פתרון בעיית ה Lasso במקרה החד-ממדי

 $\{y_i\}_{i=1}^n \in \mathbb{R}$, עבור סט דגימות חד-ממדיות, עם רגולריזציית איית עם רגולריזציית שערוך הממוצע, עם רגולריזציית

$$\min_{\mu} \left\{ \frac{1}{2} \sum_{i} (y_i - \mu)^2 + \lambda |\mu| \right\}$$

 μ נגזור לפי μ ונשווה ל

$$\frac{\partial}{\partial \mu}$$
: $-\sum_{i=1}^{n} (y_i - \mu) + \lambda \cdot \operatorname{sign}(\mu) = 0$

.(עבור ערכי x בהם הנגזרת מוגדרת) $\frac{d}{dx}|x|=\mathrm{sign}(x)$ פאשר השתמשנו בעובדה ש

נסמן $\frac{1}{n}\sum_{i=1}^{n}y_{i}\triangleq\overline{y}$ נסמן, נסמן

$$(\mu > 0)$$
 (כי $\overline{y} > \frac{\lambda}{n}$ נקבל $\mu = \overline{y} - \frac{\lambda}{n}$ כלומר $\mu = \overline{y} - \frac{\lambda}{n}$ (כי $\mu > 0$ (כי $\mu > 0$ (כי $\mu > 0$).

$$(\mu < 0)$$
 (c) $\overline{y} < -\frac{\lambda}{n}$ נקבל $\overline{y} < -\frac{\lambda}{n}$ נקבל $\overline{y} < -\frac{\lambda}{n}$ (כי $\overline{y} + n\mu - \lambda = 0$).

.
$$-\frac{\lambda}{n} < \overline{y} < \frac{\lambda}{n}$$
 בכל מקרה אחר, $\mu = 0$, כלומר כאשר 3.

גם shrinkage וקיבלנו, בנוסף ע"י $\mu = \mathrm{sign}\left(\overline{y}\right)\cdot \max\left\{0,\left|\overline{y}\right| - \frac{\lambda}{n}\right\}$ וקיבלנו, בנוסף ל גם באופן מקוצר ניתן לכתוב את הפתרון ע"י threshold, כלומר איפוס של הפתרון מתחת לסף מסויים, כפי שאפשר לראות באיור הבא:

