Vector Valued Functions and Motion in Space

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

September 27, 2024

Lecture-15

Chapter-13.1 & 13.2

Motion of a Particle in Space:

Motion of a Particle in Space:

• Suppose that a particle is moving in the space. Let the particle is at the point P(x(t), y(t), z(t)) at time t units.

• Here the components x(t), y(t) and z(t) of the point P are functions of t.

- Here the components x(t), y(t) and z(t) of the point P are functions of t.
- If the time variable t is varying in an interval I = [a, b], then the point P(x(t), y(t), z(t)) traces a curve (can be called **path of the particle**).

- Here the components x(t), y(t) and z(t) of the point P are functions of t.
- If the time variable t is varying in an interval l = [a, b], then the point P(x(t), y(t), z(t)) traces a curve (can be called **path of the particle**).
- We also use the following notation to denote the position of the particle at time t:

$$\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$$
 (0.1)

• If the functions x(t), y(t) and z(t) are continuous functions on the interval I, then the graph of $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$, $t \in I$ gives a curve in the space.

- If the functions x(t), y(t) and z(t) are continuous functions on the interval I, then the graph of $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$, $t \in I$ gives a curve in the space.
- Here we are interested to study the motion of the particle and its various properties which help us to understant more about the path of the particle.

Examples for Curves

 The above curve is the graph of the following equation in upper half space

$$\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}.$$

Examples for Curves

$$\mathbf{r}(t) = (\sin 3t)(\cos t)\mathbf{i} + (\sin 3t)(\sin t)\mathbf{j} + t\mathbf{k}$$

 $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + (\sin 2t)\mathbf{k}$

Parametrization for Curves

A curve is a graph of a continuous vector functions $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$, it has parametric equations:

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Parametrization for Curves

A curve is a graph of a continuous vector functions $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$, it has parametric equations:

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Examples: Find the parametric equation of the curve of interesection of the cylinder $x^2 + y^2 = 1$ and the plane z = 1/2.

Parametrization for Curves

A curve is a graph of a continuous vector functions $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$, it has parametric equations:

$$x = x(t), \quad y = y(t), \quad z = z(t).$$

Examples: Find the parametric equation of the curve of interesection of the cylinder $x^2 + y^2 = 1$ and the plane z = 1/2.

A curve can have different parametrizations. For instance $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + 1 \mathbf{k}$ and $\mathbf{r}(t) = t^3 \mathbf{i} + t^6 \mathbf{j} + 1 \mathbf{k}$ gives the same curve.

 Motion of a particle (or the path of the particle) can be studied by the equation of its position vector, which is a vector valued function:

$$\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$$
 (0.2)

 Motion of a particle (or the path of the particle) can be studied by the equation of its position vector, which is a vector valued function:

$$\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$$
 (0.2)

 So, its important to study some properties of vector valued functions: Limits, Continuity, Differentiability etc.

Definition 0.1.

Let $\mathbf{r}(t)$ be as in (0.2), a vector-function which defined on an interval I, $t_0 \in I$ and Let $\mathbf{L} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$. We say that $\mathbf{r}(t)$ has limit \mathbf{L} as t approaches to t_0 and write

$$\lim_{t\to t_0}\mathbf{r}(t)=\mathbf{L},$$

if for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$, such that

$$|\mathbf{r}(t) - \mathbf{L}| < \varepsilon$$
 whenever $0 < |t - t_0| < \delta$.

Theorem 0.2.

Let $\mathbf{r}(t)$ be as in the above. The vector-function $\mathbf{r}(t)$ has a limit at $t=t_0$ if and only if the component functions $\mathbf{x}(t),\ \mathbf{y}(t)$ and $\mathbf{z}(t)$ have the limits at $t=t_0$. Moreover,

$$\lim_{t\to t_0}\mathbf{r}(t)=\lim_{t\to t_0}x(t)\;\mathbf{i}+\lim_{t\to t_0}y(t)\;\mathbf{j}+\lim_{t\to t_0}z(t)\;\mathbf{k}.$$

Definition 0.3.

Vector function $\mathbf{r}(t)$ is said to be continuous at $t = t_0 \in I$ if

$$\lim_{t\to t_0}\mathbf{r}(t)=\mathbf{r}(t_0).$$

The function $\mathbf{r}(t)$ is said to be continuous if the function is continuous at every point of its domain.

Definition 0.3.

Vector function $\mathbf{r}(t)$ is said to be continuous at $t = t_0 \in I$ if

$$\lim_{t\to t_0}\mathbf{r}(t)=\mathbf{r}(t_0).$$

The function $\mathbf{r}(t)$ is said to be continuous if the function is continuous at every point of its domain.

Example: $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$ is a continuous vector-function.

• Suppose that $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is the position vector of a particle moving along a curve in the space and that x(t), y(t) and z(t) are differentiable functions of t

- Suppose that $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is the position vector of a particle moving along a curve in the space and that x(t), y(t) and z(t) are differentiable functions of t.
- Then the difference between the particle's position at time t and $t + \Delta t$ is

$$\Delta \mathbf{r} = \mathbf{r}(t + \Delta t) - \mathbf{r}(t)$$

- Suppose that $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is the position vector of a particle moving along a curve in the space and that x(t), y(t) and z(t) are differentiable functions of t.
- Then the difference between the particle's position at time t and $t + \Delta t$ is

$$\Delta \mathbf{r} = \mathbf{r}(t + \Delta t) - \mathbf{r}(t)$$

In terms of components,

$$\Delta \mathbf{r} = [x(t + \Delta t) - x(t)] \mathbf{i} + [y(t + \Delta t) - y(t)] \mathbf{j} + [z(t + \Delta t) - z(t)] \mathbf{k}$$

• As Δt approaches zero, three things seem to happen simultaneously. First the point Q approaches the point P along the curve.

- As ∆t approaches zero, three things seem to happen simultaneously. First the point Q approaches the point P along the curve.
- Second, the secant line PQ seems to approach a limiting position tangent to the curve at P.

- As Δt approaches zero, three things seem to happen simultaneously. First the point Q approaches the point P along the curve.
- Second, the secant line PQ seems to approach a limiting position tangent to the curve at P.
- Third, the quotient $\Delta r/\Delta t$ approaches to the limit:

$$\lim_{\Delta t o 0} rac{\Delta \mathbf{r}}{\Delta t} = \left[\lim_{\Delta t o 0} rac{x(t + \Delta t) - x(t)}{\Delta t}
ight] \mathbf{i}$$
 $+ \left[\lim_{\Delta t o 0} rac{y(t + \Delta t) - y(t)}{\Delta t}
ight] \mathbf{j}$
 $+ \left[\lim_{\Delta t o 0} rac{z(t + \Delta t) - z(t)}{\Delta t}
ight] \mathbf{k}$

Derivatives conti.

Therefore,
$$\lim_{\Delta t \to 0} \frac{\Delta \mathbf{r}}{\Delta t} = \left[\frac{dx}{dt} \right] \mathbf{i} + \left[\frac{dy}{dt} \right] \mathbf{j} + \left[\frac{dy}{dt} \right] \mathbf{k}$$

Derivatives conti.

The above expression lead us to define:

Definition 0.4.

The vector function $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$ has a derivateve (is differentiable) at t, if x(t), y(t) and z(t) have derivatives at t. The derivative of $\mathbf{r}(t)$ is a vector function given by

$$\mathbf{r}'(t) = \lim_{\Delta t \to 0} \frac{r(t + \Delta t) - r(t)}{\Delta t} = \frac{dx}{dt} \mathbf{i} + \frac{dy}{dt} \mathbf{j} + \frac{dz}{dt} \mathbf{k}.$$

• A vector function $\mathbf{r}(t)$ is said to be differentiable if it is differentiable at every point of its domain.

- A vector function $\mathbf{r}(t)$ is said to be differentiable if it is differentiable at every point of its domain.
- The vector $\mathbf{r}'(t)$, when different form $\mathbf{0}$, is defined to be the vector tangent to the curve at P.

- A vector function $\mathbf{r}(t)$ is said to be differentiable if it is differentiable at every point of its domain.
- The vector $\mathbf{r}'(t)$, when different form $\mathbf{0}$, is defined to be the vector tangent to the curve at P.
- The tangent line to the curve

$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$

at a point $(x(t_0), y(t_0), z(t_0))$ is defined to be the line through the point and parallel to the vector

$$\mathbf{r}'(t_0) = x'(t_0)\mathbf{i} + y'(t_0)\mathbf{j} + z'(t_0)\mathbf{k}.$$

Therefore, equation of the tangent line is given by

$$\gamma(\lambda) = \lambda \mathbf{r}'(t_0) + \mathbf{r}(t_0).$$

Smooth Curves

- A Curve is said to be smooth, if there exists a parametrization $\mathbf{r}(t) = (x(t), y(t), z(t))$ of the curve such that
 - $\mathbf{r}'(t)$ is continuous and
 - $\mathbf{r}'(t) \neq \mathbf{0}$ for any t in its domain, that is x(t), y(t) and z(t) have continuous first derivates that are not simultaneously $\mathbf{0}$.

Smooth Curves

- A Curve is said to be smooth, if there exists a parametrization $\mathbf{r}(t) = (x(t), y(t), z(t))$ of the curve such that
 - $\mathbf{r}'(t)$ is continuous and
 - $\mathbf{r}'(t) \neq \mathbf{0}$ for any t in its domain, that is $\mathbf{x}(t)$, $\mathbf{y}(t)$ and $\mathbf{z}(t)$ have continuous first derivates that are not simultaneously $\mathbf{0}$.
- We require $d\mathbf{r}/dt \neq \mathbf{0}$ for a smooth curve to make sure that the curve has a continuously turning tangent at each point. On smooth curve there are no sharp corners.

Smooth Curves

• Examples: The curve of intersection of $x^2 + y^2 = 1$ and x + z = 1 is smooth.

Smooth Curves

- Examples: The curve of intersection of $x^2 + y^2 = 1$ and x + z = 1 is smooth.
- $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + t \, \mathbf{k}$ gives a smooth curve.
- $y=x^2$ is a smooth plane curve. The parametric vector form is r(t)=t $\mathbf{i}+t^2$ \mathbf{j} and $r'(t)=\mathbf{i}+2t$ \mathbf{j} . Since x'(t)=1 for all t, $r'(t)\neq 0$ for any $t\in (-\infty,\infty)$.

Piecewise smooth curve

A curve that is made up of a finite number of smooth curves pieced (joined) together in a continuous fashion.

Examples

Q. Determine the open intervals on which each of the following vector-valued functions is smooth:

1
$$r(t) = (2t^3 - 3t^2) i + (t^2 - 2t) j + 2 k$$

2
$$r(t) = t^3 \mathbf{i} + (\sqrt{t^2 - 1}) \mathbf{j}$$

3
$$r(t) = t^4 \mathbf{i} + \ln(t^2 + 1) \mathbf{j}$$

Definition 0.5.

If $\mathbf{r}(t)$ is the position vector of a particle moving along a smooth curve in space then:

Definition 0.5.

If $\mathbf{r}(t)$ is the position vector of a particle moving along a smooth curve in space then:

1 The velocity of the particle is defined by

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$$

which is tangent to the curve.

Definition 0.5.

If $\mathbf{r}(t)$ is the position vector of a particle moving along a smooth curve in space then:

1 The velocity of the particle is defined by

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$$

which is tangent to the curve.

2 At any time t, the direction of v is the direction of motion.

Definition 0.5.

If $\mathbf{r}(t)$ is the position vector of a particle moving along a smooth curve in space then:

• The velocity of the particle is defined by

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$$

which is tangent to the curve.

- **2** At any time t, the direction of v is the direction of motion.
- The magnitude of v is the particle's speed.

Definition 0.5.

If $\mathbf{r}(t)$ is the position vector of a particle moving along a smooth curve in space then:

The velocity of the particle is defined by

$$\mathbf{v}(t) = \frac{d\mathbf{r}}{dt}$$

which is tangent to the curve.

- **2** At any time t, the direction of v is the direction of motion.
- The magnitude of v is the particle's speed.
- **4** And the derivative $\mathbf{a} = d\mathbf{v}/dt$, when it exists, is the particle's acceleration vector.

In summary,

• Velocity is the derivative of position: $\mathbf{v} = \mathbf{r}'(t)$.

- Velocity is the derivative of position: $\mathbf{v} = \mathbf{r}'(t)$.
- **2** Speed is the magnitude of velocity: Speed = $|\mathbf{v}(t)|$.

- Velocity is the derivative of position: $\mathbf{v} = \mathbf{r}'(t)$.
- **2** Speed is the magnitude of velocity: Speed = $|\mathbf{v}(t)|$.
- Acceleration is the derivative of velocity:

$$\mathbf{a} = \mathbf{v}'(t) = \mathbf{r}''(t).$$

- Velocity is the derivative of position: $\mathbf{v} = \mathbf{r}'(t)$.
- **2** Speed is the magnitude of velocity: Speed = $|\mathbf{v}(t)|$.
- Acceleration is the derivative of velocity: $\mathbf{a} = \mathbf{v}'(t) = \mathbf{r}''(t)$.
- The direction of motion at any time t is the unit vector $\mathbf{v}/|\mathbf{v}|$ (Unit tangent).

- Velocity is the derivative of position: $\mathbf{v} = \mathbf{r}'(t)$.
- **2** Speed is the magnitude of velocity: Speed = $|\mathbf{v}(t)|$.
- Acceleration is the derivative of velocity: $\mathbf{a} = \mathbf{v}'(t) = \mathbf{r}''(t)$.
- The direction of motion at any time t is the unit vector $\mathbf{v}/|\mathbf{v}|$ (Unit tangent).
- Velocity= $|\mathbf{v}| \left(\frac{\mathbf{v}}{|\mathbf{v}|}\right) = (\text{speed})(\text{direction}).$

Example: Find the velocity, speed, and acceleration of a particle whose motion in space is given by the vector $\mathbf{r}(t) = (2\cos t)\mathbf{i} + (2\sin t)\mathbf{j} + (5\cos^2 t)\mathbf{k}$.

Example: Find the velocity, speed, and acceleration of a particle whose motion in space is given by the vector $\mathbf{r}(t) = (2\cos t) \mathbf{i} + (2\sin t) \mathbf{j} + (5\cos^2 t) \mathbf{k}$.

Solution:

$$\mathbf{v} = \mathbf{r}'(t) = (-2\sin t)\,\mathbf{i} + (2\cos t)\,\mathbf{j} - (5\sin 2t)\,\mathbf{k}$$
 $\mathbf{a} = \mathbf{a}''(t) = (-2\cos t)\,\mathbf{i} - (2\sin t)\,\mathbf{j} - (10\cos 2t)\,\mathbf{k}$,

d the speed is given by

and the speed is given by

$$|\mathbf{v}(t)| = \sqrt{(-2\sin t)^{+}(2\cos t)^{2} + (-5\sin 2t)^{2}}$$
$$= \sqrt{4 + 25\sin^{2} 2t}.$$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ からぐ

When $t = 7\pi/4$, we have

$$\mathbf{v}\left(\frac{7\pi}{4}\right) = \sqrt{2}\,\mathbf{i} + \sqrt{2}\,\mathbf{j} + 5\mathbf{k}; \quad \left|\mathbf{v}\left(\frac{7\pi}{4}\right)\right| = \sqrt{29}.$$

When $t = 7\pi/4$, we have

$$\mathbf{v}\left(\frac{7\pi}{4}\right) = \sqrt{2}\,\mathbf{i} + \sqrt{2}\,\mathbf{j} + 5\mathbf{k}; \quad \left|\mathbf{v}\left(\frac{7\pi}{4}\right)\right| = \sqrt{29}.$$

$$\mathbf{a}\left(\frac{7\pi}{4}\right) = -\sqrt{2}\,\mathbf{i} + \sqrt{2}\,\mathbf{j}.$$

Problems:

In the following, $\mathbf{r}(t)$ is the position of a particle in space at time t. Find velocity, speed, acceleration and the direction of the motion.

1
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}$$
, at $t = \pi/2$

Problems:

In the following, $\mathbf{r}(t)$ is the position of a particle in space at time t. Find velocity, speed, acceleration and the direction of the motion.

1
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}$$
, at $t = \pi/2$

2
$$\mathbf{r}(t) = (e^{-t})\mathbf{i} + (2\cos 3t)\mathbf{j} + (2\sin 3t)\mathbf{k}$$
, at $t = 0$

Problems:

In the following, $\mathbf{r}(t)$ is the position of a particle in space at time t. Find velocity, speed, acceleration and the direction of the motion.

1
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}$$
, at $t = \pi/2$

2
$$\mathbf{r}(t) = (e^{-t})\mathbf{i} + (2\cos 3t)\mathbf{j} + (2\sin 3t)\mathbf{k}$$
, at $t = 0$

3
$$\mathbf{r}(t) = (2 \ln (t+1)) \mathbf{i} + t^2 \mathbf{j} + \frac{t^2}{2} \mathbf{k}$$
, at $t = 1$

Problems:

In the following, $\mathbf{r}(t)$ is the position of a particle in space at time t. Find velocity, speed, acceleration and the direction of the motion.

1
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}$$
, at $t = \pi/2$

2
$$\mathbf{r}(t) = (e^{-t}) \mathbf{i} + (2\cos 3t) \mathbf{j} + (2\sin 3t) \mathbf{k}$$
, at $t = 0$

3
$$\mathbf{r}(t) = (2 \ln (t+1)) \mathbf{i} + t^2 \mathbf{j} + \frac{t^2}{2} \mathbf{k}$$
, at $t = 1$

Find parametric equation of the tangent line to the following curves at the given parameter value $t = t_0$.

•
$$\mathbf{r}(t) = (\cos 2t) \mathbf{i} + (\sin 2t) \mathbf{j} + (\sin t) \mathbf{k}$$
, at $t_0 = \pi/2$

Problems:

In the following, $\mathbf{r}(t)$ is the position of a particle in space at time t. Find velocity, speed, acceleration and the direction of the motion.

1
$$\mathbf{r}(t) = (2\cos t)\mathbf{i} + (3\sin t)\mathbf{j} + 4t\mathbf{k}$$
, at $t = \pi/2$

2
$$\mathbf{r}(t) = (e^{-t}) \mathbf{i} + (2\cos 3t) \mathbf{j} + (2\sin 3t) \mathbf{k}$$
, at $t = 0$

3
$$\mathbf{r}(t) = (2 \ln (t+1)) \mathbf{i} + t^2 \mathbf{j} + \frac{t^2}{2} \mathbf{k}$$
, at $t = 1$

Find parametric equation of the tangent line to the following curves at the given parameter value $t = t_0$.

•
$$\mathbf{r}(t) = (\cos 2t) \mathbf{i} + (\sin 2t) \mathbf{j} + (\sin t) \mathbf{k}$$
, at $t_0 = \pi/2$

2
$$\mathbf{r}(t) = t^3 \mathbf{i} + (2t+1) \mathbf{j} + t^2 \mathbf{k}$$
, at $t_0 = 2$

Differentiation Rules for Vector Functions

Let \mathbf{u} and \mathbf{v} be differentiable vector functions of t, \mathbf{C} a constant vector, c any scalar, and f any differentiable scalar function.

1. Constant Function Rule:
$$\frac{d}{dt}C = 0$$

2. Scalar Multiple Rules:
$$\frac{d}{dt} [c\mathbf{u}(t)] = c\mathbf{u}'(t)$$

$$\frac{d}{dt}[f(t)\mathbf{u}(t)] = f'(t)\mathbf{u}(t) + f(t)\mathbf{u}'(t)$$

$$\frac{d}{dt}[\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

3. Sum Rule:
$$\frac{d}{dt} [\mathbf{u}(t) + \mathbf{v}(t)] = \mathbf{u}'(t) + \mathbf{v}'(t)$$

4. Difference Rule:
$$\frac{d}{dt} [\mathbf{u}(t) - \mathbf{v}(t)] = \mathbf{u}'(t) - \mathbf{v}'(t)$$

5. Dot Product Rule:
$$\frac{d}{dt} [\mathbf{u}(t) \cdot \mathbf{v}(t)] = \mathbf{u}'(t) \cdot \mathbf{v}(t) + \mathbf{u}(t) \cdot \mathbf{v}'(t)$$

6. Cross Product Rule:
$$\frac{d}{dt} [\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}(t) + \mathbf{u}(t) \times \mathbf{v}'(t)$$

7. Chain Rule:
$$\frac{d}{dt} [\mathbf{u}(f(t))] = f'(t)\mathbf{u}'(f(t))$$

13.2 Integrals of Vector Functions

Integrals of Vector Functions:

Definition 0.6.

The indefinite integral of \mathbf{r} with respect to t is the set of all antiderivates of \mathbf{r} , denoted by $\int \mathbf{r}(t)dt$. If \mathbf{R} is any antiderivative of \mathbf{r} (i.e. $\mathbf{R}'(t) = \mathbf{r}(t)$), then

$$\int \mathbf{r}(t) dt = \mathbf{R}(t) + \mathbf{C}.$$

Integrals of Vector Functions:

Definition 0.6.

The indefinite integral of \mathbf{r} with respect to t is the set of all antiderivates of \mathbf{r} , denoted by $\int \mathbf{r}(t)dt$. If \mathbf{R} is any antiderivative of \mathbf{r} (i.e. $\mathbf{R}'(t) = \mathbf{r}(t)$), then

$$\int \mathbf{r}(t) dt = \mathbf{R}(t) + \mathbf{C}.$$

Note: Since $\mathbf{r}'(t) = x'(t)\mathbf{i} + y'(t)\mathbf{j} + z'(t)\mathbf{k}$, we have

$$\int \mathbf{r}(t)dt = \left(\int x(t)dt\right)\mathbf{i} + \left(\int y(t)dt\right)\mathbf{j} + \left(\int z(t)dt\right)\mathbf{k}$$

If
$$\mathbf{r}(t) = t^2 \mathbf{i} + (2t - 1) \mathbf{j} + t^3 \mathbf{k}$$
, then

$$\int \mathbf{r}(t)dt = \frac{t^3}{3} \mathbf{i} + (t^2 - t) \mathbf{j} + \frac{t^4}{4} \mathbf{k} + \mathbf{C}.$$

If
$$\mathbf{r}(t) = t^2 \mathbf{i} + (2t - 1) \mathbf{j} + t^3 \mathbf{k}$$
, then

$$\int \mathbf{r}(t)dt = \frac{t^3}{3} \mathbf{i} + (t^2 - t) \mathbf{j} + \frac{t^4}{4} \mathbf{k} + \mathbf{C}.$$

Definition 0.7.

If the components of $\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j} + z(t) \mathbf{k}$ are integrable over [a, b], the so is \mathbf{r} and the **definite** integral of \mathbf{r} from a and b is

$$\int_{a}^{b} \mathbf{r}(t)dt = \left(\int_{a}^{b} x(t)dt\right)\mathbf{i} + \left(\int_{a}^{b} y(t)dt\right)\mathbf{j} + \left(\int_{a}^{b} z(t)dt\right)\mathbf{k}$$

If $\mathbf{r}(t) = t^2 \mathbf{i} + (2t - 1) \mathbf{j} + t^3 \mathbf{k}$, then

If
$$\mathbf{r}(t) = t^2 \mathbf{i} + (2t - 1) \mathbf{j} + t^3 \mathbf{k}$$
, then

$$\int_0^1 \mathbf{r}(t)dt = \left(\int_0^1 t^2 dt\right) \mathbf{i} + \left(\int_0^1 (2t - 1)dt\right) \mathbf{j} + \left(\int_0^1 t^3 dt\right) \mathbf{k}$$

$$= \left[\frac{t^3}{3}\right]_0^1 \mathbf{i} + \left[\left(t^2 - t\right)\right]_0^1 \mathbf{j} + \left[\frac{t^4}{4}\right]_0^1 \mathbf{k}$$

$$= \frac{1}{3} \mathbf{i} + \frac{1}{4} \mathbf{k}.$$

Theorem 0.8 (The Fundamental Theorem of Calculus).

Let $\mathbf{r}(t)$ be a continuous vector function on [a, b] and $\mathbf{R}(t)$ be any antiderivative of \mathbf{r} , then

$$\int_a^b \mathbf{r}(t)dt = \mathbf{R}(t)\Big|_a^b = \mathbf{R}(b) - \mathbf{R}(a).$$

Problem: Suppose we do not know the path of a hang glider, but only its acceleration vector which is given by

$$\mathbf{a}(t) = -(3\cos t)\mathbf{i} - (3\sin t)\mathbf{j} + 2\mathbf{k}.$$

We also know that initially (at time t = 0) the glider departed from the point (4,0,0) with velocity $\mathbf{v}(0) = 3\mathbf{j}$. Find the glider's position as a function of t.

Thank you