Exercice II.7

El Houssaini Youness

November 16, 2020

On considère le système de contrôle:

$$(\Sigma): \quad \begin{cases} x'(t) = y(t) + u(t) &, t \geq 0 \\ y'(t) = -y(t) + u(t) &, t \geq 0 \\ |u(.)| \leq 1 \end{cases}$$

où x, y et u sont trois applications: $[0,T]\subset R^+\to R$. Le but est de joindre en temps minimal la droite x=0, puis de rester sur cette droite.

Question (i) - Énoncé

On considère la cible $M_1=\{(0,y),\,|y|\leq 1\}$ et on s'intéresse à l'existence et la caractérisation de trajectoires temps optimales pour le problème (Σ) décrit au dessus.

Montrer que si un tel contrôle existe, alors on a nécessairement $|y(t)| \leq 1$ lorsque x(t) = 0. Réciproquement, montrer que de tout point $(0,y) \in M_1$, part une trajectoire restant dans M_1 .

Question (i) - Montrer que si un tel contrôle existe, alors on a nécessairement $|y(t)| \le 1$ lorsque x(t) = 0.

En effet, en supposant qu'il y a bien un contôle de ce système: Lorsque x(t) = 0, on a x'(t) = 0. On remplace dans:

$$(\Sigma): \quad \begin{cases} \boxed{x'(t) = y(t) + u(t)} &, t \geq 0 \\ y'(t) = -y(t) + u(t) &, t \geq 0 \\ |u(.)| \leq 1 \end{cases}$$

.

$$(\Sigma) \implies y(t) = -u(t)$$

Or, $|u(.)| \leq 1$.

Alors on a nécessairement:

$$|y(t)| \leq 1$$
 lorsque $x(t) = 0$

Question (i) - Réciproquement, montrer que de tout point $(0,y) \in M_1$, part une trajectoire restant dans M_1 .

En effet, soit $(0, y) \in M_1$ on remarque que si x(t) = 0, alors x'(t) = 0.

On remplace dans:

$$(\Sigma): \begin{cases} x'(t) = y(t) + u(t) \\ y'(t) = -y(t) + u(t) \\ |u(.)| \le 1 \end{cases}, t \ge 0$$

. Et on obtient: y(t) = -u(t)

Puis on remplace dans:

$$(\Sigma): \begin{cases} x'(t) = y(t) + u(t) & , t \geq 0 \\ \hline y'(t) = -y(t) + u(t) & , t \geq 0 \\ |u(.)| < 1 \end{cases}$$

Et on en déduit que $\forall t \geq 0$:

$$y(t) = y(0)e^{-2t}$$

On a: $y \in M_1$ alors: $|y(0)| \le 1$

On remarque aussi: $0 \le e^{-2t} \le 1$

Donc:

$$\forall t \geq 0 \quad |y(t)| \leq 1$$

En d'autre termes:

 $\forall (0,y) \in M_1$, part une trajectoire restant dans M_1 .

Question (ii) - Etudier l'existence d'une trajectoire temps optimale.

Le système de contôle (Σ) peut être représenté sous la forme canonique linéaire comme suite:

$$\begin{cases} X'(t) = AX(t) + Bu(t) &, t \in [0, T] \\ X(0) = X_0 &, X_0 \in \mathbb{R}^2 \end{cases}$$

En posant $X = (x,y)^T \in \mathbf{M}_{2,1}(\mathbb{R})$ avec $A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \in \mathbf{M}_{2,2}(\mathbb{R})$ et $B = (1,1)^T \in \mathbf{M}_{2,1}(\mathbb{R})$. Notons que la commande $u \in L^{\infty}(0,T,U)$, où U = [-1,1] est un sous-ensemble mesurable de \mathbb{R} .

Théorème II.1.1. Existence de commandes temps optimales: On suppose que U est compact. Si le point x_1 est accessible depuis x_1 avec un contrôle u à valeurs dans U, alors il existe une trajectoire temps-minimale reliant x_0 à x_1 . De plus, x_1 est nécessairement extrémal, autrement dit $x_1 \in \partial A(x_0, t^*)$.

Dans notre cas:

La commande $u\in L^\infty(0,T,U)$, où U est un sous-ensemble mesurable de $\mathbb R$. en effet, U=[-1,1] est bien compact.

On a aussi montré que si $X_0 \in M_1$ alors $\exists X_1$ accessible depuis X_0 . en plus on a aussi que $X_1 \in M_1$.

Donc: il existe une trajectoire temps-minimale reliant X_0 à X_1 .

Question (iii) - Ènoncé

On cherche à caractériser les trajectoires temps optimales. On choisit de raisonner "en temps inverse", en calculant les trajectoires joignant M_1 à tout point final.

- (a) Écrire le Hamiltonien du problème de contrôle optimal et les équations adjointes. En déduire que le contrôle optimal est bang-bang avec au plus une commutation.
- (b) En utilisant les conditions de transversalité, montrer que si les conditions initiales sont choisies dans M_1 , alors le contrôle optimal ne commute pas. Représenter quelques unes des trajectoires associées.

Théorème II.3.2. Principe du maximum de Pontryagin, version générale

Soit M_i un sous-ensembles de \mathbb{R}^n . Si le contrôle $u \in U$ associé à la trajectoire $x(\cdot)$ est optimal sur [0,T], alors il existe une application $p(\cdot):[0,T] \to \mathbb{R}^n$ absolument continue appelée vecteur adjoint, et un réel $p^0 \le 0$, tels que le couple $(p(\cdot),p^0)$ est non trivial, et tels que, pour presque tout $t \in [0,T]$,

$$x'(t) = \frac{\partial H}{\partial p}(t, x(t), p(t), p^0, u(t)),$$

$$p'(t) = -\frac{\partial H}{\partial x}(t, x(t), p(t), p^0, u(t)),$$

et on a la condition de maximisation presque partout sur [0,T]

$$H(t, x(t), \rho(t), \rho^{0}, u(t)) = max_{v \in U}H(t, x(t), \rho(t), \rho^{0}, v).$$

Si de plus le temps final pour joindre la cible M_1 n'est pas fixé, on a la condition au temps final T:

$$max_{v \in U}H(T, x(T), \rho(T), \rho^0, v) = -p^0 \frac{\partial g}{\partial t}(T, x(T)).$$
 (*

Question (iii) - (a) Écrire le Hamiltonien du problème de contrôle optimal et les équations adjointes

Dans notre cas:

La cible $M_1 \subset \mathbb{R}^2$ et on définit le Hamiltonien du système de contrôle optimal sur $\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}_- \times R$ par:

$$H(t,x(t),p(t),p^{0},u)=< p(t), f(t,x(t),u(t)) > +p^{0}f^{0}$$

Avec $f: \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}^2$ est de classe C^1 ,

$$x'(t) = f(t, x(t), u(t)) = Ax(t) + Bu(t)$$

et où les contrôles sont des applications mesurables et bornées définies sur un intervalle [0,T(u)[de \mathbb{R}_+ et à valeurs dans $U=[-1,1]\subset\mathbb{R}.$

Par ailleurs on définit la fonctionnelle de coût:

$$C(T, u) = \int_0^T f^0(s, x(s), u(s)) ds + g(T, x(T))$$

avec $f^0: \mathbb{R} imes \mathbb{R}^2 imes \mathbb{R} o 0$ et $g: \mathbb{R}_+ imes \mathbb{R}^2 o t$

Afin d'avoir la reformulation de notre problème de contrôle optimal suivante:

$$\inf_{T \in \mathbb{R}^+} \prod_{u \in U} C(T, u) = \inf_{T \in \mathbb{R}^+} \prod_{u \in U} T_u$$

Question (iii) - (a) Écrire le Hamiltonien du problème de contrôle optimal et les équations adjointes

On applique le Théorème II.3.2:

$$x'(t) = \frac{\partial H}{\partial p}(t, x(t), p(t), p^{0}, u(t)) = Ax(t) + Bu(t)$$
$$p'(t) = -\frac{\partial \langle p(t), f(t, x(t), u(t)) \rangle}{\partial x} = -\frac{\partial \langle p(t), Ax(t) + Bu(t) \rangle}{\partial x}$$

$$p'(t) = -\frac{\partial \langle p(t), Ax(t) \rangle}{\partial x} = -A^T p(t)$$

Remarque: Ce qui peut être obtenue par le Théorème II.1.2.

Théorème II.1.2. Condition d'optimalité et principe du maximum de Pontryagin:

Soit $u \in L^{\infty}(0, T, U)$ une commande qui transfère le système (Σ) de x(0) = x0 à $x(T) = xT \in \mathbb{R}^2$. Si le temps T est minimum, alors il existe une fonction p non identiquement nulle solution de l'équation adjointe $p'(t) = -A^T p(t), t \in [0, T]$ telle que pour presque tous $s \in [0, T], u(s)$ réalise instantanément le maximum de l'Hamiltonien $H: U \ni v \to < p(s), Bv >_{\mathbb{R}^2}$.

Alors le maximum du hamiltonien : $\max_{v \in U} < B^T p(s), v >_{\mathbb{R}^2}$ est atteind en v = 1 ou -1 (bornes de U=[-1,1])

Question (iii) - (a) Écrire le Hamiltonien du problème de contrôle optimal et les équations adjointes

$$p'(t) = -A^{T} p(t)$$

$$\implies p(t) = p(0)e^{-tA^{T}}$$

En particulier pour t = T: $p(T) = p(0)e^{-TA^T}$

$$\implies p(0) = p(T)e^{TA^T}$$

Le vecteur adjoint est donc:

$$p(t) = p(T)e^{(T-t)A^T}$$

Question (iii) - (a) En déduire que le contrôle optimal est bang-bang avec au plus une commutation.

On a la condition de maximisation presque partout sur [0,T]

$$H(t, x(t), p(t), p^{0}, u(t)) = max_{v \in U}H(t, x(t), p(t), p^{0}, v(t))$$

$$\iff u(t) = argmax_{v \in U} < p(t), Ax(t) + Bv(t) >$$

$$\iff u(t) = argmax_{v \in U} < p(t), Bv(t) >$$

On remarque que le max est atteint dans les bords de U. u=1 si $< p(t), B>_{\mathbb{R}^2}$ positif et u=-1 sinon. Donc le contrôle optimal est dit bang-bang avec au plus une commutation.

On a la condition au temps final a T:

$$\max_{v \in U} H(T, x(T), p(T), p^{0}, v) = -p^{0} \frac{\partial g}{\partial t}(T, x(T))$$

$$\iff \max_{v \in U} \langle p(T), Ax(T) + Bv(T) \rangle = -p^{0} \frac{\partial t}{\partial t}(T, x(T))$$

En posant $p^0 = -1$:

$$max_{v \in U} < p(T), Ax(T) + Bv(T) >= 1$$

Il faut d'abord déterminer p(T), en utilisant les conditions de transversalité.

Pour ce faire:

- ① Déterminer <u>l'espace tangent</u> $\mathbb{T}_x M_1$;
- ② Montrer que M_1 est variété de \mathbb{R}^2 ayant des espaces tangents en $X(T) \in M_1$;
- **1** Trouver un vecteur adjoint p(T) tel que:

$$p(T)\bot \mathbb{T}_{x(T)}M_1$$

Question (iii) - Déterminer l'espace tangent $\mathbb{T}_x M_1$

Selon la question (i), M_1 peut être aussi représenté comme suite:

$$M_1 = \{X = (x, y) \in \mathbb{R}^2, \quad F(X) = x = 0\}$$

Où F est une fonction de classe C^1 de \mathbb{R}^2 dans \mathbb{R} . Selon la *Remarque II*.3.3 du cours:

$$\mathbb{T}_{x}M_{1} = \{v \in \mathbb{R}^{2} | \nabla F(X).v = 0\} = \{v = (0, y) \in \mathbb{R}^{2}\}.$$

Question (iii) - M_1 est variété de \mathbb{R}^2 ayant des espaces tangents en $X(T) \in M_1$

Définition:

Soit $M \subset \mathbb{R}^n$. On dit que M est une sous-variété de \mathbb{R}^n de dimension p et de classe C^k si pour tout x de M, il existe des voisinages respectifs U de x dans \mathbb{R}^n et V de 0 dans \mathbb{R}^n , ainsi qu'un C^k -difféomorphisme $f:U\to V$, envoyant x sur 0 et telle que:

$$f(U\cap M)=V\cap (\mathbb{R}^p\times\{0\}).$$

On remarque que $f(\mathbb{R}^2 \cap M_1) = \mathbb{R}^2 \cap (\mathbb{R} \times \{0\})$ avec f(x,y) = (0,y).

Alors M_1 est bien une variété de \mathbb{R}^2 .

Question (iii) - Trouver un vecteur p(T) tel que:

$$p(T)\perp \mathbb{T}_{x(T)}M_1.$$

On a:

$$\mathbb{T}_{x} M_{1} = \{ v \in \mathbb{R}^{2} | \nabla F(X).v = 0 \} = \{ v = (0, y) \}$$

$$\implies p(T) = \lambda \nabla F(X) = \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Avec $\lambda \in \mathbb{R}$, Or, M_1 est convexe donc p(T) est unitaire (Voir Remarque 3 du cours commande temps minimum de systèmes linéaires), On prend $\lambda = 1$ pour le reste de l'exercice.

On a la condition au temps final a T:

$$\max_{v \in U} H(T, x(T), p(T), p^{0}, v) = -p^{0} \frac{\partial g}{\partial t}(T, x(T))$$

$$\iff \max_{v \in U} \langle p(T), Ax(T) + Bv(T) \rangle = -p^{0} \frac{\partial t}{\partial t}(T, x(T))$$

En posant $p^0 = -1$ (choix du cours):

$$\max_{v \in U} \langle p(T), Ax(T) + Bv(T) \rangle = 1 \quad (*)$$

$$(*) \iff \max_{v \in U} < p(T), Ax(T) + Bv(T) >= 1$$

Selon Duhamel:

$$AX(T) = Ae^{TA}X_0 + \int_0^T Ae^{(T-s)A}Bu(T)ds$$

$$AX(T) = Ae^{TA}X_0 - \left[e^{(T-s)A}\right]_0^T Bu(T)$$

$$AX(T) = Ae^{TA}X_0 + e^{TA}Bu(T)$$

On remplace dans (*):

$$(*) \iff < p(T), Ae^{TA}X_0 + e^{TA}Bu(T) + Bu(T) >= 1$$

Avec:

$$p(T) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ u(T) = \{-1, 1\} \text{ et, } B = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ et } A = \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} \text{ et}$$

$$e^{TA} = \begin{pmatrix} 1 & e^{T} \\ 1 & -e^{T} \end{pmatrix} \text{ et } Ae^{TA} = \begin{pmatrix} 1 & -e^{T} \\ -1 & e^{T} \end{pmatrix}$$

On remplace dans (*):

$$(*) \implies$$

$$<\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}1&-e^T\\-1&e^T\end{pmatrix}\begin{pmatrix}x_0\\y_0\end{pmatrix}+\left[\begin{pmatrix}1&e^T\\1&-e^T\end{pmatrix}\begin{pmatrix}1\\1\end{pmatrix}+\begin{pmatrix}1\\1\end{pmatrix}\right]u(T)>_{\mathbb{R}^2}=1$$

$$\Longrightarrow$$

$$[x_0 - y_0 e^T + (2 + e^T)u(T)] = 1$$
 (**)

On suppose maintenant que $X_0 \in M_1$: $\Longrightarrow x_0 = 0$ et $|y_0| \le 0$ Aussi on remplace u(T) par l'une des possibilité du contrôle, soit u(T) = 1 ou u(T) = -1 et on remplace dans (**) repectivement:

$$[-y_0e^T + 2 + e^T] = 1 \text{ ou } [-y_0e^T - 2 - e^T] = 1$$

 $e^T = \frac{-1}{1 - y_0} \le 0 \quad \text{ou} \quad e^T = \frac{-3}{1 + y_0} \le 0$

Absurde! Donc le contôle ne commute pas dans ce cas de figure. Alors le tram s'arrêtes!

Question (iii) - Représenter quelques unes des trajectoires associées.

Pour rerésenter quelques trajectoires on prend des valeurs de $X_0 \notin M_1$. On se fixe un temps minimal de T = ln(2) et son contrôle optimale correspondant de u_t donné par la condition de maximisation:

$$\max_{v \in U} < p(t), Bv(t) >$$
 $\iff \max_{v \in U} < p(T)e^{(T-t)A^T}, Bv(t) >$

Et Duhamel nous donnes ensuite les trajectoires en fonctions de X_0 :

$$X(t) = e^{tA}X_0 + \int_0^t e^{(T-s)A}Bu(s)ds$$

Question (iii) - Représenter quelques unes des trajectoires associées.

En plus, selon la condition de temps optimal on a les équations suivantes qui nous permettent de tirer les points de départ X_0 :

$$\begin{cases} x_0 = 2y_0 - 3 &, u_T = 1 \\ x_0 = 2y_0 + 5 &, u_T = -1 \end{cases}$$

Question (iii) - Représenter quelques unes des trajectoires associées.

 $\forall t \in [0, T]$, ici T =ln(2) pour simplifier les calcules, la procédure se résume comme suite:

① Déterminer le contrôle u $\forall t \in [0, T]$

$$u = argmax_{v \in U} < p(T), e^{(T-t)A}Bv(t) > p(T) = (1,0)^T \in \mathbb{R}^2$$

Onner $X_0 = (x_0, y_0)$ $X_0 \notin M_1$ tel que:

$$\begin{cases} x_0 = 2y_0 - 3 &, u_{ln(2)} = 1 \\ x_0 = 2y_0 + 5 &, u_{ln(2)} = -1 \end{cases}$$

3 En déduire: $X(t) = e^{tA}X_0 + \int_0^t e^{(T-s)A}Bu(s)ds$.

