Theorem 1. 对于一个有向无环图 G, 插入一条边 (S_u,S_v) 使得 G 中出现环,记环中的所有节点集合为 C, 将把 C 中的节点合并为新节点 S_{new} 得到的 DAG 记为 G_{new} ,则对于 G_{new} 中的任何一个节点 S_i ,记 S_i 的入边集合为 IN_{Si} ,出边集合为 OUT_{Si} ,如果 $S_i \notin C$,那么 $C \cap IN_{Si} \neq \emptyset$ 与 $C \cap OUT_{Si}$ 至多有一个成立。

Proof. 使用反证法,假设 $C\cap IN_Si\neq\emptyset$ 与 $C\cap OUT_Si$ 同时成立,取 $S_j\in C\cap IN_Si$, $S_k\in C\cap OUT_Si$,由于合并后节点 S_j 与节点 S_k 之间存在一条边,所以在 G_{new} 中 S_j 与 S_k 属于同一个强连通分量,则必然存在一条路径 p,使得 $S_k\stackrel{p}{\to} S_j$. 此时 G_{new} 中存在环 $S_i\to S_k\stackrel{p}{\to} S_j\to S_i$,与 G_{new} 为有向无环图相矛盾.故 $C\cap IN_Si\neq\emptyset$ 与 $C\cap OUT_Si$ 至多有一个成立。