

OBSOLETE

MICRON
TECHNOLOGY, INC.

MT2D18
1 MEG x 8 DRAM MODULE

DRAM MODULE

FEATURES

- JEDEC- and industry-standard pinout in a 30-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- Low power, 6mW standby; 450mW active, typical
- All device pins are TTL-compatible
- FAST PAGE MODE (FPM) access cycle
- Refresh modes: $\overline{\text{RAS}}$ ONLY, $\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$ (CBR) and HIDDEN
- Low profile
- 1,024-cycle refresh distributed across 16ms

OPTIONS

- | | MARKING |
|------------------------|-----------|
| • Timing | |
| 60ns access | -6 |
| 70ns access | -7 |
| • Packages | |
| 30-pin SIMM | M |
| • Part Number Example: | MT2D18M-6 |

KEY TIMING PARAMETERS

SPEED	t_{RC}	t_{RAC}	t_{PC}	t_{AA}	t_{CAC}	t_{RP}
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT2D18 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x8 configuration. During READ or WRITE cycles, each word is uniquely addressed through 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\text{RAS}}$ is used to latch the first 10 bits and $\overline{\text{CAS}}$ the latter 10 bits. READ or WRITE cycles are selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. Early WRITE occurs when $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, and the output pins remain open (High-Z) until the next CAS cycle.

1 MEG x 8

1 MEGABYTE, 5V,
FAST PAGE MODE

PIN ASSIGNMENT (Front View)

30-Pin SIMM (DD-1)

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by $\overline{\text{RAS}}$ followed by a column-address strobed-in by $\overline{\text{CAS}}$. $\overline{\text{CAS}}$ may be toggled-in by holding $\overline{\text{RAS}}$ LOW and strobing-in different column-addresses, thus executing faster memory cycles.

REFRESH

Returning $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text{RAS}}$ HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any

$\overline{\text{RAS}}$ cycle (READ, WRITE) or $\overline{\text{RAS}}$ refresh cycle ($\overline{\text{RAS}}$ ONLY, CBR or HIDDEN) so that all 1,024 combinations of $\overline{\text{RAS}}$ addresses (A0-A9) are executed at least every 16ms regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM**TRUTH TABLE**

FUNCTION	$\overline{\text{RAS}}$	$\overline{\text{CAS}}$	$\overline{\text{WE}}$	ADDRESSES		DATA-IN/OUT
				t_R	t_C	
Standby	H	H-X	X	X	X	High-Z
READ	L	L	H	ROW	COL	Data-Out
EARLY WRITE	L	L	L	ROW	COL	Data-In
FAST-PAGE-MODE READ	L	H-L	H	ROW	COL	Data-Out
	L	H-L	H	n/a	COL	Data-Out
FAST-PAGE-MODE WRITE	L	H-L	L	ROW	COL	Data-In
	L	H-L	L	n/a	COL	Data-In
RAS-ONLY REFRESH	L	H	X	ROW	n/a	High-Z
HIDDEN REFRESH	READ	L-H-L	L	ROW	COL	Data-Out
	WRITE	L-H-L	L	ROW	COL	Data-In
CBR REFRESH	H-L	L	H	X	X	High-Z

OBSOLETE

MICRON
 TECHNOLOGY, INC.

MT2D18
1 MEG x 8 DRAM MODULE
ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss -1V to +7V
 Operating Temperature, T_A (ambient) 0°C to +70°C
 Storage Temperature -55°C to +125°C
 Power Dissipation 2W
 Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS(Notes: 1, 3, 6) (V_{CC} = +5V ±10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		V _{CC}	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs		V _{IH}	2.4	V _{CC} +1	V	
Input Low (Logic 0) Voltage, all inputs		V _{IL}	-1.0	0.8	V	
INPUT LEAKAGE Any input 0V ≤ V _{IN} ≤ 6.5V (All other pins not under test = 0V)	A0-A9, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$	I _I	-4	4	μA	
OUTPUT LEAKAGE (Q is disabled; 0V ≤ V _{OUT} ≤ 5.5V)	DQ1-DQ8	I _{OZ}	-10	10	μA	
OUTPUT LEVELS Output High (Logic 1) Voltage (I _{OUT} = -5mA) Output Low (Logic 0) Voltage (I _{OUT} = 4.2mA)		V _{OH}	2.4		V	
		V _{OL}		0.4	V	

PARAMETER/CONDITION		SYMBOL	MAX		UNITS	NOTES
			-6	-7		
STANDBY CURRENT: (TTL) ($\overline{\text{RAS}} = \overline{\text{CAS}} = V_{IH}$)		I _{CC1}	4	4	mA	
STANDBY CURRENT: (CMOS) ($\overline{\text{RAS}} = \overline{\text{CAS}}$ = Other Inputs = V _{CC} -0.2V)		I _{CC2}	2	2	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current ($\overline{\text{RAS}}$, $\overline{\text{CAS}}$, Address Cycling: t _{RC} = t _{RC} [MIN])		I _{CC3}	220	200	mA	2, 26, 28
OPERATING CURRENT: FAST PAGE MODE Average power supply current ($\overline{\text{RAS}} = V_{IL}$, $\overline{\text{CAS}}$, Address Cycling: t _{PC} = t _{PC} [MIN])		I _{CC4}	160	140	mA	2, 26, 28
REFRESH CURRENT: $\overline{\text{RAS}}$ ONLY Average power supply current ($\overline{\text{RAS}}$ Cycling, $\overline{\text{CAS}} = V_{IH}$: t _{RC} = t _{RC} [MIN])		I _{CC5}	220	200	mA	26, 28
REFRESH CURRENT: CBR Average power supply current ($\overline{\text{RAS}}$, $\overline{\text{CAS}}$, Address Cycling: t _{RC} = t _{RC} [MIN])		I _{CC6}	220	200	mA	19, 26

OBSOLETE
**MT2D18
1 MEG x 8 DRAM MODULE**
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	C _{I1}		13	pF	17
Input Capacitance: RAS, CAS, WE	C _{I2}		17	pF	17
Input/Output Capacitance: DQ1-DQ8	C _{IO}		10	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS(Notes: 3, 4, 5, 6, 7, 10, 11, 16) (V_{CC} = +5V ±10%)

AC CHARACTERISTICS	SYM	-6		-7		UNITS	NOTES
		MIN	MAX	MIN	MAX		
Access time from column-address	t _{AA}		30		35	ns	
Column-address hold time (referenced to RAS)	t _{AR}	45		50		ns	
Column-address setup time	t _{ASC}	0		0		ns	
Row-address setup time	t _{ASR}	0		0		ns	
Access time from CAS	t _{CAC}		15		20	s	9
Column-address hold time	t _{CAH}	10		15		ns	
CAS pulse width	t _{CAS}	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	t _{CHR}	10		10		ns	19
CAS to output in Low-Z	t _{CLZ}	0		0		ns	
CAS precharge time	t _{CP}	10		10		ns	18
Access time from CAS precharge	t _{CPA}		35		40	ns	
CAS to RAS precharge time	t _{CRP}	10		10		ns	
CAS hold time	t _{CSH}	60		70		ns	
CAS setup time (CBR REFRESH)	t _{CSR}	10		10		ns	19
Write command to CAS lead time	t _{CWL}	15		20		ns	
Data-in hold time	t _{DH}	10		15		ns	15
Data-in hold time (referenced to RAS)	t _{DHR}	45		55		ns	
Data-in setup time	t _{DS}	0		0		ns	15
Output buffer turn-off delay	t _{OFF}	3	15	3	20	ns	12, 27
FAST-PAGE-MODE READ or WRITE cycle time	t _{PC}	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	t _{PRWC}	n/a		n/a		n/a	21
Access time from RAS	t _{RAC}		60		70	ns	8
RAS to column-address delay time	t _{RAD}	15	30	15	35	ns	22
Row-address hold time	t _{RAH}	10		10		ns	
Column-address to RAS lead time	t _{RAL}	30		35		ns	
RAS pulse width	t _{RAS}	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	t _{RASP}	60	100,000	70	100,000	ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) (V_{CC} = +5V ±10%)

AC CHARACTERISTICS		-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	t _{RC}	110		130		ns	
RAS to CAS delay time	t _{RCD}	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	t _{RCH}	0		0		ns	24
Read command setup time	t _{RCS}	0		0		ns	
Refresh period (1,024 cycles)	t _{REF}		16		16	ms	
RAS precharge time	t _{RP}	40		50		ns	
RAS to CAS precharge time	t _{RPC}	0		0		ns	
Read command hold time (referenced to RAS)	t _{RRH}	0		0		ns	24
RAS hold time	t _{RSH}	15		20		ns	
READ WRITE cycle time	t _{RWC}	n/a		n/a		n/a	21
Write command to RAS lead time	t _{RWL}	15		20		ns	
Transition time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	t _{WCH}	10		15		ns	
Write command hold time (referenced to RAS)	t _{WCR}	45		55		ns	
WE command setup time	t _{WCS}	0		0		ns	
Write command pulse width	t _{WP}	10		15		ns	
WE hold time (CBR REFRESH)	t _{WRH}	10		10		ns	23
WE setup time (CBR REFRESH)	t _{WRP}	10		10		ns	23

NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of 100µs is required after power-up followed by any eight $\overline{\text{RAS}}$ refresh cycles ($\overline{\text{RAS}}$ ONLY or CBR with $\overline{\text{WE}}$ HIGH) before proper device operation is assured. The eight $\overline{\text{RAS}}$ cycle wake-ups should be repeated any time the t_{REF} refresh requirement is exceeded.
4. AC characteristics assume $t_T = 5\text{ns}$.
5. V_{IH} (MIN) and V_{IL} (MAX) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}).
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ($0^\circ\text{C} \leq T_A \leq 70^\circ\text{C}$) is assured.
7. Measured with a load equivalent to two TTL gates and 100pF.
8. Assumes that $t_{RCD} < t_{RCD}$ (MAX). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
9. Assumes that $t_{RCD} \geq t_{RCD}$ (MAX).
10. If $\overline{\text{CAS}} = V_{IH}$, data output is High-Z.
11. If $\overline{\text{CAS}} = V_{IL}$, data output may contain data from the last valid READ cycle.
12. t_{OFF} (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to V_{OH} or V_{OL} .
13. Operation within the t_{RCD} (MAX) limit ensures that t_{RAC} (MAX) can be met. t_{RCD} (MAX) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (MAX) limit, then access time is controlled exclusively by t_{CAC} .
14. t_{RCH} is referenced to the first rising edge of $\overline{\text{RAS}}$ or $\overline{\text{CAS}}$.
15. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
17. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, $V_{CC} = 5\text{V}$, DC bias = 2.4V at 15mV RMS).
18. If $\overline{\text{CAS}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, $\overline{\text{CAS}}$ must be pulsed HIGH for t_{CP} .
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\text{WE}} = \text{LOW}$.
21. LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to $\overline{\text{OE}}$ being grounded on U1 and U2.
22. Operation within the t_{RAD} (MAX) limit ensures that t_{RAC} (MIN) and t_{CAC} (MIN) can be met. t_{RAD} (MAX) is specified as a reference point only; if t_{RAD} is greater than the specified t_{RAD} (MAX) limit, then access time is controlled exclusively by t_{AA} .
23. t_{WTS} and t_{WTH} are setup and hold specifications for the $\overline{\text{WE}}$ pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverses of t_{WRP} and t_{WRH} in the CBR REFRESH cycle.
24. Either t_{RCH} or t_{RRH} must be satisfied for a READ cycle.
25. All other inputs at $V_{CC} - 0.2\text{V}$.
26. Icc is dependent on cycle rates.
27. The 3ns minimum is a parameter guaranteed by design.
28. Column-address changed once each cycle.

OBSOLETE

MICRON
TECHNOLOGY, INC.

MT2D18
1 MEG x 8 DRAM MODULE

READ CYCLE

EARLY WRITE CYCLE

DON'T CARE

UNDEFINED

FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

RAS-ONLY REFRESH CYCLE
(\overline{WE} = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE
(Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive data prior to tristate.

OBSOLETE

MICRON
TECHNOLOGY, INC.

MT2D18
1 MEG x 8 DRAM MODULE

CBR REFRESH CYCLE
(Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 20
($\overline{WE} = \text{HIGH}$)

DON'T CARE

UNDEFINED

OBSOLETE

MICRON
TECHNOLOGY, INC.

MT2D18
1 MEG x 8 DRAM MODULE

30-Pin SIMM

NOTE: 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.

MICRON®
TECHNOLOGY, INC.

8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: <http://www.micron.com>, Customer Comment Line: 800-932-4992
Micron is a registered trademark of Micron Technology, Inc.