2020 年春季学期课程期末考试试卷答题纸

课程名	3称:	<u></u>	战性代数		课和	星代码:	SOFT130079.01		
卷	别:	√A 卷	□B 卷	□C 卷					
姓	名:				学	号:			

我已知悉学校与考试相关的纪律以及违反纪律的后果,并将严守纪律,不作弊,不抄袭,独立答题。

学生(签名):

年 月 日

题号	1	2	3	4	5	6	7	8	总分
得分									

0-113

计算题:

1、已知
$$A = \begin{bmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
, 求 $(A^{-1})^{100}$

2、计算行列式
$$\begin{vmatrix} 2 & 1 & 2 & 0 \\ 0 & -1 & 1 & 3 \\ 5 & 2 & -1 & 1 \\ 2 & 1 & 3 & 0 \end{vmatrix}$$

3、设 A=
$$\begin{bmatrix} -1 & -1 & 1\\ 0 & 2 & 3\\ 0 & 0 & 1 \end{bmatrix}$$

- (1) 求 A 的特征值和特征向量;
- (2) 判断 A 是否可对角化?如果可以对角化,求出可逆变换矩阵 P。

4、已知
$$a^2+b^2+c^2=1$$
,矩阵 $\mathbf{A}=\begin{bmatrix} 1-a^2 & -ab & -ac \\ -ab & 1-b^2 & -bc \\ -ac & -bc & 1-c^2 \end{bmatrix}$,求 **AX**=0 的通解

5、矩阵
$$A = \begin{bmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix}$$
, 求 A 的行向量组的一个最大无关组。

6、讨论当参数 *a,b* 取何值时,下列的方程组无解?有唯一解?有无穷多组解?并求有无穷多组解时方程组的通解。

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \\ -x_2 + (a-2)x_3 - 2x_4 = b \end{cases}$$

7、设 A 为 3 阶矩阵,向量 a,b 分别是 A 的特征值-1 和 1 对应的特征向量,而向量 c 满足 Ac=b+c,讨论向量组 a,b,c 的线性无关性。

8、讨论方程组
$$\begin{cases} x_1-x_2=a_1\\ x_2-x_3=a_2\\ x_3-x_4=a_3 & 有解的条件,并求对应的通解。\\ x_4-x_5=a_4\\ x_5-x_1=a_5 \end{cases}$$

证明题:

9、设 λ_1 , λ_2 , λ_3 为方阵 A 的不同的特征值,对应的特征向量分别是 α_1 , α_2 , α_3 , 假设 $\beta = \alpha_1 + \alpha_2 + \alpha_3$, 证明向量组 β , $A\beta$, $A^2\beta$ 线性无关。