Theory of Computation

1	Regular Languages		2
	1.1	Languages	2
	1.2	Deterministic Finite State Automata	3
	1.3	Nondeterministic Finite State Automata	5
	1.4	Regular Expressions	7

Chapter 1

Regular Languages

1.1 Languages

Definition 1.1. An alphabet is a finite nonempty set of symbols.

Definition 1.2. Let Σ be an alphabet.

- A string over Σ is a finite sequence of symbols from Σ . The collection of all strings over Σ is denoted by Σ^* .
- The **length** of a string w, denoted by |w|, is the number of symbols it contains.
- The string containing no symbols is called the **empty string**, denoted by ϵ .

Definition 1.3. A subset of Σ^* is called a **language** over Σ .

1.2 Deterministic Finite State Automata

Definition 1.4. A deterministic finite state automaton (DFA) is a tuple

$$A = (Q, \Sigma, \delta, q_0, F),$$

where each component is as follows.

- Q is a finite set of **states**.
- Σ is a finite set of input symbols.
- $\delta: Q \times \Sigma \to Q$ is a function, called the **transition function**.
- $q_0 \in Q$ is called the **start state**.
- $F \subseteq Q$ is called the **accepting states**.

Definition 1.5. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA. For each string $w \in \Sigma^*$, we define $\delta_w : Q \to Q$ as follows, where $a \in \Sigma$ and $x \in \Sigma^*$.

- $\delta_{\epsilon}(p) = p$ for each $p \in Q$.
- $\delta_a(p) = \delta(p, a)$ for each $p \in Q$.
- $\delta_{xa}(p) = \delta(\delta_x(p), a)$ for each $p \in Q$.

Definition 1.6. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

- We say that A accepts a string $w \in \Sigma^*$ if $\delta_w(q_0) \in F$.
- The **language** of A, denoted L(A), is defined as the set of strings that are accepted by A.

Definition 1.7. A language L is **regular** if there exists a DFA A such that L(A) = L.

Example. Let $A = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$ be a DFA, where the transition function δ is as follows.

$$\begin{array}{c|cc} & 0 & 1 \\ \hline q_0 & q_0 & q_1 \\ q_1 & q_0 & q_1 \end{array}$$

Instead of using the formal definition, one can also draw a state diagram of A as follows.

It can be shown that a string $w \in \{0,1\}^*$ is accepted by A if and only if w ends with 1. Thus, the language $L = \{w \in \{0,1\}^* : w \text{ ends with } 1\}$ is regular.

3

Theorem 1.8. If L is a regular language over Σ , then $\Sigma^* \setminus L$ is also regular.

Proof. Let $A = (Q, \Sigma, \delta, q_0, F)$ be a DFA with L = L(A). Let $A' = (Q, \Sigma, \delta, q_0, Q \setminus F)$. Then for each $w \in \Sigma^*$, we have

$$w \in L(A') \quad \Leftrightarrow \quad \delta_w(q_0) \in Q \setminus F \quad \Leftrightarrow \quad w \notin L(A).$$

Thus, $L(A') = \Sigma^* \setminus L(A)$, implying that $\Sigma^* \setminus L$ is regular.

Theorem 1.9. If L_1 and L_2 are regular languages over Σ , then $L_1 \cup L_2$ is also regular.

Proof. Let

$$A_1 = (Q_1, \Sigma, \delta^{(1)}, q_1, F_1)$$
 and $A_2 = (Q_2, \Sigma, \delta^{(2)}, q_2, F_2)$

be DFAs with $L_1 = L(A_1)$ and $L_2 = L(A_2)$. We construct the DFA

$$A = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F)$$

as follows.

- $\delta((p,q),a) = (\delta^{(1)}(p,a),\delta^{(2)}(q,a))$ for each $p \in Q_1, q \in Q_2$ and $a \in \Sigma$.
- $F = \{(p,q) : p \in F_1 \text{ or } q \in F_2\}.$

It can be shown that for each string $w \in \Sigma^*$, we have

$$w \in L(A)$$
 \Leftrightarrow $\delta_w((q_1, q_2)) \in F$
 \Leftrightarrow $\delta_w^{(1)}(q_1) \in F_1 \text{ or } \delta_w^{(2)}(q_2) \in F_2$
 \Leftrightarrow $w \in L(A_1) \text{ or } w \in L(A_2).$

Thus, $L(A) = L(A_1) \cup L(A_2)$, implying that $L_1 \cup L_2$ is regular.

Corollary 1.10. If L_1 and L_2 are regular languages over Σ , then $L_1 \cap L_2$ is also regular.

Proof. Straightforward since by De Morgan's law we have

$$L_1 \cap L_2 = \Sigma^* \setminus ((\Sigma^* \setminus L_1) \cup (\Sigma^* \setminus L_2)). \qquad \Box$$

1.3 Nondeterministic Finite State Automata

Definition 1.11. A nondeterministic finite state automaton (NFA) is a tuple

$$A = (Q, \Sigma, \delta, q_0, F),$$

where each component is as follows.

- Q is a finite set of **states**.
- Σ is a finite set of input symbols.
- $\delta: Q \times \Sigma \times Q$ is a relation, called the **transition relation**.
- $q_0 \in Q$ is called the **start state**.
- $F \subseteq Q$ is called the **accepting states**.

Definition 1.12. Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA. For each string $w \in \Sigma^*$, we define $\delta_w \subseteq Q \times Q$ as follows, where $a \in \Sigma$ and $x \in \Sigma^*$.

- $\delta_{\epsilon} = \{(p,q) : p = q\}.$
- $\delta_a = \{(p,q) : (p,a,q) \in \delta\}.$
- $\delta_{xa} = \{(p,q) : (p,r) \in \delta_x \text{ and } (r,q) \in \delta_a \text{ for some } r \in Q\}.$

Definition 1.13. Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA.

- We say that A accepts a string $w \in \Sigma^*$ if there exists $q \in F$ such that $(q_0, q) \in \delta_w$.
- The **language** of A, denoted L(A), is defined as the set of strings that are accepted by A.

Theorem 1.14. For every NFA A, there is a DFA A' with L(A') = L(A).

Proof. Let $A = (Q, \Sigma, \delta, q_0, F)$. We construct $A' = (\mathcal{P}(Q), \Sigma, \Delta, \{q_0\}, \Phi)$ as follows.

• $\Delta: \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ is the function with

$$\Delta_a(P) = \bigcup_{p \in P} \{ q \in Q : (p, q) \in \delta_a \}$$

for any $P \subseteq Q$ and $a \in \Sigma$.

• $\Phi = \{ P \subseteq Q : P \cap F \neq \emptyset \}.$

Now we prove that for any $w \in \Sigma^*$, for any $q \in Q$ and for any $P \subseteq Q$, we have $q \in \Delta_w(P)$ if and only if $(p,q) \in \delta_w$ for some $p \in P$. For the induction basis, let $w = \epsilon$, and we have

$$q \in \Delta_{\epsilon}(P) \quad \Leftrightarrow \quad q \in P \quad \Leftrightarrow \quad (p,q) \in \delta_{\epsilon} \text{ for some } p \in P.$$

For the induction step, let w = xa, where x is any string and a is any symbol. Note that by the construction of Δ , we have $q \in \Delta_a(P)$ if and only if $(p,q) \in \delta_a$ for some $p \in P$. Thus, we can conclude that

$$q \in \Delta_{xa}(P)$$
 \Leftrightarrow $q \in \Delta_a(\Delta_x(P))$
 \Leftrightarrow $(r,q) \in \delta_a \text{ for some } r \in \Delta_x(P)$
and $(p,r) \in \delta_x \text{ for some } p \in P$
 \Leftrightarrow $(p,q) \in \delta_{xa} \text{ for some } p \in P.$

Finally we prove that L(A') = L(A), which is given by

$$w \in L(A') \quad \Leftrightarrow \quad \Delta_w(\{q_0\}) \in \Phi$$

$$\Leftrightarrow \quad \Delta_w(\{q_0\}) \cap F \neq \emptyset$$

$$\Leftrightarrow \quad q \in \Delta_w(\{q_0\}) \text{ for some } q \in F$$

$$\Leftrightarrow \quad (p,q) \in \delta_w \text{ for some } q \in F \text{ and } p \in \{q_0\}$$

$$\Leftrightarrow \quad (q_0,q) \in \delta_w \text{ for some } q \in F$$

$$\Leftrightarrow \quad w \in L(A).$$

Theorem 1.15. If L_1 and L_2 are regular languages over Σ , then L_1L_2 is also regular.

Proof. Let $A_1 = (Q_1, \Sigma, \delta^{(1)}, q_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta^{(2)}, q_2, F_2)$ be NFAs such that $L_1 = L(A_1)$ and $L_2 = L(A_2)$. We construct an NFA

$$A = (Q_1 \cup Q_2, \Sigma, \delta, q_1, F)$$

as follows.

- $\delta = \delta^{(1)} \cup \delta^{(2)} \cup \{(p, a, q) \in Q \times \Sigma \times Q : p \in F_1 \text{ and } (q_2, a, q) \in \delta^{(2)}\}.$
- If $q_2 \in F_2$, let $F = F_1 \cup F_2$. Otherwise, let $F = F_2$.

It can be shown that $L(A) = L(A_1)L(A_2)$, and thus L_1L_2 is regular.

Theorem 1.16. If L is a regular language over Σ , then L* is also regular.

Proof. Let $A = (Q, \Sigma, \delta, q_0, F)$ be an NFA with L = L(A). We construct an NFA

$$A'=(Q\cup\{q_0'\},\Sigma,\delta',q_0',F\cup\{q_0'\})$$

with

$$\delta' = \delta \cup \{(p, a, q) \in Q \times \Sigma \times Q : p \in F \cup \{q'_0\} \text{ and } (q_0, a, q) \in \delta\}.$$

It can be shown that $L(A') = (L(A))^*$, and thus L^* is regular.

1.4 Regular Expressions

Definition 1.17. Let Σ be an alphabet. A **regular expression** over Σ is a string in the minimal language over $\Sigma \cup \{\emptyset, \epsilon, *, +, (,)\}$ that satisfies the following conditions.

- 1. \emptyset is a regular expression.
- 2. ϵ is a regular expression.
- 3. If $a \in \Sigma$, then a is a regular expression.
- 4. If e_1 and e_2 are regular expressions, then so is (e_1e_2) .
- 5. If e_1 and e_2 are regular expressions, then so is $(e_1 + e_2)$.
- 6. If e is a regular expression, then so is $(e)^*$.

Definition 1.18. A regular expression e over an alphabet Σ defines a language L(e) as follows.

- 1. $L(\emptyset) = \emptyset$.
- 2. $L(\epsilon) = {\epsilon}$.
- 3. $L(a) = \{a\}$ for each $a \in \Sigma$.
- 4. $L((e_1e_2)) = L(e_1)L(e_2)$ for each regular expressions e_1 and e_2 .
- 5. $L((e_1 + e_2)) = L(e_1) \cup L(e_2)$ for each regular expressions e_1 and e_2 .
- 6. $L((e)^*) = L(e^*)$ for each regular expression e.

Remark. From now on, we may omit parentheses if there is no ambiguity.

Lemma 1.19. If e is a regular expression over an alphabet Σ , then L(e) is regular.

Proof. It can be easily shown that \emptyset and $\{\epsilon\}$ are regular. Moreover, $\{a\}$ is regular for each $a \in \Sigma$. Thus, by Theorem 1.9, Theorem 1.15 and Theorem 1.16, we can conclude that for all regular expressions e, L(e) is regular.

Lemma 1.20. If L is a regular language over an alphabet Σ , then there is a regular expression e over Σ such that L(e) = L.

Proof. Since L is regular, there exists a DFA $A = (Q, \Sigma, \delta, q_0, F)$ with L(A) = L. Suppose that $Q = \{p_1, p_2, \dots, p_n\}$ with $p_1 = q_0$. For any $i, j \in \{1, \dots, n\}$ and for any $k \in \{0, \dots, n\}$, let $L_{ij}^{(k)}$ denote the language of strings w such that

- $\delta_w(p_i) = p_i$, and
- for each string x with $\epsilon \sqsubset x \sqsubset w$, we have $\delta_x(p_i) = p_\ell$ for some $\ell \in \{1, \ldots, k\}$.

We are going to prove that for all $i, j \in \{1, ..., n\}$ and $k \in \{0, ..., n\}$, there exists a regular expression $e_{ij}^{(k)}$ such that

$$L\left(e_{ij}^{(k)}\right) = L_{ij}^{(k)}.$$

The proof is by induction on k. For the induction basis, let k = 0. Let $\Pi_{ij} \subseteq \Sigma$ denote the set of symbols a with $\delta_a(p_i) = p_j$. If $i \neq j$, we have

$$L_{ij}^{(0)} = \bigcup_{a \in \Pi_{ij}} \{a\},\,$$

and thus we can construct $e_{ij}^{(0)}$ by

$$e_{ij}^{(0)} = \sum_{a \in \Pi_{ij}} a.$$

(If $\Pi_{ij} = \emptyset$, then the summation is defined as \emptyset .) If i = j, we have

$$L_{ii}^{(0)} = \{\epsilon\} \cup \bigcup_{a \in \Pi_{ii}} \{a\},\,$$

and thus we can construct $e_{ii}^{(0)}$ by

$$e_{ii}^{(0)} = \epsilon + \sum_{a \in \Pi_{ii}} a.$$

Now for the induction step, let $k \geq 1$. Suppose that $w \in L_{ij}^{(k)}$. If there is no string x with $\epsilon \sqsubset x \sqsubset w$ such that $\delta_x(p_i) = p_k$, then we have

$$w \in L_{ij}^{(k-1)}.$$

Otherwise, let x_0, x_1, \ldots, x_ℓ be all strings with $\epsilon \sqsubset x_0 \sqsubset x_1 \sqsubset \cdots \sqsubset x_\ell \sqsubset w$ such that

$$\delta_{x_0}(p_i) = \delta_{x_1}(p_i) = \dots = \delta_{x_\ell}(p_i) = p_k.$$

Let $u_0, u_1, \ldots, u_{\ell+1}$ be strings such that

$$w = u_0 u_1 \cdots u_{\ell+1},$$

and $x_h = u_0 u_1 \cdots u_h$ for each $h \in \{0, \dots, \ell\}$. Since $u_0 \in L_{ik}^{(k-1)}$, $u_{\ell+1} \in L_{kj}^{(k-1)}$, and $u_h \in L_{kk}^{(k-1)}$ for each $h \in \{1, \dots, \ell\}$, it follows that

$$w \in L_{ik}^{(k-1)} \left(L_{kk}^{(k-1)} \right)^* L_{kj}^{(k-1)}.$$

As a result, we have

$$L_{ij}^{(k)} \subseteq L_{ij}^{(k-1)} \cup L_{ik}^{(k-1)} \left(L_{kk}^{(k-1)}\right)^* L_{kj}^{(k-1)},$$

implying

$$L_{ij}^{(k)} = L_{ij}^{(k-1)} \cup L_{ik}^{(k-1)} \left(L_{kk}^{(k-1)} \right)^* L_{kj}^{(k-1)}.$$

Therefore, we can construct $e_{ij}^{(k)}$ by

$$e_{ij}^{(k)} = e_{ij}^{(k-1)} + e_{ik}^{(k-1)} \left(e_{kk}^{(k-1)} \right)^* e_{kj}^{(k-1)}.$$

Now we can construct the regular expression e with L(e) = L as follows. Let Φ be the set of integers $j \in \{1, ..., n\}$ such that $p_j \in F$. Since

$$L = \bigcup_{j \in \Phi} L_{1j}^{(n)},$$

we can construct e by

$$e = \sum_{j \in \Phi} e_{1j}^{(n)},$$

which completes the proof.

Theorem 1.21. Let Σ be an alphabet. A language L over Σ is regular if and only if there is a regular expression e over Σ such that L(e) = L.

Proof. Straightforward by Lemma 1.19 and Lemma 1.20.