CS 314 Principles of Programming Languages

Lecture 7: LL(1) Parsing

Prof. Zheng Zhang

Class Information

- Homework 1 and 2 are being graded.
- Homework 3 will be posted by the end of today.

Review: Top-Down Parsing - LL(1)

Basic Idea:

- The parse tree is constructed from the root, expanding non-terminal nodes on the tree's frontier following a **leftmost** derivation.
- The input program is read from **left** to right, and input tokens are read (consumed) as the program is parsed.
- The next non-terminal symbol is replaced using one of its rules. The particular choice <u>has to be unique</u> and uses parts of the input (partially parsed program), for instance the first token of the remaining input.

Review: Predictive Parsing

Basic idea:

For any two productions $A := \alpha$ and $A := \beta$, we would like a distinct way of choosing the correct production to expand.

```
id_list ::= id id_list_tail
id_list_tail ::= , id id_list_tail
id_list_tail ::= ;
```


Remaining Input: , B , C ;

Applied Production:

```
id_list ::= id id_list_tail
id_list_tail ::= , id id_list_tail
id_list_tail ::= ;
```


Mismatch!

Remaining Input: ,B,C;

Applied Production: id_list_tail::=;

```
id_list ::= id id_list_tail
id_list_tail ::= , id id_list_tail
id_list_tail ::= ;
```


Remaining Input: , B , C ;

Applied Production:

```
id_list ::= id id_list_tail
id_list_tail ::= , id id_list_tail
id_list_tail ::= ;
```


Remaining Input: , B , C ;

Applied Production: id_list_tail ::= , id id_list_tail

```
id_list ::= id id_list_tail
id_list_tail ::= , id id_list_tail
id_list_tail ::= ;
```


Applied Production: id_list_tail ::= , id id_list_tail

Review: First Set

For some string α , define **FIRST**(α) as the set of tokens that appear as the first symbol in some string derived from α .

That is

 $x \in FIRST(\alpha)$ iff $\alpha \Rightarrow * x\gamma$ for some string γ

Review: Predictive Parsing

Key Property:

Whenever two productions $A := \alpha$ and $A := \beta$ both appear in the grammar, we would like

• $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$

```
id_list ::= id id_list_tail
id_list_tail ::= , id id_list_tail
id_list_tail ::= ;
```

Remaining Input: , B , C ;

$$FIRST($$
, id id_list_tail $\cap FIRST($; $) = \emptyset$

Given id_list_tail as the first **non-terminal** to expand in the tree:

If the first token of remaining input is, we choose the rue id_list_tail ::=, id id_list_tail

If the first token of remaining input is; we choose the rule id list tail ::=;

$$S := a S b | \varepsilon$$

Remaining Input:

(b) b

Applied Production:

$$S := a S b | \varepsilon$$

Remaining Input: b b b

Applied Production:

$$S := a S b$$

Mismatch!

It only means S := aSb is not the right production rule to use!

$$S := a S b | \varepsilon$$

Remaining Input: b b b

Applied Production:

$$S := a S b | \varepsilon$$

Remaining Input: b b b

Applied Production:

 $S := \varepsilon$

 $S := \varepsilon$ turns out to be the right rule later.

However, at this point, ε does not match "b" either!

Review: Follow Set

For a non-terminal A, define **FOLLOW**(A) as the set of terminals that can appear immediately to the right of A in some sentential form.

Thus, a non-terminal's **FOLLOW** set specifies the tokens that can legally appear after it. A terminal symbol has no **FOLLOW** set.

FIRST and FOLLOW sets can be constructed automatically

Review: Predictive Parsing

Key Property:

Whenever two productions $A := \alpha$ and $A := \beta$ both appear in the grammar, we would like

- $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$, and
- if $\alpha \Rightarrow * \epsilon$, then $FIRST(\beta) \cap FOLLOW(A) = \emptyset$

Analogue case for $\beta \Rightarrow * \epsilon$.

Note: due to first condition, at most one of α and β can derive ϵ .

This would allow the parser to make a correct choice with a lookahead of only one symbol!

Review: LL(1) Grammar

Define $PREDICT(A := \delta)$ for rule $A := \delta$

- $FIRST(\delta)$ { ε } U Follow (A), if $\varepsilon \in FIRST(\delta)$
- $FIRST(\delta)$ otherwise

A Grammar is LL(1) iff

 $(A := \alpha \text{ and } A := \beta) \text{ implies}$

PREDICT(A ::=
$$\alpha$$
) \cap PREDICT(A ::= β) = \emptyset

Table Driven LL(1) Parsing

Example:

Predict Sets

$$S := a S b | \varepsilon$$

$$PREDICT(S := aSb) = \{a\}$$

$$PREDICT(S := aSb) = \{a\}$$

 $PREDICT(S := \epsilon) = \{b, eof\}$

LL(1) parse table

	a	b	eof	other
S	S := aSb	S ::= ε	S ::= ε	error

Table Driven LL(1) Parsing

Example:

Predict Sets

$$S := a S b | \varepsilon$$

$$PREDICT(S := aSb) = \{a\}$$

$$PREDICT(S := aSb) = \{a\}$$

 $PREDICT(S := \epsilon) = \{b, eof\}$

LL(1) parse table

	a	b	eof	other
S	S := aSb	S ::= ε	S ::= ε	error

Review: Table Driven LL(1) Parsing

```
Input: a string w and a parsing table M for G
     push eof
     push Start Symbol
     token \leftarrow next \ token()
     X \leftarrow \text{top-of-stack}
                                                                   b
                                                                                     other
                                                                           eof
     repeat
                                                        a
                                               S \mid S ::= aSb \mid S ::= \epsilon \mid S ::= \epsilon
         if X is a terminal then
                                                                                     error
           if X == token then
              pop X
              token \leftarrow next \ token()
                                                        M is the parse table
           else error()
          else /* X is a non-terminal */
               if M[X, token] == X \rightarrow Y_1Y_2 \dots Y_k then
                   pop X
                   push Y_k, Y_{k-1}, \ldots, Y_1
                else error()
           X \leftarrow \text{top-of-stack}
     until X = EOF
     if token != EOF then error()
```

Predictive Parsing

Now, a predictive parser looks like:

Rather than writing code, we build tables.

Predictive Parsing

Now, a predictive parser looks like:

Rather than writing code, we build tables. Building tables can be automated!

Predictive Parsing

So far:

- Introduced FIRST, FOLLOW, and PREDICT sets
- Introduced LL(1) condition:
 - A grammar G can be parsed predictively with one symbol of lookahead if for all pairs of productions $A := \alpha$ and $A := \beta$ that satisfy: $PREDICT(A := \alpha) \cap PREDICT(A := \beta) = \emptyset$
- Introduced a recursive descent parser for an LL(1) grammar

How to automatically construct *FIRST* and *FOLLOW* sets?

FIRST and FOLLOW Sets

FIRST(α):

For some $\alpha \in (T \cup NT \cup EOF \cup \epsilon)^*$, define **FIRST** (α) as the set of tokens that appear as the first symbol in some string that derives from α .

That is, $\mathbf{x} \in \text{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \mathbf{x} \gamma$ for some γ

FIRST set is defined over the strings of grammar symbols $(T \cup NT \cup EOF \cup \epsilon)^*$

T: terminals NT: non-terminals

For a production $A \rightarrow B_1B_2 \dots B_k$:

- FIRST(A) includes FIRST(B_1) ε
- FIRST(A) includes FIRST(B_2) ε if B_1 can be rewritten as ε
- FIRST(A) includes FIRST(B_3) ε if both B_1 and B_2 can derive ε
- •
- FIRST(A) includes FIRST(B_m) ε if $B_1B_2...B_{m-1}$ can derive ε

FIRST(A) includes FIRST(B_1) ... FIRST(B_m) not including ε iff $\varepsilon \in FIRST(B_1)$, FIRST(B_2), FIRST(B_3), ..., FIRST(B_{m-1})

FIRST(A) includes ε iff $\varepsilon \in FIRST(B_1)$, $FIRST(B_2)$, $FIRST(B_3)$, ..., $FIRST(B_k)$

First Set Construction

Build FIRST(X) for all grammar symbols X:

- For each X as a terminal, then FIRST(X) is {X}
- If $X := \varepsilon$, then $\varepsilon \in FIRST(X)$
- 1. For each X as a non-terminal, initialize FIRST(X) to \emptyset
 - 2. Iterate until no more terminals or ε can be added to any FIRST(X): For each rule in the grammar of the form $X := Y_1 Y_2 ... Y_k$

add a to FIRST(X) if $a \in FIRST(Y_1)$

add a to FIRST(X) if $a \in FIRST(Y_i)$ and $\epsilon \in FIRST(Y_j)$

for all $1 \le j \le i-1$ and $i \ge 2$

add ε to FIRST(X) if $\varepsilon \in \text{FIRST}(Y_i)$ for all $1 \le i \le k$

End iterate

Filling in the Details: Computing FIRST sets

```
for each x \in (T \cup EOF \cup \varepsilon)

FIRST(x) \leftarrow \{x\}

for each A \in NT, FIRST(A) \leftarrow \emptyset
```

Initially, set *FIRST* for each terminal symbol, EOF and ε

```
while (FIRST sets are still changing) do
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
     temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
            i \leftarrow 1
            while ( i \le k-1 and \varepsilon \in FIRST(Y_i) )
                temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
               i \leftarrow i + 1
            end // while loop
            if i == k and \varepsilon \in FIRST(Y_k)
            then temp \leftarrow temp \cup { \varepsilon }
            FIRST(X) \leftarrow FIRST(X) \cup temp
         end // if - then
     end // for loop
end // while loop
```

Filling in the Details: Computing FIRST sets

```
for each x \in (T \cup EOF \cup \varepsilon)
    FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
      temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
            i \leftarrow 1
             while ( i \le k-1 and \varepsilon \in FIRST(Y_i) )
                temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
                i \leftarrow i + 1
             end // while loop
            if i == k and \varepsilon \in FIRST(Y_k)
                  then temp \leftarrow temp \cup { \varepsilon }
            FIRST(X) \leftarrow FIRST(X) \cup temp
         end // if - then
      end // for loop
end // while loop
```

ε complicates matters

If $FIRST(Y_1)$ contains ε , then we need to add $FIRST(Y_2)$ to rhs, and ...

Filling in the Details: Computing FIRST sets

```
ε complicates matters
for each x \in (T \cup EOF \cup \varepsilon)
    FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
      temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
            i \leftarrow 1
             while ( i \le k-1 and \varepsilon \in FIRST(Y_i) )
                temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
                i \leftarrow i + 1
             end // while loop
            if i == k and \epsilon \in FIRST(Y_k)
                                                                              If the entire rhs can go to \varepsilon,
                  then temp \leftarrow temp \cup { \epsilon }
                                                                              then we add \varepsilon to FIRST(lhs)
             \overline{\textit{FIRST}(X)} \leftarrow \textit{FIRST}(X) \cup \text{temp}
         end // if - then
      end // for loop
end // while loop
```

```
for each x \in (T \cup EOF \cup \varepsilon)
    FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
     temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
            i \leftarrow 1
            while ( i \le k-1 and \epsilon \in FIRST(Y_i) )
                temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
               i \leftarrow i + 1
            end // while loop
            if i == k and \varepsilon \in FIRST(Y_k)
                                                                               Outer loop is monotone
                 then temp \leftarrow temp \cup { \varepsilon }
                                                                               increasing for FIRST sets
            FIRST(X) \leftarrow FIRST(X) \cup temp
                                                                               \Rightarrow | T \cup NT \cup EOF \cup \epsilon | is
         end // if - then
                                                                               bounded, so it terminates
     end // for loop
end // while loop
```

Example

Consider the SheepNoise grammar and its *FIRST* sets

Goal ::= SheepNoise

SheepNoise ::= SheepNoise baa |

baa

baa is a terminal symbol

Clearly, $FIRST(x) = \{baa\}, \forall x \in (T \cup NT)$

Symbol	FIRST Set	
Goal	baa	
SheepNoise	baa	
baa	baa	

```
for each x \in (T \cup EOF \cup \varepsilon)

FIRST(x) \leftarrow \{x\}

for each A \in NT, FIRST(A) \leftarrow \emptyset
```

```
while (FIRST sets are still changing) do
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
      temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
            i \leftarrow 1
            while ( i \le k-1 and \varepsilon \in FIRST(Y_i) )
                temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
                i \leftarrow i + 1
             end // while loop
            if i == k and \varepsilon \in FIRST(Y_k)
                 then temp \leftarrow temp \cup { \varepsilon }
            FIRST(X) \leftarrow FIRST(X) \cup temp
         end // if - then
      end // for loop
end // while loop
```

Initialization assigns each *FIRST* set a value

Symbol	FIRST Set
Goal	
SheepNoise	
baa	

```
for each x \in (T \cup EOF \cup \varepsilon)
    FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
while (FIRST sets are still changing) do
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
      temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
            i \leftarrow 1
             while ( i \le k-1 and \varepsilon \in FIRST(Y_i) )
                temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
                i \leftarrow i + 1
             end // while loop
            if i == k and \varepsilon \in FIRST(Y_k)
                  then temp \leftarrow temp \cup { \varepsilon }
            FIRST(X) \leftarrow FIRST(X) \cup temp
         end // if - then
      end // for loop
end // while loop
```

Goal ::= SheepNoise
SheepNoise ::= SheepNoise baa
SheepNoise ::= baa

3

If we visit the rule in the order 3, 2, 1

Symbol	FIRST Set
Goal	Ø
SheepNoise	
baa	{baa}

```
for each x \in (T \cup EOF \cup \varepsilon)
    FIRST(x) \leftarrow \{x\}
for each A \in NT, FIRST(A) \leftarrow \emptyset
                                                                         Goal
                                                                                        ::= SheepNoise
while (FIRST sets are still changing) do
                                                                         SheepNoise ::= SheepNoise baa
     for each p \in P, of the form X \to Y_1 Y_2 ... Y_k do
     temp \leftarrow FIRST(Y_1) - \{ \epsilon \}
                                                                     3
                                                                         SheepNoise ::= baa
           i \leftarrow 1
           while ( i \le k-1 and \varepsilon \in FIRST(Y_i) )
                                                                               If we visit the rule
               temp \leftarrow temp \cup (FIRST(Y<sub>i+1</sub>) - { \varepsilon })
                                                                               in the order 3, 2, 1
              i \leftarrow i + 1
            end // while loop
           if i == k and \varepsilon \in FIRST(Y_k)
                then temp \leftarrow temp \cup \{ \epsilon \}
                                                                                Symbol
                                                                                                 FIRST Set
           FIRST(X) \leftarrow FIRST(X) \cup temp
                                                                                  Goal
        end // if - then
                                                                             SheepNoise
                                                                                                     {baa}
     end // for loop
end // while loop
                                                                                   baa
                                                                                                     {baa}
```

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where <u>LP</u> is (and <u>RP</u> is)

Symbol	Initial	1 st	2 nd
Goal	Ø		
List	Ø		
Pair	Ø		
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where <u>LP</u> is (and <u>RP</u> is)

Symbol	Initial	1 st	2 nd
Goal	Ø		
List	Ø		
Pair	Ø	<u>LP</u>	i
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where \underline{LP} is (and \underline{RP} is)

Symbol	Initial	1 st	2 nd
Goal	Ø		
List	Ø		
Pair	Ø	<u>LP</u>	i
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where <u>LP</u> is (and <u>RP</u> is)

Symbol	Initial	1 st	2 nd
Goal	Ø		!
List	Ø	<u>LP</u> , ε	
Pair	Ø	<u>LP</u>	į
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where <u>LP</u> is (and <u>RP</u> is)

Symbol	Initial	1st	2 nd
Goal	Ø		!
List	Ø	<u>LP</u> , ε	
Pair	Ø	<u>LP</u>	į
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where <u>LP</u> is (and <u>RP</u> is)

Symbol	Initial	1 st	2 nd
Goal	Ø	<u>LP</u> , ε	
List	Ø	<u>LP</u> , ε	
Pair	Ø	<u>LP</u>	i
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where \underline{LP} is (and \underline{RP} is)

Symbol	Initial	1 st	2 nd
Goal	Ø	<u>LP</u> , ε	
List	Ø	<u>LP</u> , ε	
Pair	Ø	<u>LP</u>	<u>LP</u>
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where \underline{LP} is (and \underline{RP} is)

Symbol	Initial	1 st	2 nd
Goal	Ø	<u>LP</u> , ε	
List	Ø	<u>LP</u> , ε	<u>LP</u> , ε
Pair	Ø	<u>LP</u>	<u>LP</u>
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Where <u>LP</u> is (and <u>RP</u> is)

Symbol	Initial	1 st	2 nd
Goal	Ø	<u>LP</u> , ε	<u>LP</u> , ε
List	Ø	<u>LP</u> , ε	<u>LP</u> , ε
Pair	Ø	<u>LP</u>	<u>LP</u>
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

- Iteration 1 adds LP to
 FIRST(Pair) and LP, ε to
 FIRST(List) and
 FIRST(Goal)
 ⇒ If we take them in rule
 order 4, 3, 2, 1
- Algorithm reaches fixed point at Iteration 2

Symbol	Initial	1 st	2 nd
Goal	Ø	<u>LP</u> , ε	<u>LP</u> , ε
List	Ø	<u>LP</u> , ε	<u>LP</u> , ε
Pair	Ø	<u>LP</u>	<u>LP</u>
LP	<u>LP</u>	<u>LP</u>	<u>LP</u>
RP	<u>RP</u>	<u>RP</u>	<u>RP</u>
EOF	EOF	EOF	EOF

FOLLOW Sets

FOLLOW(A):

For $A \in \mathbf{NT}$, define $\mathbf{FOLLOW}(A)$ as the set of tokens that can occur immediately after A in a valid sentential form.

FOLLOW set is defined over the set of non-terminal symbols, **NT**.

Follow Set Construction

To Build FOLLOW(X) for non-terminal X:

- Place EOF in FOLLOW(<start>)
- 1. For each X as a non-terminal, initialize FOLLOW(X) to \emptyset
 - 2. *Iterate until* no more terminals can be added to any FOLLOW(X):

```
For each rule p in the grammar

If p is of the form A := \alpha B\beta, then

if \epsilon \in FIRST(\beta)

Place \{FIRST(\beta) - \epsilon, FOLLOW(A)\} in FOLLOW(B)

else

Place \{FIRST(\beta)\} in FOLLOW(B)

If p is of the form A := \alpha B, then

Place FOLLOW(A) in FOLLOW(B)
```

End iterate

Computing FOLLOW Sets

```
for each A \in NT
    FOLLOW(A) \leftarrow \emptyset
FOLLOW(S) \leftarrow \{ EOF \}
while (FOLLOW sets are still changing) do
                                                                          Don't add ε
    for each p \in P, of the form A \to B_1B_2...B_k do
        TRAILER \leftarrow FOLLOW(A)
        for i \leftarrow k down to 1
           if B_i \in NT then
                                                    // domain checking
              FOLLOW(B_i) \leftarrow FOLLOW(B_i) \cup TRAILER
                                     // add right context
               if \varepsilon \in FIRST(B_i)
                  TRAILER \leftarrow TRAILER \cup (FIRST(B<sub>i</sub>) - { \varepsilon })
               else TRAILER \leftarrow FIRST(B<sub>i</sub>) // no \varepsilon => truncate the right context
            else TRAILER \leftarrow \{ B_i \}  // B_i \in T \Rightarrow only 1 symbol
```

To build *FOLLOW* sets, we need *FIRST* sets

Computing FOLLOW Sets

For a production $A \rightarrow B_1B_2 \dots B_k$:

- It works its way backward through the production: $B_k, B_{k-1}, \dots B_1$
- It builds the FOLLOW sets for the rhs symbols, $B_1, B_2, ... B_k$, not A
- In the absence of ε , $FOLLOW(B_i)$ is just $FIRST(B_{i+1})$
 - As always, ε makes the algorithm more complex

To handle ε , the algorithm keeps track of the first word in the trailing right context as it works its way back through rhs: B_k , B_{k-1} , ... B_1

Computing FOLLOW Sets

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List
2	List ::= Pair List
3	3
4	$Pair ::= \underline{LP} List \underline{RP}$

Symbol	Initial
Goal	EOF
List	Ø
Pair	Ø

Initial Values:

- Goal, List and Pair are set to Ø
- Goal is then set to { **EOF** }

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List ε Pair ::= <u>LP</u> List <u>RP</u>
2	List ::= Pair List
3	3
4	$Pair := \underline{LP} List \underline{RP}$

Symbol	Initial	1st
Goal	EOF	
List	Ø	
Pair	Ø	

Iteration 1:

If we visit the rules in order 1, 2, 3, 4

Assume FIRST Sets are obtained using the algorithm we discussed in previous slides.

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List
2	List ::= Pair List
3	
4	$Pair ::= \underline{LP} List \underline{RP}$

Symbol	Initial	1 st
Goal	EOF	EOF
List	Ø	EOF
Pair	Ø	

Iteration 1:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

```
1 Goal ::= List
2 List ::= Pair List
3 | ε
4 Pair ::= <u>LP</u> List <u>RP</u>
```

Symbol	Initial	1 st
Goal	EOF	EOF
List	Ø	EOF
Pair	Ø	EOF, LP

Iteration 1:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List
2	List ::= Pair List
3	3
4	Pair ::= \underline{LP} List \underline{RP}

Symbol	Initial	1 st
Goal	EOF	EOF
List	Ø	EOF, RP
Pair	Ø	EOF, LP

Iteration 1:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List ε Pair ::= <u>LP</u> List <u>RP</u>
2	List ::= Pair List
3	3
4	$Pair ::= \underline{LP} List \underline{RP}$

Symbol	Initial	1 st
Goal	EOF	EOF
List	Ø	EOF, RP
Pair	Ø	EOF, LP

Iteration 1:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1	Goal ::= List
2	List ::= Pair List
3	3
4	Goal ::= List List ::= Pair List ε Pair ::= <u>LP</u> List <u>RP</u>

Symbol	Initial	1 st	2 nd
Goal	EOF	EOF	
List	Ø	EOF, RP	
Pair	Ø	EOF, LP	

Iteration 2:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List
2	List ::= Pair List
3	3
4	$Pair ::= \underline{LP} List \underline{RP}$

Symbol	Initial	1 st	2 nd
Goal	EOF	EOF	EOF
List	Ø	EOF, RP	EOF, RP
Pair	Ø	EOF, LP	

Iteration 2:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1	Goal ::= List List ::= Pair List
2	List ::= Pair List
3	
4	$Pair ::= \underline{LP} List \underline{RP}$

Symbol	Initial	1 st	2 nd
Goal	EOF	EOF	EOF
List	Ø	EOF, RP	EOF, RP
Pair	Ø	EOF, LP	EOF , RP, LP

Iteration 2:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1 | Goal ::= List 2 | List ::= Pair List 3 | ε 4 | Pair ::= <u>LP</u> List <u>RP</u>

Symbol	Initial	1 st	2 nd
Goal	EOF	EOF	EOF
List	Ø	EOF, RP	EOF , RP
Pair	Ø	EOF , LP	EOF , RP, LP

Iteration 2:

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Consider the simplest parentheses grammar

1 Goal ::= List	Symbol	Initial	1 st	2 nd
2 List ::= Pair List ε	Goal	EOF	EOF	EOF
4 Pair ::= \underline{LP} List \underline{RP}	List	Ø	EOF , RP	EOF, RP
Iteration 2:	Pair	Ø	EOF, LP	EOF , RP, LP

- Production 1 adds nothing new
- Production 2 adds RP to *FOLLOW*(Pair)

from FOLLOW(List), $\varepsilon \in FIRST(List)$

- Production 3 does nothing
- Production 4 adds nothing new

Symbol	FIRST Set
Goal	<u>LP</u> , ε
List	<u>LP</u> , ε
Pair	<u>LP</u>
LP	<u>LP</u>
RP	<u>RP</u>
EOF	EOF

Iteration 3 produces the same result \Rightarrow reached a fixed point (omitted in the table)

Next Lecture

Things to do:

• Read Scott, Chapter 2.1 - 2.3.3; ALSU 2.4