8. Aufgabenblatt vom Samstag, den 14. Dezember 2019 zur Vorlesung

ALP I: Funktionale Programmierung Bearbeiter: A. Rudolph und F. Formanek Tutor: Stephanie Hoffmann Tutorium 06

Abgabe: bis Montag, den 06. Januar 2020, 10:10 Uhr

- 1. Aufgabe (24 Punkte)
 - (a) Behauptung: $reverse(reverse \ xs) = xs$

Induktionsanfang:
$$xs = []$$
 reverse (reverse $[]$) $\stackrel{rev.1}{=}$ reverse $[]$ $\stackrel{rev.1}{=}$ $[]$

Induktionsvorraussetzung: für xs = xs' gilt: reverse(reverse xs') = xs'

Indukionsschritt: Sei xs = (x:xs')

reverse(reverse (x:xs'))
$$\stackrel{rev.2}{=}$$
 reverse(reverse xs' ++ [x]) \equiv

(reverse [x]) ++ reverse (reverse xs') $\stackrel{rev.2}{=}$

(reverse ([]) ++ [x]) ++ reverse(reverse xs') $\stackrel{rev.1}{=}$

([] ++ [x]) ++ reverse(reverse xs') $\stackrel{(++).1}{=}$

[x] ++ reverse(reverse xs') $\stackrel{nachIV}{=}$

[x] ++ xs' \equiv (x:xs')

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.

(b) Behauptung: reverse(xs ++ ys) = reverse ys ++ reverse xs

Induktionsanfang:
$$xs = []$$

reverse($[] ++ ys$) = reverse $ys ++$ reverse $[] \stackrel{rev.1}{=}$
reverse($[] ++ ys$) = reverse $ys ++$ $[] \stackrel{(++).1}{=}$
reverse $ys =$ reverse ys

Induktionsvorraussetzung: für xs = xs' gilt: reverse(xs' ++ ys) = reverse ys ++ reverse xs'

Indukionsschritt: Sei
$$xs = (x:xs')$$

reverse $((x:xs') ++ ys) = reverse ys ++ reverse(x:xs') \stackrel{rev.2}{=}$
reverse $((x:xs') ++ ys) = reverse ys ++ (reverse xs' ++ [x]) \stackrel{(++).2}{=}$

```
\begin{array}{l} \operatorname{reverse}(\mathbf{x}:(\mathbf{x}\mathbf{s}'++\mathbf{y}\mathbf{s})) = \operatorname{reverse} \ \mathbf{y}\mathbf{s} \ ++ \ (\operatorname{reverse} \ \mathbf{x}\mathbf{s}' \ ++ \ [\mathbf{x}]) \ \stackrel{rev.2}{=} \\ \operatorname{reverse}(\mathbf{x}\mathbf{s}'++\mathbf{y}\mathbf{s}) \ ++ \ [\mathbf{x}] = \operatorname{reverse} \ \mathbf{y}\mathbf{s} \ ++ \ (\operatorname{reverse} \ \mathbf{x}\mathbf{s}' \ ++ \ [\mathbf{x}]) \ \stackrel{nachIV}{=} \\ \operatorname{reverse} \ \mathbf{y}\mathbf{s} \ ++ \ \operatorname{reverse} \ \mathbf{x}\mathbf{s}' \ ++ \ [\mathbf{x}]) \ \equiv \\ \operatorname{reverse} \ \mathbf{y}\mathbf{s} \ ++ \ \operatorname{reverse} \ \mathbf{x}\mathbf{s}' \ ++ \ [\mathbf{x}]) \ \equiv \\ \operatorname{reverse} \ \mathbf{y}\mathbf{s} \ ++ \ \operatorname{reverse} \ \mathbf{x}\mathbf{s}' \ ++ \ [\mathbf{x}] \end{array}
```

Das bedeutet, dass die Behauptung für alle xs (endliche Listen) gilt.