Triggering

Level triggering

Positive edge- triggering

Negative edge- triggering

Toggle flipflop- Divide by 2 circuit

Synchronous and Asynchronous/ Ripple Counter

Asynchronous/ Ripple Counter

 n number of flipflops divide the input clock by 2ⁿ.

clk	Q2	Q1
0	0	0
1	0	1
2	1	0
3	1	1

Asynchronous Down Counter

Fig. A

Asynchronous Down Counter

Fig. B

Asynchronous Up- Down Counter

• Propagation delay is larger because of additional AND-OR gates included in the circuit.

PRE	CLR	Q
0	1	1
1	0	0
1	1	Normal
0	0	Not allowed

- Preset and Clear inputs are active Low inputs i. e. Overriding inputs.
- Preset = 0, Q =1 i.e. PRE = 0, Sets the FF.
- Clear = 0, Q =0 i.e. CLR = 0, Resets the FF.
- PRE = 1 and CLR = 1, FF works normally.

Counters with feedback

- A counter consisting of n flip flops can run through 2^n distinct states.
- Counters with moduli of 2,4,8, 16, 32 etc. can be constructed with appropriate number of flip flops.
- Counters with moduli different from 2,4,8,16, 32 etc. can be constructed by skipping desired number of states from larger modulus counter.
- Skipping of states is done by incorporating feedback in the counter circuit.

MOD-5 Counter

Ex. Counting from 2 to 6

Q3	Q2	Q1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0

Parallel or Synchronous Counter

