Computer Organization & Assembly Language

Final Exam - 2015/1/9

Dept. of Engineering Science, National Cheng Kung University

T	I. AI	iswer true of raise to the following statements (36%)
1	(A)	Overflow cannot occur when subtracting operands with same signs.
こ	(B)	When implementing the hardware for 32-bit integer division, the remainder and the quotient can
1		share the 64-bit space for better utilization.
-	(C)	There is always a trade-off between precision and range when representing a floating-poin
1		number because a fixed size is used.
1	(D)	In computer arithmetic, floating-point addition may not be associative; that is, x+(y+z) !=
7		(X + V) + Z
H	(E)	The register is considered as a type of combinational elements.
1	(F)	When designing the processor, the control signals RegRead and RegWrite are used for
1		controlling the data access of register files.
T	(G)	Designing the control is more complicated than designing the datapath since it requires an
1		understanding of how all the components in the processor operate.
_	(H)	In the pipelined processor, all control signals can be immediately set after the current instruction
1		is decoded in the 2nd stage.
1	(I)	Increasing the depth of pipeline (i.e., number of stages) without balancing the cost of each stage
-1		may reduce the overall performance.
I	(1)	The CPI value of an ideal pipeline processor is (1.0)
H	(K)	Pipelining increases throughput and reduces individual instruction execution time.
-	- (L)	Pipeline bubbles cause loss of performance since that a number of pipeline stages are left empty.
	1.	
		erform the following operations of computer arithmetic.
	(A)	Add 3.63 _{ten} × 10 ⁴ to 6.87 _{ten} × 10 ³ , assuming that you have only three significant digits, first with
	(P)	guard and round digits and then without them. (4%)
	(B)	Assuming single precision IEEE 754 format, what decimal number is represent by this word:
	(C)	
	(0)	Show the IEEE 754 binary representation for the floating-point number 20.25 _{ten} and -4/7 _{ten} in \ single precision, respectively. (10%)
		angle previous, respectively. (1070)
	3. S	uppose that the function unit times are given as follows: (1 ns = 10 ⁻⁹ seconds)
		2 ns for memory access,
		1 ns for ALU operation, and
		0.5 ns for register file read or write.
	(A)	According to our design, what is the desirable clock rate for the single-cycle machine and the
		pipelined machine, respectively? (6%)
	(B)	What is the execution time for running the following codes on the single-cycle and the pipelined
		machine, respectively? (6%)
		Sub \$3, \$4, \$5
		10 (SE) - U U W
		add \$7, \$3, \$3
		add \$7 \$2, \$1
		au 71, 741, 71,

multiple-cycle pipeline diagram. (10%)(Hint: indicate the instruction number(s) with errors, and then redraw the corresponding diagram.) lw sub nstruction #2 add SW beq 5. One CPU manufacturer proposed the (10-stage pipeline below for a 500MHz (2ms clock cycle) machine. NRB WRB EXE WLD DET REN IPG ROT EXP FET 10 Here are the correspondences between this and the MIPS pipeline: - Instructions are fetched in the FET stage. - Register reading is performed in the REG stage. - ALU operations and premory access are both done in the EXE stage. - Branches are resolved in the DET stage. - WRB is the writeback stage. How much time is required to execute one million instructions on this processor, assuming there (A) are no dependencies or branches in the code? (3%)(B) Without forwarding how many stall cycles are needed for the following code fragment? Assume that the register file could be written and read in the same clock cycle. (3%)What is this hazard called? lw \$t0_ 0(\$a0) add \$v1, \$t0, sto Y2

4. Given the following instructions #1~#5, identify and correct the errors (or inconsistencies) in the

(C) If a branch is mispredicted, how many instructions would have to be flushed from the pipeline?

(3%)

(D) Assume that a program executes one million instructions. Of these, 15% are load instructions

(D) Assume that a program executes one million instructions. Of these, 15% are load instructions which stall, and 10% of the instructions are branches. The CPU predicts branches correctly 75% of the time. How much time will it take to execute this program? (4%)

(A) Assume that we try to predict this sequence with the 1-bit predictor (which is initialized to the N state). What is the predicted sequence? How many branches are mis-predicted? (4%)

(B) How about using the 2-bit predictor (which is initialized to the T state)? (4%)