2-D Rayleigh autoregressive moving average model for SAR image modeling

Gabriel D'Assumpção de Carvalho

Ciências Atuarias - UFPE

10 de agosto de 2025

Programação

- 1 Modelo
 - 2-D RARMA

- 2 Detecção de Anomalia
 - Algoritmo
 - Resultados dos Modelos

Modelo

2-D RARMA

Objetivo:

Modelar amplitudes SAR (positivas, assimétricas) via distribuição Rayleigh, usando modelo autorregressivo + média móvel bidimensional (2-D RARMA). **Formulação:**

GLM espacial com ligação log:

$$g(\mu[n,m]) = \beta + \sum \phi_{i,j} g(y[n-i,m-j]) + \sum \theta_{k,l} e[n-k,m-l]$$

- $g(x) = \log(x)$
- lacktriangledown $\phi_{i,j}$: parâmetros AR (autocorrelação espacial)
- lacksquare $\theta_{k,l}$: parâmetros MA (média móvel)
- y: valores observados
- e: resíduos

Casos estudados:

- RARMA(1,1): AR e MA
- RARMA(1,0): apenas AR

Estimação:

- Máxima verossimilhança condicional (CMLE)
- Nº parâmetros: $(p+1)^2 + (q+1)^2 1$

10 de agosto de 2025

Detecção de Anomalia

Detecção de Anomalia

Ideia:

- Com parâmetros estimados e $\hat{\mu}[n, m]$, calcular resíduos e[n, m].
- Supor $e[n, m] \sim N(0, 1)$.
- Intervalo esperado: [-3, 3] (99,7% dos valores).
- Resíduos fora do intervalo ⇒ anomalia.

Pré-processamento:

- Ajustar 4 modelos, cada um para uma direção (NO, NE, SE, SO).
- Obter direções aplicando rotações de 90° na imagem.

7/9

Fluxo do Algoritmo

Algorithm 1 Anomaly detection method based on the 2-D RARMA(p,q) model.

Input: Interest image Xinput

Output: Anomaly detection image X_{detected}

- 1) Select region of interest $\mathbf{X}_{\text{selected}} \subset \mathbf{X}_{\text{input}}$ which anomaly detection is to be tested against.
- 2) Fit the 2-D RARMA(p,q) model for the following images:

```
X_0 = X_{\text{selected}}

X_k = \text{rot} 90(X_{k-1}),
```

for k = 1, 2, 3, where **rot90**(·) rotates its argument counterclockwise by 90 degrees.

- 3) For each resulting fitted image, compute residuals $r_k[n, m]$ relative to \mathbf{X}_{input} .
- 4) Obtain four binary images as follows

if
$$(r_k[n,m] \le -3)$$
 or $(r_k[n,m] \ge 3)$ then $\tilde{X}_k[n,m] \leftarrow 1$

else

$$X_k[n,m] \leftarrow 0$$

end if

for k = 0, 1, 2, 3.

- 5) Compute binary image from the following pixel-wise Boolean union: $\tilde{\mathbf{X}} \leftarrow \bigcup_{k=0}^{3} \tilde{\mathbf{X}}_{k}$.
- 6) Apply morphological operators as a final post-processing step: $\mathbf{X}_{\text{detected}} \leftarrow \text{post-processing}(\tilde{\mathbf{X}})$.

Figura: Detecção de anomalias baseada no modelo 2-D RARMA(p, q).

8/9

Modelo

Simulações

Objetivo: avaliar estimativas do RARMA(1,0) por simulação Monte Carlo.

Procedimento:

- Parâmetros verdadeiros obtidos de uma imagem Rayleigh: $\beta = -0.2031$, $\phi_{0.1} = 0.4562$, $\phi_{1.0} = 0.4523$, $\phi_{1.1} = -0.1054$.
- Gerar imagem \rightarrow estimar parâmetros \rightarrow comparar com valores verdadeiros.
- Repetir 1000 vezes; calcular média, viés relativo (RB), EQM, IC e cobertura (CR).

Figura: Simulação dos parâmetros do modelo RARMA(1,0).

Conclusão: amostras 40×40 já produzem estimativas estáveis; apenas $\phi_{1,0}$ apresentou maior variabilidade (CR $\approx 94,4\%$).

Pados Reais

Imagem SAR (CARABAS II) de floresta com 25 caminhões do exército no canto superior esquerdo.

Fig. 3. Original CARABAS II SAR image.

Figura: Imagem original

Table 3

Rotated image								
	Northwest		Southwest		Southeast		Northeast	
	Estimate	SE	Estimate	SE	Estimate	SE	Estimate	SE
β	-1.2274	0.0681	-1.1146	0.0854	-1.1986	0.0666	-1.2076	0.0892
Ñg.ti	0.1723	0.0303	0.1659	0.0396	0.2218	0.0308	0.1912	0.0392
Ř(1,0)	0.1526	0.0316	0.2206	0.0351	0.1572	0.0316	0.1616	0.0361
N1.10	0.0675	0.0303	0.0512	0.0275	0.0294	0.0308	0.0387	0.0270
Ve.to	0.1773	0.0329	0.1263	0.0418	0.1305	0.0336	0.1127	0.0416
1.00	0.1646	0.0338	0.1208	0.0378	0.1808	0.0335	0.1685	0.0383
Ā(1.1)	0.1935	0.0252	-0.0691	0.0250	0.2064	0.0251	-0.0461	0.0256
p-value	< 0.001		< 0.001		< 0.001		< 0.001	

Figura: Resultados do modelo nos dados reais

