Today's Agenda (Oct. 11)

- Hw6: Design of a 5-GHz Microwave Amplifier
- Noise Figure Review (Cascade Circuits)
- ADS Examples for Noise Simulation in Linear Ckt

Design of a Microw. Amplifier

Two-Port Noise Figure

A **noise figure** must associate with a **reference impedance** Reference impedance = 50Ω in most cases

NF can change if the reference impedance change! (maybe only for midterm purpose?)

Assume the blocks are impedance matched properly

Refer to Output (usually a better method)

$$F = P_{o, \text{ noise}}/P_{o, \text{ noise from source}}$$

$$= [G_1G_2N_s + G_1G_2N_s(F_1 - 1) + G_2N_s(F_2 - 1)] / [G_1G_2N_s]$$

$$= 1 + F_1 - 1 + (F_2 - 1)/G_1$$

Refer to Input

(more difficult in most cases, misleading if you over-interpret it)

Amp1 Amp2

Two unilateral amplifiers

Amp1: $Z_{\text{in},1} = 10 \ \Omega$, $Z_{\text{out},1} = 70 \ \Omega$, $A_{\text{v1}} = 10$, $NF_{1,50\Omega} = 5 \ dB$ (3.2) Amp2: $Z_{\text{in},2} = 40 \ \Omega$, $Z_{\text{out},2} = 100 \ \Omega$, $A_{\text{v1}} = 20$, $NF_{2,50\Omega} = 10 \ dB$ (10)

What is the noise figure of the cascade amplifier?

Amplifier 1: Power Gain $(S_{21}) = 1.93 = 2.9 \text{ dB}$

Amplifier 2: Power Gain $(S_{21}) = 35.1 = 15.4 \text{ dB}$

Is the total noise figure F = 3.2 + (10-1)/1.93 = 7.86 = 9 dB???

NF = 8.1 dB

 $V_{\text{o.noise}} =$

 $v_{n,s}^*$ (10/60)*10*(40/110)*20* (50/150) + $v_{n,1}^*$ (10/60)*10*(40/110)*20*(50/150) + $v_{n,2}^*$ (40/110)*20* (50/150)

 $= v_{n,s} *4.04 + v_{n,1} *4.04 + v_{n,2} *2.42$

Calculation

Poutput noise / Poutput noise from source

= $[4.04^2 < v_{n,s}^2 > + 4.04^2 < v_{n,1}^2 > + 2.42^2 < v_{n,2}^2 >] / [4.04^2 < v_{n,s}^2 >]$ = $[4.04^2 * 8.28e - 19 + 4.04^2 * 1.83e - 18 + 2.42^2 * 7.45e - 18]/[4.04^2 * 8.28e - 19]$ = 6.4 = 8.1 dB

- The above noise modeling is only one of many possibilities, and We can find different noise modeling such that
- 1. Amp1: Zin1 = 10 ohm, Zout1 = 70 ohm, Av1 = 10, NF = 5 dB (3.2)
- 2. Amp2: Zin2 = 40 ohm, Zout1 = 100 ohm, Av1 = 20, NF = 10 dB (10)

But the total noise figure is not 8.1 dB

$$NF = 1 + N_{i.amp}/N_s = 3.2 = 5 \text{ dB}$$

$$NF = 1 + N_{i,amp}/N_s = 10 = 10 \text{ dB}$$

Second noise modeling

$$NF = 9.8 dB$$

$v_{\text{o,noise}} =$

$$v_{n,s}^*(10/60)^*10^*(40/110)^*20^* (50/150)$$

+ $i_{n,1}^* (10//50)^*10^*(40/110)^*20^* (50/150)$
+ $i_{n,2}^*(40//70)^*20^* (50/150)$
= $v_{n,s}^*4.04 + i_{n,1}^* 202 + i_{n,2}^*170$

$$P_{\text{o,noise}} / P_{\text{o, noise from source}}$$
= $[4.04^2 < v_{\text{n,s}}^2 > + 208^2 < i_{\text{n,1}}^2 > + 196^2 < i_{\text{n,2}}^2 >]/[4.04^2 < v_{\text{n,s}}^2 >]$
= $[4.04^2 * 8.28e - 19 + 208^2 * 7.32e - 22 + 196^2 * 2.98e - 21]/[4.04^2 * 8.28e - 19]$

Noise - AC Simulation

Small-signal calculation with noise sources

index		name	vnc
freq=1.000 MHz			
	0 1 2 3	_total R2 R5 R3	717.3 pV 567.1 pV 401.0 pV 179.3 pV
freq=1.259 MHz			
	0 1 2 3	_total R2 R5 R3	717.3 pV 567.1 pV 401.0 pV 179.3 pV
freg=1.585 MHz			
	0 1 2 3	_total R2 R5 R3	717.3 pV 567.1 pV 401.0 pV 179.3 pV
freq=1.995 MHz			
.,	0 1 2 3	_total R2 R5 R3	717.3 pV 567.1 pV 401.0 pV 179.3 pV

 $717^2 = 567^2 + 410^2 + 179^2$

$$V_{\text{o,noise}} = 31.2(i_{\text{n,1}} + i_{\text{n,2}} + i_{\text{n,3}})$$

$$\sqrt{\langle v_{\text{o,noise}}^2 \rangle} = 31.2 \text{*sqrt}[\langle i_{\text{n,1}}^2 \rangle + \langle i_{\text{n,2}}^2 \rangle + \langle i_{\text{n,3}}^2 \rangle] = 718 \text{p V}$$

$$\sqrt{\langle V_{o,noise}^2 \rangle}$$
 = sqrt (4kT*31.2) = 718p