· A function field in of the form K(X), X an algebraic revue over a finite field F_{χ}

Function Fields Number fields F2(4), K=K(x) closed point x < × prime number p R(x) - finite orderation of Fr completed local ring $Q_{x} \cong \mathcal{K}(x)$ [u] Z_b Kz = K(z) ((u)) Qp=2p[p] A= IR x Tres Q A = IT res Kn Locally compact field soq(Q) μ_{tom} affine, smooth, connected fibers q quadratic form /2 (g: G = X *Sln) but carret assume that $\mathrm{So}_{\mathbf{2}}(\mathbf{R} \mathbf{x} \hat{\mathbf{Z}})$ every fiber is semisimple G(Trex On) Sor(@) 80, (A)/sor(2xR) G(K) (G(A)/G(T,Ox) Principal G bundles quadeotic forms g' in the genus of q

Equivalent Formulation

Convergence issue, ∞ - terms on the left

Bung(X) = moduli stack of G-dundles

[Y, Bung(X)] <1-1 > principal G-bundles on Xx Y

Goal: Compute # points of Bung(X) (edefined over F2) Weil \rightarrow Z projective algorariety over Fq. Q. How Jug is $Z(\mathbb{F}_q)$ (=set of solutions of polynomial eq. s) Z(Fg) $\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{\varphi} \mathbb{Z} \\
\text{In} & & \text{In} \\
\mathbb{P}^{n} & \xrightarrow{} & \mathbb{P}^{n}
\end{array}$ $\left[\chi_{n}^{2} : \dots : \chi_{n}^{n} \right] \longmapsto \left[\chi_{n}^{2} : \dots : \chi_{n}^{n} \right]$ Z (Fq) is precisely the set of freed points under the Februs action Heurstic $|Z(F_q)| = \sum_{i=1}^{n} (-1)^i \operatorname{Tr}(q|H^i(Z))$ Lefschek dived foint formula Was proven by Grotherdieck - ORHS cohomology groups are the etate Cohomology groups / Ladic coh $^{\textcircled{0}}$ I is not frejective use replace H^{\bigstar} by H^{\bigstar}_{c} , comparely supported · Z smooth, we have a Paincaré dyality: of dim $H_c^i(\vec{z}) \cong H^{2d-i}(\vec{z})^* \iff \text{Not equivariant over the Frobenius}$ hence the q'd $\Rightarrow \quad \bar{q}^{d} \left(\# \mathcal{Z}(\bar{\mathbf{F}}_{2}) \right) = \operatorname{Tr} \left(\bar{\varphi}^{d} | \mathbf{H}^{*}(\mathcal{Z}) \right)$ \S Replace $Z \longrightarrow \operatorname{Bur}_{G}(X)$ smooth algebrain stark of clim JTopschetz fixed point kind of formula hold for Bung (X) so that god & Lundles later DI = Tr (G1 | H*(Bungx))

RHS
$$\frac{1 + (a)}{|G(R(n))|} = \frac{1}{|G(R(n))|} =$$

"Heuristic
$$\beta_{un_G}(x) = \prod_{x \in x}^{cord} \beta_{un_G}(\{x\})$$
"

"
$$\Rightarrow$$
 By Kunneth formula, $H^*(\mathrm{Bun}_G(X)) \cong \bigotimes_{\chi \in X}^{\mathrm{Gnt}} H^*(\mathrm{Bun}_G(\{\chi\}))$

$$T_{r}\left(\varphi''\mid H^{*}\left(Bun_{G}(x)\right)\right)=\prod_{x\in x}T_{r}\left(\varphi''\mid Bun_{G}\left(\{x\}\right)\right)$$

Next: Make the \otimes^{cont} precise using factorization homology (for algebraic curves / F_{z})