Constrained Policy Optimization: A Tale of Regularization and Optimism

Dongsheng Ding

joint work with:
Chen-Yu Wei

Kaiqing Zhang

Alejandro Ribeiro

Motivating application

■ ROBOTICS: ROBOT RESCUE

PennToday

 $\underset{\text{navigation policy}}{\operatorname{maximize}} \quad \text{distance from home}$

subject to obstacle distance \geq margin

CHALLENGE: constraint satisfaction

Context

SUCCESS STORIES OF RL

Go/Atari game, drone/car racing, etc.

- LESSONS LEARNED
 - * importance of policy optimization

simple; scalable; model-free

- * non-convex; optimality w/ one performance metric reward
- * difficult for multiple performance metrics
- WHAT NOW?
 - * applications: robotics, healthcare, finance
 - * policy optimization: tremendous advances

OBJECTIVE

find a policy that
maximizes a performance metric
subject to a constraint on
another performance metric

Framework of RL

CONSTRAINED MDP

$$\pi: \mathcal{S} \text{ (states)} \to \mathcal{A} \text{ (actions)} - \text{a policy}$$

$$V_r^{\pi}(\rho) := \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \, | \, s_0 \sim \rho \,]$$
 — reward value function

$$V_g^\pi(
ho) := \mathbb{E}[\sum_{t=0}^\infty \gamma^t g(s_t, a_t) \, | \, s_0 \sim
ho]$$
 — utility value function

Constrained policy optimization

$$\begin{array}{ccc} \underset{\pi}{\operatorname{maximize}} & V_r^\pi(\rho) & \longrightarrow & \textbf{standard objective} \\ & & \operatorname{subject\ to} & V_g^\pi(\rho) \, \geq \, 0 \\ & & & \downarrow \\ & & & \textbf{policy constraint} \end{array}$$

* limit the policy space to an inequality constraint

2-D LEVEL NONCONVEX CURVES

optimality w/ feasibility

⇒ init. dependent & stochastic

Lagrangian approach

Lagrangian:
$$L(\pi, \lambda) = V_r^{\pi}(\rho) + \frac{\lambda}{\lambda} V_g^{\pi}(\rho)$$

Lagrange multiplier: $\lambda \ (\geq 0)$

composite reward: $r + \lambda g$

■ POLICY OPTIMIZATION

$$\underset{\pi}{\text{maximize}} V_{r+\lambda g}^{\pi}(\rho)$$

multiple solutions, but infeasible

Primal-dual method

dual problem: minimize maximize $V_{r+\lambda g}^{\pi}(\rho)$

primal problem: $\max_{\pi} \min_{\lambda} V_{r+\lambda g}^{\pi}(\rho)$

■ MIN-MAX POLICY OPTIMIZATION

strong duality \implies exchange of min and max

$$\underset{\lambda}{\text{minimize maximize}} \quad V^{\pi}_{r+\lambda \, g}(\rho) \quad = \quad \underset{\pi}{\text{maximize minimize}} \quad V^{\pi}_{r+\lambda \, g}(\rho)$$

OBJECTIVE: find a minimax point $(\pi^\star, \lambda^\star)$

■ PRIMAL-DUAL UPDATE

policy ascent direction: $\nabla_{\pi}V_{r+\lambda \, q}^{\pi}(\rho)$

dual descent direction: $\nabla_{\lambda}V_{r+\lambda q}^{\pi}(\rho)$

$$\pi^+ \leftarrow \pi + \eta \nabla_{\pi} V_{r+\lambda g}^{\pi}(\rho)$$

$$\lambda^+ \leftarrow \lambda - \eta \nabla_{\lambda} V_{r+\lambda g}^{\pi}(\rho)$$

single-time-scale w/ stepsize η

CHALLENGE

single-time-scale primal-dual methods in face of nonconvex Lagrangian

Glimpse of our results

policy convergence w/ (sub) linear error rate

error rate - optimality gap & feasibility gap

- REGULARIZED POLICY GRADIENT PRIMAL-DUAL METHOD
 - * tabular

dimension-free

* function approximation

up to approx. error

- OPTIMISTIC POLICY GRADIENT PRIMAL-DUAL METHOD
 - * tabular

problem-dependent

Ding, Wei, Zhang, Ribeiro, NeurIPS 2023

Regularized method

Regularized Lagrangian approach

entropy-like term:
$$\mathcal{H}(\pi) = \mathbb{E}\left[\sum_{t=0}^{\infty} -\gamma^{t} \log \pi(a_{t} \mid s_{t})\right]$$

■ REGULARIZED LAGRANGIAN

$$L_{\tau}(\pi,\lambda) = V_{r+\lambda g}^{\pi}(\rho) + \tau \left(\mathcal{H}(\pi) + \frac{1}{2}\lambda^{2}\right)$$

"convexify" Lagrangian $V^\pi_{r+\lambda\,q}(
ho)$

OBJECTIVE: find the regularized minimax point $(\pi_{\tau}^{\star}, \lambda_{\tau}^{\star})$

 \star au-near minimax point of $V^\pi_{r+\lambda\,q}(
ho)$

Two pillars

■ Q-VALUE FUNCTION

$$Q_r^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \middle| s_0 = s, a_0 = a\right]$$

■ STATE VISITATION DISTRIBUTION

$$d_{s_0}^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P^{\pi}(s_t = s \mid s_0)$$

$$\star$$
 expectation $d^\pi_
ho(s) = \mathbb{E}_{s_0 \sim
ho} \left[d^\pi_{s_0}(s) \right]$

Regularized policy gradient primal-dual method

policy ascent direction: $Q^\pi_{L_\tau}(s,a) := Q^\pi_{r+\lambda\,g-\tau\log\pi}(s,a)$ dual descent direction: $V^\pi_g(\rho) + \tau\,\lambda$

■ SINGLE-TIME-SCALE PRIMAL-DUAL UPDATE

$$\pi^{+}(\cdot | s) = \underset{\pi' \in \Delta_{\epsilon_{0}}}{\operatorname{argmax}} \langle \pi'(\cdot | s), Q_{L_{\tau}}^{\pi}(s, \cdot) \rangle - \frac{1}{\eta} \mathsf{KL}_{s}(\pi', \pi)$$
$$\lambda^{+} = \underset{\lambda \in \Lambda}{\operatorname{argmin}} \lambda' (V_{g}^{\pi}(\rho) + \tau \lambda) + \frac{1}{2\eta} (\lambda' - \lambda)^{2}$$

* restricted policy set $\Delta_{\epsilon_0} = \{p_a \ge \epsilon_0, \forall a\}$

Non-asymptotic last-iterate performance

distance of
$$(\pi_t, \lambda_t)$$
 to $(\pi_\tau^\star, \lambda_\tau^\star)$: $\mathbb{E}_{s \sim d_\rho^{\pi_\tau^\star}}[\mathsf{KL}_s(\pi_\tau^\star, \pi_t)] + \frac{1}{2}(\lambda_t - \lambda_\tau^\star)^2$

Theorem (informal)

 \bigstar distance of (π_t, λ_t) to $(\pi_\tau^\star, \lambda_\tau^\star)$ is bounded by

$$e^{-\eta \tau t} + \frac{\eta}{\tau}$$

exponential decay up to a ratio

 \star ϵ -near regularized minimax point requires

$$\eta = \epsilon \tau$$
 and $t = \frac{1}{\epsilon \tau^2}$ sublinear rate

optimality gap: $V_r^{\star}(\rho) - V_r^{\pi_t}(\rho)$

feasibility gap: $0 - V_g^{\pi_t}(\rho)$

Implication (informal)

★ ε-optimality gap & ε-feasibility gap require

$$\frac{1}{\epsilon^6}$$
 iterations

sublinear rate

stepsize $\eta=\epsilon^4$

regularization $\tau=\epsilon^2$

Sublinear convergence

$$\sum_{s} \|\pi_t(\cdot \mid s) - \pi^{\star}(\cdot \mid s)\|^2$$

iterations

$$V_g^{\pi_t}(\rho)$$

smaller regularization $\tau \longrightarrow$ larger oscillation

ACCURACY VS OSCILLATION TRADE-OFF

Optimistic method

Optimistic policy gradient primal-dual method

policy ascent direction: $Q^{\pi}_{r+\lambda g}(s,a)$

dual descent direction: $V_g^\pi(
ho)$

policy ascent direction: $Q_{r+\lambda+q}^{\pi^+}(s,a)$

dual descent direction: $V_q^{\pi^+}(\rho)$

■ SINGLE-TIME-SCALE PRIMAL-DUAL UPDATE

prediction step

$$\pi^{+}(\cdot \mid s) = \underset{\pi' \in \Delta}{\operatorname{argmax}} \langle \pi'(\cdot \mid s), Q_{r+\lambda g}^{\pi}(s, \cdot) \rangle - \frac{1}{2\eta} \|\pi' - \hat{\pi}\|_{s}^{2}$$

$$\lambda^{+} = \underset{\lambda \in \Lambda}{\operatorname{argmin}} \lambda' V_{g}^{\pi}(\rho) + \frac{1}{2\eta} (\lambda' - \hat{\lambda})^{2}$$

real step

$$\hat{\pi}^{+}(\cdot \mid s) = \underset{\pi' \in \Delta}{\operatorname{argmax}} \langle \pi'(\cdot \mid s), \frac{Q_{r+\lambda+g}^{\pi^{+}}(s, \cdot)}{Q_{r+\lambda+g}^{\pi^{+}}(s, \cdot)} \rangle - \frac{1}{2\eta} \|\pi' - \hat{\pi}\|_{s}^{2}$$

$$\hat{\lambda}^{+} = \underset{\lambda \in \Lambda}{\operatorname{argmin}} \lambda' \frac{V_{g}^{\pi^{+}}(\rho)}{Q_{g}^{\pi^{+}}(\rho)} + \frac{1}{2\eta} (\lambda' - \hat{\lambda})^{2}$$

Non-asymptotic last-iterate performance

$$\textbf{distance of } (\hat{\pi}_t, \hat{\lambda}_t) \textbf{ to } \Pi^{\star} \times \Lambda^{\star} \textbf{:} \quad \mathbb{E}_{s \, \sim \, d_{\rho}^{\pi^{\star}}} \left[\, \mathsf{Dist}_s(\hat{\pi}_t, \Pi^{\star}) \, \right] + \mathsf{Dist}(\hat{\lambda}_t, \Lambda^{\star})$$

Theorem (informal)

 \star distance of $(\hat{\pi}_t, \hat{\lambda}_t)$ to $\Pi^{\star} \times \Lambda^{\star}$ is bounded by

$$\left(\frac{1}{1+C}\right)^t$$

exponential decay to zero

optimality gap: $V_r^{\star}(\rho) - V_r^{\pi_t}(\rho)$

feasibility gap: $0 - V_g^{\pi_t}(\rho)$

Implication (informal)

★ ε-optimality gap & ε-feasibility gap require

 $\log^2 \frac{1}{\epsilon}$ iterations

linear rate

problem-dependent

Linear convergence

$$\sum_{s} \|\hat{\pi}_t(\cdot \mid s) - \pi^{\star}(\cdot \mid s)\|^2$$

linear rate holds for a range of stepsizes

Summary

■ SINGLE-TIME-SCALE PRIMAL-DUAL METHODS

- * regularized policy gradient primal-dual method
- optimistic policy gradient primal-dual method
- non-asymptotic last-iterate policy convergence

ON-GOING EFFORTS

- constrained policy optimization w/ exploration
- more practical considerations

Thank you for your attention.