Volume of a Torus

Consider the ellipse E defined by the set of all points (x,y) in the plane such that $\frac{x^2}{4} + y^2 = 1$. By rotating E around the y = -2 line, we obtain an elliptic torus \widetilde{E} . We want to calculate the volume of \widetilde{E} . We will do this using the shell method. As y ranges from -1 to 1, let $S_r(y)$ be the shell radius and let $S_h(y)$ be the shell height. In the image below, the curve E is drawn using a thick black line. The axis or rotation is drawn using a dashed line. The length of the red line is given by $S_r(1/2) = 3/2$ and the length of the blue line is given by $S_h(1/2) = 2\sqrt{3}$.

An easy calculation shows that $S_r(y) = 2 + y$ and $S_h(y) = 4\sqrt{1 - y^2}$. Now, let V be the volume of \widetilde{E} . Then by the shell method, we have

$$V = \int_{-1}^{1} 2\pi S_r(y) S_h(y) dy$$

$$= 8\pi \int_{-1}^{1} (2+y) \sqrt{1-y^2} dy$$

$$= 16\pi \int_{-1}^{1} \sqrt{1-y^2} dy + 8\pi \int_{-1}^{1} y \sqrt{1-y^2} dy$$

$$= 16\pi \int_{-1}^{1} \sqrt{1-y^2} dy$$

$$= 32\pi \int_{0}^{1} \sqrt{1-y^2} dy$$

Here, we have $\int_{-1}^{1} y \sqrt{1 - y^2} dy = 0$ because $y \sqrt{1 - y^2}$ is an odd function and $16\pi \int_{-1}^{1} \sqrt{1 - y^2} dy = 32\pi \int_{0}^{1} \sqrt{1 - y^2} dy$ because $\sqrt{1 - y^2}$ is an even function 2. To solve $32\pi \int_{0}^{1} \sqrt{1 - y^2} dy$, we use the trig substitution $y = \sin \theta$:

$$32\pi \int_0^1 \sqrt{1 - y^2} dy = 32\pi \int_0^{\pi/2} \cos^2 \theta d\theta$$

$$= 32\pi \int_0^{\pi/2} \frac{1 + \cos(2\theta)}{2} d\theta$$

$$= 16\pi \int_0^{\pi/2} d\theta + 16\pi \int_0^{\pi/2} \cos(2\theta) d\theta$$

$$= 16\pi \int_0^{\pi/2} d\theta$$

$$= 8\pi^2.$$

Here, we have $\int_0^{\pi/2} \cos(2\theta) d\theta = 0$ because $\cos(2\theta)$ is antisymmetric across the $y = \pi/4$ line ³.

¹A function $f: [-1,1] \to \mathbb{R}$ is called an **odd function** if f(-x) = -f(x) for all $x \in [-1,1]$.

²A function $f: [-1,1] \to \mathbb{R}$ is called an **even function** if f(-x) = f(x) for all $x \in [-1,1]$.

³A function $f:[0,1] \to \mathbb{R}$ is antisymmetric across the $y=\pi/4$ line if $f(\pi/2-x)=-f(x)$ for all $x \in [0,1]$.