

Power System Stability

Power System Dynamic Models
Small-signal Stability
Transient Stability

Stability Concepts

- Small-signal Stability
 - Ability to damp out small perturbations
 - Oscillations?
- Transient stability
 - Recovery from large disturbances
 - Islanding? Voltage collapse?

Stability concepts

- Small signal stability
 - Load fluctuations
 - Generation changes
 - Oscillatory modes
 - well damped?

Small-signal stability

Positive damping
Oscillations damp out

Negative damping
Growing oscillations

Well-damped oscillations

Poorly Damped Oscillations

World Class. Face OF Ct 29 2018 European Event

Small-signal instability in WECC

Small-signal stability

Small-signal stable equilibrium

Small-signal unstable equilibrium

Small-signal stability

Stability concepts

- Transient stability
 - Faults/line openings
 - Generator outages
 - Major disturbances
 - Loss of synchronization?
 - Voltage declines

Transient stability

Transient instability

Islanding

Stability Analysis

- Modeling
 - Swing equations model
- Analysis
 - Eigenvalues (Small signal stability)
 - Numerical Integration (Transient Stability)
 - Equal Area Criterion (Transient stability)
- Controls
 - Governor controls/AGC

Rotor electromechanics

 β = actual angular displacement of the rotor θ = relative angular displacement with respect to 60 Hz frame

$$\beta = \omega_S t + \theta - \pi/2, \, \dot{\theta} = \dot{\beta} - \omega_S = \omega - \omega_S$$
$$J\ddot{\beta} = T_m - T_e - T_d = J\ddot{\theta}$$

 ω = actual angular speed of the rotor

Swing equations

$$J\ddot{\theta} = T_m - T_e - T_d$$

$$J\omega_S \ddot{\theta} = T_m \omega_S - T_e \omega_S - T_d \omega_S$$

$$\frac{J\omega_S \ddot{\theta}}{S \text{ rating}} = \frac{T_m \omega_S}{S \text{ rating}} - \frac{T_e \omega_S}{S \text{ rating}} - \frac{T_d \omega_S}{S \text{ rating}}$$

$$= P_m(p. u.) - P_e(p. u.) - P_d(p. u.)$$

$$H = \frac{Kinetic \ Energy}{MVA \ rating} = \frac{1/2J\omega_S^2}{S \text{ rating}} = \text{Inertia time-constant}$$

$$\Rightarrow \frac{J\omega_S}{S \text{ rating}} = \frac{2H}{\omega_S}$$

Machine inertia

Stored energy in rotor interias

$$\sum_{i} P_{Mi}$$

$$\sum_{i} P_{Gi} = \sum_{i} P_{Li} + \sum_{i} \sum_{j} P_{Loss,ij}$$
 Change very fast very fast

Swing equations

$$\Rightarrow \frac{2H}{\omega_S} \ddot{\theta} = P_m(p.u.) - P_e(p.u.) - P_d(p.u.)$$

$$\dot{\theta} = \omega_r - \omega_S, \quad \omega_r = \text{Speed of the rotor}$$

$$\frac{2H}{\omega_S} \dot{\omega_r} = P_m - P_e - P_d,$$

Define $\omega(p.u.) = \omega_r/\omega_s$. Then,

$$\dot{\theta} = (\omega - 1)\omega_s$$
 $2H\dot{\omega} = P_m - P_e - P_d$

Classical machine model

Assume
$$P_d = K_D(\omega - 1)$$

 $\dot{\theta} = (\omega - 1)\omega_S$
 $2H\dot{\omega} = P_m - P_e - K_D(\omega - 1)$

 x_{di}' = Transient reactance of the stator coil

 E_i' = Induced Voltage (Assume constant)

 θ_i = Relative rotor angle

Example

Swing equations model

$$\theta_{2} = (\omega_{2} - 1)\omega_{S}$$

$$2H_{2}\dot{\omega}_{2} = P_{T2} - P_{G2} - K_{D2}(\omega_{2} - 1)$$

$$where \quad P_{G2} = \frac{E_{2}'}{x_{d2}' + x}\sin\theta_{2}$$

$$Suppose \quad x = 0.5, x_{d2}' = 0.25, P_{T2} = 1,$$

$$K_{D2} = 1, \omega_{S} = 2\pi \ 60 = 377,$$

$$H_{2} = 5, E_{2}' = 1.5$$

$$Then, P_{G2} = \frac{1.5}{0.75}\sin\theta_{2} = 2\sin\theta_{2}$$

WASHINGTON STATE [JNIVERSITY

Swing equations for the system

$$x = 0.5, x_{d2}' = 0.25, P_{T2} = 1, K_{D2} = 1,$$

 $\omega_s = 2\pi 60, H_2 = 5, E_2' = 1.5$

$$\dot{\theta_2} = (\omega_2 - 1)377$$

$$10\dot{\omega_2} = 1 - 2\sin\theta_2 - (\omega_2 - 1)$$

Faulted system

Thevenin equivalents

$$P_{G2} = \frac{E_2' V_{th}}{x_d' + x_{th}} \sin \theta_2$$

Thevenin equivalents

$$\overrightarrow{V_{th}} = (1 \angle 0) \frac{j\frac{x_2}{2}}{jx_1 + j\frac{x_2}{2}}$$

$$Z_{th} = (jx_1) \parallel \left(j\frac{x_2}{2}\right)$$
$$= jx_{th}$$

Faulted system equations

$$\dot{\theta_{2}} = (\omega_{2} - 1)\omega_{S}$$

$$2H_{2}\dot{\omega_{2}} = P_{T2} - P_{G2} - K_{D2}(\omega_{2} - 1)$$

$$where P_{G2} = \frac{E_{2}'V_{th}}{x_{d}' + x_{th}}\sin\theta_{2}$$

Small-Signal Stability

Model:
$$\frac{dx}{dt} = f(x)$$
 $x \in \mathbb{R}^n$

Equilibrium point : $f(x_e) = 0$

Linearized system: $\Delta x = J \Delta x$ where $J = \frac{\partial f}{\partial x}\Big|_{x_e}$

- -Equilibrium
- -S.S.Stability?

Small-signal stability analysis

General:

$$\dot{x} = f(x)$$

x_e is an equilibrium

$$\Delta x = x - x_e \Longrightarrow x = \Delta x + x_e$$

$$\dot{\Delta x} = \dot{x} = f(x_e + \Delta x)$$

$$= f(x_e) + \frac{\partial f}{\partial x}\Big|_{x_e} \Delta x + \frac{\partial^2 f}{\partial x^2}\Big|_{x_e} \Delta x^2 + O(3) + \cdots$$

$$\dot{\Delta x} = J\Delta x$$
, where $J = \frac{\partial f}{\partial x}\Big|_{x_e}$

SHINGTON STATE

Eigenvalues

Eigenvalues of J are the solutions of $det(\lambda I - J) = 0$

All eigenvalues have negative real parts \Rightarrow x_e is a small-signal stable eq. point

Example

$$\dot{x} = -\sin(x)$$

Equilibrium:

set
$$\sin(x) = 0 \Rightarrow x = 0, \pm \pi, \pm 2\pi \dots = \pm n\pi$$

Multiple Equilibrium points.

Small-Signal Model around an Equilibrium.

Linearization.

Compute eigenvalues.

Small-signal linearized model

$$\dot{x} = -\sin(x)$$

$$x = 0$$
 equilibrium, $J = -\cos(0) = -1$

$$\Delta \dot{x} = -\Delta x \implies \text{Eigenvalue of } -1 \implies \text{stable}$$

Equilibrium x = 0 is small-signal stable

Washington State

Example (continued)

$$\dot{x} = -\sin(x)$$

$$x = 0 \Longrightarrow J = \frac{\partial f}{\partial x} \bigg|_{x=0} = -\cos(x) \bigg|_{x=0} = -1$$

-1 has negative real part $\Rightarrow x = 0$ is s.s.stable.

$$x = \pi \Longrightarrow J = \frac{\partial f}{\partial x}\Big|_{x=\pi} = -\cos(x)\Big|_{x=\pi} = +1$$

+1 has positive real part $\Rightarrow x = \pi$ is s.s.unstable. Small perturbations can drive the system away from equilibrium $x = \pi$.

Example (continued)

$$x = 2\pi \Longrightarrow J = \frac{\partial f}{\partial x}\bigg|_{x=2\pi} = -\cos(x)\bigg|_{x=2\pi} = -1$$

 $\Rightarrow x = 2\pi$ is s.s.stable.

Equilibria
$$x = n\pi$$
 $<$ s.s. stable if n even $<$ s.s. unstable if n odd.

Example 2

$$x = 0.5, x_{d2}' = 0.25, P_m = 1p.u.,$$
 $P_e = 2\sin\theta_2$
 $K_{D2} = 1p.u., \omega_s = 2\pi 60 = 377,$
 $H_2 = 5, E_2' = 1.5$

Equilibrium points

$$\dot{\theta_2} = (\omega_2 - 1)377$$

$$\dot{\omega_2} = \frac{1}{10} [1 - 2\sin\theta_2 - (\omega_2 - 1)]$$

Equilibrium points:

$$\dot{\theta_2} = 0 \Longrightarrow \omega_2 = 1$$

$$\dot{\omega_2} = 0 \Longrightarrow 1 - 2\sin\theta_2 - (\omega_2 - 1) = 0$$

$$2\sin\theta_2 = 1 \Longrightarrow \sin\theta_2 = \frac{1}{2}$$

$$\Longrightarrow \theta_2 = 30^o, 150^o, 390^o,$$

Power – Angle curve

Equilibrium point are

$$(\theta, \omega)^T = (30^o, 1)^T or (150^o, 1)^T or (390^o, 1)^T$$

or $(510^o, 1)^T$...

Jacobian

$$\dot{\theta}_2 = (\omega_2 - 1)377 = f_1(\theta_2, \omega_2)$$

$$\dot{\omega}_2 = \frac{1}{10} [1 - 2\sin\theta_2 - (\omega_2 - 1)] = f_2(\theta_2, \omega_2)$$

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial \theta_2} & \frac{\partial f_1}{\partial \omega_2} \\ \frac{\partial f_2}{\partial \theta_2} & \frac{\partial f_2}{\partial \omega_2} \end{bmatrix} = \begin{bmatrix} 0 & \omega_s \\ -\frac{2}{10} \cos \theta_2 & -\frac{1}{10} \end{bmatrix}$$

Jacobian

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial \theta_2} & \frac{\partial f_1}{\partial \omega_2} \\ \frac{\partial f_2}{\partial \theta_2} & \frac{\partial f_2}{\partial \omega_2} \end{bmatrix} = \begin{bmatrix} 0 & \omega_s \\ -\frac{2}{10}\cos\theta_2 & -\frac{1}{10} \end{bmatrix}$$
$$(30^o, 1)^T \Longrightarrow \frac{\partial f}{\partial x} \Big|_{(30^o, 1)^T} = \begin{bmatrix} 0 & 377 \\ -\frac{2}{10}\cos\theta_2 & -0.1 \end{bmatrix}$$
$$J = \begin{bmatrix} 0 & 377 \\ -0.17 & -0.1 \end{bmatrix}$$

Eigenvalues

$$J = \begin{bmatrix} 0 & 377 \\ -0.17 & -0.1 \end{bmatrix}$$

$$\det(\lambda I - J) = 0$$

$$\det(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} 0 & 377 \\ -0.17 & -0.1 \end{bmatrix}) = 0$$

$$\det\begin{bmatrix} \lambda & -377 \\ 0.17 & \lambda + 0.1 \end{bmatrix} = 0$$

$$\Rightarrow \lambda^2 + 0.1\lambda + 65.3 = 0$$

$$\lambda = \frac{-0.1 \pm \sqrt{0.1^2 - 4(65.3)}}{2}$$

Eigenvalues

$$J = \begin{bmatrix} 0 & 377 \\ -0.17 & -0.1 \end{bmatrix} \Rightarrow \det(\lambda I - J) = 0$$

$$\lambda^2 + 0.1\lambda + 65.3 = 0$$

$$\lambda = \frac{-0.1 \pm \sqrt{0.1^2 - 4(65.3)}}{2}$$

$$= \frac{-0.05 \pm j8.08}{\downarrow} \Rightarrow Freq = \frac{8}{2\pi} \approx 1.286 \, Hz$$
negative \Rightarrow Equilibrium $(30^o, 1)^T$ is small-signal stable

Eigenvalues

Standard form:
$$-\xi \omega_n \pm j\omega_n \sqrt{1-\xi^2}$$

$$\Rightarrow \xi = \frac{|Real\ part|}{\sqrt{Real^2 + Imag^2}} = \frac{0.05}{\sqrt{0.05^2 + 8.08^2}}$$

$$= 0.006 = 0.6\% \implies low\ damping$$

Equilibrium point $(150^o, 1)^T \Longrightarrow$

$$J = \begin{bmatrix} 0 & \omega_s \\ -\frac{2}{10}\cos\theta & -\frac{1}{10} \end{bmatrix} \Big|_{(150^o, 1)} = \begin{bmatrix} 0 & 377 \\ 0.17 & -0.1 \end{bmatrix}$$

Unstable equilibrium

$$\Rightarrow \lambda^2 + 0.1\lambda - 65.3 = 0$$

$$\lambda = \underbrace{8.03}_{\downarrow}, -8.13$$

$$\text{positive real part}$$

$$\Rightarrow \text{Equilibrium } (150^o, 1)^T \text{s. s. unstable}$$

$$\text{small perturbations} \Rightarrow \text{will drive system}$$

$$\text{away.}$$

cannot operate at $(150^{\circ}, 1)^{T}$.

Example 3

$$\dot{x_1} = -x_1 + x_1 x_2
\dot{x_2} = -x_2 + x_1 x_2
\Rightarrow \dot{x_1} = -x_1 (1 - x_2)
\Rightarrow \dot{x_2} = -x_2 (1 - x_1)
\dot{x_1} = 0 \text{ and } \dot{x_2} = 0 \text{ for eq. point}
\Rightarrow \dot{x_1} = 0 \Rightarrow x_1 = 0 \text{ or } x_2 = 1
\Rightarrow \dot{x_2} = 0 \Rightarrow x_2 = 0 \text{ or } x_1 = 1
\frac{\partial f}{\partial x} = \begin{bmatrix} -1 + x_2 & x_1 \\ x_2 & -1 + x_1 \end{bmatrix}$$

Analysis

eq. points:
$$(0,0)^T$$
 and $(1,1)^T$
 $(0,0)^T$: $J = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \Rightarrow (\lambda + 1)^2 = 0$
 $\Rightarrow \lambda = -1, -1 \Rightarrow S.S.Stable$
 $(1,1)^T$: $J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow \lambda^2 - 1 = 0$
 $\Rightarrow \lambda = 1, -1 \Rightarrow S.S.Unstable$

WASHINGTON STATE UNIVERSITY

Transient Stability Analysis

Pre-fault
$$(\frac{\theta_s}{1})$$
 Fault-on $(\frac{\theta_c}{\omega_c})$ Post-fault $t < 0$ $t > t_c$

Pre-fault

Fault-on

Post-fault

$$\dot{\theta} = (\omega - 1)\omega_s$$

$$2H\dot{\omega} = P_m - P_e^{post} - P_d$$

$$P_e^{post} = P_{max}^{post} \sin \theta, \ P_{max}^{post} = \frac{E' \cdot 1}{x_d' + x_1}$$

Can system recover?

Transient stable case

Transient unstable case

Example

Pre-fault:

Pre-fault system

$$P_e = \frac{1.5}{0.5} \sin \theta = 3 \sin \theta$$
$$\dot{\theta} = (\omega - 1)\omega_s$$
$$10\dot{\omega} = 1 - 3 \sin \theta - (\omega - 1)$$

Equilibria:

$$\omega = 1, \qquad 1 = 3\sin\theta \implies \theta = \sin^{-1}\frac{1}{3} = 19.5^{\circ}$$
$$x_s^{pre} = \begin{pmatrix} 19.5^{\circ} \\ 1 \end{pmatrix}$$

Fault-on system

Fault occurs $\psi t = 0$

Fault-on: middle of lower line

1∠0

Thevenin equivalents

↓ Thevenin Equivalent

$$V_{th} = \frac{0.25}{0.5 + 0.25} \cdot 1 \angle 0 = \frac{1}{3} \angle 0$$

Thevenin equivalents

Fault-on system response

$$\dot{\theta} = (\omega - 1)\omega_s$$

$$10\dot{\omega} = 1 - 1.2\sin\theta - (\omega - 1)$$

$$Integrate\ from \binom{19.5^o}{1} or \binom{0.3398}{1} at\ t=0\ to$$

$$clearing\ time\ say\ t=6\ cycles=0.1\ sec.$$

Post-fault system

Integrate from
$$\begin{pmatrix} \theta_c \\ \omega_c \end{pmatrix}$$
 at $t=t_c$ onwards to see if

frequency returns to 1 (Stable) or diverges (Unstable).

WASHINGTON STATE UNIVERSITY

Euler Numerical integration

$$\dot{x} = f(x), x(t_0) = x_0, h = \text{step size}$$

$$\frac{\Delta x}{\Delta t} = f(x) \Longrightarrow \Delta x = f(x) \cdot \Delta t$$

$$\Longrightarrow x(t_0 + h) - x(t_0) = f(x(t_0)) \cdot h$$

 $x(t_0 + h) = x(t_0) + f(x(t_0)) \cdot h$

WASHINGTON STATE UNIVERSITY

Euler Numerical integration

$$\dot{x} = f(x), x(t_0) = x_0, h = \text{step size}$$

 $x(t_0 + h) = x(t_0) + f(x(t_0)) \cdot h$

$$\stackrel{k=0}{\Longrightarrow} x_{k+1} = x(t_{k+1}) = x_k + f(x_k) \cdot h$$

$$t_k = t_0 \qquad t_{k+1} = t_k + h$$

$$x_k = x_0 \qquad k=k+1$$

Fault-on trajectory

$$\mathbf{x}_{s}^{pre} = \begin{pmatrix} 0.3398 \\ 1 \end{pmatrix}$$

$$\Downarrow t = 0$$

Integrate fault-on

$$\dot{\theta} = (\omega - 1)\omega_S$$

$$10\dot{\omega} = 1 - 1.2\sin\theta - (\omega - 1)$$

from
$$\binom{0.3398}{1}$$
 at t=0

to
$$\begin{pmatrix} \theta_c \\ \omega \end{pmatrix}$$
 at $t=t_c$

Post-fault system

$$\Downarrow t = t_c$$

Integrate post-fault say for 30 seconds

$$\dot{\theta} = (\omega - 1)\omega_{S}$$

$$10\dot{\omega} = 1 - 2\sin\theta - (\omega - 1)$$

from
$$\begin{pmatrix} \theta_c \\ \omega_c \end{pmatrix}$$
 at t=t_c

onwards

Euler Algorithm

$$k = 0$$

$$t_{k} = t_{0}, x_{k} = x_{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$t_{k} = t_{final}? \xrightarrow{Yes} Stop$$

$$\downarrow No$$

$$x(t_{k+1}) = x(t_{k}) + f(x(t_{k})) \cdot h$$

$$t_{k+1} = t_{k} + h$$

Euler Iterations Example

$$\mathbf{x}_{s}^{pre} = \begin{pmatrix} 0.3398 \\ 1 \end{pmatrix}$$

$$\psi \ t = 0$$

Integrate fault-on

$$\dot{\theta} = (\omega - 1)\omega_S$$

$$10\dot{\omega} = 1 - 1.2\sin\theta - (\omega - 1)$$

from
$$\binom{0.3398}{1}$$
 at t=0.
h = 0.002.

Euler Iterations Example

$$\begin{aligned} \dot{\theta}|_{t=0} &= 0.0\\ \dot{\omega}|_{t=0} &= 0.06\\ \theta\Big|_{0.002} &= 0.3398 + 0.002 * 0.0 = 0.3398\\ \omega|_{0.002} &= 1 + 0.002 * 0.06 = 1.00012 \end{aligned}$$

$$\Downarrow h = 2$$

Euler Iterations

$$\psi k = 2$$

$$\dot{\theta}|_{t=0.002} = 0.0452$$

$$\dot{\omega}|_{t=0.002} = 0.06$$

$$\psi$$

$$\theta|_{0.004} = 0.3398 + 0.002 * 0.0452 = 0.3399$$

$$\omega|_{0.004} = 1.00012 + 0.002 * 0.06 = 1.00024$$

Continue till t=tc. Then, switch to post-fault equations and continue iterations till end time.

Final Exam

- ProctorU exam on Dec 14th and 15th
- 2 hour exam
- Schedule anytime during the two day window
- 3 formula sheets allowed
- Scientific calculator with no programs

WASHINGTON STATE UNIVERSITY

Transient Stability Analysis

Pre-fault
$$\begin{pmatrix} \theta_s \\ 1 \end{pmatrix}$$
 Fault-on $\begin{pmatrix} \theta_c \\ \omega_c \end{pmatrix}$ F t < 0 to t_c

Post-fault
$$t > t_c$$

Equal Area Criterion

Assume

$$t_c = 0$$

Analytical criterion

Pre-fault

$$P_e^{pre} = \frac{E' \cdot 1}{x_{d'} + (x_1 \| x_2)} \sin \theta$$

$$P_{max}^{pre} = \frac{E' \cdot 1}{x_{d'} + (x_1 \| x_2)}$$

Fault-on system

Post-fault system

$$P_e^{post} = \frac{E' \cdot 1}{x_{d'} + x_1} \sin \theta$$

$$P_{max}^{post} = \frac{E' \cdot 1}{x_{d'} + x_1}$$

Power-Angle curves

$$P_{max}^{pre} = \frac{E' \cdot 1}{x_{d'} + (x_1 \parallel x_2)}$$

$$P_{max}^{fault} = \frac{E' \cdot V_{Th}}{x_{d'} + x_{Th}}$$

$$P_{max}^{post} = \frac{E' \cdot 1}{x_d' + x_1}$$

Transient analysis

Fault clearing assumed instantaneous. K₀=0

$$2H\dot{\omega} = P_m - P_e$$

1)
$$P_e^{post} < P_m \Rightarrow$$

 $\dot{\omega} > 0 \Rightarrow \omega \uparrow$

2)
$$P_e^{post} > P_m \Rightarrow$$

 $\dot{\omega} < 0 \Rightarrow \omega \downarrow$

Transient stable case

Transient unstable case

Equal Area Criterion

$$A_a < A_d^{max}$$
 $\Rightarrow Stable$
 $A_a > A_d^{max}$
 $\Rightarrow Unstable$

Area Definitions

$$A_{a} = \int_{\theta_{s}^{pre}}^{\theta_{s}^{post}} \left(P_{T} - P_{e}^{post} \right) d\theta \propto KE_{acceleration}$$

$$A_{d}^{max} = \int_{\theta_{s}^{post}}^{\theta_{u}^{post}} \left(P_{e}^{post} - P_{T} \right) d\theta \propto KE_{deceleration}^{max}$$

$$A_a < A_d^{max} \Longrightarrow Transient Stable$$

 $A_a > A_d^{max} \Longrightarrow Transient Unstable$

Equal Area Criterion

- \Rightarrow Pick up K.E. during acceleration from θ_s^{pre} to θ_s^{post}
- \Rightarrow Loses K.E. between θ_s^{post} and θ_u^{post}
- ⇒ When K.E. becomes zero, rotor angle turns back
 - \Rightarrow stable if $KE_{acc} < KE_{dmax}$, i.e. $A_a < A_{dmax}$
- \Rightarrow A_{dmax} < A_a \Rightarrow rotor angle goes past θ_u^{post}
 - ⇒ Continues to accelerate
- $\theta_{\mathcal{U}_{n} \text{ State University}}^{post} \Longrightarrow \text{"point of no return"} \Longrightarrow \text{Transient unstable}_{79}$

Example

Pre-fault:

$$P_e^{pre}=2\sin\theta$$
 , $P_m=1\Longrightarrow\theta_s^{pre}=30^o$

Post-fault:

$$P_e^{post} = \frac{1.5}{1.25} \sin \theta = 1.2 \sin \theta \Longrightarrow \theta_s^{post} = 56.4^o$$
$$\theta_u^{post} = 123.6^o$$

Area computations

$$A_{a} = \int_{30^{o}}^{56.4^{o}} (1 - 1.2 \sin \theta) d\theta$$

$$= \int_{0.985}^{0.985} (1 - 1.2 \sin \theta) d\theta$$

$$= (\theta + 1.2 \cos \theta) \Big|_{0.524}^{0.985} = 0.0856$$

$$A_{d}^{max} = \int_{0.985}^{2.157} (1.2 \sin \theta - 1) d\theta$$

$$= (-1.2 \cos \theta - \theta) \Big|_{0.985}^{2.157} = 0.1553$$

$$A_{d}^{max} > A_{a} \Rightarrow Transient Stable$$

81

Higher loading case

$$\begin{aligned} \operatorname{Say} P_T &= 1.1 \\ \Rightarrow \theta_s^{pre} &= 0.582 \\ \theta_s^{post} &= 1.16 \\ \theta_u^{post} &= 1.98 \\ A_a &= \int_{0.582}^{1.16} (1.1 - 1.2\sin\theta) d\theta = 0.1135 \\ A_d^{max} &= \int_{1.16}^{1.98} (1.2\sin\theta - 1.1) d\theta = 0.0555 \\ A_d^{max} &< A_a \Rightarrow Unstable \end{aligned}$$

Transient Instability

$$A_a > A_d^{max} \Longrightarrow$$

KE keeps increasing Rotor spins faster and faster \Rightarrow Instability

Equal Area Criterion Summary

$$\dot{\theta} = (\omega - 1)\omega_S$$

$$2H\dot{\omega} = P_T - P_e - K_D(\omega - 1)$$

$$K_D = 0, t_c = 0$$

Washington State

Analytical Criterion

Stability Concepts

- Small-signal Stability
 - Ability to damp out small perturbations
 - Oscillations?
- Transient stability
 - Recovery from large disturbances
 - Islanding? Voltage collapse?