PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6:		11) International Publication Number: WO 98/21186			
C07D 217/12, 279/02, 285/20, 285/24, 471/04, 497/00, 497/04, 513/04	A1	43) International Publication Date: 22 May 1998 (22.05.98			
(21) International Application Number: PCT/US (22) International Filing Date: 13 November 1997 ((81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK				
(30) Priority Data: 60/030,526 968,035 12 November 1996 (13.11.9) (71) Applicant: CEPHALON, INC. [US/US]; 145 Bra Parkway, West Chester, PA 19380 (US).	7) ' U	LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NC, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GF, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NI, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).			
(72) Inventors: BIHOVSKY, Ron; 804 Primrose Landewood, PA 19096 (US). WELLS, Gregory, J.; pentine Drive, West Chester, PA 19382 (US). TAI 1604 Squire Drive, Maple Glen, PA 19002 (US).	818 Se O, Min	Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.			
(74) Agents: MILLER, Suzanne, E. et al.; Woodcock V Kurtz Mackiewicz & Norris LLP, 46th floor, One Place, Philadelphia, PA 19103 (US).					
(54) Title: BENZOTHIAZO AND RELATED HETERO INHIBITORS	CYCL	GROUP-CONTAINING CYSTEINE AND SERINE PROTEASE			
(57) Abstract					
The present invention is directed to novel benzothis proteases. Methods for using the same are also described.	azo and	related heterocyclic group-containing inhibitors of cysteine or sering			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	1.5	Lesotho	SI	Slovenia
AM	Armenia	FI	Pinland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/21186 PCT/US97/20782

Benzothiazo and Related Heterocyclic Group-Containing Cysteine and Serine Protease Inhibitors

Cross Reference To Related Applications

This application is claims benefit of U.S.

5 Provisional Application Serial No. 60/030,526, filed
November 13, 1996, and U.S. Application entitled
"Benzothiazo and Related Heterocyclic Group-Containing
Cysteine and Serine Protease Inhibitors" filed in the names
of Ron Bihovsky, Gregory J. Wells, and Ming Tao on November
10 12, 1997, the disclosures of which are hereby incorporated
herein by reference in their entirety.

Field of the Invention

Novel benzothiazo and related heterocyclic group-15 containing inhibitors of cysteine or serine proteases, methods for making these novel compounds, and methods for using the same are disclosed.

Background of the Invention

Numerous cysteine and serine proteases have been
20 identified in human tissues. A "protease" is an enzyme
which degrades proteins into smaller components (peptides).
The terms "cysteine protease" and "serine protease" refer to
proteases which are distinguished by the presence therein of
a cysteine or serine residue which plays a critical role in
25 the catalytic process. Mammalian systems, including humans,
normally degrade and process proteins via a variety of
enzymes including cysteine and serine proteases. However,
when present at elevated levels or when abnormally
activated, cysteine and serine proteases may be involved in

PCT/US97/20782 WO 98/21186 - 2 -

pathophysiological processes.

For example, calcium-activated neutral proteases ("calpains") comprise a family of intracellular cysteine proteases which are ubiquitously expressed in mammalian 5 tissues. Two major calpains have been identified; calpain I and calpain II. While calpain II is the predominant form in many tissues, calpain I is thought to be the predominant form in pathological conditions of nerve tissues. calpain family of cysteine proteases has been implicated in 10 many diseases and disorders, including neurodegeneration, stroke, Alzheimer's, amyotrophy, motor neuron damage, acute central nervous system injury, muscular dystrophy, bone resorption, platelet aggregation, cataracts and inflammation. Calpain I has been implicated in excitatory 15 amino-acid induced neurotoxicity disorders including ischemia, hypoglycemia, Huntington's Disease, and epilepsy. The lysosomal cysteine protease cathepsin B has been implicated in the following disorders: arthritis, inflammation, myocardial infarction, tumor metastasis, and 20 muscular dystrophy. Other lysosomal cysteine proteases include cathepsins C, H, L and S. Interleukin-1ß converting enzyme ("ICE") is a cysteine protease which catalyzes the formation of interleukin-18. Interleukin-18 is an immunoregulatory protein implicated in the following 25 disorders: inflammation, diabetes, septic shock, rheumatoid arthritis, and Alzheimer's disease. ICE has also been linked to apoptotic cell death of neurons, which is implicated in a variety of neurodegenerative disorders including Parkinson's disease, ischemia, and amyotrophic 30 lateral sclerosis (ALS).

Cysteine proteases are also produced by various pathogens. The cysteine protease clostripain is produced by Clostridium histolyticum. Other proteases are produced by Trypanosoma cruzi, malaria parasites Plasmodium falciparum 35 and P. vinckei and Streptococcus. Hepatitis A viral protease HAV C3 is a cysteine protease essential for processing of picornavirus structural proteins and enzymes.

Exemplary serine proteases implicated in degenerative disorders include thrombin, human leukocyte elastase, pancreatic elastase, chymase and cathepsin G. Specifically, thrombin is produced in the blood coagulation 5 cascade, cleaves fibrinogen to form fibrin and activates Factor VIII; thrombin is implicated in thrombophlebitis, thrombosis and asthma. Human leukocyte elastase is implicated in tissue degenerative disorders such as rheumatoid arthritis, osteoarthritis, atherosclerosis, 10 bronchitis, cystic fibrosis, and emphysema. Pancreatic elastase is implicated in pancreatitis. Chymase, an enzyme important in angiotensin synthesis, is implicated in hypertension, myocardial infarction, and coronary heart disease. Cathepsin G is implicated in abnormal connective 15 tissue degradation, particularly in the lung.

Given the link between cysteine and serine proteases and various debilitating disorders, compounds which inhibit these proteases would be useful and would provide an advance in both research and clinical medicine.

The present invention is directed to these, as well as other, important ends.

SUMMARY OF THE INVENTION

The present invention is directed to novel cysteine and serine protease inhibitors which contain a benzoheterocyclic group. Exemplary compounds are represented by the following Formula I:

wherein:

30

A-B represents one, two, or three carbon atoms or nitrogen atoms, optionally connected by single bonds or one double bond, optionally substituted with one or more groups selected from R^3 , R^4 , OR^3 , OR^4 , R^{4a} , and OR^{4a} , with the proviso 5 that the number of nitrogen atoms is 0, 1 or 2;

R1 and R2 are each independently hydrogen, alkyl having from one to about 14 carbons, cycloalkyl having from 3 to about 10 carbons, aryl having from about 6 to about 14 carbons, heteroaryl having from about 6 to about 14 ring 10 atoms, aralkyl having from about 7 to about 15 carbons, heteroaralkyl, or an optionally protected natural or unnatural side chain of an amino acid, said alkyl, cycloalkyl, aryl, and heteroaryl groups being optionally substituted with one or more K groups;

 R^3 , R^4 and R^{4a} are each independently hydrogen, lower 15 alkyl, or a natural or unnatural side chain of an optionally protected amino acid, said alkyl groups being optionally substituted with an aryl or heteroaryl group;

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, alkyl 20 having from one to about 14 carbons wherein said alkyl groups are optionally substituted with one or more K groups, alkoxy having from one to about 10 carbons, halogen, alkoxycarbonyl, carboxyl, hydroxyl, heterocyclic, or amino optionally substituted with 1 to 3 aryl or lower alkyl 25 groups;

or any two adjacent R5, R6, R7 and R8 groups taken together with any intervening atoms of the benzene ring to which they are attached form an alicyclic, aromatic, heterocyclic, or heteroaryl ring having 5 to 8 ring atoms;

K is halogen, lower alkyl, lower alkenyl, aryl, heterocyclic, guanidino, nitro, alkoxycarbonyl, alkoxy, hydroxyl, carboxyl, arylaminosulfonyl, heteroarylaminosulfonyl, alkylaminosulfonyl, or amino optionally substituted with an alkylsulfonyl, arylsulfonyl, 35 or heteroarylsulfonyl group, or with 1 to 3 aryl or lower alkyl groups, said alkyl, aryl, and heteroaryl groups being optionally substituted with one or more G groups;

5

G is the same as K;

Y is O, NH, NR9 or CHR9;

Z is $S(=0)_2$, S(=0), S, or C(=0);

j is 0, 1 or 2;

Q is hydrogen, $C(=0)NHR^9$, $C(=0)OR^9$, $CH=N_2$, or CH_2R^{10} ;

R⁹ is hydrogen, alkyl having from one to about 10 carbons, said alkyl groups being optionally substituted with one or more K groups, aryl having from about 6 to about 14 carbons, or aralkyl having from about 7 to about 15 carbons;

10 R¹⁰ is aryloxy, heteroaryloxy, L, halogen, or has the formula O-M, wherein M has the structure:

wherein:

15 R is N or CR^{11} ;

W is a double bond or a single bond;

D is C=O or a single bond;

E and F are independently R12, R13, or J;

or E and F taken together comprise a joined moiety,
20 said joined moiety being an aliphatic carbocyclic ring
optionally substituted with J and having from 5 to 7
carbons, an aromatic carbocyclic ring optionally substituted
with J and having from 5 to 7 carbons, an aliphatic
heterocyclic ring optionally substituted with J and having
25 from 5 to 7 atoms, or an aromatic heterocyclic ring

optionally substituted with J and having from 5 to 7 atoms, said aliphatic heterocyclic ring or said aromatic heterocyclic ring each having from 1 to 4 heteroatoms;

R¹¹, R¹², and R¹³ are independently H, alkyl having from 30 1 to 10 carbons, heteroaryl having from 1 to 10 carbons, alkanoyl having from 1 to 10 carbons, or aroyl, wherein said

alkyl, heteroaryl, alkanoyl and aroyl groups are optionally substituted with J;

J is halogen, $C(=0) OR^{14}$, $R^{14}OC(=0)$, $R^{14}OC(=0)NH$, OH, CN, NO_2 , $NR^{14}R^{15}$, $N=C(R^{14})R^{15}$, $N=C(NR^{14}R^{15})_2$, SR^{14} , OR^{14} , phenyl, napthyl, heteroaryl, or a cycloalkyl group having from 3 to 8 carbons;

R¹⁴ and R¹⁵ are independently H, alkyl having from 1 to 10 carbons, aryl, or heteroaryl, wherein said alkyl, aryl and heteroaryl groups are optionally substituted with K;

L is a phosphorus-containing enzyme reactive group having the formula:

$$-(O)_{b}-P$$
 $(O)_{m}-R16$
 $(O)_{n}-R17$

wherein:

10

15

25

m, n, and b are each independently 0 or 1; $R^{16} \text{ and } R^{17} \text{ are each independently hydrogen, lower}$ alkyl optionally substituted with K, aryl optionally substituted with K, or heteroaryl optionally substituted with K;

or R^{16} and R^{17} taken together with $-(0)_n-P(=0)-(0)_m-20$ can form a 5-8 membered ring containing up to 3 hetero atoms;

or R^{16} and R^{17} taken together with $-(O)_n-P(=O)-(O)_m-C$ can form a 5-8 membered ring optionally substituted with K_i or a pharmaceutically acceptable salt or bisulfite addition product thereof.

The compounds of the invention are useful for the inhibition of cysteine and serine proteases. Beneficially, the compounds find utility in a variety of settings. For example, in a research arena, the claimed compounds can be used, for example, as standards to screen for natural and synthetic cysteine protease and serine protease inhibitors which have the same or similar functional characteristics as

WO 98/21186 PCT/US97/20782

. - 7 -

the disclosed compounds. In a clinical arena, the compounds of the present invention can be used to alleviate, mediate, reduce and/or prevent disorders which are associated with abnormal and/or aberrant activity of cysteine proteases

5 and/or serine proteases. Accordingly, methods for using the subject compounds, such as methods for inhibiting serine proteases or cysteine proteases comprising contacting said proteases with an inhibitory amount of a compound of the invention are disclosed. Methodologies for making the

10 benzothiazine group-containing inhibitors are also disclosed. These and other features of the compounds of the subject invention are set forth in more detail below.

Detailed Description

Novel cysteine and serine protease inhibitors have 15 been discovered which are represented by the general Formula I:

Ι

wherein:

25

A-B represents one, two, or three carbon atoms or nitrogen atoms, optionally connected by single bonds or one double bond, optionally substituted with one or more groups selected from R³, R⁴, OR³, OR⁴, R^{4a}, and OR^{4a}, with the proviso that the number of nitrogen atoms is 0, 1 or 2;

 R^1 and R^2 are each independently hydrogen, alkyl having from one to about 14 carbons, cycloalkyl having from 3 to about 10 carbons, aryl having from about 6 to about 14 carbons, heteroaryl having from about 6 to about 14 ring atoms, aralkyl having from about 7 to about 15 carbons,

20

heteroaralkyl, or an optionally protected natural or unnatural side chain of an amino acid, said alkyl, cycloalkyl, aryl, and heteroaryl groups being optionally substituted with one or more K groups;

R3, R4 and R4a are each independently hydrogen, 5 lower alkyl, or a natural or unnatural side chain of an optionally protected amino acid, said alkyl groups being optionally substituted with an aryl or heteroaryl group;

R5, R6, R7 and R8 are each independently hydrogen, 10 alkyl having from one to about 14 carbons wherein said alkyl groups are optionally substituted with one or more K groups, alkoxy having from one to about 10 carbons, halogen, alkoxycarbonyl, carboxyl, hydroxyl, heterocyclic, or amino optionally substituted with 1 to 3 aryl or lower alkyl groups; 15

or any two adjacent R5, R6, R7 and R8 groups taken together with any intervening atoms of the benzene ring to which they are attached form an alicyclic, aromatic, heterocyclic, or heteroaryl ring having 5 to 8 ring atoms;

K is halogen, lower alkyl, lower alkenyl, aryl, heterocyclic, guanidino, nitro, alkoxycarbonyl, alkoxy, hydroxyl, carboxyl, arylaminosulfonyl, heteroarylaminosulfonyl, alkylaminosulfonyl, or amino optionally substituted with an alkylsulfonyl, arylsulfonyl, 25 or heteroarylsulfonyl group, or with 1 to 3 aryl or lower alkyl groups, said alkyl, aryl, and heteroaryl groups being optionally substituted with one or more G groups;

G is the same as K; Y is O, NH, NR9 or CHR9; 30 Z is $S(=0)_2$, S(=0), S, or C(=0); j is 0, 1 or 2; Q is hydrogen, $C(=0)NHR^9$, $C(=0)OR^9$, $CH=N_2$, or CH2R10;

R9 is hydrogen, alkyl having from one to about 10 carbons, said alkyl groups being optionally substituted with one or more K groups, aryl having from about 6 to about 14 carbons, or aralkyl having from about 7 to about 15 carbons;

 ${\sf R}^{\sf 10}$ is aryloxy, heteroaryloxy, L, halogen, or has the formula O-M, wherein M has the structure:

5 wherein:

20

25

R is N or CR11;

W is a double bond or a single bond;

D is C=O or a single bond;

E and F are independently R12, R13, or J;

or E and F taken together comprise a joined moiety, said joined moiety being an aliphatic carbocyclic ring optionally substituted with J and having from 5 to 7 carbons, an aromatic carbocyclic ring optionally substituted with J and having from 5 to 7 carbons, an aliphatic

heterocyclic ring optionally substituted with J and having from 5 to 7 atoms, or an aromatic heterocyclic ring optionally substituted with J and having from 5 to 7 atoms, said aliphatic heterocyclic ring or said aromatic heterocyclic ring each having from 1 to 4 heteroatoms;

R¹¹, R¹², and R¹³ are independently H, alkyl having from 1 to 10 carbons, heteroaryl having from 1 to 10 carbons, alkanoyl having from 1 to 10 carbons, or aroyl, wherein said alkyl, heteroaryl, alkanoyl and aroyl groups are optionally substituted with J;

J is halogen, $C(=0) OR^{14}$, $R^{14}OC(=0)$, $R^{14}OC(=0)NH$, OH, CN, NO_2 , $NR^{14}R^{15}$, $N=C(R^{14})R^{15}$, $N=C(NR^{14}R^{15})_2$, SR^{14} , OR^{14} , phenyl, naphthyl, heteroaryl, or a cycloalkyl group having from 3 to 8 carbons;

R¹⁴ and R¹⁵ are independently H, alkyl having from 1 30 to 10 carbons, aryl, or heteroaryl, wherein said alkyl, aryl and heteroaryl groups are optionally substituted with K; L is a phosphorus-containing enzyme reactive group having the formula:

$$-(O)_{b}-P$$
 $(O)_{m}-R^{16}$
 $(O)_{n}-R^{17}$

wherein:

5

15

m, n, and b are each independently 0 or 1;

R¹⁶ and R¹⁷ are each independently hydrogen,
lower alkyl optionally substituted with K, aryl optionally
substituted with K, or heteroaryl optionally substituted
with K;

or R^{16} and R^{17} taken together with $-(0)_n-P(=0)-(0)_m$ can form a 5-8 membered ring containing up to 3 hetero atoms;

or R^{16} and R^{17} taken together with $-(O)_n-P(=O)-(O)_m-C$ can form a 5-8 membered ring optionally substituted with K; or a pharmaceutically acceptable salt or bisulfite addition product thereof.

It is recognized that various stereoisomeric forms of the compounds of Formula I may exist. All such racemates, diastereomers, individual enantiomers, and 20 mixtures thereof form part of the present invention. In some preferred embodiments of the compounds of the invention where R² is H, it is preferred that the carbon to which the substituent R¹ is attached have the L-configuration.

In some preferred embodiments of the compounds of Formula I, A-B is $-[CH(R^4)]_j - C(R^3) -$, $-C(R^4) = C -$, $-CH(OR^4) - C(R^3) -$, $-C(OR^4) = C -$, $-N(R^4) - C(R^3) -$, -N = C -, $-C(R^{4a}) = C(R^4) - C(R^3) -$, or $-CH(R^{4a}) - C(R^4) = C -$ where j is 0, 1, or 2. In more preferred embodiments A-B is $-[CH(R^4)]_j - C(R^3) -$ where j is 1, $-C(R^4) = C -$, $-N(R^4) - C(R^3) -$, or -N = C -, preferably where R^3 and R^4 are each H.

In some preferred embodiments of the compounds of Formula I, Z is SO₂ or C(=0), with SO₂ being preferred.

In further preferred embodiments of the compounds of Formula I, R², R⁵ and R⁸ are each H. In still further preferred embodiments R¹ is alkyl or aralkyl, preferably *i*-butyl or benzyl.

In preferred embodiments of the compounds of formula I, R⁶ and R⁷ are independently H, alkoxy, halogen, or heterocyclic, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-. In more preferred embodiments R⁶ and R⁷ are independently H, -OCH₃, F, Cl, or morpholin-4-yl, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-.

In some preferred embodiments of the compounds of Formula I, Q is H, C(=0)NHR⁹, or C(=0)OR⁹, where R⁹ is alkyl or alkyl substituted with K. In further preferred embodiments of the compounds of Formula I, Y is O, NH, NR⁹ or CHR⁹, where R⁹ is alkyl or aralkyl. Preferably, Y is NR⁹ or CHR⁹, where R⁹ is methyl ethyl, *i*-propyl, *i*-butyl or benzyl.

In particularly preferred embodiments of the compounds of Formula I, A-B is -[CH(R⁴)]_j-C(R³) - with -CH₂-CH- being preferred, -C(R⁴)=C-, -N(R⁴)-C(R³)-, or -N=C-; Z is SO₂ or C(=O) with SO₂ being preferred; R², R⁵ and R⁸ are each H; R¹ is alkyl or aralkyl, with *i*-butyl or benzyl being preferred; R⁶ and R⁷ are independently H, alkoxy, halogen, or heterocyclic, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-; Q is H, C(=O)NHR⁹, or C(=O)OR⁹, where R⁹ is alkyl or alkyl substituted with K; and Y is O, NH, NR⁹ or CHR⁹, where R⁹ is alkyl or aralkyl. In these preferred embodiments R⁶ and R⁷ are preferably independently H, -OCH₃, F, Cl, or morpholin-4-yl, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-, and Y is preferably NR⁹ or CHR⁹, where R⁹ is methyl ethyl, *i*-propyl, *i*-butyl or benzyl.

In some preferred embodiments of the compounds of S5 Formula I, A-B is -CH₂-CH-; Z is SO_2 ; R^2 , R^5 and R^8 are each H; and

R1 is alkyl, alkyl substituted with K, or aralkyl,

with *i*-butyl, benzyl, or alkyl substituted with phenylsulfonyl-amino being preferred;

R⁶ and R⁷ are independently H, alkoxy, halogen, or heterocyclic, with H, OCH₃, F, Cl, or morpholin-4-yl being preferred, or preferably R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-;

Q is H, C(=0)NHR, or C(=0)OR, where R is alkyl, preferably methyl, ethyl, or butyl; and Y is O, NH or NR, where R is alkyl or aralkyl, with methyl, ethyl, propyl, butyl or benzyl being preferred.

In especially preferred embodiments, A-B is $-CH_2-CH_2$; Z is SO_2 ; R^2 , R^5 and R^8 are each H; and R^1 , R^6 , R^7 , Y and Q have the values shown in Table II, *infra*.

In further preferred embodiments of the compounds of Formula I, A-B is -CH₂-CH-; Z is SO₂; R², R⁵ and R⁶ are each H; R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-; R¹ is benzyl; Y is N-H or N-ethyl; and Q is C(=O)NHR⁹ where R⁹ is alkyl or alkyl substituted with K, preferably CONHEt, CONHBu, CONHCH₂CH₂OCH₃, CONHCH(CH₃)₂, CONH(CH₂)₄CH₃, CONHCH₂Ph,

20 CONHCH₂CH₂Ph, CONHCH₂CH=CH₂, CONH(CH₂)₃-(imidazol-1-yl),
 CONH(CH₂)₃-(2-ketopyrrolidin-1-yl), CONH(CH₂)₃(morpholin-4-yl), CONHCH₂(pyridin-2-yl), CONHCH₂-cyclopropane,
 CONHCH₂CH₂NHSO₂CH₃, CONHCH₂CH₂NHSO₂(4-NO₂-Ph),
 CONH(CH₂)₃NHSO₂(4-NO₂-Ph), CONHCH₂CH₂NHSO₂(3,4-Cl₂-Ph),

25 CONH(CH₂)₃NHSO₂(3,4-Cl₂-Ph), CONHCH₂CH₂NHSO₂Ph,
 CONHCH₂CH₂NHSO₂(5-(2-pyridinyl)-thiophen-2-yl),
 CONH(CH₂)₃NHSO₂(4-F-Ph), CONH(CH₂)₃NHSO₂Ph, CONHCH₂-(pyridin-4-yl), or CONHCH₂CH₂NHSO₂(4-F-Ph).

In especially preferred embodiments, A-B is -CH₂-30 CH-; Z is SO₂; R², R⁵ and R⁸ are each H; R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-; R¹ is benzyl; and Y and Q have the values shown in Table III, *infra*.

In further preferred embodiments of the compounds of Formula I, A-B is -C(R⁴)=C-; Z is SO₂; R², R⁵ and R⁸ are each H; R¹ is benzyl; R⁶ and R⁷ are independently H or halogen, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-; R⁴ is H, alkoxy with methoxy being preferred, or hydroxy; Y is NR⁹

wherein R° is alkyl with methyl and ethyl being preferred; and Q is H or C(=O)NHR° where R° is alkyl, preferably butyl.

In especially preferred embodiments, A-B is - $C(R^4)=C^-$; Z is SO_2 ; R^2 , R^5 and R^8 are each H; and R^1 , R^6 , R^7 , 5 R^4 , Y and Q have the values shown in Table IV, infra.

In further preferred embodiments of the compounds of Formula I, A-B is -N(R4)-CH- where R4 is preferably H, propyl, or benzyl; Z is SO2; R2, R5 and R8 are each H; R1 is benzyl; R6 and R7 are each H; Y is N-R9 where R9 is alkyl, preferably methyl or ethyl; and Q is H or C(=O)NHR9 where R9 is alkyl, preferably butyl.

In especially preferred embodiments, A-B is -N(R4)-CH-; Z is SO₂; R², R⁵ and R⁸ are each H; R¹ is benzyl; R⁶ and R⁷ are each H; Y is N-R⁹; and R⁴, R⁹ and Q have the values shown in Table V, infra.

In further preferred embodiments of the compounds of Formula I, A-B is -N=C-; Z is SO₂; Y is NH; R², R⁵ and R⁸ are each H; R¹ is benzyl and R⁶ and R⁷ are each H, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-; and Q is H or C(=O)NHR⁹ where R⁹ is alkyl, preferably butyl.

In especially preferred embodiments, A-B is -N=C-; Z is SO_2 ; Y is NH; R^2 , R^5 and R^8 are each H; R^1 is benzyl and R^6 , R^7 and Q have the values shown in Table VI, *infra*.

In further preferred embodiments of the compounds of Formula I, A-B is -CH₂-CH-; Z is C(=O); R², R⁵ and R⁸ are each H; R¹ is benzyl; R⁶ and R⁷ are each H; Q is H; Y is N-R⁹ where R⁹ is H or alkyl, preferably methyl.

In some preferred embodiments, compounds of the invention have the formula:

wherein the constituent variables are as defined above.

When Q is hydrogen, the invention includes the bisulfite addition products of the aldehydes of Formula I, 5 as exemplified in Example 187, infra.

As used herein, the term "alkyl" is meant to include straight-chain, branched and cyclic hydrocarbon groups such as, for example, ethyl, isopropyl and cyclopropyl groups. Preferred alkyl groups have 1 to about 10 10 carbon atoms. "Cycloalkyl" groups are cyclic alkyl groups. "Aryl" groups are aromatic cyclic compounds including but not limited to phenyl, naphthyl, anthracyl, phenanthryl, and pyrenyl. Also included within the definition of "aryl" are ring systems having two aromatic 15 rings connected by a bond, such as biphenyl. Preferred aryl groups include phenyl and naphthyl. The term "carbocyclic", as used herein, refers to cyclic groups in which the ring portion is composed solely of carbon atoms. The term "hetero" denotes the presence of one or more noncarbon 20 atoms. Thus, the term "heterocyclic" refers to cyclic groups in which the ring portion includes at least one heteroatom such as O, N or S. "Heteroalkyl" groups are heterocycles containing solely single bonds within their ring portions, i.e. saturated heteroatomic ring systems. 25 The term "lower alkyl" refers to alkyl groups of 1-4 carbon The term "halogen" refers to F, Cl, Br, and I atoms. The term "aralkyl" denotes alkyl groups which bear

The term "aralkyl" denotes alkyl groups which bear aryl groups, for example, benzyl groups. The term "heteroaryl" denotes aryl groups having one or more 30 heteroatoms (e.g., O, N, or S) contained within an aromatic

ring. "Heteroaralkyl" groups are aralkyl groups which have one or more heteroatoms in their aromatic ring portion.

Also included within the definition of "heteroaryl" are ring systems having two aromatic rings connected by a bond, where at least one of the rings contains a hetero atom.

PCT/US97/20782

As used herein, "alkoxy" groups are alkyl groups linked through an oxygen atom. Examples of alkoxy groups include methoxy (-OCH3) and ethoxy (-OCH2CH3) groups.

Alkoxycarbonyl groups are carbonyl groups which contain an alkoxy substituent, i.e., groups of general formula -C(=O)-O-R, where R is alkyl. As used herein the term "alkanoyl" denotes an alkyl group attached through a carbonyl group, i.e., -C(=O)-R where R is alkyl. The term "aroyl" analogously denotes an aryl group attached through a carbonyl group.

As used herein, the term "alkenyl" is intended to include straight-chain or branched hydrocarbon chains having at least one carbon-carbon double bond. Examples of alkenyl groups include ethenyl groups and propenyl groups.

As used herein, the term "amino acid" denotes a molecule containing both an amino group and a carboxyl group. As used herein the term "L-amino acid" denotes an α-amino acid having the L configuration around the α-carbon, that is, a carboxylic acid of general formula

25 CH(COOH)(NH₂)-(sidechain), having the L-configuration. Sidechains of L-amino acids include naturally occurring and non-naturally occurring moieties. Nonnaturally occurring amino acid sidechains are moieties that are used in place of naturally occurring amino acid sidechains in, for example, amino acid analogs. See, for example, Lehninger, Biochemistry, Second Edition, Worth Publishers, Inc, 1975, pages 73-75. Representative α-amino acid sidechains are shown below in Table 1.

CH₃-

- 16 -

Table 1

$$\bigcirc$$

$$\begin{split} &\text{HO}_2\text{C}-\text{CH}_2-\text{CH}_2-\\ &\text{NH}_2\text{C} \ (=\text{O})-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3)_2-\text{CH}-\\ & \ (\text{CH}_3)_2-\text{CH}-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH})-\text{NH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH} \ (\text{CH}_3)-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{H}_2\text{N}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\\ & \ (\text{CH}_3-\text{CH}_2-\text{C$$

Functional groups present on the compounds of
Formula I may contain blocking groups. Blocking groups are
known per se as chemical functional groups that can be
selectively appended to functionalities, such as hydroxyl
groups, amino groups, thio groups and carboxyl groups.

Protecting groups are blocking groups that can be readily
removed from functionalities. These groups are present in a
chemical compound to render such functionality inert to
chemical reaction conditions to which the compound is
exposed. Any of a variety of protecting groups may be
employed with the present invention. One such protecting

group is the benzyloxycarbonyl (Cbz; Z) group. Other protecting groups include toluenesulfonyl, t-butoxycarbonyl, methyl ester and benzyl ether groups. Other preferred protecting groups according to the invention may be found in 5 Greene, T.W. and Wuts, P.G.M., "Protective Groups in Organic Synthesis" 2d. Ed., Wiley & Sons, 1991, which is incorporated herein by reference. Further blocking groups useful in the compounds of the present invention include the phthalimido group, arylcarbonyls, alkylcarbonyls, alkylcarbonyls,

alkoxycarbonyls, aryloxycarbonyls, aralkyloxycarbonyls, alkyl- and aralkylsulfonyls, and arylsulfonyl groups such as those which have the following formulas:

$$-SO_2$$
 OCH_3
 $-SO_2$
 OCH_3
 $OCH_$

Because the benzothiazo and related heterocyclic group-containing components of the invention inhibit cysteine proteases and serine proteases, they can be used in both research and therapeutic settings.

In a research environment, preferred compounds having defined attributes can be used to screen for natural and synthetic compounds which evidence similar characteristics in inhibiting protease activity. The compounds can also be used in the refinement of *in vitro* and *in vivo* models for determining the effects of inhibition of particular proteases on particular cell types or biological conditions. In a therapeutic setting, given the connection

between cysteine proteases and certain defined disorders, and serine proteases and certain defined disorders, compounds of the invention can be utilized to alleviate, mediate, reduce and/or prevent disorders which are

5 associated with abnormal and/or aberrant activity of cysteine proteases and/or serine proteases.

In preferred embodiments, compositions are provided for inhibiting a serine protease or a cysteine protease comprising a compound of the invention. In other preferred embodiments, methods are provided for inhibiting serine proteases or cysteine proteases comprising contacting a protease selected from the group consisting of serine proteases and cysteine proteases with an inhibitory amount of a compound of the invention.

15 The disclosed compounds of the invention are useful for the inhibition of cysteine proteases and serine proteases. As used herein, the terms "inhibit" and "inhibition" mean having an adverse effect on enzymatic activity. An inhibitory amount is an amount of a compound of the invention effective to inhibit a cysteine and/or serine protease.

Pharmaceutically acceptable salts of the cysteine and serine protease inhibitors also fall within the scope of the compounds as disclosed herein. The term

25 "pharmaceutically acceptable salts" as used herein means an inorganic acid addition salt such as hydrochloride, sulfate, and phosphate, or an organic acid addition salt such as acetate, maleate, fumarate, tartrate, and citrate. Examples of pharmaceutically acceptable metal salts are alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt, and zinc salt. Examples of pharmaceutically acceptable organic amine addition salts are salts with morpholine and piperidine. Examples of pharmaceutically acceptable amino acid addition salts are salts with lysine, glycine, and phenylalanine.

Compounds provided herein can be formulated into

pharmaceutical compositions by admixture with pharmaceutically acceptable nontoxic excipients and carriers. As noted above, such compositions may be prepared for use in parenteral administration, particularly in the form of liquid solutions or suspensions; or oral administration, particularly in the form of tablets or capsules; or intranasally, particularly in the form of powders, nasal drops, or aerosols; or dermally, via, for example, transdermal patches; or prepared in other suitable fashions for these and other forms of administration as will be apparent to those skilled in the art.

The composition may conveniently be administered in unit dosage form and may be prepared by any of the methods well known in the pharmaceutical art, for example, 15 as described in Remington's Pharmaceutical Sciences (Mack Pub. Co., Easton, PA, 1980). Formulations for parenteral administration may contain as common excipients sterile water or saline, polyalkylene glycols such as polyethylene glycol, oils and vegetable origin, hydrogenated naphthalenes 20 and the like. In particular, biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-polyoxypropylene copolymers may be useful excipients to control the release of the active compounds. Other potentially useful parenteral delivery systems for 25 these active compounds include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation administration contain as excipients, for example, lactose, or may be aqueous solutions containing, for example, 30 polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or oily solutions for administration in the form of nasal drops, or as a gel to be applied intranasally. Formulations for parenteral administration may also include glycocholate for buccal administration, a salicylate for 35 rectal administration, or citric acid for vaginal administration. Formulations for transdermal patches are preferably lipophilic emulsions.

The materials for this invention can be employed as the sole active agent in a pharmaceutical or can be used in combination with other active ingredients which could facilitate inhibition of cysteine and serine proteases in diseases or disorders.

The concentrations of the compounds described herein in a therapeutic composition will vary depending upon a number of factors, including the dosage of the drug to be administered, the chemical characteristics (e.g.,

- 10 hydrophobicity) of the compounds employed, and the route of administration. In general terms, the compounds of this invention may be provided in effective inhibitory amounts in an aqueous physiological buffer solution containing about 0.1 to 10% w/v compound for parenteral administration.
- Typical dose ranges are from about 1μg/kg to about 1 g/kg of body weight per day; a preferred dose range is from about 0.01 mg/kg to 100 mg/kg of body weight per day. Such formulations typically provide inhibitory amounts of the compound of the invention. The preferred dosage of drug to be administered is likely, however, to depend on such
- variables as the type or extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, and formulation of the compound

25 excipient, and its route of administration.

As used herein, the term "contacting" means directly or indirectly causing at least two moieties to come into physical association with each other. Contacting thus includes physical acts such as placing the moieties together in a container, or administering moieties to a patient. Thus, for example administering a compound of the invention to a human patient evidencing a disease or disorder associated with abnormal and/or aberrant activity of such proteases falls within the scope of the definition of the term "contacting".

The invention is further illustrated by way of the following examples which are intended to elucidate the

WO 98/21186 PCT/US97/20782

- 21 -

invention. These examples are not intended, nor are they to be construed, as limiting the scope of the disclosure.

Examples

Compounds of the invention were prepared according 5 to the following procedures.

The synthesis of these compounds are summarized in Schemes 1-7:

Scheme 1

Scheme 1 (cont.)

Scheme 2

Scheme 3

Scheme 4

Scheme 5

42

Scheme 6

Scheme 7

Example 1

10

General Procedure A: Condensation of Anilines with Acrylonitrile

5 Synthesis of Intermediate 2a $(R^6 = R^7 = OCH_3)$ 2-Chloro-3-(3,4-dimethoxyphenyl)propanenitrile

The synthesis of intermediate 2a was performed according to the procedure of W. Pöpel et al., *Pharmazie*, 1980, 35, 266-278, which is herein incorporated by reference.

To a vigorously stirred solution of 4-aminoveratrole (17.8 g, 116 mmol) in water (150 ml) and 12N HCl (29 ml, 349 mmol) chilled in an ice-water bath was added dropwise a solution of sodium nitrite (9.2 g, 133 mmol) in water (15 ml) over 10-15 minutes. The mixture was stirred for an additional 15 minutes at the same temperature. This solution was added dropwise over 20 minutes to a vigorously stirred solution of acrylonitrile (18.6 g, 23 ml, 349 mmol), CuCl₂-2H₂O (3 g, 17.4 mmol), KCl (10 g, 134 mmol) and NaOAc

WO 98/21186 PCT/US97/20782

(13.1 g, 160 mmol) in water (150 ml) and acetone (350 ml)
chilled in an ice-water bath. The resulting mixture was
allowed to stir while slowly warming to ambient temperature
over 24-48 hours or until evolution of nitrogen gas had
5 ceased. The acetone was removed on a rotary evaporator and
the residue was extracted with ethyl acetate (2 x 250 ml).
The combined organic phase was washed with water and brine,
dried over anhydrous magnesium sulfate, filtered and
concentrated. The dark residue was purified by flash
10 chromatography (silica gel, dichloromethane) to give 6.0 g
(23%) of the title compound as a pale yellow mobile oil.
NMR (CDCl₃) δ 3.25 (2H, d, J = 7 Hz), 3.88 (3H, s), 3.89
(3H, s), 4.53 (1H, t, J = 7 Hz), 6.79 (1H, s), 6.85 (2H, s);
Anal. Calc'd for C₁₁H₁₂ClNO₂: C, 58.54; H, 5.37; N, 6.21; Cl,
15.71; Found: C, 58.67; H, 5.42; N, 6.52; Cl, 15.98.

Example 2

Synthesis of Intermediate 2k ($R^6 = F$; $R^7 = H$) 2-Chloro-3-(3-fluorophenyl)propanenitrile

This compound was prepared according to General Procedure A. From 3-fluoroaniline (25 g, 0.23 mol) crude title compound (42 g) was obtained which was purified by flash chromatography on silica gel (10% $\rm CH_2Cl_2$:hexanes) followed by further purification by distillation on a Kugelrohr apparatus (oven T = 125°C, 0.3mm Hg) to give 22 g (53%); NMR (CDCl₃) δ 3.30 (m, 2H), 4.56 (t, J = 7 Hz, 1H), 7.04 (m, 3H), 7.35 (m, 1H).

Example 3

Synthesis of Intermediate 21 ($R^6 = R^7 = C1$) 2-Chloro-3-(3,4-dichlorophenyl)propanenitrile

This compound was prepared according to General Procedure A. From 3,4-dichloroaniline (35 g, 0.22 mol) crude title compound (41 g) was obtained which was purified by triple distillation on a Kugelrohr apparatus (oven T = 160°C, 0.5mm Hg) followed by treatment with decolorizing carbon in refluxing methanol to give 17.3 g (34%) of a

yellow-orange mobile oil after filtration and concentration to constant weight; NMR (CDCl₃) δ 3.26 (m, 2H), 4.56 (t, J = 7 Hz, 1H), 7.13 (m, 1H), 7.40 (m, 2H).

Example 4

5 Synthesis of Intermediate 2n ($R^6 = Cl; R^7 = H$) 2-Chloro-3-(3-chlorophenyl)propanenitrile

This compound was prepared according to General Procedure A. From 3-chloroaniline (25 g, 196 mmol) a crude product (19.6 g) was obtained which was further purified by distillation on a Kugelrohr apparatus (oven temp. 140°C, 0.2 mm Hg) to afford 17.1 g (44%) of the title compound as a yellow mobile oil; NMR (CDCl₃) δ 3.28 (2H, m), 4.57 (1H, t, J = 7 Hz), 7.20 (1H, m), 7.28-7.33 (3H, m).

Example 5

15 Synthesis of Intermediate 2r (R⁶ + R⁷ = OCH₂CH₂O) 2-Chloro-3-(3,4-ethylenedioxyphenyl)propanenitrile

This compound was prepared according to General Procedure A. From 1,4-benzodioxan-6-amine (25 g, 165 mmol) the title compound (9.8 g, 26%) was obtained as a yellow solid; NMR (CDCl₃) δ 3.2 (2H, d, J = 7 Hz), 4.25 (4H, s), 4.50 (1H, t, J = 7 Hz), 6.73-6.86 (3H, m).

Example 6

Synthesis of Intermediate 2,3-Dihydrobenzothiazole 1,1-dioxide Derivatives

2,3-Dihydrobenzothiazole 1,1-dioxide derivatives

(compounds of Formula I, where A-B = CR³) can be prepared

from 2,3-dihydrobenzothiazole-3-carboxylates according to
the methods specified in Scheme I and General Procedures G J. These intermediates can be formed by reduction of 3hydroxy-2,3-dihydrobenzothiazole-3-carboxylates, described
by J. Wrobel and A. Dietrich [Heterocycles 1994, 38, 1823 1838, incorporated by reference herein in its entirety] with
reagents including sodium cyanoborohydride, sodium
borohydride, zinc - acetic acid, or catalytic hydrogenation

by methods known to those skilled in the art.

Alternatively, 2,3-dihydrobenzothiazole-3-carboxylates may be prepared by treating N-alkylbenzenesulfonamides with a strong base such as butyllithium followed by glyoxylic ester by a modification of the method of Wrobel and Dietrich, supra.

Example 7

Synthesis of Intermediate 4,5-Dihydrobenzothiazepine 1,1-dioxide Derivatives

10 4,5-Dihydrobenzothiazepine 1,1-dioxide derivatives (compounds of Formula I, where $A \cdot B = CHR^{4a} - CR^3$) can be prepared from 4,5-dihydrobenzothiazepine-3-carboxylates according to the methods specified in Scheme I and General Procedures G - J. These intermediates can be synthesized by 15 modification of previously reported methods. For example, 3-(m-chlorophenyl) propional dehyde (prepared according to the method of H. Hashizume et al., Chem. Pharm. Bull. 1994, 42, 512 - 520, incorporated by reference herein in its entirety), can be transformed into m-chlorohomophenylalanine 20 by reaction with sodium cyanide and ammonium carbonate followed by hydrolysis. Treatment of m-chlorohomophenylalanine with chlorosulfonic acid by a modification of the procedure described by H. Zenno and T. Mizutani (Japanese patent application No. 7004990, 1966; 25 Chem. Abstr. 72, 111525, incorporated by reference herein in its entirety) affords 7-chloro-4,5-dihydrobenzothiazepine-3carboxylate. Alternatively, 2-(aminosulfonyl)phenylpropanoic acid, described by P. Catsoulacos and C. Camoutsis (J. Heterocycl. Chem. 1976, 13, 1309 - 1314, incorporated by 30 reference herein in its entirety), may be reduced to the corresponding aldehyde, treated with cyanide, hydrolyzed with acid or base, and cyclized by the procedure of Catsoulacos and Camoutsis to give 4,5-dihydrobenzothiazepine-3-carboxylate.

Example 8

Synthesis of Intermediate 3a $(R^6 = R^7 = OCH_3)$

3,4-Dihydro-6,7-dimethoxy-2,1-benzoxathiin-3-carboxylic acid
 To a flask containing 1.0g (4.4 mmol) of compound 2a
5 was added 1 ml of 98% H₂SO₄ with stirring. The viscous dark mixture was stirred overnight at ambient temperature, diluted with water (5 ml) and was held at reflux for four hours. The mixture was cooled to ambient temperature, water (25 ml) was added, and stirring was continued for an
10 additional 15 minutes. The resulting precipitate was filtered and washed to neutrality with water before being allowed to air dry. The dark crude product was purified by recrystallization from 1,4-dioxane (activated carbon) to give 290 mg (22%) of the title compound as a tan powder, mp
15 273-275°C (dec.); NMR (CDCl₃-DMSO-d₆) δ 3.16-3.29 (2H, m), 3.81 (6H, s), 5.34 (1H, dd, J = 4 Hz, 12 Hz), 6.63 (1H, s), 7.11 (1H, s); MS: 311 m/z (M+Na)⁺; Anal. Calc'd for C₁₁H₁₂O₇S:

20 Example 9

11.98.

General Procedure B: Aromatic Chlorosulfonylation Synthesis of Intermediate 4c ($R^6 = R^7 = OCH_3$)

2-Chloro-3-(2-chlorosulfonyl-4,5-dimethoxyphenyl)propanamide

C, 45.83; H, 4.20; S, 11.10; Found: C, 45.26; H, 4.04; S,

To a solution of compound 2a (4.07 g, 18.0 mmol) in

25 anhydrous chloroform (50 ml) chilled in an ice-water bath
was added chlorosulfonic acid (4.2 g, 2.4 ml, 36.0 mmol)
dropwise over 10-15 minutes. The mixture was stirred at
this temperature for 5 hours and poured into a separatory
funnel containing chloroform (50 ml) and water (50 ml). The

30 organic phase was washed further with water and brine, dried
(MgSO₄), filtered and concentrated. The brown sticky residue
(2.8 g) was slurried with benzene (5 ml) for fifteen
minutes, decanted and dried in-vacuo to constant weight to
give 2.5 g (41%) of the title compound as a red-brown solid.

35 The intermediate was used without further purification; MS:
342 m/z (M+H)⁺, Cl₂ pattern.

Example 10

Synthesis of Intermediate 41 ($R^6 = R^7 = C1$) 2-Chloro-3-(2-chlorosulfonyl-4,5-dichlorophenyl)propanamide This compound was prepared according to General

5 Procedure B. From 21 (2.5 g, 10.7 mmol) in neat chlorosulfonic acid (~10 ml) at 150°C for 1.5 hours, 3.3 q (89%) of the title compound was obtained as a yellow powder which was isolated by dropwise addition of the dark reaction mixture (cooled to ambient temperature) to a vigorously 10 stirred slurry of ice-water (~100 g), suction filtration of the precipitate and washing with cold water and drying to constant weight in vacuo to give analytically pure material; Anal. Calc'd for $C_9H_7Cl_4NO_3S$: C, 30.80; H, 2.01; N, 3.99; S, 9.12; Found: C, 30.47; H, 1.92; N, 3.38; S, 9.29.

15 Example 11

Synthesis of Intermediate 4n $(R^6 = Cl; R^7 = H)$ 2-Chloro-3-(2-chlorosulfonyl-5-chlorophenyl)propanamide

This compound was prepared according to General Procedure B. To a dry flask equipped with a magnetic 20 stirrer, rubber septum and drying tube was added compound 2n (5.0 g, 25.0 mmol). Chlorosulfonic acid (17 ml) was added with stirring over 5-10 minutes at ambient temperature. appreciable exotherm was observed along with gas evolution (HCl) that persisted for 10-15 minutes following completion 25 of the addition. After being allowed to stir for an additional one hour, the mixture was heated to 100°C for one hour, cooled to ambient temperature, and added dropwise with vigorous stirring to an ice-water slurry (~500q). resulting precipitate was collected by suction filtration, 30 washed with water several times, and dried in-vacuo to constant weight to afford 8.9 g of crude title compound as a pale yellow solid; NMR analysis suggested the presence of the desired product as well as an unidentified regioisomer: NMR (DMSO- d_6) δ 3.37 (1H, ABq), 3.60 (1H, ABq), (J = 7 Hz, 14 35 Hz), 4.59 & 4.80 (1H, 2t, J = 7 Hz), 7.18-7.26 (2H, m),

7.65-7.80 (1H, m). The product was used without further

- 35 -

purification.

Example 12

Synthesis of Intermediate $4r (R^6 + R^7 = OCH_2CH_2O)$ 2-Chloro-3-(2-chlorosulfonyl-4,5-

5 ethylenedioxyphenyl)propanamide

This compound was prepared according to General Procedure B. From compound 2r (3.0 g, 13.4 mmol) the title compound (2.4 g, 51%) was obtained as a tan powder, which was used without further purification.

10 Example 13

General Procedure C: Reaction of Sulfonyl Chloride with Ammonia

Synthesis of Intermediate 5c ($R_6 = R_7 = OCH_3$) 3,4-Dihydro-6,7-dimethoxy-2*H*-1,2-benzothiazine-3-carboxamide 15 1,1-dioxide

To a flask containing a solution of NH₃ in 1,4-dioxane (0.5M, 30 ml) was added compound 4c (1.0 g, 2.9 mmol). The mixture was held at reflux for 2 hours, cooled to room temperature and concentrated in-vacuo. The residue was slurried in water and the solid was collected by vacuum filtration, washed to neutrality with water and dried in-vacuo to constant weight to give 0.31 g (37%) of the title compound as an off-white powder; MS: 287 m/z (M+H)⁺, 309 m/z (M+Na)⁺.

25 Example 14

Synthesis of Intermediate $5r (R^6 + R^7 = OCH_2CH_2O)$ 3,4-Dihydro-6,7-ethylenedioxy-2*H*-1,2-benzothiazine-3-carboxamide 1,1-dioxide

This compound was prepared according to General

30 Procedure C. However, the reaction was performed using concentrated aqueous ammonium hydroxide. From compound 4r (2.4 g, 7.1 mmol) and conc. NH₄OH (50 ml) the title compound (0.87 g, 44%) was obtained following flash chromatography on silica gel (25% ethyl acetate/hexane to ethyl acetate); MS:

283 (M-H).

Example 15

General Procedure D: Reaction of Sulfonyl Chlorides with Primary Amines

5 Synthesis of Intermediate 6e (R⁶ = R⁷ = OCH₃; Y = NCH₃) 3,4-Dihydro-6,7-dimethoxy-2-methyl-2*H*-1,2-benzothiazine-3-carboxamide 1,1-dioxide

A mixture of compound 4c (1.1 g, 3.2 mmol) in 40% aqueous methylamine (10 ml) was stirred while being warmed to reflux. Small amounts of water (1-2 ml) were added after 30 and 45 minutes to facilitate stirring. After a total reflux period of 1.5 hours, the mixture was cooled in an ice-water bath and the solid was collected by suction filtration and washed to neutrality with water before being dried to constant weight in-vacuo. The title compound (0.57 g, 59%) was obtained as an off-white powder; mp 215-222°C; NMR (DMSO-d₆) δ 2.58 (3H, s), 2.97-3.28 (2H, m), 4.51 (3H, s), 4.52 (3H, s), 4.53 (1H, dd, J = 5 Hz, 12 Hz), 7.02 (1H, s), 7.12 (1H, s), 7.44 (1H, br; absent in D₂O), 7.64 (1H, br; absent in D₂O); MS: 301 m/z (M+H)⁺, 323 m/z (M+Na)⁺; Anal. Calc'd for C₁₂H₁₆N₂O₇S: C, 47.99; H, 5.38; N, 9.42; S, 10.66; Found: C, 48.22; H, 5.37; N, 9.25; S, 10.93.

Example 16

General Procedure E: Alkylation of Sulfonamides

25 Synthesis of Intermediate 6g (R⁶ = R⁷ = OCH₃; Y = NBn)
3,4-Dihydro-6,7-dimethoxy-2-benzyl-2*H*-1,2-benzothiazine-3carboxamide 1,1-dioxide

A mixture of compound 5c (250 mg, 0.87 mmol) and anhydrous potassium carbonate (300 mg, 2.2 mmol) in DMF (3 ml) was treated with benzyl bromide (0.11 ml, 0.96 mmol). The mixture was stirred while being warmed to 95-100°C. After five hours an additional 0.05 ml of benzyl bromide was added and the mixture was allowed to stir overnight at 95-100°C. The mixture was cooled to ambient temperature, the solvent was evaporated in-vacuo and the residue was

partitioned between ethyl acetate and 5% aqueous citric acid solution. The organic phase was washed further with saturated aqueous sodium bicarbonate solution, brine, dried over anhydrous magnesium sulfate, filtered and concentrated to afford 310 mg (94%) of the title compound as a pale yellow solid which was used without further purification; MS: 377 m/z (M+H)*, 399 m/z (M+Na)*.

Example 17

Synthesis of Intermediate 6k (R⁶ = F; R⁷ = H; Y = NCH₃)

3,4-Dihydro-6-fluoro-2-methyl-2*H*-1,2-benzothiazine-3carboxamide 1,1-dioxide

This compound was prepared according to General Procedure D. From 4k (14.1 g, 52.6 mmol) the title compound (7.2 g, 53%) was obtained following flash chromatography on silica gel (30% to 80% ethyl acetate/hexanes); NMR (CDCl₃) δ 2.59 (s, 3H), 3.08-3.21 (m, 2H), 4.49-4.55 (m, 1H), 7.27-7.40 (m, 2H), 7.47 (br, 1H, CONH), 7.68 (br, 1H, CONH), 7.77-7.81 (m, 1H); MS: 259 m/z (M+H)⁺; Anal. Calc'd for C₁₀H₁₁FN₂O₃S: C, 46.51; H, 4.30; N, 10.85; S, 12.39; F, 7.36; 20 Found: C, 47.11; H, 4.49; N, 10.91; S, 12.02; F, 7.19.

Example 18

Synthesis of Intermediate 61 ($R^6 = R^7 = C1$; $Y = NCH_3$) 3,4-Dihydro-6,7-dichloro-2-methyl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide

25 This compound was prepared according to General Procedure D. From 41 (3.0 g, 8.5 mmol) the title compound (0.94 g, 36%) was obtained following flash chromatography on silica gel (25% ethyl acetate/hexanes); MS: 307, 309, 311 m/z (M+H)* (Cl₂ pattern).

30 Example 19

Synthesis of Intermediate 6p ($R^6 = Cl; R^7 = H; Y = NCH_3$) 3,4-Dihydro-5-chloro-2-methyl-2*H*-1,2-benzothiazine-3-carboxamide 1,1-dioxide

This compound was prepared according to General

Procedure D. From compound 4n (8.0 g, 25.3 mmol) the title compound (3.4 g, 49%) was obtained following flash chromatography on silica gel (25% ethyl acetate/hexane to ethyl acetate); NMR (DMSO- d_6) δ 2.60 (3H, s), 3.11-3.19 (2H, m), 4.48 (1H, dd, J = 6 Hz), 7.47-7.74 (5H, m; 3Ar + 2NH₂); MS: 275, 277 m/z, chloride isotope pattern.

Example 20

Synthesis of Intermediate 6r ($R^6 + R^7 = OCH_2CH_2O$; Y = NCH₃) 3,4-Dihydro-6,7-ethylenedioxy-2-methyl-2*H*-1,2-benzothiazine-10 3-carboxamide 1,1-dioxide

This compound was prepared according to General Procedure D. From compound 4r (1.0 g, 2.9 mmol) the title compound (0.77 g, 88%) was obtained as an off-white solid; NMR (DMSO-d₆) δ 2.56 (3H, s), 2.95-3.04 (2H, m), 4.25 & 4.26 (4H, 2s), 4.40-4.46 (1H, ABq, J = 6 Hz), 6.95 (1H, s), 7.12 (1H, s), 7.43 (1H, br; absent in D₂O), 7.63 (1H, br; absent in D₂O).

Example 21

Synthesis of Intermediate 6z ($R^6 = 4$ -morpholino; $R^7 = H$; Y = 20 NCH₃)

3,4-Dihydro-6-(4-morpholino)-2-methyl-2*H*-1,2-benzothiazine-3-carboxamide 1,1-dioxide

A solution of 6k (2.0 g, 7.75 mmol) in pyridine (30 ml) was treated with morpholine (6.75 g, 77.5 mmol) and warmed to 80-85°C with stirring. After 10 days the mixture was concentrated in vacuo and the residue was partitioned between ethyl acetate and water. The organic phase was washed twice more with water and then brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give 2.6 g of the crude product which was further purified by recrystallization (ethyl acetate/hexanes) to afford 1.7 g (71%) of the title compound as an off-white solid; NMR (DMSO-d₆) δ 2.70 (s, 3H), 3.18-3.33 (m, 6H), 3.82-3.85 (m, 4H), 4.12-4.18 (m, 1H), 6.75 (s, 1H), 6.84 (dd, J = 2 Hz, 8 Hz, 1H), 7.65 (d, J = 8 Hz, 1H); MS: 326 m/z (M+H).

General Procedure F: Amide Hydrolysis - Alkaline Conditions

Synthesis of Intermediate 7c (R⁶ = R⁷ = OCH₃)
3,4-Dihydro-6,7-dimethoxy-2*H*-1,2-benzothiazine-3-carboxylic
5 acid 1,1-dioxide

A slurry of compound 5c (300 mg, 1.05 mmol) in 6N NaOH (7 ml) was heated to reflux. After about 10 minutes the mixture became homogeneous. Reflux was continued for an additional 30-40 minutes at which time tlc analysis revealed 10 complete consumption of starting material. The mixture was cooled to room temperature, a small amount of water was added to dissolve precipitated solids, and the pH was adjusted to ~3 with 6N HCl. The resulting precipitate was collected by suction filtration, washed to neutrality with 15 water, and dried to constant weight in-vacuo to give 250 mg (84%) of the title compound as a white solid; NMR (DMSO- d_{δ}) δ 2.97-3.18 (2H, m), 3.76 (6H, 2s), 4.33 (1H, m; dd in D₂O), 7.10 (1H, s), 7.57 (1H, s), 7.58 (1H, d, J = 11 Hz; absentin D_2O); MS: 286 m/z (M-H); Anal. Calc'd for $C_{11}H_{13}NO_6S$: C, 20 45.99; H, 4.57; N, 4.88; S, 11.14; Found: C, 46.16; H, 4.52; N, 4.86; S, 10.85.

Example 23

Synthesis of Intermediate $7r (R^6 + R^7 = OCH_2CH_2O)$ 3,4-Dihydro-6,7-ethylenedioxy-2*H*-1,2-benzothiazine-3-25 carboxylic acid 1,1-dioxide

This compound was prepared according to General Procedure F (alkaline conditions). From compound 5r (250 mg, 0.88 mmol) the title compound (228 mg, 91%) was obtained as a tan solid; NMR (DMSO-d₆) δ 2.86-3.08 (2H, m), 4.25-4.33 (5H, m + s), 6.90 (1H, s), 7.08 (1H, s), 7.60 (1H, d, J = 11 Hz; NH, absent in D₂O); MS: 284 (M-H).

Synthesis of Intermediate 8e ($R^6 = R^7 = OCH_3$; Y = NCH₃) 3,4-Dihydro-6,7-dimethoxy-2-methyl-2*H*-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide

This compound was prepared according to General Procedure F (alkaline conditions). From compound 6e (500 mg, 1.7 mmol) the title compound (480 mg, 96%) was obtained as a buff white solid; mp 196-200°C; MS: 300 m/z (M-H).

Example 25

10 Synthesis of Intermediate 8g (R⁶ = R⁷ = OCH₃; Y = NBn)
3,4-Dihydro-6,7-dimethoxy-2-benzyl-2*H*-1,2-benzothiazine-3carboxylic acid 1,1-dioxide

This compound was prepared according to General Procedure F (alkaline conditions). From compound 6g (290 mg, 0.77 mmol) the title compound (183 mg, 63%) was obtained as a white solid; NMR (DMSO- d_6) δ 3.13-3.27 (2H, m), 3.78 (6H, s), 4.19 (2H, ABq, J = 16 Hz, 41 Hz), 4.54-4.59 (1H, dd, J = 6 Hz), 7.04 (1H, s), 7.14 (1H, s), 7.18-7.33 (5H, m), 13.2 (1H, br; absent in D_2O); MS: 378 m/z (M+H)*, 400 m/z (M+Na)*.

Example 26

Synthesis of Intermediate 8i ($R^6 = H$; $R^7 = H$; $Y = NCH_3$) 3,4-Dihydro-2-methyl-2*H*-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide

A solution of 8p (550 mg, 2.0 mmol) in ethanol (25 ml) was shaken on a Paar apparatus with Raney nickel (~1 g, 50% aqueous, pH 9) under 50psi hydrogen at room temperature for 18 hours. The mixture was filtered through a bed of Celite filter aid and the filtrate was concentrated on a rotary evaporator. The residue was dissolved in water (10 ml), acidified to pH 3, and extracted with ethyl acetate. The organic phase was washed with brine, dried over magnesium sulfate, filtered and concentrated to give 378 mg (79%) of the title compound as a white solid; NMR (CDCl₃) δ 2.63 (s, 35 3H), 3.01-3.35 (m, 2H), 4.70-4.76 (m, 1H), 7.42-7.71 (m,

4H); MS: 240 m/z (M-H)⁻; Anal. Calc'd for $C_{10}H_{11}NO_4S$: C, 49.79; H, 4.61; N, 5.81; S, 13.27; Found: C, 49.51; H, 4.62; N, 5.65; S, 13.05.

Example 27

5 Synthesis of Intermediate 8k (R⁶ = F; R⁷ = H; Y = NCH₃) 3,4-Dihydro-6-fluoro-2-methyl-2*H*-1,2-benzothiazine-3carboxylic acid 1,1-dioxide

This compound was prepared according to General Procedure F using acidic conditions (refluxing 4 N aqueous 10 HCl in 1,4-dioxane) rather than basic conditions. From 6k (1.0 g, 3.87 mmol) the title compound (0.43 g, 43%) was obtained following recrystallization (ether/hexanes); MS: 258 m/z (M-H); Anal. Calc'd for C₁₀H₁₀FNO₄S: C, 47.57; H, 4.55; N, 5.04; S, 11.52; F, 6.84; Found: C, 47.81; H, 4.28; N, 5.36; S, 11.62; F, 7.29.

Example 28

Synthesis of Intermediate 81 ($R^6 = R^7 = Cl$; $Y = NCH_3$) 3,4-Dihydro-6,7-dichloro-2-methyl-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide

This compound was prepared according to General Procedure F (acidic conditions using refluxing 4N aqueous HCl in 1,4-dioxane). From 6l (200 mg, 0.65 mmol) the title compound (200 mg, 100%) was obtained following lyophillization of the reaction mixture; NMR (DMSO-d₆) δ 2.64 (s, 3H), 3.13-3.37 (m, 2H), 4.72-4.77 (m, 1H), 7.87 (s, 1H), 7.98 (s, 1H). MS: 308, 310, 312 m/z (M+H) (Cl₂ pattern).

Example 29

Synthesis of Intermediate 8n (R⁶ = Cl; R⁷ = H; Y = N-i-Bu) 3,4-Dihydro-6-chloro-2-isobutyl-2*H*-1,2-benzothiazine-3-30 carboxylic acid 1,1-dioxide

A solution of compound 9n (175 mg, 0.47 mmol) in 1,4-dioxane (7 ml) was treated with 4N HCl (10 ml) and refluxed for 1.5 hours. Upon cooling to ambient temperature a white precipitate formed. The 1,4-dioxane was removed on the

WO 98/21186 PCT/US97/20782

- 42 -

rotary evaporator, the solid was collected by suction filtration, washed with water and air-dried to constant weight to give 148 mg (100%) of the title compound; MS: 316, 318 m/z (M-H) (chloride isotope pattern).

5 Example 30

Synthesis of Intermediate 8p ($R^6 = Cl; R^7 = H; Y = NCH_3$) 3,4-Dihydro-6-chloro-2-methyl-2H-1,2-benzothiazine-3carboxylic acid 1,1-dioxide

A slurry of compound 6p (500 mg, 1.8 mmol) in 6N 10 sulfuric acid (15 ml) was heated to reflux and stirred for The mixture was cooled to ambient temperature, 1.5 hours. extracted with ethyl acetate (50 ml) and the organic phase was washed twice with water, brine, dried over anhydrous magnesium sulfate, filtered and concentrated to afford 430 15 mg (86%) of the title compound; MS: 274, 276 m/z (M+H)*, chlorine isotope pattern.

Example 31

Synthesis of Intermediate 8r ($R^6 + R^7 = OCH_2CH_2O$; Y = NCH₃) 3,4-Dihydro-6,7-ethylenedioxy-2-methyl-2H-1,2-benzothiazine-20 3-carboxylic acid 1,1-dioxide

This compound was prepared according to General Procedure F (alkaline conditions). From compound 6r (600 mg, 2.0 mmol) the title compound (550 mg, 92%) was obtained as a pale yellow solid; NMR (DMSO- d_6) δ 2.59 (3H, s), 3.01-25 3.24 (2H, m), 4.25, 4.26 (4H, 2s), 4.64-4.70 (1H, ABq, J = 6Hz), 6.95 (1H, s), 7.11 (1H, s), 13.40 (1H, br; absent in D_2O); MS: 298 m/z (M-H)⁻.

Example 32

Synthesis of Intermediate 8s ($R^6 + R^7 = OCH_2CH_2O$; Y = NEt) 30 2-Ethyl-3,4-dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide

A mixture of compound 9s (200 mg, 0.59 mmol) in ethanol (1.5 ml) and 4N NaOH (3 ml) was stirred at room temperature for two hours. A small amount of solid separated from the

initially homogeneous solution, and the mixture was warmed
to ~50°C to reestablish homogeneity. This process was
repeated over the next four hours, whereupon the mixture was
acidified to pH 2 (4N HCl), and the resulting oily
5 precipitate was extracted into ethyl acetate. The organic
phase was washed with water and brine, dried over anhydrous
magnesium sulfate, filtered and concentrated to afford 153
mg (83%) of the title compound as a white solid which was
used without further purification; NMR (CDCl₃) δ 0.99 (3H, t,
10 J = 7 Hz), 2.96-3.09 (4H, m), 4.25 (4H, br), 4.47 (1H, t, J
= 8 Hz), 6.97 (1H, s), 7.10 (1H, s); MS: 312 m/z (M-H).

Example 33

Synthesis of Intermediate 8s (R⁶ + R⁷ = OCH₂CH₂O; Y = NEt) 2-Ethyl-3,4-Dihydro-6,7-ethylenedioxy-2*H*-1,2-benzothiazine-15 3-carboxylic acid 1,1-dioxide

To a mixture of 272 mg (0.83 mmol) of compound 20 in 1.0 ml of MeOH and 3 ml of H₂O was added 1.25 ml (3.0 eq) of 2N NaOH at 0 °C with stirring. After 5 min, the ice bath was removed and the mixture was stirred at room temperature for 20 2 hours. The mixture was diluted with 5 ml of H_2O and the solvent was evaporated. The aqueous solution was extracted with ether, acidified to pH-3 with HCl, and extracted with CH₂Cl₂. The combined extracts were dried and evaporated to afford 250 mg (96%) of a white solid; NMR (CDCl₃) δ 1.09 (t, 25 3H, J = 7.1 Hz), 3.01 (m, 1H) 3.26 (m, 3H), 4.14 (dd, 1H, J = 7 Hz, 4.28 (s, 4H), 6.82 (s, 1H), 7.34 (s, 1H). MS: 314 m/z (M+H)*. Condensation with L-phenylalaninol (General Procedure G) revealed that this sample of 8s consists of a 2:1 mixture of enantiomers. Anal. Calc'd for C13H15NO6S: 30 Calc'd: C, 49.83; H, 4.73; N, 4.47; Found: C, 49.73; H, 4.69; N, 4.41.

Example 34

Synthesis of Intermediate 8u ($R^6 + R^7 = OCH_2CH_2O$; Y = N-i-Pr) 3,4-Dihydro-6,7-ethylenedioxy-2-isopropyl-2H-1,2-

35 benzothiazine-3-carboxylic acid 1,1-dioxide

WO 98/21186 PCT/US97/20782

A solution of 9u (165 mg, 0.45 mmol) in ethanol (3 ml) was treated with 6N NaOH, refluxed for five hours and allowed to cool to ambient temperature while being stirred overnight. The mixture was acidified to pH 3 with HCl and extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give 126 mg (86%) of the title compound as a white solid; NMR (CDCl₃) δ 0.58 (d, J = 7 Hz, 3H), 1.17 (d, J = 7 Hz, 3H), 3.29 (m, 2H), 4.05 (m, 1H), 4.30 (s+m, 5H), 6.84 (s, 1H), 7.35 (s, 1H); MS: 326 m/z (M-H). Anal. Calc'd for C₁₄H₁₇NO₆S: C, 51.37; H, 5.25; N, 4.28; S, 9.78; Found: C, 50.92; H, 5.06; N, 4.18; S, 9.94.

Example 35

Synthesis of Intermediate 91 (R⁶ = R⁷ = Cl; Y = NCH₃; R = CH₃)

15 Methyl 3,4-Dihydro-6,7-dichloro-2-methyl-2H-1,2benzothiazine-3-carboxylate 1,1-dioxide

To a solution of 81 (500 mg, 1.61 mmol) in THF (10 ml) and MeOH (5 ml) was added dropwise over five minutes a solution of (trimethylsilyl)diazomethane (2M in hexanes).

20 After being stirred for one hour at ambient temperature the mixture was quenched with glacial acetic acid (0.5 ml) and extracted with ethyl acetate. The organic phase was washed with saturated sodium bicarbonate, water, brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give the crude product which was recrystallized (ethyl acetate/hexanes) to afford 347 mg (66%) of the title compound as a tan solid; NMR (CDCl₃) δ 2.81 (s, 3H), 3.15-3.42 (m, 2H), 3.86 (s, 3H), 4.68-4.74 (m, 1H), 7.43 (s, 1H), 7.91 (s, 1H); Anal. Calc'd for C₁₁H₁₁Cl₂NO₄S: C, 40.76; H, 3.43; N, 4.32; S, 9.87; Found: C, 41.31; H, 3.47; N, 4.48; S, 9.76.

Example 36

Synthesis of Intermediate 9n ($R^6 = Cl; R^7 = H; Y = N-i-Bu; R = i-Bu$)

35 Isobutyl 3,4-Dihydro-6-chloro-2-isobutyl-2H-1,2-

benzothiazine-3-carboxylate 1,1-dioxide

A mixture of 7n (540 mg, 2.06 mmol), potassium carbonate (1.4 g, 10.3 mmol) and isobutyl bromide (0.71 g, 0.56 ml, 5.16 mmol) in DMF (10 ml) was stirred at 70°C.

5 After 18 hours the solvent was evaporated in vacuo and the residue was partitioned between ethyl acetate and water. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and concentrated. The crude product was purified by flash chromatography on silica gel (30% ether/hexanes) to give 270 mg (35%) of the title compound as a white solid; NMR (CDCl₃) δ 0.82 (d, J = 7 Hz, 6H), 0.96 (s, J = 7H, 6H), 2.71 (m, 2H), 2.90 (m, 2H), 3.16 (m, 2H), 3.48 (m, 2H), 4.38 (m, 1H), 7.37 (m, 2H), 7.73 (t, J = 8 Hz, 1H); MS: 373, 375 m/z (M+H)* (chloride isotope pattern).

Example 37

Synthesis of Intermediate 9s ($R^6 + R^7 = OCH_2CH_2O$; R = Et; Y = NEt)

Ethyl 2-Ethyl-3,4-dihydro-6,7-ethylenedioxy-2H-1,2-

20 benzothiazine-3-carboxylate 1,1-dioxide

A stirred mixture of compound 7r (220 mg, 0.42 mmol) and anhydrous potassium carbonate (293 mg, 2.12 mmol) in DMF was treated with ethyl iodide (0.07 ml, 0.87 mmol) and warmed to 65 °C. After three hours an additional aliquot of 25 ethyl iodide (0.07 ml) was added and stirring was continued for a further three hours. The mixture was filtered, the DMF was stripped in-vacuo, and the residue was partitioned between ethyl acetate and water. The organic phase was washed with saturated aqueous sodium bicarbonate and brine, 30 dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was further purified by flash chromatography on silica gel (dichloromethane) to afford 200 mg (76%) of the title compound; NMR (CDCl₃) δ 1.16 (3H, t, J = 7 Hz), 1.32 (3H, t, J = 7 Hz), 3.08-3.29 (4H, m), 4.24-35 4.31 (6H, m), 4.45 (1H, dd, J = 6 Hz), 6.76 (1H, s), 7.32 (1H, s); MS: 342 m/z $(M+H)^+$, 364 m/z $(M+Na)^+$.

Synthesis of Intermediate 9u ($R^6 + R^7 = OCH_2CH_2O$; Y = N-i-Pr; R = i-Pr)

Isopropyl 3,4-Dihydro-6,7-ethylenedioxy-2-isopropyl-2*H*-1,2-5 benzothiazine-3-carboxylate 1,1-dioxide

This compound was prepared using the procedure described for 9n. From 7r (200 mg, 0.70 mmol) the title compound (167 mg, 65%) was obtained as a white solid following preparative tlc on silica gel ($\rm CH_2Cl_2$); NMR ($\rm CDCl_3$) 10 δ 0.66 (d, J = 7 Hz, 3H), 1.15 (d, J = 7 Hz, 3H), 1.28 (d, J = 6 Hz, 6H), 3.11-3.39 (m, 2H), 3.93-3.99 (m, 1H), 4.18-4.27 (s+m, 5H), 5.07-5.11 (m, 1H), 6.77 (s, 1H), 7.30 (s, 1H); MS: 370 $\rm sm/z$ (M+H).

Example 39

15 General Procedure G: Amide Formation

Synthesis of Intermediate 10a ($R^6 = R^7 = OCH_3$; $R^1 = i-Bu$; Y = O) N-(3,4-Dihydro-6,7-dimethoxy-2,1-benzoxathiin-3-carbonyl)-L-leucinal 1,1-dioxide diethyl acetal

A solution of compound 3a (180 mg, 0.63 mmol), HOBt (93 mg, 0.69 mmol) and N-methylmorpholine (NMM) (202 mg, 2.0 20 mmol) in DMF (2 ml) was cooled in an ice-water bath and treated with BOP (304 mg, 0.69 mmol). After being stirred an additional 15 minutes the mixture was treated with a solution of (L)-leucinal diethyl acetal (130 mg, 0.69 mmol) 25 in DMF (1 ml). The resulting mixture was allowed to stir overnight while slowly warming to ambient temperature. DMF was removed under reduced pressure and the residue was partitioned between ethyl acetate and 5% aqueous citric The organic phase was washed with saturated aqueous 30 sodium bicarbonate, water and brine, dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was further purified by flash chromatography on silica gel (25-50% ethyl acetate/hexane) to afford 126 mg (44%) of the title compound as an amorphous solid; MS: 482 m/z (M+Na); 35 Anal. Calc'd for C₂₁H₃₁NO₈S: C, 54.88; H, 7.25; N, 3.05; Found: C, 55.05; H, 7.25; N, 3.26.

Synthesis of Intermediate 10v ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

5 benzothiazine-3-carbonyl)-L-leucinal 1,1-dioxide diethyl
acetal

This compound was prepared according to General Procedure G. From 8v (350 mg, 1.12 mmol) and (L)-leucinal diethyl acetal (275 mg, 1.45 mmol) crude title compound (574 mg) was obtained. Separation of diastereomers was achieved by flash chromatography on silica gel (50% ethyl acetate/hexanes):

Isomer 1: 162 mg (30%); MS: 507 m/z (M+Na)*;
Isomer 2: 160 mg (29%); MS: 507 m/z (M+Na)*.

15 Example 41

Synthesis of Intermediate 11b ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = O; Q = H)

N-(3,4-Dihydro-6,7-dimethoxy-2,1-benzoxathiin-3-carbonyl)-L-phenylalaninol 1,1-dioxide

20 This compound was prepared according to General Procedure G. From compound 3a (61 mg, 0.21 mmol) and L-phenylalaninol (42 mg, 0.28 mmol) the title compound (64 mg, 72%) was obtained as a mixture of diastereomers; MS: 422 m/z (M+H)⁺, 444 m/z (M+H)⁺.

25 Example 42

Synthesis of Intermediate 11c ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = NH; Q = H)

N-(3,4-Dihydro-6,7-dimethoxy-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 7c (100 mg, 0.35 mmol) the crude title compound (176 mg) was obtained as a mixture of diastereomers which were separated by flash chromatography on silica gel (EtOAc:hexane, 1:1 to 3:1).

35 Isomer 1: 40 mg (27%); MS: 421 m/z (M+H);

Isomer 2: 54 mg (37%); MS: $421 \text{ m/z} (M+H)^+$.

Intermediate fractions gave a small amount of the product as a mixture of diasteromers. Anal. Calc'd for $C_{20}H_{24}N_2O_6S\cdot 0.5H_2O$: C, 55.93; H, 5.88; N, 6.52; S, 7.45; Found: 5 C, 55.55; H, 5.83; N, 6.32; S, 7.76.

Example 43

Synthesis of Intermediate 11e ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; $Y = NCH_3$; Q = H)

N-(3,4-Dihydro-6,7-dimethoxy-2-methyl-2H-1,2-benzothiazine-10 3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8e (250 mg, 0.83 mmol) the crude title compound (343 mg) was obtained as a mixture of diastereomers which were separated by flash chromatography on silica gel (EtOAc:hexane, 1:3 to 1:1).

Isomer 1: 123 mg (34%); MS: 435 m/z (M+H) $^+$; Isomer 2: 118 mg (33%); MS: 435 m/z (M+H) $^+$.

Example 44

Synthesis of Intermediate 11g ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = 20 NBn; Q = H)

N-(2-Benzyl-3,4-dihydro-6,7-dimethoxy-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8g (155 mg, 0.41 mmol) the crude title compound (220 mg) was obtained as a mixture of diastereomers, partial separation being achieved by flash chromatography on silica gel (ether to 10% ethyl acetate/ether):

Isomer 1: 27 mg (13%); MS: 511 m/z (M+H) $^{+}$, 533 m/z 30 (M+Na) $^{+}$;

Isomer 2: 30 mg (14%); MS: 511 m/z (M+H) $^{+}$, 533 m/z (M+Na) $^{+}$;

Intermediate fractions gave an additional 105 mg (50%) of the diastereomeric mixture.

Synthesis of Intermediate 11i ($R^6 = H$; $R^7 = H$; $R^1 = Bn$; $Y = NCH_3$; Q = H)

N-(3,4-Dihydro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-Lphenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 8i (200 mg, 0.83) the crude title compound was obtained as a mixture of diastereomers which were separated by preparative thin layer chromatography on silica gel using ethyl acetate as eluent:

Isomer 1 (R_f 0.6): 120 mg (39%); MS: 375 m/z (M+H)*; Isomer 2 (R_f 0.7): 81 mg (26%); MS: 375 m/z (M+H)*.

Example 46

Synthesis of Intermediate 11k ($R^6 = F$; $R^7 = H$; $R^1 = Bn$; Y = 15 NCH₃; Q = H)

N-(3,4-Dihydro-2-methyl-6-fluoro-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 8k (200 mg, 0.83) the crude title compound was obtained as a mixture of diastereomers. Attempted separation of these isomers by preparative tlc on silica gel (10% methanol/CH₂Cl₂) gave only one characterizable isomer of R_f 0.7; 78 mg (26%); MS: 393 m/z (M+H) $^+$.

25 Example 47

Synthesis of Intermediate 11-1 ($R^6 = R^7 = Cl; R^1 = Bn; Y = NCH_3; Q = H$)

N-(3,4-Dihydro-6,7-dichloro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 81 (200 mg, 0.65 mmol) the crude title compound was obtained as a mixture of diastereomers which were separated by flash chromatography on silica gel using ethyl acetate as eluent:

35 Isomer 1: 60 mg (21%); MS: 465, 467, 469 m/z (M+H)

(Cl₂ pattern);

Isomer 2: 100 mg (35%); MS: 465, 467, 469 m/z (M+H) $^{\circ}$ (Cl₂ pattern).

Example 48

5 Synthesis of Intermediate 11n ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = N-i-Bu; Q = H$)

N-(3,4-Dihydro-6-chloro-2-isobutyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General

10 Procedure G. From 8n (146 mg, 0.46 mmol) the crude title compound was obtained as a mixture of diastereomers which were separated by preparative tlc on silica gel using 50% ethyl acetate/hexanes as eluent:

Isomer 1 ($R_f = 0.5$): 76 mg (37%); MS: 450, 452 m/z 15 (M+H) (Cl_2 pattern);

Isomer 2 ($R_f = 0.6$): 81 mg (39%); MS: 450, 452 m/z (M+H) (Cl₂ pattern).

Example 49

Synthesis of Intermediate 11p ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = 20 NCH_3; Q = H$)

N-(6-Chloro-3,4-dihydro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8p (420 mg, 1.52 mmol) crude 25 product (690 mg) was obtained as a mixture of diastereomers. Separation was achieved by flash chromatography on silica gel (30% ethyl acetate/hexane to 50% ethyl acetate/hexane) to give two isomers of the title compound:

Isomer 1: 78 mg (13%); MS: 409, 411 m/z (M+H) $^{+}$, 431, 30 433 m/z (M+Na) $^{+}$;

Isomer 2: 71 mg (11%); MS: 409, 411 m/z (M+H) $^{+}$, 431, 433 m/z (M+Na) $^{+}$.

Synthesis of Intermediate 11r ($R^6 + R^7 = OCH_2CH_2O$; $R_1 = Bn$; $Y = NCH_3$; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-methyl-2H-1,2-

5 benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8r (404 mg, 1.35 mmol) the title compound (475 mg, 81%) was obtained as a mixture of diastereomers following purification on silica gel (30% ethyl acetate/hexane). This product was used in the subsequent step without further purification; MS: 433 m/z (M+H)⁺, 455 m/z (M+Na)⁺.

Example 51

Synthesis of Intermediate 11s ($R^6 + R^7 = OCH_2CH_2O$; $R_1 = Bn$; Y = 15 NEt; O = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8s (134 mg, 0.43 mmol) crude 20 product (203 mg) was obtained as a mixture of diastereomers. Separation was achieved by flash chromatography on silica gel (50% ethyl acetate/hexane) to give two isomers of the title compound:

Isomer 1: 75 mg (39%); MS: 447 m/z (M+H) $^{+}$, 469 m/z 25 (M+Na) $^{+}$;

Isomer 2: 82 mg (43%); MS: 447 m/z (M+H) $^{+}$, 469 m/z (M+Na) $^{+}$.

Example 52.

Synthesis of Intermediate 11u ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y 30 = N-i-Pr; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-isopropyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 8u (120 mg, 0.37) crude title compound (183 mg) was obtained. Attempted separation of

diastereomers on silica gel (either flash chromatography or preparative tlc using 3% MeOH/CH $_2$ Cl $_2$) was unsuccessful, giving 85 mg of the diastereomeric mixture; MS: 461 m/z (M+H) $^+$.

5 Example 53

Synthesis of Intermediate 11x ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = (CH_2)_4NHSO_2Ph$; Y = NEt; Q = H) N_{α} -(3,4-Dihydro-6,7-ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L- N_{ϵ} -(benzenesulfonyl)lysinol 1,1-

10 dioxide

This compound was prepared according to General Procedure G. From 8s (70 mg, 0.23 mmol) and L-N_e- (benzenesulfonyl)lysinol trifluoroacetic acid salt (117 mg, 0.30 mmol) crude product (144 mg) was obtained as a mixture of diastereomers. Separation was effected by preparative tlc on silica gel (5% MeOH/CH₂Cl₂):

Isomer 1: 31 mg (25%); MS: 554 m/z (M+H) $^{+}$; Isomer 2: 31 mg (25%); MS: 554 m/z (M+H) $^{+}$.

Example 54

20 Synthesis of Intermediate 11z ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NCH_3 ; Q = H)

N-(3,4-Dihydro-6-(4-morpholino)-2-methyl-2H-1,2benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General
25 Procedure G. From 8z (200 mg, 0.61 mmol) crude product (357 mg) was obtained as a mixture of diastereomers which were separated by flash chromatography on silica gel (75% ethyl acetate/hexanes):

Isomer 1: 116 mg (41%); MS: 460 m/z (M+H) $^{+}$; Isomer 2: 113 mg (40%); MS: 460 m/z (M+H) $^{+}$.

Example 55

30

Synthesis of Intermediate 11A ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = NCH_3; Q = CONHEt$) N-Ethyl-3-(6-chloro-3,4-dihydro-2-methyl-2*H*-1,2benzothiazine-3-carboxamido) -2-(R,S)-hydroxy-3-(S)-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8p (110 mg, 0.40 mmol) and N-5 ethyl-2-(R,S)-hydroxy-3-(S)-benzyl-3-aminopropanamide, trifluoroacetic acid salt (167 mg, 0.50 mmol) (Harbeson, S. L., et al.; J. Med. Chem., 1994, 37, 2918-2929, incorporated by reference herein in its entirety) the title compound (60 mg, 31%) was obtained following purification by preparative tlc on silica gel (CH₂Cl₂:CH₃OH:conc. NH₄OH; 90:9:1; R_f 0.5); MS: 480 m/z (M+H)*; 502 m/z (M+Na)*.

Example 56

General Procedure K: Reaction of Aldehydes with Butyl Isocyanide

15 Synthesis of Intermediate 11B (R⁶ + R⁷ = OCH₂CH₂O; R¹ = i-Bu;
Y = NEt; Q = CONHBu)
3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-isobutyl-2-(R,S)-hydroxy-N-butylpropanamide 1,1-dioxide

A solution of butyl isocyanide (22 mg, 0.27 mmol) in dichloromethane (3 ml) was cooled in an ice-water bath and treated with TiCl₄ (0.28 ml, 1M in CH₂Cl₂). The mixture was stirred for three hours, cooled to -78°C and treated with a solution of 12v (114 mg, 0.26 mmol) in CH₂Cl₂ (2 ml). The mixture was allowed to slowly warm to ambient temperature while being stirred overnight. The mixture was stirred with 1N HCl (5 ml) for 30 minutes, ethyl acetate (35 ml) was added and 1N NaOH was added to pH 9. The organic phase was washed with water and brine, dried over anhydrous sodium sulfate, filtered and concentrated to give 125 mg crude product which was triturated with ether to give 38 mg of the title compound as a white solid; MS: 512 m/z (M+H)⁺.

Synthesis of Intermediate 11C ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = CONHBu)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

5 benzothiazine-3-carbonyl)amino)-3-(S)-isobutyl-2-(R,S)hydroxy-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure K. From 12w (116 mg, 0.26 mmol) the title compound (76 mg) was obtained as a white solid; MS: 512 m/z (M+H)⁺.

Example 58

10

Synthesis of Intermediate 11E ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHBu)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)hydroxy-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure K. From 12s (250 mg, 0.56 mmol) the title compound (200 mg, 65% yield) was obtained as a white solid;

20 MS: 512 m/z (M+H)⁺; MS: 546 m/z (M+H)⁺; Anal. Calc'd for C₂₇H₃₅N₃O₇S·0.5H₂O: C, 58.46; H, 6.56; S, 5.77; Found: C, 58.73; H, 6.42; S, 5.83.

Example 59

Synthesis of Intermediate 11F ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y 25 = NEt; Q = CONHBu)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2*H*-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-*N*-butylpropanamide 1,1-dioxide

This compound was prepared according to General

30 Procedure K. From 12t (250 mg, 0.56 mmol) crude title
compound (200 mg) was obtained as a yellow oil which could
not be made to crystallize from ether. Purification was
effected by flash chromatography on silica gel (50% ethyl
acetate/hexanes) to give 68 mg (22%) of the pure product;

35 MS: 546 m/z (M+H)*.

PCT/US97/20782 WO 98/21186

- 55 -

Example 60

Synthesis of Intermediate 11S ($R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y$ = NEt; $Q = CONHCH_2CH_2NHSO_2CH_3$)

N-(2-(Methanesulfonylamino)ethyl)-3-(3,4-Dihydro-6,7-5 ethylenedioxy-2H-1, 2-benzothiazine-3-carboxamido) -2-(R,S) hydroxy-3-(S)-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 8s (31.0 mg, 0.1 mmol, prepared from L-DOPA) and N-(2-(methanesulfonylamino)ethyl)-2-(R,S)-10 hydroxy-3-(S)-benzyl-3-aminopropanamide, HCl salt (42 mg, 1.20 eg) the title compound (45.0 mg, 74%) was obtained; MS: 611 (M+H) ⁺.

N-(2-(methanesulfonylamino)ethyl)-2-(R,S)-hydroxy-3-(S)-benzyl-3-aminopropanamide, HCl salt was prepared by 15 coupling of N-(methanesulfonyl)aminoethyleneamine to N-3-(tbutoxycarbonyl)amino-2-(R,S)-hydroxy-3-(S)-benzylpropionic acid according to Harbeson's procedure (J. Med. Chem., 1994, 37, 2918-2929). N-(methanesulfonyl)aminoethanamine was prepared from (N-(t-butoxycarbonyl)amino)ethanamine and 20 methanesulfonyl chloride according to the procudure of Essien, H. et al., J. Med. Chem., 1988, 31, 898-901, incorporated by reference herein in its entirety.

Example 61.

30

Synthesis of Intermediate 11T ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y 25 = NEt; Q = CONHCH₂CH₂NHSO₂ (4-NO₂-Ph)) 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2benzothiazine-3-carbonyl) amino) -3-(S) -benzyl-2-(R,S) hydroxy-N-(2-(4-nitrobenzenesulfonylamino)ethyl) propanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(2-(4nitrobenzenesulfonylamino)ethyl)propanamide hydrochloride (57 mg, 0.12 mmol) the title compound (52 mg, 91%) was 35 obtained following flash chromatography on silica gel (75% ethyl acetate/hexanes); MS: 718 m/z (M+H)⁺.

Synthesis of Intermediate 11U ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONH(CH_2)₃NHSO₂(4-NO₂-Ph))

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

5 benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)hydroxy-N-(3-(4-nitrobenzenesulfonylamino)propyl)propanamide
1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(3-(4-nitrobenzenesulfonylamino)propyl)propanamide hydrochloride (59 mg, 0.12 mmol) the title compound (32 mg, 55%) was obtained following flash chromatography on silica gel (75% ethyl acetate/hexanes); MS: 732 m/z (M+H)*.

15 Example 63

Synthesis of Intermediate 11V ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHCH₂CH₂NHSO₂(3,4-Cl₂-Ph)) 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2*H*-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)-

20 hydroxy-N-(2-(3,4-dichlorobenzenesulfonylamino)ethyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(2-(3,4-25 dichlorobenzenesulfonylamino)ethyl)propanamide hydrochloride (60 mg, 0.12 mmol) the title compound (58 mg, 97%) was obtained following flash chromatography on silica gel (75% ethyl acetate/hexanes); MS: 741, 743, 745 m/z (M+H)*.

Example 64

- Synthesis of Intermediate 11W ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONH(CH_2)₃NHSO₂(3,4- Cl_2 -Ph))

 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2*H*-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-*N*-(3-(3,4-
- 35 dichlorobenzenesulfonylamino)propyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(3-(3,4-dichlorobenzenesulfonyl)propyl)propanamide hydrochloride (62 mg, 0.12 mmol) the title compound (58 mg, 97%) was obtained following flash chromatography on silica gel (75% ethyl acetate/hexanes); MS: 755, 757, 759 m/z (M+H)*.

Example 65

Synthesis of Intermediate 11X (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y

10 = NEt; Q = CONHCH₂CH₂NHSO₂Ph)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-N-(2-(benzenesulfonylamino)ethyl) propanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 35 mg, 0.11 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(2-(benzenesulfonylamino)ethyl)propanamide hydrochloride (60 mg, 0.15 mmol) the title compound (62 mg, 83%) was obtained following trituration with ether; MS: 673 m/z (M+H)*.

Example 66

Synthesis of Intermediate 11Y (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y = NEt; Q = CONHCH₂CH₂SO₂(5-(2-pyridinyl)thiophen-2-yl))

N-(2-((5-(Pyridin-2-yl)thiophen-2-yl)sulfonylamino)ethyl)-3(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3-carboxamido)-2-(R,S)-hydroxy-3-(S)-benzylpropanamide 1,1-dioxide

This compound was prepared according to the procedure used to synthesize 11s. From compound 8s (62.0 mg, 0.2 mmol, prepared from L-DOPA) and N-(2-((5-(pyridin-2-yl)thiophen-2-yl)sulfonylamino)ethyl)-2-(R,S)-hydroxy-3-(S)-benzyl-3-aminopropanamide, HCl salt (100 mg, 1.20 eq) the title compound (81.0 mg, 54%) was obtained; MS: 756 (M+H)*.

Synthesis of Intermediate 11Z (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y
= NEt; Q = CONH(CH₂)₃NHSO₂(4-F-Ph))
3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)hydroxy-N-(3-(4-fluorobenzenesulfonylamino)propyl)
propanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(3-(4-fluorobenzenesulfonylamino)propyl)propanamide hydrochloride (43 mg, 0.12 mmol) the title compound (40 mg, 59%) was obtained following preparative tlc on silica gel (ethyl acetate); MS: 705 m/z (M+H)*.

- 15 Example 68
 - Synthesis of Intermediate 11AA (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y = NEt; Q = CONH(CH₂)₃NHSO₂Ph)

 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-(R,S)-
- 20 hydroxy-N-(3-(benzenesulfonylamino)propyl) propanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(3-

25 (benzenesulfonylamino)propyl)propanamide hydrochloride (41 mg, 0.12 mmol) the title compound (38 mg, 58%) was obtained following preparative tlc on silica gel (ethyl acetate); MS: 687 m/z (M+H)⁺.

Example 69

This compound was prepared according to General Procedure G. From 8s (prepared from L-DOPA, 30 mg, 0.10 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-(2-(4-fluorobenzenesulfonylamino)ethyl)propanamide hydrochloride (54 mg, 0.12 mmol) the title compound (48 mg, 77%) was obtained following preparative tlc on silica gel (ethyl acetate); MS: 691 m/z (M+H)*.

Example 70

Synthesis of Intermediate 11AD ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y 10 = NH; Q = CONHBu)

N-Butyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3-carboxamido)-2-(R,S)-hydroxy-3-(S)-benzylpropanamide 1,1-dioxide

Compound 7r was prepared from compound 19 according to the procedure described for synthesis of 8s. Compound 11AD was prepared according to General Procedure G. From compound 7r (22 mg, 0.077 mmol) and N-butyl 2-(R,S)-hydroxy-3-(S)-benzyl-3-aminopropanamide, HCl salt (27.6 mg, 1.25 eq) (Harbeson, S. L., et al.; J. Med. Chem., 1994, 37, 2918-2929) the title compound (20.0 mg, 50%) was obtained; MS: 518 (M+H).

Example 71

Synthesis of Intermediate 11AE $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn;$ Y = NH; Q = CONHCH_2CH_NHSO_Ph)

25 N-(2-(Benzenesulfonylamino)ethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3-carboxamido)-2-(R,S)-hydroxy-3-(S)-benzylpropanamide 1,1-dioxide

Compound 11AE was prepared according to the procedure used to synthesize 11S. From compound 7r (28.5 mg, 0.1 mmol) and N-(2-(benzenesulfonylamino)ethyl)-2-(R,S)-hydroxy-3-(S)-benzyl-3-aminopropanamide, HCl salt (51.68 mg, 1.25 eq) the title compound (47.0 mg, 73%) was obtained; MS: 645 (M+H)⁺.

General Procedure H: Acetal Hydrolysis

Synthesis of Aldehyde 12a ($R^6 = R^7 = OCH_3$; $R^1 = i-Bu$; Y = O; Q = H)

5 N-(3,4-Dihydro-6,7-dimethoxy-2,1-benzoxathiin-3-carbonyl)-L-leucinal 1,1-dioxide

A solution of compound 10a (16 mg, 0.035 mmol) in a mixture of acetone/water (0.5 ml/0.75 ml) was treated with p-TsOH-H₂O (7 mg, 0.037 mmol). After being stirred overnight at ambient temperature the mixture was brought to reflux for one hour, cooled to ambient temperature and extracted into ethyl acetate. The organic phase was washed with saturated aqueous sodium bicarbonate, water, brine, dried (MgSO₄), filtered and concentrated to afford 10 mg (77%) of the title compound as a mixture of diastereomers; MS: 386 m/z (M+H)⁺, 408 m/z (M+Na)⁺.

Example 73

General Procedure I: Dess-Martin Oxidation

Synthesis of Aldehyde 12b ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = O; Q = 20 H)

N-(3,4-Dihydro-6,7-dimethoxy-2,1-benzoxathiin-3-carbonyl)-L-phenylalaninal 1,1-dioxide

A solution of compound 11b (30 mg, 0.071 mmol) in dichloromethane (10 ml) chilled in an ice-water bath was treated with 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one (Dess-Martin periodinane, DMP; 60 mg, 0.14 mmol). After one hour tlc analysis indicated complete consumption of starting material. The mixture was stirred for five minutes with 10% aqueous sodium thiosulfate solution and poured into a separatory funnel. The organic phase was washed once more with 10% sodium thiosulfate followed by saturated aqueous sodium bicarbonate (2x), water, brine, dried (MgSO₄), filtered and concentrated to afford 30 mg (99%) of the title compound as an off-white amorphous solid; MS: 420 m/z (M+H)*.

PCT/US97/20782

- 61 -

Example 74

Synthesis of Aldehyde 12c ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = NH; Q = H)

N-(3,4-Dihydro-6,7-dimethoxy-2H-1,2-benzothiazine-3carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11c (isomer 1; 20 mg, 0.048 mmol) the title compound (18 mg, 90%) was obtained as a pale yellow solid; MS: 417 m/z (M-H)⁻.

10 Example 75

Synthesis of Aldehyde 12d ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = NH; Q = H)

N-(3,4-Dihydro-6,7-dimethoxy-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11c (isomer 2; 35 mg, 0.083 mmol) the title compound (32 mg, 91%) was obtained as a pale yellow solid; MS: 417 m/z (M-H).

Example 76

20 Synthesis of Aldehyde 12e ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; $Y = NCH_3$; O = H)

N-(3,4-Dihydro-6,7-dimethoxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General
25 Procedure I. From compound 11e (isomer 1; 50 mg, 0.12 mmol)
the title compound (48 mg, 96%) was obtained as a white
solid; MS: 433 m/z (M+H)⁺, 455 m/z (M+Na)⁺.

Example 77

Synthesis of Aldehyde 12f ($R_6 = R_7 = OCH_3$; $R_1 = Bn$; $Y = NCH_3$; 30 Q = H)

N-(3,4-Dihydro-6,7-dimethoxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11e (isomer 2; 50 mg, 0.12 mmol)

the title compound (47 mg, 94%) was obtained as a white solid; MS: 433 m/z $(M+H)^+$, 455 m/z $(M+Na)^+$.

Example 78

Synthesis of Aldehyde 12g ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = NBn; Q = H)

N-(2-Benzyl-3,4-dihydro-6,7-dimethoxy-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11g (isomer 1; 25 mg, 0.05 mmol) the title compound (23 mg, 82%) was obtained; MS: 509 m/z (M+H)⁺, 531 m/z (M+Na)⁺.

Example 79

Synthesis of Aldehyde 12h ($R^6 = R^7 = OCH_3$; $R^1 = Bn$; Y = NBn; Q = H)

N-(2-Benzyl-3,4-dihydro-6,7-dimethoxy-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11g (isomer 2; 28 mg, 0.06 mmol) the title compound (20 mg, 71%) was obtained; MS: 509 m/z (M+H) $^+$, 531 m/z (M+Na) $^+$.

Example 80

20

Synthesis of Aldehyde 12i ($R^6 = H$; $R^7 = H$; $R^1 = Bn$; $Y = NCH_3$; Q = H)

N-(3,4-Dihydro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-Lphenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11i (isomer 1; 107 mg, 0.29 mmol) the title compound (84 mg, 79%) was obtained; MS: 373 m/z $(M+H)^+$.

30 Example 81

Synthesis of Aldehyde 12j ($R^6 = H$; $R^7 = H$; $R^1 = Bn$; $Y = NCH_3$; Q = H)

N-(3,4-Dihydro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-

phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11i (isomer 2; 76 mg, 0.20 mmol) the title compound (64 mg, 84%) was obtained; MS: 373 m/z (M+H).

5 Example 82

Synthesis of Aldehyde 12k ($R^6 = F$; $R^7 = H$; $R^1 = Bn$; $Y = NCH_3$; O = H)

N-(3,4-Dihydro-2-methyl-6-fluoro-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11k (41 mg, 0.10 mmol) the title compound (33 mg, 83%) was obtained as a white solid; MS: 391 m/z (M+H)*.

Example 83

15 Synthesis of Aldehyde 12-1 ($R^6 = R^7 = Cl; R^1 = Bn; Y = NCH_3; Q = H$)

N-(3,4-Dihydro-6,7-dichloro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General 20 Procedure I. From 11-1 (isomer 1; 32 mg, 0.07 mmol) the title compound (27 mg, 84%) was obtained; MS: 441, 443, 445 m/z (M+H) $^+$ (Cl $_2$ pattern).

Example 84

Synthesis of Aldehyde 12m ($R^6 = R^7 = Cl; R^1 = Bn; Y = NCH_3; Q$ 25 = H)

N-(3,4-Dihydro-6,7-dichloro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11-1 (isomer 2; 50 mg, 0.11 mmol) the 30 title compound (45 mg; 90%) was obtained; MS: 441, 443, 445 m/z $(M+H)^+$ (Cl₂ pattern).

Synthesis of Aldehyde 12n ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = N-i-Bu; Q = H$)

N-(3,4-Dihydro-6-chloro-2-isobutyl-2H-1,2-benzothiazine-3carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11n (isomer 1; 41 mg, 0.09 mmol) the title compound (36 mg; 88%) was obtained; MS: 449, 451 m/z $(M+H)^+$ (chloride isotope pattern).

10 Example 86

Synthesis of Aldehyde 120 ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = N-i-Bu; Q = H$)

N-(3,4-Dihydro-6-chloro-2-isobutyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11n (isomer 2; 41 mg, 0.09 mmol) the title compound (37 mg, 90%) was obtained; MS: 449, 451 m/z (M+H) (chloride isotope pattern).

Example 87

20 Synthesis of Aldehyde 12p ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = NCH_3; Q = H$)

N-(6-Chloro-3,4-dihydro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General

25 Procedure I. From compound 11p (isomer 1; 25 mg, 0.06 mmol) the title compound (21 mg, 84%) was obtained as an off-white solid; MS: 405, 407 m/z (M+H).

Example 88

Synthesis of Aldehyde 12q ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = NCH_3;$ 30 Q = H)

N-(6-Chloro-3,4-dihydro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11p (isomer 2; 25 mg, 0.06 mmol)

the title compound (19 mg, 76%) was obtained as an off-white solid; MS: 405, 407 m/z $(M+H)^{+}$.

Example 89

Synthesis of Aldehyde 12r ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; $Y = NCH_2$; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 10r (100 mg, 0.23 mmol) the title compound (67 mg, 67%) was obtained as a buff-white solid; MS: 431 m/z (M+H)*, 453 m/z (M+Na)*.

Exampl 90

Synthesis of Aldehyde 12s ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11s (isomer 1; 30 mg, 0.07 mmol) the title compound (25 mg, 83%) was obtained as a white amorphous solid; MS: 445 m/z (M+H)*, 467 m/z (M+Na)*.

Example 91

20

Synthesis of Aldehyde 12t ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

25 benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General

Procedure I. From compound 11s (isomer 2; 30 mg, 0.07 mmol)

the title compound (27 mg, 90%) was obtained as a white

amorphous solid; MS: 445 m/z (M+H)*, 467 m/z (M+Na)*.

30 Example 92

Synthesis of Aldehyde 12u ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = N-i-Pr; Q = H) N-(3,4-Dihydro-6,7-ethylenedioxy-2-isopropyl-2H-1,2benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General

Procedure I. From 11u (78 mg, 0.17 mmol) the title compound

(63 mg, 81%) was obtained as a white solid; MS: 459 m/z

5 (M+H).*.

Example 93

Synthesis of Aldehyde 12v ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

10 benzothiazine-3-carbonyl)-L-leucinal 1,1-dioxide

This compound was prepared according to General Procedure H. From 10v (isomer 1; 158 mg, 0.32 mmol) the title compound (119 mg, 89%) was obtained as a white solid; NMR (CDCl₃) δ 0.96 (t, J = 7 Hz, 6H), 1.07 (t, J = 7 Hz, 3H), 1.22 (m, 1H), 1.74 (m, 2H), 2.95 (m, 1H), 3.25-3.35 (m, 3H), 3.95 (m, 1H), 4.29 (br, 4H), 4.46 (m, 1H), 6.83 (s, 1H), 7.25 (br, 1H), 7.34 (s, 1H), 9.55 (s, 1H); MS: 411 m/z (M+H).

Example 94

20 Synthesis of Aldehyde 12w ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = H)

N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)-L-leucinal 1,1-dioxide

This compound was prepared according to General 25 Procedure H. From 10v (isomer 2; 155 mg, 0.32 mmol) the title compound (118 mg, 89%) was obtained as a white solid; NMR (CDCl₃) δ 0.95 (t, J = 7 Hz, 6H), 1.07 (t, J = 7 Hz, 3H), 1.20 (m, 1H), 1.73 (m, 2H), 2.99 (m, 1H), 3.16-3.45 (m, 3H), 3.83 (m, 1H), 4.29 (br, 4H), 4.57 (m, 1H), 6.83 (s, 1H), 7.25 (br, 1H), 7.34 (s, 1H), 9.57 (s, 1H); MS: 411 m/z

Example 95

 $(M+H)^{+}$.

Synthesis of Aldehyde 12x ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = (CH_2)_4NHSO_2Ph$; Y = NEt; Q = H)

 N_{α} -(3,4-Dihydro-6,7-ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L- N_{ϵ} -(benzenesulfonyl)lysinal 1,1-dioxide

This compound was prepared according to General

5 Procedure I. From 11x (isomer 1; 30 mg, 0.05 mmol) the title compound (27 mg, 90%) was obtained as a white solid; MS: 552 m/z (M+H)*.

Example 96

Synthesis of Aldehyde 12y ($R^6 + R^7 = OCH_2CH_2O; R^1 =$

10 $(CH_2)_4NHSO_2Ph; Y = NEt; Q = H)$

 $N_{\alpha}\text{-}(3,4\text{-Dihydro-6,7-ethylenedioxy-2-methyl-2}\text{H-1,2-benzothiazine-3-carbonyl)-L-N}_{\epsilon}\text{-}(benzenesulfonyl)lysinal 1,1-dioxide$

This compound was prepared according to General

15 Procedure I. From 11x (isomer 1; 30 mg, 0.05 mmol) the title compound (28 mg, 93%) was obtained as a white solid; MS: 552 m/z (M+H).

Example 97

Synthesis of Aldehyde 12z $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y = NCW = 0$

20 NCH_3 ; Q = H)

N-(3,4-Dihydro-6-(4-morpholino)-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11z (isomer 1; 63 mg, 0.14 mmol) the title compound (56 mg, 89%) was obtained; MS: 458 m/z (M+H).

Example 98

Synthesis of Aldehyde 12aa ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; $Y = NCH_3$; Q = H)

N-(3,4-Dihydro-6-(4-morpholino)-2-methyl-2H-1,2-

30 benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 11z (isomer 2; 102 mg, 0.22 mmol) the title compound (91 mg, 89%) was obtained; MS: 458 m/z (M+H).

Synthesis of Ester 13 ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CO_2Me$)

Methyl 3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2*H*-1,2-5 benzothiazine-3-carboxamido)-2-oxo-3-(S)-benzylpropionic acid 1,1-dioxide

To a solution of 283 mg (0.9 mmol) of compound 8s (from L-DOPA) in 10.0 ml of DMF at 0 °C was added 298 ul (3.0 eq) of NMM, 277.5 mg (1.25 eq) of methyl 2-(R,S)-hydro-3-(S)-

- benzyl-3-aminopropionic acid hydrochloride salt, 122.1 mg (1.0 eq) of HOBt and 399.1 mg (1.2 eq) of BOP. After 5 min, the ice bath was removed and the reaction was stirred at room temperature for 3 hours. The DMF was removed under reduced pressure and the residue was diluted with CH_2Cl_2 (40
- 15 ml). The CH₂Cl₂ solution was washed with water, 3% of citric acid, 5% of NaHCO₃, brine and dried. Purification by flash chromatography (20% hexane in EtOAc) gave 428 mg (94%) of methyl 3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2(R,S)-hydroxy-3-(S)-
- 20 benzylpropionic acid 1,1-dioxide (11; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CO_2Me$): MS: 505 m/z (M+H).

To a solution of 428 mg (0.85 mmol) of this intermediate in 40 ml of CH_2Cl_2 at 0°C was added 720 mg (1.7 mmol) of 1,1,1-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-000 (Dess-Martin reagent). After 5 min, the ice-bath was removed and the reaction was stirred at room temperature for 2 hours. More CH_2Cl_2 (30 ml) was added to the reaction, and the product was washed with 10% of sodium thiosulfate (3x20 ml), water, brine and dried. Evaporation gave 404 mg (95%) of the product; MS: 405 m/z (M+H).

Example 100

Synthesis of Ketoamide 14A ($R^6 = Cl; R^7 = H; R^1 = Bn; Y = NCH_3; Q = CONHEt$)

N-Ethyl-3-(6-chloro-3,4-dihydro-2-methyl-2H-1,2-

benzothiazine-3-carboxamido)-2-oxo-3-(S)-benzylpropanamide
1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11A (Q = CONHEt) (58 mg, 0.12 mmol) the title compound (35 mg, 61%) was obtained as a mixture of diastereomers; MS: 478 m/z (M+H) $^+$; 500 m/z (M+Na) $^+$.

5 Example 101

Synthesis of Ketoamide 14B ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = CONHBu)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2*H*-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-isobutyl-2-oxo-*N*-

10 butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11B ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = CONHBu; 38 mg, 0.07 mmol) the title compound (26 mg, 68%) was obtained; MS: 510 m/z (M+H) $^+$.

15 Example 102

Synthesis of Ketoamide 14C ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = CONHBu)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-isobutyl-2-oxo-N-

20 butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11C ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = i-Bu$; Y = NEt; Q = CONHBu; 76 mg, 0.15 mmol) the title compound (56 mg, 74%) was obtained; MS: 510 m/z (M+H) $^+$.

25 Example 103

Synthesis of Ketoamide 14D $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y = NEt; Q = CONHEt)$

N-Ethyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2benzothiazine-3-carboxamido)-2-oxo-3-(S)-benzylpropanamide
30 1,1-dioxide

This compound was prepared according to General Procedure G. From 8s (31.3 mg, 0.1 mmol, prepared from L-DOPA) and N-ethyl-2-oxo-3-(S)-benzyl-3-aminopropanamide, HCl salt (31.94 mg, 1.25 eg) the title compound (5.0 mg, 10%) was obtained:

WO 98/21186 PCT/US97/20782

- 70 -

MS: 516 (M+H) . N-Ethyl-2-oxo-3-(S)-benzyl-3-

aminopropanamide, HCl salt was prepared according to Rich's procedure (Ocain, T. D.; Rich, D. H. J. Med. Chem. 1992, 35, 451-456, incorporated by reference herein in its entirety).

5 However, oxidation to the Boc ketoamide was accomplished with Dess-Martin periodinane (General Procedure I).

Example 104

Synthesis of Ketoamide 14E ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHBu)

10 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-Nbutylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11E $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y = NEt; Q =$

15 CONHBu; 50 mg, 0.09 mmol) the title compound (49 mg, 98%) was obtained; MS: 544 m/z (M+H) $^{+}$.

Example 105

Synthesis of Ketoamide 14F ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHBu)

20 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11F $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y = NEt; Q =$

25 CONHBu; 65 mg, 0.12 mmol) the title compound (52 mg, 80%) was obtained; MS: 544 m/z (M+H) $^{+}$.

Example 106

General Procedure J: Synthesis of α -Ketoamides from α -Ketoesters

30 Synthesis of Ketoamide 14G (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y = NEt; Q = CONHBu)

N-Butyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

- 71 -

Compound 13 (23 mg, 0.046 mmol) and 0.2 ml of butylamine were stirred neat at room temperature overnight. LC-MS analysis indicated completion of the reaction. The reaction was diluted with EtOAc (20 ml) and cooled to 0 °C as 5.0 ml of 2N HCl was added to decompose the imine product formed in the reaction. The aqueous mixture was stirred for 30 min and extracted with EtOAc (3 X 10 ml). The combined organic layers were washed with water, 5% of NaHCO₃, brine and dried. Filtration and evaporation afforded 20.5 mg (82 %) of the product; MS: 615 m/z (M+H)⁺.

Example 107

Synthesis of Ketoamide 14H ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2OCH_3$)

N-(2-Methoxyethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-15 2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-

benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from 2-methoxyethylamine; 84% yield; MS: 546 m/z (M+H)⁺.

Example 108

20 Synthesis of Ketoamide 14I ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONH-iPr)

N-Isopropyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from isopropylamine; 85% yield; MS: 592 m/z (M+H).

Example109

Synthesis of Ketoamide 14J ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONH(CH_2)₄CH₃)

N-Pentyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from pentylamine; 93% yield; MS: 558 m/z (M+H).

Synthesis of Ketoamide 14K ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2Ph$)

N-Benzyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

5 benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from benzylamine; 80% yield; MS: 578 m/z (M+H).

Example 111

10 Synthesis of Ketoamide 14L (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y = NEt; Q = CONHCH₂CH₂Ph)

N-Phenethyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from phenethylamine; 85% yield; MS: 592 m/z (M+H).

Example 112

Synthesis of Ketoamide 14M ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH = CH_2$)

20 N-(2-Propenyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from allylamine; 91% yield; MS: 551 m/z (M+H).

25 Example 113

 $(M+H)^{\dagger}$.

Synthesis of Ketoamide 14N ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHCH₂CH₂CH₂-(imidazol-1-yl)) N-(3-(Imidazol-1-yl)propyl)-3-(3,4-Dihydro-6,7-

ethylenedioxy-2-ethyl-2*H*-1,2-benzothiazine-3-carboxamido)-2-30 oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from 3-imidazolylpropylamine; 11% yield; MS: 596 m/z

Synthesis of Ketoamide 14-0 ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2-(2-ketopyrrolidin-1-y1))$

N-(3-(2-Ketopyrrolidin-1-yl)propyl)-3-(3,4-Dihydro-6,7-

5 ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from 3-(2-ketopyrrolidin-1-yl)propylamine; 68% yield; MS: 613 m/z (M+H).

10 Example 115

Synthesis of Ketoamide 14P ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2CH_2$ (morpholin-4-yl))

N-(3-(Morpholin-4-yl)propyl)-3-(3,4-Dihydro-6,7-

ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-

15 oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from 3-(morpholin-4-yl)propylamine; 84 % yield; MS: MS: 615 m/z (M+H)*.

20 Example 116

Synthesis of Ketoamide 14Q ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2(pyridin-2-yl)$)

N-(Pyridin-2-ylmethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-

25 benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure J from 2-(aminomethyl)pyridine; 82.5% yield; MS: 579 m/z $(M+H)^+$.

Example 117

- 30 Synthesis of Ketoamide 14R ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHCH₂cyclopropyl)
 - N-(Cyclopropylmethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-

benzylpropanamide 1,1-dioxide

35 This compound was prepared according to General Procedure

J from aminomethylcyclopropane; 96.6% yield; MS: 542 m/z (M+H).

Example 118

Synthesis of Ketoamide 14S ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = 5 NEt; $Q = CONHCH_2CH_2NHSO_2CH_3$)

N-(2-(Methanesulfonylamino)ethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-(S)-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure 10 I. From compound 11S (45.0 mg, 0.074 mmol) the title compound (34.0 mg, 75%) was obtained; MS: 609 (M+H).

Example 119

Synthesis of Ketoamide 14T ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2NHSO_2(4-NO_2-Ph)$)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(2-(4-nitrobenzenesulfonylamino)ethyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11T ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = 20 CONHCH₂CH₂NHSO₂(4-NO₂-Ph); 50 mg, 0.07 mmol) the title compound (31 mg, 62%) was obtained as a pale yellow solid;

Example 120

MS: $716 \text{ m/z} (M+H)^{+}$.

Synthesis of Ketoamide 14U ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = 25 NEt; Q = $CONH(CH_2)_3NHSO_2(4-NO_2-Ph)$)
3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(3-(4-Ph))

nitrobenzenesulfonylamino) propyl) propanamide 1,1-dioxide

This compound was prepared according to General Procedure 30 I. From 11U ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = $CONH(CH_2)_3NHSO_2(4-NO_2-Ph)$, 30 mg, 0.04 mmol) the title compound was obtained (24 mg, 80%) as a pale yellow solid; MS: 730 m/z (M+H) $^+$.

WO 98/21186 PCT/US97/20782

- 75 -

Example 121

Synthesis of Ketoamide 14V ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2NHSO_2(3,4-Cl_2-Ph)$)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-

5 benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(2-(3,4-dichlorobenzenesulfonylamino)ethyl)propanamide 1,1dioxide

This compound was prepared according to General Procedure I. From 11V ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = 10 CONHCH₂CH₂NHSO₂(3,4-Cl₂-Ph); 58 mg, 0.08 mmol) the title compound (44 mg, 76%) was obtained as a pale yellow solid; MS: 716 m/z (M+H) $^{+}$.

Example 122

Synthesis of Ketoamide 14W (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y = NEt; Q = CONH(CH₂)₃NHSO₂(3,4-Cl₂-Ph))

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(3-(3,4-dichlorobenzenesulfonylamino)propyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11W ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONH(CH_2)_3NHSO_2.(3,4-Cl_2-Ph)$; 56 mg, 0.07 mmol) the title compound (40 mg, 71%) was obtained as a pale yellow solid; MS: 753 m/z (M+H) $^+$.

25 Example 123

35

Synthesis of Ketoamide 14X ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2NHSO_2Ph$)

3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2*H*-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-*N*-(2-

30 (benzenesulfonylamino)ethyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11X ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2NHSO_2Ph$; 33 mg, 0.05 mmol) the title compound (28 mg, 85%) was obtained as a pale yellow solid; MS: 671 m/z (M+H) $^+$.

Synthesis of Ketoamide 14Y (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y =
NEt; Q = CONHCH₂CH₂SO₂(5-(2-pyridinyl)thiophen-2-yl))
N-(2-((5-(Pyridin-2-yl)thiophen-2-yl)sulfonylamino)ethyl)-3(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3carboxamido)-2-oxo-3-(S)-benzylpropanamide 1,1-dioxide
 This compound was prepared according to General Procedure
I. From compound 11Y (75.5 mg, 0.1 mmol) the title compound
(80 mg, 93%) was obtained; MS: 754 (M+H)*.

10 Example 125

Synthesis of Ketoamide 14Z (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y =
NEt; Q = CONH(CH₂)₃NHSO₂(4-F-Ph))
3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(3-(415 fluorobenzenesulfonylamino)propyl)propanamide 1,1-dioxide
 This compound was prepared according to General Procedure
I. From 11Z;(35 mg, 0.05 mmol) the title compound (28 mg, 80%) was obtained as a pale yellow solid; MS: 703 m/z (M+H)*.

Example 126

20 Synthesis of Ketoamide 14AA (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y =
NEt; Q = CONH(CH₂)₃NHSO₂Ph)
3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(3-(benzenesulfonylamino)propyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure

I. From 11AA; (34 mg, 0.05 mmol) the title compound (30 mg, 88%) was obtained as a pale yellow solid; MS: 685 m/z (M+H)*.

Example 127

Synthesis of Ketoamide 14AB (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y = NEt; Q = CONHCH₂-(pyridin-4-yl))

N-(Pyridin-4-ylmethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure

J from 4-pyridylmethylamine; 32% yield; MS: 579 m/z (M+H).

Example 128

Synthesis of Ketoamide 14AC ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; $Q = CONHCH_2CH_2NHSO_2(4-F-Ph)$)

5 3-((3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-(2-(4-fluorobenzenesulfonylamino)ethyl)propanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From 11AC; (45 mg, 0.07 mmol) the title compound (30 mg,

10 67%) was obtained as a pale yellow solid; MS: 689 m/z (M+H).

Example 129

Synthesis of Ketoamide 14AD $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y = NH; Q = CONHBu)$

N-Butyl-3-(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-

benzothiazine-3-carboxamido)-2-oxo-3-(S)-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11AD (20.0 mg, 0.037 mmol) the title compound (16.0 mg, 84%) was obtained; MS: 516 (M+H)⁺.

20 Example 130

Synthesis of Ketoamide 14AE $(R^6 + R^7 = OCH_2CH_2O; R^1 = Bn; Y = NH; Q = CONHCH_2CH_2NHSO_2Ph)$

N-(2-(Benzenesulfonylamino)ethyl)-3-(3,4-Dihydro-6,7-ethylenedioxy-2H-1,2-benzothiazine-3-carboxamido)-2-oxo-3-

25 (S)-benzylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 11AE (47.0 mg, 0.073 mmol) the title compound (16.0 mg, 34%) was obtained; MS: 643 (M+H)*.

Example 131

30 Synthesis of Intermediate 16.

3-(3,4-Dihydroxyphenyl)-L-alanine methyl ester hydrochloride A solution of 1.97g (10 mmol) of L-DOPA 15 in 100 ml of MeOH at 0 °C was added 6.57 ml (90 mmol) of thionyl chloride via addition funnel. The mixture was stirred overnight
while the temperature was slowly warmed to room temperature.
The solvent was evaporated and the thick oil was treated
with toluene (3 x 15 ml) and evaporated. The yield of white
5 solid was 3.26 g (100%); NMR (DMSO-d6) δ 2.90 (m, 2H), 3.38
(bs, 2H), 3.61 (s, 3H), 4.08 (m, 1H), 6.40 (d, 1H, J = 7
Hz), 6.59 (s, 1H), 6.65(d, 2H, J = 7 Hz). 8.59 (bs, 1H),
8.90 (d, 1H, J = 10 Hz). MS: 212 m/z (M+H)*.

Example 132

10 Synthesis of Intermediate 17.

N-(Benzyloxycarbonyl)-3-(3,4-dihydroxyphenyl)-L-alanine methyl ester

A suspension of 4.94 g (20 mmol) of compound 16 and 4.4 ml (2.0 eq) of N-methyl morpholine in 8 ml of THF and 1 ml of water was stirred at room temperature as 4.98 g (20 mmol) of benzyloxycarbonyloxy-succinimide in 8 ml of 1,4-dioxane was added dropwise. The reaction mixture was stirred overnight. The solvent was evaporated and the residue was diluted with ethyl acetate (100 ml). The ethyl acetate solution was washed with water (20 ml), 5% of NaHCO₃ (20 ml), 3% of citric acid (20 ml), brine (20 ml) and dried over MgSO₄. Filtration and concentration afforded 5.36 g (78 %) of a white solid; NMR (CDCl₃) δ 2.99 (m, 2H), 3.65 (s, 3H), 4.59 (m, 1H), 5.04 (s, 2H), 5.39 (m, 1H), 6.38 (bs, 2H), 6.42 (d, 1H, J = 7 Hz), 6.60 (s, 1H), 6.67 (d, 1H, J = 7 Hz), 7.30 (m, 5H). MS: 346 m/z (M+H)⁺.

Example 133

Synthesis of Intermediate 18.

N-(Benzyloxycarbonyl)-3-(3,4-ethylenedioxyphenyl)-L-alanine methyl ester

A suspension of 13.40 g (38.8 mmol) of compound 17 and 53.66 g (388 mmol) of K_2CO_3 in 200 ml of acetone was refluxed under N_2 for 30 minutes. Dibromoethane (13.37 ml, 77.6 mmol) was added in one portion. The suspension was refluxed for 40 hours, the solid was filtered, and the filtrate was

evaporated. The residue after evaporation was diluted with 150 ml of water and extracted with CH_2Cl_2 (3x70 ml). The CH_2Cl_2 extracts were washed with brine and dried over $MgSO_4$ and concentrated. The crude product was washed with small 5 amount of ether to give 12.26 g (85%) of white solid; NMR ($CDCl_3$) δ 3.01 (d, 2H, J = 5.2 Hz), 3.73 (s, 3H), 4.22 (s, 4H), 6.52 (d, 1H, J = 7 Hz), 6.60 (s, 1H), 6.75 (d, 1H, J = 7 Hz), 7.34 (m, 5H). MS: 372 m/z (M+H)*. Anal. Calc'd for $C_{20}H_{21}NO_6$ 0.2H₂O: Calc'd: C, 64.00; H, 5.80; N, 3.73; Found: 10 C, 63.83; H, 5.70; N, 3.63.

Example 134

Synthesis of Intermediate 19.

Methyl 3,4-Dihydro-6,7-ethylenedioxy-2*H*-1,2-benzothiazine-3-carboxylate 1,1-dioxide

- A solution of 14.82 g (40 mmol) of compound 18 in 150 ml of dried CHCl₃ was stirred with mechanic stirrer at 0 °C as 13.32 ml (5.0 eq) of chlorosulfonic acid in 100 ml of CHCl₃ was added dropwise via addition funnel over ~ 1.0 hour. The solution was first turned to yellow, then some thick oil formed and became suspended in the solution. After addition, the reaction mixture was stirred at room temperature and LC-MS was used to follow the reaction. At 3 hours, no starting material was left in the reaction. The reaction was cooled to ~ 5 °C and 43 ml (10 eq) of Et₃N, 733 mg (0.3 eq) of DMAP in CHCl₃ (50 ml) was added. The mixture was stirred overnight (~ 14hr) while the temperature was
- poured into 500 ml of ice-water and separated. The aqueous layer was extracted with CH₂Cl₂ (3x100 ml). The combined organic layers were washed with water, 3% HCl, 5% of NaHCO₃, brine and dried. The crude product was dissolved in CH₂Cl₂ and filtered through a short silica column eluted with 80 % of EtOAc in hexane to remove remaining Et₃N·HCl salt.

warmed to room temperature and then the reaction mixture was refluxed for 3 hours. After that, the reaction mixture was

35 Evaporation solvent afforded 3.0 g (25%) of a white solid; NMR (CDCl₃) δ 3.20 (abd, 2H, J = 5.1 Hz, 16 Hz), 3.82 (s,

3H), 4.33 (s, 4H), 4.60 (m, 1H), 4.99 (d, 1H, J = 8 Hz), 6.77 (s, 1H), 7.39 (s, 1H). MS: 300 m/z (M+H). Anal. Calc'd for $C_{12}H_{13}NO_6$ S: Calc'd: C, 48.16; H, 4.38; N, 4.68; Found: C, 48.09; H, 4.66; N, 5.10.

5 Example 135

Synthesis of Intermediate 20.

Methyl 3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide

A solution of 317 mg (1.06 mmol) of compound 19 and 513 mg (3.5 eq) of K_2CO_3 in 2.0 ml of DMF was stirred under N_2 as 339 ul (4.0 eq) of EtI was added at room temperature. After 14 hours (overnight) at room temperature, the mixture was diluted with CH_2Cl_2 (20 ml). The solid was filtered and washed with CH_2Cl_2 . The filtrates were washed with water, 3% citric acid, 5% of $NaHCO_3$, brine and dried. Evaporation of the solvent afforded 313 mg (90 % yield) of a pure white solid; NMR ($CDCl_3$) δ 1.09 (t, 3H, J = 7.1 Hz), 3.01-3.4 (m, 6H), 3.79 (s, 3H), 4.25 (s, 4H), 4.15 (1H, dd, J = 6 Hz, 11 Hz), 6.74 (s, 1H), 7.28 (s, 1H). MS: 328 m/z (M+H)*. Anal. Calc'd for $C_{14}H_{17}NO_6$ S: Calc'd: C, 51.37; H, 5.23; N, 4.28; Found: C, 51.26; H, 5.08; N, 4.30.

Example 136

Synthesis of Intermediate 21a ($R^4 = H$; $R^6 = R^7 = Cl$; $Y = NCH_3$; 25 $R = CH_3$)

Methyl 6,7-dichloro-2-methyl-2*H*-1,2-benzothiazine-3-carboxylate 1,1-dioxide

To a solution 91 (256 mg, 0.79 mmol) in $CCl_4-CH_2Cl_2$ (25 ml- 5 ml) was added NBS (155 mg, 0.87 mmol) and

- dibenzoylperoxide (38 mg, 0.16 mmol). The mixture was refluxed in the dark for one hour, at which time tlc analysis showed complete consumption of starting material. After being cooled to ambient temperature, dichloromethane was added and the mixture was washed with 10% sodium
- thiosulfate, water, brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give 250 mg of the

WO 98/21186 PCT/US97/20782

- **81 -** · ·

title compound, subsequently used without further purification; NMR (CDCl $_3$) δ 3.18 (s, 3H), 3.87 (s, 3H), 7.43 (s, 1H), 7.59 (s, 1H), 7.87 (s, 1H).

Example 137

5 Synthesis of Intermediate 21b ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = H$; Y = NMe; $R = CH_3$)

Methyl 6,7-ethylenedioxy-2-methyl-2*H*-1,2-benzothiazine-3-carboxylate 1,1-dioxide

This compound was prepared according the procedure above 10 for 21a. From 9r (R = CH₃; 150 mg, 0.48 mmol) the title compound (100 mg, 66%) was obtained following flash chromatography on silica gel (30% ethyl acetate/hexanes); MS: 312 (M+H)⁺.

Example 138

15 Synthesis of Intermediate 21d ($R = Me; R^4 = OMe; R^6 = R^7 = H;$ Y = NMe)

Methyl 2-methyl-4-methoxy-2H-1,2-benzothiazine-3-carboxylate This compound was prepared according to Zinnes et. al., J. Med. Chem., 1973, 16, 44-48. Thus, a solution of methyl 2-20 methyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate (500 mg, 1.86 mmol) (Lombardino, et. al., J. Med. Chem., 1971, 14, 1171-1177, incorporated by reference herein in its entirety) in acetone (10 ml) was treated with anhydrous potassium carbonate (2.6 g, 18.6 mmol) and iodomethane (1.32 g, 9.29 25 mmol) and refluxed for 40 hours. The mixture was filtered and concentrated and the residue was partitioned between ethyl acetate and water. The organic phase was washed with saturated aqueous sodium bicarbonate and brine, dried over anhydrous magnesium sulfate, filtered and concentrated to 30 afford 285 mg (54%) of the title compound as a yellow viscous oil, used subsequently without need for further purification; NMR (CDCl₃) δ 3.03 (s, 3H), 3.83 (s, 3H), 3.91 (s, 3H), 7.67-7.72 (m, 2H), 7.81-7.88 (m, 2H); MS: 284 m/z $(M+H)^{+}$.

Synthesis of Intermediate 23a ($R^4 = H$; $R^6 = R^7 = Cl$; $Y = NCH_3$) 6,7-Dichloro-2-methyl-2*H*-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide

To a solution of 21a (250 mg, 0.77 mmol) in MeOH (10 ml) and DMF (3 ml, to aid solubility) was added 5N NaOH (25 ml). The mixture was warmed to ~50°C while being stirred for 20 minutes, at which time tlc analysis showed complete consumption of starting material. The mixture was cooled to ambient temperature, the MeOH was stripped on the rotary evaporator, the residue was diluted with water (25 ml) and clarified by filtration. Adjustment to pH 2 gave a precipitate which was collected by suction filtration, washed with water and allowed to air-dried overnight to afford 128 mg (54% overall from 9a) of the title compound; MS: 306, 308, 310 m/z (M-H), Cl2 pattern.

Example 140

Synthesis of Intermediate 23d (R^4 = OMe; R^6 = R^7 = H; Y = NMe) 2-Methyl-4-methoxy-2*H*-1,2-benzothiazine-3-carboxylic acid 1,1-dioxide

A solution of 21d (159 mg, 0.56 mmol) in methanol (3 ml) was treated with 5N NaOH (2 ml) and stirred at room temperature for 20 minutes, at which time tlc analysis showed complete consumption of starting material. The methanol was removed on the rotary evaporator and the aqueous residue was adjusted to pH 3 with 4N HCl. The precipate so formed was collected by suction filtration, washed with water and allowed to air-dry to constant weight to give 94 mg (62%) of the title compound as a white solid; MS: 292 m/z (M+Na)*; Anal. Calc'd for C₁₁H₁₁NO₅S: C, 49.07; H, 4.13; N, 5.20; S, 11.89; Found: C, 48.84; H, 3.85; N, 4.98; S, 11.78.

Example 141

Synthesis of Intermediate 25a ($R^4 = H$; $R^6 = R^7 = Cl$; $R^1 = Bn$; 35 Y = NCH₃; Q = H)

N-(6,7-Dichloro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 23a (100 mg, 0.32 mmol) the title compound (137 mg) was obtained following flash chromatography on silica gel (50% ethyl acetate/hexanes); MS: 441, 443, 445 m/z (M+H), Cl, pattern.

Example 142

Synthesis of Intermediate 25b ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = 10$ Bn; $Y = NCH_2$; Q = H)

N-(6,7-Ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 23b (80 mg, 0.27 mmol) the title compound (96 mg,

15 83%) was obtained following flash chromatography on silica gel (50% ethyl acetate/hexanes); MS: 431 m/z (M+H).

Example 143

Synthesis of Intermediate 25c ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = H)

20 N-(6,7-Ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 23c (100 mg, 0.32 mmol) the title compound (136 mg, 95%) was obtained following flash chromatography on silica 25 gel (50% ethyl acetate/hexanes); MS: 445 m/z (M+H)*.

Example 144

Synthesis of Intermediate 25d ($R^4 = OMe; R^6 = R^7 = H; R^1 = Bn; Y = NMe; Q = H$)

N-(2-Methyl-4-methoxy-2H-1,2-benzothiazine-3-carbonyl)-L30 phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 23d (22 mg, 0.08 mmol) the title compound (32 mg, 99%) was obtained; MS: $403 \text{ m/z} \text{ (M+H)}^{+}$.

Synthesis of Intermediate 25e ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NMe; Q = CONHBu)

3-((6,7-Ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-

5 carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure K. From 26b (55 mg, 0.13 mmol) the title compound (22 mg, 32%) was obtained following flash chromatography on silica gel (ethyl acetate); MS: 530 m/z (M+H)*.

Example 146

Synthesis of Intermediate 25f ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = CONHBu)

3-((6,7-Ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-

15 carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-Nbutylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure K. From 26c (80 mg, 0.18 mmol) the title compound (30 mg, 31%) was obtained following preparative tlc on silica gel (ethyl acetate); MS: 542 m/z (M-H).

Example 147

Synthesis of Intermediate 25g ($R^4 = OMe$; $R^6 = R^7 = H$; $R^1 = Bn$; Y = NMe; Q = CONHBu)

3-((4-Methoxy-2-methyl-2H-1,2-benzothiazine-3-

25 carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure G. From 23d (50 mg, 0.18 mmol) the title compound (80 mg, 83%) was obtained following flash chromatography on silica gel (65% ethyl acetate/hexanes); MS: 502 m/z (M+H)*

Example 148

Synthesis of Intermediate 25h ($R^4 = OH$; $R^6 = R^7 = H$; $R^1 = Bn$; Y = NMe; Q = CONHBu)

35 3-((4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3-

carbonyl)amino)-3-(S)-benzyl-2-(R,S)-hydroxy-N-butylpropanamide 1,1-dioxide

This compound was prepared according to the method of Lombardino et. al., J. Med. Chem., 1973, 16, 493-496,

5 incorporated by reference herein in its entirety. Thus, a slurry of methyl 2-methyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate (54 mg, 0.20 mmol) and 3-amino-3-(S)-benzyl-2-(R,S)-hydroxy-N-butylpropanamide (50 mg, 0.20 mmol) in xylenes (5 ml) was refluxed for 18 hours. The mixture was concentrated on a vacuum line, the residue was partitioned between ethyl acetate and water, the organic phase was washed with 5% aqueous citric acid solution, water and brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give 104 mg crude product, further purified by flash chromatography on silica gel (50% ethyl acetate/hexanes) to give 59 mg (60%) of the title compound as an off-white solid; MS: 488 m/z (M+H)*.

Example 149

Synthesis of Aldehyde 26a (R^4 = H; R^6 = R^7 = Cl; R^1 = Bn; Y = 20 NCH₃; Q = H)

N-(6,7-Dichloro-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 25a (Q = H, 50 mg, 0.11 mmol) the title compound (942 mg, 84%) was obtained as an off-white solid; MS: 437, 439, 441 (M-H) $^{-}$; Cl₂ pattern.

Example 150

Synthesis of Aldehyde 26b ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; $Y = NCH_3$; Q = H)

30 N-(6,7-Ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 25b (Q = H, 52 mg, 0.12 mmol) the title compound (41 mg, 79%) was obtained as a white solid; MS: 429 (M+H) $^{+}$.

Synthesis of Aldehyde 26c ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NEt; Q = H)

N-(6,7-Ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-

5 carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 25c (Q = H, 135 mg, 0.30 mmol) the title compound (109 mg, 81%) was obtained as a pale yellow solid; MS: 441 (M-H).

10 Example 152

Synthesis of Aldehyde 26d ($R^4 = OMe; R^6 = R^7 = H; R^1 = Bn; Y = NMe; Q = H$)

N-(2-Methyl-4-methoxy-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 25d (Q = H, 32 mg, 0.08 mmol) the title compound (25 mg, 76%) was obtained; MS: $401 \text{ m/z} \text{ (M+H)}^{+}$.

Example 153

dioxide

Synthesis of Ketoamide 27e ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = 20$ Bn; Y = NMe; Q = CONHBu)

3-((6,7-Ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1-

This compound was prepared according to General Procedure

25 I. From 25e (Q = CONHBu, 20 mg, 0.04 mmol) the title
compound (15 mg, 75%) was obtained as a white solid; MS: 528
m/z (M+H).

Example 154

Synthesis of Ketoamide 27f ($R^4 = H$; $R^6 + R^7 = OCH_2CH_2O$; $R^1 = 30$ Bn; Y = NEt; Q = CONHBu)

3-((6,7-Ethylenedioxy-2-methyl-2H-1,2-benzothiazine-3-

carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure

I. From 25f (Q = CONHBu, 24 mg, 0.04 mmol) the title compound (22 mg, 92%) was obtained as a white solid; MS: $542 \text{ m/z} \text{ (M+H)}^{+}$.

Example 155

- 5 Synthesis of Ketoamide 27g (R⁴ = OMe; R⁶ = R⁷ = H; R¹ = Bn; Y = NMe; Q = CONHBu)
 3-((4-Methoxy-2-methyl-2H-1,2-benzothiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1-dioxide
- This compound was prepared according to General Procedure I. From 25g (Q = CONHBu, 60 mg, 0.12 mmol) the title compound (49 mg, 82%) was obtained as a white solid; MS: 500 m/z $(M+H)^+$.

Example 156

- Synthesis of Ketoamide 27h (R⁴ = OH; R⁶ = R⁷ = H; R¹ = Bn; Y =
 NMe; Q = CONHBu)
 3-((4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1dioxide
- This compound was prepared according to General Procedure I. From 25h (Q = CONHBu, 42 mg, 0.09 mmol) the title compound (18 mg, 43%) was obtained following preparative tlc on silica gel (50% ethyl acetate/hexanes); MS: 486 m/z (M+H)*; Anal. Calc'd for C₂₄H₂₇N₃O₆S: C, 59.36; H, 5.62; N, 8.66; S, 6.59; Found: C, 59.56; H, 5.76; N, 7.97; S, 6.71.

Example 157

Synthesis of Intermediate 31a ($R^4 = Pr$; $R^6 = R^7 = H$) 3,4-Dihydro-4-propyl-2*H*-1,2,4-benzothiadiazine-3-carboxylic acid 1,1-dioxide

This compound was prepared according to the method of Close et. al., *J. Org. Chem.*, 1961, 26, 3423-3433, incorporated by reference herein in its entirety. Thus, a solution of methyl dimethoxyacetate (3.6 g, 27.3 mmol) in water (501) was refluxed for 2.5 hours. A stillhead was

attached and the methanol so generated was allowed to distill off (a total of 10 ml of liquid was collected, of which 5 ml was replenished with water). To the hot solution was added 2-(propylamino) benzenesulfonamide (4.5 g, 21.0 5 mmol) (prepared according to the procedure of Biressi et. al., Farmeco. Ed. Sci. (It.), 1969, 24, 199-220, incorporated by reference herein in its entirety) and 1,4dioxane (5 ml, to give a homogeneous solution) and reflux was continued for 1.5 hours. The mixture was adjusted to pH 10 3 (2N NaOH), extracted with ethyl acetate and the organic phase was washed with brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give 4.8 g crude product which was recrystallized (ethyl acetate/hexanes) to give 2.5 g (44%) of the title compound as a white solid; NMR 15 (DMSO-d₆) δ 0.85 (t, J = 7 Hz, 3H), 1.47-1.57 (m, 2H), 2.94- $3.04 \, (m, 1H), 3.38 \, (br, 1H), 3.40-3.46 \, (m, 1H), 5.27 \, (d, J = 1.40 \, (d,$ 6 Hz, 1H), 6.70 (t, J = 7 Hz, 1H), 6.84 (d, J = 7 Hz, 1H), 7.36 (t, J = 7 Hz), 7.43 (d, J = 7 Hz, 1H), 8.44 (d, J = 7 Hz) Hz, 1H), 13.04 (br, 1H); MS: 269 m/z (M-H); Anal. Calc'd for 20 $C_{11}H_{14}N_2O_4S$: C, 48.88; H, 5.23; N, 10.37; S, 11.84; Found: C, 49.17; H, 5.21; N, 10.27; S, 11.54.

Example 158

Synthesis of Intermediate 34a ($R^4 = Pr; R^6 = R^7 = H; R^1 = Bn;$ Y = NEt; Q = H)

25 N-(3,4-Dihydro-2-ethyl-4-propyl-2H-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 33a (300 mg, 1.0 mmol) crude product (508 mg) was obtained as a mixture of diastereomers which were partially separated by flash chromatography on silica gel (50% ethyl acetate/hexanes):

Isomer 1: 95 mg (21%); MS: 432 m/z $(M+H)^+$;

Isomer 2: 83 mg (20%); MS: 432 m/z $(M+H)^+$.

Also isolated was 118 mg (27%) of a diastereomeric

35 mixture.

Synthesis of Intermediate 34c ($R^4 = Bn$; $R^6 = R^7 = H$; $R^1 = Bn$; Y = NEt; Q = H)

N-(3,4-Dihydro-2-ethyl-4-benzyl-2H-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From 33c (65 mg, 0.19 mmol) crude product (100 mg) was obtained as a mixture of diastereomers which were separated by preparative tlc on silica gel (50% ethyl acetate/

10 hexanes):

Isomer 1: 24 mg (27%); MS: 480 m/z (M+H)*; Isomer 2: 40 mg (44%); MS: 480 m/z (M+H)*.

Example 160

Synthesis of Aldehyde 35a ($R^4 = Pr; R^6 = R^7 = H; R^1 = Bn; Y = 15$ NEt; Q = H)

N-(3,4-Dihydro-2-ethyl-4-propyl-2H-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 34a (isomer 1; 95 mg, 0.22 mol) the title compound (94 mg, 99%) was obtained; MS: 430 m/z (M+H)⁺.

Example 161

Synthesis of Aldehyde 35b ($R^4 = Pr; R^6 = R^7 = H; R^1 = Bn; Y = NEt; Q = H$)

N-(3,4-Dihydro-2-ethyl-4-propyl-2H-1,2,4-benzothiadiazine-3-25 carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 34a (isomer 2; 83 mg, 0.19 mol) the title compound (42 mg, 51%) was obtained; MS: $430 \text{ m/z} \text{ (M+H)}^+$.

Example 162

30 Synthesis of Aldehyde 35c ($R^4 = Bn$; $R^6 = R^7 = H$; $R^1 = Bn$; Y = NEt; Q = H)

N-(3,4-Dihydro-2-ethyl-4-benzyl-2H-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure

I. From 34c (isomer 1; 22 mg, 0.05 mol) the title compound (21 mg, 95%) was obtained; MS: $478 \text{ m/z} (M-H)^{-}$.

Example 163

Synthesis of Aldehyde 35d ($R^4 = Bn$; $R^6 = R^7 = H$; $R^1 = Bn$; Y = 5 NEt; Q = H)

N-(3,4-Dihydro-2-ethyl-4-benzyl-2H-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From 34c (isomer 2; 35 mg, 0.07 mol) the title compound 0 (33 mg, 94%) was obtained; MS: 478 m/z (M+H) $^+$; Anal. Calc'd for $C_{26}H_{27}N_3O_4S.H_2O$: C, 63.01; H, 5.91; N, 8.48; S, 6.45; Found: C, 63.03; H, 5.52; N, 7.86; S, 5.79.

Example 164

Synthesis of Ketoamide 35e ($R^4 = H$; $R^6 = R^7 = H$; $R^1 = Bn$; Y = 15 NMe; Q = CONHBu)

3-((3,4-Dihydro-4H-2-methyl-2H-1,2,4-benzothiadiazine-3-carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I in which isobutyl chloroformate was used in place of HOBt/BOP. From 33e (40 mg, 0.17 mmol) and 3-amino-3-(S)-benzyl-2-oxo-N-butylpropanamide hydrochloride (56 mg, 0.20 mmol) the title compound (46 mg, 97%) was obtained as a pale yellow solid; MS: 471 m/z (M-H).

25 Example 165

Synthesis of Intermediate 36b ($R^6 + R^7 = OCH_2CH_2O$) 6,7-Ethylenedioxy-2*H*-1,2,4-benzothiadiazin-3-(4*H*)-one 1,1-dioxide

This compound was prepared according to the method of 30 Girard et. al., *J. Chem. Soc.*, *Perkin I*; 1979, 1043-1047, incorporated by reference herein in its entirety. To a solution of chlorosulfonyl isocyanate (5.6 g, 40.0 mmol) in nitroethane (35 ml) at -40°C was added dropwise over five minutes a solution of 1,4-benzodioxan-6-amine (5.0 g, 33.1

mmol) in nitroethane (5 ml). The mixture was allowed to warm to 0°C and stirred for one hour at which time anhydrous aluminum chloride was added. The mixture was warmed to 110°C and stirred for 30 minutes (copious HCl evolution) and sllowed to cool to ambient temperature before being added dropwise to a vigorously stirred ice-water (~150 g) mixture. The resulting precipitate was collected by suction filtration, washed with water and air-dried to give 4.4 g (52%) of the title compound as a light gray powder; MS: 255 m/z (M-H).

Example 166

Synthesis of Intermediate 37b ($R^6 + R^7 = OCH_2CH_2O$) 4,5-Ethylenedioxy-2-sulfanilamide hydrochloride

A mixture of 36b (1.0 g, 3.0 mmol) in concentrated 15 hydrochloric acid (40 ml) was stirred while being refluxed for 18 hours. The mixture was clarified by filtration and concentrated *in vacuo*. The residue was triturated with ether to give 1.0 g (96%) of the title compound as a tan solid; MS: 231 m/z (M+H-HCl)⁺.

20 Example 167

Synthesis of Intermediate 38a ($R^6 = R^7 = H$) Ethyl 2-(Oxalylamino)benzenesulfonamide

To a solution of o-sulfanilamide (10.5 g, 61 mmol) in THF chilled in an ice-water bath was added triethylamine (8.9 ml, 64 mmol) followed by slow dropwise addition of ethyl oxalylchloride (7.2 ml, 64 mmol) over 5-10 minutes. The mixture was allowed to slowly warm to ambient temperature over five hours. The precipitate was removed by filtration and the concentrated filtrate was recrystallized (ethyl acetate) to give 9.0 g (54%) of the title compound; MS: 273 m/z (M+H)*; Anal. Calc'd for C₁₀H₁₂N₂ O₅S: C, 44.12; H, 4.45; N, 10.29; S, 11.75; Found: C, 44.21; H, 4.13; N, 10.08; S, 11.75.

- 92 -

Example 168

Synthesis of Intermediate 38b (R⁶ + R⁷ = OCH₂CH₂O)

Ethyl 4,5-ethylenedioxy-2-(oxalylamino)benzenesulfonamide

This compound was prepared using the procedure described

for compound 38a. From compound 37b (1.0 g, 3.75 mmol)

there was obtained 385 mg (31%) of the title compound

following recrystallization (EtOAc); MS: 329 m/z (M-H)⁻.

Example 169

Synthesis of Intermediate 39a $(R^6 = R^7 = H)$

To a flask containing anhydrous ethanol (25 ml) was added NaH (60% suspension in mineral oil; 155 mg, 4.0 mmol). The mixture was stirred for 15 minutes and 38a (1.0 g, 3.7 mmol) was added in one portion. The mixture was stirred for two hours at which time tlc analysis showed complete consumption of starting material. Water (50 ml) was added, the pH was adjusted to 3-4 (4N HCl), and the ethanol was removed on the rotary evaporator. The precipitate was collected by suction filtration, washed with water and dried to constant weight to afford 0.66 g (71%) of the title compound; MS: 273 m/z (M+H).

Example 170

Synthesis of Intermediate 39b ($R^6 + R^7 = OCH_2CH_2O$) Ethyl 2H-6,7-ethylenedioxy-1,2,4-benzothiadiazine-3-25 carboxylate 1,1-dioxide

This compound was prepared using the procedure described for compound 39a. From compound 38b (330 mg, 1.0 mmol) there was obtained 173 mg (55%) of the title compound as a tan powder; MS: 311 m/z (M-H).

30 Example 171

Synthesis of Intermediate 40b ($R^6 + R^7 = OCH_2CH_2O$) 2H-6,7-Ethylenedioxy-1,2,4-benzothiadiazine-3-carboxylic acid 1,1-dioxide

This compound was prepared using the procedure described 35 for compound 40a. From compound 39b (170 mg, 0.54 mmol)

there was obtained 100 mg (65%) of the title compound as an off-white solid; MS: $283 \text{ m/z} (M-H)^{-}$.

Example 172

Synthesis of Intermediate 41b ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Q = H)

N-(2H-6,7-Ethylenedioxy-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninol 1,1-dioxide

This compound was prepared according to General Procedure G. From compound 40b (50 mg, 0.18 mol) there was obtained 10 23 mg (32%) of the title compound as a pale yellow solid; MS: 440 m/z (M+Na)*.

Example 173

Synthesis of Aldehyde 42a ($R^6 = R^7 = H$; $R^1 = Bn$; Y = NH; Q = H)

15 N-(2H-1,2,4-Benzothiadiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared (following hydrolysis of 39a) according to General Procedures G and I. From 41a (43 mg, 0.12 mol) the title compound (14 mg, 33%) was obtained; MS: 358 m/z (M+H).

Example 174

Synthesis of Aldehyde 42b ($R^6 + R^7 = OCH_2CH_2O$; $R^1 = Bn$; Y = NH; Q = H)

N-(2H-6,7-Ethylenedioxy-1,2,4-benzothiadiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide

This compound was prepared according to General Procedure I. From compound 41b (23 mg, 0.06 mol) there was obtained 22 mg (96%) of the title compound as an off-white solid; MS: 416 m/z $(M+H)^+$.

30 Example 175

Synthesis of Ketoamide 42c ($R^6 = R^7 = H$; $R^1 = Bn$; Y = NH; Q = CONHBu)

3-((2H-1,2,4-Benzothiadiazine-3-carbonyl)amino)-3-(S)-

benzyl-2-oxo-N-butylpropanamide 1,1-dioxide

This compound was prepared according to General Procedure I (in this case, isobutyl chloroformate was used in place of HOBt/BOP). From compound 40a (25 mg, 0.11 mmol) and 3-amino-3-(S)-benzyl-2-oxo-N-butylpropanamide hydrochloride (35 mg, 0.12 mmol) the title compound (9 mg, 18%) was obtained as an off-white solid following trituration of the crude (33 mg) product with ether; MS: 455 m/z (M-H)⁻.

Example 176

10 Synthesis of Ketoamide 42d (R⁶ + R⁷ = OCH₂CH₂O; R¹ = Bn; Y =
NH; Q = CONHBu)
3-((2H-6,7-Ethylenedioxy-1,2,4-benzothiadiazine-3carbonyl)amino)-3-(S)-benzyl-2-oxo-N-butylpropanamide 1,1dioxide

This compound was prepared according to General Procedure I (in which isobutyl chloroformate was used in place of HOBt/BOP. From compound 40b (40 mg, 0.14 mmol) and 3-amino-3-(S)-benzyl-2-oxo-N-butylpropanamide hydrochloride (48 mg, 0.17 mmol) the title compound (9 mg, 13%) was obtained as an off-white solid following recrystallization (ethyl acetate/hexanes); MS: 513 m/z (M-H).

Example 177

Synthesis of Intermediate 44 (R⁶ = R⁷ = H)
N-Benzoyl-1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid
This compound was prepared according to Hein et. al., J.
Amer. Chem. Soc.; 1962, 84, 4487-4494, incorporated by
reference herein in its entirety. Thus, a slurry of
1,2,3,4-tetrahydro-3-isoquinolinecarboxylic acid
hydrochloride (20.3 g, 95 mmol) in 2N NaOH (150 ml) was
treated with benzoyl chloride (13.4 ml, 114 mmol) dropwise
over 30 minutes. The mixture was stirred a further 1.5
hours, acidified to pH 2-3 (4N HCl), and extracted with
ethyl acetate. The organic phase was washed with water and
brine, dried over anhydrous magnesium sulfate, filtered and
concentrated to afford 16.4 g (61%) of the title compound

- 95 -

following recrystallization (acetone/water); MS: 280 m/z (M-H).

Example 178

Synthesis of Intermediate 45 $(R^6 = R^7 = H)$

5 N-Benzoyl-2-carboxyphenylalanine

This compound was prepared according to Maeda et. al., Chem. Pharm. Bull.; 1988, 36, 190-201, incorporated by reference herein in its entirety. A solution of compound 44 (15.4 g, 54.7 mmol) and potassium carbonate (7.6 g, 54.7 mmol) in water (450 ml) was treated portionwise with potassium permanganate (17.3 g, 109.5 mmol) over 10 minutes. The mixture was stirred for two hours, quenched with sodium bisulfite (6.5 g) and stirred for 5-10 minutes, and filtered through a bed of Celite. The filtrate was acidified to pH 2-3 and the resulting gummy precipitate was extracted with ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous magnesium sulfate, filtered and concentrated to afford 10.0 g (58%) of the title compound as a white solid; MS: 312 m/z (M-H).

20 Example 179

Synthesis of Intermediate 46 (R⁶ = R⁷ = H)
1-Oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
 A slurry of compound 45 (6.4 g, 20.4 mmol) in 6N HCl (250 ml) was stirred while being refluxed for 18 hours. The
25 resulting homogeneous solution was allowed to cool to ambient temperature to give a precipitate which was collected by suction filtration, washed with water and air-dried to afford 3.05 (78%) of the title compound; NMR (CDCl₃-CD₃OD) δ 3.01-3.31 (m, 2H), 4.29 (m, 1H), 7.18-7.41 (m, 3H),
30 7.94 (t, J = 8 Hz, 1H); MS: 190 m/z (M-H).

Example 180

Synthesis of Intermediate 47 ($R^6 = R^7 = H$) 2-Methyl-1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid A solution of compound 46 (1.5 g, 7.8 mmol) in DMF (70 ml) was treated with iodomethane (9.7 ml, 157 mmol) and silver(I) oxide (5.5 g, 23.5 mmol) and stirred in the dark for seven days. The mixture was filtered through Celite*, 5 the DMF was removed in vacuo and the residue was partitioned between ethyl acetate and water. The organic phase was washed with 10% aqueous sodium thiosulfate, water and brine, dried over anhydrous magnesium sulfate, filtered and concentrated to give 0.96 g (56%) of methyl 2-methyl-1-oxo-10 1,2,3,4-tetrahydroisoquinoline-3-carboxylate following flash chromatography on silica gel (30% ethyl acetate/hexanes); NMR (CDCl₃) δ 3.17 (s, 3H), 3.23-3.50 (m, 2H), 3.61 (s, 3H), 4.21 (m, 1H), 7.12 (d, J = 7 Hz, 1H), 7.32-7.38 (m, 2H),

This compound was saponified according to the procedure for 23a. From methyl 2-methyl-1-oxo-1,2,3,4-tetrahydroisoquinoline-3-carboxylate (0.95 g, 4.3 mmol) the title compound (0.66 g, 74%) was obtained; MS: 204 m/z (M-H).

20 Example 181

8.06 (d, J = 7 Hz, 1H).

Synthesis of Intermediate 48 ($R^6 = R^7 = H$; $R^1 = Bn$; Y = NH) N-(1-Oxo-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-L-phenylalaninol

This compound was prepared according to General Procedure 25 G. From compound 46 (200 mg, 1.05 mmol) crude product (353 mg) was obtained as a mixture of diastereomers which were partially separated by preparative tlc on silica gel (10% MeOH/CH₂Cl₂):

Isomer 1: 30 mg (9%); MS: 325 m/z $(M+H)^+$; 50:50 mix by 30 HPLC

Isomer 2: 41 mg (13%); MS: 325 m/z $(M+H)^+$; 92:8 mix by HPLC

Example 182

Synthesis of Intermediate 49c ($R^6 = R^7 = H$; $R^1 = Bn$; $Y = NCH_3$)
35 N-(1-Oxo-2-methyl-1,2,3,4-tetrahydroisoquinoline-3-

carbonyl)-L-phenylalaninol

This compound was prepared according to General Procedure G. From compound 47 (250 mg, 1.22 mmol) crude product (486 mg) was obtained as a mixture of diastereomers which were 5 separated by preparative tlc on silica gel (5% MeOH/CH,Cl₂):

Isomer 1: 114 mg (28%); MS: 339 m/z (M+H)*;
Isomer 2: 107 mg (26%); MS: 339 m/z (M+H)*.

Example 183

Synthesis of Aldehyde 50a ($R^6 = R^7 = H$; $R^1 = Bn$; Y = NH)

10 N-(1-Oxo-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-Lphenylalaninal

This compound was prepared according to General Procedure I. From compound 48 (isomer 1; 28 mg, 0.09 mol) the title compound (13 mg, 46%) was obtained; MS: 323 m/z (M+H)*.

15 Example 184

Synthesis of Aldehyde 50b ($R^6 = R^7 = H$; $R^1 = Bn$; Y = NH) N-(1-Oxo-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-L-phenylalaninal

This compound was prepared according to General Procedure 20 I. From compound 48 (isomer 2; 37 mg, 0.11 mol) the title compound (22 mg, 59%) was obtained; MS: 323 m/z (M+H).

Example 185

Synthesis of Aldehyde 50c (R⁶ = R⁷ = H; R¹ = Bn; Y = NCH₃)
N-(1-Oxo-2-methyl-1,2,3,4-tetrahydroisoquinoline-325 carbonyl)-L-phenylalaninal

This compound was prepared according to General Procedure I. From compound 49c (isomer 1; 43 mg, 0.13 mol) the title compound (22 mg, 51%) was obtained; MS: 337 m/z (M+H)*.

Example 186

30 Synthesis of Aldehyde 50d (R⁶ = R⁷ = H; R¹ = Bn; Y = NCH₃)
N-(1-Oxo-2-methyl-1,2,3,4-tetrahydroisoquinoline-3carbonyl)-L-phenylalaninal

This compound was prepared according to General Procedure

I. From compound 49c (isomer 2; 39 mg, 0.12 mol) the title compound (30 mg, 77%) was obtained; MS: 337 m/z (M+H).

Example 187

Synthesis of Bisulfite Addition Product of Aldehyde 12s
5 N-(3,4-Dihydro-6,7-ethylenedioxy-2-ethyl-2H-1,2-benzothiazine-3-carbonyl)-L-phenylalaninal 1,1-dioxide,
bisulfite addition compound

To a solution of aldehyde 12s (Example 90) (200 mg, 0.45 mmol) in ethyl acetate (2 ml) was added water (1 ml) and sodium bisulfite (52 mg, 0.49 mmol). The mixture was stirred vigorously for 1.5 hours at ambient temperature. The phases were separated and the organic phase was stirred for several minutes with water (1 ml). The combined aqueous phases were lyophilized to afford 214 mg (87%) of the title compound as a white solid; MS: 525 m/z (M-Na). IC₅₀ (calpain), 8 nM.

Example 188

Inhibition of Cysteine Protease Activity

To evaluate inhibitory activity, stock solutions (40 times 20 concentrated) of each compound to be tested were prepared in 100% anhydrous DMSO and 5 mL of each inhibitor preparation were aliquoted into each of three wells of a 96-well plate. Calpain I, prepared by a modification of the method of W. J. Lee et al. (Biochem. Internatl. 22: 163-171 (1990), 25 incorporated by reference herein in its entirety), was diluted into assay buffer (i.e., 50mM Tris, 50mM NaCl, 1mM EDTA, 1mM EGTA, and 5mM-mercaptoethanol, pH 7.5 including 0.2mM Succ-Leu-Tyr-MNA (Enzyme Systems Products, Dublin, CA) and 175 mL aliquoted into the same wells containing the 30 independent inhibitor stocks as well as to positive control wells containing 5 mL DMSO, but no compound. To start the reaction, 20 mL of 50 mM CaCl₂ in assay buffer was added to each of the wells of the plate, excepting three, which were used as background signal baseline controls. Substrate 35 hydrolysis was monitored every 5 minutes for a total of 30

minutes using a Fluoroskan II fluorescence plate reader. Substrate hydrolysis in the absence of inhibitor was linear for up to 15 minutes.

Inhibition of calpain I activity was calculated as the 5 percent decrease in the rate of substrate hydrolysis in the presence of inhibitor relative to the rate in its absence. Comparison between the inhibited and control rates was made within the linear range for substrate hydrolysis. For screening, compounds were tested at 10 mM. Compounds having 10 50% inhibition at 10 mM were considered active. The IC50s of inhibitors (concentration yielding 50% inhibition) were determined from the percent decrease in the rates of substrate hydrolysis in the presence of five to seven different concentrations of the test compound. The results 15 were plotted as percent inhibition versus log inhibitor concentration, and the IC50 was calculated from linear regression of the data. Results are presented in Tables II-VII and in Example 187.

Table II

$$\mathbb{R}^{6} \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}}^{R} \underbrace{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}}^{R^{1}} Q$$

Cpd #	R ⁶	R ⁷	R¹	Y	Q	IC50 (nM)
12a	OCH ₃	OCH ₃	I-Bu	. 0	H	130*
12b	OCH ₃	OCH ₃	Bn	0	H	51*
12c	OCH ₃	OCH ₃	Bn	NH	H	~800ª
12d	OCH ₃	OCH ₃	Bn	NH	Н	~700 ^b
12e	OCH₃	OCH₃	Bn	NCH ₃	Н	200ª
12f	OCH ₃	OCH₃	Bn	NCH ₃	Н	38 ^b
12g	OCH₃	OCH ₃	Bn	NBn	Н	~1000ª
12h	OCH ₃	OCH ₃	Bn	NBn	Н	150 ^b
12i	H	H	Bn	NCH ₃	Н	28ª
12j	H	H	Bn	NCH ₃	Н	110 ^b
12k	F	Н	Bn	NCH ₃	H	28ª
121	Cl	Cl	Bn	NCH ₃	H	21ª
12m	Cl	Cl	Bn	NCH ₃	H	7 ^b
12n	Cl	H	Bn	NiBu	Н	~200ª
120	Cl	H	Bn	NiBu	H	~200 ^b
12p	Cl	Н	Bn	NCH ₃	H	5ª
12q	Cl	H	Bn	NCH ₃	Н	15 ^b
12r	OCH ₂	CH ₂ O	Bn	NCH ₃	H	24*
12s	OCH ₂	CH ₂ O	Bn	NEt	Н	7ª
12t	OCH ₂	CH ₂ O	Bn	NEt	Н	33 ^b
12u	OCH ₂	CH ₂ O	Bn	NiPr	Н	30*
12v	OCH ₂	CH ₂ O	iBu	NEt	Н	~300ª
12w	OCH ₂	CH ₂ O	iBu	NEt	Н	37 ^b
12x	OCH₂	CH ₂ O	(CH ₂) ₄ NHSO ₂ Ph	NCH ₃	Н	36ª
12y	OCH ₂	CH ₂ O	(CH ₂) ₄ NHSO ₂ Ph	NCH ₃	Н	107 ^b
12z	Morpho	H	Bn	NCH ₃	Н	~500ª
	lin-4- yl					
12aa	Morph o- lin-4- yl	Н	Bn	NCH ₃	Н	30 _p

	13	OCH ₂ CH ₂ O		Bn	NEt	CO ₂ CH ₃	~1000 *
	14A	Cl	H	Bn	NCH ₃	CONHET	~1000
	14B	OCH ₂	CH ₂ O	iBu	NEt	CONHBu	~1000ª
l	14C	OCH ₂	CH ₂ O	iBu 、	NEt	CONHBu	~500 ^b

* Mixture of diastereomers; a,b Single diastereomers

Table III

$$\begin{array}{c|c}
R^6 & & \\
R^7 & & & \\
0 & 0 & 0
\end{array}$$

$$R^6 - R^7 = -OCH_2CH_2O-$$

 $R^1 = Bn$

		K = Bii	
Cpd #	Y	Q	IC50
			(nM)
14D	NEt	CONHET	340*
14E	NEt	CONHBu	50ª
14F	NEt	CONHBu	~300 ^b
14G	NEt	CONHBu	189*
14H	NEt	CONHCH2CH2OCH3	~200*
14I	NEt	CONHCH (CH ₃) ₂	205*
14J	NEt	CONH (CH ₂) ₄ CH ₃	~150*
14K	NEt	CONHCH₂Ph	81*
14L	NEt	CONHCH2CH2Ph	63*
14M	NEt	CONHCH ₂ CH=CH ₂	~200*
14N	NEt	CONH(CH ₂) ₃ -(imidazol-1-yl)	~5000*
140	NEt	CONH(CH ₂) ₃ -(2-ketopyrrolidin-1-	~500*
		y1)	
14P	NEt	CONH(CH ₂) ₃ (morpholin-4-yl)	195*
14Q	NEt	CONHCH2(pyridin-2-yl)	170*
14R	NEt	CONHCH2-cyclopropane	286*
14S	NEt		
14T	NEt	CONHCH ₂ CH ₂ NHSO ₂ (4-NO ₂ -Ph)	47*
14U	NEt	CONH(CH2)3NHSO2(4-NO2-Ph)	50*
14V	NEt	CONHCH ₂ CH ₂ NHSO ₂ (3,4-Cl ₂ -Ph)	56*

14W	NEt	CONH(CH2)3NHSO2(3,4-Cl2-Ph)	56*
14X	NEt	CONHCH2CH2NHSO2Ph	40*
14Y	NEt	CONHCH ₂ CH ₂ NHSO ₂ (5-(2-	20*
		pyridinyl)-	
		thiophen-2-yl)	<u> </u>
14Z	NEt	CONH $(CH_2)_3$ NHSO ₂ $(4-F-Ph)$	50*
14AA	NEt	CONH (CH ₂) 3NHSO ₂ Ph	35*
14AB	NEt	CONHCH ₂ -(pyridin-4-yl)	240*
14AC	NEt	CONHCH ₂ CH ₂ NHSO ₂ (4-F-Ph)	29*
14AD	NH	CONHBu	~200*
14AE	NH	CONHCH2CH2NHSO2Ph	76*

* Mixture of diastereomers; a,b Single diastereomers

Table IV

Cpd #	R⁴	R ⁶	R ⁷	R ¹	Y	Q	IC50 (nM)
26a	Н	Cl	Cl	Bn	NCH ₃	Н	15
26b	H	OCH ₂	CH₂O	Bn	NCH ₃	H	6
26c	H	OCH ₂	CH ₂ O	Bn	NEt	Н	8
26d	OCH ₃	Н	Н	Bn	NCH ₃	Н	37
27e	H	OCH ₂	CH₂O	Bn	NCH ₃	CONHBu	210
27f	H	OCH ₂	CH ₂ O	Bn	NEt	CONHBu	155
27g	OCH ₃	Н	H	Bn	NCH ₃	CONHBu	900
27h	OH	H	Н	Bn	NCH ₃	CONHBu	~10,000

Table V

$$R^1 = Bn; R^6 = H; R^7 = H$$

Cpd #	R ⁹	R ⁴	Q	IC50 (nM)
35a	Et	Pr	Н	~1,000ª
35b	Et	Pr	Н	~3,000 ^b
35c	Et	Bn	Н	~10 ₄ 000
35d	Et	Bn	Н	~1,000 ^b
35e	CH ₃	H	CONHBu	~2,000*

* Mixture of diastereomers; a,b Single diastereomers

Table VI

$$\begin{array}{c} R^6 \\ N \\ N \\ NH \\ O \\ NH \\ O \\ \end{array}$$

$$R^1 = Bn$$

Cpd #	R ⁶	R"	Q	IC50 (nM)
42a	Н	H	H	83
42b	OCH ₂ CH ₂ O		Н	28
42c	Н	Н	CONHBu	~5,000
42d	OCH ₂ CH ₂ O		CONHBu	~10,000

Table VII

$$R^1 = Bn; R^6 = H; R^7 = H$$

Cpd #	R ⁹	Q	IC50 (nM)
50a	H	Н	~5000ª
50b	. H	Н	~5000 ^b
50c	CH ₃	Н	~1000ª
50d	CH,	Н	85 ^b

a,b Single diastereomers

Example 189 Synthesis of 2,3-dihydrobenzothiazole Derivatives

2,3-Dihydrobenzothiazole derivatives (compounds of Formula I, where j = 0) can be prepared from 2,3-dihydrobenzothiazole-3-carboxylates according to the methods specified in Scheme I and Examples 1-44. These intermediates can be formed by reduction of 3-hydroxy-2,3-dihydrobenzothiazole-3-carboxylates, described by J. Wrobel and A. Dietrich [Heterocycles 38, 1823 -1838 (1994), incorporated by reference herein in its entirety] with reagents including sodium cyanoborohydride, sodium borohydride, zinc-acetic acid, or catalytic hydrogenation by methods known to those skilled in the art. Alternatively, 2,3-dihydrobenzothiazole-3-carboxylates may be prepared by treating N-alkylbenzenesulfonamides with a strong base such as butyllithium followed by glyoxylic ester by a

modification of the method of Wrobel and Dietrich.

-3-carboxylate.

Example 190 Synthesis of 4,5-dihydrobenzothiazepine Derivatives

4,5-Dihydrobenzothiazepine derivatives (compounds of Formula I, where j = 2) can be prepared from 4,5-5 dihydrobenzothiazepine-3-carboxylates according to the methods specified in Scheme I and Examples 1-44. These intermediates can be synthesized by modification of previously reported methods. For example, 3-(mchlorophenyl) propional dehyde (prepared according to the 10 method of H. Hashizume et al., Chem. Pharm. Bull. 42, 512 -520 (1994), incorporated by reference herein in its entirety), can be transformed into m-chlorohomophenylalanine by reaction with sodium cyanide and ammonium carbonate followed by hydrolysis. Treatment of m-15 chlorohomophenylalanine with chlorosulfonic acid by a modification of the procedure described by H. Zenno and T. Mizutani (Japanese patent application No. 7004990, 1966; Chem. Abstr. 72, 111525, incorporated by reference herein in its entirety) affords 7-chloro-4,5-dihydrobenzothiazepine-3-Alternatively, 2-(aminosulfonyl)phenyl-20 carboxylate. propanoic acid, described by P. Catsoulacos and C. Camoutsis (J. Heterocycl. Chem. 13, 1309 - 1314 (1976), incorporated by reference herein in its entirety), may be reduced to the corresponding aldehyde, treated with cyanide, hydrolyzed 25 with acid or base, and cyclized by the procedure of Catsoulacos and Camoutsis to give 4,5-dihydrobenzothiazepine

It is intended that each of the patents, applications, printed publications, and other published documents mentioned or referred to in this specification be herein incorporated by reference in their entirety.

As those skilled in the art will appreciate, numerous changes and modifications may be made to the preferred embodiments of the invention without departing from the spirit of the invention. It is intended that all such variations fall within the scope of the invention.

WHAT IS CLAIMED IS:

1. A compound having the formula:

wherein:

20

A-B represents one, two, or three carbon atoms or nitrogen atoms, optionally connected by single bonds or one double bond, optionally substituted with one or more groups selected from the group consisting of R³, R⁴, OR³, OR⁴, R^{4a}, and OR^{4a}, with the proviso that the number of nitrogen atoms is 0, 1 or 2;

R¹ and R² are each independently hydrogen, alkyl having from one to about 14 carbons, cycloalkyl having from 3 to about 10 carbons, aryl having from about 6 to about 14 carbons, heteroaryl having from about 6 to about 14 ring atoms, aralkyl having from about 7 to about 15 carbons, heteroaralkyl, or an optionally protected natural or unnatural side chain of an amino acid, said alkyl, cycloalkyl, aryl, and heteroaryl groups being optionally substituted with one or more K groups;

R³, R⁴ and R^{4a} are each independently hydrogen, lower alkyl, or a natural or unnatural side chain of an optionally protected amino acid, said alkyl groups being optionally substituted with an aryl or heteroaryl group;

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen, alkyl having from one to about 14 carbons wherein said alkyl groups are optionally substituted with one or more K groups, alkoxy having from one to about 10 carbons, halogen, alkoxycarbonyl, carboxyl, hydroxyl, heterocyclic, or amino optionally substituted with 1 to 3 aryl or lower alkyl

groups;

or any two adjacent R^5 , R^6 , R^7 and R^8 groups taken together with any intervening atoms of the benzene ring to which they are attached form an alicyclic, aromatic,

5 heterocyclic, or heteroaryl ring having 5 to 8 ring atoms;

K is halogen, lower alkyl, lower alkenyl, aryl, heterocyclic, guanidino, nitro, alkoxycarbonyl, alkoxy, hydroxyl, carboxyl, arylaminosulfonyl,

heteroarylaminosulfonyl, alkylaminosulfonyl, or amino
10 optionally substituted with an alkylsulfonyl, arylsulfonyl,
or heteroarylsulfonyl group, or with 1 to 3 aryl or lower
alkyl groups, said alkyl, aryl, and heteroaryl groups being
optionally substituted with one or more G groups;

G is the same as K;

Y is O, NH, NR⁹ or CHR⁹;

Z is $S(=0)_2$, S(=0), S, or C(=0);

j is 0, 1 or 2;

Q is hydrogen, $C(=0)NHR^9$, $C(=0)OR^9$, $CH=N_2$, or CH_2R^{10} ;

R° is hydrogen, alkyl having from one to about 10 20 carbons, said alkyl groups being optionally substituted with one or more K groups, aryl having from about 6 to about 14 carbons, or aralkyl having from about 7 to about 15 carbons;

 R^{10} is aryloxy, heteroaryloxy, L, halogen, or has the formula O-M, wherein M has the structure:

25

wherein:

R is N or CR11;

W is a double bond or a single bond;

30 D is C=O or a single bond;

E and F are independently R¹², R¹³, or J;

or E and F taken together comprise a joined moiety, said joined moiety being an aliphatic carbocyclic ring optionally substituted with J and having from 5 to 7 carbons, an aromatic carbocyclic ring optionally substituted with J and having from 5 to 7 carbons, an aliphatic heterocyclic ring optionally substituted with J and having from 5 to 7 atoms, or an aromatic heterocyclic ring optionally substituted with J and having from 5 to 7 atoms, said aliphatic heterocyclic ring or said aromatic

R¹¹, R¹², and R¹³ are independently H, alkyl having from 1 to 10 carbons, heteroaryl having from 1 to 10 carbons, alkanoyl having from 1 to 10 carbons, or aroyl, wherein said alkyl, heteroaryl, alkanoyl and aroyl groups are optionally substituted with J;

10 heterocyclic ring each having from 1 to 4 heteroatoms;

J is halogen, $C(=0)OR^{14}$, $R^{14}OC(=0)$, $R^{14}OC(=0)NH$, OH, CN, NO_2 , $NR^{14}R^{15}$, $N=C(R^{14})R^{15}$, $N=C(NR^{14}R^{15})_2$, SR^{14} , OR^{14} , phenyl, napthyl, heteroaryl, or a cycloalkyl group having from 3 to 8 carbons;

20 R¹⁴ and R¹⁵ are independently H, alkyl having from 1 to 10 carbons, aryl, or heteroaryl, wherein said alkyl, aryl and heteroaryl groups are optionally substituted with K;

L is a phosphorus-containing enzyme reactive group having the formula:

$$-(O)_b - P - (O)_m - R^{16}$$

wherein:

25

m, n, and b are each independently 0 or 1;
 R¹⁶ and R¹⁷ are each independently hydrogen, lower
 alkyl optionally substituted with K, aryl optionally
30 substituted with K, or heteroaryl optionally substituted
 with K;

or R^{16} and R^{17} taken together with $-(0)_n - P(=0) - (0)_m$

- 109 -

can form a 5-8 membered ring containing up to 3 hetero atoms;

or R^{16} and R^{17} taken together with $-(O)_n-P(=O)-(O)_m-C$ can form a 5-8 membered ring optionally substituted with K; or a pharmaceutically acceptable salt or bisulfite addition product thereof.

- 2. The compound of claim 1 wherein A-B is $-\left[CH\left(R^{4}\right)\right]_{j}-C\left(R^{3}\right)-,\ -C\left(R^{4}\right)=C-,\ -CH\left(OR^{4}\right)-C\left(R^{3}\right)-,\ -C\left(OR^{4}\right)=C-,\\ -N\left(R^{4}\right)-C\left(R^{3}\right)-,\ -N=C-,\ -C\left(R^{4a}\right)=C\left(R^{4}\right)-C\left(R^{3}\right)-,\ or$ $10\ -CH\left(R^{4a}\right)-C\left(R^{4}\right)=C-\ where\ j\ is\ 0,\ 1,\ or\ 2.$
 - 3. The compound of claim 2 wherein A-B is $-\left[CH\left(R^4\right)\right]_j-C\left(R^3\right)-\text{ where j is 1, }-C\left(R^4\right)=C^-,\text{ }-N\left(R^4\right)-C\left(R^3\right)-,\text{ or }-N=C^-.$
- $\mbox{4.} \qquad \mbox{The compound of claim 3 wherein R^3 and R^4 are} \\ \mbox{15 each H.}$
 - $\label{eq:compound} \textbf{5.} \quad \text{The compound of claim 1 wherein Z is SO_2 or $C(=O)$}\,.$
 - 6. The compound of claim 5 wherein Z is SO₂.
- 7. The compound of claim 1 wherein R^2 , R^5 and R^8 20 are each H.
 - 8. The compound of claim 1 wherein \mathbb{R}^1 is alkyl or aralkyl.
 - 9. The compound of claim 8 wherein \mathbb{R}^1 is *i*-butyl or benzyl.
- 25 10. The compound of claim 1 wherein R^6 and R^7 are independently H, alkoxy, halogen, or heterocyclic, or R^6 and R^7 taken together form -O-CH₂-CH₂-O-.

- 110 -

- 11. The compound of claim 10 wherein R^6 and R^7 are independently H, -OCH₃, F, Cl, or morpholin-4-yl, or R^6 and R^7 taken together form -O-CH₂-CH₂-O-.
- 12. The compound of claim 1 wherein Q is H, 5 C(=O)NHR9, or C(=O)OR9, where R9 is alkyl or alkyl substituted with K.
 - 13. The compound of claim 1 wherein Y is O, NH, NR^9 or CHR^9 , where R^9 is alkyl or aralkyl.
- 14. The compound of claim 13 wherein Y is NR⁹ or 10 CHR⁹, where R⁹ is methyl ethyl, propyl, *i*-butyl or benzyl.
- 15. The compound of claim 2 wherein A-B is -[CH(R⁴)]_j-C(R³)-, -C(R⁴)=C-, -N(R⁴)-C(R³)-, or -N=C-; Z is SO₂ or C(=O); R², R⁵ and R⁸ are each H; R¹ is alkyl or aralkyl; R⁶ and R⁷ are independently H, alkoxy, halogen, or 15 heterocyclic, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-; Q is H, C(=O)NHR⁹, or C(=O)OR⁹, where R⁹ is alkyl or alkyl substituted with K; Y is O, NH, NR⁹ or CHR⁹, where R⁹ is alkyl or aralkyl.
- 20 16. The compound of claim 15 wherein Z is SO₂.
 - 17. The compound of claim 15 wherein \mathbb{R}^1 is *i*-butyl or benzyl.
- 18. The compound of claim 15 wherein R^6 and R^7 are independently H, -OCH₃, F, Cl, or morpholin-4-yl, or R^6 and R^7 taken together form -O-CH₂-CH₂-O-.
 - 19. The compound of claim 15 wherein Y is NR^9 or CHR^9 , where R^9 is methyl ethyl, propyl, *i*-butyl or benzyl.
 - \$20.\$ The compound of claim 15 wherein A-B is ${\rm ^{-}CH_{2}\text{-}CH^{-}}.$

PCT/US97/20782

21. The compound of claim 1 having the formula:

- 111 -

wherein:

5

 R^1 is alkyl, alkyl substituted with K, or aralkyl; R^6 and R^7 are independently H, alkoxy, halogen, or heterocyclic, or R^6 and R^7 taken together form -O-CH₂-CH₂-O-; Q is H, C(=0)NHR⁹, or C(=0)OR⁹, where R^9 is alkyl; and

Y is O, NH or NR9 where R9 is alkyl or aralkyl.

- 10 22. The compound of claim 21 wherein R¹ is *i*-butyl, benzyl, or alkyl substituted with phenylsulfonylamino.
- 23. The compound of claim 21 wherein R⁶ and R⁷ are independently H, OCH₃, F, Cl., or morpholin-4-yl, or R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-.
 - 24. The compound of claim 21 wherein Q is $C(=0) \, NHR^9$, or $C(=0) \, OR^9$, where R^9 is methyl, ethyl, or butyl.
- 25. The compound of claim 21 wherein Y is O, NH or NR, wherein R is methyl, ethyl, i-propyl, i-butyl or 20 benzyl.
 - 26. The compound of claim 21 wherein R^1 , R^6 , R^7 , Y and Q have the values shown in the horizontal rows of the following table:

	R ⁶	R ⁷	R ¹	Y	Q
	OCH ₃	OCH ₃	i-Bu	0	Н
	OCH ₃	OCH ₃	Bn	0	Н
	OCH ₃	OCH ₃	Bn	NH	Н
5	OCH ₃	OCH ₃	Bn	NCH ₃	H
	OCH ₃	OCH ₃	Bn	NBn	H
	Н	Н	Bn	NCH ₃	H
	F	H	Bn	NCH ₃	Н
	Cl	Cl	Bn	NCH ₃	Н
10	Cl	Н	Bn	NiBu	Н
	Cl	H	Bn	NCH ₃	Н
	OCH ₂ C	H ₂ O	Bn	NCH ₃	H
	OCH ₂ C	H ₂ O	Bn	NEt	Н
	OCH ₂ C	H ₂ O	Bn	NiPr	Н
15	OCH ₂ C	H ₂ O	iBu	NEt	Н
	OCH ₂ C	H₂O	(CH ₂) 4NHSO ₂ Ph	NCH₃	Н
	Morpho-	Н	Bn	NCH ₃	Н
	lin-4-				
	yl				
20	OCH ₂ C	H ₂ O	Bn	NEt	CO ₂ CH ₃
	Cl	Н	Bn	NCH ₃	CONHET
	OCH ₂ C	H ₂ O	iBu	NEt	CONHBu

27. The compound of claim 1 having the formula:

25 wherein:

R1 is benzyl;

R⁶ and R⁷ taken together form -O-CH₂-CH₂-O-;

Y is N-H or NR wherein R is ethyl; and

Q is $C(=0)NHR^9$ where R^9 is alkyl or alkyl

30 substituted with K.

28. The compound of claim 27 wherein Q is CONHEt,

- 113 -

CONHBu, CONHCH₂CH₂OCH₃, CONHCH(CH₃)₂, CONH(CH₂)₄CH₃, CONHCH₂Ph, CONHCH₂CH=CH₂, CONH(CH₂)₃-(imidazol-1-yl), CONH(CH₂)₃-(2-ketopyrrolidin-1-yl), CONH(CH₂)₃(morpholin-4-yl), CONHCH₂(pyridin-2-yl), CONHCH₂-cyclopropane,

5 CONHCH₂CH₂NHSO₂CH₃, CONHCH₂CH₂NHSO₂(4-NO₂-Ph), CONH(CH₂)₃NHSO₂(4-NO₂-Ph), CONHCH₂CH₂NHSO₂(3,4-Cl₂-Ph), CONH(CH₂)₃NHSO₂(3,4-Cl₂-Ph), CONHCH₂CH₂NHSO₂Ph, CONHCH₂CH₂NHSO₂(5-(2-pyridinyl)-thiophen-2-yl), CONH(CH₂)₃NHSO₂(4-F-Ph), CONH(CH₂)₃NHSO₂Ph, CONHCH₂-(pyridin-4-yl), or CONHCH₂CH₂NHSO₂(4-F-Ph).

29. The compound of claim 27 wherein Y and Q have the values shown in the horizontal rows of the following table:

	Y	Q
15	NEt	CONHET
	NEt	CONHBu
	NEt	CONHCH ₂ CH ₂ OCH ₃
	NEt	CONHCH (CH ₃) ₂
	NEt	CONH (CH ₂) ₄ CH ₃
20	NEt	CONHCH₂Ph
ĺ	NEt	CONHCH ₂ CH ₂ Ph
	NEt	CONHCH ₂ CH=CH ₂
	NEt	CONH(CH ₂) ₃ -(imidazol-1-yl)
	NEt	CONH(CH ₂) ₃ -(2-ketopyrrolidin-
		1-yl)
25	NEt	CONH(CH ₂) ₃ (morpholin-4-yl)
ĺ	NEt	CONHCH ₂ (pyridin-2-yl)
ĺ	NEt	CONHCH2-cyclopropane
]	NEt	CONHCH ₂ CH ₂ NHSO ₂ CH ₃
	NEt	CONHCH ₂ CH ₂ NHSO ₂ (4-NO ₂ -Ph)
30	NEt	CONH (CH ₂) ₃ NHSO ₂ (4-NO ₂ -Ph)
	NEt	CONHCH ₂ CH ₂ NHSO ₂ (3,4-Cl ₂ -Ph)
	NEt	CONH (CH2)3NHSO2 (3, 4-Cl2-Ph)
:	NEt	CONHCH2CH2NHSO2Ph
	NEt	CONHCH ₂ CH ₂ NHSO ₂ (5-(2-
		pyridinyl)-
		thiophen-2-yl)
35	NEt	CONH (CH ₂) 3NHSO ₂ (4-F-Ph)

NEt	CONH (CH ₂) 3NHSO ₂ Ph
NEt	CONHCH ₂ -(pyridin-4-yl)
NEt	CONHCH ₂ CH ₂ NHSO ₂ (4-F-Ph)
NH	CONHBu
NH	CONHCH2CH2NHSO2Ph

30. The compound of claim 1 having the formula:

wherein:

R1 is benzyl;

10 R^6 and R^7 are independently H or halogen, or R^6 and R^7 taken together form -O-CH₂-CH₂-O-;

R4 is H, alkoxy, or hydroxy;

Y is NR9 wherein R9 is alkyl; and

Q is H or C(=O)NHR9 where R9 is alkyl.

- The compound of claim 30 wherein Q is H or CONHBu.
 - 32. The compound of claim 30 wherein R^6 and R^7 are independently H or Cl, or R^6 and R^7 taken together form $-O-CH_2-CH_2-O-$.
- 20 33. The compound of claim 30 wherein R⁴ is H, methoxy, or hydroxy.
 - 34. The compound of claim 30 wherein Y is NR^9 wherein R^9 is methyl or ethyl.

10

35. The compound of claim 30 wherein Y, Q, R^1 , R^4 , R^6 and R^7 have the values shown in the horizontal rows of the following table:

					· ·
R ⁴	R ⁶	R ⁷	R ¹	Y	Q
Н	Cl	Cl	Bn	NCH ₃	Н
н	OCH ₂	CH ₂ O	Bn	NCH ₃	Н
Н	OCH ₂		Bn	NEt	H
OCH ₃	Н	H	Bn	NCH ₃	H
Н	OCH ₂	CH ₂ O	Bn	NCH ₃	CONHBu
H		CH ₂ O	Bn	NEt	CONHBu
OCH ₃	Н	Н	Bn	NCH ₃	CONHBu
OH	Н	Н	Bn-	NCH ₃	CONHBu

36. The compound of claim 1 having the formula:

15 wherein:

20

R1 is benzyl;

R⁶ and R⁷ are each H;

R4 is H, alkyl, or aralkyl;

R⁹ is alkyl; and

Q is H or C(=O)NHR9 where R9 is alkyl.

37. The compound of claim 36 wherein \mathbb{R}^4 is H, propyl, or benzyl.

- \$38.\$ The compound of claim 36 wherein Q is H or $$25\,$ CONHBu.
 - 39. The compound of claim 36 wherein R^9 is

methyl or ethyl.

40. The compound of claim 36 wherein R^4 , R^9 and Q have the values shown in the horizontal rows of the following table:

5

R ⁹	R ⁴	Q
Et	Pr	Н
Et	Bn	Н
CH ₃	Н	CONHBu

41. The compound of claim 1 having the formula:

10

15

wherein:

R1 is benzyl;

 R^6 and R^7 are each H, or R^6 and R^7 taken together form $\text{-O-CH}_2\text{-CH}_2\text{-O-};$ and

Q is H or C(=0) NHR 9 where R^9 is alkyl.

- 42. The compound of claim 41 wherein Q is H or CONHBu.
- 43. The compound of claim 41 wherein R^6 , R^7 and Q 20 have the values shown in the horizontal rows of the following table:

R ⁶ R ⁷		Q		
н н		Н		
ОСН	₂ CH ₂ O	Н		
н н		CONHBu		
OCH ₂ CH ₂ O		CONHBu		

44. The compound of claim 1 having the formula:

$$\begin{array}{c|c}
R^{6} & & & \\
R^{7} & & & \\
C & & \\$$

wherein:

 $\mathrm{CH_3}$.

10

R1 is benzyl;

R⁶ and R⁷ are each H;

Q is H; and

R9 is H or alkyl.

45. The compound of claim 44 wherein R9 is H or

15 46. The compound of claim 1 having the formula:

wherein:

20

30

- 118 -

PCT/US97/20782

R¹ and R² are each independently hydrogen, alkyl having from one to about 14 carbons, cycloalkyl having from 3 to about 10 carbons, aryl having from about 6 to about 14 carbons, heteroaryl having from about 6 to about 14 ring atoms, aralkyl having from about 7 to about 15 carbons, heteroaralkyl, or an optionally protected natural or unnatural side chain of an amino acid, said alkyl, cycloalkyl, aryl, and heteroaryl groups being optionally substituted with one or more K groups;

 ${\rm R}^3$ and ${\rm R}^4$ are each independently hydrogen, lower alkyl, or a natural or unnatural side chain of an optionally protected amino acid, said alkyl groups being optionally substituted with an aryl or heteroaryl group;

R⁵, R⁶, R⁷ and R⁸ are each independently hydrogen,
15 alkyl having from one to about 14 carbons wherein said alkyl
groups are optionally substituted with one or more K groups,
alkoxy having from one to about 10 carbons, halogen,
alkoxycarbonyl, carboxyl, hydroxyl, or amino optionally
substituted with 1 to 3 aryl or lower alkyl groups;

or any two adjacent R⁵, R⁶, R⁷ and R⁸ groups taken together with any intervening atoms of the benzene ring to which they are attached form an alicyclic, aromatic, heterocyclic, or heteroaryl ring having 5 to 8 ring atoms;

K is halogen, lower alkyl, aryl, heteroaryl,
guanidino, alkoxycarbonyl, alkoxy, hydroxyl, carboxyl, or
amino optionally substituted with 1 to 3 aryl or lower alkyl
groups;

Y is O, NH, NHR9 or CHR9;

Z is $S(=0)_2$, S(=0), S, or C(=0);

j is 0, 1 or 2;

Q is H, C(=0)NHR 9 , C(=0)OR 9 , CH=N $_2$, or CH $_2$ R 10 ;

R° is hydrogen, alkyl having from one to about 10 carbons, said alkyl groups being optionally substituted with one or more K groups, aryl having from about 6 to about 14 carbons, or aralkyl having from about 7 to about 15 carbons;

 $\ensuremath{R^{10}}$ is aryloxy, heteroaryloxy, L, halogen, or has the formula O-M, wherein M has the structure:

- 119 -

wherein:

5

30

R is N or CR11;

W is a double bond or a single bond;

D is C=O or a single bond;

E and F are independently R12, R13, or J;

or E and F taken together comprise a joined
moiety, said joined moiety being an aliphatic carbocyclic
ring optionally substituted with J and having from 5 to 7
carbons, an aromatic carbocyclic ring optionally substituted
with J and having from 5 to 7 carbons, an aliphatic
heterocyclic ring optionally substituted with J and having
from 5 to 7 atoms, or an aromatic heterocyclic ring
optionally substituted with J and having from 5 to 7 atoms,
said aliphatic heterocyclic ring or said aromatic
heterocyclic ring each having from 1 to 4 heteroatoms;

R¹¹, R¹², and R¹³ are independently H, alkyl having from 1 to 10 carbons, heteroaryl having from 1 to 10 carbons, alkanoyl having from 1 to 10 carbons, or aroyl, wherein said alkyl, heteroaryl, alkanoyl and aroyl groups are optionally substituted with J;

J is halogen, $C(=0) OR^{14}$, $R^{14}OC(=0)$, $R^{14}OC(=0)NH$, OH, CN, NO_2 , $NR^{14}R^{15}$, $N=C(R^{14})R^{15}$, $N=C(NR^{14}R^{15})_2$, SR^{14} , OR^{14} , phenyl, naphthyl, heteroaryl, or a cycloalkyl group having from 3 to 8 carbons;

 ${\rm R}^{14}$ and ${\rm R}^{15}$ are independently H, alkyl having from 1 to 10 carbons, aryl, or heteroaryl, wherein said alkyl, aryl and heteroaryl groups are optionally substituted with K;

L is a phosphorus-containing enzyme reactive group having the formula:

PCT/US97/20782

$$-(O)_b - P (O)_m - R^{16}$$

wherein:

20

m, n, and b are each independently 0 or 1; R^{16} and R^{17} are each independently hydrogen,

5 lower alkyl optionally substituted with K, aryl optionally substituted with K, or heteroaryl optionally substituted with K;

or R^{16} and R^{17} taken together with $-(0)_n-P(=0)-(0)_m-$ can form a 5-8 membered ring containing up to 3 hetero 10 atoms;

or R^{16} and R^{17} taken together with $-(0)_n-P(=0)-(0)_m-$ can form a 5-8 membered ring optionally substituted with K.

- 47. The compound of claim 1 wherein Z is SO.
- 15 48. The compound of claim 1 wherein Z is S.
 - 49. The compound of claim 1 wherein Q is CH_2R^{10} .
 - 50. The compound of claim 49 wherein R^{10} is -O-M.
 - 51. The compound of claim 49 wherein R10 is -L.
 - 52. The compound of claim 1 wherein Q is H.

53. The bisulfite addition product of the compound of claim 52.

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :Please See Extra Sheet.	
IPC(6) :Please See Extra Sheet. US CL :544/9, 12, 33, 49; 546/99, 146; 549/15, 16, 31, 32 According to International Patent Classification (IPC) or to both national cl	essification and IDC
B. FIELDS SEARCHED	assureation and If C
Minimum documentation searched (classification system followed by classification system followed by classifi	ication symbols)
U.S. : 544/9, 12, 33, 49; 546/99, 146; 549/15, 16, 31, 32	
Documentation searched other than minimum documentation to the extent that	such documents are included in the fields searched
Electronic data base consulted during the international search (name of data CAS ONLINE	base and, where practicable, search terms used)
C. DOCUMENTS CONSIDERED TO BE RELEVANT	
Category* Citation of document, with indication, where appropriate, or	of the relevant passages Relevant to claim No.
A US 3,960,854 A (NOVELLO) 01 June 1976 (0 document, especially column 1.	1/06/76), see entire 1-19, 36-43, 47, 49, 50, 52, 53
US 4,585,793 A (POWERS) 29 April 1986 (2 document, especially column 3.	9/04/86), see entire 1-13, 15-18, 20- 26, 46, 47, 49, 52, 53
US 4,889,851 A (OKU ET AL.) 26 December 1 entire document, especially columns 1 and 2.	1-19, 36-43, 47, 49, 50, 52, 53
US 5,004,742 A (SATOH ET AL.) 02 April 1 entire document, especially columns 1 and 2.	991 (02/04/91), see 1-35, 46, 47, 49, 50, 52, 53
V Further decurrents are listed in the continue in the Co.	
X Further documents are listed in the continuation of Box C.	See patent family annex.
A* document defining the general state of the art which is not considered the	er document published after the internstional filing date or priority to and not in conflict with the application but cited to understand o principle or theory underlying the invention
to be of particular relevance E* earlier document published on or after the international filing date "X" do	cument of particular relevance; the claimed invention cannot be
co L* document which may throw doubts on priority claim(s) or which is cited to establish the publication dats of another citation or other	nsidered novel or cannot be considered to involve an inventive step nen the document is taken alone
O' document referring to an oral disclosure, use, exhibition or other	cument of particular relevance; the claimed invention cannot be nuidered to involve an inventive step when the document is mbined with one or more other such documents, such combination ing obvious to a person skilled in the art
P* document muhimhed prior to the international filing data has been been been	ocument member of the same patent family
	iling of the international search report
05 MARCH 1998	1 6 MAR 1998
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized LAURA	C. STOCKTON
Facsimile No. (703) 305-3230 Telephone	No. (703) 308-1235

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
\	US 5,384,411 A (ROBOTTI ET AL.) 24 January 1995 (24/01/95), see entire document, especially column 2.	1, 2, 5-13, 15-18, 46, 47, 49, 52, 53
	US 5,416,094 A (LAL ET AL.) 16 May 1995 (16/05/95), see entire document, especially columns 1 and 2.	1-5, 7-15, 17-20, 44-46, 49, 52, 53
		:
*		

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. X As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-47, 49, 50, 52 and 53
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

International application No. PCT/US97/20782

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

C07D 217/12, 279/02, 285/20, 285/24, 471/04, 497/00, 497/04, 513/04

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

The following is a table which defines the inventions claimed. By selecting a definition from each variable (ie., A-B, Y, Z and Q), one arrives at 216 individual groups.

<u>A-B</u>	<u>Y</u>	<u>z</u>	Q
1-C	O	$S(=O)_{1-2}$	non-het, no L variable
2-C	NH, NR°	S	het, no L variable
3-C	CHR9	C(=O)	non-het, has L variable
1-N			het and L variable containing
1-N, 1C			
2-N			

*het = heterocyclic ring

L variable = the phosphorus-containing enzyme reactive group

A sample selection of three groups is as follows:

Group I, claim(s) 1, 2, 5-13, 15-18, 46, 47, 49, 52 and 53, drawn to compounds wherein A-B is 1-C, Y is O, Z is $S(=O)_{1,2}$ and Q is not or does not contain a heterocyclic ring nor the L variable. This is considered to be the first claimed invention and will be searched.

Group II, claim(s) 1, 2, 5-13, 15-18, 46, 47, 49 and 50, drawn to compounds wherein A-B is 1-C, Y is O, Z is $S(=O)_{1:2}$ and Q is or contains a heterocyclic ring but does not contain the L variable.

Group CCXVI, claim(s) 1, 5, 7-11, 13, 14, 46, 49 and 51, drawn to A-B is 2-N, Y is CHR⁹, Z is C(=0) and Q is or contains a heterocyclic ring and also contains the L variable.

The inventions listed as Groups I-CCXVI do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: there is a lack of unity among the above identified groups because there is no significant structural element shared by all of the alternatives. Each of the groups set forth above represents a separate discrete non-heterocyclic or heterocyclic ring system which one skilled in the art which beside sharing no significant structural element, cannot be said to belong to a

ention.	nav for all additional :	nventions applicant	must identify associate	ing to the state of the state o	
ich additional inventions a	re to be searched.	nvenuons, appucant	must identify, accordi	ing to the above Table	> ,
				•	
				•	
-					