Exercises

By Yufei Tao

Problem 1. Consider the following dataset, where a red point has label 1 and a white point has label 0:

- What is the width of the dataset?
- What is the value of k? Recall that k is the smallest error of a monotone classifier.

Answer: The width is 1, and k = 3.

Problem 2. Prove: the fractional edge covering number of a triangle must be at least 1.5.

Answer: Let A, B, C be the three vertices of a triangle, and let w_A, w_B, w_C be their weights, respectively. We know:

$$w_A + w_B \geq 1.5$$

$$w_B + w_C \ge 1.5$$

$$w_A + w_C \ge 1.5.$$

Hence:

$$2(w_A + w_B + w_C) \ge 3$$

which means that $w_A + w_B + w_C$ must be at least 1.5.

Problem 3. Prove: a graph G with m edges can contain $O(m^{1.5})$ triangles.

Answer: Call a vertex of G small if its degree is at most \sqrt{m} ; otherwise, call it large. The number of large vertices is at most $2m/\sqrt{m} = 2\sqrt{m}$. We divide the triangles into two types:

- 1. At least one vertex u is small, whereas the other vertices v and w can be small or large. There are at most $m^{1.5}$ triangles of this type. First, choose an edge $\{u,v\}$ with (at least) one small vertex u; there are m ways to do so. For each $\{u,v\}$, there are at most \sqrt{m} choices of w because u has at most \sqrt{m} neighbors.
- 2. All vertices are large. The number of triangles of this type is clearly $(2\sqrt{m})^3 = 8m^{1.5}$.

1