Лабораторная работа 17

Задания для самостоятельной работы

Беличева Дарья Михайловна

Содержание

1	Цель работы	4								
2	Задание									
3	Выполнение лабораторной работы 3.1 Моделирование работы вычислительного центра									
	3.2 Модель работы аэропорта	6 9								
	3.3 Моделирование работы морского порта	-								
4	Выводы	21								

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Отчёт по модели работы вычислительного центра	8
3.4	Модель работы аэропорта	10
3.5	Отчёт по модели работы аэропорта	11
3.6	Отчёт по модели работы аэропорта	12
3.7	Модель работы морского порта	13
3.8	Отчет по модели работы морского порта	14
3.9	Модель работы морского порта с оптимальным количеством при-	
	чалов	15
3.10	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	16
3.11	Модель работы морского порта	17
	Отчет по модели работы морского порта	18
3.13	Модель работы морского порта с оптимальным количеством при-	
	чалов	19
3.14	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	20

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

3 Выполнение лабораторной работы

3.1 Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. [3.1]).

🎇 model 17_1.gps ram STORAGE 2 ;моделирование заданий класса А GENERATE 20,5 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 20,5 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса В GENERATE 20,10 QUEUE class A ENTER ram, l DEPART class A ADVANCE 21,3 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса С GENERATE 28,5 QUEUE class A ENTER ram, 2 DEPART class A ADVANCE 28,5 LEAVE ram, 2 TERMINATE 0 ; таймер GENERATE 4800 TERMINATE 1 START 1

Рис. 3.1: Модель работы вычислительного центра

Задается хранилище ram на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент ram, а третий обрабатывает задания класса C, используя два элемента ram. Также есть блок

времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [3.2], [3.3]).

model 17_1.1	.1 - REPORT				
	START TIME	FND TI	ME BIOCKS	FACILITIES	STODACES
	0.000		00 23		1
	0.000	1000.0	23	0	1
	NAME		VALUE		
(CLASS A		10001.000		
I	RAM		10000.000		
LABEL	LOC	BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY
		GENERATE	240	0	
	2	QUEUE	240	4	0
		ENTER	236	0	0
	4	DEPART	236	0	0
	5	ADVANCE	236	1	0
	6	LEAVE	235	0	0
	7	TERMINATE	235	0	0
	8	GENERATE	236	0	0
	9	QUEUE	236	5	0
	10	ENTER	231	0	o o
	11	DEPART	231	0	0
	12	ADVANCE	231	1	0
	13	LEAVE	230	0	0
	14	TERMINATE	230	0	0
	15	GENERATE	172	0	0
	16	QUEUE	172	172	0
	17	ENTER	0	0	0
	18	DEPART	0	0	0
	19	ADVANCE	0	0	0
	20	LEAVE	0	0	0
	21	TERMINATE	0	0	0
	22	GENERATE	1	0	0
	23	TERMINATE	1	0	0

Рис. 3.2: Отчёт по модели работы вычислительного центра

QUEUE		MAX CONT.	ENTRY E	NTRY(0) A	AVE.CONT	. AVE.TIME	AVE.(-0) RETRY
CLASS_A	Ī	183 181	648	4	92.354	684.105	688.354 0
STORAGE		CAP. REM.	MIN. MA	X. ENTR	IES AVL.	. AVE.C. UTI	L. RETRY DELAY
RAM		2 0	0	2 40	57 1	1.988 0.9	9 <mark>4</mark> 0 181
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE
650		4803.512			1		
636	0	4805.704			6		
651	0	4807.869	651	0	15		
637	0	4810.369					
652	0	4813.506	652	0	8		
653	0	9600.000	653	0	22		

Рис. 3.3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой – для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. [3.4]).

```
model 17_2.gps
 GENERATE 10,5,,,1
 ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runway
 DEPART arrival
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ; ожидание
 wait TEST L p1,5,goaway
 ADVANCE 5
 ASSIGN 1+,1 ;если значение атрибута меньше 5,
 ;то счетчик прибавляет 1 (круг) и идет попытка приземления
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART arrival
 RELEASE reserve
 TERMINATE 0
 GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
 DEPART takeoff
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 :таймер
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 3.4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась — переход в блок обработки, если нет — самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах — 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [3.5], [3.6]).

	суббо	та, июня 15,	2024 19:09:5	2		
STA	RT TIME		IME BLOCKS			
	0.000	1440.	000 26	1	(0
1	NAME		VALUE			
ARRI			10002.000			
GOAW	AY		14.000			
LAND	ING		4.000			
RESE			UNSPECIFIED			
RUNW			10001.000			
TAKE			10000.000			
WAIT			10.000			
ABEL	T.O.C	BLOCK TYPE	FNTRY COIII	NT CURRENT	COUNT	BETDV
RDLL	1	GENERATE	146	WI COMMENT	0	0
	2	ASSIGN	146		0	0
	3	QUEUE	146		0	0
NDING	4	GATE	184		0	0
	5	SEIZE	146		0	0
	6	DEPART	146		0	0
	7	ADVANCE	146		0	0
	8	RELEASE	146		0	0
	9	TERMINATE	146		0	0
IT	10	TEST	38		0	0
	11	ADVANCE	38		0	0
	12	ASSIGN	38		0	0
	13	TRANSFER	38		0	0
AWAY	14	SEIZE	0		0	0
-	15	DEPART	0		0	0
	16	RELEASE	0		0	0
	17	TERMINATE	0		0	0
	18	GENERATE	142		0	0
	19	QUEUE	142		0	0
	20	SEIZE	142		0	0
	21	DEPART	142		0	0
	22	ADVANCE	142		0	0
	23	RELEASE	142		0	0
	24	TERMINATE	142		0	0
	25	GENERATE	1		0	0
	26	TERMINATE	1		0	0

Рис. 3.5: Отчёт по модели работы аэропорта

FACILITY RUNWAY		ENTRIE 288		IL. .400	AVE. TIM 2.0	E AVAIL.	OWNER 0	PEND 0	INTER 0	RETRY 0	DELAY 0
QUEUE TAKEOFF ARRIVAL		MAX 1 2	0	142	ENTRY(0 114 114	0.01	.7	0.173	3	0.880	0
	PRI 2 1 0	BD 1440 1445 2880	.749	ASSE 290 291 292	0	NT NEXT 18 1 25	PARA	METER	VAI	LUE	

Рис. 3.6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

3.3 Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a=20$$
 ч, $\delta=5$ ч, $b=10$ ч, $\varepsilon=3$ ч, $N=10$, $M=3$;

2)
$$a=30$$
 ч, $\delta=10$ ч, $b=8$ ч, $\varepsilon=4$ ч, $N=6$, $M=2$.

Первый вариант модели

Построим модель для первого варианта (рис. [3.7]).

model 17_3.gps pier STORAGE 10 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [3.8]).

	START T				FACILITIES 0		
	0.	000	1020.000		Ŭ	-	
	NAME			VALUE			
	ARRIVE		10				
	PIER		10	000.000			
LABEL		LOC BLOO	K TYPE	ENTRY COUN	T CURRENT CO	OUNT RETRY	
		1 GENE	RATE		0	0	
		2 QUEU	JΕ	215	0	0	
		3 ENTE		215	0	0	
		4 DEPA	RT	215	0	0	
		5 ADV	NCE	215	1	0	
		6 LEAV	Æ.	214	0	0	
		7 TERM	INATE	214	0	0	
		8 GENE	RATE	180	0	0	
		9 TERM	INATE	180	0	0	
QUEUE		MAX CONT.	ENTRY ENTRY	(0) AVE.CO	NT. AVE.TIM	E AVE.(-0) R	ETRY
ARRIVE						0.000	
						JTIL. RETRY DE	
PIER		10 7	0 3	645 1	1.485 (0.148 0	U
FEC XN	PRI	BDT	ASSEM CUR	RENT NEXT	PARAMETER	VALUE	
			395				
396			396				
397			397				

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 3 (рис. [3.9]), получаем оптимальный результат, что видно на отчете (рис. [3.10]).

model 17_3.gps pier STORAGE 3 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

	START TIME 0.000	END TIME BLOCKS FACILITIES STORAGES 4320.000 9 0 1
	NAME ARRIVE PIER	VALUE 10001.000 10000.000
LABEL	1 2 3 4 5 6 7	BLOCK TYPE
QUEUE ARRIVE		CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 0 215 215 0.000 0.000 0.000 0
STORAGE PIER		0. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 0 0 3 645 1 1.485 0.495 0 0
395	0 432 0 433	DT ASSEM CURRENT NEXT PARAMETER VALUE 4.260 395 5 6 5.233 396 0 1 4.000 397 0 8

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. [3.11]).

```
model 17_3.gps

pier STORAGE 6
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [3.12]).

model 17	_3.3.1 - REPO	RT					
					FACILITIES 0		
	NAME ARRIVE PIER			VALUE 10001.000 10000.000			
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA 7 TER 8 GEN	ERATE UE ER ART ANCE VE MINATE ERATE	143 143 143 143 143	0 1 0 0	0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE					CONT. AVE.TIM	, ,	
STORAGE PIER					AVL. AVE.C. 1 0.524		
322 324	0	4325.892 4336.699	322	5 6 0 1	T PARAMETER	VALUE	

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [3.13]), получаем оптимальный результат, что видно из отчета (рис. [3.14]).

model 17_3.gps pier STORAGE 2 GENERATE 30,10 ;моделирование занятия причала QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

model 17	_3.6.1 - REPO	ORT					
	START TIME 0.000				FACILITIES 0		
	NAME ARRIVE PIER		1	VALUE .0001.000			
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA	ERATE UE ER ART ANCE VE MINATE ERATE		0 0 0 1 0 0	0 0 0 0 0 0	
QUEUE ARRIVE					CONT. AVE.TIM		
STORAGE PIER					AVL. AVE.C. 1 0.524		
FEC XN 322 324 325	0	4325.892 4336.699	322	5 6 0 1	T PARAMETER	VALUE	

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.