Chern-Weil Theory and Characteristic Classes

Jing YE

March 31, 2021

Contents

1	Geometry of Hermitian Vector Bundles		1
	1.1	Hermitian vector bundles and metrics	-
	1.2	Connections	4
	1.3	Curvature	10
	1.4	The Chern connection and curvature in holomorphic category	18
2	Chern-Weil Theory		2
	2.1	Invariant polynomials	2
	2.2	Chern classes, Chern characters and their properties	26
	2.3	Comparison of approaches to the first Chern class	3

1 Geometry of Hermitian Vector Bundles

1.1 Hermitian vector bundles and metrics

Let $\pi: E \to X$ be a complex rank k bundle over some real manifold X. We do not assume for the moment that X has an almost complex structure. Let $\Gamma(U, E)$ denotes the vector space of all smooth sections of E over U.

In this section, vector bundles are all referred to differentiable complex vector bundles over a differentiable manifold, $E \to X$.

Definition 1.1. Let $E \to X$ be an complex vector bundle of rank r and let U be an open subset of X. A (moving) frame for E over U is a set of r smooth sections $\{s_1, \dots, s_r\}$, $s_j \in \Gamma(U, E)$, such that $\{s_1(x), \dots, s_r(x)\}$ is a basis for E_x for any $x \in U$.

Proposition 1.2. Any complex vector bundle E admits a frame in some neighborhood of any given point in the base space.

Proof. Let U be a trivializing neighborhood for E so that

$$h: E|_U \xrightarrow{\sim} U \times \mathbb{C}^r$$

is a bundle chart. Thus we have an isomorphism

$$h_*: \Gamma(U, E|_U) \to \Gamma(U, U \times \mathbb{C}^r).$$

Consider the vector-valued functions

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_r = (0, \dots, 0, 1),$$

which clearly form a constant frame for $U \times \mathbb{C}^r$, and thus $\{(h_*)^{-1}(e_1), \cdots, (h_*)^{-1}(e_r)\}$ forms a frame for $E|_U$, since the bundle mapping h is an isomorphism on fibres, carrying a basis to a basis. \square

Remark. We see that having a frame is equivalent to having a trivialization and that the existence of a global frame defined over X is equivalent to the bundle being trivial.

Suppose that $E \to X$ is a vector bundle of rank r and that $f^T = (s_1, \dots, s_r)$ is a frame at $x \in X$; i.e., there is a neighborhood U of x and sections $\{s_1, \dots, s_r\}$, $s_j \in \Gamma(U, E)$, which are linearly independent at each point of U.

Let $\psi: U \to \mathrm{GL}(r,\mathbb{C})$ is a differentiable mapping, i.e. $\psi(x) = (\psi_{ij}(x))$, where $\psi_{ij}(x)$ is a \mathbb{C} -valued differentiable map for all $x \in U$. Then there is an action of ψ on the set of all frames on the open set U defined by

$$f \mapsto \psi \cdot f$$

where

$$(\psi \cdot f)(x) = \left(\sum_{i=1}^r \psi_{1i}(x)s_i(x), \cdots, \sum_{i=1}^r \psi_{ri}(x)s_i(x)\right)^T, \quad x \in U,$$

is also a frame. Clearly, $(\psi \cdot f)(x) = \psi(x) \cdot f(x)$, where we use the usual matrix product.

Definition 1.3. The above map $\psi: U \to \mathrm{GL}(r,\mathbb{C})$ is called a **change of frame**.

Remark. Given any two frames f and f' over U, we see that there exists a change of frame ψ defined over U such that $f' = \psi \cdot f$.

Let $f^T = (s_1, \dots, s_r)$ be a frame over U for E and $\xi \in \Gamma(U, E)$. Then

$$\xi = \sum_{i=1}^{r} \xi^{i}(f) s_{i},$$

where $\xi^i(f) \in C^{\infty}(U)$ are uniquely determined smooth functions on U. This induces a map

$$\Gamma(U, E) \xrightarrow{\sim} C^{\infty}(U)^r \cong \Gamma(U, U \times \mathbb{C}^r)$$

by

$$\xi \mapsto \xi(f) = \begin{bmatrix} \xi^1(f) \\ \vdots \\ \xi^r(f) \end{bmatrix}.$$

Proposition 1.4. Suppose that $f^T = (s_1, \dots, s_r)$ is a frame over U and ψ is a change of frame over U. Then $\xi(\psi \cdot f) = (\psi^T)^{-1} \cdot \xi(f)$.

Proof. We see that

$$\xi = \sum_{i=1}^{r} \xi^{i}(\psi \cdot f) \left(\sum_{j=1}^{r} \psi_{ij} s_{j} \right) = \sum_{j=1}^{r} \sum_{i=1}^{r} \xi^{i}(\psi \cdot f) \psi_{ij} s_{j}.$$

Compared with $\xi = \sum_{j=1}^{r} \xi^{j}(f)s_{j}$, we see that

$$\xi^{j}(f) = \sum_{i=1}^{r} \xi^{i}(\psi \cdot f)\psi_{ij}$$

for all j. Equivalently,

$$\xi(f) = \psi^T \cdot \xi(\psi \cdot f)$$

or

$$\xi(\psi \cdot f) = (\psi^T)^{-1} \cdot \xi(f).$$

If E is a holomorphic vector bundle, then we can define the **holomorphic frames** similarly, i.e., $f^T = (s_1, \dots, s_r), s_j \in \mathcal{O}_X(U, E)$, and $s_1 \wedge \dots \wedge s_r(x) \neq 0$, for $x \in$; and **holomorphic changes of frame**, i.e., holomorphic mappings $\psi : U \to \mathrm{GL}(r, \mathbb{C})$. Correspondingly, if $\xi \in \mathcal{O}_X(U, E)$, then $\xi(f) \in \mathcal{O}_X(U)^r$.

Definition 1.5. A Hermitian metric or Hermitian structure h on a vector bundle $E \to X$ is a smooth field of Hermitian inner products on the fibers of E, that is, for every $x \in X$,

$$h_x: E_x \times E_x \to \mathbb{C}$$

satisfies

- (1) $h_x(u, v)$ is \mathbb{C} -linear in u for every $v \in E_x$.
- (2) $h_x(u,v) = \overline{H_x(v,u)}, \ \forall u,v \in E_x.$
- (3) $h_x(u,u) > 0, \ \forall u \neq 0.$
- (4) $h_x(u,v)$ is a smooth function on X for every smooth sections u,v of E.

Remark. It is clear from the above conditions that h is \mathbb{C} -antilinear in the second variable. The third condition shows that h is non-degenerate. In fact, it is quite useful to think to h as to a \mathbb{C} -antilinear isomorphism $h: E \to E^*$.

Moreover, we see that $h_x(iu, iv) = h_x(u, v)$ for all $u, v \in E_x$.

Definition 1.6. A vector bundle E equipped with a Hermitian metric h is called a **Hermitian** vector bundle.

Suppose that $E \to X$ is a Hermitian vector bundle and that $f = (s_1, \dots, s_r)$ is a frame for $E \to X$ over some open set U. Define

$$h(f)_{ij} = h(s_i, s_j)$$

and let

$$h(f) = [h(f)_{ij}]$$

be the $r \times r$ matrix of the C^{∞} functions $\{h(f)_{ij}\}$, where $r = \operatorname{rank} E$. We see that h(f) is a positive definite Hermitian symmetric matrix and is a local representative for the Hermitian metric h with respect to the frame f.

Theorem 1.7. Every rank r complex vector bundle $E \to X$ admits a Hermitian metric.

1.2 Connections

Let X be a real manifold and $\pi: E \to X$ be a complex vector bundle on X. We denote by $\mathcal{A}^i(X, E)$ the sheaf of *i*-forms with values in E, i.e.

$$\mathcal{A}^{i}(X, E) = \Gamma\left(X, \bigwedge^{i}(T^{*}X) \otimes E\right),$$

where we adopt the notation $\otimes := \otimes_{C^{\infty}(X)}$. Let $\operatorname{End}(E)$ be the $C^{\infty}(X)$ -endomorphisms bundle of E, i.e. $\operatorname{End}(E) = \operatorname{Hom}_{C^{\infty}(X)}(E, E) = E^* \otimes_{C^{\infty}(X)} E$.

Definition 1.8. A connection on a vector bundle E is a \mathbb{C} -linear sheaf morphism

$$\nabla: \mathcal{A}^0(X, E) \to \mathcal{A}^1(X, E)$$

which satisfies the Leibniz rule

$$\nabla(f \cdot s) = df \otimes s + f \cdot \nabla(s)$$

for any function f on M and local section s of E.

Definition 1.9. A section s of a vector bundle E is called **parallel** or **flat** with respect to a connection ∇ on E if $\nabla(s) = 0$.

Proposition 1.10. If ∇ and ∇' are two connections on a vector bundle E, then $\nabla - \nabla'$ is $C^{\infty}(X)$ -linear.

In particular, $\nabla - \nabla' \in \mathcal{A}^1(X, \operatorname{End}(E))$.

Proof. For any $f \in C^{\infty}(M)$, by Leibniz rule, we have

$$\nabla(f \cdot s) = df \otimes s + f \cdot \nabla(s)$$

and

$$\nabla'(f \cdot s) = df \otimes s + f \cdot \nabla'(s).$$

Thus,

$$(\nabla - \nabla')(f \cdot s) = f \cdot (\nabla - \nabla')(s).$$

Note that $\nabla - \nabla'$ can be identified with a global section of

$$\operatorname{Hom}_{C^{\infty}(X)}\left(E, \bigwedge^{1} T^{*}X \otimes E\right) \cong E^{*} \otimes_{C^{\infty}(M)} \bigwedge^{1} T^{*}X \otimes E \cong \bigwedge^{1} T^{*}X \otimes \operatorname{End}_{C^{\infty}(X)}(E).$$

So,
$$\nabla - \nabla' \in \mathcal{A}^1(X, \operatorname{End}(E))$$
.

Proposition 1.11. If ∇ is a connection on E and $a \in \mathcal{A}^1(M, \operatorname{End}(E))$, then $\nabla + a$ is again a connection on E.

Proof. For any $f \in \mathcal{A}^0(M)$, we have $a(s \cdot s) = f \cdot a(s)$. Thus, we see that $(\nabla + a)(f \cdot s) = \nabla(f \cdot s) + a(f \cdot s) = df \otimes s + f \cdot \nabla(s) + f \cdot a(s) = df \otimes s + f \cdot (\nabla + a)(s)$. So, $\nabla + a$ is a connection on E.

By the definition of affine space over a vector space, we have:

Corollary 1.12. The set of all connections on a vector bundle E is an affine space over the complex vector space $\mathcal{A}^1(M, \operatorname{End}(E))$ in a natural way.

We now give a local description of a connection ∇ on a vector bundle $E \to X$.

Definition 1.13. Let f be a frame over U for a vector bundle $E \to X$, equipped with a connection ∇ . We define the **connection matrix** $\omega(\nabla, f)$ by setting

$$\omega(\nabla, f) = (\omega_{ij}(\nabla, f)),$$

where $\omega_{ij}(\nabla, f)$ are complex-valued 1-forms in U with

$$\nabla(s_j) = \sum_{i=1}^r \omega_{ij}(\nabla, f) \otimes s_i. \tag{1.2.1}$$

We abuse the notation $\omega(f) = \omega(\nabla, f)$ and $\omega_{ij}(f) = \omega_{ij}(\nabla, f)$ when there is no danger of confusion.

Remark. The equation (1.3.3) can be written as

$$\nabla \cdot f = \omega \cdot f$$
.

Note that ∇ is not $C^{\infty}(X)$ -linear, so we don't have $(\nabla \xi)(f) = \omega(f) \cdot \xi(f)$ in general.

Proposition 1.14. Let U be an open subset of X, and let $f^T = (s_1, \dots, s_r)$ be a frame over U. Then, locally we have

$$\nabla = d + \omega(f),$$

where $\omega(f)$ is the connection matrix of ∇ with respect to f, in the sense $(\nabla \xi)(f) = [d + \omega(f)]\xi(f)$.

Proof. For an arbitrary section ξ of E over U, we can write it as

$$\xi = \sum_{i} \xi^{i}(f)s_{i}, \tag{1.2.2}$$

where $\xi^{i}(f)$ are complex-valued C^{∞} -functions in U. Then we have

$$\nabla \xi = \sum_{j} \nabla (\xi^{j}(f)s_{j})$$

$$= \sum_{j} \left(d\xi^{j}(f) \otimes s_{j} + \xi^{j}(f) \nabla (s_{j}) \right)$$

$$= \sum_{j} \left(d\xi^{j}(f) \otimes s_{j} + \xi^{j}(f) \sum_{i} \omega_{ij}(f) \otimes s_{i} \right)$$

$$= \sum_{j} d\xi^{j}(f) \otimes s_{j} + \sum_{j} \left(\sum_{k} \omega_{jk}(f) \xi^{k}(f) \right) \otimes s_{j}.$$

Thus, we see that

$$(\nabla \xi)(f) = d\xi(f) + \omega(f)\xi(f) = [d + \omega(f)]\xi(f).$$

Thus, we have $\nabla = d + \omega(f)$, where we have set

$$d\xi(f) = \begin{bmatrix} d\xi^1(f) \\ \vdots \\ d\xi^r(f) \end{bmatrix},$$

by thinking of $d + \omega(f)$ as being an operator acting on vector-valued functions.

Example 1.15. Let E_1 and E_2 be two vector bundles on M endowed with connections ∇_1 and ∇_2 .

(1) If s_1 and s_2 are local sections of E_1 and E_2 , we set

$$\nabla(s_1 \oplus s_2) = \nabla_1(s_1) \oplus \nabla_2(s_2).$$

This defines a natural connection on the direct sum $E_1 \oplus E_2$.

(2) If s_1 and s_2 are local sections of E_1 and E_2 , we set

$$\nabla(s_1 \otimes s_2) = \nabla_1(s_1) \otimes s_2 + s_1 \otimes \nabla_2(s_2).$$

This defines a natural connection on the tensor product $E_1 \otimes E_2$. It is routine to check that ∇ is well-defined and indeed a connection.

(3) Let $f: E_1 \to E_2$ be a morphism of vector bundles, i.e. f is a section on $\text{Hom}(E_1, E_2)$. Let s_1 be a local section of E_1 , then $f(s_1) = f \circ s_1$ is a local section on E_2 . A natural connection

$$\nabla^H: \mathcal{A}^0(X, \operatorname{Hom}(E_1, E_2)) \to \mathcal{A}^1(X, \operatorname{Hom}(E_1, E_2))$$

on $Hom(E_1, E_2)$ can be defined by

$$f \mapsto \nabla^H f$$

where

$$(\nabla^H f)(s_1) = \nabla_2(f(s_1)) - f(\nabla_1(s_1)).$$

In the second term, f is applied to $\nabla_1(s_1)$ according to $f(\alpha \otimes t) = \alpha \otimes f(t)$ for $\alpha \in \mathcal{A}^1(X, E)$ and $t \in \mathcal{A}^0(X, E)$.

Note that $\nabla^H f$ sends a section of E_1 to a section of $T^*X \otimes E_2$, we can consider ∇^H as a morphism $\nabla^H f: E_1 \to T^*X \otimes E_2$ of vector bundles. So, $\nabla^H f \in \Gamma(\operatorname{Hom}(E_1, T^*X \otimes E_2)) \cong \Gamma(T^*X \otimes E_1^* \otimes E_2) \cong \Gamma(T^*X \otimes \operatorname{Hom}(E_1, E_2)) = \mathcal{A}^1(X, \operatorname{Hom}(E_1, E_2)).$

(4) Let E be a vector bundle equipped with a connection ∇ . Take $E_1 = E$ and $E_2 = X \times \mathbb{C}$ to be the trivial bundle with trivial connection d. Then we have a connection ∇^* on the dual bundle E^* by

$$\nabla^*(f)(s) = d(f(s)) - f(\nabla(s)).$$

(5) Let $f: M \to N$ be a differentiable map and let ∇ be a connection on a vector bundle E over N. Let ∇ over an open subset $U_i \subset N$ be of the form $d + \omega_i$ (after trivializing $E|_{U_i}$). Then the pull-back connection $f^*\nabla$ on the pull-back vector bundle f^*E over M is locally defined by

$$f^*\nabla|_{f^{-1}(U_i)} = d + f^*\omega_i.$$

It is straightforward to see that the locally given connections glue to a global one on f^*E .

Definition 1.16. Let (E,h) be an Hermitian vector bundle. A connection ∇ on E is an **Hermitian connection** with respect to h if for any local sections s_1, s_2 one has

$$d(h(s_1, s_2)) = h(\nabla(s_1), s_2) + h(s_1, \nabla(s_2)).$$

Lemma 1.17. Let (E,h) be an Hermitian vector bundle. A connection ∇ on E is an Hermitian connection with respect to h if and only if

$$dh(f) = \omega(f)^T \cdot h(f) + h(f) \cdot \overline{\omega(f)}$$

for all frames $f = (s_1, \dots, s_r)^T$.

Proof. First, let $f = (s_1, \dots, s_r)^T$ be any frame and that ∇ an Hermitian connection with respect to h on E. Then we see that

$$dh(f)_{ij} = dh(s_i, s_j)$$

$$= h(\nabla(s_i), s_j) + h(s_i, \nabla(s_j))$$

$$= h\left(\sum_{k=1}^r \omega_{ki}(f) \otimes s_k, s_j\right) + h\left(s_i, \sum_{\ell=1}^r \omega_{\ell j}(f) \otimes s_\ell\right)$$

$$= \sum_{k=1}^r \omega_{ki}(f)h(s_k, s_j) + \sum_{\ell=1}^r \overline{\omega_{\ell j}(f)}h(s_i, s_\ell)$$

$$= \sum_{k=1}^r \omega_{ki}(f)h(f)_{kj} + \sum_{\ell=1}^r \overline{\omega_{\ell j}(f)}h(f)_{i\ell}$$

So, we have

$$dh(f) = \omega(f)^T \cdot h(f) + h(f) \cdot \overline{\omega(f)}.$$

Conversely, suppose $dh(f) = \omega(f)^T \cdot h(f) + h(f) \cdot \overline{\omega(f)}$ is satisfied for all frames f. Then, in terms

of a local frame, one obtains immediately

$$dh(\xi,\eta) = dh\left(\sum_{i=1}^{r} \xi^{i}(f)s_{i}, \sum_{j=1}^{r} \eta^{j}(f)s_{j}\right) = d\left(\sum_{i=1}^{r} \sum_{j=1}^{r} \xi^{i}(f)\overline{\eta^{j}(f)}h(s_{i},s_{j})\right)$$

$$= d\left(\sum_{i=1}^{r} \sum_{j=1}^{r} \xi^{i}(f)\overline{\eta^{j}(f)}h(f)_{ij}\right) = d\left(\overline{\eta(f)}^{T}h(f)^{T}\xi(f)\right)$$

$$= \left(d\overline{\eta(f)}\right)^{T}h(f)^{T}\xi(f) + \overline{\eta(f)}^{T}(dh(f))^{T}\xi(f) + \overline{\eta(f)}^{T}h(f)^{T}d\xi(f)$$

$$= \left(d\overline{\eta(f)}\right)^{T}h(f)^{T}\xi(f) + \overline{\eta(f)}^{T}[h(f)^{T} \cdot \omega(f) + \overline{\omega(f)}^{T} \cdot h(f)^{T}]\xi(f) + \overline{\eta(f)}^{T}h(f)^{T}d\xi(f)$$

$$= \left(d\overline{\eta(f)}\right)^{T}h(f)^{T}\xi(f) + \overline{\eta(f)}^{T}h(f)^{T}\omega(f)\xi(f) + \overline{\eta(f)}^{T}\overline{\omega(f)}^{T}h(f)^{T}\xi(f) + \overline{\eta(f)}^{T}h(f)^{T}d\xi(f)$$

$$= \left(d\overline{\eta(f)} + \overline{\omega(f)\eta(f)}\right)^{T}h(f)^{T}\xi(f) + \overline{\eta(f)}^{T}h(f)^{T}(d\xi(f) + \omega(f)\xi(f))$$

$$= \overline{(d + \omega(f))\eta(f)}^{T}h(f)^{T}\xi(f) + \overline{\eta(f)}^{T}h(f)^{T}(d + \omega(f))\xi(f)$$

$$= h(\xi, \nabla \eta) + h(\nabla \xi, \eta).$$

Definition 1.18. A frame f is called **unitary** if h(f) = I.

Lemma 1.19. Unitary frames always exists near a given point $x_0 \in U$.

Proof. The Gram-Schmidt orthogonalization process allows one to find r local sections which form an orthonormal basis for E_x at all points x near x_0 .

Lemma 1.20. Let ψ be a change of frame, then

$$d\psi^{T} + \omega(f) \cdot \psi^{T} = \psi^{T} \cdot \omega(\psi \cdot f).$$
Proof. Suppose $\psi \cdot f = (\sum_{i} \psi_{1i} s_{i}, \cdots, \sum_{i} \psi_{ri} s_{i})^{T} = (e_{1}, \cdots, e_{r})^{T}$. Then,
$$\nabla(e_{j}) = \sum_{i} \omega_{ij} (\psi \cdot f) \otimes e_{i}$$

$$= \sum_{i} \omega_{ij}(\psi \cdot f) \otimes \left(\sum_{k} \psi_{ik} s_{k}\right)$$

$$= \sum_{i} \sum_{k} \omega_{ij}(\psi \cdot f) \psi_{ik} \otimes s_{k}$$

$$= \sum_{k} \left(\sum_{i} \omega_{ij}(\psi \cdot f) \psi_{ik}\right) \otimes s_{k}$$

On the other hand,

$$\nabla \left(\sum_{k} \psi_{jk} s_{k} \right) = \sum_{k} d\psi_{jk} \otimes s_{k} + \sum_{k} \sum_{\ell} \omega_{k\ell}(f) \psi_{j\ell} \otimes s_{k}$$
$$= \sum_{k} \left(d\psi_{jk} + \sum_{\ell} \omega_{k\ell}(f) \psi_{j\ell} \right) \otimes s_{k}.$$

By comparing coefficients, we obtain

$$\sum_{i} \omega_{ij} (\psi \cdot f) \psi_{ik} = d\psi_{jk} + \sum_{\ell} \omega_{k\ell} (f) \psi_{j\ell}$$

for each j, k. It follows that

$$\psi^T \cdot \omega(\psi \cdot f) = d\psi^T + \omega(f) \cdot \psi^T.$$

Proposition 1.21. Let $E \to X$ be a Hermitian vector bundle. Then there exists an Hermitian connection ∇ on E with respect to the Hermitian metric h on E.

Proof. We can find a locally finite covering U_{α} and unitary frames f_{α} defined in U_{α} . Then

$$dh(f) = \omega(f)^T \cdot h(f) + h(f) \cdot \overline{\omega(f)}$$

becomes

$$0 = \omega(f)^T + \overline{\omega(f)}$$

for a unitary frame; i.e., $\omega(f_{\alpha})$ is to be skew-Hermitian.

In each U_{α} we can choose the trivial skew-Hermitian matrix of the form $\omega_{\alpha} = 0$; i.e., $\omega(f_{\alpha}) = 0$. If we make a change of frame in U_{α} , then we see that we require that

$$\omega(\psi \cdot f_{\alpha}) = (\psi^T)^{-1} d\psi^T$$

by Lemma 1.20. Therefore, define $\omega(\psi \cdot f_{\alpha})$ by $(\psi^T)^{-1}d\psi^T$, then we see that

$$h(\psi \cdot f_{\alpha})_{k\ell} = h(e_k, e_{\ell}) = h\left(\sum_{i} \psi_{ki} s_i, \sum_{j} \psi_{\ell j} s_j\right)$$

$$= \sum_{i} \sum_{j} \psi_{ki} \overline{\psi_{\ell j}} h(s_i, s_j)$$

$$= \sum_{i} \sum_{j} \psi_{ki} \overline{\psi_{\ell j}} h(f_{\alpha})_{ij}$$

$$= \left(\psi h(f_{\alpha}) \overline{\psi}^T\right)_{k\ell}.$$

So,

$$h(\psi \cdot f_{\alpha}) = \psi h(f_{\alpha}) \overline{\psi}^T = \psi \cdot \overline{\psi}^T.$$

It follows that

$$dh(\psi \cdot f_{\alpha}) = d(\psi \cdot \overline{\psi}^{T})$$

$$= d\psi \cdot \overline{\psi}^{T} + \psi \cdot \overline{d\psi}^{T}$$

$$= d\psi \cdot \psi^{-1} \cdot \psi \cdot \overline{\psi}^{T} + \psi \cdot \overline{\psi}^{T} \cdot (\overline{\psi}^{T})^{-1} \cdot \overline{d\psi}^{T}$$

$$= \omega(\psi \cdot f_{\alpha})^{T} \cdot h(\psi \cdot f_{\alpha}) + h(\psi \cdot f_{\alpha}) \cdot \overline{\omega(\psi \cdot f_{\alpha})},$$

which verifies the compatibility.

Let $\{\varphi_{\alpha}\}$ be a partition of unity subordinate to $\{U_{\alpha}\}$ and let D_{α} be the connection in $E|_{U_{\alpha}}$ defined by

$$(D_{\alpha}\xi)(f_{\alpha}) = d\xi(f_{\alpha}),$$

in which cases $\omega(D_{\alpha}, f_{\alpha}) = 0$. In general, D_{α} is defined with respect to other frames over U_{α} by

$$(D_{\alpha}\xi)(\psi \cdot f_{\alpha}) = d\xi(\psi \cdot f_{\alpha}) + \omega(D_{\alpha}, \psi \cdot f_{\alpha})\xi(\psi \cdot f_{\alpha}),$$

where $\omega(D_{\alpha}, \psi \cdot f_{\alpha}) = (\psi^T)^{-1} d\psi^T$. By the above discussion, we see that D_{α} is an Hermitian connection with respect to h on E. Now, let $D = \sum_{\alpha} \varphi_{\alpha} D_{\alpha}$, which is an Hermitian connection with respect to h on E as

$$h(D\xi,\eta) + h(\xi,D\eta) = \sum_{\alpha} \varphi_{\alpha}[h(D_{\alpha}\xi,\eta) + h(\xi,D_{\alpha}\eta)] = \sum_{\alpha} \varphi_{\alpha}dh(\xi,\eta) = dh(\xi,\eta).$$

1.3 Curvature

Proposition 1.22. The connection has a natural extension to an operator

$$\nabla: \mathcal{A}^k(X, E) \to \mathcal{A}^{k+1}(X, E)$$

uniquely defined by

- (a) $\nabla|_{\mathcal{A}^0(X,E)} = \nabla$.
- (b) $\forall \omega \in \mathcal{A}^k(X), \ \eta \in \mathcal{A}^0(X, E), \ we \ have$

$$\nabla(\omega \otimes \eta) = d\omega \otimes \eta + (-1)^k \omega \wedge \nabla \eta.$$

Proof. We first show the existence. Let $\{U_{\alpha}\}$ be a covering realizing the local trivialization $E|_{U_{\alpha}} \cong U_{\alpha} \times \mathbb{C}^r$ and $\{\varphi_{\alpha}\}_{{\alpha} \in A}$ be a partition of unity subordinate to $\{U_{\alpha}\}$. Then,

$$\eta = \sum_{\alpha \in A} \varphi_{\alpha} \eta,$$

which is a locally finite sum as $\{\varphi_{\alpha}^{-1}((0,1])|\alpha\in A\}$ is locally finite. Over U_{α} , we can define ∇ by

$$\nabla(\omega_{\alpha}\otimes\eta_{\alpha})=d\omega_{\alpha}\otimes\eta_{\alpha}+(-1)^{k}\omega_{\alpha}\wedge\nabla\eta_{\alpha}.$$

This is well-defined as for any $C^{\infty}(U_{\alpha})$ function f_{α} , we have

$$\nabla(\omega_{\alpha} \otimes (f_{\alpha} \cdot \eta_{\alpha})) = d\omega_{\alpha} \otimes (f_{\alpha} \cdot \eta_{\alpha}) + (-1)^{k} \omega_{\alpha} \wedge \nabla(f_{\alpha} \cdot \eta_{\alpha})$$

$$= f_{\alpha} \cdot d\omega_{\alpha} \otimes \eta_{\alpha} + (-1)^{k} \omega_{\alpha} \wedge (df_{\alpha} \otimes \eta_{\alpha} + f_{\alpha} \nabla \eta_{\alpha})$$

$$= f_{\alpha} \cdot d\omega_{\alpha} \otimes \eta_{\alpha} + (-1)^{k} \omega_{\alpha} \wedge df_{\alpha} \otimes \eta_{\alpha} + (-1)^{k} \omega_{\alpha} \wedge f_{\alpha} \nabla \eta_{\alpha}$$

$$= (f_{\alpha} \cdot d\omega_{\alpha} + df_{\alpha} \wedge \omega_{\alpha}) \otimes \eta_{\alpha} + (-1)^{k} f_{\alpha} \omega_{\alpha} \wedge \nabla \eta_{\alpha}$$

$$= d(f_{\alpha} \omega_{\alpha}) \otimes \eta_{\alpha} + (-1)^{k} f_{\alpha} \omega_{\alpha} \wedge \nabla \eta_{\alpha}$$

$$= \nabla(f_{\alpha} \omega_{\alpha} \otimes \eta_{\alpha}).$$

Then, globally, we have

$$\nabla(\omega \otimes \eta) = \nabla \left(\sum_{\alpha} \varphi_{\alpha} \omega \otimes \sum_{\beta} \varphi_{\beta} \eta \right)$$

$$= \sum_{\alpha} \sum_{\beta} \nabla \left(\varphi_{\alpha} \omega \otimes \varphi_{\beta} \eta \right)$$

$$= \sum_{\alpha} \sum_{\beta} \left[d(\varphi_{\alpha} \omega) \otimes (\varphi_{\beta} \eta) + (-1)^{k} \varphi_{\alpha} \omega \wedge \nabla(\varphi_{\beta} \eta) \right]$$

$$= d\omega \otimes \eta + (-1)^{k} \omega \wedge \nabla \eta.$$

The uniqueness is clear.

Proposition 1.23. The extension ∇ satisfies the generalized Leibniz rule, i.e. $\forall \alpha \in \mathcal{A}^r(X)$, $\beta \in \mathcal{A}^s(X, E)$, we have

$$\nabla(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^r \alpha \wedge \nabla \beta.$$

Proof. By the \mathbb{C} -linearity of ∇ , we may assume that $\beta = t \otimes s$, where $t \in \mathcal{A}^s(X)$ and $s \in \mathcal{A}^0(X, E)$. Thus,

$$\nabla(\alpha \wedge \beta) = \nabla((\alpha \wedge t) \otimes s)$$

$$= d(\alpha \wedge t) \otimes s + (-1)^{r+s} (\alpha \wedge t) \otimes \nabla(s)$$

$$= d\alpha \wedge t \otimes s + (-1)^r \alpha \wedge dt \otimes s + (-1)^{r+s} \alpha \wedge t \otimes \nabla s$$

$$= d\alpha \wedge \beta + (-1)^r \alpha \wedge (dt \otimes s + (-1)^s t \otimes \nabla s)$$

$$= d\alpha \wedge \beta + (-1)^r \alpha \wedge \nabla(t \otimes s)$$

$$= d\alpha \wedge \beta + (-1)^r \alpha \wedge \nabla \beta.$$

Definition 1.24. Let E be a vector bundle with a connection ∇ on E. The curvature

$$F_{\nabla}: \mathcal{A}^0(X, E) \to \mathcal{A}^2(X, E)$$

of ∇ is the composition

$$F_{\nabla} := \nabla \circ \nabla$$

i.e.

$$F_{\nabla}: \mathcal{A}^0(X, E) \xrightarrow{\nabla} \mathcal{A}^1(X, E) \xrightarrow{\nabla} \mathcal{A}^2(X, E)$$

Proposition 1.25. The curvature morphism $F_{\nabla}: \mathcal{A}^0(X, E) \to \mathcal{A}^2(X, E)$ is $C^{\infty}(X)$ -linear.

Proof. For any $f \in C^{\infty}(M)$, we have

$$F_{\nabla}(f \cdot s) = \nabla(\nabla(f \cdot s))$$

$$= \nabla(df \otimes s + f \cdot \nabla(s))$$

$$= d^{2}(f) \otimes s - df \wedge \nabla(s) + df \wedge \nabla(s) + f \cdot \nabla(\nabla(s))$$

$$= f \cdot F_{\nabla}(s).$$

By this proposition, we can consider F_{∇} as a global section of $\bigwedge^2 T^*X \otimes \operatorname{End}(E)$. Indeed, F_{∇} can be identified with a global section of

$$\operatorname{Hom}_{C^{\infty}(X)}\left(E, \bigwedge^{2} T^{*}X \otimes E\right) \cong E^{*} \otimes_{C^{\infty}(M)} \bigwedge^{2} T^{*}X \otimes E \cong \bigwedge^{2} T^{*}X \otimes \operatorname{End}_{C^{\infty}(X)}(E).$$

So, $F_{\nabla} \in \mathcal{A}^2(X, \operatorname{End}(E))$.

Recall that we identify $\operatorname{Hom}(V,W) \cong V^* \otimes W$ by using the following map

$$V^* \otimes W \to \operatorname{Hom}(V, W)$$

$$v^* \otimes w \mapsto (x \mapsto v(x)w),$$

whose inverse map is given by

$$\operatorname{Hom}(V, W) \to V^* \otimes W$$

$$f \mapsto \sum_{i=1}^{r} e_i^* \otimes f(e_i),$$

where $\{e_1, \dots, e_r\}$ is a basis for V, and $\{e_1^*, \dots, e_r^*\}$ is the dual basis for V^* .

If $\{s_1, \dots, s_r\}$ is a frame on E and $\{s_1^*, \dots, s_r^*\}$ is the dual frame on E^* , we see that

$$F_{\nabla} = \sum_{j=1}^{r} F_{\nabla}(s_j) \otimes s_j^* \tag{1.3.1}$$

as an element in $\bigwedge^2 T^*X \otimes E \otimes E^*$.

We define a bilinear map \wedge for any vector bundle E:

$$\wedge: \mathcal{A}^r(X, \operatorname{End}(E)) \times \mathcal{A}^s(X, \operatorname{End}(E)) \to \mathcal{A}^{r+s}(X, E),$$

uniquely determined by

$$(\omega^r \otimes A) \wedge (\eta^s \otimes B) \mapsto \omega^r \wedge \eta^s \otimes AB,$$

where $\omega^r \in \mathcal{A}^r(X)$, $\eta^s \in \mathcal{A}^s(X)$ and $A, B \in C^{\infty}(\text{End}(E))$.

So, if $A = (\alpha_{ij}^r)$ and $B = (\beta_{ij}^s)$ for $\alpha_{ij}^r \in \mathcal{A}^r(X), \beta_{ij}^s \in \mathcal{A}^s(X)$, then $A \wedge B = (c_{ij}^{r+s})$, where $c_{ij}^{r+s} = \sum_k \alpha_{ik}^r \wedge \beta_{kj}^s$.

Proposition 1.26. Let U be an open subset of X, and $f^T = (s_1, \dots, s_r)$ a frame over U. Let $\omega(f)$ is the connection matrix of $\nabla : \mathcal{A}^0(X, E) \to \mathcal{A}^1(X, E)$ with respect to f.

Then, for any $\nabla : \mathcal{A}^k(X, E) \to \mathcal{A}^{k+1}(X, E)$, we have

$$\nabla = d + \omega(f)$$

locally on U in the sense $(\nabla \xi)(f) = [d + \omega(f)]\xi(f)$, where $\xi \in \mathcal{A}^k(X, E)$.

Proof. For an arbitrary $\xi \in \mathcal{A}^k(U, E)$, we can write it as

$$\xi = \sum_{i} \xi^{i}(f) \otimes s_{i}, \tag{1.3.2}$$

where $\xi^{i}(f)$ are complex-valued C^{∞} -differential k-forms in U. Then we have

$$\nabla \xi = \sum_{j} \nabla (\xi^{j}(f) \otimes s_{j})$$

$$= \sum_{j} \left(d\xi^{j}(f) \otimes s_{j} + (-1)^{k} \xi^{j}(f) \wedge \nabla (s_{j}) \right)$$

$$= \sum_{j} \left(d\xi^{j}(f) \otimes s_{j} + (-1)^{k} \xi^{j}(f) \wedge \left(\sum_{i} \omega_{ij}(f) \otimes s_{i} \right) \right)$$

$$= \sum_{j} \left(d\xi^{j}(f) \otimes s_{j} + (-1)^{k} \left(\sum_{i} \xi^{j}(f) \wedge \omega_{ij}(f) \otimes s_{i} \right) \right)$$

$$= \sum_{j} d\xi^{j}(f) \otimes s_{j} + \sum_{j} \left(\sum_{k} \omega_{jk}(f) \wedge \xi^{k}(f) \right) \otimes s_{j}.$$

Thus, we see that

$$(\nabla \xi)(f) = d\xi(f) + \omega(f) \wedge \xi(f) = [d + \omega(f)]\xi(f).$$

Thus, we have $\nabla = d + \omega(f)$, where we have set

$$d\xi(f) = \begin{bmatrix} d\xi^1(f) \\ \vdots \\ d\xi^r(f) \end{bmatrix},$$

by thinking of $d + \omega(f)$ as being an operator acting on vector-valued diffrential k-forms.

Definition 1.27. Let U be an open subset of X, and let $f^T = (s_1, \dots, s_r)$ be a frame over U. We define the **curvature matrix** $\Omega(\nabla, f)$ by setting

$$\Omega(\nabla, f) = (\Omega_{ij}(\nabla, f)),$$

where $\Omega_{ij}(\nabla, f)$ are complex-valued 2-forms in U with

$$F_{\nabla}(s_j) = \sum_{i=1}^r \Omega_{ij}(\nabla, f) \otimes s_i. \tag{1.3.3}$$

We abuse the notation $\Omega(f) = \Omega(\nabla, f)$ and $\Omega_{ij}(f) = \Omega_{ij}(\nabla, f)$ when there is no danger of confusion.

Proposition 1.28. Let U be an open subset of X, and let $f^T = (s_1, \dots, s_r)$ be a frame over U. Then, we have

$$\Omega(f) = d\omega(f) + \omega(f) \wedge \omega(f)$$

locally on U, where $\omega(f)$ is the connection matrix of $\nabla: \mathcal{A}^0(X, E) \to \mathcal{A}^1(X, E)$ with respect to f.

Proof. Let ξ be a section of E, i.e. $\xi \in \mathcal{A}^0(X, E)$. Recall that F_{∇} is $C^{\infty}(X)$ -linear, we have

$$(F_{\nabla}\xi)(f) = \Omega(f) \cdot \xi(f).$$

Then,

$$\Omega(f) \cdot \xi(f) = (F_{\nabla}\xi)(f) = (\nabla(\nabla\xi))(f)
= [d + \omega(f)](\nabla\xi)(f)
= [d + \omega(f)] \circ [d + \omega(f)]\xi(f)
= [d + \omega(f)][d\xi(f) + \omega(f)\xi(f)]
= d^{2}\xi(f) + \omega(f) \wedge d\xi(f) + d[\omega(f)\xi(f)] + \omega(f) \wedge [\omega(f)\xi(f)]
= \omega(f) \wedge d\xi(f) + [d\omega(f)] \cdot \xi(f) + (-1)\omega(f) \wedge d\xi(f) + [\omega(f) \wedge \omega(f)]\xi(f)
= [d\omega(f) + \omega(f) \wedge \omega(f)] \cdot \xi(f).$$

So,

$$\Omega(f) = d\omega(f) + \omega(f) \wedge \omega(f).$$

Corollary 1.29 (Bianchi identity).

$$d\Omega(f) = \Omega(f) \wedge \omega(f) - \omega(f)\Omega(f) = [\Omega(f), \omega(f)].$$

Proof.

$$\begin{split} d\Omega(f) &= d^2\omega(f) + d[\omega(f) \wedge \omega(f)] \\ &= d\omega(f) \wedge \omega(f) - \omega(f) \wedge d\omega(f) \\ &= d\omega(f) \wedge \omega(f) + \omega(f) \wedge \omega(f) \wedge \omega(f) \\ &- \omega(f) \wedge \omega(f) \wedge \omega(f) - \omega(f) \wedge d\omega(f) \\ &= \Omega(f) \wedge \omega(f) - \omega(f) \wedge \Omega(f). \end{split}$$

Let E be a vector bundle with a connection ∇ . By Example 1.15(3), we see that ∇ induces a natural connection $\nabla^{\operatorname{End}(E)}$ on $\operatorname{End}(E)$. This extends to a operator

$$\nabla^{\operatorname{End}(E)}: \mathcal{A}^k(X, \operatorname{End}(E)) \to \mathcal{A}^{k+1}(X, \operatorname{End}(E)).$$

Now, since the curvature F_{∇} of the connection ∇ can be regarded as an element on $\mathcal{A}^2(X, \operatorname{End}(E))$, the notation $\nabla^{\operatorname{End}(E)}(F_{\nabla}) \in \mathcal{A}^3(X, \operatorname{End}(E))$ makes sense. The Bianchi identity states that

$$\nabla^{\operatorname{End}(E)}(F_{\nabla}) = 0.$$

Before proving this result, we need the following lemmas.

Lemma 1.30. Let E be a vector bundle with a connection ∇ and $f = (s_1, \dots, s_r)^T$ a frame over U on E and $f^* = (s_1^*, \dots, s_r^*)^T$ be the dual frame on the dual bundle E^* , i.e.

$$s_i^*(s_j) = \delta_{ij}.$$

Let ∇^* be the natural connection on E^* induced by ∇ . Then, we have

$$\omega(\nabla^*, f^*) = -\omega(\nabla, f)^T.$$

Proof. Recall that

$$\nabla s_i = \sum_{\ell=1}^r \omega_{\ell i}(f) \otimes s_{\ell}$$

and

$$(\nabla^* s_j^*)(s_i) = d(s_j^*(s_i)) - s_j^*(\nabla s_i) = d(\delta_{ij}) - s_j^* \left(\sum_{\ell=1}^r \omega_{\ell i}(f) \otimes s_\ell \right)$$

$$= -\sum_{\ell=1}^r \omega_{\ell i}(f) \cdot s_j^*(s_\ell) = -\sum_{\ell=1}^r \omega_{\ell i}(f) \cdot \delta_{j\ell}$$

$$= -\omega_{ji}(f).$$

Thus,

$$\nabla^* s_j^* = -\sum_{k=1}^r \omega_{jk}(f) \otimes s_k^*.$$

So, we see that

$$\omega(\nabla^*, f^*) = -\omega(\nabla, f)^T.$$

Lemma 1.31. Let $f = (s_1, \dots, s_r)^T$ be a frame over U on E and $f^* = (s_1^*, \dots, s_r^*)^T$ be the dual frame on E^* . Then, $g := f \otimes f^* = (s_i \otimes s_j^*)_{ij}$ is a frame on $E \otimes E^*$. Suppose $\xi \in \mathcal{A}^k(X, \operatorname{End}(E))$, then, we have

$$(\nabla^{\operatorname{End}(E)}\xi)(g) = d\xi(g) + \omega(f) \wedge \xi(g) + (-1)^{k+1}\xi(g) \wedge \omega(f).$$

Proof. We first Identify the bundle $\operatorname{End}(E)$ with $E \otimes E^*$. Let ξ be a section of $\bigwedge^k T^*X \otimes \operatorname{End}(E) = \bigwedge^k T^*X \otimes E \otimes E^*$, then we can write

$$\xi = \sum_{j=1}^{r} \sum_{i=1}^{r} \xi_{ij} \otimes (s_i \otimes s_j^*),$$

where $\xi_{ij} \in \mathcal{A}^k(U)$. Let s_{ij} denotes $s_i \otimes s_j^*$.

We now compute

$$\nabla^{\operatorname{End}(E)} \xi = \nabla^{\operatorname{End}(E)} \left(\sum_{i=1}^{r} \sum_{j=1}^{r} \xi_{ij} \otimes (s_i \otimes s_j^*) \right)$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r} \nabla^{\operatorname{End}(E)} (\xi_{ij} \otimes s_{ij})$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r} \left[d\xi_{ij} \otimes s_{ij} + (-1)^k \xi_{ij} \wedge \nabla^{\operatorname{End}(E)} (s_i \otimes s_j^*) \right]$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r} d\xi_{ij} \otimes s_{ij} + (-1)^k \sum_{i=1}^{r} \sum_{j=1}^{r} \xi_{ij} \wedge \left[(\nabla s_i) \otimes s_j^* + s_i \otimes (\nabla^* s_j^*) \right]$$

Recall that

$$\nabla s_i = \sum_{\ell=1}^r \omega_{\ell i}(f) \otimes s_\ell$$

and

$$\nabla^* s_j^* = -\sum_{k=1}^r \omega_{jk}(f) \otimes s_k^*$$

We see that

$$(\nabla s_i) \otimes s_j^* + s_i \otimes (\nabla^* s_j^*) = \left(\sum_{\ell=1}^r \omega_{\ell i}(f) \otimes s_\ell\right) \otimes s_j^* - s_i \otimes \left(\sum_{k=1}^r \omega_{jk}(f) \otimes s_k^*\right)$$
$$= \sum_{\ell=1}^r \omega_{\ell i}(f) \otimes \left(s_\ell \otimes s_j^*\right) - \sum_{k=1}^r \omega_{jk}(f) \otimes \left(s_i \otimes s_k^*\right)$$

So, it follows that

$$\nabla^{\operatorname{End}(E)}\xi = \sum_{i=1}^{r} \sum_{j=1}^{r} d\xi_{ij} \otimes s_{ij} + (-1)^{k} \sum_{i,j} \xi_{ij} \wedge \left[\sum_{\ell=1}^{r} \omega_{\ell i}(f) \otimes (s_{\ell} \otimes s_{j}^{*}) - \sum_{k=1}^{r} \omega_{jk}(f) \otimes (s_{i} \otimes s_{k}^{*}) \right]$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r} d\xi_{ij} \otimes s_{ij} + (-1)^{k} \sum_{i,j} \left[\sum_{\ell=1}^{r} \xi_{ij} \wedge \omega_{\ell i}(f) \otimes (s_{\ell} \otimes s_{j}^{*}) - \sum_{k=1}^{r} \xi_{ij} \wedge \omega_{jk}(f) \otimes (s_{i} \otimes s_{k}^{*}) \right]$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r} d\xi_{ij} \otimes s_{ij} + (-1)^{k} \sum_{\ell,j} \left(\sum_{i=1}^{r} \xi_{ij} \wedge \omega_{\ell i}(f) \right) \otimes s_{\ell j} - (-1)^{k} \sum_{i,k} \left(\sum_{j=1}^{r} \xi_{ij} \wedge \omega_{jk}(f) \right) \otimes s_{ik}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{r} d\xi_{ij} \otimes s_{ij} + \sum_{\ell,j} \left(\sum_{i=1}^{r} \omega_{\ell i}(f) \wedge \xi_{ij} \right) \otimes s_{\ell j} - (-1)^{k} \sum_{i,k} \left(\sum_{j=1}^{r} \xi_{ij} \wedge \omega_{jk}(f) \right) \otimes s_{ik}$$

So, we see that

$$(\nabla^{\operatorname{End}(E)}\xi)(g) = d\xi(g) + \omega(f) \wedge \xi(g) + (-1)^{k+1}\xi(g) \wedge \omega(f).$$

Corollary 1.32. Write $\nabla = d + \omega$ with $\omega \in \mathcal{A}^1(X, \operatorname{End}(E))$, then we have

$$\nabla^{\mathrm{End}(E)}\xi = d\xi + \omega \wedge \xi + (-1)^{k+1}\xi \wedge \omega$$

for all $\xi \in \mathcal{A}^k(X, \operatorname{End}(E))$.

Proposition 1.33 (Bianchi identity). Let E be a vector bundle with a connection ∇ and F_{∇} be the curvature of ∇ , then we have

$$\nabla^{\operatorname{End}(E)}(F_{\nabla}) = 0.$$

Proof. Let f, g be the frames in Lemma 1.31.

By (1.3.1), we see that

$$F_{\nabla} = \sum_{j=1}^{r} F_{\nabla}(s_j) \otimes s_j^* = \sum_{j=1}^{r} \sum_{i=1}^{r} \Omega_{ij}(f) \otimes s_i \otimes s_j^*.$$

So,

$$F_{\nabla}(g) = \Omega(f).$$

Thus, we see that

$$(\nabla^{\operatorname{End}(E)} F_{\nabla})(g) = dF_{\nabla}(g) + \omega(f) \wedge F_{\nabla}(g) + (-1)^{2+1} F_{\nabla}(g) \wedge \omega(f)$$

$$= d\Omega(f) + \omega(f) \wedge \Omega(f) - \Omega(f) \wedge \omega(f)$$

$$= \Omega(f) \wedge \omega(f) - \omega(f)\Omega(f) + \omega(f) \wedge \Omega(f) - \Omega(f) \wedge \omega(f)$$

$$= 0$$

This implies that $\nabla^{\operatorname{End}(E)}(F_{\nabla}) = 0$.

Proposition 1.34. Let E_1 and E_2 be vector bundles endowed with connections ∇_1 and ∇_2 , respectively.

(1) The curvature of the induced connection on the direct sum $E_1 \oplus E_2$ is given by

$$F = F_{\nabla_1} \oplus F_{\nabla_2}$$
.

(2) On the tensor product $E_1 \otimes E_2$ the curvature is given by

$$F_{\nabla_1} \otimes 1 + 1 \otimes F_{\nabla_2}$$
.

(3) For the induced connection ∇^* on the dual bundle E^* one has

$$F_{\nabla^*} = -F_{\nabla}^T$$

in the sense

$$\Omega(F_{\nabla^*}, f^*) = -\Omega(\nabla, f)^T,$$

where f^* is the dual frame of f.

(4) Let $f: M \to N$ be a differentiable map between real manifolds. Let E be a vector bundle on N with a connection ∇ . The curvature of the pull-back connection $f^*\nabla$ of ∇ under f is

$$F_{f^*\nabla} = f^*F_{\nabla}.$$

Proof. (1) Let ∇ be the connection on $E = E_1 \oplus E_2$ induced by ∇_1 and ∇_2 , i.e.

$$\nabla(s_1 \oplus s_2) = \nabla_1(s_1) \oplus \nabla_2(s_2).$$

Then,

$$F(s_1 \oplus s_2) = F_{\nabla}(s_1 \oplus s_2)$$

$$= \nabla(\nabla(s_1 \oplus s_2))$$

$$= \nabla(\nabla_1 s_1 \oplus \nabla_2 s_2)$$

$$= \nabla_1^2 s_1 \oplus \nabla_2^2 s_2$$

$$= F_{\nabla_1}(s_1) \oplus F_{\nabla_2}(s_2).$$

(2) Let ∇ be the connection on $E = E_1 \otimes E_2$ induced by ∇_1 and ∇_2 , i.e.

$$\nabla(s_1 \otimes s_2) = \nabla_1(s_1) \otimes s_2 + s_1 \otimes \nabla_2(s_2).$$

Then,

$$F_{\nabla}(s_1 \otimes s_2)$$

$$= \nabla (\nabla (s_1 \otimes s_2)) = \nabla (\nabla_1 (s_1) \otimes s_2 + s_1 \otimes \nabla_2 (s_2))$$

$$= \nabla_1^2 (s_1) \otimes s_2 + (-1)^1 \nabla_1 (s_1) \otimes \nabla_2 (s_2) + \nabla_1 (s_1) \otimes \nabla_2 (s_2) + s_1 \otimes \nabla_2^2 (s_2)$$

$$= F_{\nabla_1}(s_1) \otimes s_2 + s_1 \otimes F_{\nabla_2}(s_2)$$

(3) By Lemma 1.30, we see that

$$\nabla^* s_j^* = -\sum_{k=1}^r \omega_{jk}(f) \otimes s_k^*.$$

So, we have

$$F_{\nabla^*}(s_j^*) = \nabla^*(\nabla^*(s_j^*))$$

$$= \nabla^* \left(-\sum_{k=1}^r \omega_{jk}(f) \otimes s_k^* \right)$$

$$= -\sum_{k=1}^r \nabla^* \left(\omega_{jk}(f) \otimes s_k^* \right)$$

$$= -\sum_{k=1}^r \left(d\omega_{jk}(f) \otimes s_k^* - \omega_{jk}(f) \wedge \nabla^* s_k^* \right)$$

$$= -\sum_{k=1}^r \left(d\omega_{jk}(f) \otimes s_k^* \right) + \sum_{k=1}^r \left(\omega_{jk}(f) \wedge \nabla^* s_k^* \right)$$

$$= -\sum_{k=1}^r \left(d\omega_{jk}(f) \otimes s_k^* \right) + \omega_{jk}(f) \wedge \sum_{k=1}^r \left(-\sum_{\ell=1}^r \omega_{k\ell}(f) \otimes s_\ell^* \right)$$

$$= -\sum_{\ell=1}^r \left(d\omega_{j\ell}(f) \otimes s_\ell^* \right) - \sum_{\ell=1}^r \left(\sum_{k=1}^r \omega_{jk}(f) \wedge \omega_{k\ell}(f) \right) \otimes s_\ell^*$$

Thus, we see that

$$\Omega(F_{\nabla^*}, f^*) = -d\omega(f)^T - (\omega(f) \wedge \omega(f))^T = -\Omega(\nabla, f)^T.$$

(4) Locally, we have that ∇ is given as $d+\omega$. Then $F_{f^*\nabla}=F_{d+f^*\omega}=d(f^*\omega)+f^*(\omega)\wedge f^*(\omega)=f^*(d\omega+\omega\wedge\omega)=f^*F_{\nabla}$.

1.4 The Chern connection and curvature in holomorphic category

We have already known that given connections ∇_1, ∇_2 on E_1 and E_2 respectively, there exists a natural connection ∇ on the direct sum $E := E_1 \oplus E_2$.

Conversely, let ∇ be a connection on $E = E_1 \oplus E_2$. If we denote by p_1 and p_2 the two projections $E_1 \oplus E_2 \to E_i$. Since every section s_i of E_i can be regarded as a section of E by natural inclusion,

we set $\nabla_i(s_i) := (p_i)_*(\nabla(s_i))$. Then, ∇_i is a connection on E_i . Indeed, since $(p_i)_*$ is $\mathcal{A}^0(M)$ -linear, we see that

$$\nabla_{i}(f \cdot s_{i}) = (p_{i})_{*}(\nabla(f \cdot s_{i}))$$

$$= (p_{i})_{*}(df \otimes s_{i} + f \cdot \nabla(s_{i}))$$

$$= (p_{i})_{*}(df \otimes s_{i}) + (p_{i})_{*}(f \cdot \nabla(s_{i}))$$

$$= df \otimes s_{i} + f \cdot (p_{i})_{*}(\nabla(s_{i}))$$

$$= df \otimes s_{i} + f \cdot \nabla_{i}(s_{i}).$$

Thus, we obtain

Lemma 1.35. The connection ∇ on $E = E_1 \oplus E_2$ induces natural connections ∇_1 and ∇_2 on E_1 and E_2 respectively.

Let E_1 be a subbundle of E with a given connection ∇ on E.

Definition 1.36. The **second fundamental form** of $E_1 \subset E$ with respect to the connection ∇ on E is the section $b \in \mathcal{A}^1(M, \text{Hom}(E_1, E/E_1))$ defined for any local section s of E_1 by

$$b(s) = (p_{E/E_1})_*(\nabla(s)).$$

The difference of $\nabla_1 \oplus \nabla_2$ and ∇ on $E = E_1 \oplus E_2$ can be measured by the second fundamental form. Indeed, if E splits as $E = E_1 \oplus E_2$ with $E_2 \cong E/E_1$ via the projection, then by definition, $b(s) = (p_2)_*(\nabla(s)) = \nabla(s) - (p_1)_*(\nabla(s)) = \nabla(s) - \nabla_1(s) = \nabla(s) - (\nabla_1 \oplus \nabla_2)(s)$. In this case, $b \in \mathcal{A}^1(M, \text{Hom}(E_1, E_2))$.

Now, consider the decomposition $\mathcal{A}^1(E) = \mathcal{A}^{1,0}(E) \oplus \mathcal{A}^{0,1}(E)$ and a connection ∇ on E, we can decompose ∇ as

$$\nabla = \nabla^{1,0} \oplus \nabla^{0,1}.$$

where $\nabla^{1,0}: \mathcal{A}^0(E) \to \mathcal{A}^{1,0}(E)$ and $\nabla^{0,1}: \mathcal{A}^0(E) \to \mathcal{A}^{0,1}(E)$. Note that we have $\nabla^{0,1}(f \cdot s) = \bar{\partial}(f) \otimes s + f \cdot \nabla^{0,1}(s)$. We have the following definition

Definition 1.37. A connection ∇ on a holomorphic vector bundle E is **compatible with the** holomorphic structure if $\nabla^{0,1} = \bar{\partial}$.

Theorem 1.38. Let (E, h) be a holomorphic vector bundle endowed with a Hermitian structure. Then there exists a unique Hermitian connection ∇ compatible with the holomorphic structure.

Proof. Let W be a open subset of X and f a holomorphic frame of E. Take a holomorphic section $\xi \in \mathcal{O}_X(W, E)$, we have

$$\nabla \xi(f) = (d + \omega(f))\xi(f)$$

= $(\partial + \omega^{1,0}(f))\xi(f) + (\bar{\partial} + \omega^{0,1}(f))\xi(f),$

where $\omega = \omega^{1,0} + \omega^{0,1}$ is the natural decomposition. So,

$$\nabla^{1,0} = (\partial + \omega^{1,0}(f))\xi(f)$$

and

$$\nabla^{0,1} = (\bar{\partial} + \omega^{0,1}(f))\xi(f).$$

Since ξ and f are holomorphic, we see that $\nabla^{0,1}\xi(f) = \omega^{0,1}(f)\xi(f)$. So, we see that ∇ is compatible with the holomorphic structure if and only if the connection matrix ω is of type (1,0).

We first show the uniqueness. Suppose ∇ is a desired connection satisfying the hypothesis. Let $\omega(f)$ be its associated connection matrix with respect to a given frame f over U. Then, by Lemma 1.17, we see that $dh(f) = \omega(f)^T h(f) + h(f) \overline{\omega(f)}$. Since ∇ is compatible with the holomorphic structure, we see that ω is of type (1,0) by the above argument. So, by comparing the types, we see that $\partial h(f) = \omega(f)^T h(f)$ and $\overline{\partial} h(f) = h(f) \overline{\omega(f)}$. So, this determines $\omega(f) = \overline{h(f)}^{-1} \partial \overline{h(f)}$ uniquely.

We now can construct a Hermitian connection ∇ compatible with the holomorphic structure by defining the associated connection matrix ω with $\omega(f) := \overline{h(f)}^{-1} \partial \overline{h(f)}$ for a given frame f over U. Then, we see that $\omega(f)^T = (\partial \overline{h(f)})^T (\overline{h(f)}^{-1})^T = (\partial \overline{h(f)})^T h(f)^{-1}$ as h(f) is Hermitian. So, $\omega(f)^T h(f) = (\partial \overline{h(f)})^T = \partial \overline{h(f)}^T = \partial h(f)$, which implies that ω is of (1,0) type and so ∇ is compatible with the holomorphic structure. Moreover, we see that $dh(f) = \omega(f)^T h(f) + h(f) \overline{\omega(f)}$. Thus, by Lemma 1.17, we see that the connection ∇ with connection matrix ω is a Hermitian connection.

Now, by the uniqueness, the local pieces glue to a connection globally. \Box

Definition 1.39. Let (E, h) be a holomorphic vector bundle endowed with a Hermitian structure. The unique Hermitian connection ∇ compatible with the holomorphic structure is called the **Chern connection** on (E, h).

Definition 1.40. Let E be a holomorphic vector bundle on a complex manifold X. A holomorphic connection on E is a \mathbb{C} -linear map of sheaves

$$D: E \to \Omega_X \otimes E$$

with

$$D(f \cdot s) = \partial(f) \otimes s + f \cdot D(s)$$

for any local holomorphic function f on X and any local holomorphic section s of E.

Remark. Here, E denotes both the vector bundle and the sheaf of holomorphic sections of this bundle.

Now, let E be a holomorphic vector bundle and $X = \bigcup U_i$ be an open covering such that there exists holomorphic trivializations

$$\psi_i: E|_{U_i} \cong U_i \times \mathbb{C}^r.$$

Definition 1.41. The Atiyah class

$$A(E) \in H^1(X, \Omega_X \otimes \operatorname{End}(E))$$

of the holomorphic vector bundle E is given by the Čech cocycle

$$A(E) = \{U_{ij}, \psi_i^{-1} \circ (\psi_{ij}^{-1} d\psi_{ij}) \circ \psi_j\}.$$

Proposition 1.42. A holomorphic vector bundle E admits a holomorphic connection if and only if its Atiyah class $A(E) \in H^1(X, \Omega_X \otimes \text{End}(E))$ is trivial.

2 Chern-Weil Theory

2.1 Invariant polynomials

Let V be a complex vector space of dimension n. A k-multilinear symmetric map

$$P: V \times \cdots \times V \to \mathbb{C}$$

corresponds to an element in $\operatorname{Sym}^k(V)^*$. So, one sees that there is a one-to-one correspondence

$$\begin{cases} \text{homogeneous polynomials} \\ \tilde{P}: V \to \mathbb{C} \text{ of degree } k > 1 \end{cases} \leftrightarrow \begin{cases} \text{symmetric } k\text{-multilinear form } P \\ \text{such that } P(X, \cdots, X) = \tilde{P}(X) \end{cases},$$

where $X = (x_1, \dots, x_n)^T \in V$ is a column vector of n variables, via the **polarization identity**

$$P(v_1, \dots, v_k) = \frac{1}{k!} \sum_{I \subseteq \{1, \dots, k\}} (-1)^{|I| - k} \tilde{P}\left(\sum_{i \in I} v_i\right).$$

In this section, we will mainly consider the case $V=\mathfrak{gl}(r,\mathbb{C}),$ the Lie algebra of complex $r\times r$ -matrices.

Definition 2.1. A symmetric k-multilinear map

$$P: \mathfrak{gl}(r,\mathbb{C}) \times \cdots \times \mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$$

is called **invariant** if for all $C \in GL(r, \mathbb{C})$ and all $B_1, \dots, B_k \in \mathfrak{gl}(r, \mathbb{C})$, we have

$$P(CB_1C^{-1}, \cdots, CB_kC^{-1}) = P(B_1, \cdots, B_k).$$

Similarly, a polynomial function

$$\tilde{P}:\mathfrak{gl}(r,\mathbb{C})\to\mathbb{C}$$

is called **invariant** if for all $C \in \mathrm{GL}(r,\mathbb{C})$ and all $B \in \mathfrak{gl}(r,\mathbb{C})$, we have

$$\tilde{P}(CBC^{-1}) = \tilde{P}(B).$$

Lemma 2.2. A symmetric k-multilinear map

$$P: \mathfrak{gl}(r,\mathbb{C}) \times \cdots \times \mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$$

is invariant if and only if its associated homogeneous polynomial

$$\tilde{P}:\mathfrak{gl}(r,\mathbb{C})\to\mathbb{C}$$

is invariant.

Proof. This follows from the polarization identity.

Example 2.3. (1) The determinant function

$$\det: \mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$$

is an invariant polynomial as it is independent of the change of bases.

(2) The trace function

$$\operatorname{tr}:\mathfrak{gl}(r,\mathbb{C})\to\mathbb{C}$$

is an invariant polynomial as it is independent of the change of bases.

Proposition 2.4. The k-multilinear symmetric map P is invariant if and only if

$$\sum_{j=1}^{k} P(B_1, \dots, B_{j-1}, [B, B_j], B_{j+1}, \dots, B_k) = 0$$

for all $B, B_1, \dots, B_k \in \mathfrak{gl}(r, \mathbb{C})$.

Proof. \Rightarrow : Let $X_i(t) = e^{tB}B_ie^{-tB}$, then

$$\frac{d}{dt}P(X_{1}(t),\dots,X_{k}(t)) = \sum_{j=1}^{k} P\left(X_{1}(t),\dots,\frac{d}{dt}X_{j}(t),\dots,X_{k}(t)\right)
= \sum_{j=1}^{k} P\left(X_{1}(t),\dots,Be^{tB}B_{j}e^{-tB} - e^{tB}B_{j}Be^{-tB},\dots,X_{k}(t)\right)$$

Thus,

$$\frac{d}{dt}\Big|_{t=0} P(X_1(t), \dots, X_k(t)) = \sum_{j=1}^k P(B_1, \dots, BB_j - B_j B, \dots, B_k) = 0.$$

 \Leftarrow : Let $F(t) = P(X_1(t), \dots, X_k(t))$. If the above equation holds for every B_j and $B \in \mathfrak{gl}(r, \mathbb{C})$, in particular for $X_j(t)$ and B, it follows that

$$F'(t) = 0, \quad \forall t \in \mathbb{R}.$$

Therefore,

$$F(t) = F(0) = P(B_1, \dots, B_k).$$

This implies that the map $g \mapsto P(gB_1g^{-1}, \dots, gB_kg^{-1})$ is constant on a neighborhood of $Id \in \operatorname{GL}(r,\mathbb{C})$, for fixed $B_1, \dots, B_k \in \mathfrak{gl}(r,\mathbb{C})$. But $\operatorname{GL}(r,\mathbb{C})$ is connected Lie group and the considered map is analytic, thus it has to be constant on whole $\operatorname{GL}(r,\mathbb{C})$.

We would like to extend the k-multilinear map to $\mathcal{A}^*(X, \operatorname{End}(E))$, where E is a vector bundle over X.

Let P be an invariant k-multilinear symmetric form on $\mathfrak{gl}(r,\mathbb{C})$. Then for any vector bundle E of rank r and any partition $m = i_1 + \cdots + i_k$, we can define a naturally induced k-linear map

$$P: \mathcal{A}^{i_1}(X, \operatorname{End}(E)) \times \cdots \times \mathcal{A}^{i_k}(X, \operatorname{End}(E)) \to \mathcal{A}^m_{\mathbb{C}}(X)$$

by

$$(\alpha_1 \otimes t_1, \cdots, \alpha_k \otimes t_k) \mapsto (\alpha_1 \wedge \cdots \wedge \alpha_k) P(t_1, \cdots, t_k).$$

Lemma 2.5. For any forms $\gamma_i \in \mathcal{A}^{i_j}(X, \operatorname{End}(E))$ one has

$$dP\left(\gamma_{1}, \cdots, \gamma_{k}\right) = \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P\left(\gamma_{1}, \cdots, \nabla^{\operatorname{End}(E)}\left(\gamma_{j}\right), \cdots, \gamma_{k}\right),$$

where $\nabla^{\operatorname{End}(E)}$ denotes the induced connection on $\operatorname{End}(E)$.

Proof. We will prove this statement by local calculation. We may write $\nabla = d + \omega$ with $\omega \in \mathcal{A}^1(X, \operatorname{End}(E))$. By Lemma 1.31, we see that

$$dP(\gamma_{1}, \dots, \gamma_{k}) = \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P(\gamma_{1}, \dots, d\gamma_{j}, \dots, \gamma_{k})$$

$$= \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P(\gamma_{1}, \dots, \nabla^{\operatorname{End}(E)} \gamma_{j} - \omega \wedge \gamma_{j} - (-1)^{i_{j}+1} \gamma_{j} \wedge \omega, \dots, \gamma_{k})$$

$$= \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P(\gamma_{1}, \dots, \nabla^{\operatorname{End}(E)} \gamma_{j}, \dots, \gamma_{k}) - \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P(\gamma_{1}, \dots, \omega \wedge \gamma_{j}, \dots, \gamma_{k})$$

$$+ \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j} i_{\ell}} P(\gamma_{1}, \dots, \gamma_{j} \wedge \omega, \dots, \gamma_{k})$$

It remains to show that

$$-\sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P(\gamma_{1}, \dots, \omega \wedge \gamma_{j}, \dots, \gamma_{k}) + \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j} i_{\ell}} P(\gamma_{1}, \dots, \gamma_{j} \wedge \omega, \dots, \gamma_{k}) = 0$$

or equivalently,

$$(-1)^{i_j} \sum_{j=1}^k P(\gamma_1, \dots, \gamma_j \wedge \omega, \dots, \gamma_k) - \sum_{j=1}^k P(\gamma_1, \dots, \omega \wedge \gamma_j, \dots, \gamma_k) = 0.$$

We may assume that $\gamma_j = \alpha_j \otimes B_i$ with $\alpha_j \in \mathcal{A}^{i_j}(X)$ and $\omega = \alpha \otimes B$ with $\alpha \in \mathcal{A}^1(X)$. Then,

Left Hand Side =
$$(-1)^{i_j} (\alpha_1 \wedge \cdots \wedge (\alpha_j \wedge \alpha) \cdots \wedge \alpha_k) \sum_{j=1}^k P(B_1, \cdots, [B_j, B], \cdots, B_k)$$

= 0.

Corollary 2.6. Let F_{∇} be the curvature of an arbitrary connection ∇ on a vector bundle E of rank r. Then for any invariant homogeneous polynomial \tilde{P} of degree k on $\mathfrak{gl}(r,\mathbb{C})$, the induced k-form $\tilde{P}(F_{\nabla}) \in \mathcal{A}^{2k}_{\mathbb{C}}(X)$ is closed.

Proof. Let $P: \mathfrak{gl}(r,\mathbb{C}) \times \cdots \mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$ be the k-multilinear symmetric map such that

$$P(B, \cdots, B) = \tilde{P}(B).$$

Then,

$$d\tilde{P}(F_{\nabla}) = dP(F_{\nabla}, \cdots, F_{\nabla})$$

$$= \sum_{j=1}^{k} (-1)^{\sum_{\ell=1}^{j-1} i_{\ell}} P(F_{\nabla}, \cdots, \nabla^{\operatorname{End}(E)}(F_{\nabla}), \cdots, F_{\nabla})$$

$$= 0$$

as $\nabla^{\operatorname{End}(E)}(F_{\nabla}) = 0$ by Bianchi identity.

Thus, for any invariant k-multilinear symmetric map P on $\mathfrak{gl}(r,C)$ and any vector bundle E of rank r, one can associate a de Rham cohomology class $[\tilde{P}(F_{\nabla})] \in H^{2k}_{dR}(X,\mathbb{C})$ as the induced k-form $\tilde{P}(F_{\nabla}) \in \mathcal{A}^{2k}_{\mathbb{C}}(X)$ is closed. Moreover, this class is independent of the chosen connection due to the following results.

Lemma 2.7. Let ∇ be a connection on a vector bundle E and $A \in \mathcal{A}^1(X, \operatorname{End}(E))$. Then,

$$F_{\nabla + A} = F_{\nabla} + \nabla^{\operatorname{End}(E)}(A) + A \wedge A.$$

Proof. Let ξ be a section on E. Then

$$F_{\nabla+A}(\xi) = (\nabla + A) \circ (\nabla + A)(\xi)$$

$$= (\nabla + A)(\nabla \xi + A\xi)$$

$$= \nabla^2(\xi) + A(\nabla \xi) + \nabla(A\xi) + (A \wedge A)(\xi)$$

$$= F_{\nabla}(\xi) + A(\nabla \xi) + \nabla(A\xi) + (A \wedge A)(\xi).$$

It remains to verify that

$$(\nabla^{\operatorname{End}(E)} A)(\xi) = A(\nabla \xi) + \nabla (A\xi).$$

We verify this statement locally. Let $f = (s_1, \dots, s_r)^T$ be a frame over U on E and $f^* = (s_1^*, \dots, s_r^*)^T$ be the dual frame on E^* . Then, $g := f \otimes f^* = (s_i \otimes s_j^*)_{ij}$ is a frame on $E \otimes E^*$. Thus,

$$\begin{split} [A(\nabla \xi) + \nabla (A\xi)](f) &= A(g) \wedge [d + \omega(f)]\xi(f) + d[A(g)\xi(f)] + \omega(f) \wedge A(g)\xi(f) \\ &= A(g) \wedge d\xi(f) + A(g) \wedge \omega(f)\xi(f) \\ &\qquad + [dA(g)] \cdot \xi(f) + (-1)^1 A(g) \wedge d\xi(f) + \omega(f) \wedge A(g)\xi(f) \\ &= A(g) \wedge \omega(f)\xi(f) + [dA(g)] \cdot \xi(f) + \omega(f) \wedge A(g)\xi(f) \\ &= (\nabla^{\operatorname{End}(E)} A)(g)\xi(f) & \text{(by Lemma 1.31)} \\ &= [(\nabla^{\operatorname{End}(E)} A)(\xi)](f). \end{split}$$

Proposition 2.8. If ∇_0 and ∇_1 are two connections on the same bundle E, then $\tilde{P}(F_{\nabla_0})$ is cohomologous to $\tilde{P}(F_{\nabla_1})$ in de Rham cohomology group, i.e.

$$\left[\tilde{P}(F_{\nabla_0})\right] = \left[\tilde{P}(F_{\nabla_1})\right] \in H^{2k}_{\mathrm{dR}}(X, \mathbb{C})$$

if $P: \mathfrak{gl}(r,\mathbb{C}) \times \cdots \times \mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$ is a symmetric k-multilinear map.

Proof. Let $\nabla_1 = \nabla_0 + A$ for some $A \in \mathcal{A}^1(X, \operatorname{End}(E))$. Consider a path of connections $\nabla_t := \nabla_0 + tA$ between ∇_0 and ∇_1 . Denote by $F_t := F_{\nabla_t}$.

Let us compute the derivative in t at $t = t_0$ of $P(F_t)$. First note that, by Lemma 2.7, we see that

$$F_t = F_{\nabla_t} = F_{\nabla_{t_0} + (t - t_0)A} = F_{t_0} + (t - t_0) \nabla_{t_0}^{\text{End}(E)} A + (t - t_0)^2 A \wedge A,$$

i.e.

$$\frac{F_t - F_{t_0}}{t - t_0} = \nabla_{t_0}^{\text{End}(E)} A + (t - t_0) A \wedge A.$$

$$\frac{d}{dt}\bigg|_{t=t_0} F_t = \lim_{t \to t_0} \frac{F_t - F_{t_0}}{t - t_0} = \lim_{t \to t_0} \left(\nabla_{t_0}^{\text{End}(E)} A + (t - t_0) A \wedge A \right) = \nabla_{t_0}^{\text{End}(E)} A.$$

Therefore,

$$\begin{aligned} \frac{d}{dt} \Big|_{t=t_0} \tilde{P}(F_t) &= \frac{d}{dt} \Big|_{t=t_0} P(F_t, \dots, F_t) \\ &= \sum_{j=1}^k P(F_{t_0}, \dots, \frac{d}{dt} \Big|_{t=t_0} F_t, \dots, F_{t_0}) \\ &= \sum_{j=1}^k P(F_{t_0}, \dots, \nabla_{t_0}^{\operatorname{End}(E)} A, \dots, F_{t_0}) \\ &= k P(F_{t_0}, \dots, F_{t_0}, \nabla_{t_0}^{\operatorname{End}(E)} A). \end{aligned}$$

By Lemma 2.5 and Bianchi identity, we see that

$$dP(F_{t_0}, \dots, F_{t_0}, A) = \sum_{j=1}^{k-1} P(F_{t_0}, \dots, \nabla_{t_0}^{\text{End}(E)}(F_{t_0}), \dots, F_{t_0}, A) + P(F_{t_0}, \dots, F_{t_0}, \nabla_{t_0}^{\text{End}(E)}(A))$$

$$= P(F_{t_0}, \dots, F_{t_0}, \nabla_{t_0}^{\text{End}(E)}(A)).$$

So, it follows that

$$\frac{d}{dt}\Big|_{t=t_0} \tilde{P}(F_t) = dP(F_{t_0}, \cdots, F_{t_0}, kA).$$

Let $\beta_t = P(F_t, \dots, F_t, kA)$. Then, we see that

$$\left. \frac{d}{dt} \right|_{t=t_0} \tilde{P}(F_t) = d\beta_{t_0}$$

for all $0 \le t_0 \le 1$, i.e.

$$\frac{d}{dt}\tilde{P}(F_t) = d(\beta_t).$$

Thus,

$$\int_0^1 \frac{d}{dt} \tilde{P}(F_t) dt = \int_0^1 d(\beta_t) dt = d\left(\int_0^1 \beta_t dt\right).$$

While,

$$\int_0^1 \frac{d}{dt} \tilde{P}(F_t) dt = \tilde{P}(F_t) \Big|_0^1 = \tilde{P}(F_1) - \tilde{P}(F_0).$$

This implies that $\tilde{P}(F_1) - \tilde{P}(F_0)$ is an exact form. Thus, $[\tilde{P}(F_{\nabla_0})] = [\tilde{P}(F_{\nabla_1})]$.

To summarize, we have

Theorem 2.9 (Chern-Weil). Let ∇ be a connection on a vector bundle E of rank r and F_{∇} be the curvature of ∇ . Suppose

$$P: \mathfrak{gl}(r,\mathbb{C}) \times \cdots \times \mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$$

is an invariant symmetric k-multilinear map. Then,

- (1) The induced k-form $\tilde{P}(F_{\nabla}) \in \mathcal{A}^{2k}_{\mathbb{C}}(X)$ is closed.
- (2) The cohomology class $[\tilde{P}(F_{\nabla})] \in H^{2k}_{dR}(X,\mathbb{C})$ is independent of the choice of connection ∇ .

2.2 Chern classes, Chern characters and their properties

As we know, the determinant function det : $\mathfrak{gl}(r,\mathbb{C}) \to \mathbb{C}$ is an invariant polynomial. So, the function

$$B \mapsto \det(I + B)$$

is also an invariant polynomial. Let $\{\tilde{P}_k\}$ be the homogeneous components of $B\mapsto \det(I+B)$, i.e. $\{\tilde{P}_k\}$ are homogeneous polynomials defined by

$$\det(I + B) = 1 + \tilde{P}_1(B) + \dots + \tilde{P}_r(B).$$

Then, $\tilde{P}_k(B)$ are also invariant polynomials.

Now, let E be a vector bundle of rank r with a connection ∇ over a real manifold X. Let F_{∇} be the curvature of ∇ .

Definition 2.10. The closed differential form

$$c_k(E, \nabla) := \tilde{P}_k\left(\frac{i}{2\pi}F_{\nabla}\right) \in \mathcal{A}^{2k}_{\mathbb{C}}(X)$$

is called the **k-th Chern form** of (E, ∇) .

Definition 2.11. The k-th Chern class of E is defined to be the induced cohomology class

$$c_k(E) := [c_k(E, \nabla)] \in H^{2k}_{\mathrm{dR}}(X, \mathbb{C}).$$

In particular, $c_0(E) = 1$ and $c_k(E) = 0$ for k > r.

The total Chern class of E is

$$c(E) := c_0(E) + \dots + c_r(E) \in H^{2*}_{dR}(X, \mathbb{C}).$$

Similarly, the trace function $\operatorname{tr}:\mathfrak{gl}(r,\mathbb{C})\to\mathbb{C}$ is an invariant polynomial, which induces an invariant map

$$B \mapsto \operatorname{tr}(e^B).$$

Let $\{\tilde{Q}_k\}$ be the homogeneous polynomials of degree k defined by

$$\operatorname{tr}(e^B) = \tilde{Q}_0(B) + \tilde{Q}_1(B) + \dots + \tilde{Q}_k(B) + \dots$$

Definition 2.12. The **k-th Chern character** $\operatorname{ch}_k(E) \in H^{2k}_{\operatorname{dR}}(X,\mathbb{C})$ of E is defined as the cohomology class

$$\operatorname{ch}_k(E) = [\operatorname{ch}_k(E, \nabla)],$$

where

$$\operatorname{ch}_k(E,\nabla) := \tilde{Q}_k\left(\frac{i}{2\pi}F_{\nabla}\right) \in \mathcal{A}^{2k}_{\mathbb{C}}(X).$$

The total Chern character is

$$\operatorname{ch}(E) := \operatorname{ch}_0(E) + \dots + \operatorname{ch}_r(E) + \operatorname{ch}_{r+1}(E) + \dots$$

Now, if we consider another function

$$B \mapsto \frac{\det(tB)}{\det(I - e^{-tB})},$$

we obtain a collection of polynomials $\{\tilde{T}_k\}$ defined by the expansion

$$\frac{\det(tB)}{\det(I - e^{-tB})} = \sum_{k} \tilde{T}_{k}(B)t^{k}.$$

Clearly, \tilde{T}_k is homogeneous of degree k and invariant.

Definition 2.13. The **k-th Todd class** $td_k(E) \in H^{2k}_{dR}(X,\mathbb{C})$ of E is defined as the cohomology class

$$\operatorname{td}_k(E) = [\operatorname{td}_k(E, \nabla)],$$

where

$$\operatorname{td}_k(E,\nabla) := \tilde{T}_k\left(\frac{i}{2\pi}F_{\nabla}\right) \in \mathcal{A}^{2k}_{\mathbb{C}}(X).$$

The total Todd class is

$$td(E) := td_0(E) + \cdots + td_r(E) + td_{r+1}(E) + \cdots$$

Let us now study some of the natural operations for vector bundles and see how the characteristic classes behave in these situations.

Proposition 2.14. Let $E = E_1 \oplus E_2$ be endowed with the direct sum ∇ of the connections ∇_1 and ∇_2 on E_1 and E_2 respectively. Then,

- $(1) c(E, \nabla) = c(E_1, \nabla_1) \cdot c(E_2, \nabla_2).$
- (2) $c(E) = c(E_1) \cdot c(E_2)$.
- (3) $ch(E) = ch(E_1) + ch(E_2)$.

Proof. (1) The curvature F_{∇} of ∇ satisfies $F_{\nabla} = F_{\nabla_1} \oplus F_{\nabla_2}$. Thus,

$$c(E, \nabla) = \det\left(I_E + \frac{i}{2\pi}F_{\nabla}\right)$$

$$= \det\left(\left(I_{E_1} + \frac{i}{2\pi}F_{\nabla_1}\right) \oplus \left(I_{E_2} + \frac{i}{2\pi}F_{\nabla_2}\right)\right)$$

$$= \det\left(I_{E_1} + \frac{i}{2\pi}F_{\nabla_1}\right) \cdot \det\left(I_{E_2} + \frac{i}{2\pi}F_{\nabla_2}\right)$$

$$= c(E_1, \nabla_1) \cdot c(E_2, \nabla_2).$$

$$(2) \ c(E) = [c(E_1, \nabla_1)] = [c(E_1, \nabla_2) \cdot c(E_2, \nabla_2)] = [c(E_1, \nabla_1)] \cdot [c(E_2, \nabla_2)] = c(E_1) \cdot c(E_2).$$

(3) Since

$$\operatorname{ch}(E, \nabla) = \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla}}\right)$$

$$= \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla_{1}}} \oplus e^{\frac{i}{2\pi}F_{\nabla_{2}}}\right)$$

$$= \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla_{1}}}\right) + \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla_{2}}}\right)$$

$$= \operatorname{ch}(E_{1}, \nabla_{1}) + \operatorname{ch}(E_{2}, \nabla_{2}).$$

Thus, it follows that $ch(E) = ch(E_1) + ch(E_2)$.

Corollary 2.15. (1) $c_k(E_1 \oplus E_2) = \sum_{i=0}^k c_i(E_1) \cup c_{k-i}(E_2)$. (2) $\operatorname{ch}_k(E_1 \oplus E_2) = \operatorname{ch}_k(E_1) + \operatorname{ch}_k(E_2)$.

Proof. Simply by comparing the degree.

Proposition 2.16. Let E_1 and E_2 be two vector bundles, then

$$\operatorname{ch}(E_1 \otimes E_2) = \operatorname{ch}(E_1) \cdot \operatorname{ch}(E_2).$$

Proof. Let ∇_1 and ∇_2 be connections on E_1 and E_2 respectively. Let ∇ be the induced connection $\nabla_1 \otimes 1 + 1 \otimes \nabla_2$ on the tensor product $E = E_1 \otimes E_2$. By Proposition 1.34(2), we see that $F_{\nabla} = F_{\nabla_1} \otimes 1 + 1 \otimes F_{\nabla_2}$. Recall that $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$, we have

$$e^{\lambda(F_{\nabla_{1}}\otimes 1+1\otimes F_{\nabla_{2}})}(s_{1}\otimes s_{2}) = \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \left(F_{\nabla_{1}}\otimes 1+1\otimes F_{\nabla_{2}}\right)^{k} \left(s_{1}\otimes s_{2}\right)$$

$$= \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \left(\sum_{i=0}^{k} \binom{k}{i} F_{\nabla_{1}}^{i}(s_{1}) \otimes F_{\nabla_{2}}^{k-i}(s_{2})\right)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{k} \frac{\lambda^{i}}{i!} F_{\nabla_{1}}^{i}(s_{1}) \otimes \frac{\lambda^{k-i}}{(k-i)!} F_{\nabla_{2}}^{k-i}(s_{2})\right)$$

$$= \left[\sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} F_{\nabla_{1}}^{i}(s_{1})\right] \otimes \left[\sum_{j=0}^{\infty} \frac{\lambda^{j}}{j!} F_{\nabla_{2}}^{j}(s_{2})\right]$$

$$= e^{\lambda F_{\nabla_{1}}} (s_{1}) \otimes e^{\lambda F_{\nabla_{2}}}(s_{2})$$

$$= e^{\lambda F_{\nabla_{1}}} \otimes e^{\lambda F_{\nabla_{2}}}(s_{1}\otimes s_{2})$$

for all sections s_1, s_2 on E_1 and E_2 respectively. Thus,

$$e^{\lambda(F_{\nabla_1}\otimes 1+1\otimes F_{\nabla_2})}=e^{\lambda F_{\nabla_1}}\otimes e^{\lambda F_{\nabla_2}}$$

Thus, we see that

$$\operatorname{ch}(E) = \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla}}\right) = \operatorname{tr}\left(e^{\frac{i}{2\pi}(F_{\nabla_{1}}\otimes 1 + 1\otimes F_{\nabla_{2}})}\right)$$

$$= \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla_{1}}}\otimes e^{\frac{i}{2\pi}F_{\nabla_{2}}}\right)$$

$$= \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla_{1}}}\right) \cdot \operatorname{tr}\left(e^{\frac{i}{2\pi}F_{\nabla_{2}}}\right)$$

$$= \operatorname{ch}(E_{1}) \cdot \operatorname{ch}(E_{2}).$$

So, we conclude that

$$\operatorname{ch}(E_1 \otimes E_2) = \operatorname{ch}(E_1) \cdot \operatorname{ch}(E_2).$$

Proposition 2.17. Let E be a vector bundle of rank r and L a line bundle, then

$$c_i(E \otimes L) = \sum_{j=0}^{i} {r-j \choose i-j} c_j(E) \cup c_1(L)^{i-j}.$$

Proof. content...

Proposition 2.18. Let E be a vector bundle with a connection ∇ and E^* be the dual bundle with the natural connection ∇^* . Then,

$$c_k(E^*, \nabla^*) = (-1)^k c_k(E, \nabla).$$

In particular,

$$c_k(E^*) = (-1)^k c_k(E).$$

Proof. Recall that by Proposition 1.34(3), we have $F_{\nabla^*} = -F_{\nabla}^T$. Thus, we see that

$$\det\left(I + \frac{i}{2\pi}F_{\nabla^*}\right) = \det\left(I - \frac{i}{2\pi}F_{\nabla}^T\right) = \det\left(I - \frac{i}{2\pi}F_{\nabla}\right)$$

Let $\{\tilde{P}_k\}$ be the homogeneous components of $B \mapsto \det(I+B)$, i.e. $\{\tilde{P}_k\}$ are homogeneous polynomials defined by

$$\det(I+B) = 1 + \tilde{P}_1(B) + \dots + \tilde{P}_r(B).$$

Then, we have

$$c_k(E^*, \nabla^*) = \tilde{P}_k\left(\frac{i}{2\pi}F_{\nabla^*}\right) = \tilde{P}_k\left(-\frac{i}{2\pi}F_{\nabla}\right) = (-1)^k\tilde{P}_k\left(\frac{i}{2\pi}F_{\nabla}\right) = (-1)^kc_k(E, \nabla).$$

Take cohomology class, we obtain

$$c_k(E^*) = (-1)^k c_k(E).$$

Proposition 2.19. Let $f: M \to N$ be a differentiable map between real manifolds and let E be a vector bundle on N endowed with a connection ∇ . Then,

$$c_k(f^*E, f^*\nabla) = f^*c_k(E, \nabla).$$

Proof. By Proposition 1.34(4), we have $F_{f^*\nabla} = f^*F_{\nabla}$. Let $\{\tilde{P}_k\}$ be the homogeneous components of $B \mapsto \det(I+B)$, i.e. $\{\tilde{P}_k\}$ are homogeneous polynomials defined by

$$\det(I+B) = 1 + \tilde{P}_1(B) + \dots + \tilde{P}_r(B).$$

Then, we have

$$c_k(f^*E, f^*\nabla) = \tilde{P}_k\left(\frac{i}{2\pi}F_{f^*\nabla}\right) = \tilde{P}_k\left(\frac{i}{2\pi}f^*F_{\nabla}\right) = f^*\tilde{P}_k\left(\frac{i}{2\pi}F_{\nabla}\right) = f^*c_k(E, \nabla).$$

Proposition 2.20. The first Chern class of the line bundle $\mathcal{O}(1)$ on \mathbb{CP}^1 satisfies the normalization

$$\int_{\mathbb{CP}^1} c_1(\mathcal{O}(1)) = 1.$$

Proof. content...

Proposition 2.21. Let E be a vector bundle, then the total Chern class is real, i.e.

$$c(E) \in H^*(X, \mathbb{R}).$$

Proof. Pick an Hermitian metric on the vector bundle E and consider an Hermitian connection ∇ , which always exists. Then locally and with respect to an Hermitian trivialization of E the curvature satisfies the equation

$$F_{\nabla}^* = \overline{F_{\nabla}}^T = -F_{\nabla}.$$

Thus, we see that

$$\frac{\overline{i}}{2\pi}F_{\nabla} = \frac{i}{2\pi}F_{\nabla}^{T}.$$

So,

$$c(E, \nabla) = \det\left(I + \frac{i}{2\pi}F_{\nabla}\right)$$

$$= \det\left(I + \frac{i}{2\pi}F_{\nabla}^{T}\right)$$

$$= \det\left(I + \frac{i}{2\pi}F_{\nabla}\right)$$

$$= \det\left(I + \frac{i}{2\pi}F_{\nabla}\right)$$

$$= \cot\left(I + \frac{i}{2\pi}F_{\nabla}\right)$$

$$= \overline{c(E, \nabla)}.$$

We see that $c(E, \nabla)$ is a real form. Thus,

$$c(E) \in H^*(X, \mathbb{R}).$$

Definition 2.22. Let E be a vector bundle of rank r over X. A **splitting map** $f: Y \to X$ for E is a map such that

$$f^*E = L_1 \oplus \cdots \oplus L_n$$

is the whitney sum of line bundles L_i and $f^*: H^*(X) \to H^*(Y)$ is an injective map. We call Y a **splitting manifold** of E.

Proposition 2.23 (Splitting principle). Every vector bundle E of finite rank over X admits a splitting map $f: Y \to X$ with Y a splitting manifold of E.

We will not prove this result at this moment.

2.3 Comparison of approaches to the first Chern class