Wojciech Pieczynski Telecom Sudparis IP Paris

Modèles de Markov

Wojciech Pieczynski Telecom Sudparis IP Paris

Modèles de Markov

Avant-propos

Les modèles markoviens sont parmi les plus simples permettant de prendre en compte la dépendance entre variables aléatoires. Parmi eux, les chaînes de Markov cachées (CMC) permettent les traitements rapides de grandes masses de données, avec d'omniprésentes applications dans les domaines les plus divers (économie, santé, finance, IA, biologie, communications, traitement du signal et des images, ...). Enfin, les simulations des chaînes de Markov peuvent également être utilisées comme moyen de calcul approché de quantités complexes.

La raison profonde de la surprenante efficacité des certaines modélisations complexes de type de Réseaux de Neurones Récursives (RNN), qui les rend incontournables en Intelligence Artificielle, est encore mal appréhendée. Cependant, elle est de nature probabiliste et les CMC en sont une des expressions les plus simples.

Le cours expose les notions de base des chaînes de Markov finies à temps discret, des chaînes de Markov cachées, ainsi que des méthodes de Monte Carlo par chaînes de Markov (MCMC). Des exemples d'applications des CMC en segmentation statistique d'images, problème de base en imagerie, et en étiquetage morphosyntaxique, applicables en traitement de textes comme la classification, sont traités en séances de TP.

Table des matières

Chapitre 1 : Chaînes de Markov à espace d'états fini

1. Rappels du calcul des probabilités	1
1.1. Espace probabilisé	1
1.2. Espérance mathématique	1
1.3. Probabilité image et théorème de transfert	4
1.4. Conditionnement	5
2. Chaînes de Markov à espace d'états fini et temps discret	
2.1. Introduction.	ç
2.2. Chaînes de Markov à temps discret.	10
2.3. Chaînes de Markov homogènes	12
2.4. Stationnarité et comportement asymptotique	15
2.5. Autre classification	17
Exercices	20
Chapitre 2 : Classification avec les chaînes de Markov cachées	
1. Classification bayésienne	23
2. Restaurations bayésiennes de Markov cachés	28
2.1 Introduction	28
2.2 Représentations graphiques des dépendances	29
2.3 Le modèle « chaîne de Markov cachée » (CMC)	32
2.4 Restauration des chaînes de Markov cachées	35
3. Estimation des paramètres	38
3.1 Paramètres des méthodes « locales ».	38
3.2 Paramètres des chaînes de Markov cachés	41
Exercices	43
Exercices	43
Chapitre 3: Approximations Stochastiques	
1. Introduction	51
2. Générations des variables aléatoires	51
2.1 Fonction de répartition inversible	51
2.2 Loi de Gauss et lois associées	51
2.3 Méthode des lois marginales	52
2.4 Méthodes d'acceptation-rejet	53
3. Intégration par la méthode de Monte Carlo	53
4. Méthodes de Monte Carlo par Chaînes de Markov (MCMC).	55
4.1 Cas discret	55
4.2 Cas continu : échantillonneurs de Hasting-Metropolis et de Gibbs	57
Exercices	60
	00