A Book of Abstract Algebra | (2nd Edition)

	Chapter 33, Problem 1EC	Bookmark	Show all steps: ON
Problem			
	Let p be a prime number, and ω a primitive p th root of unity in the field F . If d is any root of $x^p - a \in F[x]$, show that $F(\omega, d)$ is a root field of $x^p - a$. Suppose $x^p - a$ is not irreducible in $F[x]$.		
Step-by-step solution			
	Step 1 of 4 Here, objective is to prove that $F(\omega,d)$ is a root field of x^p-a . Consider p be a prime number.		
Step 2 of 4			
	Root field:		
	The field contains a given field in which every polynomial can be written as a product of linear factors. Comment		
Step 3 of 4			
	Consider the polynomial x^p-a . The root of above polynomial is a primitive p^{th} root of unity		

$$x^{p} - a = 0$$

 $x^{p} = a$
 $x = \sqrt[p]{a} \omega$
 ω is a primitive p^{th} root of unity

Consider d is a root of $x^p - a \in F(x)$.

Then,
$$d = \sqrt[p]{a}$$

Comment

Step 4 of 4

Let F is the root filed of $x^p - a$.

Then, $\sqrt[p]{a}$, $\sqrt[p]{a}$ ω both are in F.

The quotient
$$\omega = \frac{\sqrt[p]{a} \ \omega}{\sqrt[p]{a}} \in F(x)$$

Therefore $Q(\sqrt[p]{a}, \omega) \subset F$

Since, the field $F(\omega, \sqrt[p]{a})$ is contains all the roots of the polynomial $x^p - a$

$$F(\omega, \sqrt[p]{a}) = F(\omega, d)$$

Therefore,

The root field of $x^p - a$ is $F(\omega, d)$

Hence, proved

Comment