

Engr. Jess Rangcasajo jess rangcasajo@gmail.com ECE 321 Instructor

Field Effect Transistor

Field effect Transistor is a semiconductor device which depends for its operation on the control of current by an electric Field

FET'S VS. BJT'S

Similarities:

- ➤ Amplifiers
- ➤ Switching Device
- ➤ Impedance Matching Circuits

Field Effect Transistor

FET has several advantages over BJT

- 1. Current flow is due to majority carriers only
- 2. Immune to radiation
- 3. High input resistance
- 4. Less noisy than BJT
- 5. No offset voltages at zero drain current
- 6. High thermal stability

FET and BJT

FET

- 1. Uni polar device
- 2. Voltage controlled Device
- High input impedance (in Mega ohms)
- 4. Better thermal stability
- 5. High switching speeds
- Less Noisy
- 7. Easy to fabricate

BJT

- 1. Bipolar device
- 2. Current controlled device
- 3.Low input impedance
- 4.Low thermal stabilty
- 5. Lower switching speeds
- 6. More noisy
- 7. Diffuicult to fabricate on IC

Classification of Field Effect Transistors

Types of fet

- JFET (Junction FET)
- MESFET (metal-semiconductor FET)
- MOSFET (metal-oxide-semiconductor FET)
 - a. D-MOSFET (Depletion)
 - b. E-MOSFET (Enhancement)

Construction of FET

Source: The source is the terminal through which majority carriers enter the Silicon Bar

Drain: Terminal through which Majoroty carriers leave the bar

Gate: controls Drain current and is always reverse biased

E STREET

Construction The two ends of the bar are known Drain as Source and Drain GATE Source Fig 3. Construction of N Channel FET

Two types of JFET

- 1. n-channel
- 2. p-channel

n-channel is more widely used.

- Drain (D) and Source (S) are connected to the n-channel
- •Gate (G) is connected to the p-type material

- ➤JFET is always operated with the gatesource PN junction reversed biased.
- Reverse biasing of the gate source junction with the negative voltage produces a depletion region along the PN junction which extends into the n-channel and thus increases its resistance by restricting the channel width as shown in the preceding figure.

$V_{GS} = 0$, V_{DS} Some Positive Value

When $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage.

- The depletion region between p-gate and n-channel increases
- Increasing the depletion region, decreases the size of the n-channel which increases the resistance of the nchannel.
- Even though the n-channel resistance is increasing, the current (ID) from source to drain through the n-channel is increasing. This is because VDS is increasing.

Recall from DIODE discussion:

The greater the applied reverse bias, the wider is the depletion region.

$V_{GS} \geq 0$

- Voltage from gate to source is controlling voltage of the JFET.
- As V_{GS} becomes more negative, the depletion region increases.
- The more negative V_{GS}, the resulting level for I_D is reduced.
- Eventually, when V_{GS} = V_p [V_p = V_{GS} (off)], I_D is 0 mA. (the device is "turned off".

•The level of V_{GS} that results in $I_D=0$ mA is defined by $V_{GS}=V_P$ with V_P being a negative voltage for n-channel devices and a positive voltage for p-channel JFETs.

Application of a negative voltage to the gate of a JFET.

 I_D versus V_{DS} for $V_{GS} = 0 \text{ V}$

DEPLETION-TYPE MOSFET CONSTRUCTION

n-Channel depletion-type MOSFET

> Dielectric insulator

- The Drain (D) and Source (S) connect to the to n-doped regions.
- These n-doped regions are connected via an n-channel.
- This n-channel is connected to the Gate (G) via a thin insulating layer of SiO2.
- The n-doped material lies on a pdoped substrate that may have an additional terminal connection called Substrate (SS).

DEPLETION-TYPE MOSFET : BASIC OPERATION AND CHARACTERISTICS

n-Channel depletion-type MOSFET with $V_{GS} = 0$ V and applied voltage V_{DD}

- V_{GS} = 0 and V_{DS} is applied across the drain to source terminals.
- This results to attraction of free electrons of the nchannel to the drain, and hence current flows.

Continuation....

- V_{GS} is set at a negative voltage such as -1 V
- The negative potential at the gate pressure electrons toward the p-type substrate and attract the holes for the p-type substrate.
- This will reduce the number of free electrons in the n-channel available for conduction.
- \triangleright The more negative the V_{GS} , the resulting level of drain current I_D is reduced.
- When V_{GS} is reduced to V_P (pinch off voltage), then $I_D = 0mA$.

ENHANCEMENT-TYPE MOSFET CONSTRUCTION

The Drain (D) and Source (S) connect to the to n-doped regions.

The Gate (G) connects to the pdoped substrate via a thin insulating layer of SiO2

There is no channel

The n-doped material lies on a pdoped substrate that may have an additional terminal connection

- For $V_{GS} = 0$, $I_D = 0$ (no channel)
- For V_{DS} some positive voltage and V_{GS} = 0, two reversed biased n-junctions and no significant flow between drain and source.
- For V_{GS} > 0 and V_{GS} > 0, the positive voltage at gate pressure holes to enter deeper regions of the p-substrate, and the electrons in p-substrate and the electrons in p-substrate will be attracted to the positive gate.
- The level of V_{GS} that results in the significant increase in drain current in called:

THRESHOLD VOLTAGE (Vt)

 \triangleright For $V_{GS} < V_T$, $I_D = 0ma$

THANK YOU!