Further Exercises

12.1 Maximum Likelihood (4 points)

Suppose we are given a data set $x^{(1)}, \ldots, x^{(N)}$ representing p *iid* (independent and identically distributed) observations of the scalar random variable X, which follow a Gaussian distribution:

Exercise Sheet 12

due: optional

$$p(x) \sim \mathcal{N}(\mu, \sigma^2)$$

- (a) Find the maximum likelihood estimates μ_{ML} and σ_{ML} of the distribution parameters.
- (b) Show that μ_{ML} is *unbiased* and σ_{ML} is *biased*. Next, replace μ_{ML} with the true value μ in the maximum likelihood estimator σ_{ML} and verify that the resulting estimator $\hat{\sigma}_{ML}$ is *unbiased*.

Bonus Question (+2 points):

Find the *maximum a posteriori* estimate of the mean μ_{MAP} by applying Bayes' theorem, given the following prior distribution:

$$p(\mu) \sim \mathcal{N}(0, \sigma_{\mathrm{pr}}^2)$$

12.2 Inverse CDF and Random Number Generation (4 points)

Background: If $F_X(x)$ is the cumulative distribution function (cdf) of a random variable X, then the random variable $Z = F_X(X)$ is uniformly distributed on the interval [0,1]. This result provides a general receipe to generate samples \tilde{x} of a random variable X with a desired probability density function (pdf) $p_X(x)$ from uniformly distributed random numbers $\tilde{z} \in [0,1]$:

- 1. Compute the cdf $F_X(x)$ of the desired pdf $p_X(x)$
- 2. Determine the inverse transformation F^{-1} .
- 3. Sample uniformly distributed numbers (in [0,1]), \tilde{z} .
- 4. Get the samples $\tilde{x} = F^{-1}(\tilde{z})$ from X.

The pdf of a Laplace distribution with location parameter μ (= mean), and scale parameter b > 0 (variance = $2b^2$) is given by

$$p_X(x) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right).$$

Task:

- (a) Following the procedure above, derive a formula to generate samples of a scalar random variable with a Laplacian distribution from uniformly distributed random numbers.
- (b) Implement your procedure for verification and generate 500 samples for a Laplacian random variable X with a specific mean $\mu=1$ and scale parameter b=2. Plot a density estimate (e.g. histogram, ecdf) for these samples overlayed with the pdf $p_X(x)$ from above.

12.3 Density Transformations (6 points)

Background: Let $f(\mathbf{x}) = f(x_1, \dots, x_n)$ be a function of $\mathbf{x} \in \Omega \subset \mathbb{R}^n$ and assume we make a change of variables to a new coordinate system by a mapping $\mathbf{u} = \mathbf{u}(\mathbf{x}) = (u_1(\mathbf{x}), \dots, u_n(\mathbf{x}))$, whose inverse mapping $\mathbf{x} = \mathbf{x}(\mathbf{u}) = (x_1(\mathbf{u}), \dots, x_n(\mathbf{u}))$ exists and is differentiable. As we change the coordinate system, the integral over f changes according to

$$\int_{\Omega} f(\mathbf{x}) d\mathbf{x} = \int_{u(\Omega)} f(\mathbf{x}(\mathbf{u})) \left| \det \frac{\partial \mathbf{x}(\mathbf{u})}{\partial \mathbf{u}} \right| d\mathbf{u} = \int_{u(\Omega)} f(\mathbf{x}(\mathbf{u})) \frac{1}{\left| \det \frac{\partial \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}} \right|} d\mathbf{u},$$

where $\frac{\partial \mathbf{x}(\mathbf{u})}{\partial \mathbf{u}}$ is the Jacobi matrix, which is the matrix of the partial derivatives

$$\frac{\partial \mathbf{x}(\mathbf{u})}{\partial \mathbf{u}} = \begin{pmatrix} \frac{\partial x_1(\mathbf{u})}{\partial u_1} & \dots & \frac{\partial x_1(\mathbf{u})}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n(\mathbf{u})}{\partial u_1} & \dots & \frac{\partial x_n(\mathbf{u})}{\partial u_n} \end{pmatrix}$$

and whose determinant $\det \frac{\partial \mathbf{x}(\mathbf{u})}{\partial \mathbf{u}} = (\det \frac{\partial \mathbf{u}(\mathbf{x})}{\partial \mathbf{x}})^{-1}$ is called the *Jacobi determinant* (also *functional determinant*).

Remark: The absolute value of the Jacobi determinant at a point \mathbf{u}_0 corresponds to the factor by which the function $\mathbf{x}(\mathbf{u})$ expands or shrinks volumes near \mathbf{u}_0 .

 $\underline{\underline{\text{Implication:}}} \text{ If } f(\mathbf{x}) \text{ is the probability density function (pdf) of the } n\text{-dimensional random vector } \mathbf{X} \text{ then } f(\mathbf{x}(\mathbf{u})) \left| \det \frac{\partial \mathbf{x}(\mathbf{u})}{\partial \mathbf{u}} \right| \text{ is the pdf of the random vector } \mathbf{u}(\mathbf{X}).$

Task:

- (a) Consider the density of a random variable X to be $p_X(x) = e^{-x}$, $x \ge 0$. For the change of variables $u = u(x) = e^{-x}$ calculate the density $p_{u(X)}(u)$ of the random variable u(X).
- (b) Consider two independent and uniformly in the interval [0,1] distributed random variables $(X_1,X_2)^T=: \mathbf{X}$. The pdf is given by $p_{\mathbf{X}}(x_1,x_2)=1$ in $[0,1]^2$ and zero otherwise. Consider the variable transformation $\mathbf{u}=\mathbf{u}(\mathbf{x})$ with $u_1(\mathbf{x})=\sqrt{-2\log x_1}\cos(2\pi x_2)$ and $u_2(\mathbf{x})=\sqrt{-2\log x_1}\sin(2\pi x_2)$. Show that $\mathbf{u}(\mathbf{X})$ corresponds to two independent unit-variance zero-mean normally distributed random variables. *Remark:* This procedure to produce Gaussian samples from uniform random numbers is called the Box-Muller method.
- (c) Outline how to extend the last result to n dimensions, i.e., how to generate samples from a multidimensional Gaussian distribution with mean vector μ and covariance matrix Σ just from uniformly distributed random numbers in $[0,1]^n$. Use the following:
 - Any symmetric positive semidefinite matrix (such as the covariance matrix Σ) has a Cholesky decomposition $\Sigma = \mathbf{L}\mathbf{L}^T$ (and that can be easily computed numerically).
 - If L is a constant matrix and X a random vector then $Cov(LX) = L Cov(X) L^T$.
 - The covariance matrix of independent unit-variance Gaussian variables is identity, i.e., $Cov(\mathbf{X}) = \mathbf{I}$.

12.4 K-means and other clustering techniques (6 points)

The file clusters.zip contains 4 data sets which you should analyse using available packages for k-means and hierarchical (connectivity based) clustering (e.g. fastcluster).

- (a) Use the dataset stripes2.csv. Apply k-means to find the two clusters. Plot the data using e.g. color to indicate cluster assignment.
- (b) Use the dataset ring.csv. Apply k-means to find the clusters. What is the problem? Apply a linkage-based algorithm. Plot the dendrogram to decide where to "cut", i.e. how to assign the datapoints to clusters. Plot the data using e.g. color to indicate cluster assignment.
- (c) Use the dataset stripes3.csv. Apply k-means to find the clusters. What is the problem? Apply a linkage-based algorithm. Plot the dendrogram and the cluster-sizes. Plot the data using e.g. color to indicate cluster assignment.
- (d) Use the dataset 3d.csv. Plot the data using a scatterplot matrix or a 3d plot. Cluster the data using a method of your choice. Plot the data using e.g. color to indicate cluster assignment. Justify your choice and describe the solution.

12.5 Properties of the KL-Divergence (3 points)

The Kullback-Leibler (KL) divergence can be used to measure the similarity of two probability densities or probability mass functions.

For a discrete random variable X taking values from the set $\mathcal{X} = \{x_1, ..., x_n\}$, the Kullback-Leibler (KL) divergence between two probability mass functions p(X) and q(X) having the support set \mathcal{X} is defined as

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$
(1)

A real-valued function f is called *convex* if for any two points x and y and any $\lambda \in [0,1]$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{2}$$

Jensen's inequality states that for a random variable x and a convex function f(x)

$$f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$$

where $\mathbb{E}[.]$ denotes the expectation.

- (a) Nonnegativity of D_{KL} : Use Jensen's inequality to show that the KL divergence is nonnegative.
- (b) D_{KL} is not symmetric: Show that the KL divergence is not symmetric by finding an example of two distributions p and q for which D(p||q) is not equal to D(q||p). Give the two distributions and show the explicit computation of the KL divergences. Simple toy distributions (e.g. over heads, tail) are fine.
- (c) Is D_{KL} a metric? If not, why?

12.6 FastICA: Toy Signal Separation (4 points)

Generate three signals as row vectors given at time points $t = 0, 0.05, \dots, 50$ by

$$s_1(t) = 4 \sin(t-3)$$

 $s_2(t) = (t+5) \mod 10$
 $s_3(t) = \begin{cases} -14 & \text{if } \cos(2t) > 0\\ 0 & \text{otherwise} \end{cases}$

(a) Mix the signals to get x = As where

$$\mathbf{A} = \begin{pmatrix} 2 & -3 & -4 \\ 7 & 5 & 1 \\ -4 & 7 & 5 \end{pmatrix}$$

- (b) Whiten and separate the mixed (observed) signals x using fastICA.
- (c) Plot the original source signals, mixtures, whitened mixtures, and unmixed signals.
- (d) Repeat the same analysis using a different contrast function G.
- (e) Repeat the same analysis using a matrix **A** which is closer to singular than the matrix above.
- (f) Repeat the same analysis using an additive zero-mean Gaussian noise \mathbf{n} on top of the mixture, i.e., $\mathbf{x} = \mathbf{A}\mathbf{s} + \mathbf{n}$. Try different variances of \mathbf{n} (try first small variances, in another run a larger one etc \rightsquigarrow how robust is the method?).

Properties of Differential Entropy and Negentropy

12.7 Differential entropy is not scale invariant (3 points)

The entropy of a random variable x with probability density p(x) is defined as

$$H(\mathbf{x}) = -\int_{S} p(\mathbf{x}) \log p(\mathbf{x}) dx$$

where S is the support set of \mathbf{x} . Consider an invertible transformation $\mathbf{y} = \mathbf{g}(\mathbf{x})$. Using the Jacobi determinant, find the relation between $H(\mathbf{y})$ and $H(\mathbf{x})$. Use this to show that the entropy is not scale invariant, i.e. $H(a\mathbf{x}) \neq H(\mathbf{x})$, for a = const.

12.8 Differential entropy of the multivariate Gaussian (3 points)

Show that the entropy of a multivariate n-dimensional Gaussian random vector \mathbf{x} with covariance matrix Σ has the form

$$H(\mathbf{x}_{Gauss}) = \frac{1}{2} \log |\det \Sigma| + \frac{n}{2} (1 + \log 2\pi)$$

12.9 Negentropy is scale invariant (4 points)

The negentropy is defined as

$$J(\mathbf{x}) = H(\mathbf{x}_{Gauss}) - H(\mathbf{x})$$

where \mathbf{x}_{Gauss} is a multivariate Gaussian with the same covariance matrix as \mathbf{x} . Show that the negentropy is invariant wrt. invertible linear transformations $\mathbf{y} = \mathbf{A}\mathbf{x}$, i.e.

$$J(\mathbf{A}\mathbf{x}) = J(\mathbf{x})$$

from which it follows that the negentropy is scale-invariant.