The best way to probe CP violation in the lepton sector is with long-baseline accelerator neutrino experiments in the appearance mode: the appearance of ν_e in predominantly ν_{μ} beams. Here we show that it is possible to discover CP violation with disappearance experiments only, by combining JUNO for electron neutrinos and DUNE or Hyper-Kamiokande for muon neutrinos. While the maximum sensitivity to discover CP is quite modest (1.6 σ with 6 years of JUNO and 13 years of DUNE), some values of δ may be disfavored by $> 3\sigma$ depending on the true value of δ .

CP-Violation with Neutrino Disappearance

2/30

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering

 θ_{23} octant

Complex phase

Absolute mass scale

Four known unknown in particle physics: all neutrinos

Atmospheric mass ordering θ_{23} octant

Complex phase

Absolute mass scale

Outline

- 1. Why CPV is interesting
- 2. Other non-standard probes of CPV
- 3. Relationship between appearance, disappearance, CP, T, CPT
- 4. Three ways to see why there is CPV information in disappearance
 - 4.1 Parameter counting
 - 4.2 Direct analytic calculation
 - 4.3 Numerical test
- 5. Role of the matter effect
- 6. Sensitivities
- 7. New paper and code out last week! NuFast
- 8. Recommendation

Why is CPV interesting?

δ and CP violation

 $J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$

C. Jarlskog PRL 55, 1039 (1985)

δ and CP violation

$$J_{CP} = s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta$$

C. Jarlskog PRL 55, 1039 (1985)

1. Strong interaction: no observed EDM \Rightarrow CP (nearly) conserved

$$\frac{\bar{\theta}}{2\pi} < 10^{-11}$$

J. Pendlebury, et al. 1509.04411

2. Quark mass matrix: non-zero but small CP violation

$$\frac{|J_{\rm CKM}|}{J_{\rm max}} = 3 \times 10^{-4}$$

CKMfitter **1501.05013**

3. Lepton mass matrix: ?

$$\frac{|J_{\rm PMNS}|}{J_{\rm max}} < 0.34$$

PBD, J. Gehrlein, R. Pestes 2008.01110

 $J_{\text{max}} = \frac{1}{6\sqrt{3}} \approx 0.096$

δ : what is it really?

 δ : what is it not?

$$\delta \not\Rightarrow$$
 Baryogenesis

The amount of leptogenesis is a function of:

- 1. the heavy mass scale
- $2. \delta$
- 3. α , β (Majorana phases)
- 4. CP phases in the RH neutrinos
- 5. ...

C. Hagedorn, et al. 1711.02866K. Moffat, et al. 1809.08251

 $\begin{array}{lll} \text{Measuring } \delta = 0, \pi & \not \Rightarrow & \text{no leptogenesis} \\ \text{Measuring } \delta \neq 0, \pi & \not \Rightarrow & \text{leptogenesis} \end{array}$

δ , J: current status

Maximal CP violation is already ruled out:

- 1. $\theta_{12} \neq 45^{\circ} \text{ at } \sim 15\sigma$
- 2. $\theta_{13} \neq \tan^{-1} \frac{1}{\sqrt{2}} \approx 35^{\circ} \text{ at many (100) } \sigma$
- 3. $\theta_{23} = 45^{\circ}$ allowed at $\sim 1\sigma$
- 4. $|\sin \delta| = 1$ allowed

When δ and when J?

If the goal is **CP violation** the Jarlskog invariant should be used

however

If the goal is **measuring the parameters** one must use δ

Given θ_{12} , θ_{13} , θ_{23} , and J, I can't determine the sign of $\cos \delta$ which is physical e.g. $P(\nu_{\mu} \to \nu_{\mu})$ depends on $\cos \delta$

Other non-standard CPV probes

1. Some information in solar due to loops in elastic scattering

V. Brdar, X-J. Xu 2306.03160

2. Sub-GeV atmospherics

K. Kelly, et al. 1904.02751

See also e.g. A. Suliga, J. Beacom 2306.11090

Solar (no systematics): $\sim 0.5\sigma$

Atmospherics at DUNE: $< 2\sigma$

Appearance, disappearance, and CP

Appearance vs. Disappearance

Oscillation experiments can do appearance or disappearance experiments:

Disappearance K2K, MINOS, T2K, NOνA KamLAND, Daya Bay, RENO, Double CHOOZ (Sort of) SNO, Borexino, SK-solar

Neither appearance nor disappearance SK-atm, IceCube

Appearance T2K, NO ν A OPERA Atm ν_{τ} hints @ SK & IceCube DUNE, HK

JUNO, DUNE, HK

CP, T: Disappearance

$$\begin{array}{cccc}
\nu_e \to \nu_e & \to & CP & \to & \bar{\nu}_e \to \bar{\nu}_e \\
& \searrow & & \downarrow & \\
& CPT & T & \\
& & \downarrow & \\
\bar{\nu}_e \to \bar{\nu}_e
\end{array}$$

Disappearance measurements are even eigenstates of CP

$$CP[P(\nu_e \to \nu_e)] = P(\bar{\nu}_e \to \bar{\nu}_e) \stackrel{CPT}{=} P(\nu_e \to \nu_e)$$

Assume that CPT is a good symmetry

CP, T: Appearance

Appearance measurements are not eigenstates of CP

Appearance and Disappearance, CP even and CP odd terms

Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$-4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$-4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha\alpha}^{CP+}$$

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

Appearance and Disappearance, CP even and CP odd terms

Disappearance:

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4|U_{\alpha 1}|^{2}|U_{\alpha 2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{\alpha 1}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{31}$$
$$- 4|U_{\alpha 2}|^{2}|U_{\alpha 3}|^{2}\sin^{2}\Delta_{32}$$
$$= P_{\alpha \alpha}^{CP+}$$

Appearance:

$$P(\nu_{\alpha} \to \nu_{\beta}) = -4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{21}$$

$$-4\Re[U_{\alpha 1}U_{\beta 1}^{*}U_{\alpha 3}^{*}U_{\beta 3}]\sin^{2}\Delta_{31}$$

$$-4\Re[U_{\alpha 3}U_{\beta 3}^{*}U_{\alpha 2}^{*}U_{\beta 2}]\sin^{2}\Delta_{32}$$

$$\pm 8J_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32}$$

$$= P_{\alpha\beta}^{CP+} + P_{\alpha\beta}^{CP-}$$

Sign depends on α, β

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

Conventional Wisdom

 $1.\ \,$ Appearance is sensitive to CPV

[True]

Conventional Wisdom

1. Appearance is sensitive to CPV

[True]

2. Disappearance has no CPV sensitivity

[False]

Conventional Wisdom

1. Appearance is sensitive to CPV

[True]

2. Disappearance has no CPV sensitivity

[False]

3. Any δ dependence in disappearance is in ν_μ not ν_e

[Confusing/False]

$$\begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Correct Statements

- \blacktriangleright Appearance is the best way to measure δ and CPV
 - ... given known oscillation parameters, systematics, and realistic experiments
 - ightharpoonup Probes mostly $\sin \delta$ not $\cos \delta$
 - ▶ Don't need both ν and $\bar{\nu}$ (but systematics)
- ightharpoonup Disappearance can measure δ
 - ► CPV can be discovered with only disappearance measurements
 - ightharpoonup Probes mostly $\cos \delta$ not $\sin \delta$
 - ► Requires measurements of two flavors
 - "Works through unitarity" (as do nearly all oscillation measurements)

1. Four parameters in the PMNS matrix

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NO ν A measured one

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - KamLAND measured one.
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - \triangleright MINOS/T2K/NO ν A measured one

$$P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - 4 \sum_{i>j} C_{ij}^{\alpha} \sin^{2} \Delta_{ij}$$
$$C_{ij}^{\alpha} = |U_{\alpha i}|^{2} |U_{\alpha j}|^{2}$$
$$|U_{\alpha i}| = \left(\frac{C_{ij}^{\alpha} C_{ik}^{\alpha}}{C_{jk}^{\alpha}}\right)^{1/4}$$

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one

Daya Bay 1809.02261

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NOνA measured one

L. Zhan, et al. 0807.3203

1. Four parameters in the PMNS matrix

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ▶ Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ► MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent

Parameter Counting

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ▶ That is, CPV is physical and cannot depend on parameterization

Parameter Counting

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ► That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles

Parameter Counting

1. Four parameters in the PMNS matrix

Majorana phases are irrelevant in oscillations

- 2. Disappearance experiments of one flavor can measure up to three amplitudes
 - ► Electron neutrino row:
 - ► KamLAND measured one
 - ▶ Daya Bay/RENO measured a different one
 - ▶ JUNO will measure all three
 - ► Muon neutrino row:
 - ▶ MINOS/T2K/NO ν A measured one
- 3. Only two parameters for one flavor are independent
- 4. Given good measurements of the ν_e and ν_μ disappearance, 4 independent parameters will be measured
 - Any row can be "simple" (e.g. $c_{12}c_{13}, s_{12}c_{13}, \ldots$) \Rightarrow no one row is ever enough
 - ► That is, CPV is physical and cannot depend on parameterization
- 5. This is sufficient to constrain $\cos \delta$ and three mixing angles
- 6. If we determine $\cos \delta \neq \pm 1 \implies \text{CP is violated!}$

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

Direct Analytic Calculation

Disappearance experiments measure various $|U_{\alpha i}|^2$ terms Suppose 4 are measured: $|U_{e2}|^2$, $|U_{e3}|^2$, $|U_{\mu 2}|^2$, $|U_{\mu 3}|^2$

Actually this gives all 9 magnitudes by unitarity

$$J_{CP}^{2} = |U_{e2}|^{2} |U_{\mu 2}|^{2} |U_{e3}|^{2} |U_{\mu 3}|^{2}$$
$$-\frac{1}{4} \left(1 - |U_{e2}|^{2} - |U_{\mu 2}|^{2} - |U_{e3}|^{2} - |U_{\mu 3}|^{2} + |U_{e2}|^{2} |U_{\mu 3}|^{2} + |U_{e3}|^{2} |U_{\mu 2}|^{2}\right)^{2}$$

Disappearance can tell us if CP is violated, but not if nature prefers ν 's or $\bar{\nu}$'s

Where is $|U_{\mu 2}|^2$?

Where is $|U_{\mu 2}|^2$?

- 1						
6.5 yrs ν_{μ} rates	$\cos\delta$	ROI 1	ROI 2			
	1	5506	5038			
	0	5418	5115			
	-1	5334	5193 May 8, 2024			
	University	of Virginia:	May 8, 2024	21/30		

▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

► This term is

$$\approx -4c_{23}^{2} \left(s_{12}^{2} c_{12}^{2} + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^{2} \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^{2}$$

$$\Delta m_{21}^{2} / |\Delta m_{21}^{2}| \approx 33$$

- There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ (sum of Δ_{31} and Δ_{32} terms)
- ▶ There is δ information in $|U_{u1}|^2|U_{u2}|^2$
- ▶ This comes from the Δm_{21}^2 term

DUNE and HK can measure Δm_{21}^2 somewhat PBD, J. Gehrlein 2302.08513

► This term is

$$\approx -4c_{23}^{2} \left(s_{12}^{2} c_{12}^{2} + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^{2} \Delta_{21}$$

$$\approx -2 \quad (0.21 + 0.03 \cos \delta) \left(\frac{\pi}{33} \right)^{2}$$

 $\Delta m_{21}^2/|\Delta m_{31}^2| \approx 33$

- ▶ So the probability is large for $\cos \delta = -1$?
- ▶ So the effect is $\sim -0.0005 \cos \delta$?

- ► There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ ► There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

$$\approx -2 \quad (0.21 \quad + \quad 0.03\cos\delta) \left(\frac{\pi}{33}\right)^2$$

$$\Delta m_{21}^2/|\Delta m_{21}^2| \approx 33$$

- ▶ So the probability is large for $\cos \delta = -1$?
- ▶ So the effect is $\sim -0.0005 \cos \delta$?

- ▶ There is no δ information in $|U_{\mu 1}|^2 + |U_{\mu 2}|^2$ ▶ There is δ information in $|U_{\mu 1}|^2 |U_{\mu 2}|^2$
- ▶ This comes from the Δm_{21}^2 term

2

0.99

$$\frac{1}{2}$$
0.98

0.96

0.95

0.95

0.96

0.95

0.96

0.95

0.96

0.95

0.96

0.95

0.96

0.96

0.97

0.90

0.95

0.95

0.96

0.95

0.95

0.96

0.95

0.96

0.95

0.95

0.96

0.95

0.95

0.96

0.95

0.96

0.95

0.95

0.96

0.95

0.96

0.95

0.96

0.95

0.96

0.95

0.96

0.95

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

0.96

This term is

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

$$\approx -2$$
 (0.21 +

▶ So the probability is large for $\cos \delta = -1$?

$$+$$

So the effect is
$$\sim -0.0005 \cos \delta$$
?

$$0.03\cos\delta\left(\frac{\pi}{33}\right)^2$$

 $\Delta m_{21}^2/|\Delta m_{31}^2| \approx 33$ Sign is wrong

Magnitude is ~ 16 too small

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeVPBD, S. Parke 1902.07185

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

at E = 1.3 GeVPBD, S. Parke 1902.07185

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \to \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

 $a \propto \rho E$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

PBD, S. Parke 1902.07185

at $E=1.3~{\rm GeV}$

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

➤ So the sign is swapped

 $a \propto \rho E$

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.26$$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

► So the sign is swapped

$$a \propto \rho E$$

at E = 1.3 GeV

PBD, S. Parke 1902.07185

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.26$$

Also s_{13} increases in matter $\sim 15\%$: total effect is $0.004\cos\delta$

Let's start again at

$$\approx -4c_{23}^2 \left(s_{12}^2 c_{12}^2 + s_{23} c_{23} s_{13} \sin 2\theta_{12} \cos 2\theta_{12} \cos \delta \right) \sin^2 \Delta_{21}$$

► Solar splitting modified by

$$\Delta m_{21}^2 \to \Delta m_{21}^2 \mathcal{S}_{\odot}$$

$$\mathcal{S}_{\odot} \approx \sqrt{(\cos 2\theta_{12} - c_{13}^2 a/\Delta m_{21}^2)^2 + \sin^2 2\theta_{12}} \approx 3.4$$

Mixing angle is modified

$$\cos 2\theta_{12} = 0.37 \rightarrow \frac{\cos 2\theta_{12} - c_{13}^2 a / \Delta m_{21}^2}{S_{\odot}} \approx -0.96 < 0$$

➤ So the sign is swapped

$$a \propto \rho E$$

at E = 1.3 GeV

PBD, S. Parke 1902.07185

$$\sin 2\theta_{12} \cos 2\theta_{12} = 0.37 \rightarrow -0.26$$

- ▶ Also s_{13} increases in matter ~ 15%: total effect is $0.004\cos\delta$
- ► This gets us **half** of the effect, and the correct sign

▶ $\frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$

H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326

- ▶ $\frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$
 - H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283
 PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π at max

- ▶ $\frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$ H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283

 PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π at max
- \blacktriangleright Leading order in s_{13} :

$$\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32}$$

$$\approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad \text{(matter)}$$

- $ho \frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$ H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283
 - PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π at max
- ightharpoonup Leading order in s_{13} :

$$\approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32}$$

$$\approx -2 \quad (0.0094 \quad -0.023\cos\delta)0.1 \quad \text{(matter)}$$

ightharpoonup Adds in another $\approx 0.004 \cos \delta$ effect

- $ightharpoonup \frac{\Delta m_{\mu\mu}^2 L}{4E}$ in matter at the maximum is $\sim \pi$
 - H. Nunokawa, S. Parke, R. Funchal hep-ph/0503283 PBD, S. Parke 2401.10326
- ▶ The Δm_{32}^2 component is a bit off π at max
- ightharpoonup Leading order in s_{13} :

$$\begin{array}{l} \approx -4s_{23}^2(c_{12}^2c_{23}^2 - 2s_{13}s_{12}c_{12}s_{23}c_{23}\cos\delta)\sin^2\Delta_{32} \\ \approx -2 & (0.0094 & -0.023\cos\delta)0.1 \end{array} \tag{matter}$$

- Adds in another $\approx 0.004 \cos \delta$ effect
- ▶ Total is $\approx 0.008 \cos \delta$ which agrees with exact calculation

Numerical Studies

Inputs are *only*:

$ ightharpoonup$ Daya Bay data for θ_{13}	1809.02261
▶ KamLAND data for θ_{12} and Δm_{21}^2	1303.4667
▶ JUNO 6 yrs precision sensitivity on θ_{12} , Δm_{21}^2 , Δm_{31}^2	2204.13249

▶ DUNE 6.5+6.5 yrs disappearance channels sensitivity only

Also looked at varying JUNO's and DUNE's runtime, and at HK

2103.04797

JUNO and DUNE disappearance Sensitivities

JUNO and HK disappearance Sensitivities

NuFast: Fast Neutrino Oscillation Probabilities

Quick advertisement:

- ► "nearly 35 million core-hours were consumed by NOvA in the 54-hour period"

 FNAL Article
- ▶ Most of the time spent was computing probabilities

NuFast: Fast Neutrino Oscillation Probabilities

Quick advertisement:

- "nearly 35 million core-hours were consumed by NOvA in the 54-hour period"
- ▶ Most of the time spent was computing probabilities
- ▶ With S. Parke, presented a new algorithm, optimized for LBL:
 - NOvA, T2K, DUNE, HK, and JUNO
- ► Leverages past results

PBD, H. Minakata, S. Parke 1604.08167
 PBD, S. Parke, X. Zhang 1907.02534
 A. Abdulahi, S. Parke 2212.12565

▶ Including the Eigenvector-Eigenvalue Identity:

$$|\hat{U}_{\alpha i}|^2 = \frac{\prod_{j=1}^{n-1} (\lambda_i - \xi_{\alpha}^j)}{\prod_{j=1, j \neq i}^n (\lambda_i - \lambda_j)}$$

PBD, S. Parke, T. Tao, X. Zhang 1908.03795

NuFast: Fast Neutrino Oscillation Probabilities

- ► Code is designed to be fast:
 - **c**++
 - ► f90

- ► Faster than existing in the literature
- ▶ Far more precise that HK, DUNE, or JUNO will need
- ▶ Publicly available: github.com/PeterDenton/NuFast
- ► Atmospherics and nighttime solar in the works!

Discussion and Conclusions

- Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ightharpoonup Can rule out some values of δ at $> 3\sigma$
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ► Analyses already exist but...

Discussion and Conclusions

- ► Disappearance can discover CPV
- ▶ Requires two good measurements: JUNO and DUNE/HK
- ▶ Can rule out some values of δ at > 3σ
- ▶ Works in vacuum or matter; matter slightly minimizes HK's effect
- ▶ Subject to BSM degeneracies, as are most other oscillation measurements
- ► Analyses already exist but...
- ▶ LBL Experiments should break down δ analyses into app vs. dis
- ▶ Since systematics are different, provides a good cross check

Backups

References

SK hep-ex/9807003

M. Gonzalez-Garcia, et al. hep-ph/0009350

M. Maltoni, et al. hep-ph/0207227

SK hep-ex/0501064

SK hep-ex/0604011

T. Schwetz, M. Tortola, J. Valle 0808.2016

M. Gonzalez-Garcia, M. Maltoni, J. Salvado 1001.4524

T2K 1106.2822

D. Forero, M. Tortola, J. Valle 1205.4018

D. Forero, M. Tortola, J. Valle 1405.7540

P. de Salas, et al. 1708.01186

F. Capozzi et al. 2003.08511

Varying Runtime/Power

Improvement requires both experiments!

Complex phase in different parameterizations

- ► Can relate the complex phase in one parameterization to that in another
- $ightharpoonup U_{132}$ and U_{213} similar to U_{123}
- δ constrained to $\sim [150^{\circ}, 210^{\circ}]$ in $U_{231}, U_{312}, U_{321}$
- ▶ Bands indicate 3σ uncertainty on θ_{12} , θ_{13} , θ_{23}
- ▶ "50% of possible values of δ "
 - ⇒ parameterization dependent

DUNE TDR II 2002.03005

Quark mixing

From the PDG, V_{CKM} in the V_{123} parameterization is

$$\theta_{12} = 13.09^{\circ}$$
 $\theta_{13} = 0.2068^{\circ}$ $\theta_{23} = 2.323^{\circ}$ $\delta_{PDG} = 68.53^{\circ}$

Looks like "large" CPV:

$$\sin \delta_{\rm PDG} = 0.93 \sim 1$$

yet $J_{CKM}/J_{max} = 3 \times 10^{-4}$.

Switch to V_{212} parameterization, $\Rightarrow \delta' = 1^{\circ}$ and $\sin \delta' = 0.02$.

Standard oscillation parameters

Can see that the combination doesn't like the NO while it does like the IO IO preferred over NO at $\Delta\chi^2=2.3$

CP violation in oscillations

In vacuum at first maximum:

$$P_{\mu e} - \bar{P}_{\mu e} \approx 8\pi J \frac{\Delta m_{21}^2}{\Delta m_{32}^2}$$
$$J \equiv s_{12} c_{12} s_{13} c_{12}^2 s_{23} c_{23} \sin \delta$$

C. Jarlskog PRL 55, 1039 (1985)

- \triangleright Extracting δ from data requires every other oscillation parameter
- ▶ J requires only Δm_{21}^2 (up to matter effects)

Matter effects are easily accounted for

$$\hat{J} \simeq \frac{J}{\sqrt{(c_{212} - c_{13}^2 a/\Delta m_{21}^2)^2 + s_{212}^2} \sqrt{(c_{213} - a/\Delta m_{ee}^2)^2 + s_{213}^2}}$$

PBD, S. Parke 1902.07185

PBD, H. Minakata, S. Parke 1604.08167

Repeated rotations

	U_{121}					
$ U_{e2} $	1	1	×	1	X	X
$ U_{e3} $	1	1	X	X	1	1
$ U_{\mu 3} $	X	X	1	1	1	1

Note that $e^{i\delta}$ must be on first or third rotation

The importance of $\cos \delta$

- ▶ If only $\sin \delta$ is measured \Rightarrow sign degeneracy: $\cos \delta = \pm \sqrt{1 \sin^2 \delta}$
- ightharpoonup Most flavor models predict $\cos \delta$

— твм — GR2 NEW7 Probability density -0.50.0 0.5 $\cos \delta$

J. Gehrlein, et al. 2203.06219

L. Everett, et al. 1912.10139