

ملخص الوحدة الثالثة لمادة الرياضيات المتهدمة للصها الثانبي عشر

إعداد الأستاذة: إيمان بنت محمد الجابرية

مدرسة بلاد بني بوعلي للتعليم الأساسي (١١- ١٢)

خاية الدالة عند نقطة

للدوال كثيرة الحدود

بعض الأمثلة على الدوال كثيرات الحدود: د (س) = ٧س - ٢، هـ (س) = ٩ + ٢س - ٥س٢، ع (س) = س° + س + ١

✓ هي دالة تحتوي على حد واحد أو أكثر لمتغير مرفوع إلى قوة صحيحة غير سالبة.
 ✓ أيجاد النهاية بإنشاء جدول لقيم يمين ويسار أ

مثال: أوجد نها ٣س١ – س +٥

الحل: بإنشاء جدول

* نها ٣س٢ – س +٥ = ٩ (موجودة)

التحقق من الحل بالتعويض المباشر ($\Upsilon(-1)$ $\Upsilon(-1)$ +) = ۹

دوال المعرفة بأكثر من قاعدة

- ✓ تتكون الدالة من جزأين أو أكثر وممكن أن يحوي المنحنى خطوط مستقيمة ومنحنيات،
 وتحوي بعضها على قفزات التي تتغير فيها قيمة الدالة بشكل كبير
 - ✓ أيجاد النهاية من خلال الرسم. (يجب إيجاد نهاية الدالة من الجهتين اليمين واليسار)

مثال توضيحي للنقاط الأساسية التي نستخرجها من خلال الرسم:

أوجد قيمة مايلي من خلال الدالة د(س) الموضحة في الرسم المقابل:

للدوال النسبية

متى تكون للدالة فجوة وخط تقارب رأسي؟ نها د(س) حيث د(س) نسبية

بالتعويض المباشر أولا: د(أ)

كان ناتج التعويض= $\frac{3c}{a}$

- لا يوجد عامل صفري/ لا يمكن التحليل/لا توجد فجوة
- وإنما يوجد خط تقارب رأسي معادلته س = صفر المقام
- خط تقارب أفقي معادلته ص= معامل أعلى درجة في البسط معامل أعلى درجة في المقام (ص= ناتج نها الدالة النسبية عند اللانهاية)
- يوجد عامل صفري يجب التخلص منه (عامل المقام)
- بالتحليل والتبسيط (فرق بين مربعين / عامل مشترك/ تحليل حدودية من الدرجة الثانية)
 - توجد فجوة احداثيها (س، ص)
 - حيث س= صفر المقام
- ص=ناتج التعويض عن س في الدالة بعد التبسيط

معادلة خط تقارب رأسى:

صفر المقام:

احداثيات الفجوة:

صفر المقام: س-٢=٠ ---> س= ٢

$$(\Upsilon+\omega\Upsilon) = \frac{(\Upsilon+\omega\Upsilon)(\Upsilon-\omega)}{\Upsilon-\omega}$$
 تحلیل و تبسیط: تحلیل و تبسیط:

خهاية الدالة عند اللانهاية كم

للدوال النسبية

خط تقارب أفقي	خط تقارب رأسي	مثال	قيمة النهاية	الحالة
ص= صفر	س= صفر المقام	$\frac{1 - \omega^{\gamma}}{\omega \to \infty} \xrightarrow{\gamma \omega^{\gamma} + \gamma}$	صفر	درجة البسط أقل من درجة المقام
ص= معامل أعلى درجة في البسط معامل أعلى درجة في المقام	س= صفر المقام	نه_ اس ^۱ ۲س؛ س→∞ س ^۱ - ۷س؛	ص= معامل أعلى درجة في البسط معامل أعلى درجة في المقام	درجة البسط= درجة المقام
لا يوجد	س= صفر المقام	نها نه → ∞ س۲ + ۷	غير موجودة	درجة البسط أكبر من درجة المقام

ملاحظة: تكون الفجوات وخطوط التقارب الرأسية عند أصفار المقام للدالة النسبية وعندها تكون الدالة غير متصلة

✓ تكون الدالة متصلة عند نقطة إذا تحققت الشروط التالية:

١. د(أ) معرفة

۲. نهاد (س) موجودة (أي نها د(س) من جهة اليمين = نها د(س) من جهة اليسار) $\tilde{C}(0)$. $\tilde{C}(0)$

✓ تكون الدالة متصلة على فترة مغلقة: إذا لم تكون هناك أي فجوات أو قفزات أو خطوط تقارب في تلك الفترة

مثال

الدالة ع(س) متصلة عند جميع القيم س ماعدا س= π وذلك لوجود فجوة، ولأن نها ع(m) = 3ع(س) متصلة في الفترة - ا \leq س \leq ، $3\leq$ س \leq ه ع(س) غير متصلة في الفترة $Y \le m \le 3$ بسبب وجود فجوة عند س=۳

