

Standard Rectifier

 $V_{RRM} = 2x \, 1600 \, V$

 $I_{EAV} = 45 A$

 $V_{F} = 1.23 V$

Phase leg

Part number

DSP45-16AR

Backside: isolated

Features / Advantages:

- Planar passivated chips
- Very low leakage currentVery low forward voltage drop
- Improved thermal behaviour

Applications:

- Diode for main rectification
- For single and three phase bridge configurations

Package: ISOPLUS247

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Rectifier					Ratings	S	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse bloc	cking voltage	$T_{VJ} = 25^{\circ}C$			1700	V
V _{RRM}	max. repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			1600	٧
I _R	reverse current	V _R = 1600 V	$T_{VJ} = 25^{\circ}C$			40	μΑ
		$V_R = 1600 \text{ V}$	$T_{VJ} = 150$ °C			1.5	mΑ
V _F	forward voltage drop	I _F = 45 A	$T_{VJ} = 25^{\circ}C$			1.26	V
		$I_F = 90 A$				1.57	٧
		$I_F = 45 \text{ A}$	$T_{VJ} = 150 ^{\circ}\text{C}$			1.23	V
		$I_F = 90 A$				1.66	٧
I FAV	average forward current	T _C = 100°C	T _{vJ} = 175°C			45	Α
		180° sine					
V _{F0}	threshold voltage	deservation and	T _{vJ} = 175°C			0.81	V
\mathbf{r}_{F}	slope resistance	loss calculation only				9.1	mΩ
R _{thJC}	thermal resistance junction to ca	ase				0.9	K/W
R _{thCH}	thermal resistance case to heats	sink			0.3		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			165	W
I _{FSM}	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			480	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			520	Α
		t = 10 ms; (50 Hz), sine	$T_{VJ} = 150$ °C			410	Α
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			440	Α
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.15	kA2s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.13	kA2s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			840	A ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			805	A²s
C	junction capacitance	$V_{R} = 400 \text{ V}; f = 1 \text{ MHz}$	$T_{VJ} = 25^{\circ}C$		18		pF

Package	ISOPLUS247			ı	Ratings	S	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				70	Α
T _{VJ}	virtual junction temperature	-40		175	°C		
T _{op}	operation temperature					150	°C
T _{stg}	storage temperature			-40		150	°C
Weight					6		g
F _c	mounting force with clip			20		120	N
$d_{\text{Spp/App}}$	creepage distance on surface striking distance through all		2.7			mm	
$d_{Spb/Apb}$			terminal to backside	4.1			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 II	3600			٧
		t = 1 minute	50/60 Hz, RMS; lisoL ≤ 1 mA				٧

Product Marking

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.	
Standard	DSP45-16AR	DSP45-16AR	Tube	30	496561	

Similar Part	Package	Voltage class		
DSP45-16A	TO-247AD (3)	1600		
DSP45-16AZ	TO-268AA (D3Pak) (2HV)	1600		
DSP45-12A	TO-247AD (3)	1200		
DSP45-12AZ	TO-268AA (D3Pak) (2HV)	1200		

DSP45-18A	TO-247AD (3)	1800

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 175^{\circ}C$
$I \rightarrow V_0$)—[R ₀]-	Rectifier		
V _{0 max}	threshold voltage	0.81		V
$R_{0 \text{ max}}$	slope resistance *	6.5		$m\Omega$

Outlines ISOPLUS247

Dim.	Millir	neter	Inc	hes
Diiii.	min	max	min	max
Α	4.83	5.21	0.190	0.205
A1	2.29	2.54	0.090	0.100
A2	1.91	2.16	0.075	0.085
b	1.14	1.40	0.045	0.055
b2	1.91	2.20	0.075	0.087
b4	2.92	3.24	0.115	0.128
С	0.61	0.83	0.024	0.033
D	20.80	21.34	0.819	0.840
D1	15.75	16.26	0.620	0.640
D2	1.65	2.15	0.065	0.085
D3	20.30	20.70	0.799	0.815
Е	15.75	16.13	0.620	0.635
E1	13.21	13.72	0.520	0.540
е	5.45	BSC	0.215	BSC
L	19.81	20.60	0.780	0.811
L1	3.81	4.38	0.150	0.172
Q	5.59	6.20	0.220	0.244
R	4.25	5.50	0.167	0.217
W	-	0.10	-	0.004

Die konvexe Form des Substrates ist typ. < 0.04 mm über der Kunststoffoberfläche der Bauteilunterseite

The convex bow of substrate is typ. < 0.04 mm over plastic surface level of device bottom side

Die Gehäuseabmessungen entsprechen dem Typ TO-247 AD

gemäß JEDEC außer Schraubloch und L_{max}. This drawing will meet all dimensions requiarement of JEDEC outline TO-247 AD except screw hole and except L_{max}.

Rectifier

Fig. 1 Forward current versus voltage drop per diode

Fig. 2 Surge overload current

Fig. 3 I²t versus time per diode

Fig. 4 Power dissipation vs. direct output current & ambient temperature

Fig. 5 Max. forward current vs. case temperature

1.0																	
0.8									1	T							
						\parallel											
Z _{th} 0.6																	
[K/W]																	
0.4			H														
0.4																	
0.2																	
0.2																	
0.0																	
0.0	1		1	10				00			1	00	00		1	00	000
						t	[ms]									

Fig. 6 Transient thermal impedance junction to case

i	Ri	ti
1	0.0607	0.0004
2	0.123	0.00256
3	0.2305	0.045
4	0.323	0.0242
5	0.1628	0.18