

SOLUCIÓN PRIMER PARCIAL

23 de agosto de 2021

1. Dibuje el diagrama de transiciones de un DFA que acepte el siguiente lenguaje:

 $L = \{w \in \Sigma^* : w \text{ tiene un número par de 0s y por lo menos un 1} \}$

Solución: Por ejemplo

2. Mediante el procedimiento visto en clase, encuentre y dibuje el diagrama de transiciones del DFA equivalente al siguiente NFA:

Solución: La función δ' es la siguiente

	0	1
$\{q_0\}$	$\{q_1\}$	$\{q_0, q_2\}$
$\{q_1\}$	Ø	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	Ø
$\{q_0,q_1\}$	$\{q_1\}$	$\{q_0,q_2\}$
$\{q_0, q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_2\}$
$\{q_1,q_2\}$	$\{q_2\}$	$\{q_2\}$
$\{q_0,q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_2\}$

Nótese que los últimos 4 se encuentran uniendo las apropiadas transiciones anteriores. El estado inicial es $E(\{q_0\}) = \{q_0, q_2\}$. Los estados finales son todos los que contienen q_0 y q_2 . El diagrama de estados se puede dibujar utilizando la información anterior.

3. Use el procedimiento basado en GNFA para encontrar la expresión regular del NFA del punto anterior.

Solución: Primero introducimos un nuevo estado inicial y un nuevo estado final con transición ε desde cada estado que antes era final al nuevo estado final.

Quitamos q_1 :

Quitamos q_2 :

Quitamos q_1 :

4. [0.5pts.] Use el procedimiento del Teorema de Kleene para encontrar un NFA para la expresión regular $((00*1) \cup 01)*$.

Solución: Vamos por pasos.

0:

1:

0*:

00*:

00*1:

01:

 $(00*1) \cup 01$:

 $(00*1) \cup 01$:

5. [1pt.] Use el lema de bombeo para demostrar que el siguiente lenguaje no es regular:

$$L = \{1^i 0^j : 0 \le i < j\}$$

Solución: Supongamos, para buscar una contraddición que L sea regular. Luego, por el Lema de Bombeo, existe p longitud de bombeo.

Consideramos la palabra $w=1^p0^{p+1}\in L$. Se tiene $|w|=2p+1\geq p$. Sea xyz una descomposición de w que satifsfaga las conclusiones del Lema de Bombeo. Nótese que la condición $|xy|\leq p$ implica que xy sea una porción, no vacía de la subpalabra 1^p . La condición |y|>0, nos dice que y contiene necesariamente por lo menos un 1. Finalmente, la palabra xyyz contiene por lo menos tantos 1s que 0s y, por esta razón, $xyyz\notin L$. De la contraddición sigue que L no es regular.

6. [0.5pts.] Use la equivalencia entre expresiones regulares y DFA para demostrar que si R es un lenguaje regular, entonces el complemento de R es un lenguaje regular.

Teoría de la computación 2021-II

Solución: Sea $M=(Q,\Sigma,\delta,q_0,F)$ un autómata finito determinista que reconozca R. Es decir: L(M)=R.

Consideramos $M^c = (Q, \Sigma, \delta, q_0, F^c)$, donde $F^c = \Sigma^* \setminus F$.

Sea ahora $w \in R^c = \Sigma^* \setminus R$. Siendo $w \notin R$ ne sigue que la computación de M de la palabra w termina en un estado que no pertenece a F. Por definición de complemento, entonces la computación de M de la palabra w termina en un estado de F^c . Es decir $w \in L(M^c)$.

De la misma manera se muestra que si $w \in L(M^c)$ entonces $w \in R^c$. Dado que $L(M^c) = R^c$, el lenguaje R^c es regular.