Ensemble Learning Report

Mahfuzzaman Sizan , 1905054 September 20, 2024

1 Instructions to Run the Script

To train and test the models, follow these steps:

1. We can install the required libraries using:

```
pip install pandas scikit-learn matplotlib
```

- 2. We need to download the dataset files and place them in the same directory as the script.
- 3. We need to open the script in preferred Python IDE (e.g., Jupyter Notebook, PyCharm).
- 4. To train models on a specific dataset, we need to comment out the lines loading the other datasets. For example:

```
# Load Dataset 1
# X_train1, X_test1, y_train1, y_test1 = load_and_preprocess_dataset_one()
# Load Dataset 2
# X_train2, X_test2, y_train2, y_test2 = load_and_preprocess_dataset_two()
# Load Dataset 3
X_train3, X_test3, y_train3, y_test3 = load_and_preprocess_dataset_three()
```

5. After training, we need to run the evaluation function to collect metrics:

```
metrics3 = collect_metrics(X_train3, X_test3, y_train3, y_test3)
```

Table 1: Performance Metrics for Dataset 1

Metric	Dataset 1 (Bagging LR)	Dataset 1 (Voting)	Dataset 1 (Stacking)
Accuracy	0.787950	0.787083	0.786373
Precision	0.636459	0.634058	0.637736
Recall	0.469400	0.467914	0.451872
F1 Score	0.540105	0.538462	0.528951
ROC AUC	0.686230	0.685165	0.679559
PR AUC	0.439547	0.437920	0.433668

2 Performance Evaluation Results

2.1 Dataset 1 Results

2.2 Dataset 2 Results

Table 2: Performance Metrics for Dataset 2

Metric	Dataset 2 (Bagging LR)	Dataset 2 (Voting)	Dataset 2 (Stacking)
Accuracy	0.826676	0.826362	0.825809
Precision	0.717861	0.720658	0.720910
Recall	0.438753	0.432657	0.428497
F1 Score	0.544597	0.540699	0.537508
ROC AUC	0.692705	0.690394	0.688595
PR AUC	0.447533	0.445819	0.443912

2.3 Dataset 3 Results

Table 3: Performance Metrics for Dataset 3 $\,$

Metric	Dataset 3 (Bagging LR)	Dataset 3 (Voting)	Dataset 3 (Stacking)
Accuracy	0.994877	0.994877	0.976092
Precision	0.987342	0.987342	0.000000
Recall	0.795918	0.795918	0.000000
F1 Score	0.881356	0.881356	0.000000
ROC AUC	0.897834	0.897834	0.500000
PR AUC	0.790723	0.790723	0.023908

Figure 1: Violin Plot for Dataset 1

3 Violin Plots

4 Observations

- Dataset 3 achieved the highest accuracy across all models, indicating effective model performance.
- The precision and recall values for the stacking model in Dataset 3 were 0, suggesting poor performance in identifying positive cases.
- Dataset 1 and Dataset 2 showed similar trends in precision and recall, with Bagging LR performing slightly better.

Violin Plots of Performance Metrics for 9 Bagging LR Learners

Figure 2: Violin Plot for Dataset 2

Violin Plots of Performance Metrics for 9 Bagging LR Learners

Figure 3: Violin Plot for Dataset 3