Third Presentation

Robot Design Analysis & Demo

Group D
Team KIRBY

담당교수 최세범

Design and Analysis Results

- System design
- Motor control
- Vision processing
- System integration

System Design

"Maximizing the advantages and minimizing the disadvantages of suction system"

System Design Overview

System Design Why do we use SUCTION?

- We can collect balls without pausing
- No accurate adjustment required
- Using suction air outflow for cooling

System Design Suction module: system development

Problem

But, using suction can produce very Bulky system

Solution	Result
Designed the circular pipe (largest part) first that maximized vacant space for other parts	Compact design (Cube-shaped)
Fit the heavier parts first, utilizing every vacant space	Better vehicle control with Low COM!!!
Added suspension to eliminate pitch motion	
Square-shaped base platform design	Minimized radius of rotation

System Design Cooling module

Suction converter creates a lot of heat!

Therefore, we redesign not to use only suction out flow for cooling.

During suction off, fan is used to cool down both converter and NUC.

During suction on, powerful suction out flow is used in order to prevent converter from increasing its temperature rapidly.

Motor Control

"Motor rpm control achieving trapezoidal velocity profile for no slipping"

Motor Control Structure and function

ROS commands (input)

TCP/IP communication

Motor Control Proportional rpm input

We give proportional rpm input to dynamixel to optimize motor control by achieving trapezoidal velocity profile

We can obtain:

- 1. More stabilized motion
- 2. No slipping
- 3. Less pitching

Optimized motor control

Vision Processing

"Filter node for noise handling to give better control"

Vision Processing Broad vision with Dual camera

Dual cameras to broaden vision range for optimized ball pick-up

Webcam 2

Webcam 1

Target search()

Vision Processing Noise Handling- Multiple ball counting

Filter_1

Problem: Multiple ball count data from the target single ball

Solution: Delete other data with similar x,y coordinates

Filtered blue ball data using Filter_1

Problem: Detect a smaller ball on the closest (largest) ball

Solution: Delete the ball data detected within the largest ball radius

Filtered Blue ball data using Filter 1

Filtered Blue ball data using Filter_1 and Filter_2

Vision Processing Final result

Camera shaking does not matter!

Vision Processing Distance Calibration?

Distance Error within our range for computation can be **ignored**

System Integration

"Case segmentation to obtain right decision in general."

System Integration Overview

System Integration Algorithm

System Integration Algorithm_Pickup

- Web2 blue ball detection
 Suction ON
- Adjust to centralize blue ball and then move forward
- **No** Blue ball detection by **web2** Suction OFF after **1 seconds**Count+=1 (to ensure complete ball collection)

Debouncing ball-count algorithm

- This is solved by verifying the no blue ball detection after 0.7 seconds Debouncing

System Integration Algorithm_Release

Release

- Rotation until web1 detects green ball at center
- Move forward until green ball is just in front
- Move left(or right) until green ball is out of web2 sight
- · Open the lid

- 1. Our path-providing-lid design
- 2. Worst-case angle difference is not too much

Kirby- "I am ROBUST"

Parts	Features
Hardware Design	Compact design
	Suspension added
	Pick-up module: Suction, less moving parts
Motor Control	Trapezoidal velocity profile
Vision Processing	Dual Camera
	Noise handled vision data
Software algorithm	Debouncing algorithm

Part 2

Prototype demo video

Demo Video

Thanks for watching!

Any questions?

