AIRBNB PRICE PREDICTION

Team 1: Jack Wang, Leo Yuan, Kenney Tran, Ryan Wu, Tanishka Gilara

01

PROBLEM & IMPORTANCE

OUR QUESTION AS A TEAM

"WHAT FACTORS CONTRIBUTE TO THE PRICE OF AN AIRBNB IN NEW YORK?"

PROPERTY A:

LOCATED IN BROOKLYN

ACCOMMODATES 2 PEOPLE,

1 BATHROOM,

1 BEDROOM,

1 BED,

4.14 AVERAGE REVIEW SCORE

TAKE YOUR GUESS!

EXPLORING OUR REASONING

Why:

Providing customers with a clearer understanding of factors influencing Airbnb prices

How:

Building models to predict the most impactful factors on price

Target:

Customers looking for better booking deals & fair value in New York (Initial)

02

DATA SUMMARY

DATASET OVERVIEW

ENTIRE DATASET

Comprises two New York datasets, with 2 categorical features and 17 numerical

MISSING VALUES

11 variables had missing values, ranging from 14k (18% of data) to 22k (30% of data)

IMPORTANT FEATURES

Data spanned 5 neighborhoods, and 5 metrics represented reviews of listing, 26 features post feature engineering

DATA PRE-PROCESSING METHODOLOGIES

Feature Engineering

has_essentials: essentials, heating, air conditioner, dryer, washer etc

has_kitchen: refrigerator, coffee maker,
dishwasher etc

has_entertainment: TV, workspace etc
has_safety: smoke, carbon mono etc
has_outdoor_space: backyard, patio

price (label): log transformation to reduce skewness, and to force normal distribution

high_price = price > median
low_price = price < median</pre>

Intuition:

Regression: High p values R² = 0.053

Low p values

Regression (Log):

R² = 0.458 Regression (IQR): *Medium p values*

 $R^2 = 0.371$

DATA PRE-PROCESSING METHODOLOGIES

Intuition: Manhattan Airbnb prices were almost double that of Queens, Bronx, Brooklyn, and Staten Island

Data Imputation

review metrics: cleanliness, location, value, accuracy, communication, checkin, and rating

 Imputed grouping by neighborhood means

descriptive metrics: bedrooms, beds, bathrooms

 Imputed grouping by 'accommodates' median to avoid outliers

04 MODELING APPROACH

DATAFLOW

05

TUNING & MODEL EVALUATION

	LASSO	Bagging	Principal Components	Neural Network
Weakness	Review variables heavily co-linear, LASSO incorrectly drops	Difficult to visualize, black box	No need for dimension reduction	Non-interpretable for general use
Tuning	Lowest a yielded best outcomes	Only reduces variance, did not help in bias reduction Eigenvalue > 1 at 6 predictors		32,64 hidden layers, 0.1 learning rate
Overall Evaluation	Weak model, Ridge > Lasso	Great model performance, but weak interpretability	Unnecessary as we want interpretability , and the models are parsimonious	Without tuning, it performs similar to the ensemble methods , not many complex relationships to capture

HYPERPARAMETERS TUNING

PCA

Scree Plot with Eigenvalue Threshold --- Eigenvalue = 1 Eigenvalue 10 **Principal Component**

Principal components reduce predictors to 6, and misses out on

Lasso Regression Tuning

Lowest *a* performs worse than base log transformed regression, indicating no need to predictive power underfit our model

HYPERPARAMETERS TUNING CONT.

XGBoost Decision Tree

HYPERPARAMETERS TUNING CONT.

Random Forest

Weak / Punching Bag Models

Linear Regression

 $R^2 = 0.053$

(Log) Linear Regression

 $R^2 = 0.458$

Lasso Regression

 $R^2 = 0.411$

a = 0.001

Decision Tree

 $R^2 = 0.465$

RMSE: 0.225

Algorithm Performance (Cross Validated)

Logistics Regression

L2 Penalty 10-Fold CV CS = 10

ROC AUC = 0.86 Accuracy: 79%

F1 Score: 80%

XGBoost Decision Tree

n = 200Rate = 0.2 Depth = 5 $\lambda = 1$

 $R^2 = 0.6625$ **RMSE = 0.1418**

Random Forest

n = 300 Depth = none Features = 1.0

 $R^2 = 0.7084$ **RMSE = 0.1226**

Neural Network

Hidden = (32, 64) Logistic activation

 $R^2 = 0.6137$ **RMSE = 0.1624**

STRONGEST MODEL?

Model strength should not be the only parameter when deciding on the ultimate algorithm as interpretability and generalizability is crucial

XGBoost - Robust to missing values and non-linearities

Logistics Regression -Interpretable and strong for predicting if price > median

Random Forest - Most powerful model, but not ideal for general use

Log Transformed Regression Ideal for interpretation, but weak
model predictive power

07

CHALLENGES & NEXT STEPS

CHALLENGES

Challenges

Finding a powerful but interpretable model

Interpreting locational data beyond neighborhood splitting

Lack of dimensions and features for predictions

What happened?

Models used have are less interpretable due to the black box models being the most powerful

We interpreted latitude and longitude as is, which isn't robust enough to capture interactions

We lacked features such as age of property, condition, as well as attractions near each listing

How would we address?

Model Stacking (utilizing Random Forest coefficients in a Neural Network) Finely tuned Decision Trees

Geography remains a key predictor, and kriging can enhance accuracy

Merge dining / attractions datasets to add additional dimensionality and improve predictive power

Predicted

Actual

Model Predicted Price	Model	Predicted Price
-----------------------	-------	-----------------

Random Forest \$90.65

XGBoost \$76.77

\$85.18

Neural Network \$166.93

\$95

THANK YOU

APPENDIX A

Model		CV R ² (mean)	$CV R^2 (std)$	CV RMSE (mean)	CV RMSE (std)
0	Random Forest	0.661764	0.056405	0.373892	0.019373
1	Bagging	0.494240	0.048128	0.458728	0.007174
2	Boosting	0.629595	0.045716	0.392085	0.010915
3	Neural Network	0.498783	0.039881	0.456948	0.004293

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

	OLS Regressi						
Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	price OLS Least Squares Wed, 02 Apr 2025 14:06:00 61333	=========== R-squared: Adj. R-squared: F-statistic: Prob (F-statist Log-Likelihood: AIC: BIC:		0.053 0.053 137.1 0.00 -4.9022e+05 9.805e+05 9.807e+05			
		coef	std err	t	P> t	[0.025	0.975]
const latitude longitude accommodates bathrooms bedrooms beds minimum_nights number_of_reviews number_of_reviews_scores_accura review_scores_accura review_scores_cleanl review_scores_commun review_scores_locati review_scores_locati review_scores_value has_essentials	cy iness n vication	221.8306 -29.2233 -41.7832 116.3429 61.9079 2.3224 -15.6121 -11.3286 -8.0826 1.1835 6.6948 -1.5352 9.5353 -13.1672 3.1500 9.8628 -3.2963 -0.5742	2.892 4.845 4.970 4.511 3.361 3.943 4.781 2.952 3.620 3.596 3.928 5.821 4.594 4.752 5.116 3.916 5.514 3.060	76.696 -6.031 -8.407 25.792 18.418 0.589 -3.265 -3.838 -2.233 0.329 1.704 -0.264 2.076 -2.771 0.616 2.519 -0.598 -0.188	0.000 0.000 0.000 0.000 0.000 0.556 0.001 0.026 0.742 0.088 0.792 0.038 0.006 0.538 0.006 0.538 0.010 0.550	216.162 -38.720 -51.524 107.502 -5.406 -24.983 -17.114 -15.177 -5.865 -1.005 -12.945 0.531 -22.481 -6.877 2.187 -1.105	227.500 -19.726 -32.042 125.184 68.496 10.051 -6.241 -5.543 8.232 14.394 9.874 18.540 -3.854 13.177 17.538 7.512
has_kitchen has_entertainment has_safety has_outdoor_space neighbourhood_group neighbourhood_group neighbourhood_group neighbourhood group	cleansed_Manhattan cleansed_Queens	-22.5669 2.6956 -5.9358 10.7167 -48.9820 19.5861 -15.8019 nd -32.6685	3.002 3.055 2.982 2.929 10.492 9.392 7.310 4.355	-7.518 0.882 -1.990 3.659 -4.668 2.085 -2.162 -7.502	0.000 0.378 0.047 0.000 0.000 0.037 0.031 0.000	-28.450 -3.293 -11.781 4.976 -69.547 1.178 -30.129 -41.203	-16.683 8.684 -0.091 16.457 -28.417 37.994 -1.475 -24.134

APPENDIX I

APPENDIX J

	ŗ	recision	recall	f1-score	support
	0	0.79	0.82	0.80	6021
	1	0.78	0.75	0.77	5298
accura	су			0.79	11319
macro a	vg	0.79	0.78	0.78	11319
weighted a	vg	0.79	0.79	0.79	11319
ROC AUC: 0	.8605	3			

Neural Net R²: 0.6137

Neural Net RMSE (log): 0.1624

APPENDIX K

```
=== Best Parameters XGBoost===
{'colsample_bytree': 0.8, 'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 200, 'reg_alpha': 0, 'reg_lambda': 1.5, 'subsample': 1.0}
=== Test Performance ===
R²: 0.6609
RMSE (log scale): 0.1425
```

	△ feature	# importance
2	accommodates	0.2961251
5	beds	0.10844432
4	bedrooms	0.10109886
6	minimum_nights	0.07528877
22	neighbourhood_group_cleansed_Ma	0.07158521
1	longitude	0.06391023
3	bathrooms	0.033237386
0	latitude	0.032904126
8	number_of_reviews_ltm	0.025478369
11	review_scores_cleanliness	0.023847632

APPENDIX L

```
=== Best Parameters Random Forest===
{'max_depth': None, 'max_features': 1.0, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 300}
=== Test Performance ===
R²: 0.7084
RMSE (log scale): 0.1226
```

	∆ feature	# importance
2	accommodates	0.30297005215806017
1	longitude	0.20557052975783094
0	latitude	0.14281440184570726
6	minimum_nights	0.052459237961821066
11	review_scores_cleanliness	0.033958953842321185
7	number_of_reviews	0.02975290881249307
8	number_of_reviews_ltm	0.026047732685952518
4	bedrooms	0.02370654450463369
3	bathrooms	0.02343301151045217
15	review_scores_value	0.021154202745674564

APPENDIX M

APPENDIX N

APPENDIX O

APPENDIX P

	[∆] Model	# Actual Price	# Predicted Price
0	Random Forest	95.0	90.65
1	XGBoost	95.0	76.7699966430664
2	Bagging	95.0	85.18
3	Neural Network	95.0	166.93

APPENDIX O

