Mitigating Loan Default Risks

As a data analyst in the finance industry, the primary goal is to mitigate loan default risks and optimize the loan approval process for urban customers. By understanding loan default patterns, the aim is to minimize financial losses while ensuring capable applicants are not rejected.

Data Preprocessing and Cleaning

Data Exploration

1. Loading the data:

Formula: app_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Bank loan case study project./application_data.csv')

prev_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Bank loan case study project./previous_application.csv')

2. Checking the shape, structure and other info of data:

Formulas:

```
1 app_data.shape
(49999, 122)
 1 prev_data.shape
(49999, 37)
[ ] 1 app_data.head()
        SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY CNT_CHILDREN AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE NAME_1
                                Cash loans
                                                                                                 202500.0
                                                                                                           406597.5
                                                                                                                       24700.5
                                                                                                                                    351000.0
           100003
                                                                                                 270000.0 1293502.5
                                                                                                                                   1129500.0
                                Cash loans
                                                                                                                                    135000.0 Unac
           100004
                             Revolving loans
                                                                                                 67500.0
                                                                                                           135000.0
                                                                                                                       6750.0
                                                                                                                                    297000.0
                                                                                                 121500.0
                                                                                                           513000.0
                                                                                                                       21865.5
           100007
                                Cash loans
                                                                                                                                    513000.0
 [ ] 1 prev_data.head()
        SK_ID_PREV SK_ID_CURR NAME_CONTRACT_TYPE AMT_ANNUITY AMT_APPLICATION AMT_CREDIT AMT_DOWN_PAYMENT AMT_GOODS_PRICE WEEKDAY_APPR_PROCESS_START HOUR_APPR_PROC
          2030495
                     271877
                                                              17145.0
                                                                        17145.0
                                                                                           0.0
                                                                                                      17145.0
                                                                                                                            SATURDAY
                                Consumer loans
                                               1730.430
          2802425
                     108129
                                    Cash loans
                                              25188.615
                                                              607500.0
                                                                        679671.0
                                                                                                     607500.0
                                                                                                                            THURSDAY
          2523466
                                   Cash loans
                                                              112500.0
                                                                                                     112500.0
                                                                                                                             TUESDAY
                                                                        470790.0
          2819243
                     176158
                                   Cash loans
                                              47041.335
                                                              450000.0
                                                                                                     450000.0
                                                                                                                             MONDAY
   1 app_data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 49999 entries, 0 to 49998
 Columns: 122 entries, SK_ID_CURR to AMT_REQ_CREDIT_BUREAU_YEAR
 dtypes: float64(64), int64(42), object(16)
```

2 — Data cleaning

memory usage: 46.5+ MB

Removing the columns that have more the 30% null values.

- following are the steps and formulas:
- Formula: null_data = app_data.isnull().sum()/49999*100

1. Finding out the columns that have more then 30% null values.

- Ctaring the columns Index into different data France

2. Storing the columns Index into different data Frame.

Formula: drop col = null data[null data >= 30].index

Formula: app_data_nonull = app_data.drop(columns= drop_col)

3. Removing the columns

dtype='object')

Checking the shape of data to ensure that the columns has been removed.

```
(49999, 72)
4. Removing the Columns that we do no require for this analysis.
```

1 app_data_nonull.shape

Formula:

app_data_nonull.drop(columns = ['FLAG_MOBIL', 'FLAG_EMP_PHONE',

```
'FLAG_WORK_PHONE', 'FLAG_CONT_MOBILE', 'FLAG_PHONE',
'FLAG_EMAIL','REG_REGION_NOT_LIVE_REGION', 'REG_REGION_NOT_WORK_REGION',
'LIVE_REGION_NOT_WORK_REGION', 'REG_CITY_NOT_LIVE_CITY',
'REG_CITY_NOT_WORK_CITY', 'LIVE_CITY_NOT_WORK_CITY','EXT_SOURCE_2',
'EXT_SOURCE_3', 'OBS_30_CNT_SOCIAL_CIRCLE', 'DEF_30_CNT_SOCIAL_CIRCLE',
'OBS_60_CNT_SOCIAL_CIRCLE', 'DEF_60_CNT_SOCIAL_CIRCLE','FLAG_DOCUMENT_2',
'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_4', 'FLAG_DOCUMENT_5',
'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_7', 'FLAG_DOCUMENT_11',
'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14',
'FLAG_DOCUMENT_15', 'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17',
'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19', 'FLAG_DOCUMENT_20',
'FLAG_DOCUMENT_21'], inplace = True)
Ensuring that columns has been removed.
```

1 app_data_nonull.shape
(49999, 34)

```
Repeat the following steps for prev_data as well to clean that data.
```

Dealing with the columns that have null values less the 30%.

Formula: app_data_nonull.isnull().sum().sort_values(ascending = True)

DAYS_LAST_PHONE_CHANGE 1
AMT_ANNUITY 1
CNT_FAM_MEMBERS 1
AMT_GOODS_PRICE 38

1. Finding out the null values:

NAME_TYPE_SUITE 192
AMT_REQ_CREDIT_BUREAU_HOUR 6734
AMT_REQ_CREDIT_BUREAU_DAY 6734
AMT_REO_CREDIT_BUREAU_WEEK 6734

```
AMT_REQ_CREDIT_BUREAU_MON 6734
AMT_REQ_CREDIT_BUREAU_MON 6734
AMT_REQ_CREDIT_BUREAU_QRT 6734
AMT_REQ_CREDIT_BUREAU_YEAR 6734
dtvpe: int64

2. Columns that have null values less the 1 or 2 % we can replace those null values with mean, median or mode and the columns that have more than that we will drop those rows.
```

1 ## dealing with DAYS_LAST_PHONE_CHANGE

270.000000

AMT_GOODS_PRICE AND NAME_TYPE_SUITE we will replace the null values with mean, median or mode and for rest of the columns we will drop the rows.

Formula:

for columns DAY_LAST_PHONE_CHARGE, AMT_ANNUITY, CNT_FAM_MEMBER,

```
755.000000
50%
75%
        1573.000000
        4002.000000
Name: DAYS_LAST_PHONE_CHANGE, dtype: float64
 1 # filling the null with mean
  2 app_data_nonull['DAYS_LAST_PHONE_CHANGE'].fillna(964, inplace = True)
 1 ## dealing with AMT_ANNUITY
   2 app_data_nonull['AMT_ANNUITY'].describe()
            49998.000000
 count
 mean
           27107.377355
           14562.944435
 std
           2052.000000
 min
 25%
           16456.500000
 50%
           24939.000000
 75%
           34596.000000
 max
          258025.500000
 Name: AMT_ANNUITY, dtype: float64
 1 app_data_nonull['AMT_ANNUITY'].median()
24939.0
 1 # replacing null with median
 2 app_data_nonull['AMT_ANNUITY'].fillna(24939.0, inplace = True)
  1 ## dealing with CNT_FAM_MEMBERS
  2 app_data_nonull['CNT_FAM_MEMBERS'].describe()
         49998.000000
 count
             2.158946
 mean
             0.911332
 min
             1.000000
 25%
             2.000000
             2.000000
 75%
             3.000000
            13.000000
 Name: CNT_FAM_MEMBERS, dtype: float64
  1 app_data_nonull['CNT_FAM_MEMBERS'].mode()
 Name: CNT FAM MEMBERS, dtype: float64
1 # replacing the null with mode
2 app_data_nonull['CNT_FAM_MEMBERS'].fillna(2, inplace = True)
  1 ## dealing with AMT_GOODS_PRICE
  2 app_data_nonull['AMT_GOODS_PRICE'].describe()
        4.996100e+04
count
         5.390600e+05
         3.698533e+05
         4.500000e+04
        2.385000e+05
        4.500000e+05
        6.795000e+05
        4.050000e+06
Name: AMT_GOODS_PRICE, dtype: float64
1 # replacing null with mean
2 m = app_data_nonull['AMT_GOODS_PRICE'].mean()
3 app_data_nonull['AMT_GOODS_PRICE'].fillna(m, inplace = True)
   1 # Dealing with NAME TYPE SUITE
   2 app_data_nonull['NAME_TYPE_SUITE'].head()
```

Repeat the following steps for prev_data as well to clean that data.

Unaccompanied

Unaccompanied

Family

1

Identifying Outliers in the Dataset

<u>Using a Box Plot to detect outliers.</u>

* Creating a function to detect outliers using box plot.

```
def box_plot(df, col):
df.boxplot(column = [col])
plt.grid(False)
plt.show()
```

* Creating a function to detect outliers.

```
def outliers(df, col):
sorted(df[col])
Q1 = df[col].quantile(0.25)
Q3 = df[col].quantile(0.75)
IQR = Q3 - Q1
Lower_bound = Q1 - 1.5 * IQR
Upper_bound = Q3 + 1.5 * IQR
df['OL'] = np.where(df[col] < Lower_bound, 0,
np.where(df[col]> Upper_bound,0,1))
return df['OL']
Output:
1 # creating a box plot of all numarical columns to detect outliers
2 box_plot(app_data_nonull,'CNT_CHILDREN')
10
 8
```

- CNT_CHILDREN
- Now we will see the count of outliers by calling 2 function.

• As we can see that there are outliers present in the columns using Box Plot

```
] 1 # Finding out the number of Outlier present in CNT_CHILDREN
   2 count_OL = app_data_nonull[outliers(app_data_nonull,'CNT_CHILDREN') == 0]
   3 count_OL['OL'].head()
  91
  92
  144
  180
  182
  Name: OL, dtype: int64
1 count_OL['OL'].count()
  629
```

- we have total 629 outliers present in the CNT_CHILDREN Columns.
- If you want u can remove the outliers using python, drop function.
- But, for now we will this as it is.

count = app_data_nonull['TARGET'].count()

By calling the same function that we have created we have to find out outliers for all the columns that contain integer or float values.

Identifying the data imbalance

* Finding out the percentage of loan approved and denied.

Formula:

```
perc_1 = len(app_data_nonull[app_data_nonull['TARGET']==1])/count*100
perc_0 = len(app_data_nonull[app_data_nonull['TARGET']==0])/count*100
print('0 = ', round((perc_0),2),'%')
print('1 =' ,round((perc_1),2),'%')
 0 = 92.28 \%
 1 = 7.72 \%
o stand for approved and 1 stand for denied.
```

* Creating a pie diagram to show the percentage.

```
1 pie = (perc_1,perc_0)
2 Label = ['1','0']
3 colour = ['r', 'beige']
4 plt.pie(pie, labels = Label, explode = [0.2,0.0], shadow = True , colors = colour, startangle=90, autopct='%.2f')
5 plt.legend()
6 plt.show()
                                            1
                        92.28
```

* Finding out the Imbalance Ratio 1 imbalance_ratio = len(app_data_nonull[app_data_nonull['TARGET']==0])/len(app_data_nonull[app_data_nonull['TARGET']==1])

```
2 "Imbalance_Ratio : 1:{:.2f}".format(imbalance_ratio)
'Imbalance_Ratio : 1:11.95'
```

Findings: I found out that on every loan application which are getting denied we have approximately 12 loans application which are getting accepted.

- The data set exhibits data imbalance because the no. of loans application that are
- getting accepted far exceeds the no. of application that are getting rejected. · this can pose a challenge to the ML algorithm because they may become biased towards

the majority data and can have difficulties in accurately predicting the minority data.

Univariate, Segmented Univariate, and Bivariate Analysis with Excel

• Before starting the analysis in Excel, I have downloaded the cleaned data from python.

Formula: app_data_nonull.to_csv('Application_data.csv')

- To perform *Univariate, Segmented Univariate, and Bivariate Analysis I have created a Bins for the columns CNT_FAM_MEMBER and AMT_INCOME_TOTAL*
- Using CNT_FAM_MEMBER we will try to identify the pattern does size of family affect the ability of person to repay the loan.
- Using the AMT_INCOME_TOTAL we will try to identify that does income affect the loan repayment.

BIN OUTPUT:

CNT_FAM_MEMBER Bin	Applicants	TARGET(0) TARGET(1)		
0-1	9173	8446	727	
1-3	29972	27723	2249	
3-6	4097	3738	359	
6-9	20	17	3	
9-12	2	1	1	
12 and above	1	0	1	

AMT_INCOME_TOTAL Bin	Average of AMT_CREDIT
0 - 27K	10757.25
27k - 198K	23594.65
198K - 369K	34579.93
369K - 540K	44485.13
540K - 711K	48997.53
711K - 882K	59856.42
882K - 1.05M	57836.63
1.05M - 1.22M	55113.75
1.22M - 1.40M	42635.5
1.40M - 1.74M	45000
1.74M and Above	53929.69

• Conducted univariate analysis using Excel functions like COUNT, AVERAGE, and MEDIAN to understand the distribution of Applicant per Bin of CNT_FAM_MEMBER

Output:

Finding: I found out that an individual with the family size range in between 1 to 3 are applying for a loan are more than the other ranges.

• Performed segmented univariate analysis using Excel features like filters and pivot tables to compare the loan approved and denied per CNT_FAM_MEMBER Bin.

Output:

Finding: Most loans are approved for an individual with the family size range in between 1 to 3 and most loans are denied for an individual with the same size of family range.

- Conducted bivariate analysis using pivot tables in Excel to explore relationships between Average of AMT_CREDIT and AMT_INCOME_TOTAL Bin.
- Output:

Finding: The individual with the income ranges in between 711k to 882k are get the highest amount credit.

Correlation Analysis

1 Correlation Identification

Identify top correlations between variables and loan default for each segment.

Calculated correlation coefficients between variables and the target variable within each segment using Excel functions like CORREL.

Output:

	3. <u>5141</u>	1.0	**				
	Cor	relation of Ap	plicant w	ith payme	nt made on time		
	CNT_FAM_MEMBER	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	REGION_POPULATION_RELATIVE	DAYS_EMPLOYED	REGION_RATING_CLIEN
CNT_FAM_MEMBER	1.00	0.04	0.06	0.08	-0.02	-0.24	0.0
AMT_INCOME_TOTAL	0.04	1.00	0.37	0.45	0.18	-0.16	-0.2
AMT_CREDIT	0.06	0.37	1.00	0.77	0.10	-0.08	-0.10
AMT_ANNUITY	0.08	0.45	0.77	1.00	0.12	-0.11	-0.13
REGION_POPULATION_RELATIVE	-0.02	0.18	0.10	0.12	1.00	-0.00	-0.54
DAYS_EMPLOYED	-0.24	-0.16	-0.08	-0.11	-0.00	1.00	0.04
REGION_RATING_CLIENT	0.02	-0.21	-0.10	-0.13	-0.54	0.04	1.00
	= =						
	C	orrelation of A	pplicant	with payn	nent Difficulties		
	CNT_FAM_MEMBER		AN PRESIDENCE CONTRACTOR		REGION_POPULATION_RELATIVE	DAYS EMPLOYED	REGION_RATING_CLIEN
CNT_FAM_MEMBER	1.00	0.01	0.06	0.08	-0.03	-0.18	0.07
AMT_INCOME_TOTAL	0.01	1.00	0.01	0.02	-0.01	-0.01	-0.01
AMT_CREDIT	0.06	0.01	1.00	0.74	0.08	-0.00	-0.05
AMT_ANNUITY	0.08	0.02	0.74	1.00	0.07	-0.09	-0.05
REGION_POPULATION_RELATIVE	-0.03	-0.01	0.08	0.07	1.00	0.00	-0.42
DAYS_EMPLOYED	-0.18	-0.01	-0.00	-0.09	0.00	1.00	-0.03
REGION_RATING_CLIENT	0.07	-0.01	-0.05	-0.05	-0.42	-0.01	1.00

Insights from EDA and Data Analysis

Valuable Insights

Gain valuable insights into the factors influencing loan default using a combination of Python and Excel for analysis.

Data Interpretation

In-depth data interpretation highlighted the importance of a hybrid approach combining different tools and techniques.

Technology Stack Utilized

Python Usage

Leverage Python for EDA, data cleaning, outlier identification, and data imbalance detection.

Excel Tools

Utilize Excel for univariate, segmented univariate, bivariate analysis, and identifying top correlations.

Result and Impact

1 Project Outcome

The project successfully addressed the key objectives of identifying patterns related to loan default risk.

2 Insightful Decisions

Valuable insights inform decisionmaking processes, enabling more
informed loan approval and risk
assessment strategies.

The Importance of Data Analysis

2

Effective Analysis

By leveraging Python for advanced data analysis and Excel for data visualization, valuable insights were gained.

1

Hybrid Approach

The project highlighted the importance of a hybrid approach combining different tools and techniques for analyzing complex datasets.

Linkes

- Python Source code
- Excel File
- Video Presentation

