Métricas de calidad de un Modelo de Predicción

MACHINE LEARNING

Docente: Marvin Jiménez

Tipos de métricas según la respuesta

Las métricas de calidad de un modelo predictivo dependen de la naturaleza de la variable respuesta del modelo:

- 1. Variable respuesta cuantitativa
- 2. Variable respuesta cualitativa

Caso 1: Variable respuesta cuantitativa

Dependiendo del interés, las métricas de calidad pueden ser para medir:

- 1. Bondad de ajuste del modelo
- 2. Error de predicción

Medidas de error de predicción

Se dispone de un conjunto de datos (data set) con n observaciones y p variables. Sean:

 y_i : Valor de la variable respuesta de la observación i.

 \hat{y}_i : Predicción del valor de la variable respuesta de la observación i.

Entonces:

 e_i : Error de predicción de la observación i.

$$e_i = y_i - \hat{y}_i$$

Obs	Var. Resp	Pred 1	Pred 2	•••	Pred p
1	233,4	23	1,81	•	1800.000
2	167,9	31	1,54	•	2500.000
3	198,5	18	1,72	•	3400.000
4	210,6	25	1,67	•	1350.000
5	•	•	•	•	•
6	•	•	•	•	•
7	•	•	•	•	•
8	•	•	•	•	•
9	•	•	•	•	•
	•	•	•	•	•
	•	•	•	•	•
	•	•	•	•	•
k	•	•	•	•	•
	•	•	•	•	•
	•	•	•	•	•
n-2	•	•	•	•	•
n-1	•	•	•	•	•
n	•	•	•	•	•

i	у	x_1	x_2	•••	x_p
1	233,4	23	1,81	•	1800.000
2	167,9	31	1,54		2500.000
3	198,5	18	1,72		3400.000
4	210,6	25	1,67	•	1350.000
5	•	•	•	•	•
6	•	•	•	•	•
7	•	•	•	•	•
8	•	•	•	•	•
9	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
k	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
n-2	•	•	•	•	•
n-1	•	•	•	•	•
n	•	•	•	•	•

i	y	x_1	x_2	•••	x_p
1	233,4	23	1,81	•	1800.000
2	167,9	31	1,54	•	2500.000
3	198,5	18	1,72	•	3400.000
4	210,6	25	1,67	•	1350.000
5	•	•	•	•	•
6	•	•	•	•	•
7	•	•	•	•	•
8	•	•	•	•	•
9	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
k	•	•	•	•	•
•	•	•	•	•	•
	•	•	•	•	•
n-2	•	•	•	•	•
n-1	•	•	•	•	•
n	•	•	•	•	•

Mo	del	0	Pre	di	cti	VO
	J. J .					

i	$\widehat{\boldsymbol{y}}_{\boldsymbol{i}}$
1	241,2
2	150,3
3	200
4	215,1
5	•
6	•
7	•
8	•
9	•
	•
	•
	•
k	•
•	•
•	•
n-2	•
n-1	•
n	•

ME (Mean Error)

$$ME = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$

MPE (Mean Percent Error)

$$MPE = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i - \hat{y}_i}{y_i}$$

MSE (Mean Squared Error)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

RMSE (Root Mean Squared Error)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

MAE (Mean Absolute Error)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

MAPE (Mean Absolute Percent Error)

$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|y_i - \hat{y}_i|}{|y_i|}$$

Bibliografía

- Trevor H, Robert T, Jerome F, *The Elements of Statistical Learning*, 2ª Edición, Springer.
- Gareth J, Daniela W, Trevor H, Robert T, An Introduction to Statistical Learning with Applications in R, 6^a Edición, Springer.
- Ethem A, *Introduction to Machine Learning*, 2^a Edición, The MIT Press Cambridge, Massachusetts.
- Max Kuhn, et all., *The caret package*, R CRAN, disponible en http://topepo.github.io/caret/index.html.
- Montgomery, D.; Peck, E.; Vining G.G. (2006). Introducción al análisis de Regresión Lineal.
 (3era Edición).