COMPUTATIONAL FLUID DYNAMICS RESEARCH AND APPLICATIONS AT NASA LANGLEY RESEARCH CENTER NASA LANGLEY RESEARCH CENTER

Head, Analytical Methods Branch Fluid Mechanics Division Jerry C. South, Jr.

aeronautics disciplines have a significant component of CFD research which complements wind-tunnel and flight States users. The Langley presentations in this conference are representative of our strategy. They are grouped in six broad areas: experimental research; in space research, aerothermodynamics of planetary entry vehicles is heavily dependent barners; focus efforts on critical aerodynamics barriers; validate CFD codes; and transfer technology to United on CFD as a research tool. Langley's CFD strategy contains four major thrusts: Focus efforts on critical CFD Research at Langley includes all aeronautics disciplines and selected space disciplines. Nearly all the

- Direct Simulation of Transition and Turbulence
- Hypervelocity Aerothermodynamics and Ranified Flows
- Unsteady Aerodynamics and Aeroelasticity Applications Hypersonic External and Internal (scramjet) Flows
- Grid Generation and Applications for Complex Configurations
- Supersonic and Transonic Wing Design Applications **– ഗ.** ഗ. 4. സ. ര

Three examples of important work not shown in this conference are described in the conclusion of the

LANGLEY CFD STRATEGY

- FOCUS EFFORT ON CRITICAL CFD BARRIERS
- GRIDS & ALGORITHMS FOR COMPLEX CONFIGURATIONS
- TRANSITION & TURBULENCE MODELS FOR RANS CODES
- NEW ALGORITHMS FOR MASSIVELY-PARALLEL PROCESSORS
- **ENABLE ROUTINE APPLICATIONS**
- FOCUS EFFORT ON CRITICAL AERODYNAMICS BARRIERS
- DIRECT SIMULATION OF TRANSITION AND TURBULENCE
- SIMULATION/PREDICTION OF HIGH-ALPHA FLOWS
- SIMULATION/PREDICTION OF HYPERSONIC PROPULSION

LANGLEY CFD STRATEGY (Concluded)

- VALIDATE CFD CODES
- CODE-ON-CODE
- CODE-ON-EXPERIMENT (GROUND & FLIGHT)
- TRANSFER TECHNOLOGY
- RESEARCHER EXCHANGES (ARC -- LaRC -- LeRC
- NAS NETWORK DATA/CODE EXCHANGES
- **▶ TRAINING APPLICATIONS RESEARCHERS**

CFD FIVE-YEAR PLAN

THRUST			YEAR			GOAL
	68	06	91	92	93	
CFD	IMPROVE		SPEED/ACCURACY	N-S STOKES	S	PREDICTIVE CAPABILITY FOR COMPLEX 3D
DEVELOPMENT	COMPLEX		GEOMETRY/GRIDS			VISCOUS FLOWS FOR ADVANCED
	PARALLEL	LEL PROCESSOR	1 1	ALGORITHMS		A/C MISSILES, & PROP. SYS.
	TRANSITION	-ಶ	TURBULENCE	MODELS		
	HIGH-SPEED		REACTING FLOWS	WS		
FLOW PHYSICS	S MOT	SPEED-TRANSITION,		TURB., & SEP	SEPARATION	HIGHLY DETAILED DATA BASE TO
	HIGH S	SPEED TRAN	TRANSITION &	TURB.		EXTRACT UNDER- STANDING OF
	TURBU	TURBULENCE/CHEM.	M. KINETICS	S INTERACTION	NOIL	PHYSICS OF 2D & 3D FLOWS
	·		!			

3-BLOCK GRID TOPOLOGY

Nearfield view F-18; 300,000 points total

EFFECT OF PATCHING ALGORITHM

 $M_{\infty} = .60 \quad \alpha = 20^{\circ} \quad R_{\bar{c}} = .8 \ x \ 10^{6}$

Spatial-flux conservation

F-18 SURFACE FLOW

$$\alpha=30^{\circ}-R_{\bar{c}}=.2\text{-.}7 \times 10^{6}$$

NAVIER-STOKES (CFL3D)

ENTROPY AND VORTICITY EFFECTS IMPROVE ACCURACY OF

UNSTEADY TRANSONIC SMALL-DISTURBANCE (TSD) THEORY **UNMODIFIED THEORY GIVES**

EFFECTS OF REDUCED FREQUENCY ON FIRST HARMONIC COMPONENTS OF UNSTEADY PRESSURES DUE TO AIRFOIL PITCHING

UNSTRUCTURED ADAPTIVE GRID FOR INVISCID SOLUTION FOR 3-ELEMENT AIRFOIL (MAVRIPLIS, ICASE)

FINITE-VOLUME EULER SOLUTION FOR 3-ELEMENT AIRFOIL (MAVRIPLIS, ICASE)

UNSTRUCTURED GRID FOR AIRFOIL WITH SLAT. HIGHLY-STRETCHED TRIANGLES TO RESOLVE LAMINAR BOUNDARY LAYER. (MAVRIPLIS, ICASE)

LAMINAR NAVIER-STOKES CALCULATIONS ON UNSTRUCTURED MESH IN SLAT REGION (MAVRIPLIS, ICASE)

I