УДК 66.011, 519.61

А. Н. Иванов, С. А. Мустафина

РАСЧЕТ ПРОЦЕССА ГИДРИРОВАНИЯ α-ПИНЕНА В ТРУБЧАТОМ РЕАКТОРЕ С ПРЯМОТОКОМ ТЕПЛОНОСИТЕЛЯ СРЕДСТВАМИ ПАКЕТА МАТНСАD PRIME

Ключевые слова: математическое моделирование, гидрирование, пинен, жесткие системы, численные методы, Mathcad.

В статье описывается разработка математической модели процесса гидрирования α-пинена в трубчатом реакторе с прямоточной подачей хладагента, а также её последующая реализация средствами пакета Mathcad Prime. Приведены математические формулы, описывающие в дифференциальной форме изменение параметров системы по относительной длине реактора.

Key words: mathematical modeling, hydrogenation, pinene, stiff equations, numerical methods, Mathcad.

The article describes the development of a mathematical model for the hydrogenation of α -pinene in a tubular reactor with a direct feed of the refrigerant, as well as its subsequent implementation by the Mathcad Prime package. The mathematical formulas describing in a differential form the change in the system parameters by the relative length of the reactor are given.

Введение

Совершенствование химико-технологических процессов сопряжено c многочисленными трудностями: выбором пути оптимизации процесса, выявлением узких мест, проведением соответствующих объемных расчетов, осуществлением лабораторных исследований и опытно-промышленных испытаний, проектированием внедрением пилотных верной **установок**, a также интерпретацией полученных результатов. При этом в случае неудачно выбранной модификации процесса все вышеприведенные этапы приходится выполнять заново. Сократить как время, так и денежные затраты на проведение дорогостоящих испытаний позволяют расчеты математических эмулирующих соответствующие физикохимические превращения [1]. Составление адекватных моделей - достаточно сложная задача, требующая фундаментальных знаний моделируемой области. Однако, получив верное математическое описание единожды, специалисты могут в короткие сроки проводить многочисленные исследования и расчеты минимальным привлечением реального технологического оборудования [2]. Именно поэтому, разработка подобных математических моделей, а также средств их реализации – важный атрибут любых научных исследований области химической нефтехимической промышленности [3].

Цель и объект исследования

В описываемой работе предлагается составление математической модели и расчет процесса гидрирования α-пинена (2,6,6триметилбицикло[3.1.1]гепт-2-ена). Данное химическое соединение имеет брутто-формулу $C_{10}H_{16}$ и относится к такому классу органических веществ как терпены. Пинен является основным компонентом таких природных продуктов, как скипидара, смолы хвойных деревьев, различных эфирных масел и многих других продуктов растительного происхождения. Его используют в качестве сырья для производства растворителей,

лаков и смол, красок, а также душистых композиций благодаря характерному хвойному запаху.

Так как пинен относится к непредельным соединениям, а также содержит в своей структуре бициклическую группировку, он проявляет высокую химическую активность. Данное свойство позволяет использовать α-пинен в качестве исходного соединения процессах гидрирования, В каталитического окисления, изомеризации, присоединительного гидрохлорирования и пр. Продукты превращения находят своё применение в качестве реагентов для тонкого органического синтеза, в производстве лекарственных средств, ароматизаторов, феромонов И инсектицидов, консервантов и антиокислителей.

Особый интерес представляет процесс каталитического окисления α-пинена, в процессе которого основным продуктов является цис-пинан, который также относится к терпенам, но при этом не встречается в природе. Именно цис-изомер пинана является исходным сырьём для получения продукта его окисления - гидроперекиси цискоторый применяется пинана, полимеризации, инициатора например, производстве каучуков. Из положительных сторон применения именно данного инициатора следует отметить его оптимальные значения энергии инициирования активации и константы низкотемпературной вулканизации каучуков, высокую стабильность при хранении, улучшение эксплуатационных показателей полимера, а также продуктами разложения инициатора являются представители класса терпенов, придает полимеру приятный хвойный запах [4].

Процесс гидрирования α -пинена происходит при предварительном нагреве реакционной смеси, а реакция сопровождается выделением тепла. Химизм процесса, а именно целевая реакция гидрирования (1) и побочные реакции изомеризации (2) α -пинена, представлены ниже:

$$CH_3$$
 CH_3 CH_3

$$CH_3$$
 CH_3
 CH_3

При этом следует отметить, что при перегреве реакционной массы наблюдается интенсивное протекание побочных реакций, в связи с чем данный процесс следует проводить в режиме, близком к изотермическому. С этой целью гидрирование ведут реакторах теплообменного кожухотрубчатых или типа «труба в трубе» [5]. В межтрубное пространство подается вода в качестве теплоносителя для отвода тепла реакции, а внутритрубное пространство заполнено соответствующим пористым катализатором гидрирования.

Математическая модель процесса гидрирования пинена

С целью дальнейшего совершенствования и интенсификации процесса необходимо подготовить и реализовать адекватную математическую модель, учитывающую:

- 1) кинетику химических реакций, протекающих как в жидкой, так и в газовой фазе;
- 2) термодинамику процесса в жидкой и газовой фазах;
- 3) процессы межфазного массообмена испарения и конденсации компонентов смеси;
- 4) процесс теплопереноса между жидкой и газовой фазой, а также теплопередачи через стенку теплоносителю.

Для реализации поставленной задачи на этапе проектирования и отладки был выбран математический пакет Mathcad Prime 4.0, позволяющий проводить численное решение систем дифференциальных уравнений и визуализировать результаты расчета.

Математическое описание материального основано на уравнениях баланса процесса неразрывности потоков жидкости и газа, а также на уравнениях химической кинетики [6]. Значения активации И предэкспоненциальных уравнении Аррениуса вышеприведенных реакций были получены путём решения обратной кинетической задачи на основе имеющихся справочных данных. Направление подачи воды для охлаждения совпадает с направлением подачи сырья, то есть аппарат представляет собой теплообменник прямоточного типа.

Материальный баланс включает следующие зависимости параметров процесса в форме дифференциальных уравнений:

- уравнение неразрывности потока жидкости:

$$dL := FI \cdot Vp$$
,

где dL – скорость изменения мольного расхода жидкости, кмоль/ч; FI – объемная скорость испарения, кмоль/ч·м³; Vp – реакционный объем (межтрубное пространство за вычетом объема, занимаемого катализатором, м³.

- скорости изменения концентраций компонентов в жидкой фазе:

$$dx(i) := \frac{F(i) - p_{i+1} \cdot FI}{p_i} \cdot Vp,$$

где dx(i) — скорость изменения мольной доли i-го компонента в жидкой фазе; F(i) — скорость изменения количества i-го компонента в жидкой фазе в единице объема аппарата, кмоль/ч·м³; p — вектор параметров процесса, а именно: p_{i+1} — мольная доля i-го компонента в жидкой фазе, p_1 — мольный расход жидкости, кмоль/ч.

Компоненты жидкой фазы: $1-\alpha$ -пинен, 2- циспинан, 3- изомеры пинена. Компоненты газовой фазы: $1-\alpha$ -пинен, 2- цис-пинан, 3- изомеры пинена, 4- водород.

- уравнение неразрывности потока газов:

$$dG := \Phi G \cdot Vp$$
,

где dG – скорость изменения мольного расхода газа, кмоль/ч; φG – объемная скорость изменения количества газовой фазы, кмоль/ч·м³.

- скорости изменения концентраций компонентов (за исключением водорода) в газовой фазе:

$$dy(i) := \frac{\Phi(i) - p_{i+5} \cdot \Phi G}{p_5} \cdot Vp,$$

где dy(i) — скорость изменения мольной доли i-го компонента в газовой фазе; $\Phi(i)$ — скорость изменения количества i-го компонента в газовой фазе в единице объема аппарата, кмоль/ч·м³; p_{i+5} — мольная доля i-го компонента в газовой фазе, p_5 — мольный расход газа, кмоль/ч.

- скорости изменения концентрации водорода в газовой фазе:

$$\textit{dyh} := \frac{-\left(1-\phi\right) \cdot W\left(1\right) - \phi \cdot \omega\left(1\right) - \rho_{_{9}} \cdot \Phi G}{\rho_{_{5}}} \cdot \textit{Vp} \ ,$$

где dyh — скорость изменения мольной доли водорода в газовой фазе; φ — мольная доля газовой фазы; W(i) — скорость i-ой реакции в жидкой фазе; $\omega(i)$ — скорость i-ой реакции в газовой фазе; p_9 — мольная доля водорода в газовой фазе,

Приложения к материальному балансу:

- расчет мольной доли газовой фазы — фактической и для равновесной системы жидкость-газ:

$$\varphi := \frac{\rho_5}{\rho_1 + \rho_5} \,,$$

 $\varphi_2 := 0.5$ — начальное приближение для равновесной системы.

$$\textit{alfa}(i) := \frac{p_1 \cdot p_{1+i} + p_5 \cdot p_{5+i}}{p_1 + p_5} \; ,$$

где alfa(i) — мольная доля i-го компонента в жидкой и газовой фазах.

$$F\varphi 2(\varphi_2) := \sum_{i=1}^3 \frac{alfa(i) \cdot (kisp(i) - 1)}{1 + \varphi_2 \cdot (kisp(i) - 1)} + \frac{p_9}{(p_1 + p_5) \cdot \varphi_2},$$

где kisp(i) — константа равновесия процесса испарения для i-го компонента.

Значение равновесной мольной доли газовой фазы вычисляется численным способом с помощью функции *root*. Предварительно производится проверка на наличие действительного корня в интервале [0, 1]:

$$\begin{aligned} \varphi_2 &:= \text{if} \quad \left(F \varphi 2 \big(\mathsf{TOL} \big) \cdot F \varphi 2 \big(1 \big) \leq 0 \right) \\ & \| \mathit{root} \big(F \varphi 2 \big(\varphi_2 \big), \varphi_2, \mathsf{TOL}, 1 \big) \\ & \text{else} \\ & \| \text{if} \quad F \varphi 2 \big(\mathsf{TOL} \big) > 0 \\ & \| \text{if} \quad F \varphi 2 \big(\mathsf{TOL} \big) > F \varphi 2 \big(1 \big) \\ & \| 1 \\ & \text{else} \\ & \| 0 \\ & \text{else} \\ & \| 0 \\ & \text{else} \\ & \| 1 \end{aligned}$$

где TOL – точность расчета в среде Mathcad. - скорость испарения *Vпар* (кмоль/ч):

$$V$$
пар := $\varphi_2 \cdot (p_1 + p_5) - p_5$,
 $FI := \frac{-V \pi a p}{V p}$,
 $Y(i) := \text{if } V \pi a p > 0$
 $\parallel p_{i+1}$
else
 $\parallel p_{i+5}$

где Y(i) – мольная доля i-го компонента в жидкой фазе при испарении или в газовой фазе при конденсации.

$$U := \begin{pmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
 — матрица

стехиометрических коэффициентов для основной и побочной реакций.

$$F(i) := (1-\varphi) \cdot \sum_{j=1}^{2} (u_{j,j} \cdot \omega(j)) + \frac{V \pi a p}{V p} \cdot Y(i),$$

$$\Phi G := -(1 - \varphi) \cdot W(1) - \varphi \cdot \omega(1) + \frac{V nap}{Vp} \cdot \varphi(i) = \varphi \cdot \sum_{i=1}^{2} (\upsilon_{j,i} \cdot \omega(j)) + \frac{V nap}{Vp} \cdot Y(i).$$

Тепловой баланс:

- изменение температуры реакционной смеси:

$$dT \coloneqq \frac{1000 \cdot \textit{Vp} \cdot \sum\limits_{j=1}^{2} \! \left(-Q\!\left(j\right) \cdot \! \left(\! \left(1\!-\!\phi\right) \cdot \! \textit{W}\!\left(j\right) \!+\! \phi \cdot \omega\!\left(j\right) \right) \right)}{\textit{CpL} \cdot \textit{p}_{1} + \textit{CpG} \cdot \textit{p}_{5}} +$$

где dT — скорость изменения температуры реакционной смеси, K; Q(j) — тепловой эффект для j-ой реакции, кал/моль; CpL — молярная теплоемкость жидкой фазы, кал/моль·K; CpG — молярная теплоемкость газовой фазы, кал/моль·K; αx — коэффициент теплопередачи, ккал/ $(m^2 \cdot v \cdot K)$; p_{10} — температура реакционной смеси, K; p_{11} — температура теплоносителя, K; p_{12} — внутренняя поверхность теплообмена на единицу объема, p_{12} — p_{13} — температура теплоносителя, p_{13} — компонента, кал/моль.

- изменение температуры теплоносителя:

$$dTx := \frac{\alpha x \cdot Sx_2 \cdot (p_{10} - p_{11}) \cdot Vp}{Cx \cdot Gx},$$

где dTx — скорость изменения температуры теплоносителя, K; Sx_2 — внешняя поверхность теплообмена на единицу объема, M^{-1} ; Cx — теплоемкость хладагента (воды), ккал/(кг·К); Gx — массовый расход хладагента, кг/ч.

Приложения к тепловому балансу:

- площадь поверхности теплообмена на единицу объема аппарата:

$$Sx_{1} := \frac{S_{1}}{V\rho},$$
$$Sx_{2} := \frac{S_{2}}{V\rho},$$

где S_1 и S_2 – внутренняя и внешняя поверхности теплообмена, M^2 .

- тепловой эффект химических реакций:

$$Q(j) := -\sum_{i=1}^{3} (U_{j,i} \cdot dHO_i),$$

где $dH0_i$ – стандартная теплота образования *i*-го компонента, ккал/моль.

Вычисление кинетических констант

Обозначим константы скорости реакции в жидкой фазе:

 k_1 – константа скорости реакции гидрирования в жидкой фазе;

 k_2 – константа скорости реакции изомеризации в жидкой фазе;

 k_3 — константа скорости реакции, обратной реакции изомеризации в жидкой фазе;

и аналогично для процессов, протекающих в газовой фазе:

 k_4 – константа скорости реакции гидрирования в газовой фазе;

 k_5 – константа скорости реакции изомеризации в газовой фазе;

*k*₆ – константа скорости реакции, обратной реакции изомеризации в газовой фазе.

В таблице 1 приведены значения кинетических параметров на основании известных экспериментальных данных [7].

Таблица 1 – Данные кинетики процесса гидрирования α-пинена

Константа	Температура, °С			Энергия активации		
скорости реакции	70	100	130	<i>Е_i,</i> ккал/моль		
в жидкой фазе						
$k_1, \\ \mathbf{u}^{-1} \cdot \mathbf{a} \mathbf{T} \mathbf{M}^{-1}$	0,0792	0,1792	0,3588	6,92		
к ₂ , ч ⁻¹	0,0350	0,1088	1,2454	9,63		
<i>k</i> ₃ , ч ⁻¹	0,5488	1,2454	2,5058	6,96		
в газовой фазе						
<i>k</i> ₄ , ч ⁻¹ ⋅ моль ⁻¹ ⋅м ³	436,83	1580,6	4723,1	10,9		
к ₅ , ч ⁻¹	32,102	207,07	1012,1	15,8		
к ₆ , ч ⁻¹	64,966	449,81	2335,1	16,4		

Зависимость константы скорости реакции от температуры определяется уравнением Аррениуса:

$$k_i := A_i \cdot e^{-\frac{E_i}{R \cdot T}},$$

где A_i – предэкспоненциальный множитель для i-ой реакции; E_i – энергия активации i-ой реакции, Дж/моль; T – абсолютная температура, K; R = 8,314 – универсальная газовая постоянная, Дж/моль·K.

Переведя значения температуры из шкалы Цельсия в шкалу Фаренгейта, и значения энергии активации в Дж/моль, стало возможным вычислить значение предэкспоненциального множителя для каждой из реакций с целью получения непрерывной зависимости между скоростью реакции и температурой смеси (табл. 2).

Таблица 2 – Численные значения кинетических параметров процесса гидрирования α-пинена

Константа		Энергия
скорости	Предэкспоненциальный	активации
реакции	множитель	E_i ,
реакции		Дж/моль
k ₁	$2,037\cdot10^3$	28972,656
k ₂	4,799·10 ⁴	40318,884
<i>k</i> ₃	1,496·10 ⁴	29140,128
<i>k</i> ₄	3,867·10 ⁹	45636,120
<i>k</i> ₅	3,772·10 ¹¹	66151,440
<i>k</i> ₆	1,841·10 ¹²	68663,520

Выбор метода решения системы дифференциальных уравнений

Вышеприведённая математическая модель процесса гидрирования α-пинена в конечном счете представляет собой систему из 11 дифференциальных уравнений — 9 уравнений материального и 2 уравнений теплового балансов. Для вычисления профилей изменения параметров модели по длине аппарата был начат поиск эффективного численного метода её решения.

Как видно из таблиц 1-2, кинетические параметры реакций, протекающих в жидкой и газовой фазах, отличаются на порядки, что является признаком жесткой системы дифференциальных уравнений [8]. Это доказывает и тот факт, что при использовании стандартных решателей — rkfixed (метода Рунге-Кутты 4-го порядка с фиксированным шагом), rkadapt (метода Рунге-Кутты 4-го порядка с адаптационным размером шага), а также решателей Adams (метода Адамса) и Bulstoer (метода Булишера-Штера) не принесло результатов — происходит резкое возрастание погрешности уже в начале вычислений.

Для решения жестких систем дифференциальных уравнений в пакете Mathcad Prime 4.0 предусмотрены несколько решателей:

- 1) Radau метод Radaus для жестких систем;
- 2) *BDF* (backward differentiation formulas) метод дифференцирования назад;
- 3) Stiffb метод Булишера-Штера для жестких систем:
 - 4) Stiffr метод Розенброка.

Однако для 2-х последних методов якобиан системы является обязательным аргументом [9], тогда как для методов Radau и BDF необязателен, хотя и повышает точность численных вычислений. Вычисление якобиана дифференциальных уравнений математической модели в символьном виде не представляется возможным по двум причинам. Вопервых, из-за присутствия вычислений равновесной мольной доли газовой фазы, решение которой в символьном виде не найдено. Во-вторых, из-за использования фазовых ограничений на процесс и, как следствие, присутствия условных конструкций в математической модели.

Так как якобиан вычислен не был, то была произведена оценка жесткости системы на основе соотношения между константами скоростей реакций в жидкой и газовой фазе. Таким образом оценочное значение числа жесткости при l=0 составляет порядка 10^8 при режимных условиях. При этом по мере перемещения по длине реактора число жесткости системы дифференциальных уравнений, описывающих процесс, постепенно снижается.

Результаты, полученные при использовании решателей *Radau* и *BDF*, совпадают в пределах точности численного решения методов, однако отличаются по времени. Была произведена оценка зависимости времени решения системы двумя методами в зависимости от количества точек разбиения интервала. Вычисления производились на компьютере со следующими характеристиками: Intel

Соге i-3-2330M 2,20 ГГц, 8 ГБ ОЗУ, Windows 8.1, РТС MathCAD Prime 4.0 64-bit выпуск F000. Результаты анализа представлены на рисунке 1. Для наглядности шкала числа интервалов дана в логарифмическом масштабе.

Рис. 1 — Время численного решения системы с помощью метолов *Radau* и *BDF*

Как видно из графика, наиболее эффективным по времени решателем при одинаковой точности является метод *Radau*, который впервые появился в Mathcad 2001i. При это наблюдается высокая устойчивость алгоритма даже при большом числе разбиений.

Результаты и обсуждение

В результате использования решателя *Radau* была получена матрица решения, которая впоследствии визуализировалось с помощью средств пакета MathCAD. Результаты численного решения дифференциальных уравнений представлены на рисунках 2-4.

Как видно из рисунка 2, на протяжении порядка 45% длины аппарата происходит снижение мольного расхода газовой фазы без изменения мольного расхода жидкости (за исключения небольшой просадки в самом начале):

Рис. 2 — Профили мольного расхода жидкой и газовой фаз по относительной длине реактора

Это объясняется тем, что реакция гидрирования протекает на границе раздела фаз (в диффузионной области). Одна молекула α-пинена из жидкой фазы вступает в реакцию с водородом из газовой фазы. Продукт синтеза – цис-пинан, возвращается обратно в жидкость. В результате происходит уменьшения количества молекул в газе при постоянном количестве в жидкости.

Однако, после 45% длины аппарата вследствие разогрева реакционной смеси возникает интенсивное испарение жидкости и, в частности, опинена, который реагирует с водородом уже в газовой фазе. Таким образом процесс переходит в кинетическую область. При этом в газовой фазе число молекул уравновешивается притоком в результате испарения,

Изменение молярных концентраций в аппарате с учетом как жидкой, так и газовой фаз, представлено на рисунке 3.

Рис. 3 — Профили молярных концентраций компонентов по относительной длине реактора

Как видно из графика исходный α-пинен практически полностью вступает в реакцию. Выход цис-пинана немногим превышает 90%. Продукты побочной реакции – изомеры пинана, образуется в достаточно небольшом количестве, к концу синтеза их концентрацию снижается практически до нуля.

Температурные профили процесса представлены на рисунке 4.

Рис. 4 — Профили температур по относительной длине реактора

Благодаря оптимальным параметрам теплосъема и подачи теплоносителя [10, 11] удается поддерживать процесс в состоянии, близком к изотермическому, что наиболее благоприятно для каталитических процессов.

Полученные результаты показывают удовлетворительное согласование с аналитическим решением.

Заключение

Полученные результаты сходятся с экспериментальными данными на действующем реакторе гидрирования α-пинена. Полученная математическая модель может быть использования

для выявления общих закономерностей процесса, поиска путей его оптимизации, для расчетов при модификации оборудования и изменении технологического режима.

Работа выполнена при финансовой поддержке РФФИ в рамках научного проекта № 17-47-020068 и проекта №13.5143.2017/БЧ, выполняемого вузом в рамках государственного задания Минобрнауки РФ.

Литература

- 1. А.Н. Иванов, С.А. Мустафина, Е.А. Шулаева, Н.С. Шулаев, Объектно-ориентированное моделирование химико-технологических систем с целью повышения безопасности производства, Математическое моделирование процессов и систем, V Всероссийская научно-практическая конференция, приуроченная к 110-летию со дня рождения академика А.Н. Тихонова (Стерлитамак, Россия, 17-19 ноября, 2016), Стерлитамак, 2016, часть 1, С. 137-142.
- 2. С.А. Мустафина, Р.С. Давлетшин, Некоторые алгоритмы поиска оптимального управления каталитического процесса, *Журнал Средневолжского математического общества*, **8**, 2, 152-158 (2006).
- 3. В.И. Быков, В.М. Журавлев, *Моделирование и оптимизация химико-технологических процессов*. ИПЦ КГТУ, Красноярск, 2002. 298 с.
- Р.С. Давлетшин, С.А. Мустафина, А.В. Балаев, С.И. Спивак, О моделировании процесса гидрирования апинена, *Катализ в промышленности*, 6, 34-40 (2005).

- 5. С.А. Мустафина, Р.С. Давлетшин, А.В. Балаев, С.И. Спивак, Выбор типа реактора для проведения каталитического процесса гидрирования а-пинена, Обозрение прикладной и промышленной математики, 12, 2, 446-447 (2005).
- 6. Р.С. Давлетшин, С.А. Мустафина, С.И. Спивак, Исследование процесса гидрирования а-пинена в реакторе с неподвижным слоем катализатора, *Вестник Башкирского университета*, **10**, 2, 15-18 (2005).
- 7. С.А. Мустафина, А.В. Балаев, Р.С. Давлетшин, С.И. Спивак, У.М. Джемилев, Моделирование процесса газожидкостного гидрирования а-пинена в трубчатых реакторах, Доклады Академии наук, **406**, 5, 647-650 (2006).
- 8. Д. Каханер, К. Моулер, С. Нэш, Численные методы и программное обеспечение. Мир, Москва, 1998. 575 с.
- 9. М.В. Тихонова, И.М. Губайдуллин, С.И. Спивак, Численное решение прямой кинетической задачи методами Розенброка и Мишельсена для жестких систем дифференциальных уравнений, *Журнал Средневолжского математического общества*, **12**, 2, 26-33 (2010).
- S.A. Mustafina, Yu.A. Valieva, R.S. Davletshin, A.V. Balaev, S.I. Spivak, Optimization of catalytic processes and reactors, *Kinetics and Catalysis*, 46, 5, 705-711 (2005).
- 11. С.А. Мустафина, Р.С. Давлетшин, С.И. Спивак, Математическое моделирование и оптимизация процесса гидрирования а-пинена, *Обозрение прикладной и промышленной математики*, **11**, 2, 376 (2004).
- © **А. Н. Иванов** магистрант кафедры математического моделирования Стерлитамакского филиала ФГБОУ ВО «Башкирский государственный университет», sanekclubstr@mail.ru; **С. А. Мустафина** д.ф.-м.н., профессор, зав. кафедрой математического моделирования Стерлитамакского филиала ФГБОУ ВО «Башкирский государственный университет», mustafina sa@mail.ru.
- © A. N. Ivanov graduate student of the department of mathematical modeling, Sterlitamak Branch of Bashkir State University, sanekclubstr@mail.ru; S. A. Mustafina doctor of Science, Professor, head of chair of mathematical modeling, Sterlitamak Branch of Bashkir State University, mustafina_sa@mail.ru.

СОДЕРЖАНИЕ

КИМИХ

Чачков Д.В., Михайлов О.В. Молекулярные структуры полиядерных металлокластеров по данным	
расчета методом DFT. XVI. (Гетероби)пентаядерный кластер Al ₂ Zn ₃	5
Досниязова А.Г., Маликова Р.Н., Ишбаева С.М., Насретдинова Р.Н. Синтез и электрохимические свойства циклопентенофуллеренов, содержащих малеопимароимидный фрагмент	9
Гуревич П.А., Липин К.В. Антипролиферативная активность некоторых представителей 2-	,
оксопиридин-3,4-дикарбонитрилов	14
Евгеньев М.И., Ермолаева Е.А., Валитова Я.Р., Евгеньева И.И. Влияние кислотности замещенных	
5,7-динитробензофуразановых и нитробензодифуразановых производных ароматических аминов	
на их элюирование в условиях ОФ-ВЭЖХ	16
Закарьяева А.Т., Карякин М.Е., Лапаев Д.В., Молостова Е.Ю., Князев А.А., Галяметдинов Ю.Г.	
Определение относительного квантового выхода люминесценции растворов мезогенных комплек-	10
сов европия в толуоле	19
Тунцева С.Н., Гайфуллин Р.А., Бадртдинова А.И., Тухбатов Б.Р., Гайфуллин А.А. Катализатор эпоксидирования олефинов на основе молибденовой сини	22
Гуревич П.А., Федосеев С.В., Григорьева А.О. Противотуберкулезная активность аммониевых со-	22
лей 3-амино-8-гидрокси-1,6-диоксо-4-циано-2,7-диазаспиро[4.4]нон-3-ен-2-идов	25
химическая технология	
	27
Ванчаков М.В., Смолин А.С., Канарскаий А.В. Интенсификация роспуска макулатуры в воде	27
Годунов Е.Б., Кузнецова И.А., Клевлеев В.М. Современные проблемы и пути решения комплексной утилизации отработанной серной кислоты и химических источников тока марганцево-цинковой	
угилизации отраоотанной серной кислоты и химических источников тока марганцево-цинковой системы	31
Морозова Н.Н., Майсурадзе Н.В., Клоков В.В. Исследование гидрофобизации гипсовых и копози-	01
ционно-гипсовых материалов	34
Ванчаков М.В., Смолин А.С., Канарскаий А.В. Очистка макулатурной массы от липких включений	38
Тихонов А.С., Чепайкин Д.Н., Суворова И.А., Анисимова В.И. Обзор промышленных методов про-	
изводства пероксида водорода	42
Тучкова О.А. Структурообразователи для обеспечения экологической безопасности при разливах	4.4
нефти и нефтепродуктов Шабиев Р.О., Семенов Р.В., Смолин А.С., Дойнеко В.А., Канарский А.В. Перспектива применения	44
флотации для облагораживания полиграфической макулатуры	47
ТЕХНОЛОГИИ МАТЕРИАЛОВ И ИЗДЕЛИЙ	
ТЕКСТИЛЬНОЙ И ЛЕГКОЙ ПРОМЫШЛЕННОСТИ	
Тихонова В.П., Рахматуллина Г.Р., Ахвердиев Р.Ф., Баширова А. Исследование влияния неравно-	
весной низкотемпературной плазмы на отмочно-зольные процессы производства кожи из шкур	
кеты	51
Бугаева А.И., Илюшина С.В., Красина И.В., Антонова М.В. Применение биотехнологий в модифи-	
кации хлопка	54
Ибрагимов Р.Г., Вознесенский Э.Ф., Нефедьев Е.С., Вишневская О.В., Хайруллин А.К. Исследова-	
ние структуры модифицированных в плазме беспористых мембранных покрытий текстильных	57
материалов Панкова Е.А., Фукина О.В., Рахматуллина Г.Р. Исследование влияния плазмохимической модифи-	31
кации биополимеров активными газами на свойства натуральных меховых материалов	61
Иевлева В.В., Хамматова В.В. Анализ технического текстиля, применяемого для автомобильных	
шин	64
Тихонова В.П., Рахматуллина Г.Р., Ахвердиев Р.Ф., Гатауллина К. Исследование влияния нерав-	
новесной низкотемпературной плазмы на отмочно-зольные процессы производства пергамента из	
шкур козы	69
<i>Фаткуллина Р.Р., Новичугов И.А.</i> Подбор материала полимерного состава при проектировании жилета работника страховой компании	72
	12
ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА	
И УПРАВЛЕНИЕ	
<i>Дуев С.И.</i> Математическое моделирование режимов функционирования рециркуляционной системы реактор – ректификационная колонна	75

Будникова И.К., Сокова А.О., Приймак Е.В. Автоматизация маркетингового анкетирования	78
Иванов А.Н., Мустафина С.А. Расчет процесса гидрирования α-пинена в трубчатом реакторе с прямотоком теплоносителя средствами пакета Mathcad Prime	81
прямотоком теплоносителя средствами пакета манисац гтипе $Axma\partial ueb \ \Phi.\Gamma.$ Математическое моделирование течения неньютоновских сред в цилиндрических	01
каналах произвольного поперченного сечения	87
Макаров В.Г., Горбачевский Н.И., Аббазов А.Т., Каримов Д.А. Модель разомкнутой мехатронной	
системы трехуровневый автономный инвертор напряжения – трехфазный асинхронный двигатель с короткозамкнутым ротором в пакете MatLab	90
Тумаева Е.В., Горбачевский Н.И. Модернизация системы управления диагонально-резательного	
агрегата на базе оборудования «Mitsubishi Electric»	96
Хасанов Р.М., Лиштаков А.А., Чистов Ю.С. Влияние розлива горючей жидкости, ограниченного	99
стеной на интенсивность теплового излучения в зависимости от расстояния до очага пожара Тутубалин П.И., Кирпичников А.П. Подход к сокрытию данных в распределённой системе	102
Хасанов Р.М., Лиштаков А.А., Чистов Ю.С. Исследование интенсивности теплового излучения в зависимости от очага пожара и площади розлива легко воспламеняющихся жидкостей и горючих	102
веществ	110
Якимов И.М., Кирпичников А.П., Мокшин В.В., Яхина З.Т. Сравнение систем структурного и ими-	110
тационного моделирования по модели М/М/5	113
•	
ОБЩАЯ БИОЛОГИЯ	
Зиганшина Э.Э., Мохаммед В.Ш., Шулаев Н.В., Беспятых А.В., Зиганшин А.М. Особенности бакте-	
риального сообщества кишечника личинокжуков-ксилофагов (Cerambycidae)	120
Иванова Г.А., Сысоева М.А., Серова К.Е. Экстракция веществ полифенольной природы из семян	
лядвенца poratoro (Lotuscorniculatus)	125
Романова Н.К. Сукцинаты – перспективные добавки в технологиях продуктов из растительного	120
сырья	128
Старостина И.В., Свергузова С.В., Столяров Д.В., Порожнюк Е.В., Аничина Я.Н., Шайхиев И.Г. Отработанный кизельгуровый шлам маслоэкстракционного производства — сырье для получения	
сорбционного материала	133
Степанова С.В. Очистка модельных вод от ионов трехвалентного железа сточными водами произ-	133
	137
водства педлиолозы из отходов здаковых культур	
водства целлюлозы из отходов злаковых культур Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Габдрахманова Г.Н., Кузнецова О.Н. Создание филь-	
Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Габдрахманова Г.Н., Кузнецова О.Н. Создание филь-	
Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Γ абдрахманова Γ .Н., Кузнецова О.Н. Создание фильтро-минерализационной смеси для обеспечения безопасности и физиологической полноценности	142
Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Габдрахманова Г.Н., Кузнецова О.Н. Создание филь-	
Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Габдрахманова Г.Н., Кузнецова О.Н. Создание фильтро-минерализационной смеси для обеспечения безопасности и физиологической полноценности питьевых вод, доходящих до потребителя на примере г.Казани Цыганов М.С., Никитина Е.В. Гистологические свойства тапиоковых крахмалов, модифицированных амилосубтилином или амилазой Bacillus licheniformis	
Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Габдрахманова Г.Н., Кузнецова О.Н. Создание фильтро-минерализационной смеси для обеспечения безопасности и физиологической полноценности питьевых вод, доходящих до потребителя на примере г.Казани Цыганов М.С., Никитина Е.В. Гистологические свойства тапиоковых крахмалов, модифицирован-	142 145
Тунакова Ю.А., Файзуллин Р.И., Валиев В.С., Габдрахманова Г.Н., Кузнецова О.Н. Создание фильтро-минерализационной смеси для обеспечения безопасности и физиологической полноценности питьевых вод, доходящих до потребителя на примере г.Казани Цыганов М.С., Никитина Е.В. Гистологические свойства тапиоковых крахмалов, модифицированных амилосубтилином или амилазой Bacillus licheniformis	142