Багатовимірні випадкові величини

Теорія ймовірностей, ймовірнісні процеси і математична статистика

Нехай на ймовірнісному просторі (Ω, \mathcal{F}, P) визначені кілька випадкових величин X_1, X_2, \ldots, X_n , які іноді зручно розглядати як координати випадкового вектора $X = (X_1, X_2, \ldots, X_n)$ із n-вимірного простору \mathbb{R}^n .

Нехай на ймовірнісному просторі (Ω,\mathcal{F},P) визначені кілька випадкових величин X_1,X_2,\ldots,X_n , які іноді зручно розглядати як координати випадкового вектора $X=(X_1,X_2,\ldots,X_n)$ із n-вимірного простору \mathbb{R}^n .

Закон розподілу випадкового вектора $X=(X_1,X_2,\ldots,X_n)$ у загальному випадку визначається функцією розподілу.

Означення

Функцією розподілу n-вимірної випадкової величини (X_1,X_2,\ldots,X_n) називається ймовірність сумісного виконання нерівностей:

$$X_1 < x_1, X_2 < x_2, \dots, X_n < x_n; x_i \in \mathbb{R}^n, i = \overline{1, n},$$

тобто

$$F(x_1, x_2, \dots, x_n) = P\{X_1 < x_1, X_2 < x_2, \dots, X_n < x_n\}.$$

Розглянемо властивості функції розподілу для випадку n=2, тобто для двовимірної випадкової величини (X,Y).

Розглянемо властивості функції розподілу для випадку n=2, тобто для двовимірної випадкової величини (X,Y).

Функція розподілу F(x,y) має такі властивості:

ullet F(x,y) — неспадна функція за кожним аргументом;

Розглянемо властивості функції розподілу для випадку n=2, тобто для двовимірної випадкової величини (X,Y).

Функція розподілу F(x,y) має такі властивості:

- ullet F(x,y) неспадна функція за кожним аргументом;
- ullet для функції F(x,y) виконуються такі граничні співвідношення:

$$F(-\infty, y) = 0$$
, $F(x, -\infty) = 0$, $F(-\infty, -\infty) = 0$, $F(\infty, \infty) = 1$;

Розглянемо властивості функції розподілу для випадку n=2, тобто для двовимірної випадкової величини (X,Y).

Функція розподілу F(x,y) має такі властивості:

- ullet F(x,y) неспадна функція за кожним аргументом;
- ullet для функції F(x,y) виконуються такі граничні співвідношення:

$$F(-\infty,y)=0,\ F(x,-\infty)=0,\ F(-\infty,-\infty)=0,\ F(\infty,\infty)=1;$$

• $\lim_{y \to \infty} F(x, y) = F(x, \infty) = F_X(x);$ $\lim_{x \to \infty} F(x, y) = F(\infty, y) = F_Y(y),$

де $F_X(x)$ — функція розподілу випадкової величини X; $F_Y(u)$ — функція розподілу випадкової величини Y

Двовимірні випадкові величини

Двовимірну випадкову величину (X,Y) назвемо дискретною, якщо її складові X і Y є дискретними одновимірними випадковими величинами, і **неперервною**, якщо її складові X і Y є неперервними одновимірними випадковими величинами.

Складові X і Y двовимірної випадкової величини (X,Y) називають ще її компонентами.

Для задання дискретної випадкової величини (X,Y) досить задати її можливі значення (x_i,y_k) та ймовірності кожного з них:

$$p_{ik} = P\{X = x_i, Y = y_k\}, \quad i, k = 1, 2, \dots$$

Для задання дискретної випадкової величини (X,Y) досить задати її можливі значення (x_i,y_k) та ймовірності кожного з них:

$$p_{ik} = P\{X = x_i, Y = y_k\}, \quad i, k = 1, 2, \dots$$

Для одновимірних випадкових величин X і Y введемо позначення:

$$p_i = P\{X = x_i\}, i = 1, 2, ...;$$
 $q_k = P\{Y = y_k\}, k = 1, 2,$

Знайдемо зв'язок між ймовірностями p_{ik} та p_i і q_k .

Подію $\{X=x_i\}$ можна представити як суму попарно несумісних подій:

$${X = x_i} = {X = x_i, Y = y_1} + {X = x_i, Y = y_2} + \cdots$$

Подію $\{X=x_i\}$ можна представити як суму попарно несумісних подій:

$${X = x_i} = {X = x_i, Y = y_1} + {X = x_i, Y = y_2} + \cdots$$

Звідси за аксіомою адитивності

$$p_i = \sum_{k=1}^{\infty} p_{ik}.$$

Подію $\{X=x_i\}$ можна представити як суму попарно несумісних подій:

$${X = x_i} = {X = x_i, Y = y_1} + {X = x_i, Y = y_2} + \cdots$$

Звідси за аксіомою адитивності

$$p_i = \sum_{k=1}^{\infty} p_{ik}.$$

Аналогічно можна отримати формулу

$$q_k = \sum_{i=1}^{\infty} p_{ik}.$$

Подію $\{X=x_i\}$ можна представити як суму попарно несумісних подій:

$${X = x_i} = {X = x_i, Y = y_1} + {X = x_i, Y = y_2} + \cdots$$

Звідси за аксіомою адитивності

$$p_i = \sum_{k=1}^{\infty} p_{ik}.$$

Аналогічно можна отримати формулу

$$q_k = \sum_{i=1}^{\infty} p_{ik}.$$

Справедлива наступна рівність

$$\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} p_{ik} = \sum_{k=1}^{\infty} q_k = \sum_{i=1}^{\infty} p_i = 1.$$

Для двовимірної неперервної випадкової величини (X,Y) існує невід'ємна функція p(x,y) така, що функція розподілу випадкового вектора (X,Y) визначається у вигляді

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv,$$
 (4.1)

до того ж функція p(x,y) неперервна всюди, крім, можливо, скінченної кількості точок і називається **щільністю розподілу ймовірностей** випадкового вектора (X,Y).

Для двовимірної неперервної випадкової величини (X,Y) існує невід'ємна функція p(x,y) така, що функція розподілу випадкового вектора (X,Y) визначається у вигляді

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv,$$
 (4.1)

до того ж функція p(x,y) неперервна всюди, крім, можливо, скінченної кількості точок і називається **щільністю розподілу ймовірностей** випадкового вектора (X,Y).

3 (4.1) випливає, що в точках неперервності щільність розподілу можна визначити як другу мішану похідну функції розподілу:

$$p(x,y) = \frac{\partial^2 F}{\partial x \partial y}.$$

Використовуючи, що $F(\infty,\infty)=1$, з (4.1) отримуємо основну властивість щільності розподілу випадкового вектора (X,Y):

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) dx dy = 1.$$

Використовуючи, що $F(\infty,\infty)=1$, з (4.1) отримуємо основну властивість щільності розподілу випадкового вектора (X,Y):

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) dx dy = 1.$$

Якщо можливі значення двовимірної неперервної випадкової величини (X,Y) розміщені в області $G\subset\mathbb{R}^2$, то формула (4.1) набуває вигляду:

$$P\{(x,y) \in G\} = \iint_G p(x,y)dxdy.$$

Знаючи щільність розподілу p(x,y) випадкового вектора (X,Y), можна знайти щільності розподілу його компонент $p_X(x)$ та $p_Y(y)$.

Знаючи щільність розподілу p(x,y) випадкового вектора (X,Y), можна знайти щільності розподілу його компонент $p_X(x)$ та $p_Y(y)$.Справді,

$$F_X(x) = \lim_{y \to \infty} F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} p(u, v) du dv,$$

Знаючи щільність розподілу p(x,y) випадкового вектора (X,Y), можна знайти щільності розподілу його компонент $p_X(x)$ та $p_Y(y)$. Справді,

$$F_X(x) = \lim_{y \to \infty} F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} p(u, v) du dv,$$

звідки

$$p_X(x) = \frac{dF_X(x)}{dx} = \int_{-\infty}^{\infty} p(x, v)dv.$$

Знаючи щільність розподілу p(x,y) випадкового вектора (X,Y), можна знайти щільності розподілу його компонент $p_X(x)$ та $p_Y(y)$.Справді,

$$F_X(x) = \lim_{y \to \infty} F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{\infty} p(u, v) du dv,$$

звідки

$$p_X(x) = \frac{dF_X(x)}{dx} = \int_{-\infty}^{\infty} p(x, v)dv.$$

Аналогічно можна отримати формулу для $p_Y(y)$:

$$p_Y(y) = \int_{-\infty}^{\infty} p(u, y) du.$$

Знаючи закон розподілу двовимірної випадкової величини (X,Y), можна знайти закон розподілу окремих величин X і Y.

Знаючи закон розподілу двовимірної випадкової величини (X,Y), можна знайти закон розподілу окремих величин X і Y.

Чи можна, знаючи закони розподілу окремих випадкових величин X і Y, знайти закон розподілу випадкового вектора (X,Y)?

Знаючи закон розподілу двовимірної випадкової величини (X,Y), можна знайти закон розподілу окремих величин X і Y.

Чи можна, знаючи закони розподілу окремих випадкових величин X і Y, знайти закон розподілу випадкового вектора (X,Y)?

Це можна зробити лише в одному частковому випадку, коли випадкові величини X і Y є незалежні.

Знаючи закон розподілу двовимірної випадкової величини (X,Y), можна знайти закон розподілу окремих величин X і Y.

Чи можна, знаючи закони розподілу окремих випадкових величин X і Y, знайти закон розподілу випадкового вектора (X,Y)?

Це можна зробити лише в одному частковому випадку, коли випадкові величини X і Y є незалежні.

Означення

Випадкові величини X_1, X_2, \dots, X_n називаються **незалежними**, якщо для будь-яких дійсних чисел x_1, x_2, \dots, x_n

$$F(x_1, x_2, \dots, x_n) = F_1(x_1)F_2(x_2) \cdot \dots \cdot F_n(x_n),$$

де $F(x_1,x_2,\ldots,x_n)$ — функція розподілу випадкового вектора (X_1,X_2,\ldots,X_n) , $F_k(x_k)$ — функція розподілу випадкової величини X_k , $k=\overline{1,n}$.

Розглянемо випадок n=2.

Розглянемо випадок n=2.

Якщо X,Y — дискретні випадкові величини, то їхня незалежність означає, що для будь-яких i,k події $\{X=x_i\}$ і $\{Y=y_k\}$ є незалежні

Розглянемо випадок n=2.

Якщо X,Y — дискретні випадкові величини, то їхня незалежність означає, що для будь-яких i,k події $\{X=x_i\}$ і $\{Y=y_k\}$ є незалежні, тому

$$p_{ik} = P\{X = x_i, Y = y_k\} = P\{X = x_i\}P\{Y = y_k\} = p_i q_k, i, k = 1, 2, \dots$$

Нехай, X,Y — неперервні випадкові величини з функціями розподілу $F_X(x)$ та $F_Y(y)$ і щільностями розподілу ймовірностей $p_X(x)$ та $p_Y(y)$ відповідно. Нехай F(x,y) і p(x,y) — функція розподілу і щільність розподілу двовимірної випадкової величини (X,Y).

Нехай, X,Y — неперервні випадкові величини з функціями розподілу $F_X(x)$ та $F_Y(y)$ і щільностями розподілу ймовірностей $p_X(x)$ та $p_Y(y)$ відповідно. Нехай F(x,y) і p(x,y) — функція розподілу і щільність розподілу двовимірної випадкової величини (X,Y).

 $\mathsf{3}$ а означенням незалежності X і Y маємо: $F(x,y) = F_X(x) \cdot F_Y(y)$.

Нехай, X,Y — неперервні випадкові величини з функціями розподілу $F_X(x)$ та $F_Y(y)$ і щільностями розподілу ймовірностей $p_X(x)$ та $p_Y(y)$ відповідно. Нехай F(x,y) і p(x,y) — функція розподілу і щільність розподілу двовимірної випадкової величини (X,Y).

 $\mathsf{3a}$ означенням незалежності X і Y маємо: $F(x,y) = F_X(x) \cdot F_Y(y).$

Диференціюючи двічі (по x і по y), одержимо:

$$\frac{\partial^2 F}{\partial x \partial y} = F_X'(x) \cdot F_Y'(y),$$

Нехай, X,Y — неперервні випадкові величини з функціями розподілу $F_X(x)$ та $F_Y(y)$ і щільностями розподілу ймовірностей $p_X(x)$ та $p_Y(y)$ відповідно. Нехай F(x,y) і p(x,y) — функція розподілу і щільність розподілу двовимірної випадкової величини (X,Y).

За означенням незалежності X і Y маємо: $F(x,y) = F_X(x) \cdot F_Y(y)$.

Диференціюючи двічі (по x і по y), одержимо:

$$\frac{\partial^2 F}{\partial x \partial y} = F_X'(x) \cdot F_Y'(y),$$

тобто

$$p(x,y) = p_X(x) \cdot p_Y(y). \tag{4.2}$$

Умова (4.2) є не лише необхідною, а й достатньою для незалежності неперервних випадкових величин X і Y.

Умова (4.2) є не лише необхідною, а й достатньою для незалежності неперервних випадкових величин X і Y.

Справді, якщо (4.2) виконується, то

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_X(u)p_Y(v)dudv =$$
$$= \int_{-\infty}^{x} p_X(u)du \int_{-\infty}^{y} p_Y(v)dv = F_X(x) \cdot F_Y(y),$$

Умова (4.2) є не лише необхідною, а й достатньою для незалежності неперервних випадкових величин X і Y.

Справді, якщо (4.2) виконується, то

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} p(u,v)dudv = \int_{-\infty}^{x} \int_{-\infty}^{y} p_X(u)p_Y(v)dudv =$$

$$= \int_{-\infty}^{x} p_X(u)du \int_{-\infty}^{y} p_Y(v)dv = F_X(x) \cdot F_Y(y),$$

а це означає, що X і Y — незалежні.