Neue Aufgaben 2

Aufgabe 1: Die Zufallsvariablen X_1 und X_2 seien stochastisch unabhängig und im Intervall [1,3] gleichverteilt. Berechnen Sie den Erwartungswert der Zufallsvariablen

$$Y = (X_2 + 2 \cdot X_1)^2$$

Aufgabe 2: Die Zufallsvariablen X_1 und X_2 seien stochastisch unabhängig und im Intervall [-1,1] gleichverteilt. Berechnen Sie den Erwartungswert der Zufallsvariablen

$$Y = \frac{(X_2 - 5)^2}{\mathbb{V}(X_1)^2} \cdot \frac{X_1}{2}$$

Aufgabe 3: Sei $B := \{(x, y \in \mathbb{R}^2 \mid 1 \le x \le 2; 0 \le y \le 2)\}$. Skizzieren Sie B und geben Sie eine Konstante c and, so dass $f(x, y) := c \cdot 1_B(x, y) \cdot (x + y^3)$ ein Dichte auf \mathbb{R}^2 ist.

Aufgabe 4: Sei $B := \{(x, y \in \mathbb{R}^2 \mid 0 \le x \le 1; 0 \le y \le 3 - 2x)\}$. Skizzieren Sie B und geben Sie eine Konstante c and, so dass $f(x, y) := c \cdot 1_B(x, y) \cdot x^2 \cdot y$ ein Dichte auf \mathbb{R}^2 ist.

Aufgabe 5: a) Seien X_1, \ldots, X_n unabhängige, identisch verteilte Zufallsvariablen. Zeigen Sie, dass $T_n := \sum_{i=1}^n \lambda_i X_i$ für beliebige Werte $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ mit $\lambda_1 + \ldots + \lambda_n = 1$ einen erwartungstreuen Schätzer für $\mu := \mathbb{E}(X_1)$ darstellt.