

CLAIM AMENDMENTS

Please amend the claims as described below. In accordance with 37 CFR §1.121, a complete listing of all claims in the application is provided below. Notably, the status of each claim is indicated in the parenthetical expression adjacent to the claim number.

Claims 1 - 27 (**canceled**).

1 28. **(Currently Amended)**: A semiconductor memory array comprising:
2 a plurality of memory cells arranged in a matrix of rows and columns, the plurality
3 of memory cells ~~include~~ includes a first memory cell and a second memory cell, wherein
4 the first and second memory cells each ~~include~~ includes at least a transistor to
5 constitute the memory cell and wherein the transistor includes:
6 a source region;
7 a drain region;
8 a body region disposed between and adjacent to the source region and
9 the drain region, wherein the body region is an electrically floating state; and
10 a gate disposed over the body region;
11 wherein each memory cell includes:
12 a first data state representative of a first charge in the body region; and
13 a second data state representative of a second charge in the body region
14 wherein the second charge is substantially provided by removing charge from the
15 body region through the source region; and
16 wherein the gate of the transistor of the first memory cell and the gate of the
17 transistor of the second memory cell are connected.

1 29. **(Currently Amended)**: The memory array of claim 28 wherein:

2 the plurality of memory cells further includes a third memory cell and a fourth

3 memory cell, wherein the third and fourth memory cells each include includes at least a

4 transistor to constitute the memory cell and wherein the transistor includes:

5 a source region;

6 a drain region;

7 a body region disposed between and adjacent to the source region and

8 the drain region, wherein the body region is an electrically floating state; and

9 a gate disposed over the body region;

10 wherein each memory cell includes:

11 a first data state representative of a first charge in the body region; and

12 a second data state representative of a second charge in the body region

13 wherein the second charge is substantially provided by removing charge

14 from the body region through the source region; and

15 wherein the source region of the transistor of the first memory cell and the source

16 region of the transistor of the third memory cell are the same region and wherein the

17 drain region of the transistor of the first memory cell and the drain region of the

18 transistor of the fourth memory cell are the same region.

1 30. **(Currently Amended)**: The memory array of claim 28 wherein the first

2 charge is comprised of an accumulation of majority carriers in the body region of the

3 transistor of the first memory cell.

1 31. **(Currently Amended):** The memory array of claim 30 wherein the majority
2 carriers accumulate in a portion of the body region regions that is adjacent to the source
3 region regions of the transistor of each memory cell of the plurality of memory cells.

1 32. **(Currently Amended):** The memory array of claim 28 further including a
2 control unit, coupled to the gate and the drain region of the first memory cell, to provide
3 control signals to the first ~~and second~~ memory cell cells, wherein the first memory cell,
4 in response to a first write control signals signal set, stores the first charge in the body
5 region of the transistor of the first memory cell.

1 33. **(Currently Amended):** The memory array of claim 28 32 further including a
2 control unit, coupled to the gate and the drain region of the first memory cell, to provide
3 control signals to the first ~~and second~~ memory cell cells, wherein the first memory cell,
4 in response to a second write control signals signal set, stores the second charge in the
5 body region of the transistor of the first memory cell by removing charge from the body
6 region of the transistor of the first memory cell through its source region.

1 34. **(Currently Amended):** The memory array of claim 33 wherein the control
2 unit applies positive voltages to the drain region and gate of the transistor of the first
3 memory cell to provide the second charge in the body region of the transistor of the first
4 memory cell.

1 35. **(Currently Amended):** The memory array of claim 34 wherein the control
2 unit is coupled to the gate, drain region and source region of the transistor of the second
3 memory cell and applies positive voltages to the drain region and gate of the transistor
4 of the first memory cell to provide the second charge in the body region of the transistor
5 of the first memory cell and applies a first voltage to the drain and source regions of the
6 transistor of the second memory cell to maintain the data state of the second memory
7 cell.

1 36. **(Previously Presented):** The memory array of claim 35 wherein the first
2 voltage is ground.

1 37. **(Currently Amended):** A semiconductor memory array comprising:
2 a plurality of memory cells arranged in a matrix of rows and columns, the plurality
3 of memory cell include includes a first memory cell and a second memory cell, wherein
4 the first and second memory cells each include includes at least a transistor to
5 constitute the memory cell and wherein the transistor includes:
6 a source region having impurities to provide a first conductivity type;
7 a drain region having impurities to provide the first conductivity type,
8 a body region disposed between and adjacent to the source region and
9 the drain region wherein the body region is electrically floating and includes
10 impurities to provide a second conductivity type wherein the second conductivity
11 type is different than the first conductivity type;
12 a gate disposed over the body region;
13 wherein the memory cell includes:

14 a first data state representative of a first charge in the body region wherein
15 the first charge is substantially provided by impact ionization; and
16 a second data state representative of a second charge in the body region
17 wherein the second charge is substantially provided by removing charge from the
18 body region through the source region; and
19 wherein the gate of the transistor of the first memory cell and the gate of the
20 transistor of the second memory cell are connected.

1 38. **(Currently Amended):** The memory array of claim 37 wherein:
2 the plurality of memory cells further includes a third memory cell wherein the third
3 memory cell includes at least a transistor to constitute the memory cell wherein the
4 transistor includes:
5 a source region having impurities to provide a the first conductivity type;
6 a drain region having impurities to provide the first conductivity type,
7 a body region disposed between and adjacent to the source region and
8 the drain region wherein the body region is electrically floating and includes
9 impurities to provide a the second conductivity type wherein the second
10 conductivity type is different than the first conductivity type;
11 a gate disposed over the body region; and
12 wherein the memory cell includes:
13 a first data state representative of a first charge in the body region wherein
14 the first charge is substantially provided by impact ionization; and

15 a second data state representative of a second charge in the body region
16 wherein the second charge is substantially provided by removing charge from the
17 body region through the source region; and
18 wherein the source region of the transistor of the first memory cell and the source
19 region of the transistor of the third memory cell are the same region.

1 39. **(Currently Amended)**: The memory array of claim 37 wherein:
2 the plurality of memory cells further includes a fourth memory cell wherein the
3 fourth memory cell includes at least a transistor to constitute the memory cell wherein
4 the transistor includes:
5 a source region having impurities to provide a the first conductivity type;
6 a drain region having impurities to provide the first conductivity type,
7 a body region disposed between and adjacent to the source region and
8 the drain region wherein the body region is electrically floating and includes
9 impurities to provide a the second conductivity type wherein the second
10 conductivity type is different than the first conductivity type;
11 a gate disposed over the body region,
12 wherein the memory cell includes:
13 a first data state representative of a first charge in the body region wherein
14 the first charge is substantially provided by impact ionization; and
15 a second data state representative of a second charge in the body region
16 wherein the second charge is substantially provided by removing charge from the
17 body region through the source region; and

18 wherein the drain region of the transistor of the first memory cell and the drain
19 region of the transistor of the fourth memory cell are the same region.

1 40. **(Currently Amended)**: The memory array of claim 39 wherein the first
2 charge is comprised of an accumulation of majority carriers in the body region of the
3 transistor of the first memory cell.

1 41. **(Currently Amended)**: The memory array of claim 40 wherein the majority
2 carriers accumulate in a portion of the body region regions that is adjacent to the source
3 region regions of the transistor of each memory cell of the plurality of memory cells.

1 42. **(Currently Amended)**: The memory array of claim 39 further including a
2 control unit, coupled to the gate and the drain region of the transistor of the first memory
3 cell, to provide control signals to the first ~~and second~~ memory cell cells, wherein the first
4 memory cell, in response to a first write control signals signal-set, stores the first charge
5 in the body region of the transistor of the first memory cell.

1 43. **(Currently Amended)**: The memory array of claim 39 42 further including a
2 control unit, coupled to the gate and the drain region of the transistor of the first memory
3 cell, to provide control signals to the first ~~and second~~ memory cell cells, wherein the first
4 memory cell, in response to a second write control signals signal-set, stores the second
5 charge in the body region of the transistor of the first memory cell by removing charge
6 from the body region of the transistor of the first memory cell through its source region.

1 44. **(Currently Amended):** The memory array of claim 43 wherein the control
2 unit applies positive voltages to the drain region and gate of the transistor of the first
3 memory cell to provide the second charge in the body region of the transistor of the first
4 memory cell.

1 45. **(Currently Amended):** The memory array of claim 44 wherein the control
2 unit is coupled to the gate, drain region and source region of the transistor of the second
3 memory cell and applies positive voltages to the drain region and gate of the transistor
4 of the first memory cell to provide the second charge in the body region of the transistor
5 of the first memory cell and applies a first voltage to the drain and source regions of the
6 transistor of the second memory cell to maintain the data state of the second memory
7 cell.

1 46. **(Previously Presented):** The memory array of claim 45 wherein the first
2 voltage is ground.

1 47. **(Currently Amended):** A semiconductor memory array, disposed in or on a
2 semiconductor layer which resides on or above an insulating layer of a substrate, the
3 semiconductor memory array comprising:

4 a plurality of memory cells, including a first memory cell and a second memory
5 cell, arranged in a matrix of rows and columns and disposed in or on the semiconductor
6 layer, including a first memory cell and a second memory cell, wherein the first and
7 second memory cells each include includes at least a transistor to constitute the
8 memory cell and wherein the transistor includes:

9 a source region having impurities to provide a first conductivity type;
10 a drain region having impurities to provide the first conductivity type,
11 a body region disposed between and adjacent to the source region, and
12 the drain region and the insulating layer of the substrate, wherein the body region
13 is electrically floating and includes impurities to provide a second conductivity
14 type wherein the second conductivity type is different than the first conductivity
15 type;
16 a gate spaced apart from, and capacitively coupled to, the body region;
17 wherein the memory cell includes:
18 a first data state representative of a first charge in the body; and
19 a second data state representative of a second charge in the body region
20 wherein the second charge is substantially provided by removing charge from the
21 body region through the source region; and
22 wherein the gate of the transistor of the first memory cell and the gate of the
23 transistor of the second memory cell are connected.

1 48. **(Currently Amended):** The memory array of claim 47 wherein:
2 the plurality of memory cells further includes a third memory cell wherein the third
3 memory cell includes at least a transistor to constitute the memory cell wherein the
4 transistor includes:
5 a source region having impurities to provide the a first conductivity type;
6 a drain region having impurities to provide the first conductivity type;
7 a body region disposed between and adjacent to the source region and
8 the drain region wherein the body region is electrically floating and includes

9 impurities to provide the a second conductivity type wherein the second
10 conductivity type is different than the first conductivity type;

11 a gate spaced apart from, and capacitively coupled to, the body region;

12 and

13 wherein the memory cell includes:

14 a first data state representative of a first charge in the body; and

15 a second data state representative of a second charge in the body region

16 wherein the second charge is substantially provided by removing charge

17 from the body region through the source region; and

18 wherein the source region of the transistor of the first memory cell and the source

19 region of the transistor of the third memory cell are the same region.

1 49. (Currently Amended): The memory array of claim 48 wherein:

2 the plurality of memory cells further includes a fourth memory cell wherein the

3 fourth memory cell includes at least a transistor to constitute the memory cell wherein

4 the transistor includes:

5 a source region having impurities to provide a the first conductivity type;

6 a drain region having impurities to provide the first conductivity type;

7 a body region disposed between and adjacent to the source region and

8 the drain region wherein the body region is electrically floating and includes

9 impurities to provide a the second conductivity type wherein the second

10 conductivity type is different than the first conductivity type;

11 a gate spaced apart from, and capacitively coupled to, the body region;

12 and

13 wherein the memory cell includes:
14 a first data state representative of a first charge in the body; and
15 a second data state representative of a second charge in the body region
16 wherein the second charge is substantially provided by removing charge from the
17 body region through the source region; and
18 wherein the drain region of the transistor of the first memory cell and the drain
19 region of the transistor of the fourth memory cell are the same region.

1 50. **(Currently Amended):** The memory array of claim 47 wherein the second
2 charge is provided in the body of the transistor of the first memory cell in response to a
3 ~~write control signal set includes a first signal, having a first positive voltage,~~ applied to
4 the drain region of the transistor of the first memory cell.

1 51. **(Currently Amended):** The memory array of claim 50 wherein the second
2 charge is stored in the body region of the transistor of the first memory cell in response
3 to removing the first positive voltage from the drain region of the transistor of the first
4 memory cell before removing ~~the a~~ second positive voltage from the gate of the
5 transistor of the first memory cell.

1 52. **(Currently Amended):** The memory array of claim 51 wherein, in response
2 to the first and second positive voltages, the first memory cell includes a forward bias
3 current between ~~its~~ the body region and ~~its~~ the source region of the transistor of the first
4 memory cell.

1 53. **(Currently Amended)**: The memory array of claim 52 wherein the second
2 charge is stored in the body region of the transistor of the first memory cell in response
3 to removing the first positive voltage from the drain region of the transistor of the first
4 memory cell and wherein the source regions of the transistors of the first and second
5 memory cells are connected to a fixed voltage.

1 54. **(Currently Amended)**: The memory array of claim 47 wherein the first
2 charge is comprised of an accumulation of majority carriers in the body region of the
3 transistor of the first memory cell.

1 55. **(Currently Amended)**: The memory array of claim 54 wherein the majority
2 carriers accumulate in a portion of the body region regions that is adjacent to the source
3 region regions of the transistor of each memory cell of the plurality of memory cells.

1 56. **(Currently Amended)**: The memory array of claim 47 further including a
2 control unit, coupled to the gate and the drain region of the transistor of the first memory
3 cell, to provide control signals to the first and second memory cell cells, wherein the first
4 memory cell, in response to a first write control signals signal set, stores the first charge
5 in the body region of the transistor of the first memory cell.

1 57. **(Currently Amended)**: The memory array of claim 47 56 further including a
2 control unit, coupled to the gate and the drain region of the transistor of the first memory
3 cell, to provide control signals to the first and second memory cell cells, wherein the first

4 memory cell, in response to a second write control signals signal set, stores the second
5 charge in the body region of the transistor of the first memory by removing charge from
6 the body region of the transistor of the first memory cell through its source region.

1 58. **(Currently Amended):** The memory array of claim 57 wherein the control
2 unit applies positive voltages to the drain region and gate of the transistor of the first
3 memory cell to provide the second charge in the body region of the transistor of the first
4 memory cell.

1 59. **(Currently Amended):** The memory array of claim 58 wherein the control
2 unit applies positive voltages to the drain region and gate of the transistor of the first
3 memory cell to provide the second charge in the body region of the transistor of the first
4 memory cell and applies a first voltage to the drain and source regions of the transistor
5 of the second memory cell to maintain the data state of the second memory cell.

1 60. **(Previously Presented):** The memory array of claim 59 wherein the first
2 voltage is ground.