Midsem

CS425 (Computer Networks)		
February 27, 2022	Name:	,

1. (10 points) Short Answer type Questions

1. What tasks are performed by the network access layer and the transport layer?

2. What is the bandwidth of the signal $s(t) = 4\sin(2\pi t) + 2\sin(6\pi t) + (8/\pi)\sin(7\pi t)$?

3. If the transmit power of a signal is 20 mW and the received power is 5 mW, then what is the loss in dBw?

4. Describe the advantage of parabolic reflective antenna.

5. Explain is Sampling Theorem.

2. (10 point	s) Shannon's	Theorem	and Nyquist	Theorem:
-------------	----------	--------------	---------	-------------	----------

•	Suppose a spectrum of a channel is between 3 MHz and 4 MHz and $SNR_{db}=24$ dB. using Shannon's formula calculate the maximum capacity of the channel.	Then

			Antenna						antenna,	the free	space	loss	is
giver	by ·	$\frac{P_t}{P_r} = \frac{(4\pi\epsilon)^2}{\lambda^2}$	$(\frac{d)^2}{2}$, where	d is the d	istance	between	n ant	ennas.					

 \bullet Determine the isotropic free space loss at 4 GHz, if the shortest path to the satellite antenna from earth is 35863 Km.

 \bullet If the transmitter and receiver antenna gains are 44 dB and 48 dB, respectively, calculate the free space loss.

• If the transmitted power at the earth is 250 W, calculate the received power at the satellite antenna.

4. (10 points) **Signal Encoding Formats:** For a bit stream 01001100011, sketch the NRZ-L, NRZ-I, Manchester and Differential Manchester signals.

5. (10 points) Miscellaneous:

 \bullet Calculate the thermal noise power density at room temperature. Assume Boltzmann's constant to be 1.38 \times 10^{-23} J/K?

• What is "slope overload noise" and "quantizing noise" in delta modulation?

• What is the difference between "optical line of sight" and "radio line of sight"?

Scrap Page

(please do not remove this page from the test packet)