基于协同的推荐

OutLine

协同过滤基础

【实践】基于协同的音乐推荐系统

系统框架

• 优点

- 充分利用群体智慧
- 推荐精度高于CB
- 利于挖掘隐含的相关性

• 缺点

- 推荐结果解释性较差
- 对时效性强的Item不适用

协同算法

- User-Based CF
- Item-Based CF

User-Based CF

- 假设
 - 用户喜欢那些跟他有相似爱好的用户喜欢的东西
 - 具有相似兴趣的用户在未来也具有相似兴趣
- 方法
 - 给定用户u,找到一个用户的集合N(u),他们和u具有相似的兴趣
 - 将N(u)喜欢的物品推荐给用户.

八斗大数据培训 基于协同的推荐

User-Based CF

八斗大数据培训 基于协同的推荐

User-Based CF

		Matrix	Titanic		Forrest	Wall-E						
	\setminus			Hard	Gump				A	В	С	D
	\							Α		0.59	0.73	0.91
	Α	5	1	?	2	2			0.50			
Ī	В	1	5	2	5	5	\rightarrow	В	0.59		0.97	0.77
ı	ь	1	5	2	5	5		C	0.73	0.97	7-7-	0.87
	С	2	?	3	5	4		_				
H	,				_			D	0.91	0.77	0.87	
	D	4	3	5	3	?						

$$\hat{r}_{ui} = \frac{\sum\limits_{v \in \mathcal{N}_i(u)} w_{uv} r_{vi}}{\sum\limits_{v \in \mathcal{N}_i(u)} |w_{uv}|}$$

$$r(C, Titanic) = \frac{0.97 * 5 + 0.87 * 3}{0.97 + 0.87} \approx 4.05$$

Item-Based CF

- 假设
 - 用户喜欢跟他过去喜欢的物品相似的物品
 - 历史上相似的物品在未来也相似
- 方法
 - 给定用户u, 找到他过去喜欢的物品的集合R(u).
 - 把和R(u)相似的物品推荐给u.

八斗大数据培训 基于协同的推荐

Item-Based CF

Matrix		Wall-E	Forrest Gump	Die Hard	Titanic	Matrix	
Titanic		2	2	?	1	5	A
Die Hard	\rightarrow	5	5	2	5	1	В
Forrest Gump		4	5	3	?	2	С
		?	3	5	3	4	D
Wall-E							

	_	Matrix	Titanic	Die Hard	Forrest Gump	Wall-E	
Matr	be		0.57	0.99	0.69	0.63	
Titar	üc	0.57		0.80	0.99	0.98	
Die Hare		0.99	0.80		0.84	0.95	
Forr		0.69	0.99	0.84		0.99	
Wall	-E	0.63	0.98	0.95	0.99		

$$\hat{r}_{ui} = \frac{\sum\limits_{j \in \mathcal{N}_{u}(i)} w_{ij} r_{uj}}{\sum\limits_{j \in \mathcal{N}_{u}(i)} |w_{ij}|}$$

$$r(C,Titanic) = \frac{0.57 * 2 + 0.80 * 3 + 0.99 * 5 + 0.98 * 4}{0.57 + 0.80 + 0.99 + 0.98} \approx 3.72$$

一一八斗大数据内部资料,盗版必究——

八斗大数据培训 基于协同的推荐

User vs. Item

	User-based	Item-based				
性能	适用用户较少场合,如果用户多,计算	适用于物品数明显小于用户数的场合,如				
	用户相似矩阵代价太大	果物品很多,计算物品相似度矩阵代价很大				
领域	时效性强,用户个性化兴趣不太明显的	长尾物品丰富,用户个性化需求强烈的领				
	领域	域				
实时性	用户有新行为,不一定造成推荐结果立	用户有新行为,一定会 <mark>导致推</mark> 荐结果的实				
	即变化	时变化				
冷启动	在新用户对很少的物品产生行为后,不					
	能立即对她进行个性化推荐,因为用户	新用户 <mark>只要对一个</mark> 物品 <mark>产生行</mark> 为,就可以				
	相似度表是每个一段时间离线计算的	给他推荐和该物品相关的其他物品				
	新物品上线后一段时间,一旦有用户对	但没有办法在不离线更新物品相似度表的				
	物品产生行为,就可以将新物品推荐给	情况下将新物品推荐给用户				
	和对它产生行为的用户兴趣相似的其他					
	用户					
推荐理由	很难提供令用户信服的推荐解释	利用用户的历史行为给用户做推荐解释,				
	——八斗大数据内部资	为以 令 用學比较詹服				

冷启动

• 分为三类

- 用户冷启动
 - 提供热门排行榜, 等用户数据收集到一定程度再切换到个性化推荐
 - 利用用户注册时提供的年龄、性别等数据做粗粒度的个性化
 - 利用用户社交网络账号,导入用户在社交网站上的好友信息,然后给用户推荐其好友喜欢的物品
 - 在用户新登录时要求其对一些物品进行反馈,收集这些兴趣信息,然后给用户推荐相似的物品

冷启动

• 分为三类

- 物品冷启动
 - 给新物品推荐给可能对它感兴趣的用户,利用内容信息,将他们推荐给喜欢过和它们相似的物品的用户
 - 物品必须能够在第一时间展现给用户,否则经过一段事件后,物品的价值就大大降低了
 - UserCF和ItemCF都行不通,只能利用Content based解决该问题,频繁更新相关性数据
- 系统冷启动
 - 引入专家知识, 通过一定高效方式迅速建立起物品的相关性矩阵

OutLine

协同过滤基础

【实践】基于协同的音乐推荐系统

实现方案

- 倒排式
- 分块式

• 输入数据

							user	'S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5		***	5		4	
	2			5	4			4			2	1	3
items	3	2	4		1	2		3		4	3	5	
()	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

• 相似度计算公式

$$w_{ij} = \frac{\left(\sum_{u \in U(i,j)} r'_{ui} * r'_{uj}\right) * (|U(i,j)| - 1)}{\sqrt{\sum_{u \in U(i,j)} r'_{ui}^2 * \sum_{u \in U(i,j)} r'_{uj}^2 * (|U(i,j)| - 1 + \lambda)}}$$

Wij表示标号为i,j的两个item的相似度

U(i,j)表示同时对i,j有评分的用户的集合

Rui表示用户u对item i的评分

参数lambda为平滑(惩罚)参数

- 详细Hadoop过程:
 - 具体做法就是:
 - 在MR的map阶段将每个用户的评分 item组合成pair
 <left,right,leftscore,rightscore> 输 出,left作为分发键,left+right作为 排序键。
 - 在reduce阶段,将map中过来的数据 扫一遍即可求得所有item的相似度。

八斗大数据培训 基于协同的推荐

实现方案一一分块式

实现方案一一倒排式开发步骤

• 第一步: 准备数据

```
- 数据格式: uid,itemid,score
```

1,100001,5

1,100002,3

1,100003,4

1,100004,3

1,100005,3

1,100007,4

1,100008,1

1,100009,5

1,1000011,2

- 第二步: 开发MapReduce程序
 - 1、归—UI矩阵
 - Map
 - In
 - » Line: u, i, s
 - Out
 - » Key: i
 - » Value: u, s
 - Reduce
 - In
 - » Key: i
 - » Value: list((u, s))
 - Out
 - » Key: u
 - » Value: i, s_new

- 第二步: 开发MapReduce程序
 - 2、衍生II Pair对

```
Map
In
» Key: u
» Value: i, s_new

Out
» Key: u
» Value: i, s_new
```

Reduce

– In

```
» Key: u
» Value: list((i, s_new))
– Out
» Key_1: i
» Value_1: j, s_new_i * s_new_j
» Key_2: j
» Value_2: i, s_new_i * s_new_j
— 一八子大数据内部资料,盗版必究——
```

实现方案——倒排式

- 第三步: 开发MapReduce程序
 - 3、生成结果

```
    Map

    - In
         » Key: i
         » Value: j, s new i * s new j
    Out
         » Key: <i, j>
         » Value: s new i * s new j
```

Reduce

```
- In
    » Key: <i, j>
    » Value: list((s_new_i * s_new_j))
Out
    » Key: i
    » Value: j, score
```

Q&A

@八斗学院