BSc(Hons) Multimedia Computing

PE424001 Algorithm and Data Structure

Date	Topic
22-Feb-2021	Introduction & programming fundamental
26-Feb-2021	Data Structure: Stacks & Queues
1-Mar-2021	Data Structure: Lists & Graphs
5-Mar-2021	Data Structure: Trees
8- Mar -2021	Algorithm: Searching & Sorting
12-Mar-2021	Algorithm: Recursion
15-Mar-2021	Algorithm: Greedy algorithm
19-Mar-2021	Time and space complexity
22-Mar-2021	Asymptotic notation
26-Mar-2021	Analysis of algorithms
31-Mar-2021 (Exam)	2 hours Examination

Assignment 1 Deadline: 15 Mar 2021

Assignment 2 Deadline: 31 Mar 2021

Learning Contents and Indicative Contact Hours:

Learning Contents		Indicative Contact Hours	
1.	Data Structures - Lists - Trees - Stacks - Queues - Self-balancing trees - Graphs	12 hours	
2.	Algorithms - Searching and sorting - Recursion (Divide and Conquer strategies) - Greedy algorithm	9 hours	
3.	 Complexity and Efficiency Time and space complexity Asymptotic notation: Big-O, Big-Ω and Big-Θ Analysis of algorithms The Best, Average and Worst Cases 	9 hours	

Mapping of Learning Contents with Intended Learning Outcomes:

Learning Contents	Intended Learning Outcomes

		1	2	3
1	Data Structures		√	
2	Algorithms	√	√	√
3	Complexity and Efficiency	✓		√

Learning and Teaching Strategies:

This module is delivered through a mixture of lectures and labs. Theoretical concepts will be illustrated with concrete examples during lectures. Labs are integrated throughout the module to reinforce students' learning in the lectures. The lab exercises associated with this module will require students to demonstrate an ability to apply methods and techniques as well as the ability to understand concepts. Students are also encouraged to take part in self-learning and continuous learning to keep themselves up-to-date of the new technologies and trends in the field of information technology.

Assessment Scheme:

Continuous Assessment (CA)	50%
Assignments	
End-of-Module Assessment (EA)	50%
One Final Examination	
Total	100%

Pass Requirement:

40% of Total Marks

Requirements for Supporting Tools:

In order to perform the lab exercises, resources such as Java SE SDK, NetBeans, Eclipse, Visual C++ Express and related software of the up-to-date version are required.

Essential Reading:

1. Cormen, T., Leiserson, C., Rivest, R. and Stein, C. (2009), Introduction to Algorithms, MIT press

Recommended Reading:

Java Stream:

- 1. Collins, W. (2011). Data Structures and the Java Collections Framework (2nd ed), John Wiley & Sons.
- 2. Horstman, C. (2013). Big Java (5th ed), Wiley.

C++ Stream:

- 3. Mark A. (2013). Data Structures & Algorithm Analysis in C++, Pearson.
- 4. Main, M. and Savitch, W (2010). Data Structures and Other Objects using C++, Addison-Wesley.

C Stream:

- 5. Mark A. Weiss(1996). Data Structures and Algorithm Analysis in C, Addison-Wesley.
- 6. Brian W. Kernighan, Dennis M. Ritchie (1988) .The C Programming Language, 2nd Edition, Prentice Hall.