ZOOM LENS AND OF CAL EQUIPMENT USING TO SAME

Patent number:

JP2002169087

Publication date:

2002-06-14

Inventor:

NANBA NORIHIRO; HAMANO HIROYUKI

Applicant:

CANON INC

Classification:

- international:

G02B15/16; G02B7/10; G02B13/18;

G03B5/00

- european:

Application number: JP20000364933 20001130

Priority number(s):

Abstract of JP2002169087

PROBLEM TO BE SOLVED: To obtain a four-group constitution zoom lens having a high zoom ratio of >=8 which is suitable for a digital camera using an imaging device with one million or more pixels, and to obtain optical equipment using the zoom lens. SOLUTION: As for the zoom lens provided with a 1st group which is fixed at zooming and focusing, and having a positive refractive power, a 2nd group having a zooming function and a negative refractive power, a 3rd group having a positive refractive power and a 4th group having a function of correcting an image field which is shifted at zooming and also a focusing function and having a positive refractive power, in this order from an object side, and the 1st group is constituted of a doublet constituted of a negative lens and a positive lens, and two meniscus positive lenses whose convex surfaces face the object side, in this order from the object side, and the 2nd group is provided with at least three negative lenses and one positive lens.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-169087 (P2002-169087A)

(43)公開日 平成14年6月14日(2002.6.14)

(51) Int.CL'		識別記号	F I			テ-	-73~}*(参考	f)
G02B	15/16		G02B 1	15/16			2H044	Ŀ
	7/10			7/10		Z	2H087	•
-1	13/18		1	13/18			•	
G 0 3 B	5/00		G 0 3 B	5/00		J		
			審査請求	未請求	請求項の数2	1 01	L (全 20	頁)
(21)出願番号		特願2000-364933(P2000-364933)	(71) 出願人		007 ン株式会社			
(22)出顧日		平成12年11月30日(2000.11.30)		東京都	大田区下丸子 3	3 丁目3	0番2号	
			(72)発明者	難波り	訓廣			
		•		東京都	大田区下丸子 3	3 丁目3	0番2号 =	キヤ
				ノン株	式会社内			
			(72)発明者	浜野	博之			
				東京都	大田区下丸子3	3丁目3	0番2号 =	キヤ
					式会社内			
			(74)代理人	1000868	318			
				弁理士	高梨 幸雄			
			1					

(54) 【発明の名称】 ズームレンズ及びそれを用いた光学機器

(57)【要約】

【課題】 4群構成で100万画素以上の画素を有する 撮像素子を用いたデジタルカメラに好適な変倍比8以上 のズームレンズ及びそれを用いた光学機器を得ること

【解決手段】 物体側より順に、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4群を有したズームレンズにおいて、該第1群は、物体側より順に、負レンズと正レンズで構成された接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レンズからなり、該第2群は、少なくとも負レンズを3枚、正レンズを1枚有する

最終頁に続く

【特許請求の範囲】

【請求項1】物体側より順に、変倍及び合焦の際に固定 の正の屈折力の第1群、変倍機能を有する負の屈折力の 第2群、正の屈折力の第3群、変倍により変動する像面 を補正すると共に合焦機能を有する正の屈折力の第4群 を有したズームレンズにおいて、

該第1群は、物体側より順に、負レンズと正レンズで構 成された接合レンズ、物体側に凸面を向けた2枚のメニ スカス状の正レンズからなり、

該第2群は、少なくとも負レンズを3枚、正レンズを1 10 枚有することを特徴とするズームレンズ。

【請求項2】前記第1群の正レンズの材質のアッベ数の 平均をv1、第1群の焦点距離をf1、第2群の焦点距 離をf2、広角端での全系の焦点距離をfw、望遠端で の全系の焦点距離をftとしたとき

6.0 < v.1 < 8.5

2. $0 < f 1 / (f w \times f t)^{1/2} < 2.$ 6

0. $3 < |f_2| / (f_w \times f_t)^{1/2} < 0.6$

を満足することを特徴とする請求項1記載のズームレン

【請求項3】前記第3群は、物体側より順に、物体側に 凸面を向けた正レンズ、像側に凹面を向けた負レンズ、 両レンズ面が凸面の正レンズで構成されることを特徴と する請求項1又は2のズームレンズ。

【請求項4】前記第3群の最も物体側の正レンズの物体 側の面の曲率半径をR31a、像側の面の曲率半径をR 31b、前記第3群の負レンズの物体側の面の曲率半径 をR32a、像側の面の曲率半径をR32bとしたとき 1. 0 < (R31b+R31a) / (R31b-R31a) < 12.0

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

の条件式を満足することを特徴とする請求項3のズーム

【請求項5】前記第2群の正レンズの物体側の面の曲率 半径をR23a、像側の面の曲率半径をR23bとした

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9

の条件式を満足することを特徴とする請求項1、2、3 又は4のズームレンズ。

【請求項6】物体側より順に、変倍及び合焦の際に固定 の正の屈折力の第1群、変倍機能を有する負の屈折力の 第2群、正の屈折力の第3群、変倍により変動する像面 を補正すると共に合焦機能を有する正の屈折力の第4群 を有したズームレンズにおいて、

該第1群は、物体側より順に、負レンズと正レンズで構 成された接合レンズ、物体側に凸面を向けた2枚のメニ スカス状の正レンズからなり、

ームレンズが振動した時の撮影画像のぶれを補正するこ とを特徴とするズームレンズ。

【請求項7】前記第3群は、物体側より順に、物体側に 凸面を向けた正レンズ、像側に凹面を向けた負レンズ、 両レンズ面が凸面の正レンズで構成されることを特徴と する請求項6のズームレンズ。

【請求項8】前記第3群の最も物体側の正レンズの物体 側の面の曲率半径をR31a、像側の面の曲率半径をR 31b、前記第3群の負レンズの物体側の面の曲率半径 をR32a、像側の面の曲率半径をR32bとしたとき 1. 0 < (R31b+R31a) / (R31b-R31a) < 12.0

-4.0 < (R32b+R32a) / (R32b-R3(2a) < -1.5

の条件式を満足することを特徴とする請求項7のズーム レンズ。

【請求項9】前記第2群は、物体側より順に、物体側に 比べ像側に強い凹面を向けたメニスカス状の負レンズ、 負レンズ、物体側に凸面を向けた正レンズ、負レンズを 有することを特徴とする請求項6、7、又は8のズーム レンズ。

【請求項10】前記第2群の正レンズの物体側の面の曲 率半径をR23a、像側の面の曲率半径をR23bとし

0. 2 < (R23b+R23a) / (R23b-R23(a) < 0.9

の条件式を満足することを特徴とする請求項9のズーム レンズ。

【請求項11】物体側より順に、変倍及び合焦の際に固 定の正の屈折力の第1群、変倍機能を有する負の屈折力 の第2群、正の屈折力の第3群、変倍により変動する像 面を補正すると共に合焦機能を有する正の屈折力の第4 群を有したズームレンズにおいて、

該第1群は、物体側より順に、負レンズと正レンズで構 成された接合レンズ、物体側に凸面を向けた2枚のメニ スカス状の正レンズからなり、

該第3レンズ群全体を光軸と垂直方向に移動させてズー ムレンズが振動した時の撮影画像のぶれを補正してお り、

前記第1群の正レンズの材質のアッベ数の平均をv1、 第1群の焦点距離を f 1、第2群の焦点距離を f 2、広 角端での全系の焦点距離を fw、望遠端での全系の焦点 距離をftとしたとき

60<v1<85

2. $0 < f 1 / (f w \times f t)^{1/2} < 2.6$

0. $3 < | f 2 | / (f w \times f t)^{1/2} < 0.6$

の条件式を満足することを特徴とするズームレンズ。 【請求項12】前記第3群は、物体側より順に、物体側 に凸面を向けた正レンズ、像側に凹面を向けた負レン

該第3レンズ群全体を光軸と垂直方向に移動させて該ズ 50 ズ、両レンズ面が凸面の正レンズで構成されることを特

20

30

40

3

徴とする請求項11のズームレンズ。

【請求項13】前記第3群の最も物体側の正レンズの物体側の面の曲率半径をR31a、像側の面の曲率半径をR31b、前記第3群の負レンズの物体側の面の曲率半径をR32a、像側の面の曲率半径をR32bとしたとき

1. 0 < (R31b+R31a) / (R31b-R31a) < 12. 0

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

の条件式を満足することを特徴とする請求項11又は1 2のズームレンズ。

【請求項14】前記第2群は、物体側より順に、物体側に比べ像側に強い凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に凸面を向けた正レンズ、負レンズを有することを特徴とする請求項11、12又は13のズームレンズ。

【請求項15】前記第2群の正レンズの物体側の面の曲率半径をR23a、像側の面の曲率半径をR23bとしたとき

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9

の条件式を満足することを特徴とする請求項14のズー ムレンズ。

【請求項16】前記第3群の最も物体側のレンズ面は非 球面であることを特徴とする請求項1から15のいずれ か1項のズームレンズ

【請求項17】前記第4群は、2枚の正レンズと負レンズで構成されることを特徴とする請求項1から16のいずれか1項のズームレンズ。

【請求項18】前記第4群の少なくとも1枚の正レンズは非球面を有することを特徴とする請求項17のズームレンズ。

【請求項19】前記ズームレンズは、開口絞りを有し、変倍時に該開口絞りの最大開放径を全系の焦点距離に応じて可変とすることを特徴とする請求項1から18のいずれか1項のズームレンズ。

【請求項20】前記第3群の物体側又は像面側に固定の 絞りを設けたことを特徴とする請求項1から19のいず れか1項のズームレンズ。

【請求項21】請求項1から20のいずれか1項のズームレンズを有していることを特徴とする光学機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はスチルカメラやビデオカメラ、銀塩写真用カメラそしてデジタルスチルカメラ等に好適なズームレンズ及びそれを用いた光学機器に関する。

【0002】この他本発明は光学系の一部のレンズ群を 光軸と垂直方向に移動させることにより、該光学系が振 50

動(傾動)した時の撮影画像のぶれを光学的に補正して 静止画像を得るようにし撮影画像の安定化を図ったビデ オカメラや銀塩写真用カメラ、デジタルカメラなどに好 適な防振機能を有したズームレンズ及びそれを用いた光 学機器に関するものである。

[0003]

【従来の技術】進行中の車や航空機等移動物体上から撮影しようとすると、撮影系に振動が伝わり手振れとなり撮影画像にぶれが生じる。従来より撮影画像のぶれを防止する機能を有した防振光学系(ズームレンズ)が種々提案されている。

【0004】例えば、特開昭56-21133号公報では、光学装置に振動状態を検知する検知手段からの出力信号に応じて、一部の光学部材を、振動による画像の振動的変位を相殺する方向に移動させることにより画像の安定化を図っている。特開昭61-223819号公報では、最も物体側に可変頂角プリズムを配置した撮影系において、撮影系の振動に対応させて該可変頂角プリズムのプリズム頂角を変化させて画像の安定化を図っている。特開平1-116619号公報や特開平2-124521号公報では、加速度センサー等を利用して撮影系の振動を検出し、この時得られる信号に応じ、撮影系の一部のレンズ群を光軸と垂直方向に振動させることにより静止画像を得ている。

【0005】また特開平7-128619号公報では、正、負、正、正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群を正、負の屈折力の二つのレンズ群で構成し、正のレンズ群を振動することにより防振を行っている。特開平7-199124号公報では、正、負、正、正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群全体を振動させて防振を行っている。一方、特開平5-60974号広報では、正、負、正、正の屈折力のレンズ群より成る4群構成の第3レンズ群を正レンズとメニスカス状の負レンズのテレフォトタイプとしてレンズ全長の短縮化を図っている。

【0006】また、本出願人は、特願平11-213370号にて正、負、正、正の屈折力のレンズ群より成る4群構成にて第3群全体を振動させて防振を行うズームレンズを開示している。これは第1レンズ群を物体側から順に負レンズと正レンズからなる接合レンズと物体側に凸面を向けたメニスカス状の正レンズの3枚構成としている。

【0007】また正、負、正、正の屈折力のレンズ群より成る4群ズームにおいて、第1群を物体側より順に負レンズと正レンズからなる接合レンズ、物体側に凸面を向けたメニスカス状の正レンズを2枚設け合計4枚で構成されているズームレンズが、米国特許第5、583、699号、米国特許第5、886、828号、特開平7-92431に開示されている。

[0008]

【発明が解決しようとする課題】一般に、防振光学系を 撮影系の前方に配置し、該防振光学系の一部の可動レン ズ群を振動させて撮影画像のぶれを無くし、静止画像を 得る方法は装置全体が大型化し、且つ該可動レンズ群を 移動させるための移動機構が複雑化してくるという問題 点があった。

【0009】可変頂角プリズムを利用して防振を行う光 学系では、特に長焦点距離側において防振時に偏心倍率 色収差の発生量が多くなるという問題点があった。

【0010】一方、撮影系の一部のレンズを光軸に対して垂直方向に平行偏心させて防振を行う光学系においては、防振のために特別に余分な光学系を必要としないという利点はあるが、移動させるレンズのための空間を必要とし、また防振時における偏心収差の発生量が多くなってくるという問題点があった。

【0011】また正、負、正、正の屈折力のレンズ群より成る4群構成の変倍光学系の第3レンズ群全体を光軸に垂直方向に移動させて防振を行った場合、第3レンズ群を全長短縮のため正レンズとメニスカス状の負レンズのテレフォトタイプで構成したとき、偏心コマや偏心像 20 面湾曲といった偏心収差が発生して画質が劣化するという問題点があった。

【0012】更に、以上の従来例でズーム比が8倍以上のものはビデオカメラ等には対応出来るが、100万画素以上の多くの画素より成る撮像手段を用いたデジタルカメラに使用するには収差補正の点で不十分であった。

【0013】第1群を負レンズと正レンズからなる接合レンズと、メニスカス状の正レンズ1枚の計3枚で構成した場合、レンズ構成は簡素化されるが8倍以上の変倍比で多くの画素の固体撮像素子を用いた撮像装置用としては、望遠側の軸上色収差において、二次スペクトルを良好に補正するのが難しい。

【0014】また、第1群を負レンズと正レンズからなる接合レンズと、2枚のメニスカス状の正レンズとして構成レンズ枚数を増やし、正レンズを低分散ガラスとすると二次スペクトルが低減される。このような構成において防振機能を有するズームレンズが、特開平7-92431号公報で提案されているが、変倍時に第4群を固定とし第4群の一部を振動させて防振しているため、第4群の構成レンズ枚数が多く、小型化の点で不利である。また防振機能を持たない例としては米国特許第5、886、828号、米国特許第5、583、699号が挙げられるが、第2群を、負レンズ2枚、正レンズ1枚で構成しているため、ズーム比が8倍以上で100万画素以上のデジタルカメラ用のズームレンズとしては、変倍全域における倍率色収差の補正が必ずしも十分でな

【0015】本発明は、高変倍比で多くの画素よりなる 固体撮像素子を用いたときにも、十分対応できる高い光 学性能を有したズームレンズ及びそれを用いた光学機器 50 の提供を目的とする。

【0016】この他本発明は、光学系の一部を構成する 比較的小型軽量のレンズ群を光軸と垂直方向に移動させ て、該光学系が振動(傾動)したときの画像のぶれを補 正するように構成するとともに、画素のぶれを補正する ためのレンズ群の構成を適切なものとすることにより、 装置全体の小型化、機構上の簡素化及び駆動手段の負荷 の軽減化を図りつつ、該レンズ群を偏心させた時の偏心 収差を良好に補正した防振機能を有し、かつ望遠側の二 次スペクトルを良好に補正し、100万画素以上の撮像 素子を用いたカメラであっても、十分対応することがで きるズームレンズ及びそれを用いた光学機器の提供を目 的とする。

[0017]

【課題を解決するための手段】請求項1の発明のズームレンズは物体側より順に、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4群を有したズームレンズにおいて、該第1群は、物体側より順に、負レンズと正レンズで構成された接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レンズからなり、該第2群は、少なくとも負レンズを3枚、正レンズを1枚有することを特徴としている。

【0018】請求項2の発明は請求項1の発明において 前記第1群の正レンズの材質のアッベ数の平均をv1、 第1群の焦点距離をf1、第2群の焦点距離をf2、広 角端での全系の焦点距離をfw、望遠端での全系の焦点 距離をftとしたとき

60<v1<85

0<f1/(fw×ft)''<2.6
 3<|f2|/(fw×ft)''<0.6
 を満足することを特徴としている。

【0019】請求項3の発明は請求項1又は2の発明に おいて前記第3群は、物体側より順に、物体側に凸面を 向けた正レンズ、像側に凹面を向けた負レンズ、両レン ズ面が凸面の正レンズで構成されることを特徴としてい る。

【0020】請求項4の発明は請求項3の発明において 前記第3群の最も物体側の正レンズの物体側の面の曲率 半径をR31a、像側の面の曲率半径をR31b、前記 第3群の負レンズの物体側の面の曲率半径をR32a、 像側の面の曲率半径をR32bとしたとき

1. 0 < (R31b+R31a) / (R31b-R31a) < 12. 0

-4. 0 < (R32b+R32a) / (R32b-R32a) < -1.5

の条件式を満足することを特徴としている。

【0021】請求項5の発明は請求項1、2、3又は4 の発明において前記第2群の正レンズの物体側の面の曲

7

率半径をR23a、像側の面の曲率半径をR23bとしたとき

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9

の条件式を満足することを特徴としている。

【0022】請求項6の発明のズームレンズは物体側より順に、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4群を有したズームレン 10ズにおいて、該第1群は、物体側より順に、負レンズと正レンズで構成された接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レンズからなり、該第3レンズ群全体を光軸と垂直方向に移動させて該ズームレンズが振動した時の撮影画像のぶれを補正することを特徴としている。

【0023】請求項7の発明は請求項6の発明において 前記第3群は、物体側より順に、物体側に凸面を向けた 正レンズ、像側に凹面を向けた負レンズ、両レンズ面が 凸面の正レンズで構成されることを特徴としている。

【0024】請求項8の発明は請求項7の発明において 前記第3群の最も物体側の正レンズの物体側の面の曲率 半径をR31a、像側の面の曲率半径をR31b、前記 第3群の負レンズの物体側の面の曲率半径をR32a、 像側の面の曲率半径をR32bとしたとき

1. 0 < (R31b+R31a) / (R31b-R31a) < 12. 0

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

の条件式を満足することを特徴としている。

【0025】請求項9の発明は請求項6、7、又は8の 発明において前記第2群は、物体側より順に、物体側に 比べ像側に強い凹面を向けたメニスカス状の負レンズ、 負レンズ、物体側に凸面を向けた正レンズ、負レンズを 有することを特徴としている。

【0026】請求項10の発明は請求項9の発明において前記第2群の正レンズの物体側の面の曲率半径をR23a、像側の面の曲率半径をR23bとしたとき

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9

の条件式を満足することを特徴としている。

【0027】請求項11の発明のズームレンズは物体側より順に、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4群を有したズームレンズにおいて、該第1群は、物体側より順に、負レンズと正レンズで構成された接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レンズからなり、該第3レンズ群全体を光軸と垂直方向に移動させてズームレンズが50

振動した時の撮影画像のぶれを補正しており、前記第1 群の正レンズの材質のアッベ数の平均をv1、第1群の 焦点距離をf1、第2群の焦点距離をf2、広角端での 全系の焦点距離をfw、望遠端での全系の焦点距離をf tとしたとき

60 < v1 < 85

2. $0 < f 1 / (f w \times f t)^{1/2} < 2.$ 6

0.3< | f2 | / (fw×ft) ''' < 0.6 の条件式を満足することを特徴としている。

【0028】請求項12の発明は請求項11の発明において前記第3群は、物体側より順に、物体側に凸面を向けた正レンズ、像側に凹面を向けた負レンズ、両レンズ面が凸面の正レンズで構成されることを特徴としている。

【0029】請求項13の発明は請求項11又は12の発明において前記第3群の最も物体側の正レンズの物体側の面の曲率半径をR31a、像側の面の曲率半径をR31b、前記第3群の負レンズの物体側の面の曲率半径をR32a、像側の面の曲率半径をR32bとしたとき1.0<(R31b-R31a)</p>

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

の条件式を満足することを特徴としている。

【0030】請求項14の発明は請求項11、12又は13の発明において前記第2群は、物体側より順に、物体側に比べ像側に強い凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に凸面を向けた正レンズ、負レンズを有することを特徴としている。

30 【0031】請求項15の発明は請求項14の発明において前記第2群の正レンズの物体側の面の曲率半径をR23bとしたとき0.2<(R23b+R23a)/(R23b-R23a)<0.9

の条件式を満足することを特徴としている。

【0032】請求項16の発明は請求項1から15のいずれか1項の発明において前記第3群の最も物体側のレンズ面は非球面であることを特徴としている。

【0033】請求項17の発明は請求項1から16のいずれか1項の発明において前記第4群は、2枚の正レンズと負レンズで構成されることを特徴としている。

【0034】請求項18の発明は請求項17の発明において前記第4群の少なくとも1枚の正レンズは非球面を有することを特徴としている。

【0035】請求項19の発明は請求項1から18のいずれか1項の発明において前記ズームレンズは、開口絞りを有し、変倍時に該開口絞りの最大開放径を全系の焦点距離に応じて可変とすることを特徴としている。

【0036】請求項20の発明は請求項1から19のいずれか1項の発明において前記第3群の物体側又は像面

側に固定の絞りを設けたことを特徴としている。

【0037】請求項21の発明の光学機器は請求項1から20のいずれか1項のズームレンズを有していることを特徴としている。

[0.038]

【発明の実施の形態】図1は、本発明の実施形態のズームレンズの近軸屈折力配置を示す説明図である。

【0039】図2は、本発明に係る防振系の光学的原理の説明図である。

【0040】図3は、本発明の実施形態の数値実施例1のズームレンズのレンズ断面図である。

【0041】図4~図6は、数値実施例1の広角端、中間のズーム位置、望遠端の収差図である。

【0042】図7は、本発明の実施形態の数値実施例2のズームレンズのレンズ断面図である。

【0043】図8~図10は、数値実施例2の広角端、中間のズーム位置、望遠端の収差図である。

【0044】図11は、本発明の実施形態の数値実施例 3のズームレンズのレンズ断面図である。

【0045】図12~図14は、数値実施例3の広角端、中間のズーム位置、望遠端の収差図である。

【0046】図15は、本発明の実施形態の数値実施例 4のズームレンズのレンズ断面図である。

【0047】図16~図18は、数値実施例4の広角端、中間のズーム位置、望遠端の収差図である。

【0048】本発明は大別して4つのグループの発明を 含んでいる。

【0049】以下、4つのグループの発明のうち代表的なものを第1、第2、第3、第4発明と称する。

【0050】第1~第3発明はズームレンズに関し、第 4発明は第1~第3発明のズームレンズを用いた光学機 器に関する。 * *【0051】第1発明は高変倍比を有し、かつ多くの画素よりなる撮像手段を用いた場合でも十分対応できる高い光学性能を有したズームレンズを対象としている。

【0052】又、第2発明、第3発明は防振機能を有し、 高変倍比でかつ多くの画素よりなる撮像手段を用いた場合でも十分対応できる高い光学性能を有したズームレン ズを対象としている。

【0053】第1、第2、第3、第4発明を総称して「本発明」という。

【0054】本発明のズームレンズは物体側より順に、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4群を有したズームレンズにおいて、該第1群は、物体側より順に、負レンズと正レンズで構成された接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レンズからなることを基本構成としている。

【0055】そして第1発明は、基本構成の基で第2群 20 が少なくとも負レンズを3枚、正レンズを1枚有することを特徴としている。

【0056】第2発明では基本構成の基で第3レンズ群全体を光軸と垂直方向に移動させて該ズームレンズが振動した時の撮影画像のぶれを補正することを特徴としている。

【0057】第3発明では基本構成の基で第3レンズ群全体を光軸と垂直方向に移動させてズームレンズが振動した時の撮影画像のぶれを補正しており、前記第1群の正レンズの材質のアッベ数の平均をv1、第1群の焦点距離をf1、第2群の焦点距離をf2、広角端での全系の焦点距離をfw、望遠端での全系の焦点距離をftとしたとき

 $60 < v1 < 85 \cdots (1)$

2. $0 < f 1 / (f w \times f t)^{1/2} < 2. 6 \cdots (2)$

40

0. $3 < | f 2 | / (f w \times f t)^{1/2} < 0. 6 \cdot \cdot \cdot (3)$

を満足することを特徴としている。

【0058】次に本発明のズームレンズの説明では防振機能を有することを前提として説明するが、第1発明では防振機能を有していない点が異なっているだけであり、その他の構成は基本的に同じである。

【0059】図1において、L1は正の屈折力の第1レンズ群(第1群)、L2は負の屈折力の第2レンズ群(第2群)、L3は正の屈折力の第3レンズ群(第3群)、L4は正の屈折力の第4レンズ群(第4群)である。本実施例では、第3レンズ群を光軸に垂直方向に移動させることにより、光学系全体が振動(傾動)したときの撮影画像のぶれを補正している。SPは開口絞りであり、第3レンズ群L3の前方に位置している。IPは像面、Gはフェースプレート、フィルター等のガラス部材、FPは固定絞りである。本実施例では、広角端から望遠端への変倍50

(ズーミング) に際して矢印のように、第2レンズ群を 像面側へ移動させると共に、変倍に伴う像面変動を第4 レンズ群を移動させて神正している。また、第4レンズ 群を光軸上移動させてフォーカシングを行うリヤーフォ ーカス式を採用している。同図に示す第4レンズ群の実 線の曲線4aと点線の曲線4bは、各々無限遠物体と近 距離物体にフォーカスしているときの広角端から望遠端 への変倍に伴う際の像面変動を補正するための移動軌跡 を示している。尚、第1レンズ群と第3レンズ群は、変 倍及びフォーカスの際固定であるが必要に応じて移動さ せても良い。

【0060】本実施形態においては、第4レンズ群を移動させて変倍に伴う像面変動の補正を行うと共に、第4レンズ群を移動させてフォーカスを行うようにしている。特に、同図の曲線4a、4bに示すように、広角端

から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3レンズ群と第4レンズ群との空間の有効利用を図り、レンズ全長の短縮化を効果的に達成している。本実施形態において例えば、望遠端において無限遠物体から近距離物体へフォーカスを行う場合には、同図の矢印4cに示すように第4レンズ群を前方に繰り出すことにより行っている。

【0061】本実施形態においては、第3レンズ群L3を防振のために光軸と垂直方向に移動させて光学系全体が振動したときの像ぶれを補正している。これにより、可変頂角プリズム等の光学部材や防振のためのレンズ群を新たに付加することなく防振を行っている。

【0062】次に本発明に係わるズームレンズにおいて、レンズ群を光軸と垂直方向に移動させて撮影画像の ぶれを補正する防振系の光学的原理を図2を用いて説明 する。

【0063】図2 (A) に示すように、光学系が物点P 側より順に、固定群Y1、偏心群(シフト群) Y2そして 固定群Y3の3つの部分から成り立っており、光学系か ら十分に離れた光軸上の物点Pが撮像面IPの中心に像 20 点pとして結像しているものとする。今、撮像面 I Pを 含めた光学系全体が、図2(B)のように手ぶれにより 瞬間的に傾いたとすると、物点Pは像点P 'にやはり瞬 間的に移動し、ぶれた画像となる。一方、偏心群Y2を 光軸と垂直方向に移動させると、図2(C)のように、 像点pは点p "に移動し、その移動量と方向は光学系の 屈折力配置に依存し、そのレンズ群の偏心敏感度として 表される。そこで図2(B)で、手振れによってずれた 像点p 'を偏心群Y2を適切な量だけ光軸と垂直方向に 移動させることによって、もとの結像位置pに戻すこと で図2 (D) に示すとおり、手振れ補正つまり防振を行 っている。

【0064】今、光軸を θ °補正するために必要な偏心 群Y2の移動量を Δ 、光学系全体の焦点距離をf,偏心 群Y2の偏心敏感度をTSとすると Δ は以下の式で与えられる。

[0065] $\Delta = f \cdot tan(\theta) / TS$

今、偏心群の偏心敏感度TSが大きすぎると、Δは小さな値となり防振に必要なシフト群の移動量は小さく出来るが、適切に防振を行うための制御が困難になり、補正残りが生じてしまう。特に、ビデオカメラやデジタルスチルカメラでは、CCDなどの撮像素子のイメージサイズが銀塩フィルムと比べて小さく、同一画角に対する焦点距離が短いため、同一角度を補正するための偏心群のシフト量Δが小さくなる。従って、メカの精度が同程度*

*だと画面上での補正残りが相対的に大きくなることになってしまう。

【0066】一方偏心敏感度TSが小さすぎると制御のために必要な偏心群の移動量が大きくなってしまい、偏心群を駆動するためのアクチュエーターなどの駆動手段も大きくなってしまう。

【0067】本発明では、各レンズ群の屈折力配置を適切な値に設定することで、第3レンズ群の偏心敏感度TSを適正な値とし、メカの制御誤差による防振の補正残りが少なく、アクチュエーターなどの駆動手段の負荷も少ないズームレンズを達成している。

【0068】次に第1、第2、第3発明のズームレンズの特徴について説明する。

【0069】(ア)第1発明

(アー1) 第1発明は物体側より順に、変倍及び合焦の際に固定の正の屈折力の第1群、変倍機能を有する負の屈折力の第2群、正の屈折力の第3群、変倍により変動する像面を補正すると共に合焦機能を有する正の屈折力の第4群を有したズームレンズにおいて、該第1群は、物体側より順に、負レンズと正レンズで構成された接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レンズからなり、該第2群は、少なくとも負レンズを3枚、正レンズを1枚有することを特徴としている。

【0070】デジタルスチルカメラ用のズームレンズのような高解像力が必要な光学系では、変倍に伴なう倍率色収差を通常のビデオカメラ用のズームレンズに比べて、より良好に補正することが必要である。そのためには、第2レンズ群は、少なくとも3枚の負レンズと1枚の正レンズを有することが望ましい。負レンズが2枚だけでは、全長短縮のために第2レンズ群の屈折力を大きくして変倍における移動量を小さくしようとすると、倍率色収差の補正が困難になる。第1発明では、第2レンズ群を物体側から順に、物体側に比べ像面側に強い凹面(負の屈折力)を有するメニスカス状の負レンズ、負レンズで構成することで、第2レンズ群の前後の対称性を小さくすることで主点の色消し効果を高め、倍率色収差の補正を効果的に行なっている。

な値となり防振に必要なシフト群の移動量は小さく出来 【0071】第1発明の目的は以上の構成により達成さるが、適切に防振を行うための制御が困難になり、補正 40 れるが更に高い光学性能を得るために好ましくは次の諸 残りが生じてしまう。特に、ビデオカメラやデジタルス 条件のうちの1以上を満足させるのが良い。

【0072】 (アー2)前記第1群の正レンズの材質のアッベ数の平均をv1、第1群の焦点距離をf1、第2群の焦点距離をf2、広角端での全系の焦点距離をfw、望遠端での全系の焦点距離をftとしたとき

 $60 < v < 1 < 85 \cdots (1)$

2. $0 < f 1 / (f w \times f t)^{1/2} < 2. 6 \cdots (2)$

0. $3 < | f 2 | / (f w \times f t)^{1/2} < 0. 6 \cdots (3)$

を満足することである。

【0073】 (アー3)前記第3群は、物体側より順

に、物体側に凸面を向けた正レンズ、像側に凹面を向け

50 た負レンズ、両レンズ面が凸面の正レンズで構成される

ことである。

【0074】(アー4)前記第3群の最も物体側の正レ ンズの物体側の面の曲率半径をR31a、像側の面の曲*

13

* 率半径をR31b、前記第3群の負レンズの物体側の面 の曲率半径をR32a、像側の面の曲率半径をR32b としたとき

1. 0 < (R31b+R31a) / (R31b-R31a) < 12. 0

 \cdots (4)

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

3bとしたとき

...(5)

の条件式を満足することである。

【0075】 (アー5) 前記第2群の正レンズの物体側※

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9

· · · (6)

の条件式を満足することである。

【0076】(イ) 第2発明

(イー1)第2発明は物体側より順に、変倍及び合焦の 際に固定の正の屈折力の第1群、変倍機能を有する負の 屈折力の第2群、正の屈折力の第3群、変倍により変動 する像面を補正すると共に合焦機能を有する正の屈折力 の第4群を有したズームレンズにおいて、該第1群は、 物体側より順に、負レンズと正レンズで構成された接合 レンズ、物体側に凸面を向けた2枚のメニスカス状の正 20 レンズからなり、該第3レンズ群全体を光軸と垂直方向 に移動させて該ズームレンズが振動した時の撮影画像の ぶれを補正することを特徴としている。

【0077】第2発明及び後述する第3発明において第 3群L3を光軸と垂直方向に移動させて変倍光学系が振 動した時の像ブレを補正している。これにより、従来の 防振光学系に比べて防振のためのレンズ群や可変頂角プ リズム等の光学部材を新たに付加することなく防振を行 っている。

【0078】第2発明の目的は以上の構成により達成さ 30 れるが、更に高い光学性能を得るには次の諸条件のうち の1以上を満足するのが良い。

【0079】(イー2)前記第3群は、物体側より順 ★

★に、物体側に凸面を向けた正レンズ、像側に凹面を向け た負レンズ、両レンズ面が凸面の正レンズで構成される ことを特徴とすることである。

※の面の曲率半径をR23a、像側の面の曲率半径をR2

【0080】第3群中に、像面側に凹面を向けたレンズ を設けることにより第3群全体をテレフォト構成とし て、第2群と第3群の主点間隔を短縮し、レンズ全長の 短縮化を達成している。

【0081】このような負レンズを設けた場合、そのレ ンズ面で正の歪曲収差が発生する。これが防振時におけ る偏心歪曲が大きくなる原因となる。

【0082】この減少を低減させるには、第3レンズ群 全体で発生する歪曲収差を少なくしてやればよい。

【0083】本実施形態では、負レンズの像面側に正レ ンズを配置することによってある程度のテレフォト構成 を維持しつつ、第3レンズ群内で歪曲収差を補正し、第3 レンズ群をシフトして防振を行う際に、発生する偏心歪 曲収差の発生を低減している。

【0084】(イー3)前記第3群の最も物体側の正レン ズの物体側の面の曲率半径をR31a、像側の面の曲率 半径をR31b、前記第3群の負レンズの物体側の面の 曲率半径をR32a、像側の面の曲率半径をR32bと したとき

1. 0 < (R31b+R31a) / (R31b-R31a) < 12. 0

 \cdots (4)

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

 \cdots (5)

の条件式を満足することである。

【0085】 (イー4) 前記第2群は、物体側より順 に、物体側に比べ像側に強い凹面を向けたメニスカス状 40 の負レンズ、負レンズ、物体側に凸面を向けた正レン ズ、負レンズを有することである。

☆【0086】第2群のレンズ構成の特徴は第1発明と同 じである。

【0087】 (イー5)前記第2群の正レンズの物体側 の面の曲率半径をR23a、像側の面の曲率半径をR2 3 b としたとき

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9

• • • (6)

の条件式を満足することである。

【0088】(ウ)第3発明

(ウー1)第3発明は物体側より順に、変倍及び合焦の 際に固定の正の屈折力の第1群、変倍機能を有する負の 屈折力の第2群、正の屈折力の第3群、変倍により変動

の第4群を有したズームレンズにおいて、該第1群は、 物体側より順に、負レンズと正レンズで構成された接合 レンズ、物体側に凸面を向けた2枚のメニスカス状の正 レンズからなり、該第3レンズ群全体を光軸と垂直方向 に移動させてズームレンズが振動した時の撮影画像のぶ する像面を補正すると共に合焦機能を有する正の屈折力 50 れを補正しており、前記第1群の正レンズの材質のアッ

べ数の平均をv1、第1群の焦点距離をf1、第2群の 焦点距離をf2、広角端での全系の焦点距離をfw、望* *遠端での全系の焦点距離を f t としたとき

 $60 < v1 < 85 \cdots (1)$

2. $0 < f 1 / (f w \times f t)^{1/2} < 2. 6 \cdots (2)$

0. $3 < | f 2 | / (f w \times f t)^{1/2} < 0. 6 \cdot \cdot \cdot (3)$

の条件式を満足することである。

【0089】第3群を偏心させて防振を行うことの特徴は第2発明と同様である。

【0090】(ウー2)前記第3群は、物体側より順に、物体側に凸面を向けた正レンズ、像側に凹面を向け 10 た負レンズ、両レンズ面が凸面の正レンズで構成されることである。 ※

※【0091】第3群の特徴は第2発明と同様である。

【0092】(ウー3)前記第3群の最も物体側の正レンズの物体側の面の曲率半径をR31a、像側の面の曲率半径をR31b、前記第3群の負レンズの物体側の面の曲率半径をR32bとしたとき

1. 0 < (R31b+R31a) / (R31b-R31a) < 12. 0

 \cdots (4)

-4.0 < (R32b+R32a) / (R32b-R32a) < -1.5

20

 \cdots (5)

の条件式を満足することである。

【0093】(ウー4)前記第2群は、物体側より順に、物体側に比べ像側に強い凹面を向けたメニスカス状の負レンズ、負レンズ、物体側に凸面を向けた正レンズ、負レンズを有することである。

L .

3 b としたとき

0. 2 < (R23b+R23a) / (R23b-R23a) < 0.9· · · (6)

【0095】(ウー5)前記第2群の正レンズの物体側

の面の曲率半径をR23a、像側の面の曲率半径をR2

★【0094】第2群の特徴は第1発明と同様である。

の条件式を満足することである。

【0096】 (エ) 第1~第3発明において、更に変倍 に伴なう収差変動を少なくし、前変倍範囲にわたり高い 光学性能を得るには次の諸条件のうちの1以上を満足さ せるのが良い。

【0097】(エー1)前記第3群の最も物体側のレンズ面は非球面であることである。

【0098】第3群中の最も物体側のレンズに非球面を 設けると、第3群で球面収差を抑制し、防振時に発生す る偏心コマ収差を低減するのに好ましい。

【0099】 (エー2) 前記第4群は、2枚の正レンズ と負レンズで構成されることである。

【0100】第4レンズ群を2枚の正レンズと1枚の負 レンズで構成すると、変倍時やフォーカス寺院第4レン ズ群が移動する事による球面収差や像面湾曲の変動を低 減するのに好ましい。

【0101】 (エー3) 前記第4群の少なくとも1枚の 40 正レンズは非球面を有することである。

【0102】(エー4)前記ズームレンズは、開口絞りを有し、変倍時に該開口絞りの最大開放径を全系の焦点距離に応じて可変とすることである。

【0103】本発明のズームレンズにおいて、さらに防 振時の光量変化低減を達成するためには変倍時に絞り開 口径を望遠側で小さくして中心光束を制限することで相 対的に周辺光量を増加するようにしてやるのが良い。

【0104】(エー5)前記第3群の物体側又は像面側に固定の絞りを設けたことである。

【0105】防振のためのシフト群(第3群)の敏感度を適切に設定することが防振性能に大きく影響する。

【0106】本発明において、第3レンズ群は防振のために移動する分、レンズ径をそれだけ大きくしてやる必要がある。従って、余計な軸上光束が入り過ぎないようにするには、第3レンズ群の物体側あるいは像面側に固定の絞りを配置するのが望ましい。本実施例では、第3レンズ群と第4レンズ群の間に固定絞りを配置することでスペースを有効に利用しつつ、不要な光束が入らないようにしている。

【0107】次に前述の各条件式の技術的意味について説明する。

【0108】条件式(1)は、第1群の正レンズの材質のアッペ数を規定する式である。本発明のズームレンズは、第1群の正レンズを低分散ガラスとして望遠側の二次スペクトルを低減している。一般に、アッペ数が大きいほど低分散傾向となるが、アッペ数が80を超えるガラスは加えて異常分散性があり、二次スペクトルの補正には有利であるがコストが極めて高いという課題を有する。とりわけ汎用性を要するズームレンズの場合は、コスト面で条件式(1)の上限を超えないのが望ましい。また条件式(1)の下限を超えると、第1群のメニスカスレンズを2枚としても、硝材自体の色分散が大きく二次スペクトルの発生が大きくなるため良くない。

【0109】条件式(2)は、第1群の屈折力を規定する式である。条件式(2)の下限を超えて第1群の屈折50力が強くなると、条件式(1)を満たしていても二次ス

ペクトルの発生量が大きく好ましくない。また、広角側で発生する倍率色収差が大きくなり補正困難となるためよくない。逆に上限を超えて第1群の屈折力が弱まると、レンズ全長が長くなり小型化の点でよくない。

【0110】条件式(3)は、第2群の屈折力を規定する式である。条件式(3)の下限を超えて第2レンズ群の屈折力が強くなると、変倍時の第2レンズ群の移動量は小さくなるが、ペッツバール和が全体に負の方向に大きくなり像面湾曲の補正が困難になるので良くない。逆に(2)の上限を超えると、第2レンズ群の変倍時の移助量が大きくなり、レンズ系全体が小型にならないと共に、防振時の周辺光量変化に関しても不利になるので良くない。

【0111】条件式(4)は、第3群の最も物体側の正レンズの形状因子を規定する式である。条件式(4)は、1より大きいと物体側に凸面を向けたメニスカス形状である。条件式(4)の上限を超えて、メニスカスの度合いが強まると各レンズ面で発生するコマ収差が大きくなり、高次のコマ収差が発生する。特に、防振時の偏芯コマ収差の発生が顕著になり、防振時の性能劣化となるためよくない。また下限を超えて両凸形状となると、物体側の面で発生する倍率色収差を像側面で補正する作用が弱まるためよくない。

【0112】条件式(5)は、第3群の負レンズの形状 因子を規定する式である。条件式(5)は、一1より小さいと像側に凹面を向けたメニスカス形状である。条件式(5)の下限を超えてメニスカスの度合いが強まると、像側レンズ面において一次の軸上色収差が補正過剰に作用し、g線がd線に対してオーバーとなりすぎるためよくない。また上限を超えてメニスカスの度合いが弱 30まると、第3レンズ群をテレフォト構成とする作用が弱まり、レンズ全長が長くなるためよくない。

【0113】条件式(6)は、第2群の正レンズの形状 因子を規定する式である。条件式(6)は、0のとき物体側のレンズ面と像側のレンズ面の曲率が等しい両凸形状であり、1のとき物体側に凸面を向けた凸平形状であり、0より大きく1より小さい間は、像側のレンズ面より物体側のレンズ面の曲率の方がきつい両凸形状である。条件式(6)の上限を超えて凸平形状に近づくと、広角側にて像側レンズ面で倍率色収差を補正する効果が 40 薄れ補正不足となる。また下限を超えて同曲率形状に近づくと、望遠側にて像側レンズ面での倍率色収差を補正する効果が強まりすぎ補正過剰となる。よって変倍全域にて倍率色収差を補正するには条件式(6)の範囲内が好ましい。

【0114】図3、図7、図11、図15の本発明の数値 実施例の光学系の具体的な構成について説明する。

【0115】本実施例では、第1レンズ群を物体側から順に負レンズ11と正レンズ12からなる正の接合レンズ、物体側に凸面を向けた2枚のメニスカス状の正レン 50

ズ13、14で構成している。二波長に対してバックフォーカスが一致するように軸上色収差を補正したときに、他波長での残存色収差を二次スペクトルというが、一般的には、軸上ランド光線の光軸からの高さが高くなる望遠レンズにおいて大きく発生する。正、負、正、正の屈折力のレンズ群より成る4群構成のズームレンズにおいては、望遠側ほど第1レンズ群における軸上ランド光線の光軸からの高さが高くなるため、二次スペクトルは、第1レンズ群において望遠側ほど大きく発生する。本実施例では、第1群のメニスカス状の正レンズを2枚として収斂作用を分担させるとともに、正レンズに低分散ガラスを用いて、二次スペクトルの発生を極力低減している。これにより、蛍石等の加工の難しい材料を用いず、二次スペクトル補正を良好に図っている。

【0116】本実施例では、第3レンズ群を物体側から順に正レンズ31、像面側に凹面をむけたメニスカス状の負レンズ32、正レンズ33で構成している。正レンズ31はその物体側の面が非球面である。第3レンズ群中に、像面側に凹面を向けたメニスカス状の負レンズ32を設けることにより、第3レンズ群全体をテレフォト構成として第2レンズ群と第3レンズ群の主点間隔を短縮し、レンズ全長の短縮化を達成している。

【0117】このようなメニスカス状の負レンズ32を設けた場合、そのレンズ面で正の歪曲収差が発生し、これが防振時における偏心歪曲が大きくなる原因となる。この減少を低減させるには、第3レンズ群全体で発生する歪曲収差を少なくしてやればよい。本実施例では、メニスカス状の負レンズ32の像面側に、正レンズ33を配置することによって、ある程度のテレフォト構成を維持しつつ、第3レンズ群内で歪曲収差を補正し、第3レンズ群をシフト(偏心)して防振を行う際に発生する偏心歪曲収差の発生を低減している。

【0118】また本実施例では、正レンズ31の物体側の面を非球面形状とすることにより、第3レンズ群で発生する球面収差を抑制するとともに、防振時に発生する偏心コマ収差を低減している。

【0119】また本実施例では、第4レンズ群を2枚の 正レンズ41、43と1枚の負レンズ42で構成するこ とにより、変倍時やフォーカス時に、第4レンズ群が移 動することによる球面収差や像面湾曲の変動を低減して いる。本実施例では、正レンズ43の1つのレンズ面を 非球面形状とすることにより変倍全域に渡って像面彎曲 をさらに良好に補正している。

【0120】以上のように、本発明によればズームレンズの一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、ズームレンズが振動(傾動)したときの画像のぶれを補正するように構成することにより、装置全体の小型化、機構上の簡素化及び駆動手段の負荷の軽減を図りつつ、該レンズ群の偏心させたときの偏心収差発生量を少なく抑え、偏心収差を良好に補正し

た防振機能を有したズームレンズを達成することが出来 る。

【0121】特に本発明のズームレンズでは、変倍比8 以上の大きな変倍比を持ちながら、従来のビデオカメラ 用レンズと比較して望遠側の二次スペクトルが良好に補 正され高い光学性能を有し、100万画素以上の画素を 有するデジタルカメラにも十分対応できるズームレンズ 及びそれを用いた各種の光学機器を実現することが出来 る。

【0122】次に本発明のズームレンズを撮影光学系と 10 して用いたデジタルカメラ(光学機器)の実施形態を図1 9を用いて説明する。

【0123】図19において、10はカメラ本体、11 は本発明のズームレンズによって構成された撮影光学 系、12は被写体像を観察するためのファインダーである。

【0124】13はストロボ装置、14は測定窓、15はカメラの動作を知らせる液晶表示窓、16はレリーズボタン、17は各種のモードを切り替える操作スイッチである。

【0125】次に本発明の数値実施例1~4の数値デー

タを示す。数値実施例においてRiは物体側より順に第i番目の面の曲率半径、Diは物体側より順に第i番目と第i+1番目間のレンズ厚及び空気間隔、Niとviは各々物体側より順に第i番目の光学部材の材質の屈折率とアッベ数である。又前述の各条件式と数値実施例の関係を表-1に示す。

【0126】非球面形状は光軸方向にX軸、光軸と垂直 方向にH軸、光の進行方向を正としRを近軸曲率半径、 Kを円錐定数、B, C, D、Eを各々非球面係数とした とき

[0127]

【数1】

$$X = \frac{(1/R)H^2}{1 + \sqrt{1 - (1 + K)(H/R)^2}} + BH^4 + CH^6 + DH^6 + EH^{10}$$

【0128】なる式で表している。

【0129】「e-x」は10~を意味している。

【0130】fは焦点距離、FnoはFナンバー、wは 画角を示す。

20 [0131]

【外1】

【数据实施的1】

f =1~ 9.70	, Fno=288~	400 2ω=604	~ 6.9*
K1= 881	0 D1= 0.31	N 1= L846660	ν 1=23.9
R2= 5.68	9 D2= 1.04	N 2 = 1.487490	ν 2=702
R3= 1713	10 D3= 0.03		
R4= 7.15	6 D4= 0.38	N 3 = 1.487490	v 3=70.2
R5= 1373	O D5= 0.03		
R6= 5.00	7 D6= 0.64	N 4= 1.487490	ν 4=702
R7= 20.63	11 D7= 可変		
R8= 997	G D8= 0.14	N 5 = 1.834000	ν 5=37.2
R9= L18	5 D9= 0.66		
R10= -3.13	010 = 0.13	N 6= 1.696797	ν 6=55.5
R11 = 88.2	95 D11= 0.04		
R12= 214	12 D12= 0.43	N7=L846660	ν 7=23.9.
R13= -10.79	93 D13= 0.11	N 8 = 1.666718	v 8=483
R14= 2.73	20 D14= 可変		
R15= 校生	D15= 0.22		
R16= 1.78	B1 D16= 0.37	N 9= 1583126	ν 9=59.4
R17= 5.10	22 D17= 0.41		
R18= 5.3	22 D18= 0.09	N10=1.761821	ν 10=26.5
R19= 22	54 D19= 0.08	11:00	
R20= 6.74	14 D20= 0.31	N11 = 1.516330	ν11= 64.1
R21 = -3.00	57 D21= 0.21		
R22 = 71/7	ッH校り D22= 可変		
R23= 2.23	31 D23 = 0.33	N12=1.772499	v12 = 49.6
R24 = -14.14	43 D24 = 0.10	N13≈ L846660	ν 13 = 23.9
R25 = 3.80	33 D25 = 0.07		
R26 = 15.5	82 D26 = 0.37	N14 = 1.583126	v 14 = 59.4
R27 = -6.30	5 D27 = 0.64		
R28= ∞	D28 = 0.51	N15 = 1.516330	v 15=64.1
1629= ∞			
\焦点 的	翼 1.00 4.66	9.70	
小孩里是	1.UU 4L00	3.10	

D14 0.35 4.53 L.27 D22 1.69 1.35

非球面探数

RIG k=6.74290e+00 B=1.26464e-01 C=9.81894e-02 D=5.60704e-02 E=0.00000e+00 R27 k=5.51053e+01 B=1.46213e-02 C=1.92162e-02 D=923759e-03 E=0.00000e+00

[0132]

(KALEE 16912)

D1= 0.26 N1=1846660 ν 1=23.9 R1= 8.598 D2= 0.90 N2=1496999 v = 81.5R2 = 5.921D3 = 0.03R3 = 49.599 R4= 9.199 D4= 0.47 N 3= 1.496999 ν 3=8L5 D5= 0.03 R5= 36.042 RG= 4.851 D6= 0.61 N 4= 1.496999 ν 4=81.5

 $f = 1 \sim 1201$ Fn $o = 288 \sim 4.50$ $2\omega = 60.4^{\circ} \sim 5.5^{\circ}$

R7= 15.338 D7= 可接 R8= 13.103 D8= 0.14 N5=1.834000 ν 5=372 R9= 1.244 D9= 0.62 R10= 3.339 D10= 0.13 N6=1.622296 ν 6=53.2 R11= 4.242 D11= 0.04

R11= 4242 D11= 0.04 R12= 2.468 D12= 0.43 N7=1.846660 ν 7=23.9 R13= -5.632 D13= 0.11 N8=1.772459 ν 8=49.6 R14= 7.467 D14= 可変 R15= 校り D15= 0.22

R16= 1.801 D16= 0.37 N9=1.583126 ν 9=59.4 R17= 10.255 D17= 0.41 R18= 4.645 D18= 0.09 N10=1.761821 ν 10=26.5

R19= 2.096 D19= 0.13 R20= 38.937 D20= 0.31 N11=1.516330 ν11=64.1 R21= 2.877 D21= 0.21

R22= 747h 接り D22= 可変 R23= 2081 D23= 0.33 N12=1.772499 v12=49.6 R24=-12546 D24= 0.10 N13=1.846660 v13=23.9 R25= 3.468 D25= 0.09

 R26=
 22.380
 D26=
 0.37
 N14=1583126
 ν 14=59.4

 R27=
 -5.915
 D27=
 0.64

 R28=
 ∞
 D28=
 0.51
 N15=1.516330
 ν 15=64.1

1229= ∞

大焦点距離 1.00 5.06 12.01

可當問為

D7 0.11 3.45 4.39 D14 4.55 1.21 0.27 D22 1.70 0.97 1.94

非球的探数

R16 k=6.89869e+00 B=1.24987e-01 C=1.01131e-01 D=5.94363e-02 E=0.00000e+00 R27 k=4.72252e+01 B=1.26681e-02 C=2.08024e-02 D=8.00443e-03 E=0.00000e+00

[0133]

【外3】

【数据共轭到3】

 $f = 1 \sim 7.99 \text{ Fro} = 2.88 \sim 4.00 \ 2\omega = 60.4^{\circ} \sim 8.3^{\circ}$ ν 1=239 N1=1846660 R 1= · 9.117 D1= 031 D2= 0.98 N2=1487490 ν 2=70.2 R2 = 5.499R3 = 59.838D3 = 0.03R4= 6.961 D4= 047 N3=1.516330 ν 3=611 R5= 18659 D5 = 0.03R6= 4.983 D6= 0.66 N 4 = 1.516330 v 4=641 D7= 可変 R7= 22.079 R8= 12023 D8= 0.14 N 5 = 1.834000 v = 37.2R9= 1.192 D9= 0.65 D10= 0.13 N 6= 1.638539 v 6≂55.4 R10= -3.336 R11= 13.352 D11= 0.04 R12= 2133 D12= 0.43 N7=1.846660 v 7=23.9 D13= 0.11 N8=1623740 R13= -8.463 v 8=47.1 R14= 2.604 D14= 可変 R15= 絞り D15= 0.22 1.784 D16= 0.37 N9=1583126 ν 9=59.4 R16= R17= 4.894 D17= 0.41 R18= 5.300 D18= 0.09 N10=1.761821 v 10=26.5 R19= 2319 D19= 0.10 R20= 13318 D20= 0.31 N11 = 1.516330 v11=64.1 D21= 0.21 R21 = -2963 R22= 7/75/1校り D22= 可変 1223= 2.025 D23 = 0.33 N12=1.772499 v12≃496 R24 = 86.132 D24 = 0.10 N13=1846660 v 13 = 23.9D25 = 0.07 R25= 2994 R26= 7.518 D26= 0.37 N14=1.583126 ν 14 = 59.4 D27= 0.64 R27 = -6.436 R⊻8⇒ ∞ D28= 0.51 N15 = 1.516330 v 15≃64.1 R29= ∞ **、焦点路数 1.00 4.09** 7.99 可質問稱人 D7 0.11 3.01 3.82 0.77 D14 4.49 1.59

D22

1.68 1.12

R16 k=674290+00 B=1.26705e-01 C=9.81992e-02 D=5.68039e-02 E=0.00000e+00 k27 k=551063e+01 B=9.35902e-03 C=2.05724e-02 D=1.00942e-02 E=0.00000e+00

[0134]

【外4】

【数量实施例4】

 $f = 1 \sim 9.70$ Fn $o = 2.88 \sim 4.00$. $2\omega = 60.4$ ~ 6.9

R1=	8.854	D1 = 0.31	N 1=1846660	ν 1=23.9
R2=	5.717	D2= 1.05	N 2= 1.487490	ν 2=70.2
R3= 3	32A.779	D3= 0.03	•	
R4=	6.859	D4 = 0.40	N 3 = 1.487490	v 3 = 70.2
R6=	13.181	D5= 0.03		
R6=	4.876	D6= 0.65	N 4 = 1.487490	ν 4=70.2
R7=	19.583	D7= 可変		
R8=	10.259	D8= 013	N 5 = 1.834000	ν 5=37.2
R9=	1.188	D9= 0.67		
R10=	3.169	D10= 0.12	N 6= 1.719995	ν 6=50.2
R11=	-63.363	D11= 0.06		
R12=	2.091	D12= 0.42	N 7 = 1.846660	v 7=23.9
R13=	12.583	D13= 0.09	N8=1666718	ν 8=48.3
R14=	2511	D14= 可変		
R15=	絞り	D15= 0.22		
R16=	1.844	D16= 0.35	N9=1.583126	ν9=59.4
R17=	2.199	D17= 0.43		
R18=	6.216	D18= 0.12	N10=1.805181	v 10 = 25.4
R19=	3.186	D19= 0.38	N11 = L516330	ν11=64.1
R20=	3.496	D20= 0.21		•
R21 =	ルカナト校	り D21= 可変		
R22=	2.496	D22= 0.33	N12=1.772499	v 12 = 49.6
R23=	-29.526	D23 = 0.08	N13=1.846660	v 13 = 23.9
R24=	3.175	D24 = 0.09		
R25=	4.299	D25= 0.36	N14=1.583126	ν 14 = 59.4
R26=	6.658	D26= 0.64		
R27 =	œ	D27 = 0.51	N15 = 1.516330	v15=64.1
R28=	∞			

人焦点距離 1.00 4.58 9.70

可数型隔入

D7 0.11 3.27 4.16 D14 441 1.25 0.36 D21 1.90 1.27 1.79

非缺而保数

R16 k=5.37248e+00 B=8.87676e-02 C=5.21845e-02 D=3.11975e-02 E=0.00000e+00 R26 k=5.81720e+01 B=1.10894e-02 C=1.43113e-02 D=7.07892e-03 E=0.00000e+00

[0135]

* *【表1】

[表1]

	数 値 実 施 例				
	1	2	3	4	
条件式 (1)	70.2	81.5	66.1	70.2	
条件式 (2)	2.40	2.10	2.47	2.33	
条件式 (3)	0.45	0.41	0.50	0.45	
条件式 (4)	2.07	1.42	2.15	11.37	
条件式 (5)	2.47	-2.64	-2.56	·3.10	
条件式 (6)	0.67	0.39	0.60	0.72	

[0136]

【発明の効果】本発明によれば高変倍比で多くの画素よりなる固体撮像素子を用いたときにも、十分対応できる高い光学性能を有したズームレンズ及びそれを用いた光学機器を達成することができる。

【0137】この他本発明によれば光学系の一部を構成する比較的小型軽量のレンズ群を光軸と垂直方向に移動させて、該光学系が振動(傾動)したときの画像のぶれを補正するように構成するとともに、画素のぶれを補正 50

するためのレンズ群の構成を適切なものとすることにより、装置全体の小型化、機構上の簡素化及び駆動手段の 負荷の軽減化を図りつつ、該レンズ群を偏心させた時の 偏心収差を良好に補正した防振機能を有し、かつ望遠側 の二次スペクトルを良好に補正し、100万画素以上の 撮像素子を用いたカメラであっても、十分対応すること ができるズームレンズ及びそれを用いた光学機器を達成 することができる。

0 【図面の簡単な説明】

【図1】 本発明におけるズームレンズの近軸屈折力配置 の概略図

【図2】本発明における防振系の光学的原理の説明図

【図3】数値実施例1のズームレンズの広角端のレンズ 断面図

【図4】 数値実施例1のズームレンズの広角端での収差

【図5】数値実施例1のズームレンズの中間位置での収 差図

【図6】数値実施例1のズームレンズの望遠端での収差 10 図

【図7】数値実施例2のズームレンズの広角端のレンズ 断面図

【図8】 数値実施例2のズームレンズの広角端での収差 図

【図9】数値実施例2のズームレンズの中間位置での収 差図

【図10】数値実施例2のズームレンズの望遠端での収 差図

【図11】数値実施例3のズームレンズの広角端のレン 20 ズ断面図

【図12】数値実施例3のズームレンズの広角端での収 差図

【図13】数値実施例3のズームレンズの中間位置での 収差図

【図14】数値実施例3のズームレンズの望遠端での収*

* 差図

【図15】数値実施例4のズームレンズの広角端のレン ズ断面図

【図16】数値実施例4のズームレンズの広角端での収 差図

【図17】数値実施例4のズームレンズの中間位置での 収差図

【図18】数値実施例4のズームレンズの望遠端での収 差図

【図19】本発明の光学機器の要部概略図 【符号の説明】

L1… 第1レンズ群

L2…第2レンズ群

L3…第3レンズ群

L 4…第4 レンズ群

d…d線

g…g線

c···c線

F···F線

ΔM···メリディオナル像面

Δ S…サジタル像面

SP…絞り

FP…フレアカット絞り

I P…結像面

G…CCDのフォースプレートやローパスフィルター等

のガラスプロック

(C)

[図1]

【図2】

【図3】

[図4]

【図5】

【図6】

[図7]

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【図14】

[図15]

【図16】

【図17】

[図18]

【図19】

フロントページの続き

Fターム(参考) 2H044 EF04

2H087 KA02 KA03 MA15 NA07 PA10

PA11 PA16 PA20 PB14 QA02

QA07 QA17 QA21 QA25 QA34

QA42 QA45 RA05 RA12 RA13

RA36 RA42 SA23 SA27 SA29

SA32 SA63 SA65 SA72 SA74

SB05 SB15 SB24 SB34