

SIMPLEX METHOD (MATRIX FORM) MATRIX ALGEBRA BASICS REVISED SIMPLEX

Optimization

Techniques

Vectors

A special kind of matrix that plays an important role in matrix theory is the kind that has either a single row or a single column. Such matrices are often referred to as vectors. Thus

is a row vector, and

$$\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x \end{bmatrix}$$

is a column vector.

A null vector 0 is either a row vector or a column vector whose elements are all 0s, that is,

$$\mathbf{0} = [0, 0, \dots, 0]$$
 or $\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$.

One reason vectors play an important role in matrix theory is that any $m \times n$ matrix can be partitioned into either m row vectors or n column vectors, and important properties of the matrix can be analyzed in terms of these vectors.

Partitioning of matrices

Up to this point, matrices have been rectangular arrays of elements, each of which is a number. However, the notation and results are also valid if each element is itself a matrix.

For example, the matrix

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

may be written as

$$\mathbf{A} = \begin{bmatrix} \mathbf{C}_1 & \mathbf{C}_2 & \mathbf{C}_3 \end{bmatrix} \quad \text{where} \quad \mathbf{C}_1 = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} \quad \mathbf{C}_2 = \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix}$$
and
$$\mathbf{C}_3 = \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

or as

$$A = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}$$
 where $R_1 = [a_{11} \ a_{12} \ a_{13}]$ and $R_2 = [a_{21} \ a_{22} \ a_{23}]$

Optimization

Techniques

or as

$$\mathbf{A} = [\mathbf{A}_1 \quad \mathbf{A}_2]$$

where

$$\mathbf{A}_1 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad \text{and} \quad \mathbf{A}_2 = \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

or where

$$\mathbf{A}_1 = \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$
 and $\mathbf{A}_2 = \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}$

The process of dividing a matrix into smaller matrices, or submatrices, is called partitioning and is usually denoted by a dotted line. The four partitions described would be denoted respectively as follows:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}; \qquad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Matrix operations can then be performed with matrices whose elements are matrices, provided the rules of operation are valid for the given matrix and for the resulting submatrices.

Example: Calculate AB, given

$$\mathbf{A} = \begin{bmatrix} 6 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 4 & 3 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Solution. Partition the two matrices:

$$\mathbf{A} = \begin{bmatrix} 6 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix}$$

where

$$\mathbf{A}_1 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}, \quad \mathbf{A}_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{B}_1 = \begin{bmatrix} 4 & 3 \end{bmatrix}, \quad \text{and} \quad \mathbf{B}_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

then

$$\mathbf{A}\mathbf{B} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 \end{bmatrix} \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \end{bmatrix} = \mathbf{A}_1 \mathbf{B}_1 + \mathbf{A}_2 \mathbf{B}_2$$

and

$$\mathbf{AB} = \begin{bmatrix} 6 \\ 2 \end{bmatrix} \begin{bmatrix} 4 & 3 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 24 & 18 \\ 8 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} 25 & 18 \\ 8 & 7 \end{bmatrix}$$

Matrix Form of Linear Programming

Original Form of the Model

Maximize
$$Z = 3x_1 + 5x_2$$
,
subject to $x_1 \leq 4$
 $2x_2 \leq 12$
 $3x_1 + 2x_2 \leq 18$
and $x_1 \geq 0$, $x_2 \geq 0$.

where **c** is the row vector $\mathbf{c} = [c_1, c_2, \dots, c_n]$, **x**, **b**, and **0** are the column vectors and **A** is the matrix

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Augmented Form of the Model

Maximize
$$Z = 3x_1 + 5x_2$$
,
subject to
(1) $x_1 + x_3 = 4$
(2) $2x_2 + x_4 = 12$
(3) $3x_1 + 2x_2 + x_5 = 18$
and
 $x_j \ge 0$, for $j = 1, 2, 3, 4, 5$.

where **I** is the $m \times m$ identity matrix

$$\mathbf{x}_{s} = \begin{bmatrix} x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{n+m} \end{bmatrix}$$

Optimization

Techniques

Maximize $Z = \mathbf{cx}$, subject to $Ax \le b$ and $x \ge 0$,

where **c** is the row vector $\mathbf{c} = [c_1, c_2, \dots, c_n],$

$$\mathbf{x}$$
, \mathbf{b} , and $\mathbf{0}$ are the column vectors and \mathbf{A} is the matrix

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \qquad \mathbf{x}_s = \begin{bmatrix} x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{n+m} \end{bmatrix}$$

$$\begin{bmatrix} b_2 \\ \vdots \\ b_m \end{bmatrix}, \quad \mathbf{0} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{1n} & \vdots & \vdots \\ a_{2n} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{2n} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{2n} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{2n} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{2n} & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ a_{2n} & \vdots$$

Maximize Z = cx, subject to

$$[\mathbf{A}, \mathbf{I}] \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} \ge \mathbf{0}$$

where I is the $m \times m$ identity matrix

$$\mathbf{x}_{s} = \begin{bmatrix} x_{n+1} \\ x_{n+2} \\ \vdots \\ x_{n+m} \end{bmatrix}$$

Maximize
$$Z = 3x_1 + 5x_2$$
,
subject to
(1) $x_1 + x_3 = 4$
(2) $2x_2 + x_4 = 12$
(3) $3x_1 + 2x_2 + x_5 = 18$
and
 $x_j \ge 0$, for $j = 1, 2, 3, 4, 5$.

$$\mathbf{c} = [3, 5], \ [\mathbf{A}, \mathbf{I}] = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ \mathbf{x}_s = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

Solving for a Basic Feasible Solution

For initialization,

Maximize
$$Z = \mathbf{c}\mathbf{x}$$
, subject to
$$[\mathbf{A}, \mathbf{I}] \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} \ge \mathbf{0}$$

For any iteration,

Maximize
$$Z = c_B X_B + c_N X_N$$

subject to
$$[B,N] \begin{bmatrix} X_B \\ X_N \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} X_B \\ X_N \end{bmatrix} \ge 0$$

TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

	Basic				Coeff	icient o	f:		Right
Iteration	Variable	Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	X4	<i>x</i> ₅	Side
J.E	Z	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	_ 1	0	1	0	0	4
U	<i>x</i> ₄	(2)	0	0	2	0	1	0	12
	X ₅	(3)	0	3	2	0	0	1	18
1	Z	(0)	1	-3	0	0	5 2	0	30
	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>X</i> ₅	(3)	0	3	0	0	-1	1	6
2	Z	(0)	1	0	0	0	3 2	1	36
	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
2	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

$$\mathbf{B} = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1m} \\ B_{21} & B_{22} & \cdots & B_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mm} \end{bmatrix}$$

$$\mathbf{N} = \begin{bmatrix} N_{11} & N_{12} & \cdots & N_{1n} \\ N_{21} & N_{22} & \cdots & N_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ N_{m1} & N_{m2} & \cdots & N_{mn} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1m} \\ B_{21} & B_{22} & \cdots & B_{2m} \\ \vdots & \vdots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mm} \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} N_{11} & N_{12} & \cdots & N_{1n} \\ N_{21} & N_{22} & \cdots & N_{2n} \\ \vdots & \vdots & \vdots \\ N_{m1} & N_{m2} & \cdots & N_{mn} \end{bmatrix} \quad \mathbf{x}_{B} = \begin{bmatrix} x_{B1} \\ x_{B2} \\ \vdots \\ x_{Bm} \end{bmatrix} \quad \mathbf{x}_{N} = \begin{bmatrix} x_{N1} \\ x_{N2} \\ \vdots \\ x_{Nn} \end{bmatrix}$$

Solving for a Basic Feasible Solution

For initialization,

Maximize
$$Z = \mathbf{c}\mathbf{x}$$
, subject to $[\mathbf{A}, \mathbf{I}] \begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \mathbf{b}$ and $\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \end{bmatrix} \ge \mathbf{0}$

$$\mathbf{x}_{B} = \mathbf{x} = \mathbf{I}^{-1}\mathbf{b} = \mathbf{b}$$
$$\mathbf{Z} = \mathbf{c}_{B} \mathbf{I}^{-1}\mathbf{b} = \mathbf{c}_{B} \mathbf{b}$$

For any iteration,

Maximize
$$Z = c_B \mathbf{X}_B + c_N \mathbf{X}_N$$
 subject to

$$[\mathbf{B},\mathbf{N}]egin{bmatrix} \mathbf{X}_{\mathbf{B}} \\ \mathbf{X}_{\mathbf{N}} \end{bmatrix} = \mathbf{b} \ \ \text{and} \ \begin{bmatrix} \mathbf{X}_{\mathbf{B}} \\ \mathbf{X}_{\mathbf{N}} \end{bmatrix} \geq \mathbf{0}$$

Maximize
$$Z = c_B X_B + c_N X_N$$

subject to
$$\begin{bmatrix} X_B \\ X_N \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} X_B \\ X_N \end{bmatrix} \ge \mathbf{0}$$

$$\begin{bmatrix} X_B \\ X_N \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} X_B \\ X_N \end{bmatrix} \ge \mathbf{0}$$

$$\begin{bmatrix} X_B \\ X_N \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} X_B \\ X_N \end{bmatrix} \ge \mathbf{0}$$

$$\begin{bmatrix} X_B \\ X_N \end{bmatrix} = \mathbf{b} \text{ and } \begin{bmatrix} X_B \\ X_N \end{bmatrix} \ge \mathbf{0}$$

$$\begin{bmatrix} X_B \\ X_N \end{bmatrix} = \mathbf{0}$$

$$X_B = \mathbf{0}$$

$$\mathbf{N} = \begin{bmatrix} N_{11} & N_{12} & \cdots & N_{1n} \\ N_{21} & N_{22} & \cdots & N_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ N_{2n} & N_{2n} & \vdots & \vdots \\ N_{2n}$$

$$\mathbf{B} = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1m} \\ B_{21} & B_{22} & \cdots & B_{2m} \\ \vdots & \vdots & \vdots \\ B_{m1} & B_{m2} & \cdots & B_{mm} \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} N_{11} & N_{12} & \cdots & N_{1n} \\ N_{21} & N_{22} & \cdots & N_{2n} \\ \vdots & \vdots & \vdots \\ N_{m1} & N_{m2} & \cdots & N_{mn} \end{bmatrix} \quad \mathbf{x}_{B} = \begin{bmatrix} x_{B1} \\ x_{B2} \\ \vdots \\ x_{Bm} \end{bmatrix} \quad \mathbf{x}_{N} = \begin{bmatrix} x_{N1} \\ x_{N2} \\ \vdots \\ x_{Nn} \end{bmatrix}$$

Example

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

	922 F20	Coefficient of:									
Iteration	Basic Variable	Eq.	z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X4	X5	Right Side		
	Z	(0)	1	-3	-5	0	0	0	0		
0	<i>X</i> ₃	(1)	0	_1	0	1	0	0	4		
U	X4	(2)	0	0	2	0	1	0	12		
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18		
	Z	(0)	1	-3	0	0	$\frac{5}{2}$	0	30		
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4		
	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6		
	X ₅	(3)	0	3	0	0	-1	1	6		
	Z	(0)	1	0	0	0	$\frac{3}{2}$	1	36		
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2		
۷	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6		
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2		

Iteration 1

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{5} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix},$$

$$\mathbf{x}_{B} = \begin{bmatrix} x_{2} \\ x_{5} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}, \quad \mathbf{B}^{T} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix}, \\
\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \\
\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \\
\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \\
\mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \\
\mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} =$$

$$\mathbf{c} = [3, 5], \ [\mathbf{A}, \mathbf{I}] = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ \mathbf{x}_s = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$\mathbf{X}_{B} = \mathbf{X} = \mathbf{I}^{-1}\mathbf{b} = \mathbf{b}$$
$$\mathbf{Z} = \mathbf{c}_{B} \mathbf{I}^{-1}\mathbf{b} = \mathbf{c}_{B} \mathbf{b}$$

$$\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b}$$
$$\mathbf{Z} = \mathbf{c}_{B} \mathbf{B}^{-1}\mathbf{b}$$

Iteration 0
$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{B}^{-1} \text{ so } \begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

$$\mathbf{c}_B = [0, 0, 0],$$
 so $Z = [0, 0, 0] \begin{vmatrix} 4 \\ 12 \\ 18 \end{vmatrix} = 0$

Iteration 2
$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{c}_{3} \\ \mathbf{c}_{2} \\ \mathbf{c}_{1} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}, \ \mathbf{c}_{B} = [0, 5, 3], \ Z = [0, 5, 3] \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} = 36.$$

Matrix Form of the Set of Equations in the Simplex Tableau

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

	Basic				Coeffi	icient o	f:		Right
Iteration	Variable	Eq.	Z	<i>X</i> ₁	X2	<i>X</i> 3	X4	X 5	Side
	Z	(0)	1	- 3	5	0	0	0	0
0	<i>X</i> ₃	(1)	0	1	0	₹1	0	0	4
O.	X_4	(2)	0	0	2	0	1	0	1 2
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18
							- 5		
	Z	(0)	1	-3	0	0	3	0	30
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>x</i> ₂	(2)	0	О	1	0	$\frac{1}{2}$	0	6
	<i>X</i> ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	$\frac{3}{2}$	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
2	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

For the original set of equations, the matrix form is

For any iteration,

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$$
$$\mathbf{Z} = \mathbf{c}_B \mathbf{B}^{-1}\mathbf{b}$$

■ TABLE 5.8 Initial and later simplex tableaux in matrix form

$$\begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} \\ \mathbf{0} & \mathbf{B}^{-1} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}.$$

$$\begin{bmatrix} 1 & \mathbf{c}_{B}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{I} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_{s} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{c}_{B}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix}$$
$$\begin{bmatrix} 1 & \mathbf{c}_{B}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{b} \\ \mathbf{B}^{-1}\mathbf{b} \end{bmatrix}$$

$$\begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} 1 & -\mathbf{c} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \mathbf{A} & \mathbf{B}^{-1} \end{bmatrix}$$

Example

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

	Basic				Coeffi	icient o	f:		Right
Iteration	Variable	Eq.	z	<i>x</i> ₁	X2	<i>x</i> ₃	X4	X5	Side
	Z	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	_1	0	1	0	0	4
U	X4	(2)	0	0	2	0	1	0	12
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18
	Z	(0)	1	-3	0	0	$\frac{5}{2}$	0	30
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
,	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	X ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	$\frac{3}{2}$	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
2	<i>x</i> ₂	(2)	0	o	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

$$\mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} = [0, 5, 3] \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} - [3, 5] = [0, 0]$$

$$\mathbf{c} = [3, 5], \ [\mathbf{A}, \mathbf{I}] = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

For Iteration 2

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix}, \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix},$$

$$\mathbf{B}^{-1}\mathbf{A} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix},$$

$$\mathbf{c}_{B}\mathbf{B}^{-1} = [0, 5, 3] \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} = [0, \frac{3}{2}, 1],$$

$$\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c} = [0, 5, 3] \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} - [3, 5] = [0, 0] \quad \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}, \quad \mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{b} = [0, 5, 3] \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} = 36.$$

 x_5

$$\begin{bmatrix} 1 & \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} - \mathbf{c} & \mathbf{c}_B \mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \mathbf{A} & \mathbf{B}^{-1} \end{bmatrix} \begin{bmatrix} Z \\ \mathbf{x} \\ \mathbf{x}_s \end{bmatrix} = \begin{bmatrix} \mathbf{c}_B \mathbf{B}^{-1} \mathbf{b} \\ \mathbf{B}^{-1} \mathbf{b} \end{bmatrix}.$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & \frac{3}{2} & 1 \\
0 & 0 & 0 & 1 & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3}
\end{bmatrix}$$

Summary of the Revised Simplex Method

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

	150		1151					/45//	100
	Basic				Coeff	icient o	of:		Right
Iteration	Variable	Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	X5	Side
	Z	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	1_1_	0	1	0	0	4
O	x_4	(2)	0	0	2	0	1	0	12
	X ₅	(3)	0	3	2	0	0	1	18
	Z	(0)	1	-3	0	0	$\frac{5}{2}$	0	30
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	3 2	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
Z	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

■ TABLE 5.8 Initial and later simplex tableaux in matrix form

	Basic		Coefficient of:						
Iteration	Variable	Eq.	Z	Original Variables	Slack Variables	Right Side			
0	Z x _B	(0) (1, 2, , m)	1 0	— с А	0 I	0 b			
Any	Z x _B	(0) (1, 2, , m)	1 0	$\mathbf{c}_{\boldsymbol{\beta}}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c}$ $\mathbf{B}^{-1}\mathbf{A}$	c _β B ⁻¹ B ⁻¹	$c_{\beta}B^{-1}b$ $B^{-1}b$			

Optimality test:

1. Initialization (Iteration 0)

$$\mathbf{c} = [3, 5], \ [\mathbf{A}, \mathbf{I}] = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \ \mathbf{x}_s = \begin{bmatrix} x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \end{bmatrix}, \mathbf{B} = \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{B}^{-1}$$

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{4} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix}$$

$$\mathbf{c}_B = [0, 0, 0],$$
 so $Z = [0, 0, 0] \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = 0$

$$\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c} = [0, 0, 0] \begin{vmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 3 & 2 \end{vmatrix} - [3, 5] = [-3, -5]$$

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

								(4.57)	-
	Basic				Coeff	icient o	f:		Right
Iteration	Variable	Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X4	X5	Side
	Z	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	_1_	0	1	0	0	4
O	x_4	(2)	0	0	2	0	1	0	12
	<i>X</i> ₅	(3)	0	3	2	0	0	1	18
	Z	(0)	1	-3	0	0	5 2	0	30
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
,i	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>X</i> ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	3 2	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
2	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2
				-					

■ TABLE 5.8 Initial and later simplex tableaux in matrix form

	Basic		Coefficient of:						
Iteration	Variable	Eq.	Z	Original Variables	Slack Variables	Right Side			
0	Z x _B	(0) (1, 2, , m)	1 0	— с А	0 I	0 b			
Any	Z x _B	(0) (1, 2, , m)	1 0	$\mathbf{c}_{\boldsymbol{\theta}}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c}$ $\mathbf{B}^{-1}\mathbf{A}$	c _β B ⁻¹ B ⁻¹	$c_{\mathcal{B}}B^{-1}b$ $B^{-1}b$			

2. Iteration 1

Step 1: Determine the entering basic variable

$$\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c} = [0, 0, 0] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \end{bmatrix} - [3, 5] = [-3, -5]$$
$$-c_{2} = -5 < -3 = -c_{1}$$

So x_2 is chosen to be the entering variable.

Step 2: Determine the leaving basic variable

$$\mathbf{B}^{-1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -0 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -0 \\ -2 \\ -2 \end{bmatrix}$$
$$a_{12} = 0 \qquad a_{22} = 2 \qquad a_{32} = 2$$

$$b_{2}/a_{22} = \frac{12}{2} \quad b_{3}/a_{32} = \frac{18}{2}$$

So the number of the pivot row r = 2Thus, x_4 is chosen to be the leaving variable.

Step 3: Determine the new BF solution

The new set of basic variables is

$$\mathbf{x}_B = \begin{bmatrix} x_3 \\ x_2 \\ x_5 \end{bmatrix}$$

To obtain the new
$$\mathbf{B}^{-1}$$
, $\boldsymbol{\eta} = \begin{bmatrix} -\frac{a_{12}}{a_{22}} \\ \frac{1}{a_{22}} \\ -\frac{a_{32}}{a_{22}} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \\ -1 \end{bmatrix}$, $\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix}$

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{B}_{\text{new}}^{-1} = \mathbf{E}\mathbf{B}_{\text{old}}^{-1},$$

So the new \mathbf{B}^{-1} is

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

■ TABLE 5.8 Initial and later simplex tableaux in matrix form

	Basic		Coefficient of:						
Iteration	Variable	Eq.	Z	Original Variables	Slack Variables	Right Side			
0	Z x _B	(0) (1, 2, , m)	1 0	— с А	0 I	0 b			
Any	Z x _B	(0) (1, 2, , m)	1 0	$\mathbf{c}_{\boldsymbol{\theta}}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c}$ $\mathbf{B}^{-1}\mathbf{A}$	c _β B ⁻¹ B ⁻¹	$c_{\beta}B^{-1}b$ $B^{-1}b$			

Optimality test:

The nonbasic variables are x_1 and x_4 .

$$\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c} = [0, 5, 0] \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & -1 \\ 3 & -1 \end{bmatrix} - [3, -1] = [-3, -1],$$

$$\mathbf{c}_{B}\mathbf{B}^{-1} = [0, 5, 0] \begin{bmatrix} - & 0 & - \\ - & \frac{1}{2} & - \\ - & -1 & - \end{bmatrix} = [-, \frac{5}{2}, -],$$

II T	ABLE	5.8	Initial	and	later	simp	ex	tab	leaux	in	matrix	form	
------	------	-----	---------	-----	-------	------	----	-----	-------	----	--------	------	--

	Basic		Coefficient of:						
Iteration	Variable	Eq.	Z	Original Variables	Slack Variables	Right Side			
0	Z x _B	(0) (1, 2, , m)	1 0	— с А	0 I	0 b			
Any	Z x _B	(0) (1, 2, , m)	1 0	$\mathbf{c}_{\boldsymbol{\theta}}\mathbf{B}^{-1}\mathbf{A} - \mathbf{c}$ $\mathbf{B}^{-1}\mathbf{A}$	c _β B ⁻¹ B ⁻¹	$c_{\beta}B^{-1}b$ $B^{-1}b$			

3. Iteration 2

Step 1: Determine the entering basic variable

 x_1 is chosen to be the entering variable.

$$\mathbf{B}^{-1}\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & - \\ 0 & - \\ 3 & - \end{bmatrix} = \begin{bmatrix} 1 & - \\ 0 & - \\ 3 & - \end{bmatrix}. \qquad \mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix} \qquad \frac{\text{tteration } Variable }{\text{tteration } Variable } \underbrace{\mathbf{Eq.} \quad \mathbf{z} \cdot \mathbf{z}}_{\mathbf{x}_{s} \quad (1, 2, \dots, m)} \underbrace{\mathbf{R}_{s} \cdot \mathbf{x}}_{\mathbf{x}_{s} \quad (1, 2, \dots, m)} \underbrace{\mathbf{R}_{s} \cdot \mathbf$$

$$\mathbf{x}_B = \begin{bmatrix} x_3 \\ x_2 \\ x_5 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

 $c_8B^{-1}A - c$

 $c_8B^{-1}b$ $\mathbf{B}^{-1}\mathbf{b}$

The ratio 4/1 > 6/3 indicate that x5 is the leaving basic variable

Step 3: Determine the new BF solution

The new set of basic variables is

we set of basic variables is
$$\mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix} \quad \text{with} \quad \boldsymbol{\eta} = \begin{bmatrix} -\frac{a'_{11}}{a'_{31}} \\ -\frac{a'_{21}}{a'_{31}} \\ \frac{1}{a'_{31}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} \\ 0 \\ \frac{1}{3} \end{bmatrix}. \quad \mathbf{E} = \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

$$\mathbf{E} = \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

Therefore, the new \mathbf{B}^{-1} is

$$\mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}, \quad \mathbf{x}_{B} = \begin{bmatrix} x_{3} \\ x_{2} \\ x_{1} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 4 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}.$$

Optimality test:

The nonbasic variables are x_4 and x_5 .

$$\mathbf{c}_{B}\mathbf{B}^{-1} = [0, 5, 3] \begin{bmatrix} - & \frac{1}{3} & -\frac{1}{3} \\ - & \frac{1}{2} & 0 \\ - & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} = [-, \frac{3}{2}, 1].$$

Relationship between the initial and final simplex tableaux

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

	Basic				Coeffi	cient o	f:		Righ
Iteration	Variable	Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X4	X5	Side
	Z	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	_1_	0	1	0	0	4
U	X4	(2)	0	0	2	0	1	0	12
	<i>x</i> ₅	(3)	0	3	2	0	0	1	18
1	Z	(0)	1	-3	0	0	5 2	О	30
	<i>x</i> ₃	(1)	0	1	0	1	0	0	4
	<i>x</i> ₂	(2)	0	0	1	0	1/2	0	6
	<i>x</i> ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	$\frac{3}{2}$	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
2	<i>x</i> ₂	(2)	0	О	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

■ TABLE 5.8 Initial and later simplex tableaux in matrix form

Iteration 0	Basic Variable Z x _B			Dimba		
		Eq.	Z	Original Variables	Slack Variables	Right Side
		(0) (1, 2, , m)	1 0	-с А	0 I	0 b
	-	(0)	}	3	- -1	n -1•
Any	Z x _B	(0) (1, 2, , m)	0	$c_B B^{-1} A - c$ $B^{-1} A$	c _β B ⁻¹ B ⁻¹	$c_{\beta}B^{-1}b$ $B^{-1}b$

Initial Tableau

Row 0: $\mathbf{t} = [-3, -5 \mid 0, 0, 0 \mid 0] = [-\mathbf{c} \mid \mathbf{0} \mid 0].$

Other rows: $\mathbf{T} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 1 & 0 & 12 \\ 3 & 2 & 0 & 0 & 1 & 18 \end{bmatrix} = [\mathbf{A} \mid \mathbf{I} \mid \mathbf{b}].$

Combined: $\begin{bmatrix} \mathbf{t} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} -\mathbf{c} & \mathbf{0} & \mathbf{0} \\ \mathbf{A} & \mathbf{I} & \mathbf{b} \end{bmatrix}.$

Final Tableau

Row 0: $\mathbf{t}^* = [0, 0 \mid 0, \frac{3}{2}, 1 \mid 36] = [\mathbf{z}^* - \mathbf{c} \mid \mathbf{y}^* \mid Z^*].$

Other rows: $\mathbf{T}^* = \begin{bmatrix} 0 & 0 & 1 & \frac{1}{3} & -\frac{1}{3} & 2 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 6 \\ 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3} & 2 \end{bmatrix} = [\mathbf{A}^* \mid \mathbf{S}^* \mid \mathbf{b}^*].$

Combined: $\begin{bmatrix} \mathbf{t}^* \\ \mathbf{T}^* \end{bmatrix} = \begin{bmatrix} \mathbf{z}^* - \mathbf{c} & \mathbf{y}^* & \mathbf{Z}^* \\ \mathbf{A}^* & \mathbf{S}^* & \mathbf{b}^* \end{bmatrix}.$

 $z^* = c_B B^{-1} A$ $y^* = c_B B^{-1}$ $Z^* = c_B B^{-1} b$ $A^* = B^{-1} A$ $S^* = B^{-1}$ $b^* = B^{-1} b$

(1)
$$t^* = t + y^*T = [y^*A - c \mid y^* \mid y^*b] = [c_{\beta}B^{-1}A - c \mid c_{\beta}B^{-1} \mid c_{\beta}B^{-1}b]$$

(2) $T^* = S^*T = [S^*A \mid S^* \mid S^*b] = [B^{-1}A \mid B^{-1} \mid B^{-1}b]$

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Iteration	Basic Variable			Dialet					
		Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	X4	<i>x</i> ₅	Right Side
	Z	(0)	1	-3	-5	0	0	0	0
0	<i>X</i> ₃	(1)	0	_1_	0	1	0	0	4
U	X4	(2)	0	0	2	0	1	0	12
_	X ₅	(3)	0	3	2	0	0	1	18
	Z	(0)	1	-3	0	0	$\frac{5}{2}$	0	30
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	X ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	$\frac{3}{2}$	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	$\frac{1}{3}$	$-\frac{1}{3}$	2
2	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

Initial Tableau

Row 0: $\mathbf{t} = [-3, -5 \mid 0, 0, 0 \mid 0] = [-\mathbf{c} \mid \mathbf{0} \mid 0].$

Other rows: $\mathbf{T} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 1 & 0 & 12 \\ 3 & 2 & 0 & 0 & 1 & 18 \end{bmatrix} = [\mathbf{A} \mid \mathbf{I} \mid \mathbf{b}].$

Combined: $\begin{bmatrix} \mathbf{t} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} -\mathbf{c} & \mathbf{0} & \mathbf{0} \\ \mathbf{A} & \mathbf{I} & \mathbf{b} \end{bmatrix}.$

For iteration 1:

$$\mathbf{S}^* = \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \qquad \mathbf{y}^* = \begin{bmatrix} 0, & \frac{5}{2}, & 0 \end{bmatrix}$$

$$\mathbf{t}^* = \mathbf{t} + \mathbf{y}^* \mathbf{T} = [-3, -5 \mid 0, 0, 0 \mid 0] + [0, \frac{5}{2}, 0] \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & | & 4 \\ 0 & 2 & 0 & 1 & 0 & | & 12 \\ 3 & 2 & 0 & 0 & 1 & | & 18 \end{bmatrix} = [-3, 0, 0, \frac{5}{2}, 0], 30$$

$$\mathbf{T}^* = \mathbf{S}^* \mathbf{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 1 & 0 & 12 \\ 3 & 2 & 0 & 0 & 1 & 18 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & 0 \\ 3 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{pmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$$

■ TABLE 4.8 Complete set of simplex tableaux for the Wyndor Glass Co. problem

Iteration	Basic Variable		Coefficient of:						
		Eq.	Z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>x</i> ₄	<i>x</i> ₅	Right Side
0	Z	(0)	1	-3	-5	0	0	0	0
	<i>X</i> ₃	(1)	0	_11	0	1	0	0	4
U	X4	(2)	0	0	2	0	1	0	12
	X ₅	(3)	0	3	2	0	0	1	18
	Z	(0)	1	-3	0	0	5/2	0	30
1	<i>X</i> ₃	(1)	0	1	0	1	0	0	4
	<i>x</i> ₂	(2)	0	o	1	0	$\frac{1}{2}$	0	6
	<i>X</i> ₅	(3)	0	3	0	0	-1	1	6
	Z	(0)	1	0	0	0	3 2	1	36
2	<i>x</i> ₃	(1)	0	0	0	1	<u>1</u>	$-\frac{1}{3}$	2
	<i>x</i> ₂	(2)	0	0	1	0	$\frac{1}{2}$	0	6
	<i>x</i> ₁	(3)	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	2

Initial Tableau

Row 0: $\mathbf{t} = [-3, -5 \mid 0, 0, 0 \mid 0] = [-\mathbf{c} \mid \mathbf{0} \mid 0].$

Other rows: $\mathbf{T} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 1 & 0 & 12 \\ 3 & 2 & 0 & 0 & 1 & 18 \end{bmatrix} = [\mathbf{A} \mid \mathbf{I} \mid \mathbf{b}].$

Combined: $\begin{bmatrix} \mathbf{t} \\ \mathbf{T} \end{bmatrix} = \begin{bmatrix} -\mathbf{c} & \mathbf{0} & \mathbf{0} \\ \mathbf{A} & \mathbf{I} & \mathbf{b} \end{bmatrix}.$

For iteration 2:

$$\mathbf{S}^* = \mathbf{B}^{-1} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \qquad \mathbf{y}^* = \begin{bmatrix} 0, & \frac{3}{2}, & 1 \end{bmatrix}$$

$$\mathbf{t}^* = \mathbf{t} + \mathbf{y}^* \mathbf{T} = \begin{bmatrix} -3, & -5 & \vdots & 0, & 0, & 0 & \vdots & 0 \end{bmatrix} + \begin{bmatrix} 0, & \frac{3}{2}, & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 1 & 0 & 12 \\ 3 & 2 & 0 & 0 & 1 & 18 \end{bmatrix} = \begin{bmatrix} 0, & 0, & \boxed{0, & \frac{3}{2}, & 1} \end{bmatrix}, 36$$

$$\mathbf{T}^* = \mathbf{S}^* \mathbf{T} = \begin{bmatrix} 1 & \frac{1}{3} & -\frac{1}{3} \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 4 \\ 0 & 2 & 0 & 1 & 0 & 12 \\ 3 & 2 & 0 & 0 & 1 & 18 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & \frac{1}{3} & -\frac{1}{3} & 2 \\ 0 & 1 & 0 & \frac{1}{2} & 0 & 6 \\ 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3} & 2 \end{bmatrix}$$

- · Computationally effective modification of the standard Simplex Method.
- Unfortunately our examples are too small to make the computational savings significant. You may even get an impression that it is more time consuming.
- However for large problems, particularly where n is much greater than m, the saving could be significant.

Acknowledgements

- Dr. Yicheng Wang (Visiting Researcher, CADSWES during Fall 2009 early Spring 2010) for slides from his Optimization course during Fall 2009
- Introduction to Operations Research by Hillier and Lieberman, McGraw Hill
- Hughes-McMakee-notes\chapter-05.pdf