

Relu: hidden and output output bias = 1.0 learning rate () = 0.5 error: E= - Zx(tx-0x)2 net; = $\geq_i (w_i; 0_i)$ target actual output output include bias 0;= 5 (net;) ontput Backpropagation Q(1) X= (1.0) -> + (0.1,09,01) actual output. at 2,3,4,5 (ii) error (iii) bias of unit 2. -> adjust

Solution (a) (i) 1) compute result

3

Max

Min

Bin7

Civil 8

Dip 5

Max

Fin 3 F

L D M N PQ R S

3 7 9 13 6 8 1 5 2 10

Ciii) not visited node.

Solution(i) () Forward - pass outputs

$$x_1 = 1$$
 bias = 1

①
$$net_2 = 0.8X | + 0.2X | = 1$$

 $0_2 = ReLU(net_2) = ReLU(1) = 1$

⑤
$$net_s = 0.9 \times 1 + 0.1 \times 1 = 1$$

 $O_s = ReLU(net_s) = ReLU(1) = 1$

(ii)
$$0 S_3 = 0 \times (t_3 - 0)$$

= $0 \times (0.1 - 0)$
= 0
 $0 S_4 = [\times (0.9 - 2)$
= $-[.]$

ⓐ
$$\delta s = | \times (0.1 - 1)$$

= -0.9

(4)
$$S_2 = o(nel_2) \sum_k S_k W_{k2}$$

 $= [\times [S_3 W_{32} + S_4 W_{42} + S_5 W_{52}]$
 $= 0 \times 0.6 + (-0.9) \times 0.9$
 $= -1.91$

(iii)
$$SW_{2}$$
, bias = $9S_{2}O_{bias}$
= $0.5 \times (-1.91) \times 1$
= -0.955
 W_{2} , $b_{1}as = 0.2 - 0.955$
= -0.755