Longest Common Subsequence

Simon Moura 25 february 2019

University College London
s.moura@ucl.ac.uk
Slides: https://github.com/simmou/ucl_algo

The Longest Common

Subsequence (LCS) problem

Subsequences

Let's consider a **sequence** $X = (x_1, x_2, \dots, x_{n_x})$ of n_x elements, e.g.

- X = ABC is a sequence, where $x_1 = A$, $x_2 = B$ and $x_3 = C$
- X = 123 is a sequence, where $x_1 = 1$, $x_2 = 2$ and $x_3 = 3$

1

Subsequences

Let's consider a **sequence** $X = (x_1, x_2, \dots, x_{n_x})$ of n_x elements, e.g.

- X = ABC is a sequence, where $x_1 = A$, $x_2 = B$ and $x_3 = C$
- X = 123 is a sequence, where $x_1 = 1$, $x_2 = 2$ and $x_3 = 3$

A sequence $Z = (z_1, ..., z_{n_z})$ is called a **subsequence** of X of size n_z if and only if it can be obtained from X by deleting elements from it, e.g.

- X = Hello, world
- Z = Hello is a subsequence of X

Subsequences

Let's consider a **sequence** $X = (x_1, x_2, \dots, x_{n_x})$ of n_x elements, e.g.

- X = ABC is a sequence, where $x_1 = A$, $x_2 = B$ and $x_3 = C$
- X = 123 is a sequence, where $x_1 = 1$, $x_2 = 2$ and $x_3 = 3$

A sequence $Z = (z_1, ..., z_{n_z})$ is called a **subsequence** of X of size n_z if and only if it can be obtained from X by deleting elements from it, e.g.

- X = Hello, world
- Z = Hello is a subsequence of X

A subsequence is not necessarily contiguous:

- Z = Hwd is a subsequence of X = Hello, world
- Z = elr is also a subsequence of X = Hello, world
- Z = Iled is NOT a subsequence of X = Hello, world

1

LCS problem: find the longest subsequence common to multiple sequences.

LCS problem: find the longest subsequence common to multiple sequences.

- X = "Hello, world", where $x_1 = H, \dots, x_{n_x} = d$
- Y = "Hello", where $y_1 = H, \dots, y_{n_y} = o$
- LCS(X, Y): Hello

LCS problem: find the longest subsequence common to multiple sequences.

- X = "Hello, world", where $x_1 = H, \dots, x_{n_x} = d$
- Y = "Hello", where $y_1 = H, ..., y_{n_v} = o$
- LCS(X, Y): Hello

LCS problem: find the longest subsequence common to multiple sequences.

- X = "Hello, world", where $x_1 = H, \dots, x_{n_x} = d$
- Y = "hezlospkard", where $y_1 = H, \dots, y_{n_y} = o$

LCS problem: find the longest subsequence common to multiple sequences.

- X = "Hello, world", where $x_1 = H, \dots, x_{n_x} = d$
- Y = "hezlospkard", where $y_1 = H, \dots, y_{n_v} = o$
- LCS(X, Y): elord

Real life application

Genomic research: find mutations in DNA (e.g. to discover mutations specific to sick patients)

Biologist encode strands of DNA with 4 characters "A", "T", "C" and "G" which represent the base molecules:

- Adenine
- Thymine
- Cytosine
- Guanine

- X = GACT
- Y = TTAT

Real life application

Genomic research: find mutations in DNA (e.g. to discover mutations specific to sick patients)

Biologist encode strands of DNA with 4 characters "A", "T", "C" and "G" which represent the base molecules:

- Adenine
- Thymine
- Cytosine
- Guanine

- X = GACT
- Y = TTAT

$$LCS(X, Y) = AT$$

LCS of long sequences?

What is the LCS of the following two sequences?

- X = ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA
- Y = CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA

LCS of long sequences?

What is the LCS of the following two sequences?

- X = ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA
- Y = CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA

Answer: LCS(X, Y) = CGTTCGGCTATGCTTCTACTTATTCTA

Even knowing the answer, it would take time to verify the solution without a proper algorithm!

A naive LCS algorithm

Could you propose a **simple algorithm** to find the longest subsequence of the two following sequences?

- X = CTGA
- Y = CGA

A naive LCS algorithm

Could you propose a **simple algorithm** to find the longest subsequence of the two following sequences?

- X = CTGA
- Y = CGA

Naive algorithm

- **Step 1:** Enumerate all subsets for sequence *X*:
 - Subsets for X: {}, {C}, {G}, {T}, {A}, {C, T}, {C, G}, {T, G}, {C, A}, {T, A}, {C, T, G}, {C, T, A}, {G, A}, {C, G, A}, {T, G, A}, {C, T, G, A}

A naive LCS algorithm

Could you propose a **simple algorithm** to find the longest subsequence of the two following sequences?

- X = CTGA
- Y = CGA

Naive algorithm

- **Step 1:** Enumerate all subsets for sequence *X*:
 - Subsets for X: {}, {C}, {G}, {T}, {A}, {C, T}, {C, G}, {T, G}, {C, A}, {T, A}, {C, T, G}, {C, T, A}, {G, A}, {C, G, A}, {T, G, A}, {C, T, G, A}
- **Step 2:** Find the larger subset of *X* that is also a subset of *Y*.

How many subsets do we have for X?

- X = CTGA
- Y = CGA

How many subsets do we have for X? 2^4

- X = CTGA
- Y = CGA

Complexity (worst case scenario): $\mathcal{O}(n_y * 2^{n_x})$, where n_y and n_y represent respectively the length of the sequences X and Y.

How many subsets do we have for X? 2^4

- X = CTGA
- Y = CGA

Complexity (worst case scenario): $\mathcal{O}(n_y * 2^{n_x})$, where n_y and n_y represent respectively the length of the sequences X and Y.

What would be the complexity of the naive algorithm for the following sequences?

- X = ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA
- Y = CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA

How many subsets do we have for X? 2^4

- X = CTGA
- Y = CGA

Complexity (worst case scenario): $\mathcal{O}(n_y * 2^{n_x})$, where n_y and n_y represent respectively the length of the sequences X and Y.

What would be the complexity of the naive algorithm for the following sequences?

- X = ACGGTGTCGTGCTATGCTGATGCTGACTTATATGCTA
- Y = CGTTCGGCTATCGTACGTTCTATTCTATGATTTCTAA

Complexity (worst case scenario): $\mathcal{O}(37*2^{37}) \approx 5*10^{12}$

Could we propose a better solution to this problem?

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Iterative algorithm

```
    Factorial(n):
    fact = 1
    for i in [1, n] do
    fact = fact * i
    end for
    return fact
```

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial: n! = n(n-1)(n-2)...3.2.1

Iterative algorithm

Factorial(n): fact = 1 for i in [1, n] do fact = fact * i

- 5: end for
- 6: return fact

Recursive algorithm

Factorial(n):
 if i == 0 then
 return 1
 else
 return n * Factorial(n-1)
 end if

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Function call	Returns
Factorial(5)	
Factorial(4)	
Factorial(3)	
Factorial(2)	
Factorial(1)	
Factorial(0)	

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Factorial(n): if i == 0 then return 1 else return n * Factorial(n-1) end if

Function call	Returns
Factorial(5)	5 * factorial(4)
Factorial(4)	
Factorial(3)	
Factorial(2)	
Factorial(1)	
Factorial(0)	

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

6:

Function call	Returns
Factorial(5)	5 * factorial(4)
Factorial(4)	4 * factorial(3)
Factorial(3)	
Factorial(2)	
Factorial(1)	
Factorial(0)	

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial: n! = n(n-1)(n-2)...3.2.1

Recursive algorithm

Function call	Returns
Factorial(5)	5 * factorial(4)
Factorial(4)	4 * factorial(3)
Factorial(3)	3 * factorial(2)
Factorial(2)	
Factorial(1)	
Factorial(0)	

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial: n! = n(n-1)(n-2)...3.2.1

Recursive algorithm

1:	Factorial(n):
2:	if $i == 0$ then
3:	return 1
4:	else
5:	return n * Factorial(n-1)
6:	end if

Function call	Returns
Factorial(5)	5 * factorial(4)
Factorial(4)	4 * factorial(3)
Factorial(3)	3 * factorial(2)
Factorial(2)	2 * factorial(1)
Factorial(1)	
Factorial(0)	

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Factorial(n): if i == 0 then return 1 else return n * Factorial(n-1) end if

Function call	Returns
Factorial(5)	5 * factorial(4)
Factorial(4)	4 * factorial(3)
Factorial(3)	3 * factorial(2)
Factorial(2)	2 * factorial(1)
Factorial(1)	1 * factorial(0)
Factorial(0)	

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial: n! = n(n-1)(n-2)...3.2.1

Recursive algorithm

1:	Factorial(n):
2:	if $i == 0$ then
3:	return 1
4:	else
5:	return n * Factorial(n-1)
6:	end if

Function call	Returns
Factorial(5)	5 * factorial(4)
Factorial(4)	4 * factorial(3)
Factorial(3)	3 * factorial(2)
Factorial(2)	2 * factorial(1)
Factorial(1)	1 * factorial(0)
Factorial(0)	1

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

1: Factorial(n): 2: if i == 0 then 3: return 1 4: else 5: return n * Factorial(n-1) 6: end if

Function call	Returns
Factorial(5)	
Factorial(4)	
Factorial(3)	
Factorial(2)	
Factorial(1)	
Factorial(0)	1

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

1: Factorial(n): 2: if i == 0 then 3: return 1 4: else 5: return n * Factorial(n-1) 6: end if

Function call	Returns
Factorial(5)	
Factorial(4)	
Factorial(3)	
Factorial(2)	
Factorial(1)	1*1
Factorial(0)	1

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Factorial(n): if i == 0 then return 1 else return n * Factorial(n-1) end if

Function call	Returns
Factorial(5)	
Factorial(4)	
Factorial(3)	
Factorial(2)	2*1
Factorial(1)	1*1
Factorial(0)	1

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Factorial(n): if i == 0 then return 1 else return n * Factorial(n-1) end if

Function call	Returns
Factorial(5)	
Factorial(4)	
Factorial(3)	3*2
Factorial(2)	2*1
Factorial(1)	1*1
Factorial(0)	1

Recursive algorithms: Computing a factorial (example 1)

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Execution stack for Factorial(5)

Function call	Returns
Factorial(5)	
Factorial(4)	4*6
Factorial(3)	3*2
Factorial(2)	2*1
Factorial(1)	1*1
Factorial(0)	1

Recursive algorithms: Computing a factorial (example 1)

In short, a recursive algorithm is an algorithm that calls itself on a smaller subproblem to solve the general problem.

Computing a factorial:
$$n! = n(n-1)(n-2)...3.2.1$$

Recursive algorithm

Execution stack for Factorial(5)

Function call	Returns
Factorial(5)	5*24
Factorial(4)	4*6
Factorial(3)	3*2
Factorial(2)	2*1
Factorial(1)	1*1
Factorial(0)	1

Recursive algorithms: Number of "A" in an array (example 2)

Compute the number of "A" in an array:

Iterative algorithm

```
    NumberOfA(ar):
    nbA = 0
    for i in [1, n] do
    if ar[i] == "A" then
    nbA = nbA + 1
    end if
    end for
    return nbA
```

Recursive algorithms: Number of "A" in an array (example 2)

Compute the number of "A" in an array:

Iterative algorithm

```
    NumberOfA(ar):
    nbA = 0
    for i in [1, n] do
    if ar[i] == "A" then
    nbA = nbA + 1
    end if
    end for
    return nbA
```

Recursive algorithm

```
    NumberOfA(ar, i):
    if i == 0 then
    return 0
    else if ar[i] == "A" then
    return 1 + NumberOfA(ar, i-1)
    else
    return NumberofA(ar, i-1)
    end if
```

LCS with Dynamic Programming

Steps toward an $O(n_x * n_y)$ algorithm

In order reduce the complexity of the last algorithm, we divide the problem in two steps:

- 1. Compute the length of the LCS.
- 2. "Traceback" the process of step 1. to find the actual LCS.

Optimal Substructure: an optimal solution to a problem contains optimal solutions to its subproblems.

In other words: The LCS problem can be broken to smaller sub-problems until we have a trivial problem to solve.

Optimal Substructure: an optimal solution to a problem contains optimal solutions to its subproblems.

In other words: The LCS problem can be broken to smaller sub-problems until we have a trivial problem to solve.

Any ideas how to use that principle on the following sequences?

- X = GACT
- Y = TTAT

Sequences:

- X = GACT
- Y = TTAT

First case:

• Is the last element the same? If yes, we can remove it and consider the truncated problem.

Sequences:

- X = GACT
- Y = TTAT

First case:

- Is the last element the same? If yes, we can remove it and consider the truncated problem.
- In our example, as T is a common last element of X and Y we can "remove" it and consider the following LCS sub-problem:
 - LCS(GAC \mp , TTA \mp) = LCS(GAC, TTA) + T

Sequences:

- X = GACT
- Y = TTAT

First case:

- Is the last element the same? If yes, we can remove it and consider the truncated problem.
- In our example, as T is a common last element of X and Y we can "remove" it and consider the following LCS sub-problem:
 - LCS(GAC∓, TTA∓) = LCS(GAC, TTA) + T
- Formally:

LCS(
$$X[1, n_x], Y[1, n_y]$$
) = LCS($X[1, n_x - 1], Y[1, n_y - 1]$) + $X[n_x],$ where

- $X[1, n_x 1] = GAC$, and $Y[1, n_y 1] = TTA$
- $X[n_x] = Y[n_y] = T$

Where S[a, b] means we consider the sequence from character a up to character b in sequence S. E.g. S = Hello, S[2, 4] = ell.

Evaluating LCS(GAC, TTA) = LCS(
$$X[1, n_x - 1], Y[1, n_y - 1]$$
)

Sequences considered:

- $X[1, n_x 1] = GAC$
- $\bullet \ \ Y[1,n_y-1]=\mathsf{TTA}$

Evaluating LCS(GAC, TTA) = LCS(
$$X[1, n_x - 1], Y[1, n_y - 1]$$
)

Sequences considered:

- $X[1, n_x 1] = GAC$
- $Y[1, n_y 1] = TTA$

Second case: if the last element of the sequences is different, we consider two cases:

- 1. Either the LCS finishes with a C, then: LCS(GAC, TTA) = LCS(GAC, TT) = LCS($X[1, n_x - 1], Y[1, n_y - 2]$)
- 2. Or the LCS finishes with an A, then: LCS(GAC, TTA) = LCS(GA, TTA) = LCS($X[1, n_x 2], Y[1, n_y 1]$)

Evaluating LCS(GAC, TTA) = LCS(
$$X[1, n_x - 1], Y[1, n_y - 1]$$
)

Sequences considered:

- $X[1, n_x 1] = GAC$
- $Y[1, n_y 1] = TTA$

Second case: if the last element of the sequences is different, we consider two cases:

- 1. Either the LCS finishes with a C, then: LCS(GAC, TTA) = LCS(GAC, TT) = LCS($X[1, n_x - 1], Y[1, n_y - 2]$)
- 2. Or the LCS finishes with an A, then: $LCS(GAC, TTA) = LCS(GA, TTA) = LCS(X[1, n_x 2], Y[1, n_y 1])$

Thus LCS(GAC, TTA) = max(LCS(GAC, TT), LCS(GA, TTA))

Evaluating LCS(GAC, TT) = LCS(
$$X[1, n_x - 1], Y[1, n_y - 2]$$
)

Sequences considered:

- $X[1, n_x 1] = GAC$
- $Y[1, n_y 2] = TT$

Second case: if the last element of the sequences is different, we consider two cases:

- 1. Either the LCS finishes with a C, then: LCS(GAC, TT) = LCS(GAC, T) = LCS($X[1, n_x - 1], Y[1, n_y - 3]$)
- 2. Or the LCS finishes with a T, then: LCS(GAC, TT) = LCS(GA, TT) = LCS($X[1, n_x 2], Y[1, n_y 2]$

Evaluating LCS(GAC, TT) = LCS(
$$X[1, n_x - 1], Y[1, n_y - 2]$$
)

Sequences considered:

- $X[1, n_x 1] = GAC$
- $Y[1, n_y 2] = TT$

Second case: if the last element of the sequences is different, we consider two cases:

- 1. Either the LCS finishes with a C, then: LCS(GAC, TT) = LCS(GAC, T) = LCS($X[1, n_x - 1], Y[1, n_y - 3]$)
- 2. Or the LCS finishes with a T, then: LCS(GAC, TT) = LCS(GA, TT) = LCS($X[1, n_x 2], Y[1, n_y 2]$)

Thus LCS(GAC, TT) = max(LCS(GAC, T), LCS(GA, TT))

Evaluating LCS(GA, TTA) = LCS(
$$X[1, n_x - 2], Y[1, n_y - 1]$$
)

Sequences considered:

- $X[1, n_x 2] = GA$
- $\bullet \quad Y[1,n_y-1]=\mathsf{TTA}$

Evaluating LCS(GA, TTA) = LCS(
$$X[1, n_x - 2], Y[1, n_y - 1]$$
)

Sequences considered:

- $X[1, n_x 2] = GA$
- $Y[1, n_y 1] = TTA$

The two **last elements are identical**, thus, from 1st case, we can remove the last A:

• LCS(GA, TTA) = A + LCS(G, TT)

LCS optimal substructure: summary of properties

We can rewrite the LCS properties as

$$LCS(X[1,i],Y[1,j]) = \begin{cases} 0 \\ 0 \end{cases}$$

if
$$i == 0$$
 or $j == 0$

LCS optimal substructure: summary of properties

We can rewrite the LCS properties as

$$LCS(X[1, i], Y[1, j]) = \begin{cases} 0 & \text{if } i == 0 \text{ or } j == 0 \\ 1 + LCS(X[1, i-1], Y[1, j-1]) & \text{if } X[i] == Y[j] \end{cases}$$

LCS optimal substructure: summary of properties

We can rewrite the LCS properties as

$$LCS(X[1,i],Y[1,j]) = \begin{cases} 0 & \text{if } i == 0 \text{ or } j == 0 \\ 1 + LCS(X[1,i-1],Y[1,j-1]) & \text{if } X[i] == Y[j] \\ \max(LCS(X[1,i-1],Y[1,j]), \\ LCS(X[1,i],Y[1,j-1])) & \text{if } X[i] \text{ differs from } Y[j] \end{cases}$$

```
1: LCS-length(X, i, Y, j):
    if i = 0 OR j = 0 then
       return 0
3:
     else if X[i] = Y[i] then
4:
       result = 1 + LCS(X, i - 1, Y, j - 1)
5:
     else
6:
       result = \max(LCS(X, i-1, Y, j), LCS(X, i, Y, j-1))
7:
8:
     end if
    return result
g.
```

```
1: LCS-length(X, i, Y, j):
    if i = 0 OR j = 0 then
2:
       return 0
3:
     else if X[i] = Y[i] then
4:
       result = 1 + LCS(X, i - 1, Y, j - 1)
5:
     else
6:
       result = \max(LCS(X, i-1, Y, j), LCS(X, i, Y, j-1))
7:
8:
     end if
    return result
g.
```

```
1: LCS-length(X, i, Y, j):
    if i = 0 OR j = 0 then
2:
       return 0
3:
     else if X[i] = Y[j] then
4:
       result = 1 + LCS(X, i - 1, Y, j - 1)
5:
     else
6:
       result = \max(LCS(X, i-1, Y, j), LCS(X, i, Y, j-1))
7:
8:
     end if
    return result
g.
```

```
1: LCS-length(X, i, Y, j):
    if i = 0 OR j = 0 then
2:
       return 0
3:
     else if X[i] = Y[i] then
4:
       result = 1 + LCS(X, i - 1, Y, j - 1)
5:
     else
6:
       result = \max(LCS(X, i-1, Y, j), LCS(X, i, Y, j-1))
7:
8:
     end if
    return result
g.
```

LCS(GACT, TTAT)

We solve two times the same sub-problem LCS(G, TT)!

We build an array L, row by row, that iteratively compute the LCS length of sequences X and Y using two rules:

1. If
$$X[i] == Y[j]$$
, then
$$L[i,j] = L[i-1,j-1] + 1$$

L[i,j]		Ø	1	2	3	4
		Ø	Т	Т	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	G	Ø				
2	Α	Ø				
3	C	Ø				
4	Т	Ø				

We build an array L, row by row, that iteratively compute the LCS length of sequences X and Y using two rules:

1. If
$$X[i] == Y[j]$$
, then
$$L[i,j] = L[i-1,j-1] + 1$$

L[i,j]		Ø	1	2	3	4
		Ø	Т	Т	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	G	Ø	Ø	Ø	Ø	Ø
2	Α	Ø				
3	C	Ø				
4	Т	Ø				

We build an array L, row by row, that iteratively compute the LCS length of sequences X and Y using two rules:

1. If
$$X[i] == Y[j]$$
, then
$$L[i,j] = L[i-1,j-1] + 1$$

L[i,j]		Ø	1	2	3	4
		Ø	Т	Т	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	G	Ø	Ø	Ø	Ø	Ø
2	Α	Ø	Ø	Ø	1	1
3	C	Ø				
4	Т	Ø				

We build an array L, row by row, that iteratively compute the LCS length of sequences X and Y using two rules:

1. If
$$X[i] == Y[j]$$
, then
$$L[i,j] = L[i-1,j-1] + 1$$

L[i,j]		Ø	1	2	3	4
		Ø	Т	Т	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	G	Ø	Ø	Ø	Ø	Ø
2	Α	Ø	Ø	Ø	1	1
3	C	Ø	Ø	Ø	1	1
4	Т	Ø				

We build an array L, row by row, that iteratively compute the LCS length of sequences X and Y using two rules:

1. If
$$X[i] == Y[j]$$
, then
$$L[i,j] = L[i-1,j-1] + 1$$

L[i,j]		Ø	1	2	3	4
		Ø	Т	Т	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	G	Ø	Ø	Ø	Ø	Ø
2	Α	Ø	Ø	Ø	1	1
3	C	Ø	Ø	Ø	1	1
4	Т	Ø	1	1	1	2

We build an array L, row by row, that iteratively compute the LCS length of sequences X and Y using two rules:

1. If
$$X[i] == Y[j]$$
, then
$$L[i,j] = L[i-1,j-1] + 1$$

2. If X[i] differs from Y[j], then $L[i,j] = \max(L(i,j-1),L[i-1,j])$

L[i,j]		Ø	1	2	3	4
		Ø	Т	Т	Α	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
1	G	Ø	Ø	Ø	Ø	Ø
2	Α	Ø	Ø	Ø	1	1
3	C	Ø	Ø	Ø	1	1
4	Т	Ø	1	1	1	2

Constructing the L array only cost $\mathcal{O}(n_x \times n_y)$

Computing the length of the LCS: algorithm

```
1: COMPUTE-LCS-LENGTH(X, Y):
      for i in [0, n_x] do
2:
     L[i, 0] = 0
 3:
    end for
 4.
   for j in [0, n_v] do
 5:
   L[0, i] = 0
 6:
     end for
7.
     for i in [1, n_x] do
8:
        for j in [1, n_v] do
9:
           if X[i] == Y[i] then
10:
             L[i,j] = L[i-1,j-1] + 1
11:
12:
          else
             L[i, j] = \max(L[i, j]L[i, j])
13:
           end if
14:
15:
        end for
      end for
16.
      return L
17:
```

Computing the length of the LCS: algorithm

```
1: COMPUTE-LCS-LENGTH(X, Y):
      for i in [0, n_x] do
2:
        L[i, 0] = 0
 3:
    end for
 4.
    for j in [0, n_v] do
 5:
   L[0, j] = 0
 6:
     end for
7.
     for i in [1, n_x] do
8:
        for j in [1, n_v] do
9:
           if X[i] == Y[i] then
10:
             L[i,j] = L[i-1,j-1] + 1
11:
12:
          else
             L[i, j] = \max(L[i, j]L[i, j])
13:
           end if
14:
15:
        end for
      end for
16.
      return L
17:
```

Computing the length of the LCS: algorithm

```
1: COMPUTE-LCS-LENGTH(X, Y):
      for i in [0, n_x] do
2:
        L[i, 0] = 0
 3:
    end for
 4.
    for j in [0, n_v] do
 5:
   L[0, j] = 0
 6:
     end for
7.
     for i in [1, n_x] do
8:
        for j in [1, n_v] do
9:
           if X[i] == Y[i] then
10:
             L[i,j] = L[i-1,j-1] + 1
11:
12:
          else
             L[i,j] = \max(L[i,j]L[i,j])
13:
           end if
14:
15:
        end for
      end for
16.
      return L
17:
```

Steps toward an $O(n_x * n_y)$ algorithm

In order reduce the complexity of the last algorithm, we divide the problem in two steps:

- 1. Compute the length of the LCS.
- 2. "Traceback" the process of step 1. to find the actual LCS.

Reconstructing the LCS

return BUILD-LCS(X, Y, i - 1, j, L)

9:

10:

end if

```
1: BUILD-LCS(X, Y, i, j, L):
                                                                L[i,j]
                                                                         Ø
      if L[i,j] == \emptyset then
                                                                  Ø
                                                                         Ø
3:
         return Ø
                                                                  G
      else if X[i] == Y[j] then
4:
                                                                         Ø
                                                                               Ø
5:
         return BUILD-LCS(X, Y, i-1, j-1, L) + X[i]
      else if L[i, j - 1] > L[i - 1, j] then
6:
                                                                         0
                                                                               Ø
                                                                                         1
7:
         return BUILD-LCS(X, Y, i, j - 1, L)
                                                                         Ø
                                                                               1
                                                                                          1
                                                                                               2
8:
      else
```

Summary about dynamic programming

When developing a dynamic-programming algorithm, we follow a sequence of four steps (CLRS):

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information.