

MAT3004 Abstract Algebra I

Date: June 15, 2024

Contents

1	preliminary notes	1
2	Introduction	2
3	Def of Group	3
4	Properties of Group	5
5	Cayley table	6
6	Subgroup	7
7	Cyclic Group	8
8	Order	9
9	Permutation Group	10
10	transposition	12
11	Alternating Group	13
12	Dihedral Group	14
13	Homomorphisms and isomorphisms	15
14	lagrange's theorem	17
15	normal subgroup	19
16	quotient group	20
17	classification of all finite abelian subgroup	21
18	Rings: basic knowledge	22
19	ring homomorphism	24
20	integral domain	25
21	ideals	26
22	quotient ring	28
23	Chinese remainder theorem	29
24	prime and maximal ideal	30
25	principal ideal domains (PID)	32
26	irreducible elements	33

	CONTENTS
27 factorization domains	35
28 Euclidean domain	37
29 gaussian integers	39
30 polynomial rings	41
31 field	43

Chapter preliminary notes

Theorem 1.1 (Euclidean algorithm)

we can use Euclidean algorithm to find the greatest common divisor of 2 or more than 2 integers.

Theorem 1.2 (bezout's theorem)

if $gcd(\alpha, \beta) = m$, then there are integers p, q s.t. $p\alpha + q\beta = m$

\Diamond

Definition 1.1 (equivalence relation $\alpha \sim \beta$)

an equivalence relation on a set S is a set R of ordered pairs of elements of S s.t.

- (a). $(a, a) \in R$ for all $a \in S$ (reflexive property)
- (b). $(a,b) \in R$ implies $(b,a) \in R$ (symmetric property)
- (c). $(a,b) \in R$ and $(b,c) \in R$ imply $(a,c) \in R$ (transitive property)

.

Chapter Introduction

Definition 2.1

The systems $\mathbb{Z}, \mathbb{C}, \mathbb{R}, \mathbb{Q}$ are equipped with (+) and (×): all elements in the system satisfy the following operations:

1.
$$(a+b)+c=a+(b+c)$$

$$2. \ (ab)c = a(bc)$$

3.
$$a + b = b + a$$

4.
$$ab = ba$$

$$5. \ a(b+c) = ab + bc$$

Definition 2.2 (\mathbb{Z}_n)

 $\mathbb{Z}_n := \{0 (modn), 1 (modn), ..., (n-1) (modn)\}$, which is the collection of remainders of integers upon division by n.

Remark \mathbb{Z}_n is different from $\mathbb{Z}_n^*!!!$ $\mathbb{Z}_n^*:=\{[a]|0 < a < n, gcd(a, n) = 1\}$. recall $[a]:=a \pmod n$

Remark \mathbb{Z}_n is equipped with + and \times .

Exercise 2.1 show that \mathbb{Z}_n is equipped with + and \times .

Chapter Def of Group

Definition 3.1 (binary operation)

let S be a set. a binary operation * on S is a function $*: S * S \rightarrow S$

Definition 3.2 (closeness)

let (S,*) be a binary operation. for any subset $T \subset S$, we say T is closed under * if $\forall t_1, t_2 \in T$ we have $t_1 * t_2 \in T$ and thus (T,*) is also a binary operation.

Example 3.1 any vector subspace $W \subset \mathbb{R}^2$ is closed under +, and the set $\{(x,y) : xy \ge 0, x, y \in \mathbb{R}\}$ is not closed under +.

Definition 3.3 (group)

a group (G, *) is a set with a binary operation * satisfying

- 1. (associativity): (a * b) * c = a * (b * c)
- 2. (identity): there is an element $e \in G$ s.t. e * a = a * e = a for all $a \in G$
- 3. (inverse): for all $b \in G$, there exists $b^{-1} \in G$ s.t. $b^{-1} * b = b * b^{-1} = e$

Example 3.2 $(\mathbb{Z}, +)$ is a group: check

- 1. (a+b)+c=a+(b+c)
- 2. take e = 0, we have 0 + a = a + 0 = a
- 3. for any $b \in \mathbb{Z}$, take $b^{-1} = -b$: we have (-b) + b = b + (-b) = 0

Example 3.3

- 1. (\mathbb{Z}, \times) is not a group since we cannot find the inverse for element other than 1 and -1
- 2. (\mathbb{Q}, \times) is not a group since 0 has no inverse in \mathbb{Q}
- 3. (\mathbb{Q}^*, \times) is a group, where $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$

Example 3.4 (S, \circ) is a group, where $S = \{f : T \to T \text{ is a bijection}\}\$ and \circ is the operation of composition of maps

Example 3.5

- 1. $(M_{2\times 2}(\mathbb{R}), +)$ is a group, $e = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
- 2. $(M_{2\times 2}(\mathbb{R}), \times)$ is not a group, we can show that elements in $M2 \times 2$ are associative and the identity is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ but we notice that $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has no inverse.
- 3. $GL(2,\mathbb{R}) := \{A \in M_{2\times 2}(\mathbb{R}) | det(A) \neq 0\} = \{\text{all invertible matrices}\}\ \text{then}\ (GL(2,\mathbb{R}),\times)\ \text{is a group}.$
- 4. $(\mathbb{Z}_n, +)$ is a group: $e = [0]_n$, $[a]_n^{-1} = [-a]_n = [n-a]_n = [2n-a]_n = ...$
- 5. (\mathbb{Z}_n, \times) is not a group: inverse of $0 \in \mathbb{Z}_n$ may not exist.

Remark we wonder given n, which $[a]_n$ has an inverse? the answer is that

$$[a]_n^{-1}$$
 exists $\Leftrightarrow gcd(a,n) = 1$

Proof (\leftarrow): by bezout's theorem, $gcd(a, n) = 1 \rightarrow \exists p, q \text{ s.t. } ap + bq = 1 \text{ so we have } [ap + bq]_n = [1]_n = e \text{ we have } [p]_n[a]_n + [q \cdot n]_n = e \rightarrow [p]_n[a]_n = e \rightarrow [a]_n^{-1} = [p]_n$

Example 3.6 let $\mathbb{Z}_n^* = \{[a]_n | gcd(a, n) = 1\}$, then $(\mathbb{Z}_n^*, *)$ is a group. e.g. $\mathbb{Z}_8 = \{[1]_8, [3]_8, [5]_8, [7]_8\}$

Remark

- 1. we write ab or $a \cdot b$ instead of a * b for short
- 2. we say the operation * is abelian or commutative if a*b=b*a for all $a,b\in G$. e.g. $(GL(2,\mathbb{R}),\times)$ is not abelian and $(\mathbb{Z}^*,*)$ is abelian.

Chapter Properties of Group

let (G, *) be a group,

1. the identity element $e \in G$ is unique. i.e., if $e, e' \in G$ satisfy ae = ea = a and ae' = e'a = a for all $a \in G$, we have e = e'

Proof put a = e' first, we have $e' \cdot e = e \cdot e' = e'$ and put a = e in the second equation, we have ee' = e'e = e so we have e' = ee' = e

2. for each $g \in G$ $g^{-1} \in G$ is unique

Proof if gh = hg = e and gh' = h'g = e, we prove that h' = h: we have

$$h = he = h(gh') = (hg)h' = eh' = h'$$

we are done

3. for each $a \in G$, $\{ag | g \in G\}$ are distinct: i.e., if $g \neq h$, we have $ag \neq ah$

Proof we use contrapositive statement: if ag = ah, we prove that g = h:

$$ag = ah \to a^{-1}ag = a^{-1}ah \to (a^{-1}a)g = (a^{-1}a)h \to eg = eh \to g = h$$

Remark $\{ga|g \in G\}$ is also distinct: if $g \neq h$, then $ga \neq ha$

Definition 4.1 (cancellation)

for a group (G, *), we say the operation * is of cancellation if we have

$$c*a = c*b \rightarrow a = b \text{ for } \forall a,b,c \in G$$

there is a proposition for finite group:

Proposition 4.1

for a finite set G, if we can define the operation * on the set G, and the operation * is of associativity, then we have * has cancellation $\Leftrightarrow (G,*)$ is a group

Proof (\rightarrow) : we need to show (G,*) has identity and inverse for all element in G.

1. (identity): note G is finite, consider $\forall a \in G, \langle a \rangle \subset G$, we have

$$a^i = a^j$$
 for some $i > j$

and

$$a^f := a^{i-j} \rightarrow \forall b \in G, a^f b = a^{i-j} b \rightarrow a^j a^f b = a^j a^{i-j} b = a^i b$$

with cancellation, we have

$$a^f b = b \rightarrow a^f$$
 is a left identity

similarly we can prove a^f is a right identity. we are done.

- 2. (inverse): $\forall a \in G, \langle a \rangle \subset G$, we have $a^f = e \to a^{f-1}a = a \cdot a^{f-1} = e$, we are done.
- (\leftarrow) : for a group (G, *), we want to prove * is of cancellation. if ac = bc, consider the inverse c^{-1} , we have $acc^{-1} = bcc^{-1} \rightarrow ae = be \rightarrow a = b$ and ca = cb is similar. we are done.

Chapter Cayley table

Definition 5.1 (order of group)

let (G, *) be a group. the order of G, ord(G) or |G| is defined to be the number of elements in G

Definition 5.2 (cayley table)

let G be a finite group, i.e. $|G| < \infty$, then the cayley table of G is a table with rows and columns labelled by elements of G, for $a, b \in G$, the (a, b) entry of the table is equal to a * b

 $[0]_3$

 $[1]_3$ $[2]_3$

 $[0]_{3}$ $[0]_{3}$ $[1]_{3}$ $[2]_3$ **Example 5.1** let the group be \mathbb{Z}_3 , +, the cayley table is $[1]_{3}$ $[1]_{3}$ $[2]_{3}$ $[0]_{3}$ $[2]_3$ $[2]_{3}$ $[0]_{3}$ $[1]_{3}$ $[1]_{8}$ $[3]_{8}$ $[5]_{8}$ $[7]_{8}$

 $[1]_{8}$ $[3]_{8}$ $[1]_{8}$ $[5]_{8}$ $[7]_{8}$ **Example 5.2** let the group be \mathbb{Z}_8^* , \times , the cayley table is [3]₈ $[3]_{8}$ $[1]_{8}$ $[7]_{8}$ $[5]_{8}$ $[5]_{8}$ $[7]_{8}$ $[3]_{8}$ $[5]_{8}$ $[1]_{8}$ $[5]_{8}$ $[7]_8 \mid [7]_8$ $[3]_{8}$

Proposition 5.1

the rows and columns of any cayley table have distinct entries, so it contains all elements of G

Proof check the property 3. of a group and the remark

Example 5.3

Chapter Subgroup

Definition 6.1 (subgroup)

let (G, \circ) be a group. a subset $H \in G$ is a subgroup of G if $(H, \circ_{|H \times H})$ forms a group.

Proposition 6.1

a subset $H \in G$ is a subgroup \Leftrightarrow the following holds:

- *1.* $\forall h_1, h_2 \in H, h_1 \circ h_2 \in H$
- 2. $\forall a \in H, a^{-1} \in H$.

Proof we need to prove that H is a group:

- 1. we show that $*|_{H\times H}: H\times H\to H$ is a binary operation (*) is closed in H
- 2. (associatity): (a * b) * c = a * (b * c) holds for $\forall a, b, c \in H \subset G$
- 3. (identity): $e \in G$ is indeed an element in H
- 4. (inverse): by the condition, we know the inverse must exists.

Proposition 6.2

G is a group. a nonempty subset H of G is a subgroup if the following holds:

$$a,b\in H\Rightarrow ab^{-1}\in H$$

Proof

Example 6.1

- 1. $G = (\mathbb{Z}, +), H = 2 * x | x \in \mathbb{Z}$, then $H \leq G$
- 2. $H = k\mathbb{Z}$, k is any positive integer, then $H \leq G$
- 3. H = all odd integer, then $H \nleq G$
- 4. $G = (GL(n, \mathbb{R}), \times), H = SL(n, \mathbb{R}) := \{A \in GL(n, \mathbb{R}) | det(A) = 1\}, \text{ then } H \leqslant G$
- 5. $(\mathbb{Z},+) \leqslant (\mathbb{Q},+) \leqslant (\mathbb{R},+) \leqslant (\mathbb{C},+)$
- 6. $G = (\mathbb{Z}_8, +), H = \{[0], [3]\}, \text{ then } H \nleq G, H' = \{[0], [4]\}, H \leqslant G$

Definition 6.2 (proper subgroup)

let (G,*) be a group, a proper subgroup of G is $H \leq G$ with $H \neq G$

Definition 6.3 (trivial subgroup)

let (G, \circ) be a group, a proper subgroup of G is $H = \{e\} \leqslant G$.

Definition 6.4 (characteristic)

 \mathcal{F} is a field, then the characteristic of \mathcal{F} is the smallest positive integer m s.t. $1_{\mathcal{F}}+...+1_{\mathcal{F}}=0_{\mathcal{F}}$ and $char(\mathcal{F}):=m$; if no such m exists, we let $char(\mathcal{F})=\infty$

Proposition 6.3

in a group G, let the order of the element a be n, we have:

- 1. $a^m = e \Leftrightarrow n|m$
- 2. $\forall k \in \mathbb{N}$, the order $|a^k| = \frac{n}{\gcd(n,k)}$

Chapter Cyclic Group

Definition 7.1 (cyclic subgroup)

let (G, \circ) be a group, the cyclic subgroup generated by $g \in G$ is the subgroup $\langle g \rangle := \{g^m | m \in \mathbb{Z}\}$

Definition 7.2 (cyclic group; generator)

let G be a group, we say G is a cyclic group if $\exists g \in G$ s.t. $G = \langle g \rangle$. we say that g is a generator of G.

Remark G is called to be generated by a set X if G is the smallest group that contains all elements in $X := \{g^m | m \in \mathbb{Z}\}$, which means that every element of G can be obtained by multiplication or inverse operations on the set $X := \{g^m | m \in \mathbb{Z}\}$

Example 7.1 (\mathbb{Z}_8 , +) is cyclic

Proof because $\mathbb{Z}_8 = \langle [1] \rangle$

Example 7.2 ($GL(n, \mathbb{R}, \times)$ is not cyclic.

Proof there are uncountably many elements in the set $GL(2,\mathbb{R})$, but clearly $\langle g \rangle$ is countable.

Example 7.3 (\mathbb{Z}_8^* , ×) is not cyclic.

Proof just check every element in \mathbb{Z}_8^* is not a generator of \mathbb{Z}_8^* . (find out what is \mathbb{Z}_8^* first!!!) —— $\mathbb{Z}_8^* = \{[1], [3], [5], [7]\}$ 1. $\langle [1] \rangle = \{e\}$ 2. $\langle [3] \rangle = \{[3], [1]\}$ 3. $\langle [5] \rangle = \{[5], [1]\}$ 4. $\langle [7] \rangle = \{[7], [1]\}$

Exercise 7.1from HW2 show that (\mathbb{Z}_5^*, \times) is cyclic.

```
Proof we know that \mathbb{Z}_5^* = \{[1], [2], [3], [4]\}. \langle [1] \rangle = \{e\} \langle [2] \rangle = \{[2], [4], [3], [1]\}. so we find a generator.
```

Chapter Order

Definition 8.1 (order)

let G be a group. the order of an element $g \in G$ is equal to the order of the cyclic subgroup $\langle g \rangle$. in other words, the order of g is the smallest positive integer m s.t. $g^m = e$.

Remark recall that the order of a group G is the size of the set G.

Example 8.1

- 1. in $(\mathbb{Z}_8, +)$, ord([4]) = 2, ord([6]) = 4, ord([1]) = 8. recall that $\mathbb{Z}_n := \{0 \pmod{n}, 1 \pmod{n}, ..., (n-1) \pmod{n}\}$
- 2. $(GL(2,\mathbb{R}),\times): \langle (\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}) \rangle, \langle (\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}) \rangle$ as $(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array})^{-1} = (\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array})$ so the order is 2.
- 3. $\{\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \rangle = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^m | m \in \mathbb{Z}\} = \{\begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} | m \in \mathbb{Z}\}, \text{ the order is } \infty$

Chapter Permutation Group

Definition 9.1 (permutation group S_n)

A permutation of X_n is a bijective map: $\sigma: X_n \to X_n$. The permutation group is a collection of all permutation of X_n .

Remark note that X_n is a set!

Proposition 9.1

 (S_n, \circ) is a group.

Proof (closeness): $\circ: S_n \times S_n \to S_n$ is closed since composition of 2 bijective maps is still bijective.

(associativity): $(\sigma_1 \circ \sigma_2) \circ \sigma_3 = \sigma_1 \circ (\sigma_2 \circ \sigma_3)$ holds since composition of maps is associative.

(identity): $e: 1 \to 1, 2 \to 2, ..., n \to n: X_n \to X_n \text{ satisfies:} \sigma \circ e = e \circ \sigma = \sigma, \forall \sigma \in S_n.$

(inverse): since $\sigma \in S_n$ is bijective, it must have $\sigma^{-1} \in S_n$ s.t. $\sigma^{-1} \cdot \sigma = \sigma \cdot \sigma^{-1} = e$

Remark Groups are used to study "symmetry". S_n is used to study the symmetry of n identical objects.

we want to study the calculation on S_n .

Definition 9.2 (cycle notation)

let $1 \le i_1, i_2, ... \le n$. a k-cycle: $(i_1, i_2, ..., i_k)$ is an element σ in S_n satisfying: $\sigma(i_{k-1}) = i_k$ and for $\forall j \notin i_1, i_2, ..., i_k, \sigma(j) = j$.

Example 9.1 $\tau := (1, 3, 2)$ in S_5

we have $\tau(1) = 3$, $\tau(3) = 2$, $\tau(2) = 1$, $\tau(4) = 4$, $\tau(5) = 5$.

Remark we can multiply (k-cycle) and (l-cycle) by composition of function.

Proposition 9.2

$$(i_1, i_2, ..., i_k) = (i_2, i_3, ..., i_k, i_1) = ...$$

Proposition 9.3

all $\sigma \in S_n$ can be written as product of disjoint cycles: $\sigma = \gamma_1 \gamma_2 ... \gamma_n$, γ_i are cycles with no repeated entries among them.

Example 9.2 (1)(2,3)(4) are disjoint cycles.

Proposition 9.4

if γ_1 and γ_2 are two disjoint cycles, then $\gamma_1\gamma_2 = \gamma_1\gamma_2$

Proposition 9.5

let γ be a k-cycle in S_n , then $ord(\gamma) = k$. e.g. let $\gamma = (1342)$, we check $\gamma^2 = (14)(23)$, $\gamma^3 = (1243)$, $\gamma^4 = (1)(3)(4)(2) = e$, $ord(\gamma) = 4$

Proof

Example 9.3 $\gamma = (1, 3, 4, 2)$. then $\gamma^2 = (1, 3, 4, 2) \cdot (1, 3, 4, 2) = (1, 4)(3, 2), \gamma^3 = (1, 4)(3, 2)(1, 3, 4, 2) = (1, 2, 4, 3) \neq e$, $\gamma^4 = (1, 3, 4, 2)(1, 2, 4, 3) = (1)(2)(3)(4) = e$. so we conclude that $\operatorname{ord}(\gamma) = 4$.

Proposition 9.6

the inverse of a k-cycle $(i_1, i_2, ..., i_k)^{-1} = (i_1, i_k, i_{k-1}, ..., i_3, i_2)$

Proof ?need to check by oneself.

Chapter transposition

Definition 10.1 (transposition)

a 2-cycle $(i, j) \in S_n$ is called a transposition.

Proposition 10.1

every $\sigma \in S_n$ can be written as a product of transpositions. (not necessary to be distinct)

Proof if $\sigma = (a_1 a_2 ... a_k)$ is a k-cycle, we note that $\sigma = (a_1 a_k) ... (a_1 a_3) (a_1 a_2)$ and in general all $\sigma \in S_n$ can be written as a product of disjoint cycles: $\sigma = (i_1 ... i_k) (j_1 ... j_l) = (i_1 i_k) (i_1 i_{k-1}) ... (i_1 i_2) (j_1 j_l) ... (j_1 j_2)$

Remark the expression of $\sigma \in S_n$ into product of transportation is not unique. however, the number of transpositions in each expression must be odd or even.

Theorem 10.1

let $\sigma = \tau_1 \tau_2 ... \tau_k = \tau_1' \tau_2' ... \tau_l'$, where τ_i and τ_l' are transpositions, then k = lmod(2).

to prove the theorem, we need the following lemma:

Lemma 10.1

 $e = \tau_1 \tau_2 ... \tau_k$, then k is even. (*)

Proof we do induction on k:

- 1. if k = 0: $\sigma = e = \text{product of } 0 \text{ transportation}$
- 2. if k = 1: $\sigma = e \neq \tau_1$ for any transportation τ_1
- 3. by induction, suppose (*) holds for $k \le m \in \mathbb{Z}$. if k = m + 1, suppose $e = \tau_1...\tau_{m+1}$, $\tau_{m+1} = (a, b)$ (a). if $\tau_m = (a, b)$, then $\tau_m \tau_{m+1} = e$

then we are ready to prove the theorem

Proof

Chapter Alternating Group

Definition 11.1 (even(odd))

an element $\sigma \in S_n$ is called even (or odd) if σ can be expressed into an even (or odd) number of transpositions.

Remark any transposition is odd

a permutation $\sigma = \tau_1 \tau_2 ... \tau_k$, where τ_i are transposition, then k and σ have the consistent parity.

Definition 11.2 (alternating group)

the alternating group A_n is a subgroup of S_n consisting of all even permutations σ .

Proposition 11.1

$$|A_n| = \frac{|S_n|}{2} = \frac{n!}{2} \text{ for } n \geqslant 1.$$

Proof

Example 11.1 A₄ is the "rotation" symmetries of a tetrahedron. (it does not include reflection symmetries.)

Chapter Dihedral Group

Definition 12.1

before giving the complete definition, we say that dihedral group describes the symmetries of a regular n-(poly)gons: n rotations and n reflections.

Proposition 12.1

 $|D_n| = 2n$

Definition 12.2 (principal s and principal r)

the principal reflection s of an n-gon is the reflection among the axis passing through "vertex 1" the principal rotation r is the rotation by $\frac{2\pi}{n}$ radians.

Claim 12.0.1. $r^l \cdot s$ is a reflection along the axis by rotating the principal axis of reflection by $l \cdot \frac{\pi}{n}$

Proof

Exercise 12.1 show that in D_n , $r^l s = sr^{n-l}$.

Definition 12.3 (Dihedral group)

the dihedral group D_n is $\{e,r,r^2,...,r^{n-1},s,rs,r^2s,...r^{n-1}s\}$. the multiplication of D_n satisfies: $D_n\{rs|r^n=e,s^2=e,r^ls=sr^{n-l}\}$

Proposition 12.2

every element in D_n has order 2.

Proposition 12.3

we can reduce all elements of the form: $r^a s^b r^c s^d r^e s^f ... \in D_n$ into one of the 2n elements in D_n

Example 12.1 in D_5 , we can show that $r^6 s^{-5} r^3 s^4 = s r^2$

Definition 12.4 (product of groups)

let $G_1,...G_k$ be groups, we define the (exterior) product of $G_1,...G_k$ as $G_1 \times G_2 \times ... \times G_k := (g_1,...,g_k)|g_1 \in G_1,...g_k \in G_k$

Remark[multiplication of elements] $(g_1, ...g_k)(h_1, ...h_k) = (g_1h_1, g_2h_2, ...g_kh_k)$

Chapter Homomorphisms and isomorphisms

first give one example as motivation:

Example 13.1 consider two groups: $(\mathbb{Z}_2 \times \mathbb{Z}_2, *) \leftrightarrow (\mathbb{Z}_8^*, \star)$:

- $(0,0) \leftrightarrow 1$
- $(1,0) \leftrightarrow 3$
- $(0,1) \leftrightarrow 5$
- $(1,1) \leftrightarrow 7$

we find that (1,0)*(1,1) = (2,1) = (0,1) and $3 \star 7 = 5 \pmod{8}$: we find this "identification between two groups respects multiplication"

Definition 13.1 (homomorphism and isomorphism)

let (G,*) and (H,\star) be groups, a homomorphism $\phi: G \to H$ is a map that "respects" multiplications, i.e. $\phi(g_1*g_2) = H_1 \star H_2$, if ϕ is a bijective homomorphism, ϕ is called an isomorphism (\cong)

*

Example 13.2 examine that $\phi: D_4 \to S_4$ is a homomorphism

Example 13.3 show that $\phi: D_n \to S_n$ is an injective homomorphism. e.g. $\phi(r) = (12...n)$ and $\phi(s) = (2n)(3, n-1)$, s is the reflection with the axis passing vertex 1.

Remark we say a map is injective, then the map is of course not surjective.

Example 13.4 $\phi: A_3 \to \mathbb{Z}_3$

Example 13.5 any linear transformation: $T:(\mathbb{R}^n,+)\to(\mathbb{R}^m,+)$ is a homomorphism

Example 13.6 $(\mathbb{Z},+) \to (\mathbb{Z}_n,'+')$: define the map: $\pi(a) = [a]_n$. check that $\pi(a+b) = \pi(a) + \pi(b)$

Remark the addition defined on \mathbb{Z}_n is different from the addition defined on \mathbb{Z} .

Proposition 13.1 (composition)

- 1. $\phi: G \to H$ and $\psi: H \to K$ are homomorphism, then $\psi \circ \phi$ is also a homomorphism.
- 2. if $\phi: G \to H$ is a homomorphism, then $\phi(e_G) = e_H$.
- 3. if $\phi: G \to H$ is an isomorphism, then its inverse $\phi^{-1}: H \to G$ is a homomorphism

Proof

Definition 13.2 (kernel and image)

let $\phi:G\to H$ be a homomorphism, kernel $ker(\phi):=\{g\in G:\phi(g)=e_H\}$ image $im(\phi):=\{\phi(g):g\in G\}$

Remark $ker(\phi) \leq G, im(\phi) \leq H$

Example 13.7 $\phi: S_n \to (\pm 1, \times), ker(\phi) = \sigma \in S_n: \phi(\sigma) = 1$

Example 13.8 the determinant: $(GL(n,\mathbb{R}),\times) \to (\mathbb{R}^*,\times)$ is a homomorphism: recall that det(AB) = det(A)det(B) the kernel $ker(det) = A \in GL(n,\mathbb{R})$: $det(A) = 1 := SL(n,\mathbb{R})$ $im(det) = \mathbb{R}^*$ (recall the definition of $GL(n,\mathbb{R})$)

Exercise 13.1 $\psi := S_n \to GL(n, \mathbb{R})$ is a homomorphism if

$$\sigma \to A_{\sigma} := \begin{cases} 1, & \text{on the } (\sigma(i), i) \text{ entries} \\ 0, & \text{elsewhere} \end{cases}$$

Example 13.9 n = 3, we have (132)
$$\rightarrow A_{(132)} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Proposition 13.2

 $\phi: G \to H$ is a homomorphism, then we have:

- 1. ϕ is an injective iff $ker(\phi) = \{e_G\}$
- 2. ϕ is surjective iff $im(\phi) = H$
- 3. if G is cyclic/abelian, then $\phi(G)$ is also cyclic/abelian.

Proof 1. (\rightarrow) we prove that $ker(\phi) = e_G$ using the definition of injective and the property of homomorphism that $\phi(e_G) = e_H$

 (\leftarrow) we prove that ϕ is an injective using a property of homomorphism: $\phi(x^{-1}) = \phi^{-1}(x)$ (proof: $\phi(x^{-1}) \times \phi(x) = \phi(x^{-1}) \times x$) $\phi(x^{-1}) \times \phi(x^{-1}) = \phi^{-1}(x)$

Proof 2. (\rightarrow) we prove that $im(\phi) = H$, the definition of surjective map says that $\forall h \in H, \exists g \in Gs.t.\phi(g) = h$ i.e. $im(\phi) \geqslant H$, recall that $im(\phi) \leqslant H \rightarrow im(\phi) = H$

(leftarrow) I think this is proved by the definition of surjective map.

Remark if $\phi: G \to H$ is isomorphism, then "many" properties of G remains true for H, such as G is cyclic/abelian \Leftrightarrow H is also cyclic/abelian.

Exercise 13.2 a. do we have $\phi: (\mathbb{Z}_6, +) \to S_3$ is an isomorphism? b. do we have $\phi: \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is an isomorphism?

Theorem 13.1

let $G = \langle g \rangle$ be a cyclic group, then if $|G| = \infty$, then $G \cong (\mathbb{Z}, +)$; if |G| = n, then $G \cong (\mathbb{Z}_n, +)$

Proof

Chapter lagrange's theorem

Definition 14.1 (equivalence relation)

S is a set, an equivalence relation \sim on S satisfies for all $a,b,c \in S$, 1. $a \sim a$;

2.
$$a \sim b, b \sim c \rightarrow a \sim c;$$

3.
$$a \sim b \leftrightarrow b \sim a$$

Definition 14.2 (equivalence class)

an equivalence class of S with representative $a \in S$ is the set $C_a := \{b \in S : b \sim a\}$

Remark if $a \sim c$, then $C_a = C_c$

Remark M is a matrix
$$C_M := C_{\begin{pmatrix} det(M) \\ 1 \\ & \ddots \\ & & 1 \end{pmatrix}}$$
, if $det(M) \neq det(M') \rightarrow C_M \cap C_{M'} = \phi$

for a set S, we can partition S into disjoint union of equivalence class $S = C_{\alpha} \sqcup C_{\beta} \sqcup ...$, where \sqcup means disjoint union. for the above example, we have $(GL(n,\mathbb{R}), \sim) = \bigsqcup_{y \in \mathbb{R}^*} C_{(y)}$

Definition 14.3 (left coset)

let $H \leq G$, the left coset of H with representative $a \in G$ is the equivalence class: $aH = C_a = \{b \in G | a \sim b\} = \{b \in G | a^{-1}b \in H\} = \{b \in G | a^{-1}b = h, h \in H\} = \{ah | h \in G\}$

Remark relation between left coset and equivalent class: we can write $G = \bigsqcup_{\alpha \in A} \alpha H$ for some indexed set A

Definition 14.4

let $H \leq G$, the index [G:H] is equal to the number of the left coset in $G = \bigsqcup_{\alpha \in A} \alpha H$ for some indexed set A

Example 14.2 a. $3\mathbb{Z} \leq \mathbb{Z}$, $\mathbb{Z} = (0 + \mathbb{Z}) \sqcup (1 + \mathbb{Z}) \sqcup (2 + \mathbb{Z})$, $[\mathbb{Z} : 3\mathbb{Z}] = 3$

b. $[GL(n,\mathbb{R}):SL(n,\mathbb{R})]=\infty$

c. $G = S_3, |S_3| = 6, H = \{e, (12)\}, eH = \{ee, e(12)\}, (23)H = \{(23), (132)\}, (13)H = \{(13), (123)\}, [S_3 : H] = 3\}$

Theorem 14.1 (lagrange)

let $|G| < \infty$ and $H \leq G$, then $[G:H] \cdot [H] = [G]$

Proof

Corollary 14.1

let $|G| < \infty$, and $g \in G$, then $ord(g) \mid |G|$

\odot

Corollary 14.2 (Fermat's little theorem)

let $a \in \mathbb{Z}$, and a is not a multiple of p, then $p|(a^{p-1}-1)$, i.e. $a^{p-1} \equiv 1 \pmod{p}$

_____*)*

Chapter normal subgroup

Definition 15.1 (right coset)

define $a \sim_R b \Leftrightarrow ab^{-1} \in H$. we can check that this is also an equivalence relation with equivalence class: $R_a := \{b | b \sim_R a\} = Ha = \{ha | h \in H\}$

it is easy to notice that not all groups have subset H s.t. left coset equals to right coset.

Example 15.1 a. $G = S_3$, $H = A_3$, check that $gA_3 = A_3g$, $\forall g \in G$

b. $G = D_n$, $H = \langle s \rangle = \{e, s\}$, $rH = \{r, rs\}$, $Hr = \{r, sr\}$, recall that $rs = sr^{n-1}$, for n > 2, we have $rs \neq sr$, $\rightarrow rH \neq Hr$.

Definition 15.2 (normal group)

let $H \leq G$, we say H is a normal subgroup of G, $(H \triangleleft G)$ if gH = Hg, $\forall g \in G$

Example 15.2 a. $A_n \triangleleft S_n$

b. $SL(n,\mathbb{R}) \triangleleft GL(n,\mathbb{R})$ c. $\langle s \rangle \not \triangleleft D_n$ for $n \geq 2$

Theorem 15.1

let $H \leq G$, the following are equivalent:

a. $H \triangleleft G$: $gH = Hg, \forall G$

 $b. \ \forall h \in H, g \in G, ghg^{-1} \in H$

 $c. gHg^{-1} = H, \forall g \in G$

Proof

Corollary 15.1

let $\phi: G \to H$ be a homomorphism of groups, then $ker(\phi) \triangleleft G$

Proof using the equivalent definition of normal group in the above theorem b.

take any $k \in ker(\phi)$, i.e. $\phi(k) = e_H$, we want to prove that $gkg^{-1} \in ker(\phi)$. consider $\phi(gkg^{-1} = \phi(g)\phi(k)\phi(g^{-1}) = \phi(g)e_H\phi(g^{-1}) = \phi(g)\phi(g^{-1}) = e_H$, so we have $gkg^{-1} \in ker(\phi)$, which proves that $ker(\phi) \triangleleft G$, we are done.

note $\phi(g)\phi(g^{-1}) = \phi(gg^{-1}) = \phi(e_G) = e_H$ and thus $\phi(g^{-1}) = \phi(g)^{-1}$

Example 15.3 $SL(n, \mathbb{R}) \triangleleft GL(n, \mathbb{R})$

Chapter quotient group

Definition 16.1 (quotient group)

let $H \triangleleft G$, the quotient group is defined as

$$G \setminus H := \{all\ H\text{-}left\ coset\ of\ G = \{aH|a \in G\}$$

the multiplication rule is defined to be

$$(aH)*(bH) := (abH)$$

Remark a. |G/H| = the number of H-left coset of G = [G:H], if $|G| < \infty$, then by lagrange theorem, we have [G:H] = |G|/|H|

b. the multiplication rule of (G/H, *) gives a group: [(aH) * (bH)] * (cH) = (aH) * [(bH) * (cH)] = (abc)H and the identity of the group is $e_{G/H} = eH$, and the inverse of the group: $(bH)^{-1} = b^{-1}H$ since $b^{-1}H * bH = (b^{-1}b)H = eH$

Remark given $a_1 \neq a_2$ and $b_1 \neq b_2$ we can still have $a_1H = a_2H$ and $b_1H = b_2H$. it is also true that: $(a_1H)(b_1H) = (a_2H)(b_2H)$, i.e. $(a_1b_1)H = (a_2b_2)H$

Example 16.1 we can show that $\mathbb{Z}/n\mathbb{Z} \cong Z_n$

Theorem 16.1 (first isomorphism theorem)

let $\phi: G \to H$ be a homomorphism, then $ker(\phi) \triangleleft G$, and $G/ker(\phi) \cong im(\phi)$

Proof

Definition 16.2 (simple group)

we say a group G is simple if there is no proper, nontrivial, normal subroups of G, i.e. $k \triangleleft G \Leftrightarrow k = \{e\}$ or G

Example 16.2 1. $GL(n, \mathbb{R})$ is not a simple since $SL(n, \mathbb{R}) \triangleleft GL(n, \mathbb{R})$

- 2. $A_n \triangleleft S_n$
- 3. A_n is simple for $n \ge 5$, $k = \{e, (13)(24), (12)(34), (14)(23)\} \triangleleft A_4$

Remark for $|G| < \infty$, we have $|G| = |G/k| \times |k|$, but it does not implies that $G \cong G/k \times k$. for example: $G = S_3$, $H = A_3$, $G/H = \mathbb{Z}_2$, but $S_3 \ncong A_3 \times \mathbb{Z}_2$, notice that S_3 is not abelian but A_3, \mathbb{Z}_2 are abelian and thus $A_3 \times \mathbb{Z}_2$ is abelian.

Chapter classification of all finite abelian subgroup

what we are going to do is try to classify all finite abelian subgroup. we first recall examples of finite abelian group: $(\mathbb{Z}_n, +), (\mathbb{Z}_n^*, \times), (\mathbb{Z}_m \times \mathbb{Z}_n, +)$

Exercise 17.1 whether do we have: $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$? the exercise is natural since both two groups are abelian and have order mn.

the answer is true for the case that gcd(m, n) = 1: there is a counterexample: $\mathbb{Z}_4 \ncong \mathbb{Z}_2 \times \mathbb{Z}_2$ since \mathbb{Z}_4 is cyclic and $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic.

Proof we want to show that there is an isomorphism $\phi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ with gcd(m,n) = 1:

- 1. show that ϕ is a homomorphism
- 2. show that ϕ is surjective and injective

Theorem 17.1

all finite abelian group G are isomorphic to a product of cyclic groups: $G \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times ... \times \mathbb{Z}_{n_k}$ and the expression may not be unique. (what is the requirement for n_i ?)

Proof 1. we first show that if $|G| = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$, then $G \cong H_{p^{a_1}} \times H_{p^{a_2}} \times \dots \times H_{p^{a_r}}$

2. we show that all abelian groups H_{p^a} of order p^a is isomorphic to $\mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \times ... \times \mathbb{Z}_{p^{k_r}}$ with $a = k_1 + k_2 + ... + k_r$ and $k_1 \leq k_2 \leq ... \leq k_r$

(this does not mean that $\mathbb{Z}_8 \cong \mathbb{Z}_4 \times \mathbb{Z}_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$)

$$1. + 2. \rightarrow G \cong (\mathbb{Z}_{p_1^{k_1}} \times \mathbb{Z}_{p_1^{k_2}} \times \ldots \times \mathbb{Z}_{p_1^{k_x}}) \times (\mathbb{Z}_{p_2^{k_1}} \times \mathbb{Z}_{p_2^{k_2}} \times \ldots \times \mathbb{Z}_{p_2^{k_y}}) \times \ldots \times (\mathbb{Z}_{p_r^{k_1}} \times \mathbb{Z}_{p_r^{k_2}} \times \ldots \times \mathbb{Z}_{p_r^{k_z}})$$

Exercise 17.2 show that $\mathbb{Z}_8 \ncong \mathbb{Z}_4 \times \mathbb{Z}_2 \ncong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

Corollary 17.1

if $\phi: G \to H$ is an isomorphism and ord(g) = l for $g \in G$, then $ord(\phi(g)) = l$

Proof

Example 17.1 we wonder the abelian group G of order 360 may be isomorphic to ...?

Proof note that $360 = 2^3 3^2 5^1$. we claim that there are 6 choices of abelian groups for group G of order 360 to be isomorphic to. these 6 groups are not isomorphic

this result gives a full description (of the structure) of abelian groups of order 360: we can check: $\mathbb{Z}_{360} \cong \mathbb{Z}_8 \times \mathbb{Z}_9 \times \mathbb{Z}_5$ why? and $\mathbb{Z}_{180} \times \mathbb{Z}_2 \cong$

Theorem 17.2

if G is abelian and |G| = mn with gcd(m, n) = 1, then $G \cong H_m \times H_n$ where H_m , H_m are abelian groups of order m, n respectively.

Corollary 17.2

by the above theorem, we have: every abelian group G with $|G| = p_1^{a_1} p_2^{a_2} \dots p_r^{a_r}$ is isomorphic to $H_1 \times H_2 \times \dots \times H_r$ where $|H_1| = p_1^{a_1}, \dots, |H_r| = p_r^{a_r}$

Theorem 17.3

every abelian group of order p^a is isomorphic to $\mathbb{Z}_{p^{k_1}} \times \mathbb{Z}_{p^{k_2}} \times ... \times \mathbb{Z}_{p^{k_r}}$ with $k_1 \leqslant k_2 \leqslant ... \leqslant k_r$ and $a = k_1 + k_2 + ... + k_r$

Proof (guideline)

Chapter Rings: basic knowledge

Introduction

- definition of ring
- ☐ how to check a subring
- subring

- product ring
- ☐ commutative, unital
- ☐ field

Definition 18.1 (ring)

a ring is a set equipped with two binary operations: $+: R \times R \rightarrow R$ and $\cdot: R \times R \rightarrow R$ s.t.

- a. (R, +) is an abelian group with additive identity 0_R , and (R, \times) is not necessary to be a group.
- b. (R, \cdot) is associative
- c. $(R, +, \cdot)$ is distributive: $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$

Example 18.1 a. $\mathbb{Z}[i] := \{a + bi | a, b \in \mathbb{R}\}$ is a ring

- b. $n\mathbb{Z} = \{nk | k \in \mathbb{Z}\}$ is a ring
- c. $M_{n\times n}(\mathbb{R})$ forms a ring

Definition 18.2 (unital)

let $(R, +, \cdot)$ be a ring, we say R is unital if there is a multiplicative identity 1_R i.e. $r \cdot 1_R = 1_R \cdot r = r$ for all $r \in R$.

in $M_{n\times n}(R)$, $I_R = I_{n\times n}$; in Z_n , $1_R = [1]$; but $n\mathbb{Z}$ has no 1_R for n > 1, so $n\mathbb{Z}$ is not a unital ring.

Definition 18.3 (commutative)

 $(R,+,\cdot)$ is a ring, we say $(R,+,\cdot)$ is commutative if $ab=ba, \forall a,b\in\mathbb{R}$. notice $M_{n\times n}(R)$ is not commutative.

Definition 18.4 (unit)

if R is unital, the unit of R is defined as $U(R) := \{r \in R | \exists r^{-1} \in R \text{ s.t. } rr^{-1} = r^{-1}r = 1_R\}$ e.g. $U(\mathbb{Z}) = \{1, -1\}, \ U(\mathbb{Q}) = Q^* = Q \setminus \{0\} \text{ since } (\frac{a}{b})^{-1} = (\frac{b}{a}), \ U(\mathbb{Z}[i]) - \{1, -1, i, -i\}, \ U(M_{n \times n}(R)) = GL(n, \mathbb{R})$

Remark

- 1. the additive identity 0_R is unique in R. if R is unital, then the multiplicative unit 1_R is also unique.
- 2. write $-r \in R$ as the additive inverse of $r \in R$, $r + (-r) = 0_R$
- 3. similarly for $s \in U(R)$, we write s^{-1} as the multiplicative inverse of s, i.e. $s \cdot s^{-1} = s^{-1}s = 1_R$
- 4. for $n \in \mathbb{N}$, write $n \cdot r := r + r + ... + r$
- 5. if R is commutative, then for $a, b \in R$, we write a|b as a divides b, and a is a factor of b if $\exists c \in R$ s.t. b = ac

Proposition 18.1

- $a. \ 0_R \cdot r = r \cdot 0_R, \forall r \in R$
- b. $(-1_R) \cdot r = -r = r(-1_R)$
- $c. (-1_R) \cdot r = r = (-r)(-1_R)$

Proof

Remark if $m \in \mathbb{Z}$, and m < 0, $m \cdot r := (-r) + (-r) + ... + (-r) = ((-1_R) + (-1_R) + ... + (-1_R)) \cdot r$

Definition 18.5 (product ring)

 $(R,+,\cdot)$ and $(S,+,\cdot)$ are rings, the product ring $(R\times S,+,\cdot)$ is defined by a. (r,s)+(r',s'):=(r+r',s+s') and b. $(r,s)\cdot(r',s')=(r\cdot_R r',s\cdot_S s')$ where \cdot_R is the multiplication on R and \cdot_S is the multiplication on S.

Definition 18.6 (subring)

let $R' \subset R$ be a subset, then R' is a subring of R if $+_R|_{R' \times R'} : R' \times R' \to R'$; $\cdot_R|_{R' \times R'} : R' \times R' \to R'$ gives a ring structure of R'.

Theorem 18.1 (equivalent definition of subring)

let $(R, +, \cdot)$ be a ring, a subset $R' \subset R$ is a subring iff $\forall a, b \in R'$, we have:

 $a. \ a+b \in R'$

 $b.\ -a\in R'$

 $c. \ a \cdot b \in R'$

Definition 18.7 (field)

a field \mathcal{F} is a unital, commutative ring s.t. $U(\mathcal{F}) = \mathcal{F} \setminus \{0_{\mathcal{F}}\}$

Example 18.2 \mathbb{Z} is not a field since $U(\mathbb{Z}) = \{1, -1\}$.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields.

Remark $R[X] := \{a_n x^n + ... + a_0 | a_i \in R\}$ is a ring if R is a ring. if R is commutative/unital, then R[x] is also commutative/unital.

Chapter ring homomorphism

Introduction

☐ ring homomorphism

properties of ring homomorphism

unital homomorphism

kernel and image

Definition 19.1 (ring homomorphism)

let R, S be rings, then a map $\phi: R \to S$ is a ring homomorphism if ϕ satisfies:

a.
$$\phi(r + r') = \phi(r) + \phi(r')$$

b.
$$\phi(r \cdot r') = \phi(r)\phi(r')$$

Definition 19.2 (unital)

if R,S are unital, a homomorphism ϕ is called unital if $\phi(1_R) = 1_S$

Remark a. if $\phi: R \to S$ is bijective, then we say $R \to S$ is an isomorphism

b. for groups, (G, \cdot) and (H, \cdot) : any homomorphism $\phi: G \to H$ i.e. $\phi(g_1 \cdot g_2) = \phi(g_1)\phi(g_2)$ satisfies $\phi(e_G) = e_H$. however, for ring homomorphism since G,H are not groups, so we have $\phi(e_G) = e_H$ automatically.

Example 19.1 a. $\phi : \mathbb{Z} \to \mathbb{Z}$: $\phi(n) = 2n$ is a group homomorphism but ϕ is not a ring homomorphism: $\phi(a \cdot b) = 2(ab) \neq \phi(a)\phi(b) = 4(ab)$

b. $\phi : \mathbb{Z}_{10} \to \mathbb{Z}_{10} : \phi([a]_{10}) = [2a]_{10}$ is not a ring homomorphism but $\psi : \mathbb{Z}_{10} \to \mathbb{Z}_{10} : \psi([a]_{10}) = [5a]_{10}$ is a ring homomorphism and ψ is not unital since $\psi([1]_{10}) = [5 \cdot 1]_{10} \neq [1]_{10}$

c.

d.

e.

Remark $\phi : \mathbb{Z}_8 \to \mathbb{Z}_4 \times \mathbb{Z}_2$ is not isomorphic since $\phi([4]) = ([0], [0])$, so $ker(\phi) \neq \{0\}$. however, if gcd(m, n) = 1, then $\phi : \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$ is an isomorphism.

Proposition 19.1

let $\phi: R \to S$ be any ring homomorphism, we have

a.
$$\phi(0_R) = 0_S$$

$$b. \ \phi(-a) = -\phi(a)$$

c. if R, S are unital and ϕ is unital homomorphism, then $\phi(a^{-1}) = (\phi(a))^{-1}$

d. if ϕ is an isomorphism, then $\phi^{-1}: S \to R$ is also a ring homomorphism

Proof

Proposition 19.2

let $\phi: R \to S$ be a ring homomorphism, then we have:

a.
$$ker(\phi) = \{r \in R : \phi(r) = 0_S\} \leq R$$

$$b. \ im(\phi) = \{\phi(r) : r \in R\} \leqslant S$$

c. ϕ is an isomorphism $\Leftrightarrow ker(\phi) = \{0_R\}$ and $im(\phi) = S$

Proof

Chapter integral domain

Introduction

☐ zerodivisor, integral domain

 \Box field \subset ID

☐ cancellation property

recall in groups we have $ker(\phi) \not \lhd G$ is a normal group, the analog for rings is called ideals.

Definition 20.1 (zerodivisor; integral domain)

let R be a ring. an element $a \in R \setminus \{0\}$ is a zerodivisor if $\exists r \in R \setminus \{0\}$ s.t. $a \cdot r = 0_R$ or $r \cdot a = 0_R$. recall if $a = 0_R$, $a \cdot r = r \cdot a = 0_R$. a ring R is called an integral domain(ID) if R is commutative and R has no zerodivisor.

Example 20.1 \mathbb{Z}_6 is not an integral domain since $[2][3] = [6] = [0] \Rightarrow 2$ and 3 are zerodivisor of \mathbb{Z}_6

Proposition 20.1 (cancellation property)

let R be a commutative ring. then R is ID iff whenever $c \neq 0$, $c \cdot a = c \cdot b$ in R, we have a = b.

Proof (\Rightarrow): given ca = cb, we have $ca + (-(cb)) = 0_R$, ca + c(-b) = c(a + (-b)) = 0, therefore if R is an ID, we have: c and (a + (-b)) nonzero otherwise we have zerodivisors, and we have already know that $c \neq 0$, we have $a + (-b) = 0 \Rightarrow a = b$ (\Leftarrow): suppose R is not an ID, given $c \neq 0$, if we have $ca = cb \Rightarrow c(a - b) = 0$, which does not imply that a = b and it contradicts with the assumption that a = b, so R is an ID.

Proposition 20.2

a field is always an ID

Proof field *F* is commutative so we use the last proposition to prove the *F* is an ID: suppose ca = cb, $c \ne 0$, c(a - b) = 0. since F is a field, $c \ne 0 \Rightarrow c^{-1}$ exists $\Rightarrow c^{-1}c(a - b) = c^{-1} \cdot 0 = 0 \Rightarrow I \cdot (a - b) = 0 \Rightarrow a = b$, we are done.

Chapter ideals

Introduction

- ☐ ideal
- \Box ideals generated by Γ
- principal ideal

- ☐ ideal of intersection and addition
- ☐ kernel and ideal

Definition 21.1 (ideal)

let R be a ring, a subset $I \subset R$ is an ideal $I \triangleleft R$ if:

- a. (I, +) forms a subgroup of (R, +)
- b. $\forall i \in I, x \in R$, we have $ix \in I$ and $xi \in I$.

Remark if $I \triangleleft R$, then $I \leqslant R$ since b. in the definition implies that $i \cdot i' \in I$ and $i' \cdot i \in I$.

Example 21.1

- 1. $\forall a, b \in \mathbb{Z}$, we have $a \cdot b \in \mathbb{Z}$. we have $\mathbb{Z} \leq \mathbb{Q}$, but $\mathbb{Z} \not \subset \mathbb{Q}$: we take $2 \in \mathbb{Z}$, $\frac{1}{3} \in \mathbb{Q}$, but $2 \cdot \frac{1}{3} = \frac{2}{3} \in \mathbb{Z}$, so \mathbb{Z} is not an ideal of \mathbb{Q} .
- 2. $n\mathbb{Z} \triangleleft \mathbb{Z}$
- 3. $R = \mathbb{Z}[x]$, $I = \{p(x) \in R | p(0) = 0\}$: polynomials with zero coefficient at constant term. then $I \triangleleft R$: we check:
 - (a). $p(x) = a_1x + ... + a_nx^n$, $q(x) = b_1x + ... + b_mx^m \in I$, we have $p + q \in I$, $-q \in I$
 - (b). for any $r(x) = c_0 + c_1 x + ... + c_l x^l$, $r(x) \cdot p(x) = p(x) \cdot r(x) = (c_0 \cdot a_1)x + (c_1 \cdot a_1 + c_0 + c_0 a_2)x^2 + ... \in I$
- 4. $R = \mathbb{Z}[x]$, $I = \{\text{polynomials with even constant term}\}$, then $I \triangleleft R$ why?

we want to know how to construct ideals?

Definition 21.2 (ideals generated by Γ)

let R *be a ring,* $\Gamma \subset R$ *is a subset, then the ideals generated by* Γ *is* $\langle \Gamma \rangle$:= the smallest ideal containing all $r \in \Gamma$.

Remark if R is unital and commutative, and $\Gamma = \{\gamma_1, \gamma_2, ..., \gamma_k\}$ is a finite set, then $\langle \Gamma \rangle = \langle \gamma_1, \gamma_2, ..., \gamma_k \rangle = \{a_1\gamma_1 + a_2\gamma_2 + ... + a_k\gamma_k | a_i \in \mathbb{R}\}$

Example 21.2

- 1. recall we have $n\mathbb{Z} \triangleleft \mathbb{Z}$, let $\Gamma = \{n\}, \langle n \rangle = \{an | a \in \mathbb{Z}\} = n\mathbb{Z}$
- 2. $R = \mathbb{Z}[x], \Gamma = \{x\}, \text{ then } \langle x \rangle = \{xp(x)|p(x) \in R\} = \{p(x) \in R|p(0) = 0\}$
- 3. $R = \mathbb{Z}[x]$, $\Gamma = \{2, x\}$, $\langle 2, x \rangle := \{2p(x) + xq(x) | p(x), q(x) \in R\} = \{\text{all polynomials with even constant coefficients}\}$

Proposition 21.1

let R be unital commutative ring, then $\langle \gamma_1, \gamma_2, ..., \gamma_k \rangle = \{a_1 \gamma_1 + ... + a_k \gamma_k\}$ is an ideal of R.

Proof we need to show 3 things:

- 1. show that $\{a_1\gamma_1 + ... + a_k\gamma_k | a_i \in R\} \triangleleft R$
- 2. show that $\gamma_1, ..., \gamma_k \in \{a_1\gamma_1 + ... + a_k\gamma_k\}$
- 3. show that if any $I \triangleleft R$ s.t. $\gamma_1, ..., \gamma_k \in I$, then $\{a_1\gamma_1 + ... + a_k\gamma_k\} \subset I$, which means that $\{a_1\gamma_1 + ... + a_k\gamma_k\}$ is the smallest ideal containing $\gamma_1, ..., \gamma_k$, by the definition of ideal, we are done.

Definition 21.3 (principal ideal)

let R be unital commutative, $I \triangleleft R$ is a principal ideal if $I = \langle r \rangle$ for some $r \in R$, e.g. $\{0\} = \langle 0 \rangle$, and $R = \langle 1 \rangle$

Definition 21.4 (ideal of intersection and addition)

let $I_1, I_2, ..., I_k \triangleleft R$, we define $I_1 + ... + I_k = \{i_1 + ... i_k | i_j \in I_j\}$, and define $\bigcap_{l=1}^k = \{i \in R | i \in I_l, \forall l = 1, 2, ..., k\}$, then they are also ideals in R.

Example 21.3 let $R = \mathbb{Z}$, $I_l = \langle m_l \rangle = m_l \mathbb{Z} \rightarrow I_1 + ... + I_k = \langle gcd(m_1, ..., m_k) \rangle$ e.g. $\langle 2 \rangle + \langle 3 \rangle = \langle 1 \rangle$, $I_1 \cap I_2 \cap ... \cap I_k = \langle lcd(m_1, ..., m_k) \rangle$ e.g. $\langle 2 \rangle \cap \langle 3 \rangle = \langle 6 \rangle$

Proposition 21.2

let $\phi: R \to S$ be a ring homomorphism, then $\ker(\phi) \triangleleft R$

Proof we have proved that $ker(\phi) \le R$ (check the chapter: ring homomorphism), which guarantees that $ker(\phi)$ is a additive subgroup of R. we only need to prove that $\forall i \in ker(\phi), x \in R$, we have $ix \in ker(\phi)$ and $xi \in ker(\phi)$: since $\phi(ix) = \phi(i)\phi(x) = 0 \cdot \phi(x) = 0 \in S$ and $\phi(xi) = \phi(x)\phi(i) = \phi(x) \cdot 0 = 0 \in S$, we conclude that xi and $ix \in ker(\phi)$, we are done.

Chapter quotient ring

Introduction

quotient ring

☐ first isomorphism theorem for rings

Definition 22.1 (quotient ring)

let R be a ring, $I \triangleleft R$ is an ideal, then the quotient ring $(R \setminus I, +, \cdot)$ is defined by $R \setminus I := \{r+I \mid r \in R\}$, and the addition in (r+I) is defined by (r+I) + (r'+I) := (r+r') + I. the multiplication is defined by: $(r+I) \cdot (r'+I) := r \cdot r' + I$

Remark we need to check the operations are well-defined. for example, suppose (r + I) = (s + I) and (r' + I) = (s' + I), we must check that rr' + I = ss' + I, how?

Example 22.1 let $R = \mathbb{R}[x]$, $I = \langle x^2 + 1 \rangle$, the elements of R/I are of the form $\{p(x) + I | p(x) \in R\}$, i.e. $x^2 + \langle x^2 + 1 \rangle = (-1 + (x^2 + 1)) + \langle x^2 + 1 \rangle = -1 + \langle x^2 + 1 \rangle$. more generally, by division algorithm, $p(x) = q(x)(x^2 + 1) + r_0 + r_1 x$, we have $p(x) + I = (r_0 + r_1 x) + I$, $R/I := \{(a_0 + a_1 x) + I | a_0, a_1 \in \mathbb{R}\}$

Example 22.2 some arithmetic in $R \setminus I$, $I = \langle x^2 + 1 \rangle$:

a.
$$(2+I)((x+3)+I) = (2x+6)+I$$

b.
$$0_{R\setminus I} = 0 + I$$

c.
$$1_{R \setminus I} = 1 + I$$

d.
$$(x+I)(x+I) = x^2 + I = -1 + I = -1_{R\setminus I}$$

e. $R = \mathbb{Z}[x]$, $I_3 = \langle 2, x \rangle$, $R \setminus I_3 = \{(a_0 + a_1x + ... + a_nx^n) + \langle 2, x \rangle\}$, we have $R \setminus I_3 = \{a_0 + (a_1 + ... + a_nx^n - 1)x + \langle 2, x \rangle\} = \{a_0 + \langle 2, x \rangle\} = \{0 + \langle 2, x \rangle\} + \{0 + \langle 2, x \rangle\}$, so we have $R \setminus I_3 \cong \mathbb{Z}_2$

Theorem 22.1 (first isomorphism theorem for rings)

let $\Phi: R \to S$ be ring homomorphism, then we have an isomorphism of rings $\phi: R \setminus ker(\Phi) \cong im(\Phi)$. (so ϕ is a bijection)

Proof

Example 22.3

Example 22.4

Chapter Chinese remainder theorem

Introduction

☐ rings' coprime

□ CRT

Definition 23.1 (coprime)

let R be commutative ring. two ideals $I_1, I_2 \triangleleft R$ are coprime if $I_1 + I_2 = R$

in number theory, we have the CRT:

Theorem 23.1 (Chinese remainder theorem)

let $m_1, m_2, ..., m_r$ be pairwise coprime positive integers, and let $a_1, a_2, ..., a_r$ be integers. then the system:

$$\begin{cases} x \equiv a_1(modm_1) \\ x \equiv a_2(modm_2) \\ & \cdots \\ x \equiv a_r(modm_r) \end{cases}$$

has a solution. moreover, if x_0 is a solution, then the complete solution of the system is given by $x = x_0 + km$, where k is any integer and $m = m_1 m_2 ... m_r$

in abstract algebra, the CRT is:

Theorem 23.2 (Chinese remainder theorem)

let R be commutative. unital rings $I_1, I_2, ..., I_k \triangleleft R$ and $\forall I_i$ and I_j are coprime, then we have

$$R/(I_1 \cap I_2 \cap ... \cap I_k) \cong R/I_1 \times R/I_2 \times ... \times R/I_k$$

we want to explain the relation between two versions:

let $m_1, m_2, ..., m_r$ be pairwise coprime integers, we have

$$m_1\mathbb{Z} \cap m_2\mathbb{Z} \cap ...m_r\mathbb{Z} = lcd(m_1, m_2, ..., m_r)\mathbb{Z} = m_1m_2...m_r\mathbb{Z}$$

the first equality is due to the definition of intersection of ideals (check the chapter ideals), and the second equality is due to the condition that $m_1, m_2, ..., m_r$ are coprime. so we apply the CRT version 2 and get

$$\mathbb{Z}/(m_1m_2...m_r\mathbb{Z}) \cong (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z}) \times ... \times (\mathbb{Z}/m_r\mathbb{Z})$$

for $x \in \mathbb{Z}/(m_1m_2...m_r\mathbb{Z})$, we have $(a_1, a_2, ..., a_r) \in (\mathbb{Z}/m_1\mathbb{Z}) \times (\mathbb{Z}/m_2\mathbb{Z}) \times ... \times (\mathbb{Z}/m_r\mathbb{Z})$

Example 23.1 $R = \mathbb{Z}$, $I_1 = \langle m \rangle$, $I_2 = \langle n \rangle$, $I_1 + I_2 = \langle gcd(m, n) \rangle$ (why?), so we have I_1 , I_2 are coprime $\Leftrightarrow I_1 + I_2 = \langle 1 \rangle = \mathbb{Z} \Leftrightarrow gcd(m, n) = 1$, i.e. m, n are coprime.

Example 23.2 m, n are coprime, $R = \mathbb{Z}$, $I_1 = \langle m \rangle$, $I_2 = \langle n \rangle$, gcd(m, n) = 1, then by CRT we have: $\mathbb{Z} \setminus \langle m \rangle \cap \langle n \rangle \cong \mathbb{Z} \setminus I_1 \times \mathbb{Z} \setminus I_2$. $\mathbb{Z} \setminus \langle lcm(m, n) \rangle = \mathbb{Z} \setminus mn\mathbb{Z} \cong \mathbb{Z} \setminus n\mathbb{Z} \times \mathbb{Z} \setminus m\mathbb{Z} \Rightarrow \mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$

$$\mathbb{Z} \setminus p_1^{\alpha_1} p_2^{\alpha_2} ... p_k^{\alpha_k} \cong \mathbb{Z} \setminus p_1^{\alpha_1} \times \mathbb{Z} \setminus p_2^{\alpha_2} \times ... \times \mathbb{Z} \setminus p_k^{\alpha_k} \mathbb{Z}$$

Proof consider $\Phi: R \to R \setminus I_1 \times R \setminus I_2 \times ... \times R \setminus I_k$, $\Phi(r) := (r + I_1, r + I_2, ..., r + I_k)$. we can prove that Φ is a unital ring homomorphism. then we use the first homomorphism theorem to prove it. we check 2 things: (a) $im(\Phi) = R \setminus I_1 \times ... \times R \setminus I_k$ and (b) $ker(\Phi) = I_1 \cap I_2 \cap ... \cap I_k$

Chapter prime and maximal ideal

Introduction

- prime ideal and maximal ideal
- prime ideal and prime number
- prime ideal and ID
- maximal ideal and field

- \square maximal ideal \subset prime ideal if R is unital and commutative
- \square r, s associates $\Leftrightarrow \langle r \rangle = \langle s \rangle \Leftrightarrow r \sim s$

Definition 24.1 (prime ideal and maximal ideal)

a. I is a prime ideal if $\forall a, b \in R$ satisfying $ab \in I$ then either $a \in I$ or $b \in I$

b. I is a maximal ideal if for any $J \triangleleft R$ s.t. $I \subset J \subset R$, then J = I or J = R.

Remark all ideals $I \triangleleft \mathbb{Z}$ are of the form $I = \langle n \rangle, n \in \mathbb{N}$, namely $I \triangleleft \mathbb{Z} \to (I, +) \leqslant (\mathbb{Z}, +)$ as subgroups $\to I = n\mathbb{Z}$ for some n.(check the definition of $\langle \Gamma \rangle$)

consider prime ideal in $R = \mathbb{Z}$, we have the following claim:

 $I = \langle n \rangle \triangleleft \mathbb{Z}$ is prime \Leftrightarrow n is prime number or 0.

Proof [proof of the claim] (\rightarrow): suppose n = xy is not a prime number, $x, y \in \mathbb{N}$ not equal 1, then we want to show: $\langle n \rangle$ is not a prime ideal: $\forall x, y \in \mathbb{Z}, xy = n \in \langle n \rangle$ but $x, y \notin \langle n \rangle$, so $\langle n \rangle$ is not a prime ideal.

 (\leftarrow) : suppose n=p is a prime number, we want to show that $\langle n \rangle$ is a prime ideal:

since for all $a, b \in \mathbb{Z}$ s.t. $ab \in \langle p \rangle \to ab = kp$ for $k \in \mathbb{Z}$ which is equivalent to p|ab and $\Leftrightarrow p|a$ or $p|b \Leftrightarrow a = mp$ or $b = m'p \Leftrightarrow a \in \langle p \rangle$ or $b \in \langle p \rangle$. check the definition of prime ideal, we conclude that $\langle n \rangle$ is a prime ideal.

the remark says that there is a 1-1 map between prime numbers in \mathbb{Z} and prime ideals. in general R we do not have prime numbers but we still have prime ideals in R. then these prime ideals in R plays the same roles as prime integers in \mathbb{Z} . and the philosophy is to rather study elements $r \in R$, we study ideals $\langle r \rangle \in R$.

Example 24.1 for $R = \mathbb{Z}$, $\langle n \rangle \triangleleft \mathbb{Z}$ is maximal ideal \Leftrightarrow n is prime $\Leftrightarrow \langle n \rangle$ is prime ideal

Example 24.2 a. $R = \mathbb{Z}_{12} \cong \mathbb{Z}/12\mathbb{Z}$ we have $I \triangleleft R = \langle 0 \rangle$ or $\langle 1 \rangle$ or $\langle 2 \rangle$ or $\langle 3 \rangle$ or $\langle 4 \rangle$ or $\langle 6 \rangle$: $\langle 1 \rangle$ is not prime nor maximal; $\langle 2 \rangle$, $\langle 3 \rangle$ are prime ideals (also maximal ideals), $\langle 0 \rangle$, $\langle 4 \rangle$, $\langle 6 \rangle$ are not prime ideals since we have $[3][4] \in \langle 0 \rangle$ but $[3] \notin \langle 0 \rangle$ nor $[4] \notin \langle 0 \rangle$. and $\langle 4 \rangle$ is not maximal since $\langle 4 \rangle \subset \langle 2 \rangle \subset R$

b. $R = \mathbb{Z}[x]$, $I = \langle x \rangle$, then $I \triangleleft R$ is prime but I is not maximal ideal (why???)

Proposition 24.1

let R be unital commutative and I \triangleleft *R, then we have:*

- a. I is prime $\Leftrightarrow R/I$ is ID
- b. I is maximal $\Leftrightarrow R/I$ is a field.

Proof we first prove a:

 $\text{let } (a+I), (b+I) \in R/I \text{, then } (a+I) \cdot (b+I) = 0 \\ R/I \leftrightarrow ab + I = 0 + I \Leftrightarrow ab \in I \text{. therefore if } I \text{ is a prime ideal, then } a \in I \text{ or } b \in I \Leftrightarrow a+I = 0 + I \text{ or } b+I = 0 + I \Leftrightarrow a+I \text{ or } b+I = 0 \\ R/I \text{ is an ID.}$

we prove b:

we have two asides in the proof.

aside1: let F be a field, then all ideals $I \triangleleft F$ must be $\{0\}$ or F and thus we have \forall ideal $J/I \triangleleft R/I$ we have: $J/I = \{0_{R/I}\}$ or $J/I = R/I \Leftrightarrow J = I$ or J = R here for the last equivalence we use the correspondence theorem (see HW9) aside2: let R be unital commutative, then R is a field \Leftrightarrow the ideal of R are $\{0\}$ or R.

with aside2, we only need to prove that: the ideal of R/I are $\{0\}$ or $R/I \Leftrightarrow I$ is a maximal ideal, and we again use correspondence theorem.(?)

the proof of aside1 is in HW8

Proof [proof for aside2] (\Rightarrow) : is proved by aside1

(←): suppose we have I s.t. $\{0\} \subsetneq I \subsetneq R$, then 1I, otherwise $r \cdot 1 = r \in I$, $\forall r \in R$ and thus I = R. take any nonzero $x \in I$. then $\forall r \in R, x \cdot r \in I$ by the definition of $I \triangleleft R$ and thus $x \cdot r \neq 1$, $\forall r \in R$ since $1 \notin I$, so x has no multiplicative inverse $x^{-1} \in R$ and thus R is a field.

Example 24.3 R = $\mathbb{Z}[x]$, $I = \langle x \rangle$, then $R/I = \{a(x) + \langle x \rangle\} \cong \{a_0 + \langle x \rangle | a_0 \in \mathbb{Z}\} \cong \mathbb{Z}$, so we have \mathbb{Z} is ID $\to R/I$ is prime and \mathbb{Z} is not a field \to I is not a maximal ideal.

Corollary 24.1

let R be unital and commutative, then all maximal ideals $I \triangleleft R$ are prime.

Proof using the last proposition, we know that I is a maximal ideal implies that R/I is a field. recall we know that field must be ID, and we use the proposition again to conclude that I is a prime ideal.

Definition 24.2 (ideal interpretation)

let R be commutative and unital.

- a. we say r|s (r divides s) if $\langle s \rangle \subset \langle r \rangle$ as ideals
- b. an element $r \in R$ is called prime if $\langle r \rangle \triangleleft R$ is a prime ideal. (r is called prime if $r|xy \rightarrow r|x$ or r|y)
- c. we say r,s are associates if $\langle r \rangle = \langle s \rangle$ as ideals. (r,s are called to be associates if $r \mid s$ and $s \mid r$)
- d. we say a is irreducible if $\langle a \rangle \subset \langle b \rangle \subset R$, then we have $\langle b \rangle = \langle a \rangle$ or $\langle b \rangle = R$. (a is called to be irreducible if
- $a = xy \rightarrow either x is a unit or y is a unit.)$

Chapter principal ideal domains (PID)

Introduction

■ PID

 \square fields \subset PID

 \square prime ideals \Leftrightarrow maximal ideals if R is a PID

 \square \mathbb{Z} is a PID but $\mathbb{Z}[x]$ is not a PID.

Definition 25.1 (principal ideal domain)

let R be an integral domain, we say R is PID if all ideals $I \triangleleft R$ are principal, i.e. $I = \langle a \rangle$ for some $a \in R$

Example 25.1

- 1. all fields F are PIDs, since the only ideal $I \triangleleft F$ are $I = \langle 0 \rangle$ or $I = F = \langle e \rangle$
- 2. \mathbb{Z} is a PID since all $(I, +) \triangleleft (\mathbb{Z}, +)$ must be the form $I = \langle a \rangle = a\mathbb{Z}$ for some $a \in \mathbb{Z}$ (prove it)
- 3. (refer to HW9Q5) $\mathbb{Z}[x]$ is not a PID:

Proof we note that $I = \langle 2, x \rangle$ is not principal: suppose on contrary, $I = \langle 2, x \rangle = \langle p(x) \rangle$ for some $p(x) \in \mathbb{Z}[x]$. we first show that $1 \notin \langle 2, x \rangle = \{2a(x) + b(x)x | a(x), b(x) \in \mathbb{Z}[x]\}$, deg(1) = 0 and $deg(2a(x) + b(x)x) \ge deg(b(x)x) \ge 1$, so we have $1 \notin \langle 2, x \rangle$.

by our assumption, we have $\langle 2, x \rangle = \langle p(x) \rangle$, since $2 \in \langle p(x) \rangle$, $\exists q(x) \in \mathbb{Z}[x]$ s.t. 2 = p(x)q(x), $deg(2) = deg(p(x)q(x)) \Rightarrow 0 = deg(p(x)q(x)) = deg(p(x)) + deg(q(x)) \geq 0 \Rightarrow deg(p(x)) = deg(q(x)) = 0$, we have: $\begin{cases} p(x) = \pm 2 \\ q(x) = \pm 1 \end{cases} \text{ or } \begin{cases} p(x) = \pm 1 \\ q(x) = \pm 2 \end{cases}$

if $p(x) = \pm 1$, $1 = p(x)^2 \in \langle p(x) \rangle$, which violates the fact we have proved that $1 \in \langle 2, x \rangle$.

if $p(x) = \pm 2$, $x \in \langle p(x) \rangle = \pm 2 \cdot p(x)$, $p(x) \in \mathbb{Z}[x]$, which is impossible since the coefficient of x in $\pm 2p(x)$ must be even and the coefficient of x is 1, we conclude that $\langle 2, x \rangle$ is not a principal ideal and thus $\mathbb{Z}[x]$ is not a PID.

4. if *F* is a field $(\mathbb{Q}, \mathbb{R}, \mathbb{C})$, then F[x] is a PID. (prove it)

Proposition 25.1

let R be PID, then all prime ideals are maximal ideals. therefore I is prime ideal \Leftrightarrow I is maximal ideal for PIDs.

Proof let $I \triangleleft R$ be prime ideal, since R is a PID, we know that $I = \langle a \rangle$ for some $a \in R$, suppose $I \subset J \subset R$, we want to prove that J = I or J = R: since R is a PID, $J = \langle b \rangle$ for some $b \in R$, we have $\langle a \rangle \subset \langle b \rangle \subset R$, which implies that $b \mid a$, since I is a prime ideal, we know that a is a prime, $b \mid a \Rightarrow b = 1$ or $a \Rightarrow J = \langle b \rangle = \langle a \rangle = I$ or $J = \langle 1 \rangle = R$, we are done.

Chapter irreducible elements

Introduction

☐ irreducible element

- ☐ *R* is *ID*, prime element *r* is irreducible
- \square $a \sim b \Leftrightarrow a = ub$, R is an ID and $u \in U(R)$
- \square R is PID, prime element \Leftrightarrow irreducible element

Definition 26.1 (irreducible element)

let R be commutative and unital, an element $a \in R$ is called irreducible if for all principal ideals $\langle b \rangle$ satisfying $\langle a \rangle \subset \langle b \rangle \subset R$, then $\langle b \rangle = \langle a \rangle$ or $\langle b \rangle = R$. in other words, $\langle a \rangle$ is maximal among all principal ideals.

Remark it is important to compare $\langle a \rangle$ being a maximal ideal and being an irreducible ideal.

Lemma 26.1

let R be a ID, then $a \in R$ is irreducible \Leftrightarrow whatever $a = xy, \forall x, y \in R$, we have $a \sim x$ or $a \sim y$ review the definition of $a \sim b$ (a and b are associates: $\langle a \rangle = \langle b \rangle$)

Proof (\Rightarrow): suppose a = xy, we have x|a or $y|a \Rightarrow \langle a \rangle \subset \langle x \rangle$ or $\langle a \rangle \subset \langle y \rangle$, since we assume that a is irreducible, $\langle a \rangle \subset \langle x \rangle$ implies that $\langle a \rangle = \langle x \rangle$ or $\langle x \rangle = R$, which means that $a \sim x$ or $x \sim 1$. notice that $x \sim 1 \Leftrightarrow x \cdot x' = 1$ for $\forall x' \in R$, which implies that x is a unit of x. Since x is a unit of x is a unit of x increase.

(\Leftarrow): suppose RHS holds, we want to show that if $\langle a \rangle \subset \langle x \rangle \subset R$ for some $x \in R$, then $\langle x \rangle = \langle a \rangle$ or $\langle x \rangle = R$, by definition we know that a is irreducible. since $\langle a \rangle \subset \langle x \rangle$, we have x|a. RHS $\Rightarrow a \sim x$ or $a \sim y$, if $a \sim x$, by the definition of \sim , we know that $\langle a \rangle = \langle x \rangle$, else if $a \sim y$, which is equivalent as a = uy for some $u \in U(R) \Rightarrow a = uy = xy \Rightarrow x = u \in U(R)$, so we have x is a unit of R. we conclude that $\langle x \rangle = \langle a \rangle$ or $\langle x \rangle = R$. we are done.

Remark by the above lemma, we have: a is irreducible indicates that if a = xy, then either x is a unit or y is a unit. the whole point is that irreducibility is essential in factorization of elements in R: take any nonzero $r \in R$, if r is not irreducible then by the lemma, there are b and c non-units s.t. r = bc. we continue to check if b and c are irreducible. suppose b is not irreducible, then $b = b_1b_2$ are not units. $r = bc = b_1b_2c = ...$ we can factorize r into a product of irreducibles and a (product of) units

Exercise 26.1 why we study irreducible or prime ID?

the answer is we want to factorize elements in R into a product of irreducibles or primes, just like what we do in \mathbb{Z} or $\mathbb{R}[x]$

Lemma 26.2

if R is ID, $a \sim b \Leftrightarrow a = ub$ for some unit $u \in U(R)$

Proof

in general we want to study factorization of any $r \in R$ into $r = x_1x_2...x_k$ for $x_1, x_2, ..., x_k$ prime or irreducible.

Exercise 26.2 if there is such factorization, is it unique?

the exercise is not true in general: let $R = \mathbb{Z}[\sqrt{-5}]$, we have 2 factorizations of 6 into irreducibles:

$$6 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = (2 + 0 \cdot \sqrt{-5})(3 + 0 \cdot \sqrt{-5})$$

but in PID, we find the factorization is unique.

Proposition 26.1

let R be ID, if $0 \neq r, r \in R$ is a prime element (check definition 24.2), then r is irreducible

Proof if r = xy then we have $1 \cdot r = xy$, $r|xy \Rightarrow r|x$ or $r|y \Rightarrow \langle x \rangle \subset \langle r \rangle$ or $\langle y \rangle \subset \langle r \rangle$. WLOG we assume $\langle x \rangle \subset \langle r \rangle$,

since r = xy, we have $x|r \Rightarrow \langle r \rangle \subset \langle x \rangle$ and similarly we have $\langle r \rangle \subset \langle y \rangle$. combine the two inequalities we have $\langle r \rangle = \langle x \rangle$ or $\langle r \rangle = \langle y \rangle$, by the definition of irreducible elements, we know that r is irreducible.

Proposition 26.2

let R be a PID and $0 \neq r \in R$, then r is irreducible \Leftrightarrow r is prime.

Proof (\Rightarrow): suppose r is irreducible, we prove that $\langle r \rangle$ is maximal ideal, and then by a corollary in the chapter <u>prime</u> and <u>maximal ideal</u> we know that $\langle r \rangle$ is a prime ideal and thus r is a prime. suppose $\langle r \rangle \subset I \subset R$, then since R is PID, $I = \langle b \rangle$ for some $b \in R$, then by the definition of $r \in R$ to be irreducible, we have $\langle b \rangle = \langle r \rangle$ or $\langle b \rangle = R$. by the definition of maximal ideal, we are done. (\Leftarrow): we know that PID must be an ID, and by the last proposition we are done.

Chapter factorization domains

Introduction				
	oduction			
factorization domain	unique factorization into nonunit irreducibles in			
\square ACCP	ID			
PID satisfies ACCP	generalized fundamental theorem of arithmetic			
\square satisfying ACCP \Rightarrow being factorization domain	\square UFD, PID \subset UFD			
Definition 27.1 (factorization domain)				
let R be ID, we say R is a factorization domain if for all $r \neq 0 \in R$, r can be factorized into a finite number of irreducibles up to units, i.e. $r = x_1x_k$, x_i are irreducible.				
			$= x_1 \dots x_k, x_l$ are irreduce	1

Example 27.1 $R = \mathbb{Z}$ is a factorization domain since by fundamental theorem of algebra, we know that every element in R can be factorized into a product of prime numbers up to units 1 or -1.

Remark by convention, $1 \in R$ can be factorized into a product of zero irreducible elements (1 is treated as not irreducible)

Definition 27.2 (ascending chain condition of principal ideal (ACCP))

let R be ID, we say R has the ascending chain condition of principal ideal if for all $I_1, I_2, ...$ principal ideals s.t. $I_1 \subset I_2 \subset ...$ then there must be a place s.t. $I_n = I_{n+1}$

Lemma 27.1

if R is PID, then R satisfies ACCP

Proof suppose we have a sequence of principal ideals, $I_1 = \langle a_1 \rangle \subset I_2 = \langle a_2 \rangle \subset I_3 \subset ...$ then we claim that $\bigcup_{i=1}^{\infty} I_i = \langle r \rangle$ is an ideal (proof in HW10). then $r \in \bigcup_{i=1}^{\infty} I_i \Rightarrow r \in I_m$ for some m and thus $r \in I_{m+1}, I_{m+2}, ... \Rightarrow \bigcup_{i=1}^{\infty} = \langle r \rangle \subset I_{m+1}, I_{m+1}, ... \Rightarrow \langle r \rangle = \bigcup_{i=1}^{\infty} I_i = I_{m+1} = I_{m+2} = ...$

Lemma 27.2

if R satisfies ACCP, then R is a factorization domain.

Proof

Remark if R is PID, then we can factorize any $r \neq 0$ into a finite product of irreducibles/primes $r = x_1 x_2 ... x_k$

Exercise 27.1 is this factorization unique? i.e. suppose $x_1x_2...x_k = y_1y_2...y_l$ be two factorizations of irreducibles/primes, is it true that k = l and there is a permutation $\sigma \in S$ s.t. ???

Theorem 27.1

if R is PID, then R is a factorization domain.

Proof check the above two lemmas, we have: R is PID \Rightarrow R satisfies ACCP \Rightarrow R is a factorization domain.

Example 27.2

Remark

- 1. in factorization of $r \in R$, we only use nonunit irreducible element
- 2. ordering of those nonunit irreducible factors do not matter
- 3. the nonunit irreducible factors of $r \in R$ can differ by 1 or -1 or generally they can differ by a unit.

Theorem 27.2

let R be an ID, suppose we have two factorizations of $0 + r \in R$: $r \sim x_1x_2...x_k \sim y_1y_2... \sim y_l$ where x_i, y_j are nonunit primes, then we must have: k = l and there exists a permutation $\sigma \in S_k$ s.t. $x_i \sim y_{\sigma(i)}$ for i = 1, 2, ..., k. in other words, the factorization of any $r \in R$ is unique.

Proof we will prove a stronger version: $x_1x_2...x_k \sim y_1y_2...y_l$ and x_i, y_j are nonunit irreducibles.

Example 27.3 let $R = \mathbb{Z}$, we factorize r = 60 into nonunit irreducibles: $60 \sim 2 \cdot 2 \cdot 3 \cdot 5 \sim (-3)(-2)5 \cdot 2$, then we can check the theorem: k = l = 4 and we define a permutation such that $x_1 = 2 \sim y_1 = -2$, $x_2 = 2 \sim y_4 = 2$, $x_3 = 3 \sim y_1 = (-3)$, $x_4 = 5 \sim y_3 = 5$

Corollary 27.1

let R be a PID, then every $0 \neq r \in R$ can be uniquely factorized into a product of finite number of primes.

Proof by the first remark of this chapter, we have a factorization of r into irreducibles, by the fact that $r \in R$ (R is PID) is irreducible is equivalent as r is a prime, and by the last theorem we know that: for PID, the factorization of primes is unique.

Remark this corollary generalizes the fundamental theorem of arithmetic from $R = \mathbb{Z}$ to PID.

Definition 27.3 (unique factorization domain (UFD))

let R be ID, then R is called unique factorization domain if every $0 \neq r \in R$ can be factorized uniquely into a finite number of irreducibles.

Example 27.4 all PIDs are UFDs; $\mathbb{Z}[x]$ is a UFD (proved later) but not a PID. so we have

 $PID \subset UFD$

Chapter Euclidean domain

Introduction

- Euclidean domain
- \square ED \subset PID
- ☐ dedekind-harsse function

- ☐ for R being an ID, having dedekind-harsse function ⇔ PID
- \Box field \subset ED

Definition 28.1 (Euclidean domain)

let R be an integral domain, then we say R is an Euclidean domain if there is a norm function $N: R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ satisfying that: $\forall a, b \neq 0 \in R$, we either have $b \mid a$ or $\exists q, r \neq 0 \in R$ s.t. a = qb + r, with N(r) < N(b). we say $N(r) \in R$ is multiplicative if it satisfies $N(rs) = N(r)N(s), \forall r, s \in R \setminus \{0\}$

Example 28.1

- 1. $R = \mathbb{Z}$ is an ED: N(a) := |a|
- 2. $R = \mathcal{F}[x]$ is an ED, \mathcal{F} is a field: N(p(x)) := deg(p(x)) = the leading power of p(x)
- 3. $R = \mathbb{Z}[i]$ is an ED: $N(a + bi) := a^2 + b^2$

Theorem 28.1

if R is a field, then R is an ED

Proof let $N: R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ be defined as $N(x) = 1, \forall x$, then $\forall a \in R$ and $b \neq 0 \in R$, we prove that either b|a or $\exists q, r \in R$ s.t. a = bq + r with N(r) < N(b): in a field, we can always find $b^{-1}a$ in the field s.t. $b(b^{-1}a) = a$ and thus b|a. we are done.

Theorem 28.2

if R is ED, then R is also PID.

Proof using the proposition below.

Definition 28.2 (dedekind-harsse function)

let R be an ID, a dedekind-harsse function in R is a map $N: R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ s.t. $\forall a, b \in R \setminus \{0\}$, either: we have b|a or $\exists p, q \in R, r \in R \setminus \{0\}$ s.t. pa = qb + r with N(r) < N(b)

Example 28.2 if R is ED with $N: R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$, then N is automatically a dedekind-harsse function (let p = 1)

Proposition 28.1

let R be ID, then R is PID \Leftrightarrow R has dedekind-harsse function (and consequently all EDs are PIDs).

Proof (\Rightarrow): if *R* is PID, we know that R is UFD. for all $x \neq 0 \in R$, we can define $N : R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ to be $2^{\#}$, # is the number of irreducible nonunit number in the factorization of x, e.g. $N(81) = 2^4$ since $81 = 3 \cdot 3 \cdot 3 \cdot 3$ and $N(15) = 2^2$ since $15 = 3 \cdot 5$. we claim that *N* is a dedekind-harsse function.

suppose $a, b \in R \setminus \{0\}$ with $b \nmid a$, we prove that there exists $p, q \in R$ and $r \in R \setminus \{0\}$ s.t. pa = qb + r with N(r) < N(b). we have $\langle r \rangle = \langle a, b \rangle \supsetneq \langle b \rangle$, since R is PID, $\langle a, b \rangle = \langle r \rangle$ for some r, then r satisfies $r \in \langle r \rangle = \langle a, b \rangle \to r = pa - qb$ for some p, q, so we have $\langle r \rangle \supsetneq \langle b \rangle \Rightarrow r \mid b$, we have: r is strictly smaller than $b \Rightarrow r \cdot z = b$, z is a nonunit. let $x_1x_2...x_m$ be the irreducible nonunit factorization of r and $y_1y_2...y_n$ be the irreducible nonunit factorization of z, then $N(r) = 2^m < 2^{m+n} = N(b)$, N is a dedekind-harsse function.

(\Leftarrow) suppose *R* has a dedekind-harsse function *N* : *R* \ {0} → \mathbb{N} \ {0}, let $I \triangleleft R$ be any ideal. pick $b \in I \setminus \{0\}$ be s.t. N(b) is minimal among all elements in *I*. we claim that $I = \langle b \rangle$: obviously $\langle b \rangle \subset I$, for all $a \in I \setminus \{0\}$, we have $a \in \langle b \rangle$

or $a\langle b \rangle \Leftrightarrow r = pa - qb$. since $b \in I$, $a \in I$, $r = pa - qb \in I$ and N(r) < N(b), which violates with N(b) is minimal among all elements in I, so only the possibility $a \in \langle b \rangle$ holds, so we have $\forall a \in I \setminus \{0\}, a \in \langle b \rangle$, i.e. $I = \langle b \rangle$, R is a PID by definition.

Chapter gaussian integers

Definition 29.1 (integer prime; gaussian prime)

we call $p \in \mathbb{Z}$ is an integer prime if it is prime in \mathbb{Z} ; we call $p + 0i \in \mathbb{Z}[i]$ is a gaussian prime if it is prime in $\mathbb{Z}[i]$

Remark observe that:

- a. $n = ab \in \mathbb{Z}$ is not an integer prime, then $n + 0i \in \mathbb{Z}[i]$ is not a gaussian prime.
- b. $U(\mathbb{Z}[i]) = \{\pm 1, \pm i\}$, therefore $z \in U(\mathbb{Z}[i]) \leftrightarrow N(z) = 1$
- c. if N(z) = p, p is an integer prime, e.g. N(2+i) = 5 then z = 2+i is a gaussian prime.

Proof suppose contrary z is not a gaussian prime, then z is not gaussian irreducible, z = xy and x, y are nonunits $\rightarrow N(z) = N(xy) = N(x)N(y)$ (x, y are nonunits $\rightarrow N(x) \neq 1$ and $N(y) \neq 1$) so p is not a integer prime. we reach a contradiction.

Lemma 29.1 (classification of gaussian prime of form a + bi, $a, b \neq 0$)

let $a + bi \in \mathbb{Z}[i]$ with $b \neq 0$. then (a + bi) is gaussian prime $\longleftrightarrow N(a + bi) = a^2 + b^2 = p$ is integer prime

Proof (\leftarrow) : proved above

 (\rightarrow) : suppose (a+bi) is a gaussian prime, then $\overline{a+bi}=a-bi$ is also a gaussian prime. consider $(a+bi)(a-bi)=a^2+b^2=p_1p_2...p_r$, p_i are prime integers in \mathbb{Z} . then we have $r\leqslant 2$, otherwise suppose $(a+bi)(a-bi)=p_1p_2p_3$, there are 2 gaussian prime factors on LHS while there are (more than) 3 gaussian prime factors on RHS. this contradicts the fact that the $\mathbb{Z}[i]$ is $ED\to PID\to UFD$. so we have $r\leqslant 2$, suppose r=2: (a+bi)(a-bi)=pq, p, q are integer primes. by $\mathbb{Z}[i]$ being UFD, this implies that $p,q\in\mathbb{Z}[i]$ are also gaussian primes. otherwise we will have more than 2 factors on RHS again. by unique factorization, we have $\begin{cases} p\sim a+bi\\ q\sim a-bi \end{cases}$ or $\begin{cases} p\sim a-bi\\ q\sim a+bi \end{cases}$ and they are both impossible. suppose $p\sim a+bi$, we have $p=u(a+bi), u\in U(\mathbb{Z}[i])=\{\pm 1, \pm i\}\to p=a+bi \text{ or } -a-bi \text{$

Remark we wonder when is $a, ai \in \mathbb{Z}[i]$ a gaussian integer? (we only need to study $a + 0i \in \mathbb{Z}[i]$ since $a \sim ai$)

Theorem 29.1

all gaussian primes of the form a + 0i is a gaussian prime, then a = p must be an integer prime.

Proof by definition, we know that if a + 0i is a gaussian prime, then a = p must be an integer prime.

- 1. p = 2: 2 is not a gaussian prime since 2 = (1 + i)(1 i) can be factorized into 2 nonunits.
- 2. $p \equiv 3 \pmod{4}$: we claim that p + 0i is always a gaussian prime, then suppose contrary p = (x + yi)(x yi) for some nonunits $x + \pm yi \in \mathbb{Z}[i]$, then $p = x^2 + y^2$, $x, y \in \mathbb{Z}$. but note that $x^2 \equiv 0, 1 \pmod{4}$, $y^2 \equiv 0, 1 \pmod{4}$, we have $x^2 + y^2 \equiv 0, 1, 2 \pmod{4}$. this contradicts $p \equiv 3 \pmod{4}$, so we proved that p + 0i is a gaussian prime.
- 3. $p \equiv 1 \pmod{4}$: we claim that p is not a gaussian prime: suppose on contrary p is a gaussian prime, then we can prove that $p \mid m^2 + 1$ for some $m \in \mathbb{Z}$ (HW10). we have $p \mid (m+i)(m-i) \to p \mid (m+i)$ or $p \mid (m-i)$, suppose $p \mid (m+i)$, then $\exists z \in \mathbb{Z}[i]$ s.t. $p \cdot z = m+i \in \mathbb{Z}[i]$, we have $p \cdot z = m+i \in \mathbb{C} \to Z = \frac{m}{p} + \frac{1}{p}i \in \mathbb{C}$ which means $z \in \mathbb{Z}[i]$ since $\frac{1}{p} \notin \mathbb{Z}[i]$, so we reach a contradiction since we assume $z \in \mathbb{Z}[i]$.

Corollary 29.1 (fermat)

let $p \in \mathbb{Z}$ be integer prime satisfying $p \equiv 1 \pmod{4}$, then $\exists x, y \in \mathbb{Z}$ s.t. $p = x^2 + y^2$

Proof by the above theorem, we know that p is not a gaussian prime, we have $\exists x + yi \in \mathbb{Z}[i]$ s.t. $(x + yi)|p \to (x - yi)|p$. suppose (x + yi)z = p, x + yi and z are nonunit. we have $N(x + iy)N(z) = N(p) = p^2$ and $N(x + yi) \neq 1$, p^2 , so we have

$$N(x+iy)=N(z)=p\to p=(x+iy)(x-iy)\to p=x^2+y^2$$

the answer to the above exercise that when $a \in \mathbb{Z}$ is a gaussian prime is: all gaussian primes are of the form:

1.
$$a + bi(a^2 + b^2 = p$$
, p is a prime)

2. q,
$$q \equiv 3 \pmod{4}$$
 is prime

Example 29.1

Example 29.2

Remark similarly by studying ED in $\mathbb{Z}[\sqrt{-2}]$, we can solve the diophantine equation $x^2 + y^2 = z^2$ for integers $x, y, z \in \mathbb{Z}$

Chapter polynomial rings

let R be an ID, our goal is to understand when $p(x) \in R[x]$ is irreducible in R[x]. Remark a. if R is ID, then R[x] is ID b. by (a), we have: $p(x) \in R[x]$ is irreducible \Leftrightarrow whatever p(x) = q(x)h(x) is factorized into 2 polynomials, h(x) or q(x) is a unit in R[x].

c. the units in R[x] are of the form $r + 0x + 0x^2 + ... \in R[x]$ where $r \in R$ is a unit in R. e.g. u(x) = 1, -1 in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$, $u(x) = a \neq 0$, a is a constant polynomial.

Example 30.1 a. all units in $R = \mathbb{C}[x]$ are of the form $u(x) = (x - \alpha), \alpha \in \mathbb{C}$

b. let $R = \mathbb{R}$, all irreducible polynomials in $\mathbb{R}[x]$ are of the form of a unit multiple of: $(x - \beta)$ for $\beta \in \mathbb{R}$ or $(x^2 + \gamma x + \delta)$ for $\gamma, \delta \in \mathbb{R}$ with $\gamma^2 - 4\delta < 0$ so there is no real roots.

c. what about $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$? we will give some sufficient conditions on when $p(x) \in \mathbb{Z}[x]$ or $\mathbb{Q}[x]$ to be irreducible below:

Remark why do we study irreducible polynomials? let \mathcal{F} be a field (like \mathbb{Q}), recall $\mathcal{F}[x]$ is a ED with norm function N(p(x)) = deg(p(x)). so we have $\mathcal{F}[x]$ is a PID and hence p(x) is irreducible iff p(x) is prime $\Leftrightarrow \langle p(x) \rangle \triangleleft \mathcal{F}[x]$ is prime $\Leftrightarrow \langle p(x) \rangle \triangleleft \mathcal{F}[x]$ is maximal $\Leftrightarrow \mathcal{F}[x]/\langle p(x) \rangle$ is a field. and then we construct a new field from an old field \mathcal{F} .

Example 30.2 let $\mathcal{F} = \mathbb{Q}$, $p(x) = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$ is irreducible.

consider $\mathbb{S} := \mathbb{Q}[x]/\langle p(x) \rangle = \{f(x) + \langle p(x) \rangle : f(x) \in \mathbb{Q}[x]\} = \{a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0 + \langle p(x) \rangle : a_0, a_1, a_2, a_3, a_4 \in \mathbb{Q}\}$. our observations are:

a. we have an injective ring homomorphism $i: \mathbb{Q} \to \mathbb{S}: \alpha \to \alpha + \langle p(x) \rangle : \overline{\alpha}$

b. we can see $p(x) = 1x^4 + 1x^3 + 1x^2 + 1x + 1$ as a polynomial $p(x) = \overline{1}x^4 + \overline{1}x^3 + \overline{1}x^2 + \overline{1}x + \overline{1} \in \mathbb{S}[x]$. take $\Theta := x + \langle p(x) \rangle \in \mathbb{S}$ then substitute $\Theta \in \mathbb{S}$, $p(x) \in \mathbb{S}[x] : p(\Theta) = (1x^4 + 1x^3 + 1x^2 + 1x + 1) + \langle p(x) \rangle \in \mathbb{S}$. so we have $p(\Theta) = 0 \in \mathbb{S}$ i.e. Θ is a root of $p(x) \in \mathbb{S}[x]$

Example 30.3 $f(x) = x^2 + 1 \in \mathbb{R}[x]$ is irreducible, then $\mathbb{S} := \mathbb{R}[x] \setminus \langle x^2 + 1 \rangle$ and we have $\mathbb{R} \hookrightarrow \mathbb{S}$. all elements in \mathbb{S} are of the form $(ax+b)+\langle x^2+1 \rangle$, $a,b \in \mathbb{R}$. in particular, let $\alpha = x+\langle x^2+1 \rangle$, then $f(\alpha) = \alpha^2+1_{\mathbb{S}} = (x+\langle x^2+1 \rangle)^2+(1+\langle x^2+1 \rangle) = x^2+\langle x^2+1 \rangle+1+\langle x^2+1 \rangle=0_{\mathbb{S}}$. we have: all elements in \mathbb{S} are of the form $a\alpha+b$ with α satisfying $\alpha^2+1=0$. we have $S \cong \mathbb{C}$ by $a\alpha+b \to ai+b$

Definition 30.1 $(\tilde{\phi})$

let R, S be integral domains and $\phi: R \to S$ be a unital ring homomorphism, (e.g. $\phi: \mathbb{Z} \to \mathbb{Q}; \phi: \mathbb{Z} \to \mathbb{Z}_p$: $a \to [a]_p$), then we define $\tilde{\phi}: R[x] \to S[x]$ by $\tilde{\phi}(a_n x^n + ... + a_1 x + a_0) := \phi(a_n) x^n + \phi(a_{n-1}) x^{n-1} + ... + \phi(a_0) \in \mathbb{S}[x]$

Example 30.4

Theorem 30.1 (reduction test)

let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial. suppose \exists a prime number p s.t. under $\tilde{\phi} : \mathbb{Z}[x] \to \mathbb{Z}_p[x]$, $\tilde{\phi}(f(x)) \in \mathbb{Z}_p[x]$ is irreducible in $\mathbb{Z}_p[x]$, then $f(x) \in \mathbb{Z}[x]$ is irreducible.

Proof suppose $f(x) = x^n + a_{n-1}x^{n-1} + ... + a_0 = g(x) \cdot h(x) \in \mathbb{Z}[x]$. we prove that g(x) or h(x) is a unit in $\mathbb{Z}[x]$, i.e. $g(x) = \pm 1$ or $h(x) = \pm 1$, then $\tilde{\phi}(f) = \tilde{\phi}(g) \cdot \tilde{\phi}(h)$, we have

$$deg(\tilde{\phi}(g)) + deg(\tilde{\phi}(h)) = deg(\tilde{\phi}(f)) = deg(f) = deg(g(x)) + deg(h(x))$$

note that $deg(\tilde{\phi}(g)) \leq deg(g)$ and $deg(\tilde{\phi}(h)) \leq deg(h)$, we have $deg(\tilde{\phi}(g)) = deg(g)$ and $deg(\tilde{\phi}(h)) = deg(h)$, recall that we have the condition that $\tilde{\phi}(f(x))$ is irreducible in $\mathbb{Z}_p[x] \Rightarrow deg(\tilde{\phi}(g)) = 0$ or $deg(\tilde{\phi}(h)) = 0 \Rightarrow deg(g) = 0$ or deg(h) = 0

Example 30.5

Theorem 30.2 (eisenstein's theorem)

let $f(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[x]$ be a primitive polynomial, i.e. $gcd(a_n, a_{n-1}, ..., a_0) = 1$, suppose \exists prime number p s.t.

a. $p|a_i, \forall 0 \leq i < n$

b. $p \nmid a_n$

c. $p^2 \nmid a_0$, then $f(x) \in \mathbb{Z}[x]$ is irreducible.

Proof let $f(x) = g(x) \cdot h(x) \in \mathbb{Z}[x]$. let $\tilde{\phi} : \mathbb{Z}[x] \Rightarrow \mathbb{Z}_p[x]$, by a., b., $\tilde{\phi}(f) = \tilde{\phi}(g) \cdot \tilde{\phi}(h) = [a_n]_p x^n + 0 + ... + 0 \Rightarrow \tilde{\phi}(g) \cdot \tilde{\phi}(h) \sim x^n \Rightarrow$, so we have $\tilde{\phi}(g) \sim x^i$, $\tilde{\phi}(h) \sim x^{n-i}$ for some $0 \le i \le n$. suppose 0 < i < n, then $\tilde{\phi}(g)\alpha x^i$, $\tilde{\phi}(h) = \beta x^{n-i}$ in $\mathbb{Z}_p[x] \Rightarrow g(x) = c_i x^i + ... + c_0$, $h(x) d_i x^{n-i} + ... + d_0$ where c_0 and d_0 are multiples of $p \Rightarrow f(x) = g(x) h(x) = ... + c_0 d_0$, note $c_0 d_0$ is a multiple of p^2 , which violate c. so we have $\tilde{\phi}(g) \sim x^i$, $\tilde{\phi}(h) \sim x^{n-i}$ for i = 0 or $n \Rightarrow deg(g) = 0$ or deg(h) = 0, since f = gh is primitive, we have $g = \pm 1$ or $h = \pm 1$. we are done.

Example 30.6 a. $x^3 + 2x + 6$ is irreducible in $\mathbb{Z}[x]$: let p = 2 and we can use the last theorem. however we cannot use the reduction test: let p = 3, $\tilde{\phi}(x^3 + 2x + 6) = x^3 + 2x$ is reducible in $\mathbb{Z}_3[x]$

Theorem 30.3 (gauss' lemma)

let $f(x) \in \mathbb{Z}[x]$ be a nonconstant polynomial, thus $f(x) \in \mathbb{Z}[x]$ is irreducible $\Leftrightarrow f(x) \in \mathbb{Q}[x]$ is irreducible and f(x) is primitive.

Corollary 30.1

 $\mathbb{Z}[x]$ is a UFD.

Chapter field

one reason to study fields is to study roots of polynomials $p(x) \in \mathcal{F}[x]$ where \mathcal{F} is a field. to do so, one has to extend our base field \mathcal{F} to a larger field K. e.g. $x^2 + 1 \in \mathbb{R}[x]$ has roots in $K = \mathbb{C}$. there are two fields we are interested in:

- 1. number field: a subfield of \mathbb{C} like $\mathbb{R}, \mathbb{Q}, \mathbb{Q}[i] = \{a + bi | a, b \in \mathbb{Q}\}, Q[\sqrt{2}] = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$
- 2. finite field: $|\mathcal{F}| < \infty$, e.g. $\mathbb{Z}_2, \mathbb{Z}_3, ...$

Definition 31.1 (characteristic)

 \mathcal{F} is a field, then the characteristic of \mathcal{F} is the smallest positive integer m s.t. $1_{\mathcal{F}}+...+1_{\mathcal{F}}=0_{\mathcal{F}}$ and $char(\mathcal{F}):=m$; if no such m exists, we let $char(\mathcal{F})=\infty$

Theorem 31.1

all fields with $|\mathcal{F}| < \infty$ must have $|\mathcal{F}| = p^m$ for some p prime and m positive integer. moreover if $|\mathcal{F}_1| = |\mathcal{F}_2| = p^m$, then $\mathcal{F}_1 \cong \mathcal{F}_2$ as rings.