<u>PHN-005 (Physics)</u> <u>B.Tech. I Year (CSE+ECE)</u> <u>Tutorial Sheet–I</u> Autumn Semester 2022

Curvilinear Coordinate Calculus

Note: Unit tangent vectors are denoted by \mathbf{a}_{0} , \mathbf{a}_{ϕ} , \mathbf{a}_{z} , etc.

- **1.** (a) Derive the algebraic equations for the coordinate curves and coordinate surfaces in (i) cylindrical and (ii) spherical polar coordinate systems.
 - (b) Show explicitly that (i) and (ii) are orthogonal curvilinear coordinate systems.
- **2.** Let $\mathbf{H} = \rho \sin \phi \, \mathbf{a}_{\rho} \rho z \cos \phi \, \mathbf{a}_{\phi} + \rho \, \mathbf{a}_{z}$. At point $P(\rho_{0}, \phi_{0}, z_{0})$, find:
 - (a) a unit vector along **H**
 - (b) the component of **H** parallel to \mathbf{a}_x
 - (c) the component of **H** normal to $\rho = \rho_0$ the component of **H** tangential to $\phi = \phi_0$.
- 3. Show that a unit normal to the surface $\mathbf{r} = \mathbf{r}(u, v)$ is given by $\mathbf{n} = \pm \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\sqrt{EF G^2}}$, where $E \equiv \left(\frac{\partial \mathbf{r}}{\partial u}\right)^2$, $F \equiv \left(\frac{\partial \mathbf{r}}{\partial v}\right)^2$, $G \equiv \frac{\partial \mathbf{r}}{\partial u} \cdot \frac{\partial \mathbf{r}}{\partial v}$.
- **4.** Let the rectangular coordinates (x, y, z) of any point be expressed as single-valued functions with continuous derivatives of (u_1, u_2, u_3) : $x = x(u_1, u_2, u_3), y = y(u_1, u_2, u_3), z = z(u_1, u_2, u_3)$. Assume these can solved for u_1, u_2, u_3 in terms of x, y, z: $u_1 = u_1(x, y, z), u_2 = u_2(x, y, z), u_3 = u_3(x, y, z)$, involving single-valued functions with continuous derivatives.
- (a) If a vector A is written out in a basis $\left\{\frac{\partial r}{\partial u_1}, \frac{\partial r}{\partial u_2}, \frac{\partial r}{\partial u_3}\right\}$ in the coordinate system (u_1, u_2, u_3) with components (A_1, A_2, A_3) , and in a basis $\left\{\frac{\partial r}{\partial u_1'}, \frac{\partial r}{\partial u_2'}, \frac{\partial r}{\partial u_3'}\right\}$ in the coordinate system (u_1', u_2', u_3') with components (A_1', A_2', A_3') , show that: $A_i'(u_1', u_2', u_3') = \sum_{j=1}^3 \frac{\partial u_i'}{\partial u_j} A_j(u_1, u_2, u_3), i = 1,2,3$.
- (b)) If a vector A is written out in a basis $\{\nabla u_1, \nabla u_2, \nabla u_3\}$ in the coordinate system (u_1, u_2, u_3) with components $(\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3)$, and in a basis $\{\nabla u_1', \nabla u_2', \nabla u_3'\}$ in the coordinate system (u_1', u_2', u_3') with components $(\mathcal{A}_1', \mathcal{A}_2', \mathcal{A}_3')$, show that: $\mathcal{A}_i'(u_1', u_2', u_3') = \sum_{j=1}^3 \frac{\partial u_j}{\partial u_i'} \mathcal{A}_j(u_1, u_2, u_3), i = 1,2,3.$
- **5.** Using the differential length element, find the length of each of the following curves:
 - (a) $\rho = constant, \ \phi_1 < \phi < \phi_2, \ z = constant$
 - (b) $r = constant, \ \theta = \theta_0 \, , \ \varphi_1 < \varphi < \varphi_2$
 - (c) $r = constant, \ \theta_1 < \theta < \theta_2, \ \phi = constant$
- **6.** Calculate the areas of the following surfaces using the differential surface area ds:

(a)
$$z = 1, 1 < \rho < 3, 0 < \phi < \pi/4$$

(b)
$$r = 10, \pi/4 < \theta < 2\pi/3, 0 < \phi < 2\pi$$

7. Use the differential volume dv to determine the volumes of the following regions:

(a)
$$\rho_1 < \rho < \rho_2$$
, $\phi_1 < \phi < \phi_2$, $z_1 < z < z_2$

(c)
$$r_1 < r < r_2, \ \theta_1 < \theta < \theta_2, \ \phi_1 < \phi < \phi_2$$

8. Consider the following coordinate transformation:

$$x = uv \cos \phi, y = uv \sin \phi, z = \frac{1}{2}(u^2 - v^2); u \ge 0, v \ge 0, 0 \le \phi < 2\pi.$$

- (a) Verify that the above describes an orthogonal curvilinear coordinate system.
- (b) Obtain algebraic equations for the coordinate curves and surfaces.
- **9.** Is $\nabla \times \nabla \phi = 0$ true in cylindrical and spherical polar coordinates?
- **10**. Find a vector **A** such that $\mathbf{B} = \nabla \mathbf{x} \mathbf{A}$ for a constant vector **B** (in three dimensions).
- **11.** (a) Find the components of acceleration in cylindrical coordinates parallel and perpendicular to ρ of a particle moving in the x-y plane.
- (b) Calculate the derivatives of the unit tangent vectors along r, θ , ϕ with respect to r, θ , ϕ each.
- (c) Using (b), verify the following identity in **spherical polar coordinates** for vectors **A** and **B**: $\nabla x(\mathbf{A}x\mathbf{B}) = (\mathbf{B}.\nabla)\mathbf{A} (\nabla.\mathbf{A})\mathbf{B} + (\nabla.\mathbf{B})\mathbf{A} (\mathbf{A}.\nabla)\mathbf{B}$.

$$(\mathbf{M}(\mathbf{M}\mathbf{D}) - (\mathbf{D}(\mathbf{V})\mathbf{H}) - (\mathbf{M}(\mathbf{M})\mathbf{D})\mathbf{H} - (\mathbf{H}(\mathbf{V})\mathbf{D})\mathbf{H}$$

12. (a) Using the standard form of Stokes theorem, prove that:

$$\oint_C d\mathbf{r} \circ = \iint_S (d\mathbf{S} \times \nabla) \circ,$$

where S is an open surface and C its boundary.

(b) Using the standard form of Gauss' divergence theorem, prove that:

$$\iint_{\Sigma} d\mathbf{S} \circ = \iiint_{V} dV \, \nabla^{\circ} ,$$

where Σ is a closed surface.

In parts (a) and (b), • implies either a scalar multiplication or a vector dot or cross product.

- **13.** (a) If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of the path C joining any two points, show that there exists a function ϕ such that $F = \nabla \phi$. Calculate ϕ for $\mathbf{F} = x^2 \mathbf{a}_x + y^2 \mathbf{a}_y + z^2 \mathbf{a}_z$.
- (b) If **F** is irrotational then prove that **F** is conservative.
- (c) If the integral \int_{A}^{B} F. d ℓ is regarded as the work done in moving a particle from A to B.

 $\mathbf{F} = 2xy \, \mathbf{a}_x + (x^2 - z^2) \, \mathbf{a}_y - 3xz^2 \, \mathbf{a}_z$. Find the work done by the force field on a particle that travels from

A(0, 0, 0) to B(2, 1, 3) along

- (i) the segment $(0, 0, 0) \rightarrow (0, 1, 0) \rightarrow (2, 1, 3)$
- (ii) the straight line (0, 0, 0) to (2, 1, 3)
- **14.** If V = (x + y)z, evaluate $\oint_S VdS$, where S is the surface of the cylindrical wedge defined by $0 < \phi < \pi/2$, 0 < z < 2 and dS is normal to the surface.
- 15. Consider a sphere circumscribed by a cylinder of equal radii (r) centered at the origin with the height (of the cylinder) equal to the diameter of the sphere. Given a vector

$$A = A_r(r)\widehat{a}_r + A_{\theta}(\theta)\widehat{a}_{\theta} + A_{\phi}(\phi)\widehat{a}_{\phi},$$

- (a) verify the Gauss' divergence theorem applied to the region inside the cylinder but exterior to the sphere;
- (b) verify the Stokes theorem in the annulus formed by the intersection of the z = (0 <)b < r with the aforementioned sphere and the circumscribing cylinder.