BIOESTATÍSTICA

M.I. Eng Biomédica

2015-2016

Aula Prática 5

Valor esperado

Propriedades

$$E(c) = c$$

$$^{\scriptscriptstyle \square} E(X \pm Y) = E(X) \pm E(Y)$$

$$^{\square} E(cX) = cE(X)$$

Variância

Propriedades

$$var(c) = 0$$

$$var(X) = E(X - \bar{X})^2 = E(X^2) - [E(X)]^2$$

$$\neg var(X \pm Y) = var(X) + var(Y)$$

$$var(cX) = c^2 var(X)$$

Distribuições

- Distribuições discretas
 - Uniforme
 - Bernoulli
 - Binomial
 - Poisson
- Distribuições contínuas
 - Normal
 - Exponencial
 - · Qui-quadrado

Uniforme

- Definição
 - Seja X uma varável aleatória com $D = \{x_1, x_2, \cdots, x_n\}$. Diz-se que X segue uma distribuição uniforme nos pontos x_k sse

$$f_X(x) = \begin{cases} \frac{1}{n} & x \in D \\ 0 & x \notin D \end{cases}$$

Uniforme

Propriedades

•
$$E(X) = \mu = \frac{1}{n} \sum_{j=1}^{n} x_j;$$

•
$$Var(X) = \frac{1}{n} \sum_{j=1}^{n} (x_j - \mu)^2 = \frac{1}{n} \sum_{j=1}^{n} x_j^2 - \mu$$

Uniforme

- Exemplo
 - · Lançamento de um dado 'perfeito'.
 - n = 6
 - $P(X = x) = \frac{1}{6}, \quad x = 1, 2, \dots, 6$

Bernoulli

- A distribuição de Bernoulli encontra-se associada à designada prova de Bernoulli na qual é observada a realização ou não de um acontecimento, A, com probabilidade P(A) = p.
- Seja X a variável aleatória da experiência descrita:
 - X=1, significa que o acontecimento A ocorre (sucesso);
 - X=0, significa que o acontecimento A não ocorre (insucesso);

Bernoulli

- Definição
 - A função de probabilidade de X é dada por

$$f_X(x|p) = \begin{cases} 1-p & x=0\\ p & x=1\\ 0 & outros x \end{cases}$$

$$X \sim B(1; p)$$

Bernoulli

- Exemplo
 - Lançamento de uma moeda ao ar e observação da saída de face.

- Definição
 - Diz-se que a variável aleatória, X, tem distribuição binomial se tiver a função de probabilidade dada por:

$$f_X(x|p) = \begin{cases} {}^{n}C_x \ p^x \ (1-p)^{n-x} & x = 0, 1, 2, \dots, n \\ 0 & outros \ x \end{cases}$$

$$X \sim B(n; p)$$

- Propriedades
 - E(X) = n p;
 - Var(X) = n p (1-p) = n p q

• Exemplo:

- Um determinado tratamento administrado a doentes em condições bem definidas consegue cura em 70% dos casos. Se o tratamento for aplicado a 20 doentes, qual a probabilidade de
 - a) obter 15 curas no máximo?
 - b) obter pelo menos 12 curas?
 - c) obter um número de curas não inferior a 10 nem superior a 15?

Exemplo

$$X \sim B(20; 0.7); \quad p = 0.7; \quad q = 0.3; \quad n = 20$$

a)
$$P(X \le 15) = \sum_{j=1}^{15} {}^{20}C_j \ 0.7^j \ 0.3^{20-j} = 0.7625$$

b)
$$P(X \ge 12) = 1 - P(X < 12) = 0.8867$$

c)
$$P(10 \le X \le 15) = P(X \le 15) - P(X \le 9) = 0.7454$$

Tabela

 $P(X \leq x)$

		p									
\overline{n}	x	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5
20	0	0.3585	0.1216	0.0388	0.0115	0.0032	0.0008	0.0002	0.0000	0.0000	0.0000
	1	0.7358	0.3917	0.1756	0.0692	0.0243	0.0076	0.0021	0.0005	0.0001	0.0000
	2	0.9245	0.6769	0.4049	0.2061	0.0913	0.0355	0.0121	0.0036	0.0009	0.0002
	3	0.9841	0.8670	0.6477	0.4114	0.2252	0.1071	0.0444	0.0160	0.0049	0.0013
	4	0.9974	0.9568	0.8298	0.6296	0.4148	0.2375	0.1182	0.0510	0.0189	0.0059
	5	0.9997	0.9887	0.9327	0.8042	0.6172	0.4164	0.2454	0.1256	0.0553	0.0207
	6	1.0000	0.9976	0.9781	0.9133	0.7858	0.6080	0.4166	0.2500	0.1299	0.0577
	7	1.0000	0.9996	0.9941	0.9679	0.8982	0.7723	0.6010	0.4159	0.2520	0.1316
	8	1.0000	0.9999	0.9987	0.9900	0.9591	0.8867	0.7624	0.5956	0.4143	0.2517
	9	1.0000	1.0000	0.9998	0.9974	0.9861	0.9520	0.8782	0.7553	0.5914	0.4119
	10	1.0000	1.0000	1.0000	0.9994	0.9961	0.9829	0.9468	0.8725	0.7507	0.5881
	11	1.0000	1.0000	1.0000	0.9999	0.9991	0.9949	0.9804	0.9435	0.8692	0.7483
	12	1.0000	1.0000	1.0000	1.0000	0.9998	0.9987	0.9940	0.9790	0.9420	0.8684
	13	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9935	0.9786	0.9423
	14	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9984	0.9936	0.9793
	15	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9985	0.9941
	16	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9997	0.9987
	17	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9998
	18	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	19	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	20	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

SMS: exemplo dist. binomial

SMS enviadas em função do género

Qual é a probabilidade de em 3 mensagens, pelo menos duas serem enviadas para alguém do sexo feminino?

$$p_{\rm M} = 31/70 = 0.443$$

$$p_F = 39/70 = 0.557$$

$$P(X \ge 2) = \dots$$

M	M	F	F	F	M	M
M	F	F	F	F	F	M
M	M	F	F	M	M	F
F	F	F	M	M	F	F
F	M	M	M	F	F	M
F	F	F	M	M	F	F
F	M	M	F	F	M	F
F	M	M	F	F	M	M
F	F	M	M	M	M	M
F	F	F	F	F	M	F

- A distribuição de Poisson está associada com um processo de contagem;
- Aplicações:
 - Contagem do número de doentes que afluem à urgência;
 - Contagem das avarias que um dispositvo sofre num ano;
 - Contagem do número de carros que passam numa portagem num dia;

- Tem-se um <u>processo de Poisson</u>, com $\lambda > 0$, quando se verifica
 - O nº de acontecimentos que ocorrem em dois intervalos disjuntos são independentes;
 - A probabilidade de ocorrer exactamente um acontecimento em qualquer intervalo de amplitude Δt arbitrariamente pequena é aproximadamente $\lambda \Delta t$;
 - A probabilidade de ocorrerem dois ou mais acontecimentos em qualquer intervalo de amplitude Δt arbitrariamente pequena é aproximadamente igual a zero;

• Diz-se que uma variável X tem uma distibuição de Poisson se apresentar a função de probabilidade

$$f_X(x|\lambda) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!} & x = 0, 1, 2, \dots \\ 0 & outros x \end{cases}$$

$$X \sim Po(\lambda)$$

- Propriedades
 - $E(X) = \lambda$;
 - $Var(X) = \lambda$

Exemplo

• Numa fábrica de moldes existem numerosas CNCs. Verificou-se que as avarias das mesmas seguem um processo de Poisson com taxa de 3 por semestre. Determine a probabilidade de num semestre avariarem 7 ou mais CNCs.

Exemplo

$$X \sim Po(3); \quad \lambda = 3$$

$$P(X \ge 7) = \sum_{x=7}^{+\infty} \frac{e^{-3} 3^x}{x!} = 1 - P(X \le 6) = 0.0335$$

Tabela

			910602	415.79	λ	1771	100 may		0183.16	
x	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
0	0.6065	0.3679	0.2231	0.1353	0.0821	0.0498	0.0302	0.0183	0.0111	0.0067
1	0.9098	0.7358	0.5578	0.4060	0.2873	0.1991	0.1359	0.0916	0.0611	0.0404
2	0.9856	0.9197	0.8088	0.6767	0.5438	0.4232	0.3208	0.2381	0.1736	0.1247
3	0.9982	0.9810	0.9344	0.8571	0.7576	0.6472	0.5366	0.4335	0.3423	0.2650
4	0.9998	0.9963	0.9814	0.9473	0.8912	0.8153	0.7254	0.6288	0.5321	0.4405
5	1.0000	0.9994	0.9955	0.9834	0.9580	0.9161	0.8576	0.7851	0.7029	0.6160
6	1.0000	0.9999	0.9991	0.9955	0.9858	0.9665	0.9347	0.8893	0.8311	0.7622
7	1.0000	1.0000	0.9998	0.9989	0.9958	0.9881	0.9733	0.9489	0.9134	0.8666
8	1.0000	1.0000	1.0000	0.9998	0.9989	0.9962	0.9901	0.9786	0.9597	0.9319
9	1.0000	1.0000	1.0000	1.0000	0.9997	0.9989	0.9967	0.9919	0.9829	0.9682
10	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9990	0.9972	0.9933	0.9863
11	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9991	0.9976	0.9945
12	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9999	0.9997	0.9992	0.9980

SMS: exemplo dist. Poisson

SMS recebidas em função do tempo

Qual é a probabilidade de entre as 18:00h e as 20:00 h, receber duas mensagens?

$$\lambda = 14 \text{ (m/h)}$$

$$P(X=2) = ...$$

00:58	01:16	12:44	14:19	15:32	19:00	19:51
00:59	01:17	13:07	14:38	15:38	19:01	20:13
01:08	11:56	14:04	14:38	16:14	19:02	20:14
01:09	11:59	14:05	14:52	16:14	19:03	22:38
01:09	12:00	14:07	15:07	16:16	19:06	22:41
01:10	12:00	14:08	15:15	16:17	19:07	22:41
01:11	12:04	14:14	15:22	16:49	19:09	22:42
01:13	12:07	14:15	15:22	18:02	19:12	22:44
01:14	12:10	14:18	15:28	18:13	19:47	22:56
01:14	12:43	14:18	15:29	18:15	19:47	23:03

Poisson/Binomial

- Quando $p = \lambda/n \rightarrow 0$, mantendo-se fixo $np = \mu$, a binomial tende para a Poisson.
 - A regra prática para utilizar esta "lei" deve basear-se no pressoposto de que se tem um acontecimento raro e um número "elevado" de observações.
 - Não é aconselhável fazer a aproximação quando $0.1 ou quando <math>n \le 20$

Poisson/Binomial

Exemplo

• Sabendo que a probabilidade de uma peça produzida por uma determinada máquina ser defeituosa é p = 0.001. Qual a probabilidade de, num lote de 1000 peças, haver mais do que uma defeituosa?

$$X \sim B(1000, 0.001) \rightarrow Po(1)$$

$$P = 1 - (^{1000}C_0 \ 0.999^{1000} + ^{1000}C_1 \ 0.999^{999} \ 0.001)$$

$$P \approx 1 - \left(\frac{e^{-1} 1^0}{0!} + \frac{e^{-1} 1^1}{1!}\right) = 0.26424$$

- Definição
 - Diz-se que uma variável aleatória X tem distribuição normal com parâmetros μ e σ^2 quando a função densidade é da forma

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$X \sim N(\mu, \sigma^2)$$

http://en.wikipedia.org/wiki/File:Normal_distribution_pdf.png

- Propriedades
 - $E(X) = \mu$;
 - $Var(X) = \sigma^2$

Exemplo

• A precipitação anual (em mm) no distrito de Beja é bem modelada por uma distribuição normal com $\mu = 572 \ mm$ e $\sigma = 138.6 \ mm$. Qual é a probabilidade da precipitação anual se situar entre 700 e 800 mm?

$$P(700 < X < 800) = \int_{700}^{800} f(x) \, dx = F(800) - F(700)$$

$$P(700 < X < 800) = \Phi\left(\frac{800 - 572}{138.6}\right) - \Phi\left(\frac{700 - 572}{138.6}\right) = 0.1279$$

• Tabela - N(0,1)

Norma Deviat											
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
-4.0	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.9	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.8	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.7	.0001	.0001	.0000	.0000	.0000	.0000	.0000	.0000	.0000	.0000	
-3.6	.0002	.0002	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	
-3.5	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	.0002	
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002	
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003	
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005	
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007	
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010	

Intervalos	Probabilidades
$\mu \pm \sigma$	0.6826
$\mu \pm 2\sigma$	0.9544
$\mu \pm 3\sigma$	0.9973
$\mu \pm 0.6745\sigma$	0.5000
$\mu \pm 1.6450\sigma$	0.9000
$\mu \pm 1.9600\sigma$	0.9500
$\mu \pm 2.5758\sigma$	0.9900

