Тема: Криволинейные интегралы (продолжение)

Формула Грина

Теорема. Если D – замкнутая плоская область, ограниченная кусочно-гладким контуром Γ , функции P(x,y) и Q(x,y) непрерывны в D вместе со своими частными производными $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$, то имеет место формула Грина

$$\iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{\Gamma} P dx + Q dy,$$

где граница Γ обходится против часовой стрелки.

Формула Грина позволяет свести криволинейный интеграл к вычислению двойного.

Рассмотрим формулу для площади плоской области. Для этого положим P(x,y) = -y и Q(x,y) = x. Тогда

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1 + 1 = 2$$

И

$$2\iint\limits_{D}dxdy=\oint\limits_{\Gamma}xdy-ydx.$$

Следовательно,

$$S = \frac{1}{2} \oint_{\Gamma} x dy - y dx.$$

Пример. Вычислить площадь фигуры, ограниченной эллипсом $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Решение.

Уравнение эллипса в параметрическом виде:
$$\begin{cases} x = a \cos t, \\ y = b \sin t, \end{cases} \quad 0 \le t \le 2\pi.$$

$$S = \frac{1}{2} \oint_{\Gamma} x dy - y dx = \frac{1}{2} \int_{0}^{2\pi} (a \cos t \cdot b \cos t + b \sin t \cdot a \sin t) dt =$$

$$= \frac{1}{2} \int_{0}^{2\pi} ab(\cos^2 t + \sin^2 t) dt = \frac{1}{2} ab \int_{0}^{2\pi} dt = \pi ab.$$

Тема: Поверхностные интегралы

І. Поверхностные интегралы первого рода

Рассмотрим гладкую поверхность $S = \{z = f(x, y), (x, y) \in D\}$, где функция f(x, y) непрерывна и имеет непрерывные частные производные в ограниченной замкнутой области D.

На S рассмотрим непрерывную функцию F(x, y, z).

Разобьем поверхность S на элементы S_i . В каждом S_i возьмем точку (a_i,b_i,c_i) , $i=1,2,\ldots,n$.

Обозначим ΔS_i – площадь i-го элемента.

Составим сумму:

$$\sum_{i=1}^n F(a_i, b_i, c_i) \Delta S_i.$$

Определение. Если существует

$$\lim_{\substack{n\to\infty\\\Delta S_i\to 0}} \sum_{i=1}^n F(a_i,b_i,c_i) \Delta S_i,$$

не зависящий от способа разбиения и выбора точек, тогда его называют поверхностным интегралом первого рода и обозначают

$$\iint\limits_{S} F(x,y,z)dS.$$

Формула вычисления через двойной интеграл:

$$\iint_{S} F(x, y, z) dS = \iint_{D} F(x, y, f(x, y)) \sqrt{1 + (f'_{x})^{2} + (f'_{y})^{2}} dx dy.$$

Геометрический смысл:

$$\iint\limits_{S} dS - \text{площадь поверхности } S.$$

Физический смысл: если F(x,y,z) – плотность, распределенная по поверхности, то

$$\iint\limits_{S} F(x,y,z)dS$$
 – масса поверхности S .

II. Поверхностный интеграл второго рода

Определение. Всякую непрерывную единичную нормаль на поверхности назовем **ориентацией поверхности**.

Но в каждой точке поверхности $S = \{z = f(x, y), (x, y) \in D\}$ имеются лишь две единичные нормали:

$$\vec{n} = \frac{1}{\sqrt{1 + (f'_x)^2 + (f'_y)^2}} \left(-f'_x, -f'_y, 1\right) \quad \text{if} \quad -\vec{n}.$$

Поэтому у поверхности S имеются только две ориентации \vec{n} и $-\vec{n}$.

В случае, когда выбирается нормаль \vec{n} , говорят о верхней стороне поверхности S– S_+ (положительная ориентация), если выбирается нормаль $-\vec{n}$ – о нижней стороне поверхности $S - S_-$ (отрицательная ориентация).

Пусть на поверхности S заданы непрерывные функции

$$P(x,y,z)$$
, $Q(x,y,z)$, $R(x,y,z)$.

Обозначим $\Delta\Pi_i$ – проекцию элемента S_i на плоскость Oxy.

Определение. Предел суммы

$$\sum_{i=1}^{n} R(a_i, b_i, c_i) \Delta \Pi_i$$

при мелкости разбиения, стремящейся к нулю ($\Delta S_i \to 0$), называется **поверхностным интегралом второго рода**. Обозначается

$$\iint\limits_{S_+} R(x,y,z)dxdy.$$

Аналогично, если рассматривать проекцию на плоскость Охг:

$$\iint\limits_{S} Q(x,y,z)dzdx$$

и на плоскость Оуг:

$$\iint\limits_{S_1} P(x,y,z)dydz.$$

Полный поверхностный интеграл второго рода по верхней стороне поверхности S имеет вид:

$$\iint\limits_{S_+} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy$$

Формулы для вычисления

1. Через поверхностный интеграл первого рода: $\vec{n} = (\cos \alpha, \cos \beta, \cos \gamma)$ — вектор нормали к поверхности, где α, β, γ — углы между \vec{n} и осями координат x, y, z соответственно. Тогда

$$\iint_{S_{+}} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy =$$

$$= \iint_{S} (P(x,y,z)\cos\alpha + Q(x,y,z)\cos\beta + R(x,y,z)\cos\gamma)dS.$$

2. Через двойной интеграл:

$$\iint\limits_{S_+} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy =$$

$$= \iint\limits_{D} \left(-f'_{x}(x,y)P(x,y,f(x,y)) - f'_{x}(x,y)Q(x,y,f(x,y)) + R(x,y,f(x,y))\right) dxdy,$$

где $\vec{n} = \frac{1}{\sqrt{1 + (f'_x)^2 + (f'_y)^2}} \left(-f'_x, -f'_y, 1 \right)$ — вектор внешней нормали к поверхности S: z = f(x, y), D — проекция поверхности на плоскость Oxy.

Поверхностные интегралы обладают свойствами линейности, аддитивности. Поверхностный интеграл второго рода меняет знак при изменении ориентации поверхности:

$$\iint\limits_{S_1} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy =$$

$$= -\iint\limits_{S_{-}} P(x,y,z)dydz + Q(x,y,z)dzdx + R(x,y,z)dxdy.$$

Пример. Вычислить

$$\iint\limits_{S} x dy dz + y dz dx + z dx dy$$

по верхней стороне параболоида $S = \{z = x^2 + y^2, \ x^2 + y^2 \le 1\}.$

Решение.

 $D = \{x^2 + y^2 \le 1\}$ – проекция на плоскость Oxy.

$$S: z = \underbrace{x^2 + y^2}_{f(x,y)}$$

$$f'_x = 2x, f'_y = 2y$$

$$P = x, \qquad Q = y, \qquad R = z = x^2 + y^2$$

Тогда

$$\iint_{S} x dy dz + y dz dx + z dx dy =$$

$$= \iint_{D} (-2x \cdot x - 2y \cdot y + x^{2} + y^{2}) dx dy = -\iint_{D} (x^{2} + y^{2}) dx dy =$$

$$= \begin{bmatrix} \text{полярные координаты} \\ x = r \cos \varphi \\ y = r \sin \varphi \\ J = r \\ 0 \le r \le 1, \quad 0 \le \varphi \le 2\pi \end{bmatrix} = -\int_{0}^{2\pi} d\varphi \int_{0}^{1} r^{2} \cdot r dr = -2\pi \cdot \frac{r^{4}}{4} \Big|_{0}^{1} = -\frac{\pi}{2}$$

Тема: Элементы теории поля

Будем называть числовые функции — *скалярными полями*, а векторные функции — *векторными полями*.

Определение. Градиентом скалярного поля u(x,y,z) называется вектор $\operatorname{grad} u = \nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$.

Определение. Дивергенцией векторного поля $\vec{a} = (P(x,y,z),Q(x,y,z),R(x,y,z))$ называется скалярное поле

 $\operatorname{div}\vec{a} = \frac{\partial P}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial P}{\partial z}.$

Определение. **Ротором** (вихрем) векторного поля $\vec{a} = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$ называется векторное поле

$$\operatorname{rot} \vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \vec{i} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + \vec{j} \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + \vec{k} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Определение. **Циркуляцией** векторного поля $\vec{a} = (P(x,y,z),Q(x,y,z),R(x,y,z))$ по замкнутому контуру Γ называется криволинейный интеграл второго рода

Определение. **Потоком** векторного поля $\vec{a} = (P(x,y,z),Q(x,y,z),R(x,y,z))$ через поверхность S называется поверхностный интеграл второго рода

$$\Pi = \iint\limits_{S} \vec{a} d\vec{S} = \{$$
обозначение $\} = \iint\limits_{S} P dy dz + Q dz dx + R dx dy.$

Теорема Стокса. Если векторное поле $\vec{a} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ непрерывно дифференцируемо в некоторой области трехмерного пространства, содержащей поверхность S, то имеет место формула Стокса:

$$\iint\limits_{S} \operatorname{rot} \vec{a} d\vec{S} = \oint\limits_{\Gamma} \vec{a} d\vec{l},$$

где Γ – край поверхности S.

Эта формула означает, что поток ротора (вихря) векторного поля через поверхность равен циркуляции векторного поля по краю поверхности.

В координатной записи:

$$\iint\limits_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint\limits_{\Gamma} P dx + Q dy + R dz.$$

Замечание. При использовании формулы Стокса для нахождения циркуляции вдоль заданного контура Γ в качестве S можно брать любую гладкую поверхность, стягивающую Γ . Если Γ — плоский контур, то в качестве S можно взять плоскую поверхность, ограниченную этим контуром.

Теорема Гаусса-Остроградского. Пусть G — замкнутая область в трехмерном пространстве, ограниченная замкнутой кусочно-гладкой поверхностью S; векторное поле $\vec{a} = (P(x,y,z), Q(x,y,z), R(x,y,z))$ непрерывно дифференцируемо на G. Тогда имеет место формула Гаусса-Остроградского:

$$\iiint\limits_{G}\operatorname{div}\vec{a}\ dxdydz=\iint\limits_{S_{+}}\vec{a}d\vec{S}.$$

Это равенство означает, что тройной интеграл по области от дивергенции векторного поля равен потоку этого поля через поверхность, ограничивающую область, в направлении внешней нормали.

В координатной записи:

$$\iiint\limits_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial P}{\partial y} + \frac{\partial P}{\partial z} \right) dx dy dz = \iint\limits_{S_{+}} P dy dz + Q dz dx + R dx dy.$$

Формулу Гаусса-Остроградского чаще используют при вычислении поверхностных интегралов, сводя их к тройным.

Пример. Вычислить

$$\iint\limits_{S_1} x^2 dy dz + y^2 dz dx + z^2 dx dy,$$

где S – внешняя сторона границы куба $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$.

Решение.

Имеем $\vec{a}=(x^2,y^2,z^2)$. Тогда ${\rm div}\vec{a}=2x+2y+2z$ и

$$\iint\limits_{S_{+}} x^{2} dy dz + y^{2} dz dx + z^{2} dx dy = \iint\limits_{\substack{0 \le x \le a \\ 0 \le y \le a \\ 0 \le z \le a}} 2(x + y + z) dx dy dz =$$

$$= 2 \int_{0}^{a} dx \int_{0}^{a} dy \int_{0}^{a} (x + y + z) dz =$$

$$= 2 \int_{0}^{a} dx \int_{0}^{a} \left(ax + ay + \frac{a^{2}}{2} \right) dy = 2 \int_{0}^{a} (a^{2}x + a^{3}) dx = 3a^{4}.$$

Замечание. Если в формуле Гаусса-Остроградского положить

$$P = x, Q = y, R = z,$$

то есть

$$\vec{a} = (x, y, z), \text{ div } \vec{a} = 1 + 1 + 1 = 3.$$

Следовательно,

$$3 \iiint\limits_{G} dxdydz = \iint\limits_{S_{+}} xdydz + ydzdx + zdxdy.$$

Отсюда получается формула для вычисления объема через поверхностный интеграл:

$$V = \frac{1}{3} \iint\limits_{S_+} x dy dz + y dz dx + z dx dy.$$