信号与系统课程笔记: Lecture 4

授课教师:秦雨潇 笔记记录:曹时成

2023年9月22日(第三周,周五)

1 卷积

"小学乘法的另一种体现"

1.1 Basic guideline

在 LTI 中:

1. $f(t) = H[\delta(t)]$ 复杂 (特殊) 信号可以用简单 (一般) 信号表示

2. $\delta(t) \to h(t) \to ? \Leftrightarrow 9 \times 9$ 乘法表 简单 (一般) 信号通过系统会怎么变化?

3. $f_1(t) \rightarrow h(t) \rightarrow$? 复杂信号通过系统会怎么变化?

1.2 定义

举例:

12312 = "写为都以基本乘法表示的形式"

 $= 1 \times 10000 +$

 $2 \times 1000 +$

 $3 \times 100 +$

 $2 \times 10 +$

 1×1

写为信号的形式为:

f(t) = [1, 2, 3, 2, 1]

 $= 1 \times [1, 0, 0, 0, 0] +$

 $2 \times [0, 1, 0, 0, 0] +$

 $3 \times [0,0,1,0,0] +$

 $2 \times [0, 0, 0, 1, 0] +$

 $1 \times [0, 0, 0, 0, 1]$

(1) 存在一个基本的函数形式

图 1: δ 函数信号形式

$$\delta[k] = \begin{cases} 1 & k = 0 \\ 0 & k \in Z \end{cases}$$

该函数表现形式被称为 δ 函数

(2) 信号用 δ 函数可以表示为:

$$\begin{split} f(t) &= [1,2,3,2,1] \\ &= f[0] \times \delta[k] \quad + \\ f[1] \times \delta[k-1] \, + \\ f[2] \times \delta[k-2] \, + \\ f[3] \times \delta[k-3] \, + \\ f[4] \times \delta[k-4] \end{split}$$

思考:除了 δ 函数是否还有其他的 Basic signal,如何用它们表示复杂信号?是否比 δ 函数好?哪些是我们想要用的 Basic signal?哪些是我们不想用的?

(3) 用一般信号表示特殊信号

任意信号都可以用冲激信号的组合表示

对于离散信号:

$$f[k] = \sum_{\tau = -\infty}^{\infty} f[\tau] \cdot \delta[k - \tau]$$

对于连续信号:

$$f(t) = \int_{\tau = -\infty}^{\infty} f(\tau) \cdot \delta(t - \tau) d\tau$$

(4) 卷积

$$f(t) * h(t) = \int_{\tau = -\infty}^{\infty} f(\tau) \cdot h(t - \tau) d\tau$$

Q1:(3) 与(4) 中的公式有什么联系,卷积的定义是怎么推导的? 对于 LTI 系统:

$$\delta[k] \longrightarrow h[k]$$

则有:

$$\sum_{\tau=-\infty}^{\infty} f[\tau] \cdot \delta[k-\tau] \longrightarrow \sum_{\tau=-\infty}^{\infty} f[\tau] \cdot h[k-\tau]$$

连续信号同理可表达为:

$$y(t) = f(t) * h(t) = \int_{\tau = -\infty}^{\infty} f(\tau) \cdot h(t - \tau) d\tau$$

1.3 δ 函数连续时的定义

$$\delta[t] = \begin{cases} +\infty & t = 0 \\ 0 & e, e \end{cases}$$

即:

$$\int_{-\infty}^{\infty} \delta(t) \, dt = 1$$

 δ 函数连续时称为 "dirac delta function"

图 2: 连续 δ 函数信号表示形式