2.1 Examples

What is the power set of the set $S = \{0, 1, 2\}$?

What is the power set of the set $S = \{0, 1, 2\}$?

$$P({0, 1, 2}) = {\emptyset, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}$$

$$|P(S)| = 2^{|S|} = 2^3 = 8$$

What is the power set of the set $S = \emptyset$?

What is the power set of the set $S = \emptyset$?

$$P(\emptyset) = \{\emptyset\}$$

$$|P(S)| = 2^{|S|} = 2^0 = 1$$

What is the power set of the set $S = \{\emptyset\}$?

What is the power set of the set $S = \{\emptyset\}$?

$$P(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}\$$

$$|P(S)| = 2^{|S|} = 2^1 = 2$$

What is the cartesian product of $A \times B$, where $A = \{0,1\}$ and $B = \{0,1\}$?

What is the cartesian product of $A \times B$, where $A = \{0,1\}$ and $B = \{0,1\}$?

$$A \times B = \{ (0,0), (0,1), (1,0), (1,1) \}$$

What is the cartesian product of $A \times B$, where $A = \{A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2\}$ and $B = \{ \spadesuit, \bigvee, \blacklozenge, \clubsuit \}$?

What is the cartesian product of A×B, where A = {A,K,Q,J,10,9,8,7,6,5,4,3,2} and B = { \spadesuit , \heartsuit , \spadesuit , \clubsuit }?

$$\{(A, \spadesuit), (A, \heartsuit), (A, \diamondsuit), (A, \clubsuit), (K, \spadesuit), (K, \diamondsuit), (K, \diamondsuit), (K, \diamondsuit), (K, \diamondsuit), (K, \diamondsuit), (X, \diamondsuit), (X,$$

All 52 cards in a deck by (rank, suit)!

What is the cartesian product of $A \times B \times C$, where $A = \{a\}$, $B = \{1,2\}$, $C = \{\spadesuit, \heartsuit\}$?

What is the cartesian product of $A \times B \times C$, where $A = \{a\}$, $B = \{1,2\}$, $C = \{\spadesuit, \psi\}$?

$$A \times B \times C = \{(a, 1, \clubsuit), (a, 1, \heartsuit), (a, 2, \spadesuit), (a, 2, \heartsuit)\}$$

• $\forall x \in \mathbf{R} \ (x^2 \neq -1)$

• $\exists x \in \mathbf{Z} (x^2 = 2)$

• $\forall x \in \mathbf{Z} (x^2 > 0)$

• $\exists X \in R \ (X^2 = X)$

- $\forall x \in \mathbf{R} (x^2 \neq -1)$
 - The square of a real number is never -1. (True)
- $\exists x \in \mathbf{Z} (x^2 = 2)$

• $\forall x \in \mathbf{Z} (x^2 > 0)$

• $\exists X \in \mathbf{R} \ (X^2 = X)$

- $\forall x \in \mathbf{R} (x^2 \neq -1)$
 - The square of a real number is never -1. (True)
- $\exists x \in \mathbf{Z} (x^2 = 2)$
 - There exists an integer whose square is 2. (False)
- $\forall x \in \mathbf{Z} (x^2 > 0)$

• $\exists X \in \mathbf{R} \ (X^2 = X)$

- $\forall x \in \mathbf{R} (x^2 \neq -1)$
 - The square of a real number is never -1. (True)
- $\exists x \in \mathbf{Z} (x^2 = 2)$
 - There exists an integer whose square is 2. (False)
- $\forall x \in \mathbf{Z} (x^2 > 0)$
 - The square of every integer is positive. (False. 0)
- $\exists X \in R \ (X^2 = X)$

- $\forall x \in \mathbf{R} (x^2 \neq -1)$
 - The square of a real number is never -1. (True)
- $\exists x \in \mathbf{Z} (x^2 = 2)$
 - There exists an integer whose square is 2. (False)
- $\forall x \in \mathbf{Z} (x^2 > 0)$
 - The square of every integer is positive. (False. 0)
- $\exists X \in R \ (X^2 = X)$
 - There is a real number equal to its square. (True. 1)