Due Date: Nov 11

Problem 4

23. Express a measurable function as the difference of non-negative measurable functions and thereby prove the general Simple Approximation Theorem based in the special case of a non-negative measurable function.

Proof: Assume f is an extended real-valued function on a measurable set E. Let $f^+ = max\{f, 0\}$ and $f^- = max\{-f, 0\}$ then both f^+ and f^- are greater or equal to zero. We can notice that $f = f^+ - f^-$. Since f^+ and f^- are non-negative and the proof for the non-negative case implies that there exists sequences $\{\varphi_n\}$ and $\{\psi_n\}$ of simple functions on E which converge pointwise on E to f^+ and f^- , and $0 \le \varphi_n \le f^+$, $0 \le \psi_n \le f^+$.

Then we define $\phi_n = \psi_n - \varphi_n$, the ϕ_n is a sequence of simple function on E for all n, by the result of problem 19 in the textbook. To see that ϕ_n converges pointwise on E to f.

If f < 0, we have

$$\phi_n = -\psi_n \to -f^- = f$$

If $f \geq 0$, then $f^- = 0$ and $\psi_n = 0$ for all n and thus

$$\phi_n = \varphi_n \to f^+ = f$$

Hence, we conclude that

$$|\phi_n| = |\varphi_n - \psi_n| \le \varphi_n + \psi_n \le f^+ + f^- = |f|$$

on E for all n. Therefore, $|\phi_n| < |f|$ on E.

I tried to modify my previous proof a little bit in order to make it nicer. Then, since Simple Approximation Theorem is an if and only if statement, we need to prove it in another direction.

Assume function f is non-negative and measurable, we may choose $\{\varphi_n\}$ to be increasing. Let n be a natural number and $E_n = \{x \in E | f(x) \leq n\}$. By the simple approximation lemma, applied to the restriction of f to E_n and with choice of $\epsilon = \frac{1}{n}$. Then there exists φ_n and ψ_n simple functions on E_n such that

$$0 \le \varphi_n \le f \le \psi_n$$
 on E_n and $0 \le \psi_n - \varphi_n \le \frac{1}{n}$ on E_n

We can notice that

$$0 \le \varphi_n \le f \text{ and } 0 \le f - \varphi_n \le \psi_n - \varphi_n < \frac{1}{n} \text{ on } E_n$$

Extend φ_n to rest of E by letting $\varphi_n(x) = n$ if f(x) > n. So the φ_n is a simple function defined on E and satisfies $0 \le \varphi_n \le f$ on E. Now, we will show that φ_n converges pointwise to f on E. Let x belongs to E. If x is such that $f(x) < \infty$, then we choose a $N \in \mathbb{N}$ for which f(x) < N. Since $x \in E_n$, for all $n \ge N$ we have

$$0 \le f(x) - \varphi(x) < \frac{1}{n}$$

and thus $\varphi_n \to f$ pointwise.

If x is such that $f(x) = \infty$, then we take $\varphi(x) = n$ for all n. It follows that $\varphi_n \to f$ pointwise. By replacing each φ_n with $\max\{\varphi_1, \ldots, \varphi_n\}$ we obtain $\{\varphi_n\}$ increasing.