Grundbegriffe der Theoretischen Informatik

Sommersemester 2018 - Thomas Schwentick

Teil D: Komplexitätstheorie

19: NP-vollständige Probleme

Version von: 10. Juli 2018 (13:01)

Ein erstes NP-vollständiges Problem

- In Teil C der Vorlesung haben wir für die Sprache TM-DIAG die Unentscheidbarkeit durch Diagonalisierung bewiesen und dann alle weiteren unentscheidbaren Probleme durch (direkte oder indirekte) Reduktionen von TM-DIAG gewonnen
- Hinsichtlich NP-vollständiger Probleme gehen wir ähnlich vor
- Wir zeigen als nächstes, dass das Problem SAT
 NP-vollständig ist
 Satz von Cook
- Für weitere Probleme weisen wir die NP-Vollständigkeit dann durch (direkte oder indirekte) polynomielle Reduktionen von SAT nach

Inhalt

- > 19.1 Der Satz von Cook
 - 19.2 Polynomielle Reduktionen
 - 19.3 3-SAT
 - 19.4 Das Cliquen-Problem
 - 19.5 3-Färbbarkeit
 - 19.6 Hamiltonkreise und TSP
 - 19.7 Teilsummen und das Rucksack-Problem

Satz von Cook (1/14)

Satz 19.1 [Cook 71]

SAT ist NP-vollständig

Beweisskizze

- SAT ∈ **NP**: √
- SAT ist **NP**-schwierig:
 - Wir zeigen, dass für jedes $oldsymbol{L} \in extsf{NP}$ gilt: $oldsymbol{L} \leqslant_{oldsymbol{p}} extsf{SAT}$
- ullet Sei $oldsymbol{L}$ dazu eine beliebige Sprache aus $oldsymbol{\mathsf{NP}}$
- ullet Sei $M=(Q,\Gamma,\delta,q_1)$ eine (1-String)-TM, die L mit polynomieller Zeitschranke n^k nichtdeterministisch entscheidet
- ullet Sei w eine Eingabe für M und n die Länge von w

Beweisskizze (Forts.)

ullet Wir zeigen, wie aus $oldsymbol{w}$ eine KNF-Formel $oldsymbol{arphi}$ konstruiert werden kann, so dass gilt: $oldsymbol{M}$ akzeptiert $oldsymbol{w}$ nichtdeterministisch

 $\Longleftrightarrow arphi$ ist erfüllbar

 \bullet Genauer: wir zeigen, dass es zu jeder Zusatzeingabe y, für die w von M akzeptiert wird, eine erfüllende Belegung α für φ gibt, und umgekehrt

• Wichtige Idee:

- Wir betrachten die Berechnung von $oldsymbol{M}$ bei Eingabe $oldsymbol{w}$ als eine $oldsymbol{Berechnungstabelle}$
 - * Die Variablen von arphi entsprechen den einzelnen Einträgen der Tabelle
 - * Jede Variablenbelegung α der Variablen von φ entspricht einer "ausgefüllten" Tabelle
- φ soll genau dann wahr werden, wenn α eine akzeptierende Berechnung repräsentiert

Satz von Cook (2/14): Beispiel-TM

Beispiel

- ullet Wie betrachten als Beispiel eine TM M, die die Sprache L aller Strings über $\{a,b\}$, die kein Palindrom sind, akzeptiert
- ullet M erwartet Eingaben der Art w# y
 - w ist der zu überprüfende String $m \stackrel{ ext{ iny def}}{=} |w|$
 - -y ist eine Zusatzeingabe der Art 0^k1
- ullet M akzeptiert genau dann, wenn die (k+1)-te Position von w von der (n-k)-ten Position verschieden ist

Bemerkung

- ullet L ist in NP, aber natürlich auch in P
- Wir verwenden ein so einfaches Beispiel, weil es sich detailliert auf einer Folie unterbringen lässt

Satz von Cook (3/14): Beispiel-Berechnung

- ullet M erwartet Eingaben der Art w#y
- ullet M bewegt den Kopf zuerst nach rechts auf das erste Zeichen von y
- ullet Falls dort eine 0 steht, wird sie durch \$ überschrieben und M läuft nach links und überschreibt dabei das letzte und dann das erste Zeichen von w mit \$
- ullet Dann läuft M wieder nach rechts zum nächsten Zeichen von y
- ullet Wenn dort eine $oldsymbol{0}$ steht, werden wieder das letzte und erste noch nicht veränderte Zeichen von $oldsymbol{w}$ mit $oldsymbol{\$}$ überschrieben
- ullet Wenn dort eine $oldsymbol{1}$ steht, werden das letzte und erste noch nicht veränderte Zeichen von $oldsymbol{w}$ verglichen
- ullet Sind diese beiden Zeichen verschieden, so akzeptiert M, andernfalls lehnt M ab

Satz von Cook (4/14): Beispiel-TM als Diagramm

Satz von Cook (5/14): Beispiel einer Berechnungstabelle

Beispiel: Tabelle für TM-Beispiel

t	B	Z	P
0	$\gt{abaa\#01}$	q_1	0
1	$\gt{abaa\#01}$	q_1	1
2	$\gt{abaa\#01}$	q_1	2
3	$\gt{abaa\#01}$	q_1	3
4	$\gt{abaa\#01}$	q_1	4
5	$\gt{abaa\#01}$	q_1	5
6	$\gt{abaa\#01}$	q_2	6
7	$\gt{abaa\#\$1}$	q_3	5
8	$\gt{abaa\#\$1}$	q_3	4
9	\gt{aba}\#\1	q_4	3
10	\gt{aba}\#\1	q_4	2
11	\gt{aba}\#\1	q_4	1
12	\gt{aba}\#\1	q_4	0
13	\gt{aba} \$#\$1	q_5	1

Beispiel (Forts.)

$oldsymbol{t}$	$\mid B \mid$	$\mid Z \mid$	$\mid P \mid$
14	>\$ba\$#\$1	q_1	2
15	hickspace>\$ba\$#\$1	q_1	3
16	>\$ba\$#\$1	q_1	4
17	hightharpoonup \$ba\$#\$1	q_2	5
18	hickspace>\$ba\$#\$1	q_2	6
19	hickspace>\$ba\$#\$1	q_2	7
20	hickspace>\$ba\$#\$1	q_6	6
21	hickspace>\$ba\$#\$1	q_6	5
22	hickspace>\$ba\$#\$1	q_6	4
23	hickspace>\$ba\$#\$1	q_6	3
24	>\$ba\$#\$1	q_7	2
25	>\$ba\$#\$1	q_7	1
26	>\$ba\$#\$1	q_9	2
27	hightharpoonup \$ba\$#\$1	ja	2
21 22 23 24 25 26	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} q_6 \ q_6 \ q_7 \ q_7 \ q_9 \ \end{array}$	5 4 3 2 1 2

Satz von Cook (6/14): Positionen in der Berechnungstabelle

Beweisskizze (Forts.)

- ullet Zur Vereinfachung nehmen wir oBdA an, dass die Zusatzeingabe genau die Länge n^k-n-1 hat und nur die Zeichen 0 und 1 verwendet
- Es gilt also:
 - w # y hat genau n^k Zeichen
 - Linker Rand: Position 0
 - w: Positionen $1, \ldots, n$
 - # an Position n+1
 - y: Positionen $n+2,\ldots,n^k$
- ullet Klar: in n^k Schritten kann sich der Kopf der Turing-Maschine nicht über y hinaus bewegen
- ullet Sei $\Gamma = \{oldsymbol{\sigma_1}, \dots, oldsymbol{\sigma_l}\}$ das Arbeitsalphabet von M
- ullet Sei $oldsymbol{Q} = \{oldsymbol{q_1}, \dots, oldsymbol{q_m}\}$ die Zustandsmenge von $oldsymbol{M}$ inklusive ja, nein und $oldsymbol{h}$

Satz von Cook (7/14): Variablen von φ

Beweisskizze (Forts.)

ullet Die Formel $oldsymbol{arphi}$ verwendet die folgenden aussagenlogischen Variablen:

Variablen Indizes		Intendierte Bedeutung
$Z_{t,q}$	$egin{aligned} t = 0, \dots, n^k \ q \in Q \end{aligned}$	$lpha(Z_{t,q})=1 \Longleftrightarrow$ nach t Schritten befindet sich M im Zustand q
$\overline{P_{t,i}}$	$egin{aligned} t = 0, \dots, n^k \ i = 0, \dots, n^k \end{aligned}$	$lpha(P_{t,i}) = 1 \Longleftrightarrow$ nach t Schritten befindet sich der Kopf von M auf Position i
$\overline{B_{t,i,\sigma}}$	$egin{aligned} t = 0, \dots, n^k \ i = 0, \dots, n^k \ oldsymbol{\sigma} \in \Gamma \end{aligned}$	$lpha(B_{t,i,\sigma})=1$ \iff nach t Schritten befindet sich auf Position i das Zeichen σ

Satz von Cook (8/14): Belegung der Variablen

Beispiel

- Wir werfen einen Blick auf die Variablenbelegung α , die der Berechnungstabelle der Beispielberechnung entspricht
- Wir betrachten nur die Variablen, die die Konfiguration der TM nach 10 Schritten repräsentieren:

$$-t=10, Z=q_4, P=2$$

$$-B = \triangleright aba\$ \#\$ 1$$

Bemerkung

- Im Gegensatz zur Konstruktion im Beweis ist die Länge der Eingabe im Beispiel nicht gleich der Anzahl der Berechnungsschritte
 - Deshalb werden hier, der allgemeinen Semantik von TMs entsprechend, hinter der Eingabe Blanks ergänzt

Beispiel (Forts.)

- $\bullet \ \alpha(Z_{10,q_4})=1$
- ullet $lpha(Z_{10,p})=0$, für $p \neq q_4$
- $\alpha(P_{10,2}) = 1$
- ullet $lpha(P_{10,i})=0$, für i
 eq 2
- $\bullet \ \alpha(B_{10,0,\triangleright})=1$
- $\alpha(B_{10,1,a}) = 1$
- $\alpha(B_{10,2,b}) = 1$
- $\alpha(B_{10,3,a}) = 1$
- $\alpha(B_{10,4,\$}) = 1$
- $ullet \ lpha(B_{10,5,\#}) = 1$
- $\alpha(B_{10,6,\$}) = 1$
- $\alpha(B_{10,7,1}) = 1$
- ullet $lpha(B_{10,i,\sqcup})=1$, für alle i>7
- ullet $lpha(B_{10,i,\sigma})=0$, für alle übrigen i,σ

Satz von Cook (9/14): Konsistenzbedingungen

Beweisskizze (Forts.)

ullet φ ist aus mehreren Teilformeln zusammengesetzt:

$$\varphi = \varphi_K \wedge \varphi_A \wedge \varphi_D \wedge \varphi_E$$

• φ_K soll sicherstellen, dass α überhaupt eine Tabelle repräsentiert, also jeder Eintrag der Tabelle genau einmal vorhanden ist

Konsistenzbedingungen

ullet $arphi_A$ drückt aus, dass die erste Zeile der Tabelle der Startkonfiguration entspricht

Anfangsbedingungen

ullet φ_D drückt aus, dass aufeinander folgende Zeilen der Tabelle mit der Transitionsfunktion verträglich sind

Transitionsbedingungen

ullet $arphi_E$ drückt aus, dass die Berechnung akzeptiert

Endbedingung

Satz von Cook (10/14): Konsistenzbedingungen

Beweisskizze (Forts.)

- φ_K drückt für die von α kodierte Tabelle aus:
 - Zu jedem Zeitpunkt ist der Zustand von $oldsymbol{M}$ eindeutig
 - Zu jedem Zeitpunkt ist die Position des Kopfes von $oldsymbol{M}$ eindeutig bestimmt
 - Zu jedem Zeitpunkt steht an jeder Stringposition genau ein Zeichen

Beweisskizze (Forts.)

Wir verwenden dabei die Hilfsformel

$$egin{aligned} \psi_{\mathsf{unique}}(x_1, \dots, x_s) &\stackrel{ ext{def}}{=} \ (igvee_{i=1} x_i) \wedge (igwedge_{i
eq j} (
eq x_i ee
eg x_j), \end{aligned}$$

die wahr wird, wenn $oldsymbol{lpha}(oldsymbol{x_i}) = oldsymbol{1}$, für genau ein $oldsymbol{i}$

$$\begin{array}{l} \bullet \; \varphi_K \stackrel{\text{\tiny def}}{=} \bigwedge_t \psi_{\mathsf{unique}}(Z_{t,q_1}, \ldots, Z_{t,q_m}) \land \\ \; \bigwedge_t \psi_{\mathsf{unique}}(P_{t,0}, \ldots, P_{t,n^k}) \land \\ \; \bigwedge_t \psi_{\mathsf{unique}}(B_{t,i,\sigma_1}, \ldots, B_{t,i,\sigma_l}) \end{array}$$

Satz von Cook (11/14): Anfangsbedingungen

Beweisskizze (Forts.)

ullet $arphi_A$ beschreibt die Situation von M zum Zeitpunkt 0:

$$egin{aligned} ullet arphi_A & \stackrel{\mathsf{def}}{=} \ Z_{0,q_1} \wedge P_{0,0} \wedge B_{0,0, riangle} \wedge iggred A_{0,0, riangle} \wedge iggred A_{0,0,0} \wedge iggred A_{0,i,w[i]} \ & \wedge B_{0,n+1,\#} \wedge iggred A_{i=n+2} (B_{0,i,0} ee B_{0,i,1}) \end{aligned}$$

- Zu beachten:
 - Die Formel drückt unter anderem aus, dass die Zusatzeingabe nur aus Nullen und Einsen besteht
 - Die Formel legt die Eingabe $oldsymbol{w}$ fest
 - st Dies ist die einzige Teilformel von $oldsymbol{arphi}$, die wirklich von $oldsymbol{w}$ abhängt
 - st Die anderen Teilformeln hängen allenfalls von der Länge $m{n}$ von $m{w}$ ab
 - Die Formel legt *nicht* die Zusatzeingabe y fest

Satz von Cook (12/14): Transitionsbedingungen

Beweisskizze (Forts.)

- ullet $arphi_D$ beschreibt die Beziehung zwischen den aufeinander folgenden Konfigurationen
- ullet $arphi_{oldsymbol{D}}\stackrel{ ext{def}}{=} arphi_{oldsymbol{D_1}} \wedge arphi_{oldsymbol{D_2}}$, wobei:
 - φ_{D_1} beschreibt, was sich an der Stelle, an der sich der Kopf der Turing-Maschine befindet, ändert
- $egin{aligned} ullet arphi_{D_1} &\stackrel{ ext{def}}{=} \ igwedge _{t,i,p,\sigma} & \left[(Z_{t,p} \wedge P_{t,i} \wedge B_{t,i,\sigma})
 ightarrow \ & \left(Z_{t+1,q} \wedge P_{t+1,i+d} \wedge B_{t+1,i, au}
 ight)
 ight] \end{aligned}$
- $oldsymbol{eta}$ Dabei sind $oldsymbol{q}, oldsymbol{ au}, oldsymbol{d}$ jeweils durch $oldsymbol{\delta}(oldsymbol{p}, oldsymbol{\sigma}) = (oldsymbol{q}, oldsymbol{ au}, oldsymbol{d})$ gegeben
 - d wird hier als Zahl in $\{-1,0,1\}$ interpretiert ($\leftarrow \equiv -1, \downarrow \equiv 0, \rightarrow \equiv 1$)
- $riangleq arphi_{D_1}$ ist die einzige Teilformel von arphi, die von der Transitionsfunktion δ abhängt

Beispiel

- ullet Die Formel $arphi_{D_1}$ ist zu lang, um sie für das Beispiel ganz anzugeben
- ullet Deshalb hier nur ein kleiner Ausschnitt für $t=8, i=3, p=q_7$
- Es gilt in der TM

$$-\delta(q_7,a)=(q_7,a,\leftarrow)$$

$$-\delta(q_7,b)=(q_7,b,\leftarrow)$$

$$-\delta(q_7,\$)=(q_9,\$,\rightarrow)$$

• Die entsprechende Teilformel lautet dann:

$$egin{array}{l} [(Z_{8,q_7} \wedge P_{8,3} \wedge B_{8,3,a})
ightarrow \ & (Z_{9,q_7} \wedge P_{9,2} \wedge B_{9,3,a})] \wedge \ [(Z_{8,q_7} \wedge P_{8,3} \wedge B_{8,3,b})
ightarrow \ & (Z_{9,q_7} \wedge P_{9,2} \wedge B_{9,3,b})] \wedge \ [(Z_{8,q_7} \wedge P_{8,3} \wedge B_{8,3,\$})
ightarrow \ & (Z_{9,q_9} \wedge P_{9,4} \wedge B_{9,3,\$})] \end{array}$$

Satz von Cook (13/14): Transitionsbedingungen (Forts.)

Beweisskizze (Forts.)

Die Teilformeln

$$egin{aligned} [(Z_{t,p} \wedge P_{t,i} \wedge B_{t,i,\sigma}) &
ightarrow \ & (Z_{t+1,q} \wedge P_{t+1,i+d} \wedge B_{t+1,i, au})] \ ext{von } arphi_{D_1} \ ext{sind noch nicht in KNF, lassen} \ ext{sich aber "aquivalent umformen:} \end{aligned}$$

$$(
eg Z_{t,p} \lor
eg P_{t,i} \lor
eg B_{t,i,\sigma} \lor Z_{t+1,q}) \land \\ (
eg Z_{t,p} \lor
eg P_{t,i} \lor
eg B_{t,i,\sigma} \lor P_{t+1,i+d}) \land \\ (
eg Z_{t,p} \lor
eg P_{t,i} \lor
eg B_{t,i,\sigma} \lor B_{t+1,i,\tau})$$

- ullet Ein technisches Detail: Was ist, wenn M weniger als n^k Schritte macht?
 - Dann wird in der Berechnungstabelle die Endkonfiguration ab der entsprechenden Zeile immer wiederholt
 - Die Formel wird analog gebildet (als wäre $\delta(\mathsf{ja}, \sigma) = (\mathsf{ja}, \sigma, \downarrow)$)

Beweisskizze (Forts.)

• φ_{D_2} drückt aus, dass sich der String an allen übrigen Positionen nicht verändert:

$$egin{aligned} ullet & arphi_{D_2} \stackrel{ ext{ iny def}}{=} \ & igwedge_{t,i,\sigma} ((
eg P_{t,i} \wedge B_{t,i,\sigma})
ightarrow B_{t+1,i,\sigma}) \end{aligned}$$

In konjunktiver Normalform:

$$egin{aligned} arphi_{D_2} &\stackrel{ ext{ iny def}}{=} \ & igwedge_{t,i,\sigma} (P_{t,i} ee
eg B_{t,i,\sigma} ee B_{t+1,i,\sigma}) \end{aligned}$$

Beispiel

ullet Für t=8 und i=3 ergibt sich also:

$$(P_{8,3} \lor \lnot B_{8,3,a} \lor B_{9,3,a}) \land \ (P_{8,3} \lor \lnot B_{8,3,b} \lor B_{9,3,b}) \land \ \dots$$

$$(P_{8,3} \lor \lnot B_{8,3,\$} \lor B_{9,3,\$}) \land \ (P_{8,3} \lor \lnot B_{8,3,
hd} \lor B_{9,3,
hd})$$

Satz von Cook (14/14): Abschluss des Beweises

Beweisskizze (Forts.)

- Endbedingung:
 - φ_E drückt aus, dass die letzte Konfiguration den ja-Zustand hat:

$$arphi_E = Z_{n^k, \mathsf{ja}}$$

- ullet Behauptung: Die Größe von $oldsymbol{arphi}$ ist polynomiell in $oldsymbol{n}$:
 - Größe der einzelnen Teilformeln:

φ_K	$\mathcal{O}(n^{3k})$
$arphi_A$	$\mathcal{O}(n^k)$
$arphi_D$	$\mathcal{O}(n^{2k})$
$arphi_E$	$\mathcal{O}(1)$

- $|\psi_{\mathsf{unique}}(x_1,\ldots,x_s)| = \mathcal{O}(s^2)$
- Zu beachten: $m{m}$ und $m{l}$ sind durch $m{M}$ bestimmt und damit konstant
- ightharpoonup die Größe von arphi ist polynomiell in n
- Und: alle Teilformeln sind in konjunktiver
 Normalform, also auch ihre Konjunktion

Beweisskizze (Forts.)

- ullet Noch zu zeigen: $w\in L\Longleftrightarrow arphi$ erfüllbar
- ullet Also: Zu w gibt es genau dann eine Zusatzeingabe y, die M zum Akzeptieren bringt, wenn φ erfüllbar ist
- Falls es ein solches y gibt, können alle Variablen gemäß ihrer intendierten Bedeutung mit Wahrheitswerten belegt werden
- ightharpoonup arphi wird wahr
 - ullet Umgekehrt: Zu jeder erfüllenden Belegung lpha von ullet lässt sich eine Zusatzeingabe $oldsymbol{y}$ und eine akzeptierende Berechnung von $oldsymbol{M}$ bei Eingabe $oldsymbol{w}$ und Zusatzeingabe $oldsymbol{y}$ konstruieren
- $\Rightarrow w \in L$
 - Nachweis jeweils durch Induktion nach t
- Damit ist die Beweisskizze des Satzes von Cook vollendet

Inhalt

- 19.1 Der Satz von Cook
- > 19.2 Polynomielle Reduktionen
 - 19.3 3-SAT
 - 19.4 Das Cliquen-Problem
 - 19.5 3-Färbbarkeit
 - 19.6 Hamiltonkreise und TSP
 - 19.7 Teilsummen und das Rucksack-Problem

Einleitung

- Wir wissen jetzt also: SAT ist NPvollständig
- Ihre große Bedeutung hat die NP-Vollständigkeit erst durch den Nachweis erlangt, dass viele andere algorithmische Probleme NP-vollständig sind
- Die erste größere Menge solcher Probleme wurde von Karp 1972 vorgestellt
 - Die Arbeit enthält alle im Folgenden betrachteten Probleme
 - Die hier vorgestellten Beweise sind aber zum Teil anders

- Wie schon gesagt, werden wir ähnlich wie im Falle der unentscheidbaren Probleme in Teil C vorzugehen:
 - Ausgehend von SAT zeigen wir die NP-Vollständigkeit der anderen Probleme jeweils mit Hilfe einer einzelnen polynomiellen Reduktion
- Zunächst vergewissern wir uns aber, dass dieser Ansatz wirklich funktioniert
- Dazu zeigen wir, dass wir wie folgt schließen können
 - Wenn alle NP-Probleme polynomiell reduzierbar auf eine Sprache L' sind
 - und $oldsymbol{L}'$ polynomiell auf eine Sprache $oldsymbol{L}$ reduzierbar ist
 - dann sind auch alle **NP**-Probleme polynomiell reduzierbar auf $oldsymbol{L}$
- ullet Wir müssen also zeigen, dass $\leqslant_{m p}$ eine transitive Relation ist

Reduktionen und NP-Vollständigkeit (1/2)

Lemma 19.2

- ullet Seien $L_1, L_2, L_3 \subseteq \Sigma^*$ Sprachen
- ullet Falls $L_1\leqslant_p L_2$ und $L_2\leqslant_p L_3$, so gilt auch $L_1\leqslant_p L_3$

Beweisskizze

- ullet Sei f_1 eine polynomielle Reduktion von L_1 auf L_2 und f_2 eine polynomielle Reduktion von L_2 auf L_3
- $oldsymbol{ullet}$ Behauptung: Die durch $oldsymbol{f}(oldsymbol{w}) \stackrel{ ext{def}}{=} oldsymbol{f_2}(oldsymbol{f_1}(oldsymbol{w}))$ definierte Funktion ist eine polynomielle Reduktion von $oldsymbol{L_1}$ auf $oldsymbol{L_3}$

Beweisskizze (Forts.)

- f ist eine Reduktion:
 - Für alle Strings $m{w}\in m{\Sigma}^*$ gilt: $m{w}\in m{L_1} \ \iff m{f_1}(m{w})\in m{L_2} \ \iff m{f}(m{w})=m{f_2}(m{f_1}(m{w}))\in m{L_3}$
- f kann in polynomieller Zeit berechnet werden:
 - Seien n^i und n^j Zeitschranken für die Berechnung von f_1 und f_2
 - $lack ag{Dann kann } f(oldsymbol{w})$ in $|oldsymbol{w}|^{oldsymbol{i}} + |f_{oldsymbol{1}}(oldsymbol{w})|^{oldsymbol{j}} \leqslant |oldsymbol{w}|^{oldsymbol{i}} + (|oldsymbol{w}|^{oldsymbol{i}})^{oldsymbol{j}} \ = \mathcal{O}(|oldsymbol{w}|^{oldsymbol{i}oldsymbol{j}})$

Schritten berechnet werden

ullet Die binäre Relation \leqslant_p zwischen Sprachen ist also transitiv

Reduktionen und NP-Vollständigkeit (2/2)

 Die Möglichkeit des Nachweises der NP-Vollständigkeit durch eine einzelne Reduktion wird nun durch das folgende Lemma eröffnet

- ullet Um nachzuweisen, dass ein Problem L NP-vollständig ist, genügt es also zu zeigen:
 - $-L\in \mathsf{NP}$
 - $-L'\leqslant_{p}L$ für ein NP-vollständiges Problem L'

Lemma 19.3

ullet Ist L' NP-schwierig und gilt $L' \leqslant_p L$, so ist auch L NP-schwierig

Die Reduktionen, die wir in diesem Kapitel betrachten werden, sind in der folgenden Abbildung zusammengefasst:

Beweisskizze

- ullet Sei $L''\in \mathsf{NP}$ beliebig
- $ightharpoonup L'' \leqslant_{p} L'$

 $ightharpoonup da oldsymbol{L}'$ NP-schwierig

ullet Wegen $L'\leqslant_{oldsymbol{p}}L$ folgt $L''\leqslant_{oldsymbol{p}}L$

r gemäß Lemma 19.2

► L NP-schwierig

Polynomielle Reduktionen: Rezept

- ullet Die folgenden Beweise für Aussagen der Art $L_1 \leqslant_p L_2$ verlaufen alle nach demselben Muster
- Sie gehen in vier Schritten vor
- (1) Definiere eine Reduktionsfunktion f, die Eingaben für L_1 auf Eingaben für L_2 abbildet
- (2) Zeige, dass f in polynomieller Zeit berechnet werden kann \circ Das ist meistens ziemlich offensichtlich
- (3) Zeige: wenn $w \in L_1$ dann ist auch $f(w) \in L_2$
 - ullet Beweise dazu, dass aus jeder Lösung $oldsymbol{y_1}$ für $oldsymbol{w}$ eine Lösung $oldsymbol{y_2}$ für $oldsymbol{f(w)}$ konstruiert werden kann
- (4) Zeige: wenn $oldsymbol{f}(oldsymbol{w}) \in oldsymbol{L_2}$ dann ist auch $oldsymbol{w} \in oldsymbol{L_1}$
 - ullet Beweise dazu, dass aus jeder Lösung $oldsymbol{y_2}$ für $oldsymbol{f(w)}$ eine Lösung $oldsymbol{y_1}$ für $oldsymbol{w}$ konstruiert werden kann
 - ullet Daraus folgt dann $L_1 \leqslant_p L_2$

Inhalt

- 19.1 Der Satz von Cook
- 19.2 Polynomielle Reduktionen
- ▶ 19.3 3-SAT
 - 19.4 Das Cliquen-Problem
 - 19.5 3-Färbbarkeit
 - 19.6 Hamiltonkreise und TSP
 - 19.7 Teilsummen und das Rucksack-Problem

SAT \leq_p 3-SAT (1/4)

Proposition 19.4

$\mathsf{SAT} \leqslant_p \mathsf{3-SAT}$

 Bei dieser Reduktion verwenden wir für lange Klauseln eine ähnliche Idee wie beim Entfernen langer rechter Seiten bei der Umwandlung kontextfreier Grammatiken in Chomsky-Normalform...

Beispiel

ullet Für $oldsymbol{arphi}=(x_1ee
eg x_2)\wedge(x_2ee
eg x_4ee x_4ee x_4ee x_4ee x_5ee x_1ee
eg x_5)$ sei:

$$f(arphi) \stackrel{ ext{def}}{=} (x_1 ee
eg x_2 ee
eg x_3 ee
eg x_4 ee y_1^2) \wedge
onumber \ (
eg y_1^2 ee x_7 ee y_2^2) \wedge
onumber \ (
eg y_2^2 ee
eg x_8 ee y_3^2) \wedge
onumber \ (
eg y_3^2 ee x_1 ee
eg x_5)$$

• Die erfüllende Belegung

 $heta: x_1\mapsto 0, x_2\mapsto 0, x_4\mapsto 1, x_7\mapsto 0, x_8\mapsto 0, x_5\mapsto 1$ kann zu einer erfüllenden Belegung von f(arphi) erweitert werden durch:

$$y_1^2\mapsto 1, y_2^2\mapsto 1, y_3^2\mapsto 0$$

SAT \leq_p 3-SAT (2/4)

Beweisskizze

- ullet Sei $arphi=K_1\wedge\cdots\wedge K_m$ eine KNF-Formel
- (1) $f(arphi) \stackrel{ ext{def}}{=} \chi_1 \wedge \cdots \wedge \chi_m$, wobei die 3-KNF-Formeln χ_i wie folgt definiert sind
 - ullet Sei $K_i = L_1 ee \cdots ee L_j$ (mit Literalen L_ℓ)
 - ullet Wenn j=1, dann $\chi_i\stackrel{ ext{def}}{=} L_1ee L_1ee L_1$
 - ullet Wenn j=2, dann $\chi_i\stackrel{ ext{def}}{=} L_1ee L_2ee L_2$
 - ullet Wenn j=3, dann $\chi_i\stackrel{ ext{ iny def}}{=} K_i$
 - ullet Wenn j>3 verwenden wir j-3 neue Variablen y_1^i,\dots,y_{j-3}^i und definieren

$$oldsymbol{\chi_i} \overset{ ext{ iny def}}{=} (L_1 ee L_2 ee y_1^i) \wedge \ (
eg y_1^i ee L_3 ee y_2^i) \wedge$$

$$egin{array}{l} dots \ (
eg y_{j-4}^i ee L_{j-2} ee y_{j-3}^i) \wedge \ & (
eg y_{j-3}^i ee L_{j-1} ee L_j) \end{array}$$

(2) f(arphi) kann in quadratischer Zeit in |arphi| berechnet werden

SAT \leq_p 3-SAT (3/4)

Beweisskizze (Forts.)

- (3) arphi erfüllbar \Rightarrow f(arphi) erfüllbar:
 - ullet Sei heta eine Belegung mit $heta \models arphi$
- lacktriangledown für jedes $i\leqslant m$ gilt: $heta\models K_i$
 - Wir zeigen, dass wir θ zu einer Belegung θ' erweitern können (die auch für die neuen Variablen definiert ist), so dass, für jedes i gilt: $\theta' \models \chi_i$
 - ullet Da die neuen Variablen jeweils nur in *einer* Teilformel χ_i vorkommen, können wir die Erweiterung von heta' für jedes χ_i einzeln definieren
 - ullet Sei also $i\leqslant m$ und $K_i=L_1ee \cdots ee L_i$
 - ullet Falls $j\leqslant 3$, muss heta für χ_i nicht erweitert werden

Beweisskizze (Forts.)

- ullet Sei nun j>3
- ullet Wenn eta eines der beiden ersten Literale von K_i wahr macht ($eta \models L_1$ oder $eta \models L_2$), können alle neuen Variablen mit 0 belegt werden:
 - $oldsymbol{ heta}'(y_{\ell}^i) \stackrel{ ext{ iny def}}{=} \mathbf{0}$, für alle $\ell \leqslant j-3$
- Wenn nicht, aber heta eines der beiden letzten Literale von K_i wahr macht $(heta \models L_{j-1} ext{ oder } heta \models L_j)$, können alle neuen Variablen auf 1 gesetzt werden $heta'(y_\ell^i) \stackrel{ ext{def}}{=} 1$, für alle $\ell \leqslant j-3$
- ullet Andernfalls sei $p\leqslant j$ die kleinste Zahl mit $heta\models L_p$ und wir setzen

–
$$m{ heta'}(m{y_\ell^i}) \stackrel{ ext{ iny def}}{=} egin{cases} 1 & ext{ für alle } m{\ell} \leqslant m{p} - m{2} \\ \mathbf{0} & ext{ für alle } m{\ell} \geqslant m{p} - m{1} \end{cases}$$

ullet In allen Fällen folgt dann: $heta' \models \chi_i$

SAT \leq_p 3-SAT (4/4)

Beweisskizze (Forts.)

- (4) f(arphi) erfüllbar $\Rightarrow arphi$ erfüllbar:
 - ullet Sei $oldsymbol{ heta}'$ eine erfüllende Belegung für $oldsymbol{f}(oldsymbol{arphi})$
- lacktriangledown für jedes $i\leqslant m$ gilt: $heta'\models\chi_i$
- ullet Wir definieren $m{ heta}(m{x_p}) \stackrel{ ext{def}}{=} m{ heta}'(m{x_p})$, für alle Variablen $m{x_p}$, die in $m{arphi}$ vorkommen
- ullet Zu zeigen: für jedes $i\leqslant m$ gilt: $heta\models K_i$
- ullet Sei also $K_i = L_1 ee \cdots ee L_j$ eine Klausel von $oldsymbol{arphi}$
- ullet Falls $j\leqslant 3$, ist K_i äquivalent zu χ_i und deshalb folgt $heta\models K_i$ direkt aus $heta'\models \chi_i$

Beweisskizze (Forts.)

- ullet Beobachtung: falls j>3 können nicht alle Klauseln von χ_i durch Literale mit Variablen y_q^i wahr gemacht werden
 - denn: nach Konstruktion kann jede Variable nur eine Klausel wahr machen, es sind aber weniger neue Variablen als Klauseln
- lacktriangledown für ein $p\leqslant j$ muss gelten $heta'\models L_p$
- $lacktriangledown heta
 otin K_i$

Folgerung 19.5

3-SAT ist NP-vollständig

Inhalt

- 19.1 Der Satz von Cook
- 19.2 Polynomielle Reduktionen
- 19.3 3-SAT
- > 19.4 Das Cliquen-Problem
 - 19.5 3-Färbbarkeit
 - 19.6 Hamiltonkreise und TSP
 - 19.7 Teilsummen und das Rucksack-Problem

$3\text{-SAT} \leqslant_p \text{CLIQUE (1/5)}$

- ullet Die Reduktionen 3-CoL \leqslant_p SAT und SAT \leqslant_p 3-SAT waren nicht allzu kompliziert
 - Dass sich die Korrektheit einer 3-Färbung eines Graphen in einer aussagenlogischen Formel "kodieren" lässt, ist nicht allzu überraschend
- Wir wollen jetzt zeigen: 3-SAT $\leqslant_{m p}$ CLIQUE
 - Das ist schon weniger nahe liegend
 - Wie sollen Variablen, Wahrheitsbelegungen und Klauseln in einen Graphen kodiert werden?
 - Das ist deutlich komplizierter
- Grob gesagt, ist die Korrespondenz zwischen Formeln und Graphen in dieser Reduktion wie folgt:
 - Jedes Vorkommen eines Literals entspricht einem Knoten im Graphen
 - Kanten zwischen Knoten drücken aus, dass die entsprechenden Literale sich nicht widersprechen
 - Cliquen im Graphen entsprechen dann Mengen simultan erfüllbarer Literale

Proposition 19.6

 $3\text{-SAT} \leqslant_p \text{CLIQUE}$

$3\text{-SAT} \leqslant_p \text{CLIQUE (2/5)}$

Illustration der Reduktion von 3-SAT auf CLIQUE

- ullet Beispielformel $oldsymbol{arphi}=(x_1ee
 abla_1ee x_3ee x_5)\wedge \ (
 eg x_1ee x_5ee x_4)\wedge (x_1ee
 eg x_2ee
 eg x_5)$
- ullet Beispielgraph G_{arphi} :

$3 ext{-SAT} \leqslant_p ext{CLIQUE}$ (3/5)

Beweisskizze

- (1) Sei arphi eine Formel in KNF mit m Klauseln zu je 3 Literalen
 - ullet Wir konstruieren einen Graphen G mit 3m Knoten so dass gilt: G hat eine Clique der Größe $m \Longleftrightarrow arphi$ ist erfüllbar
 - ullet Sei $oldsymbol{arphi}=(L_{11}ee L_{12}ee L_{13})\wedge\cdots\wedge(L_{m1}ee L_{m2}ee L_{m3})$
 - Sei G=(V,E) mit $-V=\{(i,j)\mid 1\leqslant i\leqslant m, 1\leqslant j\leqslant 3\}$ $-E=\{((i,j),(k,l))\mid i\neq k \text{ und } L_{ij}\neq \neg L_{kl}\}$
 - ullet G hat also einen Knoten für jedes Vorkommen eines Literals in einer Klausel von arphi
 - Zwei Knoten sind miteinander verbunden, wenn ihre Literale
 - nicht in derselben Klausel sind und
 - sich nicht direkt widersprechen, d.h. nicht einer Variablen x_i und ihrer Negation $\neg x_i$ entsprechen
 - ullet Wir definieren $oldsymbol{f}(oldsymbol{arphi}) \stackrel{ ext{ iny def}}{=} (oldsymbol{G}, oldsymbol{m})$
- (2) f kann in quadratischer Zeit in |arphi| berechnet werden

$3 ext{-SAT} \leqslant_p ext{CLIQUE}$ (4/5)

Beweisskizze (Forts.)

- (3) arphi erfüllbar \Rightarrow G hat eine m-Clique
 - ullet Sei $oldsymbol{ heta}$ eine erfüllende Belegung für $oldsymbol{arphi}$
 - ullet Dann gibt es für jedes $i\leqslant m$ ein $j_i\in\{1,2,3\}$, so dass $heta\models L_{ij_i}$
- ightharpoonup Die Literale L_{1j_1},\ldots,L_{mj_m} sind in verschiedenen Klauseln und widersprechen sich nicht
- ightharpoonup Ihre zugehörigen Knoten bilden eine Clique der Größe m in G
- **→** (3)

Beweisskizze (Forts.)

- (4) G hat eine m-Clique $\Rightarrow \varphi$ erfüllbar
 - ullet Sei C eine m-Clique von G
 - ullet C besteht aus Knoten zu m Literalen L_{1j_1},\ldots,L_{mj_m} aus verschiedenen Klauseln
 - ullet Da alle diese Literale miteinander verbunden sind, gibt es keine Variable x_p , für die sowohl x_p als auch $\neg x_p$ in $\{L_{1j_1},\ldots,L_{mj_m}\}$ vorkommt
- lacktriangledown heta kann so definiert werden, dass alle Literale L_{1j_1},\ldots,L_{mj_m} wahr werden
- ightharpoonup heta macht in jeder Klausel mindestens ein Literal wahr
- **→** (4)

$3 ext{-SAT} \leqslant_p ext{CLIQUE}$ (5/5)

Illustration der Reduktion von 3-SAT auf CLIQUE

ullet Beispielformel $oldsymbol{arphi} = (x_1 ee
eg x_3 ee x_5) \wedge (
eg x_1 ee x_5 ee x_4)$

- ullet Die Knoten $({f 1,2}),\,({f 2,3})$ und $({f 3,2})$ bilden eine Clique in G_{arphi}
- ightharpoonup Die Literale $\neg x_3$, $\neg x_2$ und x_4 widersprechen sich nicht
- ightharpoonup Sie induzieren deshalb eine erfüllende Belegung von φ :
 - $\theta(x_2) = 0, \theta(x_3) = 0, \theta(x_4) = 1$
 - Der Rest ist frei wählbar, z.B.: $oldsymbol{ heta}(x_1) = 0, oldsymbol{ heta}(x_5) = 1$

Inhalt

- 19.1 Der Satz von Cook
- 19.2 Polynomielle Reduktionen
- 19.3 3-SAT
- 19.4 Das Cliquen-Problem
- **▶ 19.5 3-Färbbarkeit**
 - 19.6 Hamiltonkreise und TSP
 - 19.7 Teilsummen und das Rucksack-Problem

$3-SAT \leq_{p} 3-Col(1/9)$

- ullet Bei der nächsten Reduktion 3-SAT \leqslant_p 3-CoL wird wieder zu jeder 3KNF-Formel ein Graph (und eine Zahl) konstruiert
- Die Korrespondenz zwischen den Bestandteilen des Graphen und der Formel ist jedoch anders
- Wir assoziieren
 - jede aussagenlogische Variable x_i mit jeweils zwei Knoten x_i und $\neg x_i$ des Graphen,
 - Wahrheitswerte mit Farben,
 - und Klauseln mit speziell konstruierten Teilgraphen, die nur dann korrekt gefärbt werden können, wenn die entsprechende Klausel durch die gegebene Wahrheitsbelegung wahr wird

Proposition 19.7

• 3-SAT \leqslant_p 3-COL

$3-SAT \leq_p 3-Col(2/9)$

Beweisskizze

- (1) Sei $arphi=K_1\wedge\cdots\wedge K_m$ eine 3KNF-Formel mit Variablen x_1,\ldots,x_n und Klauseln K_1,\ldots,K_m
 - Mit L_{i1}, L_{i2}, L_{i3} seien jeweils die drei Literale der Klausel K_i bezeichnet
 - Also: $oldsymbol{K_i} = oldsymbol{L_{i1}} ee oldsymbol{L_{i2}} ee oldsymbol{L_{i3}}$
 - ullet Die Reduktion konstruiert einen Graphen G mit folgenden Knoten:
 - Für jedes $i\leqslant n$ je ein Knoten x_i und $\neg x_i$ (die Literalknoten)
 - Für jedes $i\leqslant m$ fünf Knoten b_i,c_i,d_i,e_i,g_i pro Klausel K_i (die *Klauselknoten*)
 - Drei Knoten t, u, n
 - ullet Intention: G ist genau dann mit rot, blau und gelb zulässig färbbar, wenn arphi erfüllbar ist
 - ullet Wir definieren dann $oldsymbol{f}(oldsymbol{arphi})\stackrel{ ext{ def}}{=}oldsymbol{G}$
- riangle Literale kommen im Folgenden in arphi und als Knoten in G vor!

3-SAT $≤_p$ 3-CoL (3/9)

Beweisskizze (Forts.)

ullet Unabhängig von der gegebenen Formel enthält G die Kanten

$$(\boldsymbol{u},\boldsymbol{t}),(\boldsymbol{u},\boldsymbol{n}),(\boldsymbol{t},\boldsymbol{n})$$
:

- ullet Intention: $oldsymbol{t}, oldsymbol{u}, oldsymbol{n}$ müssen verschieden gefärbt werden
- ullet Für den Nachweis der Reduktionseigenschaft werden wir im Folgenden oBdA davon ausgehen, dass zulässige Färbungen t blau, u rot und n gelb färben
- Intuitiv soll blau "wahr" und rot "unwahr" entsprechen \mathbf{w} $t \equiv true, \mathbf{u} \equiv untrue$
- (gelb ist "neutral")

Beweisskizze (Forts.)

ullet Für jedes i enthält G die Kanten $(n,x_i),(n,
eg x_i),(
eg x_i),(
eg x_i)$:

- Intention:
 - Die Knoten x_i und $\neg x_i$ müssen jeweils verschieden gefärbt werden klar
 - Da n gelb ist, müssen dafür die Farben rot und blau verwendet werden
- Wir erweitern unsere Intention entsprechend:
 - Falls $oldsymbol{x_i}$ in $oldsymbol{G}$ blau gefärbt wird, soll dies $oldsymbol{ heta}(oldsymbol{x_i}) = oldsymbol{1}$ entsprechen
 - Falls $eg x_i$ in G blau gefärbt wird, soll dies $heta(x_i) = 0$ entsprechen

$3-SAT \leq_{p} 3-Col (4/9)$

Beispiel (Forts.)

- ullet Beispielformel $oldsymbol{arphi}=(x_1ee
 eg x_2ee x_3)\wedge(
 eg x_1ee x_2ee
 eg x_3)\wedge(x_1ee x_2ee
 eg x_3)$
- ullet Beispielgraph G (im Aufbau):

$3-SAT \leq_{p} 3-Col(5/9)$

Beweisskizze (Forts.)

ullet Schließlich verwenden wir für jede Klausel K_i mit Literalen L_{i1}, L_{i2}, L_{i3} einen Teilgraphen H_i der folgenden Form

- ullet Dabei sind b_i, c_i, d_i, e_i, g_i neue Knoten, die nur in H_i vorkommen
- ullet Beobachtung: Sind alle drei Knoten L_{i1}, L_{i2}, L_{i3} rot, so kann dieser Teilgraph nicht zulässig gefärbt werden

Beweisskizze (Forts.)

ullet Umgekehrt kann jede Färbung, die mindestens einen der Knoten L_i blau färbt, zu einer zulässigen Färbung des Teilgraphen erweitert werden:

- ullet Wir nennen den Teilgraphen H_i mit den Knoten b_i, c_i, d_i, e_i, g_i , den Klausel-Teilgraphen zu K_i
- ullet Die Knoten L_{i1}, L_{i2}, L_{i3} nennen wir die mit H_i verbundenen Literalknoten

$3-SAT \leq_{p} 3-Col (6/9)$

Beispiel (Forts.)

- ullet Beispielformel $oldsymbol{arphi}=(x_1ee
 eg x_2ee x_3)\wedge(
 eg x_1ee x_2ee
 eg x_3)\wedge(x_1ee x_2ee
 eg x_3)$
- Beispielgraph G:

Beweis von 3-SAT \leqslant_p 3-CoL (7/9)

- ullet G hat also insgesamt die folgenden Kanten:
 - -(u,t),(u,n),(t,n)
 - Für jedes $i \leqslant n$: $(n,x_i), (n, \neg x_i), (\neg x_i, x_i)$
 - Für jedes $i\leqslant m$: $(L_{i1},e_i),(L_{i2},g_i),(L_{i3},b_i),(e_i,g_i),(e_i,d_i), (g_i,d_i),(d_i,c_i),(c_i,b_i),(c_i,t),(b_i,t)$
- (2) f(arphi) = G kann in polynomieller Zeit berechnet werden

$3\text{-SAT} \leqslant_p 3\text{-CoL}$ (8/9)

- (3) arphi erfüllbar \Rightarrow G 3-färbbar
 - ullet Sei $heta:\{x_1,\ldots,x_n\} o\{0,1\}$ eine erfüllende Belegung für arphi
 - Wir konstruieren eine zulässige Färbung *c*:
 - $oldsymbol{c}(oldsymbol{t}) \stackrel{ ext{ iny def}}{=} ext{blau}, oldsymbol{c}(oldsymbol{u}) \stackrel{ ext{ iny def}}{=} ext{rot}, oldsymbol{c}(oldsymbol{n}) \stackrel{ ext{ iny def}}{=} ext{gelb}$
 - $c(oldsymbol{x_i}) \stackrel{ ext{ iny def}}{=}$ blau, falls $oldsymbol{ heta}(oldsymbol{x_i}) = 1$, andernfalls rot
 - $c(
 eg x_i) \stackrel{ ext{def}}{=}$ blau, falls $oldsymbol{ heta}(x_i) = \mathbf{0}$, andernfalls rot
 - ullet Da heta jede Klausel K_i wahr macht, hat jeder Teilgraph H_i mindestens einen blauen Literal-Knoten
- lacktriangle Jeder Teilgraph H_i kann zulässig gefärbt werden
- Bezüglich der übrigen Kanten ist die entstehende Färbung ebenfalls zulässig
- ightharpoonup f(arphi) ist 3-färbbar
- **→** (3)

$3\text{-SAT} \leqslant_p 3\text{-CoL}$ (9/9)

Beweis (Forts.)

- (4) G 3-färbbar $\Rightarrow arphi$ erfüllbar
 - ullet Sei c eine zulässige Färbung von G
 - ullet OBdA: $oldsymbol{c}(oldsymbol{t}) = ext{blau}, oldsymbol{c}(oldsymbol{u}) = ext{rot}, oldsymbol{c}(oldsymbol{n}) = ext{gelb}$
 - Sonst benennen wir die Farben um
- ightharpoonup Für jedes $i\leqslant n$ gilt:
 - $c(x_i) = \mathsf{blau} \ \mathsf{und} \ c(\neg x_i) = \mathsf{rot} \ \mathsf{oder}$
 - $c(x_i) = \mathsf{rot} \ \mathsf{und} \ c(\neg x_i) = \mathsf{blau}$

Beweis (Forts.)

ullet Definiere heta durch

$$\mathbf{-}\; oldsymbol{ heta}(oldsymbol{x_i}) \stackrel{ ext{def}}{=} egin{cases} \mathbf{1} & ext{falls}\; oldsymbol{c}(oldsymbol{x_i}) = ext{blau} \ \mathbf{0} & ext{falls}\; oldsymbol{c}(oldsymbol{x_i}) = ext{rot} \end{cases}$$

ullet Für jedes Literal $oldsymbol{L}$ gilt also:

$$oldsymbol{ heta} \models oldsymbol{L} \iff oldsymbol{c}(oldsymbol{L}) = \mathsf{blau}$$

- ullet Da jeder Klauselgraph H_i zulässig gefärbt ist, muss jeweils mindestens einer der Literalknoten L_{i1}, L_{i2}, L_{i3} blau sein
- lacktriangleq für jede Klausel K_i wird mindestens eines der Literale L_{i1}, L_{i2}, L_{i3} wahr
- ightharpoonup heta ist eine erfüllende Belegung von arphi
- ightharpoonup arphi erfüllbar
- **→** (4)

Präsentation von Reduktionsbeweisen

- In der Darstellung von Reduktionen (z.B.: von 3-SAT auf 3-Col) vermischen sich meist mehrere Aspekte
- Die Beschreibung der Reduktionsfunktion
 - im Beispiel: der Funktion

$$f: arphi \mapsto G_{arphi}$$

- Die Beschreibung der Intention der Reduktion, also z.B.
 - die Korrespondenz zwischen Färbungen und Wahrheitsbelegungen ("falls Knoten x_i blau wird, ist $heta(x_i)=1$ ")
 - die Färbbarkeitseigenschaften der elementaren Dreiecke und der Klauselgraphen
- Diese Vermischung erscheint schwer vermeidlich, da andernfalls die Konstruktion kaum zu verstehen wäre

- Wichtig ist aber, dass Sie sich klarmachen, dass die Reduktionsfunktion f selbst weder eine erfüllende Belegung noch eine zulässige Färbung konstruiert
- Es besteht lediglich ein Zusammenhang zwischen erfüllenden Belegungen und zulässigen Färbungen
 - Mit Hilfe dieses Zusammenhangs beweisen wir dann in den Schritten (3) und (4), dass f eine Reduktion ist

Inhalt

- 19.1 Der Satz von Cook
- 19.2 Polynomielle Reduktionen
- 19.3 3-SAT
- 19.4 Das Cliquen-Problem
- 19.5 3-Färbbarkeit
- > 19.6 Hamiltonkreise und TSP
 - 19.7 Teilsummen und das Rucksack-Problem

Zur Erinnerung: Hamilton-Kreise

Beispiel

Definition (HAMILTONCYCLE)

Gegeben: Ungerichteter Graph G

Frage: Gibt es einen geschlossenen Weg in G, der

jeden Knoten genau einmal besucht?

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (1/9)

- ullet Bei der folgenden Reduktion von 3-SAT auf HAMILTONCYCLE entspricht jede Variable x_i der Formel einem Knoten v_i des Graphen
- ullet Jeder Knoten v_i hat zwei ausgehende Kanten, die zu den beiden Literalen x_i und $\neg x_i$ korrespondieren
- Jede Wahrheitsbelegung entspricht dann der Auswahl einer Menge von Kanten für die Literale, die sie wahr macht
- Zu jeder Klausel der Formel gibt es einen Teilgraphen
 - Diese Klauselgraphen sorgen dafür, dass sich eine Menge von "Ausgangskanten" genau dann zu einem Hamiltonkreis erweitern lässt, wenn die entsprechende Wahrheitsbelegung erfüllend ist

Proposition 19.8

 $3-SAT \leqslant_p HAMILTONCYCLE$

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (2/9)

Beweisskizze

- ullet Wir zeigen zuerst: 3-SAT \leqslant_p GHAMILTONCYCLE
 - GHAMILTONCYCLE: Gegeben ein gerichteter Graph G, hat G einen gerichteten Hamiltonkreis?

(1) Sei
$$oldsymbol{arphi}=egin{pmatrix} oldsymbol{L_{11}}ee oldsymbol{L_{12}}ee oldsymbol{L_{13}}\end{pmatrix}\wedge\cdots\wedge \ oldsymbol{(L_{m1}ee oldsymbol{L_{m2}}ee oldsymbol{L_{m3}})}$$

- ullet Seien x_1,\ldots,x_n die Variablen von arphi
- ullet Der Graph G hat n+6m Knoten:
 - Die Knoten v_1,\dots,v_n repräsentieren die Variablen von arphi
 - Die Teilgraphen G_1,\dots,G_m mit Knoten u_{ij} und u'_{ij} , $1\leqslant i\leqslant m,\, 1\leqslant j\leqslant 3$, repräsentieren die Klauseln von arphi
- ullet Jeder Knoten v_i hat 2 eingehende und 2 ausgehende Kanten
 - ${\color{red}\mathsf{-}}$ Intention: die obere ausgehende Kante entspricht dem Wahrheitswert ${\color{gray}\mathbf{1}}$
- ullet Die Teilgraphen G_j haben je 3 eingehende und 3 ausgehende Kanten

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (3/9)

Beispiel

- ullet Beispiel-Formel: $oldsymbol{arphi}=(x_1ee
 eg x_3ee x_5)\wedge(
 eg x_1ee x_5ee x_4)\wedge(x_1ee
 eg x_2ee
 eg x_5)$
- ullet Beispiel-Graph G:

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (4/9)

Beweisskizze (Forts.)

- ullet Sei i fest und seien K_{j_1},\ldots,K_{j_l} die Klauseln, in denen x_i positiv vorkommt, und zwar als $L_{j_1b_1},\ldots,L_{j_lb_l}$
 - D.h.: x_i kommt in Klausel K_{j_t} an der b_t -ten Stelle vor, für $t\leqslant l$
- Dann hat G Kanten
 - vom ersten Ausgang von Knoten v_i zum b_1 -ten Eingang von G_{j_1} ,
 - vom b_t -ten Ausgang von G_{j_t} zum b_{t+1} -ten Eingang von $G_{j_{t+1}}$, für alle t < l, und
 - vom b_l -ten Ausgang von G_{j_l} zum ersten Eingang von v_{i+1} (für i=n zum ersten Eingang von v_1).
- ullet Wir nennen diese Kantenmenge den Literalweg zu x_i

- ullet Analog gibt es einen Literalweg zu $eg x_i$, der im unteren Ausgang von v_i beginnt und alle Teilgraphen G_j mit negativen Vorkommen von x_i durchläuft
- ullet Für jede Variable hat G also zwei Literalwege
- Intention: wenn eine Wahrheitsbelegung ein Literal wahr macht, dann besucht der Literalweg des Literals die Klauselgraphen aller Klauseln, die durch das Literal wahr werden

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (5/9)

Beispiel

 $\hbox{ Beispiel-Formel: } \varphi=(x_1\vee\neg x_3\vee x_5)\wedge(\neg x_1\vee x_5\vee x_4)\wedge(x_1\vee\neg x_2\vee\neg x_5) \\ \hbox{ Belegung: } \theta(x_1)=1, \theta(x_2)=1, \theta(x_3)=0, \theta(x_4)=1, \theta(x_5)=1$

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (6/9)

Beweisskizze (Forts.)

- ullet Konstruktion der Teilgraphen G_i :
- ullet Intention: die Knoten von G_i lassen sich auf jede nicht-leere Menge von Literalwegen durch G_i verteilen

egal, ob es ein, zwei oder drei sind

- u_{i1}, u_{i2}, u_{i3} : Eingangsknoten, mit jeweils einer eingehenden Kante
- $u_{i1}', u_{i2}', u_{i3}'$: Ausgangsknoten, mit je einer ausgehenden Kante
- G_i hat folgende innere Kanten:

$$-(u_{i1}, u'_{i1}), (u_{i2}, u'_{i2}), (u_{i3}, u'_{i3})$$

$$-(u_{i1}, u_{i2}), (u_{i2}, u_{i3}), (u_{i3}, u_{i1})$$

$$-\;(u_{\bm{i2}}',u_{\bm{i1}}'),(u_{\bm{i3}}',u_{\bm{i2}}'),(u_{\bm{i1}}',u_{\bm{i3}}')$$

ullet Die Kanten zwischen den Knoten u_{ij}' sind gegenläufig zu den Kanten zwischen den Knoten $u_{ij}!$

- Es gilt: für jede nicht-leere Menge S von Eingangskanten von G_i gibt es eine Menge von Wegen innerhalb G_i , die
 - G_i in der Menge S betritt,
 - alle Knoten aus G_i genau einmal besuchen,
 - und G_i in der zu S korrespondierenden Kantenmenge verlässt
- ullet Und: jeder Hamiltonpfad, der G_i in u_{ij} betritt, muss G_i auch in u_{ij}' verlassen
- $ullet f(oldsymbol{arphi}) \stackrel{ ext{ iny def}}{=} oldsymbol{G}$

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (7/9)

Beispiel (Forts.)

ullet Beispiel-Formel: $oldsymbol{arphi}=(x_1ee
a_3ee x_5)\wedge(
agtriangleright - (x_1ee x_5ee x_4)\wedge(x_1ee
agtriangleright - (x_1ee -x_2ee
agtriangleright - (x_1ee x_5ee x_4)\wedge(x_1ee -x_2ee
agtriangleright - (x_1ee x_5ee x_4)\wedge(x_1ee -x_2ee -x_5)$ Belegung: $oldsymbol{ heta}(x_1)=1$, $oldsymbol{ heta}(x_2)=1$, $oldsymbol{ heta}(x_3)=0$, $oldsymbol{ heta}(x_4)=1$, $oldsymbol{ heta}(x_5)=1$

$3\text{-SAT} \leqslant_p \text{HAMILTONCYCLE (8/9)}$

- (2) f ist in polynomieller Zeit berechenbar
- (3) arphi erfüllbar \Rightarrow G hat gerichteten Hamilton-Kreis
 - ullet Sei heta erfüllende Belegung für arphi
 - ullet Zur Konstruktion des Hamiltonkreises $m{H}$ wird zunächst für jedes Literal $m{L}$ mit $m{ heta}(m{L})=m{1}$ der Literalweg zu $m{L}$ gewählt
 - ullet Da heta erfüllend ist, wird jedes G_i durch mindestens einen dieser Literalwege besucht
 - ullet Nach Konstruktion der G_i können Innenkanten so gewählt werden, dass alle Knoten genau einmal erreicht werden (und der Weg ist zusammenhängend)
- ightharpoonup H ist Hamilton-Kreis

$3\text{-SAT} \leqslant_p \mathsf{HAMILTONCYCLE}$ (9/9)

- (4) G hat gerichteten Hamilton-Kreis $\Rightarrow arphi$ ist erfüllbar
 - Sei *H* ein Hamiltonkreis
 - ullet Falls die obere von $oldsymbol{v_i}$ ausgehende Kante in $oldsymbol{H}$ ist, setze $oldsymbol{ heta}(oldsymbol{x_i}) \stackrel{ ext{ iny def}}{=} oldsymbol{1}$ sonst $oldsymbol{ heta}(oldsymbol{x_i}) \stackrel{ ext{ iny def}}{=} oldsymbol{0}$
 - Da jeder Klauselgraph durchlaufen wird, muss jede Klausel durch mindestens ein Literal wahr gemacht werden
- ightharpoonup arphi erfüllbar
 - Noch zu zeigen: GHAMILTONCYCLE \leqslant_{p} HAMILTONCYCLE
 - Ersetze dazu
- Dann gilt:
 Der gerichtete Graph hat einen Hamilton-Kreis
 der ungerichtete Graph hat einen Hamilton-Kreis

HAMILTONCYCLE \leqslant_p TSP

Satz 19.9

HAMILTONCYCLE \leqslant_p TSP

Beweisskizze

(1) Sei $m{G} = (m{V}, m{E})$ mit Knotenmenge

$$V = \{v_1, \ldots, v_n\}$$

ullet Sei $f(G) \stackrel{ ext{def}}{=} (s_1, \dots, s_n, d, n)$, mit

$$-m{d}(m{s_i},m{s_j}) \stackrel{ ext{ iny def}}{=} egin{cases} m{1} & ext{ iny für } (m{v_i},m{v_j}) \in m{E} \ m{2} & ext{ iny für } (m{v_i},m{v_j})
otin m{E} \end{cases}$$

- (2) ✓
 - Es ist leicht zu sehen:
 - ${ extstyle -}$ Jede TSP-Reise hat mindestens die Gesamtentfernung ${m n}$
 - Jeder Hamiltonkreis von G entspricht einer TSP-Reise der Gesamtstrecke n und umgekehrt
- **→** (3), (4)

Inhalt

- 19.1 Der Satz von Cook
- 19.2 Polynomielle Reduktionen
- 19.3 3-SAT
- 19.4 Das Cliquen-Problem
- 19.5 3-Färbbarkeit
- 19.6 Hamiltonkreise und TSP
- > 19.7 Teilsummen und das Rucksack-Problem

$3 ext{-SAT} \leqslant_p \mathsf{SUBSETSUM} \leqslant_p \mathsf{KNAPSACK}$ (1/6)

 Für den Nachweis, dass KNAPSACK NP-schwierig ist, verwenden wir das folgende Problem als Zwischenschritt

Definition (SUBSETSUM)

Gegeben: Menge S natürlicher Zahlen und eine Zielzahl $oldsymbol{k}$

Frage: Gibt es $oldsymbol{T} \subseteq oldsymbol{S}$ mit $\sum_{oldsymbol{a} \in oldsymbol{T}} oldsymbol{a} = oldsymbol{k}$?

 Im Gegensatz zu den bisherigen Reduktionen wird in der folgenden Reduktion die Kodierung von Informationen in Zahlen eine Rolle spielen

$3\text{-SAT} \leqslant_p \mathsf{SUBSETSUM} \leqslant_p \mathsf{KNAPSACK}$ (2/6)

Proposition 19.10

3-SAT
$$≤_p$$
 SUBSETSUM

Beweisskizze

- (1) Sei $arphi=K_1\wedge\cdots\wedge K_m$, mit Variablen aus $\{x_1,\ldots,x_n\}$
 - ullet Wir "kodieren" $oldsymbol{arphi}$ durch $(oldsymbol{m}+oldsymbol{n})$ -stellige Dezimalzahlen:
 - ${\color{blue}\mathsf{-}}$ Die ersten m Stellen entsprechen den m Klauseln

vorderer Teil

- Die letzten n Stellen entsprechen den n Variablen

implication in the second in t

$$-k\stackrel{ ext{ iny def}}{=} \underbrace{44\cdots 44}_{m} \underbrace{11\cdots 11}_{n}$$

– Intention: φ erfüllbar \iff

es gibt eine Menge
$$T$$
 mit $\sum_{oldsymbol{a} \in T} oldsymbol{a} = k$

- ullet Für jedes Literal gibt es in S eine Zahl: a_i für x_i und b_i für $eg x_i$
- $m{ullet}$ Intention: $m{ heta}(m{x_i}) = m{1}$ entspricht der Wahl von $m{a_i}$, $m{ heta}(m{x_i}) = m{0}$ entspricht der Wahl von $m{b_i}$

$3\text{-SAT} \leqslant_p \mathsf{SUBSETSUM} \leqslant_p \mathsf{KNAPSACK}$ (3/6)

Beweisskizze (Forts.)

- a_i, b_i haben eine 1 an der i-ten Position im hinteren Teil (und an allen anderen hinteren Positionen eine 0)
- ullet An der j-ten Stelle des vorderen Teils hat a_i die Ziffer $\ell \overset{ ext{def}}{\Leftrightarrow} x_i$ kommt ℓ -mal in K_j vor analog für b_i und $eg x_i$
- ullet Jede Wahrheitsbelegung eta korrespondiert also zu einer Zahlenmenge, deren Summe
 - im hinteren Teil an jeder Position eine 1, und
 - im vorderen Teil je Klausel-Position die Anzahl ihrer wahren Literale hat
- lacktriangledown $\theta \models \varphi \Longleftrightarrow$ die Summe hat im vorderen Teil an jeder Position eine Zahl zwischen 1 und 3
 - Damit im vorderen Teil überall eine 4 (und damit genau k) erreicht werden kann, gibt es in S je Klausel von φ zwei weitere Zahlen:
 - y_i : vorne an Position j eine 1, sonst 0
 - z_j : vorne an Position j eine 2, sonst 0

Beispiel

Beispiel-Formel

$$egin{aligned} oldsymbol{arphi} & = (oldsymbol{x_1} ee oldsymbol{x_3} ee oldsymbol{x_5} ee oldsymbol{x_5} \ & (
egin{aligned} & (oldsymbol{x_1} ee oldsymbol{x_5} ee oldsymbol{x_4}) \ & \wedge (oldsymbol{x_1} ee
egin{aligned} & (oldsymbol{x_1} ee oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_1} ee oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_1} ee oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_1} ee oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_1} ee oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} \ & \wedge (oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7} oldsymbol{x_7}$$

• k = 444 111111

$$egin{array}{lll} a_1 &= 101\,10000 & b_1 &= 010\,10000 \ a_2 &= 000\,01000 & b_2 &= 001\,01000 \ a_3 &= 000\,00100 & b_3 &= 100\,00100 \ a_4 &= 010\,00010 & b_4 &= 000\,00010 \ a_5 &= 110\,00001 & b_5 &= 001\,00001 \end{array}$$

$$egin{aligned} y_1 &= 100\,00000 \ y_2 &= 010\,00000 \ y_3 &= 001\,00000 \ z_1 &= 200\,00000 \ z_2 &= 020\,00000 \end{aligned}$$

$3 ext{-SAT} \leqslant_p ext{SubsetSum} \leqslant_p ext{Knapsack} ext{ (4/6)}$

Vervollständigung des Beispiels

- ullet Beispiel-Formel $oldsymbol{arphi}=(x_1ee
 abla_1ee x_1ee x_3ee x_5)\wedge \ (
 abla_1ee x_1ee x_5ee x_4)\wedge (x_1ee
 abla_2ee
 abla_3)$
- Zahlen:

$$egin{array}{llll} a_1 = 101\,10000 & b_1 = 010\,10000 & y_1 = 100\,000000 \ a_2 = 000\,01000 & b_2 = 001\,01000 & y_2 = 010\,00000 \ a_3 = 000\,00100 & b_3 = 100\,00100 & z_1 = 200\,000000 \ a_4 = 010\,00001 & b_4 = 000\,00010 & z_2 = 020\,000000 \ a_5 = 110\,00001 & b_5 = 001\,00001 & z_3 = 002\,000000 \ \end{array}$$

Die Wahrheitsbelegung

$$heta(x_1)= heta(x_2)= heta(x_4)= heta(x_5)=1$$
 $heta(x_3)=0$ entspricht der Auswahl a_1,a_2,b_3,a_4,a_5

- Summe: 321 11111
- ullet Wähle zusätzlich: y_1, z_2, y_3, z_3
- Gesamtsumme: 444 11111

$3 ext{-SAT} \leqslant_p ext{SUBSETSUM} \leqslant_p ext{KNAPSACK}$ (5/6)

Beweisskizze (Forts.)

- (1) $f(arphi) \stackrel{ ext{def}}{=} (S, k)$, wobei S die Menge der-Zahlen der a_i, b_i, y_j, z_j ist
- (2) √
- (3) $oldsymbol{arphi}$ ist erfüllbar $\Rightarrow oldsymbol{f}(oldsymbol{arphi})$ hat eine Lösung
 - ullet Sei $oldsymbol{ heta}$ eine Belegung, die $oldsymbol{arphi}$ wahr macht
 - ullet Falls $oldsymbol{ heta}(x_{oldsymbol{i}})=1$: wähle $a_{oldsymbol{i}}$
 - ullet Falls $oldsymbol{ heta}(x_i) = \mathbf{0}$: wähle $oldsymbol{b_i}$
- Die Summe der Zahlen ist im ersten Teil an jeder Position mindestens 1 und höchstens 3, im zweiten Teil genau 1
- ullet Deshalb: falls in der bisherigen Summe im ersten Teil an der i-ten Stelle
 - eine 3 ist: wähle y_i
 - eine ${f 2}$ ist: wähle z_i
 - eine 1 ist: wähle y_i und z_i
- lacktriangle die Gesamtsumme ergibt genau k

- (4) f(arphi) hat eine Lösung $\Rightarrow arphi$ ist erfüllbar
 - ullet Sei eine Menge $T\subseteq S$ mit Summe k gewählt
- Für jedes i ist entweder a_i oder b_i gewählt
- → Definiere eine Variablenbelegung wie folgt:

$$m{ heta(x_i)} \stackrel{ ext{ iny def}}{=} egin{cases} m{1} & ext{falls } m{a_i} ext{ gewählt ist} \ m{0} & ext{falls } m{b_i} ext{ gewählt ist} \end{cases}$$

- ullet Klar: die Summe der ausgewählten a_i und b_i hat an jeder vorderen Stelle mindestens 1
- ightharpoonup Die Variablenbelegung macht jede einzelne Klausel und damit φ wahr

$3\text{-}\mathsf{SAT} \leqslant_p \mathsf{SUBSETSUM} \leqslant_p \mathsf{KNAPSACK}$ (6/6)

Proposition 19.11

SubsetSum \leq_p Knapsack

Beweisskizze

- ullet Sei S eine Menge von Zahlen und k eine Zielzahl
- (1) Sei f(S,k) die Eingabe für KNAPSACK mit
 - je einem Gegenstand mit Gewicht und Wert a, für jede Zahl $a \in S$, und
 - Gewichts- und Wertschranke k
 - Es ist leicht zu sehen, dass
 - (2) f in polynomieller Zeit berechnet werden kann, und
 - (3,4) $(S,k) \in ext{SubsetSum}$ genau dann gilt, wenn $f(S,k) \in ext{Knapsack}$

Gesamtergebnis

 Da wir für alle in diesem Kapitel betrachteten Probleme schon gezeigt haben, dass sie in NP sind, folgt aus den in diesem Kapitel gezeigten Resultaten der folgende Satz

19.12

- Die folgenden Probleme sind NP-vollständig:
 - 3-SAT
 - 3-COL
 - CLIQUE
 - HAMILTONCYCLE
 - TSP
 - SUBSETSUM
 - KNAPSACK

Zusammenfassung

- Es gibt Tausende von **NP**-vollständigen Problemen
- Das erste NP-vollständige Problem, SAT, haben wir durch den Satz von Cook gewonnen
- NP-Vollständigkeitsbeweise verwenden zumeist polynomielle Reduktionen von anderen, schon als NP-vollständig bekannten, Problemen
- Solche Reduktionsbeweise lassen sich in einer kanonischen Struktur darstellen

Literaturhinweise

- **Satz von Cook:** Stephen A. Cook. The complexity of theorem-proving procedures. In *STOC*, pages 151–158, 1971
 - Enthält viele weitere "klassische" NPvollständige Probleme
- Andere NP-vollständige Probleme R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W. Thatcher, editors, *Complexity of Computer Computa- tions*. Plenum, New York, 1972
- **Gerade Pfade:** A. S. Lapaugh and C. H. Papadimitriou. The even-path problem for graphs and digraphs. *Networks*, 14:507–513, 1984
 - Die Arbeit zeigt, dass es ein NP-vollständiges Problem ist, zu überprüfen, ob es einen Weg gerader Länge zwischen zwei Knoten eines gerichteten Graphen gibt