EC504 ALGORITHMS AND DATA STRUCTURES FALL 2020 MONDAY & WEDNESDAY 2:30 PM - 4:15 PM

Prof: David Castañón, dac@bu.edu

GTF: Mert Toslali, toslali@bu.edu

Haoyang Wang: haoyangw@bu.edu

Christopher Liao: cliao25@bu.edu

Amortized Analysis of DecreaseKey

• Amortized analysis: Potential function $\Phi(\mathcal{H}) = \text{number of trees} + 2 * \text{number of marked nodes}$

Fibonacci Heaps: Demonstration

- Illustrate use in shortest path computations
- https://kbaile03.github.io/projects/fibo_dijk/fibo_dijk.html

Recent Ideas in Priority Queues

- Try to get complexity of Fibonacci heaps for DecreaseKey with simpler data structures
- Novel concepts
 - Pairing Heaps
 - Quake heaps
 - Violation heaps
 - Rank-Pairing heaps
- Focus on rank-pairing heaps

• Background: Tournament trees

- Half-ordered binary trees (half-trees)
 - Root has single left child
 - Half-heap property: parent key less than or equal to left child

- Rank of a node in half trees: similar to height...
 - If node is leaf, rank = 0
 - If it is root, rank(parent) = 1+rank(left child)
 - If |rank(left child) rank(right child)| <= 1: rank = 1 + max(rank(L),rank(R))
 - If |rank(L) rank(R)| 1: rank(parent) = max(rank(L), rank(R))

Half-Binary Trees

 Rank-Pairing Heaps are a linked list of binary half-trees, with pointer to minimum root

• Operations:

• Insert: add a new single-node half-tree to list: O(1)

Merge: just link two lists, update min pointer: O(1)

- Operations (cont)
 - DeleteMin: Delete min-root.
 - Cut edges along right path down from new root to give new half-trees
 - Compress: merge roots of equal rank until no two roots have equal rank

- Operations (cont)
 - Compress two trees of equal rank:

- Operations (cont)
 - DeleteMin: Delete min-root.
 - Cut edges along right path down from new root to give new half-trees
 - Compress: merge roots of equal rank until no two roots have equal rank
 - Variation: Lazy compress: don't compress recursively

- Operations (cont)
 - DecreaseKey: Remove x and its left subtree to a new half-tree
 - Replace x by its right child. Change key of x to k. Add x to the list of half tree roots. Update the min-root.
 - Update the ranks

- Operations (cont)
 - DecreaseKey: Update the ranks

- Amortized analysis
 - Key result: number of nodes in a half tree with rank k is again bounded below by F_{k+2} , the Fibonacci number
 - Implies that the maximum height of half-trees in forest is O(log(n))
- Analysis based on potential function
 - Potential of a node: 1 if root, 0 if both children have same rank, 2 if one child's rank is 1 greater than other, j-1 if single child of rank j
 - Potential of heap: sum of potential of all node

Rank-Pairing Heaps: Demo

• https://skycocoo.github.io/Rank-Pairing-Heap/

- Simpler implementation than Fibonacci heaps
- Same amortized complexity:
 - Insert: O(1)
 - DeleteMin: O(log(n))
 - DecreaseKey: O(1)
 - Merge: O(1)
- A subtle point in all heaps: need additional data structure to find nodes in O(1)
 - Not implemented in most standard libraries
 - Makes generic standard heap implementations have little utility ...

String Matching and Tries

- Consider the following problem:
 - Given a string T and k nonempty strings $P_1, P_2, ..., P_k$, find all occurrences of $P_1, P_2, ..., P_k$ in T.
 - T is called the text string and $P_1, P_2, ..., P_k$ are called pattern strings.
 - This problem was originally studied in the context of compiling indexes, but has found applications in computer security and computational genomics
- Simpler problem: k = 1
 - Knuth-Morris-Pratt (KMP) algorithm (CLRS)
- Harder problem: k > 1
 - Aho-Corasick tries

Single Pattern Matching

- Given a string T[1:n-] of n characters in finite alphabet set S
- Nonempty string P = P[1:m] of characters in S
- Pattern P occurs with shift s in T[s:s+m-1] = P[1:m]
- Problem: Find all shifts s where Pattern occurs with shift s
- Naive algorithm:
 - For s in 1 to n-m+1:
 - If T[s:s+m-1] = P[1:m], add s to set of shifts where pattern occurs
 - Complexity: O(m(n-m+1))

Single Pattern Matching

- Example:
 - T[] = "AAAAAAAAAAAAAAAAB" (n=18)
 - $P[] = \text{``AAAAB''} \quad (m=5)$

One shift matches: s=13

- Example
 - T[] = "ABABABCABABABCBABABC" (n=20)
 - P[] = ``ABABAC'' (m=6)

No shifts match!

- Idea: exploit that whenever we find a mismatch, we have already looked at a subset of the pattern
 - T[] = ``AAAA A A AAAAAAAAAAAB'' (n=18)
 - P[] = "AAAA B" (m=5)
 - If we get a mismatch on T[5], we don't have to start searching from k=2 for the next match! We know no shift can match before s = 6
- Idea: patterns have a prefix function
 - A string w is a proper prefix of a string x if x = w + v for some string nonempty string v, where + is concatenation
 - A string w is a proper suffix of a string x if x = v + w for some non-empty string v

- Algorithm: preprocess pattern P[0:m-1] to compute function $\pi[j]$
 - $\pi[j]$ = longest proper prefix of P[0:j] that is also a suffix of P[0:j], for j = 0 to m-1
 - Examples: $P = \text{``AAAA''} \longrightarrow \pi[] = [0, 1, 2, 3]$
 - P = "ABCDE" $\longrightarrow \pi[] = [0,0,0,0,0]$
 - P = "AABAACAABAA" $\longrightarrow \pi[] = [0,1,0,1,2,0,1,2,3,4,5]$
 - P = "AAACAAAAC" $\longrightarrow \pi[] = [$
 - P = "AAABAAA" $\longrightarrow \pi[] =$

- Analysis
 - String P: "a b a b a b a b c a"; Prefix function: $\pi(i)$: [0,0,1,2,3,4,5,6,0,1]
- Match into T: "a b a b d a a b a b a b a b c a d c d"

• Computing $\pi[j]$ from P[0:m-1]:

$$k = 0; j = 1;$$

$$\pi[0]=0;$$

While j < m:

If
$$P[k] = P[j]$$
:

$$k++; \pi[j]=k; j++;$$

else if k == 0: # first character did not match

$$\pi[j] = 0; j++;$$

else: #mismatch after first character

$$k = \pi [k-1]$$

w c a b c a	
-------------	--

arr

Р	Α	Α	В	Α	Α	С	Α	Α	В
Pi	0	1	0	1	2	0	1	2	3
						0			
J	1	2	3	4	5	6	7	8	9

```
k = 0; j = 0;
while (j < n)
    if P[k] == T[j]
        k++; j ++;
    if k == m:
        print("match at ", j-i)
        k=pi[k-1]
    else if (j < n and P[k] != T[j]):
        if k != 0
            k= pi[k-1]
        else
            j++;
return</pre>
```

T	Α	Α	В	Α	Α	Α	Α	Α	В
P	Α	Α							
pi	0	1							
S	1	0	0	1	1	1	1	0	0
k	0/1	1/0	0	0/1	1/0	1/0	1/0	1/0	0
j	0	1	2	3	4	5	6	7	8

Т	Α	Α	В	Α	Α	Α	Α	Α	В
P	Α	Α	Α						
pi	0	1	2						
S	0	0	0	1	1	1	0	0	0
k	0/1	1/2	2/0	0/1	1/2	2/1	2/1	2/1	0
j	0	1	2	3	4	5	6	7	8

- Complexity analysis
 - For each position j in the string T:
 - If it does not match, you slide the pattern to all possible suffixes and check for a match
 - Worst case pattern: "AAAAAAA": $\pi[k] = k$ so lots of prefixes
- Let q = number of digits matched when checking position j.
 - Potential $\Phi(j) = q$. Note $\Phi(0) = 0$, $\Phi(end) = 0$
 - Cost of checking position j: $c(j) = number of iterations of k = \pi[k-1]$ for this j
 - Cost is 1 + c(j)
 - Each iteration $k = \pi[k-1]$ decreases number matched by at least one
 - Amortized cost for position j: $1 + c(j) + \Phi(j) \Phi(j-1) = 1 + c(j) c(j)$: $\Theta(1)$
- To do n iterations: $\Theta(n)$

• Demo: http://jovilab.sinaapp.com/visualization/algorithms/strings/kmp

- KMP good for 1 pattern P
- What if we are looking for k patterns $P_1, P_2, ..., P_k$?

- Notation: m is T string length; n is total length of k patterns; L_{max} length of longest pattern
- Naive approach:
 - For each position in T:
 - For each pattern string P_i :
 - Check if P_i appears at that position
 - $\Theta(mn)$
 - Can we do better?

• Can we do better?

- Idea: Search for all strings in parallel
- How? Form the strings into a **trie**: word comes from retrieval
- A trie: a tree structure where the branches at each level correspond to symbol values
 - Example trie: index tables at end of documents
 - Important idea: In a trie, you wait to subdivide a node until there is a collision of two elements...saves storage! Can identify nodes with key words as potential end nodes

• Example trie for words

Representing Tries

- Each trie node has pointers to its possible children
 - Assume you have an array of pointers at each node, many of which could be null

Matching Tries

Matching Tries

Analysis of algorithm

- Complexity: $\Theta(mL_{max})$
 - Good reduction if n is large (several patterns)
- But: How long to build a trie? Need that preprocessing step
- Claim: Given a set of strings $P_1, P_2, ..., P_k$ of total length n, it's possible to build a trie for those strings in time $\Theta(n)$

Building Tries

