B10901184 錡亭勳 Lab6

2.

(a) Origin

0dB

10dB

20dB

(b)

QPSK	dB=0	dB=10	dB=20
	0.1513	0	0

3. Orange: Theoretical, Blue: Simulation (a)

(d) As M increases, the SER increases, since it is like you want to tuck a lot of data in a small space. As E_b/N_0 increases, SER decreases, since it can be seen as the noise is rather small.

E_b/N_0

1.5

10⁻⁵

0.5

(b) Orange: soft, Blue: hard (the const of orange at the end is just for simplicity of plot) Comparison: Soft is always better than hard.

E_b/N_0

3.5

4.5

