Metody Numeryczne – sprawozdanie

Interpolacja Lagrange'a z optymalizacją położeń węzłów

Laboratorium nr 7

Adam Młyńczak 410702, Informatyka Stosowana

1. Cel zajęć

Na laboratorium naszym zadaniem było zastosowanie interpolacji Lagrange'a z optymalizacją położeń węzłów. Prowadzący przedstawił nam zasady działania tej metody i opisał problem, którym mieliśmy się zająć.

2. Opis problemu

Naszym zadaniem było znalezienie wielomianu Lagrange'a dla funkcji postaci:

$$f(x) = \exp(-x^2),$$

w przedziale <-5, 5>.

3. Teoria

3.1. Interpolacja Lagrange'a

Mając dane *n+1* węzłów i wartości funkcji w tych punktach, wyznaczamy wartości w "zagęszczonych" miejscach używając danego algorytmu dla każdego z punktów:

$$y_i = \sum_{1}^{k} \prod_{1}^{n+1} \frac{\omega_x}{\omega_{x_i}},$$

$$\omega_x = \prod (x_i - w_k),$$

$$\omega_{xi} = \prod (w_j - w_k).$$

Gdzie x to punkty zagęszczenia, w to węzły, a y to wartości dla punktów zagęszczenia.

3.2. Położenie węzłów jako zera wielomianów Czebyszewa

$$x_m = \frac{1}{2} \left[(x_{max} - x_{min}) \cos \left(\pi \frac{2m+1}{2n+2} \right) + (x_{min} + x_{max}) \right],$$

gdzie m = 0, 1, ..., n (n+1 to całkowita liczba węzłów).

4. Wyniki obliczeń

4.1. Rozwiązanie dla 6 równo rozłożonych węzłów

4.2. Rozwiązanie dla 11 równo rozłożonych węzłów

4.3. Rozwiązanie dla 16 równo rozłożonych węzłów

4.4. Rozwiązanie dla 21 równo rozłożonych węzłów

4.5. Rozwiązanie dla 21 węzłów znalezionych jako zera wielomianów Czebyszewa

5. Podsumowanie

Metoda interpolacji Lagrange'a pozwala w łatwy sposób narysować pełny wykres znając część punktów i wartości. Metoda ta jest wystarczająco skuteczna przy odpowiednim wyznaczeniu węzłów.