CS3063 Theory of Computing

Semester 4 (20 Intake), Feb – Jun 2023

Lecture 4

Regular Languages & Finite Automata – Part 3

Announcements

Assignment 1: on Moodle, due on 24th April

Today's Outline Lecture 4

- NFA-Λ (NFA with Λ—transitions)
- Equivalence among FA, NFA, NFA-Λ
- RE→FA, via Thompson's Algorithm

Today's Outline Lecture 4

- NFA-Λ (NFA with Λ—transitions)
- Equivalence among FA, NFA, NFA-Λ
- RE→FA, via Thompson's Algorithm

Review

- Regular expressions/languages
- Finite automata (FA): deterministic version, DFA
- A language is regular iff it is the set of strings accepted by some FA
- FA ↔ RE
- Set operations on languages
- NFA
- Equivalence between NFA and DFA

NFA with Λ -transitions (NFA- Λ)

Some other books, Lamda will be epsilon

- NFA with even more freedom
 - Transitions without any input (i.e., with Λ)
 - More general than NFA
 - Denoted by NFA-Λ

Capacity/Ability of do something based on "is it done or not" not on "how it does"

 But no more powerful than NFA (or DFA) with respect to languages accepted!

Example

(a) NFA accepting 01*

(b) NFA accepting 0*1

NFA-Λ: Definition

• NFA- Λ is a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where:

-Q, Σ , q_0 and A are the same as for an NFA

– But ...

 $-\delta$, the transition function, maps $Q \times (\Sigma \cup \{\Lambda\})$ to 2^Q

Extended Transition Function δ*

• Can we extend δ , as with NFA, to obtain δ^* that describes the status of an NFA- Λ on an input string x?

 Not as easy to define recursively, because Λtransitions are involved

• Let us define the notion of ∧-closure first

A-Closure

• **Definition**: Let $M=(Q, \Sigma, q_0, A, \delta)$ be an NFA- Λ and S be a subset of Q. The Λ -closure of S is the set $\Lambda(S)$ defined as follows:

Every element of S is an element of $\Lambda(S)$

For any q in $\Lambda(S)$, every element of $\delta(q, \Lambda)$ is in $\Lambda(S)$

No other element of Q is in $\Lambda(S)$

transitions

in lamda closure

- For a state q, $\Lambda(q)$ is the set of all states that can be reached from q using Λ -transitions
 - There is a path labeled Λ from q to all such states

1. A-Closure ...contd

• If $\delta^*(q, y)$ is the set of all the states that can be reached from q using the symbols of y and Λ —transitions, then

$$R = \bigcup_{r \in \delta^*(q,y)} \delta(r,a)$$

is the set of states R we can reach in one more step by using the symbol a

• The Λ -closure of this R includes any additional states that we can reach with Λ -transitions subsequently

Defining δ^* for an NFA- Λ

- Definition: Let $M=(Q, \Sigma, q_0, A, \delta)$ be an NFA- Λ ; the function $\delta^*: Q \times \Sigma^* \to 2^Q$ is such that:
 - For any $q \in Q$, $\delta^*(q, \Lambda) = \Lambda(\{q\})$ For any $q \in Q$, $y \in \Sigma^*$ and, $a \in \Sigma$

$$\delta^*(q,ya) = \Lambda\left(\bigcup_{r \in \delta^*(q,y)} \delta(r,a)\right)$$

A string x is **accepted** by M if

$$\delta^*(q_0, x) \cap A \neq \emptyset$$

All of them again inside the lamda closure

Today's Outline Lecture 4

- NFA-Λ (NFA with Λ-transitions)
- Equivalence among FA, NFA, NFA-Λ
- RE→FA, via Thompson's Algorithm

Here we try to remove lamda transitions from the NFA-lamda to become a NFA

NFA => DFA , by removing non deterministics

Equivalence of NFA-A & NFA

- Theorem: For an NFA- Λ , $M=(Q, \Sigma, q_0, A, \delta)$ accepting a language $L \subseteq \Sigma^*$, there is an NFA, $M_1=(Q_1, \Sigma, q_1, A_1, \delta_1)$ that accepts L
- Proof involves showing M_1 will be the NFA $(Q, \Sigma, q_0, A_1, \delta_1)$ where, for $q \in Q$ and $a \in \Sigma$, $\delta_1(q, a) = \delta^*(q, a)$ and

$$A_1 = \begin{cases} A \cup \{q_0\} & \text{if } \Lambda(\{q_0\}) \cap A \neq \emptyset \text{ in } M \\ A & \text{otherwise} \end{cases}$$

initial state itself an accepting state

only if the accepting states includes lamda transition in initial state

NFA Equivalent to NFA-Λ: How?

- From the theorem on equivalency
 - Proof gives a method to obtain equivalent NFA
 - Proof by induction (on length of input string)
- Method based on eliminating Λ-transitions without changing states
 - E.g., if we have $p \rightarrow q$ for 0 and $q \rightarrow r$ for Λ , eliminate the Λ -transition and add $p \rightarrow r$ for 0
 - The transition function δ_1 shows how this is done

Constructing an NFA Equivalent to an NFA-A ...contd

- For a state q and symbol a, $\delta^*(q, a)$ is the set of states that can be reached from q, using a and Λ -transitions before and after
- Can say similarly for a string x
- Specifying the accepting states A₁ is to be done with care
 - Check whether it is possible to go to one of \underline{A} from \underline{q}_0 using only Λ -transitions
 - If yes, make q_0 an element of A_1

Example: NFA- Λ accepting 0*(01)*0*

Find an equivalent NFA

$oldsymbol{q}$	$\delta(q,\Lambda)$	$\delta(q,0)$	$\delta(q,1)$
A	$\{B\}$	$\{A\}$	Ø
B	$\{D\}$	{ <i>C</i> }	Ø
C	Ø	Ø	<i>{B}</i>
D	Ø	$\{D\}$	Ø

Solution

What states we can end up with input 0 starting from A, by looking at the diagram,

\boldsymbol{q}	$\delta(q,\Lambda)$	$\delta(q,0)$	$\delta(q,1)$	$\delta^*(q,0)$	$\delta^*(q,1)$
A	<i>{B}</i>	<i>{A}</i>	Ø	$\{A,B,C,D\}$	Ø
В	$\{D\}$	{ <i>C</i> }	Ø	<i>{C,D}</i>	Ø
C	Ø	Ø	<i>{B}</i>	Ø	$\{B,D\}$
D	Ø	<i>{D}</i>	Ø	<i>{D}</i>	Ø

Solution ...contd

Summary on FA

- Theorem
 - For any alphabet Σ , and a language $L \subset \Sigma^*$, the following statements are equivalent:

- 1. L can be recognized by a DFA
- 2. L can be recognized by an NFA
- 3. L can be recognized by an NFA- Λ

Kleene's Theorem (again)

 A language L is regular if and only if there is an FA that accepts L

- Part 1
 - Any regular language can be recognized by an FA
- Part 2
 - The language accepted by any FA is regular

Today's Outline

Lecture 4

- NFA-Λ (NFA with Λ—transitions)
- Equivalence among FA, NFA, NFA-Λ
- RE→FA, via Thompson's Algorithm

When we have a DFA, how to minimize the number of states ???

RE DFA: How? (Again)

- Steps
 - 1. Thompson's construction: RE \rightarrow NFA- Λ
 - 2. Convert NFA- $\Lambda \rightarrow$ NFA \rightarrow DFA

- Thompson's construction
 - Also known as the McNaughton-Yamada-Thompson algorithm

Thompson's Construction

- Input: regular expression r over alphabet Σ
- Output: NFA-Λ for r
- Method
 - Break r into subexpressions, recursively until no operators are present in them

Union, Concat, Star

- (get basic regular languages as elements)
- Apply inductive rules to construct larger NFA-Λ for an expression from NFA-Λ of its subexpressions

Thompson's Construction: Basis

Can't represent, because there is nothing there

- Basic languages: $\{a\}$, $\{\Lambda\}$, \emptyset (given a in Σ)
- Their NFA-Λ

- Suppose N(s) and N(t) are NFA-Λ for regular expressions
 s and t, respectively
- Case (a): $r = s \mid t$ (Union)
 - -N(r), the NFA- Λ for r is constructed as follows

- Suppose N(s) and N(t) are NFA-Λ for regular expressions
 s and t, respectively
- Case (b): r = st (Concatenation)
 - -N(r), the NFA- Λ for r is constructed as follows

- Suppose N(s) is the NFA- Λ for regular expression s
- Case (c): $r = s^*$ (Closure)
 - -N(r), the NFA- Λ for r is constructed as follows

- Suppose N(s) is the NFA-Λ for regular expression s
- <u>Case (d)</u>: r = (s)
 - -N(r), the NFA- Λ for r is the same as N(s)

- Note:
 - # states in N(r) ≤ 2x # operators, operands
 - N(r) has 1 start state (no incoming edge), 1 accepting state (no outgoing edge)

Example

• Use Thompson's construction algorithm to construct an NFA- Λ for $r = (a|b)^*abb$

First, break *r* into subexpressions, recursively until no operators are present in them

Solution (for $r = (a \mid b)*abb$) ...

NFA- Λ for r_1

NFA- Λ for r_2

NFA- Λ for $r_3 = a \mid b$

Solution (for $r = (a \mid b)*abb$) ...

NFA- Λ for $r_5 = (a|b)^*$

Solution (for $r = (a \mid b)*abb$) ...

NFA- Λ for $r_7 = (a|b)*a$

Final Solution (for $r = (a \mid b)*abb$)

Conclusion

- Today we discussed
 - NFA- Λ (NFA with Λ -transitions)
 - Converting NFA \Lambda to equivalent NFA
 - Equivalence among DFA, NFA, NFA-Λ
 - Thompson's construction