Data science automation

This week is all about looking at automation tehcniques for data science and with Python. We can automate a lot of things with Python: collecting data, processing it, cleaning it, and many other parts of the data science pipeline. Here, we will show how to:

- use the pycaret autoML Python package to find an optimized ML model for our diabetes dataset
- create a Python script to ingest new data and make predictions on it

Often, next steps in fully operationalizing an ML pipeline like this are to use a cloud service to scale and serve our ML algorithm. We can use things like AWS lambda, GCP, AWS, or Azure ML depolyment with tools such as docker and kubernetes.

Data Preparation

It includes pulling the dataset from the system and we are going to load our same prepared data from week 2 where everything has been converted to numbers.

```
import pandas as pd

df = pd.read_csv(r"C:\Users\anupu\Downloads\week2_churn_prepared.csv" ,index_col='c
    df = df.drop(['TotalCharges_MonthlyCharges_ratio','TotalCharges_tenure_ratio','Unna
    df
```

tenure PhoneService Contract PaymentMethod MonthlyCharges TotalCharges Chu Out[42]: customerID 7590-1 0 0 0 29.85 29.85 **VHVEG** 5575-2 56.95 1889.50 34 1 **GNVDE** 3668-2 0 1 1 108.15 53.85 **QPYBK** 7795-2 45 0 2 42.30 1840.75 **CFOCW** 9237-2 1 0 0 70.70 151.65 HQITU 6840-1 2 84.80 1990.50 24 **RESVB** 2234-72 1 2 3 103.20 7362.90 **XADUH** 4801-0 0 0 346.45 11 29.60 **JZAZL** 8361-0 74.40 306.60 1 1 **LTMKD 3186-AJIEK** 66 1 1 2 105.65 6844.50

7043 rows × 8 columns

In [43]: from pycaret.classification import *
In [44]: automl = setup(df, target='Churn')

	Description	Value
0	Session id	3541
1	Target	Churn
2	Target type	Binary
3	Original data shape	(7043, 8)
4	Transformed data shape	(7043, 8)
5	Transformed train set shape	(4930, 8)
6	Transformed test set shape	(2113, 8)
7	Numeric features	7
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	StratifiedKFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	clf-default-name
18	USI	ef41

Here, the preprocess is true it includes outliers treatment ,missing value treatment and feature engineering

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
gbc	Gradient Boosting Classifier	0.7978	0.8378	0.5069	0.6538	0.5705	0.4411	0.4475	0.3590
ada	Ada Boost Classifier	0.7917	0.8369	0.5084	0.6347	0.5638	0.4293	0.4343	0.1450
lr	Logistic Regression	0.7903	0.8256	0.4900	0.6383	0.5527	0.4191	0.4264	0.8390
ridge	Ridge Classifier	0.7876	0.0000	0.4365	0.6508	0.5211	0.3916	0.4053	0.0210
lda	Linear Discriminant Analysis	0.7862	0.8188	0.4962	0.6249	0.5517	0.4140	0.4196	0.0260
lightgbm	Light Gradient Boosting Machine	0.7834	0.8288	0.5000	0.6124	0.5501	0.4095	0.4134	0.2460
rf	Random Forest Classifier	0.7740	0.8038	0.4832	0.5908	0.5314	0.3845	0.3880	0.2760
knn	K Neighbors Classifier	0.7643	0.7429	0.4258	0.5760	0.4887	0.3403	0.3473	0.0520
et	Extra Trees Classifier	0.7527	0.7786	0.4633	0.5399	0.4982	0.3356	0.3375	0.2040
dummy	Dummy Classifier	0.7347	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0200
dt	Decision Tree Classifier	0.7284	0.6533	0.4847	0.4887	0.4863	0.3018	0.3021	0.0290
nb	Naive Bayes	0.7178	0.7892	0.7446	0.4796	0.5830	0.3846	0.4065	0.0220
svm	SVM - Linear Kernel	0.7034	0.0000	0.4340	0.5742	0.4182	0.2532	0.2997	0.0330
qda	Quadratic Discriminant Analysis	0.6970	0.8107	0.8135	0.4601	0.5874	0.3759	0.4148	0.0230

- 1. Here, every model is being tested to get best accuracy by automl.
- 2. Gradient Boosting Classifier is the best model for given dataset.

In [46]:	best_model	
Out[46]:	▼ GradientBoostingClassifier ⑤	?
	GradientBoostingClassifier(ccp_alpha=0.0, criterion='friedman_mse', ini	
	t=None, learning_rate=0.1, loss='log_loss', max_dept h=3.	
	max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_samples_leaf=	
	1, min_samples_split=2, min_weight_fraction_lea	
	f=0.0, n_estimators=100, n_iter_no_change=None, random state=3541, subsample=1.0, tol=0.000	•

INTERPRETATION:

In [98]:

1. These are the best parameters for the model after hyperparameter tuning.

plot_model(model, plot='auc')

- 1. In this plot, The roc of class 0 and roc of class 1 both are positively increasing against false positive rate and towards true positive rate which proves the efficiency of prediction.
- 2. the AUC values of class 0 and 1 are above 0.8 which indicates better discrimination performance of the model.

In [99]: plot_model(model, plot='pr')

- 1. The Precision-Recall (PR) curve is another evaluation metric used in binary classification tasks, particularly when dealing with imbalanced datasets.
- 2. The PR curve is a graphical representation of the trade-off between precision and recall for different threshold values used to classify instances as positive or negative.
- 3. the curve has downward trend i.e; with increase in Recall the Precision is decreasing rapidly.

SAVING AND LOADING MODEL

Next, we want to save our trained model so we can use it in a Python file

In [55]: save_model(best_model, 'gbc')

Transformation Pipeline and Model Successfully Saved

```
(Pipeline(memory=Memory(location=None),
Out[55]:
                    steps=[('numerical_imputer',
                            TransformerWrapper(exclude=None,
                                                include=['tenure', 'PhoneService',
                                                          'Contract', 'PaymentMethod',
                                                          'MonthlyCharges', 'TotalCharges',
                                                          'charge_per_tenure'],
                                                transformer=SimpleImputer(add_indicator=Fals
          e,
                                                                           copy=True,
                                                                           fill_value=None,
                                                                           keep_empty_features
          =False,
                                                                           missing_values=nan,
                                                                           strategy='mean'))),
                           ('c...
                                                        criterion='friedman_mse', init=None,
                                                         learning_rate=0.1, loss='log_loss',
                                                        max_depth=3, max_features=None,
                                                        max_leaf_nodes=None,
                                                        min_impurity_decrease=0.0,
                                                        min_samples_leaf=1,
                                                        min_samples_split=2,
                                                        min weight fraction leaf=0.0,
                                                        n_estimators=100,
                                                        n_iter_no_change=None,
                                                         random state=3541, subsample=1.0,
                                                        tol=0.0001, validation_fraction=0.1,
                                                        verbose=0, warm_start=False))],
                    verbose=False),
           'gbc.pkl')
In [64]:
          import pickle
          with open('gbc.pkl','wb') as f:
              pickle.dump(best_model, f)
          with open('gbc.pkl','rb') as f:
In [65]:
              loaded_model = pickle.load(f)
          new_data=df.iloc[-2:-1]
In [67]:
          predict_model(loaded_gbc, new_data)
In [68]:
Out[68]:
                     tenure PhoneService Contract PaymentMethod MonthlyCharges TotalCharges char
          customerID
              7832-
                         62
                                                                      101.699997
                                                                                 3106.560059
              POPKP
```

1. The prediction score is around 66%.

Making a Python module to make predictions

```
In [102...
          from IPython.display import Code
          Code(r"C:\Users\anupu\Downloads\predict_churn_data.py")
Out[102]: import pandas as pd
          from pycaret.classification import predict_model, load_model
          def load_data(filepath):
              Loads churn data into a DataFrame from a string filepath.
              df = pd.read_csv(filepath, index_col='customerID')
              return df
          def make_predictions(df, threshold=0.7):
              model = load_model('gbc')
              predictions = predict_model(model, data= df)
              predictions.rename({'prediction_label':'predicted_churn'}, axis=1, in
          place = True)
              predictions['predicted_churn']=(predictions['prediction_score']>=thre
          shold)
              predictions['predicted_churn'].replace({False:1,True:0}, inplace = Tr
          ue)
              return predictions['predicted_churn']
          if __name__== "__main__":
              df = load_data(r"C:\Users\anupu\Downloads\new_churn_data.csv")
              predictions = make predictions(df)
              print('predictions:')
              print(predictions)
          %run C:\Users\anupu\Downloads\predict_churn_data.py
In [103...
          Transformation Pipeline and Model Successfully Loaded
          predictions:
          customerID
          9305-CKSKC
                       1
          1452-KNGVK
                       0
          6723-OKKJM
                       0
          7832-POPKP
                       1
          6348-TACGU
          Name: predicted_churn, dtype: int64
```

SUMMARY

- 1. First, the data used to train and test the ML model is a telecommunication churn dataset with only numeric features.
- 2. The next is I have imported the Pycaret package which contains the 'automl' function which by default does the preprocessing, splitting into training-testing data, then loaded

- every model with train-test data, also it performs hyperparameter tuning and gives us the best ML model with the best accuracy and required best parameters.
- 3. using the information from the 'automl' function we can load, predict data and save the model using respective functions defined in 'pycaret' package.
- 4. To test the predictions efficiency I have created Python module and interlinked it with the current directory or notebook using 'code()' and 'run' function from 'IPython.display' package and for the data I have used new churn dataset with known values for prediction.
- 5. after predicting and checking efficiency I have saved and uploaded all the files used and created into the GITHUB.

	_	_	
Tn		- 1	0
T-11	L		0