

Рис. 10

Примем для удобства t_0 = a, t_n = b. Тогда площадь S, о которой идёт речь, с любой точностью можно заменить на сумму площадей прямоугольников с нижними основаниями $[t_0, t_1]$, $[t_1, t_2]$, ..., $[t_{n-1}, t_n]$ и с высотами $v(t_0)$, $v(t_1)$, ..., $v(t_{n-1})$ (рис. 9), т. е. получаем

$$S \approx v(t_0)(t_1 - t_0) + v(t_1)(t_2 - t_1) + \dots + v(t_{n-1}) \times (t_n - t_{n-1}) = \sum_{k=0}^{n-1} v(t_k)(t_{k+1} - t_k) = \sum_{k=0}^{n-1} v(t_k) \Delta t_k$$

(это сокращённое обозначение левой части). Более точная запись:

$$S = \lim_{\substack{\Delta t_k \to 0 \\ n \to \infty}} \sum_{k=0}^{n-1} v(t_k)(t_{k+1} - t_k) = \lim_{\substack{\Delta t_k \to 0 \\ n \to \infty}} \sum_{k=0}^{n-1} v(t_k) \Delta t_k,$$

где $\Delta t_k = t_{k+1} - t_k$. Можно, например, брать разбиение отрезка [a,b] на n равных частей, так что $\Delta t_k = \frac{b-a}{n}$ и тогда условие перехода к пределу состоит просто в том, что $n \to \infty$. Но, с другой стороны, точно так же можно находить путь, пройденный в промежутке от a до b, так как на маленьких участках $[t_k, t_{k+1}]$ скорость можно считать постоянной. Итак,

$$S = \int_a^b v(t) dt = \lim_{\substack{\Delta t_k \to 0 \\ n \to \infty}} \sum_{k=0}^{n-1} v(t_k) \Delta t_k.$$

Отметим соглашение о знаке площади: если кусок площади лежит под осью абсцисс, то его знак считается отрицательным, так как в этом случае $\Delta t_k > 0$, а $v(t_k) < 0$.

Пример 1. Найдём площадь S под параболой $y=x^2$ от точки x=0 до точки x=1 (рис. 10). Имеем:

$$S = \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}.$$

Пример 2. Площадь под гиперболой y=1/x от x=1 до про-извольного x равна $\int\limits_1^x t^{-1} dt = \ln t \Big|_1^x = \ln x$ (рис. 11). Таков геометрический смысл натурального логарифма.