IFT1575 devoir 2

February 2020

Question 1 1

v.d	x_1	x_2	x_3	x_4	x_5	x_6	x_7	-z	t.d
x_3	3		1	a		-1			1
x_2	4	1		-1		2	b		6
x_5	-1			2	1	c	4		5
-z	2			3		2	d	1	25

Afin que x_5 soit variable de sortie, on doit avoir $min\{\frac{5}{4},\frac{6}{b}\}=\frac{5}{4}$ ce qui implique que $\frac{5}{4}<\frac{6}{b}$ et donc que $b<\frac{24}{5}$. On peut alors effectuer on pivot pour obtenir le tableau suivant:

v.d	x_1	x_2	x_3	x_4	x_5	x_6	x_7	-z	t.d
x_3	3		1	a		-1			1
x_2	١,	1		$-1-\frac{b}{2}$	$-\frac{b}{4}$	$2 - \frac{bc}{4}$			$6 - \frac{5b}{4}$
x_7	$-\frac{1}{4}$			$\frac{1}{2}$	$\frac{1}{4}$	$\frac{c}{4}$	1		$\frac{5}{4}$
-z	$2 + \frac{d}{4}$			$3 - \frac{d}{2}$	$-\frac{d}{4}$	$2-\frac{cd}{4}$		1	$25 - \frac{5d}{4}$

a. Solution optimale unique

Afin que la solution soit optimale, tous les coût doivent être positifs. Les variables a, b, c, d doivent donc respecter les contraintes suivantes:

(1)
$$2 + \frac{d}{2} > 0 \Rightarrow d > -8$$

$$(2) \ 3 - \frac{d}{2} > 0 \Rightarrow d < 6$$

$$(3) - \frac{d}{1} > 0 \Rightarrow d < 0$$

$$\begin{array}{l} (1) \ 2 + \frac{d}{4} > 0 \Rightarrow d > -8 \\ (2) \ 3 - \frac{d}{2} > 0 \Rightarrow d < 6 \\ (3) \ -\frac{d}{4} > 0 \Rightarrow d < 0 \\ (4) \ 2 - \frac{cd}{4} > 0 \Rightarrow cd < 8 \end{array}$$

On peut donc choisir par exemple $a=1,\,b=4,\,c=2$ et d=-4 pour obtenir le tableau suivant qui est optimale:

v.d	x_1	x_2	x_3	x_4	x_5	x_6	x_7	-z	t.d
x_3	3		1	1		-1			1
x_2	5	1		-3	-1				1
x_7	$-\frac{1}{4}$			$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2}$	1		$\frac{5}{4}$
-z	1			5	1	4		1	30

b. Solution optimale qui n'est pas unique

Pour avoir une solution optimale qui n'est pas unique, on doit avoir une des variables indépendantes qui a un coût nul. En fixant par exemple $\overline{c_1}$ à zéro, on obtient la contrainte:

$$(5) \ 2 + \frac{d}{4} = 0 \Rightarrow d = -8$$

En plus des contraintes (2), (3), (4). On peut alors choisir a = 1, b = 4, c=2 et d=-8 pour obtenir le tableau suivant qui est optimale mais nonunique car on pourrait effectuer un pivot avec x_1 comme variable d'entrée pour obtenir une autre solution:

v.d	x_1	x_2	x_3	x_4	x_5	x_6	x_7	-z	t.d
x_3	3		1	1		-1			1
x_2	5	1		-3	-1				1
x_7	$-\frac{1}{4}$			$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2}$	1		$\frac{5}{4}$
-z				7	2	6		1	35

c. Un problème non borné inférieurement

Afin que le problème soit non borné inférieurement, on doit avoir une variable dont le coût est négatif et dont les coefficients dans toutes les contraintes sont négatifs. Dans ce cas, on pourra augmenter cette variable indéfiniment et donc faire diminuer l'objectif autant qu'on veut. Si on choisi par exemple la variable x_6 , les contraintes suivantes sur a,b,c et ddoivent être satisfaites:

(6)
$$2 - \frac{bc}{4} < 0 \Rightarrow bc > 8$$

$$(7) \frac{c}{4} < 0 \Rightarrow c < 0$$

(6)
$$2 - \frac{bc}{4} < 0 \Rightarrow bc > 8$$

(7) $\frac{c}{4} < 0 \Rightarrow c < 0$
(8) $2 - \frac{cd}{4} < 0 \Rightarrow cd > 8$

On peut alors choisir $a=1,\,b=-8,\,c=-2$ et d=-8 pour obtenir le tableau suivant:

v.d	x_1	x_2	x_3	x_4	x_5	x_6	x_7	-z	t.d
x_3	3		1	1		-1			1
x_2	2	1		3	2	-2			16
x_7	$-\frac{1}{4}$			$\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{2}$	1		$\frac{5}{4}$
-z				7	2	-2		1	35

2 Question 2

On a le tableau initial suivant:

v.d	x_{11}	x_{21}		x_{1j}	x_{2j}		x_{1n}	x_{2n}	-z	t.d
	a_{11}	$-a_{11}$	•••	a_{1j}	$-a_{1j}$	•••	a_{1n}	$-a_{1n}$		b_1
	a_{21}	$-a_{21}$		a_{2j}	$-a_{2j}$		a_{2n}	$-a_{2n}$		b_2
	:	:		:	:		:	:		:
	a_{m1}	$-a_{m1}$		a_{mj}	$-a_{mj}$		a_{mn}	$-a_{mn}$		b_m
-z	c_1	$-c_1$		c_j	$-c_j$		c_n	$-c_n$	1	

Afin de rendre x_{1j} variable indépendante, on doit avoir un 1 vis-à-vis de x_{1j} dans une des contraintes. On peut supposer sans perte de généralité qu'il s'agit de la première contrainte. On doit alors diviser la première ligne du tableau par a_{1j} :

v.d	x_{11}	x_{21}	•••	x_{1j}	x_{2j}	 x_{1n}	x_{2n}	-z	t.d
	$\frac{a_{11}}{a_{1j}}$	$-\frac{a_{11}}{a_{1j}}$		1	-1	 $\frac{a_{1n}}{a_{1j}}$	$-\frac{a_{1n}}{a_{1j}}$		$\frac{b_1}{a_{1j}}$
	a_{21}	$-a_{21}$	•••	a_{2j}	$-a_{2j}$	 a_{2n}	$-a_{2n}$		b_2
	:	:		:	:	 :	:		:
	a_{m1}	$-a_{m1}$	•••	a_{mj}	$-a_{mj}$	 a_{mn}	$-a_{mn}$		b_m
-z	c_1	$-c_1$		c_j	$-c_j$	 c_n	$-c_n$	1	

On peut maintenant effectuer un pivot pour obtenir:

v.d	x_{11}	x_{21}		x_{1j}	x_{2j}	 x_{1n}	x_{2n}	-z	t.d
x_{1j}	$\frac{a_{11}}{a_{1j}}$	$-\frac{a_{11}}{a_{1j}}$	•••	1	-1	 $\frac{a_{1n}}{a_{1j}}$	$-\frac{a_{1n}}{a_{1j}}$		$\frac{b_1}{a_{1j}}$
	$\overline{a_{21}}$	$\overline{a_{21}}$	•••			 $\overline{a_{2n}}$	$\overline{-a_{2n}}$		$\overline{b_2}$
	:	:		÷	:	 :	:		:
	$\overline{a_{m1}}$	$\overline{a_{m1}}$	•••			 $\overline{a_{mn}}$	$\overline{-a_{mn}}$		$\overline{b_m}$
-z	$\overline{c_1}$	$-\overline{c_1}$		$\overline{c_j}$	$-\overline{c_j}$	 $\overline{c_n}$	$-\overline{c_1}$	1	\overline{z}

Dans ce tableau, tous les coefficients de x_{2j} sont zéros sauf dans la première ligne et donc il est impossible de faire entrer x_{2j} dans la base sans faire sortir x_{ij}

Ceci démontre qu'il est impossible d'avoir x_{ij} et x_{2j} dans la base en même temps.

3 Question 3

a. Produire directement le tableau optimal à partir des informations fournies La matrice des coefficients est la suivante:

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 1 & 5 & 0 \\ 1 & 2 & 1 & 1 \end{pmatrix}$$

On peut alors obtenir les coefficient dans le tableau final en calculant $B^{-1}A$:

$$B^{-1}A = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & 0\\ -\frac{1}{3} & \frac{2}{3} & 0\\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 0\\ 2 & 1 & 5 & 0\\ 1 & 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -\frac{1}{3} & 0\\ 1 & 0 & \frac{7}{3} & 0\\ 0 & 0 & -2 & 1 \end{pmatrix}$$

On peut aussi trouver les termes de droite en calculant $B^{-1}b$:

$$B^{-1}b = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & 0\\ -\frac{1}{3} & \frac{2}{3} & 0\\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 15\\ 20\\ 20 \end{pmatrix} = \begin{pmatrix} \frac{10}{3}\\ \frac{25}{3}\\ 5 \end{pmatrix}$$

Il reste à calculer $\overline{c_3}$ et z. Pour ce faire, on a besoin de C_B , on regardant $B^{-1}A$, on voit que:

$$X_B = \begin{pmatrix} x_2 \\ x_1 \\ x_4 \end{pmatrix}$$

Et donc C_B est composé des coûts des variables x_2,x_1 et x_4 :

$$C_B = \begin{pmatrix} -2\\-1\\1 \end{pmatrix}$$

Avec, C_B on peut calculer π^T :

$$\pi^{T} = C_{B}^{T}B^{-1} = \begin{pmatrix} -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & \frac{2}{3} & 0 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 0 & 1 \end{pmatrix}$$

Et donc:

$$\overline{c_3} = c_3 - \pi^T a_{.3} = -3 - \begin{pmatrix} -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = -3 + 5 = 2$$

Finalement, on peut calculer z:

$$z = -\pi^T b = -\begin{pmatrix} -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 15\\20\\20 \end{pmatrix} = 10$$

On obtient alors le tableau optimal suivant:

v.d	x_1	x_2	x_3	x_4	-z	t.d
x_2		1	$-\frac{1}{3}$			$\frac{10}{3}$
x_1	1		$\frac{7}{3}$			$\frac{25}{3}$
x_4			-2	1		5
-z			2		1	10

b. La base optimale demeure-t-elle optimale si le coût de la variable x_3 dans la formulation initiale du problème est égal à -5?

Changer le coût de x_3 affecte seulement $\overline{c_3}$. Le nouvelle valeure est:

$$\overline{c_3} = c_3 - \pi^T a_{.3} = -5 - \begin{pmatrix} -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 1 \end{pmatrix} = -5 + 5 = 0$$

Donc comme $\overline{c_3} \geq 0$, la base demeure optimale. Par contre, la solution n'est plus unique car on pourrait effectuer un pivot en utilisant x_3 comme variable d'entrée sans changer la valeure de l'objectif.

c. La base optimale demeure-t-elle optimale si les termes de droite dans la formulation initiale du problème sont égaux à 5, 10 et 10?

Modifier b n'affecte pas les coefficients ni les coût. Seulement les termes de droites doivent être recalculé:

$$B^{-1}b = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & 0\\ -\frac{1}{3} & \frac{2}{3} & 0\\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5\\ 10\\ 10 \end{pmatrix} = \begin{pmatrix} 0\\ 5\\ 5 \end{pmatrix}$$

Comme $B^{-1}b \geq 0$, la solution est réalisable et donc la base de meure optimale.

d. Appliquer une série de transformations linéaires au tableau correspondant à la formulation initiale du problème afin d'obtenir une forme appropriée pour l'algorithme du simplexe

v.d	x_1	x_2	x_3	x_4	-z	t.d
x_2	1	2	3			15
x_1	2	1	5			20
x_4	1	2	1	1		20
-z	-1	-2	-3	1	1	

$$L_1 o \frac{L_1}{2}$$

v.d	x_1	x_2	x_3	x_4	-z	t.d
x_2	$\frac{1}{2}$	1	$\frac{3}{2}$			$\frac{15}{2}$
x_1	2	1	5			20
x_4	1	2	1	1		20
-z	-1	-2	-3	1	1	

$$L_2 \rightarrow L_2 - L_1$$

$$L_3 \rightarrow L_3 - 2L_1$$

$$L_4 \rightarrow L_4 + 2L_1$$

v.d	x_1	x_2	x_3	x_4	-z	t.d
x_2	$\frac{1}{2}$	1	$\frac{3}{2}$			$\frac{15}{2}$
x_1	$\frac{3}{2}$		$\frac{7}{2}$			$\frac{25}{2}$
x_4			-2	1		5
-z				1	1	15

 $L_2 o \frac{2}{3} L_2$

v.d	x_1	x_2	x_3	x_4	-z	t.d
x_2	$\frac{1}{2}$	1	$\frac{3}{2}$			$\frac{15}{2}$
x_1	1		$\frac{7}{3}$			$\frac{25}{3}$
x_4			-2	1		5
-z				1	1	15

$$L_1 \to L_1 - \frac{1}{2}L_2$$

 $L_4 \to L_4 - L_3$

v.d	x_1	x_2	x_3	x_4	-z	t.d
x_2		1	$\frac{1}{3}$			$\frac{10}{3}$
x_1	1		$\frac{7}{3}$			$\frac{25}{3}$
x_4			-2	1		5
-z			2		1	10