# Section 6 Technical Information

- Thermistor Theory
- Assuring Accurate Measurement
- Basic Thermilinear Applications
- How to Use Thermilinears
- Custom Thermilinear Ranges
- Resistance versus Temperature Tables
- Glossary

### Thermistor Theory

NTC thermistor materials are prepared by heating mixtures of metal oxides to high temperatures so that the oxides combine chemically to form the spinel crystallographic structure. The name derives from the mineral spinel, MgAl2O<sub>4</sub>, which has this structure. In this structure Mg occupies tetrahedral, or A sites, in the crystal lattice and Al occupies octahedral, or B sites. This is a normal spinel, with one 2+ metal ion on the A site, two 3+ metal ions on the B sites and four oxygens. This is commonly written Mg[Al2]O<sub>4</sub>, where the elements in the bracket represent the B sites.

An inverse spinel has half the trivalent ion on the A sites and the divalent ion on the B sites, such as nickel ferrite,  $Fe[NiFe]O_4$ . Various degrees of inversion can occur depending on the metal ions, the temperature of reaction, and any annealing cycles to which the material is subjected. A common thermistor material is nickel manganite, a partially inverse spinel with manganese present on the B sites in 3+ and 4+ states.

These types of materials are referred to as valence-controlled semiconductors. Conduction occurs when ions having multiple valence states occupy equivalent crystallographic sites. They must be the same element and differ in valence by one unit and occupy B sites. The conduction mechanism is a thermally activated electron hopping process, in which the electrons hop from one cation (Mn³+) to another (Mn⁴+) in the B lattice sites under the influence of a potential gradient across the material.

The conductivity is a product of charge density and mobility. Charge density is determined by the number of charge carries, the density of B sites and the probability of a B site being active. The mobility is determined by the distance between the nearest neighbor B sites, the activation energy (needed for the electron to move from one site to another) and a frequency factor (how often it tries to jump). Charge carries are also produced by other defects such as non-stoichiometry and grain boundaries.

By considering the effects of all the above factors, an expression for conductivity can be derived:

$$\sigma\!=\!\sigma_{_{\!\infty}}^{\phantom{(}\left(-q/kT\right)}$$

where S. is the infinite temperature conductivity (which includes consideration of charge density and mobility), -q is the activation energy, k is Boltzmann's constant, and T the absolute temperature. For thermistors, the resistivity s (and hence resistance) is of more interest and the above becomes

$$\sigma = \sigma_{\infty}^{(q/kT)}$$

#### **Beta Constant**

By replacing resistivity with resistance values and combining the activation energy and Boltzmann's constant terms, the familiar thermistor expression is obtained

$$R = A^{(\beta/T)}$$

where A includes dimensional factors and infinite temperature resistance,  $\beta$  is the material constant beta and T is the absolute temperature.

One can determine the beta constant by measuring the resistance at two temperatures and using the above equation,

equation;  

$$R_{1}/R_{2} = e^{(\beta/T_{1} - \beta/T_{2})}$$

$$\ln(R_{1}/R_{2}) = \beta(1/T_{1} - 1/T_{2})$$

$$\beta = \ln(R_{1}/R_{2}) / (1/T_{1} - 1/T_{2})$$

### **Alpha Temperature Coefficient of Resistance**

The temperature coefficient of resistance a is determined by

$$a = 1/R dR/dT$$

and is usually expressed in terms of % change in resistance per degree.

The coefficient of resistance and the material constant  $\beta$  are related to each other by

$$a = (-\beta/T^2)$$

Beta and a are two different ways of expressing the same property.

### **R versus T Approximation Methods**

Although the expression  $R = A^{\left( \beta / T \right)}$  gives good agreement with empirical data over short temperature spans, a better method of interpolation over larger temperature ranges is necessary for accurate temperature measurements.

### **Narrow Range Approximation Methods**

The following table shows two approximation methods, the applicable temperature range and range of deviation from nominal resistance.

| Equation                  | Temperature Range | Deviation      |  |  |  |
|---------------------------|-------------------|----------------|--|--|--|
| $Ln(R_{T}) = \frac{A}{T}$ | very small        | _              |  |  |  |
| $R_T = A^{(B/T)}$         | -20 to +120°C     | +0.94, -0.82°C |  |  |  |

#### Steinhart and Hart

The Steinhart and Hart equation is an empirical expression that has been determined to be the best mathematical expression for the resistance-temperature relationship of a negative temperature coefficient thermistor. It is usually found explicit in T:

$$1/T = a + b (Ln R) + c (Ln R)^{3}$$
 (1)

where:  $T = Kelvin units (^{\circ}C + 273.15)$ a,b,c = coefficients derived from measurement Ln R = natural logarithm of resistance in ohms

To find a, b and c, measure a thermistor at three temperatures. The temperatures should be evenly spaced, and at least  $10^{\circ}$ C apart. Use the three temperatures and resistances to solve three simultaneous equations.

$$1/T_1 = a + b (Ln R_1) + c (Ln R_1)^3$$

$$1/T_2 = a + b (Ln R_2) + c (Ln R_2)^3$$

$$1/T_3 = a + b (Ln R_3) + c (LnR_3)^3$$

The equations allow you to derive a, b and c for any temperature range. We have calculated these coefficients for the range 0 to 100°C with 50°C as the intermediate point. These are listed below for your use.

Coefficients derived from 0, 50 and 100°C catalog resistance

| Thermistor | 25°C                 | a         | b         | C         |
|------------|----------------------|-----------|-----------|-----------|
| type       | resistance           |           |           |           |
| 001A       | $100\Omega$          | 0.0017709 | 0.0003406 | 1.479E-07 |
| 002A       | $300 \Omega$         | 0.0015632 | 0.0003108 | 9.747E-08 |
| 003A       | $1\mathrm{K}\Omega$  | 0.001313  | 0.0002906 | 1.023E-07 |
| 004        | 2252 $\Omega$        | 0.0014733 | 0.0002372 | 1.074E-07 |
| 005        | $3\mathrm{K}\Omega$  | 0.0014051 | 0.0002369 | 1.019E-07 |
| 007        | $5\mathrm{K}\Omega$  | 0.001262  | 0.0002359 | 9.411E-08 |
| 017        | $6\text{K}\Omega$    | 0.0012473 | 0.000235  | 9.439E-08 |
| 016        | $10\mathrm{K}\Omega$ | 0.0011303 | 0.0002339 | 8.863E-08 |
| 006        | $10\mathrm{K}\Omega$ | 0.0010295 | 0.0002391 | 1.568E-07 |
| 800        | $30\text{K}\Omega$   | 0.0009354 | 0.0002211 | 1.275E-07 |
| 011        | 100 K $\Omega$       | 0.0008253 | 0.0002045 | 1.144E-07 |
| 014        | 300 K $\Omega$       | 0.0008207 | 0.0001848 | 1.014E-07 |
| 015        | $1\text{MEG}\Omega$  | 0.0008142 | 0.000167  | 8.819E-08 |
|            |                      |           |           |           |

Knowing a, b and c for the thermistor allows you to use the Steinhart and Hart equation in two ways. If resistance is known and temperature is desired, use equation (1) above. If the temperature is known and expected resistance is desired, use equation (2) below. Remember that T is in Kelvin units.

$$R = e^{\left[ \left( \beta - (\alpha/2) \right)^{1/3} - \left( \beta + (\alpha/2) \right)^{1/3} \right]}$$
 (2)

where

$$\alpha = (a - (1/T))/c$$
 and  $\beta = \left[ (\frac{b}{3c})^3 + \frac{\alpha^2}{4} \right]^{1/2}$ 

It should be noted that these values of alpha and beta are not related to the alpha and beta used with single term exponential equations.

The ability to precisely interpolate for a given temperature from measurements at known fixed-points depends in part on the closeness of those points. Fixed-points such as the water triple point, mercury triple point, gallium melting point and indium freezing point provide a solid basis for the interpolation.

For practical reasons some of the R vs. T tables have small interpolation differences when random values from the tables are used in the above equations, particularly over large temperature spans.

For more information, contact us at **800 747-5367** or **937 767-7241 •** Fax 937 767-9353 Info@YSI.com • www.YSI.com

### **Spreadsheet Program**

The following spreadsheet program (Lotus 123) allows calculation of the Steinhart and Hart coefficients, using three resistances at three temperatures. It calculates resistance, dR/dT or determines the temperature for a known resistance.

Labels start with an apostrophe ('). Brackets indicate data you must enter. Other cells are formulas.

B1: 'Temp.(C)

C1: 'Resistance

D1: 'T(K)

E1: 'In(R)

A2: 'Low

B2: [Input low temperature in °C]

C2: [Input low temp. resistance in ohms]

D2: +B2+273.15

E2: @LN(C2)

A3: 'Mid

B3: [Input mid temperature in °C]

C3: [Input mid temp. resistance in ohms]

D3: +B3+273.15

E3: @LN(C3)

A4: 'High

B4: [Input high temperature in °C]

C4: [Input high temp. resistance in ohms]

D4: +B4+273.15

E4: @LN(C4)

A6: 'In(R1)-In(R2)

B6: +E2-E3

A7: 'ln(R1)-ln(R3)

B7: +E2-E4

A8: '(1/T1)-(1/T2)

B8: 1/D2-1/D3

A9: '(1/T1)-(1/T3)

B9: 1/D2-1/D4

A11: 'Coefficients: a=

B11: 1/D2-B13\*E2^3-B12\*E2

A12: 'b=

B12: (B8-B13\*(E2^3-E3^3))/B6

A13: 'c=

B13: (B8-B6\*B9/B7)/((E2^3-E3^3)-B6\*(E2^3-E4^3)/B7)

A15: 'Solving for R, given T:

A16: 'Degrees C=

B16: [Input known temperature in °C]

C16: +B16+273.15

D16: (B11-(1/C16))/B13

E16: '=A

D17: @SQRT((B12/(3\*B13))^3+(D16^2)/4)

E17: '=B

A18: 'Resistance (0hm)=

B18: @EXP((D17-(D16/2))^(1/3)-(D17+(D16/2))^(1/3))

A19: 'dR/dT=

B19: -1\*B18/(C16^2\*(B12+3\*B13\*(@LN(B18))^2))

A20: '%dR/dT=

B20: +B19/B18\*100

A23: 'Solving for T, given R:

A24: '0hms=

B24: [Input known resistance in ohms]

A26: 'Temperature (C)=

B26: 1/(B11+B12\*@LN(B24)+B13\*(@LN(B24))^3)-273.15

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

### How to Use Thermilinears

We present a general description of Thermilinear Networks in the Thermilinear Component Section of the catalog. The examples below describe general circuit development that may be used with YSI Thermilinear Networks.

### **Voltage Mode**

You can develop a thermometer circuit without active circuitry using the voltage mode. The voltage mode configuration is based on a voltage divider (figure 1) or Wheatstone bridge (figure 2). We consider both circuits together in the following example since the bridge is an extension of the voltage divider.



Figure 1



Figure 2

### **Voltage Mode Circuit Design Example**

The range and output slope must be established first. The signs and units must be known. The example will be:

range: 0 to 100°C

output slope: -10 mv/°C (negative slope)

We use the YSI 44201 network in the example. This network has a temperature range of 0 to 100°C, includes the YSI 44018 Thermilinear composite and the YSI 44301 resistor set. We've taken design data from the YSI Thermilinear Network Specification pages.

$$R_1 = 3200 \Omega$$

$$R_2 = 6250 \Omega$$

R. @ 0°C

$$E_{o} = (-0.0053483E_{in})t + 0.86507E_{in}$$
  
sensitivity constant  
 $= (\delta/\delta)/E_{in}$   
 $= -0.0053483$   
output voltage at 0°C per volt in  
 $= E_{o0°C}/\delta E_{in}$   
 $= +0.86507$   
 $R_{t} = (-17.115)t + 2768.23$   
 $-\delta R$ 

1. Determine input voltage that results in the desired voltage sensitivity (-10mV/°C in this example). This is equal to the voltage sensitivity per degree divided by the sensitivity constant.

$$E_{in} = (\delta E/\delta t) (\delta/\delta)/E_{in})$$
  
= -.01 V/°C 4 -0.0053483/°C  
= 1.869753 V

**2.** Determine output voltage ( $E_{out}$ ). The general equation is given with the temperature as the variable.

$$\mathbf{E}_{\text{out}} = \left[ \left( \left( \delta / \delta \mathbf{T} \right) / \mathbf{E}_{\text{in}} \right) \mathbf{x} \, \mathbf{E}_{\text{in}} \right] \mathbf{x} \, \mathbf{t} + \left( \delta \mathbf{E}_{\text{o0°C}} / \, \mathbf{E}_{\text{in}} \mathbf{x} \, \mathbf{E}_{\text{in}} \right)$$

@ 
$$0^{\circ}$$
C = -0.0053483/°C x 1.869753 V x  $0^{\circ}$ C + 0.86507 x 1.869753 V = 1.617467 V

3. Power dissipation. Calculate self-heat to evaluate the effect of power on measurement accuracy. Selfheat is most severe for the higher resistance thermistor ( $T_2$ ) at high temperature. A 30K  $\Omega$  @ 25°C thermistor has a resistance of 2069  $\Omega$  at 100°C.

$$P = E^2 4 R$$

Where:

P = power dissipation in watts

E = voltage at the maximum temperature

R = resistance of the higher resistance thermistor at the maximum temperature

$$P = 0.617467^2 \text{ V } 4\ 2069\ \Omega = 0.000184 \text{ Watts}$$

The dissipation constant is used to turn this into a temperature unit. We will assume for the example that the component is immersed in flowing water. The dissipation constant for a YSI 44018 is 8 mW/°C (0.008W/°C) in flowing water.

Self-heat error = 
$$0.000184 \text{ W } 4 \ 0.008 \text{W/}^{\circ}\text{C}$$
  
=  $0.023 ^{\circ}\text{C}$ 

The resistors  $R_3$ ,  $R_4$  and  $R_5$  are selected next. The goal is to pick these resistors to achieve 0 V out at 0°C. The first thing that must be done is to determine the resistance of  $T_1$ ,  $R_2$  and  $T_2$  at 0°C. The total of these resistances will be called  $R_{cal}$   $R_{cal}$  will be calculated by first calculating the total resistance for the left half of the bridge,  $R_1$  and then subtracting the effect of  $R_1$ . For this example, the equation for  $R_1$  is found in the data table for the YSI 44201 network.

$$R_{r} = (17.115 \Omega/^{\circ}C) \times t^{\circ}C + 2768.23 \Omega$$

$$@$$
 0°C = (-17.115 Ω/°C) x 0°C + 2768.23 Ω  
= 2768.23

@ 
$$100$$
°C = (-17.115 Ω/°C) x  $100$ °C + 2768.23 Ω  
=  $1056.73$ 

$$@ 100^{\circ}\text{C} = -0.0053483/^{\circ}\text{C} \text{ x } 1.869753 \text{ V x } 100^{\circ}\text{C} + 0.86507 \text{ x } 1.869753 \text{ V} = 0.617467 \text{ V}$$

For more information, contact us at **800** 747-5367 or **937** 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com Now  $R_{\text{cal}}$  is calculated with the following formula:

$$\frac{1}{R_{cal}} = \frac{1}{R_{t}} - \frac{1}{R_{1}}$$

$$\frac{1}{R_{cal@0^{\circ}C}} = \frac{1}{R_{t@0^{\circ}C}} - \frac{1}{R_{1}}$$

$$\frac{1}{R_{cal@0^{\circ}C}} = \frac{1}{R_{t@0^{\circ}C}} - \frac{1}{R_{1}}$$

For the example:

$$\frac{1}{R_{\text{cal}@0^{\circ}C}} = \frac{1}{2768.23 \,\Omega} \frac{1}{3200 \,\Omega} = 0.000048742$$

 $R_{\rm cal@0^\circ C}=1\,/\,0.000048742=20516.3\,\Omega$  A ratio calculation is done to determine the values for  $R_3$  and  $R_4.$ 

$$\begin{array}{ccc} \underline{R_1} & = & \underline{R_3} \\ \overline{R_{cal@0^{\circ}C}} & & \overline{R_4} \end{array}$$

Another resistor,  $R_5$ , is introduced at this time. This is the zero control. The total resistance of this resistor is to be equal to two times the tolerance of the larger of  $R_3$  and  $R_4$ . When making circuit calculations, it is assumed that half of  $R_5$ 's resistance is included with  $R_3$  and the other half with  $R_4$ .

 $R_4$  is chosen by the designer and  $R_3$  is calculated based on the selection of  $R_4$ . For the example:

choose 
$$R_4$$
 = 4990 ±1% (approximately ±50  $\Omega$ )  $R_s$  = 2 x 50 = 100

 $R_3 + R_5/2$  is substituted for  $R_3$  in the ratio equation above.

 $R_4 + R_5/2$  is substituted for  $R_4$  in the ratio equation above.

Solve the ratio equation:

$$\begin{split} R_3 &= R_5/2 = \left[ R_1 \, x \, (R_4 + R_5/2) \right] / R_{cal0^{\circ}C} \\ R_3 &= \left[ (R_1 \, x \, (R_4 + R_5/2)) / \, R_{cal0^{\circ}C} \right] - R_5/2 \\ &= \left[ (3200 \, \Omega \, \, x \, (4990 \, \Omega + 50 \, \Omega)) / 20516.3 \, \Omega \right] \, - 100/2 = \\ 736.1 \, \Omega \end{split}$$

A standard resistor value is selected that is near to this calculated value. 732  $\Omega$  is selected for the example. The last step is to ascertain that the null value of the circuit falls within the adjustment range of the control.

 $R_x = ((R_3 + R_4 + R_5) \times E_{out@0^\circ}) - R_4$ Where:

 $R_x$  = the part of the control added to  $R_4$ . This is not to exceed  $R_s/2$ .

For the example:

$$R_x = ((732 + 4990 + 100) \times 0.86507) - 4990$$
  
= 46.44 \Omega

Since  $R_x < R_s/2$ , the resistor selections are acceptable.

### **Resistive Mode Operations**

Using the Thermilinear Network in the resistive mode requires energizing the network with a constant current. This can be done by connecting the network in the feedback loop of an operational amplifier (below).



Figure 3

The general transfer function for this circuit is:

$$E_{out} = [1 + \frac{R_t}{R_4}] e_r - \frac{R_t}{R_4} E_{in}$$

Where:  $R_t$  = Resistance of the network in the resistive mode

(feedback resistance) e<sub>r</sub> = voltage at the positive input

As in the voltage mode, the range and output slope must be established. The signs and units must be known.

range: 30 to 100°F

output slope: -10mV/°C (negative slope)

We use the YSI 44204 Network in the example. This network has a temperature range of 30 to 100°F, includes the YSI 44018 Thermilinear composite and the YSI 44304 resistor set. We've taken design data from YSI Thermilinear Network Specification pages.

 $R_{_{4}}$  must be calculated for this circuit. As seen in the equation above, zero output occurs when  $R_{_{t}}\!=\!R_{_{4}}$  and  $E_{_{in}}\!=\!2e_{_{r}}.$  Zero degrees can be placed at any reasonable point, either inside or outside the intended range of the circuit.

This example sets  $R_4 = R_t$  at 0°F, which is outside the range. This means that the equation above may not be used, and the  $R_t$  equation must be used. The equation for the YSI 44204 Network is:

$$R_{t} = (-17.834)t + 5173.7$$
-dR
 $R_{t} @ 0^{\circ}F$ 

since 
$$t = 0^{\circ}F$$
,  $R_{t} = 5173.7 \Omega = R_{4}$ 

 $R_5$ ,  $R_6$  and  $R_7$  are selected to achieve a voltage divider so that  $e_r$  can be set at one half of  $E_{in}$ .

The value of  $E_{in}$  is given by:

$$E_{in} = 2 \underline{dE(R_i@0°F)}$$

$$\underline{dR}$$

Where: dE = The change in E<sub>o</sub> per degree dR = The change in network resistance per degree

substituting numbers from the example:

$$E_{in} = \underbrace{2 \times 0.01 \times 5173.7}_{17.834}$$
$$= 5.802$$

### **Power Dissipation**

A method to determine power dissipation is described in the voltage mode circuit design example.

The excitation voltage  $(E_{\rm in})$  must be stable for supply and temperature variations because the current requirement is constant in this example. A series variable resistance can be used for setting  $E_{\rm in}$  to produce the correct full scale output.

### **Two-Wire System**

A 3-wire sensor can be reduced to a 2-wire sensor (below) if  $R_2$  is connected at the sensor end of the cable in either the voltage or resistive mode. Note  $R_1$  is connected to the other end of the cable. Resistance errors due to very long leads may then be subtracted from  $R_1$ .

### Multiplexing

One resistor set may serve any number of Thermilinear Composites for monitoring at several locations as shown below.



Figure 4



Figure 5

For more information, contact us at **800 747-5367** or **937 427-1231 •** Fax 937 427-1640 Info@YSI.com • www.YSI.com

### Technical Publications

#### **Technical Manuals/Documents**

| 10001 | Thermistor Probes for Severe Moisture           |
|-------|-------------------------------------------------|
|       | Environments                                    |
| TD002 | Measurement Science Conference Tutorial         |
| TD003 | Temperature Compensation Using Thermistor       |
|       | Networks                                        |
| TD004 | Goddard Specification S-311-P-18                |
| TD005 | Reproducibility, Stability and Linearization of |
|       | Thermistor Resistance Thermometers              |
| TD006 | YSI 46000 and YSI 47000 Series Thermistors      |
| TD007 | Aging Phenomena in Nickel-Manganese             |
|       | Oxide Thermistors                               |
| TD008 | Practical Design Techniques Tame Thermistor     |
|       | Design                                          |
| TD009 | Thermistor Aging Phenomenon Due to              |
|       | Temperature Cycling                             |
| TD010 | All About Thermistors                           |
| TD011 | Long-Term Thermistor Stability at an            |
|       | Elevated Temperature                            |
| TD012 | Glass Thermistor Notebook                       |
| TD013 | Thermistors Compensate Gain TC                  |
|       | •                                               |

#### Technical Notes

| Techni | cal Notes                                     |
|--------|-----------------------------------------------|
| TN001  | Statement of Qualification Requirements       |
|        | Based on Similarity to YSI 44900 Series Parts |
| TN004  | Thermistor-Specific Heat                      |
| TN005  | Glass Thermistor Leads                        |
| TN006  | Humidity Resistance of Oxycast Epoxy          |
|        | Compared to EC210                             |
| TN007  | Material Recommendation for Potting           |
|        | Thermistors                                   |
| TN008  | Materials for MSFC-SPEC-1443 Outgas           |
|        | Testing                                       |
| TN009  | Outgas Testing on Oxycast 6850FTLV            |
|        | TN010 EC210 Replacement                       |
| TN011  | YSI 44018 Special Range Values                |
| TN012  | Thermistor Test Data Life Tests               |
| TN013  | Thermistor Reliability and Accuracy at        |
|        | High Pressure                                 |
| TN014  | NBS Study on YSI 403 Probe with YSI 44012     |
|        | Thermistor TN015 CE Mark and YSI              |
|        | Thermistors                                   |
| TN015  | CE Mark and YSI Thermistors                   |
|        |                                               |

### **Technical Applications**

TA001 Thermistor Self-Heat ModeTA003 YSI 4600 Serial InterfaceTA004 Thermistor A/D Converter Circuit

## Assuring Accurate Measurement

You can ensure the accuracy of your measurement by avoiding the common errors explained below.

#### **Immersion Stem Effect**

An error source frequently ignored is stem effect. It can be the source of very large errors. Stem effect occurs when a portion of the probe is at a temperature other than the temperature of the sample.

Here's a simple method for determining stem effect. Slowly insert the probe into a sample at approximately the test temperature while observing the readout to determine when there's no further change with further insertion. When no further change is observed, stem effect error is eliminated.



#### **How to Eliminate Immersion Stem Effect**

- 1. Immersion should be at least 10 times the diameter of the probe.
- **2.** The sample volume should be no less than 1,000 times the mass of the sensor.

### **Dissipation Error (Self-Heat)**

Power application to a thermistor may induce a temperature change in the sensor. This change is called dissipation or self-heat error. You may reduce dissipation error by limiting the power applied to a thermistor during a measurement.

The graph curves represent 10 mk (0.010°C) of self-heat for a  $1 \text{k}\Omega$  (YSI 44003A),  $10 \text{k}\Omega$  (YSI 44006) and  $100 \text{k}\Omega$  (YSI 44011) thermistor at a specific temperature when a specific voltage is applied. The dissipation constant is 1 mW/°C in still air.



Temperature, Degrees Celsius

#### **Gas Stream Error**

A major source of error in the measurement of low-flow gas streams is another sort of stem effect. In this case, the leads conduct better than the sample and transfer heat to the thermistor. Mounting the thermistor on its own leads and having as much of the leads exposed to the sample as possible will improve the accuracy of the measurement. A very low mass form for lead support exposes a greater length of lead to the sample.

In still air, self-heat from over application of power to the thermistor can contribute significantly to the error. If the thermistor is self-heated, any change in air flow will change its resistance and its apparent temperature.

#### **Radiant Error**

Radiant energy directed on the sensor may cause radiant error. This error, similar to stem effect, is common and significant when measuring in direct sunlight or other radiant source. Inserting a reflective surface between the radiant source and the sensor-lead combination reduces error.



### **Pipe Error**

Pipe error may occur if a significant temperature differential exists between the pipe wall and the fluid or gas. Flow rate and immersion depth of the probe will significantly affect the accuracy of the measurement. The drawing below illustrates this effect. The two probes on the right are measuring pipe temperature; the probe on the left is measuring the temperature of the flow.





For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

### Thermistor Applications

### **Complete Heating & Cooling Automatic Thermostat**



T1 Thermistor #44007 Yellow Springs Instrument Co., Inc. Hysteresis = 5Vx82k = 20mV 20M



Reprinted with the permission of Linear Technology Corporation—LTC 1040 1990 Linear Databook Volume 1.

### Micropower Thermocouple Signal Conditioner with Cold Junction Compensation

### Half Bridge with A/D Converter



This circuit provides a low cost method of achieving precise temperature measurements when a microprocessor and A/D convertor are available. The half bridge interface provides a voltage which the A/D converts to counts. The microprocessor uses a lookup table which quickly converts the A/D counts to a temperature value. This eliminates the need to implement thermistor equations in code or use a floating point library.



Total Power Consumption ≤500µW \*=TRW MAR-60.1% R† = Yellow Springs Inst. Co Model 44007 5k @25°C

Reprinted with the permission of Linear Technology Corporation—LTC 1006 Linear Databook Volume 1.

### Custom Thermilinear Ranges

This page lists Thermilinear ranges developed for custom applications. Below are ranges developed for applications in °C. Please note that the user supplies the range resistors.

### YSI 44018 Custom Thermilinear Ranges in °C

|     | Temperature | Linearity<br>Deviation |                  |                | R <sub>t</sub> Variables |               | E <sub>out</sub> Variables |               |
|-----|-------------|------------------------|------------------|----------------|--------------------------|---------------|----------------------------|---------------|
| No. | Range °C    | °C                     | $\mathbf{R}_{1}$ | $\mathbb{R}_2$ | Slope (m)                | Intercept (b) | Slope (m)                  | Intercept (b) |
| 1   | -40 to +70  | 1.20                   | 17290            | 35250          | -112.6240                | 11457.50      | -0.0065138                 | 0.662664      |
| 2   | -30 to +50  | 0.16                   | 18700            | 35250          | -127.0960                | 12175.00      | -0.0067965                 | 0.651070      |
| 3   | -30 to +55  | 0.31                   | 18900            | 37000          | -128.3340                | 12326.50      | -0.0067902                 | 0.651290      |
| 4   | -30 to +60  | 0.37                   | 14000            | 25500          | -91.2740                 | 9626.57       | -0.0065196                 | 0.687610      |
| 5   | -30 to +70  | 0.96                   | 14500            | 30000          | -94.4784                 | 10013.90      | -0.0065158                 | 0.690610      |
| 6   | -25 to +55  | 0.20                   | 16000            | 31000          | -106.6430                | 10786.10      | -0.0066652                 | 0.674130      |
| 7   | -5 to +45   | 0.06                   | 5700             | 12000          | -32.4020                 | 4593.39       | -0.0056846                 | 0.805858      |
| 8   | -5 to +50   | 0.08                   | 5690             | 11600          | -32.6089                 | 4577.55       | -0.0057309                 | 0.804490      |
| 9   | -5 to +125  | 1.11                   | 2610             | 5230           | -13.3552                 | 2304.34       | -0.0051169                 | 0.882889      |
| 10  | -2 to +38   | 0.03                   | 5700             | 12400          | -32.1012                 | 4603.11       | -0.0056318                 | 0.807563      |
| 11  | 0 to 10     | 0.00                   | 42000            | 67900          | -310.7530                | 21849.50      | -0.0073988                 | 0.520226      |
| 12  | 0 to 30     | 0.04                   | 11680            | 22960          | -73.8485                 | 8358.02       | -0.0063226                 | 0.715584      |
| 13  | 0 to 40     | 0.27                   | 5900             | 12400          | -28.5226                 | 4442.72       | -0.0048347                 | 0.753067      |
| 14  | 0 to 60     | 0.14                   | 7775             | 14800          | -47.0450                 | 5938.37       | -0.0060508                 | 0.763770      |
| 15  | 0 to 100    | 0.22                   | 3200             | 6250           | -17.1150                 | 2768.23       | -0.0053483                 | 0.865070      |
| 16  | 0 to 120    | 0.81                   | 2610             | 5230           | -13.3552                 | 2304.34       | -0.0051169                 | 0.882889      |
| 17  | 5 to 130    | 0.88                   | 2130             | 4635           | -10.6233                 | 1936.67       | -0.0049874                 | 0.909235      |
| 18  | 15 to 35    | 0.01                   | 4400             | 10100          | -23.5611                 | 3687.77       | -0.0053547                 | 0.838130      |
| 19  | 15 to 45    | 0.03                   | 4380             | 9450           | -23.8370                 | 3660.60       | -0.0054422                 | 0.835753      |
| 20  | 15 to 65    | 0.07                   | 6739             | 12252          | -39.8117                 | 5225.63       | -0.0059080                 | 0.775471      |
| 21  | 20 to 32    | 0.00                   | 4400             | 10100          | -23.5181                 | 3686.65       | -0.0053450                 | 0.837875      |
| 22  | 20 to 65    | 0.06                   | 2500             | 5360           | -12.6473                 | 2234.19       | -0.0050589                 | 0.893676      |
| 23  | 20 to 120   | 0.23                   | 1696             | 3383           | -8.2913                  | 1577.55       | -0.0048887                 | 0.930159      |
| 24  | 22 to 42    | 0.02                   | 5445             | 10800          | -30.8702                 | 4388.70       | -0.0056694                 | 0.806006      |
| 25  | 28 to 64    | 0.04                   | 1900             | 4300           | -9.1144                  | 1750.58       | -0.0047970                 | 0.921358      |
| 26  | 35 to 135   | 0.27                   | 1175             | 2375           | -5.4353                  | 1133.10       | -0.0046257                 | 0.964340      |
| 27  | 45 to 75    | 0.04                   | 2000             | 3900           | -9.8670                  | 1816.00       | -0.0049335                 | 0.908000      |
| 28  | 45 to 125   | 0.19                   | 1030             | 2050           | -4.6619                  | 1002.50       | -0.0045261                 | 0.973301      |
| 29  | 50 to 100   | 0.05                   | 2500             | 4530           | -12.8234                 | 2202.82       | -0.0051294                 | 0.881120      |
| 30  | 55 to 65    | 0.00                   | 2000             | 3900           | -9.8319                  | 1813.85       | -0.0049159                 | 0.906924      |

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

### Resistance versus Temperature -80 to -11°C

| The<br>Mix   | rmist          | tor VI                  | L Mag                      | L Mar                      | B Mix                      | BAGE                       | B Mix                     | B Max                      | B Max                      | H.Max                      | HMGA                       | $HM_{\tilde{U}_{\tilde{X}}}$ | H Mag   | H Mix |
|--------------|----------------|-------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------------------------------|---------|-------|
| l<br>Ωat 2   | 25°C           | 100                     | 300                        | 1000                       | 2252                       | 3000                       | 5000                      | 6000                       | 10,000                     | 10,000                     | 30,000                     | 100,000                      | 300,000 | 1 MEG |
| °F           | °C             |                         |                            |                            |                            |                            |                           |                            |                            |                            |                            |                              |         |       |
|              | -80            | 14.47K                  | 67.66K                     | 278.8K                     | 1660K                      | 2211K                      | 3685K                     | 4423K                      | 7371K                      | 3558K                      |                            |                              |         |       |
| 110.2        | 79<br>78       | 13.51K<br>12.62K        | 62.78K<br>58.29K           | 258.1K<br>239.1K           | 1518K<br>1390K             | 2022K<br>1851K             | 3371K<br>3086K            | 4044K<br>3703K             | 6741K<br>6172K             | 3296K<br>3055K             |                            |                              |         |       |
| 104.8        | 77<br>76       | 11.80K<br>11.04K        | 54.15K<br>50.34K           | 221.7K<br>205.6K           | 1273K<br>1167K             | 1696K<br>1555K             | 2827K<br>2592K            | 3392K<br>3109K             | 5653K<br>5182K             | 2833K<br>2629K             |                            |                              |         |       |
| 101.2        | 75<br>74       | 10.33K<br>9672          | 46.83K<br>43.58K           | 190.8K<br>177.2K           | 1071K<br>982.8K            | 1426K<br>1309K             | 2378K<br>2182K            | 2853K<br>2618K             | 4756K<br>4364K             | 2440K<br>2266K             |                            |                              |         |       |
| 97.6         | 73<br>72<br>71 | 9061<br>8494<br>7966    | 40.59K<br>37.82K<br>35.26K | 164.7K<br>153.1K<br>142.5K | 902.7K<br>829.7K<br>763.1K | 1202K<br>1105K<br>1016K    | 2005K<br>1843K<br>1695K   | 2405K<br>2211K<br>2033K    | 4008K<br>3684K<br>3389K    | 2106K<br>1957K<br>1821K    |                            |                              |         |       |
| -94.0        | -70            | 7475                    | 32.9K                      | 132.6K                     | 702.3K                     | 935.4K                     | 1560K                     | 1871K                      | 3119K                      | 1694K                      |                            |                              |         |       |
| 90.4         | 69<br>68<br>67 | 7018<br>6592<br>6195    | 30.71K<br>28.68K<br>26.8K  | 123.5K<br>115.1K<br>107.3K | 646.7K<br>595.9K<br>549.4K | 861.4K<br>793.7K<br>731.8K | 1436K<br>1323K<br>1220K   | 1723K<br>1588K<br>1464K    | 2872K<br>2646K<br>2440K    | 1577K<br>1469K<br>1369K    |                            |                              |         |       |
| 86.8         | 66<br>65       | 5825<br>5479            | 25.06K<br>23.45K           | 107.3K<br>100.1K<br>93.48K | 506.9K<br>467.9K           | 675.2K<br>623.3K           | 1126K<br>1039K            | 1351K<br>1247K             | 2251K<br>2078K             | 1276K<br>1190K             |                            |                              |         |       |
| 83.2         | 64<br>63       | 5157<br>4856            | 21.95K<br>20.55K           | 87.3K<br>81.58K            | 432.2K<br>399.5K           | 575.7K<br>532.1K           | 959.9K<br>887.2K          | 1152K<br>1064K             | 1919K<br>1774K             | 1111K<br>1037K             |                            |                              |         |       |
|              | 62<br>61       | 4575<br>4312            | 19.26K<br>18.05K           | 76.28K<br>71.35K           | 369.4K<br>341.8K           | 492.1K<br>455.3K           | 820.5K<br>759.2K          | 984.2K<br>910.7K           | 1640K<br>1518K             | 968.4K<br>904.9K           |                            |                              |         |       |
|              | -60<br>59      | 4066<br>3835            | 16.93K<br>15.89K           | 66.78K<br>62.53K           | 316.5K<br>293.2K           | 421.5K<br>390.5K           | 702.9K<br>651.1K          | 843.3K<br>781.2K           | 1405K<br>1302K             | 845.9K<br>791.1K           |                            |                              |         |       |
| 70.6         | 58<br>57       | 3620<br>3418            | 14.92K<br>14.02K           | 58.59K<br>54.92K           | 271.7K<br>252K             | 361.9K<br>335.7K           | 603.5K<br>559.7K          | 723.9K<br>671.4K           | 1206K<br>1119K             | 740.2K<br>692.8K           |                            |                              |         |       |
| 67.0         | 56<br>55       | 3229<br>3051            | 13.17K<br>12.39K           | 51.5K<br>48.32K            | 233.8K<br>217.1K           | 311.5K<br>289.2K           | 519.4K<br>482.2K          | 622.9K<br>578.4K           | 1038K<br>964K              | 648.8K<br>607.8K           |                            |                              |         |       |
| 63.4         | 54<br>53       | 2885<br>2729            | 11.65K<br>10.97K           | 45.36K<br>42.6K            | 201.7K<br>187.4K           | 268.6K<br>249.7K           | 447.9K<br>416.3K          | 537.4K<br>499.3K           | 895.6K<br>832.1K           | 569.6K<br>534.1K           |                            |                              |         |       |
| 59.8         | 52<br>51       | 2582<br>2445            | 10.33K<br>9730             | 40.03K<br>37.63K           | 174.3K<br>162.2K           | 232.2K<br>216K             | 387.1K<br>360.2K          | 464.4K<br>432.1K           | 774K<br>720.2K             | 501 K<br>470.1 K           |                            |                              |         |       |
| 56.2         | -50<br>49      | 2315<br>2194            | 9171<br>8647               | 35.39K<br>33.3K            | 151K<br>140.6K             | 201.1K<br>187.3K           | 335.3K<br>312.3K          | 402.3K<br>374.6K           | 670.5K<br>624.3K           | 441.3K<br>414.5K           |                            |                              |         |       |
| 52.6         | 48<br>47<br>46 | 2079<br>1972<br>1870    | 8158<br>7699<br>7270       | 31.35K<br>29.52K<br>27.81K | 131K<br>122.1K<br>113.9K   | 174.5K<br>162.7K<br>151.7K | 291K<br>271.3K<br>253K    | 349K<br>325.3K<br>303.5K   | 581.7K<br>542.2K<br>505.8K | 389.4K<br>366K<br>344.1K   |                            |                              |         |       |
| 49.0         | 45<br>44       | 1775<br>1685            | 6867<br>6489               | 26.22K<br>24.72K           | 106.3K<br>99.26K           | 141.6K<br>132.2K           | 236.2K<br>220.5K          | 283.2K<br>264.5K           | 472.0K<br>440.8K           | 323.7K<br>304.6K           |                            |                              |         |       |
| 45.4         | 43<br>42       | 1600<br>1521            | 6135<br>5803               | 23.32K<br>22.01K           | 92.72K<br>86.65K           | 123.5K<br>115.4K           | 205.9K<br>192.5K          | 247K<br>230.9K             | 411.7K<br>384.8K           | 286.7K<br>270K             |                            |                              |         |       |
| 41.8         | 41<br>-40      | 1445<br>1374            | 5491<br>5198               | 20.79K<br>19.64K           | 81.02K<br>75.79K           | 107.9K<br>101K             | 180K<br>168.3K            | 215.9K<br>201.9K           | 359.8K<br>336.5K           | 254.4K<br>239.8K           | 884.6K                     | 3356K                        |         |       |
| 38.2         | 39<br>38       | 1307<br>1244            | 4922<br>4663               | 18.56K<br>17.54K           | 70.93K<br>66.41K           | 94.48K                     | 157.5K<br>147.5K          | 189K<br>176.9K             | 315K<br>294.9K             | 226K<br>213.2K             | 830.9K<br>780.8K           | 3147K<br>2951K               |         |       |
| 34.6         | 37<br>36       | 1184<br>1127            | 4420<br>4191               | 16.59K<br>15.7K            | 62.21K<br>58.3K            | 82.87K<br>77.66K           | 138.2K<br>129.5K          | 165.7K<br>155.3K           | 276.2K<br>258.9K           | 201.1K<br>189.8K           | 733.9K<br>690.2K           | 2769K<br>2599K               |         |       |
| 31.0         | 35<br>34       | 1073<br>1023            | 3975<br>3772               | 14.86K<br>14.07K           | 54.66K<br>51.27K           | 72.81K<br>68.3K            | 121.4K<br>113.9K          | 145.6K<br>136.6K           | 242.7K<br>227.7K           | 179.2K<br>169.3K           | 649.3K<br>611K             | 2440K<br>2292K               |         |       |
| 25.6         | 33<br>32       | 974.9<br>929.6          | 3580<br>3400               | 13.33K<br>12.63K           | 48.11K<br>45.17K           | 64.09K<br>60.17K           | 106.9K<br>100.3K          | 128.2K<br>120.3K           | 213.6K<br>200.6K           | 160K<br>151.2K             | 575.2K<br>541.7K           | 2154K<br>2025K               |         |       |
|              | 31<br>-30      | 886.6<br>846.0          | 3230<br>3069               | 11.97K<br>11.35K           | 42.42K<br>39.86K           | 56.51K<br>53.1K            | 94.22K<br>88.53K          | 113K<br>106.2K             | 188.4K<br>177K             | 143K<br>135.2K             | 510.4K<br>481K             | 1904K<br>1791K               |         |       |
| 18.4         | 29<br>28       | 807.5<br>771.0          | 2918<br>2775               | 10.77K<br>10.22K           | 37.47K<br>35.24K           | 49.91K<br>46.94K           | 83.22K<br>78.26K          | 99.83K<br>93.89K           | 166.4K<br>156.5K           | 127.9K<br>121.1K           | 453.5K<br>427.7K           | 1685K<br>1586K               |         |       |
| 14.8         | 27<br>26       | 736.4<br>703.6          | 2640<br>2512               | 9705<br>9218               | 33.15K<br>31.2K            | 44.16K<br>41.56K           | 73.62K<br>69.29K          | 88.32K<br>83.13K           | 147.2K<br>138.5K           | 114.6K<br>108.6K           | 403.5K<br>380.9K           | 1494K<br>1407K               |         |       |
| 11.2         | 25<br>24<br>23 | 672.5<br>643.0<br>614.9 | 2392<br>2278<br>2170       | 8758<br>8323<br>7914       | 29.38K<br>27.67K<br>26.07K | 39.13K<br>36.86K<br>34.73K | 65.24K<br>61.45K<br>57.9K | 78.28K<br>73.72K<br>69.46K | 130.5K<br>122.9K<br>115.8K | 102.9K<br>97.49K<br>92.43K | 359.6K<br>339.6K<br>320.9K | 1326K<br>1250K<br>1178K      |         |       |
| 7.6          | 22<br>21       | 588.3<br>563.0          | 2068<br>1972               | 7527<br>7161               | 24.58K<br>23.18K           | 32.74K<br>30.87K           | 54.58K<br>51.47K          | 65.49K<br>61.76K           | 109.1K<br>102.9K           | 87.66K<br>83.16K           | 303.3K<br>286.7K           | 1111K<br>1049K               |         |       |
| -4.0         | -20<br>19      | 538.9<br>516.1          | 1880<br>1794               | 6815<br>6489               | 21.87K<br>20.64K           | 29.13K<br>27.49K           | 48.56K<br>45.83K          | 58.27K<br>54.99K           | 97.11K<br>91.65K           | 78.91K<br>74.91K           | 271.2K<br>256.5K           | 989.8K<br>934.6K             |         |       |
| 0.4          | 18<br>17       | 494.3<br>473.6          | 1794<br>1712<br>1634       | 6180<br>5887               | 19.48K<br>18.4K            | 25.95K<br>24.51K           | 43.27K<br>40.86K          | 51.9K<br>49.02K            | 86.5K<br>81.71K            | 71.13K<br>67.57K           | 242.8K<br>229.8K           | 882.7K<br>834K               |         |       |
| 3.2          | 16<br>15       | 454.0<br>435.2          | 1561<br>1491               | 5611<br>5349               | 17.39K<br>16.43K           | 23.16K<br>21.89K           | 38.61K<br>36.49K          | 46.33K<br>43.77K           | 77.22K<br>72.96K           | 64.2K<br>61.02K            | 217.6K<br>206.2K           | 788.2K<br>745.2K             |         |       |
| 6.8<br>8.6   | 14<br>13       | 417.4<br>400.4          | 1424<br>1361               | 5101<br>4866               | 15.54K<br>14.7K            | 20.7K<br>19.58K            | 34.5K<br>32.63K           | 41.4K<br>39.17K            | 69.01K<br>65.28K           | 58.01K<br>55.17K           | 195.4K<br>185.2K           | 704.7K<br>666.7K             |         |       |
| 10.4<br>12.2 | 12<br>11       | 384.2<br>368.8          | 1302<br>1245               | 4643<br>4432               | 13.91K<br>13.16K           | 18.52K<br>17.53K           | 30.88K<br>29.23K          | 37.06K<br>35.06K           | 61.77K<br>58.44K           | 52.48K<br>49.94K           | 175.6K<br>166.6K           | 630.9K<br>597.2K             |         |       |

### Resistance versus Temperature -10 to +59°C

| Thermistor<br>Mix    | L Max          | L Max          | L.Mis          | B Max            | B Mix            | B Mix            | B Max            | BMG               | H.Mis            | HMix             | H Mix            | HMA              | H Mix            |
|----------------------|----------------|----------------|----------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|------------------|------------------|------------------|
| Ω at 25°C            | 100            | 300            | 1000           | 2252             | 3000             | 5000             | 6000             | 10,000            | 10,000           | 30,000           | 100,000          | 300,000          | 1 мед            |
| °F °C                |                |                |                |                  |                  |                  |                  |                   |                  |                  |                  |                  |                  |
| +14.0 -10<br>15.8 9  | 354.1<br>340.0 | 1191<br>1140   | 4232<br>4042   | 12.46K<br>11.81K | 16.60K<br>15.72K | 27.67K<br>26.21K | 33.20K<br>31.47K | 55.33K<br>52.44K  | 47.54K<br>45.27K | 158K<br>150K     | 565.5K<br>535.6K |                  |                  |
| 17.6 8<br>19.4 7     | 326.7<br>313.9 | 1091<br>1045   | 3862<br>3691   | 11.19K<br>10.60K | 14.90K<br>14.12K | 24.83K<br>23.54K | 29.81K<br>28.24K | 49.69K<br>47.07K  | 43.11K<br>41.07K | 142.4K<br>135.2K | 507.5K<br>481K   |                  |                  |
| 21.2 6               | 301.7          | 1001           | 3529           | 10.05K           | 13.39K           | 22.32K           | 26.78K           | 44.63K            | 39.14K           | 128.5K           | 456K             |                  |                  |
| 23.0 5<br>24.8 4     | 290.1<br>278.9 | 958.9<br>919.0 | 3374<br>3228   | 9.530K<br>9.050K | 12.70K<br>12.05K | 21.17K<br>20.08K | 25.40K<br>24.10K | 42.34K<br>40.17K  | 37.31K<br>35.57K | 122.1K<br>116K   | 432.4K<br>410.2K |                  |                  |
| 26.6 3<br>28.4 2     | 268.3<br>258.2 | 881.0<br>844.8 | 3088<br>2956   | 8.590K<br>8.150K | 11.44K<br>10.86K | 19.06K<br>18.10K | 22.88K<br>21.72K | 38.13K<br>36.19K  | 33.93K<br>32.37K | 110.3K<br>104.9K | 389.2K<br>369.4K |                  |                  |
| +30.2 -1             | 248.5          | 810.3          | 2830           | 7.741K           | 10.31K           | 17.19K           | 20.62K           | 34.37K            | 30.89K           | 99.80K           | 350.7K           |                  |                  |
| 32.0 0<br>+33.8 +1   | 239.2<br>230.3 | 777.5<br>746.2 | 2710<br>2596   | 7355<br>6989     | 9796<br>9310     | 16.33K<br>15.52K | 19.60K<br>18.62K | 32.66K<br>31.03K  | 29.49K<br>28.15K | 94.98K<br>90.41K | 333.1K<br>316.4K | 1088K<br>1030K   | 3966K<br>3740K   |
| 35.6 2               | 221.9          | 716.3          | 2487           | 6644             | 8851             | 14.75K           | 17.70K           | 29.50K            | 26.89K           | 86.09K           | 300.6K           | 975.3K           | 3529K            |
| 37.4 3<br>39.2 4     | 213.8<br>206.0 | 687.8<br>660.6 | 2384<br>2286   | 6319<br>6011     | 8417<br>8006     | 14.03K<br>13.34K | 16.84K<br>16.02K | 28.06K<br>26.69K  | 25.69K<br>24.55K | 81.99K<br>78.11K | 285.7K<br>271.6K | 923.8K<br>875.2K | 3330K<br>3144K   |
| 41.0 5<br>42.8 6     | 198.6<br>191.5 | 634.6<br>609.9 | 2192<br>2102   | 5719<br>5444     | 7618<br>7252     | 12.70K<br>12.09K | 15.24K<br>14.50K | 25.40K<br>24.17K  | 23.46K<br>22.43K | 74.44K<br>70.96K | 258.3K<br>245.7K | 829.5K<br>786.3K | 2969K<br>2804K   |
| 44.6 7               | 184.6          | 586.2          | 2017           | 5183             | 6905             | 11.51K           | 13.81K           | 23.02K            | 21.45K           | 67.66K           | 233.8K           | 745.6K           | 2649K            |
| 46.4 8<br>48.2 9     | 178.1<br>171.9 | 563.6<br>542.1 | 1936<br>1859   | 4937<br>4703     | 6576<br>6265     | 10.96K<br>10.44K | 13.15K<br>12.53K | 21.92K<br>20.88K  | 20.52K<br>19.63K | 64.53K<br>61.56K | 222.5K<br>211.9K | 707.2K<br>671K   | 2504K<br>2367K   |
| 50.0 10<br>51.8 11   | 165.9<br>160.1 | 521.5<br>501.7 | 1785<br>1714   | 4482<br>4273     | 5971<br>5692     | 9951<br>9486     | 11.94K<br>11.38K | 19.90 K<br>18.97K | 18.79K<br>17.98K | 58.75K<br>56.07K | 201.7K<br>192.2K | 636.8K<br>604.5K | 2238K<br>2117K   |
| 53.6 12              | 154.6          | 482.9          | 1647           | 4074             | 5427             | 9046             | 10.85K           | 18.09K            | 17.22K           | 53.54K           | 183.1K           | 574K             | 2003K            |
| 55.4 13<br>57.2 14   | 149.3<br>144.2 | 464.9<br>447.6 | 1582<br>1521   | 3886<br>3708     | 5177<br>4939     | 8628<br>8232     | 10.35K<br>9879   | 17.26K<br>16.47K  | 16.49K<br>15.79K | 51.13K<br>48.84K | 174.5K<br>166.3K | 545.2K<br>518K   | 1896K<br>1795K   |
| 59.0 15<br>60.8 16   | 139.4<br>134.7 | 431.2<br>415.4 | 1462<br>1406   | 3539<br>3378     | 4714<br>4500     | 7857<br>7500     | 9429<br>9000     | 15.71K<br>15K     | 15.13K<br>14.50K | 46.67K<br>44.60K | 158.6K           | 492.3K<br>468K   | 1700K<br>1610K   |
| 62.6 17              | 130.2          | 400.2          | 1353           | 3226             | 4297             | 7162             | 8595             | 14.33K            | 13.90K           | 42.64K           | 151.3K<br>144.3K | 444.9K           | 1525K            |
| 64.4 18<br>66.2 19   | 125.9<br>121.7 | 385.8<br>371.9 | 1302<br>1253   | 3081<br>2944     | 4105<br>3922     | 6841<br>6536     | 8209<br>7844     | 13.68K<br>13.07K  | 13.33K<br>12.79K | 40.77K<br>38.99K | 137.7K<br>131.4K | 423.2K<br>402.6K | 1446K<br>1370K   |
| 68.0 20              | 117.7          | 358.6          | 1206           | 2814             | 3748             | 6247             | 7497             | 12.50K            | 12.26K           | 37.30K           | 125.5K           | 383.1K           | 1299K            |
| 69.8 21<br>71.6 22   | 113.9<br>110.2 | 345.9<br>333.7 | 1161<br>1118   | 2690<br>2572     | 3583<br>3426     | 5972<br>5710     | 7167<br>6853     | 11.94K<br>11.42K  | 11.77K<br>11.29K | 35.70K<br>34.17K | 119.8K<br>114.5K | 364.6K<br>347.1K | 1232K<br>1169K   |
| 73.4 23<br>75.2 24   | 106.7<br>103.3 | 322.0<br>310.8 | 1077<br>1038   | 2460<br>2354     | 3277<br>3135     | 5462<br>5225     | 6554<br>6272     | 10.92K<br>10.45K  | 10.84K<br>10.41K | 32.71K<br>31.32K | 109.4K<br>104.5K | 330.6K<br>314.9K | 1110K<br>1053K   |
| 77.0 25              | 100.0          | 300.0          | 1000           | 2252             | 3000             | 5000             | 6000             | 10.00K            | 10.00K           | 30.00K           | 100.0K           | 300.0K           | 1000K            |
| 78.8 26<br>80.6 27   | 96.9<br>93.8   | 289.7<br>279.8 | 963.9<br>929.4 | 2156<br>2064     | 2872<br>2750     | 4787<br>4583     | 5744<br>5499     | 9574<br>9165      | 9605<br>9227     | 28.74K<br>27.54K | 95.51K<br>91.34K | 285.9K<br>272.5K | 949.7K<br>902.2K |
| 82.4 28<br>84.2 29   | 90.9<br>88.1   | 270.3<br>261.1 | 896.3<br>864.5 | 1977<br>1894     | 2633<br>2523     | 4389<br>4204     | 5267<br>5046     | 8779<br>8410      | 8867<br>8523     | 26.4K<br>25.31K  | 87.38K<br>83.6K  | 259.8K<br>247.8K | 857.2K<br>814.7K |
| 86.0 30              | 85.4           | 252.4          | 834.0          | 1815             | 2417             | 4029             | 4836             | 8060              | 8194             | 24.27K           | 80.00K           | 236.4K           | 774.5K           |
| 87.8 31<br>89.6 32   | 82.8<br>80.3   | 243.9<br>235.9 | 804.8<br>776.8 | 1739<br>1667     | 2317<br>2221     | 3861<br>3702     | 4633<br>4441     | 7722<br>7402      | 7880<br>7579     | 23.28K<br>22.33K | 76.58K<br>73.32K | 225.6K<br>215.3K | 736.5K<br>700.5K |
| 91.4 33              | 77.8           | 228.1          | 749.9          | 1599             | 2130             | 3549             | 4260             | 7100              | 7291             | 21.43K           | 70.22K           | 205.5K           | 666.4K           |
| 93.2 34<br>95.0 35   | 75.5<br>73.2   | 220.6<br>213.4 | 724.1<br>699.4 | 1533<br>1471     | 2042<br>1959     | 3404<br>3266     | 4084<br>3919     | 6807<br>6532      | 7016<br>6752     | 20.57K<br>19.74K | 67.26K<br>64.44K | 196.2K<br>187.4K | 634.1K<br>603.6K |
| 96.8 36<br>98.6 37   | 71.1<br>69.0   | 206.5<br>199.8 | 675.6<br>652.7 | 1412<br>1355     | 1880<br>1805     | 3134<br>3008     | 3762<br>3610     | 6270<br>6017      | 6500<br>6258     | 18.96K<br>18.21K | 61.75K<br>59.19K | 179K<br>171K     | 574.6K<br>547.2K |
| 100.4 38<br>102.2 39 | 67.0<br>65.0   | 193.4<br>187.3 | 630.8<br>609.7 | 1301<br>1249     | 1733<br>1664     | 2888<br>2773     | 3466<br>3328     | 5777<br>5546      | 6026<br>5805     | 17.49K<br>16.8K  | 56.75K<br>54.42K | 163.5K<br>156.3K | 521.2K<br>496.6K |
| 104.0 40             | 63.1           | 181.4          | 589.5          | 1200             | 1598             | 2663             | 3197             | 5329              | 5592             | 16.15K           | 52.19K           | 149.4K           | 473.2K           |
| 105.8 41<br>107.6 42 | 61.3<br>59.6   | 175.7<br>170.2 | 570.0<br>551.2 | 1152<br>1107     | 1535<br>1475     | 2559<br>2459     | 3069<br>2949     | 5116<br>4916      | 5389<br>5193     | 15.52K<br>14.92K | 50.07K<br>48.04K | 142.9K<br>136.7K | 451K<br>430K     |
| 109.4 43             | 57.9           | 164.9          | 533.2          | 1064             | 1418             | 2363             | 2835             | 4725              | 5006             | 14.35K           | 46.11K           | 130.8K           | 410K             |
| 111.2 44<br>113.0 45 | 56.2<br>54.7   | 159.8<br>154.9 | 515.9<br>499.2 | 1023<br>983.8    | 1363<br>1310     | 2272<br>2184     | 2726<br>2621     | 4543<br>4369      | 4827<br>4655     | 13.8K<br>13.28K  | 44.26K<br>42.5K  | 125.1K<br>119.8K | 391.1K<br>373.1K |
| 114.8 46<br>116.6 47 | 53.1<br>51.7   | 150.1<br>145.6 | 483.2<br>467.8 | 946.2<br>910.2   | 1260<br>1212     | 2101<br>2021     | 2521<br>2425     | 4202<br>4042      | 4489<br>4331     | 12.77K<br>12.29K | 40.81K<br>39.2K  | 114.7K<br>109.8K | 356.1K<br>339.8K |
| 118.4 48             | 50.2           | 141.2          | 452.9          | 875.8            | 1167             | 1944             | 2333             | 3889              | 4179             | 11.83K           | 37.66K           | 105.2K           | 324.4K           |
| 120.2 49<br>122.0 50 | 48.9<br>47.5   | 137.0<br>132.9 | 438.6<br>424.8 | 842.8<br>811.3   | 1123<br>1081     | 1871<br>1801     | 2246<br>2162     | 3743<br>3603      | 4033<br>3893     | 11.39K<br>10.97K | 36.19K<br>34.78K | 100.8K<br>96.54K | 309.8K<br>295.9K |
| 123.8 51             | 46.2           | 128.9<br>125.1 | 411.6          | 781.1<br>752.2   | 1040<br>1002     | 1734             | 2081             | 3469              | 3758<br>3629     | 10.57K<br>10.18  | 33.44K<br>32.15K | 92.52K<br>88.69K | 282.7K<br>270.1K |
| 125.6 52<br>127.4 53 | 45.0<br>43.8   | 121.5          | 398.8<br>386.5 | 724.5            | 965.0            | 1670<br>1608     | 2004<br>1930     | 3340<br>3217      | 3504             | 9807             | 30.92K           | 85.04K           | 258.1K           |
| 129.2 54<br>131.0 55 | 42.6<br>41.5   | 117.9<br>114.5 | 374.7<br>363.2 | 697.9<br>672.5   | 929.6<br>895.8   | 1549<br>1493     | 1859<br>1792     | 3099<br>2986      | 3385<br>3270     | 9450<br>9109     | 29.74K<br>28.61K | 81.55K<br>78.22K | 246.7K<br>235.9K |
| 132.8 56<br>134.6 57 | 40.4<br>39.3   | 111.2<br>108.0 | 352.2<br>341.6 | 648.1<br>624.8   | 863.3<br>832.2   | 1439<br>1387     | 1727<br>1665     | 2878<br>2774      | 3160<br>3054     | 8781<br>8467     | 27.53K           | 75.04K<br>72.01K | 225.6K<br>215.8K |
| 136.4 58             | 38.3           | 105.0          | 331.3          | 602.4            | 802.3            | 1337             | 1605             | 2675              | 2952             | 8166             | 26.5K<br>25.5K   | 69.11K           | 206.4K           |
| 138.2 59             | 37.3           | 102.0          | 321.5          | 580.9            | 773.7            | 1290             | 1548             | 2580              | 2854             | 7876             | 24.56K           | 66.34K           | 197.5K           |
|                      |                |                |                |                  |                  |                  |                  |                   |                  |                  |                  |                  |                  |

### Resistance versus Temperature 60 to 129°C

| Thermiste<br>Mix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or Valik                                                                                                                                                                                           | L Mix                                                                                                                                                                                                                                                                                                                                | L Mis                                                                                                                                                                                                                                           | BAUK                                                                                                                                                                                                                                                                                                                                                                                                      | BAGK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BMik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $H_{M_{i_k}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H_{Mix}$                                                                                                                                                                                                                                                                                                             | $H_{M_{i_k}}$                                                                                                                                                                                                                                                                                                                                                                                                 | $H_{Mi_{\overline{k}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H.Mix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ω at 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                | 300                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                            | 2252                                                                                                                                                                                                                                                                                                                                                                                                      | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30,000                                                                                                                                                                                                                                                                                                                | 100,000                                                                                                                                                                                                                                                                                                                                                                                                       | 300,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 MEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ω at 25°C  ° F °C  140.0 60  141.8 61  143.6 62  145.4 63  147.2 64  159.8 66  152.6 67  154.4 68  156.2 69  158.0 70  159.8 71  161.6 72  163.4 73  165.2 74  167.0 75  168.8 76  170.6 77  172.4 78  174.2 79  176.0 80  177.8 81  179.6 82  181.4 83  183.2 84  184.8 86  188.6 87  190.4 88  192.2 89  194.0 90  195.8 91  197.6 92  199.4 93  201.2 94  201.2 94  203.0 95  204.8 96  206.6 97  208.4 98  210.2 99  212.0 100  213.8 101  215.6 102  217.4 103  219.2 104  221.0 105  222.8 106  224.6 107  224.6 107  224.6 107  224.6 107  233.6 112  233.6 112  233.6 112  233.6 112  233.6 112  233.6 117  244.4 118  246.2 119  248.0 120  249.8 121  233.6 117  244.4 118  246.2 119  248.0 120  249.8 121  235.4 13  237.2 114  239.0 155  2258.8 126  248.0 120  255.1 122  255.2 124  257.0 125  258.8 126  260.6 127 | 36.4 35.4 34.5 33.7 32.8 32.0 31.2 30.4 29.7 29.0 28.3 27.6 26.9 26.3 25.6 25.0 24.5 23.9 23.3 22.8 22.3 21.8 20.3 19.9 19.4 19.0 18.6 18.2 17.8 17.4 17.0 16.6 16.3 15.9 15.6 15.3 15.0 14.6 14.3 | 99.1<br>96.3<br>93.7<br>91.1<br>88.6<br>86.1<br>83.8<br>81.5<br>79.3<br>77.2<br>75.2<br>73.2<br>71.3<br>69.4<br>67.6<br>65.9<br>64.2<br>62.5<br>60.9<br>59.4<br>57.9<br>56.5<br>55.1<br>53.7<br>52.4<br>51.1<br>49.9<br>48.7<br>47.5<br>46.4<br>45.3<br>44.2<br>43.2<br>42.1<br>41.2<br>40.2<br>39.3<br>38.4<br>37.5<br>36.7<br>35.8 | 311.9 302.7 293.9 285.3 277.0 269.0 261.3 253.9 246.7 239.7 233.0 226.5 220.2 214.1 208.3 202.6 197.1 191.8 186.7 176.9 172.2 167.7 163.3 159.1 154.9 151.0 147.1 143.4 139.8 136.2 132.8 129.5 126.3 123.2 120.2 117.3 114.4 111.7 109.0 106.4 | 560.3 540.5 521.5 503.3 485.8 469.0 452.9 437.4 422.5 408.2 394.5 381.2 368.5 356.2 344.5 333.1 322.3 311.8 301.7 292.0 282.7 273.7 265.0 256.7 248.6 240.9 233.4 226.2 219.3 212.6 206.1 199.9 193.9 188.1 182.5 177.1 171.9 166.9 162.0 157.3 152.8 144.2 140.1 136.1 132.3 128.6 125.0 121.6 118.2 115.0 111.8 108.8 103.0 100.2 97.6 95.0 92.5 90.0 87.7 85.4 83.2 81.1 79.0 77.0 75.0 75.0 75.0 75.1 | 746.3 719.9 694.7 670.4 647.1 624.7 603.3 582.6 562.8 543.7 525.4 507.8 490.9 474.7 459.0 444.0 429.5 415.6 402.2 389.3 376.9 364.9 353.4 342.2 331.5 321.2 331.3 301.7 292.4 283.5 274.9 266.6 259.9 243.4 236.2 229.3 222.6 216.1 209.8 203.8 197.9 192.2 186.8 181.5 176.4 171.4 166.7 162.0 157.6 153.2 149.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 137.2 133.6 130.0 145.0 141.1 | 1244<br>1200<br>1158<br>1117<br>1079<br>1041<br>1006.0<br>971.1<br>938.0<br>906.3<br>875.7<br>846.4<br>818.3<br>791.2<br>765.1<br>740.0<br>715.9<br>692.7<br>670.3<br>648.8<br>628.1<br>608.2<br>558.9<br>570.4<br>552.6<br>535.4<br>518.8<br>502.8<br>487.4<br>472.6<br>458.2<br>444.4<br>431.0<br>418.2<br>405.7<br>339.6<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7<br>329.7 | 1493<br>1440<br>1389<br>1341<br>1294<br>1250<br>1207<br>1165<br>1126<br>1088<br>1051<br>1016<br>981.8<br>949.0<br>917.9<br>887.5<br>858.7<br>830.7<br>803.8<br>778.0<br>753.2<br>729.2<br>706.0<br>683.9<br>662.3<br>641.8<br>602.7<br>584.3<br>566.4<br>516.6<br>501.2<br>486.2<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8<br>471.8 | 2488 2400 2316 2235 2157 2083 2011 1942 1876 1813 1752 1693 1636 1582 1530 1479 1431 1385 1340 1297 1255 1215 1177 1140 1104 1070 1036 1004 973.8 944.1 915.2 887.7 861.0 835.3 810.4 786.4 763.3 741.1 719.4 698.5 678.5 659.0 640.3 622.1 604.4 587.5 571.0 555.1 540.0 524.9 510.7 496.4 483.1 469.8 457.4 444.9 433.4 442.9 437.4 448.9 437.9 510.7 496.4 483.1 469.8 457.4 444.9 433.4 442.9 434.1 469.8 457.4 444.9 431.1 469.8 457.4 444.9 431.1 469.8 457.4 444.9 431.1 469.8 457.4 443.1 469.8 457.4 444.9 369.4 369.4 379.2 369.4 379.6 389.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 369.4 379.2 379.2 | 2760<br>2669<br>2582<br>2497<br>2417<br>2339<br>2264<br>2191<br>2122<br>2055<br>1990<br>1928<br>1868<br>1810<br>1754<br>1700<br>1648<br>1598<br>1549<br>1503<br>1458<br>1414<br>1372<br>1332<br>1293<br>1255<br>1218<br>1183<br>1149<br>1116<br>1084<br>1053<br>1023<br>994.2<br>966.3<br>939.3<br>931.2<br>887.9<br>863.4<br>839.7<br>816.8<br>794.6<br>773.1<br>752.3<br>732.1<br>752.3<br>732.1<br>752.3<br>756.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>561.6<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576.4<br>576 | 7599 7332 7076 6830 6594 6367 6149 5940 5738 5545 5359 5180 5007 4842 4682 4529 4381 4239 4102 3970 3843 33720 3602 3489 3379 3273 3172 3073 2979 2887 2799 2714 2632 22552 2476 2402 2331 2262 2195 2131 2069 2009 1950 1894 1840 1788 1737 1688 1640 1794 1550 1507 1465 1348 1311 1276 1145 11507 1029 1002 2976.3 | 23.65K<br>22.77K<br>21.94K<br>21.14K<br>20.37K<br>19.63K<br>18.93K<br>18.25K<br>17.6K<br>16.97K<br>15.25K<br>14.72K<br>14.21K<br>13.72K<br>13.25K<br>12.79K<br>12.36K<br>11.94K<br>11.54K<br>11.54K<br>11.54K<br>11.54K<br>11.54K<br>11.94K<br>10.08K<br>9744<br>9424<br>9117<br>8821<br>8536<br>6005<br>5821<br>5472<br>5307<br>5417<br>4948<br>4949<br>4949<br>7449<br>7459<br>7459<br>7459<br>7459<br>7459 | 63.7K<br>61.17K<br>58.75K<br>56.44K<br>54.23K<br>52.12K<br>50.1K<br>48.17K<br>46.32K<br>44.54K<br>42.85K<br>41.23K<br>39.67K<br>38.18K<br>36.75K<br>35.39K<br>34.08K<br>32.82K<br>31.62K<br>30.46K<br>29.35K<br>24.45S<br>27.27K<br>26.29K<br>25.35K<br>24.45K<br>21.19K<br>20.45K<br>19.75K<br>19.07K<br>18.41K<br>17.78K<br>17.78K<br>17.78K<br>17.78K<br>17.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.78K<br>11.7 | 189.1K<br>181K<br>173.3K<br>166K<br>159K<br>152.3K<br>146K<br>139.9K<br>134.1K<br>128.6K<br>123.3K<br>118.3K<br>1108.9K<br>104.5K<br>100.3K<br>96.31K<br>92.48K<br>88.82K<br>87.71K<br>72.78K<br>69.98K<br>67.29K<br>64.72K<br>62.26K<br>59.91K<br>57.65K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.41K<br>53.62K<br>41.1K<br>30.79K<br>29.72K<br>28.69K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>26.76K<br>27.71K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K<br>27.77K |

### Resistance versus Temperature 130 to 199°C

### Resistance versus Temperature 200 to 250°C

| Thermist<br>Mix                                                                                                                             | to Ville | L.Mir | LMix | B Mix | B Mix | B.Mix                                                                        | B Mix                                                                        | BMik                                                                                 | H Mix                                                                                | HMIR                                                                                   | HAMIX   | H Mix   | HMix  |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------|-------|-------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------|---------|-------|
| Ω at 25°C                                                                                                                                   | 100      | 300   | 1000 | 2252  | 3000  | 5000                                                                         | 6000                                                                         | 10,000                                                                               | 10,000                                                                               | 30,000                                                                                 | 100,000 | 300,000 | 1 MEG |
| °F °C 392.0 200 393.8 201 395.6 202 397.4 203 399.2 204 401.0 205 402.8 206 404.6 207 406.4 208 408.2 209                                   |          |       |      | 14.9  | 19.8  | 32.9<br>32.3<br>31.7<br>31.2<br>30.6<br>30.0<br>29.5<br>29.0<br>28.5<br>28.0 | 39.6<br>38.8<br>38.1<br>37.4<br>36.7<br>36.0<br>35.4<br>34.8<br>34.2<br>33.6 | 65.9<br>64.7<br>63.5<br>62.3<br>61.2<br>60.1<br>59.0<br>58.0<br>57.0<br>56.0         | 86.5<br>84.9<br>83.3<br>81.9<br>80.4<br>79.0<br>77.6<br>76.2<br>74.9<br>73.6         | 186.7<br>183.1<br>179.5<br>176.0<br>172.6<br>169.3<br>166.1<br>162.9<br>159.8<br>156.8 |         |         |       |
| 410.0 210<br>411.8 211<br>413.6 212<br>415.4 213<br>417.2 214<br>419.0 215<br>420.8 216<br>422.6 217<br>424.4 218<br>426.2 219              |          |       |      |       |       | 27.5<br>27.0<br>26.5<br>26.1<br>25.6<br>25.1<br>24.7<br>24.3<br>23.9<br>23.5 | 33.0<br>32.4<br>31.8<br>31.3<br>30.7<br>30.2<br>29.7<br>29.2<br>28.7<br>28.2 | 55.0<br>54.0<br>53.1<br>52.1<br>51.2<br>50.3<br>49.5<br>48.6<br>47.8                 | 72.3<br>71.0<br>69.8<br>68.6<br>67.4<br>66.2<br>65.1<br>64.0<br>62.9<br>61.8         | 153.8<br>150.9<br>148.1<br>145.3<br>142.6<br>139.9<br>137.3<br>134.8<br>132.3<br>129.9 |         |         |       |
| 428.0 220<br>429.8 221<br>431.6 222<br>433.4 223<br>435.2 224<br>437.0 225<br>438.8 226<br>440.6 227<br>442.4 228<br>444.2 229              |          |       |      |       |       | 23.1<br>22.7<br>22.3<br>22.0<br>21.6<br>21.3<br>20.9<br>20.5<br>20.2         | 27.7<br>27.2<br>26.8<br>26.3<br>25.9<br>25.5<br>25.0<br>24.6<br>24.2<br>23.8 | 46.2<br>45.4<br>44.7<br>43.9<br>43.2<br>42.5<br>41.8<br>41.1<br>40.4<br>39.7         | 60.8<br>59.8<br>58.8<br>57.8<br>56.8<br>55.9<br>55.0<br>54.1<br>53.2<br>52.3         | 127.5<br>125.2<br>122.9<br>120.7<br>118.5<br>116.3<br>114.3<br>112.2<br>110.2          |         |         |       |
| 446.0 230<br>447.8 231<br>449.6 232<br>451.4 233<br>453.2 234<br>455.0 235<br>456.8 237<br>460.4 238<br>462.2 239                           |          |       |      |       |       | 19.5<br>19.2<br>18.9<br>18.6<br>18.3<br>18.0<br>17.7<br>17.4<br>17.1<br>16.9 | 23.4<br>23.1<br>22.7<br>22.3<br>22.0<br>21.6<br>21.3<br>20.9<br>20.6<br>20.3 | 39.1<br>38.5<br>37.8<br>37.2<br>36.6<br>36.0<br>35.5<br>34.9<br>34.4<br>33.8         | 51.5<br>50.6<br>49.9<br>49.0<br>48.2<br>47.4<br>46.7<br>46.0<br>45.2<br>44.5         | 106.4<br>104.5<br>102.6<br>100.8<br>99.1<br>97.3<br>95.7<br>94.0<br>92.4<br>90.8       |         |         |       |
| 464.0 240<br>465.8 241<br>467.6 242<br>469.4 243<br>471.2 244<br>473.0 245<br>474.8 246<br>476.6 247<br>478.4 248<br>480.2 249<br>482.0 250 |          |       |      |       |       | 16.6<br>16.3<br>16.1<br>15.8<br>15.6<br>15.3<br>15.1<br>14.9<br>14.6<br>14.4 | 20.0<br>19.6<br>19.3<br>19.0<br>18.7<br>18.5<br>18.2<br>17.9<br>17.6<br>17.4 | 33.3<br>32.8<br>32.2<br>31.7<br>31.3<br>30.8<br>30.3<br>29.8<br>29.4<br>28.9<br>28.5 | 43.8<br>43.1<br>42.4<br>41.8<br>41.1<br>40.5<br>39.9<br>39.3<br>38.7<br>38.1<br>37.5 | 89.2<br>87.7<br>86.2<br>84.8<br>83.3<br>81.9<br>80.5<br>79.2<br>77.9<br>76.6<br>75.3   |         |         |       |



### Glossary

**316SS** A stainless steel containing approximately 2% Mn, 2% Mo,12% Ni and 17% Cr, with the balance Fe and trace C, S, P and Si.

**Absolute zero** The lowest possible temperature; the temperature at which thermal energy is at a minimum. Defined as 0 Kelvin or -273.15°C.

**Accuracy** Measure of the closeness of a reading to the actual value.

**Ambient range** In general, the human environmental range, -20 to +50°C. The industrial application ambient range is 0 to 70°C, the military range is -55 to +125°C.

**Ambient temperature** Temperature of the background or surrounding environment.

Ampere (A) SI unit of electric current.

AWG American Wire Gauge.

**Beta value** An indicator of the shape of the resistance vs temperature curve.

 $\beta = \ln (R_T/R_{To})/(1/T-1/T_o)$ 

**Calibration** Documenting a sensor's value as determined by a precise measurement.

**Celsius (Centigrade, °C)** A temperature scale defined by setting the ice point of water at 0°C and the boiling point of water at 100°C.

**CE Mark** Signifies product acceptance by the European Community. The Joint European Standards Institution.

**Control point** The temperature at which the controlled system is to be maintained.

**Current (I)** The rate of flow of an electric charge, usually expressed in amperes.

**Current proportioning** A type of temperature controller which provides a control current proportional to the difference between the measured temperature and the control point.

**Direct current (dc)** Current that flows in one direction only. The type of current that is supplied by batteries.

**Degree** (°) An increment of a temperature scale. The size of a degree is different in different temperature scales; for example,  $1^{\circ}C = 1.8^{\circ}F$ 

**De-rated** A deliberate reduction in the rating of a component to improve reliability.

**Deviation** The difference between an observed and a fixed value; the difference between the observed temperature and the set point of the controller.

**Dielectric** Any material capable of sustaining a steady electric field; an insulator.

**Differential** The difference between the temperature at which a controller turns heat off and the temperature at which the heat is turned on, in degrees.

**Dissipation constant** The ratio of power dissipation to temperature rise induced when current is applied to a thermistor (e.g. 8mW°/C represents a 1°C temperature rise for every 8 mW of power dissipated).

**Drift** A slow variation of any performance characteristic of a device or circuit.

**Dumet** A copper-clad, nickel-iron alloy with a thermal expansion closely matching that of glass. Provides hermetic seals in soft glasses.

**emf** Electromotive force. Difference of electrical potential that drives currents through circuits. Unit is the volt.

**Epoxy** A flexible resin used in coatings and adhesives. Also called epoxy resin.

**Error** The difference between the correct or desired value and the actual reading.

**Fahrenheit** A temperature scale defined by setting the freezing point of water at 32°C and the boiling point of water at 212°C.

**Galvanometer** An instrument that measures small electrical currents by means of deflecting magnetic coils.

**Ground** A conducting path between an electrical circuit and the earth or some conductor serving in its place.

**GSFC S-311-P-18** A specification issued by the Goddard Space Flight Center covering thermistors for use in space flight.

**Heat** Energy in the process of transferring between a system and its surroundings as a result of temperature differences.

**Heat transfer** The process whereby thermal energy flows from a high energy body to a low energy body via conduction, convection or radiation.

### Hermetic Airtight

**Hysteresis** The retardation or lagging of an effect behind the cause of the effect.

**ID** Inside diameter.

**Input impedance** The small signal impedance measured between the input terminals of a network.

**Insulation resistance** The resistance between two conductors, or between a conductor and ground, when they are separated only by insulating material.

**Interchangeable** Able to substitute one sensor for another while maintaining consistent readings.

**Interchangeability error** A measurement error that can occur if two or more probes are used to make the same measurement. It is caused by a slight variation in characteristics of different probes.

**Isothermal** Occurring at constant temperature.

ITS-90 International Temperature Scale of 1990.

**Kelvin (K)** An absolute temperature scale based on the Celcius scale; the thermodynamic temperature scale. One kelvin is the same temperature interval as one degree Celcius, and  $0K = -273.15^{\circ}C$ .

**Linearity deviation** The difference between the actual response of a device and its theoretical straight-line approximation.

**Maximum operating temperature** The temperature above which a device will not safely operate.

**Maximum power rating** The maximum power that a device can safely handle.

**Metrology** The science of measuring.

**Mica** A transparent mineral used to make the cross supporting the platinum wire windings in an SPRT. One of the best electrical insulators.

**Microamp** ( $\mu$ **A**) One millionth of an ampere,  $10^6$  A.

MIL-R-23648 The US Department of Defense general specification for thermistors.

**Milliamp (mA)** One thousandth of an ampere,  $10^3$  A.

Millivolt (mV) One thousandth of a volt, 10<sup>-3</sup> V.

**Negative temperature coefficient (NTC)** Decreasing resistance with increasing temperature.

**NIST** National Institute of Standards and Technology. The US government agency that defines measurement standards in the United States.

**NPT** National Pipe Thread.

**OD** Outer diameter.

**Offset** The difference in temperature between the set point and the actual process temperature.

**Ohms** ( $\Omega$ ) SI unit of electrical resistance.

**Ohm's law** A relationship between voltage (emf), current and resistance in an electrical component carrying direct current. E = IR.

**On/Off controller** A temperature controller that turns a heater fully on or fully off.

**Operating Range** The specified range over which a device is expected to operate.

**Platinum resistance element** An element made of platinum whose resistance varies with temperature.

**Positive temperature coefficient (PTC)** Increasing resistance with increasing temperature.

**Power (p)** Rate of doing work, in Watts (W).

**Probe** Usually refers to a sensing element built into a housing that is physically suitable for insertion into the environment or substance to be measured.

**PVC** Polyvinyl chloride.

**Range** An area between two limits within which a sensor or instrument is operational; the extent of the sensor's or instrument's capabilities.

**Rankine** ( ${}^{\circ}$ **R**) An absolute temperature scale based on the Fahrenheit scale, where one degree Rankine is the same temperature interval as one degree Fahrenheit, and  $0{}^{\circ}$ R = -459.67 ${}^{\circ}$ F.

**Repeatability** The ability of a sensor or instrument to give the same reading or output under repeated identical conditions.

**Resistance (R)** The resistance to the flow of electric current measured in ohms  $(\Omega)$ .

**Resistance ratio** The ratio of the resistance of a thermistor at two different temperatures, usually resistance at 25°C to resistance at 125°C ( $R_{25}/R_{125}$ ).

**Resistor** An electrical component designed to provide a known resistance.

**Response time** The time required to change the output of an electronic circuit after a sudden change in input. Used by YSI as the time required to sense 90% of a temperature change. See Time Constant.



**Selection** The examination of a device for compliance to a specific characteristic, usually associated with size or measurement tolerance.

**Self-heating** The effect of driving, usually resistive devices, at a level which induces a bias in the measured value.

**Sensitivity** The minimum change in temperature to which the instrument or sensor will respond.

**Set point** The temperature which a controller is set to maintain.

**SI** System Internationale. The standard metric system of units.

**Sinter** To form small particles into larger particles, cakes or masses by heating without liquifying.

**SMD** Surface-mount device.

**SMT** Surface-mount thermistor.

**Solid wire** A wire with no stranding.

**Span** The difference between the upper and lower limits of a range.

**SPRT** Standard Platinum Resistance Thermometer. A primary temperature standard calibrated to fixed-points of nature such as the triple-point of water.

**Stability** The ability of an instrument or sensor to maintain a constant output given a constant input.

**Steinhart & Hart equation** An equation which calculates resistance as a function of temperature for negative temperature coefficient thermistors.

**Stranded wire** Wire whose conductor is woven from individual wires or strands.

**Teflon** DuPont trademark name for polytetrafluoroethene. Used to insulate electrical conductors. Noted for its chemical inertness and heat resistance.

**Temperature** A measure of the degree of hotness or coolness of some sample. Temperature is to heat, what voltage is to power.

**Temperature scale** The scale assigned to allow determination of temperature. The International Practical Temperature Scale is reviewed for fit to the thermodynamic scale at approximately 20-year intervals. There are four practical scales, Celsius °C, Kelvin K, Fahrenheit °F, Rankine °R, and one theoretical scale, the Thermodynamic Temperature Scale. The scales differ in end points and value of divisions.

**Thermal conductivity** The ability of a material to conduct thermal energy.

**Thermal expansion** An increase in size due to an increase in temperature.

**Thermal gradient** The distribution of a differential temperature through a body or across a surface.

**Thermal shock** The shock which results when a body is subject to sudden changes in temperature.

**Thermilinear component** Two or three thermistor disks built into one bead which, when used in a network, provides a linear resistance vs temperature curve.

**Thermilinear network** One Thermilinear component and two or three resistors that can be wired to provide linear resistance response to temperature.

**Thermistor** A temperature-sensitive resistor made of metal oxides sintered into a disk which exhibits a large change in resistance for a small change in temperature.

**Time constant** The time required for a sensor to register 63.3% of a change in temperature.

**Tolerance** The range between allowable maximum and minimum values.

**UL** Underwriters Laboratories, Inc. An independent laboratory that establishes standards for commercial and industrial products.

**Volt (E)** SI unit of electrical potential difference.

Voltage An electrical potential measured in volts.

**Voltage divider** Usually a series of resistors used to divide the supply voltage in proportion to the value of each resistor in the string.

Watt SI unit of power.

Wheatstone bridge A network of four resistances, an emf source and a galvanometer connected so that when the four resistances are matched, the galvanometer will show a zero deflection or null reading.

**Zero power resistance** The resistance of a thermistor with no power being dissipated.

### Sales Policy

#### **New Accounts**

To quickly qualify for open account status, please supply this information to our credit manager:

- Dun & Bradstreet rating or Duns number
- Two credit references from vendors
- Bank reference
- Name of chief executive officer or president
- Name of treasurer
- Name of controller
- Credit limit desired

### **Terms of Sale**

Net 30 days from invoice date. We observe these terms rigidly. Failure to meet them may result in non-acceptance of new orders. Shipping prepaid and added, FOB Yellow Springs, Ohio.

#### **OEM and Contract Discounts**

Qualification for OEM discounts requires that these conditions be met:

- Use of YSI product in a fashion that's integral with the product—wired in.
- Description of application in the simplest non-proprietary terms.
- Expected use rate
- Permission to advertise if use is not proprietary.
- We will negotiate all agreements based on product and volume. Basically all purchases of similar products may be mixed for discount. Delivery schedules are a significant factor in developing the terms of a purchase agreement.
- Contact your local manufacturers' representative or YSI Customer Service.

### **Order Change and Cancellation**

Our terms for order cancellation or change are:

- Any cancellation of orders for stock products after order entry must be 30 days before shipping date.
- Any cancellation after order entry of build-to-order or build-to-specification products will be subject to a minimum \$50 or 15% charge, whichever is greater
- Any order for which material or labor have been expended will carry cancellation charges equal to the percentage completed or \$50, whichever is greater.
- Any customer change which adds cost to the manufacture of products will be charged at normal overhead and profit.

#### **Returned Goods**

We will accept for return certain of our products.

- Cataloged thermistors
- Certain other products which have been negotiated before order placement.

Return for credit requires:

- Customer Service gives prior approval, RA number and shipping instructions
- Products are in new condition
- Products are not obsolete

#### **Minimum Orders**

Our minimum order requirements are:

- For thermistor components, 100 pieces. For smaller quantities, contact our distributors or stocking representatives.
- For all types of sensor assemblies (mixed), \$75.

### **Exceptional Service**

Expected delivery for manufactured-to-order products is normally 4 weeks. When standard delivery needs to be improved with certainty, we offer exceptional service.

- **A**. Two-week delivery assuming material availability for all pre-engineered products.
- **B.** Best possible delivery will include full force effort (overtime) to complete and ship the product in minimum time.

Additional charges for A service are 25% of the normal price and 50% for B service.

On occasion, because of material shortages, exceptional service will be unable to meet your needs. Call Customer Service to establish that materials are available.

### **Limited Warranty**

We warrant our products against defects in materials and workmanship when the products are used according to their ratings and specifications. Our maximum liability is limited to repair or replacement (at our option) of defective products.

For sensors, sensor assemblies and special products, the warranty period is 1 year from shipment date. We will handle warranty repairs and replacements expeditiously. Contact Customer Service for instructions and best turn-around time.

For more information, contact us at 800 747-5367 or 937 427-1231 • Fax 937 427-1640 Info@YSI.com • www.YSI.com

### **Contacting the YSI Precision Temperature Group**

### For order placement and product information:

Ph 800.747.5367 (US) 937.427.1231, Option 1

Fax: 937 427-1640

Email: bpetrus@ysis.com (Bob Petrus) phenry@ysis.com (Phyllis Henry)

YSI Precision Temperature Group accepts purchase orders (with approved credit), payment in advance (via Visa or Mastercard) and checks. Special payment terms are available for international orders.

YSI Precision Temperature Group takes orders direct, sells through distributors, and has Manufacturer's Representatives located throughout the United States. Small quantity orders, particularly thermistors, should be forwarded to the nearest distributor. Below is a list of YSI Distributors and Manufacturer's Representatives in the United States. If you are located outside the U.S., please contact YSI Temperature Products Customer Service for your nearest Distributor or to purchase direct.

### **YSI Precision Temperature Group**

### Thermistor Distributors

YSI distributors stock YSI Precision Thermistors and Thermilinear components. Orders for less than 100 units must be directed to them.

Andruss-Peskin Corp. P.O. Box 268 63 S. Main St. Natick, MA 01760-0268 (508) 653-3919 800 878-3919 Fax: (508) 651-1924

RDP Corporation 5877 Huberville Avenue Dayton, OH 45431 (937) 253-6175 Fax: (937) 254-1951

BJ Wolfe Enterprises 5321 Derry Ave., Unit E Agoura Hills, CA 91301 818 889-8412 800 554-1224

Fax: 818 889-8417

Computer Aided Solutions 8588 Mayfield Road Chesterland, OH 44026 (440) 729-2570 Fax: (440) 729-2257

RJM Sales 454 Park Avenue Scotch Plains, NJ 07076 800 752-9055 (908) 322-7880 Fax: (908) 322-2160

Finnan Engineered Prod. 1149 Bellamy Rd. N., Unit 22 Scarborough, Ontario M1H 1H7 (416) 438-6070 Fax: (416) 438-8739 Newark Electronics 4810 N. Ravenswood Chicago, IL 60624 (800) 367-3573 Fax: (312) 275-9050

Thermx of California 31363 Medallion Drive Hayward, CA 94544 800 300-1161 (510) 441-7566 Fax: (510) 441-2414

### **YSI Precision Temperature Group**

### Manufacturer's Representatives

Manufacturer's Representatives are available in your area for technical and purchasing support of YSI Precision Temperature Group products.

Analog Associates Oakland, CA 94602 510 531-8896 Fax: 510 531-8897

Email: analog@ccnet.com www.analogassociates.com

Quadra Sales Corporation Beaverton, OR 97008 503 626-7550 Fax: 503 626-6960 Email: quadraor@aol.com www.quadrasales.com

Sales Technology Inc. Ft. Collins, CO 80525 303 530-9409 Fax: 970 663-0809 Email: bobshil@aol.com

Andruss-Peskin Corp. Natick, MA 01760-0268 508 653-3919 800 878-3919 Fax: 508 651-1924 Email:

sales@andruss-peskin.com www.andruss-peskin.com

Quantum Measurements Hoover, AL 35226 205 824-3380 Fax: 205 824-3315 Email: qmcglenn@aol.com

Advanced Industrial Sys Chesterfield, MO 63005 314 532-2477 Fax: 314 532-7385

Email: sales@advindsys.com

www.advindsys.com

Quantum Measurements Lutz, FL 33549 813 909-8322 Fax: 813 909-8622 Email: gmcfl@aol.com

EQS Systems Chesterland, OH 44026 440 729-2222 800 729-8084 Fax: 440 729-2257 Email: sales@eqssystems.com www.eqssystems.com

Quantum Measurements Smyrna, GA 30080 770 433-0093 Fax: 770 433-9254 Email: qmcrandy@aol.com

K-Technologies, Inc. Minneapolis, MN 55431 612 835-7615 Fax: 612 835-0180 Email: jkresse@hotmail.com

RJM Sales Scotch Plains, NJ 07076 908 322-7880 800 752-9055 Fax: 908 322-2160 Email: rjmnj@aol.com www.rjmsales.com

Quadra Sales Corporation Bothell, WA 98011 425 489-3428 Fax: 425 486-5784 Email: quadrawa@aol.com www.quadrasales.com RJM Sales Chadds Ford, PA 19317 610 358-4014 Fax: 610 358-3776 Email: rjmpa@aol.com www.rjmsales.com

Technical Component Sales of Southern California Costa Mesa, CA 92626 714 444-2276 Fax: 714 444-2278 Email:

techcompsales@earthlink.net www.sensortek.com

### Canada -

Hoskin Scientific Ltd. Vancouver, BC, V5T 1J7 604 872-7894 Fax: 604 872-0281 Email: salesv@hoskin.ca

Hoskin Scientific Ltd.
Burlington, Ontario, L7L 5L6
905 333-5510
Fax: 905 333-4976
Email: salesb@hoskin.ca

Hoskin Scientific Ltd. Montreal, Quebec, H4P 2L1 514 735-5267 Fax: 514 735-3454 Email: salesm@hoskin.ca