Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Beam	Coverplate Weld Connection	
MainMo	MainModule			Moment Connection	
Moment(I	Moment(kNm)*			10.0	
Shear(l	(N)*			10.0	
Axial (k	:N) *			10.0	
	,	Section			
	Beam S	ection *		UB 1016 x 305 x 314	
	Mate	rial *		E 250 (Fe 410 W)A	
т Ү	Ultimate stren	ngth, fu (MPa)		410	
	Yield Strengt	th , fy (MPa)	250		
$(B-t)$ α	Mass	314.3	Iz(mm4)	6442110000.0	
4 t	Area(mm2) -	40040.0	Iy(mm4)	162190000.0	
ZZ D	A				
	D(mm)	1000.0	rz(mm)	401.0	
R ₁	B(mm)	300.0	ry(mm)	64.0	
В	t(mm)	19.1	Zz(mm3)	12884000.0	
Y	T(mm)	35.9	Zy(mm3)	1081000.0	
	FlangeSlope	90	Zpz(mm3)	14851000.0	
	R1(mm)	30.0	Zpy(mm3)	1081000.0	
	R2(mm)	0.0			
		Weld Details			
Weld T	Type			Fillet	
Type of weld	fabrication			Shop Weld	
Material grade over	rwrite (MPa) Fu			410.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Ac (kN)		$Ac = \frac{A * f_y}{\gamma_{m0} * 1000}$ $= \frac{40040.0 * 250}{1.1 * 1000}$ $= 9100.0$	
Shear Capacity Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 1000}$ $= \frac{928.2 * 19.1 * 250}{\sqrt{3} * 1.1 * 1000}$ $= 2326.27807$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 1000000}$ $= \frac{1 * 4113926 * 250}{1.1 * 1000000}$ $= 934.98$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1}$ $= \frac{1.5 * 12884000.0 * 250}{1.1}$ $= 4392.27$	
Moment Capacity Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(934.98, 4392.27)$ = 934.98	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
	$Ac_{min} = 0.3 * A_c$	$Au = max(A, Ac_{min})$	
Axial Load Au (kN)	= 0.3 * 9100.0	= max(10.0, 2730.0)	Pass
	= 2730.0	= 2730.0	
	$Sc_{min} = 0.6 * A_c$	$Vu = max(V, Vc_{min})$	
Shear Load Vu (kN)	= 0.6 * 2326.28	= max(10.0, 1395.77)	Pass
	= 1395.77	= 1395.77	
	$Mc_{min} = 0.5 * M_c$	$Mu = max(M, Mc_{min})$	
Moment Load Mu (kNm)	= 0.5 * 934.98	= max(10.0, 467.49)	Pass
	=467.49	=467.49	
		$A_w = Axial \ force \ in \ web$	
		$=\frac{(D-2*T)*t*Au}{A}$	
		$= \frac{(1000.0 - 2 * 35.9) * 19.1 *}{}$	2730.0
		40040.0	
Forces Carried by Web		= 1208.77	
		$M_w = Moment \ in \ web$	
		$=\frac{Z_w*Mu}{Z}$	
		2	
		$=\frac{4113926*467.49}{14851000.0}$	
		= 129.5	
		$A_f = Axial \ force \ in \ flange$	
		$= \frac{Au * B * T}{A}$	
		$= \frac{2730.0 * 300.0 * 35.9}{2}$	
		40040.0	
		= 734.32	
		$M_f = Moment \ in \ flange$	
Forces Carried by Flange		$=Mu-M_w$	
Torces Carried by Trange		=467.49-129.5	
		= 337.99	
		$F_f = flange \ force$	
		$=\frac{M_f*1000}{D-T}+A_f$	
		$= \frac{337.99}{1000.0 - 35.9} + 734.32$	
		= 1084.89	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Design Checks

Check	Required	Provided	Remarks
	Thickness of Thicker part $= max(35.9, 30.0)$		
Min Weld Size (mm)	= 35.9	16	Pass
	$IS800: 2007 \ cl.10.5.2.3 \ Table 21,$ $t_{w_{min}} = 10$		
Max Weld Size (mm)	Thickness of Thinner part $= Min(35.9, 30.0) = 30.0$	16	Pass
Titoli Word Sillo (IIIII)	$t_{w_{max}} = 30.0$		1 000
	$Stress = \frac{F_f * 1000}{F_{rl}}$		
Flange Weld Strength (N/mm)	$=\frac{1084.89*1000}{755}$	2120.95	Pass
(/)	= 1436.945708605001		

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

2.4 Flange Plate Check-Outside/Inside

Check	Required	Provided	Remarks
Min. Plate Height (mm)	50	$b_{fp} = B - 2 * sp$ = 300.0 - 2 * 21 = 255	Pass
Min. Plate Length (mm)	255	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (2652 * 16) + 10.0]$ $= 605$	Pass
Min. Inner Plate Height (mm)	50	$b_{ifp} = \frac{B - 4 * sp - t_w - 2 * r_1}{2}$ $= \frac{300.0 - 4 * 21 - 19.1 - 2 * 30.0}{2}$ $= 65$	Pass
Max. Inner Plate Height (mm)	$b_{ifp} = \frac{B - 4 * sp - t_w - 2 * r_1}{2}$ $= \frac{300.0 - 4 * 21 - 19.1 - 2 * 30.0}{2}$ $= 65$	65	Pass
Min. Inner Plate Length (mm)	255	$l_{fp} = [2 * (l_w + 2 * s) + g]$ $= [2 * (2652 * 16) + 10.0]$ $= 605$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View