Отчёт по лабораторной работе №5. Подгонка полиномиальной кривой и матричные преобразования в Octave.

Предмет: научное программирование

Александр Сергеевич Баклашов

Содержание

1	Цел	ь работы	5	
2	Теоретическое введение			
3	Вып	олнение лабораторной работы	7	
	3.1	Подгонка полиномиальной кривой	7	
	3.2	Polyfit	8	
	3.3	Матричные преобразования	9	
	3.4	Вращение	9	
	3.5	Отражение	10	
	3.6	Дилатация	10	
4	Выв	од	12	
5	Библ	пиография	13	

Список иллюстраций

3.1	График точек	7
3.2	Парабола	8
3.3	Polyfit	8
3.4	Матричные преобразования	9
3.5	Вращение	9
3.6	Отражение	C
3 7	Лидатация 1	1

Список таблиц

1 Цель работы

Изучить способы подгонки полиномиальной кривой и некоторые матричные преобразования в Octave

2 Теоретическое введение

GNU Octave — свободная программная система для математических вычислений, использующая совместимый с MATLAB язык высокого уровня.

Предоставляет интерактивный командный интерфейс для решения линейных и нелинейных математических задач, а также проведения других численных экспериментов. Кроме того, Octave можно использовать для пакетной обработки. Язык Octave оперирует арифметикой вещественных и комплексных скаляров, векторов и матриц, имеет расширения для решения линейных алгебраических задач, нахождения корней систем нелинейных алгебраических уравнений, работы с полиномами, решения различных дифференциальных уравнений, интегрирования систем дифференциальных и дифференциально-алгебраических уравнений первого порядка, интегрирования функций на конечных и бесконечных интервалах. Этот список можно легко расширить, используя язык Octave (или используя динамически загружаемые модули, созданные на Си, С++, Фортране и других). [1]

3 Выполнение лабораторной работы

3.1 Подгонка полиномиальной кривой

1. Построим график точек, под которые будем подгонять параболу (рис. 3.1)

Рис. 3.1: График точек

2. В статистике часто рассматривается проблема подгонки прямой линии к набору данных. Решим более общую проблему подгонки полинома к множеству точек. Пусть нам нужно найти параболу по методу наименьших квадратов для набора точек, заданных матрицей выше. (рис. 3.2)

Рис. 3.2: Парабола

3.2 Polyfit

3. Процесс подгонки может быть автоматизирован встроенными функциями Octave. Для этого мы можем использовать встроенную функцию для подгонки полинома polyfit. (рис. 3.3)

Рис. 3.3: Polyfit

3.3 Матричные преобразования

4. Представим изображение домика в виде матрицы. (рис. 3.4)

Рис. 3.4: Матричные преобразования

3.4 Вращение

5. Повернём граф дома на 90 и 225 градусов. (рис. 3.5)

Рис. 3.5: Вращение

3.5 Отражение

6. Отразим граф дома относительно прямой y = x. (рис. 3.6)

Рис. 3.6: Отражение

3.6 Дилатация

7. Увеличим граф дома в 2 раза (рис. 3.7)

```
File Edit Tools

File Edit Tools

Axis([-1 4 -1 4], 'equal');

xaxis([-1 5 -1 5], 'equal');

yerid on;

legend ('original', 'reflected plot (x,y,'o-',xl,yl,'o-'))

xaxis([-1 4 -1 4], 'equal');

xaxis([-1 4 -1 4], 'equal');

xaxis([-1 5 -1 5], 'equal');

xaxis([-1 5 -1 5], 'equal');

yerid on;

legend ('original', 'reflected plot ('or
```

Рис. 3.7: Дилатация

4 Вывод

В ходе данной лабораторной работы я изучил способы подгонки полиномиальной кривой и некоторые матричные преобразования в Octave.

5 Библиография

1. Лабораторная работа №5. - 10 с. [Электронный ресурс]. М. URL: Лабораторная работа №5. (Дата обращения: 05.10.2023).