

MultiPrecisionArrays.jl: A Julia package for iterative

- ₂ refinement
- 3 C. T. Kelley 10
- 4 North Carolina State University, Raleigh NC, USA

DOI: 10.xxxxx/draft

Software

- Review 🗗
- Repository 🖸
- Archive 🗗

Editor: Open Journals $\ \ \, \square$

Reviewers:

@openjournals

Submitted: 01 January 1970 **Published:** unpublished

License

Authors of papers retain copyright and release the work under a ¹³ Creative Commons Attribution 4.0 International License (CC BY 4.0)4

Summary

MultiPrecisionArrays.jl Kelley (2023b), Kelley (2023a) provides data structures and solvers for several variations of iterative refinement (IR). IR can speed up an LU matrix factorization by factoring a low precision copy and using the low precision factorization in a residual correction loop. The additional storage cost is the low precision copy, so IR is at time vs storage tradeoff. IR is an old algorithm and a good account of the classical theory is in Higham (1996).

Statement of need

Who cares?

Algorithm

This package will make solving dense systems of linear equations faster by using the LU factorization and IR. It is limited to LU for now. A very generic description of this for solving a linear system Ax=b is

/ IR(A, b)

18

20

25

- $\mathbf{x} = 0$
 - r = b
- Factor A = LU in a lower precision
- While ||r|| is too large

$$-d = (LU)^{-1}r$$

$$-x = x + d$$

$$-r = b - Ax$$

- end
- 26 end
- In Julia, a code to do this would solve the linear system Ax=b in double precision by using a factorization in a lower precision, say single, within a residual correction iteration. This means that one would need to allocate storage for a copy of A in the lower precision and factor that copy. Then one has to determine what the line $d=(LU)^{-1}r$ means. Do you cast r into the lower precision before the solve or not? **MultiPrecisionArrays.jl** provides data structures and solvers to manage this. The **MPArray** structure lets you preallocate A, the low precision copy, and the residual r. The factorizations factor the low-precision copy and the solvers use that factorization and the original high-precision matrix to run the while loop in the algorithm.

- $_{ exttt{35}}$ IR is a perfect example of a storage/time tradeoff. To solve a linear system Ax=b in R^N
- $_{36}$ with IR, one incurs the storage penalty of making a low precision copy of A and reaps the
- 37 benefit of only having to factor the low precision copy.

38 Installation

- The standard way to install a package is to type import.Pkg; Pkg.add("MultiPrecisionArrays")
- at the Julia prompt. One can run the unit tests with Pkg.test("MultiPrecisionArrays").
- 41 After installation, type using MultiPrecisionArrays when you want to use the functions in
- 42 the package.

Example

- 44 Here is a simple example to show how iterative refierment works. We will follow that with
- 45 some benchmarking on the cost of factorizations. The functions we use are MPArray to create
- 46 the structure and mplu! to factor the low precision copy. In this example high precision is
- 47 Float64 and low precision is Float32. The matrix is the sum of the identity and a constant
- multiple of the trapezoid rule discretization of the Greens operator for $-d^2/dx^2$ on [0,1]

```
G u(x) = \int 0^1 g(x,y) u(y) , dy
```

49 where

```
g(x,y) =
  \left\{\begin{array}{c}
      y (1-x); \ x > y\\
      x (1-y); \ x \le y
  \end{array}\right.
```

- The code for this is in the /src/Examples directory. The file is Gmat.jl. You need to do
- 51 using MultiPrecisionArrays
- using MultiPrecisionArrays.Examples
- to get to it.
- 54 The example below compares the cost of a double precision factorization to a MPArray
- factorization. The MPArray structure has a high precision (TH) and a low precision (TL) matrix.
- 56 The structure we will start with is

```
57  struct MPArray{TH<:AbstractFloat,TL<:AbstractFloat}
58     AH::Array{TH,2}
59     AL::Array{TL,2}
60     residual::Vector{TH}
61     onthefly::Bool
62     end</pre>
```

- 63 The structure also stores the residual. The onthefly Boolean tells the solver how to do the
- interprecision transfers. The easy way to get started is to use the mplu command directly on
- the matrix. That will build the MPArray, follow that with the factorization of AL, and put in
- all in a structure that you can use with \.
- 67 Now we will see how the results look. In this example we compare the result with iterative
- 68 refinement with A\b, which is LAPACK's LU. As you can see the results are equally good.
- 69 Note that the factorization object MPF is the output of mplu. This is analogous to AF=lu(A) in
- 70 LAPACK.
- 71 julia> using MultiPrecisionArrays

72


```
julia> using MultiPrecisionArrays.Examples
    julia> using BenchmarkTools
    julia> N=4096;
77
    julia> G=Gmat(N);
    julia> A = I - G;
81
82
    julia> MPF=mplu(A); AF=lu(A);
83
    julia> z=MPF\b; w=AF\b;
85
    julia> ze=norm(z-x,Inf); zr=norm(b-A*z,Inf)/norm(b,Inf);
    julia> we=norm(w-x,Inf); wr=norm(b-A*w,Inf)/norm(b,Inf);
89
    julia> println("Errors: $ze, $we. Residuals: $zr, $wr")
   Errors: 8.88178e-16, 7.41629e-14. Residuals: 1.33243e-15, 7.40609e-14
    So the resuts are equally good.
    The compute time for mplu should be roughly half that of lu.
    julia> @belapsed mplu($A)
   8.55328e-02
    julia> @belapsed lu($A)
    1.49645e-01
   It is no surprise that the factorization in single precision took roughly half as long as the one
   in double. In the double-single precision case, iterative refinement is a great expample of a
   time/storage tradeoff. You have to store a low precision copy of A, so the storage burden
102
   increases by 50% and the factoriztion time is cut in half.
103
    Test citations
    Kelley (2022b) is a book. Kelley (2022a) is a paper.
    Kelley (2023b) is the newest paper
    The package lives here (kelley2023b?)
107
    References
    Higham, N. J. (1996). Accuracy and stability of numerical algorithms (p. xxviii+688). Society
109
       for Industrial; Applied Mathematics. ISBN: 0-89871-355-2
110
    Kelley, C. T. (2022a). Newton's method in mixed precision. SIAM Review, 64, 191-211.
111
```

Kelley, C. T. (2022b). Solving Nonlinear Equations with Iterative Methods: Solvers and

Kelley, C. T. (2023a). MultiPrecisionArrays.jl. https://github.com/ctkelley/MultiPrecisionAr-

Examples in Julia. SIAM. ISBN: 978-1-611977-26-4

rays.jl. https://doi.org/10.5281/zenodo.7521427

https://doi.org/10.1137/20M1342902

112

114

115

Kelley, C. T. (2023b). Newton's method in three precisions. https://arxiv.org/abs/2307.16051

