# Problem 1

(i) 
$$1\pi_{0}(\pi_{0}) = g(\pi_{0}) + \frac{5}{505} d_{n}^{20}(5) \cdot \frac{5}{600}\pi_{0}(615) \cdot A^{20}(5.6)$$

$$= g(\pi_{0}) + \frac{5}{505} d_{n}^{20}(5) \cdot 0$$

(by lemma ()

$$= g(\pi_{0}) + \frac{5}{505} d_{n}^{20}(5) \cdot 0$$

(iii) 
$$70 |_{\bar{n}_{0}}(70)|_{\theta:01} = 70 |_{\bar{n}_{0}}(70)|_{\theta:01} + 70 |_{\frac{5}{5}(5)} |_{\frac{7}{5}(5)}(5) |_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac{3}{5}(5)}(5)|_{\frac$$

= 10 ( 5 (201) + 5 (2015) - 201615) · A 20

(by performance difference lemma)

iby bellman equation)

#### chy lemma 1)

# Problem 1

#### 1a)

(take derivative)

Since A = O boundary value doesn't exist,

# Problem 3

| Pt10) > 0           | At | Return value | objective is clipped | sign of objective | Gradient |
|---------------------|----|--------------|----------------------|-------------------|----------|
| Pt 10) + [1-4, 1+2] | +  | 2-101.17-    | No                   | 1                 | ✓        |
| Pt10) t [1-4,1+4]   | _  | D+107.14     | No                   | _                 | V        |
| Pt (0) < 1 - E      | +  | 11-4).1.1    | 705                  | +                 | 0        |
| Pt10) 1 1- 8        | _  | 11-21. 171   | 4e5                  | -                 | 0        |
| Pt101 > 1+2         | +  | (1+ E). At   | yes                  | +                 | 0        |
| Pt 101 > 1+ 2       | -  | (1+ E). A1   | -/ e s               | _                 | 0        |
|                     | 1  |              |                      | l                 | I        |





### explain

lompared to Figure 1, we observe that Is, a give a severe

punishment on loss that is negative, while Isla is dipped on both sides



Figure 1: Behavior of the original PPO-clip objective.