5 Riemann Integrals

Riemann Integration: Let $f:[a,b] \to \mathbb{R}$ be a bounded function and let $P = \{x_0, x_1, ..., x_n\}$ where $a = x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b$ be a partition of [a,b]. i.e., $[a,b] = [a,x_1] \cup [x_1,x_2] \cup ... \cup [x_{n-1},b]$ Consider the i^{th} sub-interval $I_i = [x_{i-1},x_i]$

Define
$$\triangle x_i = x_i - x_{i-1}$$

 $m_i = \inf_x \{ f(x) : x \in I_i \}$
 $M_i = \sup_x \{ f(x) : x \in I_i \}$
 $m = \inf_x \{ f(x) : x \in [a, b] \}$
 $M = \sup_x \{ f(x) : x \in [a, b] \}$
 $m \le m_i \le M_i \le M, i = 1, 2, 3, ..., n$

Riemann Lower Sum: Riemann lower sum of f w.r.t partition P is given by $L(P, f) = \sum_{i=1}^{n} m_i \triangle x_i$.

Riemann Upper Sum: The Riemann upper sum of f w.r.t partition P is given by $U(P, f) = \sum_{i=1}^{n} M_i \triangle x_i$ Consider $m \le m_i \le M_i \le M$

$$m \sum_{i=1}^{n} \triangle x_{i} \leq \sum_{i=1}^{n} m \triangle x_{i} \leq \sum_{i=1}^{n} M_{i} \triangle x_{i} \leq \sum_{i=1}^{n} M \triangle x_{i}$$
$$m(b-a) \leq L(P,f) \leq U(P,f) \leq M(b-a)$$

Riemann Lower Integral: The Riemann Lower integral of f on [a,b] is given by $\int_a^b f dx = \sup_p \{L(P,f)\}.$

Riemann Upper Integral: The Riemann Upper integral of f on [a,b] is given by $\int_a^b f dx = \inf_p \{U(P,f)\}$. Results:

- 1. Let $f:[a,b]\to\mathbb{R}$ be a bounded function, then both the Riemann lower and upper integrals exists and $\int\limits_a^b f dx = \int\limits_a^{\bar{b}} f dx$
- 2. For any partition P we have $m(b-a) \le L(P,f) \le \int_{\underline{a}}^{b} f dx \le \int_{a}^{\overline{b}} f dx \le U(P,f) \le M(b-a)$

Theorems: Let $f:[a,b] \to \mathbb{R}$ be a bounded function then f is said to be Reimann integrable over [a,b] if $\int_{\underline{a}}^{b} f dx = \int_{a}^{\overline{b}} f dx$. If f is Reimann integrable over [a,b], then we write $\int_{a}^{b} f dx = \int_{\underline{a}}^{\overline{b}} f dx = \int_{\underline{a}}^{\overline{b}} f dx$.

The set of all Reimann integrable function over [a, b] is denoted by $\mathcal{R}[a, b]$. f is Reimann integrable over [a, b], we also write $f \in \mathcal{R}[a, b]$.

Refinement of a Partition : Let P be a partition of [a,b]. A partition P^* of [a,b] is said to be as Refinement if P is contained in P^* . Suppose we have two distinct partitions P_1 and P_2 , then $P_1 \cup P_2$ is a common refinement of P_1 and P_2 .

Theorem: Let $f:[a,b] \to \mathbb{R}$ be a bounded function, let P and P^* be two partitions of [a,b] such that $P \subseteq P^*$, then

$$L(P,f) \leq L(P^*,f)$$

$$U(P,f) \geq U(P^*,f)$$

Result: Let $f:[a,b] \to \mathbb{R}$ be a bounded function, let P_1 and P_2 be two partitions of [a,b], then $L(P_1,f) \le$

 $U(P_2, f)$ and $L(P_2, f) \leq U(P_1, f)$.

Norm or Mesh of a Partition: Let P be a partition of [a, b], the length of the largest sub-interval of [a, b], corresponding to P is called the norm or mesh of P, and denoted by ||P|| or $\mu(P)$.i.e., $||P|| = \max\{\Delta x_i\}$.

Theorem:

- 1. A necessary and sufficient condition for the integrability of a bounded function f on [a,b] is that for any $\epsilon > 0$ there exists $\delta > 0$ such that $U(P,f) L(P,f) < \epsilon$ for every partitions P with $||P|| < \delta$.
- 2. Let $f \in \mathcal{R}[a,b]$, then |f| is also Riemann integrable over [a,b] and $\left|\int_a^b f dx\right| \leq \int_a^b |f| dx$. Converse of the above theorem is not true.
 - i.e., If |f| is integrable then f need not be integrable.
 - Eg: Dirichlet function.
- 3. Let $f:[a,b] \to \mathbb{R}$ be integrable, then f^2 is also integrable. Converse need not be true. Eg: Dirichlet function.
- 4. Let $f:[a,b]\to\mathbb{R}$ be a bounded function, then f is Riemann integrable iff f^3 is Riemann integrable. **Result:**
 - 1. Let $f:[a,b]\to\mathbb{R}$ be a bounded and continuous function such that $f(x)\geq 0, \forall x\in[a,b]$ if $\int_a^b fdx=0$, then $f\equiv 0$.
 - 2. Let f and g be integrable over [a,b], then f+g,f-g,fg are also Riemann integrable over [a,b].
 - 3. If $f(x) \leq g(x), \forall x \in [a, b], \text{ then } \int_{a}^{b} f dx \leq \int_{a}^{b} g(x) dx$.
 - 4. Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable and let $F(x)=\int\limits_0^x f(t)dt, x\in[a,b]$, then F is continuous on [a,b].
 - 5. Let $f:[a,b] \to \mathbb{R}$ be continuous, then f is $\mathcal{R}(f)$ over [a,b] and if $F(x) = \int_0^x f(t)dt$, $x \in [a,b]$, then f is differentiable on [a,b].
 - 6. Let $f:[a,b] \to \mathbb{R}$ be monotone, then f is $\mathcal{R}(f)$ over [a,b].
 - 7. Let $f:[a,b] \to \mathbb{R}$ be a bounded function, and let f has only a countable number of discontinuity in [a,b], then $f \in \mathcal{R}[a,b]$.

Theorem: Let $f:[a,b] \to \mathbb{R}$ be a bounded function, f is $f \in \mathcal{R}[a,b]$ iff f is continuous almost everywhere on [a,b].

Fundamental Theorem of Calculus: Let $f:[a,b]\to\mathbb{R}$, be continuous. Let F(x) be a function such that $F'(x)=f(x), \forall x\in[a,b]$ then $\int_a^b f(x)dx=F(b)-F(a)$.

MVT for Integrals: Let $f:[a,b] \xrightarrow{a} \mathbb{R}$ be continuous, then there exists a number λ lying between m and M such that $\int_{a}^{b} f(x)dx = \lambda(b-a)$ where $\lambda = f(c)$, for some $c \in (a,b)$ and $m = \inf f(x), M = \sup f(x)$.

Corollary: Let $f:[a,b] \to \mathbb{R}$ be Riemann integrable, then there exists a $k \ge 0$ such that $|f(x)| \le k, \forall x \in [a,b]$ and $\left|\int_a^b f(x)dx\right| \le k(b-a)$