AES(Advanced Encryption Standard)

- Symmatric cipher, block cipher, 128 bits in with a 128/192/256 bits key, 128 bits out.
- And the number of rounds depend on the key length

key length	rounds
128	10
192	12
256	14

- the most used encryption method nowadays
 - AES is embeded in your web browser
- all internal operation of AES are based on Finite Fields

In crypto we almost always want finite sets

Introduction to Finite Fields(aka Galois Fields)

Three basic algebraic structures

Group, Ring and Field

 a very informal definition "a field is a set of numbers in which we can +,-,*,/"

Theorem : A Finite Field only exist when there are p^m elements in the set, when p is a prime number and m is a positive integer. We denote this by $GF(p^m)$

- There are two types of FF(stand for Finit Field)
 - \circ m is equal to 1,GF(p), we call it Prime Field
 - \circ m is larger than 1, $GF(p^m)$, we call it extension field
- ullet and $GF(2^m)$ is quite important in cryptography

So for AES, $2^8=256$ elements are chosen, that is to say, we have $GF(2^8)$

and the elements in the field are polynomials represented by 8
 bits

$$10010100 \to 1 \times x^7 + 0 \times x^6 + \ldots + 0 \times x^0$$

- here we comes to polynomial arithmetic
 - addition and subtraction

just do normal polynomial arithmetic and then reduce the coefficient to $GF(2)\,$

$$1+1=0$$

 $1+0=1$
 $0+1=1$
 $0+0=0$

$$1 - 1 = 0$$

$$1 - 0 = 1$$

$$0 - 1 = 1$$

$$0 - 0 = 0$$

note that : $a - b \equiv a + b$

Multiplication

just do normal polynomial multiplication, but we should ensure that the result is in the field, that is to say, our output is the result module an **irreducible polynomial**(不可约多项式)

we must reduce our result to $GF(2^8)$

Here the irreducible polynomial we use is

$$P(x) = x^8 + x^4 + x^3 + 1$$

Inversion

just like normal integer inversion, we use extended Eucilean algorithm.

Note that there may be several different irreducible polynomials in a given GF, and the using of different irreducible polynomial will lead to different result. The polynomial given above is part of the AES standard

Structure of AES

- AES does not have a feistal scheme
- The last round does not have a misColumn layer
- ByteSub provide Confusion, just like S-box in DES
- ShiftRows and Mixcolumn together provide **Diffusion**
- at the most beginning and the most ending, subkey is added.

Not like DES, which is bit-oriented, AES is byte-oriented

Each round consists of four layers

Step 1: Byte Subtitution

- the input 16 bytes go into 16 identical!!! S-box respectively
- the S-boxes have 8 bits in, 8 bits out

Table 4.3 AES S-Box: Substitution values in hexadecimal notation for input byte (xy)

								\boldsymbol{y}				2.0					
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	\mathbf{E}	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	$\mathbf{A}\mathbf{F}$	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5)	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1 A	1B	6E	5A	A 0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B 1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	$\mathbf{A}\mathbf{A}$	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
$\boldsymbol{\mathcal{X}}$	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B 8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C 8	37	6D	8D	D5	4E	A9	6C	56	F4	$\mathbf{E}\mathbf{A}$	65	7A	ΑE	08
	C	BA	78	25	2E	1 C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C 1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

- how to substitute?
 - \circ 8 bits in : $(xxxxxxxx)_2$
 - \circ convert to hexadecimal $(ab)_{16}$
 - read the value with (x,y) = (a,b)
 - 11000010 -> 25, for instance
- How was the table constructed?

- \circ 8 bits in, convert it into a polynomial in $GF(2^8)$
- calculate its multiply inverse
- Then apply an affine mapping to the inverse, we get the result
 Note that the affine table and the vector to be add is part of the AES standard.

 That is to say we can obtain the substitute result by calculation instead of substitution. However, we make the substitution table in order to be efficient.

Step 2 : ShiftRows

• this step is just permutation at byte level

• In fact, the permutation is not done by a permutation table, it is down by shifting rows(in order to increase Diffusion, note that each

adjacent bytes are spreaded)

B_0	B_4	B_8	B_{12}
B_1	B_5	B_9	B_{13}
B_2	B_6	B_{10}	B_{14}
B_3	B_7	B_{11}	B_{15}

the output is the new state:

B_0	B_4	B_8	B_{12}	no shift
B_5	B_9	B_{13}	B_1	← one position left shift
B_{10}	B_{14}	B_2	B_6	← two positions left shift
B_{15}	B_3	B_7	B_{11}	\longleftarrow three positions left shift

Step 3: MixColumn

• this step provide strong Diffusion, all 32 bits are affected.

The second column of output bytes (C_4, C_5, C_6, C_7) is computed by multiplying the four input bytes (B_4, B_9, B_{14}, B_3) by the same constant matrix, and so on. Figure 4.3 shows which input bytes are used in each of the four MixColumn operations.

 Note that the matrix is fixed, and there is a shift relationship between rows

Moreover, all multiplication and addition is **polynomial arithmetic** !!!

Step 4: Key Addition

• Just a simple XOR, but note that XOR is equal to addition in GF(2)

Key Addition

Key Schedule

- The number of subkeys is equal to the number of rounds plus one, due to the key needed for key whitening in the first key addition layer
- The AES subkeys are computed **recursively**, i.e., in order to derive subkey k_i , subkey k_{i-1} must be known
- The AES key schedule is **word-oriented**, where 1 word = 32 bits
- There are different key schedules for the three different AES key sizes of 128, 192 and 256 bit, which are all fairly similar

Fig. 4.5 AES key schedule for 128-bit key size

- The round key 0 is just the original input key
- ullet As can be seen in the figure, the leftmost word of a subkey W[4i], where $i=1,\ldots,10$, is computed as:

$$W[4i] = W[4(i-1)] + g(W[4i-1])$$

- Here g() is a nonlinear function with a four-byte input and output.
- The function g() **rotates** its four input bytes, performs a byte-wise S-Box substitution, and adds a round coefficient RC_i to it. The round coefficient is an element of the Galois field $GF(2^8)$, i.e, an 8-bit value. It is only added to the leftmost byte in the function g().
- RC_i vary according to the following rule:

$$RC[1] = x^0 = (00000001)_2,$$

 $RC[2] = x^1 = (00000010)_2,$
 $RC[3] = x^2 = (00000100)_2,$
 \vdots
 $RC[10] = x^9 = (00110110)_2.$

The function g() has two purposes. First, it adds nonlinearity to the key schedule. Second, it removes symmetry in AES. Both properties are necessary to thwart certain block cipher attacks.

for Decryption see at crypto-textbook

the video

Python code from **Github**