1 Wrapping Many Integrations into One

Author: Christian Howard

Using the problem statement, we can define the following integral operators:

$$D^{-1}\phi(x) = \int_0^x \phi(y)dy \tag{1}$$

$$D^{-n}\phi(x) = \frac{1}{(n-1)!} \int_0^x (x-y)^{n-1}\phi(y)dy$$
 (2)

Given the above operators, the goal is to prove $D^{-n}\phi(x)$ is correct for all positive integers n. To do this, let us first recall the following based on previous work:

Lemma 1.1 Given two integral operators, $F\phi(x)$ and $G\phi(x)$, and their corresponding kernels, $k_1(\cdot,\cdot)$ and $k_2(\cdot,\cdot)$, the kernel $k_3(\cdot,\cdot)$ within $(G\circ F)\phi(x)$ can be found using:

$$k_3(x,y) = \int_y^x k_2(x,z)k_1(z,y)dz$$

To proceed in proving (2) is correct, we can first check that (2) satisfies the base case, where n = 1, by doing the following:

$$D^{-n}\phi(x)\big|_{n=1} = \frac{1}{(1-1)!} \int_0^x (x-y)^{1-1}\phi(y)dy$$
$$= \int_0^x \phi(y)dy$$

Now let us assume that (2) holds for $0 \le n \le k$. We can then find $D^{-(k+1)}\phi(x)$ by first noting the following relationship:

$$D^{-(k+1)}\phi(x) = (D^{-1} \circ D^{-k})\phi(x) = \int_0^x K(x,y)\phi(y)dy$$

Using our inductive hypothesis that $D^{-k}\phi(x)$ holds and Lemma 1.1, we can find the resulting kernel, $K(\cdot,\cdot)$, for $(D^{-1}\circ D^{-k})\phi(x)$ to be the following:

$$K(x,y) = \int_y^x \frac{(x-z)^{k-1}}{(k-1)!} dz$$
$$= \left(-\frac{(x-z)^k}{k(k-1)!} \right]_y^x$$
$$= \frac{(x-y)^k}{k!}$$

With the above kernel, we can find the final form for $D^{-(k+1)}\phi(x)$ to be:

$$D^{-(k+1)}\phi(x) = \frac{1}{k!} \int_0^x (x-y)^k \phi(y) dy$$

Thus, the form of $D^{-(k+1)}\phi(x)$ matches (2) when n=k+1, completing the induction step. Now by the principle of induction, (2) holds $\forall n\in\mathbb{N}^+$.