Numerikus módszerek 2B.

4. előadás: Hermite-interpoláció

Dr. Bozsik József

ELTE IK

2020. október 1.

- 1 Az Hermite-interpoláció alapfeladata
- 2 Hibaformula
- 3 Speciális esetek
- 4 Az Hermite-interpolációs polinom Newton-alakja

- 1 Az Hermite-interpoláció alapfeladata
- 2 Hibaformula
- 3 Speciális esetek
- 4 Az Hermite-interpolációs polinom Newton-alakja

Definíció: Az interpoláció alapfeladata

- **1** Adottak az $x_0, x_1, \ldots, x_k \in [a; b]$ különböző alappontok,
- **2** $m_0, m_1, \ldots, m_k \in \mathbb{N}$ multiplicitás értékek és
- **3** $y_0^{(j)}, y_1^{(j)}, \ldots, y_k^{(j)} \in \mathbb{R}$ függvény- és derivált értékek $(j=0,\ldots,m_i-1)$,
- **4** $m := \sum_{i=0}^{k} m_i 1$.
- **5** Olyan $H_m \in P_m$ polinomot keresünk, melyre

$$H_m^{(j)}(x_i) = y_i^{(j)}, \ (i = 0, 1, ..., k; \ j = 0, ..., m_i - 1).$$

A feltételnek eleget tevő polinomot *Hermite-interpolációs* polinomnak nevezzük.

Megj.: Adott
$$f:[a;b] \to \mathbb{R}$$
 függvény esetén $y_i^{(0)} = f(x_i)$, $y_i^{(j)} = f^{(j)}(x_i)$ $(i = 0, 1, ..., k; j = 0, ..., m_i - 1)$.

Tétel: Az Hermite-interpolációs polinom létezése és egyértelműsége

$$\exists! \ H_m \in P_m: \ H_m^{(j)}(x_i) = y_i^{(j)}$$

$$(i = 0, 1, \dots, k; \ j = 0, \dots, m_i - 1).$$

Biz.: Határozatlan együtthatók módszerével, LER megoldása.

Megj.: Ha a függvény- és deriváltértékek hiányosan adottak, akkor hiányos (lakunáris vagy "lyukas") interpolációról beszélünk, mely általában nem oldható meg vagy nem egyértelmű.

1 Az Hermite-interpoláció alapfeladata

2 Hibaformula

3 Speciális esetek

4 Az Hermite-interpolációs polinom Newton-alakja

Tétel: Hibaformula

- **1** Legyen $x \in \mathbb{R}$ tetszőleges,
- 2 [a; b] az x_0, x_1, \dots, x_k és x által kifeszített intervallum,
- 3 továbbá $f \in C^{m+1}[a; b]$.

Ekkor

 $\mathbf{0} \ \exists \ \xi_{\mathsf{x}} \in [a;b], \ \mathsf{melyre}$

$$f(x) - H_m(x) = \frac{f^{(m+1)}(\xi_x)}{(m+1)!} \cdot \Omega_m(x).$$

A Hibabecslés

$$|f(x) - H_m(x)| \le \frac{M_{m+1}}{(m+1)!} \cdot |\Omega_m(x)|,$$

$$M_{m+1} := \|f^{(m+1)}\|_{\infty}, \quad \Omega_m(x) := \prod_{i=0}^k (x - x_i)^{m_i}.$$

- 1 Az Hermite-interpoláció alapfeladata
- 2 Hibaformula
- 3 Speciális esetek
- 4 Az Hermite-interpolációs polinom Newton-alakja

Az Hermite-interpoláció speciális esetei:

- $\mathbf{0} \ \forall \ m_i = 1$: Lagrange-interpoláció
- **2** $\forall m_i = 2$: Fejér–Hermite-interpoláció, m = 2k + 1.
- **3** Állítás: Legyen $\forall m_i = 2$ és $f \in C[a; b]$ tetszőleges, ekkor a

$$H_m(x_i) = f(x_i), \ H'_m(x_i) = 0$$

feltételekkel definiált Hermite polinomokra, ahol az x_i , (i = 0, ..., k) alappontok a Csebisev gyökök:

$$\lim_{m\to+\infty}\|f-H_m\|_{\infty}=0$$

4 $k = 0, m_0 = m + 1$: m-edfokú Taylor-polinom.

- 1 Az Hermite-interpoláció alapfeladata
- 2 Hibaformula
- 3 Speciális esetek
- 4 Az Hermite-interpolációs polinom Newton-alakja

Az Hermite-interpolációs polinom Newton-alakja

Eml.: Azonos alappontok esetén az osztott differencia határátmenettel definiálható:

$$f[x_i, x_i] := \lim_{x \to x_i} f[x_i, x] = \lim_{x \to x_i} \frac{f(x) - f(x_i)}{x - x_i} = f'(x_i)$$

Több azonos alappont esetén ugyanígy járunk el.

Definíció: Osztott differenciák azonos alappontok esetén

1 Az elsőrendű osztott differenciák:

$$f[x_i, x_i] := f'(x_i), (i = 0, 1, ..., k).$$

2 A k-adrendű osztott differenciák:

$$f[\underbrace{x_i}_0,\underbrace{x_i}_1,\ldots,\underbrace{x_i}_k]:=\frac{f^{(k)}(x_i)}{k!},\ (i=0,1,\ldots,m_k-1).$$

Az Hermite-interpolációs polinom Newton-alakja

Az Hermite-interpolációs polinom felírásának menete:

- ① Osztott differencia táblázatot készítünk, melyben minden alappontot annyiszor veszünk fel, amennyi a multiplicitása.
- 2 A 2. oszlopba beírjuk a függvényértékeket.
- 3 Az azonos alappontokhoz tartozó osztott differenciák helyére beírjuk a megfelelő derivált értékeket.
- 4 A táblázat többi részét hagyományos módon számoljuk.
- A főátlóbeli elemek segítségével a szokásos módon felírjuk a Newton-alakot. A Newton-bázisban az alappontokat sorba vesszük.

Az Hermite-interpolációs polinom Newton-alakja

Példa: $m_0 = 3$, $m_1 = 2$, $m_2 = 1$ esetén az osztott differencia táblázat:

<i>x</i> ₀	$f(x_0)$				
<i>x</i> ₀	$f(x_0)$	$f'(x_0)$			
<i>x</i> ₀	$f(x_0)$	$f'(x_0)$	$f''(x_0)/2$		
<i>x</i> ₁	$f(x_1)$	$f[x_0,x_1]$	$f[x_0, x_0, x_1]$		
<i>x</i> ₁	$f(x_1)$	$f'(x_1)$	$f[x_0, x_1, x_1]$	 	
<i>x</i> ₂	$f(x_2)$	$f[x_1,x_2]$	$f[x_1, x_1, x_2]$	 	$f[x_0, x_0, x_0, x_1, x_1, x_2]$

Az Hermite-interpolációs polinom Newton-alakja:

$$H_5(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \frac{f''(x_0)}{2} \cdot (x - x_0)^2 + f[x_0, x_0, x_0, x_1] \cdot (x - x_0)^3 + f[x_0, x_0, x_0, x_1, x_1] \cdot (x - x_0)^3 (x - x_1) + f[x_0, x_0, x_0, x_1, x_1, x_2] \cdot (x - x_0)^3 (x - x_1)^2.$$