

Semantic Web (CO7516)

(Assignment 2)

SPARQL queries and OWL ontologies

Index

Part I

1- Examples of constraints and limited expressivity of the RDF Schema	2
2- Three SPARQL query for competency questions from your coursework 1.	2
i Query 1 · · · · · · · · · · · · · · · · · ·	3 4 4
3- Two SPARQL queries to search your ontology · · · · · · · · · ·	4
i Query 1ii Query 2	4 5
Part 2	
1- OWL subclass restrictions using owl:Restriction	6
2. DataType Properties and at least 2 ObjectProperties.	7
3. Property restrictions each on the domain and range.	9
4. Class defined using owl:intersectionOf.	10
5. Class defined using owl:unionOf.	10
6. Cardinality restrictions (exact, min and max).	11
7. Existential restrictions.	14
8. Universal restrictions.	15
9. Properties	
a. 2 Symmetric Properties	16
b. 2 Transitive Properties	17
c. 2 Inverse Properties	18
d. 2 Functional Properties	20
e. 2 Inverse Functional Properties	23
f. 1 Reflexive Property	24
g. 1 Irreflexive Property · · · · · · · · · · · · · · · · · · ·	25
10. Conclusion	25
11. References	25

PART 1

1- Give two examples of constraints that you were not able to describe in Coursework 1 due to the limited expressivity of the RDF Schema

1. Example 1

In RDFS I could not restrict the instances of a "Materials" relates to a specific Construction Specifications Institute (CSI) "Division" using "belongstoDivision" and restrict it to exactly "1" Division.

(Material \equiv Division $\sqcap = 1$ belongsto Division)

2. Example 2

In RDFS I could not restrict Class, limited to certain domain and range, for example, contractor is a company who is "BuilderOf" some constructions either "residential" or "educational" buildings. In RDFs I could only define two subclasses "residential" and "educational" of the construction class.

(Contractor \sqsubseteq Company $\sqcap \exists$ builderof.Construction)

2- Choose the three most important competency questions from your coursework 1. For each of those questions, write a SPARQL query to answers it.

Query 1: Who are the nearest suppliers of a specific building material near a construction site?

```
PREFIX scm: <a href="http://www.Co7516-ontologies.com/GroupA/OntologyGroupA#>">
SELECT DISTINCT ?Supplier ?Material ?Latitude ?Longitude (((?vertex_a-
?Latitude)*(?vertex_a-?Latitude) +(?vertex_b-?Longitude)*(?vertex_b-?Longitude)) AS
?distance)
       WHERE {
              ?Supplier scm:Latitude ?Latitude;
                        scm:Longitude?Longitude.
              OPTIONAL { ?Supplier scm:Supplies?Material. FILTER
regex(str(?Material), "Nano_Concrete")}
             SELECT ?vertex_a ?vertex_b
              WHERE {
              ?Latitude scm:Latitude ?vertex_a;
                        scm:Longitude?vertex_b.
              FILTER (?Latitude = scm:Universitry_of_Leicester)
                  }
} LIMIT 50
```

Results:

The "Supplier_1" is the nearest supplier of "Nano_concrete" from the construction site "University of Leicester"

Supplier	Material	Latitude	Longitude	distance
Universitry_of_Leicester		"26.434687"^	"50.059977"^	"0.00000000000"
Supplier_1	Nano_Concrete	"26.430152"^	"50.100145"^	"0.001634034449"
Supplier_2	Nano_Concrete	"26.387333"^	"50.090790"^	"0.003191842285"

Query 2: What material is best for a particular kind of construction?

Results

In this Example, the objective is to find building materials used in "Residential" type of construction that has Toxic Level below the provided level.

Construction_Type	Material	toxic_level
Residential_Building	Nano_Concrete	"3"^^ <http: 2001="" td="" www.w3.org="" xmlsch<=""></http:>

Query 3: Which contractor has completed the most projects for a specific type of construction?

```
SELECT DISTINCT ?contractor ?category (COUNT(DISTINCT ?building) as ?Total_Projects)
WHERE{
    ?building scm:BuildBy ?contractor;
    a ?category.
    FILTER (?category = scm:Educational | | ?category = scm:Residential)
}
GROUP BY ?contractor ?category
LIMIT 20
```

Results

The contractor is grouped by "contractor" and "category". The results show, "Consultant_1" has completed "2" Residential" and "1" Educational" Project

contractor	category	/ Total_Projects
Contractor_2	Educational	"1"^^ <http: 2001="" td="" www.w3.org="" xmls<=""></http:>
Contractor_1	Residential	"2"^^ <http: 2001="" td="" www.w3.org="" xmls<=""></http:>

3- Write two SPARQL queries to search your ontology, briefly explain what will be returned as a result. The queries should demonstrate ALL these features: OPTIONAL, FILTER, UNION, GROUP BY

Query 1: Which construction companies have built houses for their own employees?

"Anna" owns a "Residential_Building", she works at "Contractor_1", the same company built her house. The inference is that the relation "BuildBy" between Building and contractor class. Here a FILTER is used to narrow the results to the keyword "anna".

Employee	Owner_of_Building	Works_at_company	Built_By_Contractor
Anna_employee	Residential_Building	Contractor_1	Contractor_1

Query 2: Which buildings are using Materials of specific building Standards?

Inference:

The "UNION" query merges the "CSI-Div1" and "CSI-Div2" for the "Chemical" and "Mechanical" building materials. Here there "Mobin Building" is using "Chemical_Material_1" that belongs to "Div-1" of The CSI standard, and "University of Leicester" is using "Mechanical_Material_1" which belongs to Div-2.

Division	Material	buildings	SubDivision
Div1	Chemical_Material_1	Mobin_Building	
Div1	Nano_Concrete	Residential_Building	
Div2	Mechanical_Material_1	Universitry_of_Leicester	

PART 2

1- Include at least 4 OWL subclass restrictions (use owl:Restriction).

1- The concept Contractor is *Subclass-Of* "Company" restricted to the range "**BuilderOf**" of between Contractor and Construction.

Instance:

Contractor_1 builderOf University of Leicester

2- The Manufacturer Subclass-Of "Company" can be a "ManufacturerOf" of only Material.

```
:Manufacturer rdf:type owl:Class;
rdfs:subClassOf:Company,
[rdf:type owl:Restriction;
owl:onProperty:ManufacturerOf;
owl:allValuesFrom:Material].
```

Instance:

Manufacturer_1 ManufacturerOf Electrical_Material_1 and Nano_Concrete.

3- The Supplier Subclass-Of of "Company" can be "SupplierOf" of only Materials.

Instance:

Supplier_1 SupplierOf Nano_Concrete

```
:Supplier_1 rdf:type :Company ,
owl:NamedIndividual ;
:SupplierOf :Nano_Concrete .
```

4- Div-1 Subclass-Of concept "Division" can have only "Chemical Material", Div-2 range is restricted to "hasMechanical" materials and "Div-3" has range "Chemical" Meterials.

```
:Div1 rdf:type owl:Class;
rdfs:subClassOf:Division,
[rdf:type owl:Restriction;
owl:onProperty:hasChemical;
owl:allValuesFrom:Chemical].
```

Instance:

Div_1 hasChemical Chemical_Material_1 and Nano_Concrete.

2- Include at least 2 DataType Properties and at least 2 ObjectProperties.

Data property -1

The purpose of object property is to link resources to literals.

"Product_code" is unique key for Materials, its using literal "string".

```
:Product_Code rdf:type owl:DatatypeProperty;
rdfs:domain:Material;
rdfs:range xsd:string.
```

Instance

"Nano_Concrete" has Product_Code "NC-001".

Data property -2

"Title_No" is unique key for Company or Construction, literal type used is "string"

"Residential Building" has title No. "TN:456PWZ".

Object Property -1: hasMaterial

The purpose of object property is to link object to other objects. Construction materials belongs to an specific CSI Division. The Object Property hasChemical is a sub property of hasMaterial. Further sub-properties are "hasElectrical" and hasMechanical".

```
:hasChemical rdf:type owl:ObjectProperty;
dfs:domain:Division;
rdfs:range:Chemical;
rdfs:subPropertyOf:hasMaterial.
```

Object Property 2: UsingMaterial

Buildings use specific sets of materials.

Instance

The inference is that an instance of "residential builsing" is using "The Nano-Concrete" material which belongs to Div_1 and it's a Chemical.

3- Include at least 2 property restrictions each on the domain and range.

1- The "Person" can "StudyIn" in Construction Type "Educational" and "LivesIn" Construction Type "Residential".

Instances:

Anna_employee livesIn Residential_Building BuildBy Contractor_1 and usingMaterial Nano_Concrete material.

Peter studyIn University_of_Leicester.

```
:Universitry_of_Leicester rdf:type :Educational ,
owl:NamedIndividual ;
:StudyIn :Peter .
```

2- The concept Manager is Subclass-Of"Person" restricted to the range "ManagerOf" of Company.

```
:Manager rdf:type owl:Class;
rdfs:subClassOf:Person,
[rdf:type owl:Restriction;
owl:onProperty:ManagerOf;
owl:someValuesFrom:Company];
```

Instances

John Manager is ManagerOf Contractor 2 and he isOwnerOf Mobin_Building.

4- Include at least 1 Class defined using owl:intersectionOf.

Electro-Mechanical materilas are intersection of Electrical AND Mechanical Material

```
:Electro_Machanical rdf:type owl:Class;
owl:equivalentClass [ rdf:type owl:Class;
owl:intersectionOf (:Electrical:Mechanical ) ];
rdfs:subClassOf:Material.
```

A Manager is a Person **AND** ManagerOf some Company.

Instance

```
:John_Manager rdf:type :Person ,
owl:NamedIndividual ;
:ManagerOf :Contractor_2 ;
```

5- Include at least 1 Class defined using owl:unionOf.

The concept "Building Materials" is union of "chemical", electrical, and mechanical materials.

```
:Building_Material rdf:type owl:Class;
owl:equivalentClass [ rdf:type owl:Class;
owl:unionOf (:Chemical:Electrical:Mechanical)];
rdfs:subClassOf:Material.
```


6- Include at least 3 Cardinality restrictions (exact, min and max).

(1) A Manager can be a Manager of Exactly one company.

Instance

General axioms

The protégé ontology represents real world ontology, therefore **contractor_1** are same as "**contractor_2**" unless if we define them as distinct members

```
[rdf:type owl:AllDifferent;
owl:distinctMembers (:Contractor_1
:Contractor_2
)
].
```

(2) A construction material can belongs to a single CSI Division.

Instance

General axioms

```
[rdf:type owl:AllDifferent;
owl:distinctMembers (:Div1
:Div2
)
].
```


(3) Min and Max Cardinality Restriction

The MasterFormat of the Construction Specifications Institute (CSI) and Construction Specifications Canada (CSC) contains maximum 50 Divisions. Reference.

7- Include at least 2 Existential restrictions.

1- (DesignerOf some (Warehouse or Building or Educational))

The class "**DesignerOf**" consists of the individuals that are involved in the "**DesignOf**" warehouses, residential or educational buildings..

```
:Designer rdf:type owl:Class;
  owl:equivalentClass [ rdf:type owl:Restriction ;
    owl:onProperty :DesignerOf;
    owl:someValuesFrom [ rdf:type owl:Class ;
    owl:unionOf ( :Educational :Residential :Warehouse )
```


2- (Employee and (Manager of some Company))

A Manager Class consists of individuals who are linked to company instances using "ManagerOf" relationship and are type of employee class.

8- Include at least 2 Universal restrictions.

1- BuilderOf only (Residential and Educational)

A contractor is a builder of only constructions, this may includes only construction type, Residential or Educational.

```
:Contractor rdf:type owl:Class;

rdfs:subClassOf:Company,
        [rdf:type owl:Restriction;
        owl:onProperty:BuilderOf;
        owl:allValuesFrom [rdf:type owl:Class;
        owl:unionOf(:Educational:Residential)]].
```


2- SupplierOf only (Chemical or Electrical or Mechanical)

A supplier is a supplier of only construction materials, this may include only material type, Electrical, Mechanical or Chemical.

```
:Supplier rdf:type owl:Class;
rdfs:subClassOf:Company,
[rdf:type owl:Restriction;
owl:onProperty:SupplierOf;
owl:allValuesFrom [rdf:type owl:Class;
```

owl:unionOf(:Chemical:Electrical:Mechanical)]].

9- Include 2 symmetric, 2 transitive, 2 inverse, , 2 Functional, 2 inverse functional, 1 reflexive

(a) Symmetric Property

Example 1: worksWith

The relation "p" is symmetric If "s" relates to "o" then "o" relates to "s". For instance, "workswith" relation is "symmetric" on "Person". If Person "A" workswith Person "B", then Person "B" workswith Person "A".

Inference

The Relation "worksWith" has been defined as Symmetric, we can infer that: Anna workswith John.

"Anna" worksWith" "John".

Example 2: CloseTo

The relationship "CloseTo" on domain "Supplier" and range "Supplier" is symmetric.

Inference

If Supplier_1 is closeTo Supplier_2, then Supplier_2 is also closeTo Supplier_1

(b) Transitive Properties

Example 1: isSubDivision, hasSubDivision

The relationship "isSubDivision" on domain "division" and range "subDivision" is transitive.

If Div_1.1 isSubDivision of Div_1 and Div_1.1.1 isSubDivision of Div_1.1 then Div_1.1.1 is also isSubDivision of Div_1.

Example 1: RegionOf

The relationship 'RegionOf' on domain "Location" and range "Location" is transitive.

```
<owl:ObjectProperty rdf:about="&scm;#RegionOf">
    <rdf:type rdf:resource="&owl;TransitiveProperty"/>
    <rdfs:domain rdf:resource="&scm;#Location"/>
    <rdfs:range rdf:resource="&scm;#Location"/>
    </owl:ObjectProperty>
```


Inference

If 'Al-Khobar' is a RegionOf of 'Eastern Province' and 'Eastern Province' is a RegionOf 'Saudi Arabia' then 'Al-Khobar' is also a RegionOf of 'Saudi Arabia'.

(c) Inverse Property

Example 1: SupplierOf, SuppliedBy

The relationship 'SupplierOf' and 'SuppliedBy' on domain "Supplier" and range "Material" is inverse.

```
<owl:ObjectProperty rdf:about="&scm;#SupplierOf">
  <rdfs:range rdf:resource="&scm;#Material"/>
  <owl:inverseOf rdf:resource="&scm;#SuppliedBy"/>
  <rdfs:domain rdf:resource="&scm;#Supplier"/>
  </owl:ObjectProperty>
```


Inference

If Supplier_1 is supplierOf Nano_Concrete, then Nano_material is suppliedBy Supplier_1

Example 2: ManufacturerOf, ManufactureredBy

The relationship 'ManufacturerOf' and 'ManufacturerBy' on domain "manufacturer" and range "Material" is inverse.

```
<owl:ObjectProperty rdf:about="&scm;#ManufacturerOf">
  <rdfs:range rdf:resource="&scm;#Material"/>
  <owl:inverseOf rdf:resource="&scm;#ManufacturedBy"/>
  <rdfs:domain rdf:resource="&scm;#Manufacturer"/>
  </owl:ObjectProperty>
```


If M1 is a manufacturer, ManufacturerOf Nano_Concrete, then Nano_material is ManufacturedBy M1

(c) Functional Property

Example 1: isOwnerOf, OwnedBy

The relationship 'isOwnerOf' on domain "Person" and range "Residential" could be Functional. Which means that a Person can have at most one House (a good example of human economic dependence of ontologies):

```
<owl:ObjectProperty rdf:about="&scm#isOwnerOf">
    <rdf:type rdf:resource="&owl;FunctionalProperty"/>
    <rdfs:domain rdf:resource="&scm;#Person"/>
    <rdfs:range rdf:resource="&scm;#Residential"/>
    <owl:inverseOf rdf:resource="&scm;#isOwnedBy"/>
    </owl:ObjectProperty>
```


If **Anna** is the **OwnerOf** '**B_1**', then Anna cannot be an ownerOf **B_2** or any other instance of Residence.

General axioms

The protégé ontology represents real world ontology, therefore 'Mobin_Building' is same as 'Residential_Building' unless we define them as distinct members

```
[rdf:type owl:AllDifferent;
owl:distinctMembers (: Mobin_Building
: Residential_Building
)
].
```

Example 2: WarehouseOf, hasWarehouse

Assumption is that a warehouse is unique to the companies, the relationship 'warehouseOf' on domain "Warehouse" and range "Company" could be Functional. Which means that a 'warehouse' can belong to only one company (either supplier of manufacturer).

```
<owl:ObjectProperty rdf:about="&scm;# WarehouseOf">
        <rdf:type rdf:resource="&owl;FunctionalProperty"/>
        <rdfs:domain rdf:resource="&scm;#Warehouse"/>
        <rdfs:range rdf:resource="&scm;#Company"/>
        <owl:inverseOf rdf:resource="&scm;#hasWarehouse"/>
```


If **Manufacturer_1** has a **Warehouse_1** then this warehouse can not belongs to Manufacturer_2 or any other instance of companies.

General axioms

In real world ontology, 'Manufacturer_1' and 'Manufacturer_are same unless we define them as distinct as follows

```
[ rdf:type owl:AllDifferent;
owl:distinctMembers (: Manufacturer_1
: Manufacturer_2
)
].
```

(d) Inverse Functional Property

Example 1: hasProductCode

If the relation is inverse-functional, then the objects uniquely determines the subject, for instance if a material has a product code then all the materials having that product code will be the same individuals.

Inference

If 'Nano_concrete' has product code 'Div_1.1.1' and 'الخرسانة النانو تكنولوجيا' (Nano concrete in Arabic Language) also has product code Div_1.1.1 then 'الخرسانة النانو تكنولوجيا' and 'Nano concrete' are same individuals.

Example 1: DesignerOf

Assume that a construction is designedBy only one designer company, if a construction is designedBy a company and the same construction is designedBy a designer company having different name, then both designer companies are same individuals.

```
<owl:ObjectProperty rdf:about="&scm;#DesignerOf">
    <rdf:type rdf:resource="&owl;InverseFunctionalProperty"/>
    <rdfs:domain rdf:resource="&scm;#Company"/>
    <rdfs:range rdf:resource="&scm;#Construction"/>
    <owl:inverseOf rdf:resource="&scm;#DesignedBy"/>
    </owl:ObjectProperty>
```


If 'Warehouse_1' is designed by 'Saudi Designers' and 'السعودية المصمم شركة' (Same company name in Arabic Language) then 'السعودية المصمم شركة' and 'Saudi Designers" are same individuals.

(e) Reflexive Property

There is no useful refleive property identified in the ontology of construction material, however "knows" and "likes" are the example of reflexive properties.

Inference:

If Person "A" knows person "B", then Person "A" knows himself.

(f) Irreflexive Property

Example: hasCoating

```
<owl:ObjectProperty rdf:about="&scm;#hasCoating">
    <rdf:type rdf:resource="&owl;IrreflexiveProperty"/>
    <rdfs:domain rdf:resource="&scm;#Material"/>
    <rdfs:range rdf:resource="&scm;#Material"/>
    </owl:ObjectProperty>
```

Inference

If "Nano_material" is used for Coating, it cant be used for Coating to itself. i.e. a coating material cant be used to coat on itself.

Conclusion

Thank you Emma and Monika for giving me such wonderful knowledge

References

- [1] Yi. Hong., Monika Salonki, Lecture Notes, Semantic Web, University of Leicester 2016.
- [2] http://www.w3.org/standards/semanticweb [Assessed March 2016)