Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 1 —

Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign & Simon Fraser University

Modified by: Mohammad Anas Jawad, IUT CSE

©2011 Han, Kamber & Pei. All rights reserved.

Chapter 1. Introduction

Why Data Mining?

- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kind of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Technology Are Used?
- What Kind of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Why Data Mining?

- The Explosive Growth of Data: from terabytes to zettabytes.
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Evolution of Sciences

- Before 1600, empirical science
- 1600-1950s, theoretical science
 - Each discipline has grown a theoretical component. Theoretical models often motivate experiments and generalize our understanding.
- 1950s-1990s, computational science
 - Over the last 50 years, most disciplines have grown a third, *computational* branch (e.g. empirical, theoretical, and computational ecology, or physics, or linguistics.)
 - Computational Science traditionally meant simulation. It grew out of our inability to find closed-form solutions for complex mathematical models.
- 1990-now, data science
 - The flood of data from new scientific instruments and simulations
 - The ability to economically store and manage petabytes of data online
 - The Internet and computing Grid that makes all these archives universally accessible
 - Scientific info. management, acquisition, organization, query, and visualization tasks scale almost linearly with data volumes. Data mining is a major new challenge!
- Jim Gray and Alex Szalay, *The World Wide Telescope: An Archetype for Online Science*, Comm. ACM, 45(11): 50-54, Nov. 2002

Evolution of Database Technology

1960s:

- Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- **2000s**
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?

- A Multi-Dimensional View of Data Mining
- What Kind of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Technology Are Used?
- What Kind of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u>
 <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

Knowledge Discovery (KDD) Process

Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base

Data Mining in Business Intelligence

KDD Process: A Typical View from ML and Statistics

This is a view from typical machine learning and statistics communities

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining

- What Kind of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Technology Are Used?
- What Kind of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Multi-Dimensional View of Data Mining

Data to be mined

 Database data (extended-relational, object-oriented, heterogeneous, legacy), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

Knowledge to be mined (or: Data mining functions)

- Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, etc.
- Descriptive vs. predictive data mining
- Multiple/integrated functions and mining at multiple levels

Techniques utilized

 Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

Applications adapted

 Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.

14

Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kind of Data Can Be Mined?

- What Kinds of Patterns Can Be Mined?
- What Technology Are Used?
- What Kind of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary

Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web

Data Mining: Relational Data

```
customer (cust_ID, name, address, age, occupation, annual income, credit
information,
category, . . .)
item (item_ID, brand, category, type, price, place made, supplier, cost, . . .)
employee (empl_ID, name, category, group, salary, commission, . . .)
branch (branch_ID, name, address, . . .)
purchases (trans_ID, cust_ID, empl_ID, date, time, method paid, amount)
items_sold (trans_ID, item_ID, qty)
works at (empl ID, branch ID)
        Figure: Relational schema for a relational database, AllElectronics
```

Data Mining: Transactional Data

- Each record in a transactional database captures a transaction, such as a customer's purchase, a flight booking, or a user's clicks on a web page.
- Because most relational database systems do not support nested relational structures, the transactional database is usually either stored in a flat file in a format similar to the table in the following figure.

trans_ID	list_of_item_IDs
T100	I1, I3, I8, I16
T200	I2, I8

Figure: Fragment of a transactional database for sales at AllElectronics.

Example of transactional data mining task: Which items sold well together?

Data Mining: Data Warehouse

- Constructed via data cleaning, data integration, data transformation, data loading, and periodic data refreshing.
- Summarized data. E.g., rather than storing the details of each sales transaction, the data warehouse may store a summary of the transactions per item type for each store, or summarized to a higher level, for each sales region.
- Usually modeled by a multidimensional data structure, called a data cube.
- Each dimension in data cube corresponds to an attribute or a set of attributes
 in the schema, and each cell stores the value of some aggregate measure such
 as count or sum(sales amount).
- By providing multidimensional data views and the precomputation of summarized data, data warehouse systems can provide inherent support for OLAP: Online analytical processing operations.
- Examples of OLAP operations include drill-down and roll-up, which allow the user to view the data at differing degrees of summarization.

Data Mining: Data Warehouse

Figure: A multidimensional data cube, commonly used for data warehousing, (a) showing summarized data for AllElectronics and (b) showing summarized data resulting from drill-down and roll-up operations on the cube in (a). For improved readability, only some of the cube cell values are shown.

Data Mining: Other Data

- Time-related or sequence data, data steams, spatial data, engineering design data, hypertext and multimedia data, graph and networked data, and the Web.
- Sequence data: Time-series data, Symbolic sequence data, biological sequence data.
- Spatial data: often refers to geospace-related data stored in geospatial data repositories.
- Spatiotemporal data: Data that relates to both space and time.
 - Examples: discovering the evolutionary history of cities and lands, uncovering weather patterns, predicting earthquakes and hurricanes, and determining global warming trends.
 - Data collected from cell phones, GPS devices, Internet-based map services, weather services, and digital Earth, as well as satellite, RFID, sensor, wireless, and video technologies.
 - Moving-object data
- Web data: web content mining, web structure mining, and web usage mining.