Mind the duality gap: safer rules for the Lasso

Alexandre Gramfort

http://alexandre.gramfort.net Télécom Paristech, CNRS LTCI

Joint work with:

Olivier Fercoq (Télécom ParisTech, CNRS LTCI) Joseph Salmon (Télécom ParisTech, CNRS LTCI)

Table of Contents

Notation

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

The Lasso

- $y \in \mathbb{R}^n$: target, signal
- $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$: design, dictionary

Objective: approximate $y \approx X\beta$ with a sparse vector $\beta \in \mathbb{R}^p$

The Lasso way:

$$\hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|y - X\beta\|^2}_{\text{data fitting term}} \quad + \quad \lambda \|\beta\|_1 \\ \quad \qquad \qquad \right)$$

- Convex optimization problem
- ▶ Need to tune/choose λ (standard is Cross-Validation)

The Lasso

- $y \in \mathbb{R}^n$: target, signal
- $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$: design, dictionary

Objective: approximate $y \approx X\beta$ with a sparse vector $\beta \in \mathbb{R}^p$

The Lasso way:

$$\hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|y - X\beta\|^2}_{\text{data fitting term}} \quad + \quad \underbrace{\lambda \|\beta\|_1}_{\text{sparsity-inducing penalty}} \right)$$

- Convex optimization problem
- Need to tune/choose λ (standard is Cross-Validation)

The denoising case

Suppose the design is simple: n=p and $X=\mathrm{Id}_n$, meaning the atoms are canonical elements: $\mathbf{x}_j=(0,\cdots,0,\underset{\uparrow}{1},0,\cdots,1)^{\top}$

$$\begin{split} \hat{\beta}^{(\lambda)} &\in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \left(\frac{1}{2} \| y - \beta \|^2 + \lambda \| \beta \|_1 \right) \\ \hat{\beta}^{(\lambda)} &= \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \left(\frac{1}{2} \| y - \beta \|^2 + \lambda \| \beta \|_1 \right) \\ \hat{\beta}^{(\lambda)}_j &= \operatorname*{arg\,min}_{\beta_j \in \mathbb{R}} \left(\frac{1}{2} (y_i - \beta_j)^2 + \lambda |\beta_j| \right), \forall j \in [n] \end{split} \tag{separable}$$

This reduces to a 1D problem.

Rem: The solution is called the **proximal** operator of $\lambda \| \cdot \|_1$

Soft-Thresholding

The 1D problem has a closed form solution: **Soft-Thresholding**:

$$\begin{split} \mathrm{ST}(\lambda,y) &= \operatorname*{arg\,min}_{\beta \in \mathbb{R}} \left(\frac{1}{2} (y-\beta)^2 + \lambda |\beta| \right) \\ &= \mathrm{sign}(y) \cdot (|y|-\lambda)_+ \\ \text{with the notation } (\cdot)_+ &= \mathrm{max}(0,\cdot) \end{split}$$

Proof: easy with sub-gradients and Fermat condition

The Lasso: algorithmic point of view

Possible algorithms for solving this **convex** program:

- ► Homotopy method / LARS : very efficient for small p Osborne et al. (2000), Efron et al. (2004) and full path
- Forward Backward / proximal algorithm: useful in signal/image for case where $r \to \mathbf{x}_j^\top r$ is cheap to compute (e.g., with FFT, Fast Wavelet Transform, etc.) Beck and Teboulle (2009)
- Coordinate Descent: very useful for large p and potentially sparse matrix X (e.g., from text encoding) Friedman et al. (2007)

Objective of this work: speed-up Lasso solvers

$$\hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \quad \left(\quad \underbrace{\frac{1}{2} \|y - X\beta\|_2^2}_{\text{data fitting term}} \quad + \quad \underbrace{\lambda \|\beta\|_1}_{\text{sparsity-inducing penalty}} \right)$$

- Compute $\hat{\beta}^{(\lambda)}$ for many λ 's: e.g., T values from $\lambda_{\max} := \|X^{\top}y\|_{\infty}$ to $\epsilon\lambda_{\max}$ on log-scale $(T=100, \epsilon=0.001)$
- Flexible: provide a way that can beneficiate to most solvers (though mainly focused on Coordinate Descent)
- Easy to code

Table of Contents

Notation

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Dual problem

Primal function :
$$P_{\lambda}(\beta) = \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1$$

Dual feasible set :
$$\Delta_X = \left\{ \theta \in \mathbb{R}^n : |\mathbf{x}_j^\top \theta| \leq 1, \forall j \in [p] \right\}$$

Dual solution :
$$\hat{\theta}^{(\lambda)} = \underset{\theta \in \Delta_X \subset \mathbb{R}^n}{\arg \max} \underbrace{\frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \left\|\theta - \frac{y}{\lambda}\right\|^2}_{=D_{\lambda}(\theta)}$$

Rem: The dual feasible set is a polytope

$$\Delta_X = \bigcap_{j=1}^P \left\{ \theta \in \mathbb{R}^n : |\mathbf{x}_j^\top \theta| \le 1 \right\} = \left\{ \theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \le 1 \right\}$$

Rem: the dual formulation is obtained using an additional variable $z=(y-X\beta)/\lambda$ and considering the Lagrangian, *cf.* Kim *et al.* (2007)

Multi-task / Multi-class problem

Primal:
$$\widehat{\mathbf{B}}^{(\lambda)} \in \arg\min_{\mathbf{B} \in \mathbb{R}^{p \times q}} \underbrace{\sum_{i=1}^{n} f_i(x_i^{\top} \mathbf{B}) + \lambda \Omega(\mathbf{B})}_{P_i(\mathbf{B})}$$

Dual:
$$\widehat{\Theta}^{(\lambda)} = \underset{\Theta \in \Delta_X}{\arg \max} - \sum_{i=1}^n f_i^*(-\lambda \Theta_{i,:})$$

with:

$$\Delta_X = \bigcap_{j=1}^p \left\{ \Theta \in \mathbb{R}^{n \times q} : |\mathbf{x}_j^\top \Theta|_2 \le 1 \right\} = \left\{ \Theta \in \mathbb{R}^{n \times q} : ||X^\top \Theta||_{2\infty} \le 1 \right\}$$

Rem: Problem for Gap Safe rules: Compute efficiently Gap and dual feasible points

Geometric interpretation

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \left\{\theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \leqslant 1\right\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$

Duality Gap properties

- ▶ Primal objective: P_{λ} , Primal solution: $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- ▶ Dual objective: D_{λ} , Primal solution: $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$,

Duality gap: for any $\beta \in \mathbb{R}^p$ and any $\theta \in \Delta_X$,

$$G_{\lambda}(\beta, \theta) = P_{\lambda}(\beta) - D_{\lambda}(\theta)$$

$$= \frac{1}{2} \|X\beta - y\|^{2} + \lambda \|\beta\|_{1} - (\frac{1}{2} \|y\|^{2} - \frac{\lambda^{2}}{2} \|\theta - \frac{y}{\lambda}\|^{2})$$

Rem: For all $\beta \in \mathbb{R}^p, \theta \in \Delta_X$,

$$D_{\lambda}(\theta) \leqslant D_{\lambda}(\hat{\theta}^{(\lambda)}) = P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant P_{\lambda}(\beta)$$
 (Strong duality)

Consequences

- $G_{\lambda}(\beta,\theta) \geqslant 0$
- $G_{\lambda}(\beta, \theta) \leqslant \epsilon \implies P_{\lambda}(\beta) P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant \epsilon \text{ (stopping criterion!)}$

Duality Gap properties

- ▶ Primal objective: P_{λ} , Primal solution: $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- ▶ Dual objective: D_{λ} , Primal solution: $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$,

Duality gap: for any $\beta \in \mathbb{R}^p$ and any $\theta \in \Delta_X$,

$$\begin{split} G_{\lambda}(\beta,\theta) = & P_{\lambda}(\beta) - D_{\lambda}(\theta) \\ = & \frac{1}{2} \left\| X\beta - y \right\|^2 + \lambda \left\| \beta \right\|_1 - (\frac{1}{2} \left\| y \right\|^2 - \frac{\lambda^2}{2} \left\| \theta - \frac{y}{\lambda} \right\|^2) \end{split}$$

Rem: For all $\beta \in \mathbb{R}^p, \theta \in \Delta_X$,

$$D_{\lambda}(\theta) \leqslant D_{\lambda}(\hat{\theta}^{(\lambda)}) = P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant P_{\lambda}(\beta)$$
 (Strong duality)

Consequences:

- $G_{\lambda}(\beta, \theta) \geqslant 0$
- $G_{\lambda}(\beta, \theta) \leqslant \epsilon \implies P_{\lambda}(\beta) P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant \epsilon$ (stopping criterion!)

KKT: Karush-Khun-Tucker (KKT) conditions

- Primal solution : $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- ▶ Dual solution : $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$

Primal/Dual link:
$$y = X\hat{\beta}^{(\lambda)} + \lambda\hat{\theta}^{(\lambda)}$$

Necessary and sufficient optimality conditions:

$$\mathsf{KKT/Fermat:} \quad \forall j \in [p], \ x_j^\top \hat{\theta}^{(\lambda)} \in \begin{cases} \{ \mathrm{sign}(\hat{\beta}_j^{(\lambda)}) \} & \text{if} \quad \hat{\beta}_j^{(\lambda)} \neq 0, \\ [-1,1] & \text{if} \quad \hat{\beta}_j^{(\lambda)} = 0. \end{cases}$$

Rem: the KKT implies that $\forall \lambda \geqslant \lambda_{\max} = \|X^\top y\|_{\infty}$, $0 \in \mathbb{R}^p$ is the (unique here) primal solution for P_{λ}

Geometric interpretation

A simple dual point is: $y/\lambda_{\max} \in \Delta_X$

Table of Contents

Notation

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Safe rules - safe regions El Ghaoui *et al.* (2012)

Screening thanks to the KKT is possible:

If
$$|\mathbf{x}_j^{ op}\hat{ heta}^{(\lambda)}| < 1$$
 then, $\hat{eta}_j^{(\lambda)} = 0$

Beware: $\hat{\theta}^{(\lambda)}$ is unknown, so one need to consider a safe region \mathcal{C} containing $\hat{\theta}^{(\lambda)}$, *i.e.*, $\hat{\theta}^{(\lambda)} \in \mathcal{C}$, leading to :

The new goal is simple, find a region C:

- as narrow as possible containing $\hat{ heta}^{(\lambda)}$

• such that
$$\mu_{\mathcal{C}}: \begin{cases} \mathbb{R}^n & \mapsto \mathbb{R}^+ \\ \mathbf{x} & \to \sup_{\theta \in \mathcal{C}} |\mathbf{x}^\top \theta| \end{cases}$$
 is easy to compute

Safe sphere rules

Let C = B(c, r) be a ball of center $c \in \mathbb{R}^n$ and radius r > 0. Then simple computation provide:

$$\mu_{\mathcal{C}}(\mathbf{x}) = |\mathbf{x}^{\top} c| + r \|\mathbf{x}\|$$

so the safe rule becomes

If
$$|\mathbf{x}_j^{\top} c| + r \|\mathbf{x}_j\| < 1$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ (1)

We say we screen-out the variables x_i satisfying (1)

Active set :
$$A^{(\lambda)}(\mathcal{C}) = \{j \in [p] : \mu_{\mathcal{C}}(\mathbf{x}_j) \geqslant 1\}$$

New objective:

- find r as small as possible
- find c as close to $\hat{\theta}^{(\lambda)}$ as possible.

Creating safe sphere

Creating safe sphere

Creating safe sphere

Original safe rule: El Ghaoui et al. (2012)

Original static safe rule : El Ghaoui *et al.* (2012)

Static safe region: before any optimization, for a fix λ .

$$C = B(c, r) = B(y/\lambda, ||y/\lambda_{\max} - y/\lambda||)$$

If
$$|\mathbf{x}_j^\top y| < \lambda (1 - \|y/\lambda_{\max} - y/\lambda\| \|\mathbf{x}_j\|)$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ (2)

Rem: This reinterprets screening methods for variable selection: "If $|\mathbf{x}_i^\top y|$ is small, remove \mathbf{x}_j " as a safe rule for the Lasso

Dynamic safe rule

Dynamic point of view: build $\theta_k \in \Delta_X$, evolving with the solver iterations to get refined safe rules Bonnefoy *et al.* (2014, 2015)

Remind link at optimum:
$$\lambda \hat{\theta}^{(\lambda)} = y - X \hat{\beta}^{(\lambda)}$$

Current **residual** for primal point β_k : $\rho_k = y - X\beta_k$

<u>Dual candidate</u>: choose θ_k proportional to the residual

$$\begin{split} \theta_k = & \alpha_k \rho_k, \\ \text{where} \quad & \alpha_k = \min \Big[\max \left(\frac{y^\top \rho_k}{\lambda \left\| \rho_k \right\|^2}, \frac{-1}{\left\| X^\top \rho_k \right\|_\infty} \right), \frac{1}{\left\| X^\top \rho_k \right\|_\infty} \Big]. \end{split}$$

Motivation: projecting over the convex set $\Delta_X \cap \operatorname{Span}(\rho_k)$ is cheap

Limits of previous dynamic rules

The radius $r_k = \|\theta_k - y/\lambda\|$ does not converge to zero. The limiting safe sphere is

Sequential safe rule Wang et al. (2013)

Warm start main idea: to compute the Lasso for T different λ 's, say $\lambda_0, \dots, \lambda_{T-1}$, reuse computation done at λ_{t-1} to get $\hat{\beta}^{(\lambda_t)}$:

- Warm start (for the primal) = standard trick to accelerate iterative solvers: Initialize to $\hat{\beta}^{(\lambda_{t-1})}$ to compute $\hat{\beta}^{(\lambda_t)}$
- Warm start (for the dual) = sequential safe rule use $\hat{\theta}^{(\lambda_{t-1})}$ to help screening for $\hat{\beta}^{(\lambda_t)}$.

Major issue: in prior works $\hat{\theta}^{(\lambda_{t-1})}$ needs to be **known exactly**!

Rem: Unrealistic except for $\hat{\theta}^{(\lambda_0)} = y/\lambda_{\max} = y/\|X^{\top}y\|_{\infty}$

Table of Contents

Notation

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

GAP Safe sphere

For any $\beta \in \mathbb{R}^p$, $\theta \in \Delta_X$

$$G_{\lambda}(\beta, \theta) = \frac{1}{2} \|X\beta - y\|^{2} + \lambda \|\beta\|_{1} - \left(\frac{1}{2} \|y\|^{2} - \frac{\lambda^{2}}{2} \|\theta - \frac{y}{\lambda}\|^{2}\right)$$

Gap Safe ball:
$$B(\theta, r_{\lambda}(\beta, \theta))$$
, where $r_{\lambda}(\beta, \theta) = \sqrt{2G_{\lambda}(\beta, \theta)}/\lambda^2$

<u>Rem</u>: If $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ then $G_{\lambda}(\beta_k, \theta_k) \to 0$: a converging solver leads to converging safe rule!

The GAP SAFE sphere is safe:

- $D_{\lambda}(\hat{\theta}^{(\lambda)}) \leq P_{\lambda}(\beta_k)$ (weak Duality)
- D_{λ} is λ^2 -strongly concave so for any $\theta_1, \theta_2 \in \mathbb{R}^n$,

$$D_{\lambda}(\theta_1) \leqslant D_{\lambda}(\theta_2) + \langle \nabla D_{\lambda}(\theta_2), \theta_1 - \theta_2 \rangle - \frac{\lambda^2}{2} \|\theta_1 - \theta_2\|_2^2$$

• $\hat{ heta}^{(\lambda)}$ maximizes D_{λ} over Δ_X , so

$$\forall \theta \in \Delta_X, \qquad \langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle \leq 0$$

To conclude, for a $\theta \in \Delta_X$:

$$\frac{\lambda^{2}}{2} \left\| \theta - \hat{\theta}^{(\lambda)} \right\|_{2}^{2} \leq D_{\lambda}(\hat{\theta}^{(\lambda)}) - D_{\lambda}(\theta) + \langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle$$
$$\leq P_{\lambda}(\beta_{k}) - D_{\lambda}(\theta)$$

Dynamic safe sphere Bonnefoy et al. (2014)

Dynamic GAP safe sphere

Table of Contents

Notation

Optimization property for the Lasso

Safe rules

Gap safe rules

Coordinate descent implementation

Algorithm 1 Coordinate descent (Lasso) Input: $X, y, \epsilon, K, f, (\lambda_t)_{t \in [T-1]}$

1: Initialization: $\lambda_0 = \lambda_{\max}$, $\beta^{\lambda_0} = 0$ 2: **for** $t \in [T-1]$ **do**

 $\beta \leftarrow \beta^{\lambda_{t-1}}$

3:

4:

5:

6:

13: 14:

15:

16: **end for**

for $k \in [K]$ do

if $k \mod f = 1$ then

Construct $\theta \in \Delta_X$ **if** $G_{\lambda_{\star}}(\beta, \theta) \leqslant \epsilon$ **then** \triangleright Stop if duality gap small

7: $\beta^{\lambda_t} \leftarrow \beta$ 8: break

9: end if

12:

end if for $j \in [p]$ do

end for

10: 11:

end for

 $\beta_j \leftarrow \mathrm{ST}\left(\frac{\lambda_t}{\|\mathbf{x}_i\|^2}, \beta_j - \frac{\mathbf{x}_j^\top (X\beta - y)}{\|\mathbf{x}_i\|^2}\right)$

Soft-Threshold coordinates

 \triangleright Loop over λ 's

 \triangleright previous ϵ -solution

```
Algorithm 2 Coordinate descent (Lasso) with GAP Safe screening
Input: X, y, \epsilon, K, f, (\lambda_t)_{t \in [T-1]}
```

1: Initialization:
$$\lambda_0 = \lambda_{\max}$$
, $\beta^{\lambda_0} = 0$
2: **for** $t \in [T-1]$ **do**

3:

6:

7:

8:

9:

10:

11:

12:

13: 14:

15:

16: **end for**

5:

 \triangleright previous ϵ -solution

Soft-Threshold coordinates

$$[K]$$
 do $f = 1$ then

if
$$k \mod f = 1$$
 then

= 1 then
$$\theta \in \Lambda_{\mathcal{V}}$$

$$\Delta_X$$
, A

$$\Delta_X$$
, ,

$$\Delta_X$$
, A

$$\Delta_X$$
, A^{λ_t}

Construct
$$\theta \in \Delta_X$$
, $A^{\lambda_t}(\mathcal{C}) = \{j \in [p] : \mu_{\mathcal{C}}(\mathbf{x}_j) \ge 1\}$ if $G_{\lambda_t}(\beta, \theta) \le \epsilon$ then \triangleright Stop if duality gap small

 $\beta_j \leftarrow \mathrm{ST}\left(\frac{\lambda_t}{\|\mathbf{x}_i\|^2}, \beta_j - \frac{\mathbf{x}_j^\top (X\beta - y)}{\|\mathbf{x}_i\|^2}\right)$

$$\theta \in \Delta_X$$

$$\theta \in \Delta_X$$

$$\theta \in \Delta_{X}$$

$$c \mod f = 1$$
 then
Construct $\theta \in \Delta_X$, $A^{\lambda_t}(\mathcal{C}) = \{j \in [p] : \mu_{\mathcal{C}}(\mathbf{x}_j) \geqslant 1\}$

 $\beta^{\lambda_t} \leftarrow \beta$

break

for $j \in A^{\lambda_t}(\mathcal{C})$ do

$$k \mod$$

$$k \mod k$$

end if

end if

end for

end for

$$[K]$$
 do

$$[K]$$
 do

$$\left[K\right]$$
 do

$$\in [K]$$
 do

$$[K]$$
 do

4: for
$$k \in [K]$$
 do

$$[K]$$
 do

$$eta \leftarrow eta^{\lambda_{t-1}}$$
 for $k \in [K]$ do

$$[K]$$
 do

Gap safe rules: benefits?

- it is a dynamic rule (by construction)
- it is a sequential rule (without any more effort)
- the safe region is converging toward $\{\hat{\theta}^{(\lambda)}\}$
- it works better in practice

Figure: Proportion of active variables as a function of λ and the number of iterations K on the Leukemia dataset. Better strategies have longer range of λ with (red) small active sets (dense data: n = 72, p = 7129).

Computing time

Figure: Time to reach convergence using various screening rules on the Leukemia dataset (dense data: n=72, p=7129). Full path with 100 values of λ on logarithmic grid from λ_{max} to $\lambda_{max}/1000$.

Computing time

Figure: Time to reach convergence using various screening rules on sparse data (text features from 20 news group, n=961, p=10094). Full path with 100 values of λ on logarithmic grid from λ_{max} to $\lambda_{max}/1000$.

Conclusion and future work

- New safe screening rule based on duality gap
- Theoretically: convergent safe region
- Improves computational efficiency on Coordinate Descent implementation
- New work: group-Lasso, multitask Lasso, logistic regression with ℓ_1 regularization, multiclass logistic regression with ℓ_1/ℓ_2 regularization to appear in NIPS 2015 conference.
- Python implementation soon in Scikit-Learn (Pedregosa et al. JMLR (2011)) http://scikit-learn.org

EDDP Wang *et al.* (2013) can remove useful variables

