50/50, Units Complete, % Complete, Milestones				
CONTROL ACCT. TITLE: Roadrunner				CONTROL ACCOUNT MANAGER: Wile E. Coyote					
BUDGET: \$10,000									
TIER I MILESTONE		KT AWD					KT COMP		
WP#	WORK DESCRIPTION	EV METHOD	MONTH 1	MONTH 2	MONTH 3	MONTH 4	MONTH 5	MONTH 6	TOTAL BAC
1	Procure Anvil	0/100	BCWS						1,500
2	Paint Fake Tunnel	50/50	BCWP						1,000
3	Build Road	units complete	BCWS	600 600	600 600	600 -	600 1,200	600 600	3,000
4	Build ASM	milestone	BCWS		1,000 1	1,000 2	1,000 3	1,000	3,000
5	Install ASM	% complete	BCWP		1,000 -	1,000 -	1,000 300	1,000 1,200	1,500
TOTAL CONTROL ACCOUNT PLAN		BCWS	600	1,600	2,100	2,600	2,600	500	10,000
		BCWP	600	1,600	500	2,200	3,900	1,200	10,000

Schedule Variance	month							
	cumulative							
Actual Costs								
Cost Variance		month						
		cumulative						

Control

Control

- So, your project has been baselined and work has started
- Is everything going according to plan?
- Next step in the process:
 - figure out your status
 - figure out the problems
 - figure out what you need to do to fix them
 - figure out what the impact might be

Status Reporting

- **Assumption:** An accurate management control system yields accurate data
- **Basic principles:**
 - Report on periodic basic
 - weekly
 - monthly
 - Only ask for the data that you really need and use
 - can eliminate certain formats
 - WBS versus organizational reporting
 - tailor level of reporting to match risk
 - Tailor the data to match how you're managing
 - IPTs?
 - Make it as real time as possible

Contractor Reports

- **Cost Performance Report (CPR)**

- Format 1: cost and schedule progress by **WBS**
(specified reporting level usually at level 3)
- Format 2: cost and schedule progress by **organization**
- Format 3: changes to performance measurement baseline
- Format 4: manpower forecast
- Format 5: variance analysis

Formats 1 and 2

- Contents
 - header:
 - basic contract information (target, ceiling, name of contractor, etc.)
 - range of final estimates
 - body
 - performance data
 - variances
 - budget at completion, estimate at completion

	CURRENT					CUMULATIVE					AT COMPLETION		
	BCWS	BCWP	ACWP	SV	CV	BCWS	BCWP	ACWP	SV	CV	BUDGET	ESTIMATE	VARIANCE
ELEMENT													
ELEMENT													
ELEMENT													
ELEMENT						WBS or ORGANIZATION							
ELEMENT													
ELEMENT													
TOTAL													
UB													
PMB													
MR													
TOTAL													

Cost/Schedule Status Report (C/SSR)

- Similarities to CPR
 - Format 1 (WBS)
 - Format 5 (Problem Analysis)
- Differences
 - Does not require use of approved management system & criteria
 - No current period reporting
 - BCWS and BCWP may be calculated by logical means at higher levels
- Application
 - non-major contracts

Reform Initiatives

- Contractor format acceptable
- Electronic submission required
 - ANSI X12 data set
- Tailoring
 - Only ask for the data that you are really going to use
- Timing
 - flash data (early submittal of performance data before variance analysis)

Analysis Techniques

or

figuring out where the problems are

Analysis Techniques

- Sort on significant variances
 - eliminate almost complete, just starting, etc.
- Graph and analyze trends
- Look at comparative data
 - e.g. cumulative performance vs. projected performance
- Examine written analysis by contractor
 - does it answer why?
 - adequacy of corrective action plans
- Analysis of schedule trends, critical path
- Analysis of EAC realism

what are the drivers?
what can we do about them?

Where are the significant problems?

sorted by CV \$

	WBS	DESCRIPTION	Proj Ofcr	%Comp	%Spent	CPI	CV	CV	CV %	VAC	VAC
1	3600	PCC	Zepka	28.99	34.09	0.850	↑	-296.2	-17.62	↔	-187.2
2	3200	COMMUNICATIONS	Tideman	34.63	41.03	0.844	↓	-130.8	-18.49	↔	-87.0
3	G&A	GEN & ADMIN		33.67	36.11	0.932	↓	-45.2	-7.26	↔	-36.8
4	2200	SYS ENGINEERING	Price	85.04	94.35	0.901	↓	-26.4	-10.95	↔	0.0
5	3800	I & A	Troop	35.40	37.08	0.955	↓	-24.2	-4.75	↔	-24.8
6	2100	PROJ MANAGEMENT	Brown	45.70	48.51	0.942	↔	-17.4	-6.16	↔	-3.2
7	2300	FUNC INTEGRA	Price	71.62	75.23	0.952	↓	-17.4	-5.03	↔	-30.8
8	5200	MANAGEMENT DATA	Simmons	84.18	98.10	0.858	↓	-13.2	-16.54	↑	-16.0
9	3100	SENSORS	Smith	20.87	21.49	0.971	↓	-10.6	-2.94	↔	-21.6
10	4000	SPARES	Blair	17.87	18.90	0.945	↑	-7.8	-5.78	↔	-6.2
11	6200	SYSTEM TEST	Hall	60.82	61.66	0.986	↑	-5.6	-1.38	↔	-2.0
12	5100	ENG DATA	Novak	38.51	52.80	0.729	↓	-4.6	-37.10	↔	0.0
13	MR	MGT RESERVE		0.00	0.00			0.0		↔	439.2
14	UB	UNDIST BUDGET						0.0			0.0
15	COM	COST OF MONEY						0.0			0.0
16	3700	DATA DISPLAY	Troop	41.13	41.13	1.000	↔	0.0	0.00	↔	0.0
17	OV	OVERHEAD						0.0			0.0
18	6100	TEST FACILITIES	Smart	100.00	98.02	1.020	↔	2.0	1.98	↔	0.0
19	3500	COMP PROGRAMS	Pino	46.46	44.66	1.040	↓	3.4	3.87	↔	-1.4
20	6300	PCC TEST	Bond	23.13	22.64	1.021	↓	4.2	2.10	↔	0.0
21	3400	ADPE	Zepka	41.89	39.79	1.053	↓	12.6	5.02	↔	4.6
22	3300	AUX EQUIP	Tideman	27.57	24.33	1.133	↓	78.2	11.73	↓	8.4

Graphing Techniques

**graphs show overall trend...
are you getting better,
or worse?**

Overall cost and schedule trend

Analysis of Variances

CURRENT OR CUM TO DATE

Schedule Variance

$$SV (\$) = BCWP - BCWS$$

$$SV (\%) = \frac{BCWP - BCWS}{BCWS} \times 100\%$$

Cost Variance

$$CV (\$) = BCWP - ACWP$$

$$CV (\%) = \frac{BCWP - ACWP}{BCWP} \times 100\%$$

CASE STUDY

Part 4

Case Study - Accounting Data

• Month 1	road	\$700	700
• Month 2	road	\$720	
	drawings	\$980	{ 1,700
• Month 3	road	\$300	
	tunnel	\$200	{ 1,300
	ASM	\$800	
• Month 4	road	\$1,500	
	tunnel	\$400	{ 2,300
	ASM	\$400	
• Month 5	road	\$700	
	tunnel	\$500	
	ASM	\$1,900	{ 5,200
	anvil	\$1,700	
	install	\$400	
• Month 6	install	\$2,100	<u>2,100</u>
• total			\$13,300

				EV Techniques	0/100, 50/50, Units Complete, % Complete, Milestones				
CONTROL ACCT. TITLE: Roadrunner				CONTROL ACCOUNT MANAGER: Wile E. Coyote					
BUDGET: \$10,000									
TIER I MILESTONE		KT AWD					KT COMP		
WP#	WORK DESCRIPTION	EV METHOD	MONTH 1	MONTH 2	MONTH 3	MONTH 4	MONTH 5	MONTH 6	TOTAL BAC
1	Procure Anvil	0/100	BCWS						1,500
2	Paint Fake Tunnel	50/50	BCWP						1,000
3	Build Road	units complete	BCWS	600 600	600 600	600 -	600 1,200	600 600	3,000
4	Build ASM	milestone	BCWS		1,000 1	1,000 2	1,000 3	1,000 1,000	3,000
5	Install ASM	% complete	BCWP				500 -	500 300	1,500 1,200
TOTAL CONTROL ACCOUNT PLAN		BCWS	600	1,600	2,100	2,600	2,600	500	10,000
		BCWP	600	1,600	500	2,200	3,900	1,200	10,000

Schedule Variance	month							
	cumulative							
Actual Costs								
Cost Variance		month						
		cumulative						

EV Techniques

0/100, 50/50, Units Complete,
% Complete, Milestones

CONTROL ACCT. TITLE: Roadrunner

CONTROL ACCOUNT MANAGER: Wile E. Coyote

BUDGET: \$10,000

TIER I MILESTONE		KT AWD					KT COMP			
WP#	WORK DESCRIPTION	EV METHOD	MONTH 1	MONTH 2	MONTH 3	MONTH 4	MONTH 5	MONTH 6	TOTAL BAC	
1	Procure Anvil	BCWS					1,500 ▲		1,500	
		BCWP					1,500 ▲			
2	Paint Fake Tunnel	BCWS			500 ▲	500 △			1,000	
		BCWP			500 ▲	-	500 ◆	500 ◆		
3	Build Road	BCWS	600 ▲	600 ▲	600 △	600 ◆	600 ▲		3,000	
		BCWP	600 ▲	600 ▲	- -	1,200 ▲	600 ▲			
4	Build ASM	BCWS		1,000 ▲	1,000 △	1,000 ◆			3,000	
		BCWP		1,000 ▲	1,000 △	1,000 ◆	1,000 ▲	1,000 ◆		
5	Install ASM	BCWS				500 △	500 ◆	500 ▲	1,500	
		BCWP				- -	300 ◆	1,200 ▲		
TOTAL CONTROL ACCOUNT PLAN		BCWS	600	1,600	2,100	2,600	2,600	500	10,000	
		BCWP	600	1,600	500	2,200	3,900	1,200	10,000	
Schedule Variance	month		0	0	-1,600	-400	1,300	700		
	cumulative		0	0	-1,600	-2,000	-700	0		
Actual Costs			700	1,700	1,300	2,300	5,200	2,100	13,300	
Cost Variance	month		-100	-100	-800	-100	-1,300	-900		
	cumulative		-100	-200	-1,000	-1,100	-2,400	-3,300		

Performance Indices

$$\text{COST PERF INDEX (CPI)} = \frac{\text{BCWP}}{\text{ACWP}}$$

$$\text{SCHED PERF INDEX (SPI)} = \frac{\text{BCWP}}{\text{BCWS}}$$

Schedule Status

$$\% \text{ scheduled} = \frac{\text{BCWS}}{\text{BAC}} \times 100\%$$

compare

$$\% \text{ completed} = \frac{\text{BCWP}}{\text{BAC}} \times 100\%$$

$$\text{Months ahead or behind} = \frac{\text{SV } \$}{\text{Average monthly BCWS } \$}$$

Budget Status

budget status

$$\% \text{ spent} = \frac{\text{ACWP}}{\text{BAC}} \times 100\%$$

compare:

% spent vs. % complete

example: 60% spent vs. 50% complete

Variance Explanations

- **Format 5 variance analysis should address:**

- separate discussion of CV, SV (current and cum) and VAC
- clear description of reason for variance
- quantity variances (e.g., price vs. usage)
- be specific, not general
- corrective action
- technical, schedule, and cost impacts
- impact to estimate at completion
- should be written by CAM!

Significant Variances

- What is a significant variance?
 - % variance (e.g., >10%)
 - \$ variance (e.g., >\$50,000)
 - critical path element
 - risk/complexity
 - impact to other elements
 - Top 10, Top 20, etc.
 - contractor defined

Case Study Analysis

(month 5)

Performance Report, Month 5

	<u>BCWS</u>	<u>BCWP</u>	<u>ACWP</u>	<u>SV</u>	<u>CV</u>	<u>CV %</u>
Procure Anvil	1,500	1,500	1,700	0	-200	-13%
Paint Fake Tunnel	1,000	1,000	1,100	0	-100	-10%
Build Road	3,000	3,000	3,920	0	-920	-31%
Build ASM	3,000	3,000	4,080	0	-1,080	-36%
Install ASM	1,000	300	400	-700	-100	-33%
	9,500	8,800	11,200	-700	-2,400	

Variance Analysis Report

The program is now 88% complete. We have now spent \$1,200 more than our original budget, primarily driven by two problems:

- 1) building the sections of roads (unforeseen grading problems)
- 2) manufacturing and quality testing of the ASM (increase in the price of raw stock and higher rates than forecast for quality personnel)

We are only 20% complete on installation, instead of our scheduled 66%. In order to meet contract schedule, we will have to expend overtime. Costs will increase by an expected \$1,000.

	<u>BCWS</u>	<u>BCWP</u>	<u>ACWP</u>	<u>SV</u>	<u>CV</u>	<u>CV %</u>
Build ASM	3,000	3,000	4,080	0	-1,080	-36%
Build Road	3,000	3,000	3,920	0	-920	-31%
Procure Anvil	1,500	1,500	1,700	0	-200	-13%
Paint Fake Tunnel	1,000	1,000	1,100	0	-100	-10%
Install ASM	1,000	300	400	-700	-100	-33%

What will be the final cost?

- **Estimate at Completion (EAC)**

- defined as actual cost to date + estimated cost of work remaining
- contractor develops comprehensive EAC at least annually
 - reported by WBS in cost performance report
- should examine on monthly basis
- consider the following in EAC generation
 - performance to date
 - impact of approved corrective action plans
 - known/anticipated downstream problems
 - best estimate of the cost to complete remaining work
- also called latest revised estimate (LRE), indicated final cost, etc.

$$\text{ACWP} + \text{ETC} = \text{EAC}$$

One method: statistical formulae

- Common EAC Formulae:

EAC =

$$\frac{\text{BAC}}{\text{CPI}}$$

$$= \frac{\text{ACWP}_{\text{cum}} + \text{Budgeted Cost of Work Remaining}}{\text{CPI}_3}$$

$$= \frac{\text{ACWP}_{\text{cum}} + \text{Budgeted Cost of Work Remaining}}{.8(\text{CPI}) + .2(\text{SPI})}$$

$$= \frac{\text{ACWP}_{\text{cum}} + \text{Budgeted Cost of Work Remaining}}{\text{CPI} * \text{SPI}}$$

Other methods of EAC calculation

- “Grass Roots” or formal EAC
 - detailed build-up from the lowest level detail
 - hours, rates, bill of material, etc.
- Average of statistical formulae
- Show range of EACs (optimistic, most probable, pessimistic)
- Complete schedule risk analysis for remaining work, estimate work remaining

Why do we need accurate EACs?

- **Variance at Completion vs. Contractor Loss**
 - **Positive VAC:**
 - EAC < BAC underrun contractor gain
 - **Negative VAC:**
 - EAC > BAC share area contractor partial loss
 - EAC > ceiling overrun contractor loss (100%)
- **Government develops top level EAC for comparison**
 - government will limit progress payments if EAC is greater than ceiling
 - government needs forecast of fund requirements
- **May still have time to change the final outcome**

Survey says.....

- over 800 military programs show that

no program has ever improved performance better than the following EAC calculation

$$\text{EAC} = \frac{\text{BAC}}{\text{CPI}}$$

at 15% complete point in program

no one pays enough attention in the

Managing with Earned Value Data

Managing with EVMS

- Change the mindsight
- Tailor to how the contractor actually manages
- Make it forward looking
- Assign responsibility within the government program office
- Set up a faster response time
- Acquire and use software analysis tools

The New Way to Do Business

- Ownership by program managers and IPTs
- Industry taking lead to make EVMS a basis business practice
- Use of earned value reporting as management tool to avoid cost overruns (forward looking)
- Schedule management an integral part of project management
- New focus for reviews
 - baseline realism, executability
 - insight, not oversight

EVMS is a cultural change for program managers

How can we manage programs using Earned Value?

In order for Earned Value to be used as a management tool....

We must tailor it to reflect the management structure, policy, and operating culture of the contractor.

Otherwise, it will be seen simply as an external report that reports history!

Forward Look

The Control Account Manager

CONTROL ACCOUNT MANAGER (CAM)

Empowered by program manager...

- Manage assigned effort:
 - Technical
 - Schedule
 - Cost
- Monthly variance analysis
- Understand the baseline

GOVERNMENT CONTROL ACCOUNT MANAGER (GCAM)

Analysis within the SPO

- Assign to technical managers within program offices
 - Government Control Account managers (GCAMs)
- Conduct monthly team variance meetings
- Open, honest communication essential
 - Oral, e-mail, and face-to-face discussions
 - Continuing dialogue dramatically improves Format 5
- Early warning analysis
 - Top level cost and schedule analysis by EVMS and schedule analysts
 - CAM/GCAM analysis at lowest level
- Work closely with DCMC team
- Share results of analysis with contractor

Early Warning System

- Flash data received ASAP, no written analysis
- EVMS and schedule managers review data
- Teleconference with DCMC
 - evaluate cost and schedule variances
 - evaluate trends
 - evaluate against program master schedule
- Prepare top level analysis to program manager and IPT leads
 - recommend elements for further analysis
- GCAMs discuss their elements with CAMs
 - write up own variance analysis
- Don't wait until you get the report to communicate!

New Advances in Software Analysis Tools

CAM

GCAM

Let software tools do the number crunching

Figure showing four windows from the Winsight software interface:

- Sort: CUM CV Percent MOH-2 WBS JAN 93 DOL**: A grid showing cumulative variance (CV) and variance (VAR) for various work breakdown structure (WBS) items. The columns include Description, LVL, LL, SV, CV, VAC, VAR, SV, CV, and VAR. Many cells contain color-coded status indicators (green, yellow, red).
- CPI and SPI MOH-2 WBS JAN 93 DOL**: A line chart showing Cumulative Performance Index (CPI) and Schedule Performance Index (SPI) over time. The Y-axis ranges from 0.700 to 1.300. The X-axis shows months from JAN to DEC. Data series include CPI (red), SPI (green), and BCWS (blue).
- All Narrative Report MOH-2 WBS JAN 93 DOL**: A narrative report for the WBS AI Narrative (Dollars). It includes:
 - As of: JAN 93
 - Contract Name: MOH-2
 - Contract Number: F04695-86-C-0050
 - Contractor: MEGA HERZ ELEC & VEN
 - Financial Analyst: MR E. I.
 - Contract Manager: MR B.
 - Element Code: 1000
 - Element Name: MOH-2
 - Project Officer: Jones
 - Office Symbol: JDHD
- Cumulative Variance MOH-2 WBS JAN 93 DOL**: A line chart showing Cumulative Variance (CV) over time. The Y-axis ranges from -1000.0 to 1000.0. The X-axis shows months from JAN to DEC. Data series include BCWP (blue), BCWS (red), and VAC (green).

Joint Use of Software Tools

- **Trend Analysis - Where Have we Been?**
 - Lowest WBS level or IPT level
 - color codes, charts
- **Projection of future - How Bad Can it Get?**
 - EAC trends
 - comparison of cost efficiencies
- **Focus on problems - What are the significant drivers?**
 - Sort by elements, trends, CAM names
 - autosync to program schedule
- **Format 5 Analysis - What are we doing about it?**
 - Joint analysis, corrective plans, risk mitigation
- **Report generator**
 - all formats
 - can go **paperless**

Notable EVMS Quotes

“Are we looking good, or are we in trouble? And, how do we know?”

CAPT Joe Dyer, USN
F/A-18E/F Prog Mgr

“It forces you to plan, and then to manage to the plan.”

Lt Col Paul Vancheri, USAF
JSTARS Production Prog Mgr

Summary

- ***Measures of Successful Reform***

- EVMS used to make daily decisions about program execution
 - contractor and government
- Reports are not seen as burdensome and
- **Programs are completed on time and within budget**

Additional References

SCHEDULE TYPES

- **Gantt Chart**
 - Activities Show a Specific Start and Stop Date
- **Milestone Chart**
 - Major Event Oriented. Shows Start or Stop Date of Activity
- **Line of Balance**
 - Depicts Production Activity. Actual versus Planned Output
- **Networking**
 - Identifies and Defines all Activities and Events for a Program and Links Them in Logical “Cause and Effect” Sequences

SCHEDULE TYPES (cont'd)

GANTT CHART

Attachment 3

LINE OF BALANCE TECHNIQUE

MILESTONE CHART

Attachment 6

NETWORK

Attachment I

MATERIAL EARNED VALUE METHODOLOGIES

Category	Definition	Earned Value Approach
Material	Raw materials, piece parts, and low value purchased items	Percent complete against total projected purchase requirement. Milestones by order
Major Material	High cost items that are standard products such as from a catalog. These are individually tracked due to their cost or criticality to the program	Each item represents an individual milestone An order of multiple items may use percent complete against the total quantity
Fixed Price Subcontracts	High cost (usually negotiated) items purchased against specification or drawing. These items require individual management	Milestones against deliveries or subcontract milestones. May require estimated actuals or percent complete if no progress payments or interim deliveries
Cost Subcontracts	High cost (usually negotiated) items purchased against a specification or drawing. These items require individual management	Flow down of Cost/Schedule Status Report (C/SSR) or C/SCSC requirements. If small may use payments and negotiated subcontract milestones.

PERFORMANCE STATUS...KEY THINGS TO TRACK

- **DO I HAVE ANY SIGNIFICANT COST/SCHEDULE VARIANCES?**

Schedule Variance

Plus (+) is good

Minus (-) is bad

What is the variance %

Is it on the critical path $\frac{SV}{BCWS} \times 100$

Schedule slack?

Is it in an area that has been identified as a risk element?

Cost Variance

Plus (+) is good

Minus (-) is bad

What is the variance %

$$\frac{CV}{BCWP} \times 100$$

- **WHAT IS THE TREND (GETTING BETTER OR WORSE)?**

- Chart the Cost/Schedule variance trends
- Does my contractor tell the same story as the data?
- When do I think the trend will improve?

- **WHAT AM I DOING ABOUT IT?**

- Causes
- Corrective actions
- Impact to the program

USE DATA FOR DECISION MAKING

- **Behind Schedule**

- How critical is schedule?
- Can I afford to work overtime to recover?
- Can I do tasks concurrently?
- Are there technical innovations which could speed up the process?
- Am I “gold plating” instead of just meeting requirements?
- Should I do a schedule risk assessment to project impact to program?

- **Over Cost**

- Can I reschedule tasks? (Timephasing)
- Is there a less costly facility I can use?
- Are there tasks which can be deleted?
- Should the element be added to my risk management profile?

EARNED VALUE PROBLEM INDICATORS

GOAL: To Verify That Effective Variance Analysis Processes Are Applied
To Identify, Correct, And Report Problems

- **POTENTIAL PROBLEM INDICATORS:**
 - Zero variances
 - Monthly trends turning negative or downward
 - Schedule variances generally indicate cost will follow
 - Actuals > Latest Revised Estimates (LRE)
 - BCWP increases with no increase in ACWP
 - Negative data elements

PERFORMANCE EFFICIENCY AND EACs

- DO I THINK THE CONTRACTOR WILL COME IN ON BUDGET?

COST PERFORMANCE INDEX:

CPI = cost efficiency for work performed to date
(The value of work accomplished for each dollar spent)

$$= \frac{\text{BCWP}}{\text{ACWP}} = \frac{\text{WORK ACCOMPLISHED}}{\text{ACTUALS}} = \frac{\$1000}{\$2400} = .42$$

HISTORY

Compare the CPI to the TCPI-BAC:

TCPI(BAC) = Efficiency necessary to complete on budget

$$= \frac{\text{BAC-BCWP}}{\text{BAC-ACWP}} = \frac{\text{WORK REMAINING}}{\text{BUDGET REMAINING}} = \frac{\$5000 - \$1000}{\$5000 - \$2400} = \frac{\$4000}{\$2600} = 1.54$$

FUTURE

PERFORMANCE EFFICIENCY AND EACs (cont'd)

SCHEDULE PERFORMANCE INDEX:

SPI = schedule efficiency with which work has been accomplished
(The rate at which work is being accomplished)

$$= \frac{\text{BCWP}}{\text{BCWS}} = \frac{\begin{matrix} \text{WORK} \\ \text{ACCOMPLISHED} \end{matrix}}{\begin{matrix} \text{WORK} \\ \text{SCHEDULED} \end{matrix}} = \frac{\$1000}{\$2000} = .50$$

PERFORMANCE EFFICIENCY AND EACs (cont'd)

- IS THE CONTRACTOR'S EAC (LRE) REASONABLE?**

Compare the CPI to the TCPI-LRE

TCPI(LRE) = Efficiency necessary to complete at the contractor's estimate

$$= \frac{\text{BAC-BCWP}}{\text{LRE-ACWP}} = \frac{\text{WORK}}{\text{ESTIMATE}} = \frac{\$5000 - \$1000}{\$6400 - \$2400} = \frac{\$4000}{\$4000} = 1.00$$

REMAINING
REMAINING

Cumulative performance to date (CPI) =

Contractor has been performing at 42% efficiency, but expects to complete remaining work at 100% efficiency!

Ten Wisdom Principles of EVMS

1. Use a single management control system to provide accurate and timely performance data.
2. Integrate the scope of work, schedules, and costs using a common project language, such as a work breakdown structure.
3. Actual performance at the 15% complete point can be used to predict final performance.
4. Cumulative cost performance index (CPI_e) measures efficiency and can be used to predict the final range of costs.
5. The schedule performance index (SPI) is useful in assessing how much work has been accomplished.
6. The CPI index provides a statistical basis for a “best case” final estimate.
7. The CPI and SPI indices may be combined to statistically forecast the “most likely” final estimate.
8. To Complete Performance Index provides a measure of efficiency required for the future work to achieve either a specified budget or estimate.
9. The periodic cost performance index for performance (CPI_p), calculated by actuals/earned value, may be used to monitor weekly or periodic production progress.
10. Management should use management by exception to focus on significant variances to the plan and apply timely corrective actions.

Key Documents in Understanding EVMS

- Gary Christle, 22 Jan 94, paper, Implementation of Earned Value - A Model Program Approach
- USD(A&T) Letter, 25 Jan 94, Improved Cost and Schedule Performance Management
- Gary Christle, 15 Sep 94, paper, The Cost/Schedule Control Systems Criteria and Earned Value Management: A Vision
- USD(A&T) Letter, 1 Oct 96, Compliance Responsibility for the Cost/Schedule Control Systems Criteria (C/SCSC)
- 3 Oct 97, Earned Value Management Implementation Guide (Rev 1)
- USD(A&T) Letter, 14 Dec 96, Industry Standard “Guidelines for Earned Value Management Systems”
- Wayne Abba, article in Jan-Feb 97 Program Manager magazine, Earned Value Management - Reconciling Government and Commercial Practices
- ANSI/EIA 748-1998, Earned Value Management Systems
- Quentin W. Fleming & Joel M. Koppelman, book, Earned Value Project Management
- Earned Value web page: www.acq.osd.mil/pm