심혈관질환 예측모델

전이학습을 활용하여

• • •

Contents

01 고나연 10년 후 심혈관계 질병 발병 위험도 예측 및 조언 웹앱

03 유소은 키워드 1 / 키워드 2 / 키워드 3 02 오승현

심혈관 질환 예측을 위한 웹앱 개발

04 장서진 키워드 1 / 키워드 2 / 키워드 3

심혈관질환예측을위 한 웹앱개발

전이학습과 streamlit 사용 시각화

66 프로젝트개요

제목: 심혈관 질환의 위험도 예측 웹 애플리케이션 개발 목표: 심혈관 질환의 위험 예측 모델을 개발하고, streamlit 을 이용한 웹앱으로 배포하여 사용자 친화적인 예측 및 개 선 가이드를 제공

사용자의 건강 정보를 입력하면, 심혈관 질환 발병 활률과 | 예방법을 알수 있다. 추가적으로, 혈압 조절시 개선된 발 역 병 확률을 시각적으로 보여준다.

df['age'] = (df['age'] / 365).astype(int)

```
\bigcirc
```

```
df = df[(df['ap_hi'] > 50) & (df['ap_hi'] < 250)]
```

- $df = df[(df['ap_lo'] > 30) & (df['ap_lo'] < 200)]$
- df = df[(df['height'] > 100) & (df['height'] < 250)]</pre>
- df = df[(df['weight'] > 30) & (df['weight'] < 250)]

df['BMI'] = df['weight'] / ((df['height'] / 100) ** 2)

	id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio
0	0	18393	2	168	62.0	110	80	1	1	0	0	1	0
1	1	20228	1	156	85.0	140	90	3	1	0	0	1	1
2	2	18857	1	165	64.0	130	70	3	1	0	0	0	1
3	3	17623	2	169	82.0	150	100	1	1	0	0	1	1
4	4	17474	1	156	56.0	100	60	1	1	0	0	0	0

		id	age	gender	height	weight	ap_hi	ap_lo	cholesterol	gluc	smoke	alco	active	cardio	BMI
	0	0	50	2	168	62.0	110	80	1	1	0	0	1	0	21.967120
	1	1	55						3						
\rightarrow	2	2	51	1	165	64.0	130	70	3	1	0	0	0	1	23.507805
	3	3	48	2	169	82.0	150	100	1	1	0	0	1	1	28.710479
	4	4	47	1	156	56.0	100	60	1	1	0	0	0	0	23.011177

Optimization terminated successfully.

Current function value: 0.561039 Iterations 6

Logit Regression Results ______

Dep. Variable Model: Method: Date: Time: converged: Covariance Ty	Thu	, 31 Jul 20 13:11:	it Df Res LE Df Mod 25 Pseudo 23 Log—Lil ue LL—Nul	R-squ.: kelihood: :		68736 68723 12 0.1905 -38564. -47641. 0.000
	coef	std err	Z	P> z	[0.025	0.975]
const	-10.1161	0.765	-13,221	0.000	-11.616	-8.616
age	0.0514	0.001	38.045	0.000	0.049	0.054
gender	-0.0123	0.022	-0.558	0.577	-0.056	0.031
height	-0.0109	0.005	-2.341	0.019	-0.020	-0.002
weight	0.0181	0.005	3,759	0.000	0.009	0.028
ap_hi	0.0531	0.001	60,969	0.000	0.051	0.055
ap_lo	0.0166	0.001	12.252	0.000	0.014	0.019
cholesterol	0.4986	0.016	31.957	0.000	0.468	0.529
gluc	-0.1193	0.018	-6.748	0.000	-0.154	-0.085
smoke	-0.1439	0.035	-4.136	0.000	-0.212	-0.076
alco	-0.2093	0.042	-4.954	0.000	-0.292	-0.127
active	-0.2281	0.022	-10.420	0.000	-0.271	-0.185
BM1	-0.0189	0.013	-1.492 	0.136	-0.044	0.006

로지스틱회귀

성능평가

_	precision	recall	f1-score	support
0 1	0.70 0.75	0.77 0.67	0.74 0.71	6891 6857
accuracy macro avg weighted avg	0.73 0.73	0.72 0.72	0.72 0.72 0.72	13748 13748 13748

[Random Fores	t] 성능 평가 precision	recall	f1-score	support
0 1	0.69 0.69	0.69 0.69	0.69 0.69	6891 6857
accuracy macro avg weighted avg	0.69 0.69	0.69 0.69	0.69 0.69 0.69	13748 13748 13748

Random Forest

model_rf = RandomForestClassifier(random_state=42)
model_rf.fit(X_train, y_train)
y_pred_rf = model_rf.predict(X_test)
print("\u20achn [Random Forest] 성능 평가")
print(classification_report(y_test, y_pred_rf))

[LightGBM]		가 ision	recall	f1-score	support
	O 1	0.72 0.75	0.77 0.70	0.74 0.72	6891 6857
accurac macro av weighted av	g	0.73 0.73	0.73 0.73	0.73 0.73 0.73	13748 13748 13748

LightGBM

model_lgb = LGBMClassifier(random_state=42)
model_lgb.fit(X_train, y_train)
y_pred_lgb = model_lgb.predict(X_test)
print("\u2244n[LightGBM] 성능 평가")
print(classification_report(y_test, y_pred_lgb))

[XGBoost] 성능 명 pr	링가 ecision	recall	f1-score	support
0 1	0.72 0.75	0.76 0.69	0.74 0.72	6891 6857
accuracy macro avg weighted avg	0.73 0.73	0.73 0.73	0.73 0.73 0.73	13748 13748 13748

XGBoost

model_xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
model_xgb.fit(X_train, y_train)
y_pred_xgb = model_xgb.predict(X_test)
print("\u20acmn(XGBoost] 성능 평가")
print(classification_report(y_test, y_pred_xgb))

[Gradient Boosting] 성능 평가 recall f1-score support precision 0.72 0.77 0.746891 0.75 0.70 0.72 6857 0.73 13748 accuracy 0.73 0.73 13748 0.73 macro avg 0.73 0.73 0.73 13748 weighted avg

Gradient Boosting

model_gb = GradientBoostingClassifier(random_state=42)
model_gb.fit(X_train, y_train)
y_pred_gb = model_gb.predict(X_test)
print("\u20fcn n[Gradient Boosting] 성능 평가")
print(classification_report(y_test, y_pred_gb))

ROCCURVE

전이학습

```
heart = pd.read_csv('/content/drive/MyDrive/heart.csv')
heart_mapped = heart[['age', 'sex', 'chol', 'trestbps', 'fbs', 'target']].copy()
heart_mapped.columns = ['age', 'gender', 'cholesterol', 'ap_hi', 'gluc', 'cardio']
X_heart = heart_mapped.drop(columns=['cardio']).values
y_heart = heart_mapped['cardio'].values
Xh_train, Xh_val, yh_train, yh_val = train_test_split(X_heart, y_heart, test_size=0.2,
random_state=42)
pretrained_model = TabNetClassifier(seed=42)
pretrained_model.fit(
 X_train=Xh_train, y_train=yh_train,
 eval_set=[(Xh_val, yh_val)],
 eval_metric=['accuracy'],
 max_epochs=100,
 patience=10,
  batch_size=256,
 virtual_batch_size=128
```

pretrained_model.save_model("/content/tabnet_heart_pretrained")

전이학습

```
cardio = pd.read_csv('/content/drive/MyDrive/cardio_train.csv', sep=';')
cardio_mapped = cardio[['age', 'gender', 'cholesterol', 'ap_hi', 'gluc', 'cardio']].dropna()
```

```
X_cardio = cardio_mapped.drop(columns=['cardio']).values
y_cardio = cardio_mapped['cardio'].values
Xc_train, Xc_val, yc_train, yc_val = train_test_split(X_cardio, y_cardio, test_size=0.2, random_state=42)
```

```
finetune_model = TabNetClassifier()
finetune_model.load_model("/content/tabnet_heart_pretrained.zip")
```

```
finetune_model.fit(
    X_train=Xc_train, y_train=yc_train,
    eval_set=[(Xc_val, yc_val)],
    eval_metric=['accuracy'],
    max_epochs=50,
    patience=5,
    batch_size=256,
    virtual_batch_size=128
```

```
● # 6. 성능 평가
preds = finetune_model.predict(Xc_val)
accuracy = accuracy_score(yc_val, preds)
print(f"전이학습 이후 정확도: {accuracy:.4f}")

조 전이학습 이후 정확도: 0.7031
```


건강 정보 입력

○ 운동을 규칙적으로 하나요?

♥ 당신의 심혈관 건강은 안전한가요?

XGBoost 기반 심혈관 질환 위험 예측 & 건강 개선 제안

사용자의 건강 정보 입력 시 위험도를 예측하고, 주요 개선 항목도 제시합니다.

📊 예측 결과

심혈관 질환 위험도

28.56%

개선 제안:

- ₩ 음주 줄이기

시뮬레이터: 혈압 조정 시 위험도 변화

수축기 혈압 (mmHg) 123 이완기 혈압 (mmHg)

혈압을 120/53 → 123/57 mmHg로 조정하면

위험도는 24.60%입니다.

Streamlit & 2121

XGBoost 사용

https://cardio-projectq2btpa92nykgwv7ooabl6k.streamlit.app/

Thank you be seed on the seed of the seed

https://github.com/Launa-0/cardio-project

