BIST Part1 - TPG

- Introduction
- Test Pattern Generation (TPG)
 - Deterministic: ROM Algorithm Counter
 - Pseudo Random
 - Linear Feedback Shift Register, LFSR (1977)
 - Two types of LFSR
 - Design of LFSR
 - Cellular Automata, CA (1984)

Linear Feedback Shift Register [Frohwerk 77]

- LFSR consist of unit delays (flip-flops, FF) and feedback (XOR)
- Two applications of LFSR:
 - 1. LFSR without external input
 - * Used for TPG
 - * aka Autonomous LFSR

- 2. LFSR with external input
 - Used for ORA (CH 14)

⊕ =XOR

"Linear" because XOR is mod-2 addition

Two Types of Autonomous LFSR

- Autonomous LFSR is Modular Counter
 - Very small area, generate pseudo random outputs
- Two structures:
 - Type 1: Standard Form (aka external XOR) LFSR
 - Type 2: Modular Form (aka internal XOR) LFSR

Type-1 Standard LFSR

Type-2 Modular LFSR

LFSR is Good for TPG

Type-1, Standard Form LFSR

- Three ways to describe LFSR
 - 1. Next state equation: $Q_3^+ = Q_3 \oplus Q_0$
 - Q₃⁺ means next state of FF Q₃
 - **2.** Recurrence equation: $q_m = q_{m-1} \oplus q_{m-4}$
 - 3. Characteristic polynomial: $f(x) = x^4 + x^3 + 1$
 - Most popular. will see why 13.4

- NOTE: Modular-2 arithmetic: ⊕ + are same
 - 1⊕1=0; 0⊕1=1; 1⊕0=1; 0⊕0=0

State Sequence of x^4+x^3+1 LFSR

- Seed = Initial state of LFSR
 - must be non-zero
- Total 2⁴-1 = 15 distinct states
 - All-zero state not included
- Periodical.
 - Cycle length L_c= 15

Back to seed after 15 cycles ——

state	Q_3	Q_2	Q_1	Q_o
0		0	0	0
1	1	1	0	0
2	1_	1	1	0
3	1	1	1	1
4	0	1	1	1
5	1	0	1	1
6	0	1	0	1
7	1	0	1	0
8	1	1	0	1
9	0	1	1	0
10	0	0	1	1
11	1	0	0	1
12	0	1	0	0
13	0	0	1	0
14	0	0	0	1
15 (=0)	1	0	0	0

State Diagram

Pseudo Random Pattern Generator (PRPG)

- Pseudo random. NOT truly random
- Serial PRPG: $q_0, q_1, q_2, q_3, ...$
 - Periodical. L_c = 15
- Parallel PRPG: $(Q_3 Q_2 Q_1 Q_0)$
 - Each output shifted by one cycle
 - Phase difference =1

state	Q_3	Q_2	Q_1	Q_0	
0	1	0	0	0	q_0
1	1	1	0	0	q_1
2	1	1	1	0	q_2
3	1	1	1	1	q_3
4	0	1	1	1	q_4
5	1	0	1	1	q_5
6	0	1	0	1	q_6
7	1	0	1	0	q_7
8	1	1	0	1	q_8
9	0	1	1	0	q_{g}
10	0	0	1	1	q_{10}
11	1	0	0	1	q_{11}
12	0	1	0	0	q_{12}
13	0	0	1	0	q_{13}
14	0	0	0	1	q_{1}
15 (=0)	1	0	0	0	q_{13}

VLSI Test 1: Phase diff. =1 Jniversity

Quiz

Q: Given this new LFSR, show the state sequences with seed [1 0 0 0]

Q2: What is cycle length L_c =?

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

N-degree Standard Form LFSR

N = LFSR degree = number of FF = characteristic polynomial degree

 $h_i = 1$ if feedback exists $h_i = 0$ if no feedback $h_N = 1$, $h_0 = 1$

$$f(x) = x^4 + x^3 + 1$$

 Characteristic polynomial: (details see appendix)

$$f(x) = \sum_{i=0}^{N} h_i x^i$$

f(x) Can Be Written from LFSR Structure

Matrix Representation (Type-1 LFSR)

$$\begin{bmatrix} Q_0^+ \\ Q_1^+ \\ \vdots \\ Q_{N-2}^+ \\ Q_{N-2}^+ \\ Q_{N-1}^+ \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & 0 & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ \hline h_0 & h_1 & h_2 & \dots & h_{N-2} & h_{N-1} \end{bmatrix}$$

$$Q^+ = T Q \pmod{2}$$

Q = current state

 Q^+ = next state

T = companion matrix

Example

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1	1	1	0	0
2	1	1	1	0
3	1	1	1	1

$$T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad T^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{aligned} & & & \text{mod-2 arithmetic:} \\ & & & \text{1x1=1 1x0=0 0x0=0} \\ & & & \text{1+1=0 1+0=1 0+0=0} \end{aligned}$$

$$Q_{seed} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$TQ_{seed} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$Q_{seed} = egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix} \quad TQ_{seed} = egin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 1 & 0 \ 1 & 1 & 0 & 0 & 1 \end{bmatrix} egin{bmatrix} 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 1 & 0 \ 1 & 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 1 & 0 \end{bmatrix} egin{bmatrix} 0 \ 0 \ 0 \ 0 & 0 & 1 \ 1 \ 1 \end{bmatrix} = egin{bmatrix} 0 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}$$

$$T^{3}Q_{seed} == T^{2}TQ_{seed} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Matrix Multiplication Same as Simulation

Linear Relationship between States

- 0_{th} cycle: LFSR state = Q_{seed}
- 1_{st} cycle: TQ_{seed}
- 2_{nd} cycle: $TTQ_{seed} = T^2Q_{seed}$
- 4_{th} cycle: $T^4Q_{seed} = (T^2)^2Q_{seed}$

- only 3 matrix squares needed
- After L_c cycles, LFSR returns to initial state
 - $T^{Lc}Q_{seed} = Q_{seed}$
 - In this case $L_c=15$. $T^{15}=I$, so $T^{16}=T$

Matrix Faster Than Simulation

Quiz

Q1: Given this LFSR, What is its characteristic polynomial?

Q2: What is its companion matrix *T*?

Q3: Use T to derive state after three cycles, starting from seed [1 0 0 0]

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	1	0	0	1

ANS

LFSR Types

- Type 1: Standard Form (aka external XOR) LFSR
- Type 2: Modular Form (aka internal XOR) LFSR
 - XOR gates are internal to LFSR
 - as opposed to standard form LFSR, in which XOR are external

 Q_3 Q_2 Q_1 Q_0

Type-2 Modular LFSR

NOTE: Order of FF Different

N-degree Modular Form LFSR

N = LFSR degree = number of FF = characteristic polynomial degree

 $h_i = 1$ if feedback exists $h_i = 0$ if no feedback $h_N = 1$, $h_0 = 1$

Characteristic polynomial:

$$f(x) = \sum_{i=0}^{N} h_i x^i$$

$$f(x) = x^4 + x^3 + 1$$

f(x) Same as Type-1 LFSR

(remember correct order of FF!)

Matrix Representation (Type-2 LFSR)

Identity matrix

Quiz

Q: Given two types LFSR of x^4+x^3+1 , same seed 1000, fill in table.

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1	1	1	0	0
2	1	1	1	0
3	1	1	1	1
4	0	1	1	1
5	1	0	1	1
6	0	1	0	1
7	1	0	1	0
8	1	1	0	1
9	0	1	1	0
10	0	0	1	1
11	1	0	0	1
12	0	1	0	0
13	0	0	1	0
14	0	0	0	1
15 (=0)	1	0	0	0

state	Q_0	Q_1	Q_2	Q_3
0	1	0	0	0
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15 (=0)				

Summary – LFSR

- Two types of LFSR. Simple structure, good for TPG
- LFSR generate pseudo random test patterns. Repeat every L_c cycles
- Linear relationship between states: Q+=TQ
- Characteristic polynomial is often used to describe LFSR

	Structure	Matrix
type1 standard-form	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} Q_0^+ \\ Q_1^+ \\ \vdots \\ Q_{N-3}^+ \\ Q_{N-2}^+ \\ Q_{N-1}^+ \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & \dots & 0 & 0 \\ \vdots & 0 & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & 1 \\ h_0 & h_1 & h_2 & \dots & h_{N-2} & h_{N-1} \end{bmatrix} \begin{bmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_{N-3} \\ Q_{N-3} \\ Q_{N-2} \\ Q_{N-1} \end{bmatrix}$
type2 modular-form	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} Q_0^+ \\ Q_1^+ \\ \vdots \\ Q_{N-3}^+ \\ Q_{N-2}^+ \\ Q_{N-1}^- \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & h_0 \\ 1 & 0 & 0 & \dots & 0 & h_1 \\ \vdots & 1 & \vdots & & \vdots & h_2 \\ \vdots & 1 & \vdots & & \vdots & h_2 \\ \vdots & 0 & 0 & 1 & \dots & 0 & \vdots \\ 0 & 0 & 1 & \dots & 0 & \vdots \\ 0 & 0 & 0 & \dots & 0 & h_{N-2} \\ 0 & 0 & 0 & \dots & 1 & h_{N-1} \end{bmatrix} \begin{bmatrix} Q_0 \\ Q_1 \\ \vdots \\ Q_N^- \\ Q_{N-3} \\ Q_{N-2} \\ Q_{N-1} \end{bmatrix}$
Char. Poly	$f(x) = \sum_{i=0}^{N} h_i x^i$	$f(\lambda) = \det(T - \lambda I)$

FFT 1

Characteristic polynomial can also be derived from matrix T

$$f(\lambda) = \det(T - \lambda I)$$

- Q1: Given this type-1 LFSR, Please verify that $\det (T-\lambda I) = \lambda^4 \lambda^3 I$
- Q2: From structure, we know = $f(x) = x^4 + x^3 + 1$
 - Not the same, why?

$$T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\det(T - \lambda I) = \begin{vmatrix} -\lambda & 1 & 0 & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & 0 & -\lambda & 1 \\ 1 & 0 & 0 & 1 - \lambda \end{vmatrix} = ?$$

FFT 2

- Q: Given two types LFSR of same x^4+x^3+1 , same seed 1000.
- What are different? What are same?

state	Q_3	Q_2	Q_1	Q_0
0	1	0	0	0
1	1	1	0	0
2	1	1	1	0
3	1	1	1	1
4	0	1	1	1
5	1	0	1	1
6	0	1	0	1
7	1	0	1	0
8	1	1	0	1
9	0	1	1	0
10	0	0	1	1
11	1	0	0	1
12	0	1	0	0
13	0	0	1	0
14	0	0	0	1
15 (=0)	1	0	0	0

state	Q_0	Q_1	Q_2	Q_3
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
4	1	0	0	1
5	1	1	0	1
6	1	1	1	1
7	1	1	1	0
8	0	1	1	1
9	1	0	1	0
10	0	1	0	1
11	1	0	1	1
12	1	1	0	0
13	0	1	1	0
14	0	0	1	1
15 (=0)	1	0	0	0

APPENDIX: Characteristic Polynomial (1)

output bit stream: $q_0, q_1, q_2, \dots (q_0 \text{ first})$

recurrence equation:
$$q_m = \sum_{i=1}^{N} h_i q_{m-i}$$

generating function:
$$G(x) = q_0 x^0 + q_1 x^1 + q_2 x^2 + ... = \sum_{m=0}^{\infty} q_m x^m$$

$$= \sum_{m=0}^{\infty} \left[\left(\sum_{i=1}^{N} h_i q_{m-i} \right) \cdot x^m \right] = \sum_{i=1}^{N} h_i x^i \cdot \left[\sum_{m=0}^{\infty} q_{m-i} x^{m-i} \right]$$

$$= \sum_{i=1}^{N} h_i x^i \cdot [q_{-i} x^{-i} + ... + q_{-1} x^{-1} + \sum_{m=0}^{\infty} q_m x^m]$$

APPENDIX: Characteristic Polynomial (2)

$$G(x) = \sum_{i=1}^{N} h_{i} x^{i} \cdot \left[q_{-i} x^{-i} + \dots + q_{-1} x^{-1} + G(x) \right]$$

$$G(x) = \frac{\sum_{i=1}^{N} h_{i} x^{i} \cdot \left[q_{-i} x^{-i} + \dots + q_{-1} x^{-1} \right]}{1 - \sum_{i=1}^{N} h_{i} x^{i}}$$
 LFSR seed. q_{-N}, \dots, q_{-1}

when seed $q_{-N}...q_{-1}$ =[1000...0]

$$G(x) = \frac{1}{1 - \sum_{i=1}^{N} h_i x^i} = \frac{1}{f(x)}$$

characteristic polynomial:
$$f(x)=1-\sum_{i=1}^{N}h_{i}x^{i}=\sum_{i=0}^{N}h_{i}x^{i}$$