Part D. How to tell proportionality from equations:

If	If
	A = constant / B
A = B * constant	·
Then A and B are directly proportional.	or
	constant = A * B
	Than A and B are inversely proportional.

There always has to be at least one thing *constant* in order to make a proportionality relationship.

Important physics formulas

$\Sigma F = ma$	p = mv
V = IR	$F_g=mg$

Symbol	Quantity	Symbol	Quantity
ΣF	Net Force	V	Voltage
m	Mass	I	Current
а	Acceleration	R	Resistance
p	Momentum	F_g	Weight
v	Velocity	g	Free-fall acceleration, determined by the planet you
			are on

9. Fill out the following table describing the relationship between various variables. Note that one variable must be constant for the other two to be proportional.

Variable 1	Variable 2	Constant Variable(s)	Relationship	
Net force	Acceleration	Mass		
Mass	Acceleration	Net force		
Velocity	Momentum	Mass		
Mass	Momentum	Velocity		
D.4	YAY . 1 .	Planet you are		
Mass	Weight	on		
Voltage	Current	Resistance		
Resistance	Current	Voltage		

 $\textbf{10.} \ Write \ Ohm's \ Law \ (V=IR) \ as \ two \ statements \ about \ proportionality:$

Answers:

- **1.** If A is doubled, B is doubled; if B is doubled, A is doubled.
- **2.** 120
- **3.** 0.005
- **4.** 33
- **5.** 12
- **6.** 0.0008
- **7.** 4 x 10⁻¹⁰
- **8.** 6 x 10⁻⁵

9.

Variable 1	Variable 2	Constant Variable(s)	Relationship
Net force	Acceleration	Mass	Direct
Mass	Acceleration	Net force	Inverse
Velocity	Momentum	Mass	Direct
Mass	Momentum	Velocity	Direct
Mass	Weight	Planet you are on	Direct
Voltage	Current	Resistance	Direct
Resistance	Current	Voltage	Inverse

1. When resistance is constant, voltage and current are directly proportional. When voltage is constant, resistance and current are inversely proportional.

(These two sentences, together, are mathematically identical to the formula V= IR.)