Notiztitel

Matrizen

Defenition: Gegeben sond n.K reelle Zahlen aij, 15i5n, 15j5 K

Dann ist das (rechteckige) Zahlenschema mit in Zeiten und K Spelten

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1K} \\ a_{21} & a_{22} & \dots & a_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nK} \end{pmatrix} = \begin{pmatrix} a_{ij} \\ a_{ij} \\ 1 \leq j \leq K \end{pmatrix}$$

due Engehärge (nxk) - Matrix. Die Zehlen anj ER heißen Elemente/Koeffizieuten.

M(nxx) = { A | A ist ene (reelle) (nxx) - Matrix } bezeichnet die Trenge aller (nxx)-Matrizen. Bei anj ist der 1. Index i der "Zeileundex", der

2. Judez j ist der "Spaltenandex".

Bemerkung: Die Neuge M (nxk) wid marchinel and als TR nxk oder TR (n,k)

Rechenoperationen für Matrizen

Auf du trenze M(nxx) ist eine Addition und eine Multiplikation.

mit SER definiert, nämlid

$$A = (a_{ij})_{1 \le i \le n}$$

$$A = (a_{ij})_{1 \le i$$

Kurz: Addition und bulliplikation mit S ist Komponenten beise

definiert.

In jedu Komponante word unt reellen Zahlen gerechnet, daher "ertit" man

die Recherregele, ginaus: A+B=B+A Kommutchizeetz e) A+(B+C) = (A+B)+C Assoziatingesetz c) Dre "Milmahix" Quit aij = 0 für 16i6n, 16j6k ist das neutrale Element du Addition: A+O = A d) Zn A=(aij) EM(nxK) iit - A= (-aij) recen die inverse Mohrix betgl. du Addition : A + (-A) = A-A = 0 Benerthang: (MlnxK), +) ist eine Gruppe! e) $s \cdot (A + B) = (s \cdot A) + (s \cdot B)$ $s \in \mathbb{R}$ Distributive set? f) $s \cdot (t \cdot \underline{A}) = (s \cdot t) \cdot \underline{A} = t \cdot (s \cdot \underline{A}) \quad \forall t, s \in \mathbb{R}$ Benerkung: M(nxk) mit der Addition und der Multipliketion mit SETR ist an Veltorraum. Beispiele: $A = \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 4 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \in M(3\times2)$ $5 \cdot A - 3 \cdot B = 5 \cdot \begin{pmatrix} 3 & -1 \\ 1 & 0 \\ 4 & 1 \end{pmatrix} - 3 \cdot \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$ 2 M(2x2) = \ A \ A ist (2x2) - takix } $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + a_{21} \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + a_{22} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

Beispiel!	
$\frac{A}{2} = \begin{pmatrix} \lambda & -\lambda & 3 \\ 2 & 2 & 6 \\ 3 & 4 & -\lambda \end{pmatrix}; \vec{\nabla} = \begin{pmatrix} x_1 \\ x_2 \\ x_1 \end{pmatrix}$	
$ \frac{1}{100} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 2 & 6 \\ 3 & 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 & 1 \\ 3$	
In Faustrigil": Zeite. Spelte Note $\vec{b} = \begin{pmatrix} l_{11} \\ b_{2} \end{pmatrix} \in \mathbb{R}^{3}$ likelett $\vec{A} \cdot \vec{V} = \vec{b}$: $\begin{pmatrix} x_{1} - x_{2} + 3x_{3} \\ 2x_{1} + 2x_{2} + 6x_{3} \\ 3x_{1} + 6x_{2} - x_{3} \end{pmatrix} = \begin{pmatrix} l_{11} \\ l_{12} \\ l_{23} \end{pmatrix}$	
den lun GLS: $x_1 - x_2 + 3x_3 = b_1$ $2x_1 + 2x_2 + bx_3 = b_2$ $3x_1 + 6x_2 - x_3 = b_3$	
Benerkung: Das Produkt von Helmiten mit Vektore ist so definist, dess es zur Dristellung linearer Gleichneysysteme mit Koeffizientenmatrix,	
Ve Vitor der Unbekennten und Veletor der rechter Feite parist! (2) Produkt Mahrix mit Mehrix	
Bernerkung: Darstellung einer Harrix mittels Spaltenvektoran	
A = (1 2 3 4) = (\vec{a}_1 \vec{a}_2 \vec{a}_3 \vec{a}_4) \(\text{Darstelluy m A mittels Spattenvell toren} \)	
$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \vec{a} = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}, \vec{a}_3 = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix}, \vec{a}_4 = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}$	
Spaltenvelltoren du Mahrix A Allgemen: $A = (axj)_{1 \leq i \leq n} \in M(nxk) \Longrightarrow k$ Spaltenvelltoren,	

