Matematyka 1 cos

Rafał Grot

October 5, 2022

Contents

1.1	postać algerbraiczna liczby zespolonej
	1.1.1 sprzężenie liczby zespolonej
1.2	postać trygonometryczna liczby zespolonej
1.3	postać wykładnicza liczby zespolonej
1.4	moduł liczby zespolonej
1.5	funkcja kwadratowa?
1.6	Potęgowanie liczby zespolonej

- $\bullet \ \mathbb{Z}$ zbiór liczb całkowitych
- $\bullet \ \mathbb{R}$ zbo
ór liczb rzeczywistych
- $\bullet \ \mathbb{C}$ zbi
ór liczb zespolonych

$$\mathbb{Z}\subset\mathbb{R}\subset\mathbb{C}$$

1.1 postać algerbraiczna liczby zespolonej

$$z = a + bi$$

Zapis zgodny z https://en.wikipedia.org/wiki/Complex_number (prznynajmniej w części)

- $\Re(z) = a$ część rzeczywista liczby zespolonej.
- $\Im(z) = b$ częśc urojona liczby zespolonej.
- i jednostka urojona $i^2 = -1$

1.1.1 sprzężenie liczby zespolonej

$$z = a + bi$$

$$\overline{z} = a - bi$$

$$w = f - gi$$

$$\overline{w} = f + gi$$

1.2 postać trygonometryczna liczby zespolonej

$$z = (z)(\cos \varphi * \sin \varphi)$$

1.3 postać wykładnicza liczby zespolonej

$$z = (z) * e^{i\varphi}$$

1.4 moduł liczby zespolonej

$$|z| = \sqrt{a^2 + b^2}$$

 φ – argument

1.5 funkcja kwadratowa?

$$z^2 + z + 1 = 0$$

 $\Delta = b^2 - 4ac = -3$ – brak rozwiązań w $\mathbb R$

$$\sqrt{\Delta} = \sqrt{-3} = \sqrt{(-1)3} = \sqrt{-1}\sqrt{3} = \sqrt{i^2}\sqrt{3} = i\sqrt{3}$$

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a} \lor z_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$z_1 = \frac{-1 - i\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \lor z_2 = \frac{-1 + i\sqrt{3}}{2} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

1.6 Potęgowanie liczby zespolonej

$$z = a + bi \rightarrow z = |z|(\cos \varphi + i \sin \varphi)^n \rightarrow |z|^n(\cos n\varphi + i \sin n\varphi)$$