dimensionality reduction

正田 備也

masada@rikkyo.ac.jp

PCAで計画行列をless noisyにする

PCAの考え方

- 高次元空間に散らばったデータ点の集合が与えられている
 - データ点はベクトルです (原点から発してその点まで達する矢印のイメージ)
 - データの重心が原点になるように、全体の位置をシフトさせておく。
- データ点が最も広く散らばっている方向を見つける
 - この方向を表すベクトルが、主成分
- その方向と直交する超平面上に、全てのデータ点を押しつぶす
 - データ点の散らばっている空間の次元が、ひとつだけ下がる
- 次元を下げた空間で、また同じことをする
 - つまり、データ点が最も広く散らばっている方向を見つける

「最も広く散らばっている方向」

• 式で書くと以下の通り

$$\mathbf{w}_1 = \arg\max_{\|\mathbf{x}\| = 1} \|\mathbf{x}\|^2$$

- **X**は計画行列(ただし重心を原点へ移動した後のもの)
- **Xw**は列ベクトル
 - Xの各行ベクトル x_i とwとの内積の値が要素として並ぶ、列ベクトル。
 - この内積の値は、Xの各行ベクトル x_i の、wの方向への座標値。
 - つまり、 \mathbf{w} の方向への+かーの符号がついた長さ

Xwのイメージ 各データ点 x_i とwとの内積 x_i Tw を、まとめて書いているだけ。

「データ点を押しつぶす」

• 式で書くと以下の通り

$$\widehat{\boldsymbol{X}} = \boldsymbol{X} - (\boldsymbol{X}\boldsymbol{w}_1)\boldsymbol{w}_1^T$$

- Xwは列ベクトル
 - Xの各行ベクトル x_i とwとの内積の値が要素として並ぶ、外ベクトル。
 - $oldsymbol{\cdot}$ この内積の値は、 $oldsymbol{X}$ の各行ベクトル $oldsymbol{x}_i$ の、 $oldsymbol{w}$ の方向への座標値。
 - その座標値に w_1 をかけて、元のXの行べクトル x_i から引いている。
 - こうすると、 x_i から w_1 方向の成分を消せる。
 - つまり、 x_i を、 w_1 と直交し原点を通る超平面上へ押しつぶしている。

PCAの (実際の) アルゴリズム

- 1. データを中心化する(平均を引く)
- 2. 共分散行列 $\boldsymbol{C} = \frac{1}{n-1} \boldsymbol{X}^T \boldsymbol{X}$ を計算する
- 3. 共分散行列Cの固有値と固有ベクトルを求める
- 4. 最も大きいm個の固有値に対応する固有ベクトルを選ぶ
 - このアルゴリズムで求まる固有ベクトルと、「最も広く散らばった方向」が同じになることは、ちゃんと証明できる
 - 等式制約の場合のラグランジュ未定乗数法を使う。

PCA, NMF, PLSIなど

・計画行列を、小さい2つの行列の積で表現し直す

NMF (Nonnegative Matrix Factorization)

• PCAの問題点

- 元々どの属性値も負の値を取り得ないデータには適用しにくい
- 主成分は負の値を含みうるが、このような負の値は解釈が難しい

• NMFの特徴

- PCAでいう主成分に相当するベクトルが<u>非負</u>ベクトルとして得られる
- 得られる非負ベクトルは、お互いに直交しないこともありうる
 - ただし、疎なベクトルになるので、ほぼ直交しているともみなせる。

(a) NMF bases.

(b) PCA bases.

Fig. 2. Bases obtained by both techniques, PCA and NMF

PLSI (probabilistic latent semantic indexing)

- NMFの確率モデル版
- 詳細は来年夏学期の「統計モデリング2」で
- EMアルゴリズムでパラメータを推定する

LDA (latent Dirichlet allocation)

- PLSIをベイズ化した確率モデル
- 詳細は来年夏学期の「統計モデリング2」で
- 変分ベイズ推定で事後分布のパラメータを推定する

今日の課題

- 手話画像を再構成してみる
- inverse_transformメソッドを持つクラスを使う
 - https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition
- 手法ごとの特徴のようなものはあるか?
 - https://scikit-learn.org/stable/auto_examples/decomposition/plot_faces_decomposition.html