TECHNICAL REPORT

IEC TR 62380

First edition 2004-08

Reliability data handbook – Universal model for reliability prediction of electronics components, PCBs and equipment

Reference number IEC/TR 62380:2004(E)

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology. Information relating to this publication, including its validity, is available in the IEC Catalogue of publications (see below) in addition to new editions, amendments and corrigenda. Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to search by a variety of criteria including text searches, technical committees and date of publication. On-line information is also available on recently issued publications, withdrawn and replaced publications, as well as corrigenda.

IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/_justpub) is also available by email. Please contact the Customer Service Centre (see below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance, please contact the Customer Service Centre:

Email: <u>custserv@iec.ch</u>
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

TECHNICAL REPORT

IEC TR 62380

First edition 2004-08

Reliability data handbook – Universal model for reliability prediction of electronics components, PCBs and equipment

.

© IEC 2004 — Copyright - all rights reserved

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия PRICE CODE

XC

For price, see current catalogue

CONTENTS

FOI	REWC)RD	5
INT	RODU	JCTION	7
1	Scop	e	8
2	Norm	ative references	8
3	Term	s and definitions	9
4	Cond	itions of use	. 10
	4.1	Introductory remarks	. 10
	4.2	Assumptions adopted for TR 62380	
	4.3	Influencing factors	
	4.4	How to use the data	. 14
	4.5	Uses and aims of a reliability prediction	. 15
5	Envir	onment influence	. 16
	5.1	General remarks	. 16
	5.2	Environment types defined	. 16
	5.3	Electrical environment conditions	. 20
	5.4	Validity model according to environment	. 20
	5.5	Components choice	
	5.6	Learning during the deployment phase of new equipment	
	5.7	Mission profile	
	5.8	Mission profile examples	
6	Equip	oped printed circuit boards and hybrid circuits (IEC 60326)	
	6.1	Failure rate calculation of an equipped printed circuit board	
	6.2	Hybrid circuits	
7	·	rated circuits	
	7.1	Validity domain	
	7.2	Junction temperature evaluation of an integrated circuit	
_	7.3	The reliability model	
8		es and thyristors, transistors, optocouplers (IEC 60747-xx)	
	8.1	Evaluating the junction temperature of diodes and transistors	
	8.2	Low power diodes	
	8.3	Power diodes	
	8.4 8.5	Low power transistors	
	8.6	Optocouplers	
9		electronics	
0	9.1	Light emitting diodes diode modules (IEC 60747-12-2, IEC 62007)	
	9.1	Laser diodes modules - Failure rate	
	9.3	Photodiodes and receiver modules for telecommunications (IEC 60747-12)	
	9.4	Passive optic components	
	9.5	Miscellaneous optic components	
10		citors and thermistors (ntc)	
	-	Fixed plastic, paper, dielectric capacitors - Radio interference suppression capacitors (plastic, paper)	

		Fixed ceramic dielectric capacitors – Defined temperature coefficient – Class I (IEC 60384)	
	10.3	Fixed ceramic dielectric capacitors – Non defined temperature coefficient – Class II – Radio interference suppression capacitors (Ceramic, class II)	
	10.4	Tantalum capacitors, solid electrolyte (IEC 60384)	58
	10.5	Aluminum, non-solid electrolyte capacitors - Life expectancy	59
		Aluminum electrolytic capacitor, solid electrolyte	
		Aluminum electrolytic capacitor, polymer electrolyte (IEC 60384)	
	10.8	Variable ceramic capacitors, disks (Dielectric ceramic) (IEC 60384)	63
		Thermistors with negative temperature coefficient (NTC) (IEC 60539)	
11	Resis	stors and potentiometers (IEC 60115)	65
	11.1	Fixed, low dissipation film resistors – High stability (rs), general purpose (rc), "minimelf"	65
	11.2	Hot molded carbon composition, fixed resistors (IEC 60115)	66
	11.3	Fixed, high dissipation film resistors (IEC 60115)	67
	11.4	Low dissipation wirewound resistors (IEC 60115)	68
	11.5	High dissipation wirewound resistors (IEC 60115)	69
	11.6	Fixed, low dissipation surface mounting resistors and resistive array (IEC 60115)	70
	11.7	Non wirewound cermet potentiometer (one or several turn) (IEC 60393)	71
12	Indud	ctors and transformers (IEC 61248)	73
13		owave passive components, piezoelectric components and surface acoustic wave s (IEC 61261, IEC 61019, IEC 60368)	74
	13.1	Microwave passive components	74
	13.2	Piezoelectric components	74
	13.3	Surface acoustic wave filters	74
14	Rela	ys	75
	14.1	Evaluating voltage and current (vt, it) in transient conditions	75
		Mercury wetted reed relays, low power (IEC 60255)	
	14.3	Dry reed relays (IEC 60255)	80
	14.4	Electromechanical relays, miniature or card – European type, thermal relays (power up to 500 W) (IEC 60255)	82
	14.5	Industrial relays, high voltage vacuum relays, power mercury wetted relays (IEC 60255)	84
15	Switc	thes and keyboards (IEC 60948)	86
16	Conn	ectors	87
	16.1	Circular, rectangular	87
	16.2	Coaxial connectors	87
	16.3	Connectors for PCBs and related sockets	87
17	Displ	ays, solid state lamps	88
	17.1	Displays (IEC 61747)	88
		Solid state lamps (IEC 60747)	
18	Prote	ection devices (IEC 60099, IEC 60269, IEC 60738, IEC 61051)	89
	18.1	Thermistors (PTC)	89
		Varistors	
	18.3	Fuses	89
		Arrestors	
19	Ener	gy devices, thermal management devices, disk drive	90
	19.1	Primary batteries	90
		Secondary batteries	

19.3 F	ans	90
19.4 T	hermoelectric coolers	90
	Disk drive	
19.6 C	Converters (IEC 60146)	90
Table 1 – N	Mission profiles for spatial	10
Table 2 – N	Mission profiles for military	10
Table 3 – D	Description and typical applications of the commonest types of environment	17
	Mechanical conditions according to the environment: characteristic shocks and	18
Table 5 – N	Mechanically active substances	19
Table 6 – C	Chemically active substances	19
	Typical conditions for each environment type according to Table 3 (mechanically cally active substances and climatic conditions)	19
Table 8 – T	Table of climates	23
Table 9 – N	Mission profiles for Telecom	23
Table 10 –	Mission profiles for military and civil avionics	24
	Mission profiles for automotive	
Table 12 –	Thermal resistance as a function of package type, the pin number and airflow	
Table 13 –	Typical values of the air flow speed V, and the air flow factor K	29
Table 14 –	Thermal expansion coefficients $\alpha_{\scriptscriptstyle S}$ and $\alpha_{\scriptscriptstyle C}$	32
	Failure distribution (for non interfaces integrated circuits)	
Table 16 –	Values of $\lambda_1 \text{and } \lambda_2$ for integrated circuits families	33
Table 17a	$-\lambda_3$ values for integrated circuits as a function of S (pin number of the package)	34
	$-\lambda_3$ values for surface mounted integrated circuits packages $$ as a function of D	
	liagonal)	
Table 18 –	Values of λ_{B} and junction resistances $% \left(1\right) =1$ for active discrete components	37
Figure 1 –	Time dependant failure rate of a new electronic printed circuit board················	21
Figure 1 –	Time-dependant failure rate of a new electronic printed circuit board	21
Figure 2 –	Equivalent diagram representing the circuit of a relay contact	75
Figure 3 – counted in	Positions of capacitors in the real circuit diagram for which the values must be C	75
Figure 4 –	Regions adopted for the purposes of Figures 5, 6 and 7	
Figure 5 –	Evaluating the ratios $\sqrt[l]{}$ and $\sqrt[l]{}$ according to $R=R_1+R_2$, C , L , and C_p , L_p	
(R in kΩ, C	C , C_p in nF; L, L_p in mH)	76
Figure 6 –	Evaluating ratios $^{ m V_{I}}\!$	77
	Default values of $V_{t_{V}}$ and $I_{t_{I}}$ when nothing is known about the electrical	77
circuit of the	he contact	77

INTERNATIONAL ELECTROTECHNICAL COMMISSION

RELIABILITY DATA HANDBOOK – UNIVERSAL MODEL FOR RELIABILITY PREDICTION OF ELECTRONICS COMPONENTS, PCBs AND EQUIPMENT

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international cooperation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any equipment declared to be in conformity with an IEC Publication.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC 62380, which is a technical report, has been prepared by IEC technical committee 47: Semiconductor devices.

The text of this standard is based on the following documents:

Enquiry draft	Report on voting
47/1705/DTR	47/1722A/RVC

Full information on the voting for the approval of this standard can be found in the report on voting indicated in the above table.

This technical report does not follow the rules for structuring international standards as given in Part 2 of the ISO/IEC Directives.

NOTE This technical report has been reproduced without significant modification to its original content or drafting.

The committee has decided that the contents of this publication will remain unchanged until the maintenance result date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- · reconfirmed,
- withdrawn,
- · replaced by a revised edition, or
- amended.

INTRODUCTION

This reliability calculation guide for electronic and optical card, is an important progress compared to older guides. Calculation models take directly into account the influence of the environment. The thermal cycling seen by cards, function of mission profiles undergone by the equipment, replace environment factor which is difficult to evaluate. These models can handle permanent working, on/off cycling and dormant applications. On the other hand, failure rate related to the component soldering, is henceforth-included in component failure rate.

RELIABILITY DATA HANDBOOK – UNIVERSAL MODEL FOR RELIABILITY PREDICTION OF ELECTRONICS COMPONENTS, PCBs AND EQUIPMENT

1 Scope

This technical report provides elements to calculate failure rate of mounted electronic components. It makes equipment reliability optimization studies easier to carry out, thanks to the introduction of influence factors.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60086 (all parts), Primary batteries

IEC 60099 (all parts), Surge arresters

IEC 60115 (all parts), Fixed arrestors for use in electronic equipment

IEC 60146, (all parts), Semiconductor convertors – General requirements and line commutated convertors

IEC 60255 ((all parts), Electrical relays

IEC 60269 (all parts), Low-voltage fuses

IEC 61951 (all parts), Secondary cells and batteries containing alkaline or other non-alkaline electrolytes – Portable sealed rechargeable single cells

IEC 60326 (all parts), Printed boards

IEC 60368 (all parts), Piezoelectric filtgers of assessed quality

IEC 60384 (all parts), Fixed capacitors for use in electronic equipment

IEC 60393 (all parts), Potentiometers for use in electronic equipment

IEC 60535, Jet fans and regulators

IEC 60539 (all parts), Directly heated negative temperature coefficient thermistors

IEC 60721-3 (all Parts 3), Classification of environmental conditions – Part 3: Classification of groups of environmental parameters and their severities

IEC 60738 (all parts), Thermistors - Directly heated positive step-function temperature coefficient

IEC 60747 (all parts) Semiconductor devices - Discrete devices

IEC 60747-12 (all Parts 12) Semiconductor devices - Part 12: Optoelectronic devices

IEC 60747-12-2, Semiconductor devices – Part 12: Optoelectronic devices – Section 2: Blank detail specification for laser diode modules with pigtail for fibre optic systems and sub-systems

IEC 60748 (all parts) Semiconductor devices - Integrated circuits

IEC 60879, Performance and construction of electric circulating fans and regulators

IEC 60948, Numeric keyboard for home electronic systems (HES)

IEC 61019 (all parts), Surface acoustic wave (SAW) resonators

IEC 61051 (all parts), Varistors for use in electronic equipment

IEC 61248 (all parts), Transformers and inductors for use in electronic and telecommunication equipment

IEC 61747 (all parts), Liquid crystal and solid-state display devices

IEC 61261 (all parts), Piezoelectric ceramic filters for use in electronic equipment – A specification in the IEC quality assessment system for electronic components (IECQ)

IEC 61951 (all parts), Secondary cells and batteries containing alkaline or other non-acid electrolytes

IEC 61951-1, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Portable sealed rechargeable single cells

IEC 61951-2, Secondary cells and batteries containing alkaline or other non-acid electrolytes – Nickel-metal hydride

IEC 62007 (all parts), Semiconductor optoelectronic devices for fibre optic system applications

IEC 62255 (all parts), Multicore and symmetrical pair/quad cables for broadband digital communications (high bit rate digital access telecommunication networks) - Outside plant cables

ETS 300 019, Environmental engineering (EE); Environmental conditions and environmental tests for telecommunications equipment

ISO 9000:2000, Quality management systems – Fundamentals and vocabulary

UTE C 96-024:1990, Modèles thermiques simplifiés des circuits intégrés monolithiques

3 Terms and definitions

For the purposes of this technical report, the following definitions apply.

3.1

spatial

Mission profiles corresponding to the MIL-HDBK-217F "Space; flight" environment.

NOTE Only one working phase is taken into account during each orbital revolution (LEO), or earth revolution (GEO).

Table 1 – Mission profiles for spatial

Application types	(t _{ac}) ₁	$ au_1$	$ au_{on}$	$ au_{o\!f\!f}$	n _l cycles/year	ΔT_1 °C/orbit
Low earth orbit (LEO) with On/Off cycling	40	0,15	0,15	0,85	5256	$\frac{\Delta Tjc}{3} + 7$
Low earth orbit (LEO) permanent working	40	1	1	0	5256	3
Geostationary earth orbit (GEO) permanent working	40	1	1	0	365	8

3.2 military

Mission profiles corresponding to the MIL-HDBK-217F "Ground; mobile" environment.

NOTE Two working phases are taken into account:

Phase 1: 36 annual switch on

Phase 2: 365 days of dormant mode

Table 2 – Mission profiles for military

Application type	(t _{ac}) ₁ °C	$ au_1$	$ au_{on}$	$ au_{\mathit{off}}$	n _l cycles/year	ΔT_1 °C/cycle	n ₂ cycles/year	ΔT_2 °C/cycle
Portable Radio	26	0,01	0,01	0,99	36	$\frac{\Delta Tj}{3}$ +15	365	8

4 Conditions of use

4.1 Introductory remarks

4.1.1 Theory of reliability predictions

Calculation of a reliability prediction for non-redundant equipment is the very first step in any complete reliability study concerning that equipment, and indeed, of any study of the reliability, availability, or safety of a system.

Reliability predictions are based on numerous assumptions, all of which need to be verified (choice of component family, for example).

<u>A reliability study</u> of an item entails not only verifying these assumptions, but also <u>optimizing its</u> <u>reliability</u> (qualification of components and mounting processes, minimizing risk of external failure, etc).

A reliability prediction is essential, but no more so than research into the best possible reliability for least cost.

This handbook provides all the information needed to calculate electronic component and equipped printed circuit board failure rates: <u>failures rates delivered include the influence of component mouting processes.</u>

4.1.2 Structure of the handbook

The handbook is specifically designed as an aid to research into how to maximize equipment reliability, and to assist in the design of the equipment, by introducing various influencing factors (see also 4.3). In order to meet this objective, it is important that any reliability prediction should begin with the start of design (and then be finalised in accordance with 4.5.4). Similarly, the choice of values for the influencing factors should not be automatic.

4.1.3 Data source

The reliability data contained in the handbook is taken mainly from field data concerning electronic equipment operating in four kinds of environment:

a) «Ground; stationary; weather protected» (in other words: equipment for stationary_use on the ground in weather protected locations, operating permanently or otherwise).

This applies mainly to telecommunications equipment and computer hardware.

b) «Ground; stationary; non weather protected» (in other words: equipment for stationary_use on the ground in non-weather protected locations).

This relates mainly to public payphones and GSM relays.

c) «Airborne, Inhabited, Cargo» (in other words: equipment used in a plane, benign conditions).

This relates to on board calculators civilian planes.

d) «Ground; non stationary; moderate» (in other words: equipment for non-stationary use on the ground in moderate conditions of use).

This concerns mainly on board automotive calculators and military mobile radio.

By processing the raw data (statistical processes, results based on geographic distribution, according to equipment type, etc.), it has been possible to include various influencing factors and eliminate the main aberrant values. Other influencing factors are derived from the experience of experts (failure analyses, construction analyses, results of endurance tests).

The values adopted are those considered most probable at the present time (1992-2001).

This databook does not give any part count values, because mission profiles are needed in order to have credible values.

4.2 Assumptions adopted for TR 62380

4.2.1 Nature of data

4.2.1.1 Reliability data

The reliability data in this handbook comprises failure rates and, for some (very few) component families, life expectancy.

Failure rates are assumed to be constant either for an unlimited period of operation (general case) or for limited periods: in these particular cases the laws governing failure rates versus time have not been adopted in the interests of simplicity.

Apart from a few exceptions (see section 4.2.1.3), the wear-out period is never reached by electronic components; in the same way it is accepted, again apart from some exceptions (see section 4.2.1.2), that the added risks of failure during the first few months of operation can be disregarded.

4.2.1.2 The infant mortality period

In practice, except for a few component families, the increased risk of failure during the first months of operation can be disregarded, because of the diversity of reasons for variations or uncertainty in the failure rate. This superficially simplistic hypothesis is in fact very realistic. It is confirmed by field data concerning the operation of equipment designed very carefully, with well chosen components (based on compatibility with use) and produced by a well controlled production system, as is generally the case for the components covered by this handbook.

4.2.1.3 Wear-out period

For the vast majority of components, the -wear-out period (during which failures take on a systematic character) is far removed from the periods of use (which range from 3 to 20 years).

There are, however, two cases in which the occurrence of wear-out failures should be taken into account (the failure rate of which increases with time):

a) For some families, if due care is not taken, the wear-out mechanisms may give rise to systematic failures after too short a period of time; metallization electromigration in active components, for example.

This risk needs to be eliminated by a good product design, and it is important to ensure this by qualification testing. In other words, it should not be taken into account for a prediction, and should be eliminated by qualification testing and by technical evaluation, which are, therefore, of critical importance.

b) For some (few) component families, the wear-out period is relatively short. For these families, this handbook explains how to express the period for which the failure rate can be considered constant. This life expectancy is subject to influencing factors.

Such families include relays, aluminium capacitors (with non-solid electrolyte), laser diodes, optocouplers, power transistors in cyclic operation, connectors and switches and keyboards.

For these component families, it is important to ensure that the life expectancy given by the handbook is consistent with the intended use. If not, room for manoeuvring is fairly restricted: you can reduce the stresses, change the component family (or sub-family: for aluminium capacitors with non-solid electrolyte, there are several types characterized by different qualification tests).

Provision can also be made for preventive maintenance.

NOTE: As before, and in the interests of simplicity, this handbook does not give the wear-out failure mathematical model (for which the failure rate increases over time), but a period during which the rate can be considered constant (in some cases the period at 10% of the cumulative failure rate).

4.2.2 Nature of failures

4.2.2.1 Intrinsic failures

The data in this handbook covers intrinsic failures (apart from the few exceptions given in 4.2.2.2).

In practice (see section 4.1.3), the raw reliability data has been processed to eliminate non-intrinsic component failures.

4.2.2.2 Special case of non-intrinsic residual failures due to electrical overloads

There is, necessarily, a small proportion of non-intrinsic failures in the data, because it is impossible to detect all the non-intrinsic failures when they are residual.

Take, for example, the reliability of the components used in equipment located "at the heart" of a system, which is significantly better than that of the components located at the periphery (in other words connected to the external environment). It is understood that this is due to residual overloads, since the equipment is assumed adequately protected.

For the purpose of this handbook, we have therefore included an utilisation factor to take into account nonintrinsic residual failures due to the electrical environment for active components.

4.2.2.3 Other non-intrinsic failures

The other non-intrinsic failures (due to errors of design, choice, uses) are excluded from this handbook.

Errors of this kind should be avoided; hence they are not taken into for predictions. As a matter of fact, they are very largely independent of component family.

However, for some particular objectives, such as calculation of stocks of spare parts, it may be useful to include the risks of non-intrinsic residual failures due to design errors: some indications are given in section 4.4.3.

4.2.3 Large-scale integrated circuit, production date influence

Since the 90's, the reliability growth of components no longer occur, as in the 70's and the 80's; thanks to fields failures returns data collections. This is particularly true for integrated circuits, and can be attributed to: generalization of nitride based passivations, generalization of dry etching and better planarization controls. However, the integration density for integrated circuits continues to grow at the same rate as in the past, at a constant reliability figure. For this reason, and in order to takes into account the Moore law, it is necessary to know the manufacturing year to calculate the failure rate of integrated circuits.

4.3 Influencing factors

4.3.1 Component failure rate

The component failure rate depends on a number of operational and environmental factors. This is why, for each component family, the handbook gives a base failure rate value (normally a value which corresponds to the commonest internal temperature taken as a reference) multiplied by a number of influencing factors. This simplified, empirical expression takes account of the more significant influencing factors when it comes to conditions of use.

The main factors adopted are as follows:

a) Factors giving the influence of temperature (π_t, π_w)

It is now widely accepted that temperature has a moderate effect on component reliability. The effect is significant for some families (active components and aluminum capacitors with non-solid electrolyte). The models adopted are those which give the effect of temperature on the predominating failure mechanisms (which are not normally the "wear-out" mechanisms).

For semiconductors, an Arrhenius equation has been applied with activation energy of 0.3 to 0.4 electron volts.

For passive components, an Arrhenius equation has been applied with an activation energy of 0.15 to 0.4 electron volts.

Factor π_w for potentiometers gives the influence of load resistance on the temperature rise.

In the case of power dissipating components, the thermal resistance (semiconductors) or the equation giving the internal temperature as a function of ambient temperature (resistors) has been given.

b) Factors giving the influence of special stresses:

Utilization factor π_u for thyristors, Zener diodes (operating permanently powered or otherwise).

Factor π_A for Aluminum liquid electrolyte capacitors giving the effect of current pulses.

Factor π_Y for relays (operating cycle rate).

Factor π_i for connectors (current intensity).

c) Factors giving the influence of applied voltage (π_s) .

The influence of applied voltage is taken into account for transistors and optocouplers (voltage applied between input and output).

4.3.2 Life expectancy

Life expectancy, when limited, is also influenced by certain factors (optocoupler operating current; temperature of aluminum capacitors with non-solid electrolyte; contact current for relays).

Life expectancy can be expressed as a number of cycles (power transistors, switches).

4.4 How to use the data

4.4.1 Calculation method

Given that the component failure rates are assumed constant, the failure rate of a non-redundant equipment can be obtained by adding together the failure rates of its individual components. In this handbook, the failure rates given for components include the effects of the mounting on a printed circuit board, the failure rate of the naked PCB or hybrid has to be added.

Clause 6 of this handbook explains the method to be used to calculate the failure rate of a printed circuit board or a hybrid.

4.4.2 Reliability prediction results

The results of a reliability prediction are many and various, and not limited to failure rate: the following information is also obtained:

- Failure rate (of component or equipment).
- Choice of technical construction for some components (choice of component family).
- Choice of conditions of use.

4.4.3 Failure rate

The failure rate can be used directly if the aim is to identify a reference base. Such is the case for many objectives described in 4.5.

However, if the aim is to obtain an accurate estimate of stocks of spare parts, the result should be uprated to take account of non-intrinsic failures:

- unconfirmed failure phenomena (equipment, subsystem, identified as defective and found to be OK on repair);
- incorrect component usage, wrong choice of components for the first months of use of equipment of new design (period of improving reliability);
- incorrect maintenance, inappropriate use, human error, environmental attack;
- production process learning factor (component mounting process, etc).

The appropriate uprating factors cannot be given in this handbook: they depend on the prior experience of a company and how new the equipment production process is (for example, for unconfirmed failures, the uprating factor ranges from 10% to over 100%, depending on newness).

4.4.4 In cases where conditions are not yet known default conditions can be assumed.

According to 4.5.1, reliability prediction calculations should begin as early as possible, at the start of the equipment design phase, even if not all the applicable conditions can yet be known: in this case default values can be used provisionally, to help determine those conditions which are as yet unknown. These default values will then be gradually discarded as the definitive conditions are identified.

This method is far preferable to the simplified calculation method (for which all the values are replaced by default values, including those, which are already known).

The calculations must therefore be prepared in such a way as to enable values to be modified easily.

4.5 Uses and aims of a reliability prediction

4.5.1 Reliability prediction as an aid to equipment design

The most beneficial use of a reliability prediction is as an aid to equipment designers, In this case, the help is based on determination of the stresses and factors influencing the reliability of each component (temperature, input voltage, technical construction of the components, etc.). Predictions based on this handbook will lead the originators of a new design to choose the best conditions and the best component families, and to draw up component qualification or evaluation programmes.

If this important objective is to be met, it is essential for the reliability prediction to be begun at the very start of design, by the design originators, and then revised as required. The work should be carried out in close collaboration with the company's component quality experts.

4.5.2 Reliability prediction to assess the potential of new equipment

The predicted reliability can be compared with the reliability objectives or stated requirements.

4.5.3 Predicted reliability values as a basis for contractual reliability values

The contractual value of a failure rate must be determined on the basis of the predicted value; these two values will not necessarily be equal: a number of contractual values may be assumed depending on observation period or certain data may be modified provided it is justified. However, in all cases, the predicted value should be taken as the base.

- **4.5.4** Where used in conjunction with other characteristics of a project (electrical characteristics, weight, etc.), the results of a reliability prediction can be used to compare different project solutions, such as when evaluating proposals from tenderers. Comparisons of this kind are possible only if the data used is the same, hence the existence of a reliability data handbook.
- **4.5.5** The predicted failure rates for the individual items of a system are crucial when calculating system dependability and reparability.
- **4.5.6** Reliability predictions can be used as a basis for evaluating stocks of equipment and spare components required for maintenance (however, in this case, it is important to take account of probable non-intrinsic failures, as was explained in 4.4.3). The purpose of a study of this kind is to optimize stocks of spare parts (avoid stock outages, but also avoid excessive and costly stocking levels).

4.5.7 Reliability predictions can be used as a benchmark for assessing results observed in operation. Indeed, observed results cannot be assessed effectively without a benchmark: mediocre reliability would be considered normal and there would be no attempt at improvement.

Obviously we should not expect observations to mirror exactly the predicted reliability values, for a number of reasons:

- Predictions are based only on intrinsic reliability; they do not therefore take account of external overload conditions (however, according to 4.2.2, they do take account of residual overloads).
- Predictions do not take account of design errors or incorrect use of components.
- Predictions do not take account of the risks involved in using lots of components with poor reliability.

These departures from reality, far from being a handicap are in fact an advantage; in practice, the differences can be used to reveal a lack of reliability and, following analysis, take corrective action. This very important quality enhancement process is crucial when it comes to minimizing the infant mortality period and correcting equipment design errors.

5 Environment influence

5.1 General remarks

Experience has shown that component reliability is heavily influenced by mechanical and climatic environment conditions, as well as by electrical environment conditions (residual overload).

This factor is therefore included in this handbook, based on observations and published values; for simplicity, climatic and mechanical environment conditions have been classified in ten or so environment types. However, the mission profile has to be taken into account (see 5.7), to determine estimated failure rate of components in the considered environment.

5.2 Environment types defined

The environment types are based on IEC 60721-3 («classification of groups of environmental parameters and their severity»), with some simplifications, and the specification ETS 300 019 (ETSI specification: environmental conditions for telecommunications equipment).

Table 3 gives, for the various types of environment adopted for the purposes of this handbook, the following information:

- the short form designation adopted for this handbook;
- the complete designation (generally according to IEC 60721-3);
- the main stresses included;
- some typical applications.

Table 4 quantifies the mechanical stresses (shock and vibration) for the main types of environment.

Tables 5 define the environmental conditions according to the presence and activity of chemical and mechanical substances (definitions given in table 7 based on the conventions summarized in Tables 5 and 6), and according to climatic conditions.

Table 3 – Description and typical applications of the commonest types of environment

Environn	ment description				
Short form designation (adopted in the handbook)	Comp design		Description of the environment	Applications	
Ground; stationary; weather protected	Equipment for state on the ground in Weather protected		Controlled temperature and humidity, low stress good maintenance	Equipment in environmentally controlled premises	
	Equipment for stat the ground; in non Weather protected		Some mechanical and climatic stresses (moderate) Average quality maintenance	Equipment located in premises with little or no environmental control: - phone booths	
Ground; stationary non weather protected	IEC 60721-3) appl With regard to, the elements), the ma	lies to the equipme e components (whi in difference from he absence of env	ather protected" (according to ent and not to the components. ch are protected from the the type "ground; fixed; rironmental control (humidity	- equipment in public buildings - equipment in streets, stations, etc, - equipment in industrial environments.	
Ground; non stationary; benign	Equipment for non on the ground. in to conditions		Mechanical stress is more severe than for "ground; stationary; non Weather protected" Sometimes difficult maintenance	Radiotelephones - Portable equipment on ground vehicles. Railway rolling Stock equipment	
Ground; non stationary; severe	Equipment for non on the ground, in sconditions		As for "ground; non stationary benign", but with more severe; mechanical stresses		
Satellite; flight	Used on board an satellite	orbiting	Very low mechanical stresses		
Satellite; launch	Used on board a s	satellite	Extremely severe shock High amplitude vibration and high frequencies (up to 2 000 Hz)		
Airborne; benign		benign conditions	Conditions similar to those of "ground; non-stationary; benign-, but with more intense vibration up to 2 000 Hz		
Airborne; moderate	Used in an	moderate conditions	The qualifying terms		
Airborne; severe	aircraft in	severe conditions	"moderate", "severe" and "extremely severe", are defined in table 2; they	Other applications (other	
severe severe		extremely severe conditions	represent increasing levels of mechanical stresses.	than "aircraft" and "ship") are possible, rovided that the stresses are comparable.	
Naval; benign	Used on board a	benign conditions	Conditions similar to those of "ground; stationary; non-weather protected", but with more pronounced shock and vibration. The qualifying		
Naval; severe	ship in severe conditions		terms, "benign" and "severe" represent the mechanical stresses according to table 2.		

18 |

TR 62380 © IEC:2004(E)

Table 4 – Mechanical conditions according to the environment: characteristic shocks and vibrations.

VIBRA	TIONS]									SHO	CKS
Accelerations	Frequencies		T			L.	T	1	ı		peak acceleration m/s ²	Duration
m/s ²	Some Hz up to the above	50	100	200	200	300	300	500	1000	2000	m/s	ms
\	frequency. (Hz)	22	11	6	11	6	11	2,3	6	0,5	•	
1	200	Ground stationary Weather- protected										
10	200			Ground stationary Non weather protected								
20	200		-	Naval; b	enign —							
20	500		← Gro	und ; non stati	onary; benig	n						
20	2000		Airborne; benign									
30	500						◆ Ground;	non stationa	ıry; severe			
30	2000		Airborne; moderate									
50	200		—		Naval sev	vere –						
80	2000				Airborne; severe]	
150	2000				Airborne; extremely severe					Satellite launch	1	

Tables 5 and 6: Represent the definition of concentration classes used in Table 7 for active substances

Table 5 – Mechanically active substances

Designation of classes	Sand	Dust		Examples of
used in Table 7	(Mg/M3)	(Mg/M3)	(Mg/M2 h)	type of environment
Negligible	0	0,01	0,4	Naval; benign
Low	30	0,2	1,5	Ground; weather protected
Moderate	300	0,4	1,5	Ground; non weather protected
High	3000	4	40	Ground; non stationary; severe

Table 6 - Chemically active substances

Designation of classes	Salt mist	S0 ₂	H ₂ S	CI	NO ₂	Examples of type of environment
used in Table 7			(proport	ion in 10 ⁻⁹)		
Low	(low)*	30	7	7	50	Ground; weather protected
Moderate	(moderate)*	100	70	70	300	Ground; non weather protected
High	(high)*	400	400	70	500	Naval; severe
* No figure has_been	published					

Table 7 – Typical conditions for each environment type according to Table 3 (mechanically and chemically active substances and climatic conditions)

	Active	substances concer	ntration				
	(classes	according to Table	s 5 and 6			Rapid changes	
	Mechanically	Chemically act	ive substances	Relative	Mean	of Temperature:	
	active substances	Gaseous substances	Fluid substances	humidity	temperature	qualitative estimation	
	Concentration class 3ccording to Table 5	Concentration class according to Table 6	Concentration class without exact figures	%	°C	of temperature range	
Ground; stationary; weather protected	low	low	negligible	40 to 70	+5 to +45	negligible	
Ground; stationary; non weather protected	moderate	moderate	negligible	5 to 100	-40 to +45	low	
Ground; non stationary; benign	moderate	moderate	negligible	5 to 100*	-40 to +45	low	
Airborne; benign	low	low	negligible	510 100	-40 to +45	low	
Airborne; moderate	low	low	negligible	5 to 100	-40 to +45	low	
Naval; benign	very low	low	negligible	5 to 100	-40 to +45	low	
Ground; non stationary; severe	high	moderate	low	5 to 100	-40 to +70	moderate	
Airborne; severe	high	moderate	high	5to-100	-65 to +85	high	
Naval; severe	moderate	high	high	10 to 100	-40 to +70	high	
Airborne; extremely severe	high	moderate	high	5 to 100	-65 to +85	high	
Satellite; launch	low	moderate	low	0 to 50	-40 to +20	high	
Satellite ; Orbit	very low	moderate	low	0	-40 à +65	moderate	
* 40 to 70 on board trains	(railway equipment)	•	•			

5.3 Electrical environment conditions

Reliability is also heavily dependent on electrical environment conditions (voltage and current overloads). This applies in particular to a component connected to interface circuits between an electronic circuit board and the outside environment (another equipment, especially if remotely located).

First priority is to protect the exposed components appropriately (by a system of protection comprising components designed to resist overload conditions). However, it is often found that the reliability of exposed and protected components does not match that of components located "at the heart" of an equipment. Electrical environment conditions for the active components have therefore been included (bearing in mind that the effect of residual overloads after a protection system is of concern.

The influence of the electrical environment for other families (some passive components), might equally be applied.

5.4 Validity model according to environment

Failures analysis undertaken on field failed active devices, during the period 1992 to 2001, have shown that:

- For the "ground; stationary; weather protected" environment, there is no package related defects, and nothing coming from the mounting process.
- For "ground; stationary; non-weather protected", "ground non-stationary; severe" and "airborne benign" environments, the main observed defects are caused by thermomechanical constraints applied to components mounted on PCBs. The failure rate related to the humidity is insignificant (for active components, especially since the generalization of the nitride based passivations). Furthermore, in these studied environments no defect related to mechanical shocks or to vibrations to chemical contamination has been observed. Consequently, these failure mechanisms have not been taken into account in the models.

Therefore, to use these models correctly, it is necessary to make appropriate qualification tests to verify these hypotheses for the considered environment. Plastic encapsulated devices are, in most of the described environments in this report, insensitive to shock and vibration.

Furthermore, for the "ground; stationary; non weather protected", it is necessary to ensure that there is no condensation on cold parts of the equipment (especially for equipment having a standby mode), and also there is no streaming on the equipment itself, this, to avoid any corrosion phenomenon.

5.5 Components choice

It is the responsibility of the manufacturer to guarantee the life duration specified by the final user and that components used in equipment are compatible with the environment. Therefore, premature usury phenomena shall not occur, during the useful life period of the equipment in normal utilization conditions prescribed by the final user (see 4.2.1.3).

However some components may have limited life duration, but a preventive maintenance has to be nevertheles indicated to the final user (see 4.2.1.3).

It is the responsibility of the component manufacturer to provide qualification and evaluation results of degradation mechanisms to the manufacturer and to insure that the appearance of usury mechanisms will be postponed beyond the useful life period of the equipment in normal utilization conditions, as prescribed by the final user.

Consequently, the equipment manufacturer has to choose components manufacturers who have the best "commercial practice" concerning quality, those who are ISO 9000 certified, practice the statistical process control and are under qualified manufacture line approval (or able to be).

In these conditions, there are no longer any reasons to take into consideration quality factors, and the infant mortality period related to new component technology is neglected only qualified productions lines and stabilized ones are considered here.

When an equipment manufacturer uses a new component technology, and when such a manufacturer has not been able to justify the life duration in normal use conditions of its device, the equipment manufacturer has to undertake tests allowing justification of the life duration of this component to the final user.

Learning during the deployment phase of new equipment 5.6

Models retained in this report allow for calculation of an electronic card to reach a reliability objective in its stabilised production phase. However, the operational reliability follow up of a newly developed electronic card, function of its deployment in the field, shows that there is a more or less long learning period, according to the improvement of the components implementation on the PCB and the components choice rectification for those having problem in the field (see Figure 1).

Each manufacturer has to calibrate the learning period according to his own experience. However experimentally, on many electronic cards and with several manufacturers, the ratio between the failure rate during the starting period of deployment and the one in the stabilized period, is between 2 and 3.

Consequently, as soon as the observed failure rate (out of non-defective removed cards: NDF) during the beginning of the deployment of an electronic card exceeds three times the estimated calculated value, a corrective action has to be taken.

5.7 Mission profile

Estimated reliability calculation of equipment has to be done according to its field use conditions. They are defined by the mission profile.

A mission profile has to be decomposed in several homogeneous working phases, on the basis of a typical year of use. The following phases are to be considered:

- on/off working phases with various average outside temperatures seen by the equipment;
- permanent-working phases with various average outside temperature swings seen by the equipment;
- storage or dormant phases mode with various average outside temperature swings seen by the equipment.

For a reliability calculation, the time quantity which has to be taken into account on a field return coming from an equipment population, is therefore, the number of calendar hours of the installed population of this equipment, including working as well as storage or dormant hours.

Parameters necessary to define the mission profile of equipment are the following:

- $(t_{ae})_{i:}$ average outside ambient temperature surrounding the equipment, during the i^{th} phase of the mission profile.
- $(t_{ac})_{i:}$ average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled (or the one of the component considered as the most critical for reliability, during the i^{th} phase of the mission profile).
- τ_i : annual ratio of times for the PCB, in permanent working mode with supply, and at the $(t_{ac})_i$ temperature.
- τ_{on} : total annual ratio of time for the PCB, in permanent working mode with supply ($\tau_{on} = \sum_{i=1}^{y} \tau_i$).
- $au_{o\!f\!f}$: total annual ratio of time for the PCB, in non working or storage/dormant modes. ($au_{o\!n} + au_{o\!f\!f} = 1$).
- n_i : annual number of thermal cycles seen by the components of the PCB, corresponding to the ith phase of the mission profile with an average swing ΔT_i .
- ΔT_i : average swing of the thermal variation seen by the components of the PCB, corresponding to the ith phase of the mission profile.

For an on/off phase the following relation exists: $\Delta T_i = \left[\frac{\Delta T_j}{3} + (t_{ac})_i\right] - (t_{ae})_i$

With ΔT_j : increase of the internal temperature of the component as compared to \mathbf{t}_{ac} , during a τ_{on} phase. (This is the junction temperature increase for an integrated circuit or a discrete device; this is the surface temperature increase for a passive device.) Only the third of its value has to be taken into account for a ΔT_i calculation, taking into account the fact that thermomechanical stresses induce defects at the solder joint of the components, but also at the wire bounding of the die. The temperature to be taken into account is therefore a compromise on the internal temperature increase of the component. Some thermal simulations have shown that a third of this value is a good compromise.

 $(t_{ae})_i$: for the French climate, 11 °C is used for "Ground; stationary; non weather protected" ("ground; fixed" of MIL-HDBK-217F) environment, and 14 °C for the world-wide climate.

 $(t_{ac})_{i:}$ is obtained, taking the mean value of the temperature increase observed on the PCB near the components as compared to the external temperature of the equipment, and adding the value of $(t_{ae})_i$ for the considered phase.

t_{ac} = average temperature increase of the PCB near components + t_{ae}

For a storage or permanent working phase: ΔT_i = average of the difference between maximal and minimal temperatures per cycle seen by the equipment on the considered phase. If this value is below 3 °C, the value becomes ΔT_i =0, taking into account the fact that for these conditions, thermomechanical stresses are thermally independent in the COFFIN-MANSON equation.

For the majority of applications, one day corresponds to one cycle, and ΔT_i corresponds to the annual daily mean of the daylight / night temperature difference seen by the equipment park in the considered climate. For the French climate, ΔT_i =8 °C. For the word-wide climate, ΔT_i =10 °C.

A daily temperature variation is always superimposed on a permanent working phase according to the climatical environment of the equipment. For on/off working this daily variation is also applied on the equipment, however, only the greater temperature variation has to be taken into account, because the highest one has the main effect on the reliability of the device packages and on the mounting process.

Climate type t_{ae} night t_{ae} day-light t_{ae} mean day-light/night ΔT_i day-light/night

World-wide $5 \, ^{\circ}\text{C}$ $15 \, ^{\circ}\text{C}$ $14 \, ^{\circ}\text{C}$ $10 \, ^{\circ}\text{C}$ France $6 \, ^{\circ}\text{C}$ $14 \, ^{\circ}\text{C}$ $11 \, ^{\circ}\text{C}$ $8 \, ^{\circ}\text{C}$

Table 8 - Table of climates

5.8 Mission profile examples

Mission profiles described here in after are given as examples.

5.8.1 Telecoms

There is only one annual working phase to consider for a permanent working.

Table 9 is given for a permanent working. Values for "ground; stationary; non weather protected" (Ground; fixed for Mil-HDBK-217F) are given for the French climate, but other climates can be calculated.

Environment types	Equipment types	(t _{ae}) _i	(t _{ac}) _i	$ au_1$	τ_{on}	$ au_{o\!f\!f}$	n_1	ΔT_1
		°C	°C				cycles/ye ar	°C/cycle
Ground; benign: (G _B)	switching	20	30	1	1	0	365	0
Ground; benign: (G _B)	Transmitting	20	40	1	1	0	365	0
Ground; fixed: (G _F)	Transmitting and access	11	31	1	1	0	365	8

Table 9 - Mission profiles for Telecom

5.8.2 Military and civilian avionics

Mission profiles described hereinafter correspond to the MIL-HDBK-217F "Airborne; Inhabited; Cargo" environment.

Several working phases are considered.

- The working rate considers only one internal working temperature for the equipment, and takes into account the total hours of annual working.
- Three phases of thermal cycling are taken in account:
 - . Phase 1: first daily switch on;

- . Phase 2: switch-off between two flights, while air conditioning of the plane is working;
- . Phase 3: plane on the ground, not working.

For more complex mission profiles, all the temperature's gradient seen by components during the various different working and storage cycles have to be taken into account.

Table 10 - Mission profiles for military and civil avionics

Mission profile phases		Annual working rate for the equipment		First daily switching on		Switch-off Between two fights		Ground Non-working		
Plane types	(t _{ac}) ₁	τ_1	τ_{on}	$ au_{o\!f\!f}$	n_1	ΔT_1	n_2	ΔT_2	n_3	ΔT_3
	°C				cycles/year	°C/cycle	cycles/year	°C/cycle	cycles/year	°C/cycle
A340	40	0.61	0.61	0.39	330	$\frac{\Delta Tj}{3}$ +30	330	$\frac{\Delta Tj}{3}$ +15	35	10
A330	40	0.54	0.54	0.46	330	$\frac{\Delta Tj}{3}$ +30	660	$\frac{\Delta Tj}{3}$ +15	35	10
A320	40	0.58	0.58	0.42	330	$\frac{\Delta Tj}{3}$ +30	1155	$\frac{\Delta Tj}{3}$ +15	35	10
Regional plane	40	0.61	0.61	0.39	330	$\frac{\Delta Tj}{3}$ +30	2970	$\frac{\Delta Tj}{3}$ +15	35	10
Business plane	40	0.22	0.22	0.78	300	$\frac{\Delta Tj}{3}$ +30	300	$\frac{\Delta Tj}{3}$ +30	65	10
Weapons plane	60	0.05	0.05	0.95	200	$\frac{\Delta Tj}{3}$ +50	0	0	165	10
Military cargo	50	0.05	0.05	0.95	250	$\frac{\Delta Tj}{3}$ +40	0	0	115	10
Patroller	50	0.09	0.09	0.91	300	$\frac{\Delta Tj}{3}$ +40	0	0	65	10
Helicopter	50	0.06	0.06	0.94	300	$\frac{\Delta Tj}{3}$ +40	0	0	65	10

5.8.3 Automotive

Mission profiles described hereinafter correspond to the MIL-HDBK-217F "Ground; mobile" environment.

Several working phases are considered..

- The working rates consider three different internal working temperatures for the equipment, and take into account the annual working hours for each of these temperatures. The overall working time is estimated to be 500 h.
- Two thermal cycling are considered:

Phase 1: 2 night starts;

Phase 2: 4 day light starts.

- Phase 3: non-used vehicle, dormant mode 30 days per year.

Table 11 - Mission profiles for automotive

Mission profile phases	Tem	ıp. 1	Tem	ıp. 2	Tem	ıp. 3		tios /off	2 nig	ht starts	1	ay light tarts		used hicle
Application types	(t _{ac})₁ °C	$ au_1 $	(t _{ac})₂ °C	2	(t _{ac})₃ °C	τ ₃	τ_{on}	$ au_{o\!f\!f}$	n ₁ cycles/ year		n ₂ cycles/ year	°C/cycle	n ₃ cycles/ year	ΔT_3 °C/cycle
Motor control	32	0.02	60	0.01 5	85	0.02 3	0.05 8	0.94 2	670	$\frac{\Delta Tj}{3}$ +55	1340	$\frac{\Delta Tj}{3}$ +45	30	10
Passenger compartment	27	0.00 6	30	0.04 6	85	0.00 6	0.05 8	0.94 2	670	$\frac{\Delta Tj}{3}$ +30	1340	$\frac{\Delta Tj}{3}$ +20	30	10

6 Equipped printed circuit boards and hybrid circuits (IEC 60326)

6.1 Failure rate calculation of an equipped printed circuit board

Equipped board failure rate: $(A+B) \times 10^{-9} / hour$, with: A = connections and components; B = board

$$\mathbf{A} = \sum \lambda_s + \sum \lambda_f + \left(1 + 3.10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68}\right]\right) \times \sum \lambda_d$$

Surface mounted components + Through hole components + Miscellaneous connections

 λ_S : Failure rate of each particular surface mounted component (with its influence factors) expressed in $10^{\text{-9}}/\text{hour}^*.$

 λ_f : Failure rate of each trough hole component (with its influence factors) expressed in 10^{-9} /hour *.

Mathematical expression of the	$n_i \leq 3$	8760 Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $(\pi_n)_i$	$n_i > 1$	8760 Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cy	cles w	ith the amplitude	ΔT_i
For an on/off phase		$\Delta T_i = \left(t_{ac}\right)_i - \left(t_{ae}\right)_i$	$)_i$
For a permanent working phase, storage or dormant	į	ΔT_i =average per variation, during mission profile.	cycle of the (t _{ae}) the i th phase of the

-	
Miscellaneous connections	λ_d FIT
Manual soldering	0.5
Connecting with insulating	0.5
transfer	0.3
Crimp	0.01
Wrapped connection	0.006
Pressfit connection	

 $(t_{ae})_i$: average external ambient temperature of the equipment, during the i^{th} phase of the mission pi $(t_{ae})_i$: average internal ambient temperature, near the components, where the temperature gradient is cancelled.

 $\left(\pi_n
ight)_i$: ith influence factor related to the annual cycle number of thermal variation, seen by the bowith an amplitude of ΔT_i .

 ΔT_i : ith thermal variation amplitude of the mission profile.

$$\mathbf{B} = 5.10^{-3}.\pi_{t}.\pi_{c} \left[N_{t} \sqrt{1 + \frac{N_{t}}{S}} + N_{p}.\frac{1 + 0.1\sqrt{S}}{3}.\pi_{L} \right] \times \left(1 + 3.10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n} \right)_{i} \times \left(\Delta T_{i} \right)^{0.68} \right] \right)$$

 π_{t}

Number of layers influence					
Number of layers	π_{C}				
≤ 2	1				
> 2	$0.7\sqrt{\text{(number of layers)}}$				

 N_t = Total number of holes (for through holes components and vias)

S = Board surface (cm²)

$N_p = number of tracks$

Default value:

 $N_p = \frac{\text{(total number of connections)}}{2} = \frac{\sum N_s + \sum N_f}{2}$

 N_S : number of connections for each particular surface mounted component.

 N_f : number of connections for each particular through hole component.

Influence of the track width							
Predominant track width (mm)	0.56	0.3	0.23	0.15	0.10	0.08	
π_L	1	2	3	4	5	6	

^{*} If the failure rate is 3.10^{-9} / h, take λ_s (or λ_f) =3

6.2 Hybrid circuits

Hybrid circuit failure rate: $(A+B) \times 10^{-9} / hour$

A = Add on components and packages; B = substrate and deposited

components

$$\mathbf{A} = \boxed{\sum \lambda_{S} + \left(0.023 \times \left(\left|\alpha_{S} - \alpha_{C}\right|\right)^{1.68}\right) \times \left(2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68}\right]\right) \times 0.2 \times \pi_{p} \times D^{1.57}}$$

Add on components + package

 λ_S : Failure rate of each add on component expressed in 10^{-9} /hour, (with its influence factors)*

* If the failure rate is 3.10^{-9} / h, take $\lambda_s = 3$

D: hybrid circuit diagonal, or distance between farest pins, in millimeters.

	Linear thermal expansion coefficient of the mounting substrate of the hybrid in ppm/°C
α_C	Linear thermal expansion coefficient of the hybrid substrate in ppm/°C

Connecting type	π_p
Single in line	1
Double in line	2
Peripheral	4

Mathematical expression of the	l '	≤8760 cles/year	$\left(\pi_{n}\right)_{i}=n_{i}^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of α	cycl	es with the	e amplitude ΔT_i
For an on/off phase	$\Delta T_i = (t_{aa})$	$(x_i)_i - (t_{ae})_i$	
For a permanent workin phase, storage or dorma	the (t _{ae}) v	rage per cycle of variation, during ase of the mission	

$$\mathbf{B} = \left\{ 5 \times 10^{-3} \pi_c \left[N_t \sqrt{1 + \frac{N_t}{S}} + N_p \frac{1 + 0.1 \sqrt{S}}{3} \pi_L + 0.8 N_x \right] + \pi_t \left[\sum (0.01 R_e + 0.04 R_m) \pi_i + 0.1 C \right] \right\} \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68} \right] \right)$$

interconnections, crossovers

deposited components

π_t

10

1

0,1

0 10 20 30 40 50 60 70

Ambient temperature

Mathematic	Mathematical expression for π_t					
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_A} \right)$	with t_A : ambient temperature					

Number of layers influence					
Number of layers	π_{C}				
≤ 2	1				
> 2	$0.7\sqrt{\text{(number of layers)}}$				

S = Substrate surface (cm²) N_t = number of holes for interconnections

C : Number of	: Number of deposited capacitors				
R _e : Number of	: Number of thick film resistors				
having	a same factor π_i *				
R _m : Number of	thin film resistors				
having	a same factor π_i *				

Precision factor *	π_{i}
Tolerance > 5%	1
Tolerance from 1 to 5%	1.5
Tolerance < 1%	2

*: Count apart resistors according to π_i

 N_p = number of tracks

Default value: $= \frac{\text{(number of components connections)}}{2}$

N_x: number of crossover

Tracks width influence						
Predominant width (mm) 0,56 0,35 0,23 0,15 0,10 0,08					0,08	
π_{L}	1	2	3	4	5	6

7 Integrated circuits

7.1 Validity domain

The end of life period of an integrated circuit is supposed to appear far beyond the utilization period of the equipment. This assumption has to be assessed by a preliminary qualification.

The main failure mechanisms to assess are following:

- For silicon technologies:
 - electromigration;
 - oxides ageing;
 - hot electrons;
 - charge gain and charge (for the write erase cycles of the various programmable memories).
- For GaAs technologies:
 - gate sink;
 - Ohmic contact degradation;
 - gate and drain lagging;
 - electromigration.
- Packages:
 - thermal fatigue;
 - purple plague.

Estimated failure rates are valid, only if the coldest part temperature of the considered card is over the dew point temperature.

The model does not include the failure rate due to soft errors 1 provoked by the creation of electron-hole pair, on the passage of alpha particle emitted by the package materials. This failure rate due to soft errors may be of the same order of magnitude as the intrinsic failure rate, especially for dynamic memories.

For interface circuits, the models include a failure rate considered to be constant, due to external electrical influences. This failure rate depends on the electrical environment of the equipment, given that the equipment does have primary or secondary protections, depending on the state of the art of the period observed. (For the purposes of this report, interface circuits are taken to be circuits or devices connecting the equipment to the outside environment.)

7.2 Junction temperature evaluation of an integrated circuit

By default, the following simplified method will be used:

7.2.1 The junction temperature is given according to the average power dissipated in the integrated circuit by one of the following equations:

$$t_{j} = t_{a} + P \times R_{ja}$$
$$t_{j} = t_{c} + P \times R_{jc}$$

in which

t_a is the ambient temperature around the integrated circuit (°C);

t_c is the case temperature of the integrated circuit (°C);

t; is the junction temperature of the integrated circuit (°C);

 $R_{_{\rm ia}}$ $\;\;$ is the junction-ambient thermal resistance of the integrated circuit (°C/W);

 $R_{\text{ i. }}$ $\;\;$ is the junction-case thermal resistance of the integrated circuit (°C/W);

P is the average power dissipated by the integrated circuit (Watt).

¹ When the function is fully retrievable without outside intervention.

NOTE The following equation applies:

Junction-ambient thermal resistance = junction-case thermal resistance + case-ambient thermal resistance

7.2.2 Evaluating thermal resistance

7.2.2.1 Preferred method

The preferred method is to take the thermal resistance value specified or published by the manufacturers.

7.2.2.2 Default method

By default, the values given in table 12 will be taken according to S and K, where:

S: is the number of pins of the package.

K: is the cooling factor given, according to the velocity of air V in m/s, by the following equation:

$$K = \frac{0.59V + 1.11}{V + 0.7}$$

Practical values of K are given in Table 13.

Table 12 - Thermal resistance as a function of package type, the pin number and airflow factor

	Package thermal resistance of integrated circuits as a function of:			
	S: number of pins K : airflow factor (se	e table 13)		
	Junction-case thermal resistance R_{jc} (°C/W)	Junction-ambient thermal resistance R_{ja} (°C/W)		
DIL ceramic package	$0.23 \left(10 + \frac{1520}{S+3} \right)$	$(0.23 + 0.66K)\left(10 + \frac{1520}{S+3}\right)$		
DIL plastic package	$0.33 \left(10 + \frac{1520}{S+3} \right)$	$(0.23 + 0.66K)\left(10 + \frac{1520}{S+3}\right)$		
PLCC plastic package	$0.28 \left(15 + \frac{1600}{S+3}\right)$	$(0.28 + 0.72K) \left(10 + \frac{1600}{S+3}\right)$		
SOJ and SOL plastic package	$0.28 \left(15 + \frac{1760}{S+3}\right)$	$(0.28 + 0.72K) \left(10 + \frac{1760}{S+3}\right)$		
TSOP plastic package	$0.4\left(20 + \frac{2500}{S+3}\right)$	$(0.4 + 0.6K) \left(20 + \frac{2500}{S+3}\right)$		
PGA ceramic package	$0.33 \left(10 + \frac{1440}{S+3} \right)$	$(0.33 + 0.66K) \left(10 + \frac{1440}{S+3}\right)$		
QFP plastic package	$0.4 \left(27 + \frac{2260}{S+3} \right)$	$(0.4+0.6K)\left(27+\frac{2260}{S+3}\right)$		
BGA plastic package	$0.4 \left(6.6 + \frac{1.1 \times 10^6}{S^2} \right)$	$(0.4 + 0.6K) \left(6.6 + \frac{1.1 \times 10^6}{S^2}\right)$		

Table 13 - Typical values of the air flow speed V, and the air flow factor K

	V (m/s)	К
Natural convection	0.15	1.4
Slightly assisted cooling	0.5	1.2
Fan assisted cooling	1	1
Forced cooling	4	0.7

7.2.2.3 Evaluating the average power dissipated by an integrated circuit P (Watt)

Preferably use the real average power dissipated by the integrated circuit. By default, use the following method:

7.2.2.3.1 CMOS family

7.2.2.3.1.1 CMOS digital circuit, other than memory and 74 ACT family circuits

Calculate:
$$P = \frac{P_1 \big(P_1 + 3.5 \big)}{3 P_1 + 5}$$

The value of P_1 is calculated from one or the other following formulas:

a) If an equivalent capacitance C_{pd} is specified:

$$P_1 = (V_{cc}^2 \times f) \times [C_{pd} \text{ (number of individual functions *)} + C_L \text{ (number of output pin)}] \times 10^{-6}$$
NOTE 2

b) If a current consumption I_S is specified at a specified frequency f_S (MHz):

$$P_1 = V_{cc} I_s f/f_s + V^2_{cc} f C_L (number of outputs) \times 10^{-6}$$

where

P₁ is the maximum power (W);

V_{cc} is the supply voltage (V);

f is the working frequency (MHz);

 C_{pd} is the equivalent capacitance for calculating dissipated power for each individual function, (pF);

C_L is the load capacitance on outputs, for each output, (pF);

 I_S is the specified value of the consumption current at a specified frequency f_S , and when outputs are not charged;

f_S is the value of the specified frequency for the consumption (MHz).

NOTE 1 - In case b, the number of individual functions has disappeared ,because the consumption current is only specified for circuits with one complex elementary function.

NOTE 2 - Sometimes the working frequency f is assimilated to $\ f_S$.

The default values for V_{cc} , C_{L_i} , C_{pd} , f, are as follows:

 V_{cc} is the 5 V or 3 V

C_L is the 50 pF

f is the 30 MHz for HC family; 50 MHz for AC family.

 $C_{pd}\,$ according to specification or catalogue.

7.2.2.3.1.2 CMOS digital circuits of the 74 ACT family

Calculate:

$$P = \frac{P_1(P_1 + 3.5)}{3P_1 + 5}$$

with

$$\boxed{P_1 = 1,6.10^{-3} \times V_{cc} \times \left(\text{number of input pins}\right) + V_{cc}^{2} \times f \times 10^{-6} \left[C_{pd} \times \left(\text{number of individual functions} *\right) + C_{L} \times \left(\text{number of output pins}\right)\right]}$$

The default values for V_{cc} , C_{L} , C_{pd} , f, are as follows:

 V_{cc} is the 5 V;

C_L is the 50 pF;

C_{pd} according to specification or catalogue;

f is the 50 MHz.

7.2.2.3.1.3 Bipolar, gallium arsenide, NMOS digital circuits

Calculate:

$$P = \frac{P_M(P_M + 3.5)}{3P_M + 5}$$
 (in Watts)

where $P_M = maximum continuous power = V_{cc} typical \times I_{cc} maximum$

7.2.2.3.1.4 Circuits with a standby mode (for example: MOS memories)

Calculate:

$$P = P_p \frac{d}{100} + P_r \times \left(1 - \frac{d}{100}\right)$$

in which

d is the activation ratio as a percentage;

P_p is the worst case power consumption (specified or published);

 P_r is the power consumed in standby mode: $P_r = (V_{cc} typical) \times (I_{cc} stand by)$.

7.3 The reliability model

7.3.1 General form of the model and definitions

• For an active device, the failure rate is noted λ and breaks down as:

$$\lambda = \lambda_{die} + \lambda_{package}$$

in which

$$\lambda_{die} = \lambda_{thermal\ effects} + \lambda_{EOS\ effects}$$

and

$$\lambda_{package} = \lambda_{thermomechanical\ effects}$$

TR 62380 - 31 -

$$\lambda = \left(\frac{\lambda_{1} \times N \times e^{-0.35 \times a} + \lambda_{2}}{\lambda_{the}} \right) \times \left\{ \frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\} + \left\{ \underbrace{2.75 \times 10^{-3} \times \pi_{\alpha} \times \left(\sum_{i=1}^{z} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68}}_{\lambda_{package}} \right) \times \lambda_{3}}_{\lambda_{overstress}} \right\} + \left\{ \underbrace{\pi_{I} \times \lambda_{EOS}}_{\lambda_{overstress}} \right\} \times 10^{-9} / h$$

NECESSARY INFORMATION:

 $(t_{ae})_i$: average outside ambient temperature surrounding the equipment, during the i^{th} phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $\lambda_1 \ \ \$: per transistor base failure rate of the integrated circuit family. See Table 16.

 λ_2 $\ \ \$: failure rate related to the technology mastering of the integrated circuit. See Table 16.

N: number of transistors of the integrated circuit.

: [(year of manufacturing) - 1998].

 $\left(\pi_t
ight)_i$: i^{th} temperature factor related to the i^{th} junction temperature of the integrated circuit mission profile.

 τ_i : ith working time ratio of the integrated circuit for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the integrated circuit. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 au_{off} : time ratio for the integrated circuit being in storage (or dormant). With $au_{on} + au_{off} = 1$

 π_{α} : influence factor related to the thermal expansion coefficients difference, between the mounting substrate and the package material.

 $(\pi$, $)_i$: i^{th} influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

 λ_3 : base failure rate of the integrated circuit package. See Table 17a and 17b

 π_I : influence factor related to the use of the integrated circuit (interface or not).

 λ_{EOS} : failure rate related to the electrical overstress in the considered application...

Technological structure	Temperature factor $\pi_{_t}$
MOS BiCMOS (low voltage)	$e^{A\left(\frac{1}{328} - \frac{1}{273 + t_j}\right)}$ A=3480; (Ea=0.3 eV)
Bipolar BiCMOS (high voltage)	$e^{A\left(\frac{1}{328} - \frac{1}{273 + t_j}\right)}$ A=4640; (Ea=0.4 eV)
AsGa Numerical	$ \begin{bmatrix} A \left(\frac{1}{373} - \frac{1}{273 + t_j} \right) \\ A = 3480 ; (Ea = 0.3 \text{ eV}) \end{bmatrix} $
AsGa MMIC	$e^{\left[A\left(\frac{1}{373} - \frac{1}{273 + t_j}\right)\right]}$
	A=4640 ; (Ea=0.4 eV)
$t_{\cdot} = \text{Junction t}$	emperature in °C.

Mathematical expression of the influence factor Π_{α}	$\pi_{\alpha} = 0.06 \times \left(\left \alpha_{S} - \alpha_{C} \right \right)^{1.68}$
Mismatch between substrate and package for the thermal expansion coefficient	$ \alpha_S - \alpha_C $
α_S	See Table 14
α_C	See Table 14

Interface circuits Typical calculated values			λ_{EOS} FIT	$\pi_{_I}$
Function	Electrical en	Electrical environment		
	Computer		10	1
		switching	15	1
Interfaces Telecoms	transmitting, access, subscriber cards	40	1	
		subscriber equipment	70	1
	Railways, payphone		100	1
	Civilian avionics (on board calculators)		20	1
	Voltage supply, Converters		40	1
Non Interfaces	All electrical enviro	nment	-	0

Mathematical expression of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{n}\right)_{i}$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cyc	cles with the a	amplitude ΔT_i
For an on/off phase	$\Delta T_{i} = \left[\frac{\Delta T_{j}}{3}\right]$	$-+(t_{ac})_i$ $-(t_{ae})_i$
For a permanent working phase, storage or dormant		age per cycle of the (t _{ae}) during the i th phase of the ofile.

Table 14 – Thermal expansion coefficients $\alpha_{\scriptscriptstyle S}$ and $\alpha_{\scriptscriptstyle C}$.

Linear thermal expansion coefficients	Material type	Values in ppm/°C
	Epoxy Glass (FR4, G-10)	16
$\alpha_{\scriptscriptstyle S}$ (Substrate)	PTFE Glass (polytetrafluoroethylene)	20
	Flexible substrate (Polyimide Aramid)	6.5
	Cu/Invar/Cu (20/60/20)	5.4
	Epoxy (Plastic package)	21.5
$\alpha_{\scriptscriptstyle C}$ (Component)	Alumina (ceramic package)	6.5
	Kovar (Metallic package)	5

Table 15 – Failure distribution (for non interfaces integrated circuits)

Environment type	Stuck at Valim in %	Stuck at ground %	Open circuit %
Ground; Benign	50	50	0
Ground; Fixed	5	5	90
Ground; mobile			

⁻ For interface circuits, quasi totalities of defects are open circuits.

Calculation example:

A microprocessor failure rate has to be calculated for an "automotive passenger compartment" mission profile. This microprocessor has the following characteristics:

Manufacturing year: 1999 a=1999-1998=1 (See necessary information section)

Technology: numerical CMOS $\lambda_1=3.4\times10^{-6}$ and $\lambda_2=1.7$ (See Table 16)

Transistor number: 1.5x10⁶

Dissipated power by the component : 0.5 W

PQFP 80 pins package α_C =21.5 (See Table 14)

Mounting substrate FR4 $\alpha_{S}=16$ (See Table 14) Then $\pi_{\alpha}=1$

This circuit is not an interface. Then $\pi_I = 0$.

Temperature increase related to fact that the circuit works, is given with natural convection (then K=1.4) by the following formulas. Junction – ambient thermal resistance for the PQFP package is given in table 12:

$$RTH_{ja} = (0.4 + 0.6 \times 1.4) \times \left(27 + \frac{2260}{80 + 3}\right) = 67^{\circ}C/W$$
 Then $\Delta T_j = 67 \times 0.5 = 34^{\circ}C$

Mission profile from table 6 is following:

$$(t_j)_1 = 27 + 34 = 61 \text{ °C}$$
 then $(\pi_t)_1 = e^{\left[\frac{3480\left(\frac{1}{328} - \frac{1}{273 + 61}\right)\right]}{273 + 61}\right]} = 1.21$

$$(t_j)_2 = 30 + 34 = 64 \text{ °C}$$
 then $(\pi_t)_2 = e^{\left[\frac{3480\left(\frac{1}{328} - \frac{1}{273 + 64}\right)\right]} = 1.33$

$$(t_i)_3 = 85 + 34 = 118 \text{ °C}$$
 then $(\pi_t)_3 = e^{\left[3480\left(\frac{1}{328} - \frac{1}{273 + 118}\right)\right]} = 5.5$

 $(t_{ae})_1$ is 14°C for world wide climate

 $(t_{ac})_1$ average temperature during the working phases is : $\frac{0.006 \times 27 + 0.046 \times 30 + 0.006 \times 85}{0.058} = 35^{\circ}C$

For the night starts phase, t_{ae} is $5^{\circ}C$; for the day light starts phase t_{ae} is $15^{\circ}C,$ then :

$$\Delta T_{1} = \left(\frac{34}{3} + 35\right) - 5 = 41$$

$$\Delta T_{2} = \left(\frac{34}{3} + 35\right) - 15 = 31$$

$$\Delta T_{3} = 10$$

$$\lambda = \left(\underbrace{\frac{34 \times 10^{-6} \times 1.5 \times 10^{6} \times e^{-0.35 \times 1} + 3.4} \times \frac{1.21 \times 0.006 + 1.33 \times 0.046 + 5.5 \times 0.006}{0.058 + 0.942}}_{\lambda E.}\right) + \underbrace{\frac{2.75 \times 10^{-3} \times 1 \times \left((670)^{0.76} \times (41)^{0.68} + (1340)^{0.76} \times (31)^{0.68} + (30)^{0.76} \times (10)^{0.68}\right) \times 10.2}_{\lambda \text{ overstress}}}_{\lambda \text{ overstress}}\right) \times 10^{-9} / \text{ is the second of the second$$

The failure rate for this component will be 126 FIT for this mission profile.

Table 16 – Values of $\lambda_1 and \; \lambda_2$ for integrated circuits families

ABBREVIATIONS	TYPES	N Is the representative number of transistors	λ ₁ in FIT	$\begin{array}{c} \lambda_2 \\ \text{in} \\ \text{FIT} \end{array}$
Silicon: MOS : Standard	circuits (3)			
ROM DRAM/VideoRAM/AudioRAM High speed SRAM, FIFO Low consumption SRAM	Digital circuits, Micros, DSP Linear circuits Digital / linear circuits (Telecom, CAN, CNA, RAMDAC,) MEMORIES: Read only memory Dynamic, Read Access Memory Static Read Access Memory - First in First out register; ("mixed MOS") Static Read Access Memory - Low consumption; (CMOS)	4 per gate Actual number Actual number 1 per bit 1 per bit 4 per bit 6 per bit	3.4 10 ⁻⁶ 1.0 10 ⁻² 2.7 10 ⁻⁴ 1.7 10 ⁻⁷ 1.0 10 ⁻⁷ 1.7 10 ⁻⁷ 1.7 10 ⁻⁷	1.7 4.2 20 8.8 5.6 8.8 8.8
Double access SRAM EPROM,UVPROM,REPROM OTP FLASH EEPROM, flash EEPROM	Double Access McIndry - Dow Consumption, (CMOS) Double Access Static RAM Electrically programmable, UV erasable - Read only memory One time programmable EPROM Electrically programmable and erasable (block) (1) Electrically programmable and erasable (word) (2)	8 per bit 1 /programmable point 2 /programmable point	$ \begin{array}{c} 1.7 & 10^{-7} \\ 1.7 & 10^{-7} \\ 2.6 & 10^{-7} \\ 6.5 & 10^{-7} \end{array} $	8.8 34 16
(1) Whole memory array or blocks of wo	ords erasable (2) Blocks of words or word erasable (3) MOS include CMOS, HCMO	S, NMOS, technologies	•	
Silicon: MOS : Asic circuit	s			
LCA (RAM based) PLD (GAL, PAL) (2)	Standard Cell, Full Custom Gate Arrays USER PROGRAMMABLE LOGIC DEVICE: Logic Cell Array electrically configured by external memory Electrically Programmable and erasable (AND/OR array)	4 per gate 4 per gate 40 per gate (1) 3 par grid point	1.2 10 ⁻⁵ 2.0 10 ⁻⁵ 4.0 10 ⁻⁵ 1.2 10 ⁻³	10 10 8.8 16
CPLD (EPLD,MAX,FLEX, FPGA, etc)	Electrically Programmable (interconnected macrocells array) (2)	100 per macrocell	2.0 10 ⁻⁵	34
(1) or 4000 per macrocell; (2) EEPROM	I, EPROM, or Antifuse technologies.			
Silicon: Bipolar circuits (1)				
SRAM PROM, PLD (PAL)	Digital circuits Linear circuits (FET, others) MMIC Linear / Digital circuits, low voltage (<30V) Linear / Digital circuits, high voltage(>=30V) MEMORIES – PROGRAMMABLE ARRAYS- GATE ARRAYS: Static read access memories Programmable read only memory One time electrically programmable logic array (AND / OR arrays) Gate arrays	3 per gate Actual number Actual number Actual number Actual number 2.5 per bit 1.2 /, programmable point 1.6 per grid point 3 per gate	6.0 10 ⁻⁴ 2.2 10 ⁻² 1.0 2.7 10 ⁻³ 2.7 10 ⁻² 3.0 10 ⁻⁴ 1.5 10 ⁻⁴ 1.5 10 ⁻⁴ 1.0 10 ⁻³	1.7 3.3 3.3 20 20 1.7 32 32 10
Bipolar include: TTL, MTTL, LST	TL, FET, JFET, ECL, etc technologies.			
Silicon: Bipolar and MO	S circuits (BICMOS)			
SRAM	Digital circuits Linear / digital circuits low voltage (< 6V) Linear / digital circuits, high voltage (>= 6V) and Smart Power Static Read Access Memory Gate arrays	4 per gate Actual number Actual number 4 per bit 4 per gate	1.0 10 ⁻⁶ 2.7 10 ⁻⁴ 2.7 10 ⁻³ 6.8 10 ⁻⁷ 6.4 10 ⁻⁵	20 8.8
Gallium arsenide				
Digital Digital MMIC MMIC	with only normally on transistors. with normally off and normally on transistors. Low noise or low power (< 100mW) microwave circuits. Power (> 100mW) microwave circuits.	5 per gate 3 per gate Actual number Actual number	2.5 4.5 10 ⁻⁴ 2.0 4.0	25 16 20 40

METHOD-1:

Table 17a – λ_3 values for integrated circuits as a function of S (pin number of the package)

Abbreviation	Material type	Description		Pin number: S	λ ₃ in FIT
SO ,SOP:1.27 mm pitch	Epoxy	Plastic Small Outline, L lead; Widths: 3.8 - 7.5 mm		4 to 40	$=0.012\times S^{1.65}$
Power SO	Epoxy	idem SO with heat sink			idem SO
SOJ: 1.27 mm pitch	Epoxy	Plastic Small Outline, J Lead; Width: 10.16	6 mm	28 to 44	$=0.023 \times S^{1.5}$
VSOP: 0.76 mm pitch	Epoxy	Very Small Outline, L Lead; Width: 10.16	Very Small Outline, L Lead; Width: 10.16 mm		$=0.011\times S^{1.47}$
SSOP: 0.65 mm pitch	Epoxy	Shrink Small Outline, L Lead; Width: 10.1	6 mm	8 to 56	$=0.013\times S^{1.35}$
TSSOP: 0.65 mm pitch	Epoxy	Thin Shrink Small Outline, L Lead; Widths	: 4.1 - 6.1 mm	8 to 38	$=0.011 \times S^{1.4}$
TSOP I: 0.55 mm pitch	Epoxy	Thin Small Outline, L Lead on small edge; mm	Length: 11.8	18 to 32	$=0.54 \times S^{0.4}$
TSOP I: 0.5 mm pitch	Epoxy	Thin Small Outline, L Lead on small edge;	Length: 18.4	18 to 32	$=1.0\times S^{0.36}$
TSOP II: 0.8 mm pitch	Epoxy	Thin Small Outline, L Lead on long edge; 10.16mm.	Width:	28 to 54	$=0.04 \times S^{1.2}$
TSOP II: 0,65 mm pitch	Epoxy	Thin Small Outline, L Lead on long edge; 10.16mm.	Width:	34 to 60	$=0.042 \times S^{1.1}$
TSOP II: 0,5 mm pitch	Epoxy	Thin Small Outline, L Lead on long edge; 10.16mm	Width:	34 to 60	$=0.075\times S^{0.9}$
TSOP II: 0,4 mm pitch	Epoxy	Thin Small Outline, L Lead on long edge; Width: 10.16mm		34 to 60	$=0.13\times S^{0.7}$
PLCC: 1,27 mm pitch	Epoxy	Plastic Leaded Chip Carrier, J Lead, all boo	Plastic Leaded Chip Carrier, J Lead, all bodies		$=0.021\times S^{1.57}$
CLCC: 1,27 mm pitch	Alumina	Ceramic Leadless (and Leaded) Chip Carrie	Ceramic Leadless (and Leaded) Chip Carrier, all bodies		idem PLCC
MQUAD: 1,27 mm pitch	Kovar	Metallic Quad Flat Package (PLCC footpris	nt); all bodies		idem PLCC
			5x5 mm ²	32 to 40	1.3
			10x10 mm ²	40 to 60	4.1
			14x14 mm ²	60 to 68	7.2
PQFP, TQFP	Epoxy	Plastic (Thin) Quad Flatpack, L Lead,	14x20 mm ²	68 to 110	10.2
		Bodies defined in following column	28x28 mm ²	110 to 225	23
			32x32 mm ²	225 to 280	29
			40x40 mm ²	280 to 304	42
ED QUAD, Power QUAD	Epoxy	idem PQFP with heat sink (exposed slug)			idem PQFP
CQFP, CERQUAD	Alumina	Ceramic Quad Flat pack			idem PQFP
MQFP, MQUAD	Kovar	Metallic Quad Flat pack			idem PQFP
		•	13.5x15 mm ²	64 to 80	11.4
PBGA	Epoxy	Plastic Ball Grid Array- pas >1 mm.	17.4x19 mm ²	80 to 160	16.6
		Bodies defined in following column	23x23 mm ²	160 to 280	26.6
		3	35x35 mm ²	280 to 400	51.3
SBGA	Epoxy	Shrink BGA-pas 1mm-Corps 42.5x42.5 mn		580	71
SBGA	Ероху	Shrink BGA-pas 1mm-Corps 27x27 mm ²		672	33
CBGA	Alumina	Ceramic Ceramic			idem PBGA
PDIL	Ероху	Palstic Dual In Line		8 to 64	$= 9 + 0.09 \times S$
CDIL, CERDIP	Alumina	Ceramic Dual In Line		8 to 64	$= 9 + 0.09 \times S$
PPGA	Epoxy	Plastic Pin Grid Array		40 to 160	$= 9 + 0.09 \times S$ $= 9 + 0.09 \times S$
	Alumina	Ceramic Pin Grid Array		40 to 160	$=9+0.09\times S$

METHOD-2:

Table 17b – λ_3 values for surface mounted integrated circuits packages as a function of D (package diagonal)

Packages types	Examples	λ_3 in FIT
Two rows connections packages	SO; SOP; SOJ; VSOP; SSOP; TSOP; TSOP I; TSOP II; etc	$=0.024 \times D^{1.68}$ (1)
Peripheral connections packages	PLCC; CLCC; MQUAD; PQFP; TQFP; CQFP; MQFP; etc	$=0.048 \times D^{1.68}(2)$
Matrix connections packages	PBGA; CBGA; SBGA; μBGA; CSP; etc	$=0.073\times D^{1.68}(3)$
Bare die with epoxy drop	COB (chip on board)	$=0.048 \times D^{1.68}$ (4)

Note (1):
$$D = \left[\left(\left(\frac{S}{2} - 1 \right) \times \left(pitch \right) \right)^2 + \left(Width \right)^2 \right]^{\frac{1}{2}}$$

Note (2):
$$D = \left[\left(\left(\frac{S}{4} - 1 \right) \times \left(pitch \right) \right)^2 + \left(Width \right)^2 \right]^{\frac{1}{2}}$$

Note (3):
$$D = \left[(Length)^2 + (Width)^2 \right]^{\frac{1}{2}}$$

Note (4): D report area diagonal

8 Diodes and thyristors, transistors, optocouplers (IEC 60747-xx)

8.1 Evaluating the junction temperature of diodes and transistors

To evaluate the junction temperature of a transistor or diode, the preferred method for critical cases is to measure or calculate on the basis of thermal resistive network models By default, the following simplified method will be used:

The junction temperature is given according to the average dissipated power, by one of the following equations:

$$t_{j} = t_{a} + P \times R_{ja}$$
$$t_{j} = t_{c} + P \times R_{jc}$$

where:

ta is the ambient temperature around the case (°C);

t_c is the case temperature (or socket temperature) (°C);

 t_i is the junction temperature (°C);

 $R_{\rm ia}$ is the Thermal resistance (junction-ambient) of the component (°C/W);

 $R_{\rm ic}$ is the Thermal resistance junction-case or mounting base) (°C/W);

P is the average power dissipated (Watt).

Table 18 gives various thermal resistance values.

The first column gives the junction-case thermal resistance $R_{\rm jc}$ for power components or certain applications (such as use of a heat sink or insertion in a socket).

The second column gives the junction-ambient thermal resistance $R_{\rm ja}$ for components used in conditions of natural cooling, without additional heat sink.

The third column gives the junction-ambient thermal resistance for components soldered in a "surface mount" production line.

Thermal resistance depends largely on the type of case, but also on the size of the die and the internal fixing mode (bonding, hard solder, soft solder): the values given represent realistic examples.

Note the following equation:

(junction - ambient) thermal resistance = (junction - case) thermal resistance + (case - ambient) thermal resistance

Table 18 – Values of λ_B and junction resistances for active discrete components

Package abbreviations	Rjc	Rja	Rja mounted	$\lambda_{\scriptscriptstyle B}$
			component	_
	°C/W	°C/W	°C/W	FIT
TO-18	130	450		1
TO-39	35	200		2.0
TO-92	100	300		1
SOT-23			400	1.0
SOT-143			400	1.0
SOT-223			85	3.4
SOT-323			600	0.8
SOT-343			600	0.8
SOT-346			500	1
SOT-363			600	0.8
SOT-457			350	1.1
SOT-89			125	2.0
SOT-32 (TO-126)	10	100		5.3
SOT-82	10	100		5.3
DPACK (SOT428)			30	5.1
D2PACK			15	5.7
TO-220	3			5.7
TO-218 (SOT-93)	1.5			6.9
TO-247	1			6.9
ISOTOP	0.25			20.0
SOT-90B (optocoupler)		250		4.1
SO-8 (optocoupler)			300	4.5
DO-34 (DO-204AG)		500		2.5
DO-35 (DO-204AH)		400		2.5
DO-41 (DO-204AL) (glass)		150		2.5
DO-41 (DO-204AL) (plastic)		100		1
F 126		70		1
micromelf			600	2.5
SOD-80 (minimelf)			600	2.5
melf			450	5.0
SOD-110			350	0.8
SOD-123			600	1.0
SOD-323			600	0.7
SOD-523			100	0.5
SMA			600	1.8
SMB (DO-214)			75	2.4
SMC (DO-215)			25	5.1
DO-220	3			5.7
SOD-15	-		20	5.1
500-13			20	J. 1

8.2 Low power diodes

Silicon: signal diodes; PIN; fast and slow recovery rectifier diodes; SCHOTTKY; up to 3A;

Thyristors, triacs up to 3A;

Zener diodes up to 1,5W;

Transient voltage suppressors, up to 5 kW (peak, 10µs/1000µs);

Gallium arsenide diodes, up to 0.1W.

MATHEMATICAL MODEL

$$\lambda = \underbrace{\left\{\pi_{U} \times \lambda_{0}\right\} \times \left\{\frac{\displaystyle\sum_{i=1}^{y} (\pi_{I})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}}\right\}}_{\lambda_{div}} + \underbrace{\left\{\underbrace{\left(2.75 \times 10^{-3} \times \sum_{i=1}^{z} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68}\right) \times \lambda_{B}}_{\lambda_{package}}\right\} + \underbrace{\left\{\frac{\displaystyle\sum_{i=1}^{y} (\pi_{I})_{i} \times \tau_{i}}{\lambda_{ouversitress}}\right\}}_{\lambda_{div}} \times 10^{-9} / \lambda_{div}$$

NECESSARY INFORMATION:

(tae); : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 π_{II} : use factor (permanent or not);

 λ_0 : base failure rate of the die. See table on this page;

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the diode mission profile;

 τ_i : i^{th} working time ratio of the diode for the i^{th} junction temperature of the mission profile;

 τ_{on} : total working time ratio of the diode. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 $au_{\it off}$: time ratio for the diode being in storage (or dormant) mode;

 $(\pi_n)_i$: ith influence factor related to the annual number cycles of thermal variations seen by the package, with the amplitude ΔT_i

 ΔT_i : ith thermal amplitude variation of the mission profile; λ_R : base failure rate of the diode package. See Table 18;

 π_I : influence factor related to the use of the diode (protection interface or not);

 λ_{EOS} : failure rate related to the electrical overstress in the considered application.

Protection diodes as interface; typical calculated values				$\pi_{_I}$
Function	Electri	ical environment		
	Computer		10	1
		switching	15	1
Protection	Telecoms	transmitting access, subscriber cards	40	1
Interface		Subscriber equipment	70	1
	Railways, pa	yphone	100	1
	Civilian avid	Civilian avionics (on board calculators)		1
	Voltage supp	oly, Converters	40	1
Non Interfaces	All electrica	l environment		0

		e for tj=40°C sed in FIT)	λο
	signal (<1/	A)	0.07
	Recovery,	rectifier 1A à 3A	0.1
Silicon	Zener (reg	gulator) ≤ 1.5 watt	0.4
diodes		Transient voltage	2.3
	suppressor	Trigger transient voltage	2
Gallium a	rsenide dioc	les (≤0.1 W)	0.3
Thyristor	s, triacs (≤3	3A)	1

Mathematical expression of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cyc	les with the a	amplitude ΔT_i
For an on/off phase	$\Delta T_i = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$	$\left[\frac{\Delta T_{j}}{3} + (t_{ac})_{i}\right] - (t_{ae})_{i}$
For a permanent working phase, storage or dormant	(t _{ae}) var	erage per cycle of the iation, during the i th f the mission profile.

Type of use		$\pi_{\scriptscriptstyle U}$	
Thyristors and	Permanent use*	10	
triacs	Occasional use* (ratio off/on>1)	1	
Other diodes		1	
*: The expression "use" corresponds to a switching condition with component reverse biased part of the time . When the component is forward biased permanently, take Π_U = I.			

Failure	e distribution		
	Zener diodes	Thyristors	Others
Short circuits	70%	20%	80%
Open circuits	20%	20%	20%
Zener voltage drift	10%		
Forward leakage current		60%	
drift			

NOTE 1 Predicted values can be reached by Schottky diodes only if it is a Platinum-Nickel structure.

NOTE 2 Diodes used as a protection function must be specified for this function (voltage suppressor). In the contrary case, the given failure rate λ_{EOS} for the electrical environment might be higher.

8.3 Power diodes

Silicon: Rectifier diodes; fast recovery rectifier diodes; SCHOTTKY; above 3A.

Thyristors, triacs; above 3A. Zener diodes above 1,5 W.

excepted modules

Transient voltage suppressors 5 kW (en crête, 10µs/1000µs).

Gallium arsenide diodes, above 0,1W.

MATHEMATICAL MODEL

$$\lambda = \underbrace{\left\{\pi_{U} \times \lambda_{0}\right\} \times \left\{\frac{\sum_{i=1}^{y} (\pi_{I})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}}\right\}}_{\lambda_{tor}} + \underbrace{\left\{\underbrace{\left(2.75 \times 10^{-3} \times \sum_{i=1}^{z} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68}\right) \times \lambda_{B}}_{\lambda_{package}}\right\} + \underbrace{\left\{\frac{\pi_{I} \times \lambda_{EOS}}{\lambda_{conventress}}\right\}}_{\lambda_{tore}} \times 10^{-9} / B$$

NECESSARY INFORMATION:*

(t_{ac})_i: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

((ac)i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $\pi_{\scriptscriptstyle II}$: use factor (permanent or not).

 λ_0 : base failure rate of the die. See table on this page.

 (π_t) : ith temperature factor related to the ith junction temperature of the diode mission profile.

 τ_i : ith working time ratio of the diode for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the diode. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 au_{off} : time ratio for the diode being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

 λ_B : base failure rate of the diode package. see Table 18.

 π_I : influence factor related to the use of the diode (protection interface or not).

 λ_{FOS} : failure rate related to the electrical overstress in the considered application...

For protection diodes	tj = ambient temperature
other diodes	tj = ambient temp.
$+(R_{th} \times P)$	

Protection diodes as interface; typical calculated values			λ_{EOS} FIT	$\pi_{_I}$
Function	Electri	ical environment		
	Computer		10	1
		switching	15	1
Protection	Telecoms	transmitting access, subscriber cards	40	1
Interface		Subscriber equipment	70	1
	Railways, pa	yphone	100	1
	Civilian avionics (on board calculators)		20	1
	Voltage supp	oly, converters	40	1
Non Interfaces	All electrica	l environment		0

Failure rate for tj=40°C (expressed in FIT)			λο
	Recovery,	rectifier (>3A)	0.7
Silicon	Zener (reg	gulator) >1,5 watt	0.7
Diodes		Transient voltage	0.7
	suppressor	Trigger transient voltage	3
Gallium a	rsenide diod	les (>0,1 w)	1
	s, triacs (>3		3

Mathematical expression of the		≤8760 cles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$		>8760 cles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cyc	les v	with the ar	mplitude ΔT_i
For an on/off phase		$\Delta T_i = \left[\frac{\Delta^2}{3}\right]$	$\left[\frac{T_{j}}{3} + (t_{ac})_{i}\right] - (t_{ae})_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) varia	rage per cycle of the ation, during the i th the mission profile.

Thyristors and Permanent us	e*	
		10
triacs Occasional us		1
Other diodes	,	1

^{*:} The expression " use " corresponds to a switching condition. The component is reverse biased part of the time . When the component is forward biased permanently, take Π_U =1.

Failure distribution					
Zener diodes Thyristors Others					
Short-circuits	70%	20%	80%		
Open-circuits	20%	20%	20%		
Zener voltage drift	10%				
Forward leakage current drift		60%			

NOTE1 Predicted values can be reached by Schottky diodes only if it is a Platinum-Nickel structure.

NOTE 2 Diodes used as a protection function must be specified for this function (voltage suppressor). In the contrary case, the given failure rate λ_{EOS} for the electrical environment might be higher.

8.4 Low power transistors

Silicon, junction, FET, MOS; up to 5 W. Gallium Arsenide; up to 1 W.

MATHEMATICAL MODEL

$$\lambda = \left(\underbrace{\left\{ \pi_{S} \times \lambda_{0} \right\} \times \left\{ \frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\}}_{\lambda_{die}} + \left\{ \underbrace{2.75 \times 10^{-3} \times \left(\sum_{i=1}^{z} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right) \times \lambda_{B}}_{\lambda_{package}} \right\} + \left\{ \underbrace{\pi_{I} \times \lambda_{EOS}}_{\lambda_{overstress}} \right\} \times 10^{-9} / h$$

NECESSARY INFORMATION:

: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile. : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled. $(t_{ac})_i$

 $\pi_{\scriptscriptstyle S}$: charge factor.

 λ_0 : base failure rate of the die. See table on this page.

: i^{th} temperature factor related to the i^{th} junction temperature of the transistor mission profile.

: i eme working time ratio of the transistor for the ith junction temperature of the mission profile. τ_i

: total working time ratio of the transistor. With: $\tau_{on} = \sum_{i=1}^{r} \tau_{i}$

: time ratio for the transistor being in storage (or dormant) mode.

): i^{th} influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

: ith thermal amplitude variation of the mission profile.

 λ_B : base failure rate of the transistor package. See Table 18.

 π_{I} : influence factor related to the use of the transistor (protection interface or not).

 λ_{EOS} : failure rate related to the electrical overstress in the considered application..

Protection transistor as interface; typical calculated values		λ_{EOS}	$\pi_{_I}$	
Function	Electri	ical environment	FIT	
	Computer		10	1
		switching	15	1
Protection	Telecoms	transmitting access, subscriber cards	40	1
Interface		Subscriber equipment	70	1
	Railways, pa	Railways, payphone		1
	Civilian avionics (on board calculators)		20	1
	Voltage supply, converters		40	1
Non Interfaces	All electrica	l environment		0

Mathematical formulas for $\mathcal{\Pi}_t$ and $\mathcal{\Pi}_S$			
$\pi_{_t}$	Bipolar GaAs	$\pi_t = e^{4640(\frac{1}{373} - \frac{1}{t_j + 273})}$ (activation energy: 0.4 ev)	
	MOS IGBT	$\pi_{t} = e^{3480(\frac{1}{373} - \frac{1}{t_{j} + 273})}$ (activation energy: 0.3 ev)	
$\pi_{_S}$	FET,MOS IGBT Bipolar	$\pi_{S1} = 0.22e^{1.7S_1}$ $\Pi_{S2} = 0.22e^{3S_2}$ $\Pi_{S} = 0.22e^{1.7S}$	

Failure rate for tj=40°C (expressed in FIT)	λο
Silicon transistors	
• Bipolar; npn; pnp	0,75
• MOS p, n; FET	
Gallium Arsenide transistors	0,3

of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $(\pi_n)_i$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of	cycles with th	e amplitude ΔT_i
For an on/off phase		$\Delta T_{i} = \left[\frac{\Delta T_{j}}{3} + \left(t_{ac}\right)_{i}\right] - \left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the i_{tae} variation, during the i^{th} chase of the mission profile

Customer: Jens VIGEN - No. of User(s): 1 - Company:
Order No.: WS-2005-001924 - IMPORTANT: This file is copyright of IEC, Geneva, Switzerland. All rights reserved.
This file is subject to a licence agreement. Enquiries to Email: custserv@iec.ch - Tel.: +41 22 919 02 11

Fragile assembly:

- 1 Cavity package weighting more than 0,1 g
- 2 Package weighting more than 0,1g and fixed by leads (more than 2 mm)

Strong assembly:

- 1 Molded plastic components (lead less than 2 mm) or DIL, or surface mounted component (SMT)
- 2 Firmly fixed packages (screw, clips, glue)
- 3 Components weighting more than 0,1 g

Failure	%	
Silicon	Short-circuits	85
	Open-circuits	15
Gallium -	Short-circuits	95
arsenide	Open-circuits	5

8.5 Power transistors

Silicon: 5 W or more | Excepted modules
Gallium arsenide: 1 W or more |

CAUTION!

Under cyclic operation, the life time is limited!

MATHEMATICAL MODEL

$$\lambda = \left(\left\{ \pi_{S} \times \lambda_{0} \right\} \times \left\{ \frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\} + \left\{ \left(\underbrace{2.75 \times 10^{-3} \times \sum_{i=1}^{z} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68}}_{\lambda_{package}} \right) \times \lambda_{B} \right\} + \left\{ \underbrace{\pi_{I} \times \lambda_{EOS}}_{\lambda_{everstress}} \right\} \times 10^{-9} / h$$

NECESSARY INFORMATION:

(tae)i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(tac): average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $\pi_{\scriptscriptstyle S}$: charge factor.

 λ_0 : base failure rate of the die. See table on this page.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the transistor mission profile.

 τ_i : ith working time ratio of the transistor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the transistor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 $au_{\it off}$: time ratio for the transistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

 λ_R : base failure rate of the transistor package. See Table 18.

 π_I : influence factor related to the use of the transistor (protection interface or not).

 λ_{EOS} : failure rate related to the electrical overstress in the considered application.

Protection transistor as interface; typical calculated values		λ_{EOS}	$\pi_{_I}$	
Function	Electric	Electrical environment		
	Computer	Computer		1
		switching	15	1
	Telecoms	transmitting access, subscriber cards	40	1
Protection Interface		Subscriber equipment	70	1
Interrace	Railways, pay	Railways, payphone		1
	Civilian avionics (on board calculators)		20	1
	Voltage supply, converters		40	1
Non Interfaces		All electrical environment		0

Mathematic	Mathematical formulas for $ {\mathcal I}_t {\rm and} {\mathcal I}_S $		
$\pi_{_t}$	Bipolar GaAs	$\pi_{t} = e^{4640(\frac{1}{373} - \frac{1}{t_{j} + 273})}$ (activation energy : 0.4 ev)	
	MOS IGBT	$\pi_t = e^{3480(\frac{1}{373} - \frac{1}{t_j + 273})}$ (activation energy : 0.3 ev)	
$\pi_{_S}$	FET,MOS IGBT	$\pi_{S_1} = 0.22e^{1.7S_1}$ $\pi_{S_2} = 0.22e^{3S_2}$	
	Bipolar	$\pi_S = 0.22e^{1.7S}$	

(expressed in FIT)	λ_{0}
Silicon transistors	2
Bipolar; npn; pnp	2
 MOS p, n; FET 	
Gallium Arsenide transistors	1

Mathematical expression of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $(\pi_n)_i$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cy	cles with the a	amplitude ΔT_i
For an on/off phase		$\Delta T_{i} = \left[\frac{\Delta T_{j}}{3} + (t_{ac})_{i}\right] - (t_{ae})_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the t_{ae}) variation, during the i th hase of the mission profile

Fragile assembly:

- 1 Cavity package weighting more than 0,1 g
- 2 Package weighting more than 0,1 g and fixed by leads (more than 2 mm)

Strong assembly:

- 1 Molded plastic components (lead less than 2 mm) or DIL, or surface mounted component (SMT)
- 2 Firmly fixed packages (screw, clips, glue)
- 3 Components weighting more than 0,1 g

Failure distribution		%
Silicon	Short-circuits	85
	Open-circuits	15
Gallium -	Short-circuits	95
arsenide	Open-circuits	5

For molded plastic optocouplers, the temperature junction must not exceed 90 °C

8.6 Optocouplers

 $\theta = \theta_0 \times \kappa_0 \times \kappa_1 \times \kappa_2 \times \kappa_3$ h

8.6.1 Life expectancy

The operating time must not exceed the life expectancy value θ . Beyond this time, the failure rate λ cannot be assumed to be constant.

Necessary information	For
Junction temperature t _j	θ_0
Input current (operating and test condition)	κ_0, κ_2
Initial, final transfer ratio	κ_1

Life expectancy in hours= $f(junction temperature t_j)$

Optocoupler life expectancy θ_0 according to the junction temperature and the following failure criterion:

• Transfer ratio measurement conditions $V_{CE} = 5 \text{ volts I}_F = 2\text{mA}$

Final transfert ratio
Initial transfert ratio =m=0.5

For an operating current of 50 mA

Note The life expectancy is estimated for a cumulative failure ratio of 10 %.

 $\kappa_{\,2}\,$ according to the measured current $\,I_{F}\,$ of the transfer ratio (testing conditions).

κ₃ for a cumulative failure ratio different from 10 %.

8.6.2 Failure rate

$\lambda = \underbrace{\left\{2.2 \times \pi_{S}\right\} \times \left\{\frac{\sum\limits_{i=1}^{y} \left(\pi_{t}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}}\right\}}_{\lambda_{die}} + \underbrace{\left\{\underbrace{2.75 \times 10^{-3} \times \sum\limits_{i=1}^{z} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68}}_{\lambda_{package}}\right\} \times \lambda_{B}}_{\lambda_{package}} + \underbrace{\left\{\frac{\sum\limits_{i=1}^{y} \left(\pi_{t}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}}\right\}}_{\lambda_{package}} \times 10^{-9} / h$ Life expectancy is limited!

NECESSARY INFORMATION:

(t_{ae}); average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(t_{ac})_i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 π_S : charge factor.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the optocoupler mission profile.

 τ_i : ith working time ratio of the optocoupler for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the optocoupler. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 $au_{\it off}$: time ratio for the optocoupler being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

 λ_B : base failure rate of the optocoupler package. See Table 18.

 π_I : influence factor related to the use of the optocoupler (interface or not).

 λ_{EOS} : failure rate related to the electrical overstress in the considered application.

	t_j = ambient temperature + (power dissipation*) x	R_{ja}
ı	* emitter + receiver	

V _{io}	permanent applied voltage (input/output)*
$\overline{V_{ioRM}}$	peak, repetitive insulation voltage
* without considering partial discharges.	

Failure	distribution
Open circuits	50 %
Short circuits	10 %
Drift	40 %

Optocoupler as interface; typical calculated values			λ_{EOS}	π_I
Function	Electri	ical environment	FIT	
	Computer		10	1
		switching	15	1
Protection	Telecoms	transmitting access, subscriber cards	40	1
Interface		Subscriber equipment	70	1
	Railways, pa	Railways, payphone		1
	Civilian avionics (on board calculators)		20	1
	Voltage supply, converters		40	1
Non Interfaces	All electrical environment			0

Influence of the applied voltage between input-output

Mathematical expression of the	$n_i \le 8760$ Cycles/yea	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_n}\right)_i$	$n_i > 8760$ Cycles/yea	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of	cycles with t	he amplitude ΔT_i
For an on/off phase		$\Delta T_{i} = \left[\frac{\Delta T_{j}}{3} + \left(t_{ac}\right)_{i}\right] - \left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile.

9 Optoelectronics

NOTE Optical component failure rates in this clause are only given for the ground fixed environment, with a permanent working mission profile, and a daylight-night thermal cycling of less than 3 °C.

9.1 Light emitting diodes diode modules (IEC 60747-12-2, IEC 62007)

9.1.1 Life expectancy

$$\theta = \theta_0 \times \kappa_0 \times \kappa_1 \times \kappa_2 \times \kappa_3$$
 h

Life expectancy $\boldsymbol{\theta}_0$ of a LED according to the junction temperature $\,\boldsymbol{t}_j$

- For an operating current of 100 mA
- For the failure criterion:

$$m = \frac{\text{Final optical power}}{\text{Initial optical power}} = 0.5$$

(with an optical power measuring current equal to 100 mA)

NOTE The life expectancy θ_0 is evaluated for a cumulative failure ratio of 10 %.

Diode types	Life expectancy θ_0 expressed in hours
0,85 µm diodes	$2,3 \times 10^5 e^{7000} \left(\frac{1}{t_j + 273} - \frac{1}{343} \right) (0,6 \text{ eV})$
1,3 µm diodes	$8,7 \times 10^6 e^{7000} \left(\frac{1}{t_j + 273} - \frac{1}{343} \right) (0,6 \text{ eV})$

The operating time must not exceed the life expectancy value θ . Beyond this time the failure rate λ cannot be assumed to be constant.

Necessary information	For
Junction temperature t _j	θ_0
Operating current	κ_0
Measurement current (for optical power)	κ_2

$$\kappa_0 = \frac{100}{\text{operating input current(mA)}}$$

 $_{\mbox{\scriptsize K}}$ $_{3}$ for a cumulative failures different from 10 %

 $\frac{\text{for}}{\pi_t}$

 λ_0

9.1.2 Failure rate (Modules datacom)

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times \pi_t \times 10^{-9} \quad /h$$

Temperature influence

$$t_{j} = t_{c} + R_{th} \times P$$

P = applied power

 $t_c = case temperature$

 R_{th} = thermal resistance (junction/case)

- measured
- or rated
- by default, 150°C/W

Module type	λ ₀ FIT
Elementary emitter module with fibered DEL without electronic	100
Emitter module with fibered DEL and DEL driver	130
Emitter / receiver module with fibered DEL + PIN + electronics with or without clock recovery.	180
	200

Emitter / receiver module with fibered DEL

+APD + electronics with or without clock

recovery

Necessary information

Junction temperature

Module type

Mathematical formula for π_t		
$\pi_{t} = e^{4060(\frac{1}{343} - \frac{1}{343})}$	$-\frac{1}{t_j + 273}$) (activation energy: 0.35eV)	

Failure distribution according to package type	With window	With fibre
Short circuit (forward degradation)	70%	40%
Open	10%	10%
Optical coupling, or fiber	20%	50%

$$\theta = \theta_0 . \kappa_1 . \kappa_2$$
 in hours

 κ_l is function of the failure criterion, which is the shift of the operating current at constant optical power,

$$\frac{\Delta I}{I}\,in~\%$$

- For emitter laser of numerical systems and pump lasers, take a criterion of 50%
- For emitter laser of analog systems and WDM, take 10%

 κ_2 is function of the cumulative failures at the life expectancy value.

- Take generally 10%

The failure rate $\,\lambda\,$ is assumed to be constant (after the infant mortality time), but only within the life expectancy limit $\,\theta\,$.

 κ_1

$$\frac{\Delta I}{I}$$
 in %

 θ_0 in hours

κ_2						
10						
1		/				
0,1] %
	1	10 3	0 50	70 90	99	70

Diode Types	Life expectancy θ_0
GaAlAs/GaAs diode (0.78m; 0.85μm)	$4 \times 10^{3} e^{7 \cdot 000} \left(\frac{1}{t_{j} + 273} - \frac{1}{318} \right)$ (0.6 eV)
InGaAsP/InP diodes (1.2μm ; 1.6μm)	$ \begin{array}{c c} & 1.5 \times 10^{5} e^{7000} \left(\frac{1}{t_{j} + 273} - \frac{1}{303} \right) \\ & (0.6 \text{ eV}) \end{array} $
InGaAs/GaAs diodes (0.98μm)	$ \begin{array}{c c} 1.5 \times 10^5 e^{3500} \left(\frac{1}{t_j + 273} - \frac{1}{303} \right) \\ (0.3 \text{ eV}) \end{array} $

Note: LASER diodes are sensitive to electrostatic discharges (ESD), consequently their reliability is reduced, even with a low discharge.

9.2 Laser diodes modules - Failure rate

MATHEMATICAL MODEL

 $\lambda = \lambda_0 \times \pi_t \times 10^{-9}$ /h

CAUTION!
The life expectancy is limited!

GaAlAs/ GaAs

- gain guiding (transmitting; 0,84 μm)
- index guiding (compact disks; 0,8 μm; with window)

Burried heterostructure ; Pérot-Fabry or distributed feedback (DFB) 1,3 µm or 1,55 µm InGaAs/ĢaAs π_t Burried heterostructure 10 1 0,1 t_{j} 5 25 45 65 85 Junction temperature °C

Temperature influence

optical power (W) (two facets)

Mathematical formulas for π_t		
GaAlAs/GaAs	$\pi_{t} = e^{4060 \left(\frac{1}{318} - \frac{1}{t_{j} + 273}\right)}$	
InGaAsP/InP	$\pi_{t} = e^{4060 \left(\frac{1}{303} - \frac{1}{t_{j} + 273}\right)}$	
InGaAs/GaAs	$\pi_t = e^{4060\left(\frac{1}{303} - \frac{1}{t_j + 273}\right)}$	

Necessary information		For
Junction temperature t	j	π_{t}
Type of material, internal structure.		$\pi_t ; \lambda_0$
Type of module		λ_0

Material	Window µm	Module type	λ ₀ FIT
GaAlAs/GaAs	0,8	Elementary emitter modules *	3 000
InGaAs/InP	1,2 to 1,6	Elementary emitter modules * without electronics	40
InGaAs/InP	1,2 to 1,6	Emitter module with electronics.	60
InGaAs/InP	1,2 to 1,6	Emitter/receiver module, with laser PIN and electronics, with or without clock recovery (without crystal)	80
InGaAs/InP	1,2 to 1,6	Integrated modulator laser module	100
InGaAs/InP	1,48	Pump laser module Power <= 250 mW	200
InGaAs/InP	1,48	Pump laser module Power >250 mW.	350
InGaAs/GaA	0,98	Pump laser module	300

* Generally an elementary laser module is made of a control photodiode, a laser diode and a coupling element. For other more complex structures, the failure rates mentioned in this table, include all the other elements excepted the thermoelectric cooler and the thermistor.

Fai	ilure modes	ace	cording to the module ty	pe	
1,3 µm/1,55 µm	diodes failure	•	Degradation of the spectrum Current increase	10	%
modules (monomode fibre 9 / 125)	Coupling failure	•	High drop in output power	90	%
Pump laser	Diodes failure	•	High current increase	90	%
modules (0,98 μm 1,48 μm)	Coupling failure	•	High drop in output power	10	%
	Diodes	•	No laser effect	Modules	Compact
0,85 µm modules	failure	•	Degradation of the spectrum Current increase	transmission)	disks 100 %
				80 %	
(monomode fibre 9 / 125)	Coupling failure	•	High drop in output power	10 %	0 %
	Broken fibre	•	No output power	10 %	0 %

9.3 Photodiodes and receiver modules for telecommunications (IEC 60747-12)

MATHEMATICAL MODEL
$\lambda = \lambda_0 \times \pi_t \times 10^{-9} /h$

Necessary information	For
Junction temperature tj	π_t
Type (silicon, GaAlAs, PIN , APD, module)	$\lambda_{_0}$

Junction temperature tj is admitted to be equal to the ambient temperature

Temperature influence

Туре		λ ₀ FIT
PIN diodes	Silicon (0,7 μm -1,1 μm window)	5
i ili diodes	InGaAs (1,2 µm -1,6 µm window)	10
	Silicon	20
APD diodes (avalanche)	Germanium	40
	InGaAs	80
PIN module + electronics with or without clock recovery		30
APD module + electronics with or without clock recovery		

Mathematical formula for $\pi_{\mathfrak{t}}$		
$\pi_{t} = e^{4060\left(\frac{1}{303} - \frac{1}{t_{j} + 273}\right)}$ $0.35 \text{ electron - volt}$		

Failure modes according to package	With	With fibre
types	window	
Short-circuit (reverse degradation)	80 %	40 %
Open circuit	20 %	10 %
Coupling	0 %	50 %

9.4 Passive optic components

MATHEMATICAL MODEL
$$\lambda = \lambda_0 \times 10^{-9} \quad / \text{h}$$

NOTE Cycling temperature effects on theses components is not really known. λ_0 values are given for a ground fixed environment and a constant temperature comprised between 20 °C and 40 °C.

	λ_0 in FIT	
Attenuators	Bulk	2
	Fusion splice (attenuation ≤ 10db)	2
	Fusion splice (attenuation > 10db)	10
	Pasted splice	10
Fusing - stretching couplers	1 to 2	25
	1 to n, with $n \le 5$	50
Integrated optical couplers	1 to n	60
Multiplexer / demultiplexer	Fusing - stretching 1 to 2	25
	Fusing - stretching 1 to n	50
	Micro-optic	60
Connectors	1 optical contact	5
Jumper or optical cord	2 optical contacts and fibre	10
Optical fibre (cable)	For 100 km or per section (any length)	500
Doped optical fibre, Si matrix. (5 m to 30 m)	Per section, any length	1

9.5 Miscellaneous optic components

Mathematical model
$$\lambda = \lambda_0 \times 10^{-9} \quad / \text{h}$$

NOTE Cycling temperature effects on theses components is not really known. λ_0 values are given for a ground fixed environment and a constant temperature comprised between 20 °C and 40 °C.

Co	λ_0 in FIT	
LiNbO3 modulator		1000
Isolator		10
Accordable filter		330*
Bragg array filter		15
Optical commutator	Electromechanical with mirror	200
	Integrated with prism	200
VCSEL 840 nm		300*
Trench reception photodiode		tbd
Phasor		tbd
Monolithic duplexor		tbd
Thermoelectric cooler		20
Thermistor		0.34

^{*}Values are given for a starting production.

10 Capacitors and thermistors (NTC)

10.1 Fixed plastic, paper, dielectric capacitors - Radio interference suppression capacitors (plastic, paper)

MATHEMATICAL MODEL

$$\lambda = 0.1 \times \left(\left\lceil \frac{\sum_{i=1}^{y} \left(\pi_{t}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\rceil + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

 $t_{ae})_{i} \qquad : average \ outside \ ambient \ temperature \ surrounding \ the \ equipment, \ during \ the \ i^{th} \ phase \ of \ the \ mission \ profile.$

(tac)i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 au_i : i^{th} working time ratio of the capacitor for the i^{th} junction temperature of the mission profile.

 τ_{on} : total working time ratio of the capacitor. With: $\tau_{on} = \sum_{i=1}^{y} \ \tau_{i}$

 τ_{off} : time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

Peak value of the alternative voltage applied to the capacitor

Rated voltage of the capacitor.

See note*

See note*

Failure modes		
Short-circuits	10 %	
Open-circuits	90 %	

Mathematical formula for $\pi_{\mathfrak{t}}$	
$\pi_{\rm t} = {\rm e}^{2900\left(rac{1}{303}-rac{1}{273+{ m t_A}} ight)} \ \ { m with} \ \ t_{\rm A}: { m ambient temperature}$	

expression of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with		e amplitude ΔT_i
For an on/off phase		$\Delta T_{i} = \left(t_{ac}\right)_{i} - \left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t_{ae}) variation, during the i^{th} bhase of the mission profile.

- * NOTE The following conditions must be respected to obtain field values in conformance with those calculated with the above formulas:
 - For radio interference suppression capacitors the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to 0,8
- For other non radio interference suppression specified capacitors, this same ratio must be less or equal to 0,2

10.2 Fixed ceramic dielectric capacitors – Defined temperature coefficient – Class I (IEC 60384)

MATHEMATICAL MODEL

$$\lambda = 0.05 \times \left[\left[\frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] + 3.3 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

e)i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(tac)i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 τ_i : ith working time ratio of the capacitor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the capacitor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 au_{off} : time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

Peak value of the alternative voltage applied to the capacitor

Rated voltage of the capacitor.

See note* See note* See note*

Temperature factor π

Mathematical formula for $\pi_{\mathfrak{t}}$
$\pi_{\rm t} = {\rm e}^{1160\left(\frac{1}{303} - \frac{1}{273 + {\rm t_A}}\right)}$ with ${\rm t_A}$: ambient temperature

Failure modes	
Short-circuits	70 %
Open-circuits	10 %
Drifts	20 %

Mathematical expression of the	$n_i \le 8760$ Cycles/ye	ar	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_n}\right)_i$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with		he a	amplitude ΔT_i
For an on/off phase		ΔΊ	$T_{i} = (t_{ac})_{i} - (t_{ae})_{i}$
For a permanent working phase, storage or dormant		(t _{ae}	" = average per cycle of the object of the object of the ith use of the mission profile.

* NOTE The following condition must be respected, to obtain field values in conformance with those calculated with the above formulas:

the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to **0.5**

10.3 Fixed ceramic dielectric capacitors – Non defined temperature coefficient – Class II – Radio interference suppression capacitors

MATHEMATICAL MODEL

$$\lambda = 0.15 \times \left[\left\lceil \frac{\sum_{i=1}^{y} \left(\pi_{t}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\rceil + 3.3 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae}); : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(tac): average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 τ_i : ith working time ratio of the capacitor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the capacitor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 au_{off} : time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

Peak value of the alternative voltage applied to the capacitor

Rated voltage of the capacitor.

See note*

See note*

Temperature	factor	π_{t}
-------------	--------	-----------

Mathemat	ical formula for π_{t}
$\pi_{t} = e^{1160 \left(\frac{1}{303} - \frac{1}{273 + t_{A}}\right)}$	with t_A : ambient temperature

Failure modes	Other ceramic, class II capacitors	Radio interference suppression capacitors
Short-circuits	90 %	70 %
Open-circuits	10 %	30 %

Mathematical expression of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$	
Influence factor $\left(\pi_{_n}\right)_i$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$	
n_i : Annual number of cycles with the amplitude ΔT_i			
	ΤΔ	C = (t) - (t)	

For an on/off phase $\Delta T_i = \left(t_{ac}\right)_i - \left(t_{ae}\right)_i$ For a permanent working phase, storage or dormant $\Delta T_i = \text{average per cycle of the } (t_{ae}) \text{ variation, during the i}^{\text{th}} \text{ phase of the mission profile.}$

* NOTE The following conditions must be respected, to obtain field values in conformance with those calculated with the above formulas:

• For radio interference suppression capacitors the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to 0.8

• For other non radio interference suppression specified capacitors, this same ratio must be less or equal to 0,5

10.4 Tantalum capacitors, solid electrolyte (IEC 60384)

MATHEMATICAL MODEL

$$\lambda = 0.4 \times \left(\left\lceil \frac{\sum_{i=1}^{y} (\pi_t)_i \times \tau_i}{\tau_{on} + \tau_{off}} \right\rceil + 3.8 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 τ_i : ith working time ratio of the capacitor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the capacitor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 au_{off} : time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

Peak value of the alternative voltage applied to the capacitor

Rated voltage of the capacitor.

See note 1

See note 1

See note 2

Temperature factor $\pi_{_t}$

Mathematical formula for π_{t}			
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_A} \right)$	with t_A : ambient temperature		

Failure modes		
Short-circuits	80 %	
Open-circuits	20 %	

expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with		he a	implitude ΔT_i
For an on/off phase		ΔΤ	$T_{i} = (t_{ac})_{i} - (t_{ae})_{i}$
For a permanent working phase, storage or dormant		(t _{ae}	are average per cycle of the variation, during the i th use of the mission profile

NOTE 1 The following condition must be respected, to obtain field values in conformance with those calculated with the above formulas:

the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to 0.5

with: peak voltage = continuous voltage + peak value of the alternative voltage

NOTE 2 Caution must be taken against the risk of fire if the current is not limited (a fuse might be placed serially in one of the branches, between which the tantalum capacitor is positioned).

10.5 Aluminum, non-solid electrolyte capacitors - Life expectancy

Failure rate of non solid electolyte aluminum capacitors is assumed to be constant but only within the life expectancy limits.

Qualification tests 1 2 345 6

Qualification test conditions (duration , temperature) According to capacitor types			
Qualification tests	Duration (h)	Temperature (°C)	
1	1 000	85	
2	2 000	85	
3	5 000	85	
4	2 000	105	
5	10 000	85	
6	2 000	125	

Life expectancy according to qualifications Test conditions of the capacitor

With: t_C : temperature of the capacitor, default value

 $t_{\rm C} = t_{\rm ambient} + 5^{\circ}{
m C}$

*NOTE 1 Life expectancy depends on the operating temperature and on the qualification test conditions (i.e. on the technology type)

*NOTE 2 Ambient temperature for a non solid electrolyte aluminum capacitor is taken at its immediate vicinity (overheating of the other components has to be taken into account).

Mathematical formula for the life expectancy

MATHEMATICAL MODEL

$$\lambda = 1.3 \times \left[\left[\frac{\sum_{i=1}^{y} (\pi_t)_i \times \tau_i}{\tau_{on} + \tau_{off}} \right] \times \pi_A + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled. $(t_{ac})_i$

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

: ith working time ratio of the capacitor for the ith junction temperature of the mission profile.

: total working time ratio of the capacitor. With: $\tau_{on} = \sum_{i=1}^{n} \tau_{i}$

 au_{off} : time ratio for the capacitor being in storage (or dormant) mode.

 $\pi_{_A}$:factor related to the self heating

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

: ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

See note Rated voltage of the capacitor. See note

Applied ripple current

Maximum admissible ripple current.

Temperature factor π ,

Mathematical formula for π_t			
$\pi_t = e^{4640 \left(\frac{1}{313} - \frac{1}{273 + t_R}\right)}$	with t_R : capacitor temperature		

Capacitor temperature t_R °C:

CAUTION!

The capacitor temperature is different to that of the ambient temperature if a current flows through the capacitor (particularly pulses for example) or if it is heated by a radiative environment (a dissipating component). It is necessary to:

- measure the case temperature,
- · or, by default
- ⇒ take into account the heat dissipated by the radiative environment:

 \Rightarrow take into account the temperature rise Δt due to the current through the capacitor (self heating) by:

$$\Delta t = 20 {\left(\frac{\text{Applied ripple current}}{\text{Maximum admissible current}}\right)^2}$$

CAUTION!

Life expectancy of non solid electrolyte, aluminum capacitors is limited and very sensible to ambient temperature

Failure modes				
Rated voltage	< 350 V	≥350 V		
Short circuits	30 %	50 %		
Open circuits	30 %	0 %		
Drifts	40 %	50 %		

Mathematical	$n_i \le 8760$	$(\pi_n)_i = n_i^{0.76}$
expression of the	Cycles/year	(11/1 1
Influence	$n_i > 8760$	$(\pi_n)_i = 1.7 \times n_i^{0.60}$
factor $\left(\pi_{_{n}}\right)_{i}$	Cycles/year	$(n)_1 = n$

 n_i : Annual number of cycles with the amplitude ΔT_i

,	1 1
For an on/off phase	$\Delta T_{i} = \left[\frac{T_{R}}{3} + \left(t_{ac}\right)_{i}\right] - \left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant	ΔT_i =average per cycle of the (t_{ae}) variation, during the i th phase of the mission profile

Peak value of the pulsed cu	π_A	
Ratio	≤ 1,5	1
Peak value of pulse current Maximum admissible ripple current	1,5 to 2	3
	2 to 3	10

NOTE The following condition must be respected, to obtain field values in conformance with those calculated with the above formulas:

the ratio peak voltage must be less or equal to 0,5 rated voltage

10.6 Aluminum electrolytic capacitor, solid electrolyte

MATHEMATICAL MODEL

$$\lambda = 2.4 \times \left(\left\lceil \frac{\sum_{i=1}^{y} (\pi_t)_i \times \tau_i}{\tau_{on} + \tau_{off}} \right\rceil + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

tae); : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(tac)i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 τ_i : ith working time ratio of the capacitor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the capacitor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 au_{off} : time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

Peak value of the alternative voltage applied to the capacitor

Rated voltage of the capacitor.

See note
See note

Temperature factor π_t

Mathematical formula for $\pi_{\mathfrak{t}}$		
$\pi_t = e^{1740 \left(\frac{1}{313} - \frac{1}{273 + t_A}\right)}$ with t_A : ambient temperature		

Failure modes		
Short-circuits	10 %	
Open-circuits	90 %	

Mathematical expression of the	$n_i \le 87$ Cycles		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_n}\right)_i$	$n_i > 87$ Cycles		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles w		ith the a	amplitude ΔT_i
For an on/off phase		$\Delta T_i = ($	$\left(t_{\rm ac}\right)_{\rm i}-\left(t_{\rm ae}\right)_{\rm i}$
For a permanent working phase, storage or dormant		(t _{ae}) va	verage per cycle of the riation, during the i th of the mission profile

NOTE The following condition must be respected, to obtain field values in conformance with those calculated with the above formulas:

the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to 0.8

MATHEMATICAL MODEL

$$\lambda = 0.6 \times \left(\left\lceil \frac{\sum_{i=1}^{y} \left(\pi_{t}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\rceil + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

 t_{ae})_i : average outside ambient temperature surrounding the equipment, during the i^{th} phase of the mission profile.

(tac)i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

-62 -

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 τ_i : ith working time ratio of the capacitor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the capacitor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 $au_{\it off}$: time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor See note

Peak value of the alternative voltage applied to the capacitor
Rated voltage of the capacitor.

See note
See note

Temperature factor π_t

Mathematical formula for $\pi_{\mathfrak{t}}$	
$\pi_{\rm t} = {\rm e}^{1740} \left(\frac{1}{313} - \frac{1}{273 + {\rm t_A}} \right)$ with ${\rm t_A}$: ambient temperary	ture

Failure modes		
Short-circuits	10 %	
Open-circuits	90 %	

Mathematical expression of the	$n_i \le 8760$ Cycles/year $n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_n}\right)_i$			$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles w		ith the a	amplitude ΔT_i
For an on/off phase		$\Delta T_i = ($	$\left(t_{ac}\right)_{i}-\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile	

NOTE The following condition must be respected, to obtain field values in conformance with those calculated with the above formulas:

the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to 0.8

with: peak voltage = continuous voltage + peak value of the alternative voltage

Customer: Jens VIGEN - No. of User(s): 1 - Company: Order No.: WS-2005-001924 - IMPORTANT: This file is copyright of IEC, Geneva, Switzerland. All rights reserved. This file is subject to a licence agreement. Enquiries to Email: custserv@iec.ch - Tel.: +41 22 919 02 11

10.8 Variable ceramic capacitors, disks (Dielectric ceramic) (IEC 60384)

MATHEMATICAL MODEL

$$\lambda = 0.16 \times \left(\left[\frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] + 3.3 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

tae); : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(tac)i : average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the capacitor mission profile.

 τ_i : i eme working time ratio of the capacitor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the capacitor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 $au_{\it off}$: time ratio for the capacitor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Continuous voltage applied to the capacitor

Peak value of the alternative voltage applied to the capacitor

Rated voltage of the capacitor.

See note

See note

Temperature model π_{t}

Mathematical formula for π_{t}				
$\pi_{\rm t} = {\rm e}^{1740} \left(\frac{1}{303} - \frac{1}{273 + {\rm t_A}}\right)$ with $t_{\rm A}$: ambient temperature				

Failure modes		
Short-circuits	40 %	
Open-circuits	10 %	
Drifts	50 %	

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_i = (t_{ac})$	$\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) varia	rage per cycle of the ation, during the i th the mission profile

NOTE: The following condition must be respected, to obtain field values in conformance with those calculated with the above formulas:

the ratio $\frac{\text{peak voltage}}{\text{rated voltage}}$ must be less or equal to 0.5

10.9 Thermistors with negative temperature coefficient (NTC) (IEC 60539)

MATHEMATCAL MODEL

$$\lambda = 3 \times \left(\left\lceil \frac{\sum_{i=1}^{y} \left(\pi_{i}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\rceil + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the thermistor mission profile.

 τ_i : ith working time ratio of the thermistor for the i^{ème} junction temperature of the mission profile.

 au_{on} : total working time ratio of the thermistor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 $au_{\it off}$: time ratio for the thermistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the package, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Temperature factor π_t

Mathematical formula for π_t				
$\pi_{t} = e^{1160 \left(\frac{1}{303} - \frac{1}{273 + t_{A}}\right)}$	with t_A : ambient temperature			

Répartition des défauts		
Short-circuits	70 %	
Open-circuits	10 %	
Drifts	20 %	

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with			amplitude ΔT_i
For an on/off phase		$\Delta T_i = ($	$\left(t_{ac}\right)_{i}-\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) va	verage per cycle of the riation, during the i th of the mission profile

11 Resistors and potentiometers (IEC 60115)

11.1 Fixed, low dissipation film resistors – High stability (rs), general purpose (rc), "minimelf"

MATHEMATICAL MODEL

$$\lambda = 0.1 \times \left[\left[\frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

 τ_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the resistor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 au_{off} : time ratio for the resistor being in storage (or dormant) mode.

 $(\pi_{_n})_{_i}$: $i^{ ext{th}}$ influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Power applied to the resistor.

Rated power of the resistor.

 $t_R(^{\circ}C)$

Failure modes		
Open-circuits	40 %	
Drifts	60 %	

Mathematical formula for π_t		
(1 1)	with	
$\pi_{t} = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_{R}} \right)$	t _R =Resitor temperature	
	t _A = Ambient temperature	
	$t_R = t_A + 85 \times \frac{\text{Operating power}}{\text{Rated power}}$	

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_n\right)_i$	$n_i > 8760$ Cycles/year		$(\pi_n)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of n_i	cycles w	ith the am	plitude ΔT_i
For an on/off phase		$\Delta T_i = (t_{ac})$	$\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) varia	rage per cycle of the ation, during the i th the mission profile

11.2 Hot molded carbon composition, fixed resistors (IEC 60115)

MATHEMATICAL MODEL

$$\lambda = 0.5 \times \left[\left[\frac{\sum_{i=1}^{y} \left(\pi_{t}\right)_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

 τ_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the resistor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 $au_{o\!f\!f}$: time ratio for the resistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Power applied to the resistor. Rated power of the resistor.

Failure modes	
Short-circuits	0 %
Open-circuits	100 %

Mathematical formula for π_t			
	with		
$t_{R} = \text{Resistance temperature}$			
$\pi_{t} = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_{R}} \right)$	t _A = Ambient temperature		
`	t_{M} = maximum rated temperature		
	For t _{M=130°} C		
	$t_R = t_A + 60 \times \frac{\text{Operating power}}{\text{Rated power}}$		
	For $t_{\mathbf{M}} = 150^{\circ} \text{C}$		
	$t_R = t_A + 80 \times \frac{\text{Operating power}}{\text{Rated power}}$		

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$(\pi_n)_i = n_i^{0.76}$
Influence factor $\left(\pi_n\right)_i$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			plitude ΔT_i
For an on/off phase		$\Delta T_i = (t_{ac})$	$\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) varia	rage per cycle of the ation, during the i th the mission profile

11.3 Fixed, high dissipation film resistors (IEC 60115)

MATHEMATICAL MODEL

$$\lambda = 0.4 \times \left(\left\lceil \frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\rceil + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

tae)i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

 au_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the resistor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 $au_{o\!f\!f}$: time ratio for the resistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Power applied to the resistor. Rated power of the resistor.

Failure modes	
Short-circuits	0 %
Open-circuits	100 %

Mathematical formula for $oldsymbol{\pi}_{t}$		
	with	
$\pi_{t} = e^{1740 \left(\frac{1}{303} - \frac{1}{273 + t_{R}} \right)}$	t_R = Resistor temperature t_A = Ambient temperature	
	$t_R = t_A + 130 \times \frac{\text{Operating power}}{\text{Rated power}}$	

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_n}\right)_i$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = \left[\left(t_{ac} \right)_{i} + \frac{t_{R}}{3} \right] - \left(t_{ae} \right)_{i}$	
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile	

11.4 Low dissipation wirewound resistors (IEC 60115)

MATHEMATICAL MODEL

$$\lambda = 0.3 \times \left[\left[\frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

t_{ac})_i: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

 au_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the resistor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 $au_{o\!f\!f}$: time ratio for the resistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Power applied to the resistor. Rated power of the resistor.

Mathematical formula for $\pi_{\mathfrak{t}}$			
	with		
(1 1)	t_R = Resistor temperature		
$\pi_{t} = e^{1740 \left(\frac{1}{303} - \frac{1}{273 + t_{R}} \right)}$	t_A = Ambient temperature		
·	$t_R = t_A + 30 \times \frac{\text{Operating power}}{\text{Rated power}}$		

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $(\pi_n)_i$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = \left(t_{ac}\right)_{i} - \left(t_{ae}\right)_{i}$	
For a permanent working phase, storage or dormant		ΔT_i = average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile	

Failure modes		
Short-circuits	0 %	
Open-circuits	100 %	

11.5 High dissipation wirewound resistors (IEC 60115)

MATHEMATICAL MODEL

$$\lambda = 0.4 \times \left(\left\lceil \frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right\rceil + 1.4 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

 τ_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the resistor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 $au_{o\!f\!f}$: time ratio for the resistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Power applied to the resistor. Rated power of the resistor.

Resistor temperature in °C

Failure modes	
Short-circuits	0 %
Open-circuits	100 %
1	

Mathematical formula for $\pi_{\mathfrak{t}}$		
	with	
(1 1)	t_R = Resistor temperature	
$\pi_{t} = e^{1740 \left(\frac{1}{303} - \frac{1}{273 + t_{R}} \right)}$	t_A = Ambient temperature	
·	$t_R = t_A + 130 \times \frac{\text{Operating power}}{\text{Rated power}}$	

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $(\pi_n)_i$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = \left[\left(t_{ac} \right)_{i} + \frac{t_{R}}{3} \right] - \left(t_{ae} \right)_{i}$	
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile	

11.6 Fixed, low dissipation surface mounting resistors and resistive array (IEC 60115)

MATHEMATICAL MODEL

$$\lambda = 0.01 \times \left[\left[\frac{\sum_{i=1}^{y} (\pi_{t})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] \times \sqrt{N} + 3.3 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_{i=1}^{t}$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

: ith working time ratio of the resistor for the ith junction temperature of the mission profile.

: total working time ratio of the resistor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

: time ratio for the resistor being in storage (or dormant) mode.

: resistors number of the resistive array

: i^{th} influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

: ith thermal amplitude variation of the mission profile.

Power applied to the resistor. Rated power of the resistor..

 π 10

> $t_R({}^{\circ}C)$ 60 80 100 120 140 160 Resistor temperature in °C

$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
$n_i > 87$ Cycles	60 /year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.6}$
cycles w	ith the a	amplitude ΔT_i
	$\Delta T_i = ($	$\left(t_{ac}\right)_{i}-\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		verage per cycle of the riation, during the i th of the mission profile
	Cycles. $n_i > 87$ Cycles. cycles w	Cycles/year $n_i > 8760$ Cycles/year cycles with the a $\Delta T_i = 0$

Failure mode	es
Drifts	60 %
Open-circuits	40 %

of the

11.7 Non wirewound cermet potentiometer (one or several turn) (IEC 60393)

MATHEMATICAL MODEL

$$\lambda = 0.3 \times \left[\left[\frac{\sum_{i=1}^{y} (\pi_{i})_{i} \times \tau_{i}}{\tau_{on} + \tau_{off}} \right] \times \pi_{Y} + 1.2 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_{n})_{i} \times (\Delta T_{i})^{0.68} \right] \right] \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i : average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

(tac): average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the resistor mission profile.

 τ_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 τ_{on} : total working time ratio of the resistor. With: $\tau_{on} = \sum_{i=1}^{y} \tau_{i}$

 $au_{o\!f\!f}$: time ratio for the resistor being in storage (or dormant) mode.

 π_{Y} : factor related to the annual number of shaft rotation.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

 R_L and R_P for π_W calculation.

Power applied to the resistor.

Rated power of the resistor.

Failure modes		
Open-circuits	80 %	
Drifts	20 %	

Number of annual shaft rotations	π_{Y}
≤ 10	0,2
> 10	1

 R_P/R_L

$\pi_{\rm t} = {\rm e}^{1740} \left(\frac{1}{303} - \frac{1}{273 + {\rm t_R}} \right) \qquad \begin{array}{c} {\rm with} \\ \\ t_R = {\rm potentiometer\ temperature} \\ t_A = {\rm ambient\ temperature} \\ t_M = {\rm maximum\ rated\ temperature} \\ \\ t_M = {\rm maximum\ rated\ temperature} \\ \end{array} , \\ \\ \pi_{\rm W} = 1 + \frac{1}{2} \left[\frac{{\rm R\,p}^2}{4{\rm R\,L}^2} + \frac{{\rm R\,p}}{{\rm R\,L}} \right] \qquad \begin{array}{c} {\rm with} \\ t_R = {\rm potentiometer\ temperature} \\ \\ t_M = {\rm maximum\ rated\ temperature} \\ \\ t_R = t_A + 55 \times \frac{{\rm V}^2}{{\rm R\,p}} \times \pi_{\rm W} \\ \\ \hline \\ {\rm Rated\ power} \\ \end{array}$ for ${\rm t_M} = {\rm 155^{\circ}\,C}$

Mathematical expression of the	$n_i \le 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 87$ Cycles		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of	cycles w	ith the a	amplitude ΔT_i
For an on/off phase		$\Delta T_i = ($	$\left(t_{ac}\right)_{i}-\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) va	verage per cycle of the riation, during the i th of the mission profile

12 Inductors and transformers (IEC 61248)

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times \left(\left[\frac{\sum_{i=1}^{y} (\pi_t)_i \times \tau_i}{\tau_{on} + \tau_{off}} \right] + 7 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 $(\pi_t)_i$: ith temperature factor related to the ith junction temperature of the component mission profile.

 au_i : ith working time ratio of the component for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the component. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 au_{off} : time ratio for the component being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the component, with the amplitude ΔT_i

 ΔT_i : ith thermal amplitude variation of the mission profile.

Power lossed by the component.

Radiating surface of the component.

 π_t

Mathematical expression of the	$n_i \le 87$ Cycles		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $(\pi_{_n})_{_i}$	$n_i > 87$ Cycles.		$(\pi_n)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of n_i			mplitude ΔT_i
For an on/off phase of a power inductor		$\Delta T_{i} = \left[\left(\right. \right. \right]$	$\left(\left(t_{ac}\right)_{i} + \frac{t_{R}}{3}\right] - \left(t_{ae}\right)_{i}$
For an on/off phase of a low current inductor		$\Delta T_i = ($	$\left(t_{ac}\right)_{i}-\left(t_{ae}\right)_{i}$
For a permanent working phase, storage or dormant		(t _{ae}) va	verage per cycle of the riation, during the i th of the mission profile

Mathematical formula for $\pi_{t}^{}$		
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_R} \right)$	with: $t_R = \text{component temperature}$	
The second second	t_A = ambient temperature around component	
	$t_R = t_A + 8.2 \times \frac{\text{Power loss (watt)}}{\text{Radiating surface (dm}^2)}$	

Failure rates according to the component type (FIT)			
	Low current	fixed	0,2
Inductors	inductors	variable	0,4
	Power inductors		0,6
	(50 Hz, chopping, filtering)		
	Signal transformers Power transformers		1,5
Transformers			3

Failure modes		
Short-circuits	20 %	
Open-circuits	80 %	

- 13 Microwave passive components, piezoelectric components and surface acoustic wave filters (IEC 61261, IEC 61019, IEC 60368)
- 13.1 Microwave passive components
- 13.2 Piezoelectric components
- 13.3 Surface acoustic wave filters

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times \left(\left[\frac{\tau_{on}}{\tau_{on} + \tau_{off}} \right] + 3 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68} \right] \right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

t_{ae})_i: average outside ambient temperature surrounding the equipment, during the ith phase of the mission profile.

 $(t_{ac})_i$: average ambient temperature of the printed circuit board (PCB) near the components, where the temperature gradient is cancelled.

 τ_i : ith working time ratio of the resistor for the ith junction temperature of the mission profile.

 au_{on} : total working time ratio of the resistor. With: $au_{on} = \sum_{i=1}^{y} au_{i}$

 au_{off} : time ratio for the resistor being in storage (or dormant) mode.

 $(\pi_n)_i$: ith influence factor related to the annual cycles number of thermal variations seen by the resistor, with the amplitude ΔT_i .

 ΔT_i : ith thermal amplitude variation of the mission profile.

Component types		
Microwave	Fixed	2
passive	Variables	4
components	With ferrite	4
Piezoelectric	Resonators quartz or ceramic filters	5
components	Oscillators: XO, PXO	10
	Oscillators: VCXO, TCXO	15
	Oscillators: OCXO	30
Acoustic wave filters		

Mathematical expression of the	$n_i \le 87$ Cycles		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_n}\right)_i$	$n_i > 87$ Cycles		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of n_i	cycles w	ith the a	amplitude ΔT_i
For an on/off phase of a passive, piezoelectric or acoustic microwave component		$\Delta T_{i} = ($	$(t_{ac})_i - (t_{ae})_i$
For a permanent working phase, storage or dormant		(t _{ae}) va	verage per cycle of the riation, during the i th of the mission profile

14 Relays

14.1 Evaluating voltage and current (vt, it) in transient conditions

(Voltage at the terminals of a contact and current through the contact)

14.1.1 Preferred method

The preferred method is to measure Vt, It in transient conditions, or evaluate them by analysing the actual circuit diagram.

14.1.2 Default method

By default, the following methods will be used (depending on how much is known about the circuit).

- **14.1.2.1** Calculate or measure the voltage and current V, I in steady state conditions (voltage at the terminals, current through the contact).
- 14.1.2.2 Determine the Figure 2 equivalent circuit diagram from the actual circuit diagram.

Figure 2 – Equivalent diagram representing the circuit of a relay contact

- 14.1.2.2.1 The inductance L is given by the sum of all series inductance values in the real contact circuit (only inductances of greater than 100 μ H are included, and protection inductance Lp is not included).
- 14.1.2.2.2 The value of capacitor C is the sum of the capacitance values of the capacitors across the terminals of the contact in the real circuit: only capacitors with a value of greater than 100 pF and located within the area bounded by the contact and the first inductance of more than 100 μH in the real circuit are counted (see Figure 3). The line capacitance is included (100 pF per metre). The value of the protection capacitor Cp is not included.

Figure 3 – Positions of capacitors in the real circuit diagram for which the values must be counted in C

- 14.1.2.2.3 The respective values of resistors R1 and R2 are the sum of the resistors found in the real circuit diagram, on the one hand in the area marked in Figure 3, and on the other hand outside the area (the resistance of the protection circuit is not included).
- **14.1.2.2.4** Inductor Lp and capacitor Cp are respectively the protection inductor and protection capacitor (not included when calculating L or C).
- NOTE Protection diodes, if any, are not included (nor is the associated protection resistor, as stated in 14.1.2.2.3).

- **14.1.2.3** Calculate the voltage Vt and current It in transient conditions.
- 14.1.2.3.1 The tables in Figures 5, 6 and 7 give ratios Vt/V and It/I (V, I in steady-state conditions; Vt, It in transient condition) according to how much is known about the contact circuit. For greater clarity, the tables are given according to circuit type (resistive, capacitive, inductive, inductive and capacitive), summarized as shown in Figure 4, in other words in the four regions defined by the values of inductors L and capacitors C. The four regions are bounded by the characteristic values of L (100 μH) and C (1 nF).

Figure 4 - Regions adopted for the purposes of Figures 5, 6 and 7

14.1.2.3.2 Results

A. Case 1: values of L, C and R are known (respectively in mH, nF and $k\Omega$), with R = RI + R2.

The equations which give the transient values Vt, It for voltage and current, which are needed to calculate lifetime θ and pollution factor π_p , are given in the Tables in Figure 5 according to values of L, C, R (R = R1 + R2), Cp and Lp, which are assumed known. What is in fact given are the ratios Vt/V and It/I, with V and I being values in steady-state conditions for voltage at the terminals with the contact open and current through the contact).

Figure 5 – Evaluating the ratios $\sqrt[V_{t}]{}$ and $\sqrt[V_{t}]{}$ according to $R=R_1+R_2$, C, L, and C_p , L_p (R in $k\Omega$, C, C_p in nF; L, L_p in mH)

B. <u>Case 2: values of L, C and R are not known</u>, but the equivalent diagram has been constructed and the nature of the circuit - capacitive or inductive and capacitive - is known.

The Tables in Figure 6 give ratios Vt/V and It/I according to how much is known about Lp, Cp and depending on whether the life expectancy or failure rate is being calculated.

Figure 6 – Evaluating ratios V_t / V_t and V_t / V_t when L and C are not known

C. <u>Case 3: Nothing is known about the electrical circuit of the contact</u>, the Table in Figure 7 gives default values for the ratios $^{V_{1}}$ and $^{I_{2}}$ (depending whether life expectancy θ_{b} or failure rate (π_{p} factor) is being calculated).

Figure 7 – Default values of $\sqrt[V_{t}]{}$ and $\sqrt[I_{t}]{}$ when nothing is known about the electrical circuit of the contact

14.2 Mercury wetted reed relays, low power (IEC 60255)

Balanced - latching balanced (power up to 250 W)

LIFE EXPECTANCY:θ

$$\theta = \theta_b \frac{1}{\pi_t \times N} \text{ in } h$$

- π_t is given in next page (same factor as λ for the failure rate).
- N: Number of cycles per hour

Mathematical formula for $\theta_{ m b}$

$$\theta_b = \frac{2 \times 10^8}{1 + \left(\frac{V_t \times I_t}{25}\right)^4}$$

The voltage V_t and the current I_t values (transient state) are given on pages 74 to 76. (Select the appropriate column " θ_b calculation").

 θ_b depending on the voltage V_a and the current I_a in transient state (see 14.1)

$$\begin{split} \text{MATHEMATICAL MODEL} \\ \lambda &= 0.3 \times \pi_t \times \pi_T \times \pi_Y \times \pi_C \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^j \left(\pi_n\right)_i \times \left(\Delta T_i\right)^{0.68}\right]\right) \times 10^{-9} \, / \, h \end{split}$$
 with $\pi_C = \pi_{C1}$ or π_{C2}

CAUTION!

Life expectancy is limited!

 π_t

Relay type	π_{T}
Monostable	1
Bistable latching	5

Operating cycles per hours: mean number N	π_{y}
N≤10	1
N>10	$\sqrt{\frac{N}{10}}$

Mathematical formula for π_t		
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_A} \right)$	with t_A : ambient temperature	

Failure modes	
Short-circuits	50 %
Open-circuits	50 %

Necessary information	For
Current, voltage	θ
Load circuit	θ
Number of active contacts	π _С
Operating cycles per hours: mean number N	π ,
Ambient temperature t _A	π,
Relay type	π _T

Mathematical expression of the	$n_i \le 8760$ Cycles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}} ight)_{i}$	$n_i > 8760$ Cycles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i		
For an on/off phase	$\Delta T_{i} = (t_{ac})_{i} -$	$(t_{ae})_i$
For a permanent working phase, storage or dormant	(t _{ae}) variation	e per cycle of the n, during the i th mission profile

Number of breaker active contacts "break contact" or "make contact" (form A and B)	π_{C1}
No contact of this type	0
1	1
2	1,5
3	2
4	2,5

Number of inverter active contact "break contact" and "make contact" (form C)	π_{C2}
No contact of this type	0
1	1,8
2	3
3	4,3
4	5,5
6	8

14.3 Dry reed relays (IEC 60255)

Balanced - Latching balanced (power up to 150 W)

LIFE EXPECTANCY

$$\theta = \theta_{\scriptscriptstyle b} \, \frac{1}{\pi_{\scriptscriptstyle t} \times N} \ \, \text{in h}$$

- π_t is given in next page (same factor as λ for the failure rate).
- N: Number of cycles per hour

Mathematical formula for θ_b $\theta_b = \frac{1.8 \times 10^8}{1.8 \times 10^8}$

The voltage V_t and the current I_t values (transient state) are given in 14.1 (Select the appropriate column " θ_b calculation").

 θ_b depending on the voltage V_t and the current I_t in transient state (see 14.1)

MATHEMATICAL MODEL

$$\lambda = 0.75 \times \pi_t \times \pi_T \times \pi_p \times \pi_Y \times \pi_C \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68}\right]\right) \times 10^{-9} / h$$

with $\pi_C = \pi_{C1}$ or π_{C2}

CAUTION!
Life expectancy is limited!

, unblent temperature	
Relay type	π_{T}
Monostable	1
Bistable latching	5

Operating cycles per hours: mean number N	π_{y}
N≤10	1
N>10	$\sqrt{\frac{N}{10}}$

ĺ	Mathematical formula for $\pi_{\mathfrak{t}}$
	$\pi_{\rm t} = {\rm e}^{1740} \left(\frac{1}{303} - \frac{1}{273 + {\rm t_A}}\right)$ with ${\rm t_A}$: ambient temperature

Pollution factor π_p depending on the operating cycle rate,

Voltage Vt and current It (transient state)

Necessary information	for
Current, voltage	θ
Load circuit	θ
Number of active contacts	π_{C}
Operating cycles per hours: mean number N	π_y, F_y
Ambient temperature t _A	π_{t}
Relay type	π Т
Environment	π_{p}

Number of breaker active contacts "break contact" or "make contact" (form A and B)	π_{C1}
No contact of this type	0
1	1
2	1,5
3	2
4	2,5

Number of inverter active contact "break contact" (form C)	π_{C2}
No contact of this type	0
1	1,8
2	3
3	4,3
4	5,5
6	8

Failu	re modes
Short-circuits	50 %
Open-circuits	50 %

Mathematical expression of the Influence factor $(\pi_n)_i$	$n_i \le 8760$ Cycles/year $n_i > 8760$ Cycles/year	$(\pi_n)_i = n_i^{0.76}$ $(\pi_n)_i = 1.7 \times n_i^{0.6}$	
n_i : Annual number of cycles with the amplitude ΔT_i For an on/off phase $\Delta T_i = (t_{ac})_i - (t_{ae})_i$			
For a permanent working phase, storage or dormant	ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile		

14.4 Electromechanical relays, miniature or card – European type, thermal relays (power up to 500 W) (IEC 60255)

 θ_b depending on the voltage V_t and the current I_t in transient state (see 14.1)

 $\underline{\textbf{Pollution factor}} \ \pi_p \ \underline{\textbf{depending on the operating cycle rate}} \ , \ \underline{\textbf{voltage Vt and current It (transient state)}}$

MATHEMATICAL MODEL

$$\lambda = 1.5 \times \pi_t \times \pi_T \times \pi_p \times \pi_Y \times \pi_C \cdot \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68}\right]\right) \times 10^{-9} / h$$

CAUTION! Life expectancy is limited!

with $\pi_C = \pi_{C1}$ or π_{C2}

Mathemat	ical formula for π_{t}
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_A} \right)$	with t _A : ambient temperature

Relay type	π_{T}
Electromechanical (miniature and	1
European)	
Thermal relay	10

Operating cycles per hours: mean number N	π_{y}
N≤10	1
N>10	$\sqrt{\frac{\mathrm{N}}{10}}$

Failure modes		
Short-circuits	20 %	
Open-circuits	80 %	

Necessary information	
Current, voltage	θ
Load circuit	θ
Number of active contacts	π _С
Operating cycles per hours: mean number N	π_y, F_y
Ambient temperature t _A	π_t
Relay type	π Τ
Environment	π_{p}

Number of breaker active contacts "break contact" or "make contact" (form A and B)	π_{C1}
No contact of this type	0
1	1
2	1,5
3	2
4	2,5

Number of inverter active contact "break contact" (form C)	π_{C2}
No contact of this type	0
1	1,8
2	3
3	4,3
4	5,5
6	8

Mathematical expression of the		≤8760 cles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$		> 8760 cles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = (t_{ac})_{i}$	$-(t_{ae})_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t_{ae}) variation, during the i th phase of the mission profile	

14.5 Industrial relays, high voltage vacuum relays, power mercury wetted relays (IEC 60255)

 θ_b depending on the voltage V_t and the current I_t in transient state (see clause 14), for d.c. current relays (on the left) and a.c. current relays (on the right). The voltage V_t and the current I_t values (transient state) are given in clause 14 (select the appropriate column " θ_b calculation")

<u>Pollution factor</u> π_p <u>depending on operating cycle rate, gaseous environment and voltage Vt, current It (transient state).</u>

$$\begin{split} &\text{MATHEMATICAL MODEL} \\ &\lambda = 0.5 \times \pi_{\text{t}} \times \pi_{\text{T}} \times \pi_{\text{p}} \times \pi_{\text{Y}} \times \pi_{\text{C}} \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{\text{n}}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68}\right]\right) \times 10^{-9} \, / \, h \end{split}$$ with $\pi_{C} = \pi_{C1}$ or π_{C2}

CAUTION!
Life expectancy is limited!

 $\boldsymbol{\pi}_t$

Necessary information	
Current, voltage	θ
Load circuit	θ
Number of active contacts	π_{C}
Operating cycles per hours: mean number N	π_y, F_y
Ambient temperature t _A	π_{t}
Relay type	π_{T}
Environment	$\pi_{\rm p}$

Mathematical formula for $oldsymbol{\pi}_{t}$			
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_A} \right)$	with t_A : ambient temperature		

Number of breaker active contacts "break contact" or "make contact" (form A and B)	π_{C1}
No contact of this type	0
1	1
2	1,5
3	2
4	2,5

Relay types	π_{T}
Industrial relay	2,5
High voltage vacuum relays	2,5
Power mercury wetted relays	1

Number of inverter active contact "break contact" and "make contact" (form C)	π_{C2}
No contact of this type	0
1	1,8
2	3
3	4,3
4	4,3 5,5
6	8

Operating cycles per hours: mean number N	π_{y}
N≤10	1
N>10	$\sqrt{\frac{\mathrm{N}}{10}}$

Failu	re modes
Short-circuits	20 %
Open-circuits	80 %

Mathematical expression of the Influence	Cy	≤ 8760 cles/year > 8760	$(\pi_n)_i = n_i^{0.76}$ $(\pi_n)_i = 1.7 \times n_i^{0.60}$
factor $\left(\pi_{_{n}}\right)_{i}$	Cycles/year		$(n_n)_i = 1.7 \times n_i$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = (t_{ac})_{i}$	$-(t_{ae})_i$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of	
		the (t_{ae}) variation, during the i^{th} phase of the mission profile	

15 Switches and keyboards (IEC 60948)

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times N \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_n\right)_i \times \left(\Delta T_i\right)^{0.68}\right]\right) \times 10^{-9} / h$$

CAUTION!
Life expectancy is limited!

Base failure rate in FIT	λ_0
Toggle switches Push button switches Keyboards	1,5
Rotary switches	2,5

Necessary information	For
Switch type	λ_0, N
Number of contacts	N
Environment	π_{E}

Type	N
Reversible (toggle or push button)	N = 2x (number of "break-make" contacts)
Others commutators	N = number of contacts
Keyboards	N = number of keys

Life expectancy limitation
Failure rate is assumed to be constant but only within the specified number of switching cycles.
For example:

- Toggle and push button switches: between 20 000 and 100 000 (sensitive switches)
- Rotary switches: 20 000
- Keyboards: between 500 000 and 1 000 000

Mathematical expression of the	$n_i \le 8760$ Cycles/year $n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_n\right)_i$			$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = (t_{ac})_{i}$	$-(t_{ae})_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of	
		the (t _{ae}) variation, during the i th phase of the mission profile	

16 Connectors

16.1 Circular, rectangular

16.2 Coaxial connectors

16.3 Connectors for PCBs and related sockets

The failure rate is given for a mated pair of connectors

MATHEMATICAL MODEL

$$\lambda = \lambda_{0} \times \pi_{t} \times \pi_{C} \times \pi_{M} \times \pi_{i} \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68}\right]\right) \times 10^{-9} \text{ / } h$$

CAUTION!

The life expectancy is limited: The number of mating / unmating cycles must not exceed the specified value (or the value given by the manufacturer).

Base failure rate FIT	λ_0
(these values are given for a contact pair)	
Circular and rectangular connectors	0,5
Coaxial connectors	0,7
Printed circuit board connectors (and comparable)	1
Sockets	1

Necessary information		
Connector type	λο	
Contact area material	$\pi_{\mathbf{M}}$	
Number of active contacts	π_{C}	
Contact current intensity	π_{i}	
Nominal current	π_{i}	
Ambient temperature	π ,	

 $\boldsymbol{\pi}_t$

Contact surface coating	π_{M}
(for a mating pair of connectors)	
Gold/Gold	1
Silver/Silver	2
Tin/Tin	3
Others (edge card connector)	8

Contact current intensity		
Ratio: Current Nominal current	≤ 0.5	1
	> 0.5	2

Mathematical formula for $\pi_{\mathfrak{t}}$		
$\pi_t = e^{1740} \left(\frac{1}{303} - \frac{1}{273 + t_A} \right)$ with t_A : ambient temperature		

Number of active contacts: N	π_{C}
Coaxial connectors	1
Others	\sqrt{N}

Mathematical expression of the		≤8760 cles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the ampli			amplitude ΔT_i
For an on/off phase		$\Delta T_{i} = (t_{ac})_{i}$	$-(t_{ae})_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t_{ae}) variation, during the	
			the mission

17 Displays, solid state lamps

17.1 Displays (IEC 61747)

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times \left(1 + 2.5 \times 10^{-2} \times \left[\sum_{i=1}^{j} (\pi_n)_i \times (\Delta T_i)^{0.68}\right]\right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

Display type

Display types: values in FIT	λ_0
LCD ≤ 10 characters	50
CRT display (10 inches with control electronic)	2 500
LCD display (10 inches with control electronic)	1 900

Mathematical expression of the Influence factor $(\pi_n)_i$	Cy	≤8760 cles/year >8760 cles/year	$(\pi_n)_i = n_i^{0.76}$ $(\pi_n)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = (t_{ac})_{i}$	$-(t_{ae})_{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ac}) variation, during the i th phase of the mission profile	

17.2 Solid state lamps (IEC 60747)

MATHEMATICAL MODEL

$$\lambda = 2 \times \left(1 + 2.7 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_{n}\right)_{i} \times \left(\Delta T_{i}\right)^{0.68}\right]\right) \times 10^{-9} \, / \, h$$

Mathematical expression of the		≤8760 cles/year	$\left(\pi_n\right)_i = n_i^{0.76}$
Influence factor $\left(\pi_{_{n}}\right)_{i}$		> 8760 cles/year	$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$
n_i : Annual number of cycles with the amplitude ΔT_i			
For an on/off phase		$\Delta T_{i} = (t_{ac})$	$_{i}-\left(t_{ae}\right) _{i}$
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile	

18 Protection devices (IEC 60099, IEC 60269, IEC 60738, IEC 61051)

18.1 Thermistors (PTC)

MATHEMATICAL MODEL

 $\lambda = (\lambda_0 + \pi_I \times \lambda_{EOS}) \times 10^{-9} / h$

NECESSARY INFORMATION:

Device type Electrical environment

	Device type	λ_0 in FIT	$\pi_{_I}$
Diodes	Transient voltage suppressor	See8.2 and 8.3	1
	Trigger transient voltage suppressor	See 8.2 and 8.3	1
Thermistors	(PTC)	5	1
Varistors		1	1
Fuses		10	0
Arrestors	Solid state (100 A - 10/1 000 μs wave)	100	0
	Gas tube (≥5 kA - 8/20 μs wave)	6 000	0

Electrical environment		λ_{EOS}
		FIT
Computer		10
	switching	15
	transmitting	
Telecoms.	access,	40
	subscriber card	
	Subscriber equipment	70
Railways, payphone		100
Civilian avionics (on board calculators)		20
Voltage supply, Converters		40

- 18.2 Varistors
- 18.3 Fuses
- 18.4 Arrestors

19 Energy devices, thermal management devices, disk drive

(IEC 60086, IEC 60285, IEC 60535, IEC 60879, IEC 61436, IEC 61440)

- 19.1 Primary batteries
- 19.2 Secondary batteries
- 19.3 Fans
- 19.4 Thermoelectric coolers
- 19.5 Disk drive

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times 10^{-9} / h$$

NECESSARY INFORMATION:

Device type

Device type		λ_0 in FIT
Batteries: primary cells*		20
D " 1 11	Ni-Cd	100
Batteries: secondary cells	Li-Ion	150
Fans for integrated circuits (CPU)*		500
Ball bearing fans*		1 500
Bearing fans*		2 500
Thermo-electric cooler		20
Long duration disk drive		2 800

^{*} Caution: life expectancy of these devices is limited.

19.6 Converters (IEC 60146)

MATHEMATICAL MODEL

$$\lambda = \lambda_0 \times \left(1 + 3 \times 10^{-3} \times \left[\sum_{i=1}^{j} \left(\pi_n\right)_i \times \left(\Delta T_i\right)^{0.68}\right]\right) \times 10^{-9} / h$$

NECESSARY INFORMATION:

Converter type

Converter type	λ_0 in FIT
Converters < 10 W	100
Converters between 10 W and 30 W	130

Mathematical expression of the		≤8760 cles/year	$\left(\pi_n\right)_i = n_i^{0.76}$			
Influence factor $\left(\pi_{_{n}}\right)_{i}$	$n_i > 8760$ Cycles/year		$\left(\pi_n\right)_i = 1.7 \times n_i^{0.60}$			
n_i : Annual number of cycles with the amplitude ΔT_i						
For an on/off phase		$\Delta T_{i} = \left(t_{ac}\right)_{i} - \left(t_{ae}\right)_{i}$				
For a permanent working phase, storage or dormant		ΔT_i =average per cycle of the (t _{ae}) variation, during the i th phase of the mission profile				

Customer: Jens VIGEN - No. of User(s): 1 - Company: Order No.: WS-2005-001924 - IMPORTANT: This file is copyright of IEC, Geneva, Switzerland. All rights reserved. This file is subject to a licence agreement. Enquiries to Email: custserv@iec.ch - Tel.: +41 22 919 02 11

The IEC would like to offer you the best quality standards possible. To make sure that we continue to meet your needs, your feedback is essential. Would you please take a minute to answer the questions overleaf and fax them to us at +41 22 919 03 00 or mail them to the address below. Thank you!

Customer Service Centre (CSC)

International Electrotechnical Commission

3, rue de Varembé 1211 Genève 20 Switzerland

or

Fax to: IEC/CSC at +41 22 919 03 00

Thank you for your contribution to the standards-making process.

A Prioritaire

Nicht frankieren Ne pas affranchir

Non affrancare No stamp required

RÉPONSE PAYÉE SUISSE

Customer Service Centre (CSC)
International Electrotechnical Commission
3, rue de Varembé
1211 GENEVA 20
Switzerland

Q1	Please report on ONE STANDARD and ONE STANDARD ONLY . Enter the exact number of the standard: (e.g. 60601-1-1)			If you ticked NOT AT ALL in Question 5 the reason is: (tick all that apply)		
				standard is out of date		
				standard is incomplete		
				standard is too academic		
Q2	Please tell us in what capacity(ies) you bought the standard (tick all that apply). I am the/a:			standard is too superficial		
				title is misleading		
				I made the wrong choice		
	purchasing agent			other		
	librarian					
	researcher					
	design engineer		Q7	Please assess the standard in the	2	
	safety engineer		Q I	following categories, using	7	
	testing engineer			the numbers:		
	marketing specialist			(1) unacceptable,		
	other	er		(2) below average,(3) average,		
				(4) above average,		
	Lucado facilida a			(5) exceptional,		
Q3	I work for/in/as a: (tick all that apply)			(6) not applicable		
				tion alternation		
	manufacturing			timelinessquality of writing		
	consultant			technical contents		
	government			logic of arrangement of contents		
	test/certification facility			tables, charts, graphs, figures		
	public utility			other		
	education					
	military					
	other		Q8	I read/use the: (tick one)		
Q4	This standard will be used for:			French text only		
	(tick all that apply)			English text only		
	general reference			both English and French texts		
	product research					
	product research product design/development					
	specifications		Q9	Please share any comment on an		
	tenders		Qg	Please share any comment on any aspect of the IEC that you would like		
	quality assessment	_		us to know:		
	certification					
	technical documentation					
	thesis	esis				
	manufacturing					
	other					
	otilei					
Q5	This standard meets my needs: (tick one)					
	not at all					
	nearly	_				
	fairly well	_				
	exactly					

ISBN 2-8318-7566-8

ICS 21.020; 31.080.01