[CSED233-01] Data Structure Shortest Path

Jaesik Park

Shortest Path Problems

- Weighted digraph
 - Each edge (i,j) has a nonnegative cost C[i,j]
 - Also called weights or distances

- Path length/cost
 - Sum of weights of edges on path
 - source vertex ↔ destination vertex

- Shortest path problems (SPP)
 - Finding a path b/w two vertices such that the path length is minimized

Shortest Path Problems: Types

- Single-pair SPP
 - Single source, single destination
- Single-source SPP
 - Single source, all destinations
- Single-destination SPP
 - All sources, single destination
 - Can be reduced to the single-source SPP by reversing the edges in the graph
- All-pairs SPP
 - Every vertex is a source & destination

Single-Pair SPP: Single Source, Single Destination

• What is the shortest path from A to E?

Shortest path length = 18

Single-Pair SPP: Single Source, Single Destination

- Greedy algorithm
 - Making the locally-optimal choice at each stage with the hope of finding a global optimum

Greedy Shortest A-to-E Path

- Possible algorithm
 - Start with source vertex
 - Select a vertex using the cheapest edge subject to the constraint that a new vertex is reached
 - Continue until destination is reached
- Path length = 21 (not shortest path)
- Algorithm doesn't work

Single-Source SPP: Single Source, All Destinations

- Need to generate n shortest paths
 - From a given source to all destinations (n: # of vertices)
- Dijkstra's greedy method:
 - Generate the shortest paths in stages
 - Each stage generates a shortest path to a new destination
 - Greedy criterion at each stage
 - Select the destination (for the next shortest path) in increasing order of its length

Greedy: Single Source All Destinations

Greedy: Single Source All Destinations

- D[i] (distance from source to vertex i)
 - The length of the shortest one-edge extension of an already generated path, which ends at vertex i
 - Alternatively, *D[i]* can be defined to be the length of the "current" shortest path to *i* (that passes only through vertices in *S*)
 - where S is a set of vertices whose shortest path (distance) from source is already known
- *P(i)* (predecessor of *i*)
 - The vertex just before ion the shortest one-edge extension to i

Dijkstra's Alg. (Only to Compute Distance)

```
S := \{1\};
<u>for</u> i := 2 <u>to</u> n <u>do</u> begin
 D[i] := C[1, i]
                                            One-edge
for i := 1 to n-1 do begin
                                            extension
 choose a vertex w \in V-S whose D[.] value is least;
 add w to S;
                                       Update of D[.]
 for each vertex v \in V-S do
     D[v] := min(D[v], D[w] + C[w,v])
end;
```

Dijkstra's Alg. (To Record Actual Path)

```
S := \{1\};
for i := 2 to n do begin
                                                 Initialize P[.]
  D[i] := C[1, i];
  if C[1, i] \neq \infty then P[i] := 1
                                                   end;
\underline{\text{for}} i := 1 \underline{\text{to}} n-1 \underline{\text{do}} \underline{\text{begin}}
  choose a vertex w \in V-S whose D[.] value is least;
  add w to S;
  for each vertex v \in V-S do
        \underline{if} (D[w] + C[w,v]) < D[v] \underline{then} begin
            D[v] := D[w] + C[w, v];
            P[v] := w
                             <u>end</u>;
end;
                                    Path
                                 recording
```


Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -

Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -
1	{1, <mark>3</mark> }	5/3	3/1	20/1	18/3

Stage	S	[D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}		10/1	3/1	20/1	∞ / -
1	{1, 3}	(5/3	3/1	20/1	18/3
2						

Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -
1	{1, 3}	5/3	3/1	20/1	18/3
2	{1, 3, <mark>2</mark> }	5/3	3/1	10/2	18/3

Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -
1	{1, 3}	5/3	3/1	20/1	18/3
2	{1, 3, 2}	5/3	3/1	(10/2)	18/3
3					

Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -
1	{1, 3}	5/3	3/1	20/1	18/3
2	{1, 3, 2}	5/3	3/1	10/2	18/3
3	{1, 3, 2, 4 }	5/3	3/1	10/2	18/3

Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -
1	{1, 3}	5/3	3/1	20/1	18/3
2	{1, 3, 2}	5/3	3/1	10/2	18/3
3	{1, 3, 2, 4}	5/3	3/1	10/2	(18/3)
4					

Stage	S	D/P[2]	D/P[3]	D/P[4]	D/P[5]
Initial	{1}	10/1	3/1	20/1	∞ / -
1	{1, 3}	5/3	3/1	20/1	18/3
2	{1, 3, 2}	5/3	3/1	10/2	18/3
3	{1, 3, 2, 4}	5/3	3/1	10/2	18/3
4	{1, 3, 2, 4, 5 }	5/3	3/1	10/2	18/3

Why Dijkstra's Algorithm Works (1)

- Locally-best choice turns out to be the best over all
 - Called greedy choice property

- If there were a shorter path, passing through a vertex x outside of 5
 - that is, $|\gamma_2| + |\gamma_3| < |\gamma_1|$
- Then $|\gamma_2| < |\gamma_1|$
 - thus the vertex x should have been selected before w
- → Contradiction

Why Dijkstra's Algorithm Works (2)

• Update of D[v] correctly keeps track of the shortest path to vertex v

• [See Aho83]

Complexity

- Depending on how to select the minimum D value?
- Option-1: Scanning the list of all vertices
 - $O(n \times n)$ to select next destination for all n vertices
 - O(e) to update D & P values for all e edges with non-infinity cost C[,] (using adjacency lists)
 - \rightarrow Total time: $O(n^2 + e) = O(n^2)$
- Option-2: Using a min-heap of D values
 - O(n log n) for n DeleteMin operations
 - O(e log n) for e PriorityUpdate operations
 - → Total time: $O((n + e) \log n) = O(e \log n)$
 - Better for sparse graph: O(n log n)

Further Questions

- Dijkstra's algorithm works with cyclic graphs?
 - Yes, why?
- What about negative edges?
 - No, why?
- Could we do better for acyclic graphs?
 - Use topological sort

Edsger W. Dijkstra Turing award 1972

Application

• Content-aware resizing

All-Pairs SPP

- One solution is to run Dijkstra's greedy algorithm n times
 - If G is sparse (e = O(n)), this is a good solution
 - Total time (of the min-heap version)
 - $O(n [e \log n]) = O(n^2 \log n)$
- Dynamic-programming solution by Floyd
 - Let A_k[i,j] to be the shortest length of any path from vertex i to vertex j, whose intermediate vertices all have indices ≤ k

Floyd's Algorithm

- At the k-th iteration, we compute $A_k[]$
 - $A_{k}[i, j] := \min\{ A_{k-1}[i, j], A_{k-1}[i, k] + A_{k-1}[k, j] \}$

• Total time: $O(n^3)$

Space Reduction

- $A_{k}[i, j] := \min\{A_{k-1}[i, j], A_{k-1}[i, k] + A_{k-1}[k, j]\}$
 - 3-dimensional space
- In all cases, A_k[i, j] can overwrite A_{k-1}[i, j]
 - When i equals k, $A_k[k, j] = A_{k-1}[k, j]$
 - When j equals k, $A_k[i, k] = A_{k-1}[i, k]$
 - When neither i nor j equals k, $A_{k-1}[i, j]$ is used only in the computation of $A_k[i, j]$

Building The Shortest Paths

[See Aho83]

Building The Shortest Paths

• If the path exists between two nodes then Next[u][v] = v else we set Next[u][v] = -1

```
    if(A[i][j] > A[i][k] + A[k][j])
{
        A[i][j] = A[i][k] + A[k][j];
        Next[i][j] = Next[i][k];
        }
```



```
path = [u]
while u != v:
u = Next[u][v]
path.append(u)
```


	1	2	3	4	5
1	0	10	3	20	ı
2	1	0	1	5	I
3	1	2	0	I	15
4	ı	I	I	0	11
5	_	_	_	_	0

	4 57
F	1 _{0[1,]}]

	1	2	3	4	5
1	-1	2	<u>M</u>	4	\
2	-1	\	\	4	\
3	-1	2	\	\	5
4	-1	\	\	\	5
5	-1	-1	-1	-1	-1

Next₀[i, j]

	1	2	3	4	5
1	0	10	\sim	20	I
2	ı	0	1	5	ı
3	-	2	0	1	15
4	-	-	_	0	11
5	ı	1	I	1	0

$A_1[i, j]$

	1	2	3	4	5
1	-1	2	ω	4	-
2	 - 	 	-1	4	-1
3	-	2	-1	-1	5
4	-1	\	\	-1	5
5	-1	_1	-1	-1	-1

Next₁[i, j]

	1	2	3	4	5
1	0	10	3	15	_
2	1	0	I	5	ı
3	1	2	0	7	15
4	ı	1	1	0	11
5	_	-	-	-	0

 $A_2[i,j]$

	1	2	3	4	5
1	-1	2	\sim	2	\
2	-1	\	\	4	\
3	-1	2	\	2	5
4	-1	\	\	\	5
5	-1	-1	-1	-1	-1

Next₂[i, j]

	1	2	3	4	5
1	0	5	3	10	18
2	1	0	1	5	1
3	1	2	0	7	15
4	1	1	1	0	11
5	_	_	_	_	0

/	1 ₃ [i, j]	
/	1 <i>3L1/JJ</i>	

	1	2	3	4	5
1	-1	W	ω	3	3
2	-1	-	\	4	-1
3	-1	2	\	2	5
4		-1	\	\	5
5	-1	-1	-1	-1	-1

Next₃[i, j]

	1	2	3	4	5
1	0	5	3	10	18
2	1	0	I	5	16
3	1	2	0	7	15
4	1	1	I	0	11
5	_	_	_	_	0

	I	1	
P	4 ₄ [i, j]	7	

	1	2	3	4	5
1	-1	3	3	3	3
2	-1	\	\	4	4
3	-1	2	\	2	5
4	-1	\	\	\	5
5	_1	_1	-1	-1	-1

	1	2	3	4	5
1	0	5	3	10	18
2	1	0	1	5	16
3	1	2	0	7	15
4	1	1	1	0	11
5	_	_	_	_	0

 $A_5[i,j]$

I	-	3	3	3	3		
2	<u> </u>	 	\	4	4		
3	-1	2	-1	2	5		
4	-1	-1	-1	-1	5		
5	-1	-1	-1	-1	-1		
	Next ₅ [i, j]						

3 4 5

```
path = [u]
while u != v:
    u = Next[u][v]
    path.append(u)
```


$$u=Next[1,4]=3$$

Path = [1,3]

$$u=Next[3,4]=2$$

Path = [1,3,2]

u=Next[2,4]=4Path = [1,3,2,4]

	1	2	3	4	5
1	-1	3	3	3	3
2	-1	-1	-1	4	4
3	-1	2	-1	2	5
4	-1	-1	-1	-1	5
5	-1	-1	1	-1	-1

 $A_5[i, j]$

Next₅[i, j]

Comparison of Floyd's with Dijkstra's

- Floyd's is better for a dense graph
 - $O(n^3)$ vs. $O(n^3 \log n)$

- Floyd's algorithm
 - Works even when the graph has a negative edge cost (if there are no negativelength cycles)

Other Shortest Path Algorithms (1)

- Bellman-Ford algorithm
 - Solves single-source SPP (allowing negative edge costs)
 - Time complexity: O(ne)
 - Slower than Dijkstra's

- Johnson's algorithm
 - Solves all-pairs SPP (allowing negative edge costs, but no negative-length cycles)
 - Time complexity: $O(n^2 \log n + ne)$
 - May be faster than Floyd's on sparse graphs

Other Shortest Path Algorithms (2)

- A* search algorithm
 - Solves single-pair SPP
 - Uses heuristics to try to speed up the search

References

- Further reading list and references
 - https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
 - https://www.geeksforgeeks.org/a-search-algorithm/
- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee