FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

November 3-4, 2015 Houston, TX

What We've Learned From a Challenging Efficiency Goal

Wendell Brase
University of California, Irvine

Hosted by:

"And when I challenged colleges to reduce their energy use 20 percent by 2020, UC Irvine went ahead and did it last year. Done! So UC Irvine is ahead of the curve."

President Barack Obama UCI Commencement June 14, 2014

What is a feasible energy efficiency goal?

Facility Type	Goal
Laboratory building systems	50%
Classroom and office buildings	50%
Data centers	50%
Housing/residence halls	40%
Modular buildings	50%
Interior illumination	50%
Parking lots and structures	50%
Other exterior illumination	50%
Central plant/energy infrastructure	15%

Reasons >50% Savings are Possible

- Perhaps UC Irvine was extremely inefficient?
- Do universities have buildings that are unusually inefficient?
- Buildings' energy systems are designed to waste more energy than we realized
 - Energy is "almost free"
 - Over-design adds a "margin of safety"
 - Building systems are not "smart"

More Technical Reasons >50% Savings are Feasible

- Older, non-dynamic systems operated at fixed volumes/levels/speeds/temperatures
- Prior to digital controls and sensors, an extra "margin of safety" was needed
- Energy to pump water and air is non-linear
- Re-heat is excessive when air changes are unnecessarily high
- Building energy systems design practices have enormous momentum!

What is a "smart" energy system?

- Just enough, at just the right time!
- "Information layer" as important as control features themselves

Results

Where did we start?

Laboratory Building		BEFORE Smart Lab Retrofit		Retrofit
Name	Type	Estimated Average ACH	VAV or CV	More efficient than code?
Croul Hall	Р	6.6	VAV	~ 20%
McGaugh Hall	В	9.4	CV	No
Reines Hall	Р	11.3	CV	No
Natural Sciences 2	P,B	9.1	VAV	~20%
Biological Sciences 3	В	9.0	VAV	~30%
Calit2	E	6.0	VAV	~20%
Gillespie Neuroscience Research Facility	М	6.8	CV	~20%
Sprague Hall	М	7.2	VAV	~20%
Hewitt Hall	М	8.7	VAV	~20%
Engineering Hall	E	8.0	VAV	~30%
Averages		8.2	VAV	~20%

- All of these are existing buildings
- Multiple types of science represented
- Starting air change rates often higher than we expected
- Mix of mechanical system designs
- Most buildings were already very efficient

Type: P = Physical Sciences, B = Biological Sciences, E = Engineering, M = Medical Sciences

Smart Building

Just enough energy at just the right time!

How:

- Challenge all accepted design practices
- Use software and sensors to make building systems dynamic and "smart"
- Whole building retrofits enable energy savings >50%

Smart Lab Key Elements

- 1. Retrofit constant volume to variable-air volume
- 2. Optimize safe air-change rates with real-time air quality sensing
- 3. Improve lighting efficiency and efficacy
- 4. Optimize exhaust systems including fan discharge airspeed
- 5. Reduce pressure drops throughout system
- 6. Optimize fume hood standby ventilation
- 7. Continuously commission

Smart Labs Resources

 Boston Green Labs Symposium Videos http://green.harvard.edu/campaign/green-labs-symposium

 UC Irvine Smart Labs Initiative http://www.ehs.uci.edu/programs/energy/

UC Irvine's Smart Labs Initiative

Laboratory Buil	ding	BEFORE Smart Lab Retrofit		Retrofit
Name	Type	Estimated Average ACH	VAV or CV	More efficient than code?
Croul Hall	Р	6.6	VAV	~ 20%
McGaugh Hall	В	9.4	CV	No
Reines Hall	Р	11.3	CV	No
Natural Sciences 2	P,B	9.1	VAV	~20%
Biological Sciences 3	В	9.0	VAV	~30%
Calit2	Е	6.0	VAV	~20%
Gillespie Neuroscience Research Facility	М	6.8	CV	~20%
Sprague Hall	М	7.2	VAV	~20%
Hewitt Hall	М	8.7	VAV	~20%
Engineering Hall	Е	8.0	VAV	~30%
Averages		8.2	VAV	~20%

AFTER Smart Lab Retrofit			
kWh Savings	Therm Savings	Total Savings	
48%	40%	40%	
57%	66%	59%	
67%	77%	69%	
48%	62%	50%	
45%	81%	53%	
46%	78%	58%	
58%	81%	70%	
71%	83%	75%	
58%	77%	62%	
59%	78%	69%	
57%	72%	61%	

Type: P = Physical Sciences, B = Biological Sciences, E = Engineering, M = Medical Sciences

Parking Structure Lighting

Old = Metal-halide

New = Induction (magnetic fluorescent)

210 watts x 8,760 hours = 1,840 kWh/per fixture per year

40 watts x 4,984 hours = 199 KWh 85 watts x 2,345 hours = 199 kWh

Total = 398 kWh/per fixture per year

Street and Parking Lot Lighting

NEW Bi-Level Lighting
Light Emitting Diode (LED)

OLD High Pressure Sodium (HPS)

62 watts x 1,402 hours = 87 kWh 32 watts x 2,978 hours = 95 kWh

295 watts x 4,380 = 1,292 kWh/per fixture per year

What is a feasible energy efficiency goal?

Facility Type	Goal	Actual
Laboratory building systems	50%	61%
Classroom and office buildings	50%	50% (pilot)
Data centers	50%	TBD 2016
Housing/residence halls	40%	23%
Modular buildings	50%	TBD 2016
Interior illumination	50%	60%
Parking lots and structures	50%	79%
Other exterior illumination	50%	60%
Central plant/energy infrastructure	15%	25% and rising

Plugged In

Two Decades of Energy Efficiency at UCI

Two Decades of Energy Efficiency at UCI

UC Irvine Two Decades of Energy Efficiency

Co-Benefits of "Deep" Energy Efficiency Program

- Deferred maintenance
- Better information
 - Air quality longitudinal data
 - No need for periodic commissioning
 - Data to understand and target more opportunities
- Reduced wear and failure rates for fan motors and bearings
- Less re-lamping labor
- Cleaner air in laboratories, classrooms, and offices
- Avoided costs of expanding energy infrastructure, e.g., central plant

Critical Path Steps to Exemplary Performance

- 1. Get the organizational culture ready
- Adopt a challenging goal
- 3. Understand true potential of "smart" buildings
- 4. Develop a scalable strategy
- 5. Pilot new concepts initially
- 6. Use "information layer" to verify and sustain performance
- 7. Foster breakthrough thinking
 - ✓ Challenge status quo
 - ✓ Question accepted limits
 - ✓ Think comprehensively: re-engineer whole systems
 - ✓ That is, whole building energy retrofits
- 8. Prioritize "deep" energy efficiency projects (i.e., >50% savings)

Performance Improvement Resources

Sustainable Performance Improvement

http://www.abs.uci.edu/resources/sustainable.html

Better Buildings Challenge Implementation Model

http://betterbuildingssolutioncenter.energy.gov/implementation-models/empowering-managers-help-teams-meet-big-goals

Intelligent Adaptive Street Lighting

Questions? wcbrase@uci.edu

Presented at the 2015 Fall Federal Utility Partnership Working Group Seminar November 3, 2015, in Houston, Texas

© 2015 Regents of the University of California

UNIVERSITY OF CALIFORNIA

