

Answer Keys and Solutions

(4)	2. (3)	3. (1)	4. (39)	5. (3)	6. (2)	7. (2)	8. (3)	
(4)nathongo	10. (3) athono							
$S_2\equiv 1,6,1$	$1,16,\Rightarrow c.c$	$c.d=4\Rightarrow d_1=4$ $d=5\Rightarrow d_2=5$ Herm of S_2 will be same	///. mathongo					
	$=rac{20}{2}[(2 imes11)+(2$	will have $a=11$ and $a=20-1)20]$	d = 20 mathongo					
= 4020 (3) Given, A	P is 3 , a_1, a_2, a_3, a_4	$a_4,a_5,a_6,31$						
∴ 31 = 3 +	7d //. mathons							
$\Rightarrow d=4$ mathongo $\therefore a_1=3+$								
$a_5=a+5d$	= 3 + 20 = 23							
	+6d = 3 + 24 = 2 mathon $= 27 - 23 = 4$	go /// mathongo						
and a_1+a_6	= 7 + 27 = 34							
	metric mean $= (7.7)$	ean of numbers $a_1, a_2 \dots 7^2 . 7^3 \dots 7^n \Big)^{1/n}$						
$= \left(7^{\frac{n(n+1)}{2}}\right)$	$\Big)^{1/n} = 7^{\left(\frac{n+1}{2}\right)}$							
		243 are in arithmetic p $= \frac{240}{m+1}$ geometric progression						
	io $r=\left(rac{243}{3} ight)^{rac{1}{3+1}}$ =	$=(81)^{\frac{1}{4}}=3$ athongo						
	$3+4\Big(rac{240}{m+1}\Big) \ rac{960}{m+1}$							
$\Rightarrow m = 39$ (3)								
$\log_2 6 = \log_2 6$ and $\log_2 12 = \log_2 3 + 2$	$=\log_2ig(2^2 imes3ig)$	$+\log_2 2 = 1 + \log_2 3$						
$= 2 + \log_2 3$ Since, $\log_2 3$ $\Rightarrow \log_2 3, \log_2 3$	$egin{array}{l} (1,1+\log_2 3,\ 2+\log_2 6,\ \log_2 12 \ { m are} \ (1,1+\log_2 1) \end{array}$	$\log_2 3\ ,\ (\because\ 2(1+\log_2 3$ in AP.	$(s) = \log_2 3 + 2 + \log_2 3$	3) are in AP.				
Taking recip								

Answer Keys and Solutions

6. (2) Let the first term of ar Since, $a + 3d = \frac{5}{3}$ (i	AD ho a all'A scarcilla outree				
Since, $a + ba = \frac{1}{2} \cdot \cdot \cdot \cdot \cdot (a + ba)$		rence be d. hongo			
and $a + 7d = 3 \dots (ii)$) and (ii), we get				
$\therefore T_6 = a + 5d = \frac{2}{3} + \frac{5}{3}$ $\Rightarrow 6 \text{th term of HP is } \frac{3}{7}.$	$= \frac{7}{3}$ hongo //// mathongo				
(2) $AM \ge GM$ for positive	ve numbers. So,				
$rac{4^{x}+rac{4}{4^{x}}}{2}\geq\sqrt{4^{x}\cdotrac{4}{4^{x}}}=2.$					
$4^{x} + \frac{4}{4^{x}} \ge 4$					
$\begin{array}{l} \text{(3)} \\ \text{AM} \geq \text{GM} \\ \frac{\text{a+b+b+c+c+c}}{6} \geq \sqrt[6]{\text{ab}^2\text{c}^3} \end{array}$					
	to <i>n</i> terms + to <i>n</i> terms]				
$= \frac{5}{9}[9 + 99 + 999 + \frac{5}{9}[(10 - 1) + (10^{2})]$		mathongo			
	nongo /// mathongo				
$=rac{5}{81}igl[10^{n+1}-10-\ S_{100}=rac{5}{81}igl[10^{101}-910igr]$	9n] hongo ///. mathongo				
$S = \Delta t_{\rm r} = \frac{1}{2} \sum_{\rm r=1} (1 +$					
$S = \frac{1}{2} \sum_{r=1}^{20} r + \frac{1}{2} \sum_{r=1}^{20} 1$					
$S = \frac{1}{4} \cdot 20(20+1) + \frac{1}{2} \cdot 20$ $S = 115$	hongo ///. mathongo				