Introduction to Computer Graphics

2023/2024

Application Examples: Projections

1- Consider the parallelepiped defined by the vertices:

$V_1(0,0,1)$	$V_2(1,0,0)$	$V_3(2,0,1)$	$V_4(1,0,2)$
$V_5(0, 1, 1)$	$V_6(1, 1, 0)$	$V_7(2, 1, 1)$	$V_8(1, 1, 2)$

We want to represent it using a **Perspective Projection**: the projection plane is the plane z = 0 and the center of projection is point (0, 0, 4).

- a) Using *Homogeneous Coordinates*, determine the matrix that represents the corresponding projection transformation. Explain the steps carried out.
- **b**) Compute the coordinates of the projected vertices.
- **c**) Draw the projected parallelepiped. Identify the projected vertices and the visible edges.
- **d**) Given the obtained projection, classify it. Justify your answer.
- **2-** Consider the cube centered at (0, 0, 0) and defined by the vertices:

$V_1(-1, 1, 1)$	$V_2(-1,-1,1)$	$V_3(1,-1,1)$	$V_4(1, 1, 1)$
$V_5(-1, 1, -1)$	$V_6(-1,-1,-1)$	$V_7(1,-1,-1)$	$V_8(1, 1, -1)$

The cube has to be represented using a **Perspective Projection**: the projection center is point (3, 0, 0) and the projection plane is x = 0.

- **a)** Define, using Homogeneous Coordinates, the corresponding projection matrix, Justify the steps taken.
- **b)** Compute the coordinates of the projected vertices.
- c) Draw the projected cube and check if you obtained the expected result.
- **3-** Given a cube defined by the following vertices:

V ₁ (10, 10, -10)	V ₂ (10, -10, -10)	V ₃ (30, -10, -10)	V ₄ (30, 10, -10)
V ₅ (10, 10, -30)	V_6 (10, -10, -30)	V ₇ (30, -10, -30)	V_8 (30, 10, -30)

We want to obtain the cube representation using *Perspective Projection*: the projection plane is y = 0 and the projection centre is point (0, 60, 0).

1

- **a)** Using *Homogeneous Coordinates*, determine the corresponding projection matrix. Explain all the steps carried out.
- **b**) Compute the coordinates of the vertices defining the projected cube.
- c) Sketch the projected cube. Identify the projected vertices and list the visible edges.
- **d**) According to the features of the sketched cube, classify the projection obtained. Explain your answer.
- **4-** Given a square pyramid defined by the following vertices:

$$V_1(1,0,1) \mid V_2(1,0,-1) \mid V_3(-1,0,-1) \mid V_4(-1,0,1) \mid V_5(0,2,0)$$

We want to represent the pyramid using *Perspective Projection*: the projection center is the point (-2, 0, 0) and the projection plane is the plane x = 0.

- **a)** Obtain, using *Homogeneous Coordinates*, the matrix representing the corresponding projection transformation. Explain all the steps carried out.
- **b)** Compute the coordinates of the projected pyramid vertices.
- c) Classify the obtained projection. Justify your answer.
- **5-** Consider the **cube** defined by the vertices:

$V_1(0, 1, 1)$	$V_2(0, 1, -1)$	$V_3(0,3,-1)$	$V_4(0,3,1)$
$V_5(-2, 1, 1)$	$V_6(-2, 1, -1)$	$V_7(-2, 3, -1)$	$V_8(-2, 3, 1)$

The cube has to be represented using a **Perspective Projection**: the projection center is point (4, 0, 0) and the projection plane is x = 0.

- **a)** Define, using Homogeneous Coordinates, the corresponding projection matrix, Justify the steps taken.
- **b)** Compute the coordinates of the projected vertices.
- c) Draw the projected cube and check if you obtained the expected result. What **type** of **projection** did you get?