36-789: Topics in High Dimensional Statistics II

Fall 2015

Lecture 6: November 12

Lecturer: Alessandro Rinaldo Scribe: Veeranjaneyulu Sadhanala

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Tsybakov's master theerem for minimax bounds

Theorem 6.1 (Theorem 2.5 in Tsybakov's book) Let $M \geq 2$ and $\theta_0, \theta_1, \dots, \theta_M \in \Theta$ be such that

- (i) $d(\theta_i, \theta_j) \geq 2\delta$ for all $0 \leq i < j \leq M$
- (ii) $P_i \ll P_0$ for all $i = 1, 2, \dots M$ and
- (iii) For an $\alpha \in (0, 1/8)$,

$$\frac{1}{M} \sum_{i=1}^{M} \mathrm{KL}(P_i, P_0) \le \alpha \log M$$

Then

$$\inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \Big[w(d(\hat{\theta}, \theta(P))) \Big] \ge w(\delta) C(\alpha)$$

where

$$C(\alpha) = \frac{\sqrt{M}}{1 + \sqrt{M}} \Big(1 - 2\alpha - \sqrt{\frac{2\alpha}{\log M}} \Big)$$

We apply this theorem to obtain minimax lower bound in L_2 loss for nonparametric regression.

Let
$$Y_i = f(X_i) + \epsilon_i$$
 for $i = 1, 2, \dots, n$ where $\epsilon_i \sim N(0, \sigma^2)$.

Assumption: Let p_{ϵ} be a density function. There exist $p^*, v_0 > 0$ such that

$$\int p_{\epsilon}(\mu) \log \frac{p_{\epsilon}(\mu)}{p_{\epsilon}(\mu+v)} d\mu \le p^* v^2 \quad \text{if } |\nu| \le v_0.$$
(6.1)

In other words, the KL divergence between p_{ϵ} and its translated versions is bounded in terms of the amount of translation. Note that if p_{ϵ} is Gaussian, the bound is satisfied for all v and $p^* = 1/2$.

For $\beta, L > 0$, define the Holder class of functions

$$\Sigma(\beta, L) = \left\{ f : [0, 1] \to \mathbb{R} \mid \forall x, y \in [0, 1], \left| f^{(\rho)}(x) - f^{(\rho)}(y) \right| \le L|x - y|^{\beta - \rho} \right\}$$

where $\rho = |\beta|$, the smallest integer strictly less than β .

6-2 Lecture 6: November 12

We want to find

$$\inf_{\hat{f}} \sup_{f \in \Sigma(\beta, L)} \mathbb{E}_f \Big[\|f - \hat{f}\|_2 \Big]$$

where $||g||_2 = \int g^2(x)dx$. It can be shown that there exists \hat{f} such that

$$\sup_{f \in \Sigma(\beta, L)} \mathbb{E}_f \Big[\|f - \hat{f}\|_2 \Big] \asymp n^{-\beta/(2\beta+1)}.$$

As $\beta \to \infty$, the bound goes to $n^{-1/2}$ which is the parametric rate. Now we lower bound this rate using Theorem 6.1.

Proof: Let c_0 be a constant chosen later. Partition [0,1] into $m = \lceil c_0 n^{1/(2\beta+1)} \rceil$ intervals of width 1/m and let $x_k = (k-1/2)/m$ for $k = 1, \dots, m$ be the mid-points of those intervals. Also let $\Delta_k = (\frac{k-1}{m}, \frac{k}{m}]$ for $k = 1, \dots, m$. Define the blip on the kth interval

$$\psi_k(x) = Lh^{\beta} K\left(\frac{x - x_k}{h}\right)$$

where the kernel $K \in \Sigma(\beta, L/2) \cap C^{\infty}$, supp(K) = (-1/2, 1/2) and K > 0.

For example, $K(\mu)$ can be $aK_0(2\mu)$ where $K_0(z) = \exp\left(\frac{-1}{1-z^2}\mathbb{1}\{|z|<1\}\right)$ and a>0.

By construction, ψ_k 's have non-overlapping support.

Next let $\Omega = \{0,1\}^m$ and for any $\omega \in \Omega$, let ω_j denote the jth component of ω where $1 \leq j \leq m$.

Denote $f_{\omega}(x) = \sum_{k=1}^{m} w_k \psi_k(x)$. Then for any distinct $\omega, \omega' \in \Omega$,

$$||f_{\omega} - f_{\omega'}||_{2}^{2} = \sum_{k=1}^{m} (\omega_{k} - \omega_{k}')^{2} \int_{\Delta_{k}} \psi_{k}^{2}(x) dx$$
$$= d_{H}(\omega, \omega') \int_{\Delta_{1}} \psi_{1}^{2}(x) dx$$
$$= d_{H}(\omega, \omega') L^{2} h^{2\beta+1} ||K||_{2}^{2}$$

where $d_H(\omega, \omega') = \sum_{k=1}^m \mathbb{1}\{\omega_k \neq \omega_k'\}$ denotes the Hamming distance.

To show the lower bound using Theorem 6.1, it is sufficient to have a subset Ω' of Ω such that for all distinct $\omega, \omega' \in \Omega'$,

$$d_H(\omega, \omega') \gtrsim 1/h = m$$
 so that $||f_\omega - f_{\omega'}||_2 \ge 2\delta_n \approx n^{-\frac{-\beta}{2\beta+1}}$

while still satsifying (iii) of Theorem 6.1. The following result gives such a subset Ω' .

Lemma 6.2 (Varshamov-Gilbert) Let $m \geq 8$. There exists a subset $\{\omega^{(0)}, \dots, \omega^{(M)}\}$ of Ω with $M \geq 2^{m/8}$ such that $\omega^{(0)} = (0, 0, \dots, 0)$ and

$$d_H(\omega^{(i)}, \omega^{(j)}) \ge m/8,$$

for $0 \le i \le j \le M$.

Lecture 6: November 12 6-3

Continuing the proof of the lower bound, let $f_j = f_{\omega^{(j)}}$ for $j = 0, 1, \dots, M$ where $\omega^{(j)}$ are chosen as in Varshamov-Gilbert's lemma above. To apply Theorem 6.1, we verify the hypothesis of the theorem.

It can be shown that $f_j \in \Sigma(\beta, L)$ from the fact that $\psi_k \in \Sigma(\beta, L/2)$.

To show (i), that is, that the functions are apart, recall that we have

$$||f_i - f_j||_2^2 = L^2 h^{2\beta + 1} ||K||_2^2 d_H(\omega^{(i)}, \omega^{(j)}) \ge L^2 h^{2\beta + 1} ||K||_2^2 \frac{m}{8} = \frac{1}{8} L^2 m^{-2\beta} ||K||_2^2$$

where we used h = 1/m for the last equality. Recalling that $m = \lceil c_0 n^{1/(2\beta+1)} \rceil$, for $m \ge 8$ and sufficiently larger n, we have

$$||f_i - f_j||_2 \ge \frac{L||K||_2}{4} (2c_0)^{-\beta} n^{-\frac{\beta}{2\beta+1}}$$

Now we want to show that

$$\frac{1}{M} \sum_{i=1}^{M} \mathrm{KL}(P_j, P_0) \le \alpha \log M$$

where P_j is the distribution of Y_1, \dots, Y_n under f_j for $j = 0, 1, \dots, M$. P_j has Lebesgue density

$$(y_1, y_2, \cdots, y_n) \rightarrow \prod_{i=1}^n p_{\epsilon}(y_i - f(X_i))$$

where p_{ϵ} is the distribution of the noise term. The KL divergence can be upper bounded as follows:

$$\begin{split} \operatorname{KL}(P_j, P_0) &= \int_{\mathbb{R}^n} \log \Pi_{i=1}^n \frac{p_{\epsilon}(y_i - f_j(X_i))}{p_{\epsilon}(y_i)} \Pi_{i=1}^n p_{\epsilon}(y_i - f_j(X_i)) \, dy_1 \cdots dy_n \\ &= \sum_{i=1}^n \int_{\mathbb{R}} p_{\epsilon}(y - f_j(X_i)) \log \frac{p_{\epsilon}(y - f_j(X_i))}{p_{\epsilon}(y)} \, dy \\ &\leq p^* \sum_{i=1}^n f_j^2(X_i) \quad \text{by the assumption 6.1} \\ &\leq p^* \sum_{k=1}^m \sum_{i: X_i \in \Delta_k} \psi_k^2(X_i) \\ &\leq p^* L^2 K_{\max}^2 h^{2\beta} \sum_{k=1}^m \left| \{i: X_i \in \Delta_k] \} \right| \quad \text{where } K_{\max} = \sup_{\mu} K(\mu) \\ &= p^* L^2 K_{\max}^2 h^{2\beta} n \\ &\leq p^* L^2 K_{\max}^2 c_0^{-(2\beta+1)} m \end{split}$$

Observe that $m \leq 8 \log_2 M$ and choose

$$c_0 = \left(\frac{8p^*L^2K_{\text{max}}^2}{\alpha \log 2}\right)^{1/(2\beta+1)}$$

so that we have the desired bound

$$\mathrm{KL}(P_i, P_0) < \alpha \log M$$
.

Thus we have verified the conditions required for theorem 6.1 to hold. Therefore,

$$\max_{f \in \{f_0, \cdots, f_M\}} \mathbb{P}_f \Big(\|\hat{f} - f\|_2 \ge A n^{\frac{-\beta}{2\beta + 1}} \Big) \ge \frac{\sqrt{M}}{1 + \sqrt{M}} \Big(1 - 2\alpha - \sqrt{\frac{2\alpha}{\log M}} \Big)$$

6-4 Lecture 6: November 12

Note that if we use L_{∞} norm instead of the L_2 norm, then the minimax rate is only slightly worse: $(\log n/n)^{\beta/(2\beta+1)}$.

Assouad's Method

It consists of many binary hypothesis testing problems in contrast to the previous methods which deal with a multiple hypothesis test in general. The method is not always applicable, but worth trying after the methods we discussed previously in the class.

Let S_m denote the hypercube $\{-1,1\}^m$ for positive integers m.

Assumption: There exists a sub-family $\{P_v, v \in S_m\} \subset \mathcal{P}$ and a function $v : \theta(\mathcal{P}) \to S_m$ such that $\forall v, v' \in S_m$,

$$w(d(\theta(P_v), \theta(P_{v'}))) \ge 2\delta d_H(v, v').$$

Think of the function v as something which maps θ to the closest corner of the hypercube S_m .

Let $v \in \text{Uniform}(S_m)$ and $\mathbb{P}_{\pm j}$ be the conditional distribution of (X, v) given $v_j = \pm 1$, then

$$\begin{split} \inf_{\hat{\theta}} \sup_{P \in \mathcal{P}} \mathbb{E}[w(d(\hat{\theta}, \theta(P)))] &\geq 2\delta \frac{1}{2^m} \sum_{v \in S_m} \mathbb{E}_{P_v}[d_H(v(\hat{\theta}), v)] \\ &\geq \delta \sum_{j=1}^m \left(1 - d_{\text{TV}}(\mathbb{P}_{+j}, \mathbb{P}_{-j})\right) \\ &\geq m\delta \min_{v, v' \in S_m, d_H(v, v') = 1} \left(1 - d_{\text{TV}}(P_v, P_{v'})\right) \end{split}$$

We continue the discussion on Assouad's method in the next lecture.