Evaluating Classification Methods

Evaluating and Comparing Classification Methods

Predictive accuracy

- Efficiency
- Robustness
- Scalability
- Interpretability
- Compactness of the model

Methods for Evaluating a Classifier's Accuracy

Holdout Method

- The data set is randomly partitioned into two disjoint sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- The test set is also called the holdout set
- This method is mainly used when the data set D is large

Random Sampling

- a variation of holdout
- repeat holdout k times
- accuracy = avg. of the accuracies obtained

Evaluation Methods (cont)

- K-Fold Cross Validation: (k = 10 or 5 are popular)
 - Partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use Fold_i as test set and others as training set

Evaluation Methods (cont)

- Leave One Out: k folds where k = # of tuples, for small sized data
- Stratified Cross Validation:
 - For unbalanced data
 - Folds are stratified so that class distribution in each fold is approximately the same as that in the initial data

Scikit-learn Zone

We have been using the holdout method
 from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

```
from sklearn.datasets import load_breast_cancer
cancer = load_breast_cancer()
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, test_size=0.2,
stratify=cancer.target, random_state=66)
```

Scikit-learn Zone – Cross Validation

- Cross-validation is implemented in model_selection.cross_val_score
- Parameters of cross_val_score include the model we want to evaluate, the data matrix, and the labels

Example – Using Cross Validation to Evaluate a DT on the Iris Dataset

- from sklearn.model_selection import cross_val_score from sklearn.tree import DecisionTreeClassifier from sklearn import datasets
- iris = datasets.load_iris()dt = DecisionTreeClassifier(random_state=0)

Example – Pipelines & Kfold

- from sklearn.model_selection import KFold, cross_val_score
- #StratifiedKFold

- from sklearn.pipeline import make_pipeline
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.preprocessing import StandardScaler
- from sklearn import datasets; digits = datasets.load_digits()
- features = digits.data # Create features matrix
- target = digits.target # Create target vector
- standardizer = StandardScaler() # Create standardizer
- dt = DecisionTreeClassifier(random_state=0) # Create DT object
- pipeline = make_pipeline(standardizer, dt) # Create a pipeline that standardizes, then runs dt
- kf = KFold(n_splits=10, shuffle=True, random_state=1) # Create k-Fold cross-validation
- # Conduct k-fold cross-validation
- cv_results = cross_val_score(pipeline, # Pipeline
- features, # Feature matrix
- target, # Target vector
- cv=kf, # Cross-validation technique
- scoring="accuracy", # Evaluation function
- n_jobs=-1) # Use all CPU scores
- cv_results.mean() # Calculate mean #0.856

Example on cv = LeaveOneOut()

- from sklearn.model_selection import LeaveOneOut
- loo = LeaveOneOut()
- scores = cross_val_score(dt, iris.data, iris.target, cv=loo)
- print("Number of cv iterations: ", len(scores))
- print("Mean accuracy: ", scores.mean())
 #Number of cv iterations: 150
 #Mean accuracy: 0.95

Validation Set & Hyperparameters

- A validation set is used frequently for estimating hyperparameters in learning algorithms
- Validation set: the available data is divided into three subsets,
 - a training set,
 - a validation set and
 - a test set

 The values that give the best accuracy on the validation set are used as the final hyperparameter values

Validation Set & Hyperparameters (cont)

Cross-validation can be used for hyperparameter estimating

Source: https://scikit-learn.org/stable/modules/cross_validation.html

Classification Measures

- Accuracy is only one measure (error = 1 accuracy)
- Accuracy is not suitable in some applications
- In classification involving skewed or highly imbalanced data, e.g.,
 - Network intrusion and financial fraud detections
 - Predicting documents of a particular topic
 - Predicting the presence of a rare disease such as cancer
 - We are interested only in the minority class
 - E.g., 1% intrusion. Achieve 99% accuracy by doing nothing
 - High accuracy does not mean any intrusion is detected
- The class of interest is commonly called the positive class, and the rest negative classes

Limitation with Accuracy

- Consider a 2-class problem
 - Number of –ve class examples = 9990
 - Number of +ve class examples = 10
- If model predicts everything to be –ve, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any +ve examples

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)				
	Class=No	c (FP)	d (TN)				

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Confusion Matrix

Used in information retrieval and text classification

	PREDICTED CLASS						
		Class=+ve	Class=-ve				
ACTUAL CLASS	Class=+ve	a (TP)	b (FN)				
	Class=-ve	c (FP)	d (TN)				

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

Entry, CM_{ij} gives the number of tuples of class i that were labeled by the classifier as class j

TP: the number of correct classifications of the positive examples (true positive),

FN: the number of incorrect classifications of positive examples (false negative),

FP: the number of incorrect classifications of negative examples (false positive), and

TN: the number of correct classifications of negative examples (true negative).

Accuracy

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL	Class=Yes	a (TP)	b (FN)				
CLASS	Class=No	c (FP)	d (TN)				

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Alternative Measures – Recall & Precision

	PREDICTED CLASS					
		Class=Yes	Class=No			
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)			
	Class=No	c (FP)	d (TN)			

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	Ρ'	N'	All

TPR is fraction of positive samples that are correctly classified

TPR =
$$\frac{TP}{P} = \frac{TP}{TP + FN} = \frac{a}{a + b} = \text{recall } (r) = \text{sensitivity}$$

Precision is the fraction of correct predictions of the positive class

Precision (p) =
$$\frac{TP}{P'} = \frac{TP}{TP + FP} = \frac{a}{a+c} = PPV$$

Imbalanced Data

- The skew in the data is defined as $\alpha = \frac{P}{(P+N)}$
- Recall = TP/P, is not sensitive to the skew in the data
- Precision (p) = $\frac{TP}{P'} = \frac{TP}{TP+FP} = \frac{a}{a+c}$ is sensitive to the skew
- Precision is a useful measure for skewed data
- Recall, TP/(TP+FN), and precision, TP/(TP+FP), either capture the effect of FP or FN but not both
- If a classifier can optimize one of these measures, it can end up with a low FN but high FP, or vice-versa
 - A classifier that predicts every instance as positive will have perfect recall (as FN = 0), but poor precision
 - A classifier that is very conservative in classifying an instance as positive (thus FP = 0) will have high precision but low recall

F1-Score

- Aka F1 measure
- F1-score accounts for both FP and FN
- It is the harmonic mean of recall and precision

F1-measure (F1) =
$$\frac{2}{\frac{1}{r} + \frac{1}{p}} = \frac{2rp}{r+p}$$

- The harmonic mean of two numbers tends to be closer to the smaller of the two
- For F1-score to be large, both p and r must be large

Example

	PREDICTED CLASS					
ACTUAL CLASS		Class=Yes	Class=No			
	Class=Yes	10	0			
	Class=No	10	980			

Precision (p) =
$$\frac{10}{10 + 10} = 0.5$$

Recall (r) = $\frac{10}{10 + 0} = 1$
F1-measure (F1) = $\frac{2 * 1 * 0.5}{1 + 0.5}$
= 0.67
Accuracy = $\frac{990}{1000} = 0.99$

	PREDICTED CLASS						
		Class=Yes	Class=No				
ACTUAL CLASS	Class=Yes	1	9				
	Class=No	0	990				

Precision (p) =
$$\frac{1}{1+0}$$
 = 1
Recall (r) = $\frac{1}{1+9}$ = 0.1
F1-measure (F1) = $\frac{2*0.1*1}{1+0.1}$
= 0.18
Accuracy = $\frac{991}{1000}$ = 0.991

Scikit-learn Zone – Classification Measures

- Set the scoring parameter for the cross_val_score function
- Possible values include accuracy | precision | recall | f1

Scikit-Learn Zone – Classification Measures (cont)

```
cross val score(dt, bc.data, bc.target, cv = 5,
                scoring ="precision")
# array([0.95522388, 0.93150685, 0.92957746,
0.95774648, 0.95454545])
cross val score(dt, bc.data, bc.target, cv = 5,
                scoring ="f1")
array([0.92086331, 0.93793103, 0.92957746,
0.95774648, 0.91970803])
```

A different Way to Get f1-score

- from sklearn.metrics import f1_score

```
You could also use:

metrics.precision_score(y_true, y_pred)
metrics.recall_score(y_true, y_pred)
metrics.accuracy_score(y_true, y_pred)
```

Scikit-Learn – Confusion Matrix

- #Confusion Matrix for a DT classifier on a two-class dataset
- from sklearn import datasets
 bc = datasets.load_breast_cancer()
 features = bc.data
 target = bc.target
- from sklearn.model_selection import train_test_split
 X_train, X_test, y_train, y_test = train_test_split(
 features, target, random_state=0)

Scikit-Learn – Confusion Matrix (cont)

from sklearn.tree import DecisionTreeClassifier
 dt = DecisionTreeClassifier(max_depth = 2, random_state=0)
 trained_dt = dt.fit(features, target)
 predicted_targets = dt.predict(X_test)
 predicted_targets[0:10] #array([0, 1, 1, 1, 1, 1, 1, 1, 1, 1])

from sklearn.metrics import confusion_matrix
 confusion = confusion_matrix(y_test, predicted_targets)
 print(confusion)
 [[52 1]
 [5 85]]

A different Way to Get f1-score

from sklearn.metrics import f1_score

 Likewise, we can call precision_score(), recall_score() and accuracy_score()

Receiver Operating Characteristics Curve

- It is commonly called the ROC curve
- Used to evaluate and compare binary classifiers
- It is a plot of the true positive rate (TPR) against the false positive rate (FPR).
- True positive rate:

TPR is the proportion of the positive samples that are correctly classified

$$TPR = \frac{TP}{TP + FN} = \frac{a}{a+b} = \frac{TP}{P}$$

False positive rate:

FPR is the proportion of the negative samples that are misclassified

$$FPR = \frac{FP}{TN + FP} = \frac{c}{c+d} = \frac{FP}{N}$$

Example ROC Curves

ROC curves for two classifiers (C_1 and C_2) on the same data

Area Under the Curve (AUC)

- Which classifier is better, C₁ or C₂?
 - It depends on which region you talk about
- Can we have one measure?
 - Yes, we compute the area under the curve (AUC)
- If AUC for C_i is greater than that of C_j, it is said that C_i is better than C_j
 - If a classifier is perfect, its AUC value is 1
 - If a classifier makes all random guesses, its AUC value is 0.5

Drawing a ROC curve

Rank		1	2	3	4	5	6	7	8	9	10
Actual class		+	+	_	_	+	_	_	+	_	_
TP	0	1	2	2	2	3	3	3	4	4	4
FP	0	0	0	1	2	2	3	4	4	5	6
TN	6	6	6	5	4	4	3	2	2	1	0
FN	4	3	2	2	2	1	1	1	0	0	0
TPR	0	0.25	0.5	0.5	0.5	0.75	0.75	0.75	1	1	1
FPR	0	0	0	0.17	0.33	0.33	0.50	0.67	0.67	0.83	1

Scikit-learn Zone – ROC Curve

- # Use NB to classify the breast_cancer dataset, then draw ROC curve and find auc
- from sklearn import datasets
- from sklearn.model_selection import train_test_split
- from sklearn.naive_bayes import GaussianNB
- bc = datasets.load_breast_cancer()
- X = bc.data
- y = bc.target
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=1)
- classifer = GaussianNB() # Create Gaussian Naive Bayes object
- model = classifer.fit(X train, y train) # Train model
- y_pred = model.predict(X_test) # Test the model
- from sklearn.metrics import accuracy_score
- accuracy_score(y_test, y_pred)

Getting Predicted Probabilities

- target_probabilities = model.predict_proba(X_test)
- print("target_probabilities\n", target_probabilities[0:3])

```
target_probabilities

[[9.99995956e-01 4.04353322e-06]

[9.92851058e-01 7.14894159e-03]

[2.81653862e-12 1.00000000e+00]]
```

print("The classes:", model.classes_) # Get the classes

```
The classes: [0 1]
```

- # We care about predicted probabilities over the +ve class
- target_probabilities = model.predict_proba(X_test)[:,1]

Getting TPR, FPR and AUC

- # Create true and false positive rates
- from sklearn.metrics import roc_curve, roc_auc_score
- fpr, tpr, threshold = roc_curve(y_test, target_probabilities)
- # Calculate area under curve
- roc_auc_score(y_test, target_probabilities) # 0.9805785123966944

Visualizing the ROC Curve

- import matplotlib.pyplot as plt
- plt.plot(fpr, tpr)
- plt.show()

Better ROC Visualization

- import matplotlib.pyplot as plt
- plt.plot(fpr, tpr)
- plt.plot([0, 1], ls="--") # diagonal line
- plt.plot([0, 0], [1, 0], c=".7") # left vertical line
- plt.plot([1, 1], c=".7") # top horizontal line
- plt.ylabel("True Positive Rate")
- plt.xlabel("False Positive Rate")
- plt.show()

