Definitionen der direkten Summe

Jendrik Stelzner

12. Mai 2016

Zusammenfassung

Proposition 1. Es sei V ein K-Vektorraum und $(V_i)_{i\in I}$ eine Familie von Untervektorräumen $V_i\subseteq V$, so dass $V=\sum_{i\in I}V_i$. Dann sind die folgenden Aussagen äquivalent:

- 1. Für jedes $v \in V$ ist die Darstellung $v = \sum_{i \in I} v_i$ mit $v_i \in V_i$ für alle $i \in I$ eindeutig.
- 2. Ist $0 = \sum_{i \in I} v_i$ mit $v_i \in V_i$ für alle $i \in I$, so ist bereits $v_i = 0$ für jedes $i \in I$.
- 3. Für jedes $j \in I$ ist $V_j \cap \sum_{i \neq j} V_i = 0$.
- 4. Ist W ein beliebiger K-Vektorraum und $(f_i)_{i\in I}$ eine Familie von linearen Abbildungen $f_i \colon V_i o W$, so gibt es eine eindeutige lineare Abbildung $f \colon V o K$ mit $f|_{V_i} = f_i$ für

Beweis. (3 \implies 2) Es sei $0 = \sum_{i \in I} v_i$ mit $v_i \in V_i$ für jedes $i \in I$. Für jedes $j \in I$ ist dann

$$V_j \ni v_j = \sum_{i \neq j} (-v_i) \in \sum_{i \neq j} V_i,$$

also $v_j \in V_j \cap \sum_{i \neq j} V_i = 0$. Somit ist $v_j = 0$ für jedes $j \in I$. (2 \Longrightarrow 1) Es seien $\sum_{i \in I} v_i = \sum_{i \in I} v_i'$ zwei entsprechende Darstellungen. Dann ist $\sum_{i \in I} (v_i - v_i')$ eine entsprechende Darstellung von 0. Nach Annahme ist $v_i - v_i' = 0$ für jedes $i \in I$, also $v_i = v_i'$ für jedes $i \in I$.

(1 \implies 4) Wir zeigen zunächst die Eindeutigkeit: Hierfür sei $f\colon V\to W$ eine lineare Abbildung mit $f|_{V_i}=f_i$ für jedes $i\in I$. Ist $v\in V$, so gibt es eine Darstellung $v=\sum_{i\in I}v_i$ mit $v_i \in V_i$ für jedes $i \in I$. Es ist dann

$$f(v) = f\left(\sum_{i \in I} v_i\right) = \sum_{i \in I} f(v_i) = \sum_{i \in I} f|_{V_i}(v_i) = \sum_{i \in I} f_i(v_i).$$

Also ist f durch die Familie $(f_i)_{i \in I}$ schon eindeutig bestimmt.

Nun zeigen wir die Existenz: Ist $v \in V$, so ist $v = \sum_{i \in I} v_i$ mit $v_i \in V_i$ für jedes $i \in I$. Wir setzen

$$f(v) := \sum_{i \in I} f_i(v_i).$$

Da $v_i=0$ für fast alle $i\in I$ ist auch $f_i(v_i)=0$ für fast alle $i\in I$, also die rechte Seite der obigen Gleichung wohldefiniert. Da die genutzte Darstellung $v=\sum_{i\in I}v_i$ nach Annahme eindeutig ist, erhalten wir eine wohldefinierte Funktion $f\colon V\to W$.

Die Abbildung f ist linear: Sind $v,v'\in V$ mit eindeutigen Darstellungen $v=\sum_{i\in I}v_i$ und $v'=\sum_{i\in I}v_i'$, so ist $v+v'=\sum_{i\in I}(v_i+v_i')$ die eindeutige Darstellung von v+v', und somit

$$f(v+v') = \sum_{i \in I} f_i(v_i + v_i') = \sum_{i \in I} (f_i(v_i) + f_i(v_i'))$$
$$= \left(\sum_{i \in I} f_i(v_i)\right) + \left(\sum_{i \in I} f_i(v_i')\right) = f(v) + f(v').$$

Also ist f additiv. Die Homogenität ergibt sich ähnlich: Ist $v \in V$ mit eindeutiger Darstellung $v = \sum_{i \in I} v_i$ und $\lambda \in K$, so ist $\lambda v = \sum_{i \in I} (\lambda v_i)$ die eindeutige Darstellung von λv , und deshalb

$$f(\lambda v) = \sum_{i \in I} f_i(\lambda v_i) = \sum_{i \in I} (\lambda f_i(v_i)) = \lambda \sum_{i \in I} f_i(v_i) = \lambda f(v).$$

Also ist f homogen.

(4 \Longrightarrow 3) Für fixiertes $j \in I$ betrachten wir die Familie $(f_i)_{i \in I}$ von linearen Abbildungen $f_i \colon V_i \to V$ mit

- $f_i = 0$ für alle $i \neq j$, und
- $f_j \colon V_j \to V$, $v \mapsto v$ ist die kanonische Inklusion.

Nach Annahme gibt es eine lineare Abbildung $f\colon V\to V$ mit $f|_{V_i}=f_i$ für jedes $i\in I$. Da $f_i=0$ für alle $i\neq j$ ist $f|_{V_i}=0$ für alle $i\neq j$, und somit auch $f|_{\sum_{j\neq i}V_i}=0$. Für alle $v\in V_j\cap\sum_{i\neq j}V_i$ ist deshalb

$$v = f_j(v) = f|_{V_j}(v) = f(v) = f|_{\sum_{i \neq j} V_i}(v) = 0.$$

Also ist
$$V_j \cap \sum_{i \neq j} V_i = 0$$
.

Definition 2. Es sei V ein K-Vektorraum und $(V_i)_{i\in I}$ eine Familie von Untervektorräumen $V_i \subseteq V$. Ist $V = \sum_{i \in I} V_i$ und eine (und damit alle) der Bedingungen von Proposition 1 erfüllt, so heißt V die (innere) direkte Summe der Untervektorräume V_i . Dies wird mit $V = \bigoplus_{i \in I} V_i$ notiert.

Bemerkung 3. Für eine Familie von K-Vektorräumen $(V_i)_{i\in I}$ (wobei die V_i nicht notwendigerweise Untervektorräume eines gemeinsamen Vektorraums V sind) gibt es auch den Begriff der $\ddot{a}u\beta$ eren direkten $Summe \bigoplus_{i\in I} V_i$. Mit diesem Begriff werden wir uns hier aber nicht beschäftigen.

Lemma 4. Es sei V ein K-Vektorraum und $(E_i)_{i\in I}$ eine Familie von Teilmengen $E_i\subseteq V$. Dann

$$\mathcal{L}\left(\bigcup_{i\in I} E_i\right) = \sum_{i\in I} \mathcal{L}(E_i).$$

Beweis. Für alle $j \in I$ ist

$$E_j \subseteq \mathcal{L}(E_j) \subseteq \sum_{i \in i} \mathcal{L}(E_i).$$

Deshalb ist auch $\bigcup_{j\in I} E_j \subseteq \sum_{i\in I} \mathcal{L}(E_i)$. Da $\sum_{i\in I} \mathcal{L}(E_i)$ ein Untervektorraum von V ist, ergibt sich daraus, dass

$$\mathcal{L}\left(\bigcup_{j\in I} E_j\right) \subseteq \sum_{i\in I} \mathcal{L}(E_i).$$

Andererseits ist $E_i \subseteq \bigcup_{j \in I} E_j$ für jedes $i \in I$, und somit auch $\mathcal{L}(E_i) \subseteq \mathcal{L}(\bigcup_{j \in I} E_j)$ für jedes $i \in I$. Da $\mathcal{L}(\bigcup_{j \in I} E_j)$ ein Untervektorraum von V ist, ergibt sich daraus, dass

$$\sum_{i\in I} \mathcal{L}(E_i) \subseteq \mathcal{L}\left(\bigcup_{j\in i} E_j\right).$$

Lemma 5. Es sei V ein K-Vektorraum und $(V_i)_{i\in I}$ eine Familie von Untervektorräumen $V_i\subseteq$ V. Für jedes $i \in I$ sei B_i eine Basis von V_i . Dann sind äquivalent:

1. $V = \bigoplus_{i \in I} V_i$

2. Die Basen B_i sind disjunkt (d.h. $B_i \cap B_j = \emptyset$ für alle $i, j \in I$ mit $i \neq j$), und $\bigcup_{i \in I} B_i$ ist eine Basis von V.

Beweis. Im Folgenden sei abkürzend $B\coloneqq\bigcup_{i\in I}B_i$. (1 \Longrightarrow 2) Für alle $i,j\in I$ mit $i\neq j$ ist $B_i\subseteq V_i$ und $B_j\subseteq V_j\subseteq\sum_{k\neq i}V_k$ und somit

$$B_i \cap B_j \subseteq V_i \cap \sum_{k \neq i} V_k = \{0\}.$$

Die Basen B_i und B_j könnten also nur dann nicht-disjunkt sein, wenn $B_i \cap B_j = \{0\}$, wenn also $0 \in B_i$ und $0 \in B_j$. Da B_i und B_j linear unabhängig sind, enthalten sie den Nullvektor aber nicht. Somit ist $B_i \cap B_j = \emptyset$.

Da $V = \bigoplus_{i \in I} V_i$ ist insbesondere $V = \sum_{i \in I} V_i$. Deshalb ist

$$\mathcal{L}(B) = \mathcal{L}\left(\bigcup_{i \in I} B_i\right) = \sum_{i \in I} \mathcal{L}(B_i) = \sum_{i \in I} V_i = V,$$

wobei wir für die zweite Gleichheit nutzen, dass B_i ein Erzeugendensystem von V_i ist. Das zeigt, dass B ein Erzeugendensystem von V ist.

Es sei nun $\sum_{b\in B}\lambda_b b=0$ für Koeffizienten $\lambda_b\in K$. Da die Vereinigung $B=\bigcup_{i\in I}B_i$ disjunkt ist, ergibt sich daraus

$$0 = \sum_{b \in B} \lambda_b b = \sum_{b \in \bigcup_{i \in I} B_i} \lambda_b b = \sum_{i \in I} \sum_{b \in B_i} \lambda_b b.$$

Dabei nutzen wir, dass die Summanden $\lambda_b b$ für fast alle $b \in B$ verschwinden, und somit das Aufteilen der Summe möglich ist. Setzen wir nun $v_i \coloneqq \sum_{b \in B_i} \lambda_b b$ für alle $i \in I$, so erhalten wir

$$0 = \sum_{i \in I} v_i \quad \text{mit } v_i \in V_i \text{ für alle } i \in I.$$

Da $V=\bigoplus_{i\in I}V_i$ folgt aus der obigen Gleichung, dass $v_i=0$ für alle $i\in I$. Es ist also $\sum_{b\in B_i}\lambda_b b=0$ für alle $i\in I$. Da B_i jeweils eine Basis von B ist, folgt daraus, dass $\lambda_b=0$ für alle $i\in I$ und $b\in B_i$. Dies bedeutet aber nichts anderes, als dass $\lambda_b=0$ für alle $b\in\bigcup_{i\in I}B_i=B$. Das zeigt, dass B linear unabhängig ist.