## Kryptografie

Prof. Dr. Henning Pagnia

DHBW Mannheim

Frühjahr 2022



# Wichtiges zur Vorlesung

## Prof. Dr. Henning Pagnia

Wirtschaftsinformatik

• Email: pagnia@dhbw-mannheim.de

• Telefon: 0621 / 4105-1131

Raum: 149 B

# Begriffe

### Begriffsklärung

- Kryptografie
- ullet Kryptologie als Sammelbegriff
- codieren ⇒ Fehlererkennung bzw. -korrektur: z. B. CRC
- verschlüsseln ⇒ Geheimhaltung: z. B. AES

### Einordnung

- Datensicherheit:
  - Schutz digitaler und analoger Daten
  - ⇒ Informationssicherheit
  - Best Practices z. B. BSI-Grundschutz
- Datenschutz:
  - Schutz der personenbezogenen Daten eines Menschen
  - ⇒ informationelle Selbstbestimmung
  - Regelungen u.a. in der EU-DSGVO und dem BDSG

## Übersicht

## Themengebiete der Vorlesung

- Einfache Chiffren
- Modulare Arithmetik
- Symmetrische Verschlüsselung
- Schlüsseltauschverfahren
- Asymmetrische Verschlüsselung
- Kryptografische Hashverfahren
- Digitale Signaturen
- Authentisierungsprotokolle

Literatur

#### Literatur

- [Beut2015] Albrecht Beutelspacher. Kryptologie Eine Einführung in die Wissenschaft vom Verschlüsseln, Verbergen und Verheimlichen, 10. Auflage.
  Springer Spektrum, 2015. ISBN 978-3-658-05975-0.
- [Buch2016] Johannes Buchmann: Einführung in die Kryptographie, 6. Auflage. Springer Spektrum, 2016. ISBN 978-3-642-39774-5.
- [Ecke2018] Claudia Eckert: IT-Sicherheit: Konzepte Verfahren Protokolle, 10. Auflage. De Gruyter Oldenbourg, 2018. ISBN 978-3-11-055158-7.
- [PP2016] Christof Paar und Jan Pelzl: Kryptografie verständlich Ein Lehrbuch für Studierende und Anwender.
  Springer Vieweg, 2016. ISBN 978-3-662-49296-3.
- [Schm2016] Klaus Schmeh: Kryptografie, 6. akt. Auflage. dpunkt.verlag, 2016. ISBN-13: 978-386490-356-4.
- [Schn1995] Bruce Schneier: Applied Cryptography, 2nd edition. John Wiley & Sons, 1995. ISBN-13: 978-0-471-11709-4.

## Verschlüsselung

## Vorgehensweise



#### Bezeichner

• Klartext: m (message, plain text)

• Schlüssel: k (key)

• Chiffretext: c (cipher text)

# Verschlüsselung (Forts.)

### Schutzziele der Verschlüsselung

- Privacy (Geheimhaltung)
- Authenticity (Authentizität)
- Integrity (Integrität)
- Non-Repudiation (Nichtabstreitbarkeit)
- Perfect Forward Secrecy (in etwa: zukünftige Geheimhaltung)
  - der Verlust eines einzigen Schlüssels führt nicht zum Verlust der Vertraulichkeit der gesamten Kommunikation

## Kryptografie

### Anwendungsgebiete

- sichere lokale Speicherung
  - Verschlüsselung von einzelnen Dateien
  - Verschlüsselung ganzer Dateisysteme
- sichere Nachrichtenübertragung über einen unsicheren Nachrichtenkanal

#### Historisch

- Das traditionelle Einsatzgebiet von Verschlüsselung ist das Militärische
- Chiffrierung und Dechiffrierung wurden ohne den Einsatz von Rechenmaschinen zumeist manuell durchgeführt
- Es wurden folgende Vereinbarungen getroffen, um das Brechen der Chiffren zu erschweren:
  - Auf Satzzeichen und Leerzeichen wird verzichtet: Worte werden direkt hintereinander geschrieben
  - Auf Groß-/Kleinschreibung wird verzichtet: Klartexte werden in Großbuchstaben angegeben, Chiffretexte in Kleinbuchstaben moderne Chiffren nutzen derartige Einschränkungen i. Allg. nicht

### Beispiel

Versuchen Sie den folgenden Chiffretext zu entschlüsseln:

idaenablqudnbbnudwpenafnwmnwrlqcmnwlnbja

### Einige mögliche Angriffe

- Brute Force durchprobieren aller möglichen Schlüssel
- Cipher Text Only nur der Chiffretext einer Nachricht liegt vor (Angriff i. Allg. sehr schwierig!)
  - liegen mehrere Chiffetexte vor, die mit dem identischen Schlüssel verschlüsselt wurden, führt das Finden des Schlüssels zur Entschlüsselung aller Chiffretexte
- Known Plain Text errechnen des Schlüssels, wenn Chiffretext und Klartextteile bekannt sind
- Chosen Plain Text
   bei Zugriffsmöglichkeit auf die Verschlüsselungsmaschine generiert der Angreifer eigene Klartexte (z. B. Folgen von Null-Bits) und erhält die dazugehörigen Chiffretexte

#### Klartext des Beipiels

#### ZURVERSCHLUESSELUNGVERWENDENICHTDENCAESAR

Es handelt sich um eine sehr schwache Verschlüsselung: eine Verschiebe-Chiffre. Dabei werden die Klartextzeichen im Alphabet um jeweils  $\mathbf{k}$  Buchstaben verschoben.

Mittels Brute Force oder durch eine Frequenzanalyse lässt sich die Verschlüsselung brechen:

Der häufigste Buchstabe ist hier das N (8-mal). Wenn man davon ausgeht, dass der Text ein deutscher Text ist, dann ist es sehr wahrscheinlich, dass das E in ein N überführt wurde. E ist nämlich der häufigste Buchstabe in der deutschen Sprache. Zum Überprüfen dieser Hypothese versucht man also (erfolgreich) eine Verschiebung des Klartextalphabets um k=9 Buchstaben.

### Wichtig: das Kerckhoffs Prinzip (1883)

Die Sicherheit der Verschlüsselung darf nur von der Geheimhaltung des Schlüssels abhängen – nicht von der Geheimhaltung des Algorithmus!

### Formale Definition: Kryptosystem

Ein Kryptosystem KS ist ein Fünf-Tupel

$$KS = (M, C, K, E, D)$$

mit

- M ist eine endliche Menge, das Klartextalphabet
- C ist eine endliche Menge, das Chiffretextalphabet
- K ist eine endliche Menge, der Schlüsselraum
- E ist eine endliche Menge, die für jedes  $k \in K$  eine Verschlüsselungsfunktion  $e_k : M \to C$  definiert
- **D** ist eine endliche Menge, die für jedes  $k \in K$  eine Entschlüsselungsfunktion  $d_k : C \to M$  definiert
- dabei gilt:

$$d_k(e_k(m)) = m \quad \forall m \in M$$

### Wie sicher ist ein Kryptosystem?

- perfekt sicher ein Kryptosystem, das jeder kryptoanalytischen Attacke widersteht – auch wenn dem Angreifer eine uneingeschränkte Rechenleistung zur Verfügung steht
- berechnungssicher (computationally secure) ein Kryptosystem, das mit einer kryptoanalytischen Attacke bei begrenzter Rechenleistung in der Praxis nicht in einer erlebbaren Zeit gebrochen werden kann
- unsicher alle anderen Kryptosysteme

### Klassifizierung der Verfahren

symmetrisch / asymmetrisch ⇒ Kombination: hybrid

Blockchiffre / Stromchiffre

# Symmetrische Verschlüsselung

## Prinzip



- Absender: A (Alice)
- Empfänger: B (Bob)
- Angreifer: M (Mallory)

### Unzählige Verfahren

• IDEA, DES, Skipjack, RC4, RC5, Blowfish, RC6, Threefish, **AES**, ...

### Verschiebe-Chiffren

#### **Definition**

• Seien  $m, c, k \in \{0, 1, \dots, 25\}$ :

Verschlüsselung:  $e_k(m) \equiv (m + k) \mod 26$ 

Entschlüsselung:  $d_k(c) \equiv (c - k) \mod 26$ 

• mit der folgenden Codierung für die Buchstaben des Alphabets:

| Α  | В  | С  | D  | Е  | F  | G  | Н  | I  | J  | K  | L  | М  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| N  | 0  | Р  | Q  | R  | S  | Т  | U  | V  | W  | Χ  | Υ  | Z  |
| 12 | 1/ | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |

#### Anmerkungen

- es handelt sich um eine symmetrische Block-Chiffre mit der Blocklänge 1
- ist die Kongruenzrelation
- die Menge  $\{0,1,\ldots,25\}$  bezeichnet man als  $\mathbb{Z}_{26}$
- im Allgemeinen setzt man k = 3 für den historischen Caesar-Chiffre

### Substitution-Chiffren

### Vorgehensweise

- Für den Chiffretext wird jeder Klartextbuchstabe wird jeweils immer durch einen bestimmten anderen ersetzt.
- Als Schlüssel dient eine Tabelle: In der oberen Zeile stehen die Buchstaben des Klartextalphabets, in der unteren eine Permutation derselben
- Beispiel:

| Α | В | U | D | Е | F | G | Ι |   | _ | K | L | Μ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| u | g | У | b |   | m | r | q | h | W | Z | а | j |
|   |   |   |   |   |   |   |   |   |   |   |   |   |
| N | 0 | Р | Q | R | S | Т | U | V | W | Χ | Υ | Z |

Wie lautet der Klartext zu

#### sikelyols

- Verschiebe-Chiffren sind Spezialfälle von Substitution-Chiffren
- Brechen einer einfachen Substitution-Chiffre ist i. Allg. mittels einer Frequenzanalyse möglich

#### Permutation-Chiffren

#### Vorgehensweise

- Für den Chiffretext wird die Buchstabenfolge des Klartextes permutiert
- Beispiel:

koeee geeam csrle ihiwn fvhsy oinrn istel epgnf udscu rvlti eunis hosen

### Permutation-Chiffren

### Vorgehensweise

- Für den Chiffretext wird die Buchstabenfolge des Klartextes permutiert
- Beispiel:

#### koeee geeam csrle ihiwn fvhsy oinrn istel epgnf udscu rvlti eunis hosen

Es handelt sich hier um eine sog. Skytala-Chiffre mit k=5 ( Der Schlüssel k ist Anzahl der Zeilen)

```
RLEIHIWNFVHS
YOINRNISTELE
P G N F U D S C V R U L
```

- Zum Entschlüsseln: Anzahl Spalten = [ Chiffretextlänge / k ]
- Anmerkung: Auch hier bleiben die Buchstabenhäufigkeiten erhalten

## Buchstabenhäufigkeiten

## Relative Häufigkeiten der Buchstaben in deutschen Texten

| Α | 6,51%   | Ν       | 9,78 %       |
|---|---------|---------|--------------|
| В | 1,89 %  | 0       | 2,51 %       |
| С | 3,06 %  | Р       | 0,79 %       |
| D | 5,08 %  | Q       | 0,02 %       |
| Е | 17,40 % | R       | 7,00 %       |
| F | 1,66 %  | S       | 7,27 %       |
| G | 3,01 %  | Т       | 6,15 %       |
| Н | 4,76 %  | U       | 4,35 %       |
| ı | 7,55 %  | V       | 0,67 %       |
| J | 0,27 %  | W       | 1,89 %       |
| K | 1,21 %  | Χ       | 0,03 %       |
| L | 3,44 %  | Υ       | 0,04 %       |
| М | 2,53 %  | Z       | 1,13 %       |
|   |         | (Qualla | · [Bou+2015] |

(Quelle: [Beut2015])

# Buchstabenhäufigkeiten (Forts.)

#### Ein charakteristischer Wert: Koinzidenzindex /

$$I = \sum_{i=0}^{25} p_i^2$$

**p**<sub>i</sub> ist relative Häufigkeit des i-ten Buchstabens

#### Koinzidenzindex im Deutschen

$$I = 0,0651^2 + 0,0189^2 + ... + 0,0113^2 = 0,0762$$

### Ziel von Verschlüsselungsverfahren

... sollte es sein, dass der Koinzidenzindex des Chiffretextes minimal ist. Dann ist eine Frequenzanalyse unmöglich!

Welches ist der kleinstmögliche Wert für 1?

## Fundamentale Prinzpien von Verschlüsselungsverfahren

#### Konfusion

Verschleierung der Beziehung zwischen Schlüssel und Chiffretext, z.B. durch Substitutionsverfahren

#### Diffusion

Verbergen von statistischen Eigenschaften des Klartextes und damit Minimierung des Koinzidenzindexes, indem der Einfluss der Klartextzeichen auf möglichst viele Chiffretextzeichen gestreut wird

### Modulare Arithmetik

## Restklassenring $\mathbb{Z}_{\times}$

- wir definieren  $\mathbb{Z}_x = \{0, 1, \dots, x 1\}$
- modulare Arithmetik ist das Rechnen mit einer begrenzten Menge an ganzen 7ahlen
- Beispiel Z<sub>24</sub> für die Uhrzeit: 23 Uhr + 1 Stunde = 0 Uhr oder auch  $23 + 1 \mod 24 = 0$ allerdings gilt z. B. auch  $23 + 25 \mod 24 = 0$ sowie  $23 - 47 \mod 24 = 0$
- Berechnung des ganzzahligen Rests r: Seien  $a, r, x \in \mathbb{Z}$  und x > 0Falls x ein Teiler von a - r ist, schreibt man

$$a \equiv r \mod x$$

- "a und r sind kongruent bezgl. des Moduls x"
- für r gilt dann  $a = q \cdot x + r$  wobei q eine ganze Zahl ist

## Beobachtung: Rest r ist nicht eindeutig

ullet für unterschiedliche Werte von  $oldsymbol{q}$  gibt es auch unterschiedliche Werte für  $oldsymbol{r}$ :

$$44 = 6 \cdot 7 + 2$$
  
 $44 = 5 \cdot 7 + 9$   
 $44 = 4 \cdot 7 + 16$   
 $44 = 7 \cdot 7 - 5$  usw.

• die möglichen Reste bilden eine Restklasse:

$$RK = \{ ..., -12, -5, 2, 9, 16, ... \}$$

- für alle  $r \in RK$  gilt:  $r = q \cdot 7 + 2$  mit  $q \in \mathbb{Z}$  (aber nur für r = 2 gilt  $r \in \mathbb{Z}_7$ )
- alle Elemente einer Restklasse verhalten sich äquivalent:

Beispiel: Berechnung von  $2^{10} \mod 7 = 1024 \mod 7$ 

$$1024 = 146 \cdot 7 + 2$$
 (ist im Kopf nicht sooo einfach)

einfacher: 
$$1024 = 100 \cdot 7 + 324$$
  
 $324 = 50 \cdot 7 - 26$   
 $-26 = (-4) \cdot 7 + 2$ 

 $\Rightarrow$  wir können Rechnungen vereinfachen, ohne das Endergebnis zu ändern!

# Modulare Arithmetik (Forts.)

#### Rechnen mit kleineren Zahlen

es klappt auch mit der Multiplikation:

$$2^{10} = 2^2 \cdot 2^4 \cdot 2^4 = 4 \cdot 16 \cdot 16$$
  
 $4 = 0 \cdot 7 + 4$   
 $16 = 2 \cdot 7 + 2$   
also ist  $2^{10} \mod 7 = (4 \cdot 2 \cdot 2) \mod 7 = 2$ 

## Rechenoperationen im Restklassenring $\mathbb{Z}_x$

- Addition:  $\mathbf{a} + \mathbf{b} \equiv \mathbf{c} \mod \mathbf{x}$ , wobei  $\mathbf{c} \in \mathbb{Z}_{\times}$
- Multiplikation  $\mathbf{a} \cdot \mathbf{b} \equiv \mathbf{d} \mod \mathbf{x}$ , wobei  $d \in \mathbb{Z}_{\times}$

## Eigenschaften eines Rings

- abgeschlossen bzgl. Addition sowie Multiplikation
- Addition und Multiplikation sind assoziativ und kommutativ
- Existenz jeweils eines neutralen Elements bzgl. Addition sowie Multiplikation
- jedes Element hat eine additive Inverse

# Modulare Arithmetik (Forts.)

## Multiplikative Inverse im Restklassenring $\mathbb{Z}_{\times}$

- $a \cdot a^{-1} \equiv 1 \mod x$   $\Rightarrow a^{-1}$  heißt multiplikative Inverse zu a
- es existiert nicht zu jedem *a* eine multiplikative Inverse!
- $oldsymbol{a}$   $oldsymbol{a}^{-1}$  die multiplikative Inverse zu  $oldsymbol{a}$  existiert nur dann, wenn  $oldsymbol{ggt}(oldsymbol{a},oldsymbol{x})=1$
- ihre Berechnung ist im Allgemeinen aufwändig

## ggt – größter gemeinsamer Teiler (engl.: gcd)

- Berechnung mittels Primfaktorzerlegung; Beispiel:
  - $540 = 2^2 \cdot 3^3 \cdot 5$
  - $585 = 3^2 \cdot 5 \cdot 13$ 
    - $\Rightarrow$  **ggt**(540,585) =  $3^2 \cdot 5 = 45$
- Berechnung auf diesem Weg meist aufwändig!
- ggt(a, b) = 1, falls a und b teilerfremd  $\Rightarrow$  relativ prim oder coprim

# Modulare Arithmetik (Forts.)

## Rekursiver Algorithmus zur Berechnung des ggt (nach Euklid)

• für 
$$a, b > 0$$
 gilt:  $ggt(a, b) = \begin{cases} b & \text{, falls } a = b \\ ggt(a - b, b) & \text{, falls } a > b \\ ggt(b - a, a) & \text{, falls } a < b \end{cases}$ 

- Beispiel: ggt(585, 540) = ggt(45, 540) = ggt(495, 45) = ggt(450, 45) = ggt(405, 45) = ... = ggt(45, 45) = 45
- Schneller geht's meist mit:

für 
$$a, b > 0$$
 gilt:  $ggt(a, b) = \begin{cases} ggt(b, a) & \text{, falls } a < b \\ b & \text{, falls } a \mod b = 0 \\ ggt(a \mod b, b) & \text{, falls } a > b \end{cases}$ 

• Beispiel: ggt(585, 540) = ggt(45, 540) = ggt(540, 45) = 45

### Aufgaben

- (i) Berechnen Sie 136157 · 10<sup>15</sup> mod 11
- (ii) Berechnen Sie ggt(237, 27), ggt(31, 103) und ggt(47, 1)

### Affine Chiffren

#### **Definition**

- Wir rechnen im Zahlenring  $\mathbb{Z}_{\mathbf{x}}$
- Es sei  $m, c, a, b \in \mathbb{Z}_x$ :

Verschlüsselung: 
$$e_k(m) = c \equiv (a \cdot m + b) \mod x$$
  
Entschlüsselung:  $d_k(c) = m \equiv (a^{-1} \cdot (c - b)) \mod x$   
mit dem Schlüssel  $k = (a, b)$  mit  $ggt(a, x) = 1$ 

 $\Rightarrow$  für **a** sind daher  $\varphi(x)$  Werte möglich

 $\varphi(x)$  ist Euler-Funktion;

ihr Wert ist die Anzahl der Zahlen in  $\mathbb{Z}_x$ , die teilerfremd zu x sind

### Anmerkungen

- Welche Werte kommen in  $\mathbb{Z}_{26}$  für **a** in Frage?
- Wie berechnet man zu a die multiplikative Inverse  $a^{-1}$ ?

# Polyalphabetische Chiffren

### Vigenère-Chiffre (16. Jahrhundert)

- jedes Klartextzeichen kann auf jedes Chiffretextzeichen abgebildet werden
   Unterschied zu monoalphabetischen Chiffren
- Die Verschlüsselung des Klartextes  $m = (m_0, m_1, ... m_{\ell-1})$  der Länge  $\ell$  wird mit Hilfe eines Schlüsselworts  $k = (k_0, k_1, ..., k_{n-1})$  der Länge n berechnet:

$$e_k(m_i) = (m_i + k_{i \mod n}) \mod 26 \quad \forall i \in \{0, ..., \ell - 1\}$$
  
 $d_k(c_i) = (c_i - k_{i \mod n}) \mod 26 \quad \forall i \in \{0, ..., \ell - 1\}$ 

(für das Alphabet mit 26 Buchstaben)

### Beispiel

• m = ANGRIFFUMSECHS, k = IMHO

| <br>••• | , ., . | <u> </u> |    |    | · ·· · · | •  |    |    |    |    |    |    |    |     | ø. |
|---------|--------|----------|----|----|----------|----|----|----|----|----|----|----|----|-----|----|
| m:      | ( 0    | 13       | 6  | 17 | 8        | 5  | 5  | 20 | 12 | 18 | 4  | 2  | 7  | 18) |    |
| k:      | (8     | 12       | 7  | 14 | 8        | 12 | 7  | 14 | 8  | 12 | 7  | 14 | 8  | 12) | ı  |
| C:      | ( 8    | 25       | 13 | 5  | 16       | 17 | 12 | 8  | 20 | 4  | 11 | 16 | 15 | 4 ) |    |

 $\Rightarrow c = iznfqrmiuelqpe$ 

# Vigenère-Chiffre (Forts.)

### Kryptoanalyse

- (1) Bestimmen der Schlüsselwortlänge n für einen Chiffretext der Länge  $\ell$ 
  - Kasiski-Test: finde mehrere gleiche Folgen im Chiffretext und bestimme deren Abstand xi  $\Rightarrow$  Vermutung:  $x_i = a_i \cdot n$  mit  $a_i \in \mathbb{Z}$  ( $\Rightarrow$  ggt berechnen)
  - Friedman-Test: berechne den Koinzidenzindex I des Chiffretextes und damit

$$\mathbf{h} = \frac{0,0377\ell}{\mathbf{I} \cdot (\ell - 1) - 0,0385\ell + 0,0762}$$

- $\Rightarrow$  h liegt in der Größenordnung von n (Herleitung vgl. [Beut2015])
- spaltenweise Dechiffrierung mittels Frequenzanalyse
- Dechiffrierung ist deutlich einfacher, wenn Teile des Klartextes bekannt sind oder erraten werden können

#### **Sicherheit**

Die Sicherheit ist umso größer, je kürzer der Klartext und je länger der Schlüssel!

# One-Time Pad (OTP)

### Prinzip einer perfekt sicheren Verschlüsselung

- Wähle einen Schlüssel ebenso lang wie der Text.
- Wähle jedes einzelne Schlüsselbit echt zufällig.
- Verwende jeden Schlüssel immer nur einmal.



#### Frage: Wieso ist das perfekt sicher?

# One-Time-Pad (Forts.)

### Anforderung an ein perfekt sicheres Kryptosystem

- Durch Untersuchen des Chiffretextes lassen sich keine Informationen über den Klartext ableiten
- Die Wahrscheinlichkeit, dass der Klartext m gesendet wurde, wenn der Chiffretext c empfangen wurde, ist gleich der Wahrscheinlichkeit, dass m gesendet wurde

$$\Rightarrow Prob(m|c) = Prob(m) \quad \forall m \in P, c \in C$$

- Das OTP ist ein perfekt sicheres Kryptosystem
   Beweis: Shannon 1945 (Argumentation über Wahrscheinlichkeitsverteilung)
- Durch die bitweise XOR-Verknüpfung ist der Chiffretext genauso zufällig wie der Schlüssel
- Das OTP kann als Sonderfall der Vigenère-Chiffre angesehen werden

# One-Time-Pad (Forts.)

#### Probleme in der Praxis

- Wie werden die Schlüssel sicher ausgetauscht? (Schlüssel sind i. Allg. sehr lang!)
  - ⇒ Keine spontane Kommunikation möglich!
- Der Schlüssel muss echt zufällig sein!
   ⇒ Wie generiert man kryptografisch sichere (echte) Zufallszahlen?
   (nicht trivial, aber möglich)
- Schlüssel darf sich nicht wiederholen:
  - J. Mason et. al., 2006:
  - A Natural Language Approach to Automated Cryptanalysis of Two-time Pads (published at CCS'06)

## Krypto-Kontroverse

### Kryptografie für alle?

- Verwendung kryptografischer Verfahren für Privatpersonen war in Frankreich bis 1998 verboten
- Bis 2000 war die Ausfuhr starker krypt. Verfahren aus den USA strafbar ⇒ Crypto Wars (vgl. des-Befehl bei Unix, Zimmermann-Prozess, Clipper-Chip, ...)
- 19. Oktober 2000: Lockerung der US-Exportbeschränkungen, insbesondere in die EU

Frage: Wie ist es heute – was spricht für, was gegen ein Kryptoverbot?

#### Zufallszahlen

#### Arten von Zufallszahlen

- Echte Zufallszahlen
  - ► Generierung mittels TRNG (*True Random Number Generator*)
  - basieren i. Allg. auf physikalischen Zufallsprozessen
     (z. B. radioaktiver Zerfall oder Spannungsabfall an einer Diode)
- Pseudozufallszahlen
  - Generierung mittels PRNG (Pseudo Random Number Generator)
  - besitzen statistische Eigenschaften echter Zufallszahlen
  - folgen einer deterministischen Funktion
    - ⇒ sind reproduzierbar
  - Einsatz bei Tests, Simulationen, Spielen
  - i. Allg. unbrauchbar für kryptografische Anwendungen

### Pseudozufallszahlen

### PRNG:Lineare Kongruenzmethode (Lehmer, 1949)

Berechnung der Pseudozufallszahlenfolge  $\boldsymbol{X}$  für einen Modulus  $\boldsymbol{m}$  mittels

$$\mathbf{X}_{n+1} = (\mathbf{a} \cdot \mathbf{X}_n + \mathbf{c}) \mod \mathbf{m}$$

mit  $X_0: 0 \le X_0 < m$  als Seed (Startwert) und  $a, c: 0 \le a, c < m$ 

#### Beispiele

- $m = 10, X_0 = a = c = 7$   $\Rightarrow X: 7, 6, 9, 0, 7, 6, 9, 0, ...$ (Periodenlänge 4)
- $m = 17, X_0 = 1, a = 7, c = 0$   $\Rightarrow X: 1, 7, 15, 3, 4, 11, 9, 12, 16, 10, 2, 14, 13, 6, 8, 5, 1, 7, ...$ (Periodenlänge 16)

# Pseudozufallszahlen (Forts.)

### Anforderungen an einen PRNG

- maximale Periodenlänge m-1 $\Rightarrow m$  muss eine Primzahl sein sowie passende Wahl von **a** und **c**
- möglichst großer Modulus m $\Rightarrow$  bei 32-Bit Systemen z. B.  $m = 2^{31} - 1$ , a = 16807, c = 0
- die erzeugte Folge sollte zufällig aussehen
   ⇒ statistische Tests

#### Qualität der Zufallszahlen

- PRNG sollte gleichverteilte (rechteckverteilte) Pseudozufallszahlen generieren
- mittels geeigneter Transformationen lassen sich Pseudozufallszahlen einer beliebigen statistischen Verteilung erzeugen
- Zahlenfolgen lassen sich reproduzieren, wenn derselbe Seed verwendet wird (wichtig für Simulationen)
- nachfolgende Zahlen lassen sich vorhersagen, wenn die Parameter m, a, c bekannt sind und ein  $X_n$  ( $\Rightarrow$  unbrauchbar für die Kryptografie!)

## Pseudozufallszahlen (Forts.)

### Spektraltest

- Test, ob ein RNG gleichmäßig verteilte Zufallszahlen erzeugt
- ullet jeweils  $m{n}$  aufeinanderfolgende Zufallszahlen werden als ein  $m{n}$ -Tupel betrachtet
- liegen diese auf einer begrenzten Anzahl von Hyper-Ebenen, so ist deren Verteilung nicht gleichmäßig und der RNG von minderwertiger Qualität
- Beispiel: RANDU ( $\mathbf{m} = 2^{31} 1$ ;  $\mathbf{a} = 65539 = 2^{16} + 3$ ;  $\mathbf{c} = 0$ ;  $\mathbf{X}_0 = 1$ ),  $\mathbf{n} = 3$



Quelle: Der ursprünglich hochladende Benutzer war Luis Sanchez in der Wikipedia auf Englisch – Übertragen aus en wikipedia nach Commons

## Pseudozufallszahlen (Forts.)

### Run-Test \*

- In einem (pseudo-)zufällig erzeugten Bitstrom der Länge **n** werden Folgen von gleichen Bits identifiziert (sog. Runs) und deren Anzahl bestimmt.
- Mit Hilfe der Statistik lässt sich zeigen, dass der Erwartungswert bei  $E(R) = \frac{n+1}{2}$  liegt, wobei die Zufallsvariable R die Anzahl der Runs in einem echt zufälligen Bitstrom beschreibt.
- Weicht die Anzahl der Runs des untersuchten Bitstroms (hier: a) signifikant hiervon ab, wurde dieser vermutlich mittels eines minderwertigen PRNG erzeugt.

$$Prob(R-1=a) = \binom{n-1}{a-1} \cdot 0, 5^{a-1} \cdot 0, 5^{n-a}$$

### Weitere Testmethoden

- Poker-Test
- Chi-Quadrat-Test
- ...

<sup>\*</sup> Knuth, D.E. (1981): The Art of Computer Programming, Vol. 2 Seminumerical Algorithms, 2. ed. Addison-Wesley, Reading, Mass.

## Pseudozufallszahlen (Forts.)

## Kryptografisch sichere PRNG's

- es wird ein Strom zufälliger Bits erzeugt
- die erzeugte Folge muss alle bekannten statistischen Tests bestehen
- es ist rechnerisch unmöglich, das nächste Bit vorherzusagen auch bei Kenntnis des Algorithmus und aller zuvor erzeugten Bits
- die zufällige Bitfolge ist nicht reproduzierbar
- ⇒ hierzu werden häufig kryptografisch starke Verschlüsselungsalgorithmen eingesetzt (wegen Diffusion und Konfusion)

Beispiel:

$$X_n = e_{MK}(n) \quad \forall n \in \mathbb{Z}_x$$

wobei MK ein geheimer Master-Key (z. B. für AES) und  $log_2(x)$  die Blocklänge des Verschlüsselungsalgorithmus ist

# Kryptografisch sichere Pseudozufallszahlen (Forts.)

## Beispiel: Blum-Blum-Shub (BBS) CSRNG

- kryptografisch sicher unter der Annahme, dass die Faktorisierung ein hartes Problem ist
- Algorithmus für eine pseudozufällige Bitfolge z der Länge  $\ell$ :
  - (1) Wähle zufällig  $p \neq q$  als Primzahlen mit  $p \equiv 3 \mod 4$  und  $q \equiv 3 \mod 4$   $\Rightarrow n = p \cdot q$
  - (2) Wähle zufällig  $s \in \{2, 3, ..., n-1\}$ , so dass ggt(s, n) = 1
  - (3)  $x_0 = s^2 \mod n$
  - (4)  $for(i = 1; i \le \ell; i + +) \{$   $x_i = x_{i-1}^2 \mod n$   $z_i = x_i \mod 2$ }

### Echte Zufallszahlen

#### TRNG's

- Echter Zufall entsteht in physikalischen Prozessen
  - ⇒ spezielle Hardware erforderlich
    - Münzwurf
    - Ziehung der Lottozahlen
    - Anzahl der zerfallenen Atome beim radioaktiven Zerfall
    - Rauschen in einer Fotodiode (allg.: quantenmechanische Prozesse)
      - Uhrendrift (Abweichung von Uhren von der Realzeit)
- oder kann durch Beobachtung zufälliger interner Abläufe in einem Computer und sog. Randomness Extraction abgeleitet werden
  - ( ⇒ Vorsicht, das könnte ein Angreifer evtl. beeinflussen!)
    - CPU-Burst (Zeit bis zum Prozesswechsel)
    - Zeit zwischen Tastaturanschlägen
    - Ausgabewerte einer Computermaus
  - ⇒ sammeln durch das Betriebssystem in einem Entropie-Pool,
    - z.B. /dev/random bei Linux

# DES (Data Encryption Standard)

### Entwicklung

- Ursprünglich von IBM: Lucifer-Chiffre, Anpassungen durch NSA
- (US-)Standard für Finanzen und Kommunikation (1977 2002)

## Vorzüge

- einfache Basisoperationen (Permutation, Substitution, Shift, XOR)
- leicht implementierbar in Hardware
- schnell (bis zu 1 GB/sec)

#### Sicherheit

- Blockchiffre mit Blocklänge: 64 Bit (heute zu kurz)
- Schlüssellänge: 64 Bit, effektiv 56 Bit (heute zu kurz)
- Brute-Force Angriff im Jahr 1999: 22 h 15 min (Deep Crack, EFF)
- Seit 2004 wird Einsatz vom NIST offiziell nicht mehr empfohlen.

## DES - Deep Crack



- Entwickelt und gebaut von der EFF (DES-Challenge III, 1999)
- Kosten damals ca. 250 000 USD
- Leistungsfähigkeit:
   ca. 90 · 10<sup>9</sup> Schlüssel / Sekunde

Durchschnittliche Zeit zum Knacken einer DES-Verschlüsselung: ca. 5 Tage

# DES – Deep Crack (Forts.)



- Speziell entworfener DES-Chip
- 29 Boards insgesamt im Deep Crack
- 64 Chips pro Board



### Interner Aufbau

- 16 Runden mit identischem Aufbau aber unterschiedlichen Rundenschlüsseln
- Rundenschlüssel werden in jeder Runde neu vom Hauptschlüssel abgeleitet und dabei auf 48 Bit verkürzt
- Eingangs- und Abschlusspermutation
- pro Runde wird jeweils nur die linke Hälfte des Blocks mit Funktion f verschlüsselt
- Idee: aus der linken Hälfte eines Blocks wird mittels f eine Pseudozufallszahl errechnet, die als Schlüssel verwendet wird, um mittels der XOR-Funktion die rechte Hälfte zu verschlüsseln
- nur Funktion f mit kryptografischer Relevanz
- Ver- und Entschlüsselung sind symmetrisch zueinander

### Entschlüsselung

Wieso sind Verschlüsselungs- und Entschlüsselungoperation pro Runde identisch?

ullet Wir betrachten die Verschlüsselung der letzten Runde mit  ${m k}_{16}$ :

$$\mathsf{m} = \boxed{\boldsymbol{L}_{15} | \boldsymbol{R}_{15}} \quad \Rightarrow \quad \mathsf{c} = \boxed{\boldsymbol{L}_{16} | \boldsymbol{R}_{16}}$$

genauer:  $oldsymbol{L}_{16} = oldsymbol{R}_{15}$  und  $oldsymbol{R}_{16} = oldsymbol{L}_{15} \oplus oldsymbol{f}(oldsymbol{R}_{15}, oldsymbol{k}_{16})$ 

• Entschlüsseln durch erneutes Verschlüsseln mit  $k_{16}$ :

$$c = \boxed{\textbf{\textit{L}}_{16} | \textbf{\textit{R}}_{16}} \quad \Rightarrow \quad \text{m'} = \boxed{\textbf{\textit{L}}_{15}' | \textbf{\textit{R}}_{15}'}$$

- (1) Wir setzen  $\boldsymbol{a} = \boldsymbol{L}_{16}, \boldsymbol{b} = \boldsymbol{R}_{16}$
- (2)  $R'_{15} = a = L_{16} = R_{15}$
- (3)  $\mathbf{L}'_{15} = \mathbf{b} \oplus \mathbf{f}(\mathbf{a}, \mathbf{k}_{16}) = \mathbf{R}_{16} \oplus \mathbf{f}(\mathbf{R}_{15}, \mathbf{k}_{16})$ =  $[\mathbf{L}_{15} \oplus \mathbf{f}(\mathbf{R}_{15}, \mathbf{k}_{16})] \oplus \mathbf{f}(\mathbf{R}_{15}, \mathbf{k}_{16}) = \mathbf{L}_{15}$

### Funktion **f**

- **f** realisiert Konfusion (mittels Substitution) und Diffusion (mittels Permutation):
  - indert sich ein Eingangsbit, dann ändern sich ca. die Hälfte der Ausgangsbits
  - indert sich ein Schlüsselbit, dann ändern sich viele Ausgangsbits
- Eingabe: 32 Bit Daten  $(m_{32})$  sowie 48 Bit Rundenschlüssel (k)
- Schritte:
  - (1)  $m_{32}$  wird mittels Expansion auf 48 Bit erweitert ( $\Rightarrow m_{48}$ )
  - (2)  $m' = m_{48} \oplus k$
  - (3) m' wird in acht Blöcke zu je 6 Bit unterteilt
  - (4) jeder 6-Bit-Block wird mittels einer individuellen S-Box  $(S_1,...,S_8)$  zu einem 4-Bit-Block substitutiert
  - (5) die resultierenden acht Blöcke werden zu einem 32-Bit-Block zusammengefasst und die Bits abschließend noch einmal permutiert

# Expansion

Eingabe:  $m_{32}$ Ausgabe:  $m_{48}$ 

| 32 | 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|----|
| 4  | 5  | 6  | 7  | 8  | 9  |
| 8  | 9  | 10 | 11 | 12 | 13 |
| 12 | 13 | 14 | 15 | 16 | 17 |
| 16 | 17 | 18 | 19 | 20 | 21 |
| 20 | 21 | 22 | 23 | 24 | 25 |
| 24 | 25 | 26 | 27 | 28 | 29 |
| 28 | 29 | 30 | 31 | 32 | 1  |

### S-Boxen

Beispiel: S-Box S<sub>1</sub>

| $S_1$ | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 0     | 14 | 04 | 13 | 01 | 02 | 15 | 11 | 08 | 03 | 10 | 06 | 12 | 05 | 09 | 00 | 07 |
| 1     | 00 | 15 | 07 | 04 | 14 | 02 | 13 | 01 | 10 | 06 | 12 | 11 | 09 | 05 | 03 | 80 |
| 2     | 04 | 01 | 14 | 08 | 13 | 06 | 02 | 11 | 15 | 12 | 09 | 07 | 03 | 10 | 05 | 00 |
| 3     | 15 | 12 | 08 | 02 | 04 | 09 | 01 | 07 | 05 | 11 | 03 | 14 | 10 | 00 | 06 | 13 |

(Die weiteren S-Boxen finden Sie z. B. in [PP2016])

### Substitution

- Beispiel: Eingabe 52  $\Rightarrow$  1 | 1 | 0 | 1 | 0 | 0
- das erste und das letzte Bit (1; 0) bestimmen die Zeile  $\Rightarrow$  Zeile 2
- die Bits dazwischen (1; 0; 1; 0) die Spalte ⇒ Spalte 10
- nach S-Box  $S_1$  ist die Ausgabe:  $09 = 1001_2$

DES

# DES (Forts.)

## S-Boxen (Forts.)

- die S-Boxen sind sehr sorgfältig festgelegt und garantieren die Sicherheit des DFS
- sie implementieren eine nicht-lineare Funktion, d. h. es gilt:

$$S(a) \oplus S(b) \neq S(a \oplus b)$$

- ⇒ ein Zusammenhang zwischen Eingang und Ausgang lässt sich nicht mittels eines linearen Gleichungssystems beschreiben!
- darüberhinaus bieten sie Schutz gegen die sog. differenzielle Kryptoanalyse\*

<sup>\*</sup>chosen plaintext attack auf rundenbasierte Blockchiffren (Biham, Shamir 1991): Wie wirken sich Differenzen im Klartext auf den Chiffretext aus?

### Besondere Eigenschaften

 Wenn wir von K und m das bitweise Komplement bilden, ergibt sich auch das Komplement des Chiffretextes:

$$\overline{\mathit{DES}_{\mathit{K}}(\mathit{m})} = \mathit{DES}_{\overline{\mathit{K}}}(\overline{\mathit{m}})$$

- Es existieren vier schwache Schlüssel, die man nicht verwenden sollte:
  - $K_1 = (0...0 \ 0...0)$
  - $K_2 = (0...01...1)$
  - $K_3 = (1...1 \ 0...0)$
  - $K_4 = (1...1 \ 1...1)$
  - Further für diese vier Schlüssel gilt:  $DES_K(m) = DES_K^{-1}(m) \ \forall m$

## Mehrfachverschlüsselungen

### Sicherheit

- keine Verbesserung bei vielen Verschlüsselungsalgorithmen
  - ⇒ Beispiel: Verschiebe-Chiffre

### Mehrfachverschlüsselung beim DES

- Zweifachverschlüsselung mit unterschiedlichen Schlüsseln
  - Angreifer muss zwei DES-Schlüssel  $K_1$  und  $K_2$  erraten  $\Rightarrow$  effektive Schlüssellänge  $= 2 \cdot 56 = 112$  Bit
  - Meet-in-the-middle Angriff vereinfacht den Angriff, wenn ein Klartext *m* und der Chiffretext *c* bekannt sind
    - Angreifer verschlüsselt m mit allen  $2^{56}$  möglichen Schlüsseln  $K_1 \implies$  Menge X
    - $\star$  Angreifer entschlüsselt c mit allen  $2^{56}$  möglichen Schlüsseln  $K_2 \Rightarrow$  Menge Y
    - \* Angreifer sucht Übereinstimmung in **X** und **Y** 
      - $\Rightarrow$  Gesamtaufwand =  $2^{56} + 2^{56}$
    - ⇒ keine signifikante Erhöhung des Sicherheitsniveaus!

## **DES-Variante**

## Tripple DES (3DES, TDES)



#### Vorteile:

#### Entschlüsselung

- Schlüssellänge 168 Bit, effektiv 112 Bit (wegen möglichem Meet-in-the-middle Angriff)
- einfache Realisierung, bewährter Algorithmus
- kompatibel zu DES, falls K = K' = K''

#### Nachteile:

- dreifache Verschlüsselungszeit
  - nur 64 Bit Blocklänge ⇒ gilt seit 2016 als unsicher¹

 $<sup>^{\</sup>rm 1}$  K. Bhargavan, G. Leurent: On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. ACM CCS 2016 - 23rd, pp.456-467

# AES (Advanced Encryption Standard)

#### Wissenswertes

- nach Ausschreibung des NIST seit dem Jahr 2002 (US-)Standard
- in den USA zugelassen für Regierungskommunikation bis hin zu vertraulichen Dokumenten der Sicherheitsstufe TOP SECRET
- 128, 192, 256 Bit Schlüssellängen aber nur 128 Bit Blocklänge
- identisch zum Rijndael-Algorithmus (Joan Daemen und Vincent Rijmen 1998)
  - effizient in Hardware und Software implementierbar
  - 128, 192, 256 Bit Schlüssel- und Blocklängen
  - potienziell erweiterbar auf 32 · x Bits

### Weitere finale Kandidaten damals

- MARS (IBM)
- RC6 (RSA)
- Serpent (Anderson et. al.)
- Twofish (Schneier et. al.)

#### Interne Struktur

- je nach Schlüssellänge 10, 12 bzw. 14 interne Runden
- Rundenschlüssel werden mittels Transformation aus Hauptschlüssel abgeleitet
- jede Runde setzt sich aus mehreren Schichten (Layers) zusammen
  - Key Addition Layer:
     bitweise XOR Verknüpfung des 128 Bit Rundenschlüssels mit den 128 Bit Rundendaten
  - Byte Substitution Layer:
    nichtlineare Transformation der Rundendaten mittels S-Boxen
  - Diffusion Layer:
     byteweise Permutation der Daten (ShiftRows) und Matrixmultiplikation (MixColumn)
- Details finden sich z. B. in [PP2016]

#### Schematischer Aufbau einer AES-Runde



` .

56 / 118

## Verschlüsselungsbetriebsarten für Blockchiffren

### ECB: Electronic Code Book



### Chiffretext

- Vorteile:
   Fehlertoleranz bei verrauschtem Kanal, mögliche Parallelität
- Nachteile: viele Angriffsmöglichkeiten, insb. kein Schutz der Integrität, Strukturen im Klartext bleiben erhalten (insb. bei Bildern)

### Probleme mit ECB:







- (a) Original
- (b) CBC-AES-Verschlüsselung
- (c) ECB-AES-Verschlüsselung (Quelle: http://heise.de/-3221002)

## **CBC: Cipher Block Chaining**



#### Chiffretext

- Vorteil: bessere Sicherheit als ECB
- Nachteile: schlechte Fehlertoleranz, keine parallele Verschlüsselung, Denial-of-Service- und Padding-Attacken
- Alternativen: Cipher Feed Back (CFB), Output Feed Back (OFB)

#### CTR: Counter Mode

Der Chiffretextblock  $c_i$  berechnet sich aus dem Klartextblock  $m_i$ 

- ullet mit Hilfe des zufällig gewählten Initialisierungsvektors  $oldsymbol{IV}$  (  $\Rightarrow$  nonce),
- eines wechselnden Counter-Werts (z. B. inkrementelle Integer-Zahlen) und
- ullet der Verschlüsselungsfunktion  $oldsymbol{e}$  (z.B. AES) mit Schlüssel  $oldsymbol{k}$

zu:

$$c_i = m_i \oplus e_k(IV \circ ctr_i)$$
 (o ist die Konkatenation)

- Beispiel AES-128: IV der Länge 96 Bit, ctr der Länge 32 Bit
- Vorteile:
   hohe Sicherheit (bei guter Chiffre), parallele Ver- / Entschlüsselung
   ⇒ schnell, wahlfreier Blockzugriff, Fehlertoleranz bei Bitfehlern
- Nachteile: kein Schutz der Integrität, einige Counter-Funktionen weniger sicher, XOR-Wiederholungsproblematik, IV darf nicht wiederverwendet werden

### GCM: Galois Counter Mode

- authentisierte Verschlüsselung
  - $\Rightarrow$  berechnet  $c_i$  im CTR-Modus und zusätzlich MAC
- Verschlüsselung:

$$c_i = e_k(ctr_i) \oplus m_i \quad \forall i \geq 1$$
  
 $ctr_0$  wird aus  $IV$  und einer Seriennummer abgeleitet;  $ctr_i = ctr_{i-1} + 1$ 

- MAC (Message Authentication Code): kryptografische Prüfsumme
  - unter Verwendung von **AAD** (Additional Authenticated Data)
  - Algorithmus: (alle Multiplikationen finden mod P(x) im endlichen Körper  $GF(2^{128})$  mit  $P(x) = x^{128} + x^7 + x^2 + x + 1$  statt)
    - (1)  $\mathbf{H} = \mathbf{e}_{k}(0)$
    - (2)  $\mathbf{g}_0 = \mathbf{A}\mathbf{A}\mathbf{D} \cdot \mathbf{H}$
    - (3)  $\mathbf{g}_{i} = (\mathbf{g}_{i-1} \oplus \mathbf{c}_{i}) \cdot \mathbf{H} \quad \forall i \in \{1, ..., n\}$
    - (4)  $MAC = (g_n \cdot H) \oplus e_k(ctr_0)$

Frage: Wie wird die Nachricht beim Empfänger geprüft?

# Rechnen im endlichen Erweiterungskörper $GF(2^m)$

## Irreduzibles Polynom

- Ein Polynom P(x) heißt irreduzibel (oder auch prim), falls es sich nicht als Produkt (in GF(2)) zweier anderer Polynome darstellen lässt
   ⇒ vgl. Generatorpolynom beim CRC
- Beispiel:  $x^4 + x^3 + x + 1 = (x^2 + x + 1)(x^2 + 1)$  ist nicht irreduzibel

## Multiplikation in $GF(2^m)$

- Sei P(x) ein irreduzibles Polynom
- $a(x) \cdot b(x) \equiv r(x) \mod P(x)$   $\Rightarrow r(x)$  ist der Rest, der entsteht, wenn wir das Produkt a(x)b(x) durch P(x) teilen (in GF(2))
- Beispiel: (mit Bit-Strings)  $a(x) = x^3 + x^2 + 1 = 1101 = a$ ,  $b(x) = x^2 + x = 110 = b$ ,  $P(x) = x^4 + x + 1 = 10011 = P$  $\Rightarrow ab = 101110$ ;  $ab \mod P \equiv 1000 = r \Rightarrow a(x) \cdot b(x) \equiv x^3$

### Das Schlüsseltausch-Problem

## Problem bei symmetrischer Verschlüsselung



Frage: Wie erfährt Bob den Schlüssel K zum Dechiffrieren?

## Das Schlüsseltausch-Problem (Forts.)

## Idee (?)

- Übertragung über anderen, "sicheren" Kanal
- Welcher Kanal ist sicher? Was bedeutet hier "sicher"?
  - ⇒ I.Allg. umständlich, nicht praktikabel!

### Eleganter

- Wir nutzen den (unsicheren) Nachrichtenkanal.
- Problem:

Der Schlüssel darf nicht im Klartext übertragen werden!



Frage: Kann man den Schlüssel nicht verschlüsseln?

# Das Schlüsseltausch-Problem (Forts.)

### Idee: Schlüssel wird gemeinsam konstruiert

- A und B überlegen sich eine geheime Zahl.
- Aus dieser Zahl berechnete Werte werden dem anderen mitgeteilt.
- Aus den geheimen und bekanntgegebenen Werten wird der Schlüssel berechnet.

### Protokollentwurf

- A und B kennen beide eine Zahl s und eine Funktion F().
- A wählt a, berechnet F(a, s), sendet F(a, s) an B. B wählt b, berechnet F(b, s), sendet F(b, s) an A.
- A berechnet K = F(a, F(b)), B berechnet K = F(b, F(a)).

### Frage: Welche Eigenschaften muss F() haben?

# Das Schlüsseltausch-Problem (Forts.)

## Zur Funktion *F*()

- Angriff:
  - Angreifer M belauscht F(a, s) und F(b, s).
  - M kennt F() und s (wurden öffentlich bekanntgemacht).
  - M berechnet  $K = F(F(a,s), F^{-1}(F(b,s),s))$ .
- Abwehr des Angriffs:
  - $\triangleright$  Wähle eine Funktion F(), für die gilt:
    - F() ist rechentechnisch einfach zu berechnen, jedoch  $F^{-1}()$  nicht.  $\Rightarrow F()$  heißt *Einwegfunktion*.
  - Problem: Finde eine Einwegfunktion!

### Diffie-Hellman Schlüsseltausch

## DHKE (Diffie/Hellman Key Exchange). W. Diffie, M. Hellman (1976)





Diskreter Logarithmus:

 $s^a \mod p \Rightarrow a = ???$ 

## Diffie-Hellman Schlüsseltausch (Forts.)

## Besondere Eigenschaft der Zahl s

- ullet damit prinzipiell alle möglichen Schlüssel  $oldsymbol{K}$  generiert werden können, muss  $oldsymbol{s}$  als Primitivwurzel von  $oldsymbol{p}$  gewählt werden
- diese Eigenschaft garantiert, dass s ein sog. Erzeuger ist, d. h.  $s^k$  mod p mit  $k \in \{0,1,...p-1\}$  erzeugt die Zahlenfolge mit allen Zahlen von 1 bis p-1 in beliebiger Reihenfolge
- $oldsymbol{\circ}$  falls  $oldsymbol{s}$  keine Primitivwurzel von  $oldsymbol{p}$  ist, ist es für einen Angreifer leichter, den Schlüssel zu bestimmen

#### Primitivwurzel

- Sei {PW} die Menge aller Primitivwurzeln von p
- es gibt arphi(arphi(m p)) Primitivwurzeln von m p, d. h.  $|\{m PW\}|=arphi(arphi(m p))$  [Buch:2016]
- ullet falls  $oldsymbol{p}$  prim ist, ist daher  $|\{oldsymbol{PW}\}|=arphi(oldsymbol{p}-1)$
- Beispiel: p = 7
   |{PW}| = φ(6) = 2, denn nur die Zahlen 1 und 5 sind teilerfremd zu 6
   ⇒ es gibt 2 Primitivwurzeln von 7 (aber welche?)

# Diffie-Hellman Schlüsseltausch (Forts.)

### Test, ob eine Zahl s eine Primitivwurzel von p ist

- Variante 1: Brute-Force
  - (1) x := 1; n := 1
  - (2) berechne  $x := x \cdot s \mod p$ ; n := n + 1
  - (3) falls  $x \neq 1 \Rightarrow \text{zurück zu}$  (2)
  - (4) falls  $n = p \implies s$  ist Primitivwurzel von p
  - ⇒ leider für große Zahlen sehr aufwändig!
- Variante 2, falls  $\mathbf{p} = 2\mathbf{q} + 1$  mit  $\mathbf{p}, \mathbf{q}$  prim
  - es gilt  $|\{PW\}| = \varphi(p-1) = \varphi(2q) = \varphi(q) = q-1$
  - $m{p}$  falls  $m{s}^2 \equiv 1 mod m{p}$  oder  $m{s}^{m{q}} \equiv 1 mod m{p} \ \Rightarrow m{s}$  ist **keine** Primitivwurzel von  $m{p}$
  - $\triangleright$  anderenfalls ist s eine Primitivwurzel von p [Ecke:2018]

### Beispiel

- Zeigen Sie nach beiden Varianten, dass 3 eine Primitivwurzel von 7 ist
- Zeigen Sie nach beiden Varianten, dass 2 keine Primitivwurzel von 7 ist

# Middle-Person Attacke (Man-in-the-Middle Attacke)

## Möglicher Angriff



### M hat folgende Möglichkeiten:

- Blockieren der Kommunikation
- Abhören der Kommunikation
- Verändern von Nachrichten

# Middle-Person Attacke (Forts.)

### Abwehrversuch

- Beobachtung:
  - a ist geheim
  - $\alpha$  ist (potenziell) öffentlich bekannt
- Idee:
  - $\alpha$ ,  $\beta$ , ... in öffentlichem Schlüsselverzeichnis hinterlegen

## Weiterhin mögliche Angriffe von M

- Veränderung der Verzeichniseinträge des Schlüsselverzeichnisses
- Angriff auf den Kommunikationsweg zum Schlüsselverzeichnis

### Was ist DHE?

- Ephemeral Diffie-Hellman: die Parameter **a** und **b** werden jeweils neu und zufällig gewählt
- dies ermöglicht die sogenannte Forward Secrecy

## Asymmetrische Verschlüsselung

### Prinzip: Schlüsselpaare



#### Schlüsselpaar von X:

 $\mathsf{E}_{\pmb{X}} = \mathsf{encryption} \ \mathsf{key} \ \mathsf{von} \ \mathsf{X}$ 

 $D_{\textbf{X}} = decryption \text{ key von X (geheim!)}$ 

### Wichtige Public-Key Verfahren

- RSA (zu lösen: Primzahlprodukt-Faktorisierung)
- ElGamal (zu lösen: diskreter Logarithmus)
- Elliptische Kurven (kurz: EC)

### Das RSA-Verfahren

(RSA = Rivest, Shamir, Adleman)

## Prinzip

- $\mathbf{n} = \mathbf{p} \cdot \mathbf{q}$  mit  $\mathbf{p}$ ,  $\mathbf{q}$  Primzahl  $\mathbf{z} = \varphi(\mathbf{n}) = (\mathbf{p} 1)(\mathbf{q} 1)$
- Wähle e, so dass 1 < e < n und e relativ prim  $z \Rightarrow ggt(z, e) = 1$
- Bestimme d, so dass  $(e \cdot d) \equiv 1 \mod z$  (modulare Inverse zu e in  $\mathbb{Z}_z$ )
  - $\Rightarrow$  resultierendes Schlüsselpaar:  $\boldsymbol{E} = (\boldsymbol{e}, \boldsymbol{n})$  sowie  $\boldsymbol{D} = (\boldsymbol{d}, \boldsymbol{n})$
- Verschlüsseln von m mit E:  $m^e \equiv c \mod n$
- Entschlüsseln von c mit D:  $c^d \equiv m \mod n$

### Beobachtungen:

- Zu jedem **e** existiert genau ein **d**.
- **e** und **d** sind zueinander symmetrisch (und daher austauschbar).

## Ein Beispiel

• Gegeben sei die Abbildung zur Kodierung des Klartextes:

$$[A:Z] \longrightarrow [2:27]$$

• Belauschte Chiffretextfolge **c** von A an B:

$$c = (62; 16; 74; 45; 21)$$

- Bekannt:  $E_B = (53,77)$
- Wie lautet die Klartextfolge m?

Frage: 0 und 1 sind keine brauchbaren Kodierungen. Wieso nicht?

### Vorgehen des Angreifers

- Problem:  $\mathbf{E} = (\mathbf{e}, \mathbf{n}) = (53, 77)$  ist zu klein und leicht zerlegbar:  $\mathbf{n} = 77 = 7 \cdot 11 \implies \mathbf{z} = 60$
- Man findet:  $(53 \cdot d) \equiv 1 \mod 60 \implies d = 17$  (z. B. durch Probieren)  $\Rightarrow D = (17, 77)$
- ullet Entschlüsselung der Chiffretextfolge mit  $D \Rightarrow m \equiv c^d \mod n$

| verschlüsselt | entschlüsselt | Klartextzeichen |
|---------------|---------------|-----------------|
| 62            | 6             | Е               |
| 16            | 25            | X               |
| 74            | 2             | Α               |
| 45            | 12            | K               |
| 21            | 21            | Т               |

Frage: Wieso sollte man nicht Buchstabe für Buchstabe verschlüsseln?

## Über p, q und z

- Wenn z bekannt wird, kann die Zahl n leicht in p und q zerlegt werden.
- Beispiel:  $\mathbf{E} = (3553, 259313)$  und  $\mathbf{z} = 258048$
- Man findet:

$$\begin{array}{lll} \operatorname{aus}\left(1\right)+\left(2\right) \Rightarrow p & = & \frac{1}{2}\left(\mathbf{A}+\sqrt{\mathbf{A}^{2}-4\cdot\mathbf{n}}\right) \\ \operatorname{aus}\left(1\right)-\left(2\right) \Rightarrow q & = & \frac{1}{2}\left(\mathbf{A}-\sqrt{\mathbf{A}^{2}-4\cdot\mathbf{n}}\right) \\ \operatorname{mit} & \mathbf{A} & = & \mathbf{n}-\mathbf{z}+1. \end{array}$$

$$\Rightarrow$$
 A = 1265;  $\boldsymbol{p} = 1009 \text{ und } \boldsymbol{q} = 257$ 

### Euklidischer Algorithmus

• berechnet den **ggt** zweier ganzer Zahlen:

$$ggt(\mathbf{r}_0,\mathbf{r}_1) = ggt(\mathbf{r}_1,\mathbf{r}_0 \bmod \mathbf{r}_1)$$

- durch rekursive Anwendung erhält man  $ggt(\mathbf{r}_0, \mathbf{r}_1) = ggt(\mathbf{x}, 0) \Rightarrow \mathbf{x}$  ist der gesuchte Wert
- Beispiel:

$$ggt(973,301) = ggt(301,70) = ggt(70,21) = ggt(21,7) = ggt(7,0)$$

### Erweiterter Euklidischer Algorithmus

 berechnet neben dem ggt eine Zerlegung, so dass dieser als Linearkombination der Ausgangswerte dargestellt wird:

$$ggt(\mathbf{r}_0,\mathbf{r}_1) = \mathbf{s} \cdot \mathbf{r}_0 + \mathbf{t} \cdot \mathbf{r}_1$$

- wichtige Anwendung: Berechnung der modularen Inversen (Erinnerung: diese existiert nur dann, wenn  $ggt(\mathbf{r}_0, \mathbf{r}_1) = 1$ )
- Beispiel:  $r_0 = 258048 = z$ ;  $r_1 = 3553 = e$  (s. nächste Folie)

## Berechnen von d mit dem Erweiterten Euklidischen Algorithmus

Wir erhalten die folgenden Zerlegungen in Linearkombinationen:

 $\Rightarrow D = (5665, 259313)$ 

### Das RSA-Verfahren: Rechentechnik

### Schema für den Erweiterten Euklidischen Algorithmus

| Z                | mod e                    | $= r_0$ | Z              | div e                         | $= x_0$ |
|------------------|--------------------------|---------|----------------|-------------------------------|---------|
| е                | $\operatorname{mod} r_0$ | $= r_1$ | е              | $\operatorname{div} r_0$      | $= x_1$ |
| r <sub>0</sub>   | $mod\ r_1$               | $= r_2$ | r <sub>0</sub> | $\operatorname{div} r_1$      | $= x_2$ |
|                  |                          |         | • • •          |                               |         |
| r <sub>t-2</sub> | $\mod r_{t-1}$           | = 1     | $r_{t-2}$      | $\operatorname{div}  r_{t-1}$ | $= x_t$ |

Nun gilt folgende Rekursionsformel:

$$m{A_k} = m{A_{k+2}} - m{x_k} \cdot m{A_{k+1}}; \qquad m{k} = m{t}, \dots, 0$$
 mit der Verankerung  $m{A_{t+2}} = 0; \quad m{A_{t+1}} = 1$ 

Daraus resultiert der gesuchte Wert d mit  $d = A_0$ 

$$\Rightarrow$$
 Berechnen Sie zur Übung:  $z = 60, e = 53$ 

# Das RSA-Verfahren: Rechentechnik (Forts.)

#### Berechnen von $m^e \mod n$

- Problem: wir rechnen mit extrem großen Zahlen (i. Allg. ≥ 600 Dezimalstellen)!
- Lösung: Ägyptisches Potenzieren (auch: Square-and-Multiply)
- Schema:

| Exponent              | Faktor                                                                    | relevant?                         |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------|
| $e_1 = e$             | $m_1 = m$                                                                 | falls $oldsymbol{e}_1$ ungerade   |
| $e_2 = e_1  div  2$   | $\emph{\textbf{m}}_2=(\emph{\textbf{m}}_1)^2 \; mod \; \emph{\textbf{n}}$ | falls $\boldsymbol{e}_2$ ungerade |
| $e_3 = e_2 \ div \ 2$ | $\mathbf{m}_3 = (\mathbf{m}_2)^2 \bmod \mathbf{n}$                        | falls <b>e</b> 3 ungerade         |
| • • •                 | • • •                                                                     |                                   |
| 1                     | $\mathbf{m}_{\ell} = (\mathbf{m}_{\ell-1})^2 \mod \mathbf{n}$             | ja                                |

Ergebnis durch Aufmultiplizieren nur der relevanten Faktoren  $m_k \ (\Rightarrow T_i)$ :

$$\textit{\textbf{E}}(\textit{\textbf{m}}) = \prod_{\textit{\textbf{i}}} \textit{\textbf{T}}_{\textit{\textbf{i}}} \bmod \textit{\textbf{n}}$$

• Vorteil: logarithmische Komplexität der Berechnung

# Das RSA-Verfahren: Rechentechnik (Forts.)

### Beispiel:

- Aufgabe: Berechnen von 62<sup>17</sup> mod 77
- Lösung:

| Exponent | Faktor | relevant?           |
|----------|--------|---------------------|
| 17       | 62     | • (T <sub>1</sub> ) |
| 8        | -6     |                     |
| 4        | 36     |                     |
| 2        | -13    |                     |
| 1        | 15     | • (T <sub>2</sub> ) |

$$\Rightarrow$$
 62<sup>17</sup> mod 77 = 62 · 15 mod 77 = 6

### Primzahlen

#### Primzahlen

- p und q müssen große Primzahlen (ca. n/2) sein und zufällig gewählt werden
   p und q sollten annähernd die gleiche Länge besitzen
- es gibt unendlich viele Primzahlen (Beweis durch Euklid)
- aber sie werden seltener, je größer die Zahlen werden
- für eine zufällig gewählte ungerade Zahl x gilt:

$$Prob(x \text{ ist prim}) \approx \frac{2}{\ln(x)}$$

- nach der Wahl muss x unbedingt auf die Prim-Eigenschaft getestet werden;
   falls x nicht prim ist, muss ein neues x zufällig gewählt werden
  - ⇒ eine systematische Konstruktion von Primzahlen könnte nachvollzogen werden und ist daher potenziell unsicher
- starke Primzahlen
  - liegen nicht zu dicht beieinander
  - by die Zahlen x-1 und x+1 müssen große Primfaktoren besitzen

#### Faktorisierung

• Zerlegen einer Zahl x in ihre Primfaktoren Beispiel:  $208568 = 2^3 \cdot 29^2 \cdot 31$ 

#### Faktorisierung: Teilermethode

- Teste alle (Prim-)Zahlen kleiner oder gleich  $\sqrt{x}$ , ob sie x ohne Rest teilen
- für große x müssen alle ungerade Zahlen getestet werden, da für große Zahlen i. Allg. nicht bekannt ist, ob sie prim sind
   ⇒ zu aufwändig bei großen x!

### Einige weitere Faktorisierungsmethoden

- GNFS (General Number Field Sieve)
   schnellste bekannte Methode für Zahlen größer als 10<sup>110</sup>
- Quadratisches Zahlenfeldsieb schnellste bekannte Methode für Zahlen kleiner als 10<sup>110</sup>
- Pollards Rho Algorithmus probabilistische Methode

### Faktorisierung: Idee des Quadratischen Zahlenfeldsiebs

- Gesucht: Teiler von x
- Finde zwei natürliche Zahlen a und b, für die gilt:

$$a^2 \equiv b^2 \mod x$$

$$a^2 - b^2 \equiv 0 \mod x$$

$$(\boldsymbol{a} + \boldsymbol{b})(\boldsymbol{a} - \boldsymbol{b}) \equiv 0 \mod x$$

also sind (a + b) und (a - b) Teiler von x (oder Vielfache eines Teilers)

• ein einfaches Beispiel:

$$x = 35$$

$$35 + 1$$
 ist eine Quadratzahl  $\Rightarrow$  wähle  $\mathbf{a} = 6$  und  $\mathbf{b} = 1$ 

es gilt: 
$$6^2 - 1^2 = 35 \equiv 0 \mod 35$$

$$\Rightarrow$$
 6 - 1 = 5 sowie 6 + 1 = 7 sind Teiler von 35

• weitere Beispiele zum Ausprobieren: x = 45, x = 407

#### Primzahltests

- eine Tabelle mit allen Primzahlen zu erstellen, ist nicht praktikabel
  - Primzahlsatz: es gibt ca.  $\frac{x}{\ln(x)}$  Primzahlen kleiner als x $\Rightarrow$  für  $x = 2^{2048}$  gibt es mehr als  $10^{600}$  Primzahlen!
- ein Test, ob eine Zahl prim ist, ist viel effizienter als die Faktorisierung
- deterministische Tests
  - existieren (z.B. AKS-Primzahltest), aber mit schlechtem Laufzeitverhalten
- meistens werden probabilistische Tests eingesetzt

#### Probabilistischer Test nach dem kleinen Fermatschen Satz

- kann *nicht sicher* entscheiden, ob die getestete Zahl x prim ist
  - IN: x (zufällig gewählte ungerade Zahl) und s (Sicherheitsparameter)
    - (1) wähle eine zufällige Zahl  $a \in \{2, 3, ..., x 2\}$
    - (2) falls  $a^{x-1} \not\equiv 1 \mod x \implies \text{OUT}$ : x ist nicht prim, ENDE
    - (3) durchlaufe Schleife zu (1) s-mal
    - OUT: x ist wahrscheinlich prim, ENDE

#### Probabilistischer Test nach Miller-Rabin

```
(vgl. [PP2016], S. 218)
```

- höhere Sicherheit als der Test nach Fermat
  - N: x (zu testende Zahl) und a (zufällig gewählte ungerade Zahl mit  $a \in \{1, ..., x-1\}$ )
  - OUT: x ist wahrscheinlich prim oder x ist nicht prim
- Laufzeitverhalten  $O(\log \frac{1}{\epsilon} \cdot (\log x)^3)$  ( $\epsilon$  ist die Fehlerwahrscheinlichkeit)  $\Rightarrow$  ca. 100 sec. für 100-stellige Dezimalzahl bei  $\epsilon = 10^{-100}$  und  $10^6$  Op/sec

### Praktische Implementierung von Primzahltests

- häufig gewähltes Vorgehen
  - (1) erzeuge einen zufälligen Bit-String x der Länge n
  - (2) setze des erste und das letze Bit von x auf 1
  - (3) prüfe, dass x keine Teiler kleiner als 256 besitzt
  - (4) durchlaufe den Miller-Rabin-Test mit  $s \geq 5$  unterschiedlichen, zufällig gewählten Zahlen a (Fehlerwahrscheinlichkeit  $\epsilon \leq (\frac{1}{4})^s$ )
  - (5) falls alle Tests erfolgreich waren, ist x (vermutlich) eine Primzahl

### Sicherheit von RSA

### Schlüssellängen

- Im Jahr 2005 wurde RSA-664 faktorisiert (Uni Bonn. 170 Pentium-1-GHz-Jahre, GNFS).
- Im Dezember 2009 wurde RSA-768 faktorisiert (Lausanne, Tokio, Bonn, Nancy, Redmond, Amsterdam.
   2.5 Jahre; mehrere hundert Rechner, ca. 1500 AMD64-Jahre)
- Im Jahr 2019 wurde RSA-795 faktorisiert (Internationales Team, 900 CPU-Kern-Jahre auf 2.1 GHz Xeon Gold)
- äquivalente Sicherheitsniveaus (nach heutigem Wissen):

```
1024 Bit (RSA)  

  80 Bit (symm.)
2048 Bit (RSA)  

  112 Bit (symm.)
3072 Bit (RSA)  

  128 Bit (symm.)
7680 Bit (RSA)  

  192 Bit (symm.)
15360 Bit (RSA)  

  256 Bit (symm.)
```

• seit 2014 empfohlene Mindestschlüssellänge (nach BSI): 2048 Bit

# Sicherheit von RSA (Forts.)

### Eine gute Idee?

- Wir erstellen eine Lookup-Tabelle mit vorberechneten Faktorisierungen für alle möglichen Zahlen  $n=p\cdot q$
- Beobachtung: das Erstellen dauert SEHR lange ...
- Wie groß wird die Tabelle?

#### Grobe Abschätzung für RSA-665:

- es gibt 10<sup>200</sup> Zahlen der Bitlänge 665
- um  $10^{200} \cdot 665$  Bit zu speichern, brauchen wir ca.  $10^{190}$  Festplatten der Größe  $1~\mathrm{TB}$
- wenn jede Festplatte nur  $10^{-6}$  Gramm (!) leicht wäre, wären es  $7.7 \cdot 10^{178}$  Tonnen
- ⇒ Problem: Wir haben ein schwarzes Loch!!!

# Sicherheit von RSA (Forts.)

## Geschwindigkeit

- für eine Verschlüsselung mit RSA-2048 benötigt man mehrere Millionen Integer-Multiplikationen (ca. 10 ms pro Verschlüsselung)
  - ⇒ RSA nicht für große Datenmengen einsetzen!

    (Verschlüsselungsrate ca. 2 Mbps, AES ist ungefähr 1000 mal schneller!)

#### Sicherheit

- $m{\circ}$   $m{p}$  und  $m{q}$  sollten starke Primzahlen von ausreichender Größe sein
- keine zwei Teilnehmer sollten dasselbe n besitzen
- e und d dürfen nicht zu klein gewählt werden ( $d > \frac{1}{3}n^{\frac{1}{4}}$ ; Satz von Wiener)
- Nachrichtenblöcke m sollten weniger Stellen als n haben und mit zufälligen Bits aufgefüllt werden (vgl. Optimal Asymmetric Encryption Padding)
- falls ein implementierbarer, effizienter Faktorisierungsalgorithmus gefunden werden sollte, ist RSA gebrochen
- falls ein funktionierender Quantencomputer entwickelt werden sollte, ist RSA gebrochen

## Elliptische Kurven

#### Idee

Kreisgleichung (Kreis mit Radius r):

$$x^2 + y^2 = r^2$$
, mit  $x, y, r \in \mathbb{R}$   
 $x^2 + y^2 = 4$ 

• Ellipsengleichung (Breite= $\sqrt{\frac{1}{a}}$ ; Höhe= $\sqrt{\frac{1}{b}}$ );  $ax^2 + by^2 = 1, \quad \text{mit } x, y, a, b, c \in \mathbb{R}$ 



### Elliptische Kurve

• die Punkte einer *elliptische Kurve* werden über einem Primkörper  $\mathbb{Z}_{\pmb{p}}$  definiert:

$$\mathbf{y}^2 \equiv \mathbf{x}^3 + \mathbf{a} \cdot \mathbf{x} + \mathbf{b} \mod \mathbf{p}$$
 mit  $\mathbf{x}, \mathbf{y}, \mathbf{a}, \mathbf{b} \in \mathbb{Z}_{\mathbf{p}}$   
und  $4 \cdot \mathbf{a}^3 + 27 \cdot \mathbf{b}^2 \not\equiv 0 \mod \mathbf{p}$ 

- nur diejenigen Punkte P(x, y), welche diese Gleichung erfüllen, gehören zur elliptischen Kurve
- zusätzlich wird ein Punkt O als neutrales Element definiert:

$$P + \mathcal{O} = P$$

## Beispiel: a = 2, b = 2, p = 17

- $\Rightarrow$  elliptische Kurvengleichung:  $\mathbf{y}^2 \equiv \mathbf{x}^3 + 2 \cdot \mathbf{x} + 2 \mod 17$ 
  - ullet eine grafische Darstellung in  $\mathbb{Z}_{m{p}}$  ist nicht hilfreich
  - grafische Darstellung von  $\mathbf{y}^2 = \mathbf{x}^3 + 2 \cdot \mathbf{x} + 2$  über  $\mathbb{R}$



## Definition der Rechenoperationen

Punktaddition



Punktverdoppelung



## Rechenoperationen auf elliptischen Kurven [PP2016]

• Punktaddition: 
$$Z(x_3, y_3) = P(x_1, y_1) + Q(x_2, y_2), \quad P, Q \neq \mathcal{O}$$
falls  $P \neq Q$ :
falls  $x_1 = x_2 \Rightarrow Z = \mathcal{O}$ 
falls  $x_1 \neq x_2$ :
$$s \equiv (y_2 - y_1) \cdot (x_2 - x_1)^{-1} \mod p$$

$$x_3 \equiv s^2 - x_1 - x_2 \mod p$$

$$y_3 \equiv s \cdot (x_1 - x_3) - y_1 \mod p$$
falls  $P = Q$ :
 $p = Q$ :
falls  $p = Q$ :
 $p = Q$ :
falls  $p = Q$ :
 $p = Q$ :
falls  $p = Q$ :
 $p = Q$ :
falls  $p = Q$ :
 $p = Q$ :
falls  $p = Q$ :
falls

## Beispiel

- Gegeben P = (5,1) mit  $y^2 \equiv x^3 + 2 \cdot x + 2 \mod 17$
- Rechnung für Z = 2P:

⇒ 
$$s \equiv (3 \cdot 5^2 + 2) \cdot (2 \cdot 1)^{-1} \mod 17 = 77 \cdot 2^{-1} \equiv 9 \cdot 9 \equiv 13 \mod 17$$
  
 $x_3 \equiv 13^2 - 2 \cdot 5 \mod 17 = 159 \equiv 6 \mod 17$   
 $y_3 \equiv 13 \cdot (5 - 6) - 1 \mod 17 = -14 \equiv 3 \mod 17$   
⇒  $2P = (6,3)$ 

Pochnung für **7** — **D** + 2**D** — 2**D** 

• Rechnung für 
$$\mathbf{Z} = \mathbf{P} + 2\mathbf{P} = 3\mathbf{P}$$
:  
 $\Rightarrow \mathbf{s} \equiv (3-1) \cdot (6-5)^{-1} \mod 17 = 2 \cdot 1^{-1} \equiv 2 \cdot 1 \equiv 2 \mod 17$   
 $\mathbf{x}_3 \equiv 2^2 - 5 - 6 \mod 17 = -7 \equiv 10 \mod 17$   
 $\mathbf{y}_3 \equiv 2 \cdot (5-10) - 1 \mod 17 = -11 \equiv 6 \mod 17$   
 $\Rightarrow 3\mathbf{P} = (10, 6)$ 

• Berechnen Sie 4**P** mittels 2(2P) und 3P + P sowie 5P, ..., 21P

# DHKE mit elliptischen Kurven (ECDH)

#### ECDH-Domain-Parameter

- Primzahl p, a, b sowie ein primitives Element PE = (x, y) bilden die Domain-Parameter zur Kurve  $y^2 = x^3 + ax + b \mod p$
- Vorsicht: nicht alle Kurven sind kryptografisch stark!

#### ECDH-Schlüsseltausch

Gegeben: Domain-Parameter der EC, **n** = Anzahl der Gruppenelemente

- Alice:
  - (1) wähle ein zufälliges  $d_A \in \{2, 3, ..., n-1\}$  (ausreichend groß)
  - (2) berechne  $PA = d_A \cdot PE$
  - (3) sende PA an Bob und empfange PB von Bob
  - (4) berechne  $T_{AB} = d_A \cdot PB = (x_{AB}, y_{AB})$  als gemeinsames Geheimnis
  - (5) gemeinsamer Schlüssel  $K_{AB} = x_{AB}$  (oder  $y_{AB}$ )
- Bob:
  - analog
- **n** kann näherungsweise mit  $\mathbf{p} + 1 2\sqrt{\mathbf{p}}$  abgeschätzt werden [PP2016]

# DHKE mit elliptischen Kurven (ECDH) (Forts.)

#### Sicherheit

Angreifer muss den diskreten Logarithmus

$$d_a = log_p(PA)$$

oder

$$d_b = log_p(PB)$$

berechnen

- aufgrund der aufwändigen Berechnungen auf einer elliptischen Kurve kann mit kleineren Zahlen hantiert werden als bei DHKE
- eine Wahl der Primzahl p mit 256 Bit bietet ein derzeit ausreichendes Sicherheitsniveau von 128 Bit
- kürzere Schlüssel erlauben Implementierungen auf schwächerer Hardware
- Aber: es müssen kryptografisch starke elliptische Kurven gewählt werden!
- die zertifizierten Kurven des NIST sind durch die NSA möglicherweise manipuliert und absichtlich geschwächt (Bernstein und Schneier, 2013)
- es gibt gute Kurven akademischen Ursprungs (Ed25519, Ed448-Goldilocks, E-521)

## Gegenseitige Authentisierung

### Message Authentication Code (MAC)

- Problem: Von wem stammt eine Nachricht?
- Sei f(m, K) eine geeignete Funktion, die aus einer beliebig langen Nachricht und einem Schlüssel K einen Wert fester Länge generiert ( $\Rightarrow$  Prüfsumme) (z.B. CBC-MAC-TDES beim System "Geldkarte")



# Gegenseitige Authentisierung (Forts.)

### Authentisierungsvorgang

- Idee: A und B besitzen ein gemeinsames Geheimnis K
- jede Nachricht m von A bzw. B wird mit dem Wert MAC = f(m, K) "unterzeichnet", indem dieser Wert neben m mitgesendet wird
- falls f() hinreichend sicher ist, muss die Nachricht mit dem geheimen Schlüssel K unterzeichnet worden sein
- A kann verifizieren, dass eine empfangene Nachricht von B stammt (und umgekehrt)
- Nachricht *m* muss selbst nicht unbedingt verschlüsselt werden

#### Handschriftliche Unterschrift

## Eigenschaften einer Unterschrift unter einem Dokument

- bewusst erstellt ⇒ bewusste Willenserklärung
- fälschungssicher ⇒ authentisch
- nicht wiederverwendbar ⇒ nicht einfach in ein anderes Dokument kopierbar
- unveränderbar ⇒ sichert die Integrität des Dokuments
- nicht abstreitbar ⇒ Beweisbarkeit gegenüber Dritten

Frage: Wie lässt sich dies in die digitale Welt übertragen?

## Digitale Signatur

### Begriffe

- die Begriffe *Digitale Signatur* und *Elektronische Signatur* (bzw. *Unterschrift*) werden i. allg. Sprachgebrauch synonym verwendet
- der Begriff Qualifizierte Digitale Signatur stammt aus dem deutschen Signaturgesetz (SigG)
  - eine qualifizierte Signatur setzt u. a. eine sichere Signaturerstellungseinheit (z. B. eine Smartcard) voraus
  - zur handschriftlichen Unterschrift als gleichwertig anerkannt
- seit 2016 ist die europäische elDAS-Verordnung maßgebend
  - auch cloudbasierte Signaturen können als qualifizierte Signaturen gelten
  - vollständige Online-Identifizierung anerkannt

#### Ziele

- Nachrichtenauthentizität: Wer ist der Verfasser?
- Beweisbarkeit der Nachrichtenintegrität
- Nichtabstreitbarkeit der Autorenschaft (Non-Repudiation)

# Digitale Signatur (Forts.)

#### Idee

 Verwende ein asymmetrisches Verfahren (z. B. RSA) jedoch in seiner Umkehrung!

#### RSA-Signatur

- (1) RSA-Schlüsselpaar erzeugen
- (2) (kurze) Nachricht m signieren mittels  $s \equiv m^d \mod n$
- (3) sende (*m*, *s*)

### Verifikation einer RSA-Signatur

- (1) empfange (m', s')
- (2) öffentlichen Schlüssel des Senders ausfindig machen
- (4) falls  $m' \equiv (s')^e \mod n$ 
  - $\Rightarrow$  s' wurde mit dem privaten Schlüssel des Senders erzeugt
  - $\Rightarrow m'$  stammt vom Sender

# Digitale Signatur (Forts.)

### Angriff: existenzielle Fälschung

- (1) M wählt eine Zahl  $s \in \{0, ..., n-1\}$ M wiederholt den Schritt (1) solange bis  $m \equiv s^e \mod n$  eine sinnvolle Nachricht ist
- (2) M behauptet, s sei eine Signatur von A
- (3) die Verifikation ergibt die Nachricht *m*, die scheinbar von *A* stammt

#### **Abwehr**

- durch Vorschreiben einer speziellen Form wird der Angriff nahezu unmöglich Beispiele:
  - Duplizieren: m muss zum Signieren zweimal identisch nacheinander geschrieben werden
  - Verwendung von Padding: *m* muss eine bestimmte Struktur aufweisen (z. B. 100 Null-Bits am Ende)
- aus Sicherheitsgründen (und Geschwindigkeitsgründen) sollten nicht längere Dokumente signiert werden, sondern eine eindeutige Prüfsumme
   ( ⇒ Berechnung mittels einer kryptografischen Hashfunktion)

## Einschub: Kryptografische Hashfunktionen

#### Einfache Hashfunktionen

- Wie funktioniert Hashing?
- Wozu werden einfache Hashfunktionen eingesetzt?

### Definition einer kryptografisch sicheren Hashfunktion *H*

- IN: beliebig lange Nachricht m
- OUT: Hashwert h = H(m) fester Länge (auch: HMAC)
  - ⇒ Es muss Kollisionen geben!
  - ⇒ Sicherheit von *H* hängt maßgeblich von der Hashwertlänge ab
  - $\Rightarrow$  bei Änderung eines einzigen Bits in m sollten sich ungefähr die Hälfte der Bits in h in einer nicht vorhersagbaren Weise ändern
- Anforderungen an *H*:
  - Urbildresistenz
  - Kollisionsresistenz
  - ► **H** muss eine deterministische Funktion sein

 $\Rightarrow$  Wieso?

# Einschub: Kryptografische Hashfunktionen (Forts.)

#### Urbildresistenz

- H(m) muss einfach (also schnell) zu berechnen sein
- ullet es muss praktisch unmöglich sein, zu einem gegebenen Hashwert  $m{h}$  die ursprüngliche Nachricht  $m{m}$  zu berechnen (Umkehrung)
  - $\Rightarrow$  **H** ist eine Einwegfunktion
- Digitale Signaturen sind leicht entschlüsselbare Hashwerte
   ⇒ es könnten stark verschlüsselte Nachrichten mit Hilfe ihrer Signatur ggf.
   leichter entschlüsselt werden
- darüberhinaus muss es praktisch unmöglich sein, zu einem gegebenen Hashwert h irgendeine Nachricht m zu berechnen, die diesen Hashwert besitzt! (Zweite Urbildresistenz)

#### Kollisionsresistenz

- es muss praktisch unmöglich sein, zwei unterschiedliche Nachrichten  $m_1$  und  $m_2$  zu finden, die denselben Hashwert h besitzen  $\Rightarrow$  Kollision
- Kollisionserzeugung ist einfacher als die Berechnung einer Umkehrung
   (⇒ Geburtstagsparadox)

# Einschub: Kryptografische Hashfunktionen (Forts.)

### Einsatzgebiete

- Sicherung der Integrität von Dateien, insbesondere auch Systemdateien
   (⇒ Schutz gegen Malware / Hacker)
- Krypto-Geld
- Speichern von Passwörtern zur Überprüfung
- digitale Signatur

#### Kryptografische Hashverfahren

- alte, nicht mehr sichere Verfahren (Kollisionserzeugung zu leicht)
  - MD4, MD5 (Hashwertlänge 128 Bit)
  - SHA / SHA-1 (Secure Hash Algorithm, 160 Bit)
- moderne als sicher geltenden Verfahren
  - SHA-2 (seit 2002): SHA-256, SHA-384, SHA-512, SHA-224
  - SHA-3 (Keccak-Algorithmus, 224, 256, 384, 512 Bit)
  - Blake2 (256 bzw. 512 Bit)

# Einschub: Kryptografische Hashfunktionen (Forts.)

### Beispiel: SHA-1

- Secure Hash Algorithm, US-amerikanischer Standard, NIST / NSA 1995
- Merkle-Dåmgard Konstruktion mit Feistel-ähnlichem Aufbau
- der Eingabetext wird 256-Bit Blöcke untergliedert, vorher mittels Padding auf ein Vielfaches von 256 Bit verlängert ⇒ jeder Block besteht aus sechzehn 32-Bit Werten (damals Wortlänge in der Hardware)
- Initialisierung mit fünf fest vorgegebenen 32-Bit Werten
- Verarbeitung unter Einbeziehung der zu hashenden Nachricht in vier Schritten à 20 Runden zu einem 160-Bit Hashwert (s. [PP2016])
- in jedem Schritt wird eine andere Kompressionsfunktion (zusammengesetzt aus Shift-Operationen, und AND, OR, XOR, NOT Verknüpfungen) verwendet
- schnell in Software
- Hashwertlänge 160 Bit, Sicherheitsniveau 80 Bit, aufgrund neuerer Angriffe auf die Kollisionserzeugung vermutlich nur 63 Bit
- SHA-2 baut auf SHA-1 auf: längere Hashwerte, sicherer

# Digitale Signatur (Forts.)

#### Signaturverfahren

- RSA-Signatur
- Elgamal-Signatur
- Merkle-Signatur (resistent gegen Angriffe durch Quantencomputer)
- DSA (Digital Signature Algorithm), mind. 2048 Bit (diskr. Log.)
- ECDSA, 160 256 Bit (ellipt. Kurven) ⇒ kürzere Signaturen!

### Prinzip

Sig = 
$$D_A(H(m))$$
  $\stackrel{m}{=}$   $H(m)$   $\stackrel{?}{=}$   $E_A(Sig)$   $m$ , falls Sig korrekt

Frage: Woher kennt B den öffentlichen Schlüssel von A?

# Digitale Signatur (Forts.)

#### Antwort

- Der Schlüssel wird von einer Stelle, der A und B vertrauen, fälschungssicher bestätigt.
  - ⇒ Trust Center
  - ⇒ Zertifizierungsstelle, *CA* (*Certification Authority*)
- Bestätigung in Form eines Zertifikates
- CA darf Zertifikate nicht leichtfertig ausstellen!

## Zertifizierungsstelle

### Aufgaben einer Zertifizierungsstelle

- Identifizierung und Registrierung (gegen Vorlage eines amtlichen Ausweises)
- Schlüsselgenerierung (Schlüsselpaar erstellen)
- Schlüsselzertifizierung (in Form eines Zertifikats)
- Personalisierung (einer Signaturkomponente, z. B. Chipkarte)
- Verzeichnisdienst (zum Abruf von Zertifikaten und Informationen)
- ggf. Zeitstempeldienst
- ggf. Key Recovery

PKI

#### Zertifikat

### Welche Informationen enthält ein Zertifikat?

| (Minimal-) Aufbau eines Zertifikates |                                                     |
|--------------------------------------|-----------------------------------------------------|
| 1.                                   | Name (oder Pseudonym) des Benutzers                 |
|                                      | ggf. mit weiteren Zusätzen                          |
| 2.                                   | Prüfschlüssel zum Signaturschlüssel                 |
| 3.                                   | verwendbare Signaturalgorithmen                     |
| 4.                                   | Seriennummer                                        |
| 5.                                   | Gültigkeitszeitraum                                 |
| 6.                                   | Name der ausstellenden CA                           |
| 7.                                   | eventuelle Verwendungsbeschränkungen                |
| 8.                                   | elektronische Signatur des Zertifikats durch die CA |

#### Frage: Woher bekomme ich das Zertifikat?

# Zertifikat (Forts.)

## Was ist bei der Prüfung (Verifikation) eines Zertifikats zu beachten?

- (1) Stimmt der eingetragene Benutzername?
- (2) Vertraue ich der ausstellenden CA?
- (3) Ist die Signatur der CA korrekt? ( $\Rightarrow E_{CA}$ )
- (4) Ist das Zertifikat abgelaufen?
- (5) Wurde das Zertifikat zurückgerufen?⇒ Certificate Revocation List (CRL)

#### Frage: Woher bekomme ich den Schlüssel E<sub>CA</sub>?

# Zertifikat (Forts.)

### Welche Rolle spielt hier Vertrauen?

- durch die Zertifikate wird eine Vertrauenskette aufgebaut
   ⇒ PKI (Public Key Infrastructure)
- den Prüfschlüssel **E**<sub>CA</sub> erhält man aus dem CA-Zertifikat
- dieses ist von einer übergeordneten CA zertifiziert oder nur selbstsigniert

#### Technische Richtlinie des BSI

• aktuelle Empfehlungen zu Sicherheitsprotokollen gibt das *Bundesamt für Sicherheit in der Informationstechnik* (BSI) regelmäßig heraus, aktuell:

BSI – Technische Richtlinie Kryptographische Verfahren: Empfehlungen und Schlüssellängen BSI TR-02102-1 2019-01 22. Februar 2019

URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf

#### Identifikation

### Challenge-Response-Verfahren

- Alice und Bob haben ein gemeinsames Geheimnis K (z. B. AES-Schlüssel)
- Bob muss Alice beweisen, dass er K kennt
- Bob darf **K** nicht einfach an Alice senden (Wieso nicht?)
- Protokoll
  - (1) Alice wählt eine Zufallszahl **R** und sendet diese an Bob (Challenge)
  - (2) Bob verschlüsselt **R** mit **K** und sendet das Ergebnis an Alice (Response)
  - (3) Alice überprüft, ob die Entschlüsselung von Bobs Antwort wieder R ergibt (Verifikation)
- Schwächen
  - Mallory kann alle Nachrichten mitlesen und ggf. wiederverwenden Wird das Verfahren wiederholt, darf R niemals wiederverwendet werden!
  - ein gemeinsames Geheimnis muss bereits für alle Teilnehmerpaare bestehen

# Identifikation (Forts.)

### Zero-Knowledge-Beweis nach Fiat-Shamir

- ullet Bob wählt zwei große Primzahlen  $oldsymbol{p}$  und  $oldsymbol{q}$  und berechnet  $oldsymbol{n} = oldsymbol{p} \cdot oldsymbol{q}$
- Bob wählt s relativ prim zu n und berechnet  $v \equiv s^2 \mod n$  $\Rightarrow (v, n)$  dient als öffentlicher und (s, n) als privater Schlüssel
- um Alice zu beweisen, dass er s kennt, ohne s zu nennen, wählt Bob r relativ prim zu n, berechnet s0 mod r0 und sendet r2 an Alice
- Alice kennt  $(\mathbf{v}, \mathbf{n})$  und erzeugt eine Zufallszahl  $\mathbf{e} \in \{0, 1\}$  (Münzwurf) und sendet  $\mathbf{e}$  an Bob
- falls e = 0
  - Bob sendet r an Alice
  - Alice verifiziert, dass  $r^2 \equiv x \mod n$
- falls e=1
  - Bob berechnet  $y \equiv r \cdot s \mod n$  und sendet y an Alice
  - Alice verifiziert, dass  $\mathbf{v}^2 \equiv \mathbf{x} \cdot \mathbf{v} \mod \mathbf{n}$
- Alice wiederholt das Verfahren mehrfach, um mit hoher Sicherheit eine falsche Identität von Bob auszuschließen

## Identifikation (Forts.)

## Zero-Knowledge-Beweis nach Fiat-Shamir (Forts.)

- nur Bob kennt die Zerlegung von n in p und q
- derjenige, der die Quadratwurzel von v berechnen kann, kann auch n faktorisieren (und umgekehrt) (Beweis in [Buch:2016])
   ⇒ nur Bob kennt s
- Angriff von Mallory (gibt sich als Bob aus)
  - (1) wählt r', berechnet  $x' \equiv r'^2 \mod n$  und sendet x' an Alice
    - falls e = 0 (mit Wahrscheinlichkeit 1/2)
      - $\Rightarrow$  Mallory sendet r' und Alice glaubt, mit Bob zu kommunizieren
    - falls e = 1 (mit Wahrscheinlichkeit 1/2)
    - $\Rightarrow$  Mallory muss  $y \equiv r' \cdot s \mod n$  berechnen und kann das nicht
  - (2) wählt y', berechnet  $x' \equiv y'^2 \cdot v^{-1} \mod n$  und sendet x' an Alice
    - falls e = 1 (mit Wahrscheinlichkeit 1/2)
    - $\Rightarrow$  Mallory sendet y' an Alice  $(y'^2 \equiv x' \cdot v \mod n)$  und Alice glaubt, mit Bob zu kommunizieren
    - falls e = 0 (mit Wahrscheinlichkeit 1/2)
      - $\Rightarrow$  Mallory muss r' senden und kann das nicht

## Identifikation (Forts.)

## Zero-Knowledge-Beweis nach Fiat-Shamir (Forts.)

- Sicherheit
  - beim ersten Versuch hat Mallory eine 50:50 Chance
  - bei k=20 Versuchen hat Mallory eine Chance von ca. 1: 1 000 000 (P =  $1/2^k$ )
  - n sollte 2048 Binärstellen besitzen und s sowie r nicht zu klein gewählt werden
- Zero-Knowledge
  - Bob antwortet entweder mit r oder mit y, aber nicht mit beiden Werten
  - aus den Antworten von Bob, kann nicht auf *s* geschlossen werden und auch nicht auf die Primfaktoren von *n*
  - jedes r darf nur genau einmal verwendet werden, da sich s berechnen lässt, wenn y und r übertragen werden:  $s \equiv y \cdot r^{-1} \mod n$
- Beispiel: gegeben für Bob  $\mathbf{n} = 77, \mathbf{s} = 13 \implies \mathbf{v} = 13^2 \mod 77 = 15$ 
  - Bob wählt  $r = 19 \implies$  sendet  $x = 19^2 \mod 77 = 53$  an Alice
  - Alice sendet e = 1 an Bob
  - ▶ Bob sendet  $y = 19 \cdot 13 \mod 77 = 16$  an Alice
  - Alice verifiziert, dass  $y^2 \equiv x \cdot v \mod 77$ also  $16 \cdot 16 \equiv 53 \cdot 15 \mod 77$ 
    - 25 = 25

117 / 118

#### Lessons Learnt

### Sicher ist sicher – einige Tipps

- (1) keine eigenen Verschlüsselungsalgorithmen erfinden; bewährte (AES, RSA, DHKE, ECDH, ECDSA) einsetzen
- (2) das Prinzip von Kerkhoffs beachten
- (3) immer aktuell sichere Schlüssellängen einsetzen ( ⇒ BSI)
- (4) Schlüssel möglichst zufällig wählen, nicht aus Passwörtern konstruieren
- (5) starke Zufallszahlen mit ausreichend hoher Entropie verwenden
- (6) Schlüssel nicht zu häufig verwenden sondern regelmäßig ändern
- (7) ECB-Modus nicht verwenden
- (8) Initialisierungsvektoren (Nonces) nicht wiederverwenden
- (9) SHA-2 oder SHA-3 als kryptografische Hashfunktion verwenden
- (10) Signaturen immer verifizieren