BOCHNER INTEGRATION AND AN APPLICATION IN STOCHASTIC PROCESSES

CHUHUAN HUANG

Contents

1. Introduction	1
2. Bochner Integration	2
2.1. Dominated Convergence Theorem for Banach-valued functions	3
2.2. Luzin's Theorem for Banach-valued functions	3
3. An application	4
3.1. Stochastic Analysis Preliminaries	4
3.2. Main Proposition	5
4. Reference	7
5. Appendix	7

1. Introduction

In this note, we discuss the Bochner integration and an application in showing the distributions of $\int_0^T X_t dt$ and $\int_0^T Y_t dt$ coincide, given two progressively measurable stochastic processes X, Y.

Date: April, 2023.

2. Bochner Integration

Given a measure space (X, Σ, μ) and a real Banach Space $(V, |\cdot|_V)$, we say a (Σ, \mathcal{B}_V) measurable function $s: X \to V$ is **simple** if

$$s(x) = \sum_{i=1}^{n} \mathbb{1}_{E_i}(x)v_i,$$

where $\{E_i\}\subseteq\Sigma$ are disjoint, and v_i are distinct elements in V.

We say such s is *integrable*, and its integral is defined as

$$\int_X s d\mu := \sum_{i=1}^n \mu(E_i) v_i,$$

if $\mu(E_i)$ is finite whenever $v_i \neq 0$.

A (Σ, \mathscr{B}_V) measurable function $f: X \to V$ is said to be **Bochner integrable**, if there exists a sequence of integrable simple functions $\{s_n\}_{n=1}^{\infty}$ s.t.

$$\lim_{n \to \infty} \int_X |f - s_n|_V d\mu = 0,$$

and its integral is defined as

$$\int_{Y} f d\mu := \lim_{n \to \infty} \int_{Y} s_n d\mu,$$

where the first integral is in the sense of Lebesgue integral and the second convergence is in the sense of $|\cdot|_V$ norm topology.

Remark 2.1. we make several natural remarks here:

- (1) It's easy to show that $\{\int_X s_n d\mu\}_{n=1}^{\infty}$ is a Cauchy sequence in the Banach space V, and hence by its completeness the limit exists. If f takes value in a general normed space, we may have trouble that this Cauchy sequence does not necessary to converge.
- (2) It's also easy to show that if there is another such sequence of simple functions, the integral of f does not change. That is, the Bochner integral is well-defined (independent of choices).
- (3) Moreover, f is Bochner integrable if and only if $\int_X |f|_V d\mu < \infty$, and we may denote $\mathcal{L}^1(X;V)$ to be the set of all such functions. It is easy to see $\mathcal{L}^1(X;V)$ is a vector space (linearity is here!) and $\int_X |\cdot|_V d\mu$ is a semi-norm on it, and hence by using the standard trick: taking the quotient space w.r.t the equivalence relation $f \sim g$ if $f = g \ \mu$ -a.e.,

$$L^1(X;V) \coloneqq \mathcal{L}^1(X;V)/\!\!\sim$$

is a Banach space equiped with the norm $|\cdot|_{L^1(X;V)} := \int_X |\cdot|_V d\mu$.

(4) From our definition, simple functions are naturally dense in $L^1(X; V)$, of course w.r.t. the $|\cdot|_{L^1(X;V)}$ norm topology.

(5) If f is Bochner integrable, then the following usual inequality holds:

$$|\int_{E} f d\mu|_{V} \le \int_{E} |f|_{V} d\mu,$$

- for all $E \in \Sigma$, where $\int_E f d\mu := \int_X f \mathbb{1}_E d\mu$ as usual. (6) Typically, Suppose $T: V \to V'$ is a continous linear operator between Banach space V and V', and f is Bochner integrable. Then,
 - $Tf: X \to V'$ is also Bochner integrable;
 - the Bochner integral commutes with T:

$$\int_X Tf d\mu = T \int_X f d\mu$$

(7) Lastly, given a Bochner integrable function f, for all $E \in \Sigma$, $\nu : E \mapsto \int_E f d\mu$ is a countably-additive V-valued measure on X, and $\nu \ll \mu$.

2.1. Dominated Convergence Theorem for Banach-valued functions.

More importantly, we still have our beloved *Dominated Convergence Theorem*, perhaps after a redefinition w.r.t to a completion of the measure μ .

Theorem 2.2 (Dominated Convergence Theorem for Banach-valued functions). Suppose $\{f_n\}_{n=1}^{\infty}\subseteq L^1(X;V), f_n\to f \text{ μ-a.e., and there } \exists g\in L^1(X,\Sigma,\mu) \text{ s.t. } |f_n(x)|_V\leq g(x) \text{ for } f(x)=0$ μ -a.e. $x \in X$. Then, $f \in L^1(X; V)$,

$$f_n \to f$$
 in $L^1(X; V)$,

and hence

$$\int_X f d\mu = \lim_{n \to \infty} \int_X f_n d\mu,$$

where the second convergence is in the sense of $|\cdot|_V$ norm topology.

The proof is clear by applying the usual Dominated Convergence Theorem [Folland Theorem 2.24] to $|f_n - f|_V \le 2g$ and observe

$$\left| \int_X f d\mu - \int_X f_n d\mu \right|_V \le \int_X |f_n - f|_V d\mu \to 0.$$

2.2. Luzin's Theorem for Banach-valued functions.

Now we have sufficient ingredients, it is time to present the main result: Luzin's Theorem for Banach-valued functions.

Theorem 2.3 (Luzin's Theorem for Banach-valued functions). If $f:[a,b]\to V$ is $(\mathcal{L}_{[a,b]},\mathscr{B}_V)$ measurable ($\mathcal{L}_{[a,b]}$ is the class of all Lebesgue measurable sets included in [a,b]) and $\varepsilon > 0$, then there is a compact set $K_{\varepsilon} \subseteq [a,b]$ s.t. the Lebesgue measure $m(K_{\varepsilon}^{c}) < \varepsilon$ and $f|_{K}$ is continuous.

To prove this version of Luzin's, we give several natural lemmas¹.

Lemma 2.4. If $f_n \to f$ in $L^1(X; V)$, there is a subsequence $\{f_{n_i}\}$ s.t. $f_{n_i} \to f$ a.e.

Lemma 2.5 (Egorov's for Banach-valued functions). Suppose $\mu(X) < \infty$, and $\{f_n\}$, f are (Σ, \mathcal{B}_V) -measurable functions on X s.t. $f_n \to f$ a.e. Then, $\forall \varepsilon > 0, \exists E_\varepsilon \subseteq X$ s.t. $\mu(E) < \varepsilon$ and $f_n \to f$ uniformly on E^c .

Lemma 2.6. If μ is a Lebesgue-Stieltjes measure on \mathbb{R} , then compactly supported continuous functions $f: \mathbb{R} \to V$ are dense in $L^1(\mathbb{R}; V)$, with respect to the $|\cdot|_{L^1(\mathbb{R}; V)}$ norm topology.

Now we could prove the Luzin's in the usual way

Proof. We first assume f is bounded, i.e. $\sup_{x\in[a,b]}|f(x)|_V<\infty$, and then we combine lemma 2.4 and lemma 2.6 that there is a sequence of compactly supported continuous functions $\{f_n\}$ s.t. $f_n\to f$ a.e. Then, as $m([a,b])=b-a<\infty$, we could apply Egorov's (lemma 2.5), for a given $\varepsilon>0$, $\exists E_\varepsilon\subseteq[a,b]$ s.t. $m(E_\varepsilon)<\varepsilon$ and $f_n\to f$ uniformly on E_ε^c . That is, as the uniform limit of continuous functions on E_ε^c , f is continuous on E_ε^c . Finally, recall Lebesgue measurable sets could be approached from inside by compact sets. That is, as $m(E_\varepsilon^c)>b-a-\varepsilon$, $b-a-\varepsilon$ is not the sup and hence \exists compact $K_\varepsilon\subseteq E_\varepsilon^c$ s.t. $m(K_\varepsilon)>b-a-\varepsilon$. K_ε is what we are looking for.

If f is unbounded, we can consider the sets $E_n = [a, b] \cap \{x : |f(x)|_V \le n\}$ for $n \in \mathbb{N}$, which is measurable and have finite measure since [a, b] has finite measure. Then, we can apply the previous arguments to each $f|_{E_n}$, which is a bounded function, to obtain a sequence of compact $K_n \subseteq E_n$ s.t.

$$m(K_n^c) < \frac{\varepsilon}{2^n},$$

and $f|_{K_n}$ is continuous. Then, typically, $f|_{\cap_{n\in\mathbb{N}}K_n}$ is continuous and $\cap_{n\in\mathbb{N}}K_n$ is still compact, with

$$m(\bigcup_{n\in\mathbb{N}}K_n^c)\leq \sum_{n\in\mathbb{N}}m(K_n^c)<\varepsilon.$$

3. An application

3.1. Stochastic Analysis Preliminaries.

Recall that, given a filtered probability space $(\Omega, \mathscr{F}, \mathbb{F} := \{\mathscr{F}_t\}_{0 \le t \le T}, \mathbb{P})$

• A stochastic process is a real-valued² function $X : [0,T] \times \Omega \to \mathbb{R}$ that is $(\mathscr{B}_{[0,T]} \times \mathscr{F}, \mathscr{B}_{\mathbb{R}})$ measurable.

¹We attached the proofs in the appendix.

 $^{^2}$ We use the real-valued functions for simplicity, but similar notion could be developed for complex-valued functions.

- For given fixed $t \in [0,T]$, we view $X_t := X(t,\cdot) : \Omega \to \mathbb{R}$ as a random variable (simply a $(\mathcal{F}, \mathcal{B}_{\mathbb{R}})$ -measurable function). Equivalently, we could view X as X: $[0,T] \to L^0(\Omega)$ with $X(t) := X_t$, where $L^0(\Omega)$ is the space of all random variables $Z:\Omega\to\mathbb{R}$. For $p\in[0,\infty]$, $L^p(\Omega)$ are as usual.
- A stochastic process X is progressively measurable if its restriction $X|_{[0,t]}:[0,t]\times\Omega\to$ \mathbb{R} is $(\mathscr{B}_{[0,t]} \times \mathscr{F}_t, \mathscr{B}_{\mathbb{R}})$ measurable for all $t \in [0,T]$, denoted as $X \in \mathbb{L}^0(\mathbb{F})$. For $p \in [1, \infty], \mathbb{L}^p(\mathbb{F}) := \mathbb{L}^0(\mathbb{F}) \cap L^p([0, T] \times \Omega)$ are as usual.
- The distribution of a random variable Z is a Borel measure, denoted as $\mu_Z: \mathscr{B}_{\mathbb{R}} \to$ [0,1], is defined as

$$\mu_Z(A) := \mathbb{P}(Z \in A).$$

We say such two random variables Z_1, Z_2 have the same distribution, denoted as $Z_1 \stackrel{(d)}{=} Z_2$, if $\mu_{Z_1} = \mu_{Z_2}$.
• The *finite distribution* of a stochastic process X is a collection of Borel measures

$$\{\mu_{X_{t_1},...,X_{t_n}}\}_{\text{all }0 \le t_1 < t_2 < ... < t_n \le T},$$

where

$$\mu_{X_{t_1},...,X_{t_n}}(A) := \mathbb{P}\Big((X_{t_1},...,X_{t_n}) \in A\Big)$$

for all $A \in \mathscr{B}_{\mathbb{R}^n}$.

• Moreover, we say such two stochastic processes X, Y have the same finite distribution, denoted as $X \stackrel{(d)}{=} Y$, if $\mu_{X_{t_1}, \dots, X_{t_n}} = \mu_{Y_{t_1}, \dots, Y_{t_n}}$, for any $0 \le t_1 < t_2 < \dots < t_n \le T$.

3.2. Main Proposition.

We want to show that

Proposition 3.1. Given $(\Omega, \mathscr{F}, \mathbb{F} := \{\mathscr{F}_t\}_{0 \le t \le T}, \mathbb{P})$ and $X, Y \in \mathbb{L}^0(\mathbb{F})$, if $X \stackrel{(d)}{=} Y$, then $\int_0^T X_t dt \stackrel{(d)}{=} \int_0^T Y_t dt.$

We first give out a lemma.

Lemma 3.2. Suppose $X, Y \in \mathbb{L}^0(\mathbb{F})$ and $X \stackrel{(d)}{=} Y$. If X is continuous in t for a.e. ω , then Y is also continuous in t a.e. ω .

Proof of the Proposition 3.1.

Assume X, Y bounded (i.e. $X, Y \in \mathbb{L}^{\infty}(\mathbb{F})$ and equivalently $X, Y : [0, T] \to L^{\infty}(\Omega)$.) and X continuous. By lemma 3.2, Y is also continuous. Then, consider partition of $\pi_n: \{t_i :=$ $\frac{i}{2^n}T$, $i = 0, ..., 2^n$ and

$$X_t^{\pi_n} := \sum_{i=0}^{n-1} X_{t_i} \mathbb{1}_{\{t_i \le t < t_{i+1}\}}$$

and

$$Y_t^{\pi_n} := \sum_{i=0}^{n-1} Y_{t_i} \mathbb{1}_{\{t_i \le t < t_{i+1}\}}.$$

It is clear, as X, Y has same finite distribution, that

$$\int_0^T X_t^{\pi_n} dt = \sum_{i=0}^{n-1} X_{t_i} \Delta t_{i+1} \stackrel{(d)}{=} \sum_{i=0}^{n-1} Y_{t_i} \Delta t_{i+1} = \int_0^T Y_t^{\pi_n} dt.$$

Notice $X^{\pi_n} \to X$ pointwisely in $t, Y^{\pi_n} \to Y$ in t pointwisely, and boundedness of X, Y, by dominated convergence theorem (Theorem 2.2), we know

$$\int_0^T X_t dt = \lim_{n \to \infty} \int_0^T X_t^{\pi_n} dt \stackrel{(d)}{=} \lim_{n \to \infty} \int_0^T Y_t^{\pi_n} dt = \int_0^T Y_t dt.$$

To see the $\stackrel{(d)}{=}$ above, denote $Z_n := \int_0^T X_t^{\pi_n} dt$, $\tilde{Z}_n := \int_0^T Y_t^{\pi_n} dt$, $Z := \int_0^T X_t dt$ and $\tilde{Z} := \int_0^T Y_t dt$. By Folland 6.8(c), after taking a union of \mathbb{P} -null sets, we have $Z_n \to Z$, $\tilde{Z}_n \to \tilde{Z}$ uniformly on $\Omega \setminus E$ with $\mathbb{P}(E) = 0$. For a given closed $A \subseteq \mathbb{R}$, we denote a ε -perturbation of A, $A_{\varepsilon} := \{x \in \mathbb{R} : |x - y| < \varepsilon \text{ for some } y \in A\}$. we **claim**:

$$\bigcap_{\varepsilon>0} \bigcup_{N\in\mathbb{N}} \bigcap_{n\geq N} \{\omega \notin E : Z_n(\omega) \in A_{\varepsilon}\} = \{\omega \notin E : Z(\omega) \in A\}$$

and similarly $\bigcap_{\varepsilon>0}\bigcup_{N\in\mathbb{N}}\bigcap_{n\geq N}\{\omega\notin E:\tilde{Z}_n(\omega)\in A_\varepsilon\}=\{\omega\notin E:\tilde{Z}(\omega)\in A\}$. Then, as $Z_n\stackrel{(d)}{=}\tilde{Z}_n$,

$$\mathbb{P}\Big(\{\omega \not\in E: Z(\omega) \in A\}\Big) = \mathbb{P}\Big(\{\omega \not\in E: \tilde{Z}(\omega) \in A\}\Big),$$

and we are done as $\mathscr{B}_{\mathbb{R}}$ is generated by closed sets.

To see the claim, \supseteq direction is clear by the uniform convergence on E^c . For the other direction, let $\omega \in \bigcap_{\varepsilon>0} \bigcup_{N\in\mathbb{N}} \bigcap_{n\geq N} \{\omega \notin E : Z_n(\omega) \in A_{\varepsilon}\}$. For a given $\varepsilon/2$, $\exists N_1$ s.t. $Z_n(\omega) \in A_{\varepsilon/2}$ for all $n\geq N_1$. Pick a y_{ε} s.t.

$$|Z_n(\omega) - y_{\varepsilon}| < \frac{\varepsilon}{2}.$$

Also, the uniform convergence on E^c allows us to choose N_2 s.t.

$$|Z(\omega) - Z_n(\omega)| < \frac{\varepsilon}{2}$$

for all $n \geq N_2$. We choose $N = N_1 \vee N_2$, and hence we have for all $\varepsilon, \exists y_{\varepsilon} \in A$

$$|Z(\omega) - y_{\varepsilon}| \le |Z(\omega) - Z_n(\omega)| + |Z_n(\omega) - y_{\varepsilon}| < \varepsilon,$$

i.e. $Z(\omega)$ is a limit point of A and hence $Z(\omega) \in A$ as A is closed.

Now for general bounded X,Y, we apply the Luzin's (Theorem 2.3), and, after taking a intersection of two compact sets, we may assume that $\forall \delta > 0$, $\exists K_{\delta} \subseteq [0,T]$ s.t. $m(K_{\delta}^c) < \delta$, and $X|_{K_{\delta}}$, $Y|_{K_{\delta}}$ are continuous. Apply the same discretization and perturbation technique, we have

$$\int_{K_{\delta}} X_t dt = \lim_{n \to \infty} \int_{K_{\delta}} X_t^{\pi_n} dt \stackrel{(d)}{=} \lim_{n \to \infty} \int_{K_{\delta}} Y_t^{\pi_n} dt = \int_{K_{\delta}} Y_t dt.$$

Then, we choose $\delta_m := \frac{1}{m|X|_{\infty}} \wedge \frac{1}{m|Y|_{\infty}}$, denote $K_m := K_{\delta_m}$, and hence we have

$$\int_{K_m^c} |X_t|_{\infty} dt \le |X|_{\infty} m(K_m^c) < |X|_{\infty} \delta_m \le 1/m,$$

and observe that

$$|\int_{0}^{T} X_{t}dt - \int_{K_{m}} X_{t}dt|_{\infty} = |\int_{K_{m}^{c}} X_{t}dt|_{\infty} \le \int_{K_{m}^{c}} |X_{t}|_{\infty}dt < \frac{1}{m},$$

i.e. $\int_{K_m} X_t dt \to \int_0^T X_t dt$ uniformly except on a \mathbb{P} -null set E. Similarly, after taking a union of \mathbb{P} -null sets, we may say $\int_{K_m} Y_t dt \to \int_0^T Y_t dt$ uniformly except on the same \mathbb{P} -null set E. Then, we further apply the perturbation technique on $\int_{K_m} X_t dt$, $\int_0^T X_t dt$ and we may conclude $\int_0^T X_t dt \stackrel{(d)}{=} \int_0^T Y_t dt$.

Finally, for general X, Y, we follow the standard space truncation $X^{(n)} := X \wedge n$. It gives an a.e. convergence and hence allows us to follow the same perturbation procedure.

Remark 3.3. In fact this is a trivial application, as all we need to apply the perturbation technique is the a.e. convergence, which could be achieved by using \mathbb{P} -a.e. defined $(\int_0^T X_t dt)(\omega) := \int_0^T X(t,\omega) dt$ from the Fubini's. Anyway, it is good to realize the integration for vector-valued functions.

4. Reference

- K. Yosida, Functional analysis, Springer, Ch. 8, §1., 1980
- G.B. Folland. Real Analysis: Modern Techniques and Their Applications, Second Edition, 1999.
 - W. Rudin. Functional analysis. New York: McGraw-Hill, 1973

5. Appendix

To prove Lemma 2.4, we add the following generalized notion of convergence in measure and lemma.

We say that a sequence of (Σ, \mathcal{B}_V) -measurable functions $\{f_n\}$ on (X, Σ, μ)

• converges in measure to f if, for every $\varepsilon > 0$, we have

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f(x)|_V \ge \varepsilon\}) = 0.$$

• Cauchy in measure if, for every $\varepsilon > 0$, we have

$$\mu(\lbrace x: |f_n(x) - f_m(x)|_V \ge \varepsilon\rbrace) \to 0$$

as $n, m \to \infty$.

Lemma 5.1. Suppose $\{f_n\}$ is Cauchy in measure, then there is (Σ, \mathcal{B}_V) -measurable function f s.t. $f_n \to f$ in measure, and there is a subsequence f_{n_j} that $f_{n_j} \to f$ a.e. Moreover, if $f_n \to g$ in measure, then f = g a.e.

Corollary 5.2. If $f_n \to f$ in measure, then there is a subsequence $\{f_{n_j}\}$ s.t. $f_{n_j} \to f$ a.e. Lemma 5.3. if $f_n \to f$ in $L^1(X; V)$, then $f_n \to f$ in measure.

Together, lemma 2.4 is proved.

Proof of Lemma 5.1. Since $\forall \varepsilon > 0$, $\lim_{n,m\to\infty} \mu(\{x: |f_n(x) - f_m(x)|_V \ge \varepsilon\}) = 0$, we choose n_1 large enough to be the first index s.t. $\mu(\{x: |f_n(x) - f_{n+1}(x)|_V \ge 2^{-1}\}) < 2^{-1}$. Similarly, We could choose $\{g_j\} = \{f_{n_j}\}$ s.t. if $E_j := \{x: |g_j(x) - g_{j+1}(x)|_V \ge 2^{-j}\}$, then $\mu(E_j) \le 2^{-j}$. Denote $F_k := \bigcup_{j\ge k} E_j$, and hence $\mu(F_k) \le \sum_{j=k}^{\infty} 2^{-j} = 2^{1-k}$, and if $x \notin F_k$, i.e. $x \in \bigcap_{j\ge k} E_j^c$ for $i \ge j \ge k$, we have

$$|g_i(x) - g_j(x)|_V \le \sum_{l=j}^{i-1} |g_l(x) - g_{l+1}(x)|_V \le \sum_{l=j}^{i-1} 2^{-l} < 2^{1-j}.$$

Consider $x \in \bigcup_{k=1}^{\infty} F_k^c$, then $x \in F_k^c$ for some k, and in here we have $|g_i(x) - g_j(x)|_V < 2^{1-j}$ for all $i \ge j \ge k$. Pick $K \ge k$ s.t. $2^{1-K} < \varepsilon$, and then, whenever $i \ge j \ge K$

$$|g_i(x) - g_j(x)|_V < 2^{1-j} \le 2^{1-K} < \varepsilon,$$

i.e. $\{g_j\}$ pointwise Cauchy in $\bigcup_{k=1}^{\infty} F_k^c$. Observe $\mu(\left(\bigcup_{k=1}^{\infty} F_k^c\right)^c) = \mu(\bigcap_{k=1}^{\infty} F_k) = \lim_{k \to \infty} \mu(F_k) = 0$, and hence we know $\{g_j\}$ pointwise Cauchy almost everywhere. Define

$$f(x) := \begin{cases} \lim_{j \to \infty} g_j(x) & \text{if } x \in \bigcup_{k=1}^{\infty} F_k^c \\ \mathbf{0} & \text{otherwise} \end{cases}.$$

It is easy to see f is (Σ, \mathscr{B}_V) -measurable and hence $f_{n_j} = g_j \to f$ a.e.

We left to show $f_n \to f$ in measure. To see this, observe by triangle inequality

$$\{x:|f_n(x)-f(x)|_V\geq\varepsilon\}\subseteq\{x:|f_n(x)-f_{n_j}(x)|_V\geq\frac{\varepsilon}{2}\}\cup\{x:|f_{n_j}(x)-f(x)|_V\geq\frac{\varepsilon}{2}\},$$

where the later two sets have small measure when $n, j \to \infty$, one given by convergence in measure and the other given by the a.e. pointwise convergence.

If $f_n \to g$ in measure, similarly, observe that

$$\{x:|f(x)-g(x)|_{V}\geq\varepsilon\}\subseteq\{x:|f(x)-f_{n}(x)|_{V}\geq\frac{\varepsilon}{2}\}\cup\{x:|f_{n}(x)-g(x)|_{V}\geq\frac{\varepsilon}{2}\},$$

i.e. $\mu(\{x:|f(x)-g(x)|_V\geq\varepsilon\})=0$ for all $\varepsilon>0$. Note

$$\{x: |f(x) - g(x)|_V > 0\} = \bigcup_{m \in \mathbb{N}} \{x: |f(x) - g(x)|_V \ge \frac{1}{m}\},\$$

we conclude f = g a.e. by the continuity from below.

Proof of Lemma 5.2.

Let $E_{n,\varepsilon} := \{x : |f_n(x) - f(x)|_V \ge \varepsilon\}$, then

$$\varepsilon \mu(E_{n,\varepsilon}) \le \int_{E_{n,\varepsilon}} |f_n - f| d\mu \le \int_X |f_n - f| d\mu \to 0$$

as $n \to \infty$.

Proof of Lemma 2.5.

Let $f_n \to f$ pointwise on K with $\mu(K^c) = 0$. Note

$$K = \bigcap_{k=1}^{\infty} \bigcup_{N \in \mathbb{N}} \bigcap_{n > N} \{x : |f_n(x) - f(x)|_V < \frac{1}{k} \}.$$

That is, for any fixed k, $K(k) := \bigcup_{N \in \mathbb{N}} \bigcap_{n \geq N} \{x : |f_n(x) - f(x)|_V < \frac{1}{k} \}$ has full measure. For $N \in \mathbb{N}$, denote

$$E_N(k) := \bigcup_{n > N} \{x : |f_n(x) - f(x)|_V \ge \frac{1}{k} \}.$$

Observe $E_N(k)$ decreases as N increases, and

$$K(k) = \bigcup_{N \in \mathbb{N}} E_N(k)^c = \Big(\bigcap_{N \in \mathbb{N}} E_N(k)\Big)^c.$$

Thus, $F(k) := \bigcap_{N \in \mathbb{N}} E_N(k)$ is a null set. By continuity from above, we may choose N_k s.t. $\mu(E_{N_k}(k)) < \varepsilon 2^{-k}$. Denote $E := \bigcup_{k=1}^{\infty} E_{N_k}(k)$, so we have $\mu(E) \le \sum_{k=1}^{\infty} \mu(E_{N_k}(k)) < \varepsilon$.

On E^c , observe $E^c \subseteq E_{N_k}(k)^c$ for any k. Therefore, For any $\varepsilon' > 0$, there is a k s.t. $\frac{1}{k} < \varepsilon$, and for $\forall x \in E^c \subseteq E_{N_k}(k)^c$, $|f_n(x) - f(x)|_V < \frac{1}{k} < \varepsilon'$ whenever $n \ge N_k$, i.e. $f_n \to f$ uniformly on E^c .

Proof of Lemma 2.6.

By linearity and denseness of simple functions in $L^1(\mathbb{R}; V)$, it suffice to show any simple function of form $s(x) := \mathbb{1}_E(x)\mathbf{1}$ (we abuse the term to say it is a *indicator*) could approximated arbitrarily close in $|\cdot|_{L^1(X;V)}$ by a compactly supported continuous function, where $E \in \mathcal{L}_{\mathbb{R}}$ Lebesgue-Stieltjes measurable set, and $\mathbf{1}$ is a unit vector in V.

Recall that E could be approximated by a finite union of open intervals $\{I_i\}_{i=1}^n$ s.t. $\mu(E \triangle \cup_{i=1}^n I_i) < \varepsilon$. Note

(1)
$$\int_{Y} |\mathbb{1}_{E} \mathbf{1} - \mathbb{1}_{\bigcup_{i=1}^{n} I_{i}} \mathbf{1}|_{V} d\mu = \int_{Y} |\mathbb{1}_{E} - \mathbb{1}_{\bigcup_{i=1}^{n} I_{i}}| d\mu = \mu(E \triangle \bigcup_{i=1}^{n} I_{i}) < \varepsilon.$$

So we know the indicator of any E could be approximated arbitrarily by a indicator of finite union of open intervals.

Meanwhile, for the indicator of an open interval $\mathbb{1}_{(a,b)}\mathbf{1}$, we could approximate by constructing

$$f_{\varepsilon}(x) \coloneqq \begin{cases} \mathbf{1} & \text{if } x \in [a + \frac{\varepsilon}{2}, b - \frac{\varepsilon}{2}] \\ Linear & \text{if } x \in [a - \frac{\varepsilon}{2}, a + \frac{\varepsilon}{2}] \cup [b - \frac{\varepsilon}{2}, b + \frac{\varepsilon}{2}] \\ \mathbf{0} & \text{otherwise} \end{cases}$$

10