MM20B007: Data Analytics Lab Assignment 1

```
from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly
remount, call drive.mount("/content/drive", force_remount=True).
```

Getting necessary packages

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.formula.api as smf
import statsmodels.api as sm
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
```

Reading the data

```
mdf = pd.read_csv('/content/drive/MyDrive/sem 7/EE5708/Assignment
1/Data/merged_data.csv', index_col = 0)
```

Visualizing the data

```
mdf.head()
  State
                                               All Poverty
                                                             M Poverty \
                                     AreaName
0
             Aleutians East Borough, Alaska
     AK
                                                        553
                                                                   334
1
     AK
         Aleutians West Census Area, Alaska
                                                        499
                                                                   273
2
             Anchorage Municipality, Alaska
                                                                 10698
     AK
                                                      23914
3
     AK
                  Bethel Census Area, Alaska
                                                       4364
                                                                  2199
     AK
                                                         69
                Bristol Bay Borough, Alaska
                                                                    33
                     Med Income
   F Poverty
              FIPS
                                 Med Income White
                                                    Med Income Black \
0
         219
              2013
                        61518.0
                                           72639.0
                                                              31250.0
1
         226
              2016
                        84306.0
                                           97321.0
                                                              93750.0
2
       13216
              2020
                        78326.0
                                           87235.0
                                                              50535.0
3
        2165
              2050
                        51012.0
                                           92647.0
                                                              73661.0
4
          36
             2060
                        79750.0
                                           88000.0
                                                                  NaN
                                       All With
                                                  All Without
   Med_Income_Nat_Am
                            F Without
                                                                fips_x \
                       . . .
0
             54750.0
                                   540
                                            1442
                                                          1857
                                                                  2013
                       . . .
1
             48750.0
                                   564
                                            4177
                                                          1333
                                                                  2016
```

```
2
              53935.0
                                  21393
                                           243173
                                                          44638
                                                                    2020
3
                                   1774
                                                                    2050
              41594.0
                                            13023
                                                            4482
              63333.0
                                     67
                                               768
                                                             191
                                                                    2060
   Incidence Rate Avg Ann Incidence
                                         recent trend
                                                       fips y
Mortality Rate
                            3 or fewer
                                                          2013
*
1
                            3 or fewer
                                                          2016
2
              61.5
                                    131
                                                stable
                                                          2020
47.3
3
              62.7
                                      6
                                                stable
                                                          2050
58.3
                            3 or fewer
                                                          2060
  Avg Ann Deaths
0
                *
1
2
               96
3
                5
4
[5 rows x 25 columns]
```

Preprocessing and Data Cleaning

Dropping unwanted columns

```
'Med_Income_Nat_Am', 'Med_Income_Asian', 'Hispanic', 'M_With',
       'M Without', 'F With', 'F Without', 'All With', 'All Without',
       'Incidence Rate', 'Avg Ann Incidence', 'recent trend',
'Mortality Rate',
       'Avg Ann Deaths'],
      dtype='object')
mdf.shape
(3134, 23)
df = mdf.copy()
df[['Med Income', 'Med Income White', 'Med Income Black',
       'Med Income Nat Am', 'Med Income Asian', 'Hispanic']].mean()
Med Income
                     46819.837855
Med Income White
                     49490.181992
Med Income Black
                     34750.214137
Med Income Nat Am
                     43309.998643
Med Income Asian
                     65412.969499
Hispanic
                     41118.231553
dtype: float64
```

Function to plot distributions as subplots

```
def dist_plot(features, rows, cols, data, figsize=(10, 7)):
    Plot distributions of features in subplots and display the mean
value in each subplot.
    Parameters:
        features (list): List of feature names to plot.
        rows (int): Number of subplot rows.
        cols (int): Number of subplot columns.
        data (DataFrame): The data containing the features.
        figsize (tuple): Figure size (width, height).
    Returns:
        None
    fig, axes = plt.subplots(rows, cols, figsize=figsize, sharex=True,
sharey=True)
    # Flatten the 2D array of subplots for easier iteration
    for i, ax in enumerate(axes.flatten()):
        feature name = features[i]
        feature data = data[feature name]
        # Plot the distribution using Seaborn
```

```
sns.distplot(feature_data, ax=ax)
        # Set title for the subplot
        ax.set title(feature name)
        # Get the KDE line and calculate mean height
        kde line = ax.lines[0]
        mean = feature data.mean()
        xs = kde line.get xdata()
        ys = kde line.get ydata()
        height = np.interp(mean, xs, ys)
        # Add a vertical line at the mean and fill area under the KDE
curve
        ax.vlines(mean, 0, height, color='crimson', linestyle=':')
        ax.fill between(xs, 0, ys, facecolor='crimson', alpha=0.2)
        # Add text to display the mean value
        ax.text(0.75, 0.9, "Mean: {:.2f}".format(mean),
                horizontalalignment='center',
verticalalignment='center',
                transform=ax.transAxes)
    plt.tight layout()
    plt.show()
income = ['Med Income', 'Med Income White', 'Med Income Black',
       'Med Income Nat Am', 'Med Income Asian', 'Hispanic']
dist plot(income, 3, 2, df)
<ipython-input-137-ddcc233c517a>:23: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `histplot` (an axes-level function for
histograms).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  sns.distplot(feature data, ax=ax)
<ipython-input-137-ddcc233c517a>:23: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
```

```
similar flexibility) or `histplot` (an axes-level function for histograms).
```

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(feature_data, ax=ax)
<ipython-input-137-ddcc233c517a>:23: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(feature_data, ax=ax)
<ipython-input-137-ddcc233c517a>:23: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(feature_data, ax=ax)
<ipython-input-137-ddcc233c517a>:23: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(feature_data, ax=ax)
<ipython-input-137-ddcc233c517a>:23: UserWarning:
```

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(feature_data, ax=ax)

These graphs show that different social groups have different mean incomes for other states; hence, if we can prove that the median income is a valid factor in determining the average annual incidence or death, we can also assume that socioeconomic status would be a valid factor!

Checking the number of null values in each of the features

```
mdf.isnull().sum()

State 0
AreaName 0
```

```
All Poverty
                         0
M Poverty
                         0
F Poverty
                         0
FIPS
                         0
Med Income
                         1
                         2
Med Income White
Med Income Black
                      1210
Med Income Nat Am
                      1660
Med Income Asian
                      1757
Hispanic
                       681
M With
                         0
                         0
M Without
F With
                         0
                         0
F Without
All With
                         0
All Without
                         0
Incidence Rate
                         0
Avg Ann Incidence
                         0
recent trend
                         0
Mortality Rate
                         0
Avg Ann Deaths
                         0
dtype: int64
```

The columns 'Med_Income_White', 'Med_Income_Black', 'Med_Income_Nat_Am', 'Med_Income_Asian', and 'Hispanic' have too many null values hence we will be dropping them.

```
df.drop(['Med_Income_White', 'Med_Income_Black', 'Med_Income_Nat_Am',
'Med_Income_Asian', 'Hispanic'], axis = 1, inplace = True)
```

Checking, what all columns have numeric data type

```
df.apply(lambda s: pd.to_numeric(s, errors='coerce').notnull().all())
State
                      False
AreaName
                      False
All Poverty
                      True
                      True
M Poverty
F Poverty
                      True
FIPS
                      True
Med Income
                      False
M With
                      True
M Without
                      True
F With
                      True
F Without
                      True
All With
                      True
All Without
                      True
Incidence Rate
                     False
Avg Ann Incidence
                     False
recent trend
                     False
```

```
Mortality Rate
                      False
Avg Ann Deaths
                      False
dtype: bool
df.describe()
                                          F Poverty
        All Poverty
                          M Poverty
                                                               FIPS
       3.134000e+03
                                        3134.000000
                        3134.000000
                                                       3134.000000
count
mean
       1.522966e+04
                        6828.800893
                                        8400.855775
                                                      30426.019145
       5.457122e+04
                       24719.078097
                                       29865.855831
                                                      15124.491165
std
min
       1.000000e+01
                           5.000000
                                           5.000000
                                                       1001.000000
25%
       1.731250e+03
                         758.750000
                                         957.000000
                                                      19001.500000
50%
       4.294000e+03
                        1925.000000
                                        2372.000000
                                                      29180.000000
75%
                                        5812.500000
                                                      45080.500000
       1.034550e+04
                        4697.500000
                                      976653.000000
max
       1.800265e+06
                      823612.000000
                                                      56045.000000
          Med Income
                             M With
                                          M Without
                                                             F With
         3133.000000
                       3.134000e+03
                                        3134.000000
                                                      3.134000e+03
count
mean
        46819.837855
                       4.158963e+04
                                        6930.955329
                                                      4.487357e+04
        12246.380184
                       1.293894e+05
                                       28686.089548
                                                      1.406455e+05
std
min
        19328.000000
                       3.200000e+01
                                           4.000000
                                                      3.300000e+01
        38826.000000
                       4.506750e+03
                                         750.000000
25%
                                                      4.657500e+03
50%
        45075.000000
                       1.040450e+04
                                        1763.000000
                                                      1.110800e+04
                                                      2.976475e+04
75%
        52224.000000
                       2.788775e+04
                                        4407.250000
       123453.000000
                       3.904322e+06
                                                      4.230137e+06
max
                                      997326.000000
           F Without
                           All With
                                       All Without
         3134.000000
                       3.134000e+03
                                      3.134000e+03
count
         5968.701021
                       8.646320e+04
                                      1.289966e+04
mean
        24657.276997
                       2,699985e+05
                                      5.331494e+04
std
            4.000000
                       6.700000e+01
                                      8.000000e+00
min
25%
          633.000000
                       9.173500e+03
                                      1.388250e+03
                       2.144800e+04
50%
         1529.000000
                                      3.323500e+03
75%
         3834.000000
                       5.756150e+04
                                      8.240000e+03
       837175.000000
                       8.134459e+06
                                      1.834501e+06
max
```

Thus we can see we have to treat the columns [Incidence_Rate, Avg_Ann_Incidence, recent_trend, Mortality_Rate, Avg_Ann_Deaths] for values that are not numeric.

Also, we can see, all the independent columns are not normalized by population and we also do not have population data, it is better to delete the Mortality rate and Incidence rate columns as these are just the average values normalized by population and hence can be dropped!!

```
df.drop(['Mortality_Rate', 'Incidence_Rate'], axis = 1, inplace =
True)

# we create a filter to convert the non-numeric data to either numeric
or to replace by NULL
def filter_(x):
    try:
```

```
return float(str(x).split(' ')[0])
    except ValueError:
        return float('NaN')
# Using the filter on different columns
df['Avg Ann Incidence'] = df['Avg Ann Incidence'].map(filter )
df['Avg Ann Deaths'] = df['Avg Ann Deaths'].map(filter )
df['Med Income'] = df['Med Income'].map(filter)
print([i for i in df['Avg Ann Incidence'].unique() if type(i)==str])
print([i for i in df['Avg Ann Deaths'].unique() if type(i)==str])
[]
[]
# creating columns with Rising and falling !!
def boo(col, chck):
    if col == chck:
        return 1
    return 0
df['Rising'] = df['recent_trend'].apply(lambda x: boo(x, 'rising'))
df['Falling'] = df['recent trend'].apply(lambda x: boo(x, 'falling'))
df.select dtypes(include=np.number)
      All_Poverty M_Poverty F_Poverty FIPS Med_Income
                                                              M With
M Without \
              553
                          334
                                     219
                                           2013
                                                     61518.0
                                                                 876
1317
              499
                          273
                                     226
                                           2016
                                                    84306.0
                                                                2470
769
            23914
                        10698
                                   13216
                                           2020
                                                     78326.0 120747
23245
             4364
                         2199
                                    2165
                                           2050
                                                     51012.0
                                                                6396
3
2708
               69
                           33
                                      36
                                           2060
                                                     79750.0
                                                                 419
124
. . .
3129
             5058
                         2177
                                    2881
                                          56037
                                                     69022.0
                                                               19891
3318
3130
             1638
                         1026
                                     612
                                          56039
                                                     75325.0
                                                                8948
2558
3131
             2845
                         1453
                                    1392
                                          56041
                                                     56569.0
                                                                9132
1413
3132
                         489
                                          56043
                                                     47652.0
             1137
                                     648
                                                                3349
691
3133
              958
                          354
                                     604
                                          56045
                                                     57738.0
                                                                2927
```

Falling (

dtype: int64

#Checking for mean values for different features, grouped by state
df.groupby(['State']).mean()

<ipython-input-150-94714262a348>:2: FutureWarning: The default value
of numeric_only in DataFrameGroupBy.mean is deprecated. In a future
version, numeric_only will default to False. Either specify
numeric_only or select only columns which should be valid for the
function.

df.groupby(['State']).mean()

Med_Income State		M_Poverty	F_Poverty	FIPS
AK 2	2978.782609	1425.260870	1553.521739	2138.217391
	3242.686567	5740.791045	7501.895522	1067.000000
	7381.920000	3303.280000	4078.640000	5075.000000
	3712.666667	36501.133333	42211.533333	4013.866667
CA 105 56013.1551	5778.310345 L72	48712.758621	57065.551724	6058.000000
51263.1875		4729.312500	5488.953125	8062.234375
71184.1250		20125.000000	25668.875000	9008.000000
70848.0000	9365.000000 900 5105.000000	48069.000000 15373.000000	62296.000000 20732.000000	11001.000000
58067.6666		21485.835821	25978.477612	12067.910448
44046.4776		4968.270440	6282.968553	13161.490566
40704.9119		14142.200000	16646.600000	15005.000000
64879.0000 IA	900 3776.595960	1693.616162	2082.979798	19099.000000
	5572.204545	2591.636364	2980.568182	16044.000000
	7658.019608	7873.049020	9784.970588	17102.000000
	9630.902174	4719.782609	5911.119565	18092.000000
48745.4021 KS	3631.933333	1651.476190	1980.457143	20105.000000

47322.209524	2007 72222	2707 600222	21120 000000
KY 6715.341667 39137.300000	3007.733333	3707.608333	21120.000000
LA 13879.375000	5932.671875	7946.703125	22064.000000
41411.781250	3932.071073	7940.703123	22004.000000
MA 53493.214286	23007.857143	30485.357143	25014.000000
65974.428571			
MD 24033.541667	10270.708333	13762.833333	24044.958333
69200.375000			
ME 11267.375000	5047.500000	6219.875000	23016.000000
46141.750000			
MI 19480.361446	8863.554217	10616.807229	26083.000000
44464.987952	2145 404252	2712 (00055	27007 000000
MN 6858.183908 53926.988506	3145.494253	3712.689655	27087.000000
M0 7964.973913	3553.165217	4411.808696	29117.713043
41755.400000	5555.105217	4411.000090	29117.713043
MS 7945.670732	3430.256098	4515.414634	28082.000000
34938.926829	31301230030	13131111031	20002100000
MT 2689.035714	1246.785714	1442.250000	30056.000000
44497.017857			
NC 16674.650000	7399.320000	9275.330000	37100.000000
41784.200000			
ND 1504.867925	669.962264	834.905660	38053.000000
55574.867925	1000 540207	1206 550140	21002 000000
NE 2485.107527 48646.129032	1088.548387	1396.559140	31093.000000
NH 11384.000000	5107.000000	6277.000000	33010.000000
60648.900000	3107.000000	0277.000000	33010.000000
NJ 44992.714286	19710.857143	25281.857143	34021.000000
73014.095238			
NM 13010.939394	6034.939394	6976.000000	35030.151515
40183.666667			
NV 25078.647059	11705.352941	13373.294118	32045.529412
53689.705882	21222 52252	27024 410255	25252 22222
NY 48482.951613	21388.532258	27094.419355	36062.000000
55275.693548 OH 20179.954545	8994.931818	11185.022727	39088,000000
48446.409091	0994.931010	11103.022727	39000.000000
0K 8104.454545	3612.857143	4491.597403	40077,000000
44097.376623	30121037143	44311337403	400771000000
OR 17692.972222	8237.222222	9455.750000	41036.000000
45171.222222	-		
PA 24874.164179	11000.119403	13874.044776	42067.000000
50316.253731			
RI 28844.600000	12603.400000	16241.200000	44005.000000
65783.400000	7040 50150	10000 54045	45046 00000
SC 18063.065217	7840.521739	10222.543478	45046.000000
39756.695652			

	1652.692308	756.615385	896.076923	46067.430769	
4/6/9 TN	.738462 11764.147368	5240.600000	6523.547368	47095.000000	
	.031579	0_10100000			
TX	17608.074803	7883.543307	9724.531496	48254.000000	
	.778656	FC4C C20C00	6477 551724	40020 00000	
UT 54697	12124.172414 .034483	5646.620690	6477.551724	49029.000000	
VA	6927.651515	3028.363636	3899.287879	51265.848485	
	.212121	30201303030	3033.207073	312031040403	
VT		2213.642857	2731.571429	50014.000000	
52653	.500000				
WA	23295.179487	10715.025641	12580.153846	53039.000000	
	.076923	4510 630000	5540 750000	55071 007222	
WI FOG 40	10060.388889	4519.638889	5540.750000	55071.097222	
WV	.000000 5879.709091	2635.436364	3244.272727	54055.000000	
	.818182	20331730304	327712121	3 1033 100000	
WY		1255.739130	1570.130435	56023.000000	
57042	.304348				
	NA 1411	M 17' 11 1	5 W. H	E 1/11	,
S+2+0	M_With	M_Without	F_With	F_Without	/
State AK	12366.565217	2917.739130	12147.608696	2411.217391	
AL	29389.671642		32530.134328	4294.194030	
AR	16012.226667	2881.893333	17237.906667	2603.880000	
AZ	178389.533333	35436.066667	191685.466667	30056.200000	
CA	269831.241379	52388.275862	287728.534483	43712.500000	
CO	34745.546875	5534.781250	36322.625000	4447.265625	
CT	194827.125000	19867.500000	212544.125000	15086.125000	
DC	276285.000000	22198.000000	323314.000000	14813.000000	
DE	132112.666667	13828.000000	146781.000000	11207.666667	
FL	112310.552239	27464.761194	124417.328358	24393.179104	
GA	24288.446541	5449.440252	26859.364780	5116.691824	
HI	123945.400000	8997.200000	130480.400000	7047.000000	
IA	14020.090909	1243.060606	14529.464646	1006.444444	
ID	15305.886364	2773.363636	15626.613636	2562.863636	
IL	53124.647059	7664.294118	57616.421569	6047.813725	
IN	29740.010870	4733.456522	31571.097826	4270.260870	
KS	11722.238095	1594.009524	12237.314286	1435.695238	
KY	15362.841667	2174.991667	16486.958333	1910.525000	
LA	28475.515625	5594.515625	31249.015625	5339.109375	
MA	218643.642857	10231.071429	237913.857143	6623.428571	
MD	104805.500000	12109.708333	116597.083333	9684.958333	
ME	35496.687500	4614.687500	38427.937500	3637.187500	
MI	51325.879518	6328.108434	55251.277108	5036.240964	
MN	28082.068966	2476.908046	29202.885057	1857.229885	
MO	21828.939130	3295.878261	23439.895652	3021.800000	
MS	14163.085366	2915.890244	15824.743902	2720.536585	

MT NC ND NE NH NJ	7459.232143 39094.400000 6080.886792 8726.322581 57839.500000 176838.857143	1468.642857 7360.030000 679.924528 1086.344086 6636.700000 26562.190476	43500.040000 65 6035.056604 5 9035.322581 9 60861.000000 55	03.982143 41.590000 30.679245 47.000000 68.500000 73.523810
NM NV NY OH OK OR PA RI SC SD TN	25007.909091 65350.588235 134038.258065 56197.590909 19749.077922 46073.055556 82057.477612 89317.200000 41092.608696 5532.461538 27868.221053	5452.000000 15792.000000 17297.806452 6936.954545 4244.116883 7253.416667 9146.940299 10941.000000 7752.934783 709.692308 4724.884211	67480.411765 139 149030.435484 129 60783.000000 56 21039.896104 39 48939.194444 66 89112.880597 73 99037.000000 82 45848.934783 76 5630.861538 66 30850.915789 38	40.333333 47.588235 77.209677 60.829545 97.480519 89.083333 70.582090 90.800000 93.695652 99.646154 97.357895
TX UT VA VT WA WI WV	39586.787402 42691.068966 25542.757576 20227.000000 76236.564103 35358.930556 14296.309091 10802.956522	10816.748031 6939.689655 3658.446970 1575.571429 11122.410256 3563.430556 1975.145455 1764.608696	43393.172414 61 27926.901515 32 21508.642857 16 79952.794872 96 37140.777778 26 15042.254545 18	01.303150 .77.206897 .27.848485 .07.142857 .69.102564 .64.125000 .20.836364 .52.869565 Avg Ann Deaths
\ State	Acc_w1cii	Acc_wichouc	Avg_Am_Includence	Avg_Aiiii_beaciis
AK	24514.173913	5328.956522	15.130435	19.833333
AL	61919.805970	8972.522388	59.597015	47.552239
AR	33250.133333	5485.773333	35.733333	28.546667
AZ	370075.000000	65492.266667	252.600000	91.214286
CA	557559.775862	96100.775862	294.396552	165.603774
CO	71068.171875	9982.046875	35.281250	39.075000
СТ	407371.250000	34953.625000	332.875000	216.875000
DC	599599.000000	37011.000000	351.000000	240.000000
DE	278893.666667	25035.666667	257.666667	188.333333
FL	236727.880597	51857.940299	245.462687	178.029851

GA	51147.811321	10566.132075	39.823899	29.841060
HI	254425.800000	16044.200000	155.800000	134.250000
IA	28549.555556	2249.505051	24.131313	18.051546
ID	30932.500000	5336.227273	19.500000	20.586207
IL	110741.068627	13712.107843	91.254902	42.178218
IN	61311.108696	9003.717391	57.771739	43.586957
KS	23959.552381	3029.704762	NaN	20.826087
KY	31849.800000	4085.516667	40.083333	29.008403
LA	59724.531250	10933.625000	54.453125	42.500000
MA	456557.500000	16854.500000	358.785714	247.500000
MD	221402.583333	21794.666667	152.458333	114.083333
ME	73924.625000	8251.875000	82.750000	59.750000
MI	106577.156627	11364.349398	95.012048	58.592593
MN	57284.954023	4334.137931	NaN	28.719512
МО	45268.834783	6317.678261	46.243478	34.333333
MS	29987.829268	5636.426829	30.487805	23.975309
MT	15070.464286	2772.625000	13.321429	13.485714
NC	82594.440000	13901.620000	75.580000	54.840000
ND	12115.943396	1210.603774	9.094340	12.000000
NE	17761.645161	2033.344086	13.473118	15.035714
NH	118700.500000	12205.200000	105.600000	73.600000
NJ	370150.190476	48735.714286	280.904762	195.095238
NM	51919.848485	10192.333333	29.424242	27.653846
NV	132831.000000	29739.588235	NaN	108.500000
NY	283068.693548	30275.016129	219.532258	146.677419
ОН	116980.590909	12597.784091	109.670455	84.204545

0K	40788.974026	8151.597403	39.272727	33.791667
0R	95012.250000	13342.500000	74.694444	62.363636
PA	171170.358209	16517.522388	159.074627	116.621212
RI	188354.200000	19231.800000	172.800000	124.600000
SC	86941.543478	14786.630435	81.413043	60.826087
SD	11163.323077	1319.338462	8.969231	10.882353
TN	58719.136842	8622.242105	59.515789	45.873684
TX	81489.944882	21118.051181	51.480315	41.954315
UT	86084.241379	13116.896552	22.241379	24.764706
VA	53469.659091	6886.295455	39.659091	30.387597
VT	41735.642857	2582.714286	37.357143	26.500000
WA	156189.358974	20191.512821	110.282051	84.837838
WI	72499.708333	6227.555556	55.888889	41.732394
WV	29338.563636	3795.981818	36.436364	27.436364
WY	21473.739130	3317.478261	12.739130	10.857143
	5			
C++++	Rising Fal	ling		
State AK	0.000000 0.00	0000		
AIX AI		4627		

	rtstiid	racting
State		
AK	0.000000	0.000000
AL	0.000000	0.074627
AR	0.000000	0.040000
ΑZ	0.066667	0.133333
CA	0.000000	0.258621
CO	0.015625	0.062500
CT	0.000000	0.375000
DC	0.000000	0.000000
DE	0.000000	0.000000
FL	0.000000	0.134328
GA	0.000000	0.050314
ΗI	0.000000	0.000000
IA	0.060606	0.030303
ID	0.000000	0.000000
IL	0.009804	0.127451
IN	0.032609	0.032609
KS	0.000000	0.000000
KY	0.016667	0.041667

```
LA
       0.000000
                 0.031250
MA
       0.000000
                 0.142857
MD
       0.041667
                 0.125000
ME
       0.000000
                 0.000000
ΜI
       0.000000
                 0.072289
MN
       0.000000
                 0.000000
MO
       0.052174
                 0.034783
MS
       0.012195
                 0.048780
                 0.017857
MT
       0.035714
NC
       0.010000
                 0.040000
ND
       0.056604
                 0.037736
NE
       0.010753
                 0.000000
NH
       0.000000
                 0.100000
NJ
       0.000000
                 0.666667
MM
       0.000000
                 0.121212
NV
       0.000000
                 0.000000
NY
       0.032258
                 0.096774
0H
       0.000000
                 0.113636
0K
       0.000000
                 0.038961
0R
       0.000000
                 0.055556
PA
       0.029851
                 0.029851
RI
       0.000000
                 0.000000
SC
       0.043478
                 0.086957
SD
       0.000000
                 0.030769
TN
       0.010526
                 0.063158
TX
       0.007874
                 0.031496
UT
       0.000000
                 0.068966
VA
       0.015152
                 0.106061
VT
       0.000000
                 0.142857
WA
       0.000000
                 0.282051
WI
       0.027778
                 0.055556
WV
       0.018182
                 0.018182
WY
       0.000000
                 0.043478
plt.figure(figsize=(20, 14))
corr matrix = df.corr()
annot kws = {"size": 16}
# Create the heatmap of Correlation matrix
heatmap = sns.heatmap(corr matrix, annot=True, annot kws=annot kws,
xticklabels=True, yticklabels=True)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.show()
<ipython-input-151-4e706e5e56c5>:2: FutureWarning: The default value
of numeric only in DataFrame.corr is deprecated. In a future version,
it will default to False. Select only valid columns or specify the
```

value of numeric_only to silence this warning. corr_matrix = df.corr()

All_Poverty	1	1	1	-0.059	0.12	0.96	0.97	0.96	0.96	0.96	0.97	0.9	0.87	-0.02	0.27	- 1.0
M_Poverty	1	1	1	-0.061	0.12	0.96	0.97	0.96	0.96	0.96	0.97	0.9	0.87	-0.019	0.27	
F_Poverty	1	1	1	-0.058	0.12	0.96	0.97	0.96	0.96	0.96	0.96	0.9	0.88	-0.02	0.27	- 0.8
FIPS	-0.059	-0.061	-0.058	1	0.069	-0.058	-0.051	-0.058	-0.049	-0.058	-0.05	-0.071	-0.045	0.011	-0.0063	
Med_Income	0.12	0.12	0.12	0.069	1	0.26	0.14	0.26	0.14	0.26	0.14	0.24	0.29	-0.011	0.15	
M_With	0.96	0.96	0.96	-0.058	0.26	1	0.94	1	0.93	1	0.94	0.95	0.94	-0.022	0.31	- 0.6
M_Without	0.97	0.97	0.97	-0.051	0.14	0.94	1	0.94	1	0.94	1	0.86	0.84	-0.019	0.26	
F_With	0.96	0.96	0.96	-0.058	0.26	1	0.94	1	0.93	1	0.94	0.95	0.94	-0.022	0.31	
F_Without	0.96	0.96	0.96	-0.049	0.14	0.93	1	0.93	1	0.93	1	0.84	0.81	-0.019	0.26	- 0.4
All_With	0.96	0.96	0.96	-0.058	0.26	1	0.94	1	0.93	1	0.94	0.95	0.94	-0.022	0.31	
All_Without	0.97	0.97	0.96	-0.05	0.14	0.94	1	0.94	1	0.94	1	0.85	0.82	-0.019	0.26	
Avg_Ann_Incidence	0.9	0.9	0.9	-0.071	0.24	0.95	0.86	0.95	0.84	0.95	0.85	1	1	-0.028	0.31	- 0.2
Avg_Ann_Deaths	0.87	0.87	0.88	-0.045	0.29	0.94	0.84	0.94	0.81	0.94	0.82	1	1	-0.034	0.29	
Rising	-0.02	-0.019	-0.02	0.011	-0.011	-0.022	-0.019	-0.022	-0.019	-0.022	-0.019	-0.028	-0.034	1	-0.031	
Falling	0.27	0.27	0.27	-0.0063	0.15	0.31	0.26	0.31	0.26	0.31	0.26	0.31	0.29	-0.031	1	- 0.0
	All_Poverty	M_Poverty	F_Poverty	FIPS	Med_Income	M_With	M_Without	F_With	F_Without	All_With	All_Without	Avg_Ann_Incidence	Avg_Ann_Deaths	Rising	Falling	

```
#Converting the Median Income column to numeric type
df['Med Income'] = pd.to numeric(df.Med Income)
# Checks what all columns in the dataframe contain only numeric values
df.apply(lambda s: pd.to_numeric(s, errors='coerce').notnull().all())
State
                     False
AreaName
                     False
All_Poverty
                     True
                     True
M_Poverty
F_Poverty
                     True
FIPS
                     True
Med Income
                     False
M With
                     True
M Without
                     True
F_With
                     True
```

```
F Without
                      True
All With
                      True
All Without
                      True
Avg Ann Incidence
                      False
recent trend
                      False
Avg Ann Deaths
                      False
Rising
                      True
Falling
                      True
dtype: bool
```

Visualization


```
# Scatter Plot
def visualize_scatter_pov(col):
    fig1 = plt.figure(figsize = (14,10))

    ax3 = fig1.add_subplot(223)
    df.plot(x = 'Avg_Ann_Deaths', y = col, kind= 'scatter', s=0.1,
xlim = [0, 200], ylim = [0, 40000], ax = ax3)
    ax4 = fig1.add_subplot(224)
    df.plot(x = 'Avg_Ann_Incidence', y = col, kind= 'scatter',
s=0.1,xlim = [0, 200], ylim = [0, 40000], ax = ax4)
visualize_scatter_pov('All_Poverty')
```



```
def visualize_scatter_inc(col):
    fig1 = plt.figure(figsize = (14,10))
    ax3 = fig1.add_subplot(223)
    df.plot(x = 'Avg_Ann_Deaths', y = col, kind= 'scatter',xlim = [0,
200], ylim = [0, 100000], s=0.1, ax = ax3)
    ax4 = fig1.add_subplot(224)
    df.plot(x = 'Avg_Ann_Incidence', y = col, kind= 'scatter',
s=0.1,xlim = [0, 200], ylim = [0, 100000], ax = ax4)
visualize_scatter_inc('Med_Income')
```



```
def visualize_scatter_with(col):
    fig1 = plt.figure(figsize = (14,10))
    ax3 = fig1.add_subplot(223)
    df.plot(x = 'Avg_Ann_Deaths', y = col, kind= 'scatter',xlim = [0,
100], ylim = [0, 100000], s=0.1, ax = ax3)
    ax4 = fig1.add_subplot(224)
    df.plot(x = 'Avg_Ann_Incidence', y = col, kind= 'scatter',
s=0.1,xlim = [0, 100], ylim = [0, 100000], ax = ax4)
visualize_scatter_with('All_With')
```



```
def visualize_scatter_without(col):
    fig1 = plt.figure(figsize = (14,10))
    ax3 = fig1.add_subplot(223)
    df.plot(x = 'Avg_Ann_Deaths', y = col, kind= 'scatter',xlim = [0,
100], ylim = [0, 20000], s=0.1, ax = ax3)
    ax4 = fig1.add_subplot(224)
    df.plot(x = 'Avg_Ann_Incidence', y = col, kind= 'scatter',
s=0.1,xlim = [0, 100], ylim = [0, 20000], ax = ax4)
visualize_scatter_without('All_Without')
```


Statistical Linear Regression Modelling using Statsmodel Library

Unlike SKLearn, statsmodels does not automatically include a constant term when fitting models. Therefore, to incorporate a constant term, you should utilize the method sm.add_constant(X) within statsmodels. This addition of a constant term, although not obligatory, significantly enhances the quality of the fitted line. For instance, if your original line has an intercept of -2000 and you attempt to fit the same line through the origin, the resulting line will be of lower quality. However, upon introducing a constant term (intercept), you will observe that the coefficients align between SKLearn and statsmodels.

```
res = ''
for i in df.columns:
    res += str(i) + ' + '
print(res)
State + AreaName + All Poverty + M Poverty + F Poverty + FIPS +
Med_Income + All_With + All_Without + Avg_Ann_Incidence + recent_trend
+ Avg Ann Deaths + Rising + Falling +
# Using statmodels library for Linear Regression Modelling
model1 = smf.ols(formula='Avg_Ann_Incidence ~ All_Poverty + Med_Income
+ All With + All Without + Rising + Falling', data=df).fit()
print(model1.summary())
                            OLS Regression Results
Dep. Variable:
                    Avg Ann Incidence
                                        R-squared:
0.922
Model:
                                  0LS
                                        Adj. R-squared:
0.921
Method:
                        Least Squares F-statistic:
5707.
                     Fri, 01 Sep 2023 Prob (F-statistic):
Date:
0.00
                                      Log-Likelihood:
Time:
                             09:53:57
-15493.
No. Observations:
                                 2924
                                        AIC:
3.100e+04
Df Residuals:
                                 2917
                                        BIC:
3.104e+04
Df Model:
Covariance Type:
                            nonrobust
_____
                  coef std err t
                                                  P>|t| [0.025]
0.9751
Intercept
               36.8125
                            3.931
                                       9.365
                                                  0.000
                                                             29.105
44.520
All Poverty
                         8.38e-05
                0.0005
                                       6.497
                                                  0.000
                                                              0.000
0.001
Med Income
               -0.0005
                         8.48e-05
                                      -5.914
                                                  0.000
                                                             -0.001
-0.000
All With
                0.0008
                         1.36e-05
                                      55.181
                                                  0.000
                                                              0.001
0.001
```

All_Without	-0.0014	6.39e-05	- 22	2.047	0.000	-0.002				
Rising	-6.5225	7.452	- (9.875	0.381	-21.134				
8.089	11 5051	2 775			0.000	4 100				
Falling 18.908	11.5051	3.775	•	3.047	0.002	4.102				
	=======		====		=======					
Omnibus:		1643.8	37	Durbin-Wa	tson:					
1.614 Prob(Omnibus):		0.0	00	Jarque-Be	ra (JB):					
599626.270 Skew:		1.4	06	Prob(JB):						
0.00										
Kurtosis: 2.50e+06		73.0	98	Cond. No.						
=======================================	=======		====		=======	========				
[2] The condit there are strong multico # Fitting to A model2 = smf.o	<pre>strong multicollinearity or other numerical problems. # Fitting to Average Deaths model2 = smf.ols(formula='Avg_Ann_Deaths ~ All_Poverty + Med_Income + All_With + All_Without + Rising + Falling', data=df).fit()</pre>									
	•	0LS Reg	ress	ion Result	S					
	========		====		=======	========				
====== Dep. Variable:	P	Avg_Ann_Deat	hs	R-squared	:					
0.893 Model:		0	LS	Adj. R-sq	uared:					
0.893				-						
Method: 3900.		Least Square	es	F-statist	ic:					
Date: 0.00	Fri	., 01 Sep 20	23	Prob (F-s	tatistic):	:				
Time:		09:53:	58	Log-Likel	ihood:					
-13688. No. Observatio	ns:	28	03	AIC:						
2.739e+04 Df Residuals:		27'	96	BIC:						
2.743e+04										
Df Model:			6							

Covariance Typ	e:	nonrobus ⁻							
0.975]	coef	std err	t	P> t	[0.025				
Intercept 38.331 All_Poverty	33.0356 0.0003	2.701 5.89e-05	12.233 4.351	0.000 0.000	27.740 0.000				
0.000 Med_Income -0.000	-0.0005	5.83e-05	-8.285	0.000	-0.001				
All_With 0.001 All_Without -0.000	0.0005	9.38e-06 5.02e-05	52.767 -8.832	0.000 0.000	0.000				
Rising 4.443 Falling	-5.6806 2.4960	5.163 2.521	-1.100 0.990	0.271 0.322	-15.805 -2.446				
7.438 ======== ====== Omnibus:		1466.44	======= 5 Durbin-	======================================					
1.582 Prob(Omnibus): 187089.919		0.000	•	Bera (JB):					
Skew: 0.00 Kurtosis: 1.93e+06		1.474 42.91							
======									
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.93e+06. This might indicate that there are strong multicollinearity or other numerical problems.									

Multicollinearity

Importing VIF to check for multicollinearity
from statsmodels.stats.outliers_influence import
variance_inflation_factor

```
X = df[[ 'All_Poverty', 'Med_Income', 'All_With', 'All_Without',
'Rising', 'Falling', 'Avg_Ann_Incidence']]
X.dropna(inplace=True)
<ipython-input-167-32f8c2353909>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
  X.dropna(inplace=True)
X1 = X[['All_Poverty', 'Med_Income', 'All_With', 'All_Without',
'Rising',
       'Falling'll
# Getting the VIFs corresponding to each of the features and then
treating the one with the highest value
pd.DataFrame([[var, variance inflation factor(X1.values,
X1.columns.get loc(var))] for var in X1.columns],
                    index=range(X1.shape[1]), columns=['Variable',
'VIF'])
      Variable
                      VIF
  All_Poverty 25.654166
1
  Med Income 1.271954
      All With 15.627624
2
3 All Without 16.031002
4
        Rising 1.015347
5
       Falling
                1.201154
```

The model's performance is impacted by considerable multicollinearity, evident from the elevated value of the variable's VIF (Variance Inflation Factor). This situation could potentially result in coefficients that lack statistical significance.

```
X.drop('All_Poverty', axis = 1, inplace=True)
X1.drop('All_Poverty', axis = 1, inplace=True)
<ipython-input-170-5a3ca0a533f8>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#
returning-a-view-versus-a-copy
    X.drop('All_Poverty', axis = 1, inplace=True)
<ipython-input-170-5a3ca0a533f8>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation:
```

```
https://pandas.pydata.org/pandas-docs/stable/user quide/indexing.html#
returning-a-view-versus-a-copy
 X1.drop('All Poverty', axis = 1, inplace=True)
pd.DataFrame([[var, variance inflation factor(X1.values,
X1.columns.get loc(var)) for var in X1.columns],
                   index=range(X1.shape[1]), columns=['Variable',
'VIF'])
      Variable
                     VIF
   Med Income 1.265045
0
     All With 9.776656
1
2 All Without 8.926300
3
       Rising 1.015175
4
       Falling 1.199055
X.drop('All_Without', axis = 1, inplace=True)
X1.drop('All Without', axis = 1, inplace=True)
<ipython-input-172-97aa2e8cd206>:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
 X.drop('All Without', axis = 1, inplace=True)
<ipython-input-172-97aa2e8cd206>:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#
returning-a-view-versus-a-copy
 X1.drop('All Without', axis = 1, inplace=True)
pd.DataFrame([[var, variance inflation factor(X1.values,
X1.columns.get loc(var))] for var in X1.columns],
                   index=range(X1.shape[1]), columns=['Variable',
'VIF'1)
     Variable
                    VIF
0
  Med Income 1.207631
1
     All With 1.257105
2
       Rising 1.015051
3
     Falling 1.193283
# Final model after treating for multicollinearity
model1 = smf.ols(formula='Avg Ann Incidence ~Med Income + All With +
Rising + Falling', data=df).fit()
print(model1.summary())
```

```
OLS Regression Results
                    Avg Ann Incidence
Dep. Variable:
                                         R-squared:
0.906
Model:
                                   0LS
                                         Adj. R-squared:
0.906
                        Least Squares F-statistic:
Method:
7020.
Date:
                     Fri, 01 Sep 2023 Prob (F-statistic):
0.00
                             09:53:58 Log-Likelihood:
Time:
-15759.
No. Observations:
                                  2924
                                         AIC:
3.153e+04
Df Residuals:
                                  2919
                                         BIC:
3.156e+04
Df Model:
                                     4
Covariance Type:
                            nonrobust
                                                  P>|t| [0.025
                 coef std err
                                           t
0.975
Intercept
              24.4731
                           3.875
                                       6.315
                                                  0.000
                                                             16.874
32.072
Med Income
              -0.0002
                        8.23e-05
                                                             -0.000
                                      -1.898
                                                  0.058
5.17e-06
All With
               0.0006
                        3.84e-06
                                     154.332
                                                  0.000
                                                               0.001
0.001
                                                             -22.879
Rising
              -6.8821
                           8.159
                                      -0.844
                                                  0.399
9.115
Falling
              16.1143
                           4.122
                                       3.909
                                                  0.000
                                                               8.032
24.196
                                         Durbin-Watson:
Omnibus:
                              1260.365
1.646
Prob(Omnibus):
                                 0.000
                                         Jarque-Bera (JB):
1570186.457
Skew:
                                 0.370
                                         Prob(JB):
0.00
                                         Cond. No.
                               116.523
Kurtosis:
2.42e+06
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.42e+06. This might indicate that there are
- strong multicollinearity or other numerical problems.

Detecting Outliers

```
data_mod1 = df.copy()
#using IQR method
dat = data_mod1['Med_Income']
Q1 = dat.quantile(0.25)
Q3 = dat.quantile(0.75)
IQR = Q3 - Q1  #IQR is interquartile range.

filter = (dat >= Q1 - 3 * IQR) & (dat <= Q3 + 3 *IQR)
data_mod1 = data_mod1.loc[filter]
print(data_mod1.shape)

(3112, 14)

# Boxplot for the initial data
ax = sns.boxplot(data=df, orient="h", palette="Set2")</pre>
```


Fitting to Average Deaths

model2 = smf.ols(formula='Avg Ann Deaths ~ All Poverty + Med Income + All_With + All_Without + Rising + Falling', data=data_mod1).fit() print(model2.summary())

OLS Regression Results

Dep. Variable: Avg Ann Deaths R-squared:

0.898

Model: OLS Adj. R-squared:

0.898

Least Squares F-statistic: Method:

4089.

Date: Fri, 01 Sep 2023 Prob (F-statistic):

0.00

Time: 09:53:58 Log-Likelihood:

-13494.

No. Observations: 2782 AIC:

2.700e+04

Df Residuals: BIC: 2775

2.704e+04

Df Model: 6

Covariance Type: nonrobust

				=======	
	coef	std err	t	P> t	[0.025
0.975]	2021	Sea Cii		17 [5]	[0.023
Intercept	32.2407	2.773	11.628	0.000	26.804
37.677	32.2407	2.773	11.020	0.000	20.004
All_Poverty	7.577e-05	5.94e-05	1.276	0.202	-4.07e-05
$0.0\overline{0}0$					
Med_Income	-0.0005	6.04e-05	-7.836	0.000	-0.001
-0.000					0 001
All_With	0.0005	9.7e-06	54.729	0.000	0.001
0.001	0 0004	4 00 05	0 405	0.000	0.001
All_Without -0.000	-0.0004	4.88e-05	-8.435	0.000	-0.001
Rising	-5.6779	4.996	-1.136	0.256	-15.474
4.119					
Falling	1.0933	2.481	0.441	0.660	-3.772
5.958					

Omnibus: 1576.591 Durbin-Watson:

```
1.582
Prob(Omnibus):
                                0.000 Jarque-Bera (JB):
187369.073
Skew:
                                1.716
                                        Prob(JB):
0.00
Kurtosis:
                                43.058
                                        Cond. No.
1.87e+06
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is
correctly specified.
[2] The condition number is large, 1.87e+06. This might indicate that
there are
strong multicollinearity or other numerical problems.
data mod1 = df.copy()
for i in ['All Poverty', 'Med Income', 'All With', 'All Without',
'Rising', 'Falling']:
    #using IQR method
    dat = data mod1[i]
    Q1 = dat.quantile(0.25)
    Q3 = dat.quantile(0.75)
    IQR = Q3 - Q1
                    #IQR is interguartile range.
    filter = (dat >= Q1 - 3 * IQR) & (dat <= Q3 + 3 * IQR)
    data mod1 = data mod1.loc[filter]
    print(data mod1.shape)
(2875, 14)
(2855, 14)
(2730, 14)
(2671, 14)
(2631, 14)
(2527, 14)
# Boxplot for the filtered data
ax = sns.boxplot(data=data_mod1[['All_Poverty', 'Med_Income',
'All_With', 'All_Without', 'Rising', 'Falling']], orient="h", palette=
'Set3')
```



```
fin df = data mod1
# \overline{Fitting} to \overline{Average} Deaths
model1 = smf.ols(formula='Avg_Ann_Incidence ~Med_Income + All_With +
Rising + Falling', data=df).fit()
print(model1.summary())
                              OLS Regression Results
                     Avg_Ann_Incidence
Dep. Variable:
                                          R-squared:
0.906
                                    0LS
Model:
                                          Adj. R-squared:
0.906
Method:
                         Least Squares F-statistic:
7020.
Date:
                      Fri, 01 Sep 2023 Prob (F-statistic):
0.00
Time:
                               10:12:47 Log-Likelihood:
-15759.
No. Observations:
                                   2924
                                          AIC:
3.153e+04
Df Residuals:
                                   2919
                                          BIC:
3.156e+04
Df Model:
                                      4
```

Covariance Type:		nonrobust			
0.975]	coef	std err	t	P> t	[0.025
Intercept 32.072	24.4731	3.875	6.315	0.000	16.874
Med_Income 5.17e-06 All With	0.0002	8.23e-05 3.84e-06	-1.898 154.332	0.058	-0.000 0.001
0.0 0 1 Rising	-6.8821	8.159	-0.844	0.399	-22.879
9.115 Falling 24.196	16.1143	4.122	3.909	0.000	8.032
======================================					
1570186.457 Skew: 0.00		0.	370 Prob(J	B):	
Kurtosis: 2.42e+06		116.	523 Cond.	No.	
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 2.42e+06. This might indicate that there are strong multicollinearity or other numerical problems.					

Normality of Errors

```
# histogram superimposed by normal curve
plt.figure(figsize=(10,6))
import scipy.stats as stats
mu = np.mean(model1.resid)
sigma = np.std(model1.resid)
pdf = stats.norm.pdf(sorted(model1.resid), mu, sigma)
pdf2 = stats.t.pdf(sorted(model1.resid), df = 1, loc = mu,
scale=sigma,)
```

```
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.hist(model1.resid, bins=100, density= True)
plt.plot(sorted(model1.resid), pdf, color='r', linewidth=2, label =
'Gaussian')
plt.plot(sorted(model1.resid), pdf2, color='g', linewidth=2, label =
't distribution')
plt.legend()
plt.show()
```



```
# QQplot
fig, [ax1, ax2] = plt.subplots(1,2, figsize=(10,3))
sm.qqplot(modell.resid, stats.norm, fit=True, line='45', ax=ax1)
ax1.set_title("normal distribution")
sm.qqplot(modell.resid, stats.t, fit=True, line='45', ax = ax2)
ax2.set_title("t distribution")
plt.show()
```


As we can see that the QQ plot for the normal distribution is not close to the straight line at the ends and it deviates to the top at the right and to the bottom at the left, we can say that the tails for the residuals are heavier than a normal distribution, hence on following that I tried using a t distribution, which gives a much better QQ plot and hence we can confirm that the residuals come from the t distribution!! Fatter tails suggest we have more number of outliers!

Heteroscedasticity

Pearson R: PearsonRResult(statistic=0.9517556839499244, pvalue=0.0)

We can see that the point do lie close to our line and follow the trend which is also confirmed by the high Pearson Coefficient for Correlation!

```
y = X['Avg Ann Incidence']
# plot actual values versus residuals
from statsmodels.nonparametric.smoothers lowess import lowess
ys = lowess(model1.resid.values, y, frac=0.2)
ys = pd.DataFrame(ys, index=range(len(ys)), columns=['a', 'b'])
ys = ys.sort values(by='a')
fig, ax = plt.subplots(figsize=(10,5))
ax.set xlim([0,200])
ax.set ylim([-100, 100])
plt.title('Residuals vs Actual Values')
plt.scatter(y, model1.resid, alpha=0.5, s=1)
plt.axhline(y=0, color='r', linestyle="--", alpha=0.5)
plt.xlabel("Actual Values")
plt.ylabel("Residuals")
plt.plot(ys.a, ys.b, c='green', linewidth=2, label="Lowess")
plt.legend()
plt.show()
print("Pearson R:", stats.pearsonr(y, model1.resid))
```



```
Pearson R: PearsonRResult(statistic=0.3068568364381449,
pvalue=8.553812422161798e-65)
#Same plot from a higher view
from statsmodels.nonparametric.smoothers lowess import lowess
ys = lowess(model1.resid.values, y, frac=0.2)
ys = pd.DataFrame(ys, index=range(len(ys)), columns=['a', 'b'])
ys = ys.sort values(by='a')
fig, ax = plt.subplots(figsize=(10,5))
ax.set xlim([0,750])
ax.set ylim([-100,100])
plt.title('Residuals vs Actual Values')
plt.scatter(y, model1.resid, alpha=0.5, s=1)
plt.axhline(y=0, color='r', linestyle="--", alpha=0.5)
plt.xlabel("Actual Values")
plt.ylabel("Residuals")
plt.plot(ys.a, ys.b, c='green', linewidth=2, label="Lowess")
plt.legend()
plt.show()
print("Pearson R:", stats.pearsonr(y, model1.resid))
```


Pearson R: PearsonRResult(statistic=0.3068568364381449, pvalue=8.553812422161798e-65)

From the above curve we can see that the Lowess curve is below the y=0 line for lower values which mean our model is overpredicting these values and then goes to the upper side for most of the residuals are about the y=0 line which means our model is underpredicting these values!

```
result = model1

# plot actual values versus residuals
plt.figure(figsize=(14,7))
plt.title('Scatter plot of Residuals vs Fitted Values')
plt.scatter(y=result.resid, x=result.fittedvalues, alpha=0.5, s=22)
plt.axhline(y=0, color='r', linestyle="--", alpha=0.5)
plt.xlabel("Fitted Values")
plt.ylabel("Residuals")
plt.xlim(-10, 100)
plt.ylim(-200, 200)
plt.show()
```


We observe a distinctive cone-shaped pattern in the residual plot, which is a characteristic indication of heteroscedasticity. This phenomenon implies that as the fitted values increase, the variance of the residuals also increases. Consequently, our model is significantly affected by pronounced heteroscedasticity.

Heteroscedasticity refers to a systematic alteration in the dispersion of residuals across the spectrum of observed values. The challenge arises because ordinary least squares (OLS) regression assumes a consistent variance of residuals (homoscedasticity) across the data. Heteroscedasticity, alternatively spelled heteroskedasticity, is more common in datasets that exhibit considerable variation between the smallest and largest observed values. While several factors can contribute to the existence of heteroscedasticity, a prevalent explanation is that the variability of errors changes in proportion to a certain factor. This factor might even be a variable present in the model.

Although heteroscedasticity itself does not introduce bias in the coefficient estimations, it does reduce their precision. Decreased precision elevates the likelihood of coefficient estimates deviating further from the true population values. Notably, heteroscedasticity tends to yield p-values that appear smaller than they actually should be. This discrepancy emerges because heteroscedasticity inflates the variance of coefficient estimates, yet the OLS procedure remains oblivious to this inflation. Consequently, OLS calculates t-values and F-values using an underestimated level of variance. This issue can lead to the erroneous conclusion that a particular model term holds statistical significance when, in reality, it might not be statistically significant.