Python Matplotlib Exercise (100 points)					
Course Code : CPE 031	Program : BSCPE				
Course Title : Visualizations and Data Analysis	Date Performed : Oct 29, 2024				
Section : CPE21S4	Date Submitted : Nov 3, 2024				
Name : De Guzman, Aero Kent D.	Instructor : Prof. Maria Rizette Sayo				

1. Use the following csv file for this exercise

1. Use the following csv file for this exercise

Choose Files Technologic...le-Data.csv

- **Technological-Products-Sample-Data.csv**(text/csv) 1462 bytes, last modified: 10/29/2024 100% done Saving Technological-Products-Sample-Data.csv to Technological-Products-Sample-Data.csv
- 2. Read this file using Pandas or NumPy or using in-built matplotlib function.

b data = pd.read_csv('Technological-Products-Sample-Data.csv') df = pd.DataFrame(data) df

治		Brand	Device	Model	Country of Origin	Date of Release	Price (USD)	
	0	Apple	iPhone	13 Pro Max	United States	9/24/2021	1099	11.
	1	Samsung	Galaxy	S21 Ultra	South Korea	1/29/2021	1199	10
	2	Google	Pixel	6 Pro	United States	10/19/2021	899	
	3	Sony	PlayStation	5	Japan	11/12/2020	499	
	4	Microsoft	Surface	Laptop 4	United States	4/15/2021	999	
	5	Dell	XPS	13	United States	1/28/2021	999	
	6	НР	Spectre	x360	United States	4/16/2021	1349	
	7	Lenovo	ThinkPad	X1 Carbon	China	2/15/2021	1429	
	8	Asus	ROG	Zephyrus G14	Taiwan	3/15/2021	1499	
	9	Acer	Predator	Helios 300	Taiwan	2/17/2021	1299	
	10	Apple	MacBook	Pro 14-inch	United States	10/26/2021	1999	
	11	Samsung	Odyssey	G9	South Korea	7/22/2020	1699	
	12	Google	Pixelbook	Go	United States	6/17/2021	649	
	13	Sony	Xperia	1 III	Japan	8/19/2021	1299	
	14	Microsoft	Xbox	Series X	United States	11/10/2020	499	
	15	Dell	Alienware	m15 R5	United States	4/20/2021	1999	
	16	НР	Pavilion	x360	United States	5/14/2021	749	
	17	Lenovo	IdeaPad	5 Pro	China	3/10/2021	999	
	18	Asus	ZenBook	14	Taiwan	1/15/2021	799	
	19	Acer	Swift	3	Taiwan	2/10/2021	699	
	20	Apple	iPad	Pro 12.9-inch	United States	5/21/2021	1099	
	21	Samsung	Galaxy	Tab S7+	South Korea	8/21/2020	849	
	22	Google	Nest	Hub Max	United States	3/30/2021	229	
	23	Sony	WH	1000XM4	Malaysia	8/6/2020	349	
	24	Microsoft	Surface	Pro 8	United States	10/5/2021	899	
	25	Dell	UltraSharp	U2720Q	China	12/25/2020	499	
	26	HP	Elite	Dragonfly	United States	6/28/2021	1799	
	27	Lenovo	Legion	7i	China	4/5/2021	1499	
	28	Asus	TUF	Gaming A15	Taiwan	3/20/2021	1199	
	29	Acer	Aspire	5	Taiwan	1/30/2021	599	

- 3. Analyze the data and generate the appropriate plot including its properties:
 - a. Read each device's date of release and sales. Show it using a line plot.

```
data = pd.read_csv("Technological-Products-Sample-Data.csv")
    df = pd.DataFrame(data)

x1 = df["Date of Release"]
    y1 = df["Price (USD)"]

plt.plot(x1, y1)
    plt.show()
```


b. Get the total sales and show line plot with the following style properties.

```
# To get the year from the date of release so that the x-axis will not be overly

df["Date of Release"] = pd.to_datetime(df["Date of Release"])

df["year"] = df['Date of Release'].dt.year

yearly_sales = df.groupby('year')['Price (USD)'].sum()

x_axis_year = yearly_sales.index
y_axis_sales = yearly_sales.values

plt.plot(x_axis_year, y_axis_sales, marker='o', color='red', linewidth=3)
plt.xlabel("Year")
plt.ylabel("Sales")
plt.title("Yearly Sales Data")
plt.grid()
plt.show()
```


c. Read all product sales data and show it using a multiline plot. Label them.

```
df["Date of Release"] = pd.to_datetime(df["Date of Release"])
      df["year"] = df['Date of Release'].dt.year
      yearly_sales = df.groupby(['year', 'Brand'])['Price (USD)'].sum().unstack()
      for brand in yearly_sales.columns:
          plt.plot(yearly_sales.index, yearly_sales[brand], marker='o', label=brand)
      plt.xlabel("Year")
      plt.ylabel("Sales")
      plt.title("Yearly Sales Data by Brand")
      plt.legend(title='Brand', loc='upper left', bbox_to_anchor=(1, 1))
      plt.grid()
      plt.show()
                          Yearly Sales Data by Brand
                                                                               Brand
  4000
                                                                                Acer
                                                                                Apple
  3500
                                                                                Asus
                                                                                Dell
  3000

    Google

                                                                              - HP

    Lenovo

Sales
  2500

    Microsoft

    Samsung

  2000 -
                                                                                Sony
  1500
  1000
   500
```

d. Read each brand's sales data and show it using the bar chart. Label them.

Year

2020.6

2020.8

2021.0

2020.4

2020.0

2020.2

```
df["Date of Release"] = pd.to_datetime(df["Date of Release"])
brand_sales = df.groupby('Brand')['Price (USD)'].sum()
plt.bar(brand_sales.index, brand_sales.values)
plt.xlabel("Brand")
plt.ylabel("Sales")
plt.title("Brands Sales Data")
plt.xticks(rotation=45)
plt.grid(axis='y')
plt.show()
```

Brands Sales Data

e. Read each device and show it using the histogram to see the most common Country of Origin. Label them.

import numpy as np country = np.arange(len(country counts)) plt.hist(country, weights=country_counts.values, bins=len(country_counts)) plt.xticks(country, country_counts.index) plt.xlabel("Country of Origin") plt.ylabel("Count") plt.title("Most Common Country of Origin by Device") plt.grid(axis='y') plt.tight_layout() plt.show() Most Common Country of Origin by Device 14 12 10 Count 8 6 4 2 Taiwan United States China South Korea Japan Malaysia Country of Origin f. Create a pie chart that shows each brand Country of Origin. Label them.

