Egzamin z matematyki 1 (WIŚGiE/IŚ, termin pierwszy), 10/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{3}{x^4} - \frac{3}{\sqrt[4]{x^3}}\right)'$, $\left(\frac{\sin x}{\arcsin x}\right)'$, $\left(e^{2x}\cos(3x+2)\right)'$.

Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $f(x) = \ln x$ w okolicy $x_0 = 1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj uzyskany wzór do wyznaczenia przybliżonej wartości ln 1,1.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = x^4 + 4x^3 - 4$ $4x^2 - 24x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{x+17}{x^2-x-6} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{2} \left(x^2 - \frac{1}{x^2}\right) dx, \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{\sin^2 x + 1}.$

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = x^2 + x$, y = 3 - x. Wykonaj rysunek!

Zadanie 7 (0-20 pkt.) W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 3x^2 - 5x - 2$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj pogladowy wykres funkcji oraz stycznej.

Zadanie 8 (0-20 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami y = x, y = 2x, x = 2.

Egzamin z matematyki 1 (WIŚGiE/IŚ, termin pierwszy), 10/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{3}{x^4} - \frac{3}{\sqrt[4]{x^3}}\right)'$, $\left(\frac{\sin x}{\arcsin x}\right)'$, $\left(e^{2x}\cos(3x+2)\right)'$.

Zadanie 2 (0-10 pkt.) Zapisz wzór Taylora dla funkcji $f(x) = \ln x$ w okolicy $x_0 = 1$ z dokładnością do wyrazów drugiego rzędu. Wykorzystaj uzyskany wzór do wyznaczenia przybliżonej wartości ln 1,1.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = x^4 + 4x^3 - 4x^3 + 4x^3 - 4x^3 + 4x^3 - 4x^3 + 4x^3 - 4$ $4x^2 - 24x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{x+17}{x^2-x-6} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{2} \left(x^2 - \frac{1}{x^2}\right) dx, \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{\sin^2 x + 1}.$

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = x^2 + x$, y = 3 - x. Wykonaj rysunek!

Zadanie 7 (0-20 pkt.) W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 3x^2 - 5x - 2$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-20 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami y=x, y = 2x, x = 2.

Egzamin z matematyki 1 (WIŚGiE/IŚ, termin pierwszy), 10/02/2023

Zadanie 1 (0-10 pkt.) Oblicz pochodne: $\left(\frac{3}{x^4} - \frac{3}{\sqrt[4]{x^3}}\right)'$, $\left(\frac{\sin x}{\arcsin x}\right)'$, $\left(e^{2x}\cos(3x+2)\right)'$. **Zadanie 2 (0-10 pkt.)** Zapisz wzór Taylora dla funkcji $f(x) = \ln x$ w okolicy $x_0 = 1$ z dokładnością do

wyrazów drugiego rzędu. Wykorzystaj uzyskany wzór do wyznaczenia przybliżonej wartości ln 1,1.

Zadanie 3 (0-10 pkt.) Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji: $y = x^4 + 4x^3 - 4x^3 + 4x^3 - 4x^3 + 4x^3 - 4x^3 + 4x^3 - 4$ $4x^2 - 24x$.

Zadanie 4 (0-10 pkt.) Oblicz całkę: $\int \frac{x+17}{x^2-x-6} dx$.

Zadanie 5 (0-10 pkt.) Oblicz całki oznaczone: $\int_{1}^{2} \left(x^2 - \frac{1}{x^2}\right) dx, \int_{0}^{\frac{\pi}{2}} \frac{\cos x dx}{\sin^2 x + 1}.$

Zadanie 6 (0-10 pkt.) Wyznacz pole obszaru ograniczonego liniami $y = x^2 + x$, y = 3 - x. Wykonaj rvsunek!

Zadanie 7 (0-20 pkt.) W oparciu o definicję oblicz pochodną podanej funkcji $f(x) = 3x^2 - 5x - 2$ w punkcie $x_0 = 1$. Zapisz równanie stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$, naszkicuj poglądowy wykres funkcji oraz stycznej.

Zadanie 8 (0-20 pkt.)

W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami y = x, y = 2x, x = 2.