

Correspondence Analysis

Natalia Levshina ©2017
Summer School of Linguistics, Litomyšl, August 2017

Outline

1. Correspondence Analysis: introduction

2. Simple Correspondence Analysis of verbs of speaking in COCA

3. Multiple Correspondence Analysis of Stuhl and Sessel in German

Introduction to CA

- CA is used to visualize and explore associations between the values of two and more categorical variables (usually represented as factors in R),
 - e.g. Do upper middle-class people prefer to play tennis and listen to opera?
 - Do languages with the Adj + N order also tend to have Num + N and Gen + N?
- Similar to MDS, CA allows to see structure in the data and identify which variables are associated and which of their values tend to co-occur.

The main idea behind CA

 CA is based on comparison of row profiles and column profiles, e.g.

	Birds	Music	Games	Total
M	20	30	50	100
F	10	70	20	100
Total	30	100	70	200

	Birds	Music	Games	Total
M	0.2	0.3	0.5	1
F	0.1	0.7	0.2	1

	Birds	Music	Games
M	0.67	0.3	0.71
F	0.33	0.7	0.29
Total	1	1	1

The main idea behind CA

- If two row or column profiles are similar, their labels will be closely located in a semantic map.
- If two row or column profiles are dissimilar, their labels will be located far from each other.

Strong association (all profiles are dissimilar)

	X	у	Z
Α	80	30	10
В	10	60	20
С	10	10	70

> chisq.test(example)

Pearson's Chi-squared test

data: example

X-squared = 191.67, df = 4, p-value < 2.2e-16

Lack of association (all profiles are similar)

	X	у	Z
Α	10	10	10
В	80	80	80
С	10	10	10

> chisq.test(example1)

Pearson's Chi-squared test

data: example1

X-squared = 0, df = 4, p-value = 1

Some profiles are similar

	X	у	Z
Α	10	10	70
В	45	50	20
С	45	40	10

Simple and multiple CA

- If there are two variables, which are crosstabulated, perform a simple CA on the table with counts.
- If there are more than two variables, perform a multiple CA on the data frame with variables as columns.

Outline

1. Correspondence Analysis: introduction

2. Simple Correspondence Analysis of verbs of speaking in COCA

3. Multiple Correspondence Analysis of Stuhl and Sessel in German

Verbs of communication

- announce
- assert
- babble
- blab
- chat
- chatter
- comment
- communicate
- converse
- declare
- discuss
- enunciate

- gab
- mumble
- murmur
- notify
- proclaim
- schmooze
- speak
- talk
- utter
- verbalize
- whisper
- yap

Contingency table with counts

> head(speak)

	Spoken	Fiction	Magazine	Newspaper	Academic
communicate	2327	1393	2664	1825	5147
chat	684	1672	1335	1155	354
declare	3449	2762	5335	5413	5167
utter	249	1336	595	397	484
whisper	465	13668	1445	779	273
assert	577	445	2259	1654	5784

Performing a simple CA

```
> library(ca)
> speak.ca <- ca(speak)
> plot(speak.ca) #the first two dimensions, by default
> plot(speak.ca, dim = 2:3) #dimensions 2 and 3
```

Dimensions 1 & 2

How to read a simple CA map

- If two row values are located close to each other, they have similar profiles.
 - Here, the rows are individual verbs. Their proximity means that their relative frequencies of occurrence in the subcorpora (registers) are similar.
- If two column values are close, this means that they have similar profiles, too.
 - Here, the columns are the subcorpora (registers). Their proximity means that they share similar proportions of the verbs.
- If the row and column labels are located in the same area regarding the origin, this means they co-occur frequently in the data. But the absolute distance should not be taken as a representation of association!

Dimensions 2 & 3

Creating an interactive 3D plot

Important: you'll need to install package rgl first!

```
> plot3d.ca(speak.ca)
```

• The plot is interactive. You can use your mouse or touchpad to rotate the axes and zoom in/out.

Interactive 3D plot

Quality of the 3D solution

 How much information do we lose if we take the three-dimensional solution?

> summary(speak.ca)

Principal inertias (eigenvalues):

```
dim
      value % cum%
                          scree plot
      0.190546
               59.1 59.1
                          *****
1
      0.099111 30.7
                          *****
      0.028158
                    98.6
                          * *
      0.004538
4
               1.4
                      3 dimensions explain 98.6%!
Total: 0.322352 100.0
```

Interpretation

- The spoken subcorpus is associated with the verb talk.
- The verbs of manner of saying (onomatopoeic) are associated with fiction, e.g. *murmur, whisper, chatter, babble*.
- Some Latinate verbs of argumentation and verbal expression (discuss, assert, enunciate, verbalize) are associated with the academic prose.
- Some neutral verbs of sharing information (*notify, announce, declare, comment*) are more associated with newspapers and magazines.

Outline

1. Correspondence Analysis: introduction

2. Simple Correspondence Analysis of verbs of speaking in COCA

3. Multiple Correspondence Analysis of Stuhl and Sessel in German

Chairs: data from online stores

> str(chairs)

```
'data.frame': 188 obs. of 19 variables:
 $ Shop : Factor w/ 3 levels "ikea.de", "Moebel-
Profi.de",..: 2 1 1 2 1 3 1 3 1 1 ...
 $ WordDE : Factor w/ 44 levels "3-in-1-Sessel",..:
2 17 38 41 23 13 25 15 40 40 ...
$ Category : Factor w/ 2 levels "Sessel", "Stuhl": 2
2 1 2 2 2 1 2 2 ...
$ Function : Factor w/ 5 levels "Eat", "NotSpec",..:
1 1 2 1 1 5 2 4 1 1 ...
$ Age : Factor w/ 2 levels "Adult", "Children":
1 2 1 1 2 1 1 1 1 ...
$ Back : Factor w/ 4 levels "Adjust","High",..:
3 4 4 2 2 2 4 2 4 4 ...
```

MCA in FactoMineR

```
> library(FactoMineR)
> chairs.ca <- MCA(chairs[, -c(1:3)], graph =
FALSE) #exclude the first three columns for the
moment
> plot(chairs.ca, cex = 0.7, col.var = "black",
col.ind = "grey")
```

MCA factor map

Interpretation of dimensions

```
$`Dim 1`
$`Dim 1`$quali
                         p.value
            R2
Unholst
            0.72940952 1.094774e-54
MaterialSeat0.74518860 3.215782e-48
Function
            0.69158437 1.158923e-45
            0.66568141 9.657154e-45
Soft
Swivel
            0.40875670 5.393205e-23
            0.38348403 \ 2.728416e-21
Roll
```

> dimdesc(chairs.ca)

MCA with supplementary points

```
> chairs.cal <- MCA(chairs[, -c(1:2)], quali.sup =
1, graph = FALSE)  #use lexical categories as
supplementary points
> plot(chairs.cal, invis = "ind", col.var =
"darkgrey", col.quali.sup = "black")  #make the
individual points invisible
```

MCA factor map

How good is the solution?

> chairs.ca\$eig

```
eigenvalue percentage of variance cumulative percentage of variance dim 1 0.3250725720 15.29753280 15.29753
```

dim 2 0.2576755177 12.12590671 27.42344

dim 3 0.1351901997 6.36189175 33.78533

...

Doesn't look too impressive. But these numbers should be taken with a grain of salt.

Adjusted MCA (Greenacre 2007)

Not bad, after all! Is the solution similar?

> plot(chairs.ca2)

References

- Greenacre, M. 2016. *Correspondence Analysis in Practice*. 3rd edn. Boca Raton, FL: CRC Press.
- Husson, F., Lê, S., & Pagès, J. 2010. Exploratory Multivariate Analysis by Example Using R. Boca Raton, FL: Chapman and Hall/CRC Press.