Architecture des ordinateurs Contrôle 1 – Corrigé

Exercice 1 (3,5 points)

Soit le nombre binaire sur 15 bits suivant : 10000001011102.

- 1. Donnez sa représentation décimale s'il s'agit d'un entier non signé. $100000101110_2 = 4142_{10}$.
- 2. Donnez sa représentation décimale s'il s'agit d'un entier signé. Le nombre est sur 15 bits signés : son bit de poids fort est nul (nombre positif). $\underline{\mathbf{0}}$ 0100000101110₂ = $\mathbf{4142}_{10}$.
- 3. Donnez sa représentation hexadécimale s'il s'agit d'un entier non signé. $100000101110_2 = 102E_{16}$.

Soit un nombre sur n bits dont tous les bits sont à 1.

- 4. Donnez sa représentation décimale en fonction de n s'il s'agit d'un entier non signé. C'est la valeur maximale que peut contenir un entier non signé sur n bits : $2^n 1$.
- 5. Donnez sa représentation décimale s'il s'agit d'un entier signé.

 Quand tous ses bits sont à 1, la représentation décimale d'un nombre entier binaire signé est toujours -1.

Pour finir:

- 6. Donnez la représentation binaire sur 10 bits signés du nombre -72_{10} . $-72_{10} = 1110111000_2$.
- 7. Combien faut-il de bits, au minimum, pour représenter en binaire signé le nombre -2^{41} . La valeur minimale d'un entier signé codé sur n bits est -2^{n-1} : il faut donc au minimum 42 bits pour coder -2^{41} .

Contrôle 1 – Corrigé

Exercice 2 (6 points)

On désire réaliser la séquence du tableau ci-dessous à l'aide de bascules JK.

1. Remplissez le tableau.

Q ₂	Q_1	Qo	J ₂	K ₂	J_1	K ₁	Jo	Ko
1	0	0	×	0	0	×	1	×
1	0	1	×	0	1	×	×	0
1	1	1	×	0	×	0	×	1
1	1	0	×	1	×	0	0	×
0	1	0	0	×	×	0	1	×
0	1	1	1	×	×	1	×	1

2. Donnez les équations des entrées J et K de chaque bascule <u>en détaillant vos calculs par des tableaux de Karnaugh pour les solutions qui ne sont pas évidentes</u>. On appelle solution évidente celle qui ne comporte aucune opération logique hormis la complémentation (ex : $J_0 = 1$, $K_1 = \overline{Q}_2$).

À partir du tableau précédent on obtient les équations suivantes :

- De façon évidente :
 - $K_0 = Q_1$
 - $J_1 = Q_0$
 - $J_2 = Q_0$
- À l'aide de tableaux de Karnaugh :

		$Q_1 Q_0$					
	J o	00	01	11	10		
Q_2	0	X	X	X	1		
	1	1	x	×	0		
	Т	$\overline{\Box}$					

$$K_2 = \overline{Q}_0.Q_1$$

		Q ₁ Q ₀						
	K ₁	00	01	11	10			
Q2	0	×	×	1	0			
	1	×	×	0	0			

 $K_1 = Q_0.\overline{Q}_2$

Exercice 3 (5 points)

- 1. Convertissez, <u>en détaillant chaque étape</u>, les deux nombres ci-dessous dans le format flottant IEEE 754 simple précision. Vous exprimerez le résultat final, sous forme binaire, en précisant chacun des champs.
 - 532,125
 - \bullet S = 0
 - 0,125 × 2 = 0,25
 0,25 × 2 = 0,5
 0,5 × 2 = 1
 |532,125| = 10 0001 0100,001₂
 - 532,125 = (1,000010100001)₂.2⁹
 - $M = 0000101000010...0_2 \text{ et e} = 9$
 - E = e + biais = 9 + 127 = 8 + 128
 E = 1000 1000₂
 - 532,125 ⇒ 0 10001000 0000101000010000000000
 - 0,75
 - S = 1
 - $0.75 \times 2 = 1.5$ $0.5 \times 2 = 1$ $|0.75| = 0.11_2$
 - $0.75 = (1.1)_{2.}2^{-1}$
 - $M = 10...0_2$ et e = -1
 - E = e + biais = -1 + 127
 - $E = 0111 1110_2$
 - -0,75 ⇒ 1 01111110 1000000000000000000000
- 2. Convertissez, <u>en détaillant au maximum</u>, les deux nombres ci-dessous, codés au format flottant IEEE 754 double précision, dans leur représentation décimale.
 - 0002 4000 0000 0000₁₆
 - = 0000 0000 0000 0010 0100 0000 0000.....0
 - E = 0 ⇒ représentation dénormalisée
 - $m = (0,M)_2 = (0,001001)_2$
 - +m.2^{1-biais} = +(0,001001)₂.2⁻¹⁰²²
 - \bullet = +(1001)₂.2⁻¹⁰²⁸
 - $= +9.2^{-1028}$

Contrôle 1 – Corrigé

- 90F3 8000 0000 0000₁₆
- = 1001 0000 1111 0011 1000 0000.....0
 - $5 = 1 \Rightarrow \text{négatif}$
 - e = E biais = 001 0000 1111₂ 1023 = 271 1023

$$e = -752$$

- $m = (1,M)_2 = (1,00111)_2$
- $-m.2^e = -(1,00111)_2.2^{-752}$
- $= -(100111)_2.2^{-757}$ $= -39.2^{-757}$
- 3. Donnez, en puissance de 2, le plus petit nombre positif à mantisse dénormalisée qu'il est possible de coder dans le format flottant IEEE 754 simple précision.

$$N_{min} = m_{min}.2^{1-biais} = (0, M_{min})_2.2^{1-127} = (0, 0...01)_2.2^{-126} = 2^{-23}.2^{-126}$$

 $N_{min} = 2^{-149}$

Exercice 4 (5,5 points)

1. Remplissez le chronogramme à partir du montage ci-dessous :

Contrôle 1 – Corrigé

2. Que réalise le montage ci-dessous (donnez ses trois caractéristiques principales)?

Il s'agit d'un <u>compteur</u> binaire <u>asynchrone</u> <u>modulo 15</u>.

Contrôle 1 – Corrigé 5/5