Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

национальный исследовательский университет итмо

Факультет безопасности информационных технологий

Дисциплина:

«Компьютерные сети»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

«Кодирование данных в телекоммуникационных сетях»

-					
Вь	111	\mathbf{n}	TII	TX I	п.
DВ	111	w	ΙП	ri J	и.

Арендаренко М. М., студент группы N3347

(подпись)

Проверил:

Есипов Д.А

(подпись)

Санкт-Петербург

2024 г.

Содержание

Оглавление

1.	Формирование сообщения	3
2.	Физическое кодирование сообщения	5
	Манчестерское кодирование	5
	NRZ (Non-Return to Zero)	6
	RZ (Return to Zero)	7
	Bipolar AMI	8
	Частоты и полоса пропускания	9
3.	Логическое кодирование по методу 4В/5В	. 10
4.	Скремблирование исходного сообщения	. 11
5.	Сравнительный анализ	. 13
3 <i>a</i>	ключение	. 15

1. Формирование сообщения

Инициалы студента: Арендаренко М.М.

12.. (точка):

Фамилия и инициалы студента: Арендаренко М.М.

```
1. A:
   В кодировке = СО (в шестнадцатеричном) = 11000000 (в двоичном)
2. P:
   В кодировке = D0 (в шестнадцатеричном) = 11010000 (в двоичном)
3. E:
   В кодировке = С5 (в шестнадцатеричном) = 11000101 (в двоичном)
4. H:
   В кодировке = СD (в шестнадцатеричном) = 11001101 (в двоичном)
5. Д:
   В кодировке = С4 (в шестнадцатеричном) = 11000100 (в двоичном)
6. A:
   В кодировке = СО (в шестнадцатеричном) = 11000000 (в двоичном)
7. P:
   В кодировке = D0 (в шестнадцатеричном) = 11010000 (в двоичном)
8. E:
   В кодировке = С5 (в шестнадцатеричном) = 11000101 (в двоичном)
9. H:
   В кодировке = CD (в шестнадцатеричном) = 11001101 (в двоичном)
10. K:
   В кодировке = СА (в шестнадцатеричном) = 11001010 (в двоичном)
11.0:
   В кодировке = СЕ (в шестнадцатеричном) = 11001110 (в двоичном)
```

В кодировке = 2Е (в шестнадцатеричном) = 00101110 (в двоичном)

13. M:

В кодировке = СС (в шестнадцатеричном) = 11001100 (в двоичном)

14.. (точка):

В кодировке = 2Е (в шестнадцатеричном) = 00101110 (в двоичном)

15. M:

В кодировке = СС (в шестнадцатеричном) = 11001100 (в двоичном)

Теперь записываем исходное сообщение:

Шестнадцатеричный код: C0 D0 C5 CD C4 C0 D0 C5 CD CA CE 2E CC 2E CC

Двоичный код: $11000000\ 11010000\ 11000101\ 11001101\ 11000100\ 11000000$ $11010000\ 11000101\ 11001101\ 11001110\ 11001110\ 11001110$ $11001100\ 00101110$ 11001100

Длина сообщения: 30 байт (240 бит).

2. Физическое кодирование сообщения

Манчестерское кодирование

Манчестерское кодирование представляет каждый бит как переход сигнала. 1 — переход от низкого к высокому уровню, 0 — наоборот. Исходное сообщение преобразуется в последовательности чередования сигналов.

Принцип работы:

• Каждый бит кодируется как два изменения уровня сигнала: для 1 — переход от низкого к высокому ($\downarrow\uparrow$), для 0 — от высокого к низкому ($\uparrow\downarrow$).

Для первых четырёх байт (например, 11000000 11010000):

 $11010000 \rightarrow \downarrow \uparrow \downarrow \uparrow \uparrow \downarrow \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$

Частотный анализ:

• Пропускная способность: С = 1 Гбит/с

• Верхняя граница частот: $f_{\text{верх}} = C = 1 \Gamma \Gamma \mu$

• Нижняя граница частот: : $f_{\text{ниж}} = \frac{\text{C}}{2} = 500 \text{ M}$ Гц

• Средняя частота: $f_{\rm cp} = \frac{f_{\rm Bepx} + f_{\rm Hum}}{2} = 750 \ {\rm M}$ Гц

• Полоса пропускания: $S = f_{\text{верх}} - f_{\text{ниж}} = 500 \, \text{МГц}$

Преимущества:

• Автоматическая синхронизация за счёт постоянного изменения сигнала.

• Устойчиво к длинным последовательностям одинаковых битов.

Недостатки:

• Требует большей полосы пропускания по сравнению с другими методами.

NRZ (Non-Return to Zero)

NRZ-кодирование: 1 — высокий уровень, 0 — низкий уровень. Сообщение кодируется прямыми уровнями без изменений между одинаковыми значениями битов.

Принцип работы:

• Бит 1 передаётся как высокий уровень сигнала, а бит 0 — как низкий.

Для тех же четырёх байт:

11000000 oвысокий высокий низкий низкий низкий низкий низкий низкий

11010000 oвысокий высокий низкий высокий низкий низкий низкий низкий

Частотный анализ:

• Пропускная способность: 1 Гбит/с

• Верхняя граница частот: $f_{\text{верх}} 1$ ГГц

• Место для уравнения.

• Нижняя граница частот: 0 Гц

• Средняя частота: 500 МГц

• Полоса пропускания: 1 ГГц

Преимущества:

- Простота реализации.
- Эффективность при передаче данных.

Недостатки:

• Нет автоматической синхронизации: длинные последовательности одинаковых битов могут вызывать ошибки.

RZ (Return to Zero)

RZ-кодирование: каждый бит возвращает сигнал в 0 после передачи, при этом 1 — высокий импульс, 0 — низкий импульс.

Принцип работы:

• После каждого бита сигнал возвращается в ноль. Для 1 — переход на высокий уровень, затем возврат к нулю. Для 0 — низкий уровень, затем возврат к нулю.

Для тех же четырёх байт:

11000000
ightharpoonup высокий ноль, высокий ноль, низкий ноль, низкий ноль, низкий ноль ноль

11010000
ightarrow высокий ноль, высокий ноль, низкий ноль, высокий ноль, низкий ноль

Частотный анализ:

• Пропускная способность: 1 Гбит/с

Верхняя граница частот: 1 ГГц

• Нижняя граница частот: 500 МГц

• Средняя частота: 750 МГц

• Полоса пропускания: 500 МГц

Преимущества:

- Устойчиво к помехам и синхронизации.
- Поддержка возврата к нулевому уровню сигнала.

Недостатки:

• Требует более широкую полосу пропускания.

Bipolar AMI

Bipolar AMI: 1 передается чередующимися положительными и отрицательными импульсами, 0 передается как отсутствие сигнала. Этот метод улучшает защиту от ошибок передачи.

Принцип работы:

• Бит ${\bf 1}$ чередуется между положительным и отрицательным уровнем сигнала, бит ${\bf 0}$ — отсутствие сигнала.

Для тех же четырёх байт:

11000000 → положительный отрицательный отсутствие отсутствие отсутствие отсутствие

11010000
ightarrow положительный отрицательный отсутствие положительный отсутствие отсутствие

Частотный анализ:

• Пропускная способность: 1 Гбит/с

• Верхняя граница частот: 1 ГГц

• Нижняя граница частот: 250 МГц

• Средняя частота: 625 МГц

• Полоса пропускания: 750 МГц

Преимущества:

- Хорошо минимизирует ошибки.
- Устойчиво к помехам.

Недостатки:

• Требует чередования импульсов для синхронизации.

Частоты и полоса пропускания

При пропускной способности канала связи 1 Гбит/с:

Манчестерское кодирование:

Верхняя граница: 1 ГГц, нижняя граница: 500 МГц, средняя частота: 750 МГц

NRZ-кодирование:

Верхняя граница: 1 ГГц, нижняя граница: 0 Гц, средняя частота: 500 МГц

RZ-кодирование:

Верхняя граница: 1 ГГц, нижняя граница: 500 МГц, средняя частота: 750 МГц

Bipolar AMI:

Верхняя граница: 1 ГГц, нижняя граница: 250 МГц, средняя частота: 625 МГц

3. Логическое кодирование по методу 4В/5В

Метод 4В/5В заменяет каждые 4 бита исходного сообщения на 5 бит, увеличивая длину сообщения на 25%. Это улучшает надежность передачи.

Исходное сообщение: 11000000 11010000 11000101 11001101

Закодированное сообщение по методу 4B/5B: 11000 00001 10001 01000 11001 00101 10011 01101 ...

Длина нового сообщения: 37,5 байта.

Избыточность: 25%

Сообщение увеличивается с 30 байт (240 бит) до 37,5 байт (300 бит).

$$\frac{37.5 - 30}{30} = 0.25$$
 или 25%

Манчестерское кодирование	Bipolar AMI кодирование
$110000000 \rightarrow 1010010101010101$	11000000 → 1 -1 0 0 0 0 0 0
$11010000 \rightarrow 1010011001010101$	11010000 1 -1 0 1 0 0 0 0
$11000101 \rightarrow 1010010101100110$	11000101 → 1 -1 0 0 0 1 0 -1
$11001101 \rightarrow 1010010110100110$	11001101 → 1 -1 0 0 1 -1 0 1
$11000100 \rightarrow 1010010101100101$	11000100 1 -1 0 0 0 1 0 0
$11000000 \rightarrow 1010010101010101$	11000000 → 1 -1 0 0 0 0 0 0
$11010000 \rightarrow 1010011001010101$	11010000 → 1 -1 0 1 0 0 0 0
$11000101 \rightarrow 1010010101100110$	11000101 → 1 -1 0 0 0 1 0 -1
$11001101 \rightarrow 1010010110100110$	11001101 → 1 -1 0 0 1 -1 0 1
$11001010 \rightarrow 1010010110011001$	11001010 → 1 -1 0 0 1 0 -1 0
$11001110 \rightarrow 1010010110101001$	11001110 → 1 -1 0 0 1 -1 1 0
$00101110 \rightarrow 0101100110101001$	00101110 → 0 0 1 0 -1 1 -1 0
$11001100 \rightarrow 1010010110100101$	11001100 1 -1 0 0 1 -1 0 0
$00101110 \rightarrow 0101100110101001$	00101110 → 0 0 1 0 -1 1 -1 0
$11001100 \rightarrow 1010010110100101$	11001100 1 -1 0 0 1 -1 0 0

4. Скремблирование исходного сообщения

Для скремблирования выбран полином: $x^7 + x^6 + 1$.

Скремблированное сообщение:

После скремблирования:

Проведём кодирование двумя наилучшими способами, выбранными на этапе 2: Манчестерское и Bipolar AMI.

1. Манчестерское кодирование

Каждый бит в манчестерском коде представляет собой переход сигнала. Для логической "1" используется переход от низкого уровня к высокому (\1), а для "0" — от высокого к низкому (\1). Преобразование скремблированного сообщения в манчестерский код выглядит следующим образом:

Результат Манчестерского кодирования:

- $10100101 \rightarrow 1010010101011001$
- $01100110 \rightarrow 0110011010100110$
- $10101011 \rightarrow 0101010110011010$
- $01011001 \rightarrow 1010101001100110$
- $10101010 \rightarrow 101010101010101$
- $11000100 \rightarrow 1010011001011001$
- $01011010 \rightarrow 0101101010100101$
- $10100101 \rightarrow 0110010110100101$
- $01101001 \rightarrow 0110100101100101$
- $01100101 \rightarrow 1001011001010110$
- $10010110 \rightarrow 1001100110011010$
- $10011001 \rightarrow 1010011001101001$
- $10100110 \rightarrow 0101101010010101$
- $10011010 \rightarrow 1001101010100110$

2. Bipolar AMI (Alternate Mark Inversion)

В Bipolar AMI логическая "1" кодируется чередующимися положительными и отрицательными импульсами, а логическая "0" — как отсутствие сигнала. Ниже приведён результат кодирования скремблированного сообщения с использованием Bipolar AMI.

Результат Bipolar AMI:

 $10100101 \rightarrow 1 -1 0 0 0 0 1 0$

 $01100110 \rightarrow 0\ 1\ 0\ -1\ 1\ -1\ 0\ 1$

 $10101011 \rightarrow 0.00010-11$

 $01011001 \rightarrow 1 -1 1 -1 0 1 0 -1$

 $10101010 \rightarrow 1 -1 1 -1 1 0 0 0$

 $11000100 \to 1 \text{ --} 1 \ 0 \ 1 \ 0 \ 0 \text{ --} 1 \ 0$

 $01011010 \rightarrow 0\ 0\ 1\ -1\ 1\ -1\ 0\ 0$

 $10100101 \rightarrow 0\ 1\ 0\ 0\ -1\ 1\ 0\ 0$

 $01101001 \to 0\ 1\ \text{--}1\ 0\ 0\ 1\ 0\ 0$

 $01100101 \to 1\ 0\ 0\ \text{--}1\ 0\ 0\ 0\ 1$

 $10010110 \to 1\ 0\ \text{--}1\ 0\ 1\ 0\ \text{--}1\ 1$

 $10011001 \rightarrow 1 -1 \ 0 \ 1 \ 0 -1 \ 1 \ 0$ $10100110 \rightarrow 0 \ 0 \ 1 -1 \ 1 \ 0 \ 0$

 $10011010 \rightarrow 10-11-110-1$

• $01100101 \rightarrow 0110010101011010$

Таким образом, каждое "1" и "0" было закодировано с использованием переходов в манчестерском коде, обеспечивая встроенную синхронизацию и высокую помехоустойчивость.

$01100101 \rightarrow 010000-11$

В этом кодировании "1" передаётся с чередованием по полярности (то положительным импульсом, то отрицательным), а "0" передаётся как отсутствие сигнала. Это кодирование снижает вероятность возникновения ошибок и улучшает баланс сигнала за счёт чередования импульсов.

Рис. 1 Временная диаграмма манчестерского кодирования

Рис. 2 Временная диаграмма АМІ кодирования

5. Сравнительный анализ

Сравнение методов кодирования представлено в сводной таблице по критериям: верхняя и нижняя частота, полоса пропускания, надежность передачи данных и сложность реализации.

Vanauranu	D7 /Datumata	ND7 /Non Dations	Marina	Dinalar ANAI
Характеристика	RZ (Return to Zero)	NRZ (Non-Return to Zero)	Манчестерское кодирование	Bipolar AMI (Alternate Mark Inversion)
Тип сигнала	Возврат к нулю	Без возврата к нулю	Комбинированны й (синхронизация по переходу)	Чередование по знаку для лог. '1'
Кодирование логического '0'	Импульс или отсутствие сигнала, возврат к нулю	Постоянное напряжение, низкий уровень	Переход от высокого уровня к низкому	Отсутствие сигнала
Кодирование логического '1'	Импульс, возврат к нулю	Постоянное напряжение, высокий уровень	Переход от низкого уровня к высокому	Чередующиеся положительны е и отрицательные импульсы
Синхронизация	Синхронизаци я по каждому биту	Требует дополнительны х средств для синхронизации	Высокая за счет частых переходов сигнала	Хорошая, но требуется контроль ошибок
Энергопотребление	Высокое	Низкое	Высокое	Среднее
Частотный спектр	Широкий спектр за счет возврата к нулю	Узкий спектр	Широкий спектр	Узкий спектр
DC-смещение	Присутствует	Присутствует	Отсутствует	Отсутствует
Помехоустойчивост ь	Средняя	Низкая	Высокая	Высокая
Использование в практике	Применяется в старых системах связи	Часто используется в компьютерных сетях	Используется в сетях Ethernet и других высокоскоростных линиях	Используется в телефонных линиях и системах Т1
Сложность реализации	Простая	Простая	Более сложная из- за частых изменений уровня сигнала	Средняя
Скорость передачи данных	Низкая	Высокая	Средняя	Средняя
Обнаружение ошибок	Сложно	Сложно	Легко	Легко
Верхняя граница	1 ГГц	1 ГГц	1 ГГц	1 ГГц

Нижняя Граница	500 МГц	0 МГЦ	500 МГЦ	250 МГц
Средняя частота	750 МГц	500 МГц	750 МГЦ	625 МГц
Полоса	500 МГц	1ГГц	500 МГЦ	750 МГц
пропускания				

Выбор наилучших методов:

- 1. **Манчестерское кодирование**: благодаря своей автоматической синхронизации и устойчивости к помехам, оно идеально подходит для высокоскоростной передачи данных.
- 2. **Bipolar AMI**: Этот метод минимизирует ошибки и хорошо справляется с помехами, что делает его лучшим выбором для передачи данных на длинные расстояния.

Оба метода обеспечивают надежную и устойчивую передачу данных в условиях высоких скоростей и помех

Заключение

В ходе работы было изучено множество методов физического и логического кодирования информации. Проведен анализ преимуществ и недостатков каждого метода, что позволило прийти к выводу о невозможности существования универсального подхода. Выбор оптимального метода зависит от конкретных исходных данных и условий.

В процессе выполнения работы было осуществлено кодирование исходного сообщения с использованием различных методов кодирования. По результатам был проведен сравнительный анализ этих методов и рассчитаны основные характеристики каждого из них. Также был проведен анализ их достоинств и недостатков, результаты которого представлены в таблице.