

(11)Publication number:

05-292139

(43)Date of publication of application: 05.11.1993

(51)Int.CI.

H04L 27/22 H04L 27/38

(21)Application number: 04-096446

(71)Applicant :

OKI ELECTRIC IND CO LTD

(22)Date of filing:

16.04.1992

(72)Inventor:

ONO SHIGERU

(54) RECEIVER ESTIMATING MAXIMUM LIKELIHOOD SERIES

(57)Abstract:

PURPOSE: To improve the reception characteristic with less processing quantity.

CONSTITUTION: The receiver is provided with a transversal matching filter 5, a transmission line estimate circuit 9 estimating an impulse response of a transmission line, and a state estimate circuit 6 estimating a transmission symbol series from an output of the matching filter 5 based on the estimated impulse response. Then the transmission line estimate circuit 9 sets a time interval to the estimated impulse response so that a largest sample points in the order of the amplitude from a sample point having the maximum amplitude corresponding to a tap number of the matching filter 5, sets a tap coefficient based on only the sample points in the time interval and estimates a transmission symbol series. The optimum impulse response of the transmission line whose length is NT is estimated by implementing the amplitude comparison of the signals without calculation of a square sum of the amplitude of the signals.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平5-292139

(43)公開日 平成5年(1993) 11月5日

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 4 L 27/22 27/38 D 9297-5K

9297 – 5 K

H 0 4 L 27/00

G

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特願平4-96446

(71)出願人 000000295

冲電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(22)出願日 平成4年(1992)4月16日

(72)発明者 小野 茂

東京都港区虎ノ門1丁目7番12号 沖電気工

業株式会社内

(74)代理人 弁理士 鈴木 敏明

(54) 【発明の名称】 最尤系列推定受信機

(57)【要約】

【目的】 処理量が少なく受信特性の良い最尤系列推定 受信機を提供する。

【構成】 トランスバーサル型の整合フィルタ5と、伝送路のインパルス応答を推定する伝送路推定回路9と、この推定したインパルス応答を基に整合フィルタ5の出力から送信シンボル列を推定する状態推定回路6とを有する。そして、伝送路推定回路9が、推定したインパルス応答を、整合フィルタ5のタップ数に対応しかつ最大の振幅を有するサンプル点から振幅の大きな順に予定しきい値以上の振幅を有する最も多くのサンプル点を含むような時間間隔を設定し、この時間間隔内のサンプル点を含むな時間間優を設定し、この時間間隔内のサンプル点を含むな時間である。信号振幅の二乗和の計算を行うことなく信号の振幅比較を行うだけで長さNTの最適な伝送路のインパルス応答を推定できる。

本発明の最尤系列権定受信機の構成を示すプロック図

10

30

【特許請求の範囲】

【請求項1】 雑音の影響を最小化するトランスバーサ ル型の整合フィルタと、伝送路のインパルス応答を推定 する伝送路推定回路と、この伝送路推定回路で推定した インパルス応答を基に前記の整合フィルタの出力から送 信シンボル列を推定する状態推定回路とを有する最尤系 列推定受信機において、

前記の伝送路推定回路が、推定したインパルス応答を、 前記の整合フィルタのタップ数に対応し、かつ、最大の 振幅を有するサンプル点から振幅の大きな順に予め定め たしきい値以上の振幅を有する最も多くのサンプル点を 含むような時間間隔を設定し、この時間間隔内のサンプ ル点のみを基に前記の整合フィルタのタップ係数の設定 と前記の状態推定回路における送信シンボル列の推定と を行うことを特徴とする最尤系列推定受信機。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高速ディジタル移動通 信において用いられる最尤系列推定受信機に関するもの である。

[0002]

【従来の技術】従来のこの種の最尤系列推定受信機につ いては、『IEEE Journal on SelectedAreas in Communi cations, Vol. 7, No. 1, pp. 122-129, January 1989 J に記載されている。高速ディジタル移動通信において は、マルチパス伝搬による周波数選択性フェージングの ために、伝送特性が大きく劣化する。そして、この劣化 を補償するために、最尤系列推定受信機を用いることが 多く検討されている。最尤系列推定受信機は、受信信号 の帯域外雑音をフィルタで除去した後、信号をディジタ ル化し、雑音の影響を最小化する整合フィルタを通し、 その出力からビタビアルゴリズムを用いて送信シンボル を最尤推定するものである。整合フィルタのタップ係数 は、データの処理の前または平行して伝送路のインパル ス応答を推定し、これを基に設定する。また、この推定 したインパルス応答は、送信シンボルの最尤推定のため にも用いられる。最尤系列推定受信機は、一般に、周波 数選択性フェージングの下では、これによる劣化を補償 する他の適応等化受信機と比較して、良好な受信特性を 有する。しかし、整合フィルタのタップ数が大きくなる につれて急激に処理量が増加するため、従来は実現が難 しいと考えられていた。しかし、最近は、ディジタル信 号処理技術の発展により、実現のための検討が盛んに行 われている。

【0003】最尤系列推定受信機では、処理量を小さく 抑えるため、整合フィルタのタップ数を最小限に抑える 必要がある。このため、時間でまで遅れたマルチパスを 考慮する必要がある場合、信号のサンプリング周期をT として、整合フィルタのタップ数はN=τ/T+1とす 2

整数化する。これに対して、推定した伝送路のインパル ス応答は、通常時間 τ よりも長い期間に渡って拡かって いるため、これを期間NTで打ち切る必要がある。イン パルス応答に対するこの期間NTの最適な採り方は、マ ルチパスの状況によって異なる。もし、期間NTを常に 同じ位置に設定すると、受信特性の劣化を生じる。この ため、マルチパスがない場合は信号のピークを期間NT の中心付近にすればよいが、マルチパスがある場合は一 般に主信号とマルチパスの両方のピークが期間NT内に 入るようにする必要がある。上記の文献に示されるよう に、従来は、期間NT内のエネルギが最大になるように 設定していた。

[0004]

【発明が解決しようとする課題】しかしながら、以上に 説明した従来の最尤系列推定受信機においては、期間N T内の信号エネルギを期間NTが採り得る全ての位置に 対して計算する必要があり、エネルギの計算は信号振幅 の二乗和の計算であるため、この位置の決定のために大 きな計算量が必要であるという問題点があった。そこ 20 で、本発明の目的は、計算量が少なく受信特性の良い最 尤系列推定受信機を提供することにある。

[0005]

【課題を解決するための手段】本発明は、前記の問題点 を解決するために、雑音の影響を最小化するトランスバ ーサル型の整合フィルタと、伝送路のインパルス応答を 推定する伝送路推定回路と、この伝送路推定回路で推定 したインパルス応答を基に前記の整合フィルタの出力か ら送信シンボル列を推定する状態推定回路とを有する最 尤系列推定受信機において、前記の伝送路推定回路が、 推定したインパルス応答を、前記の整合フィルタのタッ プ数に対応し、かつ、最大の振幅を有するサンプル点か ら振幅の大きな順に予め定めたしきい値以上の振幅を有 する最も多くのサンプル点を含むような時間間隔を設定 し、この時間間隔内のサンプル点のみを基に前記の整合 フィルタのタップ係数の設定と前記の状態推定回路にお ける送信シンボル列の推定とを行うように最尤系列推定 受信機を構成したものである。

[0006]

【作用】本発明によれば、以上のように最尤系列推定受 信機を構成したため、信号振幅の二乗和の計算を行うこ となく信号の振幅比較を行うだけで長さNTの最適な伝 送路のインパルス応答を推定できる。このため、上記の 問題点を解決できるのである。

[0007]

【実施例】図1は、本発明の最尤系列推定受信機の実施 例を示すブロック図である。図1において、1は受信信 号入力端子、2は周波数変換回路、3は低域通過フィル タ(以下、LPFと記述する)、4はアナログ/ディジ タル変換回路(以下、A/D変換回路と記述する)、5 ることが多い。但し、この除算は、仮数部を切り上げて 50 は整合フィルタ、6は状態推定回路、7は推定信号出力

30

端子、8は係数設定回路、9は伝送路推定回路、10は 推定回路、11は位置設定回路、12は信号発生回路で ある。受信信号入力端子1へは、受信機のアンテナから 受信した無線周波数帯の信号が到達する。この信号は、 周波数変換回路2において、同期検波などによりベース バンド信号に変換される。このとき、変調方式がQPS KやMSKといった直交変調型の方式であれば、同相成 分と直交成分の2つが出力される。この場合、図1にお いて、周波数変換回路2以降は、全て同相と直交の2つ の信号を取り扱うことになる。周波数変換回路2からの 信号は、LPF3において所望周波数帯域外の雑音を除 去され、A/D変換回路4においてディジタル信号に変 換される。そして、このディジタル信号は、まず整合フ ィルタ5へ入力される。

【0008】図2は整合フィルタ5の構成例を示すプロ ック図である。図2において、13は入力端子、14は 加算回路、15は出力端子、21、22、…、2Nは遅 延回路、30、31、…、3Nは乗算回路、C0、C 1、…、CNはタップ係数である。図2は、いわゆるト ランスバーサル型のフィルタである。図2は、次数Nが 20 5の場合に対応する図となっている。入力端子13から 入力されたディジタル信号は、N個のディジタル信号の 周期Tの遅延時間を有する遅延回路21、22、…、2 Nを通過し、入力端子13と遅延回路21、22、…、 2 Nからのそれぞれの出力信号が、乗算回路30、3 1、…、3Nにおいてそれぞれタップ係数C0、C1、 …、CNを乗算され、加算回路14でこれらの出力信号 を全て加算して、出力回路15へ出力される。直交変調 型においては、同相成分を実数部、直交成分を虚数部と して、複素数で信号を表すことが普通であり、この場 合、タップ係数C0、C1、…、CNは複素数となる。 タップ係数C0、C1、…、CNは、雑音の影響を最小 化する整合フィルタとして動作するためには、伝送路の インパルス応答の時間反転複素共役となるように設定す る必要がある。これは、後述する係数設定回路8におい て行われる。

【0009】図1において、整合フィルタ5からの出力 信号は、状態推定回路6において、送信シンボルを最尤 推定し、結果が推定信号出力端子7へ出力される。状態 推定回路6における最尤推定は、通常ビタビアルゴリズ 40 ムを用いて行われる。ビタビアルゴリズムは、メトリッ クと呼ばれる評価量を用いて、最も確からしい送信シン ボルを逐次的に選択決定するものである。そして、この メトリックを計算するために伝送路のインパルス応答が 必要になる。伝送路のインパルス応答は、通常は未知で あるから、後述する伝送路推定回路9において推定を行 い、これを用いることになる。A/D変換器4からのデ ィジタル信号は、伝送路推定回路 9 へも供給される。伝 送路推定回路9では、伝送路のインパルス応答の推定を 行う。

【0010】図3は、高速ディジタル移動通信において 用いられるバースト信号の構成例を示す図である。これ は、欧州のディジタル移動通信システムであるGSMシ ステムの例を示している。バースト信号の中央付近にト レーニング系列と呼ばれる受信側で既知の系列が送られ ている。このトレーニング系列は、通常、インパルス状 の理想的な自己相関特性を有するように定められてい

【0011】図1において、伝送路推定回路9では、そ の中の信号発生回路12において、このトレーニング系 列を巡回した信号を変調方式に対応したベースバンド信 号として変調したディジタル信号を発生する。このディ ジタル信号は、推定回路10において、A/D変換回路 4からのディジタル信号とまず相関を採られる。この相 関を採った後の信号は、伝送路のインパルス応答を時間 反転したものとなっている。このため、推定回路10 は、この信号を更に時間反転する。相関操作と時間反転 を行った推定回路10の出力信号は、伝送路のインパル ス応答の推定値を示している。

【0012】図4は、伝送路のインパルス応答の例を示 す図である。(a) はマルチパスがない場合、(b) は マルチパスがある場合の例を示している。時間軸の目盛 は、ディジタル信号のサンプル点を示しており、数字は サンプル時間を示す。特にマルチパスがあるときには、 伝送路のインパルス応答は、整合フィルタがカバーでき る期間NTよりも長い期間、零と見なせない大きさの値 を有する。このため、伝送路のインパルス応答のどの部 分を整合フィルタ5と状態推定6で考慮するかが重要と なる。この位置の設定を、図1における位置設定回路1 1が行う。マルチパスがなく、伝送路のインパルス応答 の長さが比較的短いときには、図4(a)の太い両方向 実線矢印に示すように、信号のピークが期間NTの中央 付近になるようにすれば良い。しかし、図4(b)の太 い両方向矢印に示すように、大きく遅れたマルチパスが ある場合、大きな振幅を有する主波と副波の両方のピー クが期間NTに入るようにする必要がある。図1におけ る位置設定回路11は、以上のことを満すように期間N Tを設定する。

【0013】図5は、位置設定回路11における位置設 定アルゴリズムの例を示すフローチャートである。アル ゴリズムでは、まず、考慮すべき期間の推定回路 10か らの伝送路のインパルス応答の推定サンプル点につい て、振幅の大きな順にサンプル時間を並べ替える。これ には、各種のソートアルゴリズムを用いることができ る。次に、大きなサンプルから順に採っていき、最も多 くのサンプルが期間NTに入るようにこの期間NTの位 置を設定する。このとき、あまり小さい振幅まで考慮す ると、図4(a)の太い両方向点線矢印で示すように、 小さい振幅を大きく評価し過ぎて、最適な期間NTの位 50 置からずれることになる。このため、予め定めたしきい 5

値よりも小さい振幅は、無視するようにする。図5では、最大数を変更することで、これを行っている。また、図5では、期間NTを[下限,上限]で表している。

【0014】図1において、位置設定回路11は、このようにして設定した期間NT内のN個の伝送路のインパルス応答の推定サンプル点を係数設定回路8と状態推定回路6へ供給する。係数設定回路8は、このN個の伝送路のインパルス応答の推定サンプル点の復素共役をとり、上限側がC0、下限側がCNと時間が反対に対応す 10 るようにして、整合フィルタ5のタップ係数を設定する。また、状態推定回路6は、このN個の伝送路のインパルス応答の推定サンプル点を、ビタビアルゴリズムのためのメトリックの計算に使用する。

[0015]

【発明の効果】以上詳細に説明したように、本発明によれば、信号振幅の二乗和の計算を行うことなく信号の振幅比較を行うだけで長さNTの最適な伝送路のインパルス応答を推定でき、計算量が少なく受信特性の良い最尤系列推定受信機を提供することができる。

【図面の簡単な説明】

【図1】本発明の最尤系列推定受信機の実施例を示すプロック図

【図2】整合フィルタの構成例を示すプロック図

【図3】バースト信号の構成例を示す図

【図4】伝送路のインパルス応答の例を示す図

【図5】本発明の位置設定アルゴリズムの例を示すフローチャートである。

【符号の説明】

1 受信信号入力端子

2 周波数変換回路

3 低域通過フィルタ

4 アナログ/ディジタル変換回路

0 5 整合フィルタ

6 状態推定回路

7 推定信号出力端子

8 係数設定回路

9 伝送路推定回路

10 推定回路

11 位置設定回路

12 信号発生回路

13 入力端子

1 4 加算回路

20 15 出力端子

21、22、…、2N 遅延回路

30、31、…、3N 乗算回路

C 0、C 1、…、C N タップ係数

【図1】

本発明の最尤系列推定受信機の構成を示すブロック図

【図2】

聖台フィルタの構成例を示すプロック図

【図3】

TB	データ	トレーニング系列	データ	TB	GP
3	58	26	58	3	8. 25
					h

TB: テールピット GP: ガード間間

パースト信号の構成例を示す図

【図4】

伝送路のインパルス広答の例を示す図

【図5】

位置設定アルゴリズムの例を示すフローチャート