

Ρ

r 0 j е С t D е s i g n Ρ h а S е I I T

chnology Sta

C

е

k (Architecture & Stack)

Date	19 November 2022
Team ID	PNT2022TMID45080
Project Name	NATURAL DISASTERS INTENSITY ANALYSIS AND CLASSIFICATION
-	USING ARTIFICIAL INTELLIGENCE

Technical Architecture:

<u>Table-1</u>: Components & Technologies:

S. No	Compone nt	D	Tec
No	nt	е	hno
		S	log
		C	у
		ri	
		р	

	ti			
		0		
		n		
1.	User Interface	User interacts with application for the prediction of Any Natural disaster which will happen in futureminutes.	HTML, CSS, JavaScript, Django, Python.	
2.	Feature Engineeri ng Pipeline	Algorithms can't make sense of raw data. We haveto select, transform, combine, and otherwise prepare our data so the algorithm can find useful patterns.	Image processing, pattern extraction,etc.	
3.	Model Training kit	It learns patterns from the data. Then they use thesepatterns to perform particular tasks.	Multiclass Classification Model, Regression Model, etc.	
4.	Prediction unit	This function is used to predict outcomes from thenew trained data to perform new tasks and solve new problems.	Decision trees, Regression, Neural networks.	
5.	Evaluatio n system	It monitors that how Algorithm performs on data aswell as during training.	Chi-Square, Confusion Matrix, etc.	
6.	Interactive services	To interact with our model and give it problems to solve. Usually this takes the form of an API, a userinterface, or a command-line interface.	Application programming interface, etc.	
7.	Data collection unit	Data is only useful if it's accessible, so it needs tobe stored ideally in a consistent structure and conveniently in one place.	IBM Cloud, SQL Server.	
8.	Data generatio n system	Every machine learning application lives off data. That data has to come from somewhere. Usually, it's generated by one of your core businessfunctions.	Synthetic data generation.	
9.	Database managem ent system	An organized collection of data stored in database, so that it can be easily accessed and managed.	MySQL, DynamoDB etc.	
1 0.	IBM Cloud services	Processed data stored in cloud service which can be access by the admin anywhere over the internet.	IBM Cloud etc.	

<u>Table-2</u>: Application Characteristics:

S.	Characteristics	Description	Technology
No			

1.	Open-Source Frameworks	An open source framework is a template for software development that is designed by a social network of software developers. These frameworks are free for public use and provide the foundation for building a software application.	Keras, pensor flow.
2.	Authentication	This keeps our models secure and makes sure only those who have permission can use them.	Encryption and Decryption (OTP).
3.	Application interface	User uses mobile application and web applicationto interact with model	Android and Web Development (PhoneGap, ReactNative, and NativeScript).
4.	Availability (both Online and Offline work)	Its include both online and offline work. As good internet connection is need for online work to explore the software perfectly. Offline work includes the saved data to explore for later time.	Caching, backend server.
5.	Regular Updates	The truly excellent software product needs a continuous process of improvements and updates. Maintain your server and make sure that your content is always upto-date. Regularly update an app and enrich it with new features.	 Waterfall Approach Incremental Approach Spiral Approach