TASK 1

Using the diagrams given in the presentation calculate how much (%) is the effect of applying different modifications (changing the gas, adding an extra pane, using a low emissivity coating) on the U value with respect to a benchmark case of double layer with air and no coating? (Keep the gap thickness to be 13 mm)

ANSWER

Panel with air gap 13mm	U-value (W/m ² K)	Reduction Effect
		(%)
Double-pane glazing, air in between, no coating	2.80	0%
Double-pane glazing, argon gas in between, no coating	2.65	5%
Double-pane glazing, krypton gas in between, no	2.60	7%
coating		
Double-pane glazing, air in between, coating on 1	1.80	36%
panel		
Double-pane glazing, argon gas in between, coating on	1.55	45%
1 panel		
Double-pane glazing, krypton gas in between, coating	1.40	50%
on 1 panel		
Triple-pane glazing, air in between, no coating	1.80	36%
Triple-pane glazing, argon gas in between, no coating	1.65	41%
Triple-pane glazing, krypton gas in between, no	1.55	45%
coating		
Triple-pane glazing, air in between, coating on 1 panel	1.00	64%
Triple-pane glazing, argon gas in between, coating on 1	0.80	71%
panel		
Triple-pane glazing, krypton gas in between, coating	0.70	75%
on 1 panel		

TASK 2

A fixed heat absorbing double layer glass (with a wooden frame) window the east side of a building located in Piacenza has a surface of 14.4 m^2 . In case there are no internal and external shading factors. Calculate the heating and cooling load of the corresponding to that window.

Calculate the heating and cooling load of the other windows which are fixed 14.4 m² on the west, fixed 3.6 m² on the south and an operable 3.6 m² on the south (the same window and frame type). How much does the total value change if I change the frame of the window from wooden one to aluminum?

ANSWER

PIACENZA, Italy									WMO#:	160840						
Lat:	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU\	W)	Period:	89-10	WBAN:	99999	
Annual He	eating and H	umidificati	on Design C	onditions												
Coldest	Heating	DB -			dification D	P/MCDB and I				Coldest mont			MCWS/PCWD			
Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	0.4 WS	4% MCDB	WS 1	% MCDB	MCWS	6% DB PCWD		
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	l	
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		(1)
Annual Co	ooling, Dehu	midificatio	n, and Entha	alpy Design	Conditions	5										
Hottest	Hottest			Cooling D	B/MCWB					Evaporation	WB/MCDB	3		MCWS	PCWD	1
Month	Month		4%	19		2%			4%	1'			%	to 0.4]
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD]
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(o)	(P)	
8	11.9	33.1	22.7	31.9	22.4	30.3	21.8	24.6	30.2	23.7	29.2	22.9	28.3	2.4	90	(2)

$$\Delta T_{cooling} = 31.9 - 24 = 7.9 \,^{\circ}C$$

$$\Delta T_{heating} = 20 - (-4.8) = 24.8 \,^{\circ}C$$

$$DR = 11.9 \,^{\circ}C$$

Heating Load:

 $q_{heating} = A \times HF = A \times U \times \Delta T_{heating}$

We have $\Delta T_{heating} = 24.8 \, ^{\circ}C$

				Frame										
							Operable			Fixed				
Glazing Type	Glazing Layers	IDb	Property ^{c,d}	Center of Glazing	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl	Aluminum	Aluminum with Thermal Break	Reinforced Vinyl/Aluminum Clad Wood	Wood/Vinyl	Insulated Fiberglass/Vinyl
Clear	1	1a	U	5.91	7.24	6.12	5.14	5.05	4.61	6.42	6.07	5.55	5.55	5.35
			SHGC	0.86	0.75	0.75	0.64	0.64	0.64	0.78	0.78	0.75	0.75	0.75
	2	5a	U SHGC	2.73 0.76	4.62 0.67	3.42 0.67	3.00 0.57	2.87 0.57	5.83 0.57	0.69	3.22 0.69	2.86 0.67	2.84 0.67	2.72 0.67
	3	29a	U	1.76	3.80	2.60	2.25	2.19	1.91	2.76	2.39	2.05	2.01	1.93
		274	SHGC	0.68	0.60	0.60	0.51	0.51	0.51	0.62	0.62	0.60	0.60	0.60
Low-e, low-solar	2	25a	U	1.70	3.83	2.68	2.33	2.21	1.89	2.75	2.36	2.03	2.01	1.90
			SHGC	0.41	0.37	0.37	0.31	0.31	0.31	0.38	0.38	0.36	0.36	0.36
	3	40c	U SHGC	1.02 0.27	3.22 0.25	2.07 0.25	1.76 0.21	1.71 0.21	1.45 0.21	2.13 0.25	1.76 0.25	1.44 0.24	1.40 0.24	1.33 0.24
Low-e, high-solar	2	17c	U SHGC	1.99 0.70	4.05 0.62	2.89 0.62	2.52 0.52	2.39 0.52	2.07 0.52	2.99 0.64	2.60 0.64	2.26 0.61	2.24 0.61	2.13 0.61
	3	32c	USHGC	1.42 0.62	3.54 0.55	2.36 0.55	2.02 0.46	1.97 0.46	1.70 0.46	2.47 0.56	2.10 0.56	1.77 0.54	1.73 0.54	1.66 0.54
Heat-absorbing	1	1c	U SHGC	5.91 0.73	7.24 0.64	6.12 0.64	5.14 0.54	5.05 0.54	4.61 0.54	6.42 0.66	6.07 0.66	5.55 0.64	5.55 0.64	5.35 0.64
	2	5c	U SHGC	2.73 0.62	4.62 0.55	3.42 0.55	3.00 0.46	2.87 0.46	2.53 0.46	3.61 0.56	3.22 0.56	2.86 0.54	2.84 0.54	2.72 0.54
	3	29c	USHGC	1.76 0.34	3.80 0.31	2.60 0.31	2.25 0.26	2.19 0.26	1.91 0.26	2.76 0.31	2.39 0.31	2.05 0.30	2.01 0.30	1.93 0.30
Reflective	1	11	U SHGC	5.91 0.31	7.24 0.28	6.12 0.28	5.14 0.24	5.05 0.24	4.61 0.24	6.42 0.29	6.07 0.29	5.55 0.27	5.55 0.27	5.35 0.27
	2	5p	U	2.73	4.62	3.42	3.00	2.87	2.53	3.61	3.22	2.86	2.84	2.72
	3	29c	SHGC U SHGC	0.29 1.76 0.34	0.27 3.80 0.31	0.27 2.60 0.31	0.22 2.25 0.26	0.22 2.19 0.26	0.22 1.91 0.26	0.27 2.76 0.31	0.27 2.39 0.31	0.26 2.05 0.30	0.26 2.01 0.30	0.26 1.93 0.30

Window	Frame Type	Area A(m²)	U (W/m ² K)	Heating Load q (W)
Fixed windows 14.4 m ² on the East	Wooden	14.4	2.84	1014.2
	Aluminum	14.4	3.61	1289.2
Fixed windows 14.4 m ² on the West	Wooden	14.4	2.84	1014.2
	Aluminum	14.4	3.61	1289.2
Fixed windows 3.6 m ² on the South	Wooden	3.6	2.84	253.6
	Aluminum	3.6	3.61	322.3
Operable windows 3.6 m ² on the	Wooden	3.6	2.87	256.2
South	Aluminum	3.6	4.62	412.5

 $q_{total\; heating\; wooden\; frame} = \; 1014.2 \times 2 + 253.6 + 256.2 = 2538.2 W$

 $q_{total\;heating\;aluminum\;frame} = 1289.2 \times 2 + 322.3 + 412.5 = 3313.2W$

Cooling Load:

$$q_{cooling} = A \times CF$$

We have $\Delta T_{cooling} = 7.9 \,^{\circ}C$; $DR = 11.9 \,^{\circ}C$

CF
$$= U(\Delta T_{cooling} - 0.46 DR) + PXI \times SHGC \times IAC \times FF_{s}$$

$$= U(7.9 - 0.46 \times 11.9) + T_{x}[E_{d} + (1 - F_{shd})E_{D}] \times SHGC \times IAC \times FF_{s}$$

$$= U \times 2.426 + (E_{d} + E_{D}) \times SHGC \times 1 \times FF_{s}$$

Table 10 Peak Irradiance, W/m²

		Latitude									
Exposure		20°	25°	30°	35°	40°	45°	50°	55°	60°	
North	E_D	125	106	92	84	81	85	96	112	136	
	E_d	128	115	103	93	84	76	69	62	55	
	E_t	253	221	195	177	166	162	164	174	191	
Northeast/Northwest	E_D	460	449	437	425	412	399	386	374	361	
	E_d	177	169	162	156	151	147	143	140	137	
	E_t	637	618	599	581	563	546	529	513	498	
East/West	E_D	530	543	552	558	560	559	555	547	537	
	E_d	200	196	193	190	189	188	187	187	187	
	E_t	730	739	745	748	749	747	742	734	724	
Southeast/Southwest	E_D	282	328	369	405	436	463	485	503	517	
	E_d	204	203	203	204	205	207	210	212	215	
	E_t	485	531	572	609	641	670	695	715	732	
South	E_D	0	60	139	214	283	348	408	464	515	
	E_d	166	193	196	200	204	209	214	219	225	
	E_t	166	253	335	414	487	557	622	683	740	
Horizontal	E_D	845	840	827	806	776	738	691	637	574	
	E_d	170	170	170	170	170	170	170	170	170	
	E_t	1015	1010	997	976	946	908	861	807	744	

Table 13 Fenestration Solar Load Factors FF_s

Exposure	Single Family Detached	Multifamily
North	0.44	0.27
Northeast	0.21	0.43
East	0.31	0.56
Southeast	0.37	0.54
South	0.47	0.53
Southwest	0.58	0.61
West	0.56	0.65
Northwest	0.46	0.57
Horizontal	0.58	0.73

Window	Frame Type	Area A(m²)	U (W/m ² K)	$\frac{E_d + E_D}{(W/m^2)}$	SHGC	FFs	q (W)
Fixed windows 14.4	Wooden	14.4	2.84	747	0.54	0.31	1899.9
m ² on the East	Aluminum	14.4	3.61	747	0.56	0.31	1993.5
Fixed windows 14.4	Wooden	14.4	2.84	747	0.54	0.56	3352.1
m ² on the West	Aluminum	14.4	3.61	747	0.56	0.56	3499.4
Fixed windows 3.6	Wooden	3.6	2.84	747	0.54	0.47	707.3
m ² on the South	Aluminum	3.6	3.61	747	0.56	0.47	739.3
Operable windows	Wooden	3.6	2.87	557	0.46	0.47	458.6
3.6 m^2 on the South	Aluminum	3.6	4.62	557	0.55	0.47	558.7

 $q_{total\ cooling\ wooden\ frame} =\ 1899.9 + 3352.1 + 707.3 + 458.6 = 6417.9W$

 $q_{total\;cooling\;aluminum\;frame} = 1993.5 + 3352.1 + 3499.4 + 739.3 + 558.7 = 6791W$