Ma/CS 6a

Class 20: Subgroups, Orbits, and Stabilizers

By Adam Sheffer

A Group

- A group consists of a set G and a binary operation *, satisfying the following.
 - **Closure.** For every $x, y \in G$, we have $x * y \in G$.
 - Associativity. For every $x, y, z \in G$, we have (x * y) * z = x * (y * z).
 - **Identity.** The exists $e \in G$, such that for every $x \in G$, we have

$$e * x = x * e = x$$
.

• Inverse. For every $x \in G$ there exists $x^{-1} \in G$ such that $x * x^{-1} = x^{-1} * x = e$.

Reminder: Subgroups

• A *subgroup* of a group *G* is a group with the same operation as *G*, and whose set of members is a subset of *G*.

Lagrange's Theorem

- **Theorem.** If G is a group of a finite order n and H is a subgroup of G of order m, then m|n.
 - We will not prove the theorem.
- **Example.** The symmetry group of the square is of order 8.
 - The subgroup of rotations is of order 4.
 - The subgroup of the identity and rotation by 180° is of order 2.

Reminder: Parity of a Permutation

- **Theorem.** Consider a permutation $\alpha \in S_n$. Then
 - \circ Either every decomposition of α consists of an even number of transpositions,
 - or every decomposition of α consists of an odd number of transpositions.
- (1 2 3)(4 5 6):
 - · (13)(12)(46)(45).
 - · (14)(16)(15)(34)(24)(14).

Subgroup of Even Permutations

- Consider the group S_n :
 - Recall. A product of two even permutations is even.
 - The subset of even permutations is a subgroup. It is called the *alternating group* A_n.
 - **Recall.** Exactly half of the permutations of S_n are even. That is, the order of A_n is half the order of S_n .

Atlas of Finite Groups

(only in class)

The Periodic Table Of Finite Simple Groups

Application of Lagrange's Theorem

- **Problem.** Let G be a finite group of order n and let $g \in G$ be of order m. Prove that m|n and $g^n = 1$.
- Proof.
 - Notice that $\{1, g, g^2, ..., g^{m-1}\}$ is a cyclic subgroup of order m.
 - By Lagrange's theorem m|n.
 - Write n = mk for some integer k. Then $g^n = g^{mk} = (g^m)^k = 1$.

Groups of a Prime Order

- Claim. Every group G of a prime order p is isomorphic to the cyclic group C_p .
- Proof.
 - By Lagrange's theorem, G has no subgroups.
 - Thus, by the previous slide, every element of G \ {1} is of order p.
 - G is cyclic since any element of $G \setminus \{1\}$ generates it.

Symmetries of a Tiling

- Given a repetitive tiling of the plane, its symmetries are the transformations of the plane that
 - Map the tiling to itself (ignoring colors).
 - Preserve distances.
- These are combinations of translations, rotations, and reflections.

Example: Square Tiling

- What symmetries does the square tiling has?
 - Translations in every direction.
 - Rotations around a vertex by 0°, 90°, 180°, 270°.
 - Rotations around the center of a square by 0°, 90°, 180°, 270°.
 - Reflections across vertical, horizontal and diagonal lines.
 - $^{\circ}$ Rotations around the center of an edge by $180^{\circ}.$

Wallpaper Groups

- Given a tiling, its set of symmetries is a group called a wallpaper group (not accurate! More technical conditions).
 - Closure. Composing two symmetries results in a transformation that preserves distances and takes the lattice to itself.
 - Associativity. Holds.
 - · Identity. The "no operation" element.
 - Inverse. Since symmetries are bijections from the plane to itself, inverses are well defined.

Wallpaper Groups

- There are exactly 17 different wallpaper groups.
- That is, the set of all repetitive tilings of the plane can be divided into 17 classes.
 Two tilings of the same class have the same "behavior".

Equivalence Relations

- Recall. A relation R on a set X is an
 equivalence relation if it satisfies the
 following properties.
 - **Reflexive.** For any $x \in X$, we have xRx.
 - Symmetric. For any $x, y \in X$, we have xRy if and only if yRx.
 - \circ Transitive. If xRy and yRz then xRz.

Example: Equivalence Relations

- Problem. Consider the relation of congruence mod 31, defined over the set of integers Z. Is it an equivalence relation?
- Solution.
 - **Reflexive.** For any $x \in \mathbb{Z}$, we have $x \equiv x \mod 31$.
 - Symmetric. For any $x, y \in \mathbb{Z}$, we have $x \equiv y \mod 31$ iff $y \equiv x \mod 31$.
 - Transitive. If $x \equiv y \mod 31$ and $y \equiv z \mod 31$ then $x \equiv z \mod 31$.

Equivalence Via Permutation Groups

- Let G be a group of permutations of the set X. We define a relation on X: $x \sim y \iff g(x) = y$ for some $g \in G$.
- Claim. \sim is an equivalence relation.
 - Reflexive. The group G contains the identity permutation id. For every $x \in X$ we have id(x) = x and thus $x \sim x$.
 - Symmetric. If $x \sim y$ then g(x) = y for some $g \in G$. This implies that $g^{-1} \in G$ and $x = g^{-1}(y)$. So $y \sim x$.

Equivalence Via Permutation Groups

- Let G be a group of permutations of the set X. We define a relation on X: $x \sim y \iff g(x) = y$ for some $g \in G$.
- Claim. ∼ is an equivalence relation.
 - Transitive. If $x \sim y$ and $y \sim z$ then g(x) = y and h(y) = z for $g, h \in G$. Then $hg \in G$ and hg(x) = z, which in turn implies $x \sim z$.

Orbits

 Given a permutation group G of a set X, the equivalence relation ~ partitions X into equivalence classes or orbits.

```
• For every x \in X the orbit of x is Gx = \{y \in X \mid x \sim y\} = \{y \in X \mid g(x) = y \text{ for some } g \in G\}.
```


Example: Orbits

- Let $X = \{1,2,3,4,5\}$ and let $G = \{id, (12), (34), (12)(34)\}.$
- What are the equivalence classes that G induces on X?
 - \circ *G*1 = *G*2 = {1,2}.
 - \circ *G*3 = *G*4 = {3,4}.
 - \circ *G*5 = {5}.

Stabilizers

- Let G be a permutation group of the set X.
- Let $G(x \to y)$ denote the set of permutations $g \in G$ such that g(x) = y.
- The **stabilizer of** x is $G_x = G(x \rightarrow x)$.

Example: Stabilizer

 Consider the following permutation group of {1,2,3,4}:

$$G = \{ id, (1234), (13)(24), (1432), (24), (13), (12)(34), (14)(23) \}.$$

- The stabilizers are
 - $G_1 = \{id, (24)\}.$
 - $G_2 = \{id, (13)\}.$
 - $G_3 = \{id, (24)\}.$
 - $G_4 = \{id, (13)\}.$

Stabilizers are Subgroups

- Claim. G_x is a subgroup of G.
 - Closure. If $g, h \in G_x$ then g(x) = x and h(x) = x. Since gh(x) = x we have $gh \in G_x$.
 - \circ **Associativity.** Implied by the associativity of G.
 - **Identity.** Since id(x) = x, we have $id \in G_x$.
 - Inverse. If $g \in G_x$ then g(x) = x. This implies that $g^{-1}(x) = x$ so $g^{-1} \in G_x$.

Cosets

- Let H be a subgroup of the group G. The **left coset** of H with respect to $g \in G$ is $gH = \{a \in G \mid a = gh \text{ for some } h \in H\}.$
- Example. The coset of the alternating group A_n with respect to a transposition $(x \ y) \in S_n$ is the subset of odd permutations of S_n .

$G(x \to y)$ are Cosets

- Claim. Let G be a permutation group and let $h \in G(x \to y)$. Then $G(x \to y) = hG_x$.
- Proof.
 - $hG_x \subseteq G(x \to y)$. If $a \in hG_x$, then a = hg for some $g \in G_x$. We have $a \in G(x \to y)$ since a(x) = hg(x) = h(x) = y.
 - $G(x \to y) \subseteq hG_x$. If $b \in G(x \to y)$ then $h^{-1}b(x) = h^{-1}(y) = x$.

That is, $h^{-1}b \in G_x$, which implies $b \in hG_x$.

Sizes of Cosets and Stabilizers

- Claim. Let G be a permutation group on X and let G_x be the stabilizer of $x \in X$. Then $|G_x| = |hG_x|$ for any $h \in G$.
 - **Proof.** By the Latin square property of *G*.
- Corollary. The size of $G(x \to y)$:
 - If y is in the **orbit** Gx then $|G(x \to y)| = |G_x|$.
 - If y is **not** in the **orbit** Gx then $|G(x \rightarrow y)| = 0$.

Sizes of Orbits and Stabilizers

• **Theorem.** Let G be a group of permutations of the set X. For every $x \in X$ we have

$$|Gx|\cdot |G_x|=|G|.$$

The orbit of x

The stabilizer of x

Example: Orbits and Stabilizers

 Consider the following permutation group of {1,2,3,4}:

$$G = \{ id, (1234), (13)(24), (1432), (24), (13), (12)(34), (14)(23) \}.$$

- We have |G| = 8.
- We have the orbit $G1 = \{1,2,3,4\}$. So |G1| = 4.
- We have the stabilizer $G_1 = \{id, (2 4)\}$. So $|G_1| = 2$.
- Combining the above yields $|G| = 8 = |G1| \cdot |G_1|$.

A Useful Table

- Let $G = \{g_1, g_2, ..., g_n\}$ be a group of permutations of $X = \{x_1, x_2, ..., x_m\}$.
 - For an element $x \in X$, we build the following table, where \checkmark implies that $g_i(x) = x_i$.

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	•••	x_m
g_1	✓								
g_2			✓						
g_3									✓
g_n			✓						

Table Properties 1

- How many √'s are in the table?
 - Since $g_i(x)$ has a unique value, each row contains exactly one \checkmark .
 - ∘ The total number of \checkmark 's in the table is |G|.

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	•••	x_m
g_1	✓								
g_2			✓						
g_3									✓
g_n			✓						

Table Properties 2

- How many \checkmark 's are in the column of x_i ?
 - If x_i is not in the orbit Gx, then 0.
 - If x_i is in the orbit Gx, then $|G(x \to y)| = |G_x|$.

	x_1	x_2	x_3	x_4	x_5	x_6	<i>x</i> ₇	 x_m
g_1	✓							
g_2			✓					
g_3								✓
g_n			✓					

Proving the Theorem

• **Theorem.** Let G be a group of permutations of the set X. For every $x \in X$ we have

$$|Gx| \cdot |G_x| = |G|$$
.

- Proof.
 - Counting by rows, the number of \checkmark 's in the table is |G|.
 - Counting by columns, there are |Gx| nonempty columns, each containing $|G_x| \checkmark$'s.
 - That is, $|G| = |Gx| \cdot |G_x|$.

Double Counting

- Our proof technique was to count the same value (the number of √'s in the table) in two different ways.
- This technique is called double counting and is very useful in combinatorics.

The End: Alhambra

- Alhmbra is a palace and fortress complex located in Granada, Spain.
 - The Islamic art on the walls is claimed to contain all 17 wallpaper groups.
 - Mathematicians like to visit the palace and look for as many types as they can find.

