MTH1102D Calcul II

Chapitre 9, section 2: Les intégrales curvilignes

Exemple 1: calcul d'une intégrale curviligne en deux dimensions

Calculer
$$J = \int_C xy \, ds$$
 où $C = C_1 \cup C_2$ et

 C_1 est la partie de la parabole $y = x^2$ reliant (0,0) à (1,1)

 C_2 est le segment reliant (1,1) à (2,0).

• Parabole :
$$y = x^2$$

$$C_{1}: \quad \vec{r}_{1}(t) = t\vec{i} + t^{2}\vec{j}, \quad 0 \leq t \leq 1$$

$$\vec{r}'_{1}(t) = \vec{i} + 2t\vec{j}$$

$$||\vec{r}'_{1}(t)|| = \sqrt{1 + 4t^{2}}$$

• Segment :
$$y = 2 - x$$

$$C_2: \vec{r}_2(t) = t\vec{i} + (2-t)\vec{j}, \ 1 \le t \le 2$$

 $\vec{r}_2'(t) = \vec{i} - \vec{j}$
 $||\vec{r}_2'(t)|| = \sqrt{2}$

Calculer
$$J = \int_C xy \, ds$$
 où $C = C_1 \cup C_2$ et C_1 est la partie de la parabole $y = x^2$ reliant $(0,0)$ à $(1,1)$ C_2 est le segment reliant $(1,1)$ à $(2,0)$.

$$J_1 = \int_{C_1} xy \, ds = \int_0^1 x(t)y(t) ||\vec{r}_1'(t)|| \, dt = \int_0^1 (t)(t^2)\sqrt{1 + 4t^2} \, dt$$

$$= \frac{1}{8} \int_1^5 \frac{(u-1)}{4} u^{1/2} \, du \quad (u = 4t^2 + 1, du = 8t)$$

$$= \frac{5}{24} \sqrt{5} + \frac{1}{120}$$

Calculer
$$J = \int_C xy \, ds$$
 où $C = C_1 \cup C_2$ et C_1 est la partie de la parabole $y = x^2$ reliant $(0,0)$ à $(1,1)$ C_2 est le segment reliant $(1,1)$ à $(2,0)$.

$$J_2 = \int_{C_2} xy \, ds = \int_1^2 x(t)y(t) ||\vec{r}_2''(t)|| \, dt = \int_1^2 (t)(2-t)\sqrt{2} \, dt = \frac{2}{3}\sqrt{2}$$

Finalement,

$$J = J_1 + J_2 = \frac{5}{24}\sqrt{5} + \frac{1}{120} + \frac{2}{3}\sqrt{2}$$

Calculer
$$J = \int_C xy \ ds$$
 où $C = C_1 \cup C_2$ et

 C_1 est la partie de la parabole $y = x^2$ reliant (0,0) à (1,1)

 C_2 est le segment reliant (1,1) à (2,0).

Soit C_3 le segment allant de (0,0) à (2,0).

Notons
$$f(x, y) = xy$$

Puisque
$$f(x,y) = 0$$
 si $(x,y) \in C_3$,
$$\int_{C_3} f(x,y) ds = 0$$

L'intégrale curviligne d'une fonction dépend du chemin et non seulement des extrémités de la courbe.

Résumé

- Exemples de paramétrisation.
- Utilisation des propriétés de l'intégrale curviligne.
- Calcul de trois intégrales curvilignes en deux dimensions.