Closest Pair of Points (from "Algorithm Design" by J.Kleinberg and E.Tardos)

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1- \mathcal{D} version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same χ coordinate.

to make presentation cleaner

1

Algorithm.

■ Divide: draw vertical line L so that roughly ½n points on each side.

Algorithm.

- Divide: draw vertical line L so that roughly ½n points on each side.
- Conquer: find closest pair in each side recursively.

Algorithm.

- Divide: draw vertical line L so that roughly ½n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side.
- Return best of 3 solutions.

seems like $\Theta(n^2)$

Find closest pair with one point in each side, assuming that distance $< \delta$.

Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: only need to consider points within δ of line L.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Def. Let s_i be the point in the 2δ -strip, with the i^{th} smallest y-coordinate.

Claim. If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ .

Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. ■

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair(p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                         O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                         2T(n/2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
                                                                         O(n)
   Delete all points further than \delta from separation line L
                                                                         O(n \log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                         O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- Q. Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns all points sorted by y coordinate.
 - Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$