Contents

About the Author vi Preface vii The Companion Website xvi To the Student xvii

1	The Foundations: Logic and Proofs	1
1.1	Propositional Logic	1
1.2	Applications of Propositional Logic	
1.3	Propositional Equivalences	
1.4	Predicates and Quantifiers	
1.5	Nested Quantifiers	57
1.6	Rules of Inference	69
1.7	Introduction to Proofs	80
1.8	Proof Methods and Strategy	92
	End-of-Chapter Material	109
2	Basic Structures: Sets, Functions, Sequences, Sums, and Ma	trices . 115
2.1	Sets	115
2.2	Set Operations	127
2.3	Functions	138
2.4	Sequences and Summations	156
2.5	Cardinality of Sets	170
2.6	Matrices	177
	End-of-Chapter Material	185
3	Algorithms	191
3.1	Algorithms	191
3.2	The Growth of Functions	
3.3	Complexity of Algorithms	
5.5	End-of-Chapter Material	
4	Number Theory and Cryptography	237
4.1	Divisibility and Modular Arithmetic	237
4.2	Integer Representations and Algorithms	245
4.3	Primes and Greatest Common Divisors	
4.4	Solving Congruences	274
4.5	Applications of Congruences	287
4.6	Cryptography	294
	End-of-Chapter Material	306

5	Induction and Recursion	311
5.1	Mathematical Induction	311
5.2	Strong Induction and Well-Ordering	333
5.3	Recursive Definitions and Structural Induction	344
5.4	Recursive Algorithms	360
5.5		
	End-of-Chapter Material	
6	Counting	385
6.1	The Basics of Counting	385
6.2	The Pigeonhole Principle	
6.3	Permutations and Combinations	
6.4	Binomial Coefficients and Identities	415
6.5	Generalized Permutations and Combinations	423
6.6	Generating Permutations and Combinations	434
	End-of-Chapter Material	
7	Discrete Probability	445
7.1	An Introduction to Discrete Probability	
7.2	Probability Theory	452
7.3	Bayes' Theorem	468
7.4	Expected Value and Variance	477
	Fnd-of-Chapter Material	494

1/The Foundations: Logic and Proofs

Key Terms and Results

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-

tion

truth value: true or false

 $\neg p$ (negation of p): the proposition with truth value opposite to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combining propositions using logical operators

truth table: a table displaying all possible truth values of propositions

 $p \lor q$ (disjunction of p and q): the proposition "p or q," which is true if and only if at least one of p and q is true

- $p \wedge q$ (conjunction of p and q): the proposition "p and q," which is true if and only if both p and q are true
- $p \oplus q$ (exclusive or of p and q): the proposition "p XOR q," which is true when exactly one of p and q is true
- $p \rightarrow q$ (p implies q): the proposition "if p, then q," which is false if and only if p is true and q is false

converse of $p \rightarrow q$ **:** the conditional statement $q \rightarrow p$ **contrapositive of** $p \rightarrow q$ **:** the conditional statement $\neg q \rightarrow \neg p$

inverse of $p \rightarrow q$ **:** the conditional statement $\neg p \rightarrow \neg q$ $p \leftrightarrow q$ (biconditional): the proposition "p if and only if q," which is true if and only if p and q have the same truth

bit: either a 0 or a 1

value

Boolean variable: a variable that has a value of 0 or 1

bit operation: an operation on a bit or bits

bit string: a list of bits

bitwise operations: operations on bit strings that operate on each bit in one string and the corresponding bit in the other string

logic gate: a logic element that performs a logical operation on one or more bits to produce an output bit

logic circuit: a switching circuit made up of logic gates that produces one or more output bits

tautology: a compound proposition that is always true

contradiction: a compound proposition that is always false

contingency: a compound proposition that is sometimes true and sometimes false

consistent compound propositions: compound propositions for which there is an assignment of truth values to the variables that makes all these propositions true

satisfiable compound proposition: a compound proposition for which there is an assignment of truth values to its variables that makes it true

logically equivalent compound propositions: compound propositions that always have the same truth values

predicate: part of a sentence that attributes a property to the subject

propositional function: a statement containing one or more variables that becomes a proposition when each of its variables is assigned a value or is bound by a quantifier

domain (or universe) of discourse: the values a variable in a propositional function may take

 $\exists x P(x)$ (existential quantification of P(x)): the proposition that is true if and only if there exists an x in the domain such that P(x) is true

 $\forall x P(x)$ (universal quantification of P(x)): the proposition that is true if and only if P(x) is true for every x in the domain

logically equivalent expressions: expressions that have the same truth value no matter which propositional functions and domains are used

free variable: a variable not bound in a propositional function

bound variable: a variable that is quantified

scope of a quantifier: portion of a statement where the quantifier binds its variable

argument: a sequence of statements

RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Section 1.3.

argument form: a sequence of compound propositions involving propositional variables

premise: a statement, in an argument, or argument form, other than the final one

conclusion: the final statement in an argument or argument form

valid argument form: a sequence of compound propositions involving propositional variables where the truth of all the premises implies the truth of the conclusion

valid argument: an argument with a valid argument form

rule of inference: a valid argument form that can be used in the demonstration that arguments are valid

fallacy: an invalid argument form often used incorrectly as a rule of inference (or sometimes, more generally, an incorrect argument)

circular reasoning or begging the question: reasoning where one or more steps are based on the truth of the statement being proved

theorem: a mathematical assertion that can be shown to be true

conjecture: a mathematical assertion proposed to be true, but that has not been proved

proof: a demonstration that a theorem is true

axiom: a statement that is assumed to be true and that can be used as a basis for proving theorems

lemma: a theorem used to prove other theorems

corollary: a proposition that can be proved as a consequence of a theorem that has just been proved

vacuous proof: a proof that $p \rightarrow q$ is true based on the fact that p is false

trivial proof: a proof that $p \to q$ is true based on the fact that q is true

direct proof: a proof that $p \to q$ is true that proceeds by showing that q must be true when p is true

proof by contraposition: a proof that $p \rightarrow q$ is true that proceeds by showing that p must be false when q is false

proof by contradiction: a proof that p is true based on the truth of the conditional statement $\neg p \rightarrow q$, where q is a contradiction

exhaustive proof: a proof that establishes a result by checking a list of all possible cases

proof by cases: a proof broken into separate cases, where these cases cover all possibilities

without loss of generality: an assumption in a proof that makes it possible to prove a theorem by reducing the number of cases to consider in the proof

counterexample: an element x such that P(x) is false

constructive existence proof: a proof that an element with a specified property exists that explicitly finds such an element

nonconstructive existence proof: a proof that an element with a specified property exists that does not explicitly find such an element

rational number: a number that can be expressed as the ratio of two integers p and q such that $q \neq 0$

uniqueness proof: a proof that there is exactly one element satisfying a specified property

De Morgan's laws for quantifiers.

Rules of inference for propositional calculus.

Rules of inference for quantified statements.

- **1.** a) Define the negation of a proposition.
 - **b)** What is the negation of "This is a boring course"?
- **2.** a) Define (using truth tables) the disjunction, conjunction, exclusive or, conditional, and biconditional of the propositions *p* and *q*.
 - b) What are the disjunction, conjunction, exclusive or, conditional, and biconditional of the propositions "I'll go to the movies tonight" and "I'll finish my discrete mathematics homework"?
- **3. a)** Describe at least five different ways to write the conditional statement $p \rightarrow q$ in English.
 - b) Define the converse and contrapositive of a conditional statement.
 - c) State the converse and the contrapositive of the conditional statement "If it is sunny tomorrow, then I will go for a walk in the woods."
- **4. a)** What does it mean for two propositions to be logically equivalent?
 - b) Describe the different ways to show that two compound propositions are logically equivalent.
 - c) Show in at least two different ways that the compound propositions $\neg p \lor (r \to \neg q)$ and $\neg p \lor \neg q \lor \neg r$ are equivalent.
- **5.** (Depends on the Exercise Set in Section 1.3)
 - a) Given a truth table, explain how to use disjunctive normal form to construct a compound proposition with this truth table.
 - b) Explain why part (a) shows that the operators \land , \lor , and \neg are functionally complete.
 - c) Is there an operator such that the set containing just this operator is functionally complete?
- **6.** What are the universal and existential quantifications of a predicate P(x)? What are their negations?
- **7. a)** What is the difference between the quantification $\exists x \forall y P(x, y)$ and $\forall y \exists x P(x, y)$, where P(x, y) is a predicate?

- **b)** Give an example of a predicate P(x, y) such that $\exists x \forall y P(x, y)$ and $\forall y \exists x P(x, y)$ have different truth values.
- **8.** Describe what is meant by a valid argument in propositional logic and show that the argument "If the earth is flat, then you can sail off the edge of the earth," "You cannot sail off the edge of the earth," therefore, "The earth is not flat" is a valid argument.
- **9.** Use rules of inference to show that if the premises "All zebras have stripes" and "Mark is a zebra" are true, then the conclusion "Mark has stripes" is true.
- **10. a)** Describe what is meant by a direct proof, a proof by contraposition, and a proof by contradiction of a conditional statement $p \rightarrow q$.
 - b) Give a direct proof, a proof by contraposition and a proof by contradiction of the statement: "If n is even, then n + 4 is even."
- **11. a)** Describe a way to prove the biconditional $p \leftrightarrow q$.
 - **b)** Prove the statement: "The integer 3n + 2 is odd if and only if the integer 9n + 5 is even, where n is an integer."
- **12.** To prove that the statements p_1, p_2, p_3 , and p_4 are equivalent, is it sufficient to show that the conditional statements $p_4 \rightarrow p_2, p_3 \rightarrow p_1$, and $p_1 \rightarrow p_2$ are valid? If not, provide another collection of conditional statements that can be used to show that the four statements are equivalent.
- **13. a)** Suppose that a statement of the form $\forall x P(x)$ is false. How can this be proved?
 - b) Show that the statement "For every positive integer n, $n^2 \ge 2n$ " is false.
- **14.** What is the difference between a constructive and non-constructive existence proof? Give an example of each.**15**
- What are the elements of a proof that there is a unique element x such that P(x), where P(x) is a propositional function?
- **16.** Explain how a proof by cases can be used to prove a result about absolute values, such as the fact that |xy| = |x||y| for all real numbers x and y.

2/Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Key Terms and Results

TERMS

set: a collection of distinct objects axiom: a basic assumption of a theory paradox: a logical inconsistency

element, member of a set: an object in a set

roster method: a method that describes a set by listing its elements

set builder notation: the notation that describes a set by stating a property an element must have to be a member

Ø (empty set, null set): the set with no members

universal set: the set containing all objects under considera-

Venn diagram: a graphical representation of a set or sets S = T (set equality): S and T have the same elements

- $S \subseteq T$ (S is a subset of T): every element of S is also an element of T
- $S \subset T$ (S is a proper subset of T): S is a subset of T and S = T

finite set: a set with n elements, where n is a nonnegative integer

infinite set: a set that is not finite

|S| (the cardinality of S): the number of elements in S

P(S) (the power set of S): the set of all subsets of S

- $A \cup B$ (the union of A and B): the set containing those elements that are in/at least one of A and B
- $A \cap B$ (the intersection of A and B): the set containing those elements that are in both A and B.

A - B (the difference of A and B): the set containing those elements that are in A but not in B

 \overline{A} (the complement of A): the set of elements in the universal set that are not in A

 $A \oplus B$ (the symmetric difference of A and B): the set containing those elements in exactly one of A and B

membership table: a table displaying the membership of elements in sets

function from A **to** B: an assignment of exactly one element of B to each element of A

domain of f: the set A, where f is a function from A to B **codomain of f:** the set B, where f is a function from A to B b is the image of a under f: b = f(a)

a is a pre-image of b under f: f(a) = b

range of f: the set of images of f

onto function, surjection: a function from A to B such that every element of B is the image of some element in A

one-to-one function, injection: a function such that the images of elements in its domain are distinct

one-to-one correspondence, bijection: a function that is both one-to-one and onto

inverse of f: the function that reverses the correspondence given by f (when f is a bijection)

 $f \circ g$ (composition of f and g): the function that assigns f(g(x)) to x

[x] (floor function): the largest integer not exceeding x

[x] (ceiling function): the smallest integer greater than or equal to x

partial function: an assignment to each element in a subset of the domain a unique element in the codomain

sequence: a function with domain that is a subset of the set of integers

geometric progression: a sequence of the form a, ar, ar^2, \ldots , where a and r are real numbers

arithmetic progression: a sequence of the form a, a + d, a + 2d,..., where a and d are real numbers

string: a finite sequence

empty string: a string of length zero

recurrence relation: a equation that expresses the nth term a_n of a sequence in terms of one or more of the previous terms of the sequence for all integers n greater than a particular integer

 $\sum_{i=1}^{n} a_i$: the sum $a_1 + a_2 + \cdots + a_n$ $\prod_{i=1}^{n} a_i$: the product $a_1 a_2 \cdots a_n$

cardinality: two sets A and B have the same cardinality if there is a one-to-one correspondence from A to B

countable set: a set that either is finite or can be placed in one-to-one correspondence with the set of positive integers

uncountable set: a set that is not countable

 \aleph_0 (aleph null): the cardinality of a countable set

c: the cardinality of the set of real numbers

Cantor diagonalization argument: a proof technique used to show that the set of real numbers is uncountable

computable function: a function for which there is a computer program in some programming language that finds its values

uncomputable function: a function for which no computer program in a programming language exists that finds its values

continuum hypothesis: the statement there no set A exists such that $\aleph_0 < |A| < \mathfrak{c}$

matrix: a rectangular array of numbers

matrix addition: see page 178

matrix multiplication: see page 179

 I_n (identity matrix of order n): the $n \times n$ matrix that has entries equal to 1 on its diagonal and 0s elsewhere

At (transpose of A): the matrix obtained from A by interchanging the rows and columns

symmetric matrix: a matrix is symmetric if it equals its transpose

zero-one matrix: a matrix with each entry equal to either 0 or

 $A \lor B$ (the join of A and B): see page 181

 $\mathbf{A} \wedge \mathbf{B}$ (the meet of \mathbf{A} and \mathbf{B}): see page 181

A ⊙ **B** (the Boolean product of **A** and **B**): see page 182

RESULTS

The set identities given in Table 1 in Section 2.2 The summation formulae in Table 2 in Section 2.4

The summation formulae in Table 2 in Section

The set of rational numbers is countable.

The set of real numbers is uncountable.

- Explain what it means for one set to be a subset of another set. How do you prove that one set is a subset of another set?
- 2. What is the empty set? Show that the empty set is a subset of every set.
- **3.** a) Define |S|, the cardinality of the set S.
 - **b)** Give a formula for $|A \cup B|$, where A and B are sets.
- **4.** a) Define the power set of a set *S*.
 - **b)** When is the empty set in the power set of a set *S*?
 - c) How many elements does the power set of a set S with n elements have?

- **5. a)** Define the union, intersection, difference, and symmetric difference of two sets.
 - b) What are the union, intersection, difference, and symmetric difference of the set of positive integers and the set of odd integers?
- **6.** a) Explain what it means for two sets to be equal.
 - **b)** Describe as many of the ways as you can to show that two sets are equal.
 - c) Show in at least two different ways that the sets $A (B \cap C)$ and $(A B) \cup (A C)$ are equal.

- Explain the relationship between logical equivalences and set identities.
- **8.** a) Define the domain, codomain, and range of a function.
 - b) Let f(n) be the function from the set of integers to the set of integers such that $f(n) = n^2 + 1$. What are the domain, codomain, and range of this function?
- 9. a) Define what it means for a function from the set of positive integers to the set of positive integers to be one-to-one.
 - b) Define what it means for a function from the set of positive integers to the set of positive integers to be onto.
 - c) Give an example of a function from the set of positive integers to the set of positive integers that is both one-to-one and onto.
 - d) Give an example of a function from the set of positive integers to the set of positive integers that is one-to-one but not onto.
 - e) Give an example of a function from the set of positive integers to the set of positive integers that is not one-to-one but is onto.
 - f) Give an example of a function from the set of positive integers to the set of positive integers that is neither one-to-one nor onto.

- 10. a) Define the inverse of a function.
 - b) When does a function have an inverse?
 - c) Does the function f(n) = 10 n from the set of integers to the set of integers have an inverse? If so, what is it?
- **11. a)** Define the floor and ceiling functions from the set of real numbers to the set of integers.
 - **b)** For which real numbers x is it true that $\lfloor x \rfloor = \lceil x \rceil$?
- **12.** Conjecture a formula for the terms of the sequence that begins 8, 14, 32, 86, 248 and find the next three terms of your sequence.
- **13.** Suppose that $a_n = a_{n-1} 5$ for $n = 1, 2, \ldots$ Find a formula for a_n .
- **14.** What is the sum of the terms of the geometric progression $a + ar + \cdots + ar^n$ when $r \neq 1$?
- **15.** Show that the set of odd integers is countable.
- **16.** Give an example of an uncountable set.
- **17.** Define the product of two matrices **A** and **B**. When is this product defined?
- **18.** Show that matrix multiplication is not commutative.

3/Algorithms

Key Terms and Results

TERMS

algorithm: a finite sequence of precise instructions for performing a computation or solving a problem

searching algorithm: the problem of locating an element in a list

linear search algorithm: a procedure for searching a list element by element

binary search algorithm: a procedure for searching an ordered list by successively splitting the list in half

sorting: the reordering of the elements of a list into prescribed order

f(x) is O(g(x)): the fact that $|f(x)| \le C|g(x)|$ for all x > k for some constants C and k

witness to the relationship f(x) is O(g(x)): a pair C and k such that $|f(x)| \le C|g(x)|$ whenever x > k

f(x) is $\Omega(g(x))$: the fact that $|f(x)| \ge C|g(x)|$ for all x > k for some positive constants C and k

f(x) is $\Theta(g(x))$: the fact that f(x) is both O(g(x)) and $\Omega(g(x))$ ti me complexity: the amount of time required for an algorithm to solve a problem

space complexity: the amount of space in computer memory required for an algorithm to solve a problem

worst-case time complexity: the greatest amount of time required for an algorithm to solve a problem of a given size

average-case time complexity: the average amount of time required for an algorithm to solve a problem of a given size

algorithmic paradigm: a general approach for constructing algorithms based on a particular concept

brute force: the algorithmic paradigm based on constructing algorithms for solving problems in a naive manner from the statement of the problem and definitions

greedy algorithm: an algorithm that makes the best choice at each step according to some specified condition

tractable problem: a problem for which there is a worst-case polynomial-time algorithm that solves it

intractable problem: a problem for which no worst-case polynomial-time algorithm exists for solving it

solvable problem: a problem that can be solved by an algorithm

unsolvable problem: a problem that cannot be solved by an algorithm

RESULTS

linear and binary search algorithms: (given in Section 3.1)

bubble sort: a sorting that uses passes where successive items are interchanged if they in the wrong order

insertion sort: a sorting that at the jth step inserts the jth element into the correct position in the list, when the first j-1 elements of the list are already sorted

The linear search has O(n) worst case time complexity. The binary search has $O(\log n)$ worst case time complexity. The bubble and insertion sorts have $O(n^2)$ worst case time complexity.

 $\log n!$ is $O(n \log n)$.

If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$, then $(f_1 + f_2)(x)$ is $O(\max(g_1(x), g_2(x)))$ and $(f_1 f_2)(x)$ is $O((g_1 g_2(x)))$.

If a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$, then $a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ is $\Theta(x^n)$, and hence O(n) and $\Omega(n)$.

- **1.** a) Define the term *algorithm*.
 - **b)** What are the different ways to describe algorithms?
 - c) What is the difference between an algorithm for solving a problem and a computer program that solves this problem?
- **2.** a) Describe, using English, an algorithm for finding the largest integer in a list of *n* integers.
 - **b)** Express this algorithm in pseudocode.
 - c) How many comparisons does the algorithm use?
- **3. a)** State the definition of the fact that f(n) is O(g(n)), where f(n) and g(n) are functions from the set of positive integers to the set of real numbers.
 - **b)** Use the definition of the fact that f(n) is O(g(n)) directly to prove or disprove that $n^2 + 18n + 107$ is $O(n^3)$.
 - c) Use the definition of the fact that f(n) is O(g(n)) directly to prove or disprove that n^3 is $O(n^2 + 18n + 107)$.
 - **7.** a) Describe the linear search and binary search algorithm for finding an integer in a list of integers in increasing order
 - b) Compare the worst-case time complexities of these two algorithms.
 - c) Is one of these algorithms always faster than the other (measured in terms of comparisons)?8
 - . a) Describe the bubble sort algorithm.
 - b) Use the bubble sort algorithm to sort the list 5, 2, 4, 1, 3.
 - c) Give a big-O estimate for the number of comparisons used by the bubble sort.
 - 9. a) Describe the insertion sort algorithm.

- **4.** List these functions so that each function is big-O of the next function in the list: $(\log n)^3$, $n^3/1000000$, \sqrt{n} , 100n + 101, 3^n , n!, $2^n n^2$.
- **5. a)** How can you produce a big-O estimate for a function that is the sum of different terms where each term is the product of several functions?
 - **b)** Give a big-O estimate for the function $f(n) = (n! + 1)(2^n + 1) + (n^{n-2} + 8n^{n-3})(n^3 + 2^n)$. For the function g in your estimate f(x) is O(g(x)) use a simple function of smallest possible order.
- **6. a)** Define what the worst-case time complexity, average-case time complexity, and best-case time complexity (in terms of comparisons) mean for an algorithm that finds the smallest integer in a list of *n* integers.
 - **b)** What are the worst-case, average-case, and best-case time complexities, in terms of comparisons, of the algorithm that finds the smallest integer in a list of *n* integers by comparing each of the integers with the smallest integer found so far?
 - b) Use the insertion sort algorithm to sort the list 2, 5, 1, 4, 3.
 - c) Give a big-O estimate for the number of comparisons used by the insertion sort.
 - **10.** a) Explain the concept of a greedy algorithm.
 - **b**) Provide an example of a greedy algorithm that produces an optimal solution and explain why it produces an optimal solution.
 - c) Provide an example of a greedy algorithm that does not always produce an optimal solution and explain why it fails to do so.
 - **11.** Define what it means for a problem to be tractable and what it means for a problem to be solvable.

4/Number Theory and Cryptography

Key Terms and Results

TERMS

- $a \mid b \ (a \text{ divides } b)$: there is an integer c such that b = ac
- a and b are congruent modulo m: m divides a b
- **modular arithmetic:** arithmetic done modulo an integer m > 2
- **prime:** an integer greater than 1 with exactly two positive integer divisors
- **composite:** an integer greater than 1 that is not prime
- **Mersenne prime:** a prime of the form $2^p 1$, where p is prime gcd(a, b) (greatest common divisor of a and b): the largest integer that divides both a and b
- **relatively prime integers:** integers a and b such that gcd(a, b) = 1
- **pairwise relatively prime integers:** a set of integers with the property that every pair of these integers is relatively prime
- lcm(a, b) (least common multiple of a and b): the smallest positive integer that is divisible by both a and b
- **a mod b:** the remainder when the integer a is divided by the positive integer b
- $a \equiv b \pmod{m}$ (a is congruent to b modulo m): a b is divisible by m
- $n = (a_k a_{k-1} \dots a_1 a_0)_b$: the base b representation of n binary representation: the base 2 representation of an integer octal representation: the base 8 representation of an integer hexadecimal representation: the base 16 representation of an integer
- linear combination of a and b with integer coefficients: an expression of the form sa + tb, where s and t are integers
- **Bézout coefficients of a and b:** integers s and t such that the **Bézout identity** $sa + tb = \gcd(a, b)$ holds
- **inverse of** a **modulo** m**:** an integer \overline{a} such that $\overline{a}a \equiv 1 \pmod{m}$ **linear congruence:** a congruence of the form $ax \equiv b \pmod{m}$, where x is an integer variable
- **pseudoprime to the base b:** a composite integer n such that $b^{n-1} \equiv 1 \pmod{n}$
- **Carmichael number:** a composite integer n such that n is a pseudoprime to the base b for all positive integers b with gcd(b, n) = 1
- **primitive root of a prime p:** an integer r in \mathbb{Z}_p such that every integer not divisible by p is congruent modulo p to a power of r
- **discrete logarithm of** a **to the base** r **modulo** p**:** the integer e with $0 \le e \le p-1$ such that $r^e \equiv a \pmod{p}$
- encryption: the process of making a message secret
- **decryption:** the process of returning a secret message to its original form
- **encryption key:** a value that determines which of a family of encryption functions is to be used
- **shift cipher:** a cipher that encrypts the plaintext letter p as $(p+k) \mod m$ for an integer k
- **affine cipher:** a cipher that encrypts the plaintext letter p as (ap + b) **mod** m for integers a and b with gcd(a, 26) = 1
- character cipher: a cipher that encrypts characters one by oneblock cipher: a cipher that encrypts blocks of characters of a fixed size

- **crytanalysis:** the process of recovering the plaintext from ciphertext without knowledge of the encryption method, or with knowledge of the encryption method, but not the key
- **cryptosystem:** a five-tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ where \mathcal{P} is the set of plaintext messages, \mathcal{C} is the set of ciphertext messages, \mathcal{K} is the set of keys, \mathcal{E} is the set of encryption functions, and \mathcal{D} is the set of decryption functions
- **private key encryption:** encryption where both encryption keys and decryption keys must be kept secret
- **public key encryption:** encryption where encryption keys are public knowledge, but decryption keys are kept secret
- **RSA cryptosystem:** the cryptosystem where \mathcal{P} and \mathcal{C} are both \mathbf{Z}_{26} , \mathcal{K} is the set of pairs k=(n,e) where n=pq where p and q are large primes and e is a positive integer, $E_k(p)=p^e \operatorname{mod} n$, and $D_k(c)=c^d \operatorname{mod} n$ where d is the inverse of e modulo (p-1)(q-1)
- **key exchange protocol:** a protocol used for two parties to generate a shared key
- **digital signature:** a method that a recipient can use to determine that the purported sender of a message actually sent the message

RESULTS

- **division algorithm:** Let a and d be integers with d positive. Then there are unique integers q and r with $0 \le r < d$ such that a = dq + r.
- Let *b* be an integer greater than 1. Then if *n* is a positive integer, it can be expressed uniquely in the form $n = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b + a_0$.
- The algorithm for finding the base *b* expansion of an integer (see Algorithm 1 in Section 4.2)
- The conventional algorithms for addition and multiplication of integers (given in Section 4.2)
- The modular exponentiation algorithm (see Algorithm 5 in Section 4.2)
- **Euclidean algorithm:** for finding greatest common divisors by successively using the division algorithm (see Algorithm 1 in Section 4.3)
- **Bézout's theorem:** If a and b are positive integers, then gcd(a, b) is a linear combination of a and b.
- sieve of Eratosthenes: A procedure for finding all primes not exceeding a specified number n, described in Section 4.3
- **fundamental theorem of arithmetic:** Every positive integer can be written uniquely as the product of primes, where the prime factors are written in order of increasing size.
- If a and b are positive integers, then $ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$. If m is a positive integer and $\gcd(a, m) = 1$, then a has a unique inverse modulo m.
- **Chinese remainder theorem:** A system of linear congruences modulo pairwise relatively prime integers has a unique solution modulo the product of these moduli.
- **Fermat's little theorem:** If p is prime and $p \not\mid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

- 1. Find 210 div 17 and 210 mod 17.
- **2.** a) Define what it means for *a* and *b* to be congruent modulo 7.
 - b) Which pairs of the integers -11, -8, -7, -1, 0, 3, and 17 are congruent modulo 7?
 - c) Show that if a and b are congruent modulo 7, then 10a + 13 and -4b + 20 are also congruent modulo 7.
- **3.** Show that if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$.
- **4.** Describe a procedure for converting decimal (base 10) expansions of integers into hexadecimal expansions.
- **5.** Convert (1101 1001 0101 1011)₂ to octal and hexadecimal representations.
- **6.** Convert (7206)₈ and (A0EB)₁₆ to a binary representation.
- 7. State the fundamental theorem of arithmetic.
- **8. a)** Describe a procedure for finding the prime factorization of an integer.
 - **b)** Use this procedure to find the prime factorization of 80,707.
- **9.** a) Define the greatest common divisor of two integers.
 - b) Describe at least three different ways to find the greatest common divisor of two integers. When does each method work best?
 - c) Find the greatest common divisor of 1,234,567 and 7.654.321.
 - d) Find the greatest common divisor of $2^33^55^77^911$ and $2^93^75^57^313$.
- 10. a) How can you find a linear combination (with integer coefficients) of two integers that equals their greatest common divisor?

- b) Express gcd(84, 119) as a linear combination of 84 and 119.
- **11. a)** What does it mean for \overline{a} to be an inverse of $a \mod m$?
 - **b)** How can you find an inverse of a modulo m when m is a positive integer and gcd(a, m) = 1?
 - c) Find an inverse of 7 modulo 19.
- **12. a)** How can an inverse of *a* modulo *m* be used to solve the congruence $ax \equiv b \pmod{m}$ when gcd(a, m) = 1?
 - **b)** Solve the linear congruence $7x \equiv 13 \pmod{19}$.
- 13. a) State the Chinese remainder theorem.
 - b) Find the solutions to the system $x \equiv 1 \pmod{4}$, $x \equiv 2 \pmod{5}$, and $x \equiv 3 \pmod{7}$.
- **14.** Suppose that $2^{n-1} \equiv 1 \pmod{n}$. Is *n* necessarily prime?
- **15.** Use Fermat's little theorem to evaluate 9^{200} mod 19.
- 16. Explain how the check digit is found for a 10-digit ISBN.
- 17. Encrypt the message APPLES AND ORANGES using a shift cipher with key k = 13.
- **18. a)** What is the difference between a public key and a private key cryptosystem?
 - Explain why using shift ciphers is a private key system.
 - c) Explain why the RSA cryptosystem is a public key system.
- Explain how encryption and decryption are done in the RSA cryptosystem.
- **20.** Describe how two parties can share a secret key using the Diffie-Hellman key exchange protocol.

5/Induction and Recursion

Key Terms and Results

TERMS

sequence: a function with domain that is a subset of the set of integers

geometric progression: a sequence of the form a, ar, ar^2, \ldots , where a and r are real numbers

arithmetic progression: a sequence of the form a, a + d, a + 2d,..., where a and d are real numbers

the principle of mathematical induction: the statement $\forall n \ P(n)$ is true if P(1) is true and $\forall k [P(k) \rightarrow P(k+1)]$ is true.

basis step: the proof of P(1) in a proof by mathematical induction of $\forall n P(n)$

inductive step: the proof of $P(k) \rightarrow P(k+1)$ for all positive integers k in a proof by mathematical induction of $\forall n P(n)$

- **strong induction:** the statement $\forall n P(n)$ is true if P(1) is true and $\forall k [(P(1) \land \cdots \land P(k)) \rightarrow P(k+1)]$ is true
- **well-ordering property:** Every nonempty set of nonnegative integers has a least element.
- recursive definition of a function: a definition of a function that specifies an initial set of values and a rule for obtaining values of this function at integers from its values at smaller integers
- **recursive definition of a set:** a definition of a set that specifies an initial set of elements in the set and a rule for obtaining other elements from those in the set
- **structural induction:** a technique for proving results about recursively defined sets
- **recursive algorithm:** an algorithm that proceeds by reducing a problem to the same problem with smaller input

- **merge sort:** a sorting algorithm that sorts a list by splitting it in two, sorting each of the two resulting lists, and merging the results into a sorted list
- **iteration:** a procedure based on the repeated use of operations in a loop
- **program correctness:** verification that a procedure always produces the correct result
- **loop invariant:** a property that remains true during every traversal of a loop
- **initial assertion:** the statement specifying the properties of the input values of a program
- **final assertion:** the statement specifying the properties the output values should have if the program worked correctly

- **1. a)** Can you use the principle of mathematical induction to find a formula for the sum of the first *n* terms of a sequence?
 - **b)** Can you use the principle of mathematical induction to determine whether a given formula for the sum of the first *n* terms of a sequence is correct?
 - c) Find a formula for the sum of the first n even positive integers, and prove it using mathematical induction.
- **2. a)** For which positive integers n is $11n + 17 < 2^n$?
 - b) Prove the conjecture you made in part (a) using mathematical induction.
- **3. a)** Which amounts of postage can be formed using only 5-cent and 9-cent stamps?
 - b) Prove the conjecture you made using mathematical induction.
 - c) Prove the conjecture you made using strong induction.
 - d) Find a proof of your conjecture different from the ones you gave in (b) and (c).
- Give two different examples of proofs that use strong induction.
- **5.** a) State the well-ordering property for the set of positive integers.
 - b) Use this property to show that every positive integer greater than one can be written as the product of primes.
- **6. a)** Explain why a function f from the set of positive integers to the set of real numbers is well-defined if it is defined recursively by specifying f(1) and a rule for finding f(n) from f(n-1).
 - **b)** Provide a recursive definition of the function f(n) = (n+1)!
- **7.** a) Give a recursive definition of the Fibonacci numbers.
 - **b)** Show that $f_n > \alpha^{n-2}$ whenever $n \ge 3$, where f_n is the *n*th term of the Fibonacci sequence and $\alpha = (1 + \sqrt{5})/2$.

- **8. a)** Explain why a sequence a_n is well defined if it is defined recursively by specifying a_1 and a_2 and a rule for finding a_n from $a_1, a_2, \ldots, a_{n-1}$ for $n = 3, 4, 5, \ldots$
 - **b)** Find the value of a_n if $a_1 = 1$, $a_2 = 2$, and $a_n = a_{n-1} + a_{n-2} + \cdots + a_1$, for $n = 3, 4, 5, \ldots$
- Give two examples of how well-formed formulae are defined recursively for different sets of elements and operators.
- **10.** a) Give a recursive definition of the length of a string.
 - b) Use the recursive definition from part (a) and structural induction to prove that l(xy) = l(x) + l(y).
- **11.** a) What is a recursive algorithm?
 - **b)** Describe a recursive algorithm for computing the sum of *n* numbers in a sequence.
- **12.** Describe a recursive algorithm for computing the greatest common divisor of two positive integers.
- **13.** a) Describe the merge sort algorithm.
 - **b)** Use the merge sort algorithm to put the list 4, 10, 1, 5, 3, 8, 7, 2, 6, 9 in increasing order.
 - c) Give a big-O estimate for the number of comparisons used by the merge sort.
- **14. a)** Does testing a computer program to see whether it produces the correct output for certain input values verify that the program always produces the correct output?
 - b) Does showing that a computer program is partially correct with respect to an initial assertion and a final assertion verify that the program always produces the correct output? If not, what else is needed?
- **15.** What techniques can you use to show that a long computer program is partially correct with respect to an initial assertion and a final assertion?
- **16.** What is a loop invariant? How is a loop invariant used?

6/Counting

Key Terms and Results

TERMS

combinatorics: the study of arrangements of objects enumeration: the counting of arrangements of objects

tree diagram: a diagram made up of a root, branches leaving the root, and other branches leaving some of the endpoints of branches

permutation: an ordered arrangement of the elements of a set **r-permutation:** an ordered arrangement of r elements of a set P(n,r): the number of r-permutations of a set with n elements r-combination: an unordered selection of r elements of a set C(n,r): the number of r-combinations of a set with n elements

binomial coefficient $\binom{n}{r}$: also the number of *r*-combinations of a set with n elements

combinatorial proof: a proof that uses counting arguments rather than algebraic manipulation to prove a result

Pascal's triangle: a representation of the binomial coefficients where the *i*th row of the triangle contains $\binom{i}{i}$ for $i = 0, 1, 2, \dots, i$

S(n,j): the Stirling number of the second kind denoting the number of ways to distribute n distinguishable objects into *j* indistinguishable boxes so that no box is empty

RESULTS

product rule for counting: The number of ways to do a procedure that consists of two tasks is the product of the number of ways to do the first task and the number of ways to do the second task after the first task has been done.

product rule for sets: The number of elements in the Cartesian product of finite sets is the product of the number of elements in each set.

sum rule for counting: The number of ways to do a task in one of two ways is the sum of the number of ways to do these tasks if they cannot be done simultaneously.

sum rule for sets: The number of elements in the union of pairwise disjoint finite sets is the sum of the numbers of elements in these sets.

subtraction rule for counting or inclusion-exclusion for **sets:** If a task can be done in either n_1 ways or n_2 ways, then the number of ways to do the task is $n_1 + n_2$ minus the number of ways to do the task that are common to the two different ways.

subtraction rule or inclusion-exclusion for sets: The number of elements in the union of two sets is the sum of the number of elements in these sets minus the number of elements in their intersection.

division rule for counting: There are n/d ways to do a task if it can be done using a procedure that can be carried out in n ways, and for every way w, exactly d of the n ways correspond to way w.

division rule for sets: Suppose that a finite set A is the union of *n* disjoint subsets each with *d* elements. Then n = |A|/d.

the pigeonhole principle: When more than k objects are placed in k boxes, there must be a box containing more than one object.

the generalized pigeonhole principle: When N objects are placed in k boxes, there must be a box containing at least $\lceil N/k \rceil$ objects.

$$P(n,r) = \frac{n!}{(n-r)!}$$

$$(n) \qquad n!$$

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

Pascal's identity: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ the binomial theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$

There are n^r r-permutations of a set with n elements when repetition is allowed.

There are C(n+r-1,r) r-combinations of a set with n elements when repetition is allowed.

There are $n!/(n_1! n_2! \cdots n_k!)$ permutations of n objects of k types where there are n_i indistinguishable objects of type ifor $i = 1, 2, 3, \dots, k$.

the algorithm for generating the permutations of the set $\{1, 2, \ldots, n\}$

- 1. Explain how the sum and product rules can be used to find the number of bit strings with a length not exceeding
- 2. Explain how to find the number of bit strings of length not exceeding 10 that have at least one 0 bit.
- 3. a) How can the product rule be used to find the number of functions from a set with m elements to a set with *n* elements?
 - b) How many functions are there from a set with five elements to a set with 10 elements?

- c) How can the product rule be used to find the number of one-to-one functions from a set with m elements to a set with n elements?
- **d)** How many one-to-one functions are there from a set with five elements to a set with 10 elements?
- e) How many onto functions are there from a set with five elements to a set with 10 elements?
- **4.** How can you find the number of possible outcomes of a playoff between two teams where the first team that wins four games wins the playoff?
- **5.** How can you find the number of bit strings of length ten that either begin with 101 or end with 010?
- **6.** a) State the pigeonhole principle.
 - b) Explain how the pigeonhole principle can be used to show that among any 11 integers, at least two must have the same last digit.
- 7. a) State the generalized pigeonhole principle.
 - **b)** Explain how the generalized pigeonhole principle can be used to show that among any 91 integers, there are at least ten that end with the same digit.
- **8. a)** What is the difference between an *r*-combination and an *r*-permutation of a set with *n* elements?
 - **b)** Derive an equation that relates the number of *r*-combinations and the number of *r*-permutations of a set with *n* elements.
 - c) How many ways are there to select six students from a class of 25 to serve on a committee?
 - d) How many ways are there to select six students from a class of 25 to hold six different executive positions on a committee?
- **9.** a) What is Pascal's triangle?
 - **b**) How can a row of Pascal's triangle be produced from the one above it?
- **10.** What is meant by a combinatorial proof of an identity? How is such a proof different from an algebraic one?
- **11.** Explain how to prove Pascal's identity using a combinatorial argument.
- 12. a) State the binomial theorem.
 - b) Explain how to prove the binomial theorem using a combinatorial argument.
 - c) Find the coefficient of $x^{100}y^{101}$ in the expansion of $(2x + 5y)^{201}$.

- **13. a)** Explain how to find a formula for the number of ways to select *r* objects from *n* objects when repetition is allowed and order does not matter.
 - **b)** How many ways are there to select a dozen objects from among objects of five different types if objects of the same type are indistinguishable?
 - c) How many ways are there to select a dozen objects from these five different types if there must be at least three objects of the first type?
 - d) How many ways are there to select a dozen objects from these five different types if there cannot be more than four objects of the first type?
 - e) How many ways are there to select a dozen objects from these five different types if there must be at least two objects of the first type, but no more than three objects of the second type?
- **14. a)** Let n and r be positive integers. Explain why the number of solutions of the equation $x_1 + x_2 + \cdots + x_n = r$, where x_i is a nonnegative integer for $i = 1, 2, 3, \ldots, n$, equals the number of r-combinations of a set with n elements.
 - b) How many solutions in nonnegative integers are there to the equation $x_1 + x_2 + x_3 + x_4 = 17$?
 - c) How many solutions in positive integers are there to the equation in part (b)?
- **15. a)** Derive a formula for the number of permutations of n objects of k different types, where there are n_1 indistinguishable objects of type one, n_2 indistinguishable objects of type two, ..., and n_k indistinguishable objects of type k.
 - b) How many ways are there to order the letters of the word *INDISCREETNESS*?
- **16.** Describe an algorithm for generating all the permutations of the set of the n smallest positive integers.
- **17. a)** How many ways are there to deal hands of five cards to six players from a standard 52-card deck?
 - **b)** How many ways are there to distribute n distinguishable objects into k distinguishable boxes so that n_i objects are placed in box i?
- **18.** Describe an algorithm for generating all the combinations of the set of the n smallest positive integers.

7/Discrete Probability

Key Terms and Results

TERMS

sample space: the set of possible outcomes of an experiment **event:** a subset of the sample space of an experiment

probability of an event (Laplace's definition): the number of successful outcomes of this event divided by the number of possible outcomes

probability distribution: a function p from the set of all outcomes of a sample space S for which $0 \le p(x_i) \le 1$ for i = 1, 2, ..., n and $\sum_{i=1}^{n} p(x_i) = 1$, where $x_1, ..., x_n$ are the possible outcomes

probability of an event E: the sum of the probabilities of the outcomes in E

p(E|F) (conditional probability of E given F): the ratio $p(E \cap F)/p(F)$

independent events: events E and F such that $p(E \cap F) = p(E)p(F)$

pairwise independent events: events $E_1, E_2, ..., E_n$ such that $p(E_i \cap E_j) = p(E_i)p(E_j)$ for all pairs of integers i and j with $1 \le j < k \le n$

mutually independent events: events E_1, E_2, \ldots, E_n such that $p(E_{i_1} \cap E_{i_2} \cap \cdots \cap E_{i_m}) = p(E_{i_1}) p(E_{i_2}) \cdots p(E_{i_m})$ whenever $i_j, j = 1, 2, \ldots, m$, are integers with $1 \le i_1 < i_2 < \cdots < i_m \le n$ and $m \ge 2$

random variable: a function that assigns a real number to each possible outcome of an experiment

distribution of a random variable X: the set of pairs (r, p(X = r)) for $r \in X(S)$

uniform distribution: the assignment of equal probabilities to the elements of a finite set

expected value of a random variable: the weighted average of a random variable, with values of the random variable weighted by the probability of outcomes, that is, $E(X) = \sum_{s \in S} p(s)X(s)$

geometric distribution: the distribution of a random variable X such that $p(X = k) = (1 - p)^{k-1} p$ for k = 1, 2, ... for some real number p with $0 \le p \le 1$.

independent random variables: random variables X and Y such that $p(X = r_1 \text{ and } Y = r_2) = p(X = r_1)p(Y = r_2)$ for all real numbers r_1 and r_2

variance of a random variable X: the weighted average of the square of the difference between the value of X and its expected value E(X), with weights given by the probability of outcomes, that is, $V(X) = \sum_{s \in S} (X(s) - E(X))^2 p(s)$

standard deviation of a random variable X: the square root of the variance of X, that is, $\sigma(X) = \sqrt{V(X)}$

Bernoulli trial: an experiment with two possible outcomes

probabilistic (or Monte Carlo) algorithm: an algorithm in which random choices are made at one or more steps

probabilistic method: a technique for proving the existence of objects in a set with certain properties that proceeds by assigning probabilities to objects and showing that the probability that an object has these properties is positive

RESULTS

The probability of exactly k successes when n independent Bernoulli trials are carried out equals $C(n, k)p^kq^{n-k}$, where p is the probability of success and q = 1 - p is the probability of failure.

Bayes' theorem: If E and F are events from a sample space S such that $p(E) \neq 0$ and $p(F) \neq 0$, then

$$p(F \mid E) = \frac{p(E \mid F)p(F)}{p(E \mid F)p(F) + p(E \mid F)p(F)}.$$

$$E(X) = \sum_{r \in X(S)} p(X = r)r.$$

linearity of expectations: $E(X_1 + X_2 + \cdots + X_n) = E(X_1) + E(X_2) + \cdots + E(X_n)$ if X_1, X_2, \dots, X_n are random variables

If X and Y are independent random variables, then E(XY) = E(X)E(Y).

Bienaymé's formula: If $X_1, X_2, ..., X_n$ are independent random variables, then $V(X_1 + X_2 + ... + X_n) = V(X_1) + V(X_2) + ... + V(X_n)$.

Chebyshev's inequality: $p(|X(s) - E(X)| \ge r) \le V(X)/r^2$, where *X* is a random variable with probability function *p* and *r* is a positive real number.

- **1. a)** Define the probability of an event when all outcomes are equally likely.
 - b) What is the probability that you select the six winning numbers in a lottery if the six different winning numbers are selected from the first 50 positive integers?
- **2. a)** What conditions should be met by the probabilities assigned to the outcomes from a finite sample space?
 - b) What probabilities should be assigned to the outcome of heads and the outcome of tails if heads comes up three times as often as tails?
- **3.** a) Define the conditional probability of an event *E* given an event *F*.
 - **b)** Suppose *E* is the event that when a die is rolled it comes up an even number, and *F* is the event that when a die is rolled it comes up 1, 2, or 3. What is the probability of *F* given *E*?
- **4.** a) When are two events *E* and *F* independent?
 - **b)** Suppose *E* is the event that an even number appears when a fair die is rolled, and *F* is the event that a 5 or 6 comes up. Are *E* and *F* independent?
- 5. a) What is a random variable?
 - **b)** What are the possible values assigned by the random variable *X* that assigns to a roll of two dice the larger number that appears on the two dice?
- **6. a)** Define the expected value of a random variable X.
 - **b)** What is the expected value of the random variable *X* that assigns to a roll of two dice the larger number that appears on the two dice?
- **7. a)** Explain how the average-case computational complexity of an algorithm, with finitely many possible input values, can be interpreted as an expected value.
 - **b)** What is the average-case computational complexity of the linear search algorithm, if the probability that the element for which we search is in the list is 1/3,

- and it is equally likely that this element is any of the n elements in the list?
- **8.** a) What is meant by a Bernoulli trial?
 - **b**) What is the probability of *k* successes in *n* independent Bernoulli trials?
 - **c)** What is the expected value of the number of successes in *n* independent Bernoulli trials?
- **9.** a) What does the linearity of expectations of random variables mean?
 - b) How can the linearity of expectations help us find the expected number of people who receive the correct hat when a hatcheck person returns hats at random?
- **10. a)** How can probability be used to solve a decision problem, if a small probability of error is acceptable?
 - b) How can we quickly determine whether a positive integer is prime, if we are willing to accept a small probability of making an error?
- **11.** State Bayes' theorem and use it to find $p(F \mid E)$ if $p(E \mid F) = 1/3$, $p(E \mid F) = 1/4$, and p(F) = 2/3, where E and F are events from a sample space S.
- **12. a)** What does it mean to say that a random variable has a geometric distribution with parameter *p*?
 - **b)** What is the mean of a geometric distribution with parameter *p*?
- **13.** a) What is the variance of a random variable?
 - **b**) What is the variance of a Bernoulli trial with probability *p* of success?
- **14. a)** What is the variance of the sum of *n* independent random variables?
 - b) What is the variance of the number of successes when n independent Bernoulli trials, each with probability p of success, are carried out?
- **15.** What does Chebyshev's inequality tell us about the probability that a random variable deviates from its mean by more than a specified amount?