COMS 4771 Lecture 5

- 1. Linear classifiers.
- 2. Linearly separable instances.

ANNOUNCEMENTS

- 1. Homework 1 due Monday Feb. 9 @ 1 PM.
 - ▶ Write-up, as a PDF file.
 - All MATLAB function files and scripts.
 - Everything in a ZIP file; submit on Courseworks.

2. TA office hours:

- ► Thursday Feb. 5 @ 6–7 PM cancelled (sorry).
- ► Additional TA office hours on Tuesday Feb. 10 @ 6–7 PM.
- Need help with MATLAB? Your TAs can help! Lots of tips and tricks to be learned . . .

Linear classifiers

AXIS-ALIGNED THRESHOLD FUNCTIONS

Decision tree learning

Basic step in greedy decision tree learning (with axis-aligned splits in $\mathcal{X} = \mathbb{R}^d$):

$$\underset{h}{\operatorname{arg\,min}} \frac{|S_{h,0}|}{|S|} u(S_{h,0}) + \frac{|S_{h,1}|}{|S|} u(S_{h,1})$$

where u is some uncertainty measure,

$$S_{h,0} = \{(x,y) \in S : h(x) = 0\}, \qquad S_{h,1} = \{(x,y) \in S : h(x) = 1\},$$

and the minimization is over splitting rules of the form

$$h(\boldsymbol{x}) = \mathbb{1}\{x_i > t\}, \quad i \in [d], t \in \mathbb{R}.$$

Axis-aligned threshold functions

Decision tree learning

Basic step in greedy decision tree learning (with axis-aligned splits in $\mathcal{X} = \mathbb{R}^d$):

$$\underset{h}{\operatorname{arg\,min}} \frac{|S_{h,0}|}{|S|} u(S_{h,0}) + \frac{|S_{h,1}|}{|S|} u(S_{h,1})$$

where u is some uncertainty measure,

$$S_{h,0} = \{(x,y) \in S : h(x) = 0\}, \qquad S_{h,1} = \{(x,y) \in S : h(x) = 1\},\$$

and the minimization is over splitting rules of the form

$$h(\boldsymbol{x}) = \mathbb{1}\{x_i > t\}, \quad i \in [d], t \in \mathbb{R}.$$

Axis-aligned threshold functions

When u is classification error and $\mathcal{Y}=\{-1,+1\}$, we are equivalently doing the following:

$$\underset{i \in [d], v \in \{-1, +1\}, t \in \mathbb{R}}{\arg\min} \sum_{(x, y) \in S} \mathbb{1} \{ \operatorname{sign}(vx_i - t) \neq y \}.$$

Axis-aligned threshold functions

Decision tree learning

Basic step in greedy decision tree learning (with axis-aligned splits in $\mathcal{X} = \mathbb{R}^d$):

$$\underset{h}{\operatorname{arg\,min}} \frac{|S_{h,0}|}{|S|} u(S_{h,0}) + \frac{|S_{h,1}|}{|S|} u(S_{h,1})$$

where u is some uncertainty measure,

$$S_{h,0} = \{(x,y) \in S : h(x) = 0\}, \qquad S_{h,1} = \{(x,y) \in S : h(x) = 1\},\$$

and the minimization is over splitting rules of the form

$$h(\boldsymbol{x}) = \mathbb{1}\{x_i > t\}, \quad i \in [d], t \in \mathbb{R}.$$

Axis-aligned threshold functions

When u is classification error and $\mathcal{Y} = \{-1, +1\}$, we are equivalently doing the following:

$$\underset{i \in [d], v \in \{-1, +1\}, t \in \mathbb{R}}{\arg\min} \sum_{(x,y) \in S} \mathbb{1} \{ \operatorname{sign}(vx_i - t) \neq y \}.$$

i.e., looking at classifiers of the form $f_{i,v,t}(\mathbf{x}) = \operatorname{sign}(vx_i - t)$.

A natural generalization of axis-aligned threshold functions

$$f_{i,v,t}(\mathbf{x}) = \text{sign}(vx_i - t), \quad i \in [d], v \in \{-1, +1\}, t \in \mathbb{R},$$

are linear threshold functions (or linear classifiers):

$$f_{\boldsymbol{w},t}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle - t), \quad \boldsymbol{w} \in \mathbb{R}^d, \ t \in \mathbb{R}.$$

A natural generalization of axis-aligned threshold functions

$$f_{i,v,t}(\mathbf{x}) = \text{sign}(vx_i - t), \quad i \in [d], v \in \{-1, +1\}, t \in \mathbb{R},$$

are linear threshold functions (or linear classifiers):

$$f_{\boldsymbol{w},t}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle - t), \quad \boldsymbol{w} \in \mathbb{R}^d, \ t \in \mathbb{R}.$$

Interpretation: does a weighted linear combination of input features exceed a threshold?

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \sum_{i=1}^{d} w_i x_i \stackrel{?}{>} t$$

A natural generalization of axis-aligned threshold functions

$$f_{i,v,t}(\mathbf{x}) = \text{sign}(vx_i - t), \quad i \in [d], v \in \{-1, +1\}, t \in \mathbb{R},$$

are linear threshold functions (or linear classifiers):

$$f_{\boldsymbol{w},t}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle - t), \quad \boldsymbol{w} \in \mathbb{R}^d, t \in \mathbb{R}.$$

Interpretation: does a weighted linear combination of input features exceed a threshold?

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \sum_{i=1}^{d} w_i x_i \stackrel{?}{>} t$$

Tie at zero can go either way; we'll use the following convention:

$$\operatorname{sign}(z) = \begin{cases} +1 & \text{if } z > 0\\ -1 & \text{if } z \le 0. \end{cases}$$

A natural generalization of axis-aligned threshold functions

$$f_{i,v,t}(\mathbf{x}) = \text{sign}(vx_i - t), \quad i \in [d], v \in \{-1, +1\}, t \in \mathbb{R},$$

are linear threshold functions (or linear classifiers):

$$f_{\boldsymbol{w},t}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{w}, \boldsymbol{x} \rangle - t), \quad \boldsymbol{w} \in \mathbb{R}^d, \ t \in \mathbb{R}.$$

Interpretation: does a weighted linear combination of input features exceed a threshold?

$$\langle \boldsymbol{w}, \boldsymbol{x} \rangle = \sum_{i=1}^d w_i x_i \stackrel{?}{>} t$$

Tie at zero can go either way; we'll use the following convention:

$$\operatorname{sign}(z) = \begin{cases} +1 & \text{if } z > 0\\ -1 & \text{if } z \le 0. \end{cases}$$

For now, only considering binary classification, where $\mathcal{Y} = \{-1, +1\}$.

We've seen these before: the (binary) Bayes classifier when class conditional densities are multivariate Gaussians with the same covariance.

HYPERPLANES

Geometric interpretation of linear classifiers

A **hyperplane** in \mathbb{R}^d is a linear subspace of dimension (d-1).

- ▶ A \mathbb{R}^2 -hyperplane is a line.
- ► A \mathbb{R}^3 -hyperplane is a plane.
- As a linear subspace, a hyperplane always contains the origin.

A hyperplane H can be specified by a (non-zero) **normal vector**.

The hyperplane with normal vector $oldsymbol{w} \in \mathbb{R}^d$ is the set

$$H = \left\{ oldsymbol{x} \in \mathbb{R}^d : \left\langle oldsymbol{w}, oldsymbol{x}
ight
angle = 0
ight\}.$$

It becomes **oriented** if we pick a *particular* normal vector $\boldsymbol{w} \in \mathbb{R}^d$.

Which side of the hyperplane are we on?

Distance from the hyperplane

- ► The projection of x onto the direction of w has length $\frac{|\langle w, x \rangle|}{||w||_2}$.
- ► Cosine rule: $\cos \theta = \frac{\langle \boldsymbol{w}, \boldsymbol{x} \rangle}{\|\boldsymbol{w}\|_2 \|\boldsymbol{x}\|_2}$.
- The distance of \boldsymbol{x} from the hyperplane is given by $\frac{|\langle \boldsymbol{w}, \boldsymbol{x} \rangle|}{\|\boldsymbol{w}\|_2} = \|\boldsymbol{x}\|_2 \cdot |\cos \theta|.$

Which side of the hyperplane?

- ▶ The cosine satisfies $\cos \theta > 0$ iff $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$.
- lacktriangle We can determine which side of the hyperplane H that $oldsymbol{x}$ is on, using

$$sign(cos \theta) = sign(\langle \boldsymbol{w}, \boldsymbol{x} \rangle).$$

AFFINE HYPERPLANES

- An affine hyperplane H is a hyperplane translated (shifted) by a vector \boldsymbol{b} : i.e., $H = \boldsymbol{b} + H'$ for some hyperplane H'. Without loss of generality, $H = b\boldsymbol{w} + H'$, for some hyperplane H, $b \geq 0$, and normal vector \boldsymbol{w} for H'.
- ▶ If b > 0, naturally oriented by which side contains the origin.

Which side of the affine hyperplane?

lacktriangle We can determine which side of the affine hyperplane H that $m{x}$ is on using

$$\operatorname{sign}(\langle \boldsymbol{x}, \boldsymbol{w} \rangle - b \|\boldsymbol{w}\|_2^2).$$

side of affine hyperplane that x is on \equiv linear classification of x

LINEAR CLASSIFIERS

LEARNING LINEAR CLASSIFIERS

Even if the Bayes classifier is not a linear classifier, we can hope that it has a good linear approximation.

Learning linear classifiers

Even if the Bayes classifier is not a linear classifier, we can hope that it has a good linear approximation.

Goal: learning algorithm for linear classifiers with low excess error:

$$\underbrace{\mathbb{E}\!\left[\mathrm{err}(f_{\hat{\boldsymbol{w}},\hat{t}})\right]}_{\text{expected error of your classifier}} - \underbrace{\min_{\boldsymbol{w},t}\mathrm{error}(f_{\boldsymbol{w},t})}_{\text{error of }best \text{ linear classifier}}$$

where $f_{\hat{w},\hat{t}}$ is the linear classifier picked by the learning algorithm on the basis of an i.i.d. sample S from P. (Expectation is over S.)

Learning linear classifiers

Even if the Bayes classifier is not a linear classifier, we can hope that it has a good linear approximation.

Goal: learning algorithm for linear classifiers with low excess error:

$$\underbrace{\mathbb{E}\!\left[\mathrm{err}(f_{\hat{\boldsymbol{w}},\hat{t}})\right]}_{\text{expected error of your classifier}} - \underbrace{\min_{\boldsymbol{w},t} \mathrm{error}(f_{\boldsymbol{w},t})}_{\text{error of } best \text{ linear classifier}}$$

where $f_{\hat{w},\hat{t}}$ is the linear classifier picked by the learning algorithm on the basis of an i.i.d. sample S from P. (Expectation is over S.)

A natural approach is "empirical risk minimization" (ERM): find a linear classifier $f_{w,t}$ with low training error (or empirical risk):

$$\begin{aligned} \underset{\boldsymbol{w},t}{\arg\min} & \operatorname{err}(f_{\boldsymbol{w},b},S) = \underset{\boldsymbol{w},t}{\arg\min} \, \frac{1}{|S|} \sum_{(\boldsymbol{x},y) \in S} \mathbb{1}\{\operatorname{sign}(\langle \boldsymbol{w},\boldsymbol{x} \rangle - t) \neq y\} \\ & = \underset{\boldsymbol{w},t}{\arg\min} \, \frac{1}{|S|} \sum_{(\boldsymbol{x},y) \in S} \mathbb{1}\{y(\langle \boldsymbol{w},\boldsymbol{x} \rangle - t) \leq 0\}. \end{aligned}$$

EMPIRICAL RISK MINIMIZATION

Unforunately, this is not possible in general.

► The following problem is NP-hard:

Given a set of labeled examples S in $\mathbb{R}^d \times \{\pm 1\}$ with the promise that there is a linear classifier with training error 0.01, find a linear classifier with training error ≤ 0.49 .

EMPIRICAL RISK MINIMIZATION

Unforunately, this is not possible in general.

► The following problem is NP-hard:

Given a set of labeled examples S in $\mathbb{R}^d \times \{\pm 1\}$ with the promise that there is a linear classifier with training error 0.01, find a linear classifier with training error ≤ 0.49 .

Potential saving grace:

 Real-world problems we need to solve do not look like reductions from difficult SATISFIABILITY instances.

EMPIRICAL RISK MINIMIZATION

Unforunately, this is not possible in general.

► The following problem is NP-hard:

Given a set of labeled examples S in $\mathbb{R}^d \times \{\pm 1\}$ with the promise that there is a linear classifier with training error 0.01, find a linear classifier with training error ≤ 0.49 .

Potential saving grace:

 Real-world problems we need to solve do not look like reductions from difficult SATISFIABILITY instances.

Plan:

- Study the linearly separable instances: where there is a linear classifier with zero training error.
- Study convex loss functions, which can be efficiently minimized, and how they are related to classification error.

LINEARLY SEPARABLE

INSTANCES

EASY CASE: LINEARLY SEPARABLE DATA

Suppose there is a linear classifier with **zero training error** on S: for some $w_\star \in \mathbb{R}^d$ and $\theta \in \mathbb{R}$,

$$y(\langle \boldsymbol{w}_{\star}, \boldsymbol{x} \rangle - \theta) > 0$$
, for all $(x, y) \in S$.

In this case, we say the training data is linearly separable.

HOMOGENEOUS LINEAR CLASSIFICATION

Linear classifiers $f_{w,\theta}$ with $\theta=0$ are called homogeneous linear classifiers.

HOMOGENEOUS LINEAR CLASSIFICATION

Linear classifiers $f_{\boldsymbol{w},\theta}$ with $\theta=0$ are called homogeneous linear classifiers.

Claim: There is a mapping $\phi\colon\mathbb{R}^d\to\mathbb{R}^{d+1}$ with the following property. For any linear classifier $f_{\boldsymbol{w},\theta}\colon\mathbb{R}^d\to\{\pm 1\}$, there is a homogeneous linear classifier $f_{\tilde{\boldsymbol{w}},0}\colon\mathbb{R}^{d+1}\to\{\pm 1\}$ such that $f_{\boldsymbol{w},\theta}(\boldsymbol{x})=f_{\tilde{\boldsymbol{w}},0}(\phi(\boldsymbol{x}))$ for all $\boldsymbol{x}\in\mathbb{R}^d$.

HOMOGENEOUS LINEAR CLASSIFICATION

Linear classifiers $f_{\boldsymbol{w},\theta}$ with $\theta=0$ are called homogeneous linear classifiers.

Claim: There is a mapping $\phi\colon\mathbb{R}^d\to\mathbb{R}^{d+1}$ with the following property. For any linear classifier $f_{\boldsymbol{w},\theta}\colon\mathbb{R}^d\to\{\pm 1\}$, there is a homogeneous linear classifier $f_{\widetilde{\boldsymbol{w}},0}\colon\mathbb{R}^{d+1}\to\{\pm 1\}$ such that $f_{\boldsymbol{w},\theta}(\boldsymbol{x})=f_{\widetilde{\boldsymbol{w}},0}(\phi(\boldsymbol{x}))$ for all $\boldsymbol{x}\in\mathbb{R}^d$.

Proof: Let $\phi(\boldsymbol{x}) := (\boldsymbol{x},1)$ —i.e., add a (d+1)-th coordinate that always takes value 1. For any $\boldsymbol{w} \in \mathbb{R}^d$ and $\theta \in \mathbb{R}$, let $\widetilde{\boldsymbol{w}} := (\boldsymbol{w},-\theta)$.

FINDING A HOMOGENEOUS LINEAR SEPARATOR

Problem: given training data S in $\mathbb{R}^d \times \{\pm 1\}$, determine whether or not there exists $\pmb{w} \in \mathbb{R}^d$

$$y\langle \boldsymbol{w},\boldsymbol{x}\rangle>0,\quad \text{for all } (\boldsymbol{x},y)\in S;$$

(and find such a vector if one exists).

FINDING A HOMOGENEOUS LINEAR SEPARATOR

Problem: given training data S in $\mathbb{R}^d \times \{\pm 1\}$, determine whether or not there exists $\pmb{w} \in \mathbb{R}^d$

$$y\langle \boldsymbol{w}, \boldsymbol{x} \rangle > 0$$
, for all $(\boldsymbol{x}, y) \in S$;

(and find such a vector if one exists).

This is a system of |S| linear inequalities over d variables, and hence can be solved in polynomial time using algorithms for **linear programming** (e.g., ellipsoid algorithm, interior point).

FINDING A HOMOGENEOUS LINEAR SEPARATOR

Problem: given training data S in $\mathbb{R}^d \times \{\pm 1\}$, determine whether or not there exists $w \in \mathbb{R}^d$

$$y\langle \boldsymbol{w}, \boldsymbol{x} \rangle > 0$$
, for all $(\boldsymbol{x}, y) \in S$; larger than 0 means correct predication.

(and find such a vector if one exists).

This is a system of |S| linear inequalities over d variables, and hence can be solved in polynomial time using algorithms for **linear programming** (e.g., ellipsoid algorithm, interior point).

If one exists, and the inequalities in fact hold with some non-negligible

"margin"
$$\gamma>0$$
:

$$y\langle \boldsymbol{w}, \boldsymbol{x} \rangle \geq \gamma$$
, for all $(\boldsymbol{x}, y) \in S$;

then there is a very simple algorithm that finds a solution: Perceptron.

the margin is great!!!