

Devoir surveillé nº 2

Correction

Exercice 1. Voir cours.

Exercice 2.

- 1. Pour tout x > 0, la suite $\left(\frac{1}{nx+1}\right)_{n \in \mathbb{N}}$ est positive décroissante et tend vers 0, donc par le critère des séries alternées, $\sum_{n \in \mathbb{N}} f_n(x)$ converge.
- **2.** La série ne converge pas absolument (par comparaison à la série harmonique), donc elle ne converge normalement sur aucun intervalle non vide.
- **3.** Notons $R_N(x) = \sum_{n=N}^{+\infty} f_n(x)$ le reste de la série. Le théorème de convergence des séries alternée nous donne la majoration suivante du reste :

$$|R_N(x)| \le \frac{1}{Nx+1},$$

donc $\sup_{x>a} |R_N(x)| \le \frac{1}{Na+1} \to 0$. Par conséquent, la série converge uniformément sur $]a, +\infty[$.

- **4.** Les fonctions f_n sont continues sur $]a, +\infty[$ et la série converge uniformément sur $]a, +\infty[$, donc la somme est continue sur $]a, +\infty[$, pour tout a > 0. Par conséquent, f est continue sur $\bigcup_{a>0}]a, +\infty[$, c'est-à-dire \mathbb{R}^*_+ .
- **5.** Soit $N \in \mathbb{N}$. On calcule les sommes partielles de la série :

$$\begin{split} \sum_{n=0}^{N} \frac{(-1)^n}{nx+1} &= \sum_{n=0}^{N} (-1)^n \int_0^1 t^{nx} \, \mathrm{d}t \\ &= \int_0^1 \sum_{n=0}^{N} (-t^x)^n \, \mathrm{d}t \\ &= \int_0^1 \frac{1 - (-t^x)^{N+1}}{1 + t^x} \, \mathrm{d}t \\ &= \int_0^1 \frac{1}{1 + t^x} \, \mathrm{d}t + (-1)^N \int_0^1 \frac{t^{(N+1)x}}{1 + t^x} \, \mathrm{d}t. \end{split}$$

Cette dernière intégrale tend vers 0 par encadrement :

$$0 \le \int_0^1 \frac{t^{(N+1)x}}{1+t^x} dt \le \int_0^1 t^{(N+1)x} dt = \frac{1}{(N+1)x+1} \xrightarrow[N \to +\infty]{} 0.$$

Ainsi, on a montré que :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{nx+1} = \int_0^1 \frac{1}{1+t^x} \, \mathrm{d}t.$$

6. On évalue f en x = 1 et x = 2:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \int_0^1 \frac{1}{1+t} dt = \ln 2,$$

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \int_0^1 \frac{1}{1+t^2} dt = \arctan(1) = \frac{\pi}{4}.$$

Exercice 3.

1. Soit $y \in A$. Par inégalité triangulaire, on a $d(x, A) \le ||x - y|| \le ||x - x'|| + ||x' - y||$. Ainsi, d(x, A) - ||x - x'|| est un minorant de ||x' - y|| pour tout $y \in A$, donc par définition de l'infimum :

$$d(x, A) - ||x - x'|| \le d(x', A),$$

c'est-à-dire:

$$d(x, A) \le ||x - x'|| + d(x', A).$$

Par symétrie des rôles de x et x', on a aussi $d(x', A) \le ||x - x'|| + d(x, A)$, donc :

$$|d(x, A) - d(x', A)| \le ||x - x'||.$$

- **2.** D'après la question précédente, d_A est Lipschitzienne, donc elle est continue.
- **3. a.** Soit $(a_n)_{n\in\mathbb{N}}$ une suite d'éléments de A telle que $\|x-a_n\| \to d(x,A)$. Puisque $\|x-a_n\|$ converge 1, elle est bornée : il existe M>0 tel que pour tout $n\in\mathbb{N}$, $\|x-a_n\|\leq M$. Ainsi, pour tout $n\in\mathbb{N}$, $a_n\in\overline{\mathcal{B}}(x,M)$, donc la suite $(a_n)_{n\in\mathbb{N}}$ est bornée. Puisque E est de dimension finie, on peut extraire une sous-suite $(a_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge vers une limite a, et $a\in A$ car A est fermé. On a alors :

$$d(x,A)=\lim_{n\to+\infty}\|x-a_{\varphi(n)}\|=\|x-a\|.$$

b. La fonction d_A est continue sur le compact K, donc d_A atteint son minimum sur K: il existe $x_0 \in K$ tel que pour tout $x \in K$, $d(x, A) \ge d(x_0, A)$. Par la question précédente, il existe $a_0 \in A$ tel que $d(x_0, A) = ||x_0 - a_0||$.

Posons $\delta := \|x_0 - a_0\|$. Puisque A et K sont disjoints, $x_0 \neq a_0$ donc $\delta > 0$. Ainsi, on a montré que pour tout $x \in K$, $d(x, A) \ge \delta$, c'est-à-dire :

$$\forall x \in K$$
, $\forall a \in A$, $||x - a|| \ge \delta$.

^{1.} attention, on ne sait rien sur la convergence de la suite $(a_n)_{n \in \mathbb{N}}$.