MAE3145: Final Exam

December 14, 2016

Last Name First Name Student ID

	Prob. 1	Prob. 2	Prob. 3	Prob. 4	Prob. 5	Total
	(20)	(15)	(20)	(15)	(10)	(80)
ĺ						

Problem 1 (20pt) Mark whether each statement written in *italic font* is True or False (for (a)-(d)), or answer the question shortly (for (e)).

(a) Spacecraft A and B are on the same orbit. The chaser spacecraft A executes a phasing maneuver to catch the target spacecraft B after one revolution at the point A. Then, the chaser spacecraft A should increase its velocity at the beginning of the phasing maneuver. [True, False]

(b) A spacecraft is on an elliptic orbit. When it passes through the periapsis P, its rocket is fired along the outward radial direction as shown below. Then, the eccentricity vector \vec{e} rotates clockwise. [True, False]

- (c) A spacecraft is on a circular orbit around the Earth. Escaping from the Earth gravitational field completely requires a larger velocity increment than rotating its orbital plane by 30° without changing the orbital shape and size. [True, False]
- (d) Among the five Lagrange points in the Earth-Moon system, the first Lagrange point L_1 has the lowest value of the Jacobi constant, i.e. L_1 has the minimum energy. [True, False]
- (e) Kennedy Space Center has been NASA's primary launch center of human spaceflight since December 1968. Describe *shortly* one of the *engineering* benefits of locating a lauch center in the southern east coast, compared with other places like Portland, OR. (Please, exclude political or climate-related issues.)

Problem 2 (15pt) Spacecraft A is on a circular orbit ① around the Earth, and Spacecraft B is on an elliptic orbit ② around the Earth.

$$\mu = 398600 \,\mathrm{km}^3/\mathrm{s}^2,$$

$$r_A = 8000 \, \text{km},$$

$$e_2 = 0.4.$$

We wish to design a phase maneuver of Spacecraft A such that rendezvous between Spacecraft A and B occurs at the point A after one revolution. After the rendezvous, Spacecraft A is transferred to Orbit ②. Let Orbit ③ be the phasing orbit of Spacecraft A, and let C be the apoapsis of Orbit ③.

(a) Find the time t_{BA} for Spacecraft B to return to the point A.

(b) Find the period T_3 and the apoapsis distance r_C of the phasing orbit \mathfrak{J} .

(c) Find the velocity change $\Delta v_A = v_{A_3} - v_{A_3}$	at the beginning of the phasing maneuver.

(e) Show that the total velocity change to complete the phasing maneuver is
$$1.2933\,\mathrm{km/s}.$$

Problem 3 (20pt) Consider a spacecraft on a circular orbit with radius r_P . We wish to rotate the orbital plane by δ without changing the orbit shape and size. In the class, we found that the required velocity change for one-impulse plane change maneuver is given by

$$\Delta v = 2v\sin\frac{\delta}{2}, \quad \text{where} \quad v = \sqrt{\frac{\mu}{r_P}}.$$
 (1)

This cost of a plane change is quite high. In this question, we try to reduce the cost of a plane change by designing a series of maneuvers. Let the initial circular orbit be denoted by ①, and the terminal rotated circular orbit be ④. The proposed maneuver from ① to ④ is composed of the following three steps:

- ① \rightarrow ② at P: transfer the spacecraft to an elliptic orbit ②,
- ② \rightarrow ③ at A: perform a plane change maneuver at the apoapsis A of the elliptic orbit ②,
- ③ \rightarrow ④ at P: transfer the spacecraft to the rotated circular orbit ④ at the periapsis P.

Let the apoapsis distance of the transferring elliptic orbits be $r_A > r_P$. These orbits are illustrated as follows:

	Description	Inclination	Periapsis	Apoapsis	Velocity at the beginning	Velocity at the end
Orbit ①	Initial circular orbit	0	r_P	r_P	V_{P_1}	-
Orbit ②	Hohmann transfer orbit	0	r_P	r_A	V_{P_2}	V_{A_2}
Orbit ③	Hohmann transfer orbit	δ	r_P	r_A	V_{A_3}	V_{P_3}
Orbit 4	Target circular orbit	δ	r_P	r_P	V_{P_4}	-

(a) Find Δv_P to transfer the spacecraft from the initial circular orbit ① to the elliptic orbit ② at P.

(b) Find Δv_A required to rotate the orbital plane of Orbit ② by δ at A, transferring the spacecraft to Orbit ③.

(c) Find $\Delta v_{P'}$ to transfer the spacecraft from the elliptic orbit 3 to the terminal circular orbit 4 at P.

(d) The ratio of the total velocity change $\Delta v_T = |\Delta v_P| + |\Delta v_A| + |\Delta v_{P'}|$ of this maneuver to the velocity change Δv of the one-impulse maneuver at (1) can be written as

$$\frac{\Delta v_T}{\Delta v} = \sqrt{\frac{2}{\rho(1+\rho)}} + \frac{1}{\sin \delta/2} \bigg\{$$
 (2)

where $\rho = \frac{r_A}{r_P} > 1$. Find the expression in the braces $\{\ \}$. (Hint: $|\Delta v_{P'}| = |\Delta v_P|$).

(e) Suppose that $\rho=2$, and $\delta=60^\circ$. Using (2), determine which is more energy efficient between the proposed three-impulse maneuver with the cost of Δv_T , and the one-impulse maneuver with the cost of Δv .

Problem 4 (15pt) The international Cassini mission to the Saturn made use of gravity assist from the Venus. In this question, we develop the rendezvous condition for a Hohmann transfer from the Earth to the Venus. The locations of the Earth and the Venus at the departure and the arrival are illustrated as follows.

$$\mu_S = 1.327 \times 10^{11} \,\mathrm{km}^3/\mathrm{s}^2$$
, $R_E = 149.6 \times 10^6 \,\mathrm{km}$, $R_V = 108.2 \times 10^6 \,\mathrm{km}$.

$$R_E = 149.6 \times 10^6 \, \mathrm{km}$$

$$R_V = 108.2 \times 10^6 \,\mathrm{km}.$$

(a) Find the travel time t_{EV} from the Earth to the Venus along the Hohmann transfer orbit between them.

- (b) Let ϕ be the phase angle of the Venus relative to the Earth, i.e. $\phi = \theta_V \theta_E$, and let ϕ_0 be the value of the phase angle at departure. The rotation angle of the Venus during the Hohmann transfer is given by $n_V t_{EV}$. Mark the angles ϕ_0 and $n_V t_{EV}$ in the above diagram.
- (c) Find ϕ_0 for a rendezvous between the Venus and the spacecraft to occur at the end of the Hohmann transfer. (Hint: $\phi_0 < 0$)

Problem 5 (10pt) Consider a circular restricted three body problem. To make the equation of motion simpler, we normalize the units for distance, time, and mass by r_{12} , Ω , and $m_1 + m_2$, respectively. The resulting dimensionless Jacobi constant is given as follows:

$$D = \frac{1}{2}(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}(x^2 + y^2) - \frac{1 - \alpha}{r_1} - \frac{\alpha}{r_2},$$

where

$$\alpha = \frac{m_2}{m_1 + m_2}, \quad r_1 = \sqrt{(x+\alpha)^2 + y^2}, \quad r_2 = \sqrt{(x-1+\alpha)^2 + y^2}.$$

Suppose that $\alpha=0.01$ for the Earth-Moon system. The values of the dimensionless Jacobi constant at the five Lagrange Points are given as follows:

$$D_1 = -1.5838, \quad D_2 = -1.5772, \quad D_3 = -1.5050, \quad D_{4.5} = -1.4950,$$
 (3)

where D_i denotes the dimensionless Jacobi constant at the *i*-th Lagrange point. (**Note**: these values are *different* from the Jacobi constant C discussed in class!)

Consider the following three spacecraft near the Earth. The initial conditions for these spacecraft and the corresponding Jacobi constants are summarized as follows:

Spacecraft	x	y	\dot{x}	\dot{y}	D
A	0.50	0.50	0	0	-1.650
B	0.20	0.18	1.121	1.685	-1.580
C	0.18	0.20	1.801	1.000	-1.515

(a) Mark all of spacecraft that is (are) impossible to fly to the Moon without firing a onboard rocket.

[Spacecraft A, Spacecraft B, Spacecraft C].

(b) The locations of Spacecraft B and five Lagrange points are illustrated as follows. Sketch all of the forbidden region to which Spacecraft B cannot fly.

