МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Кафедра «Информационная безопасность систем и технологий»

Отчет

по Заданию 2

на тему «Принципы нелинейного кодирования и декодирования»

Дисциплина: СиСПИ

Группа: 21ПТ1

Выполнил: Абазин Д. В.

Количество баллов:

Дата сдачи:

Принял: Иванов А. П.

2 Задание. Выполнить кодирование дискретных отсчетов методом ИКМ и декодирование кодовых комбинаций цифрового сигнала. Величины эталонных напряжений для нижней границы каждого сегмента и при кодировании внутри сегмента представлены на рисунке 1. Вариант задания представлен на рисунке 2.

Номер	Эталонное	Эталонные напряжения при						
сегмента	напряжение	кодировании в пределах сегмента						
N _c	нижней	$8\Delta_i(A)$	$4\Delta_i(B)$	$2\Delta_{i}I(C)$	$\Delta_i(D)$			
	границы							
	сегмента							
0	0	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$			
1	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$	$1\Delta_0$			
2	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$	$2\Delta_0$			
3	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$	$4\Delta_0$			
4	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$	$8\Delta_0$			
5	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$	$16\Delta_0$			
6	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$	$32\Delta_0$			
7	$1024\Delta_0$	$512\Delta_0$	$256\Delta_0$	$128\Delta_0$	$64\Delta_0$			

Рисунок 1 - Величины эталонных напряжений

Номер варианта	Значения дискретных отсчетов в единицах Δ			Десятичное число кодовых комбинаций			
1	-1234	456	-345	250	133	18	

Рисунок 2 — 1 вариант задания

- 3 Выполнение задания.
- 3.1 Был закодирован отсчет -1234.
- 3.1.1 Полярность отсчета равна 0, так как -1234 < 0.
- 3.1.2 Сегмент отсчета равен 7 (111 в двоичной системе).
- 3.1.3 Было определено значение уровней квантования в пределах сегмента. 1234 1024 = 210. 210 512 < 0, значит первый бит равен 0.210 256 < 0, значит второй бит равен 0.210 128 >= 0, третий бит равен 1.82 64 >= 0, четвертый бит равен 1.82 64 >= 0
 - 3.1.4 Итоговый закодированный отсчет равен 01110011.

- 3.2 Был закодирован отсчет 456.
- 3.2.1 Полярность отсчета равна 1, так как $456 \ge 0$.
- 3.2.2 Сегмент отсчета равен 5 (101 в двоичной системе).
- 3.2.3 Было определено значение уровней квантования в пределах сегмента. 456 256 = 200. 200 128 >= 0, значит первый бит равен 1. 72 64 >= 0, второй бит равен 1. 8 32 < 0, третий бит равен 0. 8 16 < 0, четвертый бит равен 0.
 - 3.2.4 Итоговый закодированный отсчет равен 11011100.
 - 3.3 Был закодирован отсчет -345.
 - 3.3.1 Полярность отсчета равна 0, так как -345 < 0.
 - 3.3.2 Сегмент отсчета равен 5 (101 в двоичной системе).
- 3.3.3 Было определено значение уровней квантования в пределах сегмента. 345 256 = 89. 89 128 < 0, значит первый бит равен 0.89 64 >= 0, второй бит равен 1.25 32 < 0, третий бит равен 0.25 16 >= 0, четвертый бит равен 1.25 32 < 0, третий бит равен 1.25 32 < 0, четвертый бит р
 - 3.3.4 Итоговый закодированный отсчет равен 01010101.
 - 3.4 Было декодировано число 250.
 - 3.4.1 Число 250 было переведено в двоичную систему 11111010.
 - 3.4.2 Был определен сегмент отсчета 111 (7 в десятичной).
- 3.4.3 Была определена дополнительная величина дискретного отсчета. 1024 + 512 + 128 + 64 = 1664 (полярность отсчета равна 1).
 - 3.5 Было декодировано число 133.
 - 3.5.1 Число 133 было переведено в двоичную систему 10000101.
 - 3.5.2 Был определен сегмент отсчета 000 (0 в десятичной).
- 3.5.3 Была определена дополнительная величина дискретного отсчета. 0 + 0 + 4 + 0 + 1 = 5 (полярность отсчета равна 1).
 - 3.6 Было декодировано число 18.
 - 3.6.1 Число 18 было переведено в двоичную систему 00010010.
 - 3.6.2 Был определен сегмент отсчета 001 (1 в десятичной).

3.6.3 Была определена дополнительная величина дискретного отсчета. 16 +0+0+2+0=-18 (полярность отсчета равна 0).

4 Вывод: были изучены принципы нелинейного кодирования и декодирования.