

CD40192BMS CD40193BMS

CMOS Presettable Up/Down Counters (Dual Clock With Reset)

December 1992

Features

- CD40192BMS BCD Type
- CD40193BMS Binary Type
- High Voltage Type (20V Rating)
- Individual Clock Lines for Counting Up or Counting Down
- Synchronous High-Speed Carry and Borrow Propagation Delays for Cascading
- Asynchronous Reset and Preset Capability
- Medium Speed Operation
 - fCL = 8MHz (typ.) at 10V
- 5V, 10V and 15V Parametric Ratings
- Standardize Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Up/Down Difference Counting
- Multistage Ripple Counting
- Synchronous Frequency Dividers
- A/D and D/A Conversion
- Programmable Binary or BCD Counting

Description

CD40192BMS Presettable BCD Up/Down Counter and the CD40193BMS Presettable Binary Up/Down Counter each consist of 4 synchronously clocked, gated "D" type flip-flops connected as a counter. The inputs consist of 4 individual jam lines, a PRESET ENABLE control, individual CLOCK UP and CLOCK DOWN signals and a master RESET. Four buffered Q signal outputs as well as CARRY and BORROW outputs for multiple-stage counting schemes are provided.

The counter is cleared so that all outputs are in a low state by a high on the RESET line. A RESET is accomplished asynchronously with the clock. Each output is individually programmable asynchronously with the clock to the level on the corresponding jam input when the PRESET ENABLE control is low.

The counter counts up one count on the positive clock edge of the CLOCK UP signal provided the CLOCK DOWN line is high. The counter counts down one count on the positive clock edge of the CLOCK DOWN signal provided the CLOCK UP line is high.

The CARRY and BORROW signals are high when the counter is counting up or down. The CARRY signal goes low one-half clock cycle after the counter reaches its maximum count in the count-up mode. The BORROW signal goes low one-half clock cycle after the counter reaches its minimum count in the count-down mode. Cascading of multiple packages is easily accomplished without the need for additional external circuitry by tying the BORROW and CARRY outputs to the CLOCK DOWN and CLOCK UP inputs, respectively, of the succeeding counter package.

The CD40192BMS and CD40193BMS are supplied in these 16-lead outline packages:

Braze Seal DIP *H4W, †H4X Frit Seal DIP H1F

Ceramic Flatpack *H6P, †H6W * CD40192B Only †CD40193B Only

Pinout

CD40192BMS, CD40193BMS TOP VIEW J2 1 VDD 16 Q2 2 15 J1 Q1 3 14 RESET **CLOCK DOWN BORROW** CARRY CLOCK UP 5 PRESET ENABLE Q3 6 J3 10 Q4 | 7 vss 8 9 J4

Functional Diagram

Absolute Maximum Ratings Reliability Information DC Supply Voltage Range, (VDD) -0.5V to +20V Thermal Resistance $_{ja}^{\theta_{ja}}$ 80°C/W 20°C/W (Voltage Referenced to VSS Terminals) Ceramic DIP and FRIT Package 20°C/W Input Voltage Range, All Inputs -0.5V to VDD +0.5V 70°C/W DC Input Current, Any One Input±10mA Maximum Package Power Dissipation (PD) at +125°C Operating Temperature Range -55°C to +125°C For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type D, F, K) 500mW For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K).....Derate Package Types D, F, K, H Storage Temperature Range (TSTG).....-65°C to +150°C Linearity at 12mW/°C to 200mW

Device Dissipation per Output Transistor 100mW For T_A = Full Package Temperature Range (All Package Types)

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	DD VDD = 20V, VIN = VDD or GND		1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μА
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20V	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	'	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V		1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V		1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V		1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13.5V, VOL < 1.5V		1, 2, 3	+25°C, +125°C, -55°C	-	4	٧
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being 3. For accuracy, voltage is measured differentially to VDD. Limit implemented.

is 0.050V max.

2. Go/No Go test with limits applied to inputs.

Lead Temperature (During Soldering) +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for

10s Maximum

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

	GROUP A			LIM	IITS		
PARAMETER	SYMBOL	CONDITIONS (NOTES 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Clock Up or Clock Down to Q	TPLH1		10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	500	ns
Reset to Q			10, 11	+125°C, -55°C	-	675	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
PE to Q	TPLH3		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay TPHL4		VDD = 5V, VIN = VDD or GND	9	+25°C	-	320	ns
Clock Up to Carry, Clock Down to Borrow	TPLH4		10, 11	+125°C, -55°C	-	432	ns
Propagation Delay	TPHL5	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
PE to Borrow or Carry	TPLH5		10, 11	+125°C, -55°C	-	810	ns
Propagation Delay	TPHL6	VDD = 5V, VIN = VDD or GND	9	+25°C	-	600	ns
Reset to Borrow or Carry	TPLH6		10, 11	+125°C, -55°C	-	810	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	2	-	MHz
Frequency			10, 11	+125°C, -55°C	1.48	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125°C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125°C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				55°C	4.2		mΛ

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	_	
PARAMETER	SYMBOL	CONDITIONS	DITIONS NOTES		MIN MAX		UNITS	
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA	
				-55°C	-	-0.64	mA	
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA	
				-55°C	-	-2.0	mA	
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA	
				-55°C	-	-1.6	mA	
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA	
				-55°C	-	-4.2	mA	
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V	
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	7	-	V	
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	240	ns	
Clock Up or Down to Q	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	180	ns	
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25°C	-	240	ns	
Reset to Q		VDD = 15V	1, 2, 3	+25°C	-	180	ns	
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	200	ns	
PE to Q	TPLH3	VDD = 15V	1, 2, 3	+25°C	-	140	ns	
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25°C	-	160	ns	
Clock Up to Carry, Clock Down to Borrow	TPLH4	VDD = 15V	1, 2, 3	+25°C	-	120	ns	
Propagation Delay	TPHL5	VDD = 10V	1, 2, 3	+25°C	-	300	ns	
PE to Borrow or Carry	TPLH5	VDD = 15V	1, 2, 3	+25°C	-	220	ns	
Propagation Delay	TPHL6	VDD = 10V	1, 2, 3	+25°C	-	300	ns	
Reset to Borrow or Carry	TPLH6	VDD = 15V	1, 2, 3	+25°C	-	220	ns	
Transition Time	TTHL1	VDD = 10V	1, 2, 3	+25°C	-	100	ns	
	TTLH1	VDD = 15V	1, 2, 3	+25°C	-	80	ns	
Maximum Clock Rise and	TRCL	VDD = 5V	1, 2, 3, 4	+25°C	-	15	μs	
Fall Time	TFCL	VDD = 10V	1, 2, 3, 4	+25°C	-	15	μs	
		VDD = 15V	1, 2, 3, 4	+25°C	-	5	μs	
Minimum Removal Time	TREM	VDD = 5V	1, 2, 3, 5	+25°C	-	80	ns	
Reset or PE		VDD = 10V	1, 2, 3, 5	+25°C	-	40	ns	
		VDD = 15V	1, 2, 3, 5	+25°C	-	30	ns	
Minimum Pulse Width	TW	VDD = 5V	1, 2, 3	+25°C	-	480	ns	
Reset		VDD = 10V	1, 2, 3	+25°C	-	300	ns	
		VDD = 15V	1, 2, 3	+25°C	-	260	ns	
Minimum Pulse Width PE	TW	VDD = 5V	1, 2, 3	+25°C	-	240	ns	
		VDD = 10V	1, 2, 3	+25°C	-	170	ns	
		VDD = 15V	1, 2, 3	+25°C	-	140	ns	

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

						LIMITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	180	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	90	ns
		VDD = 15V	1, 2, 3	+25°C	-	60	ns
Input Capacitance	CIN	Reset	1, 2	+25°C	-	15	pF
Input Capacitance	CIN	All Other Inputs	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.
- 5. The time required for RESET or PRESET ENABLE control to be removed before clocking. See timing diagram defining TREM.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER SYMBOL CONDITIONS		NOTES	TEMPERATURE	MIN	MAX	UNITS	
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F VDD = 18V, VIN = VDD or GND VDD = 3V, VIN = VDD or GND		1	+25°C	VOH > VDD/2	VOL < VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test	3 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B Subgroup B-5		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
PART NUMBER	CD40192BMS, CI	040193BMS				
Static Burn-In 1 (Note 1)	2, 3, 6, 7, 12, 13	1, 4, 5, 8 - 11, 14, 15	16			
Static Burn-In 2 (Note 1)	2, 3, 6, 7, 12, 13	8	1, 4, 5, 9 - 11, 14 - 16			
Dynamic Burn- In (Note 1)	-	8, 14	1, 5, 9 - 11, 15, 16	2, 3, 6, 7, 12, 13	4	-
Irradiation (Note 2)	2, 3, 6, 7, 12, 13	8	1, 4, 5, 9 - 11, 14 - 16			

NOTES:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

FIGURE 3. INTERNAL LOGIC OF FLIP-FLOP

TRUTH TABLE

CLOCK UP	CLOCK DOWN	PRESET ENABLE	RESET	ACTION
	1	1	0	Count Up
	1	1	0	No Count
1		1	0	Count Down
1		1	0	No Count
Х	Х	0	0	Preset
Х	Х	Х	1	Reset

1 = High Level 0 = Low Level

X = Don't Care

Typical Performance Characteristics

FIGURE 4. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. MIMIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

CD40192BMS, CD40193BMS

FIGURE 6. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 8. TYPICAL TRANSITION TIME AS A FUNCTION OF LOAD CAPACITANCE

60

LOAD CAPACITANCE (CL) (pF)

80

100

FIGURE 7. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 9. TYPICAL PROPAGATION DELAY TIME AS A FUNCTION OF LOAD CAPACITANCE

FIGURE 10. DYNAMIC POWER DISSIPATION

CD40192BMS, CD40193BMS

Chip Dimensions and Pad Layout

Dimensions and pad layout for the CD40192BMSH (dimensions and pad layout for the CD40193BMSH are identical).

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000

FAX: (321) 724-7000 FAX: (321) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029