MA1101R Revision Lecture

Prepared by Ng Kah Loon
April 2012

Chapters 1 and 2

Linear systems and matrices

Chapters 1 and 2: Linear systems, Gaussian Elimination and Matrices

- What is a linear system? What is the solution set of a linear system?
- How to solve a linear system (systematically)? (Reduced) row-echelon forms.
- Some geometric interpretations of linear systems. Homogeneous linear systems.
- Matrices and its operations. (*i,j*) representation of matrices. How to prove a matrix equation.
- Different representations of *AB*. Matrix representations of a linear system.
- Invertibility. Existence of A^{-1} . How to determine if a matrix is invertible?
- Elementary matrices (how to obtain) and their relationship with E.R.O.
- Determinants definitions and cofactor expansions. Properties of determinants and their relationship with E.R.O. Adjoint of a matrix.

Chapters 3 and 4

Vector spaces and subspaces

Chapters 3 and 4: Vector spaces and subspaces

- Euclidean n-spaces. Vectors in \mathbb{R}^n . Vector operations and its relationship with matrices.
- Subsets of \mathbb{R}^n . Lines and planes in \mathbb{R}^2 and \mathbb{R}^3 .
- Linear combinations and linear spans. What is *a* linear combination? Remember that linear span is "the set of *all* linear combinations".
- Definition of a subspace. The "span" definition and the "closure" definition.
- What properties must a subspace have? The notion of self sufficiency. How to prove or disprove that a subset is a subspace. Subspaces in \mathbb{R}^2 and \mathbb{R}^3 .
- Solution set of a homogeneous linear system.
- How to check if span(S) is a subset of span(T)?
- The notion of redundancy in linear span, leading to the definition of linear independence. Two equivalent notions of linear independence.
- Bases definition. Uniqueness representation and coordinate vectors. Dimensions – "not too few, not too many". Importance of knowing the dimension of a subspace.
- Transition matrices how to find? Inverse of a transition matrix.

Chapters 3 and 4: Vector spaces and subspaces (continued)

- Row space and column spaces definition.
- Finding a basis for the row space or a column space of a matrix. The notion of Row equivalence. Finding a basis for span{ $u_1, u_2, ..., u_n$ }.
- Ax = b is consistent if and only if b belongs to the column space of A.
- Dimensions of the row space and column space of a matrix. Definition of rank.
- Nullspace of a matrix and nullity. Finding a basis for the nullspace.
- Dimension theorem for matrices.

Chapters 5 and 6

Orthogonality and Diagonalization

Chapters 5 and 6: Orthogonality and Diagonalization

- Inner products, length, distance and angles.
- Matrix representation for dot products. Properties of dot products.
- Orthogonal implies independence (but not conversely). Orthogonal and orthonormal bases.
- $S = \{u_1, ..., u_k\}$ is a orthogonal (orthonormal) basis for V (a subspace of \mathbb{R}^n). How to write a vector in V as a linear combination of $u_1, ..., u_k$?
- When is a vector orthogonal to a subspace? Orthogonal projection.
- $S = \{u_1, ..., u_k\}$ is a orthogonal (orthonormal) basis for V (a subspace of \mathbb{R}^n). How to project a vector in \mathbb{R}^n onto V? (and write it as a linear combination of $u_1, ..., u_k$?)
- Using the idea of orthogonal projection, leading up to G-S process.
- Best approximations, least squares solutions and their relationship with Ax = b and the column space of A.
- Orthogonal matrices transition matrices between orthonormal bases.

Chapters 5 and 6: Orthogonality and Diagonalization (continued)

- Diagonalization why do we want to diagonalize a matrix.
- Eigenvalues, eigenvectors and eigenspaces. Characteristic polynomials and characteristic equations.
- How to determine whether a matrix can be diagonalized?
- Two facts (Remark 6.2.5.2 and 6.2.5.3) whose proofs are non-trivial. A related and "not so difficult" statement to prove.
- "Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of \boldsymbol{A} and $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_k$ be the corresponding eigenvectors. Prove that $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_k$ are linearly independent."
- Applications of diagonalization.
- Orthogonal diagonalization and characterization of orthogonally diagonalizable matrices.

Chapter 7

Linear transformations

Chapter 7: Linear and geometric transformations

- Definition of a linear transformation T. How to find formula for T and standard matrix for T?
- Properties of linear transformations.
- $T: \mathbb{R}^n \to \mathbb{R}^m$. Determining T completely once we know what T does to a basis of \mathbb{R}^n .
- Composition of linear transformations and their respective standard matrices.
- Ranges and Kernels and their relationships with column spaces and nullspaces.