QUnoJenga Quantum Uno-Jenga

By **Quantum111**

Albert Adiyatullin, Anastasiia Andriievska, Artem Kuzmichev, Leyla Rami, Natalia Zubova

Classical Uno

 Any card you put down must either be the same color or the same number with the top card in the center.

Quantum Uno

- Each card has a different random circuit on it.
- Each new card you put down, adds a new circuit to the previous one.

What happens when we add a card?

Red-2

 As we stack cards on top of each other, the circuit length becomes longer and quantum noise starts to dominate.

What do we do with the hardware

calculation?

Simulation VS Quantum Hardware

Ideal

- Noisy
- With increasing depth of circuit, the result has a higher chance of being erroneous.

Overlap between simulations and real hardware

functions > 0.80: the tower is still standing

If the overlap between the two probability

functions < 0.80: the tower crashes

If the overlap between the two probability

Video

Final move

```
Leyla, your turn!
You have 1 cards
The center card is 2, Yellow.
Select your option
0 -- look card
1 -- look all cards
2 -- play card
3 -- skip
4 -- REAL HARDWARE
Comparing classical and quantum hardware
Job id on backend aer simulator
[0.9849374199721426, 0.9534261672573373, 0.890327362258676, 0.9185301040690768, 0.846792818107955]
Turn done
Artem broke the Jenga tower at 4-th move
Leyla is winner! Quantum Congratulations
```

Possible improvements

- 1) GUI
- 2) Adding more players
- 3) Special cards
- 4) Testing more shots of the game with constant evaluation of the process
- 5) Implementing quantum reinforced learning for improving the game model and subsequently minimizing noise of lonQ
- 6) Improve complexity of the game rules

Thank you!