

Implementación de un software para el cálculo y visualización del contenido de humedad del combustible vivo para la prevención y gestión integral de incendios forestales en la Comunidad Valenciana.

Carles Boïls Gisbert SIGIF – SPIF Kenneth Pachacama Vallejo CGAT – UPV Junio 2024

UPV - SPIF

Brigadas de biomasa y trituración

Unidades de Prevención

SIGIF

CPIF

Observatorios Forestales

Unidad técnica

Oficina técnica

Logística de material

Voluntariado y formación

Unidades Motobomba

H901

#SomosVaersaGrupo

El problema

 Los grandes incendios forestales en España apenas suponen el 0.18% del total, pero en estos arde el 40% de la superficie afectada.

Las acciones de extinción son necesarias y beneficiosas, sin embargo, no es suficiente sin una política de reordenación y planificación del territorio

 España destina 1.000 millones de euros al año para aplicar medidas de extinción y, sin embargo, tan sólo 300 millones de euros a la prevención.

- Prevención de incendios
- Conocer las previsiones de riesgo para las distintas zonas del territorio

"Unos bosques bien conservados se convierten en la mejor vacuna contra la zoonosis como el coronavirus"

Humedad de combustible Vivo

Fuente: Vaersa

$$HCV = \frac{Peso\ verde - Peso\ seco}{Peso\ seco} * 100$$

 Un incendio forestal necesita de tres componentes básicos: oxigeno, combustible y calor que produzca la ignición, para que se inicie y esparza a sus alrededores.

- El contenido de humedad de combustible vivo (HCV), se calcula como el porcentaje de agua que contiene una especie vegetal en relación con su masa seca total.
- Está directamente relacionada con la cantidad de energía necesaria para evaporar el agua antes de la ignición.

Área de estudio

254 puntos de muestreos 33.325 registros de humedad 50 especies

Comunidad Valenciana datos HCV

- Empresa Valenciana de Estrategias y recursos para la Sostenibilidad Ambiental, SA (VAERSA)
- Año 2019: 42 parcelas de la provincia de Valencia desde el mes de junio hasta octubre
- Año 2020: muestreo en las provincias de Castellón y Alicante.
- En total se han tomado datos en 88 puntos de muestreo de la Comunidad Valenciana para el periodo junio de 2019-noviembre de 2021.

Modelos de combustible

Matorral

SH4: caracterizados por arbustos leñosos y hojarasca de arbusto.

Arbolado

TU2: Matorral de menos de 1 m de altura; TU3: Matorral de más de 1 m de altura, bajo dosel

Información espectral

Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-2A

Información meteorológica

AEMET proporciona información diaria de las estaciones meteorológicas distribuidas en toda la Comunidad Valenciana:

- Precipitación
- ♦ Temperatura
- ♦ Humedad relativa
- ♦ Viento

También se usó otras variables estacionales como el seno o coseno del día del año (DOY) que ayudan a caracterizar la variación en el tiempo de las diferentes estaciones.

METEOLAND R es una aproximación similar al inverso de la distancia ponderada, usa filtros gaussianos truncados que consisten en definir espacialmente los pesos.

Datos del clima

ATIVO:date:NOMBRE:ALTITUD:C X:C Y:P77:TMAX:TMIN:TMED:H 2023-02-01;EL PERELLO;148;812828;4531428;0.0;14.0;1.0; 2023-02-02:EL PERELLO:148:812828:4531428:0.0:1 2023-02-03; EL PERELLO; 148; 812828; 4531428; 0.0; 2023-02-04; EL PERELLO; 148; 812828; 4531428; 0.0; 2023-02-05; EL PERELLO; 148; 812828; 4531428; 0.0; 2023-02-06; EL PERELLO; 148; 812828; 4531428; 1.5; **CSV** 2023-02-07;EL PERELLO;148;812828;4531428;57. 2023-02-08; EL PERELLO; 148; 812828; 4531428; 4.3 2023-02-09; EL PERELLO; 148; 812828; 4531428; 0.0 **Formato** 2023-02-10; EL PERELLO; 148; 812828; 4531428; 0.0 2023-02-12; EL PERELLO; 148; 812828; 4531428; 0.0; 2023-02-13; EL PERELLO; 148; 812828; 4531428; 0.0; 2023-02-14; EL PERELLO; 148; 812828; 4531428; 0.0; 1 2023-02-15; EL PERELLO; 148; 812828; 4531428; 0.0; 14.0; -1.0 2023-02-17; EL PERELLO; 148; 812828; 4531428; 0.0; 18.0; 0.0 2023-02-18:EL PERELLO:148:812828:4531428:0.0:19.0:2.0: 2023-02-19; EL PERELLO; 148; 812828; 4531428; 0.0; 20.0; 1.0

Topografía

Modelos estadísticos

Modelos estadísticos

Variables

2019-2020-2021

Media ponderada

 $HCV = 83.6047 + 1.98065*I1(1) - 3.60212*I1(2) - 11.1681*sin_DOY +$ 0.0418284*p60 + 53.8145*ARVI +

81.4385*VARI - 29.6629*range_GNDVI - 133.308*mean_VARI

I1(1) = 1 si Year=2019, -1 si Year=2021, 0 de lo contrario

I1(2) = 1 si Year=2020, -1 si Year=2021, 0 de lo contrario

Gráfico X-Y Múltiple Gandia

Fecha

Se obtuvo un R-cuadrado ajustado de 53.03% para la media ponderada. En el modelo intervienen 6 variables sin_DOY, p60, mean_VARI y VARI, ARVI y range_GNDVI.

Parcelas de validación

Cartografía: Automatización

Interpolación datos AEMET

Datos meteo 2023

Interpolación datos AEMET

Datos meteo 2023

Cuadrículas

Interpolación datos AEMET

Datos meteo

Cuadrículas

Datos meteo 2024

Reparto homogéneo de parcelas

Reparto homogéneo de parcelas

Diferentes resoluciones

Espacial

Investigaciones UPV 10-20m

Realidad

100m espectral 500m meteo

Temporal

- Pasa cada 5 días
- Nubes
- Otras fuentes

- Decalaje de 2 días
- 5 días completo
- Predicciones

Diferentes modelos

Modelo por piso bioclimático y por especie

Implementación en SIGIF

Sistema Integrado de Gestión de Incendios Forestales

Tareas pendientes

Sistema Integrado de Gestión de Incendios Forestales

- Otras estaciones meteo (AVAMET, meteoPIF)
- Automatización del proceso de validación
- Mostrar histórico 3-4 días
- Mapa de variaciones significativas
- Otras zonas

Futuros proyectos

Sistema Integrado de Gestión de Incendios Forestales

Moltes gràcies

Contacto:

Carles Boïls Gisbert

Kenneth Pachacama-Vallejo

boils.car@vaersa.org

kpachac@doctor.upv.es