THEMA

Enhanced Dynamic Movement Primitive for "Learning from Demonstration" in Robotic Applications

Motivation

■ The main principle of robot LfD is that end-users can teach robots new tasks without programming.

Method	Descriptions
Traditional Programming	 Difficult to model a movement If the context changed, need to rebuild the model again
Learning by Demonstration	 "Programming" by Demonstration If the context changed, simply demonstrate to the robot again

Learning and utilizing the professional skills from experts

Motivation

- Learn professional skills from experts
 - The trajectory of the movement
 - The orientation between the tool and object

State of the Art

- Teaching Methods
 - Observational Teaching
 - **■** Kinesthetic Teaching
 - Teleoperatioanal Teaching

State of the Art

Comparison of Teaching Methods

Methods	Description	
Observational Teaching (video)	 Teaching is simple, flexible and safe Can better demonstrate experience 	
Kinesthetic Teaching	 Have to touch and share the same workspace with the robot 	
Teleoperatioanal Teaching	 Workers need be trained to use the controller before teaching The experience cannot be taught directly 	

State of the Art

- Model Training (Movement Primitive Representations):
 - Dynamic Movement Primitives
 - **Probabilistic modeling methods**: Hidden Markov Models, Gaussian Mixture Regression, some combination

Compariso	n of Movement Primitive Representations
	1. Stability is high 2. Only need one Demonstration 3. Low computational cost
DMP	4. Combine with other technical (e.g. Reinforcement Learning)
Probabilistic modeling methods	 Encoding of multiple demonstrations Expensive computational cost

System Overview of Learning from Demonstration

- 1. Collect training data from human's demonstration (OpenPose)
- 2. Preprocess the raw training trajectories
- 3. Use training data to get the model of the movement (DMP)
- 4. Set the new start and goal positions and use learned model to generate the new trajectory
- 5. Robot executes the generated motion trajectory

Human Demonstration

- Handover a glass to another people
- Use human body-detect algorithm (OpenPose) and ZED camera to detect and record the handover trajectory

Human Demonstration

Recorded raw motion trajectories

Training Trajectory Preprocessing

- Data Filtering
- Training Trajectory Segmentation

Training Trajectory Preprocessing

Preprocessed motion trajectories by using Kalman filter

The Accuracy of the Learned Model by using Standard DMP

Deviation between generated trajectories and training trajectories

Training Trajectory Segmentation

- Idea: Segment the training trajectory into several parts to increase the accuracy of the learned model
- Preprocessing Module:
 - 1. **Keypoints Finder**: Find keypoints candidates based on the velocity of the training trajectory
 - 2. **Keypoints Selector**: Remove keypoints which do not need
 - 3. Training Trajectory Segmentation

Found keypoints of training trajectories

Model Training

Dynamic Movement Primitive

S: Phase variable

f(s): External force term

Generated motion trajectory by DMP when using with and without keypoints

Generated motion trajectory by DMP when using with and without keypoints

Accuracy of learned Model by using DMP with and without keypoints

$$deviation = \frac{\sum_{i=1}^{N} \sqrt{(x_i^{train} - x_i^{gen})^2 + (y_i^{train} - y_i^{gen})^2 + (z_i^{train} - z_i^{gen})^2}}{N}$$

■ trajectory 1 ■ trajectory 2 ■ trajectory 3 ■ trajectory 4 ■ trajectory 5 ■ mean

Generated Motion trajectory (change the start and goal positions)

Robot Execution in ROS Gazebo

THEMA PRESENTATION

Thank you for your attention!

