Algoritmy a datové struktury 1

Tomáš Turek

Přednáška 1

Úvod

Analýza složitosti

časová složitost a prostorová složitost

Jak přemýšlet nad algoritmy

• lze vymýšlet postupně lepší a lepší řešení

Hrubá síla

- vždy se lze podívat na řešení pomocí hrubé síly
- je to celkem hloupé řešení, ale řeší to problém
- někdy se hodí na řešení okrajových situací pomocí zarážek

Rekurze

- nějaké problémy lze řešit pomocí rekurze
- to může být dobré ale i horší, záleží jak se implementuje rekurze
- rekurze se dá postupně zlepšovat
 - předávám méně dat
 - nebudu lézt do míst, které už nemůžou být lepší
 - v nějakých problémech je dobré řešit pozpátku
 - $-\,$ také se hodí cachovat mezivýsledků (memoizace)

Dynamické programování

• viz budoucí přednáška

Jaká bude interpretace

- třeba pomocí grafů
- neboli se převede problém na jiný, který už umíme řešit

• také se dá využít nějaká datová struktura, která má důležité vlastnosti

Vymyšlení chytáku

- tady žádný postup není
- akorát musí být nějaký nápad

Algoritmus

• definujeme pomocí abstraktního stroje RAM (Random access machine)

RAM

- počítá s čísly, vše se kóduje čísly
- paměť je nekonečné očislované pole (... -2 -1 0 1 2 ...)
- operace:
 - přiřazení kam <- co
 - aritmetika z <- x + y
 - + / * mod
 - & | ^ (and, or, xor)
 - >> << bitshift
 - halt zastavení (na konci je vždy)
 - goto skok na nějakou instrukci SEM: X <- Y goto SEM
 - if X (o) Y $_{\rm O}$ (= < > <= >= !=)
- operandy
 - literál 42
 - buňka v paměti [42]
 - nepřímá adresa [[42]]
- pojmenovávací konvence

$$-A = [-1], B = [-2], \dots, Z = [-26]$$

Přednáška 2

- výpočet:
 - dostaneme do paměti vstup
 - provádíme instrukce postupně
 - * pokud není nějaký skok
- ceny instrukce:
 - 1. může být jedotková (problém s velkým číslem)
 - 2. jednotkové ale omezená čísla (omezili jsme prostor polynomem)
 - 3. logaritmická # bitů s kterými pracujeme (nepohodlné)
 - 4. relativní logaritmická #bitů čísel / log n (horní celá část) většinou jednotková cena
- Definice pro program a vstup x:
 - čas běhu programu
 - * t(x): součet cen instrukcí

- prostor běhu programu
 - * s(x): maximální použité buňky
- Definice pro program:
 - časová složitost
 - * T(X): max{t(x), vstup x velikosti n}
 - · veliksot se může měřit různými způsoby
 - prostorová složitost
 - * S(X): max(s(x))
- časová složitost
 - spočítat přesnou složitost je těžké
 - je lepší odhadovat (asymptotika)
 - konstanty se chovají jinak na strojích a jazycích
 - pro velké vstupy rozhoduje asymptotika
 - * naopak pro malé vstupy se může chovat trochu jinak

Grafové algoritmy

Reprezentace grafu

Matice sousednosti

- čtvercová matice přes vrcholy (V)
- když existuje hrana (E) mezi vrcholy, tak je tam 1, jinak 0

Seznam sousedů

- pro každý vrchol si pamatuji seznam jeho sousedů
- může být jako spojový seznam

BFS (prohledávání do šířky)

- nalezený vrchol dám do fronty a pak se spustím na nový z vrcholu
- · algoritmus vlny

DFS (prohledávání do hloubky)

- zavolám se na vrchol a zavolám se na sousedy
 - pokud je nenalezen, tak se na něj zavolám rekurzivně
 - jakmile se pak vrátím tak ho zavře
- pamatuji si pro každý vrchol stav
 - stav je (nenalezen/otevřený/zavřený)
- budu mít budíky
 - pro každý vrchol si pamatuji kdy jsem ho otevřel a zavřel
- časová složitost je O(m+n)
 - každý vrchol je otevřen max jednou (n)
 - součet přes stupně výstupů (m)
- Lemma:

- -po DFS jsou všechny vrcholy buď uzavřený (tak je dosažitelný) nebo nenalezený
 - * když jsem ho zavřel, tak jsem se do něj dostal a proto jsem se do něj musel dostat
 - * kdyby existovali špatné vrcholy (dosažitelné a nenalezený)
 - · najdu předposlední vrchol a ten je dobrý
 - · ale ten musel navštívit hranou do toho špatného

Přednáška 3

dá se značt i uzávorkováním (otevírací, když vlezu do vrcholu a zavírací, když ho zavřu)

• také se dá popsat DFS stromem

• klasifikace nenavštívených hran (DFS klasifikace):

zpětná hrana

* vede do předchůdce

dopředná hrana

* vede už do uzavřeného vrcholu

příčná hrana

* podobná jako dopředná akorát daný vrchol není jeho potomkem

* vede vlastně 'dozadu v čase'

stromová hrana

* to je hrana která se prošla

tyto hrany jsou jediné možné

pokud se jedná o neorientovaný graf tak není příčná hrana

• typ hrany zle získat v O(1) díky budíkům (čas in a out)

• Věta: DFS v čase $\Theta(n+m)$ a prostoru $\Theta(n+m)$ najdu dosažitelné vrcholy a určíme typy hran.

Mosty (v neorientovaných grafech)

- Df: Most je hrana, kterou kdyý odeberu, tak se mi zvýší počet komponenet souvislosti.
- Lemma: Hrana e není most <=> e leží na kružnici.
- jelikož není příčná hrana, tak se musí najít jestli není zpětná hrana
- **Df:** low(v):= min(in(v) | xy je zpětná hrana a x pod v).
 - celkově je to minimum přes low(s) synů a in(y) vy je zpětná hrana
- Věta: Algoritmus nalezne všechny mosty v čase a prostoru $\Theta(n+m)$.

Acyklické orientované grafy (DAGy)

- Je graf DAG?
 - **Lemma:** ∃ dosažitelný cyklus <=> DFS najde zpětnou hranu.
 - * abychom našli všechny cykly, tak opakujeme DFS pro všechny nenalezené vrcholy, nebo udělá zdroj, který vede do všech vrcholů
- Topologické uspořádání.

- **Df:** Lineární uspořádání, tak že $\forall xy \in E(G)x \leq y$.
- Cyklus nemá TU.
- Věta: Pro každý DAG existuje TU.
 - * Df: Zdroj je vrchol do kterého nevede hrana.
 - * **Df:** Stok je vrchol ze kterého nevede hrana.
 - * Pokud budu utrhávat Zdroje, tak zjistím jestli to je DAG.
- Věta: Pořadí v němž DFS prohledává vrcholy je opačný oproti TU.
- Topologická indukce c(v) je počet cest z u do v pokud je DAG, tak stačí najít TU a jakmile najdu u, tak pro další vrcholy sečtu c(v) jejich předchůdců
- Plánování

Silná souvislost (orientovaný graf)

- **Df:** Relace R: x R y, tak že \exists sled z x do y. Potom RR: x RR y: x R y & y R x.
 - R je jen značení.
 - je to ekvivalence
 - -třídy ekvivalence jsou komponenty silné souvislosti, potom graf je silně souvislý pokud# komponent sil. s. je 1
- **Df:** Graf komponent je graf kde vrchol je komponenta sil. s. a hrana pokud vede z jednoho vrcholu do jiného vrcholu hrana s tím, že jsou v jiných komponentách.
- Lemma: Graf komponent je DAG.
 - Pokud by existoval cyklus, tak by to byla jedna komponenta silné souvislosti.

Přednáška 4

• ∃ aspoň 1 zdoj a 1 stok

- pokud spustím DFS v stokové komponentě, tak najdu jen ty vrcholy ve stokové komponentě
- pokud spustím opakovaně DFS, tak vrchol s největším outem musí být ve zdrojové komponentě
 - tedy pokud udělám opačný graf/transponovaný graf (otočení hran) tak najdu stokovou komponentu
 - pak můžu smazat stokovou komp. a opakovat (to je pomalé)
 - nebo procházím vrcholy v pořadí klesajících outů v G^T
 - \ast pokud vrchol ještě nemá přiřazenou komp. tak spustím DFS vG
 - * **Lemma:** Pokud C_1 C_2 jsou komponenty tak že mají v grafu komp. hranu mezi sebou $(C_1 \to C_2)$, tak max out(u) > max out(v), kde $u \in C_1$ $v \in C_2$
- Postup algoritmu:
 - Sestrojit G^T a vytvořit zásobník, projít DFS G^T a až opustím vrchol, tak ho přidám do zásobníku. Následně pak vytahuju ze zásobníku a

pokud nemá komp, tak na něj pošlu DFS a označím danou komponentu.

Nejkratší cesta

- v orientovaném grafu a s hodnocenými hranami (nezáporné)
 - pokud bych použil záporné hrany tak mohou nastat problémy
 - * neplatí trojúhelníková nerovnost
 - * záporné cykly
 - * rozdíl mezi použitím sledu a cesty
 - * kompromis: povolení záporných hran, ale zakázané záporné cykly
- délka uv cesty je součet všech hran, přes které prochází
- vzdálenost je minimum z délek uv cest/sledů (může být $+\infty$)
- Lemma: Pokud S je uv sled, tak \exists cesta P, která je $l(S) \leq l(P)$ jak sled.
- platí i trojůhelníková nerovnost $d(u, w) \le d(u, v) + d(v, w)$.
- pokud všechny délky hran jsou jedna, tak stačí jen spustit BFS
 - u vrcholů si značím číslo vrstvy a pomatuji si předchůdce

Strom nejkratších cest

- strom na V, podgraf G, orientovaný od kořene u, všechny vrcholy jsou ve stromu
- uloženínejkratších cest z u do v
- Lemma: Existuje strom nejkratších cest i v ohodnoceném grafu.
 - prefix nejkratší cesty je zase nejkratší cesta
- Pokud mám ale graf který má délky hran $\in N$, tak to lze převést na stejný problém.
 - tedy dané hrany si rozdělím na n podhran a jen jakmile se něco změní, tak přepočítám vzdálenosti

Prednaska 5			

Dijkstrův algoritmus

- přidělení prvnímu vrcholu hodnotu nula a ostatním $+\infty$
- vyberu s nejmenším ohodnocením a tam půjdu
 - pak přenastavím sousedy, pokud se tam mohu dostat rychleji přes nový vrchol
- samotná časová složitost je $O(n^2)$
- použitím vhodné DS halda
 - potřebné operace:
 - * extract_min, insert, decrease
 - při použití je časová složitost $O(n*T_{extract_min} + n*T_{insert} + m*T_{decrease})$
- Invariant: Pokud mám otevřený vrchol o a zavřený z, tak $h(z) \le h(o)$ a taky h(z) se nemění.

• Věta: Dijkstrův algoritmus zavírá vrcholy v pořadí podle vzdálenosti od u každý dosažitelný právě jednou, h(v) po zvření je rovno k d(u, v).

Binární halda

- binární strom, kde každý má dva potomky až na poslední vrstvu, kde se zaplňuje od leva do prava
- předchůdce je menší (minimální halda)
- insert
 - přidání na jediné místo kde má být a potom může probublat nahoru, pokud je lehčí
- extract_min
 - kořen vyměním se spodním a pak ten propadne dolu
- decrease
 - jak najdu prvek, tak ho zmenším a kdyžtak probublá nahoru
 - najdu prvek pomocí ukazatelů na prvky haldy
- všechny operace jsou v $O(\log n)$

Fibonacciho halda

- lepší halda pro tohle použití
- extract_min v $O(\log n)$
- decrease a insert v O(1)

Relaxační algoritmus

- do této skupiny patří i Dijkstrův algoritmus
- držím u vrcholů jejich hodnotu h(v) a při vstupu do vrcholu se upraví sousedi
- Lemma: Pokud se algoritmus zastaví, tak každý $v \in V$ je dosažitelný z u <=> v je uzavřený <=> h(v) je konečné.
- Lemma: Pokud se algoritmus zastaví, pak $v \in V$ h(v) = d(u, v).

Belmanův-Fordův algoritmus

- typ relaxačního algoritmu
- otevřené vrcholy jsou ve frontě
 - zavírá nejstarší z otevřených vrcholů
- Věta: B-F algoritmus spočítá vzdálenosti d(u, -) v čase O(nm) pro libovolný graf bez záporných cyklů.
- Fáze výpočtu:
 - $-F_0$ je otevření u
 - $-\ F_i$ zavírání vrcholů z F_{i-1} a oteveríná jejich následníků
- Invariant: Na konci fáze $F_i \ \forall v \in Vh(v) \leq délka$ nejkratšího max uv sledu o max i hran.

Přednáška 6

Minimální kostra

- kostra je podgraf, který nemá cykly ale obsahuje všechny vrcholy
 - minimální je, že součet hran je minimální
- je dán souvislý neorientovaný graf
 - všechny hrany mají danou váhu

Jarníkův algoritmus

- vybereme si jeden vrchol
- z toho budeme pěstovat strom
 - vybereme nejlehčí z hran mezi vrcholy co jsou ve stromu a těmi co nejsou ve stromu
 - pokud ta nejlehčí nevytvoří cyklus, tak ho přidáme
- jedná se o hladový algoritmus (greedy algorithm)
- Elementární řez: vybrání podmožiny hran (R) a dvě podmnožiny vrcholů (A a B). S tím, že A a B nemají ani jeden společný prvek a mezi nimi vedou hrany jen z R.
 - Lemma: Pokud nalezneme v řezu nejlehčí hranu, tak se vyskytuje v každé min kostře. S tím, že váhy jsou unikátní.
 - * pokud by tam nebyla, tak tam bude nějaká jiná hrana z řezu a tu pokud vytáhnu, tak dostanu dvě komponenty a mohu přidat danou nejlehčí hranu a najednou kostra je lehčí
- Lemma: Jakmile se Jarn. alg. zastaví tak strom bude kostra.
 - hrany mezi T a zbytkem grafu tvoří ele. řez, použitím Lemma o elem.
 řezu je jasné, že musí být v kostře
 - také existuje právě jedinná min kostra (unikátní váhy)
 - min kostra je jednoznačně určena pořadím hran podle vah
- pokud by váhy nebyly unikátní, tak by vše mělo stále fungovat
- Verze podle Dijkstry:
 - pro všechny sousedy si budu pamatovat min z vah se sousedy ze stromu
 - pak přidám minimální z těchto a přepočítám ohodnocení
 - otevřené vrcholy jsou sousedé, zavřené v T a nenalezené zbytek
 - zase potřeba extract min, insert, decrease
 - takže je dobré použít bin. haldu

Borůvkův algoritmus

- $\bullet\,\,$ mám několik stromečků a každý stromeček přidá nejlehčí hranu s okolím
- na začátku jsou všechny vrcholy stromečky
- konec je když už mám jen jeden stromeček
- Lemma: #fází $\leq \log n$
 - každý stromeček na konci fáze vznikne spojením aspoň dvou stromečků
 - takže na konci každé fáze má každý stromeček asapoň 2^k vrcholů

- Lemma: Strom je min kostra.
 - využití lemma elem. řazu
 - v každém kroku je elem. řez mezi stromečkem a ostatním (pro všechny)
- Věta: Borůvkův algor. najde v čase $O(m \log n)$ min kostru.
- dá se paralelizovat na vícero procesorech

Kruskalův algoritmus

- hladový algoritmus
- setřídíme hrany podle váhy
- pokud přidáním hrany nevznikne cyklus, tak ho přidáme
- Lemma: Alg. najde min kostru.
 - podgraf je vždy les, na konci pak strom
 - je minimální (zase díky lemma elem. řezu)
- složitost závisí na testování jestli nevznikne cyklus

Union-FInd (DFU)

- udržujeme komp. souvislosti
- operace
 - Find (u,v):
 - * jsou u a v v komponentě
 - Union (u,v):
 - * sjednocení u a v komponenty
- lepší než si pamatovat číslo komponenty pro vrchol je reprezentace komponenty pomocí keříků
 - vrchol si pamatuje předchůdce
 - FInd pak najde kořen u a kořen v a porovná $(\log n)$
 - Union zase najde kořeny a nastavíme otce jednoho kořene na druhý.
 S tím, že připojím mšlčí pod hlubší.
 - **Lemma:** Keřík hloubky h má aspoň 2^h vrcholů.

Přednáška 7

Datové struktury

- struktura uchovávající data
- můžeme po ní chtít jisté operace
- ale v podstatě nezáleží jak je implementovaná
- rozhraní (statická postaví se jednou / dynamická pořád se mění)
 - fronta, zásobník, posloupnost
 - prioritní fronta (halda)
 - množina
 - slovník (klíč, hodnota)

- uspořádaná množina
- implementace
 - pole
 - spojový seznam
 - halda
 - vyhledávací strom

Binární vyhledávací strom

- Binární strom má kořen a ten může mít levý a pravý podstrom (záleží na tom jestli je levý nebo pravý).
- hloubka := maximální počet hran do listu (pokud je prázdný tak -1)
- BVS je typický binární strom s tím, že klíče v levém podstromu < klíč v kořenu < klíče v pravém podstromu
- operace
 - Show (enumerate) O(n)
 - * projít celý strom (nejdřív levý podstrom pak kořen a pak pravý)
 - Find (x) O(hloubka)
 - * pokud je kořen stejný jako x, tak jsem našel, jinak jdu do podstromu podle toho jestli je větší nebo menší
 - Insert(x) O(hloubka)
 - * v podstatě hledám jakoby tam byl a pak pokud je tam prázdný vrchol, tak ho tam vložím
 - Delete(x) O(hloubka)
 - * nejdříve najdu a potom záleží jestli to je list / má dva syny / jednoho syna
 - * upravím aby to byl list (najít ten nejbližší a vyměnit)
- protože záleží na hloubce stromu, tak bychom chtěli aby strom nedegeneroval

Dokonale vyvážený BVS

- **Df:** Je dokonale vyvážený $\ll > \forall v ||L(v)| |R(v)|| \leq 1$.
- hloubka $\leq \log_2 n$ potomek má \leq polovinu předchůdce
- tento strom je těžký udržovat a pak taky není tak rychlý (přísná podmínka)
- Věta: V každé implementaci operací Insert, Delete v d. v. BVS má aspoň jednu z operací složitost $\Omega(n)$ pro nekonečně moho hodnot n.
 - pokud si vezmu plný strom a zaplněný vzestupně, pak smažu první a přidám n+1 prvek, potom $\Omega(n)$ listů změnili klíč

AVL - Hloubkově vyvážený BVS

- **Df:** Je dokonale vyvážený $<=> \forall v |h(l(v) h(r(v))| \le 1.$
- Věta: Hloubka AVL stromu s n vrcholy je $\Theta(\log n)$.
 - dá se ukázat pomocí Fibonacciho posloupnosti
 - nebo vždy ukázat nejhorší možný strom a potom najít, že další je spojení předchozích a potom mat. indukcí

- je potřeba zajistit aby operace insert a delete zachovával AVL strom
- v každým vrcholu si budeme pamatovat znaménko
 - hloubka pravého levého podstromu
- potom pomocná operace rotace
 - jedná se o překlopení hrany (vyměním předchůdce za jednoho jeho následníka)
- a taky dvojitá rotace
 - týká se dvou hran za sebou, které jsou zalomené
 - po tom se ten poslední stane kořenem a vše ostatní už je dané
- Insert (x)
 - nejdříve přidá list na svoje místo
 - zjednodušení jen na levou část a to tak, že z levého podstromu přijde signál změny
 - 1. Pokud je kořen + (že pravý je hlubší)
 - z něho se stane 0 a nemusí posílat signál dál
 - 2. Kořen je 0
 - levý je teď hlubší než pravý a taky musíme poslat informaci dál
 - 3. Kořen je -
 - už musíme zasáhnout tři případy
 - 1. (-) a to že levý podstrom je taky -
 - stačí jen zrotovat hlavní kořen s kořenem levého podstromu
 - 2. (+) kořen levého podstromu má +
 - tady se použije dvojitárotace s pravým potomkem kořene levého podstromu a kořeny
 - 3.(0)
 - tohle nikdy nenastane
 - respektive jen když přidám list, ale to není problém
- Delete (x)
 - převádíme na mazání listu
 - bude se podílat signál o snížení podstromu (levý)
 - 1. Pokud kořen je -
 - odeberem a kořen bude 0 a musíme poslat signál
 - 2. Kořen je 0
 - jen se změní 0 na +
 - 3. Kořen je +
 - případy podle kořene pravého podstromu
 - 1. (+)
 - opravíme rotací s kořenem a kořenem pravého podstromu
 - kořen se změní na 0 a musíme poslat signál dál
 - 2.(0)
 - jak předtím stejná rotace
 - kořen má pak a nemusíme posílat dál
 - 3. (-)

- dvojitá rotace
- hlavní kořen a pravý podstrom a levý podstrom pravého podstromu
- kořen bude 0 a musí se poslat dál signál
- Věta: Insert, Delete a Find mají časovou složitost $\Theta(\log n)$.
- externí vrcholy jsou prázdné vrcholy, které jsou zároveň listy
 - všechny internívrcholy mají dva syny
 - externí vrcholy značí intervaly

Vícecestný vyhledávací strom

- podobný jako BVS, ale v interních vrcholech je více klíčů, kterérozdělují jejich podstromy
- každý vrchol má k klíčů a k+1 podstromů
- zase může degenerovat, proto všechny externí vrcholy budou na jedné hladině
 - vypadá hodně striktně, ale zase může být více klíčů

(a,b) stromy

- vícecestný vyhledávacístrom
- $a \ge 2$ a $b \ge 2a 1$
- všechny externí vrcholy jsou na stejné hladině
- int. vrcholy mají a až b synů
 - vyjma kořene tem má 2 až b

Přednáša 9

- Lemma: (a,b) strom s n vrcholy má $\Theta(\log n)$ hlounku.
 - pokud budu mít minmimální počet klíčů, tak na každé hladině mám $2a^{i-1}$ vrcholů
 - součet všech vrcholů pomocí geometrické řady
 - potom pro maximální počet klíčů
- Find (x)
 - konstantnína hladinu a jinak podobně BVS
- Insert (x)
 - hledám kam přidám a pokud bych ho přidal místo externího, tak
 - * vždy dáme na poslední vnitřní hladinu (přidáním klíče)
 - * pokud přeteče, tak
 - · předám prostřední klíč otci a rozdělím syna na půl (štepení vrcholů)
 - · pokud přeteče i otec, tak opakujeme dál
- Delete (x)
 - nejprve převést na Delete na nejnižší hladině (njebližší prvek pravé minimum)
 - teď vrchol mohl podtéct

- * najdeme si sourozence (záleží kolik má bratr klíčů)
 - pokud má více jak minimum, tak jeho nejbližíší otci vyměním s otcem a jeho si vezmu já
 - pokud má právě minimum, tak se sleváním spojíme a ještě ubereme otcovi
 - · pak je možné že otcův vrchol podtekl a tak pokračujeme dál
- je potřeba volit a a b
 - typicky chceme blízké b a malé a
 - nejpoužívanější je (2, 3) strom a (2, 4) strom
 - na disk je dobré použít (256, 512) strom
 - pak zasse pro keš je dobrý (4, 8) strom

LLRB

- left leaning red and black tree
- dá se zakódovat z (2, 3) stromu
- je to BVS s externími vrcholy a hranami (červené nebo černé)
- Axiomy:
 - 1. Dvě červené hrany nejsou za sebou.
 - 2. Pokud vede jen jedna červená hrana, tak doleva.
 - 3. Hrany do externích listů jsou černé.
 - 4. Na každý cestě kořen-list je stejný počet černých hran.
- Lemma: Existuje bijekce mezi LLRB a (2, 3) stromy.
- při implementaci je dobré si barvu pamatovat v dolním vrcholu
- dvě pomocné operace:
 - rotace R hrany
 - * přehození otce a syna na červené hraně
 - * zachovává černé axiomy, ale ne červené
 - přebarvení čtyřvrcholu (třešnička)
 - * červené se stanou černé a tyto budou mít nahoru červenou
 - * zachovává B axiomy ale ne R axiomy
- Insert (x)
 - směrem dolů přebarvujeme vrcholy
 - nahradíme externí vrchol a pod ním budou nové dva externí vrcholy, vnitřní je připojený červenou hranou
 - směrem nahoru pak rotacemi spravujeme R axiomy
- Delete (x)

Přednáška 10

Trie (písmenkový strom)

- kdybychom řetězce ukládali do BVS, tak bude pomalejší protože logaritmus se násobí délkou řetězce
- v každém vrcholu se rozhodujeme jaký je momentální character

- každý vrchol má vlastně slovo (prefix) jednoznačně dané
- ne všechny slova končí až v listech (jen prefix)
 - každý vrchol má bool jestli to je slovo nebo ne
 - popřípad i hodnota (slovník)
- ve vrcholu je pole indexované abecedou s ukazateli
- Member (y)
 - jestli je řetězec ve stromu
 - hledá postupně a pokud tam je a je i označené jako slovo
- Insert (y)
 - jako hledání a pokud třeba, tak přidám a na konci označím vrchol
- Delete (y)
 - nejdřív najde, smažu značku a pak pokud je slepá větev, tak smažu vrchol
- všechny časy jsou $\Theta(|y|)$
- paměť je $O(\sum_i |y_i|)$
- Velká abeceda?
 - Insert (y), Delete (y) a paměť se zvětší
 - proto je lepší použít BVS
 - * paměť pak bude stejná a čas bude $\Theta(|y| \log n)$
- lze upravit na číslicový strom

Hešování

- abstrakce
 - m přihrádek a pak přes funkci dostanu kam to patří
- kolize
 - více prvků v přihrádce
 - lze spravit daním seznamem do přihrádky
- čas závisí na zaplnění přihrádek
 - lepší rovnoměrně rozházet
- Volba hešovací funkce:
 - lineární kongruence
 - $* x \to (ax) \mod m$
 - * m je prvočíslo a a je nesoudělné s m $(a \approx 0.618)$
 - multiply shift
 - $* x \rightarrow (ax \mod 2^w) >> w k$
 - * vyříznutí bitů nahoře
 - skalární součin

$$* x_0 \dots x_n \to (\sum_i^n a_i x_i) \mod m$$

polynom

$$* x_0 \dots x_n \to (\sum_i^n a^i x_i) \mod m$$

- ze začátku se nevím jak dlouhý bude vstup a tedy i tabulka
 - proto je dobré přehešovávat v průběhu
 - sledujeme $\alpha = \frac{n}{m}$
 - * m je faktor naplnění a n je konstanta
 - -pokud α zroste příliš, tak uděláme ví
e přihrádek a přehešujeme

- * zvolíme dvojnásobek počtu přihrádek
- * časově je to lineární, ale amortizovaně je to konst
- je dobré volit náhodnou hešovací funkci z nějakého systému funkcí
 zajímavost: security (PHP)
- **Df:** Systém funkcí z universa do [m] je c-universální (c>0), tak že $\forall x \neq y \in U : Pr_{h \in H}[h(x) = h(y)] \leq \frac{c}{m}$.

Přednáška 11

- Lemma: Necht H je c-universální systém, $x_0 \dots x_n \in U$ navzájem různé a $y \in U$. Potom $E_{h \in H}[\#i: h(x_i) = h(y)] \le c \frac{n}{m} + 1$.
 - pokud y se nerovná žádnému x_i tak bude menší jak zlomek a pokud se bude rovnat tak jen jednou proto + 1
 - pomocí indikátorů a střední hodnoty
- otevřená adresace
 - v každé přihrádce může být max 1 prvek
 - kolize zkusíme jinou přihrádku
 - **Df:** Každému z z universa určíme posloupnost $h(x,0), h(x,1), \ldots, h(x, m-1)$
 - Insert
 - * pokud je přihrádka obsazená, tak přiřazuji na další funkci
 - * pokud narazí na pomníček, tak přepíše
 - Find
 - * postupně hledat v posloupnosti
 - Delete
 - * místo prvku vložím pomníček
 - příklady:
 - * lineární přidávání
 - · pokud už je přihrádka obsazená, tak půjdu doprava (cyklicky)
 - * dvojité hešování
 - $\cdot h(x, i) = (f(x) + ig(x)) \bmod m$
 - **Věta:** Pokud vyhledávací posloupnosti jsou nezávislé plně náhodné permutace, potom $E[\#p\check{r}ihr\acute{a}dek\ nav\check{s}tívených\ p\check{r}i\ neúspešném\ Findu] \leq \frac{1}{1-\alpha}$.

Rozděl a panuj

- typicky rekurzivní řešení
- příklad
 - mergesort
 - * rozdělení na podposloupnost a slít dané podposloupnosti
- analýza složitosti
 - strom rekurze
 - rozepsání rekurze

- řešení násobení čísel o délce n
 - každá cifra s každou (kvadratická)
 - * dobré pro malé čísla
 - eozdělení čísel na poloviny a prosčítat mezi sebou
 - 4 násobení n/2 čísel a n na spojení
 - * pořád kvadraticky
 - * mohu náobit jen třikrát
 - volba základu soustavy
- obecná rekurence
 - každý vrchol má a synů
 - na i-té hladině:
 - * a^i podproblémů velikosti $\frac{n}{h^i}$
 - * čas na pp $(\frac{n}{h^i})^c$
 - součet pro složitost je geometrická řada, záleží na velikosti q

Master theorem (kuchařková věta)

- pro řešení rekurence
- Rekurence $T(n) = aT(n/b) + \Theta(n^c)$, pro $a \ge 1, b > 1, c \ge 0$, má řešení:

 - $-\frac{a}{b^c} > 1 \to T(n^{\log_b a})$ $-\frac{a}{b^c} = 1 \to T(n^c \log n)$ $-\frac{a}{b^c} < 1 \to T(n^c)$
- násobení matic
 - lze upravit na 8 násobení a pak sčítání stejnš je to kubické
 - Strassenův alg. jen 7
- selekce
 - hledání k-tého nejmenšího prvku

QuickSelect

- podobné jako quicksort, ale netřídíme vše, jen tam kde může být
- dost záleží na volbě pivota
 - ideálně medián (lineární slož.)
 - nejhůře extrém (kvadratická slož.)
 - možné je skoromedián (v prostřední polovině)
 - * randomizace volby
 - * Věta: $E[\check{c}as\ složitost] = \Theta(n)$
 - · Pravděpodobnost, že se trefím je 1/2.
 - · Lemma (o džbánu): Pokud pokus uspěje s pravděpodobností p, pak E[# pokusů do 1. úspěchu] = 1/p.

Přednáška 13

- volba pivota
 - rozdělení na pětice
 - najdeme mediány pětic
 - najdeme medián mediánu pětic
 - tento alg. má lineární složitost

QuickSort

- · vybrat pivota, rozdělit podle pivota a setřiď další části
- Věta: QuickSort s náhodnou volbou pivota má průměrnou časovou složitost $\Theta(n \log n)$.
 - intuitivní postup jako předchozí
 - nebo přes střední hodnoty a potom jak se sčítá Harmonická řada
 - * ten se dá odhadnout integrálem (pak je to $\log n$)

Dynamické programování

- dá se popsat jako pattern úvah
- FIbonacciho číslo
 - dá se řešit rekurzivně
 - * velký strom rekurze a roste exponenciálně
 - opakujeme stejné výpočty dokola
 - * proto si pořídíme paměť (keš) na pamatování mezivýsledků
 - * v tento moment už je lineární
 - lze ale vyplňovat pole bez rekurze
- pamatování mezivýsledků (memoizace / kešování)
- Postup dyn. prog:
 - 1. rekurzivní řešení
 - 2. mockrát počítám stejnou hodnotu
 - 3. memoizace / kešování
 - 4. rekurze předevedeme na plnění keše cyklem

Přednáška 14

- Editační vzdálenost (Levenštejnova)
 - editační operace
 - * přidáníznaku, výměna znaku a smazání znaku
 - editačnívzdálenost je pak minimální posloupnost editačních operací
 - je to metrika
 - lze rekurzivně zkoušet všechny možnosti operací
 - * je ale hodně pomalé
 - * dá se pamatovat mezivýsledky
 - pokud bychom chtěli vyplmňovat tabulku
 - * tabulka bude dvojrozměrná a začínám od konce po řádcích
 - lze se na to podívat grafově (hledání nejkratší cesty)

Optimální BVS

- v nějaký moment je lepší upravit BVS s ohledem na dotazy
- optimální strom se dá spočítat rekurzivně
 - vezme se nějakývrchol jako kořen a pak se bude počítat podstromy a přidá se k tomu součet všech vah (protože přes ty se musí projít)
- pokud chceme rekunstruovat strom, tak si pamatujeme optimální kořen

Obecn Dyn. Prog.

- systém podproblémů (stavy DP) a závislosti mezi nimi
 - tvoří DAG
 - procházíme stavy v topologickém pořadí

Floydův-Marshallův algoritmus

- pro hledání nejkratších cest z i do j pro všechny vrcholy v orientovaném grafu
 - lze i n * Dijkstrův algoritmus a nebo n * Bellman Forduv
- v každém kroku mám hodnoty pro všechny vrcholy a podmnožinu vrcholů, přes které může vést sled
- potom přidám dalšívrchol do podmnožiny a vyberu si minimum buď z předchozího ij a nebo součtu předchozího ik a kj