Neural Machine Translation for Low-Resource Scenarios

Yunsu Kim

Promotionsvortrag RWTH Aachen 07.02.2022

Statistical Machine Learning

Heute ist es sonnig.

Today is sunny.

Supervised Learning

These days: commercializable performance in many tasks

- Model: neural network with attention components [Vaswani & Shazeer⁺ 17]
- Training: stochastic gradient descent variants [Kingma & Ba 15]
- Data: varied among tasks/domains

Low-Resource Scenarios

Why do we lack data?

- Supervised learning: data needs to be *labeled*
- Not feasible to label data at scale: requires human labor
- Industry's needs are growing: more tasks, more domains, personalized

Why is the lack of data problematic?

- Model: performance is sensitive to the data size
- Training: hard to generalize to unseen examples

Question: Given a small amount of data, what should we do?

Preliminaries

To-English Tasks

Non-English Tasks

Preliminaries

To-English Tasks

Non-English Tasks

Machine Translation

Heute ist es sonnig.
$$\longrightarrow$$
 Today is sunny. f_1 f_2 f_3 f_4 e_1 e_2 e_3 e_1^I

Translation problem

$$f_1^J \mapsto \hat{e}_1^{\hat{I}}(f_1^J) = \underset{I, e_1^I}{\operatorname{argmax}} \ p(e_1^I | f_1^J)$$

- Generate a sequence: large search space
- Language dissimilarity: variable length, reordering

Neural Machine Translation

Low-Resource Scenarios in Machine Translation

Bilingual data for machine translation

- Requires bilingual speakers to generate: English-centric
- Biased to languages with good research infrastructure
- e.g. German→English, Chinese→English

Low-resource scenarios

- English and a non-popular language: e.g. Turkish \rightarrow English
- Non-English language pair: e.g. French→German

Preliminaries

To-English Tasks

Non-English Tasks

To-English Tasks

Data condition

- Bilingual data: small, limited domains
- Monolingual data: large, available in many domains
- e.g. Turkish→English

	#sentences		
Data	Turkish	English	
Bilingual	208k		
Monolingual	4.8M	100M	

How can we utilize unlabeled (monolingual) data to compensate for the lack of labeled (bilingual) data?

Semi-supervised Learning

Preliminaries

To-English Tasks: Semi-supervised Learning

- Training
- Data

Non-English Tasks

Preliminaries

To-English Tasks: Semi-supervised Learning

- Training
- Data

Non-English Tasks

Semi-supervised Learning: Training

How can we exploit monolingual data in training a translation model?

- A part of a translation model resembles a monolingual model
- Train that part as a monolingual model with monolingual data
- Much larger data than bilingual: learn to understand each language better

Question: Which part of a translation model resembles which monolingual model?

Decoder

Decoder (closer look)

• $\mathbf{q}_i = \mathsf{target}$ history representation • $\mathbf{s}_i = \mathsf{relation}$ to source representations

Decoder As a Language Model

Decoder resembles a language model

Encoder

Encoder (closer look)

- Learns source representations
- No prediction by itself

Encoder As a Cloze Task Model

Encoder resembles a Cloze task model

- Predict a source word given its surrounding context [Taylor 53]
- Basis of the groundbreaking BERT [Devlin & Chang⁺ 19]

Monolingual Pre-Training

Pre-train for monolingual tasks \longrightarrow Train for a translation task

- [Ramachandran & Liu⁺ 17]: LM pre-training for RNN translation model
- This work: re-evaluate in Transformer, also test Cloze task pre-training

Turkish→English	Monolingual		newstest2016		newstest2017	
	Encoder	Decoder	Bleu [%]	Ter [%]	BLEU [%]	Ter [%]
Bilingual	-	-	19.0	70.5	18.9	71.1
$ Monolingual{\to}Bilingual $	Cloze	LM	19.9	68.8	19.6	69.7
	LM	LM	19.6	70.1	19.4	69.8
	Cloze	Cloze	20.0	68.5	19.8	69.2

Monolingual pre-training helps the translation

- Cloze task is more suitable for both encoder/decoder
- Richer context is more important than the exact parameter overlap
- In the thesis: multi-task learning, cross-lingual pre-training

Preliminaries

To-English Tasks: Semi-supervised Learning

- Training: Monolingual Pre-Training
- Data

Non-English Tasks

Preliminaries

To-English Tasks: Semi-supervised Learning

- Training: Monolingual Pre-Training
- Data

Non-English Tasks

Semi-supervised Learning: Data

How can we augment bilingual training data?

- Synthesize bilingual data from monolingual data
- e.g. Generate a source sentence from a target monolingual sentence

Back-Translation: Use target→source translation model

$$e_1^I \xrightarrow{p(f_1^J|e_1^I)} \widetilde{f}_1^{\tilde{J}}$$

- Use synthetic bilingual sentences $(\tilde{f}_1^{\tilde{J}},e_1^I)$ along with real bilingual data
- In this work, real:synthetic = 1:2

Generation Strategy: Decoding

How should we generate a source sentence $\tilde{f}_1^{\tilde{J}}$ using $p(f_1^J|e_1^I)$?

Decoding: Do the usual translation using beam search [Sennrich & Haddow⁺ 16]

source target

Heute ist es sonnig. \leftarrow Today is sunny.

- Biased to use frequent words [Ott & Auli⁺ 18]
- Tends to perform less reordering
- Does not reflect the variability of human translations

Generation Strategy: N-best List

How can we generate a potentially human-like source sentence $\widetilde{f}_1^{\widetilde{J}}$?

N-best List: Randomly choose one of the N-best hypotheses from beam search

source target

Heute ist es sonnig. \leftarrow Today is sunny. Heute ist es sonnig!

Heute ist sonnig.

- Mechanical variations, e.g., different punctuation, dropping one word
- ullet Computational complexity increases linearly with N

Generation Strategy: Restricted Sampling

How can we generate a potentially human-like source sentence $\widetilde{f}_1^{\widetilde{J}}$?

Restricted Sampling: Randomly sample a token from left to right only if $p(f_j|\tilde{f}_1^{j-1},e_1^I) > \tau$ [Graça & Kim⁺ 19]

source target

Heute ist es sonnig. \leftarrow Today is sunny.

Heute ist sonnig.

Heute scheint die Sonne.

- Allow less probable tokens: more variability
- ullet au prohibits nonsense tokens in sampling
- Much faster than beam search: $O(\log_2 V) \ll O(NV)$ per position

Comparison of Generation Strategies

$Turkish{ o}English$		newstest2016		6 newstest2017	
	Generation Strategy	Bleu [%]	Ter [%]	Bleu [%]	Ter [%]
Real bilingual data	-	19.0	70.5	18.9	71.1
+ Synthetic data	Beam search	24.5	65.7	23.1	67.2
	N-best list	24.7	65.7	23.1	67.1
	Restricted sampling	25.0	64.7	23.6	66.2

Restricted sampling is the best strategy to synthesize bilingual data

More realistic variability in syntax and semantics

	Proportion [%]			
Translated by	Delete	Insert	Reorder	
Human	11.1	10.2	22.4	
Beam Search	7.6	7.7	20.1	
Restricted Sampling	8.1	8.6	20.7	

More suitable for large-scale synthesis

Monolingual Pre-Training vs. Synthetic Data

	newstes	st2016	newstest2017	
	Bleu [%]	Ter [%]	BLEU [%]	Ter [%]
Baseline	19.0	70.5	18.9	71.1
+ Pre-training	20.0	68.5	19.8	69.2
+ Synthetic data	25.0	64.7	23.6	66.2
+ Pre-training $+$ synthetic data	25.1	64.2	23.7	66.2

Synthesizing data is a more effective semi-supervised method

- Provides additional training data in the exact form expected by the model
- Up to +6.0% BLEU and -4.9% TER
- Combination with monolingual pre-training yields no significant difference

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

• Data: Back-Translation

Non-English Tasks

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

• Data: Back-Translation

Non-English Tasks

Non-English Tasks

Data condition

source-target: small

source-English: large

English-target: large

Language Pair	#sentences
French-German	2.5M
French-English	35M
English-German	9.1M

Language Pair	#sentences
German-Czech	226k
German-English	10M
English-Czech	49M

How can we utilize large bilingual data of related language pairs?

• Cross-lingual Learning [Kim & Petrov⁺ 19]

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

Data: Back-Translation

Non-English Tasks: Cross-lingual Learning

- Training
- Data

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

Data: Back-Translation

Non-English Tasks: Cross-lingual Learning

- Training
- Data

Baseline: Pivoting

Two-step translation with English as a pivot language

Aujourd'hui est ensoleillé.
$$\longrightarrow$$
 Today is sunny. \longrightarrow Heute ist es sonnig. f_1 f_2 f_3 g_1 g_2 g_3 e_1 e_2 e_3 e_4 e_1^I

- Slow: doubled decoding time
- Translation errors are propagated or expanded from pivot to target
- Cannot utilize source-target bilingual data

Cross-lingual Learning: Training

Can we avoid pivoting and build a better single-size model?

- Faster translation: perform decoding only once
- No propagation of errors in the middle
- Utilize all three data sources: source-target, source-English, English-target

Sequential Transfer: Pre-Training for base tasks \rightarrow Training for the main task

- Shared model parameters throughout several training stages
- Optimized to the main task at the end

Sequential Transfer: Individual Pre-Training

- 1. Pre-train source \rightarrow English and English \rightarrow target models
 - The two models do not depend on each other (parallelizable)

Sequential Transfer: Individual Pre-Training

- 2. Take components from pre-trained models
 - Source encoder from source→English model
 - Target decoder from English→target model

Problem: Individually pre-trained components are not compatible with each other

Sequential Transfer: Individual Pre-Training

- 3. Combine the pre-trained components and train with source-target data
 - Learn to connect encoder representations with decoder computations
 - What if source-target data is small? (low-resource)

How can we mitigate the mismatch between components after pre-training?

Pivot Adapter: Transform source encoder outputs like English encoder outputs

- Target decoder is trained to use English encoder outputs
- Source encoder produces outputs which are familiar to target decoder

1. Feed source/English encoders with source-English data: get representation pairs

$$f_1^J \xrightarrow{\text{encoder}} \mathbf{h}_{f,1}^J \xrightarrow{\text{pooling}} \mathbf{h}_f$$
$$g_1^K \xrightarrow{\text{encoder}} \mathbf{h}_{g,1}^K \xrightarrow{\text{pooling}} \mathbf{h}_g$$

2. Train a linear mapping from source encoder outputs to English encoder outputs

$$\mathbf{W}_{f \to g} = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{(\mathbf{h}_f, \mathbf{h}_g)} \|\mathbf{W} \cdot \mathbf{h}_f - \mathbf{h}_g\|^2$$

- 3. Insert the adapter layer between source encoder and target encoder
 - Smoother connection of representation spaces
 - Continue training with source-target data

How can we fundamentally prevent the mismatch between components <u>during</u> pre-training?

Step-wise Pre-Training: Pre-train for source \rightarrow English and English \rightarrow target in consecutive steps

- Same data, different order of training
- Explicitly force target decoder to use source encoder representations

1. Pre-train source→English model

- 2. Take source encoder parameters and train English→target model
 - English sentences are fed to (frozen) source encoder: random semantics
 - Target at least learns to use source encoder's representation space

- 3. Continue training with source-target data
 - Encoder was frozen: Can still model source sentences well
 - Decoder computations are already connected with encoder representations

How can we improve the second pre-training step (English \rightarrow target)?

Cross-lingual Encoder: Encoder models source and English languages together

- Encodes source and English sentences in the same mathematical space
- Convey meaningful English representations to target decoder

- 1. Pre-training for source/English→English with source-English data
 - Source→English: source as input, English as output
 - ullet EnglishightarrowEnglish: English as both input and output (autoencoding)
 - Similar encoder output for paired source-English sentences
 - Also used in parallel corpus mining/filtering
 [Rossenbach & Rosendahl⁺ 18, Kim & Rosendahl⁺ 19]

- 2. Take source/English encoder parameters and train with English-target data
 - Encoder produces meaningful semantics for target decoder
 - Decoder learns to work with (shared) source representation space even if the input is in English

- 3. Continue training with source-target data
 - Decoder has better initial parameters for the last training step

Sequential Transfer: Experiments

$German \rightarrow Czech$	newstest2012		newstest2013	
	Bleu [%]	Ter [%]	Bleu [%]	TER [%]
Direct source→target	12.0	79.7	13.5	76.3
Individual pre-training	15.4	75.4	18.0	70.9
+ Pivot adapter	15.9	75.0	18.7	70.3
Step-wise pre-training	15.6	75.0	18.1	70.9
+ Cross-lingual encoder	16.2	74.6	19.1	69.9
Pivoting	18.0	73.6	21.3	68.8

Transfer learning from two high-resource language pairs gives large improvement

• Pivot adapter gives additional performance gain

Sequential Transfer: Experiments

$German{ o}Czech$	newstest2012		newstest2013	
	Bleu [%]	Ter [%]	Bleu [%]	Ter [%]
Direct source→target	12.0	79.7	13.5	76.3
Plain transfer	15.4	75.4	18.0	70.9
+ Pivot adapter	15.9	75.0	18.7	70.3
Step-wise pre-training	15.6	75.0	18.1	70.9
+ Cross-lingual encoder	16.2	74.6	19.1	69.9
Pivoting	18.0	73.6	21.3	68.8

Best combination = step-wise pre-training + cross-lingual encoder

- Direct connection between pre-trained components + fully utilizing high-resource data in all pre-training stages
- ullet $+1.1\%~{
 m BLEU}$, $-1.0\%~{
 m TER}$ against simple sequential transfer
- Still behind pivoting

Outline

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

Data: Back-Translation

Non-English Tasks: Cross-lingual Learning

• Training: Sequential Transfer

Data

Conclusion

Outline

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

Data: Back-Translation

Non-English Tasks: Cross-lingual Learning

• Training: Sequential Transfer

Data

Conclusion

Cross-lingual Learning: Synthetic Data

How can we synthesize bilingual data from source-English and English-target data?

Pivot-based Back-Translation: Translate pivot side of pivot-target data into source language [Bertoldi & Barbaiani⁺ 08]

Use high-resource pivot→source model: high-quality generations
 (c.f. low-resource target→source model for semi-supervised learning)

Sequential Transfer with Pivot-based Synthetic Data

Add pivot-based synthetic data in source→target training step

$German{ o}Czech$	newstest2012		newstest2013	
	Bleu [%]	Ter [%]	BLEU [%]	Ter [%]
Direct source→target	12.0	79.7	13.5	76.3
+ Synthetic data	15.7	76.5	18.5	72.0
Sequential transfer	16.2	74.6	19.1	69.9
+ Synthetic data	18.0	72.7	21.3	68.0
Pivoting	18.0	73.6	21.3	68.8

Low-resource: Synthetic data gives large additional gain to single-size models

• Sequential transfer <u>reaches</u> the pivoting performance with 2x faster decoding

Sequential Transfer with Pivot-based Synthetic Data

Add pivot-based synthetic data in source—target training step

$French { ightarrow} German$	newstest2012		newstest2013	
	Bleu [%]	Ter [%]	Bleu [%]	Ter [%]
Direct source→target	20.1	69.8	21.9	69.2
+ Synthetic data	21.1	68.2	22.6	68.1
Sequential transfer	20.9	69.4	23.1	68.0
+ Synthetic data	21.9	67.6	23.4	67.4
Pivoting	20.6	68.9	22.3	68.5

Mid-resource: Synthetic data gives small additional gain to single-size models

Sequential transfer outperforms the pivoting with 2x faster decoding

Outline

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

Data: Back-Translation

Non-English Tasks: Cross-lingual Learning

• Training: Sequential Transfer

Data: Pivot-based Back-Translation

Conclusion

Outline

Preliminaries

To-English Tasks: Semi-supervised Learning

• Training: Monolingual Pre-Training

Data: Back-Translation

Non-English Tasks: Cross-lingual Learning

Training: Sequential Transfer

Data: Pivot-based Back-Translation

Conclusion

Conclusion

Question: Given a small amount of bilingual data, what should we do to make a good machine translation model?

Answer: Exploit additional data sources

- To-English tasks: monolingual data
- Non-English tasks: source-English and English-target bilingual data

How?

- Most important: Synthesize bilingual data with restricted sampling
- Pre-train model parameters for related tasks in the right order

In the thesis, you can find also:

Unsupervised learning for (neural) machine translation

End

Thank you!

kim@cs.rwth-aachen.de

References

[Bertoldi & Barbaiani⁺ 08] N. Bertoldi, M. Barbaiani, M. Federico, R. Cattoni.

Phrase-based statistical machine translation with pivot languages.

In Proceedings of 5th International Workshop on Spoken Language Translation (IWSLT 2008), pp. 143–149, Honolulu, HI, USA, October 2008.

[Devlin & Chang⁺ 19] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova.

Bert: Pre-training of deep bidirectional transformers for language understanding.

In Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019), pp. 4171–4186, Minneapolis, MN, USA, June 2019.

[Graça & Kim⁺ 19] M. Graça, Y. Kim, J. Schamper, S. Khadivi, H. Ney.

Generalizing back-translation in neural machine translation.

In Proceedings of the 4th Conference on Machine Translation (WMT 2019), pp. 45–52, Florence, Italy, August 2019.

[Kim & Petrov⁺ 19] Y. Kim, P. Petrov, P. Petrushkov, S. Khadivi, H. Ney.

Pivot-based transfer learning for neural machine translation between non-English languages.

In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP 2019), pp. 866–876, Hong Kong, China, November 2019.

[Kim & Rosendahl+ 19] Y. Kim, H. Rosendahl, N. Rossenbach, J. Rosendahl, S. Khadivi, H. Ney.

Learning bilingual sentence embeddings via autoencoding and computing similarities with a multilayer perceptron.

In Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP 2019), pp. 61–71, Florence, Italy, August 2019.

[Kingma & Ba 15] D. P. Kingma, J. Ba.

Adam: A method for stochastic optimization.

In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, May 2015.

[Ott & Auli⁺ 18] M. Ott, M. Auli, D. Grangier, M. Ranzato.

Analyzing uncertainty in neural machine translation.

In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), pp. 3956-3965, Stockholm, Sweden, July 2018.

References

[Ramachandran & Liu+ 17] P. Ramachandran, P. Liu, Q. Le.

Unsupervised pretraining for sequence to sequence learning.

In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017), pp. 383–391, Copenhagen, Denmark, September 2017.

[Rossenbach & Rosendahl+ 18] N. Rossenbach, J. Rosendahl, Y. Kim, M. Graça, A. Gokrani, H. Ney.

The RWTH aachen university filtering system for the WMT 2018 parallel corpus filtering task.

In Proceedings of the 3rd Conference on Machine Translation (WMT 2018), pp. 946-954, Belgium, Brussels, October 2018.

[Sennrich & Haddow⁺ 16] R. Sennrich, B. Haddow, A. Birch.

Improving neural machine translation models with monolingual data.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016), pp. 86–96, Berlin, Germany, July 2016.

[Taylor 53] W. L. Taylor.

Cloze procedure: A new tool for measuring readability. Journalism Quarterly, Vol. 30, No. 4, pp. 415–433, 1953.

[Vaswani & Shazeer⁺ 17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. ukasz Kaiser, I. Polosukhin. Attention is all you need.

In Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 5998-6008, Long Beach, CA, USA, December 2017.

