

# Introduction to KAOS Goal Modeling

Acknowledgements: Erik Fredericks



# Agenda

- What is goal modeling?
- · Goal modeling with KAOS
- Models at run time



## What is goal modeling?

- · What is a goal?
  - Representation of stakeholder objectives
- Who are the stakeholders?
  - Anybody interested in system
    - Developers, customers, maintainers, etc.
- · What is a goal model?
  - Hierarchical arrangement of goals
  - Demonstrates relationships between goals



## What are goals?

- · Examples of goals:
  - Camera sensor must have 180 degree field of view
  - Radar sensor is always on
  - All sensors must provide reliable data
- Examples of non-goals:
  - Camera software implemented in C
  - Radar housing painted red



# Goal hierarchy

- Goals can be decomposed from highlevel objectives to low-level requirements
- Each goal refined with sub-goals that define how it can be satisfied
- Leaf-level goals are considered to be requirements





# Running Example

- Autonomous vehicle
  - Different types of sensors
    - E.g., camera and radar
  - Main objective: keep vehicle within lane



## High-level vs. low-level goals

- Order these goals from high level to low level
  - Camera sensor provides data to processing unit
  - Vehicle must always stay within lane markings
  - Camera sensor must always be ON
  - Camera sensor detects objects within 10 meters



## High-level vs. low-level goals

- Order these goals from high level to low level
  - Camera sensor provides data to processing unit
  - (1) Vehicle must always stay within lane markings
  - Camera sensor must always be ON
  - Camera sensor detects objects within 10 meters



## High-level vs. low-level goals

- Order these goals from high level to low level
  - (2) Camera sensor provides data to processing unit
  - (1) Vehicle must always stay within lane markings
  - Camera sensor must always be ON
  - Camera sensor detects objects within 10 meters



## High-level vs. low-level goals

- Order these goals from high level to low level
  - (2) Camera sensor provides data to processing unit
  - (1) Vehicle must always stay within lane markings
  - Camera sensor must always be ON
  - (3) Camera sensor detects objects within 10 meters



## High-level vs. low-level goals

- Order these goals from high level to low level
  - (2) Camera sensor provides data to processing unit
  - (1) Vehicle must always stay within lane markings
  - (4) Camera sensor must always be ON
  - (3) Camera sensor detects objects within 10 meters



## High-level vs. low-level goals

- Order these goals from high level to low level
  - Vehicle must always stay within lane markings
  - Camera sensor provides data to processing unit
  - Camera sensor detects objects within 10 meters
  - Camera sensor must always be ON



# Types of goals

- Functional goals
  - "Hard" goals
  - Functions that system will perform
  - Well-defined criteria for satisfaction
  - E.g., vehicle always stays within lane markings
- · Non-functional goals
  - "Soft" goals
  - Desired system qualities
  - Hard to define and quantify
  - Reliability
  - Quality
  - E.g., automatic stop is not jarring to passenger



## Types of goals

- Safety goals
  - Ensure system consistently runs safely
  - Does not endanger people or system itself
  - E.g., sensor automatically shuts off if voltage exceeds maximum
- Failsafe goals
  - Provide safe fallback state in case of error
  - E.g., system shuts off if camera sensor is damaged



#### Goal exercise

Identify the goals in the following paragraph:

Company X is designing a new autonomous vehicle. Their autonomous vehicle system comprises at least two sensors: a camera and a radar. Both the camera and radar are responsible for sensing objects at a minimum distance of 10 meters. These sensors can communicate to a CPU via a secure CAN bus, at which point the CPU parses the incoming data. For safety purposes, at least one sensor must be active at all times.



#### Goal exercise

Identify the goals in the following paragraph:

Company X is designing a new autonomous vehicle. Their autonomous vehicle system comprises at least two sensors: a camera and a radar. Both the camera and radar are responsible for sensing objects at a minimum distance of 10 meters. These sensors can communicate to a CPU via a secure CAN bus, at which point the CPU parses the incoming data. For safety purposes, at least one sensor must be active at all times.



### Why do we use goal models?

- · Provide rationale for requirements
- Identify stable information in system objectives
- Guide requirements elaboration / elicitation
- Provide visual depiction of relationships and dependencies between objectives



## When to use goal models

- Early in requirements engineering process
  - Identify problems
  - Explore solutions and alternatives
  - Performed prior to UML modeling
  - Continually refine goal model as new requirements or obstacles surface





## Goal modeling with KAOS

- Different approaches exist for creating goal models
  - KAOS, i\*, UML (use cases)
- We will be using KAOS in this class for goal modeling



# **KAOS** notation

- Refine goals into requirements
- · Objects in KAOS goal model
  - Goal
  - Agent
  - Requirement / Expectation
  - Refinements















# Goal categories

- Invariant
  - Must **ALWAYS** be satisfied
  - Safety, failsafe, or system invariants
  - E.g., vehicle can never collide with an obstacle
- Non-invariant
  - Temporarily tolerate unsatisfied goal
  - Transient conditions
  - E.g., sensor temporarily occluded





















# Using models at run time

- Goal models can provide measure of system performance
- Is system satisfying its invariants
- How well is system satisfying its noninvariants?



## **Utility functions**

- Derived mathematical function for each goal
- Provides degree of satisfaction for each goal
- Normalized on [0.0, 1.0]
  - -0.0 → goal is violated
  - -1.0 → goal is satisfied
  - -[0.0,1.0] → goal is satisfied to some degree (i.e., "satisficed")







# What can we do with a utility value?

- Determine if an objective has been violated
  - Or, determine if an objective is not being satisfied *enough*
- Refactor goal model
- Introduce a bugfix or patch
- Reconfigure system



# Other types of KAOS models

- Responsibility models
- Operation models
- Object models
- Obstacle models



### Obstacle models

- Defines an obstacle to goal satisfaction
- Attempt to identify resolve obstacles in advance by refining goal model







## Assignment Part 2

- For your original goal model:
  - Define at least 2 utility functions to assess the satisfaction and/or satisficement of a goal
  - Identify sources of uncertainty and how to account for them in your goal model?
- Define an obstacle model to complement your homework assignment
  - Define (2) obstacles to the success of your goal model
  - Provide a strategy for resolving each