THE 1 Solutions

Answer 1

a)

Table 1: Truth table for $(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$

p	q	$\neg p$	$q \to \neg p$	$p \leftrightarrow q$	
T	Τ	F	F	Т	F
T	F	F	Т	F	F
F	T	T	Т	F	F
F	F	Τ	${ m T}$	${ m T}$	T

b)

Table 2: Truth table for $((p \lor q) \land (p \to r) \land (q \to r)) \to r$

p	q	r	$p \lor q$	$p \rightarrow r$	$q \rightarrow r$	$(p \lor q) \land (p \to r) \land (q \to r)$	$(p \lor q) \land (p \to r) \land (q \to r) \to r$
Τ	T	Т	Т	Т	Т	T	Т
T	T	F	${ m T}$	F	F	${ m F}$	T
T	F	Т	${ m T}$	T	Т	${ m T}$	${ m T}$
\mathbf{T}	F	F	${ m T}$	F	${ m T}$	${f F}$	T
F	Т	Т	${ m T}$	T	${ m T}$	${ m T}$	T
F	Т	F	${ m T}$	T	F	${f F}$	T
F	F	Т	\mathbf{F}	T	${ m T}$	${f F}$	T
F	F	F	\mathbf{F}	T	Т	${ m F}$	T

Thus, $((p \lor q) \land (p \to r) \land (q \to r)) \to r$ is a tautology.

Answer 2

$$\neg p \to (q \to r)$$

$$\equiv \neg p \rightarrow (\neg q \vee r)$$
 Implication (Table 7)

$$\equiv \neg \neg p \vee (\neg q \vee r)$$
 Implication (Table 7)

$$\equiv p \vee (\neg q \vee r)$$
 Double Negation Law (Table 6)

$$\equiv (p \vee \neg q) \vee r$$
 Associative Law for Disjunction (Table 6)

$$\equiv (\neg q \vee p) \vee r$$
 Commutative Law for Disjunction (Table 6)

 $\equiv \neg q \lor (p \lor r)$ Associativity Law for Disjunction (Table 6)

 $\equiv q \rightarrow (p \vee r)$ Implication (Table 7)

Thus, $\neg p \to (q \to r)$ is logically equivalent to $q \to (p \lor r)$.

Answer 3

- a) $\forall x L(x, Burak)$
- **b)** $\forall y L(Hazal, y)$
- c) $\forall x \exists y L(x, y)$
- **d)** $\neg \exists x \forall y L(x,y)$
- e) $\forall y \exists x L(x, y)$
- **f)** $\neg \exists x (L(x, Burak) \land L(x, Mustafa))$
- $\mathbf{g)} \ \exists x \exists y (L(Ceren, x) \land L(Ceren, y) \land (x \neq y) \land \forall z (L(Ceren, z) \rightarrow ((z = x) \lor (z = y)))$
- $\mathbf{h)} \ \exists y \forall x (L(x,y) \land \forall z (\forall k L(k,z) \to (z=y)))$
- i) $\neg \exists x L(x,x)$
- $\mathbf{j)} \ \exists x \exists y (L(x,y) \land L(x,x) \land (x \neq y) \land \forall z (L(x,z) \rightarrow ((z=x) \lor (z=y)))$

Answer 4

1)	p	premise
2)	$p \to (r \to q)$	premise
3)	$q \to s$	premise
4)	$\neg q$	assumption
5)	$r \rightarrow q$	$\rightarrow e$ 2,1
6)	r	assumption
7)	q	$\rightarrow e 5.6$
8)		$\neg e \ 7,4$
9)	$\neg r$	$\neg i \ 6-8$
10)	$s \vee \neg r$	$\forall i_2 \ 9$
11)	$\neg q \to (s \vee \neg r)$	→ i 4-10

Answer 5

1)	$\forall x (p(x) \to q(x))$	premise
2)	$ eg \exists z \mathrm{r}(z)$	premise
3)	$\exists y p(y) \vee r(a)$	premise
4)	$\exists y p(y)$	assumption
5)	p(c)	assumption
6)	$p(c) \to q(c)$	$\forall e 1$
7)	q(c)	\rightarrow e 5,6
8)	$\exists z \mathrm{q}(z)$	∃i 7
9)	$\exists z q(z)$	∃e 4,5-8
10)	$\forall z \neg r(z)$	Lemma 2
11)	r(a)	assumption
12)	$\neg \mathrm{r}(a)$	∀e 10
13)	\perp	¬e 11,12
14)	$\mathrm{q}(a)$	⊥e 13
15)	$\exists z \mathrm{q}(z)$	∃i 14
16)	$\exists z q(z)$	∨e 3,4-9,11-15

Proof of **Lemma** $(\neg \exists x p(x) \vdash \forall x \neg p(x))$:

1)		$\neg \exists x \mathbf{p}(x)$	premise
2)	x_0		∀i constant
3)		$p(x_0)$	assumption
4)		$\exists x p(x)$	∃i 3
5)		\perp	$\neg e 4,1$
6)	· ·	$\neg p(x_0)$	¬i 3-5
7)		$\forall x \neg p(x)$	∀i 2-6

Alternative solution (without using **Lemma**):

1)	$\forall x (p(x) \to q(x))$	premise
2)	$\neg \exists z \mathrm{r}(z)$	premise
3)	$\exists y p(y) \vee r(a)$	premise
4)	$\exists y p(y)$	assumption
5)	p(c)	assumption
6)	$p(c) \to q(c)$	∀e 1
7)	q(c)	\rightarrow e 5,6
8)	$\exists z q(z)$	∃i 7
9)	$\exists z q(z)$	∃e 4,5-8

10)	r(a)	assumption
11)	$\exists z \mathbf{r}(z)$	∃i 10
12)		$\neg e \ 11,2$
13)	q(a)	\perp e 12
14)	$\exists z q(z)$	∃i 13
15)	$\exists z q(z)$	∨e 3,4-9,10-14