Politechnika Wrocławska

Katedra Teorii Pola, Układów elektronicznych i Optoelektronicznych

Zespół Układów Elektronicznych

Data: 12.05.2015r	Dzień: Wtorek	
Grupa: VII	Godzina: 12:15-15:00	
Temat ćwiczenia:		
Generatory kwarcowe		
Dane projektowe:		
Rezonator kwarcowy 8.000 MHz		
l.p	Nazwisko i imię	Oceny
1	Arkadiusz Ziółkowski	
2	Jakub Koban	

1 Zadanie projektowe

Zaprojektować:

- 1. Generator kwarcowy Colpittsa-Pierce'a z tranzysotrem bipolarnym :
 - $R_1 = 218.75 \ k\Omega$
 - $R_2 = 0.9578 \ k\Omega$
 - $\bullet \ C_1 = 33 \ pF$
 - $\bullet~C_2=3.3~nF$
- 2. Generator kwarcowy zrealizowany na bramkach TTL :
 - $R_5 = 560 \Omega$
 - $R_6 = 1.8 k\Omega$
 - $R_7 = 220 \Omega$
 - $R_8 = 220 \ k\Omega$
- 3. Generator kwarcowy realizowany na inwerterach CMOS :
 - $R_9 = 10 M\Omega$
 - $C_5 = 33 \text{ pF}$
 - $C_6 = 33 \text{ pF}$
- 4. Zasilanie:
 - $C_7 = 33 \text{ pF}$
 - $\bullet \ C_8 = 33 \ pF$
- 5. Rezonator kwarcowy 8.000 MHz

2 Schematy projektowy

 $\mathbf{Rys.}$ 1: Schemat generatora Colpittsa-Pierce'a

Rys. 2: Schemat generatora na bramkach TTL

Rys. 3: Schemat generatora na inwerterach CMOS

3 Część laboratoryjna

3.1 Generator Colpittsa-Pierce'a

Rys. 4: Przebieg generowanego sygnału

Tab. 1: Wyniki pomiarów napięcia zasilania U oraz częstotliwośći f generowanego sygnału

U [V]	f [MHz]	Odchylenie [‰]
9	7.99934	-0.082
10	7.99935	-0.081
10.5	7.99935	-0.081
11	7.99936	-0.080
11.5	7.99936	-0.080
12	7.99937	-0.079
12.5	7.99937	-0.079
13	7.99938	-0.077
13.5	7.99938	-0.077
14	7.99939	-0.076
14.5	7.99939	-0.076
15	7.99940	-0.075

 $\mathbf{Rys.}$ 5: Zależność odchylenia częstotliwości (od wartości nominalnej 8.000 MHz) od napięcia zasilania

Układ rozpoczął poprawną pracę od napięcia zasilania 9 V. Wraz ze wzrostem napięcia zmniejsza się odchylenie częstotliwości generowanego sygnału od wartościu zadanej (8.000 MHz). Maksymalne odchylenie od wartości nominalnej wynosi 0.082%. Generowany sygnał jest sinusoidalny.

3.2 Generator realizowany na bramkach TTL

Rys. 6: Przebieg generowanego sygnału

 ${\bf Tab.}$ 2: Wyniki pomiarów napięcia zasilania U oraz częstotliwośći f
 generowanego sygnału

U [V]	f [MHz]	Odchylenie [‰]
2.8	7.99827	-0.216
3	7.99861	-0.174
3.3	7.99886	-0.142
3.6	7.99896	-0.130
3.9	7.99899	-0.126
4.1	7.99899	-0.126
4.3	7.99894	-0.132
4.5	7.99896	-0.130
4.7	7.99896	-0.130
5	7.99892	-0.135

Rys. 7: Zależność odchylenia częstotliwości (od wartości nominalnej 8.000 MHz) od napięcia zasilania

Układ rozpoczął poprawną pracę od napięcia zasilania 2.8 V. Wraz ze wzrostem napięcia zmniejsza się odchylenie częstotliwości generowanego sygnału od wartościu zadanej (8.000 MHz). Maksymalne odchylenie od wartości nominalnej wynosi 0.216‰. Generowany sygnał przypomina prostokątny.

3.3 Generator realizowany na inwerterach CMOS

Rys. 8: Przebieg generowanego sygnału

 ${\bf Tab.~3:}$ Wyniki pomiarów napięcia zasilania U oraz częstotliwośći f
 generowanego sygnału

U [V]	f [MHz]	Odchylenie [‰]
5	8.00035	0.044
5.5	8.00035	0.044
6	8.00035	0.044
6.5	8.00035	0.044
7	8.00035	0.044
7.5	8.00035	0.044
8	8.00036	0.045
8.5	8.00036	0.045
9	8.00036	0.045
9.5	8.00036	0.045
10	8.00037	0.046
10.5	8.00038	0.047
11	8.00039	0.049
11.5	8.00039	0.049
12	8.00039	0.049
12.5	8.00040	0.050
13	8.00040	0.050
13.5	8.00041	0.051
14	8.00041	0.051
14.5	8.00042	0.053
15	8.00042	0.053

Rys. 9: Zależność odchylenia częstotliwości (od wartości nominalnej 8.000 MHz) od napięcia zasilania

Układ rozpoczął poprawną pracę od napięcia zasilania 5 V. Wraz ze wzrostem napięcia zwiększa się odchylenie częstotliwości generowanego sygnału od wartościu zadanej (8.000 MHz). Maksymalne odchylenie od wartości nominalnej wynosi 0.053‰. Generowany sygnał przypomina prostokątny.

4 Wnioski

- 1. Wszystkie generatory pozwalają na realizowanie swojej funkcji z bardzo dużą dokładnością. Najmniejszym odchyleniem od wartości zadanej (8.000 MHz) cechuje się generator zrealizowany w oparciu o inwertery CMOS (0.053‰).
- 2. Generator Colpittsa-Pierce'a generuje sygnał sinusoidalny.
- 3. Sygnały z generatorów opartych na bramkach TTL oraz inwerterach CMOS są prostokątne z uwagi na cyfrowe bramki logiczne zastosowane do ich budowy.