视频初始缓冲时延机器学习分析报告

廖文哲

视频业务驱动-视频初始缓冲时延机器学习分析报告

视频感知理论体系研究 明确需求,制定计划 数据采集与数据预处理 决策树算法实现与模型评估 多轮数据分析与模型参数调整 经验总结 6

影响视频感知的网络因素

据某权威调研机构表明,影响用户在线视频体验的TOP5因素为:视频流畅度、流量消耗、初始缓冲时延、画质清晰度和视频是否收费。

和网络侧KPI息息相关的三大因素分别为:

初始缓冲时延公式:

初始缓冲时延
$$delay = \frac{t*V_{\mbox{\tiny 48Blask}} - Volume_{SlowStart}}{v_{initial}} + (n1 + n2) * RTT$$
 (1

- ▶ n1 视频头文件交互阶段需要n1个RTT
- ▶ n2 TCP慢启动阶段需要n2个RTT, n=n1+n2
- ▶ Volume_{SlowStart}慢启动过程下载的数据量,为m*1310*8

视频2S初始缓冲区的由来

美国麻省大学教授拉梅什·西塔拉曼(Ramesh Sitaraman)的一项研究显示,对很大一部分用户来说,如果视频无法在2秒钟内完成加载,那么这些用户将放弃观看该视频。

几种常用的相关分析方法

相关分析(Analysis of Correlation)是数据分析中经常使用的分析方法之一。通过对不同特征或数据间的关系进行分析,发现数据中的关键影响及驱动因素。并对业务的发展进行预测。相关分析的方法很多,初级的方法可以快速发现数据之间的关系,如正相关,负相关或不相关。中级的方法可以对数据间关系的强弱进行度量,如完全相关,不完全相关等。高级的方法可以将数据间的关系转化为模型,并通过模型对未来的业务发展进行预测。

1.图表相关分析(折线图及散点图)

2.协方差及协方差矩阵

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n-1}$$

将数据进行可视化处理,简单的说就是绘制图表。优点是对相关关系的展现清晰,缺点是无法对相关关系进行准确的度量,缺乏说服力。并且当数据超过两组时也无法完成各组数据间的相关分析。

协方差通过数字衡量变量间的相 关性,正值表示正相关,负值表 示负相关。但无法对相关的密切 程度进行度量

3.相关系数

INTER_FREQ_ATT	0.032885259501369, 1.996817437139217e-290)
VIDEO_SERVER_AVG_RTT	(0.491452, 0.0)
INIT_BUFFER_DL_RATE_4S	(-0.31521819098137355, 0.0)
下行PRB平均利用率	(0.26404402950126554, 0.0)
NBRTBDL_QPSK	(0.25933547895455866, 0.0)
NBRTBDL_16QAM	(0. 2548904786233423, 0. 0)
DL_PRB_USED	(0.25474960827928617, 0.0

相关系数的优点是可以通过数字对变量的关系进行方向性的度量, 1表示正相关, -1表示负相关, 越靠近0相关性越弱。缺点是无法利用这种关系对数据进行预测, 简单的说就是没有对变量间的关系进行提炼和固化, 形成模型。

4.一元回归及多元回归

$y = b_0 + b_1 x$

回归分析是确定两组或两组以上 变量间关系的统计方法。回归分 析按照变量的数量分为一元回归 和多元回归,两个变量使用一元 回归,两个以上变量使用多元回 归,回归分析可对数据进行预测, 但对特征值的数量有所限制。

5.信息熵及互信息(决策树)

信息熵是接收的每条消息中包含的信息的平均量,消息代表本或为布或数据流中的事件、样本或特征。在信息世界,熵越低,则能传输越多的信息,熵越低,对于特征值特多别的数据,度量这些对证值特多别的数据,度量这方法就是互信息。通过这种方法我们以发现哪一类特征与最终的结果关系密切。

视频感知理论体系研究 明确需求,制定计划 数据采集与数据预处理 3 决策树算法实现与模型评估 多轮数据分析与模型参数调整 5 经验总结 6

明确需求,制定计划

项目需求

前期与客户会议讨论,确认了本次专题的需求:目标1:基于SDK详单数据进行初缓时延定界;

目标2:关联指标的拐点分析;

专题进度计划

本次专题计划时间一个月,主要利用机器学习对视频初始缓冲时延进行科学分析,找出影响时延好坏的OMC无线指标,同时输出指标门限值,便于后续优化KPI,提高用户观看视频体验。

时间 工作内容安排	2018/4/4	2018/4/8	2018/4/12	2018/4/16	2018/4/20	2018/4/24	2018/4/28	2018/5/2
明确数据源								
采集数据源								
探讨明确分析需要								
确定分析模型								
检查数据完整性								
数据整理清洗								
分析模型搭建			*					
分析模型代码实现		-3	,					
进行模型仿真			,					
调整模型参数,输出最优结果		-3						
结果可视化								
结果呈现		- 4	9					
整理汇报 (PPT)			9					
-	已完成							
	进行中							
	未完成							
采用周报汇报进度								

模型选择

数据特征分析

本次机器学习的研究目标数据为视频初始缓冲时延,其是连续性的因变量,来自于DO上用户面详单数据

与之对应的指标是网管上15分钟粒度的OMC小区级指标。特征值总共80多项。

针对此次项目的需求结合数据特征的分析,最终采用了决策**树**算法作为本次专题的主要研究手段。决策树具有以下**优势**:

1:理解和解释起来简单,且决策树模型可以想象(便于理解)

2:决策树算法的时间复杂度较低

3:能够处理多种数字和数据的类别(处理多特征值)

4:能够处理多输出的问题

5:能使用统计检验来验证模型可靠性

视频感知理论体系研究 明确需求,制定计划 数据采集与数据预处理 3 决策树算法实现与模型评估 4 多轮数据分析与模型参数调整 5 经验总结 6

数据采集与数据预处理

数据采集

采集一周的视频话单数据与OMC15分钟粒度的无线指标关联,并存储到DO数据库中。关联后的表名为:sdk_omc_relevance,通过PL/SQL查询表,直接下载CSV文件到本地进行机器学习数据分析。

行数	1648011	用户级/小区级
列数	185	多种属性(字符,整数,小数)
自变量	80项	OMC相关指标
因变量	1项	CREATE_TO_PLAY_TIMEOTT

原始数据示例:

关联脚本:

关联表字段明细

数据预处

理

数据质 量

- •准确性(检查数据是否是我们需要的数据)
- •完整性(检查数据是否采集完整)
- •时效性(确 认数据的采 集时间是 正确

数据清 理

- •缺失值(对 空值进行数 据删除)
- •异常值(对 异常值进行 变换或者删 除)
- •数据类型 (对不合适 的数据类型 讲行属

数据离 散化

•视频初始缓 冲时延连续 属性离散化, 将时延界定 为两种类别 (卡或不卡)

视频感知理论体系研究 明确需求,制定计划 数据采集与数据预处理 3 决策树算法实现与模型评估 多轮数据分析与模型参数调整 5 结果呈现, 经验总结 6

决策树算法实现与模型评估

决策树模型介绍

决策树(Decision Tree)是一种基本的分类与 回归方法。决策树模型呈树形结构,在分类问 题中,表示基于特征对实例进行分类的过程。 它可以认为是if-then规则的集合,也可以认为 是定义在特征空间与类空间上的条件概率分布。

决策树算法框架

主函数:本质上是个递归函数,该函数主要功能是根据某种规则生长出决策树的各个分支节点,并根据终止条件结束算法。

数据输入:分类的数据集和类别标签。

划分过程:1) 根据某种分类规则(依据信息增益进行特征选取和分裂)得到最优的划分特征,并创建特征的划分节点。2)按照该特征的每个取值划分数据集为若干部分。3)根据划分子函数的计算结果构建出新的节点,作为树生长出的新分支。4)检验是否符合递归终止条件(如果增益够大,就分裂为左右子树,如果增益很小,就停止分裂,将这个节点直接作为叶子节点)。5)将划分的新节点包含的数据集和类别标签作为输入,递归执行上述步骤。

决策树算法实现与模型评估

机器学习模型评价指标-混淆矩阵

True Positive:真正类(TP), 样本的真实类别是正类, 模型预测成为正类

False Negative:假负类 (FN),样本的真实类别是 正类,模型预测成为负类

False Positive:假正类 (FP),样本的真实类别是

负类,模型预测成为正类

True Negative:真负类 (TN),样本的真实类别是 负类,模型预测成为负类

		Predicted		
		positive	negative	
True	positive	True Positive	False Negative (预测错误)	Recall=TP/(TP+FN)
condition	negative	False Positive (预测错误)	True Negative	FPR=FP/(FP+TN)
	F=(2*P*R) /(P+R)	P=TP/(TP+FP)	FOR=FN/(FN+TN)	Accuracy= (TP+TN) /(TP+FN+FP+TN)

F:综合了Precision和 Recall的一个判断指标, F1-Score的值是从0到1的, 1是最好,0是最差

Precision:查准率,在模型预测为正类的样本中,真正为正类的样本所占的比例。一般情况下,查准率越高,说明模型的效果越好。

FOR:表示在模型预测为负类的样本中,真正的正类所占的比例。一般情况下,错误遗漏率越小,模型的效果越好。

Recall:召回率,模型预测为 正类的样本的数量,占总的 正类样本数量的比值。一般 情况下,Recall越高,说明 有更多的正类样本被模型预 测正确,模型的效果越好。

FPR:模型预测为正类的样本中,占模型负类样本数量的 ← 比值。一般情况下,假正类率 越低,说明模型的效果越好。

Accuracy:模型的精度,即模型预测正确的个数/样本的总个数一般情况下,模型的精度越高,说明模型的效果越好。

视频感知理论体系研究 明确需求,制定计划 数据采集与数据预处理 3 决策树算法实现与模型评估 4 多轮数据分析与模型参数调整 5 经验总结 6

视频初始缓冲时延数据统计分析

用户维度	3月份	4月份
总数据量	1284311	1046925
携带IMSI的用户条数	1282294	1045577
IMSI数量	104463	95765
条数均值(每个用户贡献条数)	13.09	11.61
时延大于4S的条数	83512	72421
时延大于5S的条数	60608	53780
时延均值(大于5S的用户)	9.5509	10.5138
时延大于5S的用户数	4101	3783
时延均值 (全量)	2.30423	2.4275

字段	相关系数
CREATE_TO_PLAY_TIMEOTT	(1,0)
VIDEO_SERVER_AVG_RTT	(0.491452, 0.0)
INIT_BUFFER_DL_RATE_4S	(-0.31521819098137355, 0.0)
下行PRB平均利用率	(0.26404402950126554, 0.0)
NBRTBDL_QPSK	(0.25933547895455866, 0.0)
NBRTBDL_16QAM	(0.2548904786233423, 0.0)
DL_PRB_USED	(0.25474960827928617, 0.0
CELL_SIGNAL_STRENGTH	(-0.22969810475109215, 0.0)
下行传输TB数	(0.22903685523798467, 0.0)
PDCCH信道CCE占用率	(0.22752045548619756, 0.0)

对原始数据做统计性分析,3月份总数据量在128万左右,总共用户数在10万左右,平均每个用户上报13条左右话单信息,平均时延等于2.3S,时延大于4S的样本数为8万左右,同时对KQI与KPI进行皮尔逊相关系数分析,发现视频初始缓冲时延与VIDEO_SERVER_AVG_RTT与较强的线性关系,与其他的KPI指标相关系数都在0.25以下,两者之间不存在强的线性相关。

第一轮数据分析:

样本判定门限:4S模型参数:数据量:128万条Criterion:gini自变量:KPI指标(80项)max_depth:none因变量:视频初始缓冲时延class_weight:None

仿真结果四项评估得分

重要度排名(占比大于1%)

通过混淆矩阵对仿真的结果进行评估,训练集与测试集的模型准确度在0.9以上,训练集的P值,R值,F值也都在0.95以上,但是测试集的P值为0.26, R值为0.28, F值为0.27.测试集的得分结果远远低于训练集。说明此模型的泛化性较弱,虽然对于原来的基础上判断有很大的提高,但是其辨别卡顿的能力还是较弱。

调整决策树模型参数:

样本判定门限:45

数据量:109万条 自变量:KPI指标(80项) 因变量:视频初始缓冲时延 模型参数:

Criterion: gini/entropy max_depth: 逐级调测

class weight :none/balanced

	criterion				
评估分项	gini	entropy			
Accuracy	0.902	0.902			
Precision	0.262	0.262			
Recall	0.287	0.279			
F1	0.274	0.273			

	class_weight				
评估分项	none	balanced			
Accuracy	0.902	0.905			
Precision	0.262	0.265			
Recall	0.287	0.264			
F1	0.274	0.265			

		max_depth								
评估分项	4	5	6	7	8	9	10	11	12	13
Accuracy	0.936	0.936	0.937	0.937	0.937	0.936	0.936	0.935	0.935	0.934
Precision	0.541	0.542	0.555	0.563	0.563	0.564	0.568	0.570	0.572	0.462
Recall	0.165	0.179	0.174	0.183	0.186	0.202	0.213	0.236	0.237	0.234
F1	0.253	0.269	0.265	0.276	0.280	0.297	0.310	0.334	0.335	0.311

通过多轮参数仿真,发现参数Criterion=gini, max_depth=12, class_weight=none,仿真效果最佳。初步确定模型训练参数方案。

第二轮数据分析:

样本判定门限:4S 数据量:128万条

自变量:KPI指标(top12) 因变量:视频初始缓冲时延 模型参数:

Criterion: gini max_depth: 12 class weight: None

仿真结果四项评估得分

通过筛选top12的KPI指标以及依据第一次的参数优化设置模型参数进行第二轮数据分析,评估得分部分提高,Recall得分大比例提升,同时训练集与测试集评估得分差值缩小了很多,说明模型的泛化性得到了提升,但是P值还是只有0.2,需要进一步提升。

KPI重要度排名:

分析KPI指标重要度,对视频初始缓冲视频影响的KPI排名为:下行PRB利用率,RSRP,DL_64QAM_PCT,下行流量,SINR,MAC层上行误块率,下行HARQ重传比例,双流下行传输TB数,NBRTBUL_16QAM,上行HARQ重传比例,MAC层下行误块率,UL_QPSK_PCT

第三轮数据分析:

初**缓时**延 正太分布 分析

时延均值	7.53
时延标准差	0.49
时延均值对应的时延	1854.51
时延1σ左边界	1130.91
时延1σ右边界	3041.10
时延2σ左边界	689.64
时延2σ右边界	4986.93
时延大于2σ的数据量	60608
时延小于2σ的数据量	6306
2σ内数据量占比	94.79%
时延大于2σ的用户数(时延均值维度)	4101
时延小于2σ的用户数(时延均值维度)	55
2σ内用户数占比(时延均值维度)	96.02%

通过对初缓时延正太分布变化,观察统计数据,我们发现数据在20内的数据量与用户数占比95%以上,大于20的数据量占比为4.72%,用户数占比为3.92%。对于时延超过20数据量有可能是外界因素导致的时延加大(如手机硬件卡顿,网站传输慢)

为了探寻初始缓冲时延界定卡顿的门限值,我们采取不同卡顿门限值进行仿真训练。通过多轮数据分析,发现随着界定门限的增加,模型的泛化性逐步减弱,2S之后泛化性减弱趋势明显加大,同时模型的准确度在2S之前一直在减小,2S之后逐渐增大,可见2S是模型准确度的拐点。

第四轮数据分析:

样本判定门限:2S 数据量:121万条(2σ) 自变量:KPI指标(top12) 因变量:视频初始缓冲时延 模型参数: Criterion:gini max_depth:12 class_weight:None

仿真结果四项评估得分

2σ外的数据我们认为存在较大的其他外界干扰,所以我们筛选出2σ内的数据,同时选择top12的KPI指标以及将取2S为界定门限,评估得分得到很大的提升,,同时训练集与测试集评估得分差值缩小了很多,模型的泛化性的泛化性较强,此模型可较好的判断出初缓时延的好坏。

KPI重要度排名:

分析KPI指标重要度,对视频初始缓冲视频影响的KPI排名为: RSRP,下行PRB利用率,DL_64QAM_PCT,SINR,下行流量,上行 HARQ重传比例,MAC层上行误块率,NBRTBUL_16QAM, MAC层 下行误块率,下行HARQ重传比例,UL_QPSK_PCT,双流下行传输 TB数,

第四轮数据分析:通过决策树规则,可筛选出准确度较高的辨别规则门限值

KPI	门限值
CELL_SIGNAL_STRENGTH	-100
DOWN_AVG_PRB_AVAIL	36
DL_64QAM_PCT	33
SINR	5
UP_HARQ_AVAIL	2
UP_MAC_AVAIL	13
NBRTBUL_16QAM	308123
DOWN_MAC_AVAIL	1
DOWN_HARQ_AVAIL	10
UL_QPSK_PCT	20
DUAL_STREAM_DL_TB	60

上表为采用2S界定门限而输出的top11KPI的 门限值。

KPI	
DOWN_AVG_PRB_AVAIL	49
CELL_SIGNAL_STRENGTH	-105
SINR	2.5
DL_64QAM_PCT	21
DOWN_HARQ_AVAIL	13
NBRTBUL_16QAM	308123
UP_MAC_AVAIL	14
UL_QPSK_PCT	29
UP_HARQ_AVAIL	5
DUAL_STREAM_DL_TB	20
DOWN_MAC_AVAIL	0.24

上表采用4S界定门限而输出的top11KPI的门限值。

1	视频感知理论体系研究
2	明确需求,制定计划
3	数据采集与数据预处理
4	决策树算法实现与模型评估
5	多轮数据分析与模型参数调整
6	经验总结

经验总结

进一步筛选,将KPI重要度占比较大的TOP3作为重点优化对象。(RSRP,下行PRB利用率,DL_64QAM_PCT)

创新点1

引入机器学习进行数据 分析,发掘传统人工发 现不了问题

创新点2

探寻视频缓冲时延界定门 限,2S的时候卡顿与不卡 顿更加容易辨别

创新点5

通过决策<mark>树规则我们输</mark>出了<mark>视</mark> 频KQI劣化的KPI门限

创新点4

通过决策树算法我们实现 了视频初缓时延与KPI的 重要度关联

AD.

创新点3

当视频缓冲时延超过某个阈值时, KPI与时延的关联性减小,即KPI对 时延的影响有一定的范围作用。

KPI 门限值

KPI	门限值(2S)	门限值(4S)
CELL_SIGNAL_STRENGTH	-100	-105
DOWN_AVG_PRB_AVAIL	36	49
DL_64QAM_PCT	33	21

TOP3全规则图

2S卡顿界定门限 规则

THANKS

