CSCI 1470/2470 Spring 2023

Ritambhara Singh

February 08, 2023 Wednesday

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input x.

Goal of learning: Minimize the total loss for all x in training data.

Recap: Forward Pass

Compute the prediction or evaluate the loss for a single input x.

Goal of learning: Minimize the total loss for all x in training data with respect to model parameters W, b.

Recap: Backpropagation (Backward Pass)

Gradient descent: $\Delta W = -\alpha \ \nabla \hat{L}(W)$ and $\Delta \boldsymbol{b} = -\alpha \ \nabla \hat{L}(\boldsymbol{b})$

Backpropagation: Compute ΔW and $\Delta \boldsymbol{b}$ via chain rule.

$$\frac{dL}{dw_{i,i}} = \frac{dl_j}{dw_{i,i}} \cdot \frac{dp_a}{dl_i} \cdot \frac{dp_a}{dl_i}$$

Recap: Computation graph

Parameter update:

Today's goal – learn about deep learning frameworks

- (1) Gradient Descent pseudocode
- (2) Stochastic Gradient Descent (SGD)
- (3) Automatic differentiation

Putting Everything Together: Gradient Descent

delta_W is 2-D matrix of 0's in the shape of W

for each input and corresponding answer a:

```
probabilities = run_network(input)
```

Forward pass

for j in range(len(probabilities)):

```
y_j = 1 if j == a else 0
for i in range(len(input):
    delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
```

Backward pass:

Compute $\frac{\partial L}{\partial W_{ij}}$ for every W_{ij}

Over the entire dataset

W += delta_W

Putting Everything Together: Gradient Descent

delta_W is 2-D matrix of 0's in the shape of W

for each input and corresponding answer a:

```
probabilities = run_network(input)
```

Forward pass

for j in range(len(probabilities)):

```
y_j = 1 if j == a else 0

for i in range(len(input):

delta_W[j][i] += alpha * (y_j – probabilities[j]) * input[i]
```

Backward pass:

Compute $\frac{\partial L}{\partial W_{ij}}$ for every W_{ij}

Over the entire dataset

w += deita_w

Gradient descent update

Gradient Descent: Limitation?

delta_W is 2-D matrix of 0's in the shape of W

for each input and corresponding answer a:

We iterate over the *entire* dataset...

```
probabilities = run_network(input)
for j in range(len(probabilities)):
    y_j = 1 if j == a else 0
    for i in range(len(input):
        delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
```

W += delta_W

...to update the weights only *once*

Stochastic Gradient Descent (SGD)

- Alternative is to train on *batches*: small subsets of the training data
- Why stochastic: Each batch is randomly sampled from the full training data
- We update the parameters after each batch

Stochastic Gradient Descent: Pseudocode

for each batch:

```
# delta_W is 2-D matrix of 0's in the shape of W
for each input and corresponding answer a in batch:
  probabilities = run_network(input)
 for j in range(len(probabilities)):
   y_{j} = 1 \text{ if } j == a \text{ else } 0
   for i in range(len(input):
     delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
W += delta_W
```

Stochastic Gradient Descent: Pseudocode

for each batch:

```
# delta W is 2-D matrix of 0's in the shape of W
for each input and corresponding answer a in batch:
  probabilities = run_network(input)
  for j in range(len(probabilities)):
    v i = 1 if i == a else 0
    for i in range(len(input):
     delta_W[j][i] += alpha * (y_j - probabilities[j]) * input[i]
W += delta_W
                     Now we update weights after every batch
```

Stochastic Gradient Descent (SGD)

- Train on batches: small subsets of the training data
- We update the parameters after each batch
- This makes the training process stochastic or non-deterministic: -
 - *batches are a random subsample of the data
 - *do not provide the gradient that the entire dataset as a whole would provide at once
- Formally: the gradient of a randomly-sampled batch is an unbiased estimator of the gradient over the whole dataset
 - "Unbiased": expected value == the true gradient, but may have large variance (i.e. the gradient may 'jitter around' a lot)

What size should the batch be?

Small batch size: Fast, jittery updates

Large batch size: Slower, stable updates

Rule of thumb nowadays: Pick the largest batch size you can fit on your GPU!

Generalizing Backpropagation

Generalizing Backpropagation

- What if we want to add another layer to our model?
- Calculating derivatives by hand again is a lot of work

Can the computers do this for us?

Numeric differentiation

•
$$\frac{df}{dx} \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$$

- Pick a small step size Δx
- Also called "finite differences"

Numeric differentiation

•
$$\frac{df}{dx} \approx \frac{f(x+\Delta x)-f(x)}{\Delta x}$$

- Pick a small step size Δx
- Also called "finite differences"
- Easy to implement
- Arbitrarily inaccurate/unstable

- Numeric differentiation
- Symbolic differentiation
 - Computer "does algebra" and simplifies expressions
 - What Wolfram Alpha does <u>https://www.wolframalpha.com/</u>

 \int_{Σ}^{π} Extended Keyboard

1 Upload

Derivative:

$$\frac{d}{dx}(2x+3x^2+x(6-2)) = 6(x+1)$$

$$\frac{d}{dx}(6x+3x^2)$$

- Numeric differentiation
- Symbolic differentiation
 - Computer "does algebra" and simplifies expressions
 - What Wolfram Alpha does
 - Exact (no approximation error)
 - Complex to implement
 - Only handles static expressions (what about e.g. loops?)

Example:

while
$$abs(x) > 5$$
:
 $x = x / 2$

• This loop could run once or 100 times, it's impossible to know

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
 - Use the chain rule at runtime

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
 - Use the chain rule at runtime
 - Gives exact results
 - Handles dynamics (loops, etc.)
 - Easier to implement
 - Can't simplify expressions

- $\sin^2 x + \cos^2 x \Rightarrow 1$
- Automatic differentiation doesn't know this identity, will end up evaluating the entire expression on the left hand side

- Numeric differentiation
- Symbolic differentiation
- Automatic differentiation
 - Use the chain rule at runtime
 - Gives exact results
 - Handles dynamics (loops, etc.)
 - Easier to implement
 - Can't simplify expressions
 - What Tensorflow and PyTorch use

- $\sin^2 x + \cos^2 x \Rightarrow 1$
- Automatic differentiation doesn't know this identity, will end up evaluating the entire expression on the left hand side

Two Main "Flavors" of Autodiff

Forward Mode Autodiff

• Compute derivatives alongside the program as it is running

Reverse Mode Autodiff

• Run the program, then compute derivatives (in reverse order)

Two Main "Flavors" of Autodiff

Forward Mode Autodiff

• Compute derivatives alongside the program as it is running

Reverse Mode Autodiff

• Run the program, then compute derivatives (in reverse order)

• Given $f(x, y) = x^2 + \log y$

Function inputs

• Given $f(x, y) = x^2 + \log y$

What is the chain rule for $\frac{de}{dx}$ and $\frac{de}{dy}$?

• Idea: Augment each node...

...with functions that compute derivatives

• Then, keep track of derivatives as you compute:

• Then, keep track of derivatives as you compute:

• Then, keep track of derivatives as you compute:

Can do the same thing starting from the second input:

Can do the same thing starting from the second input:

Forward Mode Autodiff

Can do the same thing starting from the second input:

Forward Mode Autodiff

We can think of each node...

• ...as operating on a (value, derivative) tuple:

These tuples are called **dual numbers**

$$(e, \frac{de}{dc}) = (c+b, 1)$$
$$(e, \frac{de}{db}) = (c+b, 1)$$

Problems w/ Forward Mode for our use case

• For $f: \mathbb{R} \to \mathbb{R}^n$ (1 input to n outputs) we can differentiate in one pass

• For $f: \mathbb{R}^n \to \mathbb{R}$ (n inputs to 1 output) we need n passes

Can you calculate the time and memory complexity?

these derivatives

N = number of input features to the network, K = number of nodes in the graph

Go to www.menti.com and use the code 6413 7504

Problems w/ Forward Mode for our use case

ullet For $f\colon\mathbb{R}\to\mathbb{R}^n$ (1 input to n outputs) we can differentiate in one pass

• For $f: \mathbb{R}^n \to \mathbb{R}$ (n inputs to 1 output) we need n passes

Can you calculate the time and memory complexity?

these derivatives

N = number of input features to the network, K = number of nodes in the graph

Forward mode: O(N * K) time, O(1) memory

Two Main "Flavors" of Autodiff

- Forward Mode Autodiff
 - Compute derivatives alongside the program as it is running

- Reverse Mode Autodiff
 - Run the program, then compute derivatives (in reverse order)

- Idea: first, run the function forward to produce the graph
- $f(x, y) = x^2 + \log y$

Can you calculate the time and memory complexity?

Reverse Mode Autodiff is Time Efficient

- Forward mode: O(N * K) time, O(1) memory
 - N = number of inputs features to the network,
 - K = number of nodes in the graph
- Reverse mode: O(K) time, O(K) memory
- The memory cost comes from having to keep the entire graph from the forward pass in order to then differentiate backwards

Recap

Computer based derivatives

Deep Learning Frameworks Gradient Descent pseudocode

Stochastic Gradient Descent

Batching

Numeric differentiation

Symbolic differentiation

Automatic differentiation (Autodiff)

- (1) Forward mode
- (2) Reverse mode

