

O Varidaes de deason

X;) 1: el vodo jes usitado inmediabavente después del vodo jos vo es visitado inmediabavente después.

función agebuo.

Restraiones

$$x_{12} + x_{13} = 1$$
 $x_{45} + x_{35} - x_{56} = 0$
 $x_{13} - x_{32} - x_{35} = 0$ $x_{56} - x_{64} = 0$
 $x_{32} + x_{12} - x_{24} - x_{24} = 0$ $x_{24} + x_{44} + x_{64} = 1$
 $x_{24} - x_{44} - x_{45} = 0$ $x_{11} \in \{0,1\}$

CS Escaneado con CamScann

b) Para resolver este problema en WINSQB, Linear and Integer Programming pero ahora selecciono el tipo de variable Binary (0,1)

Variable>	X12	X13	X32	X24	X35	X45	X56	X27	X47	X67	Direction	R. H. S.
Minimize	15	10	8	6	4	4	2	17	5	6		
C1	1	1									=	1
C2		1	-1		-1						=	0
C3	1		1	-1				-1			=	0
C4				1		-1			-1		=	0
C5					1	1	-1				=	0
C6							1			-1	=	0
C7								1	1	1	=	1
LowerBound	0	0	0	0	0	0	0	0	0	0		
UpperBound	1	1	1	1	1	1	1	1	1	1		
VariableType	Binary											

	18:04:05		Wednesday	May	11	2022		
	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X12	0	15,0000	0	0	basic	11,0000	М
2	X13	1,0000	10,0000	10,0000	0	basic	-M	14,0000
3	X32	0	8,0000	0	0	basic	-M	М
4	X24	0	6,0000	0	0	basic	2,0000	М
5	X35	1,0000	4,0000	4,0000	0	basic	-M	8,0000
6	X45	0	4,0000	0	11,0000	at bound	-7,0000	М
7	X56	1,0000	2,0000	2,0000	0	basic	-M	6,0000
8	X27	0	17,0000	0	10,0000	at bound	7,0000	М
9	X47	0	5,0000	0	4,0000	at bound	1,0000	М
10	X67	1,0000	6,0000	6,0000	0	basic	-М	10,0000
	Objective	Function	(Min.) =	22,0000				

La solución obtenida es:

Como se puede ver la ruta optima es $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7$ ya que las variables Xij X13,X35,X56,X67 son igual a 1, eso quiere decir que el nodo i es visitado inmediatamente después del nodo j.

Que sustituyendo en la función objetivo:

$$Z = 15(0) + 10(1) + 8(0) + 6(0) + 4(1) + 4(0) + 2(1) + 17(0) + 5(0) + 6(1) = 10 + 4 + 2 + 6 = 22 \text{ km}$$

c) Ahora introducimos lo mismo solo que en vez de seleccionar Binario {0,1} como tipo de las variables seleccionamos Non Negative continuous, de esta forma habríamos modelado el PLR del PLE del apartado A, en cuanto al planteamiento en papel, es exactamente el mismo sustituyendo la restricción binaria de las variables, por la de no negatividad:

Variable>	X12	X13	X32	X24	X35	X45	X56	X27	X47	X67	Direction	R. H. S.
Minimize	15	10	8	6	4	4	2	17	5	6		
C1	1	1								W	=	1
C2		1	-1		-1						=	0
C3	1			-1				-1			=	0
C4				1		-1			-1		=	0
C5					1	1	-1				=	0
C6							1			-1	=	0
C7								1	1	1	=	1
LowerBound	0	0	0	0	0	0	0	0	0	0		
UpperBound	М	М	М	М	М	М	М	М	М	М		
VariableType	Continuous											

Pero tanto las restricciones, como la función objetivo son idénticas a las del apartado a)

•	15:28:10		Thursday	May	12	2022		
+	Decision Variable	Solution Value	Unit Cost or Profit c(j)	Total Contribution	Reduced Cost	Basis Status	Allowable Min. c(j)	Allowable Max. c(j)
1	X12	0	15,0000	0	0	basic	11,0000	м
2	X13	1,0000	10,0000	10,0000	0	basic	-M	14,0000
3	X32	0	8,0000	0	0	basic	-M	м
4	X24	0	6,0000	0	0	basic	2,0000	м
5	X35	1,0000	4,0000	4,0000	0	basic	-M	8,0000
6	X45	0	4,0000	0	11,0000	at bound	-7,0000	м
7	X56	1,0000	2,0000	2,0000	0	basic	-M	6,0000
8	X27	0	17,0000	0	10,0000	at bound	7,0000	м
9	×47	0	5,0000	0	4,0000	at bound	1,0000	м
10	X67	1,0000	6,0000	6,0000	0	basic	-М	10,0000
	Objective	Function	(Min.) =	22,0000				

Y la solución que obtenemos ahora es exactamente la misma a la que obtenemos resolviendo el PLE modelado en el apartado A:

La ruta es de nuevo $1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 7$ con coste 22 km.

EJERCICIO 2 EN LA SIGUIENTE HOJA

Vordues de deason

La soura actos não de badas las aramas es: 28/15+34/375+38/35+54/345+67/5+71/25
+85/625+102/5+158/125+227/5+232/5+242/5+253/75+740+288/125+53/875=2687/5/18
5000 1000 (apadad a cada deca): 2687/5/400 - 2/98611, van a ser recesaro 3 Co-form

Ya que nuestro objetivo es minimizar el numero de discos, por tanto, mínimo van a hacer falta 3 discos para almacenar todos esos archivos, puesto que en 2 no habría suficiente espacio y en 4 se estaría desaprovechando, como se demuestra en la operación que acabo de realizar. Y luego en cada disco el objetivo va a ser maximizar el tamaño que almacena cada uno.

tuación objetuo

MAXIMITAR
$$Z = \frac{3}{j=1} \left(28'45 \text{Xi}_j + 34'3945 \text{Xz}_j + 38'45 \text{X3}_j + 54'345 \text{Xy}_j + 64'5 \text{X5}_j + 71'25 \text{X6}_j + 85'625 \text{X}_{1j} + 158'125 \text{X0}_j + 222'5 \text{X10}_j + 232'5 \text{X10}_j + 242'5 \text{X12}_j + 253'45 \text{X13}_j + 240 \text{X14}_j + 288'125 \text{X15}_j + 531'845 \text{X16}_j \right)$$

$$= 288'125 \times 15j + 531'845 \times 16j \right)$$

$$= 100 \text{ The de codo orders can be considered to the constant of the c$$

b) Para resolverlo de nuevo en WINSQB, las restricciones se traducen a 16 restricciones la primera de ellas y a 3 restricciones las segunda de ellas.

Las 16 primeras hacen que un mismo archivo solo pueda estar en un único CD-ROM, y las otras 3 se encargan de que la suma del peso de los archivos que hay en cada CD-ROM no supere los 900MB. Esta vez el problema es introducido en la forma normal, de WINSQB, ya que así es más sencillo.

Aunque no se ve la función objetiva completa, ni las restricciones 17,18,19 asociadas a que la suma de los archivos guardados en cada disco debe ser inferior o igual a 900.

	OBJ/Constraint/VariableType/Bound
Maximize	28,75×11+34,375×21+38,75×31+54,375×41+67,5×51+71,25×61+85,625×71+102,5×81+158,125×91+227,5×101+232
C1	1X11+1X12+1X13<=1
C2	1X21+1X22+1X23<=1
C3	1X31+1X32+1X33<=1
C4	1×41+1×42+1×43<=1
C5	1X51+1X52+1X53<=1
Ce	1×61+1×62+1×63<=1
C7	1X71+1X72+1X73<=1
C8	1×81+1×82+1×83<=1
C9	1X91+1X92+1X93<=1
C10	1X101+1X102+1X103<=1
C11	1X111+1X112+1X113<=1
C12	1X121+1X122+1X123<=1
C13	1X131+1X132+1X133<=1
C14	1X141+1X142+1X143<=1
C15	1X151+1X152+1X153<=1
C16	1X161+1X162+1X163<=1
C17	28,75×11+34,375×21+38,75×31+54,375×41+67,5×51+71,25×61+85,625×71+102,5×81+158,125×91+227,5×101+232
C18	28,75X12+34,375X22+38,75X32+54,375X42+67,5X52+71,25X62+85,625X72+102,5X82+158,125X92+227,5X102+232
C19	28,75X13+34,375X23+38,75X33+54,375X43+67,5X53+71,25X63+85,625X73+102,5X83+158,125X93+227,5X103+232
Integer:	
Binary:	X11, X21, X31, X41, X51, X61, X71, X81, X91, X101, X111, X121, X131, X141, X151, X161, X12, X22, X32, X42, X52

Resolviendo esto obtenemos:

DISCO 1

X11	0	28,7500
X21	1,0000	34,3750
X31	1,0000	38,7500
X41	1,0000	54,3750
X51	0	67,5000
X61	0	71,2500
X71	0	85,6250
X81	0	102,5000
X91	0	158,1250
X101	0	227,5000
X111	0	232,5000
X121	1,0000	242,5000
X131	1,0000	253,7500
X141	1,0000	270,0000
X151	0	288,1250
X161	0	531,8750

El disco 1 va a estar compuesto por los archivos 2,3,4,12,13,14 y ocupan un total de

34.375 + 38.75 + 54.375 + 242.5 + 253.75 + 270 = 893.75 MB, mismo resultado, que se obtiene como solución de la restricción 17 la asociada al limite de tamaño del disco 1.

DISCO 2

X12	1,0000	28,7500
X22	0	34,3750
X32	0	38,7500
X42	0	54,3750
X52	0	67,5000
X62	0	71,2500
X72	1,0000	85,6250
X82	1,0000	102,5000
X92	1,0000	158,1250
X102	0	227,5000
X112	1,0000	232,5000
X122	0	242,5000
X132	0	253,7500
X142	0	270,0000
X152	1,0000	288,1250
X162	0	531,8750

El disco 2 va a estar compuesto por los archivos 1,7,8,9,11,15 y ocupan un total de

28.750 + 85.625 + 102.5 + 158.125 + 232.5 + 288.125 = 895.625 MB, mismo resultado, que se obtiene como solución de la restricción 18 la asociada al límite de tamaño del disco 2.

DISCO 3

X13	0	28,7500
X23	0	34,3750
X33	0	38,7500
X43	0	54,3750
X53	1,0000	67,5000
X63	1,0000	71,2500
X73	0	85,6250
X83	0	102,5000
X93	0	158,1250
X103	1,0000	227,5000
X113	0	232,5000
X123	0	242,5000
X133	0	253,7500
X143	0	270,0000
X153	0	288,1250
X163	1,0000	531,8750

El disco 3 va a estar compuesto por los archivos 5,6,10,16 y ocupan un total de

67.5 + 71.25 + 227.5 + 531.875 = 898.125 MB, mismo resultado, que se obtiene como solución de la restricción 19 la asociada al límite de tamaño del disco 3.

Ahora voy a mostrar las restricciones 17,18,19 que son las restricciones asociadas al tamaño máximo de cada uno de los discos, y aquí se va a ver que los 3 discos todos tienen un numero de discos cuya suma del espacio que ocupan es inferior a 900, y coincide con la suma de los espacios de los respectivos archivos que se han introducido en cada uno de ellos.

C17 → ASOCIADA AL DISCO 1

C18 → ASOCIADA AL DISCO 2

C19 → ASOCIADA AL DISCO 3

C17	893,7500	<=	900,0000
C18	895,6250	<=	900,0000
C19	898,1250	<=	900,0000

(3) Estavos er sistemo de 3 colos er serie:

- 1) Cola MIMI8
- @ Cola WIMI3
- 3 Cda MIMIZ
- $\lambda_1 = 401 \mu cra$
- λ2=0'35 λ1=20/wora
- Mz= 20 luora
- y3= y5= 30 1 mora
- M3= 30/Lca.

Antes de rada, confrabances que se alacana la estabuldad en el sistema;

$$P_{1} = \frac{\lambda_{1}}{m_{1} \mu_{1}} = \frac{u_{0}}{8.6} = \frac{u_{0}}{46} = \frac{5}{6} < 1$$

$$P_{2} = \frac{\lambda_{2}}{m_{2} \mu_{2}} = \frac{30}{3.20} = \frac{30}{60} = \frac{3}{6} < 1$$

$$P_{3} = \frac{\lambda_{3}}{m_{3} \mu_{3}} = \frac{30}{2.30} = \frac{30}{60} = \frac{3}{6} < 1$$
Sistence

Sistence

Sistence

La longitud redia de los colos es lo visuo que decur el número medio de dieves que esta esperando a ser atendidos.

En el caso de un sistema MINIM:

Arres de esto necesitoros utilificación de cada servidor $\Rightarrow U = \frac{\lambda}{m\mu} = \rho$

I la macdoudad de que un dieste que mega terga que espera ada

$$\frac{1}{160} = \left(\sum_{n=1}^{N=0} \frac{u_i}{(n u_i)_u} + \frac{u_i(1-b)}{(u^i u_i)_u} \right)_{-1}$$

$$\frac{1}{160} = \left(\sum_{n=1}^{N=0} \frac{u_i}{(n u_i)_u} + \frac{u_i(1-b)}{(u^i u_i)_u} \right)_{-1}$$

Entonces alora liacelos esto por cada uo de los vodas, del sistema de calas.

m=8

Pora redizor los aventos, utilizo deme

$$Pa = \left(\sum_{n=0}^{\infty-1} \frac{(mp)^n}{n!} + \frac{(mp)^m}{m!(1-p)}\right)^{-1} = \frac{0.0000134361162}{10000134361162}$$

NODO 2 MIMI3 M==

$$Poz = \left(\frac{m-1}{\sum_{n=0}^{\infty}} \frac{(mp)^n}{n!} + \frac{(mp)^m}{m!(1-p)}\right)^{-1} = \frac{0.210526315}{1}$$

$$[E(U_{22}) = \frac{P_2}{1-P_2} P_2 = \frac{316}{316} = 0.236842105 = 0.236842105 = 0.236842105 = 0.236842105$$

MINIZ M:2

$$Pos = \left(\frac{m-1}{2} \right)^{1} \frac{(mp)^{n}}{n!} + \frac{(m.p)^{m}}{m! (1-p)} = \frac{1}{3} = \frac{0.3333}{1}$$

$$[E(N_{28}) = \frac{P_3}{1-P_3} = \frac{3/6}{3/6} \cdot \frac{1}{3} = 0.353 \text{ duestes pool www 3}]$$

Alvara se calava el bienpo medio de permanencia el el sistema, osea el bienpo medio de respuestos

 $E(R) = \frac{E(u)}{\lambda} = \frac{\sum_{i=1}^{K} E(u_i)}{\sum_{i=1}^{K} \gamma_i^2}$, en esta formula necesitarios

E(N), el núvero de chenies especados or el sistema, la suna de los chentes en la cala y de los que está siendo atendicidos (servicio)

[E(NZ) = E(NZ) + E(NSZ) = 0'236842105 + mz*pz = 0'236842105 + 3*1/2 =

[E(N3) = E(N3)+ E(N3) = 0'3333 +M3" P3 = 0'3333+ 2+1/2 = (1'33 dieles)

Y E(U) es la sura es la sura → [= [E(U;)

Y aluara que ya teneucos ELLI), sustituzuos esta formula de aniba:

$$E(R) = \frac{E(N)}{N} = \frac{12! 40027499}{40} = 0.310006874 \text{ horas}$$
ex esse coso $\frac{3}{12!} 72 = \lambda$.
$$\frac{3}{12!} 72 = 40 + 0 + 0 = 40 = \lambda$$

Aliona necesitarios red los electros redio de un diente que compra. Para ello rioy que haiter el trempo que pasa un diente en cada una de los departamentos y survarios. Para ello aprudancos:

Gronces avora voltavas (EIR) pora coda una delas depurbaventos, o nodos de nuestro esteva de calas.

$$E(Q_1) = \frac{1}{\mu_1} + \frac{Q_1}{m_{\mu_1}(1-p)} = \frac{1}{6} + \frac{0.632686577}{8.6(1-5/6)} = 0.233252488 \text{ horas}$$

$$[E(R_2) = \frac{1}{\mu_L} + \frac{e_L}{\mu_{R_1}} = \frac{1}{20} + \frac{0.236842.108}{3.20(1-36)} = 0.053844366 \text{ horas}$$

$$E(A_3) = \frac{1}{\mu_3} + \frac{e_3}{m\mu_3(1-p)} = \frac{1}{20} + \frac{0.3333}{2.30(1-36)} = 0.044444433 \text{ horas}$$

El bierpo medio de un diese que compra es:

[01335591657 MINUTOS OS OL DEMPO MOZIO OR PERMOVERDA OR MINUTES QUE COMPTO)