The z-Transform

Content

- Introduction
- z-Transform
- Zeros and Poles
- Region of Convergence
- Important z-Transform Pairs
- Inverse *z*-Transform
- z-Transform Theorems and Properties
- System Function

Why z-Transform?

- A generalization of Fourier transform
- Why generalize it?
 - FT does not converge on all sequence
 - Notation good for analysis

Definition

• The z-transform of sequence x(n) is defined by

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) z^{-n}$$
• Let $z = e^{j\omega}$.

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$

z-Plane

$$X(z) = \sum_{n = -\infty}^{\infty} x(n)z^{-n}$$

$$X(e^{j\omega}) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n}$$

$$X(e^{j\omega}) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n}$$

Fourier Transform is to *evaluate z-transform* on a unit circle.

Definition ROC

• Give a sequence, the set of values of z for which the z-transform converges, i.e., $|X(z)| < \infty$, is called the region of convergence.

$$|X(z)| = \left| \sum_{n=-\infty}^{\infty} x(n) z^{-n} \right| = \sum_{n=-\infty}^{\infty} |x(n)| |z|^{-n} < \infty$$

ROC is centered on origin and consists of a set of rings.

Example: A right sided Sequence

$$x(n) = a^n u(n)$$

Example: A right sided Sequence

$$x(n) = a^n u(n)$$

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n}$$

$$= \sum_{n=0}^{\infty} a^n z^{-n}$$

$$= \sum_{n=0}^{\infty} (az^{-1})^n$$

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

$$|z| > |a|$$

$$|z| > |a|$$

For convergence of X(z), we require that

$$\sum_{n=0}^{\infty} |az^{-1}| < \infty \qquad |az^{-1}| < 1$$

$$X(z) = \sum_{n=0}^{\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

$$|z| > |a|$$

$$\sum_{n=0}^{\infty} \alpha^n = \frac{1}{1-\alpha}$$

Example: A left sided Sequence

$$x(n) = -a^n u(-n-1)$$

Example: A left sided Sequence

$$x(n) = -a^n u(-n-1)$$

$$X(z) = -\sum_{n=-\infty}^{\infty} a^n u (-n-1) z^{-n}$$

$$= -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

$$= -\sum_{n=0}^{\infty} a^{-n} z^n$$

$$= 1 - \sum_{n=0}^{\infty} a^{-n} z^n$$

$$\sum_{n=0}^{\infty} |a^{-1}z| < \infty \quad |a^{-1}z| < 1$$

$$X(z) = 1 - \sum_{n=0}^{\infty} (a^{-1}z)^n = 1 - \frac{1}{1 - a^{-1}z} = \frac{z}{z - a}$$

For convergence of
$$X(z)$$
, we require that
$$X(z) = -\sum_{n=-\infty}^{\infty} a^n u(-n-1)z^{-n}$$

$$= -\sum_{n=-\infty}^{-1} a^n z^{-n}$$

$$= -\sum_{n=0}^{\infty} a^{-n} z^{n}$$

$$= 1 - \sum_{n=0}^{\infty} a^{-n} z^{n}$$
For convergence of $X(z)$, we require that
$$\sum_{n=0}^{\infty} |a^{-1}z| < \infty \qquad |a^{-1}z| < 1$$

$$= |a^{-1}z| < |a|$$

$$= -a^{-1}z$$

$$= |a^{-1}z| < |a|$$

$$= -a^{-1}z$$

Example: A left sided Sequence ROC for $x(n)=-a^nu(-n-1)$

$$X(z) = \frac{z}{z - a}, \qquad |z| < |a|$$

Which one is stable?

Represent z-transform as a Rational Function

$$X(z) = \frac{z}{z - a}$$

$$X(z) = \frac{P(z)}{Q(z)}$$
 where $P(z)$ and $Q(z)$ are polynomials in z .

Zeros: The values of z's such that X(z) = 0

Poles: The values of z's such that $X(z) = \infty$

Example: A right sided Sequence

$$x(n) = a^n u(n) \qquad X(z) = \frac{z}{z - a}, \qquad |z| > |a|$$

ROC is bounded by the pole and is the exterior of a circle.

$$Z_{e \delta 0 S} = 0$$

Example: A left sided Sequence

$$x(n) = -a^n u(-n-1)$$
 $X(z) = \frac{z}{z-a}, |z| < |a|$

ROC is bounded by the pole and is the interior of a circle.

and (n)

Example: Sum of Two Right Sided Sequences

$$x(n) = (\frac{1}{2})^n u(n) + (-\frac{1}{3})^n u(n)$$

$$X(z) = \frac{z}{z - \frac{1}{2}} + \frac{z}{z + \frac{1}{3}} = \frac{2z(z - \frac{1}{12})}{(z - \frac{1}{2})(z + \frac{1}{3})}$$

ROC is bounded by poles and is the exterior of a circle.

ROC does not include any pole.

$$\frac{z^{2}}{\sqrt{2}} + \frac{z}{\sqrt{2}}$$

$$\frac{z^{2}}{\sqrt{2}} + \frac{z}{\sqrt{3}} + \frac{z^{2}}{\sqrt{2}} + \frac{z^{2}}{\sqrt{2}}$$

$$= \frac{2z^{2} - \frac{1}{2}}{\sqrt{2} - \frac{1}{2}}$$

$$= \frac{2z(z - \frac{1}{2})}{(z - \frac{1}{2})(z + \frac{1}{2})}$$

$$x(n) = \frac{(-\frac{1}{3})^{n} u(n)}{(-\frac{1}{2})^{n} u(-n-1)}$$

$$X(z) = \frac{z}{z + \frac{1}{3}} + \frac{z}{z - \frac{1}{2}} = \frac{2z(z - \frac{1}{12})}{(z + \frac{1}{3})(z - \frac{1}{2})}$$
ROC is bounded by poles and is a ring.

ROC does not include any pole.

$$\delta[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=-\infty}^{+\infty} \delta[n] z^{-n} = 1, \qquad \delta[n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=-\infty}^{+\infty} \delta[n-1] z^{-n} = z^{-1}. \qquad \delta[n+1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \sum_{n=-\infty}^{+\infty} \delta[n+1] z^{-n} = z,$$

Example: A Finite Sequence

$$\frac{z^{N}-\alpha^{N}z^{N}-N}{z^{N}-\alpha^{N}z^{N}-1}$$

Properties of ROC

- A ring or disk in the z-plane centered at the origin.
- The Fourier Transform of x(n) is converge absolutely iff the ROC includes the unit circle.
- The ROC cannot include any poles
- Finite Duration Sequences: The ROC is the entire z-plane except possibly z=0 or $z=\infty$.
- Right sided sequences: The ROC extends outward from the outermost finite pole in X(z) to $z=\infty$.
- Left sided sequences: The ROC extends inward from the innermost nonzero pole in X(z) to z=0.

More on Rational z-Transform

Consider the rational *z*-transform with the pole pattern:

Case 2: A left sided Sequence.

More on Rational z-Transform

Consider the rational *z*-transform with the pole pattern:

Case 3: A two sided Sequence.

More on Rational z-Transform

Consider the rational *z*-transform with the pole pattern:

Case 4: Another two sided Sequence.

$$(1)^{X(z)=\frac{1}{1+\frac{5z^{-1}}{4}+\frac{3z^{-2}}{8}}} (2)^{X(z)} = \frac{1}{(1-\frac{1}{3}z^{-1})(1-2z^{-1})}.$$
 Find possible ROC...

Z-Transform Pairs

Sequence	z-Transform	ROC	
$\delta(n)$	1	All z	1
$\delta(n-m)$	z^{-m}	All z except 0 (if $m>0$) or ∞ (if $m<0$)	\rightarrow $Z^{\mathbf{w}}$
u(n)	$\frac{1}{1-z^{-1}}$	$ z >1 \longrightarrow Z^{\mathbf{M}}$	
-u(-n-1)	$\frac{1}{1-z^{-1}}$	z < 1	
$a^n u(n)$	$\frac{1}{1-az^{-1}}$	z > a	
$-a^nu(-n-1)$	$\frac{1}{1-az^{-1}}$	z < a	

Z-Transform Pairs

Sequence	z-Transform	ROC
$[\cos \omega_0 n] u(n)$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
$[\sin \omega_0 n] u(n)$	$\frac{[\sin \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
$[r^n\cos\omega_0 n]u(n)$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
$[r^n \sin \omega_0 n] u(n)$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r
$\begin{cases} a^n & 0 \le n \le N - 1 \\ 0 & \text{otherwise} \end{cases}$	$\frac{1 - a^{N} z^{-N}}{1 - a z^{-1}}$	z > 0

The z-Transform

z-Transform Theorems and Properties

Linearity

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

$$\mathcal{Z}[y(n)] = Y(z), \qquad z \in R_y$$

$$Z[ax(n)+by(n)] = aX(z)+bY(z), \qquad z \in R_x \cap R_y$$

Overlay of the above two ROC's

Shift

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

$$\mathcal{Z}[x(n+n_0)] = z^{n_0}X(z) \qquad z \in R_x$$

Multiplication by an Exponential Sequence

$$\mathcal{Z}[x(n)] = X(z), \qquad R_{x-} < |z| < R_{x+}$$

$$Z[a^n x(n)] = X(a^{-1}z) \qquad z \in |a| \cdot R_x$$

Differentiation of X(z)

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

$$\mathcal{Z}[nx(n)] = -z \frac{dX(z)}{dz} \qquad z \in R_x$$

Conjugation

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

$$\mathcal{Z}[x^*(n)] = X^*(z^*) \qquad z \in R_x$$

Reversal

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

$$\mathcal{Z}[x(-n)] = X(z^{-1}) \qquad z \in 1/R_x$$

Real and Imaginary Parts

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

$$\Re[x(n)] = \frac{1}{2} [X(z) + X * (z^*)] \qquad z \in R_x$$

$$Im[x(n)] = \frac{1}{2j} [X(z) - X * (z^*)] \qquad z \in R_x$$

Initial Value Theorem

$$x(n) = 0$$
, for $n < 0$

$$x(0) = \lim_{z \to \infty} X(z)$$

Convolution of Sequences

$$\mathcal{Z}[x(n)] = X(z), \qquad z \in R_x$$

 $\mathcal{Z}[y(n)] = Y(z), \qquad z \in R_y$

$$Z[x(n) * y(n)] = X(z)Y(z)$$
 $z \in R_x \cap R_y$

=bj YfgY'n!HfUbgZcfa

$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz,$$

$$X(z) = \frac{3 - \frac{5}{6}z^{-1}}{(1 - \frac{1}{4}z^{-1})(1 - \frac{1}{3}z^{-1})}, \quad |z| > \frac{1}{3}.$$

$$X(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}.$$

$$x[n] = \left(\frac{1}{4}\right)^n u[n] + 2\left(\frac{1}{3}\right)^n u[n].$$

Representation in Factored Form

$$H(z) = \frac{A \prod_{r=1}^{M} (1 - c_r z^{-1})}{\prod_{k=1}^{N} (1 - d_r z^{-1})}$$

Stable and Causal Systems

Causal Systems: ROC extends outward from the outermost pole.

Stable and Causal Systems

Stable Systems: ROC includes the unit circle.

$$\chi(n) = {\stackrel{\circ}{V}}$$

$$X(z) = \frac{1}{1 - 0\bar{z}}$$

Example

Consider the causal system characterized by

$$y(n) = ay(n-1) + x(n)$$

$$H(z) = \frac{1}{1 - az^{-1}}$$

$$h(n) = a^n u(n)$$

