Matematika Diskrit [KOMS119602] - 2022/2023

12.1. **Graf** (bagian 1)

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 13 (Desember 2022)

Graf

Contoh graf

Sejarah graf

Figure: Permasalahan jemabatan Königsberg

Permasalahan: bisakah seseorang mengunjungi setiap kota dengan melalui jembatan tepat satu kali, dan kembali ke titik awal?

Sejarah graf

Figure: Solusi permasalahan jembatan Königsberg oleh Leonhard Euler

Notasi Graf

Graf G = (V, E) memiliki dua komponen, yaitu:

- ightharpoonup Simpul/titik/verteks, himpunannya dinotasikan dengan V(G)
- ightharpoonup Sisi, himpunannya dinotasikan dengan E(G)

Latihan: Tentukan himpunan simpul dan himpunan sisi dari graf pada gambar di atas.

Jenis graf: graf sederhana dan tak-sederhana

Figure: Graf sederhana (1) dan graf tak-sederhana (2 dan 3)

Contoh permasalahan pada graf sederhana dan tak sederhana

Jenis graf: graf berarah dan tak berarah

Tugas:

Buatlah tabel jenis-jenis graf beserta karakteristik sisi-sisinya.

Contoh permasalahan pada graf berarah dan tak berarah

Latihan

Rangkumlah karakteristik dari jenis-jenis graf: sederhana, tak sederhana, berarah, dan tak berarah.

Aplikasi Teori Graf

Aplikasi graf 1: Rangkaian listrik

Aplikasi graf 2: Isomer senyawa kimia karbon

Aplikasi graf 3: Transaksi konkuren pada basis data terpusat

- ightharpoonup Transaksi T_0 menunggu transaksi T_1 dan T_2 ;
- ▶ Transaksi T₂ menunggu transaksi T₁;
- ► Transaksi *T*₁ menunggu transaksi *T*₃;
- ightharpoonup Transaksi T_3 menunggu transaksi T_2 ;

Aplikasi graf 4: Turnamen Round-Robin

Figure: Turnamen Round-Robin untuk 6 tim. Busur (a, b) berarti tim a berhasil memukul tim b.

Terminologi Graf

Terminologi Dasar

- 1. Bertetangga (adjacent)
- 2. Bersisian (incident)
- 3. Simpul terpencil (isolated vertex)
- 4. Graf kosong (null graph atau empty graph)
- 5. Derajat (degree)

Ketetanggaan (adjacency)

Dua simpul dikatakan bertetangga jika keduanya terhubung langsung oleh sebuah sisi.

Insidensi

Misal $e = (v_1, v_2)$ adalah sisi pada graf. Maka dikatakan bahwa:

- ▶ e bersisisian dengan v₁; dan
- \triangleright e bersisisian dengan v_2 .

Simpul terpencil (isolated vertex)

Sebuah simpul dikatakan terpencil (*isolated*) jika tidak ada sisi yang bersisian dengannya.

Graf kosong (null graph)

Graf yang tidak memiliki sisi.

Dengan kata lain, semua simpulnya merupakan simpul terpencil.

Derajat simpul (degree)

Derajat dari suatu simpul adalah banyaknya sisi yang bersisian dengan simpul tersebut.

Derajat simpul (degree)

Permasalahan terkait dengan derajat simpul

Latihan 1: derajat simpul pada graf berarah

Tentukan derajat dari setiap simpul pada graf tersebut.

Untuk setiap simpul pada graf:

- Derajat masuk (in-degree)
- Derajat keluar (out-degree)

Latihan 2: derajat simpul

Tunjukkan bahwa:

Lemma

Untuk setiap graf G, banyaknya simpul berderajat ganjil selalu genap.

Lemma

Setiap graf G = (V, E) memenuhi:

$$\sum_{v\in V}d(v)=2|E|$$

Ilustrasikan lemma tersebut pada graf berikut.

Komponen Graf

Lintasan (*Path*)

Lintasan dengan panjang n dari simpul awal v_0 ke simpul akhir v_n pada graf G adalah barisan simpul dan sisi yang terbentuk

$$v_0, e_1, v_1, e_2, v_2, \ldots, v_{n-1}, e_n, v_n$$

sedemikian sehingga

$$e_1 = (v_0, v_1), e_2 = (v_1, v_2), \ldots, e_n = (v_{n-1}, v_n)$$

adalah sisi-sisi dari graf G.

Panjang lintasan adalah banyaknya sisi pada lintasan tersebut

Siklus (cycle) atau sirkuit (circuit)

Siklus adalah lintasan yang berawal dan berakhir pada simpul yang sama.

Panjang sirkuit adalah banyaknya sisi pada lintasan tersebut.

Konektivitas/keterhubungan (connectivity)

Sebuah graf G dikatakan terhubung jika untuk setiap simpul u dan v di G, terdapat lintasan yang menghubungkan u dan v.

Subgraf

Subgraf

Permasalahan terkait subgraf

Beberapa Contoh Graf

Graf lengkap

Permasalahan terkait graf lengkap

Graf lingkaran

Permasalahan terkait graf lengkap

Graf teratur (regular)

Graf teratur (regular)

Permasalahan terkait graf teratur

Graf bipartit

Permasalahan terkait graf bipartit

Tugas

Pilihlah sebuah topik terkait dengan graf yang dibahas pada slide (misalnya graf teratur, derajat simpul, dsb.

Carilah contoh penerapan kondep graf yang terkait dengan topik yang dipilih.