Indexing big colored image bank: Texture 3.0

Etienne CAILLAUD, Thomas LE BRIS, Ibrahima GUEYE, Gaetan ADIER

XLIM-SIC Laboratory UMR CNRS 7252, Poitiers, France







#### **Outline**



#### Project context (1/3)

#### Objective

Test a solution for content based image indexing flaw: standard descriptors (SIFT, SURF, etc) lacking real color and texture information.



#### Project context 2/3

#### What is a descriptor?

Algorithm applied to an image which output is a short vector of numbers which is invariant to common image transformations and can be compared with other descriptors in a database.



FIGURE: Densegrid



FIGURE: Interest points

#### Project context 3/3

#### What is a CLEF?

International contest organized every year since 2011 which purpose is to benchmark the progress in the area of plant identification from images.



## Team presentation



#### User requirement

- Design software programs : indexation of images database, calculate descriptor according to nature images
- Adapt the last up to date designed color and texture attributes to the current image classification
- Compare our results (using CLEF challenge metrics)
- Provide an abstract of the comparisons and a technical report

#### **Outline**



#### SIFT(1/2)



# SIFT(2/2)



## C<sub>2</sub>O (1/4)

 Limitation of marginal approach Necessity to get a vectorial treatment Include better texture and color informations

### $C_2O(2/4)$

- Conversion to a perceptual space (adapted to human perception).
  - C<sub>2</sub>O matrix calculation.
- C<sub>2</sub>O signature extraction.

 Computation of the C<sub>2</sub>O matrix by the color difference calculation



(□) (□) (□) (□) (□)

The C<sub>2</sub>O matrix for a poorly textured image :

FIGURE: Image to characterize



FIGURE: Signature

- The C2O matrix for a poorly textured image :
- The C2O matrix for a more textured image :



FIGURE: Image to characterize

FIGURE: Signature

- The C<sub>2</sub>O matrix for a poorly textured image :
- The C<sub>2</sub>O matrix for a more textured image :
- The C<sub>2</sub>O matrix for a more textured and colored image :



FIGURE: Image to characterize



FIGURE: Signature



## C<sub>2</sub>O (4/4)

βρραα

- The spherical quantization :
- The C<sub>2</sub>O signature for a poorly textured image :



## C<sub>2</sub>O (4/4)

β β β a

- The spherical quantization :
- The C<sub>2</sub>O signature for a poorly textured image :
- The C<sub>2</sub>O signature for a more textured image :



## C<sub>2</sub>O (4/4)

β b a

- The spherical quantization :
- The C<sub>2</sub>O signature for a poorly textured image :
- The C<sub>2</sub>O signature for a more textured image :
- The C<sub>2</sub>O signature for a more textured and colored image :



#### Bag of word (1/2)

Reducing the number of points (100 in our case).

- K-means
  - Attribute the vectors to centroid vectors.



FIGURE: K-means

### Bag of word (2/2)

- Signature
  - Design histogram in function of assignment of the vectors.



FIGURE: Signature 100 words -



FIGURE: Signature 100 words - 2

### K-nn(1/2)

- The k nearest neighbor method
  - Comparison to the dictionary.



### K-nn(1/2)

- The k nearest neighbor method
  - Comparison to the dictionary



- 4 Occurrences of the 'red' class, 1 occurrence of the 'blue' class
- The new point is attributed to the 'red' class

#### K-nn(2/2)

- Application for image classification
  - More complex data.
  - Distances on signature vectors extracted from the K-mean method.
  - One most adapted distance type for each descriptor.

#### Results (1/2)

Reduce data-base of 100 images composed of only 4 species.



FIGURE: First specie



FIGURE: Second specie



FIGURE: Third specie



FIGURE: Fourth specie

### Results (2/2)

Compare the two descriptors SIFT and C<sub>2</sub>O.

TABLE: SIFT result

| ID    | Training Base | Test Base | Correct   | Accuracy |
|-------|---------------|-----------|-----------|----------|
| 173   | 17            | 8         | 4         | 50%      |
| 1102  | 22            | 3         | 1         | 33%      |
| 1889  | 16            | 9         | 1//////// | 11%      |
| 2717  | 15            | 10        | 7         | 70%      |
| Total | 70            | 30        | 9         | 1        |

TABLE: C<sub>2</sub>O result

| ID    | Training Base | Test Base | Correct | Accuracy |
|-------|---------------|-----------|---------|----------|
| 173   | 17            | 8         | 1       | 12.5%    |
| 1102  | 22            | 3         | 1000    | 33%      |
| 1889  | 16            | 9         | 0       | 0%       |
| 2717  | 15            | 10        | 7       | 70%      |
| Total | 70            | 30        | 9       | 1        |

#### Discussion

- Classification
  - To much reducing on the K-means (100 words).
  - Euclidean distance not the most efficient or adapt.
- C<sub>2</sub>O
  - The concatenation way is not optimal.
  - Parameters D, alpha, and beta has to be discussed regarding to the images.

#### **Outline**



### Scheduling (1/2)

The previsional forecast Gantt chart :

|     | 10 p. 9 1 10 10 1, 10 1                       | 7 . J. 17 11 11 11 11 11 11 11 11 11 11 11 11 |            |          |   |          |          |      |      |           | 1000 |  |
|-----|-----------------------------------------------|-----------------------------------------------|------------|----------|---|----------|----------|------|------|-----------|------|--|
| ID. | Task Name                                     | Start                                         | Finish     | Duration | Ш | mai 2015 |          |      | jui  | juin 2015 |      |  |
| Ľ   | TOSK HOME                                     | Stort                                         | rinon      | Duration |   | 3/3      | 10/3     | 17/5 | 24/5 | 31/5      | 7/8  |  |
| 1   | Writing the state of the art                  | 27/04/2015                                    | 01/05/2015 | 1w       | K | >        |          |      |      |           |      |  |
| 2   | Preparing the database                        | 01/05/2015                                    | 14/05/2015 | 2w       | C |          |          |      |      |           |      |  |
| 3   | Constitution of database structure            | 01/05/2015                                    | 04/05/2015 | 2d       | C | <b>x</b> |          |      |      |           |      |  |
| 4   | Calculation of SIFT discriptors               | 04/05/2015                                    | 08/05/2015 | 1w       |   |          |          |      |      |           |      |  |
| 5   | Calculation of SURF discriptors               | 08/05/2015                                    | 14/05/2015 | 1w       |   | (        | <u> </u> | >    |      |           |      |  |
| 6   | Programming                                   | 14/05/2015                                    | 29/05/2015 | 2w 2d    |   | •        |          |      |      |           |      |  |
| 7   | Programming C2O descriptor calculation        | 14/05/2015                                    | 20/05/2015 | 1w       |   |          |          |      |      |           |      |  |
| 8   | Programming the distance calculation function | 20/05/2015                                    | 26/05/2015 | 1w       |   |          |          |      |      |           |      |  |
| 9   | Writing of the technical documentation        | 26/05/2015                                    | 29/05/2015 | 4d       |   | <b>T</b> |          |      |      | ,         |      |  |
| 10  | Writing of the report                         | 29/05/2015                                    | 09/06/2015 | 1w 3d    |   |          |          |      |      |           |      |  |
| 11  | Preparation of the oral presentation          | 09/06/2015                                    | 15/06/2015 | 1w       |   |          |          |      |      |           |      |  |

- All time affectation done before the beginning of the project
- Rarely respected in important project

### Scheduling (2/2)

The project backlog:

| ſ | SPRINT<br>EN     | 5            | BACKLOG PRODUIT           |                                                   |               |              |                                                    |          |         |                  |       |  |
|---|------------------|--------------|---------------------------|---------------------------------------------------|---------------|--------------|----------------------------------------------------|----------|---------|------------------|-------|--|
| ŀ | COURS<br>Sprin - | Catégorie *  | Sous catégorie ~          | Nom / Description *                               | Importance +1 | Estimation ~ | Critères de Vérification *                         | Acteur * | Status  | Notes +          | Bug ~ |  |
| ľ | 5                | Dev Logiciel |                           | C2o - HULK                                        | 75            | ??           | Cherci de Verincadori                              | Pictural | A faire | HALL             | bug   |  |
| ı | 5                | Dev Logiciel | Test                      | SIFT - calcul sur HULK                            | 75            | 1,5          |                                                    | Ibrahima | A faire | Présent sprint 2 |       |  |
|   | 5                | Dev Logiciel | Recherche<br>documentaire | classification - doc                              | 55            | 2            |                                                    |          | A faire |                  |       |  |
| ı | 5                | Dev Logiciel | Redaction documentation   | CLEF metrics - doc                                | 65            | 0,5          | presentation équipe scientifique                   | Thomas   | A faire |                  |       |  |
| I | 5                | Dev Logiciel |                           | documentation sur le<br>processus "complet"       | 60            |              | présentation à l'ensemble des<br>acteurs du projet |          | A faire |                  |       |  |
|   | 5                | Dev Logiciel | Redaction documentation   | SIFT - doc                                        | 50            | 0,5          | presentation équipe scientifique                   |          | A faire |                  |       |  |
|   | 5                | Présentation |                           | Présentation - ecriture                           | 40            | 2            | presentation équipe scientifique                   |          | A faire |                  |       |  |
|   | 5                | Rapport      |                           | Ecriture du document final -<br>synthèse des docs | 40            | 2            | presentation équipe scientifique                   |          | A faire |                  |       |  |
|   | 5                | Présentation |                           | Présentation - préparation                        | 30            |              | présentation à l'équipe<br>pédagogique             |          | A faire |                  |       |  |
|   | 5                | Dev Logiciel |                           | Procedure de validation                           | 60            | 2            |                                                    |          |         |                  |       |  |
| 4 | 5                | Dev Logiciel | Redaction documentation   | Analyse des résultats                             | 75            | 2            |                                                    |          | A faire |                  |       |  |
| Ľ | Total            |              |                           |                                                   |               | 15,5         |                                                    |          |         |                  | 0     |  |

- Allow to change the affectation of a task
- Weekly time affectation : could be adapted to unforeseen

### Our experience

- Minimal lack of time
  - The possibility of changing task affectation is really useful
  - An adaptation of the initial schedule has been realised

#### **Outline**



#### Sum-up of the situation

#### Starting objectives

- SIFT tests
- C2O programming
- classification programming
- Code optimizing for speed
- parallelization

#### **Ending situation**

- SIFT tests
- C2O programming
- classification programming

#### Issues

- C2O concatenation order
- distance calculation

## Personal gains



