МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА

Механико-математический факультет

Кафедра вычислительной математики

К.Ю. Богачев

Практикум на ЭВМ. Методы приближения функций

СОДЕРЖАНИЕ 2

Содержание

ПРЕДИСЛОВИЕ					
Глава	I. МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ОДНОЙ ПЕ- РЕМЕННОЙ	7			
§1.	ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОЙ ИНТЕРПОЛЯЦИИ	7			
$\S 2$.	ОБУСЛОВЛЕННОСТЬ БАЗИСА	10			
$\S 3$.	ИНТЕРПОЛЯЦИОННЫЙ МНОГОЧЛЕН ЛАГРАНЖА	11			
$\S 4$.	РАЗДЕЛЕННЫЕ РАЗНОСТИ	12			
$\S 5.$	ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА	17			
§6.	ИНТЕРПОЛЯЦИЯ "ДВИЖУЩИМИСЯ" МНОГОЧЛЕНАМИ	18			
§7.	ОЦЕНКИ ПОГРЕШНОСТИ ИНТЕРПОЛЯЦИОННОЙ ФОРМУ-				
	ЛЫ НЬЮТОНА	20			
$\S 8$.	РАЗДЕЛЕННЫЕ РАЗНОСТИ С КРАТНЫМИ УЗЛАМИ	22			
$\S 9$.	ИНТЕРПОЛЯЦИЯ С КРАТНЫМИ УЗЛАМИ	23			
§10	.ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ МНОГОЧЛЕНА В ФОРМЕ НЬЮТОНА	27			
811	. МНОГОЧЛЕНЫ ЧЕБЫШЕВА	31			
	. МИНИМИЗАЦИЯ ПОГРЕШНОСТИ ИНТЕРПОЛЯЦИИ ЗА СЧЕТ ВЫБОРА УЗЛОВ	33			
§13	. РАЗЛОЖЕНИЕ ПО МНОГОЧЛЕНАМ ЧЕБЫШЕВА	35			
J	§13.1. Постановка задачи линейной интерполяции	36			
	§13.2. Алгоритм построения разложения	39			
	§13.3. Оценка количества арифметических операций	40			
		41			
§14	. ПРЕИМУЩЕСТВА КУСОЧНО-МНОГОЧЛЕННОЙ АППРОКСИ-				
	МАЦИИ	43			
$\S 15$. КУСОЧНО-ЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ	44			
§16	. КУСОЧНО-ЛИНЕЙНАЯ АППРОКСИМАЦИЯ МЕТОДОМ НАИ- МЕНЬШИХ КВАДРАТОВ	45			
	§16.1. Постановка задачи линейной интерполяции	46			
	§16.2. Вычисление матрицы системы задачи линейной интерполяции	47			

$\S 16.3.$	Свойства прибли	гжающей функции	5		
§16.4.	Вычисление прав	вой части системы задачи линейной интер-			
	поляции		5		
-		НОГОЧЛЕНАМИ ЧЕБЫШЕВА МЕТО-			
ДОМ Н	АИМЕНЬШИХ 1	КВАДРАТОВ	5		
§17.1.	Интегральные сн	войства многочленов Чебышева	5		
§17.2.	Постановка зада	чи линейной интерполяции	5		
§17.3.	Вычисление коэс	ффициентов разложения	5		
§17.4.	Алгоритм вычис	ления коэффициентов разложения	6		
§17.5.	Оценка количест	ва арифметических операций	6		
-		ИИНТЕРПОЛЯЦИЯ НЕГЛАДКИХ ФУН-			
		НЫХ СЕТКАХ	6		
		СОЧНО-КУБИЧЕСКИМИ ФУНКЦИЯМИ	6		
§19.1.	Общая схема		6		
§19.2.	Алгоритм вычис	ления коэффициентов многочлена P_i	6		
$\S 19.3$.	Кусочная интерполяция кубическими многочленами Эрмита 6				
§19.4.	Кусочная интерг	поляция кубическими многочленами Бесселя	6		
§19.5.	-	поляция кубическими многочленами мето-	7		
§19.6.		поляция кубическими многочленами с ис-			
ō		зделенных разностей	7		
§19.7.	Интерполяция к	убическими сплайнами	7		
§19.8.	Определение нед	остающих граничных условий	7		
	•	иение недостающих граничных условий по ым значениям первой производной функ-			
	ции в гј	раничных узлах	7		
	•	иение недостающих граничных условий по ым значениям второй производной функ-			
	ции в гј	раничных узлах	7		
	§19.8.3. "Естест	венные" граничные условия	7		
	§19.8.4. Условие	е "отсутствия узла" в приграничных узлах	7		
	§19.8.5. Дополн	ительный узел в приграничных узлах	7		
	§19.8.6. Экстраі	поляция в приграничных узлах	8		
§20. ИНТЕІ	ПОЛЯЦИЯ ПАР	РАБОЛИЧЕСКИМИ СПЛАЙНАМИ	8		
§20.1.	Общая схема		8		
$\S 20.2.$	Алгоритм вычис	ления коэффициентов многочлена P_i	8		
§20.3.	Интерполяция п	араболическими сплайнами	8		
§20.4.	Определение нед	остающих граничных условий	8		

СОДЕРЖАНИЕ 4

		§20.4.1.	Определение недостающих граничных условий по известным значениям первой производной функции в граничных узлах	
		§20.4.2.	Определение недостающих граничных условий по известным значениям второй производной функции в граничных узлах	
		§20.4.3.		
		§20.4.4.	Условие "отсутствия узла" в приграничных узлах	
		§20.4.5.	Дополнительный узел в приграничных узлах	
		§20.4.6.	Экстраполяция в приграничных узлах	
Гпава	н мі	9	приближения функций многих	
тлава		меннь	·	
§1.	инте	РПОЛЯЦ	ИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ ТЕН-	
3			ОИЗВЕДЕНИЯМИ	
	§1.1.	Постанс	вка задачи интерполяции тензорными произведени-	
		ями и т	еорема корректности	
	$\S 1.2.$	Оценка	числа арифметических операций	
	$\S 1.3.$	Алгорит	тм интерполяции тензорными произведениями	
	$\S 1.4.$	Програм	ммная реализация алгоритма	
	$\S 1.5.$	Интерполяции тензорными произведениями в случае мно-		
		гочленн	ой аппроксимации	
		$\S 1.5.1.$	Интерполяционный многочлен Лагранжа	
		$\S 1.5.2.$	Разделенные разности для функции многих пере-	
			менных	
		$\S 1.5.3.$	Интерполяционная формула Ньютона	
		$\S 1.5.4.$	Интерполяция "движущимися" многочленами	
		$\S 1.5.5.$	Интерполяция с кратными узлами	
		$\S 1.5.6.$	Разложение по многочленам Чебышева	
		§1.5.7.	Аппроксимация многочленами Чебышева методом наименьших квадратов	
	$\S 1.6.$	Интерпо	оляции тензорными произведениями в случае кусоч-	
		но-мног	очленной аппроксимации	
		§1.6.1.	Кусочно-линейная интерполяция	
		$\S 1.6.2.$	Кусочно-линейная аппроксимация методом наи-	
			меньших квадратов	
		$\S 1.6.3.$	Кусочно-кубическая интерполяция	
		$\S 1.6.4.$	Кусочно-квадратичная интерполяция	
$\S 2.$			ИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ МЕТО-	
	лом и	ОНЕЧН	ЫХ Э.ЛЕМЕНТОВ	

<u>СОДЕРЖАНИЕ</u> <u>5</u>

$\S 2.1.$	Постано	овка задачи линейной интерполяции	111
$\S 2.2.$	Способь	ы построения триангуляции области	112
$\S 2.3.$	Прибли	жение функций в треугольнике	113
	$\S 2.3.1.$	Постановка задачи линейной интерполяции	113
	$\S 2.3.2.$	Приближение функций в прямоугольном треу-	
		гольнике	114
	$\S 2.3.3.$	Приближение линейными функциями	115
	$\S 2.3.4.$	Приближение квадратическими функциями	117
	$\S 2.3.5.$	Приближение кубическими функциями	120
ΠΡΟΓΡΑΜΜ	А КУР	CA	124
питерату	PΔ		190

ПРЕДИСЛОВИЕ

Настоящее пособие содержит описания алгоритмов, предлагаемых к реализации на ЭВМ студентам механико-математического факультета МГУ на занятиях по "Практикуму на ЭВМ". Для всех алгоритмов приводится необходимое теоретическое обоснование, соответствующие расчетные соотношения и рекомендации по их практическому осуществлению на ЭВМ (организация процесса вычислений, хранения данных и результатов в памяти ЭВМ и т.п.).

Многообразие алгоритмов объясняется, с одной стороны, необходимостью обеспечить преподавателей достаточным набором задач для проведения занятий, а с другой стороны, желанием продемонстрировать различные подходы к решению задачи приближения функций. Алгоритмы имеют разную точность, дают разную гладкость приближающей функции, имеют разную чувствительность к погрешностям во входных данных. "Самого лучшего" метода приближения не существует, и выбор алгоритма зависит от конкретной задачи. Этот выбор будет различным, например, для аппроксимации аналитически заданной функции сложного вида и для обработки результатов измерений физической величины.

Подбор алгоритмов для Практикума диктовался, в основном, возможностью реализации их студентами при существующих ресурсах времени на ЭВМ, что привело к отказу от рассмотрения усложненных подходов. Часть описанных алгоритмов вытеснена из широкой вычислительной практики более эффективными (и более сложными) алгоритмами, рассмотреть которые в курсе "Практикум на ЭВМ" не представляется возможным. Тем не менее, эти алгоритмы представляют интерес для решения определенного круга задач и включены в пособие.

Форма отчетности студентов по Практикуму призвана стимулировать как развитие практических навыков решения математических задач с помощью компьютера, так и создание определенного кругозора в области существующих методов решения поставленной задачи. Поэтому в рамках Практикума студентам предлагается как разработать программу на ЭВМ, реализующую заданный алгоритм, так и письменно ответить хотя бы на половину вопросов из предложенного варианта, составленного из вопросов, приведенных в конце пособия.

В основе настоящего пособия лежат материалы лекций, читавшихся автором в течении 4-х лет в рамках факультативного курса "Практикум на ЭВМ". В электронном варианте оно уже более 5-ти лет используется при проведении занятий со студентами в дисплейном классе.

Предложения, замечания и отмеченные опечатки просьба сообщать автору на кафедру вычислительной математики.

Глава І.

МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

§ 1. ПОСТАНОВКА ЗАДАЧИ ЛИНЕЙНОЙ ИНТЕРПОЛЯЦИИ

Пусть задана функция $f: X \to Y$, $f \in F(X,Y)$ – некоторому функциональному пространству, набор функций $g_1, \ldots, g_n, g_i: X \to Y, g_i \in F(X,Y)$, и набор линейных функционалов $\lambda_1, \ldots, \lambda_m$ на пространстве F(X,Y). Требуется построить аппроксимацию Pf функции f вида

$$Pf = \sum_{j=1}^{n} \alpha_j g_j \tag{1}$$

такую, чтобы были выполнены линейные условия интерполяции

$$\lambda_i(Pf) = \lambda_i(f), \quad i = 1, \dots, m. \tag{2}$$

Задача построения такой Pf называется задачей линейной интерполяции.

Пример 1. Интерполяция по набору многочленов. $X = [a,b], Y = \mathbf{R}^1, F(X,Y) = C([a,b]), g_i(x) = x^i, i = 1, \ldots, n$.

Пример 2. Поточечная интерполяция. $X = [a, b], Y = \mathbf{R}^1, F(X, Y) = C([a, b]), \lambda_i(f) = f(x_i),$ где x_1, \ldots, x_m – набор точек на [a, b].

Пример 3. $X=[a,b],\ Y=\mathbf{R}^1,\ F(X,Y)=L_1([a,b]),\ \lambda_i(f)=\int\limits_{x_i}^{x_{i+1}}f(x)\,dx$, где x_1,\ldots,x_m — набор точек на [a,b].

Определение. Задача линейной интерполяции называется корректной, если ее решение (т.е. набор коэффициентов α_i) существует и единственно для всякой функции $f \in F(X,Y)$.

Обозначим

$$G(X,Y) = \langle g_j \rangle_{j=1,\dots,n} = \left\{ \sum_{j=1}^n \alpha_j g_j : \alpha = (\alpha_j)_{j=1,\dots,n} \in \mathbf{R}^n \right\} \subset F(X,Y),$$

$$\Lambda(X,Y) = \langle \lambda_i \rangle_{i=1,\dots,m} = \left\{ \sum_{i=1}^n \beta_i \lambda_i : \beta = (\beta_i)_{j=i,\dots,m} \in \mathbf{R}^m \right\} \subset F^*(X,Y).$$

Если функции g_1,\ldots,g_n линейно независимы и функционалы $\lambda_1,\ldots,\lambda_m$ линейно независимы, т.е. образуют базисы пространств G(X,Y) и $\Lambda(X,Y)$ соответственно, то задача линейной интерполяции может быть поставлена в эквивалентной форме: для заданной $f\in F(X,Y)$ найти $g=Pf\in G(X,Y)$ такую, что $\lambda(f)=\lambda(g)$ для всех $\lambda\in\Lambda(X,Y)$.

Теорема 1. Пусть функции g_1, \ldots, g_n линейно независимы и функционалы $\lambda_1, \ldots, \lambda_m$ линейно независимы.

1. Тогда задача линейной интерполяции корректна в том и только в том случае, когда m=n и матрица

$$A = (\lambda_i(g_i)), \quad i = 1, \dots, m, \ j = 1, \dots, n$$
 (3)

обратима.

2. Если задача линейной интерполяции корректна, то интерполирующая функция представляется в виде

$$Pf = \sum_{j=1}^{n} \alpha_{j} g_{j}, \quad \epsilon \partial e \quad \alpha = (\alpha_{j})_{j=1,\dots,n} = A^{-1} \left((\lambda_{i}(f))_{i=1,\dots,n} \right).$$
 (4)

3. Если задача линейной интерполяции корректна, то оператор $P: F(X,Y) \to G(X,Y)$ является идемпотентным (т.е. $P^2 = P$ и, следовательно, $\operatorname{Im} P \cap \operatorname{Ker} P = 0, \ Pf = f$ для всех $f \in G(X,Y)$).

Доказательство.

1. Из (1), (2) следует, что $Pf = \sum\limits_{j=1}^n \alpha_j g_j$ является решением задачи линейной интерполяции тогда и только тогда, когда

$$\lambda_i\left(\sum_{j=1}^n lpha_j g_j
ight) = \lambda_i(f)$$
 для всех $i=1,\ldots,m,$

или

$$\sum_{j=1}^n lpha_j \lambda_i(g_j) = \lambda_i(f)$$
 для всех $i=1,\ldots,m$.

Другими словами

$$\sum_{j=1}^{n} a_{ij} \alpha_j = \lambda_i(f) \quad \text{для всех} \quad i = 1, \dots, m,$$

где
$$a_{ij} = \lambda_i(g_j), A = (a_{ij}),$$
 т.е.

$$A\alpha = (\lambda_i(f))_{i=1,\dots,m},\tag{5}$$

где $\alpha = (\alpha_j)_{j=1,\dots,n}$. Следовательно, задача линейной интерполяции корректна тогда и только тогда, когда система линейных уравнений (5) имеет единственное решение для всякой $f \in F(X,Y)$. Следовательно, матрица A осуществляет биективное соответствие между множеством

$$\{(\lambda_i(f))_{i=1,\dots,m}: f \in F(X,Y)\} \subset \mathbf{R}^m$$

и множеством

$$\{\alpha : \alpha - \text{ решение } (5)\} \subset \mathbf{R}^n.$$

Как известно из курса математического анализа (или курса алгебры) это означает m=n и существование A^{-1} .

(Для полноты изложения дадим доказательство этого факта.

Пусть A необратима. Если m>n, то существует нетривиальная линейная комбинация столбцов $(n\times m)$ -матрицы A, равная нулю, т.е. существует $\alpha\neq 0$ такое, что $A\alpha=0$. Так как $\{g_j\}_{j=1,\dots,n}$ – линейно независимы, то $g=\sum\limits_{i=1}^n\alpha_ig_i\neq 0$.

Следовательно, для $f \equiv 0$ задача линейной интерполяции имеет два решения: g и 0. Это противоречит ее корректности.

Если m < n, то существует нетривиальная линейная комбинация строк $(n \times m)$ -матрицы A, равная нулю, т.е. существует $\alpha \neq 0$ такое, что $\alpha^t A^t = 0$. Так как $\{\lambda_i\}_{i=1,\dots,m}$ – линейно независимы, то $\lambda = \sum\limits_{i=1}^m \alpha_i \lambda_i \neq 0$. Из равенства $\alpha^t A^t = 0$ получаем

$$\lambda(g_j) = \sum_{i=1}^m \alpha_i \lambda_i(g_j) = \sum_{i=1}^m \alpha_i a_{ij} = 0$$

для всех $j=1,\ldots,n$. Поскольку λ — ненулевой функционал на F(X,Y), то существует $f\in F(X,Y)$ такая, что $\lambda(f)\neq 0$. Тогда для этой функции f задача линейной интерполяции не имеет решения, так как $\lambda(f)\neq 0=\lambda(g_j)$ для всех $j=1,\ldots,n$.)

- 2. Второе утверждение теоремы следует из (5).
- 3. Пусть g=Pf, где $f\in G(X,Y)$. Поскольку $\{g_j\}_{j=1,\dots,n}$ базис G(X,Y), то $f=\sum\limits_{j=1}^n\alpha_jg_j$, $g=Pf=\sum\limits_{j=1}^n\beta_jg_j$, причем по доказанному свойству (4)

$$\beta = A^{-1} \left(\lambda_i(f) \right) = A^{-1} \left(\lambda_i \left(\sum_{j=1}^n \alpha_j g_j \right) \right) = A^{-1} \left(\sum_{j=1}^n \alpha_j \lambda_i(g_j) \right) =$$

$$= A^{-1} \left(\sum_{j=1}^n \alpha_j a_{ij} \right) = A^{-1} \left(A\alpha \right) = \alpha,$$

т.е. $\beta=\alpha$ и потому g=f. Поэтому Pf=f и $P^2=P$, так как $Pf\in G(X,Y)$ для всех $f\in F(X,Y)$.

§ 2. ОБУСЛОВЛЕННОСТЬ БАЗИСА

При вычислении коэффициентов $\{\alpha_j\}_{j=1}^n$ разложения функции $Pf \in F(X,Y)$ по базису $\{g_j\}_{j=1}^n$ пространства $G(X,Y) \subset F(X,Y)$, $g=Pf=\sum\limits_{j=1}^n \alpha_j g_j$ неизбежны вычислительные погрешности. Их влияние на результат – функцию g характеризуется числом обусловленности.

Пусть в подпространстве $G(X,Y) \subset F(X,Y)$ введена норма $\|\cdot\|_G$, а в пространстве \mathbf{R}^n зафиксирована некоторая норма $\|\cdot\|_{\mathbf{R}^n}$. Введем

$$m = \min_{\alpha \in \mathbf{R}^n} \frac{\left\| \sum_{j=1}^n \alpha_j g_j \right\|_G}{\|\alpha\|_{\mathbf{R}^n}}, \quad M = \max_{\alpha \in \mathbf{R}^n} \frac{\left\| \sum_{j=1}^n \alpha_j g_j \right\|_G}{\|\alpha\|_{\mathbf{R}^n}}.$$

Тогда для всякого $\alpha \in \mathbf{R}^n$

$$m\|\alpha\|_{\mathbf{R}^n} \le \left\| \sum_{j=1}^n \alpha_j g_j \right\|_G \le M\|\alpha\|_{\mathbf{R}^n}. \tag{1}$$

Пусть вместо точного вектора коэффициентов разложения α получен приближенный $\widehat{\alpha}=\alpha+\varepsilon$. Следовательно, вместо функции $g=\sum\limits_{i=1}^n\alpha_ig_i$ будем иметь

$$\widehat{g} = \sum_{j=1}^{n} (\alpha_j + \varepsilon_j) g_j = \sum_{j=1}^{n} \alpha_j g_j + \sum_{j=1}^{n} \varepsilon_j g_j = g + g_{\varepsilon}$$
, где $g_{\varepsilon} = \sum_{j=1}^{n} \varepsilon_j g_j$. Из (1) имеем

$$m\|\varepsilon\|_{\mathbf{R}^n} \le \|g_\varepsilon\|_G \le M\|\varepsilon\|_{\mathbf{R}^n}, \qquad m\|\alpha\|_{\mathbf{R}^n} \le \|g\|_G \le M\|\alpha\|_{\mathbf{R}^n}.$$

Отсюда

$$\frac{m}{M} \frac{\|\varepsilon\|_{\mathbf{R}^n}}{\|\alpha\|_{\mathbf{R}^n}} \le \frac{\|g_{\varepsilon}\|_G}{\|g\|_G} \le \frac{M}{m} \frac{\|\varepsilon\|_{\mathbf{R}^n}}{\|\alpha\|_{\mathbf{R}^n}}.$$

Определение. Числом обусловленности базиса $\{g_j\}_{j=1}^n$ называется

$$\operatorname{cond}(g_j) = \frac{M}{m}.$$

С использованием этого определения и соотношений $g_{\varepsilon}=\widehat{g}-g$ и $\varepsilon=\widehat{\alpha}-\alpha$ последнее неравенство перепишется в виде

$$\frac{1}{\operatorname{cond}(g_j)} \frac{\|\widehat{\alpha} - \alpha\|_{\mathbf{R}^n}}{\|\alpha\|_{\mathbf{R}^n}} \le \frac{\|\widehat{g} - g\|_G}{\|g\|_G} \le \operatorname{cond}(g_j) \frac{\|\widehat{\alpha} - \alpha\|_{\mathbf{R}^n}}{\|\alpha\|_{\mathbf{R}^n}}.$$

Это неравенство устанавливает связь между относительной погрешностью интерполирующей функции $\frac{\|\widehat{g}-g\|_G}{\|g\|_G}$ и относительной погрешностью коэффициинтов разложения $\frac{\|\widehat{\alpha}-\alpha\|_{\mathbf{R}^n}}{\|\alpha\|_{\mathbf{R}^n}}.$ Чем больше число обусловленности базиса, тем хуже он с вычислительной точки зрения.

§ 3. ИНТЕРПОЛЯЦИОННЫЙ МНОГОЧЛЕН ЛАГРАНЖА

В общей схеме линейной интерполяции (см. § 1) рассмотрим случай: $X = [a,b], Y = \mathbf{R}^1, F(X,Y) = C([a,b]).$

Пусть заданы точки $a=x_1 < x_2 < \ldots < x_n = b$ (называемые узлами интерполяции) и известны значения $f(x_1),\ldots,f(x_n)$. Выберем функции $g_i(x)\equiv l_i(x)=\prod\limits_{j=1,j\neq i}^n\frac{x-x_j}{x_i-x_j},\ i=1,\ldots,n$ (называемые элементарными многочленами Лагранжа) и функционалы $\lambda_i(f)=f(x_i),\ i=1,\ldots,n$. Тогда задача линейной интерполяции примет вид: для заданной (в точках $x_i,\ i=1,\ldots,n$) функции f найти $L(x)=(Pf)(x)=\sum\limits_{i=1}^n\alpha_i l_i(x)$ такую, что $L(x_i)=f(x_i)$ для всех $i=1,\ldots,n$.

Проверим, что функции l_1,\dots,l_n линейно независимы и функционалы $\lambda_1,\dots,\lambda_n$ линейно независимы. Действительно, если существует такое $\alpha\in\mathbf{R}^n,\ \alpha\neq0$, что $\sum\limits_{i=1}^n\alpha_il_i(x)=0$ для всех $x\in[a,b]$, то $\sum\limits_{i=1}^n\alpha_il_i(x_j)=0$ для всех $j=1,\dots,n$. Поскольку $l_i(x_j)=\delta_{ij}$, то отсюда получаем $\alpha_j=0$ для всех $j=1,\dots,n$, что противоречит $\alpha\neq0$. Аналогично, если существует такое $\alpha\in\mathbf{R}^n,\ \alpha\neq0$, что $\sum\limits_{i=1}^n\alpha_i\lambda_i(f)=0$ для всех $f\in C([a,b])$, то $\sum\limits_{i=1}^n\alpha_i\lambda_i(l_j)=0$ для всех $j=1,\dots,n$. Поскольку $\lambda_i(l_j)=\delta_{ij}$, то отсюда получаем $\alpha_j=0$ для всех $j=1,\dots,n$, что противоречит $\alpha\neq0$.

Таким образом, применима теорема 1.1. Матрица (1.3) – единичная (A = I), поскольку $\lambda_i(l_j) = \delta_{ij}$. Следовательно, задача линейной интерполяции корректна, и ее решение в силу (1.4) представляется в виде

$$L(x) = \sum_{i=1}^{n} f(x_i) l_i(x) = \sum_{i=1}^{n} f(x_i) \prod_{\substack{j=1\\j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}.$$
 (1)

По теореме 1.1 построенный многочлен L – единственный из $\langle l_i \rangle_{i=1,\dots,n}$, удовлетворяющий условиям интерполяции. Покажем, что L – единственный из всех многочленов степени n-1, удовлетворяющий условиям интерполяции.

Действительно, пусть $\hat{L} \in \mathcal{P}_{n-1}$ – пространству многочленов степени n-1 и удовлетворяет условиям интерполяции: $\hat{L}(x_i) = f(x_i), \ i = 1, \ldots, n$. Тогда $L - \hat{L} \in \mathcal{P}_{n-1}$ и $L(x_i) - \hat{L}(x_i) = f(x_i) - f(x_i) = 0$ для всех $i = 1, \ldots, n$, т.е. имеет n нулей в точках x_1, \ldots, x_n . Следовательно, $L - \hat{L} \equiv 0$.

Лемма 1. (Без доказательства). Обусловленность базиса из элементарных многочленов Лагранжа в случае равномерно распределенных точек x_i не менее const $e^{n/2}$.

Оценка числа арифметических операций

Оценим число арифметических операций, требуемых на вычисление значения многочлена Лагранжа в точке x по формуле (1). На вычисление каждого из $l_i(x)$ требуется 2(n-1) операций вычитания, 2(n-2) операций умножения и одна операция деления. Таким образом, для вычисления $l_1(x),\ldots,l_n(x)$ требуется 2n(n-1) операций сложения, 2n(n-2) операций умножения и n операций деления. Для вычисления $L(x) = \sum\limits_{i=1}^n f(x_i)l_i(x)$ требуется еще (n-1) операций сложения и n операций умножения. Общее число операций: $2n^2 + O(n)$ $(n \to \infty)$ аддитивных и столько же мультипликативных операций.

Число арифметических операций, требуемых на вычисление значения многочлена Лагранжа в точке x по формуле (1), может быть легко уменьшено в два раза.

1. Вычислим $Y_i = f(x_i) \frac{1}{\prod\limits_{j=1, j \neq i}^n (x_i - x_j)}$ для всех $i=1, \ldots, n$ (Y_i можно хра-

нить на месте $f(x_i)$). На это требуется n(n-1) аддитивных и столько же мультипликативных операций.

- 2. Вычислим $\varphi(x) = \prod\limits_{i=1}^n (x-x_i)$. На это требуется n аддитивных и n-1 мультипликативных операций.
- 3. Вычислим $L(x) = \varphi(x) \sum_{i=1}^{n} \frac{Y_i}{x x_i}$. На это требуется n-1 аддитивных и n+1 мультипликативных операций. (Из этой формулы также видно, что Y_i можно не запоминать, а вычислять по мере необходимости).

Общее число операций: $n^2 + O(n)$ $(n \to \infty)$ аддитивных и столько же мультипликативных операций.

Вычисление по формуле (1) (и первым, и вторым способами) требует больших вычислительных затрат и приводит к появлению большой вычислительной погрешности. Поэтому были разработаны другие способы вычисления интерполяционного многочлена Лагранжа.

§ 4. РАЗДЕЛЕННЫЕ РАЗНОСТИ

Пусть заданы точки $a=x_1 < x_2 < \ldots < x_n = b$, функция $f \in C([a,b])$ и известны значения $f(x_1),\ldots,f(x_n)$.

Определение. Pазdеленной pазностью функции f нулевого порядка называется $f(x_i) = f(x_i)$, разделенной разностью 1-го порядка называется $f(x_i; x_j) = \frac{f(x_j) - f(x_i)}{x_j - x_i}$, разделенной разностью k-го порядка называется

$$f(x_i; \dots; x_{i+k}) = \frac{f(x_{i+1}; \dots; x_{i+k}) - f(x_i; \dots; x_{i+k-1})}{x_{i+k} - x_i}.$$
 (1)

Свойства разделенных разностей

Лемма 1. Справедливо представление

$$f(x_i; \dots; x_{i+k}) = \sum_{j=i}^{i+k} \frac{f(x_j)}{\prod_{\substack{l=i\\l\neq j}}^{i+k} (x_j - x_l)}.$$
 (2)

Доказательство. При k=0 равенство (2) имеет вид $f(x_i)=f(x_i)$ и потому верно. При k=1 равенство (2) имеет вид

$$f(x_i; x_{i+1}) = \frac{f(x_i)}{x_i - x_{i+1}} + \frac{f(x_{i+1})}{x_{i+1} - x_i} = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$

и верно в силу определения (1) разделенной разности.

Пусть равенство (2) верно при некотором k. Покажем, что оно верно при k+1 (тем самым лемма будет доказана по индукции). В силу определения (1) разделенной разности

$$f(x_i; \dots; x_{i+k+1}) = \frac{f(x_{i+1}; \dots; x_{i+k+1}) - f(x_i; \dots; x_{i+k})}{x_{i+k+1} - x_i} = \frac{1}{x_{i+k+1} - x_i} \left(\sum_{\substack{j=i+1 \ l \neq j}}^{i+k+1} \frac{f(x_j)}{\prod\limits_{\substack{l=i \ l \neq j}}^{i+k+1}} - \sum_{j=i}^{i+k} \frac{f(x_j)}{\prod\limits_{\substack{l=i \ l \neq j}}^{i+k}} (x_j - x_l) \right)$$

Вычислим коэффициенты при $f(x_i)$, $f(x_j)$, $j = i+1, \ldots, i+k$, $f(x_{i+k+1})$, и покажем, что они совпадают с соответствующими коэффициентами в равенстве (2).

1. Коэффициент при $f(x_i)$ равен

$$\frac{1}{x_{i+k+1} - x_i} \left(-\frac{1}{\prod_{\substack{i+k \ l = i \ l \neq i}}^{i+k} (x_i - x_l)} \right) = \frac{1}{x_i - x_{i+k+1}} \frac{1}{\prod_{\substack{i=k \ l \neq i}}^{i+k} (x_i - x_l)} = \frac{1}{\prod_{\substack{l=i \ l \neq i}}^{i+k+1} (x_i - x_l)}.$$

2. Коэффициент при $f(x_j), \ j = i+1, \dots, i+k$ равен

$$\frac{1}{x_{i+k+1} - x_i} \begin{pmatrix} \frac{1}{i+k+1} & -\frac{1}{i+k} \\ \prod_{\substack{l=i+1\\l \neq j}} (x_j - x_l) & \prod_{\substack{l=i\\l \neq j}} (x_j - x_l) \end{pmatrix} =$$

$$= \frac{1}{x_{i+k+1} - x_i} \frac{1}{\prod_{\substack{l=i+1\\l \neq j}}^{i+k} (x_j - x_l)} \left(\frac{1}{x_j - x_{i+k+1}} - \frac{1}{x_j - x_i} \right) =$$

$$= \frac{1}{x_{i+k+1} - x_i} \frac{1}{\prod_{\substack{l=i+1\\l \neq j}}^{i+k} (x_j - x_l)} \frac{x_{i+k+1} - x_i}{(x_j - x_{i+k+1})(x_j - x_i)} = \frac{1}{\prod_{\substack{l=i\\l \neq i}}^{i+k+1} (x_j - x_l)}.$$

3. Коэффициент при $f(x_{i+k+1})$ равен

$$\frac{1}{x_{i+k+1} - x_i} \frac{1}{\prod_{\substack{l=i+1\\l \neq i+k+1}}^{i+k+1} (x_{i+k+1} - x_l)} = \frac{1}{\prod_{\substack{l=i\\l \neq i+k+1}}^{i+k+1} (x_{i+k+1} - x_l)}.$$

Таким образом, коэффициент при $f(x_j), j = i, ..., i + k + 1$ равен

$$\frac{1}{\prod\limits_{\substack{l=i\\l\neq j}}^{i+k+1}(x_j-x_l)}$$

и потому

$$f(x_i; \dots; x_{i+k+1}) = \sum_{\substack{j=i\\j \neq i}}^{i+k+1} \frac{f(x_j)}{\prod\limits_{\substack{l=i\\l \neq j}}^{i+k+1} (x_j - x_l)}.$$

Лемма доказана.

Лемма 2. Разделенная разность $f(x_i; ...; x_{i+k})$ является симметричной функцией своих аргументов.

Доказательство вытекает из равенства (2).

Пемма 3. Для всех $i \le s, r \le i + k, s \ne r$ справедливо равенство

$$f(x_i; \dots; x_{i+k}) = \frac{f(x_i; \dots; x_{r-1}; x_{r+1}; \dots; x_{i+k}) - f(x_i; \dots; x_{s-1}; x_{s+1}; \dots; x_{i+k})}{x_s - x_r}.$$

Доказательство. Без ограничения общности будем считать, что r < s. Обозначим

$$y_i = x_r, y_{j+1} = x_j, j = i, \dots, r-1, y_j = x_j, j = r+1, \dots, s-1,$$

 $y_i = x_{j+1}, j = s, \dots, i+k-1, y_{i+k} = x_s.$

Индексы точек y получаются из индексов точек x путем действия перестановки

$$\begin{pmatrix} i & i+1 \dots r-1 & r & r+1 & \dots & s-1 & s & s+1 & \dots & i+k \\ i+1 & i+2 & \dots & r & i & r+1 & \dots & s-1 & i+k & s & \dots & i+k-1 \end{pmatrix}$$

(подходит любая обратимая перестановка, такая, что $y_i = x_r$ и $y_{i+k} = x_s$). В силу симметричности разделенной разности и определения (1)

$$f(x_i; \dots; x_{i+k}) = f(y_i; \dots; y_{i+k}) = \frac{f(y_{i+1}; \dots; y_{i+k}) - f(y_i; \dots; y_{i+k-1})}{y_{i+k} - y_i} = \frac{f(x_i; \dots; x_{r-1}; x_{r+1}; \dots; x_{i+k}) - f(x_i; \dots; x_{s-1}; x_{s+1}; \dots; x_{i+k})}{x_s - x_r}.$$

Лемма доказана.

Лемма 4. Pазделенная разность $f(x_i; ...; x_{i+k})$ является линейным функционалом от f, т.е. для всяких $\alpha, \beta \in \mathbf{R}^1$

$$(\alpha f + \beta g)(x_i; \dots; x_{i+k}) = \alpha f(x_i; \dots; x_{i+k}) + \beta g(x_i; \dots; x_{i+k}).$$

Доказательство вытекает из равенства (2).

Обозначим через L_m интерполяционный многочлен Лагранжа (для функции f), построенный по точкам x_1, \ldots, x_m (степени m-1).

Лемма 5. Справедливо представление

$$L_{k+1}(x) = L_k(x) + f(x_1; \dots; x_{k+1})(x - x_1) \dots (x - x_k).$$
(3)

Доказательство. Рассмотрим $P(x) = L_{k+1}(x) - L_k(x)$ – многочлен степени k. Поскольку $P(x_i) = L_{k+1}(x_i) - L_k(x_i) = f(x_i) - f(x_i) = 0$ для всех $i = 1, \ldots, k$ (т.е. x_1, \ldots, x_k есть (все) корни многочлена P степени k), то $P(x) = A(x - x_1) \ldots (x - x_k)$, A – постоянная, значение которой может быть определено из условия

$$A(x_{k+1} - x_1) \dots (x_{k+1} - x_k) = P(x_{k+1}) = L_{k+1}(x_{k+1}) - L_k(x_{k+1}) =$$

$$= f(x_{k+1}) - L_k(x_{k+1}) = f(x_{k+1}) - \sum_{j=1}^k f(x_j) \prod_{\substack{i=1\\i\neq j}}^k \frac{x_{k+1} - x_i}{x_j - x_i} =$$

$$= f(x_{k+1}) + \sum_{j=1}^k f(x_j) \frac{x_{k+1} - x_j}{x_j - x_{k+1}} \prod_{\substack{i=1\\i\neq j}}^k \frac{x_{k+1} - x_i}{x_j - x_i} =$$

$$= f(x_{k+1}) + \sum_{j=1}^k f(x_j) \frac{\prod_{\substack{i=1\\k+1\\i\neq j}}^k (x_{k+1} - x_i)}{\prod_{\substack{i=1\\i\neq j}}^k (x_j - x_i)} =$$

$$= \left(f(x_{k+1}) \frac{1}{\prod_{\substack{i=1\\i\neq j}}^k (x_{k+1} - x_i)} + \sum_{j=1}^k f(x_j) \frac{1}{\prod_{\substack{i=1\\i\neq j}}^k (x_j - x_i)} \right) \prod_{\substack{i=1\\i=1\\i\neq j}}^k (x_{k+1} - x_i) =$$

$$= \sum_{j=1}^{k+1} \frac{f(x_j)}{\prod\limits_{\substack{i=1\\i\neq j}}^{k+1} (x_j - x_i)} \prod_{i=1}^{k} (x_{k+1} - x_i) = f(x_1; \dots; x_{k+1})(x_{k+1} - x_1) \dots (x_{k+1} - x_k)$$

(в последнем равенстве мы использовали лемму 1). Из этого уравнения находим: $A = f(x_1; \ldots; x_{k+1})$. Следовательно, $L_{k+1}(x) - L_k(x) = f(x_1; \ldots; x_{k+1})(x - x_1) \ldots (x - x_k)$.

Будем обозначать (когда это не приводит к путанице) через L_k интерполяционный многочлен Лагранжа степени k-1, построенный по k точкам x_i, \ldots, x_{i+k-1} . Тогда лемма 5 может быть записана в виде:

$$L_{k+1}(x) = L_k(x) + f(x_i; \dots; x_{i+k})(x - x_i) \dots (x - x_{i+k-1}), \tag{4}$$

где L_{k+1} интерполяционный многочлен Лагранжа степени k, построенный по k+1 точке x_i,\ldots,x_{i+k} .

Лемма 6. Пусть $y_1 = \min\{x_i, \ldots, x_{i+k}\}$, $y_2 = \max\{x_i, \ldots, x_{i+k}\}$ и $f \in C^{(k)}([y_1, y_2])$. Тогда существует $\xi \in [y_1, y_2]$ такое, что

$$f(x_i; \dots; x_{i+k}) = \frac{f^{(k)}(\xi)}{k!}.$$
 (5)

Доказательство. Построим для для функции f(x) интерполяционный многочлен $L_{k+1}(x)$ степени k по k+1 точке x_i, \ldots, x_{i+k} (т.е. $L_{k+1}(x_j) = f(x_j)$, $j = i, i+1, \ldots, i+k$), для чего воспользуемся (5):

$$L_{k+1}(x) = L_k(x) + f(x_i; \dots; x_{i+k})(x - x_i) \dots (x - x_{i+k-1}),$$
(6)

где L_k интерполяционный многочлен Лагранжа степени k-1, построенный по k точкам x_i,\dots,x_{i+k-1} . Для функции

$$\varphi(x) = f(x) - L_{k+1}(x) \tag{7}$$

имеем в силу построения L_{k+1}

$$\varphi(x_j) = f(x_j) - L_{k+1}(x_j) = f(x_j) - f(x_j) = 0$$
, для всех $j = i, \dots, i + k$,

т.е. φ имеет не менее k+1 нуля на отрезке $[y_1,y_2]$.

По теореме Ролля производная φ' имеет не менее k нулей на отрезке $[y_1,y_2]$. По теореме Ролля, примененной к функции φ' , функция φ'' имеет не менее k-1 нуля на отрезке $[y_1,y_2]$. Продолжая так и дальше, находим, что функция $\varphi^{(k)}$ имеет по крайней мере один нуль на отрезке $[y_1,y_2]$. Обозначим его $\xi \colon \varphi^{(k)}(\xi) = 0, \ \xi \in [y_1,y_2]$. В силу (7)

$$\varphi^{(k)}(\xi) = f^{(k)}(\xi) - L_{k+1}^{(k)}(\xi) = 0,$$

в силу (6)

$$L_{k+1}^{(k)}(\xi) = k! f(x_i; \dots; x_{i+k})$$

(так как k-я производная многочлена L_k степени k-1 равна нулю, а k-я производная многочлена L_{k+1} степени k равна его старшему коэффициенту, умноженному на k!). Из последних двух равенств получаем

$$f^{(k)}(\xi) = k! f(x_i; \dots; x_{i+k}),$$

откуда вытекает требуемое равенство (5).

§ 5. ИНТЕРПОЛЯЦИОННАЯ ФОРМУЛА НЬЮТОНА

Пусть требуется построить $L_n(x)$ – интерполяционный многочлен Лагранжа степени n-1 по точкам x_1, \ldots, x_n . Представим его в виде

$$L_n(x) = L_1(x) + (L_2(x) - L_1(x)) + \ldots + (L_n(x) - L_{n-1}(x))$$

и применим здесь в каждом слагаемом лемму 4.5. Получим

$$L_n(x) = f(x_1) + f(x_1; x_2)(x - x_1) + \dots + f(x_1; \dots; x_n)(x - x_1) \dots (x - x_{n-1}).$$
 (1)

Такая запись интерполяционного многочлена Лагранжа называется *интерпо*ляционной формулой Ньютона.

Равенство (1) часто записывают в виде

$$L_n(x) = \sum_{i=1}^n (x - x_1) \dots (x - x_{i-1}) f(x_1; \dots; x_i),$$
 (2)

где $(x-x_1)\dots(x-x_{i-1})=\prod\limits_{j=1}^{i-1}(x-x_j)$ считается 1, если i=1.

Алгоритм вычисления интерполяционного многочлена в форме Ньютона

1. Вычисление разделенных разностей $f(x_1; ...; x_i), i = 1, ..., n$, участвующих в представлении (2) интерполяционного многочлена в форме Ньютона.

Пользуясь определением (4.1) разделенных разностей, заполняем таблицу

Столбцы вычисляются слева направо, элементы столбца вычисляются снизу вверх, стрелки указывают ячейку памяти, в которую помещается результат. По окончании вычислений на месте $f(x_i)$ будет лежать $f(x_1; ...; x_i)$.

2. Вычисление значения интерполяционного многочлена (Pf)(x) в точке осуществляется по схеме Горнера:

$$(Pf)(x) = f(x_1) + (x - x_1)(f(x_1; x_2) + (x - x_2)(f(x_1; x_2; x_3) + \dots + (x - x_{n-2})(f(x_1; \dots; x_{n-1}) + (x - x_{n-1})f(x_1; \dots; x_n)) \dots).$$

$$(3)$$

Оценка числа арифметических операций

- 1. На вычисление всех $f(x_1; \ldots; x_i)$, $i = 1, \ldots, n$ по изложенному выше алгоритму надо вычислить n(n-1)/2 разделенных разностей (элементов таблицы). Согласно их определению (4.1) для вычисления каждой требуется 2 вычитания и 1 деление. Общее количество операций: n(n-1) вычитаний и n(n-1)/2 делений.
- 2. Вычисление значения интерполяционного многочлена в точке по формуле (3) требует (n-1) умножений, (n-1) вычитаний и (n-1) сложений.

Отметим, что если требуется вычислить несколько значений интерполяционного многочлена (2) в различных точках, то разделенные разности $f(x_1; ...; x_i)$, i = 1, ..., n вычисляются только один раз. Значение многочлена в точке вычисляются затем по формуле (3).

§ 6. ИНТЕРПОЛЯЦИЯ "ДВИЖУЩИМИСЯ" МНОГОЧЛЕНАМИ

Пусть заданы точки $a = x_1 < x_2 < \ldots < x_n = b$, значения $f(x_1), \ldots, f(x_n)$ и целочисленный параметр $1 \le k \le n-1$. Интерполирующая функция Pf строится таким образом, что на каждом отрезке $[x_i, x_{i+1}], i = 1, \ldots, n-k$ она совпадает

с многочленом P_i степени k, таким, что $P_i(x_j) = f(x_j)$, $j = i, \ldots, i+k$ (т.е. P_i – интерполяционный многочлен Лагранжа степени k, построенный по точкам x_i, \ldots, x_{i+k}). На отрезке $[x_{n-k}, x_n]$ интерполирующая функция Pf совпадает с P_{n-k} – интерполяционным многочленом Лагранжа степени k, построенным по точкам x_{n-k}, \ldots, x_n .

По интерполяционной формуле Ньютона

$$P_i(x) = \sum_{j=i}^{i+k} (x - x_i) \dots (x - x_{j-1}) f(x_i; \dots; x_j).$$
 (1)

Коэффициенты P_i , $i=n-k,n-k-1,\ldots,1$ вычисляются с использованием таблицы разделенных разностей:

$$f(x_{1}) \qquad f(x_{1}; x_{2}) \qquad f(x_{2}; x_{3}) \qquad \dots \qquad f(x_{2}; x_{3}) \qquad \dots \qquad f(x_{1}; \dots; x_{k+1})$$

$$f(x_{3}) \qquad f(x_{2}; x_{3}) \qquad f(x_{2}; x_{3}; x_{4}) \qquad \dots \qquad f(x_{1}; \dots; x_{k+1})$$

$$f(x_{4}) \qquad f(x_{3}; x_{4}) \qquad \dots \qquad \vdots$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f(x_{n-k-1}) \langle \qquad f(x_{n-k-1}; x_{n-k}) \langle \qquad f(x_{n-k-1}; x_{n-k}; x_{n-k+1}) \dots \rangle \qquad \dots \qquad f(x_{n-k-1}; \dots; x_{n-1})$$

$$\vdots \qquad \vdots \qquad f(x_{n-k}; x_{n-k+1}; x_{n-k+2}) \dots \langle \qquad \vdots \qquad \vdots \qquad \dots \qquad f(x_{n-k}; \dots; x_{n})$$

$$f(x_{n-1}) \qquad f(x_{n-1}; x_{n}) \qquad f(x_{n-2}; x_{n-1}; x_{n}) \qquad \dots \rangle$$

Вначале вычисляются коэффициенты многочлена P_{n-k} :

$$f(x_{n-k}), f(x_{n-k}; x_{n-k+1}), \dots, f(x_{n-k}; \dots; x_n).$$

за k(k+1) вычитаний и k(k+1)/2 делений (поскольку P_{n-k} – интерполяционный многочлен, построенный по k+1 точке x_{n-k},\ldots,x_n). Затем таблица заполняется по диагонали: вычисляются

$$f(x_{n-k-1}), f(x_{n-k-1}; x_{n-k}), \dots, f(x_{n-k-1}; \dots; x_{n-1})$$

по формулам

$$f(x_{n-k-1}; \dots; x_{n-k+i}) = \frac{f(x_{n-k}; \dots; x_{n-k+i}) - f(x_{n-k-1}; \dots; x_{n-k+i-1})}{x_{n-k+i} - x_{n-k-1}},$$

$$i = 0, \dots, k-1$$

за 2k вычитаний и k делений (эту процедуру называют алгоритмом сдвига представления многочлена в форме Ньютона), и далее

$$f(x_{n-k-2}), f(x_{n-k-2}; x_{n-k-1}), \dots, f(x_{n-k-2}; \dots; x_{n-2}),$$

 $\dots \dots \dots \dots$
 $f(x_1), f(x_1; x_2), \dots, f(x_1; \dots; x_{k+1}).$

Всего надо заполнить n-k-1 диагоналей. На это потребуется 2k(n-k-1) вычитаний и k(n-k-1) делений. Общие затраты на вычисление всех коэффициентов: k(k+1)+2k(n-k-1)=2kn-k(k+1) вычитаний и k(k+1)/2+k(n-k-1)=kn-k(k+1)/2 делений.

Вычисление значения интерполирующей функции Pf в точке x осуществляется по следующему алгоритму. Определяем i из условия $x \in [x_i, x_{i+1}]$. Если i > n - k, то полагаем i = n - k. Тогда $(Pf)(x) = P_i(x)$. Вычисление значения многочлена (1) степении k в точке x осуществляется по схеме Горнера

$$P_{i}(x) = f(x_{i}) + (x - x_{i})(f(x_{i}; x_{i+1}) + (x - x_{i+1})(f(x_{i}; x_{i+1}; x_{i+2}) + \dots + (x - x_{i+k-2})(f(x_{i}; \dots; x_{i+k-1}) + (x - x_{i+k-1})f(x_{i}; \dots; x_{i+k})\underbrace{) \dots }_{k-1}$$

с затратой k вычитаний, k сложений и k умножений.

§ 7. ОЦЕНКИ ПОГРЕШНОСТИ ИНТЕРПОЛЯЦИОННОЙ ФОРМУЛЫ НЬЮТОНА

В этом разделе мы получим оценки погрешности интерполяции с помощью интерполяционного многочлена Лагранжа, записанного в форме Ньютона.

Теорема 1. Если $f \in C([a,b])$ и $\{x_i\}_{i=1}^n$ – последовательность точек на [a,b], то для всякого $x \in \mathbf{R}^1$

$$f(x) = L_n(x) + (x - x_1) \dots (x - x_n) f(x_1; \dots, x_n; x),$$
(1)

$$e \partial e \ L_n(x) = \sum_{i=1}^n (x - x_1) \dots (x - x_{i-1}) f(x_1; \dots; x_i).$$

Доказательство. Без ограничения общности можно считать, что $x \neq x_j$, $j = 1, \ldots, n$, поскольку в точках x_j погрешность интерполяции равна нулю и это соответствует (1).

При n=1 равенство (1) имеет вид

$$f(x) = f(x_1) + (x - x_1)f(x_1; x)$$

и справедливо в силу определения (4.1) разделенной разности.

Пусть равенство (1) доказано при n = k:

$$f(x) = L_k(x) + (x - x_1) \dots (x - x_k) f(x_1; \dots, x_k; x).$$
 (2)

В силу леммы (4.3)

$$f(x_1; \ldots; x_k; x_{k+1}, x) = \frac{f(x_1; \ldots; x_k; x) - f(x_1; \ldots; x_k; x_{k+1})}{x - x_{k+1}}.$$

Отсюда имеем

$$f(x_1; \dots; x_k; x) = f(x_1; \dots; x_k; x_{k+1}) + (x - x_{k+1})f(x_1; \dots; x_k; x_{k+1}, x).$$
 (3)

Подставим (3) в (2), получим

$$f(x) = L_k(x) + (x - x_1) \dots (x - x_k) f(x_1; \dots; x_{k+1}) + (x - x_1) \dots (x - x_{k+1}) f(x_1; \dots; x_k; x_{k+1}, x).$$

$$(4)$$

В силу леммы 4.5 справедливо представление (4.3)

$$L_k(x) + f(x_1; \dots; x_{k+1})(x - x_1) \dots (x - x_k) = L_{k+1}(x)$$

и потому (4) принимает вид

$$f(x) = L_{k+1}(x) + (x - x_1) \dots (x - x_{k+1}) f(x_1; \dots; x_k; x_{k+1}, x),$$

т.е. равенство (1) справедливо для n = k + 1. Тем самым теорема доказана по индукции.

Теорема 2. Если $f \in C^{(n)}([a,b])$ и $\{x_i\}_{i=1}^n$ – последовательность точек на [a,b], то для всякого $x \in [a,b]$ существует $\xi = \xi(x) \in [y_1,y_2]$ (где $y_1 = y_1(x) = \min\{x_1,\ldots,x_n,x\}$, $y_2 = y_2(x) = \max\{x_1,\ldots,x_n,x\}$) такое, что

$$f(x) = L_n(x) + (x - x_1) \dots (x - x_n) \frac{f^{(n)}(\xi)}{n!},$$
(5)

$$e \partial e \ L_n(x) = \sum_{i=1}^n (x - x_1) \dots (x - x_{i-1}) f(x_1; \dots; x_i).$$

Доказательство. По теореме 1

$$f(x) = L_n(x) + (x - x_1) \dots (x - x_n) f(x_1; \dots, x_n; x).$$
(6)

По лемме 4.6 существует $\xi = \xi(x) \in [y_1, y_2]$ (где $y_1 = y_1(x) = \min\{x_1, \dots, x_n, x\}$, $y_2 = y_2(x) = \max\{x_1, \dots, x_n, x\}$) такое, что

$$f(x_1; \dots; x_n; x) = \frac{f^{(n)}(\xi)}{n!}.$$

Подставляя это в (6), получаем требуемое равенство (5).

§ 8. РАЗДЕЛЕННЫЕ РАЗНОСТИ С КРАТНЫМИ УЗЛАМИ

Определение. Пусть задан набор точек x_i, \ldots, x_{i+k} (не обязательно различных). Разделенной разностью функции f нулевого порядка называется $f(x_i) = f(x_i)$, разделенной разностью k-го порядка называется

$$f(x_i; \dots; x_{i+k}) = \begin{cases} \frac{1}{k!} f^{(k)}(x_i), & \text{если } x_i = \dots = x_{i+k} \text{ и } f \in C^{(k)}, \\ \frac{f(x_i; \dots; x_{r-1}; x_{r+1}; \dots; x_{i+k}) - f(x_i; \dots; x_{s-1}; x_{s+1}; \dots; x_{i+k})}{x_s - x_r} \\ & \text{если существуют } x_s \neq x_r, \end{cases}$$
(1

(это определение корректно, т.е. не зависит от выбора точек x_r и x_s , в силу симметрии разделенной разности по своим аргументам, доказательство см. лемму 4.3).

Лемма 1. Если $f \in C^{(k)}$, то $f(x_i; ...; x_{i+k})$ является непрерывной функцией своих k+1 аргументов $x_i, ..., x_{i+k}$.

Доказательство. При k=0 разделенная разность $f(x_i)$ совпадает с $f(x_i)$, которая непрерывна по условию.

Пусть лемма доказана для разделенных разностей порядка k-1. Рассмотрим произвольную точку $(x_i; \ldots; x_{i+k}) \in \mathbf{R}^{k+1}$.

Если существуют $i \leq s, r \leq i+k$ такие, что $x_s \neq x_r$, то в силу определения (1) разделенная разность $f(x_i; \ldots; x_{i+k})$ непрерывна как линейная комбинация непрерывных (по предположению индукции) функций:

$$f(x_i; \dots; x_{i+k}) = \frac{f(x_i; \dots; x_{r-1}; x_{r+1}; \dots; x_{i+k}) - f(x_i; \dots; x_{s-1}; x_{s+1}; \dots; x_{i+k})}{x_s - x_r}.$$

Если $x_i = \ldots = x_{i+k}$, то по определению (1)

$$f(x_i; \dots; x_{i+k}) = \frac{1}{k!} f^{(k)}(x_i).$$

Поскольку по условию $f^{(k)}$ непрерывна, то для всякого $\varepsilon>0$ существует $\delta=\delta(\varepsilon)>0$ такое, что для всех $\xi,\ |x_i-\xi|<\delta$

$$|f^{(k)}(x_i) - f^{(k)}(\xi)| < \varepsilon.$$

Пусть $(x_i'; \ldots; x_{i+k}') \in \mathbf{R}^{k+1}$ — произвольная точка, такая, что $|x_j' - x_i| < \delta$, $j = i, i+1, \ldots, i+k$. В силу леммы 4.6 существует $\xi \in [y_1, y_2]$ (где $y_1 = \min\{x_i', \ldots, x_{i+k}'\}$), $y_2 = \max\{x_i', \ldots, x_{i+k}'\}$) такое, что

$$f(x'_i; \dots; x'_{i+k}) = \frac{f^{(k)}(\xi)}{k!}.$$

Так как по выбору $(x_i';\ldots;x_{i+k}')\in\mathbf{R}^{k+1}\ [y_1,y_2]\subset(x_i-\delta,x_i+\delta),$ то

$$|f(x_i; \ldots; x_{i+k}) - f(x_i'; \ldots; x_{i+k}')| = \frac{1}{k!} |f^{(k)}(x_i) - f^{(k)}(\xi)| < \frac{1}{k!} \varepsilon,$$

что и означает непрерывность разделенной разности в точке $(x_i; \ldots; x_{i+k})$.

§ 9. ИНТЕРПОЛЯЦИЯ С КРАТНЫМИ УЗЛАМИ

Пусть заданы точки $a=x_1 < x_2 \ldots < x_n=b$ и значения $f^{(i)}(x_j), i=0,\ldots,m_j-1,\ j=1,\ldots,n$. Требуется построить интерполяционный многочлен $L_m=Pf$ степени $m-1=\sum\limits_{i=1}^n m_i-1$ такой, что

$$L_m^{(i)}(x_j) = f^{(i)}(x_j), \quad i = 0, \dots, m_j - 1, \quad j = 1, \dots, n.$$
 (1)

Этот многочлен называют интерполяционным многочленом с кратными узлами, а числа m_1, \ldots, m_n – кратностями узлов x_1, \ldots, x_n соответственно.

Такой многочлен единственнен среди всех многочленов степени m-1. Действительно, если Q_m – многочлен степени m-1, удовлетворяющий условию (1), то их разность L_m-Q_m имеет точку x_j нулем кратности $m_j,\ j=1,\ldots,n$. Следовательно, многочлен L_m-Q_m степени не выше m-1 имеет всего $\sum\limits_{i=1}^n m_i=m$ нулей (с учетом кратности). Поэтому $L_m-Q_m=0$.

Теорема 1. Интерполяционный многочлен L_m , удовлетворяющий условиям (1), может быть представлен в виде

$$L_m(x) = \sum_{i=1}^m (x - y_1) \dots (x - y_{i-1}) f(y_1; \dots; y_i),$$
 (2)

 $e \partial e$

$$y_1 = \ldots = y_{m_1} = x_1, \ y_{m_1+1} = \ldots = y_{m_1+m_2} = x_2, \ \ldots, \ y_{\sum_{i=1}^{n-1} m_i + 1} = \ldots = y_m = x_n.$$
 (3)

Доказательство. Положим

$$x_{ij}^{(\varepsilon)} = x_j + (i-1)\varepsilon, \quad i = 1, \dots, m_j, \quad j = 1, \dots, n, \tag{4}$$

где $0 < \varepsilon < \varepsilon_0$, ε_0 — такое, что все точки $\{x_{ij}^{(\varepsilon)}\}$ различны для всех $\varepsilon \in (0, \varepsilon_0)$. Построим по m точкам $\{x_{ij}^{(\varepsilon)}\}$ интерполяционный многочлен в форме Ньютона $L_m^{(\varepsilon)}$ степени m-1 так, что

$$L_m^{(\varepsilon)}(x_{ij}^{\varepsilon}) = f(x_{ij}^{\varepsilon})$$
 для всех $i = 1, \dots, m_j, \quad j = 1, \dots, n, \quad 0 < \varepsilon < \varepsilon_0.$ (5)

В силу единственности такого многочлена

$$L_m^{(\varepsilon)}(x) = \sum_{i=1}^m (x - y_1^{(\varepsilon)}) \dots (x - y_{i-1}^{(\varepsilon)}) f(y_1^{(\varepsilon)}; \dots; y_i^{(\varepsilon)}), \tag{6}$$

для всякого способа перенумеровать набором $y_1^{(\varepsilon)}, \ldots, y_m^{(\varepsilon)}$ набор $\{x_{ij}^{(\varepsilon)}\}$. Поэтому нам достаточно доказать, что соотношения (1) выполнены для точки x_1 .

Положим

$$y_{1}^{(\varepsilon)} = x_{1,1}^{(\varepsilon)}, \dots, y_{m_{1}}^{(\varepsilon)} = x_{m_{1},1}, \ y_{m_{1}+1}^{(\varepsilon)} = x_{1,2}^{(\varepsilon)}, \dots, y_{m_{1}+m_{2}}^{(\varepsilon)} = x_{m_{2},2}^{(\varepsilon)}, \dots, y_{m_{1}+m_{2}}^{(\varepsilon)} = x_{m_{2},2}^{(\varepsilon)}, \dots, y_{m_{1}+m_{2}}^{(\varepsilon)} = x_{m_{2},n}^{(\varepsilon)}, \dots, y_{m_{1}+m_{2}}^{(\varepsilon)} = x_{m_{1},n}^{(\varepsilon)}, \dots, y_{m_{1}+m_{2}+$$

Из (7), (4), (3) вытекает, что $\lim_{\varepsilon\to 0}y_j^{(\varepsilon)}=y_j$ для всех $j=1,\ldots,m$. В силу непрерывности разделенных разностей (лемма 8.1) в равенстве (6) можно перейти к пределу по $\varepsilon\to 0$ (получившийся в результате многочлен обозначаем L_m):

$$L_{m}(x) = \sum_{i=1}^{m} (x - y_{1}) \dots (x - y_{i-1}) f(y_{1}; \dots; y_{i}) =$$

$$= \sum_{i=1}^{m_{1}} (x - x_{1})^{i-1} f(\underbrace{x_{1}; \dots; x_{1}}) +$$

$$+ (x - x_{1})^{m_{1}} \sum_{i=m_{1}+1}^{m} (x - y_{m_{1}+1}) \dots (x - y_{i-1}) f(y_{1}; \dots; y_{i}) =$$

$$= \sum_{i=1}^{m_{1}} \frac{f^{(i-1)}(x_{1})}{(i-1)!} (x - x_{1})^{i-1} +$$

$$+ (x - x_{1})^{m_{1}} \sum_{i=m_{1}+1}^{m} (x - y_{m_{1}+1}) \dots (x - y_{i-1}) f(y_{1}; \dots; y_{i})$$

$$(8)$$

(в последнем равенстве использовано определение (8.1) разделенной разности с кратными узлами). Из этого представления следует

$$L_m^{(i)}(x_1) = f^{(i)}(x_1) \quad i = 0, \dots, m_1 - 1$$

(поскольку производные до порядка $m_1 - 1$ включительно второго слагаемого в (8) равны нулю в точке x_1). Тем самым доказано, что многочлен вида (2) удовлетворяет условиям (1) в точке x_1 .

Определение. Задаваемый равенствами (2), (3) многочлен называется *интерполяционным многочленом с кратными узлами* в форме Ньютона.

Теорема 2. Если $f \in C^{(\overline{m})}([a,b]), \ (\overline{m} = \max_{j=1,\dots,n} m_j)$ и $\{x_i\}_{i=1}^n$ – последовательность точек на [a,b], то для всякого $x \in \mathbf{R}^1$

$$f(x) = L_m(x) + (x - x_1)^{m_1} \dots (x - x_n)^{m_n} f(\underbrace{x_1; \dots; x_1}_{m_1}; \dots, \underbrace{x_n; \dots; x_n}_{m_n}; x),$$
(9)

 $r\partial e\ L_m(x)$ задается равенствами (2), (3).

Доказательство. Запишем равенство (9) в эквивалентной форме

$$f(x) = L_m(x) + (x - y_1) \dots (x - y_m) f(y_1; \dots, y_m; x), \tag{10}$$

где точки y_1, \ldots, y_m задаются (3), и будем доказывать вместо (9) равенство (10). При этом можно считать, что $x \neq y_j$, $j = 1, \ldots, m$, поскольку в точках y_j погрешность интерполяции равна нулю и это соответствует (10). Далее доказательство повторяет доказательство теоремы 7.1.

При m=1 равенство (9) имеет вид

$$f(x) = f(y_1) + (x - y_1)f(y_1; x)$$
(11)

и справедливо в силу определения (8.1) разделенной разности.

Пусть равенство (9) доказано при m = k:

$$f(x) = L_m(x) + (x - y_1) \dots (x - y_k) f(y_1; \dots, y_k; x).$$
(12)

В силу леммы (4.3)

$$f(y_1; \ldots; y_k; y_{k+1}, x) = \frac{f(y_1; \ldots; y_k; x) - f(y_1; \ldots; y_k; y_{k+1})}{x - y_{k+1}}.$$

Отсюда имеем

$$f(y_1; \dots; y_k; x) = f(y_1; \dots; y_k; y_{k+1}) + (x - y_{k+1})f(y_1; \dots; y_k; y_{k+1}, x).$$
 (13)

Подставим (13) в (12), получим

$$f(x) = L_k(x) + (x - y_1) \dots (x - y_k) f(y_1; \dots; y_{k+1}) + (x - y_1) \dots (x - y_{k+1}) f(y_1; \dots; y_k; y_{k+1}, x).$$

$$(14)$$

В силу теоремы 2 справедливо представление

$$L_k(x) + f(y_1; \dots; y_{k+1})(x - y_1) \dots (x - y_k) = L_{k+1}(x)$$

и потому (14) принимает вид

$$f(x) = L_{k+1}(x) + (x - y_1) \dots (x - y_{k+1}) f(y_1; \dots; y_k; y_{k+1}, x),$$

т.е. равенство (10) справедливо для m=k+1. Тем самым теорема доказана по индукции.

Теорема 3. Если $f \in C^{(m)}([a,b])$ и $\{x_i\}_{i=1}^n$ – последовательность точек на [a,b], то для всякого $x \in [a,b]$ существует $\xi = \xi(x) \in [\xi_1,\xi_2]$ (где $\xi_1 = \xi_1(x) = \min\{x_1,\ldots,x_n,x\}$, $\xi_2 = \xi_2(x) = \max\{x_1,\ldots,x_n,x\}$) такое, что

$$f(x) = L_n(x) + (x - x_1)^{m_1} \dots (x - x_n)^{m_n} \frac{f^{(m)}(\xi)}{m!},$$
(15)

 $r\partial e\ L_m(x)$ задается равенствами $(2),\,(3).$

Доказательство. Введем как в теореме 1 точки $x_{ij}^{(\varepsilon)}$, по которым построми интерполяционный многочлен в форме Ньютона $L_m^{(\varepsilon)}$ степени m-1, удовлетворяющий (5) и имеющий вид (6) (где точки $y_j^{(\varepsilon)}$ задаются (7)). По теореме 7.2 для всякого $x\in[a,b]$ существует $\xi^{(\varepsilon)}=\xi^{(\varepsilon)}(x)\in[\xi^{(\varepsilon)}_1,\xi^{(\varepsilon)}_2]$ (где $\xi^{(\varepsilon)}_1=\xi^{(\varepsilon)}_1(x)=\min\{y_1^{(\varepsilon)},\ldots,y_m^{(\varepsilon)},x\}$, $\xi^{(\varepsilon)}_2=\xi^{(\varepsilon)}_2(x)=\max\{y_1^{(\varepsilon)},\ldots,y_m^{(\varepsilon)},x\}$) такое, что

$$f(x) = L_m^{(\varepsilon)}(x) + (x - y_1^{(\varepsilon)}) \dots (x - y_m^{(\varepsilon)}) \frac{f^{(m)}(\xi^{(\varepsilon)})}{m!}.$$
 (16)

Как показано в теореме 1 $\lim_{\varepsilon \to 0} L_m^{(\varepsilon)}(x) = L_m(x)$ (где $L_m(x)$ задается равенствами (2), (3)). В силу непрерывности $f^{(m)} \lim_{\varepsilon \to 0} f^{(m)}(\xi^{(\varepsilon)}) = f^{(m)}(\xi)$, где $\xi = \lim_{\varepsilon \to 0} \xi^{(\varepsilon)}$, причем $\xi \in [\xi_1, \xi_2]$, где в силу (3) $\xi_1 = \xi_1(x) = \min\{x_1, \dots, x_n, x\}$, $\xi_2 = \xi_2(x) = \max\{x_1, \dots, x_n, x\}$). Поэтому, переходя в (16) к пределу при $\varepsilon \to 0$, получаем требуемое равенство (15).

Алгоритм вычисления интерполяционного многочлена с кратными узлами

Алгоритм вычисления интерполяционного многочлена с кратными узлами $L_m(x)$ вида (2), (3) тот же самый, что для интерполяционного многочлена в форме Ньютона без кратных узлов (см. § 5), только пересчет элементов таблицы разделенных разностей осуществляется по определению (8.1) разделенной разности с кратными узлами.

Пример. Пусть в n точках x_1, \ldots, x_n заданы значения функции f(x): $f(x_1), \ldots, f(x_n)$ и ее производной f'(x): $f'(x_1), \ldots, f'(x_n)$ (т.е. в постановке (1) задачи интерполяции с кратными узлами $m_1 = \ldots = m_n = 2$). Тогда таблица разделенных разностей имеет вид

Столбцы вычисляются слева направо, элементы столбца вычисляются снизу вверх, стрелки указывают ячейку памяти, в которую помещается результат. По

окончании вычислений на месте $f(y_i)$ будет лежать $f(y_1; ...; y_i)$, где y_i задаются (3).

Оценка числа арифметических операций, необходимых для построения интерполяционного многочлена $L_m(x)$ вида (2), (3), следует из оценки числа операций, необходимых для построения интерполяционного многочлена степени m-1 без кратных узлов (см. § 5): требуется не более m(m-1) вычитаний и m(m-1)/2 делений (количество операций будет меньше этих величин из-за того, что часть разделенных разностей вычисляется через заданные значения производных функции).

§ 10. ВЫЧИСЛЕНИЕ ПРОИЗВОДНЫХ МНОГОЧЛЕНА В ФОРМЕ НЬЮТОНА

Пусть $L_n(x)$ — многочлен Лагранжа функции f, построенный по точкам x_1, \ldots, x_n :

$$L_n(x) = \sum_{i=1}^n (x - x_1) \dots (x - x_{i-1}) f(x_1; \dots; x_i).$$

Для некоторого k>0 требуется найти $L_n^{(k)}(y)-k$ -ю производную L_n в некоторой точке y.

В силу единственности многочлена $L_n(x)$ степени n-1, принимающего в заданных точках x_1, \ldots, x_n заданные значения $f(x_1), \ldots, f(x_n)$, многочлен $L_n(x)$ совпадает с интерполяционным многочленом для функции $L_n(x)$ (самого себя):

$$L_n(x) = \sum_{i=1}^n (x - x_1) \dots (x - x_{i-1}) L_n(x_1; \dots; x_i).$$
 (1)

В силу единственности интерполяционного многочлена $L_n(x)$ степени n-1, он совпадает с интерполяционным многочленом, принимающим в точках y, x_1, \ldots, x_{n-1} значения $L_n(y), L_n(x_1), \ldots, L_n(x_{n-1})$. По интерполяционной формуле Ньютона этот многочлен имеет вид

$$L_n(x) = L_n(y) + (x - y) \sum_{i=1}^{n-1} (x - x_1) \dots (x - x_{i-1}) L_n(y; x_1; \dots; x_i).$$
 (2)

Тогда

$$L'_n(x)|_{x=y} = \sum_{i=1}^{n-1} (x - x_1) \dots (x - x_{i-1}) L_n(y; x_1; \dots; x_i)$$
(3)

и тем самым вычислена 1-я производная в точке y.

Алгоритм вычисления значения $L'_n(y)$ в форме (3). Нам требуется по известным значениям

$$L_n(y), L_n(x_1), L_n(x_1; x_2), \ldots, L_n(x_1; \ldots; x_{n-1})$$

вычислить

$$L_n(y;x_1), L_n(y;x_1;x_2), \ldots, L_n(y;x_1;\ldots;x_{n-1})$$

Используем для этого алгоритм сдвига представления многочлена в форме Ньютона (см. § 6). Добавим точку y и значение $L_n(y)$ в таблицу разделенных разностей и заполним по определению разделенной разности

$$L_n(y; x_1; \dots; x_i) = \frac{L_n(x_1; \dots; x_i) - L_n(y; x_1; \dots; x_{i-1})}{x_i - y}, \quad i = 1, \dots, n-1$$
 (4)

эту таблицу:

у таблицу:
$$L_n(y) \setminus L_n(y;x_1) \setminus f(x_1) \times L_n(y;x_1;x_2) \quad L_n(y;x_1;x_2;x_3) \quad f(x_2;x_3) \times f(x_1;x_2;x_3) \times f(x_1;x_2;x_3) \times f(x_1;x_2;x_3) \times f(x_1;x_2;x_3;x_4) \quad L_n(y;x_1;\dots;x_{n-1}) \quad f(x_3) \times f(x_2;x_3;x_4) \times f(x_1;x_2;x_3;x_4) \times f(x_1;\dots;x_n) \quad f(x_4) \times f(x_{n-1}) \quad f(x_{n-2};x_{n-1};x_n) \quad f(x_n) \times f(x_{n-1};x_n)$$

Трудоемкость вычисления $L'_n(y)$:

- 1. На вычисление n-1 разделенных разностей по формуле (4) требуется 2(n-1) вычитаний и n-1 делений.
 - 2. На вычисление $L'_n(y)$ по формуле (3) по схеме Горнера

$$L'_n(y) = L_n(y; x_1) + (x - x_1)(L_n(y; x_1; x_2) + (x - x_2)(L_n(y; x_1; x_2; x_3) + \dots + (x - x_{n-3})(L_n(y; x_1; \dots; x_{n-2}) + (x - x_{n-2})L_n(y; x_1; \dots; x_{n-1})\underbrace{) \dots }_{n-2}$$

требуется n-2 вычитаний, n-2 сложений и n-2 умножений.

Всего требуется 4(n-1)-2 аддитивных операций и 2(n-1)-1 мультипликативных операций.

Для вычисления $L''_n(y)$ аналогично продолжаем.

В силу единственности интерполяционного многочлена $L_n(x)$ степени n-11, он совпадает с интерполяционным многочленом, принимающим в точках y, x_1, \ldots, x_{n-2} значения $L_n(y), L_n(x_1), \ldots, L_n(x_{n-2})$, а в точке y имеющим производную, равную $L'_n(y)$. По интерполяционной формуле Ньютона с кратными узлами этот многочлен имеет вид

$$L_{n}(x) = L_{n}(y) + (x-y)L_{n}(y;y) + (x-y)^{2} \sum_{i=1}^{n-2} (x-x_{1}) \dots (x-x_{i-1})L_{n}(y;y;x_{1};\dots;x_{i}) = L_{n}(y) + (x-y)L'_{n}(y) + (x-y)^{2} \sum_{i=1}^{n-2} (x-x_{1}) \dots (x-x_{i-1})L_{n}(y;y;x_{1};\dots;x_{i}).$$
(5)

Тогда

$$L_n''(x)|_{x=y} = 2! \sum_{i=1}^{n-2} (x - x_1) \dots (x - x_{i-1}) L_n(y; y; x_1; \dots; x_i)$$
 (6)

и тем самым вычислена 2-я производная в точке y.

Алгоритм вычисления значения $L''_n(y)$ в форме (6). Нам требуется по известным значениям

$$L_n(y), L_n(y; x_1), L_n(y; x_1; x_2), \ldots, L_n(y; x_1; \ldots; x_{n-2})$$

вычислить

$$L_n(y; y; x_1), L_n(y; y; x_1; x_2), \ldots, L_n(y; y; x_1; \ldots; x_{n-2}).$$

Как и выше используем для этого алгоритм сдвига представления многочлена в форме Ньютона (см. § 6). Добавим точку y и значение $L_n(y)$ в таблицу разделенных разностей и заполним по определению разделенной разности

$$L_n(y; y; x_1; \dots; x_i) = \frac{L_n(y; x_1; \dots; x_i) - L_n(y; y; x_1; \dots; x_{i-1})}{x_i - y}, \quad i = 1, \dots, n-2$$
(7)

эту таблицу:

$$L_{n}(y) \setminus L_{n}(y) \setminus L_{n}(y; y; x_{1}) \setminus L_{n}(y; x_{1}) \setminus L_{n}(y; x_{1}) \times L_{n}(y; x_{1}; x_{2};)$$

$$f(x_{1}) \setminus L_{n}(y; x_{1}; x_{2}) \setminus \dots \cdot L_{n}(y; x_{1}; x_{2}; x_{3}) \cdot L_{n}(y; y; x_{1}; \dots; x_{n-2})$$

$$f(x_{2}) \setminus f(x_{1}; x_{2}; x_{3}) \setminus f(x_{1}; x_{2}; x_{3}) \cdot L_{n}(y; y; x_{1}; \dots; x_{n-2})$$

$$f(x_{2}) \setminus f(x_{2}; x_{3}) \setminus f(x_{1}; x_{2}; x_{3}; x_{4}) \cdot L_{n}(y; y; x_{1}; \dots; x_{n-1})$$

$$f(x_{3}) \setminus f(x_{2}; x_{3}; x_{4}) \setminus f(x_{2}; x_{3}; x_{4}) \cdot \dots \cdot f(x_{n-1}) \cdot \dots \cdot f(x_{n-1}) \cdot \dots \cdot f(x_{n-2}; x_{n-1}; x_{n})$$

$$f(x_{n-1}) \setminus f(x_{n-1}; x_{n}) \setminus f(x_{n-1}; x_{n}) \cdot \dots \cdot f(x_{n-1}; x_{n})$$

Трудоемкость вычисления $L''_n(y)$:

- 1. На вычисление n-2 разделенных разностей по формуле (7) требуется 2(n-2) вычитаний и n-2 делений.
 - 2. На вычисление $L''_n(y)$ по формуле (6) по схеме Горнера

$$L''_n(y) = 2!(L_n(y;y;x_1) + (x-x_1)(L_n(y;y;x_1;x_2) + (x-x_2)(L_n(y;y;x_1;x_2;x_3) + \dots + (x-x_{n-4})(L_n(y;y;x_1;\dots;x_{n-3}) + (x-x_{n-3})L_n(y;y;x_1;\dots;x_{n-2})\underbrace{)\dots)}_{n-3})$$

требуется n-3 вычитаний, n-3 сложений и n-3 умножений.

Всего требуется 4(n-2)-2 аддитивных операций и 2(n-2)-1 мультипликативных операций.

Рассмотрим **общий случай**. После $l,\ l=0,\ldots,k-1$ шагов описанного выше процесса многочлен имеет вид

$$L_n(x) = \sum_{j=0}^{l-1} \frac{L_n^{(j)}(y)}{j!} (x-y)^j + (x-y)^l \sum_{i=1}^{n-l} (x-x_1) \dots (x-x_{i-1}) L_n(\underbrace{y; \dots; y}_l; x_1; \dots; x_i)$$

и может быть вычислена

$$L_n^{(l)}(y) = l! \sum_{i=1}^{n-l} (x - x_1) \dots (x - x_{i-1}) L_n(\underbrace{y; \dots; y}_{l}; x_1; \dots; x_i).$$

Для перехода к очередному шагу надо вычислить $L_n(\underbrace{y; \dots; y}_{l+1}; x_1; \dots; x_i), i =$

 $1, \ldots, n-l-1$ по формулам

$$L_n(\underbrace{y; \dots; y; x_1; \dots; x_i)}_{l+1} = \frac{L_n(\underbrace{y; \dots; y; x_1; \dots; x_i}) - L_n(\underbrace{y; \dots; y; x_1; \dots; x_{i-1}})}_{l}, \quad (8)$$

$$i = 1, \quad n-l-1$$

а затем

$$L_n^{(l+1)}(y) = (l+1)! \sum_{i=1}^{n-l-1} (x - x_1) \dots (x - x_{i-1}) L_n(\underbrace{y; \dots; y}_{l+1}; x_1; \dots; x_i).$$
 (9)

Трудоемкость вычисления $L_n^{(l+1)}(y)$:

- 1. На вычисление n-l-1 разделенных разностей по формуле (8) требуется 2(n-l-1) вычитаний и n-l-1 делений.
 - 2. На вычисление $L_n^{(l+1)}(y)$ по формуле (9) по схеме Горнера

$$L_n^{(l+1)}(y) = (l+1)!(L_n(\underbrace{y; \dots; y}; x_1) + (x-x_1)(L_n(\underbrace{y; \dots; y}; x_1; x_2) + (x-x_2)(L_n(\underbrace{y; \dots; y}; x_1; x_2; x_3) + \dots + (x-x_{n-l-3})(L_n(\underbrace{y; \dots; y}; x_1; \dots; x_{n-l-2}) + (x-x_{n-l-2})L_n(\underbrace{y; \dots; y}; x_1; \dots; x_{n-l-1})\underbrace{)\dots)}_{n-l-2})$$

требуется n-l-2 вычитаний, n-l-2 сложений и n-l-2 умножений.

Всего требуется 4(n-l-2)-2 аддитивных операций и 2(n-l-2)-1 мультипликативных операций.

§ 11. МНОГОЧЛЕНЫ ЧЕБЫШЕВА

Определение. Многочленами Чебышева называют многочлены $T_n(x)$ степени $n \geq 0$, задаваемые следующими реккурентными соотношениями:

$$T_0(x) = 1, T_1(x) = x,$$
 (1)

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 при $n > 0$. (2)

Коэффициент при старшем члене многочлена $T_{n+1}(x)$ получается из старшего члена многочлена $T_n(x)$ умножением на 2x. Следовательно, старший член многочлена $T_n(x)$ при n>0 есть $2^{n-1}x$.

Поскольку для всяких α и β $\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha+\beta)+\cos(\alpha-\beta))$, то при любом θ

$$\cos((n+1)\theta) = 2\cos\theta\cos(n\theta) - \cos((n-1)\theta).$$

Положив $\theta = \arccos x$, получим при $x \in [-1, 1]$

$$\cos((n+1)\arccos x) = 2x\cos(n\arccos x) - \cos((n-1)\arccos x),$$

т.е. функция $\varphi_n(x) = \cos(n \arccos x)$ удовлетворяет соотношениям (2) для всех n > 0 и $x \in [-1, 1]$. Так как $\varphi_0(x) = \cos(0 \arccos x) = 1$, $\varphi_1(x) = \cos(1 \arccos x) = 1$ при $x \in [-1, 1]$, т.е. она удовлетворяет (1), то $T_n(x) \equiv \varphi_n(x)$:

$$T_n(x) = \cos(n\arccos x), \quad n \ge 0, \ x \in [-1, 1].$$
 (3)

Из представления (3) вытекают следующие свойства многочленов Чебышева: 1)

$$|T_n(x)| \le 1$$
 при $x \in [-1, 1]$.

2) Точки экстремума многочлена $T_n(x)$ на [-1,1], т.е. точки \widehat{x}_m , $|T_n(\widehat{x}_m)|=1$ есть

$$\hat{x}_m = \cos\left(\frac{\pi m}{n}\right), \quad m = 0, 1, \dots, n,$$

причем

$$T_n(\widehat{x}_m) = \cos \pi m = (-1)^m.$$

3) Нули многочлена $T_n(x)$ на [-1,1] есть

$$x_m = \cos\left(\frac{\pi(2m-1)}{2n}\right), \quad m = 1, 2, \dots, n.$$

Поскольку найдены n нулей многочлена $T_n(x)$ степени n, то других нулей у него нет и

$$T_n(x) = 2^{n-1}(x - x_1) \dots (x - x_n).$$

Определение. Введем

$$\overline{T}_n(x) = \frac{1}{2^{n-1}} T_n(x) = x^n + \dots$$

Лемма 1. Если $P_n(x) = x^n + \ldots -$ многочлен степени n со старшим коэффициентом, равным 1, то

$$\max_{x \in [-1,1]} |P_n(x)| \ge \max_{x \in [-1,1]} |\overline{T}_n(x)| = \frac{1}{2^{n-1}}.$$

Доказательство. Предположим противное, т.е. существует такой многочлен $P_n(x)=x^n+\ldots$ степени n со старшим коэффициентом, равным 1, что $|P_n(x)|<\frac{1}{2^{n-1}}$ для всех $x\in [-1,1]$. Расмотрим $Q_{n-1}(x)=\overline{T}_n(x)-P_n(x)$ — многочлен степени не выше n-1, поскольку $\overline{T}_n(x)=x^n+\ldots$, $P_n(x)=x^n+\ldots$ Вычислим знак многочлена Q_{n-1} в точках \hat{x}_m , $m=0,1,\ldots,n$:

$$\operatorname{sign} Q_{n-1}(\widehat{x}_m) = \operatorname{sign}(\overline{T}_n(\widehat{x}_m) - P_n(\widehat{x}_m)) = \operatorname{sign}\left((-1)^m \frac{1}{2^{n-1}}\right) =$$

$$= \operatorname{sign}\left((-1)^m \frac{1}{2^{n-1}}\right) = (-1)^m$$

(поскольку $|P_n(\hat{x}_m)| < \frac{1}{2^{n-1}}$). Подчеркнем, что $Q_{n-1}(\hat{x}_m) \neq 0$, $m = 0, 1, \ldots, n$. Таким образом, на отрезке $[\hat{x}_m, \hat{x}_{m+1}]$, $m = 0, 1, \ldots, n-1$ функция $Q_{n-1}(x)$ меняет знак и поэтому имеет корень, принадлежащий интервалу $(\hat{x}_m, \hat{x}_{m+1})$, $m = 0, 1, \ldots, n-1$. Следовательно, многочлен Q_{n-1} степени не выше n-1 имеет n различных корней и потому $Q_{n-1} \equiv 0$. Однако, по доказанному $Q_{n-1}(\hat{x}_m) \neq 0$, $m = 0, 1, \ldots, n$. Полученное противоречие доказывает лемму.

Определение. Многочлен $\overline{T}_n(x)$ называется многочленом степени n, наименее уклоняющимся от нуля на отрезке [-1,1].

Пусть [a,b] есть заданный отрезок.

Определение. Введем отображения

$$y: [-1,1] \to [a,b], \quad y(x) = \frac{(a+b) - (a-b)x}{2},$$

 $x: [a,b] \to [-1,1], \quad x(y) = \frac{2y - (b+a)}{b-a}$

$$(4)$$

и многочлен Чебышева на отрезке [a,b]

$$\widehat{T}_n(y) = T_n(x(y)) = T_n\left(\frac{2y - (b+a)}{b-a}\right).$$

Нули многочлена $\widehat{T}_n(y)$ (все принадлежат отрезку [a,b]) есть

$$y_m = y(x_m) = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{\pi(2m-1)}{2n}, \quad m = 1, 2, \dots, n.$$
 (5)

Старший коэффициент $\widehat{T}_n(y)$ есть $\left(\frac{2}{b-a}\right)^n 2^{n-1} = \frac{2^{2n-1}}{(b-a)^n}$.

Определение. Положим

$$\widetilde{T}_n(y) = \frac{(b-a)^n}{2^{2n-1}} T_n(y) = \frac{(b-a)^n}{2^{2n-1}} T_n\left(\frac{2y-(b+a)}{b-a}\right).$$

Лемма 2. Многочлен $\widetilde{T}_n(y)$ является многочленом, наименее уклоняющимся от нуля, т.е. для всякого многочлена $P_n(y) = y^n + \dots$ степени n со старшим коэффициентом, равным 1,

$$\max_{y \in [a,b]} |P_n(y)| \ge \max_{y \in [a,b]} |\tilde{T}_n(y)| = \frac{(b-a)^n}{2^{2n-1}}.$$

Доказательство. Утверждение вытекает из леммы 1 путем замены переменной.

§ 12. МИНИМИЗАЦИЯ ПОГРЕШНОСТИ ИНТЕРПОЛЯЦИИ ЗА СЧЕТ ВЫБОРА УЗЛОВ

Минимизируем погрешность интерполяции функции f на отрезке [a,b] с помощью интерполяционного многочлена Лагранжа L_n степени n-1 за счет выбора узлов интерполяции x_1, \ldots, x_n .

По теореме 7.2

$$f(x) - L_n(x) = \frac{f^{(n)}(\xi)}{n!} (x - x_1) \dots (x - x_n), \tag{1}$$

где $x_1, \ldots, x_n, x \in [a, b], \xi \in [a, b]$. Следовательно,

$$||f - L_n||_{C([a,b])} \le \left\| \frac{f^{(n)}}{n!} \right\|_{C([a,b])} ||(x - x_1) \dots (x - x_n)||_{C([a,b])}, \tag{2}$$

где

$$||g||_{C([a,b])} = \max_{x \in [a,b]} |g(x)|.$$

Минимизируем правую часть, выбрав многочлен $P_n(x) = (x - x_1) \dots (x - x_n)$ наименее уклоняющимся от нуля на отрезке [a,b], т.е. с минимальной нормой $\|P_n\|_{C([a,b])}$. Возьмем

$$P_n(x) = (x - x_1) \dots (x - x_n) = \widetilde{T}_n(x) = \frac{(b - a)^n}{2^{2n - 1}} T_n \left(\frac{2x - (b + a)}{b - a} \right).$$

Из этого равенства вытекает, что точки x_1, \ldots, x_n являются нулями многочлена $\widetilde{T}_n(x)$ на отрезке [a,b]. В силу (11.5)

$$x_m = y_m = \frac{a+b}{2} + \frac{b-a}{2} \cos \frac{\pi(2m-1)}{2n}, \quad m = 1, 2, \dots, n.$$
 (3)

По лемме 11.2 при таком выборе узлов

$$||P_n||_{C([a,b])} = \frac{(b-a)^n}{2^{2n-1}}$$

и оценка (2) имеет вид

$$||f - L_n||_{C([a,b])} \le \frac{1}{n!} ||f^{(n)}||_{C([a,b])} \frac{(b-a)^n}{2^{2n-1}}.$$
 (4)

Полученная оценка (4) неулучшаема.

Действительно, возьмем $f(x) = a_n x^n + \ldots + a_0 = \sum_{m=0}^n a_m x^m$ — многочлен степени n. Тогда $f^n(\xi) = a_n n!$ и оценка погрешности (1) примет вид

$$f(x) - L_n(x) = a_n(x - x_1) \dots (x - x_n) = a_n P_n(x)$$

где $P_n(x)$ – многочлен (на отрезке [a,b]) со старшим коэффициентом, равным 1. По лемме 11.2 получаем

$$||f - L_n||_{C([a,b])} = |a_n|||P_n||_{C([a,b])} \ge |a_n| \frac{(b-a)^n}{2^{2n-1}} = \frac{1}{n!} ||f^{(n)}||_{C([a,b])} \frac{(b-a)^n}{2^{2n-1}},$$

что и означает неулучшаемость оценки (4).

Итак, для минимизации погрешности в качестве узлов x_1, \ldots, x_n интерполяции надо брать нули (3) многочлена Чебышева $\tilde{T}_n(x)$.

Такой выбор улучшает также качественное поведение погрешности при $n \to \infty$

Пример (без доказательства). Рассмотрим функцию $f(x) = \frac{1}{1+25x^2}$ и отрезок [a,b] = [-1,1]. Для равномерно распределенных на отрезке [a,b] точек x_1,\ldots,x_n (т.е. $x_i = a + (i-1)h$, $h = \frac{b-a}{n-1}$, $i=1,\ldots,n$) погрешность интерполяции $\|f-L_n\|_{C([-1,1])} \to \infty$ при $n \to \infty$. Для точек x_1,\ldots,x_n — нулей (3) многочлена Чебышева $\widetilde{T}_n(x)$ погрешность интерполяции $\|f-L_n\|_{C([-1,1])} \to 0$ при $n \to \infty$.

Точную характеристику поведения погрешности интерполяции по нулям многочлена Чебышева $\widetilde{T}_n(x)$ дают следующие утверждения.

Теорема 1. (без доказательства). Обусловленность базиса из элементарных многочленов Лагранжа $l_i(x) = \prod\limits_{\substack{j=1 \ j \neq i}}^n \frac{x-x_j}{x_i-x_j}$ при $x_m = y_m$ из (3) не превышает $\frac{2}{\pi} \ln n + 1$.

Теорема 2. Погрешность $f - L_n$ приближения функции f интерполяционным многочленом Лагранжа L_n степени n-1, построенным по нулям (3) многочлена Чебышева, удовлетворяет неравенствам

$$\operatorname{dist}_{\mathcal{C}}(f, \mathcal{P}_{n-1}) \leq \|f - L_n\|_{\mathcal{C}([a,b])} \leq \left(2 + \frac{2}{\pi} \ln n\right) \operatorname{dist}_{\mathcal{C}}(f, \mathcal{P}_{n-1})$$

 $r\partial e \; \mathcal{P}_{n-1} \;$ - пространство многочленов степени n-1 ,

$$\operatorname{dist}_{C}(f, \mathcal{P}_{n-1}) = \inf_{P_{n-1} \in \mathcal{P}_{n-1}} \|f - P_{n-1}\|_{C([a,b])}.$$

Теорема 3 (Джексона). $Ec n u f \in C^{(r)}[a,b] u n > r+1, mo$

$$\operatorname{dist}_{C}(f, \mathcal{P}_{n-1}) \leq \frac{6(3e)^{r}}{1+r} \left(\frac{b-a}{n-1}\right)^{r} \omega\left(f^{(r)}; \frac{b-a}{2(n-1-r)}\right).$$

 $e \partial e$

$$\omega(g; h) = \sup\{ |g(x) - g(y)| : x, y \in [a, b], |x - y| \le h \}$$

есть модуль непрерывности функции.

Пример. Рассмотрим функцию $f(x) = |x|^{\alpha}$, $\alpha \in (0,1)$ на отрезке [-1,1]. Тогда $\omega(f;h) = h^{\alpha}$. По теореме 3 при r = 0, n > 1 получаем

$$\operatorname{dist}_{C}(f, \mathcal{P}_{n-1}) \leq 6\omega \left(f; \frac{2}{2(n-1)} \right) = \frac{6}{(n-1)^{\alpha}}.$$

По теореме 2

$$||f - L_n||_{C([-1,1])} \le \left(2 + \frac{2}{\pi} \ln n\right) \frac{6}{(n-1)^{\alpha}}.$$

Например, для $f(x) = \sqrt{|x|}$

$$||f - L_n||_{C([-1,1])} \le \left(2 + \frac{2}{\pi} \ln n\right) \frac{6}{(n-1)^{1/2}} \approx \frac{\ln n}{n^{1/2}}$$
 при $n \to \infty$.

§ 13. РАЗЛОЖЕНИЕ ПО МНОГОЧЛЕНАМ ЧЕБЫШЕВА

Пусть n – заданное целое число, [a,b] – заданный отрезок, x_1, \ldots, x_n – различные точки, принадлежащие отрезку [a,b]. Введем м пространстве C([a,b]) дискретное "скалярное" произведение: для всяких $f, g \in C([a,b])$ положим

$$\langle f, g \rangle_n = \sum_{m=1}^n f(x_m) g(x_m). \tag{1}$$

§ 13.1. Постановка задачи линейной интерполяции

Рассмотрим задачу построения разложения

$$Pf(x) = \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x)$$
 (2)

функции $f \in C([a,b])$ по многочленам Чебышева на отрезке [a,b]:

$$\hat{T}_i(x) = T_i\left(\frac{2x - (b+a)}{b-a}\right), \quad i = 0, 1, \dots, n-1,$$
 (3)

так, чтобы были выполнены линейные условия интерполяции:

$$\langle \hat{T}_i, Pf \rangle_n = \langle \hat{T}_i, f \rangle_n, \quad i = 0, 1, \dots, n - 1.$$
 (4)

Лемма 1. Многочлены $\widehat{T}_0, \widehat{T}_1, \dots, \widehat{T}_{n-1}$ линейно независимы, функционалы $\lambda_i(f) = \left\langle \widehat{T}_i, f \right\rangle_n$ линейно независимы.

Доказательство. Предположим, что многочлены $\widehat{T}_0, \widehat{T}_1, \ldots, \widehat{T}_{n-1}$ линейно зависимы, т.е. существует $\alpha \in \mathbf{R}^n$, $\alpha \neq 0$ такое, что $P_{n-1}(x) = \sum\limits_{i=0}^{n-1} \alpha_i \widehat{T}_i(x) = 0$ для всех $x \in [a,b]$. Так как $\deg \widehat{T}_i = i$, то старший коэффициент многочлена $P_{n-1}(x) = \sum\limits_{i=0}^{n-1} \alpha_i \widehat{T}_i(x)$ равен старшему коэффициенту многочлена $\widehat{T}_j(x)$ (где $j = \max\{j: \alpha_j \neq 0\}$), умноженному на α_j . Поскольку многочлен $P_{n-1}(x) \equiv 0$, то его старший коэффициент равен 0. Следовательно, $\alpha_j = 0$, что противоречит тому, что $j = \max\{j: \alpha_j \neq 0\}$. Полученное противоречие доказывает первое утверждение леммы.

Предположим, что функционалы $\lambda_i(f) = \left\langle \hat{T}_i, f \right\rangle_n$ линейно зависимы, т.е. существует $\alpha \in \mathbf{R}^n$, $\alpha \neq 0$ такое, что $\lambda = \sum\limits_{i=0}^{n-1} \alpha_i \lambda_i = 0$. Другими словами, $\lambda(f) = \sum\limits_{i=0}^{n-1} \alpha_i \left\langle \hat{T}_i, f \right\rangle_n = \left\langle \sum\limits_{i=0}^{n-1} \alpha_i \hat{T}_i, f \right\rangle_n = 0$ для всякой $f \in C([a,b])$. Возьмем $f(x) = l_k(x) = \prod\limits_{\substack{i=1 \ i \neq k}}^n \frac{x - x_i}{x_k - x_i}$. Поскольку $l_k(x_j) = \delta_{kj}$, то

$$0 = \lambda(l_k) = \left\langle \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i, l_k \right\rangle_n = \sum_{j=1}^n \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x_j) l_k(x_j) = \sum_{j=1}^n \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x_j) \delta_{kj} =$$

$$= \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x_k) \quad \text{для всех } k = 1, 2, \dots, n.$$

Следовательно, многочлен $P_{n-1}(x) = \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x)$ степени не выше n-1 имеет n нулей и потому $P_{n-1}(x) \equiv 0$, т.е. $\sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x) = 0$ для всех x. В силу доказанной выше линейной независимости многочленов $\widehat{T}_0, \widehat{T}_1, \dots, \widehat{T}_{n-1}$ получаем

 $\alpha = 0$. Полученное противоречие с предположением $\alpha \neq 0$ доказывает второе утверждение леммы.

Теорема 1. (без доказательства). Обусловленность базиса из многочленов Чебышева $\hat{T}_0, \hat{T}_1, \dots, \hat{T}_{n-1}$ не превышает $\sqrt{2}n$.

Из леммы 1 и теоремы 1.1 вытекает, что если матрица

$$A = (a_{ij}), \quad a_{ij} = \left\langle \hat{T}_i, \hat{T}_j \right\rangle_n, \quad i, j = 0, 1, \dots n - 1$$
 (5)

обратима, то задача линейной интерполяции по многочленам Чебышева (3) корректна и ее решение имеет вид (2), где коэффициенты разложения

$$\alpha = A^{-1} \left(\left(\left\langle \hat{T}_i, f \right\rangle_n \right)_{i=0,1,\dots,n-1} \right). \tag{6}$$

Подберем точки x_1, \ldots, x_n так, чтобы матрица A была легко обратима.

Лемма 2. Пусть

$$x_m = y_m = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{\pi(2m-1)}{2n}, \quad m = 1, 2, \dots, n$$
 (7)

нули многочлена Чебышева \widehat{T}_n степени n . Тогда

$$\left\langle \widehat{T}_i, \widehat{T}_j \right\rangle_n = 0 \quad npu \ i \neq j, \qquad \left\langle \widehat{T}_j, \widehat{T}_j \right\rangle_n = \frac{n}{2} \quad npu \ j \neq 0, \qquad \left\langle \widehat{T}_0, \widehat{T}_0 \right\rangle_n = n.$$

Доказательство. Так как $\widehat{T}_j(x)=\cos\left(j\arccos\frac{2x-(b+a)}{b-a}\right)$ для всех $x\in[a,b]$, то

$$\left\langle \widehat{T}_i, \widehat{T}_j \right\rangle_n = \sum_{m=1}^n \widehat{T}_i(x_m) \widehat{T}_j(x_m) = \sum_{m=1}^n \cos\left(i\frac{(2m-1)\pi}{2n}\right) \cos\left(j\frac{(2m-1)\pi}{2n}\right).$$

Воспользуемся формулой $\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha - \beta) + \cos(\alpha + \beta))$:

$$\left\langle \widehat{T}_{i}, \widehat{T}_{j} \right\rangle_{n} = \frac{1}{2} \sum_{m=1}^{n} \cos \left((i-j) \frac{(2m-1)\pi}{2n} \right) + \frac{1}{2} \sum_{m=1}^{n} \cos \left((i+j) \frac{(2m-1)\pi}{2n} \right) = F(i-j) + F(i+j),$$
(8)

где

$$F(k) = \frac{1}{2} \sum_{m=1}^{n} \cos\left(k \frac{(2m-1)\pi}{2n}\right) =$$

$$= \frac{1}{2} \sum_{m=1}^{n} \frac{1}{2} \left(\exp\left\{i \frac{k(2m-1)\pi}{2n}\right\} + \exp\left\{-i \frac{k(2m-1)\pi}{2n}\right\}\right) =$$

$$= \frac{1}{4} \sum_{m=1}^{n} \left(\exp\left\{\frac{ik(2m-1)\pi}{2n}\right\} + \exp\left\{\frac{ik(2(-(m-1))-1)\pi}{2n}\right\}\right) =$$

$$= \frac{1}{4} \sum_{m=-(n-1)}^{n} \exp\left\{\frac{ik(2m-1)\pi}{2n}\right\} =$$

$$= \frac{1}{4} \exp\left\{-\frac{ik\pi}{2n}\right\} \sum_{m=-(n-1)}^{n} \left(\exp\left\{\frac{ik\pi}{n}\right\}\right)^{m} =$$

$$= \frac{1}{4} \exp\left\{-\frac{ik\pi}{2n}\right\} \left(\exp\left\{\frac{ik\pi}{n}\right\}\right)^{-n} \sum_{m=1}^{2n} \left(\exp\left\{\frac{ik\pi}{n}\right\}\right)^{m}$$

Поскольку

$$\sum_{m=1}^{2n} q^m = \begin{cases} q^{2n} - 1 & \text{при } q \neq 1 \\ 2n & \text{при } q = 1 \end{cases}$$

то при $k \neq 0$

$$F(k) = \frac{1}{4} \exp\left\{-\frac{ik\pi}{2n}\right\} \exp\left\{-ik\pi\right\} \exp\left\{\frac{ik\pi}{n}\right\} \frac{\exp\left\{2ik\pi\right\} - 1}{\exp\left\{\frac{ik\pi}{n}\right\} - 1} = 0,$$

так как $\exp\left\{2ik\pi\right\}=1$ для всех k. При k=0 $q=\exp\left\{\frac{ik\pi}{n}\right\}=1$ и

$$F(0) = \frac{1}{4} \cdot 1 \cdot 1 \cdot 2n = \frac{n}{2}.$$

Итак,

$$F(k) = \begin{cases} 0 & \text{при} \quad k \neq 0 \\ \frac{n}{2} & \text{при} \quad k = 0 \end{cases}$$

Подставляя это значение в (8), получаем

$$\left\langle \hat{T}_i, \hat{T}_j \right\rangle_n = 0 + 0 = 0 \quad \text{при} \quad i \neq j$$

$$\left\langle \hat{T}_i, \hat{T}_i \right\rangle_n = \frac{n}{2} + 0 = \frac{n}{2} \quad \text{при} \quad i \neq 0$$

$$\left\langle \hat{T}_0, \hat{T}_0 \right\rangle_n = \frac{n}{2} + \frac{n}{2} = n$$

Лемма доказана.

Из леммы 2 получаем, что при выборе точек x_1, \ldots, x_n как в (7) матрица A в (5) есть

$$A = \operatorname{diag}\left[n, \frac{n}{2}, \dots, \frac{n}{2}\right] \tag{9}$$

и искомое разложение (2), (6) имеет вид

$$Pf(x) = \sum_{i=0}^{n-1} \alpha_i \widehat{T}_i(x), \qquad \alpha_i = \frac{\left\langle \widehat{T}_i, f \right\rangle_n}{\left\langle \widehat{T}_i, \widehat{T}_i \right\rangle_n}, \quad i = 0, 1, \dots, n-1.$$
 (10)

§ 13.2. Алгоритм построения разложения

Запишем выражения (10) для α_i в виде таблицы

$$\alpha_{0} = \frac{1}{n} (\hat{T}_{0}(x_{1})f(x_{1}) + \hat{T}_{0}(x_{2})f(x_{2}) + \dots + \hat{T}_{0}(x_{n})f(x_{n}))$$

$$\alpha_{1} = \frac{2}{n} (\hat{T}_{1}(x_{1})f(x_{1}) + \hat{T}_{1}(x_{2})f(x_{2}) + \dots + \hat{T}_{1}(x_{n})f(x_{n}))$$

$$\alpha_{2} = \frac{2}{n} (\hat{T}_{2}(x_{1})f(x_{1}) + \hat{T}_{2}(x_{2})f(x_{2}) + \dots + \hat{T}_{2}(x_{n})f(x_{n}))$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\alpha_{n-1} = \frac{2}{n} (\hat{T}_{n-1}(x_{1})f(x_{1}) + \hat{T}_{n-1}(x_{2})f(x_{2}) + \dots + \hat{T}_{n-1}(x_{n})f(x_{n}))$$

$$(11)$$

Из реккурентных формул (11.1), (11.2) для многочленов Чебышева T_n на отрезке [-1,1] заменой переменных (11.4) получаются реккурентные формулы для многочленов Чебышева $\widehat{T}_n(x) = T_n\left(\frac{2x-(b+a)}{b-a}\right)$ на отрезке [a,b]:

$$\hat{T}_0(x) = 1, \qquad \hat{T}_1(x) = \frac{2x - (b+a)}{b-a}
\hat{T}_{n+1}(x) = 2 \frac{2x - (b+a)}{b-a} \hat{T}_n(x) - \hat{T}_{n-1}(x) \quad \text{при } n > 0.$$
(12)

Пользуясь этими формулами, будем вычислять в суммах (11) столбцы слева направо, а каждый столбец – сверху вниз.

Обозначим

$$g_{i,j} = \widehat{T}_i(x_j)f(x_j), \quad z_j = 2\cos\frac{\pi(2j-1)}{n}, \quad i = 0, \dots, n-1, \ j = 1, \dots, n.$$

По формулам (12) для всех j = 1, 2, ..., n вычисляются

$$g_{0,j} = f(x_j), \quad g_{1,j} = \frac{1}{2} z_j f(x_j) = \frac{1}{2} z_j g_{0,j},$$

$$g_{i,j} = z_j g_{i-1,j} - g_{i-2,j}, \quad i = 2, \dots, n-1.$$
(13)

Эти формулы позволяют вычислять элементы таблицы (11) по столбцам (слева направо), при этом каждый столбец заполняется сверху вниз. Как только очередной столбец таблицы вычислен, он прибавляется к сумме предыдущих столбцов:

$$\alpha_i := \alpha_i + g_{ij}, \quad i = 0, \dots, n - 1. \tag{14}$$

После вычислений по формулам (13), (14) для всех j = 1, 2, ..., n вычисляются коэффициенты α_i :

$$\alpha_0 := \frac{1}{n}\alpha_0, \quad \alpha_i := \frac{2}{n}\alpha_i, i = 1, 2, \dots, n - 1.$$
 (15)

После того, как коэффициенты α_i вычислены, значение приближающего многочлена в точке $Pf(x) = \sum\limits_{i=0}^{n-1} \alpha_i \widehat{T}_i(x)$ вычисляется с использованием формул (12)

$$\hat{T}_{0}(x) = 1, \qquad \hat{T}_{1}(x) = z/2, \qquad Pf(x) = \alpha_{0}\hat{T}_{0}(x) + \alpha_{1}\hat{T}_{1}(x)
\hat{T}_{i}(x) = z\,\hat{T}_{i-1}(x) - \hat{T}_{i-2}(x), \qquad Pf(x) := Pf(x) + \alpha_{i}\hat{T}_{i}(x)
i = 2, \dots, n-1.$$
(16)

где
$$z = 2 \frac{2x - (b+a)}{b-a}$$
.

§ 13.3. Оценка количества арифметических операций

Для всех j = 1, 2, ..., n нам требуется произвести вычисления

- 1) По формулам (13). На это требуется n + O(1) мультипликативных и столько же аддитивных операций.
- 2) По формулам (14). На это требуется n + O(1) аддитивных операций.

Общее количество операций для вычислений по формулам (13) и (14) для всех $j=1,2,\ldots,n$: $n^2+O(n)$ мультипликативных и $2n^2+O(n)$ аддитивных операций.

Для вычисления коэффициентов α_i по формулам (15) требуется еще n+O(1) мультипликативных операций.

Следовательно, суммарное количество операций, необходимых для вычисления коэффициентов α_i , равно $n^2 + O(n)$ мультипликативным и $2n^2 + O(n)$ аддитивным операциям.

На вычисление значения приближающего многочлена Pf в точке по формулам (16) требуется 2n + O(1) мультипликативных и столько же аддитивных операций.

§ 13.4. Связь разложения по многочленам Чебышева и интерполяции

При построении многочлена Pf не требовалось, чтобы он совпадал с функцией f в каких-бы то ни было точках (требовалось лишь выполнение линейных условий интерполяции (4)). Однако, оказывается, что построенный выше приближающий многочлен Pf можно рассматривать как интерполяционный многочлен.

Лемма 3. Построенный выше многочлен (10) по точкам (7) является интерполяционным многочленом с узлами в этих точках, т.е.

$$(Pf)(x_m) = f(x_m), \quad m = 1, 2, \dots, n$$
 (17)

u, следовательно, совпадает с интерполяционным многочленом Лагранжа, построенным по нулям многочлена Чебышева \hat{T}_n .

Доказательство. Вычислим многочлен (10) в точках x_m , m = 1, 2, ..., n:

$$(Pf)(x_m) = \sum_{j=0}^{n-1} \frac{\langle \hat{T}_j, f \rangle_n}{\langle \hat{T}_j, \hat{T}_j \rangle_n} \hat{T}_j(x_m) =$$

$$= \sum_{j=0}^{n-1} \frac{1}{\langle \hat{T}_j, \hat{T}_j \rangle_n} \sum_{i=1}^n \hat{T}_j(x_i) f(x_i) \hat{T}_j(x_m) =$$

$$= \sum_{i=1}^n f(x_i) \sum_{j=0}^{n-1} \frac{1}{\langle \hat{T}_j, \hat{T}_j \rangle_n} \hat{T}_j(x_i) \hat{T}_j(x_m)$$

Таком образом, для доказательства (17) (а значит, и леммы) нам достаточно показать, что

$$\sum_{j=0}^{n-1} \frac{1}{\langle \hat{T}_j, \hat{T}_j \rangle_n} \hat{T}_j(x_i) \hat{T}_j(x_m) = \delta_{im}$$

т.е.

$$\frac{1}{n} + \sum_{j=1}^{n-1} \frac{2}{n} \hat{T}_j(x_i) \hat{T}_j(x_m) = \delta_{im}$$

или

$$\sum_{j=0}^{n-1} \hat{T}_j(x_i) \hat{T}_j(x_m) = \frac{n}{2} \delta_{im} + \frac{1}{2}.$$
 (18)

Имеем

$$\sum_{j=0}^{n-1} \widehat{T}_j(x_i) \widehat{T}_j(x_m) = \sum_{j=0}^{n-1} \cos \left(j \frac{(2i-1)\pi}{2n} \right) \cos \left(j \frac{(2m-1)\pi}{2n} \right).$$

Воспользуемся формулой $\cos \alpha \cos \beta = \frac{1}{2}(\cos(\alpha-\beta)+\cos(\alpha+\beta))$:

$$\sum_{j=0}^{n-1} \widehat{T}_j(x_i) \widehat{T}_j(x_m) = \frac{1}{2} \sum_{j=0}^{n-1} \cos\left(j \frac{(i-m)\pi}{n}\right) + \frac{1}{2} \sum_{j=0}^{n-1} \cos\left(j \frac{(i+m-1)\pi}{n}\right) = S(i-m) + S(i+m-1)$$
(19)

где

$$S(k) = \frac{1}{2} \sum_{j=0}^{n-1} \cos\left(\frac{jk\pi}{n}\right) = \frac{1}{4} \sum_{j=0}^{n-1} \left(\exp\left\{\frac{ijk\pi}{n}\right\} + \exp\left\{\frac{-ijk\pi}{n}\right\}\right) =$$

$$= \frac{1}{4} \left(1 + \sum_{j=-(n-1)}^{n-1} \exp\left\{\frac{ijk\pi}{n}\right\}\right) =$$

$$= \frac{1}{4} \left(1 - \exp\left\{ik\pi\right\} + \sum_{j=-(n-1)}^{n} \exp\left\{\frac{ijk\pi}{n}\right\}\right) =$$

$$= \frac{1}{4} \left(1 - (-1)^k + \exp\left\{-\frac{ik\pi(n-1)}{n}\right\} \sum_{j=0}^{2n-1} \left(\exp\left\{\frac{ik\pi}{n}\right\}\right)^j\right)$$

Поскольку

$$\sum_{j=0}^{2n-1} q^j = \begin{cases} \frac{q^{2n}-1}{q-1} & \text{при} \quad q \neq 1\\ 2n & \text{при} \quad q = 1 \end{cases}$$

то при $k \neq 0$

$$S(k) = \frac{1}{4} \left(1 - (-1)^k + \exp\left\{ -\frac{ik\pi(n-1)}{n} \right\} \frac{\exp\left\{ 2\pi ik \right\} - 1}{\exp\left\{ \frac{\pi ik}{n} \right\} - 1} \right) = \frac{1}{4} \left(1 - (-1)^k \right)$$

так как $\exp\left\{2\pi ik\right\}=1$ для всех k. При k=0 $q=\exp\left\{\frac{\pi ik}{n}\right\}=1$ и

$$S(0) = \frac{1}{4} (1 - 1 + 2n) = \frac{n}{2}$$

Итак,

$$S(k) = \begin{cases} \frac{1}{4} \left(1 - (-1)^k \right) & \text{при} \quad k \neq 0\\ \frac{n}{2} & \text{при} \quad k = 0 \end{cases}$$

Подставляя это значение в (19), получаем при $i \neq m$

$$\sum_{j=0}^{n-1} \widehat{T}_j(x_i) \widehat{T}_j(x_m) = S(i-m) + S(i+m-1) = \frac{1}{4} \left(1 - (-1)^{i-m} \right) + \frac{1}{4} \left(1 - (-1)^{i+m-1} \right) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

(поскольку числа i-m и i+m-1 имеют разную четность). При i=m

$$\sum_{i=0}^{n-1} \widehat{T}_j(x_i) \widehat{T}_j(x_m) = S(i-m) + S(i+m-1) = \frac{n}{2} + \frac{1}{4} \left(1 - (-1)^{2i-1} \right) = \frac{n}{2} + \frac{1}{2}.$$

Тем самым формула (18) и (вместе с ней лемма) доказана.

Все рассмотренные выше аппроксимации Pf функции f имели вид: на отрезке [a,b] функция f приближается многочленом $Pf = L_m$ степени m. Сравним этот способ со следующим: разделим отерзок [a,b] на k частей и на каждой из них приблизим многочленом L_n степени n. Такая аппроксимация называется кусочно-многочленной.

§ 14. ПРЕИМУЩЕСТВА КУСОЧНО-МНОГОЧЛЕННОЙ АППРОКСИМАЦИИ

Оценки погрешности всех рассмотренных ранее методов имеют вид

$$||f - Pf||_C \leq \operatorname{const}(n) \operatorname{dist}_C(f, \mathcal{P}_{n-1}),$$

(где Pf – аппроксимация многочленом степени n-1, \mathcal{P}_{n-1} – пространство многочленов степени n-1). По теореме Джексона (см. теорему 12.3) при n>r+1

$$||f - Pf||_C \le \operatorname{const}(r) \left(\frac{b-a}{n-1}\right)^r \omega\left(f^{(r)}; \frac{b-a}{2(n-1-r)}\right).$$

Следовательно, оценка погрешности

$$||f - Pf||_C \le \operatorname{const}(n) \operatorname{const}(r) \left(\frac{b-a}{n-1}\right)^r \omega \left(f^{(r)}; \frac{b-a}{2(n-1-r)}\right).$$

Увеличение точности при фиксированной величине модуля непрерывности функции $f^{(r)}$ может быть достигнуто либо увеличением n, либо уменьшением b-a; разбиение отрезка [a,b] на k частей дает тот же эффект, что и использование многочленов степени kn. Преимущества разбиения отрезка перед увеличением степени многочлена:

- 1) Требуется решать (в общей схеме задачи линейной интерполяции) k систем размера n вместо одной размера kn.
- 2) С ростом степени многочлена n растет обусловленность базиса, а при разбиении отрезка она не меняется, так как размерность базиса n (степень многочлена на каждом из отрезков разбиения) не изменяется с ростом количества отрезков разбиения k.

§ 15. КУСОЧНО-ЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ

Пусть на отрезке [a,b] заданы точки $a=x_1 < x_2 < \ldots < x_n = b$ и значения $f(x_1), f(x_2), \ldots, f(x_n)$ некоторой функции $f \in C([a,b])$. Требуется построить приближение функции f кусочно-линейной функцией I_2f , совпадающей с f в точках x_i , $i=1,2,\ldots,n$. Другими словами, требуется построить функцию I_2f такую, что для всех $i=1,2,\ldots,n-1$ на отрезке $[x_i,x_{i+1}]$ функция I_2f является линейной функцией, значения которой в точках x_i и x_{i+1} совпадают со значениями $f(x_i)$ и $f(x_{i+1})$ функции f в этих точках.

По интерполяционной формуле Ньютона для всех $x \in [x_i, x_{i+1}], i = 1, 2, \ldots, n-1$

$$I_2 f(x) = f(x_i) + (x - x_i) f(x_i; x_{i+1}) = f(x_i) + (x - x_i) \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$
(1)

Лемма 1. Если $f \in C^2([a,b])$, то справедлива следующая оценка погрешности кусочно-линейной интерполяции

$$||f - I_2 f||_{C([a,b])} \le \frac{1}{8} h^2 ||f''||_{C([a,b])}$$

 $e \partial e$

$$h = \max_{i=1,2,\dots,n-1} (x_{i+1} - x_i).$$

Доказательство. По теореме 7.2 получаем

$$||f - Pf||_{C([x_i, x_{i+1}])} \le \frac{1}{2!} \max_{x \in [x_i, x_{i+1}]} |(x - x_i)(x - x_{i+1})| ||f''||_{C([x_i, x_{i+1}])}.$$
(2)

Функция $g(x) = (x - x_i)(x - x_{i+1}) = x^2 - (x_i + x_{i+1})x + x_ix_{i+1} \le 0$ для всех $x \in [x_i, x_{i+1}]$ и имеет нуль производной $(x_i + x_{i+1})/2$, принадлежащий отрезку $[x_i, x_{i+1}]$. Поскольку $g(x_i) = g(x_{i+1}) = 0$, то

$$\max_{x \in [x_i, x_{i+1}]} |g(x)| = \left| g\left(\frac{x_i + x_{i+1}}{2}\right) \right| = \left| \frac{x_{i+1} - x_i}{2} \frac{x_i - x_{i+1}}{2} \right| = \frac{1}{4} (x_{i+1} - x_i)^2.$$

Подставляя это в (2), получаем

$$||f - Pf||_{C([x_i, x_{i+1}])} \le \frac{1}{8} (x_{i+1} - x_i)^2 ||f''||_{C([x_i, x_{i+1}])}.$$

Следовательно,

$$||f - I_2 f||_{C([a,b])} = \max_{i=1,2,\dots,n-1} ||f - Pf||_{C([x_i,x_{i+1}])} \le \frac{1}{8} h^2 ||f''||_{C([a,b])}.$$

Лемма доказана.

Определение. Обозначим через S_2 линейное пространство непрерывных ломаных линий на отрезке $[x_1, x_n] = [a, b]$ с изломами $x_2 < x_3 < \ldots < x_{n-1}$.

Лемма 2. Если $f \in C([a,b])$, то справедлива следующая оценка погрешности кусочно-линейной интерполяции

$$\operatorname{dist}_C(f, S_2) \le ||f - I_2 f||_{C([a,b])} \le 2 \operatorname{dist}_C(f, S_2).$$

Доказательство. В силу единственности интерполяционного многочлена на каждом из отрезков $[x_i, x_{i+1}], i = 1, 2, ..., n-1$ получаем для всякой $f \in S_2$

$$I_2 f = f \tag{3}$$

Очевидно, что

$$||f - I_2 f||_{C([a,b])} \ge \inf_{a \in S_2} ||f - g||_{C([a,b])} = \operatorname{dist}_C(f, S_2).$$

В силу линейности I_2f на $[x_i, x_{i+1}]$

$$||I_2 f||_{C([a,b])} = \max_{i=1,2,\dots,n} |(I_2 f)(x_i)| = \max_{i=1,2,\dots,n} |f(x_i)| \le ||f||_{C([a,b])},$$

т.е. для всякой $f \in C([a,b])$

$$||I_2 f||_{C([a,b])} \le ||f||_{C([a,b])}. \tag{4}$$

Имеем для всякой $g \in S_2$

$$||f - I_2 f||_{C([a,b])} = ||(f - g) + (g - I_2 f)||_{C([a,b])}.$$

Используя (3) и линейность I_2 , продолжаем

$$||f - I_2 f||_{C([a,b])} = ||(f - g) - I_2 (f - g)||_{C([a,b])} \le ||(f - g)||_{C([a,b])} + ||I_2 (f - g)||_{C([a,b])}.$$

С помощью (4) находим

$$||f - I_2 f||_{C([a,b])} \le ||(f - g)||_{C([a,b])} + ||(f - g)||_{C([a,b])} = 2||(f - g)||_{C([a,b])}$$

для всякой $g \in S_2$. Следовательно,

$$||f - I_2 f||_{C([a,b])} \le \inf_{g \in S_2} ||(f - g)||_{C([a,b])} = 2 \operatorname{dist}_C(f, S_2).$$

Лемма доказана.

§ 16. КУСОЧНО-ЛИНЕЙНАЯ АППРОКСИМАЦИЯ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

В предыдущем разделе мы построили кусочно-линейную функцию, совпадающую с функцией f в заданных точках. Однако, если ее значения известны с некоторой погрешностью, то это может дать приближение плохого качества. В описываемом ниже алгоритме близость функции и ее приближения измеряется в интегральной норме, и, следовательно, приближающая функция будет менее чувствительной к выбросам в значениях приближаемой функции.

§ 16.1. Постановка задачи линейной интерполяции

Пусть требуется построить приближение функции f кусочно-линейной функцией $L_2 f \in S_2$ такое, что

$$||f - L_2 f||_{L_2([a,b])} \to \min$$

т.е.

$$||f - L_2 f||_{L_2([a,b])} = \inf_{g \in S_2} ||f - g||_{L_2([a,b])}$$
(1)

где

$$||g||_{L_2([a,b])} = (g,g)_{L_2([a,b])}^{1/2}, \quad (u,v)_{L_2([a,b])} = \int_a^b u(x)v(x) dx.$$

Введем базис пространства S_2

$$H_j \in S_2, \quad H_j(x_i) = \delta_{ij}, \quad i = 1, 2, \dots, n, \ j = 1, 2, \dots, n.$$
 (2)

Всякая $g \in S_2$ раскладывается по этому базису следующим образом

$$g(x) = \sum_{j=1}^{n} g(x_j) H_j(x).$$
 (3)

Действительно, в силу (2) имеем для $\widehat{g}(x) = \sum_{j=1}^n g(x_j) H_j(x)$: $\widehat{g}(x_i) = g(x_i)$, $i=1,2,\ldots,n$. Следовательно, $\widehat{g}(x) = I_2 g$ — кусочно-линейная интерполирующая функция. По доказанному в лемме 15.2 для $g \in S_2$ выполнено (15.3). Следовательно, $g = \widehat{g}$.

Таким образом, задача (1) может быть сформулирована в следующем виде: найти $(\alpha_j)_{j=1,2,\dots,n}$ такие, что функция

$$(L_2 f)(x) = \sum_{j=1}^n \alpha_j H_j(x)$$
(4)

удовлетворяет соотношению

$$\left\| f - \sum_{j=1}^{n} \alpha_j H_j \right\|_{L_2([a,b])} = \inf_{g \in S_2} \| f - g \|_{L_2([a,b])}.$$
 (5)

Известно, что в евклидовом пространстве (в нашем случае – $L_2([a,b])$) минимум (5) реализуется на функции (4), являющейся проекцией функции f на подпространство S_2 . Следовательно, элемент $f - L_2 f$ ортогонален подпространству S_2 . Поскольку $\{H_i\}_{i=1}^n$ составляют базис S_2 , то условие ортогональности S_2 эквивалентно условию ортогональности всем H_i , $i = 1, \ldots, n$:

$$(f-L_2f,H_i)_{L_2([a,b])}=0,$$
 для всех $i=1,\dots,n,$

т.е.

$$(L_2f, H_i)_{L_2([a,b])} = (f, H_i)_{L_2([a,b])}, \quad i = 1, \dots, n.$$
(6)

Условия (6) представляют собой линейные условия интерполяции, которым должна удовлетворять приближающая функция (4).

Из (6) и (4) находим:

$$\sum_{j=1}^{n} (H_j, H_i)_{L_2([a,b])} \alpha_j = (f, H_i)_{L_2([a,b])}, \quad i = 1, \dots, n$$

или

$$\sum_{j=1}^{n} \int_{a}^{b} H_{j}(x)H_{i}(x) dx \cdot \alpha_{j} = \int_{a}^{b} f(x)H_{i}(x) dx, \quad i = 1, \dots, n.$$
 (7)

Тот же результат (7) может быть получен из условия

$$F(\alpha) = \left\| f - \sum_{j=1}^{n} \alpha_j H_j \right\|_{L_2([a,b])}^2 = \left(f - \sum_{j=1}^{n} \alpha_j H_j, \ f - \sum_{j=1}^{n} \alpha_j H_j \right)_{L_2([a,b])} \to \min$$

путем дифференцирования функции $F(\alpha)$:

$$\begin{split} \frac{\partial F}{\partial \alpha_i} &= \left(\frac{\partial}{\partial \alpha} \left(f - \sum_{j=1}^n \alpha_j H_j \right), \ f - \sum_{j=1}^n \alpha_j H_j \right)_{L_2([a,b])} + \\ &+ \left(f - \sum_{j=1}^n \alpha_j H_j, \ \frac{\partial}{\partial \alpha} \left(f - \sum_{j=1}^n \alpha_j H_j \right) \right)_{L_2([a,b])} = \\ &= \left(-2H_i, \ f - \sum_{j=1}^n \alpha_j H_j \right)_{L_2([a,b])} \end{split}$$

и приравнивания к нулю производной $\frac{\partial F}{\partial \alpha_i}$ в точке минимума:

$$\frac{\partial F}{\partial \alpha_i} = 0, \quad i = 1, \dots, n.$$

§ 16.2. Вычисление матрицы системы задачи линейной интерполяции

Вычислим матрицу системы (7). Так как

$$\operatorname{supp} H_i = [x_{i-1}, x_{i+1}]$$
 при $i = 2, 3, \dots, n-1$, $\operatorname{supp} H_1 = [x_1, x_2]$, $\operatorname{supp} H_n = [x_{n-1}, x_n]$,

то

$$(H_j, H_i)_{L_2([a,b])} = 0$$
 при $|i - j| > 1$.

Поэтому в i-ом уравнении системы (7) отличны от нуля не более 3-х коэффициентов:

$$(H_{i-1},H_i)_{L_2([a,b])}$$
 при α_{i-1} и $i=2,3,\ldots,n,$ $(H_i,H_i)_{L_2([a,b])}$ при α_i и $i=1,2,\ldots,n,$ $(H_{i+1},H_i)_{L_2([a,b])}$ при α_{i+1} и $i=1,2,\ldots,n-1.$

1. Вычислим для $i = 1, 2, \dots, n-1$

$$(H_i, H_{i+1})_{L_2([a,b])} = \int_{\sup H_i \cap \operatorname{supp} H_{i+1}} H_i(x) H_{i+1}(x) dx = \int_{x_i}^{x_{i+1}} H_i(x) H_{i+1}(x) dx.$$

Так как H_i , $H_{i+1} \in S_2$ – кусочно линейные и $H_i(x_i) = 1$, $H_i(x_{i+1}) = 0$, $H_{i+1}(x_i) = 0$, $H_{i+1}(x_{i+1}) = 1$, то

$$H_i(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}} \text{при} \quad x \in [x_i, x_{i+1}]$$

$$H_{i+1}(x) = \frac{x - x_i}{x_{i+1} - x_i} \text{при} \quad x \in [x_i, x_{i+1}]$$

Следовательно,

$$(H_{i}, H_{i+1})_{L_{2}([a,b])} = \frac{1}{(x_{i+1} - x_{i})^{2}} \int_{x_{i}}^{x_{i+1}} (x - x_{i})(x_{i+1} - x) dx =$$

$$= \frac{1}{(x_{i+1} - x_{i})^{2}} \int_{x_{i}}^{x_{i+1}} (x - x_{i})((x_{i+1} - x_{i}) + x_{i} - x) dx =$$

$$= \frac{1}{(x_{i+1} - x_{i})^{2}} \int_{x_{i}}^{x_{i+1}} ((x_{i+1} - x_{i})(x - x_{i}) - (x - x_{i})^{2}) dx =$$

$$= \frac{1}{(x_{i+1} - x_{i})^{2}} \left(\frac{1}{2} (x_{i+1} - x_{i})^{3} - \frac{1}{3} (x_{i+1} - x_{i})^{3} \right) = \frac{1}{6} (x_{i+1} - x_{i})$$

2. Заменой индексов $i:=i-1,\ i+1:=i$ в предыдущей формуле получаем для $i=2,3,\ldots,n$

$$(H_{i-1}, H_i)_{L_2([a,b])} = \frac{1}{6}(x_i - x_{i-1})$$

3. Вычислим для $i = 2, 3, \dots, n-1$

$$(H_i, H_i)_{L_2([a,b])} = \int_{x_{i-1}}^{x_{i+1}} H_i^2(x) dx = \int_{x_{i-1}}^{x_i} H_i^2(x) dx + \int_{x_i}^{x_{i+1}} H_i^2(x) dx.$$

Имеем:

$$\int_{x_{i}}^{x_{i-1}} H_{i}^{2}(x) dx = \int_{x_{i-1}}^{x_{i}} \left(\frac{x - x_{i-1}}{x_{i} - x_{i-1}}\right)^{2} dx = \frac{1}{3}(x_{i} - x_{i-1})$$

$$\int_{x_{i}}^{x_{i+1}} H_{i}^{2}(x) dx = \int_{x_{i}}^{x_{i+1}} \left(\frac{x - x_{i+1}}{x_{i} - x_{i+1}}\right)^{2} dx = \frac{1}{(x_{i} - x_{i+1})^{2}} \frac{1}{3} \left(-(x_{i} - x_{i+1})^{3}\right) = \frac{1}{3}(x_{i+1} - x_{i})$$

Следовательно,

$$(H_i, H_i)_{L_2([a,b])} = \frac{1}{3}(x_i - x_{i-1}) + \frac{1}{3}(x_{i+1} - x_i) = \frac{1}{3}(x_{i+1} - x_{i-1})$$

4. Вычислим

$$(H_1, H_1)_{L_2([a,b])} = \int_{x_1}^{x_2} H_1^2(x) dx = \int_{x_1}^{x_2} \left(\frac{x - x_2}{x_1 - x_2}\right)^2 dx = \frac{1}{3}(x_2 - x_1)$$

5. Вычислим

$$(H_n, H_n)_{L_2([a,b])} = \int_{x_{n-1}}^{x_n} H_n^2(x) dx = \int_{x_{n-1}}^{x_n} \left(\frac{x - x_{n-1}}{x_n - x_{n-1}} \right)^2 dx = \frac{1}{3} (x_n - x_{n-1})$$

Итак, система (7) имеет вид:

$$\frac{1}{3}(x_2 - x_1)\alpha_1 + \frac{1}{6}(x_2 - x_1)\alpha_2 = \int_{x_1}^{x_2} H_1(x)f(x) dx$$

$$\frac{1}{6}(x_i - x_{i-1})\alpha_{i-1} + \frac{1}{3}(x_{i+1} - x_{i-1})\alpha_i + \frac{1}{6}(x_{i+1} - x_i)\alpha_{i+1} = \int_{x_{i-1}}^{x_{i+1}} H_i(x)f(x) dx,$$

$$i = 2, 3, \dots, n - 1$$

$$\frac{1}{6}(x_n - x_{n-1})\alpha_{n-1} + \frac{1}{3}(x_n - x_{n-1})\alpha_n = \int_{x_{n-1}}^{x_n} H_n(x)f(x) dx$$

Если положить $x_0 = x_1$, $x_{n+1} = x_n$, то эту систему можно записать в более компактном виде

$$\frac{1}{6}(x_i - x_{i-1})\alpha_{i-1} + \frac{1}{3}(x_{i+1} - x_{i-1})\alpha_i + \frac{1}{6}(x_{i+1} - x_i)\alpha_{i+1} = \int_{x_{i-1}}^{x_{i+1}} H_i(x)f(x) dx, \ i = 1, \dots, n$$
(8)

 $(\alpha_0 \ \text{и} \ \alpha_{n+1} \ \text{входят сюда с нулевыми коэффициентами}).$

Определение. Матрица $A = (a_{ij}) \in \mathbf{M}_n$ называется матрицей с диагональным преобладанием, если

$$|a_{ii}| \ge \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n.$$

Матрица системы (8) является трехдиагональной с диагональным преобладанием. Системы с такими матрицами можно решать обычным методом Гаусса без выбора главного элемента.

§ 16.3. Свойства приближающей функции

Лемма 1. Если $f \in C([a,b])$, то для приближающей функции $L_2 f$ справедлива априорная оценка

$$||L_2 f||_{C([a,b])} \le 3||f||_{C([a,b])}.$$

Доказательство. Так как $H_j(x_i) = \delta_{ij}$, то для кусочно-линейной функции (4)

$$||L_2 f||_{C([a,b])} = \max_{i=1,\dots,n} |(L_2 f)(x_i)| = \max_{i=1,\dots,n} \left| \sum_{j=1}^n \alpha_j H_j(x_i) \right| = \max_{i=1,\dots,n} |\alpha_i|.$$

Обозначим

$$|\alpha_j| = \max_{i=1,\dots,n} |\alpha_i| = ||L_2 f||_{C([a,b])}.$$
 (9)

Умножим j-ое уравнение системы (8) на $\frac{6}{x_{j+1}-x_{j-1}}$, получим

$$\gamma_{j-1}\alpha_{j-1} + 2\alpha_j + \gamma_{j+1}\alpha_{j+1} = \frac{6}{x_{j+1} - x_{j-1}} \int_{x_{j-1}}^{x_{j+1}} H_j(x)f(x) dx, \tag{10}$$

где

$$\gamma_{j-1} = \frac{x_j - x_{j-1}}{x_{j+1} - x_{j-1}}, \quad \gamma_{j+1} = \frac{x_{j+1} - x_j}{x_{j+1} - x_{j-1}}, \quad \gamma_{j-1} + \gamma_{j+1} = 1.$$
 (11)

Из (10) имеем

$$2|\alpha_{j}| \leq \frac{6}{x_{j+1} - x_{j-1}} \left| \int_{x_{j-1}}^{x_{j+1}} H_{j}(x) f(x) dx \right| + |\gamma_{j-1} \alpha_{j-1} + \gamma_{j+1} \alpha_{j+1}|.$$
 (12)

Рассмотрим

$$|\gamma_{j-1}\alpha_{j-1} + \gamma_{j+1}\alpha_{j+1}| \leq \gamma_{j-1}|\alpha_{j-1}| + \gamma_{j+1}|\alpha_{j+1}|.$$

В силу (9)

$$|\gamma_{j-1}\alpha_{j-1} + \gamma_{j+1}\alpha_{j+1}| \le \gamma_{j-1}|\alpha_j| + \gamma_{j+1}|\alpha_j| = (\gamma_{j-1} + \gamma_{j+1})|\alpha_j|$$

В силу (11)

$$|\gamma_{j-1}\alpha_{j-1} + \gamma_{j+1}\alpha_{j+1}| \le |\alpha_j|.$$

Подставляя это в (12), находим

$$2|\alpha_j| \le \frac{6}{x_{j+1} - x_{j-1}} \left| \int_{x_{j-1}}^{x_{j+1}} H_j(x) f(x) \, dx \right| + |\alpha_j|.$$

Отсюда получаем

$$|\alpha_j| \le \frac{6}{x_{j+1} - x_{j-1}} \int_{x_{j-1}}^{x_{j+1}} H_j(x) dx \cdot ||f||_{C([x_{j-1}, x_{j+1}])}.$$
 (13)

Поскольку

$$\int_{x_{j-1}}^{x_{j+1}} H_j(x) dx = \int_{x_{j-1}}^{x_j} \frac{x - x_{j-1}}{x_j - x_{j-1}} dx + \int_{x_j}^{x_{j+1}} \frac{x - x_{j+1}}{x_j - x_{j+1}} dx =$$

$$= \frac{1}{2} (x_j - x_{j-1}) + \frac{1}{2} (x_{j+1} - x_j) = \frac{1}{2} (x_{j+1} - x_{j-1}),$$

то из (9) и (13) получаем

$$||L_2 f||_{C([a,b])} = |\alpha_j| \le 3||f||_{C([x_{j-1},x_{j+1}])} \le 3||f||_{C([a,b])}.$$

Лемма доказана.

Лемма 2. Если $f \in C([a,b])$, то справедлива следующая оценка погрешности кусочно-линейной аппроксимации методом наименьших квадратов

$$\operatorname{dist}_{C}(f, S_{2}) \leq ||f - L_{2}f||_{C([a,b])} \leq 4 \operatorname{dist}_{C}(f, S_{2}).$$

Доказательство. Так как проекция элемента из подпространства на это подпространство равна этому элементу, то

$$L_2 f = f$$
 для всех $f \in S_2$. (14)

Очевидно, что

$$||f - L_2 f||_{C([a,b])} \ge \inf_{g \in S_2} ||f - g||_{C([a,b])} = \operatorname{dist}_C(f, S_2).$$

Имеем для всякой $g \in S_2$

$$||f - L_2 f||_{C([a,b])} = ||(f - g) + (g - L_2 f)||_{C([a,b])}.$$

Используя (14) и линейность L_2 , продолжаем

$$||f - L_2 f||_{C([a,b])} = ||(f - g) - L_2(f - g)||_{C([a,b])} \le ||(f - g)||_{C([a,b])} + ||L_2(f - g)||_{C([a,b])}.$$

С помощью леммы 1 находим

$$||f - L_2 f||_{C([a,b])} \le ||(f - g)||_{C([a,b])} + 3||(f - g)||_{C([a,b])} = 4||(f - g)||_{C([a,b])}$$

для всякой $g \in S_2$. Следовательно,

$$||f - L_2 f||_{C([a,b])} \le \inf_{g \in S_2} 4||(f - g)||_{C([a,b])} = 4 \operatorname{dist}_C(f, S_2).$$

Лемма доказана.

Лемма 3. Если $f \in C^{(2)}([a,b])$, то справедлива следующая оценка погрешности кусочно-линейной аппроксимации методом наименьших квадратов

$$||f - L_2 f||_{C([a,b])} \le \frac{1}{2} h^2 ||f''||_{C([a,b])},$$

 $e \partial e$

$$h = \max_{i=1,2,\dots,n-1} (x_{i+1} - x_i).$$

Доказательство. В силу леммы 15.2

$$\operatorname{dist}_{C}(f, S_{2}) \leq \|f - I_{2}f\|_{C([a,b])}.$$

По лемме 15.1

$$\operatorname{dist}_{C}(f, S_{2}) \leq \|f - I_{2}f\|_{C([a,b])} \leq \frac{1}{8} h^{2} \|f''\|_{C([a,b])}.$$

В силу леммы 2

$$||f - L_2 f||_{C([a,b])} \le 4 \operatorname{dist}_C(f, S_2) \le \frac{1}{2} h^2 ||f''||_{C([a,b])}.$$

Лемма доказана.

§ 16.4. Вычисление правой части системы задачи линейной интерполяции

Для вычисления правой части системы (8) требуется уметь вычислять интегралы вида

$$\int_{x_{i-1}}^{x_{i+1}} H_i(x) f(x) dx, \quad i = 1, 2, \dots, n.$$

Обычно описанный выше алгоритм применяют в следующей ситуации: заданы точки $a = y_1 < y_2 < \ldots < y_N = b$ и известны значения функции f в этих точках: $f(y_1), f(y_2), \ldots, f(y_N)$, здесь N > n. Тогда полагают, например,

$$\int_{x_{i-1}}^{x_{i+1}} H_i(x) f(x) dx \approx \int_{x_{i-1}}^{x_{i+1}} H_i(x) (I_2 f)(x) dx \quad i = 1, 2, \dots, n,$$
(15)

где I_2f — кусочно-линейная интерполирующая функция, построенная по точкам y_1, y_2, \ldots, y_N . Интегралы в правой части приближенного равенства (15) вычисляются аналитически, поскольку подинтегральная функция представляет собой многочлен не выше второй степени.

Погрешность, вносимая при заменне левой части (15) на правую, может быть оценена с помощью леммы 15.1:

$$\left| \int_{x_{i-1}}^{x_{i+1}} H_i(x) f(x) \, dx - \int_{x_{i-1}}^{x_{i+1}} H_i(x) (I_2 f)(x) \, dx \right| \le \frac{1}{8} h^2 ||f''||_{C([a,b])} C_i,$$

где

$$C_i = \int_{x_{i-1}}^{x_{i+1}} H_i(x) \, dx = \frac{1}{2} (x_{i+1} - x_{i-1}) \le h$$

И

$$h = \max_{i=1,2,\dots,n-1} (x_{i+1} - x_i).$$

Поэтому

$$\left| \int_{x_{i-1}}^{x_{i+1}} H_i(x) f(x) \, dx - \int_{x_{i-1}}^{x_{i+1}} H_i(x) (I_2 f)(x) \, dx \right| \le \frac{1}{8} h^3 ||f''||_{C([a,b])}$$

Покажем, что условие N>n важно. Предположим, что N=n, т.е. о функции f нам известны лишь ее значения $f(x_1), f(x_2), \ldots, f(x_n)$ в точках x_1, x_2, \ldots, x_n .

1. Вычислим для $i = 1, 2, \dots, n-1$

$$\int_{x_i}^{x_{i+1}} H_i(x) f(x) dx. \tag{16}$$

Приблизим функцию f на отрезке $[x_i, x_{i+1}]$ линейной функцией – интерполяционным многочленом Лагранжа $L_2^{(i)}$ первой степени, построенным по точкам x_i и x_{i+1} :

$$L_2^{(i)}(x) = f(x_i) + (x - x_i)f(x_i; x_{i+1}) = f(x_i) + (x - x_i)\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}.$$

При этом в силу теоремы 7.2 для всех $x \in [x_i, x_{i+1}]$ справедливо равенство

$$f(x) - L_2^{(i)}(x) = \frac{1}{2!}(x - x_i)(x - x_{i+1}) f''(\xi(x))$$

где $\xi(x) \in [x_i, x_{i+1}]$. Следовательно,

$$\left| \int_{x_{i}}^{x_{i+1}} H_{i}(x) f(x) dx - \int_{x_{i}}^{x_{i+1}} H_{i}(x) L_{2}^{(i)} dx \right| \leq \left| \int_{x_{i}}^{x_{i+1}} \frac{1}{2!} (x - x_{i}) (x - x_{i+1}) f''(\xi(x)) dx \right| \leq \frac{1}{2} \|f''\|_{C([x_{i}, x_{i+1}])} \int_{x_{i}}^{x_{i+1}} (x - x_{i}) (x_{i+1} - x) dx.$$

Поскольку

$$\int_{x_{i}}^{x_{i+1}} (x - x_{i})(x_{i+1} - x) dx = \int_{x_{i}}^{x_{i+1}} (x - x_{i})((x_{i+1} - x_{i}) - (x - x_{i})) dx =
= \frac{1}{2}(x_{i+1} - x_{i})^{3} - \frac{1}{3}(x_{i+1} - x_{i})^{3} = \frac{1}{6}(x_{i+1} - x_{i})^{3},$$
(17)

ТО

$$\left| \int_{x_i}^{x_{i+1}} H_i(x) f(x) \, dx - \int_{x_i}^{x_{i+1}} H_i(x) L_2^{(i)} \, dx \right| \le \frac{1}{12} \left(x_{i+1} - x_i \right)^3 \|f''\|_{C([x_i, x_{i+1}])}. \tag{18}$$

Поэтому мы можем приблизить интеграл (16) следующим способом:

$$\int_{x_i}^{x_{i+1}} H_i(x) f(x) \, dx \approx \int_{x_i}^{x_{i+1}} H_i(x) L_2^{(i)}(x) \, dx \tag{19}$$

с ошибкой (18).

Имеем

$$\int_{x_{i}}^{x_{i+1}} H_{i}(x) L_{2}^{(i)} dx = \frac{x - x_{i+1}}{x_{i} - x_{i+1}} \left(f(x_{i}) + (x - x_{i}) f(x_{i}; x_{i+1}) \right) dx =$$

$$= \frac{1}{x_{i+1} - x_{i}} \left(f(x_{i}) \int_{x_{i}}^{x_{i+1}} (x_{i+1} - x) dx + f(x_{i}; x_{i+1}) \int_{x_{i}}^{x_{i+1}} (x - x_{i}) (x_{i+1} - x) dx \right)$$

С помощью (17) продолжаем:

$$\int_{x_i}^{x_{i+1}} H_i(x) L_2^{(i)} dx = \frac{1}{x_{i+1} - x_i} \left(f(x_i) \frac{1}{2} (x_{i+1} - x_i)^2 + \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \frac{1}{6} (x_{i+1} - x_i)^3 \right)$$

$$= (x_{i+1} - x_i) \left(\frac{1}{2} f(x_i) + \frac{1}{6} (f(x_{i+1}) - f(x_i)) \right)$$

$$= \frac{1}{6} (x_{i+1} - x_i) (2f(x_i) + f(x_{i+1})).$$

Итак, в силу (19), (18) получаем:

$$\int_{x_i}^{x_{i+1}} H_i(x)f(x) dx \approx \frac{1}{6} (x_{i+1} - x_i)(2f(x_i) + f(x_{i+1})), \tag{20}$$

с ошибкой

$$\left| \int_{x_i}^{x_{i+1}} H_i(x) f(x) \, dx - \frac{1}{6} (x_{i+1} - x_i) (2f(x_i) + f(x_{i+1})) \right| \le \frac{1}{12} (x_{i+1} - x_i)^3 \|f''\|_{C([x_i, x_{i+1}])}. \tag{21}$$

2. Аналогично вычислим для $i = 2, 3, \ldots, n$

$$\int_{x_{i-1}}^{x_i} H_i(x)f(x) dx \approx \frac{1}{6} (x_i - x_{i-1})(2f(x_i) + f(x_{i-1})), \tag{22}$$

с ошибкой

$$\left| \int_{x_{i-1}}^{x_i} H_i(x) f(x) \, dx - \frac{1}{6} (x_i - x_{i-1}) (2f(x_i) + f(x_{i-1})) \right| \le \frac{1}{12} (x_i - x_{i-1})^3 \|f''\|_{C([x_{i-1}, x_i])}. \tag{23}$$

Вычислим правую часть системы (8):

- 1. Формулы для $\int\limits_{x_1}^{x_2} H_1(x)f(x)\,dx$ получаются из (20), (21) при i=1. 2. Вычислим для $i=2,3,\ldots,n-1$

$$(H_i, f)_{L_2([a,b])} = \int_{x_{i-1}}^{x_{i+1}} H_i(x) f(x) dx = \int_{x_{i-1}}^{x_i} H_i(x) f(x) dx + \int_{x_i}^{x_{i+1}} H_i(x) f(x) dx.$$

В силу (20), (21), (22), (23)

$$(H_i, f)_{L_2([a,b])} \approx \frac{1}{6} (x_{i+1} - x_i) (2f(x_i) + f(x_{i+1})) + \frac{1}{6} (x_i - x_{i-1}) (2f(x_i) + f(x_{i-1})),$$

$$= \frac{1}{6} (x_i - x_{i-1}) f(x_{i-1}) + \frac{1}{3} (x_{i+1} - x_{i-1}) f(x_i) + \frac{1}{6} (x_{i+1} - x_i) f(x_{i+1})$$

с ошибкой

$$\left| (H_{i}, f)_{L_{2}([a,b])} - \left(\frac{1}{6} (x_{i} - x_{i-1}) f(x_{i-1}) + \frac{1}{3} (x_{i+1} - x_{i-1}) f(x_{i}) + \frac{1}{6} (x_{i+1} - x_{i}) f(x_{i+1}) \right) \right| \leq
\leq \frac{1}{12} (x_{i+1} - x_{i})^{3} ||f''||_{C([x_{i}, x_{i+1}])} + \frac{1}{12} (x_{i} - x_{i-1})^{3} ||f''||_{C([x_{i-1}, x_{i}])} \leq
\leq \frac{1}{12} ||f''||_{C([x_{i-1}, x_{i+1}])} \left((x_{i+1} - x_{i})^{3} + (x_{i} - x_{i-1})^{3} \right)$$

3. Формулы для $\int_{x}^{x_n} H_n(x)f(x) dx$ получаются из (22), (23) при i = n - 1.

Если положить $x_0 = x_1$, $x_{n+1} = x_n$, то формулы для правой части системы (8) можно записать в более компактном виде:

$$(H_i,f)_{L_2([a,b])} pprox rac{1}{6}(x_i-x_{i-1})f(x_{i-1}) + rac{1}{3}(x_{i+1}-x_{i-1})f(x_i) + rac{1}{6}(x_{i+1}-x_i)f(x_{i+1}), \tag{24}$$
 где ошибка приближения

$$\left| (H_{i}, f)_{L_{2}([a,b])} - \left(\frac{1}{6} (x_{i} - x_{i-1}) f(x_{i-1}) + \frac{1}{3} (x_{i+1} - x_{i-1}) f(x_{i}) + \frac{1}{6} (x_{i+1} - x_{i}) f(x_{i+1}) \right) \right| \leq (25)$$

$$\leq \frac{1}{12} \left((x_{i+1} - x_{i})^{3} + (x_{i} - x_{i-1})^{3} \right) \|f''\|_{C([x_{i-1}, x_{i+1}])}$$

Если обозначить

$$h = \max_{i=1,2,\dots,n-1} (x_{i+1} - x_i),$$

то ошибку (25) можно записать в виде

$$\left| (H_{i}, f)_{L_{2}([a,b])} - \left(\frac{1}{6} (x_{i} - x_{i-1}) f(x_{i-1}) + \frac{1}{3} (x_{i+1} - x_{i-1}) f(x_{i}) + \frac{1}{6} (x_{i+1} - x_{i}) f(x_{i+1}) \right) \right| \leq (26)$$

$$\leq \frac{1}{6} h^{3} ||f''||_{C([x_{i-1}, x_{i+1}])}$$

Из вида системы (8) и ее правой части (24) получаем, что $\alpha_i = f(x_i)$, т.е. приближение по методу наименьших квадратов совпадает с приближением, построенным кусочно-линейной интерполяцией: $L_2 f = I_2 f$.

§ 17. АППРОКСИМАЦИЯ МНОГОЧЛЕНАМИ ЧЕБЫШЕВА МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

Задача постоения приближающей функции $Pf \in \mathcal{P}_{n-1}$, наиболее близкой к заданной функции f в норме L_2 (т.е. минимизирующей функционал $||f-Pf||_{L_2}$) является сложной с вычислительной точки зрения. Однако, задача минимизации функционала $||f-Pf||_*$, где $||\cdot||_*$ – норма пространства L_2 с некоторым весом, может быть решена достаточно легко.

§ 17.1. Интегральные свойства многочленов Чебышева

Лемма 1. Многочлены Чебышева $\hat{T}_0, \hat{T}_1, \dots, \hat{T}_{n-1}$ (см. (13.3)) на отрезке [a,b] образуют базис пространства \mathcal{P}_{n-1} многочленов степени n-1.

Доказательство. Линейная независимость многочленов $\widehat{T}_0, \widehat{T}_1, \dots, \widehat{T}_{n-1}$ доказана в лемме 13.1.

Покажем, что всякий многочлен $P_{n-1} \in \mathcal{P}_{n-1}$ может быть представлен в виде линейной комбинации многочленов $\hat{T}_0, \hat{T}_1, \dots, \hat{T}_{n-1}$.

Определим по точкам (13.7) дискретное "скалярное" произведение (13.1) и построим разложение (13.10) по многочленам Чебышева $\hat{T}_0, \hat{T}_1, \ldots, \hat{T}_{n-1}$ для функции $f = P_{n-1}$. В силу леммы 13.3 $P_{n-1}(x_i) = Pf(x_i), i = 1, 2, \ldots, n$. Поскольку P_{n-1} и Pf являются многочленами степени не выше n-1 и совпадают в n точках, то $P_{n-1} \equiv Pf$. Итак, всякий многочлен $P_{n-1} \in \mathcal{P}_{n-1}$ представлен в виде линейной комбинации многочленов $\hat{T}_0, \hat{T}_1, \ldots, \hat{T}_{n-1}$ (причем коэффициенты разложения вычислены нами явно, см. (13.10)).

Лемма доказана.

Лемма 2. Многочлены Чебышева $\widehat{T}_0, \widehat{T}_1, \dots, \widehat{T}_{n-1}$ на отрезке [a,b] удовлетворяют соотношениям:

$$\int_{a}^{b} \frac{\widehat{T}_{i}(y)\widehat{T}_{j}(y)}{\sqrt{(b-y)(y-a)}} dy = \frac{\pi}{2} \,\delta_{ij}, \quad i^{2} + j^{2} \neq 0, \quad \int_{a}^{b} \frac{\widehat{T}_{0}^{2}(y)}{\sqrt{(b-y)(y-a)}} \, dy = \pi.$$

Доказательство. Докажем вначале, что многочлены $T_0, T_1, \ldots, T_{n-1}$ на отрезке [-1, 1] удовлетворяют соотношениям:

$$\int_{1}^{1} \frac{T_{i}(x)T_{j}(x)}{\sqrt{1-x^{2}}} dx = \frac{\pi}{2} \delta_{ij}, \quad i^{2} + j^{2} \neq 0, \quad \int_{1}^{1} \frac{T_{0}^{2}(x)}{\sqrt{1-x^{2}}} dx = \pi.$$
 (1)

Имеем:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \cos(i\arccos x) \cos(j\arccos x) dx.$$

Сделаем здесь замену $x = \cos \theta$, $\theta \in [0, \pi]$:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \int_{\pi}^{0} \frac{1}{\sin\theta} \cos(i\theta) \cos(j\theta) (-\sin\theta) d\theta =$$

$$= \int_{0}^{\pi} \cos(i\theta) \cos(j\theta) d\theta =$$

$$= \frac{1}{2} \int_{0}^{\pi} \cos((i-j)\theta) d\theta + \frac{1}{2} \int_{0}^{\pi} \cos((i+j)\theta) d\theta =$$

$$= \frac{1}{2} (I(i-j) + I(i+j)),$$

где

$$I(k) = \int_0^\pi \cos(k\theta) d\theta = \left\{ \begin{array}{l} \frac{1}{k} \sin(k\theta) \Big|_0^\pi = 0, \quad k \neq 0 \\ \int_0^\pi 1 d\theta = \pi, \quad k = 0 \end{array} \right\} = \pi \delta_{k,0}.$$

Следовательно,

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \frac{1}{2}\pi\delta_{i,j} + \frac{1}{2}\pi\delta_{i,-j} = \begin{cases} \frac{1}{2}\pi\delta_{ij}, & i^2 + j^2 \neq 0\\ \pi, & i = j = 0 \end{cases}$$

Сделаем здесь замену переменных (11.4): x=x(y) , $x:[a,b]\to [-1,1]$, $x(y)=\frac{2y-(b+a)}{b-a}$:

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \int_{a}^{b} \frac{1}{\sqrt{1-\left(\frac{2y-(b+a)}{b-a}\right)^2}} \widehat{T}_i(y)\widehat{T}_j(y) \frac{2}{b-a} dy$$

Так как

$$\frac{1}{\sqrt{1 - \left(\frac{2y - (b + a)}{b - a}\right)^2}} = \frac{1}{b - a}\sqrt{(b - a)^2 - (2y - (b + a))^2} = \frac{1}{b - a}\sqrt{(b - a - (2y - (b + a)))(b - a + 2y - (b + a))} = \frac{1}{b - a}\sqrt{(2b - 2y)(2y - 2a)} = \frac{2}{b - a}\sqrt{(b - y)(y - a)}$$

ТО

$$\int_{-1}^{1} \frac{T_i(x)T_j(x)}{\sqrt{1-x^2}} dx = \int_{a}^{b} \frac{\hat{T}_i(y)\hat{T}_j(y)}{\sqrt{(b-y)(y-a)}} dy$$

Из (1) получаем требуемый результат.

Лемма доказана.

§ 17.2. Постановка задачи линейной интерполяции

Введем скалярное произведение

$$[u,v] = \int_a^b \frac{u(y)v(y)}{\sqrt{(b-y)(y-a)}} dy,$$

норму

$$||u||_* = [u, u]^{1/2}$$

и пространство

$$L_2^*([a,b]) = \{ f : ||f||_* < \infty \}.$$

В силу

$$\int_{a}^{b} \frac{dy}{\sqrt{(b-y)(y-a)}} < \infty$$

имеет место включение $C([a,b])\subset L_2^*([a,b])$.

По методу наименьших квадратов для функции $f \in L_2^*([a,b])$ требуется построить приближение $Pf \in \mathcal{P}_{n-1}$ такое, что

$$||f - Pf||_* = \inf_{g \in \mathcal{P}_{n-1}} ||f - g||_*.$$

В силу леммы 1 можно искать Pf в виде

$$Pf = \sum_{j=0}^{n-1} \alpha_j \hat{T}_j. \tag{2}$$

Следовательно, надо найти $\{\alpha_j\}_{j=0}^{n-1}$ такие, что

$$||f - \sum_{j=0}^{n-1} \alpha_j \widehat{T}_j||_* = \inf_{g \in \mathcal{P}_{n-1}} ||f - g||_*.$$

В евклидовом пространстве $L_2^*[a,b]$ минимум $||f-Pf||_*$ реализуется на функции Pf, являющейся проекцией f на подпространство $\mathcal{P}_{n-1} = \left\langle \hat{T}_j \right\rangle_{j=0}^{n-1}$. Следовательно, элемент f-Pf ортогонален подпространству \mathcal{P}_{n-1} . Так как $\left\{ \hat{T}_j \right\}_{j=0}^{n-1}$ – базис \mathcal{P}_{n-1} , то условие ортогональности \mathcal{P}_{n-1} эквивалентно ортогональности \hat{T}_i , $i=0,1,\ldots,n-1$:

$$[f - Pf, \hat{T}_i] = 0, \quad i = 0, 1, \dots, n - 1,$$

т.е.

$$[Pf, \widehat{T}_i] = [f, \widehat{T}_i], \quad i = 0, 1, \dots, n - 1.$$
(3)

Условия (3) представляют собой линейные условия интерполяции, которым должна удовлетворять приближающая функция (2).

Из (3) и (2) находим:

$$\sum_{j=0}^{n-1} \left[\hat{T}_j, \hat{T}_i \right] \alpha_j = \left[f, \hat{T}_i \right], \quad i = 0, 1, \dots, n-1.$$
 (4)

В силу леммы 2

$$\left[\widehat{T}_{j},\widehat{T}_{i}\right] = \delta_{ij}\left[\widehat{T}_{i},\widehat{T}_{i}\right] \quad i,j=0,1,\ldots,n-1,$$

поэтому из (4) получаем

$$\alpha_i = \frac{\left[f, \widehat{T}_i\right]}{\left[\widehat{T}_i, \widehat{T}_i\right]} \quad i = 0, 1, \dots, n - 1,$$

т.е.

$$\alpha_0 = \frac{1}{\pi} \left[f, \widehat{T}_0 \right], \quad \alpha_i = \frac{2}{\pi} \left[f, \widehat{T}_i \right], \quad i = 1, 2, \dots, n - 1,$$
 (5)

§ 17.3. Вычисление коэффициентов разложения

Для вычисления коэффициентов разложения (5) требуется вычислять интегралы

$$\left[f, \widehat{T}_i\right] = \int_a^b \frac{f(y)\widehat{T}_i(y)}{\sqrt{(b-y)(y-a)}} \, dy$$

Введем точки $a = y_0 < y_1 < \ldots < y_N = b$ (например, $y_j = a + jh$, $h = \frac{b-a}{N}$, $j = 0, 1, \ldots, N$, N > 0, часто $N \sim n$). Тогда

$$\left[f, \hat{T}_i\right] = \sum_{j=0}^{N-1} \int_{y_i}^{y_{j+1}} \frac{f(y)\hat{T}_i(y)}{\sqrt{(b-y)(y-a)}} \, dy \tag{6}$$

Приблизим функцию

$$g(y) = f(y)\hat{T}_i(y) \tag{7}$$

на отрезке $[y_j,y_{j+1}]$ линейной функцией — интерполяционным многочленом Лагранжа $L_2^{(j)}$ первой степени, построенным по точкам y_j и y_{j+1} :

$$L_2^{(j)}(y) = g(y_j) + (y - y_j)g(y_j; y_{j+1}) = g(y_j) + (y - y_j)\frac{g(y_{j+1}) - g(y_j)}{y_{j+1} - y_j}.$$

При этом в силу леммы 15.1 справедливо неравенство

$$||g - L_2^{(j)}||_{C([y_j, y_{j+1}])} \le \frac{1}{8} (y_{j+1} - y_j)^2 ||g''||_{C([y_j, y_{j+1}])}.$$

Следовательно,

$$\left| \int_{y_{j}}^{y_{j+1}} \frac{g(y)}{\sqrt{(b-y)(y-a)}} dy - \int_{y_{j}}^{y_{j+1}} \frac{L_{2}^{(j)}}{\sqrt{(b-y)(y-a)}} dy \right| \leq
\leq \frac{1}{8} (y_{j+1} - y_{j})^{2} \|g''\|_{C([y_{j}, y_{j+1}])} \int_{y_{j}}^{y_{j+1}} \frac{1}{\sqrt{(b-y)(y-a)}} dy =
= \frac{1}{8} (y_{j+1} - y_{j})^{2} \|g''\|_{C([y_{j}, y_{j+1}])} C_{j}(a, b)$$
(8)

где

$$C_j(a,b) = \int_{y_j}^{y_{j+1}} \frac{1}{\sqrt{(b-y)(y-a)}} dy.$$

Поэтому мы можем приблизить интеграл $\int_{y_j}^{y_j+1} \frac{g(y)}{\sqrt{(b-y)(y-a)}} \, dy$ следующим спо-

собом:

$$\int_{y_{j}}^{y_{j+1}} \frac{g(y)}{\sqrt{(b-y)(y-a)}} \, dy \approx \int_{y_{j}}^{y_{j+1}} \frac{L_{2}^{(j)}(y)}{\sqrt{(b-y)(y-a)}} \, dy$$

с ошибкой (8). Подставляя это в (6), находим

$$\left[f, \widehat{T}_i\right] \approx \sum_{j=0}^{N-1} \int_{y_j}^{y_{j+1}} \frac{L_2^{(j)}(y)}{\sqrt{(b-y)(y-a)}} dy \tag{9}$$

с ошибкой

$$\left| \left[f, \widehat{T}_{i} \right] - \sum_{j=0}^{N-1} \int_{y_{j}}^{y_{j+1}} \frac{L_{2}^{(j)}(y)}{\sqrt{(b-y)(y-a)}} \, dy \right| \leq \sum_{j=0}^{N-1} \frac{1}{8} \left(y_{j+1} - y_{j} \right)^{2} \|g''\|_{C([y_{j}, y_{j+1}])} C_{j}(a, b) \leq
\leq \frac{1}{8} \|g''\|_{C([a,b])} h^{2} \sum_{j=0}^{N-1} C_{j}(a, b) =
= \frac{1}{8} C(a, b) h^{2} \|(f\widehat{T}_{i})''\|_{C([a,b])} \tag{10}$$

где

$$h = \max_{j=0,1,\dots,N-1} (y_{j+1} - y_j), \quad C(a,b) = \int_a^b \frac{1}{\sqrt{(b-y)(y-a)}} \, dy.$$

Вычислим

$$\int_{y_{j}}^{y_{j+1}} \frac{L_{2}^{(j)}(y)}{\sqrt{(b-y)(y-a)}} dy = \int_{y_{j}}^{y_{j+1}} \frac{g(y_{j}) + (y-y_{j})g(y_{j}; y_{j+1})}{\sqrt{(b-y)(y-a)}} dy =
= (g(y_{j}) - y_{j}g(y_{j}; y_{j+1})) \int_{y_{j}}^{y_{j}} \frac{dy}{\sqrt{(b-y)(y-a)}} + g(y_{j}; y_{j+1}) \int_{y_{j}}^{y_{j+1}} \frac{y dy}{\sqrt{(b-y)(y-a)}}$$
(11)

Так как

$$\int \frac{dy}{\sqrt{(b-y)(y-a)}} \bigg|_{y=\frac{b+a}{2} + \frac{b-a}{2}x} = \int \frac{\frac{b-a}{2} dx}{\frac{b-a}{2} \sqrt{1-x^2}} = \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x,$$

TO

$$a_{j} = \int_{y_{j}}^{y_{j+1}} \frac{dy}{\sqrt{(b-y)(y-a)}} = \arcsin \frac{2y - (b+a)}{b-a} \Big|_{y_{j}}^{y_{j+1}}.$$
 (12)

Так как

$$\int \frac{ydy}{\sqrt{(b-y)(y-a)}} \bigg|_{y=\frac{b+a}{2} + \frac{b-a}{2}x} = \int \frac{\left(\frac{b+a}{2} + \frac{b-a}{2}x\right)\frac{b-a}{2}dx}{\frac{b-a}{2}\sqrt{1-x^2}} = \int \frac{b+a}{2} \frac{dx}{\sqrt{1-x^2}} + \int \frac{b-a}{2} \frac{x \, dx}{\sqrt{1-x^2}} = \frac{b+a}{2} \arcsin x + \frac{b-a}{2} \left(-\sqrt{1-x^2}\right)$$

TO

$$b_{j} = \int_{y_{j}}^{y_{j+1}} \frac{y \, dy}{\sqrt{(b-y)(y-a)}} = \frac{b+a}{2} a_{j} - \frac{b-a}{2} \sqrt{1 - \left(\frac{2y-(b+a)}{b-a}\right)^{2}} \bigg|_{y_{j}}^{y_{j+1}}. \tag{13}$$

Подставляя (12) и (13) в (11), получаем

$$\int_{y_{j}}^{y_{j+1}} \frac{L_{2}^{(j)}(y)}{\sqrt{(b-y)(y-a)}} dy = (g(y_{j}) - y_{j}g(y_{j}; y_{j+1}))a_{j} + g(y_{j}; y_{j+1})b_{j} =$$

$$= a_{j}g(y_{j}) + (b_{j} - a_{j}y_{j})g(y_{j}; y_{j+1})) = a_{j}g(y_{j}) + (b_{j} - a_{j}y_{j})\frac{g(y_{j+1}) - g(y_{j})}{y_{j+1} - y_{j}} =$$

$$= \left(a_{j} - \frac{b_{j} - a_{j}y_{j}}{y_{j+1} - y_{j}}\right)g(y_{j}) + \frac{b_{j} - a_{j}y_{j}}{y_{j+1} - y_{j}}g(y_{j+1}) = \frac{a_{j}y_{j+1} - b_{j}}{y_{j+1} - y_{j}}g(y_{j}) + \frac{b_{j} - a_{j}y_{j}}{y_{j+1} - y_{j}}g(y_{j+1})$$

Обозначим

$$c_j = \frac{a_j y_{j+1} - b_j}{y_{j+1} - y_j}, \quad d_j = \frac{b_j - a_j y_j}{y_{j+1} - y_j}.$$
 (14)

Тогда

$$\int_{y_j}^{y_{j+1}} \frac{L_2^{(j)}(y)}{\sqrt{(b-y)(y-a)}} \, dy = c_j g(y_j) + d_j g(y_{j+1}).$$

Подставляя это в (9), находим

$$[f, \widehat{T}_i] \approx \sum_{j=0}^{N-1} (c_j g(y_j) + d_j g(y_{j+1})) = \sum_{j=0}^{N-1} c_j g(y_j) + \sum_{j=1}^{N} d_{j-1} g(y_j) =$$

$$= c_0 g(y_0) + \sum_{j=1}^{N-1} (c_j + d_{j-1}) g(y_j) + d_{N-1} g(y_N)$$

В силу (7) имеем

$$\left[f, \hat{T}_i\right] \approx c_0 f(y_0) \hat{T}_i(y_0) + \sum_{j=1}^{N-1} (c_j + d_{j-1}) f(y_j) \hat{T}_i(y_j) + d_{N-1} f(y_N) \hat{T}_i(y_N)$$

Обозначим

$$u_0 = c_0 f(y_0), \quad u_j = (c_j + d_{j-1}) f(y_j), \quad j = 1, 2, \dots, N - 1, \quad u_N = d_{N-1} f(y_N), \quad (15)$$

(отметим, что u_j не зависят от i). Тогда

$$\left[f, \widehat{T}_i\right] \approx \sum_{j=0}^N u_j \widehat{T}_i(y_j) \tag{16}$$

с ошибкой (см. (10))

$$\left| \left[f, \widehat{T}_i \right] - \sum_{j=0}^N u_j \widehat{T}_i(y_j) \right| \le \frac{1}{8} C(a, b) h^2 \| (f\widehat{T}_i)'' \|_{C([a, b])}$$
(17)

$\S~17.4.$ Алгоритм вычисления коэффициентов разложения

Вначале с помощью формул (12), (13), (14), (15) вычисляются все коэффициенты u_j , $j=0,1,\ldots,N$. Это осуществляется за линейное по N число арифметических операций.

Затем с помощью формулы (16) вычисляются коэффициенты разложения (5):

$$\alpha_0 = \frac{1}{\pi} \sum_{j=0}^{N} u_j \widehat{T}_0(y_j), \quad \alpha_i = \frac{2}{\pi} \sum_{j=0}^{N} u_j \widehat{T}_i(y_j), \qquad i = 1, 2, \dots, n-1,$$
 (18)

Будем вычислять эти суммы аналогично коэффициентам разложения по многочленам Чебышева.

Запишем выражения (18) для α_i в виде таблицы

$$\alpha_{0} = \frac{1}{\pi} \left(u_{0} \hat{T}_{0}(y_{1}) + u_{1} \hat{T}_{0}(y_{2}) + \dots + u_{N} \hat{T}_{0}(y_{N}) \right)$$

$$\alpha_{1} = \frac{2}{\pi} \left(u_{0} \hat{T}_{1}(y_{1}) + u_{1} \hat{T}_{1}(y_{2}) + \dots + u_{N} \hat{T}_{1}(y_{N}) \right)$$

$$\alpha_{2} = \frac{2}{\pi} \left(u_{0} \hat{T}_{2}(y_{1}) + u_{1} \hat{T}_{2}(y_{2}) + \dots + u_{N} \hat{T}_{2}(y_{N}) \right)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\alpha_{n-1} = \frac{2}{\pi} \left(u_{0} \hat{T}_{n-1}(y_{1}) + u_{1} \hat{T}_{n-1}(y_{2}) + \dots + u_{N} \hat{T}_{n-1}(y_{N}) \right)$$
(19)

Пользуясь реккурентными формулами (13.12), будем вычислять в суммах (19) столбцы слева направо, а каждый столбец – сверху вниз.

Обозначим

$$g_{i,j} = u_j \hat{T}_i(y_j), \quad z_j = 2 \frac{2y_j - (b+a)}{b-a}, \quad i = 0, \dots, n-1, \ j = 0, 1, \dots, N.$$

По формулам (13.12) для всех j = 0, 1, ..., N вычисляются

$$g_{0,j} = u_j, \quad g_{1,j} = \frac{1}{2} z_j u_j = \frac{1}{2} z_j g_{0,j}, g_{i,j} = z_j g_{i-1,j} - g_{i-2,j}, \quad i = 2, \dots, n-1.$$
 (20)

Эти формулы позволяют вычислять элементы таблицы (19) по столбцам (слева направо), при этом каждый столбец заполняется сверху вниз. Как только очередной столбец таблицы вычислен, он прибавляется к сумме предыдущих столбнов:

$$\alpha_i := \alpha_i + q_{ii}, \quad i = 0, \dots, n - 1. \tag{21}$$

После вычислений по формулам (20), (21) для всех $j=0,1,\ldots,N$ вычисляются коэффициенты α_i :

$$\alpha_0 := \frac{1}{\pi} \alpha_0, \quad \alpha_i := \frac{2}{\pi} \alpha_i, i = 1, 2, \dots, n - 1.$$
 (22)

После того, как коэффициенты α_i вычислены, значение приближающего многочлена в точке $Pf(y) = \sum\limits_{i=0}^{n-1} \alpha_i \widehat{T}_i(y)$ вычисляется с использованием формул (13.12)

$$\hat{T}_{0}(y) = 1, \qquad \hat{T}_{1}(y) = z/2, \qquad Pf(y) = \alpha_{0}\hat{T}_{0}(y) + \alpha_{1}\hat{T}_{1}(y)
\hat{T}_{i}(y) = z\,\hat{T}_{i-1}(y) - \hat{T}_{i-2}(y), \qquad Pf(y) := Pf(y) + \alpha_{i}\hat{T}_{i}(y)
i = 2, ..., n-1.$$
(23)

где
$$z = 2 \frac{2y - (b+a)}{b-a}$$
.

§ 17.5. Оценка количества арифметических операций

Для всех $j=0,1,\ldots,N$ нам требуется произвести вычисления по формулам (12), (13), (14), (15) и вычислить все коэффициенты u_j . Это осуществляется за линейное по N число арифметических операций: O(N).

Для всех j = 0, 1, ..., N нам требуется произвести вычисления

- 1) По формулам (20). На это требуется n+O(1) мультипликативных и столько же аддитивных операций.
- 2) По формулам (21). На это требуется n + O(1) аддитивных операций.

Общее количество операций для вычислений по формулам (20) и (21) для всех $j=0,1,\ldots,N\colon (N+1)n+O(N)$ мультипликативных и 2(N+1)n+O(N) аддитивных операций.

Для вычисления коэффициентов α_i по формулам (22) требуется еще n+O(1) мультипликативных операций.

Следовательно, суммарное количество операций, необходимых для вычисления коэффициентов α_i , равно Nn + O(N+n) мультипликативным и 2Nn + O(N+n) аддитивным операциям.

На вычисление значения приближающего многочлена Pf в точке по формулам (23) требуется 2n + O(1) мультипликативных и столько же аддитивных операций.

Замечание 1. Часто выбирают N = n + 1 и точки

$$y_0 = a$$
, $y_j = \frac{a+b}{2} + \frac{b-a}{2}\cos\frac{\pi(2j-1)}{2n}$, $j = 1, 2, ..., n$, $y_{n+1} = b$

(т.е. точки y_1, y_2, \ldots, y_n являются нулями многочлена Чебышева \widehat{T}_n на отрезке [a,b]). При таком выборе вычисления по формулам (12), (13), (14), (15) упрощаются.

§ 18. КУСОЧНО-ЛИНЕЙНАЯ ИНТЕРПОЛЯЦИЯ НЕГЛАДКИХ ФУНКЦИЙ НА СПЕЦИАЛЬНЫХ СЕТКАХ

Справедлива следующая теорема:

Теорема 1. (без доказательства). Пусть

- 1) $f \in C^{(2)}((a,b))$ (т.е. гладкость функции f в точках a и b не требуется);
- 2) функция |f''(x)| монотонна при $x \to a+$ и $x \to b-$;

3)
$$\int_{a}^{b} |f''(x)|^{1/2} dx < \infty;$$

4) точки $a = x_1 < x_2 \ldots < x_{n-1} < x_n = b$ выбраны так, что

$$\int_{a}^{x_{i}} |f''(x)|^{1/2} dx = \frac{i-1}{n-1} \int_{a}^{b} |f''(x)|^{1/2} dx, \quad i = 2, \dots, n-1.$$

Тогда погрешность интерполяции функции f кусочно-линейной функцией I_2f , совпадающей c f в точках x_1, x_2, \ldots, x_n , удовлетворяет соотношению

$$||f - I_2 f||_{C([a,b])} = O(n^{-2}) \quad (n \to \infty).$$

Мы докажем эту теорему в частном случае функции $f(x) = \sqrt{|x|}$ и отрезка [a,b] = [0,1]. Проверим выполнение условий теоремы для этой функции.

1)
$$f'(x) = \frac{1}{2} x^{-1/2}$$
, $f''(x) = -\frac{1}{4} x^{-3/2}$ – непрерывны на $(0,1)$;

2)
$$f''(x) = -\frac{1}{4}x^{-3/2}$$
 – монотонна на $(0,1)$;

3)
$$\int_{0}^{1} |f''(x)|^{1/2} dx = \frac{1}{2} \int_{0}^{1} x^{-3/4} dx = \frac{1}{2} \frac{x^{1/4}}{1/4} \Big|_{0}^{1} = 2 < \infty;$$

4) из условия
$$\int_a^{x_i} |f''(x)|^{1/2} dx = 2x_i^{1/4} = \frac{i-1}{n-1}$$
 2 получаем $x_i = \left(\frac{i-1}{n-1}\right)^4$, $i = 2, 3, \ldots, n-1$, $x_1 = a = 0$, $x_n = b = 1$.

Найдем

$$||f - I_2 f||_{C[a,b]} = \max_{x \in [a,b]} |f(x) - (I_2 f)(x)| =$$

$$= \max_{i=1,2,\dots,n-1} \max_{x \in [x_i,x_{i+1}]} \left| f(x) - \left(f(x_i) + (x - x_i) \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} \right) \right|$$
(1)

Обозначим

$$g_i(x) = f(x) - \left(f(x_i) + (x - x_i)\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}\right).$$

Поскольку $g_i(x_i) = 0$, $g_i(x_{i+1}) = 0$, то максимум $|g_i(x)|$ достигается в точке $g_i'(x) = 0$, принадлежащей отрезку $[x_i, x_{i+1}]$ (по теореме Ролля такая точка существует). Из уравнения

$$g'(x) = f'(x) - \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = 0$$

находим

$$f'(x) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}.$$

Для функции $f(x) = \sqrt{|x|}$ имеем

$$\frac{1}{2\sqrt{x}} = \frac{\sqrt{x_{i+1}} - \sqrt{x_i}}{x_{i+1} - x_i} = \frac{1}{\sqrt{x_{i+1}} + \sqrt{x_i}}$$

Отсюда $x = \frac{1}{4} \left(\sqrt{x_{i+1}} + \sqrt{x_i} \right)^2$, т.е. нуль g'(x) единственнен. Так как по теореме Ролля существует нуль $g'(x) \in [x_i, x_{i+1}]$, то этот нуль и есть найденное значение. Вычислим

$$g(x) = \sqrt{x} - \left(\sqrt{x_i} + (x - x_i)\frac{\sqrt{x_{i+1}} - \sqrt{x_i}}{x_{i+1} - x_i}\right) =$$

$$= \frac{1}{2} \left(\sqrt{x_{i+1}} + \sqrt{x_i}\right) - \left(\sqrt{x_i} + \frac{1}{4} \left(\left(\sqrt{x_{i+1}} + \sqrt{x_i}\right)^2 - 4x_i\right) \frac{1}{\sqrt{x_{i+1}} + \sqrt{x_i}}\right) =$$

$$= \frac{1}{2} \left(\sqrt{x_{i+1}} - \sqrt{x_i}\right) - \frac{1}{4} \left(\sqrt{x_{i+1}} - \sqrt{x_i}\right) \left(\sqrt{x_{i+1}} + 3\sqrt{x_i}\right) \frac{1}{\sqrt{x_{i+1}} + \sqrt{x_i}} =$$

$$= \frac{1}{4} \left(\sqrt{x_{i+1}} - \sqrt{x_i}\right) \left(2 - \frac{\sqrt{x_{i+1}} + 3\sqrt{x_i}}{\sqrt{x_{i+1}} + \sqrt{x_i}}\right) = \frac{1}{4} \frac{\left(\sqrt{x_{i+1}} - \sqrt{x_i}\right)^2}{\sqrt{x_{i+1}} + \sqrt{x_i}}$$

Итак,

$$\max_{x \in [x_i, x_{i+1}]} |g(x)| = \frac{1}{4} \frac{\left(\sqrt{x_{i+1}} - \sqrt{x_i}\right)^2}{\sqrt{x_{i+1}} + \sqrt{x_i}}.$$

При $x_i = \left(\frac{i-1}{n-1}\right)^4$ получаем

$$\max_{x \in [x_i, x_{i+1}]} |g(x)| = \frac{1}{4} \frac{\left(\left(\frac{i}{n-1}\right)^2 - \left(\frac{i-1}{n-1}\right)^2\right)^2}{\left(\frac{i}{n-1}\right)^2 + \left(\frac{i-1}{n-1}\right)^2} = \frac{1}{4} \frac{1}{(n-1)^2} \frac{(i^2 - (i-1)^2)^2}{i^2 + (i-1)^2} = \frac{1}{4} \frac{1}{(n-1)^2} \frac{(2i-1)^2}{i^2 + (i-1)^2} = \frac{1}{4} \frac{1}{(n-1)^2} \left(2 - \frac{1}{i^2 + (i-1)^2}\right) \le \frac{1}{4} \frac{1}{(n-1)^2}$$

Подставляя это в (1), получаем

$$||f - I_2 f||_{C[a,b]} \le \frac{1}{4} \frac{1}{(n-1)^2},$$

т.е. погрешность порядка $O(n^2)$. Теорема доказана.

Замечание 1. Погрешность $f - L_2$ приближения функции $f = \sqrt{|x|}$ интерполяционным многочленом Лагранжа L_2 степени 1, построенным по нулям (12.3) многочлена Чебышева, имеет порядок $O(n^{1/2})$ (см. пример из § 12).

§ 19. ИНТЕРПОЛЯЦИЯ КУСОЧНО-КУБИЧЕСКИМИ ФУНКЦИЯМИ

§ 19.1. Общая схема

Пусть заданы точки $a=x_1< x_2< \ldots < x_n=b$ и значения $f(x_1),f(x_2)\ldots,f(x_n)$. Интерполирующая функция Pf строится таким образом, что на каждом отрезке $[x_i,x_{i+1}],\ i=1,\ldots,n-1$ она является многочленом P_i степени 3, таким, что

$$\begin{cases}
P_i(x_i) = f(x_i), & P_i(x_{i+1}) = f(x_{i+1}) \\
P_i'(x_i) = d_i, & P_i'(x_{i+1}) = d_{i+1}
\end{cases} \qquad i = 1, \dots, n-1 \tag{1}$$

где d_i , $i=1,\ldots,n$ – свободные параметры, тот или иной способ выбора которых определяет метод кусочной интерполяции кубическими многочленами. Полученная функция Pf совпадает с f в точках x_i , $i=1,\ldots,n$ и для любого набора параметров d_i $Pf \in C^{(1)}([a,b])$.

\S 19.2. $\,$ Алгоритм вычисления коэффициентов многочлена P_i

Коэффициенты многочлена P_i , записанного в форме

$$P_i(x) = a_{1,i} + a_{2,i}(x - x_i) + a_{3,i}(x - x_i)^2 + a_{4,i}(x - x_i)^2(x - x_{i+1})$$

могут быть вычислены по интерполяционной формуле Ньютона с кратными узлами (см. определение (4.1) разделенных разностей):

$$\begin{array}{c|c}
f(x_{i}) & \swarrow & \frac{f(x_{i}; x_{i+1}) - d_{i}}{x_{i+1} - x_{i}} \\
f(x_{i}; x_{i+1}) \swarrow & \frac{d_{i} + d_{i+1} - 2f(x_{i}; x_{i+1})}{(x_{i+1} - x_{i})^{2}} \\
f(x_{i+1}) \swarrow & \frac{d_{i+1} - f(x_{i}; x_{i+1})}{x_{i+1} - x_{i}} \swarrow \\
f(x_{i+1}) \swarrow & \frac{d_{i+1} - f(x_{i}; x_{i+1})}{x_{i+1} - x_{i}} \swarrow
\end{array}$$

Столбцы вычисляются слева направо, элементы столбца вычисляются снизу вверх, стрелки указывают ячейку памяти, в которую помещается результат. Отсюда получаем

$$a_{1,i} = f(x_i)$$

$$a_{2,i} = d_i$$

$$a_{3,i} = \frac{f(x_i; x_{i+1}) - d_i}{x_{i+1} - x_i}$$

$$a_{4,i} = \frac{d_i + d_{i+1} - 2f(x_i; x_{i+1})}{(x_{i+1} - x_i)^2}$$

Для представления в виде

$$P_i(x) = c_{1,i} + c_{2,i}(x - x_i) + c_{3,i}(x - x_i)^2 + c_{4,i}(x - x_i)^3$$
(2)

запишем

$$(x - x_i)^2 (x - x_{i+1}) = (x - x_i)^3 - (x_{i+1} - x_i)(x - x_i)^2$$

откуда получаем

$$c_{1,i} = a_{1,i} = f(x_i)$$

$$c_{2,i} = a_{2,i} = d_i$$

$$c_{3,i} = a_{3,i} - a_{4,i}(x_{i+1} - x_i) = \frac{3f(x_i; x_{i+1}) - 2d_i - d_{i+1}}{x_{i+1} - x_i}$$

$$c_{4,i} = a_{4,i} = \frac{d_i + d_{i+1} - 2f(x_i; x_{i+1})}{(x_{i+1} - x_i)^2}$$
(3)

§ 19.3. Кусочная интерполяция кубическими многочленами Эрмита

Пусть в точках $a = x_1 < x_2 < \ldots < x_n = b$ известны значения функции: $f(x_1), \ldots, f(x_n)$ и ее производной $f'(x_1), \ldots, f'(x_n)$. Тогда параметр d_i в общей схеме интерполяции кусочно-кубическими функциями полагается равным

$$d_i = f'(x_i), \qquad i = 1, 2, \dots, n.$$
 (4)

Основные **свойства приближающей функции** Pf:

- 1) Pf является кусочно-многочленной функцией, значения которой зависят только от локального поведения функции f и f', именно: значения Pf на отрезке $[x_i, x_{i+1}]$ зависят только от значений функции f и ее производной f' в точках x_i и x_{i+1} .
- 2) Метод приближения является линейным: P(f+g) = Pf + Pg, $P(\alpha f) = \alpha Pf$.

Лемма 1. Если $f \in C^{(4)}([a,b])$, то справедлива следующая оценка погрешности аппроксимации кубическими многочленами Эрмита

$$||f - Pf||_{C([a,b])} \le \frac{1}{4!} \frac{1}{2^4} h^4 ||f^{(4)}||_{C([a,b])},$$

 $e \partial e$

$$h = \max_{i=1,2,\dots,n-1} (x_{i+1} - x_i). \tag{5}$$

Доказательство. По теореме 7.2 получаем

$$||f - Pf||_{C([x_i, x_{i+1}])} \le \frac{1}{4!} \max_{x \in [x_i, x_{i+1}]} |(x - x_i)^2 (x - x_{i+1})^2| ||f^{(4)}||_{C([x_i, x_{i+1}])}.$$
 (6)

Функция $g(x) = (x - x_i)(x - x_{i+1}) = x^2 - (x_i + x_{i+1})x + x_ix_{i+1} \le 0$ для всех $x \in [x_i, x_{i+1}]$ и имеет нуль производной $(x_i + x_{i+1})/2$, принадлежащий отрезку $[x_i, x_{i+1}]$. Поскольку $g(x_i) = g(x_{i+1}) = 0$, то

$$\max_{x \in [x_i, x_{i+1}]} |g(x)|^2 = \left| g\left(\frac{x_i + x_{i+1}}{2}\right) \right|^2 = \left| \frac{x_{i+1} - x_i}{2} \frac{x_i - x_{i+1}}{2} \right|^2 = \frac{1}{4^2} (x_{i+1} - x_i)^4.$$

Подставляя это в (6), получаем

$$||f - Pf||_{C([x_i, x_{i+1}])} \le \frac{1}{4!} \frac{1}{2^4} (x_{i+1} - x_i)^4 ||f^{(4)}||_{C([x_i, x_{i+1}])}.$$

Следовательно,

$$||f - Pf||_{C([a,b])} = \max_{i=1,2,\dots,n-1} ||f - Pf||_{C([x_i,x_{i+1}])} \le \frac{1}{4!} \frac{1}{2^4} h^4 ||f^{(4)}||_{C([a,b])}.$$

Лемма доказана.

§ 19.4. Кусочная интерполяция кубическими многочленами Бесселя

Пусть в точках $a=x_1 < x_2 < \ldots < x_n=b$ известны значения функции $f(x_1),\ldots,f(x_n)$. Параметр $d_i,\ i=2,3,\ldots,n-1$ в общей схеме интерполяции кусочно-кубическими функциями полагается равным значению в точке x_i производной многочлена $P_{(i)}$ второй степени, совпадающего с f в точках x_{i-1},x_i,x_{i+1} . По интерполяционной формуле Ньютона

$$P_{(i)}(x) = f(x_{i-1}) + (x - x_{i-1})f(x_{i-1}; x_i) + (x - x_{i-1})(x - x_i)f(x_{i-1}; x_i; x_{i+1})$$

И

$$P'_{(i)}(x_i) = f(x_{i-1}; x_i) + (x_i - x_{i-1}) f(x_{i-1}; x_i; x_{i+1}) =$$

$$= f(x_{i-1}; x_i) + (x_i - x_{i-1}) \frac{f(x_i; x_{i+1}) - f(x_{i-1}; x_i)}{x_{i+1} - x_{i-1}} =$$

$$= \frac{(x_{i+1} - x_{i-1}) f(x_{i-1}; x_i) + (x_i - x_{i-1}) f(x_i; x_{i+1}) - (x_i - x_{i-1}) f(x_{i-1}; x_i)}{x_{i+1} - x_{i-1}} =$$

$$= \frac{(x_{i+1} - x_i) f(x_{i-1}; x_i) + (x_i - x_{i-1}) f(x_i; x_{i+1})}{x_{i+1} - x_{i-1}}$$

Следовательно,

$$d_{i} = P'_{(i)}(x_{i}) = \frac{(x_{i+1} - x_{i})f(x_{i-1}; x_{i}) + (x_{i} - x_{i-1})f(x_{i}; x_{i+1})}{x_{i+1} - x_{i-1}}, \quad i = 2, 3, \dots, n-1.$$
(7)

Недостающие значения d_1 и d_n в граничных узлах выбираются, исходя из той или иной дополнительной информации о функции f (см. ниже).

Основные **свойства приближающей функции** *Pf*:

- 1) Pf является кусочно-многочленной функцией, значения которой зависят только от локального поведения функции f, именно: значения Pf на отрезке $[x_i, x_{i+1}]$ зависят только от значений функции f в точках $x_{i-1}, x_i, x_{i+1}, x_{i+2}$.
- 2) Метод приближения является линейным: P(f+g) = Pf + Pg, $P(\alpha f) = \alpha Pf$.

Лемма 2. (без доказательства). Если $f \in C^{(3)}([a,b])$, то справедлива следующая оценка погрешности аппроксимации кубическими многочленами Бесселя

$$||f - Pf||_{C([x_2, x_{n-1}])} \le \operatorname{const} h^3 ||f||_{C^{(3)}([a, b])},$$

 $r\partial e$ h onpedensemcs равенством (5).

Погрешность аппроксимации на отрезках $[x_1,x_2]$ и $[x_{n-1},x_n]$ зависит от способа выбора значений d_1 и d_n .

Замечание 1. Если точки x_i распределены на отрезке [a,b] равномерно: $x_i = a + (i-1)h$, h = (b-a)/(n-1), то формулы (7) приобретают особенно простой вид:

$$d_i = \frac{1}{2} \left(f(x_{i-1}; x_i) + f(x_i; x_{i+1}) \right) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}, \quad i = 2, 3, \dots, n-1.$$

§ 19.5. Кусочная интерполяция кубическими многочленами методом Акимы

Этот метод приближения используется для борьбы с выбросами приближающей функции, которые появляются, если значения функции в точках заданы с некоторой погрешностью.

Пусть в точках $a = x_1 < x_2 < \ldots < x_n = b$ известны значения функции $f(x_1), \ldots, f(x_n)$.

В силу леммы 4.6 разделенная разность $f(x_{i-1}, x_i)$ является приближением к $f'(x_i)$ слева, а $f(x_i, x_{i+1})$ является приближением к $f'(x_i)$ справа. В методе Акимы эти приближения усредняются с весами, которые тем больше, чем меньше гладкость функции на соседнем отрезке. Окончательная формула для

определения параметра d_i в общей схеме интерполяции кусочно-кубическими функциями имеет вид

$$d_{i} = \begin{cases} \frac{w_{i+1}f(x_{i-1}; x_{i}) + w_{i-1}f(x_{i}; x_{i+1})}{w_{i+1} + w_{i-1}}, & \text{если } w_{i+1}^{2} + w_{i-1}^{2} \neq 0\\ \frac{(x_{i+1} - x_{i})f(x_{i-1}; x_{i}) + (x_{i} - x_{i-1})f(x_{i}; x_{i+1})}{x_{i+1} - x_{i-1}}, & \text{если } w_{i+1} = w_{i-1} = 0 \end{cases}$$
(8)

где $i = 3, 4, \dots, n-2$ и

$$w_j = |f(x_j; x_{j+1}) - f(x_{j-1}; x_j)|.$$

Недостающие значения d_1, d_2 и d_{n-1}, d_n в приграничных узлах выбираются, исходя из той или иной дополнительной информации о функции f (см. ниже).

Основные **свойства приближающей функции** *Pf*:

- 1) Pf является кусочно-многочленной функцией, значения которой зависят только от локального поведения функции f, именно: значения Pf на отрезке $[x_i, x_{i+1}]$ зависят только от значений функции f в точках $x_{i-2}, x_{i-1}, x_i, x_{i+1}, x_{i+2}, x_{i+3}$.
- 2) Метод приближения не является линейным: $P(f+g) \neq Pf + Pg$, хотя $P(\alpha f) = \alpha Pf$.

Лемма 3. (без доказательства). Если $f \in C^{(2)}([a,b])$, то справедлива следующая оценка погрешности аппроксимации кубическими многочленами методом Aкимы

$$||f - Pf||_{C([x_3, x_{n-2}])} \le \operatorname{const} h^2 ||f||_{C^{(2)}([a, b])},$$

 $r\partial e\ h\ onpedeляется\ paseнcmsom\ (5).$

Погрешность аппроксимации на отрезках $[x_1, x_3]$ и $[x_{n-2}, x_n]$ зависит от способа выбора значений d_1, d_2 и d_{n-1}, d_n .

§ 19.6. Кусочная интерполяция кубическими многочленами с использованием разделенных разностей

Этот метод приближения используется для получения приближающей функции Pf, первая и вторая производная которой ограничены разделенной разностью функции f (т.е. приближением к f'). Небольшие требования к гладкости приближаемой функции f позволяют использовать этот метод в том случае, когда значения функции в точках заданы с некоторой погрешностью.

Пусть в точках $a=x_1 < x_2 < \ldots < x_n = b$ известны значения функции $f(x_1),\ldots,f(x_n)$. Параметр $d_i,\ i=2,3,\ldots,n-1$ в общей схеме интерполяции кусочно-кубическими функциями полагается равным

$$d_{i} = \begin{cases} \operatorname{sign} f(x_{i}; x_{i+1}) \cdot \min \left\{ |f(x_{i-1}; x_{i})|, |f(x_{i}; x_{i+1})| \right\}, \\ \operatorname{если sign} f(x_{i-1}; x_{i}) = \operatorname{sign} f(x_{i}; x_{i+1}) \\ 0 & \text{иначе} \end{cases}$$
(9)

Случай sign $f(x_{i-1}; x_i) \neq \text{sign } f(x_i; x_{i+1})$ соответствует ситуации, когда в точке x_i приближение $f(x_{i-1}; x_i)$ к f' слева говорит, что функция возрастает (убывает) на отрезке $[x_{i-1}, x_i]$, а приближение $f(x_i; x_{i+1})$ к f' справа утверждает, что функция соответственно убывает (возрастает) на отрезке $[x_i, x_{i+1}]$. Следовательно, на отрезке $[x_{i-1}, x_{i+1}]$ происходит изменение характера монотонности функции и мы полагаем $f'(x_i) \approx d_i = 0$.

В случае $sign f(x_{i-1}; x_i) = sign f(x_i; x_{i+1})$ характер монотонности функции на отрезке $[x_{i-1}, x_{i+1}]$ не изменяется и в качестве d_i выбирается приближение к f' с наименьшим модулем.

Недостающие значения d_1 и d_n в граничных узлах выбираются, исходя из той или иной дополнительной информации о функции f (см. ниже).

Основные **свойства приближающей функции** *Pf*:

- 1) Pf является кусочно-многочленной функцией, значения которой зависят только от локального поведения функции f, именно: значения Pf на отрезке $[x_i, x_{i+1}]$ зависят только от значений функции f в точках $x_{i-1}, x_i, x_{i+1}, x_{i+2}$.
- 2) Метод приближения не является линейным: $P(f+g) \neq Pf + Pg$, хотя $P(\alpha f) = \alpha Pf$.

Лемма 4. (без доказательства). Если $f \in C^{(2)}([a,b])$, то справедлива следующая оценка погрешности аппроксимации кубическими многочленами с использованием разделенных разностей

$$||f - Pf||_{C([x_2, x_{n-1}])} \le \operatorname{const} h^2 ||f||_{C^{(2)}([a, b])},$$

где h определяется равенством (5). При этом справедливы неравенства:

$$||(Pf)'||_{C([a,b])} \le \frac{3}{2} \max_{i=1,2,\dots,n-1} |f(x_i; x_{i+1})|$$

$$||(Pf)''||_{C([a,b])} \le 6 \max_{i=2,3,\dots,n-2} \max \left\{ \frac{x_{i+2} - x_i}{x_i - x_{i-1}} |f(x_i; x_{i+1})|^2, \frac{x_{i+1} - x_{i-1}}{x_i - x_{i-1}} |f(x_{i-1}; x_i)|^2 \right\}$$

Погрешность аппроксимации на отрезках $[x_1,x_2]$ и $[x_{n-1},x_n]$ зависит от способа выбора значений d_1 и d_n .

§ 19.7. Интерполяция кубическими сплайнами

Пусть в точках $a = x_1 < x_2 < \ldots < x_n = b$ известны значения функции $f(x_1), \ldots, f(x_n)$.

Определение. Сплайном порядка m называется функция, которая на каждом отрезке $[x_i,x_{i+1}],\ i=1,2,\ldots,n-1$ совпадает с многочленом P_i степени m и является функцией класса $C^{(m-1)}([x_1,x_n])$.

Интерполяция кубическими сплайнами (m=3) используется для получения наиболее гладкой приближающей функции Pf в рассматриваемом классе кусочно-кубических многочленов.

Параметры d_i , $i=1,2,\ldots,n$ в общей схеме интерполяции кусочнокубическими функциями выбираются из условия $Pf \in C^{(2)}([a,b])$, т.е.

$$P''_{i-1}(x_i) = P''_i(x_i), \qquad i = 2, 3, \dots, n-1.$$
(10)

Из представления многочлена P_i в виде (2) находим

$$P_{i-1}''(x_i) = 2c_{3,i-1} + 6c_{4,i-1}(x_i - x_{i-1}), \qquad P_i''(x_i) = 2c_{3,i}. \tag{11}$$

Подставляя эти значения в (10), имеем

$$2c_{3,i-1} + 6c_{4,i-1}(x_i - x_{i-1}) = 2c_{3,i}, \qquad i = 2, 3, \dots, n-1.$$

С помощью (3) находим

$$\frac{3f(x_{i-1}; x_i) - 2d_{i-1} - d_i}{x_i - x_{i-1}} + 3(x_i - x_{i-1}) \frac{d_{i-1} + d_i - 2f(x_{i-1}; x_i)}{(x_i - x_{i-1})^2} = \frac{3f(x_i; x_{i+1}) - 2d_i - d_{i+1}}{x_{i+1} - x_i}.$$

т.е.

$$(x_{i+1} - x_i)(3f(x_{i-1}; x_i) - 2d_{i-1} - d_i + 3d_{i-1} + 3d_i - 6f(x_{i-1}; x_i)) =$$

$$= (x_i - x_{i-1})(3f(x_i; x_{i+1}) - 2d_i - d_{i+1})$$

Преобразуем это равенство:

$$(x_{i+1} - x_i)(d_{i-1} + 2d_i - 3f(x_{i-1}; x_i)) = (x_i - x_{i-1})(3f(x_i; x_{i+1}) - 2d_i - d_{i+1}),$$

или

$$(x_{i+1} - x_i)d_{i-1} + 2(x_{i+1} - x_i)d_i + 2(x_i - x_{i-1})d_i + (x_i - x_{i-1})d_{i+1} =$$

$$= 3f(x_{i-1}; x_i)(x_{i+1} - x_i) + 3f(x_i; x_{i+1})(x_i - x_{i-1})$$

Следовательно,

$$(x_{i+1} - x_i)d_{i-1} + 2(x_{i+1} - x_{i-1})d_i + (x_i - x_{i-1})d_{i+1} =$$

$$= 3f(x_{i-1}; x_i)(x_{i+1} - x_i) + 3f(x_i; x_{i+1})(x_i - x_{i-1})$$

$$i = 2, 3, \dots, n-1.$$
(12)

Это система из n-2 линейных уравнений относительно n неизвестных d_1, d_2, \ldots, d_n . Для ее замыкания требуется еще два уравнения, которые строятся, исходя из той или иной дополнительной информации о функции f (см. ниже).

Система (12) является системой уравнений с трехдиагональной матрицей с (строгим) диагональным преобладанием и ее можно решать методом Гаусса без выбора главного элемента.

Основные свойства приближающей функции Pf:

- 1) Pf является нелокальной кусочно-многочленной функцией, значения которой зависят от поведения функции f в каждой точке x_1, x_2, \ldots, x_n .
- 2) Метод приближения является линейным: P(f+g) = Pf + Pg, $P(\alpha f) = \alpha Pf$.

Погрешность аппроксимации кубическими сплайнами (в силу нелокальности сплайна) зависит от выбора дополнительных уравнений для замыкания системы (12) и составляет от $O(h^2)$ до $O(h^4)$, где h определяется равенством (5).

§ 19.8. Определение недостающих граничных условий

В методах, изложенных в § 19.4 и § 19.6, требуются два дополнительных условия для определения параметров d_1 и d_n , в методе из § 19.5 требуются четыре дополнительных условия для определения параметров d_1, d_2 и d_{n-1}, d_n . В методе приближения кубическими сплайнами (§ 19.7) требуются два дополнительных уравнения для замыкания системы линейных уравнений. Используются несколько методов построения дополнительных условий, которые выбираются в зависимости от того, какая дополнительная информация известна о приближаемой функции.

§ 19.8.1. Определение недостающих граничных условий по известным значениям первой производной функции в граничных узлах

Пусть известны значения $f'(x_1)$ и $f'(x_n)$ производной f' функции f в граничных узлах x_1 и x_n . Тогда полагаем

$$d_1 = f'(x_1), d_n = f'(x_n).$$
 (13)

В методах, изложенных в § 19.4, § 19.5 и § 19.6, равенства (13) дают недостающие значения параметров d_1 и d_n . В методе приближения кубическими сплайнами (§ 19.7) равенства (13) являются двумя недостающими уравнениями, которые для сохранения трехдиагональности системы (12) надо сделать соответственно первым и последним уравнениями этой системы.

Интерполяция кубическими сплайнами с использованием этого способа выбора граничных условий дает сплайн Pf, который называют фундаментальным сплайном. Неулучшаемые оценки его погрешности

$$||f - Pf||_{C([a,b])} \le \frac{5}{384} h^4 ||f^{(4)}||_{C([a,b])},$$

$$||f' - (Pf)'||_{C([a,b])} \le \frac{1}{24} h^3 ||f^{(4)}||_{C([a,b])},$$

где h определяется равенством (5).

§ 19.8.2. Определение недостающих граничных условий по известным значениям второй производной функции в граничных узлах

Пусть известны значения $f''(x_1)$ и $f''(x_n)$ производной f'' функции f в граничных узлах x_1 и x_n . Тогда потребуем от приближающей функции Pf

$$(Pf)''(x_1) = f''(x_1), \qquad (Pf)''(x_n) = f''(x_n),$$

т.е.

$$P_1''(x_1) = f''(x_1), \qquad P_{n-1}''(x_n) = f''(x_n). \tag{14}$$

Из (11) находим

$$P_1''(x_1) = 2c_{3,1}, \qquad P_{n-1}''(x_n) = 2c_{3,n-1} + 6c_{4,n-1}(x_n - x_{n-1}).$$

Подставляя эти значения в (14), имеем

$$2c_{3,1} = f''(x_1),$$
 $2c_{3,n-1} + 6c_{4,n-1}(x_n - x_{n-1}) = f''(x_n).$

С помощью (3) находим

$$2\frac{3f(x_1; x_2) - 2d_1 - d_2}{x_2 - x_1} = f''(x_1),$$

$$2\frac{3f(x_{n-1}; x_n) - 2d_{n-1} - d_n + 3(d_{n-1} + d_n - 2f(x_{n-1}; x_n))}{x_n - x_{n-1}} = f''(x_n).$$

т.е.

$$2\frac{3f(x_1; x_2) - 2d_1 - d_2}{x_2 - x_1} = f''(x_1), \quad 2\frac{d_{n-1} + 2d_n - 3f(x_{n-1}; x_n)}{x_n - x_{n-1}} = f''(x_n).$$

Запишем эти выражения в виде

$$2d_1 + d_2 = 3f(x_1; x_2) - \frac{1}{2}f''(x_1)(x_2 - x_1),$$

$$d_{n-1} + 2d_n = 3f(x_{n-1}; x_n) + \frac{1}{2}f''(x_n)(x_n - x_{n-1})$$
(15)

В методах, изложенных в § 19.4 и § 19.6, равенства (15) позволяют определить недостающие значения параметров d_1 и d_n , поскольку параметры d_2 и d_{n-1} известны (см. соответственно (7) или (9)).

В методе Акимы (§ 19.5), где требуются 4 параметра d_1, d_2 и d_{n-1}, d_n , равенства (15) представляют собой связь между этими параметрами. Если, например, известны еще и значения $f'(x_1)$ и $f'(x_n)$, от d_1 и d_n определяются из равенств (13), а d_2 и d_{n-1} находятся из уравнений (15).

В методе приближения кубическими сплайнами (§ 19.7) равенства (15) являются двумя недостающими уравнениями, которые для сохранения трехдиагональности системы (12) надо сделать соответственно первым и последним уравнениями этой системы.

§ 19.8.3. "Естественные" граничные условия

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

Тогда потребуем от приближающей функции Pf

$$(Pf)''(x_1) = 0,$$
 $(Pf)''(x_n) = 0,$

т.е.

$$P_1''(x_1) = 0,$$
 $P_{n-1}''(x_n) = 0.$

Из уравнений (15) при $f''(x_1) = 0$ и $f''(x_n) = 0$ получаем

$$2d_1 + d_2 = 3f(x_1; x_2)$$

$$d_{n-1} + 2d_n = 3f(x_{n-1}; x_n)$$

Эти уравнения используются так же, как уравнения (15).

Если у приближаемой функции $f''(x_1) \neq 0$ или $f''(x_n) \neq 0$, то произвол в выборе граничных условий приводит к повышенной погрешности в приграничных узлах (порядка $O(h^2)$), что особенно плохо отражается на приближении сплайнами, где в силу его нелокальности эта погрешность будет во всех точках отрезка.

§ 19.8.4. Условие "отсутствия узла" в приграничных узлах

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

Тогда потребуем от приближающей функции Pf

$$P_1 \equiv P_2, \quad P_{n-2} \equiv P_{n-1}, \tag{16}$$

т.е. многочлен $P_1 \equiv P_2$ интерполирует f на $[x_1,x_3]$ по точкам x_1,x_2,x_3 : $P_1(x_1)=f(x_1), P_1(x_2)=f(x_2), P_1(x_3)=f(x_3)$ и $P_1'(x_3)=d_3$, а многочлен $P_{n-2}\equiv P_{n-1}$ интерполирует f на $[x_{n-2},x_n]$ по точкам x_{n-2},x_{n-1},x_n : $P_{n-1}(x_{n-2})=f(x_{n-2}), P_{n-1}(x_{n-1})=f(x_{n-1}), P_{n-1}(x_n)=f(x_n)$ и $P_{n-1}'(x_{n-2})=d_{n-2}$. Следовательно, многочлен $P_1\equiv P_2$ строится как интерполяционный многочлен третьей степени, принимающий в точках x_1,x_2,x_3 значения $f(x_1),f(x_2),f(x_3)$ и имеющий в точке x_3 производную, равную d_3 ; многочлен $P_{n-1}\equiv P_{n-2}$ строится как интерполяционный многочлен третьей степени, принимающий в точках x_{n-2},x_{n-1},x_n значения $f(x_{n-2}),f(x_{n-1}),f(x_n)$ и имеющий в точке x_{n-2} производную, равную d_{n-2} .

Таким образом, вместо n-1 многочлена $P_i, i=1,2\ldots,n-1$ и n параметров $d_i, i=1,2,\ldots,n$ имеем n-3 многочлена $P_1\equiv P_2,P_3,P_4,\ldots,P_{n-3},P_{n-2}\equiv P_{n-1}$ и n-4 параметра d_3,d_4,\ldots,d_{n-2} .

Тем самым проблема граничных условий в методах, изложенных в § 19.4, § 19.5 и § 19.6, снята, поскольку параметры d_i , i = 3, 4, ..., n-2 определяются по приведенным в методах формулам (см. (7), (8), (9)).

В методе приближения кубическими сплайнами (§ 19.7) возможны два подхода.

1. Из условия $Pf \in C^{(2)}([a,b])$ получаем

$$P''_{i-1}(x_i) = P''_i(x_i), \qquad i = 3, 4, \dots, n-2$$

-n-4 уравнения относительно n-4 неизвестных d_3,d_4,\ldots,d_{n-2} . Уравнения для $i=4,5,\ldots,n-3$ совпадают с выписанными ранее уравнениями (12), уравнения для

$$P_1''(x_3) \equiv P_2''(x_3) = P_3''(x_3), \quad P_{n-3}''(x_{n-2}) = P_{n-2}''(x_{n-2}) \equiv P_{n-1}''(x_{n-2})$$

изменятся в силу изменившегося вида многочленов $P_1 \equiv P_2$, $P_{n-2} \equiv P_{n-1}$.

2. Будем задавать $P_1, P_2, \ldots, P_{n-1}$ как раньше набором d_1, d_2, \ldots, d_n . Выполнения условия (16) добъемся, потребовав непрерывности $(Pf)^{\prime\prime\prime}$ в точках x_2 и x_{n-1} , т.е.

$$P_1'''(x_2) = P_2'''(x_2), \quad P_{n-2}'''(x_{n-1}) = P_{n-1}''(x_{n-1})$$
(17)

(условия (16) и (17) эквивалентны для многочленов третьей степени, поскольку в силу (10) у P_1 и P_2 , P_{n-2} и P_{n-1} совпадают все производные от нулевого до третьего порядка включительно).

Соотношения (17) дают два недостающих для замыкания системы (12) уравнения.

Из представления многочлена P_i в виде (2) находим, что соотношения (17) эквивалентны

$$c_{4,1} = c_{4,2}, \quad c_{4,n-2} = c_{4,n-1}$$
 (18)

а) Рассмотрим первое уравнение (18). С помощью (3) находим

$$\frac{d_1 + d_2 - 2f(x_1; x_2)}{(x_2 - x_1)^2} = \frac{d_2 + d_3 - 2f(x_2; x_3)}{(x_3 - x_2)^2},$$

или

$$(x_3 - x_2)^2 d_1 + (x_3 - x_2)^2 d_2 - (x_2 - x_1)^2 d_2 - (x_2 - x_1)^2 d_3 =$$

$$= 2f(x_1; x_2)(x_3 - x_2)^2 - 2f(x_2; x_3)(x_2 - x_1)^2,$$

т.е.

$$(x_3 - x_2)^2 d_1 + (x_3 - x_1)(x_3 - 2x_2 + x_1)^2 d_2 - (x_2 - x_1)^2 d_3 =$$

$$= 2f(x_1; x_2)(x_3 - x_2)^2 - 2f(x_2; x_3)(x_2 - x_1)^2,$$

Если добавить это уравнение к системе (12), то нарушится ее трехдиагональность. Поэтому прибавим к этому уравнению первое уравнение системы (12) (т.е. при i=2):

$$(x_3 - x_2)d_1 + 2(x_3 - x_1)d_2 + (x_2 - x_1)d_3 =$$

$$= 3f(x_1; x_2)(x_3 - x_2) + 3f(x_2; x_3)(x_2 - x_1)$$

умноженное на $(x_2 - x_1)$, получим

$$(x_3 - x_2)(x_3 - x_2 + x_2 - x_1)d_1 + (x_3 - x_1)(x_3 - 2x_2 + x_1 + 2(x_2 - x_1))d_2 =$$

$$= f(x_1; x_2)(x_3 - x_2)(2(x_3 - x_2) + 3(x_2 - x_1)) + f(x_2; x_3)(x_2 - x_1)^2,$$

или

$$(x_3 - x_2)d_1 + (x_3 - x_1)d_2 =$$

$$= \frac{f(x_1; x_2)(x_3 - x_2)(2x_3 + x_2 - 3x_1) + f(x_2; x_3)(x_2 - x_1)^2}{x_3 - x_1}.$$

Это уравнение добавляется к системе (12) в качестве первого.

б) Рассмотрим второе уравнение (18). С помощью (3) находим

$$\frac{d_{n-2} + d_{n-1} - 2f(x_{n-2}; x_{n-1})}{(x_{n-1} - x_{n-2})^2} = \frac{d_{n-1} + d_n - 2f(x_{n-1}; x_n)}{(x_n - x_{n-1})^2},$$

или

$$(x_n - x_{n-1})^2 d_{n-2} + (x_n - x_{n-1})^2 d_{n-1} - (x_{n-1} - x_{n-2})^2 d_{n-1} - (x_{n-1} - x_{n-2})^2 d_n =$$

$$= 2f(x_{n-2}; x_{n-1})(x_n - x_{n-1})^2 - 2f(x_{n-1}; x_n)(x_{n-1} - x_{n-2})^2,$$

т.е.

$$(x_n - x_{n-1})^2 d_{n-2} + (x_n - x_{n-2})(x_n - 2x_{n-1} + x_{n-2})^2 d_{n-1} - (x_{n-1} - x_{n-2})^2 d_n =$$

$$= 2f(x_{n-2}; x_{n-1})(x_n - x_{n-1})^2 - 2f(x_{n-1}; x_n)(x_{n-1} - x_{n-2})^2.$$

Если добавить это уравнение к системе (12), то нарушится ее трехдиагональность. Поэтому вычтем это уравнение из последнего уравнения системы (12) (т.е. при i = n - 1):

$$(x_n - x_{n-1})d_{n-2} + 2(x_n - x_{n-2})d_{n-1} + (x_{n-1} - x_{n-2})d_n =$$

$$= 3f(x_{n-2}; x_{n-1})(x_n - x_{n-1}) + 3f(x_{n-1}; x_n)(x_{n-1} - x_{n-2})$$

умноженного на $(x_n - x_{n-1})$, получим

$$(x_{n} - x_{n-2})(2(x_{n} - x_{n-1}) - (x_{n} - 2x_{n-1} + x_{n-2}))d_{n-1} + (x_{n-1} - x_{n-2})(x_{n} - x_{n-1} - (x_{n-1} - x_{n-2}))d_{n} = f(x_{n-2}; x_{n-1})(x_{n} - x_{n-1})^{2} + f(x_{n-1}; x_{n})(x_{n-1} - x_{n-2})(3(x_{n} - x_{n-1}) + 2(x_{n} - x_{n-2})),$$

или

$$(x_n - x_{n-2})d_{n-1} + (x_{n-1} - x_{n-2})d_n =$$

$$= \frac{f(x_{n-2}; x_{n-1})(x_n - x_{n-1})^2 + f(x_{n-1}; x_n)(x_{n-1} - x_{n-2})(3x_n - x_{n-1} - 2x_{n-2})}{x_n - x_{n-2}}.$$

Это уравнение добавляется к системе (12) в качестве последнего.

§ 19.8.5. Дополнительный узел в приграничных узлах

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

Введем дополнительные точки $x_0 < x_1$ и $x_{n+1} > x_n$ и значения приближаемой функции $f(x_0)$ и $f(x_{n+1})$ в этих точках.

Тем самым проблема граничных условий в методах, изложенных в § 19.4 и § 19.6, снята, поскольку параметры d_i , i = 1, 2, ..., n теперь определяются по приведенным в методах формулам (см. (7), (9)).

В методе приближения кубическими сплайнами (§ 19.7) возможны несколько подходов.

1. Два дополнительных уравнения есть

$$P_1(x_0) = f(x_0), \qquad P_{n-1}(x_{n+1}) = f(x_{n+1}).$$

Из представления (2) многочлена P_i и вида (3) его коэффициентов видно, что в эти уравнения входят соответственно d_1, d_2 и d_{n-1}, d_n . Следовательно, эти уравнения можно добавить к системе (12) в качестве первого и последнего уравнений с сохранением ее трехдиагонального вида.

2. Многочлен P_1 интерполирует f на $[x_0,x_2]$ по точкам $x_0,x_1,x_2\colon P_1(x_0)=f(x_0),P_1(x_1)=f(x_1),P_1(x_2)=f(x_2)$ и $P_1'(x_2)=d_2$, а многочлен P_{n-1} интерполирует f на $[x_{n-1},x_{n+1}]$ по точкам $x_{n-1},x_n,x_{n+1}\colon P_{n-1}(x_{n-1})=f(x_{n-1}),P_{n-1}(x_n)=f(x_n),P_{n-1}(x_{n+1})=f(x_{n+1})$ и $P_{n-1}'(x_{n-1})=d_{n-1}$. Следовательно, многочлен P_1 строится как интерполяционный многочлен третьей степени, принимающий в точках x_0,x_1,x_2 значения $f(x_0),f(x_1),f(x_2)$ и имеющий в точке x_2 производную, равную d_2 ; многочлен P_{n-1} строится как интерполяционный многочлен третьей степени, принимающий в точках x_{n-1},x_n,x_{n+1} значения $f(x_{n-1}),f(x_n),f(x_{n+1})$ и имеющий в точке x_{n-1} производную, равную d_{n-1} .

Таким образом, вместо n параметров $d_i, i = 1, 2, \ldots, n$ имеем и n-2 параметра $d_2, d_3, \ldots, d_{n-1}$.

Из условия $Pf \in C^{(2)}([a,b])$ получаем

$$P''_{i-1}(x_i) = P''_i(x_i), \qquad i = 2, 3, \dots, n-1$$

-n-2 уравнения относительно n-2 неизвестных $d_2, d_3, \ldots, d_{n-1}$. Уравнения для $i=3,4,\ldots,n-2$ совпадают с выписанными ранее уравнениями (12), уравнения для

$$P_1''(x_2) = P_2''(x_2), \quad P_{n-2}''(x_{n-1}) = P_{n-1}''(x_{n-1})$$

изменятся в силу изменившегося вида многочленов.

3. Вычисляем приближение к $f'(x_1)$ и $f'(x_n)$ аналогично приближению кубическими многочленами Бесселя (см.§ 19.4). Другими словами, мы вычисляем d_1 и d_n по формулам (7) при i=1 и i=n. Эти уравнения добавляются к системе (12) в качестве первого и последнего уравнений с сохранением ее трехдиагонального вида.

Значения $f(x_0)$ и $f(x_{n+1})$ могут находиться из соображений периодичности, четности и т.п.. Если никакой дополнительной информации о приближаемой функции f нет, то можно использовать экстраполяцию, например, линейную:

$$x_0 = x_1 - (x_2 - x_1),$$
 $f(x_0) = f(x_1) - (f(x_2) - f(x_1)),$
 $x_{n+1} = x_n + (x_n - x_{n-1}),$ $f(x_{n+1}) = f(x_n) + (f(x_n) - f(x_{n-1})).$

§ 19.8.6. Экстраполяция в приграничных узлах

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

В качестве приближенного значения $f'(x_1), f'(x_n)$ либо $f''(x_1), f''(x_n)$ берутся значения $Q_k'(x_1), R_k'(x_n)$ либо $Q_k''(x_1), R_k''(x_n)$, где $Q_k(x)$ – интерполяционный многочлен Лагранжа степени k-1, построенный по точкам x_1, x_2, \ldots, x_k , $R_k(x)$ – интерполяционный многочлен Лагранжа степени k-1, построенный по точкам $x_{n-k+1}, x_{n-k+2}, \ldots, x_n$, $k \geq 3$. Полученные значения f' или f'' в точках x_1 и x_n используются как указывалось выше (см. построение граничных условий по значениям первой или второй производной функции в граничных узлах).

§ 20. ИНТЕРПОЛЯЦИЯ ПАРАБОЛИЧЕСКИМИ СПЛАЙНАМИ

§ 20.1. Общая схема

Пусть заданы точки $a=x_1 < x_2 < \ldots < x_n = b$ и значения $f(x_1), f(x_2) \ldots, f(x_n)$. Введем дополнительные точки $\xi_1, \xi_2, \ldots, \xi_{n+1}$ так, чтобы

$$\xi_1 < a = x_1 < \xi_2 < x_2 < \xi_3 < x_3 < \dots < x_{n-1} < \xi_n < x_n = b < \xi_{n+1}$$

Например, можно положить

$$\xi_i = \frac{x_{i-1} + x_i}{2}, \quad i = 2, 3, \dots, n.$$

Интерполирующая функция Pf строится таким образом, что на каждом отрезке $[\xi_i, \xi_{i+1}], i = 1, \ldots, n$ она является многочленом P_i степени 2, таким, что

$$\begin{cases}
P_i(x_i) = f(x_i), \\
P_i(\xi_i) = v_i, & P_i(\xi_{i+1}) = v_{i+1}
\end{cases} \qquad i = 1, \dots, n \tag{1}$$

где v_i , $i=1,2,\ldots,n+1$ – свободные параметры, тот или иной способ выбора которых определяет метод кусочной интерполяции параболическими многочленами. Полученная функция Pf совпадает с f в точках x_i , $i=1,\ldots,n$ и для любого набора параметров v_i $Pf \in C([a,b])$.

\S 20.2. $\,$ Алгоритм вычисления коэффициентов многочлена P_i

Коэффициенты многочлена P_i , записанного в форме

$$P_i(x) = a_{1,i} + a_{2,i}(x - \xi_i) + a_{3,i}(x - \xi_i)(x - x_i)$$

могут быть вычислены по интерполяционной формуле Ньютона (см. определение (4.1) разделенных разностей):

$$\frac{f(x_{i}) - v_{i}}{x_{i} - \xi_{i}} \setminus f(x_{i}) \left(\frac{f(x_{i}) - v_{i}}{x_{i} - \xi_{i}} \right) \left(\frac{v_{i+1} - f(x_{i})}{\xi_{i+1} - x_{i}} - \frac{f(x_{i}) - v_{i}}{x_{i} - \xi_{i}} \right) \\
\frac{v_{i+1}}{\xi_{i+1} - x_{i}} \checkmark$$

Столбцы вычисляются слева направо, элементы столбца вычисляются снизу вверх, стрелки указывают ячейку памяти, в которую помещается результат. Отсюда получаем

$$a_{1,i} = v_i$$

$$a_{2,i} = \frac{f(x_i) - v_i}{x_i - \xi_i}$$

$$a_{3,i} = \frac{1}{\xi_{i+1} - \xi_i} \left(\frac{v_{i+1} - f(x_i)}{\xi_{i+1} - x_i} - \frac{f(x_i) - v_i}{x_i - \xi_i} \right)$$

Для представления в виде

$$P_i(x) = c_{1,i} + c_{2,i}(x - \xi_i) + c_{3,i}(x - \xi_i)^2$$
(2)

запишем

$$(x - \xi_i)(x - x_i) = (x - \xi_i)(x - \xi_i + \xi_i - x_i) = (x - \xi_i)^2 - (x_i - \xi_i)(x - \xi_i),$$

откуда получаем

$$c_{1,i} = a_{1,i} = v_{i}$$

$$c_{2,i} = a_{2,i} - (x_{i} - \xi_{i})a_{3,i} = \frac{f(x_{i}) - v_{i}}{x_{i} - \xi_{i}} - \frac{x_{i} - \xi_{i}}{\xi_{i+1} - \xi_{i}} \left(\frac{v_{i+1} - f(x_{i})}{\xi_{i+1} - x_{i}} - \frac{f(x_{i}) - v_{i}}{x_{i} - \xi_{i}} \right)$$

$$c_{3,i} = a_{3,i} = \frac{1}{\xi_{i+1} - \xi_{i}} \left(\frac{v_{i+1} - f(x_{i})}{\xi_{i+1} - x_{i}} - \frac{f(x_{i}) - v_{i}}{x_{i} - \xi_{i}} \right)$$

$$(3)$$

§ 20.3. Интерполяция параболическими сплайнами

Интерполяция параболическими сплайнами используется для получения наиболее гладкой приближающей функции Pf в рассматриваемом классе кусочно-квадратичных многочленов.

Параметры v_i , $i=1,2,\ldots,n+1$ в общей схеме интерполяции кусочноквадратичными функциями выбираются так, чтобы приближающая функция Pf была сплайном 2-го порядка т.е. $Pf \in C^{(1)}([a,b])$ или

$$P'_{i-1}(\xi_i) = P'_i(\xi_i), \qquad i = 2, 3, \dots, n.$$
 (4)

Из представления многочлена P_i в виде (2) находим

$$P'_{i-1}(\xi_i) = c_{2,i-1} + 2(\xi_i - \xi_{i-1})c_{3,i-1}, \qquad P'_i(\xi_i) = c_{2,i}.$$
(5)

С помощью (3) вычислим

$$c_{2,i} = \frac{f(x_i) - v_i}{x_i - \xi_i} - \frac{x_i - \xi_i}{\xi_{i+1} - \xi_i} \left(\frac{v_{i+1} - f(x_i)}{\xi_{i+1} - x_i} - \frac{f(x_i) - v_i}{x_i - \xi_i} \right) =$$

$$= \left(1 + \frac{x_i - \xi_i}{\xi_{i+1} - \xi_i} \right) \frac{f(x_i) - v_i}{x_i - \xi_i} - \frac{x_i - \xi_i}{\xi_{i+1} - \xi_i} \frac{v_{i+1} - f(x_i)}{\xi_{i+1} - x_i}$$

$$= -v_i \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i} \right) - v_{i+1} \frac{x_i - \xi_i}{(\xi_{i+1} - \xi_i)(\xi_{i+1} - x_i)} +$$

$$+ f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i} + \frac{x_i - \xi_i}{(\xi_{i+1} - \xi_i)(\xi_{i+1} - x_i)} \right)$$

$$= -v_i \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i} \right) - v_{i+1} \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i} \right) +$$

$$+ f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i} \right),$$

а также

$$c_{3,i} = \frac{1}{\xi_{i+1} - \xi_i} \left(\frac{v_{i+1} - f(x_i)}{\xi_{i+1} - x_i} - \frac{f(x_i) - v_i}{x_i - \xi_i} \right) =$$

$$= \frac{1}{\xi_{i+1} - \xi_i} \left(v_i \frac{1}{x_i - \xi_i} + v_{i+1} \frac{1}{\xi_{i+1} - x_i} - f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i} \right) \right).$$

И

$$c_{2,i} + 2(\xi_{i+1} - \xi_i)c_{3,i} =$$

$$= -v_i \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i}\right) - v_{i+1} \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i}\right) +$$

$$+ f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i}\right) +$$

$$+2\left(v_{i}\frac{1}{x_{i}-\xi_{i}}+v_{i+1}\frac{1}{\xi_{i+1}-x_{i}}-f(x_{i})\left(\frac{1}{x_{i}-\xi_{i}}+\frac{1}{\xi_{i+1}-x_{i}}\right)\right)=$$

$$=v_{i}\left(\frac{1}{x_{i}-\xi_{i}}-\frac{1}{\xi_{i+1}-\xi_{i}}\right)+v_{i+1}\left(\frac{1}{\xi_{i+1}-x_{i}}+\frac{1}{\xi_{i+1}-\xi_{i}}\right)-$$

$$-f(x_{i})\left(\frac{1}{x_{i}-\xi_{i}}+\frac{1}{\xi_{i+1}-x_{i}}\right)$$

С помомощью этих равенств и (5) находим

$$P_i'(\xi_i) = -v_i \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i} \right) - v_{i+1} \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i} \right) + f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i} \right),$$

$$(6)$$

И

$$P'_{i-1}(\xi_i) = v_{i-1} \left(\frac{1}{x_{i-1} - \xi_{i-1}} - \frac{1}{\xi_i - \xi_{i-1}} \right) + v_i \left(\frac{1}{\xi_i - x_{i-1}} + \frac{1}{\xi_i - \xi_{i-1}} \right) - f(x_{i-1}) \left(\frac{1}{x_{i-1} - \xi_{i-1}} + \frac{1}{\xi_i - x_{i-1}} \right)$$

$$(7)$$

Подставляя (6) и (7) в (4), получаем для всех $i=2,3,\ldots,n$

$$\left(\frac{1}{x_{i-1} - \xi_{i-1}} - \frac{1}{\xi_i - \xi_{i-1}}\right) v_{i-1} + \left(\frac{1}{\xi_i - x_{i-1}} + \frac{1}{\xi_i - \xi_{i-1}} + \frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i}\right) v_i + \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i}\right) v_{i+1} =$$

$$= \left(\frac{1}{x_{i-1} - \xi_{i-1}} + \frac{1}{\xi_i - x_{i-1}}\right) f(x_{i-1}) + \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i}\right) f(x_i) \tag{8}$$

Это система из n-1 линейных уравнений относительно n+1 неизвестных $v_1, v_2, \ldots, v_{n+1}$. Для ее замыкания требуется еще два уравнения, которые строятся, исходя из той или иной дополнительной информации о функции f (см. ниже).

Система (8) является системой уравнений с трехдиагональной матрицей с (строгим) диагональным преобладанием и ее можно решать методом Гаусса без выбора главного элемента.

Основные **свойства приближающей функции** *Pf*:

- 1) Pf является нелокальной кусочно-многочленной функцией, значения которой зависят от поведения функции f в каждой точке x_1, x_2, \ldots, x_n .
- 2) Метод приближения является линейным: P(f+g) = Pf + Pg, $P(\alpha f) = \alpha Pf$.

Погрешность аппроксимации параболическими сплайнами (в силу нелокальности сплайна) зависит от выбора дополнительных уравнений для замыкания системы (8) и составляет от $O(h^1)$ до $O(h^3)$, где h определяется равенством (19.5).

§ 20.4. Определение недостающих граничных условий

Используются несколько методов построения двух дополнительных уравнений для замыкания системы (8), которые выбираются в зависимости от того, какая дополнительная информация известна о приближаемой функции.

§ 20.4.1. Определение недостающих граничных условий по известным значениям первой производной функции в граничных узлах

Пусть известны значения $f'(x_1)$ и $f'(x_n)$ производной f' функции f в граничных узлах x_1 и x_n . Возможны два эквивалентных подхода.

1. Два дополнительных уравнения получаются из условий

$$P'_1(x_1) = f'(x_1), \qquad P'_n(x_n) = f'(x_n).$$

Вычислим

$$P'_{i}(x_{i}) = c_{2,i} + 2(x_{i} - \xi_{i})c_{3,i} =$$

$$= -v_{i} \left(\frac{1}{x_{i} - \xi_{i}} + \frac{1}{\xi_{i+1} - \xi_{i}}\right) - v_{i+1} \left(\frac{1}{\xi_{i+1} - x_{i}} - \frac{1}{\xi_{i+1} - \xi_{i}}\right) +$$

$$+ f(x_{i}) \left(\frac{1}{x_{i} - \xi_{i}} + \frac{1}{\xi_{i+1} - x_{i}}\right) +$$

$$+ 2\frac{x_{i} - \xi_{i}}{\xi_{i+1} - \xi_{i}} \left(v_{i} \frac{1}{x_{i} - \xi_{i}} + v_{i+1} \frac{1}{\xi_{i+1} - x_{i}} - f(x_{i}) \left(\frac{1}{x_{i} - \xi_{i}} + \frac{1}{\xi_{i+1} - x_{i}}\right)\right)$$

Поскольку

$$\frac{x_i - \xi_i}{\xi_{i+1} - \xi_i} \frac{1}{\xi_{i+1} - x_i} = \frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i},$$

$$\frac{x_i - \xi_i}{\xi_{i+1} - \xi_i} \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i} \right) = \frac{x_i - \xi_i}{\xi_{i+1} - \xi_i} \frac{\xi_{i+1} - \xi_i}{(\xi_{i+1} - x_i)(x_i - \xi_i)} = \frac{1}{\xi_{i+1} - x_i},$$

TO

$$P_i'(x_i) = -v_i \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - \xi_i} \right) - v_{i+1} \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i} \right) + f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i} \right) +$$

$$+ 2v_i \frac{1}{\xi_{i+1} - \xi_i} + 2v_{i+1} \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i} \right) - 2f(x_i) \frac{1}{\xi_{i+1} - x_i} =$$

$$= v_i \left(\frac{1}{\xi_{i+1} - \xi_i} - \frac{1}{x_i - \xi_i} \right) + v_{i+1} \left(\frac{1}{\xi_{i+1} - x_i} - \frac{1}{\xi_{i+1} - \xi_i} \right) +$$

$$+ f(x_i) \left(\frac{1}{x_i - \xi_i} - \frac{1}{\xi_{i+1} - x_i} \right)$$

Два дополнительных уравнения получаются из условий

$$P'_{i}(x_{i}) = f'(x_{i}), \qquad i = 1, n.$$

Эти равенства являются двумя недостающими уравнениями, которые для сохранения трехдиагональности системы (8) надо сделать соответственно первым и последним уравнениями этой системы.

2. Выбираем $\xi_i=x_1$, $\xi_{n+1}=x_n$. Тогда в систему уравнений (8) v_1 и v_{n+1} не войдут, а P_1 и P_n строятся по интерполяционной формуле Ньютона с кратными узлами: многочлен

$$P_1(x) = c_{1,1} + (x - x_1)c_{2,1} + (x - x_1)^2c_{3,1}$$

строится из условий

$$P_1(x_1) = f(x_1), \quad P'_1(x_1) = f'(x_1), \quad P_1(\xi_2) = v_2,$$

что дает

$$c_{1,1} = f(x_1), \quad c_{2,1} = f'(x_1), \quad c_{3,1} = \frac{1}{\xi_2 - x_1} \left(\frac{v_2 - f(x_1)}{\xi_2 - x_1} - f'(x_1) \right);$$

аналогично, многочлен

$$P_n(x) = c_{1,n} + (x - \xi_n)c_{2,n} + (x - \xi_n)^2 c_{3,n}$$

строится из условий

$$P_n(\xi_n) = v_n, \quad P_1(x_n) = f(x_n), \quad P'_1(x_n) = f'(x_n),$$

что дает

$$c_{1,n} = v_n, \quad c_{2,n} = 2\frac{f(x_n) - v_n}{x_n - \xi_n} - f'(x_n), \quad c_{3,n} = \frac{1}{x_n - \xi_n} \left(f'(x_n) - \frac{f(x_n) - v_n}{x_n - \xi_n} \right).$$

Из условия $Pf \in C^{(1)}([a,b])$ получаем

$$P'_{i-1}(\xi_i) = P'_i(\xi_i), \qquad i = 2, 3, \dots, n.$$

-n-1 уравнения относительно n-1 неизвестных v_2,v_3,\ldots,v_n . Уравнения для $i=3,4,\ldots,n-1$ совпадают с выписанными ранее уравнениями (8), уравнения для

$$P'_1(\xi_2) = P'_2(\xi_2), \qquad P'_{n-1}(\xi_n) = P'_n(\xi_n)$$

изменятся в силу изменившегося вида многочленов P_1 и P_{n-1} .

1. Выпишем новое первое уравнение системы (8). Имеем

$$P'_1(\xi_2) = c_{2,1} + 2(\xi_2 - x_1) = f'(x_1) + 2\left(\frac{v_2 - f(x_1)}{\xi_2 - x_1} - f'(x_1)\right)$$
$$= 2\frac{v_2 - f(x_1)}{\xi_2 - x_1} - f'(x_1),$$

выражение для $P'_2(\xi_2)$ получаем из (6) при i=2:

$$P_2'(\xi_2) = -v_2 \left(\frac{1}{x_2 - \xi_2} + \frac{1}{\xi_3 - \xi_2} \right) - v_3 \left(\frac{1}{\xi_3 - x_2} - \frac{1}{\xi_3 - \xi_2} \right) + f(x_2) \left(\frac{1}{x_2 - \xi_2} + \frac{1}{\xi_3 - x_2} \right).$$

Следовательно, уравнение имеет вид

$$v_2 \left(\frac{2}{\xi_2 - x_1} + \frac{1}{x_2 - \xi_2} + \frac{1}{\xi_3 - \xi_2} \right) + v_3 \left(\frac{1}{\xi_3 - x_2} - \frac{1}{\xi_3 - \xi_2} \right) =$$

$$= f(x_1) \frac{2}{\xi_2 - x_1} + f(x_2) \left(\frac{1}{x_2 - \xi_2} + \frac{1}{\xi_3 - x_2} \right) + f'(x_1).$$

2. Выпишем новое последнее уравнение системы (8). Имеем

$$P'_n(\xi_n) = c_{2,n} = 2\frac{f(x_n) - v_n}{x_n - \xi_n} - f'(x_n),$$

выражение для $P'_{n-1}(\xi_n)$ получаем из (7) при i=n:

$$P'_{n-1}(\xi_n) = v_{n-1} \left(\frac{1}{x_{n-1} - \xi_{n-1}} - \frac{1}{\xi_n - \xi_{n-1}} \right) + v_n \left(\frac{1}{\xi_n - x_{n-1}} + \frac{1}{\xi_n - \xi_{n-1}} \right) - f(x_{n-1}) \left(\frac{1}{x_{n-1} - \xi_{n-1}} + \frac{1}{\xi_n - x_{n-1}} \right)$$

Следовательно, уравнение имеет вид

$$v_{n-1}\left(\frac{1}{x_{n-1}-\xi_{n-1}}-\frac{1}{\xi_n-\xi_{n-1}}\right)+v_n\left(\frac{1}{\xi_n-x_{n-1}}+\frac{1}{\xi_n-\xi_{n-1}}+\frac{2}{x_n-\xi_n}\right)=$$

$$=f(x_{n-1})\left(\frac{1}{x_{n-1}-\xi_{n-1}}+\frac{1}{\xi_n-x_{n-1}}\right)+f(x_n)\frac{2}{x_n-\xi_n}-f'(x_n).$$

§ 20.4.2. Определение недостающих граничных условий по известным значениям второй производной функции в граничных узлах

Пусть известны значения $f''(x_1)$ и $f''(x_n)$ производной f'' функции f в граничных узлах x_1 и x_n . Тогда потребуем от приближающей функции Pf

$$(Pf)''(x_1) = f''(x_1), \qquad (Pf)''(x_n) = f''(x_n),$$

т.е.

$$P_1''(x_1) = f''(x_1), \qquad P_n''(x_n) = f''(x_n).$$

Из (2) находим

$$P_i''(x_i) = 2c_{3,i} = \frac{2}{\xi_{i+1} - \xi_i} \left(v_i \frac{1}{x_i - \xi_i} + v_{i+1} \frac{1}{\xi_{i+1} - x_i} - f(x_i) \left(\frac{1}{x_i - \xi_i} + \frac{1}{\xi_{i+1} - x_i} \right) \right).$$
(9)

Тогда дополнительные уравнения

$$P_i''(x_i) = f''(x_i), \qquad i = 1, n.$$

Эти равенства являются двумя недостающими уравнениями, которые для сохранения трехдиагональности системы (8) надо сделать соответственно первым и последним уравнениями этой системы.

§ 20.4.3. "Естественные" граничные условия

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

Тогда потребуем от приближающей функции Pf

$$(Pf)''(x_1) = 0,$$
 $(Pf)''(x_n) = 0,$

т.е.

$$P_1''(x_1) = 0, \qquad P_n''(x_n) = 0.$$

Из соотношений (9) получаем два дополнительных уравнения

$$P_i''(x_i) = 0, \qquad i = 1, n.$$

Эти равенства являются двумя недостающими уравнениями, которые для сохранения трехдиагональности системы (8) надо сделать соответственно первым и последним уравнениями этой системы.

Если у приближаемой функции $f''(x_1) \neq 0$ или $f''(x_n) \neq 0$, то произвол в выборе граничных условий приводит к повышенной погрешности в приграничных узлах.

§ 20.4.4. Условие "отсутствия узла" в приграничных узлах

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

Тогда потребуем от приближающей функции Pf

$$P_1 \equiv P_2, \quad P_{n-1} \equiv P_n, \tag{10}$$

т.е. многочлен $P_1 \equiv P_2$ интерполирует f на $[\xi_1,\xi_3]$ по точкам $x_1,x_2\colon P_1(x_1)=f(x_1),P_1(x_2)=f(x_2)$ и $P_1(\xi_3)=v_3$, а многочлен $P_{n-1}\equiv P_n$ интерполирует f на $[\xi_{n-1},\xi_{n+1}]$ по точкам $x_{n-1},x_n\colon P_n(x_{n-1})=f(x_{n-1}),P_n(x_n)=f(x_n)$ и $P_n(\xi_{n-1})=v_{n-1}$. Следовательно, многочлен $P_1\equiv P_2$ строится как интерполяционный многочлен второй степени, принимающий в точках x_1,x_2,ξ_3 значения $f(x_1),f(x_2),v_3$; многочлен $P_n\equiv P_{n-1}$ строится как интерполяционный многочлен второй степени, принимающий в точках ξ_{n-1},x_{n-1},x_n значения $v_{n-1},f(x_{n-1}),f(x_n)$.

Таким образом, вместо n многочленов $P_i, i=1,2\ldots,n$ и n+1 параметров $v_i, i=1,2,\ldots,n+1$ имеем n-2 многочлена $P_1\equiv P_2,P_3,P_4,\ldots,P_{n-2},P_{n-1}\equiv P_n$ и n-3 параметра v_3,v_4,\ldots,v_{n-1} .

В методе приближения параболическими сплайнами возможны два подхода.

1. Из условия $Pf \in C^{(1)}([a,b])$ получаем

$$P'_{i-1}(\xi_i) = P'_i(\xi_i), \qquad i = 3, 4, \dots, n-1$$

-n-3 уравнения относительно n-3 неизвестных $v_3, v_4, \ldots, v_{n-1}$. Уравнения для $i=4,5,\ldots,n-2$ совпадают с выписанными ранее уравнениями (8), уравнения для

$$P'_1(\xi_3) \equiv P'_2(\xi_3) = P'_3(\xi_3), \quad P'_{n-2}(\xi_{n-1}) = P'_{n-1}(\xi_{n-1}) \equiv P'_n(\xi_{n-1})$$

изменятся в силу изменившегося вида многочленов $P_1 \equiv P_2$, $P_{n-1} \equiv P_n$.

а). Выпишем новое первое уравнение системы (8). По интерполяционной формуле Ньютона

$$P_1(x) = a_{1,1} + (x - x_1)a_{2,1} + (x - x_1)(x - x_2)a_{3,1}$$

где

$$a_{1,1} = f(x_1), \quad a_{2,1} = f(x_1; x_2), \quad a_{3,1} = \frac{1}{\xi_3 - x_1} \left(\frac{v_3 - f(x_2)}{\xi_3 - x_2} - f(x_1; x_2) \right).$$

Поэтому

$$P'_{1}(\xi_{3}) = a_{2,1} + (2\xi_{3} - x_{1} - x_{2})a_{3,1} =$$

$$= f(x_{1}; x_{2}) + \frac{2\xi_{3} - x_{1} - x_{2}}{\xi_{3} - x_{1}} \left(\frac{v_{3} - f(x_{2})}{\xi_{3} - x_{2}} - f(x_{1}; x_{2}) \right) =$$

$$= \left(\frac{1}{\xi_{3} - x_{1}} + \frac{1}{\xi_{3} - x_{2}} \right) (v_{3} - f(x_{2})) - \frac{\xi_{3} - x_{2}}{\xi_{3} - x_{1}} f(x_{1}; x_{2}).$$

Выражение для $P_3'(\xi_3)$ получаем из (6) при i=3:

$$P_3'(\xi_3) = -v_3 \left(\frac{1}{x_3 - \xi_3} + \frac{1}{\xi_4 - \xi_3} \right) - v_4 \left(\frac{1}{\xi_4 - x_3} - \frac{1}{\xi_4 - \xi_3} \right) + f(x_3) \left(\frac{1}{x_3 - \xi_3} + \frac{1}{\xi_4 - x_3} \right).$$

Следовательно, уравнение имеет вид

$$v_3 \left(\frac{1}{\xi_3 - x_1} + \frac{1}{\xi_3 - x_2} + \frac{1}{x_3 - \xi_3} + \frac{1}{\xi_4 - \xi_3} \right) + v_4 \left(\frac{1}{\xi_4 - x_3} - \frac{1}{\xi_4 - \xi_3} \right) =$$

$$= f(x_2) \left(\frac{1}{\xi_3 - x_1} + \frac{1}{\xi_3 - x_2} \right) + f(x_3) \left(\frac{1}{x_3 - \xi_3} + \frac{1}{\xi_4 - x_3} \right) + \frac{\xi_3 - x_2}{\xi_3 - x_1} f(x_1; x_2).$$

б). Выпишем новое последнее уравнение системы (8). По интерполяционной формуле Ньютона

$$P_n(x) = a_{1,n} + (x - \xi_{n-1})a_{2,n} + (x - \xi_{n-1})(x - x_{n-1})a_{3,n}$$

где

$$a_{1,n} = v_{n-1}, \quad a_{2,n} = \frac{f(x_{n-1}) - v_{n-1}}{x_{n-1} - \xi_{n-1}}, \quad a_{3,n} = \frac{1}{x_n - \xi_{n-1}} \left(f(x_{n-1}; x_n) - a_{2,n} \right).$$

Поэтому

$$P'_{n}(\xi_{n-1}) = a_{2,n} + (\xi_{n-1} - x_{n-1})a_{3,n} = a_{2,n} - \frac{x_{n-1} - \xi_{n-1}}{x_{n} - \xi_{n-1}} (f(x_{n-1}; x_{n}) - a_{2,n}) =$$

$$= \frac{x_{n-1} + x_{n} - 2\xi_{n-1}}{x_{n} - \xi_{n-1}} a_{2,n} - \frac{x_{n-1} - \xi_{n-1}}{x_{n} - \xi_{n-1}} f(x_{n-1}; x_{n}) =$$

$$= \left(\frac{1}{x_{n-1} - \xi_{n-1}} + \frac{1}{x_{n} - \xi_{n-1}}\right) (f(x_{n-1}) - v_{n-1}) - \frac{x_{n-1} - \xi_{n-1}}{x_{n} - \xi_{n-1}} f(x_{n-1}; x_{n}).$$

Выражение для $P'_{n-2}(\xi_{n-1})$ получаем из (7) при i=n-1:

$$P'_{n-2}(\xi_{n-1}) = v_{n-2} \left(\frac{1}{x_{n-2} - \xi_{n-2}} - \frac{1}{\xi_{n-1} - \xi_{n-2}} \right) +$$

$$+ v_{n-1} \left(\frac{1}{\xi_{n-1} - x_{n-2}} + \frac{1}{\xi_{n-1} - \xi_{n-2}} \right) -$$

$$- f(x_{n-2}) \left(\frac{1}{x_{n-2} - \xi_{n-2}} + \frac{1}{\xi_{n-1} - x_{n-2}} \right)$$

Следовательно, уравнение имеет вид

$$v_{n-2}\left(\frac{1}{x_{n-2}-\xi_{n-2}}-\frac{1}{\xi_{n-1}-\xi_{n-2}}\right)+$$

$$+v_{n-1}\left(\frac{1}{\xi_{n-1}-x_{n-2}} + \frac{1}{\xi_{n-1}-\xi_{n-2}} + \frac{1}{x_{n-1}-\xi_{n-1}} + \frac{1}{x_n-\xi_{n-1}}\right) =$$

$$= f(x_{n-2})\left(\frac{1}{x_{n-2}-\xi_{n-2}} + \frac{1}{\xi_{n-1}-x_{n-2}}\right) +$$

$$+f(x_{n-1})\left(\frac{1}{x_{n-1}-\xi_{n-1}} + \frac{1}{x_n-\xi_{n-1}}\right) - \frac{x_{n-1}-\xi_{n-1}}{x_n-\xi_{n-1}}f(x_{n-1};x_n).$$

2. Будем задавать P_1, P_2, \ldots, P_n как раньше набором $v_1, v_2, \ldots, v_{n+1}$. Выполнения условия (10) добъемся, потребовав непрерывности (Pf)'' в точках ξ_2 и ξ_n , т.е.

$$P_1''(\xi_2) = P_2''(\xi_2), \quad P_{n-1}''(\xi_n) = P_n''(\xi_n) \tag{11}$$

(условия (10) и (11) эквивалентны для многочленов второй степени, поскольку в силу (4) у P_1 и P_2 , P_{n-1} и P_n совпадают все производные от нулевого до второго порядка включительно).

Соотношения (11) дают два недостающих для замыкания системы (8) уравнения.

Из представления многочлена P_i в виде (2) находим, что соотношения (11) эквивалентны

$$c_{3,1} = c_{3,2}, \quad c_{3,n-1} = c_{3,n}$$
 (12)

§ 20.4.5. Дополнительный узел в приграничных узлах

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

Введем дополнительные точки $x_0 < x_1$ и $x_{n+1} > x_n$ и значения приближаемой функции $f(x_0)$ и $f(x_{n+1})$ в этих точках. Тогда полагаем $\xi_1 = x_0$ и $\xi_{n+1} = x_{n+1}$

$$v_1 = f(\xi_1), \qquad v_{n+1} = f(\xi_{n+1}).$$

Эти равенства являются двумя недостающими уравнениями, которые для сохранения трехдиагональности системы (8) надо сделать соответственно первым и последним уравнениями этой системы.

§ 20.4.6. Экстраполяция в приграничных узлах

Этот метод используется, когда никакой дополнительной информации о приближаемой функции f нет.

В качестве приближенного значения $f'(x_1), f'(x_n)$ либо $f''(x_1), f''(x_n)$ берутся значения $Q_k'(x_1), R_k'(x_n)$ либо $Q_k''(x_1), R_k''(x_n)$, где $Q_k(x)$ – интерполяционный многочлен Лагранжа степени k-1, построенный по точкам $x_1, x_2, \ldots, x_k, R_k(x)$ – интерполяционный многочлен Лагранжа степени k-1, построенный по точкам $x_{n-k+1}, x_{n-k+2}, \ldots, x_n, k \geq 2$. Полученные значения f' или f'' в точках x_1 и x_n используются как указывалось выше (см. построение граничных условий по значениям первой или второй производной функции в граничных узлах).

Глава II.

МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Интерполяция функций $f: \Omega \subset \mathbf{R}^n \to \mathbf{R}^1$ укладывается в общую схему задачи линейной интерполяции. Но эта схема требует обращения матрицы (I.1.3) и потому для одномерного случая выше был предложен ряд методов, в которых эта матрица не более, чем трехдиагональна.

Для многомерных областей построение хорошо обратимой матрицы (I.1.3) производится, в основном, двумя методами:

- 1) интерполированием тензорными произведениями,
- 2) приближением методом конечных элементов.

§ 1. ИНТЕРПОЛЯЦИЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ ТЕНЗОРНЫМИ ПРОИЗВЕДЕНИЯМИ

Этот метод интерполяции позволяет наиболее просто свести задачу интреполяции функции многих переменных, заданной в параллелепипеде, к задаче интерполяции функций одной переменной.

§ 1.1. Постановка задачи интерполяции тензорными произведениями и теорема корректности

Пусть задана функция $f:Z=X\times Y\to {\bf R}^1,\ f\in F(Z,{\bf R}^1)$ – некоторому функциональному пространству, наборы функций $u_1,\ldots,u_n,\ u_i:X\to {\bf R}^1,\ u_i\in F(X,{\bf R}^1)$ и $v_1,\ldots,v_m,\ v_i:Y\to {\bf R}^1,\ v_i\in F(Y,{\bf R}^1)$ и наборы линейных функционалов $\lambda_1,\ldots,\lambda_n$ на пространстве $F(X,{\bf R}^1)$ и μ_1,\ldots,μ_m на пространстве $F(Y,{\bf R}^1)$. Требуется построить аппроксимацию Pf функции f вида

$$Pf = \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i,j} w_{i,j}$$

такую, чтобы были выполнены линейные условия интерполяции

$$\nu_{i,j}(Pf) = \nu_{i,j}(f), \quad i = 1, \dots, n, \quad j = 1, \dots, m,$$
 (1)

где

$$w_{i,j} = u_i \otimes v_j, \text{ T.e. } w_{i,j}(x,y) = u_i(x)v_j(y),$$

$$\nu_{i,j} = \lambda_i \otimes \mu_j, \text{ T.e. } \nu_{i,j}(f) = \lambda_i(\mu_j(f_x(y))) = \mu_j(\lambda_i(f_y(x))),$$

$$f_x(y) = f(x,y) \in F(Y,\mathbf{R}^1), \ f_y(x) = f(x,y) \in F(X,\mathbf{R}^1),$$

$$f \in F(Z,\mathbf{R}^1), \ i = 1, \dots, n, \ j = 1, \dots, m, \ x \in X, \ y \in Y.$$

Обозначим

$$U = \langle u_i \rangle_{i=1}^n = \left\{ \sum_{i=1}^n \alpha_i u_i : \alpha \in \mathbf{R}^n \right\}, \quad V = \langle v_j \rangle_{j=1}^m,$$

$$\Lambda = \langle \lambda_i \rangle_{i=1}^n, \quad M = \langle \mu_j \rangle_{j=1}^n,$$

$$W = U \otimes V = \left\{ w = u \otimes v : u \in U, v \in V \right\}.$$

Теорема 1. Пусть

1. функции u_1, \dots, u_n линейно независимы, функционалы $\lambda_1, \dots, \lambda_n$ линейно независимы и матрица

$$A = (\lambda_i(u_j))_{i,j=1,\dots,n} \tag{2}$$

обратима;

2. функции v_1, \ldots, v_m линейно независимы, функционалы μ_1, \ldots, μ_m линейно независимы и матрица

$$B = (\mu_i(v_j))_{i,j=1,...,m}$$
(3)

обратима.

Tог ∂a

- 1. Функции $w_{ij} = u_i \otimes v_j$ составляют базис пространства $W = U \otimes V$ и, следовательно, размерность W равна nm.
 - 2. Задача линейной интерполяции корректна.
 - 3. Интерполирующая функция представляется в виде

$$Pf = \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i,j} w_{i,j}$$
 (4)

 $e \partial e$

$$\Gamma = (\gamma_{i,j})_{(i=1,\dots,n,\ j=1,\dots,m)} = A^{-1} \left((\nu_{i,j}(f))_{(i=1,\dots,n,\ j=1,\dots,m)} \right) \left(B^t \right)^{-1}.$$
 (5)

Доказательство. Всякий элемент $w \in W = U \otimes V$ представляется в виде

$$w = \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_{i,j} w_{i,j}$$

Действительно, $w \in U \otimes V$ есть $w = u \otimes v$, т.е. w(x,y) = u(x)v(y). Так как u_1, \ldots, u_n составляют базис U и v_1, \ldots, v_m составляют базис V, то

$$u(x) = \sum_{i=1}^{n} \alpha_i u_i(x) \qquad v(y) = \sum_{j=1}^{m} \beta_j v_j(y).$$

Поэтому

$$w(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j u_i(x) v_j(y).$$

Проверим, что это представление единственно (это и будет означать, что $w_{ij} = u_i \otimes v_j$ образуют базис $U \otimes V$). Рассмотрим

$$\nu_{kl}(w) = (\lambda_k \otimes \mu_l)(w) = (\lambda_k \otimes \mu_l) \left(\sum_{i=1}^n \sum_{j=1}^m \gamma_{i,j} u_i \otimes v_j \right) = \sum_{i=1}^n \sum_{j=1}^m \gamma_{i,j} \lambda_k(u_i) \mu_l(v_j) =$$

$$= \sum_{i=1}^n \sum_{j=1}^m \gamma_{i,j} a_{ki} b_{lj} = \sum_{i=1}^n \sum_{j=1}^m a_{ki} \gamma_{i,j} b_{lj} = (A \Gamma B^t)_{kl}$$

По условию матрицы A и B обратимы, следовательно

$$\Gamma = A^{-1}(\nu_{kl}(w))_{k=1,\dots,n,\,l=1,\dots,m}(B^t)^{-1}$$
(6)

Отсюда вытекает, что коэффициенты γ_{ij} однозначно определяются функцией w , т.е. w_{ij} – базис W .

Из (1) и (6) вытекают второе и третье утверждения теоремы. Теорема доказана.

§ 1.2. Оценка числа арифметических операций

Оценим трудоемкость вычислений по формуле (5).

- 1) С помощью, например, LU-разложения мы можем вычислить A^{-1} с затратой $O(n^3)$ арифметических операций.
- 2) С помощью, например, LU-разложения мы можем вычислить B^{-1} с затратой $O(m^3)$ арифметических операций.
- 3) Матрица $T = A^{-1}(\nu_{kl}(f))$ вычисляется по определению произведения матриц с затратой $O(n^2m)$ арифметических операций.
- 4) Матрица $\Gamma = T(B^t)^{-1}$ вычисляется по определению произведения матриц с затратой $O(nm^2)$ арифметических операций.

Таким образом, общее количество арифметических операций, требуемых для проведения вычислений по формуле (5), равно $O(n^3 + n^2 m + n m^2 + m^3)$.

Замечание 1. Непосредственное определение коэффициентов $\Gamma = (\gamma_{i,j})$ из системы

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_k(u_i) \mu_l(v_j) \gamma_{ij} = \nu_{kl}(f), \qquad k = 1, 2, \dots, n, \quad l = 1, 2, \dots, m$$

из $n \cdot m$ линейных уравнений относительно $n \cdot m$ неизвестных γ_{ij} требует $\frac{2}{3}(n \cdot m)^3$ сложений и столько же умножений по методу Гаусса. Например, при n=m это дает $O(n^6)$ арифметических операций, в то время, как формуле (5) $O(n^3)$.

§ 1.3. Алгоритм интерполяции тензорными произведениями

Из теоремы 1 вытекает следующий алгоритм вычисления искомых коэффициентов $\Gamma = (\gamma_{i,j})_{(i=1,\dots,n,\ j=1,\dots,m)}$ функции Pf.

Обозначим $f_{kl} = \nu_{kl}(f)$, $f_l = (f_{1l}, \dots, f_{nl})^t$ – вектор из элементов f_{kl} , $F = [f_1, \dots, f_m] - n \times m$ матрица, составленная из векторов f_k . Тогда формула (5) утверждает, что

$$\Gamma = A^{-1}F(B^t)^{-1}.$$

Рассмотрим матрицу

$$T = A^{-1}F = A^{-1}[f_1, \dots, f_m] = [A^{-1}f_1, \dots, A^{-1}f_m].$$

В силу результата (I.1.4) теоремы (I.1.1) если $b=(b_1,\ldots,b_n)^t$ – произвольный вектор, то вектор $c=A^{-1}b$ есть вектор коэффициентов интерполирующей функции $u=\sum\limits_{i=1}^n c_iu_i$ такой, что $\lambda_k(u)=b_k$, $k=1,2,\ldots,n$. Следовательно, k-й столбец матрицы T есть вектор коэффициентов интерполирующей функции, построенной по k-му столбцу f_k матрицы F.

Рассмотрим матрицу

$$\Gamma = T(B^t)^{-1} = \left(B^{-1}T^t\right)^t.$$

Если обозначить $T^t = [t_1, \ldots, t_n]$ – столбцы $t_i \in \mathbf{R}^m$ матрицы T^t , то $B^{-1}T = [B^{-1}t_1, \ldots, B^{-1}t_n]$. В силу результата (I.1.4) теоремы (I.1.1) если $b = (b_1, \ldots, b_m)^t$ – произвольный вектор, то вектор $c = B^{-1}b$ есть вектор коэффициентов интерполирующей функции $u = \sum\limits_{j=1}^m c_j u_j$ такой, что $\mu_l(u) = b_l$, $l = 1, 2, \ldots, m$. Следовательно, l-ая строка матрицы Γ есть вектор коэффициентов интерполирующей функции, построенной по l-ой строке t_l матрицы T.

Матрицы T и Γ обычно хранятся на месте матрицы F. В этом случае описанный выше алгоритм может быть сформулирован в следующем виде.

- 1) Для всех $k=1,2,\ldots,n$ заменить k-й столбец f_k матрицы F на вектор α_k коэффициентов интерполирующей функции $u=\sum\limits_{i=1}^n\alpha_{ki}u_i$ такой, что $\lambda_i(f_k)=f_{ik}=\lambda_i(u),\ i=1,2,\ldots,n$.
- 2) Для всех $l=1,2,\ldots,m$ заменить l-ую строку t_l матрицы F на вектор β_l коэффициентов интерполирующей функции $v=\sum\limits_{j=1}^m\beta_{lj}v_j$ такой, что $\mu_i(t_l)=t_{il}=\mu_i(u),\ j=1,2,\ldots,m$.

§ 1.4. Программная реализация алгоритма

Пусть подпрограмма INTERP_X(LU, N, ALPFA) по вектору

$$LU = \left((\lambda_i(u))_{(i=1,\dots,N)} \right)$$

значений функционалов λ_i на некоторой функции $u \in F(X, \mathbf{R}^1)$ строит вектор ALPFA = $(\alpha_i)_{\{i=1,\dots,N\}}$ коэффициентов интерполирующей функции $P_X u = \sum_{i=1}^N \alpha_i u_i$ по некоторому методу 1 линейной интерполяции функций из $F(X, \mathbf{R}^1)$. Пусть подпрограмма INTERP_Y(MV, M, BETA) по вектору

$$MV = \left(\left(\mu_j(v) \right)_{(j=1,\dots,M)} \right)$$

значений функционалов μ_i на некоторой функции $v \in F(Y, \mathbf{R}^1)$ строит вектор BETA = $(\beta_i)_{(j=1,\dots,M)}$ коэффициентов интерполирующей функции $P_Y v = \sum_{j=1}^M \beta_j v_j$ по некоторому методу 2 линейной интерполяции функций из $F(Y, \mathbf{R}^1)$. Пусть $f \in F(X \times Y, \mathbf{R}^1)$. Обозначим $N \times M$ матрицу

$$NF = \left(\left((\lambda_i \otimes \mu_j)(f) \right)_{(i=1,\dots,N, j=1,\dots,M)} \right)$$

Искомая $N \times M$ матрица коэффициентов $GAMMA = \Gamma$ функции Pf

$$(Pf)(x,y) = \sum_{i=1}^{N} \sum_{j=1}^{M} \gamma_{i,j} u_i(x) v_j(y)$$

вычисляется следующим алгоритмом

1. Для i = 1, N выполнять

INTERP_X(і-й столбец NF, N, і-й столбец GAMMA)

2. Для j = 1, M выполнять

Если метод 1 или 2 требуют для своего проведения обращения некоторой матрицы, то эта матрица будет одной и той же при каждом вызове подпрограммы INTERP_X и INTERP_Y. Следовательно, при первом обращении к подпрограмме INTERP_X или INTERP_Y можно построить, например, LU-разложение этой матрицы и сохранить это разложение до следующего вызова подпрограммы во вспомогательном массиве.

В зависимости от используемого языка программирования либо пункт 1 либо пункт 2 этого алгоритма может быть осуществлен без дополнительных вычислительных затрат на вызов подпрограмм интерполяции по переменной X или Y.

Например, на языке FORTRAN, в котором массивы хранятся по столбцам, первый пункт алгоритма можно записать в виде

На языке C, в котором массивы хранятся по строкам, второй пункт алгоритма можно записать в виде

for
$$(j=0; j < M; j++)$$
 INTERP_Y $(GAMMA[j], M, GAMMA[j]);$

§ 1.5. Интерполяции тензорными произведениями в случае многочленной аппроксимации

Пусть f = f(x,y) — функция двух переменных, заданная на прямоугольнике $[a,b] \times [c,d]$. Пусть также заданы точки $a=x_1 < x_2 < \ldots < x_n = b$ и $c=y_1 < y_2 < \ldots < y_m = d$, и известны значения $f(x_i,y_j)$, $i=1,2,\ldots,n$, $j=1,2,\ldots,m$ функции f в точках (x_i,y_j) . Продемонстрируем применение теоремы 1 для рассмотренных ранее методов приближения.

🖇 1.5.1. Интерполяционный многочлен Лагранжа

Пусть каждый из методов приближения по переменным x и y является аппроксимацией многочленом Лагранжа (см. § I.3). Приближающая функция (по каждой из переменных) вычисляется по формуле (I.3.1).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции:

$$u_i(x) = \prod_{k=1, k \neq i}^n \frac{x - x_k}{x_i - x_k}, \quad i = 1, 2, \dots, n,$$
$$v_j(y) = \prod_{l=1, l \neq i}^m \frac{y - y_l}{y_j - y_l}, \quad j = 1, 2, \dots, m.$$

Функционалы

$$\lambda_i(u) = u(x_i), \quad i = 1, 2, \dots, n, \quad \mu_j(v) = v(y_j), \quad j = 1, 2, \dots, m.$$
 (7)

Матрицы A в (2) и B в (3) – единичные. Базис в пространстве функций – тензорных произведений:

$$w_{ij}(x,y) = u_i(x)v_j(y) = \prod_{k=1, k \neq i}^n \prod_{l=1, l \neq j}^m \frac{x - x_k}{x_i - x_k} \frac{y - y_l}{y_j - y_l},$$

$$i = 1, 2, \dots, n, \ j = 1, 2, \dots, m.$$

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij}(f) = \lambda_i(\mu_j(f)) = f(x_i, y_j) \quad i = 1, 2, \dots, n, \ j = 1, 2, \dots, m.$$

По теореме 1 приближающая функция имеет вид (4), где коэффициенты γ_{ij} вычисляются в (5). В силу $A^{-1}=I$, $B^{-1}=I$ имеем: $\gamma_{ij}=\nu_{ij}(f)$. В итоге приближающая функция имеет вид

$$Pf = \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) \prod_{k=1, k \neq i}^{n} \prod_{l=1, l \neq j}^{m} \frac{x - x_k}{x_i - x_k} \frac{y - y_l}{y_j - y_l}.$$

§ 1.5.2. Разделенные разности для функции многих переменных

Разделенные разности, введенные в \S I.8, являются (по доказанному в \S I.8) линейными непрерывными функционалами. Мы можем рассмотреть их тензорное произведение:

$$f(x_i; \dots; x_{i+k}, y_j; \dots; y_{j+l}) =$$

$$= (f(x_i; \dots; x_{i+k}))(y_j; \dots; y_{j+l}) = (f(y_j; \dots; y_{j+l}))(x_i; \dots; x_{i+k}).$$

Равенство здесь справедливо в силу представления (I.4.2). Это определение эквивалентно следующему аналогу определния (I.8.1).

Определение. Пусть задан набор точек $x_i, \ldots, x_{i+k}, y_j, \ldots, x_{j+l}$ (не обязательно различных). $Pas \partial e$ ленной разностью функции f нулевого порядка называется $f(x_i, y_j) = f(x_i, y_j)$, разделенной разностью (k+l)-го порядка называется

$$f(x_i; \dots; x_{i+k}, y_j; \dots; y_{j+l})$$

$$= \begin{cases} \frac{1}{k!} \frac{\partial^k f}{\partial x^k}(x_i, y_j; \dots; y_{j+l}), & \text{если } x_i = \dots = x_{i+k} \text{ и } f \in C^{(k+l)}, \\ (f(x_i; \dots; x_{r-1}; x_{r+1}; \dots; x_{i+k}, y_j; \dots; y_{j+l}) - \\ -f(x_i; \dots; x_{s-1}; x_{s+1}; \dots; x_{i+k}, y_j; \dots; y_{j+l}))/(x_s - x_r) \end{cases}$$

$$= \begin{cases} \frac{1}{l!} \frac{\partial^l f}{\partial y^l}(x_i; \dots; x_{i+k}, y_j), & \text{если } y_j = \dots = y_{j+l} \text{ и } f \in C^{(k+l)}, \\ (f(x_i; \dots; x_{i+k}, y_j; \dots; y_{r-1}; y_{r+1}; \dots; y_{j+l}) - \\ -f(x_i; \dots; x_{i+k}, y_j; \dots; y_{s-1}; y_{s+1}; \dots; y_{j+l}))/(y_s - y_r) \\ & \text{если существуют } y_s \neq y_r, \end{cases}$$

§ 1.5.3. Интерполяционная формула Ньютона

Пусть каждый из методов приближения по переменным x и y является аппроксимацией многочленом Лагранжа, который вычисляется по формуле Ньютона (см. § I.5). Приближающая функция (по каждой из переменных) вычисляется по формуле (I.5.2).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции:

$$u_i(x) = \prod_{k=1}^{i-1} (x - x_k), \quad i = 1, 2, \dots, n,$$

 $v_j(y) = \prod_{l=1}^{j-1} (y - y_l), \quad j = 1, 2, \dots, m$

(здесь считается, что произведение равно 1, если верхний предел меньше нижнего). Функционалы задаются в (7). Однако, удобнее рассмотреть другую систему функционалов, которая дает ту же приближающую функцию. В силу (I.10.1) в качестве функционалов можно взять

$$\lambda_i(u) = u(x_1; \dots; x_i), \quad i = 1, 2, \dots, n,$$

 $\mu_j(v) = v(y_1; \dots; y_j), \quad j = 1, 2, \dots, m.$

Для этой системы функционалов матрицы A в (2) и B в (3) – единичные. Базис в пространстве функций – тензорных произведений:

$$w_{ij}(x,y) = u_i(x)v_j(y) = \prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x - x_k)(y - y_l)$$

$$i = 1, 2, \dots, n, \ j = 1, 2, \dots, m.$$

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij}(f) = \lambda_i(\mu_j(f)) = f(x_1; \dots; x_i, y_1; \dots; y_j)$$

 $i = 1, 2, \dots, n, \ j = 1, 2, \dots, m.$

По теореме 1 приближающая функция имеет вид (4), где коэффициенты γ_{ij} вычисляются в (5). В силу $A^{-1} = I$, $B^{-1} = I$ имеем: $\gamma_{ij} = \nu_{ij}(f)$. В итоге приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_1; \dots; x_i, y_1; \dots; y_j) \prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x - x_k)(y - y_l)$$
 (8)

Вычисление разделенных разностей осуществляется согласно $\S 1.4$ применением алгоритма из $\S 1.5$ по каждой из переменных x и y.

§ 1.5.4. Интерполяция "движущимися" многочленами

Пусть каждый из методов приближения по переменным x и y является интерполяцией "движущимися" многочленами (см. § I.6) степени k и l соответственно. Эти методы являются на каждом из отрезков $[x_i, x_{i+1}], i = 1, 2, \ldots, n - k - 1, [x_{n-k}, x_n]$ и $[y_j, y_{j+1}], j = 1, 2, \ldots, m - l - 1, [y_{m-l}, y_m]$ аппроксимацией интерполяционным многочленом Лагранжа, записанным в форме Ньютона. Поэтому приближающая функция строится, так же, как в предыдущем разделе.

§ 1.5.5. Интерполяция с кратными узлами

Пусть каждый из методов приближения по переменным x и y является аппроксимацией многочленом Лагранжа с кратными узлами (см. § I.9). Теорема I.9.1 позволяет рассматривать такую аппроксимацию аналогично описанной выше без кратных узлов.

§ 1.5.6. Разложение по многочленам Чебышева

Пусть каждый из методов приближения по переменным x и y является аппроксимацией многочленами Чебышева (см. § I.13). Приближающая функция (по каждой из переменных) вычисляется по формуле (I.13.10).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции:

$$\widehat{T}_{i}^{(x)}(x) = T_{i}\left(\frac{2x - (b+a)}{b-a}\right), \quad i = 0, 1, \dots, n-1,
\widehat{T}_{j}^{(y)}(y) = T_{j}\left(\frac{2y - (d+c)}{d-c}\right), \quad j = 0, 1, \dots, m-1,$$
(9)

Функционалы задаются в (I.13.4):

$$\lambda_i(u) = \left\langle \hat{T}_i^{(x)}, u \right\rangle_n^{(x)}, \quad i = 0, 1, \dots, n - 1,$$

 $\mu_j(v) = \left\langle \hat{T}_i^{(y)}, v \right\rangle_m^{(y)}, \quad j = 0, 1, \dots, m - 1,$

где

$$\langle f, g \rangle_n^{(x)} = \sum_{i=1}^n f(x_i)g(x_i), \quad \langle f, g \rangle_m^{(y)} = \sum_{j=1}^m f(y_j)g(y_j).$$

Для этой системы функционалов матрицы A в (2) и B в (3) – диагональные (см. (I.13.9)):

$$A = \operatorname{diag}\left[n, \frac{n}{2}, \dots, \frac{n}{2}\right] \in \mathbf{M}_n, \quad B = \operatorname{diag}\left[m, \frac{m}{2}, \dots, \frac{m}{2}\right] \in \mathbf{M}_m.$$

Базис в пространстве функций – тензорных произведений:

$$w_{ij}(x,y) = u_i(x)v_j(y) = \widehat{T}_i^{(x)}(x)\widehat{T}_j^{(y)}(y),$$

$$i = 0, 1, \dots, n-1, \ j = 0, 1, \dots, m-1.$$
(10)

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij}(f) = \lambda_i(\mu_j(f)) = \sum_{i=1}^n \sum_{j=1}^m w_{ij}(x_i, y_j) f(x_i, y_j) \equiv \langle w_{ij}, f \rangle_{nm}^{(xy)}$$
$$i = 0, 1, \dots, n-1, \ j = 0, 1, \dots, m-1,$$

где

$$\langle f, g \rangle_{nm}^{(xy)} = \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) g(x_i, y_j).$$

Из леммы I.13.2 получаем

$$\langle w_{ij}, w_{kl} \rangle_{nm}^{(xy)} = 0$$
 при $i \neq j$ и $k \neq l$, $\langle w_{ij}, w_{ij} \rangle_{nm}^{(xy)} = \frac{nm}{4}$ при $i \neq 0$ и $j \neq 0$, $\langle w_{ij}, w_{ij} \rangle_{nm}^{(xy)} = \frac{nm}{2}$ при $i \neq 0, j = 0$ или $i = 0, j \neq 0$, $\langle w_{00}, w_{00} \rangle_{nm}^{(xy)} = nm$,

т.е. базис w_{ij} ортогонален относительно скалярного произведения $\langle \cdot, \cdot \rangle^{(xy)}$. По теореме 1 приближающая функция имеет вид (4), где коэффициенты γ_{ij} вычисляются в (5). В силу вида матриц A и B имеем:

$$\gamma_{ij} = \frac{\nu_{ij}(f)}{\langle w_{ij}, w_{ij} \rangle_{nm}^{(xy)}} = \frac{\langle w_{ij}, f \rangle_{nm}^{(xy)}}{\langle w_{ij}, w_{ij} \rangle_{nm}^{(xy)}}.$$

В итоге приближающая функция имеет вид

$$Pf(x) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \frac{\langle w_{ij}, f \rangle_{nm}^{(xy)}}{\langle w_{ij}, w_{ij} \rangle_{nm}^{(xy)}} w_{ij}.$$

Вычисление коэффициентов разложения осуществляется согласно \S 1.4 применением алгоритма (I.13.11) по каждой из переменных x и y.

§ 1.5.7. Аппроксимация многочленами Чебышева методом наименьших квадратов

Пусть каждый из методов приближения по переменным x и y является аппроксимацией многочленами Чебышева, построенной методом наименьших квадратов (см. § I.17). Приближающая функция (по каждой из переменных) вычисляется по формуле (I.17.2) с коэффициентами (I.17.5).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции: (9). Функционалы задаются в (I.17.3):

$$\lambda_i(u) = \left[u, \widehat{T}_i^{(x)}\right]^{(x)}, \quad i = 0, 1, \dots, n-1,$$

$$\mu_j(v) = \left[v, \widehat{T}_j^{(y)}\right]^{(y)}, \quad j = 0, 1, \dots, m-1,$$

где

$$[f,g]^{(x)} = \int_{a}^{b} \frac{f(x)g(x)}{\sqrt{(b-x)(x-a)}} dx, \quad [f,g]^{(y)} = \int_{c}^{d} \frac{f(y)g(y)}{\sqrt{(d-y)(y-c)}} dy.$$

Для этой системы функционалов матрицы A в (2) и B в (3) – диагональные (см. лемму I.17.2):

$$A = \operatorname{diag}\left[\pi, \frac{\pi}{2}, \dots, \frac{\pi}{2}\right] \in \mathbf{M}_n, \quad B = \operatorname{diag}\left[\pi, \frac{\pi}{2}, \dots, \frac{\pi}{2}\right] \in \mathbf{M}_m.$$

Базис в пространстве функций – тензорных произведений: (10). Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij}(f) = \lambda_i(\mu_j(f)) = \left[\hat{T}_i^{(x)}\hat{T}_j^{(y)}, f\right]^{(xy)} = [w_{ij}, f]^{(xy)}$$

$$i = 0, 1, \dots, n - 1, \ j = 0, 1, \dots, m - 1,$$

где

$$[f,g]^{(xy)} \int_a^b \int_c^d \frac{f(x,y)g(x,y)}{\sqrt{(b-x)(x-a)(d-y)(y-c)}} dxdy.$$

Следовательно, приближающая функция $Pf \in \mathcal{P}_{n-1}(x) \otimes \mathcal{P}_{m-1}(y)$ удовлетворяет следующим линейным условиям интерполяции:

$$\left[Pf, \widehat{T}_i^{(x)} \widehat{T}_j^{(y)} \right]^{(xy)} = \left[f, \widehat{T}_i^{(x)} \widehat{T}_j^{(y)} \right]^{(xy)},
i = 0, 1, \dots, n - 1, j = 0, 1, \dots, m - 1,$$

которые являются многомерным аналогом условий (I.17.3). В силу доказанного в § I.17 это означает, что приближающая функция $Pf \in \mathcal{P}_{n-1}(x) \otimes \mathcal{P}_{m-1}(y)$ реализует минимум

$$||f - Pf||_*^2 \equiv [f - Pf, f - Pf]^{(xy)} \to \min$$

в пространстве всех функций $Pf \in \mathcal{P}_{n-1}(x) \otimes \mathcal{P}_{m-1}(y)$. Из леммы I.17.2 получаем

 $[w_{ii},w_{kl}]^{(xy)}=0$ при i
eq

т.е. базис w_{ij} ортогонален относительно скалярного произведения $[\cdot,\cdot]^{(xy)}$.

По теореме 1 приближающая функция имеет вид (4), где коэффициенты γ_{ij} вычисляются в (5). В силу вида матриц A и B имеем:

$$\gamma_{ij} = \frac{\nu_{ij}(f)}{[w_{ij}, w_{ij}]^{(xy)}} = \frac{[w_{ij}, f]^{(xy)}}{[w_{ij}, w_{ij}]^{(xy)}}.$$

В итоге приближающая функция имеет вид

$$Pf(x) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \frac{[w_{ij}, f]^{(xy)}}{[w_{ij}, w_{ij}]^{(xy)}} w_{ij}.$$

Вычисление коэффициентов разложения осуществляется согласно \S 1.4 применением алгоритма (I.17.19) по каждой из переменных x и y.

§ 1.6. Интерполяции тензорными произведениями в случае кусочно-многочленной аппроксимации

В случае, когда каждый из методов интерполяции по переменным x и y является кусочно-многочленным, описанный выше алгоритм интерполяции тензорными произведениями может быть значительно упрощен.

Пусть f = f(x,y) — функция двух переменных, заданная на прямоугольнике $[a,b] \times [c,d]$. Пусть также заданы точки $a=x_1 < x_2 < \ldots < x_n = b$ и $c=y_1 < y_2 < \ldots < y_m = d$, и каждый из методов интерполяции по переменным x и y таков, что интерполирующая функция на каждом из отрезков $[x_i,x_{i+1}],[y_j,y_{j+1}]$ строится независимо (от других отрезков $[x_k,x_{k+1}],[y_l,y_{l+1}],\ k \neq i,\ l \neq j$). Тогда матрицы A^{-1} и B^{-1} в (5) будут блочно-диагональными, и из теоремы 1 вытекает, что интерполирующая функция на прямоугольнике $[x_i,x_{i+1}]\times[y_j,y_{j+1}]$ строится независимо (от других прямоугольников $[x_k,x_{k+1}]\times[y_l,y_{l+1}],\ k \neq i,\ l \neq j$). Поэтому теорему 1 можно применять независимо на каждом из прямоугольников $[x_i,x_{i+1}]\times[y_j,y_{j+1}]$. Это обстоятельство позволяет также расширить область применимости алгоритма: функция f может быть задана не только на прямоугольнике $[a,b]\times[c,d]$, а и на любой области, представимой в виде объединения неперекрывающихся прямоугольников $\bigcup_{i,j} ([x_i,x_{i+1}]\times[y_j,y_{j+1}])$.

§ 1.6.1. Кусочно-линейная интерполяция

Пусть каждый из методов приближения по переменным x и y является кусочно-линейной интерполяцией (см. § I.15). Согласно сказанному выше достаточно рассмотреть приближение на прямоугольнике $[x_i, x_{i+1}] \times [y_j, y_{j+1}]$. Приближающая функция (по каждой из переменных) вычисляется по формуле (I.15.1).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции:

$$u_{i,1}(x) = \frac{x - x_{i+1}}{x_i - x_{i+1}}, \quad u_{i,2}(x) = \frac{x - x_i}{x_{i+1} - x_i}, \quad x \in [x_i, x_{i+1}],$$

$$v_{j,1}(y) = \frac{y - y_{j+1}}{y_j - y_{j+1}}, \quad v_{j,2}(y) = \frac{y - y_j}{y_{j+1} - y_j}, \quad y \in [y_j, y_{j+1}].$$

Функционалы

$$\lambda_{i,1}(u) = u(x_i), \quad \lambda_{i,2}(u) = u(x_{i+1}), \quad \mu_{j,1}(v) = v(y_j), \quad \mu_{j,2}(v) = v(y_{j+1}).$$

Матрицы A в (2) и B в (3) – единичные. Базис в пространстве функций – тензорных произведений:

$$w_{ij,kl}(x,y) = u_{i,k}(x)v_{j,l}(y), \quad k,l = 1, 2.$$

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij,kl}(f) = \lambda_{i,k}(\mu_{j,l}(f)), \quad k, l = 1, 2,$$

т.е.

$$\nu_{ij,11}(f) = f(x_i, y_j), \quad \nu_{ij,12}(f) = f(x_i, y_{j+1}),
\nu_{ij,21}(f) = f(x_{i+1}, y_i), \quad \nu_{ij,22}(f) = f(x_{i+1}, y_{i+1}).$$

По теореме 1 приближающая функция имеет вид (4):

$$Pf = \sum_{k=1}^{2} \sum_{l=1}^{2} \gamma_{ij,kl} w_{ij,kl},$$

где коэффициенты $\gamma_{ij,kl}$ вычисляются в (5). В силу $A^{-1}=I$, $B^{-1}=I$ имеем:

$$\gamma_{ij,kl} = \nu_{ij,kl}(f).$$

В итоге приближающая функция имеет вид

$$Pf = f(x_i, y_j) \frac{x - x_{i+1}}{x_i - x_{i+1}} \frac{y - y_{j+1}}{y_j - y_{j+1}} + f(x_i, y_{j+1}) \frac{x - x_{i+1}}{x_i - x_{i+1}} \frac{y - y_j}{y_{j+1} - y_j} + f(x_{i+1}, y_j) \frac{x - x_i}{x_{i+1} - x_i} \frac{y - y_{j+1}}{y_j - y_{j+1}} + f(x_{i+1}, y_{j+1}) \frac{x - x_i}{x_{i+1} - x_i} \frac{y - y_j}{y_{j+1} - y_j}.$$

Построенную приближающую функцию часто называют билинейной.

В случае кусочно-линейной интерполяции тот же результат можно получить,

применяя теорему 1 на всей области определения функции f . **Определение**. Обозначим через $S_2^{(x)}$ линейное пространство непрерывных ломаных линий на отрезке $[x_1,x_n]=[a,b]$ с изломами $x_2 < x_3 < \ldots < x_{n-1};$ а через $S_2^{(y)}$ – линейное пространство непрерывных ломаных линий на отрезке $[y_1, y_m] = [c, d]$ с изломами $y_2 < y_3 < \ldots < y_{m-1}$.

Введем базисы пространства $S_2^{(x)}$, $S_2^{(y)}$ (см. (I.16.2))

$$H_i^{(x)} \in S_2^{(x)}, \quad H_i^{(x)}(x_k) = \delta_{ik}, \quad i, k = 1, 2, \dots, n,$$

 $H_j^{(y)} \in S_2^{(y)}, \quad H_j^{(y)}(y_l) = \delta_{jl}, \quad j, l = 1, 2, \dots, m.$

Всякая $u \in S_2^{(x)}$ и всякая $v \in S_2^{(y)}$ раскладывается по этому базису следующим образом (см.(І.16.3)):

$$u(x) = \sum_{k=1}^{n} u(x_k) H_k^{(x)}(x), \quad v(y) = \sum_{l=1}^{m} v(y_l) H_l^{(y)}(y).$$

В качестве функционалов выбираем $\lambda_i(u)=u(x_i),\ i=1,2,\ldots,n,\ \mu_j(v)=v(y_j),\ j=1,2,\ldots,m$. Тогда матрицы A в (2) и B в (3) – единичные; базис в пространстве функций – тензорных произведений: $w_{ij}(x,y)=H_i^{(x)}(x)H_j^{(y)}(y),\ i=1,2,\ldots,n,\ j=1,2,\ldots,m$; базис в пространстве функционалов – тензорных произведений: $\nu_{ij}(f)=f(x_i,y_j),\ i=1,2,\ldots,n,\ j=1,2,\ldots,m$. По теореме 1 приближающая функция имеет вид (4), где коэффициенты γ_{ij} вычисляются в (5). В силу $A^{-1}=I$, $B^{-1}=I$ имеем: $\gamma_{ij}=\nu_{ij}(f)$. В итоге приближающая функция имеет вид

$$Pf = \sum_{i=1}^{n} \sum_{j=1}^{m} f(x_i, y_j) H_i^{(x)}(x) H_j^{(y)}(y).$$

§ 1.6.2. Кусочно-линейная аппроксимация методом наименьших квадратов

Пусть каждый из методов приближения по переменным x и y является кусочно-линейной аппроксимацией, построенной методом наименьших квадратов (см. § I.16). В этом случае удобнее применять теорему 1 на всей области определения функции f.

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции (см. определения в предыдущем разделе):

$$u_i(x) \equiv H_i^{(x)}(x), \quad i = 1, 2, \dots, n, \quad v_j(y) \equiv H_j^{(y)}(y), \quad j = 1, 2, \dots, m.$$

Функционалы

$$\lambda_i(u) = \left(u, H_i^{(x)}\right)_{L_2([a,b])}, \quad i = 1, 2, \dots, n,$$

$$\mu_j(v) = \left(v, H_j^{(y)}\right)_{L_2([c,d])}, \quad j = 1, 2, \dots, m.$$

Матрицы A в (2) и B в (3) – трехдиагональные, см. (I.16.8). Базис в пространстве функций – тензорных произведений:

$$w_{ij}(x,y) = H_i^{(x)}(x)H_j^{(y)}(y), \quad i = 1, 2, \dots, n, \quad j = 1, 2, \dots, m.$$

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij}(f) = \lambda_i(\mu_j(f)) = \left(f, H_i^{(x)} H_j^{(y)}\right)_{L_2([a,b] \times [c,d])},$$

 $i = 1, 2, \dots, n, \quad j = 1, 2, \dots, m.$

Следовательно, приближающая функция $Pf \equiv L_2 f \in S_2^{(x)} \otimes S_2^{(y)}$ удовлетворяет следующим линейным условиям интерполяции:

$$(L_2 f, H_i^{(x)} H_j^{(y)})_{L_2([a,b])} = (f, H_i^{(x)} H_j^{(y)})_{L_2([a,b])},$$

$$i = 0, 1, \dots, n-1, j = 0, 1, \dots, m-1,$$

которые являются многомерным аналогом условий (I.16.6). В силу доказанного в \S I.16 это означает, что приближающая функция $Pf = L_2 f \in S_2^{(x)} \otimes S_2^{(y)}$ реализует минимум

$$||f - L_2 f||_{L_2([a,b] \times [c,d])} \to \min$$

в пространстве всех функций $L_2 f \in S_2^{(x)} \otimes S_2^{(y)}$.

По теореме 1 приближающая функция имеет вид (4), где коэффициенты γ_{ij} вычисляются в (5). При этом применяется алгоритм из § 1.4, а для ускорения вычислений для матриц A и B строятся их LU-разложения.

§ 1.6.3. Кусочно-кубическая интерполяция

Пусть каждый из методов приближения по переменным x и y является кусочно-кубической интерполяцией (см. § I.19). Согласно сказанному выше достаточно рассмотреть приближение на прямоугольнике $[x_i, x_{i+1}] \times [y_j, y_{j+1}]$. Приближающая функция (по каждой из переменных) вычисляется по формуле (I.19.2), где коэффициенты задаются (I.19.3).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции:

$$u_{i,k}(x) = (x - x_i)^{k-1}, \quad k = 1, 2, 3, 4, \quad x \in [x_i, x_{i+1}],$$

 $v_{j,l}(y) = (y - y_j)^{l-1}, \quad l = 1, 2, 3, 4, \quad y \in [y_i, y_{j+1}].$

Функционалы

$$\lambda_{i,1}(u) = u(x_i), \quad \lambda_{i,2}(u) = d_i(u), \quad \lambda_{i,3}(u) = u(x_{i+1}), \quad \lambda_{i,4}(u) = d_{i+1}(u),$$
 $\mu_{j,1}(v) = v(y_j), \quad \mu_{j,2}(v) = d_j(v), \quad \mu_{j,3}(v) = v(y_{j+1}), \quad \mu_{j,4}(v) = d_{j+1}(v),$

где величины d_i , d_j определяются выбранным методом интерполяции, см. (I.19.4), (I.19.7), (I.19.8), (I.19.9), (I.19.12) (в последнем случае величины d_i получаются в результате решения системы линейных уравнений).

Формулы (I.19.3) представляют собой выражения для матриц A_i^{-1} в (2) и B_j^{-1} в (3). Действительно, выражения (I.19.3) можно записать в виде (обозначив $h_i = x_{i+1} - x_i$)

$$\begin{split} c_{1,i} &= f(x_i) \\ c_{2,i} &= d_i \\ c_{3,i} &= \frac{1}{h_i^2} \left(\frac{3}{h_i} (f(x_{i+1}) - f(x_i)) - 2d_i - d_{i+1} \right) \\ &= -\frac{3}{h_i^3} f(x_i) - \frac{2}{h_i^2} d_i + \frac{3}{h_i^3} f(x_{i+1}) - \frac{1}{h_i^2} d_{i+1} \\ c_{4,i} &= \frac{1}{h_i^2} \left(d_i + d_{i+1} - \frac{2}{h_i} (f(x_{i+1}) - f(x_i)) \right) \\ &= \frac{2}{h_i^3} f(x_i) + \frac{1}{h_i^2} d_i - \frac{2}{h_i^3} f(x_{i+1}) + \frac{1}{h_i^2} d_{i+1} \end{split}$$

Следовательно,

$$c_i \equiv (c_{1,i}, c_{2,i}, c_{3,i}, c_{4,i})^t = A^{-1}(h_i) (f(x_i), d_i, f(x_{i+1}), d_{i+1})^t$$

где

$$A^{-1}(h) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{3}{h^3} & -\frac{2}{h^2} & \frac{3}{h^3} & -\frac{1}{h^2} \\ \frac{2}{h^3} & \frac{1}{h^2} & -\frac{2}{h^3} & \frac{1}{h^2} \end{pmatrix}$$

Таким образом, $A_i^{-1} = A^{-1}(x_{i+1} - x_i)$, $B_j^{-1} = A^{-1}(y_{j+1} - y_j)$. (Другими словами, коэффициенты $\alpha_i = (\alpha_{i,k})_{k=1...4}^t \in \mathbf{R}^4$ приближающей функции $Pu = \sum\limits_{k=1}^4 \alpha_{i,k} u_{i,k}$, удовлетворяющей линейным условиям интерполяции $\lambda_{i,k}(Pu) = \lambda_{i,k}(u)$, вычисляются как $\alpha_i = A^{-1}(x_{i+1} - x_i)\lambda_i(u)$, где $\lambda_i(u) = (\lambda_{i,k}(u))_{k=1...4} \in \mathbf{R}^4$. Коэффициенты $\beta_j = (\beta_{j,l})_{l=1...4}^t \in \mathbf{R}^4$ приближающей функции $Pv = \sum\limits_{l=1}^4 \beta_{j,l} v_{j,l}$, удовлетворяющей линейным условиям интерполяции $\mu_{j,l}(Pv) = \mu_{j,l}(v)$, вычисляются как $\beta_j = A^{-1}(y_{j+1} - y_j)\mu_j(v)$, где $\mu_j(v) = (\mu_{j,l}(v))_{l=1...4} \in \mathbf{R}^4$).

Базис в пространстве функций – тензорных произведений:

$$w_{ii,kl}(x,y) = u_{i,k}(x)v_{i,l}(y) = (x-x_i)^{k-1}(y-y_i)^{l-1}, \quad k,l=1,2,3,4.$$

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij,kl}(f) = \lambda_{i,k}(\mu_{j,l}(f)), \quad k,l = 1, 2, 3, 4.$$
 (11)

По теореме 1 приближающая функция имеет вид (4):

$$Pf = \sum_{k=1}^{4} \sum_{l=1}^{4} \gamma_{ij,kl} w_{ij,kl} = \sum_{k=1}^{4} \sum_{l=1}^{4} \gamma_{ij,kl} (x - x_i)^{k-1} (y - y_j)^{l-1},$$

где коэффициенты $\gamma_{ij,kl}$ вычисляются в (5). В силу $A_i^{-1}=A^{-1}(x_{i+1}-x_i)$, $B_j^{-1}=A^{-1}(y_{j+1}-y_j)$ имеем:

$$\Gamma_{ij} = A^{-1}(x_{i+1} - x_i)F_{ij}(A^{-1}(y_{j+1} - y_j))^t,$$

где $\Gamma_{ij} = (\gamma_{ij,kl})_{k,l=1...4} \in \mathbf{M}_4(\mathbf{R}), \ F_{ij} = (\nu_{ij,kl}(f))_{k,l=1...4} \in \mathbf{M}_4(\mathbf{R}).$

Вычисление функционалов – тензорных произведений

В случае кусочной интерполяции кубическими многочленами Эрмита (см. $\S \ I.19.3$) матрица F_{ij} имеет вид

$$F_{ij} = \begin{pmatrix} f(x_i, y_j) & \frac{\partial f(x_i, y_j)}{\partial y} & f(x_i, y_{j+1}) & \frac{\partial f(x_i, y_{j+1})}{\partial y} \\ \frac{\partial f(x_i, y_j)}{\partial x} & \frac{\partial^2 f(x_i, y_j)}{\partial x \partial y} & \frac{\partial f(x_i, y_{j+1})}{\partial x} & \frac{\partial^2 f(x_i, y_{j+1})}{\partial x \partial y} \\ f(x_{i+1}, y_j) & \frac{\partial f(x_{i+1}, y_j)}{\partial y} & f(x_{i+1}, y_{j+1}) & \frac{\partial f(x_{i+1}, y_{j+1})}{\partial y} \\ \frac{\partial f(x_{i+1}, y_j)}{\partial x} & \frac{\partial^2 f(x_{i+1}, y_j)}{\partial x \partial y} & \frac{\partial f(x_{i+1}, y_{j+1})}{\partial x} & \frac{\partial^2 f(x_{i+1}, y_{j+1})}{\partial x \partial y} \end{pmatrix}$$

т.е. в каждой точке $(x_i,y_j),\ i=1,2,\ldots,n,\ j=1,2,\ldots,m$ (быть может, за исключением граничных) должны быть заданы значения $f(x_i,y_j),\ \frac{\partial f(x_i,y_j)}{\partial x},\ \frac{\partial f(x_i,y_j)}{\partial x}$.

В случае кусочной интерполяции кубическими многочленами Бесселя (см. § I.19.4), кусочной интерполяции кубическими многочленами методом Акимы (см. § I.19.5), кусочной интерполяции кубическими многочленами с использованием разделенных разностей (см. § I.19.6), интерполяции кубическими сплайнами (см. § I.19.7) выражения (I.19.7), (I.19.8), (I.19.9), (I.19.12) (дополненные соответствующими граничными условиями, см. § I.19.8), можно рассматривать как системы уравнений для определения коэффициентов d_i (в первых трех методах "система" имеет диагональную матрицу). Обозначим через $G^{(x)}$ (при $x_i := x_i$) и, соответственно, $G^{(y)}$ (при $x_i := y_i$), матрицу, выражающую решение системы (I.19.7), (I.19.8), (I.19.9) или (I.19.12) через вектора $F^{(x)} = (f(x_i))_{i=1,2,\dots,n}$ (соответственно, $F^{(y)} = (f(y_j))_{j=1,2,\dots,m}$), так, что $D^{(x)} = G^{(x)}F^{(x)}$, $D^{(y)} = G^{(y)}F^{(y)}$, где $D^{(x)} = (d_i)_{i=1,2,\dots,n}$ при $x_i := x_i$, $D^{(y)} = (d_j)_{j=1,2,\dots,m}$ при $x_i := y_i$. Матрица $G^{(x)}$ имеет размер $n \times n$, $G^{(y)}$ – размер $m \times m$, и учитывает соответствующие граничные условия.

Теперь мы можем сформулировать алгоритм вычисления функционалов $\nu_{ij,kl}(f)$ в (11). Пусть $F=(f_{ij})$ обозначает $n\times m$ матрицу значений $f(x_i,y_j)$. Вычислим (один раз):

$$n \times m$$
 матрицу $F^{(x)} = (f_{ij}^{(x)}) \equiv G^{(x)} F$, $n \times m$ матрицу $F^{(y)} = (f_{ij}^{(y)}) \equiv F(G^{(y)})^t$, $n \times m$ матрицу $F^{(xy)} = (f_{ij}^{(xy)}) \equiv G^{(x)} F(G^{(y)})^t$.

Значения функционалов $F_{ij} = (\nu_{ij,kl}(f))_{k,l=1,2,3,4}$ в (11):

$$F_{ij} = \begin{pmatrix} f_{i,j} & f_{i,j}^{(y)} & f_{i,j+1} & f_{i,j+1}^{(y)} \\ f_{i,j}^{(x)} & f_{i,j}^{(xy)} & f_{i,j+1}^{(x)} & f_{i,j+1}^{(xy)} \\ f_{i+1,j} & f_{i+1,j}^{(y)} & f_{i+1,j+1} & f_{i+1,j+1}^{(y)} \\ f_{i+1,j}^{(x)} & f_{i+1,j}^{(xy)} & f_{i+1,j+1}^{(x)} & f_{i+1,j+1}^{(xy)} \end{pmatrix}$$

Организация хранения данных в памяти ЭВМ

Хранение информации о функции и ее приближении удобно осуществить следующим образом. Входные данные — значения функционалов $(\nu_{ij,kl}(f))$, $i=1,2,\ldots,n,\ j=1,2,\ldots,m,\ k,l=1,2,3,4$, размещаются в 3-х мерном массиве $F=(f_{ijk}),\ i=1,2,\ldots,n,\ j=1,2,\ldots,m,\ k=1,2,3,4$ размера $(n\times m\times 4)$, где

$$f_{ij,1} = \nu_{ij,11}(f) = f(x_i, y_j), \ f_{ij,2} = \nu_{ij,12}(f), \ f_{ij,3} = \nu_{ij,21}(f), \ f_{ij,4} = \nu_{ij,22}(f).$$

Матрица F_{ij} выше получается из элементов 4-х мерных векторов $F_{i,j}$, $F_{i+1,j}$, $F_{i,j+1}$, $F_{i+1,j+1}$. Коэффициенты приближающей функции – $(\gamma_{ij,kl})$, $i=1,2,\ldots,n$, $j=1,2,\ldots,m$, k,l=1,2,3,4, вычисляются один раз и хранятся в 4-х мерном массиве $\Gamma=(\gamma_{ijkl})$, $i=1,2,\ldots,n$, $j=1,2,\ldots,m$, k,l=1,2,3,4 размера $(n\times m\times 4\times 4)$, где $\gamma_{ijkl}=\gamma_{ij,kl}$.

§ 1.6.4. Кусочно-квадратичная интерполяция

Пусть каждый из методов приближения по переменным x и y является кусочно-квадратичной интерполяцией (см. § I.20), т.е. введены точки

$$\xi_1^{(x)} < a = x_1 < \xi_2^{(x)} < x_2 < \xi_3^{(x)} < x_3 < \dots < x_{n-1} < \xi_n^{(x)} < x_n = b < \xi_{n+1}^{(x)},$$

И

$$\xi_1^{(y)} < c = y_1 < \xi_2^{(y)} < y_2 < \xi_3^{(y)} < y_3 < \dots < y_{m-1} < \xi_m^{(y)} < x_m = d < \xi_{m+1}^{(y)},$$

и интерполирующая функция одной переменной $P^{(x)}f$ ($P^{(y)}f$) строится таким образом, что на каждом отрезке $[\xi_i^{(x)},\xi_{i+1}^{(x)}],\ i=1,2,\ldots,n$ ($[\xi_i^{(y)},\xi_{i+1}^{(y)}],\ i=1,2,\ldots,m$) она является многочленом $P_i^{(x)}$ ($P_j^{(y)}$) степени 2, таким, что

$$\begin{cases}
P_i^{(x)}(x_i) &= f(x_i), \\
P_i^{(x)}(\xi_i^{(x)}) &= v_i^{(x)}, & P_i^{(x)}(\xi_{i+1}^{(x)}) &= v_{i+1}^{(x)}
\end{cases} \qquad i = 1, 2, \dots, n \tag{12}$$

или, соответственно,

$$\begin{cases}
P_j^{(y)}(y_j) &= f(y_j), \\
P_j^{(y)}(\xi_j^{(y)}) &= v_j^{(y)}, & P_j^{(y)}(\xi_{j+1}^{(y)}) &= v_{j+1}^{(y)}
\end{cases} \qquad j = 1, 2, \dots, m \tag{13}$$

где $v_i^{(x)}$, $i=1,2,\ldots,n+1$, $v_j^{(y)}$, $j=1,2,\ldots,m+1$ – свободные параметры, тот или иной способ выбора которых определяет метод кусочной интерполяции квадратичными многочленами. В методе интерполяции параболическими сплайнами эти параметры получаются как решение системы линейных уравнений (I.20.8).

Согласно сказанному выше достаточно рассмотреть приближение на прямоугольнике $[\xi_i^{(x)}, \xi_{i+1}^{(x)}] \times [\xi_j^{(y)}, \xi_{j+1}^{(y)}]$. Приближающая функция (по каждой из переменных) вычисляется по формуле (I.20.2), где коэффициенты задаются (I.20.3).

Введем все участвующие в постановке задачи линейной интерполяции тензорными произведениями объекты. Базисные функции:

$$u_{i,k}(x) = (x - \xi_i^{(x)})^{k-1}, \quad k = 1, 2, 3, \quad x \in [\xi_i^{(x)}, \xi_{i+1}^{(x)}],$$

 $v_{j,l}(y) = (y - \xi_j^{(y)})^{l-1}, \quad l = 1, 2, 3, \quad y \in [\xi_j^{(y)}, \xi_{j+1}^{(y)}].$

Функционалы

$$\lambda_{i,1}(u) = v_i^{(x)}, \quad \lambda_{i,2}(u) = u(x_i), \quad \lambda_{i,3}(u) = v_{i+1}^{(x)},$$
 $\mu_{j,1}(v) = v_j^{(y)}, \quad \mu_{j,2}(v) = v(y_j), \quad \mu_{j,3}(v) = v_{j+1}^{(y)}.$

Формулы (I.20.3) представляют собой выражения для матриц A_i^{-1} в (2) и B_j^{-1} в (3). Действительно, (см. вычисления в § I.20.3) выражения (I.20.3) можно записать в виде (обозначив $h_i = x_i - \xi_i$, $z_i = \xi_{i+1} - x_i$, $h_i + z_i = \xi_{i+1} - \xi_i$)

$$c_{1,i} = v_i$$

$$c_{2,i} = -v_i \left(\frac{1}{h_i} + \frac{1}{h_i + z_i}\right) + f(x_i) \left(\frac{1}{h_i} + \frac{1}{z_i}\right) - v_{i+1} \left(\frac{1}{z_i} - \frac{1}{h_i + z_i}\right)$$

$$c_{3,i} = v_i \frac{1}{h_i + z_i} \frac{1}{h_i} - f(x_i) \frac{1}{h_i + z_i} \left(\frac{1}{h_i} + \frac{1}{z_i}\right) + v_{i+1} \frac{1}{h_i + z_i} \frac{1}{z_i}$$

Следовательно,

$$c_i \equiv (c_{1,i}, c_{2,i}, c_{3,i})^t = A^{-1}(h_i, z_i) (v_i, f(x_i), v_{i+1})^t$$

где

$$A^{-1}(h,z) = \begin{pmatrix} 1 & 0 & 0 \\ -\left(\frac{1}{h} + \frac{1}{h+z}\right) & \left(\frac{1}{h} + \frac{1}{z}\right) & -\left(\frac{1}{z} - \frac{1}{h+z}\right) \\ \frac{1}{h+z}\frac{1}{h} & -\frac{1}{h+z}\left(\frac{1}{h} + \frac{1}{z}\right) & \frac{1}{h+z}\frac{1}{z} \end{pmatrix}$$

Таким образом, $A_i^{-1} = A^{-1}(x_i - \xi_i^{(x)}, \xi_{i+1}^{(x)} - x_i)$, $B_j^{-1} = A^{-1}(y_j - \xi_j^{(y)}, \xi_{j+1}^{(y)} - y_j)$. (Другими словами, коэффициенты $\alpha_i = (\alpha_{i,k})_{k=1...3}^t \in \mathbf{R}^3$ приближающей функции $P_i^{(x)}u = \sum_{k=1}^4 \alpha_{i,k} u_{i,k}$, удовлетворяющей линейным условиям интерполяции (12) вида $\lambda_{i,k}(P^{(x)}u) = \lambda_{i,k}(u)$, вычисляются как $\alpha_i = A^{-1}(x_i - \xi_i^{(x)}, \xi_{i+1}^{(x)} - x_i)\lambda_i(u)$, где

 $\lambda_i(u)=(\lambda_{i,k}(u))_{k=1\dots 3}\in \mathbf{R}^3$. Коэффициенты $\beta_j=(\beta_{j,l})_{l=1\dots 3}^t\in \mathbf{R}^3$ приближающей функции $P_j^{(y)}v=\sum\limits_{l=1}^3\beta_{j,l}v_{j,l}$, удовлетворяющей линейным условиям интерполяции (12) вида $\mu_{j,l}(P_j^{(y)}v)=\mu_{j,l}(v)$, вычисляются как $\beta_j=A^{-1}(y_j-\xi_j^{(y)},\xi_{j+1}^{(y)}-y_j)\mu_j(v)$, где $\mu_j(v)=(\mu_{j,l}(v))_{l=1\dots 3}\in \mathbf{R}^3$).

Базис в пространстве функций – тензорных произведений:

$$w_{ij,kl}(x,y) = u_{i,k}(x)v_{j,l}(y) = (x - \xi_i^{(x)})^{k-1}(y - \xi_j^{(y)})^{l-1}, \quad k, l = 1, 2, 3.$$

Базис в пространстве функционалов – тензорных произведений:

$$\nu_{ij,kl}(f) = \lambda_{i,k}(\mu_{j,l}(f)), \quad k, l = 1, 2, 3.$$
 (14)

По теореме 1 приближающая функция имеет вид (4):

$$Pf = \sum_{k=1}^{3} \sum_{l=1}^{3} \gamma_{ij,kl} w_{ij,kl} = \sum_{k=1}^{3} \sum_{l=1}^{3} \gamma_{ij,kl} (x - \xi_i^{(x)})^{k-1} (y - \xi_j^{(y)})^{l-1},$$

где коэффициенты $\gamma_{ij,kl}$ вычисляются в (5). В силу $A_i^{-1} = A^{-1}(x_i - \xi_i^{(x)}, \xi_{i+1}^{(x)} - x_i)$, $B_j^{-1} = A^{-1}(y_j - \xi_j^{(y)}, \xi_{j+1}^{(y)} - y_j)$ имеем:

$$\Gamma_{ij} = A^{-1}(x_i - \xi_i^{(x)}, \xi_{i+1}^{(x)} - x_i) F_{ij} (A^{-1}(y_j - \xi_j^{(y)}, \xi_{j+1}^{(y)} - y_j))^t,$$

где $\Gamma_{ij} = (\gamma_{ij,kl})_{k,l=1...3} \in \mathbf{M}_3(\mathbf{R}), \ F_{ij} = (\nu_{ij,kl}(f))_{k,l=1...3} \in \mathbf{M}_3(\mathbf{R}).$

Вычисление функционалов - тензорных произведений

Входными данными алгоритма являются значения $f(x_i, y_j) = \lambda_{i,2}(\mu_{j,2}(f))$, $i = 1, 2, \ldots, n$, $j = 1, 2, \ldots, m$, и те или иные краевые условия (см. § I.20.4). Для построения интерполирующей функции требуется вычислить все остальные значения функционалов $\nu_{ij,kl}(f)$ в (14).

Обозначим в (12) $V^{(x)} = (v_i^{(x)})_{i=1,2,\dots,n+1} \in \mathbf{R}^{n+1}, \ F^{(x)} = (f(x_i))_{i=1,2,\dots,n} \in \mathbf{R}^n,$ и в (13) $V^{(y)} = (v_j^{(y)})_{j=1,2,\dots,m+1} \in \mathbf{R}^{m+1}, \ F^{(y)} = (f(y_j))_{j=1,2,\dots,m} \in \mathbf{R}^m.$ Система (I.20.8), дополненная краевыми условиями, представляет собой связь между между векторами $V^{(x)}$ и $F^{(x)}$ (при $x_i := x_i, \ \xi := \xi^{(x)}$), а также между векторами $V^{(y)}$ и $F^{(y)}$ (при $x_i := y_i, \ \xi := \xi^{(y)}$). Обозначим через $G^{(x)}$ и, соответственно, $G^{(y)}$, матрицу, выражающую решение системы (I.20.8) через вектора $F^{(x)}$ (соответственно, $F^{(y)}$), так, что $V^{(x)} = G^{(x)}F^{(x)}, \ V^{(y)} = G^{(y)}F^{(y)}$. Матрица $G^{(x)}$ имеет размер $(n+1) \times n$, $G^{(y)}$ – размер $(m+1) \times m$, и учитывает соответствующие граничные условия.

Теперь мы можем сформулировать алгоритм вычисления функционалов $\nu_{ij,kl}(f)$ в (14). Пусть $F=(f_{ij})$ обозначает $n\times m$ матрицу значений $f(x_i,y_j)$. Вычислим (один раз):

$$(n+1) \times m$$
 матрицу $F^{(x)} = (f_{ij}^{(x)}) \equiv G^{(x)} F$, $n \times (m+1)$ матрицу $F^{(y)} = (f_{ij}^{(y)}) \equiv F(G^{(y)})^t$,

 $(n+1) \times (m+1)$ матрицу $F^{(xy)} = (f_{ij}^{(xy)}) \equiv G^{(x)} F(G^{(y)})^t$. Значения функционалов $F_{ij} = (\nu_{ij,kl}(f))_{k,l=1,2,3}$ в (14):

$$F_{ij} = \begin{pmatrix} f_{i,j}^{(xy)} & f_{i,j}^{(x)} & f_{i,j+1}^{(xy)} \\ f_{i,j}^{(y)} & f_{i,j} & f_{i,j+1}^{(y)} \\ f_{i+1,j}^{(xy)} & f_{i+1,j}^{(x)} & f_{i+1,j+1}^{(xy)} \end{pmatrix}$$

$$(15)$$

Организация хранения данных в памяти ЭВМ

Хранение информации о функции и ее приближении удобно осуществить следующим образом. Входные данные – значения функционалов $(\nu_{ij,kl}(f))$, $i=1,2,\ldots,n,\ j=1,2,\ldots,m,\ k,l=1,2,3,4$, хранятся в четырех введенных выше матрицах $F\in \mathbf{M}_{n,m},\ F^{(x)}\in \mathbf{M}_{n+1,m},\ F^{(y)}\in \mathbf{M}_{n,m+1},\ F^{(xy)}\in \mathbf{M}_{n+1,m+1}$. Матрица $F_{ij}=(\nu_{ij,kl}(f))_{k,l=1,2,3}$ получается согласно (15). Коэффициенты приближающей функции – $(\gamma_{ij,kl})$, $i=1,2,\ldots,n,\ j=1,2,\ldots,m,\ k,l=1,2,3$, вычисляются один раз и хранятся в 4-х мерном массиве $\Gamma=(\gamma_{ijkl})$, $i=1,2,\ldots,n,\ j=1,2,\ldots,m,\ k,l=1,2,3$ размера $(n\times m\times 3\times 3)$, где $\gamma_{ijkl}=\gamma_{ij,kl}$.

§ 2. ПРИБЛИЖЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Этот метод интерполяции позволяет приблизить функции многих переменных, заданной в областях сложной формы. Для простоты мы будем рассматривать только функции двух переменных.

§ 2.1. Постановка задачи линейной интерполяции

Пусть задана функция $f:D\to {\bf R}^1$, где $D\subset {\bf R}^2$ – ограниченная область с достаточно гладкой границей, $f\in F(D,{\bf R}^1)$ – некоторому функциональному пространству.

Представим область D в виде объединения конечного числа треугольников $\Delta_k \subset D$, не имеющих общих внутренних точек: $D' \equiv \bigcup\limits_{k=1}^N \Delta_k \subseteq D$. Построение такого набора треугольников (называемого *триангуляцией* области D) в общем случае является очень сложной задачей и для ее решения существует большое число методов. Ниже мы рассмотрим несколько самых простейших из них.

Далее, на каждом треугольнике Δ_k функция f приближается тем или иным методом, т.е. строится функция $P_k f$, удовлетворяющая тем или иным линейным условиям интерполяции. Приближающие функции в соседних треугольниках должны быть согласованы: если $(x,y) \in \Delta_{k_1} \cap \Delta_{k_2}$ — точка общей границы треугольников, то $Pf_{k_1}(x,y) = Pf_{k_2}(x,y)$. Значение приближающей функции

Pf в точке $(x,y) \in D'$ вычисляется следующим образом: определяется k, такое, что $(x,y) \in \Delta_k$, и по определению полагается $Pf(x,y) = P_k f(x,y)$. Этот подход является обобщением кусочно-многочленной аппроксимации на случай функций многих переменных.

Возможен другой способ построения приближающей функции. На области D' определяют набор базисных функций $\varphi_l(x,y)$ и приближающую функцию ищут в виде их линейной комбинации. Базисные функции $\varphi_l(x,y)$ обычно выбирают так, чтобы их носитель содержал как можно меньше треугольников Δ_k (от этого свойства базисных функций пошло название "конечные элементы"). Например, выбирается точка $(x_l,y_l)\in D'$ и базисная функция $\varphi_l(x,y)$ полагается равной многочлену заданной степени в каждом из треугольников Δ_k , таких, что $(x_l,y_l)\in\Delta_k$. В остальных треугольниках $\varphi_l(x,y)$ полагается равной нулю. Если функционалы λ_l в задаче линейной интерполяции есть значения функции в точке: $\lambda_l(f)=f(x_l,y_l)$, то при таком построении базисных функций сужение приближающей функции Pf на треугольник Δ_k и описанная выше функция P_kf совпадают.

§ 2.2. Способы построения триангуляции области

Ниже мы опишем несколько простейших способов построения триангуляции ограниченной области D с достаточно гладкой границей.

1) Область D ограничена, поэтому существует прямоугольник $[a,b] \times [c,d]$, такой, что $D \subset [a,b] \times [c,d]$. Каждая из сторон этого прямоугольника разбивается на равные части точками $x_i = a + ih_x$, $i = 0,1,\ldots,n$, $h_x = (b-a)/n$, $y_j = a + jh_y$, $j = 0,1,\ldots,m$, $h_y = (d-c)/m$. Δ_k является треугольником с вершинами в точках $Q_{k,1}$, $Q_{k,2}$, $Q_{k,3}$, если выполнено одно из четырех условий:

$$Q_{k,1} = (x_i, y_j) \in D, Q_{k,2} = (x_{i+1}, y_j) \in D, Q_{k,3} = (x_{i+1}, y_{j+1}) \in D;$$

$$Q_{k,1} = (x_i, y_j) \in D, Q_{k,2} = (x_i, y_{j+1}) \in D, Q_{k,3} = (x_{i+1}, y_{j+1}) \in D;$$

$$Q_{k,1} = (x_i, y_j) \in D, Q_{k,2} = (x_{i+1}, y_j) \in D, Q_{k,3} = (x_i, y_{j+1}) \in D;$$

$$Q_{k,1} = (x_{i+1}, y_j) \in D, Q_{k,2} = (x_{i+1}, y_{j+1}) \in D, Q_{k,3} = (x_i, y_{j+1}) \in D.$$

$$(1)$$

Условие $\Delta_k \subset D$ может быть не выполнено в приграничных треугольниках. Полученная триангуляция будет точно аппроксимировать область (т.е. $D = \bigcup_k \Delta_k$), если D является многоугольником с вершинами в точках (x_i, y_j) , стороны которого либо параллельны осям координат, либо составляют с ними угол $\pi/4$.

2) Выполняем описанную в пункте 1) триангуляцию. Для повышения точности аппроксимации области рассмотрим все прямоугольники $\Pi_k \not\subset D$ с вершинами $Q_{k,1} = (x_i, y_j), \ Q_{k,2} = (x_{i+1}, y_j), \ Q_{k,3} = (x_{i+1}, y_{j+1}), \ Q_{k,4} = (x_i, y_{j+1}),$ такими, что хотя бы одна из точек $Q_{k,l} \in D$. Сдвиганием точек $Q_{k,l} \to Q'_{k,l},$ l=1,2,3,4 на наименьшую возможную величину по направлению к границе ∂D области D добиваемся того, чтобы либо все новые точки $Q'_{k,l} \not\in D$, либо для

какой-либо тройки $Q'_{k,l}$ (или двух троек) было выполнено одно из условий (1). Треугольники с такими вершинами $Q'_{k,l} \in D$ добавляем к триангуляции. Полученная триангуляция будет точно аппроксимировать область (т.е. $D = \bigcup_k \Delta_k$), если D является многоугольником с вершинами в точках (x_i, y_j) .

- 3) Предположим, что можно построить преобразование (гладкое и без особых точек), переводящее область G, для которой мы умеем строить триангуляцию (например, прямоугольник), в рассматриваемую область D. Тогда вершины треугольников триангуляции области D могут быть получены как образы вершин триангуляции области G при этом преобразовании.
- 4) Предположим, что область D можно разрезать прямыми линиями на подобласти, в каждой из которых мы можем построить триангуляцию. Если вершины треугольников, лежащие на линиях разрезов, в каждой из триангуляций соответственно совпадают, то объединение этих триангуляций дает триангуляцию всей области D.

§ 2.3. Приближение функций в треугольнике

Рассмотрим задачу приближения функции f = f(x, y), заданной в треугольнике Δ .

§ 2.3.1. Постановка задачи линейной интерполяции

Пусть каждая сторона треугольника Δ разбита на l равных частей, и через точки разбиения (включая вершины треугольника) проведены прямые, параллельные его сторонам. Обозначим через T множество, состоящее из точек пересечения этих прямых, лежащих в замкнутом треугольнике Δ . Число этих точек равно $n = \sum_{k=1} l + 1k = (l+1)(l+2)/2$. Будем обозначать их через $Q_1(x_1, y_1), \ldots, Q_n(x_n, y_n)$.

Рассмотрим задачу построения многочлена Pf степени l

$$Pf(x,y) = \sum_{i+j < l} a_{ij} x^i y^j, \tag{2}$$

принимающего в точках $Q_k(x_k, y_k)$ заданные значения

$$Pf(x_k, y_k) = f(x_k, y_k), \quad k = 1, 2, \dots, n.$$
 (3)

Условия (3) представляют собой n линейных условий интерполяции. Поскольку число неизвестных коэффициентов a_{ij} также равно n, то соотношения (3) образуют систему из n уравнений с n неизвестными. Если задача линейной интерполяции корректна, т.е. эта система разрешима, то из нее можно найти коэффициенты a_{ij} .

Искомый многочлен Pf можно выписать явно и в рассмотренном выше общем случае. Однако, это выражение достаточно сложно и на практике используется редко. Ниже мы выпишем вид многочлена Pf в случае, когда треугольник

 Δ — прямоугольный со сторонами, параллельными осям координат, а также для случаев l=1,2,3.

§ 2.3.2. Приближение функций в прямоугольном треугольнике

Решим поставленную выше задачу линейной интерполяции в случае, когда треугольник Δ – прямоугольный со сторонами, параллельными осям координат. Пусть его вершинами являются точки (a,c), (b,c), (a,d) (т.е. треугольник образован делением прямоугольника $[a,b] \times [c,d]$ его диагональю). Пусть

$$a = x_1 < x_2 < \ldots < x_{n-1} < x_n = b, \quad c = y_1 < y_2 < \ldots < y_{m-1} < y_m = d,$$

и известны значения функции f в точках $(x_i, y_j) \in \Delta$. Требуется построить приближающую функцию Pf вида (2), удовлетворяющую условиям

$$Pf(x_i, y_j) = f(x_i, y_j), \quad (x_i, y_j) \in \Delta.$$
(4)

Эта постановка является более общей, чем описанная в предыдущем разделе, которая получается при равномерно распределенных точках x_i , y_i и m=n.

Для целей вывода алгоритма приближения мы будем считать, что известны значения функции f в точках $(x_i,y_j)\notin \Delta$ (например, будем считать f равной нулю в этих точках). Тогда для функции f применимы алгоритмы аппроксимации тензорными произведениями в прямоугольнике $[a,b]\times [c,d]$. Нам удобно использовать приближение интерполяционным многочленом Лагранжа в форме Ньютона, т.е. приближающую функцию (1.8), которую мы запишем в следующем виде

$$Pf(x,y) = \sum_{i,j:(x_i,y_j)\in\Delta} f(x_1;\ldots;x_i,y_1;\ldots;y_j) \prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x-x_k)(y-y_l) + \sum_{i,j:(x_i,y_j)\notin\Delta} f(x_1;\ldots;x_i,y_1;\ldots;y_j) \prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x-x_k)(y-y_l)$$
(5)

(здесь Δ считается замкнутым множеством). По построению, эта функция удовлетворяет условию $Pf(x_i,y_j)=f(x_i,y_j)$ для всех $(x_i,y_j)\in [a,b]\times [c,d]$. Заметим, что

$$\prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x - x_k)(y - y_l) = 0$$

для всех точек $(x,y)=(x_p,y_q), \ p=1,2,\ldots,i-1, \ q=1,2,\ldots,j-1.$

Следовательно, вторая сумма в (5) равна 0 для всех $(x,y)=(x_i,y_j)\in \Delta$ (поскольку для всяких $(x_i,y_j)\notin \Delta$, $(x_p,y_q)\in \Delta$ выполнено либо $x_i>x_p$, либо $y_j>y_q$). Поэтому функция

$$Pf(x,y) = \sum_{i,j:(x_i,y_i)\in\Delta} f(x_1;\ldots;x_i,y_1;\ldots;y_j) \prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x-x_k)(y-y_l)$$
 (6)

удовлетворяет условиям (4), т.е. является решением задачи линейной интерполяции. Поскольку $x_i > x_k$ при i > k и $y_j > y_l$ при j > l, то все разделенные разности $f(x_1; \ldots; x_i, y_1; \ldots; y_j)$ в (6) вычисляются только через значения функции f в точках $(x_i, y_j) \in \Delta$.

При m = n выражение (6) можно записать в виде

$$Pf(x,y) = \sum_{i+j \le n+1} f(x_1; \dots; x_i, y_1; \dots; y_j) \prod_{k=1}^{i-1} \prod_{l=1}^{j-1} (x - x_k)(y - y_l)$$

§ 2.3.3. Приближение линейными функциями

Рассмотрим описанную выше задачу линейной интерполяции в частном случае l=1 в (2), т.е. приближение линейной функцией.

Приближение на треугольнике

Обозначим вершины треугольника Δ через $(x_1, y_1), (x_2, y_2), (x_3, y_3)$. Нам требуется построить приближающую функция вида

$$Pf(x,y) = \alpha x + \beta y + \gamma$$
,

удовлетворяющую условиям

$$Pf(x_k, y_k) = f(x_k, y_k), \quad k = 1, 2, 3.$$
 (7)

Коэффициенты α , β , γ могут быть получены из уравнения плоскости, проходящей через три точки $(x_k, y_k, f(x_k, y_k))$, k = 1, 2, 3. Однако, для дальнейшего изложения нам удобнее ввести базисные функции задачи линейной интерполяции и построить Pf как их линейную комбинацию.

Обозначим

$$L_{(u_1,v_1),(u_2,v_2)}(x,y) = \begin{vmatrix} x - u_1 & y - v_1 \\ u_2 - u_1 & v_2 - v_1 \end{vmatrix} = (x - u_1)(v_2 - v_1) - (y - v_1)(u_2 - u_1)$$
(8)

— линейная функция, обращающаяся в нуль на прямой, проходящей через точки (u_1, v_1) и (u_2, v_2) . Введем также функции

$$\psi_1(x,y) = L_{(x_2,y_2),(x_3,y_3)}(x,y),$$

$$\psi_2(x,y) = L_{(x_1,y_1),(x_3,y_3)}(x,y),$$

$$\psi_3(x,y) = L_{(x_1,y_1),(x_2,y_2)}(x,y),$$

т.е.

$$\psi_1(x,y) = \begin{vmatrix} x - x_2 & y - y_2 \\ x_3 - x_2 & y_3 - y_2 \end{vmatrix} = (x - x_2)(y_3 - y_2) - (y - y_2)(x_3 - x_2),$$

$$\psi_2(x,y) = \begin{vmatrix} x - x_1 & y - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix} = (x - x_1)(y_3 - y_1) - (y - y_1)(x_3 - x_1),$$

$$\psi_3(x,y) = \begin{vmatrix} x - x_1 & y - y_1 \\ x_2 - x_1 & y_2 - y_1 \end{vmatrix} = (x - x_1)(y_2 - y_1) - (y - y_1)(x_2 - x_1),$$

а также

$$\varphi_i(x,y) = \frac{\psi_i(x,y)}{\psi_i(x_i,y_i)}, \quad i = 1, 2, 3.$$
(9)

Имеем:

$$\varphi_i(x_j, y_j) = \delta_{ij}, \quad i, j = 1, 2, 3.$$

Функции $\varphi_i(x,y)$, i=1,2,3 возьмем в качестве базисных в задаче линейной интерполяции, т.е. приближающую функцию Pf будем искать в виде

$$Pf(x,y) = \sum_{i=1}^{3} \alpha_i \varphi_i(x,y),$$

где коэффициенты α_i определяются из условий (7). Так как матрица (I.1.3) задачи линейной интерполяции – единичная, то $\alpha_i = f(x_i, y_i)$, i = 1, 2, 3 и приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{3} f(x_i, y_i) \varphi_i(x, y).$$

Значения приближающей функции Pf на стороне треугольника (например, $[(x_1,y_1),(x_2,y_2)]$) определяются только значениями функции f в точках, лежащих на этой стороне (в нашем примере $-(x_1,y_1)$ и (x_2,y_2)). Следовательно, если треугольники Δ_1 и Δ_2 имеют общую сторону, то значения приближающих функций, построенных в каждом из них, совпадают в точках этой общей стороны. Это позволяет строить из приближающих функций $P_k f$, определенных в треугольниках Δ_k , кусочно-линейную аппроксимацию Pf, определенную на триангуляции $\bigcup_{k=1}^N \Delta_k$, по правилу: $Pf(x,y) = P_k f(x,y)$ при $(x,y) \in \Delta_k$.

Приближение на триангуляции

Построенную выше приближающую функция Pf, определенную на триангуляции $D' = \bigcup\limits_{k=1}^N \Delta_k$, можно получить также следующим способом.

Определение. Обозначим через $V_1(D')$ линейное пространство непрерывных в D' функций, являющихся линейными в каждом треугольнике $\Delta_i \subset D' = \bigcup\limits_{k=1}^N \Delta_k$.

Введем базис пространства $V_1(D')$:

$$\varphi_i^{(1)} \in V_1(D'), \quad \varphi_i^{(1)}(x_j, y_j) = \delta_{ij}, \quad i, j = 1, 2, \dots, M_1,$$
 (10)

где $\{(x_j,y_j)\}_{j=1,2,\dots,M_1}$ — множество вершин треугольников $\Delta_k\subset D'$. Функции $\varphi_i^{(1)}$ часто называют функциями Куранта. Аналитически функцию $\varphi_i^{(1)}$ можно задать следующим образом. Пусть Δ_{k_l} , $l=1,2,\dots,n_i$ — треугольники, имеющие точку (x_i,y_i) в качестве вершины. Обозначим через $\varphi_{k_l}(x,y)$ линейную

функцию, определенную в треугольнике Δ_{k_l} , равную 1 в точке (x_i, y_i) и 0 в остальных вершинах Δ_{k_l} . Такие функции мы построили ранее, см. (9). Тогда

$$\varphi_i^{(1)}(x,y) = \begin{cases} \varphi_{k_l}(x,y), & \text{если } (x,y) \in \Delta_{k_l} \\ 0, & \text{если } (x,y) \notin \bigcup_{l=1}^{n_i} \Delta_{k_l} \end{cases}$$

Всякая $g \in V_1(D')$ раскладывается по базису из функций $\{\varphi_i^{(1)}(x,y)\}_{i=1,2,\dots,M_1}$ следующим образом:

$$g(x,y) = \sum_{i=1}^{M_1} g(x_i, y_i) \varphi_i^{(1)}(x, y).$$

Действительно, в силу (10) имеем для $\widehat{g}(x,y) = \sum\limits_{i=1}^{M_1} g(x_i,y_i) \varphi_i^{(1)}(x,y)$: $\widehat{g}(x_j,y_j) = g(x_j,y_j)$, $j=1,2,\ldots,M_1$. Следовательно, $\widehat{g}(x,y)$ является в каждом треугольнике Δ_k линейной интерполирующей функцией. В силу корректности задачи линейной интерполяции интерполяционный многочлен единственнен. Следовательно, $g=\widehat{g}$ в каждом треугольнике Δ_k , и, значит, в $D'=\bigcup\limits_{k=1}^N \Delta_k$.

Рассмотрим задачу нахождения приближающей функции $Pf \in V_1(D')$, совпадающей с функцией f в точках $\{(x_j,y_j)\}_{j=1,2,\dots,M_1}$:

$$Pf(x_j, y_j) = f(x_j, y_j), \quad j = 1, 2, \dots, M_1.$$
 (11)

Функцию Pf будем искать в виде

$$Pf(x,y) = \sum_{i=1}^{M_1} \alpha_i \varphi_i^{(1)}(x,y),$$

где коэффициенты α_i определяются из условий (11). В силу (10) матрица (I.1.3) задачи линейной интерполяции — единичная. Поэтому $\alpha_i = f(x_i, y_i), i = 1, 2, \ldots, M_1$ и приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{M_1} f(x_i, y_i) \varphi_i^{(1)}(x, y).$$

§ 2.3.4. Приближение квадратическими функциями

Рассмотрим описанную выше задачу линейной интерполяции в частном случае l=2 в (2), т.е. приближение квадратической функцией.

Приближение на треугольнике

Обозначим вершины треугольника Δ через $(x_1, y_1), (x_2, y_2), (x_3, y_3),$ середины его сторон – через

$$(x_4, y_4) \equiv (x_{1,2}, y_{1,2}), \quad (x_5, y_5) \equiv (x_{2,3}, y_{2,3}), \quad (x_6, y_6) \equiv (x_{1,3}, y_{1,3}),$$

где $x_{k,l} = (x_k + x_l)/2$, $y_{k,l} = (y_k + y_l)/2$. Нам требуется построить приближающую функцию вида (2) удовлетворяющую условиям

$$Pf(x_k, y_k) = f(x_k, y_k), \quad k = 1, 2, \dots, 6.$$
 (12)

Построим базисные функции задачи линейной интерполяции.

Введем функции

$$\begin{split} \psi_1(x,y) &= L_{(x_2,y_2),(x_3,y_3)}(x,y), & \psi_2(x,y) &= L_{(x_1,y_1),(x_3,y_3)}(x,y), \\ \psi_3(x,y) &= L_{(x_1,y_1),(x_2,y_2)}(x,y), & \psi_4(x,y) &= L_{(x_1,2,y_{1,2}),(x_{1,3},y_{1,3})}(x,y), \\ \psi_5(x,y) &= L_{(x_1,2,y_{1,2}),(x_{2,3},y_{2,3})}(x,y), & \psi_6(x,y) &= L_{(x_1,3,y_{1,3}),(x_{2,3},y_{2,3})}(x,y), \end{split}$$

(где функции L определены в (8)), а также

$$\eta_i(x,y) = \frac{\psi_i(x,y)}{\psi_i(x_i,y_i)}, \quad i = 1, 2, \dots, 6.$$

Положим

$$\varphi_{1}(x,y) = \eta_{1}(x,y)\eta_{4}(x,y), \quad \varphi_{2}(x,y) = \eta_{2}(x,y)\eta_{5}(x,y),
\varphi_{3}(x,y) = \eta_{3}(x,y)\eta_{6}(x,y), \quad \varphi_{4}(x,y) = \eta_{1}(x,y)\eta_{2}(x,y),
\varphi_{5}(x,y) = \eta_{2}(x,y)\eta_{3}(x,y), \quad \varphi_{6}(x,y) = \eta_{1}(x,y)\eta_{3}(x,y).$$
(13)

Имеем:

$$\varphi_i(x_j, y_j) = \delta_{ij}, \quad i, j = 1, 2, \dots, 6.$$

Функции $\varphi_i(x,y)$, $i=1,2,\ldots,6$ возьмем в качестве базисных в задаче линейной интерполяции, т.е. приближающую функцию Pf будем искать в виде

$$Pf(x,y) = \sum_{i=1}^{6} \alpha_i \varphi_i(x,y),$$

где коэффициенты α_i определяются из условий (12). Так как матрица (I.1.3) задачи линейной интерполяции – единичная, то $\alpha_i = f(x_i, y_i), i = 1, 2, \dots, 6$ и приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{6} f(x_i, y_i) \varphi_i(x, y).$$

Значения приближающей функции Pf на стороне треугольника (например, $[(x_1,y_1),(x_2,y_2)]$) определяются только значениями функции f в точках, лежащих на этой стороне (в нашем примере $-(x_1,y_1),(x_2,y_2)$ и $(x_{1,2},y_{1,2})$). Следовательно, если треугольники Δ_1 и Δ_2 имеют общую сторону, то значения приближающих функций, построенных в каждом из них, совпадают в точках этой общей стороны. Это позволяет строить из приближающих функций $P_k f$, определенных в треугольниках Δ_k , кусочно-квадратическую аппроксимацию Pf, определенную на триангуляции $\bigcup_{k=1}^N \Delta_k$, по правилу: $Pf(x,y) = P_k f(x,y)$ при $(x,y) \in \Delta_k$.

Приближение на триангуляции

Построенную выше приближающую функция Pf, определенную на триангуляции $D' = \bigcup\limits_{k=1}^N \Delta_k$, можно получить также следующим способом.

Определение. Обозначим через $V_2(D')$ линейное пространство непрерывных в D' функций, являющихся квадратическими в каждом треугольнике $\Delta_i \subset D' = \bigcup_{k=1}^N \Delta_k$.

Введем базис пространства $V_2(D')$:

$$\varphi_i^{(2)} \in V_2(D'), \quad \varphi_i^{(2)}(x_j, y_j) = \delta_{ij}, \quad i, j = 1, 2, \dots, M_2,$$
 (14)

где $\{(x_j,y_j)\}_{j=1,2,\dots,M_2}$ — множество вершин и средних точек сторон треугольников $\Delta_k\subset D'$.

Аналитически функцию $\varphi_i^{(2)}$ можно задать следующим образом. Пусть Δ_{k_l} , $l=1,2,\ldots,n_i$ – треугольники, такие, что $(x_i,y_i)\in\Delta_{k_l}$. Обозначим через $\varphi_{k_l}(x,y)$ квадратическую функцию, определенную в треугольнике Δ_{k_l} , равную 1 в точке (x_i,y_i) и 0 в остальных вершинах и серединах сторон Δ_{k_l} . Такие функции мы построили ранее, см. (13). Тогда

$$\varphi_i^{(2)}(x,y) = \begin{cases} \varphi_{k_l}(x,y), & \text{если } (x,y) \in \Delta_{k_l} \\ 0, & \text{если } (x,y) \notin \bigcup_{l=1}^{n_i} \Delta_{k_l} \end{cases}$$

Всякая $g \in V_2(D')$ раскладывается по базису из функций $\{\varphi_i^{(2)}(x,y)\}_{i=1,2,\dots,M_2}$ следующим образом:

$$g(x,y) = \sum_{i=1}^{M_2} g(x_i, y_i) \varphi_i^{(2)}(x, y).$$

Действительно, в силу (14) имеем для $\widehat{g}(x,y)=\sum\limits_{i=1}^{M_2}g(x_i,y_i)\varphi_i^{(2)}(x,y)\colon \widehat{g}(x_j,y_j)=g(x_j,y_j),\ j=1,2,\ldots,M_2$. Следовательно, $\widehat{g}(x,y)$ является в каждом треугольнике Δ_k квадратической интерполирующей функцией. В силу корректности задачи

линейной интерполяции интерполяционный многочлен единственнен. Следовательно, $g=\widehat{g}$ в каждом треугольнике Δ_k , и, значит, в $D'=\bigcup\limits_{k=1}^N \Delta_k$.

Рассмотрим задачу нахождения приближающей функции $Pf \in V_2(D')$, совпадающей с функцией f в точках $\{(x_i, y_i)\}_{i=1,2,...,M_2}$:

$$Pf(x_i, y_i) = f(x_i, y_i), \quad j = 1, 2, \dots, M_2.$$
 (15)

Функцию Pf будем искать в виде

$$Pf(x,y) = \sum_{i=1}^{M_2} \alpha_i \varphi_i^{(2)}(x,y),$$

где коэффициенты α_i определяются из условий (15). В силу (14) матрица (I.1.3) задачи линейной интерполяции — единичная. Поэтому $\alpha_i = f(x_i, y_i)$, $i = 1, 2, \ldots, M_2$ и приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{M_2} f(x_i, y_i) \varphi_i^{(2)}(x, y).$$

§ 2.3.5. Приближение кубическими функциями

Рассмотрим описанную выше задачу линейной интерполяции в частном случае $l=3\,$ в (2), т.е. приближение кубической функцией.

Приближение на треугольнике

Обозначим вершины треугольника Δ через $(x_1, y_1), (x_2, y_2), (x_3, y_3),$ точки, делящие его строны на три равные части, – через

$$(x_4, y_4) \equiv (x_{1,2,1}, y_{1,2,1}), \quad (x_5, y_5) \equiv (x_{1,2,2}, y_{1,2,2}), \quad (x_6, y_6) \equiv (x_{2,3,1}, y_{2,3,1}),$$

 $(x_7, y_7) \equiv (x_{2,3,2}, y_{2,3,2}), \quad (x_8, y_8) \equiv (x_{1,3,1}, y_{1,3,1}), \quad (x_9, y_9) \equiv (x_{1,3,2}, y_{1,3,2}),$

где $x_{k,l,s}=((3-s)x_k+sx_l)/3$, $y_{k,l,s}=((3-s)y_k+sy_l)/3$, центр тяжести треугольника – через

$$(x_{10}, y_{10}) \equiv (x_{1,2,3}, y_{1,2,3}),$$

где $x_{1,2,3} = (x_1 + x_2 + x_3)/3$, $y_{1,2,3} = (y_1 + y_2 + y_3)/3$. Нам требуется построить приближающую функцию вида (2) удовлетворяющую условиям

$$Pf(x_k, y_k) = f(x_k, y_k), \quad k = 1, 2, \dots, 10.$$
 (16)

Построим базисные функции задачи линейной интерполяции.

Введем функции

$$\begin{split} \psi_1(x,y) &= L_{(x_2,y_2),(x_3,y_3)}(x,y), & \psi_2(x,y) &= L_{(x_1,y_1),(x_3,y_3)}(x,y), \\ \psi_3(x,y) &= L_{(x_1,y_1),(x_2,y_2)}(x,y), & \psi_4(x,y) &= L_{(x_{1,2,1},y_{1,2,1}),(x_{1,3,1},y_{1,3,1})}(x,y), \\ \psi_5(x,y) &= L_{(x_{1,2,2},y_{1,2,2}),(x_{1,3,2},y_{1,3,2})}(x,y), & \psi_6(x,y) &= L_{(x_{1,2,2},y_{1,2,2}),(x_{2,3,1},y_{2,3,1})}(x,y), \\ \psi_7(x,y) &= L_{(x_{1,2,1},y_{1,2,1}),(x_{2,3,2},y_{2,3,2})}(x,y), & \psi_8(x,y) &= L_{(x_{1,3,2},y_{1,3,2}),(x_{2,3,2},y_{2,3,2})}(x,y), \\ \psi_9(x,y) &= L_{(x_{1,3,1},y_{1,3,1}),(x_{2,3,1},y_{2,3,1})}(x,y), \end{split}$$

(где функции L определены в (8)), а также

$$\eta_i(x,y) = \frac{\psi_i(x,y)}{\psi_i(x_i,y_i)}, \quad i = 1, 2, \dots, 10.$$

Положим

$$\varphi_{1}(x,y) = \eta_{1}(x,y)\eta_{4}(x,y)\eta_{5}(x,y), \quad \varphi_{2}(x,y) = \eta_{2}(x,y)\eta_{6}(x,y)\eta_{7}(x,y),
\varphi_{3}(x,y) = \eta_{3}(x,y)\eta_{8}(x,y)\eta_{9}(x,y), \quad \varphi_{4}(x,y) = \eta_{1}(x,y)\eta_{2}(x,y)\eta_{5}(x,y),
\varphi_{5}(x,y) = \eta_{1}(x,y)\eta_{2}(x,y)\eta_{7}(x,y), \quad \varphi_{6}(x,y) = \eta_{2}(x,y)\eta_{3}(x,y)\eta_{7}(x,y),
\varphi_{7}(x,y) = \eta_{2}(x,y)\eta_{3}(x,y)\eta_{9}(x,y), \quad \varphi_{8}(x,y) = \eta_{1}(x,y)\eta_{3}(x,y)\eta_{5}(x,y),
\varphi_{9}(x,y) = \eta_{1}(x,y)\eta_{3}(x,y)\eta_{9}(x,y), \quad \varphi_{10}(x,y) = \eta_{1}(x,y)\eta_{2}(x,y)\eta_{3}(x,y).$$
(17)

Имеем:

$$\varphi_i(x_j, y_j) = \delta_{ij}, \quad i, j = 1, 2, \dots, 10.$$

Функции $\varphi_i(x,y)$, $i=1,2,\ldots,10$ возьмем в качестве базисных в задаче линейной интерполяции, т.е. приближающую функцию Pf будем искать в виде

$$Pf(x,y) = \sum_{i=1}^{10} \alpha_i \varphi_i(x,y),$$

где коэффициенты α_i определяются из условий (16). Так как матрица (I.1.3) задачи линейной интерполяции – единичная, то $\alpha_i = f(x_i, y_i)$, $i = 1, 2, \ldots, 10$ и приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{10} f(x_i, y_i) \varphi_i(x, y).$$

Значения приближающей функции Pf на стороне треугольника (например, $[(x_1,y_1),(x_2,y_2)]$) определяются только значениями функции f в точках, лежащих на этой стороне (в нашем примере $-(x_1,y_1),(x_2,y_2),(x_{1,2,1},y_{1,2,1})$ и $(x_{1,2,2},y_{1,2,2})$). Следовательно, если треугольники Δ_1 и Δ_2 имеют общую сторону, то значения приближающих функций, построенных в каждом из них, совпадают в точках этой общей стороны. Это позволяет строить из приближающих функций $P_k f$, определенных в треугольниках Δ_k , кусочно-кубическую аппроксимацию Pf, определенную на триангуляции $\bigcup_{k=1}^N \Delta_k$, по правилу: $Pf(x,y) = P_k f(x,y)$ при $(x,y) \in \Delta_k$.

Приближение на триангуляции

Построенную выше приближающую функция Pf, определенную на триангуляции $D' = \bigcup_{k=1}^{N} \Delta_k$, можно получить также следующим способом.

Определение. Обозначим через $V_3(D')$ линейное пространство непрерывных в D' функций, являющихся кубическими в каждом треугольнике $\Delta_i \subset D' = \bigcup\limits_{k=1}^N \Delta_k$.

Введем базис пространства $V_3(D')$:

$$\varphi_i^{(3)} \in V_3(D'), \quad \varphi_i^{(3)}(x_j, y_j) = \delta_{ij}, \quad i, j = 1, 2, \dots, M_3,$$
 (18)

где $\{(x_j,y_j)\}_{j=1,2,...,M_3}$ – множество, состоящее из выбранных для интерполяции точек треугольников $\Delta_k \subset D'$ (т.е. множество построенных выше точек $(x_l,y_l) \in \Delta = \Delta_k$, $l=1,2,\ldots,10$, $k=1,2,\ldots,N$).

Аналитически функцию $\varphi_i^{(3)}$ можно задать следующим образом. Пусть Δ_{k_l} , $l=1,2,\ldots,n_i$ — треугольники, такие, что $(x_i,y_i)\in\Delta_{k_l}$. Обозначим через $\varphi_{k_l}(x,y)$ кубическую функцию, определенную в треугольнике Δ_{k_l} , равную 1 в точке (x_i,y_i) и 0 в остальных выбранных для интерполяции точках $(x_j,y_j)\in\Delta_{k_l}$. Такие функции мы построили ранее, см. (17). Тогда

$$\varphi_i^{(3)}(x,y) = \begin{cases} \varphi_{k_l}(x,y), & \text{если } (x,y) \in \Delta_{k_l} \\ 0, & \text{если } (x,y) \notin \bigcup_{l=1}^{n_i} \Delta_{k_l} \end{cases}$$

Всякая $g \in V_3(D')$ раскладывается по базису из функций $\{\varphi_i^{(3)}(x,y)\}_{i=1,2,\dots,M_3}$ следующим образом:

$$g(x,y) = \sum_{i=1}^{M_3} g(x_i, y_i) \varphi_i^{(3)}(x, y).$$

Действительно, в силу (18) имеем для $\widehat{g}(x,y) = \sum\limits_{i=1}^{M_3} g(x_i,y_i) \varphi_i^{(3)}(x,y)$: $\widehat{g}(x_j,y_j) = g(x_j,y_j)$, $j=1,2,\ldots,M_3$. Следовательно, $\widehat{g}(x,y)$ является в каждом треугольнике Δ_k кубической интерполирующей функцией. В силу корректности задачи линейной интерполяции интерполяционный многочлен единственнен. Следовательно, $g=\widehat{g}$ в каждом треугольнике Δ_k , и, значит, в $D'=\bigcup\limits_{i=1}^N \Delta_k$.

Рассмотрим задачу нахождения приближающей функции $Pf \in V_3(D')$, совпадающей с функцией f в точках $\{(x_i, y_i)\}_{i=1,2,...,M_3}$:

$$Pf(x_i, y_i) = f(x_i, y_i), \quad j = 1, 2, \dots, M_3.$$
 (19)

Функцию Pf будем искать в виде

$$Pf(x,y) = \sum_{i=1}^{M_3} \alpha_i \varphi_i^{(3)}(x,y),$$

где коэффициенты α_i определяются из условий (19). В силу (18) матрица (I.1.3) задачи линейной интерполяции – единичная. Поэтому $\alpha_i = f(x_i, y_i), i = 1, 2, \ldots, M_3$ и приближающая функция имеет вид

$$Pf(x,y) = \sum_{i=1}^{M_3} f(x_i, y_i) \varphi_i^{(3)}(x, y).$$

ПРОГРАММА КУРСА

- 1. Постановка задачи линейной интерполяции (ЗЛИ). Теорема о корректности ЗЛИ. Представление решения ЗЛИ.
- 2. Обусловленность базиса. Оценка относительной погрешности линейной комбинации элементов базиса через относительную погрешность коэффициентов этой линейной комбинации.
- 3. Интерполяционный многочлен Лагранжа. Его единственность. Оценка числа арифметических операций, необходимого для вычисления значения интерполяционного многочлена Лагранжа в точке.
- 4. Определение разделенных разностей. Формула для непосредственного представления разделенной разности через значения функции. Симметричность разделенной разности как функции своих аргументов. Линейность разделенной разности как функционала.
- 5. Вычисление интерполяционного многочлена Лагранжа, построенного по к точкам, через интерполяционный многочлен Лагранжа, построенный по k-1 точке. Интерполяционная формула Ньютона.
- 6. Алгоритм вычисления коэффициентов интерполяционного многочлена в форме Ньютона. Организация процесса вычислений и хранения промежуточных результатов. Оценка числа арифметических операций. Алгоритм вычисления значения интерполяционного многочлена в форме Ньютона в точке. Оценка числа арифметических операций.
- 7. Интерполяция "движущимися" многочленами (алгоритм сдвига представления интерполяционного многочлена в форме Ньютона). Оценка числа арифметических операций.
- 8. Оценка погрешности интерполяционной формулы Ньютона с представлением остаточного члена в виде произведения разделенной разности и фиксированного многочлена.
- 9. Оценка погрешности интерполяционной формулы Ньютона с представлением остаточного члена в виде произведения производной функции в некоторой точке и фиксированного многочлена.

- 10. Представление разделенной разности через производную функции. Определение разделенных разностей с кратными узлами. Непрерывность разделенной разности как функции своих аргументов.
- 11. Постановка задачи интерполяции с кратными узлами. Единственность интерполяционного многочлена. Теорема о построении интерполяционного многочлена в форме Ньютона.
- 12. Оценка погрешности интерполяции с кратными узлами с представлением остаточного члена в виде произведения разделенной разности и фиксированного многочлена.
- 13. Алгоритм вычисления коэффициентов интерполяционного многочлена с кратными узлами. Организация процесса вычислений и хранения промежуточных результатов. Оценка числа арифметических операций. Алгоритм вычисления значения интерполяционного многочлена с кратными узлами в точке. Оценка числа арифметических операций.
- 14. Алгоритм вычисления значений производных многочлена в форме Ньютона в точке. Оценка числа арифметических операций.
- 15. Многочлены Чебышева. Реккурентная формула. Аналитическая форма, нули многочленов, экстремумы. Теорема о многочлене, наименее уклоняющемся от нуля.
- 16. Минимизация погрешности интерполяции за счет выбора узлов интерполяции. Интерполяция по нулям многочленов Чебышева. Неулучшаемость оценки погрешности в рассматриваемом классе оценок остаточного члена. Оценка снизу и сверху погрешности интерполяции по нулям многочленов Чебышева через погрешность наилучшего равномерного приближения (без доказательства). Теорема Джексона (без доказательства).
- 17. Разложение по многочленам Чебышева с использованием дискретного скалярного произведения. Ортогональность многочленов Чебышева по этому скалярному произведению.
- 18. Алгоритм вычисления коэффициентов разложения по многочленам Чебышева. Организация процесса вычислений и хранения промежуточных результатов. Оценка числа арифметических операций. Алгоритм вычисления значения аппроксимирующего многочлена в точке. Оценка числа арифметических операций.
- 19. Теорема о совпадении интерполяционного многочлена, построеннного по нулям многочленов Чебышева, с аппроксимирующим многочленом, полученным разложением по многочленам Чебышева с использованием дискретного скалярного произведения.

- 20. Преимущества кусочно-многочленной аппроксимации. Кусочно-линейная интерполяция. Оценка погрешности. Оценка погрешности через погрешность наилучшего равномерного приближения в классе непрерывных ломаных линий.
- 21. Кусочно-линейная аппроксимация по методу наименьших квадратов. Построение базиса, постановка задачи, вычисление матрицы системы.
- 22. Оценка погрешности кусочно-линейной аппроксимации по методу наименьших квадратов через погрешность наилучшего равномерного приближения в классе непрерывных ломаных линий.
- 23. Аппроксимация многочленами по методу наименьших квадратов в пространстве со специальным скалярным произведением. Построение базиса из многочленов Чебышева, его ортогональность относительно этого скалярного произведения, вычисление коэффициентов аппроксимирующей функции.
- 24. Теорема о кусочно-линейной интерполяции негладких функций на специальных сетках (без доказательсва). Доказательство теоремы в случае функции "корень из модуля х" на отрезке [-1,1].
- 25. Общая схема кусочной интерполяции кубическими многочленами. Алгоритм вычисления коэффициентов интерполирующих кубических многочленов.
- 26. Кусочная интерполяция кубическими многочленами Эрмита. Выбор параметров. Простейшие свойства приближающей функции. Оценка погрешности (без доказательства).
- 27. Кусочная интерполяция кубическими многочленами Бесселя. Выбор параметров. Простейшие свойства приближающей функции. Оценка погрешности (без доказательства).
- 28. Кусочная интерполяция кубическими многочленами методом Акимы. Выбор параметров. Простейшие свойства приближающей функции. Оценка погрешности (без доказательства).
- 29. Кусочная интерполяция кубическими многочленами с использованием разделенных разностей. Выбор параметров. Простейшие свойства приближающей функции. Оценка погрешности (без доказательства).
- 30. Определение сплайна. Интерполяция кубическими сплайнами. Выбор параметров, построение матрицы системы. Простейшие свойства матрицы системы и приближающей функции. Оценка погрешности (без доказательства).

- 31. Определение недостающих для кусочно-кубической интерполяции граничных условий по известным значениям первой либо второй производной функции в граничных узлах, естественные граничные условия. Определение недостающих параметров в случае кусочной интерполяции кубическими многочленами и построение дополнительных уравнений в случае интерполяции кубическими сплайнами.
- 32. Определение недостающих для кусочно-кубической интерполяции граничных условий из условия "отсутствия узла" в приграничных узлах. Определение недостающих параметров в случае кусочной интерполяции кубическими многочленами и построение дополнительных уравнений в случае интерполяции кубическими сплайнами.
- 33. Определение недостающих для кусочно-кубической интерполяции граничных условий при помощи введения дополнительного узла рядом с граничными узлами либо экстраполяции в приграничных узлах. Определение недостающих параметров в случае кусочной интерполяции кубическими многочленами и построение дополнительных уравнений в случае интерполяции кубическими сплайнами.
- 34. Общая схема кусочной интерполяции параболическими многочленами. Алгоритм вычисления коэффициентов интерполирующих квадратичных многочленов.
- 35. Определение сплайна. Интерполяция параболическими сплайнами. Выбор параметров, построение матрицы системы. Простейшие свойства матрицы системы и приближающей функции. Оценка погрешности (без доказательства).
- 36. Определение недостающих для интерполяции параболическими сплайнами уравнений по известным значениям первой производной функции в граничных узлах.
- 37. Определение недостающих для интерполяции параболическими сплайнами уравнений по известным значениям второй производной функции в граничных узлах, естественные граничные условия.
- 38. Определение недостающих для интерполяции параболическими сплайнами уравнений из условия "отсутствия узла" в приграничных узлах.
- 39. Определение недостающих для интерполяции параболическими сплайнами уравнений при помощи введения дополнительного узла рядом с граничными узлами либо экстраполяции в приграничных узлах.

40. Интерполяция тензорными произведениями. Построение базиса из тензорных произведений в пространстве функций и в пространстве функционалов. Постановка задачи линейной интерполяции тензорными произведениями. Теорема о корректности. Алгоритм интерполяции тензорными произведениями.

ЛИТЕРАТУРА

- 1. Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. Численные методы. М., "Наука", 1987.
- 2. К. Де Бур. Практическое руководство по сплайнам. М., "Радио и связь", 1985.
- 3. Ю.С. Завьялов, Б.И. Квасов, В.Л. Мирошниченко. Методы сплайн-функций. М., "Наука", 1980.
- 4. С.Б. Стечкин, Ю.Н. Субботин. Сплайны в вычислительной математике. М., "Наука", 1976.