Linearly independent and dependent

Linearly independent

A subset $\{v_1, v_2,v_n\}$ of a vector space V is said to be linearly independent if whenever $c_1, c_2,c_n \in R$ such that $c_1v_1 + c_2v_2 + + c_nv_n = 0$ then $c_1 = c_2 = = c_n = 0$

Linearly dependent

A non empty finite subset $\{v_1, v_2,v_n\}$ of a vector space V is said to be linearly dependent if there exists scalars $c_1, c_2,c_n \in R$ (**not all zero**)such that $c_1v_1 + c_2v_2 + + c_nv_n = 0$

Ex 1 if v_1 = zero vector , then the set is linearly dependent . we may choose c_1 = 1 and all other c_i = 0, this is a non trivial combination that produces zero. i.e. $1v_1 + 0v_2 + + 0v_n = 1 \times 0 + 0 + + 0 = 0$

Ex 2: The Column of the Matrix

$$A = \left[\begin{array}{rrrr} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{array} \right]$$

are linearly dependent , since the 2nd column is 3 times the first, the combination of columns with weights -3,1,0,0 gives the zero vector. i.e. say $A=\begin{bmatrix}C_1 & C_2 & C_3 & C_4\end{bmatrix}$, then $-3C_1+1C_2+0C_3+0C_4=0$

The rows are also linearly dependent, row 3 is two times row 2 minus five times row1. i.e. say

$$A = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \end{bmatrix}$$
, then $R_3 - 2R_2 + 5R_1 = 0$

EX 3

The Column of this Triangular Matrix are Linearly Independent

$$A = \left[\begin{array}{rrr} 3 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{array} \right]$$

Consider a linear combination of the columnsthat makes zero

Solve Ac = 0

$$c_1 \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

it means $3c_1 + 4c_2 + 2c_3 = 0$, $0c_1 + 1c_2 + 5c_3 = 0$, $0c_1 + 0c_2 + 2c_3 = 0$ i.e.

$$c_3 = 0, c_2 = 0, c_1 = 0$$

So column of A are Linearly Depandent.

and null space of A contains only zero vector

A similar reasoning applies to the rows of A, which are also independent. Suppose

$$c_1(3,4,2) + c_2(0,1,5) + c_3(0,0,2) = (0,0,0)$$

. From the first components we find $3c_1 = 0$ or $c_1 = 0$. Then the second components give $c_2 = 0$, and finally $c_3 = 0$.

Note: The columns of A are independent exactly when $N(A) = \{zerovector\}$

Note: It is the columns with pivots that are guaranteed to be independent

Ex 4 The columns of the n by n identity matrix are independent:

$$I = \begin{bmatrix} 1 & 0 & \cdot & 0 \\ 0 & 1 & \cdot & 0 \\ \cdot & \cdot & \cdot & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: To check any set of vectors $v_1, ..., v_n$ for independence, put them in the columns of A.Then solve the system Ac = 0;

- 1. The vectors are dependent if there is a solution other than c = 0.
- 2. With no free variables (rank n), there is no nullspace except c = 0; (i.e. $N(A) = \{0\}$)the vectors are independent.
- 3. If the rank is less than n, at least one free variable can be nonzero and the columns are dependent.

Note: A set of n vectors in \mathbb{R}^m must be linearly dependent if n > m.

Ex 5 These three column in \mathbb{R}^2 can not be independent:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}$$

Sol: To find the combination of the columns producing zero we solve Ac = 0

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} = U$$

If we give the value 1 to the free variable c_3 , then back-substitution in Uc = 0 gives $c_2 = -1$, $c_1 = 1$

i.e. if $A = [C_1, C_2, C_3]$ then $C_1 - C_2 + C_3 = 0$

Exercise 2.3.1: Choose three independent columns of V, then make two other choices. Do the same for A. You have found bases for which spaces?

$$U = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix}, A = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 4 & 6 & 8 & 2 \end{bmatrix}$$

Solution: Let $U = \begin{bmatrix} U_1 & U_2 & U_3 & U_4 \end{bmatrix} A = \begin{bmatrix} C_1 & C_2 & C_3 & C_4 \end{bmatrix}$ Consider, $A = \begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 4 & 6 & 8 & 2 \end{bmatrix} \xrightarrow{R_4 \to R_4 - 2R_1}$

$$\begin{bmatrix} 2 & 3 & 4 & 1 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U$$

i.e. U is echelon form of A.

Note: Columns of A which have pivot are linearly independent.

Case (i) U_1, U_2, U_4 are L.I.(using the note).

Case (ii) U_1, U_3, U_4 are L.I.

as consider $aU_1 + bU_3 + cU_4 = 0$

$$a \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 4 \\ 7 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 0 \\ 9 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2a + 4b + c \\ 0a + 7b + 0c \\ 0a + 0b + 9c \\ 0a + 0b + 0c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} 9c = 0 & c = 0 \\ 7b = 0 & \Rightarrow b = 0 \\ 2a + 4b + c = 0 & a = 0 \end{cases}$$

Case (iii) U_1, U_3, U_4 are L.I. as consider $aU_2 + bU_3 + cU_4 = 0$

$$a \begin{bmatrix} 3 \\ 6 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 4 \\ 7 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 0 \\ 9 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3a + 4b + c \\ 6a + 7b + 0c \\ 0a + 0b + 9c \\ 0a + 0b + 0c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} 9c = 0 & c = 0 \\ 6a + 7b = 0 \\ 3a + 4b + c = 0 \end{cases} \Rightarrow b = 0$$

$$3a + 4b + c = 0 \Rightarrow a = 0$$

Note: Columns of a matrix A are linearly independent which are corresponding to the pivot column of echelon matrix of A.

Case (i) C_1, C_2, C_4 are L.I.(using the note).

Case (ii) C_1, C_3, C_4 are L.I.

as we can see consider $aC_1 + bC_3 + cC_4 = 0$

Aug. matrix=
$$[S|0]$$
 $\begin{bmatrix} 2 & 4 & 1 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 4 & 8 & 2 & 0 \end{bmatrix} \xrightarrow{R_4 \to R_4 - 2R_1} \begin{bmatrix} 2 & 4 & 1 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$$\Rightarrow \begin{array}{c} 2a + 4b + c = 0 \\ \Rightarrow & 7b = 0 \\ 9c = 0 \end{array} \Rightarrow \begin{array}{c} c = 0 \\ \Rightarrow & b = 0 \\ a = 0 \end{array}$$

Case (iii) C_2, C_3, C_4 are L.I.

consider $aC_2 + bC_3 + cC_4 = 0$

consider
$$aC_2 + bC_3 + cC_4 = 0$$

$$\begin{bmatrix} C_2 & C_3 & C_4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad say \quad B \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Aug. matrix=
$$[B|0]$$
 $\begin{bmatrix} 3 & 4 & 1 & 0 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 9 & 0 \\ 6 & 8 & 2 & 0 \end{bmatrix} \xrightarrow{R_4 \to R_4 - 2R_1} \begin{bmatrix} 3 & 4 & 1 & 0 \\ 0 & 6 & 7 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$$3a + 4b + c = 0 \qquad c = 0$$

$$\Rightarrow 6b + 7c = 0 \qquad \Rightarrow b = 0$$

$$9c = 0 \qquad a = 0$$

The all three cases, we found bases for $R^{4\times3}$ space.

Exercise 2.3.3: Decide the dependence or independence of

- (a) the vectors (1,3,2), (2,1,3) and (3,2,1)
- (b) the vectors (1,3,-2), (2,1,-3) and (-3,2,1).

Solution:

(a)

$$a \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} + b \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + c \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad say \quad A \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Aug. matrix=
$$[A|0]$$
 $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 1 & 2 & 0 \\ 2 & 3 & 1 & 0 \end{bmatrix} \xrightarrow[R_3 \to R_3 - 2R_1]{R_2 \to R_2 - 3R_1} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -5 & -7 & 0 \\ 0 & -1 & -5 & 0 \end{bmatrix} \xrightarrow[R_3 \to -5R_3 + R_2]{R_3 \to -5R_3 + R_2} \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -5 & -7 & 0 \\ 0 & 0 & 18 & 0 \end{bmatrix}$

$$3a + 2b + 3c = 0 \qquad c = 0$$

$$3c + 2b + 3c = 0 \qquad b = 0$$

$$-5b - 7c = 0 \qquad b = 0$$

$$18c = 0 \qquad a = 0$$

Vectors are L.I.

(b) Consider 1(1, -3, 2) + 1(2, 1, -3) + 1(-3, 2, 1) = (1 + 2 - 3, -3 + 1 + 2, 2 - 3 + 1) = (0, 0, 0) \Rightarrow Vectors are L.D.

Exercise 2.3.5: If w_1, w_2, w_3 are independent vectors, show that the differences $v_1 = w_2 - w_3$, $v_2 = w_1 - w_3$ and $v_3 = w_1 - w_2$ are dependent. find a combination of v's gives zero.

Solution: Consider $av_1 + bv_2 + cv_3 = 0$

$$a(w_2 - w_3) + b(w_1 - w_3) + c(w_1 - w_2) = 0$$

 $(b+c)w_1 + (a-c)w_2 + (-a-b)w_3 = 0$

Since w_1, w_2, w_3 are L.I.

So
$$b + c = 0$$
, $a - c = 0$, $-a - b = 0$

$$b = -c, a = c, b = -a$$

$$a=-b=c$$
take $a=1,\,b=-1,\,c=1$

$$v_1 - v_2 + v_3 = 0$$

Exercise 2.3.8: Suppose v_1, v_2, v_3, v_4 are vectors in \mathbb{R}^3 .

- (a) the four vectors are dependent because
- (b) The two vector v_1 and v_2 will be dependent if
- (c) The vectors v_1 and (0,0,0) are dependent because

Solution: (a) Since $dim(R^3) = 3$

Therefore each base of R^3 contains exactly 3 vectors.

So collection of vectors which are more than 3 are linearly dependent.

So four vectors are L.D.

(b) Let $av_1 + bv_2 = 0$ for $\{v_1, v_2\}$ should be dependent.

So atleast one of a or b is nonzero.

say $a \neq 0$

So $v_1 = \frac{-b}{a}v_2$ So v_1, v_2 are dependent if $\exists \alpha \neq 0$ s.t. $v_1 = \alpha v_2$

(C) Consider $0.v_1 + 1(0,0,0) = (0,0,0)$ $a = 0, b = 1 \neq 0$

So v_1 and (0,0,0) are L.D.