Measuring Conductivity of Copper and Aluminum with Maxwell's Equations

Esther Lin ENPH 352 Presentation April 7th, 2020

Outline

Theory

Maxwell's equations, complex wave vectors and skin depth

Experiment
Objective, setup, method for data acquisition

Results

Analysis of model fitting, comparison to known values

4 Conclusions

Maxwell's Equations

No free charge in conductors

$$(i)\nabla \cdot \mathbf{E} = 0$$
 $(iii)\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

$$(ii)\nabla \cdot \mathbf{B} = 0$$
 $(iv)\nabla \times \mathbf{B} = \mu \epsilon \frac{\partial \mathbf{E}}{\partial t} + \mu \sigma \mathbf{E}$

Electric and magnetic fields are affected by material conductance

With these two equations, we can solve for our fields **E** and **B**

Complex Wave Vectors

Solving the wave equation, we get plane waves that have complex wave vectors

$$\begin{cases} \tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(\tilde{k}z - \omega t)} \\ \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(\tilde{k}z - \omega t)} \end{cases}$$

$$\tilde{k}^2 = \mu \epsilon \omega^2 + i\mu \sigma \omega$$

The imaginary component, due to the contribution of *conductance* and *frequency*, results in exponential decay of the fields inside the material — **Skin depth**

Objectives

- Utilize the phenomena of skin depth to measure the conductivity of copper (Cu) and aluminum (Al)
- Determine the best parameter for the measurement of conductivity

Overview of Setup

Cross sectional view of conducting pipe

Analysis Model

Signal from pickup coil is detected by the oscilloscope

 $\frac{H_i}{H_o} = \rho e^{i\phi}$

Signal is fit to a cosine to determine amplitude and phase

 $A + B\cos(\omega t - \phi)$

Cosine fit is related back to Bessel function solutions

$$2\sqrt{\frac{R_2}{R_1}} \left\{ \frac{e^{-k_o(R_2 - R_1)}}{\sqrt{1 + R_1 k_o + \frac{R_1^2 k_e^2}{2}}} \right\} \quad k_o\left(R_2 - R_1\right) + \arctan\left(\frac{R_1 k_o}{2 + R_1 k_o}\right)$$

Conductivity is determined through a least squares fit over frequency range

$$k_o = \sqrt{\frac{\omega \sigma \mu}{2}}$$

Results: Phase Extraction

Measured Values

The phase fit results from the computer for data points collected at 1 kHz spacing from 100 Hz to 80 kHz

Expected Values

Calculated with the phase relation at frequencies with 1 kHz spacing from 100 Hz to 80 kHz

Results: Amplitude Extraction

Measured Values

The amplitude fit results from the computer for data points collected at 1 kHz spacing from 100 Hz to 80 kHz

Expected Values

Calculated with the amplitude relation at frequencies with 1 kHz spacing from 100 Hz to 80 kHz

Results: Least Squares Fits

Copper

Conductance measured: 5.57E5 $1/(\Omega \text{ cm})$ Expected conductance: 5.95E5 $1/(\Omega \text{ cm})$

Aluminum

Conductance measured: 5.93E5 $1/(\Omega \text{ cm})$ Expected conductance: 3.77E5 $1/(\Omega \text{ cm})$

Conclusions

Promising method for a quick estimate of conductivities

Mathematical model may only be accurate at low frequencies

Contributions may be:

- 1. Asymmetries in setup
- 2. Skin effect reduction of the internal inductance of a conductor

Thank you!