Nacionalinio egzaminų centro direktoriaus 2015 m. liepos 2 d. įsakymu Nr. (1.3)-V1-80

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA

Pakartotinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	C	В	C	A	В	В	D	В	D	D

II dalis

11	2 <i>arba</i> du					
12	12.1 72 cm ² arba 72	12.2 60° arba $\frac{\pi}{3}$	12.3 $\vec{b} - \vec{a}$			
13	13.1 $\frac{2}{6}$ arba $\frac{1}{3}$ arba 0,(3) 13.2 $\frac{8}{36}$ arba $\frac{2}{9}$ arba 0,(2)					
14	8					
15	15 min <i>arba</i> 15					
16	16.1 60° arba $\frac{\pi}{3}$	16.2 $y = \sqrt{3}x - 1$ a $y = \sqrt{3}(x - \sqrt{3}) + 2$	rba			
17	28					
18	n=4 arba 4		•			

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19		7	
19.1		1	
	$a = \frac{42 - 2h}{2}$ arba $a = 21 - h$.	1	Už teisingą atsakymą.
19.2		1	
	$V(h) = h(32-2h)(21-h) = 2h^3 -$	1	Už pritaikytą teisingą stačiakampio
	$-74h^2 + 672h$.		gretasienio tūrio formulę.
19.3		3	
	$V'(h) = 6h^2 - 148h + 672,$	1	Už rastą teisingą funkcijos išvestinę.
	$6h^2 - 148h + 672 = 0,$		
	$h_1 = 6,$ $h_2 = 18\frac{2}{3}$ (netinka).	1	Už apskaičiuotus teisingus kritinius taškus.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Už pagrindimą, kad $h = 6$ yra maksimumo taškas.
10.4	Ats.: $h = 6$ cm $arba$ 6.		
19.4	,	2	
	a=b,		
	32-2h=21-h,	1	
	h=11 cm,	1	Už gautą teisingą <i>h</i> reikšmę, kai dėžutės
	$V(11) = 1100 \text{ (cm}^3).$	1	pagrindas yra kvadratas.
	Ats.: 1100 cm ³ arba 1100.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		3	
	$a_1 = 48, \ a_2 = 46, \ a_3 = 44,$	1	Už sprendimo būdo pasirinkimą.
	$a_1 = 48, \ a_2 = 46, \ a_3 = 44,$ d = -2,		
	$a_n = 2,$ $48 + (n-1) \cdot (-2) = 2,$		
	$48 + (n-1) \cdot (-2) = 2$,		
	n = 24,	1	Už surastą teisingą mėnesių skaičių.
	$S_{24} = \frac{48+2}{2} \cdot 24 = 600$ eurų.	1	Už gautą teisingą atsakymą.
	Ats.: 600 eurų arba 600.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		4	
21.1		1	
	$y = ax^2,$ $10 = a \cdot 60^2,$	1	Už teisingą pagrindimą.
	$a = \frac{1}{360}.$	_	C 2 401011184 P48.11141114.
21.2		3	
	$S = 2 \int_{0}^{60} \left(10 - \frac{1}{360} x^{2} \right) dx =$	1	Už sudarytą teisingą integralą plotui apskaičiuoti.
	$= 2\left(10x - \frac{1}{360} \cdot \frac{1}{3}x^3\right)\Big _0^{60} =$	1	Už surastą teisingą pirmykštę funkciją.
	$= 2\left(600 - \frac{1}{1080} \cdot 216000\right) = 800 \text{ m}^2.$	1	Už apskaičiuotą teisingą plotą.
	Ats.: 800 m ² arba 800.		

Pastaba. Jei mokinys plotą apskaičiavo $S = \frac{2}{3}S_{AA_1B_1B} = \frac{2}{3} \cdot 1200 = 800$ – jam skiriami visi taškai.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		9	
22.1		1	
	Ats.: $\frac{3}{4}$ arba 0,75.	1	Už teisingą atsakymą.
22.2		2	
	I būdas		
	$\sin(3x) - \sin x \cdot \cos(2x) =$		
	$= \sin x \cdot \cos(2x) + \cos x \cdot \sin(2x) -$	1	Už teisingą formulės $sin(\alpha + \beta)$
	$-\sin x \cdot \cos(2x) =$		pritaikymą, kai $\alpha = x$, $\beta = 2x$.
	$=\cos x\cdot\sin(2x).$	1	Už atliktus teisingus pertvarkymus.
	II būdas		
	$\sin(3x) - \sin x \cdot \cos(2x) = \cos x \cdot \sin(2x),$		
	$\sin(3x) = \sin x \cdot \cos(2x) + \cos x \cdot \sin(2x),$	1	Už atliktus teisingus pertvarkius.
	$\sin(3x) = \sin(3x).$	1	Už teisingą sinuso kampų sumos
			formulės taikymą.

			,
22.3		3	
	$\cos x \cdot \sin(2x) = 0,$ $\cos x = 0 \text{ arba } \sin(2x) = 0,$ $x = \frac{\pi}{2} + \pi k, k \in \mathbb{Z},$ πk	1 2	Už teisingo lygties sprendimo būdo pasirinkimą. Po vieną tašką už kiekvieną teisingai
22.4	$x = \frac{\pi k}{2}, k \in \mathbf{Z}.$ $Ats.: x = \frac{\pi k}{2}, k \in \mathbf{Z}.$	3	išspręstą lygtį.
	$f'(x) = (\cos x)' \cdot \sin(2x) +$	1	Už teisingai pritaikytą sudėtinės
	$+\cos x \cdot (\sin(2x))' = -\sin x \cdot \sin(2x) +$		funkcijos arba sandaugos išvestinės radimo taisyklę.
	$+2\cos x \cdot \cos(2x),$ $f'(45^\circ) = -\frac{\sqrt{2}}{2}$	1	Už gautą teisingą išvestinę.
	$f'(45^\circ) = -\frac{\sqrt{2}}{2}.$ $Ats.: -\frac{\sqrt{2}}{2}.$	1	Už teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
23		4	
	$\vec{a} \cdot \vec{b} = \sqrt{2 - x} + x = 0,$	1	Už teisingos lygties sudarymą.
	$\sqrt{2-x} = -x,$		
	$2-x=x^2,$	1	Už teisingą lygties pertvarkymą į
	$x^2 + x - 2 = 0$,		kvadratinę lygtį.
	$x_1 = -2$, $x_2 = 1$ (netinka).	1	Už gautus teisingus kvadratinės lygties sprendinius.
	Ats.: $x = -2$.	1	Už teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
24		4	
24.1		1	
	Ats.: 9.	1	Už teisingą atsakymą.
24.2		3	
	I būdas $n \cdot C_{n+2}^2 + (n+2) \cdot C_n^2 =$ $= n \cdot \frac{(n+2)(n+1)}{2} + (n+2)\frac{n(n-1)}{2} =$ $= \frac{n(n+2)}{2}(n+1+n-1) = n^3 + 2n^2$.	1 1 1	Už bent vieną teisingą reiškinį trikampių kiekiui apskaičiuoti. Už teisingą reiškinį trikampių kiekiui apskaičiuoti. Už atliktus teisingus pertvarkius.
	II būdas $C_{2n+2}^{3} - C_{n+2}^{3} - C_{n}^{3} = \frac{(2n+2)(2n+1)2n}{3 \cdot 2 \cdot 1} - \frac{(n+2)(n+1)n}{3 \cdot 2 \cdot 1} - \frac{n \cdot (n-1)(n-2)}{3 \cdot 2 \cdot 1} = n^{3} + 2n^{2}.$	1 1 1	Už bent vieną teisingą derinių skaičių trims taškams pasirinkti. Už teisingą reiškinį trikampių kiekiui apskaičiuoti. Už atliktus teisingus pertvarkius.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		3	
	$OC \perp AC$, todėl $\sin \angle CAO = \frac{OC}{OA}$.	1	Už teisingą sinuso apibrėžimo taikymą.
	Pagal sinusų teoremą: $\frac{OB}{\sin \angle OAB} = \frac{OA}{\sin \angle ABO},$	1	Už teisingą sinusų teoremos taikymą.
	$\frac{\sin \angle OAB}{\sin \angle ABO} = \frac{OB}{OA} = \frac{OC}{OA} = \sin \angle CAO,$ $\sin \angle OAB = \sin \angle CAO \cdot \sin \angle ABO.$	1	Už atliktus teisingus pertvarkius.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		4	
	I būdas		
	S – likusių skaičių suma,		
	P – likusių skaičių sandauga,		
	x – nutrintas skaičius.		
	$3\frac{S+x}{P\cdot x} = \frac{S}{P},$	1	Už sudarytą teisingą lygtį.
	3S + 3x = Sx,		
	3S = x(S-3),		
	$x = \frac{3S}{S - 3},$	1	Už teisingai išreikštą x.
	$x = 3 + \frac{9}{S - 3}.$	1	Už teisingo lygties sprendimo būdo pasirinkimą.
	$S = 4 \Rightarrow x = 12$, netinka, nes $x < S$		P men many
	(x turi būti mažesnis už likusių		
	skaičių sumą).		
	$S = 6 \Rightarrow x = 6$, netinka, nes $x < S$.		
	$S=12 \Rightarrow x=4.$		
	x=4.	1	TTV
	Ats.: x = 4.	1	Už gautą teisingą atsakymą.
	II būdas		
	S – likusių skaičių suma,		
	P – likusių skaičių sandauga,x – nutrintas skaičius.		
	$3 \cdot \frac{S+x}{P \cdot x} = \frac{S}{P},$	1	Už sudarytą teisingą lygtį.
	3S + 3x = Sx,		
	Sx - 3S = 3x,		
	$S = \frac{3x}{x - 3}.$	1	Už teisingai išreikštą S.
	Kai $x=1 \Rightarrow S < 0$ – netinka.		
	Kai $x = 2 \Rightarrow S < 0$ – netinka.		
	Kai $x = 3$ – netinka.	1	Už teisingo lygties sprendimo būdo
	Kai $x = 4$, tai $S = 12 \in \mathbb{N}$.		pasirinkimą.
	Ats.: $x = 4$.	1	Už gautą teisingą atsakymą.