Uvod v računalništvo (UvR) Informacijska varnost

Danijel Skočaj Univerza v Ljubljani Fakulteta za računalništvo in informatiko

Literatura: Invitation to Computer Science, poglavje 8

v1.0 Št. leto 2013/14

Cilji predavanja

- Poznati ukrepe za povečanje informacijske varnosti
- Razložiti kako so gesla šifrirana z zgoščevalno funkcijo
- Opisati različne načine napadov iz omrežja
- Šifrirati in dešifrirati sporočila z enostavno Cezarjevo kodo ter bločno kodo
- Poznati šifriranje z algoritmom DES
- Primerjati simetrično in nesimetrično šifriranje
- Opisati proces pri šifriranju z algoritmom RSA
- Razumeti delovanje protokolov SSL in TLS

Uvod

- Informacijska varnost
 - zavaruj informacijo
 - dostop do informacij naj imajo samo avtorizirane osebe
- Fizična varnost
 - fizične prepreke pri dostopu do računalnikov (npr. zakljenena soba)
 - nadzor nad napravami
- Online (spletna, internetna) varnost
 - varen zbirni jezik
 - varen operacijski sistem
 - varno omrežje

Avtentikacija

- Avtentikacija: ugotavljanje identitete
 - Običajno z uporabniškim imenom in geslom
 - Datoteka z gesli je šifrirana
 - zgoščevalna funkcija
 - Pri prijavi:
 - preberi uporabniško ime in geslo
 - poišči up. ime v datoteki z gesli
 - izvedi zgoščevalno funkcijo na geslu in primerjaj
 - Še bolj varno
 - zapomni si čas kreiranja gesla in ga dodaj k geslu bred uporabo zgoščevalne funkcije
 - identični gesli se ne bosta enako šifrirali
 - Napadi na gesla
 - ugani geslo (groba sila ali s poznavanjem uporabnika)
 - ukradi datoteko z gesli in uporabi program za odkrivanje gesel
 - socialno inženirstvo pripravi osebo, da izda geslo
 - Druge metode za avtentikacijo
 - odgovori na dodatna osebna vprašanja
 - biometrična informacija (prstni odtisi)

Avtorizacija

- Z avtorizacijo upravljamo kaj lahko avtenticiran uporabnik počne
 - množica dovoljenih akcij za vsakega uporabnika
- Operacijski sistem dovoli samo avtorizirane posege oz. dostope do virov
- Datoteke in direktoriji imajo sezname dovoljenih posegov:
 - beri datoteko (R)
 - dodaj novo informacijo v datoteko (A)
 - spremeni trenutno informacijo (C)
 - izbriši datoteko (D)
- Administrator ima univerzalen dostop in postavi avtorizacijske pravice drugim uporabnikom

File: GRADES	
Name	Permitted Operations
Smith	R(R = Read only)
Jones	RA(A = Append)
Adams	RAC(C = Change)
Doe	RACD (D = Delete)

Grožnje iz omrežja

- Zlonamerna programska oprema (Malware)
 - virus: program vdelan v drugi program, se razmnožuje in razširja po omrežju, ko je program pognan (npr. v datotekah pripetih sporočilom elektronske pošte)
 - črv: se lahko replicira in razširja sam, ne da bi bil posredovan v okuženem programu
 - Trojanski konj: program, ki zgleda koristen, a vsebuje skrito zlonamerno kodo
- Napad DOS (Denial of Service) onemogočanje storitve
 - veliko računalnikov skuša hkrati dostopati do istega URL
 - DDOS porazdeljen DOS, armada zombijev (botnet)
- Spletno ribarjenje (phishing) poizkus pridobitve osebnih občutljivih podatkov s socialnim inženiringom
 - el. sporočila s pozivom za osvežitev gesla na bančnem računu ipd.

Zaščita pred grožnjami iz omrežja

- Protivirusna programska oprema (antivirus software)
 - detektira in odstrani črve, viruse, Trojanske konje
 - redno osveževanje!
- Požarni zid (firewall software)
 - blokira komunikacijo, ki ni dovoljena
- Protivohunska programska oprema (antispyware)
 - detektira zlonamerno vohunsko programsko opremo
- Vedno namesti zadnje varnostne programske popravke (security patches)
- Ne odpiraj pripetih datotek iz neznanih virov
- Ne nalagaj programske opreme iz neznanih virov
- Ne pošiljaj osebnih ali bančnih podatkov neznancem

Šifriranje

- Kriptografija veda, ki se ukvarja s skrivanjem vsebine sporočila z uporabo šifriranja in dešifriranja
- Šifriranje pretvori originalno sporočilo v šifrirano sporočilo
- Dešifriranje- pretvori šifrirano sporočilo nazaj v originalno obliko
- Simetrični šifrirni algoritem
 - isti ključ je uporabljen za šifriranje in dešifriranje
 - problem: varna dostava ključa
- Asimetrični šifrirni algoritem (javni ključ)
 - dva ključa: javni in zasebni
 - javni (splošno znani) za šifriranje
 - zasebni (ga pozna samo prejemnik) za dešifriranje
 - relacija med javnim in zasebnim ključem mora biti kompleksna

Enostavni šifrirni algoritmi

- Cezarjeva šifra
 - preslikaj posamezne znake v znake oddaljene za določeno razdaljo v abecedi
 - samo 25 ključev
 - Substitucijsko šifriranje (substitution cipher)
 - drugi (bolj splošni) načini preslikav
 - možen vdor z analizo frekvenc pojavnosti in sopojavnosti posameznih znakov
 - Pretočno šifriranje (stream cipher)
 - šifrira en znak naenkrat
- Bločno šifriranje
 - šifrirajo se bloki in ne posamični znaki
 - vsak znak prispeva k šifriranju več znakov
 - matrična bločna šifra

Šifriranje DES

- DES Data Encryption Standard
- simetrični šifrirni algoritem
- načrtovan za digitalne podatke binarno originalno sporočilo
- 64 (56) bitni binarni ključ
- 16 krogov manipulacij s sporočilom
- hiter in učinkovit
- zahteva skupni ključ
- 56 bitni ključ premalo za moderno tehnologijo
- AES (Advanced Encryption Standard)
 - podoben pristop
 - daljši ključ

Šifriranje z javnim ključem

- RSA šifriranje
 - javni ključ poznan vsem, zasebni ključ samo prejemniku
- Kreiranje ključev:
 - 1. Izberi dve veliki praštevili *p* in *q*
 - 2. Izračunaj $n=p \cdot q$ in $m=(p-1)\cdot (q-1)$
 - 3. Naključno izberi veliko število *e*, tako, da *e* in *m* nimata skupnih deliteljev (razen 1)
 - 4. Najdi enolično število $d \mod 0$ in m, tako, da je $(e \cdot d) \mod m = 1$
 - 5. Javni ključ = (n,e); Zasebni ključ = d
- Šifriranje (z javnim ključem (n,e))
 - Spremeni sporočilo v število P
 - Izračunaj *C=Pe mod n*
- Dešifriranje (z zasebnim ključem d)
 - Izračunaj *M*=*C*^d *mod n*

Varen prenos preko spleta

- Elektronsko poslovanje zahteva varen prenos osebnih podatkov, gesel, številk kreditnih kartic
- Varnostni spletni protokoli
 - SSL (Secure Sockets Layer)
 - TLS (Transport Layer Security)
- Uporabljata RSA in DES
 - deluje po principu odjemalec/strežnik
 - strežnik pošlje avtentikacijski certifikat in svoj javni ključ
 - odjemalec pošlje svoj DES ključ šifriran po RSA
 - nato se podatki pošiljajo preko (skupnega) DES ključa
- Rokovanje (handshaking) na začetku inicializira varen prenos
 - RSA je računsko zahteven zato se z njim na varen način prenese samo simetrični ključ
 - DES je zelo hiter, zato se z njim nato prenese celotno sporočilo

Varen prenos preko spleta

Seja TLS/SSL

Varnost v vgrajenih računalnikih

- Vgrajeni računalniki (embedded computers)
 - avtomobili, hišni aparati, alarmni sistemi, telefoni, digitalne ure, PM3 predvajalnik, igralne konzole, digitalna kamera, kreditne kartice, mikrovalovna pečica, navigacijski sistemi, krmilni sistemi v avtomobilih, avtopilot, bančni avtomati, medicinske naprave,...
- Nov trend: povezava vgrajenih računalnikov na mrežo
 - pošiljajo podatke, se nadgrajujejo
 - Internet stvari (Internet of things)
 - večja nevarnost zlorab
- Napadi na vgrajene računalnike lahko povzročijo kaos
- Potrebna velika previdnost!

Povzetek

- Internet in svetovni splet sta namenjena širjenju informacij, zato je težko zagotoviti informacijsko varnost
- Grožnje iz omrežja: virusi, črvi, Trojanski konji, napadi z ohromitvijo storitve, spletno ribarjenje,...
- Informacijska varnost zajema šifriranje občutljivih podatkov pred pošiljanjem oz. shranjevanjem
- Simetrično šifriranje zahteva skupni ključ
 - Cezarjeva koda, bločna koda
 - DES, AES
- Asimetrično šifriranje zahteva javni in zasebni ključ
 - RSA
- Protokoli za varno prenašanje informacij preko spleta
 - SSL/TLS
- Problem varnosti v vgrajenih sistemih