

planetmath.org

Math for the people, by the people.

outer multiplication

Canonical name OuterMultiplication
Date of creation 2013-03-22 12:40:31
Last modified on 2013-03-22 12:40:31

Owner rmilson (146) Last modified by rmilson (146)

Numerical id 4

Author rmilson (146) Entry type Definition Classification msc 15A69

Related topic TensorProductClassical

Related topic TensorProduct

Note: the present entry employs the terminology and notation defined and described in the entry on tensor arrays. To keep things reasonably self contained we mention that the symbol $T^{p,q}$ refers to the vector space of type (p,q) tensor arrays, i.e. maps

$$I^p \times I^q \to \mathbb{K}$$
.

where I is some finite list of index labels, and where \mathbb{K} is a field.

Let p_1, p_2, q_1, q_2 be natural numbers. Outer multiplication is a bilinear operation

$$T^{p_1,q_1} \times T^{p_2,q_2} \to T^{p_1+p_2,q_1+q_2}$$

that combines a type (p_1, q_1) tensor array X and a type (p_2, q_2) tensor array Y to produce a type (p_1+p_2, q_1+q_2) tensor array XY (also written as $X \otimes Y$), defined by

$$(XY)^{i_1\dots i_{p_1}i_{p_1+1}\dots i_{p_1+p_2}}_{j_1\dots j_{q_1}j_{q_1+1}\dots j_{q_1+q_2}} = X^{i_1\dots i_{p_1}}_{j_1\dots j_{q_1}}Y^{i_{p_1+1}\dots i_{p_1+p_2}}_{j_{q_1+1}\dots j_{q_1+q_2}}$$

Speaking informally, what is going on above is that we multiply every value of the X array by every possible value of the Y array, to create a new array, XY. Quite obviously then, the size of XY is the size of X times the size of Y, and the index slots of the product XY are just the union of the index slots of X and of Y.

Outer multiplication is a non-commutative, associative operation. The type (0,0) arrays are the scalars, i.e. elements of \mathbb{K} ; they commute with everything. Thus, we can embed \mathbb{K} into the direct sum

$$\bigoplus_{p,q\in\mathbb{N}} \mathbf{T}^{p,q},$$

and thereby endow the latter with the structure of an K-algebra¹.

By way of illustration we mention that the outer product of a column vector, i.e. a type (1,0) array, and a row vector, i.e. a type (0,1) array, gives a matrix, i.e. a type (1,1) tensor array. For instance:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \otimes \begin{pmatrix} x & y & z \end{pmatrix} = \begin{pmatrix} ax & ay & az \\ bx & by & bz \\ cx & cy & cz \end{pmatrix}, \quad a, b, c, x, y, z \in \mathbb{K}$$

 $^{^{1}}$ We will not pursue this line of thought here, because the topic of algebra structure is best dealt with in the a more abstract context. The same comment applies to the use of the tensor product sign \otimes in denoting outer multiplication. These topics are dealt with in the entry pertaining to abstract tensor algebra.