Importing Required Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing file in dataframe

```
In [59]: df = pd.read_csv("data.csv")
```

In [79]: df.head(20)

Out[79]:		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
	4	Grand Village	No	No	3.8	166	600	Buffet
	5	Timepass Dinner	Yes	No	3.8	286	600	Buffet
	6	Rosewood International Hotel - Bar & Restaurant	No	No	3.6	8	800	Buffet
	7	Onesta	Yes	Yes	4.6	2556	600	Cafes
	8	Penthouse Cafe	Yes	No	4.0	324	700	other
	9	Smacznego	Yes	No	4.2	504	550	Cafes
	10	Village Café	Yes	No	4.1	402	500	Cafes
	11	Cafe Shuffle	Yes	Yes	4.2	150	600	Cafes
	12	The Coffee Shack	Yes	Yes	4.2	164	500	Cafes
	13	Caf-Eleven	No	No	4.0	424	450	Cafes
	14	San Churro Cafe	Yes	No	3.8	918	800	Cafes
	15	Cafe Vivacity	Yes	No	3.8	90	650	Cafes
	16	Catch-up-ino	Yes	No	3.9	133	800	Cafes
	17	Kirthi's Biryani	Yes	No	3.8	144	700	Cafes
	18	T3H Cafe	No	No	3.9	93	300	Cafes
	19	360 Atoms Restaurant And Cafe	Yes	No	3.1	13	400	Cafes

Understanding datatypes of each column

<class 'pandas.core.frame.DataFrame'>

dtypes: int64(2), object(5)
memory usage: 8.2+ KB

```
In [61]: df.info()
```

```
RangeIndex: 148 entries, 0 to 147 \,
Data columns (total 7 columns):
                                   Non-Null Count Dtype
# Column
0 name
                                   148 non-null
                                                    object
1 online order
                                   148 non-null
                                                  object
   book_table
rate
2
                                   148 non-null
                                                  object
3
                                   148 non-null
                                                    object
 4
                                   148 non-null
                                                    int64
    approx_cost(for two people) 148 non-null listed_in(type) 148 non-null
                                                    int64
6
                                                    object
```

As rate column is in object format, converting it in a float type

```
In [62]: def handleRate(value):
    value=str(value).split('/')
    value=value[0];
    return float(value)

df['rate']=df['rate'].apply(handleRate)
    df.head()
    df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 148 entries, 0 to 147
Data columns (total 7 columns):
                                 Non-Null Count Dtype
# Column
                                 -----
0
    name
                                 148 non-null
                                                 object
1
    online order
                                 148 non-null
                                                 object
2
    book_table
                                 148 non-null
                                                 object
                                 148 non-null
3
    rate
                                                 float64
4
    votes
                                 148 non-null
                                                 int64
5
    approx_cost(for two people)
                                 148 non-null
                                                 int64
   listed_in(type)
                                 148 non-null
                                                 object
dtypes: float64(1), int64(2), object(4)
memory usage: 8.2+ KB
```

```
In [63]: df.head()
```

Out[63]:		name	online_order	book_table	rate	votes	approx_cost(for two people)	listed_in(type)
	0	Jalsa	Yes	Yes	4.1	775	800	Buffet
	1	Spice Elephant	Yes	No	4.1	787	800	Buffet
	2	San Churro Cafe	Yes	No	3.8	918	800	Buffet
	3	Addhuri Udupi Bhojana	No	No	3.7	88	300	Buffet
	4	Grand Village	No	No	3.8	166	600	Buffet

Exploring Restaurant Types

```
In [64]: sns.countplot(x=df['listed_in(type)'])
    plt.title("Types of Restaurant")
    plt.xlabel("Types")
    plt.ylabel("Frequecy")
    plt.show()
```


In [65]: # Conclusion: The majority of the restaurants fall into the dining category.

Votes by Restaurant Type

```
grouped_data = df.groupby('listed_in(type)')['votes'].sum()
    results = pd.DataFrame({'Votes':grouped_data})
    plt.plot(results, c='green',marker ='o')
    plt.xlabel("Types of restaurant", c='black', size = 18)
    plt.ylabel("Votes",c='black',size=18)
    plt.show()
```


In [67]: # Conclusion: Dining restaurants are preferred by a larger number of individuals.

Identify the Most Voted Restaurant

```
In [68]: max_votes = df['votes'].max()
    res_max_votes = df.loc[df['votes']==max_votes, 'name']
    print("Restaurant with most votes: ")
    print(res_max_votes)

Restaurant with most votes:
    38    Empire Restaurant
Name: name, dtype: object
```

Online Order Availability

```
In [69]: sns.countplot(x=df['online_order'])
  plt.show()
```


In [70]: # Conclusion: This suggests that a majority of the restaurants do not accept online orders.

Analyze Ratings

```
In [71]: sns.histplot(df['rate'], bins=10)
  plt.title('Rating distribution')
  plt.show()
```

C:\Users\Ramsha\anaconda3\Lib\site-packages\seaborn_oldcore.py:1119: FutureWarning: use_inf_as_na option is de precated and will be removed in a future version. Convert inf values to NaN before operating instead. with pd.option_context('mode.use_inf_as_na', True):

In [72]: # Conclusion: The majority of restaurants received ratings ranging from 3.5 to 4.

Approximate Cost for Couples

```
In [73]:
    sns.countplot(x=df['approx_cost(for two people)'])
    plt.title("Approximate Cost for Couples")
    plt.xlabel("Cost", c="black")
    plt.ylabel("Count", c="black")
    plt.show()
```


In [74]: # Conclusion: The majority of couples prefer restaurants with an approximate cost of 300 rupees.

Order Mode Preferences by Restaurant Type

In [76]: # Conclusion: Dining restaurants primarily accept offline orders whereas cafes primarily receive online orders. # This suggests that clients prefer to place orders in person at restaurants but prefer online ordering at cafe