1 Question 1

The Frobenius norm is defined as

$$||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^m |a_{ij}|^2\right)^{\frac{1}{2}} \tag{1}$$

Furthermore, from the definition of outer product, we know some matrix $C = uv^*$ for $u \in \mathbb{C}^m$, $v \in \mathbb{C}^n$, and $C \in \mathbb{C}^{m \times n}$ whose elements $c_{ij} = u_i v_j$. Inserting this into the above definition yields

$$||C||_F = \left(\sum_{i=1}^m \sum_{j=1}^n |c_{ij}|^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^m \sum_{j=1}^n |u_i|^2 |v_j|^2\right)^{\frac{1}{2}} = \left(\sum_{i=1}^m |u_i|^2\right)^{\frac{1}{2}} \left(\sum_{j=1}^n |v_j|^2\right)^{\frac{1}{2}} = ||u||_F ||v||_F$$
(2)

Ergo, we have shown that $||C||_F = ||u||_F ||v||_F$

2 Question 2

2.1 part a

To show that the $\operatorname{Col}(A) \perp \operatorname{Nul}(A^*)$ for some $A \in \mathbb{C}^{m \times n}$, we first define $y \in \operatorname{col}(A)$. This implies that Ax = y for some $x \in \mathbb{C}^n$. Furthermore, we note that there exists some $v \in \operatorname{nul}(A^*)$, implying that $A^*v = 0$. To be perpendicular, we show in the following expression that the inner product of (y, v) is zero.

$$y^*v = (Ax)^*v = x^*A^*v = 0 (3)$$

where we note from the above assertions that $A^*v = 0$. Therefore, we have proven that the $Nul(A^*) \perp col(A)$.

2.2 part b

We wish to show that for any $v \in \mathbb{C}^m$, $v \perp Col(A) \implies v^*(Ax) = 0$ for some $x \in \mathbb{C}^n$. Taking the adjoint of this expression yields

$$0^* = 0 = \left(v^*(Ax)\right)^* \to x^*(A^*v) = 0 \tag{4}$$

Thus we note that $\forall x \in \mathbb{C}^n$, the above implies that $A^*v = 0 \to v \in Nul(A^*)$. In other words, we have shown that v being orthogonal to Col(A) means that v must be an element of the $Nul(A^*)$.

2.3 part c

Consider a matrix $X \in \mathbb{C}^{m \times m}$. Suppose the columns of this matrix serve as a basis for Col(A). By the rank-nullity theorem, we know the $dim(Nul(A^*)) = m - r$. So we let the columns x_{r+1}, \dots, x_m be a basis for $Nul(A^*)$. Then

$$X = \begin{pmatrix} x_1 & \cdots & x_r & x_{r+1} & \cdots & x_m \end{pmatrix} \tag{5}$$

where we note that X is invertible and the columns of X are linearly independent vectors in \mathbb{C}^m . Therefore, the problem has a unique solution for any $v \in \mathbb{C}^m$

$$Xv = v_R + v_N = \sum_{x \in Col(A)}^{r} x_i v_i + \sum_{x \in Nul(A^*)}^{m} x_i v_i$$
 (6)

3 Question 3

3.1 part a

We will first show that $\operatorname{Col}(A^*) = \operatorname{Span}\{v_1, \dots, v_r\}$. Suppose $A^* \in \mathbb{C}^{n \times m}$ and $(A)^* = (U\Sigma V^*)^* = V\Sigma^*U^* = A^*$. This looks like

$$A^* = \begin{pmatrix} V_1 & V_2 & \begin{pmatrix} \sigma_1^* & & & \\ & \ddots & & \\ & & \sigma_r^* & \end{pmatrix} \begin{pmatrix} U_1^* & & \\ & & U_2^* & \end{pmatrix}$$
(7)

where $V \in \mathbb{C}^{n \times n}$, $\Sigma^* \in \mathbb{C}^{n \times m}$ and $U^* \in \mathbb{C}^{m \times m}$ and the vertical lines denote the boundary for the index corresponding to the rank of A. We note that the columns of U are a basis for \mathbb{C}^m , so for some $y \in \mathbb{C}^m$, x = Uy. So

$$b = A^*x = V\Sigma^*U^*x = V\Sigma^*U^*Uy = V\Sigma^*y = V\begin{pmatrix} \sigma_1^*y_1 \\ \vdots \\ \sigma_r^*y_r \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \sum_{j=1}^r v_j(\sigma_j^*y_j)$$
(8)

Therefore, $\operatorname{Col}(A^*) \subseteq \operatorname{span}\{v_1, \cdots, v_m\}$. Furthermore, for each $j=1, \cdots, r$, $A^*u_j=V\Sigma^*U^*u_j=v_j\sigma_j^*$, thereby showing that $\operatorname{span}\{v_1, \cdots, v_r\} \in \operatorname{Col}(A^*)$. In conclusion this proves that $\operatorname{Col}(A^*)=\operatorname{Span}\{v_1, \cdots, v_r\}$.

3.2 part b

For the next part, we will show that $\operatorname{Nul}(A^*) = \operatorname{span}\{u_{r+1}, \dots, u_m\}$. We build off the foundations laid in the prior subsection and we note that $\operatorname{Nul}(A^*) = \{A^*x = 0\}$. For x = Uy, we see that

$$A^*x = V\Sigma^*U^*(Uy) = V\Sigma^*y = 0 = \sum_{j=1}^r v_j(\sigma_j^*y_j) + \sum_{j=r+1}^m 0$$
 (9)

where we note that because the columns of V_1 are linearly independent, the only way the equality is held is if $y_1, \dots, y_r = 0$. Consequently $A^*x = 0 \to x \in \text{span}\{u_{r+1}, \dots, u_m\}$ alluding to $\text{Nul}(A^*) \subseteq \text{span}\{u_{r+1}, \dots, u_m\}$. Furthermore, since $A^*u_j = V\Sigma^*U^*u_j = 0$ for $j = r+1, \dots, m$, we know $\text{Nul}(A^*) = \text{span}\{u_{r+1}, \dots, u_m\}$

4 Question 4

4.1 part a

See attached jupyter-notebook script.

4.2 part b

My custom build function that computes the induced matrix 3 norm completes in 0.0006237030029296875 seconds. Perhaps a more interesting comparison is Numpy's in house matrix infinity norm and my custom built infinity norm: the former runs in 0.00011086463928222656 seconds while the ladder runs in 0.00011014938354492188 seconds. These are obviously very comparable. I suspect the induced matrix 3 norm runs comparatively slower because it is expensive to compute powers.

4.3 part c

Suppose a matrix $A \in \mathbb{C}^{m \times n}$ and some vector $x \in \mathbb{C}^n$. We want to define α in the relation $||A||_{\infty} = \alpha ||A||_{3}$. To begin, we will start with the definitions of the relevant vector p-norms:

$$||x||_3 = \left(\sum_{i=1}^m |x_i|^3\right)^{\frac{1}{3}} \tag{10}$$

and

$$||x||_{\infty} = \max_{1 \le i \le m} |x_i| = x_{max}$$
 (11)

Expanding the vector 3-norm and comparing with the vector infinity-norm, we immediately see that

$$x_{max} \le \left(|x_1|^3 + \dots + |x_{max}|^3 + \dots + |x_m|^3 \right)^{\frac{1}{3}}$$
 (12)

which implies that $||x||_{\infty} \leq ||x||_3$, where we note pure equality is obtain if dealing with the Euclidean unit vectors.

Additionally, we note that

$$\left(\sum_{i=1}^{m} |x_i|^3\right)^{\frac{1}{3}} \le \left(\sum_{i=1}^{m} |x_{max}|^3\right)^{\frac{1}{3}} \to ||x||_3 \le m^{\frac{1}{3}} ||x||_{\infty} \tag{13}$$

We then use the above two relations in addition to the definition of an induced matrix norm to compare $||A||_{\infty}$ and $||A||_3$:

$$||A||_{\infty} = \max_{||x||=1} \frac{||Ax||_{\infty}}{||x||_{\infty}} \le \frac{||Ax||_{3}}{||x||_{\infty}} \le (m)^{\frac{1}{3}} \frac{||Ax||_{3}}{||x||_{3}}$$
(14)

Thus, we see that $||A||_{\infty} \leq (m)^{\frac{1}{3}} ||A||_{3}$ where $\alpha = (m)^{\frac{1}{3}}$ as stated in the problem.

4.4 part d

As my approximate revolves around using Euclidean unit vectors for x, the resulting induced matrix 3 norm will be a poor approximation to the true matrix 3 norm. In fact, this is such a poor approximation that none of the 10 runs verify the inequality proven in part c.