3.4 — Multivariate OLS Estimators

ECON 480 • Econometrics • Fall 2021

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- <u>ryansafner/metricsF21</u>
- metricsF21.classes.ryansafner.com

Outline

The Multivariate OLS Estimators

The Expected Value of $\hat{\beta}_j$: Bias

Precision of $\hat{\beta}_j$

A Summary of Multivariate OLS Estimator Properties

Updated Measures of Fit

The Multivariate OLS Estimators

The Multivariate OLS Estimators

• By analogy, we still focus on the **ordinary least squares (OLS) estimators** of the unknown population parameters $\beta_0, \beta_1, \beta_2, \cdots, \beta_k$ which solves:

$$\min_{\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}, \dots, \hat{\beta}_{k}} \sum_{i=1}^{n} \left[Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1} X_{1i} + \hat{\beta}_{2} X_{2i} + \dots + \hat{\beta}_{k} X_{ki}) \right]^{2}$$

- Again, OLS estimators are chosen to minimize the sum of squared errors (SSE)
 - \circ i.e. sum of squared distances between actual values of Y_i and predicted values \hat{Y}_i

The Multivariate OLS Estimators: FYI

Math FYI: in linear algebra terms, a regression model with n observations of k independent variables:

$$\mathbf{Y} = \mathbf{X}\beta + \mathbf{u}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{k,1} & x_{k,2} & \cdots & x_{k,n} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}$$

$$\mathbf{X}_{(n \times 1)}$$

- The OLS estimator for β is $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ $\mathbf{\Omega}$
- Appreciate that I am saving you from such sorrow 🎃

The Sampling Distribution of \hat{eta}_{j}

• For *any* individual β_j , it has a sampling distribution:

$$\hat{\beta}_j \sim N\left(E[\hat{\beta}_j], se(\hat{\beta}_j)\right)$$

- We want to know its sampling distribution's:
 - Center: $E[\hat{\beta}_j]$; what is the *expected value* of our estimator?
 - Spread: $se(\hat{\beta}_j)$; how *precise* or *uncertain* is our estimator?

The Sampling Distribution of \hat{eta}_j

• For *any* individual β_j , it has a sampling distribution:

$$\hat{\beta}_j \sim N\left(E[\hat{\beta}_j], se(\hat{\beta}_j)\right)$$

- We want to know its sampling distribution's:
 - Center: $E[\hat{\beta}_j]$; what is the *expected value* of our estimator?
 - Spread: $se(\hat{\beta}_j)$; how *precise* or *uncertain* is our estimator?

The Expected Value of $\hat{\beta}_j$: Bias

Exogeneity and Unbiasedness

- As before, $E[\hat{\beta}_j] = \beta_j$ when X_j is exogenous (i.e. $cor(X_j, u) = 0$)
- We know the true $E[\hat{\beta}_j] = \beta_j + cor(X_j, u) \frac{\sigma_u}{\sigma_{X_j}}$
- If X_i is endogenous (i.e. $cor(X_i, u) \neq 0$), contains omitted variable bias
- We can now try to *quantify* the omitted variable bias

• Suppose the *true* population model of a relationship is:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- What happens when we run a regression and **omit** X_{2i} ?
- Suppose we estimate the following **omitted regression** of just Y_i on X_{1i} (omitting X_{2i}):

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

[†] Note: I am using α 's and ν_i only to denote these are different estimates than the **true** model β 's and u_i

- **Key Question:** are X_{1i} and X_{2i} correlated?
- Run an auxiliary regression of X_{2i} on X_{1i} to see:

$$X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$$

- If $\delta_1 = 0$, then X_{1i} and X_{2i} are *not* linearly related
- If $|\delta_1|$ is very big, then X_{1i} and X_{2i} are strongly linearly related

 $^{^{\}dagger}$ Note: I am using δ 's and au to differentiate estimates for this model.

- Now substitute our auxiliary regression between X_{2i} and X_{1i} into the *true* model:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- Now substitute our auxiliary regression between X_{2i} and X_{1i} into the *true* model:
 - \circ We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} X_{2i} + u_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2} \left(\delta_{0} + \delta_{1} X_{1i} + \tau_{i} \right) + u_{i}$$

- Now substitute our auxiliary regression between X_{2i} and X_{1i} into the *true* model:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}(\delta_{0} + \delta_{1}X_{1i} + \tau_{i}) + u_{i}$$

$$Y_{i} = (\beta_{0} + \beta_{2}\delta_{0}) + (\beta_{1} + \beta_{2}\delta_{1})X_{1i} + (\beta_{2}\tau_{i} + u_{i})$$

- Now substitute our auxiliary regression between X_{2i} and X_{1i} into the *true* model:
 - We know $X_{2i} = \delta_0 + \delta_1 X_{1i} + \tau_i$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + u_{i}$$

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}\left(\delta_{0} + \delta_{1}X_{1i} + \tau_{i}\right) + u_{i}$$

$$Y_{i} = (\beta_{0} + \beta_{2}\delta_{0}) + (\beta_{1} + \beta_{2}\delta_{1})X_{1i} + (\beta_{2}\tau_{i} + u_{i})$$

$$\alpha_{0}$$

• Now relabel each of the three terms as the OLS estimates (α 's) and error (ν_i) from the **omitted regression**, so we again have:

$$Y_i = \alpha_0 + \alpha_1 X_{1i} + \nu_i$$

• Crucially, this means that our OLS estimate for X_{1i} in the omitted regression is:

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The **Omitted Regression** OLS estimate for X_{1i} , (α_1) picks up *both*:
- 1) The true effect of X_1 on Y_i : (β_1)
- 2) The true effect of X_2 on Y_i : (β_2)
 - As pulled through the relationship between X_1 and X_2 : (δ_1)
 - Recall our conditions for omitted variable bias from some variable Z_i :
- 1) Z_i must be a determinant of $Y_i \implies \beta_2 \neq 0$
- 2) $\mathbf{Z_i}$ must be correlated with $X_i \implies \delta_1 \neq 0$
 - Otherwise, if Z_i does not fit these conditions, $\alpha_1 = \beta_1$ and the **omitted regression** is *unbiased*!

• The "True" Regression $(Y_i \text{ on } X_{1i} \text{ and } X_{2i})$

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}_i$$

term	estimate	std.error	statistic	p.value	
<chr></chr>	<dpl></dpl>	<pre><dpl></dpl></pre>	<qpf></qpf>	<pre><dpl></dpl></pre>	
(Intercept)	686.0322487	7.41131248	92.565554	3.871501e-280	
str	-1.1012959	0.38027832	-2.896026	3.978056e-03	
el_pct	-0.6497768	0.03934255	-16.515879	1.657506e-47	
3 rows					

• The "Omitted" Regression $(Y_i \text{ on just } X_{1i})$

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

term	estimate	std.error	statistic	p.value	
<chr></chr>	<dbl></dbl>	<dpl></dpl>	<qpf></qpf>	<qpf></qpf>	
(Intercept) 698.932952		9.4674914	73.824514	6.569925e-242	
str	-2.279808	0.4798256	-4.751327	2.783307e-06	
2 rows					

• The "Auxiliary" Regression $(X_{2i} \text{ on } X_{1i})$

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

term	estimate	std.error	statistic	p.value	
<chr></chr>	<qpf></qpf>	<dbl></dbl>	<qpf></qpf>	<pre><dpl></dpl></pre>	
(Intercept)	-19.854055	9.1626044	-2.166857	0.0308099863	
str	1.813719	0.4643735	3.905733	0.0001095165	
2 rows					

"True" Regression

 $\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

• Omitted Regression α_1 on STR is -2.28

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

• The true effect of STR on Test Score: -1.10

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL}_i = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65
- The relationship between STR and %EL: 1.81

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL}_i = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65
- The relationship between STR and %EL: 1.81
- So, for the **omitted regression**:

$$-2.28 = -1.10 + (-0.65)(1.81)$$

"True" Regression

$$\widehat{\text{Test Score}}_i = 686.03 - 1.10 \, \text{STR}_i - 0.65 \, \% \text{EL}$$

"Omitted" Regression

$$\widehat{\text{Test Score}}_i = 698.93 - 2.28 \, \text{STR}_i$$

"Auxiliary" Regression

$$\widehat{\%EL_i} = -19.85 + 1.81 \text{ STR}_i$$

$$\alpha_1 = \beta_1 + \beta_2 \delta_1$$

- The true effect of STR on Test Score: -1.10
- The true effect of %EL on Test Score: -0.65
- The relationship between STR and %EL: 1.81
- So, for the **omitted regression**:

$$-2.28 = -1.10 + \underbrace{(-0.65)(1.81)}_{O.V.Bias = -1.18}$$

Precision of $\hat{\beta}_{j}$

Precision of $\hat{\beta}_j$ I

- $\sigma_{\hat{eta}_{j}}$; how **precise** are our estimates?
- Variance $\sigma_{\hat{eta}_{j}}^{2}$ or standard error $\sigma_{\hat{eta}_{j}}$

Precision of $\hat{\beta}_j$ II

$$var(\hat{\beta}_j) = \underbrace{\frac{1}{1 - R_j^2}}_{VIF} \times \frac{(SER)^2}{n \times var(X)}$$

$$se(\hat{\beta}_j) = \sqrt{var(\hat{\beta}_1)}$$

- Variation in $\hat{\beta}_i$ is affected by **four** things now[†]:
- 1. Goodness of fit of the model (SER)
 - \circ Larger $SER \to \text{larger } var(\hat{\beta}_i)$
- 2. Sample size, n
 - \circ Larger $n \to \text{smaller } var(\hat{\beta}_i)$
- 3. Variance of X
 - \circ Larger $var(X) \to \text{smaller } var(\hat{\beta}_i)$
- 4. Variance Inflation Factor $\frac{1}{(1-R_i^2)}$
 - \circ Larger VIF, larger $var(\hat{eta_j})$
 - This is the only new effect

[†] See <u>Class 2.5</u> for a reminder of variation with just one X variable.

VIF and Multicollinearity I

• Two *independent* (X) variables are **multicollinear**:

$$cor(X_j, X_l) \neq 0 \quad \forall j \neq l$$

- Multicollinearity between X variables does not bias OLS estimates
 - \circ Remember, we pulled another variable out of u into the regression
 - o If it were omitted, then it would cause omitted variable bias!
- Multicollinearity does increase the variance of each estimate by

$$VIF = \frac{1}{(1 - R_j^2)}$$

VIF and Multicollinearity II

$$VIF = \frac{1}{(1 - R_j^2)}$$

• R_i^2 is the R^2 from an auxiliary regression of X_j on all other regressors (X's)

Example: Suppose we have a regression with three regressors (k = 3):

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i}$$

• There will be three different R_i^2 's, one for each regressor:

$$R_1^2$$
 for $X_{1i} = \gamma + \gamma X_{2i} + \gamma X_{3i}$
 R_2^2 for $X_{2i} = \zeta_0 + \zeta_1 X_{1i} + \zeta_2 X_{3i}$
 R_3^2 for $X_{3i} = \eta_0 + \eta_1 X_{1i} + \eta_2 X_{2i}$

VIF and Multicollinearity III

$$VIF = \frac{1}{(1 - R_j^2)}$$

- R_j^2 is the R^2 from an **auxiliary regression** of X_j on all other regressors (X's)
- The R_i^2 tells us how much other regressors explain regressor X_j
- Key Takeaway: If other X variables explain X_j well (high R_J^2), it will be harder to tell how $cleanly X_j \to Y_i$, and so $var(\hat{\beta}_i)$ will be higher

VIF and Multicollinearity IV

• Common to calculate the Variance Inflation Factor (VIF) for each regressor:

$$VIF = \frac{1}{(1 - R_j^2)}$$

- VIF quantifies the factor (scalar) by which $var(\hat{\beta}_j)$ increases because of multicollinearity \circ e.g. VIF of 2, 3, etc. \Longrightarrow variance increases by 2x, 3x, etc.
- Baseline: $R_i^2 = 0 \implies no$ multicollinearity $\implies VIF = 1$ (no inflation)
- Larger $R_i^2 \implies \text{larger VIF}$
 - \circ Rule of thumb: VIF > 10 is problematic

VIF and Multicollinearity V

```
# Make a correlation table
CASchool %>%
  select(testscr, str, el_pct) %>%
  cor()
```

```
## testscr str el_pct
## testscr 1.0000000 -0.2263628 -0.6441237
## str -0.2263628 1.0000000 0.1876424
## el_pct -0.6441237 0.1876424 1.0000000
```

• Cor(STR, %EL) = -0.644

VIF and Multicollinearity in R I


```
# our multivariate regression
elreg <- lm(testscr ~ str + el pct,
             data = CASchool)
# use the "car" package for VIF function
library("car")
# syntax: vif(lm.object)
vif(elreg)
##
        str
              el pct
## 1.036495 1.036495
 • var(\hat{\beta_1}) on str increases by 1.036 times (3.6%) due to multicollinearity with el_pct
 • var(\hat{\beta}_2) on el_pct increases by 1.036 times (3.6%) due to multicollinearity with str
```

VIF and Multicollinearity in R II

• Let's calculate VIF manually to see where it comes from:

term	estimate	std.error	statistic	p.value
<chr></chr>	<dbl></dbl>	<dpl></dpl>	<dpl></dpl>	<pre><dpl></dpl></pre>
(Intercept)	-19.854055	9.1626044	-2.166857	0.0308099863
str	1.813719	0.4643735	3.905733	0.0001095165
2 rows				

VIF and Multicollinearity in R III

glance(auxreg) # look at aux reg stats for R^2

r.squared	adj.r.squared	sigma	statistic	p.value df	logLik	AIC	BIC
<dbl></dbl>	<pre><dpl></dpl></pre>	<qpf></qpf>	<qpf></qpf>	<dpl> <dpl> <dpl></dpl></dpl></dpl>	<qpf></qpf>	<qpf></qpf>	<dbl></dbl>
0.03520966	0.03290155	17.98259	15.25475	0.0001095165 1	-1808.502	3623.003	3635.124

1 row | 1-9 of 12 columns

```
# extract our R-squared from aux regression (R_j^2)
aux_r_sq <- glance(auxreg) %>%
select(r.squared)
```

aux_r_sq # look at it

r.squar	ed
<dl><dl< li=""></dl<></dl>	ol>
0.035209	966

VIF and Multicollinearity in R IV


```
# calculate VIF manually
our_vif <- 1 / (1 - aux_r_sq) # VIF formula
our_vif</pre>
```


ullet Again, multicollinearity between the two X variables inflates the variance on each by 1.036 times

Example: What about district expenditures per student?

```
CASchool %>%
  select(testscr, str, expn_stu) %>%
  cor()
```

```
## testscr str expn_stu
## testscr 1.0000000 -0.2263628 0.1912728
## str -0.2263628 1.0000000 -0.6199821
## expn_stu 0.1912728 -0.6199821 1.0000000
```


- 1. $cor(Test score, expn) \neq 0$
- 2. $cor(STR, expn) \neq 0$

- 1. $cor(Test score, expn) \neq 0$
- 2. $cor(STR, expn) \neq 0$
- Omitting expn will **bias** \hat{eta}_1 on STR

- 1. $cor(Test score, expn) \neq 0$
- 2. $cor(STR, expn) \neq 0$
- Omitting expn will **bias** \hat{eta}_1 on STR
- Including expn will not bias $\hat{\beta}_1$ on STR, but will make it less precise (higher variance)

- Data tells us little about the effect of a change in STR holding expn constant
 - Hard to know what happens to test scores when high STR AND high expn and vice versa (they rarely happen simultaneously)!

term	estimate	std.error	statistic	
<chr></chr>	<dbl></dbl>	<dpl></dpl>	<dpl></dpl>	
(Intercept)	675.577173851	19.562221636	34.534788	
str	-1.763215599	0.610913641	-2.886195	
expn_stu	0.002486571	0.001823105	1.363921	
3 rows 1-4 of 5 columns				

```
expreg %>%
  vif()
```

```
## str expn_stu
## 1.624373 1.624373
```

• Including expn_stu increases variance of $\hat{\beta}_1$ and $\hat{\beta}_2$ by 1.62x (62%)

Multicollinearity Increases Variance

• We can see $SE(\hat{\beta}_1)$ on str increases from 0.48 to 0.61 when we add

	Model 1	Model 2
Intercept	698.93 ***	675.58 ***
	(9.47)	(19.56)
Class Size	-2.28 ***	-1.76 **
	(0.48)	(0.61)
Expenditures per Student		0.00
		(0.00)
N	420	420
R-Squared	0.05	0.06
SER	18.58	18.56

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Perfect Multicollinearity

 Perfect multicollinearity is when a regressor is an exact linear function of (an)other regressor(s)

$$\widehat{Sales} = \hat{\beta_0} + \hat{\beta_1}$$
 Temperature (C) + $\hat{\beta_2}$ Temperature (F)

Temperature (F) =
$$32 + 1.8 *$$
 Temperature (C)

- cor(temperature (F), temperature (C)) = 1
- $R_j^2 = 1$ is implying $VIF = \frac{1}{1-1}$ and $var(\hat{\beta}_j) = 0!$
- This is fatal for a regression
 - A logical impossiblity, always caused by human error

Perfect Multicollinearity: Example

Example:

$$\widehat{TestScore}_i = \hat{\beta}_0 + \hat{\beta}_1 STR_i + \hat{\beta}_2 \%EL + \hat{\beta}_3 \%EF$$

- %EL: the percentage of students learning English
- %EF: the percentage of students fluent in English
- %EF = 100 %EL
- |cor(%EF, %EL)| = 1

Perfect Multicollinearity Example II


```
# generate %EF variable from %EL

CASchool_ex <- CASchool %>%
    mutate(ef_pct = 100 - el_pct)

# get correlation between %EL and %EF

CASchool_ex %>%
    summarize(cor = cor(ef_pct, el_pct))

## # A tibble: 1 × 1

## cor

## <dbl>
## 1 -1
```

Perfect Multicollinearity Example III

Perfect Multicollinearity Example IV


```
mcreg <- lm(testscr ~ str + el pct + ef pct,</pre>
            data = CASchool_ex)
summary(mcreg)
##
## Call:
## lm(formula = testscr ~ str + el_pct + ef_pct, data = CASchool_ex)
## Residuals:
               10 Median
  -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients: (1 not defined because of singularities)
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
               -1.10130 0.38028 -2.896 0.00398 **
## str
             -0.64978
## el pct
                           0.03934 -16.516 < 2e-16 ***
## ef_pct
                                NΑ
                                        NΑ
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
## F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
```

```
mcreg %>% tidv()
## # A tibble: 4 × 5
     term
                 estimate std.error statistic
                                                 p.value
     <chr>>
                    <fh1>
                              <dbl>
                                        <dbl>
                                                   <dbl>
## 1 (Intercept)
                 686.
                             7.41
                                        92.6
                                             3.87e-280
## 2 str
                   -1.10
                             0.380
                                       -2.90 3.98e- 3
## 3 el pct
                  -0.650
                             0.0393
                                       -16.5
                                             1.66e- 47
## 4 ef pct
                            NA
                                             NΑ
```

Note R drops one of the multicollinear regressors (ef_pct) if you include both

A Summary of Multivariate OLS Estimator Properties

A Summary of Multivariate OLS Estimator Properties

- $\hat{\beta}_j$ on X_j is biased only if there is an omitted variable (Z) such that:
 - 1. $cor(Y, Z) \neq 0$
 - 2. $cor(X_j, Z) \neq 0$
 - \circ If Z is *included* and X_i is collinear with Z, this does *not* cause a bias
- $var[\hat{\beta}_i]$ and $se[\hat{\beta}_i]$ measure precision (or uncertainty) of estimate:

$$var[\hat{\beta}_j] = \frac{1}{(1 - R_j^2)} * \frac{SER^2}{n \times var[X_j]}$$

- VIF from multicollinearity: $\frac{1}{(1-R_i^2)}$
 - $\circ R_j^2$ for auxiliary regression of X_j on all other X's
 - mutlicollinearity does not bias $\hat{\beta}_i$ but raises its variance
 - \circ *perfect* multicollinearity if X's are linear function of others

Updated Measures of Fit

(Updated) Measures of Fit

- Again, how well does a linear model fit the data?
- How much variation in Y_i is "explained" by variation in the model (\hat{Y}_i) ?

$$Y_i = \hat{Y}_i + \hat{u}_i$$

$$\hat{u}_i = Y_i - \hat{Y}_i$$

(Updated) Measures of Fit: SER

• Again, the Standard errror of the regression (SER) estimates the standard error of u

$$SER = \frac{SSE}{n - \mathbf{k} - 1}$$

- ullet A measure of the spread of the observations around the regression line (in units of Y), the average "size" of the residual
- Only new change: divided by n-k-1 due to use of k+1 degrees of freedom to first estimate β_0 and then all of the other β 's for the k number of regressors[†]

[†] Again, because your textbook defines k as including the constant, the denominator would be n-k instead of n-k-1.

(Updated) Measures of Fit: R^2

$$R^{2} = \frac{ESS}{TSS}$$

$$= 1 - \frac{SSE}{TSS}$$

$$= (r_{X,Y})^{2}$$

• Again, R^2 is fraction of total variation in Y_i ("total sum of squares") that is explained by variation in predicted values (\hat{Y}_i , i.e. our model ("explained sum of squares")

$$\frac{var(\hat{Y})}{var(Y)}$$

Visualizing R^2

• Total Variation in Y: Areas A + D + E + G

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

• Variation in Y explained by X1 and X2: Areas D + E + G

$$ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

• Unexplained variation in Y: Area A

$$SSE = \sum_{i=1}^{n} (\hat{u}_i)^2$$

Compare with one X variable

$$R^2 = \frac{ESS}{TSS} = \frac{D+E+G}{A+D+E+G}$$

Visualizing R^2

```
# make a function to calc. sum of sq. devs
sum_sq \leftarrow function(x){sum((x - mean(x))^2)}
# find total sum of squares
TSS <- elreg %>%
  augment() %>%
 summarize(TSS = sum_sq(testscr))
# find explained sum of squares
ESS <- elreg %>%
  augment() %>%
 summarize(TSS = sum_sq(.fitted))
# look at them and divide to get R^2
tribble(
 ~ESS, ~TSS, ~R_sq,
 ESS, TSS, ESS/TSS
 ) %>%
  knitr::kable()
```

ESS	TSS	R_sq
64864.3	152109.6	0.4264314

$$R^2 = \frac{ESS}{TSS} = \frac{D + E + G}{A + D + E + G} = 0.426$$

(Updated) Measures of Fit: Adjusted ${ar R}^2$

- Problem: R^2 mechanically increases *every* time a new variable is added (it reduces SSE!)
 - \circ Think in the diagram: more area of Y covered by more X variables!
- This does **not** mean adding a variable *improves the fit of the model* per se, \mathbb{R}^2 gets **inflated**
- We correct for this effect with the adjusted \bar{R}^2 which penalizes adding new variables:

$$\bar{R}^2 = 1 - \underbrace{\frac{n-1}{n-k-1}}_{penalty} \times \frac{SSE}{TSS}$$

- In the end, recall R^2 was never that useful[†], so don't worry about the formula
 - \circ Large sample sizes (n) make R^2 and \bar{R}^2 very close

[†] ...for measuring causal effects (our goal). It *is* useful if you care about prediction <u>instead</u>!

In R (base)


```
##
                                                   • Base R^2 (R calls it "Multiple R-
## Call:
                                                     squared") went up
## lm(formula = testscr ~ str + el_pct, data = CASchool)

    Adjusted R-squared went down

##
## Residuals:
##
      Min
              1Q Median
                         30
                                    Max
## -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
       -1.10130 0.38028 -2.896 0.00398 **
## str
## el_pct -0.64978
                         0.03934 -16.516 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
## F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
```

In R (broom)

elreg %>%

Coefficient Plots

- The modelsummary package has a great command modelplot() for quickly making coefficient plots
- Learn more

Modelsummary

- The modelsummary package also is a good alternative to huxtable for making regression tables (that's growing on me):
 - Learn more

	Base Model	Multivariate Model	
Constant	698.93***	686.03***	
	(9.47)	(7.41)	
STR	-2.28***	-1.10**	
	(0.48)	(0.38)	
% ESL Students		-0.65***	
		(0.04)	
N	420	420	
R^2	0.05	0.43	
Adj. R ²	0.05	0.42	
SER	18.58	14.46	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001			