CSC3831 Predictive Analytics Machine Learning House Price Prediction

Introduction

A grid search is used for each model to evaluate a large set of hyperparameters to find the optimal model. The results from each grid search are displayed and discussed briefly in this report, using MSE, R^2, and MAE as measurements.

First Model - Linear Regression (LR)

For LR the following hyper-parameters were grid-searched; fit_intercept, copy_x, and n_jobs. The results are as follows:

Fit Intercept	Copy X	N jobs	MSE	R^2
TRUE	TRUE	1	0.37206	0.621966
TRUE	TRUE	2	0.37206	0.621966
TRUE	TRUE	3	0.37206	0.621966
TRUE	TRUE	4	0.37206	0.621966
TRUE	FALSE	-1	0.37206	0.621966
TRUE	FALSE	1	0.372047	0.621979
TRUE	FALSE	2	0.372047	0.621979
TRUE	FALSE	3	0.372047	0.621979
TRUE	FALSE	4	0.372047	0.621979
FALSE	TRUE	-1	0.372046	0.621981
FALSE	TRUE	1	0.372046	0.621981
FALSE	TRUE	2	0.372046	0.621981
FALSE	TRUE	3	0.372046	0.621981
FALSE	TRUE	4	0.372046	0.621981
FALSE	FALSE	-1	0.372046	0.621981
FALSE	FALSE	1	0.372046	0.621981
FALSE	FALSE	2	0.372046	0.621981
FALSE	FALSE	3	0.372046	0.621981
FALSE	FALSE	4	0.372046	0.621981

These results suggest that the choice of hyperparameters has a minimal impact on the model's performance. The MSE scores are relatively close together and the R^2 scores are all above 0.6, indicating that the model is performing relatively well, but there is still room for improvement.

Second Model – Multi-Layer Perceptron (MLP)

For MLP the following hyper-parameters were explored; number of units, activation function, number of layers. 192 results were generated, 9 are shown below.

The nine best MLP model hyper-parameters and results									
Units Per Layer	Activation Function	Layers	Optimizer	Epochs	Batch Size	MSE	MAE		
128	relu	3	adam	10	64	0.203492	0.30959		
512	relu	2	adam	10	64	0.204488	0.308437		
256	relu	5	adam	10	8	0.204824	0.306975		
512	relu	5	adam	10	32	0.205468	0.317355		
256	relu	2	adam	10	32	0.206546	0.311331		
128	relu	4	adam	10	16	0.206783	0.306865		
256	relu	5	adam	10	16	0.2072	0.312006		
512	relu	2	adam	10	32	0.207466	0.306897		
128	relu	3	adam	10	16	0.207523	0.308899		

The results show increasing units, and layers do not necessarily lead to better performance. A second grid-search to improve upon the above results explored; optimizers, and epochs.

Units Per	Activation						
Layer	Function	Layers	Optimizer	Epochs	Batch Size	MSE	MAE
128	relu	3	adam	10	64	0.203516	0.30981
128	relu	3	adam	10	64	0.214913	0.326542
128	relu	3	adam	25	64	0.215211	0.305607
128	relu	3	adamax	25	64	0.215381	0.321018
128	relu	3	adam	50	64	0.218082	0.303142
128	relu	3	adamax	10	64	0.219988	0.327635
128	relu	3	rmsprop	50	64	0.220686	0.304911
128	relu	3	rmsprop	10	64	0.23416	0.334149
128	relu	3	rmsprop	25	64	0.253742	0.348849
128	relu	3	adagrad	50	64	0.257711	0.35942
128	relu	3	adagrad	25	64	0.283529	0.379947
128	relu	3	adagrad	10	64	0.305943	0.395837

Unexpectedly, increasing the epochs and changing the optimizer did not increase performance the MSE and MAE increased with the different variations.

Third Model – Random Forest Regressor (RFR)

For RFR the following hyper-parameters were explored; n_estimators, max_depth, min_samples_split, and min_samples_leaf. 20 of the 600 results are shown below.

The ten best RFR model hyper-parameters and results									
N_Estimators	Max Depth	Min Samples Split	Min Samples Leaf	MSE	R^2				
300	None	2	2	0.192447	0.804463				
300	30	2	2	0.192721	0.804184				
100	None	2	2	0.193086	0.803814				
100	50	2	2	0.193178	0.80372				
300	30	5	2	0.19325	0.803647				
300	40	2	2	0.193306	0.803591				
200	50	2	2	0.193644	0.803246				
300	50	5	1	0.193743	0.803146				
300	None	5	2	0.193814	0.803074				
300	50	5	2	0.193816	0.803072				
	The ten	worst RFR model hype	r-parameters and resu	lts					
10	10	2	8	0.244633	0.751439				
10	10	15	4	0.244641	0.751431				
10	10	10	2	0.246019	0.750031				
10	10	5	1	0.24682	0.749217				
10	10	5	8	0.247924	0.748095				
10	10	20	4	0.248179	0.747836				
10	10	20	1	0.249479	0.746516				
10	10	15	2	0.250417	0.745562				
10	10	2	1	0.252138	0.743814				
10	10	10	1	0.252717	0.743225				

These results show that a relatively high number of n_estimators and low amount of min samples for both split and leaf are suitable hyper-parameters as the MSE was as low as ~0.19 and R^2 relatively high, at ~0.8.

A second grid-search to improve upon the above results explored; ccp_alpha, min_impurity_decrease, oob_score, and warm_start. From the 144 results the top 10 are shown:

	Second grid-search: The ten best RFR model hyper-parameters and results									
		Min	Min				Min			
N	Max	Samples	Sample		OOB	Warm	Impurity	CCP		
estimators	Depth	split	Leaf	Bootstrap	Score	Start	decrease	alpha	MSE	R^2
300	None	2	2	TRUE	TRUE	FALSE	0	0	0.192787	0.804118
300	None	2	2	TRUE	FALSE	TRUE	0	0	0.193311	0.803585
300	None	2	2	TRUE	FALSE	FALSE	0	0	0.194445	0.802433
300	None	2	2	TRUE	TRUE	FALSE	0.1	0	0.657525	0.331917
300	None	2	2	TRUE	FALSE	FALSE	0	0.1	0.662386	0.326978
300	None	2	2	TRUE	TRUE	TRUE	0.1	0.1	0.663693	0.32565
300	None	2	2	TRUE	FALSE	TRUE	0	0.1	0.664503	0.324827
300	None	2	2	TRUE	TRUE	FALSE	0.1	0.1	0.664552	0.324777
300	None	2	2	TRUE	FALSE	TRUE	0.1	0.1	0.665614	0.323698
300	None	2	2	TRUE	TRUE	TRUE	0	0.1	0.666029	0.323276

The top three results show no improvement whereas a majority of the results show deterioration in the accuracy of the model reflected in the high MSE, and low R^2 .

Fourth Model – Decision Tree Regressor (DTR)

For DTR the following hyper-parameters were explored; fit_intercept, copy_x, and n_jobs. 20 of the 2880 results are as follows:

The ten best DTR model hyper-parameters and results								
	Min Samples	Min Samples	Min Weight					
Max Depth	Split	Leaf	Fraction Leaf	Max Leaf Nodes	MSE	R^2		
20	20	8	0	None	0.275792	0.719779		
50	20	8	0	None	0.275795	0.719777		
None	20	8	0	None	0.275797	0.719775		
40	20	8	0	None	0.275809	0.719762		
30	20	8	0	None	0.275891	0.719679		
20	15	8	0	None	0.277281	0.718267		
20	10	8	0	None	0.277293	0.718254		
20	5	8	0	None	0.2773	0.718247		
20	2	8	0	None	0.277375	0.718171		
50	2	8	0	None	0.277416	0.718129		
	The	ten worst DTR n	nodel hyper-paramet	ers and results				
50	20	4	0.3	10	0.634208	0.355609		
50	20	4	0.3	20	0.634208	0.355609		
50	20	4	0.3	30	0.634208	0.355609		
50	20	4	0.3	40	0.634208	0.355609		
50	20	4	0.3	50	0.634208	0.355609		
50	20	8	0.3	None	0.634208	0.355609		
50	20	8	0.3	10	0.634208	0.355609		
50	20	8	0.3	20	0.634208	0.355609		
50	20	8	0.3	30	0.634208	0.355609		
50	20	8	0.3	40	0.634208	0.355609		
50	20	8	0.3	50	0.634208	0.355609		

All of the best models (lowest MSE & highest R^2) used the highest number of 'min_samples_leaf' passed to the grid search, based on this I explored a higher number of 'min_samples_leaf', and in a third grid-search different 'max depths' with 'min_samples_leaf'.

Second Grid-Search: Testing 'min_samples_leaf' [8, 16, 32, 64]								
	Min Samples	Min Samples	Min Weight					
Max Depth	Split	Leaf	Fraction Leaf	Max Leaf Nodes	MSE	R^2		
20	20	16	0	None	0.270174	0.725488		
20	20	8	0	None	0.275696	0.719877		
20	20	32	0	None	0.293371	0.701918		
20	20	64	0	None	0.310895	0.684113		
T	hird Grid-Search: Te	sting 'min_samples_	leaf' [8, 16, 32, 64] d	and 'max_depths' [20	0, 30, 40, 50]			
20	20	16	0	None	0.270174	0.725488		
30	20	16	0	None	0.270174	0.725488		
40	20	16	0	None	0.270174	0.725488		
50	20	16	0	None	0.270174	0.725488		
20	20	8	0	None	0.275696	0.719877		
30	20	8	0	None	0.275809	0.719762		
50	20	8	0	None	0.275809	0.719762		
40	20	8	0	None	0.275879	0.719692		
20	20	32	0	None	0.293371	0.701918		
30	20	32	0	None	0.293371	0.701918		
40	20	32	0	None	0.293371	0.701918		
50	20	32	0	None	0.293371	0.701918		
20	20	64	0	None	0.310895	0.684113		
30	20	64	0	None	0.310895	0.684113		
40	20	64	0	None	0.310895	0.684113		
50	20	64	0	None	0.310895	0.684113		

Only a minor improvement of 0.005 (MSE) and 0.006 (R^2) was achieved with the second and third grid-search.