Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Робота для ліквідації академічної різниці з дисципліни «Алгоритми та методи обчислень» Варіант 3

> Виконав: студент ННІКІТ СП-225 Клокун Владислав

Завдання 1. Дано масив цілих чисел $A = \{3, 1, -13, 8, 15, 63, 21, 17, -4, 2\}$. Необхідно відсортувати його в порядку зростання методами вставки, бульбашки та методом шейкера. Намалювати блок-схему для методу шейкера.

Розв'язання 1. *Сортування бульбашкою*. За один повний цикл проходу по масиву виконує порівняння одного елемента з іншим. Якщо вони знаходяться в неправильному порядку, міняє їх місцями.

- 1. A = [3, 1, -13, 8, 15, 63, 21, 17, -4, 2].
- 2. A = [1, -13, 3, 8, 15, 21, 17, -4, 2, 63].
- 3. A = [-13, 1, 3, 8, 15, 17, -4, 2, 21, 63].
- 4. A = [-13, 1, 3, 8, -4, 2, 15, 17, 21, 63].
- 5. A = [-13, 1, 3, 8, -4, 2, 15, 17, 21, 63].
- 6. A = [-13, 1, 3, -4, 2, 8, 15, 17, 21, 63].
- 7. A = [-13, 1, -4, 2, 3, 8, 15, 17, 21, 63].
- 8. A = [-13, -4, 1, 2, 3, 8, 15, 17, 21, 63].

Сортування вставками. На кожному кроці обираємо один з елементів і вставляємо його на потрібну позицію, доки вхідні дані не закінчаться.

- 1. A = [3, 1, -13, 8, 15, 63, 21, 17, -4, 2].
- 2. A = [-13, 1, 3, 8, 15, 63, 21, 17, -4, 2].
- 3. A = [-13, -4, 3, 8, 15, 63, 21, 17, 1, 2].
- 4. A = [-13, -4, 1, 8, 15, 63, 21, 17, 3, 2].
- 5. A = [-13, -4, 1, 2, 15, 63, 21, 17, 3, 8].
- 6. A = [-13, -4, 1, 2, 3, 63, 21, 17, 15, 8].
- 7. A = [-13, -4, 1, 2, 3, 8, 21, 17, 15, 63].
- 8. A = [-13, -4, 1, 2, 3, 8, 15, 17, 21, 63].

Сортування методом шейкера. Двосторонній алгоритм сортування бульбашкою.

- 1. A = [3, 1, -13, 8, 15, 63, 21, 17, -4, 2].
- 2. A = [1, -13, 3, 8, 15, 21, 17, -4, 2, 63].
- 3. A = [-13, 1, -4, 3, 8, 15, 21, 17, 2, 63].
- 4. A = [-13, -4, 1, 3, 8, 15, 17, 2, 21, 63].
- 5. A = [-13, -4, 1, 2, 3, 8, 15, 17, 21, 63].

ЗАВДАННЯ 2. Довести, що задану програму можна застосовувати до наданих станів машини Поста. Вказати результат роботи машини Поста, якщо початковий стан стрічки: 111001.

1. ? 3; 2. 4. ? 6; 5. 7. ? 8; 9
2.
$$\rightarrow$$
 1. 5. \leftarrow 1. 8. ?
3. \rightarrow 4. 6. \rightarrow 7 9. \rightarrow 4

Розв'язання 2. Припустимо, що каретка знаходиться на першій комірці. Розберемо програму покроково.

Команда	Стан	Пояснення
1?3; 2	1110011	Мітка є, отже перехід до команди 2
$2 \rightarrow 1$	1110011	Зсув каретки вправо і перехід до команди 1
1?3;2	1110011	Мітка є, отже перехід до команди 2
$2 \rightarrow 1$	1110011	Зсув каретки вправо і перехід до команди 1
1?3;2	1110011	Мітка є, отже перехід до команди 2
$2 \rightarrow 1$	1110011	Зсув каретки вправо і перехід до команди 1
1?3;2	1110011	Мітки немає, отже перехід до команди 3
$3 \rightarrow 4$	1110011	Зсув каретки вправо перехід до команди 4
4 ? 6; 5	1110011	Мітки немає отже перехід до команди 6
$6 \rightarrow 7$	1110011	Зсув каретки вправо перехід до команди 7
7?8;9	1110011	Мітка є, отже перехід до команди 9
$9 \rightarrow 4$	1110011	Зсув каретки вправо перехід до команди 4
4 ? 6; 5	1110011	Мітка є отже перехід до команди 5
5 ← 1	1110011	Зсув каретки вліво перехід до команди 1
1?3;2	1110011	Мітка є, отже перехід до команди 2
$2 \rightarrow 1$	1110011	Зсув каретки вправо і перехід до команди 1
1?3;2	1110011	Мітка є, отже перехід до команди 2
$2 \rightarrow 1$	1110011	Зсув каретки вправо і перехід до команди 1
1?3;2	11100110	Мітки немає, отже перехід до команди 3
Далі	вважаємо, що	о справа нескінченно багато порожніх комірок
$3 \rightarrow 4$	11100110	Зсув каретки вправо, перехід до команди 4
4 ? 6; 5	111001100	Мітки немає, отже перехід до команди 6
$6 \rightarrow 7$	111001100	Зсув каретки вправо, перехід до команди 7
7?8;9	1110011000	Мітки немає, отже перехід до команди 8
8!	1110011000	Завершення програми

Завдання 3. Є 6 міст. Необхідно розвезти товар у кожне місто таким чином, що побувати у кожному місті лише один раз. Вартість перевезення із одного міста в інше відома і задана таблицею. Знайти найменшу ціну, за яку можна здійснити таке

перевезення.

Місто	1	2	3	4	5	6
1	∞	8	3	5	7	4
2	3	∞	7	8	9	4
3	4	9	∞	6	8	9
4	9	5	8	∞	4	10
5	2	1	15	6	∞	3
6	10	2	5	4	9	∞

Розв'язання 3. Складемо таблицю відстаней, визначивши мінімальні значення в кожному рядку.

Місто	1	2	3	4	5	6	d_i
1	∞	8	3	5	7	4	3
2	3	∞	7	8	9	4	3
3	4	9	∞	6	8	9	4
4	9	5	8	∞	4	10	4
5	2	1	15	6	∞	3	1
6	10	2	5	4	9	∞	2

Виконуємо редукцію рядків, віднімаючи від кожного елемента рядку значення d_i .

Місто	1	2	3	4	5	6	d_i
1	∞	5	0	2	4	1	3
2	0	∞	4	5	6	1	3
3	0	5	∞	2	4	5	4
4	5	1	4	∞	0	6	4
5	1	0	14	5	∞	2	1
6	8	0	3	2	7	∞	2

Визначаємо мінімальні значення в кожному стовпчику.

Місто	1	2	3	4	5	6
1	∞	5	0	2	4	1
2	0	∞	4	5	6	1
3	0	5	∞	2	4	5
4	5	1	4	∞	0	6
5	1	0	14	5	∞	2

Місто	1	2	3	4	5	6
6	8	0	3	2	7	∞
d_{j}	0	0	0	2	0	1

Виконуємо редукцію стовпчиків.

Місто	1	2	3	4	5	6
1	∞	5	0	0	4	0
2	0	∞	4	3	6	0
3	0	5	∞	0	4	4
4	5	1	4	∞	0	5
5	1	0	14	3	∞	1
6	8	0	3	0	7	∞
d_{j}	0	0	0	2	0	1

Знайдемо оцінки для комірок, що містять значення 0.

Місто	1	2	3	4	5	6
1	∞	5	0^3	0^0	4	0^0
2	0_0	∞	4	3	6	0_0
3	0_0	5	∞	0_0	4	4
4	5	1	4	∞	0^5	5
5	1	0^1	14	3	∞	1
6	8	0_0	3	0_0	7	∞

Знайшовши частину найкоротшого шляху: $4 \to 5 = 5$, виконуємо редукцію матриці та знаходимо мінімальні значення у рядках.

Місто	1	2	3	4	6	d_i
1	∞	5	0	0	0	0
2	0	∞	4	3	0	0
3	0	5	∞	0	4	0
5	1	0	14	∞	1	0
6	8	0	3	0	∞	0

Оскільки всі мінімальні елементи дорівнюють 0, редукція не внесе жодних змін. Також видно, що мінімальні елементи у рядках також дорівнюють 0, тому одразу знаходимо оцінки і шукаємо комірку з максимальною оцінкою.

Місто	1	2	3	4	6
1	∞	5	0^3	0^0	00
2	0_0	∞	4	3	0_0
3	0_0	5	∞	0_0	4
5	1	0^1	14	∞	1
6	8	0_0	3	0_0	∞

Отримали ділянку оптимального шляху: $1 \to 3 = 3$. Виконуємо редукцію і виключаємо зворотний шлях, встановлюючи значення ∞ у відповідній комірці.

Місто	1	2	4	6
2	0	∞	3	0
3	∞	5	0	4
5	1	0	∞	1
6	8	0	0	∞

Мінімальні значення у рядках і стовпчиках — 0, тому переходимо до пошуку максимальних оцінок.

Місто	1	2	4	6
2	0^1	∞	3	0^1
3	∞	5	0^4	4
5	1	0^1	∞	1
6	8	0_0	0^0	∞

Отримали ділянку шляху $3 \to 4 = 6$. Виконуємо редукцію.

Місто	1	2	6
2	0	∞	0
5	1	0	1
6	8	0	∞

Редукція стовпчиків і рядків знов не внесе змін, тому переходимо до оцінок.

1	2	6
0^1	∞	0^1
1	0^1	1
8	08	∞
	1	$\begin{array}{ccc} 0^1 & \infty \\ 1 & 0^1 \end{array}$

Отримали відрізок $6 \rightarrow 2 = 2$. Виконуємо редукцію та виключаємо зворотній шлях.

Місто	1	6
2	0	∞
5	1	1

Бачимо, що у рядку 5 мінімальний елемент — 1. Проведемо редукцію рядків і перейдемо до оцінок.

Місто	1	6
2	0^{∞}	∞
5	0	0_{∞}

Після редукції отримаємо дві останні ділянки $5 \to 6 = 3, 2 \to 1 = 3$. Таким чином маємо повний шлях: $1 \to 3 \to 4 \to 5 \to 6 \to 1 = 21$.

ЗАВДАННЯ 4. Дано систему чотирьох лінійних рівнянь з чотирма невідомими, необхідно знайти її розв'язки методом Гауса. Обчислити визначник та знайти обернену матрицю.

$$\begin{cases} 2x_1 - x_2 - x_3 + x_4 = 4 \\ 2x_1 + 3x_2 - x_3 + 2x_4 = 1 \\ 2x_1 + 5x_2 - 3x_3 + 4x_4 = 3 \\ x_1 - x_2 - 2x_3 + 2x_4 = 4 \end{cases}$$

РОЗВ'ЯЗАННЯ 4. *Розв'язання системи лінійних алгебраїчних рівнянь*. Для розв'язання СЛАР, необхідно звести її до одиничної матриці. Для представимо систему у вигляді матриці та будемо виконувати перетворення рядків:

$$\begin{pmatrix}
2 & -1 & -1 & 1 & | & 4 \\
2 & 3 & -1 & 2 & | & 1 \\
2 & 5 & -3 & 4 & | & 3 \\
1 & -1 & -2 & 2 & | & 4
\end{pmatrix}$$

Щоб отримати $a_{11} = 1$, розділимо перший рядок на 2.

$$\begin{pmatrix} 1 & -0.5 & -0.5 & 0.5 & 2 \\ 2 & 3 & -1 & 2 & 1 \\ 2 & 5 & -3 & 4 & 3 \\ 1 & -1 & -2 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -0.5 & -0.5 & 0.5 & 2 \\ 0 & 4 & 0 & 1 & -3 \\ 0 & 6 & -2 & 3 & -1 \\ 0 & -0.5 & -1.5 & 1.5 & 2 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & -0.5 & -0.5 & 0.5 & 2 \\ 0 & 1 & 0 & 0.25 & -0.75 \\ 0 & 6 & -2 & 3 & -1 \\ 0 & -0.5 & -1.5 & 1.5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -0.5 & 0.625 & 1.625 \\ 0 & 1 & 0 & 0.25 & -0.75 \\ 0 & 0 & -1.5 & 1.625 & 1.625 \\ 0 & 1 & 0 & 0.25 & -0.75 \\ 0 & 0 & 1 & -0.75 & -1.75 \\ 0 & 0 & -1.5 & 1.625 & 1.625 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0.25 & 0.75 \\ 0 & 1 & 0 & 0.25 & -0.75 \\ 0 & 0 & 1 & -0.75 & -1.75 \\ 0 & 0 & 0 & 0.5 & -1.75 \\ 0 & 0 & 0 & 0.5 & -1.75 \\ 0 & 0 & 0 & 0.5 & -1.75 \\ 0 & 0 & 0 & 0.5 & -1.75 \\ 0 & 0 & 0 & 0.25 & -0.75 \\ 0 & 0 & 1 & 0 & 0.25 \\ 0 & 0 & 1 & 0 & 0.25 \\ 0 & 0 & 1 & 0 & 0.25 \\ 0 & 0 & 1 & 0 & -0.25 \\ 0 & 0 & 1 & 0 & -0.25 \\ 0 & 0 & 1 & 0 & -3.75 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

3 отриманої матриці очевидно: $x_1 = 1,25, x_2 = -0,25, x_3 = -3,25, x_4 = -2.$ Обчислення визначника.

$$\begin{vmatrix} 2 & -1 & -1 & 1 \\ 2 & 3 & -1 & 2 \\ 2 & 5 & -3 & 4 \\ 1 & -1 & -2 & 2 \end{vmatrix} = \begin{vmatrix} 2 & -1 & -1 & 1 \\ 0 & 4 & 0 & 1 \\ 0 & 6 & -2 & 3 \\ 0 & -0,5 & -1,5 & 1,5 \end{vmatrix} = \begin{vmatrix} 2 & -1 & -1 & 1 \\ 0 & 4 & 0 & 1 \\ 0 & 0 & -2 & 1,5 \\ 0 & 0 & 0 & 0,5 \end{vmatrix} =$$

$$= \begin{vmatrix} 2 & -1 & -1 & 1 \\ 0 & 4 & 0 & 1 \\ 0 & 0 & -2 & 1,5 \\ 0 & 0 & 0 & 0,5 \end{vmatrix} = 2 \cdot 4 \cdot (-2) \cdot 0,5 = -8.$$

Обчислення оберненої матриці. Для обчислення оберненої матриці запишемо задану систему у матричному вигляді, записавши допоміжну одиничну матрицю:

$$= \begin{pmatrix} 1 & 0 & -0.5 & 0.625 & 0.375 & 0.125 & 0 & 0 \\ 0 & 1 & 0 & 0.25 & -0.25 & 0.25 & 0 & 0 \\ 0 & 0 & -2 & 1.5 & 0.5 & -1.5 & 1 & 0 \\ 0 & 0 & -1.5 & 1.625 & -0.625 & 0.125 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & -0.5 & 0.625 & 0.375 & 0.125 & 0 & 0 \\ 0 & 1 & 0 & 0.25 & -0.25 & 0.25 & 0 & 0 \\ 0 & 0 & 1 & -0.75 & -0.25 & 0.75 & -0.5 & 0 \\ 0 & 0 & -1.5 & 1.625 & -0.625 & 0.125 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0.25 & 0.25 & 0.75 & -0.5 & 0 \\ 0 & 1 & 0 & 0.25 & -0.25 & 0.25 & 0 & 0 \\ 0 & 0 & 1 & -0.75 & -0.25 & 0.25 & 0 & 0 \\ 0 & 0 & 0 & 0.5 & -1 & 1.25 & -0.75 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0.25 & 0.25 & 0.5 & -0.25 & 0 \\ 0 & 1 & 0 & 0.25 & -0.25 & 0.75 & -0.5 & 0 \\ 0 & 0 & 1 & -0.75 & -0.25 & 0.25 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2.5 & 0.75 & -0.5 & 0 \\ 0 & 0 & 0 & 1 & -2.5 & -0.375 & 0.375 & -0.5 \\ 0 & 0 & 1 & 0 & 0.25 & -0.375 & 0.375 & -0.5 \\ 0 & 0 & 1 & 0 & 0.25 & -0.375 & 0.375 & -0.5 \\ 0 & 0 & 1 & 0 & 0.25 & -0.375 & 0.375 & -0.5 \\ 0 & 0 & 1 & 0 & 0.25 & -0.375 & 0.375 & -0.5 \\ 0 & 0 & 1 & 0 & 0.25 & -0.375 & 0.375 & -0.5 \\ 0 & 0 & 0 & 1 & -2.5 & -2.5 & -1.5 & 2 \end{pmatrix}.$$

Бачимо, що зліва утворилась одинична матриця, тобто ми знайшли шукану обернену матрицю A^{-1} .

$$A^{-1} = \begin{pmatrix} 0.75 & -0.125 & 0.125 & -0.5 \\ 0.25 & -0.375 & 0.375 & -0.5 \\ -1.75 & 2.625 & -1.625 & 1.5 \\ -2 & 2.5 & -1.5 & 2 \end{pmatrix}.$$

Завдання 5. Необхідно здійснити k-ту ітерацію для знаходження розв'язку рівняння $2x^2 + 5x - 1 = 0$ методом дотичних на проміжку [-2, 10], якщо $x^{(k)} = 1$.

Розв'язання 5. Процес пошуку розв'язку можна поділити на такі кроки:

- 1. Пошук відрізків, що містять єдиний корінь.
- 2. Власне ітерація пошук більш точного значення кореня.

Нехай є точки $A = F(x_0), B = F(x_1),$ тоді:

$$\frac{y - f(x_1)}{f(x_1) - f(x_0)} = \frac{x - x_1}{(x_1 - x_0)}.$$

Точка перетину прямої з віссю OX:

$$x = x_1 - \frac{x_1 - x_0}{f(x_1) - f(x_0)} \cdot f(x_1).$$

Уточнюємо розв'язок: F(X(k)) = 1, X(k) - X(k-1) — приріст X(k) в результаті ітерації попереднім значенням X(k).

Складаємо таблицю для першої ітерації:

$$\begin{array}{c|cc} X & F(x) \\ \hline X_2 & -1,85 & 3,38 \\ X_3 & -1 & 3,72 \\ \hline \end{array}$$

Отже
$$X_2 = x_1 - x(x_1 - 1) = 11,85$$
.

Завдання 6. Нехай потрібно розв'язати систему нелінійних рівнянь методом простих ітерацій до четвертого наближення. Знайти область визначення для невідомих, якщо задано: $x_1^{(0)} = 1,5, x_2^{(0)} = 0, x_3^{(0)} = 2.$

$$\begin{cases} x_1^2 - \frac{x_2}{3} = 2, \\ x_2 + 5x = -1, \\ x_3 - x_1^3 + 3x_2^2 = 2. \end{cases}$$

Розв'язання 6. Спочатку виразимо кожну змінну через іншу таким чином:

$$x_1 = \sqrt{\frac{x_2}{3} + 2},$$

$$x_2 = 5x_1 - 1,$$

$$x_3 = x_1^3 - 3x_2^2 + 2.$$

З отриманих виразів очевидна область визначення D(y) кожної змінної: $x_1\geqslant 1$, $x_2,x_3\in\mathbb{R}.$

Підставляємо у праві частини рівнянь початкові умови і знаходимо значення невідомих на першій ітерації:

$$x_1 = \sqrt{0+2} = 1,4742,$$

 $x_2 = 5 \cdot 1,5 - 1 = 6,5,$
 $x_3 = 1,5^3 - 0 + 2 = 5,375.$

Аналогічно для подальших ітерацій, для другої ітерації:

$$x_1 = \sqrt{4,83} = 2,2,$$

 $x_2 = 5 \cdot 1,47 - 1 = 6,35,$
 $x_3 = 1,47^3 - 3 \cdot 8,5^2 + 2 = -211,58.$

Третя ітерація:

$$x_1 = \sqrt{4,12} = 2,03,$$

 $x_2 = 5 \cdot 2,2 - 1 = 10,$
 $x_3 = 2,2^3 - 3 \cdot 6,35^2 + 2 = -108,312.$

Четверта ітерація:

$$x_1 = \sqrt{5,33} = 2,3,$$

 $x_2 = 5 \cdot 2,03 - 1 = 9,2,$
 $x_3 = 2,03^3 - 3 \cdot 10^2 + 2 = -293,9.$

ЗАВДАННЯ 7. Нехай дано дослідні дані попиту та пропозиції, а також ціну на певну продукцію. Необхідно оцінити похибку розв'язку методом найменших квадратів, якщо зроблено припущення, що залежність попиту та ціни визначається за формулою $S = 3c^2 + 1$, а пропозиції від ціни P = 4c + 5.

	i = 1	<i>i</i> = 2	<i>i</i> = 3	i = 4	<i>i</i> = 5	<i>i</i> = 6
c_i	2	3	7	2	5	3
P_{i}	3	3	6	8	10	2
c_i	3	6	4	2	9	4

Розв'язання 7. Запишемо рівняння трендів для функцій P(c) та S(c):

$$\begin{cases} an + b \sum c = \sum P, \\ a \sum c + b \sum c^2 = \sum P \cdot c, \end{cases}$$
 (1)

де n — кількість пар P — c, a і b — коефіцієнти лінійного рівняння:

$$P = ac + b. (2)$$

Складаємо таблицю.

	i = 1	i = 2	<i>i</i> = 3	i = 4	<i>i</i> = 5	<i>i</i> = 6	Сума
c	2	3	7	2	5	3	22
P	3	3	6	8	10	2	32
c^2	4	9	49	4	25	9	100
P^2	9	9	36	64	100	4	222
$P \cdot c$	6	9	42	16	50	6	129

Підставляємо дані таблиці в систему (1):

$$\begin{cases} 6a + 22b = 32 \\ 22a + 100b = 129. \end{cases}$$

Розв'язавши отриману СЛАР отримаємо: a = 3,121, b = 0,603. Підставимо отримані значення у лінійне рівняння (2): P = 0,603c + 3,121.

Обчислимо похибку початкового припущення P = 4c + 5:

$$\Delta a = 4 - 0,603 = 3,397,$$

 $\Delta b = 5 - 3.121 = 1.879.$

Оскільки функція $S = 3c^2 + 1$ квадратична, її СЛАР має такий вигляд:

$$\begin{cases} an + b \sum t + c \sum t^2 = \sum S, \\ a \sum t + b \sum t^2 + c \sum t^3 = \sum S \cdot t \\ a \sum t^2 + b \sum t^3 + c \sum t^4 = \sum S \cdot t^2, \end{cases}$$
(3)

де a, b, c — коефіцієнти квадратного рівняння, t — ціна, n — кількість пар S — t. Складаємо таблицю для функції S(c).

	i = 1	i = 2	<i>i</i> = 3	i = 4	<i>i</i> = 5	<i>i</i> = 6	Сума
t	2	3	7	2	5	3	22
S	3	3	4	2	9	4	28
t^2	4	9	49	4	25	9	100
t^3	8	27	343	8	125	27	538
t^4	16	81	2401	16	625	81	3220
S^2	9	36	16	4	81	16	162
$S \cdot t$	6	18	28	4	45	12	113
$S \cdot t^2$	12	54	196	8	225	36	531

За даними таблиці складаємо систему:

$$\begin{cases} 6a + 22b + 100c = 28 \\ 22a + 100b + 538c = 113 \\ 100a + 538b + 3220c = 531. \end{cases}$$

Розв'язавши її, отримаємо: a = -9,624, b = 7,439, c = -0,779. Підставляємо у рівняння:

$$S = -0.779t^2 + 7.439t - 9.624.$$

Визначаємо похибку початкового припущення:

$$\Delta a = -0.779 - 3 = 3.779,$$

 $\Delta b = 7.439 - 1 = 7.439,$
 $\Delta c = 9.624 + 1 = 8.624.$

Завдання 8. Знайти значення функції в точці x=2 за заданою таблицею, використовуючи формулу Лагранжа.

	i = 0	i = 1	<i>i</i> = 2
x_i	1	3	4
$y_i(x_i)$	5	3	2

Розв'язання 8. Будуємо поліном Лагранжа за заданою таблицею:

$$L(x) = y_0 \cdot \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + y_1 \cdot \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \cdot \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_0)}.$$

Підставляємо значення з таблиці:

$$L(x) = 5 \cdot \frac{(x-3)(x-4)}{(1-3)(1-4)} + 3 \cdot \frac{(x-1)(x-4)}{(3-1)(3-4)} + 2 \cdot \frac{(x-1)(x-3)}{(4-1)(4-1)}$$

$$= 5 \cdot \frac{x^2 - 7x + 12}{6} + 3 \cdot \frac{x^2 - 5x + 4}{-2} + 2 \cdot \frac{x^2 - 4x + 3}{9}$$

$$= \frac{15 \cdot (x^2 - 7x + 12) - 27 \cdot (x^2 - 5x + 4) + 4 \cdot (x^2 - 4x + 3)}{18}$$

$$= \frac{15x^2 - 105x + 180 - 27x^2 + 135x - 108 + 4x^2 - 16x + 12}{18}$$

$$= \frac{-8x^2 + 14x + 84}{18}.$$

Знаходимо значення функції в точці x=2:

$$L(2) = \frac{-8 \cdot 4 + 14 \cdot 2 + 84}{18} = 4,44.$$

ЗАВДАННЯ 9. Побудувати інтерполяційний поліном Ньютона за заданою таблицею.

	i = 0	i = 1	i = 2
$\overline{x_i}$	1	3	4
$y_i(x_i)$	5	3	2

Розв'язання 9. Складемо систему розділених різниць:

$$f_{10} = \frac{y_1 - y_0}{x_1 - x_0} = -1,$$

$$f_{11} = \frac{y_2 - y_1}{x_2 - x_1} = -1,$$

$$f_{20} = \frac{f_{11} - f_{10}}{x_2 - x_0} = 0.$$

Запишемо формулу інтерполяційного поліному Ньютона і підставимо туди отримані значення:

$$P(x) = y_0 + f_{10}(x - x_0) + f_{20}(x - x_0)(x - x_1)$$

= 5 - 1 \cdot (x - 1) + 0 \cdot (x - x_0)(x - x_1) = 6 - x.