Anteckningar TMV206 - Linjär Algebra

Krysset

 $January\ 27,\ 2022$

Contents

1	Geometriska vektorer		
		1.0.1 Räkneregler	3
	1.1	Linjärkombinationer	4
	1.2	Skalärprodukten	4
	1.3	Vektorprodukten	7
2	Koordinatsystem (Avs. 1.5) 2.1 Koordinatsystem i ett plan		
			9
3	Linjer och plan (Avsnitt 1.6)		
		3.0.1 Linjer	11
	3.1	Plan	11

Chapter 1

Geometriska vektorer

När man säger vektor menar man ofta en matris på formeln av en kolonnvektor,

$$\begin{pmatrix} 1\\2\\-3 \end{pmatrix}$$
 eller en radvektor, $\begin{pmatrix} 1 & 2 & -3 \end{pmatrix}$.

Så kommer det även vara för oss. Men vi börjar med att diskutera geometriska vektorer.

Definition: En geometrisk vektor är ett objekt som har både storlek och riktning. Storleken av vektorn $\overline{\mathbb{V}}$ betecknas $\|\mathbb{V}\|$ och kallas för vektorns längd. Det finns en vektor, nollvektorn $\mathbf{0}$, som har längd 0 men saknar riktining.

Vi tänker på en geometrisk vektor som en pil \longrightarrow

Men en pil har en start- och en slut-punkt. Det har inte vektorer. Vektorer vestäms av deras längd och riktning.

Definition: Vi säger att <u>två vektorer är lika</u> om de har samma längd och samma riktning.

 \mathbf{Ex} Vektorerna — och \rightarrow är inte lika för de har inte samma längd. De har dock samma riktning.

Vektorerna \to och \downarrow är inte lika. De har samma längd (kanske inte blir det i pdf:en) men inte samma riktning.

Vektorerna ≠ och ≠ är lika. De har samma längd och samma riktning. Start och slutpunkt spelar ingen roll!

Ex Hastighet är en vektor. I detta fall kallas storleken för fart (speed).

Givet två punkter A och B så betecknar \overrightarrow{AB} vektron från A till B. $A \longrightarrow B$ Vi vill kunna räkna med vektorer, dvs göra vektoralgebra.

Definition: Givet en vektor \boldsymbol{v} och ett tal $a \neq 0$ så är vektorn av den vektorn som uppfyller

- 1. $||a \cdot v|| = |a| \cdot ||v||$
- 2. om a>0 då har $a{\boldsymbol v}$ och ${\boldsymbol v}$ samma riktning
- 3. om a < 0 då har av och v motsatt riktning

Vi låter $0 \cdot \boldsymbol{v} = \boldsymbol{0}$.

Ex Om vektorn \boldsymbol{v} ges av \nearrow då är $2\boldsymbol{v}$, $\frac{1}{2}\boldsymbol{v}$ och $(-1)\boldsymbol{v}$ vektornerna \nearrow (dubbla längden) \nearrow (halva längden) \swarrow

Ex Om \boldsymbol{v} är en vektor med positiv längd, då är $\boldsymbol{w} = \frac{1}{\|\boldsymbol{v}\|}$ är en vektor med längd 1. Låt oss kolla detta: $\|\boldsymbol{w}\| = \|\frac{1}{\boldsymbol{v}}\boldsymbol{v} = |\frac{1}{\|\boldsymbol{v}\|}| \cdot \|\boldsymbol{v}\| = \frac{1}{\|\boldsymbol{v}\|}\|\boldsymbol{v}\| = 1$. En vektor med längd 1 kallas för en enhetsvektor.

Definition: Om $v = \overrightarrow{AB}$ och $w = \overrightarrow{BC}$ då definierar <u>summan av v och w</u> som $v + w = \overrightarrow{AC}$

Det är ingen inskränkning att anta att \boldsymbol{w} börjar där \boldsymbol{v} slutar eftersom vi får flytta vektorer.

1.0.1 Räkneregler

- 1. $a \cdot (b \cdot v) = (a \cdot b) \cdot v$
- 2. $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$
- $3. \ a(\boldsymbol{v} + \boldsymbol{w}) = a\boldsymbol{v} + a\boldsymbol{w}$
- 4. $\boldsymbol{v} + \boldsymbol{w} = \boldsymbol{w}\boldsymbol{v}$
- 5. u + (v + w) = (u + v) + w

Räkneregel 5 gör att vi kan skippa paranteser när vi adderar flera vektorer. Vi skriver $\boldsymbol{u} + \boldsymbol{v} + \boldsymbol{w}$

1.1 Linjärkombinationer

Definition Låt V vara en mängd vektorer och $v_1, ..., v_n \in V$. En vektor på formen $\mathbf{v} = c_1 v_1 + c_2 v_2 + ... + c_n v_n$ sägs vara en linjärkombination av $v_1, v_2, ..., v_n$. Mängden av alla linjärkombinationer av vektorer från V kallas spannet av V och betecknas span(V).

Ex Givet v och w så är t.ex 2v - 3w en linjärkombinationav v och w.

Ex Varje vektor \boldsymbol{v} är en linjärkombination av sig själv, ty $v = 1 \cdot \boldsymbol{v}$

Ex Nollvektorn **0** är en linjärkombination av varje mängd $v_1, v_2, ..., v_n$ vektorer, ty **0** = $0v_1 + 0v_2 + ... + 0v_n$.

 \mathbf{Ex} Låt v vara en noll-skild vektor. Då är $\mathrm{span}(v)$ (=span({v})) en linje.

Varje sådan vektor \boldsymbol{v} kallas för en riktningsvektor för linjen.

Ex Vi säger att två vektorer \boldsymbol{u} och \boldsymbol{v} är parallella om de har samma eller motsatt riktning. Låt \boldsymbol{u} och \boldsymbol{v} vara två nollskilda och icke-parallella vektorer. Då är span $(\{\boldsymbol{u},\boldsymbol{v}\})$ =span $(\boldsymbol{u},\boldsymbol{v})$ ett plan. Varför?

1.2 Skalärprodukten

Definition Låt \boldsymbol{u} och \boldsymbol{v} vara två vektorer och låt α vara den minsta vinkeln mellan \boldsymbol{u} och \boldsymbol{v} . Vi definierar skalärprodukten av \boldsymbol{u} och \boldsymbol{v} genom $\boldsymbol{u} \cdot \boldsymbol{v} = \|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\| |\cos(\alpha)$.

Observera att $\boldsymbol{u} \cdot \boldsymbol{v}$ är ett tal (en skalär).

$$\mathbf{E}\mathbf{x} \quad \boldsymbol{u} \cdot \boldsymbol{u} = ||\boldsymbol{u}||^2 cos(0) = ||\boldsymbol{u}||^2$$

Ex Vi har att (antag att \boldsymbol{u} och \boldsymbol{v} är nollskilda) $\boldsymbol{u} \cdot \boldsymbol{v} = 0 \Leftrightarrow \boldsymbol{u}$ och \boldsymbol{v} är ortogonala (vinkelräta)

Lösning $u \cdot v = 0 \Leftrightarrow ||u|| \cdot ||v|| cos(\alpha) = 0 \Leftrightarrow cos(\alpha) = 0 \Leftrightarrow \alpha = \frac{\pi}{2} \Leftrightarrow bmu, u \text{ ortogonala}$

Proposition 1.16 Låt u och v vara nollskilda vektorer och låt alpha vara vinkeln mellan dem. då gäller att

- $\boldsymbol{u} \cdot \boldsymbol{v} > 0 \Leftrightarrow \alpha \text{ spetsig}$
- $\boldsymbol{u} \cdot \boldsymbol{v} = 0 \Leftrightarrow \alpha \text{ rät}$
- $\boldsymbol{u} \cdot \boldsymbol{v} < 0 \Leftrightarrow \alpha \text{ trubbig}$

Bevis Eftersom $\boldsymbol{u}\cdot\boldsymbol{v}=\|\boldsymbol{u}\|\cdot\|\boldsymbol{v}\|cos(\alpha)$ så har $\boldsymbol{u}\cdot\boldsymbol{v}$ samma tecken som $cos(\alpha)$. Så

- $\boldsymbol{u} \cdot \boldsymbol{v} > 0 \Leftrightarrow cos(\alpha) > 0$
- $\boldsymbol{u} \cdot \boldsymbol{v} = 0 \Leftrightarrow cos(\alpha) = 0$
- $\boldsymbol{u} \cdot \boldsymbol{v} < 0 \Leftrightarrow cos(\alpha) < 0$

Påståendet följer av egenskaper för cosinus. $cos(\alpha) > 0 \Leftrightarrow 0 < \alpha < \frac{\pi}{2}$

Proposition 1.18 Låt α och v vara vektorer och L en linje med riktningsvektor u. Då gäller att $u \cdot v = u \cdot v_L$

Bevis Låt α vara vinkeln mellan u och v. Antag att α är spetsig. Då $cos(\alpha) = \frac{||v_L||}{||v||}$.

Vi får $\boldsymbol{u} \cdot \boldsymbol{v} = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| cos(\alpha) = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}|| \cdot \frac{||\boldsymbol{v}_L||}{||\boldsymbol{v}||} = ||\boldsymbol{u}|| \cdot ||\boldsymbol{v}_L|| cos(0) = \boldsymbol{u} \cdot \boldsymbol{v}_L \text{ v.s.b}$

Proposition 1.19

- 1. $\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}$
- 2. $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$
- 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

 Sats 1.20 Låt u vara en riktningsvektor för linjen L. Då gäller att $v_L = \frac{u \cdot v}{u \cdot u} u$ och $||v_L|| = \frac{|u \cdot v|}{||u||}$. Illustration:

 $\begin{array}{ll} \mathbf{Bevis} & \mathrm{Vi} \ \mathrm{vet} \ \mathrm{att} \ \boldsymbol{v}_L \ \mathrm{och} \ \boldsymbol{u} \ \mathrm{\ddot{a}r} \ \mathrm{parallella} \ \mathrm{och} \ \mathrm{d\ddot{a}rf\ddot{o}r} \ \boldsymbol{v}_L = t\boldsymbol{u} \ \mathrm{f\ddot{o}r} \ \mathrm{n\mathring{a}got} \ t \in \mathbb{R}. \\ \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u} \cdot \boldsymbol{v}_L = \boldsymbol{u} \cdot (t\boldsymbol{u}) \Rightarrow t = \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{\boldsymbol{u} \cdot \boldsymbol{u}}. \\ \mathrm{Allts\mathring{a}} \ \boldsymbol{v}_L t\boldsymbol{u} = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{u} \cdot \boldsymbol{u}} \ \mathrm{och} \ \|\boldsymbol{v}_L\| = \|\frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\boldsymbol{u} \cdot \boldsymbol{u}}\boldsymbol{u}\| = \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\|^2} \|\boldsymbol{u}\| = \frac{|\boldsymbol{u} \cdot \boldsymbol{v}|}{\|\boldsymbol{u}\|} \end{aligned}$

Alltså
$$v_L t u = \frac{u \cdot v}{u \cdot u} u$$
 och $||v_L|| = ||\frac{u \cdot v}{u \cdot u} u|| = \frac{|u \cdot v}{||u||u^2} ||u|| = \frac{|u \cdot v|}{||u||}$

Definition

 \bullet En nollskild vektor \boldsymbol{n} är en
 normal till ett plan π om $\boldsymbol{n}\cdot\boldsymbol{v}=0$ för alla vektorer \boldsymbol{v} som ör parallella med planet.

 \bullet Givet en vektor \boldsymbol{v} så är den ortogonala projektionen av \boldsymbol{v} på $\pi,~\boldsymbol{v}_\pi,$ den vektor i planet så att $v - \overline{u_{\pi}}$ är en normal till π .

Proposition 1.23 $(u+u)_{\pi} = u_{\pi} + v_{\pi}$ (Inget bevis den här gången)

1.3 Vektorprodukten

När vi studerar vektorprodukter är det viktigt att våra vektorer är i rummet.

Definition En vektortrippel (u, v, w) sägs vara höger-orienterad om vyn från w:s spets ger att den minsta vinkeln mellan u och v get att u vrids moturs mot v. Annars sägs trippeln vara <u>vänsterorienterad</u>.

Givet två vektorer \boldsymbol{u} och \boldsymbol{v} så spänner de ett plan. Vi kan även se det som att de spänner ett parallellogram

Arean av detta parallellogram är $||u|| \cdot ||v|| \sin(a)$.

DefinitionLåt \boldsymbol{u} och \boldsymbol{v} vara två vektorer. Vektorprodukten (kryssprodukten) av dem är vektorn $\boldsymbol{u}\times\boldsymbol{v}$ så att

- 1. $\boldsymbol{u} \times \boldsymbol{v} = 0$ om $\boldsymbol{u}, \boldsymbol{v}$ är parallella
- 2. $\|\boldsymbol{u} \times \boldsymbol{v}\| = \|\boldsymbol{u}\| \cdot \|\boldsymbol{v}\| \sin(a)$
- 3. $\boldsymbol{u} \times \boldsymbol{v}$ är ortogonal mot \boldsymbol{u} och \boldsymbol{v}
- 4. $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{u} \times \boldsymbol{v})$ är högerorienterad.

Proposition 1.32

- 1. $\mathbf{v} \times \mathbf{u} = -\mathbf{u} \times \mathbf{v}$
- 2. $(c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v}) = c(\mathbf{u} \times \mathbf{v})$
- 3. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w}$

Chapter 2

Koordinatsystem (Avs. 1.5)

2.1 Koordinatsystem i ett plan

Vi inför ett koordinatsystem i planet som följer:

- 1. Vi fixerar en punkt O, som vi kallar origo
- 2. Vi väljer två vektorer e_x och e_y som är ortogonala mot varann, dvs vinkeln mellan dem är $\frac{\pi}{2}$. Varje vektor v i planet kan skrivas $v = xe_x + ye_y$.
- 3. x och y kallas för \boldsymbol{v} :s koordinater med avseende på basen $\boldsymbol{e}_x,\,\boldsymbol{e}_y$

Givet en bas skriver vi $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$. Om $\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$ säger vi att punkten P har koordinatern x och y.

Den ortogonala projektionen av \boldsymbol{v} på x-axeln ges av $x\boldsymbol{e}_x = \begin{pmatrix} x \\ O \end{pmatrix}$.

2.2Koordinatsystem i ett rum

Vi inför ett koordinatsystem i rummet som följer.

- 1. Vi fixerar en punkt O, origo
- 2. Vi väljer tre enhetsvektorer e_x, e_y, e_z som är parvis ortogonala.

Vi skriver detta som
$$\boldsymbol{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3. Vi kallar x,y,z för v:s koordinater med avseende på basen e_x , e_y , e_z .

En bas $\boldsymbol{e}_x,\ \boldsymbol{e}_y,\ \boldsymbol{e}_z$ av enhetsvektorer och där vektorerna är parvis ortogonala kallas för en ON-bas (Orto Normal bas).

Om
$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 så säger vi att punkten P har koordinaterna x,y,z,

alltså
$$\mathbf{v} = \mathbf{v}_x + \mathbf{v}_y + \mathbf{v}_z = x\mathbf{e}_x + y\mathbf{e}_y + z\mathbf{e}_z$$

Vi väljer (nästan alltid) en ON-Bas så att (e_x, e_y, e_z) är högerorienterad

Proposition 1.37 Följande regler gäller för koordinaterna av vektorer:

1.
$$\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}$$

$$2. \ c \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} cx_1 \\ cy_1 \\ cz_1 \end{pmatrix}$$

Sats 1.38 Om
$$\boldsymbol{u} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$
 och $\boldsymbol{v} = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$ i en ON-bas då är
$$\boldsymbol{u} \cdot \boldsymbol{v} = x_1 x_2 + y_1 y_2 + z_1 z_2$$
$$\|\boldsymbol{u}\|^2 = x_1^2 + y_1^2 + z_1^2$$

Bevis

standard

dab

Låt
$$\boldsymbol{e}_x,\ \boldsymbol{e}_y,\ \boldsymbol{e}_z$$
 vara ON-basen.
Då är $||\boldsymbol{e}_x||=1=||\boldsymbol{e}_y||=||\boldsymbol{e}_z||$ och $\boldsymbol{e}_x\cdot\boldsymbol{e}_y=0=\boldsymbol{e}_x\cdot\boldsymbol{e}_z=\boldsymbol{e}_y\cdot\boldsymbol{e}_z$.
Vi har dessutom att $\boldsymbol{u}=x_1\boldsymbol{e}_x+y_1\boldsymbol{e}_y+z_1\boldsymbol{e}_y+z_1\boldsymbol{e}_z$

Vi har dessutom att
$$\mathbf{u} = x_1 \mathbf{e}_x + y_1 \mathbf{e}_y + z_1 \mathbf{e}_y + z_1 \mathbf{e}_z$$

$$\boldsymbol{v} = x_2 \boldsymbol{e}_x + y_2 \boldsymbol{e}_y + z_2 \boldsymbol{e}_y + z_2 \boldsymbol{e}_z$$

$$\mathbf{u} \cdot \mathbf{v} = (x_1 e_x + y_1 e_y + z_1 e_y + z_1 e_z) \cdot (x_2 e_x + y_2 e_y + z_2 e_y + z_2 e_z) =$$

$$= x_1 x_2 e_x \cdot e_x + y_1 y_2 e_y \cdot e_y + z_1 z_2 e_z \cdot e_z = x_1 x_2 ||\mathbf{e}_x||^2 + y_1 y_2 ||\mathbf{e}_y||^2 + z_1 z_2 ||\mathbf{e}_z||^2 =$$

$$= x_1 x_2 + y_1 y_2 + z_1 z_2 \text{ v.s.b}$$

Ex Beräkna vinkeln mellan
$$\boldsymbol{u} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 och $\boldsymbol{v} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$.

Lösning Låt α vara vinkeln. Då är $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos(\alpha)$

Vi vet att
$$\boldsymbol{u} \cdot \boldsymbol{v} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} = 2 \cdot 3 + 1 \cdot 4 + 3 \cdot 1 = 6 + 4 + 3 = 13 \ \|\boldsymbol{u}\| = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{4 + 1 + 9} = \sqrt{14} \ \|\boldsymbol{v}\| = \sqrt{3^2 + 4^2 + 1^2} = \sqrt{9 + 16 + 1} = \sqrt{26} \ \text{Alltså:} \ \cos(\alpha) = \frac{\boldsymbol{u} \cdot \boldsymbol{v}}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} = \frac{13}{\sqrt{4}\sqrt{26}} = \frac{13\sqrt{13}}{\sqrt{2}\sqrt{7}\sqrt{2}\sqrt{13}\sqrt{13}} = \frac{\sqrt{13}}{2\sqrt{7}} \ \text{Därför är } \alpha = \arccos(\frac{\sqrt{13}}{2\sqrt{7}}).$$

Sats 1.42 Om
$$\boldsymbol{u}=\begin{pmatrix} x_1\\y_1\\z_1 \end{pmatrix}$$
 och $\boldsymbol{v}=\begin{pmatrix} x_2\\y_2\\z_2 \end{pmatrix}$ i en högerorienterad ON-bas då är
$$\boldsymbol{u}\times\boldsymbol{v}=\begin{pmatrix} y_1z_2-z_1y_2\\z_1x_2-x_1z_2\\x_1y_2-y_1x_2 \end{pmatrix}$$

Ex Bestäm en vektor som är ortogonal mot både
$$u = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$
 och $v = \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}$.

Lösning Vi vet att $u \times v$ är ortogonal mot u och v!

$$u \times v = \begin{pmatrix} 3 \cdot 5 - 4 \cdot 1 \\ 4 \cdot 2 - 2 \cdot 5 \\ 2 \cdot 1 - 3 \cdot 2 \end{pmatrix} = \begin{pmatrix} 15 - 4 \\ 9 - 16 \\ 2 - 6 \end{pmatrix} = \begin{pmatrix} 11 \\ -2 \\ -4 \end{pmatrix}$$

Chapter 3

Linjer och plan (Avsnitt 1.6)

3.0.1 Linjer

Samtliga linjer i planet går att beskriva med en ekvation på Ax + By + C = 0. Om $B \neq 0$ så är det samma sak som $By = -C - Ax \Leftrightarrow y = \frac{C}{B} - \frac{A}{B}x$ så typ y = kx + m

Exempelvis, vad är x=3 för linje? Här är B = 0!

Y-axeln beskrivs av ekvationen x=0.

Hur bestäms en linje? Jo, en linje bestäms av en punkt P_0 tillsammans med en riktningsvektor \boldsymbol{v} . Linjen ges då av alla x_1y så att $\begin{pmatrix} x \\ y \end{pmatrix} = P_0 + t\boldsymbol{v}$ Om vi har en linje given av Ax + By + C = 0, hur hittar vi en riktningsvektor?

3.1 Plan