Universidad Nacional Autónoma de México Facultad de Ciencias Teoría de los Números I

Tarea 4

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

24 de mayo 2019

Congruencias y Reciprocidad Cuadrática

Los números entre los paréntesis denota el puntaje de ese ejercicio. Hay un total de 70 puntos.

Ejercicio 1. (2) Criterios de divisibilidad. Prueba que:

a. (1) 3 divide a n si y solamente si la suma de sus dígitos es divisible entre 3. **Solución:** Antes de proceder con la demostración, mostraremos que sean dos enteros n y s, donde n es un entero y s es la represtación de la suma de los dígitos de n, de la forma $n = a_0 + a_1 10^1 + \ldots + a_n 10^n$ y $s = a_0 + a_1 + \ldots + a_n$. La resta n - s divisible por 3.

$$n - s = a_0 + a_1 10^1 + \dots + a_n 10^n - a_0 - a_1 - \dots - a_n$$

$$= (a_0 - a_0) + (a_1 10^1 - a_1) + \dots + (a_n 10^n - a_n)$$

$$= a_1 (10^1 - 1) + \dots + a_n (10^n - 1)$$

$$= \sum_{i=1}^n a_i b_i$$
Con $b_i = (10^i - 1)$

Entonces se sigue que $9 \mid b_i$ y en particular $3 \mid b_i$. Ergo $3 \mid n - s$. \Longrightarrow) Por demostrar que la s, suma de los dígitos de n es divisible entre 3.

$$3\mid n$$
 Por hipótesis (1)
$$3\mid n-s$$
 Por análisis previo (2)
$$3(r-s)=s$$
 Aplicando definición de divisibilidad y restando (1) y (2)

Por tanto $3 \mid s$.

 \iff) Por demostrar que 3 divide a n.

Análogo al caso anterior.

b. (1) 11 divide a n si y solamente si la suma alternada de sus dígitos es divisible por 11. **Solución:** Evidentemente $10 \equiv -1 \mod 11$.

Sea $n = a_k 10^k + a_{k-1} 10^{k-1} + \ldots + a_0$ la representación del número en base 10.

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_0 \equiv 0 \mod 11$$

$$\iff \begin{cases} a_k 10^k \equiv a_k (-1)^k \mod 11 \\ a_{k-1} 10^{k-1} \equiv a_{k-1} (-1)^{k-1} \mod 11 \\ \vdots \\ a_0 \equiv a_0 \mod 11 \end{cases}$$

$$\iff a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_0 \equiv a_k (-1)^k + a_{k-1} (-1)^{k-1} + a_0 \mod 11$$

Ejercicio 2. (2) Prueba que las ecuaciones $3x^2 + 2 = y^2$ y $7x^3 + 2 = y^3$ no tienen solución en los enteros. También prueba que $5n^3 + 7n^5 \equiv 0 \mod 12$.

a. Por demostrar que la ecuación no tiene $3x^2 + 2 = y^2$ solución en los enteros.

Solución: Reescribiendo la ecuación se tiene $3x^2 = y^2 - 2$ lo que implica que 3 es un múltiplo de $y^2 - 2$ y por definición de divisibilidad se sigue que $3 \mid y^2 - 2$ que visto como congruencia es $y^2 \equiv 2 \mod 3$.

Por demostrar que todo número perfecto no deja residuo 2 cuando es dividido por 3. Sea n^2 modulo 3, se puede expresar n de la forma 3r, 3r+1 y 3r+2, entonces $n^2=9r^2$, $n^2=9r^2+6r+1$ o $n^2=9r^2+12r+4=9r^2+12r+1$. Mostrando así que todo número perfecto deja de residuo 0 ó 1 módulo 3 y por tanto $y^2\not\equiv 2\mod 3$.

b. Por demostrar que la ecuación no tiene $7x^3+2=y^3$ solución en los enteros. Solución: Reescribiendo se tiene que $7x^2=y^3-2$ lo que significaría que $y^3\equiv -2\mod 7$. Viendo los residuos que deja la congruencia que son:

•
$$0^3 = 0 \equiv 0 \mod 7$$

•
$$1^3 = 1 \equiv 1 \mod 7$$

$$2^3 = 8 \equiv 1 \mod 7$$

$$3^3 = 27 \equiv 6 \mod 7$$

•
$$4^3 = 16 \cdot 4 = 2 \cdot 4 \equiv 1 \mod 7$$

$$5^3 = 15 \cdot 5 = 4 \cdot 5 = 20 \equiv 6 \mod 7$$

•
$$6^3 = 36 \cdot 6 = 1 \cdot 6 \equiv 6 \mod 7$$

Ergo, viendo los casos exhaustivamente $y^3 \not\equiv -2 \mod 7$.

c. Por demostrar que $5n^3 + 7n^5 \equiv 0 \mod 12$

Solución: No supe como hacerlo y opté por hacer un programa en *Python* para ver que $5n^3+7n^5\equiv 0 \mod 12$.

Modulo de la congrunencia
$$m=12$$
 # Polinomio que es evaluado en n modulo m $f=$ lambda $n, m: pow(5*n, 3, m) + pow(7*n, 5, m)$ # Contador de posibles valores que sera congruente $r=0$

Correr la x en [0, m)
for x in range(m):
 # Verificar si es congruente
 if f(x, m) %m == 0:
 r += 1
Numero de veces que la x fue congruente
print(r)

Después de ejecutar el programa el, se vio que r = 12 lo que significa que evaluado la congruencia todos los valores que puede tomar hace que la congruencia se satisfaga.

Ejercicio 3. (3) Prueba que

$$(n-1)! \equiv \begin{cases} -1 \mod n & n \text{ es primo} \\ 0 \mod n & n \text{ es compuesto} \\ 2 \mod n & n = 4 \end{cases}$$

a. $(n-1)! \equiv -1 \mod n$ es primo

<u>Solución</u>: Teorema de Wilson. Si p=2 entonces se sigue que $1\equiv -1\mod 2$, lo cual es válido para p=2.

Sea p > 2. El juego de residos de 1 a p-1 son invertibles módulo p por un corolorio que dice que $ax \equiv b \mod m$ tiene solución si y solo sí (a,m)=1 y en particular tomando la congruencia $ax \equiv 1 \mod m$ si y solo si (a,m)=1, pero esta congruencia se satisface si tomamos a $x=a^{-1}$ resultando como $aa^{-1} \equiv 1 \equiv 1 \mod m$. Pero por un lema que dice que un entero positivo a es autoinvertible módulo p si y solo si $a \equiv \pm 1 \mod p$ se sigue que 1 y p-1 son sus propios autoinversos.

Sabiendo eso, agrupando los p-3 residuos en pares con $\frac{p-3}{2}$ parejas de inversos a y $b=a^{-1}$ tales que $ab \equiv 1 \mod p$ para cada pareja, tenindo así:

$$\begin{aligned} 2 \cdot 3 \cdots (p-2) &\equiv 1 \mod p \\ (p-1)! &= 1 \cdot [2 \cdot 3 \cdots (p-2)] \cdot (p-1) \\ &\equiv 1 \cdot 1 \cdot (p-1) \mod p \\ &-1 \mod p \end{aligned}$$

b. $(n-1)! \equiv 0 \mod n$ n es compuesto

Solución: Suponiendo que n es compuesto, entonces es de la forma n=ab donde hay dos posibles casos; cuando $a \neq b$ y a=b.

Si n = ab con $a \neq b$ y 1 < a, b < n, entonces se tiene que:

$$(n-1)! = 1 \cdot 2 \cdots a \cdots b \cdots (n-1)$$

y por tanto $n = ab \mid (n-1)!$.

En el caso de que a=b, ósea $n=a^2$ y como a>1 se sigue que:

$$(n-1)! = 1 \cdot 2 \cdots a \cdot 2a \cdots (a-k)a \cdots (a^2-1)$$

Pero $2a < a^2 = n$, pero ambos a y 2a serán factores de (n-1)! y por tanto $n \mid (n-1)!$.

c. $(n-1)! \equiv 2 \mod n$ n=4

Solución: Si n=4, entonces $(n-1)!=2\cdot 3=6\equiv 2\mod 4$.

Ejercicio 4. (6) Ecuaciones polinomiales módulo un número compuesto.

- a. (1) Sea f(x) un polinomio con coeficientes enteros y $m=p_1^{\alpha_1}\cdots p_s^{\alpha_s}$. Prueba que $f(x)\equiv 0$ mód m tiene solución si y solamente si $f(x)\equiv 0$ mód $p_i^{\alpha_i}$ tiene solución para toda $i=1,\ldots,s$. Solución: \Longrightarrow) Sea x_0 una solución de $f(x)\equiv 0$ mód m, tal que $f(x_0)\equiv 0$ mód m. Como $p_i^{\alpha_i}\mid m$ para toda $i=1,\ldots,s$, se sigue que $f(x_0)\equiv 0$ mód $p_i^{\alpha_i}$ para toda $i=1,\ldots,s$. \Longleftrightarrow) Si existe x_i tal que $f(x_i)\equiv 0$ mód $p_i^{\alpha_i}$ para $i=1,\ldots,s$, por el Teorema chino del residuo existe x tal que $x\equiv x_i$ mód $p_i^{\alpha_i}$ para $i=1,\ldots,s$, por tanto x es una solución.
- b. (2) Define N como la cantidad de soluciones en $\mathbb{Z}/m\mathbb{Z}$ de $f(x) \equiv 0 \mod m$ y N_i como la cantidad de soluciones en $\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$ de $f(x) \equiv 0 \mod p_i^{\alpha_i}$ para toda $i=1,\ldots,s$. Prueba que $N=N_1N_2\cdots N_s$. También calcula N para $f(x)=x^2-1$ y $m=2^\alpha$ para cualquier exponent $\alpha\geq 0$.
 - Por demostrar que $N = N_1 N_2 \cdots N_s$. <u>Solución</u>: Sea (b_1, \ldots, b_t) una solución al sistema $f(x) \equiv 0 \mod p_i^{\alpha_i}$. Por el teorema chino del residuo, existe un x tal que $x \equiv b_i \mod p_i^{\alpha_i}$. Afirmando que x es solución para $f(x) \equiv 0 \mod n$. En efecto, es lo mismo que decir que que f(x) es divisible por $p_i^{\alpha_i}$ para $i = 1, \ldots, t$. Pero dado que $x \equiv b_i \mod p_i^{\alpha_i}$, y si f es un polinomio, $f(x) \equiv f(b_i) \equiv 0 \mod p_i^{\alpha_i}$, así que f(x) es divisible por $p_i^{\alpha_i}$ para toda f(x). Por tanto, hay una correspondencia biyectiva entre las tuplas f(x) formando so-
 - tiene dos sols alv

Solución:

c. (2) Ahora fija $f(x) = x^2 - 1$ y definimos $S_m \subseteq \mathbb{Z}/m\mathbb{Z}$ como las soluciones de la ecuación $x^2 \equiv 1 \mod m$. Prueba que $S_{p^{\alpha}} = \{\overline{1}, \overline{-1}\}$ para todo primo p > 2 y exponente $\alpha > 0$. Solución:

luciones a $f(x) \equiv 0 \mod p_i^{\alpha_i}$, y siendo x' la solución a $f(x) \equiv 0 \mod n$.

d. (1) Junta los resultados anteriores para calcular, en general, cuantas soluciones en $\mathbb{Z}/m\mathbb{Z}$ tiene la congruenca $x^2\equiv 1\mod m$.

Ejercicio 5. (3) Sea p un primo y $\binom{p}{k}$ el coeficiente binomial. Prueba que para 0 < k < p, se tiene que $p \mid \binom{p}{k}$. Concluye que $(a+b)^p \equiv a^p + b^p \mod p$ para toda $a,b \in \mathbb{Z}$. Enuncia y prueba el pequeño teorema de Fermat con este hecho.

Por demostrar que $p \mid \binom{p}{k}$ Solución: Evidentemente por definición del teorema del binomio se tiene que:

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Y reescribiendo se tiene que $p \mid p \frac{(p-1)!}{k!(p-k)!}$ y p divide al numerador y niguno de sus factores del denominador es divisible por p.

■ Por demostrar que $(a+b)^p \equiv a^p + b^p \mod p$ Solución: Usando el teorema del binomio, se tiene que:

$$(a+b)^n = a^n + \sum_{m=1}^{n-1} \binom{n}{m} a^{n-m} b^m + b^n$$

Entonces:

$$(a+b)^p = a^p + \sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} b^k + b^p \mod p$$

$$\equiv a^p + b^p \mod p \qquad \qquad \text{Porque } p \mid \sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} b^k$$

• (Pequeño teorema de Fermat) Sea p un primo y a cualquier entero tal que $p \nmid a$. Entonces:

$$a^{p-1} \equiv 1 \mod p$$

Solución: Sea p un primo y sea cualquier entero a talque $p \nmid a$. Entonces el juego de residos de los enteros $a, 2a, 3a, \ldots, (p-1)a$ módulo p son una permutación de los enteros $1, 2, 3, \ldots, (p-1)a$.

Sabiendo eso, si tomamos el juego de residos $a, 2a, 3a, \ldots, (p-1)a$ módulo p son los mismos como los enteros $1, 2, 3, \ldots, (p-1)$ en el mismo orden, así que su productos son congruentes módulo p, que es, $a \cdot 2a \cdot 3a \cdots (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdots (p-1)$ mód p. Escrito de otra forma $(p-1)!a^{p-1} \equiv (p-1)!$ mód p.

Recordando un teorema que dice que si $ac \equiv bc \mod m$ y (c, m) = 1, entonces $a \equiv b \mod m$. Usando el teorema se tiene que ((p-1)!, p) = 1, por tanto $a^{p-1} \equiv 1 \mod p$.

Ejercicio 6. (1) Sean $p \neq q$ primos distintos tales que $p-1 \mid q-1$. Prueba que

$$(n, pq) = 1 \Longrightarrow n^{q-1} \equiv 1 \mod pq$$

Solución: Como por hipótesis se tiene que $p-1 \mid q-1$, existe una k tal que:

$$(p-1)k = q-1 \tag{1}$$

Como por hipótesis (n, pq) = 1 y en particular se tiene que (n, p) = (n, q) = 1, utilizando el pequeño teorema de Fermat se obtienen las siguientes congruencias:

$$n^{q-1} \equiv 1 \mod q \tag{2}$$

$$n^{p-1} \equiv 1 \mod p \tag{3}$$

Por consiguiente, usando (1) se puede escribir (2) de la siguiente manera, obteniendo así siguientes congruencia:

$$n^{q-1} = n^{(p-1)k} = (n^{p-1})^k \equiv 1^k \mod p$$
 (4)

Por el teorema chino del residuo, existe una x tal que es solución del sistema de congruencias y ésta es a su vez es única.

Considerando el siguiente sistema de congruencias:

$$x \equiv 1 \mod p$$
$$x \equiv 1 \mod q$$

Ergo, dicho lo anterior, tomando $x = n^{p-1}$ es una solución del sitema, concluyendo que:

$$n^{q-1} \equiv 1 \mod pq$$

Ejercicio 7. (2) Prueba que $a^{\varphi(2^m)/2} \equiv 1 \mod 2^m$ para toda $a \in \mathbb{Z}$ y m > 2. ¿Qué dice este resultado sobre la existencia de raices primitivas módulo 2^m ? Calcula las raices primitivas módulo 2^m para toda m > 0.

Solución: Por inducción sobre *m*:

- Caso base (m=3): Entonces la congruencua queda como $x^{\varphi(2^m)/2} \equiv 1 \mod 8$ para un x impar Porque probando los números que son congruentes son x=1,3,5,7 y de hecho todas la x son impares.
- Hipótesis de inducción:

$$x^{\varphi(2^m)/2} = 1 + 2^m t \tag{1}$$

■ Paso inductivo (m+1): Elevando al cuadrado ambos lados de la ecuación (1) se obtiene:

$$x^{\varphi(2^m)} = 1 + 2^{m+1}t + 2^{2m}t^2 \equiv \mod 2^{m+1}$$

Este resultado nos dice que no hay raíces primitiva mód 2^m y que las raíces primitivas módulo 2^m son $\varphi(2^{m-1}) = \varphi(2^{m+1})/2$.

Ejercicio 8. (5) Propiedades de $\operatorname{ord}_m(\overline{a})$.

a. (1) Prueba que p > 2 es primo si y solamente si $\operatorname{ord}_p(\overline{a}) = p - 1$ para alguna $a \in \mathbb{Z}$. Solución: \Longrightarrow) Por definición de raíz primitiva se tiene que:

$$\operatorname{ord}_p(a) = \varphi(p) = p - 1$$

- \iff Como $\operatorname{ord}_p(a) = p-1$ entonces $p-1 = \operatorname{ord}_p(a) \le \varphi(p) \le p-1$, y por la hipótesis eso pasa si p es primo.
- b. (1) Sea p un primo de la forma 4k+3 y \overline{a} una raíz primitiva. Prueba que $\operatorname{ord}_p(-\overline{a}) = \frac{p-1}{2}$. Solución:
- c. (2) Sean a, m > 1 tales que (a, m) = 1 y denota $\varepsilon := \operatorname{ord}_m(\overline{a})$. Para k, k' > 0 prueba que

$$a^k \equiv a^{k'} \mod m \iff k \equiv k' \mod \varepsilon$$

Solución:

d. (1) Sean $a, b \in \mathbb{Z}$ y m > 1 tales que (a, m) = 1 = (b, m) y $\left(\operatorname{ord}_{m}(\overline{a}), \operatorname{ord}_{m}(\overline{b})\right) = 1$. Prueba que $\operatorname{ord}_{m}(\overline{a}\overline{b}) = \operatorname{ord}_{m}(\overline{a}) \cdot \operatorname{ord}_{m}\overline{b}$.

Solución: Sea $x = \operatorname{ord}_m(a)$ y $y = \operatorname{ord}_m(b)$, usando la definición de raíz primitiva se sigue la siguiente congruencia:

$$(ab)^{xy} \equiv (a^x)^y (a^y)^x \equiv 1 \mod m$$

Sea $k = \operatorname{ord}_m(ab)$ y suponiendo que $k \mid xy$, se tiene:

$$a^{ky} \equiv (ab)^{ky} \equiv 1 \mod m$$

Lo significa que $x \mid ky$, como (x,y) = 1 nos lleva a que $x \mid ky$. Como por hipótesis (a,m) = 1 = (b,m) entonces se tiene que $x \mid k$ y $y \mid k$, se sigue que $xy \mid k$. Ergo k = xy, lo que significa que $\operatorname{ord}_m(\overline{ab}) = \operatorname{ord}_m(\overline{a}) \cdot \operatorname{ord}_m\overline{b}$.

Ejercicio 9. (1) Sea \overline{a} una raíz primitiva módulo p > 2. Prueba que $\{a^2, a^4, \dots, a^{p-1}\}$ son los residuos cuadráticos módulo p y $\{a, a^3, \dots, a^{p-2}\}$ son los residuos no-cuadráticos.

Solución: Si n es par, digamos n=2m entonces $a^n=(a^m)^2$ así que

$$a^n \equiv x^2 \mod p$$
 Donde $x = a^m$

Por consiguiente a^nRp . Pero hay $\frac{p-1}{2}$ distintas potencias pares a^2, \ldots, a^{p-1} módulo p y el mismo números de residuos cuadráticos módulo p. Por tanto las potencias pares son los residuos cuadráticos y las potencias impares son los residuos no-cuadráticos.

Ejercicio 10. (1) Demuestra que hay una infinidad de primos de la forma 6k + 1.

<u>Solución</u>: Sea P el conjunto finito de número primos de la forma 6k + 1, y sea N un número que es divisible por cada número en P. Suponiendo que N es también por 6. Sea p un primo divisor de $N^2 - N + 1$.

Teniendo en cuenta que $(N^2 - N + 1)(N + 1) = N^3 + 1$, así p divide a $N^3 + 1$, o en otras palabras $N^3 \equiv -1 \mod p$ v así $N^6 \equiv 1 \mod p$.

Recordando que el orden de N módulo p es el menor entero positivo k tal que $N^k \equiv 1 \mod p$. El orden debe dividir a 6, tal que k = 1, 2, 3 ó 6. Pero $N^3 \equiv -1 \mod p$, por lo que el orden no puede ser 1 ó 3.

El orden no puede ser 2 porque si $N^2 \equiv 1 \mod p$ y $N^3 \equiv -1 \mod p$ entonces $N \equiv -1 \mod p$. Lo que no se podría porque entonces p dividiría a ambos N+1 y N^2-N+1 , pero el $(N+1.N^2-N+1)=(N+1,3)< p$ lo cual es una contradicción.

Por consiguiente, N tiene orden 6 módulo p y el grupo de las unidades módulo p tiene orden p-1, de esta manera 6 divide a p-1, lo que significa que p es de la forma 6k+1. Por tanto, P no contiene a todos los primos de la forma 6k+1, concluyendo que el conjuto de primo de esa forma es infinito.

Ejercicio 11. (3) Sea p>2 un primo y $U(\mathbb{Z}/p\mathbb{Z})=\{\overline{1},\overline{2},\ldots,\overline{p-1}\}$. Sean $S,T\subseteq U(\mathbb{Z}/p\mathbb{Z})$ subconjuntos y define $S\cdot T:=\{\overline{st}\mid \overline{s}\in S,\overline{t}\in T\}$; también define $T\cdot T=T^2$ y $S\cdot S=S^2$ de manera análoga (observa que $S\cdot T=T\cdot S$). Si $S,T\subseteq U(\mathbb{Z}/p\mathbb{Z})$ cumplen las siguientes propiedades:

- $S \neq T$ Solución:
- $S \cup T = U(\mathbb{Z}/p\mathbb{Z})$ Solución:
- $S \cdot T \subseteq T$ Solución:
- $S^2, T^2 \subseteq S$ Solución:

Prueba que S es el conjunto de residuos cuadráticos módulo p y T es el conjunto de residuos no-cuadráticos módulo p.

Solución:

Ejercicio 12. (1) Sean $a \in \mathbb{Z}$ y p > 2 primos tales que $p \nmid a$. Prueba que la ecuación general $ax^2 + bx + c \equiv 0 \mod p$ tiene $1 + \left(\frac{b^2 - 4ac}{p}\right)$ soluciones. **Solución:**

Ejercicio 13. (5) Identidades del símbolo de Legendre.

a. (1) Prueba que para todo primo p > 2 se cumple:

$$\sum_{k=1}^{p-1} \left(\frac{k}{p}\right) = 0$$

<u>Solución</u>: Como hay exactamente tantos residuos cuadráticos como no residuo cuadráticos y para los residuos $\left(\frac{k}{p}\right) = 0$ y para los no residuos es igual a -1, entonces la suma da 0.

b. (2) Toma $a, b \in \mathbb{Z}$ tal que $p \nmid a$. Prueba que

$$\sum_{k=1}^{p-1} \left(\frac{ak+b}{p} \right) = 0$$

Solución: Como $p \nmid a$ entonces $\{a \cdot 1, a \cdot 2, \dots, a \cdot (p-1)\}$ es el juego completo de residuos módulo p y por lo tanto también es $\{a \cdot 1 + b, a \cdot 2 + b, \dots, a \cdot (p-1) + b\}$ y utilizando el ejercicio anterior se sigue que la suma da 0.

c. (2) Ahora sea p de la forma 4k + 1, prueba que

$$\sum_{k=1}^{p-1} \left(\frac{k}{p}\right) k = 0$$

Solución:

Ejercicio 14. (18) Ejercicios numéricos:

a. (1) Resuelve $256x \equiv 179 \mod 337$.

Solución: Verificando primero que (256, 337) = 1 y como $1 \mid 179$ entonces sí tiene solución y tiene 1 solución incongruente. Las soluciones están dadas por $x = x_0 + (\frac{m}{d})t = x_0 + (\frac{337}{1})t = x_0 + 337t$, donde x_0 es una solución particular. Ahora por prueba y error se tiene que $x_0 = 81$ es una solución.

Ergo la solución general es de la forma x = 81 + 337t.

b. (2) Resuelve los siguientes sistemas de congruencias:

$$x \equiv 3 \mod 8$$

 $x \equiv 11 \mod 20$
 $x \equiv 1 \mod 15$

<u>Solución</u>: Como soy pésimo haciendo cuentas y sé programar, use un programa en \mathbf{Python}^1 que por medio del Teorema Chino del residuo primero dice si tiene solución el sistema y si existe, calcula x.

from functools import reduce

def chinese_remainder(n, a):

¹Para usarlo con la terminal poner \$ python3 chinese_remainder_theorem.py

```
sum = 0
    prod = reduce(lambda \ a, \ b: \ a * b, \ n)
     for n_i, a_i in zip(n, a):
         p = prod // n_i
         sum += a_i * mul_inv(p, n_i) * p
    return sum % prod
def mul_inv(a, b):
    b0 = b
    x0, x1 = 0, 1
     if b == 1:
         return 1
    while a > 1:
         q = a // b
         a, b = b, a \% b
         x0, x1 = x1 - q * x0, x0
     if x1 < 0:
         x1 += b0
    return x1
# Numero de congruencias
\# Ejemplo: 3
x = int(input())
\# x \setminus equiv \quad a_i \setminus mod \quad m_i
\# Lista que tendra los a_{-}i y la otra que tendra los m_{-}i
n, m = [], []
for _{\perp} in range(x):
    \# Entrada: a_i m_i
    # Ejemplo: 1 2
    a, b = map(int, input().split())
    n.append(a)
    m. append (b)
print(chinese_remainder(n, m))
En este caso la congruencia tiene solución y es x=20.
                                  y \equiv 1 \mod 7
                                  y \equiv 4 \mod 9
                                  y \equiv 3 \mod 5
Solución: Usando el programa de arriba se tiene que que la solución es x=5.
```

c. (3) Calcula todas las raices primitivas de 11, 13 y 17. Igual como soy malo haciendo cuentas y esas cosas, use *Python* para calcularlas².

²Teniendo instalado sympy==1.3Python 3.7, en abrir $_{\mathrm{el}}$ interprete primero im-

- Las raíces primitivas de 11 son: $\{2, 6, 7, 8\}$.
- Las raíces primitivas de 13 son: $\{2, 6, 7, 11\}$
- Las raíces primitivas de 17 son: {3, 5, 6, 7, 10, 11, 12, 14}.
- d. (3) Encuentra la soluciones de las siguientes ecuaciones:

$$x^8 \equiv 17 \mod 43$$
 , $8^x \equiv 3 \mod 43$, $1 + x + \dots + x^6 \equiv 0 \mod 29$

Solución:

e. (2) Usa el lema de Gauss para calcular $\left(\frac{5}{7}\right)$ y $\left(\frac{3}{11}\right)$

- $\left(\frac{5}{7}\right): \frac{7-1}{2} = 3$, y así los residuos de $1 \cdot 5, 2 \cdot 5, 3 \cdot 5$ son -2, 3, 1 respectivamente, así $\mu = 1$ $y\left(\frac{5}{7}\right) = (-1)^{\mu} = -1.$
- \bullet $\left(\frac{3}{11}\right)$: $\frac{11-1}{2} = 5$, y así los residuos de $1 \cdot 3, 2 \cdot 3, 3 \cdot 3, 3 \cdot 4, 4 \cdot 3, 5 \cdot 3$ son 3, -1, -2, 1, 4respectivamente, así $\mu = 2$ y $\left(\frac{3}{13}\right) = (-1)^{\mu} = 1$.
- f. (3) Calcula $\left(\frac{61}{233}\right)$ y $\left(\frac{113}{997}\right)$. Además calcula $\left(\frac{-1}{m}\right)$ para m>1 impar.

• $\left(\frac{113}{997}\right)$. **Solución:** Usando el símbolo de Jacobbi se tiene:

$$\left(\frac{113}{997}\right)\left(\frac{997}{113}\right) = (-1)^{\frac{113-1}{2}\frac{997-1}{2}} = (-1)^{56\cdot498} = 1$$

Así, $\left(\frac{113}{997}\right) = \left(\frac{997}{113}\right) = \left(\frac{93}{113}\right)$. Aplicando reciprocidad cuadrática de nuevo se tiene

$$\left(\frac{93}{113}\right)\left(\frac{113}{93}\right) = (-1)^{\frac{93-1}{2}\frac{113-1}{2}} = (-1)^{46\cdot56} = 1$$

Así, $\left(\frac{93}{113}\right) = \left(\frac{113}{93}\right) = \left(\frac{20}{93}\right) = \left(\frac{4}{93}\right) \cdot \left(\frac{5}{93}\right)$, como 4 siempre es residuo cuadrático, se tiene:

$$\left(\frac{5}{93}\right)\left(\frac{93}{5}\right) = (-1)^{\frac{93-1}{2}\frac{5-1}{2}} = (-1)^{46\cdot 2} = 1$$

Y entonces $\left(\frac{5}{93}\right) = \left(\frac{93}{5}\right) = \left(\frac{3}{5}\right) = -1$ y como 1, 4 son los únicos residuos cuadráticos

• $\left(\frac{-1}{m}\right)$ para m > 1 impar.

<u>Solución</u>: $\left(\frac{-1}{m}\right)$: son los residuos del los primeros $\frac{m-1}{2}$ mútiplos de -1 todos negativos, así $\left(\frac{-1}{m}\right) = (-1)^{\mu} = (-1)^{(p-1)/2}$.

para poder usarlo (con import sympy) y despues la siguiente list(sympy.ntheory.residue_ntheory.primitive_root_prime_iter(n)) donde en la n ponemos el número y nos regresará una lista con las raíces primitivas del número dado.

g. (2) Encuentra todos los primos tales que $\left(\frac{-3}{p}\right)=1$ y $\left(\frac{7}{p}\right)=1$ Solución:

h. (2) ¿Tiene solución de ecuación $x^2 + 5x \equiv 12 \mod 31$? Exhibe las soluciones o prueba que no tiene solución. Haz lo mismo para la ecuación $x^2 \equiv 19 \mod 30$.

Solución:

Ejercicio 15. (11) Propiedades de raices primitivas. Quiero tomar este ejercicio gratis

- a. (1) Sea $\bar{a} \in \mathbb{Z}/m\mathbb{Z}$ una raíz primitiva módulo m. Prueba que \bar{b} es una raíz primitiva si y solamente si \bar{b} es de la forma $\bar{b} = \bar{a}^n$ donde $(n, \varphi(m)) = 1$ y $1 \le n \le \varphi(m)$.
- b. (1) Sea $\overline{a} \in \mathbb{Z}/m\mathbb{Z}$ con (a, m) = 1. Prueba \overline{a} es una raíz primitiva módulo m si y solamente si \overline{a}^{-1} es una raíz primitiva.

Solución:

Solución:

c. (1) Sea \overline{a} una raíz primitiva módulo p^{α} para alguna $\alpha>0$. Prueba que \overline{a} también es raíz primitiva módulo p.

Solución:

d. (1) Sea p un primo de la forma 4k+1. Prueba que \overline{a} es raíz primitiva módulo p si y solamente si $-\overline{a}$ es una raíz primitiva.

Solución:

e. (3) Para \overline{a} una raíz primitiva módulo un primo p, verifica que

$$\sum_{\substack{k=1\\ (\varphi(m),k)=1}}^{\varphi(m)} a^k \equiv \mu(p-1) \mod p$$

Solución:

f. (2) Sea X el conjunto de raices primitivas módulo p.

$$\prod_{\overline{a} \in X} a \equiv 1 \mod p$$

Solución:

g. (2) Sea (a,m)=1 y $\varphi(m)=p_1^{\alpha_1}\cdots p_s^{\alpha_s}.$ Prueba que

$$\overline{a}$$
 es raíz primitiva \iff $a^{\frac{\varphi(m)}{p_i}} \not\equiv 1 \mod m \quad \forall i \in \{1, \dots, s\}$

Solución:

Ejercicio 16. (6) Los primos impares de la forma 4k + 1 son los únicos primos impares que son suma de dos cuadrados.

- a. (2) Sea m un entero libre de cuadrados. Demuestra que, si $a \in \mathbb{Z}$ es primo relativo con m, entonces existen $x,y \in \mathbb{Z}$ tales que $ax \equiv y \mod m, \ 0 < x < \sqrt{n} \ y \ 0 < |y| < \sqrt{n}$. Solución:
- b. (2) Sea p>2 un primo y define $q:=\frac{p-1}{2}$ y a=q!. Prueba que $a^2+(-1)^q\equiv 0\mod p$. Solución:
- c. (1) Ahora restringe al caso $p \equiv 1 \mod 4$. Prueba que existen enteros positivos n y m donde $0 < n, m < \sqrt{p}$ tales que satisfacen la ecuación $a^2n^2 m^2 \equiv 0 \mod p$. Concluye que $p = n^2 + m^2$.

Solución:

d. (1) Si $p \equiv 3 \mod 4$, prueba que p no puede ser descompuesto en suma de dos cuadrados. Solución:

En resumen un primo p>2 es suma de dos cuadrados si y solamente si $p\equiv 1\mod 4$. Solución:

Referencias

- [1] Thomas Koshy. *Elementary Number Theory with Applications. 2nd Edition*. Addison-Wesley, Reading, Massachusetts, 1993. Academic Press. 8th May 2007.
- [2] Apostol, Tom M. Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
- [3] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory (Graduate Texts in Mathematics) Springer, Springer; 2nd edition (August 1, 1998).