Entrega 7

Subgrupo 4:
Juan Manuel Sánchez Arrua,
Jaime Sánchez-Carralero Morato,
Óscar Marzal Bardón,
Joan Andrés Mercado Tandazo

UAM - ELECTRODINÁMICA CLÁSICA

Ejercicio 3

Un electrón entra con velocidad no relativista \vec{v} en una región del espacio donde hay un campo magnético uniforme y constante, \vec{B} , perpendicular a dicha velocidad. Al mismo tiempo que rota, la partícula radia y al perder energía sigue una trayectoria espiral. Asumiendo que cada revolución del electrón es esencialmente circular,

- i) calcular la potencia radiada;
- ii) obtener la variación de la energía cinética de la partícula, expresándola en función del tiempo de relajación $\tau_{\rm rel}$ (aquel en el que su energía se reduce por un factor 1/e);
- iii) calcular $\tau_{\rm rel}$ para dos valores del campo magnético, 1 T y 25 μ T, y justificar que la asunción de órbitas aproximadamente circulares es adecuada en ambos casos.

Resolución:

i) Como $v \ll c$ se emplea la expresión de la potencia radiada de Larmor, i.e:

$$P_{\rm rad} = \frac{q^2 a^2}{6\pi c^3} \tag{1}$$

Como se indica que se asuma que la trayectoria es circular durante cada revolución, se tiene:

$$F = q \frac{v}{c} B \implies a_c = \frac{qvB}{mc} \tag{2}$$

Donde a_c es la aceleración centrípeta, q la carga del electrón y m su masa. Por tanto sustitiyendo en (1) se tiene:

$$P_{\rm rad} = \frac{q^4 v^2 B^3}{6\pi c^5 m^2} \tag{3}$$

Como:

$$P_{\rm rad} = -\frac{\mathrm{d}\mathcal{E}_{\rm kin}}{\mathrm{d}t} = \frac{q^4 B^2}{3\pi c^5 m^3} \mathcal{E}_{\rm kin} \tag{4}$$

Donde se ha empleado la expresión de la energía cinética \mathcal{E}_{kin} para sustituir el módulo de la velocidad v^2 . Resolvemos la EDO y encontramos el tiempo de relajación τ_{rel} :

$$\tau_{\rm rel} = \frac{3\pi c^5 m^3}{q^4 B^2} \tag{5}$$

$$\int_{\mathcal{E}_{kin}(0)}^{\mathcal{E}_{kin}(t)} \frac{d\mathcal{E}'_{kin}}{\mathcal{E}'_{kin}} = \int_{0}^{t} \frac{dt'}{\tau_{rel}} \Rightarrow \mathcal{E}_{kin}(t) = \mathcal{E}_{kin}(0)e^{-t/\tau_{rel}}$$
(6)

ii)