

《现代控制理论》第3章练习作业

1. 已知系统的状态空间表达式为: $\dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$ 则系统是()。

- A. 完全能控完全能观的
- B. 完全能控不完全能观的
- C. 不完全能控完全能观的
- D. 不完全能控不完全能观的

2. 给定二阶系统:
$$\dot{x} = \begin{bmatrix} a & 2 \\ 0 & b \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u$$
 为完全能控, a, b 应满足的关系()

$$\mathbf{A.} \ \ \boldsymbol{b} \neq \boldsymbol{a} + \mathbf{1}$$

$$\mathbf{B.} \ \ \boldsymbol{b} \neq \boldsymbol{a} + 2$$

C.
$$b \neq a + 3$$

$$\mathbf{D.} \ b \neq a+4$$

3. 已知系统的状态方程为: $\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u$

系统的特征值为 $\lambda_1 = -1$, $\lambda_2 = -2$, 则有()。

- A. λ_1 , λ_2 均为能控振型;
- B. λ_1 为能控振型 , λ_2 为不能控振型 ;
- $C. \lambda_1$ 为不能控振型 , λ_2 为能控振型 ;
- D. λ_1 , λ_2 均为不能控振型;

4. 已知系统的状态空间表达式为:

$$\dot{x} = \begin{bmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & -1 & & \\ & & & -1 & 1 \\ & & & & -1 \end{bmatrix} x + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 2 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} x$$

则系统是()。

- A. 完全能控完全能观的
- B. 完全能控不完全能观的
- C. 不完全能控完全能观的
- D. 不完全能控不完全能观的

5. 已知系统的状态空间表达式为:

$$\dot{x} = \begin{bmatrix} 2 & 1 & & & & \\ & 2 & 1 & & & \\ & & 2 & & & \\ & & & 3 & 0 & \\ & & & 3 & 1 \\ & & & & 3 \end{bmatrix} x + Bu, \quad y = Cx$$

若系统完全能控、完全能观。输入向量是r维的,输出向量是m维的,则有()。

 $A. \quad r \ge 1, \quad m \ge 1$

 $B. \quad r \geq 2, \quad m \geq 1$

 $\textbf{C.} \quad r \geq 1, \quad m \geq 2$

 $\mathbf{D}. \quad r \geq 2, \quad m \geq 2$

6. 完全能控的状态空间表达式为:

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ -3 & -4 & 0 \\ 2 & 1 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} x$$

则以下系统为完全能观的是()

A.
$$\dot{x} = \begin{bmatrix} 0 & -3 & 2 \\ 1 & -4 & 1 \\ 0 & 0 & -2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} u$$
, $y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} x$

B.
$$\dot{x} = \begin{bmatrix} 0 & 3 & -2 \\ 1 & 4 & -1 \\ 0 & 1 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u$$
, $y = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} x$

C.
$$\dot{x} = \begin{bmatrix} 0 & 3 & -2 \\ -1 & 4 & -1 \\ 0 & 1 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} u$$
, $y = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} x$

D.
$$\dot{x} = \begin{bmatrix} 0 & 3 & -2 \\ -1 & 4 & -1 \\ 0 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} u$$
, $y = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} x$

7. 已知系统的状态空间表达式为:

$$\dot{x} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

则状态变量 x_3 是()

- A. 能控能观的
- B. 能控不能观的
- C. 不能控能观的
- D. 不能控不能观的

7.下列系统中实现了能控性分解的系统为()

A.
$$\dot{x} = \begin{bmatrix} 1 & -3 & 2 \\ 1 & 4 & -2 \\ 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$

B.
$$\dot{x} = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & -2 \\ 0 & 2 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$

C.
$$\dot{x} = \begin{bmatrix} 3 & -4 & 2 \\ 1 & 4 & -2 \\ 0 & 2 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} u$$

D.
$$\dot{x} = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & -2 \\ 0 & 2 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} u$$

9. 已知系统的状态方程为:
$$\dot{x} = \begin{bmatrix} 0 & 2 & -2 \\ 1 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} u$$

经线性变换 x = Tz 将系统的状态方程变换为: $\dot{z} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix} z + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$,则变换矩阵T为()

A.
$$T = \begin{bmatrix} 2 & 0 & -4 \\ 1 & 1 & -5 \\ 1 & 3 & 1 \end{bmatrix}$$

$$\mathbf{B.} \ T = \begin{bmatrix} -6 & -4 & 2 \\ -8 & -1 & 1 \\ -6 & 1 & 1 \end{bmatrix}$$

C.
$$T = \begin{bmatrix} -6 & 0 & 2 \\ -5 & 1 & 1 \\ 1 & 3 & 1 \end{bmatrix}$$

D.
$$T = \begin{bmatrix} 2 & -4 & -6 \\ 1 & -1 & -8 \\ 1 & 1 & -6 \end{bmatrix}$$

10. x_{α}, x_{β} 分别为系统的两个能控状态, α, β 为不同时为零的任意常数,则状态 $x_{\alpha\beta} = \alpha x_{\alpha} + \beta x_{\beta}$ ()

A. 能控;

B. 不能控;

C. 能控性 α , β 的具体取值有关;

D. 无法确定是否能控;