1 Lezione del 26-09-25

1.1 Introduzione all'UML

L'UML (*Unified Modeling Language*) è una notazione grafica standardizzata, aperta ed estensibile, di modellazione. L'UML è pensato per modellizzare progetti che sfruttano la programmazione ad oggetti (OOP).

Viene detto *unificato* in quanto accompagna il software in tutti i suoi cicli di vita, dalle specifiche all'implementazione. Può essere usato per modellare diversi domini applicativi (dall'embedded alle applicazioni, ecc...), ed è trasparente al linguaggio e alle metodologie usate.

I modelli di UML rappresentano collezioni di **oggetti** *interagenti*. In particolare sfruttiamo modelli:

- A **struttura statica**, cioè che dettagliano quali oggetti compongono il nostro progetto in maniera statica;
- A **comportamento dinamico**, cioè dettagliamo successivamente come questi oggetti interagiscono fra loro nel tempo.

1.2 Introduzione all'UP

L'**UP** (*Unified Process*) è un processo di ingegnerizzazione software basato su 3 principi fondamentali:

- 1. Guidato dall'analisi dei requisiti e dei rischi;
- 2. Centrato sull'architettura, cioè finalizzato alla produzione di un'architettura robusta:
- 3. Iterativo ed incrementale, cioè suddivide il progetto in iterazioni incrementali che arrivano da zero al sistema funzionante.

Ciascuna iterazione comprende più fasi che la caratterizzano:

- Pianificazione;
- Analisi e progetto;
- Costruzione;
- Integrazione e test;
- Release interna o esterna.

Ogni iterazione genera la cosiddetta *baseline*, cioè la versione da cui partira la prossima iterazione, e via dicendo.

Le fasi vengono implementate seguendo 5 workflow riassunti dalla sigla **RADIT** (*Requirements, Analysis, Design, Implementation, Test*).

1.2.1 Struttura dell'UP

Il ciclo di vita del progetto si evolve in più iterazioni (ciascuna delle quali comprende i 5 workflow RADIT) . In particolare individuiamo 4 fasi:

1. **Inception** (principio): qui l'obiettivo è far partire il progetto. Dobbiamo quindi stabilire la *fattibilità* del progetto, creare un caso di business (cioè dimostrare la reddittività del progetto), catturare le specifiche di base ed individuare i primi rischi critici.

Gli workflow principali saranno requisiti ed analisi.

Vediamo quelle che sono le *milestone* associate a questa fase: vogliamo stabilire un'associazione fra *condizioni* da soddisfare e *deliverable* (*consegnabili*) che possiamo appunto dare come ottenuti. In particolare, potremmo avere:

Condizioni	Deliverable
Le persone coinvolte sono d'accordo su-	Un documento che riassume i requisiti
gli obiettivi di progetto	principali di progetto
Viene tracciata l'architettura generale	Un documento che delinea l'architettura
	generale
Si crea un primo piano di progetto	Il piano di progetto

2. **Elaboration** (elaborazione): è la fase dove dove si delina un'architettura eseguibile, si perfezionano i rischi valutati, si definiscono gli *attributi di qualità*, si cerca di catturare almeno l'80% delle specifiche funzionali, si crea un piano dettagliato per la fase di costruzione e si formula un offerta per il cliente che comprende risorse, tempo e staff richiesto.

Gli workflow principali includeranno requisiti, analisi e la prima fase di design.

Milestone in questo saranno ad esempio:

Condizioni	Deliverable
Viene creata un'architettura eseguibile	L'architettura eseguibile
L'architettura dimostra di aver indivi-	I modelli UML statico, dinamico e dei casi
duato i rischi importanti	d'uso
Si crea un piano di progetto realistico e realizzabile	Un piano di progetto aggiornato

3. **Construction** (costruzione): in questo caso si prende l'architettura delineata in fase di elaborazione e si inizia a sviluppare il prodotto software vero e proprio.

Il workflow principale sarà caratterizzato da design e sviluppo, nonché pesante testing.

Le milestone includeranno:

Condizioni	Deliverable
Il prodotto software è sufficientemente stabile	Il prodotto software, documentazione
I committenti sono pronti per l'installa- zione del software	Manuali, documentazione

4. **Transition** (transizione): questa è la fase dove si risolvono i difetti delle versioni beta e si prepara l'installazione del software nell'infrastruttura dell'utente.

Il workflow comprenderà sviluppo e testing delle ultime funzionalità.

Le milestone saranno ristrette:

Condizioni	Deliverable
Il prodotto è stabile e (perlopiù) privo di	Il prodotto software finito
bug	

Ciascuna fase corrisponde a una o più iterazioni. Non è detto che lo "sforzo" (*effort*) su ogni workflow sia però lo stesso su ogni workflow nelle diverse fasi.

1.3 Workflow requisiti

Il workflow requisiti ha compito di individuare i requisiti del sistema. Questi sono di due tipi:

- Funzionali: legati a cosa il sistema deve fare;
- Non funzionali: legati a *come* il sistema deve funzionare.

Per definire i requisiti in UML possiamo usare un formato molto semplice, del tipo:

```
<id> Il <nome del sistema> deve <funzione da realizzare>
```

dove <id> identifica un requisito.

Quando i requisiti diventano molti, è utile raggrupparli per tipologia. 2 o 3 livelli di profondità della gerarchia sono appropiati finché non si lavora con requisiti particolarmente complessi.

Ogni requisito può essere corredato di uno o più *attributi*, cioè coppie chiave/valore associate al requisito stesso.

1.3.1 Analisi delle priorità

L'attributo più comune dei requisiti è la **priorità**. Questa si definisce secondo l'acronimo **MoSCoW**, cioè:

- Must have: requisiti fondamentali per il sistema;
- **Should have**: requisiti importanti che possono (dopo opportuna discussione) essere omessi;
- Could have: requisiti opzionali (da realizzare se possibile, cioè se c'è tmepo);
- Want to have: requisiti che non verranno realizzati adesso, ma al massimo in successive release.

1.3.2 Individuazione dei requisiti

I requisiti sono generati dal contesto di sistema che si vuole modellare, comprensivo di:

- Gli utenti del sistema;
- Le altre persone coinvolte (installatori, ecc...);

- I sistemi con cui il sistema deve interagire;
- I requisiti hardware del sistema e altri vincoli tecnici;
- Vincoli legali e regolamenti;
- L'obiettivo di business nostro e del cliente.

L'individuazione dei requisiti genera solitamente un documento di visione d'insieme, scritto in linguaggio naturale, che delinea i requisiti realizzabili del progetto.

Un processo che possiamo usare è quello di *deduzione* dei requisiti, tecnica dove si cerca di estrarre i requisiti dalle persone coinvolte nel progetto.

Altre metodologie sono le *interviste*, i *questionari* e i *gruppi di lavoro*.

1.3.3 Modellizzazione casi d'uso

La modellizzazione dei casi d'uso fa parte dell'ingegnerizzazione dei requisiti e procede nel modo seguente:

 Identificare un confine candidato del sistema, cioè il dominio di operazione del sistema stesso. Identificare il confine del sistema significa capire cosa il sistema è e cosa non è. Questo aiuta nella definizione delle specifiche funzionali.

In UML i confini del sistema sono chiamati soggetto;

• Trovare gli attori coinvolti nell'uso del sistema, cioè il ruolo che le entità esterne assumono quando interagiscono *direttamente* col sistema.

In UML anche gli attori possono essere detti soggetto;

• Trovare i casi d'uso del sistema, cioè il tipo di operazioni che il sistema dovrà compiere per conto degli utenti all'interno del suo dominio.

1.3.4 Glossario di progetto

Il *glossario di progetto* è uno dei deliverable principali della fase di ingegnerizzazione dei requisiti. Questo fornisce un dizionario di termini chiave e definizioni usate nel dominio di applicazione, comprensibili a chiunque sia coinvolto nel progetto. Di fondamentale importanza è individuare i **sinonimi**, che potrebbero essere innumerevoli e non apparentemente equivalenti.