

Gaining Additional labels

Yingsong Zhang yingsong.z@asidatascience.com

23/05/2017

This presentation reflects my subjective opinions

Supervised learning

- Given
 - Labelled data $\{(features, label)\}$, as $\{(x^l, y^l)\}$
 - Implicitly, a lot of unlabeled data $\{(x,.)\}$
 - From the labelled data, inferring a function f(x) for predicting the unknown labels for $\{(x,.)\}$

Labelled data

Classifier

Semi-supervised learning

- Given
 - Labelled data $\{(features, label)\}$, as $\{(x^l, y^l)\}$
 - Explicitly, a lot of unlabeled data {(x,.)}
- Inferring a function y = f(x) for predicting the unknown labels for new instances of features, from
 - the labelled data set
 - AND the unlabeled data set

Unlabeled data

Labelled data

Classifier

Why bother?

- The performance of your classifier almost always improves with more labelled data.
- labelled data can sometimes expensive, difficult, or time consuming to obtain
- Unlabeled data bear a lot of additional information, for example, the distribution
- Can we improve our performance for free?
- Make use of the unlabeled data semi-supervised learning

Common types of semi-supervised learning

- Self-training
- Co-training and multi-view learning
- Generative Models

Common types of semi-supervised learning

- Self-training
- Co-training and multi-view learning
- Generative Models
 - strong assumption on the distribution of the data

Self-training

- Wrapper:
 - 1. Initialize the training set with only the labelled data
 - 2. Train a classifier f(x) on the training set
 - 3. Predict on the unlabeled data with f(x)
 - 4. Score $\{(x, f(x))\}$ with the selection metric
 - 5. Add the m best new instances to the training set
 - 6. Repeat 2-5 with the enlarged training set

Unlabeled data

Labelled data

Train

Toy problem demo: Iris data set

Settings

- Randomly select 15 samples as the labelled data
- The rest, 135 samples, treated as unlabeled data

- Logistic regression
- Code is available at Git Hub
- https://github.com/zysalice/ strata_2017_selftraining/blob/ master/ToyProblem_iris.ipynb

(x,y)

Trained with 15 labelled samples

Trained with 150 labelled samples

With 15 labelled + 3 unlabeled samples

Trained with 150 labelled samples

With 15 labelled + 15 unlabeled samples

Trained with 150 labelled samples

With 15 labelled + 15 unlabeled samples

Trained with 150 labelled samples

Process of unlabeled data selection has a big influence

- Only add good instances
 - include only those points in which the model has high confidence
 - Use a metric that is independent from the classifier if possible

- Allow bad instances to be deleted
 - the new classifier doesn't agree with the old classifier

- Adding and deleting incrementally
 - the damage of adding/deleting wrong instance is limited

No free lunch

- More effort required to design selection process
- Unlabeled data does not always help
 - adding incorrect labels can corrupt the model
 - there are situations that self-training performs badly no matter what
 - No theoretical guarantee of convergence to better result

Self-training in CNN semantic image segmentation

"Fully convolutional networks for semantic segmentation" Long et al, **CVPR2015**

- Image goes in
- Labels for each pixel come out
- Training set: images with pixel-level annotation expensive

Self-training with CNN

Start from a basic CNN for semantic segmentation

Papandreou, George, et al.
 "Weakly-and semi supervised learning of a
 DCNN for semantic image
 segmentation." arXiv
 preprint arXiv:
 1502.02734 (2015).

Papandreou, George, et al.
 "Weakly-and semi supervised learning of a
 DCNN for semantic image
 segmentation." arXiv
 preprint arXiv:
 1502.02734 (2015).

Papandreou, George, et al.
 "Weakly-and semi supervised learning of a
 DCNN for semantic image
 segmentation." arXiv
 preprint arXiv:
 1502.02734 (2015).

Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015).

- Train an CNN with the strong instance
- The cost function is the cross-entropy function

 Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015).

 Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015). Use the self-training wrapper

Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015).

Put the unlabeled image into the CNN

Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015).

Put the unlabeled image into the CNN

• For every pixel m, do the following to $f_m(y_{m,l}|x;\theta)$:

$$\begin{cases} f_m(y_{m,l}|x;\theta) + c, & if \ y_{m,l} \in \{person, horse, dog\} \\ f_m(y_{m,l}|x;\theta), & otherwise \end{cases}$$

 Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015). Put the unlabeled image into the CNN

• For every pixel m, do the following to $f_m(y_{m,l}|x;\theta)$:

$$\begin{cases} f_m(y_{m,l}|x;\theta) + c, & \text{if } y_{m,l} \in \{person, horse, dog\} \\ f_m(y_{m,l}|x;\theta), & \text{otherwise} \end{cases}$$

Papandreou, George, et al. "Weakly-and semisupervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv: 1502.02734 (2015).

Put the unlabeled image into the CNN

• For every pixel m, do the following to $f_m(y_{m,l}|x;\theta)$:

$$\begin{cases} f_m(y_{m,l}|x;\theta) + c, & if \ y_{m,l} \in \{person, horse, dog\} \\ f_m(y_{m,l}|x;\theta), & otherwise \end{cases}$$

• The loss function becomes $L(\theta) = -\sum_{m} \max_{l} f_{m}(y_{m,l}|x;\theta)$ -- cross-entropy

Improved performance by semisupervised learning

	# Strong	#weak	Dice measure
supervised	15582	_	0.687
	10582	-	0.676
	1464	-	0.625
semi-super	1464	9118	0.646
	10582	123287	0.677
	15582	118287	0.700

Papandreou, George, et al. "Weakly-and semi-supervised learning of a DCNN for semantic image segmentation." arXiv preprint arXiv:1502.02734 (2015).

Self-training in feature engineering

Filtering twitter message

- Twitter is a great source for information
- After scraping, we filtered twitter message using keywords
- Human experts labelled a small portion of the data with 'Spam' (68%) and 'Good' (32%)
- Purpose:
 - develop an algorithm for filtering out the spams.

Naïve Bayesian spam filter

 A simple Naïve Bayesian spam filter seems to perform reasonably well Confusion Matrix (percentage)

How can we improve

- More features than just 'words'
 - A lot of 'Good' tweets contain questions and statements
 - The new features:
 - the proportion of question, statement, emotion or others
 - Semantic level features we don't have labels

Prediction with augmented features from semi-supervise learning

Reduced False positive rate from 19.76% ->
 18.63%

Confusion Matrix (percentage)

A few more words...

- If possible, get more labelled data
- Beware of overfitting when using complicated models
- A lot of effort required
- It won't always help

SHERLOCKIL

https://sherlockml.com

Invite code: Strata2017

