Nanyang Technological University

SPMS/DIVISION OF MATHEMATICAL SCIENCES

2015/16 Semester 1

MH1810 Mathematics I

Tutorial 12

1. Find the values of p for which the integral converges

(a)
$$\int_{1}^{2} \frac{1}{x \left(\ln x\right)^{p}} dx$$

(b)
$$\int_{2}^{\infty} \frac{1}{x (\ln x)^{p}} dx$$

(Ans: (a) $p < 1$, (b) $p > 1$)

2. Estimate each of the following definite integrals using the Trapezoidal Rule with n=4.

(a)
$$\int_{1}^{2} x \ dx$$

(b)
$$\int_{1}^{3} (2x-1) dx$$

(Ans: (a) $\frac{3}{2}$, (b) 6)

3. Estimate each of the following definite integrals using Simpson's Rule with n=4.

(a)
$$\int_{-1}^{1} (x^2 + 1) dx$$

(b)
$$\int_{-2}^{0} (x^2 - 1) dx$$

(Ans: (a) $\frac{8}{3}$, (b) $\frac{2}{3}$)

4. Prove that the volume of the cone with height h and radius r is $\frac{1}{3}\pi r^2 h$.

- 5. (a) The equation of a circle with center at the origin and radius r is described by the equation $x^2 + y^2 = r^2$. Use integration to prove that the area of the circle is πr^2 .
 - (b) When the region bounded by the x-axis and the curve $y = \sqrt{r^2 x^2}$ for $-r \le x \le r$ is rotated about the x-axis, a sphere with radius r is obtained. Use integration to prove that the volume of the sphere is given by $\frac{4}{3}\pi r^3$.
- 6. Use integration by substitution to prove the following.

(a)
$$\int \tan x dx = \ln|\sec x| + C$$

(b)
$$\int \sec x dx = \ln|\sec x + \tan x| + C$$

(c)
$$\int \sin^3 x \cos^8 x dx = -\frac{\cos^9 x}{9} + \frac{\cos^{11}}{11} + C$$