N_1 | Ensemble de définition

D Ensemble de définition

L'ensemble de définition d'une fonction f représente l'ensemble des réels x (antécédents) pour lesquels il existe une image f(x) (qui est unique). On note souvent cet ensemble de définition \mathcal{D}_f .

En seconde il faut vérifier 2 points :

- \bullet On ne peut pas diviser par 0: ce qui entraine généralement la résolution d'une équation
- Sous une racine carrée, il doit y avoir un nombre positif ou nul : ce qui entraine généralement la résolution d'une inéquation
- Résoudre l'équation (5x-2)(3-8x)=0. En déduire l'ensemble de définition de $f_1(x)=rac{3x-2}{(5x-2)(3-8x)}$
- Résoudre l'inéquation $4x-7\geqslant 0$. En déduire l'ensemble de définition de $f_2(x)=\sqrt{4x-7}$
- Déterminer l'ensemble de définition de $f_3(x) = -2x^2 8x + 2$

$\left[\begin{array}{c} N_2 \end{array} \right]$ Sens de variation

D Fonction croissante

Une fonction f définie sur un intervalle I est **croissante** lorsque pour tous les réels a et b dans I : si $a \le b$ alors $f(a) \le f(b)$ (l'ordre est respecté)

D Fonction décroissante

Une fonction f définie sur un intervalle I est **décroissante** lorsque pour tous les réels a et b dans I : si $a \le b$ alors $f(a) \ge f(b)$ (**l'ordre n'est pas respecté**)

D Fonction monotone

Une fonction f est **monotone** sur un intervalle I si elle est soit croissante ou soit décroissante sur I (mais pas les deux).

 $m{f}$ est croissante.

 $a\leqslant b$ donc $f(a)\leqslant f(b)$ (même ordre)

f est décroissante.

 $a \leqslant b$ donc $f(a) \geqslant f(b)$ (ordre différent)

- Soit $f_1(x)=3x-9$. Donner son ensemble de définition. Démontrer que f_1 est croissante sur $\mathbb R$.
- Soit $f_2(x) = -2x + 1$. Donner son ensemble de définition. Démontrer que f_2 est décroissante sur $\mathbb R$.
- Soit $f_3(x)=2x^2$. Démontrer que f_3 est croissante sur $[0;+\infty[$ et décroissante sur $]-\infty;0]$.
- Soit $f_4(x)=-4x^2$. Démontrer que f_4 est décroissante sur $[0;+\infty[$ et croissante sur $]-\infty;0]$.
- Soit $f_5(x)=2\sqrt{x}$. Démontrer que f_5 est croissante sur $[0;+\infty[$.
- Soit $f_6(x) = \frac{-3}{x}$. Démontrer que f_6 est croissante sur $]0; +\infty[$.

N_3 Tableau variation

D Tableau variation

Au lieu de spécifier qu'une fonction est croissante sur un intervalle, on place une flèche montante dans un tableau. Au lieu de spécifier qu'une fonction est décroissante sur un intervalle, on place une flèche descendante dans un tableau :

Tableau de variation d'une fonction f_1 :

- décroissante sur $]-\infty;a]$
- croissante sur $[a; +\infty[$
- $f_1(a) = b$

Tableau de variation d'une fonction f_2 :

- croissante sur [a; b]
- décroissante sur $[b; +\infty[$
- $\bullet \ f_2(a) = c \ \text{et} \ f_2(b) = d$

Tableau de variation d'une fonction f_3 :

- croissante sur] $-\infty$; a[
- croissante sur $a; +\infty$
- a est une valeur interdite

$oxed{x}$	$-\infty$	<i>a</i> -	+∞
f_3		7	

Tableau de variation d'une fonction f_4 :

- décroissante sur [a; b[
- croissante sur $]b; +\infty[$
- b est une valeur interdite

Tableau de variation d'une fonction f_5 :

• croissante sur] $-\infty$; $-\infty$ [

Tableau de variation d'une fonction f_6 :

- décroissante sur $[a; +\infty[$
- f(a) = b

1 Soit $f_1(x) = 2 - 3x$.

- a) Donner l'ensemble de définition de f_1
- **b)** Démontrer que f_1 est décroissante sur $\mathbb R$
- c) Dresser le tableau de variation de f_1

Soit
$$f_2(x)=rac{2}{2-4x}$$
 .

- a) Donner l'ensemble de définition de f_2
- **b)** Démontrer que f_2 est croissante sur son ensemble de définition
- c) Dresser le tableau de variation de f_2

N₄ Extremum

- D Maximum et minimum d'une fonction
- Dire que f admet un **maximum** en a sur l'intervalle I signifie que : Il existe un réel M tel que pour tout x dans $I: f(x) \leq M$ et M = f(a).
- Dire que f admet un **minimum** en a sur l'intervalle I signifie que : Il existe un réel m tel que pour tout a dans a dans a dans a et a dans a et a
- ullet f admet un **extremum** en a sur l'intervalle I si elle admet un maximum ou un minimum.
- Soit la fonction f_1 définie par $f_1(x) = -2x^2 4x + 16$.
 - a) Démontrer que f_1 est croissante sur $]-\infty;-1]$
 - **b)** Démontrer que f_1 est décroissante sur $[-1; +\infty[$
 - c) Dresser le tableau de variation de f_1
 - **d)** Conjecturer l'extremum de f_1
 - e) Démontrer que f_1 admet un maximum en -1. Donner sa valeur.
- Soit la fonction f_2 définie par $f_2(x) = -9 + 3x^2 6x$.
 - a) Démontrer que f_2 est décroissante sur $]-\infty;1]$
 - **b)** Démontrer que f_2 est croissante sur $[1; +\infty[$
 - c) Dresser le tableau de variation de f_2
 - **d)** Conjecturer l'extremum de f_2
 - e) Démontrer que f_2 admet un minimum en 1. Donner sa valeur.

N_5 Résoudre graphiquement une équation et une inéquation

Méthode pour résoudre une équation graphiquement

Pour résoudre graphiquement une équation du type f(x) = g(x), il suffit de tracer les représentations graphiques \mathcal{C}_f et \mathcal{C}_g de f puis g puis de déterminer graphiquement le point ou les points d'intersection (s'ils existent) de \mathcal{C}_f et \mathcal{C}_g .

Méthode pour résoudre une inéquation graphiquement

Pour résoudre graphiquement une inéquation du type $f(x) \leq g(x)$, il suffit de tracer les représentations graphiques \mathcal{C}_f et \mathcal{C}_g de f puis g:

- ullet Quand \mathcal{C}_f est **en dessous** de \mathcal{C}_g alors $f(x)\leqslant g(x)$
- ullet Quand \mathcal{C}_f est $oldsymbol{a}$ dessus de \mathcal{C}_g alors $f(x)\geqslant g(x)$

On considère les fonctions f et g définies par $f(x)=-3+3x^2-6x$ et $g(x)=4\sqrt{x}$

Recopier et compléter le tableau de valeurs suivant (arrondir au dixième):

$m{x}$	-1, 5	-1	-0, 5	0	0,5	1	1,5	2
f(x)								
g(x)								

- Dans un même repère tracer les représentations graphiques \mathcal{C}_f et \mathcal{C}_g de f et g
- Déterminer graphiquement le nombre x tel que $-3+3x^2-6x=4\sqrt{x}$
- Déterminer graphiquement les nombres x tel que $-3+3x^2-6x\leqslant 4\sqrt{x}$
- Déterminer graphiquement les nombres x tel que $-3+3x^2-6x\geqslant 4\sqrt{x}$

Fonction u + k

Soit u une fonction définie sur D_u et k un nombre réel.

D Définition

La fonction u+k est définie sur D_u et par : ig|(u+k)(x)=u(x)+k

P Propriété : courbe représentative

Dans un repère $(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j})$, si u a pour courbe représentative C_u alors la courbe représentative C_{u+k} de u+k est l'image de C_u par la translation de vecteur $\stackrel{
ightarrow}{k}\stackrel{
ightarrow}{j}$.

P Propriété : variations

Si $m{u}$ est monotone (croissante ou décroissante) sur un intervalle $m{I}$ alors $m{u}+m{k}$ a le même sens de variation que $oldsymbol{u}$ sur $oldsymbol{I}$.

Dans des repères différents, tracer les courbes représentatives de :

$$\boxed{1} \quad f_1(x) = x^2 + 2$$

$$oxed{3} f_3(x) = \sqrt{x} - 1$$

$$f_3(x)=\sqrt{x}-1$$
 $f_4(x)=rac{1}{x}-5$

Construire le tableau de variations de :

$$f_5(x)=x^2+9$$
 sur $]-\infty;0]$

$$f_6(x)=rac{4}{x}+2$$
 sur $]-\infty;0[$

$$f_7(x)=\sqrt{x}-1$$
 sur $[0;+\infty[$

N_7 Fonction ku

Soit u une fonction définie sur D_u et k un nombre réel.

D Définition

La fonction ku est définie sur D_u et par : |(ku)(x) = k imes u(x)|

P Propriété : variations

Si k>0 alors u et ku ont la même monotonie (croissante ou décroissante) sur un intervalle I.

Si k < 0 alors u et ku sont de monotonie contraire (croissante ou décroissante) sur un intervalle I.

Construire un tableau de variation des fonctions suivantes sur leur ensemble de définition :

$$\boxed{1 \quad f_1(x) = 3x^2}$$

$$oxed{2} f_2(x) = -2x^2$$

$$\boxed{3f_3(x)=3\sqrt{x}}$$

$$\boxed{ \ \ }^4 \ f_4(x) = \frac{2}{x}$$

$n^{\circ}1$ Ensemble de définition

- Résoudre l'équation 7x-9=0. En déduire l'ensemble de définition de $f_1(x)=rac{x}{7x-9}$
- Résoudre l'inéquation $(3x-8)(2-5x) \ge 0$. En déduire l'ensemble de définition de $f_2(x) = \sqrt{(3x-8)(2-5x)}$
- Déterminer l'ensemble de définition de $f_3(x) = x^2 + 8x 7$
- Déterminer l'ensemble de définition de $f_4(x) = \sqrt{x^2 4x + 4}$
- Résoudre l'équation $4x^2-12x+9=0$. En déduire l'ensemble de définition de

$$f_5(x) = rac{7x}{4x^2 - 12x + 9}$$

- Résoudre l'inéquation $8x(x-2)(x+4)\geqslant 0$. En déduire l'ensemble de définition de $f_6(x)=\sqrt{8x(x-2)(x+4)}$
- Déterminer l'ensemble de définition de $f_7(x) = \frac{4x}{x^2 + 1}$

page $n^{\circ}20$

$n^{\circ}2$ Tableau de variation

- 1 Soit $f_1(x) = 2x 10$.
 - a) Donner l'ensemble de définition de f_1
 - **b)** Démontrer que f_1 est croissante sur $\mathbb R$
 - c) Dresser le tableau de variation de f_1
- 2 Soit $f_2(x) = 3\sqrt{3x+6}$.
 - a) Donner l'ensemble de définition de f_2
 - **b)** Démontrer que f_2 est croissante sur son ensemble de définition
 - c) Dresser le tableau de variation de f_2

$n^{\circ}3$ Extremum

- Soit la fonction f_1 définie par $f_1(x) = -10x^2 100x + 2000$.
 - a) Démontrer que f_1 est croissante sur $]-\infty;-5]$
 - **b)** Démontrer que f_1 est décroissante sur $[-5; +\infty[$
 - c) Dresser le tableau de variation de f_1
 - **d)** Conjecturer l'extremum de f_1
 - e) Démontrer que f_1 admet un maximum en -5. Donner sa valeur.
- Soit la fonction f_2 définie par $f_2(x) = 5\sqrt(x-2) 10$.
 - **b)** Démontrer que f_2 est croissante sur $[2; +\infty[$
 - c) Dresser le tableau de variation de f_2
 - **d)** Conjecturer l'extremum de f_2
 - e) Démontrer que f_2 admet un minimum en 2. Donner sa valeur.
- Soit la fonction f_3 définie par $f_3(x)=rac{2}{x+2}$ et sur \mathbb{R}^+ .
 - a) Démontrer que f_3 est décroissante sur \mathbb{R}^+
 - **b)** Dresser le tableau de variation de f_3 sur \mathbb{R}^+
 - c) Conjecturer l'extremum de f_3 sur \mathbb{R}^+
 - **d)** Démontrer que f_3 admet un maximum en 0 sur \mathbb{R}^+ . Donner sa valeur.

$n^{\circ}4$ | Equation et inéquation

On considere les fonctions f et g définies par $f(x)=-2x^2+2$ et g(x)=2(x+0,5)(x-3)

Recopier et compléter le tableau de valeurs suivant :

$oldsymbol{x}$	-2	-1	0	1	2	3	4
f(x)							
g(x)							

- Dans un même repère tracer les représentations graphiques \mathcal{C}_f et \mathcal{C}_g de f et g
- Déterminer graphiquement le nombre x tel que $-2x^2+2=2(x+0,5)(x-3)$
- Déterminer graphiquement les nombres x tel que $-2x^2+2\leqslant 2(x+0,5)(x-3)$
- Déterminer graphiquement les nombres x tel que $-2x^2+2\geqslant 2(x+0,5)(x-3)$