CESSNA 172 MLS (MICROMAVE LANDING SYSTEM) TERMINAL INSTRUMENT PROCEDURES (...(U) FEDERAL RYIATION ADMINISTRATION MASHINGTON DC E J PUGACZ OCT 67 DOT/FRA/CT-TNB7/36 F/8 17/7. 3 NO-8191 241 UNCLASSIFIED

METHOL TODGETH HUTTON METERS SEE THEN THE TANK

AD-A191 241

OTIC_EILE_LUEN

Cessna 172 MLS Terminal Instrument Procedures (TERPS) Approach Data Collection and Processing Data Report

Edward J. Pugacz

October 1987

DOT/FAA/CT-TN87/36

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Approved for public released
Distribution Unlimited

U.S. Department of Transportation

Federal Aviation Administration

Technical Center Atlantic City Airport Not 08405

NOTICE

日本のできない。 これできるからは、「これではなから、「これできないとは、これではないないできょうないないないできょうできないないない。」できるないなから、これではないというできない。

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.					
DOT/FAA/CT-TN87/36							
4. Title and Subtitle		5. Report Date					
CESSNA 172 MLS TERMINAL	INSTRUMENT	October 1987					
PROCEDURES (TERPS) APPR	OACH DATA	6. Performing Organization Code					
COLLECTION AND PROCESSI	NG, DATA REPORT	ACT-140					
		8. Performing Organization Report No.					
7. Author's)							
Edward J. Pugacz		DOT/FAA/CT-TN87/36					
9. Performing Organization Name and Ad		10. Work Unit No. (TRAIS)					
Department of Transport							
Federal Aviation Admini	stration	11. Contract or Grant No.					
Technical Center		T0603P					
Atlantic City Internati	onal Airport, N.J. 08405	13. Type of Report and Period Covered					
12. Sponsoring Agency Name and Address							
Department of Transport		Technical Note					
Federal Aviation Admini		June 1986 - June 1987					
Program Engineering and		14. Spansaring Agency Code					
Washington, D.C. 20590							
15. Supplementary Notes							

16. Abstract

This report documents the approaches portion of the Fixed Wing Microwave Landing System (MLS) Terminal Instrument Procedures (TERPS) data collection and processing project using a Cessna 172 (C-172) aircraft. This is one part of the Fixed Wing MLS TERPS data collection and processing program being performed at the Federal Aviation Administration (FAA) Technical Center. The program was undertaken to collect flight test data in various aircraft to establish a data base for development of MLS TERPS criteria.

Data were collected during both missed approaches and landings using glideslopes of 3° , 4° , and 5° with all flights being tracked by ground based tracking systems.

Statistical processing was performed on both the airborne and tracker data, and various graphical plots were produced. The processed data were delivered to AVN-210 for inclusion in the MLS TERPS criteria development data base.

17. Key Words		18. Distribution Stateme	ent	
Fixed Wing MLS TERPS Microwave Landing Svstem (Terminal Instrument Proced		public throu	t is available gh the National Service, Spring 161	Technical
19. Security Classif, (of this report)	20. Security Class	iil. (al this page)	21. No. of Pages	22. Price
Unclassified	Unclass	sified	208	

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	vii
INTRODUCTION	1
Background and Objectives	1
SYSTEM/EQUIPMENT DESCRIPTION	1
MLS and Precision Distance Measuring Equipment Test Aircraft Airborne Data Collection Equipment Aircraft Tracking Equipment Test Location	1 1 1 3 3
PROCEDURE DEVELOPMENT AND EVALUATION	3
OPERATIONAL PROCEDURES	4
Subject Pilot Selection Subject Pilot Briefing Data Collection Flights	4 4 4
DATA PROCESSING	5
Flight Test Data Subject Pilot Questionnaires Plan and Profile Validity Plots Merge Fill Smoothing Data Partitioning Statistics	5 5 6 6 6 7 7
RESULTS Statistical Printouts And Tapes Composite Plots Isoprobability Plots Landing Segment Scatter Plots Deliveries	8 8 8 8 8 8
APPENDICES	Accessor For
 A - Subject Pilot Information Package B - Flight Logs C - Subject Pilot Questionnaire D - Sample Validity Plots E - Sample Summary Statistics Printouts F - Minima Analysis Printouts G - Composite Plots H - Isoprobability Plots I - Sample Landing Segment Scatter Plots 	TATES CRASH D

List of Tables

Table		Page
1	Airborne Data Collection Parameters	3
2	Sequence of Approaches and Departures	5
3	List of Usable Runs	6
4	Standard Statistics	7
5	Standard Statistics Equations	9
6	Parameters for Statistical Calculations: Intermediate and Final Approach Segments	10
7	Parameters for Statistical Calculations: Missed Approach Segment; Longitudinal Bins	11
8	Parameters for Statistical Calculations: Missed Approach Segment; Vertical Bins	11
9	Parameters for Statistical Calculations: Missed Approach Segment; Minima Analysis	11

EXECUTIVE SUMMARY

This report documents the Federal Aviation Administration (FAA) Technical Center's Cessna 172 (C-172) Fixed Wing Microwave Landing System (MLS) Terminal Instrument Procedures (TERPS) approach data collection and processing project. This is one portion of the Technical Center's MLS TERPS data collection program. As the implementation of MLS approaches, the application of Instrument Landing System (ILS) TERPS criteria to MLS guided procedures has become inadequate due to MLS's more extensive guidance capabilities. The Technical Center's Engineering Division, ACT-100, was tasked by the Standards Development Branch, AVN-210, Aviation Standards National Field Office, through the Navigation And Landing Division, APM-400, with collecting and processing MLS TERPS flight test data in a Cessna-172 general aviation aircraft. AVN-210 will use the data collected during this project, and additional projects being conducted in various aircraft by the Technical Center and other organizations, to develop MLS TERPS criteria.

During this flight test series, various approach and departure procedures were flown in a leased C-172 to and from runway 13/31 at the Atlantic City International Airport (ACY). The departure procedures flown will be the subject of another report. A Bendix Basic Narrow MLS was used, along with a Bendix MLS receiver. Approach angles of 3°, 4°, and 5° were used for both missed approaches and landings. Sixteen general aviation subject pilots completed all or part of the flight test series. All flights had aircraft parameters recorded by an on-board data collection system, and were tracked throughout by ground based tracking systems.

The airborne and tracking data from each flight were checked for validity, merged, smoothed, and gaps in the data were filled by either linear interpolation or a least-squares quadratic polynomial curve fitting routine. The data were partitioned into bins and statistical calculations were performed. Plan, profile, composite, isoprobability, and scatter plots were drawn. The processed data were delivered to AVN-210 for inclusion in the MLS TERPS criteria development data base.

INTRODUCTION

BACKGROUND AND OBJECTIVES.

As the implementation of the Microwave Landing System (MLS) approaches, the application of Instrument Landing System (ILS) Terminal Instrument Procedures (TERPS) criteria to MLS guided approaches and departures has become inadequate due to MLS's more extensive guidance capabilities. The Federal Aviation Administration (FAA) Technical Center's Engineering Division, ACT-100, was tasked by the Standards Development Branch, AVN-210, Aviation Standards National Field Office, through the Navigation And Landing Division, APM-400, with collecting and processing MLS TERPS flight test data in a Cessna-172 (C-172) general aviation aircraft. AVN-210 will use the data collected during this project, and other projects being conducted in various aircraft by the Technical Center and other organizations, to develop an MLS TERPS criteria data base.

SYSTEM/EQUIPMENT DESCRIPTION

MLS AND PRECISION DISTANCE MEASURING EQUIPMENT.

The "Basic Narrow" MLS used for this project was developed for the FAA by the Communications Division of the Bendix Corporation. It consists of azimuth and elevation subsystems in a noncollocated configuration. It provides proportional guidance through +40° of azimuth and 0° to 15° in elevation in the Phase III signal format. An International Civilian Aviation Organization (ICAO) signal format MLS could not be procured in time for this phase of the project. Because a Precision Distance Measuring Equipment (DME/P) ground station was not available for this flight test series, the airport Conventional Distance Measuring Equipment (DME/N) ground station was used instead. This did not present a problem procedurally because the airport DME ground station is located next to runway 13/31, approximately 1 mile from the azimuth DME location.

TEST AIRCRAFT.

The test aircraft was a leased Cessna-172P. This is a representative small general aviation (GA) aircraft, with a gross weight of approximately 2,400 pounds, a cruising speed of 110 knots, and approach speeds in the range of 70 to 90 knots. The aircraft's avionics were standard, except for the addition of a Bendix MLS Service Test Evaluation Program (STEP) receiver and control head.

AIRBORNE DATA COLLECTION EQUIPMENT.

The airborne data collection system (figure 1) was designed and fabricated by ACT-140. It was controlled by a Motorola 6809 microprocessor and an ACT-140 designed Aircraft Systems Coupler (ASC) retrieved analog and digital aircraft sensor data, along with time code generator data, and formatted it in 8-bit parallel form for processing by the computer. The data were recorded on a digital cassette tape recorder twice per second. A Collins DME-40 interrogator was used to provide DME information to the data collection system (the GA DME

FIGURE 1. AIRBORNE DATA COLLECTION SYSTEM.

interrogator installed in the instrument panel was not equipped with recordable outputs). The parameters collected are listed in table I.

TABLE 1. AIRBORNE DATA COLLECTION PARAMETERS

Parameter	Units	Resolution
Time	Hours, minutes, seconds, 1/10 second	0.1 sec
Vertical deviation (flight technical error (FTE))	Crosspointer deviation in millivolts (mV)	0.5 mV
Lateral deviation (FTE)	Crosspointer deviation (mV)	0.5 mV
MLS azimuth	Degrees	0.005°
MLS elevation	Degrees	0.005°
DME	Nautical miles (nmi)	0.01 nmi

AIRCRAFT TRACKING EQUIPMENT.

In order to assure continuous tracking of the aircraft during all maneuvers, two different tracking systems were used: NIKE radar and a laser tracker.

The Technical Center's NIKE radar is a precision X-band instrumentation radar system that was adapted from a missile tracking radar to measure and record an aircraft's position in slant range and azimuth and elevation angles. NIKE has a maximum range of 200 nmi.

The pulsed infrared laser tracker is positioned approximately 0.5 mile north of runway 13/31. A mirrored retroreflector was mounted below the cockpit of the aircraft to return the laser beam. Slant range and azimuth and elevation angles were recorded as for NIKE. The laser tracker generally provided the more accurate tracking data at distances of 5 nmi or less from the ground point of intercept (GPI), and at these distances is preferred to NIKE data. Parallax corrections for MLS antenna and retroreflector locations were not made because of their relatively close proximity.

TEST LOCATION.

All procedure development and data collection flights were flown to and from runway 13/31 at the Atlantic City International Airport (ACY), which is located on the grounds of the FAA Technical Center, Egg Harbor Township, New Jersey.

PROCEDURE DEVELOPMENT AND EVALUATION

The procedures for this flight test series were developed by Mr. Theos McKinney, ACT-630, FAA Technical Center, and personnel from the Standards Development Branch, AVN-210, located at the FAA Aeronautical Center, Oklahoma City, OK. AVN-210 personnel were at the Technical Center during the procedure evaluation flights. The procedure evaluation flights were flown by Technical Center pilots to and from runway 13/31. Approach angles up to 6° were flown before the final determinations were made. After considering a number of factors including safety and approaches during tailwinds, it was determined that the maximum operational elevation angle (MOEA) would be 5°. Since the shallowest approach angle would be 3°, it was obvious that the midpoint elevation angle should be 4°. At the same time, two departure procedures where evaluated. They will be discussed in the C-172 "Departures Data Report."

OPERATIONAL PROCEDURES

SUBJECT PILOT SELECTION.

The subject pilots for this flight test program were taken from the ranks of general aviation pilots. In all, 16 subject pilots were used. All pilots were instrument rated, and had no previous experience flying MLS procedures.

SUBJECT PILOT BRIEFING.

When a subject pilot arrived at the Technical Center, he received a thorough briefing by one of the project safety pilots. Included in the briefing was an explanation of the operation of MLS, a review of aircraft operating procedures, and a review of the procedures to be flown. A sample of the information packet sent to each subject is in appendix A.

DATA COLLECTION FLIGHTS.

In addition to the subject and safety pilots, each flight had a data collection technician onboard. The data collection technician operated the data collection system, monitored all project equipment, and recorded event mark times and other observations on a flight log (see appendix B). The project safety pilot handled all communication with air traffic control (ATC) and the tracking facilities, monitored the subject pilot for safe operation of the aircraft, and operated the vision restricting goggles.

Instead of conventional vision restricting goggles or a hood, an electronically controlled set of instrument meteorological condition (IMC) simulation goggles were used. These goggles have the ability of simulating runway visual range (RVR) of 0 to 1 mile. They can also be instantly cleared to simulate breaking our of clouds. The goggles have a sensing switch that allows a portion of the goggles to be clear while the subject pilot is looking at the instruments, but causes the goggles to completely fog over if the subject lifts his head to look out of the cockpit. Since the goggles were operated by the safety pilot, the chances of cheating were reduced, and a more natural flight environment was presented. Therefore, the subject pilot was able to concentrate on flying the aircraft and not have to worry about removing a hood at decision height (DH). During an approach, the visibility was set to zero. When the subject pilot reached DH, the safety pilot simply cleared the glasses for a landing or kept them fogged for a missed approach. This was important, since the subject pilot did not know if the procedure would terminate in a landing or a missed approach until reaching DH.

Each subject pilot flew 16 approaches. Twelve resulted in missed approaches, and four were flown to landing. In addition, four departures were flown and will be discussed in the C-172 Departures Data Report. The sequence of runs is listed in table 2.

TABLE 2. SEQUENCE OF APPROACHES AND DEPARTURES

	Session 1	Session 3
1. 2. 3. 4. 5.	Shuttle departure 3° Missed approach 4° Missed approach 5° Missed approach 3° Landing Session 2	11. Course reversal departure 12. 5° Missed approach 13. 3° Missed approach 14. 4° Missed approach 15. 4° Landing Session 4
6. 7. 8. 9.	Shuttle departure 4° Missed approach 5° Missed approach 3° Missed approach 5° Landing	 16. Shuttle departure 17. 3° Missed approach 18. 4° Missed approach 19. 5° Missed approach 20. 3° Landing

DATA PROCESSING

FLIGHT TEST DATA.

Flight Test data came from four sources: an airborne data tape, a NIKE tracking tape, a laser tracking tape, and observer flight logs. The airborne tape contained the aircraft parameters collected onboard the aircraft during the data collection flights (table 1). The NIKE and laser tracking tapes contained tracking data that had been converted from slant range, azimuth, and elevation to x, y, and z coordinates using the Technical Center coordinate system. During processing the origin of the tracking data was translated to the appropriate GPI for each glide slope angle. The observer flight logs contained the times for specific events during the procedures and any other pertinent information about the flight.

SUBJECT PILOT QUESTIONNAIRE.

At the conclusion of the fourth flight session, the subject pilot was given a questionnaire to fill out (see appendix C). These questionnaires asked the pilot his opinions on the flyability of each procedure. The completed questionnaires were forwarded to AVN-210 for tabulation and analysis.

PLAN AND PROFILE VALIDITY PLOTS.

For each approach, plan and profile view validity plots were generated (see appendix D). These plots depict vertical and lateral aircraft position and the corresponding azimuth and elevation crosspointer deviations, with respect to

the intended path. The plots determined which runs contained valid data. Runs that had bad tracking data were incorrectly flown due to ATC instructions, or were invalid for other reasons, were eliminated from the statistics pool. The total number of runs flown and the number that were usable are shown in table 3.

TABLE 3. LIST OF USABLE RUNS

Total Number of Pilots:	16
Total Number of Approaches:	258
Number of Missed Approaches and Landings	
Providing Usable Data:	201
Number of Missed Approaches Providing Usable Data:	
3° Missed Approaches:	49
4° Missed Approaches:	51
5° Missed Approaches:	52
Total	152
Number of Landings Providing Usable Data:	
3° Landings:	23
4° Landings:	13
5° Landings:	13
Total	49

MERGE.

In order to process data that came from three different sources, it was necessary to merge the data from the airborne, NIKE, and laser tapes into one file. When recorded, each record on each tape had been tagged with synchronized time. Thus, it was possible to merge the data from the three different tapes into one data file. The time on the airborne tape was considered the "master," and the data from the tracking tapes were aligned with the data from the airborne tape. A mode flag was created for each merged data file to indicate which tracking data sets were valid. Tracking data were considered invalid only if there were no data with the proper time tag.

FILL.

Occasionally, gaps were present in both the airborne and tracking data. To provide as continuous a string of data as possible, two methods were used to fill in these gaps. If the gap consisted of only one missing record, linear interpolation was used to calculate the missing data. If the gap was between 2 and 20 records long, a least-squares quadratic polynomial curve fitting resting was used. If the gap was greater than 20 records, the gap was too long for the filling restines and was left in the data base.

RMOOTHING.

Durang or classing of the lata, a problem was discovered in some of the assproprior late plots, party clark the navigation system error plots. The

plots were extremely noisy, having cyclical spikes with peak to peak values of 30 feet or more. After extensive investigation, the problem was traced to the conversion of MLS azimuth, elevation, and DME to the x,y,z coordinates needed for certain statistical processing. The algorithms used during coordinate conversion were designed to use DME/P data with a resolution of 0.01 nmi. However, only DME/N data, which has a resolution of 0.1 nmi, were available during the flight tests, so smoothing of the DME/N data was necessary. The DME/N data were put through a 41-point smoothing filter, and the resulting data were truncated to 0.01 nmi. This smoothed data was used for all statistical processing where DME/P data were needed, and produced results similar to those seen in previous tests using DME/P data.

\text{\picksise}\text{\text{\text}\text{\tert{\text{\tert{\text{\te\tint{\text{\text{\text{\text{\text{\text{\text{\ti}}}}}}}}}}}}}}

AND STATES SECRECAL MANAGEMENT STATES

DATA PARTITIONING.

In order to compute the required statistics, it was necessary to partition, or bin, the data horizontally (perpendicular to the intended flightpath), and vertically (parallel to the ground). For horizontal bins, the first bin (bin zero) is located along the system x-axis (runway centerline) at the point where a line dropped from the theoretical threshold crossing height (TCH), which is 50 feet above ground level (AGL), intersects the x-axis. Each subsequent bin was located at 50-meter intervals, with positive bins located on the approach side of bin zero and negative bins located on the landing, or missed approach side of bin zero. Additional bins were located at the following points:

- Intermediate Approach Fix
- 2. Final Approach Fix
- 3. Missed Approach Point (DH)
- 4. Missed Approach Boundary

Vertical partitions were established for missed approach segments. The vertical bins were located at 10-meter intervals AGL while below DH (200 feet), and at 25-meter intervals AGL above DH to 2000 feet AGL.

STATISTICS.

Statistical calculations were performed on the data in each bin. The parameters calculated are in table 4.

TABLE 4. STANDARD STATISTICS

Parameter	Notation
Number of data points	N
Arithmetic mean	\overline{X}
Maximum value	x_{max}
Minimum value	Xmin
Unbiased estimate of variance	S ₁₁ 2
Biased estimate of variance	Տ _ա 2 Տ _ե 2
Unbiased estimate of standard deviation	S.,
Biased estimate of standard deviation	Sh
Skewness	51
Kurtosis	p5

To aid in the calculations for skewness and kurtosis, the first 4 moments about zero were calculated. The equations used to calculate the standard statistics and first 4 moments about zero are shown in table 5.

RESTLIS

STATISTICAL PRINTOUTS AND TAPES.

The statistical data were delivered to AVN-210 in two different formats. A set of summary statistics and the minima analysis were printed to allow a quick overview of the statistical data. The full set of statistical data were recorded on magnetic tapes due to the extensive volume of paper that would be needed to print the complete set. Examples of the summary statistics printouts are provided in appendix E. The complete set of minima analysis printouts are presented in appendix E. The parameters for which statistics were calculated are listed by segment in tables 6, 7, and 8. The parameters for the minima analysis are listed in table 9.

COMPOSITE PLOTS.

It see now the subject pilots performed as a group, composite plots of each type of approach were produced and are shown in appendix G. These plots are an overlaw of each of the individual plan and profile view validaty plots and provide an indivation of how much airspace needs to be protected for a particular procedure.

ISOPROBABILITY PLOTS.

A graphical presentation of the computed statistics was performed by the drawing of *h standard deviation isoprobability plots. The complete set of isoprobability plots is included in appendix H.

LANDING SEGMENT SCATTER PLOTS.

Our to the relatively small number of landings performed faring this flight test series, no statistical analysis was fine in the landing segment rata. However, landing segment scatter plots with a 45 periont error elipse in each plot were generated for both horizontal and vertical bins. Samples of the landing segment scatter plots are snown in appendix I.

DELIVERIES.

The following plots and processed data were shopped to AVN-2.5 $^{\circ}$ $^{\circ}$ time 30, 1987.

- 1. All validity plats for missed approximes and landings.
- 2. All is perhapility points for missed approaches and land take
- 3.00411 . Ambies, the plots for missed approaches and cantings.
- ... All summary statistics print its for misset approaches act and one
- $\delta_{\rm sol}$. Also material analysis promotes to the massed appears has
- Complete standard statistics on magnetic tables to missed a proactise and landings.
- 7. All landing segment scatter parts with toper entour realizable.
- 5. All archival merge and statistics magnetic taxes

TABLE 5. STANDARD STATISTICS EQUATIONS

Arithmetic Mean (first moment about zero):
$$\overline{X} = M_1 = \underline{\Sigma X}$$

Second Moment About Zero:
$$M_2 = \frac{\Sigma X^2}{N}$$

Third Moment About Zero:
$$M_3 = \frac{\Sigma X^3}{N}$$

Fourth Moment About Zero:
$$M_4 = \frac{\Sigma X^4}{N}$$

Biased Estimate of Variance:
$$S_b^2 = M_2 - M_1^2$$

Unbiased Estimate of Variance:
$$S_u^2 = \frac{(S_b^2)N}{N-1}$$

Biased Estimate of Standard Deviation:
$$S_b = \sqrt{M_2 - M_1^2}$$

Unbiased Estimate of Standard Deviation:
$$S_u = \sqrt{\frac{(s_b 2) N}{N-1}}$$

Skewness:
$$b_1 = M_3 - 3M_1M_2 + 2M_1^3 - (M_2 - M_1^2)^{1.5}$$

Kurtosis:
$$b_2 = \frac{M_4 - 4M_1M_3 + 6M_1^2M_2 - 3M_1^4}{(M_2 - M_1^2)^2}$$

TABLE 6. PARAMETERS FOR STATISTICAL CALCULATIONS: INTERMEDIATE AND FINAL APPROACH SEGMENTS

Parameters for Statistics	Intermediate	Final
Crosstrack Position (feet)	Yes	Yes
Altitude (feet)	Yes	Yes
Azimuth TSE (degrees)	Yes	Yes
Azimuth TSE (feet)	Yes	Yes
Azimuth FTE (degrees)	Yes	Yes
Azimuth FTE (feet)	Yes	Yes
Azimuth FTE (% full scale)	Yes	Yes
Azimuth NSE (degrees)	Yes	Yes
Azimuth NSE (feet)	Yes	Yes
Elevation TSE (degrees)	-	Yes
Elevation TSE (feet)	-	Yes
Elevation FTE (degrees)	-	Yes
Elevation FTE (feet)	-	Yes
Elevation FTE (% full scale)	-	Yes
Elevation NSE (degrees)	-	Yes
Elevation NSE (feet)	-	Yes

TSE = Total System Error

FTE = Flight Technical Error

NSE = Navigation System Error

- TABLE 7. PARAMETERS FOR STATISTICAL CALCULATIONS:
 MISSED APPROACH SEGMENT; LONGITUDINAL BINS
 - 1. Crosstrack position (feet)
 - 2. Altitude (feet)
- TABLE 8. PARAMETERS FOR STATISTICAL CALCULATIONS: MISSED APPROACH SEGMENT; VERTICAL BINS
 - 1. Along track position (feet)
 - 2. Altitude (feet)
- TABLE 9. PARAMETERS FOR STATISTICAL CALCULATIONS: MISSED APPROACH SEGMENT; MINIMA ANALYSIS
 - l. Altitude at DH (feet)
 - 2. Along-track deviation at DH (feet)
 - 3. Crosstrack deviation at DH (feet)
 - 4. Along-track deviation at lowest altitude (feet)
 - 5. Crosstrack deviation at lowest altitude (feet)
 - 6. Lowest altitude (feet)
 - 7. Height loss (feet)

APPENDIX A

SUBJECT PILOT INFORMATION PACKAGE

ADMINISTRATIVE INFORMATION

lome Address	City	State	Z1p
Employer		Position	
Date of Birth		Social Security Hun	ber
dome Phone		Work Phone	
Flying Affiliations:			
FAA Ratings (Private,	Instrument, e	etc.):	
			-
Total Flight Hours:			
Total Flight Hours: _ Total Cessena+172 Hou			
Total Flight Hours:			
Total Flight Hours: Total Cessena-172 Hours:	urs:		
Total Flight Hours: Total Cessena=172 Hours: Hooded IFR Hours: Actual IFR Hours:	urs:		
Total Flight Hours: Total Cessena+172 Hours: Hooded IFR Hours: Actual IFR Hours: Other Civilian and M.	irs:ilitary Flying	Experience:	
Total Flight Hours: Total Cessena+172 Hours: Hooded IFR Hours: Actual IFR Hours: Other Civilian and M.	ilitary Flying	Experience:	
Total Flight Hours: Total Cessena+172 Hours: Hooded IFR Hours: Actual IFR Hours: Other Civilian and M.	ilitary Flying	Experience:	

Project: MLS Steep Angle Approaches for TERPS, 70603P

Sponsor: FAA Navigation and Landing Branch, APM-410

Monitor: TAA Standards Development Branch, Aviation Standards National Field

Office, AVX-210

Objective:

「おおおり」となっている。「これないないな」「ファンファン)」「ないしょうとう

To provide flight data suitable for procedures specialists to develop criteria for MLS guided approaches and departures for general aviation aircraft. This data will be used to update Terminal Instrument Procedures (TERPS) for fixed wing aircraft.

Operational Areas Include

- 1. MLS Precision Approaches
- 2. Normal and Steep (3°, 4°, 5°) Approach Gradients
- 3. Height Loss at Missed Approach Point
- 4. MLS Azimuth Departures

Tec lical Issues

- 1. Pilot Workload
- 2. Aircraft Performance Limitations

Location

Federal Aviation Administration Technical Center Atlantic City Airport, NJ 08405

Project Contracts

- Edward Pugacz, Project Manager
 MLS Fixed Wing TERPS Flight Tests, ACT-140
 (609) 484-5707, FTS 482-5707
- 2. Ken Johnson, Subject Pilot Scheduling (609) 434-6467, FTS 432-6467

KE ELLEGISE KOKKOOKO LULULKE KOKKOKOK BESSOAD KOKKOKOK FORGAKO

Attachment #1

VOLUNTARY FAA EMPLOYEE

In order to cover our legal obligation to you during your participation in this project, a request for personnel action will be filled out for you using the information you supply on the subject pilot personal information questionnaire. This will make you a WITHOUT COMPENSATION VOLUNTEER EMPLOYEE with the Guidance and Airborne Systems Branch, ACT-140, FAA Technical Center, Atlantic City Airport, NJ, without compensation during the term of your involvement in this project, approximately 3 days.

Employee Status

A WITHOUT COMPENSATION VOLUNTEER EMPLOYEE is NOT a Federal Employee for any purposes other than injury compensation or laws related to the Tort claims Act. Service is NOT creditable for leave accural or any other employee benefits. However, travel orders will be issued to you, and thereby provide a method to reimburse you for travel expenses as described in attachment #2.

Volunteer Employee Duties

During your involvement in this project, you will perform the duties of pilot of a Cessna-172 aircraft, including preflight planning, aircraft control, navigation, and communication. You will be assigned to perform the technical inflight evaluation of various guidance and airborne systems. You will normally be assigned to work between the hours of 8:00 a.m. and 4:30 p.m. You will be the pilot of the aircraft, however, the project safety pilot will be pilot-in-command AT ALL TIMES.

Qualifications

You will be required to meet the following minimum qualifications to participate in this project:

- 1. Hold a valid FAA Pilot Certificate with an Instrument Rating.
- 2. Hold a valid FAA Medical Certificate.
- 3. Meet the recent flight experience requirements of FAR 61.57.

Termination

Upon the completion of the assignment, your voluntary employment will be terminated, with no further obligation to either party.

ATTACIRIENT #2

TRAVEL EMPENSES

You will be reimbursed for normal travel expenses incurred while participating in this project. A U.S. Government travel voucher, Standard Form 1012, has been provided for you to record expenses and submit upon the completion of your participation in the program. The following is a list of important information to keep in mind while on government reimbursed travel.

- 1. Mileage for actual miles driven in your own car is reimbursed at 20.5¢ per mile.
- 2. Air travel (if necessary) should be via coach class, and at a discount or excursion fare, if available.
- 3. By Federal Law, the MAXIMUN ALLOWABLE AMOUNT you can be reimbursed for lodging and meals during any one day is \$126.00. Of that amount, \$33.00 is a flat reimbursement for meals and incidental expenses, except for the first day of travel, which is limited to \$16.50. The remainder, \$93.00, is a maximum amount reimbursable for lodging. All other reasonable expenses (car rental, airline tickets, tolls, etc.) are reimbursed at full rate.
- 4. All receipts for airline tickets, lodging, taxis, and tolls must be remitted with your travel voucher. Receipts for meals are not required.
- 5. Upon completion of the form, mail to the following address in the postage paid envelope provided for your convenience.

Edward Pugacz
FAA Technical Center
ACT-140
Atlantic City Airport, NJ 08405

DIRECTIONS TO ATLANTIS HOTEL/CASINO

Take the Atlantic City Expressway to the end. Turn right onto Atlantic Avenue.

Proceed several blocks south to Florida Avenue. Turn left.

PROPERTY SEESENELL PROPERTY WITH WITH SEESENELLS

Proceed to the end of the street. (telephone (609) 441-2888).

DIRECTIONS TO THE PIER 4 HOTEL

SPECIAL MESSAGE

BASSESSEE DEPOSITE MASSESSEE DESCRIBE

Take the Atlantic City Expressway to the Garden State Parkway south. Get off on exit 30.

When you leave the toll booth proceed straight ahead on highway 52 towards Ocean City. Cross route 9 and proceed to the traffic circle.

Bear right at the circle and exit right onto the first road (before passing the Circle Liquor Store).

The Pier 4 is ahead and to your left behind the Crab Trap restaurant. (telephone (609) 927-9141).

DIRECTIONS TO THE COMFORT INN AND DAYS INN

Take the Atlantic City Expressway to the Garden State Parkway south. Bear right on the parkway 1/4 mile to exit 37.

From exit 37 turn left onto Washington Avenue. Proceed to the traffic light and turn right. This is Fire Road.

For Comfort Inn: Proceed on Fire Road to the first traffic light and turn left onto route 40 east. Continue on route 40, approximately 1/2 mile. The Comfort Inn will be on your right (telephone 609-646-8880).

For the Days Inn: Proceed on Fire Road past the first traffic light (route 40) until just short of the second traffic light. The entrance to the Days Inn will be on the right, just before the Mobil station (telephone 609-641-4500).

DIRECTIONS TO THE TECHNICAL CENTER FROM THE GARDEN STATE PARKWAY AND ATLANTIC CITY EXPRESSWAY

If travelling on the Garden State parkway, use exit 38 west/to Philadelphia.

Take the Atlantic City Expressway to exit 9. This exit has a mechanical toll taker that takes exact change only (25 cents).

If travelling from Atlantic City, turn right, if travelling from Philadelphía, turn left, and proceed over the bridge to the traffic circle.

Exit the circle on the third road. This is a divided highway with an Atlantic City Airport/FAA Technical Center sign.

The main gate is straight ahead.

かん かんと 一日 かんかん かんかん かっこうしゅうしゅう

At the main gate indicate you have an appointment with John Ryan, ACT-630, Flight Operations Building (Hangar). Parking is across the road from the hangar.

Once at the hangar, proceed across the hangar floor to the elevator. We are on the second floor, room 207.

DIRECTIONS TO THE TECHNICAL CENTER FROM PIER 4 HOTEL

Go around circle and proceed on highway 52 west to the Garden State Parkway. Take the parkway north to exit 38 (Atlantic City Expressway).

Follow Parkway/Expressway directions above.

DIRECTIONS TO THE TECHNICAL CENTER FROM THE COMFORT INN AND DAYS INN

From Comfort Inn: Turn left onto route 40 west. Proceed to the second traffic light (at the Sears Shopping Center).

Continue to the traffic circle, and exit on the second road (between the Sunoco and Mobil stations). This is Tilton Road.

Proceed on Tilton Road and over the bridge to the traffic circle.

Exit on the second road (divided 4 lane highway) and proceed straight ahead to the main gate. Follow the last two Parkway/Expressway directions above.

From the Days Inn: Turn right onto Tilton Road (highway 563), and proceed to the traffic light (at the Sears Shopping Center). This is the second traffic light from the Comfort Inn. From this point, follow directions from the Comfort Inn.

COCCO CERTIFIC TO THE PROPERTY OF THE PROPERTY

MLS SHUTTLE DEPARTURE (PILOT NAV)

ののできますというという。これではなるないないできないのできないできないのできない。

TAKE-OFF RUNWAY 13: Depart runway heading 128° and track outbound on the H-ACY 00° Azimuth, climb to 1500 feet before reaching the 5.0 PDME, maintain altitude or continue climb to assigned altitude. At the 5.0 PDME turn left to a heading of 83° and intercept the 809° Azimuth outbound, at the 8.0 PDME hold as depicted or proceed inbound on the 80° Azimuth as directed by ATC.

Note: Holding Airspeed 90 Knots Inside Turn Bank Angle 13³ Outside Turn Bank Angle 11⁰ in a No wind condition.

39*27N - 74*35W

ATLANTIC CITY, NEW JERSEY
ATLANTIC CITY (ACY)

ALLEGACIO ESSECUCIO

A - 12

APPENDIX B

FLIGHT LOGS

Fixed Wing Terps N Observers:	COMMENTS							
MLS P	Winds and Baro							
	ပ္ဝေ	L 8 6			r	6 8		
Head #	Event Time							
01	因 > +1 +	L 8 6				33		
Control	ပ ၀ ဗ စ	410	13	13	14	4 W 0	13	13
S	Event Time							
**	1	4 5 9	16	1 1 1	1 1 1 1	30	40	44
/er			12 11 0	111	10	12 11 12	10 17	12011
Receiver	E Event v Time t	110032	13	2 8 6	222	227 227 334 35	339	4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ots: MLS			13		2222	- 0 - - 		444444
Pilc	Type	Shuttle Depart	40 MAP	50 MAP	30 LAND	Shuttle Depart	50 MAP	30 MAP 50 LAND
Date: Flight: AF	Run	1 2	£	4	5	9	8	9 10

Pixed Wing Terps N Observers:		COMMENTS																															
MLS Pi		Winds	Baro																				· •										
		ပ ၀	р	اه															7	8	6	_	\downarrow		_								4
Head #		Event Time																-															
		E	. ب	-															25	26	27												
Control		၀ ၁	þ	a						13			13			14			4	2	و				13			13			14		
သ		Event Time																															
*			. بد							10		1	14		1	18		1	22	- 1	24			- 1	34		- 1	38		Ì	42		
er		၁	ד		15	16	11	12	13	10	11	12	10	11	12			12	1	2	7		17				12	=	=	12			12
Receiver		Event Time																															
1		<u> </u>	. ب		2		4	5	9	7	8	6	11	12	13	15	16	7	- 1	- 1		28	67			32	$\widetilde{}$	35	76	37	æ].		40
Pilots: MLS		Type			Course	Reverse	(20	MAP	C	30	MAP		0.4	MAP	(4	LAND		Shuttle	Depart	0	30	MAP	Ç	0.4	MAP		20	MAP	5) (LAND
Date:Flight:		Run			11			12			13			14			15		,	16			/1			18			19			70	

APPENDIX C

SUBJECT PILOT QUESTIONNAIRE

Pilot Questionnaire

Dat Pilo			Steep	o Angle Approac	h	EL Angle Wind D/V
	All questions	relate to	IMC MLS	perational per	formance	•
1.	Was the EL ar	igle:				
	Too shallow 1	2	3	About Right 4	5	Too steep 6 7
2.	Could the EL	angle be	steeper?	_ yes _ n	0	
3.	Indicate the	difficult	y experien	ced in intercep	ting and	maintaining
	the glide pat	th angle.				
	Very easy 1	2	3	About Right 4	5	Very difficult 6 7
4.	Indicate the	difficult	y experien	ced in keeping	the AZ n	eedle centered in
	relation to	the EL ang	le being u	sed.		
	Very easy 1	?	3	About Right 4	5	Very difficult 6 7
5.	Indicate you	r assessme	nt of the	stabilized powe	er settir	ng relative to
	operational	procedures	•			
	Too low 1	2	3	About Right 4	5	Too High 6 7
6.	Compare the	difficulty	of visual	transition and	d landing	g from a
	angle to a n	ormal 3 de	gree ILS:			
	Much less	2	2	Same	c	Much More

7.	Compare the	workload of	a		GS to a r	ormal 3 de	egree ILS.
	Much Less 1	?	3	Same 4	5	6	Much More 7
8.	Was the GS i	ntercept dis	stance from	m DH			
	Too Short 1	2	3	About Right 4	5	6	Too Long 7
9.	What is your	recommenda	tion for t	he maximum a	illowable i	ate of des	scent:
			fpm.				
10.	What is your	recommenda	tion for a	minimum at	DH?		
	_ 100	_ 150	1_1 20	0 1 25	50 1_1	300 _	Other
11.	Was this DH	satisfactor	y for the	execution of	a missed	approach?	

PILOT QUESTIONNAIRE

MLS DEPARTURE

	Date					Wind D/V	
	Pilot						
1.	What degree of	f difficulty	did you	have maintain	ing the sp	ecified AZ c	ourse?
	Easy 1	2	3	None 4	5	Very Diff	icult 7
2.	Was the diffi	culty based o	on				
	I_I Workload	d?		•			
	I_I Sensiti	vity of the A	AZ course	27			
	_ Other?	What natu	re				
				- 		,, , , , , , , , , , , , , , , , , , ,	
3.	Comments:						
					•		·

PILOT QUESTIONNAIRE

MLS SHUTTLE PATTERNS

	Date	· 				Wind D/V_	
	Pilot						
1.	Were the PDME	fix distance	es?				
	Too close toge	ther •	3	Nbout right 4	5	Too far a 6	part 7
2.	Was the distar	ice between l	the two	AZ courses s	ufficient	to execute th	e turns?
	Too close 1	2	3	About right 4	5	· Too far a	apart 7
3.	Was the worklo	pad?					
•	Very low	2	3	About right 4	5	Too much 6	7
4.	How would you	compare the	shuttle	e pattern to	a conventi	onal holding	pattern?
	Much easier 1	2	3	Same 4	5	Much more di	fficult 7
5.	Comments:						

PILOT QUESTIONNAIRE

MLS COURSE REVERSALS

	Date					Wind D/	٧
	Pilot	-					
1.	Were the AZ o	courses use	d for cont	ainment?			
	Too close	2	3	About right	5	T00	far apart 7
2.	Ware the PDM	E fixes use	d?				
	Too close			About right		Too	far apart
	1	2	3	4	5	6	7
3.	Was it helpf	ul to provi	de the max	cimum PDME dis	tances	for containme	ent? .
		_ Yes		1_1 1	Ю		
٨.	Was the spec the course r		ng suffici	ient to interd	ept the	AZ course de	efined for
		I_l Yes		1_1 1	Чо		
5.	Was the appr	oach course	capture 1	from the turn	reversa	l acceptable:	
		_ Yes		1_1 *	Vo	·	
6.	llow did the	test turn r	eversals (compare to a '	"convent	ional" proce	dure turn?
	Easier 1	2.	3	Same 4	5	More 6	difficult 7
7.	Comment:					·	

APPENDIX D

SAMPLE VALIDITY PLOTS

INPUT FILE > MFC024. RUN NI MFR > 2 NIN STRET > 11 = 10 = 55 RUN ST0P > 11 = 13 = 17 SUBSTANTA STATE > 11 = 10 = 55 RUN ST0P > 11 = 13 = 17 LA ER MIK. LA ER MIK.

DAIE: 9/17/86

P1L0IS:SIOCKHAUSEN.MCKINNEY

N-97613

THE REST OF STREET AND MINISTER STREET, STREET

A TACK THE STATE OF THE PERSON OF THE PERSON

Data manager and the same as a sea of the same as the season of the same as th

441

ALINE RUNWAY DISTANCE (NMI)

1.4 (5.1)

11.00.11

00.6

:) **-** 3

7 7

7

ALABITE CITT ATAFORT NO DE 4.		; ;
		<u>.</u>
4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	: : :	_
ALLANI	i. I	-
Š		
		-
		- ·
	1	- 3
	, 1 7	
2	1	_
	1	· ·
, <u> </u>	1	
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	•	<u>.</u>
z	(†	- .
प		: -
E 3	+	-
AF TUE AF T V LAND NIKE		-
HNFUT FILE VM BUN 1148 1 - VI 3 field LANG LAYER NIKE		_
 2 ~ →	!	<u>-</u> :

N-37513 PILOTS:PAPROCKL, MCKINNEY DATE: 9715786

ວວ ດີເ , ປ ໄ •

(AU) NUITATVET

PULTAVELE Purity

INPLT FILE.>MFCO23...RUN NUMBER > 3 RUN START.>13:34:15...RUN STOP.>13:41:43 4 DES MAP

N-97613 PILOTS:SCOTT, AVER DATE: 10/16/86

N 97613 FILOTS:SCOTT, AVER DATE: 10/16/86

INPUT FILE ->MFC038...RUN NUMBER >15

DATA PROCESSED BY THE FAA TECHNICAL CENTER ALLANTIC CITT AIRPORT HJ 08045

RUN START.>10:19: 3...RUN STOP.>10:23:10

4 DEG LAND

LASER WIKE

÷.

38 03 1333

7.7

-:

, 7

1 5 00 -- 31, - 1 - 65 - 5 ALCN A RUNWAY DISTANCE (NMI)

TOTAL TOTAL STATE OF STATE

N-97613 PILOTS: ARGUS, MCKINNEY DATE: 9710785

N 97513 PILOTS: ARGUS, MCKINNEY DATE: 3710755

INPUT FILE.>MFC020 ..RUN NUMPER >12 RUN START.> 9:11:34.. RUN STOP > 3 18 30 5 DEG MAP

N 97613 PILOTS HACKLER, MCKINNEY DATE: 8724786

INPUT FILE *MFC049 RUN NUMBER >10
RUN START >10.38:13 . RUN STOP >10.38:10
> OFC. LAND
LASER NIKE

NATA PROCESSED ON THE FAA FEINNIAL CENTER Atlantic city aurebrie as cocas

- - . .

N PERSONAL BROWNER DATE 8724786

INPUT FILE *MFC049. RUN NUMBER *10 RUN *TART *10:31 13 RUN STOP *10:38:10 * DEG LAND

APPENDIX E

SAMPLE SUMMARY STATISTICS PRINTOUTS

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL DECISION HEIGHT 200 FT STANCARD STATISTICS SUMMARY

LONGITUCINAL BINS FOR FINAL APPROACH SEGMENT

ELEVATION TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
26713.59	70.	-85.069	76.753	-2.998	17.970	276
26586-82	70.	-80.229	75.281	-3.107	18.900	275
26423.00	70.	-74.147	73.299	-3.299	20.283	274
26259.18	70.	-68.710	71.477	-3.457	21.517	273
26095.36	70.	-62.988	70.084	-3.580	22.506	272
25931.55	70.	-58.284	69.045	-3.711	23.626	271
25767.73	70.	-53.812	68.780	-3.707	23.628	270
25603.91	70.	-49.054	68.076	-3.697	23.881	269
25440.10	70.	-44.642	67.819	-3.688	24.362	268
25276.28	70.	-40.726	67.587	-3.621	24.751	267
25112.40	70.	-37.139	66.812	-3.524	24.432	266
24948.64	70.	-33.999	66.442	-3.474	24.609	265
24784.83	70.	-31.440	65.445	-3.397	24.630	264
24621.01	70.	-29.444	64.552	-3.370	24.700	263
24457.19	71.	-27.65C	62.541	-3.384	25.093	262
24293.38	70.	-27.642	61.701	-3.272	24.142	261

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DU2:CFC3FA_CSL DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

ELEVATION TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

THETA	POINTS	MEAN	STANUARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
24129.56	70.	-27.39C	60.119	-3.203	23.214	260
23965.74	71.	-26.589	58.124	-3.265	23.456	259
23801.92	71.	-25.699	56.649	-3.219	22.652	258
23638.11	71.	-26.128	55.545	-3.152	21.652	257
23474.29	71.	-25.466	54.767	-3.021	20.510	256
23310-47	71.	-24.487	54.792	-2.764	18.484	255
25146.65	71.	-23.867	54.611	-2.539	16.784	254
22982.84	71.	-23.296	54.037	-2.315	15.243	253
22819.02	71.	-22.579	53.185	-2.111	13.862	252
22655.20	71.	-21.945	52.583	-1.837	12.372	251
22491.39	71.	-21.465	52.394	-1.588	10.949	250
22327.57	71.	-20.816	51.868	-1.377	9.920	249
22163.75	71.	-19.733	51.336	-1.196	9.496	248
21999.93	71.	-18.546	50.219	-1.001	9.034	247
21836.12	71.	-17.724	49.175	-0.892	8.625	246
21672.30	71.	-16.568	47.703	-0.219	3.535	245

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DU2:CFC3FA.CSL. DECISION HEIGHT 20C FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

ELEVATION TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

EET FROM THETA	POINTS	MEAN .	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
21508.48	71.	-14.761	46.545	-0.747	8.476	244
21344.67	71.	-13.814	45.143	-0.660	8.348	243
21180.85	71.	-13.336	44.467	-0.621	7.962	242
21017.03	71.	-12.766	43.978	-0.552	7.712	241
20853.21	71.	-12.601	43.529	-0.423	7.147	24C
20689.40	71.	-12.786	43.639	-0.319	6.495	239
20525.58	71.	-13.153	43.554	-0.292	6.099	238
20361.76	71.	-13.199	43.089	-0.272	5.478	237
20197.95	71.	-13.049	42.707	-0.300	4.980	236
20034.13	71.	-13.075	42.153	-0.338	4.452	235
19870.31	71.	-13.458	40.982	-0.430	4.250	234
19706.49	71.	-13.177	39.816	-0.470	3.950	233
19542.68	71.	-12.978	38.090	-0.359	3-643	232
19378.86	71.	-13.350	37.322	-0.227	3.345	231
19215.34	71.	-13.524	36.252	-C.31e	3.093	23C
19051.22	71.	-13.912	35.305	0.156	3.035	229

CHITS TOUGHER ME, APPRILLA COMPOSITE CATA FILE DUSTIFISHADOL DECISION MELLAT STANCARD STATISTICS SUMMARY

"LÖNGITUDINAL BING FOR FINAL APPROACH SEGMENT ELĒVĀĪĪŌN ĪOTAL SYSTEM ERRSR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ. 38405

FEET FROM THETA	POINTS	MEAN	STANSARC DEVIATION	SKEWNESS	KURTISIS	31% #
13687.41	71.	-14.326	34.314	2.324	3.2*1	223
18723.59	71.	-14.263	33.421	0.400	3.261	227
18559.77	71.	-13.934	33.426	0.556	3.525	226
18395.96	71.	-13.337	33.39+	3.615	3.7.8	225
18232.14	71.	-12.614	33.447	0.001	3. 653	22.
18068.32	71.	-12.484	33.668	3.613	4.5 fa	223
17984.51	71,	-12.529	33.363	0.81 0	6.777	727
17740.69	71.	-12.534	34.774		4.600	231
17576.37	71.	-12.351		5.323	1.931	775
17413.35	71.	-11.677	37.370	5.997	5.387	714
17769.76	71.	-10.571	38.814	7.747	5.376	318
17035.42	71.	-10.128	उन, च	7.257	८२७ व	217
15721.63	71.	-10.250	39.507	1.344	6.513	216
16757.79	71.	-9.984	37.634	1.423	6.733	215
T657I.97	71.	-9.523	40.139	Y.455	5.57	7*4
75430.75	л.	-9.801	40.734	7.578	6.704	71

C+172 3 DEGREE MES APPROACH COMPOSITE DATA FILE DUZZOFOGFALOGE DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SESMENT ELEVATION TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

	FROM	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	K URTOSIS	BIN #
152	00.33	71.	-9.236	39.377	1.575	5.997	212
iot	52.52	71.	-8.259	39.782	1.685	7.213	211
159	38.70	71.	-7.811	39.965	1.706	7.227	21%
157	74.38	71.	-7.818	39.912	1.794	7.572	204
156	11.56	71.	-7.881	39.634	1.86-	8.189	20 à
154	47.25	71.	-7.872	Š9.921	2.076	9.300	207
*52	83.43	75.	-8.29c	79.834	2.182	·	25 c
151	19.61	75.	-9.201	38.887	2.270	10.601	200
14	55.80	73.	-9.921	18.100	2.261	10.676	č 🕽 •
1.7	791.93	78.	-10.751	चुकु हुन हु		35.45°	, Č.
1 4 6	28.15	73.	-10.672	18.500		0.7# ₄	
1 4 4	.64.34	70.	-10.521	18.8.1		9. * 3	
1.4	163.53	75.	717.77	Te. 335	•	\$ ·	i.
141	136.71	71.	-1ic.	8 W , W w	••		٠
133	972.39	70.	- 1	8	• •		٠
	957 . 7367	75.	• •		• .	* . *	٠.

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DU2:CFC3FA.CSL DECISION MEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

ELEVATION TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

	FEET FROM THETA	PCINTS	MEAN	STANDARD DEVIATION	SKEMNESS	KURTOSIS	BIN #
	13045.20	70.	-6.932	38.700	1.931	10.628	196
	13481.44	7C.	-8.977	39.189	2.137	12.642	195
	13317.62	70.	-0.855	39.537	2.241	13.766	194
-	1919.31	70.	-8.400	40.001	2.230	13.886	193
	12989.50	75.	-7.850	39.830	2.166	13.621	192
	12826.17	71.	-7.897	39.145	1.958	12.291	191
	12662.36	71.	-7.875	38.760	1.866	11.405	19C
	17498.54	71.	-7.453	38.025	1.853	10.943	189
	12334.72	71.	-0.414	37.207	1.845	10.690	188
	1,175.75	71.	-5.603	20.977	1.823	10.371	187
	10007.09	71.	-5.471	36.648	1.812	10.030	18ć
	113,7.77	··.	-4.017	35.822	1.787	9.453	185
	**. 77.17	₹4.	5 . • 5 5	74.545	1.711	8.597	184
	*****.*	**.	-5.047	33.642	1.605	7.931	183
	******	7.	544	72.742	1.448	5.863	182
	मनम नुष्य ् ग्र	••	- 5.727	77.77	1.537	78.73477	

:. *

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:C=C3FA.CSL DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

ELEVATION TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEMNESS	KURTOSIS	BIN #
11024.18	71.	-8.31C	31.375	1.1ec	5.619	180
10860.37	71.	-9.154	29.908	1.017	4.758	179
13696.55	69.	-8.841	27.863	0.855	4.136	176
10532.73	59.	-8.913	20.364	0.759	3.909	177
10368.92	69.	-8.88¢	25.105	0.696	4.C17	176
10205.10	69.	-6.8CC	23.708	0.612	4.232	175
10041.29	69.	-8.754	22.462	C.519	4.317	174
7877.46	ξ 7.	-8.821	72.105	Č.384	3.989	173
9713.65	· · · · 69.	-9.095	722.101	0.255	3.747	172
7547.83	67.	-9.785	22.39.	3,237	3.579	171
9386.01	ć9.	-10.319	72.525	0.294	3.538	170
9222.19	69.	-10.593	22.106	0.401	4.171	169
₹356.3 6	c 7 .	-10.592	22.397	0.296	3.770	100
8894.56	29.	-11.020	22.245	0.203	4.016	157
8735.74	٠٠.	-11.523	21.783	3.274	4.537	166
5500.73	69.	-11,443	21.044	7.745		- 158

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DU2:CFC3FA.CSL. DECISION HEIGHT 200 FT STANCARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

ELEVATION TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD	SKEWNESS	KURTOSIS	BIN #
8403.11	69.	-11.223	20.508	0.469	4.284	164
8239.29	. 69.	-11.121	21.018	0.513	4.193	163
8075.47	69.	-11.235	21.389	0.553	4.405	162
7911.66	69.	-10.397	20.879	0.538	4.782	161
7747.84	89.	-9.375	20.299	0.616	4.858	160
7584.02	69.	-8.220	19.694	0.706	4.699	159
7420.21	69.	-7.417	19.751	0.804	4.855	158
7256.39	69.	-8.309	20.262	0.938	5.649	157
7092.57	69.	-5.167	20.181	1.361	7.283	- 150
5728.75	٥۶.	-3.832	19.946	1.778	9.313	155
6754.94	हु	-3.637	70.046	7.012	10.574	154
5051.12	á9.	-3.343	25.311	1.054	9.595	153
6437.33	خ۶.	-3.666	20.775	1.013	3.209	152
6273.48	٥>.	-4.651	20.504	1.395	7.295	151
6139.67	ćá.	-4.587	20.323	1.230	6.437	153
5745.35	Ċā.	-4.747	19.205	1.146	<u></u>	1

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL DECISION HEIGHT ZOO FT STANCARD STATISTICS SUMMARY

LONGITUCINAL BINS FOR FINAL APPROACH SEGMEN

ELEVATION TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
5782.03	68.	-4.955	17.568	1.220	6.210	148
5618.22	68.	-4.68¢	16.373	1.118	5.666	147
5454.40	68.	-3.496	16.350	0.956	4.611	146
5290.58	68.	-2.993	16.080	0.960	4.246	145
5120.76	68.	-2.436	10.617	0.922	4.225	144
4962.95	68.	-1.58c	17.070	0.994	4.595	1 4 3
4799.13	68.	-1.737	16.917	0.904	4.352	142
4035.31	68.	-1.391	16.812	J.99e	4.268	141
4471.5C	68.	-1.032	16.301	1.066	4.612	140
4307.63	68.	-0.218	16.397	C.969	4.311	139
4143.86	6å.	1.497	15.008	1.000	3.527	13 a
3485.54	66.	4.448	22.127	1.368	4.932	1 * 7

C-171 3 DEGREE MES APPROACH COMPOSITE DATA FILE DUZ: SEC3FA. CSL DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUCINAL BINS FOR FINAL APPROACH SEGMENT

AZIMUTH TOTAL SYSTEM ERROR (FT)

THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

FEET PROM THETA	PÖĪNTS	MEAN	STANDARD DEVIATION	SKEMNESS	KURTOSIS	BIN #
26713.59	76.	-25.292	161.063	0.243	4.005	276
76586.57	75.	-27.904	160.960	0.272	4.780	275
26423.30	75.	-31.365	120.053	0.328	4.966	274
25257.78	73.	-55.758	158.998	0.415	5.095	273
78075.38	7C.	-38.214	- <u>- 153.078</u>	7.534	3.211	772
25 9 31.55	75.	-38.527	757.319	₹.855	5.265	271
25767.75	75.	-43.880	155.488	0.765	5.257	270
25603.71	70.	-42.874	153.894	0.332	5.107	787
25445.15	73.	-44.457	150.667	0.870	5.333	763
25278.23	- 77 . ·		167.762	2.345		
25112.45	77.	-46.835	141.485	3.767	4.475	766
74745.64	75.	-47.777	141.361	0.641	4.714	765
्रं इंट्रिक्ट वर्ष	77.	-17.17	4.44.328	<u> </u>	7.579	784
*****	• ~		174,817	7.38.	*	•
	• •			-,-,-	~. * • •	- ·
• • • • • • • • • • • • • • • • • • • •	•		• • •	•	. •	. •

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL DECISION MEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT AZIMUTH TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

FEET FROM POINTS MEAN STANDARD SKEHNESS KURTOSIS BIN # THETA DEVIATION 24129.50 7C. 0.070 -52.584 129.855 2.268 26C 23965.74 71. -54.774 125.144 0.035 2.176 259 2.143 71. -56.117 123.300 0.009 23801.92 25€ 23535.11 71. -57.584 123.393 0.023 2.184 257 23474.29 71. -58.959 116.902 0.062 2.364 256 23313.47 71. -60.537 115.528 0.148 2.655 255 71. 201.6.00 115.558 3.275 -51.529 3.784 254 229:2.34 71. 0.390 -62.743 115.423 3. - 30 253 71. 20314.00 -63.512 113.377 3.482 3.735 25. 3.093 71. -33.345 121.225 3.63. 251 21553.1. 33491.19 71. -51.500 3.475 250 4.144 - 6 . · · • • ن جان - 500 31 9 82 LESS 124.764 151...1 • • • • •

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL CECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

AZIMUTH TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
21505.48	71.	-59.254	149.092	-0.884	7.487	244
21344.67	71.	-59.582	153.324	-1.187	8.653	243
21180.85	71.	-60.11C	157.248	-1.471	9.876	242
21017.03	71.	-60.991	161.204	-1.700	10.944	241
20853.21	71.	-61.550	184.910	-1.385	11.877	240
20689.40	71.	-61.934	167.949	-2.032	12.621	239
20525.58	71.	-62.699	777.082	-2.132	13.172	238
20361.76	71	-53.439	773.314	-2.238	13.739	237
20197.95	71.	54.349	175.845	-2.331	14.240	236
20034.13	71.	-65.408	175.592	-2.385	14.508	235
19870.31	77.	-66.130		2.415	14.850	- 734
1978 6.4 9	71.	-66.544	177.424	-7.413	न्य. ठठेड	233
ा तरा स्ट.ठड	71.	-58.587	177.105	-2.377	14.422	232
19775.65	73.	-66.271	175.753	-7.787	13.027	231
17,11	71.	- 57. 764	174.277	- 7. *5:	17.315	211
*****	••	- 9 4. ** *	***,722	। स्ट ्राइट	च्र.रच	-

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

AZIMUTH TOTAL SYSTEM ERROR (FT)

DATA COLLECTED AND PROCESSED AT: THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
18887.41	71.	-62.958	168.886	-1.874	11.848	228
18723.59	71.	-61.840	165.603	-1.724	11.157	227
18559.77	71.	-60.033	162.080	-1.572	10-418	226
18395.96	71.	-59.157	157.960	-1.409	9.717	225
18232.14	71.	-57.720	153.862	-1.267	9.064	224
18068.32	71.	-50.374	149.722	-1,105	8.271	223
17904.51	71.	-55.137	145.749	-0.943	7.371	222
17740.69	71.	-53.867	142.111	-0.801	6.473	221
17576.87	71.	-52.173	136.673	-0.696	5.765	220
17413.05	71.	-50.775	135.168	-0.641	5.267	219
17249.24	71.	-49.049	131.721	-0.646	5.052	218
17085.42	71.	-40.971	128.516	-0.711	5.157	217
10921.00	71.	-44.497	124.819	-0.794	5.357	216
10757.79	71.	-42.259	120.600	-0.895	5.544	215
16593.97	71.	-40.010	116.901	-0.983	6.031	21.
15430.15	71.	-37.570	113.238	-1.362	5.3 - 4	-217

C-172	3 DEGREE	MLS APPROACH
COMPOSITE	CATA FILE	DU2:CFC3FA.CSL
CECISION H	HEIGHT	200 FT
STANCA	ARD STATIST	TICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

AZIMUTH TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
16266.33	71.	-35.417	110.050	-1.07C	6.686	212
16102.52	71.	-33.698	107.048	-1.077	6.978	211
15938.70	71.	-32.494	104.872	-1.100	7.190	210
15774.88	71.	-31.226	102.643	-1.128	7.267	209
15611.02	71.	-30.208	100.862	-1.182	7.222	208
15447.25	71.	-29.561	99.963	-1.204	6.929	207
15283.43	70.	-29.466	100.444	-1.201	6.410	206
15119.61	70.	-29.662	101.889	-1.109	5.840	205
14955.80	70.	-29.592	103.827	-0.994	5.291	204
14791.98	70.	-29.278	105.843	-0.87¢	4.765	203
14628.16	70.	-28.595	107.666	-0.749	4.309	202
74464.34	70.	-27.912	109.498	-0.642	3.946	201
14300.53	70.	-27.618	111.674	-0.532	3.699	20 C
14136.71	73.	-27.102	113.893	-0.448	3.552	199
13972.89	75.	-26.947	115.361	-5.371	3.471	109
া চরচ্ছ চ্ছ	7	+28.852	118.754	-5.301	3.416	147

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ: CFC3FA.CSL DECISION HEIGHT 200 FT STANCARD STATISTICS SUMMARY

arang arang ang ang ang ang arang aran

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

AZINUTH TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKENNESS	KURTOSIS	BIN #
13645.26	70.	-26.693	117.243	-0.256	3.389	190
13481.44	70.	-26.735	116.716	-0.235	3.398	195
13317.62	70.	-27.121	115.093	-0.203	3.343	194
13153.81	70.	-26.714	113.326	-0.159	3.274	193
12989.99	70.	-26.372	111.970	-0.114	3.264	192
12826.17	71.	-25.981	109-667	-0.082	3.289	191
12662.36	71.	-25.410	108.563	-0.050	3.277	19C
12498.54	71.	-24.910	106.914	-0.045	3.259	189
12334.72	71.	-25.686	104.647	-0.049	3.230	188
12170.70	71.	-29.179	101.616	-0.065	3.233	187
72007.09	71.		59.310	-5.378	3.565	15ć
11843.27	71.	-32.736	47.324	-0.078	2.925	135
11679.45	71.	-34.258	54.958	-0.083	2.827	154
11515.63	71.	-35.605	92.058	-3.11a	2.769	131
11351.82	71.	-37.24	93.564	-0.201	7.197	1 9 .
1113.37	71	- ব্যুক্তির -	्राच्या । इ.स.च्या	_ गु ्रे यम्		र 🖫 न

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

.

AZIMUTH TOTAL SYSTEM ERROR (FT)

だれないない。現れれる人の名とは他になっていない。他のことには、他のなどないないない。これになっていたない。

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
11024.18	71.	-40.197	86.633	-0.351	2.916	18C
10860.37	71.	-42.112	85.624	-C.447	3.105	179
10696.55	89.	-41.578	80.536	-0.364	3.197	178
10532.73	٤٩.	-42.812	78.593	-0.374	3.281	177
10368.92	69.	-43.503	76.372	-0.411	3.350	176
10205.10	69.	-45.076	75.543	-0.488	3.337	175
10041.28	69.	-46.589	74.794	-0.589	3.229	174
9877.46	67.	-47.965	74.688	-0.004	3.219	173
9713.65	69.	-48.400	75.379	-0.729	3.198	172
9549.83	69.	-49.6C2	70.399	-C.765	3.220	171
9386.31	- हरू.	-50.714	76.806	-3.812	3.317	175
9222.19	69.	-51.715	77.422	-0.311	3.365	109
7358.35	हच.	-52.288	77.705	-0.758	3.333	168
3894.5o	٥٧.	-53.777	77.652	-0.733	3.•32	167
3730.74	c٠.	-54.625	77.762	-3.735	3.472	166
**>0.7	· · ·········	<u> </u>	77.110	<u> </u>		165

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL DECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

アプログラー かんかん かんのき へいいい ななら 見ていたいかい

マートののののではない。また、このこのでは、あるののののののでは、またののののなが、またののである。ないのできない。またののののなななない。

AZIMUTH TOTAL SYSTEM ERROR (FT)

FEET FROM THETA	POINTS	MEAN	STANDARD DEVIATION	SKEWNESS	KURTOSIS	BIN #
8403.11	69.	-56.18¢	76.580	-0.856	3.859	164
8239.29	69.	-57.475	76.733	-0.897	3.880	163
8075.47	69.	-58.654	77.319	-0.990	4.044	162
7911.66	69.	-59.073	77.152	-1.05C	4.154	161
7747.84	69.	-59.388	76.257	-1.063	4.209	160
7584.02	69.	-60.052	75.598	-1.055	4.249	159
7-20-21	69.	-60.674	74.189	-0.947	4.028	158
7256.39	63.	-61.533	72.788	-0.845	3.768	157
7092.57	69.	-63.404	72.182	-0.773	3.487	156
6728.75	69.	-64.077	71.966	-0.736	3.341	155
5704.94	69.	-63.925	70.447	-0.681	3.241	154
6601.12	69.	-62.687	69.460	-0.621	3.179	153
5437.30	69.	-60.189	68.481	-0.58C	3.219	152
0273.45	69.	-56.235	67.466	-0.532	3.260	151
5104.67	ė3.	-50.597	66.564	-0.481	3.208	150
5445.85	68.	-45.839	65.474	-0.353	3.111	149

C-172 3 DEGREE MLS APPROACH COMPOSITE DATA FILE DUZ:CFC3FA.CSL CECISION HEIGHT 200 FT STANDARD STATISTICS SUMMARY

LONGITUDINAL BINS FOR FINAL APPROACH SEGMENT

AZIMUTH TOTAL SYSTEM ERROR (FT)

ET FRUM THETA	POINTS	MEAN	STANDARD DEVIATION	SKENNESS	KURTOSIS	BIN #
**! <u>? </u>	¢8.	-40.534	64.357	-0.235	3.046	148
7615.22	έδ. ·	-35.424	65.958	-0.091	2.974	147
	68.	-30.755	67.754	C.047	3.033	140
·,	83.	-26.133	70.597	0.215	3.479	145
• • • •	ėā.	-22.307	73.169	0.317	3.680	144
	ŏ₹.	-18.070	74.183	0.374	3.755	143
;	5号。	-14.747	73.702	0.419	3.881	142
•	4. # .	-12.271	73.393	0.422	3.832	747
	÷ 3	-17.411	74.092	7,360	3.608	740
	r 7	FV.877	73.877	3.302	3.522	739
	:	• • <i>s</i>	72.359	3.178	3.358	138
		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	77.358	5.520	3.784	137

APPENDIX F

MINIMA ANALYSIS PRINTOUTS

L+172 3 DEGREE MLS APPROACH ICMPOSITE DATA FILE DEG:CFC3MA_CSM

MINIMA ANALYSIS STATISTICS

DECISION HEIGHT 200 FT

THE FAA TECHNICAL CENTER ATLANTIC CITY AIRPORT, NJ 08405

THERE WERE 27. RUNS THAT REACHED DECISION HEIGHT

	ALONG TRACK	AT	DECISION HE	IGHT (FT)	
	MEAN 3319.68		1267.09	-2.05	5.72
	CROSS TRACK				
27.	MEAN -C.40		63.77	-C.18	
	ALONG TRACK				
	MEAN 3404.08				
	CROSS TRACK	4 T	LOWEST ALTIT	ruse (FT)	
POINTS 49.	mean -5.ea				
		،	· (* *)		

But the transfer of the

ME AN 193.69

PULLET

. 4.

71. 17. 37. 38. 38. 40. 40. 11. 11. 38. 40. 41. 37. 37. 42. 41. 41. 57

C-172 4 DEGREE MLS APPROACH COMPOSITE DATA FILE DLO:CFC4MA.CSM

MINIMA ANALYSIS STATISTICS

DECISION HEIGHT 200 FT

| | ALONG TRACK A | T DECISION H | EIGHT (FT) | |
|---------------|-------------------------|--------------------|------------------------|--|
| | MEAN
2822.03 | | | |
| | CROSS TRACK A | T DECISION H | EIGHT (FT) | |
| | MEAN
-2.21 | | | |
| | ALONG TRACK A | T LOWEST ALT | ITUDE (FT) | |
| | MEAN
23 91.21 | 715.48 | | |
| | CROSS TRACK A | | ITUDE (FT) | |
| POINTS
51. | MEAN
-10.92 | STD. DEV.
91.50 | | |
| | LOWEST ALTITU | CE (FT) | | |
| POINTS | ME AN
194.30 | | 385 # NE 5 5
0 - 43 | |

C-172 5 DEGREE MLS APPROACH COMPOSITE DATA FILE DLO:CFC5MA.CSM

MINIMA ANALYSIS STATISTICS

DATA COLLECTED AND PROCESSED AT:
THE FAA TECHNICAL CENTER

DECISION HEIGHT

200 FT

TRANSPORT SOURCES SANSVARE

| | ATLANTIC CITY AIRPORT, NJ 08405 | | | | | |
|---|---------------------------------|-----------------|-----|---------------------|-------------------|------------------|
| | THERE | WERE 37. RUNS | THA | T REACHED | DECISION H | IEIGHT |
| | | ALONG TRACK | AT | DECISION H | EIGHT (FT) | |
| | PCINTS
37. | MEAN
2264.39 | | STD. DEV.
217.89 | SKEWNESS
-C.95 | KURTOSIS
4.05 |
| - | | CROSS TRACK | AT | DECISION H | EIGHT (FT) | |
| | POINTS | MEAN | | STO. DEV. | SKEWNESS | KURTOSIS |

| • • • | | | | |
|---------------|-----------------------|--------------------|------------|--|
| | CROSS TRACK A | T DECISION H | EIGHT (FT) | |
| POINTS 37. | MEAN
8-98 | STD. DEV.
71.72 | | |
| | ALONG TRACK A | T LCWEST ALT | ITUDE (FT) | |
| | MEAN
1720.42 | | | |
| | CROSS TRACK A | IT LCWEST ALT | ITUDE (FT) | |
| POINTS
51. | MFAN
-12.67 | | | |
| | LOWEST ALTITU | JUE (FT) | | |
| | м (Д N
177 г. (N | | | |
| | HE DAMES COLUMN | , | | |
| _ | | _ | | |

APPENDIX G
COMPOSITE PLOTS

COMPOSITE FEET ALREATE CES NA-172 3 PEG MAP

ALI VALTE

MO-R191 241 CESSMA 172 MLS (HICROMAVE LANDING SYSTEM) TERMINAL INSTRUMENT PROCEDURES (... (U) FEDERAL RYIATION MODIFICATION MACHINGTON DC E J PUGACZ OCT 87 UNCLASSIFIED DOT/FRA/CT-TM87/36 F/G 17/ F/G 17/7.3

RECORDED TO THE PROPERTY OF TH

ではない。これはなどのは、これなどとない。これにはないでは、これのなくなられるのは、同様ななななななな

TO SERVICE AND RECORDED OF THE PARTY

82820 922222 828356

ALL VALID RUNS

ALONG RUNWAY DISTANCE COMPOSITE PLOT AIRCRAFT: CESSNA-172 5 DEG LAND 25.00 00.21 -5.00 5.00 -5.00 5.00 NOITAVE1E 00.81- 00.85-

Character measures promoters recessor recessor

Kasaksa iii ii

annaman damaaan kesessi keessaa keessaa keesaa kaanaa keessaad bireesaad keessaa damaa

Pared Secretary Sections Consider

13.00

11.00

9.00

DISTANCE

1.00 | 3.00 ALONG RUNWAY

-1.00

3.00

-S2.00 -12.00 -2.00 VSIWNIH DEVIATION

KONON GARGESTA CLARAGEST GARGESTS

(AU) 00.,2

00.21

25.00

APPENDIX H
ISOPROBABILITY PLOTS

H-1

SECTION SECTOR SECTION SECTIONS DEPORTED

BEERT PRINCE PROCESS CONTROL PROCESS. PROPERTY PROPERTY SOCIETY SOCIETY PROCESS.

H-9

\$5555 KKKKK \$55555 KKKKK

\$5555555 \$55555555 KKKKKKKK 2022002

Sille Masse Williams

\$3000 P2777777 78885000 RESECTION SSSSSSSS TOO SOUTH TO SECTION OF THE SECTION OF

MEAN- (6+STD.DEV.)

H-19

aced reserves subserved accessed asserted accessed

シャルのことのことには、これのことのことのことでは、これのことのことできました。

H-47

H-49

このこととのことには、これには、これをいるのである。 しょうしゅうじ

Charles Carlot

TOSSOSSI TESSOSSI FESSOSSI SESSOSII SESSOSSI TESSOSSI PRRESERTIDODORAL REFERENCE INSTESSOS DEDINODO

Executives seems of anymone products acceptances executives acceptances acceptances because a second productive

SOOKEENS SOOKEENSKY LOKKERING TRICKINGS DOKENSKY TRICKINGS DIKEDIZA

| DATA PROCESSED BY THE FAA TECHNICAL CENTER ALANTIC CLIT AIRPORT. NJ 08405 | | |
|--|---|---|
| ALANTIC CITT | | |
| | | |
| KEY
MEAN+ (6+STD.DEV.)
MEAN
MEAN- (6+STD.DEV.) | | |
| = 1 · · · · · · · · · · · · · · · · · · | | |
| GMEN I | | |
| APPROACH SE | | |
| INTERMEDIATE APP
ILAL ERROR (265) | | |
| , ⊗ X
X
3 | ! | |
| C-172 MLS TERPS S DEGREE APPRIVACH LONGITUDINAL EINS STANTART STATT TR AZIMUTH FLIGHT TE | 1 | į |

| TANGEST OF A STANTON OF A STANT | | 3.31 3.72 4.14 |
|--|--|-----------------|
| J TE AN TE A | | 10.05 2.89 2.89 |
| ## | | |

のイスのでは、これののののなどは、これのもとものは、これになるとなると、これでは、これととなる。 できた。

H - 71

DATA PROCESSED BY THE FAM IECHHICAL CENTER ALLAMIC CITT AIRPORT: NJ 80405 MEAN+ (6+STD DEV.) MEAN- (6.STD.DEV.) MEAN * A ? . . 1 - FINAL APPRIACH LUMENI AZIMUTH FLIGHT TECHNICAL EFRUR (DEG) STANDARD JATISTICS S PEGREE APPRIACH LONGITUTIONAL FINE C-172 MLS TERPS · (93]) 11113 8,

2002 KKSSSS

AND SERVICE PROPERTY PROPERTY PROPERTY PROPERTY TOTAL

KKKKKI DIDIDIDI IKIKODI SAMBDI TARKKKI DIDIDINI DISBEKK BILIDININI TARKKKI TARKKA TARKKA TARKODIS

こうこうこうことに関ジングスススプラープランシングないと

SAPAR (SSSSASS) (SPANISK), BUCKESSE SANDORI BARRAKKON KODYDAN ZAKKOKE BUCKESKI KESALAWA KESARAWA KODESKI BE

COUNTY TAKESTOCK PARKETALANGESSESSES ISSESSESSES LEAGUIGE WESSESSES PARKETS

STATESTICAL STATES

SAMPLE LANDING SEGMENT SCATTER PLOTS

ALONG TRACK (FT) AT ALITIUDE 200.000

12.912

-419.27

-330.56

TOSSESSE TOSSESSE TOSSESSE TOSSESSE TRANSPORT TOSSESSE TOSSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSESSE TOSSE TO

C-172 MLS TERPS

= ILMED 5-88 DTC