

DIGITAL LOGIC DESIGN (DLD)

(3+1 Credit Hours)

DEPARTMENT OF COMPUTER SCIENCE
FAST-NUCES UNIVERSITY, KARACHI, PAKISTAN

Lab Instructor: Mr. Mubashir

Class & Section: BS(CS) 2B

Semester: SPRING 2024

PROJECT TITLE:

"4-Way Traffic Control System with Pedestrian Walkthrough and Configurable Timers"

Group Members:

Student-ID	Name
24K-1028	Shoaib Hayat
24K-0541	Muhammad Ghufran
24K-0847	Huzaifa Ahmed Bari

Contents

1. Introduction	3
2. Objectives	3
3. Key Features	
4. Technical Details	
5. Process Flow	
6. Expected Outcomes	
7. Conclusion	

1. Introduction

Efficient traffic management is essential for reducing congestion, minimizing accidents, and ensuring pedestrian safety. This project aims to develop a software-based 4-way traffic control system that optimises traffic flow while allowing pedestrian movement through designated crosswalks. The system will feature configurable timers to accommodate varying traffic conditions.

2. Objectives

- Design a digital traffic control system for a 4-way intersection.
- Implement pedestrian crosswalks with dedicated signalling.
- Allow configurable timer settings for adaptive traffic management.
- Develop an interactive software simulation to visualize traffic flow.

3. Key Features

- Traffic Light Control: Each road will have red, yellow, and green signals to regulate vehicle movement.
- Pedestrian Walkthrough: A pedestrian crossing signal will indicate when it is safe to walk.
- Configurable Timers: The system will allow users to set different time durations for each signal phase based on traffic density.
- Emergency Mode: A manual override for emergency vehicles or high-priority traffic flow.
- Simulation Interface: A software-based simulation to demonstrate real-time traffic control.
- User-Friendly Interface: A simple interface for users to configure and visualize the system.

4. Technical Details

- Software Development: The project will be implemented using LogicWorks, a digital logic simulation tool.
- State Machine Design: The traffic lights and pedestrian signals will be managed using a state machine to ensure smooth transitions.
- User Interface: A simple GUI will be developed to allow users to configure timers and visualize traffic flow.

5. Tools and Components

Logic Gates: AND, OR, NOT, NAND, NOR gates for signal processing.

Sequential Circuits: Flip-flops (D, JK, or T) to maintain traffic light states.

Counters: Binary or decade counters to manage timed transitions.

Multiplexers & Decoders: To control and select signal outputs.

Clock & Timing Circuits: 555 Timer or clock pulse generator for timing signals.

Input/Output Components: Switches for pedestrian inputs and LED indicators for traffic light representation.

Software Simulation: Implemented in LogicWorks for digital logic simulation

6. Process Flow

- 1. System Initialization: The system starts by setting default timer configurations.
- 2. Signal Transitioning: Traffic lights and pedestrian signals operate based on a state machine.
- 3. Timer Adjustment: Users can modify signal durations based on traffic needs.
- 4. Emergency Handling: Manual override mode allows priority access when needed.
- 5. Real-Time Simulation: The GUI displays an interactive model of traffic movement.

7. Expected Outcomes

- A functional digital logic-based traffic control system.
- Improved traffic flow efficiency and pedestrian safety.
- A configurable software model that can be extended for real-world applications.

8. Conclusion

This project provides a practical approach to traffic management by integrating digital logic principles into a software-based simulation. The system can adapt to different traffic scenarios by allowing timer customisation and pedestrian signalling, making it a valuable tool for urban planning and traffic regulation.