* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

(57) [Claim(s)]

[Claim 1] The flocculant for water treatment characterized by including the high polymerization silicic-acid solution which has the limiting viscosity of about 0.2 (100 ml/g) more than obtained by making it liquefy again after performing dealkalization metalizing to the water solution of an alkali-metal silicate after making this gel, about 8% or more of SiO2 concentration, and about 0.3% or less of alkali-metal concentration.

[Claim 2] The flocculant for water treatment characterized by including the high polymerization silicic-acid solution which has the limiting viscosity of about 0.2 (100 ml/g) more than obtained by making it liquefy again after performing dealkalization metalizing to the water solution of an alkali-metal silicate after making this gel, about 8% or more of SiO2 concentration, and about 0.3% or less of alkali-metal concentration, and the fusibility salt of the metal which can form a hydroxide in underwater.

[Claim 3] The flocculant for water treatment according to claim 2 whose fusibility salt of the metal which can form a hydroxide in underwater is the second iron of a nitric acid, a ferric chloride, or ferric sulfate. [Claim 4] The manufacture approach of the flocculant for water treatment characterized by considering as the high polymerization silicic-acid solution which has the limiting viscosity of about 0.2 (100 ml/g) more than by making it liquefy again after performing dealkalization metalizing to the water solution of an alkali-metal silicate and making this into the thing of the gel state by polymerization. [Claim 5] The manufacture approach of the flocculant for water treatment characterized by adding the fusibility salt of the metal which can form a hydroxide in this in underwater after obtaining a high polymerization silicic-acid solution by the manufacture approach according to claim 4.

[Translation done.]

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(川)特許番号

第2759853号

(45) 発行日 平成10年(1998) 5月28日

(24)登錄日 平成10年(1998) 3 月20日

(51) Int.CL6

鐵別配号

PI

B01D 21/01 102 B 0 1 D 21/01

102

苗球項の数5(全 7 頁)

(21)出顯番号	纳脚平3−274881	(73)特許擁者	000193508
(61/四線中方	小道は上 の一名(4001	(いり物料を	
(on dim:m	77-3 0 M 410043 0 M 0F FI		水道機工株式会社
(22)出版日	平成3年(1991)9月27日		東京都中央区月島2丁目15番13号
		(72) 発明者	長谷川 学雄
(65)公與番号	特関平4-363104		埼玉県戸田市上戸田5丁目24番3号
(43)公陽日	平成4年(1992)12月16日	(72)発明者	鬼冢 卓也
審查請求日	平成7年(1995)3月30日		神系川県相模原市上鶴間301の90の102
(31)優先機主張番号	特額平2-260591	(72)発明者	江原 康浩
(32)優先日	平2(1990)10月1日		東京都北区赤羽台1丁目3番13号の101
(33)優先権主張国	日本(JP)	(72)発明者	衛本 克紋
			神奈川県大和市西鶴町6丁目18春5号
		(72)発明者	赤沢 寬
		1	神奈川県川崎市多摩区登戸2935
		(74)代理人	弁理士 鈴木 秀雄
		容査官	富永 正史
			总数型计划人
			最終質に続く

(54) 【発明の名称】 水処理用凝集剤及びその製造方法

1

(57)【特許請求の範囲】

【請求項1】 アルカリ金属ケイ酸塩の水溶液に脱アル カリ金属処理を施した後、これをゲル化させてから再び 液状化させるととによって得られた。約0.2(100 m1/g)以上の極限粘度と、約8%以上のSiOz 濃 度と、約0.3%以下のアルカリ金属濃度とを有する高 宣合ケイ酸溶液を含むことを特徴とする、水処理用凝集 剂。

【請求項2】 アルカリ金属ケイ酸塩の水溶液に脱アル カリ金属処理を縮した後、これをゲル化させてから再び 10 の製造方法。 液状化させることによって得られた。約0.2(100) m1/g)以上の極限粘度と、約8%以上のSiOa濃 度と、約0.3%以下のアルカリ金属濃度とを有する高 重合ケイ酸溶液と、水中において水酸化物を形成しうる 金属の可溶性塩とを含むことを特徴とする、水処理用器

集削。

【請求項3】 水中において水酸化物を形成しろる金属 の可溶性塩が、硝酸第二鉄、塩化第二鉄又は硫酸第二鉄 である、請求項2記載の水処理用凝集剤。

2

【請求項4】 アルカリ金属ケイ酸塩の水溶液に脱アル カリ金属処理を経し、これを宣合処理によってゲル状態 のものとした後に再び液状化させることによって、約 2(10)m1/g)以上の極限結度を有する高重 台ケイ酸溶液とすることを特徴とする。水処理用凝集剤

【請求項5】 請求項4記載の製造方法によって高重合 ケイ酸溶液を得た後、これに、水中において水酸化物を 形成しうる金属の可溶性塩を添加することを特徴とす る。水処理用凝集剤の製造方法。

【発明の詳細な説明】

3

[0001]

【産業上の利用分野】本発明は、水中から不純物を除去 するための水処理用経集削及びその製造方法に関する。 [0002]

【従来の技術及び発明が解決しようとする課題】本出願 **人は、さきに特願昭61-276688号をもって、高重台度の** ケイ酸溶液を用いた安全でかつ不純物除去能力の高い水 処理用凝集剤を提案した。高重合ケイ酸溶液を用いた上 記の水処理用凝集剤は、凝集剤中に含まれる有効成分 (ケイ酸及び水中において水酸化物を形成しうる金属) の濃度をより高くし、又は極限粘度のより高い高重合ケ イ酸溶液を用いることによって、水中の不純物凝集能力 をさらに増大させることができる。また、凝集剤は水溶 液の状態で製造、運搬されるので、有効成分濃度を高く することができれば、製造コスト、輸送コストを低減す ることができる。これらの事情を考慮すると、実用上疑 集剤の有効成分濃度は、ケイ酸濃度(SnOz換算)におい て8%程度(重量比)以上、金属塩添削後の全有効成分 濃度 (Sio, +金属酸化物換算) において10%程度以上と することが望ましい。

【0003】しかし、凝集剤溶液中におけるケイ酸や金 属の濃度を高くすると、ケイ酸溶液は極めてゲル化し易 くなることが魘々指摘されており、活性ケイ酸又は高重 台ケイ酸溶液の製造に際して、ケイ酸濃度(StG.換算) が8%程度以上になるように製造したり、これをそのま ま保存、運鐵したりする事例を見出すことはできない。 すなわち、ケイ酸濃度(510.換算)が8%程度以上であ るような活性ケイ酸や高重合ケイ酸溶液の製造保存は、 実際には不可能であると思われていた。

【①①①4】前記特顯昭61-276688号の発明にかかる高 重合ケイ酸溶液についても、その凝集能力をさらに高め ようとして単純にケイ酸濃度を高くすると、凝集剤溶液 の保存期間を短縮する結果となる。すなわち、不純物経 集能力のより一層の増大化やコスト低減と安定性の維持 とが、両立し難い結果となるおそれがあった。

【①①①5】本発明は、高重合ケイ酸溶液を含む水処理 用凝集剤についての上記の問題を解決し、高い極限粘度 と高いケイ酸濃度を有して不純物凝集効果が高いと共 に 高濃度における有効保存期間が極めて長い水処理用 凝集剤及びその製造方法を提供することを目的とするも 40 のである。

[0006]

【課題を解決するための手段及び作用】本発明において は、上記の問題点を解決するための手段として、約8% 以上のSio.濃度と約6.2(100m]/a)以上の極限粘度を 有し、かつアルカリ金属濃度を著しく低減した高重合ケ イ酸溶液が用いられる。通常、活性ケイ酸や高重合ケイ 酸溶液の製造のためには、原料としてケイ酸ナトリウム (水ガラス)、ケイ酸カリウム等のアルカリ金属ケイ酸 塩が用いられ、これに、硫酸や炭酸ガス等を添殖するこ 50 13665号の明細書に記載したとおりであり、このこと

とによって製造される。との場合、添加物質による中和 反応でNa、SO、やNaHCO、等の可溶性の塩が生成し、このた め、原料中のアルカリ金属(Na.K等)の存在に起因す るアルカリ度は低下するが、溶液内におけるアルカリ金 属濃度そのものは変らない。

【10007】発明者等は種々研究の結果、脱アルカリ金 属処理を施してかつそれを高度に重合させ、それによっ て、アルカリ金属濃度が著しく低減された高重合ケイ酸 恣液は、ケイ酸濃度や有効成分金属濃度が高い場合にお いてもゲル化し難く、したがって、不純物経集能力が高 いと共に保存性に富む凝集剤が得られることを知見し た。

【①①08】例えば、水ガラスを陽イオン交換樹脂層内 を通過させるとNa置が著しく低減されたケイ酸溶液が得 られる。この溶液にアルカリ剤を加えてpHを中性付近に 調整すると、溶液はいったん急速にゲル化する。しかし このゲル状物をそのまま放置すると再び高粘度の溶液状 騰(すなわち高重合状態のケイ酸溶液)に変化し、この 高粘度溶液は、ケイ酸濃度が高い状態のままで置いても 20 最早ゲル化することはなく、しかも高度の凝集能力を維 持していることが分った。後記の実施例によっても示さ れるとおり、Na量を0.08%程度としたケイ酸溶液は、Si 0. 濃度が約8.7%である状態のままで約1年64月経過後 においてもゲル化せず、しかも良好な凝集能力を維持し ている。

【0009】なお、脱アルカリ金属処理後のケイ酸溶液 中のアルカリ金属の濃度は0.3%程度以下とすることが 望ましい。アルカリ金属濃度が高くなると、ゲル化した まま凝集剤として用いることができない現象を示す等、 30 本発明所期の効果を良好に得ることができないからであ る。また、ケイ酸溶液の重合の程度は、凝集効果の観点 から、前記特願昭61-276588号の発明におけると同じ程 度。すなわち極限粘度数を約6.2 (100ml/a) 以上 (平 均分子置において約200000 (q/mol) 程度以上)とする ことが望ましい。さらに、ケイ酸濃度は、前記のとお り、凝集効果や保存輸送のコスト低減の観点から、Sio. 換算で8%程度以上とすることが望ましく、ロータリー エバボレータ等の濃縮手段によって15%程度以上に濃縮 することも可能であり、このように高度に濃縮したケイ 酸溶液も、長期間の保存に堪えることができる。

【0010】上記の高重合ケイ酸溶液と共に用いる、水 中において水酸化物を形成しうる可溶性の金属塩として は、特願昭61-276688号の明細書に記載したように各種 の金属の塩を用いることができるが、水中で第二鉄イオ ンを生じる金属塩、例えば硝酸第二鉄、塩化第二鉄、硫 酸第二鉄等を用いることが望ましい。水中で第二鉄イオ ンを生じる金属塩をケイ酸溶液に添加すると、凝集能力 を高めると共にケイ酸溶液のゲル化時間をさらに延長し うることは、すでに本出願人の出願にかかる特願昭63-1 5

は、本出願にかかるアルカリ金属濃度の低い高重合ケイ 酸溶液についても適用される。また、この目的のために は、硝酸第二鉄を用いると特に好適であることが分っ た。

【①①11】本発明の凝集剤の製造に際しては、まず、 前記のようなアルカリ金属ケイ酸塩(ケイ酸ナトリウ ム。ケイ酸カリウム等)の溶液に脱アルカリ金属処理を 施して、アルカリ金属濃度を低減させる。通常、この脱 アルカリ金属処理は、上記のアルカリ金属ケイ酸塩溶液 を イオン交換樹脂圏中を通過させ、又はイオン交換樹 脂を添加機拌した後にイオン交換樹脂を癒別することに よって行う。これによって、ケイ酸溶液中のアルカリ金 属。例えば Na.K等が除去され、アルカリ金属濃度が著 しく低減された酸性のケイ酸溶液が得られる。次いで、 この酸性ケイ酸溶液に少量のアルカリ剤を添加してpH値 を中性付近に調整すると、溶液は急激に粘度を増してい ったんゲル状態又は高粘稠状態のものとなるが、このゲ ル状物又は高結翻物は、時間の経過と共に再び流動化し て液状となるので、その極限粘度数を約0.2 (100ml/ a) 以上のものに調整する。さらに、Sig 濃度が例えば。 約8%以上の高濃度となるように調整し、これに、前記 の金属塩例えば硝酸第二鉄を加えて凝集剤とする。

〈実能例 1 〉H型陽イオン交換樹脂100gを入れたビーカ

中に、Sio. 濃度を8.6%に調整した水ガラス3号品の水

密波199aを注入し、マグネチックスターラで5分間機枠

した。攪拌終了後にイオン交換樹脂を纏別して、纏液60

[0012]

【実施例】

gを100m1ビーカに入れた。滤液のナトリウム濃度は0.02 %であった。これをマグネチックスターラで撹拌しなが 30 Spr調整のためにIN-NaDHを2ml添加してpHを8.8とし た。滤液はTN-NacH添加後に急激に粘度を増して約30秒 後に完全にゲル化したが、このゲルを60℃の恒温槽中に 24時間静置したところ再び液状化した。このようにして 得られたケイ酸溶液のSiG 濃度は7.9%、ナトリウム濃 度は0.10%であった。また、その極限粘度及び平均分子 置を、ウベローデ粘度計及び限外濾過膜による分子置分 画法により測定したところ。極限粘度は0.29(100m)/ g)、平均分子置は約280,000 (g/mol) であった。 【①①13】 (実施例2) H型陽イオン交換樹脂200gを 入れたビーカ中に、ケイ酸濃度を9.0%に調整した水ガ ラス3号品の水溶液100gを注入し、マグネチックスター ラで5分間機拌した。機拌終了後にイオン交換樹脂をろ 別して、Sio. 濃度9.0%、ナトリウム濃度0.01%のケイ 酸溶液90gを得た。これをマグネチックスターラで攪拌 しながらpH調整のためにIN-NaCHを3,5ml添加してpHを8. 8とした。ろ液はIN-NacH&が加後に急激に粘度を増して約 30秒後に完全にゲル化したが、このゲルを60°Cの恒温槽 中に24時間静置したところ再び液状化した。このように して調整した重合ケイ酸溶液を20℃の恒温槽中に18º月

間保存した。187月保存後の宣合ケイ酸溶液はSiQ 濃度 8.7%、ナトリウム濃度0,984%で、極限粘度数は0.27 (190m/q) 平均分子量は270,900(q/mol)であった。

【0014】(実施例3) SnQ. 濃度を8.6%に調整した水ガラス3号品の水溶液2 kqと H型陽イオン交換樹脂2 k qとを5リットルビーカに同時に投入し、撥拌機で5分間攪拌した。攪拌終了後にイオン交換樹脂を濾剤し、得られた濾液1.8kq (ナトリウム濃度0.02%)を2リットルビーカに入れ、攪拌しつつIN-NaOHを60ml添加した。濾液は約30秒後に完全にゲル化したが、これを60°Cの恒温槽中に移して2時間置いたところ再び液状となった。これをロータリーエバボレータで約2.5倍に濃縮した。(ロータリーエバボレータは、温度75°C、回転数40mm、圧力26~150mmHqで操作した。)上記のようにして得られた宣台ケイ酸のSiQ. 濃度は18.8%、ナトリウム濃度は0.26%であった。また、ウベローデ結度計による極限結度は0.28(100ml/q)、限外流過機法による平均分子量は約280,000(q/mol)であった。

【 () () 1.5 】 (実施例4) H型陽イオン交換樹脂500gを 内径Scnのアクリル製ろ過筒に充填した層高32cmの樹脂 層に、Sio. 濃度を4、3%に調整した水ガラス3号品の水 密液 1 kgをろ過速度2m∕hrで通過せしめ、SiQ 濃度4.3 %. ナトリウム遊度0.004%のろ液900gを得た。このろ 液をビー力に採り、マグネチックスターラで鏝拌しなが らpH調整のためにTN-NaOHを8mT添加してpHを7.7とし20 ℃で放置したところ、徐々に粘度が上昇し13時間後には ゲル化した。このゲルを60°Cの恒温槽中に24時間静置し たところ再び液状化した。この溶液をロータリーエバボ レータで約2倍に濃縮した。(ロータリエバボレータ は、温度75°C、回転数40rpm、圧力20~150mmはで操作し た。) このようにして得られたケイ酸溶液の510 濃度は 8.5%、ナトリウム濃度は9.048%であった。また。その 極限結度数をUbbelighde粘度計により測定した比粘度か SHuggins式を用いて算出し、平均分子置を限外濾過膜 による分子置分画法により求めたところ、極限钻度は0. 23 (100ml/q)、平均分子量は約260,000 (q/mol)で あった。

【0016】(実施例5) H型陽イオン交換樹脂500gを40 入れたビーカに、SiQ 減度を8.6%に調整したケイ酸カリウム水溶液500gを加え、マグネチックスターラで5分間脱針した。脱針終了後、イオン交換樹脂を濾別し、得られた濾液420gをビー力に採り、機詳しながら1N-NaGHを14m1添加したところ、急激に粘度を増して約30秒後に完全にゲル化した。このゲルを60°Cの恒温槽中に移して24時間置いたところ再び液状となった。このケイ酸溶液(SiQ 減度8.4%、カリウム減度0.076%)の極限結度は約0.29(100m1/q)、平均分子置は280,000(q/mol)であった。(測定方法は前記各実施例と同じである。)50【0017】(実施例6)実施例3で調製した重合ケイ

酸溶液に金属塩として塩化第二鉄、硝酸第二鉄及び硫酸 第二鉄の3種を用い、それぞれについて、Si:Feのモル 比が3:1で、有効成分濃度(51G, +Fe, G,)が 10.0% 12.5% 15.0%及び17.5%の凝集剤を、次のように調製し た。まず、実施例3で得られた重合ケイ酸溶液を 35.9 q、45.1q、55.3q及び64.6gづつ分取した4個のビーカの 各々に、塩化第二鉄 6.23g. 7.79g. 9.36g及び10.9gを それぞれ添加し、これらに蒸圏水を加えて100gとし、4 つの凝集剤を調製した。

台ケイ酸溶液を分取したこのビーカに、硝酸第二鉄を1 5.5g. 19.4g. 23.3g及び27.2gをそれぞれ添加し、蒸留 水を加えて100gとした4つの凝集剤と、実施例4で調製 した重合ケイ酸を分取した4個のビーカに硫酸第二鉄を 10.7g、13.4g、16.1g及び 18.8g添加し、蒸留水を加え て100gとした4つの凝集剤とを、それぞれ調製した。 【0019】 (実施例7) 実施例5で得られた重合ケイ 酸溶液を3個のビーカに82、5gづつ分取し、 苔々に塩化 第二鉄6,23g、硝酸第二鉄15,5g、硫酸第二鉄10,7gをそ れぞれ添加し、これに蒸留水を加えて100gとし、Sr:Fe 20 【0022】 のモル比が3:1で、有効成分濃度(SiQ + Fe G)が10.*

* 0%の3種類の凝集剤を調製した。

【①020】(参考例)脱アルカリ金属を施さない高重 台ケイ酸溶液を用いて、次のとおり有効成分濃度を10% とした凝集剤を調製した。すなわち、510. 濃度を11.0% (5nG,として) に調整した水ガラス3号品の水溶液649a を 5.4N-HCl 160ml中に撥針しながら混入し、pH2.0. 5 10。濃度8.8%のケイ酸溶液800gを得た。このケイ酸溶液 を50°Cの恒温槽中で30分間機拌しながら重合し、極限 粘度0.30(100ml/q)、平均分子置350,000(q/mol) 【0018】同様にして、同じく実施例3で調製した盒 16 の重合ケイ酸溶液を得た。この重合ケイ酸溶液を3個の ビーカに78.8gづつ分取し、各々に塩化第二鉄6.23g。 硝 酸第二鉄15.5g、硫酸第二鉄19.7g添加した。これらに蒸 圏水を加えて100gとし、Sr:Feのモル比が3:1で、有効 成分濃度(SiG + Fe G) が 10.0%の3種類の凝集剤 を諷製した。

> 【0021】(試験例)実施例6及び7、ならびに上記 参考例において調製した18種の凝集剤を、それぞれ60 ℃及び20℃の恒温槽中に保存してゲル化時間の測定を行 った。その結果を(表1)に示す。

【表1】

影激区分	武騎 金属塩		U E	有纳成分	pli	**•化時間(hr)	
	各种		(\$1:Fe)	渡度(%)		50°¢	80°C
夷施例 7	1	娘化第二段	3:3	10-0	1. 5	110	880
460(代詞)	2	.7	**	!2.5	1. 3	95	6004
処理)	3	7	и	15-9	1. 3	50	265
	4	#	. 4	17. 5	1 2	30	1/0
	5	硝酸第二級	*	10. 0	1.1	860	>1200
	6		ij	12. 5	0.8	180	880
	7	J.	22	15.0	0.8	50	385
	8	**	#	17. 5	0.6	48	240
	9	线二轮缩组	v	10.0	1. 3	28	110
	10	n	~	12. 5	1. 1	20	12
	11	4		15. 0	1. Q	10	:
	12	79	<i>a</i>	17-5	0. 9	ß	2
英施例 8	13	塩化第二鉄	n	10- D	1. 4	95	690
(脱剂)4.	14	确酸第二条	0	,,	1. 1	249	180
奶理)	15	础数第二条	n	υ	1- 3	35	11)
参 考例(16	塩化第二數	ır	tə. 0	1. 5	2	:
腔T/MH金	17	硝酸第二鉄	ન	"	1-1	4	!
属処理不 実始)	В	硫酸第二炔	tl	•	1. 3	0. 5	

【①①23】 (表1) によって明らかなとおり、脱アル カリ金属処理を施さない高重合ケイ酸溶液を用いた凝集 剤は、有効成分濃度を10%に高めた場合におけるゲル化 時間が、鴬温において数時間ないし数十時間程度である のに対し、脱アルカリ金属処理を施した高重合ケイ酸溶 50 5.0~17,5%という極めて高い領域においても、高温に

液を用いた本発明による疑集剤は、有効成分濃度を10% 程度以上とした場合においても極めて良好な保存安定性 を示した。特に、併用する金属塩として塩化第二鉄又は 一硝酸第二鉄を用いた場合においては、 有効成分濃度が1

おいて約1000時間ないし12000時間もゲル化することな く 安定した状態で保存することができた。併用金属塩 として硫酸第二鉄を用いたものも、有効成分濃度10%程 度であれば1000時間以上の保存に堪えられることが分か

【りり24】さらに、本発明による疑集剤の凝集効果を 確認するため、(表1)の試験番号1ないし15の凝集剤 についてジャーテストを実施した。すなわち、蒸留水に カオリンおよび炭酸水素ナトリウム (NaHCO。) を加えて* *獨度190度、アルカリ度60mg/1 (CaCO, として)、pH2.5 に調整した濁水を試験対象水とし、これに上記15種の凝 集剤を注入機針した。凝集剤注入率はFeとして2.0mg/ !で、 縄控条件は120rpm、 3分の後、30rpm、 7分とし た。機控開始からフロックが出現するまでの時間と形成 フロック粒径および鏝枠終了5分後の上澄水濁度を測定 した。結果を(表2)に示す。

16

[0025]

【表2】

製造 区分	試験 番号	金属塩	も比 Si:Pe)	有効成分 膜度(%)	70-7出现 時間(秒)	78+} 校隆(no	上澄北 處度(度
	<u>1</u>	塩化绑二鉄	3:1	[Q. 0	80	2. 0∼5. 0	0.8
	2	a	"	1E. 5	89	8. Q~\$. Q	0.8
実	a		*	15. 0	30	2.0~5.0	0.6
扳	4	a	**	17. 5	30	2.0~5.0	0.8
团	5	稍酸第二級	,,	10-0	30	2. 0~5. 0	0. 6
"	6	,,	.,	12. 5	30	20~50	Q. B
	7	a	at	15. 0	30	2.0~5.0	9- 8
	8		¥	17. 5	30	2. 0~5. 0	O. 7
	8	硫酸烷二铁	- "	10-0	30	2. 0~5. 6	0.7
	10	,,	>1	12. 5	80	2, G~6, C	0.8
	11	n	4	15.0	30	2. e~5. c	0.6
	12	u	41	17. 5	30	2. 0∼5. 0	9. 8
	12	塩化綁二鉄	\$:1	10.0	39	2.0~5.0	6. 7
8	14	從破第二統		"	10	20~50	0. 9
	15	战酸第二級	~	u	~	2 0~5.0	0. G

【0026】(表2)によって明らかなとおり、本発明 の凝集剤は、フロック出現時間、フロック粒径及び上澄 水瀬度のいずれかの観点からしても、極めて良好な経集 能力を示すことが確認された。

【0027】(試験例2)実施例2で得られた。189月 貯蔵後の宣合ケイ酸を79,7a分取した100m1ビーカーに塩 化第二鉄(FeCl, · 6H, 6)を10、4g添加し、蒸留水で100g として、Si:Feのモル比が3:1で、有効成分濃度(SiQ + F BG)が 10%の凝集剤を調製した。この凝集剤の凝集効 杲をジャーテストにより検討した。蒸留水にカオリン及 40 ス3号品の水溶液100gを注入し、マグネチックスターラ び炭酸水素ナトリウム(NaHCD。)を加えて稠度100度。 アルカリ度60mg/1(CaCo, として)とし、pH7.5に調整 した濁水を試験対象水とした。凝集剤注入率はFeとして 2.0mg/1で、機拌条件は120mm。3分後、30mm。7分 とした。規控開始からフロックが出現するまでの時間と 形成プロック粒径及び縄絆終了5分後の上澄濁度を測定 した。結果は次のとおりであった。

フロック出現時間・・・・30(sec)。フロック粒径・・・・2,0~ 5.0(mm). 上澄水濁度・--0.6 (度)。

この凝集剤、すなわち187月貯蔵保存したケイ酸溶液を

用いた凝集剤も、フロック出現時間、フロック粒径およ び上澄水稠度のいずれかの観点からしても、極めて良好 な疑集効果を有することが確認できた。

【0028】(試験例3)高重合ケイ酸溶液調製過程に おいて、pH顕整のためにアルカリ剤を添加することな く、脱アルカリ金属処理を行ったままの状態でゲル化及 び再溶液化を行ったものについての凝集効果を確認する ため、次の試験を行った。H型陽イオン交換樹脂50gを入 れたビーカ中に、ケイ酸濃度を8.6%に調整した水ガラ で5分間機拌した。は9.14% (モル濃度では9.061mol/ 1、モル比では0.042)、pH9.3のケイ酸溶液90gを得た。 このケイ酸溶液は20°Cの室温で約10分後にゲル化した。 このゲルを60°Cの恒温槽中に移して24時間置いたところ 再び液状化した。このようにして調製した重合ケイ酸溶 液の極限粘度は約0.23(100ml/q)。平均分子量は240、 990 (q/mol) であった。

【0029】この宣合ケイ酸を80.6a分取した100m7ビー カに、塩化第二鉄(FeCl、 6H,O)を10.4g添加し、蒸図 50 水で100gとして、Si:Feのモル比が3:1で、有効成分濃度

(SiQ + Fe, Q)が 10%の凝集剤を調製した。この凝集剤 の凝集効果をジャーテストにより検討した。蒸留水にカ オリン及び炭酸水素ナトリウム(NaHCC。)を加えて稠度 100度、アルカリ度60mg/1 (CaCo; として) とし、pH7.5 に調整した欄水を試験対象水とした。凝集剤注入率はFe として2,0mg/!で、 捌拌条件は120mpm、3分後、30mp a 7分とした。鏝拌開始からフロックが出現するまで の時間と形成フロック粒径及び機拌終了5分後の上澄濁 度を測定した。結果は次のとおりであった。

5,0(m), 上澄水稠度···· 9.8(度)。

前記のように調製した凝集剤も、フロック出現時間、フ ロック粒径および上澄水濁度のいずれかの観点からして も、極めて良好な経集効果を有することが確認できた。 【① 030】(試験例4)重合ケイ酸溶液中におけるア

ルカリ金属濃度の相違による溶液の性状変化を確認する*

* ため、次の試験を行った。5ng. 濃度を9.0%に調整した 水ガラス3号品水溶液2kgをH型陽イオン交換樹脂3kg を入れた5リットルビーカに注ぎ、攪拌器で5分間機拌 して脱ナトリウム処理した後、イオン交換樹脂をろ別し て SiO。 濃度9.0%、ナトリウム 濃度0.01%のケイ酸 恣液1.8Kgを得た。このケイ酸溶液150gずつを11個の200 mlビーカに分取し、それぞれに所定の水酸化ナトリウム 溶液を加えてNa濃度を調整し、そのpH シリカ濃度及び ナトリウム濃度を測定した。これを室温 (20℃) で放置 フロック出現時間・・・30(sec)。フロック粒径・・・2.0~ 10 し、ゲル化したものをさらに60℃の恒温槽中に移して24 時間保持した。2.特間経過後に溶液状になっているもの の極限粘度数及び分子量を測定した。その結果を(表 3) に示す。

12

[0031] 【表3】

No	pH -	SiOo 使度化	地養庶 X	室温(20℃) でがお化時限	60℃で24 時間後の状態	極限結度数 100ml/g	分子量 g/sol
1	6.6	8.6	0. 041	1分以內	熔被	Q. 48	640000
2	7. 5	8. 9	0. 951	"	溶液	U. 42	58000e
8	8.3	8.8	0. 062	μ	溶液	e. 37	600000
4	8. 0	8. 6	0. 108	H	海微	Ø 88	260000
5	9. 9	8. 9	0.154	10分級	為政	0.31	220900
6	10.1	6. 6	0. 185	tt	港被	0. 20	200000
7	10. 5	8. 6	0. 200	30分後	溶液	0.38	176000
8	10.8	8. 6	0. 291	IJ	消耗	0.14	99000
8	11-1	8.6	G 448	24時間以内に **か化セザ	サル	-	-
10	11.2	8-8	0.514	N	# A ·	-	_
11	11- 9	8-6	0-980	p	ゲル	-	_

【0032】 (表3) によっても分かるように、Na濃度 が0.3%程度を超えるものは、上記条件の本発明の実施 に必要な再溶液化を行うことができなかった。

[0033]

施してアルカリ金属濃度が著しく低減され、かつStO。 濃度の高い高重合ケイ酸を用いることにより、高重合ケ

イ酸溶液を用いる水処理用凝集剤の凝集能力、保存安定 性をさらに高めることができ、また、製造コストや輸送 コストを低減することができる。また、本発明の製造方 法によれば、上記のように凝集能力と保存安定性の高い [発明の効果] 本発明によれば、脱アルカリ金属処理を 40 水処理用凝集剤を、通常の水ガラスやケイ酸カリウムを 原料として容易に製造することができる。

フロントページの続き

(56)参考文献 特開 昭54-75157 (JP.A)

特開 昭63-130189(JP, A)

特開 昭55-28749 (JP、A) (58)調査した分野(Int.Cl.*, DB名)

B01D 21/01 C02F 1/52

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY