Math 407 Homework 4 Due by 5pm on Friday, Feb 2

Neatly write (or better yet, type up) your answers to the following questions and submit a pdf copy.

1. A decision maker has utility function $u(w) = w^{1/3}$. She is given the choice between two random amounts X_1 and X_2 , in exchange for her entire present wealth w_0 . Suppose that

$$X_1 = \begin{cases} 8 & \text{with probability } 0.5\\ 27 & \text{with probability } 0.5 \end{cases}$$

and

$$X_2 = \begin{cases} 1 & \text{with probability } 0.6\\ 64 & \text{with probability } 0.4 \end{cases}$$

- (a) Show that she prefers X_1 to X_2 .
- (b) Determine for what values of w_0 she should decline the offer.
- (c) Give an example of an utility function in which she would prefer X_2 to X_1 .

2. Recall that the iso-elastic property says that for any k > 0, u(kw) = f(k)u(w) + g(k) for some f(k) and g(k).

- (a) Identify the functions f(k) and g(k) in the case of $u(w) = \ln w$.
- (b) Identify the functions f(k) and g(k) in the case of $u(w) = \frac{w^{\lambda} 1}{\lambda}$.

3. Recall that the Arrow-Pratt absolute risk aversion function is given by $A(w) = \frac{-u''(w)}{u'(w)}$.

- (a) Compute A(w) in the case of $u(w) = \ln w$. Is A(w) is non-increasing?
- (b) Compute A(w) in the case of $u(w) = \frac{w^{\lambda} 1}{\lambda}$. Is A(w) is non-increasing?