Summary

- ▼ Notations
 - $\bar{\mathbb{R}} = [0, \infty] = \mathbb{R}_+ \cup \{\infty\}$
 - ullet $X_1\stackrel{d}{=} X_2$ means they have the same distribution
 - If $P(X_1
 eq X_2) = 1$ then we call them unequal almost surely
- ▼ Probability Theory
 - ▼ Measuring spaces

Important terminology:

- Sample space $\boldsymbol{\Omega}$
- $\bullet \ \ \mathsf{Event} \ A \subset \Omega$
- Elementary event / outcome $\omega \in \Omega$

Measuring space in the countable case:

- 1. $P(\Omega) = 1$
- 2. Sigma additivity for $A_1,...\subset \Omega$ and $A_i\cup A_j=\emptyset orall i
 eq j$

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i)$$

Lemma 1.2

If a sample space Ω is counable, you can specify a probability measure just by (while I is an index-set):

$$P(\{\omega_i\}) = p_i \quad orall i \in I$$

For every set A it holds:

$$P(A) = \sum_{\omega \in A} P(\{\omega\})$$

σ -algebra:

- 1. $\emptyset \in \mathcal{A}$
- 2. if $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$
- 3. if $A_1,A_2,...\in\mathcal{A}\Rightarrow \cup_{i=1}^\infty A_i\in\mathcal{A}$

Definition of smallest σ -Algebra:

• If the smallest sigma algebra containing set A is called $\mathcal A$. Then for every sigma Alegbra $\mathcal B$ on Ω it holds that:

$$A\subset\mathcal{B}\Rightarrow\mathcal{A}\subset\mathcal{B}$$

Theres also the smallest- σ -Algebra, that is denoted with the notation $\sigma(A)$

Lemma 1.5 ightarrow For set $\ A\subset \mathcal{P}(\Omega)\ \sigma(A)$ has a solution.

▼ Measure

Defintion Measure:

- 1. $\mu:\mathcal{A} o[0,\infty]$
- 2. $\mu(\emptyset) = 0$
- 3. $A_1,A_2,...\in\mathcal{A}$ pairwise disjoint σ -additivity:

$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

Definition Probability measure:

- 1. $\mu: \mathcal{A} \to [0, \infty]$
- 2. $A_1, A_2, ... \in \mathcal{A}$ pairwise disjoint σ -additivity:

$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i)$$

- 3. $P(\Omega)=1$
- ▼ Borel sets

Let $A:=\{(a,b)|a,b\in\mathbb{R}\}$ then the **Borel sigma field** is defined by:

$$\sigma(A) = \mathcal{B}$$

Each set $C\subset\mathbb{R}$ is called a **borel set** iff $C\in\mathcal{B}$

We will further define a **field** as a family of subsets $\mathcal{A}^*\subset \mathcal{P}(\Omega)$ if:

- 1. $\emptyset \in \mathcal{A}^*$
- 2. $A \in \mathcal{A}^* \implies A^\complement \in \mathcal{A}^*$
- 3. $A_1, A_2, ... \in \mathcal{A}^* \implies A_1 \cup A_2 \in \mathcal{A}^*$
- ▼ Pre- Measures

Definition: let \mathcal{A}^* be a **field.** Then a function $P^*: \mathcal{A}^* \to [0,\infty]$ is called a **pre-measure** iff for every sequence $A_1,A_2,...\in\mathcal{A}^*$ with $\bigcup_{i=1}^\infty A_i\in\mathcal{A}^*$ it holds that:

$$P^*\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P^*(A_i)$$

Theorem of Carathéodory: let \mathcal{A}^* be a field and $P^*:\mathcal{A}^*\to [0,\infty)$ be a **pre-measure.** Then there is one and only one **measure** $P:\sigma(\mathcal{A}^*)\to [0,\infty)$ such that:

$$P(A) = P^*(A) \quad orall A \in \mathcal{A}^*$$

▼ cdf and Lebesgue Stieltjes measure

Definition of cdf: Let $P:\mathcal{B}\to[0,\infty)$ be a probability measure on (\mathbb{R},\mathcal{B}) . Then the **cummulative distribution function** $F:\mathbb{R}\to[0,1]$ is defined by:

$$F(a) = P((-\infty, a]) \quad \forall a \in \mathbb{R}$$

Properties of a destribution function:

- 1. P((a,b]) = F(b) F(a)
- 2. $F(a) \leq F(b) \Leftrightarrow a \leq b$
- 3. For all sequences $(b_n\in\mathbb{R})_{n\in\mathbb{N}}$ monotnously decreasing with $b_n o b$ it holds that: $F(b_n) o F(b)$
- 4. $\lim_{x o \infty} F(x) = 1$ and $\lim_{x o -\infty} F(x) = 0$

We now have derived a **distribution function** from a probability measure. **Theorem 1.16** now states, that for every real function $F: \mathbb{R} \to [0,1]$, that satisfies properties 2 -4 from above, there exists one and only one **probability measure** $P: \mathcal{B} \to [0,\infty)$ with: $F(b) = P((-\infty,b])$

Every probability measure, that is characterized by such a function is now called **Lebesgue-stieltjes-measure**

The **lebesque measure** $\lambda:\mathcal{B}\to[0,\infty)$ is defined by:

$$\lambda((a,b]) = b - a$$

▼ probability mass function and pdf

Definition of pmf: Let $f:\mathbb{R} \to \mathbb{R}_+$. Then f is called a pmf iff:

$$\sum_{x \in \mathcal{S}_f} f(x) = 1 \quad ext{with} \quad \mathcal{S}_f = \{x \in \mathbb{R} : f(x) > 0\}$$

 S_f is called the **support** and must be **countable** in this definition. And we can define a corresponding **probability-measure** P **as:**

$$P(A) = \sum_{x \in (A \cap \mathcal{S}_f)} f(x)$$

▼ Discrete probability measures and pdfs

A probability measure on the measure space (\mathbb{R},\mathcal{B}) is called **discrete iff:**

$$\exists A \subset \mathbb{R} | A \text{ countable} : P(A) = 1$$

Definition pdf: let $f:\mathbb{R} \to \mathbb{R}_+$ be a real and positive mapping. Then f is a pdf iff:

$$\int_{-\infty}^{\infty}f(x)=1$$

- ▼ Integration Theory
 - ▼ simple functions

$$s(\omega) = \sum_{i=1}^n lpha_i 1_{A_i}(\omega)$$

Also:

$$\int_E s d\mu := \sum_{i=1}^n lpha_i \mu(A_i \cap E)$$

▼ Measure Integral

Let (Ω,\mathcal{A},μ) be a measuring space and $f:\Omega o [0,\infty]$ a non-negative mapping

$$\int_E f d\mu = \sup \left\{ \int_E s d\mu : 0 \leq s \leq f | s ext{ simple}
ight\}$$

▼ measurable functions

Let $(\Omega, \mathcal{A}, \mu)$ a measuring space $f: \Omega \to [0, \infty]$ a non negative mapping. Then we call f measurable if:

$$f^{-1}(A) \in \mathcal{A} \quad orall A \in \mathcal{B}(\mathbb{R})$$

Note, that measurability is dependent on \mathcal{A} . A function f is measurable for certain σ -algebras but not for all.

We can then say:

Any function $f:\Omega\to[0,\infty]$ is $(\mathcal{P}(\Omega)-\mathcal{B})$ measurable.

▼ Lemma 1.27

Lemma 1.27 Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, $f, g : \Omega \to [0, \infty]$ be $(\mathcal{A} - \overline{\mathcal{B}})$ -measurable and $E \in \mathcal{A}$. Then, we have

(i)
$$f \leq g \implies \int_{E} f d\mu \leq \int_{E} g d\mu$$

(ii) A, B
$$\in \mathcal{A}$$
 and A $\subseteq B \implies \int_A f d\mu \leq \int_B f d\mu$

(iii)
$$c \in [0,\infty] \implies \int_E c f d\mu = c \cdot \int_E f d\mu$$

(iv)
$$f(\omega) = 0 \,\forall \omega \in \Omega \implies \int_{E} f d\mu = 0$$

(v)
$$\int_{E} f d\mu = \int_{\Omega} f \, \mathbb{1}_{E} d\mu$$

We approach proving properties of the measure-integral by firstly showing it for simple functions, then non-negative functions and lastly integrateable functions.

▼ extension of Integrals to non negative functions

Let setup as in Integral but this time $f:\Omega\to\mathbb{R}$ then we denote $f^-:=\max(-f,0)$ and $f^+:=\max(f,0)$. Then we can define iff:

$$\int_E f^+ d\mu < \infty \wedge \int_E f^- d\mu < \infty$$

The **measure integral** for f as:

$$\int_E f d\mu = \int_E f^+ d\mu - \int_E f^- d\mu$$

▼ Integrateable functions

Let $(\Omega, \mathcal{A}, \mu)$ a measuring space and $f: \Omega \to \mathbb{R}$ a real mapping. Then we call f integrateable iff:

$$\int_{\Omega}|f|d\mu<\infty$$

▼ Theorem 1.29

Let f,g be integrateable functions. And $\alpha,\beta\in\mathbb{R}$, then

- 1. $\alpha f + \beta g$ is integratebale
- 2. $\int_{E} (\alpha f + \beta g) d\mu = \alpha \int_{E} f d\mu + \beta \int_{E} g d\mu$
- ▼ Random Variable

Let (Ω, \mathcal{A}, P) be a probability space, then we call $X : \Omega \to \mathbb{R}^k$ a random variable, iff the mapping is measurable.

▼ Probability distribution

Let (Ω, \mathcal{A}, P) be a probability space, and $X: \Omega \to \mathbb{R}^k$ a random variable. Then we define the distribution of X as:

$$P^X(B) := P(X^{-1}(B)) \qquad B \in \mathcal{B}(\mathbb{R}^k)$$

- lacktriangle Examples for measurable functions in (\mathbb{R},\mathcal{B})
 - 1. (real-valued) indicator functions $1_A(\omega)$

- 2. monotone functions
- 3. continuous functions
- 4. functions with only finitely many discontinuities:

$$\left|\left\{f:x\in\mathbb{R}|\lim_{y\downarrow x}f(y)
eq\lim_{y\uparrow x}f(y)
ight\}
ight|<\infty$$

▼ Creating measurable functions from sequences

Let $f, f_n : \Omega \to [0, \infty]$ be measurable on \mathcal{A} , then:

i) sup
$$f_n$$
, inf f_n , $\underline{\lim} f_n$, $\overline{\lim} f_n$ and (if it exists) $\lim_{n\to\infty} f_n$

ii)
$$\max\{f_1,\ldots,f_n\}$$
, $\min\{f_1,\ldots,f_n\}$

iii)
$$\alpha \cdot f_1 + \beta \cdot f_2$$
, for $\alpha, \beta \in \mathbb{R}$, $f_1 \cdot f_2$

iv)
$$f^+ := \max\{f, 0\}, f^- := \max\{-f, 0\}, |f| = f^+ + f^-$$

are also measurable. This directly translates to random variables.

▼ stochastic independence for probability function

Let (Ω, \mathcal{A}, P) be a probability space. Then $A, B \subset \Omega$ are called stochstically independent if:

$$P(A \cap B) = P(A)P(B)$$

▼ stochastic independence for random variables

Let (Ω, \mathcal{A}, P) be a probability space and $X_1, ..., X_l : \Omega \to [0, \infty]$ be random variables. Furthermore let $A_1, ..., A_l \subset \Omega$ then $X_1, ..., X_l$ are called **stochastically independent iff**:

$$P(X_1 \in A_1, ..., X_l \in A_l) = P(X_1^{-1}(A_1)) * \cdots * P(X_l^{-1}(A_l))$$

You can also generalize this to systems of sets:

And, more generally, let $(A_i)_{i\in I}$ be a family of systems of sets. Then, the systems of sets are called **stochastically independent**, if for *any* finite, non-empty index sets $I_0 \subseteq I$ and $A_i \in A_i$, $i \in I_0$, we have

$$P\left(\bigcap_{i\in I_0}A_i\right)=\prod_{i\in I_0}P(A_i).$$

Note that we generate a sequence of sets by taking a set from every A_i .

Summary 5

▼ Transformation under independence

Any transformation $G:\mathbb{R}^n o\mathbb{R}^m$ preserves independence

▼ cdfs for random variables

Now we can define:

$$F(x) = P(X \le x)$$

▼ marginal densities

$$f_x(x) = \int_{-\infty}^{\infty} f_{x,y}(x,y) dy$$

▼ density transformation

Any invertible real function $\phi:\mathbb{R} o\mathbb{R}$ can be used to find out the density of $Y=\phi(X)$ if X is a r.v.:

$$f_y(y) = f_x(\phi^{-1}(y))|\phi^{-1}(y)|1_{\phi(\mathbb{R})}(y)$$

▼ expected value for discrete random variables

Let $X:\Omega o \mathbb{R}$ with $X(\mathbb{R})$ countable. Then:

$$\mathbb{E}(X) = \sum_{i \in X(\mathbb{R})} i P(X^{-1}(\{i\}))$$

▼ expected value for continuous random variables

The expectation of X is just the measure integral over the sample space:

$$\mathbb{E}(X) = \int_{\Omega} X dP$$

Note, that we use a special sequence of simple functions X_n to estimate this measure integral:

$$X_n(\omega) := rac{k}{n} \Leftrightarrow rac{k}{n} \leq X(\omega) \leq rac{k+1}{n}$$

▼ Theorem 1.41 expectation after transformation

Let X be a real r.v. with piecewise continuous density f_x . Then any real function g yields the property:

$$\mathbb{E}(g(X)) = \int g(x) f_x(x) dx$$

▼ Theorem 1.42 (properties of expectation)

- 1. $|\mathbb{E}[X_1]| \leq \sup_{\omega} |X_1(\omega)|$
 - absolute expectation never exceeds the supremum
- 2. $\mathbb{E}[lpha_1X_1+lpha_2X_2]=lpha_1\mathbb{E}(X_1)+lpha_2\mathbb{E}(X_2)$
 - linearity
- 3. $X_1 \leq X_2 \implies \mathbb{E}[X_1] \leq \mathbb{E}[X_2]$
- 4. Independence implies $\mathbb{E}[X_1X_2]=\mathbb{E}[X_1]\mathbb{E}[X_2]$
 - · Proof in lecture with Fubini and productspaces
- ▼ s-moments

Let X be a real r.v. then the **sth-moment** is defined by $\mathbb{E}(X^s)$

Furthermore the **sth-central-moment** is defined by $\mathbb{E}((X - \mathbb{E}(X))^s)$

Furthermore the **sth-absolute-moment** is defined by $\mathbb{E}(|X|^s)$

And the

▼ Definition of covariance

Let X,Y be r.v. with finite second moments. We call Cov of X,Y:

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))]$$

▼ Theorem 1.46 (Additivity of Variance)

Let $X=(X_1,...,X_n)^\intercal$ where X_i are real r.v. and $\beta=(\beta_1,...,\beta_n)$. Then we can denote:

$$Var(\beta X) = \beta^{\intercal} \Sigma \beta$$

While Σ is the covariance matrix with $\Sigma:=(\sigma_{i,j})_{\{1,...,n\} imes\{1,...,n\}}=Cov(X_i,X_j)$

Furthermore we call $\mathbb{E}(X)$ the **expectation vector**

We can also compute Σ by:

$$\Sigma = \mathbb{E}[(X - \mathbb{E}(X))(X - \mathbb{E}(X))^\intercal]$$

Some handy properties, that arise from this:

Theorem 1.46 If X_1, X_2, \ldots, X_n are independent with finite variance, then

$$Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n). \tag{10}$$

Proposition 1.48 For X, Y, Z random variables with finite second moments and $a, b \in \mathbb{R}$, the following properties hold true:

- $Var(X) = 0 \Leftrightarrow P(X = E[X]) = 1$,
- $Var(aX) = a^2 Var(X)$,
- Cov(aX + b, Y) = a Cov(X, Y),
- Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z),
- $|Cov(X, Y)| \le \sqrt{Var(X) Var(Y)}$ (Cauchy-Schwarz inequality). This implies in (9) that $-1 < \rho(X, Y) < 1$.

▼ Quantiles

Let X be a real r.v. then we call a number $q_{lpha} \in \mathbb{R}$ the lpha-quantile iff:

$$P(X \le q_{\alpha}) \ge \alpha \wedge P(X \ge q_{\alpha}) \ge 1 - \alpha$$

We can call the **kth-** α **-quantile** q_{α}^{k} **if:**

$$P(X \leq q_{lpha}^k) \geq klpha \wedge P(X \geq q_{lpha}^k) \geq 1 - klpha$$

▼ Proposition 1.51 (optimization problem)

Let X be a real r.v. with $\mathbb{E}(X^2) < \infty$ then:

$$\arg\min \mathbb{E}[|X - x|] = q_{0.5} \tag{1}$$

$$\arg\min_{x} \mathbb{E}[|X - x|] = q_{0.5}$$

$$\arg\min_{x} \mathbb{E}[|X - x|^{2}] = \mathbb{E}(X)$$
(2)

▼ Asymptotic Theory

▼ convergence in probability

$$X_n \stackrel{P}{\longrightarrow} X \Longleftrightarrow orall arepsilon > 0: P(|X_n - X| > arepsilon) \mathop{\longrightarrow}\limits_{n o \infty} 0$$

▼ Pointwise conversion

Let $X, X_1, ..., X_n$ be real valued r.v. then we say the sequence X_i convergeses pointwise towards X if:

$$\lim_{n o\infty} X_n(\omega) = X(\omega) \quad orall \omega \in \Omega$$

Additionally when $0 \le X_n \le X_{n+1}$ we can say:

$$\lim_{n o\infty}\mathbb{E}(X_n)=\mathbb{E}(X)$$

Note that we have to have monotonicity to say this. Pointwise conversion is not sufficient for convergence of expectations.

▼ almost sure conversion

Is pointwise conversion for at least a subset $A \subset \Omega$ for which P(A) = 1.

▼ convergence in the p-th mean

Let X_n be a sequence of real r.v., then $X_n \stackrel{L_p}{\longrightarrow} X$ iff:

$$\mathbb{E}[||X_n-X||^p] o 0$$

▼ convergence in distrubtion

Let X_n be a sequence of r.v. and X be a r.v. on $(\mathbb{R}^k,\mathcal{B}(\mathbb{R}^k))$. Then X_n converges in distribution iff:

$$E(f(X_n)) o E(f(X)) \quad orall f \in C_b(\mathbb{R}^k)$$

Whereas $C_b(\mathbb{R}^k)$ is the set of all continuous and bounded functions.

You can also write:

$$X_n \xrightarrow{\mathcal{L}} X \quad X_n \xrightarrow{d} X$$

You can also prove convergence in distribution by showing that:

$$F_n(x) o F(x)$$

Or that the characteristic funcitons are equal:

$$arphi_{X_n}(x)
ightarrow arphi_X(x) \quad orall x \in \mathbb{R}$$

▼ Lipschitz functions

Let $f:\mathbb{R} o \mathbb{R}$. Then f is called a Lipschitz function iff:

$$|f(x)-f(y)| \leq L||x-y|| \quad orall x,y \in \mathbb{R}$$

▼ Markov's inequality

This is a more general inequality, than Chebychef:

$$P(||X|| \geq arepsilon) \leq rac{\mathbb{E}(g(X))}{g(arepsilon)}$$

While $g:\mathbb{R}_+ o\mathbb{R}_+$ is a monotone increasing function. With g(0)
eq 0

▼ Conversion in expectation

A popular use case of asymptotic theory is analysing the distribution of an estimator. A part of this analysis is checking the expected value of the distribution. Often times we need the following statement to make life easier in this usecase:

$$\mathbb{E}(X_n) \mathop{\longrightarrow}\limits_{n o \infty} \mathbb{E}(X) \Leftrightarrow \int_{\Omega} \lim_{n o \infty} X_n dP = \lim_{n o \infty} \int_{\Omega} X_n dP$$

We learnt, pointwise conversion $(X_n(\omega) \to X(\omega) \forall \omega \in \Omega)$ is not sufficient for this statement.

For demonstration, Prof. Jensch provided a simple example:

Let $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \nu)$ be a measuring space and $\nu(A) = |A|$ the counting measure. Furthermore let:

$$X_n(\omega) = \sum_{i=1}^\infty rac{1}{n} 1_{\{1,...,n\}}(\omega)$$

Then we can say $X_n o X$ with $X(\omega) = 0 orall \omega$ so:

$$\lim_{n o\infty}\int_{\Omega}X_nd
u=\lim_{n o\infty}\sum_{i=1}^nrac{1}{n}=\lim_{n o\infty}rac{n}{n}=1
eq0=\int_{\Omega}Xd
u=\int_{\Omega}\lim_{n o\infty}X_nd
u$$

So:

$$\lim_{n o\infty}\int_{\Omega}X_nd
u
eq\int_{\Omega}\lim_{n o\infty}X_nd
u$$

Of course this begs the question: what additional assumptions do we need?

In the lecture, we have gotten to know two additional assumptions, that each yield conversion in expectation:

1. monotone convergence

 $X_n(\omega) \leq X_{n+1}(\omega) orall \omega$ i.e. the sequence grows monotonically

2. dominated convergence

There is a function $Y:\Omega o\mathbb{R}$ such that $orall \omega\in\Omega:Y(\omega)>X_n(\omega)orall n$ and $\mathbb{E}(Y)<\infty$

We later found out that we can losen the statements up a little bit, by not putting these constraints on all $\omega \in \Omega$ but on a subset $A \subset \Omega$ such that P(A) = 1 (see slide 80 / 82 for more detail). In that case we can speak about the assumptions holding **almost surely**.

Own example: We can look a at a lebesgue measureable functions $X_n:[0,1]\to\mathbb{R}$ if there is a countable infinite (at max) set $A\subset\mathbb{R}$ for which it holds that: $X_n(x)\to X(x) \forall x\in\mathbb{R}\setminus A$ and there is another countable infinite set (at max) $B\subset\mathbb{R}$ for which it holds that $\exists Y:Y(x)\geq X_n(x) \forall x\in\mathbb{R}\setminus B$ and $\mathbb{E}(Y)<\infty$ then we can say:

$$\mathbb{E}(X_n) \to \mathbb{E}(X)$$

▼ Weak law of large numbers 1&2

Let $(X_n)_n$ be a sequence of r.v. uncorrelated with $\mathbb{E}[X_1]=\mathbb{E}[X_2]=...=\mu\in\mathbb{R}$ and finte second central moments. Then:

$$ar{X}_n = rac{1}{n} \sum_{i=1}^n X_i \stackrel{P}{\longrightarrow} \mu$$

We can derive the same statement by choosing $X_n \stackrel{iid}{\sim} F$ and just assuming $\mathbb{E}(X_i) < \infty \forall i$ (which then is the law of large numbers 2).

▼ Fatou's Lemma

Let X_n be a real sequence of r.v. on the probability space (Ω, \mathcal{A}, P) . Then it holds that:

$$\int arprojlim_{n o\infty} X_n dP \leq arprojlim_{n o\infty} \int X_n dP$$

This implies:

$$\varliminf_{n o \infty} X_n = X \implies \mathbb{E}(X) \leq \varliminf_{n o \infty} \mathbb{E}(X)$$

▼ characteristic functions

Let a random vector $X:\Omega o \mathbb{R}^k$. Then the characteristic function $arphi_X:\mathbb{R}^k o \mathbb{C}$ is defined as:

$$arphi_X(t) = \mathbb{E}[e^{it'X}]$$

For X discrete:

$$arphi_X(t) = \sum_{i=1}^\infty e^{it'x_i} P(X=X_i)$$

For X continuous:

$$arphi_X(t) = \int e^{it'x} f_X(x) dx$$

▼ example

 $X \sim Poi(\lambda), \lambda > 0$ that means:

$$p_X(k) = rac{\lambda^k}{k!} e^{-\lambda}$$

Therefore X is discrete and:

$$arphi_X(t) = \sum_{i=1}^\infty e^{it'k} rac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{i=1}^\infty rac{(\lambda e^{it'})^k}{k!} = \exp(\lambda (\exp(it) - 1))$$

▼ Why do all this?

Even the convergence in distribution is the weakest form of convergence, we need this form for the **central limit theorem!**

We can say:

$$X_n \stackrel{d}{\longrightarrow} X \Longleftrightarrow \varphi_{X_n} o \varphi_X$$

▼ Slutsky's Lemma

We can avoid showing convergene in distribution for X_n iff:

$$||X_n - Z_n|| \stackrel{P}{\longrightarrow} 0, Z_n \stackrel{d}{\longrightarrow} X \implies X_n \stackrel{d}{\longrightarrow} X$$

▼ Stochastic boundedness

Let $(X_n)_n$ be a sequence of real r.v. then $(X_n)_n$ is stochastically bounded iff:

$$\forall \varepsilon > 0 \exists ! n_0 \in \mathbb{N}, C \in \mathbb{R}: \quad P(||X_n|| \leq C) \ \ \forall n \geq n_0$$

▼ Proofs in lecture

▼ Theorem 1.42 iv

This can be done directly but we use a more general construction of so-called productspaces and an application of Fubinis-theorem

1. Productspaces (only for prob. measures and spaces)

Let $(\Omega_1, \mathcal{A}_1, P_1)$ and $(\Omega_2, \mathcal{A}_2, P_2)$ be two prob.-spaces. Then their product space is defined by: $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2, P_1 \otimes P_2)$, where:

$$\Omega_1 \times \Omega_2 := \{(\omega_1, \omega_2 | \omega_1 \in \Omega_1, \omega_2 \in \Omega_2)\}$$

$$\mathcal{A}_1 \otimes \mathcal{A}_2 := \sigma(\{A_1 \times A_2 | A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\})$$

 $P_1 \otimes P_2(A_1 \times A_2) := P_1(A_1)P_2(A_2)$ product probability measure of P_1 and P_2

Suppose we have two $\mathbb R$ valued random variables X_1 on $(\Omega_1, \mathcal A_1, P_1)$ and X_2 on $(\Omega_2, \mathcal A_2, P_2)$. Then there exists a **joint** probspace $(\Omega, \mathcal A, P) := (\Omega_1 \times \Omega_2, \mathcal A_1 \otimes \mathcal A_2, P_1 \otimes P_2)$

where X_1 and X_2 are random variables and stochstically independent.

2. Theorem Fubini

let $X:\Omega_1\times\Omega_2\to \bar{\mathbb{R}}$ be a r.v. on the product prob space $(\Omega,\mathcal{A},P):=(\Omega_1\times\Omega_2,\mathcal{A}_1\otimes\mathcal{A}_2,P_1\otimes P_2)$. Then the function:

$$\omega_1
ightarrow \int_{\Omega_2} X_{\omega_1} dP_2$$

$$\omega_2
ightarrow \int_{\Omega_1} X_{\omega_2} dP_1$$

Where $X_{\omega_1}(\omega_2):=X(\omega_1,\omega_2)$ with ω_1 fixed and vice versa. P_1 and P_2 are almost everywhere defined. Then

$$\int_{\Omega} X dP = \int_{\Omega_1 imes \Omega_2} X dP_1 \otimes P_2 = \int_{\Omega_1} \left[\int_{\Omega_2} X_{\omega_1} dP_2
ight] dP_1 = \int_{\Omega_2} \left[\int_{\Omega_1} X_{\omega_2} dP_1
ight] dP_2$$

Order of integration does not matter

3. Proof of iv

Let X_1 and X_2 be stochastically independent on (Ω, \mathcal{A}, P) . That is we have X_1 on $(\Omega_1, \mathcal{A}_1, P_1)$ and X_2 on $(\Omega_2, \mathcal{A}_2, P_2)$ s.t. (X_1, X_2) is a r.v. on $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2, P_1 \otimes P_2)$.

Then we have $(X_1,X_2):\Omega_1 imes\Omega_2 o\mathbb{R}^2$ and $X_1\cdot X_2:\Omega_1 imes\Omega_2 o\mathbb{R}.$ Then we have

$$\mathbb{E}(X_1\cdot X_2)=\int_{\Omega}X_1X_2dP=\int_{\Omega_1 imes\Omega_2}X_1X_2dP_1\otimes P_2=\int_{\Omega}X_1(\omega_1)X_2(\omega_2)dP_1\otimes P_2(\omega_1,\omega_2)\mathop{=}_{s.F.}\int_{\Omega_2}\left[\int_{\Omega}X_1(\omega_1)X_2(\omega_2)dP_1\otimes P_2(\omega_1,\omega_2)\mathop{=}_{s.F.}\int_{\Omega_2}X_1(\omega_1)X_2(\omega_2)dP_1\otimes P_2(\omega_1,\omega_2)\right]$$

▼ Theorem 1.46

s.t.
$$X_1,...,X_n$$
 independent $\implies Var(X_1+...+X_n)=Var(X_1)+...+Var(X_n)$

$$Var(\sum_{i=1}^{n}X_{i})=\mathbb{E}((\sum_{i=1}^{n}(X_{i}-\mathbb{E}(\sum_{i=1}^{n}X_{i}))^{2})=\mathbb{E}((\sum_{i=1}^{n}(X_{i}-\mathbb{E}(X_{i}))^{2})=...=\sum_{i=1}^{n}\sum_{j=1}^{n}Cov(X_{i},X_{j})=\sum_{i=1}^$$

▼ complex numbers and their absolute value

Shot that:

$$\lim_{u o\infty}|\exp(u(it-\lambda))| o 0$$

The proof relies on $|\exp(ix)|=1 \forall x \in \mathbb{R}$. The expression above can be written as:

$$\lim_{u o\infty}\left|rac{\exp(uit)}{\exp(u\lambda)}
ight|=0$$

Summary 11