1 of 5

Feedback — Problem Set-6

Help Center

You submitted this quiz on Fri 27 Feb 2015 1:23 PM IST. You got a score of 5.00 out of 5.00.

Question 1

Suppose we use a hash function h to hash n distinct keys into an array T of length m. Assuming simple uniform hashing --- that is, with each key mapped independently and uniformly to a random bucket --- what is the expected number of keys that get mapped to the first bucket? More precisely, what is the expected cardinality of the set $\{k:h(k)=1\}$.

Your Answer		Score	Explanation
m/(2n)			
$\bigcirc 1/n$			
$\bigcirc 1/m$			
n/(2m)			
$\bigcirc m/n$			
	~	1.00	Use linearity of expectation, with one indicator variable for each key. The probability that one key hashes to the first bucket is $1/m$, and by linearity of expectation the total expected number of keys that hash to the first bucket is just n/m .
Total		1.00 / 1.00	

Question 2

You are given a binary tree (via a pointer to its root) with n nodes, which may or may not be a binary search tree. How much time is necessary and sufficient to check whether or not the tree satisfies the search tree property?

Your Answer		Score	Explanation
$igorphi$ $\Theta(n)$	~	1.00	For the lower bound, if there is a violation of the search tree property, you might need to examine all of the nodes to find it (in the worst case).
$\Theta(\log n)$			
$\Theta(n \log n)$			
$\Theta(height)$			
Total		1.00 / 1.00	

Question 3

You are given a binary tree (via a pointer to its root) with n nodes. As in lecture, let size(x) denote the number of nodes in the subtree rooted at the node x. How much time is necessary and sufficient to compute size(x) for every node x of the tree?

Your Score Explanation Answer			Explanation
$\Theta(n)$ \checkmark 1.00		1.00	For the lower bound, note that a linear number of quantities need to be computed. For the upper bound, recursively compute the sizes of the left and right subtrees, and use the formula $size(x) = 1 + size(y) + size(z)$ from lecture.

$egin{array}{c} igoplus & igoplus & \Theta(height) \end{array}$			
$\Theta(n \log n)$			
$\Theta(n^2)$			
Total	1.00 / 1.00		

Question 4

Which of the following is *not* a property that you expect a well-designed hash function to have?

Score	Explanation
1 .00	As discussed in lecture, unfortunately, there is no such hash function.
1.00 / 1.00	
	✓ 1.00 1.00 /

Question 5

Suppose we relax the third invariant of red-black trees to the property that there are no three reds

in a row. That is, if a node and its parent are both red, then both of its children must be black. Call these relaxed red-black trees. Which of the following statements is not true? **Your Answer Explanation** Score There is a relaxed red-black tree that is not also a red-black tree. The height of every relaxed red-black tree with n nodes is $O(\log n)$. Every binary search tree can be turned 1.00 A chain with four nodes is a into a relaxed red-black tree (via some counterexample. coloring of the nodes as black or red). Every red-black tree is also a relaxed red-black tree. Total 1.00 /

1.00