Lab 3: Combinational Logic Design

A. Objectives

- Become familiarized with the analysis of combinational logic networks.
- Learn the implementation of networks using the two canonical forms.

B. Theory

Minterms and Maxterms:

A binary variable may appear either in its normal form (x) or in its complement form (x'). Now consider two binary variables x and y combined with an AND operation. Since each variable may appear in either form, there are four possible combinations: x'y', x'y, xy', and xy. Each of these four AND terms is called a minterm, or a standard product. If we have n variables, they can be combined to form 2^n minterms.

In a similar fashion, n variables forming an OR term, with each variable being primed or unprimed, provide 2ⁿ possible combinations, called maxterms, or standard sums.

The four minterms and maxterms for 2 variables, together with symbolic designations, are listed in **Table 1**.

		Minterms		Max	terms
X	y	Term	Designation	Term	Designation
0	0	x'y'	m_0	x + y	M_0
0	1	x'y	m_1	x + y	\mathbf{M}_1
1	0	xy'	m_2	x' + y	M_2
1	1	xy	m ₃	x' + y'	M_3

Table 1

It is important to note that the maxterm with subscript j is a complement of the minterm with the same subscript j and vice versa.

That is, $\mathbf{m'_j} = \mathbf{M_j}$

Canonical Forms:

Boolean functions expressed as a sum of minterms or product of maxterms are said to be in 1st Canonical Form and 2nd Canonical Form respectively. Functions in their canonical form can also be expressed in a brief notation. For example, the function $\mathbf{F} = \mathbf{x'y'} + \mathbf{xy'}$ (1st canonical form) can be expressed as $\mathbf{F}(\mathbf{x},\mathbf{y}) = \Sigma(\mathbf{0},\mathbf{2})$ and the function $\mathbf{X} = (\mathbf{A}+\mathbf{B})(\mathbf{A}+\mathbf{B'})$ (2nd canonical form) can be expressed as $\mathbf{X}(\mathbf{A},\mathbf{B}) = \Pi(\mathbf{0},\mathbf{1})$. The numbers following the sum and product symbols are the indices of the minterms and maxterms of the respective functions.

New Apparatus

C. Apparatus

- Trainer Board
- 1 x IC 4073 Triple 3-input AND gates
- 2 x IC 4075 Triple 3-input OR gates
- 1 x IC 7404 Hex Inverters (NOT gates)

D. Procedure

- 1. Write down all the min terms and max terms of three inputs ABC in Table F.1.
- 2. Use the given truth table to express the function F in 1st and 2nd Canonical Forms in Table F.2. Write down both the brief and full expressions of the sum of minterms and product of maxterms expressions of the function.
- 3. Draw the circuits for the 1st and 2nd canonical forms of the function in Figure F.1, clearly indicating the pin numbers corresponding to the relevant ICs.
- 4. Construct the 1st canonical form of the circuit and test it with the truth table.
 - i. Connect one min term at a time and check its output.
 - ii. Once all min terms have been connected and verified, OR the min terms for the function output.
- 5. Construct the 2nd canonical form of the circuit and test it with the truth table.
 - i. Connect one max term at a time and check its output.
 - ii. Once all max terms have been connected and verified, AND the max terms for the function output.

Questions

- 1. What is a minterm? What is meant by 'sum-of-products (or first) canonical form'? Is the following expression in the first canonical form? Explain your answer.
 - F = AB' + ABC'
- 2. If a Boolean expression is in canonical form, can we also say that it is in its minimal form? Use an example to illustrate your answer.
- 3. You have been given 4 binary variables: A, B, C and D. List all of the minterms and maxterms of the variables in order. Now, use your list to convert the following product of maxterms expression into sum of minterms:
 - Z = (A+B'+C+D')(A'+B'+C'+D)(A'+B+C+D)(A'+B'+C'+D')(A+B+C+D')(A+B'+C'+D)
- 4. In this experiment, you used the 4073, 3-input AND IC. There's another 3-input AND IC named 7411. Draw the internal gates of the 7411 IC.
- 5. Draw the IC diagram for the 1st canonical form of the circuit in Figure F.1

E. Experimental Data

	Instructor's Signature:	
Group:	Date:	Section

Input Reference	ABC	F	Min term	Max term
0	000	0		
1	0 0 1	1		
2	010	1		
3	0 1 1	0		
4	100	0		
5	101	0		
6	110	1		
7	111	0		

Table F.1 Truth table to a combinational circuit

	Shorthand Notation	Function
1 st Canonical Form	$F = \Sigma$	F =
2 nd Canonical Form	$F = \Pi$	F =

Table F.2 1st and 2nd canonical forms of the combinational circuit of Table F.1

Department of Electrical & Computer Engineering, NSU	EEE/ETE 211L: Digital Logic Design
1st Canonical I	Form
2 nd Canonical	Form
The Datast Land	
Figure F.1 1 st and 2 nd canonical circuit diagram	ms of the combinational circuit of

Table F.1