



## Was ist eine TVS Diode?

What is a TVS diode?



- Kennlinie wie eine Zenerdiode *Curve like Zener diode*
- Bidirektionale Version erhältlich! *Bidirectional Version available!*



### Was ist eine TVS Diode?

What is a TVS diode?



Überspannungsschutz! Overvoltage Protection!

⇒ Transient Voltage Suppressor



### TVS oder Zenerdiode

### TVS versus Zener diode

## **TVS**

- Unterdrückung von
  Spannungsspitzen
  Suppression of transient
  voltages
- AuswahlparameterParameters for selection:
  - V<sub>WM</sub> Sperrspannung Stand-off voltage
  - V<sub>c</sub> Begrenzerspannung Clamping voltage
  - P<sub>PPM</sub> Impulsverlustleistung
    Peak pulse power

## Zener

- Stabilisierung einer Gleichspannung
  Stabilization of a DC voltage
- AuswahlparameterParameters for selection:
  - V<sub>z</sub> Zenerspannung
    Zener voltage
  - P<sub>tot</sub> Statische Verlustleistung Steady state power dissip.



## TVS Dioden in Schaltnetzteilen

TVS diodes in SMPS

Beispiel: Sperrwandler

Example: flyback converter





## **Gate-Ansteuerung**

### Gate Control



Gate-Schutz:1 bidirektionale TVS- ersetzt2 antiserielle Zener-Dioden!

Gate Protection: 1 bidirectional TVS replaces 2 anti serial Zener diodes!

 Aktive Spannungsbegrenzung: Zener-Dioden standardmäßig bis 200 V, TVS bis 550 V!

Active Clamping: Standard Zener diodes up to 200 V, TVS up to 550 V!



## Auswahl des optimalen Bauteils (english see following pages)

### Beispiel:

Eingangsseitiger Schutz der Gleichrichterbrücke eines Netzteiles mit 85...265 V~ Weitbereichseingang



- 1. Maximale Scheitelspannung des Netzes  $V_p = \sqrt{2} \times 265 \text{ V} \approx 375 \text{ V}$ 
  - $\Rightarrow$  Sperrspannung der TVS-Diode V<sub>WM</sub>  $\geq$  375 V, z. B. V<sub>WM</sub> = **376 V**
- 2. Transienten treten auf Wechselstromseite auf
  - ⇒ bidirektionale TVS-Diode einsetzen (Suffix -B, -C, oder -CA)
- 3. Mögliche Typen mit  $V_{WM} = 376 \text{ V} (P_{PPM} = 400, 600, 1500 \text{ W*})$

Axial: P4KE440CA, P6KE440CA, 1.5KE440CA

SMD bisher:

3x TGL41-150CA, P4SMAJ120CA, P6SMBJ120CA, 1.5SMCJ120A in Reihe

- 4. Begrenzerspannung dieser TVS-Dioden  $V_c = 602 \text{ V}$ 
  - ⇒ Eine Brücke mit  $V_{RRM} \ge 600 \text{ V}$  kann eingesetzt werden

<sup>\*</sup> Je nach Stärke der auftretenden Transienten



## Auswahl des optimalen Bauteils (english see following pages)

### Beispiel:

Eingangsseitiger Schutz der Gleichrichterbrücke eines Netzteiles mit 85...265 V~ Weitbereichseingang



- 1. Maximale Scheitelspannung des Netzes  $V_p = \sqrt{2} \times 265 \text{ V} \approx 375 \text{ V}$ 
  - $\Rightarrow$  Sperrspannung der TVS-Diode V<sub>WM</sub>  $\geq$  375 V, z. B.  $V_{WM} =$  376 V
- 2. Transienten treten auf Wechselstromseite auf
  - ⇒ bidirektionale TVS-Diode einsetzen (Suffix -B, -C, oder -CA)
- 3. Mögliche Typen mit  $V_{WM} = 376 \text{ V } (P_{PPM} = 400, 600, 1500 \text{ W*})$ Axial: P4KE440CA, P6KE440CA, 1.5KE440CA

# SMD neu: TGL41-440CA, P4SMA440CA, P6SMB440CA, 1.5SMC440CA 1x!

- 4. Begrenzerspannung dieser TVS-Dioden  $V_c = 602 \text{ V}$ 
  - ⇒ Eine Brücke mit  $V_{RRM} \ge 600 \text{ V}$  kann eingesetzt werden

<sup>\*</sup> Je nach Stärke der auftretenden Transienten



## Selecting the optimum device

### Example:

Primary side protection of the input bridge in a power supply having  $85...265 V_{AC}$  wide range input



- 1. Maximum peak voltage of the mains  $V_P = \sqrt{2} \times 265 \ V \approx 375 \ V$ 
  - $\Rightarrow$  stand-off voltage of TVS diode  $V_{WM} \ge 375 \text{ V}$ , e. g.  $V_{WM} = 376 \text{ V}$
- 2. Transients occur on AC side
  - ⇒ use bidirectional TVS diodes (suffix -B, -C, or -CA)
- 3. Possible types having  $V_{WM} = 376 \text{ V} (P_{PPM} = 400, 600, 1500 \text{ W*})$ Axial: P4KE440CA, P6KE440CA, 1.5KE440CA

SMD up to now: 3x TGL41-150CA, P4SMAJ120CA, P6SMBJ120CA, 1.5SMCJ120CA in series

- 4. Clamping voltage of these TVS diodes  $V_c = 602 \text{ V}$ 
  - $\Rightarrow$  A bridge having  $V_{RRM} \ge 600 \text{ V}$  can be used

<sup>\*</sup> depending on power of occuring transients



## Selecting the optimum device

### Example:

Primary side protection of the input bridge in a power supply having  $85...265 V_{AC}$  wide range input



- 1. Maximum peak voltage of the mains  $V_P = \sqrt{2} \times 265 \ V \approx 375 \ V$ 
  - $\Rightarrow$  stand-off voltage of TVS diode  $V_{WM} \ge 375 \text{ V}$ , e. g.  $V_{WM} = 376 \text{ V}$
- 2. Transients occur on AC side
  - ⇒ use bidirectional TVS diodes (suffix -B, -C, or -CA)
- 3. Possible types having  $V_{WM} = 376 \text{ V} (P_{PPM} = 400, 600, 1500 \text{ W*})$ Axial: P4KE440CA, P6KE440CA, 1.5KE440CA

## SMD new: TGL41-440CA, P4SMA440CA, P6SMB440CA, 1.5SMC440CA 1x!

- 4. Clamping voltage of these TVS diodes  $V_c = 602 \text{ V}$ 
  - $\Rightarrow$  A bridge having  $V_{RRM} \ge 600 \text{ V}$  can be used

<sup>\*</sup> depending on power of occuring transients

## Erhältliche Typen Available Types



|       | Туре                                      | Designation follows:     | V <sub>BR</sub> / V <sub>WM</sub> | P <sub>PPM</sub> [W] | Package                |
|-------|-------------------------------------------|--------------------------|-----------------------------------|----------------------|------------------------|
| Axial | BZW04-5V8 BZW04-376B<br>P4KE6.8 P4KE440CA | Stand-off<br>Break down  | 5.8 V 376 V<br>6.8 V 440 V        | 400<br>400           | DO-15<br>DO-15         |
|       | BZW06-5V8 BZW06-376B<br>P6KE6.8 P6KE440CA | Stand-off<br>Break down  | 5.8 V 376 V<br>6.8 V 520 V        | 600<br>600           | ~ DO-201<br>~ DO-201   |
|       | 1.5KE6.8 1.5KE440CA                       | Break down               | 6.8 V 440 V                       | 1500                 | D 5.4 x 7.5            |
|       | 5KP5.0 5KP110A                            | Stand-off                | 5.0 V 110 V                       | 5000                 | D 8 x 7.5              |
|       | BYZ35A22 BYZ35K37<br>BYZ50A22 BYZ50K37    | Break-down<br>Break down | 22 V 37 V<br>22 V 37 V            | 10000<br>10000       | Press-fit<br>Press-fit |
| SMD   | TGL34-6.8 TGL34-200CA                     | Breakdown                | 6.8 V 200 V                       | 150                  | MiniMELF               |
|       | SDA2AK SDA4AK                             | Breakdown                | 1 V 2 V                           | 300                  | MELF                   |
|       | TGL41-6.8 TGL41-200CA                     | Breakdown                | 6.8 V 520 V                       | 400                  | MELF                   |
|       | P4SMAJ6.5 P4SMAJ170CA                     | Stand-off                | 6.5 V 170 V                       | 400                  | SMA                    |
|       | P6SMBJ6.5 P6SMBJ170CA                     | Stand-off                | 6.5 V 170 V                       | 600                  | SMB                    |
|       | 1.5SMCJ6.5 1.5SMCJ170CA                   | Stand-off                | 6.5 V 170 V                       | 1500                 | SMC                    |
|       | P4SMA220 P4SMA550CA                       | Breakdown                | 220 V 550 V                       | 400                  | SMA                    |
|       | P6SMB220 P6SMB550CA                       | Breakdown                | 220 V 550 V                       | 600                  | SMB                    |
|       | 1.5SMC220 1.5SMC550CA                     | Breakdown                | 220 V 550 V                       | 1500                 | SMC                    |



## **Niederkapazitive Supressordiode: SDA4AK**

Low Capacitance Suppressor Diode: SDA4AK

### **Beispiel:**

Videoleitung mit max. 0,7 V Signalspannung, Abschlusswiderstand 75 Ohm, Signal-Frequenz 5 MHz. Übliche Zener-/TVS-Diode: C<sub>i</sub> ~ 10 nF

 $1/\omega C_i \sim 3 \text{ Ohm} => \text{Kurzschluss!}$ 

### **SDA4AK**

C<sub>j</sub> sehr niedrig durch Reihenschaltung von Standarddioden in Flussrichtung:

 $1/\omega Cj \sim 3 \text{ kOhm} => \text{ok!}$ 

Klemmspannung  $V_C=4 V$  (andere auf Anfrage!)





### Example:

Video line with max 0.7 V signal voltage, line impedance 75 Ohm, signal frequency 5 MHz. Usual Zener-/TVS-diode: C<sub>i</sub>~ 10 nF

 $1/\omega C_j \sim 3 \ Ohm => short!$ 

### SDA4AK

*C<sub>j</sub>* very low due to series connection of standard diodes in forward mode:

$$Cj \sim 10 pF$$
  
1/ $\omega$ Cj  $\sim$  3 kOhm => ok!  
clamping voltage  $V_C$ =4 V  
(others on request!)



http://www.diotec.com/