UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Instituto de Geociências e Ciências Exatas - IGCE Curso de Bacharelado em Ciências da Computação

MAICON DALL'AGNOL

TRABALHO DE REGRESSÃO

Professora: Dra. Adriane Beatriz de Souza Serapião

Rio Claro - SP

2019

1 Introdução

Este trabalho consiste em aplicar o conhecimento em regressão (predição) adquirido na disciplina Tópicos: Aprendizado de Máquina, tendo assim como objetivo:

- Escolher dois conjuntos de dados para trabalhar o problema de regressão. Separe cada *dataset* em conjunto de treinamento e conjunto de teste. Explique o seu critério de separação e o método utilizado.
- Você deverá implementar soluções para cada dataset usando:
 - regressão linear (ou regressão múltipla)
 - regressão polinomial
 - SVR (kernels linear, sigmoide, RBF e polinomial)
 - rede neural (MLP ou RBF).
- Descrever os parâmetros/arquiteturas de cada modelo.
- Compare os resultados (para treinamento e teste) com as medidas de desempenho SEQ, EQM, REQM, EAM e r^2 , e verifique qual a melhor opção dentre os métodos implementados que melhor se ajusta a seus dados.
- Você deverá fazer a visualização dos dados originais com os dados ajustados em cada experimento, tanto para o conjunto de treinamento quanto para o de teste. Os gráficos devem conter títulos nos eixos e legenda. Comente os resultados encontrados na visualização.

2 Desenvolvimento

Para o desenvolvimento das atividades inicialmente foram escolhidos duas bases bases de dados. A primeira base a ser utilizada corresponde a dados de uma central elétrica de ciclo combinado ao longo de 6 anos tendo informações como temperatura, pressão ambiente, umidade, vácuo de exaustão e saída de energia elétrica horária líquida, sendo este ultimo o escolhido para ser predito; A segunda base é composta do histórico de tempo de 2006 a 2016 em Szeged, Hungria, contendo hora, temperatura, umidade, entre outros atributos, sendo a temperatura escolhida como atributo a ser predito.

2.1 Pré-processamento e Visualização

Para ambos *datasets* utilizou-se de um biblioteca do Python chamada Pandas Profiling que descreve e faz uma pré análise dos *datasets*, como linhas duplicadas, dados faltantes, grande variância entre os dados.

A partir desta análise notou-se que no dataset do tempo há duas variáveis com alta correlação, portanto retirou-se uma delas. Também na segunda base, há diversos atributos categóricos que foram removidos a fim de agilizar o treinamento dos algoritmos (também diminuiu-se o dataset de mais 94000 para 10000), visto que o tempo de treinamento dos algoritmos é longo.

Em ambas visualizações dos datasets é possivel notar uma certa linearidade entre os atributos PE e AT, para o primeiro dataset, e Humidity e Temperature, no segundo, deste modo, escolheu-se esses atributos para serem usados na visualização dos itens preditos e reais.

Para aplicação dos algoritmos de regressão os dados foram escalonados utilizando o StandardScaler.

Para separação de treino e teste utilizou-se uma divisão de 20% para teste e 80% para treino, de forma aleatória.

2.2 Regressão

Na aplicação dos algoritmos de regressão foram utilizados os algoritmos de regressão linear, regressão polinomial, SVR, utilizando os kernels linear, sigmoide, RBF e polinomial, rede neural MLP. Alguns algoritmos tiveram seus parâmetros default alterados para outros valores, os demais permanecem inalterados.

2.3 Avaliação

Os resultados foram medidos para os dados de treino e de teste de ambas bases. Para a primeira base a Tabela 1 corresponde aos resultados da base de teste e a Tabela 2, aos dados de treino.

Algoritmo	EQM	R^2	REQM	SEQ
Regressão Linear - Teste	0,068	0,932	0,261	130,01
SVR - RBF - Teste	0,054	0,946	0,231	102,41
SVR - Linear - Teste	0,068	0,932	0,261	130,454
SVR - Sigmoide - Teste	298,19	-0,027	17,268	570735,341
SVR - Polinomial - Teste	0,212	0,787	0,461	406,592
MLP - Teste	0,053	0,946	0,231	102,359

Tabela 1 – Avaliação dos dados de teste da central elétrica.

Algoritmo	EQM	R^2	REQM	SEQ
Regressão Linear - Treino	0,072	0,928	0,269	552,272
SVR - RBF - Treino	0,054	0,946	0,233	415,487
SVR - Linear - Treino	0,073	0,927	0,269	555,226
SVR - Sigmoide - Treino	299,318	-0,027	17,301	2290976,223
SVR - Polinomial - Treino	0,219	0,781	0,468	1675,504
MLP - Treino	0,054	0,946	0,233	416,689

Tabela 2 – Avaliação dos dados de treino da central elétrica.

Comparando as medidas para todos os algoritmos aplicados ao dataset da central elétrica é possível observar que todos, exceto o SVR - Sigmoide, apresentam bons resultados em ambas bases, ficando bem próximos aos valores reais, isto é demonstrado pelo baixo valor de EQM e alto R^2 , por exemplo.

Algoritmo	EQM	R^2	REQM	SEQ
Regressão Linear - Teste	0,593	0,406	0,77	1185,398
SVR - RBF - Teste	0,6	0,399	0,774	1199,215
SVR - Linear - Teste	0,601	0,397	0,775	1202,513
SVR - Sigmoide - Teste	51226,694	-51370,514	226,333	102453388,722
SVR - Polinomial - Teste	0,698	0,3	0,835	1395,272
MLP - Teste	0,583	0,415	0,764	1166,166

Tabela 3 – Avaliação dos dados de teste do tempo.

Avaliando os resultados obtidos para o dataset do tempo, presentes nas Tabelas 3 e 4, de teste e treino, respectivamente, é possivel concluir que o mesmo não ocorre aqui, apresentando dados mais esparsos, tendo todas as medidas mais elevados, contudo ainda sim apresentam baixos valores de EQM e médio \mathbb{R}^2 .

Algoritmo	EQM	R^2	REQM	SEQ
Regressão Linear - Treino	0,585	0,416	0,765	4677,922
SVR - RBF - Treino	0,577	0,423	0,76	4618,342
SVR - Linear - Treino	0,592	0,408	0,769	4736,851
SVR - Sigmoide - Treino	52816,201	-52785,446	229,818	422529610,722
SVR - Polinomial - Treino	0,755	0,245	0,869	6040,982
MLP - Treino	0,575	0,425	0,758	4599,792

Tabela 4 – Avaliação dos dados de treino do tempo.

Olhando para os resultado nas bases de teste e treino, para a primeira base de dados os algoritmos MLP e SVR - RBF apresentaram resultados bem próximos, com uma ligeira vantagem para o MLP. Na segunda base os algoritmos MLP e Regressão Linear tiveram também resultados muito próximos, novamente com uma pequena vantagem para o MLP. Portanto, em termos gerais para os dois *datasets* o MLP se saiu melhor.

Regressao1

May 29, 2019

1 0. Introdução

Trabalho:

Aluno: Maicon Dall'Agnol

R.A.: 151161868

Disciplina: Tópico em Aprendizado de Máquina

Objetivos:

- Escolha dois conjuntos de dados para trabalhar o problema de regressão. Separe cada dataset em conjunto de treinamento e conjunto de teste. Explique o seu critério de separação e o método utilizado.
- Você deverá implementar soluções para cada dataset usando:
- regressão linear (ou regressão múltipla)
- regressão polinomial
- - SVR (use os kernels linear, sigmoide, RBF e polinomial)
- - rede neural (MLP ou RBF).
- Descreva os parâmetros/arquiteturas de cada modelo.
- Compare os resultados (para treinamento e teste) com as medidas de desempenho SEQ, EQM, REQM, EAM e rš, e verifique qual a melhor opção dentre os métodos implementados que melhor se ajusta a seus dados.
- Você deverá fazer a visualização dos dados originais com os dados ajustados em cada experimento, tanto para o conjunto de treinamento quanto para o de teste. Os gráficos devem conter títulos nos eixos e legenda. Comente os resultados encontrados na visualização.

1.1 0.1 Dependências

Para realização da tarefa foram utilizados as seguintes bibliotecas:

```
In [1]: #Utils
    import pandas as pd
    import numpy as np
    import pandas_profiling
```

```
import math
#Preprocess
from sklearn.preprocessing import StandardScaler
# Split
from sklearn.model_selection import train_test_split
# Regressores
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.neural_network import MLPRegressor
#Metricas
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
#Visualização
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

2 1. Dados

O conjunto de dados contém 9568 pontos de dados coletados de uma Central Elétrica de Ciclo Combinado ao longo de 6 anos (2006-2011)

Fonte: https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

2.1 1.1 Informações sobre os dados:

Atributos:

- Temperatura (T) na faixa de 1,81 ř C e 37,11 ř C,
- Pressão ambiente (AP) na faixa de 992,89-1033,30 milibar,
- Umidade Relativa (UR) na faixa de 25,56% a 100,16 %
- Vácuo de exaustão (V) na faixa de 25,36-81,56 cm Hg
- Saída de energia elétrica horária líquida (EP) 420,26-495,76 MW

2.2 Importando Dataset

```
In [2]: data_raw = pd.read_excel('dados/Folds5x2_pp.xlsx')
In [3]: pandas_profiling.ProfileReport(data_raw)
Out[3]: <pandas_profiling.ProfileReport at 0x7f324cf2fd68>
```

2.3 Visualização

In [4]: sns.pairplot(data_raw)

Out[4]: <seaborn.axisgrid.PairGrid at 0x7f324a4f0ba8>

In [5]: plt.clf()

<Figure size 800x550 with 0 Axes>

In [6]: plt.subplots(figsize=(11, 9))

sns.heatmap(data_raw.corr(), annot=True)

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7f324cd1f898>

In [7]: data_raw.plot.box()

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7f324c950128>

2.4 Escalonando

```
In [8]: scaler = StandardScaler().fit(data_raw)
       data_scaled = scaler.transform(data_raw)
In [9]: data_scaled_df = pd.DataFrame(data_scaled, columns=['AT','V','AP','RH','PE'])
In [10]: data_scaled_df.head()
Out[10]:
                            V
                                                         PΕ
                 AT
                                     ΑP
                                               RH
        0 -0.629519 -0.987297
                              1.820488 -0.009519 0.521208
        1 0.741909 0.681045 1.141863 -0.974621 -0.585664
        2 -1.951297 -1.173018 -0.185078
                                        1.289840
                                                   2.003679
        3 0.162205 0.237203 -0.508393 0.228160 -0.462028
        4 -1.185069 -1.322539 -0.678470 1.596699 1.144666
In [11]: data_scaled_df.plot.box()
Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f324c8283c8>
```


2.5 Utilidades

2.6 Separando conjuntos de Treino e Teste

Para a separação utilizou-se do train_test_split que divide o conjunto em treino e teste aleatóriamente

```
x_test = test.drop(columns=['PE'])
y_test = test['PE']
```

2.7 Aplicando a Regressão

2.7.1 Regressão Linear

2.8 Avaliação para Teste

2.9 Avaliação para Treino

2.10 SVR

2.10.1 Kernel RBF

2.11 Avaliação para Teste

```
plt.title('Predito e Original',fontsize=15)
plt.legend(['Original', 'Predito'])
plt.show()
```


2.12 Avaliação para Treino

2.12.1 Kernel Linear

2.13 Avaliação para Teste

2.14 Avaliação para Treino

2.14.1 Kernel Sigmoide

2.15 Avaliação para Teste

2.16 Avaliação para Treino

2.16.1 Kernel Polinomial

2.17 Avaliação para Teste

2.18 Avaliação para Treino

2.19 Redes Neurais

2.19.1 Kernel Linear

2.20 Avaliação para Teste

```
In [49]: plt.scatter(x_test['AT'], y_test, color='black')
        plt.scatter(x_test['AT'], y_pred, color='yellow')
        plt.xlabel("AT")
        plt.ylabel("PE")
        plt.title('Predito e Original',fontsize=15)
        plt.legend(['Original', 'Predito'])
         plt.show()
```


2.21 Avaliação para Treino

```
In [50]: y_pred = mlp_reg.predict(x_train)
         mlp_metricas = metricas(y_train, y_pred, 'MLP - Treino')
         lista_metricas_treino.append(mlp_metricas)
In [51]: plt.scatter(x_train['AT'], y_train, color='black')
        plt.scatter(x_train['AT'], y_pred, color='yellow')
        plt.xlabel("AT")
        plt.ylabel("PE")
        plt.title('Predito e Original',fontsize=15)
         plt.legend(['Original', 'Predito'])
        plt.show()
```


3 Resultados

Out[90]:		Algoritmo	EQM	R2	\mathtt{REQM}	SEQ
(Regressão	Linear - Teste	0.067926	0.931975	0.260626	130.009759
-	SVR	- RBF - Teste	0.053505	0.946416	0.231313	102.409518
2	SVR -	Linear - Teste	0.068158	0.931742	0.261070	130.454018
3	SVR - Si	gmoide - Teste	298.189833	-0.027406	17.268174	570735.340650
4	SVR - Poli	nomial - Teste	0.212430	0.787258	0.460902	406.591798
į		MLP - Teste	0.053479	0.946442	0.231255	102.358966

In [91]: metricas_teste = round(metricas_teste, 3)

In [92]: metricas_teste

Out[92]:		Algoritmo	EQM	R2	REQM	SEQ
	0	Regressão Linear - Teste	0.068	0.932	0.261	130.010
	1	SVR - RBF - Teste	0.054	0.946	0.231	102.410
	2	SVR - Linear - Teste	0.068	0 932	0 261	130 454

```
3
             SVR - Sigmoide - Teste 298.190 -0.027 17.268 570735.341
        4 SVR - Polinomial - Teste
                                       0.212 0.787
                                                     0.461
                                                               406.592
                        MLP - Teste
                                       0.053 0.946
                                                      0.231
        5
                                                               102.359
In [93]: metricas_teste.to_excel('regressao1_metricas_teste.xlsx')
In [96]: metricas_treino = pd.DataFrame(lista_metricas_treino)
        metricas_treino
Out [96]:
                           Algoritmo
                                             EQM
                                                        R2
                                                                REQM
                                                                               SEQ
        O Regressão Linear - Treino
                                        0.072155 0.927856
                                                            0.268616 5.522719e+02
                  SVR - RBF - Treino
        1
                                        0.054284 0.945725
                                                            0.232988 4.154867e+02
               SVR - Linear - Treino
                                      0.072541 0.927470
                                                            0.269334 5.552260e+02
             SVR - Sigmoide - Treino 299.317510 -0.026797 17.300795 2.290976e+06
        3
        4 SVR - Polinomial - Treino
                                        0.218906 0.781128
                                                            0.467874 1.675504e+03
                        MLP - Treino
                                        0.054441 0.945568
                                                            0.233325 4.166893e+02
In [97]: metricas_treino = round(metricas_treino, 3)
In [98]: metricas_treino.to_excel('regressao1_metricas_treino.xlsx')
```

Regressao2

May 29, 2019

0. Introdução

Trabalho:

Aluno: Maicon Dall'Agnol

R.A.: 151161868

Disciplina: Tópico em Aprendizado de Máquina

Objetivos:

- Escolha dois conjuntos de dados para trabalhar o problema de regressão. Separe cada dataset em conjunto de treinamento e conjunto de teste. Explique o seu critério de separação e o método utilizado.
- Você deverá implementar soluções para cada dataset usando:
- regressão linear (ou regressão múltipla)
- regressão polinomial
- - SVR (use os kernels linear, sigmoide, RBF e polinomial)
- - rede neural (MLP ou RBF).
- Descreva os parâmetros/arquiteturas de cada modelo.
- Compare os resultados (para treinamento e teste) com as medidas de desempenho SEQ, EQM, REQM, EAM e rš, e verifique qual a melhor opção dentre os métodos implementados que melhor se ajusta a seus dados.
- Você deverá fazer a visualização dos dados originais com os dados ajustados em cada experimento, tanto para o conjunto de treinamento quanto para o de teste. Os gráficos devem conter títulos nos eixos e legenda. Comente os resultados encontrados na visualização.

1.1 0.1 Dependências

Para realização da tarefa foram utilizados as seguintes bibliotecas:

```
In [1]: #Utils
    import pandas as pd
    import numpy as np
    import pandas_profiling
```

```
import math
#Preprocess
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import LabelEncoder
# Split
from sklearn.model_selection import train_test_split
# Regressores
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVR
from sklearn.neural_network import MLPRegressor
#Metricas
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
#Visualização
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline
```

1. Dados

Histórico de tempo em Szeged, Hungria - de 2006 a 2016 Fonte: https://www.kaggle.com/budincsevity/szeged-weather

2.1 1.1 Informações sobre os dados:

Atributos:

- time
- summary
- precipType
- temperature
- apparentTemperature
- humidity
- windSpeed
- windBearing
- visibility
- loudCover
- pressure

2.2 Importando Dataset

```
In [2]: data = pd.read_csv('dados/weatherHistory.csv')
```

In [4]: pandas_profiling.ProfileReport(data)

Out[4]: <pandas_profiling.ProfileReport at 0x7fd9ec1eaf98>

In [5]: data_raw = data.copy()

In [6]: data_raw.drop(columns=['Formatted Date','Precip Type','Loud Cover','Apparent Temperatus

2.3 Visualização

In [7]: sns.pairplot(data_raw)

Out[7]: <seaborn.axisgrid.PairGrid at 0x7fd9bf671c88>

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9bf4c5860>

In [9]: data_raw.plot.box()

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9bc2ea390>

2.4 Escalonando

```
In [10]: scaler = StandardScaler().fit(data_raw)
         data_scaled = scaler.transform(data_raw)
In [11]: data_scaled_df = pd.DataFrame(data_scaled, columns=data_raw.columns)
In [12]: data_scaled_df.head()
Out[12]:
           Temperature (C)
                             Humidity Wind Speed (km/h)
         0
                   0.214510 0.681941
                                               -1.081307
         1
                  -0.468636 0.630496
                                                0.058355
         2
                   0.043288 -0.089742
                                                0.775576
         3
                   0.083917 -1.941780
                                                0.694337
                  -0.205129 0.784832
                                               -0.617086
In [13]: data_scaled_df.plot.box()
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd9bc1feb70>

2.5 Utilidades

2.6 Separando conjuntos de Treino e Teste

Para a separação utilizou-se do train_test_split que divide o conjunto em treino e teste aleatóriamente

```
x_test = test.drop(columns=['Temperature (C)'])
y_test = test['Temperature (C)']
```

2.7 Aplicando a Regressão

2.7.1 Regressão Linear

2.8 Avaliação para Teste

2.9 Avaliação para Treino

2.10 SVR

2.10.1 Kernel RBF

2.11 Avaliação para Teste

```
plt.title('Predito e Original',fontsize=15)
plt.legend(['Original', 'Predito'])
plt.show()
```


2.12 Avaliação para Treino

2.12.1 Kernel Linear

2.13 Avaliação para Teste

```
In [31]: y_pred = svr_reg.predict(x_test)
    metricas_svr = metricas(y_test, y_pred, 'SVR - Linear - Teste')
    lista_metricas_teste.append(metricas_svr)

In [32]: plt.scatter(x_test['Humidity'], y_test, color='black')
    plt.scatter(x_test['Humidity'], y_pred, color='yellow')
    plt.xlabel("Humidity")
    plt.ylabel("Temperature")
    plt.title('Predito e Original',fontsize=15)
    plt.legend(['Original', 'Predito'])
    plt.show()
```


2.14 Avaliação para Treino

2.14.1 Kernel Sigmoide

2.15 Avaliação para Teste

2.16 Avaliação para Treino

2.16.1 Kernel Polinomial

2.17 Avaliação para Teste

2.18 Avaliação para Treino

2.19 Redes Neurais

2.19.1 Kernel Linear

2.20 Avaliação para Teste

2.21 Avaliação para Treino

3 Resultados

Out[63]:	Algoritmo	EQM	R2	REQM	\
0	Regressão Linear - Teste	0.592699	0.405625	0.769870	
1	SVR - RBF - Teste	0.599608	0.398697	0.774343	
2	SVR - Linear - Teste	0.601256	0.397044	0.775407	
3	SVR - Sigmoide - Teste	51226.694361	-51370.514410	226.333149	
4	SVR - Polinomial - Teste	0.697636	0.300392	0.835246	
5	MLP - Teste	0.583083	0.415269	0.763599	

SEQ

0 1.185398e+03

1 1.199215e+03

2 1.202513e+03

3 1.024534e+08

4 1.395272e+03

5 1.166166e+03

```
In [65]: metricas_teste = round(metricas_teste, 3)
In [66]: metricas_teste
Out [66]:
                           Algoritmo
                                            EQM
                                                        R2
                                                               REQM
                                                                              SEQ
          Regressão Linear - Teste
                                          0.593
                                                     0.406
                                                              0.770 1.185398e+03
         0
                   SVR - RBF - Teste
                                          0.600
                                                     0.399
                                                              0.774 1.199215e+03
         1
                SVR - Linear - Teste
                                          0.601
                                                     0.397
                                                              0.775 1.202513e+03
         3
              SVR - Sigmoide - Teste 51226.694 -51370.514 226.333 1.024534e+08
         4 SVR - Polinomial - Teste
                                          0.698
                                                     0.300
                                                              0.835 1.395272e+03
                                          0.583
                                                              0.764 1.166166e+03
                         MLP - Teste
                                                     0.415
In [67]: metricas_teste.to_excel('regressao2_metricas_teste.xlsx')
In [68]: metricas_treino = pd.DataFrame(lista_metricas_treino)
         metricas_treino
Out [68]:
                            Algoritmo
                                                EQM
                                                               R2
                                                                         REQM \
          Regressão Linear - Treino
                                           0.584740
                                                         0.415589
                                                                     0.764683
         0
         1
                   SVR - RBF - Treino
                                           0.577293
                                                         0.423032
                                                                     0.759798
         2
                SVR - Linear - Treino
                                           0.592106
                                                         0.408227
                                                                     0.769484
         3
              SVR - Sigmoide - Treino 52816.201340 -52785.446344 229.817757
         4 SVR - Polinomial - Treino
                                           0.755123
                                                         0.245303
                                                                     0.868978
         5
                         MLP - Treino
                                           0.574974
                                                         0.425350
                                                                     0.758270
                     SEQ
         0 4.677922e+03
         1 4.618342e+03
         2 4.736851e+03
         3 4.225296e+08
         4 6.040982e+03
         5 4.599792e+03
In [69]: metricas_treino = round(metricas_treino, 3)
In [70]: metricas_treino.to_excel('regressao2_metricas_treino.xlsx')
```