华东理工大学 2012 - 2013 学年第二学期

《微分几何》课程期末考试试卷 A 2013.6.26

开课	学院:理	学院,	专业: <u>数、</u>	信计,	考试形式:	闭卷,	所需时间	4 <u>120</u>	<u>)</u> 分钟
考生姓	名:		学号:		_ 班级:		_ 任课教	5师:	杨勤民
	题序	_	=	Ξ	四	五	总	分	
	得分								
	评卷人		杨	勤	民				
一 单	项洗择题	· (4分,共28	(分)					_
•			·20, 八20 勺蕴量的是						(
		高斯曲率;			由面上曲线	的测地曲	率;		`
(C)) 曲面上	则地三角用	3的内角和	'; (D)	由面上曲线	的曲率。			
2. 女	口果曲线的	的所有密切	刀平面都经	过一个定	点,则此曲	1线一定是	<u>L</u>		(
(A) 测地线	; (B) 螵	《线; (C)) 平面曲线	; (D) 海	近曲线。			
3. 岜	自面上曲:	线的曲率k	,测地曲	率 k_g ,法曲	率水,之间的	的关系是			(
(A	$) k = k_g +$	$-k_n$;	(B)	$k_g = k + k_g$	n;				
(C)	$k^2 = k_g^2$	$+k_{n}^{2};$	(D)	$k_g^2 = k^2 +$	k_n^2 o				
4. £	ド面上测	地三角形的	句内角之和	•					(
(A) 大于180	D度; (B) 等于180.	度; (C)	小于180度	; (D)	其他。		
5. 世	自面上的!	曲纹坐标网	冈是正交网	的充要条	件是				(
(A	$F \equiv M$	≡ 0; (B	$F\equiv 0;$	(C) $M \equiv$	0; (D) <i>I</i>	$L \equiv N \equiv 0$	0		
6. 岜	向上高	斯曲率 $K >$	0的点称	为曲面的					(
(A)椭圆点	; (B) 脐	·点; (C)	双曲点;	(D) 抛物	点。			
7. 身	多参数曲、	面族 x ² +($(y-\alpha)^2 + ($	$(z-2\alpha)^2 =$:1的包络为	是			(
(A	$5x^2 + (2x^2 + 6x^2)$	$(2y - z)^2 = 4$	4;	(B) $5x^2 +$	$(2y - z)^2 =$	5;			
(C)	$5x^2 + (2)$	$(2y - z)^2 = 0$	5;	(D) $5x^2 +$	$(2y - z)^2 =$	7。			
二、填	空题(请	在每空中	填入最简约	洁果, 每空	22分,共4	4分)			
1. 世	的线 <i>r</i> (t) =	$(3t-t^3, 3)$	$3t^2$, $3t + t^3$)在点t = 1	处:单位均	n向量 ♂(1	.) =		,
主法向	量 β (1) =		, 副]法向量水	1) =		,		
密切平	面方程为	1		,从切	1平面方程:	为			,
法平面	方程为_			_,曲率k(1平面方程 (1)=	,挠丝	$ \tilde{r}(1) =$		0
2. 1	曲面产(u.	(v) = (u -	$\frac{u^3}{u^3} + uv^2$	$v - \frac{v^3}{1} + i$	u^2v , u^2-v	2) 在点(0	.(0)处:	第一	- 类基本
					,第一基				
					N(0,0)				

3. 设曲面的第一基本形式是 $ds^2 = [U(u) + V(v)](du^2 + dv^2)$, 则相对分量

1		2.		2.
ω^{2}	≡,	$\omega^{2} \equiv \underline{\hspace{1cm}},$	ω	$o_1^{\perp} \equiv \underline{\hspace{1cm}},$

高斯曲率 K = ______。

[注:请在试卷空白处或试卷背面解答以下各题]

三、(共10分)设曲面S上的高斯曲率处处为负或零,试用高斯-波涅公式证明该曲面上不能有两条测地线交于相异的两点P和Q。

四、(共10分)设V是n维实向量空间, $\{e_1,e_2,\cdots,e_n\}$ 是它的一组基, $\alpha=e_1\wedge e_2\wedge\cdots\wedge e_p(0< p< n)$,V中一向量v满足 $v\wedge\alpha=0$,求证:v是 e_1,e_2,\cdots,e_p 的线性组合。

五、(共8分)证明在正则曲面上任一点,每对共轭方向上的法曲率的倒数之和为 $\frac{2H}{K}$,其中H和K分别为该点处曲面的平均曲率和高斯曲率。

华东理工大学 2012 - 2013 学年第二学期

《微分几何》课程期末考试试卷 B 2013.6.26

开课学院:理学院,专业:数、信计,考试形式:闭卷,所需时间120分钟

考生姓名:		_ 学号:		_ 班级:	任课教	杨勤民			
题)	· —	=	Ξ	四	五	总	分		
得多	>								
评卷	.人	杨	勤	民					
一、单项选	择题(每小匙	54分,共28	(分)						
	1面之间存在	•		线在对应点	点必具有相	同的		()
(A) 曲率	生; (B) 担	尧率;	(C) 法曲率	; (D)) 测地曲率	0			
2. 曲率和	烧率均为非	零常数的曲	线一定是					()
(A) 直线	ξ; (B) 🛭	圆柱螺线;	(C) 圆	; (D)	平面曲线	0			
3. 曲面上	非脐点处的	两个主方向	之间的夹	角为				()
(A) $\frac{\pi}{2}$:	(B) 0	; (C) π;	(D) 不	确定。				
2	于特殊曲线			` ,				()
	1线上有无穷	. ,		则该曲组	步必为直线			(,
· / / · ·	曲线的密切	_ , ,		, , , , , ,	727 I	• •			
• •	f近曲线, 曲				刀平面重合	•			
` '	地线, 曲面					,			
5. 曲面上	的曲纹坐标	网是共轭网	的充要条	件是				()
(A) $F \equiv$	$M \equiv 0;$ (1)	B) $F \equiv 0$;	(C) <i>M</i> ≡	0; (D)	$L \equiv N \equiv 0$)			
6. 曲面上	高斯曲率K	< 0的点称	为曲面的					()
(A) 椭圆]点; (B) 用	齐点; (C)) 双曲点;	(D) 抛物	为点。			·	
7. 单参数	工平面族 $\alpha^2 x$	$+2\alpha v + 2z =$	= 2α 的包≤	各是				(`
	$1)^2 = xz;$		_						_
	$1)^2 = 3xz;$								
	(请在每空中				4分)				
						1)			
	$t) = (3t - t^3, 3)$								
	-1) = & +1								
面の「四刀 [。] 辻平面方程	程为 为		,火火 曲 率 <i>l</i> (_	7 四刀在 -1) =	ツ 		_	,	
	(u,v) = (u+v,								
	G(0)								
大巫平里上(($(0,0) = _{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	$\underline{}$, $M(0,0)$	=	, IV(U,U) =	,	ヤーさ	区平7	クエ	

 $II(0,0) = _______;$ 平均曲率 $H(0,0) = _______,$ 高斯曲率 $K(0,0) = ________。$

3. 设曲面的第一基本形式是
$$ds^2 = \frac{du^2 - 4v du dv + 4u dv^2}{4(u-v^2)} (u > v^2)$$
,则相对分量

$$\omega^1=$$
______, $\omega^2=$ _____,高斯曲率 $K=$ ____。

[注:请在试卷空白处或试卷背面解答以下各题]

三、(共10分)利用高斯-波涅公式证明:若曲面S上存在两族夹角为定角的测地线,则它的高斯曲率处处为零。

四、(共10分)设
$$\omega = \sum_{1 \le i < j \le n} a_{ij} dx^i \wedge dx^j, \ a_{ij} + a_{ji} = 0$$
, 求证:

$$d\omega = \sum_{1 \le i < j < k \le n} \left(\frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{jk}}{\partial x^i} + \frac{\partial a_{ki}}{\partial x^j} \right) dx^i \wedge dx^j \wedge dx^k \circ$$

五、(共8分)设曲线 $\vec{r}=\vec{r}(s)$ 有固定的非零挠率 τ_0 , $\vec{\beta}$ 和 $\vec{\gamma}$ 分别为该曲线的主法向量和副法向量,(1)证明曲线 $\vec{r}^*=\frac{1}{\tau_0}\vec{\beta}-\int \vec{\gamma}\,\mathrm{d}s$ 有固定的曲率 $k^*=|\tau_0|$; (2)求 \vec{r}^* 的挠率 τ^* 。

华东理工大学 2012 - 2013 学年第二学期 《微分几何》课程期末考试标准答案 A 2013.8

一、单项选择题(每小题4分,共28分)

二、填空题(请在每空中填入最简结果,每空2分,共44分)

1.
$$(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$$
 $(-1, 0, 0),$ $(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$ $y - z + 1 = 0,$ $x - 2 = 0,$ $y + z - 7 = 0,$ $\frac{1}{12},$ $\frac{1}{12}.$

2. 1, 0, 1,
$$du^2 + dv^2$$
, 2, 0, -2, $2 du^2 - 2 dv^2$, 0, -4.

3.
$$\sqrt{U(u) + V(v)} du$$
, $\sqrt{U(u) + V(v)} dv$, $\frac{U' dv - V' du}{2(U+V)}$, $\frac{U'U' + V'V' - (U'' + V'')(U+V)}{2(U+V)^3}$.

三、(共10分)设曲面S上的高斯曲率处处为负或零,试用高斯-波涅公式证明该曲面上不能有两条测地线交于相异的两点P和O。

证:设在曲面域内两测地线相交于两点A, B, 它们包围的区域是G, 在交点处的内角分别为 $\angle A$ 和 $\angle B$, 由Gauss-Bonnet公式有

$$\int_G K\omega^1 \wedge \omega^2 + \int_{\partial G} k_g \, \mathrm{d} s + (\pi - \angle A) + (\pi - \angle B) = 2\pi.$$

因 $k_g = 0$, 所以

$$\int_G K\omega^1 \wedge \omega^2 = \angle A + \angle B > 0,$$

这与 $K \leq 0$ 矛盾.

四、(共10分)设V是n维实向量空间, $\{e_1,e_2,\cdots,e_n\}$ 是它的一组基, $\alpha=e_1\wedge e_2\wedge\cdots\wedge e_p(0< p< n)$,V中一向量v满足 $v\wedge\alpha=0$,求证:v是 e_1,e_2,\cdots,e_p 的线性组合。

证: 设
$$v = a_1e_2 + a_2e_2 + \cdots + a_ne_n$$
, 由已知, $v \wedge a = 0$, 即

$$(a_1e_2 + a_2e_2 + \cdots + a_ne_n) \wedge (e_1 \wedge e_2 \wedge \cdots \wedge e_p) = 0,$$

所以有 $(a_1e_1 \wedge e_1 \wedge e_2 \wedge \cdots \wedge e_p)$ + $(a_2e_2 \wedge e_1 \wedge e_2 \wedge \cdots \wedge e_p)$ + \cdots + $(a_ne_n \wedge e_1 \wedge e_2 \wedge \cdots \wedge e_p)$ = 0 由于 $e_i \wedge e_i = 0$, 于是有

 $(-1)^{p}a_{p+1}e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p} \wedge e_{p+1} + (-1)^{p}a_{p+2}e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p} \wedge e_{p+2} + \cdots + (-1)^{p}a_{n}e_{1} \wedge e_{2} \wedge \cdots \wedge e_{p} \wedge e_{n} = 0.$

由于 $\{e_1, e_2, \dots e_n\}$ 是V的一组基, 所以 $a_{p+1} = a_{p+2} = \dots = a_n = 0$, 因此 $v = a_1e_2 + a_2e_2 + \dots + a_pe_p$.

五、(共8分)证明在正则曲面上任一点,每对共轭方向上的法曲率的倒数之和为 $\frac{2H}{K}$,其中H和K分别为该点处曲面的平均曲率和高斯曲率。

证:设曲面 $\vec{r} = \vec{r}(u,v)$ 在任一点P的一对共轭方向为P(u,v) du + Q(u,v) dv = 0,与(LQ - MP) $\delta u + (MQ - NP)\delta v = 0$.设 k_1 和 k_2 为这对共轭方向的法曲率,则

$$\begin{split} \frac{1}{k_1} + \frac{1}{k_2} &= \frac{E \, \mathrm{d}u^2 + 2F \, \mathrm{d}u \, \mathrm{d}v + G \, \mathrm{d}v^2}{L \, \mathrm{d}u^2 + 2M \, \mathrm{d}u \, \mathrm{d}v + N \, \mathrm{d}v^2} + \frac{E \delta u^2 + 2F \delta u \delta v + G \delta v^2}{L \delta u^2 + 2M \delta u \delta v + N \delta v^2} \\ &= \frac{E Q^2 - 2F P Q + G P^2}{L Q^2 - 2M P Q + N P^2} + \frac{E (MQ - NP)^2 - 2F (MQ - NP)(LQ - MP) + G (LQ - MP)^2}{L (MQ - NP)^2 - 2M (MQ - NP)(LQ - MP) + N (LQ - MP)^2} \\ &= \frac{(NE - 2MF + LG)(LQ^2 - 2MPQ + NP^2)}{(LN - M^2)(LQ - 2MPQ + NP^2)} \\ &= \frac{NE - 2MF + LG}{LN - M^2} = \frac{2H}{K} \end{split}$$

华东理工大学 2012 - 2013 学年第二学期《微分几何》课程期末考试标准答案 B 2013.6

一、单项选择题(每小题4分,共28分)

二、填空题(请在每空中填入最简结果,每空2分,共44分)

1.
$$(0, -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$$
 $(1, 0, 0),$ $(0, \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}),$ $y + z + 1 = 0,$ $x + 2 = 0,$ $y - z - 7 = 0,$ $\frac{1}{12},$ $\frac{1}{12}.$

2. 2, 0, 2,
$$2 du^2 + 2 dv^2$$
, 0, -2, 0, -4 du dv, 0, -1.

$$\frac{\mathrm{d}u - 2v\,\mathrm{d}v}{2\,\sqrt{u - v^2}}, \qquad \qquad \mathrm{d}v, \qquad \qquad 0, \qquad \qquad 0.$$

三、(共10分)利用高斯-波涅公式证明:若曲面S上存在两族夹角为定角的测地线,则它的高斯曲率处处为零。

证 设K为高斯曲率, k_g 为测地曲率。在每族测地线上任取两条,围成曲面S上的一块曲边四边形区域 $G(2\, \mathcal{G})$,则有高斯-波涅公式:

$$\iint_G K \, \mathrm{d}S + \oint_{\partial G} k_g \, \mathrm{d}s + \sum_{i=1}^4 (\pi - \alpha_i) = 2\pi \quad (3\%)$$

设两族测地线所夹的定角为 α ,则

$$\sum_{i=1}^{4} (\pi - \alpha_i) = \alpha + (\pi - \alpha) + \alpha + (\pi - \alpha) = 2\pi \quad (2\%)$$

因 ∂G 为测地线,所以 $k_g=0$ 。上述高斯-波涅公式化简为 $\iint_G K \,\mathrm{d}S=0$.

若S的高斯曲率不是处处为零,则必存在某点P处的高斯曲率 $K_P \neq 0$,不妨设 $K_P > 0$ 。则在P点的邻近K > 0,从而对于围绕P点的充分小的区域G'有K > 0,于是 $\iint_{G'} K \, \mathrm{d}S > 0$ 。这与K在上述任选的由测地线围成的区域G上积分为零相矛盾,故S的高斯曲率是处处为零。 (3分)

四、(共10分)设
$$\omega = \sum_{1 \le i < j \le n} a_{ij} dx^i \wedge dx^j, \quad a_{ij} + a_{ji} = 0, \quad 求证:$$

$$d\omega = \sum_{1 \le i < j \le n} \left(\frac{\partial a_{ij}}{\partial x^k} + \frac{\partial a_{jk}}{\partial x^i} + \frac{\partial a_{ki}}{\partial x^j}\right) dx^i \wedge dx^j \wedge dx^k.$$
证 由外微分的定义,
$$d\omega = \sum_{1 \le i < j \le n} \sum_{n \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j \qquad (4分)$$

$$= \sum_{1 \le k < i \le j \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ij}}{\partial x^k} \partial x^k \wedge \partial x^i \wedge \partial x^j \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^j} \partial x^j \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^j} \partial x^i \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^j} \partial x^i \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^j} \partial x^i \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^i} \partial x^i \wedge \partial x^i \wedge \partial x^k \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^i} \partial x^i \wedge \partial x^i \wedge \partial x^i \wedge \partial x^k + \sum_{1 \le i < j < k \le n} \frac{\partial a_{ik}}{\partial x^i} \partial x^i \wedge \partial x^i \wedge \partial x^i \wedge \partial x^k \wedge \partial x^i \wedge \partial x^k \wedge \partial x^i \wedge \partial x^k \wedge \partial x^i \wedge \partial x^i \wedge \partial x^k \wedge \partial x^i \wedge$$

$$(2) \ (\vec{r}^*)''' = -\frac{\ddot{k}}{\tau_0} \vec{\alpha} - \frac{\dot{k}}{\tau_0} \dot{\vec{\alpha}} - \frac{2k\dot{k}}{\tau_0} \vec{\beta} - \frac{k^2}{\tau_0} \dot{\vec{\beta}} = -\frac{\ddot{k}}{\tau_0} \vec{\alpha} - \frac{\dot{k}}{\tau_0} (k\vec{\beta}) - \frac{2k\dot{k}}{\tau_0} \vec{\beta} - \frac{k^2}{\tau_0} (-k\vec{\alpha} + \tau_0 \vec{\gamma})$$

$$= \frac{k^3 - \ddot{k}}{\tau_0} \vec{\alpha} - \frac{3k\dot{k}}{\tau_0} \vec{\beta} - k^2 \vec{\gamma},$$

$$((\vec{r}^*)', (\vec{r}^*)'', (\vec{r}^*)''') = -\frac{k^5}{\tau_0^2}, \tag{2}$$

$$\tau^* = \frac{\left((\vec{r}^*)', (\vec{r}^*)'', (\vec{r}^*)''' \right)}{\left| (\vec{r}^*)' \times (\vec{r}^*)''' \right|^2} = -\frac{k^5}{\tau_0^2} / \left| \frac{k^3}{\tau_0^2} \right|^2 = -\frac{\tau_0^2}{k}. \tag{2}$$

华东理工大学 2013 - 2014 学年第二学期

《微分几何》课程期末考试试卷 A 2014.6.27

开课学院	: 理学院,	专业:	数、信计,	考试开	/式: 闭卷,	所需时间	可 <u>120</u> 台	分钟
考生姓名:		学号	·;	班纟	及:	任课	教师: <u>4</u>	杨勤民
题序		=	트	四	五	六	总	分
得分								
评卷人								
一、判断是	瓦(在正确	命题后面	的括号内	内画"√",	错误的后	·面画"×",	每小	、题2分,
共18分)								
1. 沿渐边	丘曲线, 曲	1面的切平	面与该渐运	近曲线的从	人切平面重	合. ()	
2. 球面曲	自线的所?	有主法线必	:过一个定	点. ()			
3. 曲面上	_的直线-	一定是测地	.线. ()				
4. 空间曲	自线的曲点	率和挠率完	全确定了	空间曲线的	的形状和位	五置. ()	
5. 挠率的	的绝对值之	是曲线的副	法向量对	于弧长的农	旋转速度.	()		
6. 曲线必	公穿过法。	平面和密切	平面,但	不穿过从坛	刀平面.	()		
7. 高斯曲	自率与第二	二类基本量	有关,不	是内蕴量.	()			
8. C ⁴ 类的	的曲线产=	= r(s) 为一·	般螺线的	充要条件是	$\xi(\ddot{\vec{r}}, \ddot{\vec{r}}, \ddot{\vec{r}})$	= 0. ()	
9. 若曲线	美的所有等	密切平面经	过一个定	点,则此曲	自线必为平	面曲线.	()
二、单项选	择题(每	小题4分,	共16分)					
1. 下列关	(于测地组	线的说法中	, 不正确的	的是				()
(A) 测为	也线具有	等距不变性	<u>:</u> ;					
(B) 平面	万上的 测り	也线必是直	线;					
(C) 测共	也线一定,	是连接其上	两点的最	短的曲面	曲线;			
` ′		*		线的一切由	由面曲线中	, 测地线的	曲率量	是小.
		列哪个量恒		L				()
. ,	, , ,	相对曲率;	` ′	. , , ,	测地曲率.			
	` ′	有固定长						()
• •		, ,		·		$\vec{r}' \times \vec{r}'' = 0$		
	上的曲线>	是下列哪和	中曲线的充	要条件是	沿此曲线的	り曲面的法		•
曲面.						-		()
		(B) 曲率组				戋.		
三、填空题				• • • •				
						$\vec{x}(0) = \underline{\qquad}$,
主法向量β(
密切平面方				从切平面	方程为			,
法平面方程	为		H	1 壑 ((()) —		挠率τ(0) -	_	

五、(共10分)求 C^3 类曲线 $\vec{r}(u)$ 的切线面 $\vec{R}(u,v) = \vec{r}(u) + v\vec{r}'(u)$ 上的曲线u + v = c 的法曲率.

六、(共10分)设曲面的第一基本形式是 $\mathrm{d}s^2=\frac{1}{v^2}(\mathrm{d}u^2+\mathrm{d}v^2)$,计算该曲面的活动标架的相对分量 $\omega^1,\omega^2,\omega_1^2$ 和高斯曲率K.

华东理工大学 2013 - 2014 学年第二学期

《微分几何》课程期末考试试卷 B 2014.6.27

开课学院	E: <u>理学院</u> ,	专业:	数、信计,	考试形	/式: 闭卷,	所需时间	可 120 分	钟
考生姓名:		学号	_ 学号:		ዩ :	任课	教师: 杨	勤民
题序		=	111	四	五	六	总分	7
得分								
评卷人								
	55(左正磁		的好是力	5	进程的 5	面画"×",	————	二二 いいこう
共18分)		中心石田	1 H2 4B 3 F	1 🖂 🗸 ,	相从时石	ш 🖰 🔨 ,	分 7 7	&2 <i>7</i>),
,	上任意两 ,	点之间的测	地线一定	是唯一的	()			
		有法平面必	•		, ,			
·	•	· 人 - 山 ~			,			
		可一点处有			,			
		了			, ,			
		• , • • •		, ,	() 【一定是直	线 ()	
					义下是平征	,)	
		为问重在LC 零的曲面必				1 43. (,	
		o的画画。 方向夹固定	•	`	,	1		
9. 王伝: 二、单项选				一 及及称:	٠, ()		
		,		旦 I _ E A	$L^2 + C dv^2$	$II = L du^2 +$. M.J.,2	मन स
			トルスカル	$\mathcal{K}_1 = E u$	u + Guv,	$\Pi = L uu$	+ N UV ,	火小山、
面的两个主 (A) k ₁ :	$=\frac{L}{E}, k_2$		($\mathbf{B}) k_1 = \frac{E}{L},$	$k_2 = \frac{G}{N}$;	(,
(C) $k_1 =$	$= k_2 = -\frac{1}{2}$	$\frac{1}{\sqrt{G}} \frac{\partial \ln E}{\partial v}$; ($D) k_1 = k_2$	$= \frac{1}{2\sqrt{E}} \frac{\partial \ln \theta}{\partial \theta}$	$\frac{n}{u}$.		
2. 下列1	曲线中不为	足正则曲线	的是		,		()
						$(t,t), t \in \mathbb{R}$;		
					$=(\cos t,\sin$	$t,0), t \in \mathbb{R}.$		
	, ,	-有固定方					()
						$\vec{r}' \times \vec{r}'' = 0$		
4. 如果1	曲面上的非	某曲线的主	.法线重合	于曲面的治	去线,则该	曲面曲线一	-定是()
(A) 渐i	近曲线;	(B) 曲率组	浅; (C) ^注	则地线;	(D) 法截线	ξ.		
三、填空题			•	•				
1. 曲线	$\vec{r}(t) = (\cos t)$	$s t$, $\sin t$, $\sqrt{2}$		= 0 处的与	单位切向量	$\vec{\alpha}(0) = $,
主法向量β(
密切平面方	程为			从切平面	方程为			,
						挠率τ(0):		_

五、(共10分)求单参数曲面族 $x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 1$ 的包络.

六、(共10分)设曲面的第一基本形式是 $\mathrm{d}s^2 = \mathrm{d}u^2 + 2\cos\varphi\,\mathrm{d}u\,\mathrm{d}v + \mathrm{d}v^2$, 其中 φ 是u,v 的连续可微函数, 计算此曲面的活动标架的相对分量 $\omega^1,\omega^2,\omega_1^2$ 和高斯曲率K.

华东理工大学 2013 - 2014 学年第二学期《微分几何》课程期末考试标准答案 A 2014.8

一、判断题(每小题2分,共18分)

1.
$$\times$$
 2. \times 3. \checkmark 4. \times 5. \checkmark 6. \checkmark 7. \times 8. \checkmark 9. \checkmark

二、单项选择题(每小题4分,共16分)

三、填空题(每空2分,共36分)

1.
$$\frac{\sqrt{2}}{2}(0, 1, 1), \qquad \frac{\sqrt{6}}{6}(2, -1, 1), \qquad \frac{\sqrt{3}}{3}(1, 1, -1),$$
$$x + y - z = 0, \qquad 2x - y + z = 0, \qquad y + z = 0, \qquad \frac{\sqrt{6}}{2}, \qquad -1.$$

2. 2, 1, 1,
$$2 du^2 + 2 du dv + dv^2$$
, 0, -1, -1, $-2 du dv - dv^2$, 0, -1.

四、(共10分)设 $x = r \sin \varphi \cos \theta$, $y = r \sin \varphi \sin \theta$, $z = r \cos \varphi$, 将 d $x \land$ d $y \land$ dz 用 d $r \land$ d $\varphi \land$ d θ 表示出来.

 $\mathbf{R} dx = \sin \varphi \cos \theta dr + r \cos \varphi \cos \theta d\varphi - r \sin \varphi \sin \theta d\theta$

 $dy = \sin \varphi \sin \theta dr + r \cos \varphi \sin \theta d\varphi + r \sin \varphi \cos \theta d\theta,$

$$dz = \cos\varphi \, dr - r \sin\varphi \, d\varphi. \qquad (3\,\hat{\sigma})$$

 $dx \wedge dy \wedge dz = (\sin \varphi \cos \theta dr + r \cos \varphi \cos \theta d\varphi - r \sin \varphi \sin \theta d\theta)$

 $\wedge (\sin \varphi \sin \theta \, dr + r \cos \varphi \sin \theta \, d\varphi + r \sin \varphi \cos \theta \, d\theta)$

$$\wedge (\cos \varphi \, dr - r \sin \varphi \, d\varphi) \quad \dots \qquad (3\,\%)$$

$$= \begin{vmatrix} \sin \varphi \cos \theta & r \cos \varphi \cos \theta & -r \sin \varphi \sin \theta \\ \sin \varphi \sin \theta & r \cos \varphi \sin \theta & r \sin \varphi \cos \theta \\ \cos \varphi & -r \sin \varphi & 0 \end{vmatrix} dr \wedge d\varphi \wedge d\theta$$

$$= r^2 \sin \varphi \, \mathrm{d}r \wedge \, \mathrm{d}\varphi \wedge \, \mathrm{d}\theta \qquad (4\,\%)$$

五、(共10分)求 C^3 类曲线 $\vec{r}(u)$ 的切线面 $\vec{R}(u,v) = \vec{r}(u) + v\vec{r}'(u)$ 上的曲线u + v = c 的法曲

率.

华东理工大学 2013 - 2014 学年第二学期 《微分几何》课程期末考试标准答案 B 2014.6

一、判断题(每小题2分,共18分)

1.
$$\times$$
 2. \checkmark 3. \checkmark 4. \times 5. \checkmark 6. \checkmark 7. \checkmark 8. \times 9. \times

二、单项选择题(每小题4分,共16分)

三、填空题(每空2分,共36分)

1.
$$(0, 1, 0),$$
 $(-\frac{1}{3}, 0, \frac{2\sqrt{2}}{3}),$ $(\frac{2\sqrt{2}}{3}, 0, \frac{1}{3}),$ $2\sqrt{2}x + z - 2\sqrt{2}z = 0,$ $x - 2\sqrt{2}z - 1 = 0,$ $y = 0,$ 3, 0.

2. 1, 0, 1,
$$du^2 + dv^2$$
, 0, 1, 1, $2 du dv + dv^2$, $\frac{1}{2}$, -1.

四、(共10分) 设x = x(u,v,w), y = y(u,v,w), z = z(u,v,w) 是u,v,w 的 光滑函数, 证明 $dx \wedge dy \wedge dz = \frac{\partial(x,y,z)}{\partial(u,v,w)} du \wedge dv \wedge dw$.

if
$$dx = x_u du + x_v dv + x_w dw$$
, $dy = y_u du + y_v dv + y_w dw$, $dz = z_u du + z_v dv + z_w dw$, $(2 \hat{\sigma})$

$$dx \wedge dy \wedge dz$$

$$= (x_u du + x_v dv + x_w dw) \wedge (y_u du + y_v dv + y_w dw) \wedge (z_u du + z_v dv + z_w dw) \dots (2\%)$$

$$= [(x_u y_v - x_v y_u) du \wedge dv + (x_w y_v - x_v y_w) dv \wedge dw + (x_w y_u - x_u y_w) dw \wedge du] \wedge (z_u du + z_v dv + z_w dw)$$

$$= [(x_{u}y_{v} - x_{v}y_{u})z_{w} - (x_{w}y_{v} - x_{v}y_{w})z_{u} + (x_{w}y_{u} - x_{u}y_{w})z_{v}] du \wedge dv \wedge dw \dots (4\%)$$

$$= \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & zx_w \end{vmatrix} du \wedge dv \wedge dw = \frac{\partial (x, y, z)}{\partial (u, v, w)} du \wedge dv \wedge dw \qquad (2 \hat{\pi})$$

五、(共10分)求单参数曲面族 $x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 0$ 的包络.

解 曲面族为
$$x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 0$$
(1)

将上式两边关于
$$\alpha$$
 求导得 $2(y-2\alpha)(-2)+2(z-3\alpha)(-3)=0$, 即 $2y+3z-13\alpha=0$ (2) (4分)

代入(1)得到所求包络为 $x^2 + [y - 2(2y + 3z)/13]^2 + [z - 3(2y + 3z)/13]^2 = 0, \dots (2分)$
$ \mathbb{E}_{p} \begin{cases} x = 0 \\ 3y = 2z \end{cases} \tag{2} $
(或) 五、(共10分)求单参数曲面族 $x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 1$ 的包络.
解 曲面族为 $x^2 + (y - 2\alpha)^2 + (z - 3\alpha)^2 = 1$ (1)
将上式两边关于 α 求导得 $2(y-2\alpha)(-2)+2(z-3\alpha)(-3)=0$, 即 $2y+3z-13\alpha=1$ (2) (4分)
由(2)得 $\alpha = (2y + 3z)/13$,
代入(1)得到所求包络为 $x^2 + [y - 2(2y + 3z)/13]^2 + [z - 3(2y + 3z)/13]^2 = 0, \dots (2分)$
$\mathbb{P}^{1}3x^{2} + (3y - 2z)^{2} = 13. \tag{2}$
六、(共10分)设曲面的第一基本形式是 $\mathrm{d}s^2=\mathrm{d}u^2+2\cos\varphi\mathrm{d}u\mathrm{d}v+\mathrm{d}v^2$, 其中 φ 是 u,v 的
连续可微函数, 计算此曲面的活动标架的相对分量 $\omega^1, \omega^2, \omega_1^2$ 和高斯曲率 K .
解 因为 $ds^2 = du^2 + 2\cos\varphi du dv + dv^2 = (du + \cos\varphi dv)^2 + (\sin\varphi dv)^2$,
所以 $\omega^1 = du + \cos\varphi dv, \omega^2 = \sin\varphi dv.$ (4分)
$\omega^1 \wedge \omega^2 = \sin \varphi du \wedge dv, d\omega^1 = -\varphi_u \sin \varphi du \wedge dv, d\omega^2 = \varphi_u \cos \varphi du \wedge dv.$
$\omega_1^2 = \frac{\mathrm{d}\omega^1}{\omega^1 \wedge \omega^2} \omega^1 + \frac{\mathrm{d}\omega^2}{\omega^1 \wedge \omega^2} \omega^2 = -\varphi_u \mathrm{d}u. \qquad (3\hat{\mathcal{T}})$
$d\omega_1^2 = \varphi_{uv} du \wedge dv, K = -\frac{d\omega_1^2}{\omega^1 \wedge \omega^2} = -\frac{\varphi_{uv}}{\sin \varphi}.$ (33)

华东理工大学 2014 - 2015 学年第二学期

《微分几何》课程期末考试试卷 A 2015.7.8

开课学院:理学院, 专业:数、信计, 考试形式:闭卷, 所需时间 120 分钟

· - · - ·			• • •								
题序		=	щ	四	五	六	七	八	总分		
得分											
评卷人											

一、(共15分) 求曲线 $r(t) = (2t, t^2 + t, t^3 + 3t^2)$ 在 t = 0 处的三个基本向量,密切平面 方程, 从切平面方程, 法平面方程, 曲率和挠率.

二、(共16分) 求曲面 $r(u, v) = (v \cos u, v \sin u, u + v)$ 在r(0, 0) 处的第一基本形式,第二基本形式,平均曲率和高斯曲率.

三、(共22分) 已知曲面的第一基本形式为 $I = \cos^2 u (du)^2 + \sin^2 v (dv)^2$, 它上面的三条 曲面曲线 u+v=0, u-v=0 和 v=1 围成一个曲边三角形, 求

- (1) 该曲边三角形所围曲面域的面积;
- (2) 该曲边三角形的三个内角:
- (3) 该曲边三角形的三条曲边的长度.

四、(共12分) 设 $\varphi = yz dx + dz$, $\xi = \sin z dx + \cos z dy$, $\eta = dy + z dz$, 计算

- $(1) \varphi \wedge \xi, \ \xi \wedge \eta, \ \eta \wedge \varphi;$
- (2) $d\varphi$, $d\xi$, $d\eta$.

五、(共10分) 设曲面的第一基本形式是 $I = (u + \sin v)[(du)^2 + (dv)^2]$, 计算该曲面的活动标架的相对分量 $\omega^1, \omega^2, \omega_1^2$ 和高斯曲率K.

六、(共10分)判断曲面 r(u, v) = (u + v, u - v, 2uv) 是不是可展曲面,并给出理由.

七、(共10分)设曲面S上的高斯曲率处处为负,证明曲面S上不存在围成单连通区域的 光滑的闭测地线.

八、(共5分)高斯绝妙定理是什么?为什么说它是微分几何发展史上的一个里程碑?

华东理工大学 2014 - 2015 学年第二学期

《微分几何》课程期末考试试卷 B 2015.7.8

开课学院:理学院, 专业:数、信计, 考试形式:闭卷, 所需时间 120 分钟

学号: 考生姓名: 任课教师: 杨勤民 班级:

·							_ (= ::1			
题	原序		11	11	四	五	六	七	八	总分
得	子分									
评.	卷人									

一、(共15分) 求曲线 $\vec{r}(t) = (3t, t^2 + t, t^3 + 2t^2)$ 在 t = 0 处的三个基本向量,密切平面 方程,从切平面方程,法平面方程,曲率和挠率.

二、(共16分) 求曲面 $r(u, v) = (v \cos u, v \sin u, u - v)$ 在r(0, 0) 处的第一基本形式, 第二 基本形式,平均曲率和高斯曲率.

三、(共22分) 已知曲面的第一基本形式为 $I = \cos^2 u (du)^2 + \sin^2 v (dv)^2$, 它上面的三条 曲面曲线 u+v=0, u-v=0 和 u=1 围成一个曲边三角形, 求

- (1) 该曲边三角形所围曲面域的面积;
- (2) 该曲边三角形的三个内角:
- (3) 该曲边三角形的三条曲边的长度.

四、(共12分)设f和g是两个光滑函数, d为外微分算子, 计算

- (1) d(f dg + g df); (2) d[(f g)(df + dg)];
- (3) $d[(f dg) \land (g df)];$ (4) d(g df) + d(f dg).

五、(共10分) 设曲面的第一基本形式是 $I = \frac{(du)^2 - 4v \, du \, dv + 4u (dv)^2}{4(u-v^2)}$ (其中 $u > v^2$), 计 算该曲面的活动标架的相对分量 $\omega^1, \omega^2, \omega_1^2$ 和高斯曲率K.

六、(共10分)判断曲面 $xy = (z-1)^2$ 是不是可展曲面,并给出理由.

七、(共10分)求圆柱面 $r(u, v) = (\cos u, \sin u, v)$ 上的测地线.

八、(共5分)活动标架法的基本思想和步骤是什么?

华东理工大学 2014 - 2015 学年第二学期 《微分几何》课程期末考试标准答案 A 2015.7

$d\xi = d(\sin z dx + \cos z dy) = d\sin z \wedge dx + d\cos z \wedge dy = \sin z dy \wedge dz + \cos z dz \wedge dx; \dots$	(2分)
$d\eta = d(dy + z dz) = d(dy) + dz \wedge dz = 0. \dots$	(2分)
五、解. 因为 $I = (u + \sin v)[(du)^2 + (dv)^2] = (\sqrt{u + \sin v} du)^2 + (\sqrt{u + \sin v} dv)^2,$	
所以 $\omega^1 = \sqrt{u + \sin v} du$, $\omega^2 = \sqrt{u + \sin v} dv$;	(4分)
$\omega^{1} \wedge \omega^{2} = (u + \sin v) du \wedge dv, \qquad d\omega^{1} = -\frac{\cos v}{2\sqrt{u + \sin v}} du \wedge dv, \qquad d\omega^{2} = \frac{1}{2\sqrt{u + \sin v}} dv$ $\omega_{1}^{2} = \frac{d\omega^{1}}{\omega^{1} \wedge \omega^{2}} \omega^{1} + \frac{d\omega^{2}}{\omega^{1} \wedge \omega^{2}} \omega^{2} = -\frac{\cos v}{2(u + \sin v)} du + \frac{1}{2(u + \sin v)} dv, \qquad \dots$ $d\omega_{1}^{2} = -\frac{u \sin v + 2}{2(u + \sin v)^{2}} du \wedge dv, \qquad K = -\frac{d\omega_{1}^{2}}{\omega^{1} \wedge \omega^{2}} = \frac{u \sin v + 2}{2(u + \sin v)^{3}} \dots \dots$	(3 分)
六、解. 该曲面方程可化为 $x^2 - y^2 = 2z$,	(5分)
可见该曲面为双曲抛物面(马鞍面), 故不为可展曲面	(5分)
另外得出 $LN - M^2 = -\frac{4}{2u^2 + 2v^2 + 1} \neq 0$ 或 $K = -\frac{1}{(2u^2 + 2v^2 + 1)^2} \neq 0$ 也可.	
七、证. (反证法) 若存在所述闭测地线, 设它所围成的曲面部分为 G , 则有高其	斯-波涅
公式 $\iint_G K d\sigma + \oint_{\partial G} k_g ds = 2\pi$, 其中 K 为曲面的高斯曲率, ∂G 为 G 的正向边界曲组	线, k_g 为
测地曲率	(3分)
高斯曲率 $K < 0$,所以 $\iint_G K d\sigma \le 0$	(2分)
又 ∂G 为测地线, 所以 $k_g=0$,	(2分)
代入上述公式得 $2\pi \leq 0$. 最后一式显然不可能成立, 故曲面 S 上不存在围成单连	通区域
的光滑的闭测地线	(3分)
八、解. 高斯绝妙定理是说曲面的高斯曲率是曲面的内蕴量	(2分)
该定理说明曲面的度量本身蕴含着一定的弯曲性质,并由此产生了曲面的内蕴,	几何学.
黎曼将这个定理推广到高维内蕴几何学, 形成黎曼几何. 因此高斯绝妙定理是	微分几
行业员业上46 人田印南	(2.1)

华东理工大学 2014 - 2015 学年第二学期 《微分几何》课程期末考试标准答案 B 2015.8

一、解. (1)
$$\vec{r}'(t) = (3, 2t+1, 3t^2+4t)$$
, $\vec{r}'(0) = (3, 1, 0)$, $|\vec{r}'(0)| = \sqrt{10}$, $\vec{\sigma}'(0) = \frac{\vec{r}(0)}{|\vec{r}'(0)|} = (3, 1, 0)/\sqrt{10} = (\frac{3\sqrt{10}}{10}, \frac{\sqrt{10}}{10}, 0)$; (2分) $\vec{r}''(t) = (0, 2, 6t+4)$, $\vec{r}''(0) = (0, 2, 4)$, $\vec{r}'(0) \times \vec{r}''(0) = (4, -12, 6)$, $|\vec{r}''(0) \times \vec{r}''(0)| = 14$, $\vec{r}'(0) = \frac{\vec{r}''(0) \times \vec{r}'''(0)}{|\vec{r}''(0) \times \vec{r}''(0)|} = (2, -6, 3)/7 = (\frac{2}{7}, -\frac{6}{7}, \frac{3}{7})$; (2分) $\vec{\beta}(0) = \vec{r}(0) \times \vec{\sigma}''(0) = (-3, 9, 20)/(7\sqrt{10}) = (-\frac{3\sqrt{10}}{70}, \frac{9\sqrt{10}}{70}, \frac{2\sqrt{10}}{7})$ (2分) (2) $\vec{r}(0) = (0, 0, 0)$ 密切平面为 $\vec{r}(0) \cdot [\vec{P} - \vec{r}(0)] = 0$, $\mathbf{P}(\frac{2}{7}, -\frac{6}{7}, \frac{3}{7}) \cdot (x-0, y-0, z-0) = 0$, 化简符: $2x-6y+3z=0$; (1分) 表升面为 $\vec{r}(0) \cdot [\vec{P} - \vec{r}(0)] = 0$, $\mathbf{P}(-\frac{3\sqrt{10}}{70}, \frac{9\sqrt{10}}{70}, \frac{2\sqrt{10}}{7}) \cdot (x-0, y-0, z-0) = 0$, 化简符: $3x-9y-20z=0$; (1分) 法平面为 $\vec{r}'(0) \cdot [\vec{P} - \vec{r}(0)] = 0$, $\mathbf{P}(3, 1, 0) \cdot (x-0, y-0, z-0) = 0$, 化简符: $3x+y=0$. (1分) $\vec{r}''(0) \cdot \vec{r}'''(0) = 0$, $\vec{r}'''(0) \cdot \vec{r}'''(0) = 0$, $\vec{r}''''(0) \cdot \vec{r}''''(0) = 0$, $\vec{r}''''(0) \cdot \vec{r}'''(0) = 0$, $\vec{r}''''(0) \cdot \vec{r}'''(0) \cdot \vec{r}'''(0) \cdot \vec{r}'''(0) = 0$, $\vec{r}''''(0) \cdot \vec{r}'''(0) \cdot \vec{r}'''(0) = 0$, $\vec{r}''''(0) \cdot \vec{r}'''(0) \cdot \vec{r}'''(0) \cdot \vec{r}'''(0) \cdot \vec{r}'''(0) = 0$, $\vec{r}''''(0) \cdot \vec{r}'''(0) \cdot \vec{r}''(0) \cdot \vec{r}$

(2)
$$r_{aa}(u,v) = (-v\cos u, -v\sin u, 0), \quad r_{aa}(0,0) = (0,0,0),$$
 $\vec{r}_{nv}(u,v) = (-\sin u,\cos u,0), \quad \vec{r}_{nv}(0,0) = (0,1,0),$
 $\vec{r}_{vv}(u,v) = (0,0,0), \dots (1\hat{\mathcal{T}})$
 $\vec{r}_{v}(0,0) \times \vec{r}_{v}(0,0) = (0,1,0), \quad |\vec{r}_{a}(0,0) \times \vec{r}_{v}(0,0)| = 1,$
 $\vec{n}(0,0) = \vec{r}_{a}(0,0) \times \vec{r}_{v}(0,0) |\vec{r}_{u}(0,0) \times \vec{r}_{v}(0,0)| = (0,1,0), \dots (1\hat{\mathcal{T}})$
 $L(0,0) = \vec{r}_{aa}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \vec{r}_{vv}(0,0) \cdot \vec{n}(0,0) = 0, \dots (1\hat{\mathcal{T}})$
 $M(0,0) = \frac{LO - 2MF + NE}{2(EG - F^2)} \Big|_{0,0)} = \frac{0 - 2 \times 1 \times (-1) + 0}{2(1 \times 2 - (-1)^2)} = 1, \dots (2\hat{\mathcal{T}})$
 $\mathbf{E}(0,0) = \frac{LN - M^2}{EG - F^2} \Big|_{0,0)} = \frac{0 - 1^2}{1 \times 2 - (-1)^2} = -1, \dots (2\hat{\mathcal{T}})$
 $\mathbf{E}(0,0) = \mathbf{E}(0,0) = \mathbf{E}(0,0)$
 $\mathbf{E}(0,0) = \mathbf{E}(0,0)$
 $\mathbf{E}(0,0)$
 $\mathbf{E$

=
$$\arccos \frac{1 \times 1 \times 1}{\sqrt{1 \times 1^2} \sqrt{1 \times 1^2}} = \arccos 1 = 0;$$
 (1分)
養意B(1,1)类, $E(1,1) = \cos^2 1$, $F(1,1) = 0$, $G(1,1) = \sin^2 1$,
由 $u = v = 0$ 得到语着有向懿BA的切方向为(d u : d v) = $(-1;-1)$,
由 $u = 1$ 得到语着有创瓠BC的切方向为(d u : d v) = $(0;-1)$, (1分)
 $\angle B = \arccos \frac{E \operatorname{d}u \operatorname{d}u + F(\operatorname{d}u \operatorname{d}v + \operatorname{d}v \operatorname{d}u) + G \operatorname{d}v \operatorname{d}v}{\sqrt{E(\operatorname{d}u)^2 + 2F \operatorname{d}u \operatorname{d}v + G(\operatorname{d}v)^2} \sqrt{E(\operatorname{d}u)^2 + 2F \operatorname{d}u \operatorname{d}v + G(\operatorname{d}v)^2}} \Big|_{(1,1)} = \arccos \frac{1}{2} - 1$; (1分)
= $\arccos \frac{E \operatorname{d}u \operatorname{d}u + F(\operatorname{d}u \operatorname{d}v + \operatorname{d}v \operatorname{d}u) + G \operatorname{d}v \operatorname{d}v}{\sqrt{E(\operatorname{d}u)^2 + 2F \operatorname{d}u \operatorname{d}v + G(\operatorname{d}v)^2} \sqrt{E(\operatorname{d}u)^2 + 2F \operatorname{d}u \operatorname{d}v + G(\operatorname{d}v)^2}} \Big|_{(1,1)} = \arccos \sin 1 = \frac{\pi}{2} - 1$; (1分)
 $\Rightarrow \operatorname{d}u \times 1 + \operatorname{d}u \times 1 +$

五、解、因为
$$I = \frac{(du)^2 - 4v du dv + 4u(dv)^2}{4(u - v^2)} = \left(\frac{du - 2v dv}{2\sqrt{u - v^2}}\right)^2 + (dv)^2,$$
所以 $\omega^1 = \frac{du - 2v dv}{2\sqrt{u - v^2}}, \qquad \omega^2 = dv; \qquad (4分)$
 $\omega^1 \wedge \omega^2 = \frac{d\omega dv}{2\sqrt{u - v^2}}, \qquad d\omega^1 = 0, \qquad d\omega^2 = 0;$
 $\omega_1^2 = \frac{d\omega^2}{\omega^0 \wedge \omega^2} \omega^2 + \frac{d\omega^2}{\omega^1 \wedge \omega^2} \omega^2 = 0, \qquad (3分)$
 $d\omega_1^2 = 0, \qquad K = -\frac{d\omega_1^2}{\omega^1 \wedge \omega^2} = 0 \qquad (3分)$
 $\overrightarrow{\Lambda}$ 、解、 $\phi_X = u + v, \quad y = u - v, \quad z = w + 1, \quad y = y + y + y = v^2 + y^2, \quad (5分)$
可见該數而为维而,故为可展動而 (5分)

另外化为参数方程,得出 $LN - M^2 = 0$ 或 $K = 0$ 也可.

七、解、 $\overrightarrow{v}_u(u, v) = (-\sin u, \cos u, 0), \quad \overrightarrow{v}_v(u, v) = (0, 0, 1),$
 $E = \overrightarrow{v}_u^2(u, v) = 1, \qquad F = \overrightarrow{v}_u(u, v)\overrightarrow{v}_v(u, v) = 0, \qquad G_v(u, v) = 1,$
 $E_u(u, v) = 0, \qquad G_u(u, v) = 0, \qquad E_v(u, v) = 0, \qquad (4分)$
由刘维尔公式 $k_u(u, v) = 0, \qquad F_v(u, v) = 0, \qquad G_v(u, v) = 0, \qquad (4分)$
由刘维尔公式 $k_u(u, v) = 0, \qquad F_v(u, v) = 0, \qquad G_v(u, v) = 0, \qquad (4分)$
d $u = \sqrt{\frac{E}{G}}\tan\theta = \tan\theta$ 为常数、记该常数为a,则有 $v = au + b$,其中 b 为常数、 位域中 $\sqrt{\frac{G}{G}}\tan\theta = \tan\theta$ 为常数、记该常数为a,则有 $v = au + b$,其中 b 为常数、 放测地线方程为 $v = au + b$,其中 a ,为分任意常数。 (2分)
八、答、活动标架法的基本思想是通过活动标架这个标梁,把微分几何中所研究的图 形嵌入到空间合同变换解G 中,也就是把该图形有成G的子空间,然后G的性质自然地传递到它的子空间上,从而得到所要研究的图形的性质。 (2分)活动标架法的步骤是: 1. 设法找到一族活动标架。使所研究的图形与这族活动标架——对应起来; 2. 把活动标架微分一次得到活动标案的相对分量去描述图形的几何特点。 (3分)