

Informática

- Informática é informação automática
- Informática pressupõe o uso de computadores eletrônicos no trato da informação
- Cabe a informática a tarefa de coletar, tratar e disseminar dados gerando informação
 - DADOS: elementos conhecidos de um problema
 - INFORMAÇÃO: Um conjunto estruturado de dados

Componentes básicos do computador

- Hardware: equipamento físico
 - Periféricos de entrada e saída; componentes físicos da máquina: carcaças, placas, fios, fontes de energia, cabos, etc.
- Software:
 - É constituído pelos programas que permitem atender às necessidades do usuário. Envolve um conjunto de
 - (1) Instruções que são executadas para produzir a tarefa desejada;
 - (2) Estrutura de dados que permitem que os programas manipulem corretamente as informações;
 - (3) Documentos: que descrevem a operação e uso do programas

Sistema Computador Principais Componentes de Hardware

- Monitor de vídeo
- Placa Mãe
- Processador
- Memória RAM
- Placa de Vídeo, Modem, etc.
- Fonte de Energia
- Leitor de CD/DVD
- Disco Rígido (HD)
- Mouse
- Teclado

Processador

- Processador CPU (Central Processing Unit)
 - Responsável pela realização das operações de processamento (cálculos matemáticos, cálculos lógicos, etc) e de controle, durante a execução de um programa;
 - Constituída por dois componentes principais:
 - ALU (Unidade Aritmética e Lógica);
 - Unidade de Controle.

Processador

- Processador CPU (Central Processing Unit)
 - Possui uma frequência de operação, normalmente dada em megahertz (MHz) ou gigahertz (GHz), que está relacionada com a velocidade de execução das operações
 - Entretanto, note que uma maior frequência não implica necessariamente em um processador mais veloz;
 - Memória Cache
 - memória interna do processador de alta velocidade utilizada para armazenar dados e instruções de programas frequentemente utilizados;
 - Pode ter um ou mais núcleos de processamento
 - Processadores com mais núcleos tendem a ser melhores para a execução de várias aplicações (programas) ao mesmo tempo.

Memória Principal

- Memória Principal RAM (Random Access Memory)
 - Armazena as instruções dos programas que estão sendo executados e os dados necessários à sua execução;
 - Quando é solicitada a execução de um programa, normalmente ele é carregado do disco rígido (HD) para a memória RAM, de onde suas instruções são buscadas e executadas pela CPU.

Memória Principal

- Memória Principal RAM (*Random Access Memory*)
 - Memória de rápido acesso;
 - Chamada memória *volátil*, pois necessita de alimentação elétrica para manter os dados armazenados;
 - Os dados podem ser lidos ou gravados em qualquer posição da memória em qualquer momento (acesso aleatório);
 - Capacidade comuns: 128, 256, 512 MB, 1, 2 ou 3 GB.

Arquitetura de von Neumann

- Dados e programas a serem executados são carregados para memória principal;
- A unidade central de processamento (CPU), que executa realmente as instruções, é separada da memória;
- As instruções dos programas e os dados são transmitidos da memória principal para a CPU, onde o processamento é realizado;
- Os resultados das operações na CPU devem ser novamente transferidos para a memória;

John von Neumann

9

Arquitetura de von Neumann

10

Memória Cache

- Pequena quantidade de memória, de alto desempenho (e de alto custo), normalmente localizada dentro da pastilha do processador;
 - Tem a finalidade de aumentar o desempenho do processamento;
 - Armazena as instruções e os dados mais requisitados pela CPU, evitando uma busca repetitiva pelo mesmo dado ou instrução na memória principal;
 - A capacidade varia de acordo com o processador.
 Capacidades comuns: 128 KB, 512 KB, 2 MB e 4 MB.

Placa Mãe

- Placa Mãe Motherboard
 - Conjunto de chips e conexões que tem a função de conectar o processador aos demais componentes do computador (memória, HD, placa de vídeo, etc.);
 - Gerencia a transação de dados entre os componentes;
 - Pode ter vários dispositivos integrados (on-board), como placa de vídeo, placa de som e dispositivo de rede;
 - Alguns fabricantes: ASUS, ECS, Intel, MSI e Gigabyte.

Dispositivos de Entrada e Saída

- Dispositivos de Entrada
 - Permitem ao computador acessar informações do mundo externo.
 - É a forma como os dados são inseridos dentro do computador
- Dispositivos de Saída
 - Permitem a saída de informações para meios externos e possibilitam sua visualização, armazenamento ou utilização por outro equipamento

Dispositivos de Saída

- Monitor
 - VGA, Super VGA, LCD, etc.
- Impressora
 - Laser, jato de tinta
- Alto-falante
- Unidade de disco magnético
- Etc.

Dispositivos de Armazenamento

- Também chamados de memória auxiliar
 - Podem reter grande quantidade de dados
 - Armazena os dados e programas
 - Os dados não são perdidos quando o computador é desligado (não é volátil)
 - Funcionamento muito lento

Dispositivos de Armazenamento

- Disco Rígido (HD Hard Disk)
 - Armazenamento Magnético
 - Alta capacidade de armazenagem de dados: 160 GB, 250 GB, 400 GB, etc
- Fita Magnética
 - Armazenamento Magnético
 - Alta capacidade de armazenagem de dados: 200, 400, 800 GB, etc.
 - Acesso sequencial ao dados

Dispositivos de Armazenamento

- Armazenamento Óptico CDs e DVDs
 - CD-R (Compact Disc Recordable)
 - Capacidades comuns: 650 ou 700 MB.
 - CD-RW (Compact Disc Rewritable)
 - Como o CD-R, porém pode ser gravado várias vezes
 - DVD-R comum (Single Layer)
 - Capacidade: 4,7 GB.
 - DVD-R dupla-camada (Dual Layer)
 - Capacidade maior de armazenamento: 8,5 GB
 - DVD-RW
 - Pode ser gravado várias vezes pela unidade gravadora de DVD

Dispositivos de Armazenamento

- Armazenamento Óptico Blue-ray e HD-DVD
 - Novas tecnologias de armazenamento óptico que oferecem grande capacidade de armazenagem;
 - Disco do mesmo tamanho do CD ou DVD;
 - Utilizados para armazenar vídeo de alta definição ou grandes quantidades de dados;
 - Alto custo;
 - Capacidades de armazenagem:
 - HD-DVD Single Layer: 15 GB
 - HD-DVD Dual Layer: 30 GB
 - Blu-Ray Single Layer: 25 GB
 - Blu-Ray Dual Layer: 50 GB

Dispositivos de Armazenamento

- Memória Flash
 - Tipo de memória não-volátil que pode ser apagada e reprogramada eletricamente;
 - Utilizada em dispositivos do tipo pendrive, memory stick, mp3-player;
 - Apresenta baixo consumo e boas taxas de transferência;
 - Já é utilizada em notebooks;
 - Existem crenças de que esse tipo de memória substituirá os discos rígidos ao longo dos anos.

Dispositivos de Armazenamento

Custo x Velocidade x Capacidade

Maior Velocidade de Acesso aos dados*

Maior Custo de Armazenamento por byte

*Vários dispositivos de memória flash ainda possuem taxas de transferência de dados menores do que as taxas de transferência de muitos discos magnéticos.

Endereços de Memória

- Cada localização de memória tem um endereço
 - Um número único, como em uma caixa postal.
- Pode conter somente uma instrução ou peça de dados
 - Quando dados são reescritos na memória, o conteúdo anterior desse endereço é destruído.
- Referenciado pelo número
 - As linguagens de programação usam um endereço simbólico (nomeado), tal como Horas ou Salário.

Tipos de Computadores

- Existem vários tipos de computadores
 - PDAs ou Handhelds
 - Computadores portáteis (laptops)
 - Computadores de mesa (desktops)
 - Computadores de médio porte (servidores)
 - Mainframes
 - Supercomputadores

Tipos de Computadores

- Mainframes
 - Computador de grande porte, dedicado normalmente ao processamento de um volume grande de informações;
 - Disponibilizam alto nível de segurança;
 - Possuem um grande número de processadores;
 - Algumas aplicações
 - Processamento de transações de cartões de crédito, gerenciamento de contas bancárias, aplicações de data mining e data warehouse, censo, sistemas de ERP, etc.

Tipos de Computadores

- Mainframe Exemplo
 - IBM System z9 Enterprise Class Modelo 2094-S54
 - 54 processadores principais
 - Até 512 GB de memória principal
 - Peso: Até 2003 kg
 - Altura: 1,94 metro

Tipos de Computadores

- Supercomputadores
 - Altíssima velocidade de processamento e grande capacidade de memória, empregado normalmente em pesquisas científicas, aeroespaciais e militares.
 - Supercomputador da NASA Columbia
 - 10240 processadores Intel Itanium;
 - 20 terabytes de RAM;
 - 440 terabytes de armazenamento;
 - 51.87 teraflops, ou 51.87 trilhões de operações de ponto flutuante por segundo.

Tipos de Computadores

- Supercomputadores Exemplo
 - Supercomputador INPE Instituto Nacional de Pesquisas Espaciais
 - 244 teraflops (trilhões de operações de ponto flutuante)
 - 1.272 nós, cada um deles com velocidade máxima de 192 gigaflops por segundo

http://www.agencia.fapesp.br/materia/12874/inpe-recebe-supercomputador-climatico.htm

BIOS

- Sistema Básico de Entrada/Saída (Basic Input/Output System)
 - Gravado em memória permanente (firmware)
 - Responsável pelo suporte básico de acesso ao hardware, e início do sistema operacional.

Sistema Operacional

- Conjunto de programas que se situa entre os softwares aplicativos e o hardware
 - Gerencia os recursos do computador (CPU, dispositivos periféricos).
 - Estabelece uma interface com o usuário.
 - Determina como o usuário interage com o sistema operacional.
 - Provê e executa serviços para softwares aplicativos.

Sistema Operacional

- O sistema operacional tem todos os comandos básicos que os aplicativos vão usar, em vez de ter todas estas funções reescritas para cada aplicativo.
 - Exemplo: spool de impressão

História do sistema operacional

- Primórdios
 - Inexistente
 - Usuário: programa e opera a máquina
 - Alocação de recurso "computador" feito por planilha
 - Acesso direto aos periféricos
- Evoluir para
 - Melhor utilizar os recursos
 - Avanços tecnológicos (novo hardware)
 - Novos serviços

História do sistema operacional

- Sistema em lote (*batch*)
 - Operadores profissionais
 - Usuário não era mais o operador da máquina
 - Job
 - Programa a ser compilador e executado, mais os dados de execução
 - Jobs são organizados em lote (batch)
 - Necessidades semelhantes (ex: mesmo compilador)
 - Passagem entre diferentes jobs continua sendo manual
 - Monitor residente: primeiro sistema operacional (rudimentar)

História do sistema operacional

- Monitor residente
 - Programa que fica permanente em memória
 - Automatiza a transição entre jobs
 - Funcionamento
 - Execução inicial
 - Controle é transferido para o job (Cartões de controle)
 - Quando o job termina, o controle retorna ao monitor
 - Centraliza as rotinas de acesso a periféricos disponibilizando aos programas de usuários

História do sistema operacional

- Monitor residente
 - Problemas
 - Monitor residente permite a execução de apenas um programa a cada vez
 - Desperdício de tempo de CPU com operações de E/S
 - Solução
 - Manter vários programas na memória ao mesmo tempo
 - Enquanto um programa realiza E/S, outro pode ser executado
 - Multiprogramação (multitarefa)

História do sistema operacional

- Multiprogramação (multitarefa)
 - Manter mais de um programa em "execução" simultaneamente
 - Duas inovações de hardware possibilitam o surgimento da multiprogramação
 - Interrupção (sinalização de eventos) e discos magnéticos (acesso randômico a diferentes jobs/programas)

Sistemas Operacionais para Computadores Pessoais

- Plataforma
 - Combinação de hardware de computador e software de sistema operacional.
 - Wintel (Microsoft Windows que roda em um PC baseado em Intel) é a mais comum.
- Plataformas Comuns:
 - MS-DOS
 - Windows
 - MAC OS
 - Unix
 - Linux

- DOS (Disk Operating System)
 - Baseado em linha de comando.
 - A tela apresenta prompts ao usuário.
 - O usuário digita comandos.
 - Não é amigável (user-friendly).
 - Existem várias versões
 - MS_DOS, PC-DOS, DR-DOS, FreeDOS
 - IBM-PC + Bill Gates: O "negócio do século"

- 1981 Xerox Star
 - Primeiro sistema operacional comercial baseado em janelas.
 - Estilo de interação WIMP (em inglês, Janelas, Ícones, Menus e Apontadores)

- 1983 Apple Lisa
 - Primeiro PC a ter um mouse e uma interface gráfica.
 - A interface foi inspirada nas estações de trabalho Xerox.

- Microsoft Windows
 - Iniciou-se como um ambiente operacional para o MS-DOS.
 - Não era um sistema operacional completo; necessitava do MS-DOS.
 - Usa uma interface gráfica.
 - Gerenciador baseado em ícones.
 - Os usuários podem usar os comandos e a interface do DOS.
 - Agora é uma família completa de sistemas operacionais.
 - "Multitarefa".
 - Gerenciador de arquivos estilo árvore.
 - Surgimentos dos aplicativos (Office).

- Windows 1.01 (1985)
 - O sistema rodava no padrão 16-bit e usava menos de 1MB.
 - Rudimentar interface gráfica, rodando em cima do MS-DOS 5.0.
- Windows 3.11 (1992)
 - Softwares para multimídia
 - Fontes TrueType
 - Mais estável
 - Oito disquetes de 3,5" (1,44 MB)

- Windows 95
 - Completamente novo sistema operacional independente do DOS
 - FAT₁₆
 - Menu Iniciar
 - Barra de Tarefas

- Windows 98
 - Assistentes: software passo a passo para instalar, configurar e usar software.
 - Suporte a vários monitores e USB
 - Restauração do sistema via DOS
 - Integração com Internet
 - FAT32

- Windows Me 2000
 - Suporte para multimídia
 - Media Player, edição de vídeo.
 - Maiores recursos de confiabilidade.
 - Suporte para redes domésticas
- Windows 2000
 - Coorporativo
 - Você obtém "sua" área de trabalho e arquivos, independentemente de qual PC usa para acessar a rede
 - Bastante estável
 - 32 bits
 - Falhas de segurança (armazenamento de senhas)

- Windows XP 2001
 - Uma das melhores versões já lançadas
 - Melhor interface com o usuário:
 - Área de trabalho muito mais clara e desobstruída.
 - Mais ícones no menu Iniciar redesenhado.
 - Rápido, maior e melhor suporte a hardware, multimídia e proteção para a Internet
 - Suporte para múltiplos usuários e personalização
 - Diferentes versões
 - Home e Professional

- Windows Vista 2006
 - Basicamente, um fiasco
 - Sistema lento, pesado e cheio de falhas
 - Recursos de transparência
 - Sistema de alternância 3D de janelas
 - Ferramentas integradas para segurança
- Windows 7 2009
 - Tudo que o Windows Vista era para ter sido e não foi.
 - Sistema rápido e inteligente

- MAC OS
 - Projetado para o computador Macintosh.
 - Primeira GUI bem-sucedida comercialmente.
 - Serviu como modelo para o Windows e outros produtos GUI desenvolvidos a partir de então.

- UNIX
 - Desenvolvido em 1971 para ser usado no minicomputador DEC.
 - Sistema baseado em caracteres com interface de linha de comando.
 - Não é ligado a nenhuma família de processadores.
 - Roda praticamente em qualquer tipo de sistema (PC, mainframe, estação de trabalho) de qualquer fabricante.
 - Principal sistema operacional em uso em servidores de Internet.
 - Manipula facilmente muitos usuários ao mesmo tempo.

© 2004 by Pearson Education

Evolução dos SO's

- Linux
 - Usa interface de linha de comando.
 - Muitas companhias criaram uma GUI para funcionar com o Linux.
 - Conceito de fonte aberta.
 - O código-fonte é livre.
 - Usuários podem fazer o download, modificar e distribuir o software.
 - Mais estável do que o Windows.
 - Aplicativos relativamente escassos.

Representação de Dados

- Os computadores entendem apenas duas coisas: ligado e desligado.
- Dados são representados na forma binária:
 - Sistema numérico binário (base 2).
 - Contém somente 2 dígitos: o e 1.
 - Corresponde a dois estados: ligado e desligado.

EQUIVALENTES BINÁRIOS DOS NÚMEROS DECIMAIS DE 0 A 15	
Decimal	Binário
0	0000
1	0001
2	0010
3	0011
4 5	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
- 11	1011
12	1100
13	1101
14	1110
15	1111

© 2004 by Pearson Education

Representação de Dados

- **Bit**: abreviação de *binary digit* (dígito binário).
 - Dois valores possíveis: o e 1.
 - Nunca pode estar vazio.
 - Unidade básica para armazenar dados:
 - o significa desligado; 1 significa ligado
- Byte: um grupo de 8 bits.
 - Cada byte tem 256 (28) valores possíveis.
 - Para texto, armazena um caractere:
 - Pode ser letra, dígito ou caractere especial (Código ASCII).
 - Dispositivos de memória e armazenamento são medidos em número de bytes.

Representação de Dados

• Conversão binário -> decimal

Representação de Dados

• Conversão decimal -> binário

Representação de Dados

- Palavra: número de bits que a CPU processa como uma unidade.
 - Tipicamente, um número inteiro de bytes.
 - Quanto maior a palavra, mais potente é o computador.
 - Computadores pessoais tipicamente têm 32 ou 64 bits de extensão de palavras.

© 2004 by Pearson Education

Capacidades de Armazenamento

- Kilobyte: 1024 (210) bytes.
 - Capacidade de memória dos computadores pessoais mais antigos.
- Megabyte: aproximadamente, um milhão (220) de bytes.
 - Memória de computadores pessoais.
 - Dispositivos de armazenamento portáteis (disquetes, CD-ROMs).
- Gigabyte: aproximadamente, um bilhão (230) de bytes.
 - Dispositivos de armazenamento (HD's, DVD's, memória Flash, Blu-Ray).
 - Memória de mainframes e servidores de rede.
- Terabyte: aproximadamente, um trilhão (240) de bytes.
 - Dispositivos de armazenamento para sistemas muito grandes.

Agradecimento

 Agradeço ao professor Prof. Daniel Furtado (FACOM-UFU) pelo material disponibilizado