Sarah Ertel	1	2	3	4	Σ
Patrick Greher					
Eugen Ljavin					

Übungsblatt Nr. 3 (Abgabetermin 10.05.2018)

Aufgabe 1

a)

```
Algorithm 1: Insertion Sort Algorithmus
```

```
1 function insertionSort(toSort[\ ])
2 for i \leftarrow 1; i < toSort.length; i \leftarrow i+1 do
3  | j \leftarrow i;
4 | while (j > 0) \land (toSort[j-1] > toSort[j]) do
5 | toSort[j-1] \leftarrow toSort[j-1];
6 | toSort[j-1] \leftarrow toSort[j];
7 | toSort[j] \leftarrow tmp;
8 | j \leftarrow j-1;
9 | end
10 end
```

Algorithm 2: Minimumsuche + Austausch Algorithmus

```
1 function minimumSwapSort(toSort[])
 2 for i \leftarrow 0; i < toSort.length - 1; i \leftarrow i + 1 do
        for j \leftarrow i+1; j < toSort.length; i \leftarrow j+1 do
            if toSort[i] > toSort[j] then
 4
                 tmp \leftarrow toSort[i];
 \mathbf{5}
                 toSort[i] \leftarrow toSort[j];
 6
 7
                 toSort[j] \leftarrow tmp;
 8
            end
        end
 9
10 end
```

b)

c)

	Minimumsuche + Austausch Algorithmus	Insertion Sort
Vertauschungen	0	0
Vergleiche	maximal: $\frac{n^2}{2} - \frac{n}{2}$	n-1

```
d)
```

```
n \in \mathbb{N}

A = \langle n, n+1, n+2, \ldots \rangle
```

Es gibt dann $\frac{n^2}{2} - \frac{n}{2} - (n-1)$ Vergleiche (für beide Algorithmen)

e)

$$n \in \mathbb{N}$$

$$A = \langle n, n-1, n-2, \ldots \rangle$$

 $A=\langle n,n-1,n-2,...\rangle$ Es gibt dann $\frac{n^2}{2}-\frac{n}{2}-(n-1)$ Vertauschungen (für beide Algorithmen)

Aufgabe 2

a)

b)

1. Testblah

3. Testblah

c)

3. Testblah