Quantum Mechanics Head notes

Kelvin Ho

November 23, 2021

Contents

1	Hei	senberg Matrix Approach	1
2	Alg	ebraic Approach to Harmonic Oscillator	2
3	Generalised Angular Momentum		2
	3.1	Preliminaries	2
	3.2	Eigenstates and Eigenvalues	2
		3.2.1 Proof	3
	3.3	Actions of the Operators	3
4	Spin (Spin $\frac{1}{2}$ systems)		4
	4.1	Preliminaries	4
	4.2	Raising and Lowering Operators	4
		4.2.1 The arbitrary state	5
		4.2.2 Additional Relations	5
		4.2.3 Matrix Representation	5
	4.3	Determination of eigenstates and eigenvectors	6
	4.4	Spin along arbitrary direction	6
	4.5	Addition of Angular Momentum	7
5	Total Angular Momenta		7
	5.1	Example	7

1 Heisenberg Matrix Approach

 Add notes to talk about some rules on linear algebra generalisation of Quantum Mechanics.

2 Algebraic Approach to Harmonic Oscillator

Add notes to talk about the raising and lowering operators

3 Generalised Angular Momentum

3.1 Preliminaries

Begin with:

$$\left[\hat{J}_x,\hat{J}_y\right] = i\hbar\hat{J}_z$$

Other pairing can be achieved through cyclic permutations. The raising and lowering operators are:

$$\hat{J}_{\pm} = \hat{J}_x \pm i\hat{J}_y$$

They are Hermitian conjugates of each other.

The product is defined by:

$$\hat{J}_{\pm}\hat{J}_{\mp} = \hat{J}^2 - \hat{J}_z^2 \pm \hbar \hat{J}_z$$

(The last sign follows the first.)

Thus, the commutator is:

$$\left[\hat{J}_{\pm},\hat{J}_{\mp}\right] = \pm 2\hbar\hat{J}_z$$

(Again, the sign follows the leader.)

The raising/lowering operators commutes with \hat{J}^2 , but with the components:

$$\left[\hat{J}_z, \hat{J}_{\pm}\right] = \pm \hbar \hat{J}_{\pm}$$

(Follows the sign.)

3.2 Eigenstates and Eigenvalues

We begin again by stating that:

$$\hat{J}^2|\phi\rangle = \alpha|\phi\rangle$$

$$\hat{J}_z|\phi\rangle = \beta|\phi\rangle$$

The raising/lowering operators raises or lowers \hat{J}_z in \hbar increments.

However, as it commutes with \hat{J}^2 , it does nothing.

Since α is fixed and by definition bigger than \hat{J}_z (as it is a component), it follows that there is a termination i.e. bounded upper and lower eigenvalues.

3.2.1 **Proof**

To show, write a top eigenstate where applying the raising operator would yield 0, and vice versa for the lowest state. The difference in eigenvalues is $n\hbar$. Using the commutator of the raising and lowering operator, this can be easily shown.

From:

$$m_T - m_B = n\hbar$$

Then:

$$\alpha = mT(mT + \hbar)$$

And since:

$$m_T = n\frac{\hbar}{2}$$

Rewriting $j = \frac{n}{2}$:

$$\alpha = j(j+1)\hbar^2$$
$$\beta = m\hbar$$

3.3 Actions of the Operators

Rewrite $|\phi\rangle=|j,m\rangle$ The raising operator gives: $\hat{J}_z\left(\hat{J}_+|j,m\rangle\right)=(m+1)\hbar\left(\hat{J}_+|j,m\rangle\right)$, but applying \hat{J}_z to $|j,m+1\rangle$ yields the same eigenvalue(?), implying they are proportional to each other. With this, we write:

$$\hat{J}_{+}|j,m\rangle = C_{+}|j,m+1\rangle$$

Rewriting the above as a bra and noticing that the raising/lowering operators are Hermitian adjoint, using their product yields (usual convention takes positive root):

$$C_{+} = \hbar \sqrt{j(j+1) - m^{2} - m}$$

$$C_{-} = \hbar \sqrt{j(j+1) - m^{2} + m}$$

$$\therefore C_{\pm} = \hbar \sqrt{j(j+1) - m(m \pm 1)}$$

(Again, m sign follows leading sign)

4 Spin (Spin $\frac{1}{2}$ systems)

The spin states are a carbion copy of the algebraic theory of generalised angular momentum (Griffith). They do not have an equivalent position representation.

4.1 Preliminaries

Spin up and spin down states:

$$|\frac{1}{2}, \frac{1}{2}\rangle \equiv |\alpha\rangle = |+\rangle$$
$$|\frac{1}{2}, -\frac{1}{2}\rangle \equiv |\beta\rangle = |-\rangle$$

Again:

$$\hat{S}^{2}|+\rangle = s(s+1)\hbar^{2}|+\rangle = \frac{3}{4}\hbar^{2}|+\rangle$$

$$\hat{S}_{z}|+\rangle = s\hbar|+\rangle = \frac{1}{2}|+\rangle$$

$$\hat{S}^{2}|-\rangle = s(s+1)\hbar^{2}|-\rangle = \frac{3}{4}\hbar^{2}|-\rangle$$

$$\hat{S}_{z}|-\rangle = s\hbar|-\rangle = -\frac{1}{2}|-\rangle$$

4.2 Raising and Lowering Operators

Same as before:

$$\hat{S}_{\pm}|s,m\rangle = \hbar\sqrt{s(s+1) - m(m\pm 1)}|s,m\pm 1\rangle$$
$$\therefore \hat{S}_{\pm}|\frac{1}{2},m\rangle = \hbar\sqrt{\frac{3}{4} - m(m\pm 1)}|\frac{1}{2},m\pm 1\rangle$$

Thus:

- Raising spin down becomes \hbar times spin up
- Lowering spin up becomes \hbar times spin down

• Anything else is zero (cannot raise above the ceiling or go below the floor)

This might come in handy:

$$\hat{S}_x = \frac{1}{2} \left(\hat{S}_+ + \hat{S}_- \right); \qquad \hat{S}_y = \frac{1}{2i} \left(\hat{S}_+ - \hat{S}_- \right)$$

4.2.1 The arbitrary state

An arbitrary state can be written as:

$$|\chi\rangle = a|+\rangle + b|-\rangle$$

4.2.2 Additional Relations

The \hat{S}^2 is a purely numerical operator for any state:

$$\hat{S}^2 \equiv \frac{3}{4}\hbar^2$$

Additionally, for spin- $\frac{1}{2}$ states:

$$\hat{S}_x^2 = \hat{S}_y^2 = \hat{S}_x^2 = \frac{\hbar^2}{4}$$

1. Anticommutators:

$$\left\{\hat{S}_x, \hat{S}_y\right\} = 0$$

4.2.3 Matrix Representation

This section introduces the Pauli matrices. These are formed by performing: $\langle s', m' | \hat{S} | s, m \rangle$ for each respective operators. Each operator, $\hat{S}^2, \hat{S}_x, \hat{S}_y, \hat{S}_z$ can be formed by multiplying their respective matrices with $\hbar/2$:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

The trace of the Pauli matrices are zero, and the determinant is -1.

4.3 Determination of eigenstates and eigenvectors

To solve for $\hat{S}_x|\chi\rangle = a|\chi\rangle$, we write $a = \frac{\hbar}{2}\lambda$ and $\hat{S}_x = \frac{\hbar}{2}\sigma_x$, and let $|\chi\rangle = (u,v)^T$. Thus the matrix approach gives an easy way to determine the eigenstates and eigenvalues of the operators.

Equivalently, this can be performed via the basis states and raising/lowering operators approach.

See page 54 of notes for a table showing the results.

4.4 Spin along arbitrary direction

The operator \hat{S}_n is defined as $\hat{S} \cdot \hat{n}$, where:

$$\hat{n} = (\cos \phi \sin \theta, \sin \phi \sin \theta, \cos \theta)$$

Thus:

$$\hat{S}_n = \frac{\hbar}{2} (\hat{\sigma}_x \cos \phi \sin \theta + \hat{\sigma}_y \sin \phi \sin \theta + \hat{\sigma}_z \cos \theta) = \frac{\hbar}{2} \begin{pmatrix} \cos \theta & \sin \theta e^{-i\theta} \\ \sin \theta e^{i\theta} & -\cos \theta \end{pmatrix}$$

Then, using trigonometric identities (half angle?):

$$\hat{n} = \begin{pmatrix} \sin \frac{\theta}{2} \\ -\cos \frac{\theta}{2} e^{i\phi} \end{pmatrix}$$

- Spin up along +z is $P_+ = cos^2 \frac{\theta}{2}$
- Spin down is $P_{-} = \sin^2 \frac{\theta}{2}$

4.5 Addition of Angular Momentum

In the special case of spin- $\frac{1}{2}$ particles, the addition of angular momentum is simple:

$$\hat{\mathbb{S}} = \hat{\mathbb{S}_{\mathbb{H}}} + \hat{\mathbb{S}_{\mathbb{H}}}$$

There are four possible states for the 2 particles:

$$|++\rangle, |+-\rangle, |-+\rangle, |--\rangle$$

Then, from above:

$$\hat{S}_z = \hat{S}_{1z} + \hat{S}_{2z}$$

Eigenvalues are thus: 1,0,0,-1.

$$\begin{array}{cccc} 1 \backslash 2 & \alpha & \beta \\ \alpha & \alpha_1 \ \alpha_2 & \alpha_1 \ \beta_1 \\ \beta & \beta_1 \ \alpha_2 & \beta_1 \ \beta_2 \end{array}$$

Denote a general state by $|S, M\rangle$.

If $M = \frac{1}{2} + \frac{1}{2} = 1$ must have S = 1, as:

$$|\hat{S}_z|1,1\rangle = (\hat{S}_{1z} + \hat{S}_{2z})\alpha_1\alpha_2 = \frac{\hbar}{2}\alpha_1\alpha_2 + \frac{\hbar}{2}\alpha_1\alpha_2 = \hbar\alpha_1\alpha_2$$

5 Total Angular Momenta

We define:

$$\hat{J} = \hat{L} + \hat{S}$$

While $Y_{lm}\alpha$ and $Y_{lm}\beta$ are eigenstates of \hat{J}_z , they are not eigenstates of \hat{J}^2 .

5.1 Example

Let $J=l+\frac{1}{2}$ and $m_j=l+\frac{1}{2}$ i.e. the state of maximum projection $Y_{ll\alpha}\equiv |j,j\rangle$. Applying the lowering operator $\hat{J}_-|j,m\rangle=\sqrt{j(j+1)-m(m-1)}\hbar|j,m-1\rangle$:

$$\left(\hat{L}_{-}+\hat{S}_{-}\right)Y_{ll}\alpha=\left(\hat{L}_{-}+\hat{S}_{-}\right)|l,l\rangle|\alpha\rangle=\sqrt{2l}\hbar|l,l-1\rangle|\alpha\rangle+|l,l\rangle\hbar|\beta\rangle$$

Equating the two and using orthogonality conditions:

Introduce a new state $|l-\frac{1}{2},l-\frac{1}{2}\rangle=a|l,l-1\rangle|\alpha\rangle+b|l,l\rangle|\beta\rangle$ which is orthogonal: