Методы policy gradient. Алгоритм Reinforce

Теория игр, 2022

Содержание

Парати Reinforce

Содержание

Парати Reinforce

МППР. Определение

Марковский процесс принятия решений (МППР) используется для описания среды (environment) в том случае, если выполнено следующее свойство (Markov property): процесс зависит только от текущего состояния и не зависит от всей предыдущей истории.

Определение

Марковский процесс принятия решений задается набором следующих элементов $<\mathcal{S},\mathcal{A},p>$:

- ullet множество ${\mathcal S}$ состояний среды $s\in {\mathcal S}$
- ullet множество ${\mathcal A}$ доступных действий агента $a\in {\mathcal A}$
- распределение вероятностей

$$p(s', r|s, a) = \Pr[S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a]$$

перехода на шаге t в состояние s' и получения награждения r при условии нахождения в состоянии s и выполнении действия a

Бесконечный МППР

Стратегия

$$\pi(s \mid a) = \mathbb{P}[A_t = a \mid S_t = s]$$

Траектория

Стратегия вместе с моделью МППР задают вероятностное распределение над множеством траекторий $\Omega = \{ \tau \}$

$$au = (s_0, a_1, r_1, s_1, a_2, \dots, s_{t-1}, a_t, r_t, s_t, \dots)$$

$$a_t \sim \pi(\cdot \mid s_t)$$

$$s_{t+1}, r_{t+1} \sim p(\cdot \mid s_t, a_t)$$

$$S_t(\tau) = s_t, A_t(\tau) = a_t, R_t(\tau) = r_t$$

Бесконечный МППР

Стратегия

$$\pi(s \mid a) = \mathbb{P}[A_t = a \mid S_t = s]$$

Траектория

$$\tau = (s_0, a_1, r_1, s_1, a_2, \dots, s_{t-1}, a_t, r_t, s_t, \dots)$$

Сумма полученных наград

$$G(\tau) = \sum_{k=1}^{\infty} \gamma^k R_k(\tau) = \lim_{t \to \infty} \sum_{k=1}^{t} \gamma^k R_k(\tau)$$

Функция ценности состояния $v^\pi:\mathcal{S} o\mathbb{R}$

$$v^{\pi}(s) = \mathbb{E}[G(\tau)|\pi, S_0(\tau) = s]$$

Бесконечный МППР

Стратегия

$$\pi(s \mid a) = \mathbb{P}[A_t = a \mid S_t = s]$$

Траектория

$$\tau = (s_0, a_1, r_1, s_1, a_2, \dots, s_{t-1}, a_t, r_t, s_t, \dots)$$

Сумма полученных наград

$$G(\tau) = \sum_{k=1}^{\infty} \gamma^k R_k = \lim_{t \to \infty} \sum_{k=1}^{t} \gamma^k R_k$$

Q функция

$$q^{\pi}: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$$
 $q^{\pi}(s,a) = \mathop{\mathbb{E}}_{ au}[G(au)|\pi, S^0 = s, A^0 = a]$

Policy gradient подход

Параметризуемая стратегия

$$\pi:\Theta o(\mathcal{S} imes\mathcal{A} o\mathbb{R})$$

$$\theta \mapsto \pi(s \mid a, \theta) \equiv \pi_{\theta}$$

Максимизация функционала

$$J(\theta) \equiv \mathbb{E}_s \big[v^{\pi_{\theta}}(s) \big]$$

Policy Gradient Theorem

Выражение для градиента оптимизируемого функционала можно записать следующим образом:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi} \sum_{t > 0} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid S_{t}) q^{\pi}(S_{t}, A_{t})$$
 (1)

Стохастический градиентный спуск

Стохастический градиентный спуск

Управляемое воздействие $x_k \in \mathcal{X}$

Случайная величина $\xi \sim \mathbb{P}_{\xi}$ (добавляется стохастичность)

На выходе случайная функция, выдаваемая $f(x_k,\xi)$, такая что

$$\mathbb{E}_{\xi \sim \mathbb{P}_{\xi}}[f(x^k, \xi)] = \nabla_x|_{x = x_k}$$

Обновление $x_{k+1} \leftarrow x_k + \alpha_k f(x_k, \xi_k)$

Policy Gradient Theorem

$$f(x_k, \tau) = \sum_{t \ge 0} \gamma^t \nabla_\theta \log \pi_\theta(A_t \mid S_t) q^\pi(S_t, A_t)$$

$$G_t(\tau) = \sum_{k=t}^T \gamma^{k-t} R_k$$

$$\begin{split} &\mathbb{E}_{\tau \sim \pi \mid s_0 = s} \sum_{t \geq 0} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) G_t = \\ &= \sum_{t \geq 0} \mathbb{E}_{\tau \sim \pi \mid s_0 = s} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) G_t = \\ &= \sum_{t \geq 0} \mathbb{E}_{a_0, s_1 \dots s_t, a_t} \mathbb{E}_{s_{t+1}, a_{t+1} \dots} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) G_t = \\ &= \sum_{t \geq 0} \mathbb{E}_{a_0, s_1 \dots s_t, a_t} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \mathbb{E}_{s_{t+1}, a_{t+1} \dots} G_t = \\ &= \sum_{t \geq 0} \mathbb{E}_{a_0, s_1 \dots s_t, a_t} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) Q^{\pi}(s_t, a_t) = \\ &= \sum_{t \geq 0} \mathbb{E}_{\tau \sim \pi \mid s_0 = s} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) Q^{\pi}(s_t, a_t) = \\ &= \mathbb{E}_{\tau \sim \pi \mid s_0 = s} \sum_{t \geq 0} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) Q^{\pi}(s_t, a_t) \end{split}$$

Алгоритм

REINFORCE

Гиперпараметры: N — количество игр, $\pi(a \mid s, \theta)$ — стратегия с параметрами θ , SGD-оптимизатор.

Инициализировать θ произвольно

На очередном шаге t:

- lacksquare играем N игр $au_1, au_2\dots au_N\sim\pi$, $au=(s_0,a_0,r_1,s_1,\dots,r_T,s_T)$
- ② для каждого t в каждой игре au считаем reward-to-go: $G_t(au) = \sum_{k=t}^T \gamma^{k-t} r_k$
- считаем оценку градиента:

$$\nabla_{\theta} J(\pi) = \frac{1}{N} \sum_{\tau} \sum_{t \geq 0} \gamma^{t} \nabla_{\theta} \log \pi(a_{t} \mid s_{t}, \theta) G_{t}(\tau)$$

lacktriangledown делаем шаг градиентного подъёма по heta, используя $abla_{ heta} J(heta)$