СКБ201 Тур Тимофей

Теория вероятности, долгосрочные домашние задания. Вариант 68: дискретное - 3, непрерывное - 5.

3 - Дискретное равномерное 1: $P(x)= heta^{-1}, x\in\{1,\dots,\theta\}, \, heta=29$

Обозначим дискретное распределение в дальнейшем за ξ

5 - Треугольное:
$$f(x)=\left\{egin{array}{ll} \dfrac{2x}{ heta},& ext{если}\,x\in[0, heta] \\ \dfrac{2(1-x)}{1- heta},& ext{если}\,x\in(heta,1],\, heta=0.45 \\ 0,& ext{иначе} \end{array}
ight.$$

Обозначим абсолютно непрерывное распределение в дальнейшем за η

Навигация

- Домашнее задание 1
 - Дискретное
 - Задание 1
 - Задание 2
 - Задание 3
 - Абсолютно непрерывное
 - Задание 1
 - Задание 2
 - Задание 3
- Домашнее задание 2
 - Дискретное
 - Задание 1
 - Задание 2
 - Задание 3
 - Задание 4
 - Абсолютно непрерывное
 - Задание 1
 - Задание 2
 - Задание 3
 - Задание 4
- Домашнее задание 3
 - Дискретное
 - Задание 1
 - Задание 2
 - Задание 3
 - Абсолютно непрерывное
 - Задание 1
 - Задание 2
 - Задание 3

Домашнее задание 1

Дискретное

Задание 1

Функция распределения

$$F(n) \stackrel{ ext{def}}{=} P(\xi \leq n) = \sum_{k=1}^n P(\xi = k) = \sum_{k=1}^n heta^{-1} = \underline{n} heta^{-1}$$

Математическое ожидание

$$M\xi\stackrel{ ext{def}}{=}\sum_{x=1}^{ heta}xP(\xi=x)=\sum_{x=1}^{ heta}x heta^{-1}= heta^{-1}\sum_{x=1}^{ heta}x= heta^{-1}rac{1+ heta}{2} heta=rac{ heta+1}{2}$$

Дисперсия

$$D\xi \stackrel{ ext{def}}{=} M(\xi - M\xi)^2 = M\xi^2 - (M\xi)^2$$

$$M\xi^2 \stackrel{ ext{def}}{=} \sum_{x=1}^{ heta} x^2 P(\xi=x) = heta^{-1} \sum_{x=1}^{ heta} x^2 = heta^{-1} rac{ heta(1- heta)(1+2 heta)}{6} = rac{(1+ heta)(1+2 heta)}{6}$$

$$\Rightarrow D\xi = M\xi^2 - (M\xi)^2 = \frac{(1+\theta)(1+2\theta)}{6} - (\frac{\theta+1}{2})^2 = \frac{2(1+3\theta+2\theta^2) - 3(1+2\theta+\theta^2)}{12} = \frac{\theta^2-1}{12}$$

Квантиль уровня γ

$$P(\xi \leq x_\gamma) \geq \gamma$$
 и $P(\xi \geq x_\gamma) \geq 1 - \gamma$

$$1.\,P(\xi \leq x_\gamma) \geq \gamma \Rightarrow \sum_{k=1}^{x_\gamma} P(\xi=k) \geq \gamma \Leftrightarrow \sum_{k=1}^{x_\gamma} heta^{-1} \geq \gamma \Leftrightarrow x_\gamma heta^{-1} \geq \gamma \Leftrightarrow x_\gamma \geq \gamma heta$$

$$egin{aligned} 2.\,P(\xi\geq x_\gamma)\geq 1-\gamma &\Rightarrow \sum_{k=x_\gamma}^{ heta}P(\xi=k)\geq 1-\gamma &\Leftrightarrow \sum_{k=x_\gamma}^{ heta} heta^{-1}\geq 1-\gamma &\Leftrightarrow (heta-x_\gamma+1) heta^{-1}\geq 1-\gamma &\Leftrightarrow \\ &\Leftrightarrow 1-x_\gamma heta^{-1}+ heta^{-1}\geq 1-\gamma &\Leftrightarrow x_\gamma\leq \gamma heta+1 \end{aligned}$$

$$\Rightarrow \underline{\gamma heta \leq x_{\gamma} \leq \gamma heta + 1}$$

Задание 2

Примеры

- 1. Примером события с дискретным равномерным распределением может быть игра "Bingo". Но не вся она, а лишь ее часть. В ней, подобно лото, участникам выдаются цветные листки с числами и маркерами, а ведущий стоит у аппарата, поторый по нажатию кнопки выдает случайный шарик, крутящийся в нем. Шарик имеет цвет и номер, и участники выделяют соответсвующие ячейки на своем листе, пока у них не получатся какая-нибудь соответствующая последовательность. (Лично я увидел эту игру в сериале "Лучше звоните Солу" в первом сезоне). Чтобы эта модель была применима к нашему распределению, игру следует упростить: На листке всего 1 номер и мячики не имеют цвета. Тогда шанс появления какого-то мячика будет равен $\frac{1}{\text{количество мячиков} = \theta} = \theta^{-1}$, и, соответственно шанс выигрыша какого-то игрока тоже равен θ^{-1} .
- 2. Подбрасывание монетки с числами на ее сторонах "1" и "2". Вероятность выпадения каждой равна $\frac{1}{\text{количество сторон}} = \frac{1}{2}$, что соответствует $\theta = 2$.
- 3. Любые стандартные игральные кости (d4, d6, d8, d10, d12, d20...)

Соотношения

- 1. Из примера 2 следует соотношение $U(heta=2)=B(1,rac{1}{2})$.
- 2. Если выбрать некоторое $k_i\in\{1,\ldots,\theta\}$ за 1 некоторой функции g, а остальные элементы из $\{1,\ldots,\theta\}$ принять за 0 (g определена на $\{1,\ldots,\theta\}$), то $g(U(\theta))=B(1,\frac{1}{\theta})$.
- 3. Тогда, через отслеживание множества функций g, определенных выше, и их значений, то из $G(g_1(U(\theta)),\dots,g_n(U(\theta)))$ можно построить $B(n,\frac{1}{\theta})$.
- 4. Множеством таких G по n можно определить геометрическое распределение. (но на самом деле на третьем соотношении можно было закончить, так как оно связывается с остальными через него, а значит уже не напрямую)

Задание 3

Поделим отрезок [0,1] на сегменты равные θ^{-1} . Их будет в точности θ штук, а выборка определяется вхождением в какой из последовательных отрезков получилось у случайной величины: $\Box u$ - сгенерированная равномерно распределенная величина на отрезке [0,1], тогда x определяется по формуле $(x-1)\theta^{-1} \le u < x\theta^{-1}$

```
In [1]: import numpy as np

def generate_xi(theta=29):
    rng = np.random.default_rng()
    u = rng.uniform()
    for k in range(1, theta + 1):
        if (k - 1) / theta <= u < k / theta:
            return k</pre>
```

Абсолютно непрерывное

Задание 1

Функция распределения

$$F(x) \stackrel{ ext{def}}{=} \int_{\mathbb{R}} f(x) = \left\{ egin{array}{ll} \int_0^x rac{2t}{ heta} dt, & ext{если} \, x < 0 \ & ext{если} \, x \in [0, heta] \ & ext{} \int_0^ heta rac{2t}{ heta} dt + \int_ heta^x rac{2(1-t)}{1- heta} dt, & ext{ если} \, x \in (heta, 1] \ & ext{} \int_0^ heta rac{2t}{ heta} dt + \int_ heta^1 rac{2(1-t)}{1- heta}, & ext{ если} \, x > 1 \ \end{array}
ight.$$

$$1)\int_0^xrac{2t}{ heta}dt=rac{1}{ heta}\int_0^x2tdt=rac{1}{ heta}t^2\Big|_0^x=rac{1}{ heta}x^2$$

$$2) \int_{0}^{\theta} \frac{2t}{\theta} dt + \int_{\theta}^{x} \frac{2(1-t)}{1-\theta} dt = \theta + \frac{2}{1-\theta} \int_{\theta}^{x} (1-t) dt = \theta + \frac{2}{1-\theta} (t - \frac{1}{2}t^{2}) \Big|_{\theta}^{x} = \theta + \frac{2}{1-\theta} (x - \frac{1}{2}x^{2} - \theta + \frac{1}{2}\theta^{2}) = \theta + \frac{1}{1-\theta} (2x - x^{2} - 2\theta + \theta^{2}) = \theta + \frac{1}{1-\theta} (2x - x^{2} - \theta)$$

$$3) \int_0^\theta \frac{2t}{\theta} dt + \int_\theta^1 \frac{2(1-t)}{1-\theta} = \frac{1}{1-\theta} (2-1-\theta) = \frac{1-\theta}{1-\theta} = 1$$

$$0,$$
 если $x < 0$ $\Rightarrow F(x) = \left\{egin{array}{ll} rac{1}{ heta}x^2, & ext{если } x \in [0, heta] \ rac{1}{1- heta}(2x-x^2- heta), & ext{если } x \in (heta,1] \ 1, & ext{если } x > 1 \end{array}
ight.$

Математическое ожидание

$$\begin{split} M\eta &\stackrel{\text{def}}{=} \int_{\mathbb{R}} f(x)x dx = \int_{0}^{\theta} \frac{2x}{\theta} x dx + \int_{\theta}^{1} \frac{2(1-x)}{1-\theta} x dx = \frac{2}{\theta} \int_{0}^{\theta} x^{2} dx + \frac{2}{1-\theta} \int_{\theta}^{1} (x-x^{2}) dx = \\ &= \frac{2}{3\theta} x^{3} \Big|_{0}^{\theta} + \frac{2}{1-\theta} (\frac{1}{2} x^{2} - \frac{1}{3} x^{3}) \Big|_{\theta}^{1} = \frac{2}{3\theta} \theta^{3} + \frac{2}{1-\theta} (\frac{1}{2} - \frac{1}{3} - \frac{1}{2} \theta^{2} + \frac{1}{3} \theta^{3}) = \\ &= \frac{2}{3} \theta^{2} + \frac{2}{1-\theta} (\frac{1}{6} + \frac{2\theta^{3} - 3\theta^{2}}{6}) = \frac{2\theta^{2}}{3} + \frac{2\theta^{3} - 3\theta^{2} + 1}{3(1-\theta)} = \frac{2\theta^{2} - 2\theta^{3} + 2\theta^{3} - 3\theta^{2} + 1}{3(1-\theta)} = \\ &= \frac{1-\theta^{2}}{3(1-\theta)} = \frac{1+\theta}{3} \end{split}$$

Дисперсия

$$D\eta \stackrel{ ext{def}}{=} M(\eta - M\eta)^2 = M\eta^2 - (M\eta)^2$$

$$\begin{split} M\eta^2 &\stackrel{\text{def}}{=} \int_{\mathbb{R}} f(x) x^2 dx = \int_0^\theta \frac{2x}{\theta} x^2 dx + \int_\theta^1 \frac{2(1-x)}{1-\theta} x^2 dx = \frac{2}{\theta} \int_0^\theta x^3 dx + \frac{2}{1-\theta} \int_\theta^1 (x^2 - x^3) dx = \\ &= \frac{1}{2\theta} x^4 \Big|_0^\theta + \frac{2}{1-\theta} (\frac{1}{3} x^3 - \frac{1}{4} x^4) \Big|_\theta^1 = \frac{1}{2\theta} \theta^4 + \frac{2}{1-\theta} (\frac{1}{3} - \frac{1}{4} - \frac{1}{3} \theta^3 + \frac{1}{4} \theta^4) = \\ &= \frac{1}{2} \theta^3 + \frac{2}{1-\theta} (\frac{1}{12} + \frac{3\theta^4 - 4\theta^3}{12}) = \frac{1}{2} \theta^3 + \frac{1}{6(1-\theta)} (3\theta^4 - 4\theta^3 + 1) = \\ &= \frac{1}{6(1-\theta)} (3\theta^4 - 4\theta^3 + 1 + 3\theta^3 - 3\theta^4) = \frac{1}{6(1-\theta)} (1-\theta^3) = \frac{1+\theta + \theta^2}{6} \\ \Rightarrow D\eta = M\eta^2 - (M\eta)^2 = \frac{1+\theta + \theta^2}{6} - (\frac{1+\theta}{3})^2 = \frac{3(1+\theta + \theta^2) - 2(1+2\theta + \theta^2)}{18} = \frac{1-\theta + \theta^2}{18} \end{split}$$

Квантиль уровня γ

$$F(x_\gamma)=\gamma\Rightarrow \left\{egin{array}{ll} x_\gamma=0, & ext{если}\,\gamma<0 \ rac{1}{ heta}x_\gamma^2=\gamma, & ext{если}\,\gamma\in[0, heta] \ rac{1}{1- heta}(2x_\gamma-x_\gamma^2- heta)=\gamma, & ext{если}\,\gamma\in(heta,1] \ x_\gamma=1, & ext{если}\,\gamma>1 \end{array}
ight.$$

$$(1) \ rac{1}{ heta} x_{\gamma}^2 \geq \gamma \Leftrightarrow x_{\gamma} \geq \sqrt{ heta \gamma} \Rightarrow x_{\gamma} = \sqrt{ heta \gamma}$$

$$egin{aligned} 2) \, rac{1}{1- heta}(2x_{\gamma}-x_{\gamma}^2- heta) &\geq \gamma \Rightarrow rac{1}{1- heta}(2x_{\gamma}-x_{\gamma}^2- heta) = \gamma \Leftrightarrow -x_{\gamma}^2+2x_{\gamma}- heta = (1- heta)\gamma \Leftrightarrow \ &\Leftrightarrow -x_{\gamma}^2+2x_{\gamma}- heta-\gamma+ heta\gamma = 0 \Rightarrow \ &\Rightarrow D = 4-4(heta+\gamma- heta\gamma) = 4(1- heta-\gamma+ heta\gamma) \Rightarrow \ &\Rightarrow x_{\gamma} = rac{-2\pm2\sqrt{1- heta-\gamma+ heta\gamma}}{-2} = 1\pm\sqrt{1- heta-\gamma+ heta\gamma} \,. \ &x_{\gamma} \in [heta,1] \Rightarrow x_{\gamma} = 1-\sqrt{1- heta-\gamma+ heta\gamma} \end{aligned}$$

$$x_{\gamma}=0,$$
 если $\gamma<0$ $ext{ } x_{\gamma}=\left\{egin{array}{ll} \sqrt{ heta\gamma}, & ext{ } ext{ }$

Задание 2

Треугольное распределение на практике используется часто, потому что оно имеет минимум, максимум и пик, что делает его уже достаточным к реальности распределением, так еще и оно очень простое по своей математике и применению. Конкретно в приведенной формуле распределение ограничено 0 и 1 и имеет пик в θ , а в обычных случаях оно позволяет посчитать предполагаемую прибыль какого-то ресторана, просто делая предположение о минимуме, максимуме и наиболее вероятном значении при помощи анализа полученного распределения (например через математическое ожидание). Также, в силу простоты, оно может служить некоторой заменой к другим распределениям подобной структуры. Так, если мы, например, наблюдаем образование бактерий на влажной сахарной линии, то очевидно, что надо использовать нормальное распределение, потому что это почти именно то, что оно и отображает. Однако, чтобы использовать нормальное распределение также практическим методом потребуется вычислить дисперсию, что может быть трудной задачей, потому временной заменой может послужить простое треугольное распределение, чтобы пронаблюдать на нем отклонения. Но если серьезно...

Задание 3

Чтобы построить выборку от равномерного случайного распределения требуется найти $F^{-1}(u)$, что мы фактически искали, вычисляя квантиль уровня γ . Чем я и воспользуюсь, описав код ниже.

```
In [2]: import numpy as np
def generate_eta(theta=0.45):
    rng = np.random.default_rng()
    u = rng.uniform()
    if u <= theta: return (theta*u)**0.5
    return 1-(1-theta-u+theta*u)**0.5</pre>
```

Домашнее задание 2

Предупреждение: выполнение кода без файлов "sample_xi.pkl" и "sample_eta.pkl" сгенерирует новые выборки и сохранит их прямо у вас. Чтобы такого не было, либо загрузите уже готовые выборки, либо немного модифицируйте код (уберите сериализацию и раскомменьте строку прямо над ней).

Дискретное

Задание 1

```
In [3]: # Здесь допустимо использование функций генераторов, указанных ранее
        # theta задана в каждой функции генератора параметром по умолчанию
        # потому отдельное упоминание не требуется
        n = [5, 10, 100, 200, 400, 600, 800, 1000]
        #sample xi = [[np.sort(np.array([generate xi() for i in range(j)]))
                     for i in range(5)] for j in n]
        # BEGIN сериализация
        import os, pickle
        if 'sample xi.pkl' in os.listdir():
            with open('sample xi.pkl', 'rb') as f:
                sample xi = pickle.load(f)
        else:
            sample xi = [[np.sort(np.array([generate xi() for i in range(j)]))
                          for i in range(5)] for j in n]
            with open('sample xi.pkl', 'wb') as f:
                pickle.dump(sample xi, f)
        # END сериализация
        # демонстрация первых выборок
        for i in range(len(n)):
            print('Пример сгенерированной выборки длины %d:'%n[i], end=' ')
            print(*sample xi[i][0])
            print('-'*10)
```

Пример сгенерированной выборки длины 5: 9 9 10 18 24

Пример сгенерированной выборки длины 10: 7 10 14 18 19 20 20 21 26 28

Пример сгенерированной выборки длины 100: 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 7 7 8 8 8 8 10 10 11 11 11 11 11 11 12 12 12 12 13 13 13 13 13 14 14 15 15 15 16 16 17 18 18 18 18 19 19 20 20 20 20 21 21 21 22 22 22 23 23 23 24 24 24 24 24 25 25 26 26 26 26 26 27 27 27 28 28 28 29 29

25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 29 29 29 29 29

29 29 29 29 29

29 29 29 29 29 29 29 29 29 29 29 29

Задание 2

```
In [4]: def xi distr(sample, x):
             res = 0
             for i in sample:
                 if i <= x:
                     res += 1
             return res / len(sample)
        def xi distr real(x: int, theta=29):
             return x / theta
         X \text{ realxi} = \text{np.arange}(1-1, 29+1+1)
         Y realxi = xi distr real(X realxi)
        Yxi = np.array([[[xi distr(sample xi[k][j], x) for x in X realxi]
                          for j in range(5)] for k in range(len(n))])
         def xi Dmn(Yn, Ym, n, m):
            res = 0
             for i in range (29):
                 d = abs(Yn[i]-Ym[i])
                 if d>res: res = d
             return (n*m/(n+m))**0.5*res
        diffsxi = np.array([[[('%.2f' % xi Dmn(Yxi[i][k], Yxi[j][k], n[i], n[j]))
                               if i>=j else '-' for i in range(len(n))]
                              for j in range(len(n))]
                             for k in range(5)])
```

```
In [5]: from matplotlib import pyplot as plt
        colors = ['#7bd152', '#45be71', '#25a885', '#21908c',
                  '#2b798e', '#355f8d', '#414486', '#482574']
        # graph[0]
        fig, ax = plt.subplots(2,1, figsize=(7,12), height ratios = [2,1])
        for i in range(8):
            ax[0].stairs(Yxi[i][0], np.append(X realxi, 30), color = colors[i])
        ax[0].stairs(Y realxi, np.append(X realxi, 30), color = '#440154')
        ax[0].set(xticks = [1]+list(range(5,26,5))+[29], xmargin = 0, ymargin = 0,
                  xlabel = 'x', ylabel = r'$\hat{F}(x)$',
                  title = 'Дискретное равномерное, выборка 1 \n$\\xi , \\,\\theta$ = 29')
        ax[0].legend([*n, 'real'], loc='upper left');
        ax[1].table(cellText = diffsxi[0], rowLabels=n, colLabels=n,
                    loc='center').scale(1, 1.5)
        ax[1].set axis off()
        ax[1].set title(r'$D {m,n}=\sqrt{nm}{n+m}}\sup {x\in {R}}$'+
                        r'\$|F n(x)-F m(x)|\$';
```

Дискретное равномерное, выборка 1 $\xi,\, \theta=29$

	5	10	100	200	400	600	800	1000
5	0.00	0.73	0.83	0.65	0.61	0.69	0.60	0.66
10	-	0.00	1.03	0.85	0.87	0.98	0.97	0.90
100	-	-	0.00	0.69	1.10	0.91	1.13	0.81
200	-	-	-	0.00	0.72	0.63	0.62	0.61
400	-	-	-	-	0.00	0.79	0.45	0.63
600	-	-	-	-	-	0.00	0.83	0.62
800	-	-	-	-	-	-	0.00	0.74
1000	-	-	-	-	-	-	-	0.00

Дискретное равномерное, выборка 2 $\xi,\, \theta=29$

	5	10	100	200	400	600	800	1000
5	0.00	0.37	0.52	0.62	0.54	0.53	0.56	0.61
10	-	0.00	0.57	0.56	0.51	0.43	0.59	0.59
100	-	-	0.00	0.86	0.80	0.69	0.53	0.41
200	-	-	-	0.00	0.75	0.53	0.93	1.08
400	-	-	-	-	0.00	0.90	0.57	0.98
600	-	-	-	-	-	0.00	1.04	1.36
800	-	-	-	-	-	-	0.00	0.65
1000	-	-	-	-	-	-	-	0.00

Дискретное равномерное, выборка 3 $\xi,\, \theta=29$

	5	10	100	200	400	600	800	1000
5	0.00	1.28	1.29	1.37	1.42	1.43	1.36	1.41
10	-	0.00	0.78	0.54	0.56	0.51	0.58	0.54
100	-	-	0.00	0.73	0.72	0.89	0.71	0.83
200	-	-	-	0.00	0.69	0.53	0.68	0.74
400	-	-	-	-	0.00	0.36	0.45	0.35
600	-	-	-	-	-	0.00	0.58	0.44
800	-	-	-	-	-	-	0.00	0.55
1000	-	-	-	-	-	-	-	0.00

Дискретное равномерное, выборка 4 $\xi,\, \theta=29$

	5	10	100	200	400	600	800	1000
5	0.00	0.91	1.09	1.20	1.04	1.09	1.13	1.03
10	-	0.00	0.57	0.42	0.52	0.46	0.51	0.53
100	-	-	0.00	0.90	0.69	0.65	0.62	0.55
200	-	-	-	0.00	1.24	0.65	0.55	1.06
400	-	-	-	-	0.00	1.23	1.33	0.67
600	-	-	-	-	-	0.00	0.44	1.08
800	-	-	-	-	-	-	0.00	1.13
1000	-	-	-	-	-	-	-	0.00

Дискретное равномерное, выборка 5 $\xi,\, heta=29$

	5	10	100	200	400	600	800	1000
5	0.00	0.91	1.22	0.97	1.03	1.01	0.99	1.02
10	-	0.00	1.24	1.05	0.98	0.96	0.98	0.96
100	-	-	0.00	1.39	1.25	1.34	1.40	1.36
200	-	-	-	0.00	0.87	0.80	0.90	1.03
400	-	-	-	-	0.00	0.63	0.45	0.44
600	-	-	-	-	-	0.00	0.48	0.79
800	-	-	-	-	-	-	0.00	0.94
1000	-	-	-	-	-	-	-	0.00

Задание 3

Чтобы сравнить график полигона частот и график функции вероятности нужно в идеале изобразить один на другом, при этом как-то правильно их друг с другом соотнести, чтобы они правильно наложились друг на друга. Здесь я попробую подвести график вероятности к графику полигона частот (то есть второй останется неизменным, а первый будет домножен). Чтобы вычислить коэффициент домножения рассмотрим $\hat{F}(x)$:

 $\hat{F}(x)=rac{1}{n}\sum_{i=1}^n I(x_i\leq x)\Rightarrow \hat{P}(x_i)=\hat{F}(x_i)-\hat{F}(x_{i-1})=rac{1}{n}k\,I(x_i=x_i)=rac{k}{n}$, где k - частота встречаемости элемента в выборке.

 \Rightarrow при $n \to \infty$ $\hat{P}(x_i) \to P(x_i) \Rightarrow P(x_i) = \frac{k}{n} \Rightarrow k = nP(x_i)$ при $n \to \infty$, что значит, что график вероятности подводим к полигону частот через домножение на количество элементов в выборке.

```
In [10]: def xi pilygon(sample, x):
             return np.count nonzero(sample==x)
         def min t(samples):
             res = samples[0][0]
             for i in samples:
                 t = min(i)
                 if t < res: res = t</pre>
             return res
         def max t(samples):
             res = samples[0][0]
             for i in samples:
                 t = max(i)
                 if t > res: res = t
             return res
         Y polxi = [[np.array([xi pilygon(sample xi[k][j], sample xi[k][j][i])
                               for i in range(n[k])])
                     for j in range(5)] for k in range(len(n))]
         y_limsxi = np.array([[min_t(j), max_t(j)] for j in Y polxi])
         posibilityxi = np.full((1000), 1/29)
```

Полигон выборки длины 5 $\theta = 29$, $5P_{\xi}(x_i) = 0.172$

Полигон выборки длины 10 $\theta = 29$, $10P_{\xi}(x_i) = 0.345$

Полигон выборки длины 100 $\theta = 29$, $100P_{\xi}(x_i) = 3.448$

Полигон выборки длины 200 $\theta = 29$, $200P_{\xi}(x_i) = 6.897$

Полигон выборки длины 400 $\theta = 29$, $400P_{\xi}(x_i) = 13.793$

Полигон выборки длины 600 $\theta = 29$, $600P_{\xi}(x_i) = 20.690$

Полигон выборки длины 800 $\theta = 29, 800 P_{\xi}(x_i) = 27.586$

Полигон выборки длины 1000 $\theta = 29$, $1000P_{\varepsilon}(x_i) = 34.483$

По полигону частот и графику домноженной вероятности можно заметить, что встречаемость возможных значений распределения держится вокруг вероятности каждого из них, и с увеличением числа элементов выборки эту закономерность наблюдать становится легче. Это наблюдение соответствует теореме о схождении эмперической вероятности к математической (в курсе лекций это теорема о функциях распределения, но вероятность из этого следует). Конечно, у нас мог произойти случай, когда все элементы выборки попали в 1, но шанс этого в силу построения равен 29^{-1000} , так что дополнительный разброс в виде 5 выборок на каждое указанное количество элементов создает общую картину, которая со стремлением n к бесконечности, устремит полигон частот к домноженному графику вероятности. Также следует заметить, что на графиках в 5 и 10 элементов выборки домноженная вероятность даже не близка к частотам. Это, во-первых, еще раз подтверждает теорему, а во-вторых, домноженная вероятность сильно меньше единицы, что еще больше мешает приближению.

Для начала следует продемонстрировать выборочные средние и выборочные дисперсии, чтобы дать большее придставление о числах, с которыми идет работа. Благо их не так много.

Выборочные средние

	1	2	3	4	5
5	14.00	16.60	23.80	8.60	21.20
10	18.30	15.20	13.20	16.00	16.90
100	13.60	14.65	15.98	14.88	12.58
200	14.88	16.07	14.62	15.99	15.39
400	14.97	15.41	15.09	14.59	14.79
600	14.49	15.78	14.88	15.47	15.12
800	14.94	15.01	15.14	15.45	14.93
1000	14.78	14.67	15.12	14.67	14.73

Выборочные дисперсии

	1	2	3	4	5
5	36.40	49.44	7.76	22.64	33.76
10	38.21	75.56	65.16	92.60	39.49
100	77.64	73.25	76.46	67.25	77.12
200	80.09	71.68	71.52	72.36	81.26
400	66.62	70.47	69.57	71.61	68.87
600	73.17	71.88	68.62	71.70	69.70
800	68.51	71.42	70.76	67.28	71.93
1000	72.44	69.49	68.16	69.17	68.42

Выборочные средние heta=29, $M\xi=15$

По графикам можно заметить, что с увеличением количества элементов выборки и математическое ожидание, и дисперсия сходятся к предполагаемому значению. Что еще раз подтверждает теорему, упомянутую в предыдущей задаче.

Смещение оценки: $b(\theta) = M_{\theta}T(x) - \tau(\theta)$ $M\xi = 15.0$

	1	2	3	4	5
5	-1.00	1.60	8.80	-6.40	6.20
10	3.30	0.20	-1.80	1.00	1.90
100	-1.40	-0.35	0.98	-0.12	-2.42
200	-0.12	1.07	-0.38	0.99	0.39
400	-0.03	0.41	0.09	-0.41	-0.21
600	-0.51	0.78	-0.12	0.47	0.12
800	-0.06	0.01	0.14	0.45	-0.07
1000	-0.22	-0.33	0.12	-0.33	-0.27

Разница выборочной дисперсии и дисперсии $D\xi = 70.0$

	1	2	3	4	5
5	-33.60	-20.56	-62.24	-47.36	-36.24
10	-31.79	5.56	-4.84	22.60	-30.51
100	7.64	3.25	6.46	-2.75	7.12
200	10.09	1.68	1.52	2.36	11.26
400	-3.38	0.47	-0.43	1.61	-1.13
600	3.17	1.88	-1.38	1.70	-0.30
800	-1.49	1.42	0.76	-2.72	1.93
1000	2.44	-0.51	-1.84	-0.83	-1.58

По таблице смещения оценок можно заметить, что с увеличением числа элементов выборки, модуль смещения оценки уменьшается.

Также эти таблицы (как и предыдущее много чего) еще раз демонстрируют справедливость теоремы о схождении функций распределения.

$$\exists X_1,\ldots,X_n \sim \xi$$

Свойства оценки $\overline{X} = rac{1}{n} \sum_{i=1}^n X_i$:

$$au(heta) = M \xi, T(x) = \overline{X} = rac{1}{n} \sum_{i=1}^n X_i.$$

$$M_ heta T(x) = M(rac{1}{n}\sum_{i=1}^n X_i) = rac{1}{n}\sum_{i=1}^n MX_i = rac{1}{n}\cdot n\cdot M\xi = M\xi = au(heta) \Rightarrow$$
 оценка \overline{X} является **несмещенной**

$$DT(x)=D(rac{1}{n}\sum_{i=1}^nX_i)=rac{1}{n^2}\sum_{i=1}^nDX_i=rac{n}{n^2}DX_i=rac{D\xi}{n}\overrightarrow{n o\infty}0\Rightarrow$$
 оценка \overline{X} является **состоятельной**

Свойства оценки $\overline{S}^2 = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$:

$$\tau(\theta) = D\xi, T(x) = \overline{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

$$\begin{split} M_{\theta}T(x) &= M(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}) = |MX_{i}=M\overline{X}| = M(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-MX_{i}+M\overline{X}-\overline{X})^{2}) = \\ &= |Y_{i}=X_{i}-MX_{i}, \ \overline{Y}=\overline{X}-M\overline{X}| = M(\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\overline{Y})^{2}) = M(\frac{1}{n}\sum_{i=1}^{n}(Y_{i}^{2}+\overline{Y}^{2}-2Y_{i}\overline{Y})) = \\ &= |\overline{Y}=\frac{1}{n}\sum_{i=1}^{n}Y_{i}| = \frac{1}{n}M(\sum_{i=1}^{n}Y_{i}^{2}+\sum_{i=1}^{n}\frac{1}{n^{2}}\sum_{j,k=1}^{n}Y_{j}Y_{k}-\frac{2}{n}\sum_{i=1}^{n}\sum_{j=1}^{n}Y_{i}Y_{j}) = \\ &= \frac{1}{n}M(\sum_{i=1}^{n}Y_{i}^{2}+\frac{n}{n^{2}}\sum_{i,j=1}^{n}Y_{i}Y_{j}-\frac{2}{n}\sum_{i,j=1}^{n}Y_{i}Y_{j}) = \frac{1}{n}M(\sum_{i=1}^{n}Y_{i}^{2}-\frac{1}{n}\sum_{i,j=1}^{n}Y_{i}Y_{j}) = \\ &= \frac{1}{n}(\sum_{i=1}^{n}MY_{i}^{2}-\frac{1}{n}\sum_{i,j=1}^{n}M(Y_{i}Y_{j})) = \frac{1}{n}(\sum_{i=1}^{n}MY_{i}^{2}-\frac{1}{n}\sum_{i\neq j}^{n}MY_{i}MY_{j}-\frac{1}{n}\sum_{i=1}^{n}MY_{i}^{2}) = \\ &= \frac{1}{n}(nMY_{i}^{2}-\frac{1}{n}\sum_{i\neq j}^{n}MY_{i}MY_{j}-MY_{i}^{2}) = |MY_{i}=MX_{i}-M(MX_{i})=MX_{i}-MX_{i}=0| = \\ &= \frac{n-1}{n}MY_{i}^{2} = |DY_{i}=MY_{i}^{2}-(MY_{i})^{2}=MY_{i}^{2}| = \frac{n-1}{n}DY_{i} \neq DY_{i} \end{split}$$

 \Rightarrow оценка $\overset{-2}{S}$ не является несмещенной

Следует заметить, что в описанной математике выше само дискретное равномерное распределение упоминается не более чем символом ξ , что означает что простая заменна ξ на η сделает ровно ту же теорию для абсолютно непрерывного треугольного распределения. По этой причине в номере 4 для непрерывного распределения эти выкладки произведены не будут.

Абсолютно непрерывное

Большая часть материала уже разобрана выше на примере дискретного случая. Поэтому здесь различных описаний будет меньше, так как они будут почти 1 в 1 повторяться. Это самое почти, при необходимости, и будет описываться.

Задание 1

```
In [23]: | #sample_eta = [[np.sort(np.array([generate_eta() for i in range(j)]))
                        for i in range(5)] for j in n]
         # BEGIN сериализация
         if 'sample eta.pkl' in os.listdir():
             with open('sample eta.pkl', 'rb') as f:
                 sample_eta = pickle.load(f)
         else:
             sample eta = [[np.sort(np.array([generate eta() for i in range(j)]))
                           for i in range(5)] for j in n]
             with open('sample eta.pkl', 'wb') as f:
                 pickle.dump(sample eta, f)
         # END сериализация
         \#demo\ peta = np.array(['%.3f'%i\ for\ i\ in\ sample\ eta[7][0]]).reshape((-1,\ 20))
         for i in range(len(n)):
             demo peta = ['%.3f'%j for j in sample eta[i][0]]
             print('Пример сгенерированной выборки длины d:'n[i], end=' ')
             print(*demo peta)
             print('-'*10)
```

Пример сгенерированной выборки длины 5: 0.511 0.514 0.526 0.528 0.544

Пример сгенерированной выборки длины 10: 0.298 0.352 0.456 0.457 0.463 0.561 0.5 65 0.663 0.684 0.780

Пример сгенерированной выборки длины 100: 0.104 0.111 0.127 0.135 0.138 0.155 0.174 0.178 0.186 0.203 0.222 0.230 0.237 0.253 0.254 0.261 0.261 0.275 0.277 0.27 9 0.284 0.286 0.291 0.297 0.327 0.328 0.334 0.334 0.335 0.345 0.352 0.352 0.352 0.362 0.367 0.376 0.379 0.387 0.409 0.420 0.423 0.424 0.430 0.433 0.434 0.434 0.437 0.440 0.443 0.443 0.462 0.471 0.485 0.493 0.496 0.502 0.504 0.506 0.512 0.512 0.52 4 0.529 0.545 0.547 0.548 0.566 0.570 0.575 0.584 0.591 0.596 0.607 0.613 0.616 0.637 0.648 0.651 0.658 0.666 0.668 0.670 0.684 0.690 0.694 0.694 0.695 0.699 0.706 0.725 0.730 0.731 0.736 0.741 0.782 0.786 0.816 0.854 0.857 0.878 0.957 0.96

Пример сгенерированной выборки длины 200: 0.012 0.049 0.071 0.106 0.131 0.162 0. 168 0.181 0.190 0.200 0.203 0.207 0.208 0.209 0.216 0.217 0.219 0.225 0.231 0.23 2 0.239 0.240 0.245 0.246 0.250 0.253 0.256 0.265 0.267 0.270 0.281 0.282 0.286 0.290 0.290 0.291 0.296 0.296 0.300 0.306 0.307 0.308 0.315 0.326 0.327 0.329 0. 331 0.336 0.340 0.342 0.346 0.356 0.359 0.363 0.366 0.373 0.382 0.382 0.383 0.38 3 0.384 0.387 0.388 0.388 0.389 0.391 0.399 0.399 0.400 0.401 0.412 0.417 0.419 0.419 0.420 0.422 0.422 0.424 0.424 0.426 0.427 0.427 0.439 0.440 0.444 0.444 0. 445 0.449 0.452 0.461 0.462 0.462 0.462 0.465 0.467 0.469 0.470 0.470 0.474 0.47 7 0.481 0.483 0.486 0.489 0.491 0.491 0.492 0.492 0.497 0.500 0.505 0.508 0.510 0.518 0.519 0.521 0.522 0.526 0.526 0.528 0.531 0.537 0.540 0.541 0.542 0.552 0. 552 0.563 0.564 0.565 0.567 0.571 0.571 0.576 0.580 0.582 0.585 0.591 0.591 0.59 3 0.595 0.599 0.610 0.614 0.621 0.623 0.623 0.630 0.632 0.640 0.642 0.644 0.652 0.657 0.661 0.661 0.663 0.667 0.678 0.679 0.682 0.687 0.688 0.691 0.695 0.697 0. 698 0.706 0.716 0.716 0.721 0.734 0.741 0.745 0.752 0.756 0.760 0.764 0.768 0.77 4 0.777 0.779 0.789 0.798 0.809 0.815 0.815 0.824 0.829 0.832 0.848 0.850 0.854 0.858 0.860 0.900 0.908 0.926 0.932 0.973

Пример сгенерированной выборки длины 400: 0.024 0.041 0.079 0.104 0.115 0.120 0. 122 0.122 0.131 0.131 0.136 0.146 0.151 0.153 0.154 0.158 0.159 0.162 0.165 0.16 5 0.169 0.170 0.171 0.175 0.184 0.185 0.189 0.191 0.192 0.193 0.195 0.196 0.198 0.209 0.213 0.220 0.220 0.222 0.224 0.227 0.233 0.234 0.241 0.241 0.245 0.248 0. 249 0.251 0.253 0.257 0.257 0.258 0.265 0.275 0.275 0.278 0.283 0.285 0.286 0.28 7 0.288 0.288 0.288 0.290 0.291 0.292 0.292 0.292 0.293 0.296 0.301 0.303 0.304 0.305 0.308 0.309 0.310 0.311 0.312 0.313 0.313 0.313 0.314 0.314 0.316 0.316 0. 317 0.317 0.321 0.324 0.329 0.331 0.331 0.333 0.336 0.338 0.338 0.339 0.343 0.34 4 0.346 0.347 0.349 0.349 0.351 0.354 0.355 0.355 0.355 0.357 0.358 0.362 0.364 0.365 0.365 0.366 0.367 0.372 0.373 0.375 0.380 0.381 0.382 0.384 0.385 0.385 0. 387 0.388 0.389 0.390 0.391 0.394 0.396 0.398 0.398 0.399 0.401 0.402 0.403 0.40 5 0.406 0.407 0.408 0.416 0.417 0.419 0.421 0.421 0.421 0.422 0.423 0.425 0.428 0.430 0.430 0.432 0.435 0.435 0.441 0.441 0.442 0.443 0.445 0.445 0.447 0.448 0. 449 0.453 0.454 0.456 0.456 0.458 0.459 0.459 0.460 0.462 0.463 0.467 0.469 0.47 0 0.471 0.472 0.473 0.475 0.477 0.478 0.479 0.480 0.482 0.484 0.486 0.486 0.486 $0.486\ 0.489\ 0.489\ 0.490\ 0.491\ 0.492\ 0.492\ 0.493\ 0.498\ 0.499\ 0.502\ 0.503\ 0.503\ 0.$ 504 0.504 0.505 0.505 0.506 0.506 0.508 0.509 0.510 0.511 0.513 0.513 0.514 0.51 5 0.515 0.516 0.516 0.518 0.523 0.523 0.523 0.524 0.525 0.525 0.525 0.526 0.526 0.529 0.529 0.530 0.530 0.531 0.534 0.535 0.535 0.538 0.540 0.542 0.544 0.544 0. 545 0.547 0.547 0.548 0.553 0.559 0.560 0.561 0.562 0.564 0.565 0.566 0.568 0.56 9 0.569 0.569 0.570 0.570 0.571 0.574 0.574 0.578 0.581 0.581 0.582 0.584 0.586 0.588 0.590 0.590 0.592 0.593 0.594 0.597 0.598 0.599 0.600 0.600 0.606 0.609 0. 609 0.613 0.613 0.613 0.615 0.615 0.619 0.619 0.620 0.620 0.621 0.630 0.637 0.63 8 0.640 0.642 0.643 0.644 0.645 0.645 0.646 0.650 0.651 0.651 0.653 0.655 0.655 0.656 0.658 0.659 0.659 0.660 0.661 0.662 0.662 0.665 0.667 0.670 0.671 0.675 0. 676 0.677 0.681 0.682 0.682 0.684 0.685 0.686 0.688 0.695 0.696 0.700 0.702 0.70 4 0.707 0.711 0.712 0.714 0.717 0.717 0.717 0.719 0.721 0.722 0.731 0.732 0.732 0.733 0.737 0.737 0.737 0.738 0.739 0.739 0.741 0.742 0.745 0.749 0.749 0.750 0. 755 0.755 0.757 0.761 0.772 0.777 0.786 0.787 0.791 0.794 0.795 0.803 0.806 0.80 8 0.809 0.809 0.815 0.826 0.836 0.837 0.840 0.841 0.851 0.854 0.854 0.860 0.866 0.884 0.897 0.902 0.909 0.912 0.915 0.951

Пример сгенерированной выборки длины 600: 0.029 0.041 0.044 0.055 0.059 0.060 0. 064 0.066 0.069 0.072 0.075 0.077 0.085 0.095 0.096 0.099 0.104 0.105 0.117 0.11 7 0.124 0.125 0.127 0.130 0.130 0.131 0.135 0.138 0.139 0.142 0.143 0.143 0.144 $0.145 \ \ 0.148 \ \ 0.149 \ \ 0.150 \ \ 0.150 \ \ 0.152 \ \ 0.156 \ \ 0.157 \ \ 0.166 \ \ 0.167 \ \ 0.168 \ \ 0.177 \ \ 0.$ 183 0.187 0.187 0.188 0.190 0.194 0.194 0.195 0.195 0.200 0.202 0.202 0.207 0.20 7 0.208 0.210 0.211 0.212 0.212 0.212 0.214 0.216 0.217 0.217 0.221 0.227 0.229 0.231 0.232 0.232 0.233 0.234 0.239 0.240 0.240 0.243 0.244 0.246 0.246 0.248 0. 250 0.252 0.253 0.253 0.256 0.256 0.258 0.259 0.259 0.260 0.261 0.262 0.263 0.26 4 0.264 0.267 0.268 0.269 0.270 0.271 0.271 0.273 0.274 0.274 0.276 0.277 0.278 0.279 0.280 0.287 0.287 0.289 0.291 0.293 0.294 0.294 0.295 0.296 0.298 0.298 0. 300 0.300 0.301 0.303 0.304 0.306 0.308 0.308 0.310 0.311 0.313 0.314 0.314 0.31 5 0.316 0.317 0.318 0.318 0.319 0.320 0.321 0.325 0.329 0.329 0.333 0.333 0.334 0.336 0.339 0.339 0.340 0.342 0.342 0.342 0.343 0.343 0.343 0.345 0.346 0.348 0. 348 0.348 0.351 0.353 0.355 0.355 0.355 0.357 0.358 0.361 0.362 0.362 0.365 0.36 6 0.366 0.366 0.367 0.367 0.368 0.368 0.369 0.369 0.370 0.373 0.376 0.377 0.378 0.379 0.380 0.381 0.385 0.386 0.386 0.387 0.388 0.388 0.389 0.390 0.391 0.393 0. 393 0.395 0.396 0.396 0.397 0.398 0.398 0.398 0.399 0.400 0.402 0.402 0.403 0.40 4 0.404 0.405 0.406 0.406 0.406 0.406 0.408 0.409 0.410 0.410 0.410 0.411 0.413 0.413 0.414 0.414 0.416 0.417 0.418 0.419 0.422 0.423 0.424 0.424 0.425 0.428 0. 428 0.429 0.430 0.430 0.432 0.434 0.435 0.436 0.436 0.437 0.437 0.439 0.439 0.44 1 0.443 0.444 0.444 0.445 0.445 0.446 0.448 0.448 0.448 0.449 0.449 0.450 0.453 0.455 0.455 0.455 0.455 0.456 0.458 0.458 0.459 0.460 0.461 0.462 0.462 0.462 0. 464 0.465 0.465 0.468 0.468 0.468 0.469 0.469 0.470 0.471 0.472 0.473 0.473 0.47 3 0.474 0.474 0.474 0.475 0.475 0.475 0.480 0.482 0.482 0.482 0.482 0.482 0.482 0.483 0.484 0.485 0.486 0.486 0.487 0.487 0.488 0.488 0.490 0.490 0.491 0.491 0. 492 0.492 0.492 0.496 0.496 0.498 0.499 0.500 0.500 0.500 0.501 0.501 0.504 0.50 5 0.505 0.507 0.507 0.509 0.509 0.511 0.513 0.513 0.514 0.516 0.518 0.519 0.519 $0.520\ 0.522\ 0.522\ 0.524\ 0.524\ 0.524\ 0.525\ 0.525\ 0.527\ 0.528\ 0.531\ 0.532\ 0.534\ 0.$ 536 0.537 0.537 0.538 0.539 0.539 0.539 0.540 0.544 0.544 0.545 0.545 0.545 0.54 6 0.549 0.550 0.550 0.552 0.553 0.556 0.557 0.557 0.558 0.558 0.558 0.560 0.564 0.565 0.567 0.567 0.568 0.568 0.569 0.570 0.571 0.571 0.574 0.574 0.575 0.576 0. 576 0.577 0.577 0.578 0.579 0.579 0.580 0.581 0.582 0.584 0.586 0.586 0.590 0.59 1 0.591 0.591 0.591 0.591 0.593 0.593 0.594 0.594 0.595 0.595 0.596 0.598 0.599 0.600 0.601 0.602 0.603 0.604 0.604 0.604 0.604 0.605 0.606 0.607 0.607 0.608 0. 611 0.613 0.614 0.615 0.616 0.616 0.617 0.620 0.620 0.620 0.621 0.623 0.626 0.62 8 0.630 0.630 0.633 0.634 0.636 0.638 0.639 0.640 0.641 0.642 0.642 0.647 0.647 0.649 0.649 0.651 0.651 0.652 0.654 0.656 0.660 0.660 0.661 0.663 0.663 0.664 0. 665 0.666 0.666 0.674 0.675 0.677 0.677 0.678 0.678 0.678 0.682 0.685 0.686 0.68 6 0.687 0.688 0.689 0.692 0.692 0.695 0.696 0.697 0.697 0.699 0.703 0.711 0.713 0.721 0.721 0.722 0.725 0.728 0.728 0.729 0.730 0.736 0.738 0.741 0.745 0.745 0. 745 0.746 0.746 0.746 0.747 0.748 0.751 0.753 0.754 0.755 0.756 0.764 0.764 0.76 4 0.768 0.770 0.770 0.771 0.771 0.777 0.777 0.783 0.785 0.791 0.793 0.793 0.795 0.795 0.796 0.797 0.800 0.801 0.803 0.805 0.806 0.811 0.812 0.815 0.817 0.817 0. 820 0.822 0.825 0.826 0.832 0.832 0.840 0.842 0.843 0.844 0.848 0.848 0.858 0.86 2 0.866 0.869 0.874 0.878 0.882 0.886 0.891 0.894 0.896 0.902 0.903 0.906 0.929 0.939 0.940 0.942 0.944 0.945 0.962 0.984

Пример сгенерированной выборки длины 800: 0.004 0.009 0.024 0.025 0.038 0.045 0.051 0.062 0.067 0.079 0.086 0.087 0.088 0.088 0.089 0.094 0.100 0.101 0.102 0.10 6 0.107 0.111 0.112 0.116 0.119 0.121 0.121 0.127 0.130 0.132 0.135 0.136 0.139 0.141 0.141 0.142 0.143 0.143 0.143 0.145 0.150 0.150 0.150 0.150 0.152 0.153 0.156 0.157 0.158 0.158 0.161 0.162 0.164 0.165 0.165 0.167 0.168 0.170 0.171 0.174 0.17 5 0.176 0.177 0.178 0.179 0.180 0.181 0.183 0.188 0.191 0.192 0.195 0.199 0.200 0.200 0.202 0.204 0.204 0.204 0.206 0.209 0.209 0.212 0.215 0.217 0.217 0.217 0.217 0.219 0.219 0.220 0.221 0.222 0.222 0.223 0.223 0.224 0.224 0.225 0.226 0.227 0.22 7 0.230 0.231 0.231 0.232 0.232 0.233 0.239 0.240 0.242 0.243 0.244 0.244 0.245 0.245 0.245 0.248 0.248 0.249 0.250 0.250 0.252 0.252 0.252 0.252 0.253 0.254 0.255 0.255 0.255 0.259 0.260 0.261 0.262 0.263 0.267 0.267 0.267 0.269 0.269 0.269 0.269 0.269 0.269 0.269 0.271 0.271 0.271 0.272 0.272 0.279 0.281 0.281 0.281 0.283 0.286 0.287

0.287 0.289 0.289 0.289 0.290 0.291 0.291 0.296 0.297 0.298 0.299 0.300 0.301 0. 301 0.301 0.303 0.303 0.304 0.305 0.309 0.309 0.310 0.311 0.311 0.312 0.312 0.31 3 0.314 0.314 0.315 0.315 0.316 0.317 0.318 0.320 0.321 0.321 0.324 0.325 0.325 0.326 0.326 0.327 0.327 0.328 0.328 0.331 0.333 0.333 0.336 0.336 0.337 0.337 0. 340 0.340 0.341 0.341 0.341 0.342 0.342 0.345 0.345 0.346 0.348 0.348 0.348 0.34 9 0.349 0.350 0.351 0.352 0.352 0.353 0.353 0.354 0.355 0.356 0.356 0.357 0.357 0.358 0.360 0.360 0.361 0.362 0.363 0.363 0.363 0.364 0.365 0.365 0.366 0.369 0. 369 0.369 0.370 0.370 0.370 0.371 0.371 0.374 0.374 0.375 0.375 0.375 0.375 0.375 6 0.376 0.376 0.376 0.377 0.380 0.380 0.381 0.382 0.382 0.383 0.386 0.386 0.387 0.388 0.389 0.390 0.390 0.391 0.392 0.392 0.393 0.394 0.394 0.395 0.396 0.397 0. 397 0.398 0.399 0.399 0.399 0.399 0.399 0.400 0.402 0.403 0.404 0.404 0.405 0.40 $6 \ 0.406 \ 0.407 \ 0.408 \ 0.409 \ 0.409 \ 0.409 \ 0.411 \ 0.412 \ 0.412 \ 0.412 \ 0.413 \ 0.414$ 0.415 0.417 0.418 0.421 0.422 0.423 0.423 0.423 0.424 0.426 0.427 0.427 0.428 0. 429 0.429 0.430 0.431 0.431 0.432 0.432 0.432 0.432 0.434 0.435 0.435 0.435 0.435 8 0.438 0.438 0.439 0.440 0.442 0.442 0.442 0.442 0.443 0.444 0.445 0.445 0.448 0.448 0.449 0.449 0.450 0.451 0.451 0.452 0.453 0.453 0.455 0.455 0.457 0.457 0. 457 0.457 0.457 0.459 0.459 0.459 0.459 0.460 0.461 0.462 0.462 0.465 0.466 0.46 $6 \ 0.467 \ 0.467 \ 0.467 \ 0.469 \ 0.469 \ 0.470 \ 0.471 \ 0.471 \ 0.471 \ 0.472 \ 0.472 \ 0.472 \ 0.472$ 0.475 0.476 0.476 0.479 0.479 0.480 0.480 0.481 0.481 0.482 0.482 0.482 0.482 0. 483 0.484 0.485 0.485 0.486 0.487 0.488 0.488 0.489 0.489 0.490 0.490 0.491 0.49 1 0.491 0.491 0.492 0.492 0.493 0.493 0.494 0.494 0.495 0.497 0.501 0.501 0.502 0.502 0.503 0.503 0.504 0.504 0.505 0.506 0.508 0.508 0.510 0.510 0.510 0.511 0. $512 \ 0.512 \ 0.513 \ 0.513 \ 0.514 \ 0.514 \ 0.514 \ 0.514 \ 0.515 \ 0.516 \ 0.516 \ 0.518 \ 0.519 \ 0.52$ 0 0.520 0.521 0.524 0.524 0.525 0.525 0.525 0.525 0.526 0.526 0.526 0.527 0.528 0.528 0.528 0.530 0.531 0.531 0.532 0.532 0.533 0.533 0.533 0.533 0.534 0. 534 0.534 0.535 0.535 0.537 0.537 0.538 0.539 0.539 0.540 0.540 0.541 0.541 0.54 1 0.543 0.544 0.544 0.546 0.547 0.547 0.548 0.551 0.552 0.552 0.552 0.553 0.555 0.555 0.555 0.556 0.556 0.556 0.557 0.558 0.558 0.559 0.559 0.559 0.561 0. 561 0.563 0.563 0.564 0.565 0.565 0.566 0.566 0.566 0.566 0.568 0.568 0.568 0.56 9 0.569 0.570 0.570 0.570 0.570 0.571 0.571 0.573 0.574 0.577 0.577 0.578 0.579 0.580 0.580 0.583 0.584 0.584 0.585 0.585 0.585 0.585 0.586 0.586 0.586 0.588 0. 589 0.589 0.590 0.591 0.593 0.594 0.594 0.595 0.595 0.596 0.596 0.598 0.599 0.60 0 0.600 0.601 0.602 0.602 0.603 0.605 0.605 0.609 0.610 0.610 0.610 0.616 0.616 0.617 0.618 0.620 0.621 0.622 0.623 0.624 0.625 0.629 0.630 0.631 0.632 0.632 0. 633 0.634 0.635 0.637 0.637 0.638 0.641 0.642 0.642 0.643 0.643 0.646 0.646 0.64 6 0.646 0.647 0.648 0.649 0.650 0.650 0.650 0.651 0.651 0.651 0.652 0.653 0.653 0.653 0.654 0.655 0.656 0.656 0.656 0.657 0.657 0.657 0.659 0.660 0.663 0.665 0. 667 0.667 0.668 0.668 0.669 0.669 0.669 0.671 0.671 0.671 0.671 0.673 0.674 0.67 7 0.678 0.684 0.685 0.686 0.688 0.689 0.691 0.694 0.695 0.696 0.697 0.697 0.698 0.700 0.703 0.703 0.704 0.704 0.704 0.704 0.706 0.707 0.708 0.709 0.710 0.710 0. 711 0.712 0.715 0.716 0.717 0.718 0.718 0.719 0.721 0.723 0.723 0.724 0.725 0.72 5 0.726 0.726 0.727 0.729 0.731 0.731 0.734 0.740 0.740 0.742 0.743 0.743 0.744 0.745 0.751 0.751 0.754 0.754 0.757 0.758 0.762 0.763 0.764 0.765 0.765 0.766 0. 768 0.769 0.770 0.771 0.771 0.772 0.773 0.776 0.778 0.778 0.779 0.781 0.784 0.78 9 0.789 0.791 0.796 0.797 0.798 0.798 0.798 0.799 0.801 0.802 0.802 0.805 0.805 0.806 0.807 0.808 0.817 0.819 0.819 0.823 0.824 0.825 0.828 0.829 0.829 0.831 0. 837 0.839 0.839 0.840 0.841 0.841 0.843 0.845 0.846 0.851 0.853 0.854 0.859 0.86 0 0.861 0.862 0.862 0.864 0.875 0.880 0.884 0.887 0.896 0.897 0.906 0.914 0.916 0.920 0.920 0.951 0.952 0.955 0.963 0.966

Пример сгенерированной выборки длины 1000: 0.024 0.044 0.045 0.057 0.058 0.058 0.062 0.063 0.064 0.066 0.067 0.069 0.071 0.071 0.072 0.074 0.075 0.079 0.079 0.080 0.083 0.094 0.095 0.095 0.095 0.104 0.106 0.108 0.110 0.110 0.110 0.113 0.11 3 0.116 0.117 0.122 0.122 0.123 0.126 0.127 0.129 0.131 0.132 0.132 0.132 0.134 0.134 0.135 0.141 0.141 0.141 0.143 0.144 0.150 0.150 0.150 0.150 0.151 0.152 0.153 0.158 0.158 0.158 0.158 0.164 0.164 0.165 0.165 0.165 0.167 0.170 0.171 0.171 0.17 5 0.186 0.187 0.188 0.188 0.192 0.192 0.193 0.193 0.193 0.195 0.195 0.198 0.199 0.200 0.201 0.201 0.202 0.203 0.204 0.205 0.207 0.208 0.210 0.212 0.213 0.214 0.214 0.214 0.215 0.217 0.217 0.217 0.218 0.219 0.219 0.220 0.221 0.223 0.224 0.22 5 0.226 0.226 0.229 0.230 0.230 0.232 0.232 0.233 0.233 0.234 0.235 0.236 0.238 0.239 0.241 0.241 0.242 0.242 0.242 0.243 0.243 0.243 0.245 0.245 0.261 0.261 0.26

```
1 0.264 0.264 0.264 0.265 0.265 0.265 0.266 0.266 0.268 0.269 0.270 0.272 0.272
0.273 0.275 0.276 0.276 0.279 0.279 0.280 0.281 0.282 0.282 0.283 0.284 0.284 0.
285 0.285 0.285 0.285 0.286 0.288 0.288 0.288 0.289 0.289 0.292 0.292 0.295 0.29
6 0.296 0.296 0.296 0.296 0.297 0.297 0.298 0.298 0.299 0.300 0.302 0.303 0.303
0.304 0.305 0.305 0.307 0.307 0.307 0.308 0.308 0.308 0.308 0.309 0.311 0.311 0.
313 0.313 0.315 0.315 0.315 0.315 0.316 0.316 0.316 0.316 0.317 0.319 0.320 0.32
2 0.322 0.322 0.323 0.323 0.323 0.324 0.325 0.325 0.325 0.326 0.326 0.327 0.328
0.329 0.330 0.330 0.331 0.331 0.332 0.333 0.333 0.334 0.334 0.334 0.334 0.335 0.
335 0.336 0.336 0.338 0.339 0.339 0.339 0.340 0.341 0.341 0.342 0.342 0.342 0.34
4\ \ 0.344\ \ 0.344\ \ 0.344\ \ 0.344\ \ 0.345\ \ 0.345\ \ 0.345\ \ 0.346\ \ 0.346\ \ 0.347\ \ 0.349\ \ 0.349
0.350 0.350 0.351 0.351 0.351 0.352 0.352 0.352 0.352 0.353 0.354 0.354 0.354 0.
355 0.355 0.356 0.357 0.358 0.359 0.361 0.361 0.362 0.363 0.363 0.364 0.364 0.36
6 0.366 0.366 0.367 0.368 0.369 0.370 0.371 0.371 0.372 0.372 0.373 0.373 0.373
0.374 0.374 0.375 0.375 0.375 0.375 0.376 0.377 0.377 0.378 0.378 0.379 0.380 0.
381 0.381 0.382 0.382 0.384 0.384 0.384 0.385 0.385 0.385 0.386 0.386 0.387 0.38
7 0.389 0.389 0.389 0.389 0.390 0.391 0.392 0.393 0.394 0.395 0.397 0.397 0.397
0.399 0.399 0.400 0.400 0.400 0.400 0.401 0.401 0.401 0.401 0.402 0.403 0.404 0.
405 0.406 0.406 0.407 0.408 0.408 0.408 0.408 0.409 0.409 0.410 0.411 0.411 0.41
2 0.414 0.414 0.415 0.416 0.417 0.417 0.417 0.417 0.418 0.418 0.418 0.418 0.418
0.418 0.419 0.419 0.420 0.421 0.421 0.421 0.422 0.422 0.422 0.422 0.422 0.422 0.422 0.
422 0.423 0.423 0.423 0.423 0.424 0.425 0.426 0.427 0.427 0.428 0.428 0.429 0.42
9 0.431 0.431 0.431 0.431 0.432 0.432 0.432 0.434 0.435 0.435 0.436 0.437 0.437
0.437 0.438 0.439 0.439 0.440 0.441 0.442 0.442 0.442 0.443 0.443 0.445 0.445 0.
446 0.446 0.447 0.447 0.447 0.448 0.449 0.449 0.451 0.451 0.451 0.451 0.452 0.45
2 0.453 0.454 0.454 0.454 0.454 0.455 0.456 0.456 0.456 0.457 0.457 0.457 0.458
0.458 0.459 0.459 0.460 0.460 0.460 0.462 0.462 0.462 0.463 0.464 0.465 0.465 0.
466 0.466 0.466 0.467 0.467 0.468 0.468 0.468 0.469 0.469 0.470 0.470 0.471 0.47
1 \quad 0.471 \quad 0.471 \quad 0.472 \quad 0.473 \quad 0.473 \quad 0.473 \quad 0.473 \quad 0.474 \quad 0.475 \quad 0.476 \quad 0.477 \quad 0.477
0.477 0.477 0.478 0.478 0.479 0.479 0.480 0.481 0.481 0.481 0.482 0.482 0.482 0.
482 0.482 0.483 0.483 0.483 0.483 0.483 0.484 0.485 0.486 0.486 0.487 0.487 0.48
7 0.487 0.488 0.488 0.488 0.489 0.490 0.490 0.492 0.492 0.493 0.493 0.493 0.493
0.494 0.494 0.494 0.495 0.496 0.496 0.496 0.498 0.498 0.498 0.499 0.499 0.500 0.
501 0.501 0.502 0.503 0.503 0.503 0.503 0.504 0.505 0.505 0.505 0.506 0.506 0.50
6 0.507 0.507 0.507 0.507 0.507 0.508 0.508 0.508 0.508 0.508 0.509 0.509 0.509
0.510 0.512 0.512 0.512 0.512 0.513 0.513 0.513 0.513 0.513 0.514 0.514 0.515 0.
515 0.516 0.516 0.517 0.517 0.517 0.517 0.517 0.518 0.519 0.519 0.519 0.520 0.52
0 0.521 0.521 0.521 0.522 0.522 0.522 0.522 0.523 0.523 0.524 0.525 0.526 0.526
0.526 0.527 0.528 0.529 0.529 0.530 0.530 0.531 0.532 0.532 0.532 0.535 0.536 0.
536\ 0.536\ 0.538\ 0.540\ 0.540\ 0.541\ 0.542\ 0.543\ 0.544\ 0.545\ 0.545\ 0.545\ 0.546\ 0.54
7 0.547 0.548 0.548 0.549 0.549 0.551 0.552 0.552 0.553 0.553 0.553 0.554 0.556
0.557 0.558 0.561 0.562 0.562 0.562 0.563 0.563 0.563 0.563 0.564 0.564 0.566 0.
568 0.569 0.569 0.569 0.570 0.571 0.571 0.572 0.572 0.572 0.574 0.574 0.575 0.57
6 0.577 0.577 0.579 0.580 0.581 0.582 0.582 0.583 0.584 0.584 0.584 0.585 0.586
0.586 0.588 0.588 0.588 0.589 0.591 0.592 0.592 0.593 0.593 0.593 0.594 0.594 0.
594 0.596 0.596 0.597 0.597 0.598 0.599 0.599 0.600 0.601 0.602 0.603 0.604 0.60
5 0.606 0.607 0.611 0.612 0.613 0.613 0.613 0.613 0.614 0.615 0.615 0.616 0.616
0.616 0.618 0.618 0.619 0.620 0.620 0.620 0.621 0.621 0.621 0.621 0.621 0.624 0.
624 0.625 0.626 0.628 0.628 0.630 0.631 0.633 0.633 0.633 0.633 0.634 0.634 0.63
6 0.636 0.639 0.639 0.640 0.640 0.641 0.641 0.641 0.644 0.647 0.647 0.647 0.649
0.652 0.652 0.654 0.654 0.654 0.655 0.656 0.659 0.660 0.661 0.663 0.663 0.663 0.
664 0.664 0.665 0.666 0.666 0.667 0.667 0.668 0.668 0.668 0.669 0.670 0.671 0.67
1 0.674 0.675 0.675 0.675 0.676 0.676 0.676 0.677 0.679 0.679 0.680 0.682 0.683
0.685 0.687 0.687 0.690 0.690 0.691 0.692 0.693 0.695 0.696 0.696 0.696 0.696 0.
698 0.699 0.699 0.699 0.701 0.705 0.705 0.706 0.706 0.707 0.707 0.708 0.709 0.70
9 0.710 0.710 0.713 0.717 0.719 0.719 0.722 0.722 0.724 0.724 0.725 0.728 0.728
0.729 0.730 0.730 0.731 0.732 0.733 0.733 0.734 0.734 0.735 0.736 0.742 0.743 0.
746 0.746 0.748 0.749 0.750 0.753 0.754 0.756 0.757 0.757 0.759 0.760 0.760 0.76
0 0.761 0.761 0.762 0.763 0.763 0.766 0.767 0.768 0.774 0.776 0.777 0.777 0.778
0.778 0.781 0.784 0.787 0.787 0.787 0.789 0.789 0.791 0.794 0.797 0.799 0.801 0.
801 0.801 0.803 0.808 0.809 0.810 0.811 0.816 0.818 0.818 0.820 0.822 0.822 0.82
5 0.829 0.830 0.830 0.830 0.831 0.831 0.831 0.832 0.833 0.833 0.837 0.839 0.840
0.845 0.846 0.846 0.847 0.853 0.854 0.856 0.858 0.862 0.867 0.867 0.870 0.870 0.
```

```
877 0.888 0.890 0.892 0.894 0.899 0.904 0.905 0.907 0.913 0.917 0.924 0.924 0.92 6 0.927 0.927 0.946 0.957 0.960 0.967 0.989
```

Задание 2

```
In [24]:
         def eta distr(sample, x):
              res = 0
              for i in sample:
                  if i <= x:
                      res += 1
              return res / len(sample)
          def eta distr real(x, theta=0.45):
              if x<0: return 0</pre>
              if x<theta: return x*x/theta</pre>
              if x<1: return (2*x-x*x-theta)/(1-theta)
              return 1
          X \text{ realeta} = \text{np.linspace}(0,1,1000)
          Y realeta = np.array([eta distr real(x) for x in X realeta])
          Yeta = np.array([[[eta distr(sample eta[k][j], x) for x in X realeta]
                             for j in range(5)] for k in range(len(n))])
          def eta Dmn(Yn, Ym, n, m):
             res = 0
              for i in range(29):
                  d = abs(Yn[i]-Ym[i])
                  if d>res: res = d
              return (n*m/(n+m)) **0.5*res
          diffseta = np.array([[[('%.2f' % eta Dmn(Yeta[i][k], Yeta[j][k], n[i], n[j])))
                                  if i>=j else '-' for i in range(len(n))]
                                 for j in range(len(n))]
                                for k in range(5)])
```

```
In [25]: colors = ['#7bd152', '#45be71', '#25a885', '#21908c',
                   '#2b798e', '#355f8d', '#414486', '#482574']
         # graph[0]
         fig, ax = plt.subplots(2,1, figsize=(7,12), height ratios = [2,1])
         for i in range(8):
             ax[0].stairs(Yeta[i][0], np.append(X realeta, 1), color = colors[i])
         ax[0].plot(X realeta, Y realeta, color = '#440154')
         ax[0].set(xmargin = 0, ymargin = 0, xlabel = 'x', ylabel = r'$\hat{F}(x)$',
                   title = 'Абсолютно непрерывное треугольное, выборка 1 n' +
                           \'$\\eta , \\,\\theta$ = 0.45')
         ax[0].legend([*n, 'real'], loc='upper left');
         ax[1].table(cellText = diffsxi[0], rowLabels=n, colLabels=n,
                     loc='center').scale(1, 1.5)
         ax[1].set axis off()
         ax[1].set title(r'$D {m,n}=\sqrt{nm}{n+m}}\sup {x\in\mathbb{R}}$' +
                         r'\$|F n(x)-F m(x)|\$';
```


	5	10	100	200	400	600	800	1000
5	0.00	0.73	0.83	0.65	0.61	0.69	0.60	0.66
10	-	0.00	1.03	0.85	0.87	0.98	0.97	0.90
100	-	-	0.00	0.69	1.10	0.91	1.13	0.81
200	-	-	-	0.00	0.72	0.63	0.62	0.61
400	-	-	-	-	0.00	0.79	0.45	0.63
600	-	-	-	-	-	0.00	0.83	0.62
800	-	-	-	-	-	-	0.00	0.74
1000	-	-	-	-	-	-	-	0.00

	5	10	100	200	400	600	800	1000
			100	200		000	000	1000
5	0.00	0.37	0.52	0.62	0.54	0.53	0.56	0.61
10	,	0.00	0.57	0.56	0.51	0.43	0.59	0.59
100	,	'	0.00	0.86	0.80	0.69	0.53	0.41
200	,	'	'	0.00	0.75	0.53	0.93	1.08
400	,	'	'	,	0.00	0.90	0.57	0.98
600	-	1	-	-	-	0.00	1.04	1.36
800	-	1	-	-	-	1	0.00	0.65
1000	-	-	-	-	-	-	-	0.00

	5	10	100	200	400	600	800	1000
5	0.00	1.28	1.29	1.37	1.42	1.43	1.36	1.41
10	-	0.00	0.78	0.54	0.56	0.51	0.58	0.54
100	-	-	0.00	0.73	0.72	0.89	0.71	0.83
200	-	-	-	0.00	0.69	0.53	0.68	0.74
400	-	-	-	-	0.00	0.36	0.45	0.35
600	-	-	-	-	-	0.00	0.58	0.44
800	-	-	-	-	-	-	0.00	0.55
1000	-	-	-	-	-	-	-	0.00

	5	10	100	200	400	600	800	1000
5	0.00	0.91	1.09	1.20	1.04	1.09	1.13	1.03
10	-	0.00	0.57	0.42	0.52	0.46	0.51	0.53
100	-	-	0.00	0.90	0.69	0.65	0.62	0.55
200	-	-	-	0.00	1.24	0.65	0.55	1.06
400	-	-	-	-	0.00	1.23	1.33	0.67
600	-	-	-	-	-	0.00	0.44	1.08
800	-	-	-	-	-	-	0.00	1.13
1000	-	-	-	-	-	-	-	0.00

	5	10	100	200	400	600	800	1000
5	0.00	0.91	1.22	0.97	1.03	1.01	0.99	1.02
10	-	0.00	1.24	1.05	0.98	0.96	0.98	0.96
100	-	-	0.00	1.39	1.25	1.34	1.40	1.36
200	-	-	-	0.00	0.87	0.80	0.90	1.03
400	-	-	-	-	0.00	0.63	0.45	0.44
600	-	-	-	-	-	0.00	0.48	0.79
800	-	-	-	-	-	-	0.00	0.94
1000	-	-	-	-	-	-	-	0.00

Задание 3

Логика с домножением вероятности здесь также применима, однако она должна быть немного модифицирована: полигон частот как таковой почти не будет иметь смысла, так как вероятность попадания в каждое значение стремится к нулю, что значит что если просто расставить на отрезке от 0 до 1 все значения выборки, то очень наврядли полученный график поднимется выше единицы. Получить хоть какой-то смысл из этого графика будет затруднительно, потому нужно из него будет сложно получить что-то больше чем прямую, не то что сравнить с потенциально сложной функцией вероятности.

Для решения этой проблемы имеет смысл разбить данный отрезок на сколько-то частей. Да, это примерно сведет случай к дискретному, однако это даст весьма уверенную возможность проанализировать график полигона частот относительно графика вероятности. И вот где логика этого номера с дискретной вероятностью ломается: нам не известна функиц я вероятности, нам дана плотность распределения. Но и эта проблема теперь решается достаточно просто: если рассматривать не саму плотность вероятности, а плотность вероятности на каком-то небольшом участке, то тогда плотность вероятности домноженная на длину рассматриваемого участка уже должна соотноситься с формой эмперической вероятности, определенной ранее как $\hat{P}(x)$:

При $n o \infty \Delta x f(x) = rac{k}{n} \Rightarrow k = n \Delta x f(x)$. В этом задании я разделил отрезок от 0 до 1 на 50 равных между собой отрезков. Тогда полигон частот должен соотноситься с плотностью через коэффициент домножения плотности $rac{n = \text{длина выборки}}{50}$

```
In [301:
          def eta pilygon(sample, X):
              Y = np.zeros(X.shape)
              tick = 1
              for i in sample:
                  while i > X[tick]: tick+=1
                  Y[tick] += 1
              return Y
          def eta posib (x, theta = 0.45):
              if x<0: return 0</pre>
              if x<theta: return 2*x/theta</pre>
              if x<1: return 2*(1-x)/(1-theta)
              return 0
          X \text{ poleta} = \text{np.linspace}(0, 1, 50)
          Y poleta = [[eta pilygon(sample eta[k][j], X poleta) for j in range(5)]
                       for k in range(len(n))]
          posibilityeta = np.array([eta posib(x) for x in X realeta])
```

Полигон выборки длины 5 $\theta = 0.45, \ 0.1 \cdot f_{\eta}(x)$

Полигон выборки длины 10 $\theta = 0.45, 0.2 \cdot f_{\eta}(x)$

Полигон выборки длины 100 $\theta = 0.45, 2.0 \cdot f_{\eta}(x)$

Полигон выборки длины 200 $\theta = 0.45, 4.0 \cdot f_{\eta}(x)$

Полигон выборки длины 400 $\theta = 0.45, 8.0 \cdot f_{\eta}(x)$

Полигон выборки длины 600 $\theta = 0.45, \ 12.0 \cdot f_{\eta}(x)$

Полигон выборки длины 800 $\theta = 0.45, 16.0 \cdot f_{\eta}(x)$

Полигон выборки длины 1000 $\theta = 0.45, 20.0 \cdot f_n(x)$

Чтобы отметить, что я все еще анализирую графики, а не просто переписываю код под непрерывный случай: графики и результаты двух предыдущих заданий опять демонстрируют справедливость теоремы.

Задание 4

```
In [39]: def eta sample mean(sample):
             return sum(sample)/len(sample)
         def eta sample variance(sample):
             return sum((sample-xi sample mean(sample))**2)/len(sample)
         meanseta = np.array([[eta sample mean(sample eta[k][j])for j in range(5)]
                              for k in range(len(n))])
         varianceseta = np.array([[eta_sample_variance(sample eta[k][j])for j in range(5)]
                                  for k in range(len(n))])
         means peta = np.array([['%.4f' % i for i in j] for j in meanseta])
         variances peta = np.array([['%.4f' % i for i in j] for j in varianceseta])
         expectationeta = (1+0.45)/3
         varianceeta = (1-0.45+0.45**2)/18
         means difeta = np.array([['%.4f' % i for i in j]
                                  for j in (meanseta-expectationeta)])
         variances difeta = np.array([['%.4f' % i for i in j]
                                      for j in (varianceseta-varianceeta)])
```

Выборочные средние

	1	2	3	4	5
5	0.5245	0.4672	0.6051	0.3590	0.3098
10	0.5278	0.5574	0.4788	0.4397	0.4555
100	0.4793	0.4948	0.5075	0.4874	0.4868
200	0.4936	0.4677	0.4728	0.4849	0.4807
400	0.4899	0.4771	0.4776	0.4989	0.4885
600	0.4785	0.4675	0.4853	0.4996	0.4918
800	0.4785	0.4806	0.4930	0.4901	0.4929
1000	0.4695	0.4872	0.4922	0.4776	0.4848

Выборочные дисперсии

	1	2	3	4	5
5	0.0001	0.0261	0.0261	0.0107	0.0099
10	0.0207	0.0178	0.0221	0.0344	0.0148
100	0.0419	0.0485	0.0493	0.0365	0.0404
200	0.0399	0.0393	0.0445	0.0437	0.0451
400	0.0369	0.0400	0.0439	0.0426	0.0424
600	0.0422	0.0429	0.0442	0.0457	0.0403
800	0.0410	0.0422	0.0425	0.0401	0.0373
1000	0.0390	0.0434	0.0419	0.0415	0.0410

Смещение оценки: $b(\theta) = M_{\theta}T(x) - \tau(\theta)$ $M\eta = 0.4833$

	1	2	3	4	5
5	0.0411	-0.0161	0.1217	-0.1243	-0.1736
10	0.0445	0.0741	-0.0046	-0.0436	-0.0278
100	-0.0040	0.0115	0.0242	0.0041	0.0034
200	0.0102	-0.0156	-0.0105	0.0016	-0.0026
400	0.0065	-0.0063	-0.0058	0.0156	0.0051
600	-0.0049	-0.0158	0.0020	0.0163	0.0084
800	-0.0049	-0.0027	0.0097	0.0068	0.0096
1000	-0.0138	0.0038	0.0088	-0.0058	0.0015

Разница выборочной дисперсии и дисперсии $D\eta = 0.0418$

	1	2	3	4	5
5	-0.0417	-0.0157	-0.0157	-0.0311	-0.0319
10	-0.0211	-0.0241	-0.0197	-0.0074	-0.0270
100	0.0001	0.0067	0.0075	-0.0053	-0.0014
200	-0.0019	-0.0025	0.0027	0.0019	0.0033
400	-0.0049	-0.0018	0.0021	0.0008	0.0006
600	0.0004	0.0011	0.0023	0.0039	-0.0015
800	-0.0008	0.0004	0.0007	-0.0017	-0.0045
1000	-0.0028	0.0016	0.0001	-0.0003	-0.0008

Текст здесь 1 в 1 повторит текст выше.

... - и что еще раз на практике подтверждает теорему - ...

Домашнее задание 3

Дискретное

Задание 1

Метод моментов

Параметр у нас только 1, потому для оценки heta методом моментов будет достаточно одного лишь $M\xi=rac{ heta+1}{2}$.

$$\hat{lpha_1} = rac{1}{n} \sum_{i=1}^n x_i$$
 вычислены выше, как выборочные средние. Ими и воспользуемся.

$$M\xi = \hat{lpha_1} \Leftrightarrow rac{\hat{ heta}+1}{2} = \hat{lpha_1} \Leftrightarrow \hat{ heta} = 2\hat{lpha_1}-1$$

```
In [43]: estimthetaxi_mm = 2*meansxi-1 estimthetaxi_mm_demo = np.array([['%.4f' % i for i in j] for j in estimthetaxi_mm])

plt.table(cellText = estimthetaxi_mm_demo, rowLabels=n, colLabels=[1,2,3,4,5], loc='center').scale(1, 1.5)
plt.gca().set_axis_off()
plt.title('Оценка $\\theta$ методом моментов для $\\xi$');
```

Оценка heta методом моментов для ξ

	1	2	3	4	5
5	27.0000	32.2000	46.6000	16.2000	41.4000
10	35.6000	29.4000	25.4000	31.0000	32.8000
100	26.2000	28.3000	30.9600	28.7600	24.1600
200	28.7700	31.1500	28.2400	30.9800	29.7800
400	28.9450	29.8150	29.1750	28.1700	28.5850
600	27.9767	30.5600	28.7533	29.9367	29.2333
800	28.8850	29.0200	29.2775	29.8950	28.8650
1000	28.5580	28.3400	29.2400	28.3360	28.4640

Метод максимального правдоподобия

$$egin{aligned} L(ar{x}, heta) &= \prod_{i=1}^n P(x_i) = \prod_{i=1}^n rac{1}{ heta} ext{Ind}(0 \leq x_i \leq heta) = rac{1}{ heta^n} \prod_{i=1}^n ext{Ind}(0 \leq x_i) \cdot ext{Ind}(x_i \leq heta) = \ &= rac{1}{ heta^n} ext{Ind}(0 \leq X_{(1)}) \cdot ext{Ind}(X_{(n)} \leq heta) \end{aligned}$$

Максимальное значение этого выражения будет достигаться при минимально допустимом heta, что есть $X_{(n)}$

Оценка θ методом максимального правдоподобия для ξ

	1	2	3	4	5
5	24.0000	23.0000	27.0000	15.0000	29.0000
10	28.0000	28.0000	28.0000	28.0000	28.0000
100	29.0000	29.0000	29.0000	29.0000	29.0000
200	29.0000	29.0000	29.0000	29.0000	29.0000
400	29.0000	29.0000	29.0000	29.0000	29.0000
600	29.0000	29.0000	29.0000	29.0000	29.0000
800	29.0000	29.0000	29.0000	29.0000	29.0000
1000	29.0000	29.0000	29.0000	29.0000	29.0000

Задание 2

```
In [45]: #asd
```

Задание 3

```
In [46]: #asd
```

Абсолютно непрерывное

Задание 1

Метод моментов

$$M\xi=rac{1+ heta}{3}$$
 . $\hat{lpha_1}=rac{1}{n}\sum_{i=1}^n x_i$ вычислены выше, как выборочные средние.

$$M\xi = rac{1+ heta}{3} = \hat{lpha_1} \Leftrightarrow rac{1+\hat{ heta}}{3} = \hat{lpha_1} \Leftrightarrow \hat{ heta} = 3\hat{lpha_1} - 1$$

Оценка θ методом моментов для η

	1	2	3	4	5
5	0.5734	0.4017	0.8152	0.0770	-0.0707
10	0.5834	0.6722	0.4363	0.3192	0.3666
100	0.4380	0.4845	0.5225	0.4623	0.4603
200	0.4807	0.4032	0.4184	0.4547	0.4421
400	0.4696	0.4312	0.4327	0.4968	0.4654
600	0.4354	0.4025	0.4559	0.4988	0.4753
800	0.4354	0.4419	0.4791	0.4703	0.4788
1000	0.4086	0.4615	0.4765	0.4327	0.4545

Метод максимального правдоподобия

Функция правдоподобия
$$L(x, heta) = \prod_{i=1}^n f_{ heta}(x_i) = \prod_{i=1}^n ig(rac{2x_i}{ heta} \cdot \mathtt{Ind}(0 \leq x_i \leq heta) + rac{2(1-x_i)}{1- heta} \cdot \mathtt{Ind}(heta < x_i \leq 1)ig)$$
 .

Рассмотреть ни производную, ни производную логарифма такой функции правдоподобия не получится (или как минимум очень сложно и ничего толкового не даст), потому попробую прибегнуть к логике.

Попробуем задать эту функцию, посмотреть ее график, и найти искомое heta программными методами

Код выше реализует демонстрацию функции правдоподобия для θ от 0 до 1 с шагом в 0.001. Как, на самом деле, стоило ожидать, значение функции сильно зависит от количества элементов выборки (а именно максимум ограничен 2^n), поэтому на первом графике выборок длины меньше 1000 даже не видно, они ушли в 0 ввиду масштабирования. Для этого я построил второй график, на котором уже ограничил значения у от нуля до 150, чтобы сделать выводы на простой выборке. В этот отрезок оси у хорошо попадает выборка длины 10.

График имеет 10 пиков, которые совпадают со значениями выборки (в силу изначальной неровности $f_{\eta}(x)$). Программными методами найти такой максимум труда не составит, однако сформулировать оценку математическими методами будет проблематично. Код приведен ниже, как и таблица для выборок.

Однако можно описать алгоритм:

- 1. Вычислить все пары $ig(x_i,L(ar x, heta)ig)$ для всех $heta\in\{x_1,x_2,\ldots,x_n\}$;
- 2. Выбрать из полученных значений пару с максимальным вторым параметром;
- 3. Вернуть первый параметр выбранной пары.

Оценка θ методом максимального правдоподобия для η

	1	2	3	4	5
5	0.5261	0.5771	0.5657	0.3375	0.2276
10	0.5610	0.5395	0.4634	0.3611	0.4487
100	0.4340	0.4670	0.4693	0.4634	0.4449
200	0.4624	0.4508	0.3977	0.4080	0.4524
400	0.4893	0.4420	0.4081	0.5183	0.4436
600	0.4488	0.4177	0.4476	0.4612	0.4692
800	0.4567	0.4527	0.4744	0.4655	0.4674
1000	0.4234	0.4486	0.4745	0.4349	0.4552

Задание 2

```
In [52]: #asd
```

Задание 3

```
In [53]: #asd
```

```
In []:
```