Week 2

Inclass

Contents

- Class Review (in Korean)
- Taylor Series and the proof of the condition (in English)
- Gradient and Hessian matrix (in English)
- Solving exercises (in English and Korean)

Formulation of Optimization Problem

minimize
$$f(\mathbf{x})$$
 subject to $\mathbf{x} \in \mathcal{X}$

- X_i : a design variable (구성하려고 하는 시스템의 속성을 수치화하여 표현하는 변수)
- $\mathbf{x} = (x_1, x_2, ..., x_n)$: a design point (수치화한 속성들을 모아서 구성한 벡터. n차원 공간상의 점에 대응)
- f: The objective function (디자인포인트를 실수에 대응시키는 함수로 현재 디자인의 성능을 평가)
- X: The feasible set (시스템 속성의 제한 constrints 사항을 모두 만족하는 design point의 집합)
- A design point that minimizes f is called a solution.
- Maximizing problems can be converted to minimizing problems.

No Free Lunch Theorem

There is no magical algorithm.

- Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization"
- All optimization algorithms perform equally well when their performance is averaged over all possible cases.

	Algorithm 1	Algorithm 2	Algorithm 3	Algorithm 4	•••
Problem 1	74	153	12	63	
Problem 2	35	98	34	102	
Problem 3	163	102	23	94	
Problem 4	223	22	723	99	
Problem 5	62	3	54	33	
			•••	•••	
Average	100	100	100	100	

Where is the solution?

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathcal{X}$

Derivatives 미분

Inspection method for functions

- The derivative f'(x) of a function f measures the behavior of f around x.
- ullet For the univariate case, f'(x) measure the slope of the tangent line(접선의 기울기) of f at x.

$$f'(x) \equiv \frac{df(x)}{dx}$$

$$f'(x) \equiv \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
forward difference

Symbolic Differentiation

Producing a new formula which is the derivative of a given formula

Derivatives of powers.

$$rac{d}{dx}x^a=ax^{a-1}.$$

Exponential and logarithmic functions.

$$egin{aligned} rac{d}{dx}e^x &= e^x. \ rac{d}{dx}a^x &= a^x\ln(a), \qquad a>0 \ rac{d}{dx}\ln(x) &= rac{1}{x}, \qquad x>0. \ rac{d}{dx}\log_a(x) &= rac{1}{x\ln(a)}, \qquad x,a>0 \end{aligned}$$

Trigonometric functions.

$$rac{d}{dx}\sin(x)=\cos(x).$$
 $rac{d}{dx}\cos(x)=-\sin(x).$ $rac{d}{dx}\tan(x)=\sec^2(x)=rac{1}{\cos^2(x)}=1+ an^2(x).$

```
julia> using SymEngine
julia> @vars x; # define x as a symbolic variable
julia> f = x^2 + x/2 - sin(x)/x;
julia> diff(f, x)
1/2 + 2*x + sin(x)/x^2 - cos(x)/x
```

Critical Points

Candidates for the solution

- x^* is a local minimum if there exists $\delta > 0$ such that $f(x^*) \le f(x)$ for all x with $|x x^*| < \delta$.
- The derivative is zero at all local and global minima of a differentiable function.

Conditions for Local Minima

Candidates for the solution

- If x^* is a local minimum, then $f'(x^*) = 0$ and $f''(x^*) \ge 0$.
- If $f'(x^*) = 0$ and $f''(x^*) > 0$, then x^* is a strong local minimum.

Taylor series

- an infinite sum of terms that are expressed in terms of the function's derivatives at a single point
- The Taylor series of a function f(x) that is infinitely differentiable at a:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots$$

Conditions for Local Minima - proof

Candidates for the solution

$$f(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3...$$

• If x^* is a local minimum, then $f'(x^*) = 0$.

$$f(x^* + h) = f(x^*) + \frac{f'(x^*)}{(x^{\frac{1}{2}})}(h) + \frac{f''(x^*)}{(x^*)}(h)^2 + \dots$$
$$f(x^* - h) = f(x^*) + \frac{f'(x^{\frac{1}{2}})}{1!}(-h) + \frac{f''(x^*)}{2!}(-h)^2 + \dots$$

• If x^* is a local minimum, then $f''(x^*) \geq 0$.

$$f(x^* + h) = f(x^*) + \frac{f'(x^*)}{1!}(h) + \frac{f''(x^*)}{2!}(h)^2 + \frac{f'''(x^*)}{3!}(h)^3 \dots$$

$$f(x^* - h) = f(x^*) + \frac{f'(x^*)}{1!}(-h) + \frac{f''(x^*)}{2!}(h)^2 + \frac{f'''(x^*)}{3!}(-h)^3 \dots$$

Gradient and Hessian matrix

• Partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} \text{ and } \nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

• Exercise 1.1. Give an example of a function with a local minimum that is not a global minimum.

• Exercise 1.2. What is the minimum of the function $f(x) = x^3 - x$?

• Exercise 1.3. Does the first-order condition f'(x) = 0 hold when x is the optimal solution of a constrained problem?

• Exercise 1.4. How many minima does $f(x, y) = x^3 + y$, subject to $x > y \ge 1$, have?

• Exercise 1.5. How many inflection points does x^3-10 have?