1. Discrete Time Signal Representation

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.

Today's Lesson:

- 1. What are discrete time signals?
- 2. Examples of discrete time signals
- 3. Properties of discrete time signals
- 4. DTS representation
- 5. DTS classification

- Signals that are sampled in time
- Signals occurring at "points in time"
 - → discontinuous
- Can be described as functions x[n], y[n]

Figure 1.4.3 Periodic sampling of an analog signal.

- Common discrete time signals are periodically sampled (denoted as xa(nT))
- T is called the sampling period

Figure 1.4.3 Periodic sampling of an analog signal.

- Sample and Hold
 (S/H) is the most
 common sampler
 implementation for
 A2D conversion
- Sampler holds the value until the next sampling period

 Discrete time and discrete valued signals (digital signals) are described by binary units or bits

 The discrete levels and bit allocation are determined by quantization

4 bit representation → 16 levels of discrete values

Quantization is the process of mapping continuous infinite values to a smaller set of discrete finite values

R is the **Full-Scale Range** and b is the
number of bits used
(midtread quantizer)

Audio Signal (digital)

Audio Signal (digital)

File Sizes For Stereo Digital Audio

Bit Depth	Sample Rate	Bit Rate	1 Stereo Minute	3 Minute Song
16	44,100	1.35 Mbit/sec	10.1 MB	30.3 MB
16	48,000	1.46 Mbit/sec	11.0 MB	33 MB
24	96,000	4.39 Mbit/sec	33.0 MB	99 MB
mp3	128 k/bit rate	0.13 Mbit/sec	0.94 MB	2.82 MB

Video Signal (digital)

		165	187	209	58	7
	14	125	233	201	98	159
253	144	120	251	41	147	204
67	100	32	241	23	165	30
209	118	124	27	59	201	79
210	236	105	169	19	218	156
35	178	199	197	4	14	218
115	104	34	111	19	196	
32	69	231	203	74		

Video Signal (digital)

Video Bitrate, Standard Frame Rate (24, 25, 30)	Video Bitrate, High Frame Rate (48, 50, 60)		
35-45 Mbps	53-68 Mbps		
16 Mbps	24 Mbps		
8 Mbps	12 Mbps		
5 Mbps	7.5 Mbps		
	Frame Rate (24, 25, 30) 35-45 Mbps 16 Mbps 8 Mbps		

Notes on Quantization

> Quantization introduces errors in the discrete time signal:

$$e_q(n) = x_q(n) - x(n), \quad -\frac{\Delta}{2} < e_q(n) \le \frac{\Delta}{2}$$

- > This error (signal) is affected by truncation or rounding and can be treated as noise.
- Quantization errors due to decoding resolution is called granular noise while errors due to slope resolution is called overload noise
- > Most of the time, we observe the quantization error as zero-mean, additive, uncorrelated, stationary, white, and uniformly distributed

Measuring Quantization error

Let $x_q(n)$ be the signal obtained by quantizing $x(n) = \sin 2\pi f_o n$

The quantization error power, P_q is defined by

$$P_{q} = \frac{1}{N} \sum_{n=0}^{N-1} e^{2}(n) = \frac{1}{N} \sum_{n=0}^{N-1} \left[x_{q}(n) - x(n) \right]^{2}(n)$$

The quality of the quantized signal can be measured by the signal - to - quantization noise ratio (SQNR)

$$SQNR = 10\log_{10}\frac{P_x}{P_q}$$

where P_x is the power of the unquantized signal x(n)

For $f_0 = 1/50$ and N = 200, write a program to quantize the signal x(n), using **truncation**, to 64, 128 and 256 quantization levels. Plot x(n), $x_a(n)$ and e(n)and compute SQNR

```
>> N=200;
>> fo=1/50;
>> n=[0:N]';
>> x=sin(2*pi*fo*n);
>> plot(n,x)
```


For f_o = 1/50 and N = 200, write a program to quantize the signal x(n), using **truncation**, to 64, 128 and 256 quantization levels. Plot x(n), $x_q(n)$ and e(n) and compute SQNR

```
>> Q=256;
>> q=2/(Q+1);
>> xq=q*(floor(x/q));
>> plot(xq)
>> xlabel('n');
>> ylabel('xq(n) - x(n)')
```


For $f_o = 1/50$ and N = 200, write a program to quantize the signal x(n), using **truncation**, to 64, 128 and 256 quantization levels. Plot x(n), $x_q(n)$ and e(n)

and compute SQNR

```
>> plot(xq-x)
>> axis([0 200 -9e-3 0])
>> xlabel('n');
>> ylabel('xq(n) - x(n)')
>> Px=sum((x).^2)/N;
>> Pq=sum((xq-x).^2)/N;
>> SQNR=10*log10(Px/Pq)
```

SQNR= 43.56dB

For $f_o = 1/50$ and N = 200, write a program to quantize the signal x(n), using **truncation**, to 64, 128 and 256 quantization levels. Plot x(n), $x_q(n)$ and e(n) and compute SQNR

>> Q=128 >> plot(xq-x) >> axis([0 200 -0.016 0]) >> xlabel('n'); >> ylabel('xq(n) - x(n)') >> $Px=sum((x).^2)/N;$ \rightarrow Pq=sum((xq-x).^2)/N; >> SQNR=10*log10(Px/Pq)SONR= 37.83dB

For $f_o = 1/50$ and N = 200, write a program to quantize the signal x(n), using **truncation**, to 64, 128 and 256 quantization levels. Plot x(n), $x_q(n)$ and e(n) and compute SQNR

>> Q=64
>> plot(xq-x)
>> axis([0 200 -0.03 0])
>> xlabel('n');
>> ylabel('xq(n) - x(n)')
>> Px=sum((x).^2)/N;
>> Pq=sum((xq-x).^2)/N;
>> SQNR=10*log10(Px/Pq)

SQNR= 31.53dB

For $f_o = 1/50$ and N = 200, write a program to quantize the signal x(n), using **rounding**, to 64, 128 and 256 quantization levels. Plot x(n), $x_a(n)$ and e(n)

and compute SQNR

```
>> Q=256
>> xq=q*(round(x/q));
>> plot(xq-x)
>> axis([0 200 -0.005 0.005])
>> xlabel('n');
\Rightarrow ylabel('xq(n) - x(n)')
\gg Px=sum((x).^2)/N;
\rightarrow Pq=sum((xq-x).^2)/N;
>> SQNR=10*log10(Px/Pq)
SONR= 51.05dB
```


For $f_o = 1/50$ and N = 200, write a program to quantize the signal x(n), using **rounding**, to 64, 128 and 256 quantization levels. Plot x(n), $x_a(n)$ and e(n)

and compute SQNR

```
>> Q=128
>> xq=q*(round(x/q));
>> plot(xq-x)
>> axis([0 200 -0.008 0.008])
>> xlabel('n');
\Rightarrow ylabel('xq(n) - x(n)')
>> Px=sum((x).^2)/N;
\rightarrow Pq=sum((xq-x).^2)/N;
>> SQNR=10*log10(Px/Pq)
SQNR= 44.48dB
```

8 × 10⁻³ 140 160

For $f_o = 1/50$ and N = 200, write a program to quantize the signal x(n), using **rounding**, to 64, 128 and 256 quantization levels. Plot x(n), $x_q(n)$ and e(n)

and compute SQNR

```
>> Q=64
>> xq=q*(round(x/q));
>> plot(xq-x)
>> axis([0 200 -0.015 0.015])
>> xlabel('n');
\Rightarrow ylabel('xq(n) - x(n)')
\gg Px=sum((x).^2)/N;
\rightarrow Pq=sum((xq-x).^2)/N;
>> SQNR=10*log10(Px/Pq)
SONR= 39.34dB
```


Discrete Time Signal Representation

- Most of the discrete time signals we encounter can be described by their wave characteristics (e.g. amplitude, frequency, phase, decay time)
- In general, they can be mathematically represented using elementary functions, exponential functions, and sinusoidal functions

Elementary Functions

Cajote, Lucas EE 274 / COE 197E 23

Exponential Functions

Figure 2.1.5 Graphical representation of exponential signals.

Sinusoidal Functions

$$x[n] = A\sin(\omega n + \emptyset)$$

$$x[n] = A\sin\left(\frac{2\pi kn}{N} + \emptyset\right)$$

Figure 1.3.3 Example of a discrete-time sinusoidal signal ($\omega = \pi/6$ and $\theta = \pi/3$).

Sinusoidal Functions

Signal Frequency vs. Sampling Frequency

Nyquist's Sampling Theorem:

"If the highest frequency contained in an analog signal, $x_a(t)$, is F_{max} and the signal is sampled at a rate $F_s > 2F_{max}$, then $x_a(t)$ can be exactly recovered from its sample values using the interpolation function"

Not following Nyquist criterion may lead to aliasing

Figure 1.4.5 Illustration of aliasing.

Signal Frequency vs. Sampling Frequency

$$F_s = 40 Hz$$

28

Discrete time signals can be classified according to:

- 1. Power or Energy
- 2. Periodicity
- 3. Symmetry

We define the **energy** of a discrete time signal as:

$$E \equiv \sum_{n=-\infty}^{\infty} \left| x(n) \right|^2$$

 \rightarrow If E is finite, then x(n) is an energy signal

We define the **power** of a discrete time signal as:

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^{2}$$

 \triangleright If *P* is finite, then x(n) is a power signal

The unit step has infinite energy, it is a power signal with P=0.5

 \triangleright Complex exponential $Ae^{j\omega n}$ is a power signal with $P=A^2$

The unit ramp sequence is neither a power signal nor an energy signal

A signal x(n) is periodic with period N if and only if

$$x(n+N)=x(n)$$
 for all n

$$Ex(n) = A\sin(2\pi f_0 n)$$
 periodic when f_0 is a rational number

> **Periodic** signals are **power** signals.

A DT signal x(n) is **even** if:

$$x[n] = x[-n]$$

A DT signal x(n) is **odd** if:

$$x[n] = -x[-n]$$

The following DTS signal is:

- a. Power
- b. Energy
- c. Periodic
- d. Aperiodic
- e. Even
- f. Odd

The following DTS signal is:

- a. Power
- b. Energy
- c. Periodic
- d. Aperiodic
- e. Even
- f. Odd

The following DTS signal is:

- a. Power
- b. Energy
- c. Periodic
- d. Aperiodic
- e. Even
- f. Odd

(repeating sequence)

The following DTS signal is:

- a. Power
- b. Energy
- c. Periodic
- d. Aperiodic
- e. Even
- f. Odd

(repeating sequence)

Summary

- Discrete time signals can be obtained from sampling and quantizing continuous time signals.
- To ensure proper signal representation, Nyquist criteria and proper quantization must be followed
- Elementary functions, exponential functions, and sinusoidal functions can be used to mathematically represent any discrete time signal
- Discrete time signals can be classified as power or energy, periodic or aperiodic, and odd or even

For further reading...

Chapters 1.4-2.1.2
"Digital Signal Processing, 3rd ed. By Proakis, J. & Manolakis, D."

Chapter 1-2.3
"Digital Signal Processing: A Computer-Based Approach by Mitra, S."

1. Discrete Time Signal Representation

EE 274/COE 197E

Rhandley Cajote, Ph. D. Crisron Lucas, MSc.