Software Architecture Document

Version 1.5

for

Quickbook Conference Room Reservation System

Prepared by

Piratheeban Annamalai	27755708	piratheeban95@hotmail.com
Andrew Laramee	27050925	zephix109@gmail.com
Jacqueline Luo	26938949	luo.jackie@outlook.com
Michael Mescheder	27202202	meschedermichael@gmail.com
Hoang Khang Nguyen	27079427	alphakennyn@gmail.com
Eric Payette	27008058	eric.payette24@gmail.com

Instructor: Dr. Constantinos Constantinides

Course: SOEN 344

Date: 04/04/2017

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Document history

Date	Version	Description	Author
10/12/2016	1.0	- Addition of UML Class Diagram	- All team members
		with respective associations during	
		team meeting	
		- Design of communication diagram	- Ideawin, Philip,
		for critical use cases	Hannah
10/25/2016	1.1	- Modification of UML class	- All team members
		Diagram	
		- Addition of Mappers, TDGs, unit	
		of work diagram	-Ideawin, Philip,
			Hannah
11/21/2016	1.2	- Modification of visibilities for	-Hannah, Ideawin
		subsystems	
		- Addition of methods in Class	-Armine, Ideawin,
		Diagram for respective restrictions	Hannah, Aline
29/03/2017	1.3	-Addition of new requirements	Eric, Michael,
		including updated diagrams	Jacqueline
03/04/2017	1.4	-Modified descriptions in SAD to	Kenny
		include new entity	
04/04/2017	1.5	Updated Class diagram, domain model,	Eric
		sequence diagram and communication	
		diagram	

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Table of contents

1.	Introduction	4
	Purpose	4
	Scope	4
	Definitions, acronyms, and abbreviations	4
2.	Architectural representation	5
	2.1 Scenarios (Use Case View)	5
	2.2 Logical View	7
	2.2.1 Layers	8
	2.2.2 Subsystems	9
	2.2.3 Use Case Realizations	14
	2.3 Data View	16
3.	Architectural requirements: goals and constraints	16
	3.1 Functional requirements (Use case view)	18
	3.2 Non-functional requirements	18

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

List of figures

Figure 1: UML Use Case Diagram	6
Figure 2: UML Class Diagram	7
Figure 3: Server-side architecture: logical view: layered architectural style	8
Figure 4: Relationship between Core package and Mappers	9
Figure 5: Relationship between Mappers package and Unit of Work	10
Figure 6: Relationship between Mappers and Identity Maps	11
Figure 7: Relationship between Mappers, TDGs and Tables	12
Figure 8: Communication Diagram	13
Figure 9: Sequence Diagram to make a new reservation	13
Figure 10: Sequence Diagram when user is done and mapper is ready to commit to UoW	14
Figure 11: Sequence Diagram to make a new TimeSlot	15
Figure 12: Sequence Diagram when user is ready to commit to UoW	15
Figure 13: Complete Sequence Diagram for Make Reservation	16
Figure 14: Entity-Relationship (ER) Model	17

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

1. Introduction

This document contains a high-level design overview and provides an overall architecture of QuickBook, a web application tool that helps ENCS faculty members reserve a conference room. With high-level descriptions of the goals, the SAD explains the underlying architecture behind some of the use cases such as when a user tries to create, modify and cancel a reservation. This document provides the goals of the architecture, a view of the use cases supported by the system and architectural styles and components that have been selected to best achieve the use cases.

1.1 Purpose

This document provides a comprehensive architectural overview of the QuickBook. To describe different aspects of the system, we have presented three different architectural views such as: Logic view, Data Model view and Use-Case view. The purpose of this documentation is to record and express our architectural decisions which have been made on the system.

1.2 Scope

SAD describes the architecturally significant design aspects of QuickBook. This document can be used to achieve a good understanding of the fundamentals of the system as well as a good guiding tool for duplicating or building the system. Any stakeholder who wants to have a good technical knowledge of QuickBook are encouraged to read this document in order to be able to follow up with the source code.

1.3 Definitions, acronyms, and abbreviations

UML: Unified Modeling Language

SAD: Software Architecture Document

TDG: Table Data Gateway

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

UoW: Unit of Work

ER: Entity Relationship

2. Architectural representation

QuickBook is implemented as a web application; it is developed using multi-layered architecture which is a client-server architecture. The multilayered architecture is composed of a presentation layer, application (logic) layer, data source (storage) layer.

A description for the QuickBook system will be provided through the representation of different views. The 4+1 view model is composed of Logical View, Process View, Development View, Physical View and Use Case View. This document will only be describing two of the five architectural views: Use Case View and Logical View. An extra view, Data View, will also be described.

In the **Logical View**, a class diagram shows the relationship between classes with their specific associations and dependencies. Also, the logical view includes the communication diagram, which illustrates the interaction of objects, for a given system operation, in a network format.

In the **Use Case View**, a use case model illustrates the functionality the system must provide; its behavior. Furthermore, the use case model displays the relationship between the system's intended functions and the actors (the user).

In the **Data View**, an Entity Relationship (ER) diagram is used to show a visual representation of the logical relationship between the data entities (or objects) of the system in order to build a database.

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

2.1 Scenarios (Use Case View)

Figure 1: UML Use Case Diagram

Use case 3 **(UC03)** is a *critical use case* of the system because the system depends on its functionality. If users are not able to make a reservation, then the system is entirely non-functional and therefore it doesn't meet its requirements.

The communication diagram (fig. 8) describes the flow of the critical use case operation *makeNewReservation*. The interaction between domain objects is presented, showing how to successfully make a reservation.

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

2.2 Logical View

Figure 1: UML Class Diagram

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

2.2.1 Layers

The system's design uses a layered architectural style. There are three layered views of the system.

3: Server-side architecture: logical view: layered architectural style

Page 8 of **19**

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

2.2.2 Subsystems

Decomposition of the system in subsystems and their relation.

Figure 4: Relationship between Core and Mappers Packages

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 5: Relationship between Mappers Package and Unit of Work

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 6: Relationship between Mappers and Identity Maps

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 7: Relationship between Mappers, TDGs and Tables

2.2.3 Use Case Realizations

To clearly describe the important architectural elements of *QuickBook,* interaction diagrams are provided for the critical use case Make Reservation: **UC03.**

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 8: Communication Diagram

The following Sequence diagrams illustrate the UMI interactions between the Domain Object, Mappers, Identity Maps, Unit of Work (UoW), Table Data Getaways (TDG) and the database table.

Figure 9: Sequence Diagram to Make a New Reservation

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 10: Sequence Diagram When a User is Done and Mapper are Ready to Commit to Unit of Work

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 11: Sequence Diagram to make a new TimeSlot

Figure 12: Sequence Diagram When User is Ready to Commit to Unit of Work

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 13: Complete Sequence Diagram for Make Reservation

2.3 Data View

Five main entities are present in the system: The User, the Reservation, the Room, the Equipment and the TimeSlot. The below Entity-Relationship (ER) model shows the attributes of each entity and the relationships between them.

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

Figure 14: Entity-Relationship Model

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

3. Architectural requirements: goals and constraints

Functional Requirements and Non-Functional requirements can affect the architecture of a software system.

3.1 Functional requirements (Use case view)

This section describes which Use Cases from the Use Case Model are relevant to the software architecture.

Source	Name	Architectural relevance	Addressed in:
SRS	Use Case Login	-A user is needed for most methods	Section 2.1
SRS	Use Case Make Reservation	-Making a reservation must be functional in the system for most methods to function.	Section 2.1

3.2 Non-functional requirements (NFRs)

This section describes the non-functional requirements that are relevant to the architecture of the *Quickbook* Software. The two most important type of technical NFRs are Usability and Maintainability.

Source	Name	Architectural relevance	Addressed in:
SRS	Usability	-Consistency of both the user interface and	Section 3.3.2

Quickbook Conference Room Reservation System	Version:	1.5
Software Architecture Document	Date:	04/04/2017

		the functionality of the system. -Natural Mapping : ease of navigation	
SRS	Maintainability	-When adding or changing of the functionality and meeting new requirements, the system endures these changes with a degree of ease.	Section 3.3.4