RWTH Aachen, SS 2021 Release date: April 13th, 2021

Solution: April 20th, 2021

Applied Data Analysis

R-Laboratory 1

Vector & Matrix Calculation – Data Types & Structures – Functions

Useful functions:

• cut()

• which()

qnorm()

- read.table()
- sd()

rnorm()

• prod()

- dnorm()
- seq_along()
- pnorm()

Task 1

(a) Let $a, b \in \mathbb{R}^3$, $A, B \in \mathbb{R}^{3\times 3}$ be vectors and matrices, respectively, with values

$$a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, b = \begin{pmatrix} 3 \\ -5 \\ 0 \end{pmatrix}, A = \begin{pmatrix} 3 & 5 & -1 \\ 1.5 & -\pi & e^{2.5} \\ 1/8 & -6 & 9 \end{pmatrix}, B = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 4 & -6 \\ 3 & -6 & 9 \end{pmatrix}.$$

- (i) Create vectors a, b and matrices A, B in R, which have the same values as a, b, A, B and print them on screen.
- (ii) Calculate $A \cdot a$, $B \cdot b$, A^2 , $A \cdot B$, $a^{\mathsf{T}} \cdot b$ and print them on screen.
- (iii) Suppose $\hat{+}$, $\hat{-}$, $\hat{\cdot}$, $\hat{\cdot}$ denote the respective component-wise operations to +, -, \cdot , : How can you realize $b \otimes a$ and $B \otimes A$ in R for $\hat{\cdot} \in \{\hat{+}, \hat{-}, \hat{\cdot}, \hat{\cdot}\}$?
- (iv) Create an additional matrix $B' \in \mathbb{R}^{2\times 2}$, whose elements are obtained from B by summing up the first two rows and columns.
- (b) Consider the vector

 $x \leftarrow c(5, 2, 6, 4, 1, 2, 2, 5, 4, 4, 6, 4, 2, 5, 5, 3, 6, 1, 4, 5)$

of the integer values 1 up to 6. Create an additional vector ${\tt y}$ applying the following mapping on each component of ${\tt x}$

$$f \colon \{1, \dots, 6\} \longrightarrow \{1, 2, 3\}, \quad v \mapsto f(v) := \begin{cases} 1, & v \in \{1, 2\}, \\ 2, & v \in \{3, 4\}, \\ 3, & v \in \{5, 6\}. \end{cases}$$

Hint: Use the R function cut.

Task 2

Consider the following vectors

v1 <- c(TRUE, TRUE, FALSE, TRUE, FALSE); v2 <- 1:6; v3 <- 5:10

- (a) Read the data into R (by copy-pasting the above code) and print the data on screen.
- (b) What happens, when we write sum(v1) and prod(v1) and why? Convert v1 to a numeric vector and save it as v4.
- (c) Denote by $(a_1, \ldots, a_6)'$ the vector representing v2 and by $(b_1, \ldots, b_6)'$ the vector representing v3. Then, compute the value of $\sum_{i=1}^{6} (a_i \cdot b_i)^i$ on two different ways:
 - (i) using a loop and (ii) without using a loop
- (d) Search the first index, where v2 has a larger element than v4. Do this with and without using a loop.
- (e) Write a function example.function(vec1, vec2), where vec1 and vec2 are numeric vectors representing $a \in \mathbb{R}^{d_1}$ and $b \in \mathbb{R}^{d_2}$, which computes the value of the function $f: \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \longrightarrow \mathbb{R}$,

$$(a,b) \mapsto f(a,b) := \begin{cases} \sum_{i=1}^{d_1} (a_i \cdot b_i)^i, & d_1 = d_2, \\ \min\{i \in \{1, \dots, \min\{d_1, d_2\}\} : a_i > b_i\}, & d_1 \neq d_2, \end{cases}$$

where $\min(\emptyset) := \infty$.

Task 3

- (a) (i) Download the file *credits.wsv* from the RWTHmoodle space of the course Applied Data Analysis in the section "R-Lab Datasets" and import the data as a data.frame object into the R workspace.
 - (ii) Print the variable amount in the data.frame object in the console. Of which data type is amount? Print on screen the second column/row, every column/row apart from the first eight columns/rows and the first/last six rows of *credits.wsv*.
 - (iii) Calculate the arithmetic mean and median of the variable amount. Print the summary of amount to the console.
- (b) (i) Write a function my.sd(data, corrected) returning the sample standard deviation (SD) of data, where
 - data is a numeric vector,
 - corrected is a logical value, indicating whether the corrected or uncorrected sample standard deviation shall be used. The default should be the corrected sample standard deviation. The corrected sample SD s_c and the uncorrected sample SD s_{uc} for a sample $x_1, \ldots, x_n, n \in \mathbb{N}$, are defined by

$$s_c = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 and $s_{uc} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}$,

where $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ denotes the arithmetic mean.

(ii) Use the internal R function sd to calculate the sample SD for the variable amount in the cars—data set from part (a) as well as your own function (with corrected=TRUE and corrected=FALSE). Does sd compute the corrected or the uncorrected variant of SD by default?

Task 4

- (a) Draw random samples of size n = 10, 50, 100 from a $\mathcal{N}(\mu, \sigma^2)$ distribution with $\mu = 5$ and $\sigma^2 = 4$.
- (b) For each sample size n compute the proportion of values that lie in the intervals
 - (i) $I_1 = [3, 7]$
 - (ii) $I_2 = [5, 9].$

Compare the proportions with the true probabilities that a normal distributed random variable with $\mu = 5$ and $\sigma^2 = 4$ lies in those two intervals.

- (c) For each sample size n compute the α -quantiles of the generated values for
 - (i) $\alpha = 0.3$
 - (ii) $\alpha = 0.5$
 - (iii) $\alpha = 0.75$.

Compare these quantiles with the quantiles of a $\mathcal{N}(\mu, \sigma^2)$ distribution.