Отчет

Наименование и краткая характеристика CPU:

Architecture: x86_64

Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz

Thread(s) per core: 2 Core(s) per socket: 20

Address sizes: 46 bits physical, 48 bits virtual

Наименование сервера: ProLiant XL270d Gen10

Количество NUMA node: Available: 2 nodes (0-1):

node 0 size: 385636 MB node 1 size: 387008 MB

Операционная система:

Ubuntu 22.04.3 LTS

Задание:

Реализовать многопоточную версию программы умножения матрицы на вектор с параллельной инициализацией массивов. Провести анализ масштабируемости (для 1,2,4,7,8,16,20,40 потоков).

M=N	Количество потоков									
	2			4		6	6	8		
	T1 ms	T2 ms	S2	T4 ms	S4	T6 ms	S6	T8 ms	S8	
20000	5332	3225	1,65	1588	3,36	1044	5,11	795	6,71	
40000	21267	12815	1,66	6557	3,24	4350	4,89	3313	6,42	
	16			20			40			
	T16 ms		S16	T20 ms		S20	T40 ms		S40	
20000	554		9,62	460		11,59	376		14,18	
40000	2460		8,65	1824		11,66	1728		12,31	

График зависимости ускорения от кол-ва потоков

Основываясь на графиках и таблице, можно сделать вывод, что масштабируемость при количестве потоков от 2 до 8 увеличивалась, а при использовании более 16 потоков масштабируемость становится довольно низкой.

Задание:

Реализовать параллельную версию программы численного интегрирования, написать код функции с использованием «#pragma omp atomic» и локальной переменной.

nsteps	Количество потоков									
	2			4		6		8		
	T1 ms	T2 ms	S2	T4 ms	S4	T6 ms	S6	T8 ms	S8	
40000000	489	256	1,91	135	3,62	93	5,26	73	6,70	
	16			20			40,00			
	T16 ms		S16	T20 ms		S20	T40 ms		S40	
	42		11,64	37		13,22	25		19,56	

Основываясь на графике и таблице, можно сделать вывод, что до 16 потоков масштабируемость возрастает почти линейно, далее увеличивая кол-во потоков масштабируемость заметно падает, следовательно, в этой задаче не имеет смысла использовать больше 16 потоков.