Example 1

Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ over the unit sphere $x^2 + y^2 + z^2 = 1$.

Solution:

First we compute the divergence of **F**:

$$\operatorname{div} \mathbf{F} = \frac{\partial}{\partial x} (z) + \frac{\partial}{\partial y} (y) + \frac{\partial}{\partial z} (x) = 1$$

The unit sphere S is the boundary of the unit ball B given by $x^2 + y^2 + z^2 \le 1$.

6

Example 1 – Solution

cont'd

Thus the Divergence Theorem gives the flux as

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{B} \operatorname{div} \mathbf{F} \, dV$$

$$= \iiint_{B} 1 \, dV$$

$$= V(B)$$

$$= \frac{4}{3}\pi(1)^{3}$$

$$= \frac{4\pi}{3}$$

7