

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM120700388101

Email: ee.shenzhen@sgs.com Page: 1 of 51

# **FCC REPORT**

**Application No:** SZEM1207003881RF

Applicant: SHENZHEN CHINFAI TECHNOLOGY CO., LTD Manufacturer: SHENZHEN CHINFAI TECHNOLOGY CO., LTD SHENZHEN CHINFAI TECHNOLOGY CO., LTD

Product Name: BLUETOOTH KEYBOARD

Model No.(EUT): KB-6200

FCC ID: XJ4KB6200

**Standards:** 47 CFR Part 15, Subpart C (2011)

**Date of Receipt:** 2012-07-12

**Date of Test:** 2012-07-17 to 2012-07-31

**Date of Issue:** 2012-08-14

Test Result: PASS \*

#### Authorized Signature:



Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



Report No.: SZEM120700388101

Page: 2 of 51

## 2 Test Summary

| Test Item                                  | Test Requirement                                                                      | Test method        | Result |
|--------------------------------------------|---------------------------------------------------------------------------------------|--------------------|--------|
| Antenna Requirement                        | 47 CFR Part 15, Subpart C Section<br>15.203/15.247 (c)                                | ANSI C63.10 (2009) | PASS   |
| AC Power Line Conducted<br>Emission        | 47 CFR Part 15, Subpart C Section<br>15.207                                           | ANSI C63.10 (2009) | PASS   |
| Conducted Peak Output<br>Power             | 47 CFR Part 15, Subpart C Section<br>15.247 (b)(1)                                    | ANSI C63.10 (2009) | PASS   |
| 20dB Occupied Bandwidth                    | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2009) | PASS   |
| Carrier Frequencies<br>Separation          | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2009) | PASS   |
| Hopping Channel Number                     | 47 CFR Part 15, Subpart C Section 15.247 (b)                                          | ANSI C63.10 (2009) | PASS   |
| Dwell Time                                 | 47 CFR Part 15, Subpart C Section<br>15.247 (a)(1)                                    | ANSI C63.10 (2009) | PASS   |
| Pseudorandom Frequency<br>Hopping Sequence | 47 CFR Part 15, Subpart C Section<br>15.247(b)(4)&TCB Exclusion List<br>(7 July 2002) | ANSI C63.10 (2009) | PASS   |
| Band-edge for RF<br>Conducted Emissions    | 47 CFR Part 15, Subpart C Section 15.247(d)                                           | ANSI C63.10 (2009) | PASS   |
| RF Conducted Spurious<br>Emissions         | 47 CFR Part 15, Subpart C Section 15.247(d)                                           | ANSI C63.10 (2009) | PASS   |
| Radiated Spurious emissions                | 47 CFR Part 15, Subpart C Section<br>15.205/15.209                                    | ANSI C63.10 (2009) | PASS   |
| Band Edge<br>(Radiated Emission)           | 47 CFR Part 15, Subpart C Section<br>15.205/15.209                                    | ANSI C63.10 (2009) | PASS   |



Report No.: SZEM120700388101

Page: 3 of 51

## 3 Contents

|                             |                                 |                                                                                                                                 | Page        |
|-----------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1                           | CC                              | OVER PAGE                                                                                                                       | 1           |
| 2                           | TE                              | EST SUMMARY                                                                                                                     | 2           |
| 3                           | CC                              | ONTENTS                                                                                                                         | 3           |
| 1 COVER PAGE 2 TEST SUMMARY |                                 |                                                                                                                                 |             |
|                             | 4.2<br>4.3<br>4.4<br>4.5        | GENERAL DESCRIPTION OF EUT TEST ENVIRONMENT DESCRIPTION OF SUPPORT UNITS TEST LOCATION                                          |             |
|                             | 4.7<br>4.8<br>4.9               | DEVIATION FROM STANDARDSABNORMALITIES FROM STANDARD CONDITIONSOTHER INFORMATION REQUESTED BY THE CUSTOMER                       | 7<br>7<br>7 |
| 5                           | TE                              | EST RESULTS AND MEASUREMENT DATA                                                                                                | 10          |
|                             | 5.2<br>5.3<br>5.4<br>5.5<br>5.6 | CONDUCTED EMISSIONS  CONDUCTED PEAK OUTPUT POWER  20DB OCCUPY BANDWIDTH  CARRIER FREQUENCIES SEPARATION  HOPPING CHANNEL NUMBER |             |
|                             | 5.8<br>5.9<br>5.10<br>5.11      | BAND-EDGE FOR RF CONDUCTED EMISSIONS                                                                                            |             |
|                             | <i>5.</i> 1                     | 11.2 Transmitter Emission above 1GHz                                                                                            | 40          |



Report No.: SZEM120700388101

Page: 4 of 51

## 4 General Information

### 4.1 Client Information

| Applicant:               | SHENZHEN CHINFAI TECHNOLOGY CO., LTD                                                                           |
|--------------------------|----------------------------------------------------------------------------------------------------------------|
| Address of Applicant:    | Room 736, Area B of Huameiju, The west of Gymnasium, 82 District of Bao'an, Shenzhen, 518102, Guangdong, China |
| Manufacturer:            | SHENZHEN CHINFAI TECHNOLOGY CO., LTD                                                                           |
| Address of Manufacturer: | Room 736, Area B of Huameiju, The west of Gymnasium, 82 District of Bao'an, Shenzhen, 518102, Guangdong, China |
| Factory:                 | SHENZHEN CHINFAI TECHNOLOGY CO., LTD                                                                           |
| Address of Factory:      | Room 736, Area B of Huameiju, The west of Gymnasium, 82 District of Bao'an, Shenzhen, 518102, Guangdong, China |

## 4.2 General Description of EUT

| •                     |                                                            |
|-----------------------|------------------------------------------------------------|
| Name:                 | BLUETOOTH KEYBOARD                                         |
| Model No.:            | KB-6200                                                    |
| Operation Frequency:  | 2402MHz~2480MHz                                            |
| Bluetooth Version:    | 3.0                                                        |
| Modulation Technique: | Frequency Hopping Spread Spectrum(FHSS)                    |
| Modulation Type:      | GFSK                                                       |
| Number of Channel:    | 79                                                         |
| Hopping Channel Type: | Adaptive Frequency Hopping systems                         |
| Sample Type:          | Portable production                                        |
| Test Software of EUT: | Bluetool (manufacturer declare )                           |
| Antenna Type:         | Integral                                                   |
| Antenna Gain:         | 2.0dBi                                                     |
| Power Supply:         | 3.7V battery PC USB port charge to EUT AC 120V 60Hz for PC |
| Test Voltage:         | 3.7V battery PC USB port charge to EUT AC 120V 60Hz for PC |



Report No.: SZEM120700388101

Page: 5 of 51

| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                   | 2402MHz   | 21      | 2422MHz   | 41      | 2442MHz   | 61      | 2462MHz   |
| 2                                   | 2403MHz   | 22      | 2423MHz   | 42      | 2443MHz   | 62      | 2463MHz   |
| 3                                   | 2404MHz   | 23      | 2424MHz   | 43      | 2444MHz   | 63      | 2464MHz   |
| 4                                   | 2405MHz   | 24      | 2425MHz   | 44      | 2445MHz   | 64      | 2465MHz   |
| 5                                   | 2406MHz   | 25      | 2426MHz   | 45      | 2446MHz   | 65      | 2466MHz   |
| 6                                   | 2407MHz   | 26      | 2427MHz   | 46      | 2447MHz   | 66      | 2467MHz   |
| 7                                   | 2408MHz   | 27      | 2428MHz   | 47      | 2448MHz   | 67      | 2468MHz   |
| 8                                   | 2409MHz   | 28      | 2429MHz   | 48      | 2449MHz   | 68      | 2469MHz   |
| 9                                   | 2410MHz   | 29      | 2430MHz   | 49      | 2450MHz   | 69      | 2470MHz   |
| 10                                  | 2411MHz   | 30      | 2431MHz   | 50      | 2451MHz   | 70      | 2471MHz   |
| 11                                  | 2412MHz   | 31      | 2432MHz   | 51      | 2452MHz   | 71      | 2472MHz   |
| 12                                  | 2413MHz   | 32      | 2433MHz   | 52      | 2453MHz   | 72      | 2473MHz   |
| 13                                  | 2414MHz   | 33      | 2434MHz   | 53      | 2454MHz   | 73      | 2474MHz   |
| 14                                  | 2415MHz   | 34      | 2435MHz   | 54      | 2455MHz   | 74      | 2475MHz   |
| 15                                  | 2416MHz   | 35      | 2436MHz   | 55      | 2456MHz   | 75      | 2476MHz   |
| 16                                  | 2417MHz   | 36      | 2437MHz   | 56      | 2457MHz   | 76      | 2477MHz   |
| 17                                  | 2418MHz   | 37      | 2438MHz   | 57      | 2458MHz   | 77      | 2478MHz   |
| 18                                  | 2419MHz   | 38      | 2439MHz   | 58      | 2459MHz   | 78      | 2479MHz   |
| 19                                  | 2420MHz   | 39      | 2440MHz   | 59      | 2460MHz   | 79      | 2480MHz   |
| 20                                  | 2421MHz   | 40      | 2441MHz   | 60      | 2461MHz   |         |           |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |
|---------------------|-----------|
| The Lowest channel  | 2402MHz   |
| The Middle channel  | 2441MHz   |
| The Highest channel | 2480MHz   |



Report No.: SZEM120700388101

Page: 6 of 51

### 4.3 Test Environment

| Operating Environment: |          |  |
|------------------------|----------|--|
| Temperature:           | 26.0 °C  |  |
| Humidity:              | 52 % RH  |  |
| Atmospheric Pressure:  | 995 mbar |  |

## 4.4 Description of Support Units

The EUT has been tested with associated equipment below.

| Description    | Manufacturer      | Model No.  |
|----------------|-------------------|------------|
| PC             | DELL              | DCSM       |
| LCD-displaying | DELL              | SP2208WFPt |
| MOUSE          | Lenovo            | MO28UOL    |
| PC             | IBM               | 8172       |
| LCD-displaying | Lenovo            | L1711pC    |
| MOUSE          | Lenovo            | MO28UOA    |
| Coder          | HengTong ELECTRON | HT4000     |
| Printer        | Canon             | BJC-1000SP |

### 4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.



Report No.: SZEM120700388101

Page: 7 of 51

## 4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

#### VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

#### • FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

#### Industry Canada (IC)

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1.

#### 4.7 Deviation from Standards

None.

### 4.8 Abnormalities from Standard Conditions

None.

## 4.9 Other Information Requested by the Customer

None.



Report No.: SZEM120700388101

Page: 8 of 51

### **4.10Test Instruments List**

| RE i | RE in Chamber                      |                                    |           |               |                           |  |  |
|------|------------------------------------|------------------------------------|-----------|---------------|---------------------------|--|--|
| Item | Test Equipment                     | Manufacturer                       | Model No. | Inventory No. | Cal.Due date (yyyy-mm-dd) |  |  |
| 1    | 3m Semi-Anechoic<br>Chamber        | ETS-LINDGREN                       | N/A       | SEL0017       | 2013-06-10                |  |  |
| 2    | EMI Test Receiver                  | Rohde & Schwarz                    | ESIB26    | SEL0023       | 2013-05-17                |  |  |
| 3    | EMI Test software                  | AUDIX                              | E3        | SEL0050       | N/A                       |  |  |
| 4    | BiConiLog Antenna<br>(26-3000MHz)  | ETS-LINDGREN                       | 3142C     | SEL0015       | 2012-10-29                |  |  |
| 5    | Double-ridged horn<br>(1-18GHz)    | ETS-LINDGREN                       | 3117      | SEL0006       | 2012-10-29                |  |  |
| 6    | Horn Antenna<br>(18-26GHz)         | ETS-LINDGREN                       | 3160      | SEL0076       | 2012-10-29                |  |  |
| 7    | Pre-amplifier<br>(0.1-1300MHz)     | Agilent<br>Technologies            | 8447D     | SEL0053       | 2013-05-17                |  |  |
| 8    | Pre-Amplifier<br>(0.1-26.5GHz)     | Compliance Directions Systems Inc. | PAP-0126  | SEL0168       | 2012-11-26                |  |  |
| 9    | Coaxial cable                      | SGS                                | N/A       | SEL0027       | 2013-05-59                |  |  |
| 10   | Coaxial cable                      | SGS                                | N/A       | SEL0189       | 2013-05-29                |  |  |
| 11   | Coaxial cable                      | SGS                                | N/A       | SEL0121       | 2013-05-29                |  |  |
| 12   | Coaxial cable                      | SGS                                | N/A       | SEL0178       | 2013-05-29                |  |  |
| 13   | Band filter                        | Amindeon                           | 82346     | SEL0094       | 2013-05-17                |  |  |
| 14   | Barometer                          | Chang Chun                         | DYM3      | SEL0088       | 2013-05-24                |  |  |
| 15   | DC Power Supply                    | Zhao Xin                           | RXN-305D  | SEL0117       | 2012-10-23                |  |  |
| 16   | Humidity/ Temperature<br>Indicator | Shanhai Qixiang                    | ZJ1-2B    | SEL0103       | 2012-10-27                |  |  |
| 17   | Signal Generator<br>(10M-27GHz)    | Rohde & Schwarz                    | SMR27     | SEL0067       | 2013-05-17                |  |  |
| 18   | Signal Generator                   | Rohde & Schwarz                    | SMY01     | SEL0155       | 2012-10-23                |  |  |
| 19   | Loop Antenna                       | Beijing Daze                       | ZN30401   | SEL0203       | 2013-6-4                  |  |  |



Report No.: SZEM120700388101

Page: 9 of 51

|      | Conducted Emission              |                                    |                 |                  |                           |
|------|---------------------------------|------------------------------------|-----------------|------------------|---------------------------|
| Item | Test Equipment                  | Manufacturer                       | Model No.       | Inventory<br>No. | Cal.Due date (yyyy-mm-dd) |
| 1    | Shielding Room                  | ZhongYu Electron                   | GB-88           | SEL0042          | 2013-06-10                |
| 2    | LISN                            | Rohde & Schwarz                    | ENV216          | SEL0152          | 2012-10-23                |
| 3    | LISN                            | ETS-LINDGREN                       | 3816/2          | SEL0021          | 2013-5-17                 |
| 4    | 8 Line ISN                      | Fischer Custom Communications Inc. | FCC-TLISN-T8-02 | SEL0162          | 2012-11-11                |
| 5    | 4 Line ISN                      | Fischer Custom Communications Inc. | FCC-TLISN-T4-02 | SEL0163          | 2012-11-11                |
| 6    | 2 Line ISN                      | Fischer Custom Communications Inc. | FCC-TLISN-T2-02 | SEL0164          | 2012-11-11                |
| 7    | EMI Test Receiver               | Rohde & Schwarz                    | ESCI            | SEL0022          | 2013-5-17                 |
| 8    | Coaxial Cable                   | SGS                                | N/A             | SEL0025          | 2013-05-29                |
| 9    | DC Power Supply                 | Zhao Xin                           | RXN-305D        | SEL0117          | 2012-10-23                |
| 10   | Humidity/ Temperature Indicator | Shanhai Qixiang                    | ZJ1-2B          | SEL0103          | 2012-10-27                |
| 11   | Barometer                       | Chang Chun                         | DYM3            | SEL0088          | 2013-05-24                |

| RF c | RF connected test               |                         |           |               |                            |  |  |
|------|---------------------------------|-------------------------|-----------|---------------|----------------------------|--|--|
| Item | Test Equipment                  | Manufacturer            | Model No. | Inventory No. | Cal.Due date (yyyy-mm-dd)) |  |  |
| 1    | DC Power Supply                 | Zhao Xin                | RXN-305D  | SEL0117       | 2012-10-23                 |  |  |
| 2    | Humidity/ Temperature Indicator | HYGRO                   | ZJ1-2B    | SEL0033       | 2012-10-27                 |  |  |
| 3    | Spectrum Analyzer               | Rohde & Schwarz         | FSP       | SEL0154       | 2012-10-23                 |  |  |
| 4    | Coaxial cable                   | SGS                     | N/A       | SEL0178       | 2013-05-29                 |  |  |
| 5    | Coaxial cable                   | SGS                     | N/A       | SEL0179       | 2013-05-29                 |  |  |
| 6    | Barometer                       | ChangChun               | DYM3      | SEL0088       | 2013-05-24                 |  |  |
| 7    | Signal Generator                | Rohde & Schwarz         | SML03     | SEL0068       | 2013-05-17                 |  |  |
| 8    | Band filter                     | amideon                 | 82346     | SEL0094       | 2013-05-17                 |  |  |
| 9    | POWER METER                     | R&S                     | NRVS      | SEL0144       | 2012-10-23                 |  |  |
| 10   | Attenuator                      | Beijin feihang taida    | TST-2-6dB | SEL0205       | 2013-05-17                 |  |  |
| 11   | Power Divider(splitter)         | Agilent<br>Technologies | 11636B    | SEL0130       | 2012-11-29                 |  |  |



Report No.: SZEM120700388101

Page: 10 of 51

### 5 Test results and Measurement Data

## 5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### **EUT Antenna:**

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.0dBi.





Report No.: SZEM120700388101

Page: 11 of 51

### 5.2 Conducted Emissions

| Test Requirement:     | 47 CFR Part 15C Section 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                |                                    |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Test Method:          | ANSI C63.10: 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                |                                    |
| Test Frequency Range: | 150kHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                |                                    |
| Limit:                | Francisco (MIII-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit (dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |                                    |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average                                                                                                                                                                                                                                                                                                                        |                                    |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 66 to 56*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56 to 46*                                                                                                                                                                                                                                                                                                                      |                                    |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46                                                                                                                                                                                                                                                                                                                             |                                    |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50                                                                                                                                                                                                                                                                                                                             |                                    |
|                       | * Decreases with the logarithn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n of the frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                | _                                  |
| Test Procedure:       | The mains terminal disturl room.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | bance voltage test was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s conducted in a shie                                                                                                                                                                                                                                                                                                          | elded                              |
|                       | <ol> <li>The EUT was connected to Impedance Stabilization N impedance. The power cal connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single Li exceeded.</li> <li>The tabletop EUT was place ground reference plane. At placed on the horizontal ground reference plane. At vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ed.</li> <li>In order to find the maximule equipment and all of the in ANSI C63.10: 2009 on contract.</li> </ol> | etwork) which provides bles of all other units of SN 2, which was bondene way as the LISN 1 for the toutlet strip was used ISN provided the rating code upon a non-metallic and for floor-standing arround reference plane, the a vertical ground reference blane was bonded to the 1 was placed 0.8 m from the vertical ground reference und reference plane. The formal the ground reference plane and the quipment was at least 0 the company was at least 0 the c | is a 50Ω/50μH + 5Ω lift the EUT were do to the ground or the unit being do to connect multiple of the LISN was not contained the LISN was not contained the EUT defence plane. The red reference plane. The horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of the positions of | he<br>was<br>ear<br>he<br>of<br>2. |



Report No.: SZEM120700388101

Page: 12 of 51



#### **Measurement Data**

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Report No.: SZEM120700388101

Page: 13 of 51

Live line:



Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE LINE

Job No. : 3881RF Mode : transmitting

|     |         | Cable | LISN   | Read  |       | Limit | Over   |         |
|-----|---------|-------|--------|-------|-------|-------|--------|---------|
|     | Freq    | Loss  | Factor | Level | Level | Line  | Limit  | Remark  |
|     | MHz     | dB    | dB     | dBuV  | dBuV  | —dBuV | dB     |         |
|     |         |       |        |       |       |       |        |         |
| 1 0 | 0.18249 | 0.02  | 9.70   | 31.27 | 40.99 | 54.37 | -13.38 | Average |
| 2 @ | 0.18249 | 0.02  | 9.70   | 36.52 | 46.24 | 64.37 | -18.13 | QP      |
| 3   | 0.30348 | 0.01  | 9.71   | 28.04 | 37.75 | 60.15 | -22.39 | QP      |
| 40  | 0.30348 | 0.01  | 9.71   | 23.04 | 32.75 | 50.15 | -17.39 | Average |
| 5 0 | 0.36531 | 0.01  | 9.77   | 22.35 | 32.13 | 48.61 | -16.48 | Average |
| 6   | 0.36531 | 0.01  | 9.77   | 27.14 | 36.92 | 58.61 | -21.69 | QP      |
| 7 0 | 0.53782 | 0.01  | 9.80   | 29.20 | 39.02 | 56.00 | -16.98 | QP      |
| 8 0 | 0.53782 | 0.01  | 9.80   | 22.20 | 32.02 | 46.00 | -13.98 | Average |
| 90  | 1.411   | 0.02  | 9.80   | 18.62 | 28.44 | 46.00 | -17.56 | Average |
| 10  | 1.411   | 0.02  | 9.80   | 26.62 | 36.44 | 56.00 | -19.56 | QP      |
| 11  | 15.801  | 0.02  | 10.10  | 26.23 | 36.34 | 60.00 | -23.66 | QP      |
| 12  | 15.801  | 0.02  | 10.10  | 16.15 | 26.27 | 50.00 | -23.73 | Average |



Report No.: SZEM120700388101

Page: 14 of 51

#### Neutral line:



Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE NEUTRAL

Job No. : 3881RF Mode : transmitting

|     | Freq    | Cable<br>Loss | LISN<br>Factor | Read<br>Level | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-----|---------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|     | MHz     | dB            |                | dBuV          |       |               |               |         |
|     | nnz     | ив            | dB             | авич          | dBuV  | dBuV          | dB            |         |
| 1 0 | 0.18249 | 0.02          | 9.70           | 35.87         | 45.59 | 64.37         | -18.78        | QP      |
| 2   | 0.18249 | 0.02          | 9.70           | 21.99         | 31.71 | 54.37         | -22.66        | Average |
| 3   | 0.30509 | 0.01          | 9.71           | 23.73         | 33.45 | 60.10         | -26.66        | QP      |
| 4   | 0.30509 | 0.01          | 9.71           | 12.88         | 22.60 | 50.10         | -27.51        | Average |
| 5   | 0.53782 | 0.01          | 9.80           | 23.52         | 33.33 | 56.00         | -22.67        | QP      |
| 6   | 0.53782 | 0.01          | 9.80           | 12.83         | 22.64 | 46.00         | -23.36        | Average |
| 7   | 0.79180 | 0.02          | 9.80           | 23.23         | 33.05 | 56.00         | -22.95        | QP      |
| 8   | 0.79180 | 0.02          | 9.80           | 12.19         | 22.01 | 46.00         | -23.99        | Average |
| 9   | 1.411   | 0.02          | 9.80           | 11.28         | 21.10 | 46.00         | -24.90        | Average |
| 10  | 1.411   | 0.02          | 9.80           | 23.46         | 33.28 | 56.00         | -22.72        | QP      |
| 11  | 15.885  | 0.02          | 10.02          | 20.38         | 30.42 | 60.00         | -29.58        | QP      |
| 12  | 15.885  | 0.02          | 10.02          | 11.62         | 21.66 | 50.00         | -28.34        | Average |

### Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.



Report No.: SZEM120700388101

Page: 15 of 51

## 5.3 Conducted Peak Output Power



#### **Measurement Data**

| GFSK mode    |                         |             |        |  |
|--------------|-------------------------|-------------|--------|--|
| Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |
| Lowest       | -2.43                   | 20.00       | Pass   |  |
| Middle       | -2.27                   | 20.00       | Pass   |  |
| Highest      | -2.31                   | 20.00       | Pass   |  |



Report No.: SZEM120700388101

Page: 16 of 51

### Test plot as follows:

Test mode: GFSK Test channel: Lowest



Test mode: GFSK Test channel: Middle





Report No.: SZEM120700388101

Page: 17 of 51

Test mode: GFSK Test channel: Highest





Report No.: SZEM120700388101

Page: 18 of 51

## 5.4 20dB Occupy Bandwidth



#### **Measurement Data**

| Test channel | 20dB Occupy Bandwidth (kHz) |
|--------------|-----------------------------|
| rest channel | GFSK                        |
| Lowest       | 1044                        |
| Middle       | 1040                        |
| Highest      | 1040                        |





Report No.: SZEM120700388101

Page: 19 of 51

### Test plot as follows:

Test mode: GFSK Test channel: Lowest



Test mode: GFSK Test channel: Middle





Report No.: SZEM120700388101

Page: 20 of 51

Test mode: GFSK Test channel: Highest





Report No.: SZEM120700388101

Page: 21 of 51

## 5.5 Carrier Frequencies Separation

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (a)(1)                                                  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------|--|--|--|
| Test Method:           | ANSI C63.10:2009                                                                       |  |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table                                          |  |  |  |
|                        | Ground Reference Plane                                                                 |  |  |  |
| Limit:                 | 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)                           |  |  |  |
| Exploratory Test Mode: | Hopping transmitting with all kind of data type                                        |  |  |  |
| Final Test Mode:       | Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type. |  |  |  |
| Instruments Used:      | Refer to section 4.10 for details                                                      |  |  |  |
| Test Results:          | Pass                                                                                   |  |  |  |

#### **Measurement Data**

| measurement data |                                      |             |        |  |  |
|------------------|--------------------------------------|-------------|--------|--|--|
| GFSK mode        |                                      |             |        |  |  |
| Test channel     | Carrier Frequencies Separation (kHz) | Limit (kHz) | Result |  |  |
| Lowest           | 1000                                 | ≥696        | Pass   |  |  |
| Middle           | 1004                                 | ≥696        | Pass   |  |  |
| Highest          | 1000                                 | ≥696        | Pass   |  |  |

Note: According to section 5.4.

| Trace Trace Carrier Control Control |                      |                                  |  |  |  |
|-------------------------------------|----------------------|----------------------------------|--|--|--|
| Mode                                | 20dB bandwidth (kHz) | Limit (kHz)                      |  |  |  |
| ivioue                              | (worse case)         | (Carrier Frequencies Separation) |  |  |  |
| GFSK                                | 1044                 | 696                              |  |  |  |



Report No.: SZEM120700388101

Page: 22 of 51

### Test plot as follows:

| Test mode: | GFSK   | Test channel:  | Lowest |
|------------|--------|----------------|--------|
| Tool mode. | ai oit | i cot chamici. | LOWCOL |









Report No.: SZEM120700388101

Page: 23 of 51

Test mode: GFSK Test channel: Highest





Report No.: SZEM120700388101

Page: 24 of 51

## 5.6 Hopping Channel Number

| Test Requirement: | 47 CFR Part 15C Section 15.247 (b)                                    |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|
| Test Method:      | ANSI C63.10:2009                                                      |  |  |
| Test Setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |
| Limit:            | At least 15 channels                                                  |  |  |
| Test Mode:        | Hopping transmitting                                                  |  |  |
| Instruments Used: | Refer to section 4.10 for details                                     |  |  |
| Test Results:     | Pass                                                                  |  |  |

### **Measurement Data**

| Mode | Hopping channel numbers | Limit |
|------|-------------------------|-------|
| GFSK | 79                      | ≥15   |

#### Test plot as follows:

| Toot modo: | GFSK  |
|------------|-------|
| Test mode: | GESIN |





Report No.: SZEM120700388101

Page: 25 of 51

### 5.7 Dwell Time



#### **Measurement Data**

| Mode | Packet | Dwell time (second) | Limit (second) |
|------|--------|---------------------|----------------|
|      | DH1    | 0.1456              | 0.4            |
| GFSK | DH3    | 0.2752              | 0.4            |
|      | DH5    | 0.3179              | 0.4            |

### Test Result:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

DH1 time slot=0.455(ms)\*(1600/(2\*79))\*31.6=145.6ms

DH3 time slot=1.720(ms)\*(1600/ (4\*79))\*31.6=275.2ms

DH5 time slot=2.980(ms)\*(1600/ (6\*79))\*31.6=317.9 ms



Report No.: SZEM120700388101

Page: 26 of 51

### Test plot as follows:

Test Packet: DH1



Test Packet: DH3





Report No.: SZEM120700388101

Page: 27 of 51







Report No.: SZEM120700388101

Page: 28 of 51

## 5.8 Band-edge for RF Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:           | ANSI C63.10:2009                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane  Remark:  Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.                                                                                                                                                                                                                                    |  |  |  |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |
| Exploratory Test Mode: | Hopping transmitting with all kind of data type                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Final Test Mode:       | Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type.                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Instruments Used:      | Refer to section 4.10 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |





Report No.: SZEM120700388101

Page: 29 of 51

### Test plot as follows:

Test mode: GFSK Test channel: Lowest







Report No.: SZEM120700388101

Page: 30 of 51

Test mode: GFSK Test channel: Highest







Report No.: SZEM120700388101

Page: 31 of 51

## 5.9 Spurious RF Conducted Emissions

| Test Requirement:      | 47 CFR Part 15C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:           | ANSI C63.10:2009                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test Setup:            | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                        | Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| Limit:                 | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |  |
| Exploratory Test Mode: | Non-hopping transmitting with all kind of data type                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Final Test Mode:       | Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type.                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Instruments Used:      | Refer to section 4.10 for details                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |



Report No.: SZEM120700388101

Page: 32 of 51

Test mode: GFSK Test channel: Lowest









Report No.: SZEM120700388101

Page: 33 of 51

Test mode: GFSK Test channel: Highest





Report No.: SZEM120700388101

Page: 34 of 51

## **5.10Pseudorandom Frequency Hopping Sequence**

### Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

### **EUT Pseudorandom Frequency Hopping Sequence**

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.



Report No.: SZEM120700388101

Page: 35 of 51

## 5.11 Radiated Spurious Emission

| Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205                                                                                                                                                                                                                                   |          |                                |                   |            |                          |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------|-------------------|------------|--------------------------|--|--|
| Test Method:      | ANSI C63.10: 2009                                                                                                                                                                                                                                                           |          |                                |                   |            |                          |  |  |
| Test Site:        | Measurement Distance: 3m (Semi-Anechoic Chamber)                                                                                                                                                                                                                            |          |                                |                   |            |                          |  |  |
| Receiver Setup:   | Frequency                                                                                                                                                                                                                                                                   |          | Detector                       | RBW               | VBW        | Remark                   |  |  |
|                   | 0.009MHz-0.090MHz                                                                                                                                                                                                                                                           |          | Peak                           | 10kHz             | z 30kHz    | Peak                     |  |  |
|                   | 0.009MHz-0.090MHz                                                                                                                                                                                                                                                           |          | Average                        | 10kHz             | z 30kHz    | Average                  |  |  |
|                   | 0.090MHz-0.110MHz Quasi-peak                                                                                                                                                                                                                                                |          | 10kHz                          | 30kHz             | Quasi-peak |                          |  |  |
|                   | 0.110MHz-0.490MHz         Peak           0.110MHz-0.490MHz         Average                                                                                                                                                                                                  |          | Peak                           | 10kHz             | 30kHz      | Peak                     |  |  |
|                   |                                                                                                                                                                                                                                                                             |          | Average                        | 10kHz             | 30kHz      | Average                  |  |  |
|                   | 0.490MHz -30MHz                                                                                                                                                                                                                                                             |          | Quasi-peak                     | 10kHz             | z 30kHz    | Quasi-peak               |  |  |
|                   | 30MHz-1GHz                                                                                                                                                                                                                                                                  | lHz-1GHz |                                | 100 kH            | lz 300kHz  | Quasi-peak               |  |  |
|                   | Above 1GHz                                                                                                                                                                                                                                                                  |          | Peak                           | 1MHz              | : 3MHz     | Peak                     |  |  |
|                   |                                                                                                                                                                                                                                                                             |          | Peak                           | 1MHz              | 10Hz       | Average                  |  |  |
| Limit:            | Frequency                                                                                                                                                                                                                                                                   |          | eld strength<br>crovolt/meter) | Limit<br>(dBuV/m) | Remark     | Measurement distance (m) |  |  |
|                   | 0.009MHz-0.490MHz                                                                                                                                                                                                                                                           | 2        | 400/F(kHz)                     | -                 | -          | 300                      |  |  |
|                   | 0.490MHz-1.705MHz 24000/F(kHz<br>1.705MHz-30MHz 30                                                                                                                                                                                                                          |          | 1000/F(kHz)                    | -                 | -          | 30                       |  |  |
|                   |                                                                                                                                                                                                                                                                             |          | 30                             | -                 | 1          | 30                       |  |  |
|                   | 30MHz-88MHz                                                                                                                                                                                                                                                                 |          | 100                            | 40.0              | Quasi-peak | 3                        |  |  |
|                   | 88MHz-216MHz                                                                                                                                                                                                                                                                | 150      |                                | 43.5              | Quasi-peak | 3                        |  |  |
|                   | 216MHz-960MHz                                                                                                                                                                                                                                                               | 200      |                                | 46.0              | Quasi-peak | 3                        |  |  |
|                   | 960MHz-1GHz                                                                                                                                                                                                                                                                 |          | 500                            | 54.0              | Quasi-peak | 3                        |  |  |
|                   | Above 1GHz                                                                                                                                                                                                                                                                  | 500      |                                | 54.0              | Average    | 3                        |  |  |
|                   | Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device. |          |                                |                   |            |                          |  |  |



Report No.: SZEM120700388101

Page: 36 of 51

### Test Setup:





Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



Figure 3. Above 1 GHz

#### Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB



Report No.: SZEM120700388101

Page: 37 of 51

|                        | margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.  g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)  h. The radiation measurements are performed in X, Y, Z axis positioning. |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.  i. Repeat above procedures until all frequencies measured was complete.                                                                                                                          |
| Exploratory Test Mode: | Non-hopping transmitting mode with all kind of data type                                                                                                                                                                                                                                                            |
| Exploratory rest wode. | I Non-nopping transmitting mode with all kind of data type                                                                                                                                                                                                                                                          |
| Final Test Mode:       | Through Pre-scan, find the DH1 of date type is the worse case of GFSK modulation type.                                                                                                                                                                                                                              |
| Instruments Used:      | Refer to section 4.10 for details                                                                                                                                                                                                                                                                                   |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                |



Report No.: SZEM120700388101

Page: 38 of 51

#### 5.11.1 Radiated Emission below 1GHz

| 30MHz~1GHz (QP) |              |          |  |  |  |  |
|-----------------|--------------|----------|--|--|--|--|
| Test mode:      | Transmitting | Vertical |  |  |  |  |



Condition : 47 CFR PART 15 B 3m 3142C VERTICAL

Job No. : 3881RF Mode : transmitting

|     |         | Cable | Antenna | Preamp | Read  |        | Limit  | Over   |  |
|-----|---------|-------|---------|--------|-------|--------|--------|--------|--|
|     | Freq    | Loss  | Factor  | Factor | Level | Level  | Line   | Limit  |  |
|     | MHz     | dB    | dB/m    | dB     | dBuV  | dBuV/m | dBuV/m | dB     |  |
| 1 0 | 87.230  | 1.10  | 8.45    | 27.22  | 48.03 | 30.36  | 40.00  | -9.64  |  |
| 2   | 118.270 | 1.25  | 8.02    | 27.08  | 46.36 | 28.55  | 43.50  | -14.95 |  |
| 3   | 167.740 | 1.35  | 9.52    | 26.82  | 44.19 | 28.24  | 43.50  | -15.26 |  |
| 4   | 191.020 | 1.39  | 10.11   | 26.73  | 40.05 | 24.81  | 43.50  | -18.69 |  |
| 5   | 299.660 | 1.90  | 13.85   | 26.41  | 36.27 | 25.61  | 46.00  | -20.39 |  |
| 6 0 | 749.740 | 3.06  | 21.70   | 27.35  | 36.22 | 33.62  | 46.00  | -12.38 |  |



Report No.: SZEM120700388101

Page: 39 of 51





Condition : 47 CFR PART 15 B 3m 3142C HORIZONTAL

Job No. : 3881RF Mode : transmitting

|     | Ü       | Cable | CableAntenna |        | na Preamp Read |        | Limit  |        |
|-----|---------|-------|--------------|--------|----------------|--------|--------|--------|
|     | Freq    | Loss  | Factor       | Factor | Level          | Level  | Line   | Limit  |
|     | MHz     | dB    | dB/m         | dB     | -dPuV          | dPuV/m | dBuV/m | dB     |
|     | HHZ     | ав    | ub/m         | uв     | авач           | ubuv/m | ubuv/m | uв     |
| 1   | 40.670  | 0.62  | 11.53        | 27.32  | 28.92          | 13.75  | 40.00  | -26.25 |
| 2   | 70.740  | 0.82  | 6.97         | 27.25  | 33.88          | 14.43  | 40.00  | -25.57 |
| 3   | 118.270 | 1.25  | 8.02         | 27.08  | 40.24          | 22.43  | 43.50  | -21.07 |
| 4   | 159.980 | 1.34  | 9.60         | 26.86  | 38.49          | 22.56  | 43.50  | -20.94 |
| 5   | 388.900 | 2.17  | 16.17        | 27.07  | 33.45          | 24.72  | 46.00  | -21.28 |
| 6 0 | 746.830 | 3.05  | 21.69        | 27.35  | 36.20          | 33.58  | 46.00  | -12.42 |



Report No.: SZEM120700388101

Page: 40 of 51

#### 5.11.2 Transmitter Emission above 1GHz

| Worse case         | mode:                 | GFSK(DH1)                   | Test                     | channel:                | Lowest            | Rem                    | ark:                  | Peak         |
|--------------------|-----------------------|-----------------------------|--------------------------|-------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Cable<br>Loss<br>(dB) | Antenna<br>Factor<br>(dB/m) | Preamp<br>Factor<br>(dB) | Read<br>Level<br>(dBuV) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1424.511           | 2.47                  | 27.98                       | 39.32                    | 46.15                   | 37.28             | 74                     | -36.72                | Vertical     |
| 3824.757           | 4.01                  | 33.59                       | 40.91                    | 48.43                   | 45.12             | 74                     | -28.88                | Vertical     |
| 5940.967           | 5.11                  | 35.62                       | 40.97                    | 49.79                   | 49.55             | 74                     | -24.45                | Vertical     |
| 7394.878           | 6.00                  | 35.96                       | 39.71                    | 48.83                   | 51.08             | 74                     | -22.92                | Vertical     |
| 9685.345           | 5.99                  | 37.39                       | 37.73                    | 45.98                   | 51.63             | 74                     | -22.37                | Vertical     |
| 11486.410          | 6.34                  | 38.40                       | 38.06                    | 46.67                   | 53.35             | 74                     | -20.65                | Vertical     |
| 1329.894           | 2.41                  | 27.79                       | 39.28                    | 49.03                   | 39.95             | 74                     | -34.05                | Horizontal   |
| 1851.542           | 2.74                  | 30.69                       | 39.51                    | 46.30                   | 40.22             | 74                     | -33.78                | Horizontal   |
| 4213.211           | 4.30                  | 34.41                       | 41.19                    | 48.25                   | 45.77             | 74                     | -28.23                | Horizontal   |
| 5546.364           | 4.97                  | 34.96                       | 41.32                    | 49.27                   | 47.88             | 74                     | -26.12                | Horizontal   |
| 6903.705           | 5.45                  | 35.90                       | 40.13                    | 48.23                   | 49.45             | 74                     | -24.55                | Horizontal   |
| 9538.543           | 6.00                  | 37.23                       | 37.86                    | 46.44                   | 51.81             | 74                     | -22.19                | Horizontal   |

| Worse case         | mode:                 | GFSK(DH1)                   | ) Tes                    | t channel:              | Middle            | Middle Remark          |                       | Peak         |
|--------------------|-----------------------|-----------------------------|--------------------------|-------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Cable<br>Loss<br>(dB) | Antenna<br>Factor<br>(dB/m) | Preamp<br>Factor<br>(dB) | Read<br>Level<br>(dBuV) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1360.714           | 2.43                  | 27.85                       | 39.29                    | 46.58                   | 37.57             | 74                     | -36.43                | Vertical     |
| 3216.838           | 3.50                  | 33.32                       | 40.47                    | 47.65                   | 44.00             | 74                     | -30.00                | Vertical     |
| 4278.055           | 4.35                  | 34.59                       | 41.25                    | 48.01                   | 45.70             | 74                     | -28.30                | Vertical     |
| 5504.170           | 4.95                  | 34.90                       | 41.35                    | 48.86                   | 47.36             | 74                     | -26.64                | Vertical     |
| 8145.925           | 6.20                  | 36.06                       | 39.06                    | 48.35                   | 51.55             | 74                     | -22.45                | Vertical     |
| 10805.680          | 6.17                  | 38.42                       | 37.78                    | 45.63                   | 52.44             | 74                     | -21.56                | Vertical     |
| 1514.252           | 2.52                  | 28.22                       | 39.36                    | 45.44                   | 36.82             | 74                     | -37.18                | Horizontal   |
| 4004.083           | 4.16                  | 33.85                       | 41.04                    | 47.33                   | 44.30             | 74                     | -29.70                | Horizontal   |
| 5138.579           | 4.82                  | 34.53                       | 41.66                    | 48.24                   | 45.93             | 74                     | -28.07                | Horizontal   |
| 6577.752           | 5.27                  | 36.23                       | 40.41                    | 48.91                   | 50.00             | 74                     | -24.00                | Horizontal   |
| 8083.955           | 6.20                  | 36.03                       | 39.11                    | 48.39                   | 51.51             | 74                     | -22.49                | Horizontal   |
| 12117.140          | 6.50                  | 39.02                       | 38.32                    | 47.17                   | 54.37             | 74                     | -19.63                | Horizontal   |



Report No.: SZEM120700388101

Page: 41 of 51

| Worse case         | mode:                 | GFSK(DH1)                   | ) Tes                    | t channel:              | Highest           | Rem                    | ark:                  | Peak         |
|--------------------|-----------------------|-----------------------------|--------------------------|-------------------------|-------------------|------------------------|-----------------------|--------------|
| Frequency<br>(MHz) | Cable<br>Loss<br>(dB) | Antenna<br>Factor<br>(dB/m) | Preamp<br>Factor<br>(dB) | Read<br>Level<br>(dBuV) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polarization |
| 1424.511           | 2.47                  | 27.98                       | 39.32                    | 46.57                   | 37.70             | 74                     | -36.30                | Vertical     |
| 3184.250           | 3.47                  | 33.33                       | 40.44                    | 47.78                   | 44.14             | 74                     | -29.86                | Vertical     |
| 4256.330           | 4.33                  | 34.55                       | 41.22                    | 48.05                   | 45.71             | 74                     | -28.29                | Vertical     |
| 5352.186           | 4.90                  | 34.75                       | 41.48                    | 49.16                   | 47.33             | 74                     | -26.67                | Vertical     |
| 7413.726           | 6.02                  | 35.97                       | 39.69                    | 48.83                   | 51.13             | 74                     | -22.87                | Vertical     |
| 10669.020          | 6.14                  | 38.37                       | 37.73                    | 46.43                   | 53.21             | 74                     | -20.79                | Vertical     |
| 1453.818           | 2.49                  | 28.04                       | 39.33                    | 46.94                   | 38.14             | 74                     | -35.86                | Horizontal   |
| 3064.958           | 3.36                  | 33.38                       | 40.35                    | 47.16                   | 43.55             | 74                     | -30.45                | Horizontal   |
| 4055.371           | 4.20                  | 33.99                       | 41.08                    | 47.82                   | 44.93             | 74                     | -29.07                | Horizontal   |
| 6412.427           | 5.23                  | 36.18                       | 40.56                    | 48.86                   | 49.71             | 74                     | -24.29                | Horizontal   |
| 9157.857           | 6.11                  | 36.79                       | 38.19                    | 46.97                   | 51.68             | 74                     | -22.32                | Horizontal   |
| 11782.550          | 6.42                  | 38.68                       | 38.19                    | 46.62                   | 53.53             | 74                     | -20.47                | Horizontal   |

#### Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
  - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM120700388101

Page: 42 of 51

# 5.12Band edge (Radiated Emission)

| Test Requirement: | 47 CFR Part 15C Section 15.209 and 15.205 |                                                  |                  |  |  |  |  |  |
|-------------------|-------------------------------------------|--------------------------------------------------|------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10: 2009                         |                                                  |                  |  |  |  |  |  |
| Test Site:        | Measurement Distance: 3m                  | Measurement Distance: 3m (Semi-Anechoic Chamber) |                  |  |  |  |  |  |
| Limit:            | Frequency                                 | Limit (dBuV/m @3m)                               | Remark           |  |  |  |  |  |
|                   | 30MHz-88MHz                               | 40.0                                             | Quasi-peak Value |  |  |  |  |  |
|                   | 88MHz-216MHz                              | 43.5                                             | Quasi-peak Value |  |  |  |  |  |
|                   | 216MHz-960MHz                             | 46.0                                             | Quasi-peak Value |  |  |  |  |  |
|                   | 960MHz-1GHz                               | 54.0                                             | Quasi-peak Value |  |  |  |  |  |
|                   | Above 1GHz                                | 54.0                                             | Average Value    |  |  |  |  |  |
|                   | Above IGHZ                                | 74.0                                             | Peak Value       |  |  |  |  |  |
|                   |                                           | •                                                | ·                |  |  |  |  |  |
| Test Setup:       |                                           |                                                  |                  |  |  |  |  |  |





Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz



Report No.: SZEM120700388101

Page: 43 of 51

| Test Procedure:        | <ul> <li>a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel</li> <li>g. Test the EUT in the lowest channel , the Highest channel</li> <li>h. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.</li> <li>i. Repeat above procedures until all frequencies measured was complete.</li> </ul> |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exploratory Test Mode: | Non-hopping transmitting mode with all kind of data type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Final Test Mode:       | Through Pre-scan, find the DH5 of date type is the worse case of GFSK modulation type.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Instruments Used:      | Refer to section 4.10 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Results:          | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Report No.: SZEM120700388101

Page: 44 of 51

Test plot as follows:

| Worse case mode: | GFSK (DH5) | Test channel: | Lowest | Remark: | Peak | Vertical | l |
|------------------|------------|---------------|--------|---------|------|----------|---|
|------------------|------------|---------------|--------|---------|------|----------|---|



Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. : 3881RF test mode : 2402

|     |          | CableAntenna |        | Preamp Read |       |       | Limit | Over   |        |  |
|-----|----------|--------------|--------|-------------|-------|-------|-------|--------|--------|--|
|     | Freq     | Loss         | Factor | Factor      | Level | Level | Line  | Limit  | Remark |  |
|     | MHz      | dB           | dB/m   | dB          | dBm   | dBm/m | dBm/m | dB     |        |  |
| 1   | 2390.000 | 2.98         | 32.51  | 39.85       | 51.21 | 46.86 | 74.00 | -27.14 | Peak   |  |
| 2 0 | 2400.000 | 2.98         | 32.51  | 39.86       | 76.21 | 71.84 | 74.00 | -2.16  | Peak   |  |
| 3 @ | 2402.200 | 2.98         | 32.51  | 39.86       | 99.90 | 95.53 | 74.00 | 21.53  | Peak   |  |



Report No.: SZEM120700388101

Page: 45 of 51

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Horizontal



Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 3881RF test mode : 2402

|     |          | Cable | intenna | Preamp | Read  |       | Limit | Over   |        |
|-----|----------|-------|---------|--------|-------|-------|-------|--------|--------|
|     | Freq     | Loss  | Factor  | Factor | Level | Level | Line  | Limit  | Remark |
|     |          |       |         |        |       |       |       |        |        |
|     | MHz      | dB    | dB/m    | dB     | dBm   | dBm/m | dBm/m | dB     |        |
|     |          |       |         |        |       |       |       |        |        |
| 1   | 2390.000 | 2.98  | 32.51   | 39.85  | 51.62 | 47.26 | 74.00 | -26.74 | Peak   |
| 2 0 | 2400.000 | 2.98  | 32.51   | 39.86  | 73.53 | 69.16 | 74.00 | -4.84  | Peak   |
| 3 @ | 2402.300 | 2.98  | 32.51   | 39.86  | 97.84 | 93.47 | 74.00 | 19.47  | Peak   |



Report No.: SZEM120700388101

Page: 46 of 51

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Vertical



Condition : FCC PART15 (>1G) AV 3m VERTICAL

Job No. : 3881RF test mode : 2402

|     |          | CableA | ntenna | Preamp | Read  |       | Limit | Over   |        |
|-----|----------|--------|--------|--------|-------|-------|-------|--------|--------|
|     | Freq     | Loss   | Factor | Factor | Level | Level | Line  | Limit  | Remark |
|     |          |        |        |        |       |       |       |        |        |
|     | MHz      | dB     | dB/m   | dB     | dBm   | dBm/m | dBm/m | dB     |        |
|     |          |        |        |        |       |       |       |        |        |
| 1 0 | 2354.200 | 2.97   | 32.45  | 39.82  | 46.48 | 42.08 | 54.00 | -11.92 | Peak   |
| 20  | 2390.000 | 2.98   | 32.51  | 39.85  | 34.91 | 30.55 | 54.00 | -23.45 | Peak   |
| 3 0 | 2400.000 | 2.98   | 32.51  | 39.86  | 60.87 | 56.50 | 54.00 | 2.50   | Peak   |
| 4 0 | 2402.200 | 2.98   | 32.51  | 39.86  | 87.41 | 83.04 | 54.00 | 29.04  | Peak   |



Report No.: SZEM120700388101

Page: 47 of 51

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Average Horizontal



Condition : FCC PART15 (>1G) AV 3m HORIZONTAL

Job No. : 3881RF test mode : 2402

|   |   |          | Cable | intenna | Preamp | Read  |       | Limit | Over   |        |
|---|---|----------|-------|---------|--------|-------|-------|-------|--------|--------|
|   |   | Freq     | Loss  | Factor  | Factor | Level | Level | Line  | Limit  | Remark |
|   |   | MHz      | dB    | dB/m    | ——dB   | dBm   | dBm/m | dBm/m | ——dB   |        |
|   |   |          |       |         |        |       |       |       |        |        |
| 1 | 0 | 2353.900 | 2.97  | 32.45   | 39.82  | 45.00 | 40.59 | 54.00 | -13.41 | Peak   |
| 2 | 0 | 2390.000 | 2.98  | 32.51   | 39.85  | 37.67 | 33.32 | 54.00 | -20.68 | Peak   |
| 3 | 0 | 2400.000 | 2.98  | 32.51   | 39.86  | 57.65 | 53.28 | 54.00 | -0.72  | Peak   |
| 4 | 0 | 2402.200 | 2.98  | 32.51   | 39.86  | 85.75 | 81.38 | 54.00 | 27.38  | Peak   |



Report No.: SZEM120700388101

Page: 48 of 51

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical



Frequency (MHz)

Condition : FCC PART15(>1G) PK 3m VERTICAL

Job No. :3881RF test mode : 2480

|     | Freq     |      |       | Preamp<br>Factor |       |        |        |        | Remark |
|-----|----------|------|-------|------------------|-------|--------|--------|--------|--------|
|     | MHz      | dB   | dB/m  | dB               | dBuV  | dBuV/m | dBuV/m | dB     |        |
| 1 0 | 2480.175 | 3.03 | 32.67 | 39.92            | 96.76 | 92.54  | 74.00  | 18.54  | Peak   |
| 2   | 2483.500 | 3.03 | 32.67 | 39.92            | 58.84 | 54.62  | 74.00  | -19.38 | Peak   |





Report No.: SZEM120700388101

Page: 49 of 51

Worse case mode: 8DPSK(DH3) Test channel: Highest Remark: Peak Horizontal



Condition : FCC PART15(>1G) PK 3m HORIZONTAL

Job No. : 3881RF test mode : 2480

|     |   | Freq     |      |       | Preamp<br>Factor | Read<br>Level |        |        | Over<br>Limit | Remark |   |
|-----|---|----------|------|-------|------------------|---------------|--------|--------|---------------|--------|---|
|     | _ | MHz      | dB   | dB/m  | dB               | dBuV          | dBuV/m | dBuV/m | dB            |        | - |
| 1 0 |   | 2479.850 | 3.03 | 32.67 | 39.92            | 97.69         | 93.47  | 74.00  | 19.47         | Peak   |   |
| 2   |   | 2483.500 | 3.03 | 32.67 | 39.92            | 59.16         | 54.94  | 74.00  | -19.06        | Peak   |   |



Report No.: SZEM120700388101

Page: 50 of 51

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Average Vertical



Condition : FCC PART15 (>1G) AV 3m VERTICAL

Job No. : 3881RF test mode : 2480

|     | . 2 | Freq     |      |       | Preamp<br>Factor |       |                            | Limit<br>Line |       | Remark |
|-----|-----|----------|------|-------|------------------|-------|----------------------------|---------------|-------|--------|
|     | -   | MHz      | dB   | dB/m  | dB               | dBuV  | $\overline{\text{dBuV/m}}$ | dBuV/m        | dB    |        |
| 1 0 |     | 2479.975 | 3.03 | 32.67 | 39.92            | 84.84 | 80.62                      | 54.00         | 26.62 | Peak   |
| 2   |     | 2483.500 | 3.03 | 32.67 | 39.92            | 53.23 | 49.01                      | 54.00         | -4.99 | Peak   |



Report No.: SZEM120700388101

Page: 51 of 51

|  | Ī | Worse case mode: | GFSK (DH5) | Test channel: | Highest | Remark: | Average | Horizontal |
|--|---|------------------|------------|---------------|---------|---------|---------|------------|
|--|---|------------------|------------|---------------|---------|---------|---------|------------|



Condition : FCC PART15 (>1G) AV 3m HORIZONTAL

Job No. : 3881RF test mode : 2480

|          | Freq |    |      | Preamp<br>Factor |      | Level  |        |    | Remark |
|----------|------|----|------|------------------|------|--------|--------|----|--------|
|          | MHz  | dB | dB/m | dB               | dBuV | dBuV/m | dBuV/m | dB |        |
| 1 0<br>2 |      |    |      | 39.92<br>39.92   |      |        |        |    |        |

#### Note

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor