Consumer Complaint Analysis

Financial Products & Services

OPIM 5671 – Data Mining & Business Intelligence

Team Members

Lily Abarbanel Vijay Garad Tianshu Ding Dongting Li

Introduction

The Consumer Financial Protection Board (CFPB) provides customers with information and resources in order to protect and manage their finances. The CFPB owns a database called the consumer complaint database which is essentially a collection of customer complaints in regards to the financial industry. It is important for specific financial institutions and companies to take these complaints into consideration because if they do not, their customers may want to use a different company. Furthermore, if many complaints against a single financial institution are made without the financial institution spending time to solve the problem at hand, this may permanently damage that specific financial institution. If companies take a complaint, talk about the issue the customer had, and come up with a successful way to solve the issue, then the customer may have a really positive experience with that specific financial institution and will recommend that company to people he/she knows.

Each time a customer makes a complaint against a company or financial institution, said company has to pay a price. Whether that is the time that they spend listening to the customer, talking to the customer, brainstorming ways to solve the customer's issue, or spending actual money to provide monetary relief, a price is being paid by the company. In order to help mitigate the price being paid by the company, our ultimate goal is to predict consumer complaints using predictive modeling/data mining/text mining, and also predict the number of consumer complaints each week.

By having this information companies will be able to better prepare for customer complaints, and find ways to mitigate the number of requests as a whole. Ultimately, when customers are satisfied, the company will do better as a whole and be more successful.

Literature

In the middle of July 2020, the CFPB released updated consumer complaint data that shows how much the coronavirus has affected financial complaints. One statistic that really speaks volumes as to how much the pandemic has affected financial complaints is that "Comparing the weekly average complaint volume before and after the coronavirus emergency declaration, prepaid card complaints saw the greatest percent increase at 105 percent, and student loan complaints saw the greatest percent decrease at 24 percent" (CFPB July 2020)

Based on the CFPB article published in mid-July 2020, it is evident that the pandemic had a significant impact on customer complaints, and an article based in California definitely supports the CFPB's findings. In "Financial Complaints Soared During Pandemic", Reports Say, written by Jacqueline Sergeant,

"The California Department of Business Oversight said it had experienced an increase of more than 40% in consumer contacts. The department said that from March 1 through the end of June, consumer complaints increased more than 37% to an average of 588 per month".

The findings in California certainly are backed by the data we are seeing from the Consumer Complaint Database (Figure 4).

Since coronavirus is a good example of an unpredicted shock that has a direct effect on consumer complaints, companies may want to keep this in mind for the future: maybe they should have a specific team of people who are monitoring consumer complaints when unpredicted shocks occur, so that they could better satisfy their customers, and more quickly solve the problems that the customers are having.

Lastly, there was a study done by Xin Xu, that looks at the performance of time series, multiple linear regression and BP Neural Network models in regards to predicting customer complaints. They found that the neural network model is the algorithm that is best at predicting consumer complaints: "In can be concluded form the above table that the prediction model constructed by the neural network algorithm is much higher than the other two algorithms" (Xu 2019). The table referenced is found below (Table 1).

Algorithm	The relative error is less than 10%	The relative error i s less than 20%	The relative error i s less than 30%	Relative error is l ess than 40%
Multiple linear regression	24.83%	45.15%	62.75%	74.27%
ARIMA time series	22.48%	43.56%	60.21%	71.12%
Neural network algorithm	31.38%	58.47%	76.52%	90.29%

Table 1: Xin Xu's Conclusion

Data

Data Description

The data used for the predictive modeling and time series applications, which will be discussed later, comes from the consumer complaints database. This dataset has 18 attributes that are defined in Table 2.

Table 2: Attribute Definitions

The data set has a total of 930,764 complaints, so in order to narrow it down, the data set will be filtered to the Capital One Bank.

Preliminary Data Analysis

In order to gauge which attributes will have a positive or negative impact on consumer complaints, preliminary exploratory data analysis was done. The first attribute that was looked at is the State. In Figure 1, it is evident that the number or complaints per 1,000 population by state varies.

Figure 1: Number of Complaints per 1,000 Population by State

The darker blue states indicate that the state has a higher number of complaints. Based on the chart, some states that have a higher number of complaints are Florida, Texas, Alabama, Georgia, etc. This will be important to note going forward with our predictive modeling, because it seems as though larger states have a higher number of complaints.

Another attribute that is worth looking into is the impact sub-product and product have on number of complaints. Looking at table 2, product and sub-product are defined as the name for which the complaint is logged, and the sub product category of the product, respectively. Looking at figure 2, we may see that credit reporting, credit repair services, and debt collection are among some of the products that yield the highest number of complaints. Credit reporting alone has more than double the number of complaints as the second highest complaint product (debt collection). Keeping the state, and product/sub-product charts in mind will help predictive modeling ability later in the project.

Figure 2: Number of Complaints by Product/Sub-Product

Another attribute to consider is the company. Maybe there is a better chance a complaint is going to happen based on the company. Figure 3 shows the number of complaints by company.

Figure 3: Number of Complaints by Company

As we can see by the chart, Bank of America has the highest number of complaints; however, this may be due to the fact that Bank of America is a huge bank and therefore has a lot of customers. We will specifically be looking at Capital One in order to account for the dataset being large.

Also, in our data set, it is evident that the coronavirus pandemic has significantly impacted the number of complaints for financial institutions. Looking at Figure 4, we are able to see that the number of consumer complaints have been consistently increasing since February of 2020 (when the pandemic first started and businesses started shutting down).

Figure 4: Number of Consumer Complaints over the Past 3 Years

Data Preprocessing

Data preprocessing is a data mining technique which is used to transform the raw data in a useful and efficient format. We have used SEMMA process, i.e., Sampling, Exploring, Modifying, Modeling, and Assessing, to preprocess our Capital One Bank's Customer Complaints data. We have used tableau's data prep functionality to clean & validate the Bank's data.

Data Cleansing (Text Mining)

As a part of Data cleansing, we have dropped the irrelevant columns like Date received; Date sent to Company, Zip Code etc. as these columns do not have that much predictive power. Columns with too many null values were also dropped like Tags, consumer complaints narrative and company public response.

Data Cleansing (Time Series Forecasting)

For predicting number of complaints per day in the future, we have kept only relevant columns in the dataset like Date, Complaint ID. To create time series, we have aggregated Complaint ID data per day to crat Number of Complaints per day column like figure 5 & exported it to .csv file for forecasting the time series.

Figure 5: Consumer Complaints per Day

Data Mining (Text)

As a part of Initial Data setup, we have used File Import Node to import our newly created data file into the SAS Enterprise Miner. Then we have used Data partition node to divide our data into training & validation dataset into 70:30 ratio.

Our target variable, Closed with Monetary Relief, has low number of samples in our dataset which could negatively impact the predicting capacity of model building. Hence, to address this data imbalance issue, we have used data sampling node. We have used level based (70%) Stratified Sampling method with sample proportion as 20% to increase the number of target samples of our

data. Because of this, we could increase target sample rate from 15% to 20%. Below figure shows the details of stratification strategy.

Figure 6: Stratification on Target Variable

Figure 7: Target Variable Sampling after 20% level-based sampling

Our objective is to determine that whether the Capital One Bank Customer's Dispute closed with monetary relief or not?

- 1. Target Variable: Closed with Monetary Relief.
- 2. <u>Input Variables</u>: Complaint_ID, Consumer_Disputed, Issue, Product, State, Submitted_via, Timely_response.

Figure 8: Input, Text & Target Variable Dataset

Text Preprocessing

Test Parsing

The text parsing node generated the terms by document matrix. We could identify the most frequently occurring terms along with the number of documents the terms occurred in & weight of the particular term. With the help of various attributes like Start List, Stop List, Synonyms Lists, Multiterm Lists, we could be able to identify frequency, weight of the term.

Figure 9: Text Parsing Node Results

Text Filtering

To reduce the number of parsed terms or documents that are analyzed, we have used Text Filter Node. For that we have used frequency **Weighting method** as **Log** and **Term Weighting method** as **Inverse Document Frequency**. We also kept Minimum number of documents the term needs to appear in to be **4**. With the term window of interactive filter viewer results from text filter node, we could get below results. We could get account, bill dispute as a most frequently used terms which makes sense considering our data is related to financial complaints.

	Terms					
	TERM	FREQ	# DOCS	KEEP ▼	WEIGHT	ROLE
	account	980	980	$\overline{}$	3.661	Noun
±	bill	881	881		3.815	Verb
Œ	dispute	839	839		3.885	Noun
±	close	690	690		4.167	Verb
	credit	688	686		4.176	Noun
	fraud	514	514		4.592	Noun
	identity	510	510		4.603	Noun
	theft	508	508		4.609	Noun
	embezzlement	508	508		4.609	Noun
	loan	496	496		4.644	Noun
	debt	487	487		4.67	Noun
	management	385	385		5.009	Noun
	opening	385	385		5.009	Noun
Ð	fee	311	311		5.317	Noun

Figure 10: Tet Filtering Node Results.

We also analyzed strength of association of few terms to have better understanding of relationship between different text terms with the help of concept linkage viewer tab as shown in below figure.

Figure 11: Concept linkage tab viewer results

Text Clustering

To reduce the dimensionality of dataset & to cluster the document into different set of clusters, we have used text cluster node with clustering algorithm to be Expectation-Maximization. SVD Resolution-High, Max SVD Dimensions-20, Number of Clusters-40.

Figure 12: Text Cluster Node results

Text Topic Node

Text Topic node helped us to combine the terms into relevant topics for further analysis.

Figure 13: Text Topic Node Results

Model Building & Assessment

To predict consumer complaints which causes direct cost, we have built 5 classifier models on our parsed data. We compared those models with the help of model assessment node on the basis of misclassification rate & ROC on the validation dataset. From the model, we were able to find out that Neural Network Model Performs best in term of both ROC & Misclassification rate.

Five Classifier Models -

- 1. Decision Tree
- 2. Regression
- 3. Gradient Boosting
- 4. Neural Network
- 5. Text Rule Builder

Model Assessment (ROC & Misclassification Rate)

Figure 15: ROC curves for 5 models

Model Name	ROC Index	Misclassification Rate
Neural Network	0.783	0.183 (Best Model)
Regression	0.763	0.188
Gradient Boosting	0.754	0.189
Decision Tree	0.652	0.192
Text Rule Builder	0.715	0.233

Table 3: ROC & Misclassification Rate

Model Diagram

Figure: SAS Enterprise Miner Diagram

Model Assessment on Score Dataset

We imported our score dataset & generated the predictions based on our best model. (Neural Network). We found out that our misclassification rate is 0.11, which lowest one.

<u>Misclassification Rate on Score Dataset -</u>

(FN + FP) / Total Records

$$= (20 + 27) / 461 = 45/461 = 0.102$$

Figure 16: Model Prediction Results on Score Dataset

Conclusion & Recommendations (Text Mining)

Based on the decisions of 5 classifier models, we recommend Capital One Bank

- To resolve the customer's complaint in timely manner as it is key determinant of your customer satisfaction.
- Text mining helped us understand that many issues with Capital One Bank's customer are related to Credit Reporting & Debt collection area. We recommend them to create robust system in those areas.

Objective - Analyze Bank's customer complaints data to save the money.

Method - Text Mining

Models Built - Regression, Neural Network, Gradient Boosting, Decision Tree, Text Rule Builder **Model assessment** - Neural (82%), Regression (81%), Gradient Boosting (80%), Decision Tree (78%).

Time Series Exploration

We used our dataset complaint for the Time Series Exploration task. Added Complaint Count as the dependent variable and added Day of Date received as the TimeID in the additional roles. We can see that the Interval automatically gets set to Week. In order to make equally spaced data, we used accumulation as sum for our models. Accumulation is the process of transforming transactional data into time series.

The purpose of exploring time series before modelling is to determine whether the series contains any noticeable trend or seasonality. From our trend component plot for the complaint count, we do not observe any trend. It looks like there has been a random increase and decrease in the complaints over the years.

Figure 17: Complaints per Day Time Series

Then from the seasonality plot for the complaints count, we can observe that there is seasonality in our dataset. Ups & Downs in the data every 7 days. Hence, we could say that time series have seasonal factor in it.

Figure 18: Seasonality Time Series (Zoom in)

We also performed a correlation analysis for the complaints. We observed from the White Noise Prob plot that there is no white noise implying that they have only signal. Hence, we reject our null hypothesis here. From the autocorrelation plots of ACF, we can see that the correlation dies out slowly with every successive lag.

Figure 19: Auto-Correlation Plot

Figure 20: White Noise Plot

Model Fitting

To fit the model, we use hold out 315 days of data. Then we built 4 models: Simple Exponential Smoothing, Double Exponential Smoothing, Additive Seasonal Exponential Smoothing models and ARIMA model with linear trend and seasonal dummies.

Figure 21: TSFS Model Building

Results

Single Exponential Smoothing Model

We analyzed the results of our four models. For the Single exponential smoothing model, we can see from the White Noise Prob plot for the prediction errors for complaints that there is white noise in our model. Hence, we fail to reject the null hypothesis. Since it is white noise, it consists of only noise with independent and identically distributed random variables with a mean of 0 and the same finite variance. We observed some white noise in our fit statistics model.

Figure 22: Single Exponential Smoothing Model Plots

Double Exponential Smoothing Model

For the Double Exponential Smoothing model, similar to single exponential model, we can observe white noise and few spikes at 7-day iteration at the lags.

Figure 23: Double Exponential Smoothing Model Plots

Additive Seasonal Exponential Smoothing Model

For our third model which is the Additive Seasonal Exponential smoothing model, we can observe that there is not much white noise in our model and there are no spikes in the autocorrelation plots at the lags. Hence, we concluded that seasonal exponential smoothing is performing better over previous 2 models.

Figure 24: Additive Seasonal Exponential Smoothing Model Plots

Linear Trend + Seasonal Dummies Model

For our fourth model which is the Linear Trend + Seasonal Dummies model, we can observe that there is not much white noise in our model, but there are no spikes in the autocorrelation plots at the lags. Hence, we concluded that Linear + seasonal dummies is performing better over first 2 models.

Figure 25: Linear Trend + Seasonal Dummies Model Plots

Forecasting

Then we use the full data set to do the forecast.

Figure 26: Model Forecasting

Model Comparison

Model - Fit Statistics	MAPE	RMSE	MAE	MSE
Simple Exponential Smoothing Model	96.82687	5.89027	4.68159	33.99207
Double Exponential Smoothing Model	98.21463	5.84690	4.70079	34.18620
Additive Seasonal Smoothing Model	47.71251	4.22614	3.16234	17.86028
Linear Trend + Seasonal Dummies Model	47.86584	4.38867	3.20302	19.26040

Table 4: Fit Statistics Model Comparison

Model - Forecast Statistics	MAPE	RMSE	MAE	MSE
Simple Exponential Smoothing Model	94.85576	5.60292	4.56406	31.39272
Double Exponential Smoothing Model	93.41458	5.61047	4.56673	31.47773
Additive Seasonal Smoothing Model	46.76294	3.97340	3.03336	15.78793
Linear Trend + Seasonal Dummies Model	46.47611	4.07551	3.06624	16.60978

Table 5: Forecast Statistics Model Comparison

Conclusion & Recommendation (Forecasting)

- Based on the forecasting results, Capital One can implement a rotational program in which staff would be rotating around different departments where they foresee a surge in complaints in near future.
- Predicting whether a complaint will cost the bank to pay a monetary relief will help in prioritizing those sets of complaints and get them resolved in a speedy way so that if possible, we can avoid monetary settlement with the customers.

References

- https://www.consumerfinance.gov/about-us/newsroom/cfpb-releases-updated-covid-19consumer-complaint-data/ (CFPB July 2020)
- https://www.fa-mag.com/news/financial-complaints-soared-during-pandemic--reports-say-57161.html (Sergeant 2020)
- https://iopscience.iop.org/article/10.1088/1742-6596/1187/5/052036/pdf (Xin Xu et Al 2019)

Appendix

Data Sample Node

Property	Value	
General		
Node ID	Smpl	
Imported Data		
Exported Data		
Notes		
Train		
Variables		
Output Type	Data	
Sample Method	Default	
Random Seed	12345	
Size		
Туре	Percentage	
Observations		
Percentage	10.0	
Alpha	0.01	
PValue	0.01	
Cluster Method	Random	
Stratified		
Criterion	Level Based	
Ignore Small Strata	No	
Minimum Strata Size	5	
Level Based Options		
Level Selection	Event	
Level Proportion	70.0	
Sample Proportion	20.0	
Overcampling		

Properties & Results

Data=DATA					
Variable	Numeric Value	Formatted Value	Frequency Count	Percent	Label
Closed_with_Monetary_relief		No	10772	84.9795	Closed_with_Monetary_relief
Closed_with_Monetary_relief	•	Yes	1904	15.0205	Closed_with_Monetary_relief
Data=SAMPLE					
	Numeric	Formatted	Frequency		
Variable	Value	Value	Count	Percent	Label
Closed_with_Monetary_relief		No	5328	80	Closed_with_Monetary_relief
Closed_with_Monetary_relief		Yes	1332	20	Closed_with_Monetary_relief

Text Parsing Node

Property	Value
General	
Node ID	TextParsing
Imported Data	
Exported Data	
Notes	
Train	
Variables	
Parse	
Parse Variable	Issue
Language	English
Detect	
Different Parts of Speech	Yes
Noun Groups	Yes
Multi-word Terms	SASHELP.ENG_MULTI
Find Entities	Standard
Custom Entities	
Ignore	
Ignore Parts of Speech	'Aux' 'Conj' 'Det' 'Interj'
Ignore Types of Entities	
Ignore Types of Attributes	'Num' 'Punct'
Synonyms	
Stem Terms	Yes
Synonyms	SASHELP.ENGSYNMS
Filter	
Start List	
Stop List	SASHELP.ENGSTOP

Properties & Results

Text Filter Node

Property	Value
	value
General	- 151
Node ID	TextFilter
Imported Data	<u></u>
Exported Data	<u></u>
Notes	
Train	
Variables	
□Spelling	
Check Spelling	No
i. Dictionary	
■Weightings	
Frequency Weighting	Log
i. Term Weight	Inverse Document Frequei
☐Term Filters	
Minimum Number of Docu	
-Maximum Number of Tern	
i. Import Synonyms	
Document Filters	
Search Expression	
i. Subset Documents	
Results	
Filter Viewer	
Spell-Checking Results	
^{i.} Exported Synonyms	

Properties & Results

Text Cluster Node

▲▼	
Property	Value
General	
Node ID	TextCluster
Imported Data	
Exported Data	
Notes	
Train	
Variables	
□Transform	
SVD Resolution	High
i. Max SVD Dimensions	20
□ Cluster	
Exact or Maximum Number	Maximum
Number of Clusters	40
Cluster Algorithm	Expectation-Maximization
i. Descriptive Terms	15
Status	
Create Time	12/3/20 6:54 AM
Run ID	3161f972-4eee-4b02-aa93
Last Error	
Last Status	Complete
Last Run Time	12/3/20 9:25 AM
Run Duration	0 Hr. 0 Min. 21.57 Sec.
Grid Host	
User-Added Node	No

Properties & Results

