Математический анализ. Неофициальный конспект

Лектор: Сергей Витальевич Кисляков Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Оглавление

1	Ком	плексный анализ	2
	1.1	Интеграл от дифференциальной формы вдоль пути	3
		1.1.1 Про дифференциальные формы	3
		1.1.2 Про интегрирование	3
		1.1.3 Интеграл от дифференциальной формы вдоль пути	4
		1.1.4 Сумма путей	4
		1.1.5 Альтернативное определение	4
		1.1.6 (Не)зависимость от параметризации	6
	1.2	Условия существования первообразной у дифференциальной формы	6
	1.3	Операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$	9
		1.3.1 Связь с голоморфными функциями	10

Глава 1

Комплексный анализ

Лекция I

16 февраля 2024 г.

Пусть $f:G\to\mathbb{C}$, где открытое $G\subset\mathbb{C}$.

Определение 1.0.1 (f голоморфна в $z_0 \in G$). $\exists \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \stackrel{def}{=} f'(z_0)$.

Во втором семестре мы проверяли, что f=u+iv (где $u,v:G\to\mathbb{R}$) голоморфна в $z_0\iff f$ дифференцируема в вещественном смысле, и выполняются уравнения Коши — Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Определение 1.0.2 (f аналитична в G). $\forall z_0 \in G : \exists c_i \in \mathbb{C}$:

$$f(z) = \sum_{j=0}^{\infty} c_j (z - z_0)^j$$
 (*)

где ряд сходится не только при $z=z_0.$

Теорема 1.0.1. f аналитична в $G \iff f$ голоморфна во всех точках G.

Доказательство.

- ⇒. Доказали во втором семестре, несложно.
- ←. Скоро займёмся, время пришло.

Из представления (*) следует, что производная в точке z считается почленно: $f'(z) = \sum_{j=1}^{\infty} jc_j(z-z_0)^{j-1}$. В частности, отсюда получается, что $f'(z_0) = c_1$, и вообще $f^{(n)}(z_0) = j! \cdot c_j$.

Вскоре мы увидим, что ситуация разительно отличается от вещественной: в вещественном случае были разные классы — дифференцируемые функции, C^1 , C^∞ , аналитичные, и множество промежуточных классов.

В комплексном же случае, если функция хотя бы один раз дифференцируема, то окажется, что этого достаточно, чтобы она была не просто дифференцируема, а непрерывно дифференцируема, бесконечно дифференцируема, и даже аналитична.

1.1 Интеграл от дифференциальной формы вдоль пути

1.1.1 Про дифференциальные формы

Определение 1.1.1 (Линейная функция $l: \mathbb{R}^n \to \mathbb{C}$). $\forall \alpha, \beta \in \mathbb{R}, x, y \in \mathbb{R}^n : l(\alpha x + \beta y) = \alpha l(x) + \beta l(y)$.

Определение 1.1.2 (Линейная форма на множестве $G \subset \mathbb{R}^n$). Функция двух переменных $\phi : G \times \mathbb{R}^n \to \mathbb{C}$, линейная по второму аргументу.

В пространстве \mathbb{R}^n имеется базис (e_i) : $h = e_1h_1 + \cdots + e_nh_n$.

Тем самым,
$$\phi(x,h) = \sum_{j=1}^{n} \underbrace{\phi(x,e_{j})}_{=:q_{j}(x)} h_{j} = \sum_{j=1}^{n} g_{j}(x) h_{j}.$$

Введём базисные линейные формы $\mathrm{d}x_j(u,h) = h_j$, игнорирующую первую координату, и возвращающая j-ю компоненту второго аргумента. Теперь $\phi(x,h)$ разложилась в сумму $\sum\limits_{i=1}^n g_j\,\mathrm{d}x_j$.

Пример. Пусть $f:G\to \mathbb{C}$ — дифференцируемая в G функция. Заметим, что её дифференциал $\mathrm{d}_f(x,_)$ — в точности линейная форма на G.

При разложении по базису получится $d_f(x,\underline{\ })=\sum_{j=1}^n\frac{\partial f}{\partial x_j}(x)\,\mathrm{d} x_j.$

Вскоре мы увидим, что далеко не всякая линейная форма является чьим-то дифференциалом.

Если
$$\phi = \sum_{j=1}^n g_j \, \mathrm{d} x_j$$
 — дифференциал функции f , то непременно $g_j = \frac{\partial f}{\partial x_j}$.

Тот факт, что ϕ является дифференциалом f, можно сказать наоборот: f является первообразной ϕ .

1.1.2 Про интегрирование

Рассмотрим монотонную функцию $\Phi:\langle a,b\rangle\to\mathbb{R}$. Как и при определении стилтьесовой длины, будем считать, что Φ определена на некотором открытом множестве, содержащем $\langle a,b\rangle$. Обозначим за l_Φ стилтьесову длину, отвечающую функции Φ .

Пускай λ_{Φ} — продолжение стилтьесовой длины l_{Φ} по Лебегу — Каратеодори.

Она, как водится, определена на некоторой Σ -алгебре, в которой есть борелевские множества, но измеримы могут быть и какие-то другие множества, зависящие от конкретной функции Φ .

Примеры.

• Так, функция $\phi(x) = \begin{cases} 0, & x < 0 \\ 1, & x \geqslant 0 \end{cases}$ порождает дельта-меру δ_0 , относительно которой все множества измеримы.

Кроме того, эта мера сингулярна относительно стандартной меры Лебега.

• Может показаться, что так происходит из-за разрывности ϕ , но это не так.

Рекурсивно определим канторову лестницу $C:[0,1] \to [0,1]$:

Построив по данной функции стилтьесову длину λ_C , мы получим меру, сосредоточенную на канторовом множестве меры нуль.

Её носитель — само канторово множество, так как на всех отрезках вне канторова множества λ_C равна нулю. Она сингулярна относительно стандартной меры Лебега на \mathbb{R} , и её измеримые множества разительно отличаются от измеримых множеств меры Лебега.

По мере Стилтьеса можно интегрировать: если v является λ_Φ измеримой (в частности, измерима по Борелю и непрерывна), то определён интеграл $\int\limits_{\langle a,b\rangle} v\,\mathrm{d}\lambda_\Phi$ Иногда пишут просто $\int\limits_{\langle a,b\rangle} v\,\mathrm{d}\Phi.$

Теперь пусть I=[a,b], и $\Psi:[a,b]\to\mathbb{R}$ — функция ограниченной вариации. В таком случае $\Psi=\Phi_1-\Phi_2$, где некие Φ_1,Φ_2 возрастают. Можно определить знакопеременную меру $\lambda_\Psi\stackrel{def}{=}\lambda_{\Phi_1}-\lambda_{\Phi_2}$, понятно, что определение корректно.

1.1.3 Интеграл от дифференциальной формы вдоль пути

Пускай $\gamma:[a,b]\to G\subset\mathbb{R}^n$ — спрямляемый путь (путь конечной длины). Пускай $U=\sum\limits_{j=1}^n u_j\,\mathrm{d}x_j$ — дифференциальная форма в области G. Если не сказано противное, будем считать, что u_j — непрерывные функции.

Определение 1.1.3 (Интеграл от
$$U$$
 вдоль пути γ). $\int\limits_{\gamma}U\stackrel{def}{=}\sum\limits_{j=1}^{n}\int\limits_{[a,b]}u_{j}(\gamma(t))\,\mathrm{d}\gamma_{j}(t).$

Здесь $\gamma=(\gamma_1,\ldots,\gamma_n)$. Так как путь спрямляем, то все γ_j — ограниченной вариации, каждая порождает свою меру Стилтьеса, и определение интегрирует композицию $U\circ\gamma$ по данной мере.

1.1.4 Сумма путей

Пускай имеются два отрезка [a,c] и [c,d], и на них заданы пути $\gamma_1:[a,c]\to G,\ \gamma_2:[c,d]\to G.$ Предположим, что $\gamma_1(c)=\gamma_2(c).$

Тогда можно устроить путь
$$\gamma=\gamma_1\oplus\gamma_2:[a,d]\to G,\ \gamma(t)\stackrel{def}{=} \begin{cases} \gamma_1(t), & t\in[a,c]\\ \gamma_2(t), & t\in[c,d] \end{cases}.$$

Замечание. Интеграл аддитивен по множеству: $\int\limits_{\gamma_1 \oplus \gamma_2} U = \int\limits_{\gamma_1} U + \int\limits_{\gamma_2} U.$

1.1.5 Альтернативное определение

Далее мы не интересуемся никакими чудесами вроде канторовых лестниц, и считаем, что Φ такова, что λ_{Φ} абсолютно непрерывна относительно стандартной меры Лебега.

A раз так, то по теореме Радона — Никодима \exists суммируемая $w:[a,b] \to \mathbb{R}$, такая, что

$$\lambda_{\Phi}(e) = \int_{e} w(x) \, \mathrm{d}x \tag{+}$$

Факт 1.1.1. Формула (+) заведомо верна, если Φ непрерывно дифференцируема на [a,b], тогда $w=\Phi'$.

Доказательство. Введём меру $\nu(e) = \int\limits_e \Phi'(x) \,\mathrm{d}x$, заданную на измеримых по Лебегу множествах. Φ' непрерывна, и, следовательно, измерима.

Если
$$\langle c,d \rangle \subset [a,b]$$
, то $\nu(\langle c,d \rangle) = \int\limits_{\langle c,d \rangle} \Phi'(x) \,\mathrm{d}x = \Phi(d) - \Phi(c) = l_\Phi(\langle c,d \rangle).$

Таким образом, из теоремы единственности, продолжение l_Φ по Лебегу — Каратеодори совпадает с $\int\limits_{a}\Phi'(x)\,\mathrm{d}x$.

Замечание. Утверждение (факт 1.1.1) сохраняет силу, если Φ непрерывна и кусочно-непрерывно дифференцируема.

Далее где-то используется Φ , а где-то β , надо убедиться, что это везде одно и то же, и заменить. Пускай $\beta:[a,b]\to\mathbb{R}$ — функция ограниченной вариации, кусочно-непрерывно дифференцируемая: $\exists a=a_0< a_1<\cdots< a_k=b$, такие, что β непрерывно дифференцируема на $[a_s,a_{s+1}]$ при $0\leqslant s< k$. Введём $\rho(e)=\int\limits_e^{\beta}\beta'(x)\,\mathrm{d}x$ — это знакопеременная вещественная мера.

У данной меры возникают (см. разложение Хана) положительная и отрицательная части $\rho_+(e) \stackrel{def}{=} \int\limits_e (\beta')_+(x) \, \mathrm{d} x$ и $\rho_-(e) \stackrel{def}{=} \int\limits_e (\beta')_-(x) \, \mathrm{d} x$

Если обозначить за $\Phi_+(t) = \int\limits_0^t (\beta')_+(x) \,\mathrm{d}x$ и $\Phi_-(t) = \int\limits_0^t (\beta')_-(x) \,\mathrm{d}x$, то окажется, что соответствующие меры Стилтьеса совпадают с ρ_+ и ρ_- .

Более того, $\beta = \Phi_+ - \Phi_-$ — получили разложение функции ограниченной вариации в положительную и отрицательную части.

Замечание. Это разложение экономнее, чем то, которое было получено ранее — ранее в качестве Φ_+ выбиралась вариация Φ_-

Если всё, что написано выше, собрать вместе, то получится

$$\int_{[s,t]} v \, d\Phi = \int_{[s,t]} v(x)\beta'(x) \, dx$$

Далее «гладкий» используется, как синоним к непрерывно-дифференцируемому.

Следствие 1.1.1 (Можно считать определением). Если $U = \sum_{j=1}^n u_j \, \mathrm{d} x_j - \partial u \phi \phi$ еренциальная форма в G с непрерывными коэффициентами, а $\gamma = (\gamma_1, \dots, \gamma_n) : [a,b] \to G$ — спрямляемый кусочно-гладкий путь, то

$$\int_{\gamma} U = \sum_{j=1}^{n} \int_{a}^{b} u_{j}(\gamma(t)) \gamma_{j}'(t) dt$$

1.1.6 (Не)зависимость от параметризации

Пускай $\gamma:[a,b] \to G$ — кусочно-гладкий путь, $\psi:[c,d] \to [a,b]$ — гладкий гомеоморфизм.

Теперь $\widetilde{\gamma} = \gamma \circ \psi$ — перепараметризация γ

Лемма 1.1.1. Для всякой формы U:

$$\int_{\widetilde{\gamma}} U = \pm \int_{\gamma} U$$

3нак + выбирается, если ψ возрастает, и - - если убывает.

Доказательство. Предположим, что γ — гладкий путь, иначе применяем к кусочкам гладкости по отдельности.

$$\int_{\widetilde{\gamma}} U = \sum_{j=1}^n \int_c^d u_j(\gamma(\psi(t))) \gamma_j'(\psi(t)) \cdot \psi'(t) \, \mathrm{d}t = \left\| \begin{array}{c} \tau = \psi(t) \\ \mathrm{d}\tau = \psi'(t) \, \mathrm{d}t \end{array} \right\| = \sum_{j=1}^n \int_{\psi(c)}^{\psi(d)} u_j(\gamma(\tau)) \gamma_j'(\tau) \, \mathrm{d}\tau = \pm \int_{\widetilde{\gamma}} U \quad \Box$$

Про ψ также можно считать, что это он не гладкий, а лишь кусочно-гладкий.

Тем самым, можно определить сумму путей для несоприкасающихся отрезков: для двух путей $\gamma_1:[a,b]\to G, \gamma_2:[c,d]\to G$ (при условии $\gamma_1(b)=\gamma_2(c)$) можно один их отрезков-прообразов линейным возрастающим преобразованием перевести в отрезок, соприкасающийся со вторым (например, $t\mapsto t+(b-c)$).

Также есть понятие обратного пути $\gamma^-(t) = \gamma(a+b-t)$. Для любой формы U:

$$\int\limits_{\gamma\oplus\gamma^-}U=\int\limits_{\gamma}U+\int\limits_{\gamma^-}U=\int\limits_{\gamma}U-\int\limits_{\gamma}U=0$$

1.2 Условия существования первообразной у дифференциальной формы

Теорема 1.2.1. Если у дифференциальной формы U в открытом множестве $G \subset \mathbb{R}^n$ имеется первообразная F, то для всякого кусочно-гладкого пути $\gamma:[a,b] \to G$

$$\int_{\gamma} U = F(\gamma(b)) - F(\gamma(a))$$

 \mathcal{L} оказательство. $U=\sum_{j=1}^n g_j\,\mathrm{d} x_j$, где $g_j(w)=\frac{\partial}{\partial x_j}F(w)$. Считаем, что путь гладкий.

$$\int_{\gamma} U = \sum_{j=1}^{n} \int_{a}^{b} \frac{\partial}{\partial x_{j}} F(\gamma(t)) \gamma_{j}'(t) dt = \int_{a}^{b} \frac{d}{dt} (F \circ \gamma)(t) dt = F(\gamma(b)) - F(\gamma(a))$$

Если же путь всего лишь кусочно-гладкий, то надо разбить отрезок на подотрезки гладкости, и сложить. \Box

Следствие 1.2.1. Если у дифференциальной формы U есть первообразная, то её интегралы по всем путям с данными началом и концом, равны.

Оказывается, верно и обратное.

Лемма 1.2.1. Пусть G — область в \mathbb{R}^n , тогда любые две её точки можно соединить ломаной (кусочно-линейным путём).

Доказательство. Выберем $x_0 \in G$, положим $U = \{ y \in G | \text{существует ломаная с началом в } x_0$ и концом в $y \}$.

Покажем, что U открыто. Пусть $y \in U$, тогда найдётся шарик $B_{\varepsilon}(y) \subset G$, и $B_{\varepsilon}(y) \subset U$ — можно добавить одно звено к ломаной $x_0 \rightsquigarrow y$.

Покажем, что U замкнуто. Пусть $z\in G$ — предельная точка для U. Найдётся $B_{\varepsilon}(z)\subset G$, так как z — предельная, то $\exists y\in B_{\varepsilon}(z)\cap U$. Значит, $z\in U$ — можно добавить одно звено $y\to z$.

Замечание. Имея кусочно-линейный путь $\gamma:[a,b]\to G$, соединяющий $A,B\in G$, несложно получить бесконечно дифференцируемый путь, соединяющий их:

Пусть
$$\gamma_1:[a-1,b+1]\to G, \gamma_1(t)= \begin{cases} \gamma(t), & t\in[a,b]\\ \gamma(a), & t\in[a-1,a]. \end{cases}$$
 Теперь, сворачивая γ_1 с аппрокси- $\gamma(b), & t\in[b,b+1]$

мативной единицей с достаточно большим номером и достаточно малым компактным носителем, получим бесконечно дифференцируемый путь, соединяющий A и B.

Теорема 1.2.2. Пусть $\Phi = \sum_{j=1}^n f_j(x) \, \mathrm{d} x_j$ — непрерывная дифференциальная форма в G (то есть коэффициенты непрерывны в G). Следующие условия эквивалентны.

- 1. У Φ есть первообразная F, то есть функция $F\in C^1(G)$: $\mathrm{d} F=\Phi$ (иными словами, $\forall j: \frac{\partial}{\partial x_j}F=f_j$).
- 2. Для всех кусочно-гладких γ с фиксированными началом и концом $\gamma(a)=\gamma_a, \gamma(b)=\gamma_b$: $\int\limits_{\gamma}\Phi$ не зависит от γ (а только от начала и конца).
- 3. Для любой кусочно-гладкой петли (то есть замкнутого пути) γ в G: $\int\limits_{\gamma}\Phi=0$.

Доказательство. Мы уже доказали ранее цепочку импликаций $(1) \Rightarrow (3) \Rightarrow (2)$. Далее доказываем $(2) \Rightarrow (1)$.

Предъявим кандидат в первообразную. Зафиксируем $x_0 \in G$, выберем $x \in G$, пусть γ — произвольный кусочно-гладкий путь с началом в x_0 и концом в x. Определим $F(x) \stackrel{def}{=} \int\limits_{\gamma} \Phi$. Согласно посылке, F корректно определена — не зависит от выбора пути.

Покажем, что частные производные F существуют, и равны f_j . Тогда они получатся непрерывными, то есть F — дифференцируемой, и окажется, что F — первообразная Φ .

Пусть e_1,\ldots,e_n — стандартные базисные орты в \mathbb{R}^n . Рассмотрим $\frac{F(x+te_j)-F(x)}{t}$.

При малых t: отрезок между x и $x+te_j$ лежит внутри G. Пусть γ_1 — путь, соединяющий x_0 и x, l — отрезок от x до $x+te_j$.

$$\frac{F(x+te_j) - F(x)}{t} = \frac{1}{t} \left(\int_{\gamma_1 \oplus l} \Phi - \int_{\gamma_1} \Phi \right) = \frac{1}{t} \int_{l} \Phi = \int_{0}^{t} f_j(x+\tau e_j) d\tau \xrightarrow[t \to 0]{} f_j(x) \qquad \Box$$

Определение 1.2.1 (Прямоугольник на плоскости). Множество вида $[a,b] \times [c,d] \subset \mathbb{R}^2$.

Область G на плоскости будем называть $y \partial o \delta h o \check{u}$, если $\exists x_0 \in G : \forall y \in G : \exists$ прямоугольник $P \ni x, y$.

Примеры (Удобные области).

• Int Q, если Q — прямоугольник. В качестве центра x_0 подойдёт любая точка.

• $B_r(x_0) = \left\{ x \in \mathbb{R}^2 \middle| |x - x_0| < r \right\}$. В качестве центра x_0 стоит взять центр, иначе не получится:

Определение 1.2.2 (Ориентированная граница прямоугольника P). Петля γ , обходящий границу $P = [a,b] \times [c,d]$ против часовой стрелки, то есть вот так:

$$(a,d) \qquad \gamma_3 \qquad (b,d)$$

$$\gamma_4 \qquad \gamma_2 \qquad \gamma_2 \qquad (a,c) \qquad \gamma_1 \qquad (b,c)$$

 $\gamma = \gamma_1 \oplus \gamma_2 \oplus \gamma_3 \oplus \gamma_4.$

Для прямоугольника P будем обозначать за ∂P в зависимости от контекста либо границу P, как топологического подмножества \mathbb{R}^2 , либо путь, обходящий границу P против часовой стрелки.

Следствие 1.2.2 (Дополнение к (теорема 1.2.2)). Если G-yдобная область на плоскости то к трём эквивалентным условиям (теорема 1.2.2) можно добавить

4.
$$\forall P \subset G : \int_{\partial P} \Phi = 0.$$

Доказательство. $(3) \Rightarrow (4)$ ясно, докажем $(4) \Rightarrow (1)$.

Пусть $x_0\in G$ — центр удобной области, определим $F(x)=\int\limits_\delta\Phi$, где δ — это либо $\delta_1\coloneqq\gamma_1\oplus\gamma_2$ либо $\delta_2\coloneqq\gamma_4^-\oplus\gamma_3^-$ (вне зависимости от выбора δ получится одно и то же).

Далее, чтобы проверить $\frac{\partial}{\partial x_1}F=f_1$ и $\frac{\partial}{\partial x_2}=f_2$, воспользуемся подходящим представлением: пусть орт выглядит так:

тогда для проверки $\frac{\partial}{\partial x_1}F=f_1$ удобно воспользоваться определением F через δ_1 , для проверки $\frac{\partial}{\partial x_2}F=f_2$ — определением через δ_2 .

Пусть $\Phi = \sum_{j=1}^m f_j(x) \, \mathrm{d} x$ — непрерывная дифференциальная форма в области $G \subset \mathbb{R}^n$.

Определение 1.2.3 (Форма Φ точна). Существует первообразная F в G : $\mathrm{d}F = \Phi$.

Определение 1.2.4 (Форма Φ замкнута). Форма Φ локально точна ($\forall x_0 \in G : \exists U \ni x_0 : \Phi|_U$ точна).

Понятно, что точная форма замкнута, но точность из замкнутости не следует: чуть позднее мы определим $\mathrm{d}z$, и покажем, что $\frac{\mathrm{d}z}{z}$ — замкнутая, но не точная форма на $\mathbb{C}\setminus\{0\}$

Теорема 1.2.3. Пусть Φ — дифференциальная форма в области $G \subset \mathbb{R}^n$. Следующие условия эквивалентны:

- Ф замкнута.
- 2. $\forall x_0 \in G: \exists V \ni x_0: \forall$ кусочно-гладкого замкнутого пути γ с носителем в $V: \int\limits_{\gamma} \Phi = 0.$

Если n=2, то дополнительно появляются ещё два условия:

1.
$$\forall z \in G : \exists V_z \subset G : \forall P \subset V : \int_{\partial P} \Phi = 0.$$

2.
$$\forall P \subset G : \int_{\partial P} \Phi = 0$$
.

Доказательство. Докажем, что $(3) \Rightarrow (4)$, остальное уже доказано выше.

Заметим, что границу прямоугольника P можно представить, как сумму границ четырёх прямоугольников вдвое меньшего диаметра:

Таким образом, чтобы доказать, что интеграл по границе большого прямоугольника P нулевой, разобьём его на достаточно маленькие прямоугольники, по ним-то интеграл нуль. Чтобы это формализовать, вспомним лемму Лебега о покрытии:

Теорема 1.2.4 (Лемма Лебега). Пусть K — компакт в метрическом пространстве, $\{U_j\}_{j\in J}$ — открытое покрытие компакта K. Тогда $\exists \delta > 0 : \forall A \subset K : \operatorname{diam} A < \delta \Rightarrow \exists j \in J : A \subset U_j$.

Применяя лемму Лебега для покрытия P окрестностями $\{V_z\}_{z\in P}$, получим такое число δ . Теперь надо разбить границу прямоугольника P в сумму границ прямоугольников диаметра меньше δ , а посылка теоремы говорит, что интеграл по ним уже нуль.

1.3 Операторы $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$

Как известно, $\mathbb{C}=\{x+iy|x,y\in\mathbb{R}\}$, то есть $\forall z\in\mathbb{C}:z=x+iy$, аналогично $\overline{z}=x-iy$.

Рассмотрим z и \overline{z} , как функции $\mathbb{R}^2 \to \mathbb{C}$, $(x,y) \mapsto x \pm iy$. Теперь $\mathrm{d}z = \mathrm{d}x + i\,\mathrm{d}y$ и $\mathrm{d}\overline{z} = \mathrm{d}x - i\,\mathrm{d}y$ образуют базис в пространстве дифференциальных форм (тех, которые не зависят от точки), обратное преобразование выглядит так:

$$\begin{cases} dx = \frac{dz + d\overline{z}}{2} \\ dy = \frac{dz - d\overline{z}}{2i} \end{cases}$$

Рассмотрим форму $\Phi: \mathbb{R}^2 \to \mathbb{C}, \Phi(x,y) = \alpha(x,y) \, \mathrm{d}x + \beta(x,y) \, \mathrm{d}y$. Перепишем её в новом базисе:

$$\Phi(x,y) = \frac{\alpha(x,y)}{2}(\mathrm{d}z + \mathrm{d}\overline{z}) + \frac{\beta(x,y)}{2i}(\mathrm{d}z - \mathrm{d}\overline{z}) = \frac{\alpha(x,y) - i\beta(x,y)}{2}\,\mathrm{d}z + \frac{\alpha(x,y) + i\beta(x,y)}{2}\,\mathrm{d}\overline{z}$$

Теперь пусть Φ — точная форма, то есть $\Phi = \mathrm{d}F$, и тогда $\alpha(x,y) = \frac{\partial}{\partial x}F(x,y)$ и $\beta(x,y) = \frac{\partial}{\partial y}F(x,y)$. Теперь

$$dF = \frac{1}{2} \left(\frac{\partial F}{\partial x} - i \frac{\partial F}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial F}{\partial x} + i \frac{\partial F}{\partial y} \right) d\overline{z}$$

Определение 1.3.1 $(\frac{\partial F}{\partial z})$. Коэффициент, стоящий перед $\mathrm{d}z$, то есть $\frac{1}{2}\left(\frac{\partial F}{\partial x}-i\frac{\partial F}{\partial y}\right)$.

Определение 1.3.2 $(\frac{\partial F}{\partial \overline{z}})$. Коэффициент, стоящий перед $d\overline{z}$, то есть $\frac{1}{2}\left(\frac{\partial F}{\partial x}+i\frac{\partial F}{\partial y}\right)$.

Иначе говоря, мы ввели операторы $\frac{\partial}{\partial z}\stackrel{def}{=}\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$ и $\frac{\partial}{\partial \overline{z}}\stackrel{def}{=}\frac{1}{2}\left(\frac{\partial F}{\partial x}+i\frac{\partial F}{\partial y}\right)$ так, что

$$\mathrm{d}F = \frac{\partial}{\partial z} F \, \mathrm{d}z + \frac{\partial}{\partial \overline{z}} F \, \mathrm{d}\overline{z}$$

1.3.1 Связь с голоморфными функциями

Пусть F = u + iv, где $u, v : \mathbb{R}^2 \to \mathbb{R}$. Запишем

$$\frac{\partial F}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} + i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \right) = \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)$$

В правой части равенства получились выражения из уравнений Коши — Римана.

Факт 1.3.1. Вещественные функции u,v удовлетворяют уравнениям Коши — Римана $\Leftrightarrow \frac{\partial (u+iv)}{\partial \overline{z}} \equiv 0.$

Факт 1.3.2. F голоморфна \iff $\mathrm{d}F = \frac{\partial F}{\partial z}\,\mathrm{d}z$. При этом $\frac{\partial F}{\partial z}$ есть производная F по комплексному аргументу.

В основном нас будут интересовать дифференциальные формы вида $\phi(z)\,\mathrm{d}z$, где ϕ — произвольная функция.

Выясним, когда у формы $\phi(z)\,\mathrm{d}z=\phi(z)\,\mathrm{d}x+\phi(z)\,\mathrm{d}y$ имеется первообразная, то есть функция $g:\frac{\partial g}{\partial x}=\phi,\frac{\partial g}{\partial y}=i\phi$. Заметим, что $\frac{\partial g}{\partial z}=\frac{1}{2}(\phi-i(i\phi))=\phi$ и $\frac{\partial g}{\partial \overline{z}}=\frac{1}{2}(\phi+i(i\phi))=0$.

Утверждение 1.3.1. Форма $\phi \, dz$ имеет первообразную $g \iff g$ голоморфна, и $g' = \phi$.

Теорема 1.3.1 (Коши). Если $g:G\to\mathbb{C}$ — голоморфная функция (область $G\subset\mathbb{C}$), то форма $g(z)\,\mathrm{d} z$ замкнута.

Доказательство. Потом.

Контрпример (Глобально первообразной может не быть). Пусть $G=\mathbb{C}\setminus\{0\}, g:G\to\mathbb{C}, g:z\mapsto \frac{1}{z}.$

По теореме Коши у g имеется локальная первообразная — комплексный логарифм — но глобально определить не получится. Пусть $\Gamma = \partial \mathbb{T}$ — комплексная окружность, ориентируем её против часовой стрелки, а именно, рассмотрим стандартный обход окружности $\alpha: [0,2\pi] \to \mathbb{C}, \alpha: \phi \mapsto e^{i\phi}$. Теперь убедимся, что форма не точна:

$$\int_{\Omega} \phi = \int_{\Omega} \frac{\mathrm{d}z}{z} = \int_{0}^{2\pi} \frac{\left(e^{it}\right)'}{e^{it}} \,\mathrm{d}t = \int_{0}^{2\pi} \mathrm{d}t = 2\pi i \neq 0$$

Для будущих применений также определим ориентированную против часовой стрелки границу $B_r(z_0)$, это путь $\beta(t)=z_0+re^{it}$ для $t\in[0,2\pi]$.

Пример. Пусть $z_0, w \in \mathbb{C}, r \in \mathbb{R}_{>0}, |w-z_0| \neq r$, пусть путь γ обходит границу $B_r(z_0)$ против часовой стрелки:

Тогда, оказывается, (посчитаем чуть позже):

$$\int_{\gamma} \frac{\mathrm{d}z}{z - w} = \begin{cases} 0, & |z - w| > r \\ 2\pi i, & |z - w| < r \end{cases} \tag{0}$$

Грубой силой этот интеграл посчитать непросто, так как w находится где угодно — внутри или снаружи круга — а интеграл, оказывается, зависит только от этих двух альтернатив.

Теорема 1.3.2 (Основная оценка интеграла вдоль пути). Пускай Φ — непрерывная дифференциальная форма в области $G \subset \mathbb{R}^n$, а $\gamma : [a,b] \to G$ — кусочно-гладкий путь, $K \coloneqq \operatorname{Im}(\gamma) \subset G$.

Тогда
$$\left| \int\limits_{\gamma} \Phi \right| \leqslant \sup_{x \in K} \left(\sum_{j=1}^{n} |\phi_{j}(x)|^{2} \right)^{1/2} \cdot l(\gamma).$$

 $\ \ \,$ Доказательство. Считаем, что γ — гладкий путь, иначе нужно разбить на кусочки гладкости.

$$\left| \int_{\gamma} \Phi \right| = \left| \int_{a}^{b} \sum_{j=1}^{n} f_{j} \left(\gamma(t) \right) \gamma_{j}'(t) \, \mathrm{d}t \right| \underset{KBIII}{\leqslant} \int_{a}^{b} \left(\sum_{j=1}^{n} |f_{j}(\gamma(t))|^{2} \right)^{1/2} \cdot \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \right)^{1/2} \, \mathrm{d}t \leqslant A \cdot \underbrace{\int_{a}^{b} \left(\sum_{j=1}^{n} |\gamma_{j}'(t)|^{2} \right)^{1/2} \, \mathrm{d}t}_{l(\gamma)}$$

Лекция III

1 марта 2024 г.

Рассмотрим дифференциальную форму $\Phi=F(z)\,\mathrm{d} z$, где F — непрерывная функция в $G\subset\mathbb{C}$. Пусть $\gamma:[a,b]\to G$ — плоский путь.

Расписав $\Phi(z) = F(z) \, \mathrm{d} x + i F(z) \, \mathrm{d} y$, и применяя основную оценку интеграла вдоль пути, получаем

$$\left| \int\limits_{\gamma} \Phi \right| \leqslant \max_{z \in K} \sqrt{|F(z)|^2 + |F(z)|^2} \cdot l(\gamma) = \sqrt{2} \max_{z \in K} |F(z)| \cdot l(\gamma)$$

Эта оценка вызывает некоторую неудовлетворённость: кажется, что $\sqrt{2}$ здесь лишний. И это действительно правда: можно расписать интеграл аккуратнее.

Пусть $\gamma = \gamma_1 + i\gamma_2$, тогда по определению

$$\int_{\gamma} \Phi = \int_{a}^{b} F(\gamma(t)) \cdot \gamma_{1}'(t) + iF(\gamma(t)) \cdot \gamma_{2}'(t) dt = \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

Таким образом, интеграл от комплексной формы вдоль пути имеет более простое представление, и оно легко поддаётся более плотной оценке:

$$\left| \int_{\gamma} \Phi \right| \leqslant \int_{a}^{b} |F(\gamma(t))| \cdot |\gamma'(t)| \, \mathrm{d}t \leqslant \max_{z \in K} |F(z)| \underbrace{\int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t}_{l(\gamma)}$$

Посчитаем анонсированный на предыдущей лекции интеграл (\circ). Пусть $z_0, w \in \mathbb{C}, r > 0$.

• Сначала рассмотрим случай $|w-z_0| < r$. Заметим, что согласно основной оценке интеграла, если коэффициенты равномерно стремятся к какому-то значению, и интегралы ограничены, то предельный интеграл тоже сходится.

Запись ниже $\int\limits_{|z-z_0|=r}$, и вообще все аналогичные записи, которые встретятся в дальнейшем,

по умолчанию означают, что граница соответствующего множества (в данном случае — круга) обходится стандартным образом, то есть против часовой стрелки.

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{z-z_0 - (w-z_0)} = \int_{|z-z_0|=r} \frac{1}{z-z_0} \frac{1}{1 - \frac{w-z_0}{z-z_0}} \, \mathrm{d}z =$$

$$= \int_{|z-z_0|=r} \frac{1}{z-z_0} \left(1 + \frac{w-z_0}{z-z_0} + \left(\frac{w-z_0}{z-z_0} \right)^2 + \dots \right) \, \mathrm{d}z =$$

На слагаемые из ряда имеется равномерная по z оценка: $\left|\frac{w-z_0}{z-z_0}\right| \leqslant \frac{|w-z_0|}{r} < 1$, и по теореме Вейерштрасса функциональный ряд сходится. Значит, сумму можно вынести из под интеграла

Первое слагаемое мы умеем брать, а у каждого слагаемого из остальной суммы имеется первообразная: $\frac{1}{(z-z_0)^{j+1}}=-\frac{1}{j}\left(\frac{1}{(z-z_0)^j}\right)'$

• Теперь разберёмся со случаем $|w - z_0| > r$.

$$\int_{|z-z_0|=r} \frac{\mathrm{d}z}{z-z_0-(w-z_0)} = -\frac{1}{w-z_0} \int_{|z-z_0|=r} \frac{\mathrm{d}z}{1-\frac{z-z_0}{w-z_0}} = -\frac{1}{w-z_0} \sum_{j=0}^{\infty} \frac{(z-z_0)^j}{(w-z_0)^j} \,\mathrm{d}z$$

Аналогично предыдущему случаю, ряд сходится абсолютно, поэтому сумму опять можно вынести из под интеграла, и в данном случае всё ещё проще: каждое слагаемое имеет первообразную, там нет отрицательных степеней z, поэтому вся сумма обращается в нуль.

Пусть $\Phi = f_1 \, \mathrm{d} x_1 + \dots + f_n \, \mathrm{d} x_n$ — непрерывная дифференциальная форма в некоторой области $G \subset \mathbb{R}^n$

Теорема 1.3.3. Если все функции $f_i \in C^1$, то следующие условия эквивалентны:

- Ф замкнута.
- $\forall 1\leqslant i,j\leqslant n: \frac{\partial f_i}{\partial x_j}=\frac{\partial f_j}{\partial x_i}$ «накрест взятые производные производные равны».

Доказательство.

- \Rightarrow Выберем $x\in G$, так как форма замкнута, то $\exists U\ni x:\Phi$ имеет первообразную $F:U\to\mathbb{R}$. Тем самым, $f_i=\frac{\partial F}{\partial x_i}$, и так как $f_i\in C^1$, то действительно $\frac{\partial f_j}{\partial x_i}=\frac{\partial^2 F}{\partial x_i\partial x_j}=\frac{\partial^2 F}{\partial x_j\partial x_i}=\frac{\partial f_i}{\partial x_j}$.
- \Leftarrow Сначала приведём доказательство случая n=2. В таком случае $\Phi=f\,\mathrm{d} x+g\,\mathrm{d} y.$

Согласно посылке, $h\coloneqq \frac{\partial f}{\partial y}=\frac{\partial g}{\partial x}.$ Кстати, равенство слева равносильно одному из эквивалентных уравнений Коши — Римана.

Рассмотрим произвольный $P=[a,b] imes [c,d]\subset G$, и докажем, что $\int\limits_{\partial P}\Phi=0$.

То, что мы увидим сейчас, является первым заходом на формулу Гаусса — Остроградского. Функция h непрерывна, и можно записать на неё интеграл Лебега: $\int\limits_P h(x,y)\,\mathrm{d}x\,\mathrm{d}y$. Теперь применяя теорему Фубини, раскладываем интеграл в сумму повторных: Проверить знаки

$$\int_{\gamma_{1}^{-}} f(\underline{\ \ },d) \, \mathrm{d}y + \int_{\gamma_{3}^{-}} f(\underline{\ \ \ },c) \, \mathrm{d}y = \int_{a}^{b} \left[f(x,d) - f(x,c) \right] \mathrm{d}y = \int_{a}^{b} \left(\int_{c}^{d} \frac{\partial f}{\partial x} \, \mathrm{d}x \right) \, \mathrm{d}y =$$

$$= \int_{P} h(x,y) \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \int_{c}^{d} \left(\int_{a}^{b} \frac{\partial g}{\partial x} \, \mathrm{d}x \right) \, \mathrm{d}y = \int_{c}^{d} \left[g(b,y) - g(a,y) \right] \, \mathrm{d}y = \int_{\gamma_{2}^{-}} g(b,\underline{\ \ \ }) \, \mathrm{d}y + \int_{\gamma_{4}^{-}} g(a,\underline{\ \ \ \ }) \, \mathrm{d}y$$

 \Leftarrow Теперь приведём аналогичное доказательство индукцией по n.

<u>База:</u> Случай n=1 тривиален: теорема Ньютона — Лейбница говорит, что у непрерывной функции есть первообразная.

<u>Переход:</u> Пусть n>1, и для n-1 теорема доказана. Рассмотрим $a\in G$, и возьмём прямоугольный параллелепипед со сторонами, параллельными осям координат $P\ni a$. Докажем, что на P у Φ есть первообразная.

Построим
$$g(x_1,\ldots,x_n)=\int\limits_{a_1}^{x_1}f_1(t,x_2,\ldots,x_n)\,\mathrm{d}t.$$
 Обозначим $\phi_j\coloneqq\frac{\partial g}{\partial x_j}.$ Заметим, что $\phi_1=\frac{\partial g}{\partial x_1}=f_1.$

Теперь рассмотрим форму $\Psi(x_1,\ldots,x_n)=\phi_1\,\mathrm{d} x_1+\cdots+\phi_n\,\mathrm{d} x_n$. Эта форма имеет первообразную g на параллелепипеде P.

Теперь посмотрим на $\Phi - \Psi =: h_1 \, \mathrm{d} x_1 + \dots + h_n \, \mathrm{d} x_n$. По построению $h_1 = 0$. По условию накрест взятые частные производные равны и Φ , и они равны и Ψ , так как у неё есть первообразная. Значит, это же верно и для разности, в частности, $\frac{\partial h_i}{\partial x_1} = \frac{\partial h_1}{\partial x_i} = 0$. Иными словами, $\forall i:h_i$ не зависит от x_1 .

A раз так, то на $\Phi - \Psi$ можно смотреть, как на форму (n-1)-й переменной, и применить индукционное предположение.

3амечание. Тут есть некоторый обман: производные $\frac{\partial \phi_i}{\partial x_i}$ могут просто не существовать.

Попробуем обойти его так: пусть $\beta \in C^{\infty}$, с компактным носителем. Выберем аппроксимативную единицу $\beta_t(x) = \frac{1}{t^n} \beta(\frac{x}{t})$.

Назначим
$$f_k^{(t)} = f_k * \beta_t, \ f_k^{(t)} \underset{t \to 0}{
ightharpoons} f_k.$$

Далее у формы $\Phi^{(t)}$ коэффициенты $h_k^{(t)}$ не зависят от x_1 . А раз они стремятся к h_k , то и они не зависят от x_1 . Это было произнесено устно, я наверняка что-то не так записал.

Теорема 1.3.4 (Коши). Пусть F — голоморфная функция в открытом множестве $G \subset \mathbb{C}$ Тогда дифференциальная форма F(z) dz замкнута, то есть $\exists G : G'(z) = F(z)$.

Замечание. Теорема совсем проста, если заранее предположить, что F'(z) непрерывна (а так в итоге и должно получиться, так как F — аналитична (теорема 1.0.1)). В таком случае имеется следующее более простое доказательство.

Доказательство. $\forall z \in \mathbb{C}: \frac{\partial F}{\partial y}(z) = i \frac{\partial F}{\partial x}(z)$ пусть F(z) = u(x,y) + iv(x,y).

$$\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = i \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} \right)$$

то есть $\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$ и $\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}$. Я вообще не понял, что произошло.

Теперь докажем теорему Коши вне предположения непрерывности производной.

Доказательство. Докажем от противного: пусть форма $F(z)\,\mathrm{d} z$ не замкнута, $\exists P_0\subset G: lpha=$ $\int_{\partial P_0} F(z) \, \mathrm{d}z \neq 0.$

Будем потихонечку делить этот прямоугольник на четыре равные части: пусть $P_0 = Q_1 \cup Q_2 \cup Q_3 \cup Q_4 \cup Q$ Q_4 .

Интеграл по границе по крайней мере одного из Q_i хотя бы $\frac{\alpha}{4}$. Назовём этот прямоугольник P_1 , и продолжим процесс. Получим систему вложенных замкнутых прямоугольников $P_0\supset P_1\supset\ldots$,

таких, что
$$\left|\int\limits_{\partial P_k}F(z)\,\mathrm{d}z\right|\geqslant \frac{|\alpha|}{4^k}.$$
 При этом $l(\partial P_k)=2^{-k}l(\partial P_0),$ и $\mathrm{diam}(P_k)=2^{-k}\,\mathrm{diam}(P_0).$

Имеется ровно одна точка z_0 в пересечении $\bigcap_{k\geqslant 0} P_k$. Воспользуемся условием того, что F голоморфна в точке z_0 : $F(z)=F(z_0)+F'(z_0)(z-z_0)+\underbrace{\psi(z)}_{o(|z-z_0|)}$

на в точке
$$z_0\colon F(z)=F(z_0)+F'(z_0)(z-z_0)+\underbrace{\psi(z)}_{o(|z-z_0|}$$

Зафиксируем $\varepsilon>0$. $\exists \delta>0: |z-z_0|<\delta \Rightarrow |\psi(z)|\leqslant \varepsilon|z-z_0|$. Пусть k настолько велико, что diam $P_k < \delta$.

$$\int_{\partial P_k} F(z) dz = \int_{\partial P_k} [F(z_0) + F'(z_0)(z - z_0)] dz + \int_{\partial P_k} \psi(z) dz$$

Первый интеграл обнуляется, так как это линейная функция по z, у неё есть первообразная. Оценивая второй интеграл, получаем

$$\frac{|\alpha|}{4^k} \leqslant \left| \int_{\partial P_k} \psi(z) \, \mathrm{d}z \right| \leqslant \varepsilon \operatorname{diam} P_k \cdot l(\partial P_0) = 2^{-k} \varepsilon \operatorname{diam} P_0 \cdot 2^{-k} l(\partial P_0) = 4^{-k} \varepsilon \cdot \operatorname{diam} P_0 \cdot l(\partial P_0)$$

Выбирая довольно маленький ε , получаем, что $|\alpha|$ меньше любого положительного числа.

Теорема 1.3.5 (Об устранимой особенности замкнутой дифференциальной формы). Пускай $\Phi =$ $f\,\mathrm{d} x+g\,\mathrm{d} y$ — непрерывная дифференциальная форма в области $G\subset\mathbb{C}.$

Если $z_0 \in G$, и Φ замкнута в $G \setminus \{z_0\}$, то Φ замкнута в G.

Доказательство. Докажем, что $\forall P \subset G: \int\limits_{\partial P} \Phi = 0.$ Рассмотрим случаи.

• Если $z_0 \notin P$, то интеграл нуль по условию.

• Если $z_0 \in \operatorname{Int} P$, то данный случай сводится к следующему: разобьём прямоугольник на два так, чтобы z_0 оказалось на границе:

• Если $z_0 \in \partial P$, то отступим на ε , интеграл по границе P_{ε} будет нулём: $\int\limits_{\partial P_{\varepsilon}} \Phi = 0$.

Заметим, что $\int\limits_{\partial P_{\varepsilon}}\Phi \xrightarrow[\varepsilon \to 0]{}\int\limits_{\partial P}\Phi$, так как коэффициенты дифференциальной формы равномерно непрерывны в некоторой окрестности P. Значит, $\int\limits_{\partial P}\Phi=0.$

Теорема 1.3.6 (Малая интегральная форма Коши). Пусть f — голоморфна в области G, $B = B(z_0, r)$ — круг, $\overline{B} \subset G$. Тогда $\forall z \in B$:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B} \frac{f(\zeta)}{\zeta - z} \,d\zeta$$

Доказательство. Докажем для некоего фиксированного $z \in B$.

Рассмотрим функцию $g(\zeta)=\frac{f(z)-f(\zeta)}{z-\zeta}$. g голоморфна в области $G\setminus\{z\}$. Тем самым, $g(\zeta)\,\mathrm{d}\zeta$ — замкнутая форма в $G\setminus\{z\}$, а по теореме об устранимой особенности $g(\zeta)\,\mathrm{d}\zeta$ замкнута в G (доопределим по непрерывности $g(z)\coloneqq f'(z)$).

Но так как круг — удобная область, то у g имеется первообразная в некотором круге $B(z_0, r(1+\varepsilon))$ (где $\varepsilon>0$ настолько мал, что $B(z_0, r(1+\varepsilon))\subset G$),

Тем самым, $\int\limits_{|z-z_0|=r} \frac{f(z)-f(\zeta)}{z-\zeta}\,\mathrm{d}\zeta=0$, откуда

$$\int_{|z-z_0|=r} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \frac{f(z)}{\zeta - z} \, \mathrm{d}\zeta = f(z) \int_{|z-z_0|=r} \frac{1}{\zeta - z} \, \mathrm{d}\zeta = 2\pi i \cdot f(z)$$

Следствие 1.3.1 (Теорема Коши). Если функция голоморфна в области $G \subset \mathbb{C}$, то $\forall z_0 \in G$ функция f раскладывается в некоторый степенной ряд $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$, причём радиус сходимости хотя бы $\operatorname{dist}(z_0, \partial G)$.

Доказательство. Пусть $r \in (0, \operatorname{dist}(z_0, \partial G))$. Рассмотрим $B = B_r(z_0)$. Так как $B \subset G$, то

$$f(z) = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(\zeta)}{\zeta - z} \,d\zeta = \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{f(\zeta)}{(\zeta - z_0) + (z_0 - z)} \,d\zeta =$$

$$= \frac{1}{2\pi i} \int_{|z-z_0|=r} \frac{1}{z - z_0} \cdot \frac{1}{1 - \frac{z-z_0}{\zeta - z_0}} f(\zeta) \,d\zeta = \frac{1}{2\pi i} \sum_{j=0}^{\infty} (z - z_0)^{j+1} \int_{|z-z_0|=r} \frac{f(\zeta)}{(\zeta - z_0)^{j+1}} \,d\zeta$$

Таким образом, мы получили степенной ряд, и так как коэффициенты степенного ряда, раз определены, не зависят от радиуса круга, то радиус сходимости данного ряда хотя бы $\operatorname{dist}(z_0, \partial G)$. \square

П