

Курс по Математической статистике

Даниил Потапов

Руководитель Лаборатории Искусственного Интеллекта

РСХБ

О себе

Что-то профессиональное:

- Стаж 11 лет, 4 компании
- GIS, Front-end, Full-stack
- Open source & open edu

Что-то необычное:

- 10 лет занимался шахматами
- Арахнофоб
- Писал читы для игр

Что-то личное:

- 3,5к часов в CS 1.6
- Люблю научную фантастику
- Коллекционер книг и игр

Что-то неприличное:

- ругаюсь %#&
- КМС по литрболу
- Не умею готовить еду

Команда курса

VİTMO

Даниил Потапов

Рук-ль Лаборатории ИИ РСХБ

Жукова Алина

Head of Analytics

Novakid

Юрий Котов

Senior Data Engineer

Т-Банк

Жигалов Августин

Data Engineer

РСХБ

О курсе

- 6 лекций
- 6 семинаров
- 4 домашки
- 18 часов на занятия
- 6 недель интенсива

О курсе

- 6 лекций
- 6 семинаров
- 4 домашки
- 18 часов на занятия
- 6 недель интенсива

Орг. моменты

- Занятия понедельник и пятница
- Одна пара за раз, 18:40 20:10
- Телеграм чат

Еще орг. моменты

- Материалы курса будем выкладывать в Github (приватная репа)
 - https://github.com/sharthZ23/ltmo_mathstat_2024
- Надо будет позже внести свои Github ники
 - Если у вас нет аккаунта на Github, то стоит завести
- Там же мы закрепим ментора за каждым студентом
 - Тем не менее, не стесняйтесь задавать вопросы в общем чате
 - Будем начислять доп. баллы тем, кто помогает своим однокурсникам
- Об этом всем дополнительно еще в Telegram чате проинформируем
 - И заведем отдельный Google sheet

План курса

VİTMO

6 тем (лекция + семинар)

- 1. Введение в МатСтат
- 2. Статистические оценки
- 3. Доверительные интервалы
- 4. Параметрические критерии
- 5. Непараметрические критерии
- 6. МатСтат на службе у бизнеса

Домашки

- 4 ДЗ, для тем с 2-ой по 5-ую
- 25 баллов за каждую
 - 100 баллов макс за курс
- Оценка за курс (экзамен)
 - 5 от 91 баллов
 - 4 от 74 до 90
 - 3 от 60 до 73
- Зачет оценка 3 и выше

Расписание

	Понедельник	Пятница	ДЗ №1	Д3 №2	ДЗ №3	Д3 №4
Неделя 1	30 сентября Лекция №1	4 октября Семинар №1				
Неделя 2	7 октября Лекция №2	11 октября Семинар №2	7 октября Выдача			
Неделя 3	14 октября Лекция №3	18 октября Семинар №3		14 октября Выдача		
Неделя 4	21 октября Лекция №4	25 октября Семинар №4	21 октября Дедлайн		21 октября Выдача	
Неделя 5	28 октября Лекция №5	1 ноября Семинар №5		28 октября Дедлайн		28 октября Выдача
Неделя 6	Среда 6 ноября Лекция №6	8 ноября Семинар №6			4 ноября Дедлайн	8 ноября Дедлайн

Вопросы по орг. вопросам?

План лекции

- Про что ТерВер и МатСтат
- Основные термины ТерВера
 - о Случайные величины
 - Характеристики случайных величин
- Основные термины МатСтата
 - Генеральная совокупность и выборка
 - Виды статистик
- Статистика на реальных данных
 - Независимые величины
 - о Корреляция

План лекции

- Про что ТерВер и МатСтат
- Основные термины ТерВера
 - о Случайные величины
 - Характеристики случайных величин
- Основные термины МатСтата
 - Генеральная совокупность и выборка
 - Виды статистик
- Статистика на реальных данных
 - Независимые величины
 - о Корреляция

Случайность вокруг нас

Демон Лапласа

Пьер-Симон де Лаплас (1775)

«Мы можем рассматривать настоящее состояние Вселенной как следствие его прошлого и причину его будущего. Разум, которому в каждый определённый момент времени были бы известны все силы, приводящие природу в движение, и положение всех тел, из которых она состоит, будь он также достаточно обширен, чтобы подвергнуть эти данные анализу, смог бы объять единым законом движение величайших тел Вселенной и мельчайшего атома; для такого разума ничего не было бы неясного и будущее существовало бы в его глазах точно так же, как прошлое»

Два подхода к вероятности

ИІТМО

То́мас Ба́йес 1702, Лондон — 17 апреля 1761

Ро́налд Э́йлмер Фи́шер 17 февраля 1890 — 29 июля 1962)

Байесовский подход

- Лаплас развил байесовские идеи исходя из детерминизма
- Демон Лапласа Точное предсказание вселенной в случае возможности измерения положения каждого атома, но издержки огромны (парадокс разрешим)
- Возникающая неопределенность результат огромного разрыва между совершенством природы и несовершенством человеческого познания
- Таким образом, случайность следствие нашей ограниченности
- Вероятность способ измерения случайности, причем субъективно

Частотный подход

- Фишер считал, что наука не может рассматривать вероятность как нечто субъективное
- Можно оценивать вероятность только тех событий, которые происходят более одного раза
- Вопрос "Какова вероятность, что кандидат N победит на выборах?" не имеет ответа, так как событие уникально и не обладает частотой
- Вероятность должна быть объективной

TepBep vs МатСтат

Мир вокруг нас порождает данные мириадами различных процессов.
 Механизмы порождения изучаются теорией вероятностей

• Наблюдаемые данные – объект изучения математической статистики. По выборкам из этих данных мы пытаемся понять, каким процессом они порождены

Модель

VİTMO

Модель – наше предположение о том, как устроен "мир", то есть какие есть процессы и какие данные они порождают. Все это базируется на наших знаниях и предположениях

Задачи МатСтата

- "Мир" порождает данные неизвестным нам механизмом
- Мы изучаем данные и их свойства
- На основе данных пытаемся восстановить структуру механизма
- Фиксация своих предположений и гипотез в виде моделей
- Восстановление структуры механизма на основе выбранной модели
- Проверка корректности нашей модели на имеющихся данных

План лекции

- Про что ТерВер и МатСтат
- Основные термины ТерВера
 - о Случайные величины
 - Характеристики случайных величин
- Основные термины МатСтата
 - Генеральная совокупность и выборка
 - о Виды статистик
- Статистика на реальных данных
 - Независимые величины
 - Корреляция

Случайная величина

Случайная величина X – произвольная измеримая функция, заданная на пространстве элементарных событий Ω и принимающая значения в R

Это означает, что каждому элементарному событию w мы будем ставить в соответствие некоторое число X(w)

Случайная величина

VİTMO

Дискретная - множество значений конечно или счётно

- Значение игральной кости
- Число звонков в КЦ
- Число кликов

Непрерывная - бесконечное число значений

- Bec
- Рост
- Зарплата
- Время

Распределение задается таблицей

x_i	1	2	3	4
p_i	1	1	1	3
7.50	16	4	2	16

Распределение задается функцией плотности

Площадь равна вероятности попасть на отрезок от 0 до 2

Дискретные случайные величины

Функция распределения – функция, которая определяет вероятность события X ≤ x, то есть

$$F(x) = \mathbb{P}(X \le x) = \sum \mathbb{P}(X = k) \cdot [X \le x],$$
$$[X \le x] = \begin{cases} 1, X \le x \\ 0, \text{иначе} \end{cases}$$

X	-12	0	10
$\mathbb{P}(X=k)$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$

Непрерывные случайные величины

Функция распределения – функция, которая определяет вероятность события X ≤ x, то есть

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt$$
, $f(t)$ — плотность

Математическое ожидание и дисперсия

Математическое ожидание – среднее значение случайной величины

$$\mathbb{E}(X) = \sum_{i=1}^{n} k \cdot \mathbb{P}(X = k) \qquad \qquad \mathbb{E}(X) = \int_{-\infty}^{+\infty} t \cdot f(t) \, dt$$

Дисперсия – мера разброса случайной величины вокруг её среднего

$$Var(X) = \mathbb{E}(X - \mathbb{E}(X))^2 = \sum_{k=1}^{N} (k - \mathbb{E}(X))^2 \cdot \mathbb{P}(X = k)$$

$$Var(X) = \mathbb{E}(X - \mathbb{E}(X))^{2} = \int_{-\infty}^{+\infty} (t - \mathbb{E}(X))^{2} \cdot f(t) dt$$

Дисперсия и среднеквадратическое отклонение

Более простая формула для дисперсии

$$Var(X) = \mathbb{E}(X - \mathbb{E}(X))^{2}$$

$$= \mathbb{E}(X^{2} - 2 \cdot X \cdot \mathbb{E}(X) + \mathbb{E}^{2}(X))$$

$$= \mathbb{E}(X^{2}) - 2 \cdot \mathbb{E}(X) \cdot \mathbb{E}(\mathbb{E}(X)) + \mathbb{E}^{2}(X)$$

$$= \mathbb{E}(X^{2}) - 2 \cdot \mathbb{E}(X) \cdot \mathbb{E}(X) + \mathbb{E}^{2}(X)$$

$$= \mathbb{E}(X^{2}) - \mathbb{E}^{2}(X)$$

Среднеквадратическое отклонение - корень от дисперсии (чтобы убрать "квадрат")

$$\sigma(X) = \sqrt{Var(X)}$$

Мода

Мода – значение, которому соответствует наибольшая вероятность (для дискретной случайной величины) или локальный максимум плотности распределения (для непрерывной)

Квантиль и медиана

VİTMO

Квантиль уровня γ — это такое число q, что

Медиана — это квантиль-0.5

$$\mathbb{P}(X < Med(X)) = \mathbb{P}(X > Med(X)) = 0.5$$

План лекции

I/İTMO

- Про что ТерВер и МатСтат
- Основные термины ТерВера
 - о Случайные величины
 - Характеристики случайных величин

• Основные термины МатСтата

- Генеральная совокупность и выборка
- Виды статистик
- Статистика на реальных данных
 - Независимые величины
 - Корреляция

Генеральная совокупность и выборка

Генеральная совокупность – это все объекты, которые нас интересуют при исследовании

Выборка – это та часть генеральной совокупности, по которой мы собрали данные для исследования

генеральная совокупность

Репрезентативность

- Выборки позволяют сделать выводы о всей генеральной совокупности
- Чтобы выводы были корректными, выборка должны быть репрезентативной
- Репрезентативная выборка отражает свойства генеральной совокупности

Вы хотите исследовать средний рост в своем городе. Как будете формировать свою выборку?

- Опросить своих друзей
- Опросить людей на автобусной остановке
- Опросить своих знакомых из спортивного кружка

Репрезентативность

- Выборки позволяют сделать выводы о всей генеральной совокупности
- Чтобы выводы были корректными, выборка должны быть репрезентативной
- Репрезентативная выборка отражает свойства генеральной совокупности

Вы хотите исследовать средний рост в своем городе. Как будете формировать свою выборку?

Нет Опросить своих друзей

да Опросить людей на автобусной остановке

Нет Опросить своих знакомых из спортивного кружка

Получение репрезентативности

Один из способов достижения репрезентативности случайный отбор наблюдений

Терминология

Выборка размера $n-X_1, X_2, ..., X_n \sim iid$

Каждое наблюдение можно рассматривать как случайную величину, которая имеет такое же распределение как и генеральная совокупность

Базовые предположения:

- Наблюдения независимы друг от друга
- Наблюдения имеют одинаковое распределение (как у генеральной совокупности)

iid расшифровывается как identically independently distributed (независимы и одинаково распределены)

Статистика

Выборка: $X_1, X_2, ..., X_n \sim iid$

Статистика – функция от наблюдений (среднее, медиана, максмин и тд)

Каждая статистика – случайная величина, так как она вычисляется на основе случайной выборки, т.е. на основе других случайных величин

Виды статистик

ИІТМО

Меры центральной тенденции - это числа, которые могут описать множество значений в наборе данных одним числом.

Отвечают на вопрос "На что похожие типичные данные для выборки"

Примеры: среднее, медиана, мода

Меры разброса отвечают на вопрос "Как сильно данные могут отличаться от типичных для этой выборки"

Примеры: дисперсия, размах, отклонение

Среднее и медиана

Все статистики - аналоги характеристик случайных величин, подсчитанных на выборке (иногда называют выборочными)

Среднее
$$\bar{x} = \frac{X_1 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Для подсчета **медианы** надо отсортировать выборку и взять середину (или среднее двух чисел в середине, если выборка четного размера)

Свойства

- Среднее и медиана отражают типичное или ожидаемое значение
- Среднее чувствительно к выбросам в данных, медиана нет
- Соответственно, если в выборке нет выбросов, они примерно совпадают

Выборочная дисперсия и отклонение

Выборочная дисперсия

$$\hat{\sigma}^2 = \frac{(X_1 - \bar{x})^2 + \dots (X_n - \bar{x})^2}{n} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{x})^2 \qquad \qquad \hat{\sigma}^2 = \bar{x}^2 - \bar{x}^2$$

Стандартное отклонение

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$$
 лет = $\sqrt{\text{лет в квадрате}}$

Несмещенная выборочная дисперсия

$$s^{2} = \frac{(X_{1} - \bar{x})^{2} + \cdots (X_{n} - \bar{x})^{2}}{n - 1} = \frac{1}{n - 1} \sum_{i=1}^{n} (X_{i} - \bar{x})^{2}$$

Перцентиль

Перцентиль порядка k — это такое число, что k% выборки меньше этого числа

- Проще всего вычислять его по упорядоченной выборке $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$
- **Квартили** перцентили с шагом в 0.25 $x_{(0.25\cdot[n+1])}$ $x_{(0.5\cdot[n+1])}$ $x_{(0.75\cdot[n+1])}$
- Интерквантильный размах $IQR = x_{(0.75\cdot[n+1])} x_{(0.25\cdot[n+1])}$

План лекции

VİTMO

- Про что ТерВер и МатСтат
- Основные термины ТерВера
 - о Случайные величины
 - Характеристики случайных величин
- Основные термины МатСтата
 - Генеральная совокупность и выборка
 - Виды статистик
- Статистика на реальных данных
 - Независимые величины
 - Корреляция

Эмпирическая функция распределения

Функция распределения – функция, которая определяет вероятность события $X \le x$

Эмпирическая функция распределения — функция, которая определяет для каждого x частоту события $X \le x$

$$\widehat{F}_n(x) = \widehat{\mathbb{P}}(X \le x) = \frac{1}{n} \sum_{i=1}^n [X_i \le x]$$

[] - индикаторная функция
$$[X_i \leq x] = \begin{cases} 1, X_i \leq x \\ 0, \text{ иначе} \end{cases}$$

Эмпирическая функция распределения

Чем больше выборка, тем чаще ступеньки и тем больше эмпирическая функция распределения похожа на теоретическую (чем больше данных - тем лучше)

Независимость случайных величин

ИІТМО

- Случайные величины часто взаимосвязаны между собой
- Нужен какой-то способ измерять взаимосвязь между ними

Независимость случайных величин

Независимость заключается в том, что события не связаны, а значит их вероятности не влияют друг на друга

Говорят, что события А и В независимы, если

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Говорят, что случайные величины Х и Ү независимы, если

$$F(x,y) = \mathbb{P}(X \le x, Y \le y) =$$

$$\mathbb{P}(X \le x) \cdot \mathbb{P}(Y \le y) = F_X(x) \cdot F_Y(y)$$

Тоже самое для плотностей

$$f(x,y) = f_X(x) \cdot f_Y(y)$$

Ковариация

Ковариация – это мера, показывающая степень совместной изменчивости двух случайных величин.

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}(X)) \cdot (Y - \mathbb{E}(Y))]$$

Свойства

- Положительная ковариация указывает на то, что величины имеют тенденцию изменяться в одном направлении (одна увеличивается, и другая тоже увеличивается), тогда как отрицательная ковариация указывает на противоположное изменение
- Если случайные величины независимы, то их ковариация равна 0
- Важно! Обратное неверно, если ковариация равна 0, то величины могут быть зависимыми
- Если величины Х и У зависимы, то

$$\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y) + Cov(X, Y)$$

$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$$

Корреляция

Ковариация имеет размерность равную произведению размерностей случайных величин. Если X – деньги, Y – вес, ковариация измеряется в деньги · вес

Это неудобно ⇒ вводится безразмерный коэффициент корреляции:

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X) \cdot \sigma(Y)}$$

Коэффициент корреляции характеризует тесноту и направленность линейной связи между случайными величинами и принимает значение от -1 до 1

Выборочные аналоги:

(корреляция Пирсона)

$$\widehat{Cov}(X,Y) = \overline{xy} - \bar{x} \cdot \bar{y} = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} y_i\right)$$

$$\widehat{\rho}(X,Y) = \frac{\overline{xy} - \bar{x} \cdot \bar{y}}{\widehat{\sigma}_x \cdot \widehat{\sigma}_y}$$

Корреляция Пирсона

VITMO

Игра "Угадай корреляцию" - https://www.quessthecorrelation.com/

Корреляция Спирмена

Корреляция Пирсона улавливает только линейные зависимости.

Корреляция Спирмена, напротив, улавливает "монотонность"

Корреляция Спирмена

Корреляция Спирмена – мера силы монотонной взаимосвязи. Вычисляется как корреляция Пирсона между рангами наблюдений.

Правила выставления ранга

- 1. Порядковый номер наблюдения ранг
- 2. Если встречаются несколько одинаковых значений, им присваивается одинаковое значение ранга, равное среднему арифметическому их порядковых номеров

Пример:	X	Y
Выборка:	10 , 8, 6, 7, 4, 10 , 9, 5	9, 9, 4, 5, 6, 8, 10, 7
Порядок:	7 , 5, 3, 4, 1, 8 , 6, 2	6, 7, 1, 2, 3, 5, 8, 4
Ранг:	7.5 , 5, 3, 4, 1, 7.5 , 6, 2	6.5, 6.5, 1, 2, 3, 5, 8, 4
	$r_{\!\scriptscriptstyle \mathcal{X}}$	r_y

 $\hat{\rho}_{S}(X,Y) = \hat{\rho}_{D}(r_{X},r_{Y}) \approx 0.645$

Корреляция != Причинность

Ложная корреляция

- ◆•• The average distance between Venus and Mercury as measured on the first day of each month · Source: Caclculated using Astropy
- BLS estimate of nursing assistants in Indiana · Source: Bureau of Larbor Statistics

2012-2022, r=0.714, r2=0.510, p<0.05 · tylervigen.com/spurious/correlation/2732

Ложная корреляция

Корреляция между величинами может быть вызвана общей причиной:

- Общий тренд в данных
- Спрос на мороженое и число грабежей коррелируют из-за погоды
- Цены на различные продукты могут коррелировать из-за инфляции

Мир сложный, но этим он и прекрасен :)

Литература

Что почитать в параллель прохождению курса

- Занимательная статистика. Манга Син Такахаси
 - Там целая серия книг <u>Лабиринт</u>
- Математическая статистика Н. И. Чернова. сайт НГУ
- Теория вероятностей Н. И. Чернова. сайт НГУ
- The Probability and Statistics Cookbook http://statistics.zone/
- Курс по ТВиМС от Бориса Демешева <u>github</u>

Спасибо за внимание!