buc ,						
loss function	Closs function > tells how good the current classifier is ⇒ measure the bodness of weight.					
	given a dataset of examples: $\{xi : yi\}_{i=1}^{N}$ Where $\{xi : image\}$					
	integer label					
	> loss over the dataset = average of sum of loss:					
	$L = \frac{1}{N} \sum_{ij} (f(x_i, w), y_i)$ $C = \frac{1}{N} \sum_{ij} (f(x_i, w), y_i)$					
	 scores vector: s = f(xi, w) if true score is higher than other scores 					
	1 by a margin value> 1.					
	SVM loss: Li= 2)					
115 1014	Week an cure destait					
tinge Lous	Hinge loss.					
= \(\sum_{j\pm y_i} \text{ max (0, Sj-Sy; +1)}\)	Next loss = 100					
	Q: L=0? is W unique? A: No! zw also achieve o Lors!					
	• (f(xi, w), yi) + N Puw) - sofu penatry.					
	N 121 Ls Regularization: "simpler" W.					
	Data 1045: model predictions should match training data.					
	O ccam's Pazor: 果中期到版为 (1)285-1347)					
	Among competing hypotheses, the simplest is the best.					
	egularisation: penelise the complex of the model.					
	O L, Pew) = Zx Zv Wx.v ⇒ encourage sparcity.					
	D Ls: Pew) = Ix I Wk. 1 ⇒ euclidean norm,					
	3 Blastic not Ch+ (2): PM)= Zx ZL & Wr. L + / WK. L/					
	@ Majo norm. Dropout, Francier: Botton normalization stochastic depth.					
	* Bayesian: Lz also corresponds MAP inference using a Gaussian prior on W.					
temax						
us-entropy loss)	Softmax Classifier: Muttinomial Logistic pegression.					
	scores = unnormalized log prob. of the classes.					
= -log (esti)						
401	5,5					
	- Sofemax function					
	want to make the log likelihood, or lfor loss func) to min the -log likelihood:					
	Li = Olog PCY = y; X=XI)					
	t loss measure badness not goodness.					
	<u> +</u>					
	$\Rightarrow \frac{1}{\sum_{j} e^{s_{ij}}}$					

	Q What is thin & max value of softmax loss? due to computation limit. never get 0 loss!						
	A: min = 0, max = 20.						
	Score func down loss						
mization							
MISHIN	How to find W that minimise the loss? ⇒ iterative method. Strategy I: Random Search ⇒ very bad idea solution Strategy 2: Follow—the slope 1D: the derivative of a function: df = lim facth - fix) dx h>						
							(linear. 1st order approx)
							mutil- D: the gradient is the vector of spartlal derivotives) along each dimensions.
		• The slope in any direction is the dot product of the direction with the gradient. The direction of steepest descent is the negative gradient (gradient direction unit					
		Analysiz Gradient:					
	check implementation with numerical gradient.						
	While True: weights - grad = evaluate - grad (loss - fune, data, weights)						
	weights += - step_size * weights_grad # perform parameter update						
CAD							
SGD (Stochastic Gradient	LIW) = 1/N = Li(Xi, yi, W) + A PLW) . Approximente sum using a minibatch						
	LIW) = 1 \(\subsection \) Li (\(\times i \), \(\times i \) + \(\times \) \(\times \) Approximate sum using a minibatch						
CStochactic Gradiant	LIW) = 1/N = Li(Xi). yi, W) + A. Ew) Approximate sum using a minibatch						
(Stochastic Gradient	LIW) = 1/N = Li(Xi). yi, W) + A. Ew) Approximate sum using a minibatch						
(Stochastic Gradient	LIW) = 1/N [Li (Xi), yi, W) + A. EW) • Approximente sum using a minimatch						
(Stochastic Gradient	LIW) = 1/N [Li (Xi), yi, W) + A. EW) • Approximente sum using a minimatch						
(Stochastic Gradient	LLW) = 1/N = Li(Xi. yi. W) + A. PLW) • Approximate sum using a minibateh						
(Stochastic Gradient	LIW) = 1/N [Li (Xi), yi, W) + A. EW) • Approximente sum using a minimatch						
CStochactic Gradient	LIW) = 1/N [Li (Xi), yi, W) + A. EW) • Approximente sum using a minimatch						
CStochactic Gradient	LIW) = 1/N = Li(Xi). yi, W) + A. Ew) Approximate sum using a minibatch						
CStochactic Gradient	LIW) = 1/N = Li(Xi). yi, W) + A. Ew) Approximate sum using a minibatch						
(Stochastic Gradiant	LIW) = 1/N = Li(Xi). yi, W) + A. Ew) Approximate sum using a minibatch						