Critério da Fatoração de Neyman

ESTAT0078 - Inferência I

Prof. Dr. Sadraque E. F. Lucena

sadraquelucena@academico.ufs.br

http://sadraquelucena.github.io/inferencia1

Teorema 7.1: Critério da Fatoração de Neyman

Sejam X_1, \ldots, X_n uma amostra aleatória da distribuição da variável aleatória X com função de densidade (ou de probabilidade) f(x) e função de verossimilhança $L(\theta; x)$. Temos, então, que a estatística $T = T(X_1, \ldots, X_n)$ é suficiente para θ , se e somente se pudermos escrever

$$L(\theta; x) = h(x_1, \dots, x_n)g_{\theta}(T(x_1, \dots, x_n)),$$

em que

- $h(x_1, ..., x_n)$ só envolve $x_1, ..., x_n$ (não envolve θ);
- $g_{\theta}(T(x_1,\ldots,x_n))$ envolve θ e $T(x_1,\ldots,x_n)$.
- Prova: Livro do Bolfarine, pág. 22.

Seja X_1, \ldots, X_n uma amostra aleatória da distribuição de Poisson com parâmetro θ . Use o critério da fatoração para mostrar que $T(x) = \sum_{i=1}^n X_i$ é suficiente para θ .

i Lembrete

$$X \sim \text{Poisson}(\theta)$$
: $f(x) = \frac{e^{-\theta}\theta^x}{x!}$, $x = 0, 1, 2, ...$

Seja X_1, \ldots, X_n uma amostra aleatória da variável $X \sim U(0,\theta)$. Encontre uma estatística suficiente para θ usando o critério da fatoração.

$$X \sim U(a,b):$$

$$f(x) = \frac{1}{b-a} I_{(a,b)}(x) \quad \text{em que} \quad I_{(a,b)}(x) = \begin{cases} 1, & a < x < b, \\ 0, & \text{caso contrário.} \end{cases}$$

Seja X_1, \ldots, X_n uma amostra aleatória da distribuição $N(\mu, 1)$. Encontre uma estatística suficiente para μ usando o critério da fatoração.

(i) Lembrete

$$X \sim N(\mu, \sigma^2)$$
: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$

Seja X_1, \ldots, X_n uma amostra aleatória da distribuição Bernoulli (θ) . Encontre uma estatística suficiente para θ usando o critério da fatoração.

(i) Lembrete

 $X \sim \text{Bernoulli}(\theta)$: $f(x) = \theta^x (1 - \theta)^{1-x}, x = 0, 1$

Fim

