T ₃ () F ₅	20 () [MS550 ·	Nome:	R	A:
13 () 10	20 ().	MINORO .	rome.	T-0.1	.T.

Mostre que a equação de Bessel

$$z^2y'' + zy' + (z^2 - \nu^2)y = 0$$

possui um ponto singular irregular em $z = \infty$.

$$\frac{t = \frac{1}{2}}{dt} = \frac{dt}{dt} \frac{dy}{dt} = -t^{2} \frac{dy}{dt}$$

$$\frac{d^{2}y}{dt^{2}} = -t^{2} \frac{d}{dt} \left(-t^{2} \frac{dy}{dt}\right) = t^{4} \frac{d^{2}y}{dt^{2}} + 2t^{3} \frac{dy}{dt}$$
Burnel $\Rightarrow \frac{1}{t^{2}} \left[t^{4} \frac{d^{2}y}{dt^{2}} + 2t^{3} \frac{dy}{dt}\right] + \left(-t^{2} \frac{dy}{dt}\right) + \left(t^{2} - v^{2}\right) y = 0$

$$t^{2}\frac{d^{2}y}{dt^{2}} + (2t - t)\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

$$\frac{d^{2}y}{dt^{2}} + \frac{1}{t}\frac{dy}{dt} + (\frac{1}{t^{2}} - v^{2})y = 0$$

 $p(t) \Rightarrow tem polo de orden 1 en t=0$ $q(t) \Rightarrow tem polo de orden 4 en t=0 <math>\Rightarrow$ ponto surgular urrequiar