Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/ WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

2021

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 23 pages. *Hierdie nasienriglyne bestaan uit 23 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOM	IETRY
S	A mark for a correct statement (A statement mark is independent of a reason)
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
K	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
S/R	Award a mark if statement AND reason are both correct
	Ken 'n punt toe as die bewering EN rede beide korrek is

3

DBE/2021

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 1

1.1

_															
	26	13	3	18	12	34	24	58	16	10	15	69	20	17	40

1.1.1(a)	$\overline{x} = \frac{375}{15}$	✓ 375
	$\bar{x} = 25 \text{MB}$ Answer only: Full marks	✓ answer (2)
1.1.1(b)	$\sigma = 17,65 \text{ MB}$	✓ answer
		(1)
1.1.2	25 + 17,65 = 42,65	✓ 42,65
	∴ 2 days	✓ 2
	, .	(2)
1.1.3	Overall $\bar{x} = \frac{80}{100} \times 25$	
	= 20 MB	\checkmark Overall $\bar{x} = 20$
	$\frac{375 + x}{30} = 20$	$\checkmark \frac{375 + x}{30} = 20$
	x = 600 - 375	
	= 225	✓ answer
	maximum total amount of data that Sam must use for	(3)
	the remainder of the month: 225 MB	

1.2

Wind speed in km/h (x)	2	6	15	20	25	17	11	24	13	22
Temperature in °C (y)	28	26	22	22	16	20	24	19	26	19

1.2.1	a = 29,35	✓ a	
	a = 29,35 b = -0,46	✓ b	
	$\hat{y} = 29,35 - 0,46x$	✓ equation	
	<i>y</i> 27,66 0, 1011		(3)
1.2.2	y = 25,20 °C (calculator)	✓✓ answer	
			(2)
	OR		
	$\hat{\mathbf{v}} = 29.35 - 0.46(9)$	✓ substitution	
	$\hat{y} = 29,35 - 0,46(9)$ $y = 25,21 ^{\circ}\text{C}$	✓ answer	
	y = 25,21 °C		(2)
1.2.3	b < 0, indicating that as the wind speed increases the	✓ interpretation	. /
	temperature decreases.		(1)
		•	[14]

QUESTION/VRAAG 2	

Number of days absent	Number of learners	Cumulative frequency
$0 \le x < 5$	34	34
$5 \le x < 10$	45	79
$10 \le x < 15$	98	177
$15 \le x < 20$	43	220
$20 \le x < 25$	7	227
$25 \le x < 30$	3	230

4

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 3

		$\checkmark y_{\rm M}$
	M(6;-4)	(2)
3.2	$m_{\text{NS}} = \frac{0 - (-16)}{8 - 0} \text{ or } m_{\text{NQ}} = \frac{0 - (-8)}{8 - 4} \text{ or } m_{\text{QS}} = \frac{-8 - (-16)}{4 - 0}$ $= 2$	✓ subst N and Q or N and Q or Q and S into gradient formula ✓ answer (2)
3.3	$m_{\text{LQ}} \times 2 = -1$ [LQ \perp NS]	
	$\therefore m_{\rm LQ} = -\frac{1}{2}$	$\checkmark m_{\rm LQ}$
	$-8 = -\frac{1}{2}(4) + c \mathbf{OR} y + 8 = -\frac{1}{2}(x - 4)$	✓ substitution of Q ✓ calculation of <i>c</i> or
	$c = -6 y + 8 = -\frac{1}{2}x + 2$	simplification
	$\therefore y = -\frac{1}{2}x - 6$	
		(3)
3.4	OS is the radius of circle passing through S	
	$(x-0)^2 + (y-0)^2 = (16)^2$	✓ identifying radius = 16

Answer only: Full marks

(2)

✓ Equation of circle

6

DBE/2021

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$c = -1$ $c = -\frac{1}{2}(s) + c$ $c = -1$ $y + 4 = -\frac{1}{2}x + 3$ $y + 4 = -\frac{1}{2}(1 - 0)$ $y + $	3.5	$m_{\rm RM} = m_{\rm LQ} = -\frac{1}{2} \qquad [RM \parallel LQ]$	$\checkmark m_{ m RM}$
$ \begin{array}{c} \vdots \ y = -\frac{1}{2} x - 1 \\ T(0;-1) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$-4 = -\frac{1}{2}(6) + c \qquad \mathbf{OR} \qquad y + 4 = -\frac{1}{2}(x - 6)$	
T(0;-1) (3) T(0;-1), P(0;-6) and S(0;-16) $\therefore PS = 10 \text{ units and } TS = 15 \text{ units}$ $\frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LP] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ OR $\frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LP] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{leen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{lyeen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{ one side of } \Delta l/\text{lyn} \parallel \text{lyeen } \text{sy } \nu \Delta l]$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{one side of } \Delta l/\text{lyn} \parallel \text{lyeen } \text{sy } \nu \Delta l]$ $\frac{LS}{A} = \frac{QS}{A} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{one side of } \Delta l/\text{lyn} \parallel \text{lyeen } \text{sy } \nu \Delta l]$ $\frac{LS}{A} = \frac{QS}{A} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{one side of } \Delta l/\text{lyn} \parallel \text{lyeen } \text{sy } \nu \Delta l \text{lyeel} $ $\frac{LS}{A} = \frac{QS}{A} = \frac{2}{3} \qquad [\text{prop theorem; } RM \parallel LQ] \\ \textbf{OR} [\text{line} \parallel \text{one side of } \Delta l/\text{lyeel} + \Delta l/lyee$		$c = -1 y + 4 = -\frac{1}{2}x + 3$	
3.6 $T(0;-1)$, $P(0;-6)$ and $S(0;-16)$ \therefore $PS = 10$ units and $TS = 15$ units $ \frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3} \qquad \text{[prop theorem; RM LP]} \\ \mathbf{OR} \text{[line one side of } \\ \Delta / lyn len sy v \Delta] $ Answer only: Full marks 3.7 $A = \frac{QS}{RS} = \frac{2}{3} \qquad \text{[prop theorem; RM LQ]} \\ \mathbf{OR} \text{[line one side of } \\ \Delta / lyn len sy v \Delta] $ $A = \frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad \text{[prop theorem; RM LQ]} \\ Answer only: Full marks $ 3.7 $A = \frac{1}{2} ST. \perp h_M - \frac{1}{2} PS. \perp h_Q$ $A = \frac{1}{2} (15)(6) - \frac{1}{2} (10)(4)$ $A = 45 - 20$ $A = 25 \text{ square units}$ $A = \frac{1}{2} (5\sqrt{5})(2\sqrt{5})$ $A = \frac{1}{2} (5\sqrt{5})(2\sqrt{5})$ $A = \frac{1}{2} (5\sqrt{5})(2\sqrt{5})$ $A = 25 \text{ square units}$ $A = \frac{1}{2} (15)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)(6)$			
$ \begin{array}{c} \therefore PS = 10 \text{ units and } TS = 15 \text{ units} \\ \frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3} \\ \text{OR} \text{ [line } \ \text{ one side of } \\ \Delta l yn \ \ \text{ een sy } v \ \Delta \text{]} \\ \text{OR} \\ \\ \text{MS} = \sqrt{180} = 6\sqrt{5} \text{ and } QS = \sqrt{80} = 4\sqrt{5} \\ \text{MS} = \frac{10}{3} \\ \text{NS} = \frac{2}{3} \\ \text{OR} \text{ [line } \ \text{ one side of } \\ \Delta l yn \ \ \text{ een sy } v \ \Delta \text{]} \\ \\ \text{OR} \text{ [line } \ \text{ one side of } \\ \Delta l yn \ \ \text{ een sy } v \ \Delta \text{]} \\ \\ \text{OR} \text{ [line } \ \text{ one side of } \\ \Delta l yn \ \ \text{ een sy } v \ \Delta \text{]} \\ \\ \text{Answer only: Full marks} \\ \\ \text{3.7} \text{ area of PTMQ} = \text{ area of } \Delta TSM - \text{ area of } \Delta PSQ \\ = \frac{1}{2} \text{ST.} \perp h_M - \frac{1}{2} \text{.PS.} \perp h_Q \\ = \frac{1}{2} (15)(6) - \frac{1}{2} (10)(4) \\ = 45 - 20 \\ = 25 \text{ square units} \\ \text{OR} \\ \\ \text{TM} = \sqrt{45} = 3\sqrt{5} = 6.71 \\ \text{MQ} = \sqrt{20} = 2\sqrt{5} = 4.47 \\ \text{PQ} = \sqrt{20} = 2\sqrt{5} = 4.47 \\ \text{PQ} = \sqrt{20} = 2\sqrt{5} = 4.47 \\ \text{area of trapezium PTMQ} = \frac{1}{2} (3\sqrt{5} + 2\sqrt{5})(2\sqrt{5}) \\ = \frac{1}{2} (5\sqrt{5})(2\sqrt{5}) \\ = 25 \text{ square units} \\ \text{ one } \\ \text{Substitute into formula} \\ \text{ vanswer} \\ \text{ (3)} \\ \text{ Answer} \\ \text{ Answer} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ Answer} \\ \text{ (3)} \\ \text{ Answer} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ Answer} \\ \text{ (5)} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ Answer} \\ \text{ (4)} \\ \text{ (5)} \\ \text{ (6)} \\ \text{ (7)} \\ \text{ (8)} \\ \text{ (7)} \\ \text{ (8)} \\$	2.6		(3)
$\frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3}$ [prop theorem; RM LP OR [line one side of Alyn een sy v A]	3.6		/ DC 10 vmits
$\frac{LS}{RS} = \frac{PS}{TS} = \frac{2}{3}$ $\frac{(\text{prop theorem; RM} \parallel LP)}{OR (\text{line} \parallel \text{ one side of } \Delta l/\text{ln} \parallel l/\text{een sy } v \Delta l)}$ OR $M(6; -4), Q(4; -8) \text{ and } S(0; -16)$ $MS = \sqrt{180} = 6\sqrt{5} \text{ and } QS = \sqrt{80} = 4\sqrt{5}$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3}$ $\frac{(\text{prop theorem; RM} \parallel LQ)}{OR (\text{line} \parallel \text{one side of } \Delta l/\text{ln} \parallel \text{een sy } v \Delta l)}$ $Answer \text{ only: Full marks}$ 3.7 $Answer only: Full marks$ 3.7 $Answer only: Full marks$ $\frac{1}{2}ST. \perp h_M - \frac{1}{2}.PS. \perp h_Q$ $= \frac{1}{2}(15)(6) - \frac{1}{2}(10)(4)$ $= 45 - 20$ $= 25 \text{ square units}$ $Answer$ An		\therefore PS = 10 units and TS = 15 units	
Answer only: Full marks OR $ M(6; -4), Q(4; -8) \text{ and } S(0; -16) $ $ MS = \sqrt{180} = 6\sqrt{5} \text{ and } QS = \sqrt{80} = 4\sqrt{5} $ $ \frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} $ [prop theorem; RM LQ OR [line one side of $ \Delta / lyn / een sy v \Delta $ $ \Delta / lyn / een sy v \Delta $ $ Answer only: Full marks $ (3) 3.7 $ area of PTMQ = area of \Delta TSM - area of \Delta PSQ $ $ = \frac{1}{2}ST. \perp h_M - \frac{1}{2}.PS. \perp h_Q $ $ = \frac{1}{2}(15)(6) - \frac{1}{2}(10)(4) $ $ = 45 - 20 $ $ = 25 \text{ square units} $ $ Answer $ (4) $ TM = \sqrt{45} = 3\sqrt{5} = 6,71 $ $ MQ = \sqrt{20} = 2\sqrt{5} = 4,47 $ $ PQ = \sqrt{20} = 2\sqrt{5} = 4,47 $ $ area of trapezium PTMQ = \frac{1}{2}(3\sqrt{5} + 2\sqrt{5})(2\sqrt{5}) $ $ = \frac{1}{2}(5\sqrt{5})(2\sqrt{5}) $ $ = 25 \text{ square units} $ (3) $ Answer $ $ Answer $ $ Answer $ (4) $ Answer $ $ Answer $ (5) $ Answer $ $ Answer $ (6) $ Answer $ $ Answer $ (7) $ Answer $ (8) $ Answer $ (9) $ Answer $ (1) $ Answer $ (1) $ Answer $ (1) $ Answer $ (1) $ Answer $ (2) $ Answer $ (3) $ Answer $ (4) $ Answer $ (5) $ Answer $ (6) $ Answer $ (7) $ Answer $ (8) $ Answer $ (9) $ Answer $ (1) $ Answer $ (1) $ Answer $ (1) $ Answer $ (1) $ Answer $ (2) $ Answer $ (3)		LS PS 2 [prop theorem; RM LP]	
OR $M(6; -4), Q(4; -8) \text{ and } S(0; -16)$ $MS = \sqrt{180} = 6\sqrt{5} \text{ and } QS = \sqrt{80} = 4\sqrt{5}$ $\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3} \qquad \text{[prop theorem; RM LQ]} \text{OR [line one side of } \sqrt{2} \text{ answer only: Full marks}] \qquad \sqrt{2} \text{ area of } \Delta TSM - \text{ area } \Delta TSM = 45 \sqrt{2} \text{ area } \Delta TSM = 45 $		$\frac{1}{RS} = \frac{1}{TS} = \frac{1}{3}$ $\frac{\Delta/lyn // een \ sy \ v \ \Delta}{\Delta}$	✓ answer
$\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3}$ [prop theorem; RM LQ] OR [line one side of $\Delta / lyn / l$ een sy $v \Delta / l$] $\Delta / lyn / l$ area of PTMQ = area of $\Delta / lyn / l$ een sy $v \Delta / l$ $\Delta / lyn / l$ area of $\Delta / lyn / $		OR Answer only: Full marks	(3)
$\frac{LS}{RS} = \frac{QS}{MS} = \frac{2}{3}$ [prop theorem; RM LQ] $OR \text{ [line one side of } \\ \Delta / lyn een sy v \Delta]$ $\sqrt{QS} = 4\sqrt{5} \text{ units}$ QS		M(6; -4), Q(4; -8) and S(0; -16)	
In the proposition of the properties of the pr		$MS = \sqrt{180} = 6\sqrt{5}$ and $QS = \sqrt{80} = 4\sqrt{5}$	_
Answer only: Full marks Answer only: Full marks $ \frac{\Delta l y n}{een sy v \Delta} \qquad (3) $ area of PTMQ = area of Δ TSM – area of Δ PSQ $ = \frac{1}{2}ST. \perp h_M - \frac{1}{2}PS. \perp h_Q $ $ = \frac{1}{2}(15)(6) - \frac{1}{2}(10)(4) $ $ = 45 - 20 $ $ = 25 \text{ square units} $ OR $ TM = \sqrt{45} = 3\sqrt{5} = 6.71 $ $ MQ = \sqrt{20} = 2\sqrt{5} = 4.47 $ $ PQ = \sqrt{20} = 2\sqrt{5} = 4.47 $ area of trapezium PTMQ = $\frac{1}{2}(3\sqrt{5} + 2\sqrt{5})(2\sqrt{5})$ $ = \frac{1}{2}(5\sqrt{5})(2\sqrt{5}) $ $ = 25 \text{ square units} $ Answer $ \sqrt{\text{area of }\Delta\text{TSM} - \text{area of }\Delta\text{PSQ} $ Area Δ TSM = 45 Area Δ PSQ = 20 Answer $ \sqrt{\text{area }\Delta\text{TSM} = 45 $ Answer $ \sqrt{\text{area }\Delta$		LS QS 2 [prop theorem; RM LQ]	$\sqrt{QS} = 4\sqrt{5}$ units
Answer only: Full marks 3.7 area of PTMQ = area of $\triangle TSM$ – area of $\triangle PSQ$ $= \frac{1}{2}ST. \perp h_M - \frac{1}{2}.PS. \perp h_Q$ $= \frac{1}{2}(15)(6) - \frac{1}{2}(10)(4)$ $= 45 - 20$ $= 25 \text{ square units}$ OR $TM = \sqrt{45} = 3\sqrt{5} = 6.71$ $MQ = \sqrt{20} = 2\sqrt{5} = 4.47$ $PQ = \sqrt{20} = 2\sqrt{5} = 4.47$ area of trapezium PTMQ = $\frac{1}{2}(3\sqrt{5} + 2\sqrt{5})(2\sqrt{5})$ $= \frac{1}{2}(5\sqrt{5})(2\sqrt{5})$ $= 25 \text{ square units}$ Answer only: Full marks In A square of $\triangle TSM$ – area of $\triangle PSQ$ In A area of $\triangle TSM$ – area of $\triangle PSQ$ In A area of $\triangle TSM$ – area of $\triangle PSQ$ In A area of \triangle			✓ answer
$=\frac{1}{2}\operatorname{ST.} \perp h_{M} - \frac{1}{2}\operatorname{.PS.} \perp h_{Q}$ $=\frac{1}{2}(15)(6) - \frac{1}{2}(10)(4)$ $=45 - 20$ $=25 \text{ square units}$ $\operatorname{TM} = \sqrt{45} = 3\sqrt{5} = 6,71$ $\operatorname{MQ} = \sqrt{20} = 2\sqrt{5} = 4,47$ $\operatorname{PQ} = \sqrt{20} = 2\sqrt{5} = 4,47$ $\operatorname{area of trapezium PTMQ} = \frac{1}{2}\left(3\sqrt{5} + 2\sqrt{5}\right)\left(2\sqrt{5}\right)$ $=\frac{1}{2}\left(5\sqrt{5}\right)\left(2\sqrt{5}\right)$ $=25 \text{ square units}$ area of ΔPSQ $\checkmark \text{ area } \Delta TSM = 45$ $\checkmark \text{ area } \Delta PSQ = 20$ $\checkmark \text{ answer}$ (4) $\checkmark TM = 3\sqrt{5}$ $\operatorname{MQ} = 2\sqrt{5}$ $\operatorname{PQ} = 2\sqrt{5}$ $\checkmark \text{ area of trapezium} = \frac{1}{2}$ $(\text{sum of } \ \text{sides})(\text{height})$ $\checkmark \text{ substitute into formula}$ $\checkmark \text{ answer}$			(3)
$= \frac{1}{2}ST. \perp h_{M} - \frac{1}{2}.PS. \perp h_{Q}$ $= \frac{1}{2}(15)(6) - \frac{1}{2}(10)(4)$ $= 45 - 20$ $= 25 \text{ square units}$ $= \frac{1}{2} (35)(6) - \frac{1}{2} (10)(4)$ $= 45 - 20$ $= 25 \text{ square units}$ $= \frac{1}{2} (35)(6) - \frac{1}{2} (10)(4)$ $= 45 - 20$ $= 25 \text{ square units}$ $= \frac{1}{2} (35)(6) - \frac{1}{2} (10)(4)$ $= \frac{1}{2} (35)(6) - \frac{1}{2} (35)(6)$ $= \frac{1}{2} (35)(6) - \frac{1}{2} (35$	3.7	area of PTMQ = area of Δ TSM – area of Δ PSQ	
= 45 - 20 $= 25 square units$ $= 45 - 20$ $= 25 square units$ $= 45 - 20$ $= 30 square units$ $= 45 - 20$ $= 30 square units$ $= 45 - 20$ $= 30 square units$ $= 45 - 20$ $= 45 - 20$ $= 45 - 20$ $= 45 - 20$ $= 45 - 20$ $= 45 - 20$ $= 40 square units$ $= 10 square units$		$=rac{1}{2}. ext{ST.}\perp h_{\scriptscriptstyle M}-rac{1}{2}. ext{PS.}\perp h_{\scriptscriptstyle Q}$	area of ΔPSQ
= 45 - 20 $= 25 square units$ $= 45 - 20$ $= 36 square units$ $= 46 square u$		$=\frac{1}{-}(15)(6)-\frac{1}{-}(10)(4)$	✓ area Δ TSM = 45
		\mathcal{L} \mathcal{L}	
OR $TM = \sqrt{45} = 3\sqrt{5} = 6,71$ $MQ = \sqrt{20} = 2\sqrt{5} = 4,47$ $PQ = \sqrt{20} = 2\sqrt{5} = 4,47$ $\text{area of trapezium PTMQ} = \frac{1}{2} \left(3\sqrt{5} + 2\sqrt{5} \right) \left(2\sqrt{5} \right)$ $= \frac{1}{2} \left(5\sqrt{5} \right) \left(2\sqrt{5} \right)$ $= 25 \text{ square units}$ (4) $MQ = 3\sqrt{5}$ $PQ = 2\sqrt{5}$ $\text{area of trapezium} = \frac{1}{2}$ $\text{(sum of sides)(height)}$ $\text{substitute into formula}$ answer			√ answer
$TM = \sqrt{45} = 3\sqrt{5} = 6,71$ $MQ = \sqrt{20} = 2\sqrt{5} = 4,47$ $PQ = \sqrt{20} = 2\sqrt{5} = 4,47$ $\text{area of trapezium PTMQ} = \frac{1}{2} \left(3\sqrt{5} + 2\sqrt{5}\right) \left(2\sqrt{5}\right)$ $= \frac{1}{2} \left(5\sqrt{5}\right) \left(2\sqrt{5}\right)$ $= 25 \text{ square units}$ $\sqrt{TM} = 3\sqrt{5}$ $MQ = 2\sqrt{5}$ $PQ = 2\sqrt{5}$ $\sqrt{\text{area of trapezium}} = \frac{1}{2}$ $(\text{sum of } \text{sides})(\text{height})$ $\sqrt{\text{substitute into formula}}$ $\sqrt{\text{answer}}$		= 25 square units	
$MQ = \sqrt{20} = 2\sqrt{5} = 4,47$ $PQ = \sqrt{20} = 2\sqrt{5} = 4,47$ $Area of trapezium PTMQ = \frac{1}{2} (3\sqrt{5} + 2\sqrt{5})(2\sqrt{5})$ $= \frac{1}{2} (5\sqrt{5})(2\sqrt{5})$ $= 25 \text{ square units}$ $MQ = 2\sqrt{5}$ $PQ = 2\sqrt{5}$ $\checkmark \text{ area of trapezium} = \frac{1}{2}$ $(\text{sum of } \text{sides})(\text{height})$ $\checkmark \text{ substitute into formula}$ $\checkmark \text{ answer}$		OR	
PQ = $\sqrt{20}$ = $2\sqrt{5}$ = 4,47 area of trapezium PTMQ = $\frac{1}{2}(3\sqrt{5} + 2\sqrt{5})(2\sqrt{5})$ PQ = $2\sqrt{5}$ $= \frac{1}{2}(5\sqrt{5})(2\sqrt{5})$ $= 25$ square units PQ = $2\sqrt{5}$ Area of trapezium = $\frac{1}{2}$ (sum of sides)(height) \checkmark substitute into formula \checkmark answer		$TM = \sqrt{45} = 3\sqrt{5} = 6,71$	$\checkmark TM = 3\sqrt{5}$
area of trapezium PTMQ = $\frac{1}{2}(3\sqrt{5} + 2\sqrt{5})(2\sqrt{5})$ \checkmark area of trapezium = $\frac{1}{2}$ (sum of sides)(height) \checkmark substitute into formula \checkmark answer		$MQ = \sqrt{20} = 2\sqrt{5} = 4,47$	$MQ = 2\sqrt{5}$
$= \frac{1}{2} \left(5\sqrt{5} \right) \left(2\sqrt{5} \right)$ $= 25 \text{ square units}$ (sum of sides)(height) $\checkmark \text{ substitute into formula}$ $\checkmark \text{ answer}$		$PQ = \sqrt{20} = 2\sqrt{5} = 4,47$	$PQ = 2\sqrt{5}$
$= \frac{1}{2}(5\sqrt{5})(2\sqrt{5})$ $= 25 \text{ square units}$ $\checkmark \text{ substitute into formula}$ $\checkmark \text{ answer}$		area of trapezium PTMQ = $\frac{1}{2} \left(3\sqrt{5} + 2\sqrt{5} \right) \left(2\sqrt{5} \right)$	\checkmark area of trapezium = $\frac{1}{2}$
- 25 Square units		$=\frac{1}{2}\left(5\sqrt{5}\right)\left(2\sqrt{5}\right)$	_ · · · · · · · · · · · · · · · · · · ·
		= 25 square units	
			(4)

7

DBE/2021

OR	
$MQ = \sqrt{20} = 2\sqrt{5}$	
$PQ = \sqrt{20} = 2\sqrt{5}$	
TP = 5	
area of PTMQ= area of Δ MTP+ area of Δ PQM	✓ area of ΔMTP +
area of PTMQ = $\frac{1}{2}$ TP× $\perp h_M + \frac{1}{2}$ MQ×PQ area of P	area of $\triangle PQM$ $\Gamma M Q = \frac{1}{2}(5) \times 6 + \frac{1}{2}(2\sqrt{5})(2\sqrt{5})$
area of PTMQ= $10+15=25$	\checkmark area ΔMTP = 10 \checkmark area ΔPQM = 15 \checkmark answer (4)
	[19]

QUESTION 4

4.1	$PV = r = \sqrt{10}$	$\checkmark \text{ PV} = r = \sqrt{10}$
	$PV = \sqrt{(k - (-3))^2 + (1 - 4)^2} = \sqrt{10}$ $(PV)^2 = (k - (-3))^2 + (1 - 4)^2 = 10$	✓ substitution into distance formula
	$k^{2} + 6k + 9 + 9 = 10$ $k^{2} + 6k + 8 = 0$ $(k + 4)(k + 2) = 0$ $k = -4$ or $k = -2$ $k = -2$ OR $(k + 3)^{2} + 9 = 10$ $(k + 3)^{2} = 1$ $k + 3 = 1 \text{ or } k + 3 = -1$	✓ standard form ✓ factors ✓ answer (5)
4.2	$x^{2} + 6x + y^{2} - 8y + 15 = 0$ y-intercepts: $(0)^{2} + 6(0) + y^{2} - 8y + 15 = 0$ (y-3)(y-5) = 0 $y_{C} = 3$ or $y_{B} = 5$ $\therefore BC = 2$ units	√ x = 0 ✓ factors ✓ both values ✓ answer (4)

C

DBE/2021

4.3.1	$m_{\rm TC} = \frac{3-1}{0-(-2)}$		✓ substitution into gradient formula	
	= 1			
	$\tan \alpha = 1$		$\sqrt{\tan \alpha} = 1$	
	$\therefore \alpha = 45^{\circ}$		✓ answer	
				(3)
	OR			
	y = mx + 3			
	1 = m(-2) + 3		✓ substitution into	
	$m_{\rm TC} = 1$		equation of a line	
	$\tan \alpha = 1$		$\checkmark \tan \alpha = 1$	
	$\therefore \alpha = 45^{\circ}$		✓ answer	
				(3)
4.3.2	$\hat{BCV} = 135^{\circ}$	[ext \angle of \triangle /buite \angle v \triangle]	✓ BĈV = 135°	
	∴ VŴB = 45°	[opp \angle s of cyclic quad/teenoorst. \angle e v kvh]	✓ answer	
		Answer only: Full marks		(2)
	OR			
	TĈO = 45°	$[\angle s \text{ of } \Delta / \angle e v \Delta]$	√ TĈO = 45°	
	∴ VŴB = 45°	[ext \angle s of cyclic quad/buite $\angle v kvh$]	✓ answer	
		Answer only: Full marks		(2)
4.4.1	Q(-3;-2)		$\checkmark x_Q \checkmark y_Q$	
				(2)
4.4.2	$(x+3)^2 + (y+2)^2 = 1$	0	✓ LHS ✓ RHS	(2)
4.4.3	x = -2 or x = -4		$\sqrt{x} = -2 \sqrt{x} = -4$	(2)
4.4.3	x = -2 Or $x = -4$		· x = - 2 · x = - 4	(2)
				$\frac{(2)}{[20]}$

DBE/2021

QUESTION/VRAAG 5

- ·		<u> </u>
5.1	$\tan(-x).\cos x.\sin(x-180^{\circ})-1$	
	$= -\tan x \cdot \cos x \cdot \sin(-(180^{\circ} - x)) - 1$	$\sqrt{-\tan x}$
	$= \frac{-\sin x}{\cos x} \cdot \cos x \cdot (-\sin x) - 1$	$\sqrt{-\sin x}$ $\sqrt{\frac{-\sin x}{\cos x}}$
	$\cos x$	$\sqrt{\sin^2 x - 1}$
	$=\sin^2 x - 1$	
	$=-\cos^2 x$	✓ answer
5.2.1	202 2150	(5)
3.2.1	$\cos 215^{\circ}$ $=-\cos 35^{\circ}$	✓ reduction
	=-m	✓ answer
		(2)
5.2.2	sin 20°	(2)
	$= \cos 70^{\circ}$	✓ co-function
		co ranction
	$=\cos 2(35^{\circ})$	
	$= 2\cos^2 35^\circ - 1$	✓ double angle
	$=2m^2-1$	expansion
		\checkmark answer in terms of m
	OR	(3)
	$=\sin(55^\circ - 35^\circ)$	
	$= \sin 55^{\circ} \cos 35^{\circ} - \cos 55^{\circ} \sin 35^{\circ}$	✓ compound angle
	$= m.m - \sqrt{1 - m^2} . \sqrt{1 - m^2}$	expansion
		$\checkmark \cos 55^\circ = \sqrt{1 - m^2} \text{or}$
	$= m^2 - \left(1 - m^2\right)$	$\sin 35^\circ = \sqrt{1 - m^2}$
	$=2m^2-1$	\checkmark answer in terms of m
		(3)
5.3	$\cos 4x.\cos x + \sin 4x.\sin x = -0.7$	
	$\cos(4x - x) = -0.7$	✓ compound angle
	ref $\angle = 45,57^{\circ}$	
	$3x = 180^{\circ} - 45,57^{\circ} + k.360^{\circ} \text{ or } 3x = 180^{\circ} + 45,57^{\circ} + k.360^{\circ}$	$\checkmark 3x = 134,43^{\circ} \text{ or }$
	$3x = 134,43^{\circ} + k.360^{\circ}$ or $3x = 225,57^{\circ} + k.360^{\circ}$	225,57°
	$x = 44.81^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$ $x = 75.19^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$	$\sqrt{x} = 44,81^{\circ} \text{ or } 75,19^{\circ}$
	$\lambda = \pm 1,01 + 0.120$, $\lambda \in \mathbb{Z}$ $\lambda = 13,17 \pm 0.120$, $\lambda \in \mathbb{Z}$	$\checkmark + k.120^{\circ}; \ k \in \mathbb{Z}$
		(4)

11

DBE/2021

5.4	$RHS = \cos^2 x - \sin^2 x$		
	LHS = $\frac{\sin 4x \cdot \cos 2x - 2\cos 4x \cdot \sin x \cdot \cos x}{\tan 2x}$ $= \frac{\sin 4x \cdot \cos 2x - \cos 4x \cdot \sin 2x}{\frac{\sin 2x}{\cos 2x}}$ $= \sin(4x - 2x) \left(\frac{\cos 2x}{\sin 2x}\right)$ $= \cos 2x$ $= \cos^2 x - \sin^2 x$	$ \sqrt{\sin 2x} $ $ \sqrt{\sin 2x} $ $ \sqrt{\cos 2x} $ $ \sqrt{\sin (4x - 2x)} $ $ \sqrt{\cos 2x} $	
	LHS = RHS		(4)
			[18]

12

DBE/2021

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 6

6.1	$1 - 2\sin^2 x = -\sin x$	✓ identity
0.1	$2\sin^2 x - \sin x - 1 = 0$	lucitity
	$ 2\sin x - \sin x - 1 = 0 (2\sin x + 1)(\sin x - 1) = 0 $	✓ factors
		1
	$\sin x = -\frac{1}{2} \qquad \qquad \text{or} \qquad \sin x = 1$	$\sqrt{\sin x} = -\frac{1}{2}$
	$ref \angle = 30^{\circ}$ $ref \angle = 90^{\circ}$	$\sqrt{\sin x} = 1$
	$x = 210^{\circ} + k.360^{\circ}$ $x = 90^{\circ} + k.360^{\circ}$	
	or $x = 330^{\circ} + k.360^{\circ}$	
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	✓ -150° and -30° ✓ 90° (A)
	OR	(6)
	$\cos 2x = -\sin x$	✓ co-functions
	$\cos 2x = -\cos(90^\circ - x)$	· co-ranctions
	$2x = 180^{\circ} - (90^{\circ} - x) + k.360^{\circ}$ or $2x = 180^{\circ} + (90^{\circ} - x) + k.360^{\circ}$	$\checkmark 2x$ in quadrant 2
	$2x = 90^{\circ} + x + k.360^{\circ}$ or $2x = 270^{\circ} - x + k.360^{\circ}$	$\checkmark 2x$ in quadrant 3
	$x = 90^{\circ} + k.360^{\circ}$ $x = 90^{\circ} + k.120^{\circ}$	✓ both general
		solutions $\sqrt{-150^{\circ}}$ and -30°
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	✓ 90° (A)
	OR	(6)
	OK	
	$\cos 2x = -\sin x$	
	$\cos 2x = \cos(90^\circ + x)$	✓ co-functions
	$2x = 90^{\circ} + x + k.360^{\circ}$ or $2x = 360^{\circ} - (90^{\circ} + x) + k.360^{\circ}$	$\checkmark 2x$ in quadrant 1
	$x = 90^{\circ} + k.360^{\circ}$ or $3x = 270^{\circ} + k.360^{\circ}$	\checkmark 2x in quadrant 4 \checkmark both general
	$x = 90^{\circ} + k.120^{\circ}$	solutions
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	\checkmark -150° and -30°
		✓ 90° (A)
	OR	(6)
	$\cos 2x = -\sin x$	(£
	$\sin(90^\circ - 2x) = -\sin x$	✓ co-functions
	$90^{\circ} - 2x = 180 + x + k.360^{\circ}$ or $90^{\circ} - 2x = 360^{\circ} - x + k.360^{\circ}$	$\sqrt{90^{\circ}-2x}$ in
	20 20 100 1 N 1 N 1 200 01 N 1 N 1 200 01 N 1 N 1 200 01	quadrant 3
		\checkmark 90°-2x in
	200 1 1200	quadrant 4
	$x = -30^{\circ} + k.120^{\circ}$ $x = -270^{\circ} + k.360^{\circ}$	✓ both general solutions
	$x = -150^{\circ} \text{ or } x = -30^{\circ} \text{ or } x = 90^{\circ}$	\checkmark -150° and -30°
		✓ 90° (A)
		(6)

DBE/2021

QUESTION/VRAAG 7

7.1	In ΔBCE:	
	CE _ BC	
	$\frac{\partial D}{\sin \hat{B}} = \frac{DD}{\sin B \hat{E} C}$	
	CEBC	✓ correct use of sine rule
	$\frac{\sin 30^{\circ}}{\sin 2x}$	
	$CE = \frac{BC\sin 30^{\circ}}{1.00}$	$\checkmark CE = \frac{BC\sin 30^{\circ}}{}$
	$\sin 2x$	$\sin 2x$
	In ΔCDE:	
	$\frac{DC}{CE} = \tan D\hat{E}C$	✓ correct trig ratio
	$DC = \frac{BC.\sin 30^{\circ}}{\sin 2x} (\tan x)$	✓ Subst CE
	$DC = \frac{BC}{4\sin x \cos x} \left(\frac{\sin x}{\cos x}\right)$	$\checkmark 2\sin x \cos x \checkmark \frac{\sin x}{\cos x}$
	$DC = \frac{BC}{C}$	COSA
	$DC = \frac{1}{4\cos^2 x}$	
		(6)

15

DBE/2021

7.2	$DC = \frac{BC}{4\cos^2 30^\circ}$ $= \frac{BC}{4\left(\frac{\sqrt{3}}{2}\right)^2}$ $= \frac{BC}{3}$ $\therefore BC = 3DC$		\checkmark DC == $\frac{BC}{3}$	
	But $AB = DC$ $\therefore BC = 3AB$	[opp sides of rectangle/teenoorst. sye v reghoek]	✓ BC = 3AB	
	Area of rectangle	= (AB)(BC) $= (AB)(3AB)$ $= 3AB2$	✓ substitution into area formula	(3)
				[9]

10

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 8

8.1

8.1.1	MRP = 90°	[∠ in semi circle/∠ in halwe sirkel]	✓ R	
	$\hat{R}_2 = 21^\circ$		✓ S	
				(2)
8.1.2	$\hat{O}_1 = 138^{\circ}$	$[\angle \text{ at centre} = 2 \times \angle \text{ at circumference}]$	✓ S ✓ R	
		<i>midpts.</i> $\angle = 2 \times omtreks \angle$]		(2)
8.1.3	$\hat{\mathbf{M}}_1 = 21^{\circ}$	[∠s in the same segment/∠e in dieselfde	✓ S ✓ R	
		sirkel segment]		(2)
	OR			
	$\hat{M}_1 + N_1 = 180^{\circ} - 138^{\circ}$	[sum of \angle s in $\Delta/\angle e \ v \ \Delta$]		
	$\therefore \hat{\mathbf{M}}_1 = 21^{\circ}$	[∠s opp equal sides/∠e teenoor gelyke sye]	✓ S ✓R	
				(2)
8.1.4	$\hat{O}_2 = 42^{\circ}$	[∠s on a str line/∠e op 'n reguitlyn]	✓ S	
	$\hat{P} = 42^{\circ}$	[alt \angle s; NO PR/Verw. \angle e, NO / PR]	✓ S ✓R	
	$\hat{\mathbf{M}}_2 = 48^{\circ}$	[sum of \angle s in Δ / $\angle e \ v \ \Delta$]	✓ S	
	OR		2	(4)
	$\hat{N}_2 = \hat{R}_2 = 21^{\circ}$	[alt \angle s; NO PR/Verw. \angle e, NO / PR]	✓ S ✓ R	
	$\hat{\mathbf{N}}_1 = \hat{\mathbf{M}}_1 = 21^{\circ} $	∠s opposite equal sides/∠e teenoor gelyke sye]	✓ S	
	$\hat{\mathbf{M}}_2 = 48^{\circ}$	[sum of \angle s of \triangle NMR// \angle e \vee \triangle NMR]	✓ S	
				(4)

8.2	$\hat{\mathbf{D}}_1 = 4x$	[ext \angle of \triangle /buite \angle v \triangle]	✓ S/R	
	$\hat{\mathbf{D}}_2 = 180^{\circ} - 4x$	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	✓ S	
	$\hat{\mathbf{B}}_1 = 5x$	[ext \angle of \triangle /buite \angle $v \triangle$]	✓ S	
	$\hat{\mathbf{B}}_1 = \hat{\mathbf{D}}_2$	[ext \angle of cyclic quad/buite \angle v kvh]	✓S ✓R	
	$180^{\circ} - 4x = 5x$			
	$9x = 180^{\circ}$ $x = 20^{\circ}$		✓ answer	
				(6)
	OR			
	$\hat{\mathbf{C}}_1 = 3x$	[ext \angle of cyclic quad/buite \angle v kvh]	✓ S ✓ R	
	$\hat{\mathbf{B}}_2 = 4x$	[ext \angle of \triangle /buite \angle v \triangle]	✓ S	
	$\hat{\mathbf{C}}_1 = \hat{\mathbf{C}}_3 = 3x$	[vert opp \angle s]	✓ S	
	$\hat{\mathbf{D}}_2 = 5x$	[ext \angle of \triangle /buite \angle v \triangle]		
	$4x + 5x = 180^{\circ}$	[opp \angle of cyclic quad/teenoorst. $\angle e \ v \ kvh$]	✓S/R	
	$x = 20^{\circ}$		✓ answer	(6)
				(0)

18

DBE/2021

OR			
$\hat{C}_3 = 3x$ $\hat{D}_1 = 4x$ $2x + 3x + 4x = 180^\circ$ $9x = 180^\circ$ $x = 20^\circ$	[ext \angle of cyclic quad/buite \angle v kvh] [ext \angle of \triangle /buite \angle v \triangle] [sum of \angle s in \triangle / \angle e v \triangle]	✓ S ✓ R ✓ S ✓ S ✓ R ✓ answer	(6)

10

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

DBE/2021

QUESTION/VRAAG 9

9.1

9.1 Constr: Join BE and CD and draw h_1 from E \perp AD and h_2 from D \perp AE

✓ constr/konstr

Konstr: Verbind BE en CD en trek h_1 vanaf $E \perp AD$ en h_2

 $vanaf D \perp AE$

Proof/*Bewys*:

$$\frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{BDE}} = \frac{\frac{1}{2} \text{AD} \times h_1}{\frac{1}{2} \text{BD} \times h_1} = \frac{\text{AD}}{\text{BD}}$$

$$\checkmark \frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{BDE}}$$

$$\sqrt{\frac{\frac{1}{2}\text{AD}\times h_1}{\frac{1}{2}\text{BD}\times h_1}}$$
 or F

$$\frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{\frac{1}{2} AE \times h_2}{\frac{1}{2} EC \times h_2} = \frac{AE}{EC}$$

$$\checkmark \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{AE}{EC}$$

area $\triangle ADE = area \triangle ADE$

[common/gemeenskaplik]

But area $\triangle BDE = area \triangle DEC$ [same base & height; $DE \parallel BC / dies \ basis \ \& \ hoogte; DE \parallel BC$]

✓ S ✓ R

$$\therefore \frac{\text{area } \Delta ADE}{\text{area } \Delta BDE} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$$

$$\therefore \frac{AD}{RD} = \frac{AE}{FC}$$

(6)

9.2

9.2.1	$\hat{A}_1 = x$ [corresp \angle s; PQ CA/ooreenkomstige \angle e, PQ CA]	✓ S ✓ R
	$\hat{\mathbf{B}} = x$ [\(\sigma \) opp equal sides/\(\sigma \) teenoor gelyke sye]	✓ S/R
	$\hat{A}_2 = x$ [tan-chord theorem/ \angle tussen raaklyn en koord]	✓ S ✓ R
	$\hat{P} = x$ [alt $\angle s$; PQ CA/verw. $\angle e$, PQ CA]	✓ S/R
		(6)
9.2.2	$\hat{\mathbf{B}} = \hat{\mathbf{P}}$ [proved in 9.2.1/bewys in 9.2.1]	✓ S
	∴ A, B, P and R are concyclic	
	∴ ABPR is a cyclic quadrilateral [conv ∠s in the same segment/	✓ R
	koord onderspan gelyke omtreks ∠e]	
		(2)
9.2.3	$\frac{BA}{BQ} = \frac{BC}{BR}$ [prop th; AC QP]	✓ S ✓ R
	OR	
	[line one side $\Delta/lyn // een syn v \Delta$]	
	But $QR = BR$ [sides opp = $\angle s/sye \ teenoor = \angle e$]	✓ S
	$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$	(3)

OR		
In \triangle ABC and \triangle BQR:		
$\hat{\mathbf{A}}_1 = \hat{\mathbf{B}} = x$	[proved in 9.2.1]	✓ S
$\hat{\mathbf{B}} = \hat{\mathbf{Q}} = x$	[proved in 9.2.1]	✓ S
$\hat{C}_1 = B\hat{R}Q = 180^\circ - 2x$	[sum of $\angle s$ of Δ]	✓ S
$\therefore \Delta ABC \Delta BQR$		
$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$		
BQ QK		
OR		
In \triangle ABC and \triangle BQR:		✓ S
	[proved in 9.2.1]	
$\hat{\mathbf{B}} = \hat{\mathbf{Q}} = x$		✓ S
$\hat{\mathbf{C}}_1 = \mathbf{B}\hat{\mathbf{R}}\mathbf{Q} = 180^\circ - 2x$		✓ R
$\therefore \triangle ABC \parallel \triangle BQR [\triangle ABC \mid A$	<u> </u>	
$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$		
OR		
In \triangle ABC and \triangle QBR:		
B is common		
$\hat{\mathbf{A}}_1 = \hat{\mathbf{Q}} = x$	[corres ∠s; PQ CA]	✓ S
$\hat{\mathbf{C}}_1 = \mathbf{B}\hat{\mathbf{R}}\mathbf{Q} = 180^\circ - 2x [$	sum of $\angle s$ of Δ]	✓ S
$\therefore \Delta ABC \Delta QBR [2$	<u>/</u> /]	
But $QR = BR$ [sides	$opp = \angle s/sye \ teenoor = \angle e]$	✓ S
$\therefore \frac{BA}{BQ} = \frac{BC}{QR}$		

10.1.1	$\hat{Q}_1 + \hat{Q}_2 = 90^{\circ}$	$[\angle \text{ in semi circle}/\angle \text{ in halwe sirkel }]$	✓ S/R	
	$\therefore \hat{\mathbf{M}}_2 = 90^{\circ}$	[co-interior \angle , MS \parallel QR/ <i>ko-binne</i> \angle <i>e</i> , MS \parallel QR]	✓ S/R	
	∴ SQ is a diameter	[converse: ∠ in semi circle/ Omgekeerde: ∠ in halwe sirkel]	✓ R	(3)
	OR MS QR $\frac{TS}{SR} = \frac{TM}{1100} = \frac{1}{1}$	[prop theorem; SM QR] OR	✓ S/R	
	$SR MQ 1$ $\therefore TM = MQ$	[line one side of Δ]/lyn een sy $v\Delta$		
	$\therefore \hat{\mathbf{M}}_2 = 90^{\circ}$	[Line from centre bisects chord/midpt. sirkel; midpt koord]	✓ S/R	
	∴ SQ is a diameter	[converse: ∠ in semi circle/ Omgekeerde: ∠ in halwe sirkel]	✓ R	(3)
	OR			
	$SQ \perp QP$ $\therefore SQ$ is a diameter	[tan \perp rad/raaklyn \perp radius] [converse: tan \perp rad/Omgekeerde:	✓ S ✓ R ✓ R	
	,	raaklyn ⊥ radius]		(3)

DBE/2021

10.1.2	In ADTO and ADOD			
10.1.2	In \triangle RTQ and \triangle RQP			
	$\hat{\mathbf{T}} = \hat{\mathbf{Q}}_3$	[tan-chord theorem/∠tussen raaklyn en koord]	✓ S ✓ R	
	$\hat{Q}_1 + \hat{Q}_2 = 90^{\circ}$	[co-interior \angle s, MS QR/ko-binne \angle e, MS QP]	✓ S	
	^ ^	MS \parallel QR] or [\angle in semi circle/ \angle in halwe sirkel]	/ C	
	$\therefore \hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_2 = \hat{\mathbf{P}} = 90^{\circ}$		✓ S	
	$\hat{\mathbf{R}}_{1} = \hat{\mathbf{R}}_{2}$ $\Delta RTQ \parallel \Delta RQP$	$[\angle s \text{ of } \Delta / \angle e van \Delta]$	✓ S	
	$\frac{RT}{RQ} = \frac{RQ}{RP}$		✓ ratio	
	$RT = \frac{RQ^2}{RP}$			(6)
	OR In \triangle RTQ and \triangle RQP			
	$\hat{\mathbf{T}} = \hat{\mathbf{Q}}_3$	[tan-chord theorem ∠tussen raaklyn en koord]	✓ S ✓ R	
	$\hat{Q}_1 + \hat{Q}_2 = 90^{\circ}$	[co-interior ∠s, MS QR/ko-binne ∠e, MS QR]	✓ S	
		or $[\angle$ in semi circle/ \angle in halwe sirkel]		
	$\therefore \hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_2 = \hat{\mathbf{P}} = 90^{\circ}$		✓ S	
	Δ RTQ $\parallel \Delta$ RQP	$[\angle, \angle, \angle]$	✓ R	
	$\frac{RT}{RQ} = \frac{RQ}{RP}$		✓ ratio	
	$RT = \frac{RQ^2}{RP}$			(6)
10.2	QR = 28 units	[midpoint theorem/midpt. stelling]	✓ S ✓ R	
	$RP^2 = 28^2 - \left(\sqrt{640}\right)^2$	-	✓ S	
	RP = 12 units	2	\checkmark RP = 12	
	$RT = \frac{RQ^2}{RP}$			
	$RT = \frac{28^2}{12}$			
	$RT = \frac{196}{3}$		✓ RT	
	Radius = $\frac{98}{3}$ units		✓ answer	(6)
				[15]

TOTAL/TOTAAL: 150