1. P -> ~Q

Р	Q	~Q	P->~Q
Т	Т	F	F
Т	F	Т	Т
F	Т	F	Т
F	F	Т	Т

Q -> ~P

Р	Q	~P	Q->~P
Т	Т	F	F
Т	F	F	Т
F	Т	Т	Т
F	F	Т	Т

P->~Q and Q->~P have the same values in the last column of their tables so they are equivalent.

P⇔~Q

Р	Q	~Q	P⇔~Q
Т	Т	F	F
Т	F	Т	Т
F	Т	F	Т
F	F	Т	F

 $((P^{\sim}Q)v(\sim P^{\sim}Q))$

Р	Q	~P	~Q	P^~Q	~P^Q	(P^~Q)v(~P^Q)
Т	Т	F	F	F	F	F
Т	F	F	Т	Т	F	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	F	F

 $P \Leftrightarrow \sim Q$ and $((P^{\sim}Q)v(\sim P^{\sim}Q))$ have the same values in the last column of their tables so they are equivalent.

2. (Smoke -> Fire) -> (~Smoke -> ~Fire)

Smoke	Fire	~Smoke	~Fire	(Smoke -> Fire)	(~Smoke -> ~Fire)	(S->F)->(~S->~F)
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	F	Т	Т
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т

It is **neither** because not all paths lead to T, which makes it not valid, but there are instances where the statement is T, so it is satisfiable.

(Smoke -> Fire) -> ((Smoke v Heat) -> Fire)

S	F	Н	(S -> F)	(S v H)	(S v H) -> F	(S -> F) -> ((S v H) -> F)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	F	Т	F	Т
Т	F	F	F	Т	F	Т

F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	Т
F	F	Т	Т	Т	F	F
F	F	F	Т	F	Т	Т

It is **neither** because not all paths lead to T, which makes it not valid, but there are instances where the statement is T, so it is satisfiable.

((Smoke ^ Heat) -> Fire) ⇔ ((Smoke -> Fire) v (Heat -> Fire))

S	F	Н	(S ^ H)	(S ^ H) -> F	(S -> F)	(H -> F)
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т	Т
Т	F	Т	Т	F	F	F
Т	F	F	F	Т	F	Т
F	Т	Т	F	Т	Т	Т
F	Т	F	F	Т	Т	Т
F	F	Т	F	Т	Т	F
F	F	F	F	Т	Т	Т

(S -> F) v (H -> F)	((S ^ H) -> F)⇔ ((S -> F) v (H -> F))
Т	Т
Т	Т
F	Т
Т	Т
Т	Т
Т	Т
Т	Т

I -	
1 1	
1 -	
I	

It is **valid** because it is a tautology. All of the values are true.

3.

```
Legend: My -> mythical
Mo -> mortal
Ma -> mammal
H -> horned
Mg -> magical
```

- a) My -> ~Mo ~My -> (Mo ^ Ma) (~Mo v Ma) -> H H -> Mg
- b) 1. My -> \sim Mo \rightarrow \sim My v \sim Mo 2. \sim My -> (Mo ^ Ma) \rightarrow My v (Mo ^ Ma) \rightarrow (My v Mo) ^ (My v Ma) 3. (\sim Mo v Ma) -> H \rightarrow \sim (\sim Mo v Ma) v H \rightarrow (Mo ^ \sim Ma) v H \rightarrow (Mo v H) ^ (\sim Ma v H) 4. H -> Mg \rightarrow \sim H v Mg

c) Proof unicorn is mythical/magical/horned

5. (My v Mo)	Extracted from 2
6. (My v Ma)	Extracted from 2
7. (Mo v H)	Extracted from 3
8. (~Ma v H)	Extracted from 3
9. ~Ma v Mg	Resolve 4 and 8
10. ~Mo v Mg	Resolve 4 and 7
11. My v Mg	Resolve 5 and 10
12. My v H	Resolve 6 and 8
13. Ma v ∼Mo	Resolve 1 and 6
14. ~My v H	Resolve 1 and 7
15. H	Resolve 12 and 14
16. Mg	Resolve 4 and 15

Shown above, I have concluded that the unicorn is horned and magical. To prove/disprove whether the unicorn is mythical, I will use proof by contradiction.

Proof by contradiction

17. ∼My	Assumption
18. Mo	Resolve 5 and 17
19. Ma	Resolve 6 and 17

20. Mg	Resolve 10 and 18
21. H	Resolve 8 and 19
22. ~My	Resolve 1 and 18

I could not find any contradictions, so nothing can be concluded about whether the unicorn is mythical or not.