Assignment -2

Data Visualization and Pre-Processing

Date: 26 September 2022

Student Name: R. Jeyapriya

Student Roll Number: 9517201906018

Question 1 - Load the dataset.

SOLUTION:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

df=pd.read_csv("/content/Churn_Modelling.csv")

df.head()

OUTPUT:

Question 2 - Perform Univariate, Bivariate and Multivariate Analysis

SOLUTION:

sns.boxplot(df['CreditScore'])

sns.boxplot(df['Age'])

sns.boxplot(df['Tenure'])

sns.boxplot(df['Balance'])

sns.boxplot(df['EstimatedSalary'])

sns.heatmap(df.corr(), annot=True)

Question 3 - Perform descriptive statistics on the dataset.

SOLUTION:

df.describe()

OUTPUT:

Question 4 – Handle the missing values

SOLUTION:

df.duplicated().sum()

df.nunique()

df.info()

OUTPUT:

Question 5 - Find the outliers and replace the outliers

SOLUTION:

out = df.drop(columns=['Gender', 'Tenure', 'HasCrCard', 'IsActiveMember', 'NumOfProducts', 'Exi ted']).quantile(q=[0.25, 0.50])

out

Q1 = out.iloc[0]

Q3 = out.iloc[1]

iqr = Q3 - Q1

iqr

upper = out.iloc[1] + 1.5*iqr

upper

lower = out.iloc[0] - 1.5*iqr

lower

Replace outliers

SOLUTION:

df['CreditScore'] = np.where(df['CreditScore']>756, 650.5288, df['CreditScore'])
df['Age'] = np.where(df['Age']>62, 38.9218, df['Age'])

Question 6 - Check for Categorical columns and perform encoding.

SOLUTION:

df['Gender'].replace({'Male': 1, 'Female': 0}, inplace=True)

OUTPUT:

df.head(10)

Question 7 – Split the data into dependent and independent variables.

SOLUTION:

df = df.drop(columns=['RowNumber', 'CustomerId', 'Surname', 'Geography'])
df.head()

x = df.iloc[:, :-1]

x.head()

y = df.iloc[:, -1]

y.head()

Question 8 – Scale the independent variables

SOLUTION:

from sklearn.preprocessing import StandardScaler

ss = StandardScaler()

 $x = ss.fit_transform(x)$

X

OUTPUT:

Question 9 - Split the data into training and testing

SOLUTION:

```
from sklearn.model_selection import train_test_split
```

```
x_train,x_text,y_train, y_test = train_test_split(x, y, test_size=0.2,
random_state=0)
```

print(x_train.shape)

print(x_test.shape)

print(y_train.shape)

print(y_test.shape)

OUTPUT:

