NACA 4415 Polar Curve

Realization of the polar curve of the airfoil by CFD simulation

Andrea Marchegiani andrea.marchegiani@studenti.unitus.it

Master's Degree in Mechanical Engineering Numerical Thermo Fluid Dynamics

Table of Contents

- 1 Introduction
- 2 Software & Hardware
- 3 Models & Scheme
- 4 Grid Sensitivity Analysis
- **5** Under Relaxation Factors
- **6** Transient Analysis
- Results: Linear zone
- Results: Non-Linear zone

Introduction

The aim of this project is to evaluate the polar curve of the NACA 4415 airfoil (figure 2) by the validation of a CFD model.

This particular representation permit to individuate, by the tangent curve for the origin, the best attack angle to optimize the working airfoil.

In this point, the maximum $\frac{C_L}{C_D}$ permits to have the maximum lift over the minimum drag.

Materials & Methods: Software & Hardware

Software

- ANSYS 2023 R2 Student version;
- Geometry: SpaceClaim
- Calculus: Fluent

Hardware

- CPU:
 - AMD FX 8150 8-core processor
- GPU:
- ASUS NVidia GeForce GTX 1660 Ti
- RAM: 16 GB

Initial Data:

- Airfoil geometry;
- $Re = 1 \times 10^6$, $\rho = 1.225 \,\mathrm{kg} \,\mathrm{m}^{-3}$, $\mu = 1.7894 \times 10^{-5} \,\mathrm{kg} \,\mathrm{m}^{-1} \,\mathrm{s}^{-1}$, $L = 1 \,\mathrm{m}$, $\Rightarrow u = 14.607 \,\mathrm{m} \,\mathrm{s}^{-1}$

Materials & Methods: Models & Scheme

	Brief Analysis - Hypothetical value of mesh size for testing model and method (default setting for free steam mesh)												
Edge sizing	Mesh size	Max Skewness	%Skw	State	Model	y^+	Method	Iterations	C_L	Δ	err%		
						5	SIMPLE	1068	0.39835492	0.015300708	3.698899994		
0.00012		0.75	0.15		Viscous kω SST		SIMPLEC	1737	0.36678985	0.046865778	11.32966043		
0.00012		0.75	0.15		VISCOUS NO SS I		PISO	1055	0.39921114	0.014444488	3.491911393		
									Coupled	79	0.34955502	0.064100608	15.49612858
	0381 0.3 0.7 0.04 Steady Viscous & sdt 16		SIMPLE	439	0.34748226	0.066173368	15.99721206						
0.00381		0.7	0.04	Carrell	Viceous he edt	165	SIMPLEC	610	0.35107735	0.062578278	15.1281099		
0.00301	0.5	0.7	0.04	Steady	VISCOUS NE SUL	103	PISO	438	0.34744313	0.066212498	16.00667162		
							Coupled	70	0.35038373	0.063271898	15.29579044		
							SIMPLE	745	0.3298986	0.083757028	20.24800881		
0.00265		0.62 0.11		Spallart - Allmaras VB	115	SIMPLEC	854	0.32843196	0.085223668	20.6025646			
0.00203			Spanart - Allmaras VB		113	PISO	565	0.3297579	0.083897728	20.28202261			
							Coupled	65	0.32774016	0.085915468	20.76980517		

By evaluating the flow impacting the airfoil at 0° , we can choose the best model/method coupling.

Viscous $k\omega$ SST model with the PISO method seems to be the best coupling at all.

Knowing that PISO make an extra pressure correction step, for the steady state simulation is maybe quite a waste, by the way, knowing also that in this simulation will be a transient case from -8° to -16° and from 8° to 16°, adding ab extra correction step lead maybe to a more accurate results.

Nevertheless, its preferable working with the same method for all the cases.

Grid Sensitivity Analysis

An analysis regarding the sensitivity of the grid will now be provided, starting from a coarse mesh using the methods and parameters just now studied.

Mesh Sensitivity Analysis RF = 0.57								
Mesh size	C_L	Δ	Iter	Max Skw	%Skw			
1.6	0.392276		1165	0.75	0.16			
0.912	0.399265	0.006989	1060	0.748	0.18			
0.51984	0.40253	0.003265	1019	0.733	0.25			
0.296309	0.402525	4.62E-06	1052	0.771	0.1			
0.168896	0.401451	0.001074	1048	0.76	0.13			
0.096271	0.393783	0.007668	1163	0.772	0.1			
0.054874	0.369932	0.023851	1762	0.739	0.21			
0.031278	0.384137	0.014204	1428	0.751	0.14			

These are so the chosen parameters:

Model	Viscous kω SST
Method	PISO
Edge Size	0.00012
Mesh size	0.09627

That leads to this mesh:

With these general conditions, on the boundaries:

- Inlet: velocity inlet type;
- Outlet: pressure outlet type;
- Symmetry: applied on the top and the bottom of the bounding box;
- Wall: on the airfoil edges, no slip conditions are applied.

And on the method:

- Skewness Correction and Neighbor Correction equals to 1;
- Gradient: leas squares cell cased
- Pressure: second order
- Momentum: second order upwind
- Turbolent Kinetic Energy: second order upwind
- Specific Dissipation Rate: second order upwind

Under Relaxation Factors

URF choice 0°							
Iterations	Controls	C_L	ΔC_L	err %			
1163	Default	0.39378324	0.019872388	4.804089841			
912	0.4 P	0.41253355	0.001122078	0.271258971			
647	0.5 P	0.42725715	0.013601522	3.288126905			
902	0.4 P - 0.5 M	0.41844258	0.004786952	1.157231203			
925	0.4 P - 0.5 M - 0.6 TKE, SDR	0.41887024	0.005214612	1.260616718			

	URF choice 2°								
Iterations	Controls	C_L	ΔC_L	err %					
1046	Default	0.603911	0.020460743	3.27701276					
974	0.4 P	0.612075	0.012296813	1.969469687					
672	0.5 P	0.631829	0.007457117	1.194339207					
979	0.4 P - 0.5 M	0.619449	0.004922643	0.788415353					
929	0.4 P - 0.5 M - 0.6 TKE, SDR	0.619589	0.004782993	0.766048872					

URF choice -2°							
Iterations	Controls	C_L	ΔC_L	err %			
1125	Default	0.19121338	0.034326	15.21934294			
901	0.4 P	0.20744404	0.018095	8.022953129			
621	0.5 P	0.22352259	0.002016	0.894006224			
815	0.4 P - 0.5 M	0.21978717	0.005752	2.550225898			
823	0.4 P - 0.5 M - 0.6 TKE, SDR	0.21987279	0.005666	2.512263493			

After providing the grid sensitivity analysis, now will be evaluated the right choice of the URFs by their combination, for providing the most accurate results.

Are used -2°, 0°, 2° cases, and their experimental data.

With this analysis make from the study of the behavior of 3 point, emerges that the best URFs choice are the 0.4 on Pressure and 0.5 on Momentum due to a combination of less iterations and minor error from the experimental data:

- -2° : 815 iteration, 2.55% C_L error; • 0° : 902 iteration, 1.15% C_L error;
- 0°: 902 iteration, 1.15% C_L error;
 2°: 979 iteration, 0.78% C_L error.

Transient Analysis

The transient analysis is provided by the choose of the *Courant* number. In the vast majority of cases, it can be assumed equal to 10.

By the ${\it C}$ number we may know the necessary time step for the transient simulation.

$$C = \frac{u \cdot \Delta t}{\Delta x}$$

In which u is the free flow velocity, Δx is the minimum value of mesh elements and the Δt is the time step size.

$$\Delta t = \frac{C \cdot \Delta s}{u} = 8 \times 10^{-5} \, \mathrm{s}$$

For evaluating the best number of time steps are token the -10° and 10° cases.

10°								
N. time step	It x time step	Δt	Flow time [s]	C_L	ΔC_L	err %		
1500			1.20E-01	1.1499	0.110258	8.749544		
2500	20	8.00E-05	2.00E-01	1.24766	0.012498	0.991772		
3750			3.00E-01	1.310601	0.050443	4.002872		
	-10°							
1500			1.20E-01	-0.53838	0.063893	-10.6088		
2500	20	8.00E-05	2.00E-01	-0.58119	0.021081	-3.50021		
3750			3.00E-01	-0.58907	0.0132	-2.19179		

For the 10° case, 2500 time steps lead to a more accurate results, while for the -10° case, same time steps value lead to a not-so-bad results with less computational capacity and time.

Results: C_L Curve

$C_L vs \alpha$							
Exp.	data	Г	CFD data				
α	C_L		α	C_L			
-8.17377	-0.40285		-8	-0.35806			
-6.14642	-0.1959		-6	-0.16057			
-4.16734	0.01482		-4	0.027939			
-2.18825	0.225539	1	-2	0.219787			
-0.01609	0.413656	1	0	0.418443			
2.011263	0.624372	1	2	0.619449			
4.038616	0.861443	1	4	0.821015			
6.21078	1.011909		6	1.021107			
8.045052	1.166162		8	1.220264			

$C_L vs \alpha$					
Exp. data			CFD data		
α	C_L	1	α	C_L	
-16.1384	-0.27057		-16	-1.0802	
-14.111	-0.24435	1	-14	-0.89894	
-12.1319	-0.47037	1	-12	-0.72026	
-10.2494	-0.60227		-10	-0.58119	
-8.17377	-0.40285		-8	-0.35806	
-6.14642	-0.1959		-6	-0.16057	
-4.16734	0.01482	1	-4	0.027939	
-2.18825	0.225539	1	-2	0.219787	
-0.01609	0.413656	1	0	0.418443	
2.011263	0.624372		2	0.619449	
4.038616	0.861443		4	0.821015	
6.21078	1.011909	1	6	1.021107	
8.045052	1.166162	1	8	1.220264	
10.12068	1.260158	1	10	1.24766	
12.1963	1.297678	П	12	1.429237	
14.27192	1.350259		14	1.61119	
16.10619	1.150596		16	1.788569	

Results: Polar Curve

Conclusions

We can see that the CFD model studied provides an excellent approximation for the linear case, from 8° to -8° .

By the way, at the externals region of this point, from -10° and 10°, the model is absolutely not suitable: the detachment of the fluid vein and the incidences of vorticity do not allow a correct evaluation of this model.

