B2-1. A magnetic compass is placed at the points A, B, and C near an electric circuit which has the following twisty shape:

The relative size of the B-field at these points, in order from biggest to smallest, is..

- A) ABC
- B) CBA
- C) BCA

- D) ACB
- E) None of these.

Answer: CAB (None of these)

B2-2. Notice that $\oint d\vec{\ell}$ and $\oint d\ell$ are different. $\oint d\vec{\ell}$ is the line integral of a vector displacement element $d\vec{\ell}$. $\oint d\ell$ is the line integral of a scalar length element $d\ell$.

Consider the CCW circular loop of radius R in the xy plane.

Part A. What is the value of $\oint d\ell$?

- A) zero
- B) $2\pi R$
- C) R
- D) None of these

Part B. What is the value of $\oint d\vec{\ell}$?

- A) zero
- B) 2πR
- C) $2\pi R \hat{z}$ D) None of these

Answers: $\oint d\ell = 2\pi R$, $\oint d\vec{\ell} = 0$

B2-3. What is the value of the line integral $\oint \vec{B} \cdot d\vec{\ell}$ around imaginary square CW loop $\boldsymbol{\ell}$ in the figure? The loop is 2 meters on a side, and the non-uniform B-field is given by

 $\vec{B} = \left(2\,\text{T/m}\right)y\,\hat{x} \ \ \, \text{(where y is in meters)}. \ \, \text{B=6T on the top side of the loop, and B=2T}$ on the bottom of the loop.

The value of $\oint \vec{B} \cdot d\vec{\ell}$ is...

- A) zero
- B) 4T·m
- C) 8 T·m

- D)12 T·m
- E) 16 T·m

Answer: 8 T m

B2-4. The imaginary loop \mathcal{L} near a wire with current I has 4 segments labeled 1, 2, 3, and 4, as shown.

What is the sign of $\int \vec{B} \cdot d\vec{\ell} \;\; \text{for each of the segments?}$

For 1, 2, 3, 4, the line integral is

$$A) + + 0 -$$

B)
$$0 + - 0$$

$$C) + 0 - 0$$

$$D) + 0 + 0$$

E) None of these

Answer: + 0 - 0

B2-5. We need a sign convention for I_thru.

Place the fingers of your right hand around the imaginary loop and your thumb points in the direction of positive I_thru. What is I_thru here, where all three wires have 5 A?

- A) +15 A
- B) -10 A
- C) + 10 A
- D) -5 A
- E) None of these

Answer: −5 A

B2-6. A long straight copper wire has radius b and carries a constant current of magnitude I. The current density of magnitude $J=I/(\pi b^2)$ is uniform throughout the wire.

Part A What is the current contained in the circular loop £, with radius r < b, centered on the wire's center as shown?

Part B How does the magnitude of the B-field a distance

r < b from the center of the wire depend on r?

A) B
$$\propto$$
 r

B)
$$B = constant$$

C) B
$$\propto 1/r$$

D) B
$$\propto 1/r^2$$

Answers:
$$I_{enc} = \left(\frac{r}{b}\right)^2 I$$
, $B \propto r$

B2-7. The imaginary loop \mathcal{L} near a long straight wire with current I has inner radius r1 and outer radius r2.

What is the value of $\oint \vec{B} \cdot d\vec{\ell} \;\; \text{for this loop?}$

$$^{\rm B)} \frac{\mu_0 \, I}{2 \pi (r_2 - r_1)}$$

- $_{C)}\;\mu_0\;I$
- D) zero
- E) None of these

Answer: zero. Notice that $I_{enc}=0$

B2-8. A wire of radius b has a uniform current density J, and so carries a total current $I = J \pi b^2$.

For the torturous loop ${\cal Z}$ shown below, what is the value of $\oint_{\bf r} \vec{\bf B} \cdot d\vec{\ell}$?

- A) $+\mu_0 I/2$
- $B)>\mu_0I/2,<\mu_0I$
- $C)<\mu_0I/2$
- D) $+\mu_0I$
- E) None of these

Answer: $+\mu_0 I/2$

B2-9.

A student proposes the B-field of a very long straight wire with current I is **longitudinal**, so that the B-field outside the wire is parallel to the axis of the wire, and, as shown in the figure, the B-field magnitude decreases with distance from the wire.

- A) This is possible.
- B) Not possible because it would violate Ampere's Law
- C) Not possible because it would violate Gauss's Law for B
- D) This is not possible for some other reason.

Answer: Not possible because it would violate Ampere's Law

B2-10. An inifinite sheet of current into the page produces a magnetic field at point P in which direction?

 $A) \rightarrow$

B) ↓

C) ←

D) 1

E)None of these

• p

Answer: \leftarrow (left)

B2-11. Suppose the current per length of the sheet is λ (units of A/m). How much current is enclosed by this Amperian loop?

Answer: λL

B2-12. Let B be the magnitude of the B-field at the top and bottom of the loop shown. (From symmetry, the B-field must have the same magnitude at equal distances above and below the

sheet. What is the value of the integral $\oint \vec{B} \cdot d\vec{\ell}$ for this loop ?

Answer: 2BL

B2-13. What is the magnitude B of the B-field a distance d away from a large uniform sheet of current with current per length λ ?

- $\begin{array}{ccc} \mu_0 \, \lambda & & \mu_0 \, d \\ \hline B) \, \frac{\mu_0 \, \lambda}{2 \, d} & & C) \, \frac{\mu_0 \, d}{2 \, \lambda} & & D) \, \frac{2 \, \mu_0 \, d}{\lambda} \end{array}$

E) None of these

Answer: $\frac{\mu_0 \lambda}{2}$ (derived using Ampere's Law)

B2-16.

A student proposes the magnetic field of a very long solenoid with current I has cylindrical symmetry, so that the B-field everywhere points away from the center line of the solenoid.

- A) This is possible.
- B) Not possible because it would violate Ampere's Law
- C) Not possible because it would violate Gauss's Law for **B**
- D) This is not possible for some other reason.

Answer: Not possible because it would violate Gauss's Law for B

B2-17. Three long straight solenoids all of length L and all with the same (large) number of closely-packed turns N, all with the same current I, have different cross-sections as shown.

Part B: True(A) or False(B): All three solenoids have uniform B-fields in their interiors.

Answer:	True!				

B2-18. A permanent bar magnet is broken in half. The two pieces are interchanged, keeping their orientations fixed, as shown below. Do the pieces attract or repel?

Answer: Attract