引理、设PiT一X为一个coverny,X道路连通,则存在 离物如卵乳工, st. 从水区X, 户(水) 等工 心上的月: 五室. xo∈X, 円(xo) 目 xo 40 中かし、 s.t. p-1(U) = 11 Va, Va cpen 「, 川 $P|_{V_2}: V_2 \xrightarrow{\cong} V$. $\frac{1}{2}$ $\frac{1}$ p1(x0) = 11 } ya } p7(xo) ∩ Va = {ya} => p7(xo) 为為物如如? $\triangle I = P^{-1}(x_0)$ $\forall x \in X$, $\exists x \in P(x_0, x), \forall y_1 \in P^{-1}(x_0)$ 设备的外的从生发的提升。最后 $\frac{1}{2} \cdot \chi : \quad \varphi : \quad \frac{p^{-1}(x_0)}{\sqrt{y_2}} \longrightarrow \frac{p^{-1}(x_0)}{\sqrt{y_2}}$ discrete.

为估中为同脏、只需的中分双射 Q: p((x0) -> p(x) $\frac{1}{12} \varphi(y_{a_i}) = \varphi(y_{a_2}), \quad \frac{1}{2} | \hat{\pi} \hat{\gamma}_{a_i}(1) = \hat{\gamma}_{a_i}(1) \qquad \qquad \frac{1}{2} | \hat{\pi} \hat{\gamma}_{a_i}(1) = \hat{\gamma}_{a_i}(1)$ 即分别与别的别人点出发的一定提升 $\Rightarrow \widehat{\chi}_{\lambda_{1}}^{-1} = \widehat{\chi}_{\lambda_{1}}^{-1} \Rightarrow \widehat{\chi}_{\lambda_{1}}(\circ) = \widehat{\chi}$ Y SIE PI(X). 取分为矿的的为超生的提升 $\mathbb{R}^{1/2} \mathbb{Z}^{(2)} \in \mathbb{P}^{-1}(X_{\circ})$ スセラウスな(1)= ba. $\varphi(\vartheta_{a_1}) = \vartheta_{1}$

Rmle ジp: Yー) X 为一个covering, X 道路连遍 若 3 xe X, st. p-1(xs) 为有性集, 记 n=#p-1(xs) 211 + xe X, #p-1(x)=n 比社

旅荡鱼p:YmX的degree为n. 并记degp=n. Rmk. 12 Y, x 1 compact Riemann surface. M(Y), M(X) 3 机应的通数域,设p: Y->X为一个(branched) Coverng. $p^*: M(x) - M(r) 为一个单闭态,$ f -> f.p. M(Y)可视为M(X)的一个钱扩殊。2小: Odeg(P) = [M(Y): M(X)].① P为一个Galois covering (=) M(Y)/M(X)为一个Galois [Szamuely] Galois groups and fundamental groups. 多2. 万有覆盖 (universal covering) 文 × 为 path conn. locally path conn. 分 top sp.

宫义: X: top sp., X 那为 locally path connected, if YOEX, Yxxx开邻域U,总存在x的透路连通的开邻域W, 宝义:设P:Y一X为一个coverng、P部为X上和一个 Universal covering, if: > \$\partial{2}{\partial{2}} 下面: 考虑 univ. covering 的存在性. 花p: イー>×カーケuniversal covering, ∀x∈X,∃x分f到 $t\overline{z}$ V, $s.t. P'(U) = 4 V_0$, $V_0 Spen Y$, $\Omega P|_{V_0}: V_a = U$. DI Y U 中的一条 loop Y, (Plu) o Y 为 8 is 5 一个提. 升 也为 Va 中 so loop. (P/V2)08. ~ (P/V2)08(0) rel 80.1}

定义: 没义:top space, 积义为 semilocally simply connected. 共 ∀ x ∈ X, ∃ x 45 开邻域U, s.t. Y loop Y in U, 数期对1017同伦干学选路. Rmk 12X: top sp. 斯久x为 (ocally simply connected, 共 Vx EX. Yx的开外域U, 总存在x分单连通的开邻 to W. S.t. WCU. (所有的流形都是loc. Simply. conn.) Rmk. 12×为 semilocally simply connected, DI Yx ∈ X, Y xxxx 开种域U, 总存在xxxx开种域W, s.t. Yloop YinW,Y在X中部对加州的外围枪开常透路,从 TYXXX HYTEX U, to semilocally simply conn. ZZ. X, 3x40-AAPtati V、满是宝义条件,UNV为x每一个开邻域、全W=UNV

命题: #X 有 univ. covering, DIX ix semilocally simply connected. Rmk is X locally path conn. 1) semilocally simply conn, Dil Y xeX, Yn的开外域U, 总存在x的开外域W, W满定的道路连通的。②Yloop Yin W, Y在X中初 对和门冈伦干学选路。且WCU 「由上面 Rmk. 习水的开创域W'满足①, 使W'CU. 由Loc. path com. 习水的道路连通的开种摄W, s.t. WCW'. W选定 拉冲: 公义 X locally path conn, In semilocally simply conn, 手序. WCX为good的,若W满D.⑤

Rmk、设定、同上、记 B={Wgmd×7,211B为X的招料基

TYU SPEX. YXEU, WIEB, St. $\chi \in W_{\chi} \subset U$. $\bigcup_{x \in U} W_x = \bigcup_{x \in U}$ mp 33. 12 X: conn., locally path conn, semilocally simply conn. (6 top space, 21) × 的 universal covering 包存的. (Ref: [Fulton] Algebraic topology). ([Dieck] Algebraic topology.) 证的1.(记号: YL,MCX,P(L,M)={Y:[0,1]-)X连续, Y(O) EL, Y(1) EM } 约定: "同他"="柳对于知识" $\text{Im} \hat{z} \cdot \text{X} \cdot \in \text{X} \cdot \hat{z} = \{ < r > | r \in P(x_0, \times) \}, \hat{z} \cdot \hat{z} :$ $P: X \longrightarrow X, < Y > \longmapsto Y(1)$ 是些为满好 (由Xpath conn.)

下面: ①赋予采以机计 ② p: × > × > Covering. 3 × Simply connected. ①. YUCX, NBBYEP(No,U), 艺义分的子集: $U_{\gamma}:=\left\{ <\gamma, a> \mid a\in P(\gamma(1),U), Imacu) \right\}$ (由芝义, 说 VI, YI C P(XO, U), YI = YZ re(fo,1], A] {<\x. 9>} \{\x. 9>} \\

 $12 B = \{U_{\sigma} \mid U \subseteq X, Y \in P(\Lambda_{\sigma}, U)\}$ 另为父上某个部扑的招扑基 ② YUL VEEX, 花<x>EULnVB. 要记录WsEB. s.t. < r> EW8 CU2 NVB $< \gamma > = < \lambda \cdot \tau_1 > = < \beta \cdot \tau_2 >$, # $\tau_1 \in P(s(1), U)$, Im $\tau_1 \subset U$ $T_2 \in P(S(1), V)$, $Im T_2 \subset V$ $\Rightarrow \chi(1) = \tau_1(1) = \tau_2(1) \in U$, WCUNV, W good Xo.

ヨア(1) 的 good 的开神域W, st. W C U N V

赋予公由的所生成的拓扑。 i.e. YWC文, Wopen (=>) Y < 8>EW, 日菜介 $U_{\lambda} \in \mathcal{B}$, s.t. $< \delta > \in U_{\lambda}$ ○N为某些Ux的并. ②: 验证: p: X -> X .为 covering. YREX, Ax xis-1 good is Anti U.

 $b_{-1}(\Omega) = \left\{ \langle x \rangle \in \times \middle| b(\langle x \rangle) = \lambda(\tau) \in \Omega \right\}$ = $\bigcup_{\gamma \in \gamma(\infty, \cup)} \bigcup_{\gamma}$.

=> P连续

「双察: Yri, ref(xo,U), UrinUri+ p, Claim:Ur=Uri 法<分(ひ)の(しょ)のしな。<カラ=<がら>=<から)。 =) $\lambda(1) = \beta_1(1) = \beta_2(1) \in \bigcup$

 $\exists \ \gamma \in P(x_{\bullet}, U), \ i \in I, \ s.t. \quad \bigcup U_{\gamma} = \coprod_{i \in I} U_{\gamma}, \\ \forall \in P(x_{\bullet}, U), \quad \forall \in I, \ \forall i \in I, \ \forall$

室ibp为 Lovering、足、室ib: Plus: Us; 一、VieI

Fact. HUCLX, 8 ∈ P(xo, U). Plus: Ur = U.

H of Fact. O Plus 5 77 At (=> @ Plus 5 B) M.

只要话:Plux:Ux一口为双射 $\beta_i \in \mathcal{V}(Y(1), U)$, $Im \beta_i \subset U$. $\beta_{L} \in P(\mathcal{V}(L), \cup)$ $\frac{1}{\sqrt{2}} p(\langle x, \beta, \rangle) = p(\langle x, \beta, \rangle)$ $\beta_{1}(1) \qquad \beta_{2}(1)$ () good => \langle i \langle \tau \tau \tau_{\tau_1} \tau \tau_{\tau_1}, rel \langle 0.1} => B, ~ B2 rel \$0,1} =). 8. B. ~ rel } -, 1} => < 8. B. > (苗角: ∀x∈U. Ugood⇒)∃Z:[0,1]→U. $\lambda(0) = \gamma(1), \quad \lambda(1) = \%.$ $\langle \lambda, \gamma \rangle \in \Omega^{k}, \quad b(\langle \lambda, \gamma \rangle) = x$

③ 又是单连遍的, . 文艺道路连通的. 固定〈CX。〉巨X、安记从<Y>EX、存在道野 $T: [0,1] \longrightarrow X, \quad s.t. \quad T(0) = \langle C_{x_0} \rangle, \quad T(1) = \langle Y \rangle$ 党义: 丁:[0,1] 一> 公 其中 Ys: [0.1] ->> × + -> \(\s+) 需证: 下为一个连续映新. に要注: YUGX, JEP(xo,U), T(U2)为[o,1]中 | j.e.] | E | (2(1), U) | Im | = U, s.t. 一个开集, <%。>. 作取 So E T-(U2) i.e. T(So) E U2/(Sso) = (2)/> $\Rightarrow \chi(z^{o}) = \chi(\tau) \in \bigcap$

 $S_{o} \in \mathcal{Y}^{1}(U) \subseteq [0,1]$

Claim: $S_0 \in Y^{-1}(U) \subset T^{-1}(U_2)$.

Pf of claim: $\forall s \in Y^{-1}(U)$, $P_s \notin Y^{-1}(U)$. $\forall s \in Y^{-1}(U)$.

 $\frac{1}{2} \xi_{n} : \langle \gamma_{s} \rangle = \langle \lambda_{s} | \delta_{s} \rangle.$ $\frac{1}{2} \xi_{n} : \langle \gamma_{s} \rangle = \langle \gamma_{s} | \delta_{s} \rangle = \langle \gamma_{s} | \delta_{s} \rangle.$

· $\forall \Gamma \in L(\widetilde{X}, \langle Cx_{\circ} \rangle)$, 有 $\Gamma \simeq C_{CCx_{\circ} >}$ re($\{\circ, 1\}$. D:[0,1] 一> X 连续. $\Gamma(0) = \langle C_{x_0} \rangle, \quad \Gamma(1) = \langle C_{x_0} \rangle.$ POT: [O,1] -> X, POTËY EL(X, NO). T为Y的从<Cx>出发的提升. \dot{g} $\dot{\chi}$: Γ' : Γ \sim \sim . 其中下:[···]→× s -> < 8s > t1-> X(st) 丑话: 丁莲绿 又 $P \cdot P'(s) = Y_s(1) = Y(s)$ P' 也为 Y 从 $< C_{>>} > U_1$ 发的提升 由超升低一胜到程, 下一下, 加X, <Cx>> 由同伦提升引强,下一个(n × cx。> rel fo,1). #