# 2. Sequences and series

2.3. Series



Analysis 1 for Engineers V. Grushkovska

### Series



#### Content:

- Basic definitions
- Some common series
- Properties of convergent series
- Necessary convergence condition
- Cauchy convergence criterium
- Series with non-negative terms
- Alternating series
- Absolutely converging series and their properties
- Properties of conditionally convergent series
- Convergence tests

### Basic definitions



Let  $\{a_n\}_{n\in\mathbb{N}}$  be a sequence of real numbers. Consider a new sequence  $\{S_n\}_{n\in\mathbb{N}}$ :  $S_1=a_1,\ S_2=a_1+a_2,\ S_3=a_1+a_2+a_3,\ \ldots,\ S_n=\sum_{j=1}^n a_j.$ 

#### Definition

We define an infinite series as

$$\sum_{j=1}^{\infty} a_j = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{j=1}^n a_j.$$

- $a_n$  is the *n*-th term of the series,  $S_n$  is the *n*-th partial sum;  $\sum_{j=n+1}^{\infty}$  is the *n*-th remainder.
- If the sequence  $\{S_n\}_{n\in\mathbb{N}}$  converges, the series  $\sum_{j=1}^{\infty}a_j$  is called to be **convergent** (or summable), and  $\sum_{j=1}^{\infty}a_j=\lim_{n\to\infty}S_n=\lim_{n\to\infty}\sum_{j=1}^na_j$ . is called the **sum of series**.
- If  $\{S_n\}_{n\in\mathbb{N}}$  diverges (i.e.  $\lim_{n\to\infty} S_n$  is infinite or does not exists), the series  $\sum_{j=1}^{\infty} a_j$  is said to be **divergent**. (e.g.,  $\sum_{i=1}^{\infty} (-1)^j$ )

## Examples of series



The series  $\sum_{j=1}^{+\infty} \frac{1}{j^2}$  converges.

Indeed, consider the sequence  $\{S_n\}_{n\in\mathbb{N}}$  with  $S_n = \sum_{j=1}^n \frac{1}{j^2}$ .

#### Remainder: Cauchy convergence criterium

A sequence of real numbers  $\{a_n\}_{n\in\mathbb{N}}$  converges if and only if it is a Cauchy sequence, i.e.  $\forall \varepsilon > 0 \ \exists N_\varepsilon \in \mathbb{N} \colon \forall m,n > N_\varepsilon, \ |a_m - a_n| < \varepsilon$ .

Observe that, 
$$\forall j \in \mathbb{N} \setminus \{1\}$$
,  $\frac{1}{j^2} < \frac{1}{j^2-j} = \frac{1}{j(j-1)} = \frac{1}{j-1} - \frac{1}{j}$ .

Consider  $|S_m - S_n|$  for arbitrary  $m \ge n > 1$ :

$$|S_m - S_n| = \sum_{j=n+1}^m \frac{1}{j^2} < \sum_{j=n+1}^m \left(\frac{1}{j-1} - \frac{1}{j}\right)$$

$$= \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{m-1} - \frac{1}{m} = \frac{1}{n} - \frac{1}{m}.$$

 $\forall \varepsilon > 0$ , let us take  $N_{\varepsilon} > 1/\varepsilon$ . Then  $\forall m \geq n > N_{\varepsilon}$ ,

$$|S_m - S_n| < \frac{1}{n} - \frac{1}{m} < \frac{1}{n} < \frac{1}{N_{\varepsilon}} < \varepsilon.$$

### Examples of series



### Geometric series

The geometric series  $\sum_{j=0}^{+\infty} q^j$  converges for any  $q \in (-1,1)$ .

Moreover, in this case  $\sum\limits_{j=0}^{+\infty}q^j=rac{1}{1-q}.$ 

Consider the sequence  $\{S_n\}_{n\in\mathbb{N}}$  with  $S_n=\sum\limits_{j=0}^nq^j$ , |q|<1. Then

$$egin{aligned} (1-q) \mathcal{S}_n &= (1-q) \sum_{j=0}^n q^j = \sum_{j=0}^n \left( q^j - q^{j+1} 
ight) \ &= 1-q+q-q^2+q^2-q^3+\cdots+q^n-q^{n+1} = 1-q^{n+1}. \end{aligned}$$

Thus, 
$$\sum\limits_{j=0}^{+\infty}q^j=\lim_{n\to\infty}rac{1-q^{n+1}}{1-q}=rac{1}{1-q}$$
 as  $|q|<1$ .

### Corollary

$$\sum_{j=0}^{+\infty} \frac{1}{2^j} = 2.$$



(from wikipedia.org)



(from pinterest.com)

## Examples of series



#### Harmonic series

The harmonic series  $\sum_{i=1}^{+\infty} \frac{1}{j}$  is divergent.

Consider the  $2^n$ -th partial sum:

$$S_{2^{n}} = \sum_{j=1}^{2^{n}} \frac{1}{j} = 1 + \frac{1}{2} + \underbrace{\left(\frac{1}{3} + \frac{1}{4}\right)}_{> \frac{1}{2}} + \underbrace{\left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right)}_{> \frac{1}{2}} + \dots + \underbrace{\left(\frac{1}{2^{n-1}+1} + \frac{1}{2^{n-1}+2} + \dots + \frac{1}{2^{n}}\right)}_{> \frac{1}{2}} = 1 + \frac{n}{2}.$$

Thus,  $\lim_{n\to\infty} S_n \to +\infty$ .



1/x vs harmonic series area

(from mathisfun.com)

## Properties of convergent series



Let  $\sum\limits_{j=1}^{+\infty} a_j$  and  $\sum\limits_{j=1}^{+\infty} b_j$  be convergent series. Then

• The sum of these series converges and

$$\sum_{j=1}^{+\infty} (a_j + b_j) = \sum_{j=1}^{+\infty} a_j + \sum_{j=1}^{+\infty} b_j.$$

- For any  $c \in \mathbb{R}$ , the product of the series  $\sum\limits_{j=1}^{+\infty} a_j$  with the number c converges and  $\sum\limits_{i=1}^{+\infty} ca_i = c\sum\limits_{i=1}^{+\infty} a_i$ .
- The series  $\sum_{j=1}^{+\infty} a_j$  converges iff any its remainder  $r_m = \sum_{j=m+1}^{+\infty} a_j$  converges, moreover,  $S = S_m + r_m$ , where  $S = \sum_{j=1}^{+\infty} a_j$ ,

## Necessary convergence condition



### Theorem (Necessary condition for convergence of a series )

If the series 
$$\sum_{j=1}^{+\infty} a_j$$
 converges, then  $\lim_{n\to\infty} a_n = 0$ .

Proof: Denote  $S_n = \sum\limits_{j=1}^n a_j$  and consider sequences  $S_n$ ,  $n \in \mathbb{N}$ , and  $S_n$ ,  $n \in \mathbb{N} \setminus \{1\}$ . The series  $\sum\limits_{j=1}^{+\infty} a_j$  converges, therefore,  $\exists S \in \mathbb{R}$ :  $\lim_{n \to +\infty} S_n = S$ . Because of the uniqueness of a limit,  $\lim_{n \to +\infty} S_{n-1} = S$ . Then  $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} (S_n - S_{n-1}) = 0$ .

#### Remarks

- The above condition is only necessary, but not sufficient For example, the harmonic series  $\sum_{i=1}^{+\infty} \frac{1}{j}$  is divergent.
- The above condition implies that if  $\lim_{n\to+\infty} a_n \neq 0$ , then  $\sum_{j=1}^{+\infty} a_j$  diverges. For example, the geometric series  $\sum_{j=1}^{+\infty} q^j$  diverges if

### Cauchy convergence criterium



### Theorem (Cauchy convergence criterium)

The series  $\sum_{j=1}^{+\infty} a_j$  converges iff for any  $\varepsilon > 0$  there exists an  $n_{\varepsilon} \in \mathbb{N}$  such that, for any  $n \geq n_{\varepsilon}$  and any  $p \in \mathbb{N} \cup \{0\}$ ,  $|a_n + a_{n+1} + \cdots + a_{n+p}| < \varepsilon$ .

#### Remark

Necessary convergence condition follows from Cauchy convergence criterium with p=0.

Example: For the series 
$$\sum\limits_{j=1}^{+\infty}\frac{1}{j}$$
:,  $a_n+a_{n+1}+\cdots+a_{2n-1}=\frac{1}{n}+\frac{1}{n+1}+\cdots+\frac{1}{2n-1}>\frac{1}{2n}+\frac{1}{2n}+\cdots+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}$ . Thus, for  $\varepsilon=1/2$ , any  $n_\varepsilon=n$  and  $p=n-1$ ,  $|a_n+a_{n+1}+\cdots+a_{n+p}|>\varepsilon$ .

## Series with non-negative terms



#### Lemma

A series  $\sum_{j=1}^{+\infty} a_j$  with non-negative terms  $a_j \geq 0 \ \forall j \in \mathbb{N}$  converges iff there exists a convergent subsequence of the sequence  $\{S_n\}_{n\in\mathbb{N}}$ .

Proof:  $a_j \geq 0 \ \forall j \in \mathbb{N} \Rightarrow \{S_n\}_{n \in \mathbb{N}}$  is strictly monotonic, therefore, it converges iff it has a convergent subsequence.

#### Lemma

For the convergence of a series  $\sum\limits_{j=1}^{+\infty}a_j$  with non-negative terms

$$a_j \geq 0 \ \forall j \in \mathbb{N}$$
,

- it is necessary that  $\{S_n\}_{n\in\mathbb{N}}$  is bounded from above;
- it is sufficient that at least one subsequence of  $\{S_n\}_{n\in\mathbb{N}}$  is bounded from above; in this case,  $\sum\limits_{i=1}^{+\infty}a_j=\sup_{k\in\mathbb{N}}\{S_{n_k}\}.$

## Series with non-negative terms



### Theorem (Comparison convergence test)

Let  $0 \le a_n \le b_n$ , for (almost) all  $n \in \mathbb{N}$ . Then the convergence of the series  $\sum_{j=1}^{+\infty} b_j$  implies the convergence of  $\sum_{j=1}^{+\infty} a_j$ , and the divergence of  $\sum_{j=1}^{+\infty} a_j$  implies the convergence of  $\sum_{j=1}^{+\infty} b_j$ .

Example: 
$$\sum\limits_{j=1}^{+\infty} \frac{\sin^2(j\alpha)}{2^j}$$
 converges for any  $\alpha \in \mathbb{R}$  because  $0 \leq \frac{\sin^2(j\alpha)}{2^j} \leq \frac{1}{2^j}$ , and the series  $\sum\limits_{j=1}^{+\infty} \frac{1}{2^j}$  converges.

More convergence tests for series with non-negative terms: when studying absolute convergent series.

## Alternating series



#### Definition

A series  $\sum_{j=1}^{+\infty} a_j$  is called **alternating** if  $a_j = (-1)^j b_j$  with some  $b_j \in \mathbb{R}$ , for all  $j \in \mathbb{N}$ .

### Theorem (Leibniz convergence test)

Let  $\sum_{i=1}^{+\infty} a_i$  be an alternating series, and let  $\{|a_n|\}_{n\in\mathbb{N}}$  be a

monotonically decreasing infinitesimal sequence. Then  $\sum\limits_{j=1}^{+\infty}a_{j}$ 

converges and  $|r_n| = |\sum_{i=1}^{+\infty} a_i - S_n| \le a_{n+1} \ \forall n \in \mathbb{N}.$ 

Example:  $\sum_{j=1}^{+\infty} \frac{(-1)^j}{j}$  converges.

## Absolutely converging series



#### Definition

A series  $\sum_{j=1}^{+\infty} a_j$  is said to be absolutely converging if the series  $\sum_{j=1}^{+\infty} |a_j|$ .

#### Theorem

Any absolutely convergent series converges.

But not every convergent series converges absolutely, e.g.  $\sum_{j=1}^{+\infty} \frac{(-1)^j}{j}$  converges.

#### Definition

A series  $\sum_{j=1}^{+\infty} a_j$  is said to be **conditionally converging** if it converges but does not converge absolutely.

## Properties of absolutely convergent series



Let  $\sum\limits_{j=1}^{+\infty}a_j$  and  $\sum\limits_{j=1}^{+\infty}b_j$  be absolutely convergent series. Then

- ullet The sum of the series  $\sum\limits_{j=1}^{+\infty} (a_j+b_j)$  converges absolutely.
- ullet For any  $c\in\mathbb{R}$ , the product  $\sum\limits_{j=1}^{+\infty}ca_{j}$  converges absolutely.
- The product of the series  $\left(\sum\limits_{j=1}^{+\infty}a_j\right)\left(\sum\limits_{k=1}^{+\infty}b_k\right)=\sum\limits_{j,k=1}^{+\infty}a_jb_k$  converges absolutely, and the sum of their products equals the product of sums.

## Unconditionally convergent series



#### Definition

A series  $\sum\limits_{j=1}^{+\infty} a_j$  is **unconditionally convergent** if any permutation creates a series with the same convergence as the original series.

### Proposition

Absolutely convergent series are unconditionally convergent.

## Properties of conditionally convergent series



Given a series 
$$\sum_{j=1}^{+\infty} a_j$$
, denote  $a_n^+ := a_n$  for all  $n \in \mathbb{N} : a_n \ge 0$ , and  $a_n^- := a_n$  for all  $n \in \mathbb{N} : a_n < 0$ .

#### Lemma

If the series  $\sum_{j=1}^{+\infty} a_j$  converges conditionally, then  $\sum_{j=1}^{+\infty} a_j^+$  and  $\sum_{j=1}^{+\infty} a_j^-$  are divergent series.

### Theorem (Riemann series theorem)

If the series  $\sum_{j=1}^{+\infty} a_j$  converges conditionally, then for any  $A \in \overline{\mathbb{R}}$  there exists a permutation of this series creating a series convergent to A.

## Properties of conditionally convergent series



Example: 
$$\ln(2) = \sum_{j=1}^{+\infty} \frac{(-1)^{j+1}}{j} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 But 
$$\left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} + \frac{1}{6}\right) - \frac{1}{8} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{12} + \dots$$
$$= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \frac{1}{12} + \dots$$

 $=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots\right)=\frac{\ln(2)}{2}.$ 



### Theorem (Comparison convergence test)

Let  $0 \le c_j \le |a_j| \le b_j$ , for (almost) all  $j \in \mathbb{N}$ . Then

- the convergence of the series  $\sum\limits_{j=1}^{+\infty}b_j$  implies the convergence and absolute convergence of  $\sum\limits_{j=1}^{+\infty}a_j$ ;
- the divergence of  $\sum\limits_{j=1}^{+\infty}c_j$  implies the divergence of  $\sum\limits_{j=1}^{+\infty}a_j$ .



### Theorem (D'Alembert's ratio test)

Let  $\sum_{j=1}^{+\infty} a_j$  be a series and there exits an  $N \in \mathbb{N}$  such that  $a_n \neq 0$  for all n > N.

- If there exists an  $L \in [0,1)$  and an  $n_0 \ge N$  such that, for all  $n > n_0$ ,  $\left| \frac{a_{n+1}}{a_n} \right| \le L$ , then  $\sum_{j=1}^{+\infty} a_j$  is absolutely convergent.
- If there exists an  $n_0 \ge N$  such that, for all  $n > n_0$ ,  $\left| \frac{a_{n+1}}{a_n} \right| \ge 1$ , then  $\sum_{i=1}^{+\infty} a_i$  is divergent.

#### Proof:

 $\begin{array}{l} \bullet \quad \text{For any } j \geq n_0+1, \ |a_j| \leq L|a_{j-1}| \leq L^2|a_{j-2}| \leq \cdots \leq L^{j-(n_0+1)}|a_{n_0+1}|. \ \text{Therefore,} \\ \sum\limits_{j=n_0+1}^{+\infty}|a_j| \leq |a_{n_0+1}|\sum\limits_{j=n_0+1}^{\infty}L^{j-(n_0+1)} = |a_{n_0+1}|\sum\limits_{j=1}^{\infty}L^k. \ \text{The latter series converges to} \ \frac{|a_{n_0+1}|}{1-L} \\ \text{because } L < 1. \ \text{Hence, the Comparison convergence test implies the absolute convergence of} \ \sum\limits_{i=1}^{+\infty}a_{j}. \end{array}$ 

• For any  $j \ge n_0 + 1$ ,  $|a_j| \ge |a_{j-1}| \ge \cdots \ge |a_{n_0+1}|$ , therefore  $\{a_j\}_{j \in \mathbb{N}}$  cannot be an infinitesimal sequence, so that the necessary condition for convergence of a series is not satisfied.



### Corollary from D'Alembert's ratio test

Let  $\sum_{j=1}^{+\infty} a_j$  be a series.

- If  $\overline{\lim}_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$  then the series is absolutely convergent.
- If  $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|>1$  then the series is divergent.
- If there exists an  $L=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$ , then the series is absolutely convergent for L<1 and divergent for L>1. if L=1 then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.



### Theorem (Cauchy's root test or Cauchy's radical test)

Let  $\sum_{j=1}^{+\infty} a_j$  be a series.

- If there exists an  $L \in [0,1)$  and an  $n_0 \in \mathbb{N}$  such that, for all  $n > n_0$ ,  $\sqrt[n]{|a_n|} \le L$ , then  $\sum_{i=1}^{+\infty} a_i$  is absolutely convergent.
- If there exists an  $n_0 \ge N$  such that, for all  $n > n_0$ ,  $\sqrt[n]{|a_n|} \ge 1$ , then  $\sum\limits_{j=1}^{+\infty} a_j$  is divergent.

Proof:

- For any  $j \geq n_0 + 1$ ,  $\sqrt[J]{|a_j|} \leq L \Rightarrow |a_j| \leq L^j$ . Therefore,  $\sum\limits_{j=n_0+1}^{+\infty} |a_j| \leq \sum\limits_{j=n_0+1}^{\infty} L^j \leq \sum\limits_{j=0}^{\infty} L^j$ . The latter series converges to  $\frac{1}{1-L}$  because L < 1. Hence, the Comparison convergence test implies the absolute convergence of  $\sum\limits_{j=1}^{+\infty} a_j$ .
- For any  $j \ge n_0 + 1$ ,  $\sqrt[j]{|a_j|} > 1 \Rightarrow |a_j| > 1$ , therefore  $\{a_j\}_{j \in \mathbb{N}}$  cannot be an infinitesimal sequence, so that the necessary condition for convergence of a series is not satisfied.



### Corollary from Cauchy's root test

Let  $\sum_{j=1}^{+\infty} a_j$  be a series.

- If  $\varlimsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$  then the series is absolutely convergent.
- If  $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$  then the series is divergent.
- If there exists an  $L=\lim_{n\to\infty}\sqrt[n]{|a_n|}$ , then the series is absolutely convergent for L<1 and divergent for L>1. if L=1 then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.



#### **Examples**:

- 1)  $\sum_{j=1}^{+\infty} \frac{1}{j!}$ :  $a_n = \frac{1}{n!}$ ,  $\left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{n+1} < 1 \forall n \in \mathbb{N} \Rightarrow$  the series is absolutely convergent by D'Alembert's ratio test.
- 2)  $\sum_{j=1}^{+\infty} \frac{x}{j!}$ ,  $x \in \mathbb{R} \setminus \{0\}$ :  $a_n = \frac{x}{n!}$ ,  $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0 < 1 \Rightarrow$  the series is absolutely convergent by D'Alembert's ratio test.
- 3)  $\sum\limits_{j=1}^{+\infty} rac{1}{j^j}$ :  $a_n = rac{1}{n^n}$ ,  $\sqrt[n]{|a_n|} = rac{1}{n} > 1 \forall n \in \mathbb{N} \setminus \{1\} \Rightarrow$  the series is
- absolutely convergent by Cauchy's root test.
- 4)  $\sum_{j=1}^{+\infty} \frac{x^j}{j}$ :  $a_n = \frac{x^n}{n}$ ,  $\lim_{n \to \infty} \sqrt[n]{|a_n|} = |x| \lim_{n \to \infty} \frac{1}{\sqrt[n]{|n|}} = |x|$  the series is

absolutely convergent for  $\vert x \vert < 1$  and divergent for  $\vert x \vert > 1$  by Cauchy's root test.

5)  $\sum_{j=1}^{+\infty} \frac{1}{j}$ ,  $\sum_{j=1}^{+\infty} \frac{1}{j^2}$ : both series satisfy both the conditions  $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$ 

and  $\lim_{n\to\infty} \sqrt[n]{|a_n|}=1$ , but the first series is divergent and the second one is absolutely convergent.



#### **Examples**:

6) 
$$\sum_{j=1}^{+\infty} \frac{2^j}{j^2}$$
:  $a_n = \frac{2^n}{n^2}$ ,  $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 2 \lim_{n \to \infty} \frac{1}{\sqrt[n]{|n|^2}} = 2 > 1$  the series is divergent by Cauchy's root test.

7) 
$$\sum_{i=1}^{+\infty} \frac{j}{e^j} : a_n = \frac{n}{e^n},$$

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}} \right| = \frac{1}{e} \lim_{n \to \infty} \left| \frac{n+1}{n} \right| = \frac{1}{e} < 1 \Rightarrow \text{ the series is}$$

absolutely convergent by D'Alembert's ratio test.

8) Let 
$$0 < q_1 < q_2 < 1$$
, consider  $\sum\limits_{j=1}^{+\infty} a_j$  with  $a_n = \left\{ \begin{array}{l} q_1^n \text{ if } n \text{ is even}, \\ q_2^n \text{ if } n \text{ is odd}. \end{array} \right.$ 

$$\sqrt[n]{|a_n|} = \left\{ \begin{array}{l} q_1 \text{ if } n \text{ is even}, \\ q_2 \text{ if } n \text{ is odd}. \end{array} \right. \Rightarrow \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} < 1 \Rightarrow \text{the series is absolutely convergent by Cauchy's root test.}$$

Remark 1:  $\lim_{n\to\infty} \sqrt[n]{|a_n|}$  does not exist!

Remark 2: D'Alembert's ratio test is not informative.



### Theorem (Dirichlet's test)

Let  $\{a_n\}_{n\in\mathbb{N}}$  be a monotonically decreasing sequence of real numbers,  $\lim_{n\to\infty}a_n=0$ , and  $\{b_n\}_{n\in\mathbb{N}}$  be a sequence of real numbers

such that there exists an 
$$M>0$$
:  $\left|\sum_{j=1}^N b_j\right|\leq M$  for any  $N\in\mathbb{N}$ .

Then the series  $\sum_{j=1}^{+\infty} a_j b_j$  is convergent.

### Theorem (Abel's test)

Let  $\sum\limits_{j=1}^{+\infty} a_j$  be a convergent series, and  $\{b_n\}_{n\in\mathbb{N}}$  be a bounded

monotone sequence of real numbers. Then the series  $\sum_{j=1}^{+\infty} a_j b_j$  is convergent.



### **Examples**:

1) 
$$\sum_{j=1}^{+\infty} \frac{\sin j\alpha}{j}$$
: if  $\alpha \neq 2\pi m$ ,  $m \in \mathbb{Z}$ , then 
$$\sum_{j=1}^{n} \sin j\alpha = \sum_{j=1}^{n} \frac{2\sin\frac{\alpha}{2}\sin j\alpha}{2\sin\frac{\alpha}{2}} = \frac{\sum_{j=1}^{n} \left(\cos\left(j - \frac{1}{2}\right)\alpha - \cos\left(j + \frac{1}{2}\right)\alpha\right)}{2\sin\frac{\alpha}{2}} = \frac{\cos\frac{1}{2}\alpha - \cos\left(n + \frac{1}{2}\right)\alpha}{2\sin\frac{\alpha}{2}} = \frac{\cos\frac{1}{2}\alpha - \cos\left(n + \frac{1}{2}\right)\alpha}{2\sin\frac{\alpha}{2}} = \frac{\cos\frac{1}{2}\alpha - \cos\left(n + \frac{1}{2}\right)\alpha}{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha - \cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha - \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha - \cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha - \cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha - \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha - \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha + \cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha}{\cos\frac{1}{2}\alpha} = \frac{\cos\frac{1}{2}\alpha}{\cos\frac{1}\alpha} = \frac{\cos\frac{1}{2}\alpha}{\cos\frac{1}\alpha} = \frac{\cos\frac{1}{2}\alpha}{\cos\frac{1}\alpha} = \frac{\cos\frac{1}{2}\alpha}$$

$$\frac{\sin\frac{n+1}{2}\alpha\sin\frac{n}{2}\alpha}{\sin\frac{\alpha}{2}}. \text{ Therefore, } \left|\sum_{j=1}^n\sin j\alpha\right| \leq \frac{1}{\left|\sin\frac{\alpha}{2}\right|}.$$

if  $\alpha \neq 2\pi m$ ,  $m \in \mathbb{Z}$ , then  $\sum_{j=1}^{n} \sin j\alpha = 0$ . Therefore,  $\sum_{j=1}^{n} \sin j\alpha$  are

bounded for any  $\alpha \in \mathbb{R}$ . Since the sequence  $\left\{\frac{1}{n}\right\}_{n \in \mathbb{N}}$  monotonically decreases and converges to 0, Dirichlet's test implies the convergence of the series for any  $\alpha \in \mathbb{R}$ .



Examples:  
2) 
$$\sum_{j=1}^{+\infty} \frac{\sin j\alpha \cos \frac{\pi}{j}}{\ln \ln j}$$
:

the series  $\sum_{i=1}^{+\infty} \frac{\sin j\alpha}{\ln \ln j}$  converges by Dirichlet's test, the sequence

 $\{\cos\frac{\pi}{n}\}_{n\in\mathbb{N}}$  is monotone and bounded. Therefore, the given series converges by Abel's test.