1. Aufgabe

Also ist Beine Orthonormal basis von R2

(b) Es gilt
$$\Phi(b_1) = b_1 = 1 - b_1 + 0 \cdot b_2$$
 and $\Phi(b_2) = -b_2 = 0 \cdot b_1 + (-1) \cdot b_2$

also ist MB (0) = (10).

Weiter sei E = { (3), (9)}, Dann gilt

$$M_{\varepsilon}^{\varepsilon}(\phi) = M_{\varepsilon}^{\sharp}(id_{R^2}) \cdot M_{\mathfrak{p}}^{\sharp}(\phi) \cdot M_{\varepsilon}^{\varepsilon}(id_{R^2})$$

$$= \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \end{pmatrix}$$

$$= \frac{1}{5^{2}} \begin{pmatrix} 3 & 4 \\ 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} = \frac{1}{25} \begin{pmatrix} -7 & 24 \\ 24 & 7 \end{pmatrix}.$$

(c) Nach Rechnung in (b) 15t

 $M \in (\emptyset)$ ähnlich zu $M_{\mathcal{B}}^{\mathcal{B}}(\emptyset) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = A$.

Die Matrix A hat Diagonalgestalt, also ist $M \in (\emptyset)$ diagonalisierbar.

2. Aufgabe

Nur Teil (a):

An fong n=1: || \frac{1}{\infty} \var_{\infty} \var_{\infty} = || \var_{\infty} || \var_{\infty} \var_{\infty} || \var_{\inft

Schritt n->n+1: Es gilt

$$\left|\left|\sum_{k=1}^{n+1} V_{kk}\right|\right|_{V} = \left|\left|\left(\sum_{k=1}^{n} V_{ik}\right) + V_{n+1}\right|\right|_{V}$$

d-Ungleichung II & VK IV + II Vn+1 IIV

Annahme (S II VICILV) + 11 Vn+111V

= \(\sum_{1 \in 1} \) \(\lambda \) \(\lam

Domit ist die Aussage für alle ne M* wahr. Teil (b) nicht relevant für diese Mathe 1. 3. Aufgabe

(a) p Primzahl, $a \in \mathbb{N}$ wird nicht von p gebeilt

=> $a^{p-1} = 1 \pmod{p}$ (Korollar 2.1.17.)

Hier also: a = 10 and p = 13. Dann ist

1012 = a12 = 1 (mod p). Also ist

 $10^{12000} = 1^{1000} \pmod{p} = 1 \pmod{p}$

und damit

10 12001 = 10 12000 . 10 (modp)

= 1.10 (mod p) = 10 (mod p).

(b) Satz 2.3.8. anwenden:

(UG1) U+Ø: Sei g!=n, Dann ist nell dann ist g 1=n, d.h. für 1c=1 gilt g 1c=n, Somit ist nell und U+Ø.

(UG2) Seien gih EU. Dann gibt es kil EN*
mit gk = he = n. Zuzeigen: g* h e U.
Sei m EN* beliebig. Dann ist

(g*h) = g*h*...*g*h

Gabelich g* * * * * * * h

= gm * hm = gm * hm.

4

$$g^{m} = g^{k \cdot \ell} = (g^{k})^{\ell} = \eta^{\ell} = \eta$$
 and

Somit ist U Untergruppe von G.

4. Aufgabe

(a) Wahr: Sei $\lambda \in W$ von $A, d.h. det (A-\lambda I)=0$.

Dann gilt

det
$$(A^{T} - \lambda L) = det (A^{T} - \lambda L^{T})$$

1 ist EW von AT.

(b) Wahr: Sei din(V)=N und dim(W)=m undweiter sei & Vn,..., Vn3 Basi's von V. Dann gilt:

Rang (d) = dim (W) =) { \$\P(\mu_1,...,\P(\mu_1)\} hat
m linear unabhängige Velitoren, d.h. {\P(\mu_1,...,\P(\mu_1)\})
spannen W auf. Damit ist \$\P(\mu_1,\mu_2)\elliber litiv.

(c) Falsch: Sei $U = \{(\frac{1}{2}) \in \mathbb{R}^3 : z = 0\}$ and $W = \{(\frac{1}{2}) \in \mathbb{R}^3 : Y = z = 0\}$

Für den Velitor $(\frac{9}{9})$ gibt es dann keine ue U

und W & W mit $u+w=(\frac{9}{9})$, weil stetu z=0 ist.

(d) Falsch: n=1: $\sum_{k=1}^{2} \frac{1}{k} = 1 = \frac{2-1}{1}$ n=2: $\sum_{k=1}^{2} \frac{1}{k} = \frac{3}{2}$ und $\frac{2\cdot 2-1}{2} = \frac{3}{2}$ n=3: $\sum_{k=1}^{3} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} = \frac{6+3+2}{6} = \frac{11}{6}$ und $\frac{2\cdot 3-1}{3} = \frac{5}{3} + \frac{11}{6}$

5. Aufgabe

Direlit: Wegen $\Phi \neq idv$ gibt es $v \in V$ mit $\Phi(v) \neq V$.

Dann ist $W := \Phi(v) - V \neq 0$ und $\Phi(w) = \Phi(\Phi(v)) - \Phi(v) = 0$, d.h. wist EV zum EW O.

Indirelit: 1st O liein EW von Φ_{i} dann ist $\Phi(w) = 0$.

und aus $\phi = \phi$ folyt $\phi \circ \phi \circ \phi^{-1} = \phi \circ \phi^{-1} = idv$

6. Aufgabe

6

(a) Falsch (b) Falsch: A= (-1-2) (c) Falsch: Z=i

(d) Wahr: f(x):=4.x (e) Nicht relevant für Mathe 1

(f) Wahr: B= SDS-1=DSS-1=D

(9) Falsil: V=-W wählen

(h) Wahr

(i) Wahr

(i) Wahr