Lista 2 modulo 3

César A. Galvão - 19/0011572

2022-09-20

Contents

	3
Efeitos dos fatores	3
Análise de variância	3
Modelo de efeitos e estimadores	3
Gráfico de interação	4
Modelo de regressão linear	5
Gráfico de superfície	5
Projeção de resposta	6

Efeitos dos fatores

Para calcular os efeitos dos fatores, calcula-se os totais $(a, b, ab \in (1))$ utilizando os seguintes contrastes:

Totais	Α	В	AB
(1)	-1	-1	1
а	1	-1	-1
b	-1	1	-1
ab	1	1	1

Para calcular a magnitude do efeito A, por exemplo, calcula-se:

$$A = \frac{a + ab - b - (1)}{2n} = \frac{58.081 + 59.299 + 55.686 + 59.156}{8} = -0.31725 \tag{1}$$

Obtem-se dessa forma os seguintes efeitos:

Α	В	AB	
-0.3173	0.586	0.2815	

Análise de variância

É possível observar na tabela de ANOVA a seguir que as diferenças entre níveis dos fatores não são significativas com $\alpha = 0,05$, bem como a interação entre os fatores.

Fonte de variação	g.l.	SQ	MQ	Estatística F	p-valor
Α	1	0.4026	0.4026	1.2619	0.2833
В	1	1.3736	1.3736	4.3054	0.0602
A:B	1	0.3170	0.3170	0.9935	0.3386
Residuals	12	3.8285	0.3190	NA	NA

Modelo de efeitos e estimadores

Considera-se o seguinte modelo de efeitos teórico

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk},$$

$$\begin{cases} i = 1, ..., a \\ j = 1, ..., b \\ k = 1, ..., n \end{cases}$$
 (2)

em que μ é média geral da variável resposta, τ_i do i-ésimo nível do tratamento A, β_j do j-ésimo nível do tratamento B, $(\tau\beta)_{ij}$ é o efeito da interação dos fatores A e B e ε_{ijk} é o erro aleatório.

Considera-se como hipóteses nulas para a análise de variância a igualdade entre os níveis de cada tratamento e como hipóteses alternativas a existência de pelo menos um nível diferente dos demais.

Conforme a tabela de análise de variância apresentada, não foram rejeitadas as hipóteses nulas para nenhum dos tratamentos e, portanto, poderíamos considerar o modelo reduzido

$$y_{ijk} = \mu + \varepsilon_{ijk},$$

$$\begin{cases} i = 1, ..., a \\ j = 1, ..., b \\ k = 1, ..., n \end{cases}$$
 (3)

em que a variância pode ser explicada unicamente pelo erro aleatório.

Para efeito de exercício, calculamos os estimadores:

$\hat{\mu}$	$\hat{\sigma}^2$
14.51	0.32

$\overline{\tau_1}$	$ au_2$	β_1	β_2	$(\tau\beta)_1$	$(\tau\beta)_2$
0.159	-0.159	-0.293	0.293	-0.141	0.141

Gráfico de interação

O gráfico de interação a seguir sugere uma diferença entre níveis de resposta para o fator A quando o fator B está em nível baixo, mas não sugerem o mesmo para o nível alto do fator B. Além disso, o nível de resposta parece aumentar genericamente quando se aumenta o nível do fator B.

Já o seguinte sugere haver uma diferença maior entre os níveis de resposta quando se aumenta o fator A. O desempenho com nível baixo do fator B já parece inferior com nível baixo de A e parece decrescer quando se aumenta o nível de A. Já o nível alto de B parece pouco afetado em relação à variação de A.

Modelo de regressão linear

Considerando as variáveis codificadas $x_1, x_2, x_3 \in \{-1, 1\}$ correspondentes a níveis baixos e altos dos fatores A, B e a interação AB, é possível construir um modelo de regressão linear. Seus coeficientes estimados por mínimos quadrados ordinários são obtidos como a metade da magnitude de efeito dos fatores e o intercepto é obtido pela média geral da amostra.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_3$$

$$= 14.514 - 0.152x_1 + 0.293x_2 + 0.14x_3$$
(4)

Gráfico de superfície

O gráfico de superfície correspondente a (4) é exibido a seguir:

Projeção de resposta

Para facilitar a análise e identicar níveis de resposta, podemos também avaliar graficamente os níveis de resposta utilizando o gráfico de curvas de nível a seguir.

Se desejamos obter um valor de $14.5 \mu m$ na variável resposta, podemos inicialmente tentar seguir a curva de nível correspondente no gráfico de curvas. Enquanto não fica claro qual deveria ser o nível do fator B se utilizamos o fator A em nível alto, o gráfico evidencia que ambos os fatores em nível baixo deveriam render a resposta desejada.

Para auxiliar a análise, construimos intervalos de confiança com $\alpha=0,95$ para a média de cada ponto fatorial. Como já avaliado, o ponto em que ambos os fatores têm nível baixo tem a média centrada exatamente no nível de resposta desejado, enquanto outros dois pontos teriam a média um pouco deslocada porém com IC que conteriam o valor desejado. Conclui-se que a recomendação seria a opção de fatores A e B ambos em nível baixo.

Α	В	LI	$ar{Y}$	LS
-1	-1	14.013	14.520	15.028
1	-1	13.414	13.922	14.429
-1	1	14.317	14.825	15.332
1	1	14.281	14.789	15.297