

SOMMAIRE

- Introduction
- Data cleaning
- Analyse des ventes
- Corrélations
- Conclusions

- Analyser les données disponibles (transactions, clients, produits)

1. Vue d'ensemble

nombre différent de variables

valeurs négatives et marginales

présence de 3 catégories

Data cleaning

Analyse des ventes

Corrélations

Conclusion

2. Traitement valeurs aberrantes

	id_prod	date	session_id	client_id	sex	birth	price	categ
1431	T_0	test_2021-03-01 02:30:02.237420	s_0	ct_1	m	2001	-1.0	0.0
2365	T_0	test_2021-03-01 02:30:02.237446	s_0	ct_1	m	2001	-1.0	0.0
2895	T_0	test_2021-03-01 02:30:02.237414	s_0	ct_1	m	2001	-1.0	0.0

Affichage de la table où valeur achat (= -1) Correspondance avec libellé («test, T_, ct_»)

NB of price negative values : 200 NB of id_prod starting with T $_$: 200

Matching between both families : True is unique value

Suppression des 200 lignes représentant 0.06% du dataframe global

Valeur achats ≥ 300 : nb = 8

Conservation de ces achats

Introduction Data cleaning Analyse des ventes Corrélations Conclusion

3. Traitement valeurs manquantes

Identification de la catégorie associée:

	id_prod	date	session_id	client_id	sex	birth	price	categ
0	0_1483	2021-04-10 18:37:28.723910	s_18746	c_4450	f	1977	4.990000	0.0
1	2_226	2022-02-03 01:55:53.276402	s_159142	c_277	f	2000	65.750000	2.0
2	1_374	2021-09-23 15:13:46.938559	s_94290	c_4270	f	1979	10.710000	1.0
3	0_2186	2021-10-17 03:27:18.783634	s_105936	c_4597	m	1963	4.200000	0.0
4	0_1351	2021-07-17 20:34:25.800563	s_63642	c_1242	f	1980	8.990000	0.0
	T_							

<u>Imputation (VAR = price) par moyenne</u>

```
# Imputation par la moyenne [price]
average = table_alt2['price'].mean()
table_alt2['price'].fillna(round(average,1), inplace=True)
# Imputation par la valeur connue pour le produit identifié [categ]
cat0 = 0.0
table_alt2['categ'].fillna(cat0, inplace=True)
```

	id_prod	session_id	client_id	date	heure	sex	birth	categ	price	année	mois	age
6235	0_2245	s_49705	c_1533	2021-06-17	03:03:12	m	1972	0.0	17.2	2021	6	50
10802	0_2245	s_49323	c_7954	2021-06-16	05:53:01	m	1973	0.0	17.2	2021	6	49
14051	0_2245	s_124474	c_5120	2021-11-24	17:35:59	f	1975	0.0	17.2	2021	11	47
17486	0_2245	s_172304	c_4964	2022-02-28	18:08:49	f	1982	0.0	17.2	2022	2	40
21078	0_2245	s_3	c_580	2021-03-01	00:09:29	m	1988	0.0	17.2	2021	3	34
	↓ d_pro	 duit						Ç0	↓ mov			

Introduction Data cleaning Analyse des ventes Corrélations Conclusion

4. Format Date

Par partition, conversion et ajout de nouvelles colonnes

Formatage colonnes date/heure (split)

```
# on split [date] -> [date] + [heure]
table_alt1[['date', 'heure']] = table_alt1['date'].str.split(' ', n=1, expand=True)

# on convertit & reformate
table_alt1['date'] = pd.to_datetime(table_alt1['date']) # conversion D en datetime
table_alt1['heure'] = pd.to_timedelta(table_alt1['heure']) # conversion H en timedelta
table_alt1['heure'] = table_alt1['heure'].dt.floor('s') # format secondes tronqué

# on conserve seulement les colonnes suivantes
table_alt1 = table_alt1[['id_prod','session_id','client_id','date','heure','sex','birth','categ','price']]

# on crée des colonnes supplémentaires à partir des existantes
table_alt1['année'] = table_alt1['date'].dt.year
table_alt1['mois'] = table_alt1['date'].dt.month
table_alt1['age'] = 2022 - table_alt1['birth']
```

				/	/ ↓						-	
	id_prod	session_id	client_id	date	heure	sex	birth	categ	price	année	mois	age
0	0_1483	s_18746	c_4450	2021-04-10	18:37:28	f	1977	0.0	4.99	2021	4	45
1	2_226	s_159142	c_277	2022-02-03	01:55:53	f	2000	2.0	65.75	2022	2	22
2	1_374	s_94290	c_4270	2021-09-23	15:13:46	f	1979	1.0	10.71	2021	9	43
3	0_2186	s_105936	c_4597	2021-10-17	03:27:18	m	1963	0.0	4.20	2021	10	59
4	0_1351	s_63642	c_1242	2021-07-17	20:34:25	f	1980	0.0	8.99	2021	7	42

Introduction Data cleaning Analyse des ventes Corrélations Conclusion

5. Résumé

	Cleaning				
Size	337016 rows				
Valeurs aberrantes	Suppression (200 rows)				
Valeurs manquantes	Imputation par moyenne ou médiane (103 rows)				
Format date	DD + HH				
Size post-cleaning	336816 rows				
Exports	<i>«table_imputations_moyenne» ou «table_imputations_mediane»</i>				

Le double exercice d'imputation (par moy/med) conduit à des résultats extrêmement proches (rappel 0,03% du dataset global).

On poursuivra donc l'analyse avec la version avec imputation par la moyenne.

Etat des lieux du dataset :

- Produit c2
 - o dispersion >
 - o valeur achat >>
 - o ∼5% des ventes
 - o plébiscité par les 18-30 ans
- Produit c0
 - o ~2/3 des ventes
- Profil client (genre)
 - o équi-répartition (h/f)
- Profil client (âge)
 - o ~2/3 de « mid-age »
 - ~1/4 de « seniors »
 - ~1/10 de « jeunes »

- Valeur achat moyen la plus élevée et dispersée chez les « jeunes »
- Confirmation aucune distinction h/f

- Valeur achat moyen la plus élevée pour les produits de catégorie 2
- Confirmation aucune distinction h/f

- Ventes du mois d'octobre ont subi une brutale chute / incident dans les produits de catégorie 1
- Pour ne pas biaiser notre analyse, les données du mois d'octobre ne seront pas prises en compte.

- CA stable sur les 6 premiers mois, puis augmentation
- Impact visible des achats produits c2 (peu en nombre mais élevés en valeur)

- Croissance du CA 2d semestre visible sur tranches « seniors » puis « jeunes »
- CA des 18-30 ans important car moins de clients mais portés sur les produits c2 (+ chers)

Conclusion

- H/F contribuent de façon équitable au CA
- Profil des clients (pour les mois 9 et 12)

- Rapports respectifs (volume/CA):
 - o c0 : ~1 **pour 10**
 - o c1 : ~1 pour 20
 - o c2:~1 pour 60

- Socle du CA = clientèle « mid-âge »
- Importance de la clientèle « jeune »

GINI=0.4405

- Inégalité visible au travers de l'aire représentée ci-contre (indice de Gini >> 0)
- Variabilité du montant du panier d'achat

1. Test du Khi-2

- Avec p_value < 5% (degré de significativité fixé), on peut rejeter l'hypothèse d'indépendance (Ho).
 - o Les variables « Age des clients » et « Catégorie des produits » sont corrélées.
 - o Les variables « Sexe des clients » et « Catégorie des produits » sont corrélées.
- Le fort attrait des « jeunes » pour les produits de « catégorie 2 » est confirmée ici.

Corrélation Age des clients vs Panier total

Parametric test assumptions

- Population distributions are normal
- Samples have equal variances
- Independence
- Inégalité des moyennes visible (en rouge)
- F>1 et p_value < 5% => rejet H_0
- $\eta^2 = 0.21$ (forte corrélation)
- + le client est « jeune » + le montant du panier augmente

Corrélation Age des clients vs Nombre d'articles

Parametric test assumptions

- Population distributions are normal
- Samples have equal variances
- Independence
- Inégalité des moyennes visible (en rouge)
- F>1 et p_value $< 5\% => \text{rejet H}_0$
- $\eta^2 = 0.12$ (corrélation moyenne)
- Les clients « mid-âge » achète plus d'articles (de façon assez équilibrée sur les 3 catégories cf. test Khi-2)

Corrélation Age des clients vs Fréquence d'achat annuelle

Parametric test assumptions

- · Population distributions are normal
- Samples have equal variances
- Independence
- Inégalité des moyennes visible (en rouge)
- F>1 et p_value < 5% => rejet H₀
- η^2 < 0.01 (faible corrélation)

• sur une année, les clients « midâge » achètent jusqu'à 3 fois plus que les « jeunes » et 2 fois plus que les « seniors »

Corrélation Age des clients vs Fréquence d'achat mensuelle

Parametric test assumptions

- Population distributions are normal
- · Samples have equal variances
- Independence
- Inégalité des moyennes visible (en rouge)
- F>1 et p_value $< 5\% => \text{rejet H}_0$
- $\eta^2 < 0.01$ (faible corrélation)

• mêmes tendances que pour la fréquence annuelle d'achats

Fréquence d'achats/month

Data cleaning

Analyse des ventes

Corrélations

3. Coefficient de corrélation de Pearson

Corrélation négative :

En toute logique :

Panier avec nb articles

- CA en croissance
- Les « jeunes » dépensent peu mais s'orientent vers les produits les plus onéreux
- Les « mid-âge » dépensent en grand nombre et plus souvent que les autres clients (ciblent les produits les moins chers)
- Les « seniors » couvrent le reste du panel avec un attrait pour les produits médians

Merci

