کواد کوپتر با برد آردوینو

علی فیروزی

اصول رباتيكز

استاد: محمد زارع

خرداد 1403

چکیده

در این پروژه ما قصد داریم تا با استفاده از برد آردوینو و نرم افزار MultiWii ویژگی های پیشرفته ی جدیدی به کواد کوپتری که قرار است طراحی کنیم اضافه کنیم؛ ازجمله این ویژگی ها مثل: کنترل بلوتوث توسط گوشی هوشمند، صحفه نمایش OLED، فشارسنج، مغناطیس سنج، ذخیره کردن موقعیت GPS و بازگشت به خانه، نورهای LED و بسیاری از موارد دیگر. و در نهایت ما میتوانیم یک ماشین متن باز را با آردوینو بسازیم که قدرت این برد را در پروژه های پیشرفته و پیچیده نشان میدهد.

THE PROCESS

مقدمه

در این پروژ ما قصد ساخت یک کواد کوپر متن باز یا (Open Source) را داریم که فلایت کنترلر آن مانند خیلی از فلایت کنترلر های دیگر تحت آردوینو نوشته شده است. نام این فلایت کنترلر مولتی وی یا همان (MultiWii) است که نسبتا ازان قیمت و پر کاربرد است این فلایت کنترلر قابلیت اتصال به GPS دارد و عموما برای ساخت مولتی کوپتر ها استفاده میشود.

در ادامه ما با خرید یک کیت کواد کوپتر که به عنوان بیس اصلی ما شناخته میشود و برنامه ریزی آن توسط MultiWii میتوانیم شاخه های کاربردی آن را زیاد کنیم چون در حالت عادی کیت خریداری شده صرفا جنبه ی سرگرمی دارد.

روش کار

1. مواد و قطعات مورد نباز:

- میکروکنترلر Arduino Nano R3
 - o كىت **DJI 450**
- ه ماژول GY-521 MPU-6050 3 Axis Gyroscope
 - ماژول Accelerometer For Arduino

2. مراحل اجرا:

مرحله 1: طراحی فلایت کنترلر

وظیفه ی این قطعه کنترل و تعیین میزان RPM در هر موتور است.

در عکس پایین ما مدل شماتیک فلایت کنترلر خود را میبینیم که یا میتوانیم PCB مخصوص و شخصی خود را بسازیم و یا اینکه PCB را از سازنده سفارش دهیم که ما حالت دوم را انجام داده ایم.

ESC Connections

كنترل كننده هاى الكترونيكي سرعت

- D3 << ESC 1 Signal Pin
- D9 << ESC 3 Signal Pin
- D10 << ESC 2 Signal Pin
- D11 << ESC 4 Signal Pin

Bluetooth Module Connection

ماژول بلوتوث

- TX << RX
- RX << TX

MPU-6050 Connections

ماژول ژیروسکوپ یا شتاب سنج سه محوره

- A4 << SDA
- A5 << SCL

LED Indicator

نشانگر ال ای دی

D8 << Anode Leg of LED

Receiver Connections

اتصالات گیرنده

- D2 << Throttle
- D4 << Elerons
- D5 << Ailerons
- D6 << Rudder
- D7 << AUX

مرحله 2: ساخت Frame

برای ساخت این قسمت ما کیت DJI 450 را خریداری کردیم و موتور و قاب ها را به هم متصل میکنیم. "لینک ویدیوی این بخش در قسمت منابع قرار میگیره"

o مرحله 3: اتصال قاب فلایت کنترلر به قاب کواد کوپتر

همانطور که در بخش شماتیک رسم شده بود ESC و گیرنده ها را روی برد وصل میکنیم تا مرحله ی طراحی به اتمام برسد.

3. **كد آردوينو**:

کد های مورد نیاز را باید توسط کامپایلر نرم افزار MultiWii بنویسیم.

multiwii_ino.c

توضيحات كتابخانه ها:

Arduino.h: مربوط به عملکرد کلی برد آردوینو است.

config.h: تنطیمات مربوط به پروژه مانند تنظیمات پورت های ورودی و خروجی در این کتابخانه است.

def.h: شامل تعاریف و مقادیر پیشفرض برای متغیر ها و توابع است.

types.h: در این کتابخانه، انواع دادههای مختلفی مانند عدد صحیح، عدد اعشاری و غیره تعریف شدهاند.

Serial.h: برای ارتباط با پورت های سریال مثل USB استفاده میشود.

Sensors.h: ابن کتابخانه مربوط به حسگر ها است.

MultiWii.h: برای پروژه های چند محوره مثل کوادکوپتر استفاده میشود.

EEPROM.h: برای کار با حافظه ی EEPROM در برد آردوینو استفاده میشود.

توضيحات توابع:

این تابع برای محاسبه زاویهی جهت بین دو نقطه با مختصات عرض و طول :GPS_bearing این تابع برای محاسبه زاویهی جهت بین دو نقطه با مختصات عرض و طول :جغرافیایی استفاده میشود.

این تابع فاصله بین دو نقطه را به سانتیمتر محاسبه میکند

GPS_calc_velocity: محاسبهی سرعت جغرافیایی بر اساس تغییرات مکانی

محاسبهی خطای موقعیتی بر اساس مختصات هدف و مختصات فعلی GPS_calc_location_error

GPS_calc_poshold: GPS محاسبه ی موقعیت مطلوب

محاسبهی سرعت مطلوب بر اساس سرعت حداکثری و حالت کند :GPS_calc_desired_speed

GPS_calc_nav_rate: محاسبهی نرخ تغییر موقعیت بر اساس سرعت حداکثری

wrap_36000: ويهها wrap_36000: واويهها

بررسی اینکه آیا نقطهی مورد نظر به درستی عبور شده است یا خیر :check_missed_wp

محاسبهی مقیاس طول جغرافیایی بر اساس عرض ب

نتيجه گيري

پروژه کوادکوپتر با برد آردوینو جدا از اینکه قدرت برد های تحت آردوینو را در پروژه های پیچیده به ما نشان داد نتایج مثبت زیادی هم داشت ما توانسیم با مفاهیم پایه الکترونیک و برنامه نویسی در کنار هم آشنایی پیدا کنیم و با ساخت فلایت کنترلر ، طراحی مدار ، کنترل موتور ها و بهینه سازی پرواز مهارت های مهندسی خود را تقویت کنیم و در نهایت به عنوان سرگرمی و تفریح از تجربه ساخت کواد کوپتر خودمان لذت ببریم.

منابع

https://www.hackster.io/robocircuits/arduino-quadcopter-e618c6 لینک پروژه:

لينک ويديو آموزشي: https://www.youtube.com/watch?v=bjyn_6S9xMI