Contrôle Final

Durée: 1H30mn, 14 Janvier 2020

Exercice 1 5 pts

On considère la fonction f_n définie sur [0, 1] par :

$$f_n(x) = e^{-x} \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} \right)$$
 et la suite (u_n) définie par $u_n = f_n(1)$.

- 1. Montrer que f_n est dérivable et que $f'_n(x) = e^{-x} \frac{x^n}{n!}$.
- 2. En appliquant l'inégalité des accroissements finis, montrer que $\left|\frac{u_n}{e}-1\right| \leqslant \frac{1}{n!}$.
- 3. En déduire que la suite (u_n) est convergente et calculer sa limite notée par $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$.

Exercice 2 4 pts

- 1. Donner le développement limité à l'ordre 3 en zéro des fonctions f et g définies ci-dessous. $f(x) = \sin x x$ et $g(x) = \cos x 1$
- 2. Calculer la limite suivante $\lim_{x\to 0} \frac{\sin x x}{x(\cos x 1)}$

Exercice 2 7 pts

On considère les suites (u_n) et (v_n) définies par : $\begin{cases} u_0=2\\ v_n=\frac{2}{u_n}\\ u_{n+1}=\frac{u_n+v_n}{2} \end{cases}$

- 1. Calculer v_0, u_1, v_1, u_2 et v_2 . Donner les résultats sous forme de fractions irréductibles
- 2. Montrer que les deux suite (u_n) et (v_n) sont majorées par 2 et minorées par 1
- 3. Montrer que pour tout n de \mathbb{N} $u_{n+1} v_{n+1} = \frac{(u_n v_n)^2}{2(u_n + v_n)}$ (1)
- 4. Montrer que pour tout $n \in \mathbb{N}$ $u_n \geqslant v_n$
- 5. Montrer que u_n) est décroissante, et (v_n) est croissante.
- 6. Montrer que pour tout $n \in \mathbb{N}$ $u_n v_n \leqslant 1$ et en déduire que et en déduire que : $(u_n v_n)^2 \leqslant u_n v_n$ (2)
- 7. Montrer que pour tout entier n de \mathbb{N} $u_{n+1} v_{n++1} \leqslant \frac{1}{4}(u_n v_n)$ (on pourra utiliser les relations (1) et (2)
- 8. En déduire que : pour tout entier n de \mathbb{N} $u_n v_n \leqslant \left(\frac{1}{4}\right)^n$
- 9. Montrer que : les suites (u_n) et (v_n) sont adjacentes et donner leur limite commune ℓ
- 10. une suite de nombre rationnels qui est convergente; a-t-elle forcement pour limite un nombre rationnel?

Exercice 4 4 pts

- 1. Montrer que la fonction ln est concave.
- 2. En déduire que pour tous $x, y \in]1, +\infty[$, montrer que $\ln\left(\frac{x+y}{2}\right) \leqslant \sqrt{\ln(x)\ln(y)}$.