莫队

mex

Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

离线算法杂题选讲

杨明天

浙江省镇海中学

2018年12月28日

Coprimes

CDQ分治

Mokia 话者

整体二分

王老先生

Thanks

题目大意

给定一个长度为n的数列A。m次询问,每次询问 $\max A_{l\sim r}$ 。 $n,m\leq 2\times 10^5; 0\leq A_i\leq 10^9$

题目来源

BZOJ 3585

莫队

mex

Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

mex Solution

mex Solution

莫队

mex Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

显然 $\geq n$ 的数是没用的。

莫队

mex Coprimes

соринись

CDQ分治 Mokia

话者

整体二分

王老先生

Thanks

mex Solution

显然 $\geq n$ 的数是没用的。 对于< n的数,维护每个数出现的次数cnt[x]。

莫队 mex

Coprimes

Coprinies

CDQ分治 Mokia

适者

整体二分

王老先生

Thanks

mex Solution

显然 $\geq n$ 的数是没用的。 对于< n的数,维护每个数出现的次数cnt[x]。 考虑询问区间的移动对答案mex的影响。

草队

Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

mex Solution

显然 $\geq n$ 的数是没用的。 对于< n的数,维护每个数出现的次数cnt[x]。 考虑询问区间的移动对答案mex的影响。 加入数x后,若 $cnt[mex] \neq 0$,则暴力计算新的mex。

草队

Coprimes

CDQ分治 Mokia

适者

整体二分

王老先生

Thanks

mex Solution

显然 $\geq n$ 的数是没用的。 对于< n的数,维护每个数出现的次数cnt[x]。 考虑询问区间的移动对答案mex的影响。 加入数x后,若 $cnt[mex] \neq 0$,则暴力计算新的mex。 删除数x后,若cnt[x] = 0,则对当前mex取min。

草队

Coprimes

CDQ分治 Mokia

适者

整体二分

王老先生

Thanks

mex Solution

显然 $\geq n$ 的数是没用的。 对于< n的数,维护每个数出现的次数cnt[x]。 考虑询问区间的移动对答案mex的影响。 加入数x后,若 $cnt[mex] \neq 0$,则暴力计算新的mex。 删除数x后,若cnt[x] = 0,则对当前mex取min。 时间复杂度 $\mathcal{O}((n+m)\sqrt{n})$ 。

莫队

Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

Coprimes

题目大意

一个长度为n的数列A, q次询问,每次询问 $A_{[l,r]}$ 中有多少长度为k的子序列,满足序列内所有元素的 $\gcd=1$ 。 $n,q < 5 \times 10^4; 1 < A_i < 10^5$

题目来源

2015 ACM-ICPC Asia-Amritapuri Site Onsite Round

对于单个询问,答案为 $\sum_{x=1}^{10^5}\mu(x){k\choose cnt[x]}$ 。其中cnt[x]表示 $A_{[l,r]}$ 中x倍数的个数。

当x有平方因子时, $\mu(x)=0$,对答案没有贡献。若我们用d表示 10^5 以内不同的质数个数,则最多有 2^d 个x需要考虑。

若直接套用莫队算法,时间复杂度 $\mathcal{O}(2^dq\sqrt{n})$,还是不能通过本题。

考虑将答案写成如下形式:

$$\sum {y \choose k} cntp[y] - \sum {y \choose k} cntn[y]$$

其中,cntp[y]表示满足cnt[x]=y且 $\mu(x)=1$ 的x的个数;cntn[y]表示满足cnt[x]=y且 $\mu(x)=-1$ 的x的个数。

Coprimes

Solution

CDQ分治

Mokia 话者

整体二分

干老先生

Thanks

Coprimes

注意到满足 $cnt[x] \geq \sqrt{n}$ 最多有 \sqrt{n} 个,因此,当 $cnt[x] \geq \sqrt{n}$ 时,我们可以单独存储,剩下的用cntp[]和cntn[]来表示。

此时,我们就把贡献分为

了 $y = cnt[x] < \sqrt{n}$ 和 $cnt[x] \ge \sqrt{n}$ 两部分。

最后答案可以表示为:

$$\sum_{k=0}^{\infty} \binom{y}{k} (cntp[y] - cntn[y]) + \sum_{k=0}^{\infty} \mu(x) \binom{k}{cnt[x]}$$
 时间复杂度 $\mathcal{O}(q\sqrt{n})$ 。

mex Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

题目大意

一个 $n \times n$ 的矩阵,初始时每个格子里的数全为 $0 \cdot m$ 次操作,操作包含以下两种:

- 将某个格子加上一个数;
- 询问某个子矩阵的值。

 $n \leq 5 \times 10^5; m \leq 2 \times 10^5$

题目来源

Balkan OI 2007

莫队

mex

Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

Mokia Solution

莫队

mex Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

Mokia Solution

将所有操作离线,每个询问拆分成4个,修改和询问放在一起分治,树状数组处理,每层分治处理左区间中修改对右区间询问的贡献即可。

草队

Coprimes

CDQ分治

Mokia 话者

整体二分

干老先生

Thanks

Mokia Solution

将所有操作离线,每个询问拆分成4个,修改和询问放在 一起分治, 树状数组处理, 每层分治处理左区间中修改对右 区间询问的贡献即可。

时间复杂度 $\mathcal{O}(m \log^2 m)$ 。

Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

题目大意

有n个敌人,每个敌人有一个攻击力 v_i 和一个防御力 d_i 。你的攻击力是a。战斗看做回合制,每回合进程如下:

你选择某个敌人进行攻击,令其防御力减少a,若防御力< 0则该敌人被击败。

所有存活的敌人每人对你造成 v_i 点损失。

战斗开始前你有机会直接去掉对方的两个敌人。 你拥有无限的血量,请最小化你的损失。

 $n \le 3 \times 10^5$

题目来源

BZOJ 4700

mex

Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

适者 Solution

莫队

mex

Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

首先不考虑去掉两个敌人的情况。

莫队

mex

Coprimes

CDQ分治

Mokia 适者

AC-16

整体二分

王老先生

Thanks

适者

Solution

首先不考虑去掉两个敌人的情况。

显然我们可以按一定顺序依次击败各个敌人,而不必一 个人打一半就去打其他人。

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

适者 Solution

首先不考虑去掉两个敌人的情况。

显然我们可以按一定顺序依次击败各个敌人,而不必一 个人打一半就去打其他人。

用 t_i 表示击败敌人i所花的时间,则 $t_i = \lceil \frac{d_i}{a} \rceil$ 。

Mokia 适者

整体二分

王老先生

Thanks

适者 Solution

首先不考虑去掉两个敌人的情况。

显然我们可以按一定顺序依次击败各个敌人,而不必一 个人打一半就去打其他人。

用 t_i 表示击败敌人i所花的时间,则 $t_i = \lceil \frac{d_i}{a} \rceil$ 。 考虑攻击的顺序。i在j前面,当且仅当 $t_i \times v_j < t_j \times v_i$ 。

草队

Coprimes

CDQ分治

Mokia 话者

整体二分

干老先生

Thanks

话者

Solution

首先不考虑去掉两个敌人的情况。

显然我们可以按一定顺序依次击败各个敌人,而不必一 个人打一半就去打其他人。

用 t_i 表示击败敌人i所花的时间,则 $t_i = \lceil \frac{d_i}{a} \rceil$ 。 考虑攻击的顺序。i在j前面,当且仅当 $t_i \times v_i < t_i \times v_i$ 。 此时 $ans = \sum_{i=1}^{n} (\sum_{j=1}^{i} t_j - 1) \times v_i$ 。

mex

Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

莫队

mex Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

适者

Solution

现在考虑事先去掉两个敌人的情况,即如何选择去掉的 敌人使损失最小。

莫队

mex Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

适者

Solution

现在考虑事先去掉两个敌人的情况,即如何选择去掉的 敌人使损失最小。

用pre表示 t_i 的前缀和,用suf表示 v_i 的后缀和。

mex Coprimes

.

CDQ分治 Mokia

话者

整体二分

王老先生

Thanks

现在考虑事先去掉两个敌人的情况,即如何选择去掉的敌人使损失最小。

用pre表示 t_i 的前缀和,用suf表示 v_i 的后缀和。

考虑只去掉一个敌人的情况,去掉i这个敌人可以使答案 减少 $c_i = suf[i] \times t_i + (pre[i-1]-1) \times v_i$ 。

mex

Coprimes

CDQ分治 Mokia

话者

整体二分

王老先生

Thanks

现在考虑事先去掉两个敌人的情况,即如何选择去掉的 敌人使损失最小。

用pre表示 t_i 的前缀和,用suf表示 v_i 的后缀和。 考虑只去掉一个敌人的情况,去掉i这个敌人可以使答案 减少 $c_i = suf[i] \times t_i + (pre[i-1]-1) \times v_i$ 。 而去掉两个人就是要找到一对i,j,使

得 $c_i + c_j - v_i \times t_j$ 最大。

mex Conrimes

__ _ ^

CDQ分治 Mokia

话者

整体二分

王老先生

Thanks

现在考虑事先去掉两个敌人的情况,即如何选择去掉的 敌人使损失最小。

用pre表示 t_i 的前缀和,用suf表示 v_i 的后缀和。

考虑只去掉一个敌人的情况,去掉i这个敌人可以使答案 减少 $c_i = suf[i] \times t_i + (pre[i-1]-1) \times v_i$ 。

而去掉两个人就是要找到一对i,j,使

得 $c_i + c_j - v_i \times t_j$ 最大。

考虑固定一个i,则j的贡献就是一个关于 v_i 的一次函数,用李超树或CHT维护凸壳或使用CDQ分治。

草队

Conrimes

CDQ分治

Mokia 话者

整体二分

王老先生

Thanks

现在考虑事先去掉两个敌人的情况,即如何选择去掉的 敌人使损失最小。

用pre表示 t_i 的前缀和,用suf表示 v_i 的后缀和。

考虑只去掉一个敌人的情况,去掉;这个敌人可以使答案 减少 $c_i = suf[i] \times t_i + (pre[i-1]-1) \times v_i$ 。

而去掉两个人就是要找到一对i, j,使

得 $c_i + c_i - v_i \times t_i$ 最大。

考虑固定一个i,则j的贡献就是一个关于 v_i 的一次函数, 用李超树或CHT维护凸壳或使用CDQ分治。

时间复杂度 $\mathcal{O}(n \log n)$ 。

mex Coprimes

CDQ分治

Mokia 话者

整体二分

干老先生

Thanks

题目大意

有m块田地和n个人,田地编号 $1\sim m$,每块田地都有一个主人。q次操作,第i次操作会让每个拥有编号 $[l_i,r_i]$ 中田地的人赚 c_i 元。每个人都有一个赚钱的目标值 v_i ,求每个人是在第几次操作之后达到他的目标的。

 $n, m \le 10^5; c_i, v_i \le 10^9$

题目来源

TOI 2015 二模 B

莫队

mex

Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

王老先生

Solution

草队

Coprimes

CDQ分治

Mokia

适者

整体二分

王老先生

Thanks

王老先生

Solution

对于同一个人管理的不同田地以及一次操作区间[l,r],不妨将贡献全归给落在[l,r]中最左边的那个田地。

莫队

Coprimes

CDQ分治

Mokia

话者

整体二分

王老先生

Thanks

王老先生

Solution

对于同一个人管理的不同田地以及一次操作区间[l,r],不妨将贡献全归给落在[l,r]中最左边的那个田地。

对于某个田i,假设下一个和他同个主人的田在j,那么会使i有贡献的区间[l,r]要满足 $l \leq i$ 以及r < j。

莫队

Coprimes

CDQ分治

Mokia 话者

整体二分

干老先生

Thanks

王老先生

Solution

对于同一个人管理的不同田地以及一次操作区间[l,r],不妨将贡献全归给落在[l,r]中最左边的那个田地。

对于某个田i,假设下一个和他同个主人的田在j,那么会使i有贡献的区间[l,r]要满足 $l \leq i$ 以及r < j。

每次二分时相当于在解决一个二维查询修改问题,故将 其中一维排序以达成降维。

莫队

mex Coprimes

CDQ分治

Mokia 话者

整体二分

干老先生

Thanks

王老先生

Solution

对于同一个人管理的不同田地以及一次操作区间[l,r],不妨将贡献全归给落在[l,r]中最左边的那个田地。

对于某个田i,假设下一个和他同个主人的田在j,那么会使i有贡献的区间[l,r]要满足 $l \leq i$ 以及r < j。

每次二分时相当于在解决一个二维查询修改问题,故将 其中一维排序以达成降维。

对操作区间以及田地贡献区间的右界分别排序即可使用 树状数组处理上述二维问题。

莫队

Coprimes

CDQ分治

Mokia 话者

整体二分

王老先生

Thanks

王老先生

Solution

对于同一个人管理的不同田地以及一次操作区间[l,r],不妨将贡献全归给落在[l,r]中最左边的那个田地。

对于某个田i,假设下一个和他同个主人的田在j,那么会使i有贡献的区间[l,r]要满足 $l \leq i$ 以及r < j。

每次二分时相当于在解决一个二维查询修改问题,故将 其中一维排序以达成降维。

对操作区间以及田地贡献区间的右界分别排序即可使用 树状数组处理上述二维问题。

因为每次二分是离线的,所以数据结构内的东西不能传 给下次二分。不过可将目标扣掉现阶段赚的钱当作新的目标, 传给下次二分。

莫队

mex Coprimes

CDQ分治

Mokia 话者

整体二分

王老先生

Thanks

王老先生

Solution

对于同一个人管理的不同田地以及一次操作区间[l,r],不妨将贡献全归给落在[l,r]中最左边的那个田地。

对于某个田i,假设下一个和他同个主人的田在j,那么会使i有贡献的区间[l,r]要满足 $l \leq i$ 以及r < j。

每次二分时相当于在解决一个二维查询修改问题,故将 其中一维排序以达成降维。

对操作区间以及田地贡献区间的右界分别排序即可使用 树状数组处理上述二维问题。

因为每次二分是离线的,所以数据结构内的东西不能传 给下次二分。不过可将目标扣掉现阶段赚的钱当作新的目标, 传给下次二分。

时间复杂度 $\mathcal{O}(n + q \log n \log q)$ 。

mex

Coprimes

CDQ分治

Mokia 适者

整体二分

王老先生

Thanks

谢谢大家