Stochastic Process

Introduction and review of probability

Lecturer: Xiao Ma

Office: 631G, Tel: 3994 3112

maxiao@mail.sysu.edu.cn

School of Data and Computer Science Sun Yat-sen University

GraduateCourse, Autumn2018

Chapter 1. Introduction and review of probability

- § 1.5 Expectations and more probability review
- § 1.6 Basic inequalities
- § 1.7 The laws of large numbers

• Given any sample space Ω and any class of events ε satisfying the axioms of events, a probability rule is a function $\Pr\{\cdot\}$ mapping each $A \in \varepsilon$ to a (finite) real number in such a way that the following three probability axioms hold

• Given any sample space Ω and any class of events ε satisfying the axioms of events, a probability rule is a function $\Pr\{\cdot\}$ mapping each $A \in \varepsilon$ to a (finite) real number in such a way that the following three probability axioms hold

$$\diamond \ \mathsf{Pr}\{\Omega\} = 1.$$

• Given any sample space Ω and any class of events ε satisfying the axioms of events, a probability rule is a function $\Pr\{\cdot\}$ mapping each $A \in \varepsilon$ to a (finite) real number in such a way that the following three probability axioms hold

$$\diamond \ \mathsf{Pr}\{\Omega\} = 1.$$

⋄ For every event A, $Pr{A} \ge 0$.

- Given any sample space Ω and any class of events ε satisfying the axioms of events, a probability rule is a function $\Pr\{\cdot\}$ mapping each $A \in \varepsilon$ to a (finite) real number in such a way that the following three probability axioms hold
 - $\diamond \ \mathsf{Pr}\{\Omega\} = 1.$
 - ⋄ For every event A, $Pr{A} \ge 0$.
 - \diamond The probability of the union of any sequence $A_1, A_2, ...$ of disjoint events is given by

$$\mathsf{Pr}\{\bigcup_{n=1}^{\infty} A_n = \sum_{n=1}^{\infty} \mathsf{Pr}\{A_n\}\}$$

where $\sum_{n=1}^{\infty} \Pr\{A_n\}$ is shorthand for $\lim_{n\to\infty} \sum_{n=1}^{\infty} \Pr\{A_n\}$.

- It is surprising that this is all that is needed to avoid paradoxes. A few simple consequences are:
 - $\diamond \ \Pr\{\varnothing\} = 0.$

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$Pr\{\bigcup_{n=1}^m A_n\} = \sum_{n=1}^m Pr\{A_n\}, \text{ for } A_1, ..., A_m \text{ disjoint.}$$

$$\diamond \ \Pr\{A^c\} = 1 - \Pr\{A\}.$$

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$Pr\{\bigcup_{n=1}^m A_n\} = \sum_{n=1}^m Pr\{A_n\}, \text{for } A_1, ..., A_m \text{ disjoint.}$$

$$\diamond \ \Pr\{A^c\} = 1 - \Pr\{A\}.$$

$$\diamond$$
 $Pr\{A\} \leq Pr\{B\} \leq 1$, for $A \subseteq B$.

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$\Rightarrow \Pr\{\bigcup_{n=1}^m A_n\} = \sum_{n=1}^m \Pr\{A_n\}, \text{ for } A_1, ..., A_m \text{ disjoint.}$$

$$\diamond \ \Pr\{A^c\} = 1 - \Pr\{A\}.$$

$$\diamond \ \Pr\{A\} \leq \Pr\{B\} \leq 1, \text{for } A \subseteq B.$$

$$\diamond \sum_{n} \Pr\{A_n\} \leq 1$$
, for $A_1, A_2, ...$ disjoint.

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$\Rightarrow \Pr\{\bigcup_{n=1}^m A_n\} = \sum_{n=1}^m \Pr\{A_n\}, \text{ for } A_1, ..., A_m \text{ disjoint.}$$

$$\diamond \ \Pr\{A^c\} = 1 - \Pr\{A\}.$$

$$\diamond \ \Pr\{A\} \leq \Pr\{B\} \leq 1, \text{for } A \subseteq B.$$

$$\diamond \sum_{n} \Pr\{A_n\} \leq 1$$
, for $A_1, A_2, ...$ disjoint.

$$\diamond \ \Pr\{\bigcup_{n=1}^{\infty} A_n\} = \lim_{m \to \infty} \Pr\{\bigcup_{n=1}^{m} A_n\}$$

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$Pr\{\bigcup_{n=1}^m A_n\} = \sum_{n=1}^m Pr\{A_n\}, \text{ for } A_1, ..., A_m \text{ disjoint.}$$

$$\diamond \ \Pr\{A^c\} = 1 - \Pr\{A\}.$$

$$\diamond \ \Pr\{A\} \leq \Pr\{B\} \leq 1, \text{for } A \subseteq B.$$

$$\diamond \sum_{n} \Pr\{A_n\} \leq 1$$
, for $A_1, A_2, ...$ disjoint.

$$\diamond \ \Pr\{\bigcup_{n=1}^{\infty} A_n\} = \lim_{m \to \infty} \Pr\{\bigcup_{n=1}^{m} A_n\}$$

$$\diamond \ \, \Pr\{\bigcup_{n=1}^{\infty}A_n\}=\lim_{n\to\infty}\Pr\{A_n\}, \text{for } A_1\subseteq A_2\subseteq...$$

$$\diamond \ \Pr\{\varnothing\} = 0.$$

$$\Rightarrow \Pr\{\bigcup_{n=1}^m A_n\} = \sum_{n=1}^m \Pr\{A_n\}, \text{ for } A_1, ..., A_m \text{ disjoint.}$$

$$\diamond \ \Pr\{A^c\} = 1 - \Pr\{A\}.$$

$$\diamond \ \Pr\{A\} \leq \Pr\{B\} \leq 1, \text{for } A \subseteq B.$$

$$\diamond \sum_{n} \Pr\{A_n\} \leq 1$$
, for $A_1, A_2, ...$ disjoint.

$$\diamond \ \Pr\{\bigcup_{n=1}^{\infty} A_n\} = \lim_{m \to \infty} \Pr\{\bigcup_{n=1}^{m} A_n\}$$

$$\diamond \Pr\{\bigcap_{n=1}^{\infty} A_n\} = \lim_{n \to \infty} \Pr\{A_n\}, \text{ for } A_1 \supseteq A_2 \supseteq \dots$$

Remark

The distribution function of a r.v. X often contains more detail than necessary. The expectation $\overline{X} = E[X]$ is sometimes all that is needed.

Remark

The distribution function of a r.v. X often contains more detail than necessary. The expectation $\overline{X} = E[X]$ is sometimes all that is needed.

- for discrete X, $E[X] = \sum_i x_i P_X(x_i)$;
- for continuous X, $E[X] = \int y f_X(y) dy$;
- for arbitrary nonnegative X, $\mathrm{E}[X] = \int F_X^c(y) \mathrm{d}y$;
- for arbitrary X, $E[X] = \int_{-\infty}^{0} F_X(y) dy + \int_{0}^{\infty} F_X^c(y) dy$.

where
$$F_X^c(x) = 1 - F_X(x) = \Pr\{X > x\}.$$

Look at discrete case.

$$\int F_X^c(y) \mathrm{d}y = \sum_i a_i P_X(a_i).$$

Look at discrete case.

$$\int F_X^c(y)\mathrm{d}y = \sum_i a_i P_X(a_i).$$

Almost as important is the standard deviation,

$$\sigma_X = \sqrt{\mathrm{E}[(X - \overline{X})^2]}$$

Indicator Random Variables

For every event A in a probability model, an indicator r.v. $\mathbb{1}_A$ is defined where $\mathbb{1}_A(\omega)=1$ for $\omega\in A$ and $\mathbb{1}_A(\omega)=0$ otherwise. Note that $\mathbb{1}_A$ is a binary r.v..

$$P_{\mathbb{I}_A}(0) = 1 - \Pr\{A\}; \quad P_{\mathbb{I}_A}(1) = \Pr\{A\}.$$

$$\mathrm{E}[\mathbb{1}_A] = \mathrm{Pr}\{A\}; \quad \sigma_{\mathbb{1}_A} = \sqrt{\mathrm{Pr}\{A\}(1 - \mathrm{Pr}\{A\})}.$$

Theorems about r.v.s can thus be applied to events.

Chapter 1. Introduction and review of probability

- § 1.5 Expectations and more probability review
- § 1.6 Basic inequalities
- § 1.7 The laws of large numbers

Theorem (the Markov inequality)

if a non-negative r.v. X has a mean E[X], then for every y > 0,

$$\Pr\{X \geqslant y\} \leqslant \frac{\mathrm{E}[X]}{y} \tag{1}$$

Theorem (the Markov inequality)

if a non-negative r.v. X has a mean E[X], then for every y > 0,

$$\Pr\{X \geqslant y\} \leqslant \frac{\mathrm{E}[X]}{y} \tag{1}$$

Proof.

$$\mathrm{E}[X] = \int_0^{+\infty} x dF_X \geqslant \int_y^{+\infty} x dF_X \geqslant y \int_y^{+\infty} dF_X = y \mathrm{Pr}\{X \geqslant y\}.$$

Theorem (the Chebyshev inequality)

if X has a mean E[X] and finite variance σ_X^2 , then for every $\delta > 0$,

$$\Pr\{|X - E[X]| \ge \delta\} \le \frac{\sigma_X^2}{\delta^2}$$
 (2)

Theorem (the Chebyshev inequality)

if X has a mean $\mathrm{E}[X]$ and finite variance σ_X^2 , then for every $\delta > 0$,

$$\Pr\{|X - E[X]| \ge \delta\} \le \frac{\sigma_X^2}{\delta^2}$$
 (2)

Proof.

apply the Markov inequality on $(X - E[X])^2$,

$$\Pr\{|X - \mathrm{E}[X]| \geqslant \delta\} = \Pr\{|X - \mathrm{E}[X]|^2 \geqslant \delta^2\} \leqslant \frac{\mathrm{E}[(X - \mathrm{E}[X])^2]}{\delta^2} = \frac{\sigma_X^2}{\delta^2}.$$

Theorem (Chernoff bounds)

for all $s \ge 0$,

$$\Pr\{X \geqslant y\} \leqslant \mathrm{E}[e^{\mathsf{s}X}]e^{-\mathsf{s}y} \tag{3}$$

Theorem (Chernoff bounds)

for all $s \geqslant 0$,

$$\Pr\{X \geqslant y\} \leqslant \mathrm{E}[e^{sX}]e^{-sy} \tag{3}$$

Proof.

apply the Markov inequality on e^{sX} ,

$$\Pr\{X \geqslant y\} = \Pr\left(e^{sX} \geqslant e^{sy}\right) \leqslant \frac{\mathrm{E}[e^{sX}]}{e^{sy}}.$$

Consider the indicator r.v. $Z = \mathbb{1}_A$

Consider the indicator r.v. $Z = \mathbb{1}_A$

• Take $A = \{\omega : X(\omega) \geqslant y\}$, then

$$Z \leqslant \frac{X}{y} \Rightarrow \Pr\{X \geqslant y\} = E(Z) \leqslant \frac{E(X)}{y}.$$

• If X has 0 mean, take $A = \{\omega : |X(\omega)| \geqslant y\}$, then

$$Z \leqslant \frac{X^2}{y^2} \Rightarrow \Pr\{|X| \geqslant y\} = E(Z) \leqslant \frac{E(X^2)}{y^2} = \frac{\sigma_X^2}{y^2}.$$

• Take $A = \{\omega : X(\omega) \geqslant y\}$, then

$$Z\leqslant \frac{e^{sX}}{e^{sy}}\Rightarrow \Pr\{X\geqslant y\}=E(Z)\leqslant \frac{E(e^{sX})}{e^{sy}}.$$

Chapter 1. Introduction and review of probability

- § 1.5 Expectations and more probability review
- § 1.6 Basic inequalities
- § 1.7 The laws of large numbers

Weak law of large numbers

Theorem (Weak Law of large numbers (WLLN))

For each integer $n \ge 1$, let $S_n = X_1 + \cdots + X_n$, where X_1, X_2, \ldots are i.i.d. r.v.s satisfying $\mathrm{E}[|X|] < \infty$. Then for any $\varepsilon > 0$,

$$\lim_{n\to\infty} \Pr\left\{ \left| \frac{S_n}{n} - \mathrm{E}[X] \right| > \varepsilon \right\} = 0.$$
 (4)

Weak law of large numbers

Theorem (Weak Law of large numbers (WLLN))

For each integer $n \ge 1$, let $S_n = X_1 + \cdots + X_n$, where X_1, X_2, \ldots are i.i.d. r.v.s satisfying $\mathrm{E}[|X|] < \infty$. Then for any $\varepsilon > 0$,

$$\lim_{n\to\infty} \Pr\left\{ \left| \frac{S_n}{n} - \mathbb{E}[X] \right| > \varepsilon \right\} = 0.$$
 (4)

Proof.

apply the Chebyshev inequality on $\frac{S_n}{n}$.

Weak law of large numbers

Remark. The WLLN says that $\frac{S_n}{n}$ converge to \overline{X} in probability.

Theorem (the central limit theorem (CLT))

Let X_1, X_2, \ldots be i.i.d. r.v.s with finite mean \overline{X} and finite variance σ^2 . Then for every $z \in \mathbb{R}$,

$$\lim_{n\to\infty} \Pr\left\{\left|\frac{S_n - n\overline{X}}{\sigma\sqrt{n}}\right| \leqslant z\right\} = \Phi(z). \tag{5}$$

where $\Phi(z)$ is the CDF of Gaussian distribution with mean 0 and variance 1.

$$\Phi(z)$$
 :

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} \exp\left(-\frac{y^2}{2}\right) dy$$

Remark

• Paradox: The CLT says something very strong about how $\frac{S_n}{n}$ converges to \overline{X} , but convergence in distribution is a very weak form of convergence.

19 / 23

Remark

- Paradox: The CLT says something very strong about how $\frac{S_n}{n}$ converges to \overline{X} , but convergence in distribution is a very weak form of convergence.
- Resolution: The r.v.s that converge in distribution in the CLT are $\frac{S_n n\overline{X}}{\sqrt{n}\sigma_X}$. Those that converge in probability to 0 are $\frac{S_n n\overline{X}}{n}$.

Xiao Ma (SYSU)

Remark

- Paradox: The CLT says something very strong about how $\frac{S_n}{n}$ converges to \overline{X} , but convergence in distribution is a very weak form of convergence.
- Resolution: The r.v.s that converge in distribution in the CLT are $\frac{S_n n\overline{X}}{\sqrt{n}\sigma_X}$. Those that converge in probability to 0 are $\frac{S_n n\overline{X}}{n}$.
- Example: The CLT says that

$$\lim_{n\to\infty} \Pr\left\{\frac{S_n - n\overline{X}}{n} \leqslant 0\right\} = \frac{1}{2}$$

This cannot be deduced from the WLLN.

Convergence

Definition

A sequence $X_1, X_2, ...$ of random variables is said to **converge in** distribution to a random variable X if

$$\lim_{n\to\infty} F_n(x) = F(x),\tag{6}$$

for each $x \in \mathbb{R}$ at which F is continuous. Here F_n and F are the cumulative distribution functions of random variables X_n and X correspondingly.

Convergence

Definition

A sequence $X_1, X_2, ...$ of random variables is said to **converge in** distribution to a random variable X if

$$\lim_{n\to\infty} F_n(x) = F(x),\tag{6}$$

for each $x \in \mathbb{R}$ at which F is continuous. Here F_n and F are the cumulative distribution functions of random variables X_n and X correspondingly.

Definition

A sequence $X_1, X_2, ...$ of random variables is said to **converge in mean** square to X if

$$\lim_{n\to\infty} \mathrm{E}[(X_n - X)^2] = 0, \tag{7}$$

Convergence of random variables

Definition

A sequence X_n of random variables **converges in probability** towards X if for all $\varepsilon > 0$

$$\lim_{n \to \infty} \Pr\{|X_n - X| > \varepsilon\} = 0. \tag{8}$$

Convergence of random variables

Definition

To say that the sequence X_n converges almost surely or almost everywhere or **with probability 1** or strongly towards X means that

$$\Pr\{\lim_{n\to\infty} X_n = X\} = 1. \tag{9}$$

Convergence of random variables

Definition

To say that the sequence X_n converges almost surely or almost everywhere or **with probability 1** or strongly towards X means that

$$\Pr\{\lim_{n\to\infty} X_n = X\} = 1. \tag{9}$$

Remark

convergence with probability $1 \Rightarrow$ convergence in probability; convergence in mean square \Rightarrow convergence in probability; convergence in probability \Rightarrow convergence in distribution;

Thank you for your attention!