

DATA SCIENCE AND MACHINE LEARNING (MSC)

DAMA51: Foundations in Computer Science

Academic Year: 2022-2023

#2 Written Assignment		
Submission Deadline Wednesday, 1 February 2023, 23:59:59 EET		
Student Name	Kritikos Antonios	

Guidelines

The deadline is definitive.

An indicative solution will be posted online along with the returning of the graded assignments.

The assignment is due via the STUDY submission system. You are expected to deliver a document (.DOC, .ODT, .PDF) and a compressed (.ZIP, .RAR) file containing all your work:

- 1 document file (this document) with the answers to all the topics, along with the R code and the results of the execution of the code
- 1 compressed file with 3 R scripts that correspond to topics 3, 4 and 5.

You should not make any changes in the written assignment file other than providing your own answers. You should also type all of your answers into Word and not attach any handwritten notes as pictures into your work otherwise a 5% reduction of your final grade will be applied. Make sure to name all the files (ZIP file, DOC file and R script files) with your last name first followed by a dash and the names of each component at the end. For example for the student with last name Aggelou the files should be named as follows: Aggelou-HW1.zip, Aggelou-HW1.doc, Aggelou-Topic3.R, Aggelou-Topic4.R and Aggelou-Topic5.R. The R script files should automatically run with the source command and generate the correct results. Also, please include comments before each command to explain the functionality of the command that follows. Unless otherwise stated in the question, all numerical answers should be given to three decimal places.

Topic	Points	Grades
1. Online QUIZ	40	
2. Article Review	10	
3. Principal Component Analysis	20	
4. Confusion Matrix	10	
 Hypothesis Testing – χ² Test 	20	
TOTAL	100	/100

Topic 1: Online QUIZ

Complete the corresponding online quiz available at:

https://study.eap.gr/mod/quiz/view.php?id=24566

You have one effort and unlimited time to complete the quiz, up to the submission deadline. **(40 points)**

Topic 2: Article Review

The review article by Shamina Ahmed et al. entitled "Artificial intelligence and machine learning in finance: A bibliometric review" (available at https://doi.org/10.1016/j.ribaf.2022.101646) uses a bibliometric approach to review the artificial intelligence and machine learning literature in the finance field highlighting the main application areas. Summarize the main research streams reviewed as well as the methodologies used in each of these areas. Finally give your personal view on the main research challenges and how to tackle these based on Al and ML methodologies (you may use a personal business perspective, if available, beyond the finance field).

Note: You should write up your answer to a maximum of 300 words. Any text in excess of 300 words will not be taken into consideration.

(10 points)

In the review article entitled "Artificial intelligence and machine learning in finance: A bibliometric review" are the findings of a conducted research which had as basis 348 articles published between 2011 and 2021 from the Q1 and Q2 finance journals of Scopus. The six main research streams were: How AI and ML can be implemented and provide insights in the fields of: 1)Bankruptcy prediction and credit-risk assessment. 2)Stock price prediction, portfolio management, volatility, and liquidity. 3)Prediction of the prices of oil, gold, and agriculture products. 4)Anti-money laundering, anti-fraud detection, and risk management. 5)Behavioral finance. 6)Big data analytics, blockchain, and data mining. Obviously all the previous researches and articles are finance-adjacent but it holds a good basis for the time being.

Even though the articles are recent (considering that AI and ML blew up as a field in the past ten years) and extremely informing, we still lack the necessary knowledge on how can we expand and utilize the usage of AI and ML both in finance and in other fields. To manage that, we must tackle some problems. The most important problem is the data that is needed to do the research, so governments and universities must provide funds to implement AI and ML in studies and businesses, so the researchers can gather data to expand their observations in the field, and provide more and accurate insights in the utilization of AI. By tackling that problem, all other possible problems will be either eliminated or minimized, because for any research of this kind, the most important part is the data. Having more data means that the possibilities of error in any research will be massively avoided, so the researchers will have strong foundation on targeting more accurately the aspects of this kind of new technology, hence, helping people understand and utilize it properly.

Topic 3: Principal Components Analysis

For this topic, you'll use the built-in data set **USArrests** of R to answer the following points. Within each answer frame below you should include the R code as well as the results **(20 points)**

a. Using R, first review each attribute included in the **USArrests** dataset (write the name and type) and calculate the mean and standard deviation. Include your answers in the Tables provided **(4 points)**

(2 points) Name and type of variables

Variable Name	Variable Type
Murder	Num
Assault	Int
UrbanPop	Int
Rape	Num

R-code and Results:

myDataFrame <- as.data.frame(USArrests)</pre>

myDataFrame

> myDataFrame	<- as.da	ata.frame	e (USArrest	s)
> myDataFrame				_
			UrbanPop	_
Alabama	13.2	236		21.2
Alaska	10.0			44.5
Arizona	8.1			31.0
Arkansas	8.8			19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7
Connecticut	3.3	110	77	11.1
Delaware	5.9	238	72	15.8
Florida	15.4	335	80	31.9
Georgia	17.4	211	60	25.8
Hawaii	5.3	46	83	20.2
Idaho	2.6	120	54	14.2
Illinois	10.4	249	83	24.0
Indiana	7.2			21.0
Iowa	2.2			11.3
Kansas	6.0			18.0
Kentucky	9.7			16.3
Louisiana	15.4			22.2
Maine	2.1			7.8
	11.3			27.8
Maryland Massachusetts	4.4			16.3
Michigan	12.1			35.1
Minnesota	2.7			14.9
Mississippi	16.1			17.1
Missouri	9.0			28.2
Montana	6.0			16.4
Nebraska	4.3			16.5
Nevada	12.2			46.0
New Hampshire	2.1	57	56	9.5
New Jersey	7.4	159	89	18.8
New Mexico	11.4	285	70	32.1
New York	11.1	254	86	26.1
North Carolina	13.0	337	45	16.1
North Dakota	0.8	45	44	7.3
Ohio	7.3	120	75	21.4
Oklahoma	6.6	151	68	20.0
Oregon	4.9	159		29.3
Pennsylvania	6.3	106		14.9
Rhode Island	3.4	174		8.3
South Carolina		279		22.5
South Dakota	3.8	86		12.8
Tennessee	13.2	188		26.9
Texas	12.7			25.5
Utah	3.2	120		22.9
Vermont	2.2	48		11.2
Virginia	8.5	156		20.7
Washington	4.0	145		26.2
West Virginia	5.7	81		9.3
Wisconsin	2.6	53		10.8
Wyoming	6.8	161	60	15.6


```
> str(USArrests)
'data.frame': 50 obs. of 4 variables:
  $ Murder : num 13.2 10 8.1 8.8 9 7.9 3.3 5.9 15.4 17.4 ...
  $ Assault : int 236 263 294 190 276 204 110 238 335 211 ...
  $ UrbanPop: int 58 48 80 50 91 78 77 72 80 60 ...
  $ Rape : num 21.2 44.5 31 19.5 40.6 38.7 11.1 15.8 31.9 25.8 ...
```

(2 points) Mean and standard deviation for each variable

Variable Name	Mean	Standard Deviation
Murder	7.788	4.35551
Assault	170.76	83.33766
UrbanPop	65.54	14.47476
Rape	21.232	9.366385

R-code and Results:

str(USArrests)

```
> mean(USArrests$Murder)
[1] 7.788
> sd(USArrests$Murder)
[1] 4.35551
> mean(USArrests$Assault)
[1] 170.76
> sd(USArrests$Assault)
[1] 83.33766
> mean(USArrests$UrbanPop)
[1] 65.54
> sd(USArrests$UrbanPop)
[1] 14.47476
> mean(USArrests$Rape)
[1] 21.232
> sd(USArrests$Rape)
[1] 9.366385
```


b. Using R, based on question (a), compute the principal components, ensuring that PCA is applied on scaled variables. **(4 points)**

c. Using R and your results from question (b), write in the Table below, for each principal component, what is the percentage of the total variance that is explained. (4 points)

Percentage of the total variance that is explained (1 point/PC)

	PC1	PC2	PC3	PC4
Percentage of the total variance explained	0.6201	0.2474	0.8914	0.04336

R-code and Results:

```
pca <- prcomp(myDataFrame, scale=TRUE)
summary(pca)</pre>
```


d. Using R and based on the previous results, write the coefficients of the linear combination of the original variables from which the principal components (PCs) are constructed (PCA loadings) in the Table below. **(4 points)**

PCA loadings						
		PC1	PC2		PC3	PC4
Murder		-0.5358995	0.4181809		-0.3412327	0.64922780
Assault		-0.5831836	0.1879856		-0.2681484	-0.74340748
UrbanPo	р	-0.2781909	-0.8728062		-0.3780158	0.13387773
Rape		-0.5434321	-0.1673186		0.8177779	0.08902432
R-code:						
pca\$rotation						
> pca\$rot	> pca\$rotation PC1 PC2 PC3 PC4					
Murder	-0.53589		-0.3412327		922780	
Assault	-0.58318	36 0.1879856	-0.2681484	-0.743	340748	
UrbanPop	-0.27819	09 -0.8728062	-0.3780158	0.133	387773	
Rape	-0.54343	21 -0.1673186	0.8177779	0.089	902432	

e. Using R, and the previous results, create a scree plot. Based on the scree plot, how many principal components would you retain? (4 points)

```
(3 point) Create a scree plot

R-code and Plot:

plot(c(1:4), pca$sdev^2 / sum(pca$sdev^2))
```


(1 point) How many principal components would you retain?

After the third principal component we see a pronounced drop off so we'll decide to retain the first three principal components.

Topic 4: Confusion Matrix

You are given the following vectors a = [1,0,1,0,1,1,1,0,0,1] and b = [1,0,0,0,1,1,0,0,0,1], which represent the True and predicted values, respectively, of a diagnostic test being positive (0) or negative (1) for a specific disease. **(10 points)**

a. Using "pen and paper", fill in the confusion matrix below and then calculate the following statistics: sensitivity, specificity and accuracy (type the formulas, calculations and results in the answer frame below). **(5 points)**

(2 points) Confusion	Matrix			
True Class		Predicted Class		
	Positive (0)	Negative (1)		
Positive (0)	4	0		
Negative (1)	2	4		

(1 point) Sensitivity = 1.0000

(1 point) Specificity = 0.6667

(1 point) Accuracy = 0.8

b. Using R, create the confusion matrix (fill in the one provided below) and calculate the following statistics: sensitivity, specificity and accuracy to verify your results from question (a). **(5 points)**

(2 point) Confusion Matrix				
True Class		Predicted Class		
	Positive (0)	Negative (1)		
Positive (0)	4	0		
Negative (1)	2	4		

R-code and Results:

(1 point) Sensitivity = 1.0000

(1 point) Specificity = 0.6667

(1 point) Accuracy = 0.8

install.packages('caret')

library(caret)

true_value <- factor(c(1,0,1,0,1,1,1,0,0,1))

predicted_value <- factor(c(1,0,0,0,1,1,0,0,0,1))

confusionMatrix(data=predicted_value,reference=true_value)


```
> library(caret)
Loading required package: ggplot2
Loading required package: lattice
> true value <- factor(c(1,0,1,0,1,1,1,0,0,1))
> predicted_value <- factor(c(1,0,0,0,1,1,0,0,0,1))
> confusionMatrix(data=predicted value, reference=true value)
Confusion Matrix and Statistics
         Reference
Prediction 0 1
        0 4 2
         1 0 4
               Accuracy: 0.8
                95% CI: (0.4439, 0.9748)
    No Information Rate: 0.6
    P-Value [Acc > NIR] : 0.1673
                  Kappa: 0.6154
 Mcnemar's Test P-Value: 0.4795
           Sensitivity: 1.0000
            Specificity: 0.6667
         Pos Pred Value: 0.6667
         Neg Pred Value : 1.0000
            Prevalence: 0.4000
         Detection Rate: 0.4000
   Detection Prevalence: 0.6000
      Balanced Accuracy: 0.8333
       'Positive' Class: 0
```


Topic 5: χ² Test

For this topic, you will use the built-in data set **iris** of R in order to answer the following points. **(20 points)**

a. Using R, first find the variables included in the dataset **iris** and write their names and types in the Table below. Then add a new variable, Size_sepal, which is "small", if the length of the sepal is smaller than the median sepal length of all flowers, or "big" otherwise. **(5 points)**

Variable Name Variable Type Sepal.Length Sepal.Width Petal.Length num Petal.Width num Species Factor

R-code and Results:

str(myDataSet)

```
> str(myDataSet)
'data.frame': 150 obs. of 6 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1
$ Size_sepal : Factor w/ 2 levels "big", "small": 2 2 2 2 2 2 2 2 2 2 2 ...
```

(3 points) add variable "Size sepal"

R-code:

myDataSet\$Size_sepal <- myDataSet\$Size_sepal <- as.factor(ifelse(myDataSet\$Sepal.Length <median(myDataSet\$Sepal.Length), 'small', 'big'))

str(myDataSet)

b. Using R, create a contingency table, including sums, for the variables <code>Species</code> and <code>Size_sepal</code>. Create a stacked barplot in R to visualize <code>Size_sepal</code> (y-axis) for each of the <code>Species</code> (x-axis). (5 points)

(3 points) contingency table for the variables Species and Size_sepal

	Size_sepal		
Species	Big	Small	Sum
Setosa	1	49	50
versicolor	29	21	50
virginica	47	3	50
Sum	77	73	150

R-code and Results:

addmargins(table(myDataSet\$Species,myDataSet\$Size_sepal),c(1,2))

> addmargins(table(myDataSet\$Species,myDataSet\$Size_sepal),c(1,2))

	big	small	Sum
setosa	1	49	50
versicolor	29	21	50
virginica	47	3	50
Sum	77	73	150

(2 points) Create a stacked barplot

R-code and Plot:

ggplot(myDataSet, aes(x=Species, y=Size_sepal, fill=Size_sepal)) +
geom_bar(position="stack", stat="identity") + ggtitle("Species to size")

c. Define two hypotheses (null and alternative) in the Table below, to test whether the <code>Size_sepal</code> variable is independent of the <code>Species</code> variable. Using R, perform the Chi-Squared Test of Independence (using default values) and write if you can reject or not the null hypothesis at a significance level of a=0.05. **(5 points)**

(2 points) Define the two hypotheses below:

For Size_sepal and Species		
Ho (null Hypothesis):	The Size_sepal variable is independent of the Species variable	
H1 (alternative Hypothesis):	The Size_sepal variable is dependent to the Species variable	

(3 points) Perform the Chi-Squared Test of Independence and write if you can reject or not the null hypothesis for the variables Size_sepal and Species

R-code:

chisq.test(myDataSet\$Size_sepal, myDataSet\$Species)

p-value:

p-value < 2.2e-16

Decision:

The p-value is less than the alpha value(0.05) so we reject the null hypothesis and we accept the alternative hypothesis that the size is dependent to the species.

d. Using R, based on the results from question (c), calculate the degrees of freedom (df) and fill in the Tables below with the observed and expected values for variables Species and Size_sepal. (5 points)

(3 points) Observed and expected values for the variables Species and Size_sepal

Observed values for the variables Species and Size_sepal

Observed Values	Size_sepal	
Species	big	Small
setosa	1	49
versicolor	29	21
virginica	47	3

Expected values for the variables Species and Size_sepal

Expected Values	Size_sepal	
Species	big	small
Setosa	25.667	24.333
Versicolor	25.667	24.333
Virginica	25.667	24.333

R-code and Results:

(chisq.test(myDataSet\$Species, myDataSet\$Size_sepal))\$observed (chisq.test(myDataSet\$Species, myDataSet\$Size_sepal))\$expected

```
> (chisq.test(myDataSet$Species, myDataSet$Size sepal))$observed
               myDataSet$Size sepal
myDataSet$Species big small
      setosa
                  1 49
      versicolor 29 21
                 47
      virginica
> (chisq.test(myDataSet$Species, myDataSet$Size sepal))$expected
          myDataSet$Size sepal
myDataSet$Species
                    bia
                            small
      setosa 25.66667 24.33333
       versicolor 25.66667 24.33333
       virginica 25.66667 24.33333
(2 points) Calculate the degrees of freedom (df) and write the result below:
df(Species - Size\_sepal) = (r - 1)(c - 1) = (3 - 1)(2 - 1) = 2
```