Correction Devoir Maison 1

Exercice 1 : Remarque : dans l'énoncé, dans la définition de la suite, il faut lire $n \geq 0$.

1) Tout d'abord, on montre que la suite $(u_n)_{\mathbb{N}}$ est bien définie : pour cela, on vérifie que, pour tout $n \in \mathbb{N}$, $u_n \neq 0$. Ceci

se vérifie par une récurrence immédiate :
$$u_0>0$$
 par hypothèse. On suppose que $u_n\neq 0$ au rang n , alors
$$u_{n+1}=\frac{1}{2}\left(u_n+\frac{a}{u_n}\right)\neq 0.$$
 Maintenant, soit $n\in\mathbb{N},$ $u_{n+1}^2-a=\frac{1}{4}\left(u_n^2+2a+\frac{a^2}{u_n^2}\right)-a=\frac{u_n^4+2au_n^2+a^2}{4u_n^2}-\frac{4au_n^2}{4u_n^2},$ d'où $u_{n+1}^2-a=\frac{(u_n^2-a)^2}{4u_n^2}.$

2) D'après 1), pour $n \in \mathbb{N}$, $u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2} \ge 0$, donc $\forall n \in \mathbb{N}, u_{n+1}^2 \ge a$. Par la même récurrence qu'en

question 1), on montre que $\forall n \in \mathbb{N}, u_n > 0$. Donc $\forall n \in \mathbb{N}, u_{n+1} \ge \sqrt{a}$, donc $\forall n \in \mathbb{N}^*, u_n \ge \sqrt{a}$.

Soit
$$n \in \mathbb{N}$$
, $u_{n+1} - u_n = \frac{a}{2u_n} - \frac{u_n}{2}$. Alors

$$u_{n+1} - u_n \le 0 \Longleftrightarrow \frac{a}{2u_n} - \frac{u_n}{2} \le 0 \Longleftrightarrow \frac{a}{2} \le \frac{u_n^2}{2} \text{ (car } u_n > 0)$$
$$\iff a \le u_n^2 \Longleftrightarrow \sqrt{a} \le u_n \text{ (car } u_n > 0).$$

Comme, pour tout $n \in \mathbb{N}^*$, $u_n \ge \sqrt{a}$, on en déduit que, pour tout $n \in \mathbb{N}^*$, $u_{n+1} - u_n \le 0$ c'est-à-dire, la suite $(u_n)_{\mathbb{N}}$ est décroissante à partir du rang 1. **NB** : on n'a pas dit dans l'énoncé que $u_0 \geq \sqrt{a}$!!

3) D'après la question 2), $(u_n)_{\mathbb{N}}$ est décroissante et minorée par \sqrt{a} , donc $(u_n)_{\mathbb{N}}$ est convergente et sa limite l vérifie $l \geq \sqrt{a}$. Puisque $(u_n)_{\mathbb{N}}$ est convergente alors la suite extraite $(u_{n+1})_{\mathbb{N}}$ est convergente et converge vers la même limite l,

$$\operatorname{donc} \lim_{n \to +\infty} u_{n+1} = \frac{1}{2} \lim_{n \to +\infty} \left(u_n + \frac{a}{u_n} \right) \Longleftrightarrow l = \frac{1}{2} \left(l + \frac{a}{l} \right) \Longleftrightarrow \frac{l}{2} = \frac{a}{2l}, \text{ d'où } l^2 = a, \text{ i.e. } l = \pm \sqrt{a}. \text{ Mais } l \ge \sqrt{a},$$

$$\operatorname{donc}\left[\lim_{n\to+\infty}u_n=\sqrt{a}.\right]$$

4) Soit
$$n \in \mathbb{N}$$
, $u_{n+1}^2 - a = (u_{n+1} - \sqrt{a})(u_{n+1} + \sqrt{a})$. D'une part, comme $u_n \ge \sqrt{a}$, on a $(u_{n+1} + \sqrt{a}) \ge 2\sqrt{a}$, donc

$$u_{n+1}^2 - a \ge 2\sqrt{a}(u_{n+1} - \sqrt{a}).$$
 (1)

D'autre part, $u_{n+1}^2 - a = \frac{(u_n^2 - a)^2}{4u_n^2} = \frac{(u_n - \sqrt{a})^2(u_n + \sqrt{a})^2}{4u_n^2} = \frac{1}{4}(u_n - \sqrt{a})^2\left(1 + \frac{\sqrt{a}}{u_n}\right)^2$. Comme $u_n \ge \sqrt{a}$, on a

$$\frac{\sqrt{a}}{u_n} \le 1, \text{ d'où } \left(1 + \frac{\sqrt{a}}{u_n}\right)^2 \le 4 \text{ donc}$$

$$u_{n+1}^2 - a \le (u_n - \sqrt{a})^2$$
. (2)

En combinant (1) et (2) on obtient, pour $n \in \mathbb{N}$, $u_{n+1} - \sqrt{a} \leq \frac{(u_n - \sqrt{a})^2}{2\sqrt{a}}$.

5) On raisonne par récurrence. Pour $n=1, u_1-\sqrt{a} \le k$ par hypothèse, c'est bon. On suppose la propriété vraie au rang n, alors d'après la question précédente puis par hypothèse de récurrence

$$u_{n+1} - \sqrt{a} \le \frac{(u_n - \sqrt{a})^2}{2\sqrt{a}} \le \frac{1}{2\sqrt{a}} \left(2\sqrt{a}\left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}\right)^2$$

d'où $u_{n+1} - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^n}$. Donc, par récurrence, pour tout $n \in \mathbb{N}^*$, $\left|u_n - \sqrt{a} \le 2\sqrt{a} \left(\frac{k}{2\sqrt{a}}\right)^{2^{n-1}}\right|$

6) Ici, $u_0=3$ et a=10. On veut approcher $\sqrt{10}$ (donc on ne calcule pas avec!). On cherche le plus petit $n\in\mathbb{N}$ tel que $u_n-\sqrt{10}<10^{-8}$, et pour cela, on cherche n tel que $2\sqrt{10}\left(\frac{k}{2\sqrt{10}}\right)^{2^{n-1}}<10^{-8}$ (\star). On détermine d'abord une valeur pour k: Comme $3^2 = 9 \le 10$, on a $3 \le \sqrt{10}$ donc $u_1 - \sqrt{10} \le u_1 - 3 = \frac{1}{2}(3 + \frac{10}{3}) - 3 = \frac{1}{6}$. On prend $k = \frac{1}{6}$.

Revenons à (\star) , on cherche n tel que $\frac{\sqrt{10}}{6^{2^{n-1}}2^{2^{n-1}-1}10^{2^{n-2}}} < 10^{-8}$. Comme on ne connait pas $\sqrt{10}$, on le majore par 4 (puisque $4^2 \ge 10$). On en vient à chercher le plus petit n tel que $\frac{4}{6^{2^{n-1}}2^{2^{n-1}-1}10^{2^{n-2}}} < 10^{-8}$. Pour n = 2, on a $\frac{4}{6^2 \times 2} \approx 5,56.10^{-2}$. Pour n=3, on a $\frac{4}{6^4 \times 2^3 \times 10} \approx 3,86.10^{-5}$. Pour n=4, on a $\frac{4}{6^8 \times 2^7 \times 10^2} \approx 1,86.10^{-10}$. On calcule u_4 par récurrence : on trouve $u_4=3,1622776601$. Les 8 premiers chiffres après la virgule sont corrects (et même les 9 d'après notre calcul). Avec un algorithme, on écrit (en syntaxe Scilab) –>format(16) –>u=3 ->for i=1 :5 do ->u=(u+a/u)/2 ->end ; Conclusion : $\sqrt{10}=3,16227766.10^{-8}$.

Exercice 2:

1) On note
$$S_n = \sum_{k=0}^n \frac{k^2}{k^3+1}$$
. Pour $n \ge 1$, $S_{2n} - S_n = \sum_{k=n+1}^{2n} \frac{k^2}{k^3+1}$. On note $u_k = \frac{k^2}{k^3+1}$ pour $k \ge 1$.

On considère la fonction f définie sur $[1,+\infty[$ par $f(x)=\frac{x^2}{x^3+1}$. f est dérivable sur $[1,+\infty[$ et on a, pour $x\geq 1$, $f'(x)=\frac{2x(x^3+1)-x^2(3x^2)}{(x^3+1)^2}=\frac{-x^4+2x}{(x^3+1)^2}=\frac{x(2-x^3)}{(x^3+1)^2}$. Donc, pour $x\geq 2, f'(x)\leq 0$, donc f est décroissante sur $[2,+\infty[$. On en déduit que la suite $(u_n)_{\mathbb{N}^*}$ est décroissante à partir de n=2. Comme $u_1=\frac{1}{2}$ et $u_2=\frac{4}{9}$, on a aussi $u_1\leq u_2$, donc la suite $(u_n)_{\mathbb{N}^*}$ est décroissante. (à partir du rang 2 suffit...)

La somme $\sum_{k=n+1}^{2n} \frac{k^2}{k^3+1}$ est une somme de termes positifs dont le terme général est décroissant, donc elle est minorée par n fois le plus petit terme (n=nombre de termes de la somme). C'est-à-dire, pour $n \ge 1$,

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} \frac{k^2}{k^3 + 1} \ge n \cdot \frac{(2n)^2}{(2n)^3 + 1} = \frac{4n^3}{8n^3 + 1}.$$

On note $v_n = \frac{4n^3}{8n^3 + 1}$ pour $n \ge 1$. On va montrer que $(v_n)_{\mathbb{N}^*}$ est minorée par $\frac{1}{10}$.

Pour cela, on considère la fonction g définie sur $[1,+\infty[$ par $g(x)=\frac{4x^3}{8x^3+1}$. g est dérivable sur $[1;+\infty[$ et on a, pour $x\geq 1, g'(x)=\frac{12x^2(8x^3+1)-4x^3(24x^2)}{(8x^3+1)^2}=\frac{12x^2}{(8x^3+1)^2}$. Donc $\forall x\geq 1, g'(x)\geq 0$, donc la fonction g est croissante sur $[1;+\infty[$, par conséquent, la suite $(v_n)_{\mathbb{N}^*}$ est croissante et donc elle est minorée par $v_1=\frac{4}{9}$. Comme $\frac{4}{9}\geq \frac{1}{10}$, on en déduit que $(v_n)_{\mathbb{N}^*}$ est minorée par $\frac{1}{10}$ et donc $\forall n\geq 1, S_{2n}-S_n\geq \frac{1}{10}$. (\star)

- 2) On va montrer que $(S_n)_{\mathbb{N}^*}$ est croissante et divergente.
- Montrons que (S_n) est croissante : soit $n \ge 1$, alors $S_{n+1} S_n = \frac{(n+1)^2}{2(n+1)^3 + 1} \ge 0$, donc <u>la suite</u> (S_n) est croissante.
- Montrons que $(S_n)_{\mathbb{N}^*}$ n'est pas convergente.

Première méthode : Supposons que $(S_n)_{\mathbb{N}^*}$ est convergente, alors elle converge vers $l \in \mathbb{R}$. En particulier, la suite extraite $(S_{2n})_{\mathbb{N}^*}$ converge vers l aussi. Donc, par somme, la suite définie par $S_{2n}-S_n$ converge vers l. Par définition, $\forall \varepsilon>0, \exists N\in\mathbb{N}, \forall n\geq N, |S_{2n}-S_n|\leq \varepsilon$. C'est en particulier vrai pour $\varepsilon=\frac{1}{20}$. Mais dans ce cas, il y a une contradiction avec (\star) . Donc la suite $(S_n)_{\mathbb{N}^*}$ est divergente.

Deuxième méthode : on montre que $(S_n)_{\mathbb{N}^*}$ n'est pas de Cauchy. Supposons que (S_n) est de Cauchy, alors par définition $\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N, |S_m - S_n| \leq \varepsilon$. En prenant m = 2n et $\varepsilon = \frac{1}{20}$, on aboutit à une contradiction avec (\star) .

On en déduit que $(S_n)_{\mathbb{N}^*}$ est une suite croissante, non majorée, donc $(S_n)_{\mathbb{N}^*}$ tend vers $+\infty$.

Exercice 3 : Voir la feuille de correction de l'exercice 10 du TD 1 sur les suites. Ici, on donne les réponses avec indication. Pour (a_n) , on factorise le numérateur et le dénominateur par 4^n . On trouve $\lim_{n \to +\infty} a_n = 1$. Pour (b_n) , on factorise

le numérateur et le dénominateur par n. On trouve $\lim_{n\to+\infty} b_n = \frac{1-\sqrt{2}}{1+\sqrt{2}}$. Pour (c_n) , on utilise $\sum_{k=1}^n k = \frac{n(n+1)}{2}$. On trouve $\lim_{n\to+\infty} c_n = 1$. Pour (p_n) , on écrit $p_n = \exp(n\ln(1+\frac{2}{n}))$, puis on calcule la limite de $n\ln(1+\frac{2}{n})$ en utilisant

la définition de la dérivée de la fonction $f: x \mapsto \ln(1+2x)$ en 0. On trouve $\lim_{n \to +\infty} p_n = e^2$. Pour (q_n) , on utilise

 $-1 \le \cos(n) \le 1$. On trouve $\lim_{n \to +\infty} q_n = 0$. Pour (r_n) , on factorise le numérateur et le dénominateur par \sqrt{n} . On

trouve $\lim_{n\to+\infty} r_n = 1$. Pour (U_n) et (V_n) , il s'agit d'appliquer la moyenne de Cesaro (exercice 23 du TD 1). On trouve

$$\lim_{n\to +\infty} U_n = \lim_{k\to +\infty} \exp\left(\frac{\ln(k)}{k}\right) = e^0, \text{ d'où } \lim_{n\to +\infty} U_n = 1, \text{ et } \lim_{n\to +\infty} V_n = \lim_{k\to +\infty} p_k = e^2.$$