(Cognome) (Nome) (Numero di Matricola)

Esercizio 1. Un'azienda produce due materiali diversi (A e B). Le materie prime disponibili consentono di produrre al massimo 3 tonnellate di A e 2 di B alla settimana. Ogni tonnellata prodotta di ogni materiale dá luogo a 2 quintali di materiale di scarto da trattare. In una settimana non si possono trattare più di 7 quintali di materiale di scarto. Il profitto dei materiali é 3000 euro per A e 1000 euro B. Trovare la soluzione ottima eseguendo l'algoritmo del simplesso partendo dal vertice $(\frac{3}{2}, 2)$. Costruire un piano di taglio di Gomory per il problema in cui si possano produrre solo un numero intero di tonnellate.

Esercizio 2. Si consideri il seguente problema dello zaino:

$$\begin{cases}
\max 52 x_1 + 27 x_2 + 50 x_3 + 60 x_4 + 31 x_5 + 11 x_6 \\
10 x_1 + 6 x_2 + 15 x_3 + 22 x_4 + 17 x_5 + 14 x_6 \le 39 \\
x_i \in \{0, 1\}
\end{cases}$$
(P)

Determinare la valutazione data dal rilassamento continuo $0 \le x \le 1$, quella data dal rilassamento $x \ge 0$ e quella ottenuta aggiungendo un piano di taglio di Gomory. Risolvere poi il problema con il "Branch and Bound" utilizzando il rilassamento $0 \le x \le 1$.

Esercizio 3. Data la seguente rete dove su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Considerando l'albero di copertura formato dagli archi (1,2), (1,3), (2,6), (3,4) e (3,5), gli archi (2,3) e (3,6) come archi saturi e gli archi rimanenti in L, il flusso ottenuto é degenere? Il potenziale complementare é degenere? E' ottimo? Se no, fare un passo dell'algoritmo del simplesso su reti. Determinare poi l'albero dei cammini minimi di radice 1. Quale é la soluzione ottima in termini di flusso su reti? Trovare il taglio da 1 a 6 di capacitá minima.

Esercizio 4.

$$\begin{cases} \min x_1^2 + x_2^2 - 16x_1 - 12x_2 \\ -2x_1 + 3x_2 \le 12 \\ 2x_1 + 3x_2 \le 24 \\ x_1 \le 6 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Confrontare un passo dell'algoritmo di Frank-Wolfe con un passo dell'algoritmo del gradiente proiettato partendo dal punto (6, 1). Trovare il massimo globale ed i relativi moltiplicatori LKKT. Quale é il minimo globale?

SOLUZIONI

Esercizio 1.

$$\begin{cases} \max & 3 \ x_1 + x_2 \\ x_1 \le 3 \\ x_2 \le 2 \\ 2 \ x_1 + 2 \ x_2 \le 7 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Punto di partenza del simplesso $(\frac{3}{2},2)$ con base $B=\{2,3\}$. La duale complementare é $(0,-2,\frac{3}{2},0,0)$. Indice uscente 2. $W=\begin{pmatrix} 1 & -\frac{1}{2} \\ -1 & 0 \end{pmatrix}$. I rapporti valgono $r_1=\frac{3}{2}$ mentre $r_5=2$. Indice entrante 1. Soluzione ottima $(3,\frac{1}{2})$. Base ottima $B=\{1,3\}$. La matrice per i tagli di Gomory é data da $\begin{pmatrix} 1 & 0 \\ -1 & \frac{1}{2} \end{pmatrix}$ che dá il taglio $x_4\geq 1$, ovvero $x_1+x_2\leq 3$.

Esercizio 2. Le soluzioni ottime dei rilassati continui sono $x=(\frac{39}{10},0,0,0,0,0)$ con v_S pari a 202, e $x=(1,1,1,\frac{8}{22},0,0)$ con v_S pari a 150. La base ottima della prima é $B=\{1\}$. Il taglio di Gomory é dato da

$$6 x_2 + 5 x_3 + 2 x_4 + 7 x_5 + 4 x_6 + x_s \ge 9$$

La v_S con il taglio di Gomory é 196 data da $(3, \frac{3}{2}, 0, 0, 0, 0)$.

Esercizio 3.

	iterazione 1			
Archi di T	(1,2) (1,3) (2,6) (3,4) (3,5)			
Archi di U	(2,3) (3,6)			
x	(2, 3, 4, 0, 1, 2, 4, 7, 0, 0)			
π	(0, 4, 3, 12, 9, 7)			
Arco entrante	(2,3)			
ϑ^+, ϑ^-	7,2			
Arco uscente	(1,2)			

Il taglio é $N_s = \{1\}$ di capacitá 18. L'albero dei cammini minimi é $\{(1,2),(1,3),(2,6),(3,4),(3,5)\}$ ed il flusso ottimo é x = (2,3,0,0,1,1,1,0,0,0).

Esercizio 4.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
(6,1)	(1,0)	$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$	(0, 10)	$\frac{3}{}$	3	(6,4)
(, -)	(-, -,	0 1/	(0, -0)	10	10	(*, -)

Punto	Funzione obiettivo	Sol. ottima	Direzione	Passo	Nuovo punto
	problema linearizzato	problema linearizzato			
(6,1)	$-4x_1 - 10x_2$	(3,6)	(-3, 5)	$\frac{19}{34}$	$\left(\frac{147}{34}, \frac{129}{34}\right)$

Massimo globale é (0,0) con moltiplicatori (0,0,0,-16,-12) mentre (6,4) é minimo globale.