The Probability Distribution of a Discrete **Random Variable**

by W H Laverty (modified)

A mathematical description of the possible values of the random variable together with the probabilities of those values

The probability distribution of a discrete random variable is describe by its:

probability function p(x).

p(x) = the probability that X takes on the value x. This can be given in either a tabular form or in the form of an equation.

It can also be displayed in a graph.

Comments:

Every probability function must satisfy:

1. The probability assigned to each value of the random variable must be between 0 and 1, inclusive:

$$0 \le p(x) \le 1$$

2. The sum of the probabilities assigned to all the values of the random variable must equal 1:

$$\sum_{x} p(x) =$$

$$\sum_{x} p(x) = 1$$
3.
$$P[a \le X \le b] = \sum_{x=a}^{b} p(x)$$

$$= p(a) + p(a+1) + \dots + p(b)$$

$$= p(a) + p(a+1) + \cdots + p(b)$$

Example 1

- Discrete
 - A die is rolled and X = number of spots showing on the upper face.

х	1	2	3	4	5	6
p(x)	1/6	1/6	1/6	1/6	1/6	1/6

formula

$$- p(x) = 1/6 \text{ if } x = 1, 2, 3, 4, 5, 6$$

Graphs

To plot a graph of p(x), draw bars of height p(x)above each value of x.

Rolling a die

Example 2

Two dice are rolled and X = Totalnumber of spots showing on the two upper faces.

Ī	х	2	3	4	5	6	7	8	9	10	11	12
	p(x)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Formula:

$$p(x) = \begin{cases} \frac{x-1}{36} & x = 2, 3, 4, 5, 6\\ \frac{13-x}{26} & x = 7, 8, 9, 10, 11, 12 \end{cases}$$

Mean, Variance and Standard Deviation of a Discrete Probability Distribution

Mean and Variance (standard deviation) of a Discrete Probability Distribution

- Describe the center and spread of a probability distribution
- The mean (denoted by greek letter μ (mu)), measures the centre of the distribution.
- The variance (σ^2) and the standard deviation (σ) measure the spread of the distribution.

 σ is the greek letter for s.

Mean of a Discrete Random Variable

• The mean, μ , of a discrete random variable x is found by multiplying each possible value of x by its own probability and then adding all the products together:

$$\mu = \sum_{x} [xp(x)]$$

$$= x_1 p(x_1) + x_2 p(x_2) + \dots + x_k p(x_k)$$

Notes:

- The mean is a *weighted average* of the values of X.
- The mean is the *long-run average* value of the random variable.
- The mean is *centre of gravity* of the probability distribution of the random variable

Variance and Standard Deviation

Variance of a Discrete Random Variable: Variance, σ^2 , of a discrete random variable x is found by multiplying each possible value of the squared deviation from the mean, $(x - \mu)^2$, by its own probability and then adding all the products together:

$$\sigma^{2} = \sum_{x} [(x - \mu)^{2} p(x)]$$

$$= \sum_{x} [x^{2} p(x)] - \{\sum_{x} [xp(x)]\}^{2}$$

$$= \sum_{x} [x^{2} p(x)] - \mu^{2}$$

Standard Deviation of a Discrete Random Variable: The positive square root of the variance:

$$\sigma = \sqrt{\sigma^2}$$

Example 3

In baseball the number of individuals, X, on base when a home run is hit ranges in value from 0 to 3. The probability distribution is known and is given below:

х	0	1	2	3
p(x)	6/14	4/14	3/14	1/14

Note:

- This chart implies the only values x takes on are 0, 1, 2, and 3.
- If the random variable X is observed repeatedly the probabilities, p(x), represents the proportion times the value x appears in that sequence.

 $P(\text{the random variable } X \text{ equals } 2) = p(2) = \frac{3}{14}$ $P(\text{the random variable } X \text{ is at least } 2) = p(2) + p(3) = \frac{3}{14} + \frac{1}{14} = \frac{4}{14}$

Example - contd.

The number of individuals, X, on base when a home run is hit ranges in value from 0 to 3.

х	p (x)	xp(x)	x^2	$\int x^2 p(x)$
0	0.429	0.000	0	0.000
1	0.286	0.286	1	0.286
2	0.214	0.429	4	0.857
3	0.071	0.214	9	0.643
Total	1.000	0.929		1.786
	$\sum p(x)$	$\sum xp(x)$		$\sum x^2 p(x)$

• Computing the mean:

$$\mu = \sum_{x} [xp(x)] = 0.929$$

Note:

- 0.929 is the long-run average value of the random variable
- 0.929 is the centre of gravity value of the probability distribution of the random variable

• Computing the variance:

$$\sigma^{2} = \sum_{x} [(x - \mu)^{2} p(x)]$$

$$= \sum_{x} [x^{2} p(x)] - \{\sum_{x} [xp(x)]\}^{2}$$

$$= 1.786 - \{.929\}^{2} = 0.923$$

• Computing the standard deviation:

$$\sigma = \sqrt{\sigma^2}$$
$$= \sqrt{0.923} = 0.961$$

The Binomial distribution

An important discrete distribution

Situation - in which the binomial distribution arises

- We have a random experiment that has two outcomes
 - Success (S) and failure (F)

$$-p = P[S], q = 1 - p = P[F],$$

- The random experiment is repeated *n* times independently
- X = the number of times S occurs in the n repititions
- Then X has a binomial distribution

Example

- A coin is tosses n = 20 times
 - -X = the number of heads
 - Success $(S) = \{\text{head}\}, \text{ failure } (F) = \{\text{tail }\}$
 - -p = P[S] = 0.50, q = 1 p = P[F] = 0.50
- An eye operation has 85 % chance of success. It is performed n = 100 times
 - -X = the number of Sucesses (S)
 - -p = P[S] = 0.85, q = 1 p = P[F] = 0.15

The Binomial distribution

- 1. We have an experiment with two outcomes *Success(S)* and *Failure(F)*.
- 2. Let p denote the probability of S (Success).
- 3. In this case q=1-p denotes the probability of Failure(F).
- 4. This experiment is repeated *n* times independently.
- 5. *X* denote the number of successes occuring in the *n* repititions.

The possible values of X are

$$0, 1, 2, 3, 4, \ldots, (n-2), (n-1), n$$

and p(x) for any of the above values of x is given by:

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x} = \binom{n}{x} p^{x} q^{n-x}$$

X is said to have the *Binomial distribution* with parameters n and p.

Summary:

X is said to have the **Binomial distribution** with parameters n and p.

- 1. *X* is the number of successes occurring in the *n* repetitions of a Success-Failure Experiment.
- 2. The probability of success is p.
- 3. The probability function

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

Example:

1. A coin is tossed n = 5 times. *X* is the number of heads occurring in the 5 tosses of the coin. In this case $p = \frac{1}{2}$ and

$$p(x) = {5 \choose x} (\frac{1}{2})^x (\frac{1}{2})^{5-x} = {5 \choose x} (\frac{1}{2})^5 = {5 \choose x} (\frac{1}{32})$$

х	0	1	2	3	4	5
p(x)	<u>1</u> 32	$\frac{5}{32}$	10 32	10 32	$\frac{5}{32}$	$\frac{1}{32}$

Note:
$$\binom{5}{x} = \frac{5!}{x!(5-x)!}$$

$${5 \choose 0} = \frac{5!}{0!(5-0)!} = 1 \qquad {5 \choose 3} = \frac{5!}{3!2!} = \frac{5(4)}{2(1)} = 10$$
$${5 \choose 1} = \frac{5!}{1!(5-1)!} = \frac{5!}{4!} = 5 \qquad {5 \choose 4} = \frac{5!}{4!1!} = 5$$

$$\binom{5}{2} = \frac{5!}{2!3!} = \frac{5(4)}{2(1)} = 10 \qquad \qquad \binom{5}{5} = \frac{5!}{0!5!} = 1$$

Computing the summary parameters for the distribution – μ , σ^2 , σ

х	p(x)	xp(x)	x 2	$\int x^2 p(x)$
0	0.03125	0.000	0	0.000
1	0.15625	0.156	1	0.156
2	0.31250	0.625	4	1.250
3	0.31250	0.938	9	2.813
4	0.15625	0.625	16	2.500
5	0.03125	0.156	25	0.781
Total	1.000	2.500		7.500
	$\sum p(x)$	$\sum xp(x)$		$\sum x^2 p(x)$

• Computing the mean:

$$\mu = \sum_{x} [xp(x)] = 2.5$$

• Computing the variance:

$$\sigma^{2} = \sum_{x} [(x - \mu)^{2} p(x)]$$

$$= \sum_{x} [x^{2} p(x)] - \{\sum_{x} [xp(x)]\}^{2}$$

$$= 7.5 - \{2.5\}^{2} = 1.25$$

• Computing the standard deviation:

$$\sigma = \sqrt{\sigma^2}$$
$$= \sqrt{1.25} = 1.118$$

Example:

- A surgeon performs a difficult operation n = 10 times.
- *X* is the number of times that the operation is a success.
- The success rate for the operation is 80%. In this case p = 0.80 and
- *X* has a Binomial distribution with n = 10 and p = 0.80.

$$p(x) = \binom{10}{x} (0.80)^x (0.20)^{10-x}$$

Computing p(x) for x = 0, 1, 2, 3, ..., 10

х	0	1	2	3	4	5
p(x)	0.0000	0.0000	0.0001	0.0008	0.0055	0.0264
х	6	7	8	9	10	
p(x)	0.0881	0.2013	0.3020	0.2684	0.1074	

Computing the summary parameters for the distribution – μ , σ^2 , σ

х	p(x)	xp(x)	x 2	$x^2 p(x)$
0	0.0000	0.000	0	0.000
1	0.0000	0.000	1	0.000
2	0.0001	0.000	4	0.000
3	0.0008	0.002	9	0.007
4	0.0055	0.022	16	0.088
5	0.0264	0.132	25	0.661
6	0.0881	0.528	36	3.171
7	0.2013	1.409	49	9.865
8	0.3020	2.416	64	19.327
9	0.2684	2.416	81	21.743
10	0.1074	1.074	100	10.737
Total	1.000	8.000		65.600
	Σ	$\sum xp(x)$		$\sum x^2 p($

• Computing the mean:

$$\mu = \sum [xp(x)] = 8.0$$

• Computing the variance:

$$\sigma^{2} = \sum_{x} [(x - \mu)^{2} p(x)]$$

$$= \sum_{x} [x^{2} p(x)] - \{\sum_{x} [xp(x)]\}^{2}$$

$$= 65.6 - \{8.0\}^{2} = 1.60$$

• Computing the standard deviation:

$$\sigma = \sqrt{\sigma^2}$$
$$= \sqrt{1.60} = 1.265$$

Mean, Variance and standard deviation of Binomial Random Variables

Mean, Variance & Standard Deviation of the Binomial Ditribution

• The mean, variance and standard deviation of the binomial distribution can be found by using the following three formulas:

1.
$$\mu = np$$

2.
$$\sigma^2 = npq = np(1-p)$$

3.
$$\sigma = \sqrt{npq} = \sqrt{np(1-p)}$$

Example:

Find the mean and standard deviation of the binomial distribution when n = 20 and p = 0.75

Solutions:

1)
$$n = 20$$
, $p = 0.75$, $q = 1 - 0.75 = 0.25$

$$\mu = np = (20)(0.75) = 15$$

$$\sigma = \sqrt{npq} = \sqrt{(20)(0.75)(0.25)} = \sqrt{3.75} \approx 1.936$$

2) These values can also be calculated using the probability function:

$$p(x) = {20 \choose x} (0.75)^x (0.25)^{20-x}$$
 for $x = 0, 1, 2, ..., 20$

• Computing the mean:

$$\mu = \sum [xp(x)] = 15.0$$

• Computing the mean:

$$\mu = \sum_{x} [xp(x)] = 15.0$$
• Computing the variance:

$$\sigma^2 = \sum_{x} [(x-\mu)^2 p(x)]$$

$$= \sum_{x} [x^2 p(x)] - \left\{ \sum_{x} [xp(x)] \right\}^2$$

$$= 228.75 - \{15.0\}^2 = 3.75$$

• Computing the standard deviation:

$$\sigma = \sqrt{\sigma^2}$$
$$= \sqrt{3.75} = 1.936$$