总复习例题选讲

数学与统计学院 李换琴

线性代数与解析几何 2

2020/12/31

例4 设A为n阶可逆方阵 $(n \ge 2)$, 求 $[(A^*)^*]^{-1}$.

$$\begin{array}{ll}
\mathbf{M} & AA^* = |A|I, & |A| \cdot |A^*| = |A|^n \implies |A^*| = |A|^{n-1} \\
\Rightarrow A^* = |A|A^{-1}, & \Rightarrow (A^*)^* = |A^*|(A^*)^{-1} \\
\Rightarrow [(A^*)^*]^{-1} = \frac{1}{|A^*|} A^* = \frac{1}{|A|^{n-1}} |A|A^{-1} \\
&= \frac{1}{|A|^{n-2}} A^{-1}
\end{array}$$

例5 若方阵A满足 $A^2 - 3A - 2I = 0$,其中I是与A同阶的单位矩阵, 求 A^{-1} .

$$A(A-3I) = 2I \Rightarrow A^{-1} = \frac{1}{2}(A-3I)$$

线性代数与解析几何 2020/12/31

例6 设 $\alpha_1, \alpha_2, \alpha_3$ 均为3维列向量,方阵 $A = [\alpha_1 \ \alpha_2 \ \alpha_3],$ $B = [\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_3, -\alpha_3],$ 已知|A| = a,求|B|.

 $\mathbf{A} = [\alpha_1 + 2\alpha_2, 2\alpha_2 + 3\alpha_3, -\alpha_3]$

$$= \left[\alpha_1 \ \alpha_2 \ \alpha_3\right] \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 3 & -1 \end{bmatrix} = AP, \quad P = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 3 & -1 \end{bmatrix}$$

 $\Rightarrow |B| = |A| \cdot |P| = -2a$

变形1: 若A可逆,证明B可逆。变形2: 证明r(A) = r(B)变形3: 设A的列组是 R^3 的一个基,证明B列组也是 R^3 的基。变形4: 设 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,判定 $\alpha_1+2\alpha_2,2\alpha_2+3\alpha_3,-\alpha_3$ 的线性相关性。

例7 设A,B是两个n阶实方阵, $M = \begin{pmatrix} A & B \\ B & A \end{pmatrix}$ 是一个分块矩阵, 证明: r(M) = r(A+B) + r(A-B). 2018.12

$$\begin{array}{ccc}
\stackrel{\bullet}{\text{IE}} & \begin{pmatrix} A & B \\ B & A \end{pmatrix} & \xrightarrow{c_{n+i,i}(-1)} \begin{pmatrix} A-B & B \\ B-A & A \end{pmatrix}$$

$$\xrightarrow[i=1,\dots,n]{r_{i,\text{max}}(1)} \begin{pmatrix} A-B & B \\ O & A+B \end{pmatrix} \xrightarrow[i=1,\dots,n]{r_{i,\text{max}}(\frac{1}{2})} \begin{pmatrix} A-B & \frac{A+B}{2} \\ O & A+B \end{pmatrix}$$

$$\xrightarrow[\stackrel{r_{n+i,i}(-\frac{1}{2})}{-i=1,\cdots,n} \begin{pmatrix} A-B & O \\ O & A+B \end{pmatrix} \Longrightarrow r(M) = r(A+B) + r(A-B)$$

$$若M \to \begin{pmatrix} A-B & O \\ O & A+B \end{pmatrix} \Rightarrow r(M) = r(A+B) + r(A-B)$$

第4章习题课 2020/12/31

例8 一直线过点 A(2,-3,4),且和 y 轴与直线 $\frac{x}{2} = y - 1 = \frac{z+1}{-1}$ 都相交,求其方程.

解 Π 所求直线在点 Λ 和 γ 轴确定的平面 Π , 上,也在点 Λ 与已知直线确定的平面 Π , 上,

在y轴上取坐标原点O,则 Π_1 的法向量为

$$\vec{n}_1 = \overrightarrow{OA} \times \vec{j} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 4 \\ 0 & 1 & 0 \end{vmatrix} = -4\vec{i} + 2\vec{k}$$

a = (2,1,-1)

 Π_1 的方程为-4(x-2)+2(z-4)=0, 即2x-z=0;

同理求得 Π ,的方程: x-12y-10z+2=0.

故所求直线方程 $\begin{cases} 2x-z=0, \\ x-12y-10z+2=0. \end{cases}$

古线与平面

例9证明三个平面: x+y-2z-1=0, x+2y-z+1=0, 4x+5y-7z-2=0相交于一条直线

得
$$\begin{cases} x+y-2z-1=0 \\ x+2y-z+1=0 \\ 4x+5y-7z-2=0 \end{cases}$$
的通解为 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix}$

所以三个平面的交点坐标满足关系式

$$\frac{x-3}{3} = \frac{y+2}{-1} = \frac{z-0}{1}$$

故三个平面相交于一条直线.

线性代数与解析几何 2020/12/31

第4章 向量与线性方程组

1、线性方程组有解判定定理

 $A_{m \times n} x = b$ 有解 $\Leftrightarrow r(A) = r(\overline{A})$ 当有解时,解的情形分为两种:

- (1)有唯一解 $\Leftrightarrow r(A) = r(\overline{A}) = n$;
- (2)有无穷多解 $\Leftrightarrow r(A) = r(\overline{A}) < n$.

2、与齐次方程组Ax=0解有关的几个等价命题

Ax = 0只有零解 \iff A的列向量组线性无关

r(A) = n

Ax = 0有非零解 ← A的列向量组线性相关

 $\iff r(A) < n$

线性代数与解析几何 2020/12/31

3、非齐次线性方程组有解的几个等价命题

线性方程组 Ax = b有解 记 $A = [\alpha_1, \alpha_2, \dots, \alpha_n]$

- \Leftrightarrow 向量 b 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表示.
- \Leftrightarrow 向量组 $\alpha_1,\alpha_2,\dots,\alpha_n$ 与向量组 $\alpha_1,\alpha_2,\dots,\alpha_n,b$ 等价.
- $\Leftrightarrow R(\alpha_1,\alpha_2,\cdots,\alpha_n) = R(\alpha_1,\alpha_2,\cdots,\alpha_n,b) \Leftrightarrow R(A) = R(\overline{A})$

4、非齐次线性方程组 Ax = b的通解为

 $x = k_1 \xi_1 + k_2 \xi_2 + \dots + k_{n-r} \xi_{n-r} + \eta^*$.

其中 $k_1\xi_1 + k_2\xi_2 + \cdots + k_{n-r}\xi_{n-r}$ 为其导出组的通解, η^* 为非齐次线性方程组的任意一个特解.

线性代数与解析几何 2020/12/31

10

5、向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性相关(线性无关)

方程组 $x_1\alpha_1 + \cdots + x_s\alpha_s = 0$ 有非零解 (只有零解) 矩阵 $[\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_s]$ 的秩小于 s(等于 s)

6、有关秩的问题

- (1) r(A) = A的列秩 = A的行秩
- (2) 若向量组(I)可由(II)线性表示,则r(I)≤r(II).
- (3) 若向量组(I)与(II)等价,则r(I) = r(II).

(4)
$$r(A^*) = \begin{cases} n, r(A) = n \\ 1, r(A) = n - 1 \\ 0, r(A) < n - 1 \end{cases}$$
 (5) $r\begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B)$

 $(6)r(AB) \le \min\{r(A), r(B)\}; (7)r(A+B) \le r(A) + r(B);$

(8) 若 $A_{m \times n}B = O$,则 $r(A) + r(B) \le n$. 线性代数与解析几何 2020/12/31 $A(\eta_1 + 2\eta_2) - A(2\eta_2 + \eta_3) = 3b - 3b = 0$

例10 设3元非齐次线性方程组4x = b 的三个解向量

故 $\xi_1 = (\eta_1 + 2\eta_2) - (2\eta_2 + \eta_3) = (1, 2 - 3)^T$ 是Ax = 0的基础解系.

 η_1, η_2, η_3 满足 $\eta_1 + 2\eta_2 = (3, 0, -6)^T, 2\eta_2 + \eta_3 = (2, -2, -3)^T$

且r(A)=2,则该方程组的通解是 (2016.12)

解 r(A) = 2, Ax = 0的基础解系所含向量的个数为1.

又 $\frac{1}{3}(\eta_1 + 2\eta_2)$ 是Ax = b的解,所以Ax = b的通解为 $x = k(1,2-3)^T + (1,0,-2)^T \quad (k$ 为任意).

线性代数与解析几何 2020/12/31

 $A\eta_1 = b, A\eta_2 = b, A\eta_3 = b$

12

例11 已知齐次线性方程组Ax = 0的基础解系为 $(1,0,-1,0)^{\mathrm{T}}, 则A = [\alpha_1 \quad \alpha_2 \quad \alpha_3 \quad \alpha_4]$ 的列向量组的 一个极大线性无关组是[]

 $(A)\alpha_1,\alpha_2$ $(B)\alpha_2,\alpha_3$ $(C)\alpha_1,\alpha_2,\alpha_3$ $(D)\alpha_2,\alpha_3,\alpha_4$

$$\mathbb{H}$$
 4- $r(A)$ =1, $r(A)$ =3.

$$A$$
 $\begin{pmatrix} 1\\0\\-1\\0 \end{pmatrix} = 0$, $\alpha_1 - \alpha_3 = 0$, $\Rightarrow \alpha_1$, α_3 线性相关.

 $oldsymbol{\lambda}$ 故 $lpha_2$, $lpha_3$, $lpha_4$ 是极大无关组.

线性代数与解析几何 2020/12/31

例12 设
$$A = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}$$
可逆,则方程组
$$\begin{cases} a_1x_1 + a_2x_2 = a_3 \\ b_1x_1 + b_2x_2 = b_3 \\ c_1x_1 + c_2x_2 = c_3 \end{cases}$$

(A) 无解(B) 有唯一解(C) 有无穷多解(D) 不能确定

方程组的增广矩阵 $\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$ 的秩 = 3

系数矩阵的秩 = 2, 故方程组无解.

线性代数与解析几何 2020/12/31 1

例13 设 $A = (a_{ij})_{n \times n}$ 为n阶矩阵, $\det(A) = 0$, A_{ij} 为 a_{ij} 对应的代数余子式, $A_{21} \neq 0$,证明Ax = 0的通解为 $x = k(A_{21}, A_{22}, \dots, A_{2n})^T$.

r(A) = n - 1, 基础解系所含向量的个数为1. $\xi = (A_{21}, A_{22}, \dots, A_{2n})^T \neq 0$,

$$A\xi = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{-1} & a_{-2} & \cdots & a_{-n} \end{pmatrix} \begin{pmatrix} A_{21} \\ A_{22} \\ \vdots \\ A_{2n} \end{pmatrix} = 0$$

 $\Longrightarrow \xi$ 是方程组Ax = 0的非零解.

故Ax = 0的通解为 $x = k(A_{21}, A_{22}, \dots, A_{2n})^T$.

线性代数与解析几何 2020/12/31

例14 已知向量组

2019考研题

I: $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$;
II: $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$;
若向量组1与II等价, 求 a, 并将 β_3 由 α_1 , α_2 , α_3 线性表示。

$$\begin{aligned}
& [\alpha_1 \ \alpha_2 \ \alpha_3 \ \beta_1 \ \beta_2 \ \beta_3] = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 2 & 1 & 2 & 3 \\ 4 & 4 & a^2 + 3 & a + 3 & 1 - a & a^2 + 3 \end{pmatrix} \\
& \rightarrow \begin{pmatrix} 1 & 0 & 2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 0 & a^2 - 1 & a - 1 & 1 - a & a^2 - 1 \end{pmatrix} = B \\
& (1 & 0 & 2 & 1 & 2 & 3)
\end{aligned}$$

 $\begin{pmatrix} 0 & 0 & 0 & -2 & -2 & 0 \end{pmatrix}$

 β_1 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线表, \Rightarrow 向量组I与II不等价.

f4章习题课 2020/12/31 16/2**5**

例14 已知向量组

2019考研題

I: $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$;
II: $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$;
若向量组I与II等价, 求a,并将 β_3 由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

当
$$a = 1$$
时, $B = \begin{pmatrix} 1 & 0 & 2 & 1 & 2 & 3 \\ 0 & 1 & -1 & 0 & -2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$

 $\alpha_1,\alpha_2,\beta_1$ 的极大无关组, β_1,β_2,β_3 II 的极大无关组.

且
$$(\beta_1, \beta_2) = (\alpha_1, \alpha_2) \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$$
,又 $\begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}$ 可逆,

 $\alpha_1, \alpha_2 = \beta_1, \beta_2$ 等价, \Rightarrow 向量组I与II等价.

$$\underline{\mathbf{H}}\boldsymbol{\beta}_3 = 3\boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2.$$

第4章习题课 2020/12/31 17/25

例14 已知向量组

2019考研題

I: $\alpha_1 = (1,1,4)^T$, $\alpha_2 = (1,0,4)^T$, $\alpha_3 = (1,2,a^2+3)^T$; II: $\beta_1 = (1,1,a+3)^T$, $\beta_2 = (0,2,1-a)^T$, $\beta_3 = (1,3,a^2+3)^T$; 若向量组1与II等价, 求a,并将 β_3 由 α_1 , α_2 , α_3 线性表示.

 $\underline{\exists} a \neq \pm 1 \overline{\bowtie}$, $\det[\alpha_1 \alpha_2 \alpha_3] \neq 0$, $\det[\beta_1 \beta_2 \beta_3] \neq 0$,

 $\Rightarrow \alpha_1, \alpha_2, \alpha_3 = \beta_1, \beta_2, \beta_3$ 等价

所以 $\beta_3 = \alpha_1 - \alpha_2 + \alpha_3$.

第4章习题课 2020/12/31 18/25

n+1个n维向 例15 设A为n阶矩阵,证明 $r(A^n) = r(A^{n+1})$. 量线性相关 证 若 x_0 是A''x = 0的解,即 $A''x_0 = 0$, $A^{n+1}x_0 = 0$,则 x_0 也是 $A^{n+1}x = 0$ 的解。 若 x_0 是 $A^{n+1}x = 0$ 的解,即 $A^{n+1}x_0 = 0$,则 $A^nx_0 = 0$. 假设 $A''x_0 \neq 0$, 则 $x_0, Ax_0, A^2x_0, \dots, A^{n-1}x_0$ 都不等于 0. $i \not Q k_0 x_0 + k_1 A x_0 + k_2 A^2 x_0 + \dots + k_{n-1} A^{n-1} x_0 + k_n A^n x_0 = 0,$ 上式两端左乘A'', 得 $k_0 A'' x_0 = 0$, $\Longrightarrow k_0 = 0$ $k_1 A x_0 + k_2 A^2 x_0 + \dots + k_{n-1} A^{n-1} x_0 + k_n A^n x_0 = 0$ 一 向量组 $x_0, Ax_0, A^2x_0, \dots, A^{n-1}x_0, A^nx_0$ 线性无关,矛盾! 所以 齐次方程组A''x = 0与 $A''^{+1}x = 0$ 同解,

例16 记
$$A = \begin{pmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{pmatrix}$$
 的第 j 列为 $\alpha_j(j=1,\dots,5)$,

(1)证明 $W = \{Ax | x \in \mathbb{R}^5\}$ 为线性空间 \mathbb{R}^4 的子空间; (2)求W的基和维数; (3)求 α_3 , α_4 在该基下的坐标.

 $\mathbf{M}(1)$ $W = \operatorname{span}\{\alpha_1, \dots, \alpha_5\}$,它对 \mathbb{R}^4 的线性运算封闭, 故构成R⁴的子空间. $Ax = x_1\alpha_1 + \dots + x_5\alpha_5$

(3) $\alpha_3 = 3\alpha_1 + \alpha_2, \alpha_4 = 7\alpha_1 + 3\alpha_2,$

所以 α_3 , α_4 在该基下的坐标分别为 $(3,1,0)^T$, $(7,3,0)^T$.

线性代数与解析几何 2020/12/31

例17 设4×5矩阵 A按列分块为 $A = [\alpha_1 \cdots \alpha_5]$,已知 $\alpha_1, \alpha_2, \alpha_4$ 线性无关,且 $\alpha_3 = \alpha_1 + 2\alpha_2$, $\alpha_5 = 2\alpha_1 - \alpha_2 + 3\alpha_4$,求齐次 线性方程组Ax = 0的解空间的标准正交基 $\frac{950}{100}$

解 r(A) = 3, Ax = 0的基础解系所含向量的个数为2.

$$\boldsymbol{\alpha}_3 = \boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2$$

$$\begin{bmatrix} \boldsymbol{\alpha}_1 & \boldsymbol{\alpha}_2 & \boldsymbol{\alpha}_3 & \boldsymbol{\alpha}_4 & \boldsymbol{\alpha}_5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix} = 0$$
知 $\boldsymbol{\xi}_1 = (1,2,-1,0,0)^T$ 是 $\boldsymbol{A}\boldsymbol{x} = 0$ 的解;

由 $\alpha_5 = 2\alpha_1 - \alpha_2 + 3\alpha_4$ 知 $\xi_2 = (2,-1,0,3,-1)^T$ 是Ax = 0的解.

因为 ξ_1 , ξ_2 线性无关,且 $\xi_1^T \xi_2 = 0$,故

$$\frac{\boldsymbol{\xi}_1}{\|\boldsymbol{\xi}_1\|} = (\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, 0, 0)^T, \quad \frac{\boldsymbol{\xi}_2}{\|\boldsymbol{\xi}_2\|} = (\frac{2}{\sqrt{15}}, -\frac{1}{\sqrt{15}}, 0, \frac{3}{\sqrt{15}}, -\frac{1}{\sqrt{15}})^T$$

就是Ax = 0的解空间的一个标准正 交基.

线性代数与解析几何

例18 设T是n维线性空间V上的线性变换, $\xi \in V$, 如果 $T^{n-1}\xi \neq 0, T^n\xi = 0$,证明 $\xi, T\xi, \dots, T^{n-1}\xi \neq V$ 的 一组基, 并求T在这组基下的矩阵.

证 $\xi, T\xi, \dots, T^{n-1}\xi = n$ 维线性空间V中的n个向量. $\partial k_1 \xi + k_2 T \xi + \dots + k_n T^{n-1} \xi = 0$

 $\Rightarrow T^{n-1}(k_1\xi + k_2T\xi + \dots + k_nT^{n-1}\xi) = 0 \Rightarrow k_1T^{n-1}\xi = 0$

 $\Rightarrow k_1 = 0$. 同理可得 $k_i = 0, (i = 2, \dots, n)$

所以 $\xi, T\xi, \dots, T^{n-1}\xi$ 线性无关,故是V的一个基.

所以T在该基下的矩阵为A.

记为A

例19已知 $R^{2\times 2}$ 的一组基 $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$ $T(X) = XM - MX, \forall X \in \mathbb{R}^{2\times 2}, M = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}.$

(1)求R(T)的维数和一个基;(2)求 ker(T)的维数和一个基; (3)写出R(T)和ker(T).

$$\mathbf{P}(1) \quad T(E_{11}) = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} = \mathbf{0}E_{11} - E_{12} + \mathbf{0}E_{21} + \mathbf{0}E_{22}
T(E_{12}) = E_{12}, T(E_{21}) = E_{11} - E_{21} - E_{22}, T(E_{22}) = E_{12}$$

T在基E₁₁, E₁₂, E₂₁, E₂₂下的矩阵

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \underset{r(A) = 2}{\operatorname{rank}(T)}$$

例19已知
$$R^{2\times 2}$$
的一组基 $E_{11}, E_{12}, E_{21}, E_{22},$
 $T(X) = XM - MX, \forall X \in R^{2\times 2}, M = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}.$

(1)求R(T)的维数和一个基;(2)求 ker(T)的维数和一个基; (3)写出R(T)和ker(T).

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow rank(T) = r(A) = 2$$

$$A_1 = (E_{11}, E_{12}, E_{21}, E_{22})(0, -1, 0, 0)^{\mathrm{T}} = E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

$$A_2 = (E_{11}, E_{12}, E_{21}, E_{22})(1, 0, -1, -1)^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}$$

是 $R(T)$ 一个基。 $R(T) = span\{A_1, A_2\}$

例19已知 $R^{2\times 2}$ 的一组基 $E_{11}, E_{12}, E_{21}, E_{22},$ $T(X) = XM - MX, \forall X \in R^{2\times 2}, M = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}.$

(1)求R(T)的维数和一个基;(2)求 $\ker(T)$ 的维数和一个基;(3)写出R(T)和 $\ker(T)$.

解(2) T在基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Ax = 0的基础解系为 $(1,1,0,0)^T$, $(1,0,0,1)^T \Rightarrow$ unllity(T) = 2 $B_1 = (E_{11}, E_{12}, E_{21}, E_{22})(1,1,0,0)^T = E_{12} + E_{12} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $B_2 = (E_{11}, E_{12}, E_{21}, E_{22})(1,0,0,1)^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 是一个基. $\ker(T) = span\{B_1, B_2\}$ **例20**设A为3阶实对称阵, $tr(A) = 1, B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix}, AB = O$

(1)证明r(A) = 1;(2)求A的全部特征值和特征向量.

$$\mathbf{P}_{r}(A) = 0 \Rightarrow r(A) + r(B) \leq 3.$$

(2016.1)

$$\nabla r(B) = 2$$
, $tr(A) = 1 \Rightarrow r(A) = 1$.

(2) A是实对称矩阵, 且r(0I-A) = r(A) = 1, 故0是A的二重特征值.记 $B = [\beta, \beta, \beta_3]$,

 $\therefore \beta_1 = (1,0,1)^T, \beta_2 = (0,1,0)^T$ 是0特征值对应的特征向量.

特征值0对应的全部特征向量为 $k_1\beta_1 + k_2\beta_2(k_1, k_2$ 不全为 0). A的另一特征值 $\lambda = \operatorname{tr}(A) - 0 = 1$, 设对应特征向量 $\xi = (x_1, x_2, x_3)^T$

则
$$\xi$$
与 β_1 , β_2 正交, $\begin{cases} x_1 + x_3 = 0 \\ x_2 = 0 \end{cases}$ $\Rightarrow \xi = k \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ $(k \neq 0$ 任意)

线性代数与解析几何

2020/12/31

26

例21 设 α , β 均为3维实单位列向量,且 α 与 β 正交,令 $A = \alpha \beta^T + \beta \alpha^T$, 问矩阵A是否可相似对角化?为什么?若可对角化,求与A相似的对角矩阵D. (2015.1)

解 因 $A^T = A$, A为实对称矩阵, 故A可对角化. 由题设 $\alpha^T \alpha = 1, \beta^T \beta = 1, \alpha^T \beta = 0, \beta^T \alpha = 0$,

故 $A\alpha = \alpha\beta^{T}\alpha + \beta\alpha^{T}\alpha = \beta$, 同理 $A\beta = \alpha$. $A(\alpha + \beta) = \alpha + \beta$, $A(\alpha - \beta) = (-1)(\alpha - \beta)$

因 α , β 正交, 从而线性无关. 故 $\alpha + \beta \neq 0$, $\alpha - \beta \neq 0$.

所以A有特征值 1,-1. $\nabla r(A) \le r(\alpha \beta^T) + r(\beta \alpha^T) = 2$,

故A的另一特征值为 0. $A \sim D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

线性代数与解析几何 2020/12/31

例22设 $A = (a_{ii})$ 为n阶方阵 $(n \ge 2)$, 且r(A) = 1, 证明:

- (1) 存在非零向量 α , β , 使得 $A = \alpha \beta^T$;
- (2) 存在常数k, 满足 $A^2 = kA$;
- (3) 求A的所有特征值;
- (4) A能否对角化?请说明理由.

解(1) 由r(A) = 1知, \exists 可逆矩阵P,Q使得

$$A = P \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & 0 \end{pmatrix} Q = P \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} Q = \alpha \beta^{T}$$

(2) $A^2 = \alpha \beta^{\mathsf{T}} \alpha \beta^{\mathsf{T}} = \beta^{\mathsf{T}} \alpha \alpha \beta^{\mathsf{T}}$, 故 $\exists k = \beta^{\mathsf{T}} \alpha$,满足 $A^2 = kA$.

线性代数与解析几何 2020/12/31

20

例22设 $A = (a_{ij})$ 为n阶方阵 $(n \ge 2)$, 且r(A) = 1, 证明:

- (1) 存在非零向量 α , β , 使得 $A = \alpha \beta^T$;
- (2) 存在常数k, 满足 $A^2 = kA$;
- (3) 求A的所有特征值;

 $k = \beta^{\mathrm{T}} \alpha$

(4) 4能否对角化?请说明理由.

解 (3) 设 λ 是A的特征值, 则 $\lambda^2 - k\lambda$ 是 $A^2 - kA$ 的特征值, $A^2 - kA = 0 \Rightarrow \lambda^2 - k\lambda = 0 \Rightarrow \lambda = 0$ 或 $\lambda = k = \beta^T \alpha$. 由r(A) = 1知,0是A的特征值,且几何重数 = n-1. 故A的所有特征值为 $\beta^T \alpha$,0,0,...0.

(4) 若 $\beta^T \alpha \neq 0$,则A的所有特征值的几何重 数等于代数重数,故A可对角化. $\Delta \Delta A$ 不可对角化. 若 $\beta^T \alpha = 0$,则特征值0的代数重数为n,几何重数为n-1,

例23 设A为n(n > 1)阶实方阵,且 det(A) = 0,证明: A的伴随矩阵A*的非零特征值(若存在)等于 $\sum_{i=1}^{n} A_{ii}$, 其中 A_{ii} 为 a_{ii} 的代数余子式. (2018.12最后一圈)

证: $\det(A) = 0 \Rightarrow r(A) < n \Rightarrow r(A^*) = 0$ 或 $r(A^*) = 1$ 当 $r(A^*) = 0$ 时, $A^* = 0$,此时 A^* 无非零特征值. 当 $r(A^*) = 1$ 时, $\Rightarrow 0$ 是 A^* 的特征值,且几何重数为n-1.

⇒ 0是 Λ *的至少n-1重特征值,即 $\lambda_1 = \cdots = \lambda_{n-1} = 0$ 若另一个特征值 $\lambda_1 = 0$,则 Λ *无非零特征值.

若另一个特征值 $\lambda_n \neq 0$,则 $\lambda_n + (n-1) \times 0 = \operatorname{tr}(A^*)$

即非零特征值 $\lambda_n = A_{11} + \cdots + A_{nn}$

第4章习题课 2020/12/31 30/25

线性代数与解析几何 2020/12/31

29

例24(1)请给出判断实对称矩阵A是正定矩阵的三 个充要条件。

- (2) 试举例说明两个同阶正定阵的乘积未必是 正定阵.
- (3) 设实对称矩阵A,B均是正定矩阵,且满足 AB = BA,证明AB也是正定矩阵. (2014.1最后一颗)

解 (1) A正定 \Leftrightarrow 对任意的非零列向量 $x, f = x^T A x > 0$.

- \Leftrightarrow f的正惯性指数为n; \Leftrightarrow A的特征值全为正数;
- \Leftrightarrow 存在可逆阵M,使得 $A = M^T M$;
- ⇔ A与单位矩阵合同
- ⇔ A的各阶顺序主子式都大于零.

线性代数与解析几何 2020/12/31

例24(1)请给出判断实对称矩阵A是正定矩阵的三 个充要条件。

- (2) 试举例说明两个同阶正定阵的乘积未必是 正定阵.
- (3) 设实对称矩阵A,B均是正定矩阵,且满足 AB = BA,证明AB也是正定矩阵. (2014.1最后一颗)

线性代数与解析几何 2020/12/31

例24(3)设实对称矩阵A,B均是正定矩阵,且满足 AB = BA,证明AB也是正定矩阵. (2014.1最后一题

解(3) 证法1

 $(AB)^T = B^T A^T = BA = AB$, AB是对称矩阵.

设 λ 是AB的任一特征值,x是对应的特征向量,

则有 $ABx = \lambda x$

 $\Rightarrow Bx = \lambda A^{-1}x \Rightarrow x^T Bx = \lambda x^T A^{-1}x$ 由于A,B是正定矩阵,

故 $\forall x \in R^n, x \neq 0, x^T A^{-1} x > 0, x^T B x > 0$

$$\Rightarrow \lambda = \frac{x^T A^{-1} x}{x^T B x} > 0$$

所以AB为正定矩阵.

线性代数与解析几何 2020/12/31 例24(3)设实对称矩阵A,B均是正定矩阵,且满足 AB = BA,证明AB也是正定矩阵. (2014.1最后一 解(3) 证法2

 $(AB)^T = B^T A^T = BA = AB$, AB是实对称矩阵.

因为A, B正定,存在可逆矩阵M, N使

$$A = M^T M$$
, $B = N^T N$

 $\implies AB = M^T M N^T N = N^{-1} (N M^T M N^T) N$

$$= N^{-1}((MN^T)^T(MN^T))N$$

即AB与实对称阵 $(MN^T)^T(MN^T)$ 相似.

从而AB与 $(MN^T)^T(MN^T)$ 合同.

故AB为正定矩阵.

线性代数与解析几何 2020/12/31

例25 设A,B为实对称矩阵,A的特征值大于a,B的特征值 大于 $b,(a,b \in R)$,证明: A + B的特征值大于a + b.

证 设 λ 是A+B的任一特征值,

则 $\lambda - (a+b)$ 是A + B - (a+b)I的特征值,

(A-aI)的特征值均大于0, \Longrightarrow (A-aI)正定;

(B-bI)的特征值均大于0, \Longrightarrow (B-bI)正定;

所以 A+B-(a+b)I正定,

 $\implies \lambda > (a+b).$

926 设A,B均为n阶正定矩阵,证明关于 λ 的方程 $\det(\lambda A - B) = 0 的根全大于零.$ (2006.1)

证 因A正定,故|A| > 0,且有可逆矩阵P,使 $A = P^T P$.

$$|\lambda A - B| = |\lambda P^T P - B| = |P^T (\lambda I - (P^{-1})^T B P^{-1}) P|$$

= $|P^T | \cdot |P| \cdot |\lambda I - (P^{-1})^T B P^{-1}|$

$$=|A||\lambda I - (P^{-1})^T B P^{-1}|$$

$$|\lambda A - B| = 0 \Leftrightarrow |\lambda I - (P^{-1})^T B P^{-1}| = 0$$

⇔ λ是(P⁻¹)^T BP⁻¹的特征值

由B正定,知 $(P^{-1})^T B P^{-1}$ 也正定,

因此其特征值均大于零. 故方程 $det(\lambda A - B) = 0$ 的根全大于零.

线性代数与解析几何 2020/12/31

考前答疑

1月12日上午 9:00-12:00 1月12日下午 3:00-6:00

地点:数学楼415 (腾飞塔正北方

向)

