

Tartalom

- > Programozási tételek intervallumon
- ➤ Feladatspecifikáció → Programspecifikáció
- > Programozási tételek általánosítása

Programozási tételek

>Sorozat → érték

> Sorozat → sorozat

Sorozatszámítás

Másolás

Megszámolás

Kiválogatás

Maximum-kiválasztás

Szétválogatás

- > Keresés
- Kiválasztás
- > Eldöntés

A tételeket sorozatokra (tömbökre) mondtuk ki, mivel a feladatok többségében ilyen jellegű adatok szerepelnek.

Problémák

- 1. A tételek a sorozat egy-egy elemével dolgoznak
 - 1. Mit tegyünk akkor, ha a feladat bemenetén csak impliciten jelenik meg a sorozat?
 - 2. Mit tegyünk, ha nemcsak a sorozat aktuális elemével kell dolgozunk?
 - 3. Mit tegyünk, ha a sorozat elemét transzformálni kell?
- 2. Hogyan tudjuk jobban leírni, ha egy adatból nem előáll egy másik, hanem megváltozik?

Határozzuk meg egy természetes szám legkisebb párat-

lan valódi osztóját! \rightarrow Keresés Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}}, T: \mathbb{H} \rightarrow \mathbb{L}$ Kimenet: $Van \in \mathbb{L}, Ind \in \mathbb{N}, \text{ } Ert \in \mathbb{H}$

Előfeltétel: –

Utófeltétel: (Van,Ind,Ért) = Keres $T(X_i)$

Specifikáció:

 \triangleright Bemenet: $n \in \mathbb{N}$

 \triangleright Kimenet: $van \in \mathbb{L}, pvo \in \mathbb{N}$

➤ Előfeltétel: —

Keresés

2022.10.28, 18:45

Másolás

 \gt Utófeltétel: $x_{1..n} \in \mathbb{N}^n$ és $\forall i (1 \le i \le n) : x_i = i$ és

 $(van, pvo, \acute{e}rt) = Keres_{i=2}^{n-1} x_i | n \acute{e}s \ 2 \nmid x_i$

Az x sorozat nem része a bemenetnek vagy a kimenetnek, hanem a feladat megoldásához segítségképpen vezettük be

 $T: x_i \to x_i \mid n \text{ és } 2 \nmid x_i$

Vegyük észre, hogy n/2 után már nincs értelme keresni!

Specifikáció:

 $\text{Ut\'ofelt\'etel: } x_{2..n/2} \in \mathbb{N}^{\frac{n}{2}-1} \'es \ \forall i (2 \leq i \leq n/2) : x_i = i \'es$ $(van, pvo, \'ert) = Keres_{i=2}^{n/2} x_i | n \'es \ 2 \nmid x_i$

$$\forall i (1 \le i \le N): Y_i = f(X_i)$$

> Utófeltétel:
$$x_{1..n} ∈ \mathbb{N}^n$$
 és $\forall i (1 \le i \le n) : x_i = i$ és
$$(van, pvo, \acute{e}rt) = Keres_{i=2}^{n/2} x_i | n \text{ és } 2 \nmid x_i$$

$$(Van, Ind, \acute{E}rt) = Keres_{i=1}^{N} T(X_i)$$

$$_{i=1}^{N}$$

Visszavezetési táblázat		
y_i	~	x_i
$f(x_i)$	~	i

Visszavezetési táblázat		
1 <i>N</i>	~	2n div 2
Ind	~	pvo
$T(X_i)$	~	$x_i n$ és $2\nmid x_i$

SETWENSIS DE ROLY


```
i=1..n
   x[i]:=i
pvo:=2
pvo\leqn div 2 és nem(x[i]|n és 2\nmidx[i])
   pvo:=pvo+1
van:=(pvo<=n div 2)
```


Nincs szükség tömbre! Az uf. így is visszavezethető!

Specifikáció:

 \gt Utófeltétel: $(van, pvo, \acute{e}rt) = Keres_{i=2}^{n/2}i|n \acute{e}s \ 2 \nmid i$

Visszavezetési táblázat		
1 <i>N</i>	~	2n div 2
Ind	~	pvo
$T(X_i)$	~	i n és 2∤i

```
ind:=1
ind<=n és nem T(x[ind])
ind:=ind+1
van := ind<=n
```

```
(Van,Ind,\acute{E}rt) = Keres T(X_i)
i=1
```

```
pvo:=2

pvo<=n div 2 és nem(pvo|n és 2/pvo)

pvo:=pvo+1

van:=(pvo<=n div 2)
```


Egy számsorozatban mekkora a legnagyobb eltérés két szomszédos elem között?

Maximum-kiválasztás

Specifikáció:

- \triangleright Bemenet: $n \in \mathbb{N}, x_{1..n} \in \mathbb{R}^n$
- \gt Kimenet: $maxind \in \mathbb{N}, maxk\ddot{u}l \in \mathbb{R}$
- \gt Előfeltétel: $n \ge 2$
- \gt Utófeltétel: $k_{1..n-1} \in \mathbb{N}^{n-1}$ és

$$\forall i (1 \le i \le n-1) : k_i = |x_{i+1} - x_i| \text{ \'es}$$

Másolás

Max.kiv. $(maxind, maxk\ddot{u}l) = MAX_{i=1}^{n-1}k_i$

A k segédsorozat segítségével.

 $x_i \mapsto |x_{i+1} - x_i|$ Nem jön ki az f(x[i])-ből

 $(Max, Max \acute{E}rt) = Max_i X_i$

> Utófeltétel: $\forall i$ (1≤i≤N): Y_i = $f(X_i)$

$$\gt$$
 Utófeltétel: $k_{1..n-1} \in \mathbb{N}^{n-1}$ és

$$\forall i (1 \le i \le n-1) : k_i = |x_{i+1} - x_i| \text{ \'es}$$

$$(maxind, maxk\"{u}l) = MAX_{i=1}^{n-1} k_i$$

$$(Max, Max\acute{E}rt) = Max_{i=1}^{N} X_{i}$$

Visszavezetési táblázat		
1 <i>N</i>	~	1n - 1
y_i	~	k_i
$f(x_i)$	~	$ x_{i+1}-x_i $

Visszavezetési táblázat		
Мах	~	maxind
MaxÉrt	~	maxkül
1 <i>N</i>	~	1n - 1
X_i	~	k_i

Visszavezetési táblázat		
1 <i>N</i>	~	1n - 1
y_i	~	k_i
$f(x_i)$	~	$ x_{i+1}-x_i $

MaxÉrt:=X[1]; Max:=1		
i=2N		
X[i]>Max	Ért /n	
MaxÉrt:=X[i]	_	
Max:=i		

f [üggv Visszave			BY BUDAMESTILLS BUDAMESTILLS	ASIS DE ROLLANDO BÖTVÖS AND + VIVNIMO
	Max	~	maxind		
	MaxÉrt	~	maxkül		
	1 <i>N</i>	~	1n - 1		
	X_i	~	k_i		

maxind:=i

Nincs szükség a köztes k tömbre! Az uf. visszavezetése anélkül is jó eredményt ad!

(Max, MaxÉrt) = Max X i

Specifikáció:

$$f(i) = |x_{i+1} - x_i|$$

 \gt Utófeltétel: $(maxind, maxkül) = MAX_{i=1}^{n-1}|x_{i+1} - x_i|$

ma	maxkül:= x[2]-x[1] ; maxind:=1		
i=2	i=2n-1		
	x[i±1]-x[i] >maxkül	false	
	maxkül:= x[i+1]-x[i]	-	
	maxind:=i		

13/72

1. probléma megoldása

- a) Nincs tömb \rightarrow intervallum
- b) $x[i] \rightarrow f(i)$
- c) $f(x[i]) \rightarrow f(i)$

Intervallumon értelmezett függvényekre szükséges kimondani a tételeinket!

Specifikáció:

- ➤ Definíció: $f:[e..u] \rightarrow \mathbb{H}$
- ➤ Bemenet: $e, u \in \mathbb{Z}$
- ightharpoonup Kimenet: $Max \in \mathbb{Z}, Max \acute{E}rt \in \mathbb{H}$
- \gt Előfeltétel: $e \le u$
- ➤ Utófeltétel: e≤Max≤u és

másképp:
$$(Max, MaxÉrt) = MAX_{i=e}^{u} f(i)$$

Léteznie kell a ≥:H×H→L rendezési relációnak!

Változó

i:Egész

Algoritmus:

MaxÉrt:=f(e); Max:=e

i=e+1..u

f(i)>MaxÉrt

MaxÉrt:=f(i)

Max:=i

MaxÉrt:=X[1]; Max:=1

i=2..N

X[i]>MaxÉrt

MaxÉrt:=X[i]

Max:=i

Egy számsorozatban mekkora a legnagyobb eltérés két szomszédos elem között?

Maximum-kiválasztás

Specifikáció:

- \triangleright Bemenet: $n \in \mathbb{N}, x_{1..n} \in \mathbb{R}^n$
- \triangleright Kimenet: $maxind \in \mathbb{N}, maxk \ddot{u}l \in \mathbb{R}$
- \triangleright Előfeltétel: $n \ge 2$
- \triangleright Utófeltétel: $(maxind, maxkül) = MAX_{i=2}^{n} |x_i x_{i-1}|$

Visszavezetési táblázat		
Max	~	maxind
MaxÉrt	~	maxkül
eu	~	2 <i>n</i>
f(i)	~	$ x_i - x_{i-1} $

$$(Max, Max \acute{E}rt) = MAX_{i=e}^{u} f(i)$$

Visszavezetési táblázat		
Max	~	maxind
MaxÉrt	~	maxkül
eu	~	2 <i>n</i>
f(i)	~	$ x_i - x_{i-1} $

Változó

i:Egész

maxkül:=|x[2]-x[1]|; maxind:=2 i=3..n |x[i]-x[i-1]| > maxkül |x[i]-x[i-1]| |x[i]-x[i]-x[i-1]| |x[i]-x[i]-x[i-1]|

Specifikáció₁:

ightharpoonup Definíció: $T: \mathbb{H} \to \mathbb{L}$

 $f:[e..u] \to \mathbb{H}$

 \triangleright Bemenet: $e, u \in \mathbb{Z}$

 \gt Kimenet: $Van \in \mathbb{L}, Ind \in \mathbb{Z}, Ert \in \mathbb{H}$

➤ Előfeltétel: –

 $ightharpoonup Utófeltétel: Van = \exists i(e \le i \le u): T(f(i))$ és $Van \rightarrow (e \leq Ind \leq u \text{ \'es } T(f(Ind))) \text{ \'es \'Ert} = f(i)$

Másképp: $(Van, Ind) = Keres_{i=e}^{u} T(f(i))$

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N, T: H \to L$
- \rightarrow Kimenet: $Van \in L$, $Ind \in \mathbb{N}$, $\acute{E}rt \in H$
- ➤ Előfeltétel: –
- ▶ Utófeltétel: Van= $\exists i (1 \le i \le N)$: $T(X_i)$ és

 $Van\rightarrow 1$ ≤Ind≤N és $T(X_{Ind})$ és Ért= X_{Ind}

másképp: (Van,Ind,Ért)= Keres T(X_i)

Specifikáció₂:

- \rightarrow Definíció: $T: [e..u] \rightarrow \mathbb{L}$
- \triangleright Bemenet: $e, u \in \mathbb{Z}$
- \triangleright Kimenet: $Van \in \mathbb{L}$, $Ind \in \mathbb{Z}$
- > Előfeltétel: –
- \triangleright Utófeltétel: $Van = \exists i (e \le i \le u) : T(i)$ és $Van \rightarrow (e \leq Ind \leq u \text{ \'es } T(Ind))$

Másképp:
$$(Van, Ind) = Keres_{i=e}^{u} T(i)$$

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N, T: H \to L$
- \triangleright Kimenet: $Van \in L$, $Ind \in N$, Exterior
- ➤ Előfeltétel: –
- ▶ Utófeltétel: Van= $\exists i (1 \le i \le N)$: $T(X_i)$ és

$$Van \rightarrow 1 \le Ind \le N$$
 és $T(X_{Ind})$ és Ért $= X_{Ind}$

másképp: (Van,Ind, $\frac{Ert}{Ert}$) = Keres $T(X_i)$

Algoritmus:

Specifikáció:

➤ Definíció: $T: [e..u] \rightarrow \mathbb{L}$

➤ Bemenet: $e, u \in \mathbb{Z}$

➤ Kimenet: $Van \in \mathbb{L}, Ind \in \mathbb{Z}$

➤ Előfeltétel: –

➤ Utófeltétel: $Van = \exists i (e \le i \le u)$: T(i) és

 $Van \rightarrow (e \leq Ind \leq u \text{ \'es } T(Ind))$

Másképp: $(Van, Ind) = Keres_{i=e}^{u} T(i)$

```
ind:=e
ind<=u és nem T(ind)
ind:=ind+1
van:=ind<=u
```

Megjegyzés:

Többlet tudás: a megoldás az első adott tulajdonságú elemet adja meg.

Határozzuk meg egy természetes szám legkisebb páratlan valódi osztóját! **Keresés**

Specifikáció:

- \triangleright Bemenet: $n \in \mathbb{N}$
- ➤ Kimenet: $van \in \mathbb{L}, pvo \in \mathbb{N}$
- ➤ Előfeltétel: –
- ightharpoonup Utófeltétel: $(van, pvo) = Keres_{i=2}^{n/2} i | n$ és $2 \nmid i$

$$(Van,Ind) = Keres_{i=e}^{u}T(i)$$

Visszavezetési táblázat		
Ind	~	pvo
eu	~	2n div 2
T(i)	~	i n és 2∤i

```
ind:=e
ind<=u és nem T(ind)
ind:=ind+1
van:=ind<=u
```

```
pvo:=2

pvo<=n div 2 és nem(pvo|n és 2|pvo)

pvo:=pvo+1

van:=(pvo<=n div 2)
```


2. probléma: adatok helyett változók

- Hogyan írjuk le, ha a program során megváltozik az adat, és nem egy másik adat áll elő belőle?
- > Eddig:

Bemeneti adatok — Program — Kimeneti adatok

> Például:

N, X — Program Van, Ind

De hogyan? (pl. helyben kiválogatás)

Példa

Cseréljük fel két változó értékét!

Specifikáció:

- ➤ Bemenet: $a_{be}, b_{be} \in \mathbb{Z}$
- \triangleright Kimenet: $a_{ki}, b_{ki} \in \mathbb{Z}$
- ➤ Előfeltétel: –
- \triangleright Utófeltétel: $a_{ki} = b_{be}$ és $b_{ki} = a_{be}$

Például:

Kezdetben: (a:5, b:3)

Végén: (a:3, b:5)

Feladatspecifikáció

- > Adat mint egy értékhalmaz eleme
 - (+ értékhalmazhoz "szokásosan" asszociált műveletek)
 - \triangleright Pl. $a \in \mathbb{Z}$ (aritmetikai műveletekkel)
- > Bemenő adatok, kimenő adatok
- Feladat: olyan előírás (reláció), amely megadja, hogy adott bemenetre adott kimenetet mikor fogadjuk el helyes kimenetként (tehát a feladat megoldásaként)
 - ➤ Bemenő adatok → Kimenő adatok

- Adat típusa: értékhalmaz + műveletek
 - > Pl. a: Egész
- Egy állapot: feladat minden adata felvesz egy-egy értéket
 - > Pl. (a: 5, b: 3)
- >Állapottér: összes lehetséges állapot
 - Változók: az állapottér adatainak "címkéi"
 - Pl. (a: Egész, b: Egész)

- > Kezdőállapot, célállapot
- Feladat: olyan előírás (reláció), amely megadja, hogy adott kezdőállapotra adott végállapotot mikor fogadjuk el helyesnek (tehát a feladat megoldásaként)
- > Végrehajtás: az állapottér változóinak módosítása
 - $ightharpoonup Pl: (a:3, b:5) \to (a:4, b:5)$

sv : segédváltozó állapottér-bővítés

- > Program: egy végrehajtási sorozat, mely a kezdőállapotból indul és a célállapotban ér véget.
 - > Pl: (a:3, b:5) → (a:3, b:5, sv:3) → (a:5, b:5, sv:3) → (a:5, b:3, sv:3) → (a:5, b:3)

- >Állapottér
 - > A feladat lényeges adatainak típusérték-halmazai az egyes adatokhoz tartozó változónevekkel együtt
 - > Bemeneti és kimeneti változók
- > Előfeltétel
 - kezdőállapotok halmazát leíró logikai állítás
 - rögzíti a bemenő változók egy lehetséges, de tetszőleges kezdőértékét
- > Utófeltétel
 - Logikai állítás, amely megadja, hogy adott kezdőállapothoz milyen végállapot lehet helyes megoldás

sematikus ábra

Cseréljük fel két változó értékét!

Specifikáció:

- ➤ Bemenet: a, b: Egész
- ➤ Kimenet: a, b: Egész
- \triangleright Előfeltétel: a = a' és b = b'
- \triangleright Utófeltétel: a = b' és b = a'
- Például: a'=3 és b'=5
 - Kezdetben: (a:5, b:3)
 - Végén: (a:3, b:5)

>Állapottér

- ➤ A feladat lényeges adatainak típusérték-halmazai az egyes adatokhoz tartozó változónevekkel együtt
- > Bemeneti és kimeneti változók

> Előfeltétel

- > kezdőállapotok halmazát leíró logikai állítás
- rögzíti a bemenő változók egy lehetséges, de tetszőleges kezdőértékét

> Utófeltétel

 Logikai állítás, amely megadja, hogy adott kezdőállapothoz milyen végállapot lehet helyes megoldás

Másképp:

Állapottér: a: Egész, b: Egész

vagy

 $A:(a:\mathbb{Z},b:\mathbb{Z})$

Cseréljük fel két változó értékét!

Specifikáció:

> Állapottér: a, b: Egész

 \triangleright Előfeltétel: a = a' és b = b'

 \triangleright Utófeltétel: a = b' és b = a'

A: a: Egész, b: Egész

vagy

 $A = (a: \mathbb{Z}, b: \mathbb{Z})$

Algoritmus:

sv:=a

a:=b

b:=sv

sv:Egész

Növeljük meg egy változó értékét!

Specifikáció:

➤ Bemenet: a: Egész

➤ Kimenet: a: Egész

 \gt Előfeltétel: a = a'

 \triangleright Utófeltétel: a = a' + 1

A: a: Egész

vagy

 $A = (a: \mathbb{Z})$

Algoritmus:

Alakítsunk át egy Celsius értéket Fahrenheitté!

Specifikáció:

➤ Bemenet: c: Valós

➤ Kimenet: f: Valós

 \gt Előfeltétel: c = c'

➤ Utófeltétel: Ef és $f = c * \frac{9}{5} + 32$

A bemeneti adatok nem változnak a megoldás során, a program végén is ugyanaz az értékük, mint kezdetben. A: c: Valós, f: Valós

vagy

 $A = (c: \mathbb{R}, f: \mathbb{R})$

Programspecifikáció Eldöntés

Specifikáció:

 \triangleright Bemenet: n: Egész,

 $x: T\ddot{o}mb(1..n: H),$

 $T: H \rightarrow Logikai$

➤ Kimenet: van: Logikai

 \gt Előfeltétel: n=n' és x=x' és $n\geq 0$

 \triangleright Utófeltétel: *Ef* és $van = \exists i (1 \le i \le n) : T(x[i])$

> Másképp: Ef és van = $\exists_{i=1}^n T(x[i])$

A bemeneti adatok nem változnak a megoldás során

Specifikáció:

≻Bemenet: N∈N,

 $X_{1..N} \in H^N$,

T:H→L

> Kimenet: Van∈L

Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

Adott tanulók neve és egy tárgyból kapott jegye.

Bukott-e meg valaki közülük a tárgyból?

Specifikáció:

 \triangleright Bemenet: $n: Eg\acute{e}sz$, $tanul\acute{o}k: T\"{o}mb(1...n: Tanul\acute{o})$

Tanuló = Rekord(név: Szöveg, jegy: Természetes)

> Kimenet: van: Logikai

 \triangleright Előfeltétel: n = n' és tanulók = tanulók' és

 $n \ge 0$ és $\forall i (1 \le i \le n)$: $1 \le tanulók[i]$. $jegy \le 5$

 \triangleright Utófeltétel: *Ef és van* = $\exists_{i=1}^{n} tanulók[i]$. jegy = 1

A bemeneti adatok nem változnak a megoldás során

Eldöntés

 $T(x[i]) \sim tanul\acute{o}k[i].jegy = 1$

Programozási tételek

- > Intervallumra
- > Programspecifikációval
- >Újracsoportosítva

Összegzés

Feladat: Adott az egész számok egy [e..u] intervalluma és egy f:[e..u] \rightarrow H függvény. A H halmaz elemein értelmezett egy asszociatív, baloldali nulla elemmel rendelkező művelet (nevezzük összeadásnak és jelölje ezt a +). Határozzuk meg az f függvény [e..u]-on felvett értékeinek az összegét, azaz a $\sum_{i=e}^{u} f(i)$ kifejezés értékét! (e>u esetén ennek az értéke definíció szerint a nulla elem)

Összegzés

Specifikáció:

- ➤ Definíció: $f:[e..u] \rightarrow H$
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: s: H
- \triangleright Előfeltétel: e = e' és u = u'
- \triangleright Utófeltétel: *Ef* és $s = \sum_{i=e}^{u} f(i)$

Algoritmus:

s:=0 i=e..u s:=s+f(i)

Változó i:Egész

Feltételes összegzés

mint speciális összegzés

Specifikáció:

> Definíció:
$$T: [e..u] \rightarrow Logikai, f: [e..u] \rightarrow H$$

$$g:[e..u] \to H, g(i) = \begin{cases} f(i) & ha T(i) \\ 0 & k\"{u}l\"{o}nben \end{cases}$$

- ▶ Bemenet: e, u: Egész
- ➤ Kimenet: s: *H*
- ightharpoonup Előfeltétel: e = e' és u = u'
- Vtófeltétel: Ef és $s = \sum_{i=e}^{u} f(i)$
- > Utófeltétel: Ef és $s = \sum_{i=e}^{u} g(i)$

Összegzés

 $f(i) \sim |g(i)| \sim ha T(i)$, akkor f(i), különben 0

- ➤ Definíció: $f:[e..u] \rightarrow H$
- ➤ Bemenet: e,u:Egész
- \triangleright Kimenet: s: H
- ightharpoonup Előfeltétel: e = e' és u = u'
- ightharpoonup Utófeltétel: Ef és $s = \sum_{i=e}^{u} f(i)$

Feltételes összegzés

mint speciális összegzés

Algoritmus:

$$g(i) = \begin{cases} f(i) & ha T(i) \\ 0 & k "ul" "on ben \end{cases}$$

Osszegzés Példa

Adott egy számsorozat. Mennyi a páratlan számok szorzata?

Specifikáció:

- \triangleright Bemenet: n: Egész, x: Tömb(1...n: Valós)
- > Kimenet: szorzat: Valós
- \triangleright Előfeltétel: n = n' és x = x' és $n \ge 0$

$$e..u$$
 ~ $1..n$ $\sum, +, 0$ ~ $\prod, *, 1$ $f(i)$ ~ $hax[i]$ páratlan, akkor $x[i]$, különben 1

 \succ Utófeltétel: Ef és $szorzat = \prod_{i=1}^{n} \begin{cases} x[i] , ha \ x[i] \ páratlan \\ 1 , különben \end{cases}$

szorzat:=1 i=1..n x[i] páratlan false true szorzat:=szorzat*x[i]| szorzat:=szorzat*1

i=e..u

s:=s+f(i)

Megszámolás

Feladat: Adott az egész számok egy [e..u] intervalluma és egy T:[e..u]→L feltétel. Határozzuk meg, hogy az [e..u] intervallumon a T feltétel hányszor veszi fel az igaz értéket!

- ➤ Definíció: $T: [e..u] \rightarrow Logikai$
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: db: Egész
- \triangleright Előfeltétel: e = e' és u = u'
- ightharpoonup Utófeltétel: Ef és $db = \sum_{i=e}^{u} 1_{T(i)}$

Megszámolás

Algoritmus:

Megszámolás

mint speciális összegzés

Specifikáció:

> Definíció: T: [e..u] → Logikai,

$$g: [e..u] \rightarrow \{0,1\}, g(i) = \begin{cases} 1 & ha T(i) \\ 0 & k "ul" "b" nben \end{cases}$$

- ➤ Bemenet: e,u:Egész
- ➤ Kimenet: db: Természetes
- \gt Előfeltétel: e=e' és u=u'
- \rightarrow Utófeltétel: Ef és $db = \sum_{i=e}^{u} g(i)$

Specifikáció:

 \triangleright Kimenet: s: H

➤ Definíció: $f:[e..u] \rightarrow H$

 \triangleright Előfeltétel: e = e' és u = u'

 \triangleright Utófeltétel: *Ef* és $s = \sum_{i=e}^{u} f(i)$

➤ Bemenet: e, u: Egész

$$\ddot{\mathbf{O}}$$
sszegzés
 $s \sim db$
 $f(i) \sim ha T(i), akkor 1, különben 0$

Feladat: Adott az egész számok egy [e..u] intervalluma és egy f:[e..u]→H függvény. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az f függvény hol veszi fel az [e..u] nem üres intervallumon a legnagyobb értéket, és mondjuk meg, mekkora ez a maximális érték!

Specifikáció:

- > Definíció: $f:[e..u] \rightarrow H$, ≥: $H \times H \rightarrow Logikai$
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: maxért: H, maxind: Egész
- \gt Előfeltétel: e = e' és u = u' és $u \ge e$
- > Utófeltétel: Ef és

 $e \leq maxind \leq u$ és

 $\forall i (e \le i \le u) : max \notin t \ge f(i) \notin s$

 $max\acute{e}rt = f(maxind)$

 \gt Másképp: Ef és (maxért, maxind) = $Max_{i=e}^{u}f(i)$

Algoritmus:

mint speciális összegzés

Specifikáció:

- > Definíció: $f:[e..u] \to H$, ≥,>: $H \times H \to Logikai$
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: maxért: H, maxind: Egész
- \triangleright Előfeltétel: e = e' és u = u' és $u \ge e$
- \triangleright Utófeltétel: *Ef* és maxért = $Max_{i=e}^{u}f(i)$

Összegzés
$$s \sim maxért$$

$$\sum, +, 0 \sim Max, \max, -\infty$$

$$s \coloneqq +(s, f(i)) \sim \maxért \coloneqq \max(maxért, f(i))$$

$$s \coloneqq +(s, f(i)) \sim ha f(i) > maxért$$

- > Definíció: f:[e..u] → H
- ➤ Bemenet: *e,u*: *Egész*
- \triangleright Kimenet: s: H
- \triangleright Előfeltétel: e = e' és u = u'
- \triangleright Utófeltétel: Ef és $s = \sum_{i=e}^{u} f(i)$

 $k\ddot{u}l\ddot{o}nben\ max\acute{e}rt \coloneqq max\acute{e}rt$

 $akkor\ max\'ert := f(i)$

Maximum-kiválasztás Példa

Egy számsorozatban mekkora a legnagyobb eltérés két szomszédos elem között?

Specifikáció:

- ➤ Bemenet: $n: Eg\'{e}sz, x: T\"{o}mb(1..n: Val\'{o}s)$
- ➤ Kimenet: maxkül: Valós
- \triangleright Előfeltétel: n = n' és x = x' és $n \ge 2$
- Utófeltétel: Ef és $(maxk\"ul, maxind) = MAX_{i=1}^{n-1}|x[i+1] x[i]|$ Ef és $(max\'ert, maxind) = Max_{i=0}^{u}f(i)$

	E	f es (maxert,ma	$xina) = Max{i=e}^{a} f(i)$	۱,
Maximu	m-k	xiválasztás		ma
maxért	~	maxkül		i=
eu	~	1n - 1		
f(i)	~	x[i+1] - x[i]		
2022.10.28. 18:45		Horváth - Horváth - S	zlávi - Zsakó: Programozás 7. előadá	

maxkül:=|x[1+1]-x[1]|; maxind:=1

i=1+1..n-1

|x[i+1]-x[i]| > maxkül
| false
| maxkül:=|x[i+1]-x[i]|
| maxind:=i

Maximum-kiválasztás Példa

Egy számsorozatban mekkora a legnagyobb eltérés két szomszédos elem között?

Specifikáció:

- \triangleright Bemenet: $n: Eg\acute{e}sz, x: T\"{o}mb(1..n: Val\acute{o}s)$
- ➤ Kimenet: maxkül: Valós
- \triangleright Előfeltétel: n = n' és x = x' és $n \ge 2$
- \triangleright Utófeltétel: *Ef* és $(maxk\ddot{u}l, maxind) = MAX_{i=1}^{n-1}|x[i+1] x[i]|$ Ef és $(maxért, maxind) = Max_{i=e}^{u} f(i)$

Maximum-kiválasztás				
maxért	~	maxkül		
eu	~	1n - 1		
f(i)	~	x[i+1] - x[i]		

maxért:=f(e);maxind:=e

f(i)>maxért

i=e+1..u

true

maxért:=f(i)

maxind:=i

Feladat: Adott az egész számok egy [e..u] intervalluma, egy f:[e..u]→H függvény és egy T:[e..u]→Logikai feltétel. A H halmaz elemein értelmezett egy teljes rendezési reláció. Határozzuk meg, hogy az [e..u] intervallum T feltételt kielégítő elemei közül az f függvény hol veszi fel a legnagyobb értéket, és mondjuk meg, mekkora ez az érték!

(Lehet, hogy egyáltalán nincs T feltételt kielégítő elem az [e..u]

(Lehet, hogy egyaltalan nincs T feltetelt kielegitő elem az [e..u] intervallumban vagy üres az intervallum.)

- ➤ Definíció: $f:[e..u] \rightarrow H$, $\geq: H \times H \rightarrow Logikai$, $T:[e..u] \rightarrow Logikai$
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: van: Logikai, maxért: H, maxind: Egész
- \triangleright Előfeltétel: e = e' és u = u'
- ➤ Utófeltétel: Ef és $van = \exists i(e \le i \le u): T(i)$ és $van \rightarrow (e \le maxind \le u \text{ és } T(maxind)$ és $\forall i(e \le i \le u): T(i) \rightarrow max\acute{e}rt \ge f(i)$ és $max\acute{e}rt = f(maxind)$
- Másképp: Ef és $(van, maxért, maxind) = Max_{i=e}^{u} f(i)$ T(i)

Algoritmusok korábbról:

Algoritmus:

van:=hamis					
i=eu					
nem T(i)	van és T(i)		nem van és T(i)		
_	f(i)>maxér	t /	van:=igaz		
	maxért:=f(i)	_	maxért:=f(i)		
	maxind:=i		maxind:=i		

Keresés

Feladat: Adott az egész számok egy [e..u] intervalluma és egy T:[e..u]→Logikai feltétel. Határozzunk meg az [e..u] intervallumban egy olyan számot, amely kielégíti a T feltételt!

- ➤ Definíció: $T: [e..u] \rightarrow Logikai$
- ➤ Bemenet: e, u: Egész
- > Kimenet: van: Logikai, ind: Egész
- \triangleright Előfeltétel: e = e' és u = u'
- ► Utófeltétel: *Ef* és $van = \exists i(e \le i \le u)$: T(i) és $van \rightarrow (e \le ind \le u \text{ és } T(ind))$
- \gt Másképp: Ef és $(van, ind) = Keres_{i=e}^{u} T(i)$

Keresés

Algoritmus:

ind:=ind+1

van:=ind≤u

Eldöntés

mint speciális keresés

Az **eldöntés** tétel a keresés része: csupán nem vagyunk kíváncsiak a keresett érték helyére.

- > Definíció: T:[e..u] → Logikai
- ➤ Bemenet: e, u: Egész
- > Kimenet: van: Logikai, ind: Egész
- \triangleright Előfeltétel: e = e' és u = u'
- ➤ Utófeltétel: Ef és $van = \exists i(e \le i \le u)$: T(i) és $van \rightarrow (e \le ind \le u$ és T(ind)
- \gt Másképp: Ef és $(van, \frac{ind}{ind}) = Keres_{i=e}^{u} T(i)$

Optimista keresés

mint speciális keresés

Teljesül-e a T feltétel minden elemre? Ha nem, akkor adj meg egy ilyen elemet!

~ Van-e olyan elem, ami nem T? ...

- > Definíció: T: [e..u] → Logikai
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: mind: Logikai, ind: Egész
- \triangleright Előfeltétel: e = e' és u = u'
- > Utófeltétel: *Ef* és mind = $\forall i (e \le i \le u)$: T(i) és $\neg mind \rightarrow (e \le ind \le u \text{ és } \neg T(ind))$
- > Másképp: Ef és $(mind, ind) = Mind_{i=e}^{u}T(i)$

Kiválasztás

Feladat: Adott egy e egész szám és egy e-től jobbra értelmezett T:Egész→Logikai feltétel. Határozzunk meg az e-től jobbra egy olyan számot, amely kielégíti a T feltételt, ha tudjuk, hogy

ilyen szám biztosan van!

Specifikáció:

- > Definíció: T: Egész → Logikai
- ➤ Bemenet: e: Egész
- > Kimenet: ind: Egész
- \triangleright Előfeltétel: e = e' és $\exists i (i \ge e) : T(i)$
- \triangleright Utófeltétel: *Ef* és $e \le ind$ és T(ind)
- \triangleright Másképp: Ef és ind = Kiválasz $t_{i \ge e}$ T(i)

- > Def: $T: [e_{\cdot \cdot \cdot u}]$ → Logikai
- ightharpoonup Be: $e_{
 ightharpoonup}u$: Egész
- Ki: van: Logikai, ind: Egész
- \triangleright Ef: $e = e' \frac{\acute{e}s u = u'}{}$
- ► Uf: Ef és $van = \exists i(e \le i \le u): T(i)$ és $van \rightarrow (e \le ind \le u e)$ f(ind)

Kiválasztás

Algoritmus:

Másolás

Feladat: Adott az egész számok egy [e..u] intervalluma és egy f:[e..u]→H függvény. Rendeljük az [e..u] intervallum minden értékéhez az f függvény értékét!

Specifikáció:

- ➤ Definíció: $f:[e..u] \rightarrow H$
- ➤ Bemenet: e, u: Egész
- \triangleright Kimenet: $y: T\"{o}mb(1..u e + 1: H)$
- \gt Előfeltétel: e=e' és u=u'
- \gt Utófeltétel: Ef és $\forall i (e \le i \le u) : y_i = f(i)$
- \triangleright Másképp: Ef és y = Máso $l_{i=e}^{u} f(i)$

i=e..u

y[i-e+1]:=f(i)

y:=()

i=e..u

Végére(y,f(i))

Másolás

mint speciális összegzés

Specifikáció:

- ➤ Definíció: $f:[e..u] \rightarrow H$
- ➤ Bemenet: e, u: Egész
- \triangleright Kimenet: $y: T\"{o}mb(1..u e + 1: H)$
- \triangleright Előfeltétel: e = e' és u = u'
- \triangleright Utófeltétel: *Ef* és $y = \bigoplus_{i=e}^{u} [f(i)]$

Összegzés		
S	~	y
Σ	~	\oplus
0	~	()
+	~	\oplus
$s \coloneqq s + f(i)$	~	$y \coloneqq y \oplus [f(i)]$

Specifikáció:

- ➤ Definíció: $f:[e..u] \rightarrow H$
- ➤ Bemenet: e,u:Egész
- \triangleright Kimenet: s: H
- \triangleright Előfeltétel: e = e' és u = u'
- ▶ Utófeltétel: *Ef* és $s = \sum_{i=e}^{u} f(i)$

az összefűzés jeleTömbök összefűzése

s:=0 i=e..u s:=s+f(i)

Kiválogatás

Feladat: Adott az egész számok egy [e..u] intervalluma, egy f:[e..u]→H függvény és egy T:[e..u]→Logikai feltétel. Határozzuk meg az f függvény értékét az [e..u] intervallum azon értékeire, amelyekre a T feltétel teljesül!

Kiválogatás

T(i)

Specifikáció:

- ➤ Definíció: $f:[e..u] \rightarrow H$, $T:[e..u] \rightarrow Logikai$
- ➤ Bemenet: e, u: Egész
- ➤ Kimenet: db: Egész,
 - $y: T\ddot{o}mb(1..db: H)$
- \triangleright Előfeltétel: e = e' és u = u'
- \triangleright Utófeltétel: Ef és $db = \sum_{i=e}^{u} 1$ és

 $ind: T\"{o}mb(1...db: Eg\'{e}sz) \'{e}s ind \subseteq [e...u] \'{e}s$

db:=0

i=e..u

true

db:=db+1

y[db]:=f(i)

 $\forall i (1 \le i \le db) : \left(T(ind[i]) \text{ \'es } y[i] = f(ind[i]) \right)$

 \succ Másképp: Ef és $(db, y) = Kiválogat_{i=e}^{u} f(i)$

false

Kiválogatás mint speciális összegzés

 \bigoplus , \oplus , ()

g(i)

 $s \coloneqq s + f(i) \sim ha T(i) akkor y \coloneqq y \oplus [f(i)]$

külö $nben y := y \oplus []$

Specifikáció:
$$T: [e..u] \rightarrow Logikai, f: [e..u] \rightarrow H,$$

Összegzés

S

 \sum , +, 0 ~

f(i) ~

$$y$$
: $T\ddot{\circ}mb(1..db:I)$

$$\triangleright$$
 Előfeltétel: $e = e'$ és $u = u'$

> Kimenet:
$$db$$
: Eg és z ,
 y : T ö mb (1.. db : Eg és z)
> Előfeltétel: $e = e'$ és $u = u'$

$$g: [e..u] \rightarrow T\"{o}mb, g(i) = \begin{cases} [f(i)] \\ [] \end{cases}$$

s:=0

y:=()

i=e..u

true

 $y:=y \oplus [f(i)]$

i=e..u

s:=s+f(i)

false

T(i)

Specifikáció:

 \triangleright Kimenet: s: H

 \triangleright Előfeltétel: e = e' és u = u'

➤ Definíció: $f:[e..u] \rightarrow H$

➤ Bemenet: e, u: Egész

$$ightharpoonup$$
 Utófeltétel: Ef és $s = \sum_{i=e}^{u} f(i)$

Szétválogatás

Feladat: Adott az egész számok egy [e..u] intervalluma, egy f:[e..u]→H függvény és egy T:[e..u]→Logikai feltétel. Határozzuk meg az f függvény értékét az [e..u] intervallum azon értékeire, amelyekre a T feltétel teljesül, és azokra is, amelyekre nem!

Szétválogatás

Specifikáció:

Definíció: $f:[e..u] \to H$

 $T: [e..u] \rightarrow Logikai$

- > Bemenet: e, u: Egész
- > Kimenet: db: Egész, y: Tömb(1...db: H), z: $T\ddot{o}mb(1..u - e + 1 - db$: H)
- > Előfeltétel: e = e' és u = u'
- > Utófeltétel: $Ef \ \text{\'es} \ db = \sum_{i=e}^{u} 1 \ \text{\'es}$

 $indy: T\"{o}mb(1...db: Eg\'{e}sz) \'{e}s indy \subseteq [e...u] \'{e}s$

indz: $T\ddot{o}mb(1..u - e + 1 - db$: $Eg\acute{e}sz)$ és $indz \subseteq [e..u]$ és

db:=0

i=e..u

true

db:=db+1

y[db]:=f(i)

T(i)

z[i-e+1-db]:=f(i)

 $\forall i (1 \le i \le db): (T(indy[i]) \text{ \'es } y_i = f(indy[i])) \text{ \'es } y_i = f(indy[i])$

 $\forall i (1 \le i \le u - e + 1 - db) : (\neg T(indz[i]) \text{ \'es } z_i = f(indz[i]))$

Másképp: $Ef \text{ \'es } (db, y, z) = Sz\text{\'et}v\text{\'a}logat_{i=e}^{u} f(i)$ false

Szétválogatás mint speciális összegzés

Specifikáció:

Definíció:
$$f:[e..u] \rightarrow H$$
, $T:[e..u] \rightarrow Logikai$, $g:[e..u] \rightarrow (T\"{o}mb, T\"{o}mb)$, $g(i) = \begin{cases} ([f(i)], []) & ha T(i) \\ ([], [f(i)]) & k\"{u}l\"{o}nben \end{cases}$

különben

Előfeltétel:
$$e = e'$$
 és $u = u'$

$$ightharpoonup$$
 Utófeltétel: Ef és $(y,z)=\bigoplus_{i=e}^{u}g(i)$ Összegzés

 $s, \Sigma, +, 0, f(i) \sim$

 $s \coloneqq s + f(i) \sim ha T(i) akkor$

 $y, \bigoplus, \oplus, (), g(i)$

 $y \coloneqq y \oplus [f(i)], z \coloneqq z \oplus []$

 $y \coloneqq y \oplus [\], z \coloneqq z \oplus [f(i)]$

i=e..u

true

 $y:=y \oplus [f(i)]$

z:=z⊕[]

s:=0

i=e..u

T(i)

y:=y⊕[]

 $z:=z\bigoplus[f(i)]$

Specifikáció:

 \triangleright Kimenet: s: H

 \triangleright Előfeltétel: e = e' és u = u'

➤ Definíció: $f:[e..u] \rightarrow H$

➤ Bemenet: *e,u:Egész*

 \triangleright Utófeltétel: *Ef* és $s = \sum_{i=e}^{u} f(i)$

false

Szétválogatás mint speciális összegzés

Specifikáció:

Definíció:
$$f:[e..u] \rightarrow H$$
, $T:[e..u] \rightarrow Logikai$, $g:[e..u] \rightarrow (T\"{o}mb, T\"{o}mb)$, $g(i) = \begin{cases} ([f(i)], []) & ha T(i) \\ ([], [f(i)]) & k\"{u}l\"{o}nben \end{cases}$

> Bemenet:
$$e, u: Eg \acute{e}sz$$

$$y: T\"{o}mb(1..db: H),$$

 $z: T\~{o}mb(1..u - e +$

> Előfeltétel:
$$e = e'$$
 és u

 $s \coloneqq s + f(i) \sim ha T(i) akkor$

Összegzés

 $s, \Sigma, +, 0, f(i) \sim$

$$z$$
: $T\ddot{o}mb(1..u - e)$
ltétel: $e = e'$ és $u = u'$

különben

 \triangleright Előfeltétel: e = e' és u = u'

 $y, \bigoplus, \oplus, (), g(i)$

 $y \coloneqq y \oplus [f(i)], z \coloneqq z \oplus []$

 $y \coloneqq y \oplus [], z \coloneqq z \oplus [f(i)]$

y:=();z:=()

true

 $y:=y \oplus [f(i)]$

i=e..u

s:=s+f(i)

Specifikáció:

 \triangleright Kimenet: s: H

➤ Definíció: $f:[e..u] \rightarrow H$

 \triangleright Előfeltétel: e = e' és u = u'

 \triangleright Utófeltétel: *Ef* és $s = \sum_{i=e}^{u} f(i)$

➤ Bemenet: *e,u:Egész*

T(i)

 $z:=z\bigoplus[f(i)]$

Programozási tételek – visszatekintés

- 1. Összegzés
- 2. Megszámolás
- 3. Maximum-kiválasztás
- 4. Feltételes maximumkeresés
- 5. Keresés
- 6. Kiválasztás
- 7. Másolás
- 8. Kiválogatás
- 9. Szétválogatás

Programozási tételek – visszatekintés

- 1. Összegzés
 - > Feltételes összegzés
 - Megszámolás
 - Másolás
 - Kiválogatás
 - Szétválogatás
- 2. Maximum-kiválasztás
- 3. Feltételes maximumkeresés
- 4. Keresés
- 5. Kiválasztás

