湖南大學

HUNAN UNIVERSITY

计算机设计

学 生 姓 名	李 博 又	
学生学号	201708010602	
专业班级	智 能 1702	
指 导 老 师	吴 强	
论文题目	Summit架构分析	

一、summit简介

Summit超级计算机是IBM计划研发的一款超级计算机,其计算性能超过中国TaihuLight超级计算机。预计将在2018年初提供给美国能源部橡树岭国家实验室,计算性能比原定指标提升四分之一以上。

2018年11月12日,新一期全球超级计算机500强榜单在美国达拉斯发布,美国超级计算机"Summit"蝉联冠军。2019年11月18日,全球超级计算机500强榜单发布,美国超级计算机"Summit"以每秒14.86亿亿次的浮点运算速度再次登顶。

这台让美国重夺世界第一的Summit超算系统由4608台计算服务器组成,每个服务器包含两个22核Power9处理器(IBM生产)和6个Tesla V100图形处理单元加速器(NVIDIA生产)。Summit还拥有超过10PB的存储器,配以快速、高带宽的路径以实现有效的数据传输。

凭借每秒高达20亿亿次(200PFlops)的浮点运算速度峰值, Summit的威力将是ORNL之前排名第一的系统Titan的8倍,相当于普通笔记本电脑运算速度的100万倍,比之前位于榜首的中国超级计算机"神威·太湖之光"峰值性能(每秒12.5亿亿次)快约60%。

为了给客户提供很高的I/O吞吐量,率很高,节点将使用Mellanox 公司的双轨InfiniBand EDR连接以无阻塞胖树架构互联。 Summit超级计算机采用IBM Power9微处理器和NVIDIA Volta GPU进行数学协同处理。Summit的前身Titan超级计算机,拥有超过18000个节点,而Summit将有约3400个节点。每个节点将拥有至少500GB相干内存,以及800GB非易失性内存。

Summit超级计算机原定计算性能是150petaflops,交付性能达到200petaflops。中国的TaihuLight超级计算机性能指标是93 petaflops,峰值性能是124.5petaflops。IBM这款超级计算机交易据说价值3.25亿美元。

二、Summit架构

节点、机架和整体

从硬件架构方面来看, Summit依旧采用的是异构方式, 其主CPU来自于IBM Power 9, 22核心, 主频为3.07GHz, 总计使用了103752颗, 核心数量达到2282544个。GPU方面搭配了27648块英伟达Tesla V100计算卡,总内存为2736TB,操作系统为RHEL 7.4。从架构角度来看,Summit并没有在超算的底层技术上予以彻底革新,而是通过不断使用先进制程、扩大计算规模来获得更高的性能。

▲SXM2接口的Tesla V100

虽然扩大规模是提高超算效能的有效方式,但是为了将这样多的 CPU、GPU和相关存储设备有效组合也是一件困难的事情。在这一点上, Summit采用了多级结构。最基本的结构被称为计算节点, 众多的计算节点组成了计算机架, 多个计算机架再组成Summit超算本身。

计算节点

2CPU+6GPU

Summit采用的计算节点型号为Power System AC922, 之前的研发代号为Witherspoon, 后文我们将其简称为AC922, 这是一种19英寸的2U机架式外壳。从内部布置来看,每个AC922内部有2个CPU插座,满足两颗Power 9处理器的需求。每颗处理器配备了3个GPU插槽,每个插槽使用一块GV100核心的计算卡。这样2颗处理器就可以搭配6颗GPU。

▲Summit的一个计算节点, 以及其内部设备

内存方面,每颗处理器设计了8通道内存,每个内存插槽可以使用 32GB DDR4 2666内存,这样总计可以给每个CPU可以带来256GB、107.7GB/s的内存容量和带宽。GPU方面,它没有使用了传统的PCle 插槽,而是采用了SXM2外形设计,每颗GPU配备16GB的HBM2内存,对每个CPU-GPU组而言,总计有48GB的HBM2显存和2.7TBps的带宽。

风生水起的NVLink 2.0

继续进一步深入AC922的话,其主要的技术难题在于CPU和GPU之间的连接。传统的英特尔体系中,CPU和GPU之间的连接采用的是PCIe总线,带宽稍显不足。但是在Summit上,由于IBM Power 9处理器的加入,因此可以使用更强大的NVLink来取代PCIe总线。本刊在之前的文章中也曾深入分析过NVLink的相关技术,在这里就不再赘述。

▲NVLink 2.0在民用市场无法施展拳脚, 但是在超算市场可谓风生水起, 图为IBM展示的NVLink 2.0连接方案

单颗Power 9处理器有3组共6个NVLink通道,每组2个通道。由于Power 9处理器的NVLink版本是2.0,因此其单通道速度已经提升至25GT/s,2个通道可以在CPU和GPU之间实现双向100GB/s的带宽,此外,Power 9还额外提供了48个PCle 4.0通道。

▲国外WikiChip机构制作的Summit内部NVLink 2.0连接示意图

和CPU类似,GV100 GPU也有6个NVLink 2.0通道,同样也分为3组, 其中一组连接CPU,另外2组连接其他两颗GPU。和CPU-GPU之间的 链接一样,GPU与GPU之间的连接带宽也是100GB/s。

CPU之间的通讯

X总线登场

除了CPU和GPU、GPU之间的通讯外,由于每个AC922上拥有2个CPU 插槽,因此CPU之间的通讯也很重要。Summit的每个节点上,CPU之 间的通讯依靠的是IBM自家的X总线。X总线是一个4byte的16GT/s链路,可以提供64GB/s的双向带宽,能够基本满足两颗处理器之间通讯的需求。

▲国外WikiChip机构制作的Summit内部CPU间通讯结构示意图

另外在CPU的对外通讯方面,每一个节点拥有4组向外的PCIe 4.0通道,包括两组x16(支持CAPI),一组x8(支持CAPI)和一组x4。其中2组x16通道分别来自于两颗CPU,x8通道可以从一颗CPU中配置,另一颗CPU可以配置x4通道。其他剩余的PCIe 4.0通道就用于各种I/O接口,包括PEX、USB、BMC和1Gbps网络等。

完整的节点性能情况

Summit的一个完整节点拥有2颗22核心的Power 9处理器,总计44颗物理核心。每颗Power 9处理器的物理核心支持同时执行2个矢量单精度运算。换句话说,每颗核心可以在每个周期执行16次单精度浮点运算。在3.07GHz时,每颗CPU核心的峰值性能可达49.12GFlops。一个节点的CPU双精度峰值性能略低于1.1TFlops,GPU的峰值性能大约是47TFlops。

	按插座计算		以节点计算	
处理器	POWER9	V100	POWER9	V100
数量	1	3	2	6
FLOPS(單精度)	1.081 TFLOPS	47.1 TFLOPS	2.161 TFLOPS	94.2 TFLOPs
	(22 × 49.12 GFLOPs)	(3 × 15.7 TFLOPs)	(2 × 22 × 49.12 GFLOPs)	(6 × 15.7 TFLOPs)
FLOPS (双精度)	540.3 GFLOPs	23.4 TFLOPS	1.081 TFLOPS	46.8 TFLOPS
	(22 × 24.56 GFLOPs)	(3 × 7.8 TFLOPs)	(2 × 22 × 24.56 GFLOPs)	(6 × 7.8 TFLOPs)
AI FLOPS	-	375 TFLOPS (3 × 125 TFLOPs)		750 TFLOPS (6 × 125 TFLOPs)
内存	258 GiB (DRR4) 8 × 32 GiB	48 GiB (HBM2) 3 × 16 GiB	512 GiB (DRR4) 16 × 32 GiB	96 GiB (HBM2) 6 × 16 GiB
带宽	170.7 GB/s (8 × 21.33 GB/s)	900 GB/s/GPU	341.33 GB/s (16 × 21.33 GB/s)	900 GB/s/GPU

请注意,这里的数值和最终公开的数据存在一些差异,其主要原因是公开数据的性能只包含GPU部分,这也是大多数浮点密集型应用可以实现的最高性能。当然,如果包含CPU的话,Summit本身的峰值性能将超越220PFlops。

Summ	nit峰值性能		
处理器 CPU		CPU	GPU
型号 POWE		POWER9	V100
数量 9,216		9,216/2 × 18 × 256	27,648/6 × 18 ×256
峰值FI	_OPS	9.96 PF	215.7 PF
峰值AI FLOPS		N/A	3.456 EF
Sumn	nit的系统组成 nit		
机架	计算节点	存储节点	交换机
类型	AC922	SSC (4 ESS GL4)	Mellanox IB EDF
	256 Racks × 18	Nodes 40 Racks × 8 Serv	vers 18 Racks
数量	200 INDONO		

除了CPU和GPU外,每个节点都配备了1.6TB的NVMe SSD和一个Mellanox Infiniband EDR网络接口。

机架和系统

机架是由计算节点组成的并行计算单元,Summit的每个机架中安置了18个计算节点和Mellanox IB EDR交换器。每个节点都配备了双通道的Mellanox InfiniBand ConnectX5网卡,支持双向100Gbps带宽。节点的网卡直接通过插槽连接至CPU,带宽为12.5GBx2—实际上每个节点的网络都是由2颗CPU分出的PCIe 4.0 x8通道合并而成,PCI-E 4.0 x8的带宽为16GB/s,合并后的网卡可以为每颗CPU提供12.5GB/s的网络直连带宽,这样做可以最大限度地降低瓶颈。

▲国外WikiChip机构制作的Summit的系统结构布局图。由于一个机架有18个计算节点,因此总计有9TB的DDR4内存和另外1.7TB的HBM2

内存,总计内存容量高达10.7TB。一个机架的最大功率为59kW,峰值计算能力包括CPU的话是846TFlops,只计算GPU的话是775TFlops。

▲一个开放的机架有18个计算节点, 开关在中部和顶部

在机架之后就是整个Summit系统了。完整的Summit系统拥有256个机架,18个交换机架,40个存储机架和4个基础架构机架。完整的Summit系统拥有2.53PB的DDR4内存、475TB的HBM2内存和7.37PB的NVMeSSD存储空间。

目前业内报告的Summit系统性能依旧偏向保守,当然,最好性能并不是最有意义的,实际的负载性能最为重要。橡树岭国家实验室在初步测试Summit针对基因组数据的性能时,达到了1.88 exaops的混合精度性能,这个测试主要是用的是GV100的张量核心矩阵乘法,这也是迄今为止报告的最高性能。