

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Application of the Lyapunov continuous matrix equation to evaluate performance indices: An example

Evaluating performance indices: An application

- In many control problems a dynamical system model is given in terms of a transfer function rather than in terms of a system of differential equations
- We discuss a method of converting a given rational function into a system of first-order differential equations
- After this process is completed, we use the Lyapunov theory to evaluate a performance index of interest

Converting a rational function into a system of first-order differential equations

Given a rational function

$$E(s) = \frac{b_{n-1}s^{n-1} + \dots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0},$$

where $E(s) = \mathcal{L}(e(t))$ is the Laplace transform of e(t)

• We show that e(t) can be generated as the solution of the differential equation

$$\frac{d^n e(t)}{dt^n} + a_{n-1} \frac{d^{n-1} e(t)}{dt^{n-1}} + \dots + a_1 \frac{de(t)}{dt} + a_0 e(t) = 0,$$

subject to a set of initial conditions that we derive next

 Take the Laplace transform of the differential equation and rearrange the resulting terms in an appropriate matrix equation

Taking the Laplace transform

Recall that

$$\mathcal{L}\left(\frac{d^{i}e(t)}{dt^{i}}\right) = s^{i}E(s) - s^{i-1}e(0) - s^{i-2}\frac{de(0)}{dt} - \dots - \frac{d^{i-1}e(0)}{dt^{i-1}}$$

• In the s-domain with zero initial conditions,

$$(s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0) E(s) = 0$$

 Take into account the above relation, and compare coefficients of like powers to obtain

$$\left[egin{array}{cccc} a_1 & a_2 & \cdots & a_{n-1} & 1 \ a_2 & a_3 & \cdots & 1 & 0 \ dots & dots & dots & dots & dots \ a_{n-1} & 1 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \end{array}
ight] \left[egin{array}{c} e(0) \ rac{de(0)}{dt} \ dots \ rac{d}{dt^{n-2}} \ rac{d^{n-2}e(0)}{dt^{n-1}} \end{array}
ight] = \left[egin{array}{c} b_0 \ b_1 \ dots \ b_{n-2} \ b_{n-1} \end{array}
ight]$$

From *s*-domain to time domain

- The coefficient matrix nonsingular
- Can uniquely determine the initial conditions
- Define the state vector

$$\mathbf{x} = \begin{bmatrix} e & \frac{de}{dt} & \cdots & \frac{d^{n-1}e}{dt^{n-1}} \end{bmatrix}^{\top},$$

and represent the differential equation as

$$\dot{x} = Ax$$

where

$$m{A} = \left[egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 & 0 \ 0 & 0 & 1 & \cdots & 0 & 0 \ dots & dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & 0 & 1 \ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{array}
ight].$$

Initial conditions

The vector of initial conditions is

$$m{x}(0) = egin{bmatrix} e(0) \ rac{de(0)}{dt} \ rac{d}{\vdots} \ rac{d^{n-2}e(0)}{dt^{n-2}} \ rac{d^{n-1}e(0)}{dt^{n-1}} \end{bmatrix} = egin{bmatrix} a_1 & a_2 & \cdots & a_{n-1} & 1 \ a_2 & a_3 & \cdots & 1 & 0 \ dots & dots & dots & dots \ a_{n-1} & 1 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \ \end{bmatrix}^{-1} egin{bmatrix} b_0 \ b_1 \ dots \ b_{n-2} \ b_{n-1} \ \end{bmatrix}$$

- Note that $e = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix} x$
- Observe a relation between the zeros of the given rational function and the initial conditions of the associated state-space realization

Space telescope control system model

Parameters: $K_1 = 0.5$, and $K_1K_2K_p = 2.5$

Optimize *K*₃

- Use the Lyapunov theory to select the gain K_3 that minimizes the effect of the disturbance $u(t) = \mathcal{L}^{-1}(U(s))$ in the sense of the integral of the square error (ISE) criterion
- In other words, find K_3 that leads to minimization of the performance index

$$J_0 = \int_0^\infty c(t)^2 dt,$$

where
$$c(t) = \mathcal{L}^{-1}(C(s))$$

• Assume a unit step disturbance and R(s) = 0

Finding $C(s) = \mathcal{L}(c(t))$

From the block diagram

$$C(s) = U(s) - \frac{K_2}{s} \frac{K_1}{s + K_1 K_3} K_p C(s)$$

Hence

$$C(s) = \frac{s + 0.5K_3}{s^2 + 0.5K_3s + 2.5}$$

- Next, determine the state-space representation corresponding to C(s)
- Form the differential equation for c(t),

$$\frac{d^2c(t)}{dt^2} + 0.5K_3\frac{dc(t)}{dt} + 2.5c(t) = 0$$

with the equation for the initial conditions

$$\begin{bmatrix} 0.5K_3 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c(0) \\ \frac{dc(0)}{dt} \end{bmatrix} = \begin{bmatrix} 0.5K_3 \\ 1 \end{bmatrix}$$

State-space model

Hence

$$\left[\begin{array}{c}c(0)\\\frac{dc(0)}{dt}\end{array}\right] = \left[\begin{array}{cc}0.5K_3 & 1\\1 & 0\end{array}\right]^{-1} \left[\begin{array}{c}0.5K_3\\1\end{array}\right] = \left[\begin{array}{c}1\\0\end{array}\right]$$

- Let $x_1 = c$, $x_2 = \frac{dc}{dt}$
- The differential equation in vector-matrix form corresponding to C(s)

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} 0 & 1 \\ -2.5 & -0.5K_3 \end{bmatrix} \boldsymbol{x}(t), \quad \boldsymbol{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$c(t) = \boldsymbol{c}\boldsymbol{x}(t),$$

where
$$\boldsymbol{c} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Finding optimal *K*₃

• Evaluate J_0 ,

$$J_0 = \int_0^\infty c(t)^2 dt = \int_0^\infty \boldsymbol{x}(t)^\top \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \boldsymbol{x}(t) dt$$
$$= \int_0^\infty \boldsymbol{x}(t)^\top \boldsymbol{c}^\top \boldsymbol{c} \, \boldsymbol{x}(t) dt$$

ullet (A, $oldsymbol{c}$) observable; can solve the Lyapunov equation

$$\boldsymbol{A}^{\top}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A} = -\boldsymbol{c}^{\top}\boldsymbol{c}$$

for **P** to obtain

$$\mathbf{P} = \begin{bmatrix} \frac{K_3}{10} + \frac{1}{K_3} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5K_3} \end{bmatrix}$$

• Hence, $J_0 = x(0)^{\top} Px(0) = \frac{K_3}{10} + \frac{1}{K_3}$

Optimal $K_3 = \sqrt{10}$

• First-derivative test—differentiate $J_0 = \frac{K_3}{10} + \frac{1}{K_3}$ and equate to zero

$$\frac{dJ_0}{dK_3} = \frac{1}{10} - \frac{1}{K_3^2} = 0.$$

Select

$$K_3 = \sqrt{10}$$

giving a positive definite P

Note that because

$$\left. \frac{d^2 J_0}{dK_3^2} \right|_{K_3 = \sqrt{10}} = \left. \frac{2}{K_3^3} \right|_{K_3 = \sqrt{10}} > 0$$

that is, second-order sufficiency condition for the minimum satisfied

• Hence $K_3 = \sqrt{10} \approx 3.16$ minimizes J_0

The integral of time multiplied by the squared error (ITSE)

- Determine the gain K_3 that minimizes the effect of the disturbance u(t) in the sense of the integral of time multiplied by the squared error (ITSE) criterion
- That is, select K_3 to minimize the performance index

$$J_1 = \int_0^\infty t c(t)^2 dt.$$

• First solve the Lyapunov equation,

$$\boldsymbol{A}^{\top}\boldsymbol{P}_{1}+\boldsymbol{P}_{1}\boldsymbol{A}=-\boldsymbol{P},$$

to get

$$\boldsymbol{P}_1 = \begin{bmatrix} \frac{2}{K_3^2} + \frac{K_3^2}{100} & \frac{1}{5} \left(\frac{1}{K_3} + \frac{K_3}{10} \right) \\ \frac{1}{5} \left(\frac{1}{K_3} + \frac{K_3}{10} \right) & \frac{4}{5K_3^2} + \frac{1}{25} \end{bmatrix}$$

Minimization of ITSE

Hence

$$J_1 = \boldsymbol{x}(0)^{\top} \boldsymbol{P}_1 \boldsymbol{x}(0) = \frac{2}{K_3^2} + \frac{K_3^2}{100}.$$

• First-derivative test—differentiate J_1 and equate to zero

$$\frac{dJ_1}{dK_3} = -\frac{4}{K_3^3} + \frac{K_3}{50} = 0.$$

- Select $K_3 = \sqrt[4]{200}$ to keep P_1 positive definite
- For this choice of K_3 , the second order sufficiency condition for the minimum of J_1 is satisfied
- Thus, $K_3 \approx 3.76$ minimizes J_1