Chapter 2

DESIGN OF SWITCHING POWER-POLES

2-1	Power Transistors and Power Diodes
2-2	Selection of Power Transistors
2-3	Selection of Power Diodes
2-4	Switching Characteristics and Power Losses in Power-Poles
2-5	Justifying Switches and Diodes as Ideal
2-6	Design Considerations
2-7	The PWM Controller IC
	References
	Problems

POWER TRANSISTORS AND POWER DIODES

- Voltage Rating
- Current Rating
- Switching Speeds
- On-State Voltage

SELECTION OF POWER TRANSISTORS

- MOSFETs
- IGBTs
- IGCTs
- GTOs
- Niche devices: BJTs, SITs, MCTs

MOSFETs

Figure 2-1 MOSFET: (a) symbol, (b) *i-v* characteristics, (c) transfer characteristic.

$$R_{DS(on)} \alpha V_{DSS}^{2.5 to 2.7}$$

IGBTs

Figure 2-2 IGBT: (a) symbol, (b) *i-v* characteristics.

Power-Integrated Modules and Intelligent- Power Modules

Power Semiconductor Price Trends

SELECTION OF POWER DIODES

Figure 2-3 Diode: (a) symbol, (b) *i-v* characteristic.

- Line-frequency diodes
- Fast-recovery diodes
- Schottky diodes
- SiC Schottky diodes

SWITCHING CHARACTERISTICS AND POWER LOSSES IN POWER-POLES

Figure 2-4 MOSFET in a switching power-pole.

Turn-on Characteristic

Figure 2-5 MOSFET turn-on.

Turn-off Characteristic

Figure 2-6 MOSFET turn-off.

PSpice Modeling: C:\FirstCourse_PE_Book03\Power_pole_PSpice_Diode.sch

© Ned Mohan, 2003

Simulation Results: MOSFET Voltage and Current

Calculating Power Losses Within the MOSFET (assuming an ideal diode)

Conduction Loss:
$$P_{cond} = d R_{DS(on)} I_o^2$$

Switching Losses:
$$P_{sw} = \frac{1}{2}V_{in}I_o(t_{c,on} + t_{c,off})f_s$$

Figure 2-7 MOSFET switching losses.

Gate Driver Integrated Circuits (ICs) with Builtin Fault Protection

Figure 2-8 Gate-driver IC functional diagram.

JUSTIFYING SWITCHES AND DIODES AS IDEAL

DESIGN CONSIDERATIONS

- Switching Frequency
- Selection of Transistors and Diodes
- Magnetic components $A_p = \frac{L\hat{I}I_{rms}}{k_w J_{max} B_{max}}$ $A_p = \frac{k_{conv} \sum V_y I_{y,rms}}{k_w B_{max} J_{max} f_s}$
- Capacitor Selection

$$\begin{array}{cccc} C & ESL & ESR \\ \hline \\ \bullet & \hline \\ \end{array}$$

Figure 2-9 Capacitor ESR and ESL.

PSpice Modeling: C:\FirstCourse_PE_Book03\Capacitor_Characteristics.sch

Simulation Results: Individual and Total Admittances

Thermal Design

$$T_{j} = T_{a} + (R_{\theta jc} + R_{\theta cs} + R_{\theta sa})P_{diss}$$

Figure 2-10 Thermal design: (a) semiconductor on a heat sink, (b) electrical analog.

Design Tradeoffs

Fig. 2-12. The output switching signal represents the transistor switching function q(t),

PWM CONTROLLER IC

Figure 2-12 PWM IC waveforms.

$$d(t) = \frac{v_c(t)}{\hat{V}_r}$$

APPENDIX 2A: Diode Reverse Recovery and Power Losses

Diode Forward Loss:

$$P_{diode,F} = (1 - d) \cdot V_{FM} I_o$$

Diode Reverse Recovery Characteristic:

Figure 2A-1 Diode reverse recovery characteristic.

Diode Switching Losses:
$$P_{diode,sw} = (\frac{1}{2}I_{RRM}t_b) \cdot V_{d,neg} \cdot f_s$$

PSpice Modeling: C:\FirstCourse_PE_Book03\ Power_pole_PSpice_MUR2020.sch

© Ned Mohan, 2003

Simulation Results: MOSFET Voltage and Current

