

Forelesning nr.4 INF 1411 Elektroniske systemer

Vekselstrøm Kondensatorer

Dagens temaer

- Sinusformede spenninger og strømmer
- Firkant-, puls- og sagtannsbølger
- Effekt i vekselstrømkretser
- Kondensator
- Presentasjon av labøvelse 2
- Temaene hentes fra Kapittel 8.1-8.5, 8.8 og 9.1-9.4

Signaler som varierer over

 Et signal er strømmer og spenninger som overfører informasjon

- Variasjonen kan være periodisk (b), dvs at signalet gjentar seg med faste mellomrom, eller ikke-periodisk ((a) og (c))
- . Tidsvarierende signaler kalles generelt ac-signaler

Sinusformede signaler

- Sinusformede strømmer og spenninger svært vanlig
 - Mange naturlige fenomener er sinusformede
 - Sinusformede signaler har egenskaper som kan beskrives presist matematisk
 - Det finnes teknikker for å omforme vilkårlige signaler til sinusformede signaler
- Sinussignaler er sentrale i lyd- og bildebehandling, både digital og analog

Egenskaper ved sinussignaler

- En sinuskurve karakteriseres ved amplitude og periode
- Amplituden A er den maksimale verdien til signalet, mens perioden T er tiden det tar før signalformen gjentar seg

$$A = 20 \text{ volt}$$

T=50 µs

Mer om amplitude

- Et balansert sinussignal er sentrert rundt 0: Maksimal positiv verdi = maksimal negativ verdi (absoluttverdi).
- Amplituden er som regel den positive maksimumsverdien

Mer om periode og frekvens

 Perioden angir tiden det tar før signalformen gjentas, mens frekvensen sier hvor mange ganger signalformen gjentar seg per tidsenhet

Perioden T og frekvensen f er omvendt proporsjonale:

$$T = \frac{1}{f} \iff f = \frac{1}{T}$$

Strøm- og spenningsretning

 For et balansert sinussignal endres strømretningen og/eller polariteten til spenningen

 Signalet er positivt halve perioden og negativ den andre halve perioden

Øyeblikksverdi

Øyeblikksverdien måles som verdien på et bestemt

tidspunkt

Peak-til-peak verdi

- Amplitude kalles også magnitude ell
- Peak-til-peak verdi er definert som

$$V_{pp} = 2V_p \wedge I_{pp} = 2I_p$$

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

RMS-verdi

- RMS-verdi betyr Root-Mean-Square og kalles den effektive verdien til sinussignalet
- RMS-verdien til et sinussignal angir hva et tilsvarende dcsignal må være for å produsere samme effekt i en resistor

10.02.2015 INF 1411 11

RMS-verdi (forts)

Sammenhengen mellom RMS-verdien og peakverdien er

$$V_{rms} = \frac{1}{\sqrt{2}} V_{p} \approx 0.707 V_{p}$$

$$I_{rms} = \frac{1}{\sqrt{2}}I_p \approx 0.707I_p$$

Kjenner RMS-verdien kan man finne peakverdien:

$$V_p = \sqrt{2}V_{rms} \approx 1,414V_{rms}$$

$$I_p = \sqrt{2}I_{rms} \approx 1,414I_{rms}$$

Gjennomsnittsverdi

 Gjennomsnittsverdien til et sinussignal måles over en halv periode, siden gjennomsnittverdien over en hel periode er 0

. Sammenhengen er gitt av

$$V_{avg} = \frac{2}{\pi} V_{p} \approx 0.637 V_{p}$$

$$I_{avg} = \frac{2}{\pi}I_{p} \approx 0.637I_{p}$$

Matematisk representasjon av sinus

 I mange sammenhenger representeres sinussignaler som en funksjon

Matematisk kan sinus skrives som

$$y = A \sin(\theta)$$

Matematisk representasjon av sinus (forts.)

- θ brukes for å representere sinuskurven som en *phasor* eller vektor, der man tenker seg en vektor som roterer
- Om spissen på vektoren projiseres horisontalt på en rett linje, får man en sinuskurve

Matematisk representasjon av sinus (forts)

 Siden signalet gjentar seg for hver 2π=360°, kan frekvensen defineres som

$$f = \frac{1}{T} \Rightarrow \omega = \frac{2\pi}{T} \Leftrightarrow \omega = 2\pi f$$

ω kalles for radian- eller vinkelfrekvens

Time (in seconds) = 0.00 s Rotation (in radians) = 0.00 rad Rotation (in cycles) = 0.00 cycle $\omega = \frac{0.00 \text{ rad}}{0.00 \text{ s}} = \frac{0.00 \text{ cycle}}{0.00 \text{ cycle}} = \frac{0.00 \text{ cyc$

Matematisk representasjon av sinus (forts)

• Hvis lengden på vektoren er V_p , kan sammenhengen mellom sinussignalet og vektorrepresentasjonen skrives som

$$v = V_p \sin(\theta)$$
$$i = I_p \sin(\theta)$$

Fasedreining

• Hvis et sinussignal forskyves i tid (dvs langs den horisontale aksen), oppstår en såkalt *faseforskyving* eller *fasedreining* φ

$$y = A \sin(\theta \pm \varphi)$$

Analyse av ac-kretser

- Ohms lov og Kirchhoffs strøm- og spenningslover gjelder også for ac-signaler
- Man må konsekvent bruke enten peak-, rms- eller gjennomsnittsverdier for både strøm og spenning i samme ligning
- For å beregne effekt må man bruke rms-verdiene:

$$P = V_{rms}I_{rms}$$

$$P = \frac{V_{rms}^2}{R}$$

$$P = I_{rms}^2 R$$

Sinussignaler med dc-offset

 Hvis sinussignalet har en dc-komponent, forskyves amplituden opp eller ned

• V_p defineres relativt til dc-offset, og ikke fra 0

Andre bølgeformer

I digitale systemer brukes firkant- eller pulssignaler

Et pulssignal går fra ett nivå til et annet annet og deretter

tilbake igjen

 I tillegg til amplituden karakteriseres pulssignalet av pulsbredden og stigene og fallende flanker («edges»)

Andre bølgeformer (forts)

- Et ideelt pulssignal har vertikale flanker; i praksis er dette umulig fordi strøm/spenning ikke kan endre verdi momentant
- Fysiske pulssignaler karakteriseres ved tre parametre til:
 - «Rise time»: Tiden det tar fra signalet går fra 10% til 90% av amplituden
 - «Fall time»: Tiden det tar fra signalet går fra 90% til 10% av amplituden
 - Pulsbredden måles mellom de punktene på hhv stigende og fallende flanke som har nådd 50% av amplituden

Andre bølgeformer (forts)

 Periodiske signaler er ikke alltid symmetriske rundt et referansepunkt (gjennomsnittsverdi ≠ 0)

- Frekvensen defineres tilsvarende som for sinus
- «duty cycle» er forholdet mellom pulsbredden og perioden i %

$$DutyCycle = \left(\frac{t_w}{T}\right)100\%$$

Det matematisk-naturvitenskapelige fakultet

Kondensatorer

- En resistors motstand varierer ikke med frekvensen til strømmen
- En kondensators motstand variererer med frekvensen
- En kondensator kan lagre elektrisk ladning
- En kondensator består av to plater av ledende materiale med isolasjon i mellom

10.02.2015 INF 1411

Kondensatorer (forts)

En kondensator kan sammenlignes med et vannrør med en elastisk membran

- Hvis vannet beveger seg vil membranen bevege seg også, slik det ser ut som det renner vann igjennom røret (vann = elektrisk strøm)
- Hvis vannet endrer retning, vil membranen gå tilbake til sin opprinnelige posisjon og presse vannet tilbake
- Det vil være trykkforskjell på hver side av membranen når vannet beveger seg (trykkforskjell = spenning)
- Uten bevegelse i vannet vil membranen ikke bevege seg (dc-spenning gir ingen strøm igjennom kondensatoren)

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Kondensatorer (forts)

- Hvis platene kobles til en spenning V_s , oppstår et felt mellom platene
- Feltet gjør at elektroner beveger seg fra den ene platen over til den andre
- Når spenningen mellom platene har nådd
 V_s beveger det seg ikke lenger elektroner
- Om kilden fjernes vil en ideell kondensato beholde spenningen til evig tid
- I praksis «lekker» platene og dette modelleres med en resistor i parallell

(a) Neutral (uncharged) capacitor (same charge on both plates)

(c) After the capacitor charges to V_S, no electrons flow.

(b) When connected to a voltage source, electrons flow from plate A to plate B as the capacitor charges.

(d) Ideally, the capacitor retains charge when disconnected from the voltage source.

10.02.2015 INF 1411 26

Kondensatorer (forts)

 Mengden ladning en kondenator kan holde på heter kapasitans C, måles i Farad og er definert ved

$$C = \frac{Q}{V} \Leftrightarrow Q = CV \Leftrightarrow V = \frac{Q}{C}$$

- 1 Farad er kapasitansen som tilsvarer lagring av 1 Coulomb med 1 volt potensialforskjell mellom platene
- Sammenhengen mellom plateareal A, plateavstand d og kapasitans er gitt av

 $C = \varepsilon \frac{A}{d}$

• ε kalles for *permittivitet* og er en egenskap ved materialet mellom platene

Oppladning og utladning av kondensator

- Ladninger kan bare bevege seg når spenningen over kondensatoren er forskjellig fra spenningskilden
- Når kretsen har nådd stabil dc-spenning, vil kondensatoren blokkere for strøm

Tidskonstant

- Viktige egenskaper ved en kondensator er
 - Hvor raskt den lades opp når en spenningskilde V_s kobles til
 - Hvor raskt den lades ut til 0 når en spenningskilde V_s kobles fra
- Tidskonstanten τ sier hvor lang tid det tar å lade opp/ut kondensatoren når den er koblet i serie med en ohmsk motstand.
- τ måles i sekunder og er definert ved

Tidskonstant (forts)

- . Når $\tau = 1s$ betyr det at
 - En fullt utladet kondensator har nådd ca 63% av den maksimale spenningen etter at den er koblet til en spenningkilde
 - En fullt oppladet kondensator har falt til ca 37% av den opprinnelige spenningen etter at kilden er koblet fra
- Opp/utladningskurvene er eksponensielle

(a) Charging curve with percentages of the final voltage

(b) Discharging curve with percentages of the initial voltage

Tidskonstant (forts)

 De generelle formlene for oppladning og utladning av en kondensator som lades opp/ut via en resistor er gitt av

$$v = V_F + (V_i - V_F)e^{-\frac{t}{\tau}}$$
$$i = I_F + (I_i - I_F)e^{-\frac{t}{\tau}}$$

der V_F og I_F er slutt-verdiene, og V_i og I_i er startverdiene

. Hvis man lader opp fra $V_i = 0$, blir formelen

$$v = V_F (1 - e^{-\frac{t}{RC}})$$

. Hvis man lader *ut* til $V_F = 0$ blir formelen

$$v = V_i e^{-\frac{t}{RC}}$$

Kapasitiv reaktans

- En kondensator har en motstand mot elektrisk strøm som er avhengig av frekvensen til signalet
- . Denne motstanden kalles $kapasitiv reaktans X_c$ og er definert ved

$$X_c = \frac{1}{2\pi fC}$$

- . Jo større frekvens, desto mindre kapasitiv reaktans
- . Jo større kapasitans, desto mindre kapasitiv reaktans

Nøtt til neste gang

 Hva gjør denne kretsen? (dvs hva er sammenhengen mellom V_{in} og V_o når bryterene åpnes og lukkes?) Anta ideelle kondensatorer

2. obligatoriske labøvelse

Formål

- Bli kjent med RC-kretser
- Måle på ulike egenskaper ved RC-kretser
- Teoretiske beregninger på RC-kretser
- Teorigrunnlaget dekkes av forelesning 4 og 5 og læreboka

Temaer

- Måling på sinussignaler og pulssignaler med oscilloskop
- Måling og beregning av oppladning av RC-kretser for pulssignaler
- Måling på RC-forsinkelseskrets for sinussignaler
- Måling og beregning av kapasitiv reaktans og fasedreining
- Frist for innlevering er fredag 27.februar kl 23.59

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Oppsummeringsspørsmål

Spørsmål fra forelesningene 3 og 4

En krets kalles for parallellkrets hvis

- a) Det er samme strøm gjennom alle elementene
- b) Alle elementene har samme spenning over seg
- c) Den har mer enn én strømvei
- d) Den har ingen strømkilder

I en parallellkrets er

- a) Totalkonduktansen lik summen av konduktansen til enkeltelementene
- b) Totalresistansen lik summen av resistansen til enkeltelementene
- c) Totalkonduktansen lik produktet av konduktansen til enkeltelementene
- d) Den inverse av totalresistansen lik summen av de inverse enkeltresistansene

Gitt en spenningdeler som består av to ulike motstander i serie. Da er

- a) Spenningsfallet størst over den minste motstanden
- b) Spenningsfallet størst over den største motstanden
- c) Strømmen størst gjennom den minste motstanden
- d) Strømmen størst gjennom den største motstanden

To krester er elektrisk ekvivalente hvis

- a) Det går samme strøm gjennom terminalene
- b) Det er samme spenning over terminalene
- c) De elektriske egenskapene internt i de to kretsene er identiske
- d) De elektriske egenskapene mellom et nodepar er identiske

Ved å koble sammen batterier i parallell får man

- a) Mindre spenning
- b) Mindre konduktans
- c) Økt strøm
- d) Høyere resistans

For et vilkårlig ac-signal gjelder følgende:

- a) Snittverdien over en hel periode er 0
- b) Signalet gjentar seg etter perioden T
- c) Har en bestemt frekvens f=1/T
- d) Varierer over tid

Et balansert sinussignal er

- a) Alltid positivt
- b) Har fast frekvens
- c) Er sentrert rundt 0
- d) Absoluttverdien til den positive og negative peakverdien er like

Hvilken påstand er feil?

En kondensator

- a) Kan ikke lagre elektrisk ladning
- b) Har motstand mot elektrisk strøm som er avhengig av frekvensen
- c) Jo større frekvens desto større motstand
- d) Jo større frekvens desto større kapasitiv reaktans

Hvis kapasitansen øker vil

- a) Reaktansen bli mindre
- b) Resistansen bli mindre
- c) Frekvensen øke
- d) Perioden bli mindre

Tidskonstanten til en RC-krets sier noe om

- a) Hvor lang tid det tar før den blokkerer en dc-spenning
- b) Ved hvilken frekvens den begynner å lede en ac-strøm
- c) Ved hvilken frekvens den begynner å sperre en acstrøm
- d) Hvor lang tid det tar å lade kondensatoren opp eller ut

45