Independent Testimonies are no better than Sequential Testimonies in Judgments under Uncertainty

Belinda Xie, Danielle Navarro, Brett Hayes University of New South Wales, Sydney, Australia

Background

Independent testimonies provide novel information

Dependent testimonies involve redundant information

Two conflicting accounts:

- 1) Dependent evidence influences reasoning more than it normatively should.
- Participants were as confident in a true consensus (many primary sources) as a false consensus (a single primary source) (Yousif, Aboody, & Keil, 2018)
- Participants either did not attend to dependence, or did not know how to incorporate dependencies when combining forecasts (Maines, 1996)
- Participants conformed more to opinions consistent with their own information, regardless of that opinion's level of redundancy to their own information (Gonzalez, 1994)
- 2) People are sensitive to dependency, consistent with a Bayesian model of updating.
- Whalen, Griffiths, and Buchsbaum (2017) developed a Bayesian model of social learning
 - Then used a balls-and-urns task with social testimony (Anderson and Holt, 1997)
 - Participants used dependent testimony less than independent testimony

- 1) Re-examine participants' sensitivity to dependency, using the Whalen et al., (2017) task
- 2) Identify how participants update after each piece of evidence
- 3) Compare this updating with Whalen et al., (2017)'s Bayesian model of social learning

Experiment 1

1) Blue jar contains 100 blue, 20 red balls (5/6^{ths} blue). p(blue jar) = p(red jar) = .5

- 2) Several friends help: 1. Each receives a ball from the jar
- 2. Gives their best guess on which jar was
- Always guessed the same jar
- We manipulated:
- Dependency of testimony:
- Guesses are independent (top) • Or made **sequentially** after hearing previous guesses (bottom)
- Number of informants:
- 3) Participant makes likelihood rating after each guess
- 4) Participant receives own ball

Colour conflicts with all guesses

5) Participant makes final likelihood rating

I looked at my ball *and* thought about what Emma I looked at my ball and thought about wha guess the **blue** jar was Emma said. I guess and Sarah said. I guess the **blue** jar was selecte 7 Based on my friends' guesses and the ball you saw,

Bayesian Model of Social Learning (Whalen et al., 2017)

Independent

• Posterior probability of $jar_{red} \propto probability$ of each testimony, given possible balls

 $p(jar_{red} \mid ball_{own}, t_1, t_2, t_3) = 1 - p(jar_{blue} \mid ball_{own}, t_1, t_2, t_3)$

- $\propto p(t_1, t_2, t_3 | jar_{red}) \times p(ball_{own} | jar_{red}) \times p(jar_{red})$
- $= p(t_1 \mid ball_{i1}) \times p(t_2 \mid ball_{i2}) \times p(t_3 \mid ball_{i3}) \times p(ball_{i1}, ball_{i2}, ball_{i3}) \times 1/6 \times 1/2$

Sequential

- Posterior probability of jar $_{red}$ \propto probability of each testimony, given possible balls AND previous testimonies
- Therefore, every informant undergoes the above inference for any previous informant(s)
- Model assumes participants take this into account

Independent vs. Sequential

Analyse updating in 2 stages:

- . Downward slope ratings after (3 or 7) testimonies
- Likelihood ratings decrease with more testimonies ($BF_{10} > 1000$)
- Decrease not affected by number of informants (3 vs. 7; $BF_{01} = 2.46$)
- Nor by dependency (independent vs. sequential; $BF_{10} = 1.05$)
- 2. Uptick rating after own ball
- Rating did increase from penultimate to final rating ($BF_{10} > 1000$)
- Increase not affected by number of informants ($BF_{01} = 5.96$)
- Nor by dependency ($BF_{01} = 6.58$)

Participant ratings vs. Model predictions

- Closer model fit in sequential conditions ($R^2 = .81$),
- Compared to independent conditions ($R^2 = .71$)
- Independent ratings are conservative (closer towards midline than predicted)

Summary

- 1. In all conditions, participants updated in the predicted directions
- 2. This updating was unaffected by 1) dependency, or 2) number of informants
- 3. Sequential ratings fit the Whalen et al., (2017) model better than independent ratings

Conclusions

We found no evidence that participants are sensitive to the dependency of testimony.

- In other experiments, we have shown that this lack of sensitivity is NOT due to;
- Using a between-subjects design (N = 150)
- Recency effects (swapped evidence order; N = 450)
- Belief that sources are unreliable (N = 167; e.g., Collins, Hahn, von Gerber, & Olsson, 2018)
- Dependency-insensitive reasoning is often thought to be caused by participants giving disproportionately large weight to dependent information
- E.g., Fiedler, Hütter, Schott, and Kutzner (2019) argue that we experience 'metacognitive myopia', in failing to discount repeated information

We show that reasoning from sequential evidence conforms more to a Bayesian model than reasoning from independent evidence

- This is somewhat unexpected the computational task of inferring probabilities from independent testimonies is less complex than that from sequential testimonies
- Independent ratings resemble the classic demonstration of conservatism (Phillips, Hays, & Edwards, 1966)
- This conservatism may be caused by participants assuming some conditional dependence (Navon, 1978; Winkler & Murphy, 1973)

Future work:

- What is the influence of dependent testimonies in other domains (e.g., medical diagnosis)?
- What other models of belief updating could better account for these results?

- Anderson, L. R., & Holt, C. A. (1997). Information Cascades in the Laboratory. The American Economic Review, 87(5), 847-
- Whalen, A., Griffiths, T. L., & Buchsbaum, D. (2017). Sensitivity to Shared Information in Social Learning. Cognitive Science. doi: 10.1111/cogs.12485

BX is supported by a UNSW Scientia PhD Scholarship.

Correspondence

belinda.xie@unsw.edu.au