Company Bankrutcy Prediciton

Data Science Final Presentation Group 4

2022-01-13

Group Members

Group4: 108703014 鄭宇傑 108703019 賴冠瑜 108703029 江宗樺 108703030 田詠恩 108304003 張瀚文

資料介紹

資料介紹

1999 年至 2009 年數據來自自台灣經濟日報的統計。公司破產之定義為台灣證券交易所的業務規則而定。

屬性資訊

- X2 ROA(A) before interest and % after tax: Return On Total Assets(A)
- X11 Operating Expense Rate: Operating Expenses/Net Sales
- X13 Cash flow rate: Cash Flow from Operating/Current Liabilities
- X33 Current Ratio
- X92 Degree of Financial Leverage (DFL)
- X85 Liability-Assets Flag: 1 if Total Liability exceeds Total Assets, 0 otherwise
- X94 Net Income Flag: 1 if Net Income is Negative for the last two years, 0 otherwise

資料分析

Shiny App

相關係數

該圖顯示了每個特徵對於對方的相關性。圖中 x 及 y 軸為資料的屬性,格子中的顏色越深,代表著兩屬性之間的相關性越高。

相關係數

該圖顯示了每個特徵對於對方的相關性。圖中 x 及 y 軸為資料的屬性,格子中的顏色越深,代表著兩屬性之間的相關性越高。

主成份分析

從第一主成份(PC1)到第二主成份(PC2)可以發現沒有明顯可以分辨破產與否的成分。

資料解釋度

我們可以看到大約 40 個主成份就解釋了超過 90%的差異。

公司破產分佈

模型評估標準

- 95% 以上的資料中的公司都沒有破產(Bankruptcy == 0) 所以全部猜 1 就可以有超級高的 Accuracy (NULL model)
- 我們將目標設定成要盡可能增加 recall 。 嘗試預測出更多可能會倒的公司去對他們做關切或提早做應對措施,並去檢視可能面臨的問題,是這次專題的主要目標。

Models

pca 分析 -> 取前 40 個


```
#--- watch pc
std_dev <- pca$sdev
pr_var <- std_dev^2
prop_varex <- pr_var/sum(pr_var)
plot(prop_varex, type = 'lines')</pre>
```

model #1: decision tree

decision tree

decision tree with pca

1/13/2022 slides.md

decision tree

decision tree with pca

```
prediction
truth
          0
    0 1303
         39
                7
```

```
pred
truth
                1
    0 1306
    1
         32
               11
```

model #1: decision tree

decision tree

> print(accuracy) [1] 0.9604106

> print(recall)

[1] 0.1521739

> print(precision)

[1] 0.3181818

> print(NegativePrecision)

[1] 0.9709389

decision tree with pca

[1] 0.9760837

```
> print( accuracy )
[1] 0.9655425
> print( recall )
[1] 0.255814
> print( precision )
[1] 0.4230769
 print( NegativePrecision )
```

model #2: random forest

random forest

decision tree with pca


```
prediction
          0
truth
      1297
              20
        40
```

model #2: random forest

random forest

decision tree with pca

random forest

decision tree with pca

```
> print( accuracy )
[1] 0.9560117
> print( recall )
[1] 0.1489362
> print( precision )
[1] 0.2592593
> print( NegativePrecision )
[1] 0.9700823
```

model #3: logistic regression

logistic regression

prediction truth 0 1 0 1306 17 1 28 13

logistic regression with pca

```
pred
truth 0 1
0 1237 86
1 15 26
```

model #3: logistic regression

logistic regression

```
> print( accuracy )
[1] 0.9670088
> print( recall )
[1] 0.3170732
> print( precision )
[1] 0.4333333
> print( NegativePrecision )
[1] 0.9790105
```

logistic regression with pca

```
> print( accuracy )
[1] 0.9259531
> print( recall )
[1] 0.6341463
> print( precision )
[1] 0.2321429
> print( NegativePrecision )
[1] 0.9880192
```

SMOTE 生成資料

Pytorch

epoch 次數比較

epoch 1-10

epoch 10-150

總結

recall	原始資料	透過 PCA 降維處理
Decision Tree	0.15	0.26
Random Forest	0.36	0.15
Logistic Regression	0.32	0.63
Convolution Neural Network	0.78	0.58

問題與討論

- 資料面?
 - 。 資料的收集
 - 。 資料的真實性
- 模型面?
 - 。 資料數量
 - 。 對未來預測的時效性

Reference

https://www.kaggle.com/jerryfang5/bankrutcy-prediciton-by-r/notebook https://www.kaggle.com/seongwonr/bankruptcy-prediction-with-smote https://colab.research.google.com/drive/12wXAyrbX8Ji5J6CNAEIQwtDOaxy8BCIO?usp=sharing