CS/ECE 374 FALL 2018 Homework 0 Problem 2

Anqi Yao (anqiyao2@illinois.edu)

2. Consider the following recurrence.

$$T(n) = T(|n/2|) + 2T(|n/4|) + n$$
 $n \ge 4$, and $T(n) = 1$ $1 \le n < 4$.

• Prove by induction that $T(n) = O(n \log n)$. More precisely show that $T(n) \le an \log n + b$ for $n \ge 1$ where $a, b \ge 0$ are some fixed but suitably chosen constants (you get to choose and fix them).

Solution:

- 2. Proof: By induction on n. Choose a = 1, b = 1.
 - · Base case:
 - When n = 1, T(1) = 1, $an \log n + b = \log 1 + 1 = 1$. $T(1) \le an \log n$.
 - When n = 2, T(2) = 1, $an \log n + b = 2 \log 2 + 1 = 3$. $T(2) \le an \log n$.
 - When n = 3, T(3) = 1, $an \log n + b = 3 \log 3 + 1 \le an \log n$.

So the recurrence holds for n = 1, 2, 3.

• Induction:

Suppose the recurrence holds for $n = 1, 2, 3, ..., k - 1, k \ge 4$.

We need to show it holds for n = k.

By the definition of floor, $|k/2| \le k/2$ and $|k/4| \le k/4$.

Thus from the induction hypothesis, we get $T(\lfloor k/2 \rfloor) \le T(k/2) \le a * (k/2) \log(k/2) + b$ and $T(\lfloor k/4 \rfloor) \le T(k/4) \le a * (k/4) \log(k/4) + b$.

Then by the definition of the recurrence,

$$T(k) = T(\lfloor k/2 \rfloor) + T(\lfloor k/4 \rfloor) + k$$

$$\leq T(k/2) + T(k/4) + k$$

$$\leq a(k/2)\log(k/2) + 2a(k/4)\log(k/4) + 3b + k$$

$$= \frac{ak}{2}(\log(k) - \log(2) + \log(k) - \log(4)) + 2b + k$$

$$= \frac{ak}{2}(2\log(k) - \log(k) - \log(4)) + 2b + k$$

$$= ak\log(k) - k/2 + k + 3b$$

$$= ak\log(k) - n/2 + 3b$$

Substitute with a = b = 1. We get $T(k) = k \log(k) - k/2 + 3$. For $k \ge 4$, $k/2 \ge 2$, thus $T(k) \le k \log(k) + 1$, which is the same as $T(k) \le ak \log(k) + b$. Hence, the induction has been proved.

Therefore, $T(n) = O(n \log n)$.