Esame di Progettazione di Sistemi Digitali – Traccia B 6 febbraio 2025 – canale MZ – prof.ssa

Cognome Nome ZHANG ZHEWE

Matricola

n54

Gli studenti con DSA devono svolgere i primi 4 esercizi

Esercizio 1 (7 punti)

Progettare un circuito sequenziale con due ingressi x1, x0, che codificano i caratteri B, R, I nel seguente

modo:

x1, x0	carattere
00	В
01	R
1-	/

Il circuito ha 2 uscite z1 e z0. L'automa fornisce z1=1 quando riceve in ingresso la sequenza BRB e z0=1 quando riceve in ingresso la sequenza BRIB. Usare un FF SR per il bit più significativo. Sono ammesse sovrapposizioni. Disegnare il circuito.

	Manya	7	20
BRB	1	1	0
BRIB	Of An &	0	1

Αυτ	B	e i	Larks
oo Sin	Seloo	Sinlo	Sinloo
on Sp	58/00	SER/OG	Sin/00 Sin/00
" SER	Solio	Sinloo	SBRI/00
11 Seal	Se/01	Sinlo	Sinloo
			minimo

imput gis codificati

TAVOLA STATI FUTURI:

X,XOY,YO	Y, Y.	7, 30	5, 1,	do
0000	01	00	08	11
00 10	01	10	01	$\frac{1}{1}$
0100	00	00000	0 8	0000
1000	00	00000	0 % 0 % 0 0 1	00-0
1100	00	00	180	0010

ESPRESSIONI BOOLEANE:

$$d_{0}: \frac{x_{1}x_{0}}{x_{0}} = \frac{x_{1}x_{0} + x_{1}y_{1}y_{0}}{x_{1}y_{0}} = \frac{x_{1}x_{0} + x_{1}y_{1}y_{0}}{x_{1}y_{0}}$$

Disegno del circuito sull'ultimo foglio]

Esercizio 2 (4 punti)

Progettare un circuito che indichi quanti giorni ha un dato mese. Il mese è specificato da un input a 4 bit, $a_3a_2a_1a_0$. Ad esempio, se gli input sono (0001), il mese è gennaio e se gli input sono (1100), il mese è dicembre.

Le uscite del circuito, Y₁ Y₀, devono essere uguali a 11 solo quando il mese specificato dagli input ha 31 giorni, devono essere uguali a 10 quando il mese specificato ha 30 giorni, devono essere uguali a 01 quando il mese specificato ha 28 giorni. Le uscite devono essere uguali a 00 nei casi rimanenti.

Scrivere le espressioni minime SOP e POS delle due uscite.

Realizzare Y₀ utilizzando un multiplexer 4-a-1.

93959'9	Y	Y, Yo1
0000	No	0 0
0001	31	1)
0010	28	0 1
0011	31	1 1
0100	30	10
0101	31	1 1
0110	30	10
0111	31	+ 1
1000	31	Sal Jakon
1001	30	10
1010	31	1 1
1011	30	10
1100	31	1 1
1101	No	00
11 10	No	00
1111	NO	00

Y, SOP minimale =
$$\overline{3}_{3}\overline{3}_{2} + \overline{3}_{3}\overline{3}_{2} + \overline{3}_{3}\overline{3}_{0} + \overline{3}_{3}\overline{3}_{1}\overline{3}_{0}$$

Y, Pos minimale = $(\overline{3}_{3}+\overline{3}_{2}+\overline{3}_{0})(\overline{2}_{3}+\overline{3}_{2}+\overline{3}_{0})(\overline{2}_{3}+\overline{3}_{2}+\overline{3}_{1})$

Yo Sop minimale = $\overline{3}_{3}\overline{3}_{0} + \overline{3}_{2}\overline{3}_{1}\overline{3}_{0} + \overline{3}_{2}\overline{3}_{1}\overline{3}_{0}$

Yo Pos minimale = $(\overline{3}_{3}+\overline{2}_{0})(\overline{3}_{3}+\overline{3}_{1}+\overline{2}_{0})(\overline{3}_{2}+\overline{3}_{1}+\overline{3}_{0})$

Esercizio 3 (5 punti) Analizzare il circuito sequenziale in figura. Mostrare tutti i passaggi del procedimento.

D	Q'
0	0
l	

Q,Q,x,x,	D, Do	7, 20	a, a,
0000	0 0 0 0 0	0000	0000
0 (00	00000	0000	0000
1010	0 0 0 0	1000	0 1 0 0 0 0 0 0
1100	0000	0000	0000

Autowa

STATI

$$00 \rightarrow Sin$$
 $01 \rightarrow Soo$
 $10 \rightarrow Sooio$
 $11 \rightarrow S_8$

11/01

sequenciale ticonosce 0001000 e 001011

-> INPUT

001000, do come output 10; (x,=010; x=000) 001011, dè come output 01, (x,=011; x==001)

Il circuito ammette sorrapposizioni.

Esercizio 4 (6 punti)

- ullet Si consideri il circuito in figura e si scriva l'espressione della funzione f
- Trasformare tale espressione, usando assiomi e regole dell'algebra di Boole, in forma normale SOP
- Stendere la tavola di verità di f
- Scrivere l'espressione minimale POS di f

) Moltiplicazione + complemento (es: abc. bc. C) b.b=0 quindi tullo 0)

abcd	t /	
0000	0	
0001	00	
0010	0	
0011	_ \	bcd
0100	0	
0101	l -	bEd
0110	0	
0111	1	-s abcd
1000	0	
1001	١	- abid
1010	0	101
1011		- bcd
1100	0	40
1101	1 1	bed
1110	1	fabc
1111	1 1	1 3 - 00

	FUEL36.)	
abod	0001	11 10
00	(0) (O)	16
QI		16
1.1	10/1	1-1-
10	10/0/1	10
Q (100-0

(c+d)(b+d)(a+1111d)(a+b+c) -> f pos minimole.

matricola

Esercizio 5 (4 punti) Convertire il numero in base 10 X = -320 nel formato IEEE 754 half-precision e convertirlo in esadecimale. Poi convertire il numero esadecimale Y = 5800 in una stringa binaria e interpretare tale stringa come un numero IEEE 754 half-precision. Calcolare X+Y in formato IEEE 754 half-precision. Mostrare il risultato nel formato IEEE 754 e infine convertirlo in esadecimale.

$$X = -320_{(10)} = -101000000_{(2)} = -1,01 \times 2^{4}$$
 $320_{160} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)} = 0$
 $320_{(10)}$

Y= (0; 10110; 1100000000)

esponente di x = 10111esponente di y = 10110 porta y = 10111 -> 0,111 $y = \langle 0; 10111; | 11100 00000 \rangle$

differenza tra due munoni senza considerare il segna, e infine motto il segno -

Esercizio 6 (4 punti)

Data l'espressione $f = (\bar{a} + \overline{b(b + cd)}) \oplus (\bar{a} + cd)$ semplificarla e portarla in forma normale SOP. Scrivere la forma canonica di f. Realizzare infine f con soli operatori NAND.

$$f = (\overline{a} + \overline{b}(b + \overline{cd})) \oplus (\overline{a} + \overline{cd})$$

$$(\overline{a} + \overline{b} + (\overline{b} + \overline{cd})) \oplus (\overline{a} + \overline{cd})$$

$$(\overline{a} + \overline{b} + \overline{b} + \overline{cd}) \oplus (\overline{a} + \overline{cd})$$

$$(\overline{a} + \overline{b}) \oplus (\overline{a} + \overline{cd})$$

$$(\overline{a} + \overline{b}) \oplus (\overline{a} + \overline{cd})$$

$$(\overline{a} + \overline{b}) \oplus (\overline{a} + \overline{cd})$$

$$(\overline{a} + \overline{cd}) + (\overline{a} + \overline{b}) \oplus (\overline{a} + \overline{cd})$$

$$ab(\overline{a} + \overline{cd}) + (\overline{a} + \overline{b}) \oplus (\overline{a} + \overline{ad})$$

$$ab(\overline{a} + \overline{abcd} + (\overline{a} + \overline{b})) \oplus (\overline{a} + \overline{cd})$$

$$ab(\overline{a} + \overline{abcd} + \overline{abc} + \overline{abd})$$

$$ab(\overline{a} + \overline{abc} + \overline{abd})$$

De Horgan.

De Morgan.

2 Assorbinento.

) Espondo XOR.

2 De Horgan + Involuzione.

2 Holtiplicovan.

2 Complonento.

) Complenerto.

abcd + abc (d+d) + ab (c+o) d (dempoteurs)
comonico sop -> abcd + abcd + abcd + abcd + abcd) (dempoteurs)

ALL TAKEN

DISEGNO CIRCUITO ESERCIZIO 1.

matricola_____