

Hacking phone calls and data

Priya Chalakkal

About me: Priya Chalakkal

- Security Researcher at ERNW GmbH, Heidelberg
- Loves telco, pcaps, binaries, logs, protocols and all security stuff in general.
- I am a Blackhoodie
- https://priyachalakkal.wordpress.com/
- o <u>https://insinuator.net/</u>

Agenda

- Introduction
- o Fundamentals
- o Exercise1: Fun with Base Station
- o Exercise 2 : Digging into SIM cards
- Exercise 3 : VoLTE calls
- Hands on time

Introduction - Telephony

Circuit Switched

- PSTN : Public Switched Telephone Networks
- Dedicated circuit "Channel"
- Roots tracked back to 1876
 - Graham Bell got the first patent

Packet Switched

- Data sent as Packets
- Protocol stack: TCP/IP
- Eg:- Internet
- For voice VoIP

Introduction – VoLTE/VoWiFi

VoLTE

- SK Telecom and LG U+Objective South Korea 2012
- Vodafone Germany VoLTE March 2015

VoWiFi:

- Telekom Germany VoWiFi May 2016
- WiFi Calling

History of Mobile Communication

- o GSM (2G)
 - Relies on Circuit Switching
 - Supports only Voice and SMS
- o GPRS
 - Circuit voice and SMS
 - Packet Data
- o UMTS (3G)
 - Similar to GPRS
 - Other network elements evolved

Voice and 4G

- LTE (4G): Supports only packet switching
- Voice VoLTE
- Circuit Switched Fall Back (CSFB)
 - For voice, fall back to circuit switched networks.
- Other approaches
 - Simultaneous voice and LTE etc..

Evolution of mobile phone communications

Exercise1: Fun with Base Station

Alternative cheaper solution

Software - OpenBTS:

https://github.com/RangeNetworks/dev/wiki

My blog post: https://insinuator.net/2018/02/hacking-101to-mobile-data/

Osmo/nitb

 OsmoNITB implements all parts of a GSM Network (BSC, MSC, VLR, HLR, AUC, SMSC) in the box, i.e. in one element.

GGSN

 The GGSN is responsible for the internetworking between the GPRS network and external packet switched networks, such as the Internet or an X.25 network.

SGSN

- The Serving GPRS Support Node (SGSN) is the node that is serving the MS/UE.
- The SGSN keeps track of the location of an individual MS/UE and performs security functions and access control.

Building your own fake base station

Quick look at Exercise

Exercise2: Digging into SIM cards

What is a SIM card?

A subscriber identity module or subscriber identification module (SIM), widely known as a SIM card, is an <u>integrated circuit</u> that is intended to <u>securely</u> store the <u>international mobile subscriber identity</u> (IMSI) number and its related <u>key</u>, which are used to identify and authenticate subscribers on <u>mobile telephony</u> devices (such as <u>mobile phones</u> and <u>computers</u>).

Universal Integrated Circuit Card

- o GSM SIM
- UMTS USIM
- o IMS-ISIM
- CDMA CSIM
- UICC contains CPU, ROM, RAM, EEPROM, and I/O circuits
- OS Java /proprietary

What is inside a SIM?

- o IMSI (15 digits, ITU E.212 standard)
- Key for authentication
- o SSN SIM serial number
- Authentication algorithms
- o Phone book, SMS
- Location area identiy (LAI)
- o etc

IMSI

- o international mobile subscriber identity
- o Private identity IMSI
- Public identity is the phone number

Task – find your IMSI from your phone

SIM reader

Pysim tool:

https://osmocom.org/projects/pysim/wiki

Different types

- o sysmoUSIM-SJS1
- o GrcardSIM
- o <u>GrcardSIM2</u>
- o MagicSIM
- o More
- https://osmocom.org/projects/pysim/wiki

SIMTrace

monitor, analyze and use the power of SIM

SIM sniffing with SIMTrace

SIM sniffing

```
[~/thesis/simtrace/host]> sudo ./simtrace
imtrace - GSM SIM and smartcard tracing
(C) 2010 by Harald Welte <laforge@gnumonks.org>
Entering main loop
ATR APDÚ: 3b 9f 96 80 1f c6 80 31 e0 73 fe 21 1b 66 d0 02 06 e2 0f 18 01 f0
PPS(Fi=9/Di=6) APDU: 00 a4 00 04 02 3f 00 61 2e
VPDU: 00 c0 00 00 2e 62 2c 82 02 78 21 83 02 3f 00 a5 09 80 01 61 83 04 00 00 57 6a 8a 01 05 8b 03
APDU: 00 a4 00 0c 02 2f e2 90 00
APDU: 00 b0 00 00 0a 98 94 20 00 00 21 09 68 85 19 90 00
APDU: 00 a4 00 04 02 2f 05 61 le
VPDU: 00 c0 00 00 1e 62 1c 82 02 41 21 83 02 2f 05 a5 03 80 01 61 8a 01 05 8b 03 2f 04 04 02 00 08
APDU: a4 00 04 02 a4 2f 06
APDU: 61 21 00 c0 00 00 21
PDU: c0 62 1f 82 05 42 21
PDU: 00 38 08 83 02 2f 06
PDU: a5 03 80 01 61 8a 01
PDU: 05 8b 03 2f 06 01 80
PDU: 02 01 c0 88 01 30 90
     00 00 b2 04 04 38 b2
PDU: 80 01 18 a4 06 83 01
     0b 95 01 08 80 01 02
PDU: a0 18 a4 06 83 01 01
PDU: 95 01 08 a4 06 83 01
PDU: 0b 95 01 08 a4 06 83
APDU: 01 0c 95 01 08 80 01
.PDU: 01 90 00 84 01 d4 a4
APDU: 06 83 01 0b 95 01 08
APDU: 90 00 00 a4 00 04 02
APDU: a4 2f 05 61 le 00 c0
APDU: 00 00 le c0 62 lc 82
APDU: 02 41 21 83 02 2f 05
APDU: a5 03 80 01 61 8a 01
APDU: 05 8b 03 2f 06 04 80
APDU: 00 00 b0 00 00 08 b0
PDU: ff 90 00 80 10 00 00
     9d 00 df ff 00 1f e2 00 00 00 c3 eb 00 00 00 01 48 00 50 00 00 00 08 00 00 60 91 0f 00 a4
33 02 2f 00 a5 03 80 01 61 8a 01 05 8b 03 2f 06 07 80 02 00 2c 88 01 f0 91 0f 00 a4 00 04 02 a4 2f
93 80 01 61 8a 01 05 8b 03 2f 06 01 80 02 01 c0 88 01 30 91 0f 00 b2 07 04 38 b2 80 01 1a a4 06 83
```

27

SIM locking

- o PIN 4-8 digits
- 3 failed attempts, locks SIM
- PUK personal unblocking code
- o 10 failed attempts locks the SIM card

Task: SIMtrace – VERIFY pcap for PIN

GSM SIM authenticate while Registration

Source	Destination	sport	dport	Protocol	Info
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=35072
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File DF.GSM-ACCESS
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File 4f52
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 GET RESPONSE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=0
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File ADF
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File EF.PSLOCI
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 GET RESPONSE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=0
127.0.0.1	127.0.1.1	49482	53	DNS	Standard query 0x5e58 A prx1.ernw.net
127.0.1.1	127.0.0.1	53	49482	DNS	Standard query response 0x5e58 A prx1.ernw.net A 62.159.96.83
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=36608
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=36608
127.0.0.1	127.0.0.1	42129	4729	GSM_STM	TSO/TEC 7816-4 SELECT /ADE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 RUN GSM ALGORITHM / AUTHENTICATE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 GET RESPONSE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=40448
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=35584
			.=		

Exercise3: 4G calls

Voice and 4G

- LTE (4G): Supports only packet switching
- Voice VoLTE
- Circuit Switched Fall Back (CSFB)
 - For voice, fall back to circuit switched networks.
- Other approaches
 - Simultaneous voice and LTE etc..

VoLTE Stack

VoIP TCP/UDP IP VoIP GTP TCP/UDP UDP VoIP UDP/TCP IP IP LTE ETH || || PHY PHY PHY UE eNodeB PDN-GW IMS

IMS – IP Multimedia Subsystem

- o Backend: IMS Core
 - o IP Multimedia Subsystem
 - Call session control functions (CSCF)
 - o P-CSCF
 - o S-CSCF
 - o I-CSCF

IMS Signaling

SIP - Session Initiation Protocol

- Similar to HTTP (text based)
- o TCP or UDP
- Contains SDP
 - Session Description Protocol
 - o Describing multimedia session
 - Eg:- audio/video type

SIP call session

	ta.com bild oxy	oxi.com oroxy .					
Alice's softphone		Bob's SIP Phone					
< 180 Ringing F8 <	> 100 Trying F5 <	INVITE F4 > 180 Ringing F6 < 200 OK F9 <					
	ACK F12	'					
	Media Session						
<====================================							
200 OK F14							
		>					


```
INVITE sip: jennifer@csp.com SIP/2.0
Via: SIP/2.0/UDP [5555::a:b:c:d]:1400; branch=abc123
Max-Forwards:70
Route: <sip: [5555::55:66:77:88]:7531;lr>, < sip:orig@scscfl.home.fi;lr>
P-Access-Network-Info:3GPP-E-UTRAN-TDD;utran-cell-id-3gpp=244005F3F5F7
P-Preferred-Service: urn:urn-7:3gpp-service.ims.icsi.mmtel
Privacy: none
From: <sip:kristiina@example.com>;tag=171828
To: <sip:jennifer@csp.com>
Call-ID: cb03a0s09a2sdfglki490333
Cseq: 127 INVITE
Require: sec-agree
Proxy-Require: sec-agree
Supported: precondition, 100rel, 199
Security-Verify: ipsec-3qpp; alg-hmac-sha-1-96; spi-c=98765432;
spi-s=87654321; port-c=8642; port-s=7531
Contact: <sip:[5555::a:b:c:d]:1400;+g.3gpp.icsi-ref="urn%3Aurn-7%"
3gpp-service.ims.icsi.mmtel*
Accept-Contact: *;+g.3gpp.icsi-ref="urn%3Aurn-7%
3gpp-service.ims.icsi.mmtel*
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, OPTIONS
Accept:application/sdp, application/3qpp-ims+xml
Content-Type: application/sdp
Content-Length: (...)
v=0
o=- 2890844526 2890842807 IN IP6 5555::a:b:c:d
c=IN IP6 5555::a:b:c:d
t=0 0
m=audio 49152 RTP/AVP 97 98
a=rtpmap:97 AMR/8000/1
a=fmtp:97 mode-change-capability=2; max-red=220
b=AS:30
b=RS:0
b=RR:0
a=rtpmap:98 telephone-event/8000/1
a=fmtp:98 0-15
a=ptime:20
a=maxptime:240
a=inactive
a=curr: gos local none
```

SIP

SDP

10 37

VolTE sniffing

VoWiFi sniffing

Sniffing VoLTE/VoWiFi Interfaces

VoLTE - rmnet1/rmnet0

```
Sniffing VoLTE interface :
$ adb shell
$ tcpdump -i rmnet1 -n -s 0 -w - | nc -l 127.0.0.1 -p 11233
$ adb forward tcp:11233 tcp:11233 && nc 127.0.0.1 11233 | wireshark -k -S -i -
```


Getting the key

- Use SIMTrace to get the GSM Authenticate message
- o In S6 Samsung, another trick

\$ ip xfrm state

ESP Packets

Decode ESP integrity check

 With the key obtained, verify if it the right key used in the packets

Are the keys used in ESP?

Failed authentication

```
▶ Frame 11: 120 bytes on wire (960 bits), 120 bytes captured (960 bits)

▶ Linux cooked capture

▶ Internet Protocol Version 6, Src: 2a01:59f:89a1:af67:2:3:f992:90bf, Dst: 2a01:598:401:3002::4

▼ Encapsulating Security Payload

    ESP SPI: 0xf5f9672e (4126762798)
    ESP Sequence: 1

▶ Data (44 bytes)

▼ Authentication Data
    [Good: False]
    [Bad: True]

[incorrect, should be 0x102DC16067AB36900D86827A]
```


Set up SA with obtained IK

Success: Key validation

```
Frame 12: 108 bytes on wire (864 bits), 108 bytes captured (864 bits)
Linux cooked capture
Internet Protocol Version 6, Src: 2a01:598:401:3002::4, Dst: 2a01:59f:89a1:af67:2:3:f992:90bf
Encapsulating Security Payload
ESP SPI: 0x000001c17 (7191)
ESP Sequence: 1
Data (32 bytes)

Authentication Data [correct]
[Good: True]
[Bad: False]
```


schalakkal@ernw.de

@priyachalakkal

www.insinuator.net

##IPTABLES ON ANDROID TO ROUTE TRAFFIC TO LAPTOP AND BACK

```
iptables -F
iptables -t nat -F
echo 1 > /proc/sys/net/ipv4/ip forward
RMNET=\`ip addr show dev rmnet1 \[ \]\grep -oE \[ \( \[ ([0-9]\{1,3}\\.)\{3\}[0-9]\{1,3\\\.)\]
WLAN=`ip addr show dev wlan0 | grep inet | grep -oE "([0-9]{1,3}\.){3}[0-9]{1,3}" | grep -v 255`
IMS="10.0.0.1"
MITM="192.168.0.2"
iptables -t nat -A OUTPUT -d $IMS -j DNAT --to-destination $MITM
iptables -t nat -A POSTROUTING -o wlan0 -d $MITM -j SNAT --to-source $WLAN
iptables -t nat -A POSTROUTING -o rmnet1 -s $MITM -d $IMS -j SNAT --to-source $RMNET
iptables -t nat -L -vn
```


Security protocol: EAP-AKA

