(20%) 1. Fig.1a and Fig.1b are bistable circuits with inverting and non-inverting topologies, respectively. Both have output saturation vlotages $L_{+} = -L_{-} = 15V$, and the threshold voltages of $V_{TH} = -V_{TL} = 5V$.

> (a) Please sketch the transfer characteristic curves of both inverting and non-inverting topologies (mark the L+, L-, V_{TH}, V_{TL}, and the direction of the transfer operation on your plots). (10%)

(b) Let $R_1 = 1k\Omega$, please find R_2 and R_3 . (10%)

- (16%) 2. Fig.2a shows a inverter-based multivibrator circuit and its waveforms. Assume $R = 10k\Omega$, C = 1nF, and inverter's transition threshold voltage $V_T = 0.5V_{DD}$.
 - (a) Which type of multivibrator is it? (bistable, astable, monostable) (5%)
 - (b) Sketch the waveform of $v_C(t)$. (5%)
 - (c) Calculate T_1 and find the oscillation frequency f_0 of the multivibrator. (6%)

(Hint: RC circuit complete response $\mathbf{v}(\mathbf{t}) = \mathbf{v}(\infty) + [\mathbf{v}(0) - \mathbf{v}(\infty)] e^{-t/\tau}$

- (18%) 3. For the emitter follower of Fig.3, let $V_{CC} = 10V$, $I_{bias} = 200 \text{mA}$, and $R_L = 100\Omega$. If the output v_O is an 8-V-peak sinusoid, please find
 - (a) the power delivered to the load R_L . (6%)
 - (b) the average power drawn from the supplies. (6%)
 - (c) the power-conversion efficiency η. (6%)

- (13%) 4. Fig.4 shows a class B output stage.
 - (a) Please sketch the transfer characteristic, and explain why the crossover distortion occurs. (8%)
 - (b) Draw a modified output stage to eliminate the crossover distortion. (5%)

- (18%) 5. When a power transistor is operated at junction temperature T_J of 150°C with a heat sink, the case temperature T_C is found to be 100°C. The case is attached to the heat sink with a bond having a thermal resistance $\theta_{CS} = 0.6$ °C/W and the thermal resistance of the heat sink $\theta_{SA} = 0.1$ °C/W, as shown in Fig.5. If the ambient temperature T_A is 30°C, please calculate
 - (a) heat sink temperature T_S . (6%)
 - (b) power dissipated in the device P_D. (6%)
 - (c) thermal resistance from junction to case, θ_{JC} . (6%)

(15%) 6. Briefly explain the following terms

- (a) THD (5%)
- (b) Inter-modulation distortion (5%)
- (c) Darlington configuration *npn* compound device (5%)