

DATA SCIENCE Olympics

By Smera Gora and ShwinyG on GitHub

PIE CHART

For KNN and
Naive Bayes we
had to make all
our predictors
categorical by
splitting them
up into groups

SCATTER PLOT

We were able to reduce the dimensions of our df by noticing that height and weight were

The three different models

GLM:

- Fits Generalized Linear Models.
- Puts coefficients to each predictor
 - A negative coefficient: less likely to win
 - A positive coefficient: more likely to win

Naive Bayes:

- Computes probabilities based on the given categorical predictor variables.
- Bayes Theorem

KNN:

- K Nearest Neighbors
- K value is determined with seeing the clusters with the lowest error
- Naive classifier: belong to the same class
- Euclidean Dist: takes the distance between the points

Vocabulary

- P-Value: if P is low reject Ho
- receiver operating characteristic curve, ROC: sensitivity vs
 1- specificity
- Area Under Curve, AUC: Area Under the ROC. The range is from .5 to 1 and the closer the area is to one the better
- True Positive: predicting the condition positive correctly
- ▶ True Negative: predicting condition in negative correctly
- False Positive: Predicting condition is positive incorrectly
- False Negative: Predicting the condition is negative incorrectly
- ▶ Train: data set we used to run the model
- ▶ Test: data set tested the model on
- Accuracy: correct identification
- Sensitivity : correctly identify true positive
- Specificity: correctly identify true negative
- ▶ F1: Measures rate of performance using recall and precision

	Decision	
	Accept H_0	Reject H_0
H ₀ (true)	Correct decision	Type I error (α error)
H_0 (false)	Туре II еггог (β еггог)	Correct decision

Generalized Linear Model

GLM: Generalized Linear Model False Tru

Accuracy: 0.7196 Sensitivity: 0.6995 Specificity: 0.6818

F1: 0.6905

AUC: 0.7201

Predictor examples::

- Height
- Gender
- Age
- Women's Archery team
- Women's 4 x 100
- Women's 4 x 400
- Event Archery Men's team
- Men's 1600m relay
- Men's 3 mile
- Men's 3000 miles
- Men's 4 x 100
- Men's 4x400
- Men's CC
- Men's High Jump
- Etc

GLM (problem) cont.

- Made our response binary
- Got rid of NAs
- ▶ Ran glm
- lt wouldn't work because we had to many levels in some of our obs variables
- Once we did some dimension reduction it worked and we got rid of the risk of overfitting
- We were getting really low sensitivity: it was about 8%
- The frequency of wins was extremely low compared to the loss counts.
- Another dataframe with equal frequencies of each

When you delete a block of code that you thought was useless

Naive Bayes

WROTE R CODE NOT USING GOOGLE

Naive Bayes

	False	True
0	5981	2837
1	3054	6234

Accuracy: 0.6746

Sensitivity: 0.6872451 Specificity: 0.6782717

F1: 0.6827289 AUC: 0.6692

Naive Bayes

- Reduced levels by putting the numerical values in categorical interval and everything else was in factors
- Installed the package e1071

We ran the test with the categorical variables

KNN

KNN

Accuracy: 0.9883464

Sensitivity: 0.9870273

Specificity: 0.9869397

F1: 0.9869835

AUC: 0.9884

	False	True
0	8917	118
1	93	8978

KNN

- Just like the other models we started by reducing dimensions
- Then we found out what would be the best k value
- ▶ Then we ran our model

Here is a picture we found

To better e explain the model

Best Model??

KNN was the best model for our data by far. We used the variables: Sex, Weight, Age, NOC, Year, and Sport. We further broke down the Weight and Age variables by assigning them to intervals.

Next best was our GLM with the predictors: Height, Event, Sex, Age, NOC. The sensitivity and specificity were pretty average around 70%

Lastly, the Naive Bayes fell in last place because of it's low accuracy. We used the predictors Sex, Age, Weight, Height, NOC Year, and Sport.

THANKS!

Any questions?

You can find us at:

@smeragora on GitHub

And

@ShwinyG on GitHub

