Решение. Все классы

1. Пусть вход в снег происходит в момент времени $t_0=0$. В этот момент координата тела равна $x_0=0$. Рассмотрим первый временной интервал Δt . В его начале тело имеет скорость $v=v_0$ и на него действует сила сопротивления, складывающаяся из двух составляющих

$$F_0 = F_C + F_B = -\mu mg - \beta v_0^2.$$

Здесь учтено, что при горизонтальном движении сила реакции опоры N равна силе тяжести (N=mg). Под действием этой силы тело приобретет ускорение

$$a_0 = \frac{F_0}{m} = -\frac{\beta v_0^2}{m} - \mu g.$$

Следовательно, в момент времени $t_1 = t_0 + \Delta t$ скорость и координата тела будут равны

$$v_1 = v_0 + a_0 \Delta t,$$
 $x_1 = x_0 + v_0 \Delta t + \frac{a_0 (\Delta t)^2}{2}.$

(заметим, что величина a_0 отрицательна).

2. Положение и скорость тела в момент $t_2 = 2\Delta t = t_1 + \Delta t$ можно найти совершенно аналогичным способом. Затем можно аналогично найти все параметры в моменты t_3 , t_4 и так далее. Запишем соответствующие формулы в общем виде. Пусть в момент времени t_n тело имеет скорость v_n и координату x_n . Сила сопротивления, действующая в течение n-го шага, равна

$$F_n = -\mu mq - \beta v_n^2.$$

Под действием этой силы тело приобретет ускорение

$$a_n = \frac{F_n}{m} = -\frac{\beta v_n^2}{m} - \mu g.$$

Следовательно, в момент времени $t_{n+1} = t_n + \Delta t$ скорость и координата тела будут равны

$$v_{n+1} = v_n + a_n \Delta t,$$
 $x_{n+1} = x_n + v_n \Delta t + \frac{a_n (\Delta t)^2}{2}.$

- 3. Проведя вычисления по полученным формулам для n=1 и для n=2, получим ответ на первый вопрос.
- 4. Поскольку сила, действующая на тело, замедляет движение, то, проводя расчет по выведенным формулам, на некотором шаге N будет получено отрицательное значение скорости (или нулевое, что весьма маловероятно). Как только это произойдет, расчет следует остановить и соответствующее значение координаты x_N принять за окончательное положение остановившегося тела. Поскольку $x_0 = 0$, то значение x_N будет равно длине пройденного пути (проделанной в снегу норе).

Запишем все полученные формулы в виде алгоритма.

Алгоритм «Улет»

Начало алгоритма

Задать
$$\Delta t$$
, β , μ , m , v_0 , $x_0 = 0$, $n = 0$; $\Pi \text{OKA } v_n > 0$
$$a_n = -\frac{\beta v_n^2}{m} - \mu g$$

$$v_{n+1} = v_n + a_n \Delta t$$

$$x_{n+1} = x_n + v_n \Delta t + \frac{a_n \Delta t^2}{2}$$

Вывести x_n

Конец алгоритма

Заметим, что индексацию величин a_n, v_n и x_n можно не проводить, а использовать перезаписываемые переменные вещественного типа. Выполнив этот алгоритм при $\Delta t = 0,1$, получим ответ на 2 вопрос.

5. (Только 10 и 11 классы.) Продолжая уменьшать шаг Δt как описано в условии и запуская каждый раз алгоритм, найдем ответ на последний вопрос задачи.

Ответы.

- 1. $v_1 = 9.30 \text{ m/c}, x_1 = 0.97 \text{ m}; \quad v_2 = 8.67 \text{ m/c}, x_2 = 1.86 \text{ m}.$
- 2. $S=12{,}29$ м. Толщины L=10 м недостаточно.
- $3.\ \widetilde{S}=12{,}48$ м. Пройденный в снегу путь равен $12{,}48\pm0{,}19$ м.
- 4. $L=S=12{,}66\pm0{,}01$ (впервые достигается при шаге $\Delta t=0{,}1/32$); весь путь пройден за время $T=3{,}228$ с.

NB Особенности программной раелизации алгоритмов и проведения вычислительного эксперимента могут сказываться на точности полученных результатов. Это учитывается при проверке работ.