David Baker

EENG 581: Power System Operation and Management

HW3: Load Forecast

© Dr. Salman Mohagheghi, All Rights Reserved

Learning Objectives:

- Develop linear models to forecast the demand.
- Use the WLS technique to solve a linear demand forecast model.
- Use the correlation technique to solve a linear demand forecast model.
- 1. The historical data of the annual peak demand for an electric utility are given below. Model the peak demand using the linear regression technique (i.e., assume $d(t) = a + b \cdot t$) and find a forecast for demand at year 6. Clearly, report the values of parameters a and b.

Year	1	2	3	4	5
Peak Annual Demand (MW)	6,197	6,337	7,411	7,940	8,473

- Suppose that we have a linear demand model similar to the one considered in the previous problem. We are now going to solve the problem using WLS state estimation. Here, our states (unknowns) are the coefficients of the linear model, i.e., coefficients a and b. Demand values for previous years are then considered as the measurements. This gives us a measure model of the form: $d(t) = a + b \cdot t + e(t)$. Use the WLS technique to find coefficients a and b, and then use the model to find the forecasted demand at year 6. Solve this model twice: first assuming that all previous year measurements have the same weight (accuracy), and a second time, assuming that the weight associated with year t is $w(t) = 0.7^{(T-t)}$, where T is 5. Notice how the latter assigns a larger weight (importance) to more recent measurements.
- **3.** For problem **1** assume a Markov model of the form $d(t) = a \times d(t-1) + e(t)$. Find coefficient *a* using the correlation method. Determine the demand forecast for years 6 and 7.
- **4.** The peak load data for a utility company is given in the table below. Assume that only the load data for years 1981–1988 is available. Using this data, derive a time-series linear model for the peak demand based on its four past values, i.e. demand at year *t* is a linear function of demands of the previous four years. Use the model and its estimated load values to predict the demand for years 1989–1996. Compare with the actual values provided in the table below.

Year	Peak Load (GW)
1981	3,179
1982	3,694
1983	3,981
1984	4,672
1985	5,158
1986	5,361
1987	5,803
1988	6,152
1989	6,279
1990	6,664
1991	7,004
1992	7,215
1993	7,503
1994	7,657
1995	8,149
1996	8,491

1. The historical data of the annual peak demand for an electric utility are given below. Model the peak demand using the linear regression technique (i.e., assume $d(t) = a + b \cdot t$) and find a forecast for demand at year 6. Clearly, report the values of parameters a and b.

Year	1	2	3	4	5
Peak Annual Demand (MW)	6,197	6,337	7,411	7,940	8,473

2. Suppose that we have a linear demand model similar to the one considered in the previous problem. We are now going to solve the problem using WLS state estimation. Here, our states (unknowns) are the coefficients of the linear model, i.e., coefficients a and b. Demand values for previous years are then considered as the measurements. This gives us a measure model of the form: $d(t) = a + b \cdot t + e(t)$. Use the WLS technique to find coefficients a and b, and then use the model to find the forecasted demand at year 6. Solve this model twice: first assuming that all previous year measurements have the same weight (accuracy), and a second time, assuming that the weight associated with year t is $w(t) = 0.7^{(T-t)}$, where T is 5. Notice how the latter assigns a larger weight (importance) to more recent measurements.

$$x = \begin{bmatrix} 9 \\ 6 \end{bmatrix} \longrightarrow \text{ states}$$

$$Z = \begin{bmatrix} \text{denus}(i) \\ \text{denus}(s) \end{bmatrix} \longrightarrow \text{ measurements}$$

$$\text{Two methods of Long this, both } u / \text{ some answer}$$

$$\text{1.0ptinization problem}$$

$$\text{min } \sum_{i} W_{i} r_{i}^{2}$$

$$\text{st } r_{i} = Z_{i} - h_{i}(x) \quad \text{where } h(x) = arbt + e(t)$$

```
Equal Weights (Sinc answer as problem 1)

Intercept (A): 5425.1, Slope (B): 615.5
forecasted peak demand in year 6: 9118.1 MW

Weighted

Intercept (A): 5419.0, Slope (B): 617.5
forecasted peak demand in year 6: 9124.2 MW
```

$$X = (H^{T}WH)^{-1} \cdot H^{T}Wz$$

$$W^{1} = \frac{3h}{3x} = \begin{bmatrix} \frac{3(a+b+1)}{3a} & \frac{3(a+b+1)}{3b} \\ \frac{3(a+b+2)}{3a} & \frac{3(a+b+2)}{3b} \end{bmatrix}$$

$$X = (H^{T}WH)^{-1} \cdot H^{T}Wz$$

$$Y = (H^{T}WH)^{-1} \cdot H^{T}$$

```
1 using LinearAlgebra
2
3 years = 1:5
4 measurements = [6197, 6337, 7411, 7940, 8473]
5
6 ## CLOSED FORM SOLUTION
7 # equal weights scenario
8 H = hcat(ones(5), years)
9 z = measurements
10 W = diagm(ones(5)) # weights
11
12 X = (H' * W * H)^-1 * H' * W * z
13 a = X[1]
14 b = X[2]
15 println("\n\nIntercept (A): $(round(a, digits=1)), Slope (B): $(round(b, digits=1))")
16 println("forecasted peak demand in year 6: $(round(a + b*6, digits=1)) MW\n\n")
17
18 # weighted scenario
19 T = 5
20 weight(t) = 0.7^\tau T - t)
21 weights = weight.(years)
22 W = diagm(weights) # weights
23
24 X = (H' * W * H)^-1 * H' * W * z
25 a = X[1]
26 b = X[2]
27 println("\n\nIntercept (A): $(round(a, digits=1)), Slope (B): $(round(b, digits=1))")
28 println("forecasted peak demand in year 6: $(round(a + b*6, digits=1)) MW")
```

Intercept (A): 5425.1, Slope (B): 615.5 forecasted peak demand in year 6: 9118.1 MW

Weight Intercept (A): 5419.0, Slope (B): 617.5 forecasted peak demand in year 6: 9124.2 MW

3. For problem **1** assume a Markov model of the form $d(t) = a \times d(t-1) + e(t)$. Find coefficient a using the correlation method. Determine the demand forecast for years 6 and 7.

 $a = \underbrace{\mathbb{E}\left[J(t) \cdot J(t)\right]}_{\mathbf{E}\left[J(t) \cdot J(t)\right]}$

a = 1.083 forecasted demand \underline{in} year 6 = 9173.8 MW forecasted demand in year 7 = 9932.5 MW

4. The peak load data for a utility company is given in the table below. Assume that only the load data for years 1981–1988 is available. Using this data, derive a time-series linear model for the peak demand based on its four past values, i.e. demand at year *t* is a linear function of demands of the previous four years. Use the model and its estimated load values to predict the demand for years 1989–1996. Compare with the actual values provided in the table below.

Year	Peak Load (GW)]_
1981	3,179]
1982	3,694	
1983	3,981	available
1984	4,672	
1985	5,158	
1986	5,361	
1987	5,803	
1988	6,152	ل [
1989	6,279	
1990	6,664	
1991	7,004	
1992	7,215	
1993	7,503	
1994	7,657	
1995	8,149	
1996	8,491	

$$\Delta(t) = \sum_{k=1}^{4} a_k \lambda(t-k) + e(t)$$

	Coef.
(Intercept) d_t_1 d_t_2 d_t_3 d_t_4	0.0 1.29289 -0.362 0.853222 -0.815682

Clearly, the model is not a good fit. The residual plot shows a clear trend of increasing over time.

.veare	vears actual predicted residual		
years	MW	predicted	MW
1981	3179.0		
1982	3694.0		
1983	3981.0		
1984	4672.0		
1985	5158.0	5158.0	6.91216e-11
1986	5361.0	5361.0	5.00222e-11
1987	5803.0	5803.0	2.54659e-11
1988	6152.0	6152.0	6.54836e-11
1989	6279.0	6220.0	59.0036
1990	6664.0	6393.11	270.889
1991	7004.0	6529.56	474.443
1992	7215.0	6416.64	798.359
1993	7503.0	6313.5	1189.5
1994	7657.0	6196.24	1460.76
1995	8149.0	5874.34	2274.66
1996	8491.0	5504.7	2986.3

CODE on following page

```
1 using DataFrames, GLM, StatsModels
  2 using Plots
  3 using PrettyTables
13  y=train_years[5:end],
14  d_t=train_d[5:end],
      d_t clain_d[s:end],
d_t_1=train_d[4:end-1],
d_t_2=train_d[3:end-2],
25 pred_demands = train_d[1:4]
26 for (i, year) in enumerate(1985:1996)
            36 end
         predicted=[missing, missing, missing, missing, pred_demands[5:end]...],
residuals=[missing, missing, missing, missing, (demands - pred_demands)[5:end]...]
```