Problem Set 11

Spin-1/2 particle moving in one dimension

The position and momentum observables of a particle in one dimension are \widehat{X} and \widehat{P} satisfying $[\widehat{X},\widehat{P}]=i\hbar$. The spin angular momentum observables for such a particle are \widehat{J}_a , for a=x,y,z and satisfy $[\widehat{J}_x,\widehat{J}_y]=i\hbar\widehat{J}_z$ and two other relations coming from cyclicly permuting the (x,y,z) indices. We assume that the position and momentum operators commute with the spin operators: $[\widehat{X},\widehat{J}_a]=[\widehat{P},\widehat{J}_a]=0$.

This implies that the Hilbert space of a spin-1/2 particle is then the tensor product, $\mathcal{H} = \mathcal{H}_x \otimes \mathcal{H}_{j=1/2}$, of the infinite-dimensional position/momentum space \mathcal{H}_x of the particle with the 2-dimensional spin j=1/2 space $\mathcal{H}_{j=1/2}$ of the spin degrees of freedom of the particle. In particular, we can take an orthonormal basis of \mathcal{H} to be the set of states

$$|x,m\rangle := |x\rangle \otimes |j = \frac{1}{2}, m\rangle$$
 for $-\infty < x < \infty$ and $m \in \{-\frac{1}{2}, +\frac{1}{2}\},$

where $|x\rangle$ are the usual position eigenbasis of \mathcal{H}_x and $|j,m\rangle$ are the usual \widehat{J}^2 and \widehat{J}_z eigenbasis of $\mathcal{H}_{j=1/2}$. So, in particular,

$$\widehat{X}|x,m\rangle = x|x,m\rangle \qquad \widehat{P}|x,m\rangle = i\hbar \frac{d}{dx}|x,m\rangle$$

$$\widehat{J}_{z}|x,m\rangle = \hbar m|x,m\rangle \qquad \widehat{J}^{2}|x,m\rangle = \frac{3}{4}\hbar^{2}|x,m\rangle$$

$$\langle x,m|x',m'\rangle = \delta(x-x')\,\delta_{m,m'} \qquad 1 = \sum_{m} \int dx\,|x,m\rangle\langle x,m|.$$

Problem 1: Show that any state $|\psi\rangle$ can be written as

$$|\psi\rangle = \int dx \left[\psi_+(x)|x, +\frac{1}{2}\rangle + \psi_-(x)|x, -\frac{1}{2}\rangle\right],$$

where we define

$$\psi_{\pm} := \langle x, \pm \frac{1}{2} | \psi \rangle.$$

This shows that we can describe any state of our spin-1/2 one-dimensional particle by a 2-component vector of wave functions,

$$|\psi\rangle \leftrightarrow \begin{pmatrix} \psi_+(x) \\ \psi_-(x) \end{pmatrix}.$$

Solution: Insert the identity operator using the completeness relation: $|\psi\rangle=1\cdot|\psi\rangle=\sum_{m}\int\!\!dx\,|x,m\rangle\langle x,m|\psi\rangle$, which gives the result.

Problem 2: If $|\psi\rangle$ is normalized, i.e., $\langle\psi|\psi\rangle=1$, what does this imply about the $\psi_{\pm}(x)$ wave functions? **Solution:** Again, insert the completeness relation: $1=\langle\psi|\psi\rangle=\sum_{m}\int\!\!dx\,\langle\psi|x,m\rangle\langle x,m|\psi\rangle=\int\!\!dx\,\big(|\psi_{+}|^{2}+|\psi_{-}|^{2}\big)$.

Recall that a particle with spin \vec{J} in the presence of a magnetic field \vec{B} has energy $\gamma \vec{B} \cdot \vec{J}$ where $\gamma := qg/2mc$ is a constant depending on the particle's properties. Let's say that the magnetic field depends only on x but points in the $+\hat{z}$ direction, and call $\gamma \vec{B}(x) = U(x)\hat{z}$. Also suppose the particle experiences a force in the \hat{x} -direction due to a potential energy V(x). Then the energy observable (Hamiltonian) for the particle is

$$\widehat{H} = \frac{1}{2m}\widehat{P}^2 + V(\widehat{X}) + U(\widehat{X})\,\widehat{J}_z. \tag{1}$$

Problem 3: Show that the energy eigenvalue equation, $\widehat{H}|\psi\rangle = E|\psi\rangle$, in the $|x,m\rangle$ basis is the pair of equations

$$-\frac{\hbar^2}{2m}\psi''_{+} + \left[V(x) + \frac{\hbar}{2}U(x)\right]\psi_{+} = E\psi_{+}$$
$$-\frac{\hbar^2}{2m}\psi''_{-} + \left[V(x) - \frac{\hbar}{2}U(x)\right]\psi_{-} = E\psi_{-}$$

where the primes denote derivatives with respect to x. Solution: Take the bracket of the equation with $\langle x, m |$,

$$\begin{split} 0 &= \langle x, m | \widehat{H} | \psi \rangle - E \langle x, m | \psi \rangle \\ &= \frac{1}{2m} \langle x, m | \widehat{P}^2 | \psi \rangle + \langle x, m | V(\widehat{X}) | \psi \rangle + \langle x, m | U(\widehat{X}) \, \widehat{J}_z | \psi \rangle - E \psi_m(x) \\ &= \frac{1}{2m} \left(-i \hbar \frac{d}{dx} \right)^2 \langle x, m | \psi \rangle + V(x) \langle x, m | \psi \rangle + U(x) (\hbar m) \langle x, m | \psi \rangle - E \psi_m(x) \\ &= -\frac{\hbar^2}{2m} \psi_m'' + V(x) \psi_m + \hbar m U(x) \psi_m - E \psi_m \end{split}$$

which gives the result for $m=\pm \frac{1}{2}\,.$

Now assume that the potentials V(x) and U(x) are related by a "prepotential" W(x) such that

$$V(x) = [W'(x)]^2$$
, and $U(x) = -\sqrt{\frac{2}{m}}W''(x)$. (2)

Also, recall that the angular momentum raising and lowering operators, $\widehat{J}_{\pm} := \widehat{J}_x \pm i \widehat{J}_y$, act on the $|m\rangle$ basis as

$$\widehat{J}_{\pm}|\pm\frac{1}{2}\rangle = 0,$$
 $\widehat{J}_{\pm}|\mp\frac{1}{2}\rangle = \hbar|\pm\frac{1}{2}\rangle$ (3)

where the \pm signs are correlated in each equation. Also, define the operators \hat{Q}_{\pm} by

$$\widehat{Q}_{\pm} := \frac{1}{\hbar} \left[\frac{1}{\sqrt{2m}} \widehat{P} \mp i W'(\widehat{X}) \right] \widehat{J}_{\pm}, \tag{4}$$

where, as usual, the signs are correlated. Finally, recall that the anti-commutator of two operators is defined by $\{\widehat{A}, \widehat{B}\} := \widehat{A}\widehat{B} + \widehat{B}\widehat{A}$.

Problem 4: Show that:

$$\{\widehat{Q}_{+},\widehat{Q}_{-}\}=\widehat{H}, \qquad \{\widehat{Q}_{\pm},\widehat{Q}_{\pm}\}=0, \qquad [\widehat{Q}_{\pm},\widehat{H}]=0, \qquad \text{and} \qquad \widehat{Q}_{\pm}^{\dagger}=\widehat{Q}_{\mp},$$

where the \pm signs are correlated within each equation. Solution: Write $\hat{Q}_{\pm}:=\hat{A}_{\pm}\otimes\hat{J}_{\pm}$ where \hat{A}_{\pm} is the factor in square brackets in (4) which acts on the \mathcal{H}_x factor of the Hilbert space. Then $\{\hat{Q}_+,\hat{Q}_-\}=\hat{Q}_+\hat{Q}_-+\hat{Q}_-\hat{Q}_+=\hat{A}_+\hat{A}_-\otimes\hat{J}_+\hat{J}_-+\hat{A}_-\hat{A}_+\otimes\hat{J}_-\hat{J}_+$. Compute

$$\begin{split} \widehat{A}_{\pm}\widehat{A}_{\mp} &= \frac{1}{\hbar^2} \left\{ \frac{1}{2m} \widehat{P}^2 + \left[W'(\widehat{X}) \right]^2 \pm \frac{i}{\sqrt{2m}} [\widehat{P}, W'(\widehat{X})] \right\} \\ &= \frac{1}{\hbar^2} \left\{ \frac{1}{2m} \widehat{P}^2 + \left[W'(\widehat{X}) \right]^2 \mp \frac{\hbar}{\sqrt{2m}} W''(\widehat{X}) \right\} \\ &= \frac{1}{\hbar^2} \left\{ \frac{1}{2m} \widehat{P}^2 + V(\widehat{X}) \pm \frac{\hbar}{2} U(\widehat{X}) \right\} \end{split}$$

where in the second line I used that $[\widehat{P},\widehat{X}]=-i\hbar$, and in the last line I used (2). Then

$$\begin{split} \{\widehat{Q}_+, \widehat{Q}_-\} &= \frac{1}{\hbar^2} \left\{ \frac{1}{2m} \widehat{P}^2 + V(\widehat{X}) + \frac{\hbar}{2} U(\widehat{X}) \right\} \otimes \widehat{J}_+ \widehat{J}_- + \frac{1}{\hbar^2} \left\{ \frac{1}{2m} \widehat{P}^2 + V(\widehat{X}) - \frac{\hbar}{2} U(\widehat{X}) \right\} \otimes \widehat{J}_- \widehat{J}_+ \\ &= \left[\frac{1}{2m} \widehat{P}^2 + V(\widehat{X}) \right] \otimes \frac{1}{\hbar^2} \{\widehat{J}_+, \widehat{J}_-\} + U(\widehat{X}) \otimes \frac{1}{2\hbar} [\widehat{J}_+, \widehat{J}_-]. \end{split}$$

Now, from (3) we see that $\{\widehat{J}_+,\widehat{J}_-\}|m\rangle=\hbar^2|m\rangle$ and $[\widehat{J}_+,\widehat{J}_-]|m\rangle=2m\hbar^2|m\rangle=2\hbar\widehat{J}_z|m\rangle$. Plugging these into the last equation gives

$$\{\widehat{Q}_+, \widehat{Q}_-\} = \left[\frac{1}{2m}\widehat{P}^2 + V(\widehat{X})\right] \otimes 1 + U(\widehat{X}) \otimes \widehat{J}_z = \widehat{H},$$

giving the first result. The other relations are easier. $\{\widehat{Q}_{\pm},\widehat{Q}_{\pm}\}=2\widehat{Q}_{\pm}^2=2\widehat{A}_{\pm}^2\otimes \widehat{Q}_{\pm}^2$. But from (3) it follows that $\widehat{J}_{\pm}^2=0$, giving the second result. $[\widehat{Q}_{+},\widehat{H}]=[\widehat{Q}_{+},\{\widehat{Q}_{+},\widehat{Q}_{-}\}]=\widehat{Q}_{+}(\widehat{Q}_{+}\widehat{Q}_{-}+\widehat{Q}_{-}\widehat{Q}_{+})-(\widehat{Q}_{+}\widehat{Q}_{-}+\widehat{Q}_{-}\widehat{Q}_{+})\widehat{Q}_{+}=\widehat{Q}_{+}^2\widehat{Q}_{-}+\widehat{Q}_{+}\widehat{Q}_{-}\widehat{Q}_{+}-\widehat{Q}_{+}\widehat{Q}_{-}\widehat{Q}_{+}-\widehat{Q}_{-}\widehat{Q}_{+}^2=0$ where in the last step I used that $\widehat{Q}_{\pm}^2=0$ from the previous result. A similar calculation holds for $[\widehat{Q}_{-},\widehat{H}]$. Finally, $\widehat{Q}_{\pm}^{\dagger}=\widehat{A}_{\pm}^{\dagger}\otimes\widehat{J}_{\pm}^{\dagger}=\widehat{A}_{\mp}\otimes\widehat{J}_{\mp}=\widehat{Q}_{\mp}$.

Problem 5: Show that if $|\psi\rangle$ is an energy eigenstate of energy E, that $\widehat{Q}_{\pm}|\psi\rangle$ are also energy eigenstates of the same energy. **Solution:** If $\widehat{H}|\psi\rangle = E|\psi\rangle$, then $\widehat{H}\widehat{Q}_{\pm}|\psi\rangle = \widehat{Q}_{\pm}\widehat{H}|\psi\rangle = E\widehat{Q}_{\pm}|\psi\rangle$, where in the second step I used that $[\widehat{Q}_{\pm},\widehat{H}] = 0$ from the previous problem.

Problem 6: Use the results of the last two problems to show that the energy eigenspace with given positive eigenvalue E > 0 has multiplicity 2. Solution: doesn't exist!

(Sorry!) The correct statement is only that positive energy eigenstates have even multiplicity.

Problem 7: Show that there are no energy eigenstates of negative energy E < 0. Solution: $E = E\langle\psi|\psi\rangle = \langle\psi|\widehat{H}|\psi\rangle = \langle\psi|\{\widehat{Q}_+, \widehat{Q}_-\}|\psi\rangle = \langle\psi|\widehat{Q}_+\widehat{Q}_-|\psi\rangle + \langle\psi|\widehat{Q}_-\widehat{Q}_+|\psi\rangle = \langle\psi|\widehat{Q}_-^{\dagger}\widehat{Q}_-|\psi\rangle + \langle\psi|\widehat{Q}_+^{\dagger}\widehat{Q}_+|\psi\rangle = ||\widehat{Q}_-|\psi\rangle||^2 + ||\widehat{Q}_+|\psi\rangle||^2 \ge 0$.

Problem 8: Show that states $|\psi\rangle$, $|\phi\rangle$, with wavefunctions

$$\begin{pmatrix} \psi_{+}(x) \\ \psi_{-}(x) \end{pmatrix} = \begin{pmatrix} e^{-\sqrt{2m}W(x)/\hbar} \\ 0 \end{pmatrix}$$

and

$$\begin{pmatrix} \phi_{+}(x) \\ \phi_{-}(x) \end{pmatrix} = \begin{pmatrix} 0 \\ e^{+\sqrt{2m}W(x)/\hbar} \end{pmatrix}$$

are energy eigenstates with eigenvalue E=0. What are the conditions on the prepotential W(x) at $x=\pm\infty$ for $|\psi\rangle$ and for $|\phi\rangle$ to be normalizable? Solution: From problem 3 we have $\langle x, -\frac{1}{2}|\widehat{H}|\psi\rangle=0$ and

$$\begin{split} \langle x, \frac{1}{2} | \hat{H} | \psi \rangle &= -\frac{\hbar^2}{2m} \psi_+'' + \left[V + \frac{\hbar}{2} U \right] \psi_+ \\ &= -\frac{\hbar^2}{2m} \left[\frac{2m}{\hbar^2} (W')^2 - \frac{\sqrt{2m}}{\hbar} W'' \right] e^{-\sqrt{2m}W/\hbar} + \left[(W')^2 - \frac{\hbar}{\sqrt{2m}} W'' \right] e^{-\sqrt{2m}W/\hbar} = 0. \end{split}$$

Thus $\widehat{H}|\psi\rangle=0$. A similar calculation holds for $|\phi\rangle$. From **problem 2**, $|\psi\rangle$ is normalizable if $1=\int dx (|\psi_+|^2+|\psi_-|^2)=\int dx \exp\{-2\sqrt{2m}W(x)/\hbar\}$. This integral converges only if the integrand vanishes as $|x|\to\infty$, which implies that we must have $W\to+\infty$ as $|x|\to\infty$. Similarly, $|\phi\rangle$ is normalizable only if $W\to-\infty$ as $|x|\to\infty$. So only one of these two states can exist. Also, note that if $|W|\not\to\infty$ as $|x|\to\infty$ or if $W\to\pm\infty$ as $x\to\pm\infty$, then no E=0 state can occur.