

# TH



#### Let's start with a disclaimer

This is a phenomenologist telling you about detector simulations













SIX MONTHS LATER:

https://xkcd.com/1831/

https://xkcd.com/793/

But I'll do my best...

What's wanted?

Simulations

Example

## Before you get bored...





Document your code!!!!!!!!!!!!

What's wanted?

Simulations

Example

### So you've built a detecor





Simulations

Example

### What do we want? I

Example IceCube



A simulation (chain) that can re-create what we see in our detector(s)

Should be a bit better than this

Volume Detectors

 $N_{\mathrm{Events}} = N_t \Delta t \Phi \sigma$ 



Colliders

$$rac{\mathrm{d}R}{\mathrm{d}t} = \mathcal{L}\sigma_{p
ightarrow\mathrm{Sig}}$$

Acronym Finding excercise

Focus Here on Neutrinos



What's wanted?

Simulations

Example

### What do we want? II



#### Plug in:

Model

What does your detector even measure?

- (Not as easy as .1660 m — it sounds)

P-ONE is a new ocean based neutrino detector



What
we expected to
see in the
pathfinder
experiments





# THE UNIVERSITY OF MELBOURNE

### What do we want? II

Plug in:

Model

What does your detector even measure?

Physics Magic

Physicist's Code

- 1. Injection
- 2. Propagation
- 3. Response



Would be nice if this is easy to use...

# THE UNIVERSITY OF MELBOURNE

#### What do we want? II



# THE UNIT MELB



#### What do we want? III

- Open source
- Easy to install
- Easy to run
- Easy to use output

#### A quick call-back









https://xkcd.com/1831/

# THE UNIVERSITY OF MELBOURNE

### The problems

- Open source
  - Your collaboration will have a problem with this
- Easy to install
  - Your dependencies will have a word with you
- Easy to run
  - It might be easy for you, but your users will NOT agree
- Easy to use output
  - There's always going to be something missing









https://xkcd.com/1831/

**Simulations** 

Example

# Before you start I

THE UNIVERSITY OF MELBOURNE

• The most important thing:

Think of a fantastic name and logo



# MELBOURNE

### Before you start II

- Don't do everything yourself
  - Use the standard codes
- No matter how good, it has to be usable



PYTHIA 8.3

The MadGraph5











Mini Workshop

12

**Simulations** 

Example

### Let's work with an example

This setup works for most detectors





An atmospheric neutrino detector

Assume it's spherical

Filled with water

• 100% PMT coverage on the outer wall

We'll (hopefully) get to that



**Simulations** 

1) Particle Injector

Example

What do we need?





#### This scheme works for most



\*Use an established format. E.g.HDF5, Parquet, etc.

**Simulations** 

Example

# THE UNIVERSITY OF MELBOURNE

### Output example

Example from a neutrino telescope simulation

This only deals with photon hits! Your output will probably be far more complicated



**Simulations** 

ations Example





### Everyone's busy

Let's define the problem

We want to construct an approximate simulation of CC and NC events in a water sphere

We want to use the different signals to discriminate between electron-neutrino CC events and NC events



At high energies both interactions "shatter" the nucleon creating a hadronic cascade

Simulations

ations Example

### Let's get to it



# Example time

If the CDM GitHub doesn't work

https://github.com/MeighenBergerS/cdm\_detector\_example