The anatomy of the simple epidemic

- •Initial exponential growth with rate R₀
- •Infection depletes the pool of susceptibles
- effective reproductive ratio R_E decreases
- • R_E drops with susceptibles proportion: $R_E = R_0 s$. (eg R_0 =18, s=0.5 makes R=9 secondary cases)
- •R_E <1: Cases fall and epidemic dies out

The S-I-R model

Change in S = + new births – new infections - deaths

Per infectious rate Probability of Probability that of contact with Infection given 'contactee' is Number of others * contact * suceptible * infectious

The simple S-I-R model

Change in S = + new births – new infections - deaths

Per infectious rate Probability of Probability that of contact with Infection given 'contactee' is Number of others * contact * suceptible * infectious

Transmission rate,
$$\beta$$

$$\frac{dS}{dt} = \nu N - \beta \frac{S}{N} I - \mu S$$

 $\nu = \text{natality rate}$

 $\mu = \text{mortality rate}$

The simple S-I-R model

Change in S = + new births – new infections - deaths

Transmission rate,
$$\beta$$

$$\frac{dS}{dt} = \nu N - \beta \frac{S}{N} I - \mu S$$

$$\nu = \text{natality rate}$$

$$\mu = \text{mortality rate}$$

Change in I = + new infections – new recovered - deaths

$$\frac{dI}{dt} = \beta \frac{S}{N} I - \gamma I - \mu I$$

$$\gamma = \frac{1}{\text{latent+infectious period}}$$

Ex. Outbreak of flu in a British boarding school

In-host dynamics -> population flows

