Experiment Number: S0546

Species/Strain: Hamster/Syrian Golden

Route: Gavage, IV

Toxicokinetics Data Summary

Test Compound: 2,4-Dichlorophenoxyacetic Acid

CAS Number: 94-75-7

Date Report Requested: 11/09/2016 Time Report Requested: 13:59:32

Lab: Research Triangle Institute

M	\sim	۱.
IVI	a	ıe

	Treatment Groups (mg/kg)						
	2 a	8 b	8 a	40 ^a	8 IV ^a		
	Plasma						
C _{0min(pred)} (ug/mL)					223.0		
C _{max} (ug/mL)	6.86		18.2	70.1			
T _{max} (minute)	15		5	5			
t1/2(Beta) (minute)	36.9		24.6	210.0	21.0		
ko1 (min^-1)		0.0467 ± 0.012					
K10 (min^-1)		0.116 ± 0.010					
CI (mL/min/kg)					5.30		
Cl _{1(F)} (mL/min/kg)	7.85		14.8	3.38			
√₁ (L/kg)		0.0605 ± 0.0055					
MRT (minute)	103.0		33.0	306.0	12.8		
AUCinf (ug/mL*min)	255.0		541	11830	1510		
F (fraction)	0.67		0.36	1.57			

Experiment Number: S0546

Toxicokinetics Data Summary

Species/Strain: Hamster/Syrian Golden

Test Compound: 2,4-Dichlorophenoxyacetic Acid CAS Number: 94-75-7

Lab: Research Triangle Institute

Date Report Requested: 11/09/2016

Time Report Requested: 13:59:32

LEGEND

Route: Gavage, IV

Data are displayed as mean ± SEM

MODELING METHOD & BEST FIT MODEL

^a Modeling Method: Models 200 and 201, PCNONLIN software, SCI Software, Lexington, KY; noncompartmental model (not best fit)

ANALYTE

2,4-Dichlorophenoxyacetic acid

TK PARAMETERS

 $C_{0min(pred)}$ = Fitted plasma concentration at time zero (IV only)

C_{max} = Observed or Predicted Maximum plasma (or tissue) concentration

 T_{max} = Time at which C_{max} predicted or observed occurs

 $t_{\frac{1}{2}(beta)}$ = Half-life for the beta phase

 k_{01} = Absorption rate constant, k_a

k₁₀ = Elimination rate constant from the central compartment also k_e or k_{elim}

CI = Clearance, includes total clearance

 $Cl_{_{1(F)}}$ = Apparent clearance of the central compartment, also $Cl_{(F)}$ for gavage groups in non-compartmental model

 V_1 = Volume of distribution of the central compartment, includes V_d and V_{volume} of distribution, V_z apparent volume of distribution NCA, V_{app} apparent volume of distribution for intravenous studies

MRT = Mean residence time

AUC inf = Area under the plasma concentration versus time curve, AUC, extrapolated to time equals infinity

F = Bioavailability, absolute bioavailability

** END OF REPORT **

^b Analyzed using compartmental modeling techniques with established models or models written to simultaneously solve iv and oral data sets (PCNONLIN software, SCI Software, Lexington, KY); The hamster data were best fit using a 1-compartment model with simultaneous solution of the iv (Study T) and mid oral (Study V) data. The model underpredicted terminal concentrations for both the iv and oral studies.