3. Булеви функции. Пълнота. Съкратена ДНФ на БФ.

Дефиниция: Функциите $F_2 = \{f: \mathbf{J}_2^n \to \mathbf{J}_2 \mid n=1,2,...\}$ наричаме **булеви (двоични)**. Булевите функции на п променливи означаваме с F_2^n

Нека
$$F = \{ f_0, f_1, ... \} \subseteq F_2$$
. Нека $X = \{ f, x, 0, 1, (,), < 3 a n e + 3 a n$

По-нататък ще записваме думите $f\alpha$, $x\beta$, където α , $\beta \in \{0,1\}^+$ като f_i , x_j , където α е двоичното представяне на числото i, β е двоичното представяне на числото i.

Дефиниция: Дефинираме индуктивно понятието формула над множеството от функции F:

База: За всяка функция $f_i \in F$ на п променливи, думата f_i $(x_1, x_2, ..., x_n) \in X^*$ е формула над F.

Предположение: Нека $f_i \in F$ е функция на n променливи и ϕ_1 , ϕ_2 , ..., $\phi_n \in X^*$ са формули над F или променливи, т.е. от вида x_k .

Стъпка: Тогава думата f_i (ϕ_1 , ϕ_2 , ..., ϕ_n) $\in X^*$ е формула над F.

БФ с една променлива са 4 и са представени в следната таблица:

х	f _o	f ₁	f ₂	f ₃
0	0	0	1	1
1	0	1	0	1

Имената на функциите са както следва:

- $f_0(x)$ константата нула; означаваме я с $\widetilde{0}$
- $f_3(x)$ константата единица; означаваме я с $\tilde{1}$
- $f_1(x) = x идентитет$
- $f_2(x) = \frac{x}{x}$ отрицание на x

БФ с две променливи са 16 и са представени в следната таблица:

Х	У	f _o	f ₁	f ₂	f ₃	f ₄	f ₅	f ₆	f ₇	f ₈	f ₉	f ₁₀	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Имената на функциите са както следва:

- $f_0(x,y)$ константата нула, означаваме я с $\widetilde{0}$. Приемаме същото означение, тъй като разликата е само в броя на променливите, а самата функция не зависи от тези променливи
- $f_{15}(x, y)$ константата единица, означаваме я с $\tilde{1}$
- $f_3(x, y) = x идентитетът (не зависи от у)$
- $f_5(x, y) = y идентитетът (не зависи от x)$
- $f_{12}(x, y) = \overline{X}$ отрицанието на x (не зависи от y)
- $f_{10}(x, y) = y$ отрицанието на y (не зависи от x)

Следващите функции от F_2^2 съществено зависят и от двете променливи; ще ги означаваме както следва:

- $f_1(x, y) = x \wedge y = xy$ конюнкция на x и y; функцията можем да разглеждаме като умножение по модул 2;
- $f_7(x, y) = x \vee y дизюнкция на x и y;$
- f₆ (x, y) = x ⊕ y събиране по модул 2;
- $f_9(x, y) = x \equiv y \text{еквивалентност на x и y;}$
- $f_{13}(x, y) = x \rightarrow y импликация от x към y;$
- $f_{11}(x, y) = y \rightarrow x импликация от у към x;$
- $f_{14}(x, y) = x|y функция на Шефер;$
- $f_8(x, y) = x \downarrow y функция (стрелка) на Пирс;$

Свойства:

Комутативност - xy = yx, $x \lor y = y \lor x$, $x \oplus y = y \oplus x$

Асоциативност - (xy)z = x(yz), (x \vee y) \vee z = x \vee (y \vee z), (x \oplus y) \oplus z = x \oplus (y \oplus z)

Дистрибутивност - x (y \vee z) = xy \vee xz, x \vee yz = (x \vee y)(x \vee z), x (y \oplus z) = xy \oplus xz

Идемпотентност - $x \lor x = x$, xx = x, $x \oplus x = \widetilde{0}$

Свойства на отрицанието - x $\overline{_X}$ = $\widetilde{0}$, x \vee $\overline{_X}$ = $\widetilde{1}$, x \oplus x = $\widetilde{1}$

Свойства на константите - $x\widetilde{0} = \widetilde{0}$, $x\widetilde{1} = x$, $x \vee \widetilde{0} = x$, $x \vee \widetilde{1} = \widetilde{1}$, $x \oplus \widetilde{0} = x$, $x \oplus \widetilde{1} = \overline{x}$

Закон за двойното отрицание - $\frac{=}{X}$ = x

Закони на Де Морган - $\overline{x \vee y} = \overline{x} \wedge \overline{y}, \ \overline{x \wedge y} = \overline{x} \vee \overline{y}$

Всяко едно от тези свойства може да се провери като директно сравним стълбовете на функциите отговарящи на двете формули. Ще използваме тези свойства за да покажем още две:

Поглъщане - нека $f \in F_2$; Тогава е в сила: $fg \vee f = fg \vee f \ \widetilde{1} = f \ (g \vee \widetilde{1}) = f \ \widetilde{1} = f$

Дефиниция: С [F] ще означаваме множеството от всички двоични функции, съпоставени на формулите над F и ще го наричаме **затваряне** на F (относно суперпозицията).

Дефиниция: Множеството от функции $F \subseteq F_2$ е **пълно** в F_2 , ако $[F] = F_2$.

Дефиниция: Двоичната функция $f(x, \sigma) = x^{\sigma}$ дефинираме така: $x^{\sigma} = x$, ако $\sigma = 1$ и $x^{\sigma} = \frac{1}{x}$, ако $\sigma = 0$.

Лема**1:** $x^{\sigma} = 1 \Leftrightarrow x = \sigma$.

Доказателство: Достатъчно е да пресметнем стълба на x^{σ} и да видим, че x^{σ} = $x \equiv \sigma$, което доказва твърдението.

Дефиниция: Формули от вида $X_{i_1}^{\sigma_1} X_{i_2}^{\sigma_2} ... X_{i_k}^{\sigma_k}$, където $I_j \neq i_s$ при $j \neq s$, $\sigma_j \in \{0, 1\}$, наричаме елементарни конюнкции.

Теорема (Разбиване на БФ по част от променливите): Нека са избрани i, $1 \le i \le n$ от променливите на функцията $f(x_1, ..., x_n) \in \mathbf{F_2}$. Без ограничение на общността, нека това са първите і променливи. Тогава

$$f(x_{1}, x_{2}, ..., x_{n}) = \bigvee_{\forall \sigma_{1}\sigma_{2}...\sigma_{i}} x_{1}^{\sigma_{1}} x_{2}^{\sigma_{2}} ... x_{i}^{\sigma_{i}} f(\sigma_{1}, \sigma_{2}, ..., \sigma_{i}, x_{i+1}, ..., x_{n})_{.}$$

Доказателство: Нека $g(x_1,...,x_n)$ е функцията определена от дясната част на равенството. Да пресметнем стойностите на функциите f и g за произволен вектор $(a_1,...,a_n)$ ∈ J_2^n . Вляво получаваме $f(a_1,...,a_n)$. От Лема1 следва, че от всички 2^i елементарни конюнкции $X_1^{\sigma_1}X_2^{\sigma_2}...X_i^{\sigma_i}$, участващи в дясната част, само една има значение 1 – тази при която σ_j = a_j , j = 1,2,...,i. Останалите елементарни конюнкции имат стойност 0 и анулират съответните членове на многократната дизюнкция. Така за стойността на дясната част получаваме:

$$g(a_1, a_2, ..., a_n) = a_1^{a_1} a_2^{a_2} ... a_i^{a_i} f(a_1, a_2, ..., a_i, a_{i+1}, ..., a_n) \cup \tilde{0} =$$

$$= \tilde{1} f(a_1, a_2, ..., a_i, a_{i+1}, ..., a_n) = f(a_1, a_2, ..., a_n)$$

Следователно функциите от двете части на равенството съвпадат.

Теорема (Бул): Множеството $\{x \lor y, xy, \frac{1}{x}\}$ е пълно.

Доказателство: Ако f = $\widetilde{0}$, можем да представим f = x \overline{X} и тогава f \in [{ x \vee y, xy, \overline{X} }].

Нека $f \neq \widetilde{0}$. Тогава разлагаме f ($x_1, x_2, ..., x_n$) по всичките n променливи и получаваме

$$f(x_1, x_2, ..., x_n) = \bigvee_{\forall \sigma_1 \sigma_2 ... \sigma_n} x_1^{\sigma_1} x_2^{\sigma_2} ... x_n^{\sigma_n} f(\sigma_1, \sigma_2, ..., \sigma_n)$$

Ако $f(\sigma_1, \sigma_2, ..., \sigma_n) = 0$, съответният член в дясната част се анулира и може да не участва във формулата. Ако $f(\sigma_1, \sigma_2, ..., \sigma_n) = 1$, то $x_1^{\sigma_1} x_2^{\sigma_2} ... x_n^{\sigma_n} f(\sigma_1, \sigma_2, ..., \sigma_n) = x_1^{\sigma_1} x_2^{\sigma_2} ... x_n^{\sigma_n}$. Така получаваме: $f(x_1, x_2, ..., x_n) = \bigvee_{\substack{\sigma_1 \sigma_2 ... \sigma_n \in \mathbf{J}_2^n \\ f(\sigma_1, \sigma_2, ..., \sigma_n) = 1}} X_1^{\sigma_1} X_2^{\sigma_2} ... X_n^{\sigma_n}$, което е формула над $\{x \vee y, xy, \overline{x}\}$.

В означенията на доказателството, когато $f \neq \widetilde{0}$, формулата се нарича **съвършена дизюнктивна нормална форма** на f.

Дефиниция за импликанта и проста импликанта на БФ. Формулировка и доказателство на теоремата за премахване на букви от елементарна конюнкция.

Дефиниция: Нека $f \in F_2^n$ и $N_f = \{ \alpha \mid \alpha \in J_2^n, f(\alpha) = 1 \}$ тогава N_f наричаме **единично множество** на функцията f.

Лема: $N_{f\vee g} = N_f \cup N_g$, $N_{fg} = N_f \cap N_g$.

Теорема (За единичните множества на ел. Конюнкции и съдържащите се в тях букви) Нека К и К' са елементарни конюнкции на п променливи. $N_K \subseteq N_{K'} \Leftrightarrow K = K'K''$ т.е. всички букви на К' се съдържат в К и то със същите степени.

Доказателство:

- 1) Нека K = K'K". Тогава $N_{\rm K}=N_{{\rm K}'{\rm K}''}=N_{{\rm K}'}\cap N_{{\rm K}''}$ => $N_{\rm K}\subseteq N_{{\rm K}'}$
- 2) Нека $N_{K} \subseteq N_{K'}$.
 - а. Ще покажем, че всяка буква, която участва в K и K' има една и съща степен. Да допуснем противното, т.е. $K=x^{\sigma}K_{_1}$, $K'=x^{\overline{\sigma}}K_{_1}'$.

Тогава
$$N_K \cap N_{K'} = N_{KK'} = N_{X} \circ_X \circ_{K_1 K_1'} = \varnothing \Rightarrow N_K = \varnothing$$
 - противоречие.

b. Да допуснем, че съществува буква у, която участва в К', но не участва в К. Нека К = $x_1^{\sigma_1} x_2^{\sigma_2} ... x_k^{\sigma_k}$, К' = $y^{\sigma} K_1'$ и у $\neq x_j$. Построяваме вектор α , така че $x_1 = \sigma_1$, ..., $x_k = \sigma_k$, у = $\overline{\sigma}$, а останалите променливи са произволни. Тогава К (α) = 1 и К' (α) = 0, т.е. $\alpha \in {}^N K$ и $\alpha \notin {}^N K$ ' - противоречие.

От a, b => Всички букви на К' се съдържат в К и то със същите степени.

Дефиниция: Нека $f \in F_2$. Елементарната конюнкция K наричаме **импликанта** на f, ако $N_K \subseteq N_f$. Лесно може да се покаже, че ако K е импликанта на f, то $(K \longrightarrow f) = \tilde{1}$, откъдето и наименованието импликанта.

Дефиниция: Импликантата K наричаме **проста**, ако не съществува импликанта K′ такава, че $N_K \subset N_{K'} \subseteq N_f$. От горната теорема това означава, че ако премахнем коя да е буква на K ще получим елементарна конюнкция, която не е импликанта на f.

Очевидно е, че във всяка дизюнктивна нормална форма на f участват елементарни конюнкции, които са импликанти на f.

Лема: За всяка импликанта K на $f \in F_2$ съществува проста импликанта K' на f, така че $N_K \subset N_{K'}$

Доказателство: ще опишем алгоритъм за построяване на K' от K:

- 1. Ако K е проста, то K' = K, край
- 2. Ако К не е проста, премахваме някоя от буквите на К и преминаваме към 1.

Очевидно алгоритъмът ще приключи изпълнението си след краен брой стъпки, тъй като К има краен брой букви, на всяка стъпка премахваме буква и всяка импликанта на f с една буква очевидно е проста.

Съкратена дизюнктивна нормална форма на БФ – дефиниция и съответни теореми (без доказателство).

Дефиниция: Нека ϕ е формула над $F \subseteq F_2$. Под **сложност** на ϕ ще разбираме броя на срещанията на букви на променливи във ϕ . Например: формулата $xyz \lor x \ \overline{y} \ \overline{z}$ има сложност 6.

Дефиниция: Под **минимална дизюнктивна нормална форма** на функцията $f \in F_2$ ще разбираме дизюнктивна нормална форма на f с минимална сложност.

Теорема: Всяка минимална дизюнктивна нормална форма на функцията $f \in \mathbf{F_2}$ се състои само от прости импликанти.

Теорема: Нека K_1 , K_2 , ..., K_r са всички прости импликанти на $f \in F_2$, тогава $D = K_1 \vee K_2 \vee ... \vee K_r$ е дизюнктивна нормална форма на f.

Дефиниция: Дизюнктивната нормална форма от всички прости импликанти на функцията $f \in F_2$ наричаме **съкратена дизюнктивна нормална форма** на f.

Алгоритъм на Куайн-МакКласки за построяване на СъкрДНФ (с доказателство на коректността).

Лема: ако xK и x K са импликанти на $f \in \mathbf{F_2}$, то те не са прости;

Доказателство: От свойството слепване имаме, че xК \vee \overline{x} К = К.

имаме $N_K=N_{xK}\vee \overline{x}K=N_{xK}\cup N_{\overline{x}K}\subseteq N_f$; също от $N_{xK}\cup N_{\overline{x}K}\subseteq N_K$ имаме $N_{xK}\subset N_K,N_{\overline{x}K}\subseteq N_K$, така че хК и $\overline{x}K$ не са прости импликанти на f. Междувременно показахме, че ако хК и $\overline{x}K$ са импликанти на f, то K също е импликанта на f.

Алгоритъм на Куайн-МакКласки:

Нека $f(x_1, ..., x_n) \in \mathbf{F_2}^n$. Ще опишем алгоритъм за построяване на съкратената дизюнктивна нормална форма на f. За целта строим таблица на Куайн-МакКласки за f. Колоните на таблицата са номерирани c (n), (n-1), ..., (r), като в началото броят им е неопределен, т.е. r се определя от алгоритъма.

- 1. В колоната (n) записваме всички импликанти на f, които участват в съвършената дизюнктивна нормална форма на f. Нека i = n.
- 2. Строим колоната (i 1) по следния начин за всяка двойка импликанти K_1 , K_2 от колона (i), такива, че $K_1 = xK$ и $K_2 = xK$:
 - а. Отбелязваме К₁ и К₂ в колоната (i)
 - b. В колоната (i 1) записваме K
- 3. Ако в колоната (i 1) има поне една импликанта, то нека I = I 1 и преминаваме към 2. В противен случай край, като r = i.

Теорема (Куайн-МакКласки): Всички неотбелязани елементарни конюнкции в таблицата на Куайн-МакКласки и само те са простите импликанти на f.

Доказателство:

Стъпка 1: Ще покажем, че всяка импликанта на f е в таблицата. Нещо повече, ще покажем, че колоната (i) съдържа всички импликанти на f с i букви и само те.

С индукция по і ще покажем, че колоната (і) съдържа всички импликанти на f с і букви.

База: При i = n всички импликанти на f c n букви и само те участват в съвършената дизюнктивна нормална форма на f, от която построихме колоната (n).

Предположение: Нека твърдението е изпълнено при $i = k \le n$, т.е. колоната (k) съдържа всички импликанти на f с k букви и само те.

Стъпка: Да допуснем, че в колоната (k-1) липсва импликанта К на f с k - 1 < n букви. Нека х е буква, която не участва в K, тогава хК и $\stackrel{-}{x}$ K са импликанти на f с k букви и по индукционното предположение те участват в колоната (k). Това е противоречие, тъй като алгоритъмът на Куайн-МакКласки в този случай ще слепи хК и $\stackrel{-}{x}$ и ще постави К в колоната (k-1). Така всяка импликанта на f с (k-1) букви участва в колоната (k-1).

Заключение: За i = n, n-1, ..., r колоната (i) съдържа всички импликанти на f с i букви.

В колоната (i) има само импликанти на f с i букви (това твърдение Манев каза, че не е необходимо да се доказва).

Стъпка 2: Всяка отбелязана импликанта K на f не е проста. Действително, по алгоритъма K има вида K = $x^{\sigma}K_1$ и освен това K′ = $x^{\overline{\sigma}}K_1$ е импликанта на f в същата колона. По горната лема K не е проста.

Стъпка 3: Всяка неотбелязана импликанта К на f е проста.

Да допуснем противното, т.е. неотбелязаната импликанта K на f c m букви не е проста. Тогава съществува буква x такава, че K = x^{σ} K $_1$ и K $_1$ е импликанта на f c m-1 букви; тъй като K $_1$ е импликанта на f, то K' = $x^{\overline{\sigma}}$ K $_1$ (в K' степента на x трябва да е

 σ +1) е импликанта на f c m букви; при това положение алгоритъмът би отбелязал K и K', което е противоречие.

$$f = \overline{x} \overline{y} \overline{z} \overline{t} \vee \overline{x} \overline{y} z \overline{t} \vee x \overline{y} \overline{z} \overline{t} \vee x \overline{y} z \overline{t} \vee \overline{x} y z \overline{t} \vee \overline{x} y z \overline{t} \vee x y z \overline{t} \vee x y z \overline{t} ;$$

Образуваме таблицата на Куайн-МакКласки, като елементарните конюнкции в колоната (4) сортираме по брой отрицания; това е удобно, тъй като слепването се извършва върху елементарни конюнкции, които се различават точно с 1 по брой отрицания;

С * са отбелязаните елементарни конюнкции от алгоритъма.

(4)	(3)	(2)
$\overline{x}\overline{y}\overline{z}\overline{t}$ *	$\overline{x} \overline{y} \overline{t} *$	$\frac{\overline{y}}{\overline{t}}$
$\overline{x}\overline{y}z\overline{t}$ *	<u>y</u> <u>z</u> <u>t</u> *	
$x \overline{y} \overline{z} \overline{t} *$	<u>y</u> z t *	
$x \overline{y} z \overline{t} *$	\overline{x} z \overline{t}	
$x \overline{y} \overline{z} t *$	x y t *	
\overline{x} y z \overline{t} *	x y z	
xyzt *	x z t	
xyzt*	x y z	

xyzt*	yzt	
	хуt	

Така съкратената дизюнктивна нормална форма на f e:

$$f = \overline{x} z \overline{t} \lor x \overline{y} \overline{z} \lor x \overline{z} t \lor \overline{x} y z \lor y z t \lor x y t \lor \overline{y} \overline{t}$$