

Metody algebraiczne informatyki

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.110.03334.22

Języki wykładowe : polski

Dyscypliny: Informatyka, Matematyka

Klasyfikacja ISCED: 0541 Matematyka, 0613 Tworzenie i analiza oprogramowania i aplikacji

Kod USOS: WMI.TCS.MAI.OL

Koordynator przedmiotu

Paweł Idziak

Prowadzący zajęcia

Okres Semestr 1

Paweł Idziak, Andrzej Pezarski

Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Forma prowadzenia i godziny zajęć

wykład: 45 ćwiczenia: 60

Liczba punktów ECTS 8.0

Efekty uczenia się dla przedmiotu

Kod Efekty w zakresie Kierunkowe Metody efekty wzyfikacji uczenia się

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	podstawowe pojęcia algebraiczne, geometryczne i teorioliczbowe oraz ich zastosowania w informatyce.	IAN_K1_W01	egzamin pisemny, zaliczenie
W2	bardzo podstawowe algorytmy algebraiczne IAN_K1_W09, i teorioliczbowe. IAN_K1_W12		egzamin pisemny, zaliczenie
Umiejętności – Student potrafi:			
U1	w sposób zrozumiały przedstawić poprawne rozumowanie matematyczne, formułować definicje i twierdzenia oraz stosować je w praktyce informatyka.	IAN_K1_U01, IAN_K1_U02	egzamin pisemny, zaliczenie
U2	stosować wiedzę matematyczną do modelowania prostych zadań związanych z informatyką	IAN_K1_U01	egzamin pisemny, zaliczenie
Kompetencji społecznych – Student jest gotów do:			
K1	traktowania z rezerwą opinii i stwierdzeń, które nie zostały w sposób wystarczający i poprawny uzasadnione; potrafi precyzyjnie formułować pytania, służące analizie danego tematu.	IAN_K1_K01, IAN_K1_K05	egzamin pisemny, zaliczenie
K2	krytycznej oceny posiadanej wiedzy.	IAN_K1_K01, IAN_K1_K05	egzamin pisemny, zaliczenie

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć
wykład	45
ćwiczenia	60
przygotowanie do ćwiczeń	90

przygotowanie do egzaminu	43	
uczestnictwo w egzaminie	2	
Łączny nakład pracy studenta	Liczba godzin 240	ECTS 8.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu	
1.	Permutacje i grupy.	W1, W2, U1, U2, K1, K2	
2.	Ciała, liczby zespolone.	W1, W2, U1, U2, K1, K2	
3.	3. Macierze liczbowe; Wyznaczniki, macierz odwrotna; Normy wektorów i macierzy. W1, W2, U1, U2, K1, K2		
4.	Przestrzenie liniowe; Przekształcenia liniowe; Funkcjonały liniowe.	W1, W2, U1, U2, K1, K2	
5.	Układy równań liniowych; Obraz, rząd i jądro macierzy.	W1, W2, U1, U2, K1, K2	
6.	Zagadnienia własne operatora liniowego (macierzy); W1, W2, U1, U2, K1, Diagonalizacja.		
7.	Przestrzenie Euklidesowe i unitarne.	W1, W2, U1, U2, K1, K2	
8.	Ciała skończone, RSA i logarytm dyskretny	W1, W2, U1, U2, K1, K2	
9.	Formy dwuliniowe i kwadratowe.	W1, W2, U1, U2, K1, K2	

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, wykład z prezentacją multimedialną, ćwiczenia przedmiotowe

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny	uzyskanie ponad 50% punktów w średniej ważonej egzaminu pisemnego(z wagą 40%) i zaliczenia ćwiczeń (z wagą 60%)
ćwiczenia	zaliczenie	aktywność na zajęciach m.in. poprzez rozwiązywanie zadań domowych; zaliczanie sprawdzianów pisemnych

Wymagania wstępne i dodatkowe

Nie później niż równolegle zaliczany kurs Metody Formalne Informatyki

Literatura

Obowiązkowa

- 1. Herdegen A., Wykłady z algebry liniowej i geometrii, Discepto, Kraków, 2005
- 2. Kostrikin A., Zbiór zadań z algebry, PWN, Warszawa, 1995

Dodatkowa

- 1. Kostrikin A., Wstęp do algebry 1: Podstawy algebry, PWN, Warszawa, 2004
- 2. Kostrikin A., Wstęp do algebry 2: Algebra liniowa, PWN, Warszawa, 2004
- 3. Kostrikin A., Wstęp do algebry 3: Podstawowe struktury algebraiczne, PWN, Warszawa, 2005