

$$h(12) = 12 \% 10 = 2$$
 index in HT
 $h(20) = 20\% 10 = 0$ index in HT
 $h(27) = 27\% 10 = 7 \longrightarrow Colhsion happens$

To resolve Collision, We have two methods: 1- Open Hashing (or closed Addressing) - We use chaining method" (Linked 2 - Closed Hashing (or open Addressing) a - Linear probing -> (N+i) 1/m b- Quadratic probing -> (u+i2)/m c - double hashing. H1(k), H2(k)

$$ex \# | a : Key Values : KV = 3, 2, 9, 6, 11, 13, 7, 12$$

 $| Hash func. \rightarrow H(k) = 2k+3, m=10 | Size of HT$

We use Division method (%) and open Hashing to store these values (KV).

We want to store these values in HT.

Division method: h(ki)= ki /m $h(k)=2k+3 \longrightarrow (2k+3/m)$ HT Chaining Method 3 5 7 10-12 12 113 11

1		
	Key	Location 4 or Index
1	3	[2<3+3]/10 = 9
	2	[2x2+3] 1/10 = 7
	9	[2<9+3] /10=1
	6	[2<6+3]/10=5
	11	[2×11+3] 1/10 = (5) Collision
	13	[2213+3] /10 = 9 Colleson
	7	[7x2+3] /10= (7) Collision
	12	[12=2+3] /10=7 Collision

Week 16, Sat: K.V. = 3, 2, 9, 6, 11, 13, 7, 12 ex# 16: We use "Open Addressing" with linear probing method (for Collisson) Insert Ki at first free location from (U+i)/m, where i = 0 to (m-1). (h(k)=2k+3) m=105ize of Hash table

"Continue on hext page"

Order of elements (KV): -, 9, -, 11, 12, 6, -, 2, -, 3

We failed for key values 13 and 7, 50 it is better to try another method (like using different hz(k)).

- Folding Method: We divide the big number (key) into equal Size pieces, we may not have the last piece of equal size. We add these pieces together to get the result. For example, if the key is a phone number 436-555-4601, We divide these digits into group of two. We get 43,65,55,46,01, now we add them up.

We put this phone number in HT with index=1. Some folding methods reverse every

In this example we get: 43, 56, 55, 64, 01, the total is 219 then 219% 11 = 10, so we store the phone # in the index 10 of HT array.

Mid- Square Method: First we square each item and then we extract some portion of resulting digits. For example if value 44 - 442= 1936. We extract 93 then we do 93% 11=5

Numbers

Remainder (index for HT) $54 \rightarrow 54^{2} = 2916$ $26 \rightarrow 26^{2} = 676$ $91\%11 = \frac{3}{2}$ $7\%11 = \frac{7}{2}$ $93 \rightarrow 93^{2} = 8699$ $17 \rightarrow 17^{2} = 2899$ $17 \rightarrow 77^{2} = 5929$ $17 \rightarrow 77^{2} = 5929$ $17 \rightarrow 77^{2} = 961$ $17 \rightarrow 17^{2} = 1961$ $17 \rightarrow 17^{2} = 1961$

Load factor $\lambda = \frac{\text{Hof Values in HT}}{\text{table size}} = \frac{6}{11} = 0.5454 \text{ or } 54.54/a$ $S'(\lambda) = \frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) \rightarrow \text{Avg Hof probs for Successful Search.}$ $U(\lambda) = \frac{1}{2} \left(1 + \frac{1}{1 - \lambda} \right) = 4.4 = 4 \text{ unsuccessful } 4.$

```
Graph Theory: A graph is a non-empty set of vertices and set of edges. 5024
                              G=(V, E)
   V: Vertex set (also called nodes or points)
   E: edge set ( " " links, lines, arcs)
Each edge has either one or two vertices associated withit, called endpoints.
An edge is said to connect its endpoints.

- Vertices are said to be adjacent (or heighbors) if the vertices are
  endpoints of an edge.

U

Edge e is incredent with U, V.
A directed graph (Digraph) Consists of sit of vertices and directed edges. The directed edge is a ssociated with {u,v} is said to start at u and end
           u v u e
  The degree of a vertex in an undirected graph is the # of edger incident with it. A loop contributes twice to the degree, we denote as deg(v).
            deg(n) = 3

deg(v) = 1 (Pendant Vertex)

deg(w) = 0 (Isolated Vertex)
 Graph Theory Applications:
   - Electrical Eng.: To design Circuits
   - Computer Science Dijkstrais Alg. (to find the shortest path)
- primis Alg (Min. Spanning Tree)
- Kruskalic Ala
                            - Kruskal's Alg.
   - Computer Networking
    - Scrence: The molecular structure and chemical structure of a substance, the DNA structure of an organism, etc. are represented by graphs.
   - Linguistics: The parsing tree of a language and grammer of a language
  - General: Business (optimization) , it can be Min or Max.
```

Graph Types: . Simple: no loops, no multiple or parallel edges 59.24
· Multi-graph: 11, yes multiple 11 11
· Pseudo graph: yes loops, yes multiple q " ".
· Mixed graph; has directed and undirected edges.
-loop
Dijkstra's Algorithm: We use it to find the shortest path from a single source sip, t Vertex to all Vertices in graph.
I- Shortest path tree set: empty
2- Assign distance values as oo. For source (start) Vertex assign 0,
3- a) pick a vertex 4 which is not in the sipt. set.
b) put this vertex u in sp.t. set
c) update all distance values of all adjacent vertices of u I Lie call d
The court of the c
update distance of v
Source weight 5th weight 0512 distance There is no directed path from vertex 1 to vertex 3, we use 00.
5+7=12 (00 -> relaxation: \ if d[u]+(u,v) <d[v]< td=""></d[v]<>
1 thurst 2 1 c =
(x#1, Find the shortest path (using Dijk. Alg.): V d[v]
Source 2 2 2 2 3 4 8 5 6 9

- Representation of Graph in Computer:

1 - Adacency Matrix: Anxn > 1 # of verfices

aij=1, if i and j are adjacent. otherwise dig =0

2- Adjacency list

expl, write adjacency matrix for the following graph:

Adacency List: 2 田地西村里

Prim's Algorithm: Minimum Spanning Tree (MST), Min. Cost to Vistall Vertices. We select least cost path at each vertex which is Connecting other vertices. We cannot have a Cycle.

Example: Find MST:

- Breadth First Search: BFS

1 - Visit a vertex and its heighbors and do the successively. We can start from any vertex unless is given.

Final Exam is next Sat. 6-1-24, loan-12pm

Topics: 1- Exceptions 2- Recursion 3-Binary Tree, BST, Heap 4-Hashing & Graphs