eigenvectors and eigenvalues

Let A be a $n \times n$ matrix.

- 1. An eigenvector of A is a nonzero vector \vec{v} in \mathbb{R}^n such that $A\vec{v}=\lambda\vec{v}$, for some scalar λ
- 2. An eigenvalue of A is a scalar λ such that the equation $A\vec{v} = \lambda \vec{v}$ has a non-trivial* solution

If $A\vec{v} = \lambda \vec{v}$ for $\vec{v} \neq 0$, we say that λ is the eigenvalue for \vec{v} , and that \vec{v} is an eigenvector for λ .

^{*}means that the solution vector \vec{v} is not the zero vector ($\vec{v} \neq \vec{0}$), and ensures that it represents a meaningful direction in the vector space.

verifying eigenvectors

How to check if a given \vec{v} is the eigenvector of a given matrix A

- ullet multiply $ec{v}$ by A and see if $Aec{v}$ is a scalar multiple of $ec{v}$, i.e. $Aec{v}=\lambdaec{v}$
- what happens when a matrix hits a vector?

Example Consider matrix
$$A = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix}$$
 and vector $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Which are eigenvectors? What are their eigenvalues?

$$A\vec{v} = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4\vec{v}$$

$$\implies \vec{v} \text{ is an eigenvector of } A$$

$$A\overrightarrow{w} = \begin{bmatrix} 2 & 2 \\ -4 & 8 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

$$\implies \overrightarrow{w} \text{ is not an eigenvector of } A$$

