## s18quiz: EXP LOG (SLTN v240)

1. Graph  $y = \log_2(x-4) + 6$  and  $y = 2^{x+4} + 3$  on the grids below. Also, draw any asymptotes with dotted lines.





2. Write (but do not evaluate) the solution to the equation below by writing a logarithmic expression.

$$-23 = \left(\frac{-4}{3}\right) \cdot 2^{-7t/5}$$

Divide both sides by  $\frac{-4}{3}$ .

$$\frac{23 \cdot 3}{4} = 2^{-7t/5}$$

Take log, base 2, of both sides.

$$\log_2\left(\frac{23\cdot 3}{4}\right) = \frac{-7t}{5}$$

Divide both sides by  $\frac{-7}{5}$ .

$$\frac{-5}{7} \cdot \log_2\left(\frac{23 \cdot 3}{4}\right) = t$$

Switch sides.

$$t = \frac{-5}{7} \cdot \log_2\left(\frac{23 \cdot 3}{4}\right)$$

3. An exponential function  $f(x) = 157 \cdot e^{-1.36x}$  is graphed below on a semi-log plot.



a. Using the plot above, evaluate f(2.4).

$$f(2.4) = 6$$

b. Express  $f^{-1}(x)$ , the inverse of f.

$$f^{-1}(x) = \frac{-1}{1.36} \cdot \ln\left(\frac{x}{157}\right)$$

c. Using the plot above, evaluate  $f^{-1}(700)$ .

$$f^{-1}(700) = -1.1$$