

<u>Home</u> > Chemistry > Foundations > Stoichiometry > Essential Pre-Uni Chemistry B6.3

Essential Pre-Uni Chemistry B6.3

Consider the equation for each reaction and hence calculate the amount of acid required for complete reaction in each of the following cases. Part A (a) $0.10\,\mathrm{mol}\ \mathrm{NaOH}$ reacting with $\mathrm{H_2SO_4}$. Give your answer to 2 significant figures. Part B (b) HCl reacting with $20\,g$ of $CaCO_3$. Give your answer to 2 significant figures. Part C (c) $24\,\mathrm{g}~\mathrm{CuO}$ reacting with HNO_3 . Give your answer to 2 significant figures. Part D (d) $5.6\,\mathrm{g}$ Fe reacting with HCl. Give your answer to 2 significant figures. Part E (e) $14.8\,\mathrm{g}$ of calcium hydroxide reacting with H_2SO_4 . Give your answer to 3 significant figures.

Part F (f)

 $10\,\mathrm{g}$ of magnesium oxide reacting with nitric acid. Give your answer to 2 significant figures.

<u>Home</u> > Chemistry > Foundations > Stoichiometry > Essential Pre-Uni Chemistry B6.2

Essential Pre-Uni Chemistry B6.2

By considering a balanced equation each time, calculate the amount of water produced by complete combustion of the following in oxygen. Part A (a) $1 \, \mathrm{mole}$ of pentane, $C_5 H_{12}$ (b) Part B $2.5\,\mathrm{moles}$ of heptane, C_7H_{16} Part C (c) $200\,\mathrm{moles}$ of hydrogen, H_2 (d) Part D $4.0\,\mathrm{moles}$ of butane Part E (e) $0.0030\,\mathrm{moles}$ of methane

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \; \mathsf{Chemistry} \; \; \blacktriangleright \; \; \mathsf{Foundations} \; \; \blacktriangleright \; \; \mathsf{Stoichiometry} \; \; \blacktriangleright \; \; \mathsf{Essential} \; \mathsf{Pre-Uni} \; \mathsf{Chemistry} \; \mathsf{B4.3}$

Essential Pre-Uni Chemistry B4.3

Calculate the amount of:	
Part A (a)	^
$1.001\mathrm{g}$ of $\mathrm{CaCO_3}\mathrm{(s)},$ to 3 significant figures	
Part B (b)	~
$197\mathrm{kg}$ of $\mathrm{Au}(\mathrm{s})$, to 3 significant figures	
Part C (c)	~
$1.4\mathrm{g}$ of $\mathrm{CO}\left(\mathrm{g}\right)$, to 2 significant figures	
Part D (d)	~
$2.006\mathrm{kg}$ of $\mathrm{Hg}(\mathrm{l})$, to 4 significant figures	
Part E (e)	~
$11.1\mathrm{g}$ of lithium carbonate, to 3 significant figures	

Part F (f)

 $10.0\,\mathrm{mg}$ of lead(II) iodide, to 3 significant figures

Home > Chemistry > Foundations > Stoichiometry > Essential Pre-Uni Chemistry B6.1

Essential Pre-Uni Chemistry B6.1

Calculate the amount of oxygen needed, and amount of carbon dioxide produced, in each of the cases below.

Part A
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

^

$$C_3H_8+5\,O_2\longrightarrow 3\,CO_2+4\,H_2O$$
, using $1.0\,mol$ of C_3H_8

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part B
$$C_2H_6O + 3O_2 \longrightarrow 2CO_2 + 3H_2O$$

V

$$C_2H_6O+3\,O_2 \longrightarrow 2\,CO_2+3\,H_2O,$$
 using $0.2\,mol$ of of C_2H_6O

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

~

 $2\,\mathrm{CO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{CO}_2$, using $4.0\,\mathrm{moles}$ of CO

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part D
$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O$$

~

 $C_6H_{12}O_6+6\,O_2 \longrightarrow 6\,CO_2+6\,H_2O$, using $0.040\,moles$ of $C_6H_{12}O_6$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part E
$$C_2H_4O_2 + 2O_2 \longrightarrow 2CO_2 + 2H_2O$$

V

 $C_2H_4O_2 + 2\,O_2 \longrightarrow 2\,CO_2 + 2\,H_2O,$ using $0.10\,moles$ of $C_2H_4O_2$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

 $\underline{\mathsf{Home}} \; \; \blacktriangleright \; \; \mathsf{Chemistry} \; \; \blacktriangleright \; \; \mathsf{Foundations} \; \; \blacktriangleright \; \; \mathsf{Stoichiometry} \; \; \blacktriangleright \; \; \mathsf{Essential} \; \mathsf{Pre-Uni} \; \mathsf{Chemistry} \; \mathsf{B5.2}$

Essential Pre-Uni Chemistry B5.2

	C C C P P P
Calculate the mass of solute in grams of each of the following:	
Part A (a)	^
$500\mathrm{ml}$ of $0.010\mathrm{mol}\mathrm{dm}^{-3}\mathrm{NaOH}$	
Part B (b)	~
$150\mathrm{ml}$ of $4.0\mathrm{mol}\mathrm{dm}^{-3}$ HCl	
Part C (c)	~
$1.00\mathrm{ml}$ of $10.0\mathrm{mol}\mathrm{dm}^{-3}\;\mathrm{H_2SO_4}$	
Part D (d)	•
$25.0\mathrm{ml}$ of $0.50\mathrm{mol}\mathrm{dm}^{-3}~\mathrm{FeSO_4}$	
Part E (e)	~
$21.8\mathrm{ml}$ of $0.0050\mathrm{moldm^{-3}}$ $\mathrm{KMnO_4}$	

 $\underline{\mathsf{Home}}$ > Chemistry > Foundations > Stoichiometry > TNT

TNT

TNT is used as an explosive. It can decompose according to the following equation:

$$2C_{7}H_{5}N_{3}O_{6}\left(s\right) \longrightarrow 7\,CO\left(g\right) +7\,C\left(s\right) +5\,H_{2}O\left(g\right) +3\,N_{2}\left(g\right)$$

Part A RMM

^

Calculate the relative molecular mass of TNT.

Part B Moles of gas

~

The volume of gas produced at $400\,^{\circ}C,$ when $10\,\mathrm{g}$ of TNT explode, is to be calculated.

How many moles of gas are produced from $1\,\mathrm{mol}$ of TNT?

Part C Volume of gas

V

At $400\,^{\circ}$ C and $1\,\mathrm{atm}$, $1\,\mathrm{mol}$ of gas occupies $55\,\mathrm{dm}^3$.

Calculate the volume of gas produced under these conditions from $10\,\mathrm{g}$ of TNT?

Adapted with permission from UCLES, A Level Chemistry, November 1992, Paper 3, Question 1

<u>Home</u> > Chemistry > Foundations > Stoichiometry > Balancing Equations

Balancing Equations

Part A Be and O

^

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Be + O_2 {\:\longrightarrow\:} BeO$$

Part B Ce and O

~

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Ce + O_2 \longrightarrow CeO_2$$

Part C Cr and Cl

~

Balance the following equation, reducing coefficients to the smallest possible integers:

$$\operatorname{Cr} + \operatorname{Cl}_2 \longrightarrow \operatorname{CrCl}_3$$

Part D

 \boldsymbol{C} and $\boldsymbol{CO_2}$

,

Balance the following equation, reducing coefficients to the smallest possible integers:

$$\mathrm{C} + \mathrm{CO}_2 \to \mathrm{CO}$$

Part E NaCl and $CaCO_3$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$NaCl + CaCO_3 \longrightarrow Na_2CO_3 + CaCl_2$$

Part F ${\rm Fe_2O_3}$ and ${\rm CO}$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Fe_2O_3 + CO \longrightarrow Fe + CO_2$$

Created for isaacphysics.org by Andrea Chlebikova