8.6 (a) Foot TM mode,
$$E_{2}(\rho,\phi) = E_{0}J_{m}(\chi_{mn}\rho/R)e^{\pm im\phi}$$
, and the resonant frequency is $W_{mn}\rho = \frac{1}{J_{n}E}\left(\frac{\chi_{mn}}{R^{2}} + \frac{\rho^{2}\chi^{2}}{L^{2}}\right)^{1/2}$, with $\rho>0$ and χ_{mn} being the n -th root of $J_{m}(\chi)$. Similarly, for TE mode, $1+2(\rho,\phi) = 1+0J_{m}(\chi_{mn}\rho/R)e^{\pm im\phi}$, and $W_{mn}\rho = \frac{1}{J_{n}E}\left(\frac{\chi_{mn}}{R^{2}} + \frac{\rho^{2}\chi^{2}}{L^{2}}\right)^{1/2}$, with $\rho>0$ and χ_{mn} being the n -th root of $J_{m}(\chi)$.

(b) The lowest resonant frequency is achieved with TMolo mode. For this mode, the stored energy is

$$U = \frac{1}{2} \, \epsilon \int_{A} |E_{\epsilon}|^{2} da = \pi \epsilon L E_{\epsilon}^{2} \int_{0}^{R} \rho J_{o} \left(\chi_{o} \frac{\rho}{R} \right)^{2} dl = \frac{\epsilon L E_{\epsilon}^{2}}{2} \, \pi R^{2} J_{1} \left(\chi_{o} \right)^{2}$$

and the power loss is

Since
$$V_{t}E_{z} = [\hat{\rho}\frac{\partial}{\partial\rho} + \hat{\phi}\frac{1}{\rho}\frac{\partial}{\partial\phi}]E_{z} = E_{0}e^{\pm im\phi}[\hat{\rho}\frac{\chi_{mn}}{R}J_{m}(\chi_{mn}\frac{\rho}{R}) + \hat{\phi}\frac{im}{\rho}J_{m}(\chi_{mn}\frac{\rho}{R})]$$

$$= E_0 \frac{\pi_{01}}{R} J_0'(\pi_0) \hat{\rho} , \quad \text{for } m = 0, \ n = 1,$$

the magnetic field is

The power loss now becomes

$$P_{Loss} = \frac{1}{200} \frac{E_{o}^{2}}{\mu^{2}W_{o1o}^{2}R^{2}} \left[2\pi R \cdot L \cdot J_{o}(\gamma_{o1})^{2} + 4\pi \int_{0}^{R} \rho J_{o}(\gamma_{o1}\frac{1}{R})^{2} d\rho \right]$$

$$= \frac{1}{200} \frac{E_{o}^{2}}{\mu^{2}W_{o1o}^{2}R^{2}} \left[2\pi R \cdot L \cdot J_{o}(\gamma_{o1})^{2} + 4\pi R^{2} \int_{0}^{1} t J_{o}(\gamma_{o1}t)^{2} dt \right]$$

$$= \frac{1}{200} \frac{E_{o}^{2}}{\mu^{2}W_{o1o}^{2}R^{2}} 2\pi R J_{o}(\gamma_{o1})^{2} (R+L) = \frac{1}{200} \frac{E}{\mu} E_{o}^{2} 2\pi R J_{o}(\gamma_{o1})^{2} (R+L)$$

Where we have used the identity

$$\int_{0}^{1} \pi J_{1}(ax)^{2} dx = \frac{1}{2} \left[J_{2}(a)^{2} - \frac{2J_{1}(a)J_{2}(a)}{a} + J_{1}(a)^{2} \right]$$

and Jola) = 0 for R=701. Then,