Definition: Field

Field

A field is a Ring in which every non-zero element has a multiplicative inverse.

Formal Definition

A field $(F, +, \cdot)$ is a commutative ring with unity such that $(F \setminus \{0\}, \cdot)$ forms an abelian Group.

Explicitly, a field satisfies:

- 1. (F, +) is an abelian group with identity 0
- 2. $(F \setminus \{0\}, \cdot)$ is an abelian group with identity 1
- 3. Distributivity: $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. $0 \neq 1$ (non-triviality)

Properties

- Every field is an integral domain
- Every finite integral domain is a field
- Fields have no zero divisors: if ab = 0, then a = 0 or b = 0
- Every non-zero element a has a unique inverse a^{-1} such that $a \cdot a^{-1} = 1$

Examples

- \mathbb{Q} rational numbers
- \mathbb{R} real numbers
- $\mathbb C$ complex numbers
- $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ field extension

Non-Examples

- \mathbb{Z} is not a field (no multiplicative inverse for 2)
- $\mathbb{Z}/6\mathbb{Z}$ is not a field (has zero divisors)

Dependency Graph

Local dependency graph