Learning Objectives

- Discriminate between instantaneous and interval mortality rates
- Estimate mortality using different techniques
- Evaluate the advantages and disadvantages of using different estimation techniques
- Describe assumptions associated with mortality estimation techniques
- Describe techniques associated with estimating natural and fishing mortality
- Evaluate the use of age-specific mortality rates
- Evaluate the influence of mortality on fish population dynamics
- Estimate and interpret mortality caps

• If N_t individuals are present in a population at the start of an interval of length t, and N_{t+1} survive at the end of the interval, then $(N_t - N_{t+1})/t$,

• A more useful expression is to express $(N_t - N_{t+1})/t$ as a fraction of N_t

Time

Time

Time

What does instantaneous really mean?

n = 4 intervals

Z/n	Z/n	Z/n	Z/n

n = 1,000 intervals

n = 1,000 intervals

Duplicate 1,000 times, leaving:

```
1,000,000 -> ?
```

Techniques to Estimate Mortality

Given,

• A =
$$n_0$$
 / N
where, n_0 = N =

Age (yrs) 1 2 3 4 5 6 7+ Number 150 352 139 31 16 8 5

A =

Robson and Chapman's Method

```
• S = T/(N + T - 1)
where, N = T = T
```

Robson and Chapman's Method

Age (yrs)	1	2	3	4	5	6	7	8
Number (N_{χ})	150	352	139	31	16	8	3	2
Coded age (x)	-	0	1	2	3	4	5	6

Code ages starting with zero for the youngest age considered fully recruited

$$S = T/(N + T - 1)$$

Robson and Chapman's Method

Age (yrs)	1	2	3	4	5	6	7	8
Number (N_{χ})	150	352	139	31	16	8	3	2
Coded age (x)	-	0	1	2	3	4	5	6

Code ages starting with zero for the youngest age considered fully recruited

• Take the In of $N_{t+1} = N_t e^{-Zt}$

 Use linear regression to estimate the slope parameter (i.e., Z)

General "Rules"

	Year1	Year2	Year3	Year4	Year5	year6	year7	year8
	1000	600	360	216	130	78	47	28
		1000	600	360	216	130	78	47
1,000 recru	uits per yea	ır	1000	600	360	216	130	78
A= 40%				1000	600	360	216	130
					1000	600	360	216
						1000	600	360
							1000	600
	1200 —							1000
	1200							

	1200								
	1000 -	•							
ber	800 -								
Number	600 -		•						
	400 -			•					
	200 -				•	•			
	0 -		ı	Г		T		•	
		0	1	2	3	4	5	6	
				A	ge (y	r)			

Age	number
0	1000
1	600
2	360
3	216
4	130
5	78
6	47
7	28

number	In (number)
1000	6.91
600	6.40
360	5.89
216	5.38
130	4.87
78	4.36
47	3.85
28	3.33
	1000 600 360 216 130 78 47

1999	2000	2001	2002	2003	2004	2005	2006
?	?	?	?	?	?	?	1
	?	?	?	?	?	?	2
		?	?	?	?	?	1
			?	?	?	?	10
				?	?	?	25
					?	?	43
						?	123
							15

1999	2000	2001	2002	2003	2004	2005	2006
?	?	?	?	?	?	?	1
	?	?	?	?	?	?	2
		?	?	?	?	?	1
			?	?	?	?	10
				?	?	?	25 43
					?	?	
						?	123
							15

Age	number	In (number)
0	15	2.71
1	123	4.81
2	43	3.76
3	25	3.22
4	10	2.30
5	1	0.00
6	2	0.69
7	1	0.00

Age	number	In (number)
0	15	2.71
1	123	4.81
2	43	3.76
3	25	3.22
4	10	2.30
5	1	0.00
6	2	0.69
7	1	0.00

Weighted Catch Curve

Age	Number	Ln(Number)	Pred Number	Pred Ln(Number)	Residual
1	123	4.812	121.428	4.799	0.013
2	43	3.761	48.302	3.877	-0.116
3	25	3.219	19.214	2.956	0.263
4	10	2.303	7.643	2.034	0.269
5	1	0	3.04	1.112	-1.112
6	2	0.693	1.209	0.19	0.503
7	1	0	0.481	-0.732	0.732

Weighted Catch Curve

FIGURE 2.—Year-class frequency distribution (top panel) and catch-curve regression (bottom panel) of white bass collected from Claytor Lake by electrofishing in spring 1996. The symbol Z is the instantaneous mortality rate.

Length-Based Models

Length-Based Models

Figure 4. Model length-frequency of a largemouth bass population, assuming average growth, 10,000 age-I recruits each year and 30 or 50% constant annual mortality.

Assumptions

- 1) Constant recruitment within the period covered by the length distribution, or at least recruitment has varied in a random fashion
- 2) Mortality is constant over ages
- 3) Only lengths fully recruited to the gear are included
- 4) Growth is constant and adequately described by the growth model
- 5) Sampling gear adequately represents the standing length distribution
- 6) Recruitment into the smallest length considered for analysis is constant through time each year, so that the shape of length distribution and mean length does not vary seasonally (multiple years can help with this one too)

Estimates from Average Length

Estimates from Average Length

• If K = 0.299 and $L_{\infty} = 189.9$ and

Length group	Number	Mean length	
40	1	41	
50	1	42	42
60	10	62	620
70	13	74	962
80	22	82	1804
90	15	94	1410
100	12	103	1236
110	2	116	232
120	4	121	484
130	9	138	1242
140	8	143	1144
150	6	153	918
160	5	164	820
170	4	171	684
180	1	180	180
	111		11736
			105.7297

$$L_x = 60 \text{ mm}$$

 $L_{\text{mean}} = 105.7 \text{ mm}$

Others

 BAND, BROWNIE, CAPQUOTA, CONTRAST, ESTIMATE, JOLLY, JOLLYAGE, MARK, MULT, POPAN, RELEASE, SURGE, SURPH, SUVIV, TMSURVIV

At least six ways to estimate M, F, or both

 Regression of Z as a function of fishing effort to estimate M

Fishing effort

Drawbacks:

2) Catch-curve analysis to estimate M

3) Mark-recapture to estimate F

4) Direct "census" to estimate F

5) Production modeling to estimate M

6) Meta-analysis to estimate M, F, and Z

Other Techniques Associated with Mortality Estimation

Other Techniques

Age-specific mortality (essentially Heincke's method)

```
Age (yrs) 1 2 3 4 5 6 7+ Number 150 352 139 31 16 8 5
```

$$A_{2-3} = A_{3-4} =$$

Age-Specific Mortality

Fig. 1. Mortality between age-0 to age-1 (0-1), age-1 to age-2 (1-2), age-2 to age-3 (2-3), age-3 to age-4 (3-4), age-4 to age-5 (4-5), and age-5 to age-6 (5-6) for central stonerollers, creek chubs, red shiners, and green sunfish sampled from streams on Fort Riley Military Reservation, Kansas, during June and July, 1997 and 1998. The error bars represent one standard error

Mortality Caps

Remember that:

$$Z = K \frac{L_{\infty} - L_{\text{mean}}}{L_{\text{mean}} - L_{X}}$$

• where, L_x is the length above which all fish are equally vulnerable to capture by the collection gear and L_{mean} is the mean length of fish larger than L_x

Mortality Caps

- Suppose $L_t = 353 \left[1 \mathrm{e}^{-0.374(t-1.210)}\right]$; regulated with a 200-mm minimum length limit; management objective is for fish in the angler's creel to average \geq 250 mm (modified from Miranda 2002)
- Parameters:

```
- K = 0.374
```

$$L_{\infty} = 353 \text{ mm}$$

$$- L_x = 200 \text{ mm}$$

$$L_{\text{mean}} = 250 \text{ mm}$$

$$Z =$$

L_{mean} (mm) 2.6 L_x = 150 1.8 200 225 250 275 300 $L_x = 200$ 2.6 225 2.2 1.8 -250 275 300 0.6 325 350 $L_x = 250$ 500 400 450 350 $L_{\infty}(mm)$

Mortality Caps

FIGURE 2.—Isopleths for approximating crappie mortality caps (Z) given a growth pattern (L_{∞}) and a threshold mean length objective ($L_{\rm mean}$; isopleths). Values were derived with equation (12). The isopleths indicate, for instance, that if the objective is an average fish size of 250 mm or more and L_{∞} is 450 mm and L_{χ} (e.g., a minimum length limit) is 200 mm, then instantaneous mortality Z must not exceed about 0.9 (A=0.59 interval rate).

Figure 4.—Estimated mortality caps for eight Kansas reservoirs based on model 1 described by Miranda (2002). Overall mortality cap estimates (solid symbols) and year-specific mortality cap estimates (bars indicate maximum and minimum estimates) were calculated based on the theoretical maximum length ($L_{\rm inf}$) and the growth coefficient (K). Mortality caps were estimated for a mean length objective ($L_{\rm mean}$) equal to the current mean length of harvested walleyes (asterisks) and for $L_{\rm mean}$ values of 500, 550, and 600 mm. The minimum length available for harvest ($L_{\rm c}$) was set at 457 mm for Cedar Bluff, Cheney, Lovewell, and Marion reservoirs to represent current harvest regulations. The mortality cap for the current mean length of harvested walleyes in Lovewell Reservoir was not plotted because the current mean was lower than the minimum length limit. For Glen Elder, Kirwin, Webster, and Wilson reservoirs, mortality caps were estimated based on $L_{\rm x}$ values of 381 mm (diamonds; current regulations) and 457 mm (circles) (the two estimates at each $L_{\rm mean}$ are offset to prevent overlap and to aid interpretation). The horizontal lines represent empirical estimates of total annual mortality for each reservoir.

Mortality Caps

Additive versus Compensatory Mortality

- Additive—
- Compensatory—

Relationships Between Parameters

$$Z = F + M$$

• Interval (annual): A = u + v

$$A = u + v$$

$$S = 1 - A = e^{-Z}$$

 $m = 1 - e^{-F}$
 $n = 1 - e^{-M}$

$$F = uZ/A$$

$$M = \nu Z / A$$

$$\frac{Z}{A} = \frac{F}{u} = \frac{M}{v}$$

$$m + n - nm = A$$

Relationships Between Parameters

Mortality rates

Total

Fishing

Natural

Interval $\mathbf{A} = u + v = 1 - e^{-Z}$

 $\boldsymbol{u} = FA/Z = \nu F/M \quad \boldsymbol{v} = MZ/Z = \nu M/F$

Instantaneous Z = F+M=-ln(1-A)

 $\mathbf{F} = u\mathbf{Z}/\mathbf{A} = u\mathbf{m}/v$ $\mathbf{M} = v\mathbf{Z}/\mathbf{Z} = v\mathbf{F}/u$

Conditional

A = m+n-mn

 $m = 1 - e^{-F}$ $n = 1 - e^{-M}$