

1 Diverses

1.1 Rahmen

Hoher Rahmen um einen ganz normalen Text.

Ein hoher roter Rahmen um einen ganz normalen Text.

Rahmen um einen ganz normalen Text.

Ein roter Rahmen um einen ganz normalen Text.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchsta-

ben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Nach diesem vierten Absatz beginnen wir eine neue Zählung. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2 Labor oder CPE

Sie sollten für diese Übung folgende Vorkenntnisse haben:

- ... Theorie über Ablaufsteuerungen
- ... Wissen über Zustandsdiagramme und Ablaufketten
- ... SPS Sprache Ablaufsteuerung

Sie lernen in dieser Übung:

- ... Aufgabenstellungen in einem Zustandsdiagramm abzubilden
- ... wie ein Problem mit einer Ablaufsteuerung gelöst werden kann

3 Aufzählungen

3.1 Punktual

Aufzählungspunkte mit Spalten linear, Zeilen eingefärbt:

- Schülertext ... Beschreibung 1.
- Schülertext ... Beschreibung 2.
- **Schülertext** ... Beschreibung 1.

3.2 Numeral

Aufzählungsnummerierung mit Spalten linear, Zeilen eingefärbt:

- **Schülertext** ... Beschreibung 1.
- Schülertext ... Beschreibung 2.
- 3 **Schülertext** ... Beschreibung 3.
- **Schülertext** ... Beschreibung 4.
- **Schülertext** ... Beschreibung 5.
- **Schülertext** ... Beschreibung 6.
- **Schülertext** ... Beschreibung 7.
- Schülertext ... Beschreibung 8.
- **Schülertext** ... Beschreibung 9.

Aufzählungsnummerierung mit Spalten linear, Zeilen eingefärbt:

Schülertext ... Beschreibung 1.

Schülertext ... Beschreibung 2.

3.3 OK und NOK

A B C D E

Text 1:

Text 2:

3.4 Multi Table

(1) Schülertext 1:

Eingerückt 1:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

Eingerückt 2:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

(2) Schülertext 2:

Eingerückt 1:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

Eingerückt 2:

Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung Beschreibung.

$\mathbf{Dezimal}_{10}$	$\mathbf{Hexadezimal}_{16}$	Oktal ₈	\mathbf{Dual}_2
0	0	0	0000
1	1	1	0001
2	2	2	0010
3	3	3	0011

Beschreibung Beschreibung Beschreibung Beschreibung.

Bild 1: Bildbeschreibung Bildbeschreibung.

4 Subsections

4.1 Table in Subsection

4.2 Text und Graphik in Subsection

Beschreibung

Bild 2: Bildbeschreibung Bildbeschreibung Bildbeschreibung.

5 Formeln

5.1 Lange Formeln

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis éget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Für für eine lange Formel gilt für eine Größe in der Einheit:

```
R_{\vartheta 2} = R_{\vartheta 1} \cdot [1 + \alpha_{\vartheta 1} \cdot (\vartheta_2 - \vartheta_1)]
R_{\vartheta 2} = R_{20} \cdot \left[ 1 + \alpha_{20} \cdot (\vartheta_2 - 20^{\circ}C) + \beta_{20} \cdot (\vartheta_2 - 20^{\circ}C)^2 \right]
```

linearer Temperaturkoeffizient bei 20°C quadratischer Temperaturkoeffizient bei 20°C linearer Temperaturkoeffizient bei $\vartheta 1$ quadratischer Temperaturkoeffizient bei $\vartheta 1$

1. Temperatur des Widerstandes 2. Temperatur des Widerstandes

5.2 Kurze Formeln

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Nach diesem vierten Absatz beginnen wir eine neue Zählung. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschie-

dene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Für für eine kurze Formel gilt für eine Größe in der Einheit:

$$U_T = \frac{k \cdot T}{q} \approx 26mV \qquad \begin{array}{c} U_T \quad \dots \quad \text{Temperaturs pannung} \approx 26mV \\ k \quad \dots \quad Boltzmann \; Konst. \; k = 1,38 \cdot 10^{-23} \, J/K \\ T \quad \dots \quad absolute \; Temperatur \; in \; K \\ q \quad \dots \quad Einheits ladung \; mit \; 1.602 \cdot 10^{-19} \, As \\ differentieller \; Basis - Emitterwider stand \\ I_B \quad \dots \quad Basis strom \; des \; Transistors \\ \beta \quad \dots \quad Strom verst \"{a}rkung \; des \; Transistors \end{array}$$

6 Graphik

6.1 Wrap Graphik

Beschreibung in Bild 3 Beschreibung Beschreibung.

Bild 3: Bildunterschrift Wrap Graphik Bildunterschrift Wrap Graphik Bildunterschrift Wrap Graphik Bildunterschrift Wrap Graphik .

6.2 Block Graphik

Bild 4: Bildunterschrift Block Graphik Bildunterschrift Block Graphik Bildunterschrift Block Graphik.

In Bild 4 Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der

Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Nach diesem vierten Absatz beginnen wir eine neue Zählung. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Das hier ist der zweite Absatz. Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Und nun folgt – ob man es glaubt oder nicht – der dritte Absatz. Dies hier ist ein

Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

7 Tabellen

		geme	gemessen		berechnet		
Mess	f	u_{es}	$oldsymbol{u}_{as}$	$lackbox{A}_{CL}$	$oldsymbol{A}_{CL}$	φ	
Nr.:	(Hz)	(mV)	(mV)	(-)	(db)	(°)	
1	1k						
10	1M						

8 Glossar oder Acronymverzeichnis

Dies ist ein Text mit einer Abkürzung. Sie können die Buchstabenkombinationen (Kurzzeichen oder Abkürzungen) in der Dokumentation Ihrer **DA!** mit einem Befehl aufrufen. Zum Beispiel nehmen wir **ESD!**. Im File DA_04_ACR.tex muss der entsprechende Eintrag gemacht werden.

9 PDF Einbindung

PDF Dokumente können in vielen Gestalten eingebunden sein. Um Platz zu sparen kann man auch 2 A4 Seiten auf A5 verkleinern und quer auf dem Blatt darstellen!

Es können bestimmte Seiten auch ausgelassen werden.

Achtung Sonderzeichen, wie griechische Symbole können im Preview sonderbar aussehen. Im ACROBAT READER sollte die Darstellung aber wieder in Ordnung sein.

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

DESCRIPTION

The μ A741 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The μ A741 is short-circuit-protected and allows for nulling of offset voltage.

FEATURES

- Internal frequency compensation
- Short circuit protection
- Excellent temperature stability
- High input voltage range

PIN CONFIGURATION

Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	μA741N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	μΑ741CN	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	-40°C to +85°C	SA741CN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	μΑ741F	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to +70°C	μΑ741CF	0580A
8-Pin Small Outline (SO) Package	0 to +70°C	μΑ741CD	SOT96-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage		
	μA741C	±18	V
	μΑ741	±22	V
P_{D}	Internal power dissipation		
	D package	780	mW
	N package	1170	mW
	F package	800	mW
V _{IN}	Differential input voltage	±30	V
V _{IN}	Input voltage ¹	±15	V
I _{SC}	Output short-circuit duration	Continuous	
T _A	Operating temperature range		
	μΑ741C	0 to +70	°C
	SA741C	-40 to +85	°C
	μΑ741	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

1. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage.

1994 Aug 31 1 853-0903 13721 1994 Aug 31

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

DC ELECTRICAL CHARACTERISTICS

 $T_A = 25$ °C, $V_S = \pm 15$ V, unless otherwise specified.

SYMBOL	PARAMETER	TEST COMPLETIONS	μ Α741			μ Α741C			UNIT
STMBUL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNII
Vos	Offset voltage	R _S =10kΩ		1.0	5.0		2.0	6.0	mV
		$R_S=10k\Omega$, over temp.		1.0	6.0			7.5	mV
ΔV _{OS} /ΔT				10			10		μV/°C
los	Offset current			20	200		20	200	nA
		Over temp.						300	nA
		T _A =+125°C	1	7.0	200				nA
		T _A =-55°C		20	500				nA
ΔI _{OS} /ΔT				200			200		pA/°C
I _{BIAS}	Input bias current			80	500		80	500	nA
		Over temp.						800	nA
		T _A =+125°C		30	500				nA
		T _A =-55°C		300	1500				nA
ΔΙ _Β /ΔΤ			.	1	_		1		nA/°C
		R _L =10kΩ	±12	±14		±12	±14		V
V _{OUT}	Output voltage swing	B 810							.,
		$R_L=2k\Omega$, over temp. $R_1=2k\Omega$, $V_O=\pm 10V$	±10	±13	-	±10	±13		V V/mV
٨	Large-signal voltage gain	$R_L=2k\Omega$, $V_O=\pm 10V$ $R_L=2k\Omega$, $V_O=\pm 10V$,	50	200	1	20	200		V/mv
A _{VOL}	Large-signal voltage gain	over temp.	25	1		15	ł		V/mV
	Offset voltage adjustment range	over temp.	1 25	±30		13	±30		mV
	Onset voltage adjustment range	R _S ≤10kΩ	+	±30			10	150	μV/V
PSRR	Supply voltage rejection ratio	115=10122		1		ł	'`	100	μν/ν
TORK	Supply voltage rejection ratio	R _S ≤10kΩ, over temp.		10	150	ŀ			μV/V
		113_10102,01011011101	+		100	70	90		dB
CMRR	Common-mode rejection ratio					' '	**		
		Over temp.	70	90		l			dB
			1	1.4	2.8		1.4	2.8	mA
Icc	Supply current	T _A =+125°C	1	1.5	2.5	İ	İ		mA
		T _A =-55°C		2.0	3.3	İ			mA
V _{IN}	Input voltage range	(μΑ741, over temp.)	±12	±13		±12	±13		V
R _{IN}	Input resistance		0.3	2.0		0.3	2.0		MΩ
				50	85		50	85	mW
P_D	Power consumption	T _A =+125°C	1	45	75	ĺ			mW
		T _A =-55°C		45	100				mW
R _{OUT}	Output resistance			75			75		Ω
I _{SC}	Output short-circuit current		10	25	60	10	25	60	mA

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SA741C

DC ELECTRICAL CHARACTERISTICS

 $T_{\Delta} = 25^{\circ}C$, $V_{S} = \pm 15V$, unless otherwise specified.

0)/440.01	DADAMETER	TEST COMPLETIONS	SA741C			T
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Vos		R _S =10kΩ		2.0	6.0	mV
	Offset voltage	$R_S=10k\Omega$, over temp.			7.5	mV
$\Delta V_{OS}/\Delta T$				10		μV/°C
los				20	200	nA
	Offset current	Over temp.			500	nA
$\Delta I_{OS}/\Delta T$				200		pA/°C
I _{BIAS}				80	500	nA
	Input bias current	Over temp.			1500	nA
$\Delta I_B/\Delta T$				1		nA/°C
		$R_L=10k\Omega$	±12	±14		V
V_{OUT}	Output voltage swing					
		$R_L=2k\Omega$, over temp.	±10	±13		V
		$R_L=2k\Omega$, $V_O=\pm 10V$	20	200		V/mV
A _{VOL}	Large-signal voltage gain					
		$R_L=2k\Omega$, $V_O=\pm 10V$, over temp.	15			V/mV
	Offset voltage adjustment range			±30		mV
PSRR	Supply voltage rejection ratio	R _S ≤10kΩ		10	150	μV/V
CMRR	Common mode rejection ration		70	90		dB
V _{IN}	Input voltage range	Over temp.	±12	±13		V
R _{IN}	Input resistance		0.3	2.0		MΩ
P _d	Power consumption			50	85	mW
R _{OUT}	Output resistance			75		Ω
I _{SC}	Output short-circuit current		1	25		mA

AC ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C, $V_S=\pm15$ V, unless otherwise specified.

SYMBOL	DADAMETED	TEST CONDITIONS	μ Α741, μ Α741C			
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
R _{IN}	Parallel input resistance	Open-loop, f=20Hz	0.3			MΩ
C _{IN}	Parallel input capacitance	Open-loop, f=20Hz		1.4		pF
	Unity gain crossover frequency	Open-loop		1.0		MHz
	Transient response unity gain	V_{IN} =20mV, R_L =2k Ω , C_L ≤100pF				
t _R	Rise time			0.3		μs
	Overshoot			5.0		%
SR	Slew rate	C≤100pF, R _L ≥2kΩ, V _{IN} =±10V		0.5		V/µs

1994 Aug 31 3 1994 Aug 31

Philips Semiconductors Product specification

General purpose operational amplifier

 μ A741/ μ A741C/SA741C

EQUIVALENT SCHEMATIC

Figure 2. Equivalent Schematic

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

1994 Aug 31 5 1994 Aug 31

Philips Semiconductors Product specification

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 4. Typical Performance Characteristics (cont.)

6