LABORATORIO 3 (Octubre de 2022)

D. Juan, C. Luis , R. Giovanni, Ó. Oscar estudiantes Ingeniería de Sistemas y Computación

Resumen - Este trabajo muestra los resultados obtenidos a raíz de las prácticas de laboratorio que tuvieron como objetivo reforzar el conocimiento del multímetro, aprender a medir corriente, montar y comprobar el funcionamiento de serie y paralelo, tanto en voltaje como corriente, montaje con transistores.

Índice de Términos - Corriente, multimetro, protoboard, resistencias, voltaje, Proteus.

I. INTRODUCCIÓN

En el presente documento se abordarán los conocimientos qué fueron adquiridos durante la elaboración del 2do laboratorio de Fundamentos de la electrónica. Donde se implementó corriente a la protoboard y se vió cómo esta afecta a la resistencia en circuitos en serie y paralelos.

figura 1

Se le denomina protoboard o placa de prueba, es un tablero con orificios que se encuentran conectados eléctricamente entre sí de manera interna, habitualmente siguiendo patrones de líneas, en el cual se pueden insertar componentes

¹Documento presentado el 14 de septiembre de 2022 a la docente Ana María Tamayo y fue apoyado por la Universidad del Quindío, institución en la cual nos encontramos en calidad de estudiantes.

D. Juan pertenece a la Universidad del Quindío y a Inminente Podcast, CP 630003 Colombia. (e-mail: juanp.duqueb@uqvirtual.edu.co).

C. Luis pertenece a la Universidad del Quindío, CP 630003 Colombia. (e-mail: luise.carballol@uqvirtual.edu.co). electrónicos y cables para el armado y prototipado de circuitos electrónicos y sistemas similares. Está hecho de dos materiales, un aislante, generalmente un plástico, y un conductor que conecta los diversos orificios entre sí. Uno de sus usos principales es la creación y comprobación de prototipos de circuitos electrónicos antes de llegar a la impresión mecánica del circuito en sistemas de producción comercial.

figura 2

La resistencia es una medida de la oposición al flujo de corriente en un circuito eléctrico.

La resistencia se mide en ohmios, que se simbolizan con la letra griega omega (Ω). Se denominaron "ohmios" en honor a Georg Simon Ohm (1784-1854), un físico alemán que estudió la relación entre voltaje, corriente y resistencia. Se le atribuye la formulación de la ley de Ohm.

figura 3

Un montaje de resistencias en serie en una protoboard.

figura 4 Un montaje de resistencias en Paralelo en una protoboard.

El transistor es un dispositivo electrónico semiconductor. Permite el paso de una señal en respuesta a otra. Se puede configurar o "comportar" como amplificador, oscilador, conmutador o rectificador. El término «transistor», del acrónimo transfer resistor (resistor de transferencia). Se encuentra prácticamente en todos los aparatos electrónicos como radios, televisores y computadoras. Habitualmente dentro de los llamados circuitos integrados.

2N2222 COLLECTOR 3 PASE TO-92 EMITTER

figura 5 El transistor 2N2222 el cual fue el qué usamos en el laboratorio.

II. LABORATORIO

A. Práctica

- 1. Medición de voltaje que pasa por cada resistencia
- A. Mida la corriente con el multímetro y calcule los voltajes teóricos en cada resistencia y compruebe sus resultados mediante la simulación.

$$I = \frac{10V}{1550 \,\Omega} = 6.45 * 10^{-3} A$$

La corriente es igual en todas las resistencias

$$V1 = 6.45 * 10^{-3} A * 220 \Omega = 1.419V$$

 $V2 = 6.45 * 10^{-3} A * 1000 \Omega = 6.45V$
 $V3 = 6.45 * 10^{-3} A * 330 \Omega = 2.1285V$
 $VT = 1.419V + 6.45V + 2.1285V = 9.99V \approx 10V$

B. Realice una tabla donde ordene los resultados teóricos, Prácticos y simulados.

Ω	Voltaje Teórico	Voltaje Práctico	Voltaje Simulado
R1 220Ω	1.419V	1.310V	1.42V
R2 1000Ω	6.45V	6.21V	6.45V
R3 330Ω	2.1285V	2.2V	2.13V

tabla 1 2.

A. Calcule las corrientes teóricas en cada resistencia y compruebe sus resultados mediante la simulación.

$$V = 10$$

El voltaje es igual en todas las resistencias

$$I1 = \frac{10V}{2000 \Omega} = 5 * 10^{-3}A$$

$$I1 = \frac{10V}{2000 \Omega} = 2.13 * 10^{-3}A$$

$$I1 = \frac{10V}{2000 \Omega} = 0.01A$$

$$I1 = \frac{10V}{2000 \Omega} = 8.33 * 10^{-3}A$$

$$I = 5 * 10^{-3}A + 2.13 * 10^{-3}A + 0.01A + 8.33 * 10^{-3}A$$

$$I = 0.02546 A$$

B. Realice una tabla donde ordene los resultados teóricos, Prácticos y simulados.

Ω	Corriente Teórica	Corriente Práctica	Corriente Simulada	
R1 2000Ω	5 * 10 ⁻³ A	0.0051A	0.005A	
R2 4700Ω	2. 13 * 10 ⁻³ A	0.0032A	0.002A	
R3 1000Ω	0.01A	0.001A	0.001A	
R4 1200Ω	8.33 * 10 ⁻³ A	0.00988A	0.008A	

tabla 2

3.

Ω	Corriente	Corriente	Corriente
	Equivalente	Equivalente	Equivalente
	Teórica	Práctica	Simulado
735Ω(Equiv alente)	0.013	0.01	0.01

tabla 3

4.

En lo que respecta al punto 4, decidimos construirlo en primera instancia de forma práctica, la *figura 6* muestra el circuito montado.

figura 6

Se midió el voltaje en cada elemento y se encontró la potencia práctica.

	Resistencias					
Información	R1	R2	R3	R4	R5	R6
Voltaje práctico	1.864	1.182	1.839	1.179	1.765	1.816
Corriente teórica	5,64 * 10 \land -3	5,37 * 10 ∧ -3	5,57 * 10 \land - 3	5,35 * 10∧-3	5,34 * 10 ∧ -3	5,30 * 10 ∧ -3

tabla 4

B. Simulado

1. Simulación punto 1

figura 7

figura 8

2. Simulación punto 2

figura 9

3. Simulación punto 3

figura 10

figura 11

figura 12

4.

A. Simule el circuito para corroborar su funcionamiento.

figura 13

B. Haga un análisis de su comportamiento y encuentre similitudes desde este sistema, en los vistos anteriormente en clase.

III. LAS UNIDADES

Durante todo el proceso usamos Ω (ohmios) y fórmulas del triángulo de Ley de Ohm, que incluye unidades tales como lo son el voltio y los amperios.

IV. CONCLUSIONES

Se concluye que los resultados obtenidos previamente en el laboratorio cumplieron con los objetivos trazados por el docente, los cuales fueron:

- Reforzar el conocimiento del multímetro.
- Aprender a medir corriente y comprobar el funcionamiento de serie y paralelo, tanto en voltaje como corriente.
- montaje con transistores.

REFERENCES

- [2] "Circuitos en serie y paralelo" https://pygmalion.tech/tutoriales/electronica/tutorial-electronica-circuito s-serie-y-paralelo/ (accedido el 14 de septiembre de 2022).
- [3] Colaboradores de los proyectos Wikimedia. "Placa de pruebas Wikipedia, la enciclopedia libre". Wikipedia, la enciclopedia libre. https://es.wikipedia.org/wiki/Placa_de_pruebas (accedido el 14 de septiembre de 2022).
- [4] EspacioHonduras.

 https://www.espaciohonduras.net/images/electronica/articulos/codigo_co
 lores_resistencias_electricas/resistencia_electrica_1.png (accedido el 14
 de septiembre de 2022).
- [5] Home Tecno Cursos Online. https://www.tecnocursos.online/wp-content/uploads/2021/02/Tabla-de-colores-para-resistencias-electricas-1-1024x682.png (accedido el 14 de septiembre de 2022).
- [6] "Multímetro digital: Medición de resistencia y continuidad". Fundamentos de Electricidad. http://electricidadipl.blogspot.com/2014/06/multimetro-digital-medicion-de 30.html (accedido el 14 de septiembre de 2022).
- [7] "Protoboard". prezi.com. https://prezi.com/8kvar91zcy66/protoboard/#:~:text=INVENTOR:.de%20memoria%20para%20almacenar%20datos (accedido el 14 de septiembre de 2022).
- [8] ¿Qué es el Transistor Bipolar BJT y cuales son sus aplicaciones? (s. f.). transistor. https://viasatelital.com/proyectos_electronicos/transistor.php