Table of Contents Assignment for IoT Lab 1

1	Tack	A coid	TD MO O D	+
⊥.	iask	ASSI	gnmen [.]	ι

- 2. Documentation
- 3. Final Deliverables
- 4. Submission Instructions
- 5. References

- > Task 1 (20 points):
- 1. Set up a WDT that reset without clearing it.
- 2. Set the Blue LED at the beginning of the program.
- 3. Clock (clock generator 2) frequency: 2048 Hz
- 4. Set the WDT period to 2 seconds.
- 5. Observe the behavior of the blue LED.
- 6. Do nothing in the main loop ().
- > Task 2 (20 points):
- Case 1: Set up a loop that clears the WDT.
- ✓ Set the Blue LED at the beginning of the program.
- ✓ Clock (clock generator 2) frequency: 2048 Hz
- ✓ Set the loop period to 1 second, loop 10 times in the main loop () function such that it repeats.
- ✓ Clear(kick) the WDT in the loop
- ✓ Count down the number of loops and print a countdown message.

```
SerialUSB.print("Countdown");
SerialUSB.println(number);
```

Output:

Countdown 9

Countdown 8

Countdown 7

- ✓ Set the period using the delay(ms) function.
- ✓ Set the WDT period to 4 seconds.

- Case 2: Try it again without clearing WDT by commenting on the corresponding lines.
- ✓ Compare case 1 with clearing WDT and case 2 without clearing WDT and
 record the system behavior from the LED and the serial monitor message.

Question Task 2:

Discuss and explain the differences between the two cases.

- > Task 3 (10 points):
- ✓ Write a function that generates a WDT period by arbitrary input.
- ✓ Clock (clock generator 2) frequency: 2048 Hz
- ✓ Function input: period (millisecond)
- ✓ Function:
 - Calculate the register value based on the period
 - Take the floor to the closest value for values that cannot be mapped to register value.
- ✓ Example function:

```
int setWatchdog(int period)
{
// your code
return register_value;
}
// Configure WDT
WDT->CONFIG.bit.PER = setWatchdog(period);
```

✓ Test it in the scenario of Task 1

Question Task 3:

- 1. How to get an accurate WDT period?
- 2. Is it necessary to use an accurate period?
- > Task 4 (10 points):

For CSCE 838 Students" Mandatory" and CSCE 438 Students "Bonus"

- ✓ After a reset event is there a way for the MCU to figure out if the last reset was due to WDT? If yes,
- ✓ -Write code that detects if the last reset was due to WDT:
- ✓ If it was due to WDT, print a message in the console.
- ✓ What could be the importance of checking if the last reset was due to WDT? If
 no,
- ✓ Explain why it is not possible.

Documentation:

- ✓ Record your development process.
 - 1. Define Requirements
 - 2. Write Code
 - 3. Test
 - 4. Result

> - Final Deliverables:

- ✓ Report:
- 1. The requirements for each task
- 2. Development plan:
 - The procedure for solving the problem
 - The configurations used for each task
- 3. Test plan
- 4. Results:
 - Answer the questions following each task
 - Code snippets for each function
 - Figures in the report:
 - Screenshots that show you complete the required functions (serial message and Arduino IDE warning)
 - Pictures that show you complete the required functions if necessary
 - Test results
 - For example, varying the WDT period to see how results change
- ✓ The entire program (Arduino sketch) in the appendix

> Submission Instructions:

- ✓ Submit your lab on Canvas on or before the deadline (Sep 2nd, 8:29 a.m.)
- ✓ Your submission should include one single .pdf explaining everything asked in the tasks and screenshots if any.
- ✓ Your submission should also include all the code you have worked on with proper documentation.
- ✓ Failing to follow the instructions will make you lose points.

> References:

✓ SparkFun SAMD21 Pro RF Hookup Guide:
https://learn.sparkfun.com/tutorials/sparkfun-samd21-pro-rf-hookup-guide?ga=2.127628877.1139230921.1561643965-

144910588.1557512622#setting-up-arduino

✓ SparkFun Pro RF Documentation: https://www.sparkfun.com/products/14916