빅데이터(딥러닝) 활용AI설계B반

조윤기김태형박여진차호진

멀티캠퍼스

목차 CONTENTS

 01
 프로젝트 개요
 02
 프로젝트 수행 방법

03 핵심 알고리즘 04 프로젝트 시연

01

발표에 앞서

실제 사용할 수 있는 프로그램을 짧은 시간내에 만들고 싶었습니다.

그럼에도 불구하고 배운 딥러닝 알고리즘을 잘 적용해보려 했습니다.

접근이 용이하게 하고 싶었습니다.

$\longrightarrow PPT$

01

좋은 발표 전달 방식

첫째, 청중의 '감정'을 움직여라 청중의 감정을 움직이고 수용적인 태도를 이끌어내기 위해 신체부위를 적절히 잘 사용하여 청중의 시선을 발표자의 소리와 움직임에 묶어 두어야 한다.

둘째, 상황에 맞는 **적절한 움직임**을 사용하라 청중이 심적으로 편하게 받아들일 수 있고, 발표에 집중할 수 있는 적절한 바디랭귀지의 선택이 필요하다.

노

목표

PPT

- > MS사의 Power Point 문서
- > 발표, 강연, 시연 등 다양한 분야에 사용되어 개인의 프레젠테이션 역량이 중요해짐

"

개인의 발표 영상을 분석하여

Personal Presentation Trainer로서 개인 맞춤형 발표 피드백을 제공

OS

Linux 18.04 LTS

FrameWork

Google Cloud Platform

CUDA

02

1. 영상 업로드

피드백 받고자 하는 발표 영상 업로드

2. 알고리즘 적용

좋은 발표에 대한 기준을 바탕으로 영상 분석

3. 피드백 제공

피드백이 필요한 부분을 캡쳐하여, 발표를 개선하기 위한 조언과 함께 제시

-1. 영상 업로드

- > 피드백 받으려는 영상 업로드
- > 업로드 된 영상을 30초마다 Frame 이미지 스냅샷
- > 이미지 형태로 새로운 파일에 저장

02 2. 영상 분석 eye detecting emotion over the head standing straightly hand detecting arms crossed left-right balance

2. 영상 분석

구현 예정

screened by face

pointing finger

moving too much/ fast

staring one spot talk to ground hands in pocket

02

3. 피드백 제공

test

Check Total Score

현재 스냅샷 평가

- 감정: Fear
- 점수: 0

- > 각 스냅샷에 대한 피드백 제공
- > 얼굴 표정에 대한 감정 분석
- > 내부 알고리즘에 의한 전반적인 total score 제공 및 발표 역량 향상을 위한 피드백 전달

Django

03

Pose Estimation : OpenPose

- > 신체 각 부위를 CNN(VGGnet) 기반 딥러닝 알고 리즘으로 추정해주는 Opensource 라이브러리
- > 신체 18부위 표시
- > 학습된 모델을 openCV를 사용하여 사용가능함 : 학습된 caffe모델 사용
- > 측정된 신체 부위 좌표를 활용하여 알고리즘 구성

03

Face Recognition: openCV

- > Resnet 기반 학습된 모델로 얼굴 인식
- > 얼굴 부위를 인식하여 각 좌표를 저장
- > 저장한 좌표를 사용하여 후에 Emotion Estimation 을 할 때 사용

Emotion Estimation

> Kaggle 얼굴 표정 competiton data로 학습

핵심 알고리즘

Emotion Estimation : ResNet

핵심 알고리즘

- > CNN에서 층을 깊게 쌓고 싶은데 하기 힘들다!
- Gradient Vanishing 등의 문제

> 더 깊게 해보자!

Emotion Estimation : ResNet

Figure 2. Residual learning: a building block.

- ➤ Conv를 거친 후
- > Elementwise 합
- > 잔차 학습 : residual

핵심 알고리즘

 실제로는 위와 같은 resnet block을 52층 쌓 아 학습!

Basic CNN보다 validation 정확도 15% 상승!

프로젝트 시연

감사합니다.

THANK YOU.