A one phase interior point method (IPM) for non-convex optimization

Oliver Hinder, Yinyu Ye

ohinder@stanford.edu

July 11, 2016

Outline

- Introduction
 - Current non-convex IPMs
 - Local infeasibility certificates
 - Algorithm outline
- 2 Theory
 - Global convergence
 - Local convergence
 - How to return L1 minimizer of constraint violation
- Practice
 - Implementation details
 - Preliminary empirical results with CUTEst

Problem we wish to solve:

$$\min c(x)$$
$$a(x) \le 0$$

Assume:

- The constraints and objective are C^2
- ② The set $a(x) \leq \theta$ is bounded for any $\theta \in \mathbb{R}^m$

One phase IPMs for convex optimization

Either declare problem infeasible (primal or dual) or optimal in one phase:

- Infeasible start IPM (Mehortra ...)
- O Homogenous algorithm (Ye ...)

State of the art for convex optimization

Why one phase IPM fail

- Ideally our algorithm would either find a local optimum or a local minimizer the violation of the constraints
- 2 Infeasible start IPMs may fail this criterion (Wachter and Biegler in 2000).

Methods in literature for addressing this problem

- Two phases (IPOPT)
 - Each phase has a different variables
 - 2 Awkward convergence assumptions
 - **3** Poor performance on infeasible problems
- Ompute two directions (KNITRO)
- Penalty (or big-M) method (Curtis, 2012)

Local infeasibility certificates

Farkas certificate, there exists $y \ge 0$, $y \ne 0$, $y_i a_i(x) \ge 0$ such that x^* is a stationary point of:

$$\min y^T a(x)$$

L1 constraint violation, x^* is a stationary point of:

$$\min e^{T}(a(x))^{+}$$

One phase barrier problem

Original problem:

$$\min c(x)$$
$$a(x) \le 0$$

Barrier problem:

$$\min c(x) - (1 - \eta_k)\mu_k \sum_i \log s_i$$

$$a(x) + s = (1 - \eta_k)(a(x^k) + s^k)$$

$$s \ge 0$$

Direction computation

$$H^{k}d_{x} + (A^{k})^{T}d_{y} = -(\nabla c(x) + y^{T}\nabla a(x))$$

$$A^{k}d_{x} + d_{s} = -\eta_{k}(a(x^{k}) + s^{k})$$

$$S^{k}d_{y} + Y^{k}d_{s} = (1 - \eta_{k})\mu_{k}e - Y^{k}s^{k}$$

$$H^{k} = \nabla_{x}^{2} L(x^{k}, y^{k}) + \delta_{k} I$$
$$A^{k} = \nabla_{a}(x^{k})$$

One phase non-convex algorithm

for
$$k \leftarrow 1, \ldots, \infty$$
 do

Factor newton system using IPOPT strategy to compute δ_k

if
$$\|\nabla c(x^k) + (y^k)^T \nabla a(x^k)\| < \mu_k$$
 then

Aggressive step:

Compute direction with $\eta_k \in (0,1]$

Take largest step while maintaining complementary

else

Stabilization step:

Compute direction with $\eta_k=0$

Line search on direction

end if

end for

Iterate update

Backtrack on α and update iterates:

$$x^{k+1} = x^{k} + \alpha d_{x}^{k}$$

$$y^{k+1} = y^{k} + \alpha d_{y}^{k}$$

$$s^{k+1} = (1 - \alpha_{k} \eta_{k})(a(x^{k}) + s^{k}) - a(x^{k+1})$$

$$\mu_{k+1} = \mu_{k} + (1 - \eta_{k} \alpha_{k})\mu_{k}$$

Only accept iterates that approximately satisfy complementary:

$$\beta \mu^{k+1} \le s_i^{k+1} y_i^{k+1} - \mu^{k+1} \le \frac{1}{\beta} \mu^{k+1}$$

Merit function line search

Backtrack on α until sufficient progress has been made on the merit function:

$$\psi^{k}(x) = c(x) - \mu^{k} \sum_{i} \log (a_{i}(x^{k}) + s_{i}^{k} - a_{i}(x))$$

Termination criterion

Declare problem first-order ϵ -local optimal if:

$$\|\nabla c(x) + y^T \nabla a(x)\| + \mu < \epsilon$$

Declare problem first-order ϵ -local infeasible if:

$$\frac{1}{y^{T}(a(x)+s)}\left(\mu+\|y^{T}\nabla a(x)\|\right)<\epsilon$$

Global convergence

If δ_k and η_k are judiciously chosen then it possible to show the following result:

Theorem

For any $\epsilon > 0$, after a finite number of steps the algorithm has found either a first-order ϵ -local optimum or a first-order ϵ -local infeasibility certificate.

Conjectures

Conjecture

Assume (x^*, s^*) is a limit point of the algorithm and there exists finite dual multipliers at (x^*, s^*) then for some subsequence of the dual multipliers $y^{\pi(k)} \to y^*$.

Conjecture

After a polynomial number of steps a simple variant of the algorithm has found either a first-order ϵ -local optimum or a first-order ϵ -local infeasibility certificate.

Local convergence

Assume:

- Converging towards a KKT solution that satisfies strict complementary.
- The sufficient conditions for local optimality are satisfied at the KKT solution.

If η_k is judiciously chosen then it is possible to show:

Theorem

If assumptions (1-3) hold, the algorithm converges Q-quadratically to a local optimality certificate.

How to return L1 minimizer of constraint violation

We wish to solve:

$$\min c(x)$$

$$a(x) \leq 0$$

This problem is trivially equivalent to:

$$\min c(x)$$

$$a(x) \leq z$$

$$e^T z \leq 0$$

$$z \ge 0$$

The local Farkas infeasibility certificate to this problem is an certificate of L1 minimization of the constraint violation.

Implementation details

- Use fraction to boundary rule
- **②** Choose η_k on aggressive steps using predictor-corrector technique
- Search on negative eigenvector to guarantee second-order necessary conditions are satisfied
- Filter to improve stabilization step performance

Scaled KKT merit function

Scaled KKT residuals is an alternate merit function:

$$\frac{\|\nabla c(x) + y^T \nabla a(x)\|}{\|y\|}$$

Accept step that makes progress on either:

- Classic merit function
- Scaled KKT residuals

Using a filter to prevent cycling

Empirical results

Table: Results on 14 selected CUTEst problems

	One phase	IPOPT (2004)	KNITRO (2004)
Mean iterations	71	152	740
Standard error	5	25	85