STACK OVERFLOW QUESTION TAG PREDICTION

Team:

Mudra Sahu 193050007 Muttineni Navya 193050017 Ankita Singh 19305R002 Tejal Topre 19319R002

OBJECTIVE

- Stack-Overflow Tag Prediction using text in the title and description.
- Important in business- correctly send questions to experts based on tags
- Data in Excel format- contains 6034195 rows (6.75 GB)
- Each row can have multiple tags
- Dataset contains following 4 columns:

```
<ID> < Title> <Body> < Tags>
```

ANALYSIS / RELATED LITERATURE

- Assign multiple tags to one question = multi-label classification problem
- Performance measure 'Accuracy' not enough
- Need high precision and recall for predicted tags F1 score

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

PRE-PROCESSING - ANALYSIS OF TAGS

- Total 31k Tags for entire dataset
- Distribution of tags -highly skewed
- Around 4000 tags enough to cover 98% questions
- Better for multilabel classifier to consider fewer tags-faster
- Removed infrequently occurred tags from the data

PRE-PROCESSING - ANALYSIS OF TAGS

PRE-PROCESSING - ANALYSIS OF QUESTIONS

- Stopwords like "the"," is etc occurs in high frequency-Removed using nltk stopwords library
- Question title- high info content : given 2x weightage
- Stemmed english words
- Seperated code snippets and Html tags using regex
- Converted all characters to small letters
- Removed extra useless words after analysis via word cloud

PRE-PROCESSING - ANALYSIS OF QUESTIONS

Word Cloud for title+body after pre-processing

EXPERIMENTAL APPROACH FOR MODELLING

- Considered two featurizations: Bag of words and TFIDF
- Considered bigram features for both
- Classification : OneVsRest Model used (from Sklearn) for multiclass classification
- Underlying classification models tried: SGD with log loss,
 SGD with hinge loss, logistic regression and linear SVM

EXPERIMENTAL APPROACH FOR MODELLING

- Also performed
 hyperparameter tuning on all
 the models considered using
 gridsearchcv sklearn
- We observed best F1 scores for logistic regression with SGD (for both featurisations)

Classifier	Featurization	Micro f1 score
OVR with SGD, log loss	Bag of words	0.338513366659421 83
OVR with SGD	TfIDF	0.477279733645724 07
OVR with Logistic Regression	Bag of words	0.476624049287135 75
OVR with Logistic Regression	TfIDF	0.465076980848666 9
OVR with SGD Classifier	Bag of Words	0.335088284803552 9
OVR with SGD Classifier	TfIdf	0.489113184790198 7

LANGUAGE & ENVIRONMENT

- Python 3 , Jupyter Notebook ,Google Collab
- Tested using various graphical plots
- Initially considered 10k rows and 100 tags
- Total run on 30% of total data (20 lakh rows) due to GPU limitations - 4000 tags threshold

EFFORT

- Most challenging: working on huge datasets, training time and parameter tuning
- Time distribution :

25% understanding and visualising problem statement

30% preprocessing (tried GuessLang and some less used libraries for better information retrieval)

40% Modelling and hyper-parameter tuning

THANK YOU!