DIT UNIVERSITY DEHRADUN MID TERM EXAMINATION, ODD SEMESTER 2020-21 (SEMESTER I)		
Subject Name: Engineering Mathematics –I	Subject Code: MAF101	
Time: 0.5 Hour		
Note: All questions carry equal weightage		
Press Submit Button after completion of Examination		
	Dr. Jogendra Kumar	
Name of Course Coordinator and Department	Mathematics	

- 1. The limit of $\lim_{x\to 2} (x-2) \sin(\frac{1}{x-2})$ is
 - a) 0
 - b) 1
 - c) -2 to 2
 - d) Does not exist

Answer: a

- 2. Which of the following form is not indeterminate form
 - a) $\frac{\infty}{\infty}$
 - b) $0 \times \infty$
 - c) 1^0
 - $\text{d)} \quad 0^0$

Answer: c

- 3. The value of p for which the function $f(x) = \begin{cases} x^p \cos\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$, is differentiable, is
 - a) p = 0
 - b) $p \ge 1$
 - c) $p \ge 2$
 - d) Never differentiable

Answer: c

- 4. The value of $\lim_{x\to\infty}\frac{e^x}{x^n}$, where n is positive integer, is
 - a) ∞
 - b) n
 - c) e
 - d) None of these

Answer: a

- 5. Choose correct option
 - a) function $e^{\left(-\frac{1}{x}\right)}$ is not defined at x=0
 - b) function $e^{\left(-\frac{1}{x}\right)}$ is not continuous at x=0
 - c) function $e^{\left(-\frac{1}{x}\right)}$ is continuous but not differentiable at x=0
 - d) None of these

Answer: b

- 6. If $y = (ax + b)^{-1}$, then its n^{th} derivative y_n is
 - a) $(-1)^n n! a^n (ax + b)^{-1+n}$
 - b) $(-1)^{n-1}(n-1)! a^n (ax+b)^{-1}$
 - c) $n! a^n (ax + b)^{-1-n}$
 - d) None

Answer: d

- 7. The n^{th} derivative of $y = \cos(5x + 2)$ is
 - $a) \quad y_n = \cos(5^n x + 2)$
 - b) $y_n = 5^n \cos\left(5x + 2 + \frac{(n-1)\pi}{2}\right)$
 - c) $y_n = 5^n \cos \left(5x + 2 + \frac{n\pi}{2} \right)$
 - d) $y_n = \frac{(-1)^{n-1}}{5^n} \cos(5x + 2)$

Answer: c

8. The $(n-1)^{th}$ derivative of $y = \log(3x - 1)$ is

a)
$$y_{n-1} = (-1)^{n-2}(n-2)! 3^{n-1}(3x-1)^{-(n-1)}$$

b)
$$y_{n-1} = (-1)^{n-1}(n-1)! 3^{n-1}(3x-1)^{-(n-1)}$$

c)
$$y_{n-1} = (-1)^{n-1}(n-1)! 3^n (3x-1)^{-(n-1)}$$

d)
$$y_{n-1} = (-1)^{n-1}(n-1)! 3^n (3x-1)^{-n}$$

Answer: a

9. The n^{th} derivative of $y = e^{3x}\cos(5x + 2)$ is

a)
$$y_n = (34)^{1/2} e^{3x} \cos\left(5x + 2 + n \tan^{-1}\left(\frac{5}{3}\right)\right)$$

b)
$$y_n = (34)^{n/2} e^{3x} \cos\left(5x + 2 + n \tan^{-1}\left(\frac{5}{3}\right)\right)$$

c)
$$y_n = (34)^{3/2} e^{3x} \cos\left(5x + 2 + n \tan^{-1}\left(\frac{5}{3}\right)\right)$$

d)
$$y_n = (34)^{1/2} e^{3x} \cos\left(5x + 2 - n \tan^{-1}\left(\frac{3}{5}\right)\right)$$

Answer: b

10. Leibnitz's theorem is used

- a) To evaluate limit of a function
- b) To evaluate integral of product of three functions
- c) To find differentiation of product of two functions
- d) To examine continuity of a function

Answer: c

11. The Taylor's series expansion of log(1 + x) is equal to:

a)
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + - - -$$

b)
$$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + - - -$$

c)
$$x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} \pm - -$$

d)
$$x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + - - -$$

Answer: a

12. Taylor's series expansion of $y = \frac{1}{x}$ about x = 1 is equal to

a)
$$1 + (x-1) + (x-1)^2 + (x-1)^3 + ---$$

b)
$$1-(x-1)+(x-1)^2-(x-1)^3+---$$

c)
$$1-(x+1)+(x+1)^2-(x+1)^3+---$$

d) None

Answer: b

13. Taylor's series expansion of f(x) about 1 is equal to

a)
$$f(1) + \frac{x-1}{1!}f'(1) + \frac{(x-1)^2}{2!}f''(1) + \cdots$$

b)
$$f(1) + \frac{x+1}{1!}f'(1) + \frac{(x+1)^2}{2!}f''(1) + \cdots$$

c)
$$f(1) + \frac{x}{1!}f'(1) + \frac{(x)^2}{2!}f''(1) + \cdots$$

d)
$$f(0) + \frac{x-1}{1!}f'(0) + \frac{(x-1)^2}{2!}f''(0) + \cdots$$

Answer: a

14. The Taylor's series expansion of $\cos x$ is equal to

a)
$$\frac{x^2}{2} - \frac{x^4}{4} \pm - -$$

b)
$$1 - \frac{x^2}{2} + \frac{x^4}{4} \pm - -$$

c)
$$1 - \frac{x^2}{2!} + \frac{x^4}{4!} \pm - -$$

d)
$$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + - - -$$

Answer: c

15. The Taylor's series expansion of $x^{8/3}$ in the neighborhood of x=0 is:

a)
$$x + \frac{x^{\frac{1}{3}}}{3!} + \frac{x^{\frac{1}{9}}}{6!} + --$$

b)
$$x - \frac{x^{\frac{1}{3}}}{3!} + \frac{x^{\frac{1}{9}}}{6!} + --$$

c)
$$x - \frac{x^{\frac{1}{3}}}{2!} - \frac{x^{\frac{1}{9}}}{3!} + --$$

d) None

Answer: d

DIT UNIVERSIT	Y DEHRADUN
B.TECH (ALL) I YEAR	MID TERM EXAMINATION, ODD SEM 2020-21 (SEM I)
Subject Name: Engine	ering Mathematics -I
Name of Course Coordinator and Department:	Dr. Jogendra Kumar,
	Mathematics
Time: 1 Hour	Total Marks: 15

Q.1)	Attempt all Parts :		
	(a)	$\begin{cases} a+bx, & x<1 \end{cases}$	
		Let $f(x) = \begin{cases} a+bx, & x < 1\\ 4, & x = 1\\ b-ax, & x > 1 \end{cases}$	
		b-ax, $x>1$	
		If $\lim_{x \to 1} f(x) = f(1)$, find a and b .	
	(b)	Find the n^{th} derivative of $y = \frac{3x}{(x-1)(x+2)}$.	
		[2 x 2.5	
Q.2)		If $y = tan^{-1}x$, prove that $(1 + x^2)y_2 + 2xy_1 = 0$ and deduce that	
		$(1+x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0.$	
		[1 x 5	
Q.3)		Use Taylor's series to expand the polynomial function $f(x) = x^4 - 3x^3$ in powers of $(x-2)$ Hence find the value of (2.1) .	
		[1 x	