Chapter 3 Gate-Level Minimization

Outline

- The Map Method
- Four-Variable Map
- Five-Variable Map
- Product-of-Sum Simplification
- Don't Care Conditions
- NAND and NOR Implementation
- Other Two-Level Implementations
- Exclusive-OR Function
- Hardware Description Language

The Map Method

- Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.
- The complexity of the digital logic gates has close relation with the complexity of the algebraic expression.
- The map method provides a straightforward logic minimization.
- Logic minimization
 - Algebraic approaches: lack specific rules
 - the Karnaugh map (K-map)
 - a simple straight forward procedure
 - a pictorial form of a truth table
 - applicable if the # of variables < 7

3

The Map Method

- A diagram made up of squares
 - each square represents one minterm
- Boolean function
 - sum of minterms
 - sum of products and product of sums are two basic standard algebraic expressions
 - The simplified algebraic expression is one with a minimum number of terms and a minimum number of literals
 - The simplified expression may not be unique

Two-Variable Map

- A two-variable map
 - Four minterms
 - x' = row 0; x = row 1
 - -y' = column 0;
 - y = column 1
 - a truth table in square diagram

 $- x + y = \Sigma(m_1, m_2, m_3)$

Three-Variable Map

- A three-variable map
 - Eight minterms
 - The <u>Gray code</u> sequence
 - Any two adjacent squares in the map differ by only one variable
 - primed in one square and unprimed in the other
 - Example:
 - m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz$ = xz (y'+ y) = xz

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

	٠,	1.7			<i>y</i>
	x^{\prime}	00	01	11	10
	0	x'y'z'	x'y'z	x'yz	x'yz'
x	1	xy'z'	xy'z	xyz	xyz'
		_			,

Three-Variable Map

■ Example:

- $-m_0$ and m_2 (m_4 and m_6) are adjacent
- $-m_0 + m_2 = x'y'z' + x'yz' = x'z'(y' + y) = x'z'$
- $-m_4 + m_6 = xy'z' + xyz' = xz'(y' + y) = xz'$

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

	ι	'Z		y	V
x	\	00	01	11	10
ı	0	x'y'z'	x'y'z	x'yz	x'yz'
$x \begin{cases} 1 \end{cases}$	Ĺ	xy'z'	xy'z	xyz	xyz'
				7	•

7

Examples

- Example 3-1
 - $-F(x, y, z) = \Sigma(2, 3, 4, 5)$
 - -F = x'y + xy'

- Example 3-2
 - $-F(x, y, z) = \Sigma(3, 4, 6, 7)$ = yz + xz'

Four Adjacent Squares

 Any combination of 4 adjacent squares reduces to an expression with only one literal.

$$- m_{0} + m_{2} + m_{4} + m_{6} = x'y'z' + x'yz' + xy'z' + xyz'$$

$$= x'z'(y' + y) + xz'(y' + y)$$

$$= x'z' + xz' = z'$$

$$- m_{1} + m_{3} + m_{5} + m_{7} = x'y'z + x'yz + xy'z + xyz$$

$$= x'z(y' + y) + xz(y' + y) = x'z + xz = z$$

$$= x'z(y' + y) + xz(y' + y) = x'z + xz = z$$

$$yz$$

$$0 \quad 0 \quad 1 \quad 1 \quad 10$$

$$x'y'z' \quad x'y'z \quad x'yz \quad x'yz'$$

$$m_{4} \quad m_{5} \quad m_{7} \quad m_{6} \quad x \quad 1 \quad xy'z' \quad xy'z \quad xyz'$$

Example 3-3

$$-F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = m_0 + m_2 + m_4 + m_5 + m_6$$

 $-F = z' + xy'$

Note: y'z' + yz' = z'

Example 3-4

- -F = A'C + A'B + AB'C + BC
 - a) express it in sum of minterms
 - b) find the minimal sum of products expression from maximam to minimum squares

Four-Variable Map

■ Construction of the map:

- consists of 16 minterms
- checks the combinations of 2, 4, 8, and 16 adjacent squares.
- The rows and columns are numbered in a Gray code sequence, with only one digit changing value between two adjacent rows or columns.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m ₁₅	m_{14}
m_8	<i>m</i> ₉	m_{11}	m_{10}

		yz y			7	
1	vx\	0.0	01	11	10	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	$\bigg _{x}$
w	11	wxy'z'	wxy'z	wxyz	wxyz'	
W	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	
						-

Example 3-5

$$-F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$

- $F = y' + w'z' + xz'$

Note: w'y'z' + w'yz' = w'z'xy'z' + xyz' = xz'

13

Example 3-6

- -F = ABC' + BCD' + ABCD' + ABC'
- Simplified: F = B'D' + B'C' + A'CD'

Prime Implicants

- We have to ensure:
 - All the minterms are covered
 - Minimize the number of terms
 - No redundant terms (i.e., minterms already covered by other terms)
- A prime implicant: a product term obtained by combining the maximum possible number of adjacent squares (combining all possible maximum numbers of squares)
- Essential prime implicant: a minterm is covered by only one prime implicant
- The simplified expression is obtained from the logical sum of:
 - All the essential prime implicants and
 - Other prime implicants that need to cover other remaining minterms that are not covered by essential prime implicants.

15

Essential Prime Implicants

■ Example: $F(A, B, C, D) = \Sigma(0, 2, 5, 7, 8, 10, 13, 15)$

Prime Implicants

- Example: $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$
 - the simplified expression may not be unique
 - F = BD + B'D' + CD + AD = BD + B'D' + CD + AB'= BD + B'D' + B'C + AD = BD + B'D' + B'C + AB'

17

18

Five-Variable Map

- Map for more than four variables becomes complicated
 - five-variable map: two four-variable maps (one on the top of the other)

Example 3-7

$$-F = \Sigma(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$$

$$-F = A'B'E' + BD'E + ACE$$

Fig. 3-13 Map for Example 3-7; F = A'B'E' + BD'E + ACE

19

Another Map for Example 3-7

The K-Map Conclusion

■ The relationship between the number of adjacent squares and the number of literals in the term:

	Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable map			
K	2^k	n=2	n=3	n = 4	n = 5
0	1	2	3	4	5
1	2	1	2	3	4
2	4	0	1	2	3
3	8		0	1	2
4	16			0	1
5	32				0

21

Product of Sums Simplification

- Approach #1: The product of sums simplification is based on the generalized DeMorgan's theorem.
 - (0's in the K-map): Simplified F' in the form of sum of products.
 - (1's in the K-map): Apply DeMorgan's theorem F = (F')'
 - F′: sum of products ⇒ F: product of sums
- Approach #2: duality
 - combinations of maxterms (it was minterms)

$$- M_0 M_1 = (A + B + C + D)(A + B + C + D') \qquad CD$$

$$= (A + B + C) + (DD') \qquad AB \qquad 00 \qquad 01 \qquad 11 \qquad 10$$

$$= A + B + C \qquad 00 \qquad M_0 \qquad M_1 \qquad M_3 \qquad M_2$$

$$01 \qquad M_4 \qquad M_5 \qquad M_7 \qquad M_6$$

$$11 \qquad M_{12} \qquad M_{13} \qquad M_{15} \qquad M_{14}$$

$$10 \qquad M_8 \qquad M_9 \qquad M_{11} \qquad M_{10} \qquad 2$$

Example 3-8

- Simplified the function: $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$
- a) Sum of products:

- b) Product of sums
- -F' = AB + CD + BD'
- Apply DeMorgan's theorem;

$$F = (A'+B')(C'+D')(B'+D)$$

- or think in terms of maxterms

23

Gate Implementation of the **Function of Example 3-8**

Two-Level Logic Implementation!!

Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
 - BCD: 1010 ~ 1111 are don't care terms
- The don't care conditions can be utilized in logic minimization
 - Because either 0 or 1 can be implemented; the logic optimization is more flexible for simplified gates.
- Example 3-9
 - Boolean function: $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$
 - Don't care condition: $d(w, x, y, z) = \Sigma(0, 2, 5)$
 - F = yz + w'x'; F = yz + w'z
 - $-F = \Sigma(0,1,2,3,7,11,15)$; $F = \Sigma(1,3,5,7,11,15)$
 - either expression is acceptable

25

Example of Don't-Care Conditions

NAND and **NOR** Implementation

- NAND and NOR gates are easier to fabricate with electronic components than AND and OR gates.
- NAND gate is a universal gate because any operation can be implemented by it.

Equivalent NAND Gates

- The AND-invert and Invert-OR are equivalent, following the DeMorgan's theorem.
- Two graphic symbols are for a NAND gate

■ The conversion between AND-Invert and Invert-OR makes the NAND implementation.

28

NAND-NAND Implementation

- Two-level NAND implementation procedure
 - 1. Simplify the function in the form of sum of products.
 - 2. Draw a NAND gate for each product term. The inputs to each NAND gate are the literals of the term forming a group of 1st level gate.
 - 3. Draw gates using AND-Invert or the Invert-OR in the second level. (Note: keep function by DeMorgan's theorem)
 - 4. Single literal must be complemented for first or second level.

29

Example

$$\blacksquare F = AB + CD$$

- Three ways to implement F

Two-Level NAND Implementation

- Two-level logic
- NAND-NAND = sum of products
- Example: F = AB + CD + E
- F = ((AB)'(CD)'E')' = AB + CD + E

31

Example 3-10

 $F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7) = xy' + x'y + z$

Multilevel NAND Circuits

- Multilevel NAND circuit implementation procedure
 - 1. Convert all AND gates to NAND gates with AND-Invert graphic symbols
 - 2. Convert all OR gates to NAND gates with Invert-OR graphic symbols
 - 3. Check all the bubbles (Inverter) in the diagram and insert possible inverter to keep the original function.

33

Multilevel NAND Circuits

- Boolean function implementation
 - AND-OR logic ⇒ NAND-NAND logic
 - AND ⇒ NAND + inverter
 - OR: inverter + OR = NAND

NOR Implementation

- NOR function is the dual of NAND function
- The NOR gate is also universal

Two graphic symbols for a NOR gate

Boolean-function implementation

Example: Implementation with NOR Gate

Other Two-level Implementations

- Wired logic
 - a wire connection between the outputs of two gates (Not a physical two-level logic)
 - open-collector TTL NAND gates: wired-AND logic
 - the NOR output of ECL gates: wired-OR logic

$$F = (AB)' \cdot (CD)' = (AB + CD)' = (A' + B')(C' + D')$$
 AND-OR-INVERT function $F = (A + B)' + (C + D)' = [(A + B)(C + D)]'$ OR-AND-INVERT function

Degenerate Forms

- AND/NAND/OR/NOR have 16 possible combinations of two-level forms
 - eight of them: degenerate forms ⇒ a single operation
 - AND-AND ⇒ AND
 - $OR-OR \Rightarrow OR$
 - AND-NAND ⇒ NAND
 - OR-NOR ⇒ NOR
 - NAND-NOR ⇒ AND
 - NOR-NAND ⇒ OR
 - NAND-OR ⇒ NAND
 - NOR-AND ⇒ NOR

41

Nondegenerate Forms

- AND-OR ⇒ standard sum-of-products
- NAND-NAND ⇒ standard sum-of-products
- OR-AND ⇒ standard product-of-sums
- NOR-NOR ⇒ standard product-of-sums
- NAND-AND/AND-NOR ⇒ AND-OR-INVERT (AOI) circuit (complement of sum-of-products)
- OR-NAND/NOR-OR ⇒ OR-AND-INVERT (OAI) circuit (complement of product-of-sums)

AND-OR-Invert Implementation

- AND-OR-INVERT (AOI) Implementation
 - NAND-AND = AND-NOR = AOI
 - -F = (AB + CD + E)'
 - -F' = AB + CD + E(sum of products)

- Usage
 - Combining 0's in K-map to simplify F' in sum-of-products

43

Example

■ Example 3-11: Implement the function F using AOI and OAI two-level form

$$-F' = x'y + xy' + z$$

(F': sum of products)

$$-F = (x'y + xy' + z)'$$

(F: AOI implementation)

$$-F = x'y'z' + xyz'$$

(F: sum of products)

$$-F' = (x + y + z)(x' + y' + z)$$

(F': product of sums)

$$-F = ((x + y + z)(x' + y' + z))'$$
 (F: OAI)

Example

OR-AND-INVERT (OAI) Implementation

- OR-AND-INVERT (OAI) Implementation
 - OR-NAND = NOR-OR = OAI
 - -F = ((A + B)(C + D)E)'
 - -F' = (A + B)(C + D)E (product of sums)

- Usage
 - Combining 1's in K-map to simplified F' in <u>product-of-sums</u> and then inverting the result (hint: DeMorgan's theorem)

Example

■ Example 3-11: Implement the function *F* using AOI and OAI two-level form

$$-F' = x'y + xy' + z$$
 (F': sum of products)

$$-F = (x'y + xy' + z)'$$
 (F: AOI implementation)

$$-F = x'y'z' + xyz'$$
 (F: sum of products)

$$-F' = (x + y + z)(x' + y' + z)$$
 (F': product of sums)

$$-F = ((x + y + z)(x' + y' + z))'$$
 (F: OAI)

Example

48

Tabular Summary

Table 3.3Implementation with Other Two-Level Forms

Equivalent Nondegenerate Form		egenerate Implements		To Get
(a)	(b)*	tne Function	F' into	an Output of
AND-NOR	NAND-AND	AND-OR-INVERT	Sum-of-products form by combining 0's in the map.	F
OR-NAND	NOR-OR	OR-AND-INVERT	Product-of-sums form by combining 1's in the map and	
			then complementing.	F

^{*}Form (b) requires an inverter for a single literal term.

49

Exclusive-OR Function

■ Exclusive-OR (XOR)

$$- x \oplus y = xy' + x'y$$

■ Exclusive-NOR (XNOR)

$$-(x\oplus y)'=xy+x'y'$$

Some identities

$$-x \oplus 0 = x$$

$$-x \oplus 1 = x'$$

$$-x \oplus x = 0$$

$$-x \oplus x' = 1$$

$$-x \oplus y' = (x \oplus y)'$$

$$-x'\oplus y=(x\oplus y)'$$

Commutative and associative

$$-A \oplus B = B \oplus A$$

$$-(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$$

XOR Implementations

Implementations

Odd/Even Function

■
$$A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C'$$

= $AB'C' + A'BC' + ABC + A'B'C$
= $\Sigma(1, 2, 4, 7)$

■ an odd number of 1's

(a) Odd function $F = A \oplus B \oplus C$

$\searrow BC$?			B
A	00	01	11	10
0	m_0 1	m_1	m_3	m_2
$A \left\{ 1 \right\}$	m_4	m_5 1	m_7	m_6 1
			C	,

(b) Even function $F = (A \oplus B \oplus C)'$

XOR Functions

■ Logic Diagrams of Odd/Even Functions

(a) 3-input odd function

(b) 3-input even function

■ Four-variable Exclusive-OR function

$$-A \oplus B \oplus C \oplus D = (AB' + A'B) \oplus (CD' + C'D)$$

= $(AB' + A'B)(CD + C'D') + (AB + A'B')(CD' + C'D)$

Odd

\	00	01	11	10
00	m_0	m_1 1	<i>m</i> ₃	<i>m</i> ₂ 1
01	m_4	m_5	m ₇ 1	m_6
11	m_{12}	m_{13} 1	m_{15}	m_{14} 1
10	m_8	m_9	^m 11	m_{10}

Even

		, ,		
/	00	01	11	10
00	m_0 1	m_1	m_3 1	m_2
01	m_4	<i>m</i> ₅ 1	m_7	m_6 1
11	m_{12} 1	m_{13}	m_{15} 1	m_{14}
10	m_8	<i>m</i> ₉ 1	m_{11}	m_{10} 1

53

Parity Generation and Checking

- Parity Generation (at Tx) and Parity Checker (at Rx)
 - a parity bit: $P = x \oplus y \oplus z$
 - parity check: $C = x \oplus y \oplus z \oplus P$
 - \blacksquare C = 1: an odd number of data bit error
 - \blacksquare C = 0: correct or an even # of data bit error

Parity Generation and Checking

■ Truth Table (in the transmitter or storage input)

Thr	ee Bits Mess	Parity Bit	
X	у	z	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

55

Parity Generation and Checking

■ Truth Table (in the receiver and storage output)

	Four Bits R	Parity Error Checker		
x	у	z	P	С
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Hardware Description Language (HDL)

- Describe the design of digital systems in a textual form (can be read by both humans and computers)
 - Design Entry: hardware structure
 - Logic Simulation: function/behavior simulations and verifications
 - Logic Synthesis: Process of deriving a list of physical components and their interconncets (netlist)
 - Timing Verification: speed test
 - Fault Simulation: identifying input stimuli to reveal the difference b/w faulty circuit and fault-free circuit
- VHDL (by DoD) and Verilog HDL (by Cadence, 益華電腦)

57

A Top-Down Design Flow

Verilog HDL

- ~100 keywords (lowercase):
 - Including: module, endmodule, input, output, and, or, not... (in bold face in the textbook)
 - Case sensitive: uppercase ≠ lowercase
- //: descriptions, comments (for single line)
 - /* descriptions for multilines... */

```
declaration { module simple_circuit(A, B, C, D, E);
endmodule
```

Identifier:

1. Name of the module; 2. Composed of alphanumeric characters and underscores; 3. case sensitive; 4. start with an alphabet or underscore, can not be a number

59

HDL Example

- module/endmodule defined the building block of each design
- input/output define the input ports and output ports
- and/not/or are the logic primitive defined by verilog HDL; primitive_gate gate_instance(out, in)

```
// Description of simple circuit Fig. 3-37

module Simple_Circuit(A, B, C, D, E);

input A, B, C;

output D, E;

wire w1;

and G1(w1, A, B);

not G2(E, C);

or G3(D, w1, E);

endmodule
```

HDL with Gate Delays

- `timescale is a compiler directive used to specify the time unit and resolution.
- **#(time)** is a gate parameter used to specify the gate delay time.

```
// Description of simple circuit with gate delays
`timescale 1ns/100ps
module Simple_Circuit_prop_delay(A, B, C, D, E);
input A, B, C;
output D, E;
wire w1;
and #(30) G1(w1, A, B);
not #(10) G2(E, C);
or #(20) G3(D, w1, E);
endmodule
```

Output of Gates after Delay

Output of Gates after Delay

	Time Units	Input	Output	
	(ns)	ABC	Ew1 D	
Initial	_	0 0 0	1 0 1	
Change	_	111	1 0 1	
	10	1 1 1	0 0 1	
	20	111	0 0 1	
	30	1 1 1	0 1 0	
	40	111	0 1 0	
	50	111	0 1 1	

HDL Simulation Example

Test bench for simulating the circuit with delay

Simulation output for HDL Example

Boolean Expression

■ Boolean expression for the circuit of Fig. 3.37

assign D =
$$(A \& B)|\sim C$$
;

■ Verilog HDL logic operator:

$$- \& \Rightarrow AND$$
 $- | \Rightarrow OR$
 $- \sim \Rightarrow NOT \text{ (complement)}$ $- \land \Rightarrow XOR$

 Continuous assignment statement assign are used to describe the output function

```
// Circuit specified with Boolean expressions module circuit_boolean_CA(E, F, A, B, C, D); input A, B, C, D; output E, F; assign E = A | (B \& C) | (\sim B \& D); assign F = (\sim B \& C) | (B \& \sim C \& \sim D); endmodule
```

User-Defined Primitives

■ General rules:

- It is declared with the keyword **primitive**, followed by a name and port list.
- There can be only one output, and it must be listed first in the port list and declared with keyword **output**.
- There can be any number of inputs. The order in which they are listed in the **input** declaration must conform to the order in which they are given values in the table that follows.
- The truth table is enclosed within the keywords **table** and **endtable**.
- The values of the inputs are listed in order, ending with a colon (:). The output is always the last entry in a row and is followed by a semicolon (;).
- The declaration of a UDP ends with the keyword endprimitive.

■ Declaration:

```
Circuit_with_UDP_02467 (E, F, A, B, C, D);
```

HDL Example 3.5

HDL Example 3.5

```
// Verilog model: User-defined Primitive
primitive UDP_02467 (D, A, B, C);
output D;
input A, B, C;
// Truth table for D = f (A, B, C) = \Sigma (0, 2, 4, 6, 7);
table
             В
                      С
                                         D
                                                  // Column header comment
     0
             0
                      0
                                         1;
     0
             0
                      1
                                         0;
     0
             1
                      0
                                         1:
     0
                                         0:
             0
                                         1;
             0
                                         0;
                                         1;
                                         1:
endtable
endprimitive
```

HDL Example 3.5

```
// Instantiate primitive

// Verilog model: Circuit instantiation of Circuit_UDP_02467

module Circuit_with_UDP_02467 (e, f, a, b, c, d);
output e, f;
input a, b, c, d;

UDP_02467 (e, a, b, c);
and (f, e, d); // Option gate instance name omitted endmodule
```

