Kanalcodierung

Backward Error Correction (BEC)

Die Redundanz erlaubt lediglich, Fehler zu erkennen und eine Neuübertragung der Daten anzufordern. (Blockcades, CRC)

Forward Error Correction (FEC)

Die von der Kanalcodierung hinzugefügte Redundanz reicht, um beim Empfänger Fehler zu Korrigieren. (Blockcodes, Hinimum-Distance-Decoding, Faltungscodes)

Repetitionscode 5 (linear, zyklisch, Systematisch)

2.B. $R^5 = (11111), (00000)$ $N = \frac{5}{5}, K = 1, \delta_{min} = \frac{5}{5}$ erkennbare Fehler = 4(5-1), korrigierbate Fehler = $2(\lfloor \frac{5-1}{2} \rfloor)$

Bitfehlerwahrscheinlichkeit & (BER-Bit Error Ratio)

Anzahl fehlerhafte Bits im Verhältnis zur Gesamtzahl der Bits.

Alle Bits falsch : BER = 1 Keine Bits falsch : BER = 0 1 von 2 Bits falsch : BER = 0.5 Mit der BER kann die Wahrscheinlichkeit Po,N ausgerechnet werden, mit der eine Sequenz von N Datenbits korrekt (O Bitschler) übertragen wird.

Erfolgswahrscheinlichkeit: $P_{0,N} = (1 - \epsilon)^N$ Fehlerwahrscheinlichkeit: $1 - P_{0,N} = 1 - (1 - \epsilon)^N$

Mehr - Bit - Fehlerwahrscheinlichkeit

Die Wahrscheinlichkeit PF,N, dass in einer Sequenz von N Datenbits genau F Bitfehler auftreten: PF,N = (N) EF (1-E) N-F

(N) = N! : Anzahl der Höglichkeiten F Fehler in N Bits anzvordnen. N!: Fakultat, z.B. 3! = 3.2.1

EF : Wahrscheinlichkeit für einen F-Gachen Bit-Fehler Taschenrechner Zahl, PRB, !

(1-ε)^{N-F} : Wahrscheinlichkeit, dass die restlichen Bits (N-F) alle keinen Fehler haben.

Wahrscheinlichkeit, dass maximal F Fehler bei einer Übertragung von N Bits auftreten : $P_{\leq F,N} = \sum_{t=0}^{F} {N \choose t} \cdot \epsilon^{t} \cdot (1-\epsilon)^{N-t}$

Wahrscheinlichkeit, dass mehr als F Fehler bei einer Übertragung von N Bits auftreten : $P_{>F,N} = \sum_{t=F+1}^{N} {N \choose t} \cdot \varepsilon^{t} \cdot (1-\varepsilon)^{N-t}$ Fakultät O = 1

Kanalcodierungstheorem

Beschreibt unter welcher Bedingung sich die Wahrscheinlichkeit von Fehlern beliebig reduzieren lässt.

Möchte man die Restfehlerwahrscheinlichkeit eines Fehlerschutzcodes beliebig klein machen so muss R < C sein.

C: Kanal Kapazität in bit/bit (Nutzbare Bits pro Kanal benutzung) $C_{BSC}(\varepsilon) = 1 - H_b(\varepsilon)$ $C_{BSC}(\varepsilon) = 1 - \left\{ \varepsilon \cdot \log_2 \cdot \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot \log_2 \cdot \frac{1}{4 - \varepsilon} \right\}$

R: Coderate in bit/bit (Infobits pro Codebit) $R = \frac{K}{N}$

R muss Kleiner als C sein, damit alle Information in den nutzbaren Bits Platz hat und zuverlässig übertragen werden Kann

Hamming - Distanz

Anzahl wechselnden Bits von einem gültigen Code zum nachsten gültigen Code.

Minimale Hamming - Distanz dmin (C): Für sichere Fehlererkennung eines Codes (C) relevant. Kleinstes Hamming-Gewicht (WH) über alle Codeworter hinneg ist dmin.

Hamming-Gewicht WH (cj) : XOR-Differenz zweier unterschiedlichen Codewörtern bilden und Anzahl Einsen des erhaltenen Codeworts

bestimmen. z.B dy (110,011) = wy (110 + 011) = wy (101) = 2

Anzahl erkennbarer Fehler e : dmin - 1 Fehler sind sicher erkennbar

Wahrscheinlichkeit eines BSC (Ein-/Ausgang)

Binary Symmetric Channel $P(x_4) \quad x_4 = 1$ $P(x_4) \cdot (1 - \varepsilon)$ $P(x_6) \quad x_6 = 0$ $P(x_6) \cdot (1 - \varepsilon)$ $P(x_6) \cdot (1 - \varepsilon)$ $P(x_6) \cdot (1 - \varepsilon)$ Summe = 1

$$P(y_4) = P(x_4) \cdot (1 - \varepsilon) + P(x_0) \cdot \varepsilon$$

 $P(y_0) = P(x_0) \cdot (1 - \varepsilon) + P(x_1) \cdot \varepsilon$

Beispiel: Quelle mit $P(x_0)=0.05$ und BSC mit $\varepsilon=0.01$

E.B. (3,2) Block-Code C = {[000], [110], [101], [011]} Parity-Bit: 0 xor 0 = 0 1 xor 1 = 0 1 xor 0 = 1 0 xor 1 = 1

Zyklischer Code

Zyklische Verschiebung eines Codewortes ergibt wieder ein gültiges Codewort.

Z.B. C = (000), (110), (101), (110) $(000) \rightarrow (000), (110) \rightarrow (011) \rightarrow (101) \rightarrow (110)$ $C_0 C_1 C_2 ... C_{N-1}$ $O(11) \rightarrow (110) \rightarrow (110) \rightarrow (110) \rightarrow (110)$ $O(11) \rightarrow (110) \rightarrow (110) \rightarrow (110)$ $O(11) \rightarrow (110) \rightarrow (110) \rightarrow (110)$ $O(11) \rightarrow$

Perfekter Code

Wenn jedes Codeworf eine dmin zu genau einem (nicht mehrere)
Codeworf aufweist. z.B. {[0000], [11111]} ?

nicht perfekt: {[000], [110], [101], [011]} ?

<u>Linearer</u> Code

Bitweise XOR-Verknüpfung von 2 beliebigen Codewörtern (inklusive sich selbst) ergibt wieder ein gültiges Codewort.

Beliebiges Codewort XOR mit sich selber: $\underline{C}_j \oplus \underline{C}_j = (000)$ Beliebiges Codewort XOR mit (000) : $\underline{C}_j \oplus (000) = \underline{C}_j$

Restlictive Fälle : $(140) \oplus (041) = (104) \oplus (104) = (041)$, $(041) \oplus (104) = (140)$