Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №7 Помехоустойчивое кодирование

> Работу выполнил:

Соболь В.О.

Группа: 33501/4 **Преподаватель:**

Богач Н.В.

Санкт-Петербург 2017

Содержание

1.	Цель и задачи	2
	1.1. Цель работы	2
	1.2. Постановка задачи	
2.	Теоретическая информация	2
	2.1. Кодирование	2
	2.2. Типы помехоустойчивого кодирования	2
	2.2.1. Кодирование Хэмминга	
	2.2.2. Циклические коды	3
	2.2.3. Коды БЧХ	
	2.2.4. Коды Рида-Соломона	
3.	Ход работы	3
	3.1. Коды Хэмминга	3
	3.2. Циклические коды	
	3.3. Коды БЧХ	
	3.4. Коды Рида-Соломона	
4.	Выводы	5
5.	Листинг	6

1. Цель и задачи

1.1. Цель работы

Изучение методов помехоустойчивого кодирования и сравнения их свойств.

1.2. Постановка задачи

Провести кодирование/декодирование сигнала, полученного с помощью функции randerr кодом Хэмминга 2-мя способами: с помощью встроенных функций encode/decode, а также через создание проверочной и генераторной матриц и вычисление синдрома. Оценить корректирующую способность кода.

Выполнить кодирование/декодирование циклическим кодом, кодом БЧХ, кодом Рида-Соломона. Оценить корректирующую способность кода.

2. Теоретическая информация

2.1. Кодирование

Физическое кодирование — преобразование двоичных данных, осуществляемое для их передачи по физическому каналу. Физическое кодирование может менять форму, ширину полосы частот и гармонический состав сигнала в целях осуществления синхронизации приёмника и передатчика, устранения постоянной составляющей или уменьшения аппаратных затрат передачи сигнала.

Обнаружение ошибок в технике связи — действие, направленное на контроль целостности данных при записи/воспроизведении информации или при её передаче по линиям связи. Исправление ошибок — процедура восстановления информации после чтения её из устройства хранения или канала связи.

Для обнаружения ошибок используют коды обнаружения ошибок, для исправления — корректирующие коды (коды, исправляющие ошибки, коды с коррекцией ошибок, помехоустойчивые коды).

2.2. Типы помехоустойчивого кодирования

2.2.1. Кодирование Хэмминга

Коды Хемминга — линейные коды с минимальным расстоянием 3, то есть способные исправить одну ошибку. При кодировании используется порождающая матрица G

$$code = msg * G \tag{1}$$

При декодировании используется проверочная матрица H, которая позволяет определить синдром S.

$$S = code * H^T$$
 (2)

Синдром позволяет определить в какой позиции произошла ошибка.

Коды Хэмминга являются самокорректирующимися кодами, то есть кодами, позволяющими автоматически обнаруживать ошибки при передаче данных и исправлять их.

Для построения самокорректирующегося кода, рассчитанного на исправление одиночных ошибок, одного контрольного разряда недостаточно. Как видно из дальнейшего, количество контрольных разрядов k должно быть выбрано так, чтобы удовлетворялось неравенство

$$2^k \ge k + m + 1 \tag{3}$$

или

$$k \ge \log_2(k + m + 1) \tag{4}$$

где т — количество основных двоичных разрядов кодового слова.

Построение кодов Хэмминга основано на принципе проверки на четность числа единичных символов: к последовательности добавляется такой элемент, чтобы число единичных символов в получившейся последовательности было четным.

$$r_1 = i_1 \oplus i_2 \oplus \dots \oplus i_k \tag{5}$$

$$S = i_1 \oplus i_2 \oplus \dots \oplus i_n \oplus r_1 \tag{6}$$

Тогда если S=0 - ошибки нет, иначе есть однократная ошибка.

Такой код называется (k+1,k). Первое число — количество элементов последовательности, второе — количество информационных символов.

Получение кодового слова выглядит следующим образом:

$$\begin{pmatrix}
i_1 & i_2 & i_3 & i_4
\end{pmatrix}
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 1
\end{pmatrix} = (i_1 & i_2 & i_3 & i_4 & r_1 & r_2 & r_3)$$
(7)

Получение синдрома выглядит следующим образом:

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
S_1 & S_2 & S_3
\end{pmatrix}$$
(8)

2.2.2. Циклические коды

Циклический код — линейный код, обладающий свойством цикличности, то есть каждая циклическая перестановка кодового слова также является кодовым словом. Используется для преобразования информации для защиты её от ошибок.

2.2.3. Коды БЧХ

Коды Боуза — Чоудхури — Хоквингема (БЧХ-коды) — в теории кодирования это широкий класс циклических кодов, применяемых для защиты информации от ошибок. Отличается возможностью построения кода с заранее определёнными корректирующими свойствами, а именно, минимальным кодовым расстоянием. Частным случаем БЧХ-кодов является код Рида — Соломона.

2.2.4. Коды Рида-Соломона

Коды Рида—Соломона (англ. Reed–Solomon codes) — недвоичные циклические коды, позволяющие исправлять ошибки в блоках данных. Элементами кодового вектора являются не биты, а группы битов (блоки). Код Рида—Соломона является частным случаем БЧХ-кода.

3. Ход работы

При исследовании использовался код, приведённый в листинге 1.

3.1. Коды Хэмминга

Результат кодирования и декодирования сигнала кодом Хэмминга (7, 4) представлены ниже 1. Декодированное сообщение совпадает с исходным.

Текст 1 Полученный результат											
Исходное сообщение											
1	1	0	0								
Кодиров	анное с	ообщени	те								
1	0	1	1	1	0	0					
Декодированное сообщение											
1	1	0	0								
	1	<u> </u>	<u> </u>								

Для следующего исследования были получены порождающая и проверочная матрицы (текст 2).

Текст 2 Порождающая и проверочная матрицы											
Порождающая матрица											
	1	1	0	1	0	0	0				
	0	1	1	0	1	0	0				
	1	1	1	0	0	1	0				
	1	0	1	0	0	0	1				
Про	вероч	ная ма	грица								
	1	0	0	1	0	1	1				
	0	1	0	1	1	1	0				
	0	0	1	0	1	1	1				

Результаты кодирования, определения синдрома и декодирования приведены в тексте 3.

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3.

3.2. Циклические коды

Результат кодирования циклическим кодом приведён в тексте 4.

· <u>—</u>												
	Текст 3 Полученный результат											
Исходное	Исходное сообщение											
0	1	0	1									
Кодирован	ное с	ообщени	те									
1	1	0	0	1	0	1						
Синдром												
0	0	0										
Скорректи	ировант	toe cod	обшение	9								
	1			1	0	1						
-	-	Ŭ	Ŭ	-	Ŭ	-						
Декодирон	סטעעפ	coopiii	סאשמ									
декодирот	1		лие 1									
U	1	U	1									
-												
Текст 4	Получе	нный р	езульта	ат								
Исходное												
1	1		0									
Кодирован	ное с	ообшент	те									
0	1			1	0	0						
V	_	O	_	_	O	O						
Декодирон	занное	сообще	ение									
1	1	0	0									

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3.

3.3. Коды БЧХ

Результат кодирования кодом БЧХ приведён в текстах 5 - 8. Исходное сообщение показано в тексте 5. Порождающий полином приведен в тексте 6. Результат кодирования показан в тексте 7, а декодированное сообщение в тексте 8. При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3 или 4.

Te	Текст 5 Исходное сообщение										
	1	1	1	0	1						
	0	1	1	1	1						
	0	1	1	0	0						
	1	1	0	0	1						
	1	1	1	1	1						

Гекст 6 Порождаю	ощий полином				
Columns 1 throu	gh 6				
	•		•		
1	0	1	0	0	1
Columns 7 throu	gh 11				
00_0000	0				
1	0	1	1	1	
Гекст 7 Кодирован		е			
Columns 1 throu	gh 6				
1	1	1	0	1	0
0	1	1	1	1	0
0	1	1	0	0	1
1	1	0	0	1	0
1	1	1	1	1	1
Columns 7 throu	gh 12				
1	1	0	0	1	0
1	0	1	1	0	0
0	0	0	1	1	1
0	0	1	1	1	1
1	1	1	1	1	1
Columns 13 thro	ugh 15				
0	0	1			
1	0	0			
1	0	1			
0	1	0			
1	1	1			
E 0 F					
Гекст 8 Декодиров 1	ванное сообщен 1	<u>ние</u> 1	0	1	
0	1 1	1 1	1	1 1	
0	1	1	0	0	
1	1	0	0	1	
1	1	1	1	1	

3.4. Коды Рида-Соломона

Код Рида-Соломона позволяет кодировать не двоичные сообщения. Результаты приведены в тексте $9\,$

При кодировании сообщений с кодовым расстоянием 1, получаются закодированные сообщения с кодовым расстоянием 3 или 4.

Текст 9 Результа	ат кодирования				
Исходное сообще	ние				
2	7	3			
4	0	6			
5	1	1			
Кодированное со					
Columns 1 thr	ough 6				
2	7	3	3	6	7
4	0	6	4	2	2
5	1	1	4	5	4
Column 7					
6					
0					
0					
Декодированное	сообщение				
2	7	3			
4	0	6			
0	7	6			
Число исправлен	ных ошибок				
1					
2					
-1					

4. Выводы

Кодирование позволяет защитить данные при передачи по каналам связи от ошибок, вызываемых как правило помехами в канале связи. Некоторые коды позволяют только обнаружить ошибку, а некоторые и обнаружить и устранить. Все коды рассмотренные в работе (Хэмминга, циклические коды, коды БЧХ, коды Рида-Соломона) позволяют устранять ошибки (являются самокорректирующимися). Рассмотренные коды Хэмминга и Циклические позволяют устранить только одну ошибкиу, а рассмотренные коды БЧХ и Рида-Соломона позволяют устранить до двух ошибок.

5. Листинг

Листинг 1: Использованный при исследовании код

```
function lab7()
   close all
 3
   format loose
 4 clc
 5 | \text{out} = \text{randerr}(1,4);
 6 disp ('Hamming')
   fprintf('Исходное_сообщение\n');
 8
   disp(out);
   code = encode (out, 7, 4, 'hamming/binary');
10 | fprintf ( 'Кодированное_сообщение \ n ');
11 disp (code);
12 dcode = decode (code, 7, 4, 'hamming/binary');
13 | fprintf('Декодированное_сообщение\n');
14 disp (dcode)
15
16 \mid \text{msg} = \text{out};
17
   [h, gen] = hammgen(3);
18 \mid \% \ gen = gen2par(h);
19|\operatorname{code} = \operatorname{rem}(\operatorname{msg} * \operatorname{gen}, 2);
20 trt = syndtable(h);
21 | \text{syndrome} = \text{rem}(\text{code} * \text{h}', 2);
22
23 % error location:
   err = bi2de(fliplr(syndrome));
24
25
   \operatorname{err} \operatorname{loc} = \operatorname{trt} (\operatorname{err} + 1, :);
26
27
   % corrected code
28
   ccode = rem(err loc + code, 2);
29
30 | dcode = ccode(7 - 4 + 1:7);
31
32
33
   fprintf('Порождающая_матрица\n');
34 disp (gen)
35 | \mathbf{fprintf}('\Pi_{posepovHas\_матрицa}\n');
36 disp(h)
37
38 fprintf ( 'Исходное_сообщение \ n ');
39 disp (msg)
40 | fprintf ( 'Кодированное_сообщение \ n ');
41 disp (code)
42 fprintf ( 'Синдром\n');
43 disp (syndrome)
44 fprintf ( 'Скорректированное_сообщение \ n ');
45 disp (ccode)
46 | fprintf('Декодированное_сообщение\n');
   disp (dcode)
47
48
49 disp ('Cyclic')
50 out = randerr (1,4);
51 fprintf ( 'Исходное_сообщение \ n ');
52 disp (out);
53 code = encode (out, 7, 4, 'cyclic/binary');
54 | fprintf( 'Кодированное_сообщение\n');
55 disp (code);
56 dcode = decode (code, 7, 4, 'cyclic/binary');
```

```
57 | fprintf('Декодированное_сообщение\n');
 58
    disp (dcode)
 59
 60
 61|m = 4;
 62 | n = 2^m-1;
 63 | k = 5;
 64 \mid \text{nwords} = 5;
 65 \mid \text{msg} = \text{randi}([0 \ 1], \text{nwords}, k);
 66 | code = gf(msg);
    [\mathbf{poly}, t] = bchgenpoly(n,k);
 67
    enc = bchenc(code, n, k);
 68
 69 noisycode = enc + randerr (nwords, n, 1:t);
 70 dcode = bchdec (noisycode, n, k);
 71
 72 | fprintf ( 'Исходное_сообщение \ n ');
 73 | \mathbf{disp} (\mathrm{msg})
 74 fprintf('Полином\n');
 75 disp (poly.x)
 76 | fprintf('Кодированное_сообщение\n');
 77 disp (enc.x)
 78 | fprintf('Декодированное_сообщение\n');
 79 disp (dcode.x)
 80 disp ('Rid_-_Salomon')
 81
 82|m = 3;
 83 \mid n = 2^m - 1;
 84 | k = 3;
 85
 86 \mid \text{msg} = \text{gf}([2\ 7\ 3;\ 4\ 0\ 6;\ 5\ 1\ 1],\text{m});
 87 | code = rsenc(msg, n, k);
 88
    errors = gf([2 \ 0 \ 0 \ 0 \ 0 \ 0; \ 3 \ 4 \ 0 \ 0 \ 0; \ 5 \ 6 \ 7 \ 0 \ 0 \ 0],m);
 89
 90
    noisycode = code + errors;
 91
 92
    [dcode, cnumerr] = rsdec(noisycode, n, k);
 93
 94 | fprintf('Исходное_сообщение\n');
 95 disp (msg.x)
 96 fprintf('Кодированное_сообщение\n');
 97 disp (code.x)
98 | \mathbf{fprintf}('Декодированное\_сообщение \ ');
99 disp (dcode.x)
100 | fprintf( 'Число_исправленных_ошибок\setminusn');
101 disp (cnumerr)
102 end
```