

Project Proposal

Data Analysis Project, 4. FS MoBi

Gabriel Tulcan Emily Locke Melissa Ringeis

Cedric Leonhard Marquard

Supervisor: Prof. Dr. Karl Rohr

Data

Yeast Cells

Cell Nuclei

NIH3T3

Data

Original image

Ground truth image

Challenges

Our Goal

Output

Milestones

K-Means Clustering

K-Means Clustering

Euclidean distance:

$$d_{Euclidean}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Assignment:

$$\hat{k}^{(n)} = argmin_k d\{m^{(k)}x^{(n)}\}$$

Responsibility:

$$r^{(n;k)} = \begin{cases} 1, & \text{if } k = \hat{k}^{(n)} \\ 0, & \text{if } k \neq \hat{k}^{(n)} \end{cases}$$

Centroid Recalculation:

$$m^{(k)} = \frac{\sum_{n} r^{(n;k)} \chi^{(n)}}{\sum_{n} r^{(n;k)}}$$

Applications

Dice Score

$$DSC = \frac{2TP}{2TP + FP + FN}$$

Color Spaces

Pre-Processing

Other possibilities

Team Management

Timeline

Thank you for your attention!

Distances

Euclidean distance:

$$d_{Euclidean}(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Manhattan distance:

$$d_{Manhattan}(x,y) = \sum_{i=1}^{\infty} |x_i - y_i|$$

Correlation distance:

$$d_{corr}(x, y) = \frac{1}{2}(1 - r)$$

Soft K-Means

Responsibility:

$$r^{(n;k)} = \frac{e^{-\beta d\{m^{(k)};x^{(n)}\}}}{\sum_{k'} e^{-\beta d\{m^{(k')};x^{(n)}\}}}$$

Centroid Recalculation:

$$m^{(k)} = \frac{\sum_{n} r^{(n;k)} \chi^{(n)}}{\sum_{n} r^{(n;k)}}$$

K-Means Clustering - Centroids

Silhouette Method

$$s^{(n)} = \frac{b_n - a_n}{\max\{a_n; b_n\}}$$

$$a^{(n)} = \frac{\sum_{\check{\mathbf{n}}} d\{x_n; x_{\check{\mathbf{n}}}\} * r^{(\check{\mathbf{n}}; \hat{k}^{(n)})}}{\sum_{\check{\mathbf{n}}} r^{(\check{\mathbf{n}}; \hat{k}^{(n)})}}$$

$$b^{(\check{\mathbf{n}})} = \min_{k \setminus \hat{k}^{(\check{\mathbf{n}})}} \frac{\sum_{n} d\{x_{\check{\mathbf{n}}}; x_{n}\} * r^{(n;k)}}{\sum_{n} r^{(n;k)}}$$