	Tanya Sethi
Q4.	bone that following is not a characteristic function
	$\phi(t) = \begin{cases} 1 - t^2, & t < 1 \\ 0, & t \ge 1 \end{cases}$
	To prove P(t) is not a characteristic function, we check if the following theorem holds:
	Continuous f " (t) with (b) = 1 is a C-f- iff it is time semidefinite for any t1,the R b
	$\sum_{k,j=1}^{\alpha_{n}} \varphi(t_{k}-t_{j}) \lambda_{k} \lambda_{j}^{*} > 0 \qquad -(1)$
	Let t_20 b tj = 1, n=2
then	simplifying (1):
=3	$\phi(t_1-t_1) \lambda_2 \lambda_j^* + \phi(t_2-t_1) \lambda_k \lambda_j^* + \phi(t_1-t_2) \lambda_k \lambda_j^*$
=3	$2\phi(0)\lambda_{k}\lambda_{j}^{*}+\phi(1)\lambda_{k}\lambda_{j}^{*}+\phi(-1)\lambda_{k}\lambda_{j}^{*}>0$
ラ	2 Ax Aj*>0

	1 - Comma A D + 2 - P - V + F - D > 5
	Jer some $\lambda_{k} = 0+2i$, $\delta = \lambda_{k} = 0-2i$ $\lambda_{j} = 0-(-3)i$ $\lambda_{j} = 0-3i$
	$2\lambda_{k} \lambda_{j}^{*} = 2(-6) = -12 < 0$
\Rightarrow	The above is not a characteristic function.

Q3	X, and X2 are independent N(0,1) random variables.
	$\underline{Y} = (Y_1, Y_2) = \begin{cases} (x_1, x_2) & \text{if } x_1 > 0 \\ (x_1, - x_2) & \text{if } x_1 < 0 \end{cases}$
o	Ind marginal distributions of (4, , 42)
	$f_{\gamma}(\gamma_1) = f_{\gamma_1,\gamma_2}(\gamma_1,\infty) = \lim_{\gamma_2\to\infty} f_{\gamma_1,\gamma_2} = P(\gamma_1 \leq \gamma_1,\gamma_2 \leq \gamma_2)$
	$\lim_{y_2 \to \infty} f(x_1 \leqslant y_2 \leqslant y)$
	Fx (41)
	$f_{\gamma_2}(\gamma_2) = f_{\gamma_1,\gamma_2}(\infty,\gamma_2)$
of 72	9130
	$\lim_{y_1\to\infty} P(y_2<0< y_2 x_1<0). P(x_1<0)$
	= lim P(0 < 1x2 / < y2 /x, 70). P(x, >0) +
	lim P(-[x2/<0<42/X<0).P(x1<0)
	$=\frac{2\left(1\int_{2N}^{2N}e^{-x^{2}/2}.dx+\frac{1}{2}\cdot\left(\frac{1}{2\pi}\right)\cdot\int_{-\infty}^{\infty}e^{-\frac{x^{2}}{2}}.dx\right)}{2\left(\frac{1}{2\pi}\right)\cdot\int_{-\infty}^{\infty}e^{-\frac{x^{2}}{2}}.dx$
	(nby are independent)

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} e^{-x^{2}/2}$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} e^{-x^{2}/2}$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} e^{-x^{2}/2}$$

$$= \lim_{x \to \infty} \left(\int_{-\infty}^{\infty} \frac{1}{|x|} dx + \int_{-\infty}^{\infty} \frac{1}{|x|} dx \right) P(x, > 0) P(x, > 0) P(x, > 0)$$

$$= \lim_{x \to \infty} \left(\int_{-\infty}^{\infty} \frac{1}{|x|} dx + \int_{-\infty}^{\infty} \frac{1}{|x|} dx \right) P(x, < 0)$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} dx + \int_{-\infty}^{\infty} \frac{1}{|x|} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} dx + \int_{-\infty}^{\infty} \frac{1}{|x|} dx + \int_{-\infty}^{\infty} \frac{1}{|x|} dx$$

$$= \int_{-\infty}^{\infty} \frac{1}{|x|} dx + \int_{-\infty}$$

	Further, if we use the formula for 2-dimensional joint normal distributions.
	$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y \int -\rho \nu} \left(\frac{1}{2[\mu\rho^2]} \left[\left(\frac{x-\mu x}{\sigma x} \right)^2 - 2\rho \left(\frac{y-\mu x}{\sigma_x} \right) \left(\frac{y-\mu y}{\sigma_y} \right) + \left(\frac{y-\mu y}{\sigma_y} \right) \right]$
	Plugging in $\mu=0$, σ_x , $\sigma_y=1$, $\rho=0$
_	$\frac{1}{2\pi} \left(\frac{1}{2} \left[x \right]^2 + \left[y \right]^2 \right)$
	This is always positive but the function? does not always have density.

Q2	$P(X=2^n) = 1$ $N = 0, 1, 2,$
	-
(a)	1 st moment: = E[X ¹]
Ξ	$2^{0}\left(\frac{1}{e0}\right) + 2^{1}\left(\frac{1}{e1}\right) + 2^{2}\left(\frac{1}{e2}\right) + \dots$
د	$\sum_{n=0}^{\infty} \frac{2^{n}}{\ell n}$
	Now , $\frac{\infty}{n=0} \frac{n}{n!} = e^2$
	$E[\chi^{4}] = \frac{e^{2}}{e} = \text{which exists.}$
	kn moment = E[xk]
<u> </u>	$\frac{2}{2} \left(2^{n} \right)^{k} \cdot \left(\frac{1}{e n!} \right)^{k}$
	$= \left(\frac{e^2}{e^{N!}}\right)^k = e^k$
	Kn moment exists as well => This r.v. has moment of all orders ct. kth moment = ek

$$\Rightarrow \int_{-\infty}^{\infty} e^{itx} f_{x}(x) \cdot dx$$

$$M_{x}(t) = F(e^{t x})$$

$$= \underbrace{\frac{1}{e^{2}}}_{e^{2}} \underbrace{\frac{1}{e^{2}}}_{e^{2}} \underbrace{\frac{1}{e^{2}}}_{e^{2}} \underbrace{\frac{1}{e^{2}}}_{e^{2}} \underbrace{\frac{1}{e^{2}}}_{e^{2}} \underbrace{\frac{1}{e^{2}}}_{e^{2}} \underbrace{\frac{1}{e^{2}}}_{e^{2}}$$

		Using the ratio test to check if $IM_x(t)$ is finite for any a .
$\lim_{n\to\infty} \left \frac{e^{t2^{n+1}} e(h.)!}{e(n+1)!} e^{t2n} \right $ $= \lim_{n\to\infty} \left(\frac{e^{t2^{n+1}} - ta^n}{n+1} \right) = \lim_{n\to\infty} \left(\frac{2t}{n+1} \right)$ $= e^{2t}$		
$=\lim_{n\to\infty}\left(\frac{e^{t2^{n+1}}-t2^n}{n+1}\right)=\lim_{n\to\infty}\left(\frac{2t}{n+1}\right)$ $=\frac{\lim_{n\to\infty}\left(\frac{e^{t2^{n+1}}-t2^n}{n+1}\right)}{e^{t2^{n+1}}-t2^n}$		$\lim_{h\to\infty} \left \frac{e^{2N+1}}{e(h)!} \right $
= e ^{2t}		
M (1) diverge & Mus MGF does not exist.	11	e ^{2t}
	7	M (1) diverges t mus MGF does not exist.

$$\begin{cases}
\begin{cases}
x_1, x_2 \\
x_1 \\
x_2
\end{cases} = \begin{cases}
\begin{cases}
\begin{cases}
x_1, x_2 \\
x_1
\end{cases} & \begin{cases}
x_1, x_2
\end{cases} & \begin{cases}
x_1, x_2
\end{cases} & \begin{cases}
x_2, x_2
\end{cases} & \begin{cases}
x_1, x_2
\end{cases} & \begin{cases}
x_2, x_2
\end{cases} & \begin{cases}
x_1, x_2
\end{cases} & \begin{cases}
x_2, x_$$

$$= \int_{1}^{1} \left(\frac{1}{4} \left(\frac{1}{4} + \frac{x}{4} \right) \right) \cdot dx_{1}$$

$$= \frac{1}{4} \left[\frac{x}{4} \left(\frac{1}{4} + \frac{x}{4} \right) \right] \cdot dx_{1}$$

$$= \frac{1}{2}$$

$$= \frac{$$