Asked 13 years, 10 months agoModified 1 year agoViewed 42k times

Let f f be an *infinitely differentiable function* on [0,1][0,1] and suppose that for each $x \in [0,1]x \in [0,1]$ there is an integer $n \in \mathbb{N}n \in \mathbb{N}$ such that $f^{(n)}(x) = 0$ $f^{(n)}(x) = 0$. Then does f f coincide on [0,1][0,1] with some polynomial? If yes then how.

I thought of using Weierstrass approximation theorem, but couldn't succeed. real-analysispolynomials

ShareCiteImprove this questionFollow

edited Jul 23, 2018 at 11:06
Ali Taghavi

asked Jul 31, 2010 at 21:37

C.9

ShareCitemprove this questionFollow

11 This seems like a homework problem in a 1st year course on calculus. – Ryan Budney Jul 31, 2010 at 21:51

- 21 This is a jewel, I will try to recall the solution. Andrey Gogolev Jul 31, 2010 at 22:05
- 27 @Ryn: no, this is a classic little problem. @Michael: the problem is correct as stated. Qiaochu Yuan Jul 31, 2010 at 22:39
- This is basically a double-starred exercise in the book "Linear Analysis" by Bela Bollobas (second edition), and presumably uses the Baire Category Theorem. Since it is double-starred, it is probably very hard!! Solutions are not given, and even single starred questions in that book can be close to research level. However, the version in that book has f on the whole real line, and $f^{(m)}(x) = 0$ for ALL m > nm > n. So are you sure your question is correct, since it's assuming a lot less but coming to roughly the same conclusion? Zen Harper Jul 31, 2010 at 23:32
- 35 I agree with Andrew L.'s opinion(but not the more extreme part of it). If such hard questions are given as homework for a first year calculus course, then there will be complaints about the instructor, and indeed about the department. It is my modest contention that anyone who criticizes a question as homework should be able to substantiate it by giving a short solution in the comments. This doesn't take much effort. What I am preaching is just a variant of "All right, but let the one who has never sinned throw the first stone!". Before closing a question as homework, first solve it. Anweshi Aug 1, 2010 at 13:16

Show 24 more comments

10 Answers Sorted by: Highest score (defai

183 Consider the following closed sets:

$$X = \{x : \forall (a,b) \ni x : f \mid_{(a,b)} \text{ is not a polynomial}\}.$$

 $X = \{x : \forall (a,b) \ni x : f \mid_{(a,b)} \text{ is not a polynomial}\}.$

It is clear that XX is a non-empty closed set without isolated points. Applying Baire category theorem to the covering $\{X \cap S_n\}\{X \cap S_n\}$ of XX we get that there exists an interval (a,b)(a,b) such that $(a,b) \cap X(a,b) \cap X$ is non-empty and

$$(a,b) \cap X \subset S_n$$

 $(a,b) \cap X \subset S_n$

for some nn. Since every $x \in (a,b) \cap Xx \in (a,b) \cap X$ is an accumulation point we also have that $x \in S_m x \in S_m$ for all $m \ge nm \ge n$ and $x \in (a,b) \cap Xx \in (a,b) \cap X$.

So we get that $f^{(n)} = 0$ $f^{(n)} = 0$ on (a, b)(a, b) which is in contradiction with $(a, b) \cap X(a, b) \cap X$ being non-empty.

ShareCiteImprove this answerFollow

edited Nov 1, 2011 at 11:19

Emil Jeřábek

answered Jul 31, 2010 at 23:20

Andrey Gogolev

- 32 Thank you! Filling in all the details to this outline is a fantastic exercise in basic real analysis and topology. It strikes me as a great "capstone" to a relevant course. It went through at least 20 relevant topics/ideas: (in roughly decreasing order of complexity) Baire Category Theorem, Heine-Borel, infs/sups (so LUB property of R), compactness, Cauchy/convergent sequences/completeness, (infinite) differentiability, continuity, connectedness, perfect sets, limit points (from the sides), induction, isolated points, open/closed sets, interiors, derivatives of polynomials, and boundedness.

 Joshua P. Swanson May 8, 2011 at 22:48
- 3 Is a similar statement true for functions of n>1 variables? Alex W Jan 14, 2019 at 17:40
 @AlexW In that case, the natural hypothesis would be that for each $x_0 \in \mathbb{R}^n x_0 \in \mathbb{R}^n$ there exists a multi-index $\alpha = \alpha(x_0)\alpha = \alpha(x_0)$ such that $\frac{\partial^{\alpha|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}\Big|_{x_0} = 0$ $\frac{\partial^{\|\alpha\|}f}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots\partial x_n^{\alpha_n}}\Big|_{x_0} = 0$. Essentially the same argument works, by appropriately replacing intervals (a,b)(a,b) as in this answer with open balls. In particular there are only countably many multi-indices so Baire's theorem applies. MathematicsStudent1122 May 1, 2020 at 16:02
- @MathematicsStudent1122 Let $f(x_1, x_2) = e^{x_2} f(x_1, x_2) = e^{x_2}$, $\alpha = (1, 0)\alpha = (1, 0)$. Then $f^{(\alpha)}(x) = 0$ for all $x \in \mathbb{R}^2$ but f is not a polynomial. Alex W May 2, 2020 at 12:04 @AlexW You're right, thank you! MathematicsStudent1122 May 2, 2020 at 16:44

Show 1 more comment

Note that <u>The Fabius function</u> is nowhere analytic but admits a *dense* set of points where all but finitely many derivatives vanish.

38 ShareCiteImprove this answerFollow

edited Apr 13, 2017 at 12:58

answered May 8, 2011 at 2:12

Gerald Edgar

Add a comment

The theorem:

Theorem: Let f(x)f(x) be $C^{\infty}C^{\infty}$ on (c,d)(c,d) such that for every point xx in the interval there exists an integer N_xN_x for which $f^{(N_x)}(x)=0$ for $f^{(N_x)}(x)=0$; then f(x)f(x) is a polynomial.

is due to two Catalan mathematicians:

F. Sunyer i Balaguer, E. Corominas, Sur des conditions pour qu'une fonction infiniment dérivable soit un polynôme. Comptes Rendues Acad. Sci. Paris, 238 (1954), 558-559.

F. Sunyer i Balaguer, E. Corominas, Condiciones para que una función infinitamente derivable sea un polinomio. Rev. Mat. Hispano Americana, (4), 14 (1954).

The proof can also be found in the book (p. 53):

W. F. Donoghue, Distributions and Fourier Transforms, Academic Press, New York, 1969.

I will never forget it because in an "Exercise" of the "Opposition" to became "Full Professor" I was posed the following problem:

What are the real functions indefinitely differentiable on an interval such that a derivative vanish at each point?

ShareCiteImprove this answerFollow

edited Mar 28, 2012 at 7:20

answered Mar 27, 2012 at 17:24

Add a comment

Theorem. If $f \in C^{\infty}(\mathbb{R})$ $f \in C^{\infty}(R)$ and for every $x \in \mathbb{R}$ $x \in R$ there is a nonnegative integer nn such that $f^{(n)}(x) = 0$ $f^{(n)}(x) = 0$, then f is a polynomial.

The following exercise shows that the result cannot be to easy.

Exercise. Prove that there is a function $f \in C^{1000}(\mathbb{R})$ $f \in C^{1000}(\mathbb{R})$ which is not a polynomial, but has the property described in the above theorem.

Proof of the theorem. Let $\Omega \subset \mathbb{R}\Omega \subset R$ be the union of all open intervals $(a,b) \subset \mathbb{R}(a,b) \subset R$ such that $f|_{(a,b)}f|_{(a,b)}$ is a polynomial. The set $\Omega\Omega$ is open, so

$$\Omega = \bigcup_{i=1}^{N} (a_i, b_i),$$

$$\Omega = \bigcup_{i=1}^{N} (a_i, b_i),$$
(1)

where $a_i < b_i a_i < b_i$ and $(a_i,b_i) \cap (a_j,b_j) = \emptyset(a_i,b_i) \cap (a_j,b_j) = \emptyset$ for $i \neq ji \neq j$, $1 \leq N \leq \infty.$ Observe that $f|_{(a_i,b_i)}f|_{(a_i,b_i)}$ is a polynomial (Why?)*. We want to prove that $\Omega = \mathbb{R}\Omega = R$. First we will prove that $\overline{\Omega} = \mathbb{R}\bar{\Omega} = R$. To this end it suffices to prove that for any interval [a,b][a,b], a < ba < b we have $[a,b] \cap \Omega \neq \emptyset[a,b] \cap \Omega \neq \emptyset$. Let

$$E_n = \{x \in \mathbb{R} : f^{(n)}(x) = 0\}.$$

 $E_n = \{x \in \mathbb{R} : f^{(n)}(x) = 0\}.$

The sets $E_n \cap [a,b]E_n \cap [a,b]$ are closed and

$$[a,b] = \bigcup_{n=0}^{\infty} E_n \cap [a,b].$$
$$[a,b] = \bigcup_{n=0}^{\infty} E_n \cap [a,b].$$

Since [a,b][a,b] is complete, it follows from the Baire theorem that for some nn the set $E_n\cap [a,b]E_n\cap [a,b]$ has nonempty interior (in the topology of [a,b][a,b]), so there is $(c,d)\subset E_n\cap [a,b](c,d)\subset E_n\cap [a,b]$ such that $f^{(n)}=0$ on (c,d)(c,d). Accordingly f is a polynomial on (c,d)(c,d) and hence

$$(c,d) \subset \Omega \cap [a,b] \neq \emptyset.$$

 $(c,d) \subset \Omega \cap [a,b] \neq \emptyset.$

The set $X=\mathbb{R}\setminus\Omega X=R\setminus\Omega$ is closed and hence complete. It remains to prove that $X=\emptyset X=\varnothing$. Suppose not. Observe that every point $X\subseteq Xx\in X$ is an accumulation point of the set, i.e. there is a sequence $x_i\subseteq Xx_i\in X$, $x_i\ne x$, $x_i\ne x$, $x_i\to x$. Indeed, otherwise Xx would be an isolated point, i.e. there would be two intervals

$$(a, x), (x, b) \subset \Omega, x \in \Omega.$$

$$(a, x), (x, b) \subset \Omega, x \notin \Omega.$$
(2)

The function f f restricted to each of the two intervals is a polynomial, say of degrees n_1 n_1 and n_2 n_2 . If $n > \max\{n_1, n_2\}$ $n > \max\{n_1, n_2\}$, then $f^{(n)} = 0$ on $(a, x) \cup (x, b)(a, x) \cup (x, b)$. Since $f^{(n)}$ $f^{(n)}$ is continuous on (a, b)(a, b), it must be zero on the entire interval and hence f f is a polynomial of degree $\leq n - 1 \leq n - 1$ on (a, b)(a, b), so $(a, b) \subset \Omega(a, b) \subset \Omega$ which contradicts (2).

The space $X = \mathbb{R} \setminus \Omega X = R \setminus \Omega$ is complete. Since

$$X = \bigcup_{n=1}^{\infty} X \cap E_n,$$

$$X = \bigcup_{n=1}^{\infty} X \cap E_n,$$

the second application of the Baire theorem gives that $X \cap E_n X \cap E_n$ has a nonempty interior in the topology of XX, i.e. there is an interval (a,b)(a,b) such that

$$X \cap (a,b) \subset X \cap E_n \neq \emptyset.$$

$$X \cap (a,b) \subset X \cap E_n \neq \emptyset.$$
(3)

Accordingly $f^{(n)}(x) = 0$ $f^{(n)}(x) = 0$ for all $x \in X \cap (a,b)x \in X \cap (a,b)$. Since for every $x \in X \cap (a,b)x \in X \cap (a,b)$ there is a sequence $x_i \to xx_i \to x$, $x_i \neq xx_i \neq x$ such that $f^{(n)}(x_i) = 0$ $f^{(n)}(x_i) = 0$ it follows from the definition of the derivative that $f^{(n+1)}(x) = 0$ for every $x \in X \cap (a,b)x \in X \cap (a,b)$, and by induction $f^{(m)}(x) = 0$ for all $m \geq n$ and all $x \in X \cap (a,b)x \in X \cap (a,b)$.

We will prove that $f^{(n)} = 0$ on (a,b)(a,b). This will imply that $(a,b) \subset \Omega(a,b) \subset \Omega$ which is a contradiction with (3). Since $f^{(n)} = 0$ on $X \cap (a,b) = (a,b) \setminus \Omega X \cap (a,b) = (a,b) \setminus \Omega$ it remains to prove that $f^{(n)} = 0$ on $(a,b) \cap \Omega(a,b) \cap \Omega$. To this end it suffices to prove that for any interval $(a_i,b_i)(a_i,b_i)$ that appears in (1) such that $(a_i,b_i) \cap (a,b) \neq \emptyset(a_i,b_i) \cap (a,b) \neq \emptyset$, $f^{(n)} = 0$ on $(a_i,b_i)(a_i,b_i)$. Since (a,b)(a,b) is not contained in $(a_i,b_i)(a_i,b_i)$ one of the endpoints belongs to (a,b)(a,b), say $a_i \in (a,b)a_i \in (a,b)$. Clearly $a_i \in X \cap (a,b)a_i \in X \cap (a,b)$ and hence

 $f^{(m)}(a_i) = 0$ $f^{(m)}(a_i) = 0$ for all $m \ge nm \ge n$. If f is a polynomial of degree kk on $(a_i, b_i)(a_i, b_i)$, then $f^{(k)} f^{(k)}$ is a nonzero constant on $(a_i, b_i)(a_i, b_i)$, so $f^{(k)}(a_i) \ne 0$ $f^{(k)}(a_i) \ne 0$ by continuity of the derivative. Thus k < nk < n and hence $f^{(n)} = 0$ $f^{(n)} = 0$ on $(a_i, b_i)(a_i, b_i)$. \square

Exercise. As the previous exercise shows the theorem is not true if we only assume that $f \in C^{1000} f \in C^{1000}$. Where did we use in the proof the assumption $f \in C^{\infty}(\mathbb{R}) f \in C^{\infty}(R)$?

*It suffices to prove that f f is a polynomial on every compact subinterval $[c,d] \subset (a_i,b_i)[c,d] \subset (a_i,b_i)$. This subinterval has a finite covering by open intervals on which f f is a polynomial. Taking an integer nn larger than the maximum of the degrees of these polynomials, we see that $f^{(n)} = 0$ on [c,d][c,d] and hence f f is a polynomial of degree < n < n on [c,d][c,d].

ShareCiteImprove this answerFollow

edited Jun 1, 2019 at 12:39

answered Mar 30, 2018 at 14:34

Piotr Hajlasz

I like this answer a lot, but I am confused about the sentence "The set $\Omega\Omega$ is open so $\Omega = \bigcup_{i=1}^{\infty} (a_i,b_i)\Omega = \bigcup_{i=1}^{\infty} (a_i,b_i)$ where $a_i < b_i a_i < b_i$ and $(a_i,b_i)\cap (a_j,b_j)=\emptyset(a_i,b_i)\cap (a_j,b_j)=\emptyset$ for $i\neq ji\neq j\}$. Is the last part (empty intersections of intervals) correct? It seems a bit at odds with the claim further down that $\Omega = \mathbb{R}\Omega = R$. – Vincent May 31, 2019 at 8:37 \checkmark

@Vincent I edited my proof, see formula (1). Is it okay now? - Piotr Hajlasz Jun 1, 2019 at 12:40

Huh no, now it is even more confusing. I understand that open sets are a union of intervals, but not that they are a union of *disjoint* intervals. Take the case $\Omega = \mathbb{R}\Omega = R$, I don't see any way of writing this as a union of non-overlapping intervals (let alone a finite number of such intervals as the new formula (1) suggests). But on closer inspection I think the condition $(a_i,b_i) \cap (a_j,b_j) = \emptyset(a_i,b_i) \cap (a_j,b_j) = \emptyset$ for $i \neq j i \neq j$ which is causing my concern is not being used further down the proof, is it? – Vincent Jun 2, 2019 at 17:42

2 @Vincent $\mathbb{R} = (-\infty, \infty)R = (-\infty, \infty)$. I never said that the intervals are finite. – Piotr Hajlasz Jun 3, 2019 at 0:50

If we assume $f \in C^{1000} f \in C^{1000}$, then the sets $E_n E_n$ for n > 1000 n > 1000 are not guaranteed to be closed. For the example, consider f(x) = 0 if x < 0 if

Show 2 more comments

For what it's worth, I post my solution. I assume $f:\mathbb{R} \to \mathbb{R} f: R \to R$, which makes no difference but lets me use one less symbol.

- 1. Let $A_n = \{x \in R \mid f^{(n)}(x) = 0\}A_n = \{x \in R \mid f^{(n)}(x) = 0\}, E_n E_n$ the interior of $A_n A_n$. Clearly $E_n \subset E_m E_n \subset E_m$ for n < mn < m, and by Baire $E_n E_n$ is eventually not empty.
- 2. Each $E_n E_n$ is a countable union of open segments. It is easy to see that in passing from $E_n E_n$ to $E_{n+1} E_{n+1}$ new segments can appear, but those already in $E_n E_n$ remain unchanged. Moreover two such segments are never adiacent.
- 3. By this remark is it enough to prove that $\bigcup E_n = \mathbb{R} \bigcup E_n = R$. Indeed if this holds and $E_n \neq \emptyset E_n \neq \emptyset$, then $E_n = \mathbb{R} E_n = R$, which implies the thesis. Otherwise the points in the boundary of $E_n E_n$ don't appear in the union.

- 4. Let $E = \bigcup E_n E = \bigcup E_n$, BB its complementary set, and assume by contradiction $B \neq \emptyset B \neq \emptyset$. BB is itself a complete metric space, hence can apply Baire to it. So for some kk we find that $A_k \cap BA_k \cap B$ has non-empty interior in BB. This means that there is an interval II such that $B \cap I \subset A_k B \cap I \subset A_k$ (and $B \cap I \neq \emptyset B \cap I \neq \emptyset$).
- 5. From remark 2, BB has no isolated points. The contradiction that we want to find is that $I \setminus B \subset A_k I \setminus B \subset A_k$. Indeed from this it follows that $I \subset A_k I \subset A_k$, hence $E_k \cap B \neq \emptyset E_k \cap B \neq \emptyset$.
- 6. By construction $I \setminus BI \setminus B$ is a union of intervals which appear in some $E_n E_n$. Take such an interval JJ, say $J \subset E_N J \subset E_N$ (where NN is minimal), and let xx be one end point of JJ (which is not on the boundary of II). Then $x \in I \cap B \subset A_k$ $x \in I \cap B \subset A_k$, so $f^{(k)}(x) = 0$ $f^{(k)}(x) = 0$. Moreover xx is not isolated in BB, so it is the limit of a sequence $x_i x_i$ of points in BB.
- 7. By the same argument $f^{(k)}(x_i) = 0$ $f^{(k)}(x_i) = 0$. Between two point where the kk-th derivative vanish lies a point where the k+1k+1-th does, so by continuity we find $f^{(k+1)}(x) = 0$ $f^{(k+1)}(x) = 0$. Similarly we find $f^{(m)}(x) = 0$ for all $m \ge km \ge k$. On JJ f is a polynomial of degree NN; it follows that $N \le kN \le k$, and we conclude that $J \subset E_k J \subset E_k$. Since JJ was arbitrary we conclude that $I \setminus B \subset E_k I \setminus B \subset E_k$, which we have shown to be a contradiction.

ShareCiteImprove this answerFollow

answered Aug 1, 2010 at 1:55

Andrea Ferretti

Hi-- Thanks a lot. Now, does this remain true if we replace [0,1][0,1] by $\mathbb{R}R$ or [a,b][a,b] - C.S. Aug 1, 2010 at 13:21

- 3 Yes, of course. The proof is the same. Andrea Ferretti Aug 1, 2010 at 16:21 In step 33, what about functions of the form $e^{-1/x}e^{-1/x}$. They can have a derivative 00 on an interval and all future ones zero on the boundary. Will Sawin Nov 1, 2011 at 5:38
- 1 Those functions have all derivatives 0 in a point, not on a whole interval Andrea Ferretti Nov 3, 2011 at 18:54
- 1 E_n is the interior of A_n. For a point in E_n you have a whole interval where the nth derivative vanishes identically, hence all subsequent derivatives vanish Andrea Ferretti Sep 4, 2016 at 10:09

Show 2 more comments

Maybe unuseful, but it remains true if you consider $f \in C^{\infty}(\mathbb{R}, \mathbb{R}) f \in C^{\infty}(R, R)$.

Try showing that

Lemma. Let $I \subseteq \mathbb{R}I \subseteq R$ be a nonempty interval and $f \in C^{\infty}(I)$ $f \in C^{\infty}(I)$. If f f is not a polynomial on II, then there exists a compact subset $J \in IJ \in I$ in which f f is not a polynomial. Moreover, $f(x) \neq 0 \ \forall x \in J f(x) \neq 0 \forall x \in J$.

ShareCiteImprove this answerFollow

answered Jul 31, 2010 at 22:35 fosco

Add a comment