1. Wrapping up the main results

We stated that for a Collatz sequence $v_1, v_2, \ldots, v_{n+1}$ and the corresponding product $\beta = \beta_1 \beta_2 \cdots \beta_n = (1 + 1/3v_1)(1 + 1/3v_2) \cdots (1 + 1/3v_n)$ the following equation holds:

$$(1) v_{n+1} = \frac{3^n v_1 \beta}{2^\alpha}$$

Note that $\alpha = \alpha_1 + \alpha_2 + \ldots + \alpha_n$ is the total number of divisions by two that have been performed within this sequence starting from v_1 and ending with v_{n+1} .

Moreover we stated that the maximum possible number of division by two in such a sequence is given by equation 2.

$$\hat{\alpha} = \lfloor n \log_2 3 + \log_2 v_1 \rfloor + 1$$

2. Problem Statement

Now the following argument was raised: Let v_i be a member of a Collatz sequence, for example $v_i = 17$. An *overflow point* is the next (nearest) power of two above v_i , in this case the overflow point is 32. Theoretically, the overflow point can move higher than the next power of two above 17 (due to multiplication by 3).

When considering a Collatz sequence starting at v_1 and ending with $v_{n+1} = 1$ and introducing a variable δ that represents the accumulation of "+1" we would obtain from equation 1:

$$1 = v_{n+1} = \frac{3^n v_1 \beta}{2^\alpha} = \frac{3^n v_1 + \delta}{2^\alpha}$$

The raised concern is now that nothing may prevent δ to grow larger than $3^n v_1$ possibly leading to $\beta > 2$, since $3^n v_1 \beta = 3^n v_1 + \delta$. Having $\beta > 2$, a beta larger than two would imply for $2^{\alpha} = 3^n v_1 \beta$ and thus for $\alpha = n \log_2 3 + \log_2 v_1 + \log_2 \beta$ that $\log_2 \beta > 1$ violating the inequality given by equation 2.

We can calculate δ directly using the following sum, see equation A.2 in appending of [3, p. 36]:

(3)
$$\delta = \sum_{j=1}^{n} 3^{j-1} 2^{\alpha_1 + \dots + \alpha_n - \sum_{l>n-j} \alpha_l}$$

An example is the sequence $(v_1, v_2, v_3, v_4, v_5) = (37, 7, 11, 17, 13)$ where $v_1 = 37, n = 4$ and $v_{n+1} = v_5 = 13$. The beta is $\beta = (1 + \frac{1}{111})(1 + \frac{1}{21})(1 + \frac{1}{33})(1 + \frac{1}{51}) = \frac{3328}{2997}$. The alpha is $\alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 4 + 1 + 1 + 2 = 8$ and finally the delta is $\delta = 3^0 \cdot 2^{\alpha_1 + \alpha_2 + \alpha_3} + 3^1 \cdot 2^{\alpha_1 + \alpha_2} + 3^2 \cdot 2^{\alpha_1} + 3^3 \cdot 2^0 = 3^0 \cdot 2^6 + 3^1 \cdot 2^5 + 3^2 \cdot 2^4 + 3^3 \cdot 2^0 = 331$.

Indeed it appies

$$v_{n+1} = v_5 = \frac{3^4 \cdot 37 \cdot 3328/2997}{2^8} = \frac{3328}{2^8} = \frac{3^4 \cdot 37 + 331}{2^8} = \frac{2997 + 331}{2^8} = 13$$

Halbeisen and Hungerbühler [4] introduced a function φ , which we can use to describe the δ . This function φ takes a binary number (binary string) s of length l(s) as input and produces an integer output as follows:

(4)
$$\varphi(s) = \sum_{j=1}^{l(s)} s_j 3^{s_{j+1} + \dots + s_{l(s)}} 2^{j-1}$$

Let us take for example the binary string $s = s_1 s_2 s_3 s_4 s_5 s_6 s_7 = 1000111 = 71$ as input for the function φ , which will yield the delta from our example $\delta = \varphi(1000111) = 331$:

Note: $71 = v_1 + v_2 + v_3 + v_4 - 1$.

We have to proove that δ cannot exceed $3^n v_1$.

Halbeisen and Hungerbühler proved that for two distinct binary strings $s = s_1 s_2 \dots s_l$ and $t = t_1 t_2 \dots t_l$, which have the same Hamming weight, it applies [4]:

Theorem 1. If $\sum_{i=1}^k s_i \leq \sum_{i=1}^k t_i$ for all $k \in \{1, ..., l\}$ then $\varphi(s) > \varphi(t)$.

References

- [1] C. Koch, E. Sultanow, and S. Cox. Divisions by two in collatz sequences: A data science approach. *International Journal of Pure Mathematical Sciences*, 21, 2020.
- [2] Collag3n. Comment on answer to "a possible way to prove non-cyclicity of eventual counterexamples of the collatz conjecture?", December 2020.
- [3] E. Sultanow, C. Koch, and S. Cox. Collatz sequences in the light of graph theory. Technical report, University of Potsdam, 2020.

[4] Hungerbühler N. Halbeisen, L. Optimal bounds for the length of rational collatz cycles. *Acta Arithmetica*, 78(3):227–239, 1997.