ISUG-TECH 2015 Conference

SAP IQ Hardware Sizing and Internals

Mark Mumy, SAP

Agenda

Agenda

- Welcome
- Speaker Introduction
- Memory
- CPU
- Disk
- Network
- Q&A

Who is Mark Mumy?

- Came to SAP via the Sybase acquisition
- 19+ years with SAP
- Over 19 years experience with SAP IQ, 4+ years with HANA, 3+ years with Big Data
- Dabbled in replication, streaming, business intelligence, ETL
- Been involved in at least half of the SAP IQ architectures
- Author of numerous whitepapers and many TechWave, TechEd, d-code, ISUG Tech sessions
- Spent most of my time focusing on EDW, data marts, ODS, Big Data, high speed/high throughput database computing
- Chief architect on the Sybase/SAP IQ Guinness World Record systems
- Don't hesitate to contact me! Email me at mark.mumy@sap.com

TERMINOLOGY

- I tend to use the term core, processor and CPU interchangeably. What I mean is a physical processor core that does work. Not a thread, not a socket, not a processor.
- Physical Volume If a volume manager is being used, this is the LUN or storage unit that is used to build the volumes
- Logical Volume The logical end result of a volume manager and the LUNs (physical volumes) that it manages
- Volume Group A set of one or more physical volumes from which space can be allocated to one or more logical volumes

QUICK SIZING REFERENCE

- **RAM**: 8-16 GB per core (8-12 for simplex, 12-16 for MPX)
- <u>RAM</u>: Give IQ 85-90% of available RAM (assumes there are no other major consumers of RAM on the host)
- Storage: Prefer RAID 10 for write intensive system and temp store
- MAIN Store disk: 2-3 drives per core on the host or in the entire multiplex. Assuming 75-100 MB/sec throughput per core.
- <u>TEMP Store disk</u>: 2-3 drives per core on the host. Assuming 75-100 MB/sec throughput per core.
- MAIN Store Fiber Controllers/HBAs: 1 per 5-10 cores. Size based on total MB/sec throughput needed on host.
- <u>TEMP Store Fiber Controllers/HBAs</u>: 1 per 5-10 cores. Size based on total MB/sec throughput needed on host.

Quick Sizing Reference

Memory

- ✓ 8-12 GB per core for simplex
- ✓ 12-16 GB per core for multiplex
- ✓ Main cache: 30% of total RAM
- ✓ Temp cache: 30% of total RAM
- ✓ Large Memory: 30% of total RAM
- RLV: allocate as necessary

<u>Disk</u>

- √ 50-100 MB/sec IO throughput needed per core
- ✓ Allocate HBAs as necessary (minimum of 2 for redundancy) for total throughput
- Could be direct attached, fiber channel, ethernet (see below), or proprietary

Network

- Minimum of 2 x 10 gbit ethernet (one public, one private)
- ✓ Add more, as necessary, if storage is over the network (NAS, NFS, FCoE, etc)

(c) 2015 Independent SAP Technical User Group

MEMORY

- Most important rule is to NOT OVERCONFIGURE MEMORY
 - Swapping leads only to horrible performance in IQ
- First, understand the "memory map" for your server
 - Operating System
 - OLAP Servers
 - Middleware
 - Other applications
 - Monitoring applications
 - Shells, scripts, etc
 - File system buffering
- Deduct all of this from the total memory, and go from there
- A good starting point if a memory assessment cannot be done is to configure the combined total of the IQ caches for no more than 66% of total RAM on the machine

- Sybase IQ memory will consist of the following:
 - Catalog cache (-c/-ch/-cl options in the configuration file)
 - Thread memory (stack size * number of IQ threads)
 - Main cache (-iqmc option in the configuration file)
 - Temporary cache (-iqtc option in the configuration file)
 - Version memory
 - Load memory (reduced in IQ 15.0 and eliminated in IQ 15.2)
 - Memory used during backups

- Catalog cache
 - Generally, set this to 2-8 times the size of the catalog file
 - Rule of thumb default is 64-128 MB for most systems
 - Set higher for highly concurrent systems
 - TLV replay uses catalog cache
 - Performance can suffer if catalog cache is too small

- This option was greatly reduced in use for IQ 15.0 and 15.1 and has been completely eliminated as of IQ 15.2
- Load_Memory_MB
 - Allowable values: 0 (unlimited) to 2000
 - Calculation is: TableWidth * 10,000 * 45 / 1024 / 1024
 - TableWidth is the binary width of the table as collected via tablewidth() function in IQ.
 - 45 Total number of buckets to store data
 - 10,000 Default number of rows for each bucket
 - General recommendation is to not let this value default to the above formula
 - May hinder some loads or be over configured for other loads
 - The positive impact to the OS should outweigh the possible side effects
 - Presents a consistent memory map to the OS which greatly reduces OS memory fragmentation
 - OS level memory fragmentation will cause IQ to appear to have a memory leak in that IQs memory footprint will grow even though spigstatus shows a much lower value

- Cache Memory Used During Loads
 - Memory allocation from the main cache
 - 1 page for each FP index + 1 page for each distinct value in LF indexes
 - Memory allocation from the temp cache
 - Only HG and WD indexes will use temp cache during loads
 - For HG: (8 + sizeof(datatype)) * numberRowsBeingLoaded
 - WD indexes memory use will be substantially more because each word (token) in the data value requires some temporary cache
 - Each token would require the same memory as the HG index
 - ~ numberTokens * (8 + sizeof(datatype)) * numberRows

- Bitmap Memory
 - Additional heap memory allocated during loads for storing bitmaps – exclusive of LOAD_MEMORY_MB
 - Applies to LF, HNG, DTTM, DATE, TIME, and CMP indexes
 - Total amount of memory is dependent on number of distinct values, which is not known before load begins
 - Makes this memory consumption impossible to predict for IQ
 - Groups, or chunks of memory for these bitmaps are allocated in 8k increments
 - Using an example of 500 LF indexes and assuming N distinct values per column, the virtual bitmap memory consumed is:
 - 8,192 * 500 * N = 4,096,000 * N ~ 400MB!!!
 - Can be controlled slightly with LF_BITMAP_CACHE_KB (for LF)

- Version Memory
 - Dynamic RAM allocated and freed when needed
 - Generally, the amount is small
 - Can grow to significant levels (hundreds of MB to GB) when the server has a lot of old versions around
 - Readers can have version memory increases for work performed on writer(s)

- Backup Memory
 - In ideal situation, amount of memory used during a backup is a function of
 - number of cpus
 - number of main or local store dbspaces to be backed up
 - block factor
 - IQ block size (as seen in column 'block_size' in sys.sysiqinfo)
 - Approximate memory used by backup process (z) will be
 - y = max(2 * number_of_cpus, 8 * number_of_main_or_local_dbspaces)
 - z = (y * 20) * (block factor * block_size)

- Backup Memory (example)
 - dbspaces = 50
 - block factor = 100
 - number of cpus = 4
 - block_size = 8,192
 - 'y' is max(8, 400) \rightarrow y=400
 - 'z' is (400 * 20) * (100 * 8,192) \rightarrow 6.5GB
- This memory comes entirely from the OS and is not released until the entire backup operation completes
- Block factor setting is the primary way of controlling this, but of course there are performance tradeoffs when doing this

MEMORY (SUMMARY)

Operating System	.5 to 1 GB RAM
Filesystem Cache	5-10% of RAM
All Other Applications	
IQ Catalog Memory	-c/-cl/-ch parameters
IQ Thread Memory	stack size * thread count
Large Memory	30% of remaining RAM
Bitmap Memory	per concurrent load
IQ Main Cache	30% of remaining RAM
IQ Temporary Cache	30% of remaining RAM
Backup Memory	per backup instance

MEMORY - IQ 15 CHANGES

- Load Memory Load memory is still employed in IQ 15. Most of the memory, though, comes from temporary cache. A significantly smaller amount now comes from heap space. This has been completely removed from the product as of version 15.2
- User Defined Functions Any memory used by the UDF/UDAF framework is done outside the IQ caches. It is allocated when the UDF starts and is freed when the UDF exits.
- The new 3-byte FP indexes use more main cache during creation and data change. The 1-byte and 2-byte FP indexes also used memory, but it was generally insignificant. Due to the maximum cardinality (2^24) this can be a large amount of RAM.

MEMORY - IQ 16 CHANGES

- Load Memory Completely removed
- All data loading was moved from temp cache (v15) into the new large memory accumulator (LMA, -iqlm)
- LMA also hosts the n-bit lookup table structures. In v15, the lookup tables for FPs were in main cache.

- Single row inserts / updates / deletes
 - Use very little CPU / memory resources (not significant in the overall scope of discussion)
- Bulk load inserts / updates / deletes
 - Includes LOAD TABLE, INSERT...FROM LOCATION, INSERT SELECT, and UPDATE, and multi-row DELETES
 - For maximum performance (assumes 100% availability of the CPU resources and no contention)
 - 1 CPU for every 5-10 columns in the table being loaded (default FP index)
 - 1 CPU for every 5-10 indexes (HNG, LF, CMP, DATE, TIME, DTTM) on the table that have not been mentioned
 - HG, WD, and TEXT indexes can consume all cores on the host during pass 2 of the loads!
 - These "ideal" recommendations should be balanced against the load performance requirements at any individual site

Version 15

- Alternative Algorithm (data volume based)
 - For systems with 4 or fewer CPUs, expect to load roughly 10 GB of data per hour per CPU
 - A 4 CPU system should be able to load about 40 GB of raw data per hour
 - For systems with 8 or more CPUs, expect a load rate of 20-50 GB per hour per CPU
 - An 8 CPU system should be able to load between 160 and 400 GB of raw data per hour
 - Load times with this approach will vary greatly based on CPU count / speed and the number and types of indexes on the table being loaded
 - For each BLOB or CLOB being loaded into IQ a single CPU will be necessary for maximum performance

Version 16

- Forget the previous rules!
- 10-20 MB of raw, file based data loaded per second, per core on the host
- A 40 core host should load 400-800 MB of data per second

- Memory Temp Cache Load Requirements
 - As always, more is generally better!
 - During loads, HG indexes will use temporary cache to store the intermediate data necessary for the HG indexes
 - During pass one of the load process, the data necessary to build the HG index is stored in the temporary cache
 - Should there not be enough temporary cache to store the data,
 the server will flush pages to disk
 - For all columns that contain an HG or WD index, temp cache memory requirement is roughly

- Memory Temp Cache Load Requirements (con't)
 - As an example, let's assume that a load of 10 million rows is taking place on a table that contains a single HG index on an integer column and that the database was created with a 256K page
 - The total temporary cache necessary for this load would be:
 - total_pages = 1 + ((10,000,000 * 4) / 262,144)
 - total_pages = 1 + (40,000,000 / 262,144)
 - total_pages = 153 or 38 MB

- Memory Main Cache Load Requirements
 - FP → 1 page for each FP index (plus 3 in temp cache for each optimized FP)
 - LF → 1 page for each distinct value currently being loaded into the LF index
 - HNG, DATE, TIME, and DTTM → 1 page for each bit in the bitmap
 - CMP → 3 per index
 - HG and WD → Reliant on temporary cache during the first pass (see above) and the main cache during the second pass to build the final page structures
 - There is minimal main cache needed for HG and WD indexes due to the reliance on temporary cache

- Memory Main Cache Load Requirements
 - A rough rule of thumb is 5-10 pages of main cache need to be allocated for each index on the table being loaded (this includes all index types, including the default FP index)
 - Example: For a table with 50 columns and 25 additional indexes,
 this would equate to:
 - (50 FP indexes + 25 additional indexes) * (5,10) → 375-750 pages
 - 375 pages * 128K page size → 46.875 MB
 - 750 pages * 128K page size → 93.75 MB

The net of it all for IQ 16?

- Give 33% of the RAM to main cache
- Give 33% of the RAM to temp cache
- Give 33% of the RAM to LMA cache
- That is 33% of the RAM left over.
- For a system dedicated to IQ with little other activity, I assume that 10% of the RAM will be used by the OS. 1/3rd of the remaining 90% would be 30% of the machines RAM.
- For a 100GB RAM system, that's 30gb for each of the caches above and 10gb for everything else.

- IQ 15 changed the game with respect to query operations
- IQ 16 is continuing to change and expanding with every release
- Most queries are now done in parallel consuming all resources on the host
- In general, IQ will try to blend single and multi-user query performance
- As more queries appear on the run queue, the available resources will change and IQ will adjust accordingly

On to the old way of sizing queries...

- It's important to 'classify' queries in order to more accurately size the hardware
 - Super fast Queries that generally take less than five seconds to run
 - Fast Queries that generally take less than three minutes to run
 - Medium Queries that generally take between three and 10 minutes to run
 - Long Queries that generally take more than 10 minutes to run
 - Super long Queries that generally take more than 30 minutes to run
- General rule of thumb: Most queries will consume between 1 and 2 CPUs for the duration of their execution

- Now that the types of queries have been defined, we need to apply the types of queries to CPUs on the host.
 - Super fast Each CPU should be able to handle 10 or more concurrent queries
 - Fast Each CPU should be able to handle between five and 10 concurrent queries
 - Medium Each CPU should be able to handle between two and five concurrent queries
 - Long Each CPU should be able to handle between one and two concurrent queries
 - Super Long Each CPU should be able to handle at most one query, generally a query will need more than one CPU

- One caveat is parallel execution
 - Some simple queries will be broken up automatically and run over multiple CPUs assuming appropriate resources are available
- As more queries appear on the run queue, the available resources will change and IQ will adjust accordingly
- In general, IQ will try to blend single and multi-user query performance
- When sizing for query performance, a minimum of 4GB RAM per CPU is recommended
 - For smaller systems with less than 8 CPUs, 4-8GB should be the recommendation
- Of course, multiplex adds a new dimension to this discussion, but the general rules of thumb still apply!

- Disk sizing requirements change as CPU speeds change
 - These guidelines take a "middle of the road" approach
 - If you're sizing for a faster or slower platform, take that into consideration
- Remember, IQ tends to be CPU-bound, rather than I/O bound
 - As CPU speeds and throughput increase, it drives the bottleneck closer to the disk subsystem
- Disk strip size should be 64k or larger
 - In general, use the largest stripe size available to the disk subsystem, particularly when using larger (256k or 512k) IQ page sizes in conjunction with larger (multi-terabyte) databases
- Try to avoid multiple FC HBA's utilizing the same system bus connector

v15

- On average, a typical CPU can ingest 20MB of data per second from Sybase IQ
 - As a rule of thumb, design the disk farm to deliver 20MB/sec to all
 CPUs in the *entire multiplex environment*
- No LVM should be used if possible!
 - No benefit for IQ, decreases performance, and can increase cost!
- Use larger disks (146GB, 300GB, 500GB, 750GB)
 - Lower RPM (7200RPM), larger drives have been tested but can slow down write intensive systems

v16

- On average, a typical CPU can ingest 20-200MB of data per second from Sybase IQ
- Not all systems need this much bandwidth
- Current sizing guidance is to guarantee 50-100 MB/sec of IO per core in the entire multiplex

- When using Fiber Channel Drives
 - Typical Use Environment: 0.3 0.5 spindles for every CPU in the multiplex environment
 - Heavy Use Environment: 1-2 spindles for every CPU in the multiplex environment
- For SATA Drives
 - Typical Use Environment: Minimum 1 spindle for every CPU in the multiplex environment
 - Heavy Use Environment: 2-4 spindles for every CPU in the multiplex environment
- For SAS Drives
 - Typical Use Environment: Minimum 0.5 spindle for every CPU in the multiplex environment
 - Heavy Use Environment: 1-3 spindles for every CPU in the multiplex environment

v16

- Drive types don't matter
- They do matter in terms of performance, but don't matter to IQ
- The net for v16 is that we want 50-100 MB/sec throughput per core
 - That could be 1 SSD per core, 2-3 fiber channel drives, or 2-5 SATA drives

DISK & I/O SIZING

v15

- Disk Controllers
 - 1 per 5-10 CPU's for typical use, more for heavy use environment
- Don't forget to make sure the disk subsystem can support the overall SAN to bandwidth requirements as well number_of_total_cores * 20 MB/sec

- None of the disk sizing takes in to account the overhead for RAID levels
 - RAID 5 will require 1 additional drive per RAID 5 group (parity drive)
 - RAID 0+1/1+0 will require twice as many drives (mirrors)

DISK & I/O SIZING

v16

- Disk Controllers
 - 1 per 5-10 CPU's for typical use, more for heavy use environment
- Don't forget to make sure the disk subsystem can support the overall SAN to bandwidth requirements as well number_of_total_cores * 50-100 MB/sec

- None of the disk sizing takes in to account the overhead for RAID levels
 - RAID 5 will require 1 additional drive per RAID 5 group (parity drive)
 - RAID 0+1/1+0 will require twice as many drives (mirrors)

DBSPACE CHANGES – IQ 15 AND LATER

- A dbfile in IQ 15 is synonymous with an IQ 12.x dbspace
- A dbspace in IQ 15 is a logical grouping of storage (dbfiles)
- IQ SYSTEM MAIN still exists
 - Do not place user data on this dbspace
 - Create a user defined dbspace (1 or more) for all user data
 - Shared area for
 - Free list for all dbfiles in all dbspaces
 - Versioning, limited node-to-node communication, TLV replay, DDL
 - By default, 20% of this space is reserved for freelist and TLV
 - Adding space to IQ_SYSTEM_MAIN currently forces the entire MPX to be shutdown and synchronized

DBFILE CONSIDERATIONS

- Do not confuse our dbspace requirements with the physical drive requirements! They are different and should be treated separately.
- For Main Store:
 - IQ_dbfiles = 8-12 dbfiles, minimum
- For Temp Store:
 - IQ_dbspaces = 4 dbfiles, minimum
- Always try to physically separate the spindles used for Main and Temp store devices
 - This allows more fine-grain tuning at the device level based on the very-different read/write characteristics of Main and Temp store devices (assuming the SAN has this capability)

DRIVE MAPPING PICTURE

(c) 2015 Independent SAP Technical User Group

NETWORK CONSIDERATIONS

- Not of huge importance, but can be significant with respect to
 - INSERT...LOCATION performance
 - Large result data sets returning across the network
- Consider that movement of 100MB of data will require:
 - 80 seconds on a 10 Megabit LAN
 - 8 seconds on a 100 Megabit LAN
 - 0.8 seconds on a Gigabit LAN
- Consider using faster network cards, better network topology, dedicated switch / hub for servers, etc...
- Increase the packet size of the client application (the method varies depending on ODBC, JDBC, or Open Client connectivity)
- Increase the packet size of the remote data load by using the 'packetsize' parameter to the insert...location syntax

THREADS

- Total IQ threads allocated at startup is based on
 - Number of connections (-gm)
 - Number of cores (-iqnumbercpus)
- By default, -iqmt is set to:
 60*(min(numCores,4)) + 50*(numCores 4) + (numConnections + 2) + 6

THREADS (CON'T)

- Two main types of IQ threads
 - Connection Threads
 - 2*(numConnections + 2)
 - Reserved for connections
 - Server Threads
 - 60*(min(numCores,4)) + 50*(numCores 4)
 - Support load and query operations
- Total threads can be set via –igmt
 - Make sure that –iqmt is larger than total threads needed for connections!
 - Upper limit is currently 4096

THREADS (CON'T)

- Threads to handle I/O
 - Pulled from the Server Thread pool
 - Two types of I/O threads
 - Sweeper write dirty buffers to disk
 - Prefetch read data from disk into cache
 - SWEEPER_THREADS_PERCENT default is 10% of total threads (iqmt)
 - PREFETCH_THREADS_PERCENT default is 10% of total threads (iqmt)

THREADS FOR I/O OPERATIONS

- When sweeper threads fall behind the wash area, dirty buffers are used
 - When dirty buffers are used, the query or load thread must now perform the disk write instead of the sweeper threads
- Prefetch threads can fall behind the prefetch requests
 - When this happens, the query or load must stop processing and get the buffer from disk directly
- In an ideal configuration, sweeper and prefetch threads would be the only threads doing disk I/O.

SUMMARY

What does this all mean?

- The formulas are just a starting point for good performance
- Every application and system is different so adjust accordingly
- Loads will consume enough cores to get the job done
 - HG/WD/TEXT indexes, though, can use all cores on the host
- Queries will generally consume all cores on the host

Quick Sizing Reference

Memory

- ✓ 8-12 GB per core for simplex
- ✓ 12-16 GB per core for multiplex
- ✓ Main cache: 30% of total RAM
- ✓ Temp cache: 30% of total RAM
- ✓ Large Memory: 30% of total RAM
- RLV: allocate as necessary

<u>Disk</u>

- ✓ 50-100 MB/sec IO throughput needed per core
- Allocate HBAs as necessary (minimum of 2 for redundancy) for total throughput
- Could be direct attached, fiber channel, ethernet (see below), or proprietary

Network

- Minimum of 2 x 10 gbit ethernet (one public, one private)
- ✓ Add more, as necessary, if storage is over the network (NAS, NFS, FCoE, etc)

QUICK SIZING DETAILED REFERENCE

- **RAM**: 8-16 GB per core (8-12 for simplex, 12-16 for MPX)
- <u>RAM</u>: Give IQ 85-90% of available RAM (assumes there are no other major consumers of RAM on the host)
- Storage: Prefer RAID 10 for write intensive system and temp store
- MAIN Store disk: 2-3 drives per core on the host or in the entire multiplex. Assuming 75-100 MB/sec throughput per core.
- <u>TEMP Store disk</u>: 2-3 drives per core on the host. Assuming 75-100 MB/sec throughput per core.
- MAIN Store Fiber Controllers/HBAs: 1 per 5-10 cores. Size based on total MB/sec throughput needed on host.
- <u>TEMP Store Fiber Controllers/HBAs</u>: 1 per 5-10 cores. Size based on total MB/sec throughput needed on host.

Other Resources

Contact me via email at mark.mumy@sap.com

Check out my blog: http://scn.sap.com/people/markmumy/blog

Use the IQ Community on the SAP Community Site:

http://scn.sap.com/community/sybase-iq

Use the IQ Users Group: iqug@iqug.org

IQ 16 Sizing Guide: http://scn.sap.com/docs/DOC-46166

Questions and Answers

Thank You for Attending

Please complete your session feedback form

