Gelişimsel Robotikte Yapay Öğrenme

Erol Şahin

ODTÜ Bilgisayar Mühendisliği Bölümü

All copyright belongs to their rightful owners. Material used for educational purposes only.

Pekiştirmeli öğrenme (reinforcement learning)

Gözeticisiz öğrenme (unsupervised learning) Gözeticili öğrenme (supervised learning)

Bir Başarı Öyküsü

- Multi-modal
- Artırımsal
- Fiziksel
- Keşfet
- Sosyal
- Dil

Fiziksel

- Vücut
 - Nerede başlayıp nerede biter
- Dünya
 - Nesnelerin kalıcılığı Ceee
- Bellek olarak dünyanın kendisi
 - Farkları görememe

Keşfet

- Herhangi bir hedef yönelik olmadan
- Basit refleksler, motor ve algı
- Önce kendi vücutları
- Sonra nesnelerin dinamikleri

Sosyal

- Annenin davranışları başlangıçta bebeğinkileri taklit eder.
- Gülmeyi öğrenmek zor bir iş
- Karmaşık davranışları anne bebeğin daha rahat algılabileceği bir şekilde gösterip taklit sürecini kolaylaştırır

Dil

- Sembol topraklama
- Sensorimotor davranışları ayrık etiketlerle ilintilendirme
- Kaldırmak nedir?
- Kar nedir?

Akıllı Robotlar için Gelişimsel Robotik

Basit davranışlardan karmaşık davranışlara gelişim

Fiziksel etkileşim Hedef gözetmeyen öğrenme

Başlangıçta sınırlı algı ve motor yetenekler

Algısal ve davranışsal kategoriler ve hedefe yönelik davranışlar

^{*} Asada et.al.'2001, Weng et.al.'2001, Zlatev and Balkenus'2001, Lungarella 2003

Ekolojik Psikoloji ve Sağlarlık (Affordance)

Formalizasyon

Gelişimsel Adımlar

YAŞ	BEBEK GELİŞİMİ	ROBOT SKILL LEARNING & TARGETS		
0 months	Doğuştan gelen refleksler ve basit hareketler	Built-in reflex and simple actions		
0-5 months	Refleks kullanır ve basit hareket egzersizleri yapar	Execute built-in actions with different hand speeds. Discover a set of behaviors.		
5 months	Tutmak için nesnelere doğru hızda yaklaşır	Can grasp object with correct hand speed		
7-9 months	Tutma, bırakma gibi davranışlarla ortamı keşfeder	Explore environment with the discovered set of behaviors		
7-9 months	Nedenselliği ve nesne dinamiklerini öğrenir	Monitor the environment and learn affordances		
9 months	Nesnelere doğru el yönelimi ile erişir	Can parameterize behaviors execution using affordances		
12 months	Hareketleri taklit eder	Emulate goals using affordances		
12 months	Simple multi-step plans	Generate plans using affordances		

Emre Uğur ve Erhan Öztop ile ortak çalışma

Gelişimsel Çerçeve

(<7 ay)

Adım 1: Davranış repertuarı oluşturma

Tutma refleksi

Erişme çabaları

Açık/kapalı el ile erişme ve bırakma

Elin hızını kontrol

Gelişmiş tutma yeteneği

Gelişimsel Çerçeve Robot öğrenme adımları

Adım 1: Davranış repertuarı oluşturma

- Doğuştan gelen refleks ile etkileş
- Kaba bir algı sistemi ile veri al
- Basit bir ortam

Adım 2: Sağlarlıkları öğrenme

- Keşfedilen davranışlarla etkileş
- Gelişmiş bir algı sistemi ile veri al
- Daha karmaşık bir ortam

Adım 3: Sağlarlıkların hedefe yönelik kullanımı

- Davranışların yaratacağı etkiyi öngör
- Çok adımlı planlar yap
- Planın uygulanmasını takip et

Gelişimsel Çerçeve

Robot öğrenme adımları

Adım 1: Davranış repertuarı oluşturma

- Doğuştan gelen refleks ile etkileş
- Kaba bir algı sistemi ile veri al
- Basit bir ortam

Adım 2: Sağlarlıkları öğrenme

- Keşfedilen davranışlarla etkileş
- Gelişmiş bir algı sistemi ile veri al
- Daha karmaşık bir ortam

Adım 3: Sağlarlıkların hedefe yönelik kullanımı

- Davranışların yaratacağı etkiyi öngör
- Çok adımlı planlar yap
- Planın uygulanmasını takip et

Gelişimsel Çerçeve

Robot öğrenme adımları

Adım 1: Davranış repertuarı oluşturma

- Doğuştan gelen refleks ile etkileş
- Kaba bir algı sistemi ile veri al
- Basit bir ortam

Adım 2: Sağlarlıkları öğrenme

- Keşfedilen davranışlarla etkileş
- Gelişmiş bir algı sistemi ile veri al
- Daha karmaşık bir ortam

Adım 3: Sağlarlıkların hedefe yönelik kullanımı

- Davranışların yaratacağı etkiyi öngör
- Çok adımlı planlar yap
- Planın uygulanmasını takip et

Adım 1: Davranış Repertuarı oluştur

Davranışlar ve etkileşim

Salla-El (hız)

- Erişme refleksi: Eli nesneye doğru salla ve geri getir
- Tutma refleksi: Avuç içindeki sensor aktive olursa eli kapat
- Kapalı olsa bile rasgele eli aç
- Dokunma (açık/kapalı) ve görsel (görünür/görünmez) algıları takip et
- Önce Dokunma algısına bağlı olarak parçala
- Daha sonra görsel algıya göre ayırdet

Aynı noktada tek nesne

Adım 1: Davranış Repertuarı oluştur

Algılara bağlı davranış kategorileri

Adım 1: Davranış Repertuarı oluştur Algılara bağlı keşfedilen davranışlar

Name	Init Touch	Final Touch	Init Vel	Final Vel	Grasp reflex	Dir.	Final object
Tut	Off	On	[0-0]	[19-22]	On	Obj	
Taşı	On	On	[19-21]	[0-0]	On	Self	
Düşür	On	Off	[22-27]	[28-35]	On	Self	
Bırak	On	Off	[19-21]	[10-70]	Off	Self	
Vur	Off	Onf	[0-0]	[24-76]	On	Obj	
İttir ₁	Onf	Off	[25-46]	[0-0]	On	Self	
İttir ₂	Off	Off	[25-65]	[0-0]	On	Self	

Görsel algı

Nesnenin nitelik vektörü

- 1 nesnenin görünürlüğü
- 36 şekil ile ilgili nitelikler
- 1 uzaklık
- 4x3 pozisyon niteliği
- 3 büyüklük niteliği

Keşfetme

- Rasgele yönelim
- Rasgele pozisyon

 İtme ve kaldırma davranışları ile 1000 değişik etkileşim

Adım 2: Sağlarlıkları öğren Etki Kategorileri

- Her davranış farklı tipte etkiler yaratır
- Bunlar değişik sağlarlıklara karşılık gelir
 - Tutula-bilir, kaldırıla-bilir
 - İttirile-bilir, yuvarlana-bilir, düşürüle-bilir
 - Erisile-bilir
- Etki uzayında kategori oluşturma

Etki Kategorileri

Kaldırma davranışı için Etki Kategorileri

X-means ile bulunan 5 değişik etki kategorisi

İttirme davranışı için Etki Kategorileri

5 different effect categories are found by X-means

Planlama için Öngörü

- Nesne nitelikleri ve davranış
 - → Etki kategorisi öngör

Her davranış için bir sınıflayıcı eğit

Planlama için Öngörü

Adım 3: Sağlarlıkların Hedefe Yönelik Kullanımı

Nesne niteliklerinin geleceğe yönelik öngörüsü

Adım 3: Sağlarlıkların Hedefe Yönelik Kullanımı

Planlama

$$S_{\{b^1...b^{t-1}\}}^t = [\boldsymbol{p}_{o_1,\{b^1...b^{t-1}\}}^t \dots \boldsymbol{p}_{o_m,\{b^1...b^{t-1}\}}^t]$$

Adım 3: Sağlarlıkların Hedefe Yönelik Kullanımı

Hedef: Masayı temizle

Hedef: Nesne görünürlük niteliği 0 olmalı

sağa-ittir Sağa-ittir push-right

- 1. Kaldır
- 2. İleri ittir

Bırakma Davranışı oluşuyor

Adım 3: Sağlarlıkların Hedefe Yönelik Kullanımı

Hedef: Nesneyi hedef pozisyona getir

 Hedef : Nesnenin pozisyon niteliğini gösterilen nesneninkine yaklaştır

Pekiştirmeli öğrenme (reinforcement learning)

Gözeticisiz öğrenme (unsupervised learning)

Pekiştirmeli Öğrenme

Pekiştirmeli Öğrenme – İçsel Motivasyon

Motivasyon =
içsel durum
X
Ortamdaki teşvik

- Çocuklar
 - Merak
 - Keşfetme isteği
- Maymunlar
 - Ucunda ödül olmayan mekanizmaları çözme
- Fareler
 - Aşina olmadıkları yerleri gezme

Barto, Andrew G. "Intrinsic motivation and reinforcement learning." Intrinsically motivated learning in natural and artificial systems. Springer, Berlin, Heidelberg, 2013. 17-4

İçsel Motivasyon – Son gelişmeler

- Algı: Ortamın avatarın gözünden görünümü
- Davranış:
 - 2 tane hareket etme
 - N tane nesneye 6 boyutta (3 kuvvet, 3 tork) uygulama

Haber, Nick, et al. "Learning to Play With Intrinsically-Motivated, Self-Aware Agents." *Advances in Neural Information Processing Systems*. 2018.

İki değişik model

■ World modeli:

- Dünyanın dinamiği
- Şu andaki durum ve davranış ile bir sonraki durumu öngörme

Self modeli:

- Avatarın dünya dinamiğinde en çok hata yaptığı yeri öngörme
- Bu öngörüyü kullanarak en çok hata yaratacak aksiyonları seçme

Dinlediğiniz için Teşekkürler

http://kovan.ceng.metu.edu.tr

Çalışmalara Emek ve Para Desteği Verenler

Emre Uğur, Erhan Öztop, Barış Akgün, İlkay Atıl, Asil K. Bozcuoğlu, Maya Çakmak, Yiğit Çalışkan, Nilgün Dağ, Mehmet R. Doğar, Selda Eren, Sinan Kalkan, Sertaç Olgunsoylu, Güner Orhan, Mustafa Parlaktuna, Doruk Tunaoğlu, Göktürk Üçoluk, Kadir Uyanık, Onur Yürüten.

Emergence of communication in RObots through

Sensorimotor and Social Interaction

Bu araştırmalar kısmi olarak TÜBİTAK 109E033 nolu projesi çerçevesinde desteklenöiştir.

Daha fazla bilgi için @ http://kovan.ceng.metu.edu.tr/