KnapsackSwift - 2nd report

- Knapsack problem solver written in Swift 4.0
- MI-PAA semestral project @ CTU FIT university
- Below is the report for the 2nd part (in Czech language)
- All measurements was made on MacBook Pro (13-inch Mid 2017) (CPU: Intel Core i5-7360U, RAM: 16 GB, OS: macOS High Sierra)
- Author: Petr ChmelarDate: 11/11/2017

Úloha

 Cílem úlohy je implementace a analýza řešení problému batohu metodami větví a hranic, dynamickým programováním a aproximativním algoritmem FPTAS.

Popis řešení

Metoda větví a hranic

• Metoda solveBranchAndBound vychází z rekurzivní metody solveBrute-Force (viz report1). Má navíc čtvrtý vstupní parametr reprezentující nejlepší zatím dosažené řešení. Při větvení rekurze je pak vždy provedena kontrola, zda u nově vytvářené větve je potenciál pro nalezení lepšího řešení než nejlepšího zatím dosaženého. V negativním případě je tato větěv odříznuta. Metoda větví a hranic výpočet často značně urychlí, ale asymptotická složitost zůstavá 2^n.

Metoda dynamického programování

- Tato metoda může využívat dekompozici problému podle ceny, nebo podle váhy. Vzhledem k následné implementaci FPTAS algoritmu jsem zvolil dekompozici podle ceny. Řešení podproblémů jsou v tomto případě uložené v tabulce o rozměrech n (počet věcí) x maxValue (suma cen všech věcí) asymptotická složitost je n * maxValue.
- Algoritmus začíná ve sloupci 0 a postupně plní tabulku doprava dle následujících pravidel:

```
table[0][0] = 0
table[0][j] = Int.max ... pro všechna j > 0
table[i][j] = min(table[i-1][j], table[i-1][j-items[i-1].value] + items[i-1].weight) ...
```

 Výsledné řešení poté nalezneme v posledním sloupci, jeho hodnota je menší než maxWeight a má maximální index v rámci sloupce.

Aproximativní algoritmus FPTAS

- Zde využijeme metody dynamického programování nad zjednodušeným modelem. Zjednodušení dosáhneme vydělením cen konstantou, čímž se sníží hodnota maxValue (suma cen všech věcí) a tedy i složitost metody dynamického programování.
- Pro zvolenou maximální relativní chybu epsilon má konstanta hodnotu:

```
coeff = (eps * maxValue) / n
```

• Ceny modifikujeme tak, že je vydělíme získanou konstantou:

```
item.value = floor(item.value / coeff)
```

 Pro spočítání relativní chyby algoritmu jsou potom použité původní ceny řešení, které vzniklo z upravených cen.

Naměřené výsledky

Průměrný čas výpočtu [s]

Počet instancí	BruteForce	${\bf Branch And Bound}$	Decomposition
4	4.72 E-05	4.52E-05	4.70E-05
10	0.002212371826	0.000564956665	0.001222410202
15	0.0642175436	0.002381997108	0.0112460804
20	2.078239183	0.007297010422	0.02949497223
22	8.327893114	0.01334373951	0.03868565559
25	65.13239241	0.02243446827	0.0573835659
27	NaN	0.03353640556	0.07064874649
30	NaN	0.0672105217	0.09264957905
32	NaN	0.1134650469	0.1066818571
35	NaN	0.2375982618	0.1345773458
37	NaN	0.3127718019	0.1523378181
40	NaN	0.8838491535	0.1812687922

Počet	FPTAS	FPTAS	FPTAS	FPTAS	FPTAS
instancí	eps = 0.1	eps = 0.2	eps = 0.5	eps = 0.7	eps = 0.9
4	4.05E-05	3.84E-05	3.79E-05	3.59E-05	3.44E-05
10	0.001004443	16 9 .000820250	510.2000542922	020.000442738	353 3 .0003872442245
15	0.008152580	260.004897398	949.002348351	4 79 .001742391	.586.001400036812

Počet instancí	$FPTAS \\ eps = 0.1$	$FPTAS \\ eps = 0.2$	$FPTAS \\ eps = 0.5$	$FPTAS \\ eps = 0.7$	$FPTAS \\ eps = 0.9$
20	0.025297040	940.014144492	150.006385917	7664.004600334	41 67 .003597226143
22	0.035494484	9 0.019537854	190.008720974	49 20 .006270194	1054.004920625687
25	0.058133144	380.031740951	540.013713922	25 0.009780721	664.007627558708
27	0.076524939	540.041728386	880.017888593	3670.012747621	540.009964566231
30	0.110637307	$2\ 0.059579877$	850.025159983	3630.017955336	5570.01411275387
32	0.134607834	8 0.072542033	2 0.030648012	2160.021741542	2820.01695840359
35	0.185205473	9 0.098466458	320.041281695	5370.029229779	240.0226640749
37	0.222844939	$2\ 0.118492517$	5 0.049410939	9220.034810676	5570.02721654415
40	0.284424748	4 0.149849762	9 0.062735228	8540.044176559	0450.03418153286

FPTAS maximální chyba [0-1]

Počet	FPTAS	FPTAS	FPTAS	FPTAS	FPTAS
instancí	eps = 0.1	eps = 0.2	eps = 0.5	eps = 0.7	eps = 0.9
4	0	0.016304347	830.099567099	570.148148148	31 0.1481481481
10	0.000836820	080.010810810	810.013761467	890.016129032	260.0237580993
15	0.000724112	960.001833740	830.004917025	2 0.005652911	240.0129358830
20	0	0	0.003426124	190.003426124	190.0127678978
22	0	0.000390472	2470.002416626	390.003842459	170.0044563279
25	0.000369003	690.000390472	470.001875468	860.002927186	240.0034267912
27	0.000394788	780.000394788	3780.001426024	950.001851851	850.0045076282
30	0	0.000275938	3180.001247660	630.002698145	5020.0022282743
32	0	0.000519345	6620.000867302	680.001304801	670.0019657399
35	0	0	0.000875912	400.001168565	5580.0013937282
37	0	0.000283848	3990.000804073	970.000831255	5190.0014084507
40	0	0.000218007	410.000643776	820.000643776	820.0011163206

Grafy

Závěr

- Z grafu průměrných časů vypočtů je vidět, že pro větší instance je nejrychlejším přesným algoritmem dynamické programování.
- Maximální chyba algoritmu FPTAS je v praxi daleko menší, než teoretická maximální průměrná cena, přičemž výpočetní čas je pro větší epsilon násobně nižší než výpočetní čas dynamického programování.