ECEN 4632 Chapter 8.1-5 Self-Test

Sec. 8.1-2: Discrete-Time Fourier Series and Circular Convolution

Consider the following two signals $x_1[n]$ and $x_2[n]$, each periodic with period 4.

Find the circular convolution y[n] of these two signals two ways:

1) Find the circular convolution y[n] by directly evaluating the expression

$$y[n] = \sum_{m=0}^{N-1} x_1[m]x_2[n-m]$$
 (1)

2) Find the circular convolution y[n] by multiplying the Fourier series coefficients of $x_1[n]$ and $x_2[n]$.

Sec. 8.3: Relationships Between Fourier Transforms and Fourier Series Coefficients

Sketch the discrete-time Fourier transform $X_1(e^{j\omega})$ of the above $x_1[n]$. Label all important quantities in your sketch.

Sec. 8.4: Sampling the Fourier Transform

Consider the signal x[n] shown below, which has discrete-time Fourier transform $X(e^{j\omega})$. Suppose we sample its Fourier transform every $\frac{2\pi}{5}$. That is,

suppose we form $Y(e^{j\omega}) = X(e^{j\omega})P(e^{j\omega})$ where

$$P(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{5}\right)$$

Sketch y[n], the inverse discrete-time Fourier transform of $Y(e^{j\omega})$. (Hint: You should not need to find $X(e^{j\omega})$ or $Y(e^{j\omega})$ in order to find your solution.)

Sec. 8.4: Implementing Discrete-Time Convolution By Multiplication of Discrete-Time Fourier Series Coefficients

Consider the following finite-length signals $g_1[n]$ and $g_2[n]$.

Form the P-periodic signals $g_1^{per}[n]$ and $g_2^{per}[n]$ by convolving $g_1[n]$ and $g_2[n]$ respectively with the P-periodic impulse train $p[n] = \sum_{m=-\infty}^{\infty} \delta[n+mP]$.

(a) What is the minimum P such that the circular convolution $g_1^{per}[n] \circledast_P$

- (a) What is the minimum P such that the circular convolution $g_1^{per}[n] \circledast_P g_2^{per}[n]$ is exactly equal to the normal convolution $g_1[n] * g_2[n]$ on the indices $n = 0, \ldots, P-1$?
- (b) For this P, find the discrete-time Fourier series coefficients of the periodic signal $g_1^{per}[n] \circledast_P g_2^{per}[n]$. You do not have to evaluate the expression you obtain for specific values of k.