Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 3

22 de junho de 2017

2.º Teste de Avaliação Discreta

Duração: 2h

Justifique todas as respostas. O formulário encontra-se no verso.

- 1. [30] Determine a solução geral da equação diferencial $y''' + 2y'' + y' = -\cos x$.
- 2. [40] Resolva o seguinte problema de valores iniciais usando transformadas de Laplace:

$$y' + 2y = 4te^{-2t}$$
, $y(0) = -3$.

3. [40] Seja
$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n 2^{n+1}}{n} (x+3)^n$$
.

- (a) Determine o domínio de convergência da série dada, indicando os pontos onde a convergência é simples e absoluta.
- (b) Explicite a soma f(x) da série.

4. **[25]** Seja
$$f$$
 a função dada por $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$.

- (a) Mostre que f está bem definida em \mathbb{R} (*i.e.*, que a série converge em \mathbb{R}).
- (b) Recorrendo à derivação de séries de potências, verifique que f é solução (em \mathbb{R}) da equação diferencial y'' + y = 0.
- 5. [20] Considere uma série de potências $\sum_{n=0}^{\infty} a_n \, x^n$ com raio de convergência R>0. Mostre que a série é uniformemente convergente em cada intervalo da forma [-b,b], com 0 < b < R.
- 6. [20] Usando o resto na forma de Lagrange, mostre que o erro cometido ao aproximar \sqrt{x} pelo respetivo polinómio de Taylor de segunda ordem no ponto 9, no intervalo]9,11], é inferior a $\frac{1}{4}\times 10^{-2}$.
- 7. [25] Considere a função f, periódica de período 2π , dada por

$$f(x) = \begin{cases} -2, & -\pi < x < 0, \\ 0, & x = 0, \\ 2, & 0 < x \le \pi. \end{cases}$$

- (a) Determine a série de Fourier da função f.
- (b) Esboce o gráfico da soma da série obtida na alínea (a), no intervalo $[-3\pi, 3\pi]$.

Formulário (Transformadas de Laplace)

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

	I
função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a},\;s>a$
$\operatorname{sen}\left(at\right)\ \left(a\in\mathbb{R}\right)$	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$\operatorname{senh}(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$
(f*g)(t)	F(s)G(s)
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$

Nota: Em geral, nada é referido sobre as hipóteses que validam as fórmulas indicadas. Em alguns casos são omitidas as restrições ao domínio das transformadas.