Data Science. Lectures. Week 1. Эконометрическое моделирование

Зудин Антон

31 октября 2022 г.

Содержание

1	Определения	2
2	Статистические выводы ЛММР	2
3	Проверка гипотез	3
4	Линейные ограничения, связывающие β	3
5	Нестандартные модели	5
6	Временные ряды	5

1 Определения

- ЛММР линейная модель множественной регрессии
- ОМНК(GLS) обощённый МНК
- γ уровень доверия, надёжности; α уровень значимости, $\alpha=1-\gamma$
- \bullet $E\xi$ мат. ожидание ξ
- $\mathcal{D}\xi$ дисперсия ξ
- $\mathcal{N}(a,\sigma^2)$ нормальное распределение с параметрами (a,σ^2)
- $\mathcal{F}(q,n-k)$ распределение Фишера с (q,n-k) степенями свободы
- $V(\xi,\eta)$ ковариационная матрица для случайных величин ξ и η
- $s.e.^{1}(\hat{\beta}_{j,MHK}) = \sqrt[2]{\mathcal{D}(\widehat{\hat{\beta}}_{j,MHK})}$

2 Статистические выводы ЛММР

- Построение доверительных интервалов
- Проверка гипотез

УТВ

Если выполнены условия теоремы Гаусса Маркова и $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, то

1.
$$\hat{\beta}_{j,MHK} \sim \mathcal{N} \left(\beta_j, \mathcal{D} \hat{\beta}_{j,MHK} \right)$$

2.
$$\frac{\hat{\beta}_j - \beta_j}{s.e.(\hat{\beta}_j)} = t_j \sim t(n-k)^a$$

$$s.e.V(\hat{\beta}_{MHK}) = \sigma^2(X^TX)^{-1}$$

Ковариационная матрица $V(\hat{\beta}_{MHK})$ это такая матрица, что $\left[V(\hat{\beta}_{MHK})\right]_{ij} = cov(\hat{\beta}_i,\hat{\beta}_j)$

Нам нужно оценить σ^2 , чтобы найти ковариационную матрицу. Тогда $\hat{V}(\hat{\beta}_{MHK}) = \hat{\sigma^2}(X^TX)^{-1}$.

$$\hat{\sigma}^2 = \frac{1}{n-k} \sum_{i=1}^n e_i^2 = \frac{ESS}{n-k}$$

Мы взяли имеено $\frac{ESS}{n-k}$, так как эта оценк является несмещённой, то есть $E(\frac{ESS}{n-k}) = \sigma^2$

На диагонали $\hat{V}(\hat{\beta}_{MHK})$ стоят оценённые дисперсии, т. е. $\left[\hat{V}(\hat{\beta}_{MHK})\right]_{jj} = \hat{\mathcal{D}}(\hat{\beta}_{j,MHK}) = \hat{\sigma^2}\left[(X^TX)^{-1}\right]_{jj}$

$$s.e.(\hat{\beta}_{j,MHK}) = \sqrt[2]{\widehat{\mathcal{D}}(\hat{\beta}_{j,MHK})}$$

Тогда
$$\frac{\hat{\beta}_j - \beta_j}{s.e.(\hat{\beta}_j)} = t_j \sim t(n-k).$$

Пусть мы хотим построить доверительный интервал с уровнем доверия γ .

at(n-k) - распределение Стьюдента с n-k степенями

 $^{^{1}}$ s.e. - standard error

$$\left|\frac{\hat{\beta}_j - \beta_j}{s.e.(\hat{\beta}_j)}\right| < t_{Table},$$
 где t_{Table} - критическая тчока статистики, можно найти в таблице распределения
$$\hat{\beta}_j - t_{Table} \cdot s.e.(\hat{\beta}_j) < \beta_j < \hat{\beta}_j + t_{Table} \cdot s.e.(\hat{\beta}_j)$$

3 Проверка гипотез

 $H_0: \beta_i = \beta^0$ (какое-то известное число)

!Самая главная гипотеза: $\beta_j = 0$.

Если $\beta_i = 0$, то x_i не оказывает значимого влияния на результирующую переменную y.

Критическая статистика:
$$\left| \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)} \right| > t_{Table}$$

УТВ

Если
$$\left| \frac{\hat{\beta}_j}{s.e.(\hat{\beta}_j)} \right| > t_{Table},$$

то мы отвергаем гипотезу H_0 : произошло маловероятное событие.

Линейные ограничения, связывающие β

$$H_0: Q \beta = r$$
, где $\displaystyle \mathop{Q}_{q imes k} = (h_{ij}), i = \{1, \dots, q\}; j = \{1, \dots, k\}$

То есть, ограничение имеет вид:

$$\begin{cases} h_{11}\beta_1 + h_{12}\beta_2 + \dots + h_{1k}\beta_k = r_1 \\ \dots \\ h_{q1}\beta_1 + h_{q2}\beta_2 + \dots + h_{qk}\beta_k = r_q \end{cases}$$

Если это $(Q\hat{\beta}_{MHK}-r)^T(Q\hat{\beta}_{MHK}-r)>\Delta_{critical}$ выполняется, то гипотезу нужно отвергать, так как сумма квадратов отклонений слишком большая.

Проблема здесь в том, что мы не знаем закон распределение суммы квадратов отклонения.

Смотрим
$$(Q\hat{\beta}_{MHK} - r)^T \Sigma (\hat{\beta}_{MHK} - r) (Q\hat{\beta}_{MHK} - r) \sim \chi^2(q)$$
, где $\Sigma (Q\hat{\beta}_{MHK} - r) = V(Q\hat{\beta}_{MHK} - r)^{-1}$

4.1 Как обычно считают

Часто вместо подсчёта вышеуказанной статистики считают следуюущим образом:

Есть модель:
$$y = X\beta + \varepsilon$$

$$H_0: Q\beta = r$$

- 1. без учёта ограничений, получаются остатки ESS_{unres}
- 2. с учётом ограничений, получаются остатки ESS_{res}

$$\mathbf{YTB}$$
 $F_{stat} = \frac{(ESS_{res} - ESS_{unres})/q}{ESS_{unres}/n - k} \sim \mathcal{F}(q, n-k)^a,$ где n - объём выборки, k -количество регрессо

где n - объём выборки, k -количество регрессоров в модели, q - число ограничений

$${}^a\mathcal{F}(q,n-k)$$
 - распределение Фишера с числом степеней свободы $(q,n-k)$

 $ESS_{unres} < ESS_{res}$, так как без ограничений больше "степеней свободы поэтому можем сделать сумму квадратов меньше.

Если $F_{stat} > F_{threshold}$, то отвергаем H_0 .

Любая статистика должна обладать 3-мя свойствами:

- 1. вычисляемая
- 2. известнвый закон распределение
- 3. величина критической статистики должна быть мерой адекватности H_0 и данных

Наша F_{stat} удовлетворяет всем 3-м свойствам. Самое интересное: 3. выполняется, так как, если F_{stat} маленькое, тогда $(Q\hat{\beta}_{MHK}-r)^T\Sigma(\hat{\beta}_{MHK}-r)(Q\hat{\beta}_{MHK}-r)$ небольшая, то есть взвешанная сумма квадратов маленькая $\Rightarrow Q\beta-r$ небольшая. То есть, $Q\beta\approx r$

Практическое применение

Пример №1

Основные этапы:

а) Чтобы проверить стоит ли использовать модель

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i,$$

нужно проверить
$$H_0: \begin{cases} \beta_2 = 0 \\ \beta_3 = 0 \end{cases}$$

$$F_{stat} = \frac{(ESS_{res} - ESS_{unres})/2}{ESS_{unres}/(n-3)} \sim \mathcal{F}(2,n-3)$$
 Здесь ещё $F_{stat} = \frac{R_{unres}^2/(k-1)}{(1-R_{unres}^2)/(n-k)}.$ $R_{res}^2 = 0$, т.к. $y_i = \beta_1 + \varepsilon_i$. Если $F_{stat} > F_{threshold}$, то мы отвергаем H_0 . То есть, модель $xomb$ немного $xopowas$.

б) Аналогичным образом проверяем $H_1: \beta_2 = 0$ и $H_2: \beta_3 = 0$

Пример №2

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i \tag{1}$$

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \beta_4 w_i + \beta_5 v_i + \beta_6 d_i + \varepsilon_i \tag{2}$$

Хотим узнать какая из моделей лучше.

Проверяем гипотезу
$$H_0 : \begin{cases} eta_4 = 0 \\ eta_5 = 0 \\ eta_6 = 0 \end{cases}$$

Если мы принимаем $H_0 \Rightarrow (1)$ лучше, чем (2).

Также
$$F_{stat} = \frac{(R_{unres}^2 - R_{res}^2)/3}{(1 - R_{un}^2)/(n - 6)}$$

Также $F_{stat}=\frac{(R_{unres}^2-R_{res}^2)/3}{(1-R_{un}^2)/(n-6)}$ Если отвергаем H_0 , тогда по-отдельности проверяем β_4,β_5,β_6 на целесообразность их включения в модель.

5 Нестандартные модели

5.1 Гетероскедастичность

Если $E\varepsilon_i=0$ и $\mathcal{D}\varepsilon_i=\sigma_i^2$, то это случай гетероскедастичности.

В этом случае мы переходим к новой модели:

Идея: исходная модель приобразуется так, чтобы гетероскедастические ошибки первой модели переходили в гомоскедастические второй.

 $\hat{\beta}_{j,MHK}$ всё ещё хорошие (несмещённые и состоятельные) оценки. Однако возникают проблемы с $s.e.(\hat{\beta}_{j,MHK})$. Как мы решаем проблему $s.e.(\hat{\beta}_{j,MHK})$:

- Используем поправки Уайта и Ньюи-Уэста для $s.e.\hat{\beta}_{j,MHK}$. Мы всё также считаем $\frac{\hat{\beta}_j \beta_j}{s.e.(\hat{\beta}_j)}$.
- Доступный ОМНК ассимптотически эффективный

5.2 Стахостические регрессоры

МНК оценки перестают быть состоятельными.

Возникают 2 метода:

- МИП(метод инстументальных переменных)
- 2МНК(2-х шаговый МНК)

6 Временные ряды

Пусть есть временной ряд y_1, y_2, \dots, y_T , нужно найти $\hat{y}_{T+1} = f(y_1, \dots, y_T)$.

Есть 2 основных подхода к моделированию:

- 1. Структурное моделирование можем, используя экономическую теорию, предложить какую-то объясняющю модель: показать, какие переменные объясняющие, как будет объсняться результирующая перменная через них
- 2. Неструктурное моделирование просто занимаемся "подгонкой без особой теории

6.1 Авторегрессионная модель

- $AR(1): y_t = \delta + \theta y_{t-1} + \varepsilon_t$ модель авторегресси 1-го порядка
- $AR(2): y_t = \delta + \theta_1 y_{t-1} + \theta_2 y_{t-2} + \varepsilon_t$ модель авторегресси 2-го порядка

 ε_t - белый шум: независимые, одинаково распределённые случ. величины $E\varepsilon_t=0, \mathcal{D}\varepsilon_t=\sigma_{\varepsilon}^2, \forall k\ cov(\varepsilon_t, \varepsilon_{t+k})=0$

На y_t влияет ε_t - некоторая новость, которая рождена в момент t и y_{t-1} - вчерашнее значение y.

6.2 Модель скользящего среднего

- $MA(1): y_t = \varepsilon_t + \alpha_1 \varepsilon_{t-1}$
- $MA(q): y_t = \varepsilon_t + \alpha_1 \varepsilon_{t-1} + \ldots + \alpha_q \varepsilon_{t-q}$

6.3 Стационарность CMF-2022

6.3 Стационарность

2 основных вида рядов:

• Стационарный - самые главные характеристики во времени не меняются: $Ey_t=a, \mathcal{D}y_t=\gamma_0, cov(y_t,y_{t-k})=\gamma_k$, т.е. ковариация между двумя величинами зависит лишь от того, сколько между величинами времени

• Нестационарный - главные характеристики во времени меняются