

UNIT 2. ARCHITECTURE AND COMPONENTS ACTIVITIES

Computer Systems
CFGS DAM

Autores: Alfredo Oltra / Sergio Garcia

Adaptado: Aarón Martín Bermejo

a.martinbermejo@edu.gva.es

2022/2023

Versión:231016.1254

Licencia

Reconocimiento - NoComercial - Compartirlgual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.

Nomenclatura

A lo largo de este tema se utilizarán distintos símbolos para distinguir elementos importantes dentro del contenido. Estos símbolos son:

Importante

Atención

Interesante

Actividad opcional. Normalmente hace referencia a un contenido que se ha comentado en la documentación por encima o que no se ha hecho, pero es interesante que le alumno investigue y practique.

• Atención. Hace referencia a un tipo de actividad donde los alumnos suelen cometer equivocaciones.

UD02. ARCHITECTURE AND COMPONENTS ACTIVITIES

- 1. Investigate the "Harvard Architecture". Post the main differences with "Von Neumann architecture" in the forum and discuss them with your classmates.
- 2. Follow this tutorial https://sites.google.com/site/kotukotuzimiti/ in order to understand how a 2 bit fictitious computer works. Share your solutions and ask your doubts using forum.
- 3. We have a hypothetical computer with this instruction format:

OP_CODE	OPERAND 1	OPERAND2
4 BITS	4 BITS	4 BITS

And this memory (address and content)

Addr0	0000	0xC2
Addr1	0001	0x19
Addr2	0010	0x5A
Addr3	0011	0x2
Addr		

SUM [Addr1], [Addr2] 1001xxyy

Add the contents of memory address Addr1 to the contents of memory address Addr2 and stores it in Addr1

- a) What is the result after executing this instruction?
- b) Which will be the state of the memory after the execution of this instruction?
- c) What would be the result if operand 2 uses immediate addressing mode?

4. We have a computer with this instruction set:

Code	Instruction	Description
ENT M(m)	000mmmmm	Read data from keyboard to memory.
SAL M(m)	001mmmmm	Show data on screen from memory.
CAR RO, M(m)	010mmmmm	Store content a memory address in register RO.
ALM M(m), R0	011mmmmm	Store content of RO in a memory address.
MOV Rx, Ry	1000xxyy	Copy content of RY to RX (X, Y are register numbers).
SUM Rx, Ry	1001xxyy	Add RX+RY and it is stored in RX.
RES Rx, Ry	1010xxyy	Subtract RX-RY and it is stored in RX.
MUL Rx, Ry	1011xxyy	Multiply RX * RY and it is stored in RX.
DIV Rx,Ry	1100xxyy	Divide RX / RY and it is stored in RX.

Following the instruction sequence:

00001011 (The user enters an 1 from the keyboard) (input A)

00001100 (The user enters an 2 from the keyboard) (input B)

00010001 (The user enters an 3 from the keyboard) (input C)

00011100 (The user enters an 4 from the keyboard) (input D)

And then this instruction sequence:

Where A, B, C, D represents the input using the keyboard and their values

- a) What is the result shown on screen?
- b) What is the state of memory?
- c) What is the formula associated to inputs A, B, C, D? (for example, result = A + B + C * D)
- d) If Program Counter (PC) initial value was 258... Which is it actual value?
- e) How many registers of general purpose (RX) has our architecture?

Share your solution and your doubts in the forum!!! If a classmate has problems with it, try to help him.

5. The next table shows part of the technical specifications of a MoBo. Given the specifications, answer the following questions:

Storage Interface • 1 x IDE connector supporting ATA- 133/100/66/33 and up to 2 IDE devices • 6 x SATA 3 Gb/s connectors supporting up to 6 SATA 3Gb/s devices • Support for SATA RAID 0, RAID 1 and RAID 10 ITE IT8720 chip • 1 x floppy disk drive connector supporting up to 1 floppy disk drive

- a) How many hard drives can connect?
- b) How many SATA drives can connect?
- c) Can we connect a floppy drive? and two?
- 6. We have a 3k euros budget to buy computers for the CEED. Teachers told us that the requirements for the computers are the next ones:
 - 2 SSDs per computer to boot dually in Linux-Windows, at least 256GB each
 - At least 16GB RAM
 - At least i3-7100 or similar CPUs in benchmarking. Needs support for virtualization.
 - o 2 monitors
- a) Choose components from a store to build those computers. Build an estimation for it. Think about the compatibility among all of them, specially the motherboard, connectors, power, etc.
- b) How many computers with those specifications can we buy?
- c) Which requirements should we change so more computers can be bought?

Share your solution and your doubts in the forum!!! If a classmate has problems with it, try to help him.