UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA/INFORMÁTICA CURSO SUPERIOR DE ENGENHARIA DE COMPUTAÇÃO

GEORGEA DANIELEWICZ GEOVANE VINÍCIUS FERREIRA

SISTEMA PARA RECONHECIMENTO DE PADRÕES EM SINAIS BIOMÉDICOS DE ELETROENCEFALOGRAFIA

TRABALHO DE CONCLUSÃO DE CURSO

CURITIBA

2013

GEORGEA DANIELEWICZ GEOVANE VINÍCIUS FERREIRA

SISTEMA PARA RECONHECIMENTO DE PADRÕES EM SINAIS BIOMÉDICOS DE ELETROENCEFALOGRAFIA

Trabalho de Conclusão de Curso apresentado ao Departamento Acadêmico de Eletrônica/Informática como requisito parcial para obtenção do grau de Engenheiro no Curso Superior de Engenharia de Computação da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Dr. Miguel Antônio Sovier-

zoski

CURITIBA

AGRADECIMENTOS

Texto dos agradecimentos.

RESUMO

DANIELEWICZ, Georgea

e FERREIRA, Geovane Vinícius. Sistema para Reconhecimento de Padrões em Sinais Biomédicos de Eletroencefalografia. 22 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Segundo (PILLAI; SPERLING, 2006), a duração do exame de eletroencefalografia (EEG) realizado em ambulatórios ou clínicas varia entre 20 e 40 minutos e no caso de exames de monitoração este período pode estender-se de horas a dias. Além disso, de acordo com Sovierzoski (2009, p. 2) os exames de EEG são realizados em equipamentos eletrônicos sendo armazenados em formato digital e visualizados com o auxílio de um computador em telas com 10 segundos de sinal. Consequentemente, a rotina dos profissionais que analisam este tipo de exame é bastante desgastante. Em virtude disto, há necessidade de projetos que otimizem esta leitura e busca por padrões nos exames de sinais de EEG. O objetivo deste projeto é desenvolver um sistema para reconhecimento de padrões em sinais de EEG. A metodologia adotada é composta pelas etapas de projeto, desenvolvimento e testes. As etapas de desenvolvimento e testes deverão utilizar uma base de dados de exames de EEG, que será disponibilizada pelo Hospital, após autorização do Comitê de Ética da Instituição. A etapa de testes será realizada por um médico neurologista, que deverá avaliar os resultados obtidos pelo sistema e classificá-los como verdadeiro positivo, verdadeiro negativo, falso positivo ou falso negativo. Com base na avaliação do médico, serão calculadas as análises de sensibilidade e especificidade, permitindo a impressão de uma Curva ROC. O sistema desenvolvido será composto por dois módulos: o módulo de interface com o usuário e o módulo para reconhecimento de padrões. O primeiro é responsável pela visualização do sinal de EEG com 18 canais e opções de seleção de padrão para o reconhecimento, que podem ser espícula ou piscada palpebral. O módulo de reconhecimento de padrões aplica a operação de correlação matemática entre o padrão escolhido e o sinal de EEG, detectando eventos no sinal e exibindo graficamente na tela. Os resultados do projeto consistem, portanto, no próprio sistema e sua aplicação prática, que como resultado social facilitará a rotina dos médicos.

Palavras-chave: Palavra-chave 1, Palavra-chave 2, ...

ABSTRACT

DANIELEWICZ, Georgea

e FERREIRA, Geovane Vinícius. Title in English. 22 f. Trabalho de Conclusão de Curso – Curso Superior de Engenharia de Computação, Universidade Tecnológica Federal do Paraná. Curitiba, 2013.

Abstract text (maximum of 500 words).

Keywords: Keyword 1, Keyword 2, ...

LISTA DE FIGURAS

FIGURA 1 – EXEMPLO DE UMA FIGURA		13
----------------------------------	--	----

LISTA DE TABELAS

TABELA 1	_	EXEMPLO DE UMA TABELA	 12
TABELA 2	_	EXEMPLO DE UMA TABELA	 19

LISTA DE SIGLAS

LISTA DE SÍMBOLOS

SUMÁRIO

1 INTRODUÇÃO	11
1.1 MOTIVAÇÃO E JUSTIFICATIVA	11
1.2 OBJETIVOS	
1.3 ESTRUTURA DO TRABALHO	11
2 FUNDAMENTAÇÃO TEÓRICA	12
2.1 SINAL ELETROCARDIOGRÁFICO	12
2.2 GERAÇÃO DO SINAL DE ELETROCARDIOGRAFIA	12
2.3 EQUIPAMENTO DE ELETROCARDIOGRAFIA	13
2.4 RITMOS E PADRÕES DE SINAIS DE ELETROCARDIOGRAFIA	
2.5 ANÁLISE DE SINAIS DE ELETROCARDIOGRAFIA	13
2.6 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES	13
2.6.1 Teste Diagnóstico	14
2.6.2 Sensibilidade	14
2.6.3 Especifidade	14
2.6.4 Curva ROC	
2.7 EXTRAÇÃO DE CARACTERÍSTICAS	14
2.8 RECONHECIMENTO DE PADRÕES	
2.9 CONSIDERAÇÕES SOBRE A FUNDAMENTAÇÃO TEÓRICA	14
3 DESENVOLVIMENTO	15
3.1 BASE DE DADOS	15
3.2 DESENVOLVIMENTO DO SOFTWARE	15
3.2.1 Formato EDF	
3.2.2 Linguagens de Programação	15
3.2.3 IDE Utilizada	15
3.2.4 Bibliotecas	
3.3 MÓDULOS DO SISTEMA	
3.3.1 Visualização do sinal	16
3.3.2 Marcação de eventos	16
3.3.3 Extração de Características	16
3.3.4 Reconhecimento de padrões	16
3.4 MODELAGEM UML	
3.5 METODOLOGIA DE TESTES	
3.6 CONSIDERAÇÕES SOBRE O DESENVOLVIMENTO	
4 RESULTADOS OBTIDOS	18
4.1 SISTEMA	
4.2 TESTES	
4.3 CONSIDERAÇÕES SOBRE OS RESULTADOS OBTIDOS	
5 CONSIDERAÇÕES FINAIS	20
6 GESTÃO DO PROJETO	
REFERÊNCIAS	22

1 INTRODUÇÃO

O presente documento (introdução normal, 2 parágrafos chega)

1.1 MOTIVAÇÃO E JUSTIFICATIVA

Como nasceu a necessidade deste projeto. Uma das principais vantagens do uso do estilo de formatação abnt-UTFPR.cls para LATEX é a formatação *automática* dos elementos que compõem um documento acadêmico, tais como capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo, abstract, listas de figuras, tabelas, siglas e símbolos, sumário, capítulos, referências, etc. Outras grandes vantagens do uso do LATEX para formatação de documentos acadêmicos dizem respeito à facilidade de gerenciamento de referências cruzadas e bibliográficas, além da formatação – inclusive de equações matemáticas – correta e esteticamente perfeita.

1.2 OBJETIVOS

O objetivo geral deste projeto é desenvolver um sistema para visualização e reconhecimento de padrões em sinais biomédicos de eletroencefalografia (EEG). Para melhor definição do escopo, separamos nos seguintes objetivos específicos:

- Ambiente para visualizar sinais.
- Marcações e salvar.
- Reconhecimento de padrões, a partir da extração de características da marcação.
- Entregar relatório (citar este objetivo é opcional)

1.3 ESTRUTURA DO TRABALHO

Este documento é composto pelos seguintes capítulos... (explicar os capítulos)

2 FUNDAMENTAÇÃO TEÓRICA

Pequena Introdução da Fundamentação Teórica. Dizer para que serve este Capítulo, como foi estruturado. Acho que um parágrafo é o bastante.

A seguir serão apresentados os Fundamentos Teóricos. Começamos abordando o tema dos sinais eletroencefalográficos, considerando sua aquisição e as características do sinal. Em seguida, serão tratados assuntos relativos à Análise dos Resultados do Sistema. Para isso... Por fim, encerramos o Capítulo com uma Considerações acerca do mesmo.

2.1 SINAL ELETROCARDIOGRÁFICO

Na figura 1 é apresentado um exemplo de gráfico flutuante. Esta figura aparece automaticamente na lista de figuras. Para uso avançado de gráficos no LAT_EX, recomenda-se a consulta de literatura especializada (GOOSSENS et al., 2007).

2.2 GERAÇÃO DO SINAL DE ELETROCARDIOGRAFIA

Também é apresentado o exemplo da tabela 2, que aparece automaticamente na lista de tabelas. Informações sobre a construção de tabelas no LATEX podem ser encontradas na literatura especializada (LAMPORT, 1986; BUERGER, 1989; KOPKA; DALY, 2003; MITTELBACH et al., 2004).

Tabela 1: Exemplo de uma tabela mostrando a correlação entre x e y.

X	y
1	2
3	4
5	6
7	8

Fonte: Autoria própria.

Figura 1: Exemplo de uma figura onde aparece uma imagem sem nenhum significado especial.

Fonte: (ABNTEX, 2009)

2.3 EQUIPAMENTO DE ELETROCARDIOGRAFIA

Mais um item.

2.4 RITMOS E PADRÕES DE SINAIS DE ELETROCARDIOGRAFIA

O título desta seção poderá mudar. QRS e também arritmias.

2.5 ANÁLISE DE SINAIS DE ELETROCARDIOGRAFIA

Não sei ainda o que vai aqui.

2.6 AVALIAÇÃO DE SISTEMAS CLASSIFICADORES

Nesta seção serão apresentados alguns itens pertinentes a compreensão de formas de avaliação de sistemas classificadores.

2.6.1 Teste Diagnóstico

Tabela de contingência. Verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos.

2.6.2 Sensibilidade

Explica o que é. E coloca a fórmula. Possivelmente também algum gráfico.

2.6.3 Especifidade

Explica o que é. E coloca a fórmula. Possivelmente também algum gráfico.

2.6.4 Curva ROC

Incluir a figura da Curva ROC. Talvez não seja possível traçar a curva ROC. Para isso, sensibilidade e especificidade precisam variar.

2.7 EXTRAÇÃO DE CARACTERÍSTICAS

Explicar sobre a correlação matemática dada na equação (1).

$$R_{r,a}(\tau) = \frac{1}{K} \sum_{n=0}^{N-1} f_r(n) f_s(\tau + n)$$
 (1)

2.8 RECONHECIMENTO DE PADRÕES

Falar sobre as Redes Neurais. Tem muita coisa pra falar disso aqui. Citar o Haykin.

2.9 CONSIDERAÇÕES SOBRE A FUNDAMENTAÇÃO TEÓRICA

3 DESENVOLVIMENTO

3.1 BASE DE DADOS

Falar da base de dados Physionet. Explicitar que a base é pública. Dizer que vem com as marcações. Se formos usar um arquivo só, o 105, então dizer a duração e quantos eventos possui.

3.2 DESENVOLVIMENTO DO SOFTWARE

3.2.1 Formato EDF

Falar sobre o formato EDF. Como surgiu. Para que serve Podemos colocar o cabeçalho do arquivo.

3.2.2 Linguagens de Programação

O software foi desenvolvido na linguagem C Sharp.

3.2.3 IDE Utilizada

O ambiente de desenvolvimento utilizado foi o Visual Studio versão X. Para a licença deste produto a equipe participou do DreamSpark.

3.2.4 Bibliotecas

Bibliotecas gráficas, biblioteca para abrir arquivo EDF.

3.3 MÓDULOS DO SISTEMA

Eu consigo antever quatro módulos (Aí explica o que cada um faz):

3.3.1 Visualização do sinal

Explicar por exemplo, a duração do exame, quantos canais, a frequência e amplitude.

3.3.2 Marcação de eventos

Que tipo de eventos marcamos, em arquivo de texto, seguindo um padrão definido.

3.3.3 Extração de Características

Aqui será explicado o modo como foi utilizada a operação da Correlação. Correlação de um evento marcado com o sinal inteiro, gerando um novo sinal... com picos onde eventos daquele tipo ocorrem.

3.3.4 Reconhecimento de padrões

No caso utilizamos a Rede Neural MultiLayer Perceptron.

3.4 MODELAGEM UML

Usamos algum padrão, MVC, etc....

3.5 METODOLOGIA DE TESTES

Achei que já tínhamos explicado isso aqui na Fundamentação Teórica. Mas se não foi o suficiente explicamos melhor aqui... O que são os VP, VN, FP, e FN no nosso caso (complexo QRS, arritmias...). E o que precisou ser variado para gerar a curva ROC. Podemos colocar umas telas, comparando o resultado obtido com a marcação que já vem com a base de dados.

3.6 CONSIDERAÇÕES SOBRE O DESENVOLVIMENTO

4 RESULTADOS OBTIDOS

Introdução do Capítulo. Um parágrafo basta.

4.1 SISTEMA

Este item é necessário? Telas aqui ou no capítulo de desenvolvimento do SW?

4.2 TESTES

Tabela de contingência/confusão: VP, VN, FP, e FN. Aqui vai a análise de sensibilidade, especificidade. Curva ROC.

4.3 CONSIDERAÇÕES SOBRE OS RESULTADOS OBTIDOS

Então.. o sistema é classificador ou não? (De acordo com a curva ROC) Aqui podemos colocar a tabela comparativa do arquivo 105 do Aratã.

Tabela 2: Comparação dos métodos utilizados para detecção do QRS oriunda da tabela de Zhang e Lian (2009) acrescido das quatro últimas linhas com resultados obtidos no trabalho de ARATÃ

e Lian (2009) acrescido das quatro ultimas linhas com resultados obtidos no trabalho de ARATA								
Método		FP	FN	DER	Referências			
Algoritmos genéticos	2572	86	5	3,54	Poli, Cagnoni e Valli (1995)			
Filtro passa banda	2572	67	22	3,46	Pan e Tompkins (1985)			
Wavelet denoising	2572	78	5	3,23	Chen, Chen e Chan (2006)			
Bancos de filtragem	2139	53	16	3,22	Afonso et al. (1999)			
BPF/search-back	2564	53	22	2,95	Hamilton e Tompkins (1986)			
Filtro adaptativo linear	2572	40	22	2,40	Xue, Hu e Tompkins (1992)			
Filtragem otimizada	2572	35	21	2,18	Ruha, Sallinen e Nissilä (1997)			
Topological mapping	2572	41	4	1,75	Lee et al. (1996)			
Transformada wavelet	2572	15	12	1,09	Li, Zheng e Tai (1995)			
Filtro adaptativo e rede neural artificial	2572	10	4	0,5	Xue, Hu e Tompkins (1992)			
Morfologia 1M	2572	49	10	2,29	Zhang e Lian (2009)			
Morfologia 2M	2572	27	9	1,40	Zhang e Lian (2009)			
Morfologia 3M	2572	19	7	1,01	Zhang e Lian (2009)			
Morfologia 1M	2690	40	2	1,56	Saraiva (2012)			
Morfologia 2M		41	2	1,60	Saraiva (2012)			
Morfologia 3M	2690	40	0	1,49	Saraiva (2012)			
Morfologia 4M	2690	39	0	1,45	Saraiva (2012)			

Fonte: Aratã

5 CONSIDERAÇÕES FINAIS

Alcançou os objetivos?? Quanto conseguiu atingir? A metodologia foi boa ou ruim? Cada seção teve a sua conclusão, então completa a discussão. Elementos resultantes do processo de união. Não apresentar nenhum dado novo! 1 folha e meia no máximo. Propostas futuras? Resultados futuros. (MIKTEX, 2009). Com redes SOM, ou com outras bases de dados.

6 GESTÃO DO PROJETO

O Dario mandou ter este capítulo aqui. Fala dos esforços e das etapas. Quantidade de horas trabalhadas.

REFERÊNCIAS

ABNTEX. **Absurdas normas para T_EX**. 2009. Disponível em: http://sourceforge.net/apps/mediawiki/abntex/index.php. Acesso em: 8 de novembro de 2009.

BIBTEX. **BibT_EX.org**. 2009. Disponível em: http://www.bibtex.org. Acesso em: 8 de novembro de 2009.

BUERGER, D. J. LATEX for scientists and engineers. Singapura: McGraw-Hill, 1989.

CTAN. **The comprehensive T_EX archive network**. 2009. Disponível em: http://www.ctan.org. Acesso em: 8 de novembro de 2009.

GOOSSENS, M. et al. The LATEX graphics companion. 2. ed. Boston: Addison-Wesley, 2007.

JABREF. **JabRef reference manager**. 2009. Disponível em: http://jabref.sourceforge.net. Acesso em: 8 de novembro de 2009.

KOPKA, H.; DALY, P. W. Guide to LATEX. 4. ed. Boston: Addison-Wesley, 2003.

LAMPORT, L. LATEX: a document preparation system. Boston: Addison-Wesley, 1986.

LATEX. **The LATEX project**. 2009. Disponível em: http://www.latex-project.org. Acesso em: 8 de novembro de 2009.

MENDELEY. **Mendeley:** academic software for research papers. 2009. Disponível em: http://www.mendeley.com. Acesso em: 8 de novembro de 2009.

MIKTEX. **The MiKT**EX **project**. 2009. Disponível em: http://www.miktex.org. Acesso em: 8 de novembro de 2009.

MITTELBACH, F. et al. **The LATEX companion**. 2. ed. Boston: Addison-Wesley, 2004.

PILLAI, J.; SPERLING, M. R. Interictal EEG and the diagnosis of epilepsy. **Epilepsia**, 10, doi, v. 47, p. 14–22, 2006.

TEX-BR. **Comunidade TeX-Br**. 2009. Disponível em: http://www.tex-br.org/index.php. Acesso em: 8 de novembro de 2009.

TEXNICCENTER. **T**EXnicCenter: the center of your LATEX universe. 2009. Disponível em: http://www.texniccenter.org. Acesso em: 8 de novembro de 2009.

WIKIBOOKS. LATEX. 2009. Disponível em: http://en.wikibooks.org/wiki/LaTeX. Acesso em: 8 de novembro de 2009.