

Winning Space Race with Data Science

Parth Panchal

Outline

- · Executive Summary
- · Introduction
- Methodology
- · Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - · Data collection
 - Data wrangling
 - · EDA with data visualization
 - · EDA with SQL
 - · Building an interactive map with Folium
 - · Building a Dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - · EDA results
 - · Interactive analytics
 - · Predictive analysis

Introduction

- · Project background and context
 - SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- · Problems you want to find answers
 - The project task is to predicting if the first stage of the SpaceX Falcon 9 rocket will land successfully

Methodology

Executive Summary

- · Data collection methodology:
 - SpaceX Rest API
 - · Web Scrapping from Wikipedia
- Perform data wrangling
 - One Hot Encoding data fields for Machine Learning and data cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- · Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - · LR, KNN, SVM, DT models have been built and evaluated for the best classifier

Data Collection

- The following datasets was collected:
 - SpaceX launch data that is gathered from the SpaceX REST API.
 - This API will give us data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
 - The SpaceX REST API endpoints, or URL, starts with api.spacexdata.com/v4/.
 - Another popular data source for obtaining Falcon 9 Launch data is web scraping Wikipedia using BeautifulSoup.

Data Collection - SpaceX API

Data collection with SpaceX REST calls

https://github.com/initiative1972/datascience/blob/master/10-IBM%20Data%20Science%20Capstone%20project.ipynb

Data Collection - Scraping

 Web Scrapping from Wikipedia

https://github.com/initiative1972/datascience/blob/master/10-IBM%20DS%20Capstone%20project-lab2web%20scraping.jpynb

Data Wrangling

EDA with Data Visualisation

EDA with SQL

SQL queries performed include:

- · Displaying the names of the unique launch sites in the space mission
- · Displaying 5 records where launch sites begin with the string 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v1.1
- Listing the date where the successful landing outcome in drone ship was achieved.
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- · Listing the total number of successful and failure mission outcomes
- Listing the names of the booster_versions which have carried the maximum payload mass.
- Listing the records which will display the month names, successful landing_outcomes in ground pad ,booster
- versions, launch_site for the months in year 2017
- Ranking the count of successful landing_outcomes between the date 2010 06 04 and 2017 03 20 in descendingorder.

Build an Interactive Map with Folium

Map markers have been added to the map with aim to finding an optimal location for building a launch site https://github.com/initiative1972/data-science/blob/master/10-IBM%20DS%20Capstone-lab5-Folium.ipynb

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

 The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area Under the Curve at 0.958.

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate.

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches form other sites.

Payload vs. Launch Site

 The majority of IPay Loads with lower Mass have been launched from CCAFS SLC 40.

Success Rate vs. Orbit Type

 The orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stablised since 2019, potentially due to advance in technology and lessons learned.

All Launch Site Names

%sql select distinct(LAUNCH_SITE) from SPACEXTBL

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

%sql select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

DATE	time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	1845:00	F9 v1.0 80003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit		LEO	SpaceX	Success	Failure (parachute)
3010-12- 08	15/43:00	F9 v1.0 50004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, framer of Brouere cheese		LEO (SS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 80005	CCAPS LC- 40	Dragon demo flight C2	525	150 (55)	NASA (COTS)	Success	No attempt
2012-10- 08	00:25:00	F9 v1 0 80006	CCAFS LC- 40	SpaceX CRS-1	500	LEO USS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO	NASA (CRS)	Success	No attempt

Total Payload Mass

%sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where CUSTOMER
 = 'NASA (CRS)'

45596

Average Payload Mass by F9 v1.1

 %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

 %sql select min(DATE) from SPACEXTBL where Landing_Outcome = 'Success (ground pad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

 %sql select BOOSTER_VERSION from SPACEXTBL where Landing__Outcome = 'Success (drone ship)' and PAYLOAD_MASS__KG_ > 4000 and PAYLOAD_MASS__KG_ < 6000

F9 FT B1021 F9 FT B1026 F9 FT B1021.2 F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

%sql select count(MISSION_OUTCOME) from SPACEXTBL where
 MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

100

Boosters Carried Maximum Payload

 %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL)

P9 85 81048.4
P9 85 81049.4
P9 85 81049.4
P9 85 81056.4
P9 85 81056.4
P9 85 81056.4
P9 85 81056.5
P9 85 81056.5
P9 85 81056.5
P9 85 81056.3

2015 Launch Records

 %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

time_utc_	booster version	launch_site	payfood	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
143900	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pid)
17:54:00	F9 FT B1029.1	VAFB SLC-4E	Iridium NEXT 1	9600	Poler LED	Indium Communications	Success	Success (drone ship)
05/26/00	F9 FT 81026	CCAPS LC- 40	JCSAT-16	4600	670	SKY Perfect ISAT Group	Success	Success (drone ship)
0445.00	F9 FT 81025.1	CCAFS LC- 40	SpaceX CRS-9	2257	18O- ((SS)	NASA (CRS)	Success	Success (ground pad)
213900	F9 FT B1023.1	CCAFS LC- 40	Thalcom 8	3100	610	Thacom	Success	Success (drone ship)
	********	CCAPS LC-	100,000	1100	211	SKY Perfect /SAT		H 60 300 F

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

Success (drone ship	Success	Thaicom	610	3100	Thalcom 6	CCAFS LC- 40	F9 FT 81023.1	21:39:00	2016-05- 27
Success ideone ship	Success	SKV Perfect (SAT Group	GIO	4696	ICSAT-14	CCAFS LC- 40	F9 FT N1022	052100	2016-05- 06
Success (drone ship	Success	NASA (CRS)	LEO (55)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT 81021.1	2043.00	2016-04-
Succest Iground pad	Success	Orticomm	UO	2034	OGZ Mission 2 11 Orbcomm-OGZ satellites	CDAFS LC- 40	F9 FT 61019	01:29:00	2015-12- 22

All launch sites marked on a map

Success/failed launches marked on the map

Distances between a launch site to its proximities

Total success launches by all sites

Success rate by site

Payload vs launch outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset.
- Low weighted payloads perform better than the heavier payloads.
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches.
- KSC LC 39A had the most successful launches from all the sites.
- Orbit GEO,HEO,SSO,ES L1 has the best Success Rate.

