A Book of Abstract Algebra (2nd Edition)

Chapter 33, Pro	blem 5EA		Bookmark	Show all steps: ON
		Prob	lem	
		-	rincipal finding of this colution by radicals.	s chapter: that polynomial
		Step-by-ste	p solution	
		Step 1	of 5	
•			mials are do not con a general solution b	
Comment				
		Step 2	of 5	
• •		-	s roots are determine s, n^{th} roots to the in	ed by applying finite number ntegers.
Galois group:				
If the polynomia	l degree is greate	r than or equal t	4 are solvable by	radicals.
Comment				
		Step 3	of 5	

Consider the polynomial $a(x) = x^5 - 10x^4 + 40x^3 - 80x^2 + 79x - 30$

$$a(x) = (x-2)^5 - (x-2) = 0$$

Let
$$y = x - 2$$

Then, the equation becomes, $y^5 - y = 0$

The above equation is of the form $x^5 - px + q$. So it can be solved by radicals.						
Comment						
Step 4 of 5						
Consider the polynomial $a(x) = ax^8 + bx^6 + +cx^4 + dx^2 + e$						
Let $y = x^2$						
Then, the equation becomes,						
$ax^8 + bx^6 + +cx^4 + dx^2 + e$						
$=ay^4+by^3++cy^2+dy+e$						
The above polynomial is of degree 4						
Every polynomial of degree four is solvable by radicals.						
Therefore, the polynomial $a(x) = ax^8 + bx^6 + +cx^4 + dx^2 + e$ is solvable by radicals.						
Comment						
Step 5 of 5						
The above polynomials are of degree five and eight.						
As per the principal "If the polynomial degree is greater than or equal to 4 are solvable	ole by					
radicals" they are not solved by radicals. But it's not true. They are solved by radicals	5.					
Since,						
The principal does not assert that higher degree polynomials have no solution.						
Every non constant polynomial in one unknown, with complex or real coefficients has complex number as a solution.	s at least one					

complex number as a solution.

There is no general solution in radicals which can apply to all polynomials with degree $n \ge 5$.

Therefore, the polynomials are do not contradict the principal.

Comment