Sample Complexity for Regularized Optimal Transport

Valeria Ambrosio, Bjarne Bergh, Tobias Freidling and Lauritz Streck Supervised by Marcello Carioni and Carola-Bibiane Schönlieb

DPMMS and DAMPT, University of Cambridge

March 30, 2021

Optimal Transport

Figure: Discrete Optimal Transport

Figure: Continuous Optimal Transport

Optimal Transport

Definition

Let α and β be probability measures on the metric spaces $\mathcal X$ and $\mathcal Y$. The space of couplings is given by

$$\Pi(\alpha,\beta) := \{ \pi \in \mathcal{M}^1_+(\mathcal{X} \times \mathcal{Y}) \colon \pi(A \times \mathcal{Y}) = \alpha(A), \\ \pi(\mathcal{X} \times B) = \beta(B) \ \forall A, B \subset \mathcal{X}, \mathcal{Y} \}.$$

Let $c\colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a cost function. Then the *optimal transport* problem is

$$\mathsf{OT}(\alpha,\beta) = \min_{\pi \in \mathsf{\Pi}(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \, \mathrm{d}\pi(x,y).$$

Optimal Transport

Definition

Let α and β be probability measures on the metric spaces $\mathcal X$ and $\mathcal Y$. The space of couplings is given by

$$\Pi(\alpha,\beta) := \{ \pi \in \mathcal{M}^1_+(\mathcal{X} \times \mathcal{Y}) \colon \pi(A \times \mathcal{Y}) = \alpha(A), \\ \pi(\mathcal{X} \times B) = \beta(B) \ \forall A, B \subset \mathcal{X}, \mathcal{Y} \}.$$

Let $c\colon \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a cost function. Then the *optimal transport* problem is

$$\mathsf{OT}(\alpha,\beta) = \min_{\pi \in \Pi(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \, \mathrm{d}\pi(x,y).$$

For the dual formulation

$$D(\alpha, \beta) = \sup_{\substack{u \in C(\mathcal{X}), v \in C(\mathcal{Y}) \\ u+v < c}} \int_{\mathcal{X}} u \, d\alpha + \int_{\mathcal{Y}} v \, d\beta$$

we have $D(\alpha, \beta) = OT(\alpha, \beta)$.

Applications

If $\mathcal{X} = \mathcal{Y}$ is endowed with distance d, setting $c(x,y) = d(x,y)^p$, $p \ge 1$, yields the p-Wasserstein distance: $W_p(\alpha,\beta) = \left(\mathsf{OT}(\alpha,\beta)\right)^{1/p}$.

Applications

If $\mathcal{X} = \mathcal{Y}$ is endowed with distance d, setting $c(x,y) = d(x,y)^p$, $p \ge 1$, yields the p-Wasserstein distance: $W_p(\alpha,\beta) = \left(\mathsf{OT}(\alpha,\beta)\right)^{1/p}$.

- ► Image comparison (Earth Mover's Distance)
- Pattern recognition
- Domain adaptation (transfer learning)
- Wasserstein-GAN
- ► Text retrieval (word embeddings)
- etc.

Regularized Optimal Transport

Definition

Let α and β be probability measures on $\mathcal{X},\mathcal{Y}\subset\mathbb{R}^d$ bounded, let $c\colon\mathcal{X}\times\mathcal{Y}\to\mathbb{R}$ be a bounded cost function and $\varepsilon>0$. Assume that $\Phi\colon [0,\infty]\to [0,\infty]$ is convex. The *optimal transport problem with convex regularization* is given by

$$\mathsf{OT}_{\varepsilon}(\alpha,\beta) = \inf_{\pi \in \mathsf{\Pi}(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \, \mathrm{d}\pi(x,y) + \varepsilon \, G(\pi | \alpha \otimes \beta),$$

where G is defined as

$$G(\pi|\alpha\otimes\beta) = \left\{ \begin{array}{l} \int_{\mathcal{X}\times\mathcal{Y}} \Phi\left(\frac{\mathrm{d}\pi}{\mathrm{d}(\alpha\otimes\beta)}\right) \,\mathrm{d}(\alpha\otimes\beta), & \text{if } \pi\ll\alpha\otimes\beta, \\ +\infty, & \text{otherwise.} \end{array} \right.$$

Regularization functions

- Shannon entropy: $\Phi(z) = z(\log(z) 1)$. This yields $G(\pi|\rho_1 \otimes \rho_2) = \mathsf{KL}(\pi \parallel \rho_1 \otimes \rho_2))$
- ▶ Tsallis entropy: For q > 1,

$$\Phi(z) = \frac{1}{q-1} z^q.$$

• Quadratic regularization: $\Phi(z) = \frac{1}{2}z^2$

Dual formulation

Theorem (Di Marino-Gerolin '20)

The dual formulation of the regularized optimal transport problem relative to the probability measures α , β , bounded cost function c, and entropy function Φ , is given by

$$D_{\varepsilon}(\alpha,\beta) = \sup_{\substack{u \in \mathcal{C}(\mathcal{X}), \\ v \in \mathcal{C}(\mathcal{Y})}} \left\{ \int_{\mathcal{X}} u d\alpha + \int_{\mathcal{Y}} v d\beta - \varepsilon \int_{\mathcal{X} \times \mathcal{Y}} \Psi\left(\frac{u(x) + v(y) - c(x,y)}{\varepsilon}\right) d(\alpha \otimes \beta) \right\},$$

where Ψ is the Legendre conjugate of Φ ($\Psi' = (\Phi')^{-1}$). It holds that the supremum is achieved by some (u^*, v^*) ,

$$OT_{\varepsilon}(\alpha,\beta) = D_{\varepsilon}(\alpha,\beta).$$

(And one can recover π^* from (u^*, v^*)).

Sinkhorn's algorithm

- $ightharpoonup D_{\varepsilon}(\alpha,\beta)$ is a concave optimization problem.
- We can use a fixed point iteration algorithm to solve it, called Sinkhorn's algorithm.

It starts from fixed v^0 and alternatively updates u^k or v^k as

$$u^k := \operatorname{argmax}_u F_{\varepsilon}(u, v^{k-1}),$$

 $v^k := \operatorname{argmax}_u F_{\varepsilon}(u^k, v).$

Then u^k and v^k converge to a pair of maximizers (u^*, v^*) for the dual problem.

Sample complexity

In practice:

Let
$$(X_1,\ldots,X_n)\sim lpha^n$$
, $(Y_1,\ldots,Y_n)\sim eta^n$, and

$$\hat{\alpha}_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad \hat{\beta}_n := \frac{1}{n} \sum_{i=1}^n \delta_{Y_i},$$

be the empirical measures. Then

$$\begin{aligned} \mathsf{OT}_{\varepsilon}(\hat{\alpha}_{n}, \hat{\beta}_{n}) &= \max_{u, v} \left\{ \sum_{i=1}^{n} u(X_{i}) + \sum_{i=1}^{n} v(Y_{i}) \right. \\ &\left. - \varepsilon \sum_{i=1}^{n} \Psi\left(\frac{u(X_{i}) + v(Y_{i}) - c(X_{i}, Y_{i})}{\varepsilon}\right) \right\}. \end{aligned}$$

Sample complexity

Our goal is to estimate the sample complexity:

$$\mathbb{E}\left[\left|\mathsf{OT}_{\varepsilon}(\alpha,\beta)-\mathsf{OT}_{\varepsilon}(\hat{\alpha}_{n},\hat{\beta}_{n})\right|\right].$$

Sample complexity

Our goal is to estimate the *sample complexity*:

$$\mathbb{E}\left[\left|\mathsf{OT}_{\varepsilon}(\alpha,\beta)-\mathsf{OT}_{\varepsilon}(\hat{\alpha}_{n},\hat{\beta}_{n})\right|\right].$$

It is well known that

OT $(\varepsilon = 0)$ has sample complexity $\mathcal{O}(n^{-1/d})$,

MMD $(\varepsilon = \infty)$ has sample complexity $\mathcal{O}(1/\sqrt{n})$.

Genevay et al. (2019) showed that

 $\mathsf{OT}_{\varepsilon}$ with entropic regularization has sample complexity $\mathcal{O}(1/\sqrt{n})$ (with constants depending on ε).

We generalize this to a wider class of regularizations.

Sample Complexity for the Classical Entropy

Theorem (Genevay et al. '19)

Let α and β be probability measures with support on bounded $\mathcal{X}, \mathcal{Y} \subset \mathbb{R}^d$. Let as before X_i be iid distributed wrt α , Y_i wrt β . Let c be a \mathcal{C}^{∞} cost function. One has for regularization $\Psi = \exp$,

$$\mathbb{E}|OT_{\varepsilon}(\alpha,\beta) - OT_{\varepsilon}(\alpha_n,\beta_n)| = O\left(\frac{\left(1 + \varepsilon^{-\lfloor d/2 \rfloor}\right) \exp\left(O\left(\varepsilon^{-1}\right)\right)}{\sqrt{n}}\right)$$

where the constants only depend on \mathcal{X}, \mathcal{Y} and $\|c^{(s)}\|_{\infty}$ for $s = 0 \dots \lfloor d/2 \rfloor$.

Sample Complexity for General Regularization Function

Theorem

Same setting, but this time with regularization with Legendre conjugate $\Psi:[0,\infty]\to[0,\infty]$ convex such that

$$C_\varepsilon = \frac{\mathsf{max}_{s \leq \frac{d}{2}} \, \mathsf{sup}_{z \in \frac{1}{\varepsilon} K} \, |\psi^{(s)}(z)|}{\mathsf{inf}_{z \in \frac{1}{\varepsilon} K} \, |\Psi''(z)|} < \infty,$$

where the compact set $K \subset \mathbb{R}$ depends only on \mathcal{X}, \mathcal{Y} and $\|c^{(s)}\|_{\infty}$ for $s=0,\ldots,\lceil d/2 \rceil$. Then

$$\mathbb{E}|OT_{\varepsilon}(\alpha,\beta) - OT_{\varepsilon}(\alpha_n,\beta_n)| = O\left(\frac{(1 + (\varepsilon^{-1}C_{\varepsilon})^{\lfloor d/2 \rfloor})\psi'(O(\varepsilon^{-1}))}{\sqrt{n}}\right).$$

Sample Complexity for General Regularization Function

Theorem

Same setting, but this time with regularization with Legendre conjugate $\Psi:[0,\infty]\to[0,\infty]$ convex such that

$$C_\varepsilon = \frac{\mathsf{max}_{s \leq \frac{d}{2}} \, \mathsf{sup}_{z \in \frac{1}{\varepsilon} K} \, |\psi^{(s)}(z)|}{\mathsf{inf}_{z \in \frac{1}{\varepsilon} K} \, |\Psi''(z)|} < \infty,$$

where the compact set $K \subset \mathbb{R}$ depends only on \mathcal{X}, \mathcal{Y} and $\|c^{(s)}\|_{\infty}$ for $s=0,\ldots,\lceil d/2 \rceil$. Then

$$\mathbb{E}|OT_{\varepsilon}(\alpha,\beta)-OT_{\varepsilon}(\alpha_n,\beta_n)|=O\left(\frac{(1+(\varepsilon^{-1}C_{\varepsilon})^{\lfloor d/2\rfloor})\psi'(O(\varepsilon^{-1}))}{\sqrt{n}}\right).$$

For $\Psi = \exp$, recover previous result up to a factor of d in the exponent.

Idea of the Proof

We want to bound

$$\mathbb{E}|OT_{\varepsilon}(\alpha_n,\beta_n)-OT_{\varepsilon}(\alpha,\beta)| = \mathbb{E}\left|\max_{u,v}\frac{1}{n}\sum_{r}F_{\varepsilon}^{X_rY_r}(u,v)-\max_{u,v}\mathbb{E}\left[F_{\varepsilon}^{X_1Y_1}(u,v)\right]\right|$$

where

$$F_{\varepsilon}^{XY}(u,v) = u(X) - v(Y) - \varepsilon \psi \left(\frac{u(X) + v(Y) - c(X,Y)}{\varepsilon} \right).$$

Idea of the Proof

We want to bound

$$\mathbb{E}|OT_{\varepsilon}(\alpha_n,\beta_n)-OT_{\varepsilon}(\alpha,\beta)| = \mathbb{E}\left|\max_{u,v}\frac{1}{n}\sum_{r}F_{\varepsilon}^{X_iY_i}(u,v)-\max_{u,v}\mathbb{E}\left[F_{\varepsilon}^{X_1Y_1}(u,v)\right]\right|$$

where

$$F_{\varepsilon}^{XY}(u,v) = u(X) - v(Y) - \varepsilon \psi \left(\frac{u(X) + v(Y) - c(X,Y)}{\varepsilon} \right).$$

Assume we can show $\|u\|_{\mathcal{H}^s}$, $\|v\|_{\mathcal{H}^s} \leq \lambda$ for (u, v) who are optimizers with respect to any (α, β) . Then

$$\begin{split} & \mathbb{E}|OT_{\varepsilon}(\alpha_{n},\beta_{n}) - OT_{\varepsilon}(\alpha,\beta)| \\ & \leq 3 \sup_{\|u\|_{\mathcal{H}^{s}},\|v\|_{\mathcal{H}^{s}} \leq \lambda} \mathbb{E}\left|\frac{1}{n}\sum_{\varepsilon}F_{\varepsilon}^{X_{i}Y_{i}}(u,v) - \mathbb{E}\left[F_{\varepsilon}^{X_{1}Y_{1}}(u,v)\right]\right|. \end{split}$$

Standard result, e. g. Bartlett-Mendelson '02: If s > |d/2|, so that \mathcal{H}^s consists of continuous functions,

$$\sup_{\|u\|_{\mathcal{H}^s},\|v\|_{\mathcal{H}^s} \leq \lambda} \mathbb{E} \left| \frac{1}{n} \sum F_{\varepsilon}^{X_i Y_i}(u,v) - \mathbb{E} \left[F_{\varepsilon}^{X_1 Y_1}(u,v) \right] \right| = O_{\lambda,\varepsilon} \left(\frac{1}{\sqrt{n}} \right).$$

Regularity of the Optimizers

Still need to show that $||u||_{\mathcal{H}^s}$ is bounded in terms of $\Psi, c, \mathcal{X}, \mathcal{Y}$.

To get such a bound, use maximality for optimizers u, v:

- ▶ Pick any φ in C(X) and look at $g(t) := \mathbb{E}F_{\varepsilon}^{XY}(u + t\varphi, v)$.
- ▶ Must have g'(0) = 0 by optimality.
- Derive that for any x,

$$1 = \int \psi'\left(\frac{u(x) + v(y) - c(x, y)}{\varepsilon}\right) d\beta(y).$$

Differentiate this equation in x.

Demonstrating Regularized Optimal Transport

Figure: Unregularized 1D Optimal Transport

Figure: Entropy Regularized 1D **Optimal Transport**

60

Tsallis Entropies

$$H_q(\alpha \| \beta) = \frac{1}{q-1} \int \left[\left(\frac{d\alpha}{d\beta} \right)^{q-1} - 1 \right] d\alpha$$
 (1)

Figure: OT plans with relative Tsallis entropy for q = (1.1, 2, 3)

Demonstrating Sample Complexity

- We do not know how to compute $\mathbb{E}|OT_{\varepsilon}(\alpha,\hat{\alpha}_n)|$ numerically
- ▶ Instead compute $\mathbb{E}|OT_{\varepsilon}(\hat{\alpha}_n, \hat{\alpha}'_n)| \leq 2\mathbb{E}|OT_{\varepsilon}(\alpha, \hat{\alpha}_n)|$
- For our experiments we choose:
 - \triangleright α the uniform distribution on a *d*-dimensional unit hypercube.
 - $c(x,y) = ||x-y||^2$
 - Average over 300 pairs of samples for each n

Sample Complexity

Figure: Optimal Transport between two independent sampled distributions as a function of samples n.

Sample Complexity

Fit functions of the form

$$OT_{\varepsilon}(\hat{\alpha}_n, \hat{\alpha}'_n) \approx An^t$$
 (2)

Fit results (d = 3):

ε q	0.5	0.9	1.1	1.5	2.0	3.0	5.0	10.0
0.001	-0.689	-0.689	-0.678	-0.676	-0.675	-0.674	-0.67	-0.672
0.01	-0.819	-0.765	-0.751	-0.733	-0.72	-0.706	-0.689	-0.678
0.1	-1.24	-0.982	-0.89	-0.829	-0.783	-0.747	-0.721	-0.704
1.0	-1.05	-1.03	-1.02	-0.813	-0.766	-0.689	-0.72	-0.701
10.0	-0.999	-0.988	-0.984	-0.938	-0.717	-0.686	-0.69	-0.681
100.0	-1.01	-0.996	-0.998	-1.01	-0.995	-0.63	-0.667	-0.684

Figure: Fit parameter t for the Tsallis relative entropy regularization (d = 3).