Les fonctions de référence ou usuelles

- I- Les fonctions affines :
 - 1- Définition :

f est une fonction affine lorsque il existe deux réels a et b tels que pour tout $x \in \mathbb{R}$, f(x) = ax + b.

Remarque si b = 0 la fonction f est dite linéaire.

2- Variations d'une fonction affine

Théorème :

Soit f une fonction affine définie sur \mathbb{R} par f(x) = ax + b

- Si a>0 la fonction f est strictement croissante sur $\mathbb R$
- Si a < 0 la fonction f est strictement décroissante sur $\mathbb R$
- Si a = 0 la fonction f est constante sur \mathbb{R} .

Démonstration:

Dresser alors le tableau de variation correspondant

3- Représentation graphique d'une fonction affine :

Théorème:

La représentation graphique d'une fonction affine $f: x \mapsto ax + b$ est la droite d'équation y = ax + b

4- Signe d'une fonction affine pour $a \neq 0$

Résolution de f(x) = 0

$$f(x) = 0 \Leftrightarrow x = -\frac{b}{a}$$

Tableau de signe :

х	-∞	$-\frac{b}{a}$	+∞
Signe de $ax + b$	signe de	e (-a) 0	signe de a

En résumé, on a deux tableaux de signe possibles :

Si a > 0 la seconde ligne est - 0

Si a < 0 la seconde ligne est + 0

- II- La fonction carrée.
 - 1- Définition

La fonction carrée est la fonction f définie sur $\mathbb R$ par

Pour tout $x \in \mathbb{R}$, $f(x) = x^2$

2- Variations de la fonction carrée

Théorème:

La fonction carrée $f: x \mapsto x^2$ est strictement décroissante sur $]-\infty,0]$ et strictement croissante sur $[0;+\infty[$

Démonstration :

Tableau de variation :

3- Courbe représentative

Définition :

Dans un repère $(0; \vec{\imath}, \vec{\jmath})$, la fonction carrée est représentée par une courbe appelée **parabole** d'équation $y = x^2$, de sommet l'origine du repère et d'axe de symétrie l'axe des ordonnées

Tableau de valeurs :

			-0,5				
$f(x) = x^2$	4	1	0,25	0	0,25	1	4

4- Résolution d'équation ou d'inéquations Equations $x^2=a$ où a est un réel quelconque si a<0 alors l'équation $x^2=a$ n'admet pas de solution sur $\mathbb R$

si a=0 alors l'équation $x^2=a$ admet une unique solution x=0

Si a>0 alors l'équation $x^2=a$ admet deux solutions opposées : $x=\sqrt{a}$ ou

$$x = -\sqrt{a}$$

Résolution de $x^2 \le a$

Si a < 0 cette inéquation n'a pas de solution

Si $a \ge 0$ alors

III-La fonction inverse

1- Définition:

La fonction inverse est la fonction définie sur \mathbb{R}^* par :

Pour tout réel
$$x \neq 0$$
 $f(x) = \frac{1}{x}$ soit $f: x \mapsto \frac{1}{x}$

2- Variation de la fonction inverse

Théorème :

La fonction inverse est strictement décroissante sur $]-\infty,0[$ et est strictement décroissante sur $]0; +\infty[$

Démonstration :

3- Courbe représentative.

Dans un repère $(0; \vec{\iota}, \vec{j})$, la fonction inverse est représentée par une courbe appelée hyperbole d'équation $y=\frac{1}{x'}$, comme 0 n'a pas d'image par la fonction inverse, il n'y a pas de point d'abscisse 0 sur sa courbe.

IV- Applications.

A- Les fonctions polynômes du second degré $x \mapsto ax^2 + bx + c$ avec $a \ne 0$

1- Définition

On dit qu'une fonction f est une fonction polynôme du second degré lorsqu'il existe trois réels a, b et c, avec $a \neq 0$ tels que pour tout réel x on a $f(x) = ax^2 + bx + c$. Remarque :

Si a=0 ces fonctions sont des fonctions affines il est donc nécessaire et suffisant que a soit non nul pour que la fonction soit du second degré.

2- Conséquence

Les fonctions polynômes du second degré $x\mapsto ax^2+bx+c$ avec $a\neq 0$ sont des fonctions définies sur \mathbb{R} .

3- Exemples

Les fonctions suivantes sont toutes des fonctions polynômes du second degré : $f\colon x\mapsto 2x^2 \qquad g\colon x\mapsto -x^2+1 \qquad h\colon x\mapsto 3x^2+x-2$ Donner dans chaque cas les valeurs de a,b et c.

4- Forme canonique

Théorème:

Soient $a \in \mathbb{R}^*$ et f une fonction telle que pour tout $x \in \mathbb{R}$, $f(x) = a(x - \alpha)^2 + \beta$ alors f est une fonction polynôme du second degré.

Réciproquement:

Soient a un réel tel que $a \neq 0$ et f une fonction polynôme du second degré dont a est le coefficient du monôme en x^2 alors il existe deux réels α et β tels que pour tout $x \in \mathbb{R}$, $f(x) = a(x - \alpha)^2 + \beta$.

Démonstration:

Définition : l'écriture $a(x-\alpha)^2+\beta$ est appelée la forme canonique de la fonction f .

Théorème:

Soit f une fonction polynôme du second degré $x\mapsto ax^2+bx+c$ alors les réels $\alpha=-\frac{b}{2a}$ et $\beta=f(\alpha)$ sont tels que pour tout $x\in\mathbb{R}$, $f(x)=a(x-\alpha)^2+\beta$.

5- Variations de la fonction f

Théorème: Admis

Soit f une fonction polynôme du second degré $x\mapsto ax^2+bx+c$ avec $a\neq 0$ alors :

- •Si $\alpha < 0$ la fonction f est croissante sur $]-\infty,\alpha]$ et décroissante sur $[\alpha;+\infty[$, elle admet un maximum de valeur β atteint pour $x=\alpha$
- •Si $\alpha>0$ la fonction f estdécroissante sur $]-\infty,\alpha]$ et croissante sur $[\alpha;+\infty[$, elle admet un minimum de valeur β atteint pour $x=\alpha$

Tableau de variation

a < 0

a > 0

6- Courbe représentative

Théorème:

Dans un repère orthonormé du plan, la courbe représentative de la fonction polynôme du second degré définie sur $\mathbb R$ par $(x)=ax^2+bx+c$, $a\neq 0$ est une parabole d'équation $y=ax^2+bx+c$, de sommet $S(\alpha;\beta)$ avec $\alpha=-\frac{b}{2a}$ et $\beta=f(\alpha)$ et d'axe de symétrie la droite verticale d'équation $x=\alpha$.

