Tutorial 3

CHEN Xiao

Department of Mathematics

February 27, 2020

Result 3.3 If **X** is distributed as $N_p(\mu, \Sigma)$, the q linear combinations

$$\mathbf{A}_{(q\times p)}\mathbf{X}_{p\times 1} = \begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{q1}X_1 + \dots + a_{qp}X_p \end{bmatrix}$$

are distributed as $N_q(\mathbf{A}\boldsymbol{\mu},\mathbf{A}\boldsymbol{\Sigma}\mathbf{A}')$. Also $\boldsymbol{X}_{p\times 1}+\mathbf{d}_{p\times 1},$ where \mathbf{d} is a vector of constants, is distributed as $N_p(\boldsymbol{\mu}+\mathbf{d},\boldsymbol{\Sigma})$

Result 3.5 (a) If \pmb{X}_1 and \pmb{X}_2 are independent, then $\text{Cov}(\pmb{X}_1, \pmb{X}_2) = 0$, a $q_1 \times q_2$ matrix of zeros, where \pmb{X}_1 is $q_1 \times 1$ random vector and \pmb{X}_2 is $q_2 \times 1$. random vector

- (b) If $\begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{bmatrix}$ is $N_{q_1+q_2} \left(\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$, then \boldsymbol{X}_1 and \boldsymbol{X}_2 are independent if and only if $\Sigma_{12} = \Sigma_{21} = 0$
- (c) If $m{X}_1$ and $m{X}_2$ are independent and are distributed as $N_{q_1}(\mu_1,\Sigma_{11})$ and

 $N_{q_2}(\mu_2, \Sigma_{22})$, respectively, then $\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$ has the multivariate normal distribution

distribution

$$N_{q_1+q_2}\left(\left[\begin{array}{c}\mu_1\\\mu_2\end{array}\right],\left[\begin{array}{cc}\Sigma_{11}&0\\0&\Sigma_{22}\end{array}\right]\right)$$

Result 3.6 Let
$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{X}_1 \\ \boldsymbol{X}_2 \end{bmatrix}$$
 be distributed as $N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix}, \boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix}$, and $|\boldsymbol{\Sigma}_{22}| > 0$. Then the conditional distribution of \boldsymbol{X}_1 , given that $\boldsymbol{X}_2 = \mathbf{x}_2$ is normal and has

$$\begin{array}{ll} \mathsf{Mean} &= \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}\left(\mathsf{x}_2 - \mu_2 \right) \\ \\ \mathsf{and} & \mathsf{Covariance} &= \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} \end{array}$$

Note that the covariance does not depend on the value \mathbf{x}_2 of the conditioning variable.

Result 3.7 Let \boldsymbol{X} be distributed as $N_p(\mu, \Sigma)$ with $|\Sigma| > 0$. Then $(\boldsymbol{X} - \mu)' \Sigma^{-1} (\boldsymbol{X} - \mu)$ is distributed as χ_p^2 , where χ_p^2 denotes the chi-square distribution with p degrees of freedom. Result 3.8 Let $\boldsymbol{X}_1, \boldsymbol{X}_2, \ldots, \boldsymbol{X}_n$ be mutually independent with \boldsymbol{X}_j distributed as $N_p\left(\boldsymbol{\mu}_j, \boldsymbol{\Sigma}\right)$. (Note that each \boldsymbol{X}_j has the same covariance matrix $\boldsymbol{\Sigma}$.) Then

$$\mathbf{V}_1 = c_1 \mathbf{X}_1 + c_2 \mathbf{X}_2 + \cdots + c_n \mathbf{X}_n$$

is distributed as $N_p\left(\sum_{j=1}^n c_j \boldsymbol{\mu}_j, \left(\sum_{j=1}^n c_j^2\right) \boldsymbol{\Sigma}\right)$. Moreover, \mathbf{V}_1 and $\mathbf{V}_2 = b_1 \boldsymbol{X}_1 + b_2 \boldsymbol{X}_2 + \cdots + b_n \boldsymbol{X}_n$ are jointly multivariate normal with covariance matrix

$$\begin{bmatrix} \left(\sum_{j=1}^{n} c_{j}^{2}\right) \Sigma & \mathbf{b}' \mathbf{c} \Sigma \\ \mathbf{b}' \mathbf{c} \Sigma & \left(\sum_{j=1}^{n} b_{j}^{2}\right) \Sigma \end{bmatrix}$$

Consequently, V_1 and V_2 are independent if $\mathbf{b}'\mathbf{c} = \sum_{j=1}^n c_j b_j = 0$

Result 3.13 (The central limit theorem) Let $\boldsymbol{X}_1, \boldsymbol{X}_2, \ldots, \boldsymbol{X}_n$ be independent observations from any population with mean μ and finite covariance Σ . Then $\sqrt{n}(\overline{\boldsymbol{X}}-\mu)$ has an approximate $N_p(0,\Sigma)$ distribution for large sample sizes. Here n should also be large relative to p And

$$n(\overline{X} - \mu)' \mathsf{S}^{-1}(\overline{X} - \mu)$$
 is approximately χ_p^2

for n - p large.

Example 1

Suppose that $\mathbf{X}_i = (X_{1i}, X_{2i}, X_{3i}, X_{4i})', i = 1, ..., n$ are independent, and follow the same multivariate normal distribution $N_4(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}' = [1, 1, -3, 1]$ and

$$\mathbf{\Sigma} = \left[\begin{array}{cccc} 1 & 0.5 & 0 & 0.5 \\ 0.5 & 1 & 0 & 0.5 \\ 0 & 0 & 1 & 0 \\ 0.5 & 0.5 & 0 & 1 \end{array} \right]$$

(a) Find the mean vector and covariance matrix of the joint distribution of $(X_{1i} - X_{2i}, X_{1i} + X_{2i} + X_{3i} + X_{4i})'$, and the mean and variance of the conditional distribution of (X_{1i}, X_{2i}, X_{4i}) given X_{3i} .

(a)1. Let
$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Then $(X_{1i} - X_{2i}, X_{1i} + X_{2i} + X_{3i} + X_{4i})' = \mathbf{A}\mathbf{X}_i$ are distributed as $N_2 \left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}' \right)$, where
$$\mathbf{A} \boldsymbol{\mu} = \mathbf{0}_{2 \times 1}$$
$$\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}' = \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix}$$

(a)2. Suppose that $\mathbf{Y}_i = (X_{1i}, X_{2i}, X_{4i}, X_{3i})'$. It follows the same multivariate normal distribution $N_4(\mu_{new}, \Sigma_{new})$ with $\mu'_{new} = [1, 1, 1, -3]$ and

$$\mathbf{\Sigma}_{new} = \left[egin{array}{cccc} 1 & 0.5 & 0.5 & 0 \ 0.5 & 1 & 0.5 & 0 \ 0.5 & 0.5 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

Let
$$m{Y}_i = \left| \begin{array}{c} m{X}_i^{(1)} \\ m{X}_i^{(2)} \end{array} \right|$$
, where $m{X}_i^{(2)} = X_{3i}$, $m{X}_i^{(1)\prime} = (X_{1i}, X_{2i}, X_{4i})$

$$\begin{split} \boldsymbol{\mu}_{\textit{new}} &= \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right], \boldsymbol{\Sigma}_{\textit{new}} = \left[\begin{array}{cc} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{array}\right] \\ \text{Note } \boldsymbol{\Sigma}_{12} &= \boldsymbol{\Sigma}_{21} = \boldsymbol{0}, \text{ so } (X_{1i}, X_{2i}, X_{4i}) \text{ and } X_{3i} \text{ are independent.} \end{split}$$

Then the conditional distribution of (X_{1i}, X_{2i}, X_{4i}) given $X_{3i} = x_3$ is normal has

Mean $= \mu_1 + \Sigma_{12} (x_3 + 3) = \mu_1 = [1, 1, 1]'$ and Covariance

$$= \Sigma_{11} - \Sigma_{12} \Sigma_{21} = \Sigma_{11} = \mathbf{\Sigma}_{new} = \begin{bmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{bmatrix}.$$

(b) Let n = 10, determine the distribution of

$$V_1 = \frac{1}{n} \sum_{i=1}^n a_i \mathbf{X}_i$$

and

$$\mathcal{T}^2 = n[(\overline{\mathbf{X}} - \mu)]' \mathbf{\Sigma}^{-1}[(\overline{\mathbf{X}} - \mu)]$$

 $\overline{\mathbf{X}}$ is the sample mean.

(c) Find b_i , $i=1,\ldots,n$, such that $V_2=\sum_{i=1}^n b_i \mathbf{X}_i$ and V_1 are statistically independent.

(b)
$$V_1 = \frac{1}{n} \sum_{i=1}^n a_i \mathbf{X}_i \text{ is distributed as } \\ N_4 \left(\left(\sum_{j=1}^n a_j / n \right) \boldsymbol{\mu}, \left(\left(\sum_{j=1}^n a_j^2 \right) / n^2 \right) \boldsymbol{\Sigma} \right). \text{ And then } \boldsymbol{\bar{X}} = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i \text{ is distributed as } N_4 \left(\boldsymbol{\mu}, \frac{1}{n} \boldsymbol{\Sigma} \right). \text{ (Result 3.8)} \\ \text{Thus}$$

$$T^2 = n[(\overline{\mathbf{X}} - \mu)]' \mathbf{\Sigma}^{-1}[(\overline{\mathbf{X}} - \mu)] = [(\overline{\mathbf{X}} - \mu)]' \left(\frac{1}{n}\mathbf{\Sigma}\right)^{-1}[(\overline{\mathbf{X}} - \mu)]'$$

is distributed as χ_4^2 , where χ_4^2 denotes the chi-square distribution with 4 degrees of freedom.(Result 3.7)

Soluitons

(c) V_1 , V_2 are jointly multivariate normal with covariance matrix

$$\begin{bmatrix} \left(\sum_{j=1}^{n} a_{j}^{2}/n^{2}\right) \Sigma & (\mathbf{b}'\mathbf{a}/n) \Sigma \\ (\mathbf{b}'\mathbf{a}/n) \Sigma & \left(\sum_{j=1}^{n} b_{j}^{2}\right) \Sigma \end{bmatrix}$$

Consequently, V_1 and V_2 are independent if $\mathbf{b'a} = \sum_{j=1}^n a_j b_j = 0$

Example2

Let ${f X}$ be ${\it N}_3({m \mu},{m \Sigma})$ with ${m \mu}'=[2,-3,1]$ and

$$\mathbf{\Sigma} = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{array} \right]$$

- (a) Find vectors a and b such that $\mathbf{a}'\mathbf{X}$ and $\mathbf{b}'\mathbf{X}$ are independent.
- (b) Find the distribution of (a, b)'X.

$$(\mathbf{a},\mathbf{b})'\mathbf{X} = \left[\begin{array}{c} \mathbf{a}'\mathbf{X} \\ \mathbf{b}'\mathbf{X} \end{array} \right] \text{ are distributed as } \mathcal{N}_2((\mathbf{a},\mathbf{b})'\mu,(\mathbf{a},\mathbf{b})'\Sigma(\mathbf{a},\mathbf{b})),$$
 where $(\mathbf{a},\mathbf{b})'\mu = \left[\begin{array}{c} \mathbf{a}'\mu \\ \mathbf{b}'\mu \end{array} \right] (\mathbf{a},\mathbf{b})'\Sigma(\mathbf{a},\mathbf{b}) = \left[\begin{array}{c} \mathbf{a}'\Sigma\mathbf{a} & \mathbf{a}'\Sigma\mathbf{b} \\ \mathbf{b}'\Sigma\mathbf{a} & \mathbf{b}'\Sigma\mathbf{b} \end{array} \right].$ Then $\mathbf{a}'\mathbf{X}$ and $\mathbf{b}'\mathbf{X}$ are independent if and only if $\mathbf{a}'\Sigma\mathbf{b} = 0$. For example,let $\mathbf{a}' = (1,0,0), \mathbf{b}' = (1,-1,0)$. Then $\mathbf{a}'\Sigma\mathbf{b} = 0$. Thus, $\mathbf{a}'\mathbf{X}$ and $\mathbf{b}'\mathbf{X}$ are independent

Exmaple 3

Suppose that $\mathbf{X}_i = (X_{1i}, X_{2i}, X_{3i}, X_{4i})'$ and $\mathbf{Y}_i = (Y_{1i}, Y_{2i}, Y_{3i}, Y_{4i})'$, $i = 1, \ldots, n$ are independent, and \mathbf{X}_i follow the same multivariate normal distribution $N_4(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1)$. And \mathbf{Y}_i follow the same multivariate normal distribution $N_4(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2)$ Find the distribution of $\bar{\boldsymbol{X}} - \bar{\boldsymbol{Y}}$

Since X_i and Y_i are independent and are distributed as $N_4(\mu_1, \Sigma_1)$ and

$$N_4(\mu_2, \mathbf{\Sigma}_2)$$
, then $\left[egin{array}{c} \mathbf{X}_i \\ \mathbf{Y}_i \end{array}
ight]$ has the multivariate normal distribution

$$N_8 \left(\left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right], \left[\begin{array}{cc} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{array} \right] \right), i = 1, \dots, n.$$
 (Result 3.5(c))

And
$$\begin{bmatrix} \mathbf{X}_i \\ \mathbf{Y}_i \end{bmatrix}$$
 are independent, $i = 1, \dots, n$.

Then
$$\begin{bmatrix} \ddot{\mathbf{X}} \\ \ddot{\mathbf{Y}} \end{bmatrix} = \frac{1}{n} \sum_{i=1}^{n} \begin{bmatrix} \mathbf{X}_i \\ \mathbf{Y}_i \end{bmatrix}$$
 is distributed as

$$N_8 \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{1}{n} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \right)$$
. (Result 3.8)

Then
$$ar{\mathbf{X}} - ar{\mathbf{Y}} = m{A} \left[egin{array}{c} ar{\mathbf{X}} \\ ar{\mathbf{Y}} \end{array}
ight]$$
 ,where $m{A} = [m{I}_4, -m{I}_4]$.

Thus,
$$\bar{\mathbf{X}} - \bar{\mathbf{Y}}$$
 is distributed as $N_4(\mathbf{A} \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \frac{1}{n}\mathbf{A} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \mathbf{A}')$, that is $N_4(\mu_1 - \mu_2, \frac{1}{n}(\Sigma_1 + \Sigma_2))$. (Result 3.3)

Example 4

Suppose that $\mathbf{X}_i = (X_{1i}, X_{2i}, X_{3i}, X_{4i})'$ and $\mathbf{Y}_i = (Y_{1i}, Y_{2i}, Y_{3i}, Y_{4i})'$, $i = 1, \ldots, n$ are independent, and \mathbf{X}_i follow the same distribution with mean and covariance $\mu_1, \mathbf{\Sigma}_1$. And \mathbf{Y}_i follow the same distribution with mean and covariance $\mu_2, \mathbf{\Sigma}_2$. Determine the distribution of $\sqrt{n} (\overline{\mathbf{X}} - \overline{\mathbf{Y}} - (\mu_1 - \mu_2))$ when $n \to \infty$.

Since X_i and Y_i are independent, $Cov(X_i, Y_i) = 0$. Then $\begin{vmatrix} X_i \\ Y_i \end{vmatrix}$ are independent and has the same distribution with mean and covariance $\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}, i = 1, \ldots, n.$ Then $\sqrt{n}\left(\left[\begin{array}{c} \bar{\mathbf{X}} \\ \bar{\mathbf{Y}} \end{array}\right] - \left[\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right]\right)$ has an approximate distribution $N_8(0, \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix}) \text{ when } n \to \infty. \ (\begin{bmatrix} \bar{\mathbf{X}} \\ \bar{\mathbf{Y}} \end{bmatrix} = \frac{1}{n} \sum_{i=1}^n \begin{bmatrix} \mathbf{X}_i \\ \mathbf{Y}_i \end{bmatrix})$ Then $\sqrt{n}\left(\overline{\mathbf{X}}-\overline{\mathbf{Y}}-(\mu_1-\mu_2)\right)=\sqrt{n}\boldsymbol{A}\left(\left[\begin{array}{c}\overline{\mathbf{X}}\\\overline{\mathbf{Y}}\end{array}\right]-\left[\begin{array}{c}\mu_1\\\mu_2\end{array}\right]\right)$,where $\mathbf{A} = [\mathbf{I}_4, -\mathbf{I}_4]$. Therefore, $\sqrt{n} (\overline{\mathbf{X}} - \overline{\mathbf{Y}} - (\mu_1 - \mu_2))$ is approximately distributed as $N_4(0, \mathbf{A} \begin{vmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{vmatrix} \mathbf{A}')$, that is $N_4(0, (\Sigma_1 + \Sigma_2))$ when $n \to \infty$.