Základy algoritmizace a programování Příklady v MATLABu

Přednáška 10 30. listopadu 2009

Řídící instrukce – if – else

C Matlab

Podmíněný příkaz

```
if ( podmínka )
    { příkazy }
else
    { příkazy }
```

```
if podmínka
    příkazy
elseif podmínka2
    příkazy
...
else
    příkazy
end
```

C: příkazy se sdružují do **bloku** pomocí složených závorek MATLAB: posloupnost příkazů je ukončena slovem end

Relační a logické operátory

>, <, >=, <= = = &&, || !, !=

větší, menší, ... rovnost

konjunkce, disjunkce negace, nerovnost

MATLAB

V MATLABu POZOR!

Jsou li A, B **matice**, nemusí být pravdivá ani jedna z podmínek:

 $A = B, A > B, A < B, A^{\sim} = B$

protože pravdivé jsou, když jsou splněny pro všechny prvky

matic

V MATLABu navíc:

any all

isequal

isempty

Řídící instrukce – cykly

C Matlab

Cyklus while

```
while (podmínka) { příkazy }
```

while **podmínka příkazy** end

Cyklus for

```
for (inicializace;podmínka;změna)
{ příkazy }
```

```
for proměnná = výraz
příkazy
end
```

C: příkazy se sdružují do **bloku** pomocí složených závorek MATLAB: posloupnost příkazů je ukončena slovem end

Řídící instrukce – přepínač

C Matlab

Přepínač switch

```
switch (výraz)
case hodnota1,hodnota2:
 příkazy; break;
case hodnota3:
 příkazy; break;
default:
```

```
switch výraz
case{ hodnoty1}
   příkazy
case {hodnoty2}
   příkazy
...
otherwise
   příkazy
end
```

C: Není li break; výpočet pokračuje dál.

MATLAB: break není nutný, vždy je vybrán jediný case! break lze použít pro předčasné ukončení cyklu.

M-files

Program v MATLABu – posloupnost příkazů, které mohou být uloženy v souborech. Takovým souboům s instrukcemi říkáme **m–files**.

- Program je obyčejný textový soubor, který lze vyvtvořit v textovém editoru, můžeme použít editor MATLABu.
- Příkazy (instrukce) se zapisují stejně jako v příkazovém řádku, oddělují se znaky;,,, nebo "enter"
- Konec programu nemá žádný speciální znak, jednoduše poslední příkaz. Předčasné ukončení – příkaz return
- Komentář (poznámky) : od znaku % do konce řádku
- Komentáře na začátku souboru jsou dostupné z helpu pomocí help jméno_programu

Typy **m**–souborů

Scénáře (skripty)

- Pracují s daty v pracovním prostředí (workspace)
- Nemají vstupní argumenty, nemohou vracet výsledky
- Použití : odladění a orientační výpočty

Funkce

- Pracují s vlastními lokálními proměnnými nebo s globálními daty
- Mohou mít vstupní argumenty a mohou vracet výsledky
- Rozšiřují možnosti jazyka MATLAB

Funkce

- Hlavička funkce

 - 2 function y = ff(x1, x2, ..., xn)
 - \bigcirc function ff(x1,x2,...,xn)
 - 4 function [y1, y2, ..., ym] = ff
- Volání funkce
 - 0 [y1, y2,..., ym] = ff(x1, x2,...,xn)
 - 2 y = ff(x1,x2,...,xn)
 - ff(x1,x2,...,xn)
 - [y1, y2, ..., ym] = ff(x1, x2, ..., xn)
- Globální proměnné global al al ... musí být uvedeno ve všech funkcích, které tyto proměnné používají
- Lokální funkce podfunkce
 Soubor funkce může obsahovat několik funkcí.
 První (hlavní) je dostupná zvně.
 - Ostatní lokální nebo podfunkce mohou být volány pouze z hlavní funkce nebo z některé z lokálních funkcí v tomto souboru.

Příklady – vytvoření m–funkcí

• Funkce y = f(x) - soubor f.mfunction y = f(x) $v = x^3 - 2 x - 5$ Funkce puleni – řešení f(x) = 0 – soubor puleni.m function x = puleni(f, a, b, presnost)if f(a) * f(b) > 0disp('Chybny interval') break while abs(b-a) > presnostx = (a+b)/2if f(x) = 0break elseif f(x) * f(a) > 0a=xelse b=xend %if end %while

Eulerova metoda – jako m.funkce v souboru euler.m

```
function [x \ y] = euler(x0, y0, h, N)
%od počátečního bodu [x0,y0] s krokem h N kroků
%vráti 2 vektory - x-ové hodnoty a y-ové hodnoty
x(1) = x0
y(1) = y0
for i=2:N
y(i) = y(i-1) + h * f(x(i-1), y(i-1))
x(i) = x(i-1)+h
end
% lokální funkce
function yy = f(x,y)
vv = 3*x^2/(2*v)
```

Příklad – použití funkce jako parametru

```
x=puleni(@f,1,3,0.0001)
```

Příklady práce s maticemi

- Načtení hodnot ze souboru
- Zjištění rozměrů matice

```
[mA nA] = size(A)
[mB nB] = size(B)
```

Vytvoření matice jiného rozměru

```
B=reshape (B, mm, nn)
POZOR, počet čísel v původní matici B musí být přesně
```

mm*nn

Určení hodnosti matic:

```
hA = rank(A)

hB = rank(B)
```

Je matice čtvercová nebo obdélníková?

```
if mA = = nA
disp('Matice A je ctvercova')
else
disp('Matice A je obdelnikova')
end
```

Příklady práce s maticemi

Je matice regulární?

```
if hA = =mA
disp('Matice A je regularni')
```

Je matice symetrická?

```
if A = =A')
disp('Matice A je symetricka')
```

Determinant matice

$$detA = det(A)$$

Vlastní čísla a vlastní vektory matice

```
spektrumA = eig(A)
spektrum matice je množina všech vlastních čísel

[V D ] = eig(A)
výsledky: V matice, jejíž sloupce jsou vlastní vektory,
odpovídající vlastním číslům, ktará jsou na diagonále matice D
```

Inverzní matice

$$invA = inv(A)$$

Některé vlastnosti matic

- Norma matice
 - řádková

```
normaR = max(sum(A'))
```

sloupcová

```
normaS = max(sum(A))
```

Euklidovská

```
normaE = sqrt(sum(sum(A.^2))
```

Číslo podmíněnosti matice

```
podminenost = cond (A)

číslo podmíněnosti = největší vlastní číslo/nejmenší vlastní číslo
```

- Ostře diagonální matice pro všechny řádky platí: absolutní hodnota čísla na hlavní diagonále je větší než součet absolutních hodnot zbývajících čísel v řádku
- Pozitivně definitní matice
 Všechny hlavní minory matice jsou kladné

Řešení soustavy lineárních rovnic

Gaussova eliminační metoda

Dána matice soustavy A.

(předpokládáme, že matice je regulární, a tedy existuje jediné řešení)

Vektor pravé strany b musí být **sloupec**, musí mít tolik prvků, kolik má matice A řádků.

Potom řešení soustavy rovnic:

$$x=A\b$$

Příklad:

$$A = \begin{pmatrix} 4 & 2 & -1 \\ 1 & 2 & 3 \\ 2 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 6 \\ -1 \\ 1 \end{pmatrix}$$

$$A = [4 \ 2 \ -1; \ 1 \ 2 \ 3; \ 2 \ 0 \ 1]$$

 $b = [6; \ -1; \ 1]$
 $x=A \setminus b$
 $(x = 1 \ 0.5 \ -1)$

