PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-234834

(43)Date of publication of application: 23.08.1994

(51)Int.CI.

CO8G 63/183 CO8G 63/78

(21)Application number: 05-310915

(71)Applicant: MITSUI PETROCHEM IND LTD

(22)Date of filing:

10.12.1993

(72)Inventor: SHIRAKI SHIGEMI

TANAKA YASUHIRO SAKAI KATSUYUKI

(30)Priority

Priority number: 64 83356

Priority date: 31.03.1989

Priority country: JP

64 94597

14.04.1989

JP

(54) PRODUCTION OF POLYETHYLENE TEREPHTHALATE

(57)Abstract:

PURPOSE: To obtain a polyethylene terephthalate scarcely containing oligomers such as cyclic trimer, hardly causing stain of molds, excellent in moldability and heat resistance and useful for bottles, etc., by esterifying terephthalic acid, etc., with ethylene glycol, etc., and polymerizing the resultant ester under specific conditions.

CONSTITUTION: Terephthalic acid (ester forming derivative) is esterified with ethylene glycol and the this resultant esterified product is heat-melted in the presence of a polycondensation catalyst to carry out liquid phase polycondensation. The resultant polycondensate is heated at a temperature not higher than a melting point under inert atmosphere to carry out solid phase polycondensation and the resultant solid phase polycondensate is brought into contact for 5min to 10hr with steam or steam-containing gas having a temperature kept to 70–150° C and the polycondensation catalyst contained in the polymer is deactivated to provide the objective polymer.

LEGAL STATUS

[Date of request for examination]

22.12.1994

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2583008

[Date of registration]

21.11.1996

[Number of appeal against examiner's decision

of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平6-234834

(43)公開日 平成6年(1994)8月23日

(51)Int.Cl.5

識別記号

庁内整理番号

技術表示箇所

C 0 8 G 63/183

NMF

7107 - 4 J

63/78

審査請求 未請求 請求項の数1 OL (全 8 頁)

(21)出顯番号

特顯平5-310915

(62)分割の表示

特願平2-82350の分割

(22)出願日

平成2年(1990)3月29日

(31) 優先権主張番号 特願平1-83356

(32)優先日

平1(1989)3月31日

(33)優先権主張国

日本 (JP)

(31) 優先権主張番号 特願平1-94597

(32)優先日

平1(1989)4月14日

(33)優先権主張国

日本 (JP)

(71)出願人 000005887

三井石油化学工業株式会社

東京都千代田区霞が関三丁目2番5号

(72) 発明者 白 木 茂 美

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72) 発明者 田 中 康 裕

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72) 発明者 酒 井 勝 幸

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(74)代理人 弁理士 鈴木 俊一郎

(54)【発明の名称】 ポリエチレンテレフタレートの製造方法

(57)【要約】

【構成】 テレフタル酸またはそのエステル形成性誘導 体と、エチレングリコールまたはそのエステル形成性誘 導体とをエステル化するエステル化工程と、上記エステ ル化工程で得られたエステル化物を重縮合触媒の存在下 で加熱溶融する液相重縮合工程と、上記液相重縮合工程 で得られた重縮合反応物を不活性雰囲気下で溶融点以下 の温度に加熱する固相重縮合工程と、上記固相重縮合工 程で得られた重縮合反応物を70℃~150℃の温度の 水蒸気または水蒸気含有ガスに5分間~10時間接触さ せる水蒸気処理工程とを含むことを特徴とするポリエチ レンテレフタレートの製造方法。

【効果】 成形時に生成する環状三量体などのオリゴマ 一類の量が少なく、しかも成形時にポリエチレンテレフ タレート中に含まれる環状三量体などのオリゴマー類の 総量が少ないため、成形時に金型汚れが発生しにくい。

【特許請求の範囲】

【請求項1】テレフタル酸またはそのエステル形成性誘 導体と、エチレングリコールまたはそのエステル形成性 誘導体とをエステル化するエステル化工程と、

上記エステル化工程で得られたエステル化物を重縮合触 媒の存在下で加熱溶融する液相重縮合工程と、

上記液相重縮合工程で得られた重縮合反応物を不活性雰 囲気下で溶融点以下の温度に加熱する固相重縮合工程 ٤.

上記固相重縮合工程で得られた重縮合反応物を70℃~ 10 150℃の温度の水蒸気または水蒸気含有ガスに5分間 ~10時間接触させて、ポリエチレンテレフタレート中 に含まれる重縮合触媒を失活させる水蒸気処理工程とを 含むことを特徴とするポリエチレンテレフタレートの製 造方法。

【発明の詳細な説明】

[0001]

【発明の技術分野】本発明は、ボトルをはじめとしてフ ィルム、シート形成用などに用いられるポリエチレンテ レフタレートの製造方法に関し、さらに詳しくは、成形 20 時に金型汚れが発生しにくいポリエチレンテレフタレー トを得ることができるようなポリエチレンテレフタレー トの製造方法に関する。

[0002]

【発明の技術的背景】従来より、調味料、油、飲料、化 粧品、洗剤などの容器の素材としては、充填内容物の種 類およびその使用目的に応じて種々の樹脂が採用されて いる。

【0003】とれらのうちでポリエチレンテレフタレー トは機械的強度、耐熱性、透明性およびガスバリヤー性 30 に優れているので、特にジュース、清涼飲料、炭酸飲料 などの飲料充填用容器の素材として好適である。

【0004】 このようなポリエチレンテレフタレート は、テレフタル酸またはそのエステル形成性誘導体と、 エチレングリコールまたはそのエステル形成性誘導体と をエステル化触媒の存在下でエステル化した後、重縮合 触媒の存在下で液相重縮合し、次いで固相重縮合して得 ることができる。そしてこのポリエチレンテレフタレー トは、射出成形機械などの成形機に供給して中空成形体 用プリフォームを成形し、このプリフォームを所定形状 40 の金型に挿入し延伸ブロー成形したり、さらに熱処理 (ヒートセット) して中空成形容器に成形されるのが一 般的である。

【0005】ところが、上記したような製造方法で得ら れる従来公知のポリエチレンテレフタレートには、環状 三量体などのオリゴマー類が含まれており、この環状三 **量体などのオリゴマー類がブロー成形金型内面や金型の** ガス排気口、排気管などに付着して金型汚れが発生した り、あるいはまた該オリゴマー類が上述したような射出 成形機の金型のベント部に付着して金型汚れが発生して 50 合工程で得られた重縮合反応物を不活性雰囲気下で溶融

いた。

【0006】このような金型汚れは、得られるボトルの 表面肌荒れや白化の原因となる。もしボトルが白化して しまうと、そのボトルは廃棄しなければならない。この ため従来公知のポリエチレンテレフタレートを用いてボ トルを成形する際に、金型汚れを頻繁に除去しなければ ならず、ボトルの生産性が著しく低下してしまうという 大きな問題点があった。

【0007】本発明者らは、上記のような現状に鑑み、 成形時に金型汚れを発生させにくいポリエチレンテレフ タレートを得るべく鋭意研究したところ、成形時に金型 汚れが発生する主な原因は、ポリエチレンテレフタレー トの成形時に環状三量体などのオリゴマー類が多量に生 成してポリエチレンテレフタレート中に含まれる環状三 量体などのオリゴマー類の総量が増加してしまうことに あることを見出した。

【0008】本発明者らは、上記のような知見に基いて さらに検討したところ、一連の連続工程により得られる ポリエチレンテレフタレートを水と接触させることによ り成形時の環状三量体などのオリゴマー総量の増加を抑 制できることを見出し、本発明を完成するに至った。

【0009】なお特開昭59-25815号公報には、ポリエチ レンテレフタレートを固相重縮合するに先立って、ポリ エチレンテレフタレートを結晶化させるために、ポリエ チレンテレフタレート粉粒体を110°C以上の加熱水蒸 気で処理する方法が開示されている。

【0010】また特開昭59-219328 号公報には、固有粘 度が少なくとも0.4㎝/g以上であり、密度が1.3 5 g / cm 以下であるエチレンテレフタレート単位を主 たる繰返し単位とするポリエステルを、水分率が少なく とも0.2重量%以上になるように調湿する工程、14 0℃以上の温度で予備結晶化する工程、および180℃ 以上240°C以下の温度で不活性ガス雰囲気下または減 圧下で固相重合する工程を含むことを特徴とする高重合 度ポリエステルの製造方法が開示されている。

[0011]

【発明の目的】本発明は、上記のような従来技術に伴う 問題点を解決しようとするものであって、成形時でのオ リゴマーの生成量が少なく、金型汚れを発生させにくい ポリエチレンテレフタレートを得ることができるような ポリエチレンテレフタレートの製造方法を提供すること を目的としている。

[0012]

【発明の概要】本発明に係るポリエチレンテレフタレー トの製造方法は、テレフタル酸またはそのエステル形成 性誘導体と、エチレングリコールまたはそのエステル形 成性誘導体とをエステル化するエステル化工程と、上記 エステル化工程で得られたエステル化物を重縮合触媒の 存在下で加熱溶融する液相重縮合工程と、上記液相重縮 点以下の温度に加熱する固相重縮合工程と、上記固相重縮合工程で得られた重縮合反応物を70℃~150℃の温度の水蒸気または水蒸気含有ガスに5分間~10時間接触させて、ポリエチレンテレフタレート中に含まれる

接触させて、ポリエチレンテレフタレート中に含まれる 重縮合触媒を失活させる水蒸気処理工程とを含むことを 特徴としている。

【0013】本発明に係るポリエチレンテレフタレートの製造方法により得られたポリエチレンテレフタレートは、成形時に生成する環状三量体などのオリゴマーの量が少なく、したがって金型汚れが発生しにくい。 【0014】

【発明の具体的説明】以下本発明に係るポリエチレンテレフタレートの製造方法ついて具体的に説明する。

【0015】本発明に係るポリエチレンテレフタレートの製造方法は、エステル化工程と、エステル化工程で得られたエステル化物を加熱溶融する液相重縮合工程と、液相重縮合工程で得られた重縮合反応物を溶融点以下の温度に加熱する固相重縮合工程と、固相重縮合工程で得られた重縮合反応物を水蒸気または水蒸気含有ガスと接触させる水蒸気処理工程とを含む。

【0016】本発明に係るポリエチレンテレフタレートの製造方法は、テレフタル酸またはそのエステル形成性誘導体と、エチレングリコールまたはそのエステル形成性誘導体とを原料として用いて行なわれるが、このポリエチレンテレフタレートには20モル%以下の他のジカルボン酸および/または他のグリコールが共重縮合されていてもよい。

【0017】テレフタル酸以外の共重縮合に用いられるジカルボン酸としては、具体的にはフタル酸、イソフタル酸、ナフタリンジカルボン酸、ジフェニルジカルボン 30酸、ジフェノキシエタンジカルボン酸などの芳香族ジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、デカンジカルボン酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環族ジカルボン酸などが挙げられる。

【0018】エチレングリコール以外の共重縮合に用いられるグリコールとしては、具体的にはトリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、ドデカメチレングリコールなどの脂肪族グリコール、シクロヘキサンジメタノールなどの脂環族グリコール、ビスフェノール類、ハイドロキノン、2,2-ビス(4-8-ヒドロキシエトキシフェニル)プロバンなどの芳香族ジオール類などが挙げられる。

【0019】上記したようなテレフタル酸またはそのエステル形成性誘導体と、エチレングリコールまたはそのエステル形成性誘導体とを含む原料は、エステル化される。具体的にはまず、テレフタル酸またはそのエステル形成性誘導体と、エチレングリコールまたはそのエステル形成性誘導体とを含むスラリーを調製する。

【0020】このようなスラリーには、テレフタル酸またはそのエステル形成性誘導体1モルに対して1.02~1.4モル好ましくは1.03~1.3モルのエチレングリコールまたはそのエステル形成性誘導体が含まれる。このスラリーは、エステル化反応工程に連続的に供給される。

【0021】エステル化反応は、少なくとも2個のエステル化反応器を直列に連結した装置を用いてエチレングリコールが還流する条件下で、反応によって生成した水を精留塔で系外に除去しながら実施される。エステル化反応を行なう際の反応条件は、第1段目のエステル化反応の温度が通常240~270℃好ましくは245~265℃であり、圧力が通常0.2~3kg/cm²G好ましくは0.5~2kg/cm²Gであり、また最終段目のエステル化反応の温度が通常250~280℃好ましくは255~275℃であり、圧力が通常0~1.5kg/cm²G好ましくは0~1.3kg/cm²Gである。

【0022】したがって、エステル化反応を2段階で実施する場合には、第1段目および第2段目のエステル化20 反応条件がそれぞれ上記の範囲であり、3段階以上で実施する場合には、第2段目から最終段の1段前までエステル化反応の反応条件は、上記第1段目の反応条件と最終段目の反応条件の間の条件である。

【0023】たとえば、エステル化反応が3段階で実施される場合には、第2段目のエステル化反応の反応温度は通常245~275℃好ましくは250~270℃であり、圧力は通常0~2kg/cm²G好ましくは0.2~1.5kg/cm²Gである。これらのエステル化反応の反応率は、それぞれの段階においては、とくに制限はないが、各段階におけるエステル化反応率の上昇と度合が滑らかに分配されることが好ましく、さらに最終段目のエステル化反応生成物においては通常90%以上、好ましくは93%以上に達することが望ましい。

【0024】これらのエステル化工程によりエステル化 (低次縮合物)が得られ、このエステル化物の数平 均分子量は、通常、500~5000である。 とのよう なエステル化反応はテレフタル酸およびエチレングリコ ール以外の添加物を添加せずに実施することも可能であ り、また後述する重縮合の触媒の共存下に実施すること も可能であるが、さらにトリエチルアミン、トリn-ブチ ルアミン、ベンジルジメチルアミンなどの第3級アミ ン、水酸化テトラエチルアンモニウム、水酸化テトラn-ブチルアンモニウム、水酸化トリメチルベンジルアンモ ニウムなどの水酸化第4級アンモニウムおよび炭酸リチ ウム、炭酸ナトリウム、炭酸カリウム、酢酸ナトリウム などの塩基性化合物を少量添加して実施すると、ポリエ チレンテレフタレートの主鎖中のジオキシエチレンテレ フタレート成分単位の割合を比較的低水準に保持できる ので好ましい。

io 【0025】次いで得られたエステル化物は、重縮合触

媒の存在下に減圧下で、得られるポリエチレンテレフタ レートの融点以上の温度に加熱し、この際生成するグリ コールを系外に留去させて重縮合する液相重縮合工程に 供給される。

【0026】 このような液相での重縮合反応は、1段階 で行なっても、複数段階に分けて行なってもよい。複数 段階で行なう場合、重縮合反応条件は、第1段階目の重 縮合の反応温度が、通常、250~290℃好ましくは 260~280℃であり、圧力が、通常、500~20 Torr好ましくは200~30Torrであり、また最終段階 10 の重縮合反応の温度が通常265~300℃好ましくは 270~295℃であり、圧力が通常10~0.1Torr 好ましくは5~0.5Torrである。

【0027】重縮合反応を2段階で実施する場合には、 第1段目および第2段目の重縮合反応条件はそれぞれ上 記の範囲であり、3段階以上で実施する場合には、第2 段目から最終段目の1段前までの重縮合反応の反応条件 は上記1段目の反応条件と最終段目の反応条件との間の 条件である。

【0028】たとえば、重縮合反応が3段階で実施され 20 る場合には、第2段目の重縮合反応の反応温度は通常2 60~295℃好ましくは270~285℃であり、圧 力は通常、50~2Torr 好ましくは40~5Torr の 範囲である。これらの重縮合反応工程の各々において到 達される固有粘度(IV)はとくに制限はないが、各段 階における固有粘度の上昇の度合が滑らかに分配される ことが好ましく、さらに最終段目の重縮合反応器から得 られるポリエチレンテレフタレートの固有粘度(IV) は通常0.35~0.80dl/g好ましくは0.45~ 0. 75 dl/g、さらに好ましくは0. 55~0. 75 30 d/gの範囲であることが望ましい。

【0029】本明細書において、固有粘度は、ポリエチ レンテレフタレート1.2gをo-クロロフェノール15 cc中に加熱溶解した後、冷却して25℃で測定された溶 液粘度から算出される。

【0030】またこのポリエチレンテレフタレートの密 度は、通常1.33~1.35g/cmであることが望ましい。 本明細書において、ポリエチレンテレフタレートの密度 は、四塩化炭素およびヘプタンの混合溶媒を用いた密度※ * 勾配管により、23℃の温度で測定される。

【0031】上記のような重縮合反応は触媒および安定 剤の存在下に実施されることが好ましい。触媒として二 酸化ゲルマニウム、ゲルマニウムテトラエトキシド、ゲ ルマニウムテトラn-ブトキシドなどのゲルマニウム化合 物、三酸化アンチモンなどのアンチモン触媒およびチタ ニウムテトラブトキサイドなどのチタン触媒を用いると とができる。これらの触媒の中では、二酸化ゲルマニウ ム化合物を用いると生成するポリエチレンテレフタレー トの色相および透明性が優れるので好ましい。また、安 定剤としては、トリメチルホスフェート、トリエチルホ スフェート、トリn-ブチルホスフェート、トリオクチル ホスフェート、トリフェニルホスフェート、トリクレジ ルホスフェートなどの燐酸エステル類、トリフェニルホ スファイト、トリスドデシルホスファイト、トリスノニ ルフェニルホスファイトなどの亜リン酸エステル類、メ チルアッシドホスフェート、イソプロピルアッシドホス フェート、ブチルアッシドホスフェート、ジブチルホス フェート、モノブチルホスフェート、ジオクチルホスフ ェートなどの酸性リン酸エステルおよびリン酸、ポリリ ン酸などのリン化合物が用いられる。これらの触媒ある いは安定剤の使用割合は、テレフタル酸とエチレングリ コールとの混合物の重量に対して、触媒の場合には触媒 中の金属の重量として、通常、0.0005~0.2重 量%好ましくは0.001~0.05重量%の範囲であ り、また安定剤の場合には、安定剤中のリン原子の重量 として通常、0.001~0.1重量%好ましくは0. 002~0.02重量%の範囲である。これらの触媒お よび安定剤の供給方法は、エステル化反応工程の段階に おいて供給することもできるし、重縮合反応工程の第1 段目の反応器に供給することもできる。

【0032】本発明で用いられるポリエチレンテレフタ レートには、上述のようにテレフタル酸以外のジカルボ ン酸やエチレングリコール以外のジオールが 20モル %以下の量で含まれていてもよいが、特に好ましく用い られるポリエチレンテレフタレートは、一般式[1] [0033]

【化1】

% [0035] 【0034】で表わされるエチレンテレフタレート成分 単位(a) の含有率が、95.0~99.0モル%の範囲 【化2】 にあり、一般式[II] ×

【0036】で表わされるジオキシエチレンテレフタレ 範囲にあることが望ましい。このようにして、最終重縮 ート成分単位(b) の含有率が、1.0~5.0モル%の 50 合反応器から得られたポリエチレンテレフタレートは、

通常、溶融押出成形法によって粒状(チップ状)に成形 される。

【0037】とのような粒状ポリエチレンテレフタレー トは、通常2.0~5.0mm、好ましくは2.2~4. Ommの平均粒径を有することが望ましい。このようにし て液相重縮合工程を経た粒状ポリエチレンテレフタレー トには、固相重縮合工程が加えられる。

【0038】固相重縮合工程に供給される粒状ポリエチ レンテレフタレートは、予め固相重縮合を行なう場合の 温度より低い温度に加熱して予備結晶化を行なった後、 固相重縮合工程に供給してもよい。

【0039】とのような予備結晶化工程は、粒状ポリエ チレンテレフタレートを乾燥状態で通常、120~ 2 00℃好ましくは130~180℃の温度に1分~4時 間加熱することによって行なってもよく、あるいは粒状 ポリエチレンテレフタレートを水蒸気雰囲気下または水 蒸気含有不活性ガス雰囲気下あるいは水蒸気含有空気雰 囲気下で通常、120~200℃の温度に1分間以上加 熱することによって行なってもよい。

【0040】 このような粒状ポリエチレンテレフタレー 20 トが供給される固相重縮合工程は、少なくとも1段から なり、重縮合温度が通常190~230℃好ましくは1 95~225℃であり、圧力が通常、1ka/cm² G~1 O Torr 好ましくは常圧ないし100 Torr の条件下 で、窒素ガス、アルゴンガス、炭酸ガスなどの不活性ガ ス雰囲気下で固相重縮合反応が実施される。これらの不 活性ガスの中では窒素ガスが好ましい。

【0041】このようして得られたポリエチレンテレフ タレートの固有粘度は、通常O. 70 d7/g以上、好ま しくは0.72m/g以上であることが望ましい。この 30 ポリエチレンテレフタレートの密度は、通常1.37g /cm³ 以上、好ましくは1.38g/cm³ 以上、さらに 好ましくは1.39g/cm 以上であることが望まし

【0042】またこのようなポリエチレンテレフタレー ト中に含まれるオリゴマー(下記式

[0043]

【化3】

【0044】の環状三量体である)の量は、0.50重 量%以下好ましくは○. 45重量%以下特に好ましくは 0. 40重量%以下であることが望ましい。本明細書に おいて、ポリエチレンテレフタレート中に含まれるオリ ゴマーの量は、以下のようにして測定される。

【0045】すなわち所定量のポリエチレンテレフタレ ートを0-クロロフェノールに溶解した後、テトラヒドロ フランで再析出して濾過して線状ポリエチレンテレフタ

ラフィー(島津製作所製LC7A)に供給してポリエチ レンテレフタレート中に含まれるオリゴマー量を求め、 この値を測定に用いたポリエチレンテレフタレート量で 割って、ポリエチレンテレフタレート中に含まれるオリ ゴマー量(重量%)とする。

【0046】このような固相重縮合工程を経て得られた 粒状ポリエチレンテレフタレートには、水蒸気処理が加 えられるが、この水蒸気処理は、粒状ポリエチレンテレ フタレートを水蒸気、水蒸気含有不活性ガス、水蒸気含 10 有空気などと接触させることにより行なわれる。

【0047】粒状ポリエチレンテレフタレートと水蒸気 または水蒸気含有ガスとの接触は、通常70~150 ℃、好ましくは70~110℃の温度の水蒸気または水 蒸気含有不活性ガスあるいは水蒸気含有空気を、好まし くは粒状ポリエチレンテレフタレート1kc当り、0.5 g以上の量で供給させるか、あるいは存在させて粒状ポ リエチレンテレフタレートと水蒸気とを接触させること により行なわれる。

【0048】この粒状ポリエチレンテレフタレートと水 蒸気との接触は、通常5分間~10時間行なわれる。以 下に粒状ポリエチレンテレフタレートと水蒸気あるいは 水蒸気含有ガスとの接触処理を工業的に行なう方法を例 示するが、これに限定されるものではない。また処理方 法は連続方式、バッチ方式のいずれであっても差し支え ない。

【0049】粒状ポリエチレンテレフタレートをバッチ 方式で水蒸気と接触処理をする場合は、サイロタイプの 処理装置が挙げられる。すなわち粒状ポリエチレンテレ フタレートをサイロへ受け入れ、バッチ方式で、水蒸気 あるいは水蒸気含有ガスを供給し接触処理を行なう。あ るいは回転筒型の接触処理装置に粒状ポリエチレンテレ フタレートを受け入れ、回転させながら接触処理を行な い接触をさらに効率的にすることもできる。

【0050】粒状ポリエチレンテレフタレートを連続で 水蒸気と接触処理する場合は塔型の処理装置に連続で粒 状ポリエチレンテレフタレートを上部より受け入れ、並 流あるいは向流で水蒸気を連続供給し水蒸気と接触処理 させることができる。その後、水蒸気で処理した場合は 粒状ポリエチレンテレフタレートを必要に応じて振動篩 40 機、シモンカーターなどの水切り装置で水切りし、次の 乾燥工程へ移送する。

【0051】水蒸気と接触処理した粒状ポリエチレンテ レフタレートの乾燥は通常用いられるポリエチレンテレ フタートの乾燥処理を用いることができる。連続的に乾 燥する方法としては上部より粒状ポリエチレンテレフタ レートを供給し、下部より乾燥ガスを通気するホッパー 型の通気乾燥機が通常使用される。乾燥ガス量を減ら し、効率的に乾燥する方法としては回転ディスク型加熱 方式の連続乾燥機が用いられ、少量の乾燥ガスを通気し レートを除いた後、次いで得られた濾液を液クロマトグ 50 ながら、回転ディスクや外部ジャケットに加熱蒸気、加

熱媒体などを供給し粒状ポリエチレンテレフタレートを 間接的に加熱乾燥することができる。

【0052】バッチ方式で乾燥する乾燥機としてはダブ ルコーン型回転乾燥機が用いられ、真空下であるいは真 空下少量の乾燥ガスを通気しながら乾燥することができ る。あるいは大気圧下で乾燥ガスを通気しながら乾燥し てもよい。

【0053】乾燥ガスとしては大気空気でも差し支えな いが、ポリエチレンテレフタレートの加水分解による分 子量低下を防止する点からは乾燥窒素、除湿空気が好ま 10 しい。

【0054】上記のようにポリエチレンテレフタレート に水蒸気処理を施すことによって、ポリエチレンテレフ タレートの固相重縮合速度が減少するとともに、該ポリ エチレンテレフタレートを290℃の温度に加熱溶融し て段付角板を成形した後のオリゴマー増加量を抑制する ことができる。

【0055】とのように水蒸気処理が施されたポリエチ レンテレフタレートは、上述のように固相重縮合速度が 5°Cの温度に加熱して固相重縮合した際の重縮合速度 は、0.0050d1/g・時間以下好ましくは0.00 40 d7/g・時間以下特に好ましくは0.0030d7/ g・時間以下であることが望ましい。

【0056】本明細書では、ポリエチレンテレフタレー トの固相重縮合した際の重縮合速度は、具体的には、以 下のようにして測定される。粒状ポリエチレンテレフタ レート60gを内径22mm、高さ80mmの円筒状ステン レス容器に充填し、密閉する。この容器は、底部に不活 性ガス通気用のノズルを有し、上部から不活性ガスが系 30 外に放出されるようになっている。

【0057】固相重縮合は、加熱装置を有するサンドバ ス(日本パーカライジンク(株)製、酸化アルミ)中に粒 状ポリエチレンテレフタレートが充填密閉されたステン レス容器を装着固定し、不活性ガスとして窒素を通気し ながら実施する。との際用いる窒素は、露点が−50℃ 以下であり、酸素濃度が20ppm 以下であるものを使用 し、ステンレス容器に供給する前に予めバス温度と同じ となるように予熱する。窒素は、毎時200N1(標準 状態)の量でステンレス容器に供給する。

【0058】サンドバスは空気により流動状態とし、サ ンドバスの温度が均一で温度分布がないようにする。サ ンドバスの加熱ヒータはバスの温度がプログラムコント ローラで所定の固相重縮合温となるように制御される。

【0059】固相重縮合速度の測定は、上記のような装 置を用いて、具体的には以下の方法によって定量化す る。粒状ポリエチレンテレフタレートを上記のような円 筒状ステンレス容器に充填密閉した状態で、サンドバス 中に装着固定し、窒素を毎時200N1の量で通気しな

170℃で1時間保持した後、170℃から215℃ま でを30分間で昇温し、さらに215℃で4時間保持 し、固相重縮合反応を行なう。

【0060】固相重縮合反応後、加熱を停止し、窒素通 気のまま、サンドバス中の温度を70°Cまで降温させ、 次いでステンレス容器をサンドバスより取り出し、固相 重縮合した粒状ポリエチレンテレフタレートの固有粘度 dl/g(IV)を測定する。このIV値をAdl/gとす る。

【0061】同様な方法で215℃での保持時間を20 時間にした時の粒状ポリエチレンテレフタレートのIV を測定する。このIV値をBdl/gとする。固相重縮合 速度は、次式により算出される。

[0062]

【数1】

$$R = \frac{B - A}{1.6}$$

【0063】 ことに、Rは固相重縮合速度(d)/g・時 減少せしめられているが、不活性ガス雰囲気下で、21 20 間)であり、AおよびBは各々4時間後および20時間 後のIV値(d1/g)である。

> 【0064】また上記のようにして水蒸気処理が施され たポリエチレンテレフタレートは、その後の成形過程で のオリゴマーの増加が著しく抑制される。とのととは、 たとえばポリエチレンテレフタレートを 290℃の温度に 加熱溶融して段付角板を成形した後のオリゴマー増加量 を測定することにより確かめられる。本発明により水蒸 気処理されたポリエチレンテレフタレートは、具体的に は、温度290°Cに加熱溶融して段付角板を成形した後 のオリゴマー増加量y(重量%)が、y≦-0.20x +0.20 好ましくは $y \le -0.20x + 0.18$ さらに好ましくは $y \le -0$. 20x + 0. 16 である ことが望ましい。

> 【0065】上記式中xは、段付角板成形前のオリゴマ ー濃度(重量%)である。本明細書において、粒状ポリ エチレンテレフタレートから段付角板を成形した後のオ リゴマー増加量y (重量%)は、以下のようにして測定 される。

【0066】すなわち予めオリゴマー含有量が測定され 40 た (測定値X%) 粒状ポリエチレンテレフタレート2 kgを温度140℃、圧力10torrの条件で16時間以上 棚段式の乾燥器を用いて乾燥して、粒状ポリエチレンテ レフタレートの水分を50pm 以下にする。

【0067】次に、乾燥された粒状ポリエチレンテレフ タレートを名機製作所(株)製M-70A射出成形機によ り、成形時には露点がー70℃の窒素をホッパー上部、 スクリューフィーダーシュート部に各5ノルマル立方メ ートル/時間の割合でフィードし、バレル設定温度29 O℃、また成形機のC、/C、/C、/C、/ノズル先の温度 がら、常温から170℃までを30分間で昇温し、次に 50 を260/290/290/300℃の各温度にして、

金型冷却温度15℃の条件下で射出成形して、段付角板 状の成形物を得る。

【0068】段付角板状成形物の射出成形は、計量12 秒、射出60秒となるようにして、乾燥された粒状ポリ エチレンテレフタレートをホッパーより射出成形機に供 給して行なう。また成形機内の溶融樹脂の滞留時間は約 72秒とする。なお段付角板状成形物1個当りの重量は 75gであり、オリゴマー測定用試料は、射出成形開始 後11個~15個目のいずれか1個を用いて行なう。

【0069】段付角板状成形物1は、図1に示すような 10 形状を有しており、A部の厚みは約6.5mmであり、B 部の厚みは約5mmであり、C部の厚みは約4mmである。 とのC部を用いて成形物のオリゴマー増加量を調べる。

【0070】次に成形された4mm厚さの板状成形物をチ ップ状に切断、オリゴマー測定用試料とする。なお段付 角板を構成するポリエチレンテレフタレートのオリゴマ 一含有量の測定は、上記と同様の方法で測定される。

【0071】 このようにポリエチレンテレフタレートに 水蒸気処理を施すことによって、固相重縮合速度が減少 するとともに成形時にポリエチレンテレフタレート中に 20 含まれる環状三量体などのオリゴマー類の増加を抑制で きるのは、ポリエチレンテレフタレートに水蒸気処理を 加えることによって、ポリエチレンテレフタレート中に 含まれる重縮合触媒たとえばゲルマニウム触媒が失活 し、したがって成形時に加熱されても分解反応あるいは エステル交換反応がほとんど進行せず、このため生成す る環状三量体などのオリゴマー類の量が少なくなるので ある。

【0072】このように本発明に係る製造方法で得られ たポリエチレンテレフタレートは、成形時に生成する環 30 状三量体などのオリゴマー類の量が少なく、したがっ て、射出成形機械などの成形機に供給して中空成形体用 プリフォームを成形し、このプリフォームを所定形状の 金型に挿入し延伸ブロー成形した後ヒートセットして中 空成形容器を成形する際に、環状三量体などのオリゴマ -類が金型に付着することによる金型汚れが発生しにく

[0073]

【発明の効果】本発明に係るポリエチレンテレフタレー トの製造方法は、水蒸気または水蒸気含有ガスと接触さ 40 せる水蒸気処理工程を含んでいるため、この製造方法に より得られたポリエチレンテレフタレートは、成形時に 生成する環状三量体などのオリゴマー類の量が少なく、 しかも成形時にポリエチレンテレフタレート中に含まれ る環状三量体などのオリゴマー類の総量が少ないため、 成形時に金型汚れが発生しにくい。

【0074】したがって、本発明に係るポリエチレンテ レフタレートの製造方法により得られたポリエチレンテ レフタレートは、成形品を製造する際に頻繁に洗浄を行 なう必要がなく、ボトルやフィルム、シートなどの成形 50 部のエチレングリコールと3重量部の水との混合液が連

品の生産性を向上させることができ、しかも得られるボ トルやフィルム、シートの白化を防止することができ

[0075]

【実施例】以下本発明を実施例により説明するが、本発 明はこれら実施例に限定されるものではない。

[0076]

【実施例1】第1、第2、第3、第4 および第5の反応 器が槽型であり、また第6の反応器が二軸回転式の横型 反応器からなる連続重縮合装置を用いて、以下のとおり 操作して連続重合を行い、ポリエチレンテレフタレート を製造した。

【0077】予め3750重量部の反応液が滞留されて おり、攪拌下255℃で窒素雰囲気下に1.7kg/cm² Gの条件下に維持された第1反応器に、毎時高純度テレ フタル酸1437重量部およびエチレングリコール64 5重量部を混合して調製されたスラリーを連続的に供給 し、第1段目のエステル化反応を行った。この第1段目 のエステル化反応においては、203重量部の水と3重 **量部のエチレングリコールとの混合液が留去された。ま** た、この第1段目のエステル化反応物は、平均滞留時間 が2. 0時間になるように制御され、連続的に攪拌下2 60℃で0.8 kg/cm² Gの条件下に維持された第2反 応器に導かれた。

【0078】 この反応器2においては、毎時0.35重 量部の二酸化ゲルマニウムと32重量部のエチレングリ コールとの均一溶液が連続的に供給されるとともに、毎 時84重量部の水と7重量部のエチレングリコールとの 混合液が連続的に留去されて、第2段目のエステル化反 応が継続された。また、との第2段目のエステル化反応 物は、平均滞留時間が2.0時間になるように制御さ れ、連続的に攪拌下265℃で常圧の条件下に維持され た第3反応器に導かれた。

【0079】 この第3反応器においては、毎時1.23 重量部のトリメチルホスフェートと22重量部のエチレ ングリコールとが混合された均一溶液が連続的に供給さ れるとともに、毎時21重量部の水と38重量部のエチ レングリコールとの混合液が連続的に留去され、第3段 目のエステル化反応が継続された。

【0080】との第3段目のエステル化反応物も平均滞 留時間が2. 0時間となるように制御され、連続的に攪 拌下275℃で70mmHgに維持された第4反応器に導 かれた。この第4反応器においては、毎時62重量部の エチレングリコールと6重量部の水との混合物が連続的 に留去されて第1段目の重縮合反応が行われた。また、 この第1段目の重縮合反応物は、平均滞留時間が1.0 時間となるように制御され、連続的に攪拌下280℃で 5mHgに維持された第5反応器に導かれた。

【0081】との第5反応器においては、毎時26重量

続的に留去されて第2段目の重縮合反応が継続された。また、この第2段目の重縮合反応物は、平均滞留時間が1.0時間になるように制御され、連続的に282℃~285℃で1.8mHg~2.5mHgの条件下に維持された横型二軸回転式反応槽である第6反応器に導かれた。

【0082】この第6反応器においては、毎時12重量部のエチレングリコールと1重量部の水との反応液が連続的に留去されて第3段目の重縮合反応が継続された。また、この第3段目の重縮合反応物は、平均滞留時間が102.5時間となるように制御され、連続的にポリエステル抜き出し装置によって、反応器外にストランド状で抜き出され、水中に浸漬されて冷却された後、ストランドカッターによってチップ状に裁断された。以上の液相重合によって得られたポリエチレンテレフタレートの0-クロフェノール中で25℃で測定した固有粘度IVは0.57dl/gであり、またジオキシエチレンテレフタレート成分の含有量は2.50モル%であった。

【0083】さらに、その液相重合によるポリエチレンテレフタレートは、窒素雰囲気下約140℃で約15時20間乾燥するとともに結晶化を行った後、塔型の固相重合器に装填し、窒素雰囲気下205℃で15時間固相重合を行った。このようにして得られたポリエチレンテレフタレートの0-クロロフェノール中25℃で測定した固有粘度は0.80dl/gであり、密度は1.40g/cm²であり、オリゴマー含有量は0.31重量%であり、またそのジオキシエチレンテレフタレート成分の含量は2.53モル%であった。

【0084】 このようにして得られたポリエチレンテレフタレート(A)をステンレス容器に5kgを充填し、約 30 100℃の水蒸気を毎時0.5kgの量で30分間通蒸して、水処理を行なった。

【0085】次に、ポリエチレンテレフタレートを14*

*0°Cで14時間窒素中で乾燥した。乾燥ポリエチレンテレツタレートをすでに本明細書中で説明したようにして窒素ガス雰囲気下で215°Cの温度に加熱して固相重縮合処理した重縮合速度は、0.0052d1/g・時間であった。

【0086】また該ポリエチレンテレフタレート(名機製作所(株)製M-70A)を射出成形機で290℃において成型した段付角板状の成形物のオリゴマー含有量は0.40重量%であり、オリゴマー増加量は0.09重量%であった。

[0087]

【実施例2】実施例1 において、ポリエチレンテレフタレート(A)を加圧タイプのステンレス容器に5 kgを充填し、0.43 kg/cmの水蒸気(飽和温度110°C)を毎時0.5 kgの割合で30分間通蒸して、水処理を行なった以外は、実施例1と同様にした。

【0088】実施例1と同様の方法で乾燥後、固相重合速度を測定した結果、0.0048dl/g・時間であった。また、実施例1と同様の方法で成形した成形物のオリゴマー含有量は、0.37重量%であり、オリゴマー増加量は0.06重量%であった。

[0089]

【比較例1】実施例1において、水蒸気処理を行なわずに得られたポリエチレンテレフタレートを140℃で14時間窒素ガス中で乾燥した後、窒素雰囲気下で215℃の温度に加熱して固相重縮合処理した重縮合速度は、0.0067d1/g・時間であった。

【0090】また該ポリエチレンテレフタレートを290℃で成型した成形物のオリゴマー含有量は0.50重量%であり、オリゴマー増加量は0.19重量%であった。

【図面の簡単な説明】

【図1】図1は、段付角板状成形物の斜視図である。

【図1】

