NP-Complete Problems

Very very short version
(Please go over the lesson)

Class P and class NP

Loosely speaking:

A problem belong to class P if it can be solved in polynomial time.

A problem belong to class NP if it can be solved in polynomial time using a non-deterministic algorithm.

Which is same as saying

A problem belong to class NP if it can be verified in polynomial time.

Solving vs Verifying

Solve the equation:

$$7x^2 - 12x - 352 = 0$$

Verify x = 8 is a solution to the equation

$$7x^2 - 12x - 352 = 0$$

Verification takes less time!

Example: A Non-deterministic Algorithm

```
IsPresent(A, x)
// A is an array of items. x is an item.
// Will return true if x is present and false otherwise.
       i <- guess(A, x) // guess will return the correct index
                          // if x is present in the array A.
       if (A[i] == x)
               return true
       else
               return false
```

$$P \subseteq NP$$

 $P \subseteq NP$ Is P = NP we do not know.

Hamiltonian Cycle And Vertex Covers

- A Hamiltonian cycle in a graph G is a simple cycle that contains every vertex of G. A graph is a Hamiltonian graph if it contains a Hamiltonian cycle.
- Examples. The Herschel graph is not a Hamiltonian graph.
- If G = (V,E) is a graph, a vertex cover for G is a set C
 ⊆ V such that for every e ∈ E, at least one end of e lies in C.
- Fact. The known algorithms for determining whether a graph is Hamiltonian, and for computing the smallest size of a vertex cover, run in exponential time.

Traveling Salesperson Problem

* Traveling Saleperson Problem (TSP): Given a complete graph G with cost function c: $E \rightarrow N$ and a positive integer k, is there a Hamiltonian cycle C in G so that the sum of the costs of the edges in C is at most k? Solution data: a subset of E.

Problems in NP

HC VC TSP Are in NP

Example: Not in NP

◆ PowerSet problem. Given a set X of size n, a kind of optimization problem concerning the power set of X is to generate all subsets of X ("find the largest possible collection of subsets of X without duplicates"). Whatever method is used, just writing out the output requires at least 2ⁿ steps. A corresponding decision problem is: Given a set X and a collection P, is P = P(X)? Any algorithm that solves this problem must check every element of P to see if it is a subset of X, so the algorithm requires at least 2ⁿ steps in the worst case. So this problem does not belong to P.

Moreover, verifying correctness requires checking that each set that is output is a subset of X, and this has to be done 2ⁿ times, so it doesn't belong to NP either.

Finite Halting Problem and N x N Chess. We discussed NxN chess in Lesson 1. Finite Halting Problem: Given a program P and positive integers n, k, does P, when running with input n, produce an output after excecuting k or fewer steps? Neither of these problems belong to P, but it is not known whether they belong to NP.

Reducibility (informal 1)

Let Q denote the problem of finding the area of a square.

Let R denote the problem of finding the area of rectangle.

Given an instance I_Q of Q, we can transform into an instance I_R of R.

 I_O has a solution iff I_R has a solution

- We write $Q \stackrel{\text{poly}}{\rightarrow} R$
- Note that R is "harder" than Q

Algorithm areaSquare(double side) return (areaRectangle(side, side)

Reducibility (informal 2)

Let Q denote the problem computing the distance between two points in 2D.

Let R denote the problem computing the distance between two points in 3D.

Given an instance I_O of Q, we can transform into an instance I_R of R.

 I_O has a solution iff I_R has a solution

- \bullet We write $Q \stackrel{\text{poly}}{\rightarrow} R$
- Note that R is "harder" than Q

Algorithm distance2D((x1, y1), (x2, y2)) return distance3D((x1, y1, 0), (x2, y2, 0))

HamiltonianCycle → TSP

We show HamiltonianCycle is reducible to TSP

- ♦ Given a graph G = (V,E) on n vertices (input for HamiltonianCycle) notice G is a subgraph of K_n . Obtain an instance H, C, C of TSP as follows: Let C be the complete graph on n vertices (i.e. C is C obtained by adding the missing edges to C of C be C of C o
- Need to show: G has a Hamiltonian cycle if and only if H, c, k has a Hamiltonian cycle with edge cost ≤ k
- If G has Hamiltonian cycle C, C is Hamiltonian in H also. Since each edge e of C is in G, c(e) = 0. So cost sum ≤ k. Converse: A solution C for H,c,k implies all edges of C have weight 0; therefore, every edge of C also is an edge in G. Therefore C is an HC in G.

HamiltonianCycle → TSP

Note: From a practical point of view, all we have to do is to change all non-diagonal values of 1's and 0's in the adjacency matrix of an instance of HC to 0's and 1's to obtain an instance of TSP.

Algorithm HCInstanceToTSPInstance(H)

Input: H an instance of HC as an adjacency matrix.

Output: T an instance of TSP as an adjacency matrix.

```
for i=0 to n-1 do for \ j=i+1 \ to \ n-1 \ do T[i,j]<-\left(H[i,j]+1\right)\% \ 2 T[j,i]<-\left(H[i,j]+1\right)\% \ 2 //Arrays starts with index 0. T initialized with 0 during creation. //Time complexity O(n^2).
```

HamiltonianCycle → TSP

Algorithm isHC(H)

Input: H an instance of HC as an adjacency matrix.

Output: true if H is Hamiltonian. false otherwise.

```
T <- HCInstanceToTSPInstance(H) return isTSP(T, 0)
```

```
//isTSP(T, k)

//T an instance of TSP (adjacency matix)

//k a non-negative integer.

//isTSP(T, k) returns true if TSP can visit all cities at the cost of k and come back to home city. false otherwise.
```

NP-hard Problems

A problem Q is *NP-hard* if for *every* problem R in *NP*, R is polynomial reducible to Q.

$$R \overset{\text{poly}}{\to} Q$$

You can think of them as problems harder than all problems in NP.

NP-Complete Problems

A problem Q is NP-complete if

Q belongs to *NP*, and Q is NP-hard.

NP-Complete Problems

HamiltonianCycle is NP-Complete

This is an outline of a proof that HamiltonianCycle is NP-Complete under the assumption that VertexCover is NP-complete:

- Show HC is in NP.
- Pick VC as the known NP-complete Problem
- Show VC is polynomial reducible to HC (see Slide 20)

Summary: To show Y is NP-Complete

- Show Y is in NP.
- Pick X. A known NP-complete Problem
- Show X is polynomial reducible to Y