Część B- napisać odpowiedź.

Odpowiedzi w formacie: nazwisko-zalicz-inf.pdf wysyłać na e-mail Mykola.Bratiichuk@polsl.pl 23.06.2021 do 12.00.

NAZWISKO -

CZĘŚĆ A

- 1. Wariancja zmiennej losowej charakteryzuje:
 - a) Różnice między największą i najmniejszą wartością tej zmiennej.
 - b) Sume kwadratów wartości tej zmiennej.
- c) Rozrzut wartości zmiennej
- 2. Zmienna losowa ξ ma rozkład $\mathbf{P}\{\xi=1\}=p, \mathbf{P}\{\xi=0\}=1-p, 0< p<1.$ Wtedy dla k>0 mamy $\mathbf{E}\xi^k =$
 - **a**) p
- b) p^k
- c) p/k
- d) $\sqrt[k]{p}$.
- 3. Rzucamy trzema kostkami. Oblicz prawdopodobieństwo tego, że suma oczek wynosi 4.
- **b)** 1/72
- **c)** 11/216
- **d)** 7/216
- 4. Zmienne losowe $\xi_i, i=1,2,...,n$ są niezależne o takim samym rozkładzie i $\mathbf{E}\xi_i=\sqrt{2},\ \mathbf{D^2}\xi_i=2.$ Wtedy $\lim_{n\to\infty} \sum_{i=1}^n \xi_i^2 =$
- a) $\sqrt{2}$ b) 4 c) $2-\sqrt{2}$
- **d**) 2.
- 5. Chcemy znaleźć ocenę dla wariancji cechy ξ na podstawie próbki $x_1, x_2, ... x_n$. Która z następnych statystyk najlepiej pasuje do rozwiązania tego problemu
 - a) $n^{-1} \sum_{i=1}^{n} (x_i x(n))^2$ b) $(n-1)^{-1} \sum_{i=1}^{n} (x_i x(n))^2$ c) $n^{-1} \sum_{i=1}^{n} (x_i \mathbf{E}\xi)^2$

- d) $(n+1)^{-1}\sum_{i=1}^{n}(x_i-x(n))^2$
- 6. Dla próbki $x_1,...,x_n$ mamy $x(n)=2,S_x^2(n)=4$ a dla próbki $y_1,...,y_m$ mamy $y(m)=3,S_y^2(8)=8$. Jaka z tych próbek jest mniej rozprosona?
- b) druga
- c) nie możemy porówniać rozproszenie tych próbek.
- 7. Dla cechy ξ mamy próbkę $x_1,...,x_n$ i policzono $x(n)=2, S^2(n)=0,04$. W jakim przedziale leżą typowe wartości cechy ξ .
 - a) [2, 2; 2, 4]

- **b)** [1, 8; 2, 2] **c)** [1, 6; 2, 4] **d)** [1, 96; 2, 04].
- 8. Ocena $x(n) = \frac{1}{n} \sum_{i=1}^{n} x_i$ dla wartości średniej cechy ξ na podstawie próbki $x_1, x_2, ... x_n$ jest

 - a) zgodna b) asymptotycznie obciążona c) zawsze efektywna

d) zawsze $\mathbf{E}x(n) = \mathbf{E}\xi^2$.

CZEŚĆ B

9. Dla próbki $x_1, x_2, ..., x_n$ populacji generalnej ξ mamy dystrybuantę empiryczną

Znaleźć $n, x_i, i = 1, ..., n$.

10.	Zmienna losowa ξ posiada rozkład wykładniczy $\mathbf{E}\xi=1/2$. Podać wzór dla gęstości rozkładu tej zmien-
	nej losowej.

11. Napisać rownanie wiarygodności dla nieznanego parametru λ cechy ξ z gęstością $f(x,\lambda) = \frac{\lambda}{2}e^{-\lambda|x|}$ a $x_1,...,x_n$ jest próbką dla cechy ξ .

- 12. Dla parametru m mamy przedział ufności (2,4) że współczynnikiem ufności 0.95. Co możemy powiedzieć o prawdopodobieństwie $\mathbf{P}\{m \notin (2,4)\}$?
- 13. Zmienna losowa ξ posiada dystrybuantę

$$F(x) = \begin{cases} 0, & x < 1\\ \sqrt{x} - 1, & 1 \le x \le 4\\ 1, & x > 4. \end{cases}$$

Wtedy

$$\mathbf{D^2}\xi =$$

14. Dla populacji generalnej $\xi \in N(m; 9)$, gdzie m jest nieznany parametr mamy próbkę -2, 2, 1, 3. Znaleźć przedział ufności dla tego parametru ze współczynnikiem ufności 0.9.