南京大学数学系期中试卷

2020/2021		21 学年	学年第二学期		考试形式 闭卷		程名称	高等代数	
院系	院系数学		班级 学号						
考试时	间	2021.04.	1.04.24任课教师			考试成绩			
题号		<u> </u>	三	四	五.	六	七	总分	
得分									

- 一. 判断题(判断下列叙述是否正确,并给出理由. 每小题 4 分, 共 20 分).
- 1. 设 σ 是有限维线性空间 V 上的线性变换. 如果 σ 是单射, 则 σ 是满射.

2. 设 dim V = n, $\mathscr{A} \in \operatorname{End} V$ 幂零, 且 dim $\operatorname{Ker} \mathscr{A} = 1$, 则 \mathscr{A} 的最小多项式为 λ^n .

3. 设 $V = V_1 \oplus V_2$, $W \in V$ 的子空间, 则 $W = (W \cap V_1) \oplus (W \cap V_2)$.

- 4. 设 3 级方阵 A 满足 $\operatorname{rank} A \neq \operatorname{rank} A^2 = \operatorname{rank} A^3$, 则 0 是 A 的 2 重根.
- 5. 两个3级复方阵相似当且仅当它们的特征多项式和最小多项式分别相等.

- 二. 填空题 (每空 4 分, 共 32 分).
- 1. 设三级实方阵 A 的特征值是 1,2,3 ,则与它可交换的实矩阵组成的实线性空间的维数为 _____. 设 W 是所有三级实对角矩阵组成的实线性空间,则商空间 $M_3(\mathbb{R})/W$ 的维数为 _____.
- 2. 多项式 $x^2 x 2$ 的友矩阵是 ______.
- 4. 设 $X=(1,1,\cdots,1),\ Y=((-1)^1,(-1)^2,\cdots,(-1)^n)\in\mathbb{F}^{1\times n},\ 则\ A=X'Y$ 的特征多项式为 _______.
- 5. 设 $A = \begin{pmatrix} 13 & -4 & -3 \\ 61 & -24 & -24 \\ -33 & 13 & 13 \end{pmatrix}$, A^* 为 A 的伴随矩阵,则 $|A^3 2A^2 + 2A + I_3| = \underline{\qquad}$,

A* 的迹为 ______.

三.
$$(8 \ \beta)$$
 设 $V = M_2(\mathbb{R}), \ A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \ V \$ 上的线性变换 $\sigma : V \longrightarrow V, B \mapsto \sigma(B) = AB.$ 设 $e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$ 求 σ 在 e_1, e_2, e_3, e_4 下的矩阵.

五. (14 分) 设 1 是 n 级复方阵 A 的 n 重根. 证明: A 和 A 的任意方幂都相似.

四.
$$(12 分)$$
 设 $A = \begin{pmatrix} 1 & -2 & -4 \\ -12 & -10 & -26 \\ 6 & 6 & 15 \end{pmatrix}$. 求 A^{10} .

六. (14 分) 设数域 $F \perp n$ 维线性空间 V 的线性变换 σ 的最小多项式 $m_{\sigma}(\lambda)$ 在 F 上不可约, W 是 σ -子空间. 证明: $W = \{\alpha \in V \mid \text{存在 } f(\lambda) \in F[\lambda] \text{ 使得 } f(\sigma)(\alpha) \in W \text{ 且 } f(\sigma)(\alpha) \neq 0\} \cup \{0\}.$

七. (20 分) 定义 $V = M_{1\times 2}(\mathbb{R})$ 中的加法和数乘运算为

$$(a_1, b_1) \oplus (a_2, b_2) = (a_1 + a_2, b_1 + b_2 + a_1 a_2),$$

$$k \circ (a, b) = (ka, kb + \frac{1}{2}k(k-1)a^2),$$

则 V 为实线性空间.

- (1) 试求向量组 (1,0),(2,1),(3,3),(2,0) 的一个极大线性无关组;
- (2) 上述极大无关向量组是否是 V 的一个基? 若是, 求 (a,b) 在该组基下的坐标;
- (3) 设 U 是所有形如 $\begin{pmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}$ 的实矩阵构成的线性空间. 定义 V 到 U 的两个映射:

$$\varphi(a,b) = \begin{pmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix}, \quad \psi(a,b) = \begin{pmatrix} 0 & a & b - \frac{a^2}{2} \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix},$$

问这两个映射是否是线性同构? 说明理由.

第五页(共六页)