CS 189 Spring 2020

Introduction to Machine Learning Jonathan Shewchuk

Exam Prep 1

This exam-prep discussion section covers Bayesian decision theory and maximum likelihood estimation. In order, the questions were taken from the Spring offerings in 2016, 2016, 2017, 2019, and 2017.

1 Multiple Choice

(f) [3 pts] The Bayes risk for a decision problem is zero when	
\bigcirc the class distributions $P(X Y)$ do not overlap.	\bigcirc the loss function $L(z,y)$ is symmetrical.
○ the training data is linearly separable.	\bigcirc the Bayes decision rule perfectly classifies the training data.
(g) [3 pts] Let $L(z,y)$ be a loss function (where y is the true following loss functions will always lead to the same Bayes	
$\bigcirc L_1(z,y) = aL(z,y), \ a > 0$	$\bigcirc L_3(z,y) = L(z,y) + b, b > 0$
$\bigcirc L_2(z,y) = aL(z,y), \ a < 0$	$\bigcirc L_4(z,y) = L(z,y) + b, b < 0$
(t) [3 pts] Which of the following statements about maximum likeli \bigcirc MLE, applied to estimate the mean parameter μ of a normal distribution $\mathcal{N}(\mu, \Sigma)$ with a known covari-	\bigcirc For a sample drawn from a normal distribution, the likelihood $\mathcal{L}(\mu, \sigma; X_1, \dots, X_n)$ is equal to the proba-
ance matrix Σ , returns the mean of the sample points	bility of drawing exactly the points X_1, \ldots, X_n (in that order) when you draw n random points from $\mathcal{N}(\mu, \sigma)$
\bigcirc MLE, applied to estimate the covariance parameter Σ of a normal distribution $\mathcal{N}(\mu, \Sigma)$, returns $\hat{\Sigma} = \frac{1}{n}X^TX$, where X is the design matrix	Maximizing the log likelihood is equivalent to maximizing the likelihood

2 Free Response

Q3. [10 pts] Quadratic Discriminant Analysis

(a) [4 pts] Consider 12 labeled data points sampled from three distinct classes:

Class 0:
$$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
, $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 3 \end{bmatrix}$, $\begin{bmatrix} -3 \\ -5 \end{bmatrix}$

Class 1:
$$\begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$
, $\begin{bmatrix} -\sqrt{2} \\ \sqrt{2} \end{bmatrix}$, $\begin{bmatrix} 4\sqrt{2} \\ -\sqrt{2} \end{bmatrix}$, $\begin{bmatrix} -4\sqrt{2} \\ -\sqrt{2} \end{bmatrix}$

Class 2:
$$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$, $\begin{bmatrix} 0 \\ -2 \end{bmatrix}$

2

For each class $C \in \{0, 1, 2\}$, compute the class sample mean μ_C , the class sample covariance matrix Σ_C , and the estimate of the prior probability π_C that a point belongs to class C. (Hint: $\mu_1 = \mu_0$ and $\Sigma_2 = \Sigma_0$.)

(b) [4 pts] Sketch one or more isocontours of the QDA-produced normal distribution or quadratic discriminant function (they each have the same contours) for each class. The isovalues are not important; the important aspects are the centers, axis directions, and relative axis lengths of the isocontours. Clearly label the centers of the isocontours and to which class they correspond.

(c) [2 pts] Suppose that we apply LDA to classify the data given in part (a). Why will this give a poor decision boundary?

Q3. [10 pts] Maximum Likelihood Estimation for Reliability Testing

Suppose we are reliability testing n units taken randomly from a population of identical appliances. We want to estimate the mean failure time of the population. We assume the failure times come from an exponential distribution with parameter $\lambda > 0$, whose probability density function is $f(x) = \lambda e^{-\lambda x}$ (on the domain $x \ge 0$) and whose cumulative distribution function is $F(x) = \int_0^x f(x) \, \mathrm{d}x = 1 - e^{-\lambda x}$.

(a) [6 pts] In an ideal (but impractical) scenario, we run the units until they all fail. The failure times are t_1, t_2, \ldots, t_n . Formulate the likelihood function $\mathcal{L}(\lambda; t_1, \ldots, t_n)$ for our data. Then find the maximum likelihood estimate $\hat{\lambda}$ for the distribution's parameter.

(b) [4 pts] In a more realistic scenario, we run the units for a fixed time T. We observe r unit failures, where $0 \le r \le n$, and there are n - r units that survive the entire time T without failing. The failure times are t_1, t_2, \ldots, t_r .

Formulate the likelihood function $\mathcal{L}(\lambda; n, r, t_1, \dots, t_r)$ for our data. Then find the maximum likelihood estimate $\hat{\lambda}$ for the distribution's parameter.

Hint 1: What is the probability that a unit will not fail during time T? Hint 2: It is okay to define $\mathcal{L}(\lambda)$ in a way that includes contributions (densities and probability masses) that are not commensurate with each other. Then the constant of proportionality of $\mathcal{L}(\lambda)$ is meaningless, but that constant is irrelevant for finding the best-fit parameter $\hat{\lambda}$. Hint 3: If you're confused, for part marks write down the likelihood that r units fail and n-r units survive; then try the full problem. Hint 4: If you do it right, $\hat{\lambda}$ will be the number of observed failures divided by the sum of unit test times.