Booklet of Code and Output for STAC32 Midterm Exam

List of Figures in this document by page:

List of Figures

1	Packages	2
2	Texas highway mowing data	3
3	Uptake rate data	4
4	Histogram of uptake rates	5
5	T-test output	5
6	95% confidence interval for population mean uptake rate	6
7	Output from power estimation analysis	6
8	Power curve for different sample sizes	7
9	Histogram of wrist-extension data	8
10	T-test for wrist-extension data	9
11	Sign test for wrist-extension data	9
12	Example of "filter"	10
13	Further analysis for wrist extension data	11
14	Chess study data	12
15	HSAM data	12
16	HSAM overall median test score	13
17	HSAM Mood's median test	13
18	HSAM facetted normal quantile plots	14
19	Penetrability data (randomly chosen rows)	15
20	Penetrability data boxplot	16
21	Penetrability data facetted normal quantile plots	17
22	Penetrability data ANOVA	18
23	Penetrability data Welch ANOVA	19
24	Penetrability data Mood's median test	20

```
## -- Attaching packages -----

tidyverse 1.2.1 --

## v ggplot2 3.2.1 v purrr 0.3.2

## v tibble 2.1.3 v dplyr 0.8.3

## v tidyr 1.0.0 v stringr 1.4.0

## v readr 1.3.1 v forcats 0.4.0

## -- Conflicts -------

tidyverse_conflicts() --

## x dplyr::filter() masks stats::filter()

## x dplyr::lag() masks stats::lag()

library(pmcMRplus)
```

Figure 1: Packages

height	frequency	vegetation
0.05m	1-per-year	17.3
0.05m	1-per-year	19.3
0.05m	1-per-year	15
0.05m	1-per-year	16.7
0.10m	1-per-year	16
0.10m	1-per-year	15.6
0.10m	1-per-year	16.9
0.10m	1-per-year	15
0.20m	1-per-year	16.7
0.20m	1-per-year	17.9
0.20m	1-per-year	15.9
0.20m	1-per-year	13.7
0.05m	2-per-year	22.4
0.05m	2-per-year	20.8
0.05m	2-per-year	24.5
0.05m	2-per-year	21.7
0.10m	2-per-year	23.9
0.10m	2-per-year	23.6
0.10m	2-per-year	21.7
0.10m	2-per-year	23.8
0.20m	2-per-year	24.7
0.20m	2-per-year	26.3
0.20m	2-per-year	27.2
0.20m	2-per-year	26.4
0.05m	3-per-year	18.6
0.05m	3-per-year	17.9
0.05m	3-per-year	16.1
0.05m	3-per-year	19.4
0.10m	3-per-year	22.2
0.10m	3-per-year	25.6
0.10m	3-per-year	21.8
0.10m	3-per-year	23.6
0.20m	3-per-year	27
0.20m	3-per-year	25.3
0.20m	3-per-year	23.8
0.20m	3-per-year	28

Figure 2: Texas highway mowing data

Figure 3: Uptake rate data

Figure 4: Histogram of uptake rates

```
##
## One Sample t-test
##
## data: uptake
## t = -0.81599, df = 14, p-value = 0.2141
## alternative hypothesis: true mean is less than 8000
## 95 percent confidence interval:
## -Inf 8244.674
## sample estimates:
## mean of x
## 7788.8
```

Figure 5: T-test output

```
##
## One Sample t-test
##
## data: uptake
## t = 30.093, df = 14, p-value = 3.998e-14
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 7233.672 8343.928
## sample estimates:
## mean of x
## 7788.8
```

Figure 6: 95% confidence interval for population mean uptake rate

```
## # A tibble: 2 x 2
## `pvals < 0.05` n
## <lgl> <int>
## 1 FALSE 587
## 2 TRUE 413
```

Figure 7: Output from power estimation analysis

Figure 8: Power curve for different sample sizes ${\cal P}$

Figure 9: Histogram of wrist-extension data

extension

Figure 10: T-test for wrist-extension data

```
## $above_below
## below above
## 3 17
##
## $p_values
## alternative    p_value
## 1    lower 0.999798775
## 2    upper 0.001288414
## 3    two-sided 0.002576828
```

Figure 11: Sign test for wrist-extension data

Suppose we have a data frame like this:

Then we can select all the rows for which the column ${\tt g}$ is equal to the text ${\tt a}$ like this:

Figure 12: Example of "filter"

```
wrist %>% filter(extension>10) -> wrist2
t.test(wrist2$extension, mu=24, alternative="greater")
##
##
   One Sample t-test
##
## data: wrist2$extension
## t = 4.5189, df = 22, p-value = 8.492e-05
## alternative hypothesis: true mean is greater than 24
## 95 percent confidence interval:
## 25.15915
                 Inf
## sample estimates:
## mean of x
## 25.86957
sign_test(wrist2, extension, 24)
## $above_below
## below above
##
      1 17
##
## $p_values
## alternative
                     p_value
## 1
          lower 9.999962e-01
## 2
          upper 7.247925e-05
## 3 two-sided 1.449585e-04
```

Figure 13: Further analysis for wrist extension data

```
## # A tibble: 12 x 4
##
     student pre_test post_test difference
##
       <dbl> <dbl> <dbl> <dbl>
                510
                          850
                                    340
##
  1
         1
   2
          2
##
                 610
                           790
                                     180
##
   3
           3
                 640
                           850
                                     210
##
   4
           4
                 675
                           775
                                     100
## 5
         5
                  600
                           700
                                     100
   6
##
           6
                  550
                           775
                                      225
## 7
         7
                  610
                           700
                                      90
## 8
                  625
                           850
                                      225
## 9
          9
                  450
                                      240
                           690
## 10
          10
                  720
                           775
                                      55
## 11
                                      -35
                  575
          11
                           540
## 12
          12
                  675
                           680
                                       5
```

Figure 14: Chess study data

```
hsam
## # A tibble: 29 x 2
##
     memory test_score
##
     <chr>
             <dbl>
  1 control
##
  2 control
                    4
##
   3 control
                    3
## 4 hsam
## 5 control
## 6 control
                    6
## 7 control
                     5
                     7
## 8 hsam
## 9 hsam
                     6
## 10 hsam
                     4
## # ... with 19 more rows
```

Figure 15: HSAM data

Figure 16: HSAM overall median test score

```
## $table
## above
## group above below
## control 5 10
## hsam 8 0
##
## $test
## what value
## 1 statistic 9.435897436
## 2 df 1.000000000
## 3 P-value 0.002127789
```

Figure 17: HSAM Mood's median test

```
ggplot(hsam, aes(sample=test_score)) +
    stat_qq() + stat_qq_line() + facet_wrap(~memory)
```


Figure 18: HSAM facetted normal quantile plots

```
## Parsed with column specification:
## cols(
## plot = col_character(),
## penetrability = col_double()
## )
## # A tibble: 20 x 2
##
   plot penetrability
   <chr> <dbl>
## 1 B
                   3.13
   2 C
##
                   4.91
## 3 B
                  3.26
## 4 A
                  3
## 5 B
                   3.86
## 6 A
                   2.9
## 7 A
                   2.86
## 8 C
                   3.99
## 9 B
                   3.38
## 10 A
                   3.18
## 11 C
                   4.3
## 12 C
                   3.94
## 13 A
                   2.92
## 14 A
                   2.86
## 15 B
                   3.38
## 16 C
                   4.2
                   2.96
## 17 A
## 18 B
                   3.02
## 19 C
                   4.34
## 20 A
                   2.78
```

Figure 19: Penetrability data (randomly chosen rows)

Figure 20: Penetrability data boxplot

The purpose of the ncol=2 is to arrange the plots as three cells of a 2×2 grid. By default, the three plots will come out in one row, side by side, which is harder to read.

Figure 21: Penetrability data facetted normal quantile plots

Part (i):

```
summary(soil.1)
##
              Df Sum Sq Mean Sq F value Pr(>F)
              2 18.260 9.130
                                 140.5 <2e-16 ***
## plot
## Residuals
             57 3.703
                          0.065
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Part (ii):
TukeyHSD(soil.1)
##
    Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = penetrability ~ plot, data = soil)
##
## $plot
       diff
                  lwr
                            upr p adj
## B-A 0.428 0.2340375 0.6219625 5.6e-06
## C-A 1.324 1.1300375 1.5179625 0.0e+00
## C-B 0.896 0.7020375 1.0899625 0.0e+00
```

soil.1=aov(penetrability~plot, data=soil)

Figure 22: Penetrability data ANOVA

Part (i):

```
oneway.test(penetrability~plot, data=soil)
##
##
   One-way analysis of means (not assuming equal variances)
##
## data: penetrability and plot
## F = 186.86, num df = 2.000, denom df = 33.243, p-value < 2.2e-
Part (ii):
gamesHowellTest(penetrability~factor(plot), data=soil)
##
## Pairwise comparisons using Games-Howell test
## data: penetrability by factor(plot)
    Α
## B 2.7e-05 -
## C < 2e-16 4.5e-11
## P value adjustment method: none
## alternative hypothesis: two.sided
```

Figure 23: Penetrability data Welch ANOVA

Part (i):

```
median_test(soil, penetrability, plot)
## $table
##
     above
## group above below
##
      A O
                20
##
      В
          10
                10
##
      С
         20 0
##
## $test
##
       what
               value
## 1 statistic 4.000000e+01
         df 2.000000e+00
## 3 P-value 2.061154e-09
```

Part (ii):

```
pairwise_median_test(soil, penetrability, plot)

## # A tibble: 3 x 4

## g1 g2 p_value adj_p_value

## <chr> <chr> <dbl> <dbl> <dbl>
## 1 A B 5.40e- 6 1.62e- 5

## 2 A C 2.54e-10 7.62e-10

## 3 B C 1.25e- 8 3.76e- 8
```

Figure 24: Penetrability data Mood's median test