

Lecture 15: Goodness of Fit Test for

6. Preparation for the Chi-Squared

Course > Unit 4 Hypothesis testing > Discrete Distributions

> Test

6. Preparation for the Chi-Squared Test

A Vector Inner Product

1/1 point (graded)

Let \mathbf{p}^0 be the discrete pmf that we wish to test the goodness of fit for an observed sequence of iid samples. Let $\widehat{\mathbf{p}}$ be the MLE upon observing the iid samples.

What is
$$\sqrt{n} ig(\widehat{\mathbf{p}} - \mathbf{p}^0ig)^T \mathbf{1}$$
?

Note: This is a vector dot product where $(\widehat{\mathbf{p}} - \mathbf{p}^0)^T$ is a row vector and $\mathbf{1}$ is the all-ones column vector of appropriate size.

STANDARD NOTATION

Solution:

Both $\widehat{\mathbf{p}}$ and \mathbf{p}^0 are pmfs. Let K be the number of modalitites.

$$egin{aligned} \left(\widehat{\mathbf{p}}-\mathbf{p}^0
ight)^T\mathbf{1} = \ sum_{i=1}^K\left(\hat{p}_i-p_i^0
ight) = \sum_{i=1}^K\hat{p}_i - \sum_{i=1}^Kp_i^0 = 0. \end{aligned}$$

Hence also $\sqrt{n} ig(\widehat{\mathbf{p}} - \mathbf{p}^0ig)^T \mathbf{1} = 0.$

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

A Degenerate Gaussian Random Variable

66

VideoDownload video file

Transcripts <u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Degrees of Freedom of a Known Test

2/2 points (graded)

Let us consider a statistical model with parameter $\theta \in \mathbb{R}^d$. Let θ^* be the parameter that generates the n iid samples $\mathbf{X}_1,\ldots,\mathbf{X}_n$. Let $I(\theta)$ be the Fisher information and assume that the MLE $\hat{\theta}_n^{\mathrm{MLE}}$ is asymptotically normal. Assume that $I(\theta^0)$ is a diagonal matrix with positive entries $1/t_1,\ldots,1/t_d$. We wish to perform a test for the hypotheses $H_0:\theta^*=\theta^0$ and $H_1:\theta^*\neq\theta^0$.

Let the test statistic T_n be

$$T_n = n \sum_{i=1}^d rac{\left(heta_i^0 - \hat{ heta}_i
ight)^2}{t_i},$$

where
$$\left[\hat{ heta}_1 \; \hat{ heta}_2 \; \cdots \; \hat{ heta}_d
ight]^T = \hat{ heta}_n^{ ext{MLE}}.$$

What distribution does the test statistic T_n converge to under H_0 as $n \to \infty$?

Type **chi** for chi-squared distribution, **T** for Student's T distribution, **G** for standard Gaussian distribution.

$$T_n \xrightarrow[n \to \infty]{(d)}$$
 chi χ Answer: chi + 0*G + 0*T

What is the number of degrees of freedom of the asymptotic distribution of T_n ? If the answer is a standard normal, enter 1.

Solution:

The test statistic T_n can be seen to be equivalent to

$$n{\left({{\hat heta}_n^{ ext{MLE}} - { heta^0}}
ight)^T}I\left({{ heta^0}}
ight){\left({{\hat heta}_n^{ ext{MLE}} - { heta^0}}
ight)}\,,$$

which is the test statistic for Wald's test. Therefore,

$$T_n \xrightarrow[n o \infty]{(d)} \chi_d^2.$$

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 4 Hypothesis testing:Lecture 15: Goodness of Fit Test for Discrete Distributions / 6. Preparation for the Chi-Squared Test

Add a Post

Show all posts ▼

Why is the equation presented in the video normal?

degrees of freedom

It seems a straightforward question by plugging appropriate value into K - 1 as mentioned in lecture note. Why is the answer incorrect?

© All Rights Reserved