PAT-NO:

JP408263391A

DOCUMENT-IDENTIFIER: JP 08263391 A

TITLE:

INFORMATION PROCESSOR

PUBN-DATE:

October 11, 1996

INVENTOR-INFORMATION:

NAME

SUGIYA, MIDORI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

KOFU NIPPON DENKI KK

N/A

APPL-NO:

JP07062816

APPL-DATE:

March 22, 1995

INT-CL (IPC): G06F012/16, G06F012/16, G06F011/22

ABSTRACT:

PURPOSE: To efficiently test a memory (RAM) where an error correction code is stored.

CONSTITUTION: The information processor provided with a RAM 1, where the error correction code(ECC) which includes check bits generated by exclusive OR of even information bits and is capable of one-bit error correction and ≥2-bit error detection is stored, is provided with an ALL 1 test mode flag 7 which goes to '0' for ALLO of test data at the time of normal operation or RAM test and goes to '1' for ALL1 of test data at the time of RAM test, and is provided with the function, which adds the value of the ALL1 test mode flag to write data of the RAM 1 and generates all check bits by exclusive OR of odd information bits and writes only write data and generated check bits in the RAM 1, and the function which performs error correction and detection of read data of the RAM 1 based on ECC generated by adding the value of the ALL1 test mode flag 7 to a proper bit position of information bits.

COPYRIGHT: (C)1996,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-263391

(43)公開日 平成8年(1996)10月11日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FΙ			技術表示箇所
G06F	12/16	330	7623-5B	G06F	12/16	3 3 0 A	
		310	7623-5B			310F	
	11/22	350			11/22	350F	

		審査請求 有 請求項の数2 OL (全 6 頁)
(21)出願番号	特願平7-62816	(71)出顧人 000168285 甲府日本電気株式会社
(22)出願日	平成7年(1995)3月22日	山梨県甲府市大津町1088-3 (72)発明者 杉矢 みどり 山梨県甲府市大津町1088-3 甲府日本電
		気株式会社内 (74)代理人 弁理士 京本 直樹 (外2名)

(54) 【発明の名称】 情報処理装置

(57)【要約】

【目的】誤り訂正符号を格納するメモリ (RAM) のテ ストの効率化を図る。

【構成】偶数個の情報ビットの排他的論理和で生成され る検査ビットを含む1ビット訂正・2ビット以下誤り検 出可能な誤り訂正符号 (ECC) を格納するRAM1を 有する情報処理装置において、通常動作時またはRAM テスト時でテストデータがALLOのときは'O'、R AMテスト時でテストデータがALL1のときは'1' となるALL1テストモードフラグ7を有し、RAM1 の書込みデータにALL1テストモードフラグの値を付 加して、全ての検査ビットを奇数個の情報ビットの排他 的論理和で生成し、書込みデータと生成した検査ビット のみをRAM1に書き込む機能と、RAM1の読出しデ ータにALL1テストモードフラグ7の値を情報ビット の適当なビット位置に付加してできるECCから誤り訂 正および検出を行う機能とを有する。

【特許請求の範囲】

【請求項1】 メモリテスト時のテストデータがALL 1であることを示すALL1テストフラグと、前記AL L1テストフラグをデータに付加して誤り訂正符号を生 成する手段と、前記ALL1テストフラグをメモリから 読み出した誤り訂正符号に付加してエラー検出・訂正を 行う手段とを備え、前記ALL1テストフラグと、前記 生成手段と、前記エラー検出・訂正手段とにより、全ビ ットがすべて1である値をとることができない誤り訂正 符号を格納するメモリのテストを、仮想的に全ビットが 10 値1をとる誤り訂正符号のテストで行うことを特徴とす る情報処理装置。

【請求項2】 1ビット誤り訂正・2ビット以下誤り検 出可能な誤り訂正符号を格納するメモリと、前記誤り訂 正符号の生成回路と、前記誤り訂正符号のシンドローム 生成回路とを有する情報処理装置であって、

前記メモリのテストにおいて、全てのビットが値1であ るデータでテストを行うときは1を、他のデータでテス トを行うとき、およびメモリテスト処理以外のときは値 0を示すフラグと、

前記誤り訂正符号生成回路で生成された検査ビットが偶 数個の情報ビットの排他的論理和から成る場合は、前記 検査ビットと前記フラグの値との排他的論理和をとり、 その結果を前記メモリに格納する検査ビットと差し替え る手段と、

前記シンドローム生成回路において生成されるシンドロ ームのうち、前記シンドロームを生成するときの要素と なった検査ビットが前記手段によって差し替えられたも のである場合は、前記シンドロームに前記フラグの排他 ムとする手段とを有することを特徴とする情報処理装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、情報処理装置のメモリ 装置に関し、特に、メモリテストに関する。

[0002]

【従来の技術】従来の情報処理装置においては、誤り訂 正符号を格納するランダムアクセスメモリ(以下、RA M)のテスト方式として、通常のメモリアクセス処理機 40 能を用いて、適当なテストパタンに対して誤り訂正符号 を生成し、これをRAMに格納したのち、読み出して誤 り訂正符号の誤り検出を行う方式が採られる。

【0003】誤り訂正符号には、1ビット誤り訂正・2 ビット以下誤り検出符号(以下、ECCと称す)が用い

【0004】次に、従来の情報処理装置について図面を 参照して説明する。

【0005】図4に、この従来の情報処理装置の一実施 例を示す。

【0006】メモリ装置40にはECCを格納するRA M1、ECC生成回路42、エラー訂正・検出回路43 が含まれている。

【0007】メモリ制御装置50は、メモリ装置40を 制御する。信号線201はRAM1のアドレスを送る信 号線であり、信号線202はRAM1への書き込み指示 (以下、WEと称す)信号である。

【0008】メモリ装置40では、メモリ制御装置50 から信号線203を介してレジスタ4で受け取ったRA M1書込みデータからECC生成回路42においてEC Cを生成し、信号線201のWEに従い、信号線202 が示すアドレスにこのECCをセットする。

【0009】また、エラー訂正・検出回路43におい て、RAM1の信号線202が示すアドレスのECCよ りシンドロームを生成する。シンドロームで検出される エラーの結果が1ビットエラーの場合は、エラー訂正さ れたデータがレジスタ5に、1ビットエラー情報がエラ ーフラグ6にそれぞれセットされる。 メモリ制御装置5 0では、レジスタ5のデータとエラーフラグ6の情報を 20 それぞれ信号線101,信号線102を介して受け取 る。2ビットエラーの場合は、2ビットエラー情報がエ ラーフラグ6にセットされ、エラーフラグ6の内容がメ モリ制御装置50に信号線102で報告される。

【0010】メモリ制御装置50の信号線204の指示 により、メモリ装置40においてRAM1のテストを処 理するときには、メモリ制御装置50からレジスタ4に 信号線203でテストデータがセットされ、上述した処 理と同様に、ECC生成回路42で生成されたECCが RAM1にセットされる。RAM1への書き込みが全て 的論理和をとって誤り訂正および検出をするシンドロー 30 終了すると、メモリ制御装置50はRAM1の読出しを 行う。このとき読み出したECCはエラー訂正・検出回 路43においてエラー検出され、エラーフラグ6にセッ トされる。エラーフラグ6の情報は信号線102を介し てメモリ制御装置50に報告される。

> 【0011】図4で示した装置のように、通常処理とテ スト処理を兼用する場合、情報処理装置としての稼働率 を考慮すると、テスト時間はより短いことが望まれ、そ の短縮手段の1つとしてテストデータパタンを少なくす. ることが挙げられる。

【0012】テストデータとしては、RAMの全てのビ ットついて、「1」を書いて正しく読み出せることと '0'を書いて正しく読み出せることがテストできれば テストを網羅しているといえ、これを満たすよう選ぶ必 要がある。

【0013】 ECCは、データ長によってはデータのビ ットの値が全て'1'(以下、ALL1と称す。ALL 0も同様)となるようなコーディングが可能であり、こ のときALL1とALL0の2個のデータパタンでRA Mのテストが網羅できる。

50 【0014】図2にECC生成の例を挙げる。図2のE

CCは33ビットの情報ビットD1~D33と7ビット の検査ビットC1~C7から構成されている。検査ビッ トC1~C7は、情報ビットD1~D7のうち、第1行 ~第7行の各行において'1'が立っているビット位置 に対応するビットの排他的論理和で求められる。 図2か らわかるように、各検査ビットを求める情報ビットの数 は奇数個である。したがって、情報ビットD1~D33 の値が全て1であれば、検査ビットC1~C7の値も全 て1となる。つまり図2で示したECCは40ビットA LL1の値をとり得るECCである。

【0015】ECCのALL1コーディングが不可能な 場合は、最低3個のデータパタンが必要となり、処理時 間が長くなる。

【0016】情報処理装置において、データ処理単位と して32ビット(4バイト)長は一般的であるが、32 ビットの情報ビットに7ビットの検査ビットを付加して 生成されるECCはALL1をとり得ない。

【0017】したがって、32ビットデータで処理する RAMのECCチェックテストは最低3パタンのデータ パタンで処理しなければ網羅できない。

[0018]

【発明が解決しようとする課題】上述した従来の情報処 理装置のメモリテストでは、ビットがすべて値1をとる ことができない誤り訂正符号でチェックテストをする場 合、最低3個のテストデータパタンを用意してテストす るため、メモリテスト時間が長くなるいう問題がある。 [0019]

【課題を解決するための手段】本発明の情報処理装置 は、メモリテスト時のテストデータがALL1であるこ とを示すALL1テストフラグと、ALL1テストフラ 30 グをデータに付加して誤り訂正符号を生成する手段と、 ALL1テストフラグをメモリから読み出した誤り訂正 符号に付加してエラー検出・訂正を行う手段とを備え、 ALL1テストフラグと、生成手段と、エラー検出・訂 正手段とにより、全ビットがすべて1である値をとるこ とができない誤り訂正符号を格納するメモリのテスト を、仮想的に全ビットが値1をとる誤り訂正符号のテス トで行うことを特徴としている。

【0020】本発明の情報処理装置は、1ビット誤り訂 正・2 ビット以下誤り検出可能な誤り訂正符号を格納す 40 るメモリと、誤り訂正符号の生成回路と、誤り訂正符号 のシンドローム生成回路とを有する情報処理装置であっ て、そのメモリのテストにおいて、全てのビットが値1 であるデータでテストを行うときは1を、他のデータで テストを行うとき、およびメモリテスト処理以外のとき は値0を示すフラグと、誤り訂正符号生成回路で生成さ れた検査ビットが偶数個の情報ビットの排他的論理和か ら成る場合は、検査ビットとフラグの値との排他的論理 和をとり、その結果をメモリに格納する検査ビットと差

れるシンドロームのうち、シンドロームを生成するとき の要素となった検査ビットが先の手段によって差し替え られたものである場合は、シンドロームにフラグの排他 的論理和をとって誤り訂正および検出をするシンドロー ムとする手段とを有することを特徴としている。

[0021]

【実施例】次に、本発明の実施例について図面を参照し て説明する。

【0022】図1は本発明の情報処理装置の一実施例の 10 ブロック図である。

【0023】本実施例は、メモリ装置10とメモリ制御 装置20を有する情報処理装置であり、メモリテストも 処理する。

【0024】メモリ装置10は、RAM1と、RAM1 のALL1テストモードを示すフラグレジスタ7と、R AM1の書込みデータを保持するレジスタ4と、レジス タ4のデータに対してECCを生成するECC生成回路 2と、RAM1から読み出したECCより誤りを検出・ 訂正するエラー訂正・検出回路3と、読出しデータを保 20 持するレジスタ5とエラーフラグ6とから構成される。 【0025】メモリ制御装置20は、RAMアドレス信 号線201,書き込み指示 (WE)信号線202,RA Mテストモード信号線204, ALL1テスト信号線2 05によりメモリ装置10を制御し、信号線203を介 してRAM書込みデータをメモリ装置10に送る。ま た、信号線101と信号線102を介してRAM1の読 み出し結果を受け取る。

【0026】次に、本実施例の詳細について図1を参照 して説明する。

【0027】本実施例の情報処理装置は、RAMの読み 出しや書き込み等のデータ処理単位を4バイト(32ビ ット)で行う。

【0028】RAM1は、32ビットの情報ビットと7 ビットの検査ビットから成る1ビット誤り訂正・2ビッ ト以下誤り検出可能な誤り訂正符号(ECC)を格納す るメモリである。メモリ制御装置20は32ビットのデ ータを信号線203を介して書込みデータレジスタ4に セットする。メモリ装置10では、ECC生成回路2に おいてレジスタ4の書込みデータからECCを生成し、 信号線202に制御されて、信号線201が示すRAM

1のアドレスにこのECCをセットする。

【0029】また、メモリ装置10では、エラー訂正・ 検出回路3において、信号線201が示すECCからシ ンドロームを生成する。エラー訂正・検出回路3では、 シンドロームより1ビットエラーを検出すると、ECC のエラーを訂正し、レジスタ5に訂正後のデータをセッ トするとともに、エラーフラグ6に1ビットエラー情報 をセットする。また、2ビットエラーを検出すると、2 ビットエラー情報をエラーフラグ6にセットする。メモ し替える手段と、シンドローム生成回路において生成さ 50 リ制御装置20では、読出しデータレジスタ5およびエ ラーフラグ6の情報を信号線101および信号線102 を介してそれぞれ受け取る。

【0030】このようにして、本実施例の情報処理装置はメモリの書込み処理および読出し処理を実現している。

【0031】本情報処理装置は、上述の通常のメモリアクセス手段を用いてメモリのテストも処理する。

【0032】メモリ制御装置20は、信号線204を介して、メモリ装置10に対してRAM1のテストを指示する。信号線205はRAMテストのタイプを示す信号 10で、信号線205が 17を送るときはRAM1のテストを書込みデータALL1で行うこと(以下、ALL1テストと称す。ALL0テストも同様)を示し、このときフラグレジスタ7は 17がセットされる。ALL1テスト時以外は信号線205は '0'を送り、フラグ7は '0'を保持する。フラグ7はALL1テストモード時、ALL1テストの書込み処理とエラーチェック処理(ライト&リードチェック)が終了するまで '1'を保持する。

【0033】メモリ装置10のレジスタ4は、信号線204がRAMテストモードを示し信号線205が'1'を示せばALL1データがセットされ、信号線204がRAMテストモードを示し信号線205が'0'を示せばALL0データがセットされる。

【0034】ECC生成回路2でレジスタ4のデータに対してECCを生成する。

【0035】ECC生成回路2では、レジスタ4から入力された32ビットデータにALL1テストモードフラグ7の値を付加して33ビットの仮想データを構成する。この仮想データ33ビットを図2における情報ビットD1~D33にあてはめる。このとき付加したフラグ7を情報ビットD33にあてはめるようにし、従来技術で述べた図2のきまりに従って検査ビットC1~C7を排他的論理和より求める。RAM1のALL1テストのとき、フラグ7の値は'1'であり、書込みデータのビットも全て'1'なので、情報ビットD1~D33には全て'1'が入り、検査ビットC1~C7も全てが

'1' に生成される。ALLOテストのときはフラグ7は '0' なので、32ビットALLOのデータに値

'0'を付加して33ビットALL0データとなり、これより生成される検査ビットC1~C7はALL0である。また、通常のメモリアクセス処理時もALL1テストモードフラグ7は'0'を示すので情報ビットD33は'0'となり、このときECC生成回路2で生成される検査ビットC1~C7は、元のデータ32ビットだけを情報ビットとして生成した検査ビットと同一のものとなる。

【0036】このようにECC生成回路2で生成したE CCの33番目の情報ビットは、RAM1に格納するデータがALL1になるように仮想的に埋め込んだ情報ビ 50 ットであり、RAM1には格納しない。

【0037】図1において、制御装置20は信号線203でRAMテスト処理を指示するときも信号線202によって、RAM1への書き込みを指示する。メモリ制御装置20は、ひとつのテストデータパタンの書き込みをRAM1の全アドレスについて終了すると、次にRAM1を読み出してRAM1のエラーチェックを行う。エラーチェックはエラー訂正・検出回路3において処理される。

- 【0038】エラー訂正・検出回路3では、RAM1の ECCを読み出すと、このECCにALL1テストモー ドフラグ7を付加し、40ビットのECCを構成してシ ンドロームを生成する。エラー訂正・検出回路3では、 図3で示す表に従い、シンドロームを生成する。図3を 説明すると、ビットE1~E32には図2におけるビッ トD1~D32をRAM1に書いて読み出したものが入 り、ビットE34~E40には図2におけるビットC1 ~C7をRAM1に書いて読み出したものが入り、ま た、ビットE33にはALL1テストフラグの値が入 る。シンドロームの生成は、ビットEO~E4Oのう ち、第1行~第7行において'1'が立っているビット 位置に対応するビットの排他的論理和をより得られる。 ここで、ビットE33はALL1テストモードフラグの 値であるから、ALL1テストのときは有効であるが、 ALL1テスト時以外は意味を持たないことになる。し たがって、ALL1テストモード時は40ビットの仮想 ECCの誤り検出を行い、ALL1テスト時以外はRA M1から読み出したままの39ビットの誤り検出を行う ことになる。
- 0 【0039】このようにして、本実施例では、RAMのデータを、ALL1テスト時は40ビットの仮想ECCとして扱い、ALL1テスト時以外は本来の39ビットECCとして扱うことにより、ALL1のパタンを生成できないECCを格納するRAMに対して、ALL1ライト&リードチェックとALL0ライト&リードチェックの2回のテストでRAMのテストを網羅できるようにしている。

[0040]

【発明の効果】以上説明したように、本発明の情報処理 装置は、全ビット値1というパタンを生成できない誤り 訂正符号をもつメモリのテストにおいて、ハードウェア 投資することなく、通常のメモリアクセス処理手段を用 いて、全ビット値1のパタンデータでテストを行えるよ うにしたことにより、テストの網羅性を欠かすことなく メモリテスト時間を短縮させることができ、情報処理装 置の稼働率の低下を防ぐことができるという効果があ る。

【図面の簡単な説明】

【図1】本発明の情報処理装置の一実施例のブロック図) である。 7

【図2】誤り訂正符号の生成を説明するための図である。

【図3】シンドロームの生成を説明するための図である。

【図4】従来の情報処理装置の一実施例のブロック図である。

【符号の説明】

- 1 ランダムアクセスメモリ(RAM)
- 2,42 エラー訂正符号(ECC)生成回路

3,43 エラー訂正・検出回路

4 書込みデータレジスタ

5 読出しデータレジスタ

6 エラーフラグ

7 ALL1テストモードフラグ

10,40 メモリ装置

20,50 メモリ制御装置

101,102 信号線

201~205 信号線

【図1】

【図4】

【図3】

