ClassBench-ng: Recasting ClassBench After a Decade of Network Evolution

Jiří Matoušek¹, Gianni Antichi², Adam Lučanský³ Andrew W. Moore², Jan Kořenek¹

¹Brno University of Technology ²University of Cambridge ³CESNET

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation
OpenFlow Rules Generation

Summary

Packet Classification

Packet Classification

Matching header fields of incoming packets against a set of rules and performing the corresponding action.

- the basic operation of each networking device
- examples of use
 - packet forwarding
 - application of security policies
 - application-specific processing
 - application of quality-of-service guarantees
- the most common classification considers an IPv4 5-tuple

```
ip_src source IPv4 prefixip_dst destination IPv4 prefixI4_src source port
```

14_dst destination port

ip_proto protocol

a lot of existing research on packet classification

Internet Evolution

- many trends that influence packet classification
 - increasing transfer rates
 - ⇒ faster classification
 - increasing number of classification rules
 - ⇒ larger data structures
 - growing deployment of IPv6
 - ⇒ longer IP prefixes
 - adoption of SDN with OpenFlow protocol
 - → more header fields
- Internet evolution stimulates development of new packet classification algorithms
- new algorithms need to be benchmarked

Packet Classification Benchmarking

- lack of real and publicly available benchmarking data
- benchmarking using synthetically generated rule sets

ClassBench¹

- IPv4 5-tuples
- input parameters from real rule sets
- more precise output (w. r. t. parameters)

FRuG²

- IPv4 5-tuples, OF rules
- user-defined input parameters
- more flexible in the long term
- a precise and flexible benchmarking tool must be able to perform the analysis of real rule sets

¹D. E. Taylor and J. S. Turner. ClassBench: A Packet Classification Benchmark. *Transactions on Networking*, 15(3):499–511, June 2007.

²T. Ganedegara, W. Jiang, and V. Prasanna. FRuG: A benchmark for packet forwarding in future networks. In *IPCCC*, pp. 231–238. IEEE, December 2010.

Recasting ClassBench

- today's Internet is no more the one of a decade ago
- questions with respect to ClassBench
 - Are the ideas behind ClassBench still valid after the decade of Internet evolution?
 - What are the characteristics of current real rule sets based on IPv4/IPv6 5-tuples and OpenFlow-specific fields?
 - What parameters should be extracted from different types of real rule sets?
 - How to extend ClassBench with respect to IPv6 and OpenFlow?

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes
Ports and Protocol
OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation
OpenFlow Rules Generation

Summary

Analyzed Real Rule Sets

	Prefixes					
Name	or rules	Source	Date			
IPv4 prefix sets						
eqix_2015	550511	Route Views	2015-07-02			
eqix_2005	164 455	Route views	2005-07-02			
		IPv6 prefix sets				
eqix_2015	23 866		2015-07-02			
eqix_2013	13 444	Route Views	2013-07-02			
eqix_2005	658		2005-07-02			
Rule Sets From University Network						
uni_2010	96	ACLs from a university network	2010-08-30			
uni_2015	122	ACLS HOTT & University Herwork	2015-01-14			
OpenFlow rule sets						
of1	16 889		2015-05-29			
of2	20 250		2015-05-29			
	1 757	OpenFlow switch in a datacenter	2015-06-18			
of3	to		to			
	7 456		2015-07-14			

- desired properties of a rule set representation
 - anonymity
 - completeness
 - scalability

IP Prefix Set Representation

- representation of a prefix set using a trie (binary prefix tree)
- the same trie description as in ClassBench
 - prefix length distribution
 - branching probability distributions (1-child, 2-children)
 - average skew distribution

$$skew = 1 - \frac{weight(lighter)}{weight(heavier)}$$

prefix nesting threshold

IPv4 Prefix Sets (2005-2015)

• 3 times more prefixes after 10 years of evolution

Prefix Length Distribution

IPv4 Prefix Sets (2005-2015)

• 3 times more prefixes after 10 years of evolution

2-children Probability Distribution

IPv4 Prefix Sets (2005-2015)

• 3 times more prefixes after 10 years of evolution

Average Skew Distribution

IPv6 Prefix Sets (2005-2015)

36 times more prefixes after 10 years of evolution

Prefix Length Distribution

 the most common prefix length shifted from 32 (RIRs/ISPs) to 48 (end users/organizations)

IPv6 Prefix Sets (2005-2015)

36 times more prefixes after 10 years of evolution

2-children Probability Distribution

Average Skew Distribution

2 times more prefixes after 2 years of evolution

Prefix Length Distribution

only minor changes in prefix length distribution

IPv6 Prefix Sets (2013-2015)

2 times more prefixes after 2 years of evolution

2-children Probability Distribution

Average Skew Distribution

Ports Representation

5 port classes are distinguished within the analysis

WC wildcard

HI user port range (1024 : 65535)

LO well-known system port range (0: 1023)

AR arbitrary range

EM exact match

Transport Layer Protocol

Data Set	Protocol Values			
Dala sei	wildcard	TCP	UDP	
uni_2010	26.0%	71.9%	2.1%	
uni_2015	38.5%	54.9%	6.6%	

Source and Destination TCP/UDP Port

	Port Classes						
Data Set	WC	HI	LO	AR	EM		
Source Port							
uni_2010	100.0%	0.0%	0.0%	0.0%	0.0%		
uni_2015	100.0%	0.0%	0.0%	0.0%	0.0%		
Destination Port							
uni_2010	26.0%	0.0%	0.0%	5.2%	68.8%		
uni_2015	38.5%	0.0%	0.0%	8.2%	53.3%		

Source-Destination Port Pair Class

- port pair class (PPC) helps to understand interdependencies between source and destination port classes
- PPCs in uni_2015 for TCP and UDP protocols

OpenFlow 1.0 Rules

OpenFlow 1.0 extends the IPv4 5-tuple with 7 header fields

```
in_port ingress port
mac_src source MAC address
mac_dst destination MAC address
eth_type EtherType
vlan_id VLAN ID
vlan_prio VLAN priority
ip_tos DSCP (former IP ToS)
```

OpenFlow Header Field Values

Wildcarded-Specified Distribution

- header fields specification in rules from the of1+of2 rule set
- only 2 OF-specific fields specified in more than 20% of rules

Header Fields

OpenFlow Header Field Values

Unique Values Count and Uniqueness Factor

- only the rules specifying the particular field are considered
- uniqueness factor (in parenthesis) expressed in percentage

$$uniqueness_factor_{\textit{field}} = \frac{\textit{unique_values}_{\textit{field}}}{\textit{rules_specified}_{\textit{field}}}$$

of1 123 (86.6) 27 (3.2) 593 (4.7) 1 (<0.1) 478 (4.6) 109 (0.9) 48 (2.2) of2 140 (86.4) 19 (8.1) 791 (5.0) 1 (<0.1) 390 (2.8) 97 (0.7) 8227 (92.7) of1+of2 182 (59.9) 45 (4.2) 1176 (4.1) 1 (<0.1) 498 (2.0) 119 (0.4) 8237 (74.2)	Rule Set	in_port	mac_src	mac_dst	eth_type	ip_src	ip_dst	I4_dst
	of1	123 (86.6)	27 (3.2)	593 (4.7)	1 (<0.1)	478 (4.6)	109 (0.9)	48 (2.2)
of1+of2 182 (59.9) 45 (4.2) 1176 (4.1) 1 (<0.1) 498 (2.0) 119 (0.4) 8237 (74.2)	of2	140 (86.4)	19 (8.1)	791 (5.0)	1 (<0.1)	390 (2.8)	97 (0.7)	8227 (92.7)
	of1+of2	182 (59.9)	45 (4.2)	1176 (4.1)	1 (<0.1)	498 (2.0)	119 (0.4)	8237 (74.2)

OpenFlow Rule Types

OpenFlow Rule Type

Describes which header fields are wildcarded/specified in rules of this type.

- a rule type can be represented as a 12-bit binary number
 - theoretically 4096 different rule types
 - practically only 18 utilized rule types in the of 1+of2 rule set

OpenFlow Rule Set Dynamics

 dynamics of of3 expressed with the help of symmetric difference

$$A\Delta B=(A\setminus B)\cup (B\setminus A)$$

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation
OpenFlow Rules Generation

Summary

ClassBench Generation Accuracy

 comparison of 10 runs against original values from the acl4 seed

2-children Probability Distribution

ClassBench Generation Accuracy

 comparison of 10 runs against original values from the acl4 seed

Average Skew Distribution

ClassBench-ng

- built upon original ClassBench
- improves IPv4 prefixes generation accuracy
- supports IPv6 prefixes generation
- supports OpenFlow analysis and generation

Improved ClassBench

- IPv4 prefixes generation is improved using a trie pruning algorithm
 - starts from 100 times bigger prefix set
 - removes individual prefixes to adjust prefix set parameters to the given values
- 3 steps of the trie pruning algorithm
 - 1 branching probabilities adjustment (\psi)
 - 2 average skew distribution adjustment (†)
 - 3 prefixes length distribution adjustment (1)
- steps 1 and 2 try to remove as less prefixes as possible
- each step aims to not alter the already ajusted characteristics

OpenFlow Analysis

- generates an OpenFlow seed from an OpenFlow rule set (in the ovs-ofct1 format)
- 3 parts of the OpenFlow seed
 - rule type distribution
 - 5-tuple seed (compatible with ClassBench)
 - OpenFlow-specific seed
- 4 types of representation within the OpenFlow-specific seed
 - values (in_port, eth_type)
 - parts (mac_src, mac_dst)
 - size (vlan_id)
 - null (vlan_prio, ip_tos)

OpenFlow Generation

- consists of 3 steps
 - uses Improved ClassBench to generate the given number of IPv4 5-tuples
 - 2 removes IPv4 5-tuple fields that are not part of the given OpenFlow rule type
 - 3 adds OpenFlow-specific header fields that are part of the given OpenFlow rule type
- does not allow to generate inconsistent rules (e.g., a rule specifying VLAN ID and EtherType 0x0800)

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation
OpenFlow Rules Generation

Summary

ClassBench-ng Evaluation

- comparison on IPv4 prefixes generation with
 - ClassBench
 - FRuG
- comparison on IPv6 prefixes generation with
 - Non-random Generator³
- comparison on OpenFlow rules generation with
 - FRuG
- tools are compared using RMSE

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\bar{y} - y_i)^2}$$

- tool-specific seeds extracted from a common original rule set
- 10 individual runs of each tool (n = 10)
- comparison of generated values (y_i) against the target value from the seed (\bar{y})

³M. Wang, S. Deering, T. Hain, and L. Dunn. Non-random Generator for IPv6 Tables. In *HOTI*. IFFF. 2004.

IPv4 Prefixes Generation

 the original rule set generated by ClassBench using the acl4 seed

2-children Probability Distribution

IPv4 Prefixes Generation

 the original rule set generated by ClassBench using the acl4 seed

Average Skew Distribution

IPv4 Prefixes Generation

 the original rule set generated by ClassBench using the acl4 seed

Prefix Length Distribution

IPv4 Prefixes Generation — Average RMSE

 the original rule set generated by ClassBench using the acl4 seed

IPv6 Prefixes Generation

- two original rule sets from the rrc00_2015 source
- not entirely fair comparison because of different inputs
 - an IPv6 prefix set for ClassBench-ng
 - an IPv4 prefix set for Non-random Generator

Prefix Length Distribution

IPv6 Prefixes Generation

two original rule sets from the rrc00_2015 source
 2-children Probability Distribution

Average Skew Distribution

IPv6 Prefixes Generation — Average RMSE

two original rule sets from the rrc00_2015 source

$$RMSE_{avg}^{i} = \frac{RMSE_{prefixes}^{i} + RMSE_{branching}^{i} + RMSE_{skew}^{i}}{3}$$

OpenFlow Rules Generation

the original rule set is of?

OpenFlow Rule Types

OpenFlow Rules Generation

the original rule set is of1

OpenFlow-Specific Header Fields

$$RMSE_{field}^{avg} = \frac{1}{N} \sum_{i=1}^{N} RMSE_{field}^{i}$$

Agenda

Motivation

Analysis of Real Rule Sets

IP Prefixes Ports and Protocol OpenFlow

ClassBench-ng

ClassBench-ng Evaluation

IP Prefixes Generation
OpenFlow Rules Generation

Summary

Summary

- the detailed analysis of real classification rule sets
 - IPv4/IPv6 prefixes from core routers
 - ACL rules from a university network
 - OpenFlow 1.0 rules from a datacenter
- ClassBench-ng tool that is able to
 - accurately generate IPv4/IPv6 5-tuples
 - analyze real OpenFlow rule sets
 - accurately generate OpenFlow rules
- ClassBench-ng page at

https://classbench-ng.github.io

- link to to the ClassBench-ng repository
- links to related tools/papers

Thank you for your attention