Электротехника

Электрические машины Электрические машины постоянного и переменного тока

РОДЮКОВ МИХАИЛ СЕРГЕЕВИЧ КАФЕДРА ЭЛЕКТРОТЕХНИЧЕСКИХ СИСТЕМ ИНСТИТУТ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАТИКИ

Машины переменного тока

Вращающееся магнитное поле

Вращающееся магнитное поле

На основании рассмотрения этих трех частных случаев можно сделать заключение, что три неподвижные обмотки, сдвинутые в пространстве на 120° и обтекаемые токами, сдвинутыми на 120° во времени создают вращающееся магнитное поле, чья индукция постоянна. Такое поле является двухполюсным. Если конструкция содержит 2р полюсов, то синхронная угловая скорость будет:

$$\Omega_S = \frac{\omega}{p} = \frac{2\pi f}{p}$$
, рад/с

и соответствующая ей частота вращения $n=\frac{60f}{p}$, об/мин

Шкала синхронных скоростей ($f = 50 \, \Gamma$ ц):

Число пар полюсов р	1	2	3	4	5	6
Синхронная частота Вращения n [об/мин]	3000	1500	1000	750	600	500

Конструкция асинхронного двигателя

Асинхронная машина — двухобмоточная электрическая машина переменного тока, у которой только одна (первичная) получает питание от сети с частотой f_1 , а вторая обмотка (вторичная) замыкается накоротко или на сопротивления. Токи во вторичной обмотке появляются в результате индукции. Их частота f_2 является функцией частоты вращения ротора.

Скольжение

Ротор асинхронного двигателя вращается с частотой n меньшей чем синхронная частота вращения $n_{\scriptscriptstyle S}$, поэтому для оценки разности часто используется относительная величина, называемая скольжение:

$$s = \frac{n_s - n}{n_s}$$
 или $n = n_s(1 - s)$.

На этой линии имеется две характерные точки:

- 1) $n = n_S$, s = 0 функционирование без нагрузки (физически данная точка не существует);
- 2) n = 0, s = 1 пуск двигателя.

Эти точки делят линию на три интервала:

- 1) s < 0 функционирование в качестве генератора;
- 2) 0 < s < 1 функционирование в качестве двигателя;
- 3) s>1 —функционирование в качестве электромагнитного тормоза.

Механическая характеристика

Зависимость M = f(s) имеет кубический характер и имеет четыре характерных точки:

- 1)s = 0, M = 0 холостой ход;
- 2) s = skp, M = Mmakc;
- 3) s = skp, M = Mh;
- 4) s = 1, M = Mn.

В интервале 0 < s < 1 электрическая машина работает в режиме двигателя и вращающий момент достигает максимума при s = skp = R2/X2.

На практике номинальный момент двигателя достигает половины максимального момента, при этом скольжение составляет около 5%.

Характеристика момент-частота

Характерные точки

1)
$$n = 0$$
 , $M = M_{\Pi}$

2)
$$n = n_{Kp}, M = M_{MaKC}$$

3)
$$n = n_{H}$$
, $M = M_{H}$

4)
$$n = n_S$$
, $M = 0$

Рабочие характеристики

СИНХРОННЫЙ ДВИГАТЕЛЬ

Синхронными машинами называют электрические машины переменного тока, у которых частота вращения ротора находится в строго постоянном соотношении с частотой тока электрической сети.

Преимущества:

- способность вырабатывать как активную, так и реактивнук мощность (с возможностью ее регулирования);
- возможность регулирования выходного напряжения;
- возможность работы как с сетью, так и в автономном режимах без применения каких-либо сложных дополнительных устройств;
- высокий КПД.

Конструкция ротора

два типа роторов:

- 1.Явнополюсный а)
- 2.Неявнополюсный б)

Явнополюсный ротор — имеет выступающие полюсы, применяют у машин с частотой вращения до 1000, 1500 *об/мин*.

Неявнополюсный ротор — имеет вид цилиндра, применяют при скоростях 1500 и 3000 *об/мин*

Характеристики двигателя Угловая характеристика

Угловая характеристика **МДВ = f(\Theta)** имеет два интервала функционирования: **I** - интервал стабильной работы, **II** -интервал нестабильной работы.

Когда угол Θ меньше 90° , двигатель работает стабильно (т.A), то есть двигатель находится в режиме авторегулирования. Если момент нагрузки увеличивается $\mathbf{M_H} + \Delta \mathbf{M_I}$, угол $\Theta \mathbf{1}$ увеличивается тоже $\Theta \mathbf{1} + \Delta \Theta$. Согласно формуле вращающего момента $\mathbf{M} \mathbf{D} \mathbf{B}$ также увеличится и равновесие установится в точке \mathbf{B} .

Когда угол Θ больше **90°**, двигатель работает нестабильно (т.**D**), то есть двигатель **теряет синхронизм**. Поэтому угол Θ = **90°** называется **критическим**.

Практически величина этого угла находится в пределах от **30°** до **40°**.

Характеристики двигателя Механическая характеристика

Механическая характеристика **M** = **f** (**n**) синхронного двигателя — это прямая линия параллельная оси X. В таком случае частота вращения постоянна и не зависит от нагрузки

Характеристики двигателя Семейство **U** – образных характеристик

Семейство **U** — образных характеристик наиболее важно для промышленного применения синхронных двигателей.

Этот рисунок показывает, что существует минимальный ток возбуждения $I_{\text{в.мин}}$ для каждой кривой, при котором коэффициент мощности $\cos \varphi = 1$, и что существуют интервалы недовозбуждения и перевозбуждения.

В первом интервале синхронный двигатель работает, имея характер **индуктивного** сопротивления, а во втором **емкостного**.

Это свойство позволяет использовать синхронный двигатель для коррекции коэффициента мощности в промышленных установках, применяя синхронный компенсатор вместо батареи конденсаторов.

Электрические машины постоянного тока

Машины постоянного тока

Машины постоянного тока были первыми электрическими машинами.

Академик Б.С. Якоби, в 1838 г. использовал двигатель постоянного тока для привода лодки на Неве.

Преимущества: возможность плавной регулировки.

Недостатки: более сложная конструкция, наличие механического контакта

Важное свойство:

ОБРАТИМОСТЬ – способность работать в режиме двигателя и генератора.

Конструкция МПТ

- 1 станина; 2 главные полюсы;
- 3 сердечник якоря; 4 коллектор;
- 5 вал; 6 подшипник;
- 7 подшипниковый щит; 8 вентилятор

- 1 коллектор; 2 щетки;
- 3 сердечник якоря; 4 сердечник главного полюса; 5 полюсная катушка;
- 6 станина; 7 подшипниковый щит;
- 8 вентилятор; 9 обмотка якоря

Обмотка ротора (якоря)

Реакция якоря

Коммутация в МПТ

Для подавления разряда применяют:

- 1) смещение щёток на физическую нейтраль в направлении вращения для генератора и в противоположном для двигателя. Однако э.д.с. ес зависит от нагрузки и возрастает по мере деформации магнитного поля. Практически невозможно изменять положение щёток в процессе работы, и поэтому этот метод применим для машин малой мощности и с постоянной нагрузкой.
- 2) для нейтрализации электродвижущих ес и е необходимо противопоставить им э.д.с., которая изменяет свою величину в процессе работы. С этой целью создаются дополнительные полюса, расположенные на геометрической нейтрали и включенные последовательно со щётками.

Принцип действия ГПТ

В общем случае генератор можно представить в виде витка, вращающегося в магнитном поле, концы которого подключены к пластинам коллектора.

Виток приводится во вращение внешним приводом.

В витке возникает синусоидальное напряжение, благодаря переключению пластин коллектора между щётками, направление тока во внешней цепи не меняется, т.о. щёточно-коллекторный узел является простейшим механическим выпрямителем.

Пульсации напряжения ГПТ

25 витков — пульсации 0,4% от среднего значения ЭДС

Принцип действия ДПТ

Если к щёткам подвести постоянное напряжение, то в роторе возникнет постоянное магнитное поле, которое будет взаимодействовать с полем статора, и приведёт во вращение ротор.

Необходимая полярность поля ротора обеспечивается переключением направления тока в щёточно-коллекторном узле.

Генераторы постоянного тока

Свойства генераторов постоянного тока зависят от числа и способа подключения обмоток возбуждения или, как говорят, от способа возбуждения генераторов. В зависимости от способа возбуждения различают генераторы:

- 1) независимого возбуждения;
- 2) параллельного возбуждения (ранее шунтовые);
- 3) Последовательного (сериесного) возбуждения
- 4) генераторы смешанного возбуждения (ранее компаундные).

Генератор независимого возбуждения

Обмотка возбуждения питается от внешнего источника. Обеспечивает наилучший режим работы.

Падение напряжения под нагрузкой можно компенсировать током возбуждения.

Самовозбуждение генератора постоянного тока

Все остальные типы генераторов постоянного тока относятся к генераторам с самовозбуждением.

- 1) существование остаточного намагничивания, которому соответствует э.д.с. Ео. Под действием этой э.д.с. протекает небольшой ток намагничивания, который создает магнитный поток больший, чем остаточный. Этот поток наводит э.д.с. большую, чем Ео и т.д. Э.д.с. растет, когда растет ток возбуждения;
- 2) направление остаточного магнитного потока должно совпадать с направлением потока создаваемого. Этот процесс закончится, когда пересекутся две характеристики: холостого хода E = f(Iв) и цепи возбуждения Uв = f(Iв). Точка A, представленная на рисунке называется рабочая точка холостого хода.
- 3) если увеличивать сопротивление Rв характеристика Uв = f(Iв) начнет поворачиваться и для некоторого сопротивления Rвкр, называемого критическим, эта линия станет касательной к характеристике холостого хода. В этом случае процесс самовозбуждения г

Следовательно, третье условия таково Rв < Rвкр.

Генератор с параллельным возбуждением

Конструкция генератора с параллельным возбуждением идентична генератору с независимым возбуждением, однако обмотка возбуждения включена параллельно якорю.

Сравнивая характеристики можно заключить, что при одном и том же токе **I**, падение напряжения больше для генератора с параллельным возбуждением.

Если продолжать увеличивать ток нагрузки, то при определенном его значении ток начнет падать также как и напряжение. В этом случае говорят, что машина "сбросила" нагрузку, потому что для такого генератора падение напряжения провоцирует уменьшение **Is** и э.д.с. Как результат напряжение уменьшается быстрее чем при независимом возбуждении. Чтобы поддерживать напряжение в этом случае необходимо увеличивать ток возбуждения, для чего в цепи имеется реостат.

Генератор со смешанным возбуждением

Этот тип генератора универсален, так как возбуждение создается двумя обмотками последовательной и параллельной, что позволяет получить семейство внешних характеристик.

Рассмотрим три кривые из этого семейства:

- для нормальной работы генератора (кривая 1) последовательное возбуждение как бы автоматически поддерживает напряжение и оно изменяется незначительно.
- для "перевозбужденного" генератора (кривая 2) намагничивающие силы последовательной и параллельной обмоток суммируются и напряжение может быть больше чем э.д.с. **E=Uo**;

¹ в.пар.

в.посл.

- для "недовозбужденного" генератора (кривая 3) намагничивающие силы вычитаются и напряжение резко падает при увеличении нагрузки.

ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА Двигатель с независимым и параллельным возбуждением

Согласно схеме, имеем две изолированные электрические цепи с соответствующими резисторами. Цепь возбуждения с **Rs** предназначена для создания магнитного поля и цепь якоря с пусковым реостатом, **Rn**, для ограничения пускового тока.

Пусковой ток

Ток якоря без пускового реостата определяется согласно II закону Кирхгофа:

$$I_{\rm g} = \frac{U - E}{R_{\rm g}} = \frac{U - kn\Phi_{\rm p}}{R_{\rm g}}$$

В момент пуска частота вращения якоря **n** и соответственно ЭДС **E** равны нулю, ток якоря ограничивается лишь небольшим сопротивлением якоря:

$$I_{\Pi \Pi} = \frac{U}{R_{\Pi}}$$

и может достигать 12-кратной величины от номинального значения.

Для ограничения пускового тока используют пусковой реостат.

Двигатель с последовательным возбуждением

Механическая характеристика такого двигателя имеет гиперболический характер.

На практике двигатель с последовательным возбуждением не может работать без нагрузки при номинальном напряжении.

Двигатель со смешанным возбуждением

Этот двигатель имеет семейство характеристик промежуточных между характеристиками двигателей с параллельным и последовательным возбуждением. Такой двигатель нормально работает без нагрузки при номинальном напряжении и имеет хороший пусковой момент.

В качестве примера представим на рисунке механические характеристики четырех типов ДПТ:

- 1 двигатель смешанного возбуждения, когда магнитные потоки от двух обмоток вычитаются. В этом случае рабочий магнитный поток уменьшается пропорционально **U I**_s**R**_s, то есть, получаем практически постоянную частоту вращения якоря;
- 2 двигатель с независимым или параллельным возбуждением;
- 3 двигатель смешанного возбуждения, когда магнитные потоки от двух обмоток складываются. В этом случае получается характеристика более мягкая, чем для двигателей с независимым или параллельным возбуждением;
- 4 двигатель с последовательным возбуждением.

Конец лекции