

CPE223 Digital Electronics and Logic Design

Final Project: Snake Game Sec2A-Group19

สมาชิกในกลุ่ม

62070501056 นางสาวลิฬลณี อิ่มใจ

62070501064 นางสาวอรวิภา คูเจริญไพศาล

62070501067 นายพลพัต กิตติวิทยากุล

62070501072 นายณัฐกิต เปลี่ยนขุนทด

ผศ.สนั่น สระแก้ว

คณะวิศวกรรมศาสตร์ สาขาวิศวกรรมคอมพิวเตอร์
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
8 ธันวาคม พ.ศ. 2563

วัตถุประสงค์

- 1. เพื่อสร้างเสริมความเข้าใจในอุปกรณ์ต่าง ๆ เช่น FPGA Board, VGA Cable
- 2. เพื่อสร้างเสริมความเข้าใจการเขียนภาษา Verilog
- 3. เข้าใจการนำ Basys3 FPGA Board มาใช้กับการสร้าง Snake Game
- 4. สามารถนำความรู้ที่ได้จากการทำงานไปประยุกต์และต่อยอดได้ในอนาคต

อุปกรณ์ที่ใช้

- 1. โปรแกรม Vivado
- 2. Basys3 Xilinx Artix-7 FPGA (XC7A35T-ICPG236C)
- 3. VGA Monitor
- 4. VGA Cable

ข้อมูลที่เกี่ยวข้อง

Basys3 FPGA Board: วงจรที่พร้อมสำหรับการใช้งานโดยพัฒนามาจาก Artix-7 FPGA มีพอร์ต USB, VGA รวมทั้งพอร์ตอื่นๆ โดยสามารถดีไซน์วงจรได้ตั้งแต่ Combinational Circuit ไปจนถึง Sequential Circuit ที่มีความซับซ้อน

Clock Divider: วงจรที่นำสัญญาณ Clock มาแบ่งค่าความถี่ให้ลดลงตามความต้องการ

ภาพที่ 1 กราฟของ clock divider

VGA-Timing: สัญญาณ VGA จะแบ่งเป็น 2 ช่วง คือ ช่วงการแสดงผลพิกเซล และช่วงไร้การแสดงผล (Blanking) ซึ่งช่วงไร้การแสดงผลจะแบ่งเป็น 3 ช่วง ได้แก่ Front porch, Sync และ Back porch แต่ละขนาดจอจะมีความถี่จำเพาะสำหรับการแสดงผล และมีจำนวนพิกเซลที่แตกต่างกัน โดยมีการส่งค่าความเข้มของสี RGB เป็น 16 บิตในช่วงของ Active Pixel

ภาพที่ 2 VGA Ports

ตารางที่ 1 ข้อมูลความละเอียดของหน้าจอขนาด 800x600 pixels 60Hz

Aspect rate	4:3	
Pixels clock	40 MHz	
Horizontal pixels		
Active pixels	800	
Front porch	40	
Sync width	128	
Back porch	88	
Banking total	256	
Total pixels	1056	
Vertical pixels		
Active pixels	600	
Front porch	1	
Sync width	4	
Back porch	23	
Banking total	28	
Total pixels	628	

ภาพที่ 3 สัญญาณการแสดงผล VGA

ข**้**นตอนการทดลอง

- 1. ออกแบบระบบของเกม และองค์ประกอบต่าง ๆ ในเกม ได้แก่ ตัวงู อาหารและแผนที่
- 2. ศึกษาการส่งสัญญาณของ VGA-Timing จากบอร์ด Basys3
- 3. เขียนโค้ดแต่ละ Module ขึ้น

- Divider - VGA-Sync

- Random - 7-segment

- Score segment - Snake (Top module)

ทดสอบแต่ละ Module ผ่าน Simulation ของโปรแกรม Vivado และทดสอบการแสดงผล ด้วย VGA Monitor โดยการต่อกับ VGA Cable

4. ปรับปรุงโค้ดเพื่อให้การทำงานของแต่ละ Module ถูกต้องและตรงตามความต้องการ

ผลการทดลอง

ภาพที่ 4 Block Diagram

ตารางที่ 2 คีย์ที่เกี่ยวข้องกับการทำงาน

คีย์ที่ใช้	การทำงาน	การแสดงผล
BTNL	ค่าแกน x ลดลง 15 พิกเซล	ภาพเลื่อนไปทางซ้าย
BTNR	ค่าแกน x เพิ่มขึ้น 15 พิกเซล	ภาพเลื่อนไปทางขวา
BTNU	ค่าแกน y ลดลง 15 พิกเซล	ภาพเลื่อนขึ้นบน
BTND	ค่าแกน y เพิ่มขึ้น 15 พิกเซล	ภาพเลื่อนลงล่าง
Reset(SW0)	รีเซ็ตการส่ง VGA-Timing	เริ่มเล่นเกมใหม่
Score(SW15)	แสดงคะแนนที่ segment	แสดงคะแนนสูงสุด

ฟังก์ชันที่มีภายในเกม

- 1. อาหาร โดยจะแบ่งอาหารเป็น 2 แบบ
 - เพิ่ม 3 คะแนน ตัวงูยาวขึ้น 1 ช่อง (15x15 พิกเซล)
 - เพิ่ม 5 คะแนน ตัวงูยาวขึ้น 2 ช่อง (20x20 พิกเซล)
- 2. การนับคะแนน

นับคะแนนจากการเล่นไปเรื่อยๆ โดยจะเก็บค่าของคะแนนสูงสุดไว้

ผลการอภิปราย

การทำงานของโปรแกรมเริ่มจากการใช้ Divider ลดความถี่ของบอร์ดลง เพื่อให้สามารถสร้าง สัญญาณ VGA ได้ถูกต้องตามความละเอียดที่ใช้ ซึ่งจะเป็นสัญญาณที่ใช้นับพิกเซลของจอ และนับการส่งสัญญาณ Sync หลังจากนั้นค่าของพิกเซลจะเข้าสู่ Snake (Top module) เพื่อใช้ในการสร้างภาพของตัวงู อาหาร และแผนที่ โดยส่งสัญญาณ RGB สู่จอมอนิเตอร์

อาหารและแผนที่มีการส่งสัญญาณ RGB ที่เหมือนกัน โดยส่งสัญญาณที่ตำแหน่งเดิมตลอด ตัวงูจะเก็บค่าตำแหน่งแต่ละบล็อคของงูเป็นอาร์เรย์ โดยค่าในอาร์เรย์ถัดไปจะขึ้นอยู่กับค่าในอาร์เรย์ ก่อนหน้า coordinate(N)[t] = coordinate(N-1)[t-1] ซึ่งเมื่อค่าตำแหน่งถูกเปลี่ยนผ่านสัญญาณ clock บล็อคของตัวงูก่อนหน้าจะถูกแทนที่โดยบล็อคถัดไป

การตรวจจับการชนใช้หลักการในการตรวจสอบดังนี้ หากตำแหน่งที่ถูกวาดของตัวงู อาหาร หรือแผนที่เป็นตำแหน่งเดียวกันจะเกิดการชนขึ้น หากชนกับอาหาร ค่าในอาร์เรย์ของตัวงูจะเพิ่มขึ้น ตามอาหารที่ถูกชน หากเกิดการชนกับแผนที่ ค่าในตัวงูจะถูกรีเซ็ตเป็นค่าเริ่มต้น

สรุปผล

ในการเขียน Snake Game จะต้องมีการเขียนโค้ดเพื่อที่จะส่งสัญญาณ VGA โดยจะต้องใช้
ความถี่ให้ถูกต้องกับความละเอียดของจอและสัญญาณการนับพิกเซลเป็นสัญญาณที่จำเป็นสำหรับการ
แสดงผลกราฟิกของเกม เพื่อให้เกมสามารถแสดงผลบนหน้าจอได้ถูกต้อง โดยการเขียนระบบต่าง ๆ
ของ Snake Game จะมีการใช้สัญญาณการนับพิกเซลเป็นหลักในการเขียนระบบต่าง ๆ ขึ้น

อ้างอิง

- Nishant Singla, Mandeep Singh Narula, โปรเจค "FPGA Implementation of Snake Game Using Verilog HDL" ภาควิชาวิศวกรรมการสื่อสารและอิเล็คทรอนิกส์, JIIT, 2561. (15 พฤศจิกายน 2563)
- @WillFlux, Video Timings: VGA, SVGA, 720p, 1080p, (ออนไลน์). สีบค้นจาก
 https://projectf.io/posts/video-timings-vga-720p-1080p/ (15 พฤศจิกายน 2563)
- 3. Digilent Inc., Basys3™ FPGA Board Reference Manual, (ออนไลน์). สีบค้นจาก https://reference.digilentinc.com/_media/basys3:basys3_rm.pdf (20 พฤศจิกายน 2563)

ภาคผนวก

อุปกรณ์ที่ใช้

Basys3 FPGA Board

VGA Cable

VGA Monitor