Linear Algebra Bootcamp Exercise Solutions

- Show the that the reverse triangle inequality holds for norms. That is, for all $v, w \in V$, $||v|| ||w|| \le ||v w||$.
- Show that norms are continuous. (Hint: try a $\delta \epsilon$ proof)
- Suppose $C \subset \mathbb{R}^n$ is a convex set (i.e., for all $x, y \in C$ and $\theta \in [0, 1]$, $\theta x + (1 \theta)y \in C$). We say a function $f: C \to \mathbb{R}$ is **convex** if $f(\theta x + (1 \theta)y) \leq \theta f(x) + (1 \theta)f(y)$ for all $x, y \in C$ and $\theta \in [0, 1]$. Show that norms are convex.
- Let V be a vector space, and let $\{v_n\} \subset V$ be a sequence. If $\lim_{n\to\infty} \|v_n\|_2 = 0$, then what is $\lim_{n\to\infty} \|v_n\|_1$?
- Show that $(\mathbb{R}^n, \|\cdot\|_2)$ is a normed space, where $\|\cdot\|_p$ is the ℓ_p -norm defined by $\|v\|_p := \left(\sum_{j=1}^n v_j^p\right)^{1/p}$.
- Let V be an inner product space. If $\langle v, w \rangle = 0$ for some $v, w \in V$, show that the Pythagorean theorem holds: $||v + w||^2 = ||v||^2 + ||w||^2$.
- Find c, C explicitly such that $c||v||_{\infty} \le ||v||_2 \le C||v||_{\infty}$ for $v \in \mathbb{R}^n$, where $||v||_{\infty} := \max_{1 \le i \le n} |v_i|$.
- Show the diagonal elements of a PD matrix are positive.
- Let A be PD. Using the eigenvalue decomposition, find a "square root" $A^{1/2}$, which is a matrix B such that $A = B^2$.
- Take a PD matrix $A \in \mathbb{R}^{n \times n}$. Define the function $f : \mathbb{R}^n \to \mathbb{R}_+$ by $f(x) = \sqrt{x^{\intercal}Ax}$. Show that f is continuous and convex.
- Show that the ℓ_2 -norm is unitarily invariant. That is, if $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $||Qx||_2 = ||x||_2$ for all $x \in \mathbb{R}^n$. Interpret this result geometrically.
- Show that the determinant of an orthogonal matrix is either 1 or -1.
- Suppose an *n*-by-*n* matrix *A* has a zero eigenvalue. List as many properties as possible that this fact tells you about *A*.
- Prove tr(AB) = tr(BA), assuming A is an m-by-n matrix and B is an n-by-m matrix.

- Prove that if $A = A^{\mathsf{T}} A$, then $A = A^{\mathsf{T}}$ and $A = A^2$
- For any matrix A, prove that C(A) and the null space of A^T are orthogonal complements.
- Classify all orthogonal matrices that are also orthogonal projections. Can you deduce from this why both are called orthogonal?
- Compute the gradient $\partial_{\beta} ||y X\beta||_2^2$ (1) directly and (2) using the chain rule. Set the result equal to 0 and use the QR decomposition on X to simplify your expression. Can you guess why this might be favorable to do if we were trying to solve for β ?
- In the slides, we saw that you can find inverse of a diagonalizable matrix using the EVD. Explain why Λ^{-1} is well-defined if the matrix M is invertible. Then use this construction to inspire you to find an "inverse" for a rectangular matrix $A \in \mathbb{R}^{m \times n}$ using the SVD. Does it behave like an actual inverse of a square matrix?
- We know that an EVD of a matrix A can be written $A = Q\Lambda Q^{\intercal}$. Using the fact that matrix multiplication represents composition of linear maps, interpret geometrically what the EVD says about A.
- Suppose A is a block diagonal matrix with diagonal blocks A_1, \ldots, A_n . Show that $\det(A) = \prod_{i=1}^n \det(A_i)$ using induction.
- Suppose we have a block diagonal matrix with blocks A_1 and A_2 that are each positive definite. Show that the entire block matrix is also positive definite.
- Consider the rotation matrix

$$R = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

where $\theta \in \mathbb{R}$. Find the eigenvalues over \mathbb{R} and over \mathbb{C} . Explain geometrically what you observe.

- Suppose $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Show that $N(B) \subset N(AB)$.
- Find the rank of the matrix associated with the shearing transformation.
- Let $V = \mathbb{R}^2$. Sketch a picture of the vector $(1,1)^{\intercal}$ and its orthogonal complement. Describe the orthogonal complement using the span of a vector.
- Suppose A is symmetric. Show that tr(A) is the sum of its eigenvalues.
- For compatible vectors, show that $a^{\mathsf{T}}b = \operatorname{tr}(ba^{\mathsf{T}})$.
- If M is positive semi-definite, what can we say about I + M, where I is an appropriately-sized identity matrix?