(19) 世界知的所有権機関 国際事務局

- | 1888 | 1888 | 1888 | 1888 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 |

(43) 国際公開日 2005 年8 月18 日 (18.08.2005)

PCT

(10) 国際公開番号 WO 2005/075384 A1

- (51) 国際特許分類⁷: C07B 37/04, 49/00, C07C 1/32, 13/28, 13/40, 15/02, 15/107, 15/12, 17/263, 22/08, 41/30, 43/21, 67/293, 67/343, 69/157, 69/24, 69/612, 69/76, 253/30, 255/37, 255/41, 255/50, C07D 209/08, 211/34, 213/127, 213/16, 307/20, 407/06, C07F 7/08, C07J 9/00 // B01J 31/20, 31/22, 31/30, C07B 61/00
- (21) 国際出願番号:

PCT/JP2005/002529

(22) 国際出願日:

2005年2月10日(10.02.2005)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2004-033941 2004 年2 月10 日 (10.02.2004) JP 特願2004-282578 2004 年9 月28 日 (28.09.2004) JP

- (71) 出願人 (米国を除く全ての指定国について): 独立 行政法人科学技術振興機構 (JAPAN SCIENE AND TECHNOLOGY AGENCY) [JP/JP]; 〒3320012 埼玉県 川口市本町四丁目 1 番 8 号 Saitama (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 中村 正治 (NAKA-MURA, Masaharu) [JP/JP]; 〒1130023 東京都文京区 向丘 1 1 15 903 Tokyo (JP). 中村 栄一 (NAKAMURA, Eiichi) [JP/JP]; 〒1130021 東京都文京 区本駒込 5 3 3 1001 Tokyo (JP). 松尾 敬子 (MATSUO, Keiko) [JP/JP]; 〒1350064 東京都江東区青海 2 丁目 79番 東京国際交流館 C棟808 Tokyo

(JP). 伊藤 慎庫 (ITO, Shingo) [JP/JP]; 〒1140014 東京都北区田端 3 - 1 5 - 1 8 - 2 0 2 Tokyo (JP).

- (74) 代理人: 小林 浩, 外(KOBAYASHI, Hiroshi et al.); 〒 1040028 東京都中央区八重洲二丁目 8番 7号 福岡ビル 9 階 阿部・井窪・片山法律事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

─ 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

- (54) Title: PROCESS FOR PRODUCTION OF AROMATIC COMPOUNDS
- (54) 発明の名称: 芳香族化合物の製造方法

R-X (2) + $A-Mg-Y^1$ (3a)

→ R─A (1) ジアミン化合物 鉄触媒

DIAMINE IRON CATALYST

(57) Abstract: The problem of the invention is to provide an economical process with little toxic hazard for the production of aromatic compounds having various substituents such as alkyl, and the problem is solved by a process for the production of aromatic compounds represented by the general formula (1) which is characterized by reacting a compound represented by the general formula (2) with an aromatic magnesium reagent represented by the general formula (3a) in the presence of an iron catalyst and a diamine: (W) wherein R is an optionally substituted hydrocarbon group or a saturated or unsaturated C_{3-10} cyclic group; A is an optionally substituted C_{4-20} aromatic group or an optionally substituted heteroaromatic group; X is halogeno or a sulfonic ester group; and Y^1 is bromo, iodo, chloro, or a carbanion ligand.

(57) 要約:

本発明の課題は、多種多様なアルキル基等の様々な置換基を有する芳香族化合物の低毒性且つ経済的な製造方法を提供することであり、鉄触媒およびジアミン化合物存在下、下記式(2)で示される化合物と、下記式(3 a)で示される芳香族マグネシウム試薬とを反応させることを特徴とする、下記式(1)で示される芳香族化合物の製造方法により、上記課題を解決する。

[式中、Rは、置換基を有していてもよい炭化水素基又は、 $C_3 \sim C_{10}$ 飽和 環基若しくは不飽和環基であり、Aは、置換基を有していてもよい $C_4 \sim C_2$ 。 芳香族基又は置換基を有していてもよい複素芳香族基であり、Xは、ハロゲン原子又はスルホン酸エステルであり、 Y^1 は、臭素、ヨウ素、塩素、又は炭素アニオン配位子である。]

明細書

芳香族化合物の製造方法

5 技術分野

本発明は、芳香族化合物の製造方法に関し、より詳しくは、鉄触媒を用いたハロゲン化アルキル等の脂肪族有機化合物と、芳香族有機金属試薬のクロスカップリング反応による芳香族化合物の製造方法に関する。

10 背景技術.

アルキル化芳香族化合物、特に第二級アルキル基を芳香環上に有する一群の芳香族化合物は、医薬や農薬等の化成品中間体、液晶などの原料として有用であることが知られている。

従来、第二級アルキル基を持つ芳香族化合物の位置選択的な製造方法とし て、ニッケル又はパラジウム触媒存在下で、アルキルマグネシウム試薬とハ 15 ロゲン化アリール又はアリールスルホン酸エステルとをカップリング反応さ せる方法が知られていた(Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.; Hirotsu, K. J. Am. Chem. Soc. 1984, 106, 158-163. Ogasawara, M.; Yoshida, K.; Hayashi, T. Organometallics, 2000, 19, 1567-1571, Doherty, S.; Knight, J.; Robins, E. G.; Scanlan, T. H.; 20 Champkin, P. A. Clegg, W. J. Am. Chem. Soc. 2001, 123, 5110-5111) . しかしながら、この方法によれば、複雑な構造を有するホスフィン配位子 の添加が必須であり、かつ第二級アルキル基の構造によっては、第二級アル キル基から第一級アルキル基への異性化を伴い目的生成物を高収率で得るこ 25 とができないという問題があった。また、ニッケル触媒又はパラジウム触媒 という毒性の高いあるいは高価な触媒が必要であるという問題があり、医薬 や農薬といった毒性の高い試薬を避ける必要がある分野で大量合成への応用 ができないという問題があった。

また、ハロゲン化アルキル又はアルキルスルホン酸エステルと芳香族有機

金属試薬からアルキル基を有する芳香族化合物を製造する方法として、ジエン配位子存在下パラジウムを触媒としてアルキルスルホン酸エステルあるいはハロゲン化アルキルと芳香族マグネシウム試薬をクロスカップリングさせる方法(Terao, J.; Naitoh, Y.; Kuniyasu, H.; Kambe, N. *Chem. Lett.* 2003, 32, 890-901)や、ジエン配位子存在下銅やニッケルを触媒としてハロゲン化アルキルと芳香族マグネシウム試薬を触媒的にクロスカップリングする方法(Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. *J. Am. Chem. Soc.* 2003, 125, 5646-5647)も知られている。

5

10

15

その他にも、トリシクロヘキシルホスフィンなどの嵩高いホスフィン配位子存在下、パラジウム触媒によるハロゲン化アルキルと芳香族亜鉛化合物、芳香族スズ化合物または芳香族ケイ素化合物との触媒的なクロスカップリング反応(Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 12527-12530、Tang, H.; Menzel, K.; Fu, G. C. *Angew. Chem.*, *Int. Ed.* **2003**, *42*, 5079-5082、Lee, J.-Y.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 5616-5617.) も知られている。

しかしながらこれらの方法によって第二級アルキル基を導入する場合、脱離反応などの副反応によりアルケンが生じ、目的生成物が低収率でしか生成しないため、第二級アルキル置換基を有する芳香族化合物の合成には適用できないという問題があった。

20 また、第二級ハロゲン化アルキルと芳香族有機金属化合物からアルキル基を有する芳香族化合物を製造する方法として、ニッケル触媒を用いた芳香族ホウ素化合物を、第二級ハロゲン化アルキルと触媒的にクロスカップリング反応させるという方法も知られている(Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* 2004, 126, 1340-1341)。この方法によれば、種々の第二級アルキルと類基を有する芳香族化合物が合成可能であるが、やはり毒性の高いニッケルを用いなければならない点などの問題点は解決されていない

また、触媒として廉価であり且つ低毒性の鉄触媒を用いた方法として、ハロゲン化アリールあるいはハロゲン化アルケニル等の不飽和有機ハロゲン化物あるいはアリルリン酸エステル等の求電子剤と、芳香族あるいはアルキル

マグネシウム試薬、亜鉛試薬又はマンガン試薬とをクロスカップリング反応させるという方法が知られている(Furstner, A.; Leitner, A. *Angew. Chem., Int. Ed.* **2002**, *41*, 609-612、Furstner, A.; Leitner, A.; Mendez, M.; Krause, H.; *J. Am. Chem. Soc.* **2002**, *124*, 13856-13863、米国公開公報 2003/0220498)。

5

10

15

この方法で第二級アルキルマグネシウム試薬とハロゲン化アリールから第二級アルキル置換基を有する芳香族化合物を合成することは可能である。しかしながら、第二級アルキルマグネシウム試薬調製時に、カルボニル基、シアノ基など多くの官能基が共存できないことに加えて、収率が50%~60%と低く、多種多様なアルキル化芳香族化合物の製造方法としては適さないという問題があった。またこの方法での反応条件下でハロゲン化アルキルと芳香族マグネシウム試薬を用いた場合、脱離反応等の副反応によりオレフィンの生成が優先し、目的生成物は低収率でしか生成しないという問題があった。

また、触媒量の N, N, N', N'-テトラメチルエチレンジアミン(TMEDA)を配位子として有する鉄錯体触媒を用いて、ハロゲン化アルキルと芳香族マグネシウム試薬とのカップリング反応を行う方法が知られている (Martin, R.: Furstner, A.; *Angew. Chem.*, *Int. Ed.* **2004**, *43*, 3955-3957.)。しかしながら、この方法によれば、ハロゲン化アルキルとして、塩化物、フッ化物を用いた場合には全く反応が進まないという問題があった。

20 更に、触媒として三価の鉄アセチルアセトナート錯体を用い、ジアミン配位子を使わず、溶媒をテトラヒドロフラン(THF)からジエチルエーテルに変えた以外は上記と同様の方法でカップリング反応を行う方法も知られている(Nagano, T.; Hayashi, T. *Org. Lett.* **2004**, *6*, 1297-1299.)。しかしながら、この方法においても、ハロゲン化アルキルとして、塩化物、フッ化物を用いた場合には全く反応が進まないという問題があった。のみならず、収率は一般に低く、実用的でないという問題もあった。

このため、大量合成が可能であり、かつ安全性の高い方法で多種多様な第 一級または第二級アルキル置換基を有する芳香族化合物を高収率で得る方法 が望まれていた。

発明の開示

本発明は、低毒性、廉価かつ入手容易な鉄触媒を使用し、多種多様なアルキル置換基を有する芳香族化合物の実践的な製造方法を提供することを目的とする。

即ち、本発明の第1態様では、下記式(1)で示される芳香族化合物の製造方法であって、・

$$R - A$$
 (1)

[式中、Rは、置換基を有していてもよい炭化水素基、又は、 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基であって、前記環は、酸素原子又は式-N(B) -で示される基(式中、Bは水素原子、置換基を有していてもよい $C_1 \sim C_1$ 。炭化水素基、又は置換基を有していてもよい $C_1 \sim C_{10}$ アルコキシカルボニル基である。)で中断されていてもよく、かつ、置換基を有していてもよく、Aは、置換基を有していてもよい $C_4 \sim C_{20}$ 芳香族基又は置換基を有していてもよいでもよいでもよいである。] 鉄触媒およびジアミン化合物存在下、下記式(2)で示される化合物と、

$$R - X \tag{2}$$

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]下記式(3a)で示される芳香族マグネシウム試薬と、

20
$$A-Mg-Y^{1}$$
 (3 a)

[式中、Aは上記の意味を有する。Y¹は、臭素、ヨウ素、塩素、又は炭素 アニオン配位子である。]を反応させることを特徴とする、芳香族化合物の 製造方法が提供される。

また、本発明の第2態様では、上記式(1)で示される芳香族化合物の製 25 造方法であって、ジアミン化合物存在下、下記式(3 a)で示される芳香族 マグネシウム試薬と、

$$A - Mg - Y^{1}$$
 (3 a)

[式中、Aは上記の意味を有する。Y¹は、臭素、ヨウ素、塩素、又は炭素 アニオン配位子である。] 下記式(4b)で示される亜鉛化合物とを反応さ せ、反応混合物を得る工程と、

$$Z^{3} - Z n - Z^{4}$$
 (4 b)

5 [式中、2³および2⁴は、それぞれ、互いに独立し、同一または異なって、 臭素、ヨウ素、塩素、フッ素、又はトリフルオロメタンスルホニル基である。] 鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物と、

$$R - X$$
 (2)

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エス 10 テルである。]を反応させる工程とを含むことを特徴とする、芳香族化合物 の製造方法が提供される。

また、本発明の第3態様では、上記式(1)で示される芳香族化合物の製造方法であって、ジアミン化合物存在下、下記式(3c)で示される芳香族リチウム試薬と、

15
$$A-Li$$
 (3c)

[式中、Aは上記の意味を有する。] 下記式(4b)で示される亜鉛化合物とを反応させ、

$$Z^{3} - Z n - Z^{4}$$
 (4b)

[式中、Z³およびZ⁴は、それぞれ、互いに独立し、同一または異なって、 20 臭素、ヨウ素、又は塩素である。]次いで、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム及びアルミニウムからなる群より選ばれる一種以上の金属を含むルイス酸金属化合物を反応させ、反応混合物を得る工程と、

鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物と、

$$25 R-X (2)$$

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]

を反応させる工程とを含むことを特徴とする、芳香族化合物の製造方法が提供される。

また、本発明の第4態様では、上記式(1)で示される芳香族化合物の製造方法であって、ジアミン化合物存在下、下記式(3b)で示される芳香族 亜鉛試薬と、

$$A - Z n - Y^2 \qquad (3 b)$$

5 [式中、Aは上記の意味を有する。Y²は、臭素、ヨウ素、又は塩素である。] 下記式(4a)で示されるマグネシウム化合物とを反応させ、反応混合物を 得る工程と、

$$Z^{1} - Mg - Z^{2}$$
 (4 a)

[式中、Z¹は、炭素アニオン配位子であり、Z²は、臭素、ヨウ素、又は塩 10 素である。]鉄触媒存在下、前記反応混合物と、下記式(2)で示される化 合物と、

$$R - X \tag{2}$$

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]

15 を反応させる工程とを含むことを特徴とする、芳香族化合物の製造方法が提供される。

本発明の第1態様〜第4態様において、鉄触媒が、鉄塩又は鉄錯体である ことが好ましい。

また、本発明の第1態様〜第4態様において、ジアミン化合物が、2座配 20 位子であることが好ましい。

また、本発明の第1態様〜第4態様において、Rが、置換基を有していて もよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル 基であることが好ましい。

また、本発明の第1態様~第4態様において、Aが、置換基を有していて 5 もよい C_4 ~ C_{20} アリール基であることが好ましい。

また、本発明の第3態様において、ルイス酸金属化合物が、下記式(4 c)で示される金属化合物であってもよい。

$$M(Z^{1})_{n} \qquad (4c)$$

[式中、Mは、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム、又はアルミニウムであり、Z¹は、それぞれ独立して、同一又は異なって、臭素、ヨウ素、塩素、又は炭素アニオン配位子であり、nは2~4の整数である。]

5 本発明によれば、多種多様なアルキル基等の様々な置換基を有する芳香族 化合物を、低毒性の環境下で、経済的且つ高収率で製造することができる。 このため、医薬や農薬といった毒性の高い試薬を避ける必要がある分野で所 望の置換基を有する芳香族化合物を大量合成することができる。

また、官能基選択性が高いため、保護された糖類に複素芳香環を効率的に 10 導入することが可能となり、例えば、C-アリールグリコシド類の合成にも 応用することができる。

また、ポリ塩化ビニル等のポリマー中のハロゲン原子を所望の芳香族置換 基に変換することができるため、ポリマー改質に応用することができる。

15 発明を実施するための最良の形態

本発明の第1態様では、鉄触媒およびジアミン化合物存在下、下記式(2)で示される化合物と、下記式(3 a)で示される芳香族マグネシウム試薬とを反応させることを特徴とする、下記式(1)で示される芳香族化合物の製造方法が提供される。

20

本発明の第1態様では、下記式(2)で示される化合物が用いられる。

$$R - X \tag{2}$$

25 Rは、置換基を有していてもよい炭化水素基、又は、 $C_3 \sim C_{10}$ 飽和環基 若しくは不飽和環基である。

「炭化水素基」としては、C₃₀程度までの比較的低分子量の炭化水素基で もよく、またそれ以上の高分子炭化水素基であってもよい。

また、前記環は、酸素原子又は式-N(B)-で示される基(式中、Bは水素原子、置換基を有していてもよい $C_1\sim C_{10}$ 炭化水素基、又は置換基を有していてもよい $C_1\sim C_{10}$ アルコキシカルボニル基である。)で中断されていてもよく、かつ、置換基を有していてもよい。

5 置換基を有していてもよい高分子炭化水素としては、例えば、ポリ塩化ビニル等のポリマーから任意の1個のハロゲン原子を除いて形成される1価基などが挙げられる。

置換基を有していてもよい低分子量の炭化水素基としては、例えば、C₂ ~C₃₀炭化水素基を挙げることができる。

本発明の第1態様において、Rで示される「 $C_2 \sim C_{30}$ アルキル基」は、 $C_2 \sim C_{15}$ アルキル基であることが好ましく、 $C_4 \sim C_{12}$ アルキル基であることが更に好ましい。アルキル基の例としては、制限するわけではないが、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、ドデカニル等を挙げることができる。

20

25

本発明の第 1 態様において、Rで示される「 $C_3 \sim C_{30}$ アルケニル基」は、 $C_3 \sim C_{15}$ アルケニル基であることが好ましく、 $C_4 \sim C_{10}$ アルケニル基であることが更に好ましい。アルケニル基の例としては、制限するわけではないが、2- プロペニル、2-メチル-2-プロペニル、2-メチルアリル、2-ブテニル、3-ブテニル、4- ペンテニル等を挙げることができる。本発明の第 1 態様において、Rで示される「 $C_3 \sim C_{30}$ アルキニル基」は、 $C_3 \sim C_{15}$ アルキニル基であることが好ましく、 $C_4 \sim C_{10}$ アルキニル基

であることが更に好ましい。アルキニル基の例としては、制限するわけではないが、3-ブチニル、4-ペンチニル等を挙げることができる。

本発明の第1態様において、Rで示される「 $C_5 \sim C_{30}$ アルキルジエニル基」は、 $C_5 \sim C_{15}$ アルキルジエニル基であることが好ましく、 $C_6 \sim C_{10}$ アルキルジエニル基であることが更に好ましい。アルキルジエニル基の例としては、制限するわけではないが、3, 5-ヘキサジエニル等を挙げることができる。

本発明の第1態様において、Rで示される「 $C_7 \sim C_{30}$ アリールアルキル基」は、 $C_7 \sim C_{12}$ アリールアルキル基であることが好ましい。アリールアルキル基の例としては、制限するわけではないが、ベンジル、フェネチル、ジフェニルメチル、トリフェニルメチル、1ーナフチルメチル、2ーナフチルメチル、2,2ージフェニルエチル、3ーフェニルプロピル、4ーフェニルブチル、5ーフェニルペンチル等を挙げることができるが、2,2ージフェニルエチル、3ーフェニルプロピル、4ーフェニルブチルであることが好ましい。

10

15

25

本発明の第1態様において、Rで示される「 $C_3 \sim C_{30}$ シクロアルキル基」は、 $C_3 \sim C_{10}$ シクロアルキル基であることが好ましい。シクロアルキル基の例としては、制限するわけではないが、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等を挙げることができる。

20 本発明の第1態様において、Rで示される「 $C_3 \sim C_{30}$ シクロアルケニル基」は、 $C_3 \sim C_{10}$ シクロアルケニル基であることが好ましい。シクロアルケニル基の例としては、制限するわけではないが、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル等を挙げることができる。

本発明の第1態様において、Rで示される「縮合多環式基」は、縮合多環 式から任意の1個の水素原子を除いて形成される1価基などが挙げられる。

本発明の第1態様において、Rで示される「 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」としては、単環式基、縮合多環式基などが挙げられる。

「単環式基」としては、例えば、 $3\sim7$ 員環から任意の1 個の水素原子を除いて形成される1 価基や、このような1 価基- $C_1\sim C_6$ アルキル基などが

挙げられる。

15

「縮合多環式基」としては、例えば、縮合多環式から任意の1個の水素原子を除いて形成される1価基やこのような1価基ー C_1 ~ C_6 アルキル基などが挙げられる。

本発明の第1態様において、Rで示される「 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」は、酸素原子又は式-N(B)ーで示される基(式中、Bは水素原子、置換基を有していてもよい $C_1 \sim C_{10}$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)、又は置換基を有していてもよい $C_1 \sim C_{10}$ アルコキシカルボニル基である。)で中断されている5員 \sim 7 員短環式基であることが好ましく、ピペリジニル、テトラヒドロピラニル、テトラヒドロピラニルメチルであることがより好ましい。

本発明の第1態様において、Rで示される「炭化水素基」、「 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」、Rが「式-N(B)-で示される基で中断される $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」である場合に、Bで示される「 $C_1 \sim C_{10}$ 飽和環基若しくは不飽和環基」である場合に、Bで示される「 $C_1 \sim C_{10}$ 炭化水素基」及び「 $C_1 \sim C_{10}$ アルコキシカルボニル基」には、置換基が導入されていてもよい。この置換基としては、好ましくは芳香族マグネシウム試薬と反応しないものを挙げることができる。例えば、

置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、2-メチルー1-プロペニル、2-メチルアリル、2-ブテニル等)、

 $C_2 \sim C_2$ のアルキニル基(例えば、エチニル、プロピニル、ブチニル等)、

25 $C_2 \sim C_{20}$ アルケニルー $C_1 \sim C_{20}$ アルキルー $C_1 \sim C_{20}$ アルコキシ (例、1 ービニルー1 ーメチルエトキシなど)、

保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は C_6 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n

-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等) 等の置換基を有していてもよいシリル基である。保護された水酸基の例とし ては、メトキシ基、ベンジロキシ基、p- メトキシベンジロキシ基、メトキ シメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル tert-ブチ ルシロキシ、トリエチルシロキシ、tert-ブチルジフェニルシロキシ等が挙 げられる)、

トリアルキルシリル基($-B^4$:式中、 B^4 は $C_1 \sim C_6$ 炭化水素基(例えば、 メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert ーブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよ いシリル基である。トリアルキルシリル基の例としては、トリメチルシリル 、ジメチル tert-ブチルシリル、トリエチルシリル、tert-ブチルジフェニ ルシリル等が挙げられる。)、

アセタール基(-CB⁵(OB⁶)(OB⁷): 式中、B⁵は、水素原子又は置換基を有していてもよいC₁~C₆アルキル基、B⁶及びB⁷は、それぞれ互いに独立 し、同一または異なって、置換基を有していてもよいC₁~C₆炭化水素基(例え ば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、 tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋して いてもよい。B⁶及びB⁷の例としては、メチル基、エチル基等が挙げられ、 互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる 20) ,

Nーインドリル、

10

15

25

C₁~C₁₀アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブト キシ等)、

C₆~C₁₀アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、 ビフェニルオキシ等)、

ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、

アミド基、又は

アミノ基などを挙げることができる。

また、芳香族マグネシウム試薬との反応性が若干あるため収率が低下する

が、導入可能な置換基としては、

15

 $C_6 \sim C_{20}$ アリールー $C_1 \sim C_{20}$ アルキルオキシカルボニル(例、ベンジルオキシカルボニルなど)、

 $C_1 \sim C_{20}$ アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオキシ、ピバロイルオキシなど)、

エトキシカルボニル等を挙げることができる。

以上の置換基は、置換可能な位置に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよい。置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。

10 本発明の第1態様において、「置換基を有していてもよい縮合多環式」の 例としては、制限するわけではないが、コレスタン等のステロイド骨格を有 するもの等を挙げることができる。

本発明の第1態様において、Rは、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることが好ましい。

「置換基を有していてもよい第一級アルキル基」としては、好ましくは、 3-N-インドリルプロピル、エトキシカルボニルペンチル、オクチル等を 挙げることができる。

また、「置換基を有していてもよい第二級アルキル基」としては、好まし 20 くは、*sec*-ブチル、シクロヘキシル、4 - *tert*-ブチルシクロヘキシル、シ クロヘプチル、2 - ノルボルニル等を挙げることができる。

また、本発明の第1態様において、Rが取り得る「第一級アルキル基」、「第二級アルキル基」に導入される置換基としては、特に好ましくは、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基、

25 アルケニル基、アルキニル基、3-N-インドリル基、アルキルエーテル、 シリルエーテル、3級アミノ基、2級アミド基又はアセタールを挙げること ができる。

上記式(2)中、Xは、 Λ 口ゲン原子又は Λ 以ホン酸エステル(R'-S(O)₂-O-)である。 Λ 口ゲン原子としては、臭素、ヨウ素又は塩素で

あることが好ましい。スルホン酸エステルは、p-トルエンスルホン酸エステルであることが好ましい。

本発明の第1態様において、Xは、ハロゲン原子であることが好ましく、 ヨウ素、臭素、塩素であることがより好ましい。

5 本発明の第1態様にかかる芳香族化合物の製造方法においては、下記式(3 a)で示される芳香族マグネシウム試薬が用いられる。

$$A - Mg - Y^{1} \qquad (3 a)$$

上記式(3 a)中、Aは、置換基を有していてもよい $C_4 \sim C_{20}$ 芳香族基 又は置換基を有していてもよい複素芳香族基である。

10 本明細書において、「芳香族基」としては、単環式芳香族基、多環式芳香 族基を挙げることができる。

「単環式芳香族基」としては、例えば、ベンゼン環、5員又は6員芳香族 複素環から任意の1個の水素原子を除いて形成される1価基などが挙げられ る。

15 「5員又は6員芳香族複素環」としては、フラン、チオフェン、ピロール 、ピラン、チオピラン、ピリジン、チアゾール、イミダゾール、ピリミジン 、1,3,5-トリアジン等を挙げることができる。

「多環式芳香族基」としては、多環式芳香族炭化水素、多環式複素芳香環から任意の1個の水素原子を除いて形成される1価基などが挙げられる。

20 「多環式芳香族炭化水素」としては、ビフェニル、トリフェニル、ナフタレン、インデン、アントラセン、フェナントレン等を挙げることができる。

「多環式複素芳香環」としては、インドール、キノリン、プリン等を挙げることができる。

また、本明細書において、「複素芳香族基」としては、炭素原子以外に窒 25 素原子、硫黄原子および酸素原子から選ばれるヘテロ原子1個以上を含む5 ~7員芳香族複素環などから任意の1個の水素原子を除いて形成される1価 基などが挙げられる。

「複素芳香族基」としては、2-,3-または4-ピリジルなどのピリジル、2-ベンゾフラニルまたは3-ベンゾフラニルなどのベンゾフラニル、

2- インドリル、3- インドリルなどのインドリル、ピリミジル基などが挙げられる。

本発明の第1態様において、Aで示される「 C_4 ~ C_{20} 芳香族基」、「複素芳香族基」には、置換基が導入されていてもよい。この置換基としては、好ましくは、芳香族マグネシウム試薬と反応しないものを挙げることができる。例えば、

5

15

20

25

置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロ ペニル、2-メチル-1-プロペニル、2-メチルアリル、2-ブテニル等)、

 $C_2 \sim C_{20}$ アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、 保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、p- メトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル tert-ブチルシロキシ、トリエチルシロキシ、tert-ブチルシロキシ、トリエチルシロキシ、tert-ブチルジフェニルシロキシ等が挙げられる)、

アセタール基($-CB^5$ (OB^6)(OB^7):式中、 B^5 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋していてもよい。 B^6 及び B^7 の例としては、メチル基、エチル基等が挙げられ、互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

*N*ーインドリル、

5

10

 $C_1 \sim C_{10}$ アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、

 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、ビフェニルオキシ等)、

ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、又は、

アミノ基などを挙げることができる。この場合、置換基は、置換可能な位置に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよい。置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。

更に、互いに架橋する置換基が、置換可能な2以上の位置に環状に導入されていてもよく、このような置換基としては、例えば、メチレンジオキシ、エチレンジオキシ、テトラメチルエチレンジオキシ、プロピレンジオキシ基などを挙げることができる。

15 本発明の第1態様において、Aは、置換基を有していてもよいフェニル基 であることが好ましく、フェニル、2-メチルフェニル、4-メチルフェニル、4-メチルフェニル、3,4-(メチレンジオキシ)フェニルである ことがより好ましい。

上記式(3 a) 中、Y¹は、臭素、ヨウ素、塩素、又は炭素アニオン配位 20 子である。

本明細書において、「炭素アニオン配位子」としては、置換基を有してもよいフェニル基、プロピニル基($CH_3C \equiv C-$)、フェニルエチニル基($PhC \equiv C-$)、トリメチルシリルメチル基(Me_3SiCH_3-)等を挙げることができる。

本発明の第1態様において、 Y^1 が「フェニル基」の場合は、置換基が導 25 入されていてもよい。この置換基としては、例えば、 $C_1 \sim C_{10}$ アルキル基 (例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、 $C_1 \sim C_{10}$ アルコキシ基 (例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等) などを挙げることができる。この場合、置換基は、置換可能な位置 に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよ

い。置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。

更に、互いに架橋する置換基が、置換可能な2以上の位置に環状に導入されていてもよく、このような置換基としては、例えば、メチレンジオキシ、 エチレンジオキシ、テトラメチルエチレンジオキシ、プロピレンジオキシ基

本発明の第1態様において、Y1は、臭素であることが好ましい。

5

10

20

などを挙げることができる。

本発明の第1態様において、上記式(3 a)で示される芳香族マグネシウム試薬の量は、上記式(2)で示される化合物 1 モルに対し、1 モル当量以上であり、好ましくは 1 . 1 モル当量~2 モル当量である。

本発明の第1態様にかかる芳香族化合物の製造方法においては、廉価で且 つ低毒性である鉄触媒が用いられる。

本発明の第1態様で用いられる鉄触媒は、鉄塩であってもよく、鉄錯体で あってもよい。

15 鉄触媒が鉄塩である場合には、例えば、鉄についての塩酸、硫酸等の無機酸の塩を用いることができる。たとえば、ハロゲン化鉄(III)が好ましく、特に、FeCl₃のような鉄塩(III)が好ましく用いられる。

鉄触媒が鉄錯体である場合には、配位子としては、カルボニル、ハロゲン原子、シッフ塩基、ポリアミン、ジメチルホルムアミド等が好ましく用いられる。中心金属は、 $4\sim6$ 配位であることが好ましい。具体的には、一価のカルボニル錯体 $[FeCp(CO)_2]_2$ (下記式1)、2価の中性シッフ塩基錯体 (下記式2)、3価のカチオン性テトラミン錯体 (下記式3)、3価のジメチルホルムアミド錯体 (下記式4)といった鉄錯体を好ましく用いることができる。

本発明の第1態様において、鉄触媒は、鉄塩であることが好ましく、 $FeCl_3$ であることがより好ましい。

5 本発明の第1態様において、鉄触媒の量は、上記式(2)で示される化合物1モルに対し、0.001モル当量~0.5モル当量であり、好ましくは0.01モル当量~0.1モル当量であり、更に好ましくは0.03モル当量~0.07モル当量である。

本発明の第1態様にかかる芳香族化合物の製造方法においては、ジアミン 10 化合物が用いられる。

本発明の第1態様においてジアミン化合物を用いることにより、副反応による副生成物の発生を極力抑えることができ、目的生成物を高収率で得ることが可能となる。

ジアミン化合物は、2座配位子であることが好ましく、更に好ましくは、 15 N, N, N', N'-テトラメチルエチレンジアミン(TMEDA)等の置換基を有していて もよいエチレンジアミンを挙げることができる。

本発明の第1態様において、ジアミン化合物の量は、上記式(2)で示される化合物1モルに対し、0.5モル当量~10モル当量であり、好ましくは1モル当量~3モル当量であり、更に好ましくは1モル当量~2モル当量

である。

10

20

本発明の第1態様において、典型的には、上記式(3 a)で示される芳香族マグネシウム試薬と上記ジアミン化合物とを、上記式(2)で示される化合物と上記鉄触媒とを有する溶液に添加して攪拌する。あるいは、上記式(3 a)で示される芳香族マグネシウム試薬を、上記式(2)で示される化合物と上記鉄触媒と上記ジアミン化合物とを有する溶液に添加して攪拌する。

いずれの場合も、収率を高める観点から、添加はゆっくりと滴下することによって行うことが好ましい。滴下の速度は、反応のスケールにもよるが、例えば、上記式(2)で示される化合物の量が50 mmol程度の場合には、芳香族マグネシウム試薬(3 a)の溶液を1mmol/分程度の速度で加えるが好ましく、上記式(2)で示される化合物の量が1 mmol程度の場合には、芳香族マグネシウム試薬(3 a)で示される化合物の溶液を0.06mmol/分程度が好ましい。

本発明の第 1 態様において、反応は、好ましくは-10 $\mathbb{C}\sim50$ \mathbb{C} の温度 範囲で行われ、特に好ましくは0 $\mathbb{C}\sim30$ \mathbb{C} の温度範囲で行われる。圧力は、常圧であることが好ましい。

本発明の第1態様において、溶媒としては、上記式(2)で示される化合物を溶解することができる溶媒が好ましい。溶媒は、脂肪族又は芳香族の有機溶媒が用いられる。例えば、テトラヒドロフラン又はジエチルエーテル等のエーテル系溶媒;トルエン等の芳香族炭化水素が用いられる。

本発明の第2態様では、ジアミン化合物存在下、下記式(3a)で示される芳香族マグネシウム試薬と、下記式(4b)で示される亜鉛化合物とを反応させ、反応混合物を得る工程と、鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物とを反応させる工程とを含むことを特徴とする、

25 下記式(1)で示される芳香族化合物の製造方法が提供される。

$$A-Mg-Y^1$$
 (3a) + Z^3-Zn-Z^4 (4b) $\frac{}{$ ジアミン化合物 $}$ R-A (1)
 鉄触媒

[上記式中、R、X、Y¹及びAは上記の意味を有する。]

本発明の第2態様では、下記式(2)で示される化合物が用いられる。

$$R - X$$
 (2)

15

上記式中、R、Xについての説明は、本発明の第1態様において説明した 5 のと同様である。

本発明の第2態様において、Rで示される「炭化水素基」、「 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」、Rが「式-N(B)-で示される基で中断 される $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」である場合に、Bで示される「 $C_1 \sim C_{10}$ 炭化水素基」及び「 $C_1 \sim C_{10}$ アルコキシカルボニル基」には、置換基が導入されていてもよい。この置換基としては、好ましくは、上記式(3 a)で示される芳香族マグネシウム試薬と、上記式(4 b)で示される亜鉛化合物とを反応させて得られる有機亜鉛試薬と反応しないものを挙げることができる。例えば、

置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、2-メチル-1-プロペニル、2-メチルアリル、2-ブテニル等)、

C2~C20アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、

 $C_2 \sim C_{20}$ アルケニルー $C_1 \sim C_{20}$ アルキルー $C_1 \sim C_{20}$ アルコキシ (例、1 ービニルー1 ーメチルエトキシなど)、

 $C_6 \sim C_{20}$ アリールー $C_1 \sim C_{20}$ アルキルオキシカルボニル(例、ベンジルオキシカルボニルなど)、

 $C_1 \sim C_{20}$ アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオ 25 キシ、ピバロイルオキシなど)、

保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は C_6 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、nーブチル、secーブチル、tertーブチル、ペンチル、ヘキシル、フェニル等)

等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、p- メトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル t-ブチルシロキシ、トリエチルシロキシ、t-ブチルジフェニルシロキシ等が挙げられる)、

トリアルキルシリル基($-B^4$:式中、 B^4 は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。トリアルキルシリル基の例としては、トリメチルシリル、ジメチル t-ブチルシリル、トリエチルシリル、t-ブチルジフェニルシリル等が挙げられる。)、

アセタール基($-CB^5$ (OB^6)(OB^7):式中、 B^5 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋していてもよい。 B^6 及び B^7 の例としては、メチル基、エチル基等が挙げられ、互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

20 N-インドリル、

5

10

 $C_1 \sim C_{10}$ アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、

 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、ビフェニルオキシ等)、

25 ハロゲン原子 (例えば、フッ素、塩素、臭素、ヨウ素)、 アミド基、又は

アミノ基などを挙げることができる。

また、芳香族マグネシウム試薬との反応性があるものの、有機亜鉛試薬を 経由することで導入可能となった置換基としては、

エステル基($-COOB^2$: 式中、 B^2 は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、nーブチル、secーブチル、tertーブチル、ペンチル、ヘキシル、フェニル等)である。エステル基の例としては、メトキシカルボニル、エトキシカルボニル、2ーメトキシエトキシカルボニル、tertーブトキシカルボニル、

 $C_1 \sim C_{20}$ アルキルカルボニル(例、ピバロイルなど)、または、 ニトリル基(-CN)、

等を挙げることができる。

5

20

25

以上の置換基は、置換可能な位置に1個以上導入されていてもよく、例え 10 ば、1個~4個導入されていてもよい。置換基数が2個以上である場合、各 置換基は同一であっても異なっていてもよい。

本発明の第2態様において、Rは、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることが好ましい。

15 「置換基を有していてもよい第一級アルキル基」としては、好ましくは、 3-N-インドリルプロピル、エトキシカルボニルペンチル、オクチル等を 挙げることができる。

また、「置換基を有していてもよい第二級アルキル基」としては、好ましくは、*sec*-ブチル、シクロヘキシル、4-*t*-ブチルシクロヘキシル、シクロヘプチル、2-ノルボルニル等を挙げることができる。

また、本発明の第2態様において、Rが取り得る「第一級アルキル基」、「第二級アルキル基」に導入される置換基としては、特に好ましくは、メトキシカルボニル基、エトキシカルボニル基、tert-ブトキシカルボニル基、シアノ基、アルケニル基、アルキニル基、3-N-インドリル基、アルキルエーテル、シリルエーテル、3級アミノ基、2級アミド基、又はアセタールを挙げることができる。

本発明の第2態様において、Xは、ハロゲン原子であることが好ましく、 ヨウ素、臭素であることがより好ましい。もっとも、若干収率は落ちるがX を塩素とすることも可能である。

本発明の第2態様では、下記式(3 a)で示される芳香族マグネシウム試薬が用いられる。

 $A - M g - Y^{1} \qquad (3 a)$

上記式中、A、Y¹についての説明は、本発明の第1態様において説明し 5 たのと同様である。

本発明の第2態様において、Aで示される「 C_4 ~ C_{20} 芳香族基」、「複素芳香族基」には、置換基が導入されていてもよい。この置換基としては、好ましくは、芳香族マグネシウム試薬と反応しないものを挙げることができる。例えば、

- 10 置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、2 メチル- 1 プロペニル、2 メチルアリル、2 ブテニル等)、
- 15 $C_2 \sim C_{20}$ アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、 保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、nーブチル、secーブチル、tertーブチル、ペンチル、ヘキシル、フェニル等) 等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、p- メトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル t-ブチルシロキシ、トリエチルシロキシ、t-ブチルシロキシ等が挙げられる)、
- 25 アセタール基($-CB^5$ (OB^6)(OB^7):式中、 B^6 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋して

いてもよい。B⁶及びB⁷の例としては、メチル基、エチル基等が挙げられ、 互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

N-インドリル、

20

 $C_1 \sim C_{10}$ アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、

 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、ビフェニルオキシ等)、

ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、又は、

10 アミノ基などを挙げることができる。この場合、置換基は、置換可能な位置 に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよ い。置換基数が2個以上である場合、各置換基は同一であっても異なってい てもよい。

更に、互いに架橋する置換基が、置換可能な2以上の位置に環状に導入されていてもよく、このような置換基としては、例えば、メチレンジオキシ、エチレンジオキシ、テトラメチルエチレンジオキシ、プロピレンジオキシ基などを挙げることができる。

本発明の第2態様において、Aは、置換基を有していてもよいフェニル基 、ピリジル基であることが好ましく、フェニル、2-メチルフェニル、4-メチルフェニル、4-メトキシフェニル、3,4-(メチレンジオキシ)フェニルであることがより好ましい。

本発明の第2態様において、 Y^1 は、ヨウ素、臭素、塩素であることが好ましい。

本発明の第2態様において、上記式(3 a)で示される芳香族マグネシウ 25 ム試薬の量は、上記式(2)で示される化合物1モルに対し、1モル当量以 上であり、好ましくは2モル当量~4モル当量であり、約3モル当量である ことが最も好ましい。

本発明の第2態様において、任意に、下記式(4 a)で示されるマグネシウム化合物を用いてもよい。

$$Z^{1} - Mg - Z^{2}$$
 (4 a)

[式中、 Z^1 は、炭素アニオン配位子であり、 Z^2 は、臭素、ヨウ素、又は塩素である。]

この場合は、上記式(3 a)で示される芳香族マグネシウム試薬の量は、上記式(4 a)で示されるマグネシウム化合物との合計量が、上記式(2)で示される化合物1モルに対し、1モル当量以上であり、好ましくは1.5 モル当量~2.5モル当量であり、2モル当量であることが最も好ましい。本発明の第2態様では、下記式(4 b)で示される亜鉛化合物が用いられる。

10
$$Z^3 - Z n - Z^4$$
 (4 b)

5

15

20

25

Z³およびZ⁴は、それぞれ、互いに独立し、同一または異なって、臭素、 ヨウ素、塩素、フッ素、又はトリフルオロメタンスルホニル基である。

本発明の第2態様において、Z³およびZ⁴は、臭素、塩素であることが好ましく、塩素であることがさらに好ましい。

本発明の第2態様では、上記式(4b)で示される亜鉛化合物を用いるため、当該亜鉛化合物と上記式(3a)で示される芳香族マグネシウム試薬とが反応して得られる有機亜鉛試薬において、亜鉛上の置換基Aの求核性および塩基性がともに低いことから、置換基Rを室温でグリニャール試薬と反応するような官能基(例えば、エステル基、シアノ基、アルキルカルボニル基など)を有する置換基とすることが可能となる。もっとも、本発明の第1態様においても、置換基Rをエトキシカルボニル基を有する置換基とすることは可能であるが、収率がやや低く、副反応を起こしやすい。これに対し、本発明の第2態様では副反応が起こりにくく、収率も格段に向上する。置換基Rを以上のような置換基とすることができることは、複雑な構造を有する医薬品中間体合成の短段階合成による生産効率向上の点で好ましい。

また、本発明の第1態様では、反応に際して、上記式(3 a)で示される 芳香族マグネシウム試薬とジアミン化合物とを、上記式(2)で示される化 合物と鉄触媒とを有する溶液に時間をかけて滴下する、あるいは、上記式(3 a)で示される芳香族マグネシウム試薬を、上記式(2)で示される化合

物と鉄触媒とジアミン化合物とを有する溶液に時間をかけて滴下する必要があった。これに対し、本発明の第2態様では、上記式(4b)で示される亜鉛化合物を用いるため、添加をするに際して時間をかけて滴下する必要がなく、反応操作が簡便になる。

5 本発明の第2態様において、上記式(4b)で示される亜鉛化合物の量は、上記式(2)で示される化合物1モルに対し、1モル当量以上であり、好ましくは1.1モル当量~2モル当量であり、約1.5モル当量であることが最も好ましい。

本発明の第2態様では、鉄触媒が用いられる。鉄触媒についての説明は、 10 本発明の第1態様において説明したのと同様である。

本発明の第2態様で用いられる鉄触媒は、ハロゲン化鉄(III)が好ましく、特に、FeCl₃のような鉄塩(III)が好ましく用いられる。

本発明の第2態様において、鉄触媒の量は、上記式(2)で示される化合物1モルに対し、0.001モル当量~0.5モル当量であり、好ましくは0.01モル当量~0.1モル当量であり、更に好ましくは0.03モル当量~0.07モル当量である。

15

本発明の第2態様にかかる芳香族化合物の製造方法においては、ジアミン 化合物が用いられる。ジアミン化合物についての説明は、本発明の第1態様 において説明したのと同様である。

20 本発明の第2態様において、ジアミン化合物は、2座配位子であることが 好ましく、更に好ましくは、*N,N,N',N'-*テトラメチルエチレンジアミン (TMEDA)等の置換基を有していてもよいエチレンジアミンを挙げることがで きる。

本発明の第2態様において、ジアミン化合物の量は、上記式(2)で示さ 25 れる化合物1モルに対し、0.5モル当量~10モル当量であり、好ましく は1モル当量~3モル当量であり、更に好ましくは1モル当量~2モル当量 である。

本発明の第2態様において、典型的には、上記式(3 a)で示される芳香族マグネシウム試薬と上記式(4 b)で示される亜鉛化合物と上記ジアミン

化合物とを有する溶液に、上記式(2)で示される化合物と上記鉄触媒とを添加して攪拌する。

本発明の第2態様において、上記式(4b)で示される亜鉛化合物と上記ジアミン化合物とを別々に使用する代わりに、これらの錯体を使用することもできる。

本発明の第2態様において、反応は、好ましくは0 \mathbb{C} \sim 1 0 \mathbb{C} \mathbb{C} の温度範囲で行われ、特に好ましくは4 0 \mathbb{C} \sim 6 0 \mathbb{C} の温度範囲で行われる。圧力は、常圧であることが好ましい。

本発明の第2態様において、溶媒としては、上記式(2)で示される化合 物を溶解することができる溶媒が好ましい。溶媒は、脂肪族又は芳香族の有機溶媒が用いられる。例えば、テトラヒドロフラン又はジエチルエーテル等のエーテル系溶媒;トルエン等の芳香族炭化水素が用いられる。

本発明の第3態様では、ジアミン化合物存在下、下記式(3c)で示される芳香族リチウム試薬と、下記式(4b)で示される亜鉛化合物とを反応させ、次いで、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム及びアルミニウムからなる群より選ばれる一種以上の金属を含むルイス酸金属化合物を反応させ、反応混合物を得る工程と、鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物とを反応させる工程とを含むことを特徴とする、下記式(1)で示される芳香族化合物の製造方法が提供される。

20

15

5

[上記式中、R、X、 Z^3 、 Z^4 及びAは上記の意味を有する。] 本発明の第3態様では、下記式(2)で示される化合物が用いられる。

25 R-X (2)

上記式中、R、Xについての説明は、本発明の第1態様において説明したのと同様である。

本発明の第3態様において、Rで示される「炭化水素基」、「 $C_3 \sim C_{10}$

飽和環基若しくは不飽和環基」、Rが「式-N(B)-で示される基で中断される $C_3\sim C_{10}$ 飽和環基若しくは不飽和環基」である場合に、Bで示される「 $C_1\sim C_{10}$ 炭化水素基」及び「 $C_1\sim C_{10}$ アルコキシカルボニル基」には、置換基が導入されていてもよい。この置換基としては、好ましくは、上記式(3c)で示される芳香族リチウム試薬と、上記式(4b)で示される亜鉛化合物とを反応させ、次いで、上記ルイス酸金属化合物を反応させて得られる有機亜鉛試薬と反応しないものを挙げることができる。例えば、置換基を有していてもよい $C_1\sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

5

15

10 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、2-メチル-1-プロペニル、2-メチルアリル、2-ブテニル等)、

 $C_2 \sim C_{20}$ アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、 $C_2 \sim C_{20}$ アルケニル $-C_1 \sim C_{20}$ アルキル $-C_1 \sim C_{20}$ アルコキシ(例、1 -ビニル-1-メチルエトキシなど)、

 $C_6 \sim C_{20}$ アリールー $C_1 \sim C_{20}$ アルキルオキシカルボニル(例、ベンジルオキシカルボニルなど)、

 $C_1 \sim C_{20}$ アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオキシ、ピバロイルオキシなど)、

20 保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、nーブチル、secーブチル、tertーブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、p-メトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル t-ブチルシロキシ、トリエチルシロキシ、t-ブチルシロキシ、デルシロキシ等が挙げられる)、

トリアルキルシリル基(- B 4 :式中、B 4 はC $_1$ ~ C $_6$ 炭化水素基(例えば、

メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。トリアルキルシリル基の例としては、トリメチルシリル、ジメチルt-ブチルシリル、トリエチルシリル、t-ブチルジフェニルシリル等が挙げられる。)、

アセタール基($-CB^5$ (OB^6)(OB^7):式中、 B^5 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、

tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋していてもよい。 B^6 及び B^7 の例としては、メチル基、エチル基等が挙げられ、互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

*N*ーインドリル、

5

10

 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、ビフェニルオキシ等)、

ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、

20 アミド基、又は

アミノ基などを挙げることができる。

また、芳香族リチウム試薬との反応性があるものの、有機亜鉛試薬を経由 することで導入可能となった置換基としては、

エステル基($-COOB^2$: 式中、 $B^2 \& C_1 \sim C_6$ 炭化水素基(例えば、メチ ル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブ チル、ペンチル、ヘキシル、フェニル等)である。エステル基の例としては、メトキシカルボニル、エトキシカルボニル、2-メトキシエトキシカルボニル、t-ブトキシカルボニル、

 $C_1 \sim C_{20}$ アルキルカルボニル(例、ピバロイルなど)、または、

ニトリル基(一CN)、

5

等を挙げることができる。

以上の置換基は、置換可能な位置に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよい。置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。

本発明の第3態様において、Rは、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることが好ましい。

「置換基を有していてもよい第一級アルキル基」としては、好ましくは、 10 3-N-インドリルプロピル、エトキシカルボニルペンチル、オクチル等を 挙げることができる。

また、「置換基を有していてもよい第二級アルキル基」としては、好ましくは、*sec*-ブチル、シクロヘキシル、4-*t*-ブチルシクロヘキシル、シクロヘプチル、2-ノルボルニル等を挙げることができる。

- 15 また、本発明の第3態様において、Rが取り得る「第一級アルキル基」、「第二級アルキル基」に導入される置換基としては、特に好ましくは、メトキシカルボニル基、エトキシカルボニル基、*tert*-ブトキシカルボニル基、シアノ基、アルケニル基、アルキニル基、3-N-インドリル基、アルキルエーテル、シリルエーテル、又はアセタールを挙げることができる。
- 20 本発明の第3態様において、Xは、ハロゲン原子であることが好ましく、 ヨウ素、臭素であることがより好ましい。もっとも、若干収率は落ちるがX を塩素とすることも可能である。

本発明の第3態様では、下記式(3c)で示される芳香族リチウム試薬が 用いられる。

25 A - L i (3 c)

上記式中、Aについての説明は、本発明の第1態様において説明したのと同様である。

本発明の第3態様において、Aで示される「 C_4 ~ C_{20} 芳香族基」、「複素芳香族基」には、置換基が導入されていてもよい。この置換基としては、

好ましくは、芳香族リチウム試薬と反応しないものを挙げることができる。 例えば、

置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

5 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、2-メチル-1 -プロペニル、2-メチルアリル、2-ブテニル等)、

 $C_2 \sim C_{20}$ アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、 保護された水酸基($-OB^3$: 式中、 B^3 は、アルキル基、アリールアルキル基、エ -テル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、nーブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等) 等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、p- メトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル t-ブチルシロキシ、トリエチルシロキシ、tert-ブチルジフェニルシロキシ等が挙げられる)、

アセタール基($-CB^5$ (OB^6)(OB^7):式中、 B^5 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋していてもよい。 B^6 及び B^7 の例としては、メチル基、エチル基等が挙げられ、互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

N-インドリル、

25

 $C_1 \sim C_{10}$ アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、

 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、

ビフェニルオキシ等)、

10

15

20

ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、又は、

アミノ基などを挙げることができる。この場合、置換基は、置換可能な位置 に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよ い。置換基数が2個以上である場合、各置換基は同一であっても異なってい てもよい。

なお、置換基Aにハロゲン原子を導入する際には、ベンザイン類の生成による副反応を防ぐため、-78℃以下という低温で、芳香族リチウム試薬を調製する操作が必要になり、また、このような芳香族リチウム試薬を使用する場合には、低温下で亜鉛化合物と混合し、有機亜鉛試薬を調製するといった操作が必要になる。

更に、互いに架橋する置換基が、置換可能な2以上の位置に環状に導入されていてもよく、このような置換基としては、例えば、メチレンジオキシ、エチレンジオキシ、テトラメチルエチレンジオキシ、プロピレンジオキシ基などを挙げることができる。

本発明の第3態様において、Aは、置換基を有していてもよいフェニル基、ナフチル基などの芳香族基、または、ピリジル基、ベンゾフリル基等の複素芳香族基であることが好ましく、フェニル、2-メチルフェニル、4-メチルフェニル、4-メール、2-ピリジルであることがより好ましい。

本発明の第3態様において、上記式(3c)で示される芳香族リチウム試薬の量は、上記式(2)で示される化合物1モルに対し、1モル当量以上であり、好ましくは1.1モル当量~3モル当量であり、約2モル当量であることが最も好ましい。

25 本発明の第3態様では、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム及びアルミニウムからなる群より選ばれる一種以上の金属を含むルイス酸金属化合物が用いられる。

本発明の第3態様で用いられるルイス酸金属化合物としては、たとえば、 下記式(4c)で示される金属化合物が用いられる。

 $M(Z^{1})_{n}$ (4 c).

上記式中、Mは、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム、又はアルミニウムである。

 Z^1 は、それぞれ独立して、同一又は異なって、臭素、ヨウ素、塩素、又は炭素アニオン配位子であり、nは $2\sim4$ の整数である。

本発明の第3態様において、Mがマグネシウムの場合は、nが2で、一方の Z^1 がトリメチルシリルメチル基であり、他方の Z^1 が臭素、塩素であることが好ましく、一方の Z^1 がトリメチルシリルメチル基であり、他方の Z^1 が塩素であることがさらに好ましい。

また、本発明の第3態様において用いられる他の金属化合物の例としては、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム及びアルミニウムからなる群より選ばれる一種以上の金属についての塩酸、硫酸等の無機酸の塩を挙げることができ、ハロゲン化金属であることが好ましく、特に、 $MgBr_2$ 、 $TiCl_4$ 、 $ZrCl_4$ 、 $HfCl_4$ 、 Ga_2Cl_4 、 $AlCl_3$ であることが好ましい。

15 本発明の第3態様では、下記式(4b)で示される亜鉛化合物が用いられる。

$$Z^{3} - Z n - Z^{4}$$
 (4 b)

25

上記式中、 Z^3 および Z^4 についての説明は、本発明の第2態様において説明したのと同様である。

20 本発明の第3態様において、Z³およびZ⁴は、臭素、塩素であることが好ましく、塩素であることがさらに好ましい。

本発明の第3態様では、上記式(3c)で示される芳香族リチウム試薬及び上記式(4b)で示される亜鉛化合物を用いるため、両者から生成する有機亜鉛試薬の求核性および塩基性が低いという理由から、置換基Rを室温で芳香族リチウム試薬と反応するような官能基(例えば、エステル基、シアノ基、アルキルカルボニル基など)を有する置換基とすることが可能となる。もっとも、本発明の第1態様においても、置換基Rをエトキシカルボニル基を有する置換基とすることは可能であるが、収率がやや低く、副反応を起こしやすい。これに対し、本発明の第3態様では、本発明の第2態様の場合と

同様に、副反応が起こりにくく、収率も格段に向上する。

5

15

また、芳香族リチウム試薬(3 c)はさまざまな複素環化合物から調製することが可能になることから、多様な芳香環Aをカップリング反応で導入できるようになる。置換基Rおよび置換基Aをこのような置換基とすることができることは、より複雑な構造を有する医農薬中間体、有機発光材料などの短段階合成によるプロセス効率化の点で好ましい。

本発明の第3態様において、ルイス酸金属化合物の量は、上記式(3 c) で示される化合物1モルに対し、1モル当量以上であり、好ましくは1モル当量 \sim 2モル当量であり、さらに好ましくは約1.0モル当量である。

10 本発明の第3態様において、上記式(4b)で示される亜鉛化合物の量は、上記式(2)で示される化合物1モルに対し、1モル当量以上であり、好ましくは1.1モル当量~2モル当量であり、約1.5モル当量であることが最も好ましい。

本発明の第3態様において、芳香族リチウム試薬(3 c)と亜鉛化合物(4 b)とをモル比2:1で混合することによって有機亜鉛試薬 $[A_2Zn]$ を生じさせる場合には、ルイス酸金属化合物は無機塩であってもよく(例えば、 $MgBr_2$ 、 $TiCl_4$ 、 $ZrCl_4$ 、 $HfCl_4$ 、 Ga_2Cl_4 、 $AlCl_3$)、また、使用量は亜鉛に対して1モル当量以下であってもよく、0.1モル当量まで減らすことも可能である。

20 また、本発明の第3態様において、芳香族リチウム試薬(3 c)と亜鉛化合物(4 b)とをモル比1:1で混合することによって有機亜鉛試薬 $[A-Zn-Z^3]$ あるいは $A-Zn-Z^4$]を生じさせる場合には、ルイス酸金属化合物がマグネシウム化合物(4 a)であり、かつ、 Z^1 がトリメチルシリルメチル基であり、かつ亜鉛にたいして約1モル当量使用する必要がある。

25 本発明の第3態様では、鉄触媒が用いられる。鉄触媒についての説明は、 本発明の第1態様において説明したのと同様である。

本発明の第3態様で用いられる鉄触媒は、ハロゲン化鉄(III)が好ましく、特に、FeCl。のような鉄塩(III)が好ましく用いられる。

本発明の第3態様において、鉄触媒の量は、上記式(2)で示される化合

物 1 モルに対し、 0 . 0 0 1 モル当量~ 0 . 5 モル当量であり、好ましくは 0 . 0 1 モル当量~ 0 . 1 モル当量であり、更に好ましくは 0 . 0 3 モル当量~ 0 . 0 7 モル当量である。

本発明の第3態様にかかる芳香族化合物の製造方法においては、ジアミン 6 化合物が用いられる。ジアミン化合物についての説明は、本発明の第1態様 において説明したのと同様である。

本発明の第3態様において、ジアミン化合物は、2座配位子であることが好ましく、更に好ましくは、N, N, N', N'-テトラメチルエチレンジアミン (TMEDA)等の置換基を有していてもよいエチレンジアミンを挙げることができる。

10

本発明の第3態様において、ジアミン化合物の量は、上記式(2)で示される化合物1モルに対し、0.5モル当量~10モル当量であり、好ましくは1モル当量~3モル当量であり、更に好ましくは1モル当量~2モル当量である。

15 本発明の第3態様において、典型的には、上記式(3c)で示される芳香 族リチウム試薬と上記式(4b)で示されるマグネシウム化合物と上記式(4b)で示される亜鉛化合物と上記ジアミン化合物との溶液に、上記式(2)で示される化合物と上記鉄触媒とを添加して攪拌する。

本発明の第3態様において、上記式(4b)で示される亜鉛化合物と上記 20 ジアミン化合物とを別々に使用する代わりに、これらの錯体を使用すること もできる。

本発明の第3態様において、反応は、好ましくは0 \mathbb{C} \sim 1 0 \mathbb{O} \mathbb{C} の温度範囲で行われ、特に好ましくは4 0 \mathbb{C} \sim 6 0 \mathbb{C} の温度範囲で行われる。圧力は、常圧であることが好ましい。

25 本発明の第3態様において、溶媒としては、上記式(2)で示される化合物を溶解することができる溶媒が好ましい。溶媒は、脂肪族又は芳香族の有機溶媒が用いられる。例えば、テトラヒドロフラン又はジエチルエーテル等のエーテル系溶媒;トルエン等の芳香族炭化水素が用いられる。また、芳香族リチウム試薬由来のヘキサンなどの炭化水素が混合してもよい。

本発明の第4態様では、ジアミン化合物存在下、下記式(3b)で示される芳香族亜鉛試薬と、下記式(4a)で示されるマグネシウム化合物とを反応させ、反応混合物を得る工程と、鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物とを反応させる工程とを含むことを特徴とする、下記式(1)で示される芳香族化合物の製造方法が提供される。

[上記式中、R、X、Z¹、Z²及びAは上記の意味を有する。]

10 本発明の第4態様では、下記式(2)で示される化合物が用いられる。

$$R - X \qquad (2)$$

5

上記式中、R、Xについての説明は、本発明の第1態様において説明したのと同様である。

本発明の第4態様において、Rで示される「炭化水素基」、「 $C_3 \sim C_{10}$ 15 飽和環基若しくは不飽和環基」、Rが「式-N(B)-で示される基で中断される $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基」である場合に、Bで示される「 $C_1 \sim C_{10}$ 炭化水素基」及び「 $C_1 \sim C_{10}$ アルコキシカルボニル基」には、置換基が導入されていてもよい。この置換基としては、好ましくは、上記式(3b)で示される芳香族亜鉛試薬と、上記式(4a)で示されるマグネシウム化合物とを反応させて得られる有機亜鉛試薬と反応しないものを挙げることができる。例えば、

置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロ 25 ペニル、2-メチルー1-プロペニル、2-メチルアリル、2-ブテニル等)、

 $C_2 \sim C_{20}$ アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、エステル基($-COOB^2$:式中、 B^2 は $C_1 \sim C_6$ 炭化水素基(例えば、メチ

ル、エチル、プロピル、イソプロピル、nーブチル、secーブチル、tertーブチル、ペンチル、ヘキシル、フェニル等)である。エステル基の例としては、メトキシカルボニル、エトキシカルボニル、2ーメトキシエトキシカルボニル、tertーブトキシカルボニル、

 $C_1 \sim C_{20}$ アルキルカルボニル(例、ピバロイルなど)、または、 ニトリル基(-CN)

 $C_2 \sim C_{20}$ アルケニルー $C_1 \sim C_{20}$ アルキルー $C_1 \sim C_{20}$ アルコキシ(例、1 - ビニルー1 - メチルエトキシなど)、

 $C_6 \sim C_{20}$ アリールー $C_1 \sim C_{20}$ アルキルオキシカルボニル(例、ベンジル 10 オキシカルボニルなど)、

 $C_1 \sim C_{20}$ アルキルーカルボニルオキシ(例、アセトキシ、プロパノイルオキシ、ピバロイルオキシなど)、

保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は C^3 10 $1\sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n1 $1\sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n1 $1\sim C_6$ 炭化水素基(例えば、メチル、スチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、 $1\sim C_6$ アーメトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチル $1\sim C_6$ ジューシ、トリエチルシロキシ、 $1\sim C_6$ というロキシ、 $1\sim C_6$ ドリエチルシロキシ、 $1\sim C_6$ というロキシ、 $1\sim C_6$ というロキシ、 $1\sim C_6$ になった。 ストキシステル $1\sim C_6$ になった

トリアルキルシリル基($-B^4$:式中、 B^4 は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。トリアルキルシリル基の例としては、トリメチルシリル、ジメチル t-ブチルシリル、トリエチルシリル、t ert-ブチルジフェニルシリル等が挙げられる。)、

25

アセタール基($-CB^5$ (OB^6) (OB^7) : 式中、 B^5 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立

し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n ーブチル、sec ーブチル、tert ーブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋していてもよい。 B^6 及び B^7 の例としては、メチル基、エチル基等が挙げられ、

5 互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

Nーインドリル、

 $C_1 \sim C_{10}$ アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、

10 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、 ビフェニルオキシ等)、

ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、

アミド基、又は

20

アミノ基などを挙げることができる。

15 以上の置換基は、置換可能な位置に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよい。置換基数が2個以上である場合、各置換基は同一であっても異なっていてもよい。

本発明の第4態様において、Rは、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることが好ましい。

「置換基を有していてもよい第一級アルキル基」としては、好ましくは、 3-N-インドリルプロピル、エトキシカルボニルペンチル、オクチル等を 挙げることができる。

また、「置換基を有していてもよい第二級アルキル基」としては、好まし 25 くは、sec-ブチル、シクロヘキシル、4-t-ブチルシクロヘキシル、シク ロヘプチル、2-ノルボルニル等を挙げることができる。

また、本発明の第4態様において、Rが取り得る「第一級アルキル基」、「第二級アルキル基」に導入される置換基としては、特に好ましくは、メトキシカルボニル基、エトキシカルボニル基、*tert*-ブトキシカルボニル基、

シアノ基、アルケニル基、アルキニル基、3-N-インドリル基、アルキルエーテル、シリルエーテル、又はアセタールを挙げることができる。

本発明の第4態様において、Xは、ハロゲン原子であることが好ましく、 ヨウ素又は臭素であることがより好ましい。もっとも、若干収率は落ちるが Xを塩素とすることも可能である。

本発明の第4態様では、下記式(3b)で示される芳香族亜鉛試薬が用いられる。

$$A - Z n - Y^{2}$$
 (3 b)

上記式中、Aについての説明は、本発明の第1態様において説明したのと 10 同様である。

本発明の第4態様において、Aで示される「 C_4 ~ C_2 $_0$ 芳香族基」、「複素芳香族基」には、置換基が導入されていてもよい。この置換基としては、例えば、

置換基を有していてもよい $C_1 \sim C_{10}$ アルキル基(例えば、メチル、エチル、プロピル、ブチル、トリフルオロメチル等)、

 $C_2 \sim C_{10}$ アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、2-メチルー1-プロペニル、2-メチルアリル、2-ブテニル等)、

 $C_2 \sim C_{20}$ アルキニル基(例えば、エチニル、プロピニル、ブチニル等)、 20 エステル基($-COOB^2$:式中、 B^2 は $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)である。エステル基の例としては、メトキシカルボニル、エトキシカルボニル、2-メトキシエトキシカルボニル、tert-ブトキシカルボニル等が挙げられる)、

25 ニトリル基(-CN)、

15

 $C_1 \sim C_{20}$ アルキルカルボニル(例、ピバロイルなど)、

保護された水酸基($-OB^3$:式中、 B^3 は、アルキル基、アリールアルキル基、エーテル置換基を有するアリールアルキル基、エーテル置換基を有するアルキル基、又は C_6 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n

ーブチル、secーブチル、tertーブチル、ペンチル、ヘキシル、フェニル等)等の置換基を有していてもよいシリル基である。保護された水酸基の例としては、メトキシ基、ベンジロキシ基、p- メトキシベンジロキシ基、メトキシメチル基、エトキシエチル基、トリメチルシロキシ、ジメチルt-ブチルシロキシ、トリエチルシロキシ、tert-ブチルジフェニルシロキシ等が挙げられる)、

アセタール基($-CB^5$ (OB^6)(OB^7):式中、 B^5 は、水素原子又は置換基を有していてもよい $C_1 \sim C_6$ アルキル基、 B^6 及び B^7 は、それぞれ互いに独立し、同一または異なって、置換基を有していてもよい $C_1 \sim C_6$ 炭化水素基(例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、フェニル等)であり、互いに架橋していてもよい。 B^6 及び B^7 の例としては、メチル基、エチル基等が挙げられ、互いに架橋している場合には、エチレン基、トリメチレン基等が挙げられる)、

15 N-インドリル、

5

 $C_1 \sim C_{10}$ アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、ブトキシ等)、

 $C_6 \sim C_{10}$ アリールオキシ基(例えば、フェニルオキシ、ナフチルオキシ、ビフェニルオキシ等)、

20 ハロゲン原子(例えば、フッ素、塩素、臭素、ヨウ素)、又は、 アミノ基などを挙げることができる。この場合、置換基は、置換可能な位置 に1個以上導入されていてもよく、例えば、1個~4個導入されていてもよ い。置換基数が2個以上である場合、各置換基は同一であっても異なってい てもよい。

25 更に、互いに架橋する置換基が、置換可能な2以上の位置に環状に導入されていてもよく、このような置換基としては、例えば、メチレンジオキシ、エチレンジオキシ、テトラメチルエチレンジオキシ、プロピレンジオキシ基などを挙げることができる。

本発明の第4態様において、Aは、置換基を有していてもよいフェニル基

、ピリジル基等の各種複素芳香族基であることが好ましく、フェニル、2-メチルフェニル、4-メチルフェニル、4-メトキシフェニル、3,4-(メチレンジオキシ)フェニル、3-(エトキシカルボニル)フェニル、4-シアノフェニル、2-ピリジルであることがより好ましい。

5 上記式(3b)中、Y²は、臭素、ヨウ素、又は塩素である。

本発明の第4態様において、上記式(3b)で示される芳香族亜鉛試薬の量は、上記式(2)で示される化合物1モルに対し、1モル当量以上であり、好ましくは1.1モル当量~2モル当量であり、約1.5モル当量であることが最も好ましい。

10 本発明の第4態様では、下記式(4a)で示されるマグネシウム化合物が 用いられる。

$$Z^{1} - Mg - Z^{2}$$
 (4 a)

20

25

上記式中、 Z^1 は、炭素アニオン配位子であり、 Z^2 は、臭素、ヨウ素、 Z^2 は塩素である。

15 本発明の第4態様において、Z¹は、置換基Aと同じ芳香族基であるか、 トリメチルシリルメチル基であることがより好ましく、Z²は、臭素、塩素 であることが好ましく、臭素であることがさらに好ましい。

本発明の第4態様では、上記式(3b)で示される芳香族亜鉛試薬を用いるため、置換基Rおよび置換基Aを多様な官能基を有する置換基とすることができる。このような官能基としては、芳香族マグネシウム試薬や芳香族リチウム試薬に不安定なエステル基、シアノ基、アルキルカルボニル基などを挙げることができる。

本発明の第4態様において、上記式(4 a)で示されるマグネシウム化合物の量は、上記式(2)で示される化合物1モルに対し、1モル当量以上であり、好ましくは1.1モル当量~2モル当量であり、約1.5モル当量であることが最も好ましい。

本発明の第4態様では、鉄触媒が用いられる。鉄触媒についての説明は、 本発明の第1態様において説明したのと同様である。

本発明の第4態様で用いられる鉄触媒は、ハロゲン化鉄(III)が好ましく、

特に、FeCl。のような鉄塩(III)が好ましく用いられる。

本発明の第4態様において、鉄触媒の量は、上記式 (2) で示される化合物 1 モルに対し、0.001モル当量~0.5モル当量であり、好ましくは0.01モル当量~0.1モル当量であり、更に好ましくは0.03モル当量~0.07モル当量である。

本発明の第4態様にかかる芳香族化合物の製造方法においては、ジアミン 化合物が用いられる。ジアミン化合物についての説明は、本発明の第1態様 において説明したのと同様である。

本発明の第4態様において、ジアミン化合物は、2座配位子であることが 10 好ましく、更に好ましくは、N,N,N',N'-テトラメチルエチレンジアミン (TMEDA)等の置換基を有していてもよいエチレンジアミンを挙げることがで きる。

本発明の第4態様において、ジアミン化合物の量は、上記式(2)で示される化合物1モルに対し、0.5モル当量~10モル当量であり、好ましくは1モル当量~3モル当量であり、更に好ましくは1モル当量~2モル当量である。

本発明の第4態様において、典型的には、ジアミン化合物存在下、上記式 (3b)で示される芳香族亜鉛試薬と上記式 (4b)で示されるマグネシウム化合物と上記ジアミン化合物との混合物を調製する。次いで、この溶液に、上記式 (2)で示される化合物と上記鉄触媒とを添加して攪拌する。

本発明の第4態様において、反応は、好ましくは0 \mathbb{C} \sim 1 0 \mathbb{C} の温度範囲で行われ、特に好ましくは4 0 \mathbb{C} \sim 6 0 \mathbb{C} の温度範囲で行われる。圧力は、常圧であることが好ましい。

本発明の第4態様において、溶媒としては、上記式(2)で示される化合物を溶解することができる溶媒が好ましい。溶媒は、脂肪族又は芳香族の有機溶媒が用いられる。例えば、テトラヒドロフラン又はジエチルエーテル等のエーテル系溶媒;トルエン等の芳香族炭化水素が用いられる。

実施例

15

20

25

以下、本発明を実施例に基づいて説明する。ただし、本発明は、下記の実施例に制限されるものではない。

空気や湿度に敏感な化合物を扱うすべての反応は、アルゴン又は窒素の陽圧下で、乾燥反応器中で行った。空気及び湿度に敏感な液体及び溶液の移し換えは、注射器又はステンレススチールカニュラーを用いて行った。分析薄膜クロマトグラフィーは、蛍光指示薬(254 nm)を含浸させた 25-μm、230-400メッシュのシリカゲルで予め被覆したガラスプレートを用いて行った。薄層クロマトグラフィーは、紫外線(UV)に曝す、及び/又は、p-アニスアルデヒドに浸し、次いで、ホットプレート上で加熱することにより、着色検知をおこなった。有機溶液は、ダイアフラムポンプを接続したロータリーエバポレーターを~15トールで操作することにより濃縮した。フラッシュカラムクロマトグラフィーは、関東シリカゲル60(球形、中性、140-325メッシュ)を用いて、Still、W. C.; KIahn、M.; Mitra、A. J. Org. Chem. 1978、43、2923-2924に記載されたように行った。

5

10

25

材料:試薬は、東京化成、アルドリッチ及び他の会社から市販のものを購入し、蒸留し又は再結晶して用いた。無水テトラヒドロフラン(THF)は、関東化学から購入し、アルゴン雰囲気下、760 トールでベンゾフェノンケチルから蒸留し、直ちに用いた。溶媒中の水分は、カールフィッシャー水分計で20 ppm未満であることを確認した。FeCl3は、関東化学から購入し、塩化チオコルで脱水し、過剰の塩化チオコルを減圧下で完全に除去し、アルゴン雰囲気下で得られた無水 FeCl3を保管した。FeCl3の 0.1M THF 溶液は、室温で何日間か保管することによりポリエーテル化合物を形成し触媒活性が低下するため、調製後直ちに使用した。

機器: JEOL AL-400 (400 MHz)、JEOL ECX-400 (400 MHz) 又は JEOL ECA-500 (500 MHz) NMR 分光計を用いて、プロトン核磁気共鳴 (1 H NMR)及び炭素核磁気共鳴 (13 C NMR)を記録した。水素原子の化学シフトは、テトラメチルシランから低磁場側 (downfield) での 1 0 0 万分の 1 (ppm、 δ スケール)として記録し、NMR 溶媒 (CDCl $_{3}$: δ 7. 26) 中の残留プロトンを参照とした。炭素核磁気共鳴スペクトル (13 C NMR) は、125 又は 100 MHz で記録した。炭素の化学シフ

トは、テトラメチルシランから低磁場側での100万分の1 (ppm、 δ スケール)として記録し、NMR 溶媒 (CDC 1_3 : δ 77.0)中の炭素共鳴を参照した。データは、下記のように示した:化学シフト、多重性 (s=一重線、d=二重線、t=三重線、d=四重線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線、d=二面線

ガスクロマトグラフィー(GC)分析は、FID 検出器及びキャピラリーカラム、HR-1 (25m×0.25mm i.d., 0.25μm フィルム)又は CYCLOSILB (アジレント社 (Agilent), 30m×0.25mm i.d., 0.25μm フィルム) 又は CHIRALDEX G-TA (アステック社 (ASTEC), 20m×0.25mm i.d., 0.125μm フィルム)を備えた Shimadzu GC-14B で測定した。赤外線スペクトルは、DuraSample IR (ASI アプライドシステム社(ASI Applied System))を備えた React IR 1000 反応分析システムで記録し、cm⁻¹で示した。質量分析は、JEOL GC-mate II で測定した。

15 実施例1

20

25

下記の要領に従って、添加剤が生成物の選択性及び収率に与える影響を調べた。

まず、磁気撹拌子を備えた 50-mL ガラスチューブに、フェニルマグネシウムブロマイドの 0.96-M THF 溶液(1.25 mL, 1.2 mmol)、下記表 1 に示される各種添加剤(1.2 nmol)及びブロモシクロヘプタン(下記表 1 中、「1」で示される)(177mg, 1.0 mmol)を-78℃に冷却した。 $FeCl_3$ の 0.1-M THF 溶液(0.5mL、5 mol 9)をこの温度で添加した。得られた溶液を氷水浴に浸し、9 で 30 分間攪拌した。9 にの飽和水溶液(9 の9 が加えて反応を終了させた。通常の処理を行った後、ブロモシクロヘプタンの消費量、生成した化合物(下記表 1 中、「2 」、「3 」、「4 」で示される)及びビフェニルの収率をガスクロマトグラフィー(内部水準(1-デカン、1 mg, 1 の 1 m mol))で決定した。結果を表 1 に示す。

表 1

試験	例 添加剤	% 収率				
	[7] IN AUC AIC	2	3	4	1	Ph-Ph
1	無し	5	79	0	4	6
2	Et ₃ N (1.2 当量)	3	78	0	11	5
3	<i>N-</i> メチルモルホリン (1.2 当量)	8	72	0	4	5
4	DABCO (1.2 当量)	20	2	0	75	3
5	TMEDA (1.2 当量)	71	19	3	微量	10
6	Et ₂ N / NEt ₂ (1.2 当量)	23	48	1	11	9
7	NMP (1.2 当量)	15	3	微量	79	4
8	PPh ₃ (0.1 当量)	6	70	微量	6	7
9	dppe (0.05 当量)	4	8	0	81	8

表1中、「DABCO」とは、1,4-ジアザビシクロ[2.2.2]オクタンの略であり、「NMP」とは、1-メチル-2-ピロリジノンの略であり、「dppe」とは、1,2-ビスジフェニルホスフィノエタンの略である。

表 1 から、N, N, N', N'-テトラメチルエチレンジアミン (TMEDA) を添加剤として用いたときに、アルキル化芳香族化合物を最も効率よく製造できることがわかる。

実施例2

10

次に、触媒前駆体としての各種鉄化合物の選別を行った。

具体的には、実施例1と同様の操作を行った。ただし、鉄触媒としては、

15 下記表 2 に示される各種鉄触媒を用い、添加剤としては、TMEDA を用いた。結果を表 2 に示す。

表 2

各種触媒前駆体を用いた鉄触媒-カップリング反応

表 2 中、「Fe(acac)₃」とは、鉄(III)アセチルアセトナート錯体の略である。

表 2 から、鉄触媒として、FeCl₃を用いたときに、アルキル化芳香族を最も 効率よく製造できることがわかる。

実施例3

次に、各種のハロゲン化アルキルとグリニャール試薬を用いて、芳香環へ 10 の多種多様なアルキル基の導入を試みた。

具体的には、実施例 1 と同様の操作を行った。ただし、鉄触媒としては、 $FeCl_3$ を用い、添加剤としては、TMEDA を用い、その他の試薬は表 3 に記載のものを使用した。

表中、特に示さない限り、1-mmol スケールで、ゆっくりとした添加条件で 15 反応を行った。

表中、特に示さない限り、反応温度は、試験例 15-17, 25,28 及び 31-35 については0℃で、試験例 18-24,26 及び 29 については 25℃で行った。

表中、特に示さない限り、グリニャール試薬は1.2 当量用いた。

表中、特に示さない限り、収率は内部標準を用いガスクロマトグラフィーあるいは「H NMR で決定した。結果を下記表 3 に示す。

表 3

試験例	ハロゲン化アルキル	ArMgBr	生成物	% 収率
15	Br	Ar = Ph	Ph	96 (90%) ^{e,f}
16 1.7 18	×	Ar = Ph	Ph	99 (X = I) 99 (X = Br) ⁶ 99 (X = CI) ^g
19 20 21 22'	Br	Ar = 4 -MeOC ₆ H ₄ Ar = 4 -MeC ₆ H ₄ Ar = 4 -CF ₃ C ₆ H ₄ Ar = 2 - 7 7+ 1	Ar	99 ^e 98 (96) ^e 67 ^{e,h} 96
23 ⁱ 24		Ar = 1- ナフチル Ar = 2-MeC ₆ H ₄	·	· 97 <i>i</i> 99 (98) ^e
25 26 27	×	Ar = Ph	Ph	95 (X = I) 94 (X = Br) 84 (X = Ci) ^{g,k}
28 29 30	<i>n</i> -C ₈ H ₁₇ X	Ar ≈ Ph	<i>n</i> -C ₈ H ₁₇ -Ph	97 (X = I) 91 (X = Br) 45 (X = Cl) ^{g,k}
⁻ 31	Br	Ar = 4-MeOC ₆ H ₄	(エキソ:エンド=	Ar / 91 95:5)
321	t-Bu Br	r Ar = 4-MeOC ₆ H ₄	f-Bu √ (トランス:シス=	Ar 96 ^e 96:4)
331	t-Bu	Ar = 4-MeOC ₆ H ₄	t-Bu(トランス:シスー	Ar 98
34	EtO Y5	Ai ≈ 4-MeOC ₆ H ₄	EtO (Ar 88 ^e
35	N _{Y3}	Ar = 4-MeOC ₆ H ₄		87°

- e 単離収率
- 「 より大きな50-mmol スケールでの実験
- ^g グリニャール試薬を 1.5 当量用いた。
- h グリニャール試薬を 2.0 当量用いた。
- 5 「グリニャール試薬を、ブロモクロロヘキサン、FeCl₃及び TMEDA の混合物 に添加した。
 - ¹ グリニャール試薬を 1.8 当量用いた。
 - k 反応温度を 40℃とした。.
 - 1 0.5-mmol スケール

15

20

25

10 下記に、表3中のいくつかの試験例の調製法、測定法等を具体的に示す。 試験例15

シクロヘプチルベンゼン(50-mmol スケールの場合)

ブロモシクロヘプタン (8.85 g, 50 mmol)、FeCl₃ (0.1-M THF 溶液を 25 mL、5 mol%) の混合物に、PhMgBr (0.93-M THF 溶液を 72 mL、67 mmol)及び TMEDA (7.78 g, 67 mmol)の混合物を 0 ℃にて、反応混合物を淡黄色溶液に 保つような速度で(本試験例の場合は、1.36 mL/分)、注射ポンプを経由して 添加した。PhMgBr/TMEDA の添加が終了した後、反応混合物をこの温度で1 0 分間攪拌した。飽和塩化アンモニウム水による通常の処理をして、生成混合物を蒸留して、シクロヘプチルベンゼンを無色油として得た(8.18 g。ただし、ビフェニル 0.37 g を含む、単離収率 90%)。

フーリエ変換赤外分光 (FTIR) (液膜法): cm⁻¹ 3062, 3027, 2923 (s), 2854 (s), 1602, 1492, 1461, 1451, 1073, 1032, 753 (m), 737 (m), 698 (m); ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 7.19-7.12 (m, 3H), 2.68-2.63 (m, 1H), 1.93-1.90 (m, 2H), 1.81-1.78 (m, 2H), 1.67-1.51 (m, 8H); ¹³C NMR (125 MHz, CDCl₃): δ 150.0, 128.2 (2C), 126.6 (2C), 125.5, 47.1, 36.8 (2C), 27.9 (2C), 27.2 (2C); 高分解能質量分析 (HRMS) (EI, 70 eV) m/z [M] 計算値 C₁₃H₁₈, 174.1409; 実測値 174.1418。

試験例17

シクロヘキシルベンゼン(1-mmol スケールの場合)

ブロモシクロへキサン (163.1 mg, 1.0 mmol)、 $FeCl_3$ (0.1-M THF 溶液を 0.5 mL、5 mol%)の混合物に、 フェニルマグネシウムブロマイド (0.96-M THF 溶液を 1.25 mL、1.2 mmol) 及び TMEDA (181.1 μ L, 1.2 mmol) の混合物を、 20 分間かけて、0 にて、注射ポンプを経由して添加した。グリニャール試薬と TMEDA の混合物の添加が終了した後、反応混合物をその温度で 1 0 分間攪拌した。飽和塩化アンモニウム水による通常の処理をして、反応混合物をフロリジール(Florisil:登録商標)のパッドを通して濾過し、真空下で濃縮させた。内部標準 (テトラクロロエタン、79 mg、 0.47 mmol)との比較のうえで示された粗生成物の 1 H NMR 分析によると、シクロヘキシルベンゼンは99%の収率で得られた。GC 分析によると、シクロヘキシルベンゼンは99%の収率で得られた。

試験例19

5

10

15

1-シクロヘキシル-4-メトキシベンゼン

表題化合物を、内部標準(テトラクロロエタン、79 mg、0.47 mmol)との比較のうえで示された H NMR 分析にて収率 99 %で得た。シリカゲルクロマトグラフィーを用いた精製により、淡黄色固体 (190 mg, 99 %収率)の表題化合物を得た。

FTIR (液膜法): cm⁻¹ 3010 (w), 2919 (s), 2850 (m), 1513 (s), 1449 (m), 1248 (s), 1177 (s), 1032 (s), 814 (s);

すべての分析データは、文献 (Singh et al, *Tetrahedron* **2001**, *57*, 241-247) で報告されているものと良い一致を示した。

試験例20

1-シクロヘキシル-4-メチルベンゼン

表題化合物を、内部標準(テトラクロロエタン、79 mg、 0.47 mmol)との比較のうえで示された ^{1}H NMR 分析にて収率 98 %で得た。シリカゲルクロマトグラフィーを用いた精製により、無色油(167 mg, 96% 収率)の表題化合物を得た。

FTIR (液膜法): cm⁻¹ 3020 (w), 2923 (s), 2852 (m), 1515 (m), 1447 (m), 809 (s);

¹H NMR(500 MHz,CDCl₃): δ 7.10(s,4H),2.50-2.40(m,1H),2.30(s,3H),1.90-1.79(m,4H),1.78-1.67(m,1H),1.45-1.32(m,4H),1.29-1.17(m,1H); ¹³C NMR(125 MHz,CDCl₃): δ 146.0,136.0,129.7(2C),127.4(2C),44.4,34.8(2C),27.1(2C),26.3,21.1;高分解能質量分析(EI,70eV) m/z [M]⁺ 計算值 $C_{13}H_{18}$,147.1409;実測值 147.1388;元素分析 計算值 $C_{13}H_{18}$: C,89.59; H,10.41. 実測值 C,89.34; H,10.64.

すべての分析データは、文献 (Yoneharea, F.; Kido, Y.; Sugimoto, H.; Morita, S.; Yamaguchi, M. *J. Org. Chem.* **2001**, *68*, 241-247.) で報告されているものと良い一致を示した。

試験例21

5

10

1-シクロヘキシル-4-トリフルオロメチルベンゼン

表題化合物を、内部標準(テトラクロロエタン、79 mg、 0.47 mmol)との 20 比較のうえで示された ¹H NMR 分析にて収率 70 %で得た。シリカゲルクロマトグラフィーを用いた精製により、無色油 (153 mg, 67%収率)の表題化合物を得た。

FTIR (液膜法): cm⁻¹ 2927 (m), 2856, 1619, 1451, 1420, 1324 (s), 1162, 1119 (s), 1069 (s), 1017, 830 (s), 656;

計算値 $C_{13}H_{15}F_3$, 228.1126; 実測値 228.1144; 元素分析 計算値 $C_{13}H_{15}F_3$: C, 68.41; H, 6.62. 実測値 C, 68.49; H, 6.83.

試験例22

2-シクロヘキシルナフタレン

ブロモシクロヘキサン(163.1 mg, 1.0 mmol)、FeCl₃ (0.1 M-THF 溶液 0.5 mL, 5 mol%)及び TMEDA (181.1 µ L, 1.2 mmol)の混合物に、2-ナフチルマグネシウムブロマイド (0.82 M-THF 溶液 1.46 mL, 1.2 mmol) を注射ポンプを経由して、25 ℃で 20 分間かけて添加した。グリニャール試薬の混合物の添加が終了した後、反応混合物をこの温度で 10 分間攪拌した。飽和塩化アンモニウム水による通常の処理をして、反応混合物をフロリジール (Florisil:登録商標)のパッドを通して濾過し、真空下で濃縮させた。内部標準(テトラクロロエタン、79 mg、 0.47 mmol)を用い、粗生成物の H NMR 分析を行なったところ、2-シクロヘキシルナフタレンが 96%収率で得られた。

試験例23

15 1-シクロヘキシルナフタレン

内部標準(テトラクロロエタン、79 mg、 0.47 mmol)を用いた ¹H NMR 分析 から表題化合物を収率 97%で得た。

¹H NMR(500 MHz,CDCl₃): δ 8.11 (br d, J = 8.3 Hz, 1H), 7.84-7.81 (m, 1H), 7.67 (br d, J = 8.3 Hz, 1H), 7.50-7.36 (m, 4H), 3.35-3.27 (m, 20 1H), 2.06-1.98 (m, 2H), 1.95-1.86 (m, 2H), 1.86-1.80 (m, 1H), 1.58-1.50 (m, 4H), 1.38-1.27 (m, 1H); ¹³C NMR(125 MHz,CDCl₃): δ 143.7, 133.9, 131.3, 128.9, 126.2, 125.6, 125.5, 125.2, 123.2, 122.2, 39.2, 34.15 (2C), 27.2 (2C), 26.5; 高分解能質量分析(EI, 70 eV) m/z [M]⁺ 計算値 C₁₆H₁₈, 210.1409; 実測値 210.1433.

25 試験例24

1-シクロヘキシル-2-メチルベンゼン

表題化合物を、内部標準(テトラクロロエタン、79 mg、 0.47 mmol)との 比較のうえで示された H NMR 分析にて収率 98%で得た。シリカゲルクロマト グラフィーを用いた精製により、無色油(171 mg, 98%収率)の表題化合物を得 た。

5

15

FTIR (液膜法): cm⁻¹ 3064, 3022, 2925 (s), 2852 (m), 1492, 1448 (m), 741 (s), 723 (s);

¹H NMR(500 MHz,CDCl₃): δ7.22-7.05(m, 4H),2.75-2.63(m, 1H),2.33(s,3H),1.91-1.73(m, 5H),1.47-1.34(m, 4H),1.33-1.23(m, 1H);¹³C NMR(125 MHz,CDCl₃): δ145.9,135.1,130.1,126.1,125.4,125.3,40.0,33.6(2C),27.1(2C),26.3,19.3;高分解能質量分析(EI,70 eV) m/z [M] † 計算値 C₁₃H₁₅,147.1409;実測値 147.1427.元素分析 計算値 C₁₃H₁₅:C,89.59;H,10.41.実測値 C,89.56;H,10.69.

10 すべての分析データは、文献で報告されているものと良い一致を示した。 試験例31

1-(エキソ-2-ノルボルニル)-4-メトキシベンゼン

表題化合物を、内部標準(テトラクロロエタン、79 mg、 0.47 mmol)との比較のうえで示された ^{1}H NMR 分析にて収率 91%で得た。キャピラリーGC 分析 (CHIRALDEX G-TA, アステック社製, $20m\times0.25mm$, $0.125\,\mu$ m フィルム、 140° C) で測定した生成物のジアステレオマー組成は、95:5 であった(主生成物のエキソ異性体及びエンド異性体に相当するピークが保持時間 27.9 分及び 30.4 分にそれぞれ観測された)。

化合物の分析データは、文献(Wu, X.-Y.; Xu, H.-D.; Tang, F.-Y.; Zhou, 20 Q.-L. *Tetrahedron Asymmetry* **2001**, *12*, 2565-2567)で報告されているものと良い一致を示した。

試験例32

1-(4-tert-ブチルシクロヘキシル)-4-メトキシベンゼン

表題化合物を白色固体として得た(118.6 mg、96%単離収率)。キャピラリー 25 GC 分析 (CHIRALDEX G-TA, アステック社製, 20m×0.25mm, 0.125 μm フィルム、150℃)で、トランス体とシス体の比率は96:4 であった(保持時間; それ ぞれ、67.4 分及び56.2 分)。

FTIR (液膜法): cm⁻¹ 2925 (s), 2854 (s), 1611, 1582, 1513 (s), 1486, 1465, 1451, 1393, 1366, 1248 (s), 1181 (m), 1038 (s), 1034 (s), 824

(m), 801 (m):

'H NMR (400 MHz, CDCl₃): δ7.12 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H), 2.42–2.35 (m, 1H), 1.93–1.86 (m, 4H), 1.43–1.35 (m, 2H), 1.18–1.03 (m, 3H), 0.83 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ157.7, 140.1, 127.7 (2C), 113.7 (2C), 55.2, 47.7, 35.02, 34.4 (2C), 32.6, 27.7 (2C), 27.6 (3C); 高分解能質量分析(EI, 70 eV) m/z [M]⁺ 計算値 $C_{17}H_{26}O_1$ 246.1984; 実測値 246.1985.

試験例34

エチル 6-(4-メトキシフェニル) ヘキサノエート

10 表題化合物を、内部標準(テトラクロロエタン、99 mg, 0.57 mmol)との比較のうえで示された ¹H NMR 分析にて収率 91 %で得た。シリカゲルクロマトグラフィーを用いた精製により、無色液体(220 mg, 88 %収率)の表題化合物を得た。

化合物の分析データは、文献(Lee, J.-Y.; Fu, G. C. *J. Am. Chem. Soc.* **2003**, *125*, 5616-5617)で報告されているものと良い一致を示した。

試験例35

N-[3-(4-メトキシフェニル)プロピル]インドール

表題化合物を、内部標準(テトラクロロエタン、99 mg, 0.57 mmol)との比較のうえで示された ¹H NMR 分析にて収率 93%で得た。シリカゲルクロマトグラフィーを用いた精製により、無色油(231 mg, 87%収率)の表題化合物を得た。 ¹H NMR (500 MHz, CDCl₃): δ7.63 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 8.0 Hz, 1H), 7.12-7.06 (m, 4H), 6.83 (d, J = 8.5 Hz, 1H), 6.49 (d, J = 3.5 Hz, 1H), 4.10 (t, J = 7.0 Hz, 2H), 3.79 (s, 3H), 2.57(t, J = 7.5 Hz, 2H), 2.15 (distorted tt, J = 7.5, 7.0 Hz, 2H); 25 ¹³C NMR (125 MHz, CDCl₃): δ157.9, 135.9, 132.9, 129.3, 128.5, 127.8, 127.7, 121.3, 120.9, 119.1, 114.1, 113.8, 109.3, 100.96, 55.2, 45.5, 32.0, 31.6; 高分解能質量分析(EI, 70 eV) m/z [M] 計算値 C₁₈H₁₉N₁O₁ 265.1467; 実測値 265.1478.

実施例4

15

光学活性な(s)-2-ブロモオクタンからの 2-オクチルベンゼンの調製 試験例15と同様の操作をした。ただし、ブロモシクロヘプタンの代わりに、(S)-2-ブロモオクタンを用いた。表題化合物をシリカゲルクロマトグラフィーにより精製して無色油として得た(84.0mg、88%収率)。キャピラリーGC分析(CYCLOSILB、アジレント社製,30m×0.25mm i.d.,0.25μm フィルム、80℃で120分、及びオーブン温度の昇温速度は1℃/分)によれば、化合物のエナンチオマー(鏡像体)過剰率は、0% ee であった。保持時間が125.2及び129.1でのピークは、光学異性体にそれぞれ相当し、50:50の比率で観測された。

以下の要領で実施例5~実施例8までを実施した。

材料:無水テトラヒドロフラン(THF)は、関東化学から購入し、アルゴン雰囲気下、760 トールでベンゾフェノンケチルから蒸留し、直ちに用いた。溶媒中の水分は、カールフィッシャー水分計で 20 ppm 未満であることを確認した。FeCl₃は、関東化学から購入し、塩化チオニルで脱水し、減圧下で完全に乾燥させ、アルゴン雰囲気下で得られた無水 FeCl₃を保管した。FeCl₃の 0.1M THF 溶液は、室温で何日間か保管することによりポリエーテル化合物を形成するため、調製後直ちに使用した。 $ZnCl_2$ はアルドリッチ(無水、ビーズ、

20 99.99%) から購入し、減圧下で加熱して乾燥し、直ちに用いた。

以下の試薬は、文献の記載に従って調製した。

ZnCl₂・TMEDA: Isobe, M.; Kondo, S.; Nagasawa, N.; Goto, T. *Chem. Lett.* **1977**, 679–682 3α –クロローコレスタン: Shoppee, C. W. *J. Chem. Soc.* **1946**, 1138

1-(トリメチルシリル)-5-ヨード-ペンタ-1-イン: Koft, E. R.; Smith III, A. B. J.

25 *Org. Chem.* **1984**, *49*, 832–836

エチル 6-ヨードヘキサノエート: Leonard, N. J.; Goode, W. E. J. Am. Chem. Soc. 1954, 72, 5404-5407

4-ヨードブチロニトリル: Newman, M. S.; Closson, R. D. *J. Am. Chem. Soc.* **1944**, *66*, 1553-1555

メチル 2, 3, 4-トリー*0-アセチル*-6-デオキシ-6-ヨード-β-D-グルコピラノシド: Classon, B.; Liu, Z. *J. Org. Chem.* **1988**, *53*, 6126-6130

2-ヨードエタナール ブチル 1,1-ジメチル-2-プロペニル アセタール: Fujioka, T.; Nakamura, T.; Yorimistu, H.; Oshima, K. *Org. Lett.* **2002**, *4*, 2257-2259

5 下記の試薬は、市販のものを購入し、蒸留又は再結晶して用いた:

TMEDA (アクロス (Across))、ブロモシクロヘプタン(アクロス)、ヨードシクロヘキサン (東京化成工業 (TCI))、ブロモシクロヘキサン (関東化学)、クロロシクロヘキサン (東京 化成工業)、エチル 6-ブロモヘキサノエート(アルドリッチ)、5-ブロモペンチル アセテート(アルドリッチ)、ヨードデカン(東京化成工業)、4-ブロモール(ベンジルオキシカルボニル)-ピペリジン(アルドリッチ)。

下記の試薬は、滴定後、精製することなく用いた:

10

15

20

25

4-シアノフェニル亜鉛ブロマイド(0.5 M の THF 溶液、アルドリッチ)、3-(エトキシカルボニルン)フェニル亜鉛ヨーダイド(0.5 M THF 溶液、アルドリッチ)、2-ピリジル亜鉛ブロマイド(0.5 M THF 溶液、アルドリッチ)、トリメチルシリルメチルマグネシウムクロライド(1.0 M Et₂0 溶液、アルドリッチ)。

機器: JEOL ECA-500 (500 MHz) NMR 分光計を用いて、プロトン核磁気共鳴 (1 H NMR) 及び炭素核磁気共鳴 (13 C NMR)を記録した。水素原子の化学シフトは、テトラメチルシランから低磁場側 (downfield) での100万分の1 (ppm、 δ スケール) として記録し、NMR 溶媒 (CDC1 $_{3}$: δ 7.26) 中の残留プロトンを参照した。炭素核磁気共鳴スペクトル (18 C NMR) は、125 又は 100 MHz で記録した。炭素の化学シフトは、テトラメチルシランから低磁場側での100万分の1 (ppm、 δ スケール) として記録し、NMR 溶媒 (CDC1 $_{3}$: δ 77.0) 中の炭素共鳴を参照した。データは、下記のように示した:化学シフト、多重性 (1 年本のように示した:化学シフト、多重性 (1 年本のように示した: 化学シフト、多重性 (1 年本のように示した: 化学シフト、 1 年本のように示した: 化学シフト、 1 日本のように示した: 1 日本のように示した。 1 日本のよ

ガスクロマトグラフィー(GC)分析は、FID 検出器及びキャピラリーカラム、HR-1 ($25m\times0.25mm$ i.d., 0.25μ m フィルム)を備えた Shimadzu GC-14B で測定した。赤外線スペクトルは、DuraSample IR (ASI アプライドシステム社 (ASI Applied System))を備えた React IR 1000 反応分析システムで記録し、

cm⁻¹で示した。質量分析は、JEOL GC-mate IIで測定した。 参考例1 (3-ブロモシクロヘキシル ピバロエート及び 4-ブロモシクロヘキシル ピバロエート)

10

20

25

3-及び4-ブロモシクロヘキサノールの混合物(3.6 g, 20 mmol) (還流条件下で、1,4-シクロヘキサンジオールを臭化水素酸(水中、48 重量%)で処理し、通常の処理を行い、3-及び 4-ブロモシクロヘキサノールの混合物を得る)を、ピリジン(50 mL)中で、塩化ピバロイル(3.7 mL,30 mmol)によって処理し、室温で4時間攪拌した。減圧下で蒸発させた後、粗混合物をシリカゲルクロマトグラフィー(ヘキサン/暫酸エチル=20/1)で精製し、3-ブロモシクロヘキシル ピバロエート (トランス/シス=33/67,0.63 g,12%)及びトランス-4-ブロモシクロヘキシル ピバロエート (0.79 g,15%)を無色油状物質として得る。

3-ブロモシクロヘキシル ピバロエート: FTIR (neat): cm-¹ 2956 (m), 2867 (m), 1725 (s), 1480 (w), 1451 (w), 1397 (w), 1366 (w), 1281 (m), 1214 (w), 1152 (s), 1102 (w), 1032 (m), 1011 (w), 951 (w), 888 (w), 772 (w), 702 (w);

'H NMR(500 MHz, CDCl₃)トランス異性体: δ5.11-5.06 (m, 1H), 4.41-3.32 (m, 1H), 2.32-2.22 (m, 1H), 2.22-2.13 (m, 1H), 2.12-2.04 (m, 1H), 1.90-1.62 (m, 3H), 1.40-1.25 (m, 2H), 1.20 (s, 9H), シス異性体: δ4.68-4.60 (m, 1H), 4.00-3.92 (m, 1H), 2.61-2.54 (m, 1H), 2.30-2.22 (m, 1H), 2.00-1.94 (m, 1H), 1.90-1.62 (m, 3H), 1.40-1.25 (m, 2H), 1.18 (s, 9H);

¹³C NMR(125 MHz, CDCl₃)トランス異性体: δ177.5, 70.1, 48.5, 41.0, 38.8, 36.5, 29.3, 27.1 (3C), 21.3, シス異性体: δ177.7, 70.8, 46.5, 42.9, 38.6, 36.9, 30.2, 27.0 (3C), 23.4; 元素分析 計算値 C₁₁H₁₀BrO₂: C, 50.20; H, 7.28. 実測値: C, 50.00; H, 7.28

トランス-4-プロモシクロヘキシル ピバロエート: FTIR (neat): cm⁻¹ 2958 (m), 2871 (m), 1723 (s), 1480 (w), 1445 (w), 1397 (w), 1368 (w), 1281 (m), 1245 (m), 1152 (s), 1098 (w), 1032 (m), 990 (w), 934 (w), 888 (w), 864 (w), 772 (w), 722 (w), 697 (w), 645 (w); HNMR (500 MHz, CDCl₃): δ4.90-4.83 (m, 1H), 4.31-4.24 (m, 1H), 2.15-2.00

(m, 4H), 1.97–1.87 (m, 2H), 1.73–1.65 (m, 2H), 1.22 (s, 9H); 13 C NMR (125 MHz, CDCl $_3$): δ 177.8, 68.7, 51.1, 38.8, 32.9 (2C), 28.9 (2C), 27.1 (3C). 元素分析 計算値 $C_{11}H_{19}BrO_2$: C, 50.20; H, 7.28. 実測値: C, 49.96; H, 7.32.

5 実施例 5

試験例5-1~試験例5-8

下記の要領に従って、各種金属試薬が生成物の選択性及び収率に与える影響を調べた。 まず、特に断らない限り、 $FeCl_3$ (5 mol%)の THF 溶液を、ブロモシクロへ プタン(1.0 mmol)、有機亜鉛試薬(1.5 当量)及び TMEDA (1.5 当量)の混合 物の THF 溶液に加えることで反応を進行させた。

表 4

10

		収率(%)b			
試験例	有機金属試薬	2	3	4	11
5-1 <i>c</i>	PhMgBr	96	3	微量	0
5-2	ZnCl ₂ + 2PhMgBr	96	3.	微量	0
5-3	ZnCl ₂ + PhMgBr	0	微量	微量	>95
5-4	PhZnBr (Mg free)	0	微量	微量	>95
5-5 <i>d</i>	ZnCl ₂ + PhLi	0	微量	微量	>95
5-6 d	ZnCl ₂ + 2PhLi	0	微量	微量	>95
5-7 ^e	ZnCl ₂ + PhMgBr+ Me ₃ SiCH ₂ MgCl	95	4	微量	0
5-8 ^f	ZnCl ₂ + PhLi+ Me ₃ SiCH ₂ MgCl	92	7	0	0

表中b:収率は、内部標準(デカン)で修正したGC収率である。

表中c:反応は、フェニルマグネシウムブロマイドとTMEDAのTHF溶液を、FeCl3 (5 mol%)とブロモシクロヘキサンの混合物のTHF溶液にO°Cにてゆっくりと加えることにより行った。

表中d: THF/Bu2O (2/1)の溶媒

表中e: THF/Et2O/Bu2O (2/2/1)の溶媒

表中f: THF/ペンタン/Bu2O (2/2/1)の溶媒

実施例6

5

10

試験例6-1~試験例6-11

下記の要領に従って、各種金属試薬およびハロゲン化物が生成物の収率に与える影響を調べた。

 空下で濃縮させた。残渣をシリカゲルクロマトグラフィーで精製した。その他の条件は下 記のとおりである。

試験例 6-1~試験例 6-3 (フェニルシクロヘキサン)

試験例6-1

5 ハロゲン化物:ヨードシクロヘキサン(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

反応時間: 0.5 時間

無色油状物質(157 mg, 98%)。

試験例6-2

10 ハロゲン化物:ブロモシクロヘキサン(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

反応時間: 0.5 時間

無色油状物質(155 mg, 97%)。

試験例6-3

15 ハロゲン化物:クロロシクロヘキサン(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

反応時間: 3 時間

無色油状物質(141 mg, 88%)。

表題化合物の分析データは、Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am.

20 Chem. Soc. 2004, 126, 3686-3687 に報告されている。

試験例6-4 (3-フェニル・コレスタン)

ハロゲン化物:3α-クロロコレスタン(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

反応時間: 12 時間

25 白色固体(α/β= 14/86, 399 mg, 89%);

FTIR (neat): cm⁻¹ 3025 (w),2925 (s), 2867 (m), 1466 (m), 1447 (m), 1382 (w), 758 (w), 681 (s); ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.13 (m, 5H), 3.11-3.05 (m, 0.14H), 2.59-2.49 (m, 0.86H), 2.09-0.64 (m, 46H); ¹³C NMR (125 MHz, CDCl₃) β -異性体 (主成分): δ 147.7, 128.2 (2C), 126.8 (2C), 125.6, 56.6, 56.3, 54.6, 47.0, 44.9, 42.6,

40.1, 39.5, 38.9, 36.6, 36.2, 35.9, 35.7, 35.6, 32.2, 29.9, 28.9, 28.3, 28.0, 24.2, 23.9, 22.9, 22.6, 21.0, 18.7, 12.5, 12.1; 元素分析 計算値 $C_{33}H_{52}$: C, 88.32; H, 11.68. 実測値: C, 88.12; H, 11.73

試験例6-5(5-フェニル-1-(トリメチルシリル)-ペンタ-1-イン)

5 ハロゲン化物:5-ヨード-1-(トリメチルシリル)-ペンタ-1-イン(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

反応時間: 0.5 時間

無色油状物質(201 mg, 93%);

FTIR (neat): cm⁻¹ 2958 (w), 2902 (w), 2175 (w), 1478 (w), 1451 (s), 1395 (w), 1366 (s), 1268 (w), 1167 (w), 997 (s); ¹H NMR (500 MHz, CDCl₃): δ 7. 31–7. 25 (m, 3H), 7. 21–7. 17 (m, 2H), 2. 72 (t, J = 7. 6 Hz, 2H), 2. 24 (t, J = 7. 1 Hz, 2H), 1. 84 (tt, J = 7. 6, 7. 1 Hz, 2H), 0. 16 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 141. 3, 128. 2 (2C), 128. 0 (2C), 125. 5, 106. 8, 87. 4, 34. 5, 30. 0, 19. 1, 0. 0 (3C); HRMS (EI, 70 eV) m/z [M] $^+$ 計算値 $C_{14}H_{20}Si$; 216. 1334; 実測値, 216. 1305. 元素分析 計算値 $C_{14}H_{20}Si$: C, 77. 71; 15 H, 9. 32. 実測値: C, 77. 53; H, 9. 13.

試験例6-6~試験例6-7(エチル 6-フェニルヘキサノエート)

試験例6-6

ハロゲン化物:エチル 6-ヨードヘキサノエート(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

20 反応時間: 0.5 時間

無色油状物質(218 mg, 99%)

試験例6-7

ハロゲン化物:エチル 6-ブロモヘキサノエート(1.0 mmol)

有機亜鉛試薬:ジフェニル亜鉛(1.5 mmol)

25 反応時間: 0.5 時間

無色油状物質 (200 mg, 91%)

表題化合物の分析データは、Zhou, J.; Fu, G. C. *J. Am. Chem. Soc.* **2004**, *126*, 1340-1341 に報告されている。

試験例6-8 (5-(4-メチルフェニル)ペンチルアセテート)

ハロゲン化物:5-ブロモペンチルアセテート(1.0 mmol)

有機亜鉛試薬:ジ(4-メチルフェニル)亜鉛(1.5 mmol)

反応時間: 0.5時間

無色油状物質(183 mg, 83%);

5 FTIR (neat): cm⁻¹ 3020 (w), 2933 (m), 2866 (w), 1739 (s), 1517 (w), 1463 (w), 1366 (m), 1236 (s), 1044 (m), 805 (m); ¹H NMR (500 MHz, CDCl₃): δ 7.12-7.03 (m, 4H), 4.04 (t, J = 6.1 Hz, 2H), 2.57 (t, J = 7.8 Hz, 2H), 2.31 (s, 3H), 2.03 (s, 3H), 1.68-1.58 (m, 4H), 1.43-1.34 (m, 2H); ¹⁸C NMR (125 MHz, CDCl₃): δ 171.2, 139.3, 135.1, 128.9 (2C), 128.2 (2C), 64.5, 35.3, 31.1, 28.4, 25.5, 21.0 20.9; 元素分析 計算値 $C_{14}H_{20}O_{2}$:

10 C, 76.33; H, 9.15. 実測値: C, 76.33; H, 9.19.

試験例6-9 (4-(2-メチルフェニル)シクロヘキシル ピバロエート)

ハロゲン化物:参考例1で得られたトランス-4-ブロモ-シクロヘキシルピバロエート(1.0 mmol)

有機亜鉛試薬:ジ(2-メチルフェニル) 亜鉛(1.5 mmol)

15 反応時間: 0.5時間

20

25

無色油状物質(268 mg, 98%, トランス/シス = 55/45);

FTIR (neat): cm⁻¹ 3022 (w), 2937 (m), 2863 (w), 1723 (s), 1480 (w), 1461 (w), 1283 (m), 1162 (s), 1034 (m), 1015 (m), 751 (m), 726 (w); ¹H NMR (500 MHz, CDC1₃) トランス異性体: δ 7.21-7.07 (m, 4H), 4.80-4.73 (m, 1H), 2.76-2.70 (m, 1H), 2.33 (s, 3H), 2.12-2.07 (m, 2H), 1.91-1.85 (m, 2H), 1.63-1.41 (m, 4H), 1.20 (s, 9H), シス異性体: δ 7.24-7.08 (m, 4H), 5.11-5.08 (m, 1H), 2.82-2.74 (m, 1H), 2.35 (s, 3H), 2.05-1.98 (m, 2H), 1.84-1.74 (m, 2H), 1.71-1.62 (m, 4H), 1.26 (s, 9H); ¹³C NMR (125 MHz, CDC1₃) トランス異性体: δ 178.1, 144.1, 135.2, 130.3, 126.2, 125.8, 125.1, 72.5, 38.9, 38.6, 32.1 (2C), 31.3 (2C), 27.1 (3C), 19.3, シス異性体: δ 177.8, 145.0, 135.1, 120.3, 126.2, 125.7, 125.2, 68.4, 39.1, 39.0, 30.5 (2C), 27.6 (2C), 27.3 (3C), 19.4; 元素分析 計算値 C₁₈H₂₈O₂: C, 78.79; H, 9.55. 実測値: C, 78.64; H, 9.54.

試験例6-10 (3-(4-メトキシフェニル)プロピオニトリル)

ハロゲン化物:3-ヨードプロピオニトリル(1.0 mmol)

有機亜鉛試薬:ジ(4-メトキシフェニル)亜鉛(1.5 mmol)

反応時間: 0.5時間。

5

15

無色油状物質(151 mg, 86%);

FTIR (neat): cm⁻¹ 3004 (w), 2937 (w), 2836 (w), 2240 (m), 1611 (w), 1509 (s), 1459 (w), 1301 (w), 1245 (s), 1177 (m), 1109 (w), 832 (m), 809 (m), 700 (w); ¹H NMR (500 MHz, CDC1₃): δ7.09 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 3.77 (s, 3H), 2.70 (t, *J* = 7.5 Hz, 2H), 2.28 (t, *J* = 6.8 Hz, 2H), 1.92 (tt, *J* = 7.5, 6.8 Hz, 2H); ¹³C NMR (125 MHz, CDC1₃): δ158.0, 131.5, 129.2 (2C), 119.5, 113.8 (2C), 55.1, 33.2, 26.9, 16.1; 元素分析 計算値 C₁₁H₁₃NO: C, 75.40; H, 7.48; N, 7.99. 実測値: C, 75.29; H, 7.67, N, 7.72

10 試験例6-11 (メチル 2, 3, 4-トリ-*0*-アセチル-6-デオキシ-6-[3, 4-(メチレンジオキシ)フェニル]-β-D-グルコピラノシド)

ハロゲン化物:メチル 2,3,4-トリ-*0*-アセチル-6-デオキシ-6-ヨード-β-D-グルコピラノシド(1.0 mmol)

有機亜鉛試薬:ジ[3,4-(メチレンジオキシ)フェニル) 亜鉛(2.0 mmol) (ZnCl₂・TMEDA(2.0 mmol) と ArMgBr (0.8-1.0 Mの THF 溶液, 4.0 mmol) を使用した。)

反応時間: 0.5 時間

無色油状物質(382 mg, 90%);

FTIR (neat): cm⁻¹ 1746 (s), 1492 (m), 1443 (m), 1366 (m), 1216 (s), 1030 (s), 928 (m), 809 (w); ¹H NMR (500 MHz, CDCl₃): δ 6.75-6.71 (m, 2H), 6.66-6.62 (m, 1H), 5.93 (s, 2H), 5.44 (t, J = 9.5 Hz, 1H), 4.94-4.85 (m, 3H), 3.91 (dt, J = 9.5, 2.9 Hz, 1H), 3.11 (s, 3H), 2.78-2.72 (m, 1H), 2.66-2.60 (m, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 170.1 (2C), 169.8, 147.4, 146.1, 130.1, 122.2, 110.0, 108.0, 101.2, 100.8, 96.2, 72.3, 71.0, 70.3, 69.4, 54.9, 37.1, 20.7 (2C), 20.6; 元素分析 計算値 $C_{20}H_{24}O_{10}$: C, 56.60; H, 9.70. 実測値: C, 56.54; H, 5.97.

表 5

25

$$(FG)R_{alkyl}-X \xrightarrow{Ar_2Zn \cdot TMEDA (1.5 eq)} (FG)R_{alkyl}-Ar_2$$

$$(FG)R_{alkyl}-Ar_3$$

$$(FG)R_{alkyl}-Ar_4$$

試験例	(FG)R _{alkyf} -X	有機亜鉛試薬	収率 (%)
6-1 6-2 6-3	X	Ph ₂ Zn	98 (X = I) 97 (X = Br) 88 (X = Cl)
6-4	Me H C8H 17	Ph ₂ Zn	89
6-5	Me ₃ Si	Ph ₂ Zn	93
6-6 6-7	EtO ()4 X	Ph ₂ Zn	99 (X = I) 91 (X = Br)
6-8	AcO HA Br	Me———Zn	83
6-9	PivO	Zn	98.
6-10	NC /	MeO Zn	86
6-11	Aco OAc	$\sum_{n=1}^{\infty} Z_n$	90

表中、収率は単離収率を示す。

実施例7

試験例7-1~試験例7-6

5 下記の要領に従って、各種金属試薬およびハロゲン化物が生成物の収率に与える影響を 調べた。

乾燥した反応容器に、各種芳香族亜鉛試薬 ArZnX(X = Br, I)($0.5 \, M$ THF 溶液, $4.0 \, mL$, $2.0 \, mmol$)及びマグネシウム化合物 $Me_{3}SiCH_{2}MgCl$ ($1.1 \, M$ $Et_{2}O$, 溶液 $1.8 \, mL$, $2.0 \, mmol$)の混合物を、 $0 \, C$ で 0.5– $1 時間攪拌した。得られた溶液に、TMEDA(<math>0.30 \, mL$, $2.0 \, mmol$)、各種ハロゲン化物(表 6 中、「 $(FG)R_{alkyl}$ –X」で示す)($1.0 \, mmol$)、及び、次いで、 $FeCl_{3}$ ($0.1 \, M$ THF 溶液, $0.5 \, mL$, $0.05 \, mmol$)を $0 \, C$ で加えた。反応混合物を $30 \, C$ で $6 \, 時間攪拌した。飽和 <math>NH_{4}Cl$ 水溶液で反応を終了させ、混合物をフロリジール(Florisil: 登録商標)のパッドを通して濾過し、真空下で濃縮させた。残渣をシリカゲルクロマトグラフィーで精製した。

試験例7-1 (エチル 3-[5-(トリメチルシリル)ペンタ-4-イル]ベンゾエート)

10 ハロゲン化物:5-ヨード-1-(トリメチルシリル)-ペンタ-1-イン(1.0 mmol)

芳香族亜鉛試薬: 3-(エトキシカルボニル)フェニル亜鉛ヨーダイド(2.0 mmol)

反応時間: 6 時間

5

無色油状物質(262 mg, 91%)

試験例7-2 (エチル 3-(3-シアノプロピル)ベンゾエート)

ハロゲン化物:4-ヨードブチロニトリル(1.0 mmol)

芳香族亜鉛試薬: 3-(エトキシカルボニル)フェニル亜鉛 ヨーダイド(2.0 mmol)

反応時間: 6 時間

25 無色油状物質(156 mg, 72%)

FTIR (neat): cm⁻¹ 2981 (w), 2937 (w), 2871 (w), 1713 (s), 1445 (w), 1368 (w), 1277 (s), 1196 (s), 1106 (s), 1084 (m), 1023 (m), 861 (w), 751 (s), 695 (m); ¹H NMR (500 MHz, CDCl₂): δ 7.92–7.84 (m, 2H), 7.38–7.35 (m, 2H), 4.36 (q, J = 7.1 Hz, 2H), 2.81 (t, J = 7.5 Hz, 2H), 2.32 (t, J = 6.9 Hz, 2H), 1.99 (tt, J = 7.5, 6.9 Hz, 2H), 1.38

(t, J = 7.2 Hz, 3H); 13 C NMR(125 MHz, CDCl₃): δ 166.4, 139.9, 132.8, 130.8, 129.2, 128.6, 127.7, 119.2, 60.9, 34.1, 26.7, 16.3, 14.1; 元素分析 計算値 $C_{13}H_{15}NO_2$: C, 71.78; H, 6.96, N, 6.45.

試験例7-3 (エチル 3-(3-ピバロキシシクロヘキシル)ベンゾエート)

5 ハロゲン化物:参考例1で得られた 3-ブロモシクロヘキシル ピバロエート(トランス/シス = 33/67, 1.0 mmol)

芳香族亜鉛試薬:3-(エトキシカルボニル)フェニル亜鉛 ヨーダイド(2.0 mmol)

反応時間: 24 時間

無色油状物質 (260 mg, 78%, トランス/シス = 47/53)

FTIR (neat): cm⁻¹ 2977 (w), 2937 (w), 2867 (w), 1721 (s), 1283 (m), 1162 (m), 1109 (m), 1028 (w), 754 (w), 654 (w); ¹H NMR (500 MHz, CDCl₃) トランス異性体: 67.92-7.86 (m, 2H), 7.42-7.33 (m, 2H), 5.21-5.16 (m, 1H), 4.38 (q, J=7.1 Hz, 2H), 3.01-2.92 (m, 1H), 2.08-2.02 (m, 1H), 1.98-1.90 (m, 2H), 1.77-1.67 (m, 3H), 1.58-1.47 (m, 2H), 1.40 (t, J=7.2 Hz, 3H), 1.26 (s, 9H), シス異性体: 67.92-7.87 (m, 2H), 7.43-7.34 (m, 2H), 4.87-4.79 (m, 1H), 4.38 (q, J=7.2 Hz, 2H), 2.77-2.68 (m, 1H), 2.19-2.13 (m, 1H), 2.08-2.01 (m, 1H), 1.97-1.90 (m, 1H), 1.90-1.83 (m, 1H), 1.58-1.33 (m, 4H), 1.40 (t, J=7.2 Hz, 3H), 1.18 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) トランス異性体: 6177.7, 166.8, 146.8, 131.4, 130.6, 128.4, 127.9, 127.3, 69.3, 60.9, 39.0, 38.4, 37.2, 33.4, 29.3, 27.2 (3C), 21.1, 14.3, シス異性体: 6177.9, 166.7, 146.1, 131.4, 130.6, 128.4, 127.8, 127.4, 72.5, 60.9, 42.4, 39.1, 38.6, 32.9, 31.2, 27.1 (3C), 24.1, 14.3; 元素分析 計算値 C₂₀H₂₀O₄: C, 72.26; H, 8.49.

試験例7-4(4-シクロヘキシルベンゾニトリル)

ハロゲン化物:3-ブロモシクロヘキサン(1.0 mmol)

芳香族亜鉛試薬:4-シアノフェニル亜鉛 ブロマイド(2.0 mmol)

25 反応時間: 6時間

無色油状物質(167 mg, 90%)

FTIR (neat): cm⁻¹ 2925 (s), 2852 (m), 2227 (m), 1607 (m), 1505 (m), 1449 (m), 1415 (w), 1177 (w), 1000 (w), 823 (s); ¹H NMR (500 MHz, CDCl₃): δ 7.56 (d, J = 8.6 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 2.12-2.00 (m, 1H), 1.92-1.80 (m, 4H), 1.80-1.69 (m,

1H),1.47-1.33(m,4H),1.33-1.20(m,1H); 13 C NMR(125 MHz,CDCl $_3$): δ 153.4,132.1(2C),127.6(2C),119.1,109.5,44.7,33.9(2C),26.6(2C),25.9;元素分析 計算値 C₁₃H₁₅N:C,84.28;H,8.16;N,7.56.実測値:C,84.12;H,8.36;N,7.36.

試験例7-5(4-(4-シアノフェニル)-1-(ベンジルオキシカルボニル)ピペリジン)

5 ハロゲン化物:4-ブロモ-ハー(ベンジルオキシカルボニル)ピペリジン(1.0 mmol)

芳香族亜鉛試薬:4-シアノフェニル亜鉛 ブロマイド(2.0 mmol)

反応時間: 6時間

10

15

25

淡黄色固体(253 mg, 79%)

FTIR (neat): cm⁻¹ 3014 (w), 2943 (w), 2923 (w), 2856 (w), 2227 (m), 1688 (s), 1466 (m), 1455 (m), 1436 (m), 1273 (w), 1218 (s), 1125 (m), 1057 (m), 1009 (m), 917 (w), 838 (m), 760 (s), 702 (s); ¹H NMR (500 MHz, CDCl₃): δ7.59 (d, *J* = 8.6 Hz, 2H), 7.39–7.26 (m, 7H), 5.16 (br s, 2H), 4.35 (br s, 2H), 2.89 (br s, 2H), 1.90–1.78 (m, 2H), 1.70–1.58 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ155.2, 150.8, 136.7, 132.4 (2C), 128.5 (2C), 128.0, 127.9 (2C), 127.6 (2C), 118.8, 110.3, 67.2, 44.3 (2C), 42.7, 32.6 (2C); 元素分析 計算値 C₂₀H₂₀N₂O₂: C, 74.98; H, 6.29. N, 8.74. 実測値: C, 74.80; H, 6.42, N, 8.54.

試験例7-6 (2-ピリジルデカン)

ハロゲン化物:ヨードデカン(1.0 mmol)

芳香族亜鉛試薬:2-ピリジル亜鉛 ブロマイド(1.5 mmol)

20 反応時間: 0.5 時間

無色油状物質(215 mg, 98%)

FTIR (neat): cm⁻¹ 2923 (s), 2854 (s), 1590 (m), 1569 (w) 1468 (m), 1434 (m), 1148 (w), 1050 (w), 994 (w), 747 (s); ¹H NMR (500 MHz, CDCl₃): δ 8.52 (d, J = 4.6 Hz, 1H) 7.58 (td, J = 7.6, 1.8 Hz, 1H) 7.14 (d, J = 7.5 Hz, 1H) 7.09 (dd, J = 6.9, 4.9 Hz, 3H), 2.78 (t, J = 7.7 Hz, 2H), 1.75–1.68 (m, 2H), 1.40–1.25 (m, 14H), 0.89 (t, J = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 162.5, 149.2, 136.2, 122.7, 120.8, 38.4, 31.9, 29.9, 29.6, 29.5 (2C), 29.4, 29.3, 22.7, 14.1; 元素分析 計算値 $C_{15}H_{25}N$: C, 82.13; H, 11.49; N, 6.38. 実測値: C, 82.01; H, 11.39; 6.19.

表 6

試験例	∬ (FG)R _{alky} ⊢X	有機亜鉛試業	収率(%)
7-1	Me ₃ Si	EtO ₂ C ZnL	91
7-2	NC I	EtO ₂ C ZnL	72
7-3	PivO	EtO ₂ C. ZnL	78
7-4	Br	NC ZnL	90
7-5	PH N Br	NC ZnL	79 . ·
7-6	<i>n</i> -C ₁₀ H ₂₁ ─-1	ZnL	98

表中、Lは CH₂SiMe₃を示す。 表中、収率は単離収率を示す。

実施例8

 試験例8-1 (5-ブトキシ-2, 2-ジメチル-3-(フェニルメチル)テトラヒドロフラン) 有機亜鉛試薬として、ジフェニル亜鉛(1.5 mmol)を使用し、ハロゲン化物として、2-ヨードエタナール ブチル 1,1-ジメチル-2-プロペニルアセテート(1.0 mmol)を使用した以外は試験例6-1と同様の手法で表題化合物を得た(手法A)。無色油状物質(198 mg, 76%)。 FTIR (neat): cm⁻¹ 3008 (w), 2962 (m), 2933 (m), 2873 (m), 1455 (w), 1366 (w), 1328
 (w), 1246 (w), 1096 (s), 1034 (s), 980 (s), 911 (w), 836 (w), 726 (m), 699 (s); ¹H NMR (500 MHz, CDCl₃) トランス異性体: δ7.30-7.26 (m, 2H), 7.21-7.15 (m, 3H), 4.97 (d, J = 4.6 Hz, 1H), 3.65 (dt, J = 9.7, 6.9 Hz, 1H), 3.30 (dt, J = 9.7, 6.9 Hz, 1H), 2.74-2.66 (m, 1H), 2.50-2.40 (m, 2H), 1.94-1.87 (m, 1H), 1.82-1.72 (m, 1H),

1.55-1.45 (m, 2H), 1.38-1.26 (m, 2H), 1.30 (s, 3H), 1.13 (s, 3H), 0.89 (t, J=7.2 Hz, 3H), シス異性体 $\delta 7.31-7.25$ (m, 2H), 7.22-7.14 (m, 3H), 5.03-4.99 (m, 1H), 3.71 (dt, J=9.7, 6.9 Hz, 1H), 3.34 (dt, J=9.7, 6.9 Hz, 1H), 2.75-2.68 (m, 1H), 2.57-2.49 (m, 1H), 2.27-2.18 (m, 1H), 2.12-2.04 (m, 1H), 1.78-1.65 (m, 1H), 1.60-1.48 (m, 2H), 1.44-1.32 (m, 2H), 1.26 (s, 3H), 1.23 (s, 3H), 0.92 (t, J=7.2 Hz, 3H); 13 C NMR (125 MHz, CDCl₂) トランス異性体: $\delta 140.8$, 128.7 (2C), 128.3 (2C), 126.0, 101.7, 83.4, 66.6, 47.6, 40.0, 36.4, 31.8, 29.7, 23.8, 19.4, 13.9, シス異性体: $\delta 140.9$, 128.6 (2C), 128.4 (2C), 126.0, 103.0, 82.7, 67.7, 50.3, 39.0, 36.6, 31.9, 28.0, 23.2, 19.4, 13.9; 元素分析 計算値 C_{17} H₂₆O₂: C, 77.82; H, 9.99. 実測値: C, 77.69; H, 10.02.

5

10

15

20

25

試験例8-2 (5-ブトキシ-2, 2-ジメチル-3-[3, 4-(メチレンジオキシ)フェニルメチル] テトラヒドロフラン)

有機亜鉛試薬として、ジ[3,4-(メチレンジオキシ)フェニル] 亜鉛(1.5 mmol)を使用し、ハロゲン化物として、2-ヨードエタナール ブチル 1,1-ジメチル-2-プロペニルアセテート (1.0 mmol)を使用した以外は試験例 6-1 と同様の手法で表題化合物を得た(手法A)。無色油状物質(264 mg, 86%);

FTIR (neat): cm⁻¹ 2964 (m), 2935 (m), 2875 (m), 1505 (m), 1490 (s), 1441 (m), 1366 (w), 1245 (s), 1191 (w), 1096 (s), 1036 (s), 980 (s), 924 (m), 812 (w); H NMR (500 MHz, CDCl₃) トランス異性体: δ6.71 (d, J = 8.0 Hz, 1H), 6.69 (s, 1H), 6.61 (d, J = 8.0 Hz, 1H), 5.92 (s, 2H), 4.96 (d, J = 5.2 Hz, 1H), 3.65 (dt, J = 9.2, 6.6 Hz, 1H), 3.30 (dt, J = 9.2, 6.6 Hz, 1H), 2.68-2.59 (m, 1H), 2.43-2.34 (m, 2H), 1.94-1.87 (m, 1H), 1.80-1.69 (m, 1H), 1.56-1.46 (m, 2H), 1.38-1.27 (m, 2H), 1.30 (s, 3H), 1.11 (s, 3H), 0.89 (t, J = 7.4 Hz, 3H), シス異性体 δ6.72 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 6.61 (d, J = 8.0 Hz, 1H), 5.92 (s, 2H), 5.03-4.98 (m, 1H), 3.71 (dt, J = 9.7, 6.9 Hz, 1H), 3.34 (dt, J = 9.7, 6.9 Hz, 1H), 2.66-2.57 (m, 1H), 2.48-2.40 (m, 1H), 2.27-2.18 (m, 1H), 2.07-1.97 (m, 1H), 1.78-1.67 (m, 1H), 1.60-1.47 (m, 2H), 1.43-1.30 (m, 2H), 1.24 (s, 3H), 1.23 (s, 3H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) トランス異性体: δ147.5, 145.7, 134.6, 121.5, 109.1, 108.1, 101.7, 100.8, 83.3, 66.6, 47.8, 38.9, 36.1, 31.8, 29.7, 23.8, 19.4, 13.9, シス異

性体: δ147.5, 145.7, 134.7, 121.4, 109.0, 108.1, 103.0, 100.8, 82.6, 67.7, 50.4, 39.0, 36.2, 31.9, 28.0, 23.2, 19.4, 13.8; 元素分析 計算値 C₁₈H₂₆O₄: C, 70.56; H, 8.55. 実測値:C, 70.28; H, 8.60

試験例8-3 (5-ブトキシ-2, 2-ジメチル-3-(4-シアノフェニルメチル)テトラヒドロフ 5 ラン)

芳香族亜鉛試薬として、4-シアノフェニル亜鉛 ブロマイド (2.0 mmol)を使用し、ハロゲン化物として、2-ヨードエタナール ブチル 1,1-ジメチル-2-プロペニルアセテート (1.0 mmol)を使用し、反応時間を24時間とした以外は、試験例7-1と同様の手法で表題 化合物を得た (手法B)。無色油状物質(210 mg, 73%);

FTIR (neat): cm⁻¹ 2962 (m), 2933 (m), 2871 (w), 2229 (m), 1609 (m), 1451 (w), 1366 10 (w), 1328 (w), 1246 (w), 1094 (s), 1034 (s), 978 (s), 911 (w), 854 (m), 822 (m), 764 (w); H NMR (500 MHz, CDC1) トランス異性体: δ7.58 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.6 Hz, 2H), 4.97 (d, J = 4.6 Hz, 1H), 3.65 (dt, J = 9.2, 6.6 Hz, 1H), 3.30(dt, J = 9.2, 6.6 Hz, 1H), 2.82-2.74 (m, 1H), 2.55-2.39 (m, 2H), 1.87-1.83 (m, 1H),1.80-1.72 (m, 1H), 1.56-1.46 (m, 2H), 1.38-1.27 (m, 2H), 1.32 (s, 3H), 1.13 (s, 15 3H), 0.89 (t, J=7.4 Hz, 3H), シス異性体 δ 7.58 (d, J=8.0 Hz, 2H), 7.29 (d, J=8.0 Hz, 2H), 7.20 (d, J=8.0 Hz, 2H), 7. = 8.6 Hz, 2H, 5.04-4.98 (m, 1H), 3.71 (dt, J = 9.2, 6.9 Hz, 1H), 3.34 (dt, J = 9.2, 6.9 Hz, 1 (dt, J = 9.2, 6.9 Hz)9. 2, 6. 9 Hz, 1H), 2. 82-2. 74 (m, 1H), 2. 66-2. 58 (m, 1H), 2. 22-2. 13 (m, 1H), 2. 12-2. 04 (m, 1H), 1.75–1.68 (m, 1H), 1.65–1.45 (m, 2H), 1.43–1.25 (m, 2H), 1.25 (s, 3H), 1.22 (s, 3H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR(125 MHz, CDCl₃)トランス異性体: 20 δ 146. 4, 132. 2 (2C), 129. 5 (2C), 118. 9, 110. 0, 101. 6, 83. 2, 66. 6, 47. 3, 38. 7, 36. 6, 31.7, 29.6, 23.8, 19.3, 13.8, シス異性体: δ146.5, 132.1 (2C), 129.4 (2C), 118.8, 109.8, 102.7, 82.5, 67.5, 49.5, 38.5, 36.6, 31.7, 28.0, 23.2, 19.2, 13.7; 元素分 析計算值 C₁₈H₂₅NO₂: C, 75.22; H, 8.77; N, 4.87. 実測值: C, 75.04; H, 8.84; N, 4.72.

25

表 7

試験例	Ar	手法	収率(%)
8-1		<i>.</i> A	76% (63/37)
8-2		А	86% (64/36)
8-3	NC-	В	73% (63/37)

表中、収率は単離収率を示す。

実施例9

試験例9-1~試験例9-15

5 下記の要領に従って、ルイス酸金属塩がクロスカップリング反応に与える 影響を調べた。

まず、塩化亜鉛- TMEDA 錯体とそれに対して 2 当量のフェニルリチウムから調製したジフェニル亜鉛試薬に対し、臭化シクロヘプタン 1 と 20 mol%の下記表 8 に示されるルイス酸金属塩を加えた。そこに 5 mol%の塩化鉄を 0 $^{\circ}$ で加えてから 50 $^{\circ}$ でで1 時間撹拌し、飽和塩化アンモニウム水溶液で反応を停止した。解析は GC によって行い、収率は内部標準 n-デカンとの比較により算出した(表 8)。

表8

15

10

FeCl3 (5 mol%) ZnCl₂·TMEDA (1.5 当量)

	試験例	ルイス酸			GC収率((%)	
	6八月大 [7]	金属塩	N(1)	2	3	4	1
	9-1	MgBr ₂	使用前に新たに調整	>98	微量	微量	0
	9-2	CaCl ₂	精製せず	0	微量	微量	>98
	9-3	BF ₃ ·OEt ₂	精製せず	6	3	3	<90
10	9-4	BEt ₃	1.0-M ヘキサン溶液	0	1	1	>95
	9-5	Me ₃ SiCl	使用前に蒸留	3	6	2	<90
	9-6	SnCl ₄	1.0-M ヘプタン溶液	0	2	2	>95
	9-7	CuCl ₂	乾燥 (120 °C, 1 h, <0.5 mmHg)	, 0	2	3	>95
	9-8	TiCl ₄	1.0-M トルエン溶液	>98	1	微量	<1
	9-9	ZrCl ₄	乾燥 (120 °C, 1 h, <0.5 mmHg)	90	微量	微量	10
	9-10	HfCl ₄	乾燥 (120°C, 1 h, <0.5 mmHg)	76	1	1	11
15	9-11	AlCl ₃	精製せず	85	微量	微量	12
	9-12	Ga ₂ Cl ₄	乾燥 (80°C, 1 h, <0.5 mmHg)	10	4	5	77
	9-13	InCl ₃	乾燥 (120 °C, 5 h, <0.5 mmHg)	0	微量	微量	>98
	9-14	CeCl ₃	乾燥 (90°C, 5 h, <0.5 mmHg)	1	1	3	>95
	9-15	Sml ₂	1.0-M THF溶液	0	微量	微量	>98

20

25

5

試験例 9-2ではマグネシウムと同族のカルシウムの塩化物を用いて反応を行ったが、クロスカップリング反応は全く起こらず、原料が定量的に回収された。アルドール反応などに用いられる代表的なルイス酸であるトリフロロボラン-ジエチルエーテル錯体、トリエチルボラン、クロロトリメチルシラン、塩化スズ(IV)、塩化銅(II)を試したが、これらはいずれもほとんど触媒活性を示さず原料回収に終わった(試験例 9-3~試験例 9-7)。

4 族の金属塩化物を用いたところ、反応が促進されカップリング体 2 が良好な収率で得られた。触媒活性はチタン>ジルコニウム>ハフニウムの順番であった(試験例 9-8~試験例 9-1 0)。また塩化アルミニウムを添加

WO 2005/075384 PCT/JP2005/002529

した場合も、原料が若干残るもののクロスカップリング反応が良好に進行した(試験例 9-11)。また、同族のガリウムもわずかながら触媒活性を示した。しかしながら、同族のインジウムは触媒活性を示さなかった。(試験 例 9-12、試験例 9-13)。ルイス酸として頻繁に用いられるランタノイドの中から塩化セリウム(III)、ヨウ化サマリウムを試したが、全く触媒活性を示さなかった。

以上の検討より、臭化マグネシウムの他に 4 族の金属塩化物と塩化アルミニウム (III) が良好な触媒活性を有していることが明らかになった。特に塩化チタン (IV) がマグネシウムに匹敵する触媒活性を示した。

10

実施例10

2,4-ジフェニルペンタン

15

20

2,4-ジクロロペンタン(70.5 mg, 0.5 mmol)と $FeCl_3$ (0.5 mL の 0.1 M THF 溶液, 0.05 mmol)の混合物の THF(0.5 mL)溶液に、50 $\mathbb C$ で、1 時間にわたって、シリンジポンプを介して、フェニルマグネシウムブロマイド(1.25 mL の 0.96M THF 溶液, 1.2 mmol)及び TMEDA(181.1 μ L, 1.2 mmol)の混合物を加えた。得られた混合物をその温度で 20 分間攪拌し、飽和塩化アンモニウム水溶液で反応を停止させ、3 mL の酢酸エチルで希釈した。充填シリカゲル(溶離液;酢酸エチル)を通して濾過し、減圧下で濃縮させた。 1 H NMR から所望とする生成物がほぼ定量的な収率で得られたことが示された。循環型GPC による生成で純粋な化合物が 71%の収率で得られた。

25

ジアステレオマー1:1 混合物の 1 H NMR(500 MHz, CDC1₃) δ 1.16(d, J = 6.9 Hz, 3H, 一方のジアステレオマーの CH_3),1.23(d, J = 6.9 Hz, 3H, もう一方のジアステレオマーの CH_3),1.76(distorted dt, J = 13.2,7.4 Hz, 0.5H, 一方のジアステレオマーの CH_3),1.87(t, J = 7.4 Hz, 1H, も

実施例11

2,4,6-トリフェニルヘプタン

10

15

20

25

5

2,4,6-トリクロロヘプタン(67 mg, 0.33 mmol) 及び $FeCl_3$ (0.5 mL of a 0.1-M THF solution, 0.05 mmol)の混合物の THF 溶液に、50Cにて、5 時間にわたって、シリンジポンプを介して、フェニルマグネシウムブロマイド(1.25 mL of a 0.96-M THF solution, 1.2 mL) 及び TMEDA(181.1 μ L, 1.2 mmol)の混合物を加えた。得られた混合物をその温度で 20 分間攪拌し、飽和塩化アンモニウム水溶液で反応を停止させ、3 mL の酢酸エチルで希釈した。充填シリカゲル(溶離液; 酢酸エチル)を通して濾過し、減圧下で濃縮させた。純粋な生成物が 65%の収率で得られた(フラッシュクロマトグラフィー、溶離液:ヘキサン)

3種のジアステレオマー混合物の 1 H NMR(500 MHz,CDCl₃) δ 1.04(d,J = 6.9 Hz,1.0 H)1.05(d,J = 6.9 Hz,1.4H),1.12(d,J = 6.9 Hz,1.8H),1.15(d,J = 6.9 Hz,1.8H),1.69-2.01(m,4H),2.30-2.62(m,3H),6.96-7.31(m,15H,芳香族プロトン),EI-MS(70 eV)72m/z[M] + 計算値 $C_{25}H_{28}$,328.2,実測値 327.9。

請求の範囲

1. 下記式(1)で示される芳香族化合物の製造方法であって、

R - A (1)

- 5 [式中、Rは、置換基を有していてもよい炭化水素基、又は、 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基であって、前記環は、酸素原子又は式-N(B) -で示される基(式中、Bは水素原子、置換基を有していてもよい $C_1 \sim C_1$ 。炭化水素基、又は置換基を有していてもよい $C_1 \sim C_{10}$ アルコキシカルボニル基である。)で中断されていてもよく、かつ、置換基を有していてもよく、
- 10 Aは、置換基を有していてもよい $C_4 \sim C_{20}$ 芳香族基又は置換基を有していてもよい複素芳香族基である。]

鉄触媒およびジアミン化合物存在下、下記式(2)で示される化合物と、

$$R - X$$
 (2)

15

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]

下記式(3 a)で示される芳香族マグネシウム試薬と、

$$A - M g - Y^{1} \qquad (3 a)$$

[式中、Aは上記の意味を有する。 Y^1 は、臭素、ヨウ素、塩素、Yは炭素 アニオン配位子である。]

- 20 を反応させることを特徴とする、芳香族化合物の製造方法。
 - 2. 鉄触媒が、鉄塩又は鉄錯体であることを特徴とする、請求項1に記載の芳香族化合物の製造方法。
- 25 3. ジアミン化合物が、2座配位子であることを特徴とする、請求項1又は2に記載の芳香族化合物の製造方法。

WO 2005/075384 PCT/JP2005/002529

4. Rが、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることを特徴とする、請求項1~3 のいずれかに記載の芳香族化合物の製造方法。

- 5 5. Aが、置換基を有していてもよい $C_4 \sim C_{20}$ アリール基であることを特徴とする、請求項 $1 \sim 4$ のいずれかに記載の芳香族化合物の製造方法。
 - 6. 下記式(1)で示される芳香族化合物の製造方法であって、

R - A (1)

- 10 [式中、Rは、置換基を有していてもよい炭化水素基、又は、 $C_3 \sim C_{10}$ 飽 和環基若しくは不飽和環基であって、前記環は、酸素原子又は式-N(B) -で示される基(式中、Bは水素原子、置換基を有していてもよい $C_1 \sim C_1$ $_0$ 炭化水素基、又は置換基を有していてもよい $C_1 \sim C_{10}$ アルコキシカルボニ ル基である。)で中断されていてもよく、かつ、置換基を有していてもよく、
- 15 Aは、置換基を有していてもよい $C_4 \sim C_{20}$ 芳香族基又は置換基を有していてもよい複素芳香族基である。]

ジアミン化合物存在下、

下記式(3 a)で示される芳香族マグネシウム試薬と、

$$A - Mg - Y^{1} \qquad (3 a)$$

20 [式中、Aは上記の意味を有する。 Y^1 は、臭素、ヨウ素、塩素、Yは炭素 アニオン配位子である。]

下記式(4b)で示される亜鉛化合物とを反応させ、反応混合物を得る工程と、

$$Z^{3} - Z n - Z^{4}$$
 (4 b)

25 [式中、Z³およびZ⁴は、それぞれ、互いに独立し、同一または異なって、 臭素、ヨウ素、塩素、フッ素、又はトリフルオロメタンスルホニル基である。] 鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物と、

$$R - X \tag{2}$$

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]

を反応させる工程とを含むことを特徴とする、芳香族化合物の製造方法。

- 5 7. 鉄触媒が、鉄塩又は鉄錯体であることを特徴とする、請求項6に記載 の芳香族化合物の製造方法。
 - 8. ジアミン化合物が、2座配位子であることを特徴とする、請求項6又は7に記載の芳香族化合物の製造方法。
 - 9. Rが、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることを特徴とする、請求項6~8のいずれかに記載の芳香族化合物の製造方法。
- 15 10. Aが、置換基を有していてもよい $C_4 \sim C_{20}$ アリール基であることを特徴とする、請求項 $6 \sim 9$ のいずれかに記載の芳香族化合物の製造方法。
 - 11. 下記式(1)で示される芳香族化合物の製造方法であって、

R-A (1)

- 20 [式中、Rは、置換基を有していてもよい炭化水素基、又は、 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基であって、前記環は、酸素原子又は式-N(B) -で示される基(式中、Bは水素原子、置換基を有していてもよい $C_1 \sim C_1$ $_0$ 炭化水素基、又は置換基を有していてもよい $C_1 \sim C_{10}$ アルコキシカルボニル基である。)で中断されていてもよく、かつ、置換基を有していてもよく、
- 25 Aは、置換基を有していてもよい $C_4 \sim C_{20}$ 芳香族基又は置換基を有していてもよい複素芳香族基である。]

ジアミン化合物存在下、

10

下記式(3 c)で示される芳香族リチウム試薬と、

A-Li (3c)

WO 2005/075384 PCT/JP2005/002529

[式中、Aは上記の意味を有する。]

下記式(4b)で示される亜鉛化合物とを反応させ、

$$Z^{3} - Z n - Z^{4}$$

(4b)

[式中、Z³およびZ⁴は、それぞれ、互いに独立し、同一または異なって、 臭素、ヨウ素、又は塩素である。]

次いで、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム及び アルミニウムからなる群より選ばれる一種以上の金属を含むルイス酸金属化 合物を反応させ、反応混合物を得る工程と、

鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物と、

10 R - X

 $(2)^{\cdot}$

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]

を反応させる工程とを含むことを特徴とする、芳香族化合物の製造方法。

- 15 12. 鉄触媒が、鉄塩又は鉄錯体であることを特徴とする、請求項11に記載の芳香族化合物の製造方法。
 - 13. ジアミン化合物が、2座配位子であることを特徴とする、請求項11又は12に記載の芳香族化合物の製造方法。

20

- 14. Rが、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることを特徴とする、請求項11~13のいずれかに記載の芳香族化合物の製造方法。
- 25 15. Aが、置換基を有していてもよい $C_4 \sim C_{20}$ アリール基であることを特徴とする、請求項 $11 \sim 14$ のいずれかに記載の芳香族化合物の製造方法。

16. ルイス酸金属化合物が、下記式(4c)で示される金属化合物であることを特徴とする、請求項 $11\sim15$ のいずれかに記載の芳香族化合物の製造方法。

$$M(Z^{1})_{n}$$
 (4c)

- 5 [式中、Mは、マグネシウム、チタン、ジルコニウム、ハフニウム、ガリウム、又はアルミニウムであり、 Z^1 は、それぞれ独立して、同一又は異なって、臭素、ヨウ素、塩素、又は炭素アニオン配位子であり、nは $2\sim4$ の整数である。]
- 10 17. 下記式(1)で示される芳香族化合物の製造方法であって、

$$R - A$$
 (1)

[式中、Rは、置換基を有していてもよい炭化水素基、又は、 $C_3 \sim C_{10}$ 飽和環基若しくは不飽和環基であって、前記環は、酸素原子又は式-N(B) -で示される基(式中、Bは水素原子、置換基を有していてもよい $C_1 \sim C_1$ 0炭化水素基、又は置換基を有していてもよい $C_1 \sim C_{10}$ アルコキシカルボニル基である。)で中断されていてもよく、かつ、置換基を有していてもよく、Aは、置換基を有していてもよい $C_4 \sim C_{20}$ 芳香族基又は置換基を有していてもよい複素芳香族基である。]

ジアミン化合物存在下、下記式(3b)で示される芳香族亜鉛試薬と、

20
$$A - Z n - Y^{2}$$
 (3 b)

15

[式中、Aは上記の意味を有する。 Y^2 は、臭素、∃ウ素、Yは塩素である。] 下記式(4a)で示されるマグネシウム化合物とを反応させ、反応混合物を 得る工程と、

$$Z^{1} - Mg - Z^{2}$$
 (4 a)

 Z^{1} [式中、 Z^{1} は、炭素アニオン配位子であり、 Z^{2} は、臭素、ヨウ素、又は塩素である。]

鉄触媒存在下、前記反応混合物と、下記式(2)で示される化合物と、

$$R - X$$
 (2)

10

[式中、Rは上記の意味を有する。Xは、ハロゲン原子又はスルホン酸エステルである。]

を反応させる工程とを含むことを特徴とする、芳香族化合物の製造方法。

- 5 18. 鉄触媒が、鉄塩又は鉄錯体であることを特徴とする、請求項17に 記載の芳香族化合物の製造方法。
 - 19. ジアミン化合物が、2座配位子であることを特徴とする、請求項1 7又は18に記載の芳香族化合物の製造方法。
 - 20. Rが、置換基を有していてもよい第一級アルキル基、又は、置換基を有していてもよい第二級アルキル基であることを特徴とする、請求項17~19のいずれかに記載の芳香族化合物の製造方法。
- 15 21. Aが、置換基を有していてもよい $C_4 \sim C_{20}$ アリール基であることを特徴とする、請求項 $17 \sim 20$ のいずれかに記載の芳香族化合物の製造方法。

International application No.

PCT/JP2005/002529

A. CLASSIFICATION OF SUBJECT MATTE

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C07B37/04, 49/00, 61/00, C07C1/32, 13/28, 13/40, 15/02, 15/107, 15/12, 17/263, 22/08, 41/30, 43/21, 67/293, 67/343, 69/157, 69/24, 69/612, 69/76, 253/30, 255/37, 255/41, 255/50,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922–1996 Jitsuyo Shinan Toroku Koho 1996–2005

Kokai Jitsuyo Shinan Koho 1971–2004 Toroku Jitsuyo Shinan Koho 1994–2005

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	JP 2000-229243 A (Tosoh Corp.), 22 August, 2000 (22.08.00), (Family: none)	1-5 6-21
X Y	US 2003/0220498 A1 (FURSTNER et al.), 27 November, 2003 (27.11.03), (Family: none)	1-5 6-21
Y	JP 2001-293375 A (Tosoh Corp.), 23 October, 2001 (23.10.01), (Family: none)	6-21
Y	JP 2000-344727 A (Tosoh Corp.), 12 December, 2000 (12.12.00), (Family: none)	6-10

ث	Further documents are listed in the continuation of Box C.	Ш	See patent family annex.
* "A"	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" "L"	earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"O" "P"	cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
	of the actual completion of the international search 16 May, 2005 (16.05.05)	Date	of mailing of the international search report 31 May, 2005 (31.05.05)
	e and mailing address of the ISA/ Japanese Patent Office	Autl	norized officer
Facsi	mile No	Tele	phone No.

International application No.

PCT/JP2005/002529

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
Citation of document, with indication, where appropriate, of the relevant passages MARTIN, Rubén et al., Cross-Coupling Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex, Angewandte Chemie International Edition, 26 July, 2004 (26.07.04), Vol.43, No.30, pages 3955 to 3957	Relevant to claim No. 1-5 6-21			
	MARTIN, Rubén et al., Cross-Coupling Alkyl Halides with Aryl Grignard Reagents Catalyzed by a Low-Valent Iron Complex, Angewandte Chemie International Edition, 26 July, 2004 (26.07.04),			

International application No.

PCT/JP2005/002529

Box No.	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
. \square	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No.	III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
of close of composition of close of clo	rnational Searching Authority found multiple inventions in this international application, as follows: e matter common to a group of inventions of claims 1-5, a group of inventions laims 6-10, a group of inventions of claims 11-16, and a group of inventions laims 17-21 is a process for the production of aromatic compounds which rises reacting a specific halide or sulfonic ester compound with an aromatic compound in the presence of an iron catalyst and a diamine, but this less is publicly known as disclosed in Document A-B cited in the later and is thus still at the level of prior art. Therefore, the process is a special technical feature as provided for in PCT Rule 13.2. The being the case, there is no technical relationship among the four ntinued to extra sheet) As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2005/002529

Continuation of A. CLASSIFICATION OF SUBJECT MATTER

(International Patent Classification (IPC))

Int.Cl⁷ 213/127, 213/16, 307/20, 407/06, C07F7/08, C07J9/00// B01J31/20, 31/22, 31/30, C07B61/00

(According to International Patent Classification (IPC) or to both national classification and IPC)

Continuation of B. FIELDS SEARCHED

Minimum documentation searched (International Patent Classification (IPC))

Int.Cl⁷ C07D209/08, 211/34, 213/127, 123/16, 307/20, 407/06, C07F7/08, C07J9/00, B01J31/20, 13/22, 31/30

Minimum documentation searched (classification system followed by classification symbols)

Continuation of Box No.III of continuation of first sheet(2)

groups of inventions involving one or more of the same or corresponding special technical features. This international application includes four groups of inventions which are not so linked as to form a single general inventive concept.

Document A: JP 2000-229243 A (Tosoh Corp.),

22 August, 2000 (22.08.00)

Document B: US 2003/0220498 A1 (FURSTNER et al.),

27 November, 2003 (27.11.03)

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl.7

C07B 37/04, 49/00, C07C 1/32, 13/28, 13/40, 15/02, 15/107, 15/12, 17/263, 22/08, 41/30, 43/21, 67/293, 67/343, 69/157, 69/24, 69/612, 69/76, 253/30, 255/37, 255/41, 255/50, C07D 209/08, 211/34, 213/127, 213/16, 307/20, 407/06, C07F 7/08, C07J 9/00 // B01J 31/20, 31/22, 31/30, C07B 61/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.7

C07B 37/04, 49/00, 61/00, C07C 1/32, 13/28, 13/40, 15/02, 15/107, 15/12, 17/263, 22/08, 41/30, 43/21, 67/293, 67/343, 69/157, 69/24, 69/612, 69/76, 253/30, 255/37, 255/41, 255/50, C07D 209/08, 211/34, 213/127, 213/16, 307/20, 407/06, C07F 7/08, C07J 9/00, B01J 31/20, 31/22, 31/30

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2004年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

7 0 C (KB-7) 34 0 0 5 (K					
引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号				
	H14.4				
JP 2000-229243 A (東ソー株式会社),	. 1-5				
2000.08.22	,				
(ファミリーなし)	6-21				
·	,				
ş					
US 2003/0220498 A1 (FURSTNER et al.),	1 - 5				
2003. 11. 27					
(ファミリーなし)	6-21				
	2000.08.22 (ファミリーなし) US 2003/0220498 A1 (FURSTNER et al.), 2003.11.27				

▽ C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す。
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

16.05.2005

国際調査報告の発送日31。5。2005

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP) 郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

4V 9280

山 本 昌 広

電話番号 03-3581-1101 内線 3483

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2001-293375 A (東ソー株式会社), 2001.10.23 (ファミリーなし)	6 —21
Y	JP 2000-344727 A (東ソー株式会社), 2000. 12. 12 (ファミリーなし)	6-10
P, X	MARTIN, Rubén et al., Cross-Coupling of Alkyl Halides with Aryl	1 - 5
Р, Ү	Grignard Reagents Catalyzed by a Low-Valent Iron Complex, Angewandte Chemie International Edition, 2004.07.26, Vol. 43, No. 30, p. 3955-3957	6 —21
		,
,		
,		,

#II欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。

1. 「請求の範囲」 は、この国際調査機関が調査をすることを要しない対象に係るものである。つまり、

2. 「請求の範囲」 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、

は、後属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に従って記載されていない。

第Ⅲ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)

次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。

請求の範囲1-5に記載された発明、請求の範囲6-10に記載された発明、請求の範囲11-16に記載された発明、請求の範囲17-21に記載された発明に共通する事項である、鉄触媒及びジアミン化合物の存在下、本願所定のハロゲン又はスルホン酸エステル化合物と芳香族金属化合物とを反応させることからなる芳香族化合物の製造方法は、下記文献A-Bに記載されているように公知であり、先行技術の域を出ないから、PCT規則13.2に規定する特別な技術的特徴に該当しない。

したがって、上記の4の発明群の間には、同一又は対応する特別な技術的特徴を含む技術的な関係は存在しないから、この国際出願は、単一の一般的発明概念を形成するように連関していない4の発明群を含むものである。

- 1. 一 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
- 2. ▼ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
- 3. 「 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
- 4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。

追加調査手数料の異議の申立てに関する注意

- □ 追加調査手数料の納付と共に出願人から異議申立てがあった。
- □ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

第Ⅲ欄の続き

文献A: JP 2000-229243 A (東ソー株式会社),

2000.08.22

文献B:US 2003/0220498 A1 (FURSTNER et al.),

2003.11.27