

Random sphere packing lattices

Yoav Kallus

Santa Fe Institute

APS March Meeting San Antonio March 5, 2015

What do I mean by a lattice

$$L = A\mathbb{Z}^n = \{\sum_{i=1}^n m_i \mathbf{a}_i : m_i \in \mathbb{Z}\}$$

What do I mean by a lattice

$$L = A\mathbb{Z}^n = \{\sum_{i=1}^n m_i \mathbf{a}_i : m_i \in \mathbb{Z}\}$$

What do I mean by a lattice

$$L = A\mathbb{Z}^n = \{\sum_{i=1}^n m_i \mathbf{a}_i : m_i \in \mathbb{Z}\}$$

Good packings are often lattices

Packing problem restricted to lattices

n	L					
2	A_2	Lagrange (1773)				
3	$D_3 = A_3$	Gauss (1840)				
4	D_4	Korkin & Zolotarev (1877)				
5	D_5	Korkin & Zolotarev (1877)				
6	E_6	Blichfeldt (1935)				
7	E_7	Blichfeldt (1935)				
8	E_8	Blichfeldt (1935)				
24	Λ_{24}	Cohn & Kumar (2004)				

Packing problem restricted to lattices

n	L						
2	A_2	Lagrange (1773)					
3	$D_3 = A_3$	Gauss (1840)					
4	D_4	Korkin & Zolotarev (1877)					
5	D_5	Korkin & Zolotarev (1877)					
6	E_6	Blichfeldt (1935)					
7	E_7	Blichfeldt (1935)					
8	E_8	Blichfeldt (1935)					
24	Λ_{24}	Cohn & Kumar (2004)					

Restriction to lattices makes the packing problem much more manageable. Does it offer leverage for statistical mechanical questions?

Thermodynamics of hard-sphere lattices

Kallus, Phys. Rev. E 87, 063307 (2013)

Thermodynamics of hard-sphere lattices

Densest known lattice recovered in some runs for $n \le 20$

Kallus, Phys. Rev. E 87, 063307 (2013)

Thermodynamics of hard-sphere lattices

Kallus, Phys. Rev. E 87, 063307 (2013)

Lattice RCP

Lattice isostaticity

	d	Runs	Isostatic
The second of	13	10,000	365
Isostaticity:	14	10,000	1,625
#constraints $= #$ dof's	15	10,000	5,196
In RCP, Isostaticity \rightarrow	16	10,000	6,761
average $\#$ contacts $= 2d$.	17	10,000	9,235
average $\#$ contacts = $2u$.	18	10,000	9,590
In Lattice RCP: #dof's	19	20,000	19,200
$=\frac{1}{2}d(d+1).$	20	20,000	19,085
Isostaticity \rightarrow	21	10,000	9,473
#contacts $= d(d+1)$.	22	10,000	9,406
,	23	10,000	9,281
Kallus, Marcotte, & Torquato, Phys. Rev. F 88, 062151 (2013)	24	10,000	9,205

Pair correlations and quasicontacts

Contact force distribution

Quasicontacts and weak contacts

Uniform sampling of jammed lattices

Extreme lattices can be exhaustively enumerated.

						-		
d	2	3	4	5	6	7	8	9
perfect lattices	1	1	2	3	7	33	10916	>50000
extreme lattices	1	1	2	3	6	30	2408	• • •

Uniform sampling of jammed lattices

Extreme lattices can be exhaustively enumerated.

						-		
d	2	3	4	5	6	7	8	9
perfect lattices	1	1	2	3	7	33	10916	>50000
extreme lattices	1	1	2	3	6	30	2408	

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Computational topology of config'n space

Carlsson, Gorham, Kahle, & Mason, Phys. Rev. E 85, 011303 (2012)

Lattice RCP

