

Continuous Assessment Test - II

Programme Name & Branch: B. Tech, ECE

Course Name & Code: Analog Electronic Circuits-ECE 2002

Semester: Fall-2019-20

Slot: D1

Exam Duration: 90 Min

Maximum Marks: 50

General instruction(s):

Assume constants whenever it is needed

-	Answer ALL questions	
S No	Question	Mar
S.No. 1.	Consider the amplifier in Fig. 1. The MOSFET is biased at I_0 = 1.06 mA and g_m = 0.725 mA/V and r_0 = 47k Ω . The mid band analysis showed that V_0/V_1 = -4.4V/V and R_{in} = 2.33 M Ω . Select the appropriate values for the two capacitors so that the low frequency response is dominated by a pole at 100Hz with the other pole at least a decade lower. Neglect R_0 while calculating C_{C2} .	10
	+15 V	
	4	
	₹ R _D	
	Rg 11	
	-W+ - 0 V.	
	Co. 10 MO. 11	
	\$ 10 10	
	V (-) = =	
	= Rin	
	Fig.1	-
2.	In a MOSFET amplifier, $R_{sig} = 100 \text{ K}\Omega$, $R_G = 100 \text{ K}\Omega$, $C_{gs} = 1 \text{ pF}$, $C_{gd} = 0.2 \text{ pF}$, $g_m = 3 \text{ mA/V}$, $r_o = 50 \text{ K}\Omega$, $R_D = 8 \text{ K}\Omega$, and $R_L = 10 \text{ K}\Omega$. Determine the expected 3-dB cutoff frequency f_H and the midband gain. If it is possible to replace the MOSFET with another having the same C_{gs} but a smaller C_{gd} , what is the maximum value that its C_{gd} can be in order to obtain an f_H of atleast 1 MHz.	10
/	Calculate the input power, output power and efficiency for the circuit of	10
	Fig. 2. The input results in a base current of 6 mA rms. find the input power dissipated by the circuit, if R_B is changed to 1.5k Ω . What maximum output power can be delivered by the circuit of Fig. 2 if R_B is changed to 1.5 k?	

SPARCH VIT QUESTION PAPERS ON TELEGRAM TO JOIN

