DATA STRUCTURES AND ALGORITHMS Spring 2025

Graph Part II

Lecturer: Do Thuy Duong

Pathfinding in a graph

Content

- Pathfinding in a graph
- Shortest path problem
 - Dijkstra algorithm
 - Bellman-Ford algorithm
 - Floyd-Warshall algorithm

Pathfinding in a graph

- Pathfinding problem
 - In a graph G=(V,E), find a path from vertex s to vertex t.
 - Find a path
 - Find all possible paths
 - Graph traversal algorithms can be used
 - BFS
 - DFS

Pathfindingusing BFS [1]

Code

```
Algorithm BFS(V,E,s,t): Boolean 
Input: A graph with V & E are the set of vertices and edges, s is the source vertex, t is the destination vertex.
```

Output: A path from s to t if exist, otherwise return false.

```
For each v in V do
Color[v]←Black
Path[v] ← null
```

 $Color[s] \leftarrow Yellow$

Q ← new empty queue

Q.Enqueue(s)

. . .

Pathfindingusing BFS [2]

Code

```
while Q is not empty do
 u ← Q.Dequeue()
 If u equals to t then
    showPath(s, t)
    return true
 For each v adjacent to u do
   If Color[v] is Black then
      Color[v] ← Yellow
      Q.Enqueue(v)
      path[v] ← u
endwhile
return false
```

Pathfindingusing BFS [3]

Code

```
Algorithm showPath(s, t)
    Input: Source vertex s, Destination
    vertex t.
    Output: print the path from s to t if exist.

u ← t
    while u !=s do
        Print u
        u ← path[u]
```

Pathfinding using BFS [4]

Find path from A to D
Start at A. Mark A yellow. Put A to the queue
Queue: A

Pathfinding using BFS [5]

- Take A from Queue, A ≠ D
- Found 2 black vertices B and E, that are adjacent to A
- Mark B & E yellow. Put B & E to queue, update path[B]
 & path[E]

Queue: ABE

Pathfinding using BFS [6]

- Take B from Queue, B ≠ D
- Found 2 black vertices G and C, that are adjacent to B
- Mark G & C yellow. Put G & C to queue, update path[G]
 & path[C]

Queue: ABEGC

Pathfinding using BFS [7]

- Take E from Queue, E ≠ D
- Found 2 black vertices D and F, that are adjacent to E
- Mark D & F yellow. Put D & F to queue, update path[D]
 & path[F]

Queue: ABEGCDF

Pathfinding using BFS [8]

- Take G from Queue, G ≠ D
- Nothing put to the queue

Queue: ABEGCDF

Pathfinding using BFS [9]

- Take C from Queue, C ≠ D
- No black vertices adjacent to C. Nothing put to the queue

Queue: ABEGCDF

Pathfinding using BFS [10]

Take D from the queue. D is the destination vertex. Show path and return true.

Queue: ABEGCDF

→ Path: A E D

Find my coffee game [1]

Introduction

- Start from a position in a map
- Find the cup of coffee

Find my coffee game [2]

Introduction

BFS is a solution

Find my coffee game [3]

Data representation

- The map
- Using a matrix MxN (M rows, N columns)

	0	1	2	3	4
0	G	X	X	G	G
1	Υ	G	X	G	С
2	G	G	G	G	G

Find my coffee game [4]

Data representation

- The graph
- Each cell in the map is a node of the graph. Nodes are indexed from 0 to M*N – 1.
- With node v, the corresponding row and column are: row = v / N; column=v %N;

	0	1	2	3	4
0	0	1	2	3	4
1	5	6	7	8	9
2	10	11	12	13	14

Find my coffee game [5]

Data representation

- Each node has a list of adjacent nodes.
- Node 0:
 - {5}
- Node 5:
 - {0, 6, 10}
- Node 9:
 - {8, 4, 14}

	0	1	2	3	4
0	G	Х	X	G	G
1	Υ	G	Х	G	С
2	G	G	G	G	G

	0	1	2	3	4
0	0	1	2	3	4
1	5	6	7	8	9
2	10	11	12	13	14

Find my coffee game [6]

Vertex ADT

GVertex

- index: int //Position in the vertices list
- row, column: int //Which cell in the map
- marked: boolean //Used in BFS
- numOfAdjVertex : int
- adjVertex : int[] //List of adjacent vertices
- + GVertex(index, map, m, n): void
- + getIndex(): int
- + getRow(): int
- + getColumn(): int
- +

Find my coffee game [7]

- Other variables
 - char[][] map (The map)
 - GVertex [] listVertex (Array contains all M*N vertices)
 - GVertex startVertex, endVertex
 - Your position and position of the coffee cup.
 - ArrayQueue q
 - Vertex queue used in BFS(each queue's item is a vertex)
 - GVertex [] path
 - Path information

Find my coffee game [8]

- Implementation
 - See Week 12 Example Code for more detail.

	0	1	2	3	4	5	6	7
0	G	G	G	G	G	X	G	G
1	G	G	G	G	G	X	G	G
2	G	G	G	G	G	X	G	С
3	G	G	X	G	G	G	G	G
4	Υ	G	X	G	G	G	G	G

$$(4,0) \rightarrow (4,1) \rightarrow (3,1) \rightarrow (2,1) \rightarrow (2,2) \rightarrow (2,3) \rightarrow (2,4) \rightarrow (3,4) \rightarrow (3,5) \rightarrow (3,6) \rightarrow (2,6) \rightarrow (2,7)$$

Shortest path

Recall a weighted graph [1]

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge.
- Edge weights may represent distances, costs, etc.
- Example:
 - In a train route graph, the weight of an edge represents the distance between the endpoint cities

Recall a weighted graph [2]

	STU	FRA	HAN	СОР	BER	LEI
STU	0	210	œ	œ	œ	480
FRA	210	0	350	00	545	395
HAN	00	350	0	475	290	∞
COP	∞	∞	475	0	435	∞
BER	∞	545	290	435	0	190
Ш	480	395	∞	00	190	0

w[i][i]=0 w[i][j]=w[j][i] if G is undirected w[i][j]=∞ if there is no edge connect vertex i to vertex j

Shortest path problem [1]

Definition

 In a graph G=(V,E), consider to a path from s to t.

•
$$P_k = \{V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow ... \rightarrow V_k\}$$
.

- Let W(P_k) is the weight of the path P_k we have:
- If G is an un-weighted graph, then:
 W(P_k)=The number of vertices in P_k=k
- If G is a weighted graph, then:

$$W(P_k) = \sum_{i=1}^{k-1} w(V_i, V_{i+1})$$

• Find a P_k so that $W(P_k)$ is minimum.

Shortest path problem [2]

- Shortest path properties
 - A sub-path of a shortest path is itself a shortest path.
 - For example: If $P_{sp}=\{V_1 \rightarrow V_3 \rightarrow V_6 \rightarrow V_4 \rightarrow V_5 \rightarrow V_7\}$ is the shortest path from V_1 to V_7 , then the path $\{V_3 \rightarrow V_6 \rightarrow V_4\}$ is the shortest path from V_3 to V_4 .
 - There is a tree of shortest path from a vertex to all other vertices that connect to this vertex.

Shortest path problem [3]

- Shortest path in an un-weighted graph
 - BFSis a solution
- Shortest path in a weightedgraph
 - Every edge has positive weight
 - Edge may have negative weight
 - Graph may have negative weight cycle

Shortest path problem [4]

- Shortest path algorithm types:
 - Single-pair shortest path (SPSP)
 - Find shortest paths from a given vertex to a given vertex.
 - Single-source shortest path (SSSP)
 - Find shortest paths from a given vertex to all other vertices.
 - All-pairs shortest path (APSP)
 - Find shortest paths for every pair of vertices.

Dijkstra algorithm [1]

A SSSP algorithm

 Find shortest paths from vertex s to all other vertices.

Assumption

- The graph is connected.
- The edge weights are non-negative.
- Definition of the distance from s to v
 - D[v] is the total weight of the shortest path from s to v.
 - With a given vertex s, Dijkstra algorithm will compute the D[v] for all v in V.

Dijkstra algorithm [2]

- Dijkstra algorithm idea
 - We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices.
 - We store with each vertex v a label d(v)
 representing the distance of v from s in the subgraph consisting of the cloud and its adjacent
 vertices
 - At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label, d(u)
 - We update the labels of the vertices adjacent to u

Dijkstra algorithm[3]

Update (Edge relaxation)

- Consider an edgee = (u,z) such that:
 - u is the vertex most recently added to the cloud
 - zis not in the cloud

The relaxation of edge e updates distance d(z) as follows:

 $d(z) \leftarrow min\{d(z),d(u) + weight(u,z)\}$

Dijkstra algorithm[4]

Example

Dijkstra algorithm[5]

Dijkstra algorithm[6]

Dijkstra algorithm

```
Code
   Algorithm Dijkstra(V,E,s):
        Input: A graph G=(V,E), w is the weighted matrix, s is the
               source vertex.
        Output: The shortest paths from s to other vertices.
      For each v in V do
         D[v] \leftarrow \infty
         path[v] \leftarrow -1
      D[s] \leftarrow
      Create empty S set //The "cloud" set
      Do
         Find vertex u in V \ S so that D[u] is minimum
         Move u from V to S
         For each z in V \setminus S do
           D[z] \leftarrow \min\{D[z], D[u]+w[u][z]\}
           path[z] \leftarrow u //Only update if D[u]+w[u][z]<D[z]
      While could not find any u
```

Dijkstra algorithm[7]

Dijkstra algorithm demonstration

S = { }

V = { s, 2, 3, 4, 5, 6, 7, 8}

D = {
$$0, \infty, \infty, \infty, \infty, \infty, \infty, \infty$$
}

Dijkstra algorithm[8]

S = {s}
V = { -, 2, 3, 4, 5, 6, 7, 8}
D = {0, 9,
$$\infty$$
, ∞ , ∞ , 14, 15, ∞ }

Dijkstra algorithm[9]

Dijkstra algorithm[10]

Dijkstra algorithm[11]

Dijkstra algorithm[12]

Dijkstra algorithm[13]

Dijkstra algorithm[14]

Dijkstra algorithm[15]

Dijkstra algorithm[16]

Dijkstra algorithm demonstration:

Summarize steps with table:

D(s)	D(2)	D(3)	D(4)	D(5)	D(6)	D(7)	D(8)
0	∞	∞	∞	∞	∞	∞	∞
	9(s)	∞	∞	∞	14(s)	15(s)	∞
		33(2)	∞	∞	14(s)	15(s)	∞
		32(6)	∞	44(6)		15(s)	∞
		32(6)	∞	35(7)			59(7)
			∞	34(3)			51(3)
			45(5)				50(5)
							50(5)

Dijkstra algorithm[17]

- Dijkstra algorithm analysis
 - Textbook page 379, supplementary textbook page 658.
 - The time complexity of Dijkstra algorithm is:
 - O(|E| + |V|²) by using array to store V and D[v].
 - O(|E|logV + |V|logV) by using a priority queue to store V and D[v].
 - Dijkstra algorithm doesn't work with negativeweighted edge.
 - Graph can be directed or un-directed.

Bellman-Ford algorithm [1]

- A SSSP algorithm
 - Find shortest paths from vertex s to all other vertices.
 - Works even with negative-weight edges.
 - Can detect the existence of **negative-weight cycle** reachable from s.
 - Assumption
 - The graph is connected.
 - The edges are directed.

Bellman-Ford algorithm [2]

- Definition of D[i][v]:
 - D[i][v] is the total weight of the shortest path that use i or fewer edges, from s to v.
 - Recall that the distance from vertex u to vertex v is the total weight of the shortest path from u to v.
 - Then D[i][v] is the distance from s to v using i or fewer edges.
 - D[i][s]=0
 - D[i][v]=∞ if you can't get to v within i edges.
 - Bellman-Ford algorithm computes the D[i][v] for any v in V and i=1 .. |V|.

Bellman-Ford algorithm [3]

Algorithm idea

- To compute D[i][v], we calculate i_{th} row from i-1_{th} row.
- Consider a vertex u so that there is an edge from u to v.
- We know the shortest path from s to u using i-1 or fewer edges, D[i-1][u].
- Then:

$$D[i][v] = \min_{w[u][v] \neq \infty} \{D[i-1][u] + w[u][v]\}$$

Bellman-Ford algorithm [4]

• Example:

$$D[i][v] = \min_{w[u][v] \neq \infty} \{D[i-1][u] + w[u][v]\}$$

	S	1	2	3	4	5
0	0	∞	∞	∞	∞	00
1	0	50	∞	15	∞	∞
2	0	50	80	15	45	∞
3	0	25	80	15	45	75
4	0	25	55	15	45	75
5	0	25	55	15	45	65
		(3,4)	(3,4,1)		(3)	(3,4,1,2)

Bellman-Ford algorithm [5]

Bellman-Ford algorithm

```
Code
   Algorithm BellmanFord(V,E,s): boolean
        Input: A graph G=(V,E), w is the weighted matrix, s is the
                 source vertex.
        Output: The shortest paths from s to other vertices or
                   false if G has a negative-weighted cycle.
      For i \leftarrow 0 to |V| do
         For each v in V do
            D[i][v] \leftarrow \infty
         path[v] \leftarrow -1
         D[i][s] \leftarrow 0
      For i \leftarrow 1 to |V| do
         For each v in V do
             For each e=(u,v) in E do
                 D[i][v] \leftarrow Min\{D[i-1][u]+w[u][v]\}
                 path[v] \leftarrow u<sub>min</sub> // D[i][v]=D[i-1][u<sub>min</sub>]+w[u<sub>min</sub>][v]
```

Bellman-Ford algorithm [6]

Algorithm analysis

- If the graph contains no negative-weight cycles reachable from the source vertex s, after | V | - 1 iterations all distance estimates represent shortest paths.
- If the graph contains a negative-weight cycles reachable from s.

Bellman-Ford algorithm[7]

	A	В	C	D	Note
0	0	∞	80	∞	
1	0	5,A	80	4,A	
2	0	-2,D	8,B	4,A	
3	0	-2,D (A→D→B =-2)	1,B (A→D→B→C =1)	4,A (A→D=4)	Normally, algorithm stops at step 3.
4	0	-2,D	1,B	3,C $(A->D->B->C$ $->D=3)$	Add step 4: The weight is reduced from (4,A) to (3,C) → Graph contains negative cycle