Escola 26 de Agosto

Teoria da repulsão dos pares eletrônicos da camada de valência

A teoria afirma que os pares eletrônicos ao redor do átomo central se distribuem de forma a maximizar a distância entre si, criando uma geometria molecular característica.

A teoria da repulsão dos pares eletrônicos da camada de valência, também conhecida como teoria VSEPR (Valence Shell Electron Pair Repulsion Theory), é uma teoria que descreve a **geometria molecular** das moléculas baseada na ideia de que os pares de elétrons da camada de valência de um átomo central em uma molécula se repulsam e tendem a se distribuir de forma a maximizar a distância entre eles e minimizar a repulsão.

A teoria afirma que os pares eletrônicos ao redor do átomo central se distribuem de forma a maximizar a distância entre si, criando uma geometria molecular característica.

Existem diferentes geometrias possíveis de acordo com o número de pares de elétrons na camada de valência do átomo central. Alguns exemplos incluem:

- **Geometria linear:** ocorre quando há dois pares eletrônicos ao redor do átomo central, formando um ângulo de 180°.

- Geometria angular (ou bent): ocorre quando há dois pares eletrônicos ligantes e dois pares não ligantes ao redor do átomo central, formando um ângulo de cerca de 104,5°.

- **Geometria trigonal plana:** ocorre quando há três pares eletrônicos ao redor do átomo central, formando um ângulo de 120°.

- **Geometria tetraédrica:** ocorre quando há quatro pares eletrônicos ao redor do átomo central, formando um ângulo de 109.5°.

- **Geometria piramidal:** ocorre quando há três pares eletrônicos ligantes e um par eletrônico não ligante ao redor do átomo central, formando um ângulo de cerca de 107°.

- Geometria trigonal bipiramidal: ocorre quando há cinco pares eletrônicos ao redor do átomo central, com uma configuração de três pares no plano equatorial e dois pares axiais, formando ângulos de 90° e 120°, respectivamente.

- **Geometria octaédrica:** ocorre quando há seis pares eletrônicos ao redor do átomo central, distribuídos de forma equatorial e axiais, formando ângulos de 90°.

Essas são apenas algumas das geometrias possíveis, e a teoria da repulsão dos pares eletrônicos da camada de valência fornece uma explicação geral para a geometria molecular observada em várias moléculas. A teoria é amplamente utilizada na química para prever a geometria molecular e as propriedades físicas e químicas das substâncias.

NÚMERO DE LIGAÇÃO DO ÁTOMO CENTRAL (Y)	NÚMERO DE ELÉTRONS LIVRES NO ÁTOMO CENTRAL (Z)	FÓRMULA	GEOMETRIA MOLECULAR
2	0	AY ₂	Linear
3	0	AY ₃	Trigonal plana
4	0	AY ₄	Tetraédrica
5	0	AY ₅	Trigonal Bipiramide
6	0	AY ₆	Octaédrica
2	1	AY ₂ Z	Angular (ou bent)
2	2	AY ₂ Z ₂	Angular (ou bent)
2	3	AY ₂ Z ₃	Linear
3	1	AY ₃ Z	Trigonal piramidal
3	2	AY ₃ Z ₂	Forma de T
4	1	AY ₄ Z	Gangorra
4	2	AY ₄ Z ₂	Quadrada
5	1	AY ₅ Z	Pirâmide de base quadrada

A = Número de átomo central

Y = Número de ligação do átomo central

Z = Número de elétrons livres no átomo central

Exercícios

- 1. Explique por que a molécula de água (H₂O) possui geometria angular e não linear, mesmo com dois átomos de hidrogênio ligados ao oxigênio.
- A molécula de metano (CH₄) é tetraédrica. Justifique a geometria da molécula com base na Teoria da Repulsão dos Pares de Elétrons da Camada de Valência (VSEPR).
- 3. A molécula de dióxido de carbono (CO₂) é linear. Sabendo disso, explique por que ela é considerada apolar, mesmo contendo ligações polares.
- 4. Compare as geometrias das moléculas NH₃ e BF₃, explicando a diferença entre suas formas espaciais.
- 5. Uma molécula com fórmula geral AB₂ pode apresentar diferentes geometrias. Dê dois exemplos com a mesma fórmula AB₂, mas com geometrias diferentes, explicando o porquê da diferença.
- 6. Explique a relação entre o número de pares de elétrons ao redor do átomo central e a polaridade da molécula.
- 7. Considere a molécula do trióxido de enxofre (SO₃). Determine sua geometria e justifique sua apolaridade, apesar de conter átomos diferentes.
- 8. Um estudante afirmou que a molécula de NH₃ é plana. Corrija a afirmação e explique a real forma da molécula com base nas interações entre pares de elétrons.
- 9. Determine e justifique a geometria das moléculas a seguir:
 - a) HCN
 - b) NO₃-
 - c) PCI₃
- 10. Considere a molécula de dióxido de enxofre (SO₂). Determine sua geometria molecular e comente sobre a polaridade da molécula com base na sua forma.