Phénomènes linéaires

1. Fonctions affines

1.1. Vocabulaire

Définition 1:

Une fonction f est dite **affine** lorsqu'elle s'écrit f(x) = ax + b (x est la variable et a et b deux constantes fixées).

En outre:

- a s'appelle le **coefficient directeur** ou la **pente** de f.
- b s'appelle l' **ordonnée à l'origine** de f.

Propriété 1 : b est la valeur de f pour x=0. On lit donc b sur l'axe (Oy) à l'intersection de cet axe et de la droite représentant f.

Définition 2 : Lorsque b=0, on dit que f est une fonction **linéaire** : on a alors f(x)=ax ; on passe de x à f(x) en multipliant par un nombre a fixé : f(x) et x sont donc **proportionnelles**.

Remarque 1 : Les droites verticales, d'équation x = un nombre fixé, ne sont pas des fonctions. Toutes les autres droites du plan sont des fonctions affines.

1.2. Variations

Propriété 2 : Les variations d'une fonction affine sont données directement par le signe de son coefficient directeur :

- a > 0 lorsque f est strictement croissante;
- a = 0 lorsque f est constante (droite horizontale y = constante);
- a < 0 lorsque f est strictement décroissante.

Exercice 1: Donner les coefficients a et b ainsi que le le sens de variation des fonctions affines f(x)=2x+5=0 et g(x)=18-3x=0

1.3. Méthodes

Méthode 1 : Calcul de a :

On repère deux points E et F sur la droite, et on calcule la pente : $a=rac{\Delta y}{\Delta x}=rac{y_F-y_E}{x_F-x_E}$

Remarque 2 : Δx représente l'accroissement en x et Δy représente l'accroissement en y correspondant lorsque l'on va de E vers F.

Méthode 2 : Calcul de b :

On repère un point E sur la droite, on remplace x et f(x) par les coordonnées x_E et y_E de E, et :

- **ou bien** on résout rapidement pour trouver b : $y_E = ax_E + b \iff y_E ax_E = b$;
- **ou bien** on écrit $y = a(x x_E) + y_E$ et on développe et on simplifie.

Bien sûr, on contrôle que la valeur de b obtenue par le calcul est bien celle lue graphiquement sur l'axe (Oy).

Exercice 2: On donne A(-2; -1), B(-2; 2) et B(3; 1).

Calculer les équations des droites (AB), (AC) et (BC) et dire lesquelles correspondent à des fonctions affines.

1.4. Équation ax + b = 0 et ax + b = cte

Propriété 3 : Une fonction affine s'annule en $x = \frac{-b}{a}$.

Exercice 3:

A. Résoudre:

1.
$$2x + 5 = 0$$
;

2.
$$18 - 3x = 0$$
;

B. Résoudre:

1.
$$2x + 5 = 29$$
;

2.
$$-3x + 18 = -9$$

Exercice 4 : Degrés Celsius et Fahrenheit Beaucoup de pays anglos-saxons utilisent le degré Fahrenheit (°F).

Pour eux, l'eau bout à 212°F et gèle à 32°F.

On note x une mesure de température en degrés Celsius (°C) et f(x) la mesure de température correspondante en degrés Fahrenheit.

On sait que f est une fonction affine.

- 1. Écrire les données de l'énoncé sous la forme $f(\ldots) = \ldots$
- 2. En déduire l'expression de la fonction f.
- 3. Quelle est la température du corps humain en °F?
- 4. Exprimer le zéro absolu (-273,15°C) en °F.
- 5. 100°F est-elle une température supportable?
- 6. Existe-t-il une température qui s'écrit avec le même nombre en °C et en °F ?

Exercice 5 : Élévation du niveau de la mer

Des observations par satellite ont permis d'établir qu'entre 1993 et 2023, le niveau moyen global des mers a augmenté de 0,10m.

- 1. En considérant que l'augmentation est linéaire, calculer l'élévation du niveau de la mer entre 2023 et 2050.
- 2. En considérant que l'augmentation est linéaire, combien de temps faudrait-il pour qu'une élévation de 1m se produise ?
- 3. Des relevés historiques notent une élévation de 0,20m entre 1901 et 2018. Peut-on réellement faire confiance au modèle linéaire ?

Exercice 6: Offre et demande

Un constructeur automobile fabrique un nouveau modèle de voitures électriques.

- Le prix de vente v(x), en euros, d'un véhicule dépend du nombre de véhicules susceptibles d'être vendus par mois. Cette fonction s'appelle la fonction d'offre ; elle est définie par v(x) = 0.5x + 6000.
- Le prix d'achat d'un véhicule dépend du nombre de véhicules d'être achetés par mois. Cette fonction s'appelle la fonction demande ; elle est définie par d(x) = -0.375x + 13000.

En utilisant GeoGebra:

1. Représenter les fonctions d'offre et de demande.

Il suffit de les saisir dans la boîte de saisie (à gauche ou en bas).

Pour zoomer : on utiliser l'outil loupe ou bien la molette de la souris.

Pour contracter/dilater l'échelle sur les axes : cliquer sur l'axe choisi et en maintenant enfoncé le bouton, déplacer la souris dans la direction de l'axe.

- 2. Quel est le sens de variation de la fonction d'offre ? Quel est celui de la fonction de demande ?
- 3. On appelle prix d'équilibre le prix pour lequel l'offre est égale à la demande.

 Déterminer graphiquement les coordonnées du point d'intersection de deux droites et en déduire le point d'équilibre.

 Sur Géogébra : cliquer sur l'intersection (ou bien dans le menu point, sélectionner «intersection» et cliquer sur une droite puis sur l'autre).
- 4. Vérifier le prix d'équilibre conjecturé par un calcul à la main.

2. Suites et suites arithmétiques

2.1. Suites : cas général

Remarque 3 : Intuitivement, une suite numérique est une liste infinie de nombres (réels), que l'on «numérote» par des **indices entiers** (en commençant par par un indice de 0 ou de 1).

Exemple 1 : Une suite u (comment est-elle construite ?) : $u_0=5$; $u_1=10$; $u_2=7.5$; $u_3=8.75$; $u_4=8.125$

Définition 3:

- Une suite est une fonction de \mathbb{N} (ensemble des entiers naturels) vers \mathbb{R} (ensemble des nombres réels) : elle fait correspondre, à des indices entiers, des nombres réels.
- Notation: On note (u_n) (avec des parenthèses) la suite u_1 ; u_2 ; u_3 ; ..., ou plus simplement u.
- Le nombre u_n est appelé le n-ième terme de la suite (u_n) . On peut aussi dire «terme de rang (ou indice) n».

Exercice 7: On note (u_n) la suite des nombres pairs et (v_n) la suite des nombres impairs.

- 1. Trouver une formule donnant les termes généraux u_n et v_n en fonction de n.
- 2. Dans les deux cas, quelle est la «règle» qui permet de passer d'un terme au suivant ?

2.2. Suites arithmétiques

Définition 4 : Une suite (u_n) est **arithmétique** s'il existe un réel r (indépendant de n) tel que pour tout rang n, on a $u_{n+1}=u_n+r$

Le réel r s'appelle la **raison** de la suite.

Remarque 4 : On passe d'un terme de la suite au suivant en **ajoutant** un même nombre r appelé la raison de la suite ; attention : r peut être négatif.

Propriété 4:

- Si r > 0, la suite est strictement croissante et croît vers $+\infty$;
- Si r = 0, la suite est constante (toujours égale à u_0);
- Si r < 0, la suite est strictement décroissante et décroît vers $-\infty$.

Propriété 5 : Une suite arithmétique (u_n) correspond aux valeurs prises par une fonction affine f(x)=ax+b pour x=n, c'est à dire pour des valeurs entières de x; en outre, on a a=r et $b=u_0$ (cf les graphiques précédents). On en déduit que pour tout entier n, on a $u_n=u_0+rn$, ou (en partant de n=1), $u_n=u_1+r(n-1)$.

Exercice 8:

- 1. u est la suite arithmétique : 2;7;12;17;... Écrire u_n en fonction de n.
- 2. Calculer u_{100} .
- 3. v est une suite arithmétique dont la raison est 8 et $v_{50}=100$. Que vaut v_0 ?

2.3. Modéliser avec des suites arithmétiques

Exercice 9 : Intérêts simples

En partant de 100€ d'économies et en ajoutant 15€ par mois, quelle somme est mise de côté en deux ans ? Identifier le terme initial et la raison de cette suite. En combien de temps atteint-on 300€ ?

Exercice 10:

Un fermier plante des pommiers en carré. Afin de protéger ces arbres contre les vents dominants, il plante des conifères sur deux côtés du verger.

Ci-contre, figurent les dispositions des pommiers et des conifères pour n de 1 à 3.

- 1. Combien de conifères seront utiles pour protéger 25 pommiers
- 2. Combien de conifères seront utiles pour protéger 25 rangées de pommiers
- 3. Combien de rangées de pommiers peut-on protéger avec 500 conifères ?

Exercice 11: Patterns

Chaque encadré présente un motif évolutif pour les cas $n=0,\,n=1$ et n=2. Pour chacun :

- 1. Dessiner le cas n=3.
- 2. Trouver une expression permettant de calculer le nombre de points en fonction de n quelconque (ou bien à minima pour n=10).

