

FORMELSAMMLUNG FELDER, WELLEN UND LEITUNGEN

Wintersemster 21/22

Name: Ayham Alhalaibi

Matrikelnummer: MATNR

Letzte Änderung: 4. April 2022

Lizenz: GPLv3

Inhaltsverzeichnis

1	Grundlagen	1
	1.1 mathematische	1
	1.2 Randbedingung	1
	1.3 Begriffe	1
	1.4 Kartesische Koordinaten	
	1.5 Zylinderkoordinaten	1
	1.6 Kugelkoordinaten	1
	1.7 Vergleich/Umrechnung	2
2	Maxwell'schen Gleichungen	2
	2.1 Intergralform I, II	2
	2.2 Differentialform I, II	2
	2.3 stationäre Felder	2
3	Felder	2
3	Felder 3.1 Elektrostatik	2 2

1 Grundlagen

mathematische 1.1

Divergenz/Rotation/Gradient

div: macht aus einem Vektor ein Skalar.

rot: bildet ein Vektor auf Vektorfeld ab.

grad: bildet ein Skalar-/Gradientenfeld in ein Vektorfeld ab.

Zeigt Richtung stärkster Zunahme des Feldes.

$$\operatorname{div} \vec{G} = \nabla \cdot \vec{G} = \frac{\partial G_x}{\partial x} + \frac{\partial G_y}{\partial y} + \frac{\partial G_z}{\partial z}$$

$$= 0 \quad \Rightarrow \text{Volumen}$$

$$> 0 \quad \Rightarrow \text{Quelle}$$

$$< 0 \quad \Rightarrow \text{Senke}$$

$$/\partial G_z \quad \partial G_y \setminus$$

$$\operatorname{rot} \vec{G} = \nabla \times \vec{G} = \begin{pmatrix} \frac{\partial G_z}{\partial y} - \frac{\partial G_y}{\partial z} \\ \frac{\partial G_x}{\partial z} - \frac{\partial G_z}{\partial x} \\ \frac{\partial G_y}{\partial x} - \frac{\partial G_x}{\partial y} \end{pmatrix}$$
$$\begin{pmatrix} \frac{\partial G}{\partial x} \\ \end{pmatrix}$$

$$\operatorname{grad} G = \nabla \cdot G = \begin{pmatrix} \frac{\partial G}{\partial x} \\ \frac{\partial G}{\partial y} \\ \frac{\partial G}{\partial z} \end{pmatrix}$$

Nabla Operator

$$\nabla = \vec{\nabla} = \left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}, \frac{\partial G}{\partial z}\right)$$

Feldänderung bei Bewegung

$$\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial y} \Delta y + \frac{\partial G}{\partial z} \Delta z$$
$$= dG = \operatorname{grad} G \cdot d\vec{s}$$

1.2 Randbedingung

	Funktion nimmt an den Rändern einen bestimmten Wert an (Bsp.: $\rho_r = 5V$)	
Neumann-RB	Die Normalableitung der Fkt.	
	Die Normalableitung der Fkt. nimmt an den Rändern einen be-	
	stimmten Wert an	

1.3 Begriffe

	Begriff	Beschreibung
ρ	Raumladungsdichte	

Kartesische Koordinaten

Einheitsvektoren: $\vec{e_x}, \vec{e_y}, \vec{e_z}$ Rechtssystem: $\vec{e_x} \times \vec{e_y} = \vec{e_z}$

Linienelemente: $ds = \sqrt[g]{dx^2 + dy^2 + dz^2}$ Nabla Operator: $\nabla = \frac{\partial}{\partial x}\vec{e_x} + \frac{\partial}{\partial y}\vec{e_y} + \frac{\partial}{\partial z}\vec{e_z}$

Gradient: grad $\varphi \equiv \nabla \varphi = \frac{\partial \varphi}{\partial x} \vec{e_x} + \frac{\partial \varphi}{\partial y} \vec{e_y} + \frac{\partial \varphi}{\partial z} \vec{e_z}$ Divergenz: div $\vec{D} \equiv \nabla \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$

Rotation: rot $\vec{E} \equiv \nabla \times \vec{E} = \begin{bmatrix} \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \end{bmatrix} \vec{e_x} + \begin{bmatrix} \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \end{bmatrix} \vec{e_y} + \begin{bmatrix} \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \end{bmatrix} \vec{e_z}$

 $\Delta = \frac{\partial^2 \dots}{\partial x^2} + \frac{\partial^2 \dots}{\partial y^2} + \frac{\partial^2 \dots}{\partial z^2}$ Laplace Operator:

$$\begin{split} \Delta \vec{E} &= \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_x \vec{e_x} + \Delta E_y \vec{e_y} + \Delta E_z \vec{e_z} = \\ &= \left[\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} \right] \vec{e_x} + \left[\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} \right] \vec{e_y} \\ &+ \left[\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} \right] \vec{e_z} \end{split}$$

Zylinderkoordinaten 1.5

Variablen: r, α, z

Einheitsvektoren: $\vec{e_r}, \vec{e_\alpha}, \vec{e_z}$ Rechtssystem: $\vec{e_r} \times \vec{e_\alpha} = \vec{e_z}$ Linienelemente: $ds = \sqrt{dr^2 + r^2d\alpha^2 + dz^2}$

Volumenelemente: $ds = \sqrt{dr} + r ddz$ Volumenelemente: $dv = r dr d\alpha dz$ Nabla Operator: $\nabla = \frac{\partial}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial}{\partial \alpha} \vec{e_\alpha} + \frac{\partial}{\partial z} \vec{e_z}$ Gradient: $\operatorname{grad} \varphi \equiv \nabla \varphi = \frac{\partial \varphi}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial \varphi}{\partial \alpha} \vec{e_\alpha} + \frac{\partial \varphi}{\partial z} \vec{e_z}$ Divergenz: $\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r} \frac{\partial (\vec{r} \vec{D_r})}{\partial r} + \frac{1}{r} \frac{\partial \vec{D_z}}{\partial \alpha} + \frac{\partial \vec{D_z}}{\partial z}$ Rotation: $\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \begin{bmatrix} \frac{1}{r} \frac{\partial E_z}{\partial \alpha} - \frac{\partial E_\alpha}{\partial z} \end{bmatrix} \vec{e_r} + \frac{\partial \vec{D_z}}{\partial z}$

 $\left[\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r}\right] \vec{e_\alpha} + \left[\frac{1}{r} \frac{\partial (rE_\alpha)}{\partial r} - \frac{1}{r} \frac{\partial E_r}{\partial \alpha}\right] \vec{e_z}$

Laplace Operator: $\Delta = \frac{1}{r} \frac{\partial \left(r \frac{\partial \dots}{\partial r}\right)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \dots}{\partial \alpha^2} + \frac{\partial^2 \dots}{\partial \alpha^2}$

$$\begin{split} \vec{E} &= \left[\Delta E_r - \frac{2}{r^2} \frac{\partial E_\alpha}{\partial \alpha} - \frac{E_r}{r^2} \right] \vec{e_r} \\ &+ \left[\Delta E_\alpha + \frac{2}{r^2} \frac{\partial E_r}{\partial \alpha} - \frac{E_\alpha}{r^2} \right] \vec{e_\alpha} + \left[\Delta E_z \right] \vec{e_z} \end{split}$$

Kugelkoordinaten 1.6

Variablen: r, ϑ, α

Einheitsvektoren: $\vec{e_r}, \vec{e_{\vartheta}}, \vec{e_{\alpha}}$ Rechtssystem: $\vec{e_r} \times \vec{e_{\vartheta}} = \vec{e_{\alpha}}$

Linienelement: $ds = \sqrt{dr^2 + r^2 \sin^2 \vartheta d\alpha^2 + r^2 d\vartheta^2}$

Volumenelement: $dv = r^2 \sin \vartheta dr d\vartheta d\alpha$

Nabla Operator: $\nabla = \frac{\partial}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial}{\partial \vartheta} \vec{e_{\vartheta}} + \frac{1}{r \sin \vartheta} \frac{\partial}{\partial \alpha} \vec{e_{\alpha}}$ Gradient: grad $\varphi \equiv \nabla \varphi = \frac{\partial \varphi}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial \varphi}{\partial \vartheta} \vec{e_{\vartheta}} + \frac{1}{r \sin \vartheta} \frac{\partial \varphi}{\partial \alpha} \vec{e_{\alpha}}$ Divergenz: div $\vec{D} \equiv \nabla \vec{D} = \frac{1}{r^2} \frac{\partial (r^2 D_r)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta \cdot D_{\vartheta})}{\partial \vartheta} + \frac{\partial}{\partial r} \vec{e_{\alpha}} = 0$ $\frac{1}{r\sin\vartheta}\frac{\partial D_\alpha}{\partial\alpha}$

Rotation:

$$\begin{split} \operatorname{rot} \vec{E} &\equiv \nabla \times \vec{E} = \frac{1}{r \sin \vartheta} \left[\frac{\partial \left(\sin \vartheta \cdot E_{\alpha} \right)}{\partial \vartheta} - \frac{\partial E_{\vartheta}}{\partial \alpha} \right] \vec{e_r} \\ &+ \frac{1}{r} \left[\frac{1}{\sin \vartheta} \frac{\partial E_r}{\partial \alpha} - \frac{\partial r E_{\alpha}}{\partial r} \right] \vec{e_{\vartheta}} + \frac{1}{r} \left[\frac{\partial \left(r E_{\vartheta} \right)}{\partial r} - \frac{\partial E_r}{\partial \vartheta} \right] \vec{e_{\alpha}} \end{split}$$

Laplace Operator: $\Delta = \frac{1}{r^2} \frac{\partial \left(r^2 \frac{\partial \cdot \cdot}{\partial r}\right)}{\partial r} + \frac{1}{r^2 \sin \vartheta} \frac{\partial \left(\sin \vartheta \frac{\partial \cdot \cdot}{\partial \vartheta}\right)}{\partial \vartheta} +$

Laplace Operator in Kugelkoordinaten, angewandt auf einen Vektor:

$$\begin{split} \Delta \vec{E} &= \left[\Delta E_r - \frac{2}{r^2} E_r - \frac{2}{r^2 \sin \vartheta} \frac{\partial \left(\sin \vartheta \cdot E_\vartheta \right)}{\partial \vartheta} - \frac{2}{r^2 \sin \vartheta} \frac{\partial E_\alpha}{\partial \alpha} \right] \vec{e} \\ &+ \left[\Delta E_\vartheta - \frac{E_\vartheta}{r^2 \sin^2 \vartheta} + \frac{2}{r^2} \frac{\partial E_r}{\partial \vartheta} - \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\alpha}{\partial \alpha} \right] \vec{e_\vartheta} \\ &+ \left[\Delta E_\alpha - \frac{E_\alpha}{r^2 \sin^2 \vartheta} + \frac{2}{r^2 \sin \vartheta} \frac{\partial E_r}{\partial \alpha} + \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\vartheta}{\partial \alpha} \right] \vec{e_\alpha} \end{split}$$

1.7 Vergleich/Umrechnung

Kart.	Zyl.	Kug.
x	$r\cos\alpha$	$r\sin\vartheta\cos\alpha$
\overline{y}	$r \sin \alpha$	$r\sin\vartheta\sin\alpha$
z	z	$r\cos\vartheta$
$\sqrt{x^2+y^2}$	r	
$\arctan \frac{y}{x}$	α	
z	z	
$dx\cos\alpha + dy\sin\alpha$	dr	
$dy\cos\alpha - dx\sin\alpha$	$rd\alpha$	
dz	dz	
$\sqrt{x^2 + y^2 + z^2}$		r
$\arctan \frac{y}{x}$		α
$\arctan \frac{\sqrt{x^2 + y^2}}{z}$		ϑ
$dx \sin \theta \cos \alpha +$		dr
$dy \sin \theta \sin \alpha$ +		
$dz\cos\vartheta$		
$dy\cos\alpha - dx\sin\alpha$		$r\sin\vartheta d\alpha$
$dx\cos\theta\cos\alpha$ +		$rd\vartheta$
$dy\cos\vartheta\sin\alpha$ –		
$dz\sin\vartheta$		

2 Maxwell'schen Gleichungen

2.1 Intergralform I, II

Gauß'sches Gesetz Induktionsgesetz Durchflutungsgesetz Quellenfreiheit *B*-Feld Zusammenhang

$$\vec{D} = \varepsilon \cdot \vec{E}$$
 $\vec{B} = \mu \cdot \vec{H}$

Bei isotropen Stoffen sind ε u. μ Skalare:

$$\varepsilon = \varepsilon_0 \cdot \varepsilon_r \qquad \mu = \mu_0 \cdot \mu_r$$

2.2 Differentialform I, II

$$\begin{aligned} \operatorname{div} \vec{D} &= \rho \\ \operatorname{rot} \vec{E} &= -\frac{\partial \vec{B}}{\partial t} \\ \operatorname{rot} \vec{H} &= \vec{J} + \frac{\partial \vec{D}}{\partial t} \\ \operatorname{div} \vec{B} &= 0 \end{aligned}$$

2.3 stationäre Felder

$$\nabla \cdot \vec{D} = \rho \qquad \vec{D} = \varepsilon \cdot \vec{E}$$

$$\nabla \times \vec{E} = 0$$

$$\nabla \times \vec{H} = \vec{J} \qquad \vec{B} = \mu \cdot \vec{H}$$

$$\nabla \cdot \vec{B} = 0$$

$$\vec{J} = \kappa \vec{E}$$

3 Felder

3.1 Elektrostatik

ist ein wirbelfreies Feld. Elek. Ladungen sind Quellen des Feldes.

$$\begin{aligned} \operatorname{div} \vec{D} &= \nabla \cdot \vec{D} = \rho & \vec{D} &= \varepsilon \vec{E} \\ \operatorname{rot} \vec{E} &= \nabla \times \vec{E} = 0 &= \operatorname{rot} \operatorname{grad} E \\ \vec{E} &= - \operatorname{grad} \varphi \end{aligned}$$

3.1.1 Potetialgleichung

$$\operatorname{div}\operatorname{grad} = -\frac{\rho}{\varepsilon}$$

 \Rightarrow Poisson-Gleichung mit $\rho=0 \Rightarrow$ Laplace-Gleichung

$$\begin{split} \Delta \varphi + \underbrace{\frac{\operatorname{grad} \varepsilon \cdot \operatorname{grad} \varphi}{\varepsilon}}_{=0, \text{ wenn homogen}} &= -\frac{\rho(x, y, z)}{\varepsilon} \\ \frac{d^2 \varphi}{dx^2} + \frac{d^2 \varphi}{dy^2} + \frac{d^2 \varphi}{dz^2} &= -\frac{\rho(x, y, z)}{\varepsilon} \end{split}$$