Bounds for the Chromatic Number of a Graph*

J. A. BONDY

University of Waterloo, Waterloo, Ontario, Canada

Communicated by D. N. Younger

Received December 18, 1968

ABSTRACT. A lower bound is obtained for the chromatic number $\chi(G)$ of a graph G in terms of its vertex degrees. A short proof of a known upper bound for $\chi(G)$, again in terms of vertex degrees, is also given.

1. Introduction

In this note we present lower and upper bounds for the chromatic number $\chi(G)$ of a graph G in terms of its vertex degrees. The upper bound is not new. It was originally obtained by Welsh and Powell [3], and is also a consequence of a theorem of Szekeres and Wilf [2]. However we give here a simple proof of the result. In what follows, G is a finite undirected graph with no loops or multiple edges. G has order N and vertex degrees $\{d(i)\}_{1}^{N}$, where $d(1) \geq d(2) \geq \cdots \geq d(N)$. We shall adopt the convention that

$$\sum_{i=1}^{k} a_i = 0 \quad \text{when} \quad k < j.$$

2. Lower Bound

Theorem 1. Let σ_j be defined recursively by

$$\sigma_i = N - d \left(\sum_{i=1}^{j-1} \sigma_i + 1 \right).$$

Suppose that k is some integer satisfying

$$\sum_{1}^{k-1} \sigma_j < N. \tag{A}$$

Then $\chi(G) \geqslant k$.

^{*} Research supported by a postdoctorate fellowship from the National Research Council of Canada.

PROOF: G has chromatic number $\chi(G)$ and therefore the set V(G) of vertices of G can be partitioned into $\chi(G)$ subsets $\{V_i\}_1^{\chi(G)}$, where each V_i is an independent set of vertices in G. Suppose V_i has cardinal number n_i and that $n_1 \leq n_2 \leq \cdots \leq n_{\chi(G)}$. Each vertex in V_i has degree at most $N-n_i$ since it is not joined to any of the other n_i-1 vertices of V_i . Hence

$$d\left(\sum_{i=1}^{j-1}n_i+1\right)\leqslant N-n_j\qquad (1\leqslant j\leqslant \chi(G)). \tag{1}$$

We show, by induction, that $n_i \leqslant \sigma_i$ $(1 \leqslant i \leqslant \chi(G))$. This is so for i=1 since, by (1), $n_1 \leqslant N - d(1) = \sigma_1$. Assume the result true for all $i < j \leqslant \chi(G)$. Then, again by (1) and the assumption that $d(\cdot)$ is a decreasing function of i,

$$n_j \leqslant N - d\left(\sum_{i=1}^{j-1} n_i + 1\right) \leqslant N - d\left(\sum_{i=1}^{j-1} \sigma_i + 1\right) = \sigma_j.$$

Therefore

$$N = \sum_{1}^{\chi(G)} n_i \leqslant \sum_{1}^{\chi(G)} \sigma_i$$
.

By (A) this means that $\chi(G) > k - 1$, that is, $\chi(G) \ge k$.

COROLLARY 1.1. If G is regular of degree d then $\chi(G) \ge N/(N-d)$.

3. Upper Bound

THEOREM 2.

$$\chi(G) \leqslant \max_{1 \leqslant i \leqslant N} \min\{d(i) + 1, i\}.$$

PROOF: Let G' be a critical subgraph of G. Then each vertex of G' has degree at least $\chi(G) - 1$. Therefore G' has at least $\chi(G)$ vertices of degree at least $\chi(G) - 1$ and a fortiori the same is true of G. Hence $d(\chi(G)) \ge \chi(G) - 1$. Therefore

$$\max_{1 \le i \le N} \min\{d(i) + 1, i\} \geqslant \min\{d(\chi(G)) + 1, \chi(G)\} = \chi(G).$$

COROLLARY 2.1 (Nordhaus and Gaddum [1]). Let \overline{G} be the complement of G. Then

$$\chi(G) + \chi(\overline{G}) \leqslant N + 1.$$

98 BONDY

PROOF: \overline{G} has degree sequence $\{\overline{d}(i)\}_{1}^{N}$, where

$$\bar{d}(i) = N - 1 - d(N - i + 1).$$

Therefore, by Theorem 2,

$$\begin{split} \chi(G) + \chi(\overline{G}) &\leqslant \max_{1 \leqslant i \leqslant N} \min\{d(i) + 1, i\} + \max_{1 \leqslant i \leqslant N} \min\{N - d(N - i + 1), i\} \\ &= \max_{1 \leqslant i \leqslant N} \min\{d(i) + 1, i\} + N + 1 \\ &- \min_{1 \leqslant i \leqslant N} \max\{d(N - i + 1) + 1, N - i + 1\} \\ &\leqslant \max_{1 \leqslant i \leqslant N} \min\{d(i) + 1, i\} + N + 1 \\ &- \max_{1 \leqslant i \leqslant N} \min\{d(N - i + 1) + 1, N - i + 1\} \\ &= N + 1. \end{split}$$

REFERENCES

- E. A. Nordhaus and J. W. Gaddum, On Complementary Graphs, Amer. Math. Monthly 63 (1956), 175-177.
- G. SZEKERES AND H. S. WILF, An Inequality for the Chromatic Number of a Graph, J. Combinatorial Theory 4 (1968), 1-3.
- 3. D. J. A. Welsh and M. B. Powell, An Upper Bound for the Chromatic Number of a Graph and Its Application to Timetabling Problems, *Comput. J.* 10 (1967), 85-86.