

de.NBI/de.STAIR Training: A primer for RNA-Seq processing

Konstantin Riege Steve Hoffmann

Bioinformatics Services for Structured Analysis and Integration of RNA-Seq experiments (de.STAIR)

Sequencing techniques

miSeq

Illumina sequencing platforms

HiSeq 2500

NextSeq 500

HiSeq X Ten

Illumina sequencing platforms

	Run time (hrs)	Read length (bp)	Throughput		Cost	
			# reads	bases/run	machine	per Gb
miSeq	65	2 x 300	25M	15Gb	\$125k	\$93
NextSeq 500	29	2 x 150	400M	129Gb	\$250k	\$33
HiSeq 2500	144	2 x 125	4B	1Tb	\$740k	\$29
HiSeq X Ten	72	2 x 150	6B	1.8Tb	\$1M	\$7

RNA-Seq library preparation

Sequencing workflow

Base-calling

- Bases are called from clustered intensities of emitted fluorescence
- Cluster density influences the base-calling quality

FASTQ format (1st line)

@SRR359063.1 D042KACXX:3:1101:2690:2160 length=101

NCATCGTCCGGTATGTAGAACAGGGGAACCGGACGTTTTCCAAGGCGTAGCCATGTTAGACAAGGCGCAGATATAGGTGATGCTGATGCAGAAAAACGATT

+SRR359063.1 D042KACXX:3:1101:2690:2160 length=101

#4=DBDDDHFHFFHIGHIIIJJJJJJJJJJJJJJBHDAGHJGGGHIJHFFFFDDEDCCDCCCCDDDDDBDBD>CDEE

>C@CDDDDDDCACAACCDCDBDBB<1

@SRR359063.2 D042KACXX:3:1101:5202:2193 length=101

CTCTGGTACAGAACACGTGGATTATAAGAGTTGCCGCTTCGCACAGAAGTCGGAGTTCTCTCACCACTTTTGAGC

TCTTCCTCGGCTTCTTCTTCCTCTTT

SRR359063.1 run ID

D042KACXX flowcell ID

3 flowcell lane

tile number within the flowcell lane

2690 'x'-coordinate of the cluster within the tile

2160 'y'-coordinate of the cluster within the tile

FASTQ format (2nd line)

@SRR359063.1 D042KACXX:3:1101:2690:2160 length=101

NCATCGTCCGGTATGTAGAACAGGGGAACCGGACGTTTTCCAAGGCGTAGCCATGTTAGACAAGGCGCAGATATA GGTGATGCTGATGCAGAAAAACGATT

+SRR359063.1 D042KACXX:3:1101:2690:2160 length=101

#4=DBDDDHFHFFHIGHIIIJJJJJJJJJJJJJJBHDAGHJGGGHIJHFFFFDDEDCCDCCCCDDDDDBDBD>CDEE

>C@CDDDDDDCACAACCDCDBDBB<1

@SRR359063.2 D042KACXX:3:1101:5202:2193 length=101

CTCTGGTACAGAACACGTGGATTATAAGAGTTGCCGCTTCGCACAGAAGTCGGAGTTCTCTCACCACTTTTGAGC

TCTTCCTCGGCTTCTTCTTCCTCTTT

The raw sequence letters

FASTQ format (3rd line)

@SRR359063.1 D042KACXX:3:1101:2690:2160 length=101 NCATCGTCCGGTATGTAGAACAGGGGAACCGGACGTTTTCCAAGGCGTAGCCATGTTAGACAAGGCGCAGATATA GGTGATGCTGATGCAGAAAAACGATT

+SRR359063.1 D042KACXX:3:1101:2690:2160 length=101

#4=DBDDDHFHFFHIGHIIIJJJJJJJJJJJJJJBHDAGHJGGGHIJHFFFDDEDCCDCCCCDDDDDBDBD>CDEE >C@CDDDDDCACAACCDCDBDBB<1

Begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again.

FASTQ format (4th line)

DBDDDHFHFFHIGHIIIJJJJJJJJJJJJJBHDAGHJGGGHIJHFFFDDEDCCDCCCCDDDDDBDBD>CDEE >C@CDDDDDCACAACCDCDBDBB<1

Quality analysis

Quality control and FASTQ processing tools

- FastQC
- MultiQC
- Seqtk

- Library preparation
 - Cluster density
 - Nucleotide diversity
 - Fragment size vs. read length
 - G/C bias
- Sequencing errors

Reference alignments / Mapping

Reference alignments

Reference alignments

Reference alignments – Non-Strand specific library

Reference alignments – Strand specific library

Mapping problems

- Difference "optimal alignment" and "true alignment"
 - · Quality of the reference genome and read
 - Scoring scheme of matches, mismatches and InDels

Mapping problems

- Difference "optimal alignment" and "true alignment"
 - · Quality of the reference genome and read
 - Scoring scheme of matches, mismatches and InDels
 - Information content of reads Multiple mapping

Expectation of an {ATCG}-word in a random {ATCG}-Sequence

$$E = p^{m} * n$$

$$E = 0.25^{l} * 3.2 * 10^{9}$$

$$1 = 0.25^{l} * 3.2 * 10^{9}$$

$$l \sim 16$$

Mapping problems

- Difference "optimal alignment" and "true alignment"
 - Quality of the reference genome
 - Scoring scheme of matches, mismatches and InDels
 - Information content of reads Multiple mapping

Paired-End sequencing

fragment

molecule to be sequenced

read

One sequenced part of a biological fragment (mate1 and/or mate2)

mate 1

sequence of the 5' end of paired-end sequencing

mate 2

sequence of the 3' end of paired-end sequencing

sequencing depth aka library size

The total number of all the sequences, reads or bases represented in a single sequencing experiment

Paired-End sequencing

single-end sequencing

repeat region

paired-end sequencing

repeat region

SAM format (binary compressed: BAM)

32

SAM format (binary compressed: BAM)

```
QHD VN:1.5 SO:coordinate
                                                                                       Header
                                                                                       section
@SQ SN:ref LN:45
r001
       99 ref 7 30 8M2I4M1D3M = 37
                                     39 TTAGATAAAGGATACTG *
r002
       0 ref
               9 30 3S6M1P1I4M *
                                      O AAAAGATAAGGATA
                                                          * SA:Z:ref,29,-,6H5M,17,0;
r003 0 ref 9 30 5S6M
                                      O GCCTAAGCTAA
                                                                                       Alignment
                                                                                       section
r004
       0 ref 16 30 6M14N5M
                               * 0
                                      O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                      O TAGGC
                                                          * SA:Z:ref,9,+,5S6M,30,1;
      147 ref 37 30 9M
                                  7 -39 CAGCGGCAT
                                                          * NM:i:1
r001
```

Bit		Description			
1	0x1	template having multiple segments in sequencing			
2	0x2	each segment properly aligned according to the aligner			
4	0x4	segment unmapped			
8	0x8	next segment in the template unmapped			
16	0x10	SEQ being reverse complemented			
32	0x20	SEQ of the next segment in the template being reverse complemented			
64	0x40	the first segment in the template			
128	0x80	the last segment in the template			
256	0x100	secondary alignment			
512	0x200	not passing quality controls			
1024	0x400	PCR or optical duplicate			
2048	0x800	supplementary alignment			

SAM format (binary compressed: BAM)

```
QHD VN:1.5 SO:coordinate
                                                                                        Header
                                                                                        section
@SQ SN:ref LN:45
r001
       99 ref 7 30 8M2I4M1D3M = 37
                                     39 TTAGATAAAGGATACTG *
               9 30 3S6M1P1I4M *
                                      O AAAAGATAAGGATA
r002
       0 ref
r003 0 ref 9 30 5S6M
                                     O GCCTAAGCTAA
                                                           * SA:Z:ref,29,-,6H5M,17,0;
                                                                                        Alignment
                                                                                        section
r004
        0 ref 16 30 6M14N5M
                                      O ATAGCTTCAGC
r003 2064 ref 29 17 6H5M
                                      O TAGGC
                                                           * SA:Z:ref,9,+,5S6M,30,1;
r001
      147 ref 37 30 9M
                                  7 -39 CAGCGGCAT
                                                           * NM:i:1
```


Often (NOT ALWAYS!) a mapping quality value 0 indicates a multiple mapped read – otherwise, if available grep for NH:i:1 tag

Summary

- Minimum read length 20
- Remove potential adapters
- Perform quality trimming (~PHRED 20)
- Use split-read mapping algorithms
- Adjust expected insert size
- Constrain scoring scheme
 - E.g. BWA default settings according to its manual minOUTscore:30 MM/indelpenalty:4/6
 - i.e. for read length 100: (100-30)/4~17% errors
- Filter SAM file for uniquely mapped reads

Trimming, mapping and SAM post-processing tools

- Cutadapt
- PRINSEQ
- Trimmomatic
- Segemehl
- STAR
- BWA
- HISAT2
- Samtools
- Picard

Differential expression analysis

Differential expression analysis

Problems in expression analyses

Multiple isoforms and gene models

Problems in expression analyses

• Differences in transcript length

• Differences in sequencing depth

Normalization between samples

https://www.youtube.com/watch?v=TTUrtCY2k-w

Summary

- Infer strandness for quantification if not known
- Count only uniquely mapped reads (thumb-value: 70%)
- Take care of mapper specific mapping qualities
- Count fragments instead of reads for reasons of comparability of single-End and paired-End sequencing
- Count on unified exon level
- Normalize via FPKM

Quantification and diff. ex. analysis tools

- RseQC: infer_experiment.py
- HTSeq-count
- Featurecounts
- DESeq2
- edgeR

GO enrichment

GO enrichment

- Gene Set Enrichment Analysis
 - Using gene symbols or gene IDs
 - Ranked by p-value or expression ratio

http://www.webgestalt.org

http://wego.genomics.org.cn

https://galaxyproject.github.io/training-material/topics/transcriptomics/tutorials/ref-based/tutorial.html