Solution 1:

1) Pour n = 1

$$Pr[X=0] = Pr[X=1] = 1/2$$

$$Pr[Y=0] = p_1$$

et
$$Pr[Y=1] = p_2$$

Selon la table du Xor:

Z=0 ssi: (X=0 et Y=0) ou (X=1 et Y=1),

Donc:
$$Pr[Z=0] = (Pr[X=0] \times Pr[Y=0]) + (Pr[X=1] \times Pr[Y=1])$$

$$= p_1/2 + p_2/2$$

$$=(p_1+p_2)/2=1/2$$

Ainsi: Pr[Z=0] = Pr[Z=1] = 1/2

(Z est donc uniforme)

CQFD (1.5 pts)

Concernant le v on procède de la même manière :

$$Pr[X=0] = Pr[X=1] = 1/2$$

$$Pr[Y=0] = p_1$$

et

$$Pr[Y=1] = p_2$$

Selon la table du v:

Z=0 ssi: (X=0 et Y=0),

Donc: $Pr[Z=0] = (Pr[X=0] \times Pr[Y=0])$

$$= 1/2 \times p_1 = p_1/2$$

Ainsi: $Pr[Z=1] = 1 - p_1/2 = p_1 + p_2 - p_1/2 = p_2 + p_1/2 > p_1/2$ (Z est donc <u>non uniforme</u>) CQFD (1.5 pts)

2) Considérons un schéma de Feistel à un tour définie par la fonction F: {0,1}ⁿ→{0,1}ⁿ. Soit X₀ une entrée du schéma de Feistel. Par définition nous avons toujours X₀^R = X₁^R (1 pt) alors que cette propriété n'est réalisée qu'avec une probabilité de 2⁻ⁿ pour une permutation aléatoire. Donc cette propriété est suffisante pour distinguer le schéma de Feistel d'une permutation aléatoire avec un avantage de 1-2⁻ⁿ proche de 1. (2 pts)

Solution 2:

- 1) $MAC_k(m) = F_k(m_1) \oplus F_k(m_2) \oplus ... \oplus F_k(m_n)$
 - a) On peut échanger deux blocs sans changer la valeur du MAC. En effet l'attaquant envoie au challenger le message m₀m₁ et reçoit le MAC t, ensuite il envoie le message m₁m₀ avec le MAC t et reçoit vrai (falsification existentielle). (2 pts)
 - b) Pour authentifier n'importe quel message $M=m_1||m_2$. L'attaquant peut demander les MAC de $m_1||R$ et de $m_2||R$ tel que R est un bloc aléatoire, il reçoit $T_1=F_k(m_1) \oplus F_k(R)$ et $T_2=F_k(m_2) \oplus F_k(R)$ alors le MAC de $m_1||m_2$ est $T_1 \oplus T_2$ (2 pts)
- 2) Lors du déchiffrement $m[0] = D(k, c[0]) \oplus IV = "dest=80..."$

L'objectif de Bob et de modifier la destination de telle sorte quelle devienne 25, pour cela IV' = IV \oplus (...80...) \oplus (...25...) (2 pts).

En effet $D(k, c[0]) \oplus IV' = D(k, c[0]) \oplus IV \oplus (...80...) \oplus (...25...) = "dest=80..." \oplus (...80...) \oplus (...25...)$ en remplaçant les points par des 0 pour ne pas affecter les autres caractères (2 pts).

Solution 3:

1) Bob peut retrouver le message x en calculant $x = M_3 \oplus b$. Sachant que b est la clé secrète de Bob.

En effet $M_3 \oplus b = M_2 \oplus a \oplus b = M_1 \oplus b \oplus a \oplus b = x \oplus a \oplus b \oplus a \oplus b = x$ (3 pts) Aussi il peut utiliser la solution d'Ève décrite dans la deuxième question.

2) Ève qui intercepte les M_i peut retrouver x sans connaître les clés a et b en faisant $M_1 \oplus M_2 \oplus M_3 = x$.

En effet $M_1 \oplus M_2 \oplus M_3 = M_1 \oplus M_1 \oplus b \oplus M_2 \oplus a = M_1 \oplus M_1 \oplus b \oplus M_1 \oplus b \oplus a = M_1 \oplus a = x$ (3 pts)