

Advanced Machine Learning Generative Model

Yu Wang
Assistant Professor
Department of Computer Science
University of Oregon

Summary

1D Gaussian Distribution

2D Gaussian Distribution

 \mathbb{R}

 $\mathbb{R}^{256 \times 256}$

Summary

Probability distribution of the objective based on the observed data

• Machine Learning Methods

- $\{x_i\}_{i=1}^N \xrightarrow{\text{Good Model}} P(x) \xrightarrow{\text{Good Data}} x$
- o Gaussian Kernel Density Estimation
- Gaussian Mixture Models

Using existing function to estimate what you do not know that can best fit your observation

Deep Learning Methods

- Auto-Encoder (AE)
- o Variational AE (LLM is actually a VAE)
- Generative Adversarial Network
- Diffusion Model

Using learnable function to estimate what you do not know that can best fit your observation

Problem?

Using existing function to estimate what you do not know that can best fit your observation

What you have is some low-dimensional data But what you want to model is some high-dimensional data, how it could be?

Problem?

What we want: model any data distribution

How to transform any data distribution to low dimensional data?

What we have: kernel density estimation to estimate low dimensional PDF

Summary

Probability distribution of the objective based on the observed data

Machine Learning Methods

- $\{x_i\}_{i=1}^N \xrightarrow{\text{Good Model}} P(x) \xrightarrow{\text{Good Data}} x$
- o Gaussian Kernel Density Estimation
- Gaussian Mixture Models

PCA Dimensional Reduction

Using existing function to estimate what you do not know that can best fit your observation

Deep Learning Methods

- o Auto-Encoder (AE)
- o Variational AE (LLM is actually a VAE)
- Generative Adversarial Network
- Diffusion Model

Using learnable function to estimate what you do not know that can best fit your observation

From PCA to Auto-Encoder

PCA:

Forward transform: $z = W^T x$

Linear dimensionality Reduction

Inverse transform: $\hat{x} = Wz$

$$\min_{W} \mathbb{E}_{x}[\|x - \hat{x}\|^{2}] = \mathbb{E}_{x}[\|x - WW^{T}x\|^{2}]$$
s. t.
$$W^{T}W = I_{k \times k}$$

High-dimensional data often lives on non-linear manifolds that cannot be captured by linear models such as PCA

Can we add nonlinearity?

Yes, then it becomes

neural network!

Auto-Encoder

Class-supervised Auto-Encoder

Problem with AE

Need to estimate the latent distribution post-hoc!

Solution – Sliced Wasserstein AE

Sliced Wasserstein Distance between two distributions!

Solution – VAE

$$\underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathbb{E}_{x \sim p_{X}}[\|x - \hat{x}\|^{2}]} \underbrace{\mathcal{L}(x^{(i)}, \theta, \phi)}_{D_{KL}(q_{\phi}(z \mid x) \mid\mid p(z)) = \frac{1}{2} \sum_{j=1}^{d} [\sigma_{j}^{2} + \mu_{j}^{2} - 1 - \log \sigma_{j}^{2}]}$$

- (1) Reconstruction loss: given z decoder x and setup the reconstruction loss
- (2) KL divergence: how to optimize the KL divergence between two gaussian distributions?

O

Problem

One-shot Generation

Can we construct the image step by step?

data distribution $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ $\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_T$ with transition kernel $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}),$$

 $\beta_t \in (0,1)$ is a hyperparameter

data distribution $\mathbf{x}_0 \sim q(\mathbf{x}_0)$

 $\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_T$ with transition kernel $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}),$$

 $\beta_t \in (0, 1)$ is a hyperparameter

Recursive

$$x_t = \sqrt{1-eta_t} x_{t-1} + \sqrt{eta_t} \epsilon_t \quad ext{where} \quad \epsilon_t \sim \mathcal{N}(0,I)$$

$$p(x_t \mid x_0, x_1, \dots, x_{t-1}) = p(x_t \mid x_{t-1})$$

Markov Chain Property

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}).$$

with
$$\alpha_t := 1 - \beta_t$$
 and $\bar{\alpha}_t := \prod_{s=0}^t \alpha_s$,

data distribution $\mathbf{x}_0 \sim q(\mathbf{x}_0)$

 $\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_T$ with transition kernel $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$

 $\beta_t \in (0, 1)$ is a hyperparameter

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}).$$

with
$$\alpha_t \coloneqq 1 - \beta_t$$
 and $\bar{\alpha}_t \coloneqq \prod_{s=0}^t \alpha_s$,

$$p(\mathbf{x}_{t-1}|\mathbf{x}_t) \longleftarrow q(\mathbf{x}_t|\mathbf{x}_0) \to \mathcal{N}(\mathbf{0},\mathbf{1})$$

Data — Generating samples by denoising — Noise

data distribution $\mathbf{x}_0 \sim q(\mathbf{x}_0)$

 $\mathbf{x}_1, \mathbf{x}_2 \dots \mathbf{x}_T$ with transition kernel $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$

 $\beta_t \in (0, 1)$ is a hyperparameter

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}).$$

with
$$\alpha_t := 1 - \beta_t$$
 and $\bar{\alpha}_t := \prod_{s=0}^t \alpha_s$,

$$\begin{array}{ccc} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) & & & & t \rightarrow \infty, \alpha_{t} \rightarrow \mathbf{0}, \\ \mathbf{p}(\mathbf{x}_{t-1}|\mathbf{x}_{t}) & & & & q(\mathbf{x}_{t}|\mathbf{x}_{0}) \rightarrow \mathcal{N}(\mathbf{0},\mathbf{1}) \end{array}$$

Data — Generating samples by denoising — Noise

$$egin{aligned} p(x) &= \int_z p_ heta(x|z) p(z) \ p(x) &= \int q_\phi(z|x) rac{p_ heta(x|z) p(z)}{q_\phi(z|x)} \ \log p(x) &= \log \mathbb{E}_{z \sim q_\phi(z|x)} \left[rac{p_ heta(x|z) p(z)}{q_\phi(z|x)}
ight] \ \log p(x) &\geq \mathbb{E}_{z \sim q_\phi(z|x)} \left[\log rac{p_ heta(x|z) p(z)}{q_\phi(z|x)}
ight] \end{aligned}$$

Figure 1 - Graphical Model for VAE

$$egin{aligned} p(x) &= \int_{z_1} \int_{z_2} p_{ heta}(x,z_1,z_2) dz_1, dz_2 \ p(x) &= \int \int q_{\phi}(z_1,z_2|x) rac{p_{ heta}(x,z_1,z_2)}{q_{\phi}(z_1,z_2|x)} \ p(x) &= \mathbb{E}_{z_1,z_2 \sim q_{\phi}(z_1,z_2|x)} \left[rac{p_{ heta}(x,z_1,z_2)}{q_{\phi}(z_1,z_2|x)}
ight] \ \log p(x) &\geq \mathbb{E}_{z_1,z_2 \sim q_{\phi}(z_1,z_2|x)} \left[\log rac{p_{ heta}(x,z_1,z_2)}{q_{\phi}(z_1,z_2|x)}
ight] \end{aligned}$$

Figure 2 - A Hierarchical VAE

$$egin{split} p(x,z_1,z_2) &= p(x|z_1)p(z_1|z_2)p(z_2) \ & \ q(z_1,z_2|x) &= q(z_1|x)q(z_2|z_1) \end{split}$$

$$\log p(x) \geq \mathbb{E}_{z_1,z_2 \sim q_\phi(z_1,z_2|x)} \left[\log rac{p_ heta(x,z_1,z_2)}{q_\phi(z_1,z_2|x)}
ight]$$

$$\log p(\mathbf{x}) \ge \mathbb{E}_{x_{1:T} \sim q_{\phi}(x_{1:T} | x_0)} [\log \frac{p_{\theta}(x_{0:T})}{q_{\phi}(x_{1:T} | x_0)}]$$

$$= \mathbb{E}_{x_{1:T} \sim q_{\phi}(x_{1:T}|x_0)} \left[\log \frac{p_{\theta}(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)}{\prod_{t=1}^{T} q_{\phi}(x_t|x_{t-1})} \right]$$

$$= \mathbb{E}_{x_{1:T} \sim q_{\phi}(x_{1:T}|x_{0})} [\log p_{\theta}(x_{T}) + \sum_{t=1}^{T} \log \frac{p_{\theta}(x_{t-1}|x_{t})}{q_{\phi}(x_{t}|x_{t-1})}]$$

<u>Link</u>

$$\log p(\mathbf{x}) \ge \mathbb{E}_{x_{1:T \sim q(X_{1:T}|X_0)}}[\log p(x_T) + \sum\nolimits_{t=1}^{T} \log \frac{p_{\theta}(x_{t-1}|x_t)}{q(x_t|x_{t-1})}]$$

$$L := \mathbb{E}_q \left[\underbrace{-\log p(x_T) + \log q(x_T|x_0)}_{L_T} - \underbrace{\log p_ heta(x_0|x_1)}_{L_0} - \underbrace{\sum_{t>1}^T \log rac{p_ heta(x_{t-1}|x_t)}{q(x_{t-1}|x_t,x_0)}}_{L_{t-1}}
ight]$$

$$L := \mathbb{E}_q egin{bmatrix} D_{t} & D$$

Given x_t, x_0 , how to get x_{t-1} using diffusion

Given x_t , how to revert x_{t-1} using decoder

$$p_{ heta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{ heta}(x_t, t), \sigma_t^2 I)$$

$$\mathrm{KL}(P \parallel Q) = \frac{1}{2} \left[\log \frac{|\Sigma_1|}{|\Sigma_0|} - d + \mathrm{tr}(\Sigma_1^{-1}\Sigma_0) + (\mu_1 - \mu_0)^T \Sigma_1^{-1} (\mu_1 - \mu_0) \right]$$

$$x_0$$

The problem is every-time you need to calculate the target mean value

$$L_{t-1} = \mathbb{E}_{t,x_t,x_0}\left[rac{1}{2\sigma_t^2}\| ilde{\mu}_t(x_t,x_0) - \mu_ heta(x_t,t)\|
ight] + C$$

$$egin{aligned} ilde{\mu}_t(x_t,x_0) &= rac{\sqrt{ar{lpha}_{t-1}}eta_t}{1-ar{lpha}_t}x_0 + rac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}x_t \ ilde{eta}_t &= rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t}eta_t \end{aligned}$$

$$\alpha_t \coloneqq 1 - \beta_t \text{ and } \bar{\alpha}_t \coloneqq \prod_{s=0}^t \alpha_s$$

$$L_{t-1} = \mathbb{E}_{t,x_t,x_0}\left[rac{1}{2\sigma_t^2}\| ilde{\mu}_t(x_t,x_0) - \mu_ heta(x_t,t)\|
ight] + C$$

$$egin{aligned} ilde{\mu}_t(x_t,x_0) &= rac{\sqrt{ar{lpha}_{t-1}}eta_t}{1-ar{lpha}_t}x_0 + rac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}x_t \ ilde{eta}_t &= rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t}eta_t \end{aligned}$$

 $\alpha_t := 1 - \beta_t$ and $\bar{\alpha}_t := \prod_{s=0}^t \alpha_s$

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I}).$$

$$\mathbf{x}_t = \sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{(1 - \overline{\alpha}_t)} \boldsymbol{\epsilon}$$
 $\mathbf{x}_0 = \frac{\mathbf{x}_t - \sqrt{1 - \overline{\alpha}_t} \boldsymbol{\epsilon}}{\sqrt{\overline{\alpha}_t}}$

$$\tilde{u}_t(x_t, x_0) = \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_t}{1 - \overline{\alpha}_t} x_0 + \frac{\sqrt{\alpha_t(1 - \overline{\alpha}_{t-1})}}{1 - \overline{\alpha}_t} x_t$$

$$\tilde{u}_t(x_t, x_0) = \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_t}{1 - \overline{\alpha}_t} \left(\frac{x_t - \sqrt{1 - \overline{\alpha}_t} \epsilon}{\sqrt{\overline{\alpha}_t}} \right) + \frac{\sqrt{\alpha_t (1 - \overline{\alpha}_{t-1})}}{1 - \overline{\alpha}_t} x_t = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon)$$

For a given x_t , add a noise

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} (x_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(x_t, t))$$

$$=\mathbb{E}_{x_0,\epsilon,t}\left[\left\|\epsilon-\epsilon_{ heta}(x_t(x_0,\epsilon),t)
ight\|
ight]$$

We do not need to calculate target mean but only do forward diffusion

$$L_{t-1} = \mathbb{E}_{t,x_t,x_0} \left[rac{1}{2\sigma_t^2} \| ilde{\mu}_t(x_t,x_0) - \mu_{ heta}(x_t,t) \|
ight] + C$$

$$=\mathbb{E}_{x_0,\epsilon,t}\left[\|\epsilon-\epsilon_{ heta}(x_t(x_0,\epsilon),t)\|
ight]$$

Algorithm 1 Training

- 1: repeat
- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1,\ldots,T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Take gradient descent step on

$$\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$$

6: until converged

Link

$$egin{aligned} ilde{\mu}_t(x_t,x_0) &= rac{\sqrt{ar{lpha}_{t-1}}eta_t}{1-ar{lpha}_t}x_0 + rac{\sqrt{lpha_t}(1-ar{lpha}_{t-1})}{1-ar{lpha}_t}x_t \ ilde{eta}_t &= rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t}eta_t \end{aligned}$$

$$\alpha_t := 1 - \beta_t$$
 and $\bar{\alpha}_t := \prod_{s=0}^t \alpha_s$

$$L_{t-1} = \mathbb{E}_{t,x_t,x_0} \left[rac{1}{2\sigma_t^2} \| ilde{\mu}_t(x_t,x_0) - \mu_{ heta}(x_t,t) \|
ight] + C$$

$$=\mathbb{E}_{x_0,\epsilon,t}\left[\|\epsilon-\epsilon_{ heta}(x_t(x_0,\epsilon),t)\|
ight]$$

Link

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return x₀

$$q(x_{t-1}|x_t,x_0) = \mathcal{N}(x_{t-1}; ilde{\mu}(x_t,x_0), ilde{eta}_t I)$$

$$\widetilde{\boldsymbol{u}}_{t}(\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \frac{\sqrt{\overline{\alpha}_{t-1}}\beta_{t}}{1-\overline{\alpha}_{t}}\left(\frac{\boldsymbol{x}_{t}-\sqrt{1-\overline{\alpha}_{t}}\boldsymbol{\epsilon}}{\sqrt{\overline{\alpha}_{t}}}\right) + \frac{\sqrt{\alpha_{t}(1-\overline{\alpha}_{t-1})}}{1-\overline{\alpha}_{t}}\boldsymbol{x}_{t} = \frac{1}{\sqrt{\alpha_{t}}}(\boldsymbol{x}_{t}-\frac{\boldsymbol{\beta}_{t}}{\sqrt{1-\overline{\alpha}_{t}}}\boldsymbol{\epsilon})$$

Code Demo

LLM Generation

How can we model the LLM generation under our framework?

LLM Generation

LLM Generation

$$P(X) = \prod_{s=1}^{|S|} P(X_s) = \prod_{s=1}^{|S|} P(X_1, X_2, ..., X_{l_s})$$

= $\prod_{s=1}^{|S|} \prod_{l=2}^{l_s} P(X_l | X_{1:l-1})$

Different sequences are independent

Given previously observed sequences, what is the probability of observing the ground-truth next token?

