2.A. Etapas esenciales de un sistema DSP

Dr. Ing. Hernán Garrido

Control y sistemas
Universidad Nacional de Cuyo, Facultad de Ingeniería

carloshernangarrido@gmail.com

Noviembre de 2023

- Introducción
- Piltro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- 5 Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- 8 Técnicas de upsampling, pre-ecualización y post-ecualización

DSP en el contexto de los sistemas de control

Etapas de un sistema de procesamiento de señales

Muestreo periódico

Si una señal en tiempo continuo $x_c(t)$ se muestrea periódicamente, se obtiene una señal en tiempo discreto:

$$x[n] = x_c(nT)$$

donde T es el periodo de muestreo, $n \in \mathbb{Z}$, $f_s = 1/T$ es la tasa de muestreo (en radianes, $\Omega_s = 2\pi f_s$).

Proceso de muestreo

El muestreo se puede interpretar como dos operaciones:

- 1. Multiplicación por un tren de funciones muestra unitaria (impulsos).
- 2. Conversión de función discontinua en *t* a sucesión en *n*.

Teorema del muestreo de Nyquist-Shannon

Teorema

Sea $x_c(t)$ una señal de banda limitada tal que:

$$X_c(j\Omega) = 0, \forall |\Omega| \geq \Omega_N.$$

Entonces, $x_c(t)$ está determinada por sus muestras $x[n] = x_c(nT), n \in \mathbb{Z}$ si

$$\Omega_s = rac{2\pi}{T} \geq 2\Omega_N$$

A la frecuencia Ω_N se la llama frecuencia de Nyquist, y a $2\Omega_N$ tasa de Nyquist.

La tasa de Nyquist es la mínima tasa a la que hay que muestrear la señal $x_c(t)$ para que luego pueda ser reconstruida.

Teorema del muestreo en el dominio de la frecuencia

Al multiplicar la señal continua $x_c(t)$ por el tren periódico de impulsos s(t), se obtiene la señal muestreada $x_s(t)$:

$$x_s(t) = x_c(t)s(t) = x_c(t)\sum_{n=-\infty}^{\infty} \delta(t - nT) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t - nT)$$

La transformada de Fourier de la señal en tiempo continuo es:

$$X_c(j\Omega)$$
.

La transformada de Fourier del tren de impulsos es:

$$S(j\Omega) = \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_s), \Omega_s = 2\pi/T$$

La transformada de Fourier de la señal muestreada es:

$$X_s(j\Omega) = \frac{1}{2\pi}X_c(j\Omega) * S(j\Omega) = \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c(j(\Omega - k\Omega_s))$$

Teorema del muestreo en el dominio de la frecuencia: Aliasing

- $X_s(j\Omega)$ son copias periódicamente repetidas de $X_c(j\Omega)$.
- Las copias están espaciadas cada Ω_s.
- El solapamiento comienza cuando $\Omega_s \Omega_N = \Omega_N$
- Si $\Omega_s \ge 2\Omega_N$, se evita el solapamiento de las copias.

- Introducción
- 2 Filtro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- B Técnicas de upsampling, pre-ecualización y post-ecualización

Filtro an isoliasing: Necesidad

Para evitar el solapamiento o aliasing has dos caminos:

- Aumentar Ω_s
- Limitar Ω_N

Incluso aumentando mucho Ω_s , puede que no se pueda evitar el aliasing si Ω_N no está limitada.

- Esto puede pasar incluso en señales de banda limitada por naturaleza (ejemplo, música).
 - Debido al ruido de banda ancha, presente en toda medición analógica.

Filtro antialiasing: Implementación

FIGURE 3-8

The modified Sallen-Key circuit, a building block for active filter design. The circuit shown implements a 2 pole low-pass filter. Higher order filters (more poles) can be formed by caseading stages. Find k_1 and k_2 from Table 3-1, arbitrarily select R_1 and C (try 10K and $0.01 \mu F$), and then calculate R and R_r from the equations in the figure. The parameter, f_n is the cutoff frequency of the filter, in hertz.

TABLE 3-1 Parameters for designing Bessel, Butterworth, and Chebyshev (6% ripple) filters.

	Bessel		Butterworth		Chebyshev	
# poles	$\mathbf{k_1}$	\mathbf{k}_2	\mathbf{k}_{1}	$\mathbf{k_2}$	\mathbf{k}_{1}	$\mathbf{k_2}$
2 stage 1	0.1251	0.268	0.1592	0.586	0.1293	0.842
4 stage 1	0.1111	0.084	0.1592	0.152	0.2666	0.582
stage 2	0.0991	0.759	0.1592	1.235	0.1544	1.660
6 stage 1	0.0990	0.040	0.1592	0.068	0.4019	0.537
stage 2	0.0941	0.364	0.1592	0.586	0.2072	1.448
stage 3	0.0834	1.023	0.1592	1.483	0.1574	1.846
8 stage 1	0.0894	0.024	0.1592	0.038	0.5359	0.522
stage 2	0.0867	0.213	0.1592	0.337	0.2657	1.379
stage 3	0.0814	0.593	0.1592	0.889	0.1848	1.711
stage 4	0.0726	1.184	0.1592	1.610	0.1582	1.913

Figura: Tomado de Digital Signal Processing: A Practical Guide for Engineers and Scientists by Steven W. Smith; disponible en www.dspguide.com

Filtro antialiasing: Limitaciones de la implementación analógica

Todo filtro tiene una banda de transición, la cual debe:

- ullet empezar luego de Ω_N , para no perder señal útil, y
- terminar antes de $\Omega_s \Omega_N$, para evitar el solapamiento.
- Recordar: diapositiva 9

En los filtros analógicos es difícil hacer una banda de transición muy estrecha.

- Introducción
- 2 Filtro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- B Técnicas de upsampling, pre-ecualización y post-ecualización

Técnica de oversampling: diagrama en bloques

Técnica de oversampling: análisis en la frecuencia

- Introducción
- 2 Filtro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- Técnicas de upsampling, pre-ecualización y post-ecualización

Conversión A/D

Un conversor analógico a digital (A/D) es un dispositivo físico, discreto o integrado en un microcontrolador, que:

- Recibe una señal analógica de tensión constante, y
- la convierte en un código binario que representa un valor cuantizado.

Para trabajar con señales analógicas variables:

 se agrega una etapa de muestreo y retención antes del conversor A/D; normalmente un retenedor de orden cero (zero-order-holder).

- Introducción
- 2 Filtro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- 5 Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- Técnicas de upsampling, pre-ecualización y post-ecualización

Cuantizador (quantizer)

Un cuantizador es un sistema no lineal cuyo objetivo es transformar la muestra de entrada $x[n] \in \mathbb{R}$ en uno $\hat{x}[n] \in \{v_1, v_2, ..., v_n\}$, donde $v_1, v_2, ..., v_n$ son n valores prescritos.

- La cantidad de valores prescritos es $n = 2^{B+1}$.
- La precisión del cuantizador es $\Delta = \frac{V_{\text{máx}} V_{\text{mín}}}{2^{\mathcal{B}+1}} = \frac{2X_m}{2^{\mathcal{B}+1}} = \frac{X_m}{2^{\mathcal{B}}}$

Error de cuantización y su modelo aditivo

Figura: (b) Muestras cuantizadas de (a) con un cuantizador de 3 bits. (c) Error de cuantización con 3 bits. (d) Error de cuantización con 8 bits.

- Introducción
- 2 Filtro antialiasing
- Técnica de oversampling
- 4 Conversión A/D
- **5** Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- B Técnicas de upsampling, pre-ecualización y post-ecualización

Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits

Si Δ es pequeño, se puede asumir que el error de cuantización está uniformemente distribuido y su función de densidad de probabilidad es:

Por lo tanto, su varianza se puede calcular como:

$$\sigma_{\rm e}^2 = \int_{-\Delta/2}^{\Delta/2} \frac{1}{\Delta} e^2 \mathrm{d}e = \frac{\Delta^2}{12}.$$

Si x[n] es una señal pura, la relación señal ruido de $\hat{x}[n]$ resulta:

$$SNR_{ADC} = 10 \log_{10} \left(\frac{\sigma_{\chi}^2}{\sigma_{e}^2} \right) = 6.02B - 20 \log_{10} \left(\frac{X_m}{\sigma_{\chi}} \right) + 10.8$$

Un seno de excursión completa $(\frac{X_m}{\sigma_x} = \sqrt{2})$ y 8 bits (B = 7) dan ≈ 50 dB.

Selección de la cantidad de bits del conversor A/D

Considere que la señal analógica muestreada, pero aún no cuantizada, es decir x[n], no es pura; si no que tiene una relación señal ruido $SNR_{x[n]}$.

• Si $\mathrm{SNR}_{ADC} \geq \mathrm{SNR}_{\times[n]}$, entonces la señal cuantizada $\hat{x}[n]$ tendrá la misma relación señal ruido que la señal x[n], y los B_{noise} bits menos significativos representarán ruido de la señal original, donde:

$$B_{\rm noise} \approx \frac{{\rm SNR}_{ADC} - {\rm SNR}_{x[n]}}{6} = \frac{20 \log_{10} \left(\frac{{\rm ruido~en~}x[n]}{{\rm ruido~del~ADC}}\right)}{6}.$$

- Si $SNR_{ADC} < SNR$, entonces la señal cuantizada $\hat{x}[n]$ tendrá una relación señal ruido *peor* que la señal original x[n].
- En la práctica:
 - conviene elegir:

$$B_{\text{noise}} \geq 1$$
.

• Si $B_{
m noise} >> 1$, se pueden descartar algunos antes de almacenar el dato en memoria u operar con él.

24 / 34

- Introducción
- 2 Filtro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- Técnicas de upsampling, pre-ecualización y post-ecualización

Conversión D/A

Un conversor digital a analógico (D/A) es un dispositivo físico, discreto o integrado en un microcontrolador, que:

- Recibe un código binario que representa un valor cuantizado, y
- lo convierte en una señal analógica de tensión constante.

Sus dos principales parámetros son:

- Resolución: Es el número de valores distintos que puede entregar a su salida, normalmente es 2^{B+1} donde B+1 es el número de bits del ADC.
- Tasa de muestreo máxima: Es el máximo número de muestras por unidad de tiempo que el conversor puede entregar a su salida, de manera correcta.

Conversión D/A en el tiempo y en la frecuencia

Dominio de la frecuencia

Conversión D/A en el tiempo y en la frecuencia

$$H(f) = \left| \frac{\sin(\pi f/f_s)}{\pi f/f_s} \right|$$

- Introducción
- 2 Filtro antialiasing
- 3 Técnica de oversampling
- 4 Conversión A/D
- Error de cuantización
- 6 Relación señal-ruido de un conversor A/D y su relación con la cantidad de bits
- Conversión D/A
- 8 Técnicas de upsampling, pre-ecualización y post-ecualización

Técnicas de up-sampling, pre-ecualización y post-ecualización

Existen 4 formas de implementar la reconstrucción:

- No hacerla, y aceptar las consecuencias.
- Post-ecualización: Utilizar un filtro analógico con una respuesta en frecuencia tal que no sólo:
 - elimine las altas frecuencias, si no que también
 - refuerce las altas frecuencias dentro de la banda útil que fueron atenuadas por el ZOH.
- Pre-ecualización: Utilizar un filtro digital que refuerce las altas frecuencias de la banda útil antes de ingresar la señal al conversor D/A.
- Up-sampling:
 - Interpolar rellenando con ceros (lo contrario de decimar),
 - aplicar un filtro pasa-bajos digital (opcional),
 - convertir a analógico, y finalmente
 - el filtro analógico de reconstrucción puede ser simple.

Up-sampling: Ejemplo

Interpolando con ceros

Interpolando con un filtro digital Butterworth de 8vo orden

Bibliografía

- Alan V. Oppenheim and Ronald W. Schafer. Discrete-time signal processing, 3rd Ed. Prentice Hall. 2010. Section 4.3.
- Steven W. Smith. The Scientist and Engineer's Guide to Digital Signal Processing. Chapter 3, ADC and DAC. Link.
- Maxim Integrated. Equalizing Techniques Flatten DAC Frequency Response. Application Note 3853. August 2012.