Report of Variable Selection of β Model

Ergan Shang

USTC

October 17, 2022

- Background and Introduction
 - Introduction
 - Algorithm
- 2 Convergence Rate
- Parameter Tuning

- Background and Introduction
 - Introduction
 - Algorithm
- Convergence Rate
- Parameter Tuning

Background

A networks with n nodes is presented by a graph $G_n = G_n(V, E)$, where V is the set of nodes or vertices and E is the set of edges or links. Let $A = (A_{i,j})_{i,j=1}^n$ be the adjacency matrix where $A_{i,j} \in \{0,1\}$ is an indicator whether nodes i,j are connected:

$$A_{i,j} = \begin{cases} 1 & \text{if nodes } i \text{ and } j \text{ are connected} \\ 0 & \text{if nodes } i \text{ and } j \text{ are not connected} \end{cases}.$$

Generally, a network is generated by the probability $P(A_{ij}=1):=p_{ij}$, bring about those sufficient statistic sequence: $d_i=\sum_{j=1}^n A_{ij}=\sum_{j\neq i} A_{ij}$ and $d_+=\sum_{1\leq i< j\leq n} A_{ij}$ because we assume that there is no self-loop.

◆□▶◆□▶◆壹▶◆壹▶ 壹 少Qで

3/16

The β Model

Real-life networks are composed of several critical nodes with more connections with others, along with many "silent" nodes equipped with few links. In order to capture the feature of **heterogeneity** and **homophily**, we abandon the Erdős-Rényi model:

$$P(A_{ij}=1)=rac{e^{\mu}}{1+e^{\mu}}.$$

Instead, we propose the β model as

$$P(A_{ij}=1)=p_{ij}:=rac{\mathrm{e}^{eta_i+eta_j}}{1+\mathrm{e}^{eta_i+eta_j}},$$

where $\beta = (\beta_1, \dots, \beta_n)^{\top} \in \mathbb{R}^n$ is an unknown parameter. Correspondingly, the negative log-likelihood is

$$\ell_n(\beta) = -\sum_{i=1}^n \beta_i d_i + \sum_{1 \leq i < j \leq n} \log(1 + e^{\beta_i + \beta_j}).$$

Ergan Shang (USTC) β Model October 17, 2022 4/16

Optimization Problem

To recover the property of Erdős-Rényi model, we impose a concentration between several parameters by solving the following optimization problem

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^n} \ell_n(\boldsymbol{\beta})$$
 subject to $\|\boldsymbol{\beta} - \beta_0 \mathbf{1}\|_0 \le s$,

where ${\bf 1}$ is an n-dimensional vector with its elements being 1, $s\in\{1,2,\cdots,n-1\}$ is an integer-value parameter to control the sparsity of the network and also $\beta_0\in\mathbb{R}$ is also unknown.

We denote the true parameter as β^* and the MLE as $\hat{\beta}$.

Ergan Shang (USTC)

Surrogate Function and MM Algorithm

Literatures nowadays often treat the problem as convex optimization. In order to propose algorithms tractable, we propose the surrogate function as

$$S(\beta|\beta^m) = \ell_n(\beta^m) + (G^m)^\top (\beta - \beta^m) + \frac{n-1}{4} \|\beta - \beta^m\|_2^2.$$

where β^m is the output in the m-th iteration of algorithms. Next lemma shows the reasonability of applying Majorization Minimization (MM) Algorithm.

Lemma 1

The function $S(\beta|\beta^m)$ majorizes the objective function $\ell_n(\beta)$ at β^m . That is,

$$S(\beta|\beta^m) \ge \ell_n(\beta)$$
 for all β , $S(\beta^m|\beta^m) = \ell_n(\beta^m)$.

Ergan Shang (USTC) β Model October 17, 2022 6/16

Primal-Dual Algorthm

Algorithm 1 Parameter Estimation for Fixed s

Input: Adjacency matrix A, sparsity level s, the maximum number of iterations m_{\max} , and tolerance ϵ .

1: Initialize
$$\beta_0^0 = \frac{1}{2} \operatorname{logit}\left(\frac{\sum_{i=1}^n d_i}{n(n-1)}\right)$$
, $\beta_i^0 = \beta_0^0$ and $G_i^0 = -d_i + \sum_{j \neq i} \frac{\exp(\beta_i^0 + \beta_j^0)}{1 + \exp(\beta_i^0 + \beta_j^0)}$ for $i = 1, \ldots, n$.

- 2: For $m \in \{0, 1, 2, \cdots, m_{\text{max}}\}$ do
- 3: Determine $\Delta_j^{m+1} = \frac{n-1}{4} \left(\beta_0 \beta_j^m + \frac{2}{n-1} G_j^m \right)^2, \ j = 1, \cdots, n.$
- 4: Update the active and inactive sets by $A^{m+1} = A^{m+1} = A^$

$$\mathcal{A}^{m+1} = \{j : \Delta_j^{m+1} \ge \Delta_{[s]}^{m+1}\}, \quad \mathcal{I}^{m+1} = (\mathcal{A}^{m+1})^c.$$

5: Determine
$$\boldsymbol{\beta}^m$$
 by $\boldsymbol{\beta}_{\mathcal{I}^{m+1}}^{m+1} = \boldsymbol{\beta}_0^m$ and $\boldsymbol{\beta}_{\mathcal{A}^{m+1}}^{m+1} = \left(\boldsymbol{\beta}^m - \frac{2}{n-1}\boldsymbol{G}^m\right)_{\mathcal{A}^{m+1}}$.

6: Let
$$p = \frac{\sum_{i \in \mathcal{I}^{m+1}} d_i - \sum_{i \in \mathcal{A}^{m+1}} d_i + \sum_{i \neq j, i, j \in \mathcal{A}^{m+1}} \frac{\exp(\beta_i^{m+1} + \beta_j^{m+1})}{1 + \exp(\beta_i^{m+1} + \beta_j^{m+1})}}{(n-s)(n-s-1)}$$
.

- If p < 1, then $\beta_0^{m+1} = \frac{1}{2} \operatorname{logit}(p)$, else break.
- 7: If $\|\boldsymbol{\beta}^{m+1} \boldsymbol{\beta}^m\|_2 < \epsilon$, break.
- 8: end For
- 9: **Return** $\hat{A} = A^{m+1}$ $\hat{\beta} = \beta^{m+1}$.

7/16

- Background and Introduction
 - Introduction
 - Algorithm
- 2 Convergence Rate
- Parameter Tuning

Mild Conditions

We first give a condition on how well β_0^{m-1} approximates the truth β_0 and then we will give the theorem concerning the termination of the algorithm.

Condition 1

The ℓ_2 distance between the true β_0 and the estimator β_0^{m-1} satisfies that there exists constant $\tilde{C} \geq \sqrt{n-s}$ such that

$$(n-s)(\beta_0-\beta_0^{m-1})^2 \leq \left(\frac{1}{1-\frac{n-s}{\tilde{C}^2}}-1\right)\sum_{i=1}^s (\beta_i^m-\hat{\beta}_i)^2,$$

when the right support is identified.

From the condition, we can see that if β_0^{m-1} approximates β_0 well, i.e., the LHS will be smaller for the existence of \tilde{C} .

- 4 ロ ト 4 御 ト 4 恵 ト 4 恵 ト - 夏 - 夕 Q (P

Convergence Rate

Theorem 1

Suppose β^{m+1} is the (m+1)th iteration of 7, then there exists $\zeta \in (0,1)$, such that

$$\|\boldsymbol{\beta}^{m+1} - \hat{\boldsymbol{\beta}}\|_2 \le \zeta^m \left(1 + \frac{\sqrt{n-s}}{\tilde{\boldsymbol{C}} - \sqrt{n-s}}\right) \|\boldsymbol{\beta}_{\text{ini}} - \hat{\boldsymbol{\beta}}\|_2,$$

if choosing $s=s^*$ and the right support is identified at the mth iteration, where $\beta_{\rm ini}$ is the initial value in 7 and \tilde{C} is the constant defined in 8.

Convergence Rate

Corollary 1

Let $L:=\max_{1\leq i\leq n}|\beta_i^*|=o(loglogs)$. If the right sparsity level is chosen, i.e. $s=s^*$ and the right support is identified at the mth iteration, then the solution of the maximum likelihood exists and

$$\|\boldsymbol{\beta}^{m+1} - \boldsymbol{\beta}^*\|_2 \leq \zeta^m \left(1 + \frac{\sqrt{n-s}}{\tilde{C} - \sqrt{n-s}}\right) \|\boldsymbol{\beta}_{\rm ini} - \hat{\boldsymbol{\beta}}\|_2 + s^{\frac{3}{2}} O_p \left(\frac{o((logs)^6)}{\sqrt{n}}\right),$$

where ζ and β^{m+1} is defined in 9.

Ergan Shang (USTC)

- Background and Introduction
 - Introduction
 - Algorithm
- 2 Convergence Rate
- Parameter Tuning

In order to select the true sparsity level s, we propose the following Generalized Information Criterion (GIC):

$$GIC^* = 2\ell_n\left(\hat{\boldsymbol{\beta}}^{ora}(\mathcal{A})\right) + s \cdot \log\left(\frac{n(n-1)}{2}\right) \cdot \log(\log n),$$

where $\hat{\boldsymbol{\beta}}^{ora}(\mathcal{A}) := arg \min_{\{\boldsymbol{\beta}: \operatorname{supp}(\boldsymbol{\beta} - \beta_0 \mathbf{1}) = \mathcal{A}\}} \ell_n(\boldsymbol{\beta})$. For the convenience of the statement of theorems, we define

$$\delta_n = \inf_{\mathcal{A} \supset \mathcal{A}_0, |\mathcal{A}| \leq K} \frac{2}{n(n-1)} I(\beta^{KL}(\mathcal{A})),$$

and

$$eta^{ extit{KL}}(\mathcal{A}) := arg \min_{\{\sup(oldsymbol{eta} - eta_0 \mathbf{1}) = \mathcal{A}\}} I(oldsymbol{eta}(\mathcal{A})),$$

where $I(\beta(A)) = \mathbb{E}[log(f^*/g_A)]$, with $\beta(A)$ is an n-dimensional parameter vector with support of $\beta - \beta_0 \mathbf{1}$ being A, f^* is the density of underlying true model, and g_A is the density of the model with population parameter $\beta(A)$.

Mild Conditions

Now we ask for the constrain for the sparsity level and also the boundedness of $\hat{\beta}^{ora}$ and β^{KL} .

Condition 2

To ensure identifiability, we assume the unique minimizer $\beta^{KL}(A)$ for every A satisfying $|A| \leq K$, with $K = O(\sqrt{n})$.

Condition 3

The norm of $\hat{\boldsymbol{\beta}}^{ora}(\mathcal{A})$ and $\boldsymbol{\beta}^{KL}(\mathcal{A})$ should be bounded by its support, namely, $\begin{cases} \|\hat{\boldsymbol{\beta}}^{ora}(\mathcal{A})\|_2^2 \leq C|\mathcal{A}| \\ \|\boldsymbol{\beta}^{KL}(\mathcal{A})\|_2^2 \leq C|\mathcal{A}| \end{cases}$ for some constant C.

Ergan Shang (USTC)

Final Algorithm

Algorithm 2 Parameter Estimation

Input: Adjacency matrix A and the maximum support size K.

- 1: Set degree sequence $\mathbf{d} = (d_1, \cdots, d_n)^T$.
- 2: Let $d_{(1)} > d_{(2)} > \cdots > d_{(m)}$ denote the distinctive values of d_i 's.
- 3: Denote $S_k = \{i \in \{1, \dots, n\} : d_i = d_{(k)}\}$ and $s_k = |S_k|$, where $k = 1, 2, \dots, m$.
- 4: For $s = s_1, s_1 + s_2, \cdots, \sum_{k=1}^m s_k$ do
- 5: $(\hat{\boldsymbol{\beta}}_s, \hat{\mathcal{A}}_s) = \mathbf{Algorithm} \ \mathbf{1}(s)$.
- 6: end For
- 7: Compute the minimum of GIC*:

$$s_{min} = arg \min_{s} GIC^*(\hat{\beta}_s).$$

8: Return $(\hat{\boldsymbol{\beta}}_{s_{min}}, \hat{\mathcal{A}}_{s_{min}})$.

Theorems and Conclusions

Theorem 2

Supposing $(\hat{\beta},\hat{\mathcal{A}})$ is the solution of 13 and under Conditions 1 - 3, if $\delta_n \mathcal{K}^{-1} R_n^{-1} \to \infty$ and $\frac{n(n-1)}{2} \delta_n s^{-1} \left(\log \left(\frac{n(n-1)}{2} \right) \log \log n \right)^{-1} \to \infty$, then as $n \to \infty$, $P\left(\hat{\mathcal{A}} = \mathcal{A}^*\right) \to 1,$

where $R_n = \frac{\sqrt{\log n}}{n(n-1)}$.

Theorems and Conclusions

Corollary 2

Suppose $eta^m_{s_{min}}$ is the mth iteration after choosing s_{min} via GIC*, $\hat{\mathcal{A}}$ is the solution of 13 and under the same conditions of Theorem 2, then for some constant $\zeta \in (0,1)$, with probability at least $1-C(L)n^{-2}$, the solution of the MLE $\hat{\boldsymbol{\beta}}$ exists satisfying

$$\|\beta_{s_{min}}^{m+1} - \beta^*\|_2 \le \zeta^m \left(1 + \frac{\sqrt{n-s^*}}{\tilde{C} - \sqrt{n-s^*}}\right) \|\beta_{s_{min}}^{ini} - \hat{\beta}\|_2 + s^{*\frac{3}{2}} O_p \left(\frac{o((logs^*)^6)}{\sqrt{n}}\right),$$

where $\beta_{s_{min}}^{ini}$ is the initial value chosen when the sparsity level s_{min} is selected in 7. Moreover, we have

$$P(\hat{\mathcal{A}} = \mathcal{A}^*) \to 1,$$

as $n \to \infty$.

- 《ロ》《趣》《意》《意》 - 意 - 釣Q(

15 / 16

Thank you!