IMPLEMENTATION

To implement a secondary solution we want to use genetics algorithms. We will also utilize local search to improve our eploitation

CHROMOSOME

We should now define our chromosomes. Based on the problem the chormosomes are binary arrays of size J (number of columns/sets). each cell is either 0 or 1, if the i-th index is 1 it means that in that possible solution, the i-th set is included in the solution, and if 0 it is not.

To have a fair comparison with the algorithm in the paper, we define the constants the same as the paper:

```
GenCount = 100
PopCount = 20
crossover rate = 0.8
mutation rate = 0.33
rho1 = 0.15
rho2 = 1.1
targetWeight = 492
oldpopulationkeeprate = 0.1
que = open("scp48.txt", "r")
#initialize the constants
universalSetCount, subsetCount = map(int,
que.readline().strip().split(" "))
print(universalSetCount, subsetCount)
subsets = [[0] for i in range(subsetCount)]
cost = []
heuristic = []
i = 0
while i < subsetCount:</pre>
    temp = list(map(int, que.readline().lstrip(" ").rstrip("\
n").rstrip(" ").split(" ")))
    cost = cost + temp
    i += len(temp)
for i in range(universalSetCount):
    cnt = int(que.readline().lstrip(" ").rstrip("\n").rstrip(" "))
    j = 0
    while j < cnt:
```

```
temp = list(map(int, que.readline().lstrip(" ").rstrip("\
n").rstrip(" ").split(" ")))
    #print(temp)
    for lis in temp:
        subsets[lis-1].append(i)
    j += len(temp)

heuristic = [len(subsets[i])/cost[i] for i in range(len(subsets))]

# Given sets and variables
alphai = [[] for _ in range(universalSetCount)]
for i in range(universalSetCount):
    for j in range(len(subsets)):
        if i in subsets[j]:
            alphai[i].append(j)
```

HELPER FUNCTION

COST FUNCTION

The cost of a solution is defined as the sum of the costs of all the sets that are included in that solution, a.k.a.

```
f(solution) = \sum_{j=1...n} Cost_j * solution[j]
```

```
def costt(solution):
    """gives cost for a solution

Args:
        solution (list): a potential answer

Returns:
        int: a number representing the solution cost

"""

totalCost = 0
for i in range(len(subsets)):
        if solution[i] == 1:
            totalCost += cost[i]
        if is_covered(solution) == False:
            totalCost += 2000 #huge penalty for not having full coverage
return totalCost
```

CROSSOVER

In order to do crossover, assuming that we have chosen two highly fit parents, we do one-point swap cross over. meaning that we choose a random index and split and swap the first part of the parents to create two childeren.

```
import random
def crossover (parent1, parent2):
    """cross over function using one-point swap technique.
   Args:
        parent1 (list): a highly fit solution
        parent2 (list): another highly fit solution
    Returns:
        list: a pair of two solutions as results of crossover
    if random.random() < crossover rate:</pre>
        # Use one-point crossover
        point = random.randint(1, len(subsets) - 2) # Random crossover
point
        child1 = parent1[:point] + parent2[point:] # First offspring
        child2 = parent2[:point] + parent1[point:] # Second offspring
    else:
        # No crossover, offspring are copies of parents
        child1 = parent1.copy()
        child2 = parent2.copy()
    return [child1, child2]
```

MUTATION

We are going to use random bit flip mutation. Meaning for mutation for each index i, there is a probability it gets mutated, meaning if i is included in the solution it gets removed, if not it gets added.

```
def mutation(solution):
    """mutation function that uses random but flip technique.

Args:
    solution (list): a solution to the problem

for i in range(len(solution)):
    if random.random() < mutation_rate:
        solution[i] = 1 - solution[i]
    return</pre>
```

ELIMINATION OF THE REDUNDANT COLUMNS

The paper introduces an iterative algorithm to delete redundant sets. We implement this algorithm.

```
def eliminate(solution):
    """A function that gets a solution array that is an answer
    to the problem, finds the redundant sets among the sets present
    in the array and deletes them starting from the one with the most
    cost.
    Args:
        solution (list): a solution list that is also an answer
    # Step 1: Initialize wi
    wi = [0 for _ in range(universalSetCount)]
    for i in range(len(solution)):
        if solution[i] == 1:
            for j in range(len(subsets[i])):
                wi[subsets[i][j]-1] += 1
    # Step 2-6: Iterative elimination of redundant columns
    for i in reversed(range(len(subsets))):
        if solution[i] == 1:
            canDelete = True
            for j in range(len(subsets[i])):
                if wi[subsets[i][j]-1] <= 1:</pre>
                    canDelete = False
                    break
            if canDelete:
```

```
solution[i] = 0
for j in range(len(subsets[i])):
    wi[subsets[i][j]-1] -= 1
return
```

LOCAL SEARCH ALGORITHM

The paper also introduces a local search algorithm. The algorithm is as follows:

```
def localSearch (solution):
    """Local search algorithm that gets a solution that is an answer
    and searches for any neighboring solution that might have a lower
    costt than this solution. Implemented based on the directives
given
    by the paper
   Args:
        solution (list): a solution array to the problem
    Returns:
        list: A neighboring solution that might have a better costt
    #print(len(solution))
    number of columns = 0
    for i in solution:
        if i == 1:
            number of columns += 1
    max cost element = -1e9
    for i in range(len(solution)):
        if solution[i] == 1:
            max_cost_element = max(max_cost_element, cost[i])
    wi = [[0] for in range(universalSetCount)]
    for i in range(len(solution)):
        if solution[i] == 1:
            for j in subsets[i]:
                wi[j].append(i)
    D = int(rho1 * number of columns)
    E = rho2 * max cost element
    # Choose D columns to eliminate from the solution solution
    for in range(D):
        <u>i</u> = random.choice(list(range(sum(solution))))
        i = 0
        for k in range(len(subsets)):
            if solution[k] == 1:
```

```
if i == j:
                solution[k] = 0
                break
            i += 1
# Perform the covering
while is covered(solution) == False:
    #print(len(solution), flush=True)
    record columns = []
    for j in range(len(subsets)):
        if solution[j] == 0 and cost[j] <= E:</pre>
             record columns.append(j)
    min ratio = float('inf')
    selected column = -1
    for column in record columns:
        ratio = cost[column] / len(subsets[column])
        if ratio < min ratio:</pre>
            min ratio = ratio
            selected column = column
    solution[selected column] = True
return solution
```

INFERENCE

We should now do inference.

```
#Generating initial population
population = []
for i in range(PopCount):
    individual = [random.randint(0, 1) for _ in range(len(subsets))] #
Random binary array
    while is covered(individual) == False:
        j = random.randint(0, len(subsets) - sum(individual) - 1)
        for k in range(len(subsets)):
            if individual[k] == 0:
                if j == 0:
                    individual[k] = 1
                else:
                    j -= 1
    eliminate(individual)
    population.append(individual)
# Main loop
```

```
for gen in range(GenCount):
   # Evaluate fitness of population
   fitness values = []
   for individual in population:
        fitness_values.append(costt(individual))
   # Print best solution and fitness in current generation
   best index = fitness values.index(min(fitness values))
   best solution = population[best index]
   best fitness = fitness_values[best_index]
   # Check termination criterion
   if best fitness <= targetWeight: # If optimal solution is found</pre>
        break
   # Select parents for reproduction
   parents = []
   for i in range(PopCount):
        # Use tournament selection with size 2
        p1 = random.choice(population)
        p2 = random.choice(population)
        if costt(p1) < costt(p2): # Choose the fitter parent</pre>
            parents.append(p1)
        else:
            parents.append(p2)
   # Generate offspring using crossover and mutation
   offspring = []
   for i in range(0, PopCount, 2):
        # Select two parents randomly
        p1 = random.choice(parents)
        p2 = random.choice(parents)
        # Apply crossover
        c1, c2 = crossover(p1, p2)
        # Apply mutation
        mutation(c1)
        mutation(c2)
        # Add offspring to new population
        offspring.append(c1)
        offspring.append(c2)
   # Replace old population with new offspring
   offspring = population + offspring
   offspring = sorted(offspring, key=costt)
   population = offspring[0:(int(oldpopulationkeeprate*PopCount))]
   while len(population) != PopCount:
```

```
population.append(offspring[random.randint(int(oldpopulationkeeprate*P
opCount), len(offspring)-1)])
print("Best fitness:", best_fitness)
print()
Best fitness: 512
```

COMPARISON:

I have also ran the genetic algorithm 3 times for each test case and written then results below

480	449	456	41		
569	559	598	42		
537	537	537	43		
577	568	559	44		
656	644	529	45		
676	625	649	46		
512	643	509	48		
572	572	572	410		
331	351	341	51		
404	384	331	52		
320	255	306	53		
337	326	344	54		
323	316	212	55		
363	371	283	A2		
266	317	362	A3		
346	276	335	A4		
343	377	362	A 5		
71	92	84	B1		
95	101	94	B2		
79	100	95	B4		
102	100	99	B5		

I have also compared my best results for problem sets with paper's best results and the actual answers to the problem sets:

					1			1					1								
Name	41	42	43	44	45	46	48	410	51	52	53	54	55	A2	A3	A4	A5	B1	B2	B4	B5
GEN	449	559	537	559	529	625	509	572	331	331	255	326	212	283	266	276	343	71	94	79	99
ACS	431	512	516	496	512	577	511	516	257	302	233	242	211	252	238	234	236	71	76	79	72
Percent	96.0%	91.6%	96.0%	88.7%	96.8%	92.3%	101%	90.2%	77.6%	91.2%	91.4%	74.2%	99.5%	89.0%	89.5%	84.8%	68.8%	100%	81.0%	100%	72.7%
Actual	429	512	516	494	512	560	492	514	253	302	226	242	211	252	232	234	236	69	76	79	72