National University of Computer and Emerging Sciences, Lahore Campus

Course Name:	Object Oriented Programming	Course Code:	CS1004
Degree Program:	BS (CS, SE, DS, Robotics)	Semester:	Fall 2023
Exam Duration:	180 Minutes	Total Marks:	70
Paper Date:	26-12-2023	Weight	40
Section:	ALL	Page(s):	10
Exam Type:	Final Exam		

Student Name:_____ Roll No._____ Section:____

Instruction/Notes: Attempt all questions. Answer in the space provided. Answers written on rough sheet will not be attached and marked. Do not use pencil or red ink to answer the questions.

Question 1: (CLO: 1) (Marks: 10)

Determine output for the code segment given below. There is no syntax error in the code.

```
class FirstClass {
public:
    int val1;
    FirstClass(int value=0) : val1(value) {
        cout << "FirstClass Constructor with value: " << value << endl;</pre>
    void display() {
        cout << "Displaying from FirstClass: " << val1 << endl;</pre>
    ~FirstClass() {
        cout << "Destructor called for FirstClass " << val1 << endl;</pre>
                                                                            }
class SecondClass {
    FirstClass object;
public:
    int val2;
    SecondClass(int value) : val2(value), object(value + 5) {
        cout << "SecondClass Constructor with value: " << val2 << endl;</pre>
    SecondClass(SecondClass& obj)
        cout << "SecondClass Copy Constructor" << endl;</pre>
        this->val2 = obj.val2+10;
    void display() {
        object.display();
        cout << "Displaying from SecondClass: " << val2 << endl;</pre>
    ~SecondClass() {
        cout << "Destructor called for SecondClass " << val2 << endl;</pre>
                                                                             }
void functionDisplay(SecondClass &s, FirstClass f) {
    s.display();
    f.display();
int main() {
    SecondClass secondObj(10);FirstClass firstObj(20);
    functionDisplay(secondObj, firstObj);
```

OUTPUT:

Determine output for the codes given below. There is no syntax error in the code.

```
a)
                                                              OUTPUT:
int main() {
    try {
        try {
             throw 20;
             cout << "Hello from try block\n";</pre>
        }
        catch (int n) {
             cout << "Exception catched\n";</pre>
             throw;
        }
    }
    catch (float n) {
        cout << n << ": float Exception catched\n";</pre>
    catch (int n) {
        try {
             cout << n << ": int Exception catched\n";</pre>
             throw exception("Exp in catch block");
        }
        catch (exception n) {
             cout << n.what() << "\n";</pre>
    }
    catch (...) {
        cout << "Exception catched\n";</pre>
    cout << "Bve!";
    return 0;
b)
                                                              OUTPUT:
template <typename TYPE>
class Carray
private:
    TYPE x, y;
public:
    Carray(const TYPE a, const TYPE b) : x(a), y(b) {}
    TYPE getX() { return x; }
    TYPE getY() { return y; }
template <class TypeName>
void fun(TypeName* arr, int len)
{
    for (int i = 0; i < len; i++) {
        cout << *arr << ", ";
        ++arr;
    cout << endl;
int main()
    Carray<float>f(200.5, 34);
    cout << f.getX() <<" " << f.getY() << endl;</pre>
    char chrArr[] = "Help";
    int numArr[] = { 10, 20, 30, 40, 50 };
    cout << "chrArr: ";</pre>
    fun(chrArr, strlen(chrArr));
    cout << "numArr: ";</pre>
    fun(numArr, 5);
    cout << "Hello: ";
    fun("Hello", 5);
    system("pause");
    return 0;
```

Question 3: (CLO: 3) (Marks: 10)

You are designing a library management system that needs to efficiently allocate books based on their genres and availability. The library receives a static 2D array representing the number of books available for different genres in each section. Your task is to create a dynamic 2D array that organizes these books according to the following conditions:

- Each row in the static array represents a section of the library.
- Each column in a row represents a genre of books available in that section.
- The value at **staticArray[section][genre]** denotes the number of books available for that particular genre in that section.

Your program needs to perform the following tasks:

- Identify the sections where the total number of books available across all genres is greater than a given threshold (thresholdBooks).
- Create a Dynamic array for these identified sections, where each row corresponds to a section having more books than the threshold.
- Allocate memory dynamically for these sections and genres and populate the Dynamic array accordingly.
- Ensure that memory is deallocated appropriately after use.

Write a C++ program that takes the static 2D array as input, applies the conditions mentioned above, and outputs the 2D Dynamic array.

Here are the additional details:

- Use double pointers (**) for creating the dynamic array.
- Implement functions to handle memory allocation, population of the Dynamic array, and deallocation.

Your program should contain the following functions:

// Function to create the dynamic array based on conditions

int** createDynamicArray(int staticArray[][3], int sections, int genres, int thresholdBooks, int& DynamicArrayRows);

// Function to populate the dynamic array with books based on conditions

void populateDynamicArray (int staticArray[][3], int** DynamicArray, int sections, int genres, int thresholdBooks);

// Function to deallocate memory used by the dynamic array

void deallocateDynamicArray(int** DynamicArray, int DynamicArrayRows);

Example Input:

```
int staticArray[4][3] = {
    {10, 5, 7},
    {3, 12, 8},
    {2, 1, 9},
    {2, 5, 3}};
int sections = 4;
int genres = 3;
int thresholdBooks = 15;
```

Example Output:

Dynamic Array for Sections with More than 15 Books:

Section 1: 10 5 7 Section 2: 3 12 8 Main Function is given, your code should work for this main, int main() { int staticArray[4][3] = { {10, 5, 7}, {3, 1, 8}, {6, 4, 9}, {2, 5, 3} **}**: int dynamicArrayRows = 0; int sections = 4; int genres = 3; int thresholdBooks = 15; // Creating the dynamic array int** dynamicArray = createDynamicArray(staticArray, sections, genres, thresholdBooks, dynamicArrayRows); // Populating the dynamic array populateDynamicArray(staticArray, dynamicArray, sections, genres, thresholdBooks); // Displaying the result cout << "Dynamic Array for Sections with More than " << thresholdBooks << " Books:\n"; for (int i = 0; i < dynamicArrayRows; ++i) { for (int j = 0; j < genres; ++j) { cout << dynamicArray[i][j] << " "; } cout <<endl; } // Deallocating memory deallocateDynamicArray(dynamicArray, dynamicArrayRows); return 0; }

Question 4: (CLO: 2) (Marks: 15)

Implement the following UML diagram using concept of abstract class and polymorphism without changing main function.

Note: you can typecast base class object to derived class object in compare function e.g; Image* imageObj = (Image*)other;


```
You Code should run for this main().
int main() {
    Image image("Default Image", 800, 600);
    Audio audio("Default Audio", 44100, 180);
    Video video("Default Video", 24);
    cin >> image;
    cin >> audio;
    cin >> video;
    Multimedia* multimediaArray[] = { &image, &audio, &video };
    for (int i = 0; i < 3; i++) {
       multimediaArray[i]->displayInfo();
       if (multimediaArray[i]->compare(image)) {
            cout << "The content is similar to the image." << endl;
       }
       else {
            cout << "The content is different from the image." <<endl;
       }
       if (*multimediaArray[i] == audio) {
            cout << "The content is equal to the audio." << endl;
       }
       else {
            cout << "The content is not equal to the audio." << endl;
        cout << "----" << endl;
    return 0;
}
```



```
1. Read the following code, A double pointer array is declared named person.
    Person** persons = new Person*[5];
Complete the code to resize the array to add 7 people to this array
class Person {
public:
    string name;
    int age;
    Person(string n, int a) : name(n), age(a) {}
int main() {
    int capacity = 5;
    // Creating an array of 5 pointers to Person objects
    Person** persons = new Person * [capacity];
    // Adding 5 people
    for (int i = 0; i < capacity; ++i) {
        persons[i] = new Person("Person", 25 + i);
//Write your code for resizing array here, your code should run perfect with the already
written lines of code:
    // Displaying the added people
    for (int i = 0; i < capacity; ++i) {</pre>
        cout << persons[i]->age <<endl;</pre>
    for (int i = 0; i < capacity; ++i) {
        delete persons[i];
    delete[] persons;
```

2. What is the difference between concrete and final class? And what is the purpose of using final keyword with the function name in class?

```
3. Write output of the following code:
class ClassA{
                                                    int main(){
private:
                                                        ClassA* obj1 = new ClassA(5, 5);
    int x, y;
                                                         (*(*obj1).setX(30)).setY(50);
public:
                                                         obj1->print();
    static int w;
                                                        cout << ClassA::w << endl;</pre>
    ClassA(int x = 0, int y = 0) {
                                                        ClassA::func(*obj1);
        this->x = x;
                                                        return 0;
        this->y = y; w - 1;
                                                    }
    ClassA* setX(int a) {
        x = a; w++;
        return this;
    ClassA* setY(int b) {
                                                    Output:
        y = b;
        return this;
    void print() {
        cout << "x" << x << "y" << y << endl;
    static void func(ClassA b) {
        cout <<w << endl;</pre>
int ClassA::w = 1;
4. Find the error in this code and explain the reason:
                                                    5. Write output of the following code:
class Base {
                                                    class Base {
public:
                                                    public:
    Base(string& baseData) :
                                                         Base() {
baseData(baseData) {}
                                                            cout << "Base Constr" << endl;</pre>
    virtual void displayInfo() const {
        cout << "Base Class: " << baseData;</pre>
                                                        ~Base() {
                                                             cout << "Base Destr" << endl;</pre>
    }
private:
    string baseData;
                                                    };
                                                    class Derived1 : public Base {
class Derived : public Base {
                                                    public:
public:
                                                        Derived1() {
    Derived(string baseData, string
                                                             cout << "Derived1 Constr" << endl;</pre>
derivedData)
: Base(baseData), derivedData(derivedData) {}
                                                        ~Derived1() {
    virtual void display() const {
                                                             cout << "Derived1 Destr" << endl;</pre>
        cout << "Derived Class: " <<</pre>
                                                    };
derivedData;
                                                    int main() {
    }
                                                        Base* Basepointer = new Derived1;
private:
    string derivedData;
                                                             Derived1 obj;
                                                             delete Basepointer;
int main() {
   Derived derivedObject("Base Data",
"Derived Data");
    Base base = derivedObject;
                                                    Output:
    base.display();
Answer:
```