Examen - 17 décembre 2024 (durée : 2h)

Documents autorisés : une feuille A4 manuscrite recto-verso. Aucun appareil électronique.

Vos résultats devront être <u>justifiés</u>. Vous apporterez <u>le plus grand soin</u> à la rédaction et à la présentation. La notation tiendra compte de ces deux aspects.

Exercice 1 Nombres complexes

- **1.** Résoudre dans \mathbb{C} l'équation $z^2 = 5 12i$ (Indication : $13^2 = 169$)
- **2.** Soient A et B les points du plan d'affixes respectives $z_A = -1 + i$ et $z_B = 1 + 3i$. Soit un point M d'affixe z.
 - **2.a.** A quelle(s) condition(s) sur z correspond la propriété : " M appartient à la médiatrice de [AB] "
 - **2.b.** A quelle(s) condition(s) sur z correspond la propriété : " M appartient au disque de centre B et de rayon 1 "
 - 2.c. Faire une représentation graphique correspondant à ces deux questions.

Exercice 2 Le but de cet exercice est d'étudier la fonction $f(x) = x - \frac{\ln x}{x^2}$

- 1. On considère pour commencer la fonction $u(x) = x^3 1 + 2 \ln x$.
 - **1.a.** Calculer u(1).
 - **1.b.** Etudier le domaine de définition, les limites aux bornes de ce domaine, et le signe de la dérivée de u(x).

Résumer ces informations dans un tableau de variations.

- **1.c.** En déduire le signe de u(x) en fonction de x.
- 2. On va maintenant étudier la fonction f(x) définie précédemment.
 - **2.a.** Etudier le domaine de définition, les limites aux bornes de ce domaine, et le signe de la dérivée de f(x). (LES RÉSULTATS DE LA QUESTION 1 SERONT UTILES POUR CE DERNIER POINT)

Résumer ces informations dans un tableau de variations.

- **2.b.** Montrer que la droite \mathcal{D} d'équation y = x est asymptote à la courbe \mathcal{C}_f représentative de f. Préciser la position relative de \mathcal{C}_f par rapport à \mathcal{D} .
- **2.c.** Tracer avec soin C_f et D. Pour aider au tracé, on donne $\ln 2 \simeq 0,7$ et $\ln 3 \simeq 1,1$.

Exercice 3 Pour tout entier naturel $n \ge 1$, on pose $f_n(x) = x^5 (\ln x)^n$. f_n est ainsi définie sur $]0, +\infty[$.

1. Pourquoi a-t-on $\lim_{x\to 0^+} f_n(x) = 0$?

On peut donc prolonger f_n par continuité en x = 0 en posant $f_n(0) = 0$. f_n est désormais définie sur $[0, +\infty[$. Par exemple, f_1, f_2, f_3 et f_4 sont tracées sur [0, 1] dans la figure suivante.

On pose maintenant $J_n = \int_0^1 f_n(x) dx = \int_0^1 x^5 (\ln x)^n dx$ pour tout $n \ge 1$.

- **2.** Calculer $J_1 = \int_0^1 x^5 \ln x \, dx$.
- **3.** Montrer que $J_n = -\frac{n}{6}J_{n-1}$ pour tout $n \ge 2$. (on pourra utiliser une intégration par parties)
- **4.** En déduire l'expression de J_n en fonction de n.

Exercice 4 Dans l'espace \mathbb{R}^3 , on considère les droites \mathcal{D} et \mathcal{D}' d'équations paramétriques :

$$\mathcal{D}: \left\{ \begin{array}{l} x=1+t \\ y=2-3t \\ z=-1-t \end{array} \right., \ t\in\mathbb{R} \qquad \text{et} \qquad \mathcal{D}': \left\{ \begin{array}{l} x=2+2s \\ y=-1-s \\ z=-2+s \end{array} \right., \ s\in\mathbb{R} \right.$$

- 1. Démontrer que \mathcal{D} et \mathcal{D}' sont sécantes en un point A dont on déterminera les coordonnées.
- 2. Soit \mathcal{P} le plan contenant \mathcal{D} et \mathcal{D}' .
 - **2.a.** Déterminer un vecteur \vec{n} orthogonal à \mathcal{P} .
 - **2.b.** En déduire une équation cartésienne de \mathcal{P} .

Exercice 5 Les 2 questions sont indépendantes

Dans l'espace \mathbb{R}^3 , on considère le point A(-1,1,3) et la droite \mathcal{D} d'équation paramétrique

$$\mathcal{D} = \{ (-1+t, 1+t, t), t \in \mathbb{R} \}$$

Le but de cet exercice est de calculer de 2 façons différentes la distance δ entre A et \mathcal{D} .

- **1.** Méthode 1 : géométrie dans \mathbb{R}^3
 - **1.a.** Calculer les coordonnées du point H, projection orthogonale de A sur \mathcal{D} .
 - **1.b.** En déduire la valeur de $\delta = \|\overrightarrow{AH}\|$
- 2. Méthode 2 : par minimisation

On va utiliser le fait que δ est le minimum de la distance entre A et un point M parcourant la droite \mathcal{D} . On note M(t) = (-1 + t, 1 + t, t).

- **2.a.** Calculer $\|\overrightarrow{AM(t)}\|$. On définit ainsi la fonction $f(t) = \|\overrightarrow{AM(t)}\|^2$. (Attention au Carré)
- **2.b.** Pour quelle valeur de t la fonction f admet-elle un minimum?
- 2.c. Quel est ce minimum? Est-ce cohérent avec le résultat de la question 1?