Component	Equation	Description
Continuity equation	$\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = 0$ where ρ = water density, ν = velocity vector, ∇ =gradient operator	Account for the flux of mass going into a defined area and the flux of mass leaving the defined area
The momen- tum equa- tions	$\frac{\partial \vec{v}}{\partial t} = \vec{g} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} - 2 \overrightarrow{\Omega} \times \vec{v} + \vec{F}$ where g=gravitational force, p=water pressure, $\nabla^2 = \text{Laplacian operator}, \ \Omega = \text{angular velocity of the earth}, \ F = \text{external forces}, \ \nu = \text{kinematic viscosity}$	Navier–Stokes equation, valid for incompressible Newtonian flows
The advection equation	$J_a = C \vec{v}$ where Ja=advective flux density, C=pollutant concentration	Provide information for the horizontal transport by flows of pollutants; this is a primary transport process in the longitudinal direction in the rivers and estuaries
The dispersion equation	$J = -D\frac{dC}{dx}$ where J=dispersive mass flux density, D=diffusion coefficient, x=the distance	Provide information for the horizontal spreading by reducing the gradient of material concentration
Tidal equa- tion	$\begin{split} \eta(t) &= a_0 + \sum_{k=1}^N \left[a_k \cos \left(\frac{2\pi}{T_k} t \right) \right. \\ &+ b_k \sin \left(\frac{2\pi}{T_k} t \right) \right] + \eta_0(t) \\ \text{where } \eta(t) &= \text{tidal elevation, } t = \text{time,} \\ \text{a0=mean value of } \eta(t), \text{ a}_k \text{ and b}_k = \text{constant, } T_k = \text{the tidal period of k}_{th} \text{ tidal constituent, } N = \text{number of tidal constituents,} \\ \eta_0(t) &= \text{residual signal other than the periodic components} \end{split}$	Provide information of water level over the tidal cycle in the tidal estuaries