DM 14 : Corrigé

Problème 1:

Décomposition d'un anneau

Partie I: Anneaux décomposables

- 1°) On suppose que A est un corps.
- \diamond Soit $x \in A$ que l'on suppose nilpotent. Il existe $n \in \mathbb{N}^*$ tel que $x^n = 0$. Alors x^n n'est pas inversible, or l'ensemble des inversibles d'un anneau est toujours un groupe multiplicatif, donc x n'est pas inversible. Or A est un corps, donc x = 0. Réciproquement 0 est toujours nilpotent, donc dans un corps, 0 est l'unique élément nilpotent.
- \diamond Supposons que $x \in A$ est idempotent : $x^2 = x$, donc x(x-1) = 0, or un corps est toujours intègre, donc x = 0 ou x = 1. La réciproque étant claire, les idempotents d'un corps sont exactement ses éléments neutres 0 et 1.

20

- \diamond Soit $\overline{k} \in \mathbb{Z}/12\mathbb{Z}$ tel qu'il existe $n \in \mathbb{N}^*$ pour lequel $\overline{k}^n = 0$. Ainsi $12 \mid k^n$, donc 2 et 3 interviennent nécessairement dans la décomposition primaire de k. Ainsi k est un multiple de 6 et $\overline{k} \in \{0, \overline{6}\}$. Réciproquement $\overline{6}^2 = 0$, donc les nilpotents de $\mathbb{Z}/12\mathbb{Z}$ sont exactement $\overline{0}$ et $\overline{6}$.
- \diamond Évaluons les carrés dans $\mathbb{Z}/12\mathbb{Z}$: $\overline{2}^2 = \overline{4} = \overline{-2}^2$, $\overline{3}^2 = \overline{9} = \overline{-3}^2$, $\overline{4}^2 = \overline{4} = \overline{-4}^2$, $\overline{5}^2 = \overline{1} = \overline{-5}^2$, donc les idempotents de $\mathbb{Z}/12\mathbb{Z}$ sont exactement 0, 1, $\overline{4}$ et $\overline{-3} = \overline{9}$.
- **3**°) Soit $(x,y) \in B \times C$. (x,y) est idempotent si et seulement si $(x,y)^2 = (x,y)$, c'est-à-dire si et seulement si $(x^2,y^2) = (x,y)$ ou encore $(x^2 = x) \wedge (y^2 = y)$, donc si et seulement si x et y sont idempotents.

Ainsi, (0,0), (0,1), (1,0) et (1,1) sont 4 éléments idempotents de $B \times C$ deux à deux distincts.

 4°) Ae est l'idéal engendré par e, donc d'après le cours, c'est un sous-groupe additif de A. La multiplication dans Ae est associative et distributive par rapport à l'addition, par restriction de ces propriétés valables sur A en entier.

Si $ae, be \in Ae, (ae).(be) = abe \in Ae,$ donc le produit est une loi interne sur Ae.

Enfin, pour tout $ae \in Ae$, $ae.e = ae^2 = ae$, donc e est l'élément neutre pour le produit dans Ae.

En résumé, Ae est un anneau (il est bien non nul et commutatif), pour les restrictions à Ae des lois de A, mais avec e comme élément neutre.

- 5°) $\diamond (1-e)^2 = 1 - 2e + e = 1 - e$, donc 1 - e est idempotent. On a bien $e(1-e) = e - e^2 = 0$.
- ♦ Montrons que l'application $\varphi: A \longrightarrow [Ae] \times [A(1-e)]$ est un morphisme d'anneaux. $\varphi(1) = (e, 1-e)$: c'est bien l'élément neutre pour la multiplication de l'anneau produit $[Ae] \times [A(1-e)]$. Soit $x, y \in A$.

$$\varphi(x+y) = ((x+y)e, (x+y)(1-e)) = (xe, x(1-e)) + (ye, y(1-e)) = \varphi(x) + \varphi(y)$$
 et $\varphi(xy) = (xye, xy(1-e)) = (xyee, xy(1-e)(1-e)) = (xe, x(1-e)) \times (ye, y(1-e)),$ donc $\varphi(xy) = \varphi(x) \times \varphi(y).$

Ceci prouve bien que φ est un morphisme d'anneaux.

- \diamond Soit $x \in \text{Ker}(\varphi) : 0 = \varphi(x) = (xe, x(1-e)), \text{ donc } x = xe + x(1-e) = 0. \text{ Ainsi, } \text{Ker}(\varphi) = \{0\} \text{ et } \varphi \text{ est injective.}$
- \diamond Soit $(ae, b(1-e)) \in [Ae] \times [A(1-e)]$. Posons x = ae + b(1-e).

Alors $xe = ae^2 + b(1-e)e = ae$ car (1-e)e = 0 et de même, x(1-e) = b(1-e) donc $\varphi(x) = (ae, b(1-e))$, ce qui prouve que φ est surjective.

En conclusion, φ est un isomorphisme d'anneaux.

 6°

- \diamond Lemme 1 : deux anneaux isomorphes ont le même nombre d'éléments idempotents. En effet, soit f un isomorphisme d'un anneau A vers un anneau B. Pour tout $x \in A$, $x^2 = x \iff f(x^2) = f(x)$, car f est bijective, donc $x^2 = x \iff f(x)^2 = f(x)$. Ainsi, si l'on note I_A et I_B les ensembles des éléments idempotents de A et de B, $I_B = f(I_A)$, donc I_A et I_B ont le même cardinal.
- \diamond Supposons que A est décomposable. Alors d'après la question 3 et le lemme 1, il possède au moins 4 idempotents, donc en prenant la contraposée, si les seuls éléments idempotents de A sont 0 et 1, alors A est indécomposable.

Réciproquement, si A possède au moins un idempotent e différent de 0 et de 1, d'après la question 5, A est décomposable.

- 7°) \diamond Soit $n \in \mathbb{N}$ avec $n \geq 2$. Notons R(n) l'assertion suivante : si un anneau A possède au plus n éléments idempotents, alors A est isomorphe au produit cartésien d'un nombre fini d'anneaux indécomposables.
- Pour n=2, d'après la question précédente, si A possède au plus deux idempotents (nécessairement égaux à 0 et 1), alors A est indécomposable, donc c'est le produit cartésien d'un unique anneau indécomposable, ce qui prouve R(2).
- Pour $n \geq 3$, supposons R(n-1) et considérons un anneau A qui possède au plus n éléments idempotents. S'il en possède moins de n-1, d'après R(n-1), A est isomorphe au produit cartésien d'un nombre fini d'anneaux indécomposables. Supposons maintenant qu'il possède exactement n idempotents.
- $n \geq 3$, donc A possède au moins un idempotent e différent de 0 et de 1. D'après la question 4, A est isomorphe à $[Ae] \times [A(1-e)]$.

Notons b et c le nombre d'idempotents de Ae et de A(1-e) respectivement. D'après le lemme 1 et la question 3, n=bc, mais $b \geq 2$ et $c \geq 2$, car 0 et 1 sont toujours nilpotents, donc b < n et c < n. On peut donc appliquer R(n-1) aux anneaux Ae

et A(1-e). Ainsi il existe un isomorphisme d'anneaux φ_1 (resp : φ_2) de Ae (resp : A(1-e)) dans $B_1 \times \cdots \times B_p$ (resp : $B_{p+1} \times \cdots \times B_{p+q}$), où les B_i sont des anneaux indécomposables.

Posons, pour tout $x \in A$, $\Psi(x) = (x_1, \dots, x_{p+q})$, où $(x_1, \dots, x_p) = \varphi_1(xe)$ et $(x_{p+1}, \dots, x_{p+q}) = \varphi_2(x(1-e))$.

On vérifie aisément que Ψ est un isomorphisme d'anneaux, ce qui prouve R(n).

D'après le principe de récurrence, la question est démontrée.

 \diamond Soit A un anneau possédant un nombre fini d'idempotents. Il existe des anneaux indécomposables B_1, \ldots, B_n et un isomorphisme d'anneaux f de A dans $B_1 \times \cdots \times B_n$. Pour tout $i \in \{1, \ldots, n\}$, les idempotents de B_i sont exactement 0 et 1. D'après la question 3, les idempotents de $B_1 \times \cdots \times B_n$ sont les (d_1, \ldots, d_n) où pour tout $i \in \{1, \ldots, n\}$, $d_i \in \{0, 1\}$. Ils sont donc au nombre de 2^n . Le lemme 1 permet de conclure.

Partie II: anneaux locaux

- 8°) Si A est un anneau, $U(A) = A \setminus \{0\}$, donc $A \setminus U(A) = \{0\}$: c'est l'idéal engendré par 0.
- 9°) Soit $k \in \mathbb{N}^*$ et $p \in \mathbb{P}$. notons $I = \mathbb{Z}/p^k\mathbb{Z} \setminus U(\mathbb{Z}/p^k\mathbb{Z})$. Pour tout $n \in \mathbb{Z}$, $\overline{n} \in I \iff n \wedge p^k \neq 1 \iff n \wedge p \neq 1 \iff p \mid n$, car p est premier, donc $\overline{n} \in I \iff \exists \overline{a} \in \mathbb{Z}/p^k\mathbb{Z}$, $\overline{n} = \overline{p}$ \overline{a} . Ceci prouve que $I = \overline{p}.\mathbb{Z}/p^k\mathbb{Z}$: c'est l'idéal engendré par \overline{p} , donc $\mathbb{Z}/p^k\mathbb{Z}$ est un anneau local.
- $\mathbf{10}^{\circ}) \ \diamond$ Supposons que A est un anneau local.

S'il est décomposable, d'après la question 6, il possède un idempotent e différent de 0 et de 1. Si e était inversible, de $e^2 = e$, on déduirait que e = 1 ce qui est faux, donc $e \in I = A \setminus U(A)$. De même, $1 - e \in I$ d'après la question 5. Mais I est un idéal, donc $1 = e + (1 - e) \in I$, ce qui est faux car $1 \in U(A)$. Ainsi A est indécomposable.

- \diamond Soit $n \in \mathbb{N}$, avec $n \geq 2$. On a vu que si n est de la forme p^k avec $k \in \mathbb{N}^*$ et $p \in \mathbb{N}$, alors $\mathbb{Z}/n\mathbb{Z}$ est un anneau local. Réciproquement, si n n'est pas de cette forme, on peut écrire n = ab avec $a \geq 2$, $b \geq 2$ et $a \wedge b = 1$. Alors, d'après le théorème chinois, $\mathbb{Z}/n\mathbb{Z}$ est isomorphe à $(\mathbb{Z}/a\mathbb{Z}) \times (\mathbb{Z}/b\mathbb{Z})$, donc $\mathbb{Z}/n\mathbb{Z}$ est décomposable. D'après le point précédent, il n'est pas local.
- 11°) Supposons que A est un anneau local. Soit $x \in A$. Si x et 1-x sont tous deux non inversibles, alors en notant I l'idéal $A \setminus U(A)$, $1 = x + (1-x) \in I$, ce qui est faux car $1 \in U(A)$. Ainsi, pour tout $x \in A$, x ou 1-x est inversible.

Réciproquement, supposons que A est un anneau dans lequel pour tout $x \in A$, x ou 1-x est inversible. Notons encore $I = A \setminus U(A)$ et montrons que I est un idéal.

- $-0 \in I$, donc $I \neq \emptyset$.
- Soit $x \in I$ et $a \in A$: si ax était inversible, il existerait $b \in A$ tel que 1 = (ax)b = x(ab), donc x serait inversible, ce qui est faux. Ainsi $ax \in I$.
- Soit $x, y \in I$. Supposons que $x + y \in U(A)$. Ainsi, il existe $b \in A$ tel que 1 = (x + y)b = xb + yb.

xb ou 1-xb est inversible, mais $x \in I$, donc on a déjà vu que xb n'est pas inversible. Ainsi, 1-xb=yb est inversible, mais c'est faux car $y\in I$. Ainsi, $x + y \in I$.

I est bien un idéal et A est un anneau local.

Partie III : cas des anneaux finis

 $\mathbf{12}^{\circ}$) \diamond Soit $x \in A$. A est fini et \mathbb{N} est infini, donc l'application $h \longmapsto x^h$ de \mathbb{N} dans An'est pas injective. Ainsi, il existe $k, \ell \in \mathbb{N}$ tels que $k > \ell$ et $x^k = x^{\ell}$.

Alors pour tout $a \in \mathbb{N}$, $x^{k+a} = x^{\ell+a}$.

Si l'on pose $T=k-\ell, x^{k+T}=x^{\ell+T}=x^k$, puis $x^{(k+a)+T}=x^{k+a}$ pour tout $a\in\mathbb{N}$, donc la suite $(x^h)_{h\geq k}$ est T-périodique.

Soit $b \in \mathbb{N}^*$ tel que $bT \ge k$. Alors $x^{bT} = x^{bT+bT} = [x^{bT}]^2$,

donc x^{bT} est idempotent et $bT \in \mathbb{N}^*$.

- \diamond Supposons que A est indécomposable. Soit $x \in A$. Il existe $n \in \mathbb{N}^*$ tel que x^n est idempotent, donc d'après la question 6, $x^n \in \{0,1\}$. Si $x^n = 1$, alors x est inversible, d'inverse x^{n-1} et si $x^n = 0$, alors x est nilpotent. Ainsi, tout élément de A est soit inversible, soit nilpotent.
- 13°) \diamond D'après la question 10, si A est local, alors A est indécomposable. Réciproquement, supposons A est indécomposable. Soit x un élément non inversible de A. Alors il existe

$$n \in \mathbb{N}^*$$
 tel que $x^n = 0$. Ainsi, $(1-x)\sum_{k=0}^{n-1} x^k = 1 - x^n = 1$, donc $1-x$ est inversible. Ceci montre que pour tout $x \in A$, x ou $1-x$ est inversible. Alors A est local d'après

la question 11.

♦ Cette propriété devient fausse pour des anneaux de cardinal infini, car ℤ constitue un contre-exemple. En effet, \mathbb{Z} est indécomposable car ses seuls idempotents sont 0 et 1, mais il n'est pas local car 3 et 1-3 ne sont pas inversibles dans \mathbb{Z} .

14°)

- \diamond Supposons qu'il existe un isomorphisme f de A vers un produit cartésien de corps $K_1 \times \cdots \times K_p$, où $p \in \mathbb{N}^*$. Soit $x \in A$ un élément nilpotent. Il existe $n \in \mathbb{N}^*$ tel que $x^n = 0$. Alors $0 = f(0) = f(x^n) = f(x)^n = (x_1, \dots, x_p)^n$, en posant $f(x) = (x_1, \dots, x_p)$. Ainsi, pour tout $i \in \mathbb{N}_p$, $x_i^n = 0$, or $x_i \in K_i$ et K_i est un corps, donc d'après la première question, $x_i = 0$. On en déduit que x = 0.
- \diamond Réciproquement, supposons que A ne possède aucun élément nilpotent non nul. D'après la question 7, il existe un isomorphisme f de A vers un produit cartésien $B_1 \times \cdots \times B_n$ d'anneaux indécomposables et finis.

Soit $i \in \mathbb{N}_p$ et soit $x \in B_i$ avec $x \neq 0$. D'après la question 12, si x n'est pas inversible, il est nilpotent. Alors $f^{-1}(0,\ldots,0,x,0,\ldots,0)$ est un élément nilpotent non nul de A, ce qui est impossible. Ainsi, x est inversible ce qui prouve que B_i est un corps. Alors A est isomorphe à un produit cartésien de corps.

 15°) Si n est un produit de nombres premiers deux à deux distincts, d'après le

théorème chinois et le fait que $\mathbb{Z}/p\mathbb{Z}$ est un corps pour tout nombre premier p, $\mathbb{Z}/n\mathbb{Z}$ est isomorphe à un produit cartésien de corps.

Si au contraire il existe $p \in \mathbb{P}$ et $a \in \mathbb{N}^*$ tel que $n = p^2 a$, alors \overline{pa} est un élément nilpotent non nul de $\mathbb{Z}/n\mathbb{Z}$, donc $\mathbb{Z}/n\mathbb{Z}$ n'est pas isomorphe à un produit cartésien de corps.

Problème 2:

Nombre d'enroulements de Poincaré

Partie I : groupe d'enroulement de Poincaré

1°) Soit
$$f \in Hom$$
. Pour tout $x \in \mathbb{R}$, $f(x+1) = f(x) + 1 \iff f(x+1) - (x+1) = f(x) - x \iff [f - Id_{\mathbb{R}}](x+1) = [f - Id_{\mathbb{R}}](x)$,

 $\iff [f-Id_{\mathbb{R}}](x+1) = [f-Id_{\mathbb{R}}](x),$ donc $f \in H$ si et seulement si $f-Id_{\mathbb{R}}$ est une application périodique de période 1.

 $2^{\circ})$

 \diamond Notons $S(\mathbb{R})$ l'ensemble des bijections de \mathbb{R} dans \mathbb{R} . D'après le cours, $S(\mathbb{R})$ et un groupe pour la loi de composition, c'est le groupe symétrique de \mathbb{R} . Montrons que Hom est un sous-groupe de $S(\mathbb{R})$.

 $Id_{\mathbb{R}}$ est une bijection continue sur \mathbb{R} , donc $Id_{\mathbb{R}} \in \text{Hom et Hom} \neq \emptyset$.

Si $f, g \in \text{Hom}$, $f \circ g$ est continue et bijective d'après le cours, donc $f \circ g \in \text{Hom}$.

Si $f \in \text{Hom}$, alors f^{-1} est une bijection et elle est continue d'après le théorème de la bijection. Ceci démontre que Hom est un sous-groupe de $S(\mathbb{R})$.

 \diamond Montrons que H est un sous-groupe de Hom.

 $Id_{\mathbb{R}}$ est un élément de H, donc $H \neq \emptyset$.

Soit $f, g \in H$. Pour tout $x \in \mathbb{R}$, $[f \circ g](x+1) = f(g(x+1)) = f(g(x)+1) = f(g(x)) + 1$, donc $f \circ g \in H$.

Soit $f \in H$. Soit $x \in \mathbb{R}$. Posons $y = f^{-1}(x)$. On sait que f(y+1) = f(y)+1 = x+1, donc en composant cette égalité par f^{-1} , $y+1 = f^{-1}(x+1)$, donc $f^{-1}(x+1) = f^{-1}(x)+1$. Ainsi, $f^{-1} \in H$. Ceci démontre que H est un sous-groupe de Hom.

- $\mathbf{3}^{\circ}$) $\diamond f Id_{\mathbb{R}}$ est 1-périodique, donc pour tout $m \in \mathbb{Z}$ et $x \in \mathbb{R}$,
- $(f Id_{\mathbb{R}})(x + m) = (f Id_{\mathbb{R}})(x)$, puis f(x + m) = f(x) + m.
- \Leftrightarrow f est continue et injective, donc d'après le cours f est strictement monotone. Or f(1) = f(0) + 1 > f(0), donc f est strictement croissante.
- 4°) \diamond Notons $f: x \longmapsto x + \frac{1}{2\pi} \sin(2\pi x)$.

f est continue d'après les théorèmes usuels. f est même dérivable avec

 $f'(x) = 1 + \cos(2\pi x)$, donc pour tout $x \in \mathbb{R}$, $f'(x) \ge 0$ et f est croissante.

De plus, $f(x) = 0 \iff 2\pi x \in \pi + 2\pi \mathbb{Z} \iff x \in \frac{1}{2} + \mathbb{Z}$. Ainsi, f' n'est identiquement nulle sur aucun intervalle d'intérieur non vide, donc d'après le cours, f est strictement croissante.

 $f(x) \ge x - \frac{1}{2\pi}$, donc d'après le principe des gendarmes, $f(x) \xrightarrow[x \to +\infty]{} +\infty$. De même, $f(x) \le x + \frac{1}{2\pi}$, donc $f(x) \xrightarrow[x \to -\infty]{} -\infty$. D'après le théorème des valeurs intermédiaires, f réalise donc une surjection de \mathbb{R} dans \mathbb{R} , injective car f est strictement croissante. Ainsi, $f \in \text{Hom}$.

 $f - Id_{\mathbb{R}}$ est clairement 1-périodique, donc $f \in H$.

 \diamond Soit $a, b \in \mathbb{R}$. Supposons que $x \longmapsto ax + b$ est un élément de H. Alors, pour tout $x \in \mathbb{R}, \ a(x+1) + b = ax + b + 1, \ donc \ a = 1.$

Réciproquement, si a=1, l'application $f: x \mapsto x+b$ est une bijection continue telle que pour tout $x \in \mathbb{R}$, f(x+1) = f(x) + 1, donc $f \in H$.

En conclusion, les applications affines de H sont les $x \mapsto x + b$ où b est un réel quelconque.

Partie II : nombre d'enroulements de Poincaré

 5°) \diamond On suppose que $x \leq y < x + 1$.

H est un groupe, donc $f^n \in H$. Ainsi, f^n est strictement croissante,

donc $f^n(x) \le f^n(y) < f^n(x+1) = f^n(x) + 1$. Ainsi $0 \le f^n(y) - f^n(x) \le 1$.

Par ailleurs, $-1 \le x - y \le 0$, donc en sommant ces deux encadrements,

The tall the first of the tall that
$$y = 0$$
, do not all somethics $x = -1 \le f^n(y) - y - (f^n(x) - x) \le 1$. On en déduit que $|(f^n(y) - y) - (f^n(x) - x)| \le 1$, puis en divisant par n que $|u_n(y) - u_n(x)| \le \frac{1}{n}$. \Rightarrow Supposons maintenant que x et y sont quelconques dans \mathbb{R} . Il existe $k \in \mathbb{Z}$ tel que

 $x \le y + k < x + 1$ (en prenant $k = \lceil x - y \rceil$). D'après le point précédent,

$$|u_n(y+k)-u_n(x)| \leq \frac{1}{n}$$
, or u_n est 1-périodique car $f^n \in H$, donc $u_n(y+k)=u_n(y)$ et on a bien encore $|u_n(y)-u_n(x)| \leq \frac{1}{n}$.

$$\mathbf{6}^{\circ}) \ \, \diamond \, \mathrm{Soit} \, \, n,m \in \mathbb{N}^{*}. \, \, \frac{1}{m} \sum_{k=0}^{m-1} u_{n}(f^{kn}(0)) = \frac{1}{nm} \sum_{k=0}^{m-1} (f^{(k+1)n}(0) - f^{kn}(0)). \, \, \mathrm{Il} \, \, \mathrm{s'agit} \, \, \mathrm{d'une}$$

somme télescopique, donc $\frac{1}{m} \sum_{k=0}^{m-1} u_n(f^{kn}(0)) = \frac{1}{nm} (f^{mn}(0) - 0) = u_{nm}(0).$

$$\Rightarrow$$
 $|u_{nm}(0) - u_n(0)| = \left| \frac{1}{m} \sum_{k=0}^{m-1} (u_n(f^{kn}(0)) - u_n(0)) \right|$, donc par inégalité triangulaire,

$$|u_{nm}(0) - u_n(0)| \le \frac{1}{m} \sum_{k=0}^{m-1} |u_n(f^{kn}(0)) - u_n(0)|$$
, puis d'après la question précédente,

$$|u_{nm}(0) - u_n(0)| \le \frac{1}{m} \sum_{k=0}^{m-1} \frac{1}{n} = \frac{1}{n}.$$

 \diamond Soit $\varepsilon > 0$. Il existe $N \in \mathbb{N}^*$ tel que $\frac{2}{N} \leq \varepsilon$. Soit $p, q \ge N$. Par inégalité triangulaire,

 $|u_p(0) - u_q(0)| \le |u_p(0) - u_{pq}(0)| + |u_{pq}(0) - u_q(0)| \le \frac{1}{p} + \frac{1}{q} \le \frac{2}{N} \le \varepsilon$, donc $(u_n(0))_{n \in \mathbb{N}^*}$ est une suite de Cauchy. D'après le cours, elle est convergente.

7°) Soit
$$x \in \mathbb{R}$$
. $|u_n(x) - u_n(0)| \le \frac{1}{n}$,

donc
$$u_n(x) = u_n(0) + o(1) = \rho(f) + o(1)$$
. De plus $u_n(x) = \frac{f^n(x)}{n} - \frac{x}{n} = \frac{f^n(x)}{n} + o(1)$, donc $\frac{f^n(x)}{n} = \rho(f) + o(1) \underset{n \to +\infty}{\longrightarrow} \rho(f)$.

Partie III:

Propriété du nombre d'enroulements

- 8°) Soit $b \in \mathbb{R}$. Notons $f: x \longmapsto x + b$. $f \in H$ d'après la question 4. Pour tout $n \in \mathbb{N}$, $f^n(x) = x + nb$ (par récurrence sur n), donc $u_n(0) = b \xrightarrow[n \to +\infty]{} b$. Donc $\rho(f) = b$, ce qui montre que ρ est surjectif.
- $\mathbf{9}^{\circ}$) \diamond On suppose que, pour tout $x \in \mathbb{R}$, f(x) > x.
- $f-Id_{\mathbb{R}}$ est continue sur le compact [0,1], donc elle atteint son minimum : il existe $x_0 \in [0,1]$ tel que, pour tout $x \in [0,1]$, $f(x)-x \geq f(x_0)-x_0$. Mais $f-Id_{\mathbb{R}}$ est 1-périodique, donc pour tout $x \in \mathbb{R}$, $f(x)-x \geq f(x_0)-x_0=m$. On a bien m>0 car par hypothèse, $f(x_0)>x_0$.
- \diamond Par récurrence sur n, on montre que, pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $f^n(x) \geq x + nm$ (en effet, si $f^n(x) \geq x + nm$, f étant croissante,
- $f^{(n+1)}(x) \ge f(x+nm) \ge x+nm+m$). Ainsi, $u_n(0) \ge m$, puis en passant à la limite, $\rho(f) \ge m > 0$.
- \diamond Supposons maintenant que, pour tout $x \in \mathbb{R}$, f(x) < x. Alors en utilisant le maximum de $(f Id_{\mathbb{R}})|_{[0,1]}$, on montre qu'il existe m < 0 tel que, pour tout $x \in \mathbb{R}$, $f(x) \leq x + m$. On en déduit que pour tout $n \in \mathbb{N}$, $f^n(x) \leq x + nm$, puis que $\rho(f) \leq m < 0$.
- $\mathbf{10}^{\circ}$) \diamond Supposons que $\rho(f)=0$. Alors d'après la question précédente, il existe $x \in \mathbb{R}$ tel que $f(x) \leq x$ et il existe $y \in \mathbb{R}$ tel que $f(y) \geq y$. Ainsi, l'application continue $f-Id_{\mathbb{R}}$ change de signe, donc d'après le théorème des valeurs intermédiaires, il existe $z \in \mathbb{R}$ tel que f(z)=z:f possède donc un point fixe.

Réciproquement, s'il existe $a \in \mathbb{R}$ tel que f(a) = a, alors pour tout $n \in \mathbb{N}$, $f^n(a) = a$, donc $\frac{f^n(a)}{n} = \frac{a}{n} \underset{n \to +\infty}{\longrightarrow} 0$, ce qui prouve que $\rho(f) = 0$.

- \diamond Lorsque h est l'application $x \mapsto x + \frac{1}{2\pi}\sin(2\pi x)$, h(0) = 0, donc d'après le point précédent, $\rho(h) = 0$.
- 11°) Soit $f \in H$.
- \diamond Supposons qu'il existe $p \in \mathbb{Z}, q \in \mathbb{N}^*$ et $a \in \mathbb{R}$ tels que $f^q(a) = a + p$.

Alors, par récurrence sur n, on montre que pour tout $n \in \mathbb{N}$, $f^{nq}(a) = a + np$: en effet, si $f^{nq}(a) = a + np$, alors $f^{(n+1)q}(a) = f^q(a + np) = f^q(a) + np$ car $np \in \mathbb{Z}$ et $f^q \in H$, donc $f^{(n+1)q}(a) = a + (n+1)p$.

On en déduit que $\frac{f^{nq}(a)}{nq} = \frac{a+np}{nq} \xrightarrow[n \to +\infty]{p} \frac{p}{q}$, donc $\rho(f) = \frac{p}{q} \in \mathbb{Q}$. \diamond Réciproquement, supposons qu'il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\rho(f) = \frac{p}{q}$. Notons $g: x \longmapsto f^q(x) - p$. $f^q \in H$, donc $g \in H$. Par récurrence sur n, on montre que, pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, $g^n(x) = f^{nq}(x) - np$. Ainsi, $\frac{g^n(0)}{n} = \frac{f^{nq}(0)}{nq}q - p \underset{n \to +\infty}{\longrightarrow} \rho(f)q - p = 0$. Ainsi $\rho(g) = 0$, donc d'après la question précédente, il existe $a \in \mathbb{R}$ tel que g(a) = a, c'est-à-dire tel que $f^q(a) = a + p$.

Partie IV: Invariance par conjugaison

12°) Soit $\varphi \in H$. Soit $r \in \mathbb{R}$.

 $\varphi - Id_{\mathbb{R}}$ est continue sur le compact [0,1] et elle est 1-périodique, donc il existe $M \in \mathbb{R}_+$

tel que, pour tout
$$x \in \mathbb{R}$$
, $0 \le |\varphi(x) - x| \le M$.
Alors $0 \le \left| \frac{\varphi(nr)}{n} - r \right| = \frac{|\varphi(nr) - nr|}{n} \le \frac{M}{n} \underset{n \to +\infty}{\longrightarrow} 0$, donc $\frac{\varphi(nr)}{n} \underset{n \to +\infty}{\longrightarrow} r$.

13°) Par récurrence, on montre que, pour tout $n \in \mathbb{N}$, $g^n = \varphi^{-1} f^n \varphi$,

donc $\frac{\varphi(g^n(x))}{n} = \frac{f^n(\varphi(x))}{n} \underset{n \to +\infty}{\longrightarrow} \rho(f)$ d'après la question 7. **14**°) \diamond Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

 $|g^n(x) - n\rho(g)| \leq g^n(x) - n\rho(g)$, donc $n\rho(g) \leq g^n(x) - |g^n(x) - n\rho(g)|$, or φ est croissante, donc $\varphi(n\rho(g)) \le \varphi(g^n(x) - \lfloor g^n(x) - n\rho(g) \rfloor) = \varphi(g^n(x)) - \lfloor g^n(x) - n\rho(g) \rfloor$ d'après la question 3.

De même, $\lfloor g^n(x) - n\rho(g) \rfloor \ge g^n(x) - n\rho(g) - 1$, donc $n\rho(g) \ge g^n(x) - \lfloor g^n(x) - n\rho(g) \rfloor - 1$, puis $\varphi(n\rho(g)) \ge \varphi(g^n(x)) - \lfloor g^n(x) - n\rho(g) \rfloor - 1$.

On conclut en divisant par n.

 \Rightarrow $g^n(x) - n\rho(g) - 1 \leq \lfloor g^n(x) - n\rho(g) \rfloor \leq g^n(x) - n\rho(g)$, donc en divisant par n, $\frac{g^n(x) - n\rho(g) - 1}{n} \leq \frac{\lfloor g^n(x) - n\rho(g) \rfloor}{n} \leq \frac{g^n(x) - n\rho(g)}{n}$, or les deux suites encadrantes tendent vers $\rho(g) - \rho(g) = 0$, donc d'après le principe des gendarmes, $\frac{\lfloor g^n(x) - n\rho(g)\rfloor}{n} \xrightarrow[n \to +\infty]{} 0$. Alors, toujours d'après le principe des gendarmes et d'après

la question 13, l'encadrement du point précédent montre que $\frac{\varphi(n\rho(g))}{n} \xrightarrow[n \to +\infty]{} \rho(f)$.

Or d'après la question 12, $\frac{\varphi(n\rho(g))}{n} \xrightarrow[n \to +\infty]{} \rho(g)$, donc d'après l'unicité de la limite, $\rho(f) = \rho(g).$

15°) La réciproque est fausse : en effet, si l'on prend $g: x \longmapsto x + \frac{1}{2\pi}\sin(2\pi x)$ et $f: x \longmapsto x$, on a vu que $\rho(f) = \rho(g) = 0$, mais f et g ne sont pas conjuguées dans H, car pour tout $\varphi \in H$, $\varphi^{-1} \circ f \circ \varphi = \varphi^{-1} \circ Id_{\mathbb{R}} \circ \varphi = Id_{\mathbb{R}} \neq g$.