

Switch Mode Power Supplies 101

POWER!!!

Almost every device needs power regulation

So how do you regulate power?

An aside – Ohm's Law

REMEMBER: WITH GRE POWER COMES GREAT CURRENT SQUARED TIMES RESISTANCE.

OHM NEVER FORGOT H DYING UNCLE'S ADVICE.

Ohm's Law

The basic – just a battery

The most basic power supply is none at all

Pick a max battery voltage and use that

Pros – Simple

Cons – No regulation. What happens when the battery discharges?

The slightly basic – a resistor regulator

Need a voltage less than that of your battery?

Pick a couple of resistors and use that

Pros – Simple, can use Kirchoff's Law to calculate

Cons – What happens when the battery discharges? What happens if the load resistance changes? What happens if the load is drawing a lot of power?

Regulations – a linear regulator

Need an exact voltage?

Grab a linear regulator

Pros – Still simple, cheap

Cons – A linear regulator converts the excess input power into heat! Input voltage must be about 1.5V above what you want out, unless you get a 'LDO' (low drop-out), and then 0.3V is typical

The switch up

So how do we transform voltage efficiently?

What if we want MOAR volts out than we have going in?

What if we want to go negative?

An aside – Pulse Width Modulation

PWM is toggling a switch on and off at varying duty cycle

Duty cycle is expressed in percent on time

Independent of base frequency!

An aside – Capacitors vs Inductors

Capacitor

Stores charge in parallel plates Resists changes in voltage

Measured in Farads – 1 Farad = 1 coulomb at 1 volt

An aside – Capacitors vs Inductors

Inductor

Stores magnetic field in coil Resists changes in current

Measured in Henry -1 Henry =1 ampere flowing through the coil producing flux linkage of 1 weber turn (what)

'Saturation' is when the magnetic field is no longer rising

Topologies

	Topology	Schemark	Power (Matte)	Typical Efficiency	Relative Cost	Magnetics Required	DC Transfer Function (V _{or.} /V _{o.})	Maximum Practical Duty Cycle	Universal Input (50-264) V _{ac}	Multiple Outputs	V_ <v_ Nange</v_ 	V_>V _n flange
Non-Isolated Topologies	Buck	Switch O C Vovi	500	85	1	Single Inductor	D	0.9	No	No	Yes	No
	Boost	Vn Switch C Voul	150	70	1	Single Inductor	1 1-D	0.9	No	No	No	Yes
	Buck- Boost	Vin C vaut	150	70	1	Single Inductor	- D 1 - D	0.9	No	No	Yes	Yes
	SEPIC	Vie Suitch SL3 C Vous	150	75	1.2	Coupled or Two Inductors	<u>D</u> 1-D	0.9	No	No	Yes	Yes
	Ćuk	Vie Suitsh Yo You	150	75	1.2	Coupled or Two Inductors	-D 1-D	0.9	No	No	Yes	Yes
	Flyback	**************************************	150	75	1.5	Transformer	$\sqrt{\frac{2d^2_{_{A}}/\!$	0.9	Yes	Yes	Yes	Yes
28	Ferward		150	75	1.8	Transformer and Inductor	2N ₁ N ₂ × D	0.45	Yes	Yes	Yes	Yes
Isolated Topologies	Push- Pull	Vanca State of the	500	80	1.8	Stansformer and Inductor	$\frac{N_c}{N_c} \times D$	0.45	No	Yes	Yes	Yes
	Half- Bridge	- 1	500	85	2	Transformer and Inductor	$\frac{N_s}{N_s} \times D$	0.45	Yes	Yes	Yes	Yes
	Resonant LLC	Sent In Sent I	500	90	2	Transformer	Frequency Dependent Based on Resonant Tank Transfer Function	0.45	You	Yes	Yes	Yes

Topologies

	Topology	Schematic	Power (Matte)	Typical Efficiency	Relative Cost	Magnetics Required	DC Transfer Function (V _{cc} /V _c)	Maximum Practical Buty Cycle	Universal Input (90-264) V _a	Multiple Outputs	V_ <v<sub>a Range</v<sub>	V_>V_ Range
	Buck	Switch 0 C Veut	500	85	1	Single Inductor	D	0.9	No	No	Yes	No
pies	Boost	Vin Builds C Vint	150	70	1	Single Inductor	1 1-D	0.9	No	No	No	Yes
Non-Isolated Topologies	Buck- Boost	Visit C Visua	150	70	ï	Single Inductor	- D 1 - D	0.9	No	No	Yes	Yes
Non-Is	SEPIC	Vis Suitch St. C Vous	150	75	1.2	Coupled or Two Inductors	<u>D</u> 1 – D	0.9	No	No	Yes	Yes
	Cus	Vin Switch To Vivid	150	75	1.2	Coupled or Two Inductors	-D 1-D	0.9	No	No	Yes	Yes
	Flyback	No.	150	75	1.5	Transformer	$\sqrt{\frac{2d^2_{,ij}K_{,ij}Rreq}{V_{,i}}}$	0.9	Yes	Yes	Yes	Yes
22	Forward	- J +	150	75	1.8	Transformer and Inductor	$\frac{2N_i}{N_j} \times D$	0.45	Yas	Yes	Yes	Yes
Isolated Topologies	Push- Pull	State of the state	500	80	1.8	Transformer and Inductor	N _c × D	0.45	No	Yes	Yes	Yes
DSI	Half- Bridge		500	85	2	Thaneformer and Inductor	$\frac{N_c}{N_c} \times D$	0.45	Yes	Yes	Yes	Yes
	Resonant LLC	bean to the transfer of the tr	500	90	2	Transformer	Frocuency Dependent Based on Resonant Tank Transfer Function	0.45	Yes	Yes	Yes	Yes

... what?

Buck converter topology

Parts:

- A switch
- A diode
- An inductor
- A capacitor

Buck converter operation

Theory of operation

Only want some of the power? Just sip from the firehose!

On State – Directly connected to load. As soon as the output voltage hits the limit, turn it off.

Off State – The capacitor 'tanks' voltage, the inductor 'tanks' current – for a short while

The diode completes the circuit when the switch is open

Boost converter topology

Same parts as the buck

New exciting wiring configuration

Boost converter operation

Theory of operation

Make the inductor work for you

On State – Short-circuit input into coil to build magnetic field (be mindful of saturation!)

Off State – As the magnetic field in the inductor drops, it increases the voltage to keep the current through it stable. The diode prevents back leakage.

No load = output voltage going to the moon

Other topologies

Buck/Boost – a bit of both

Ćuk – (chook) a Buck/Boost but negative output

Flyback – Isolation of input/output via transformer

Many, many variations...

Output Ripple

Ripple in output is gonna happen

More output C, lower ripple

Faster switch, smaller bites, lower ripple

High frequency can generate RF noise, or mess with clocks on your microcontroller

Control

Switch is actually a transistor (surprise!)

Controller can be 'open loop' or 'closed loop'

Open loop is not common

Control

Controller can be a dedicated chip

Or a 555 timer with a feedback element

Or a microcontroller

Or a monkey with a push button

PID, open loop, other methods

Efficiency

Power Supply	Linear	SMPS		
Size	Large and Heavy	Small and Light		
Efficiency	30-40%	70-95%		
Complexity	Simple	Complex		
EMI	Low Noise	Filtering Required		
Cost	High (Due to Material)	Low		

Topology selection guide

					Relative
	Power Range	$V_{in(dc)}$	In/Out	Typical Efficiency	Parts
Topology	(W)	Range	Isolation	(%)	Cost
Buck	<1000	5-40	No	78	1.0
Boost	<150	5-40	No	80	1.0
Buck-boost	<150	5-40	No	80	1.0
1T forward	<150	5-500	Yes	78	1.4
Flyback	<150	5-500	Yes	80	1.2
Push-pull	100-1000	50-1000	Yes	75	2.0
Half-bridge	100-500	50-1000	Yes	75	2.2
Full-bridge	400-2000+	50-1000	Yes	73	2.5

https://electronics.stackexchange.com/questions/299435/pros-and-cons-between-smps-switched-mode-power-supply-and-heavy-line-frequency-t

Questions?

@hamster

github.com/hamster/classroom

