Some important info

https://web.cs.kent.edu/~hmichaud/discrete

- Withdrawing
 - January 31 last day to withdraw
 - April 3 last day to withdraw without a "W"
- Homeworks
 - Label your homework (Example: "Homework #1")
 - Include your name easy to forget in an email
 - If submitting via email, ONLY PDF

"I'm done with homework, I did it on my computer"

- Email
 - Attach a PDF. Anything that's NOT a PDF will not be accepted.
 - Include your full name
 - Include the Homework #
 - Send to hmichaud@kent.edu and c.c. grader (TBD)
- Print it out, turn it in during class
 - Next slide

"I'm done with homework, I did it on paper"

- Put the Homework # on it
- Put your name on it
- Keep it legible
- Turn it in Wednesday 1/27 in class
 - Forgot? Bring it to my mailbox before the end of the day. It's in the Computer Science department (MSB 2nd floor) before the main office.

Tutoring

- Gilson Dos Santos
- CS I, CS II, Discrete Structures
- 5:30 8:30PM Monday & Wednesday @ MSB 243

1.1 Recap

- Proposition
- Compound proposition
 - Negation: ¬p
 - Conjunction (AND): p ∧ q
 - Disjunction (inclusive OR): p v q
 - Exclusive Or (XOR): p ⊕ q
 - Implication: p → q
 - converse q→p
 - inverse ¬ p → ¬ q
 - contrapositive ¬q → ¬ p
 - Biconditional: p ↔ q
- Equivalence
- Truth tables

1.2

Homework 1

p: You get a good grade

q: You do the homework

- It is necessary to do the homework to get a good grade.
 - Explanation: You have to do the homework if you want a good grade.
 - If you get a good grade, then you have done the homework.
- Other ways to write this...
 - A necessary condition for getting a good grade is doing the homework.
 - Getting a good grade implies that you did the homework.
 - Doing the homework is necessary for you to get a good grade.
 - You do the homework whenever you get a good grade.

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

2 propositions (p, q) \rightarrow 22 rows = 4 rows

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q
H	
F	
Τ	
Т	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	Q
L	F
F	Τ
Т	F
Τ	Т

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р
F	F	
F	Т	
T	F	
T	Т	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р
F	F	
F	Т	
Т	F	
Т	Т	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р
F	F	Τ
F	Т	Т
Т	F	F
Т	Т	F

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	O	р
F	F	Т
F	Т	Т
Т	F	F
T	Т	F

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q →¬ p
F	F	Т	
F	Т	Т	
Т	F	F	
Т	Т	F	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q →¬p
F	F	Т	Т
F	Т	Т	Т
Т	F	F	Т
Т	Т	F	F

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	O	¬р	q→ ¬p
F	F	Т	T
F	Т	Т	Т
Т	F	F	Т
Т	Т	F	F

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	O	р	q→ ¬p	¬q
F	Ш	Т	Т	
F	Т	Т	Τ	
Т	F	F	Т	
Т	Т	F	F	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	O	р Г	q→ ¬p	q
F	F	Т	T	Т
F	Т	Т	T	H
Т	F	F	T	Т
Т	Т	F	F	Ш

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	O	¬р	q→ ¬p	ر ا
F	F	T	T	Τ
F	Т	T	T	H
T	F	F	Т	Т
Т	Т	F	F	F

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	Q	¬р	q→¬р	٦ آ	¬p→¬q
F	F	Т	Т	Τ	
F	Т	Т	Т	F	
T	F	F	Т	Т	
T	Т	F	F	F	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q →¬ p	¬q	$\neg p \rightarrow \neg q$
F	F	Т	Т	Т	Т
F	Т	Т	Т	F	F
T	F	F	Т	Т	Т
T	Т	F	F	F	Т

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q→¬р	T	$\neg p \rightarrow \neg q$
F	F	Т	Т	Т	Т
F	Т	Т	Т	F	F
Т	F	F	Т	Т	Т
T	Т	F	F	F	Т

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q→ ¬p	¬q	$\neg p \rightarrow \neg q$	(q→¬p) ∨ (¬p→¬q)
F	F	Τ	T	T	Τ	
F	Τ	Η	Т	F	F	
T	F	F	Т	Т	Τ	
Т	Т	F	F	F	Τ	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q→ ¬p	¬q	$\neg p \rightarrow \neg q$	$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$
F	F	Τ	Т	Т	Т	
F	Т	Τ	Т	F	F	
T	F	F	Т	Т	Т	
T	Т	F	F	F	Т	

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	¬р	q→ ¬p	¬q	¬p→¬q	$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$
F	F	Τ	Т	Η	Τ	T
F	Т	Τ	Т	F	F	Т
T	F	F	Т	Т	Т	Т
T	Т	F	F	F	Т	Т

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

р	q	(q→¬p) ∨ (¬p→¬q)
F	F	T
F	T	T
Т	F	T
T	T	T

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

p: I have a million dollarsq: Moon tickets are inexpensive

If moon tickets are inexpensive, then I don't have a million dollars, or if I don't have a million dollars then moon tickets are not inexpensive.

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

p: It's hot outside

q: I wear a hat

If I wear a hat, then it isn't hot outside, or if it isn't hot outside then I don't wear a hat.

$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a **tautology**.

$$(\neg p \rightarrow q) \vee r$$

$$(\neg p \rightarrow q) \vee r$$

3 propositions (p, q, r) \rightarrow 2³ rows = 8 rows

$$(\neg p \rightarrow q) \vee r$$

р	q	r

$$(\neg p \rightarrow q) \vee r$$

р	q	r
0		
0		
0		
0		
1		
1		
1		
1		

$$(\neg p \rightarrow q) \vee r$$

р	q	r
0	0	
0	0	
0	1	
0	1	
1	0	
1	0	
1	1	
1	1	

$$(\neg p \rightarrow q) \vee r$$

р	q	r
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $(\neg p \rightarrow q) \vee r$

р	q	r	¬ р	$\neg p \rightarrow q$
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р	$\neg p \rightarrow q$
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	0	

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р	$\neg p \rightarrow q$
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1

$$(\neg p \rightarrow q) \vee r$$

р	σ	r	¬р	¬ p → q	$(\neg p \rightarrow q) \lor r$
0	0	0	1	0	
0	0	1	1	0	
0	1	0	1	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	0	1	

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р	$\neg p \rightarrow q$	$(\neg p \rightarrow q) \lor r$
0	0	0	1	0	
0	0	1	1	0	
0	1	0	1	1	
0	1	1	1	1	
1	0	0	0	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	0	1	

$$(\neg p \rightarrow q) \vee r$$

р	q	r	¬р	$\neg p \rightarrow q$	$(\neg p \rightarrow q) \vee r$
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	0	1	1

Match up the truth tables with their logical connectives

2				
p	q	p?q		
0	0	1		
0	τ-	1		
1	0	0		
1	1	1		

3			
p	q	p?q	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

p	q	p?q
0	0	0
0	1	1
1	0	1
1	1	1

•			
p	q	p?q	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

5

O				
р	q	p?q		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

6

- a. ¬ Negation
- b. pAq Conjunction
- c. pvq Disjunction
- d. p⊕q Exclusive Or (XOR)
- e. p→q Implication
- f. p⇔q Biconditional

Match up the truth tables with their logical connectives

1 - a

p	¬р
0	1
1	0

p	q	p→q
O	0	1
0	1	1
1	0	0
1	1	1

2-e 3-d 4-c 5-f

p	q	p⊕q
0	0	0
0	1	1
1	0	1
1	1	0

p	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

р	q	p⇔q
0	0	1
0	1	0
1	0	0
1	1	1

6 - b

p	q	p∧q
0	О	0
0	1	0
1	0	0
1	1	1

- a. ¬ Negation
- b. pAq Conjunction
- c. pvq Disjunction
- d. p⊕q Exclusive Or (XOR)
- e. p→q Implication
- f. p↔q Biconditional

- "Whenever the system software is being upgraded, users cannot access the file system."
- "If users can access the file system, then they can save new files."
- "If users cannot save new files, then the system software is not being upgraded."

- "Whenever the system software is being upgraded, users cannot access the file system." p→¬q
- "If users can access the file system, then they can save new files." q→r
- "If users cannot save new files, then the system software is not being upgraded." ¬r→¬p
 - p: The software system is being upgraded.
 - q: Users can access the file system.
 - r: Users can save new files.

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r
F	Щ	IL
F	Ш	H
F	Т	F
F	Τ	Т
Τ	Ш	Ш
Т	Ш	Τ
Т	Т	Ш
Т	Т	T

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q
F	ш	F	T
F	H	Т	Т
F	Т	F	F
F	Т	T	F
Т	F	F	Т
Т	F	Т	Т
T	Т	F	F
T	Т	Т	F

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q
F	F	F	Т	Т
F	F	Т	Т	Т
F	Т	F	F	Т
F	Т	Т	F	Т
T	F	F	Т	Т
T	F	Т	Т	Т
T	Т	F	F	F
T	Т	Т	F	F

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q	q→r
F	IЬ	F	Т	Τ	Т
F	F	Т	Т	Т	Т
F	Т	F	F	Т	F
F	Т	Т	F	Т	Т
Т	F	F	Т	Т	Т
Т	F	Т	Т	Т	Т
Т	Т	F	F	F	F
T	Т	T	F	F	Т

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q	q→r	¬r
F	F	F	Т	Т	Т	T
F	Ш	Т	Т	Т	Т	F
F	Т	F	F	Т	F	Т
F	Τ	Т	F	Т	Т	F
Т	F	F	Т	Т	Т	Τ
Т	F	Т	Т	Т	Т	F
T	Т	F	F	F	F	Т
T	Т	Т	F	F	Т	F

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q	q→r	¬r	¬р
F	F	F	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	F	Т
F	Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	Т	F	Т
Т	F	F	Т	Т	Т	Т	F
T	F	Т	Т	Т	Т	F	F
T	Τ	F	F	F	F	Т	F
T	Т	Т	F	F	Т	F	F

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q	q→r	¬r	¬р	$\neg r \rightarrow \neg p$
F	F	F	Т	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	Т	F	Т	Т
Т	F	F	Т	Т	Т	Т	F	F
T	F	Т	Т	Т	Т	F	F	Т
T	Т	F	F	F	F	Т	F	F
Т	Т	Т	F	F	Т	F	F	Т

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q	q→r	¬r	¬р	$\neg r \rightarrow \neg p$
F	F	F	Т	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т	Т
F	Τ	Т	F	Т	Т	F	Т	Т
Т	F	F	Т	Т	Т	Т	F	F
T	F	Т	Т	Т	Т	F	F	Т
T	Т	F	F	F	F	Т	F	F
T	Т	Т	F	F	Т	H	F	Т

$$p \rightarrow \neg q, q \rightarrow r, \neg r \rightarrow \neg p$$

р	q	r	¬q	р→¬q	q→r	¬r	¬р	¬r→¬p
F	F	F	Т	Т	Т	Т	Т	Т
F	F	Т	Т	Т	Т	F	Т	Т
F	Т	F	F	Т	F	Т	Т	Т
F	Т	Т	F	Т	Т	F	Т	Т
T	F	F	T	Т	Т	Т	F	F
T	F	Т	Т	Т	Т	F	F	Т
Т	Т	F	F	F	F	Т	F	F
T	Τ	Т	F	F	Т	F	F	Т