Chapter 11: Training Deep Neural Networks

- The Vanishing/Exploding Gradients Problems
 - o Problem
 - Gradients get smaller as progress to lower layers → lower layer weights don't change; or get too big
 - Unstable gradients: different layers learn at different speeds
 - Culprit: sigmoid activation and weight initialization using std. Normal; saturates top layers
 - When inputs large in abs value, sigmoid saturates at 0 or 1, derivative close to zero, so gradient doesn't change much, nothing left for lower layers
 - o Glorot and He Initialization
 - Glorot: Want variance in to equal variance out (string of amplifiers analogy)
 - Can't guarantee if inputs != neurons
 - Compromise: initialize connection weights randomly where variance
 = 1/avg(fan in and fan out)
 - Variance changes with activation functions:
 - He: ReLU 2 /fan in
 - LeCun: SELU 1/fan in
 - Nonsaturating Activation Functions
 - Unstable gradients due in part to activation function
 - ReLU behaves better than sigmoid, does not saturate for +ve values
 - Dying ReLus: some neurons output nothing but zero
 - Neuron dies when wt'd sum of inputs are -ve for all instances in training set → outputs only zeros
 - Solutions:
 - Leaky ReLU: $max(\alpha z, z)$, α defines leakage, slope when z < 0
 - Randomized Leaky ReLU
 - Exponential LU: $(\alpha(\exp(z)-1))$ if z < 0, z if z >= 0
 - o -ve when z < 0, vanishing gradients \downarrow avg output \rightarrow 0
 - Nonzero gradient for z < 0 avoids dead neurons
 - If $\alpha = 1$, function smooth everywhere \rightarrow speeds up Gradient Descent
 - Slow to compute
 - Scaled ELU: stack of dense layers, all use SELU → self-normalization
 - All input features must be standardized
 - o Initial weights with LeCun normal
 - Architecture must be sequential
 - Which activation function?
 - SELU > ELU > Leaky ReLU > ReLU > tanh > sigmoid
 - Architecture → no self-normalization → ELU
 - Run time latency → leaky ReLu
 - Batch Normalization

- Zero-center and normalize input before or after activation, then scale and shift
- Model learns optimal scale and mean of each layer's inputs
- Calculates mean and stdev for each batch
- Output = gamma times rescaled inputs + shift
- Improves NN performance, reduces vanishing gradient such that can use sigmoid activation, low sensitivity to initial weights, use larger learning rates
- Adds complexity, removes need to normalize input data
- Slower predictions due to extra computations

.

- Gradient Clipping
- Reusing Pretrained Layers
 - Transfer Learning with Keras
 - o Unsupervised Pretraining
 - Pretraining on an Auxiliary Task
- Faster Optimizers
 - o Momentum Optimization
 - Nesterov Accelerated Gradient
 - AdaGrad
 - o RMSProp
 - o Adam and Nadam Optimization
 - Learning Rate Scheduling
 - Power: $\eta(t) = \eta_0 / (1 + t/s)^c$, c = 1 usually
 - Learning rate drops after s steps to $\eta/2$, $\eta/3$
 - Learning rate drops fast and then slow
 - Exponential: $\eta(t) = \eta_0 0.1^{(t/s)}$
 - Drops by a factor of 10 every s steps
 - Piecewise constant: constant rate for number of epochs, then drop and use for another number of epochs
 - Performance: measure validation error every N steps. Reduce learning rate by factor of γ when error stops dropping
 - 1cycle: Grows linearly up to η_1 then decreases to η_0 , with last few epochs dropping rate several orders of magnitude
 - Saving model → optimizer and learning rate get saved too
 - If schedule function uses epoch argument, epoch not saved, learning rate could get large
 - One solution: set fit() initial_epoch manually to start at right value
 - Alt way to define schedule → use keras.optimizers.schedules
 - o Pass learning rate to optimizer
 - Exponential decay, performance scheduling, and 1cycle speed up convergence
- Avoiding Overfitting Through Regularization
 - L1 and L2 regularization

- Early stopping one of best regularization, batch normalization pretty good too even though not intended as such
- L2 to constrain weights, L1 to create sparse model
- Want to apply regularizer to all layers and use same activation function, use functools.partial() to avoid errors

Dropout

- Even state-of-the-art NN get 1-2% accuracy boost from dropout
- At every training step, every neuron has probability of being dropped out, excludes output neurons but not input
- Dropout rate typically set between 10-50%, 20-30% for RNN
- Company analogy: do more with less!
- Unique NN at each training step, 2^N possible networks, means next to impossible for same NN to be sampled twice
 - 10k training steps → 10k NNs → End NN ensemble of smaller NN
 - In practice usually only dropout on top 1-3 layers
- Technical detail: if prob = 50%, in testing each neuron connected to 2x as many input neurons as in training
 - Multiply weights by keep probability (1 prob) after training
 - Keras.layers.Dropout randomly drops some % of inputs and divides remainder by keep probability
- Since dropout active only during training evaluate training loss w/out dropout
- Dropout slows convergence
- Regularize self-normalizing network based on SELU, use alpha dropout → preserves mean stdev of inputs
- Mote Carlo (MC) dropout
 - Connection between dropout networks and Bayesian inference
 - MC dropout can boost performance of trained dropout model w/out having to retrain or modify
 - Number of MC samples is hyperparameter, higher → more accurate, but inference time doubled too. Improvement slows after some # of samples
- Max-Norm Regularization
 - Constrains incoming weights for each neuron $||\mathbf{w}||_2 \le r$, where r is maxnorm hyper parameter and $||^*||_2$ is I2 norm
 - Doesn't add regularization loss to loss function
 - Computes | |w||₂ after each training and rescales w
 - \circ w \leftarrow w r/||w||₂
 - Reduce r, regularization↑, overfitting ↓
- Summary and Practical Guidelines
 - Author recommendations

Default DNN configuration

HyperparameterDefault valueKernel InitializerHe InitializationActivation functionELU

Normalization None if shallow: batch norm if deep Regularization Early stopping (+ I2 if needed)

Optimizer Momentum optimization (or RMSProp or Nadam)

Learning rate schedule 1cycle

DNN configuration for a self-normalizing net

HyperparameterKernel Initializer
Default value
LeCun Initialization

Activation function SELU

Normalization None (self-normalization)
Regularization Alpha dropout if needed

Optimizer Momentum optimization (or RMSProp or Nadam)

Learning rate schedule 1cycle

- o Don't forget to normalize input features
- o Exceptions to guidelines
 - Need a sparse model \rightarrow use I_1 regularization
 - Need a low latency model → fold Batch Normalization layers into previous layers and use faster activation function like leaky ReLU; reduce float precision