4.3.5 函数的凸性与拐点

- 一、凸函数的定义
- 二、函数凹凸性的判别法
- 三、凸函数的性质
- 四、曲线的拐点

一、凸函数的定义

观察以下函数的图象:

$$f(x) = x^2, f(x) = \sqrt{x}$$

称函数 $f(x) = x^2$ 为凸函数. 称 $f(x) = \sqrt{x}$ 为凹函数. 如何刻划这两类函数的特征?

曲线 $y = x^2$ 上任两点间的弧段总位于这两点连线的下端. 曲线 $y = \sqrt{x}$ 任两点间的弧段总位于这两点连线的上方. 定义1. 设 $f(x), x \in I$, (I为区间). 若 $\forall x_1, x_2 \in I$, $\forall \lambda \in (0,1)$, 总有

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \tag{1}$$

则称 f(x) 为I上的凸函数. 如果总有

$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2),$$
 (2)

则称 f(x) 为I上的凹函数.

若(1)与(2)中的不等为严格不等式,相应的函数称为严格凸(凹)函数.

$$x = \lambda x_1 + (1 - \lambda)x_2 \qquad \lambda = \frac{x_2 - x}{x_2 - x_1}$$

$$Q(\lambda x_1 + (1 - \lambda)x_2, f(\lambda x_1 + (1 - \lambda)x_2))$$

$$M(\lambda x_1 + (1 - \lambda)x_2, \lambda f(x_1) + (1 - \lambda)f(x_2))$$

Convex function on an interval.

定义1'(凸函数的等价定义)

设f(x)在区间I上连续,若对 $\forall x_1, x_2 \in I$,恒有

$$f(\frac{x_1 + x_2}{2}) \le \frac{f(x_1) + f(x_2)}{2}$$
(或: $f(\frac{x_1 + x_2}{2}) \ge \frac{f(x_1) + f(x_2)}{2}$)

则称f(x)是区间I上的凸函数(凹函数).

若不等号严格成立,则称f(x)是I上的严格凸(或凹)函数.

若f(x)为区间I上的凸函数,则-f(x)为区间I上的凹函数.

几何角度: 曲线f(x)向上凸,则曲线上任何两点 $(x_1, f(x_1))$ 与 $(x_2, f(x_2))$ 间的弦之中点位于曲线上相应点的下面,即曲线在弦之上. 反之,曲线向下凸,则曲线在弦之下.

 $f(\frac{x_1 + x_2}{2})$ $f(x_1)$ $x_1 \quad \frac{x_1 + x_2}{2} \quad x_2 \quad x$

凸函数 (图形下凸、凹)

Convex function

凹函数 (图形上凸、凸)

Concave function

二、函数凸性的判别法

观察与发现:

f(x)为I上的凸函数.

取I上任意三点: $x_1 < x_2 < x_3$.

观察三线段的斜率: PQ, QR, PR.

结果:

PQ的斜率 < PR的斜率 < QR的斜率

引理: f(x)为I上的凸函数的充要条件是: $y \mid$

对于I上任意三点 $x_1 < x_2 < x_3$, 有

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

证:(必要性) 只证
$$\frac{f(x_2)-f(x_1)}{x_2-x_1} \le \frac{f(x_3)-f(x_2)}{x_3-x_2}$$
.

记
$$\lambda = \frac{x_3 - x_2}{x_3 - x_1}$$
, 则 $0 < \lambda < 1$, $x_2 = \lambda x_1 + (1 - \lambda)x_3$.

由 f(x) 的凸性知:

$$f(x_2) = f(\lambda x_1 + (1 - \lambda)x_3) \le \lambda f(x_1) + (1 - \lambda)f(x_3)$$

$$= \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + (1 - \frac{x_3 - x_2}{x_3 - x_1}) f(x_3)$$

$$= \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + \frac{x_2 - x_1}{x_3 - x_1} f(x_3)$$

由 f(x) 的凸性知:

$$f(x_2) = f(\lambda x_1 + (1 - \lambda)x_3) \le \lambda f(x_1) + (1 - \lambda)f(x_3)$$

$$= \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + (1 - \frac{x_3 - x_2}{x_3 - x_1}) f(x_3)$$

$$= \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + \frac{x_2 - x_1}{x_3 - x_1} f(x_3)$$

从而有
$$(x_3-x_1)f(x_2) \le (x_3-x_2)f(x_1) + (x_2-x_1)f(x_3)$$

 $(x_3-x_2)f(x_2) + (x_2-x_1)f(x_2) \le (x_3-x_2)f(x_1) + (x_2-x_1)f(x_3)$
 $(x_3-x_2)f(x_2) - (x_3-x_2)f(x_1) \le (x_2-x_1)f(x_3) - (x_2-x_1)f(x_2)$
 $(x_3-x_2)[f(x_2)-f(x_1)] \le (x_2-x_1)[f(x_3)-f(x_2)]$
 $\frac{f(x_2)-f(x_1)}{x_2-x_1} \le \frac{f(x_3)-f(x_2)}{x_3-x_2}$.

证明: (充分性)

在I上任取两点 $x_1, x_3(x_1 < x_3)$, 在 $[x_1, x_3]$ 上任取一点

$$x_2 = \lambda x_1 + (1 - \lambda) x_3, \lambda \in (0, 1).$$

$$\mathbb{R} \mathbb{I} \quad \lambda = \frac{x_3 - x_2}{x_3 - x_1}.$$

由必要性的逆推导过程,可证得

$$f(\lambda x_1 + (1-\lambda)x_3) \le \lambda f(x_1) + (1-\lambda)f(x_3),$$

故 f(x) 为I上的凸函数.

定理1. 设 f(x)为区间I上的可导函数,则下述三个命题互相等价:

- (1) f(x)为I上的凸函数;
- (2) f'(x)为I上的增函数;
- (3) 对I上的任意两点 x_1, x_2 , 有 $f(x_2) \ge f(x_1) + f'(x_1)(x_2 x_1)$ (3)

(3)的几何意义:

曲线
$$y = f(x)$$
 在 $x = x_1$ 处的切线方程为 $y = f(x_1) + f'(x_1)(x - x_1)$.

(3)式意即曲线上的点 $(x_2, f(x_2))$ 在切线上的点

$$(x_2, f(x_1) + f'(x_1)(x_2 - x_1))$$
 的上方.

由 x_1, x_2 的任意性, 曲线 y = f(x) 总是在它的任一切线的上方.

定理1. 设 f(x)为区间I上的可导函数,则下述命题互相等价:

- (1) f(x)为I上的凸函数;
- (2) f'(x)为I上的增函数;

证: (1) ⇒ (2) 有引理可知, 若

$$x_1 < x_2, h > 0$$
,则有

$$\frac{f(x_1) - f(x_1 - h)}{h} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2 + h) - f(x_2)}{h}.$$

若f(x)为区间I上的可导函数,则

$$\lim_{h\to 0^+} \frac{f(x_2+h)-f(x_2)}{h} = f'(x_2),$$

$$\lim_{h \to 0^+} \frac{f(x_1) - f(x_1 - h)}{h} = \lim_{h \to 0^+} \frac{f(x_1 + (-h)) - f(x_1)}{(-h)} = f'(x_1).$$

进而得 $f'(x_1) \leq f'(x_2)$.

定理1. 设 f(x)为区间I上的可导函数,则下述命题互相等价:

- (2) f'(x)为I上的增函数;
- (3) 对I上的任意两点 x_1, x_2 , 有

$$f(x_2) \ge f(x_1) + f'(x_1)(x_2 - x_1)$$
 (3)

证: $(2) \Rightarrow (3)$.

在区间 $[x_1,x_2]$ 上应用拉格朗日中值定理,得

$$f(x_2)-f(x_1)=f'(\xi)(x_2-x_1), \xi \in (x_1,x_2).$$

因 f'(x) 在I递增,故有 $f'(\xi) \ge f(x_1)$,因而得

$$f(x_2)-f(x_1) \ge f'(x_1)(x_2-x_1),$$

 $f(x_2) \ge f(x_1)+f'(x_1)(x_2-x_1).$

当 $x_1 > x_2$ 时,类似可证仍然成立.

定理1. 设f(x)为区间I上的可导函数,则下述命题互相等价:

- (1) f(x)为I上的凸函数;
- (3) 对I上的任意两点 x_1, x_2 , 有 $f(x_2) \ge f(x_1) + f'(x_1)(x_2 x_1)$ (3)

证:(3) \Rightarrow (1) 设 x_1, x_2 为I上任意两点,记 $x_3 = \lambda x_1 + (1-\lambda)x_2, 0 < \lambda < 1.$

由假设条件(3), 得
$$f(x_1) \ge f(x_3) + f'(x_3)(x_1 - x_3)$$

 $f(x_2) \ge f(x_3) + f'(x_3)(x_2 - x_3)$

注意到
$$x_1 - x_3 = (1 - \lambda)(x_1 - x_2), x_2 - x_3 = \lambda(x_2 - x_1).$$

得
$$f(x_1) \ge f(x_3) + (1-\lambda)f'(x_3)(x_1 - x_2),$$
 $f(x_2) \ge f(x_3) + \lambda f'(x_3)(x_2 - x_1).$

分别用 λ , $1-\lambda$ 乘上列两式并相加,得

$$\lambda f(x_1) + (1 - \lambda) f(x_2) \ge f(x_3) = f(\lambda x_1 + (1 - \lambda) x_2).$$

从而f(x)为I上的凸函数.

定理1. 设 f(x)为区间I上的可导函数,则下述三个命题互相等价:

- (1) f(x)为I上的凸函数;
- (2) f'(x)为I上的增函数;
- (3) 对I上的任意两点 x_1, x_2 , 有 $f(x_2) \ge f(x_1) + f'(x_1)(x_2 x_1)$ (3)

定理2. 设f(x)为区间I上的二阶可导函数,则在I上 f(x) 为凸(凹)函数的充要条件是 $f''(x) \ge 0 \le 0$, $x \in I$.

证明:由定理1及函数的单调性定理即得

定理2'. 设函数 f(x) 在区间I 上有二阶导数

(1) 在 I 内 f''(x) > 0, 则 f(x) 在 I 内是严格凸函数;

(2) 在 I 内 f''(x) < 0, 则 f(x) 在 I 内是严格凹函数.

证: $\forall x_1, x_2 \in I$,利用一阶泰勒公式可得

$$f(x_1) = f(\frac{x_1 + x_2}{2}) + f'(\frac{x_1 + x_2}{2})(x_1 - \frac{x_1 + x_2}{2}) + \frac{f''(\xi_1)}{2!}(x_1 - \frac{x_1 + x_2}{2})^2$$

$$f(x_2) = f(\frac{x_1 + x_2}{2}) + f'(\frac{x_1 + x_2}{2})(x_2 - \frac{x_1 + x_2}{2}) + \frac{f''(\xi_2)}{2!}(x_2 - \frac{x_1 + x_2}{2})^2$$

两式相加

(2) 证毕

例1. 求函数 $f(x) = \arctan x$ 的凸(凹)性区间.

解:
$$f'(x) = \frac{1}{1+x^2}$$
, $f''(x) = \frac{-2x}{(1+x^2)^2}$.

当x≤0时,f''(x)≥0;

当 $x \ge 0$ 时, $f''(x) \le 0$,

从而在 $(-\infty,0]$ 上 f(x) 为凸函数

在 $[0,+\infty)$ 上, f(x)为凹函数.

三、凸函数的性质

例2. 若函数 f(x)为定义在开区间 (a,b)内的可导的 凸函数,则 $x_0 \in (a,b)$ 为 f(x) 的极小值点的 充要条件是 $f'(x_0) = 0$.

证:必要性:由费马定理给出.

充分性:

任取 $x \in (a,b), x \neq x_0$. 因f(x)为I上的凸函数,故有 $f(x) \geq f(x_0) + f'(x_0)(x - x_0),$

因 $f'(x_0) = 0$, 故 $f(x) \ge f(x_0)$,

即 x_0 为f(x)的极小值点(也是最小值点).

例3.(Jensen不等式)

若 f(x) 为 [a,b] 上的凸函数,则对任意

$$x_i \in [a,b], \lambda_i > 0, (i = 1, 2, \dots, n), \sum_{i=1}^n \lambda_i = 1,$$
有 $f(\sum_{i=1}^n \lambda_i x_i) \le \sum_{i=1}^n \lambda_i f(x_i).$

思路:用数学归纳法.

证明见华东师大《数学分析》(上册,第三版) Page151,例3. 例4. 证明不等式 $(abc)^{\frac{a+b+c}{3}} \le a^a b^b c^c$, 其中 a,b,c 均为正数.

证: 设
$$f(x) = x \ln x, x > 0$$
, 则

$$f'(x) = \ln x + 1, \quad f''(x) = \frac{1}{x},$$

故当 x > 0 时 f(x) 为凸函数. 由Jensen不等式有

$$f(\frac{a+b+c}{3}) \le \frac{1}{3}(f(a)+f(b)+f(c)),$$

从而
$$\frac{a+b+c}{3}\ln\frac{a+b+c}{3} \le \frac{1}{3}(a\ln a + b\ln b + c\ln c),$$

所以
$$\frac{a+b+c}{3}\ln\sqrt[3]{abc} \le \frac{1}{3}(a\ln a + b\ln b + c\ln c),$$

$$\frac{a+b+c}{3}\ln(abc) \leq \ln(a^ab^bc^c), \quad \mathbb{P}(abc)^{\frac{a+b+c}{3}} \leq a^ab^bc^c.$$

例5 试证: 对 $\forall x > 0$ 、y > 0, $x \neq y$ 及 $\alpha > 1$, 有 $\frac{1}{2}(x^{\alpha} + y^{\alpha}) > (\frac{x + y}{2})^{\alpha}.$

在t>0时有f''(t)>0, ::在t>0时 f 是凸函数。

∴ 对
$$\forall x, y \in (0, +\infty)$$
 且 $x \neq y$, 有

$$\frac{1}{2}(f(x)+f(y)) > f(\frac{x+y}{2}),$$

即所证不等式成立。

思考题:

1. 证明: 当 $a_i > 0$ ($i = 1, 2, \dots, n$) 时,有

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 a_2 \cdots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n}.$$

2. $\mathfrak{P}_{0} < x_{i} < \pi \ (i = 1, 2, \dots, n), \ \diamondsuit \ x = \frac{1}{n} (x_{1} + x_{2} + \dots + x_{n}),$

证明:
$$\prod_{i=1}^{n} \frac{\sin x_{i}}{x_{i}} \leq \left(\frac{\sin x}{x}\right)^{n}.$$

例6. 设 f(x)为开区间I内的凸函数.证明 f(x) 在I内任一点 x_0 都存在左、右导数.

证明分析: 只证 $f'_+(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$ 存在的情形.

由引理, 若f(x)为I上的凸函数, 对于I上任意三点 $x_1 < x_2 < x_3$,

有
$$\frac{f(x_2)-f(x_1)}{x_2-x_1} \le \frac{f(x_3)-f(x_1)}{x_3-x_1} \le \frac{f(x_3)-f(x_2)}{x_3-x_2}$$
.

进而当 $0 < h_1 < h_2$ 时, $\frac{f(x_0 + h_1) - f(x_0)}{h_1} \le \frac{f(x_0 + h_2) - f(x_0)}{h_2}$.

即函数 $F(h) = \frac{f(x_0 + h) - f(x_0)}{h}$ 单调递增.

又当
$$x' < x_0$$
时, $\frac{f(x_0) - f(x')}{x_0 - x'} \le \frac{f(x_0 + h) - f(x_0)}{h} = F(h)$

即 F(h) 有下界.由单调有界定理可得证.

例6. 设 f(x) 为开区间I内的凸函数.证明 f(x) 在I内任一点 x_0 都存在左、右导数.

证: 设 $0 < h_1 < h_2$,则有 $x_0 < x_0 + h_1 < x_0 + h_2$ (这里取充分小的 h_2 ,使 $x_0 + h_2 \in I$).

曲引理有
$$\frac{f(x_0 + h_1) - f(x_0)}{h_1} \le \frac{f(x_0 + h_2) - f(x_0)}{h_2}.$$

则 F(h) 为增函数. 任取 $x' \in I$ 且 $x' < x_0$, 则对任何 h > 0,

只要
$$x_0 + h \in I$$

$$\frac{f(x_0) - f(x')}{x_0 - x'} \le \frac{f(x_0 + h) - f(x_0)}{h} = F(h),$$

即 F(h) 有下界. 据单调有界定理, $\lim_{h\to 0^+} F(h)$ 存在,也就是

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

存在,即 $f'_{+}(x_{0})$ 存在. 同理可证 $f'_{-}(x_{0})$ 存在.

四、曲线的拐点及其求法

定义2. 设曲线 y = f(x) 在点 $(x_0, f(x_0))$

处有穿过曲线的切线,且在切点两近旁,曲线 在切线两侧分别是严格凸和严格凹的,则称点

 $(x_0, f(x_0))$ 为曲线y = f(x) 的拐点.

定义2'

连续曲线上凹弧与凸弧的分界点 称为曲线的拐点.

注意:拐点处的切线必在拐点处穿过曲线.

拐点的求法:

定理3. 如果 f(x)在 $U(x_0)$ 内存在二阶导数,则点 $(x_0, f(x_0))$ 为拐点的必要条件为 $f''(x_0) = 0$.

定理4: (拐点的第一充分条件)

设函数f(x)在 x_0 的邻域内二阶可知 $f''(x_0) = 0$,

- (1) x_0 两近旁f''(x)变号,点 $(x_0,f(x_0))$ 即为拐点
- $(2) x_0$ 两近旁''(x)不变号点 $(x_0, f(x_0))$ 不是拐点

例7 求曲线 $y = 3x^4 - 4x^3 + 1$ 的拐点及 凹、凸的区间.

解
$$: D: (-\infty, +\infty)$$

 $y' = 12x^3 - 12x^2, \quad y'' = 36x(x - \frac{2}{3}).$
 $\Rightarrow y'' = 0, \quad \exists x_1 = 0, x_2 = \frac{2}{3}.$

x	$(-\infty,0)$	0	$(0,\frac{2}{3})$	2/3	$(\frac{2}{3},+\infty)$
f''(x)	+	0	_	0	+
f(x)		拐点 (0,1)		拐点 (2/3,11/27)	

凹凸区间为
$$(-\infty,0]$$
, $[0,\frac{2}{3}]$, $[\frac{2}{3},+\infty)$.

注意: 若 $f''(x_0)$ 不存在,点 $(x_0, f(x_0))$ 也可能是连续曲线y = f(x) 的拐点

例8. 求曲线 $y = \sqrt[3]{x}$ 的拐点.

解: 当
$$x \neq 0$$
时, $y' = \frac{1}{3}x^{-\frac{2}{3}}$, $y'' = -\frac{4}{9}x^{-\frac{5}{3}}$, $x = 0$ 是不可导点, y' , y'' 均不存在.

但在 $(-\infty,0)$ 内,y'' > 0,曲线在 $(-\infty,0]$ 上是凹的; 在 $(0,+\infty)$ 内,y'' < 0,曲线在 $(0,+\infty)$ 上是凸的.

:.点(0,0)是曲线 $y = \sqrt[3]{x}$ 的拐点.

例9. 讨论 $y = (x-1) \cdot \sqrt[3]{x^2}$ 的凹凸性与拐点解 定义域为 $(-\infty, +\infty)$.

x	$(-\infty, -\frac{1}{5})$	$-\frac{1}{5}$	$(-\frac{1}{5}, 0)$	0	$(0, +\infty)$
f''(x)	_	0	+	不存在	+
f(x)	\cap	拐点	J	非拐点	U

∴函数在 $(-\infty, -1/5]$ 上是凹函数、在 [-1/5, 0] 及 $[0, +\infty)$ 上是凸函数,拐点为-1/5.

问:能否说此函数的图形在 [-1/5, +∞) 上是凹的?

此函数在 $(-\infty, -1/5]$ 上是凹函数、在 [-1/5, 0] 及 $[0, +\infty)$ 上是凸函数,拐点为-1/5.

定理5(拐点的第二充分条件)

设
$$f''(x_0) = 0$$
且 $f'''(x_0) \neq 0 \Rightarrow x_0$ 为 $f(x)$ 的拐点。

$$iii : f''(x) = f''(x_0) + f'''(x_0)(x - x_0) + o(x - x_0)$$
$$= f'''(x_0)(x - x_0) + o(x - x_0)$$

$$\Rightarrow \lim_{x \to x_0} \frac{f''(x)}{x - x_0} = f'''(x_0)$$

∴在
$$x_0$$
邻近 $\frac{f''(x)}{x-x_0}$ 与 $f'''(x_0)$ 同号

⇒ 在 x_0 的左右邻近f''(x) 异号

 $\therefore x_0$ 为f(x)的拐点。证毕。

例10. 求曲线 $y = \sin x + \cos x$ ([0,2 π]内)的拐点.

解:
$$y' = \cos x - \sin x$$
, $y'' = -\sin x - \cos x$, $y''' = -\cos x + \sin x$.

∴在[0,2π]内曲线有拐点为

$$(\frac{3\pi}{4},0), (\frac{7\pi}{4},0).$$

∴在[0,2 π]内曲线有拐点为 $(\frac{3\pi}{4},0)$, $(\frac{7\pi}{4},0)$.

注意: 若 $f''(x_0)$ 不存在,点 $(x_0, f(x_0))$ 也可能是连续曲线 y = f(x) 的拐点.

思考题:

- 1.已知函数y = f(x)对一切x满足 $xf''(x) + 3xf'^{2}(x) = 1 e^{-x}$,若 $f'(x_0) = 0(x_0 \neq 0)$,则 ()
- A. $f(x_0)$ 是f(x)的极大值;
- B. $(x_0 f(x_0))$ 是曲线y = f(x)的拐点;
- C. $f(x_0)$ 是f(x)的极小值;
- *D*. $f(x_0)$ 不是f(x)的极值, $(x_0f(x_0))$ 不是y = f(x)的拐点.
- 2. 在下面两题中,分别指出满足条件的函数是否存在. 若存在,举一例,并证明满足条件;若不存在,请给出证明.
- (1) 函数f(x)在x=0处可导,但在x=0的某去心邻域内处处不可导;
- (2) 函数f(x)在($-\delta$, δ)(δ >0)上可导, f(0)为极值,且(0,f(0))为曲线 y=f(x)的拐点.