Soluções do Exame Teórico

(Época de Recurso) 2018/2019

PARTE I

1. Considere o seguinte problema de programação linear (PL):

$$\max. \quad Z = -4x_1 + x_2$$

$$s.a. \quad x_2 \ge 3$$

$$-4x_1 + x_2 \le 4$$

$$3x_1 + 2x_2 \le 12$$

$$x_1, x_2 \ge 0$$

- 1.1 (90) Resolva-o graficamente. Assinale no gráfico a região admissível, as coordenadas dos pontos dos cantos admissíveis e da solução ótima. Apresente todos os cálculos efetuados.
- S.: Múltiplas soluções ótimas sobre o segmento de reta que une os pontos (0,4) e (4/11,60/11) com um valor de $Z^* = 4$.
- 1.2 (110) Utilize o método do M grande do algoritmo de Simplex para calcular a solução ótima.
- S.: Múltiplas soluções ótimas com extremos nos pontos (0,4) e (4/11,60/11) e com um valor de $Z^* = 4$.

Soluções do Exame Teórico

(Época de Recurso) 2018/2019

PARTE II

Considere o seguinte problema de transportes:

	1	2	3	Oferta
P1	45	120	90	600
P2	20	50	30	300
P3	30	90	50	400
P4	40	110	60	800
Procura	900	500	700	_

- 1. No processo de cálculo de uma solução básica admissível (SBA) inicial para o problema de transportes apresentado, determine a primeira variável básica admissível através do:
 - 1.1 (20) Método de aproximação de Vogel;

S.:
$$x_{11} = 600$$

1.2 (20) Método de aproximação de Russell.

S.:
$$x_{43} = 700$$

2. (160) Partindo da SBA inicial apresentada no quadro seguinte (assinalada com círculos) para o mesmo problema de transportes, aplique o método do simplex para os transportes para encontrar a solução ótima.

	1	1	2	2	3	3	Oferta
P1	45		120		90	(600)	600
P2	20	300	50		30		300
Р3	30	400	90		50		400
P4	40	200	110	500	60	100	800
Procura	9(00	50	00	70	00	

S.: $x_{11} = 600$; $x_{22} = 300$; $x_{31} = 200$; $x_{32} = 200$; $x_{41} = 100$; $x_{43} = 700$.