CSCI 570 - Fall 2021 - HW 10

Due November 18th

Graded

1. (20 pts) Consider the partial satisfiability problem, denoted as 3-Sat(α). We are given a collection of k clauses, each of which contains exactly three literals, and we are asked to determine whether there is an assignment of true/false values to the literals such that at least α k clauses will be true. Note that 3-Sat(1) is exactly the 3-SAT problem from lecture.

Prove that 3-Sat(15/16) is NP-complete.

Hint: If x, y, and z are literals, there are eight possible clauses containing them: $(x \lor y \lor z)$, $(!x \lor y \lor z)$, $(x \lor !y \lor z)$, $(x \lor y \lor !z)$, $(!x \lor !y \lor z)$, $(!x \lor !y \lor z)$, $(!x \lor !y \lor !z)$

- 2. (20 pts) Consider modified SAT problem, SAT' in which given a CNF formula having m clauses in n variables x_1, x_2, \ldots, x_n , the output is YES if there is an assignment to the variables such that exactly m 2 clauses are satisfied, and NO otherwise. Prove that SAT' is also NP-Complete.
- 3. (20 pts) Given a graph G=(V,E) and two integers k, m, the *Dense Subgraph Problem* is to find a proper subset V' of V, whose size is at least k and are connected by at least m edges. Prove that the *Dense Subgraph Problem is NP-Complete*.

Ungraded

4. (20 pts) (Modified from Textbook 8.16) Consider the problem of reasoning about the identity of a set from the size of its intersections with other sets. You are given a finite set U of size n, and a collection $A_1...A_m$ of subsets of U. You are also given numbers $c_1.....c_m$, and numbers $d_1.....d_m$. The question is: Does there exist a set X \subset U so that for each i = 1...m, the cardinality of X \cap

A is larger than c_i but smaller than d_i? We will call this an instance of the

Intersection Inference Problem, with input U, $\{A_i\}$, and $\{c_i\}$, $\{d_i\}$. Prove that Intersection Inference is NP-complete.

5. (20 pts) (Textbook 8.28) The following is a version of the independent Set Problem. you are given a graph G = (V, E) and an integer k. For this problem, we will call a set $I \subseteq V$ strongly independent if, for any two nodes $v, u \in I$, the edge (v, u) does not belong to E, and there is also no path of two edges from u to v, that is, there is no node w such that both $(u, w) \in E$ and $(w, v) \in E$. The Strongly independent Set Problem is to decide whether G has a strongly independent set of size at least k.

Prove that the Strongly independent Set Problem is NP-complete.