Nathan Sanford

723 W Melrose St, Apt 2R, Chicago, IL 60657

PROFESSIONAL SUMMARY

An applied mathematician trained in stochastic processes and scientific computing methods who is interested in applying analytical and computational methods to problems and data sets that have real-world impacts.

EDUCATION

Northwestern University

Evanston, Illinois

Ph.D. in Applied Mathematics

2013 - expected **Winter 2020**

email: nathansanford2013@u.northwestern.edu

o Thesis: Rare Events in Mode-Locked Lasers

o Minor: Scientific Computing

o Committee: William Kath, David Chopp, Hermann Riecke

Seattle University

Seattle, Washington

B.S. in Mathematics

o Summa Cum Laude, Major GPA: 4.00/4.00, Overall GPA: 3.94/4.00

o Specialization: Applied Mathematics, Minor: Philosophy

WORK EXPERIENCE

Northwestern University

Evanston, Illinois

June 2014 - Present

Research Assistant

- o Advisor: William Kath, Department of Engineering Sciences and Applied Mathematics
- o Performed large-scale, parallelized, Monte Carlo simulations to quantify error rates in a mode-locked laser model.
- o Investigated algorithmic improvements to importance sampled Monte Carlo schemes in specialized conditions.
- o Identified novel error path features analytically and numerically using rare event and large deviation theory.
- Catalogued error path behavior using various technologies/languages including AUTO, Python, and XPP.
- Presented research at conferences, interdisciplinary workshops, and departmental seminars.

Northwestern University

Evanston, Illinois

Teaching Assistant

Sept. 2014 - Present

- Assisted professors in teaching core and advanced undergraduate math classes for 11 quarters.
- Provided group instruction in discussion sections and individualized help to students in office hours.
- o Helped create homework assignments, in-class assignments, and exams.

Seattle University

Seattle, Washington

Jan. 2012 - Sept. 2013

Research Assistant

- Advisor: John Carter, Department of Mathematics
- o Investigated stability of steep waves in a shallow water wave model.
- Utilized a mixture of analytical and numerical techniques to assess solutions' stability.
- Extended previous stability assessment methods to apply to integro-differential equations.

Programming Skills

• Languages: C/C++, Python, LATEX

• OS and Software: Linux, Windows, MATLAB, R, Mathematica

Publications

N. Sanford, G.M. Donovan, and W.L. Kath. Slip Rates and Slip Modes in an Actively Mode-Locked Laser, submitted.

N. Sanford, K. Kodama, J.D. Carter, and H. Kalisch. *Stability of traveling wave solutions to the Whitham equation. Physics Letters A*, 2014.

phone: (253) 326-9902

2009 - 2013