

1. 考点分析 00:19

1) 整数

- 基本概念:整数是数学中最基础的概念之一,在考试中属于较简单的知识点
- 考试范围: 主要考察整数的基本性质和简单运算
- 2) 有理数与无理数
- 定义关系:
 - o 有理数和无理数统称为实数
 - 实数由有理数和无理数共同构成
- 考试限制: 考试仅在实数范围内研究,不考虑虚数
- 3) 绝对值
- 考试重要性:
 - o 每年必考的重点内容
 - o 与其他章节联系紧密
- 应用范围:
 - o 方程和不等式中使用
 - o 函数、数列中可添加绝对值
 - o 几何图形和表达式中应用
- 难度特点: 几何相关绝对值问题难度较大
- 4) 比和比例
- 考察重点:
 - o 比例定理的使用情况
 - o 关键定理的掌握
- 题型特点:
 - o 多出现文字性题目
 - o 需要掌握基本概念和运算方法
- 5) 例题: 年龄质数问题

- 题目解析
 - 关键条件:三名儿童年龄均为质数,且依次相差6岁
 - o 解题思路: 寻找相差6岁的连续质数组合
 - o 答案验证: 5、11、17(5+11+17=33,与选项不符); 7、13、19(7+13+19=39, 与选项不符); 5、7、11(5+7+11=23,与选项不符)
 - o 正确答案: 5、7、11(年龄和为23)
 - o 易错点:注意"学龄前儿童(不足6岁)"的条件限制
- 2. 整数 01:38
- 1) 整数概述 01:45
- 奇数与偶数 01:46

- 定义:
 - 奇数: 不能被2整除的数, 如1,3,5, 3, 5, 可表示为 $2k \pm 1 \ (k \in \mathbb{Z})$
 - 偶数:能被2整除的数(含0),如0,2,4,-2,-4,可表示为 $2k(k \in Z)$
- 特殊说明:
 - 零属于偶数,考试时需特别注意
 - 负整数也存在奇偶性,如-3是奇数,-4是偶数
- 质数与合数 02:59

○ 定义:

 \circ

- 质数:大于1的正整数,只有1和它本身两个约数,如2,3,5,7,11,13,17,19
- 合数:大于1的正整数,除1和它本身外还有其他约数,如4,6,8,9,10
- 特殊说明:
 - 1既不是质数也不是合数
 - 质数合数必须在正整数范围内研究
 - 最小质数是2, 最小合数是4
 - 建议记忆20以内的质数
- 倍数与约数 04:21
 - o 关系:

 - 例: 18÷6=3,则18是6的倍数,6是18的约数
- 质数合数与奇数偶数的关系 05:13
 - 关联规律:
 - 质数不一定是奇数(如2是偶质数)
 - 奇数不一定是质数(如9是奇合数)
 - 除2外,所有质数都是奇数
 - 合数不一定是偶数(如9是奇合数)
 - 大于2的偶数必然是合数
- 2) 奇数与偶数 05:47
- 运算性质

○ 加减性质:

0

- 偶数±偶数=偶数(如6+2=8)
- 奇数±奇数=偶数 (如3+5=8)
- 奇数±偶数=奇数(如3±4=7或-1)
- 乘法性质:
 - 奇数×奇数=奇数(如3×5=15)
 - 奇数×偶数=偶数 (如3×4=12)
 - 偶数×任何数=偶数
- 扩展性质:
 - 多个数相乘结果为奇数⇔所有数都是奇数
 - 多个数相乘结果为偶数⇔至少有一个偶数
 - 相邻整数乘积必为偶数(如5×6=30)
- 例题:判断数的奇偶性 09:06

- o 题目解析
 - **审题要点**: ABC两奇一偶, n为整数, 分析表达式*s* = (*a* + *n* + 1) + (*b* + 2*n* + 2) + (*c* + 3*n* + 3)的奇偶性
 - 解题步骤:
 - 合并同类项得*s* = (*a* + *b* + *c*) + 8*n* + 6
 - 已知*a* + *b* + *c* 为两奇一偶相加,结果为偶
 - 8*n*必为偶 (8是偶数)
 - 6是偶数
 - 三个偶数相加结果仍为偶
 - 答案: A (偶数)
 - **技巧**:复杂表达式可拆解分析各部分奇偶性
- 3) 整除、倍数、约数 12:54
- 定义:
 - 奇数: 不能被2整除的整数
 - o 偶数:能被2整除的整数(包括0)
- 运算性质:
 - o 加法: 偶+偶=偶; 奇+奇=偶; 奇+偶=奇
 - o 乘法: 奇×奇=奇; 奇×偶=偶; 偶×偶=偶
 - o 相邻整数:两相邻整数必为一奇一偶,乘积必为偶
- 基本概念 13:50
 - o 整除定义:当整数a除以非零整数b,商为整数且余数为零时,称a能被b整除或b 能整除a
 - o 倍数与约数: 当a能被b整除时, a是b的倍数, b是a的约数
 - o **举例**: $18 \div 6 = 3 \rightarrow 18$ 是6的倍数, 6是18的约数
- 最小公倍数
 - 0 定义与表示

- **定义**: 几个数共有的倍数称为公倍数(无数个),其中最小的称为最小公倍数
- 表示方法: 用方括号表示, 如/15,20/表示15和20的最小公倍数
- **举例**: 12和18的最小公倍数是36
- o 分解法 17:19
 - 步骤:
 - 将每个数分解质因数
 - 取每个质因数的最高次幂相乘
 - **举例**: 求12、18、20的最小公倍数
 - $12 = 2^2 \times 3$
 - $18 = 2 \times 3^2$
 - $20 = 2^2 \times 5$
 - 结果: 2² × 3² × 5 = 180
- o 短除法 20:03
 - 歩骤:
 - 写出所有数
 - 用公约数连续除,直到两两互质
 - 所有除数与最后商相乘
 - 举例: 求12、18、20的最小公倍数
 - 过程: 先除2→6,9,10; 再除3→2,3,10; 最后除2→1,3,5
 - 结果: 2×3×2×1×3×5=180
- 公约数与最大公约数

- o **定义**:几个数共有的约数(有限个),最大的称为最大公约数
- o **表示方法**: 用小括号表示, 如(15,20)表示15和20的最大公约数
- 举例:

0

- 12和18的最大公约数是6
- 15和20的最大公约数是5
- 常见整除特征 23:45

o **0的特殊性**:能被任何非零自然数整除

o **被2整除**: 个位为0,2,4,6,8 (偶数)

o 被3/9整除: 各位数字之和能被3/9整除

■ 例: 171→1+7+1=9 (能被9整除)

o 被4/8整除:看末两位/三位能否被4/8整除

■ 例: 1752→52÷4=13(能被4整除); 752÷8=94(能被8整除)

o 被5整除: 个位为0或5

o 被6整除:同时满足被2和被3整除的条件

● 例题: a方减一倍数问题 27:34

○ 题目解析:

0

■ 特值法: 取a=3→8 (排除非8倍数选项); a=5→24 (验证)

■ 代数法: 设a=2k-1→ a^2 – 1 = 4k(k-1)

■ 关键点:k与k-1必为一奇一偶,含2的因子,故整体是8的倍数

答案: C选项(8的倍数)

> **考点**:奇数性质、因式分解、整除特征

3. 质数与合数 31:05

1) 质数与合数概述 31:09

- **质数定义**: 大于1的正整数,除1和自身外无其他约数的数(又称素数)。如2,3,5,7等。
- **合数定义**: 能被1和自身之外其他正整数整除的正整数。如4,6,8,9等。
- 特殊规定:
 - o **1的性质**: 既不是质数也不是合数
 - 最小数:
 - 最小质数为2(唯一偶质数)
 - 最小合数为4
- 常见范围:

o 20以内质数: 2,3,5,7,11,13,17,19

o 30以内补充: 23,29

● 分布规律:

- o 随着数值增大,质数分布越来越稀疏
- o 原因:数越大越容易产生约数,成为合数的概率增加
- 2) 应用案例 32:37
- 例题:年龄问题质数计算

o 题目解析

 \circ

- **解题方法**:列举法(数学重要思想)
 - 适用范围:应用题、几何构成、排列组合概率等
- 关键条件:
 - 年龄为质数且成等差数列(公差6)
 - 学龄前儿童(年龄<6岁)
- 求解过程:
 - 列出<6的质数: 2,3,5
 - 排除不满足组合:
 - o 2岁→8岁(×), 14岁(×)
 - o 3岁→9岁(×), 15岁(×)
 - o 5岁→11岁(√), 17岁(√)
 - 计算年龄和: 5+11+17=33 (等差中项×项数)
- 答案: C选项 (33)
- **技巧**: 质数问题优先考虑列举验证
- 例题:不定方程应用 35:16

o 题目解析

0

- **题型特征**:不定方程(未知数多于方程数)
- 解题思路:
 - 奇偶性分析: $a^2 + b = 2003$ (奇数)
 - 情况1: a^2 奇→b偶→b=2 (唯一偶质数)
 - 情况2: a^2 偶 $\rightarrow a = 2 \rightarrow b = 1999$
 - 验证b = 1999是否为质数
- 关键步骤:

● 数位和检验: 1+9+9+9=28 (非3倍数)

● 试除法验证无小因数

■ **最终答案**: *a* + *b* = 2 + 1999 = 2001 (C选项)

■ **考点**:质数性质与奇偶性的综合应用

二、知识小结

二、邓尔小组	1.18.8.1.8.	1 14 1 5 1 1	l _n
知识点	核心内容	考试重点/易	难度系数
		混淆点	
整数分类	奇偶性定义(奇数: 2k±1;	零属于偶数	* * * * * *
	偶数: 2k) 、质数合数区分	;1既非质数	
	(质数最小为2, 合数最小	也非合数	
	为4)		
有理数与无	实数由有理数和无理数构	区分有理数	***
理数	成,考试范围不涉及虚数	(可表示为	
		分数)与无	
		理数 (如 √ 2	
)	
绝对值			****
	函数等章节结合	加绝对值后	
		难度提升	
比和比例		比例定理的	***
75175173	字题	灵活运用	
	,	(如合分比	
		定理)	
整除与倍数	整除定义(a÷b无余数)、	短除法步骤	***
正於为山外	最小公倍数(分解质因数法	; 公约数为	
	/短除法)	有限个,公	
	/ / M / M / M / M / M / M / M / M / M /		
		个	
 奇偶运算性	 奇数±偶数=奇数; 偶数×任	<u>'</u> 三个数相加	***
一质	何数=偶数	一 数怕加 为奇数的条	
1994	1 J XV _ II-J XV	外可数的东	
		〒(可数 奇数)	
	┃ ┃列举法解题(如年龄问	□ 数/ 质数稀疏性	****
用	列宁/Z 解题(知中时间 题),注意20以内质数分布		
/13	检 / , /工总20以内列项数 // 刊	数越八洲 数越少)	
 不定方程推	│ │ 结合奇偶性分析(如	数ペンプ 数ペンプ	****
个足刀住推 理	a ² +b=2003中b=2或a=2)		A A A A W
	a-+p=2003中p=2则a=2)	偶数为2	