INTRODUCTION TO MICROPROCESSORS

BLOCK DIAGRAM OF A COMPUTER SYSTEM

MICROPROCESSOR

CPU on a Single VLSI Chip

WHAT HAPPENS WHEN YOU TURN ON YOUR COMPUTER?

BIOS – Basic Input Output System

Resident in ROM

Orchestrates loading the computer's operating system from the hard disk drive into RAM

OS Loads Program from Disk (Secondary Storage) to RAM(Primary Storage)

Program - Set of Instructions — Executed by µp

WHAT IS INSTRUCTION?

Tells the µp what action to perform

- Arithmetic, Logic Operation
- Read Data from Input Device
- Write to memory
- Reset
- Stop

ADD A, B, C

Assembly Language A,B,C - Registers

0000 001 000 001 010

HOW DOES A MICROPROCESSOR HANDLE AN INSTRUCTION?

Fetch Cycle

• The fetch cycle takes the instruction required from memory, stores it in the instruction register

Execute Cycle

 The actual actions which occur during the execute cycle of an instruction

Block Diagram of a Microprocessor

SIZE OF A MICROPROCESSOR

Size of Data Bus

Size of Registers

Size of ALU

PROCESSOR BUSES

MEMORY

ROM

- Non-Volatile
- Read Only

RAM

- Volatile
- Random Access Memory

 $2^n \times m$

ADDRESS BUS

No of Address lines

- 20 lines $-A_{19} A_0$
- 1 MB

MEMORY DATA SIZE

Bit Organised

Nibble Organised

Byte Organised

PROCESSORS

ISA

- Execution model
- Processor registers
- Address and Data formats

Microarchitecture

- Interconnections various micro architectural elements of machine
- ALU
- Data Path
- Control Path

Physical Realization

ADD A, B

Assembly Language A,B - Registers

0000 0001 0000 0001

ADD M1, B

Assembly Language
B - Register
M1 - Memory Location

0000 0001 1111 0001 1000 0000 1000 1010

ADD M1, M2

Assembly Language
M1,M2 – Memory Location

0000 0001 1111 1111 1000 0000 1000 1010

ADD A, B, M1

Assembly Language
A,B – Registers
M1 – Memory Location

0000 001 000 001 111 0000 0010 1000 1000

ADD A, M1, M2

Assembly Language
A – Register
M1, M2 – Memory Locations

0000 001 000 111 111 0000 0010 1000 1000 0000 1000 1000 1000 1001

ADD M3, M1, M2

Assembly Language
M1, M2, M3 – Memory Locations

0000 001 111 111 111 0000 0010 1000 1000

0000 1000 1000 1001 0010 1000 1111 1010

WHAT IS THE EFFECT?

If Instructions can be present anywhere

- Size of Instruction Varies
- Complicates Instruction Decoder

ISA

- CISC
 - Operands for Arithmetic/Logic operation can be in Register/ Memory
- RISC
 - Operands for Arithmetic/Logic operation only in Registers
 - Register Register Architecture

RISC Vs CISC

CPU- SPEEDUP

1 Instruction Per Cycle (1 IPC)

BASIC PARALLEL TECHNIQUES

Pipelining

Replication

INSTRUCTION PIPELINES

Instruction:

Fetch

Decode

Execute

- 1. ADD R2,R1,R3
- 2. SBR R2,R3,R2
- 3. STR R2,b

Pipeline Hazards

VLIW & SUPERSCALAR ARCHITECTURE

FLYNN'S TAXNOMY

SISD

SIMD

MISD

MIMD

SISD

Load A

Load B

$$C = A + B$$

Store C

$$A = B * 2$$

Store A

SIMD

Load A(0)

Load B(0)

C(0) = A(0) + B(0)

Store C(0)

A (0)= B (0)* 2

Store A(0)

Load A(1)

Load B(1)

C(1) = A(1) + B(1)

Store C(1)

 $A (1)= B (1)^* 2$

Store A(1)

Load A(2)

Load B(2)

C(2) = A(2) + B(2)

Store C(2)

A (2) = B $(2)^* 2$

Store A(2)

MISD

Prev inst	Prev Inst	Prev Inst
Load B(1)	Load B(1)	Load B(1)
C(1) = B(1) *1	C(2) = B(1) *2	C(3) = B (1) *n
Store C(1)	Store C(2)	Store C(3)
Next Inst	Next Inst	Next Inst

MIMD

Prev inst

Load A(1)

C(1) = A(1) *1

Store C(1)

Next Inst

Prev Inst

Call funcD

 $x = y^*z$

sum = x * 2

Next Inst

Prev Inst

do 10 i = 1,N

Alpha = b ** 3

10

continue

Next Inst

Name	Date	Trans istors	Clock speed	Data width
8080	1974	6K	2MHz	8
8086	1978	29K	5MHz	16
80286	1982	134K	12 MHz	16
80386	1985	275K	16-33 MHz	32
80486	1989	1.2 M	20 -100 MHz	32
Pentium	1993	3.1M	60-200 MHz	32 /64
Pentium II	1997	7.5 M	233-450 MHz	32/64
Pentium III	1999	9.5M	450 -933 MHz	32 /64
Pentium 4	2000	42 M	1.5 GHz	32/64

The Evolution of Microprocessors