FREIBURG

Kapitel 3 – Kombinatorische Logik

1. Kombinatorische Schaltkreise

- 1.1 Gatter, Transistoren
- 1.2 Definition
- 2. Boolesche Algebren
- 3. Boolesche Ausdrücke, Normalformen, zweistufige Synthese
- 4. Berechnung eines Minimalpolynoms
- 5. Arithmetische Schaltungen
- 6. Anwendung: ALU von ReTI

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Christoph Scholl

Institut für Informatik Sommersemester 2023

Schaltkreis: Zunächst informal durch Beispiel

$$(f \in \mathbb{B}_{8.2})$$

Welche Werte an den Ausgängen werden "berechnet", wenn an den Eingängen (1,0,0,0,0,0,0,0) anliegt?

Beispiel für einen Schaltkreis ($f \in \mathbb{B}_{8,2}$)

Schaltkreise

■ Idee:

"gerichteter Graph mit einigen zusätzlichen Eigenschaften"

Exkurs: Gerichteter Graph

Definition

G = (V, E) ist ein gerichteter Graph, wenn folgendes gilt:

- V endliche, nichtleere Menge (Knoten)
- E endliche Menge (Kanten)
- Abbildungen $Q : E \rightarrow V$ und $Z : E \rightarrow V$ Q(e) ist Quelle, Z(e) Ziel einer Kante e

Exkurs: Pfade in gerichteten Graphen

- Ein Knoten mit
 - \blacksquare indeg(v) = 0 heißt Wurzel.
 - outdeg(v) = 0 heißt Blatt.
 - outdeg(v) > 0 heißt innerer Knoten.
- Ein Pfad (der Länge k) in G ist eine Folge von k Kanten e_1, e_2, \ldots, e_k ($k \ge 0$) mit $Z(e_i) = Q(e_{i+1})$ für alle i ($k-1 \ge i \ge 1$) $Q(e_1)$ heißt Quelle, $Z(e_k)$ Ziel des Pfades.

- Ein Zyklus in G ist ein Pfad der Länge ≥ 1 in G, bei dem Ziel und Quelle identisch sind
- G heißt azyklisch, falls kein Zyklus in G existiert.
- Die Graph-Tiefe eines azyklischen Graphen ist definiert als die Länge des längsten Pfades in G.

Exkurs: Bäume, Binäre Bäume

Definition

Ein (Out-)Baum ist ein gerichteter, azyklischer Graph mit genau einer Wurzel w (indeg(w) = 0) und indeg(v) = 1 für alle andere Knoten v. Ein Baum heißt binär (bzw. Binärbaum), wenn für seine innere Knoten v outde $g(v) \le 2$ gilt.

Beispiele:

Modellierung durch Schaltkreise (1/2)

- Eine Zellenbibliothek $BIB \subset \bigcup_{n \in \mathbb{N}} \mathbb{B}_n$ enthält Basisoperatoren, die den Grundgattern entsprechen.
- Ein 5-Tupel $SK = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ heißt Schaltkreis mit n Eingängen und m Ausgängen über der Zellenbibliothek BIB genau dann, wenn
 - $\vec{X}_n = (x_1, \dots, x_n)$ ist eine endliche Folge von Eingängen.
 - G = (V, E) ist ein azyklischer, gerichteter Graph mit $\{0,1\} \cup \{x_1,\ldots,x_n\} \subseteq V$.
 - Die Menge $I = V \setminus (\{0,1\} \cup \{x_1,...,x_n\})$ heißt Menge der Gatter. Die Abbildung $typ: I \rightarrow BIB$ ordnet jedem Gatter $v \in I$ einen Zellentyp $typ(v) \in BIB$ zu.

. . . .

Modellierung durch Schaltkreise (2/2)

- **...**
- Für jedes Gatter $v \in I$ mit $typ(v) \in \mathbb{B}_k$ gilt indeg(v) = k.
- indeg(v) = 0 für $v \in \{0,1\} \cup \{x_1,...,x_n\}$.
- Die Abbildung $IN: I \to E^*$ legt für jedes Gatter $v \in I$ eine Reihenfolge der eingehenden Kanten fest, d.h. falls indeg(v) = k, dann ist $IN(v) = (e_1, \dots, e_k)$ mit $Z(e_i) = v \ \forall 1 \le i \le k$.
- Die Folge $\vec{Y}_m = (y_1, ..., y_m)$ zeichnet Knoten $y_i \in V$ als Ausgänge aus.

Schaltkreis für $f \in \mathbb{B}_{8,2}$

Informale Semantik definition ($f \in \mathbb{B}_{8,2}$)

Die Boolesche Funktion $f \in \mathbb{B}_{8,2}$ kann aus dem Schaltkreis hergeleitet werden, indem man für alle Werte aus \mathbb{B}^8 den Schaltkreis auswertet ("simuliert").

Formale Semantikdefinition für Schaltkreise (1/2)

- Sei $SK = (\vec{X}_n, G, typ, IN, \vec{Y}_m)$ ein Schaltkreis über einer Zellenbibliothek BIB
- Sei eine Eingangsbelegung $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{B}^n$ gegeben.
- Eine Belegung $\Phi_{SK,\alpha}: V \to \mathbb{B}$ für alle Knoten $v \in V$ ist dann gegeben durch die folgenden Definitionen:
 - $\Phi_{SK} \alpha(0) = 0, \Phi_{SK} \alpha(1) = 1.$ ■ falls $v \in I$ mit $typ(v) = g \in \mathbb{B}_k$, $IN(v) = (e_1, \dots, e_k)$, dann ist $\Phi_{SK,\alpha}(v) = g(\Phi_{SK,\alpha}(Q(e_1)), \dots, \Phi_{SK,\alpha}(Q(e_k))).$

Zwischenbemerkung:

- Warum ist das wohldefiniert?
- Weil G azyklisch!

Formale Semantikdefinition für Schaltkreise (2/2)

- $(\Phi_{SK,\alpha}(y_1), \dots, \Phi_{SK,\alpha}(y_m))$ ist dann die unter Eingangsbelegung $\alpha = (\alpha_1, \dots, \alpha_n)$ berechnete Ausgangsbelegung des Schaltkreises SK.
- Die Berechnung von $\Phi_{SK,\alpha}$ bei Eingangsbelegung α heißt auch Simulation von SK für Belegung α .
- Die an einem Knoten v berechnete Boolesche Funktion $\Psi(v): \mathbb{B}^n \to \mathbb{B}$ ist definiert durch

$$\Psi(v)(\alpha) := \Phi_{SK,\alpha}(v)$$

für ein beliebiges $\alpha \in \mathbb{B}^n$.

Die durch den Schaltkreis berechnete Funktion ist

$$f_{SK}: \mathbb{B}^n \to \mathbb{B}^m, f_{SK}(\alpha) = (\Psi(y_1)(\alpha), \dots, \Psi(y_m)(\alpha)).$$

Standardzellen-Bibliothek

- Eine Standardzellen-Bibliothek enthält eine Menge von Gattern (Standardzellen).
 - Z.B. AND-Gatter mit 4 Eingängen, 8-Bit-Addierer
- Für jedes Element der Bibliothek werden Parameter wie Fläche auf dem Chip, Schaltgeschwindigkeit, Leistungsaufnahme des Gatters bzw. der Standardzelle abgespeichert.
- Es sind oft z. B. mehrere Inverter unterschiedlicher Größe und Geschwindigkeit vorhanden.

Kombinatorische Logiksynthese

- Allgemeine kombinatorische Logiksynthese optimiert mehrere Parameter gleichzeitig.
- Exakte Verfahren existieren, stoßen aber schon für kleinste Schaltkreise an ihre Grenzen.
- In der Praxis werden Heuristiken eingesetzt, die auf Ausschnitten eines großen Schaltkreises lokale Optimierungen durchführen.
- Hier beschränken wir uns auf eine wichtige Unterklasse von kombinatorischen Schaltkreisen: Die zweistufige Logik.
- Allgemeinere kombinatorische Schaltkreise betrachten wir später bei der Einführung arithmetischer Schaltkreise.