Cálculo I Sucesiones de números reales

Universidad de Granada Departamento de Análisis Matemático

Dada una sucesión $\varphi \colon \mathbb{N} \to \mathbb{R}$ suele emplearse una notación especial para representarla. Para $n \in \mathbb{N}$ suele notarse el número real $\varphi(n)$ en la forma $x_n = \varphi(n)$ (naturalmente la letra "x" nada tiene de especial y puede sustituirse por cualquier otra).

Dada una sucesión $\varphi \colon \mathbb{N} \to \mathbb{R}$ suele emplearse una notación especial para representarla. Para $n \in \mathbb{N}$ suele notarse el número real $\varphi(n)$ en la forma $x_n = \varphi(n)$ (naturalmente la letra "x" nada tiene de especial y puede sustituirse por cualquier otra).

La sucesión misma se representa por $\varphi = \{x_n\}_{n \in \mathbb{N}}$. El número x_n se llama *término n-ésimo* de la sucesión.

Dada una sucesión $\varphi \colon \mathbb{N} \to \mathbb{R}$ suele emplearse una notación especial para representarla. Para $n \in \mathbb{N}$ suele notarse el número real $\varphi(n)$ en la forma $x_n = \varphi(n)$ (naturalmente la letra "x" nada tiene de especial y puede sustituirse por cualquier otra).

La sucesión misma se representa por $\varphi = \{x_n\}_{n \in \mathbb{N}}$. El número x_n se llama *término n-ésimo* de la sucesión.

Dos sucesiones $\{x_n\}$ e $\{y_n\}$ son iguales cuando para todo $n \in \mathbb{N}$ se verifica que $x_n = y_n$.

Dada una sucesión $\varphi \colon \mathbb{N} \to \mathbb{R}$ suele emplearse una notación especial para representarla. Para $n \in \mathbb{N}$ suele notarse el número real $\varphi(n)$ en la forma $x_n = \varphi(n)$ (naturalmente la letra "x" nada tiene de especial y puede sustituirse por cualquier otra).

La sucesión misma se representa por $\varphi = \{x_n\}_{n \in \mathbb{N}}$. El número x_n se llama *término n-ésimo* de la sucesión.

Dos sucesiones $\{x_n\}$ e $\{y_n\}$ son iguales cuando para todo $n \in \mathbb{N}$ se verifica que $x_n = y_n$.

No hay que confundir la sucesión $\{x_n\}$, que es una aplicación, con su *conjunto imagen*, que es el subconjunto de \mathbb{R} formado por todos los números x_n , el cual se representa por $\{x_n : n \in \mathbb{N}\}$.

Se dice también que el número x es **límite** de la sucesión $\{x_n\}$ y se escribe $\lim_{n\to\infty} \{x_n\} = x$ o, simplemente, $\lim_{n\to\infty} \{x_n\} = x$ e incluso, si no hay posibilidad de confusión, $\{x_n\} \to x$.

Se dice también que el número x es **límite** de la sucesión $\{x_n\}$ y se escribe $\lim_{n\to\infty} \{x_n\} = x$ o, simplemente, $\lim_{n\to\infty} \{x_n\} = x$ e incluso, si no hay posibilidad de confusión, $\{x_n\} \to x$.

La sucesión $\{1/n\}$ es convergente a cero.

Se dice también que el número x es **límite** de la sucesión $\{x_n\}$ y se escribe $\lim_{n\to\infty} \{x_n\} = x$ o, simplemente, $\lim_{n\to\infty} \{x_n\} = x$ e incluso, si no hay posibilidad de confusión, $\{x_n\} \to x$.

La sucesión {1/n} es convergente a cero.

Dado un número real $x \in]-1,1[$, se verifica que la sucesión de las potencias de x, $\{x^n\}$, converge a cero.

Se dice también que el número x es **límite** de la sucesión $\{x_n\}$ y se escribe $\lim_{n\to\infty} \{x_n\} = x$ o, simplemente, $\lim\{x_n\} = x$ e incluso, si no hay posibilidad de confusión, $\{x_n\} \to x$.

La sucesión $\{1/n\}$ es convergente a cero.

Dado un número real $x \in]-1,1[$, se verifica que la sucesión de las potencias de x, $\{x^n\}$, converge a cero.

La sucesión $\{(-1)^n\}$ no es convergente.

Se dice también que el número x es **límite** de la sucesión $\{x_n\}$ y se escribe $\lim_{n\to\infty} \{x_n\} = x$ o, simplemente, $\lim_{n\to\infty} \{x_n\} = x$ e incluso, si no hay posibilidad de confusión, $\{x_n\} \to x$.

La sucesión $\{1/n\}$ es convergente a cero.

Dado un número real $x \in]-1,1[$, se verifica que la sucesión de las potencias de x, $\{x^n\}$, converge a cero.

La sucesión $\{(-1)^n\}$ no es convergente.

Una sucesión convergente tiene un único límite.

Principio de las sucesiones encajadas Supongamos que $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ son sucesiones tales que $\lim\{x_n\} = \lim\{z_n\} = \alpha$ y existe un número natural m_0 tal que para todo $n \ge m_0$ se verifica que $x_n \le y_n \le z_n$, entonces la sucesión $\{y_n\}$ es convergente y $\lim\{y_n\} = \alpha$.

Principio de las sucesiones encajadas Supongamos que $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ son sucesiones tales que $\lim\{x_n\} = \lim\{z_n\} = \alpha$ y existe un número natural m_0 tal que para todo $n \ge m_0$ se verifica que $x_n \le y_n \le z_n$, entonces la sucesión $\{y_n\}$ es convergente y $\lim\{y_n\} = \alpha$.

La sucesión $\{\sqrt[n]{n}\}$ es convergente a 1.

Principio de las sucesiones encajadas Supongamos que $\{x_n\}$, $\{y_n\}$, $\{z_n\}$ son sucesiones tales que $\lim\{x_n\} = \lim\{z_n\} = \alpha$ y existe un número natural m_0 tal que para todo $n \ge m_0$ se verifica que $x_n \le y_n \le z_n$, entonces la sucesión $\{y_n\}$ es convergente y $\lim\{y_n\} = \alpha$.

La sucesión $\{\sqrt[n]{n}\}$ es convergente a 1.

Sean $\{x_n\}$ e $\{y_n\}$ sucesiones cuyos términos son iguales a partir de uno en adelante, es decir, hay un número natural m_0 tal que para todo $n \ge m_0$ es $x_n = y_n$. Entonces $\{x_n\}$ converge si, y sólo si, $\{y_n\}$ converge en cuyo caso las dos sucesiones tienen igual límite.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leqslant \mu$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \le x_{n+1}$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leqslant x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.
- Decreciente si $x_n \geqslant x_{n+1}$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.
- Decreciente si $x_n \geqslant x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente decreciente si $x_n > x_{n+1}$ para todo $n \in \mathbb{N}$.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.
- Decreciente si $x_n \geqslant x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente decreciente si $x_n > x_{n+1}$ para todo $n \in \mathbb{N}$.
- Monótona si es creciente o decreciente.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.
- Decreciente si $x_n \geqslant x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente decreciente si $x_n > x_{n+1}$ para todo $n \in \mathbb{N}$.
- Monótona si es creciente o decreciente.
- Estrictamente monótona si es estrictamente creciente o decreciente.

- Mayorada o acotada superiormente si su conjunto imagen está mayorado, es decir, si hay un número $\mu \in \mathbb{R}$ tal que $x_n \leq \mu$ para todo $n \in \mathbb{N}$.
- Minorada o acotada inferiormente si su conjunto imagen está minorado, es decir, si hay un número $\lambda \in \mathbb{R}$ tal que $\lambda \leqslant x_n$ para todo $n \in \mathbb{N}$.
- **Acotada** si su conjunto imagen está acotado, equivalentemente, si hay un número $M \in \mathbb{R}^+$ tal que $|x_n| \leq M$ para todo $n \in \mathbb{N}$.
- Creciente si $x_n \leq x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente creciente si $x_n < x_{n+1}$ para todo $n \in \mathbb{N}$.
- Decreciente si $x_n \geqslant x_{n+1}$ para todo $n \in \mathbb{N}$.
- Estrictamente decreciente si $x_n > x_{n+1}$ para todo $n \in \mathbb{N}$.
- Monótona si es creciente o decreciente.
- Estrictamente monótona si es estrictamente creciente o decreciente.

La sucesión $\{H_n\}$ definida por $H_n = \sum_{k=1}^n \frac{1}{k}$, no es convergente.

La sucesión $\{H_n\}$ definida por $H_n = \sum_{k=1}^n \frac{1}{k}$, no es convergente.

Toda sucesión monótona y acotada es convergente. Más concretamente, si una sucesión $\{x_n\}$ es:

La sucesión $\{H_n\}$ definida por $H_n = \sum_{k=1}^n \frac{1}{k}$, no es convergente.

Toda sucesión monótona y acotada es convergente. Más concretamente, si una sucesión $\{x_n\}$ es:

i) creciente y mayorada, entonces $\lim \{x_n\} = \beta$ donde $\beta = \sup \{x_n \colon n \in \mathbb{N}\}$. Además se verifica que $x_n < \beta$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a β .

La sucesión
$$\{H_n\}$$
 definida por $H_n = \sum_{k=1}^n \frac{1}{k}$, no es convergente.

Toda sucesión monótona y acotada es convergente. Más concretamente, si una sucesión $\{x_n\}$ es:

- i) creciente y mayorada, entonces $\lim \{x_n\} = \beta$ donde $\beta = \sup \{x_n \colon n \in \mathbb{N}\}$. Además se verifica que $x_n < \beta$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a β .
- ii) decreciente y minorada, entonces $\lim \{x_n\} = \alpha$ donde $\alpha = \inf \{x_n : n \in \mathbb{N}\}$. Además se verifica que $\alpha < x_n$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a α .

La sucesión
$$\{H_n\}$$
 definida por $H_n = \sum_{k=1}^n \frac{1}{k}$, no es convergente.

Toda sucesión monótona y acotada es convergente. Más concretamente, si una sucesión $\{x_n\}$ es:

- i) creciente y mayorada, entonces $\lim \{x_n\} = \beta$ donde $\beta = \sup \{x_n \colon n \in \mathbb{N}\}$. Además se verifica que $x_n < \beta$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a β .
- ii) decreciente y minorada, entonces $\lim \{x_n\} = \alpha$ donde $\alpha = \inf \{x_n \colon n \in \mathbb{N}\}$. Además se verifica que $\alpha < x_n$ para todo $n \in \mathbb{N}$, o bien que todos los términos a partir de uno en adelante son iguales a α .

La sucesión
$$\{x_n\}$$
 definida por $x_n = \sum_{k=n+1}^{2n} \frac{1}{k}$, es convergente.

Si una sucesión $\{x_n\}$ es creciente a partir de uno de sus términos, es decir, si hay un número m_0 tal que $x_n \le x_{n+1}$ para todo $n \ge m_0$ – tales sucesiones se llaman **eventualmente crecientes** – entonces si dicha sucesión está mayorada, es convergente y $\lim \{x_n\} = \sup \{x_n : n \ge m_0\}$.

Si una sucesión $\{x_n\}$ es creciente a partir de uno de sus términos, es decir, si hay un número m_0 tal que $x_n \le x_{n+1}$ para todo $n \ge m_0$ – tales sucesiones se llaman **eventualmente crecientes** – entonces si dicha sucesión está mayorada, es convergente y $l(m\{x_n\} = \sup\{x_n : n \ge m_0\})$.

Una observación correspondiente puede hacerse para sucesiones que son decrecientes a partir de uno de sus términos; tales sucesiones se llaman **eventualmente decrecientes**.

Dadas dos sucesiones $\{x_n\}$ e $\{y_n\}$, se define su **suma** como la sucesión $\{x_n + y_n\}$ y su **producto** como la sucesión $\{x_n y_n\}$.

Dadas dos sucesiones $\{x_n\}$ e $\{y_n\}$, se define su **suma** como la sucesión $\{x_n + y_n\}$ y su **producto** como la sucesión $\{x_n y_n\}$.

El producto de una sucesión convergente a cero por una sucesión acotada es una sucesión convergente a cero.

Dadas dos sucesiones $\{x_n\}$ e $\{y_n\}$, se define su **suma** como la sucesión $\{x_n + y_n\}$ y su **producto** como la sucesión $\{x_n y_n\}$.

El producto de una sucesión convergente a cero por una sucesión acotada es una sucesión convergente a cero.

Supongamos $\lim\{x_n\} = x$ y $\lim\{y_n\} = y$. Entonces se verifica $\lim\{x_n+y_n\} = x+y$, $\lim\{x_ny_n\} = xy$. Si además suponemos que $y_n \neq 0$ para todo $n \in \mathbb{N}$ y también que $y \neq 0$, entonces $\lim\left\{\frac{x_n}{y_n}\right\} = \frac{x}{y}$.