

Chapter 8

NP and Computational Intractability

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

8.3 Definition of NP

Decision Problems

Def. Decision problem.

- . Σ = Finite Alphabet; $\Sigma^* \equiv \{all \text{ possible finite strings } \times \text{ of alphabet } \Sigma\}$
- . A Decision Problem $X = X \subseteq \Sigma^*$
- . Instance: any fixed string $s \in \Sigma^*$
- . Question: Does $s \in X$? (Note: $X \equiv \{ \text{ all YES Instances } \}$)

Def. Algorithm A solves/decides \uparrow problem X if for any instance $s \in \Sigma^*$,

$$A(s) = yes iff s \in X.$$

Polynomial time. Algorithm **A** runs in poly-time **if** for every string **s**, A(s) terminates in at most p(|s|) "steps", where $p(\cdot)$ is some polynomial, where

$$|s| \equiv length of s$$

PRIMES: $X = \{2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 37,\}$ Algorithm. [Agrawal-Kayal-Saxena, 2002] $p(|s|) = |s|^8$.

Definition of P

$P \equiv \{ X \text{ for which there is a deterministic poly-time algorithm } \}$

Problem	Description	Algorithm	Yes	No
MULTIPLE	Is x a multiple of y?	Grade school division	51, 17	51, 16
RELPRIME	Are x and y relatively prime?	Euclid (300 BCE)	34, 39	34, 51
PRIMES	Is x prime?	AKS (2002)	53	51
EDIT- DISTANCE	Is the edit distance between x and y less than 5?	Dynamic programming	niether neither	acgggt ttttta

The Class NP

Certification algorithm: intuition.

- . Certifier views things from "managerial" viewpoint.
- . Certifier doesn't determine whether s ∈ X on its own; rather, it checks a proposed proof t that s ∈ X.

```
    Def. Algorithm C(s, t) is a certifier for problem X if for every string s ∈ Σ*, s ∈ X iff there exists a string t such that C(s, t) = yes.
    t = "certificate" or "witness"
    Def. NP ≡ {X for which there exists a poly-time certifier}
```

C(s, t) is a poly-time algorithm and $|t| \le p(|s|)$ for some polynomial $p(\cdot)$.

Remark. NP stands for nondeterministic polynomial-time.

Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. Any nontrivial factor t of s. Note that such a certificate exists iff s is composite. Moreover $|t| \le |s|$.

Certifier.

```
boolean C(s, t) {
   if (t ≤1 or t ≥s)
      return false
   else if (s is a multiple of t)
      return true
   else
      return false
}
```

```
EX. Instance. s = 437669. — OBS: 437669 = 541 \times 809 Certificate. t = 541 or 809.
```

THM. COMPOSITES is in NP.

Proof. C(s,t) correctly decides if t is a good proof of the fact « s is composite » AND C(s,t) works in time poly(|s|, |t|)

Certifiers and Certificates: 3-Satisfiability

3-SAT.

Instance: CNF formula Φ in the Boolean variable x_1 , x_2 , ..., x_n ,

Question: is there a satisfying assignment $t \in \{0,1\}^n$ for $\Phi(x_1, x_2, ..., x_n)$

Certificate. An assignment $t \in \{0,1\}^n$

Certifier. Check that each clause in $\Phi(x_1, x_2, ..., x_n)$ has at least one true literal.

Ex.

$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_3 \lor x_4)$$

instance s

$$x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$$

certificate †

THM. 3-SAT is in NP.

Proof. Homework!

Parameters: n = n. of variables; m = n. of clauses in $\Phi(x_1, x_2, ..., x_n)$

Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE.

Instance. an undirected graph G = (V, E) where $V = \{1, 2, ..., n\}$

Question. does there exist a simple cycle C that visits every node of V?

Certificate. A permutation Π of $V=\{1,2,...,n\}$.

Certifier $C(G(V,E), \Pi)$. Check that:

- 1. Π is a permutation of V, i.e., it contains each $v \in V$ exactly once, and
- 2. there is edge $(v,w) \in E$ between each pair of adjacent nodes $\langle u,w \rangle$ in Π .

Thm. HAM-CYCLE is in NP.

Proof: HOMEWORK!

Parameters: n = |V|, m = |E|

P, NP, EXP

- P. Decision problems for which there is a poly-time algorithm.
- EXP. Decision problems for which there is an exponential-time algorithm.
- NP. Decision problems for which there is a poly-time certifier.

```
Claim. P \subseteq NP.
```

- Pf. Consider any problem X in P.
- . By hyp., there exists a poly-time algorithm A(s) that solves X.
- . Certificate: $t = \varepsilon$, certifier C(s, t) = A(s).

Claim. $NP \subseteq EXP$.

- Pf. Consider any problem X in NP.
- . By definition, there exists a poly-time certifier C(s, t) for X.
- . To solve input s, run C(s, t) on <u>all</u> proofs, i.e., strings t with $|t| \le p(|s|)$.
- . How many strings t to check? if proof's alphabet is binary, then # t's = 2 p(|s|) which is ok since we are in EXP
- Return yes, if C(s, t) returns yes for any of these t's.

AUTO-VALUTAZIONE

- DEF. of DECISION PROBLEM
- DEF. of CERTIFICATE and CERTIFIERS
- DEFINITION OF NP via CERTIFIERS
- HOW TO PROVE THAT A DECISION PROBLEM IS IN NP?
- P vs NP vs EXP