## 6.2 向量及其线性运算

1. 向量的概念

数量(标量): 只有大小的量.

向量(矢量): 既有大小又有方向的量.

向量的表示方法: 向量可以用有向线段表示. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向.

以 $\overrightarrow{A}$  为起点, $\overrightarrow{B}$  为终点的向量记作  $\overrightarrow{a}$  或  $\overrightarrow{AB}$  或粗体  $\overrightarrow{a}$ 

写作业时 必须加箭头







向量的模: 向量的大小. 向量  $\overrightarrow{AB}$  的大小记作  $|\overrightarrow{AB}|$  域  $|\overrightarrow{a}|$ 

**零向量:**模为0的向量.记为 **0**,零向量的起点与终点重合,它的方向可以看作是任意的.

单位向量: 模为1的向量.

与 $\vec{a}$ 同方向的单位向量记作 $\vec{a}^0$ 或 $\vec{AB}^0$ 

自由向量: 不考虑起点位置的向量.

向量的共性是它的大小和方向,数学上只研究与起点无关的向量——自由向量.

自由向量可通过平移放在同一起点上。

负向量: 与 $\vec{a}$  模相等但方向相反的向量叫做 $\vec{a}$  的负向量. 记作  $-\vec{a}$ 







向量平行: 若向量 $\bar{a}$  与 $\bar{b}$  所在的线段平行, 则称此二向量平行, 记作 $\bar{a}$   $//\bar{b}$  .

向量共线:设有 $k(k \ge 2)$ 个向量,当把它们的起点放在同一点时,如果k个终点和公共起点在一条直线上,则称这k个向量共线. 故二向量平行,也即共线。

向量共面:设有 $k(k \ge 3)$ 个向量,当把它们的起点放在同一点时,如果k个终点与公共起点在一个平面上,则称这k个向量共面.

零向量与任何向量都平行.

与向量 $\vec{a}$  平行的单位向量有? 有两个, 分别是 $\vec{a}^0$ 及 $-\vec{a}^0$ 







相等向量: 若向量 $\bar{a}$  与 $\bar{b}$  模相等且方向相同,则称此二向量相等,记作 $\bar{a}=\bar{b}$ .

 $\vec{a} \longrightarrow \vec{b} \longrightarrow$ 

向径:空间直角坐标系中任一点M与原点构成的向量 $\overrightarrow{OM}$ (M为终点),称为点M的向径.为方便起见,常把向量 $\overrightarrow{AB}$ 平行移动,使其起点 A与原点重合得向径 $\overrightarrow{OM}$ .



## 2. 向量的加减法

定义 1 设向量 $\overrightarrow{OA} = \overline{a}$ , $\overrightarrow{OB} = \overline{b}$ , 当 $\overline{a}$  与 $\overline{b}$  不平行时,以这两个向量为邻边作平行四边形OACB,则其对角线向量 $\overrightarrow{OC} = \overline{c}$  称为向量 $\overline{a}$  与 $\overline{b}$  的和向量,记作 $\overline{c} = \overline{a} + \overline{b}$ ,这种求和法则叫做平行四边形法则.







三角形法则:将向量 $\bar{b}$  平行移动,使其起点与 $\bar{a}$  的终点重合,则 $\bar{a}$  的起点到 $\bar{b}$  的终点的向量就是 $\bar{a}+\bar{b}$  .



特殊地, 当 $\vec{a}$  与 $\vec{b}$  平行时, 设 $\overrightarrow{AB} = \vec{a}, \overrightarrow{BC} = \vec{b}$  则有  $\vec{a} + \vec{b} = \vec{c} = \overrightarrow{AC}$ .

计算 $\bar{c}$  的模 $|\bar{c}|$  时,根据 $\bar{a}$  与 $\bar{b}$  同向及反向计算

同向:模为两个向量模的和; $|\vec{c}|=|\vec{a}|+|\vec{b}|$ 

方向与原来的两个向量的方向相同。

$$A \qquad \overrightarrow{a} \qquad \overrightarrow{B} \qquad \overrightarrow{b} \qquad C \qquad A \qquad \overrightarrow{a} \qquad B \qquad \overrightarrow{b} \qquad C$$

反向:模为两个向量模的差的绝对值; $|ec{c}|=|ec{a}|-|ec{b}|$ 

方向为与模较长的向量方向相同。







求多个向量的和时,可效仿三角形法则,就得到 所谓的<mark>多边形法则</mark>.

例:  $\vec{a} + \vec{b} + \vec{c} + \vec{d}$ 

将 $\bar{b}$  平行移动,使其起点与 $\bar{a}$  的终点重合,然后将 $\bar{c}$  平行移动,使其起点与 $\bar{b}$  的终点重合,最后将 $\bar{d}$  平行移动,使其起点与 $\bar{c}$  的终点重合,则 $\bar{a}$  的起点到 $\bar{d}$  的终点的向量就是 $\bar{a}+\bar{b}+\bar{c}+\bar{d}$  .









### 向量加法符合下列运算规律:

- (1) 交換律:  $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ .
- (2) 结合律:  $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$



上页

下页

返回

定义 2 若 $\vec{b}$  +  $\vec{c}$  =  $\vec{a}$  则称向量 $\vec{c}$  为 $\vec{a}$  与 $\vec{b}$  的差向量, 记作 $\vec{c}$  =  $\vec{a}$  一 $\vec{b}$  . (加法的逆运算)

定义  $\mathbf{z}'$  向量 $\mathbf{a}$  与向量 $\mathbf{b}$  和向量称为向量 $\mathbf{a}$  与 $\mathbf{b}$  的 差向量.



特别地, 当 $\vec{a} = \vec{b}$ 时,  $\vec{a} + (-\vec{a}) = \vec{0}$ 

由三角形的边长性质得:

其中等号分别在 $\bar{a}$  与 $\bar{b}$  同向(第1式)或反向(第2式)时成立.







## 3. 数与向量的乘积

定义 3 设 $\lambda$ 是一个实数,向量  $\vec{a}$ 与 $\lambda$ 的乘积 $\lambda \vec{a}$ 为一个向量,称为数乘向量.

它的模为 
$$|\lambda \vec{a}| = |\lambda| \cdot |\vec{a}|$$
;

它的方向为: 当 $\lambda > 0$ 时,  $\lambda \vec{a}$ 与 $\vec{a}$ 同向;

当
$$\lambda < 0$$
时, $\lambda \vec{a}$ 与 $\vec{a}$ 反向,

当
$$\lambda = 0$$
时, $\lambda \vec{a} = \vec{0}$ 

$$\frac{\vec{a}}{2\vec{a}} = \frac{1}{2} \vec{a}$$





### 数乘向量符合下列运算规律:

(1) 结合律: 
$$\lambda(\mu\vec{a}) = \mu(\lambda\vec{a}) = (\lambda\mu)\vec{a}$$

(2) 分配律: 
$$(\lambda + \mu)\vec{a} = \lambda\vec{a} + \mu\vec{a}$$
  
 $\lambda(\vec{a} + \vec{b}) = \lambda\vec{a} + \lambda\vec{b}$ 

按照向量与数的乘积的定义可得:

$$|\vec{a}| = |\vec{a}| |\vec{a}|^0 \implies |\vec{a}|^0 = \frac{1}{|\vec{a}|} |\vec{a}| = \frac{|\vec{a}|}{|\vec{a}|} (|\vec{a}| \neq \vec{0})$$

即 一个非零向量乘以它的模的倒数,其结果是一个与原向量同方向的单位向量,可用上式对非零向量单位化。







### 两个向量的平行关系

定理 设 $\bar{a}$  是非零向量,则 $\bar{b}$  //  $\bar{a}$  的充分必要条件是:存在惟一的实数 $\lambda$  ,使得 $\bar{b}$  =  $\lambda \bar{a}$  .

证: 显然成立。

$$\Longrightarrow$$
 当 $\vec{b}$  //  $\vec{a}$  时, 必有 $\vec{b}$   $^0$  =  $\vec{a}$   $^0$  或 $\vec{b}$   $^0$  =  $-\vec{a}$   $^0$  ,

即 
$$\frac{\vec{b}}{|\vec{b}|} = \frac{\vec{a}}{|\vec{a}|} \frac{\vec{b}}{|\vec{b}|} = -\frac{\vec{a}}{|\vec{a}|}$$

$$\mathbf{R}^{\lambda} = \frac{\left| \vec{b} \right|}{\left| \vec{a} \right|} \mathbf{g}^{\lambda} = -\frac{\left| \vec{b} \right|}{\left| \vec{a} \right|} (\vec{b} | \vec{a} | \vec{a} | \vec{b} | \mathbf{n}$$
 同向取正,反向取负)

则有 $\vec{b} = \lambda \vec{a}$ 







## 唯一性:

设
$$\vec{b} = \lambda \vec{a}$$
 , 又设 $\vec{b} = \mu \vec{a}$  ,

两式相减, 得  $(\lambda - \mu)\bar{a} = \bar{0}$ ,

即 
$$\left|\lambda - \mu\right| \left|\vec{a}\right| = 0$$
,

因 
$$|\vec{a}| \neq 0$$
 ,故  $|\lambda - \mu| = 0$  ,

即 
$$\lambda = \mu$$

例1 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

$$\overrightarrow{BM} = \overrightarrow{MC}$$

$$\overrightarrow{BM} = \overrightarrow{MD}$$

$$\therefore \overrightarrow{AD} = \overrightarrow{AM} + \overrightarrow{MD} = \overrightarrow{MC} + \overrightarrow{BM} = \overrightarrow{BC}$$

$$\overrightarrow{AD}$$
与 $\overrightarrow{BC}$ 相等,结论得证.



### 空间两向量的夹角的概念:

设有两个非零向量 $\vec{a}$ , $\vec{b}$ ,任取空间一点o,作 $\overrightarrow{OA} = \vec{a}$ , $\overrightarrow{OB} = \vec{b}$ ,



规定不超过 $\pi$  的 $\angle AOB$  (设 $\varphi = \angle AOB$ ,

 $0 \le \varphi \le \pi$ ) 称为向量 $\vec{a}$ 与 $\vec{b}$ 的夹角.记作

$$\varphi = (\vec{a}, \vec{b}) = (\vec{b}, \vec{a}) \quad (0 \le \varphi \le \pi)$$

特殊地,当两个向量中有一个零向量时,规定它们的夹 角可在0与 π之间任意取值.

类似地,可定义向量与一轴或空间两轴的夹角.





## 4. 向量的投影

设有向量 $\vec{a}$ 与 $\vec{b}$ ,过 $\vec{a}$ 的起点M与终点N分别作与向量 $\vec{b}$ 所在直线垂直的平面,此两平面分别与 $\vec{b}$ 所在直线交于点M'与N',则存在数 $\lambda$ ,使得 $\overline{M'N'}=\lambda \bar{b}^0$ ,则将数 $\lambda$ 称为向量 $\vec{a}$ 在向量 $\vec{b}$ 上的投影.记作 $(\vec{a})_{\vec{b}}$ (或 $\Pr(j_{\vec{b}}\vec{a})$ ,即 $(\vec{a})_{\vec{b}}=\lambda$ (或 $\Pr(j_{\vec{b}}\vec{a})$ )



投影是一个数, 不是向量。

## 向量投影具有如下性质

证

(1) 
$$(\vec{a})_{\vec{b}} = |\vec{a}| \cos(\vec{a}, \vec{b})$$

(2) 
$$(\vec{a} + \vec{b})_{\vec{c}} = (\vec{a})_{\vec{c}} + (\vec{b})_{\vec{c}}$$

(3) 
$$(\lambda \vec{a})_{\vec{b}} = \lambda (\vec{a})_{\vec{b}}$$

### 投影性质(1)的说明:

当 
$$0 \le \varphi < \frac{\pi}{2}$$
时,投影为正;

当 
$$\frac{\pi}{2}$$
 <  $\varphi \leq \pi$  时,投影为负;

当 
$$\varphi = \frac{\pi}{2}$$
 时,投影为零。

相等的向量在同一向量上的投影相等。



(1)

# 5. 向量的坐标表示

以 $\vec{i}$ , $\vec{j}$ , $\vec{k}$ 分别表示沿x,y,z轴正向的单位向量.

## 基本单位向量

设OM 是起点为原点,终点为M(x,y,z) 的向量,则

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AN} + \overrightarrow{NM} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$

$$\vec{OA} = x\vec{i}$$
,  $\overrightarrow{OB} = y\vec{j}$ ,  $\overrightarrow{OC} = z\vec{k}$ 

 $\therefore \overrightarrow{OM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ 

向量OM的坐标表示式

可简写为 $\overrightarrow{OM} = \{x, y, z\}, \overrightarrow{OM} = (x, y, z)$ 







因而基本单位向量的坐标表示式为:

$$\vec{i} = \{1, 0, 0\}, \quad \vec{j} = \{0, 1, 0\}, \quad \vec{k} = \{0, 0, 1\}$$

### 向量的加减法、向量与数的乘法运算的坐标表达式

设
$$\vec{a} = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}$$
,  $\vec{b} = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$ ,则有  $\vec{a} \pm \vec{b} = (x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k}) \pm (x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k})$   $= (x_1 \pm x_2) \vec{i} + (y_1 \pm y_2) \vec{j} + (z_1 \pm z_2) \vec{k}$ 

$$= \lambda x_1 \vec{i} + \lambda y_1 \vec{j} + \lambda z_1 \vec{k}$$

 $\lambda \vec{a} = \lambda (x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k})$ 



当 $M_1M_2$ 是起点为 $M_1(x_1,y_1,z_1)$ ,终点为 $M_2(x_2,y_2,z_2)$ 的向量时,则  $\overrightarrow{M}_1 \overrightarrow{M}_2 = \overrightarrow{OM}_2 - \overrightarrow{OM}_1$  $\therefore \overrightarrow{OM}_{1} = x_{1}\overrightarrow{i} + y_{1}\overrightarrow{j} + z_{1}\overrightarrow{k}$  $\overrightarrow{OM}_{2} = x_{2}\overrightarrow{i} + y_{2}\overrightarrow{j} + z_{2}\overrightarrow{k}$  $M_1 M_2 = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j} + (z_2 - z_1)\vec{k}$ 其中 $\{x_2-x_1, y_2-y_1, z_2-z_1\}$ 为 $\overrightarrow{M_1M_2}$ 的坐标, 同时它 们分别表示向量 $M_1M_2$ 在x轴、y轴、z轴上的投影. 若将 $M_1M_2$  平移,使 $M_1$ 与原点重合,则 $M_2$ 被移到点  $(x_2-x_1, y_2-y_1, z_2-z_1)$ 

**例** 2 设 $A(x_1,y_1,z_1)$ 和 $B(x_2,y_2,z_2)$ 为两已知点,而在AB直线上的点M分有向线段 $\overline{AB}$ 为两部分 $\overline{AM}$ 、 $\overline{MB}$ ,使  $\overline{AM} = \lambda \overline{MB}$   $(\lambda \neq -1)$ ,求分点M的坐标.

解 设M(x,y,z)为直线上的点,

$$\overrightarrow{AM} = \{x - x_1, y - y_1, z - z_1\}$$

$$\overrightarrow{MB} = \{x_2 - x, y_2 - y, z_2 - z\}$$





由题意知:  $\overrightarrow{AM} = \lambda \overrightarrow{MB}$ 

田茂思知: 
$$AM = \lambda MD$$
 
$$\{x - x_1, y - y_1, z - z_1\} = \lambda \{x_2 - x, y_2 - y, z_2 - z\},$$

$$x - x_1 = \lambda(x_2 - x) \Rightarrow x = \frac{x_1 + \lambda x_2}{1 + \lambda},$$
  

$$y - y_1 = \lambda(y_2 - y) \Rightarrow y = \frac{y_1 + \lambda y_2}{1 + \lambda},$$

$$z-z_1=\lambda(z_2-z)$$
  $\Rightarrow z=rac{z_1+\lambda z_2}{1+\lambda}$ ,  $M$  为有向线段 $\overline{AB}$ 的定比分点.  $M$  为中点时,

$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2}, \quad z = \frac{z_1 + z_2}{2}.$$

**上页** 下页

设
$$\vec{a} = \{x_1, y_1, z_1\}$$
  $\vec{b} = \{x_2, y_2, z_2\}$ 

利用向量的坐标,可以把  $\bar{a}$  //  $\bar{b}$  的充要条件  $\bar{b} = \lambda \bar{a}$  表示为  $x_2 = \lambda x_1$   $y_2 = \lambda y_1$   $z_2 = \lambda z_1$ 

或 
$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$$

在此式中,若某个分母为零,则相应的分子也为零.



## 6. 向量的方向角与方向余弦

非零向量与三条坐标轴的正向的夹角称为方向角.

非零向量 $\vec{a}$  的方向角:  $\alpha \setminus \beta \setminus \gamma$ 



$$0 \le \alpha \le \pi$$
,

$$0 \le \beta \le \pi$$
,

$$0 \le \gamma \le \pi$$
.





设向量 $\bar{a} = \{x, y, z\}$ 

由图分析可知



$$x = |\vec{a}| \cos \alpha$$

$$y = |\vec{a}| \cos \beta$$

$$z = |\vec{a}| \cos \gamma$$

向量角或方向余弦惟一地确定了向量的方向.

$$\left|\overrightarrow{OM}\right| = \sqrt{\left|\overrightarrow{OP}\right|^2 + \left|\overrightarrow{OQ}\right|^2 + \left|\overrightarrow{OR}\right|^2}$$

$$\left|\overrightarrow{a}\right| = \sqrt{x^2 + y^2 + z^2} \quad \text{向量模长的坐标表示式}$$





向量

a 的方向余弦



## 向量的方向余弦的坐标表示式

当 
$$\sqrt{x^2+y^2+z^2} \neq 0$$
 时,

$$\cos\alpha=\frac{x}{\sqrt{x^2+y^2+z^2}},$$

$$\cos\beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}},$$

$$\cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}}.$$

## 方向余弦的特征

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

特殊地, $\bar{a}$ 单位向量 $\bar{a}^0$ 的方向余弦为

$$\vec{a}^0 = \frac{\vec{a}}{|\vec{a}|}$$

 $=\{\cos\alpha,\cos\beta,\cos\gamma\}.$ 





例 3 求平行于向量 $\vec{a} = 6\vec{i} + 7\vec{j} - 6\vec{k}$  的单位向量的坐标表达式。 解 所求向量有两个,一个与 $\vec{a}$ 同向,一个反向

$$|\vec{a}| = \sqrt{6^2 + 7^2 + (-6)^2} = 11,$$

$$\vec{a}^{0} = \frac{\vec{a}}{|\vec{a}|} = \frac{6}{11}\vec{i} + \frac{7}{11}\vec{j} - \frac{6}{11}\vec{k},$$

或
$$-\vec{a}^0 = -\frac{\vec{a}}{|\vec{a}|} = -\frac{6}{11}\vec{i} - \frac{7}{11}\vec{j} + \frac{6}{11}\vec{k}$$
.



例 4 设有向量 $\overrightarrow{P_1P_2}$ ,已知 $|\overrightarrow{P_1P_2}|$ =2,它与x轴

和y轴的夹角分别为 $\frac{\pi}{3}$ 和 $\frac{\pi}{4}$ ,如果 $P_1$ 的坐标为

解 设向量 $\overrightarrow{P_1P_2}$ 的方向角为 $\alpha$ 、 $\beta$ 、 $\gamma$ 

(1,0,3), 求P,的坐标.

$$\alpha = \frac{\pi}{3}$$
,  $\cos \alpha = \frac{1}{2}$ ,  $\beta = \frac{\pi}{4}$ ,  $\cos \beta = \frac{\sqrt{2}}{2}$ ,

$$\because \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1, \qquad \therefore \cos \gamma = \pm \frac{1}{2}.$$



$$\Rightarrow \gamma = \frac{\pi}{3}, \quad \gamma = \frac{2\pi}{3}.$$
 设 $P_2$ 的坐标为 $(x, y, z),$ 

$$\cos \alpha = \frac{x-1}{|\overrightarrow{P_1P_2}|} \Rightarrow \frac{x-1}{2} = \frac{1}{2} \Rightarrow x = 2,$$

$$\cos\beta = \frac{y-0}{|P_1P_2|} \Rightarrow \frac{y-0}{2} = \frac{\sqrt{2}}{2} \Rightarrow y = \sqrt{2},$$

$$\cos \gamma = \frac{z-3}{|\overrightarrow{P_1P_2}|} \Rightarrow \frac{z-3}{2} = \pm \frac{1}{2} \Rightarrow z = 4, z = 2,$$

$$P_2$$
的坐标为  $(2,\sqrt{2},4)$ ,  $(2,\sqrt{2},2)$ .

# 六、小结

向量的概念(注意与标量的区别)

向量的加减法(平行四边形法则)

向量与数的乘法(注意数乘后的方向)

向量的模及方向余弦(坐标表示式)





# 思考题

己知平行四边形ABCD的对角线

$$\overrightarrow{AC} = \overrightarrow{a}, \quad \overrightarrow{BD} = \overrightarrow{b}$$

试用  $\vec{a}$ ,  $\vec{b}$  表示平行四边形四边上对应的向量.

# 思考题解答



$$\overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow{AM} + \overrightarrow{MD} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})$$

$$\overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow{AM} + \overrightarrow{MD} = \frac{1}{2}(\overrightarrow{a} + \overrightarrow{b}).$$

$$\overrightarrow{DC} = \overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = \frac{1}{2}(\overrightarrow{a} - \overrightarrow{b}).$$



# 思考题

设 $\vec{m} = \vec{i} + \vec{j}$ , $\vec{n} = -2\vec{j} + \vec{k}$ ,求以向量 $\vec{m}$ , $\vec{n}$ 为边的平行四边形的对角线的长度.

## 思考题解答



对角线的长为  $|\vec{m} + \vec{n}|$ ,  $|\vec{m} - \vec{n}|$ ,

$$\vec{m} + \vec{n} = \{1,-1,1\}, \qquad \vec{m} - \vec{n} = \{1,3,-1\}$$

$$|\vec{m} + \vec{n}| = \sqrt{3}, \quad |\vec{m} - \vec{n}| = \sqrt{11},$$

平行四边形的对角线的长度各为√3,√11.







作业: P9: 8. 4. 5. 9. 11. 13. 14.