tats à 10⁻² près. Une entreprise fabrique des plaquettes dont la longueur et la largeur sont mesurées en mm.

25 Dans tout l'exercice on arrondira les résul-

Sur un échantillon de 100 plaquettes on a mesuré la longueur de chaque plaquette et obtenu le tableau suivant.

Longueur	Effectif
[35;37[3
[37;39[25
[39;41[50
[41;43[20
[43;45[2

1. On veut calculer une valeur approchée de la moyenne m et de l'écart type σ de l'échantillon. Pour cela, on fait comme si toutes les observations d'une classe étaient situées au centre de la

classe. Calculer m et σ . Compte tenu de l'erreur de méthode induite par l'approximation précédente, les résultats seront donnés à 10^{-1} près.

2. On suppose que la variable aléatoire L qui à

chaque plaquette associe sa longueur suit une loi normale de moyenne μ et d'écart type 1,6.

normale de moyenne μ et d'écart type 1,6.
a) Donner une estimation ponctuelle de μ.
b) Déterminer un intervalle de confiance à 95 % de μ centré sur la valeur obtenue précédemment.