数字图像处理

第五讲 频域图像增强(Part II) 快速傅里叶变换、卷积运算

提纲

- 快速傅里叶变换计算
- 卷积运算(空间域滤波)
- 频域滤波=空间域卷积

例 设一函数如图 (a) 所示,如果将此函数在自变量 $x_0 = 0.5, x_1 = 0.75, x_2 = 1.00, x_3 = 1.25$ 取样

并重新定义为图(b)离散函数,求其傅里叶变换。

(a)

(b)

$$F(0) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp\{0\}$$

$$= (1/4)[f(0) + f(1) + f(2) + f(3)] = (1/4)[2 + 3 + 4 + 4] = 3.25$$

$$F(1) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp\{-j2\pi x/4\} = \frac{1}{4} \left[2e^{0} + 3e^{-j\pi/2} + 4e^{-j\pi} + 4e^{-j\pi/2} \right] = \frac{1}{4} \left[-2 + j \right]$$

$$F(2) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp\{-j4\pi x/N\} = \frac{1}{4} \left[2e^{0} + 3e^{-j\pi} + 4e^{-j2\pi} + 4e^{-j3\pi} \right] = -\frac{1}{4} \left[1 + j0 \right]$$

$$F(3) = \frac{1}{4} \sum_{x=0}^{3} f(x) \exp\left\{-j6\pi x/4\right\} = \frac{1}{4} \left[2e^{0} + 3e^{-j3\pi 3\pi} + 4e^{-j3\pi} + 4e^{-j9\pi 9\pi}\right] = -\frac{1}{4} \left[2 + j\right]$$

$$F(u) = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix}$$

一维快速离散傅立叶变换

• 快速傅立叶变换FFT

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j\frac{2\pi ux}{N}}$$

DFT计算复杂度= N^2 次乘法+N(N-1)次加法

对于 $N = 2^n$ 幂时有快速算法

FFT计算复杂度= $N \lg_2 N$

- 时域分组:将旋转因子W(由e^{-j2πx/N}构成的矩阵)中把x不断分解为奇偶表达式;
- 频域分组:将u不断分解为奇偶表达式。

旋转因子 W_N^{km} 的性质

1)周期性

$$W_N^{(k+N)m} = W_N^{k(m+N)} = W_N^{km}$$

2) 对称性

$$W_N^{mk+\frac{N}{2}} = -W_N^{mk} \qquad \left(W_N^{km}\right)^* = W_N^{-mk}$$

3)可约性

$$W_N^{mk} = W_{nN}^{nmk}$$

$$W_N^{mk} = W_{N/n}^{mk/n}, N/n$$

$$N = 2^m$$
幂, $f(x)$ 分解为 $f(2x)$ 和 $f(2x+1)$:

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) W_N^{ux}$$

注意x的取值范围

$$= \frac{1}{2} \left[\frac{2}{N} \sum_{x=0}^{N/2-1} f(2x) W_N^{2ux} + \frac{2}{N} \sum_{x=0}^{N/2-1} f(2x+1) W_N^{u(2x+1)} \right]$$

$$= \frac{1}{2} \left[\frac{2}{N} \sum_{x=0}^{N/2-1} f(2x) W_{N/2}^{ux} + \frac{2}{N} \sum_{x=0}^{N/2-1} f(2x+1) W_{N/2}^{ux} W_N^{u} \right]$$

$$=\frac{1}{2}\left[F_{e}\left(u\right)+W_{N}^{u}F_{o}\left(u\right)\right]$$

$$F\left(u+\frac{N}{2}\right) = \frac{1}{2}\left[F_e\left(u+\frac{N}{2}\right) + W_N^{u+N/2}F_o\left(u+\frac{N}{2}\right)\right]$$

$$Q F_e\left(u + \frac{N}{2}\right) = F_e\left(u\right), F_o\left(u + \frac{N}{2}\right) = F_o\left(u\right)$$

$$W_N^{u+N/2} = W_N^u W_N^{N/2} = W_N^u e^{-j\frac{2\pi}{N}\frac{N}{2}} = W_N^u e^{-j\pi} = -W_N^u$$

$$\therefore F\left(u + \frac{N}{2}\right) = \frac{1}{2} \left[F_e\left(u\right) - W_N^u F_o\left(u\right)\right]$$

因此 F_e 和 F_o 中的x继续分解,直到2点。

$$F_0 \sim F_7 \Rightarrow F_0 \sim F_3 \Rightarrow F_0 \sim F_1 \Rightarrow F_0 = f_0$$

• 蝶形图

显然计算一次蝶形需1次乘法和2次加(减) 法。

对于 $N = 2^m$ 点的DFT,每轮有N/2个蝶形,

总共有
$$\frac{N}{2} \times m = \frac{N}{2} \times \log_2 N$$
个蝶形。

总共有 $\frac{N}{2} \times \log_2 N$ 次乘法和 $N \log_2 N$ 加法。

空间域滤波

- 空间域滤波本质上是个领域运算
- 相关与卷积是最基本的领域运算
- 空间域滤波都需要一个模板(是一个 小矩阵,一般大小为奇数乘于奇数)
- 介绍相关与卷积运算的模板
- 空间域滤波的用途举例——平滑;涉及了三种滤波器的例子:平均领域滤波器,高斯滤波器,中值滤波器

空间域滤波的用途

- 平滑: 消除或减少噪声的影响,改善图像的质量。
- 假设
 - 在假定加性噪声是随机独立分布的条件下,利用邻域的平均或加权平均可以有效的抑制噪声干扰。
- 从信号分析的观点
 - 图像平滑本质上低通滤波。将信号的低频部分通过,而阻截高频的噪声信号。
- 问题
 - 往往图像边缘也处于高频部分。

• 邻域平均模板(矩形邻域和圆形邻域)

注意:大卷积模板可以加大滤波程度,但也会导致图像细节的损失。

无噪声朱家角风光

有高斯噪声的朱家角风光

通过7°邻域平均后的朱家角 风光

通过飞邻域平均后的朱家角 风光

去掉了一些噪声,同时也 去掉了一些边缘细节

有没有其它 办法?

- 高斯滤波(Gaussian Filters)
 - 采用高斯函数作为加权函数。
 - 原因一:二维高斯函数具有旋转对称性,保证 滤波时各方向平滑程度相同;
 - 原因二: 离中心点越远权值越小。确保边缘细节不被模糊。

$$G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}} = e^{-\frac{r^2}{2\sigma^2}}$$

- 设计离散高斯滤波器的方法:
 - 设定 σ^2 和n,确定高斯模板权值。如 σ^2 = 2和n=5:

[i,j]	-2	-1	0	1	2
-2	0.105	0.287	0.135	0.287	0.105
-1	0.287	0.606	0.779	0.606	0.287
0	0.135	0.779	1	0.779	0.135
1	0.287	0.606	0.779	0.606	0.287
2	0.105	0.287	0.135	0.287	0.105

• 整数化和归一化后得:

[i,j]	-2	-1	0	1	2
-2	1	2	3	2	1
-1	2	4	6	4	2
0	3	6	7	6	3
1	2	4	6	4	2
2	1	2	3	2	1

通过罗邻域平均后的朱家 角风光

经过高斯滤波后的朱家角风 光

高斯滤波保留了更多的边 缘细节

- 中值滤波:与加权平均方式的平滑滤波不同,中值 滤波用一个含有奇数点的滑动窗口,将邻域中的像素 按灰度级排序,取其中间值为输出像素。
- 中值滤波的要素
 - 中值滤波的效果取决于两个要素: 邻域的空间范围 和中值计算中涉及的像素数。
 一般只用某个稀疏矩阵做计算)。
- 中值滤波的优点
 - 中值滤波能够在抑制随机噪声的同时不使边缘模糊。但对于线、尖顶等细节多的图像不宜采用中值滤波。

中值滤波对于随机噪声效果明显

有独盐噪声的朱家角风光

用3*3的滤波窗口对上图做 二维中值滤波

领域运算

定义

输出图像中每个像素是由<u>对应的输入像素及其</u> 一个邻域内的像素共同决定时的图像运算。

通常<u>邻域</u>是远比图像尺寸小的一规则形状。如下面情况中,一个点的邻域定义为以该点为中心的一个圆内部或边界上点的集合。

领域运算

₩¥

EW.

₹W.

点+的邻域

计算

• 举例

$$f'(x,y) = \frac{1}{5} \left[f(x,y-1) + f(x-1,y) + f(x,y) + f(x+1,y) + f(x,y+1) \right]$$

• 进一步的表达

$$f'(x,y) = \frac{1}{5} \Big[1 \times f(x,y-1) + 1 \times f(x-1,y) + \dots + 1 \times f(x,y+1) \Big]$$

$$= \frac{1}{5} \Big[T_1 \times f(x,y-1) + T_2 \times f(x-1,y) + \dots + T_5 \times f(x,y+1) \Big]$$

$$= F(T,f)$$

相关与卷积

信号与系统分析中基本运算相关与卷积,在实际图像处理中都表现为邻域运算。

两个连续函数f(x)和g(x)的相关记作:

$$f(x) \circ g(x) = \int_{-\infty}^{\infty} f(a)g(x+a)da$$

两个连续函数f(x)和g(x)的<u>卷积</u>定义为:

$$f(x)*g(x) = \int_{-\infty}^{\infty} f(a)g(x-a)da$$

空间域滤波(也叫模板)

- 相关与卷积是空间域滤波最基本的两种运算
- 相关与卷积运算的模板(template, filter mask)
 - 给定图像f(x,y)大小N*N,模板T(i,j)大小m*m(m为小奇数,比如3,5,7,9等)。
 - 常用的相关运算定义为:使模板中心T((m-1)/2,(m-1)/2)与f(x,y)对应。

$$f'(x,y) = T \text{ of } (x,y)$$

$$= \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} T(i,j) f\left(x+i-\frac{m-1}{2},y+j-\frac{m-1}{2}\right)$$

相关运算例子

当
$$m = 3$$
时
 $f'(x,y) = T(0,0)f(x-1,y-1) + T(0,1)f(x-1,y) +$
 $T(0,2)f(x-1,y+1) + T(1,0)f(x,y-1) +$
 $T(1,1)f(x,y) + T(1,2)f(x,y+1) +$
 $T(2,0)f(x+1,y) + T(2,1)f(x+1,y) +$
 $T(2,2)f(x+1,y+1)$

演示

	100	101	98	97	100	79	86	102		1	2	1											
	96	106	103	95	89	67	84	100		2	3	2											
	87	121	87	94	87	72	88	98		1	2	1											
	86	133	99	103	85	75	92	90															
	92	99	111	102	78	74	97	91															
	95	102	121	111	112	73	90	88															
100	1 <mark>9</mark> 1	9 <mark>8</mark>	97	100	79	86	102	100	101	92	9 7	100	79	86	102	100	101	9 <mark>8</mark>	927	10 0	79	86	102
96	1 <mark>9</mark> 6	1 <mark>0</mark> 3	95	89	67	84	100	96	10⁄26	1 <mark>0</mark> 3	9 <mark>5</mark>	89	67	84	100	96	106	1 <mark>9</mark> 3	95	89	67	84	100
8 <mark>7</mark>	1 <mark>2</mark> 1	8 <mark>7</mark>	94	87	72	88	98	87	121	87	94	87	72	88	98	87	121	8 <mark>7</mark>	924	87	72	88	98
86	133	99	103	85	75	92	90	86	133	99	103	85	75	92	90	86	133	99	103	85	75	92	90
92	99	111	102	78	74	97	91	92	99	111	102	78	74	97	91	92	99	111	102	78	74	97	91
95	102	121	111	112	73	90	88	95	102	121	111	112	73	90	88	95	102	121	111	112	73	90	88
100	101	98	9 <mark>7</mark>	100	79 <mark></mark>	86	102	100	101	98	97	10 0	7 <u>9</u>	86	102	100	101	98	97	100	79	86	102
				_									_									_	
96	106	103	95	89	6 <mark>7</mark> 2	84	100	96	106	103	95	89	6 <mark>7</mark> 3	8 <u>4</u> 2	100	96	106	103			6 <u>7</u>	8 4	10 <u>9</u>
87	121	87	9 <mark>4</mark>	8 <mark>7</mark>	72	88	98	87	121	87	94	87	7 <mark>2</mark>	88 <mark></mark>	98	87	121	87	94	87	72	8 <mark>8</mark>	98

97 100 102 78 121 111 112

102 78

111 112

121 111 112

102 78

121 111 112

卷积运算

定义:

$$f'(x,y) = T * f(x,y)$$

$$= \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} T(i,j) f\left(x - i + \frac{m-1}{2}, y - j + \frac{m-1}{2}\right)$$

$$\stackrel{\text{def}}{=} m = 3 \text{H} \text{J}$$

$$f'(x,y) = T(0,0) f(x+1,y+1) + T(0,1) f(x+1,y) + T(0,2) f(x+1,y-1) + T(1,0) f(x,y+1) + T(1,1) f(x,y) + T(1,2) f(x,y-1) + T(2,0) f(x-1,y+1) + T(2,1) f(x-1,y) + T(2,2) f(x-1,y-1)$$

相关与卷积的物理含义

- 相关运算: <u>将模板当权重矩阵作加权平均</u>;
- 卷积运算:模板先沿纵轴翻转,再沿横轴 翻转后再加权平均。
- 如果模板是对称的,那么相关与卷积运算 结果完全相同。
- 邻域运算实际上就是卷积和相关运算,用信号分析的观点就是滤波。

空间域滤波小结

- 空间域滤波本质上是个领域运算
- 相关与卷积是最基本的领域运算(或空间域滤波)
- 空间域滤波都需要一个模板(是一个 小矩阵,一般大小为奇数乘于奇数)
- 介绍了相关与卷积运算的模板
- 空间域滤波的用途举例——平滑;涉及了三种滤波器的例子:平均领域滤波器,高斯滤波器,中值滤波器

频域滤波

• 基本步骤

频域滤波

• 基本步骤

频域进行滤波操作,相当 于在空间域做了何种操作?

- 1. 用(-1)**** 乘以输入图像来进行中心变换,如式(4.2.21)所示。
- 2. 由(1)计**算图像的 DFT**,即 F(u,v)。
- 3. 用滤波器函数 H(u,v)乘以 F(u,v)。
- 4. 计算(3)中结果的反 DFT。
- 5. 得到(4)中结果的实部。

频域滤波(与灰度级函数非常类似):

$$G(u,v) = H(u,v)F(u,v)$$

卷积

也称为空间域滤波

• 离散一维卷积

对于两个长度为m和n的序列f(i)和g(j),

$$h(i) = f(i) * g(i) = \sum_{j} f(j)g(i-j)$$

给出长度为N = m + n - 1的输出序列。

$$\mathbf{h} = \mathbf{g} \bullet \mathbf{f} = \begin{bmatrix} \mathbf{g}_{p} \begin{pmatrix} \mathbf{1} \end{pmatrix} & \mathbf{g}_{p} \begin{pmatrix} \mathbf{N} \end{pmatrix} & \cdots & \mathbf{g}_{p} \begin{pmatrix} \mathbf{2} \end{pmatrix} \\ \mathbf{g}_{p} \begin{pmatrix} \mathbf{2} \end{pmatrix} & \mathbf{g}_{p} \begin{pmatrix} \mathbf{1} \end{pmatrix} & \cdots & \mathbf{g}_{p} \begin{pmatrix} \mathbf{3} \end{pmatrix} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{g}_{p} \begin{pmatrix} \mathbf{N} \end{pmatrix} & \mathbf{g}_{p} \begin{pmatrix} \mathbf{N} - \mathbf{1} \end{pmatrix} & \cdots & \mathbf{g}_{p} \begin{pmatrix} \mathbf{1} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{f}_{p} \begin{pmatrix} \mathbf{1} \end{pmatrix} \\ \mathbf{f}_{p} \begin{pmatrix} \mathbf{2} \end{pmatrix} \\ \vdots \\ \mathbf{f}_{p} \begin{pmatrix} \mathbf{N} \end{pmatrix} \end{bmatrix}$$

卷积

- 二维卷积和离散二维卷积
 - 二维卷积定义

$$h(x,y) = f * g = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(u,v)g(x-u,y-v)dudv$$

• 离散二维卷积定义

$$H = F * G$$

$$H(i,j) = \sum_{m} \sum_{n} F(m,n)G(i-m,j-n)$$

空间域滤波和频域滤波的关系

频域进行滤波操作相当于空间域做卷积操作。

$$DFT[f(x,y)*g(x,y)]$$

$$= DFT \left[\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \cdot g(x-m,y-n) \right]$$

$$= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \cdot DFT \left[g(x-m,y-n) \right]$$

$$= \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) \cdot e^{-j2\pi \left(\frac{mu}{M} + \frac{nv}{N}\right)} \cdot G(u,v)$$

$$= F(u,v) \cdot G(u,v)$$

总结

- 快速傅里叶变换计算
- 卷积运算(空间域滤波)
- 频域滤波=空间域卷积

下一讲

