Exercice 1.

- **1.** Soit *a*, *b* et *c* trois nombres entiers relatifs avec *c* non nul; démontrer que si *c* divise *a* et *c* divise *b*, alors *c* divise toute combinaison linéaire à cœfficients entiers de *a* et de *b*, c'est-à-dire *c* divise ua + vb où u et v sont deux entiers relatifs.
- **2.** Soit $n \in \mathbb{Z}$. Démontrer que la fraction $\frac{9n+11}{5n+6}$ est irréductible.

Exercice 2. Déterminer tous les couples d'entiers naturels (x; y) tels que $x^2 = 2xy + 15$.

Exercice 3.

La suite (u_n) est définie, pour tout entier naturel n, par $u_n = n4^{n+1} - (n+1)4^n + 1$.

- **1.** Vérifier que, pour tout entier naturel n, $u_{n+1} u_n = 9(n+1)4^n$.
- **2.** En déduire, en utilisant une démonstration par récurrence sur n, que, pour tout entier naturel n, u_n est un multiple de 9.

Exercice 1.

- 1. Soit a, b et c trois nombres entiers relatifs avec c non nul; démontrer que si c divise a et c divise b, alors c divise toute combinaison linéaire à cœfficients entiers de a et de b, c'est-à-dire c divise ua + vb où u et v sont deux entiers relatifs.
- **2.** Soit $n \in \mathbb{Z}$. Démontrer que la fraction $\frac{9n+11}{5n+6}$ est irréductible.

Exercice 2. Déterminer tous les couples d'entiers naturels (x; y) tels que $x^2 = 2xy + 15$.

Exercice 3.

La suite (u_n) est définie, pour tout entier naturel n, par $u_n = n4^{n+1} - (n+1)4^n + 1$.

- **1.** Vérifier que, pour tout entier naturel n, $u_{n+1} u_n = 9(n+1)4^n$.
- **2.** En déduire, en utilisant une démonstration par récurrence sur n, que, pour tout entier naturel n, u_n est un multiple de 9.

Exercice 1.

- 1. Soit a, b et c trois nombres entiers relatifs avec c non nul; démontrer que si c divise a et c divise b, alors c divise toute combinaison linéaire à cœfficients entiers de a et de b, c'est-à-dire c divise ua + vb où u et v sont deux entiers relatifs.
- **2.** Soit $n \in \mathbb{Z}$. Démontrer que la fraction $\frac{9n+11}{5n+6}$ est irréductible.

Exercice 2. Déterminer tous les couples d'entiers naturels (x; y) tels que $x^2 = 2xy + 15$.

Exercice 3.

La suite (u_n) est définie, pour tout entier naturel n, par $u_n = n4^{n+1} - (n+1)4^n + 1$.

- **1.** Vérifier que, pour tout entier naturel n, $u_{n+1} u_n = 9(n+1)4^n$.
- **2.** En déduire, en utilisant une démonstration par récurrence sur n, que, pour tout entier naturel n, u_n est un multiple de 9.