POLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY

Karol Makosa

25 października 2017

1 Treść zadania

Napisać program umożliwiający znalezienie maksimum funkcji dopasowania jednej zmiennej określonej dla liczb całkowitych w zadanym zakresie przy pomocy elementarnego algorytmu genetycznego (reprodukcja z użyciem nieproporcjonalnej ruletki, krzyżowanie proste, mutacja równomierna). Program powinien umożliwiać użycie różnych funkcji dopasowania, populacji o różnej liczebności oraz różnych parametrów operacji genetycznych (krzyżowania i mutacji). Program powinien zapewnić wizualizację wyników w postaci wykresów średniego, maksymalnego i minimalnego przystosowania dla kolejnych populacji oraz wykresu funkcji w zadanym przedziale.

Program przetestować dla funkcji $f(x) = -0.25x^2 + 5x + 6$ dla x = -1, 0, ...21

2 Instrukcja działania programu

2.1 Okno główne programu

2.2 Opis okna programu

- 1. Informacje o obecnej populacji i o najlepiej przystosowanym elemencie
- 2. Pola do ustawiania liczebności populacji i prawdopodobieństw krzyżowania i mutacji
- 3. Przyciski sterujące
- 4. Wykresy: obecnej populacji, minimalnego, średniego i maksymalnego przystosowania oraz informacja o iteracji algorytmu

2.3 Zmiana ustawień programu

W programie okienkowym można zmieniać liczebność populacji oraz prawdopodobieństwa krzyżowania i mutacji. Aby zmienić funkcję lub przedział, na którym badamy funkcję, należy zmodyfikować początkowe linie pliku Population.py

2.4 Przykładowy sposób użycia

Aby poprawnie użyć programu należy:

- 1. Ustawić dane
- 2. Zaakcpetować ustawienia wciskając przycisk Zastosuj
- 3. Zaznaczyć lub odznaczyć opcję rysowania wykresów rysuj wykresy
- 4. Wybrać sposób tworzenia kolejnych generacji populacji:
 - (a) Jednorazowo, wciskając Jedna generacja
 - (b) Automatycznie, wciskając Automatyczna generacja

Automatyczna generacja zakończy się, gdy w przeciągu 50 generacji nie zmieni się największe znalezione przystosowanie

3 Opis eksperymentów

Eksperymenty przeprowadzone były dla funkcji $f(x) = -0.25x^2 + 5x + 6$, dla x = -1, 0, ..., 21. Maksymalne przystosowanie dla niej jest osiągane przy x = 10 i wynosi 31. W poszczególnych etapach eksperymentów zmieniały się liczebność populacji i wartości krzyżowania mutacji

3.1 Różna liczebność populacji

Eksperymenty badające wpływ liczebności na wyniki algorytmu genetycznego wykonywane były przy prawdopodobieństwie mutacji równym 0,01 i prawdopodobieństwie krzyżowania równym 1. W tabeli umieszczone zostały: minimalne, maksymalne i średnie przystosowanie danej populacji oraz największe znalezione dopasowanie oraz jego osobnik.

3.1.1 Populacja: 6 osobników

iteracja	min	max	avg	global max	X
1	6	30	17.54	30	12
2	6	30.75	18.38	30.75	11
3	0.75	30.75	15.0	30.75	11
4	0.75	22	9.5	30.75	11
5	0.75	24.75	14.83	30.75	11
6	0.75	24.75	8.08	30.75	11
7	0.75	24.75	13.42	30.75	11
8	0.75	27	13.79	30.75	11
9	0.75	24.75	8.79	30.75	11
10	0.75	24.75	12.79	30.75	11

Rzeczywiste maksimum funkcji znaleziono po ok. 250 generacjach.

3.1.2 Populacja: 50 osobników

iteracja	min	max	avg	global max	X
1	0.75	31	19.43	31	10
2	0.75	31	18.7	31	10
3	0.75	31	19.25	31	10
4	0.75	30.75	17.77	31	10
5	0.75	30.75	18.5	31	10
6	0.75	30.75	20.03	31	10
7	0.75	30.75	18.43	31	10
8	0.75	31	17.68	31	10
9	0.75	30.75	17.21	31	10
10	0.75	30.75	16.94	31	10

Rzeczywiste maksimum funkcji zostało znalezione już w 1 generacji.

3.2 Różne prawdopodobieństwa krzyżowania i mutacji

Eksperymenty przeprowadzone będą dla populacji 10 osobników.

3.2.1 Krzyżowanie: 1, Mutacja: 0.05

itanasia	min	****	0	mlobol moore	X
iteracja	min	max	avg	global max	Λ
1	0.75	30.75	15.97	30.75	9
2	0.75	30.75	15.15	30.75	11
3	0.75	30.75	8.75	30.75	9
4	0.75	30.75	15.95	30.75	9
5	0.75	30	16.1	30.75	9
6	0.75	30.75	15.7	30.75	9
7	0.75	30.75	17.43	30.75	9
8	0.75	30.75	17.12	30.75	9
9	0.75	30.75	18.73	30.75	9
10	10.75	31	19.0	31	10
Rzeczywiste maksimum znaleziono w generacji 10.					

3.2.2 Krzyżowanie: 0.8, Mutacja: 0.1

iteracja	min	max	avg	global max	X
1	0.75	30.75	13.95	30.75	11
2	0.75	30.75	14.38	30.75	11
3	0.75	30.75	17.98	30.75	11
4	6	30.75	20.4	30.75	11
5	15	30.75	22.43	30.75	11
6	0.75	30.75	18.15	30.75	11
7	0.75	30.75	20.02	30.75	11
8	0.75	30.75	15.64	30.75	11
9	0.75	30.75	22.02	30.75	11
10	0.75	30	15.22	30.75	11

Rzeczywiste maksimum znaleziono w 20 generacji

3.2.3 Krzyżowanie: 0.5, Mutacja: 0.03

iteracja	min	max	avg	global max	X
1	6	30.75	22.95	30.75	9
2	6	30.75	22.48	30.75	9
3	6	30.75	20.05	30.75	9
4	6	30.75	20.55	30.75	9
5	0.75	31	17.7	31	10
6	0.75	30.75	21.1	31	10
7	0.75	30.75	18.73	31	10
8	0.75	30.75	19.52	31	10
9	0.75	30.75	18.73	31	10
10	10.75	30.75	19.73	31	10

Rzeczywiste maksimum znaleziono w 5 generacji

4 Wnioski

Na zróżnicowanie wyników algorytmu genetycznego mają wpływ:

- Liczebność populacji ma ona bardzo duży wpływ na szybkość znalezienia wyniku. Im większa ona jest tym szybciej algorytm znajduje rozwiązanie.
- Prawdopodobieństwo mutacji wprowadza losowe zmiany między populacjami. Nie może być ona zbyt duża, gdyż wtedy algorytm działałby w sposób pseudolosowy
- Prawdopodobieństwo krzyżowania zwiększa zakres zmian w populacji.