CONTINUOUS VALUED DIGITS

Mitra Mirhassani

Supervisor: Dr. M. Ahmadi

Co-Supervisor: Dr. G. A. Jullien

Winter 2004

OUTLINE

- Continuous Valued Digits (CVD) Idea
- CVD Representation
- CVD Generation
- CVD Implementation
- CVD Error Recovery
- Overflow Correction
- LSD Error Propagation
- Addition
- Subtraction
- Multiplication
- CVD Applications
- CVD Developments

CVD Idea

• Original idea: From "Utility Meter", where lower digits refine higher order digits.

CVD Representation

• A given real number |x| < X is represented by n set of CVDs.

- Radix B is defined based on the maximum dynamic range (X) as: $B^{L+1} = X$
- The format of the representation is as follows:

$$x \longrightarrow (r_L, r_{L-1}, \dots, r_1, r_0 \mid r_{-1}, r_{-2}, \dots, r_K)$$
 (L+1+ k = n)

CVD Generation

First Method

Cascade rule

- MSD: $r_L = B. x / X$
- Lower order digits obtained as:

$$\mathbf{r}_{\mathbf{n}} = (\mathbf{r}_{\mathbf{n}+1} - \lfloor \mathbf{r}_{\mathbf{n}+1} \rfloor)$$

♦ L. J denotes the floor function

CVD Generation

Second Method

Modulo operation

$$r_n = (x. \cancel{B}^{-n+1}) \mod B$$
 for $n \le L$

In both methods, n ≥ L digits are called "Excessively Evolved Digits (EED)" defined by:

$$r_{n} = r_{n-1} / B$$

 \bullet (a)mod B= a - B \[a \/ B \]

CVD Generation

• The original number (x) can be obtained from the MSD alone as:

$$\tilde{\mathbf{x}} = \mathbf{r}_{\mathbf{L}} \cdot \mathbf{X} / \mathbf{B}$$

- CVD representation is not an approximation, $\tilde{x} = x$
- x can also be obtained from the less significant digits as follows:

$$x = \frac{X.r_k}{B^{L-k+1}} + \frac{X}{B} \sum_{i=0}^{L-n-1} r_{L-i} \cdot B^{-i}$$

Number Representation

• x = 58.742, B=2

CVD Implementation

- Each digit is represented by a continuous value
- If the electronic variable (current, charge, voltage) ranges from 0 to Q units, the CVD of x is matched

as
$$q_n = r_n \cdot Q / B$$
.

$$x = 58.742$$

 $X = 100$
Range = [0-50] μ A
 $B = 10$

n	r _n	Ĺr _n ∫	q _n (µA)
6	1.1748	1	29.371
5	0.3496	0	8.742
4	0.6993	0	17.484
3	1.3967	1	34.918
2	0.7974	0	19.936
1	1.5948	1	39.872
0	1.1879	1	29.699
-1	0.3795	0	9.488

CVD Error Recovery

- The increased resolution of higher digits can not be implemented exactly in VLSI.
- A CVD does not have noise margin, unlike binary digit representation.
- Protection against noise and other impairments is warranted by the redundancy among the digits.
- The error can be corrected using "Reverse Evolution" method.

CVD Error Recovery

• The error is corrected from the lower digit toward the higher digit.

r_n (original digit) $r'_{n} \text{ (errored digit)} = r_{n} + \varepsilon_{n}$ $r''_{n} \text{ (corrected digit)} = \begin{cases} \lfloor r'_{n} \rfloor + r'_{n-1} / B & n > K \\ r'_{k} & n = K \end{cases}$

CVD Error Recovery

• x = 9.9845, B = 10

n	2	1	0	-1	-2
r_n	9.9845	9.845	8.45	4.5	5

Applying 5% error to each digit

Improved Algorithm

• The error correction is improved using the rounded computation of the floor function.

r_n (original digit)
$$r'_{n} \text{ (errored digit)} = x_{n} + e_{n}$$

$$r'_{n} \text{ (corrected digit)} = \begin{cases} r'_{n} - r''_{n-1} / B & n > K \\ r''_{n} & n = K \end{cases}$$

Improved Algorithm

• x = 9.9845, B = 10

n	2	1	0	-1	-2
r_n	9.9845	9.845	8.45	4.5	5

Applying 5% error to each digit

r' _n 10.48372 10.3372 8.8725 4.725 5.2	5
---	---

r" _n	9.9845	9.8452	8.4525	4.525	5.25
111					

Overflow Correction

• By redefining the rounded floor function the overflow problem is eliminated.

- (a)
$$mod^{+} B = (a \mod B + B) \mod B$$
 $0 \le (a) \mod^{+} B < B$

- (a)
$$\operatorname{mod}^{-} B = (a \operatorname{mod} B - B) \operatorname{mod} B$$
 $-B < (a) \operatorname{mod}^{-} B \le B$

LSD Error Propagation

- LSD error propagates upward by the reverse evolution process.
- The correction error is reduced by factor B in each step of the reverse evolution for each digit.
- The error propagated to the MSD from the LSD is $\varepsilon'_{L} = \varepsilon_{k} / B^{L-k}$

$$\rho^*(\epsilon_{n+1}) = B. \rho(\epsilon_n/B)$$

^{*} ρ is the error probability density

Error Tolerance

- All digit errors have a equal error probability density function.
- The reverse evolution process holds providing that $|\epsilon_n \epsilon_{n-1}/B| < 0.5$
- The error threshold $(v \ge \varepsilon_n)$ is $\frac{B}{2(B+1)}$.

Actual bound for adjacent digits.

Addition

- Given two numbers, x and y, the CVD digits of the sum, z=x+y is given as $z_n=(r_n+p_n)$ mod B.
- Addition operation is digit wise with no carry
- The only interaction between the digits is for error recovery.
- The summation of the EEDs maintains the validity of the addition in case of overflow.

Addition

• Adding x=58.34, y=72.89 in radix 10.

	n	2 (EED)	1	0	-1	-2
X	r_n	0.5834	5.834	8.34	3.4	4
	r' _n	0.8834	6.134	8.64	3.7	4.3
У	p_n	0.7289	7.289	2.89	8.9	9
	p'n	1.0289	7.589	3.19	9.2	9.3
	Z _n	1.9123	3.723	1.83	2.9	3.6
	z′ _n	2.2123	4.023	2.13	3.2	3.9
	$\lfloor z'_n \rfloor_R$	1	3	1	2	3.9
	z"n	1.31239	3.1239	1.239	2.39	3.9

58.34 + 72.89 131.23

Subtraction

- Subtraction is performed by the addition of the negative numbers as $z_n = (x_n + (-y_n)) \mod B$.
- Addition computation which generates the correct sign is performed as:

$$z_{n} = \begin{cases} (r_{n} + p_{n}) \mod^{+} B & (r_{L} + p_{L}) \ge 0 \\ (r_{n} + p_{n}) \mod^{-} B & (r_{n} + p_{n}) < 0 \end{cases}$$

Subtraction

• Adding x=58.34, y=-72.89 in radix 10.

n	2 (EED)	1	0	-1	-2
r_n	0.5834	5.834	8.34	3.4	4
r' _n	0.8834	6.134	8.64	3.7	4.3
p_n	-0.7289	-7.289	-2.89	-8.9	-9
$p_{\rm n}$	-0.4289	-6.989	-2.59	-8.6	-8.7
\mathbf{z}_{n}	0.1545	-0.855	-3.95	-4.9	-4.4
z' _n	-0.1455	-0.555	-3.65	-4.6	-4.1
	0	-1	-4	-5	-4.1
z"n	-0.14541	-1.4541	-4.541	-5.41	-4.1

58.34

- 72.89

- 14.55

Multiplication

- Multiplication is not digit wise.
- Multiplication is performed by summation of partial products.
- The multiplicand is presented to the multiplier in positional number system with same radix.
- The CVD of a product λ .x (λ is integer) is:

$$(\lambda . r)_n = (\lambda . r_n) \mod B$$

Partial sums of product x.y are:

$$\mathbf{z}_{n} = \left[\sum_{\forall K} \mathbf{p}_{k}. \ \mathbf{r}_{n-k}\right] \mod \mathbf{B}$$

Multiplication

• Multiple x=31.89 and y=19.5, in radix 10.

n	2	1	0	-1	-2
r_n	0.3189	3.189	1.89	8.9	9
r' _n	0.3489	3.219	1.92	8.93	9.03
$(\lambda_1 r'_n)'$	3.2254	1.9238	8.9479	9.0481	0
$(\lambda_0 \mathbf{r'}_n)'$	3.1464	8.989	7.2946	0.3707	1.2725
$(\lambda_{-1}r'_n)'$	0.2045	1.7745	6.125	9.63	4.68
z′ _n	6.6063	2.7173	2.3974	9.0788	5.9825
$\lfloor z'_n \rfloor$	6	2	1	8	5.9825
z"n	6.2186	2.1859	1.8595	8.5953	5.9825

$$\mathbf{r'}_{n} = \mathbf{r}_{n} + \varepsilon^{+}$$
$$(\lambda_{i}\mathbf{r'}_{n})' = (1 + \varepsilon^{*}) (\lambda_{i}\mathbf{r'}_{n})$$

$$\lambda \rightarrow (1,9,5), \epsilon^+ = 0.03, \epsilon^* = 0.2\%, 31.89 \times 19.5 = 621.855$$

CVD Applications

- Target application: Digital filters and Neural networks.
- CVD may provides silicon efficient signal processing methods (power, area, speed, complexity).
- The CVD operations are performed in analog.
- The accuracy can be made identical to digital number system.
- Digital filters benefit from the proposed array multiplier

CVD Developments

- Digit correction
- Interfacing with digital circuits
- Singed-number adder implementation
- Optimizing the subtraction algorithm
- Efficient multiplication algorithm
- Multiplier implementation

