CHAPTER 1

Measuring the strong coupling

	Table 1.1: Timeline
1991	[Braaten1991]: Systematic
	description, including NP
	corrections to extract α_s
	from R_{τ} .
1992	[LeDiberder1992]:
	Introducing weights and
	fit methodology later used
	by aleph [Aleph1993]
	and OPAL [Opal1998]
	collaborations
2011	[Boito2011a]: Include DV
	model to extract α_s from
	OPAL data.
2018	Boito2018]: α_s from
	$e^+e^- \rightarrow hadrons up to$
	2 GeV.

The strong coupling has been measured since many years from hadronic τ decays. Until today most of the applied QCDSR to τ decays are based on the methodology developed in the early nineties by Braaten, Pich and Narison [Braaten1991]. They gathered the at this time available perturbative and NP contributions to extract the strong coupling from comparing their theoretical results to the known inclusive hadronic τ decay ratio R_{τ} . Pich together with Le Dibgerger then formulated the fitting strategy of fitting multiple moments of different weights to extract α_s parallel to Wilson coefficients of the OPE [LeDiberger1992], which later has been applied as standard in the ALEPH [Aleph1993] as well

as the OPAL [**Opal1998**] detectors. For the next ten year years the methodology of extracting the strong coupling did not run through make major changes until in the year 2011 when Boito, Cata, Golterman, Jamin, Osborn and Peris [**Boito2011a**] applied a duality model to include known DV effects to the QCD analysis of τ decays. The group around Boito and Pich have different opin-

ions on the importance of the newly introduced duality model [**Pich2016**, **Boito2016**] and consequently we want to deliver a third, opinion on the subject, favouring fits without the duality model. With new data becoming available from e^+e^- annihilation the extraction of α_s has recently been extended to analyses up to 2 GeV [**Boito2018**].

1.1 Fit Strategy

The objective of this work is to extract s and argue about the importance of DV. Apart from the two main objectives we want to analyse the values of the OPE Wilson coefficients of up to dimension ten.

Our fitting strategy will be in choosing weights of lower and higher pinching. Lower pinched weights should be affected by DV, while higher pinched weights should be protected from DV. As a result in comparing different fits of lower and higher pinched weights it should be possible to argue about strength of the DV that are (or are not) present.

Our hypothesis is that DV are tiny for fits of the combined vector and axial-vector channel in combination with pinched weights. Consequently we can extract parameters, like the strong coupling α_s from τ decays to high precision without a DV model.

We will perform our analysis in the framework of fopt, but display our final results also in CIPT. Consequently to define a fit we have to choose a weight ω and a momentum s_0 . The only restriction from choosing a weight is, that the weight has to be analytic, leaving us with a variety of choices. For our strategy we have chosen three categories of weights, each of them containing fits with three different weights. A table with an overview of all used weights is given in table 1.2 To test for the stability of the fitted values and have enough dof to fit the higher ope contributions we furthermore fit every weight for various momenta s_0 .

	Symbol	Term	Expansion	OPE Contributions
- g	$\omega_{ au}$	$(1-x)^2(1+2x)$	$1 - 3x^2 + 2x^3$	D6, D8
Pinched	ω_{cube}	$(1-x)^3(1+3x)$	$1 - 6x^2 + 8x^3 - 3x^4$	D6, D8, D10
Pi	$\omega_{quartic}$	$(1-x)^4(1+3x)$	$1 - 10x^2 + 20x^3 - 15x^4 + 4x^5$	D6, D8, D10, D12
nial	ω_{M2}	$1 - x^2$	$1 - x^2$	D6
Monomial	ω_{M3}	$1 - x^3$	$1-x^3$	D8
Mo	ω_{M4}	$1 - x^4$	$1 - x^4$	D10
~ ~	ω_{χ_1}	(1-x)	1-x	D4
+ pa	ω_{X2}	$(1-x)^2$	$1 - 2x + x^2$	D4, D6
Pinched +x	ω_{X3}	$(1-x)^3$	$1 - 3x + 3x^2 - x^3$	D4, D6, D8
Pi	ω_{X4}	$(1-x)^4$	$1 - 4x + 6x^2 - 4x^3 + x^4$	D4, D6, D8, D10

Table 1.2: Displaying three categories of fits, each containing three weights with their corresponding mathematical expression and the OPE contributions the fitted integral momentum will be sensitive to.

1.2 Fits

In the following we will give the results of each of the three previously mentioned fit categories.

The first category contains the *Pinched Weights without Monomial x*. The chosen weights are double (ω_{τ}) , triple (ω_{cube}) and quadruple $(\omega_{\text{quartic}})$ pinched and do not contain a monomial term x. An x term would make the fits sensitive to the D=4 ope contribution and have a unreliable perturbative expansion [Beneke2012]. The higher the pinching, the higher the suppression of Dv. Consequently if we obtain stable values for α_s from the different pinched fits we should expect the Dv to have no influence on the value of the strong coupling. The different weights imply an increasing number of active ope contributions D_6 , D_8 , D_{10} and D_{12} , which can be used to compare to the stability of higher order ope contributions and to test for the convergence of the ope.

The second category contains the *Single Pinched Monomial weights*. In this case all of the weights are only single pinched and, as in the first category, do not carry a monomial in x. Consequently if DV affect the fits we should notice dif-

ferent fitting results in comparison to the fits of the first category. Furthermore the single pinched moments only carry two parameters, the strong coupling and an OPE Wilson coefficients. Thus we can further compare the C_6 , C_8 and C_{10} Wilson coefficients and argue about the stability of the fits.

The third and last category contains a similar pinching to the as compared to the first category, but this time contains a monomial term in x. Consequently these fits are unreliable in the framework of FOPT and we have to apply the *Borel sum* (BS). Following the logic of the second and first category we then can compare the result to analyse the role of DV compare the Wilson coefficients.

1.2.1 Pinched Weights without Monomial x

Kinematic weight:
$$\omega_{\tau}(x) \equiv (1-x)^2(1+2x)$$

We previously encountered the kinematic weight in $\ref{eq:contains}$ weight function, defined as $\omega_{\tau}(x) = (1-x)^2(1+2x)$, double pinched, contains the unity and does not contain a term proportional to x. Consequently it is an optimal weight [Beneke2012]. As a doubled pinched weight it should have a good suppression of DV contributions and its polynomial contains terms proportional to x^2 and x^3 , which makes it sensitive to the dimension six and eight OPE contributions. The fits have been performed within the framework of FOPT for different numbers of s_0 . The momentum sets are characterised by its lowest energy s_{min} . We fitted values down to 1.5 GeV. Going to lower energies is questionable due to the coupling constant becoming large, which implies a breakdown of PT. Furthermore it bares the risk to be affected by the $\rho(770)$ and a_1 peaks in the vector and axial-vector spectral function, which we cannot model within the framework of the OPE. For the three fitting parameters α_s , C_6 and C_8 we have given the results in table 1.3 and graphically in fig. 1.1.

We only display the fits for s_{min} larger than 2.1 GeV. We noted a jump between the $s_{min} = 2.1$ GeV and $s_{min} = 2.2$ GeV of the χ^2/dof from 0.19 to 1.3. We consequently discarded fits with a $s_{min} < 2.2$ GeV, as fits lower s_{min} behave more stable¹. The values for the less momenta are preferred by us due to two reasons. First below energies of 2.2 GeV we have to face the problem-

¹As will be seen by comparing the kinematic weight with the cubic and quartic weight

S _{min}	#sos	$\alpha_s(m_\tau^2)$	c ₆	c ₈	χ^2/dof
2.100	8	0.3256(38)	-0.43(15)	-0.25(28)	1.30
2.200	7	0.3308(44)	-0.72(20)	-0.85(38)	0.19
2.300	6	0.3304(52)	-0.69(25)	-0.80(50)	0.25
2.400	5	0.3339(70)	-0.91(39)	-1.29(83)	0.10
2.600	4	0.3398(15)	-1.3(1.0)	-2.3(2.5)	0.01

Table 1.3: Table of our fitting values of $\alpha_s(m_\tau^2)$, C_6 and C_8 for the kinematic weight $\omega(x)=(1-x)^2(1+2x)$ using FOPT ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

Figure 1.1: Fitting values of $\alpha_s(m_\tau^2)$, C_6 and C_8 for the kinematic weight $\omega(x) = (1-x)^2(1+2x)$ using FOPT for different s_{min} . The left graph plots $\alpha_s(m_\tau^2)$ for different numbers of used s_0s . The right plot contains the dimension six and eight contributions to the OPE. Both plots have in grey the χ^2 per DOF.

atic influence of increasing resonances. Second, we will see, that the values obtained from the lower moment fits are more compatible with our other fits series. We further discarded the fit with four s_0s momenta, which has very small $\chi^2/dof = 0.01$. This is due to the fact, that we have four s_0s momenta to fit three parameters, which leaves us with too few DOF.

The selected fits with 8-10 momenta have a small χ^2 per DOF. The fitted parameters, α_s , c_6 and c_8 are in good agreement with each other. For all fits we have a good convergence of the OPE. For later comparisons we will give the means for the strong coupling, D = 6 and D = 8 contributions:

$$\alpha_s(m_{\tau}^2) = 0.3317(33), \quad c_6 = -0.77(17) \quad \text{and} \quad c_8 = -0.98(35).$$
 (1.2.1)

We further tested the stability of the dimension six and eight contributions to the OPE within the same fit series but for a fixed value of the strong coupling to our previous averaged result $\alpha_s(m_\tau^2) = 0.3179$. The values for c_6 and c_8 are larger than the values given in our final results from table 1.3. This is explained with a smaller contribution from the strong coupling, which has to be compensated by larger OPE contributions.

Cubic weight:
$$\omega_{\text{cube}}(x) \equiv (1-x)^3(1+3x)$$

To further consolidate the results from the kinematic weight, we test a weight of higher pinching, which is should suppress DV more than a double pinched weight. Consequently, if we obtain similar results to our previous fits we could exclude DV effects for the kinematic weight. On the other hand, any differences to the previous fit would indicate present DV. Our *cubic* weight will be triple pinched and optimal, as it does not contain a x monomial. It is due to its polynomial structure sensitive to the dimensions six, eight and ten contributions of the OPE, which yields one more parameter to fit than with the kinematic weight ω_{τ} . The fitting results can be seen in table 1.4 and graphically in section 1.2.1.

As before we performed fits for $s_0 \le 1.5$ GeV, but could only reach convergence for fits with energies larger or equal than 1.8 GeV. As before the χ^2 makes a jump at $s_0 = 2.1$ GeV to values per DOF of almost 2. Consequently we excluded theses fits and focused on fits from five to eight s_0 s momenta.

S _{min}	#s ₀ s	$\alpha_s(m_\tau^2)$	C ₆	C ₈	C ₁₀	χ^2/dof
2.000	9	0.3228(26)	-0.196(27)	0.075(28)	0.420(56)	1.96
2.100	8	0.3302(40)	-0.52(11)	-0.58(22)	-1.00(45)	0.43
2.200	7	0.3312(43)	-0.56(12)	-0.68(23)	-1.23(50)	0.55
2.300	6	0.336(11)	-0.78(47)	-1.17(98)	-2.38(22)	0.29
2.400	5	0.3330(96)	-0.63(47)	-0.82(10)	-1.51(26)	0.48

Table 1.4: Table of our fitting values of $\alpha_s(m_\tau^2)$, C_6 , C_8 and C_{10} for the cubic weight $\omega(x)=(1-x)^3(1+3x)$ using FOPT ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

The selected fits have a good χ^2/dof and the fitted parameters, α_s , c_6 , c_8 and c_{10} are in agreement with each other, except for the fit with six momenta. The fit with a $s_{\text{min}}=2.3\,\text{GeV}$ has the lowest $\chi^2=0.29$ and error on $_s$, but takes slighlty different values for the OPE Wilson coefficients in comparison to the other selected fits. The means for the strong coupling, D=6 and D=8 contributions:

$$\alpha_s(m_{\tau}^2) = 0.33$$
, $C_6 = -0.62$, $C_8 = -0.81$ and $C_{10} = -1.5$. (1.2.2)

We furthermore found that the OPE is converging, but not as fast as for the kinematic weight. The values of $\left|\delta^{(8)}\right|$ is only half as large as $\left|\delta^{(8)}\right|$. The values of the lower momentum count are in high agreement with the ones obtained from the kinematic weight. The conclusions that we take from the *cubic weight* are that the kinematic weight, with its double pinching, should sufficiently suppress any contributions from DVs. If DV would have an effect on the kinematic weight, we should have seen an improvement of the fits with the *cubic* weight, due to its triple pinching, which is not the case.

Quartic weight:
$$\omega(x) \equiv (1-x)^4(1+4x)$$

The last fits of the the pinched weights without a monomial term in x uses the *quartic weight* defined as $\omega(x) \equiv (1-x)^4(1+4x)$, has five fitting parameters $(\alpha_s, C_6, C_8, C_{10}, C_{12})$ and did only converge for $s_{min} = 2 \, \text{GeV}$ (nine $s_0 s$ momenta). The results for , with a χ^2 per DOF of 0.67 are given by:

$$\alpha_s(m_\tau^2) = 0.3290(11), \quad C_6 = -0.3030(46), \quad C_8 = -0.1874(28),$$

$$C_{10} = 0.3678(45) \quad \text{and} \quad C_{12} = -0.4071(77)$$
(1.2.3)

Due to the problematic of the fitting routing, which is caused by too many OPE contributions fitted simultaneously, we will discard the fitting results for the quartic weight.

1.2.2 Single Pinched Monomial Weights

To further solidate our hypothesis we want to probe some weights with a single pinching. If DV play a role then we should note deviating results to fits with higher pinchings. The advantage of these weights is that they only

CHAPTER 1: MEASURING THE STRONG COUPLING

S _{min}	#s ₀ s	$\alpha_s(m_\tau^2)$	c ₈	χ^2/dof
2.100	8	0.3147(44)	-0.27(29)	1.71
2.200	7	0.3214(49)	-1.01(39)	0.41
2.300	6	0.3227(57)	-1.18(54)	0.46
2.400	5	0.3257(67)	-1.58(74)	0.39
2.600	4	0.325(10)	-1.54(1.53)	0.58
2.800	3	0.326(21)	-1.69(4.03)	1.17

Table 1.5: Table of our fitting values of $\alpha_s(m_\tau^2)$, and C_8 for the single pinched third power monomial weight $\omega_{M3}(x) = 1 - x^3$ using FOPT ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

depend on one additional OPE Wilson coefficients, thus leaving us with only two parameters per fit.

Second power monomial:
$$\omega_{M2}(x) \equiv 1 - x^2$$

Third power monomial:
$$\omega_{M3}(x) \equiv 1 - x^3$$

The second weight is defined as $\omega_{M3}(x) \equiv 1-x^3$ and contains a single third power monomial. Consequently it is sensitive to dimension eight contributions from the OPE. Our fitting results can be taken from table 1.5. The χ^2 per DOF is like in the ω_{τ} and ω_{cubic} fits good for $s_{\text{min}} \leq 2.2 \, \text{GeV}$, but jumps to values $\chi^2/\text{dof} > 1.4$ for smaller s_{min} . This is explained through resonances that appear in lower energies. Due to the good χ^2 and the internally compatible fitting values we averaged over all rows except the last one of table 1.5. The last row, at $s_{\text{min}} = 2.8 \, \text{GeV}$ has only one DOF and thus high errors. The averaged values are given by

$$\alpha(m_{\tau}^2) = 0.32382(42) \qquad \text{and} \qquad C_8 = -1.33(67). \tag{1.2.4} \label{eq:cappa}$$

We note that the strong coupling is smaller as our expected values from the previous fits of around 3.33, but the dimension eight contribution is in good agreement. This is a sign of appearing DV, although the parameters of the different fits do not vary by huge numbers.

Smin	#s ₀ s	$\alpha_s(m_\tau^2)$	C ₁₀	χ^2/dof
2.100	8	0.3136(43)	-0.07(54)	1.75
2.200	7	0.3203(48)	-1.64(77)	0.42
2.300	6	0.3216(56)	-2.01(1.13)	0.47
2.400	5	0.3247(66)	-2.98(1.62)	0.39
2.600	4	0.324(10)	-2.86(3.69)	0.58
2.800	3	0.325(20)	-3.43(10.74)	1.17

Table 1.6: Table of our fitting values of $\alpha_s(m_\tau^2)$ and C_{10} for the single pinched fourth power monomial weight $\omega_{M4}(x) = 1 - x^4$ using FOPT ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

Fourth power monomial:
$$\omega_{m4}(x) \equiv 1 - x^4$$

We already analysed the cubic and quartic weights, which depend on the dimension ten ope contribution, in section 1.2.1 and section 1.2.1 correspondingly. Now, even with the visible DV for fourth power monomial $\omega_{m4} \equiv 1-x^4$ to study another single pinched moment and the dimension ten ope contribution. The results of the are given in ??. The fitting behaviour is very similar to the third power monomial (??) and we will directly cite our obtained results:

$$\alpha_s(m_\tau^2) = 0.32277(40) \qquad \text{and} \qquad C_{10} = -2.4(3.6). \tag{1.2.5} \label{eq:alphas}$$

As before the values for the strong coupling are lower than the ones obtained by the fit kinematic and cubic weight fits. Furthermore the error on the tenth dimension contribution of the OPE are large. All in all the usage of the single pinched fourth power monomial weight is questionable and does not deliver any additional insights.

1.2.3 Pinched Weights with monomial x

Next to the previously mentioned *optimal weights* from Beneke and Jamin [Beneke2012] there are *optimal moments* introduced by Pich [LeDiberder1992]

$$\omega_{(n,m)}(x) = (1-x)^n \sum_{k=0}^m (k+1)x^k,$$
 (1.2.6)

S _{min}	#sos	$\alpha_s(m_\tau^2)$	aGGInv	χ^2/dof
2.100	8	0.3176(47)	-0.0134(48)	1.62
2.200	7	0.3246(52)	-0.2262(59)	1.91
2.300	6	0.3260(60)	-0.2453(73)	1.71

Table 1.7: Table of our fitting values of $\alpha_s(m_\tau^2)$ and aGGInvfor the single pinched optimal weight $\omega_{X1}(x)=(1-x)$ using the BS ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

Combinations of these optimal moments have been widely used by the ALEPH collaboration to perform QCD analysis on the *Large electron-positron collider* (LEP). Some of these moments include the for FOPT problematic proportional term in x, thus we will perform additional fits using the Borel-sum.

$$\omega_{X1} \equiv (1 - x)$$

??

$$\omega_{X2} \equiv (1-x)^2$$

table 1.8

$$\omega_{X3} \equiv (1-x)^3$$

table 1.9

$$\omega_{X4} \equiv (1-x)^4$$

table 1.10

1.3 Comparison

To create an overview of our previous results we have gathered the most compatible rows by hand. These are shown in table 1.11, which is composed of

	S _{min}	#s ₀ s	$\alpha_s(m_\tau^2)$	aGGInv	C ₆	χ^2/dof
	2.100*	8	0.3207(48)	-0.0170(50)	1.90	
BS	2.200*	7	0.3270(54)	-0.0254(61)	2.97	
	2.300*	6	0.3253(63)	-0.0232(75)	2.70	
	2.100	8	0.3331(54)	-0.0108(45)	0.361(76)	1.9
r .	2.200	7	0.3401(57)	-0.0185(52)	0.220(88)	0.73
FOPT	2.300	6	0.3383(68)	-0.0165(67)	0.26(12)	0.89
H	2.400	5	0.3450(93)	-0.0243(99)	0.10(17)	0.71
	2.600	4	0.337(16)	-0.014(18)	0.36(45)	0.98

Table 1.8: Table of our fitting values of $\alpha_s(m_\tau^2)$, aGGInv and C_6 for the double pinched optimal weight $\omega_{X1}(x)=(1-x)^2$ using the BD or FOPT ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

	s _{min}	#s ₀ s	$\alpha_s(m_\tau^2)$	aGGInv	C ₆	C ₈	χ^2/dof
BS	2.000	9	0.3169(20)	-0.0123(34)	-0.29(12)	-0.05(24)	2.0
	2.100	8	0.3240(40)	-0.0212(42)	-0.63(15)	-0.74(29)	0.46
	2.200	7	0.3251(17)	-0.02283(56)	-0.689(12)	-0.879(33)	0.56
	1.900	11	0.34281(92)	-0.01473(73)	-0.103(22)	-0.534(46)	1.52
	1.950	10	0.34154(99)	-0.01304(61)	-0.050(17)	-0.389(44)	1.42
	2.000	9	0.33985(81)	-0.01124(43)	0.002(10)	-0.242(26)	1.59
FOPT	2.100	8	0.3480(47)	-0.0201(36)	-0.264(89)	-1.03(28)	0.31
_	2.200	7	0.3483(23)	-0.0204(41)	-0.27(15)	-1.05(40)	0.41
	2.300	6	0.3522(64)	-0.0249(62)	-0.42(18)	-1.51(57)	0.29
	2.400	5	0.3480(89)	-0.0199(100)	-0.25(33)	-0.96(10)	0.39

Table 1.9: Table of our fitting values of $\alpha_s(m_\tau^2)$, aGGInv, C_6 and C_8 for the optimal weight $\omega_{X3}(x)=(1-x)^3$ using the BS or FOPT ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

	S _{min}	#s ₀ s	$\alpha_s(m_\tau^2)$	aGGInv	C ₆	C ₈	C ₁₀	χ^2/dof
	1.950	10	0.31711(67)	-0.012432(24)	-0.30013(73)	-0.06785(16)	0.26104(50)	1.09
BS	2.000	9	0.3206(24)	-0.0167(14)	-0.455(38)	-0.373(67)	-0.36(14)	0.83
	2.100	8	0.3248(21)	-0.02230(47)	-0.6724(63)	-0.834(14)	-1.352(28)	0.23
PT	1.950	10	0.3416(14)	-0.01306(83)	-0.050(22)	-0.390(59)	-0.50(19)	1.71
FOPT	2.100	8	0.3480(25)	-0.0201(27)	-0.264(91)	-1.02(23)	-339.00(20)	0.41

Table 1.10: Table of our fitting values of $\alpha_s(m_\tau^2)$, $\alpha GGIn\nu$, C_6 , C_8 and C_{10} for the optimal weight $\omega_{X4}(x) = (1-x)^4$ using fort ordered by increasing s_{min} . The errors are given in parenthesis after the observed value.

weight	Smin	$\alpha_s(m_\tau^2)$	aGGInv	c ₆	c ₈	c ₁₀	χ^2/dof
$\omega_{ m kin}$	2.2	0.3308(44)	-	-0.72(20)	-0.85(38)	-	0.19
ω_{cube}	2.1	0.3302(40)	-	-0.52(11)	-0.58(22)	-1.00(45)	0.43
$\omega_{3,0}^{*}$	2.1	0.3239(30)	-0.2125(26)	-0.627(87)	-0.74(17)	-	0.46
$\omega_{ m quartic}$	2.0	0.3290(11)	-	-0.3030(46)	-0.1874(28)	0.3678(45)	0.67
ω_{m3}	2.2	0.3214(49)	-	-	-1.01(39)	-	0.41
ω_{m4}	2.2	0.3203(48)	-	-	-	-1.64(77)	0.42
$\omega_{2,0}$	2.2	0.3401(57)	-0.0185(52)	0.220(88)	-	-	0.73
$\omega_{3,0}$	2.1	0.3480(47)	-0.0201(36)	-0.264(89)	-1.03(28)	-	0.31

Table 1.11: Table of the best fits (selected by χ^2/dof and compatibility of the fitting values) for each weight including at least the strong coupling $\alpha_s(m_\tau^2)$ as a fitting variable. All fits have been performed using FOPT, except weights marked with a star ω^* , which have been fitted using the *Borel sum*.

two parts:

- The upper three rows represent fits we found to have good properties for determining the strong coupling.
- The lower five rows are problematic fits due to too many OPE contributions, too low pinching or to terms proportional to x.

We have found that the kinematic weight is in excellent agreement with the cubic ω_{cube} and Pich's optimal weight $\omega_{3,0}$, fitted using the borel model. The fitted parameters from the kinematic weight (α_s , c_6 and c_8) are all within error ranges and thus compatible. One fact that has to be investigated is the negative

Chapter 1: Measuring the strong coupling

appearing sign for the gluon-condensate from the borel-sum of $\omega_{3,0}$.