INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

ÁREA DEPARTAMENTAL DE ENGENHARIA DE ELECTRÓNICA E TELECOMUNICAÇÕES E DE COMPUTADORES

Licenciatura em Engenharia Informática e Multimédia

Processamento de Imagem e Visão

1º Semestre 2018/2019

Exame de Época Normal – 7 de janeiro de 2019 – Duração: 2H30M

Atenção: As soluções apresentadas carecem de justificação e desenvolvimento.

- 1. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - a. No olho humano existem mais cones que bastonetes, que permite uma melhor sensibilidade à intensidade luminosa em ambientes escuros. (0,5)
 Falso, no olho humano há mais bastonetes que cones e são os bastonetes que são responsáveis pela sensibilidade à intensidade luminosa.
 - b. O aumento da resolução de uma imagem implica sempre o aumento do número de bits necessário para o seu armazenamento. (0,5)
 Verdadeiro, se se mantiverem todas as outras condições, como por exemplo, o número de bits por pixel, será necessário aumentar o número de bits para representar o aumento do número de pixéis.
 - c. Para aumentar o tamanho aparente de um objeto numa imagem deve-se aumentar a distância focal da lente. (0,5)
 Verdadeiro, para aumentar o tamanho aparente de um objeto na imagem, deve-se aumentar a distância focal para diminuir os ângulos do campo de visão e assim uma menor área é projetada no plano do sensor.
 - d. Do ponto de vista económico, o sensor com tecnologia CMOS é melhor que o CCD. (0,5)

 Verdadeiro, a tecnologia CMOS é uma tecnologia IC standard o que torna o custo de produção mais barato e é mais económica energeticamente.
- Diga, justificando, como se observa o fenómeno de aliasing em imagens digitais. (1)
 Desenvolver a temática da resolução da imagem não ser suficiente para representar as frequências espaciais (alteração dos valores das intensidades dos pixéis) presentes na imagem.
- Dos seguintes histogramas diga, justificando, aquele que está mais ajustado à aplicação do algoritmo de Otsu.

Histograma da figura a). Desenvolver o algoritmo de Otsu é apropriado para imagens com histogramas bimodais, onde os níveis de intensidade ocupados pelos pixéis pertencentes ao fundo devem ser diferentes dos pixéis dos objetos.

4. Considere que se obteve a seguinte tabela de correspondência de etiquetas após a aplicação do algoritmo clássico de etiquetação de imagens binárias:

Etiqueta da região	1	2	3	4
Etiqueta equivalente	0	1	1	0

a. Dê o exemplo de uma imagem binária que poderá ter gerado a tabela anterior (considere, por exemplo, uma matriz 8x8) e represente a imagem de etiquetas.

Considerando vizinhança 4:

Imagem Binária

Imagem Etiquetas

(0,5)

b. Determine a imagem final das etiquetas depois de aplicar a tabela anterior.

		1			
1	1	1			
		1			
1	1	1	4	4	
		1	4	4	

5. Considere a seguinte imagem binária, resultante de uma segmentação de cor:

	1	1	1	1		
1	1	1	1	1	1	
			1			
		1	1			
		1	1	1		
		1	1	1		

a. Se for conhecido que existem dois objetos presentes na imagem e que se pretende extrair características geométricas das suas regiões, diga qual o operador morfológico que deve aplicar para proceder à separação dessas regiões e qual o elemento estruturante a utilizar, considerando conectividade 8.

Operador morfológico de abertura (erosão+dilatação).

Exemplo do elemento estruturante

b. Aplique à imagem o operador morfológico que descreveu na alínea anterior.

Erosão

(0,5)

Abertura (Erosão+Dilatação)

c. Determine a área e o centro de massa de cada região determinada. (Se não respondeu à alínea anterior, utilize a imagem apresentada). (1)

~ _

Considerando o pixel do canto superior esquerdo com coordenadas (1,1)

Região 1: Área – 10 pixéis; Centro de massa -
$$C_x=\bar{c}=4,5;\ C_y=\bar{r}=2,6$$

Região 2: Área – 8 pixéis;
$$C_x=\bar{c}\cong 4.9;\ C_y=\bar{r}\cong 6.1$$

6. Considere a seguinte curva ROC, construída para um sistema de autenticação/verificação de impressões digitais para diversos valores do limiar de decisão entre ser (aceitação) ou não ser (rejeição) a mesma pessoa.

Entre os dois limiares indicados, t1 e t2, diga, justificando, qual escolheria para a utilização do sistema em aplicações de acesso a salas de alta segurança. (1)

Limiar t2.

7. Considere que dispõe da seguinte imagem em níveis de cinzento (níveis pertencentes ao intervalo [0,1]),

0	0,125	0,25	0,375
0,125	0,25	0,375	0,5
0,25	0,375	0,5	0,75
0,375	0,5	0,75	1

a. Determine a imagem de saída se aplicar a seguinte transformação de níveis de cinzento:

$$f(x) = \sqrt{x} . ag{0.5}$$

0	0,354	0,5	0,612
0,354	0,5	0,612	0.707
0,5	0,612	0.707	0.866
0,612	0.707	0.866	1

b. Diga que tipo de operação aplicou e qual o seu objetivo.

Desenvolver correção gama e alteração do contraste da imagem.

(1)

8. Descreva vantagens e desvantagens do método de deteção de movimento baseado na subtração de imagens consecutivas em relação ao método de subtração com imagem de fundo. (1,5)

Desenvolver aspetos relacionados com objetivo e complexidade de cada metodologia de deteção de movimento.

- 9. Considere o seguinte conjunto de dados $Z = \{(1;0), (-1;0), (2;2,2), (-2;-2,1)\}$:
 - a. Utilizando o seguinte conjunto de treino, $X^1 = \{(1,5;1)\}$ e $X^2 = \{(-0,5;-0,5);(0;1)\}$ (os índices correspondem à classe), classifique os dados de Z com base no algoritmo do vizinho mais próximo. (1)

$$z_1 = (1;0) \rightarrow \omega_1; z_2 = (-1;0) \rightarrow \omega_2; z_3 = (2;2,2) \rightarrow \omega_1; z_4 = (-2;-2,1) \rightarrow \omega_2$$

- b. Considere agora que pretende utilizar o algoritmo de distância ao centroide. Estime o melhor conjunto de centroides para os dados Z segundo o algoritmo de k-médias. (1,5) Possível solução (depende da inicialização): $C_1 = (-1,5; -1,05)$ $C_2 = (1,5; 1,1)$
- 10. Considere as seguintes imagens adquiridas em dois instantes de tempo consecutivos.

15	55	55	55	55	15	55	15
55	46	55	15	55	46	15	55
55	47	15	63	15	55	15	15
55	55	55	55	15	55	15	55
46	15	15	55	15	15	55	15
55	55	15	55	15	55	15	55
15	63	15	55	15	55	15	55
46	15	55	46	55	15	55	46
(t)							

55	47	55	55	46	55	15	55
55	55	15	55	55	55	55	15
55	55	55	46	55	15	55	46
15	55	55	47	15	63	15	55
15	55	55	55	55	55	15	55
55	15	46	15	15	55	15	15
46	55	55	55	15	55	15	55
15	55	15	63	15	55	15	55
(t+1)							

Utilizando o princípio do método esparso para deteção de movimento, determine justificando, qual o vetor de movimento do pixel localizado na coluna 4, linha 3 da imagem no instante t. (1,5)

Vetor de movimento: $\Delta x = 2$; $\Delta y = 1$

11. Considerando que o algoritmo de cálculo do fluxo ótico retornou a seguinte informação.

\downarrow	\downarrow	\rightarrow	\rightarrow
\downarrow	1	\uparrow	\rightarrow
\downarrow	\uparrow	\uparrow	\rightarrow
\downarrow	\downarrow	\rightarrow	\rightarrow

a. Diga como poderia utilizar esta informação para realizar a segmentação da imagem. (1)

Desenvolver a utilização da informação do vetor de movimento de cada pixel, por exemplo, o módulo e/ou a direção, como característica para o processo de segmentação. No exemplo apresentado, uma solução da imagem segmentada é:

0	0	0	0
0	1	1	0
0	1	1	0
0	0	0	0

- b. Descreva um tipo de situação de movimento (câmara e/ou objetos) que pode gerar este
 tipo de campo de movimento.
 - Câmara com movimento vertical de baixo para cima com um objeto a mover-se no centro da cena na mesma direção e sentido, mas com uma velocidade maior que a da câmara.
- 12. Descreva quais os passos necessários para obter a matriz de homografia correspondente à transformação ocorrida entre duas imagens. (1,5)

Desenvolver o processo de estimação da matriz de homografia com base na correspondência de, pelo menos, 4 pontos entre as duas imagens.