Figure 1: Various synthetic pathways for the biosynthesis of DHA (docosahexaenoic acid)

Figure 2: Substrate specificity of the $\Delta 5$ -elongase (SEQ ID NO: 53) with regard to different fatty acids

Figure 3: Reconstitution of DHA biosynthesis in yeast starting from 20:5ω3.

Retention time-

Figure 4: Reconstitution of DHA biosynthesis in yeast starting from $18:4\omega3$.

Figure 5: Fatty acid composition (in mol%) of transgenic yeasts which had been transformed with the vectors pYes3-OmELO3/pYes2-EgD4 or pYes3-OmELO3/pYes2-EgD4+pESCLeu-PtD5. The yeast cells were cultured in minimal medium without tryptophan and uracil/ and leucin in the presence of 250 μM 20:5^{Δ5,8,11,14,17} and 18:4^{Δ6,9,12,15}, respectively. The fatty acid methyl esters were obtained from cell sediments by acid methanolysis and analyzed via GLC. Each value represents the mean (n=4) ± standard deviation.

pYes3-OmELO/pYes2-EgD4

pYes3-OmELO/pYes2-EgD4 EgD4

+ pESCLeu-PtD5 Feeding of 20:5^{25,8,11,14,17} Feeding of $18:4^{\Delta 6,9,12,15}$ Fatty acids 16:0 9.35 ± 1.61 7.35 ± 1.37 16:1 ^{Δ9} 14.70 ± 2.72 10.02 ± 1.81 5.11 ± 1.09 4.27 ± 1.21 18:0 18:1 ^{Δ9} 10.81 ± 1.95 19.49 ± 3.01 18:1 ^{Δ11} 11.61 ± 1.48 18.93 ± 2.71 18:4 ^{Δ6,9,12,15} 7.79 ± 1.29 20:1 411 1.56 ± 0.23 3.24 ± 0.41 20:1 413 11.13± 2.07 4.40 ± 0.78 20:4^{\Delta 8,11,14,17} 30.05 ± 3.16 20:5^{\Delta 5,8,11,14,17} 3.72 ± 0.59 6.91 ± 1.10 22:4^{Δ10,13,16,17} 5.71 ± 1.30 22:5 ^{47,10,13,16,19} 1.10 ± 0.27 8.77 ± 1.32 22:6 ^{Δ4,7,10,13,16,19} $\boldsymbol{0.58 \pm 0.10}$ 2.73 ± 0.39

22:547,10,13,16,19 22:447,10,13,16 22:447,10,13,16 20:5^{A5,8,11,14,17} Expression 10: TpELO1 + 20:5^{Δ5,8,11,14,17} Expression 9: Control + 20:5^{A5,8,11,14,17} Expression 8: TpELO1 + 20:4^{A5,8,11,14} Expression 7: Control + 20:4^{Δ5,8,11,14} Figure 9: Expression of TpELO1 in yeast 18:0 16:149 16:0

20:348,11,14 18:446,12,15 $18:3^{\Delta6,9,12}$ Expression 6: TpELO3 + 20:5^{A5,8,11,14,1} Figure 10: Expression of TpELO3 in yeast 18:249,12 Expression 4: TpELO3 + 18:4^{Δ6,9,12,15} Expression 5: TpELO3 + 20:4^{∆5,8,11,14} 18:149 18:0 Expression 3: TpELO3 + 18:3^{∆6,9,1}. Expression 2: TpELO3 + $18.2^{\Delta 9.12}$ Expression 1: TpELO3 (not fed) 16:149 7 0:91

Figure 11: Expression of Thraustochytrium Δ5-elongase TL16/pYES2.1 in yeast

Figure 12: Desaturation of γ -linolenic acid (18:2 ω 6-fatty acid) to give α -linolenic acid (18:3 ω 3-fatty acid) by Pi-omega3Des.

Figure 13: Desaturation of γ -linolenic acid (18:2 ω 6-fatty acid) to give stearidonic acid (18:4 ω 3-fatty acid) by Pi-omega3Des.

Figure 14: Desaturation of C20:2 ω 6-fatty acid to give C20:3 ω 3-fatty acid by Piomega3Des.

Figure 15: Desaturation of C20:3 ω 6-fatty acid to give C20:4 ω 3-fatty acid by Piomega3Des.

Figure 16: Desaturation of arachidonic acid (C20:4 ω 6-fatty acid) to give eicosapentaenoic acid (C20:5 ω 3-fatty acid) by Pi-omega3Des.

Figure 17: Desaturation of docosatetraenoic acid (C22:4 ω 6-fatty acid) to give docosapentaenoic acid (C22:5 ω 3-fatty acid) by Pi-omega3Des.

Figure 18: Substrate specificity of Pi-omega3Des with regard to different fatty acids

Figure 20: Conversion of linoleic acid (arrow) to give γ -linolenic acid (γ -18:3) by Ot-Des6.1.

Absorption mAU

Retention time

Figure 21: Conversion of linoleic acid and α -linolenic acid (A and C), and reconstitution of the ARA and EPA synthetic pathways, respectively, in yeast (B and D) in the presence of OtD6.1.

Figure 22: Expression of ELO(XI) in yeast

Figure 23:

Figure 24: Elongation of eicosapentaenoic acid by OtElo1 (B) and OtElo1.2 (D), respectively. The controls (A, C) do not show the elongation product $(22:5\omega3)$.

Figure 25: Elongation of arachidonic acid by OtElo1 (B) and OtElo1.2 (D), respectively. The controls (A, C) do not show the elongation product (22:4 ω 6).

Figure 26: Elongation of 20:5n-3 by the elongases At3g06470.

Absorption in mA

Retention time in minutes

Figure 27: Substrate specificity of the Xenopus Elongase (A), Ciona Elongase (B) und Oncorhynchus Elongase (C)

Figure 28: Substrate specificity of the Ostreococcus $\Delta 5$ -elongase (A), the Ostreococcus $\Delta 6$ -elongase (B), the Thalassiosira $\Delta 5$ -elongase (C) and the Thalassiosira Ostreococcus $\Delta 6$ -elongase (D)

Figure 29: Expression of the Phaeodactylum tricornutum $\Delta 6$ -elongase (PtELO6) in yeast. A) shows the elongation of the C18:3 $^{\Delta 6,9,12}$ fatty acid and B) the elongation of the C18:3 $^{\Delta 6,9,12,15}$ fatty acid

Figure 30: Figure 30 shows the substrate specificity of PtELO6 with regard to the substrates fed.

PtELO6 specificity

