EE104 S. Lall and S. Boyd

Features

Sanjay Lall and Stephen Boyd

EE104 Stanford University Records and embedding

Raw data

- ▶ raw data pairs are (u, v), with $u \in \mathcal{U}$, $v \in \mathcal{V}$
- U is set of all possible input values
- V is set of all possible output values
- each u is called a record
- lacktriangle typically a record is a tuple, or list, $u=(u_1,u_2,\ldots,u_r)$
- each u_i is a *field* or *component*, which has a *type*, *e.g.*, real number, Boolean, categorical, ordinal, word, text, audio, image, parse tree (more on this later)
- e.g., a record for a house for sale might consist of

(address, photo, description, house/apartment?, lot size, \dots , # bedrooms)

Feature map

ightharpoonup learning algorithms are applied to (x, y) pairs,

$$x=\phi(u), \qquad y=\psi(v)$$

- $lackbox{} \phi: \mathcal{U}
 ightarrow \mathbf{R}^d$ is the *feature map* for u
- ullet $\psi: \mathcal{V}
 ightarrow \mathbf{R}^m$ is the *feature map* for v
- ▶ feature maps transform *records* into *vectors*
- feature maps usually work on each field separately,

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

 $ightharpoonup \phi_i$ is an *embedding* of the type of field i into a vector

4

Embeddings

- embedding puts the different field types on an equal footing, i.e., vectors
- ▶ some embeddings are simple, e.g.,
 - lacksquare for a number field ($\mathcal{U}=\mathsf{R}$), $\phi_i(u_i)=u_i$
 - lackbox for a Boolean field, $\phi_i(u_i) = \left\{egin{array}{ll} 1 & u_i = ext{TRUE} \ -1 & u_i = ext{FALSE} \end{array}
 ight.$
 - ightharpoonup color to (R, G, B)
- others are more sophisticated
 - ▶ text to TFIDF histogram
 - word2vec (maps words into vectors)
 - pre-trained neural network for images (maps images into vectors)

(more on these later)

Faithful embeddings

a faithful embedding satisfies

- $ightharpoonup \phi(u)$ is near $\phi(\tilde{u})$ when u and \tilde{u} are 'similar'
- $ightharpoonup \phi(u)$ is not near $\phi(\tilde{u})$ when u and \tilde{u} are 'dissimilar'

- ▶ lefthand concept is vector distance
- righthand concept depends on field type, application

- interesting examples: names, professions, companies, countries, languages, ZIP codes, cities, songs, movies
- ▶ we will see later how such embeddings can be constructed

Examples

- ightharpoonup geolocation data: $\phi(u)=$ (Lat,Long) in $m R^2$ or embed in $m R^3$ (if data points are spread over planet)
- ▶ day of week (each day is 'similar' to the day before and day after)

Example: word2vec

- ▶ word2vec maps a dictionary of 3 million words (and short phrases) into R³⁰⁰
- ▶ developed from a data set from Google News containing 100 billion words
- ▶ assigns words that frequently appear near each other in Google News to nearby vectors in R³⁰⁰

Example: word2vec

(showing only x_1 and x_2 , for a selection of words associated with emotion)

Imagenet embedding

- ▶ Imagenet is an open image database with 14m labeled images in 1000 classes
- ightharpoonup vgg16 maps images u (224 imes 224 pixels with R,G,B components) to $x \in \mathbf{R}^{4096}$
- ▶ vgg16 was originally developed to classify the image labels
- repurposed as general image feature mapping
- ightharpoonup vgg16 has neural network form with 16 layers, with input u, output x

vgg16 embedding

- lacktriangle images u^i for $i=1,2,\ldots,6$ are embedded to $x^i=\phi(u^i)\in \mathsf{R}^{4096}$
- lacktriangle matrix of pairwise distances $d_{ij} = ||x^i x^j||_2$

$$d = \begin{bmatrix} 0 & 109.7 & 97.9 & 96.2 & 107.4 & 103.0 \\ & 0 & 63.9 & 71.6 & 109.4 & 109.2 \\ & & 0 & 69.4 & 101.5 & 101.4 \\ & & & 0 & 96.5 & 96.8 \\ & & & & 0 & 86.6 \\ & & & & 0 \end{bmatrix}$$

Standardized embeddings

we usually assume that an embedding is standardized

- ightharpoonup entries of $\phi(u)$ are centered around 0
- ightharpoonup entries of $\phi(u)$ have RMS value around 1
- lacktriangleright roughly speaking, entries of $\phi(u)$ range over ± 1

with standardized embeddings, entries of feature map

$$\phi(u_1,\ldots,u_r)=(\phi_1(u_1),\ldots,\phi_r(u_r))$$

are all comparable, i.e., centered around zero, standard deviation around one

ightharpoonup rms $(\phi(u)-\phi(ilde{u}))$ is reasonable measure of how close records u and $ilde{u}$ are

Standardization or z-scoring

- suppose $\mathcal{U} = \mathbf{R}$ (field type is real numbers)
- ightharpoonup for data set $u^1, \ldots, u^n \in \mathbf{R}$

$$ar{u}=rac{1}{n}\sum_{i=1}^n u^i \qquad \mathsf{std}(u)=\left(rac{1}{n}\sum_{i=1}^n (u^i-ar{u})^2
ight)^{rac{1}{2}}$$

 \blacktriangleright the *z-score* or *standardization* of u is the embedding

$$x = \mathsf{zscore}(u) = rac{1}{\mathsf{std}(u)}(u - ar{u})$$

- ensures that embedding values are centered at zero, with standard deviation one
- \blacktriangleright z-scored features are very easy to interpret: $x=\phi(u)=+1.3$ means that u is 1.3 standard deviations above the mean value

Log transform

- ▶ old school rule-of-thumb: if field u is positive and ranges over wide scale, embed as $\phi(u) = \log u$ (or $\log(1+u)$ if u is sometimes zero), then standardize
- examples: web site visits, ad views, company capitalization
- interpretation as faithful embedding:
 - ▶ 20 and 22 are similar, as are 1000 and 1100
 - ▶ but 20 and 120 are not similar
 - ▶ i.e., you care about fractional or relative differences between raw values

(here, log embedding is faithful, affine embedding is not)

▶ can also apply to output or label field, i.e., $y = \psi(v) = \log v$ if you care about percentage or fractional errors; recover $\hat{v} = \exp(\hat{y})$

Example: House price prediction

- lacktriangle we want to predict house selling price v from record $u=(u_1,u_2)$
 - $ightharpoonup u_1 = area (sq. ft.)$
 - $ightharpoonup u_2 = \#$ bedrooms
- $lackbox{ we care about relative error in price, so we embed v as $\psi(v) = \log v$ (and then standardize)$
- \blacktriangleright we standardize fields u_1 and u_2

$$x_1=rac{u_1-\mu_1}{\sigma_1}, \qquad x_2=rac{u_2-\mu_2}{\sigma_2}$$

- $lackbox{} \mu_1=ar{u}_1$ is mean area
- lacksquare $\mu_2=ar{u}_2$ is mean number of bedrooms
- $ightharpoonup \sigma_1 = \operatorname{std}(u_1)$ is std. dev. of area
- $ightharpoonup \sigma_2 = \mathsf{std}(u_2)$ is std. dev. of # bedrooms

(means and std. dev. are over our data set)

Example: House price linear regression predictor

- lacktriangleright predict $y = \log v$ (log of price) from standardized area and # bedrooms
- ▶ linear predictor: $\hat{y} = \theta_1 + \theta_2 x_1 + \theta_3 x_2$
- ▶ in terms of original raw data:

$$\hat{v} = \exp\left(heta_1 + heta_2 rac{u_1 - \mu_1}{\sigma_1} + heta_3 rac{u_2 - \mu_2}{\sigma_2}
ight)$$

- exp undoes log embedding of house price
- ▶ readily interpretable, e.g., what does $\theta_2 = 0.7$ mean?

Vector embeddings

Vector embeddings for real field

- lacktriangle we can embed a field u into a vector $x=\phi(u)\in \mathsf{R}^k$
- useful even when $\mathcal{U} = R$ (real field)
- polynomial embedding:

$$\phi(u)=(1,u,u^2,\dots,u^d)$$

piecewise linear embedding:

$$\phi(u) = (1, (u)_-, (u)_+)$$

where
$$(u)_- = \min(u, 0)$$
, $(u)_+ = \max(u, 0)$

▶ linear predictor with these features yield polynomial and piecewise linear predictors of raw features

Categorical data

- ▶ data field is *categorical* if it only takes a finite number of values
- \blacktriangleright i.e., \mathcal{U} is a finite set $\{\alpha_1, \ldots, \alpha_k\}$; α_i are category labels
- \blacktriangleright we often use category labels $1, \ldots, k$, and refer to 'category i'
- examples:
 - ▶ TRUE/FALSE (two values, also called Boolean)
 - ► APPLE, ORANGE, BANANA (three values)
 - ▶ MONDAY, ..., SUNDAY (seven values)
 - ➤ ZIP code (around 40000 values)
 - countries (around 185 values)
 - ▶ languages (several thousand spoken by large numbers of people)

One-hot embedding for categoricals

- $ightharpoonup \mathcal{U} = \{1, \ldots, k\}$
- ightharpoonup one-hot embedding: $\phi(i) = e_i \in \mathbf{R}^k$
- examples:
 - ϕ (APPLE) = (1,0,0), ϕ (ORANGE) = (0,1,0), ϕ (BANANA) = (0,0,1)
 - lackloss $\phi(ext{TRUE})=(1,0), \quad \phi(ext{FALSE})=(0,1)$ (another embedding of Boolean, into \mathbf{R}^2)
 - lackloss $\phi(\mathrm{Mandarin})=e_1$, $\phi(\mathrm{English})=e_2$, $\phi(\mathrm{Hindi})=e_3$, ..., $\phi(\mathrm{Azeri})=e_{55}$, ...
- standardizing these features handles unbalanced data

Reduced one-hot embedding for categoricals

- $ightharpoonup \mathcal{U} = \{1, \ldots, k\}$
- \blacktriangleright one-hot embedding maps \mathcal{U} to \mathbf{R}^k ; reduced one-hot embedding maps \mathcal{U} to \mathbf{R}^{k-1}
- \blacktriangleright choose one value, say i=k, as the *default* or *nominal* value
- $igoplus \phi(k)=0\in \mathbf{R}^{k-1}$, i.e., map the default value to (vector) 0
- $igsip \phi(i) = e_i \in \mathbf{R}^{k-1}$, $i = 1, \ldots, k-1$
- ightharpoonup example: $\mathcal{U} = \{\text{True}, \text{False}\}$ with False as default

$$\phi(\text{TRUE}) = 1, \qquad \phi(\text{FALSE}) = 0$$

(a common embedding of Booleans into R)

Ordinal data

- ordinal data is categorical, with an order
- example: *Likert scale*, with values

STRONGLY DISAGREE, DISAGREE, NEUTRAL, AGREE, STRONGLY AGREE

- ▶ can embed into **R** with values -2, -1, 0, 1, 2
- ▶ or treat as categorical, with one-hot embedding into R⁵
- example: number of bedrooms in house
 - can be treated as a real number
 - ▶ or as an ordinal with (say) values 1,...,6

Feature engineering

Feature engineering

- basic idea:
 - start with some features
 - ▶ then process or transform them to produce new ('engineered') features
 - use these new features in your predictor
- was it a good idea? did it improve your predictor?
 - ▶ train your model with original features and validate performance
 - ▶ train your model with new features and validate performance
 - ▶ if performance with new features is better, your feature engineering was successful

Types of feature transforms

- **modify** individual features: replace original feature x_i with modified or transformed feature x_i^{new}
 - lacktriangle simple example: standardize, $x_i^{ exttt{new}} = (x_i \mu_i)/\sigma_i$
- create multiple features from each original feature
 - lacktriangle simple example: powers, replace x_i with $(x_i, x_i^2, \dots, x_i^q)$
- create new features from multiple original features
 - lacktriangle simple example: product, $x_i^{ exttt{new}} = x_k x_l$

Gamma-transform

 $ightharpoonup \gamma$ -transform: $x_i^{ exttt{new}} = \operatorname{sign}(x_i) |x_i|^{\gamma_i}$, $\gamma_i > 0$

Clipping

 winsorize or clip or saturate with lower and upper clip levels l_i, u_i

$$x_i^{ exttt{new}} = \left\{egin{array}{ll} u_i & x_i > u_i \ x_i & l_i \leq x_i \leq u_i \ l_i & x_i < l_i \end{array}
ight.$$

Powers

ightharpoonup replace x_i with $(x_i, x_i^2, \ldots, x_i^q)$

Split into positive and negative parts

- ightharpoonup replace x_i with $((x_i)_+, (x_i)_-)$
- ightharpoonup or, split into negative, middle, and high values: replace x_i with

$$((x_i+1)_-, \mathsf{sat}(x_i), (x_i-1)_+)$$

 $\operatorname{sat}(a) = \min(1, \max(x, -1))$ is the saturation function

Creating new features from multiple original features

- ▶ can be used to model *interactions* among features
- ightharpoonup examples: for i < j
 - ightharpoonup maximum: max (x_i, x_j)
 - ightharpoonup product: $x_i x_j$
- ightharpoonup example: all monomials up to degree 3 of (x_1, x_2) :

$$(x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3)$$

linear model with these features gives arbitrary degree 3 polynomial of (x_1,x_2)

Interpreting products of features as interactions

- **b** suppose x_i are Boolean, with values 0, 1, for $i=1,\ldots,d$, e.g., representing patient symptoms
- lacktriangle create new 'interaction' features $x_i x_j$, for i < j, of which there are d(d-1)/2
- ▶ linear regression model (for d = 3) is

$$\theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_{12} x_1 x_2 + \theta_{13} x_1 x_3 + \theta_{23} x_2 x_3$$

- $lackbox{}{m{ heta}}_1$ is the amount our prediction goes up when $x_1=1$
- $ightharpoonup heta_3$ is the amount our prediction goes up when $x_3=1$
- lacktriangledown $heta_{13}$ is the amount our prediction goes up when x_1 and x_3 are both 1 (in addition to $heta_1+ heta_3$)
- ightharpoonup e.g., with $heta_{13}$ large, the simultaneous presence of symptoms 1 and 3 makes our estimate go up a lot

Quantizing

- lacksquare specify *bin boundaries* $b_1 < b_2 < \cdots < b_k$
- lacktriangle partitions into bins or buckets $(-\infty,b_1],\ (b_1,b_2],\ \dots\ (b_{k-1},b_k],\ (b_k,\infty)$
- \blacktriangleright common choice of bin boundaries: quantiles of x_i , e.g., deciles
- ightharpoonup replace x_i with

$$\left\{egin{array}{ll} e_1 & x_i \leq b_1 \ e_2 & b_1 < x_i \leq b_2 \ dots \ e_k & b_{k-1} < x_i \leq b_k \ e_{k+1} & b_k < x_i \end{array}
ight.$$

i.e., x_i maps to e_l , if x_i is in bin l

Feature engineering pipeline

- ▶ feature transformations can be done multiple times
- lacktriangle start by embedding original record u into vector feature $x^0 \in \mathsf{R}^{d_0}$ using $ilde{\phi}, \, x^0 = ilde{\phi}(u)$
- lacktriangle superscript 0 in x^0 and d^0 means starting point for feature engineering
- lacktriangle transform x^0 using a feature engineering transform \mathcal{T}^1 , to get $x^1=\mathcal{T}^1(x^0)\in \mathsf{R}^{d_1}$
- ightharpoonup superscript 1 in x^1 and d^1 means 'first step' of feature engineering
- lacksquare repeat M times to get final embedding $x=x^M=arphi^M(x^{M-1})$
- final feature map is a composition:

$$\phi = \mathcal{T}^M \circ T^{M-1} \circ \cdots \circ \mathcal{T}^1 \circ ilde{\phi}$$

called feature engineering pipeline

Automatic feature generation

Hand crafted versus automatic features

- ▶ features and feature engineering described above generally done by hand, using experience
- ▶ can also develop feature mappings automatically, directly from some data
- examples: word2vec, vgg16 were developed automatically (from very large data sets)
- lacktriangle we'll later see some of these methods (PCA, neural nets, ...)

Summary

Summary

- raw features are mapped to vectors for subsequent processing
- ▶ feature maps can range from simple to complex
- use validation to choose among different candidate feature maps
- sometimes the original feature map is followed by subsequent transformations, called feature engineering
- ▶ we'll see later how feature mappings can be derived from data, as opposed to by hand