Modelling the Effect of Temperature on Resonant

Frequencies with a Standard Trumpet

BACKGROUND

- Professional musical ensembles
 - Importance of intonation
- Indoor vs outdoor performance environments
 - Example: Trumpet pitch accuracy test

SOUND WAVES

- The speed of sound and temperature
- Kinetic energy
- \triangleright $V=f\lambda$

RESEARCH QUESTION

Does changing the ambient temperature of a trumpet cause a significant enough resonance frequency shift to result in pitch accuracy discrepancies?

HYPOTHESIS

 Resonant frequencies will experience a shift upwards as the ambient temperature increases because the speed of sound is increased.

EQUIPMENT

- Silver-Plated Brass Trumpet
- Microphone & Wire
- Spectrum Lab program on a Laptop, connected to wire mic
- Bluetooth speaker playing white noise; pure tones (using Audacity)

FAMILIARIZATION

- Pure Bb tone played directly into mic
- Data taken, Spec Lab paused and unpaused

RESULT:

No observable shift when temp remains constant

CONTROL

- Control method: 3 different data-taking rounds:
 Cooled, Room Temperature, and Heated
- Resonance frequency increased with each temperature increase

CONTROL: Pt 1/2

CONTROL: Pt 2/2

METHOD

- 1. Initial Setup
- 2. Cooling phase
 - 2.1. Exposed to outdoor air until internal temperature approx 5°C
 - 2.2. Recording # $\frac{1}{2}$: Spectrum Lab collected data for 3 mins, then paused
- Heating phase
 - 3.1. Exposed to hair dryer until internal temperature approx 30°C
 - 3.2. Recording # 2/2: Spectrum Lab unpaused, data taken for another 3 mins
- 4. Compare & Analyse
 - 4.1. Changes in resonance frequencies between treatments compared

RESULTS: EXAMPLE GRAPH

TABULATED RESULTS

∆f #	Δf (Hz)	Scale (Hz)	u[f] (Hz)
2A	20.0	5.0	1.3
2B	15.0	5.0	1.3
2C	15.0	5.0	1.3
3A	20.0	2.0	0.5
3B	12.0	2.0	0.5
3C	12.0	2.0	0.5
4A	20.0	5.0	1.3
4B	20.0	5.0	1.3
4C	13.0	5.0	1.3
4D	13.0	5.0	1.3
5A	25.0	50.0	12.5
5B	20.0	50.0	12.5
Δfw	15.2		
u[∆fw] (Hz)	0.2		

RESULTS ANALYSIS

- Resonance frequency areas of density consistently shift sharper (in positive, right direction on graph)
- Average weighted difference of around 15 Hz
 between cold and hot conditions

DISCUSSION

- Semitones and frequencies
- $P = [\Delta f \land (^{12}\sqrt{2})]^*100\%$
- shift upwards of less than one semitone
- Approximately 17%
- Comparison between trials- Inter vs Intra

LIMITATIONS

- Spectrum Lab
- Frequency Shift Measurement Uncertainty

- Future investigations
- Outdoor performances

CONCLUSION

 Experimental results support hypothesis that the resonance frequencies of a trumpet become sharp when the ambient temperature is increased.

-√\/\<u>-</u>

BIBLIOGRAPHY

- 1. "The Audible Spectrum." Neuroscience. 2nd edition., Sinauer Associates, Inc, 2001.
- 2. Velasco, S., et al. "A computer-assisted experiment for the measurement of the temperature dependence of the speed of sound in air."

 American Journal of Physics, 2004. https://doi.org/10.1119/1.1611479.
- 3. Young, Robert W. "Dependence of Tuning of Wind Instruments on Temperature." The Journal of the Acoustical Society of America, 1946. https://doi.org/10.1121/1.1916314.
 - Presentation template by <u>SlidesCarnival</u>
- 5. Photographs by <u>Unsplash</u>