Resolviendo preguntas de la clase 3

¿Qué PM habría en una cocina?

Tomar en cuenta el combustible que se utiliza.

PM 2.5

PM 1

Contaminación del aire en los hogares:

En el 2012 → 2.3 millones de defunciones

Características y efectos de los contaminantes del aire

Monitoreo de la calidad del aire

MATERIAL PARTICULADO

- Parte 2 -

Peggi Carhuallanqui Mejia Gabo Sicha Huaman

Frecuencias y Períodos de Monitoreo

Monitoreos discontinuos

Priorizar la mayor

existencia de

contaminantes.

Tipo de tecnología	Tipo de monitoreo	Periodo de medición (en base al ECA)	Mínima suficiencia de información válida requerida	Frecuencia mínima por muestra o registro
		1 hora	>75% (1 hora)	Continua por 5 días
		8 horas	>75% (6 horas)	Continua por 5 días
Automática	Continuo	24 horas	>75% (18 horas)	Continua por 5 días
		Mensual	>14% (5 días)	Continua por 5 días
		Anual	1 mes	Continua por un mes
		1 hora	>90% (1 hora)	 Una muestra horaria al día por 5 días consecutivos, o Una muestra horaria cada 6 días dentro del periodo de un mes
	Discontinuo	8 horas	>90% (7 horas)	Una muestra octohoraria al día por 5 días consecutivos, o Una muestra octohoraria cada 6 días dentro del periodo de un mes
Manual		Discontinuo	24 horas	>90% (22 horas)
		Mensual	>14% (5 días)	Sobre la base de muestreos diarios: Una muestra diaria por 5 días consecutivos, o Una muestra diaria cada 6 días dentro del periodo de un mes Sobre la base de muestreos mensuales: Una muestra integrada de un mes
		Anual	1 mes	Una muestra integrada de un mes

D) MÉTODOS DE MONITOREO DE LA CALIDAD DE AIRE: POR SU TECNOLOGÍA

D.2. Sistemas Manuales Activos

Método Activo para Material Particulado (gravimétrico):

D.3.1. Métodos automáticos para material particulado

1.1. Atenuación de Rayos Beta:

Se basa en la **respuesta óptica** de una muestra.

Radiación emitida por fuente radiactiva, conforme aumenta la masa de partículas en el filtro, se atenuará el paso de esta radiación

1.2. Microbalanza oscilatoria de Elemento Cónico

(TEOM): Utiliza un **filamento** que sostiene un **filtro** de **13 mm** de diámetro (muestra).

Este filamento se somete a una oscilación constante, cuya frecuencia se irá reduciendo conforme aumente la masa de partículas en el/filtro.

1.3. Dispersión de luz:

Se basa en la respuesta de las partículas del analito. Se emite un haz de luz a la corriente de aire que ingresa.

La respuesta a este haz de luz permite determinar el tamaño de la partícula así como la cantidad de partículas en la muestra.

E) MÉTODOS DE MONITOREO DE LA CALIDAD DEL AIRE: POR SU GRADO DE EXACTITUD

clasificación por presición

Métodos de Referencia métodos equivalentes

EPA (Técnicas de oro) tecnologías

diferentes información exacta exactitud similar al de referencia

Métodos para el material particulado

N°	Sección	Parámetro	Tipo de método	Denominación genérica del método	Norma técnica correspondiente*
01	E.1.1.1		Método de Referencia	Separación inercial/filtración (gravimetría).	Norma Técnica Peruana: NTP 900.030, o NTP que la reemplace.
02	E.1.2.1	PM ₁₀ Método Equivalente		Atenuación de rayos beta	Aquellos que se encuentren en una de las siguientes listas: • EPA (USA), denominada "List of designated reference and equivalent
03	E.1.2.2			Microbalanza Oscilatoria de Elemento Cónico (TEOM)	methods", • MCerts (Inglaterra), denominada "Continuous ambient air monitoring
04	E.1.2.3		Dispersión de la luz	 systems (CAMS)", o TUV (Alemania), denominada "Certified equipment for continuous emission and ambient air monitoring". 	

PM10: MÉTODO DE REFERENCIA - SEPARACIÓN INERCIAL/FILTRACIÓN ALTO VOLUMEN 1130L/MIN

PM10: MÉTODO DE REFERENCIA - SEPARACIÓN INERCIAL/FILTRACIÓN BAJO VOLUMEN 16.67 L/MIN

Diferencias entre alto y bajo volumen ? Qué consecuencias genera en el diseño del equipo ? Cual es el mejor ?

Figura 5. Esquema de un cabezal selectivo de bajo volumen para PM₁₀

*Fracción material grueso diferencia aritmética entre el resultado de

= PM10-PM2.5

PM 2.5: MÉTODO DE REFERENCIA - SEPARACIÓN INERCIAL/FILTRACIÓN BAJO VOLUMEN 16.67 L/MIN = 1M3/HORA

1ra etapa: seleccionar partículas pm10

2da etapa: Separador selectivo de PM 2.5 tipo WINS o VCC

*En el caso del PM1, se cuenta con el selector SCC 2.229

Tipos de filtros **Existen muchas** más, sin embargo, el protocolo menciona los recomendados para algunos equipos

Balanza Analítica

PM10: MÉTODOS EQUIVALENTES

ATENUACIÓN DE RAYOS BETA

Bajo volumen (16.67 l/min)

*Registro digital

Interferencia por Radón en el aire

PM10-PM2.5

MICROBALANZA OSCILATORIO DE ELEMENTO CÓNICO

Bajo volumen (16.7 l/min PM10, PM2.5 Y PM 1 2 FLUJOS (3L/min y 13.67 l/min *Registro digital

Dispersión de la luz

Bajo volumen 16.67 l/min

*No requiere de la separación selectiva de partículas

**Entrada de cabezal omnidireccional *Registro digital

DataRam4 se da por bombeo interno de aire, contiene dos diodos de emisión de luz que emiten longitudes de onda de pico de 660 y 800 nm en una frecuencia de 27 pulsos por segundo

EJEMPLOS: EQUIPOS DE CALIDAD DE AIRE EN PERÚ

Estación: CAMPO DE MARTE

Dirección: Campo de Marte de Jesus Maria, Jr. Nazca s/n

Coordenadas: Lat : 12°4'13 9' S Long : 77°2'35 4' W - Alt : 123 msnm

FICHA DE LA ESTACIÓN DE VIGILANCIA AMBIENTAL DE LA OROYA

INFORMACIÓN GENERAL DE LA ESTACIÓN

Código de Estación	Ubicación	Distrito	Provincia	Departamento	Inicio de	Coorden	adas UTM	Datum	Zona
oodigo de Estacion	Obleacion	District	r rovincia	Departamento	Operación	Este	Norte	Data	Lond
CA-CC-01	Calle Comandante Zarate cuadra N° 1 - La Oroya, en la azotea de la casa de la cultura de la Municipalidad provincial de Yuli. Aproximadamente a 700 m del Complejo metalúrgico La Oroya	La Oroya	Yauli	Junin	14/12/2017	401757	8726374	WGS-84	18 Sur

PARÁMETRO DE CALIDAD DEL AIRE

I	Parámetro	Equipo	Método de medición	Técnica de medición	Marca	Modelo
	Dióxido de azufre (SO ₂)	Analizador de gases	Automático	Fluorescencia ultravioleta	Thermo Scientific	43i

PARÁMETROS METEOROLÓGICOS

Parámetro	Equipo	Método de medición	Técnica de medición	Marca	Modelo
Dirección de viento	Estación meteorólogica	Automático		Campbell	CR1000
Velocidad de viento	Estación meteorólogica	Automático		Campbell	CR1000

Analizador 200E

Monoxido de Carbono CO	06/08/2010	06/06/2020	Automatico	Infrarrojo No Dispersivo Analizador T300	TELEDYNE
Ozono Troposferico O3	06/08/2010	06/06/2020	Automatico	Fotometria UV	TELEDYNE

Tabla 7. Criterios para la selección de métodos de medición

Requerimiento temporal de la información	Enfoque del monitoreo	Consideraciones generales	Método a seleccionar	Aspectos a considerar
	Monitoreo vinculado a planes de acción para la mejora de la	Presupuesto suficiente/ disponibilidad de energía eléctrica, seguridad y accesibilidad.	Método de referencia o equivalente automático	Los resultados obtenidos pueden ser comparados con los resultados de otras redes (con métodos de referencia o equivalentes), así como con los ECA correspondientes.
Continuo, a nivel horario y en tiempo real	 Monitoreo orientado a la prevención/evalua ción de riesgos en salud ambiental. 	Presupuesto limitado/ dificultades respecto de la disponibilidad de energía eléctrica, seguridad y accesibilidad.	Procedimie nto alternativo automático	Salvo se cumpla lo indicado en el capítulo G del presente protocolo, los resultados obtenidos no se pueden comparar con los resultados de otras redes (con métodos de referencia o equivalentes), así como con los ECA correspondientes.
	Monitoreo en áreas asociadas a	La información generada es utilizada para los reportes de monitoreo vinculados a instrumentos de gestión ambiental.	Método de Referencia o equivalente automático	Los resultados obtenidos pueden ser comparados con los resultados de otras redes (con métodos de referencia o equivalentes), así como con los ECA correspondientes.
	asociadas a actividades extractivas, productivas y de servicios.	La información generada es utilizada para controles internos.	Procedimie nto alternativo automático	Salvo se cumpla lo indicado en el capítulo G del presente protocolo, los resultados obtenidos no se pueden comparar con los resultados de otras redes (con métodos de referencia o equivalentes), as como con los ECA correspondientes.

SATELITAL

LOW COST

LIDAR

Figura 65: Representación espacial de contaminantes medidos mediante DIAL.

DRONES

¿Cómo se comporta el Material particulado? 100.0 PM10 (ug/m3) 50.0 0.0 18:00 17:00 Horas - Verano · · · · · Otoño - - Invierno - · · · Primavera 60 (£m/gn) PM10 20 Lun Dom

ÍNDICE DE CALIDAD DE AIREA - INCA

Resolución Ministerial

Nº 181 -2016-MINAM

Lima.

1 4 JUL. 2016

Visto, el Memorando N° 291-2016-MINAM/VMGA del Viceministerio de Gestión Ambiental; el Informe Técnico N° 0032-2016-MINAM/VMGA/DGCA/AIRE de la Dirección General de Calidad Ambiental; el Memorando N° 416-2016-MINAM/OAJ de la Oficina de Asesoría Jurídica; y demás antecedentes; y,

CONSIDERANDO:

Que, el numeral 22 del artículo 2 de la Constitución Política del Perú establece que toda persona tiene derecho a gozar de un ambiente equilibrado y adecuado al desarrollo de su vida;

AINAM

Que, según el artículo I del Título Preliminar de la Ley Nº 28611, Ley General del Ambiente, toda persona tiene el derecho irrenunciable a vivir en un ambiente saludable, equilibrado y adecuado para el pleno desarrollo de la vida y el deber de contribuir a una efectiva gestión ambiental y de proteger el ambiente, así como a sus componentes asegurando particularmente la salud de las personas en forma individual y colectiva, la conservación de la diversidad biológica, el aprovechamiento sostenible de los recursos naturales y el desarrollo

	Material particulado (PM10) p	romedio 24 horas	
Intervalo del INCA	Intervalo de concentraciones (µg/m³)	Ecuación	
0-50	0-75		
51 – 100	76-150	T.(70440) - (70440) + 4004450	
101 – 167	151-250	I (PM10)= [PM10] * 100/150	
>167	>250		

1,510,111,111	Material particulado (PM2.5) p	romedio 24 horas	
Intervalo del INCA	Intervalo de concentraciones (µg/m³)	Ecuación	
0 - 50	0 -12.5		
51 – 100 12.6-25		I (DMO 5)- (DMO 51+ 400/05	
101 - 500 25.1-125		I (PM2.5)= [PM2.5] * 100/25	
>500	>125		

