多周期CPU设计与实现

薛睿、仇洁婷、郑海刚

实验目的

理解多周期CPU工作过程;

理解指令存储器和数据存储器的哈佛结构存储;

熟悉MIPS指令集;

掌握多周期CPU设计与实现方法。

实验原理-多周期CPU设计

将指令执行过程划分成若干个阶段,每个阶段的时长为一个时钟周期,由于各个阶段的时间延迟显然比整个CPU操作的时钟延迟短,从而能够有效缩短时钟周期,提高时钟频率。

实验原理-构建多周期数据通路

1) 划分执行阶段

2)添加寄存器 🗾

每个阶段的操作结果必须保持稳定。保持结果稳定的方法是将结果保存到时序部件(如寄存器、存储器)中

实验原理-构建多周期数据通路

> 添加寄存器

组合逻辑	插入的寄存器	用途
IM	IR	保存指令
RF (读)	A和B	保存2个寄存器值
扩展单元	С	保存32位扩展值
ALU	ALUOut	保存计算结果
DM (读)	DR	保存读出的数据

所属单元	元 取指单元						译码单元							执行单元			数据存储器			
部件	PC	NPC		IM(指令存储器)	IR	RF (寄存器堆)			A	В	S_EXT	E	ALU		ALUOut	DM (数据存储器)	DR			
输入信号	DI	PC	Imm	RA(寄存器)	A		A1(读出1)	A2(读出2)	A3 (写入)	VD (写回值)					A	В		A		
addu	NPC. NPC	PC.DO			PC.DO	IM	IR[25:21]	IR[20:16]	IR[15:11]	ALU0ut	RF.RD1	RF.RD2			A	В	ALU.C			
subu	NPC. NPC	PC.DO			PC.DO	IM	IR[25:21]	IR[20:16]	IR[15:11]	ALU0ut	RF.RD1	RF.RD2			A	В	ALU.C			
jr	NPC. NPC	PC.DO		A	PC.DO	IM	IR[25:21]													
lui	NPC. NPC	PC. DO			PC. DO	IM	IR[25:21]		IR[20:16]	ALUOut			IR[15:0]		A	E	ALU.C			
ori	NPC. NPC	PC. DO			PC. DO	IM	IR[25:21]		IR[20:16]	ALUOut	RF.RD1		IR[15:0]	EXT. Ext	A	E	ALU.C			
1w	NPC. NPC	PC. DO			PC. DO	IM	IR[25:21]		IR[20:16]	DR	RF.RD1		IR[15:0]	EXT. Ext	A	E	ALU.C	ALUOut	DM.RD	
s₩	NPC. NPC	PC.DO			PC.DO	IM	IR[25:21]				RF.RD1		IR[15:0]	EXT. Ext	A	E	ALU.C	ALUOut		
beq	NPC. NPC	PC.DO	IR[15:0]		PC.DO	IM	IR[25:21]	IR[20:16]			RF.RD1	RF.RD2			A	В				
jal	NPC. NPC	PC.DO	IR[25:0]		PC.DO	IM			0x1F	PC										
NPC. NE		.NPC PC.DO I	PC.DO IR[25:0]	R[25:0] A	PC. DO					IM.D[15:11]	ALUOut						В			
	MDC MDC					IM	IR[25:21]	IR[20:16]	IM.D[20:16]	DR	RF. RD1	1 RF.RD2	IR[15:0]	EXT. Ext	A		ALU.C	ALUOut	DM.RD	
	MIC. NFC	10.00	IK[23:0]	A	10.00	1.111	18[23:21]	18[20:18]	0x1F	PC	Kr.KDI	Kr.KDZ	1K[13:0]	PAI.EXI	A	E	ALU.C	ALOUGI	Din. KD	

实验原理-建模多周期控制器

lw指令的执行过程

周期	步骤	语义	RTL	功能部件	控制信号
1	取指令	读取指令; 计算下条指令地 址	IR←IM[PC]; PC←NPC(PC)	IR NPC PC	IRWr:1; NPCOp:+4; PCWr:1
2	读操作数	偏移符号扩展	A←RF[rs] E←EXT(IR[15:0])	EXT	EXTOp:SE
3	计算地址	执行加法,结果 存入ALUOut	ALUOut←ALU(A,E)	ALU	ALUOp:ADD
4	读存储器	读取DM,数据 存储DR	DR←DM[ALUOut]	DM	
5	回写	DR 写入 rt 寄存 器	RF[rt]←DR	RF	RFWr:1

实验原理-建模多周期控制器

- ➤ PC、IR、RF、DM需要写使能
 - > PCWr/IRWr/RFWr/DMWr
- ➤ A/B/E、ALUOut、DR不需要写使能

指令	NPCOp	PCWr	IRWr	RFWr	EXTOp	ALUOp	DMWr	MRFA3Sel	MRFWDSel	MALUBSel
addu	T1:+4	T1:1	T1:1	T4:1		T3:ADD		T4:RD	T4:AR	T3:B
subu	T1:+4	T1:1	T1:1	T4:1		T3:SUB		T4:RD	T4:AR	T3:B
lui	T1:+4	T1:1	T1:1	T4:1	T2:HE	T3:ADD		T4:RT	T4:AR	T3:E32
ori	T1:+4	T1:1	T1:1	T4:1	T2:UE	T3:OR		T4:RT	T4:AR	T3:E32
lw	T1:+4	T1:1	T1:1	T5:1	T2:SE	T3:ADD		T5:RT	T5:DR	T3:E32
SW	T1:+4	T1:1	T1:1		T2:SE	T3:ADD	T4:1			T3:E32
haa	T1:+4	T1:1	T1.1			T2.CLID				T2.D
beq	T3:BNPC	T3:Zero	T1:1			T3:SUB				T3:B
jal	T1:+4	T1:1	T1.1	T2.1				T221	T2-DC4	
	T2:JNPC	T2:1	11:1	T2:1				T2:+31	T2:PC4	

实验步骤

- 1、建模多周期数据通路,添加寄存器,完成数据通路表。
- 2、逐条指令分析各阶段执行的功能,建模多周期控制器,完成控制信号取值表。
- 3、使用状态机描述一个指令周期中不同阶段的转换。并根据当前译码结果产生控制信号。
- 4、在单周期的代码基础上实现多周期CPU设计。

项目提交

- ▶ 单周期CPU设计提交:
 - > 数据通路表、控制信号取值表、工程文件
- ▶ 多周期CPU设计提交:
 - > 数据通路表、控制信号取值表、工程文件
- > 实验报告提交:
 - ➤ 完成单周期CPU设计与实现的同学根据单周期设计的内容完成实验报告。
 - ➤ 完成多周期CPU设计与实现的同学根据多周期设计的内容完成实验报告。