Deep learning & applications

Practice#5

Tae Hyun Kim

What is Image Restoration?

- Goal
 - Restore a degraded image (y) to its original signal (x)
- Assumption
 - Degradation model is known or can be estimated

Common Degradations

- Image degradations
 - Resolution
 - Quantization
 - Blur
 - Motion blur
 - Focus blur
 - Noise
 - •

Degradation Sources: Sampling

- Sampling
 - Digitize
 - Analog to digital
 - Bicubic, Bilinear, Gaussian, Lanczos, ...

Degradation Sources: Quantization

- Quantization
 - Lossy
 - Non-invertible transform

Degradation Sources: Quantization

- Quantization
 - Lossy
 - Non-invertible transform

Degradation Sources: Quantization

Degradation Sources: Blur

- Blur
 - Image smoothing (low-pass filter)
 - Mainly caused by
 - Camera shake
 - Object motion
 - Defocus
 - Turbulence
 - ..

Camera shake (Camera motion blur)

Out of focus (Defocus blur)

Object movement (Object motion blur)

Combinations (vibration & motion, ...)

Degradation Sources: Deformation

- Spatial deformation
 - Spatial transformation
 - Invertible in most cases
 - Lenz distortion
 - Non-standard camera
 - Omni-vision
 - Fish-eye

Barrel

Degradation Sources: Noise

Noise

Apparent in low-light scenes taken at high ISO

Where it comes from

- Background and thermal noise (additive Gaussian)
- Shot noise (photon noise) Poisson, approx.
- Random errors of A/D converter, transmission errors (impulse noise)
- Wavefront interference noise (speckle noise)

Degradation Sources: Noise

Degradation Sources: Noise

Noise types (distribution)

Gaussian Impulse Poisson

Image denoising

- Typical regression problem
 - Need to predict the output of a continuous value unlike the classification problem
 - Other example
 - https://www.tensorflow.org/tutorials/keras/regression

- Refernce
 - DnCNN
 - TIP2017
 - https://ieeexplore.ieee.org/document/7839189

Our task

- Input
 - Corrupted MNIST image
 - Corrupted CIFAR10 image (color)
- Output
 - Clean MNIST image
 - Clean CIFAR10 image (color)

Network configuration

- 5-layered CNN
 - Model1
 - in \rightarrow conv($\frac{3}{2}$ x3x3x64) \rightarrow relu \rightarrow conv($\frac{64}{2}$ x3x3x64) \rightarrow relu \rightarrow conv($\frac{64}{2}$ x3x3x64) \rightarrow relu \rightarrow conv($\frac{64}{2}$ x3x3x64) \rightarrow out
 - Model2 (w/ skip connection)
 - in \rightarrow conv(3x3x3x64) \rightarrow relu \rightarrow conv(64x3x3x64) \rightarrow relu \rightarrow conv(64x3x3x8) + in \rightarrow out

- Model3 (w/ skip connection & batch normalization)
 - in \rightarrow conv(3x3x3x64) \rightarrow bn \rightarrow relu \rightarrow conv(64x3x3x64) \rightarrow bn \rightarrow relu \rightarrow conv(64x3x3x64) \rightarrow bn \rightarrow relu \rightarrow conv(64x3x3x3) + in \rightarrow out

Train/test set

- Train set
 - 60000 mnist train set
 - CIFAR-10 train set
- Test set
 - 10000 mnist test set
 - CIFAR-10 test set

```
mnist = tf.keras.datasets.mnist
(x_train, _), (x_test, _) = mnist.load_data()
(x_train, _), (x_test, _) = datasets.cifar10.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0 #scaling; pre-processing
y_train, y_test = x_train, x_test # ground-truth data

model = tf.keras.models.Sequential([
    tf.keras.layers.GaussianNoise(0.1, input_shape=(28, 28)), #add gaussian noise here
    ...
```

Implementation details

- Loss
 - MeanSquaredError
 - https://keras.io/api/losses/regression_losses/#meansquarederror-class
- Mini-batch size
 - 32
- Epochs
 - 100

Report

- Due: (6/8, 11:59pm)
 - English only
 - · Late submission will not be counted
- Submissions: (through blackboard system)
 - 3 output image files (denoising results when input = 'noisy.png')
 - Model1.png, Model2.png, Model3.png
 - Many solutions are available to handle an arbitrary input, and these are one of skills you need to learn in this practice. Please find it out for yourself!
 - 3 source files including training and inference code (i.e., generate ModelX.png)
 - allows only .py or .pynb
 - Model1.py, Model2.py, Model3.py