CKM angle γ determination in $B^{\pm} \rightarrow DK^{\pm}$, $\underline{D} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$ decays

Martin Tat

Oxford LHCb

22nd June 2021

Outline

- $oldsymbol{1}{}$ γ and the unitary triangle
- 2 Motivation for the $D \to K^+K^-\pi^+\pi^-$ decay mode
- 3 Binning scheme and binned fit of $D \to K^+K^-\pi^+\pi^-$
- 4 Global mass fit
- Binned CP fit
- **6** Strong-phase inputs from quantum-correlated $D^0 \bar{D^0}$ pairs
- Summary and next steps

γ and the unitary triangle

γ and the unitary triangle

How to measure γ ?

γ and the unitary triangle

- ullet Unitarity of CKM matrix: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
- Define $\gamma = \arg \Big(\frac{V_{ud} \, V_{ub}^*}{V_{cd} \, V_{cb}^*} \Big)$
- Only CKM angle accessible at tree level ⇒
 - Negligible theoretical uncertainties
 - Ideal Standard Model benchmark

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005)

How to measure γ ?

- ullet Need b o car us and b o uar cs interference, such as $B^\pm o DK^\pm$
 - D: Superposition of D^0 and $\bar{D^0}$
- ullet Inteference when D^0 and $ar{D^0}$ decay into a common final state
- Single most precise measurement ($D \rightarrow K_S^0 h^+ h^-$): $\gamma = (68.7^{+5.2}_{-5.1})^\circ$ JHEP 02 (2021) 169

Simplified γ measurement

- Decay amplitudes:
 - $\mathcal{A}(B^- \to DK^-) = \mathcal{A}(D^0) + r_B e^{i(\delta_B \gamma)} \mathcal{A}(\bar{D^0})$
 - $\mathcal{A}(B^+ \to DK^+) = \mathcal{A}(\bar{D^0}) + r_B e^{i(\delta_B + \gamma)} \mathcal{A}(D^0)$
- ullet $\mathcal{A}(D^0)$ - $\mathcal{A}(ar{D^0})$ strong phase difference varies throughout phase space
- Two approaches:
 - **1** Predict A(D) using an amplitude model
 - Model-independent measurement with external strong-phase inputs

Motivation for the $D \to K^+K^-\pi^+\pi^-$ decay mode

Motivation for the $D \rightarrow K^+K^-\pi^+\pi^-$ decay mode

The need for an efficient binning scheme

Motivation for the $D \to K^+K^-\pi^+\pi^-$ decay mode

- Proposed by G. Wilkinson, J. Rademacker Phys. Lett. B, 647(2007)
 - \bullet Estimated γ precision: 14° with 1000 events
- Why this mode, and why now?
 - Estimate 2000 candidates from LHCb Run 1+2
 - Model-independent analysis reduces systematic uncertainties
 - Much more data from BESIII during 2022-2023 for strong-phase inputs
 - Recent LHCb amplitude model JHEP 02 (2019) 126
 - **5** New era of γ measurements with 4-body decay modes
 - $D \to K_S^0 \pi^+ \pi^- \pi^0$ by Belle JHEP 10 (2019) 178
 - Ongoing analysis of $D \to K^+\pi^-\pi^+\pi^-$ at LHCb

Binned fit of $D \rightarrow K^+K^-\pi^+\pi^-$

- Decay amplitudes:
 - $\mathcal{A}(B^- \to DK^-) = \mathcal{A}(D^0) + r_B e^{i(\delta_B \gamma)} \mathcal{A}(\bar{D^0})$
- Yield in bin i:

•
$$N_i^- = h_{B^-} \Big(K_i + (x_-^2 + y_-^2) \bar{K}_i + 2\sqrt{K_i \bar{K}_i} (x_- c_i + y_- s_i) \Big)$$

ullet Fit to extract x_{\pm} and y_{\pm} \Longrightarrow Interpret in terms of γ , r_{B} , δ_{B}

CP-violating observables

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma), \quad y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

External strong-phase input

 c_i , s_i : Amplitude-averaged strong phase difference of D decay

Binning scheme

- What to do with 5D phase space?
 - Evaluate amplitudes of each event using the LHCb model
 - Calculate $\mathcal{A}(D^0)/\mathcal{A}(\bar{D^0})=r_D\exp(i\delta_D)$
 - Effectively reduces 5D→2D

Pull study

- Generate 1000 toy datasets using LHCb amplitude model
- ullet Fit for γ on each dataset

Figure 3: γ distribution

Achieved γ precision of $\sigma(\gamma) = 12^{\circ}$

Global mass fit

Global mass fit

Global mass fit

- Fit all $B^\pm o (K^+K^-\pi^+\pi^-)_D h^\pm$ candidates
- Fix overall signal yield and PDF shape parameters for binned CP fit

Figure 4: Signal yields are 2290 \pm 59 (left) and 33113 \pm 211 (right)

Binned CP fit

Binned CP fit

Binned CP fit

Strong-phase inputs are taken from LHCb amplitude model for now

Figure 5: Confidence intervals for fitted CP observables x_{\pm} and y_{\pm}

Strong-phase inputs from quantum-correlated $D^0 \overline{D^0}$ pairs

Strong-phase inputs from quantum-correlated $D^0 \bar{D^0}$ pairs

BESIII double tag analysis

BESIII is a charm factory: $e^+e^- o \psi(3770) o D^0 \bar{D^0}$

BESIII double tag analysis

Double tagged signal $(K^+K^-\pi^+\pi^-)$ with known CP even tag (K^+K^-)

 $B^{\pm} \to (K^{+}K^{-}\pi^{+}\pi^{-})_{D}K^{\pm}$

18 / 27

BESIII double tag analysis

Double tagged signal $(K^+K^-\pi^+\pi^-)$ with known CP odd tag $(K_S^0\pi^0)$

Double tag method

- Signal decay $D o K^+ K^- \pi^+ \pi^-$ is correlated with the tag decay mode
- "Spooky action at a distance"!
- Double-tag yield of CP even tag:

•
$$N_i = h(K_i - 2c_i\sqrt{K_i\bar{K}_i} + \bar{K}_i)$$

- Double-tag yield of CP odd tag:
 - $N_i = h(K_i + 2c_i\sqrt{K_i\bar{K}_i} + \bar{K}_i)$

Double tag yields

- \bullet Current 3 fb⁻¹ dataset is insufficient, expect 20 fb⁻¹ by end of 2023
- For now, simply compare double tag yields with expectation from LHCb model

Summary and next steps

Summary:

- ullet LHCb: Model-independent binned γ analysis looks promising
- BESIII: Initial double tag yields of BESIII data look consistent

Next steps:

- LHCb: Ensure peaking backgrounds are under control and study systematic uncertainties
- BESIII: Finalize double tag yield for all tag modes

Thank you!

Backup: Analytical expressions

$$\bullet \ \, \textit{C}_{\textit{i}} = \frac{\int_{\textit{i}} \mathrm{d} \Phi |\mathcal{A}(D^{0})| |\mathcal{A}(\bar{D^{0}})| \cos(\delta_{\textit{D}})}{\sqrt{\int_{\textit{i}} \mathrm{d} \Phi |\mathcal{A}(D^{0})|^{2} \int_{\textit{i}} \mathrm{d} \Phi \left|\mathcal{A}(\bar{D^{0}})\right|^{2}}}$$

$$\bullet \ \ s_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(\bar{D^0})| \sin(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi \left|\mathcal{A}(\bar{D^0})\right|^2}}$$

•
$$K_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}{\sum_j \int_j \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}$$

Binning scheme

- Aim: Maximize interference \implies Enhance x_{\pm} and y_{\pm} sensitivity
- Analogy: $K_S \pi^+ \pi^-$ Dalitz analysis

Backup: Optimize bin widths

- Optimize x_{\pm} , y_{\pm} sensitivity
- ullet Vary bin edges, keep symmetric around $\delta_D=0$

Binning Q value

$$Q^2 = 1 - \sum_i \frac{\kappa_i \bar{\kappa}_i (1 - c_i^2 - s_i^2)}{N_i} / \sum_i K_i$$

$$Q^2 \approx \sum_i N_i (c_i^2 + s_i^2) / \sum_i N_i \text{ if } r_B = 0$$

• Can achieve $Q \approx 0.90$ with 8 bins \implies expect $\sigma(\gamma) = 12^{\circ}$

Backup: Charmless backgrounds

Study the D mass sideband to estimate yield of charmless background

(a) No flight significance cut

(b) Flight significance cut at 2

Backup: $K\pi\pi\pi$ background

• Use MC samples to study contamination of $D \to K\pi\pi\pi$ under the signal

(a) D mass spectrum of the signal $KK\pi\pi$ and background $K\pi\pi\pi$.

(b) Yield of signal $KK\pi\pi$ and background $K\pi\pi\pi$ as a function of PID cut.