

Masterarbeit Kolloquium

Machine Learning im Kontext von Cyber Security

Studiengang: Informationssysteme

Verfasserin: Kathrin Rodi Matrikel-Nr.: 3129378

Erstgutachter: Prof. Dr. Reinhold von Schwerin

Zweitgutachter: Prof. Dr. Markus Schäffter

Betreuer: Hans-Martin Münch

Agenda

- 1. Motivation
- 2. Ziel
- 3. Konzept
- 4. loCs
- 5. Analyseverfahren
- 6. Datensätze
- 7. Prototyp
- 8. Fazit und Ausblick

MOTIVATION

1. Motivation

- Täglich neue Malware im 6-stelligen Bereich (AV-Test 2019)
- Höchstand neuer Malware (McAfee 2019)

Quantität Qualität

Machine Learning

- Binäre/Multi-Klassen-Klassifikation
- Clustering
- Deep Learning

ZIEL

2. Ziel

- Was sind **loCs** in Bezug auf Malware?
- Welche Machine Learning Verfahren werden in der Cyber Security angewendet?
- Welche **Datensätze** gibt es?
- Implementierung eines **Prototyps**

KONZEPT

3 Konzept

Ziel	Methode	Erwartetes Ergebnis
loCs	Literaturrecherche	Definition inklusive Beispiele
Analyseverfahren	Literaturrecherche	Übersicht diverser Ansätze
Datensätze	Literaturrecherche	Evaluierte Datensätze
Prototyp	CRISP-DM	Evaluierte Modelle

loCs

4.1 loCs - Definition

Indicators of Compromise (IoCs)

4.1 loCs - Definition

Indicators of Compromise (IoCs)

Hinterlassenschaften welche ein Angreifer zurück lässt, die darauf hindeuten, dass ein System kompromittiert wurde.

4.2 loCs in Bezug auf Malware

Portable Executable Dateien (PE-Dateien)

Dynamische Analyse

Verdächtige API Aufrufe

Statische Analyse

Verdächtige Imports/Exports/Ressourcen/Kompilierungszeit

ANALYSEVERFAHREN

5.1 Analyseverfahren - Vorgehen

33 Ansätze untersucht auf:

- Gegenstand
- Algorithmen
- Features
- Leistungsmetriken
- Ergebnis

5.2 Analyseverfahren - Ergebnis

Abb. 1: Verteilung der Analyseverfahren nach Themen (eigene Darstellung)

- Trend: Malware
- Features: Use Case spezifisch
- 9 Leistungsmetriken: Accuracy
- 33 Algorithmen
 - o 25 traditionelle MLAs: DT, RF
 - 8 Deep Learning: CNN, RNN

DATENSÄTZE

6. Datensätze

11 Datensätze verglichen auf:

- Jahr
- Inhalt
- Features
- Umfang
- Labels

6. Datensätze

11 Datensätze verglichen auf:

- Jahr
- Inhalt
- Features
- Umfang
- Labels

Ember Datenset

PROTOTYP

7.1 Prototyp - Modeling

- 3 LSTM Modelle
- Keras API in Google Colab
- Mit GPU und Tensorflow Backend
- Trainingszeit max: 500 Epochen
- Leistungsmetriken: Accuracy, loss

Abb. 2: Loss nach Epochen (eigene Darstellung)

7.2 Prototyp Evaluierung

Bestes Modell: modelRnn1

Abb. 3: loss modelRnn1 (eigene Darstellung)

Accuracy: 78.7%, loss: 0.49

Abb. 4: Accuracy modelRnn1 (eigene Darstellung)

FAZIT & AUSBLICK

IoCs dienen als Features
 Weitere Forschung über PE- Dateien hinaus

- IoCs dienen als Features
 Weitere Forschung über PE- Dateien hinaus
- Breite Adaption an Analyseverfahren Hilfestellungen für die Industrie bieten

- IoCs dienen als Features
 Weitere Forschung über PE- Dateien hinaus
- Breite Adaption an Analyseverfahren Hilfestellungen für die Industrie bieten
- Mangel an Datensets
 Standardisierung

- IoCs dienen als Features
 Weitere Forschung über PE- Dateien hinaus
- Breite Adaption an Analyseverfahren Hilfestellungen für die Industrie bieten
- Mangel an Datensets Standardisierung
- Erfolgreicher Prototyp
 Basis für weitere Forschung

Vielen Dank für die Aufmerksamkeit

Fragen?

Quellenverzeichnis

Internetquellen

- AV-TEST (2019). Malware Statistics & Trends Report. url: https://www.avtest.org/en/statistics/malware/ (besucht am 08. 10. 2019)
- McAfee (2019). McAfee Labs Threats Report.
 url: https://www.mcafee.com/enterprise/en-us/threat-center/mcafee-labs/reports.html
 (besucht am 19. 12. 2019)

Bücher

 Raschka, S. und V. Mirjalili (2019). Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd

BACKUP

Verschleierungsansätze

1. Packing

Komprimierung exekutierbarer Dateien

2. Metamorphismus

Auomatische Neukodierung

3. Polymorphismus

Permanente Veränderung oder Weiterentwicklung von Malware

loCs

Eindeutige IoCs

Malware inklusive von Malware ausgelöste Aktionen

Nicht eindeutige IoCs

Administrative Tools wie PsExec

PE-Dateien

Abb. 5: Aufbau einer PE-Datei (eigene Darstellung)

- 1. Irrelevant für Analyse
- 2. Grundlegende Informationen der Datei z. B. Kompilierungszeit
- 3. Programmeinstiegspunkt, Stackgröße, GUI oder Konsole
- 4. Imports, Exports, Speicher, Ressourcen

LSTM

Abb. 6: Struktur einer LSTM Zelle (eigene Darstellung in Anlehnung an Raschka und Mirjalili (2019))

Leistungsmetriken

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Abb. 7: Accuracy Formel (eigene Darstellung)

loss

$$logloss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij})$$

Abb. 8: loss Formel (eigene Darstellung)