PROBLEM SET #8 Due Thursday, November 17 (Problems are from $Vector\ Calculus$ by Marsden and Tromba, sixth edition.)

1

Let $S = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, \ z \ge 0\}$, oriented as a graph. What is ∂S as a set? Let $\vec{F}(x,y,z) = (y,z,x)$. Compute, without using Stokes' theorem, both $\iint (\nabla \times \vec{F}) \cdot d\vec{S}$ and $\int_{\partial S} \vec{F} \cdot d\vec{s}$.

2

Let C be the triangle in \mathbb{R}^3 formed by traveling in straight lines between the points (0,0,0), (2,1,5), (1,1,3), and back to the origin, in that order. Use Stokes' theorem to evaluate $\int_C (xyz) \, dx + (xy) \, dy + (x) \, dz$.

3

Calculate (feel free to use Stokes' theorem) the surface integral $\iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$ where $\vec{F}(x,y,z) = x^3 \vec{i} - y^3 \vec{j}$ and S is the hemisphere defined by $x^2 + y^2 + z^2 = 1$ and $x \ge 0$.

4

Suppose C is a closed curve that is the boundary of some surface S. Let \vec{v} be a constant vector. Show that $\int_C \vec{v} \cdot d\vec{s} = 0$.