問題 **1.1.** 次のベクトル \vec{u} , \vec{v} の (i) 長さ $|\vec{u}|$, $|\vec{v}|$, (ii) 内積 $\vec{u} \cdot \vec{v}$ および (iii) \vec{u} と \vec{v} のなす 角 θ の余弦 ($\cos \theta$) の値を求めなさい.

問題 **1.2.** 次の空間ベクトル \vec{a} , \vec{b} の外積 $\vec{a} \times \vec{b}$ を計算しなさい。また,内積 $(\vec{a} \times \vec{b}) \cdot \vec{a}$ および $(\vec{a} \times \vec{b}) \cdot \vec{b}$ を計算しなさい。

$$(1) \ \vec{a} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$

$$(2) \ \vec{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ \vec{b} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$

問題 **1.3.**
$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ に対し、次を計算しなさい。
$$(1) \ \vec{a} \times (\vec{b} \times \vec{c}) \qquad \qquad (2) \ (\vec{a} \times \vec{b}) \times \vec{c} \qquad \qquad (3) \ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

問題 **1.4.** 次の空間ベクトル \vec{a} , \vec{b} に対し, \vec{a} と \vec{b} の両方に直交し,長さが 1 のベクトルを求めなさい.

(1)
$$\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{b} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$ (2) $\vec{a} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

問題 1.5. 零ベクトルでないベクトル \vec{a} , \vec{b} に対し、次の問に答えなさい。 *1

- (1) \vec{a} , \vec{b} を 2 辺とする三角形の面積が $\frac{1}{2}\sqrt{|\vec{a}|^2\,|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2}$ に等しいことを示しなさい.
- (2) \vec{a} , \vec{b} を 2 辺とする平行四辺形の面積が $|\vec{a} \times \vec{b}|$ に等しいことを示しなさい.

1.1

^{*1} ヒント: $\triangle OAB$ の面積は $\frac{1}{2}|OA|\cdot|OB|\sin\theta$ である(ただし $\theta=\angle AOB$)。(1) はこれと内積の性質 $\vec{a}\cdot\vec{b}=|\vec{a}|\,|\vec{b}|\cos\theta$,三角関数の性質 $\sin^2\theta+\cos^2\theta=1$ を用いて示せ。(2) はベクトル $\vec{a},\,\vec{b}$ を成分表示し, $|\vec{a}\times\vec{b}|^2=|\vec{a}|^2\,|\vec{b}|^2-(\vec{a}\cdot\vec{b})^2$ を示せばよい。