Brian Odhiambo

Definition 1.1

The *mean* of a sample of n measured responses y_1, y_2, \ldots, y_n is given by:

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

The corresponding population mean is denoted μ .

Definition 1.2

The *variance* of a sample of measurements y_1, y_2, \ldots, y_n is the sum of the square of the differences between the measurements and their mean, divided by n-1. Symbolically, the sample variance is:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

The corresponding population variance is denoted by the symbol σ^2 .

Definition 1.3

The standard deviation of a sample of measurements is the positive square root of the variance; that is,

$$s = \sqrt{s^2}$$

The corresponding population standard deviation is denoted by $\sigma = \sqrt{\sigma^2}$.

Definition 2.6

Suppose S is a sample space associated with an experiment. To every event A in S (A is a subset of S), we assign a number, P(A), called the probability of A, so that the following axioms hold:

Axiom 1:
$$P(A) \geq 0$$

Axiom 2:
$$P(S) = 1$$

Axiom 3: If A_1 , A_2 , A_3 , . . . form a sequence of pairwise mutually exclusive events in S (that is, $A_i \cap A_j = \emptyset$ if $i \neq j$), then

$$P(S) = A_1 \cup A_2 \cup A_3 \cup ... \sum_{i=1}^{\infty} P(A_i)$$

Definition 2.7

An ordered arrangement of r distinct objects is called a *permutation*. The number of ways of ordering n distinct objects taken r at a time will be designated by the symbol:

$$P_r^n$$

The number of *combinations* of n objects taken r at a time is the number of subsets, each of size r, that can be formed from the n objects. This number will be denoted by:

$$C_r^n$$
 or $\binom{n}{r}$

Theorem 2.4

The number of unordered subsets of size r chosen (without replacement) from n available objects is:

$$\binom{n}{r} = C_r^n = \frac{P_r^n}{r!} = \frac{n!}{r!(n-r)!}$$

Definition 2.9

The conditional probability of an event A, given that an event B has occurred, is equal to:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

provided P(B) > 0. [The symbol P(A|B) is read "probability of A given B."]

Definition 2.10

Two events A and B are said to be *independent* if any one of the following holds:

$$P(A \mid B) = P(A)$$

$$P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Otherwise, the events are said to be dependent.

Theorem 2.5

The Multiplicative Law of Probability - The probability of the intersection of two events A and B is:

$$P(A \cap B) = P(A)P(B \mid A)$$
$$= P(B)P(A \mid B)$$

If A and B are independent, then

$$P(A \cap B) = P(A)P(B)$$

Theorem 2.6

The Additive Law of Probability - The probability of the union of two events A and B is:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

If A and B are mutually exclusive events, $P(A \cap B) = 0$ and

$$P(A \cup B) = P(A) + P(B)$$

Theorem 2.7

If A is an event, then:

$$P(A) = 1 - P(\overline{A})$$

Theorem 2.9

Bayes' Rule – Assume that $\{B_1, B_2, \ldots, B_k\}$ is a partition of S such that $P(B_i) > 0$, for $i = 1, 2, \ldots, k$. Then:

$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^k P(A|B_i)P(B_i)}$$

Definition 3.4

Let Y be a discrete random variable with the probability function p(y). Then the expected value of Y, E(Y), is defined to be:

$$E(Y) = \sum_{y} y p(y)$$

Definition 3.5

If Y is a random variable with mean $E(Y) = \mu$, the variance of a random variable Y is defined to be the expected value of $(Y - \mu)^2$. That is,

$$V(Y) = E[(Y - \mu)^2]$$

The standard deviation of Y is the positive square root of V(Y).

Definition 3.7

A random variable Y is said to have a *binomial distribution* based on n trials with success probability p if and only if:

$$p(y) = \binom{n}{y} p^y q^{n-y}$$

Theorem 3.7

Let Y be a binomial random variable based on n trials and success probability p. Then:

$$\mu = E(Y) = np$$
 and $\sigma^2 = V(Y) = npa$

Definition 3.8

A random variable Y is said to have a geometric probability distribution if and only if:

$$p(y) = q^{y-1}p$$

Theorem 3.8

If Y is a random variable with a geometric distribution,

$$\mu = E(Y) = \frac{1}{p} \text{ and } \sigma^2 = V(Y) = \frac{1-p}{p^2}$$

Definition 3.10

A random variable Y is said to have a hypergeometric probability distribution if and only if:

$$p(y) = \left(\begin{pmatrix} r \\ v \end{pmatrix} \begin{pmatrix} N-r \\ n-v \end{pmatrix} \right) / \begin{pmatrix} N \\ n \end{pmatrix}$$

where y is an integer 0, 1, 2, ..., n, subject to the restrictions $y \le r$ and $n - y \le N - r$.

Definition 3.11

A random variable Y is said to have a Poisson probability distribution if and only if:

$$p(y) = \frac{\lambda^y}{v!} e^{-\lambda}$$

Theorem 3.11

If Y is a random variable possessing a Poisson distribution with parameter λ , then:

$$\mu = E(Y) = \lambda$$
 and $\sigma^2 = V(Y) = \lambda$

Theorem 3.14

Tchebysheff's Theorem - Let Y be a random variable with mean μ and finite variance σ^2 . Then, for any constant k > 0,

$$P(|Y - \mu| < k\sigma) \ge 1 - \frac{1}{k^2} \text{ or } P(|Y - \mu| \ge k\sigma) \le \frac{1}{k^2}$$

Definition 4.1

Let Y denote any random variable. The distribution function of Y, denoted by F(y), is such that

$$F(y) = P(Y \le y) \text{ for } -\infty < y < \infty$$

Theorem 4.1

If F(y) is a distribution function, then

1.
$$F(-\infty) \equiv \lim_{y \to -\infty} F(y) = 0$$

2. $F(\infty) \equiv \lim_{y \to \infty} F(y) = 1$

3. F(y) is a nondecreasing function of y. [If y_1 and y_2 are any values such that $y_1 < y_2$, then $F(y_1) \le F(y_2)$.]

Definition 4.2

A random variable Y with distribution function F(y) is said to be *continuous* if F(y) is continuous, for $-\infty < y < \infty^2$.

Definition 4.3

Let F(y) be the distribution function for a continuous random variable Y. Then f(y), given by

$$f(y) = \frac{dF(y)}{dy} = F'(y)$$

wherever the derivative exists, is called the *probability density function* for the random variable Y.

Theorem 4.2

Properties of a Density Function – If f(y) is a density function for a continuous random variable, then

1.
$$f(y) \ge 0$$
 for all $y, -\infty < y < \infty$
2. $\int_{-\infty}^{\infty} f(y) dy = 1$

Theorem 4.3

If the random variable Y has density function f(y) and a < b, then the probability that Y falls in the interval [a, b] is

$$P(a \le Y \le b) = \int_{a}^{b} f(y)dy$$

Definition 4.5

The expected value of a continuous random variable Y is

$$E(Y) = \int_{-\infty}^{\infty} y f(y) dy,$$

provided that the integral exists.

Definition 4.6

If $\theta_1 < \theta_2$, a random variable Y is said to have a continuous *uniform probability distribution* on the interval $(\theta_1, \ \theta_2)$ if and only if the density function of Y is

$$f(y) = \bigcup_{\substack{0, \\ 0, \\ elsewhere.}}^{\frac{1}{\theta_1 - \theta_2}, \theta_1 \le y \le \theta_2}$$

Theorem 4.6

If $\theta_1 < \theta_2$ and Y is a random variable uniformly distributed on the interval $(\theta_1, \ \theta_2)$, then

$$\mu = E(Y) = \frac{\theta_1 + \theta_2}{2}$$
 and $\sigma^2 = V(Y) = \frac{(\theta_2 + \theta_1)^2}{12}$

Definition 5.1

Let Y_1 and Y_2 be discrete random variables. The *joint* (or bivariate) *probability function* for Y_1 and Y_2 is given by

$$p(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

Theorem 5.1

If Y_1 and Y_2 are discrete random variables with joint probability function $p(y_1, y_2)$, then

1.
$$p(y_1, y_2) \ge 0$$
 for all y_1, y_2

2. $\sum_{y_1,y_2} p(y_1, y_2) = 1$, where the sum is over all values (y_1, y_2) that are assigned nonzero probabilities.

Definition 5.2

For any random variables Y_1 and Y_2 , the joint (bivariate) distribution function $F(y_1, y_2)$ is

$$F(y_1, y_2) = P(Y_1 \le y_1, Y_2 \le y_2), -\infty < y_1 < \infty, -\infty < y_2 < \infty$$

Definition 5.3

Let Y_1 and Y_2 be continuous random variables with joint distribution function $F(y_1, y_2)$. If there exists a nonnegative function $f(y_1, y_2)$, such that

$$F(y_1, y_2) = \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} f(t_1, t_2) dt_2 dt_1$$

for all $-\infty < y_1 < \infty$, $-\infty < y_2 < \infty$, then Y_1 and Y_2 are said to be *jointly continuous random variables*. The function $f(y_1, y_2)$ is called the *joint probability density function*.

Theorem 5.2

If Y_1 and Y_2 are random variables with joint distribution function $F(y_1, y_2)$, then

1.
$$F(-\infty, -\infty) = F(-\infty, y_2) = F(y_1, -\infty) = 0$$

2. $F(\infty, \infty) = 1$

3. If
$$y_1 \ge y_1$$
 and $y_2 \ge y_2$, then $F(y_1, y_2) - F(y_1, y_2) - F(y_1, y_2) + F(y_1, y_2) \ge 0$.

Theorem 5.3

If Y_1 and Y_2 are jointly continuous random variables with a joint density function given by $f(y_1, y_2)$, then

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .

1.
$$f(y_1, y_2) \ge 0$$
 for all y_1, y_2 .
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y_1, y_2) dy_1 dy_2 = 1$.