

Boolean algebra fundamentals

 Boolean algebra is defined with a set of elements, a set of operators, and a number of axioms and postulates.

A set of elements is any collection of objects. If S is a set, and x and y are certain objects, then x∈S means that x is a member of the set S and y ∠ S means that y is not an element of S.

- Basic Postulates
- **Postulate 1 (Definition)**: A Boolean algebra is a closed algebraic system containing a set K of two or more elements and the two operators \cdot and +. For every pair of elements of K, the binary operator specifies a rule for obtaining a unique element of K.
- Postulate 2 (Existence of 1 and 0 element):

(a)
$$a + 0 = a$$
 (identity for +), (b) $a \cdot 1 = a$ (identity for \cdot)

(b)
$$a \cdot 1 = a$$
 (identity for \cdot)

Postulate 3 (Commutativity):

(a)
$$a + b = b + a$$
,

(b)
$$a \cdot b = b \cdot a$$

Postulate 4 (Associativity):

(a)
$$a + (b + c) = (a + b) + c$$

(b)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Postulate 5 (Distributivity):

(a)
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$
 (b) $a \cdot (b + c) = a \cdot b + a \cdot c$

(b)
$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Postulate 6 (Existence of complement):

(a)
$$a + \overline{a} = 1$$

(b)
$$a \cdot \overline{a} = 0$$

Note: Normally \cdot is omitted.

Precedence

- Fundamental Theorems of Boolean Algebra
- Theorem 1 (Idempotency):

(a)
$$a + a = a$$

(b)
$$aa = a$$

• Theorem 2 (Null element):

(a)
$$a + 1 = 1$$

(b)
$$a0 = 0$$

• Theorem 3 (Involution)

$$\overline{\overline{a}} = a$$

• Properties of 0 and 1 elements:

OR	AND	Complement
a + 0 = a	a0 = 0	0' = 1
a + 1 = 1	a1 = a	1' = 0

• Theorem 4 (Absorption)

(a)
$$a + ab = a$$

(b)
$$a(a+b)=a$$

• Examples:

•
$$(X + Y) + (X + Y)Z = X + Y$$

[T4(a)]

• AB'(AB' + B'C) = AB'

[T4(b)]

• Theorem 5

(a)
$$a + a'b = a + b$$

(b)
$$a(a' + b) = ab$$

• Examples:

•
$$B + AB'C'D = B + AC'D$$

[T5(a)]

• (X + Y)((X + Y)' + Z) = (X + Y)Z

[T5(b)]

Theorem 6

(a)
$$ab + ab' = a$$

• Examples:

•
$$ABC + AB'C = AC$$
 [T6(a)]
• $(W' + X' + Y' + Z')(W' + X' + Y' + Z)(W' + X' + Y + Z')(W' + X' + Y + Z)$
= $(W' + X' + Y')(W' + X' + Y + Z')(W' + X' + Y + Z)$ [T6(b)]
= $(W' + X' + Y')(W' + X' + Y)$ [T6(b)]
= $(W' + X')$ [T6(b)]

(b) (a + b)(a + b') = a

Theorem 7

(a)
$$ab + ab'c = ab + ac$$

(b)
$$(a + b)(a + b' + c) = (a + b)(a + c)$$

• Examples:

•
$$wy' + wx'y + wxyz + wxz' = wy' + wx'y + wxy + wxz'$$
 [T7(a)]
= $wy' + wy + wxz'$ [T7(a)]
= $w + wxz'$ [T7(a)]
= w [T7(a)]
• $(x'y' + z)(w + x'y' + z') = (x'y' + z)(w + x'y')$ [T7(b)]

Theorem 8 (DeMorgan's Theorem)

(a)
$$(a + b)' = a'b'$$
 (b) $(ab)' = a' + b'$

(b)
$$(ab)' = a' + b'$$

Generalized DeMorgan's Theorem

(a)
$$(a + b + ... z)' = a'b' ... z'$$
 (b) $(ab ... z)' = a' + b' + ... z'$

(b)
$$(ab ... z)' = a' + b' + ... z'$$

• Examples:

•
$$(a + bc)' = (a + (bc))'$$

= $a'(bc)'$ [T8(a)]
= $a'(b' + c')$ [T8(b)]
= $a'b' + a'c'$ [P5(b)]

• Note: $(a + bc)' \neq a'b' + c'$

More Examples for DeMorgan's Theorem

•
$$(a(b + z(x + a')))' = a' + (b + z(x + a'))'$$
 [T8(b)]
 $= a' + b' (z(x + a'))'$ [T8(a)]
 $= a' + b' (z' + (x + a')')$ [T8(b)]
 $= a' + b' (z' + x'(a')')$ [T8(a)]
 $= a' + b' (z' + x'a)$ [T3]
 $= a' + b' (z' + x')$ [T5(a)]

•
$$(a(b+c)+a'b)' = (ab+ac+a'b)'$$
 [P5(b)]
= $(b+ac)'$ [T6(a)]
= $b'(ac)'$ [T8(a)]
= $b'(a'+c')$ [T8(b)]

Apply DeMorgan's Theorem to these expressions

- (X+Y+Z)'
- (PQ+R)'
- (M+N)'Q'

• Theorem 9 (Consensus)

(a)
$$ab + a'c + bc = ab + a'c$$
 (b) $(a + b)(a' + c)(b + c) = (a + b)(a' + c)$

• Examples:

```
• AB + A'CD + BCD = AB + A'CD [T9(a)]

• (a + b')(a' + c)(b' + c) = (a + b')(a' + c) [T9(b)]

• ABC + A'D + B'D + CD = ABC + (A' + B')D + CD [P5(b)]

= ABC + (AB)'D + CD [T8(b)]

= ABC + (A' + B')D [T9(a)]

= ABC + A'D + B'D [P5(b)]
```

Switching Functions

- **Switching algebra**: Boolean algebra with the set of elements $K = \{0, 1\}$ If there are n variables, we can define 2^{2^n} switching functions.
- Sixteen functions of two variables:

AB	f_0	f_{I}	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
00	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
01	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
10	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
11	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

• A switching function can be represented by a table as above, or by a switching expression as follows:

$$f_0(A,B) = 0$$
, $f_6(A,B) = AB' + A'B$, $f_{11}(A,B) = AB + A'B + A'B' = A' + B$, ...

• Value of a function can be obtained by plugging in the values of all variables: The value of f_6 when A = 1 and B = 0 is: $1 \cdot 0' + 1' \cdot 0 = 0 + 1 = 1$.

Truth Tables

- Shows the value of a function for all possible input combinations.
- Truth tables for OR, AND, and NOT:

ab	f(a,b)=a+b	ab	f(a,b)=ab	а	f(a)=a'
00	0	00	0	0	1
01	1	01	0	1	0
10	1	10	0		
11	1	11	1		

Truth Tables

• Truth tables for f(A,B,C) = AB + A'C + AC'

ABC	f(A,B,C)	ABC	f(A,B,C)
000	0	FFF	F
001	1	FFT	T
010	0	FTF	F
011	1	FTT	T
100	1	TFF	T
101	0	TFT	F
110	1	TTF	T
111	1	TTT	T
	1 1		_

- Literal: A variable, complemented or uncomplemented.
- **Product term**: A literal or literals ANDed together.
- Sum term: A literal or literals ORed together.
- SOP (Sum of Products):
- ORing product terms
- f(A, B, C) = ABC + A'C + B'C
- POS (Product of Sums)
- ANDing sum terms
- f(A, B, C) = (A' + B' + C')(A + C')(B + C')

- A *minterm* is a product term in which all the variables appear exactly once either complemented or uncomplemented.
- Canonical Sum of Products (canonical SOP):
 - Represented as a sum of minterms only.
 - **Example**: $f_1(A,B,C) = A'BC' + ABC' + A'BC + ABC$
- Minterms of three variables:

Minterm	Minterm Code	Minterm Number
A'B'C'	000	m_0
A'B'C	001	m_1
A'BC'	010	m_2
A'BC	011	m_3
AB'C'	100	m_4
AB'C	101	m_5
ABC'	110	m_6
ABC	111	m_7

Compact form of canonical SOP form:

$$f_1(A,B,C) = m_2 + m_3 + m_6 + m_7$$

• A further simplified form:

$$f_1(A,B,C) = \sum m (2,3,6,7)$$
 (minterm list form)

- The order of variables in the functional notation is important.
- Deriving truth table of $f_1(A,B,C)$ from minterm list:

Row No.	Inputs	Outputs	Complement
<i>(i)</i>	ABC	$f_1(A,B,C) = \Sigma m(2,3,6,7)$	$f_1'(A,B,C) = \Sigma m(0,1,4,5)$
0	000	0	$1 \leftarrow m_0$
1	001	0	$1 \leftarrow m_I$
2	010	$1 \leftarrow m_2$	0
3	011	$1 \leftarrow m_3$	0
4	100	0	$1 \leftarrow m_4$
5	101	0	$1 \leftarrow m_5$
6	110	$1 \leftarrow m_6$	0
7	111	$1 \leftarrow m_7$	0

• **Example**: Given f(A,B,Q,Z) = A'B'Q'Z' + A'B'Q'Z + A'BQZ' + A'BQZ, express f(A,B,Q,Z) and f'(A,B,Q,Z) in minterm list form.

$$f(A,B,Q,Z) = A'B'Q'Z' + A'B'Q'Z + A'BQZ' + A'BQZ$$

= $m_0 + m_1 + m_6 + m_7$
= $\sum m(0, 1, 6, 7)$

$$f'(A,B,Q,Z) = m_2 + m_3 + m_4 + m_5 + m_8 + m_9 + m_{10} + m_{11} + m_{12} + m_{13} + m_{14} + m_{15} = \sum m(2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15)$$

- $\bullet \sum_{i=0}^{2^n-1} m_i = 1 \tag{2.6}$
- AB + (AB)' = 1 and AB + A' + B' = 1, but $AB + A'B' \neq 1$.

- A *maxterm* is a sum term in which all the variables appear exactly once either complemented or uncomplemented.
- Canonical Product of Sums (canonical POS):
 - Represented as a product of maxterms only.
 - **Example**: $f_2(A,B,C) = (A+B+C)(A+B+C')(A'+B+C)(A'+B+C')$
- Maxterms of three variables:

Maxterm	Maxterm Code	Maxterm Number
A+B+C	000	M_0
A+B+C'	001	M_{I}
A+B'+C	010	M_2
A+B'+C'	011	M_3
A'+B+C	100	M_4
A'+B+C'	101	M_5
A'+B'+C	110	M_6
A'+B'+C'	111	M_7 19

• $f_2(A,B,C) = M_0 M_1 M_4 M_5$ = $\Pi M(0,1,4,5)$ (maxterm list form)

• The truth table for $f_2(A,B,C)$:

Rwo No.	Inputs	M_0	M_1	M_4	M_5	Outputs
(i)	ABC	A+B+C	A+B+C'	A'+B+C	A'+B+C'	$f_2(A,B,C)$
0	000	0	1	1	1	0
1	001	1	0	1	1	0
2	010	1	1	1	1	1
3	011	1	1	1	1	1
4	100	1	1	0	1	0
5	101	1	1	1	0	0
6	110	1	1	1	1	1
7	111	1	1	1	1	1

- Truth tables of $f_1(A,B,C)$ and $f_2(A,B,C)$ are identical.
- Hence, $f_1(A,B,C) = \sum m$ (2,3,6,7) = $f_2(A,B,C)$ = $\Pi M(0,1,4,5)$

• Example: Given f(A,B,C) = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C'), construct the truth table and express in both maxterm and minterm

form.

• $f(A,B,C) = M_1 M_3 M_5 M_7 = \Pi M(1,3,5,7) = \Sigma m (0,2,4,6)$

Row No.	Inputs	Outputs				
(<i>i</i>)	ABC	$f(A,B,C) = \prod M(1,3,5,7) = \sum m(0,2,4,6)$				
0	000	$1 m_0$				
1	001	$0 \leftarrow M_I$				
2	010	$1 m_2$				
3	011	$0 \leftarrow M_3$				
4	100	$1 m_4$				
5	101	$0 \leftarrow M_5$				
6	110	1 m_{6-21}				
7	111	$0 \leftarrow M_7$				

- Relationship between minterm m_i and maxterm M_i :
 - For f(A,B,C), $(m_1)' = (A'B'C)' = A + B + C' = M_1$
 - In general, $(m_i)' = M_i$ $(Mi)' = ((m_i)')' = m_i$

- *Example*: Relationship between the maxterms for a function and its complement.
 - For f(A,B,C) = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C')
 - The truth table is:

Row No.	Inputs	Outputs	Outputs
(i)	ABC	f(A,B,C)	$f'(A,B,C) = \prod M(0,2,4,6)$
0	000	1	$0 \leftarrow M_0$
1	001	0	1
2	010	1	$0 \leftarrow M_2$
3	011	0	1
4	100	1	$0 \leftarrow M_4$
5	101	0	1
6	110	1	$0 \leftarrow M_6$
7	111	0	1

From the truth table

$$f'(A,B,C) = \Pi M(0,2,4,6)$$
 and $f(A,B,C) = \Pi M(1,3,5,7)$

- Since $f(A,B,C) \cdot f'(A,B,C) = 0$, $(M_0 M_2 M_4 M_6)(M_1 M_3 M_5 M_7) = 0$ or $\prod_{i=0}^{2^3-1} M_i = 0$
- In general, $\prod_{i=0}^{2^n-1} M_i = 0$
- Another observation from the truth table:

$$f(A,B,C) = \sum m (0,2,4,6) = \prod M(1,3,5,7)$$

$$f'(A,B,C) = \sum m (1,3,5,7) = \prod M(0,2,4,6)$$

Derivation of Canonical Forms

- Derive canonical POS or SOP using switching algebra.
- Theorem 10. Shannon's expansion theorem

(a).
$$f(x_1, x_2, ..., x_n) = x_1 f(1, x_2, ..., x_n) + (x_1)' f(0, x_2, ..., x_n)$$

(b). $f(x_1, x_2, ..., x_n) = [x_1 + f(0, x_2, ..., x_n)] [(x_1)' + f(1, x_2, ..., x_n)]$

- **Example**: f(A,B,C) = AB + AC' + A'C
 - f(A,B,C) = AB + AC' + A'C = A f(1,B,C) + A' f(0,B,C)= $A(1\cdot B + 1\cdot C' + 1'\cdot C) + A'(0\cdot B + 0\cdot C' + 0'\cdot C) = A(B + C') + A'C$
 - f(A,B,C) = A(B+C') + A'C = B[A(1+C') + A'C] + B'[A(0+C') + A'C]= B[A+A'C] + B'[AC' + A'C] = AB + A'BC + AB'C' + A'B'C
 - f(A,B,C) = AB + A'BC + AB'C' + A'B'C= $C[AB + A'B\cdot1 + AB'\cdot1' + A'B'\cdot1] + C'[AB + A'B\cdot0 + AB'\cdot0' + A'B'\cdot0]$ = ABC + A'BC + A'B'C + ABC' + AB'C'

Derivation of Canonical Forms

- Alternative: Use Theorem 6 to add missing literals.
- **Example**: f(A,B,C) = AB + AC' + A'C to canonical SOP form.
 - $AB = ABC' + ABC = m_6 + m_7$
 - $AC' = AB'C' + ABC' = m_4 + m_6$
 - $A'C = A'B'C + A'BC = m_1 + m_3$
 - Therefore, $f(A,B,C) = (m_6 + m_7) + (m_4 + m_6) + (m_1 + m_3) = \sum m(1, 3, 4, 6, 7)$
- **Example**: f(A,B,C) = A(A + C') to canonical POS form.
 - A = (A+B')(A+B) = (A+B'+C')(A+B'+C)(A+B+C')(A+B+C)= $M_3M_2M_1M_0$
 - $(A+C')=(A+B'+C')(A+B+C')=M_3M_1$
 - Therefore, $f(A,B,C) = (M_3M_2M_1M_0)(M_3M_1) = \Pi M(0, 1, 2, 3)$

Incompletely Specified Functions

- A switching function may be incompletely specified.
- Some minterms are omitted, which are called don't-care minterms.
- Don't cares arise in two ways:
 - Certain input combinations never occur.
 - Output is required to be 1 or 0 only for certain combinations.
- Don't care minterms: d_i Don't care maxterms: D_i
- **Example**: f(A,B,C) has minterms m_0 , m_3 , and m_7 and don't-cares d_4 and d_5 .
 - Minterm list is: $f(A,B,C) = \sum m(0,3,7) + d(4,5)$
 - Maxterm list is: $f(A,B,C) = \prod M(1,2,6) \cdot D(4,5)$
 - $f'(A,B,C) = \Sigma m(1,2,6) + d(4,5) = \Pi M(0,3,7) \cdot D(4,5)$
 - f(A,B,C)=A'B'C'+A'BC+ABC+d(AB'C'+AB'C)= B'C'+BC (use d_A and omit d_5)

• Electrical Signals and Logic Values

Electric Signal	Logic Value				
	Positive Logic	Negative Logic			
High Voltage (H)	1	0			
Low Voltage (L)	0	1			

- A signal that is set to logic 1 is said to be asserted, active, or true.
- An active-high signal is asserted when it is high (positive logic).
- An active-low signal is asserted when it is low (negative logic).

7410Y = ABCTriple three-input NAND gates

Dual four-input NAND gates

Basic Functional Components

• AND

<u>a</u> b	$f_{AND}(a, b) = ab$	ABY	$A \longrightarrow Y$
0 0 0 1 1 0 1 1	0 0 0 1	L L L L H L H L L H H H	(c) A & Y
	(a)	(b)	(d)

- (a) AND logic function.
- (b) Electronic AND gate.
- (c) Standard symbol.
- (d) IEEE block symbol.

Basic Functional Components

• *OR*

$a b f_0$	a(a, b) = a + b	AB Y	$A \longrightarrow Y$
0 0 0 1 1 0 1 1	0 1 1 1	L L L L H H H L H H H H	$ \begin{array}{c} (c) \\ A \longrightarrow \\ B \longrightarrow \\ Y \end{array} $
	(a)	(b)	(d)

- (a) OR logic function.
- (b) Electronic OR gate.
- (c) Standard symbol.
- (d) IEEE block symbol.

Basic Functional Components

• Meaning of the designation ≥ 1 in IEEE symbol:

ab	sum(a, b)	$sum(a, b) \ge 1$	$f_{OR}(a,b) = a+b$
00	0	False	0
01	1	True	1
10	1	True	1
11	2	True	1

Basic Functional Components (4)

NOT

- (a) NOT logic function.
- (b) Electronic NOT gate.
- (c) Standard symbol.
- (d) IEEE block symbol.

Positive Versus Negative Logic

	Positive Logic	Negative Logic
1 is represented by	High Voltage	Low Voltage
0 is represented by	Low Voltage	High Voltage

• AND Gate Usage in Negative Logic

- (a) AND gate truth table (L = 1, H = 0)
- (b) Alternate AND gate symbol (in negative logic)
- (c) Preferred usage $y = a \cdot b = \overline{\overline{a} \cdot \overline{b}} = \overline{\overline{a} + \overline{b}} = \overline{f_{OR}}(\overline{a}, \overline{b})$
- (d) Improper usage $\overline{y} = \overline{(\overline{a})} + \overline{(\overline{b})} = \overline{a+b} = \overline{f_{OR}}(a,b)$

• OR Gate Usage in Negative Logic

- (a) OR gate truth table(L = 1, H = 0)
- (b) Alternate OR gate symbol (in negative logic)
- (c) Preferred usage $y = a + b = \overline{\overline{a + b}} = \overline{\overline{a} \cdot \overline{b}} = \overline{f}_{AND}(\overline{a}, \overline{b})$
- (d) Improper usage $\overline{y} = \overline{(\overline{a})} \cdot \overline{(\overline{b})} = \overline{a \cdot b} = \overline{f}_{AND}(a,b)$

• NAND

a b	$fNAND(a, b) = \overline{ab}$	ABY
0 0	1	LLH
0 1	1	L H H
1 0	1	HL H
1 1	0	HHL
	(a)	(b)

- (a) NAND logic function
- (b) Electronic NAND gate
- (c) Standard symbol
- (e) IEEE block symbol

- Matching signal polarity to NAND gate inputs/outputs
 - (a) Preferred usage (b) Improper usage

Additional properties of NAND gate:

$$f_{NAND}(a,a) = \overline{a \cdot a} = \overline{a} = f_{NOT}(a)$$

$$\overline{f}_{NAND}(a,b) = \overline{\overline{a \cdot b}} = a \cdot b = f_{AND}(a,b)$$

$$f_{NAND}(\overline{a},\overline{b}) = \overline{\overline{a} \cdot \overline{b}} = a + b = f_{OR}(a,b)$$

Hence, NAND gate may be used to implement all three elementary operators.

• AND, OR, and NOT gates constructed exclusively from NAND gates

• NOR

- (a) NAND logic function
- (b) Electronic NAND gate
- (c) Standard symbol
- (d) IEEE block symbol

- Matching signal polarity to NOR gate inputs/outputs
 - (a) Preferred usage (b) Improper usage

Additional properties of NOR gate:

$$f_{NOR}(a,a) = \overline{a+a} = \overline{a} = f_{NOT}(a)$$

$$\overline{f}_{NOR}(a,b) = \overline{a+b} = a+b = f_{OR}(a,b)$$

$$f_{NOR}(\overline{a},\overline{b}) = \overline{\overline{a}+\overline{b}} = a \cdot b = f_{AND}(a,b)$$

Hence, NOR gate may be used to implement all three elementary operators.

• AND, OR, and NOT gates constructed exclusively from NOR gates.

OR gate

NOT gate

AND gate

- Exclusive-OR (XOR)
 - $f_{XOR}(a, b) = a \oplus b = \overline{a}b + a\overline{b}$

a b	$f_{XOR}(a, b) = a \oplus b$	AB	Y
0 0	0	LL	L
0 1	1	LH	Н
10	1	ΗL	Н
1 1	0	НН	L

(a) XOR logic function (b) Electronic XOR gate

- (c) Standard symbol
- (d) IEEE block symbol

• POS of XOR

$$a \oplus b = \overline{a}b + a\overline{b}$$

$$= \overline{a}a + \overline{a}b + a\overline{b} + b\overline{b}$$

$$= \overline{a}(a+b) + \overline{b}(a+b)$$

$$= (\overline{a} + \overline{b})(a+b)$$
[P5(b)]
[P5(b)]

Some other useful relationships

$a \oplus a = 0$	(2.25
$a \oplus \overline{a} = 1$	(2.26
$a \oplus 0 = a$	(2.27
$a \oplus 1 = \overline{a}$	(2.28
$\overline{a} \oplus \overline{b} = a \oplus b$	(2.29
$a \oplus b = b \oplus a$	(2.30
$(a \oplus (b \oplus c) = (a \oplus b) \oplus c$	(2.31

 Output of XOR gate is asserted when the mathematical sum of inputs is one:

ab	sum(a, b)	sum(a, b) = 1?	$f(a, b) = a \oplus b$
00	0	False	0
01	1	True	1
10	1	True	1
11	2	False	0

• The output of XOR is the *modulo-2* sum of its inputs.

• Exclusive-NOR (XNOR)

•
$$f_{XNOR}(a,b) = \overline{a \oplus b} = a \odot b$$

$a b f_{XNO}(a, b) = a \odot b$	A B Y	$A \longrightarrow Y$
$ \begin{array}{c cccc} 0 & 0 & & 1 & \\ 0 & 1 & & 0 & \\ 1 & 0 & & 0 & \\ 1 & 1 & & 1 & \\ & & & (a) & & \\ \end{array} $	L L H L H L H L H L H H H H (b)	$ \begin{array}{c} $

1 4

- (a) XNOR logic function
- (b) Electronic XNOR gate
- (c) Standard symbol
- (d) IEEE block symbol

Analysis of Combinational Circuits (1)

- Digital Circuit *Design*:
 - Word description of a function
 - ⇒ a set of switching equations
 - \Rightarrow hardware realization (gates, programmable logic devices, etc.)
- Digital Circuit **Analysis**:
 - Hardware realization
 - ⇒ switching expressions, truth tables, timing diagrams, etc.
- Analysis is used
 - To determine the behavior of the circuit
 - To verify the correctness of the circuit
 - To assist in converting the circuit to a different form.

Analysis of Combinational Circuits (2)

• Algebraic Method: Use switching algebra to derive a desired form.

• Example 2.33: Find a simplified switching expressions and logic network for the following logic circuit (Fig. 2.21a).

Analysis of Combinational Circuits (4)

• **Example 2.34**: Find a simplified switching expressions and logic network for the following logic circuit (Fig. 2.22).

Given circuit

Analysis of Combinational Circuits (5)

• Derive the output expression:

$$f(a,b,c) = \overline{(a \oplus b)(b \oplus c)} \cdot (\overline{a} + \overline{b} + \overline{a} + \overline{c})$$

$$= \overline{(a \oplus b)(b \oplus c)} + \overline{a} + \overline{b} + \overline{a} + \overline{c})$$

$$= (a \oplus b)(b \oplus c) + (\overline{a} + \overline{b})(a + c)$$

$$= (a\overline{b} + \overline{a}b)(b\overline{c} + \overline{b}c) + (\overline{a} + \overline{b})(a + c)$$

$$= a\overline{b}b\overline{c} + a\overline{b}b\overline{c} + \overline{a}bb\overline{c} + \overline{a}b\overline{b}c + \overline{a}a + \overline{a}c + a\overline{b} + \overline{b}c$$

$$= a\overline{b}c + \overline{a}b\overline{c} + \overline{a}c + a\overline{b} + \overline{b}c$$

$$= \overline{a}b\overline{c} + \overline{a}c + a\overline{b}$$

$$= \overline{a}b + \overline{a}c + a\overline{b}$$

$$= \overline{a}b + \overline{a}c + a\overline{b}$$

$$= \overline{a}b + \overline{a}c + a\overline{b}$$

$$= \overline{a}c + a \oplus b$$

$$[T8(b)]$$

$$[Eq. 2.24]$$

$$[P5(b)]$$

$$[P6(b), T4(a)]$$

$$[T4(a)]$$

$$[T9(a)]$$

$$[T7(a)]$$

$$[Eq. 2.24]$$

Analysis of Combinational Circuits (6)

• Truth Table Method: Derive the truth table one gate at a time.

• The truth table for Example 2.34:

<u> </u>	TIPIC ZIO		
abc	$\overline{a}c$	$a \oplus b$	f(a,b,c)
000	0	0	0
001	1	0	1
010	0	1	1
011	1	1	1
100	0	1	1
101	0	1	1
110	0	0	0
111	0	0	0