Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по практическим работам

Дисциплина: Теория вероятностей и математическая статистика

Выполнил студент гр. 3530901/10001	(подпись)	Д.Л. Симоновский
Руководитель	(подпись)	К.В. Никитин

"<u>02</u>" <u>май </u>2023 г.

Санкт-Петербург 2023

Оглавление

1.	Задания	2
2.	Решение	2
a.	Задача 1.7	2
b.	Задача 2.6	3
c.	Задача 3.22	4
d.	Задача 4.23	5
e.	Задача 5.3	5
f.	Задача 6.14	6
3.	Моделирование	6
a.	Задача 2.6	6
b.	Задача 3.22	7
c.	Задача 4.23	9
d.	Задача 5.3	10
e.	Задача 6.14	11
4	Ссыпки	12

1. Задания

Задания для теоретического решения: 1.7, 2.6, 3.22, 4.23, 5.3, 6.14, 7.16, 8.40, 9.20, 10.7, 11.16, 12.17, 13.1, 14.4, 15.6, 16.6, 17.8, 18.10, 19.4, 20.34, 21.10, 22.17, 23.12, 35.19, 36.25, 37.5, 38.17, 39.30.

Задания для моделирования: 2.6, 3.22, 4.23, <mark>5.3, 6.14</mark>, 7.16, 8.40, 9.20, 10.7, 11.16, 12.17, 13.1, 14.4, 15.6, 17.8, 19.4, 21.10, 22.17.

2. Решение

Задача 1.7 THO 139 Pelles Ogno as unesusuxca бракованных argemi elletile Ознагает, гто Hmue I um 2 una 3 un bal Ump Ожагает Dobumue uno OZKaralm. dparo Bannoce DIKATALM Spanobarnoux Umbem: DOGNOBA HHERIX MIDO Hem.

b. Задача 2.6 Dano: 20 kgn З монеты 3 Kon. Fuorem bepemea workernor, вторая Uselm Hamman 20 веродтность, emo u nepeas 11 prema Ullem HOMMERAY 20 Perrene. Jalobuar 60009 mx0cm6 UZBRERRIUR REPBORT nou your suro 20 KON Woklemou bmapag Монета 20 non: P(20+20) (1) P(3+20)+P(20+20) EDOG MHO CMG, IMO ode HOMUKARON whemer kon: (20-20) = 10 90 beposimuacióno, umo CHARala golmakym Hamkai nomou 20 11090 ma bude 90 27

с. Задача 3.22

1 1	дача 3.22 Уловие
	LOCKOCIMO PAZGELERIA NAPALIELIENENIA APALIOCICI, OMEMORIZARIA
- Dyl	la om apploes na pacimogrece to inpegetions begogninoms moro
Kak	10 naygary Exouvernax na niocnocimo una guinoù l (leli) repeient
Pa	werever
1	Проведем через центр игим пранцю в, параменную
	горизонтанной прямой.
2.	Обозначим бинастичь к ней парамельную шкию
10 10 10 10 10 10 10 10 10 10 10 10 10 1	cepez la
3	Пусть х-дасстаяние от нентра илы до бизнайшей
	праной
Ü	у-угол метру прямой в, и той састью шил, которах
	Sunce K &
	Outract in 22
	en -
	Esinus L
T-	Therence barrowness married
2	Область возможных значения X и 4
	$X \in [0; \frac{L}{2}]$ $Y \in [0; M]$
	Bu boznomensia znarenia.
	$\frac{1}{2}$
6.	Область Елагогериятин значений
	Una nepecerer normyo, en parimornie om normoù l, go mas unos
	Sue mai mero K la Double X: lsing x &
7.	Prousage mon obracmu: S= \$\frac{\length{\sin \psi}}{2} d\psi = \frac{\length{\sin \psi}}{2} (1-(-1)) = l Uckorca & beyon muccine \begin{aligned} P(A) = \frac{\sin 2}{5} = \frac{2}{\pi l} \begin{aligned} \end{aligned}
2	Ucunias beyog muocini PIA) = 5 2 26
O.	S Ma

d. Задача 4.23

	1.
423 Mubble	
O someter us coposa mais a duemos bensive bourpounce	nagapt
Ha man Surema Onpegerers:	
а верогтность получения хога бы очного изетого выпрыша на	
б) сколько необходино приобрести билегов, тобы палугить вероятность получен	ues
иенного выпроша была не шенее 0.5.	
Thuence	
Perille 1 11000 Marie Manuelle Description Talman	24 100 HT/10
Peuven ucrossages applyly amnounterson racmon	est colling.
W(A)= m m- wwo noebserui p-ruccio uca ormanen	
29903/1000/ 39900/ 39993/39000/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/4
	10000
0) = 50.5 = 400001 [A. (40000=n) = 05 = 39998 .39999 40000	50.00
10000	
=> N = 8252	

f. Задача 6.14

6.14 Dano	
В ящике 15 теншескогх изген, 9 из них	новые.
Для первой шеры наугад берутся три	
После шры они возврощаютья в аши	·K
Для 2 игры научад берутся 3 ияга	
Maumu:	
Penilune:	гигры повые.
В коробке: 15 мягей: 6 старых, 9 новых.	3
lunomezu:	
H1 = Dla ! urph 3406 mara. Cmarem 9 cmapoex u	
H2 = Dla 1 шры 2 повых и 1 стар мяг. Станет вст Н3 = Dla 1 игры 1 новых и 2 стар мяг. Станет 7 ст	
Hy = Dia 1 wips 3 cmapor use. Emariem 6 cmap	и 9 нов. ияг.
Bepoamnooms runomeg:	
Bepormnocms runomez: $P(H_1) = \frac{C_9^3}{C_{15}^3} = \frac{84}{455} \qquad P(H_2) = \frac{C_9^4}{C_{15}^4} = \frac{216}{455}$	
$P(H_3) = \frac{C_6 C_6}{C_{15}^3} = \frac{135}{455}$ $P(H_4) = \frac{C_6}{C_{15}^3} = \frac{20}{455}$	
H-919 2 112por 3 110681 X 1192a	
$P(A H_1) = \frac{C_5}{C_{15}^3} = \frac{700}{455}$ $P(A H_2) = \frac{C_3}{C_{15}^3} = \frac{7}{455}$	
$A - 919$ 2 upper 3 nobel x using $P(A \mid H_1) = \frac{C_0^3}{C_{15}^3} = \frac{20}{955}$ $P(A \mid H_2) = \frac{C_0^3}{C_{15}^3} = \frac{35}{955}$ $P(A \mid H_3) = \frac{C_0^3}{C_0^3} = \frac{89}{955}$ $P(A \mid H_4) = \frac{C_0^3}{C_{16}^3} = \frac{89}{955}$ $P(A \mid H_4) = \frac{C_0^3}{C_{16}^3} = \frac{89}{955}$	
вероятность 4:	
A=P(A1H,)P(H,)+P(A1H2)P(H2)+P(A1H3)P(H3)+,	MAIH4)P(H4)=0.089
mbemi ppeg	

3. Моделирование

а. Задача 2.6

Условие:

В кошельке лежат три монеты достоинством по 20 коп. и семь монет по 3 коп. Наудачу берется одна монета, а затем извлекается вторая монета, оказавшаяся монетой в 20 коп. Определить вероятность того, что и первая извлеченная монета имеет достоинство в 20 коп.

Решение:

Создадим функцию для получения количества 20-ок и 3-ек:

```
def get_input_data():
    count_20 = 3
    count_3 = 7
    return count_20, count_3
```

Далее необходимо сделать функцию, которая будет возвращать результат броска, принимая на вход общее количество монет, количество 20-ок и 3-ек:

Также реализуем функцию одной итерации вытягивания двух монет, если вторая монета не 20-ка, вернем None, иначе результат первого броска:

```
def one_iteration(count_20, count_3):
    """
    Oдна итерация вытягивания двух монет
    """
    first_coin = get_random_coin(count_20, count_3)
    if first_coin == 20:
        count_20 -= 1
    else:
        count_3 -= 1
    second_coin = get_random_coin(count_20, count_3)
    if second_coin != 20:
        return
    return 1 if first_coin == 20 else 0
```

Ну и последнее – основной цикл программы на 1 000 000 итераций одиночной программы:

```
def main():
   Основной цикл, запускающий одну итерацию несколько раз
    count_20, count_3 = get_input_data()
    iteration counter = 0
    event_counter = 0
   while iteration_counter < 1_000_000:</pre>
        iteration = one_iteration(count_20, count_3)
        if iteration is None:
            continue
        event counter += iteration
        iteration counter += 1
    print(f'Количество 20-ок: {count 20}, количество 3-ек: {count 3}\n'
         f'Количество попыток, когда второй раз выпала 20: {iteration_counter}\n'
         f'Количество выпадений двух 20 подряд: {event_counter}\n'
          f'Итоговая вероятность: {event_counter / iteration_counter}\n'
          f'Ожидаемая вероятность: {(count_20 - 1) / (count_20 + count_3 - 1)}')
if __name__ == '__main__':
   main()
```

Выполним запуск программы и посмотрим на результат:

```
Количество 20-ок: 3, количество 3-ек: 7
Количество попыток, когда второй раз выпала 20: 1000000
Количество выпадений двух 20 подряд: 223004
Итоговая вероятность: 0.223004
Ожидаемая вероятность: 0.2222222222222
```

Таким образом результат моделирования близок к результатам моделирования.

b. Задача 3.22

Условие:

Плоскость разграфлена параллельными прямыми, отстоящими одна от другой на расстояние L. Определить вероятность того, что наудачу брошенная на плоскость игла длинной l (l<L) пересечет какую-либо прямую (задача Бюффона).

Решение:

Создадим функцию для получения начальных данных (расстояние между отстоящими прямыми и длина иглы):

```
def get_input_data():

Начальные данные

1 = 3
L = 7
return 1, L
```

Далее необходимо сделать функцию, которая будет возвращать результат броска иглы, как расстояние до ближайшей прямой и угол между прямой и «горизонтом».

Также реализуем функцию одной итерации броска иголки, которая будет возвращать результат броска и подставлять в условие попадания, полученное в ходе аналитического решения $\binom{lsin(fi)}{} > x$):

Ну и последнее – основной цикл программы на 1 000 000 итераций одиночной программы:

```
def main():
   Основной цикл, запускающий одну итерацию несколько раз
   1, L = get input data()
    event counter = 0
    count iterations = 1 000 000
    for i in range(0, count_iterations):
        iteration = one iteration(L, 1)
        event_counter += iteration
    print(f'Paccтояние между прямыми: {L}, длина прямой: {1}\n'
          f'Количество падений иглы на прямую: {event_counter}\n'
         f'Количество падений иглы мимо прямой: {count_iterations - event_counter}\n'
          f'Смоделированная вероятность падения иглы на прямую: {event counter /
count_iterations}\n'
          f'Расчетная вероятность падения иглы на прямую: {2 * 1 / (math.pi * L)}')
if __name__ == '__main__':
   main()
```

Выполним запуск программы и посмотрим на результат:

```
Расстояние между прямыми: 7, длина прямой: 3
Количество падений иглы на прямую: 273378
Количество падений иглы мимо прямой: 726622
Смоделированная вероятность падения иглы на прямую: 0.273378
Расчетная вероятность падения иглы на прямую: 0.272837045300392
```

Таким образом результат моделирования близок к результатам моделирования.

с. Задача 4.23

Условие:

В лотерее из сорока тысяч билетов ценные выигрыши падают на три билета, определить:

- а) Вероятность получения хотя бы одного ценного выигрыша на тысячу билетов
- b) Сколько необходимо приобрести билетов, чтобы вероятность получения ценного выигрыша была не менее 0.5

Решение:

Создадим функцию для получения начальных данных (общее число билетов и количество выигрышных):

```
def get_input_data():

Haчальные данные

N = 40000

win = 3

return N, win
```

Далее необходимо сделать функцию, которая будет возвращать результат одной покупки в лотерее, причем нужно учесть, что несколько одинаковых билетов быть не может, для этого воспользуемся set()

```
def one_iteration(x, win, n, N):
    """
    Oдна покупка n билетов
    """
    x = set()
    while len(x) < n:
        m = randint(0, N)
        if m < win:
            return True
        x.add(m)
    return False</pre>
```

Эта функция достаточно долгая, поэтому необходимо воспользоваться многопоточностью для ускорения подсчетов. Вот как будет выглядеть функция для вызова one_iteration много раз:

```
def do_iterations(N, win, n, count_iterations):
    """
        Функция для выполнения нескольких покупок
        """
        with Pool(processes=8) as pool:
            one_iteration_partial = partial(one_iteration, win=win, n=n, N=N)
            results = pool.map(one_iteration_partial, range(count_iterations))
        return results
```

Вместо 8 необходимо указать количество ядер процессора, которые вы собираетесь задействовать для расчетов.

В функции main() получим данные, используя get_input_data()

```
N, win = get_input_data()
```

После этого решим пункт а:

```
# Решение пункта a count_iterations = 10_000 n = 1000 event_counter = sum(do_iterations(N, win, n, count_iterations)) print(f'Пункт a:'
    f'Количество билетов: {N}, количество победных: {win}\n'
    f'Количество покупок с выигрышным билетом: {event_counter}\n'
    f'Количество покупок без выигрышного билета: {count_iterations - event_counter}\n'
    f'Смоделированная вероятность получения билета: {event_counter / count_iterations}\n'
    f'Расчетная вероятность получения билета: {1 - math.comb(N - win, n) / math.comb(N, n)}')
```

Для решения пункта в уменьшим точность подсчетов до 1000. Считать будем вероятность от 1000 и до 20000 с шагом 500, чтоб получить график изменения погрешности:

```
count_iterations = 1_000
chance = []
real_chance = []
points = list(range(1000, 20000, 500))
for n in points:
    event_counter = sum(do_iterations(N, win, n, count_iterations))
    chance.append(event_counter / count_iterations)
    real_chance.append(1 - math.comb(N - win, n) / math.comb(N, n))
plt.plot(points, chance, label='Model', linestyle='--', color='r', marker='o', markersize=3)
plt.plot(points, real_chance, label='Real', linestyle='--', color='g', marker='o',
markersize=3)
plt.savefig(f"Chance.jpg")
plt.show()
```

Выполним запуск программы и посмотрим на результат:

Пункт а:

```
Пункт а:Количество билетов: 40000, количество победных: 3
Количество покупок с выигрышным билетом: 737
Количество покупок без выигрышного билета: 9263
Смоделированная вероятность получения билета: 0.0737
Расчетная вероятность получения билета: 0.07314240749538414
```

Видно, что результат моделирования близок к теоретическому. Пункт b:

Как видно из графика искомое значение равно примерно 8110, что достаточно близко к ответу при теоретическом решении, точность можно повысить путем увеличения количества итераций.

d. Задача 5.3

Условие:

Квадрат разделен на n² одинаковых квадратов.

 P_{ij} ($\sum_{j=1}^{n} P_{kj} = 1$) — вероятность попадания шарика в пересечение і-й горизонтальной и ј-й вертикальной полосы.

Залача

Найти вероятность попадания в к-ю горизонтальную полосу.

Решение:

Создадим функцию для получения входных данных – в данной задаче это лишь размерность n:

```
def get_input_data():
    # Размерность массива
    n = 10
    return n
```

Создадим массив вероятностей P_{ii} , сумма элементов этого массива n на n равна единице:

```
def generate_array(n):
    """
    Создает массив случайных чисел, сумма которых равна 1, размерности п на п
"""
    random_nums = np.random.rand(n, n)
    total_sum = np.sum(random_nums)
    result_array = random_nums / total_sum
    return result_array
```

Получим входные данные и массив n на n, так же номер горизонтали k и количество итераций:

```
n = get_input_data()
P = generate_array(n)
k = randint(0, n - 1)
count_in_k = 0
count_iterations = 1000000
```

Создадим основной цикл программы:

```
for i in range(count_iterations):
    chance = random()
    sum_chance = 0
    counter = 0
    while chance > sum_chance:
        sum_chance += P[counter // n][counter % n]
        counter += 1
    if (counter - 1) // n == k:
        count_in_k += 1
```

Выведем итоговый результат:

```
print(f'Teopeтическая вероятность: {np.sum(P[k, :])}\n'
    f'Полученная вероятность: {count_in_k / count_iterations}')
```

Полученный вывод:

```
Теоретическая вероятность: 0.098022
Полученная вероятность: 0.09798
```

Как видно из вывода программа работает корректно.

е. Задача 6.14

Условие:

В ящике находятся 15 теннисных мячей, из которых 9 новых. Для первой игры наугад берутся три мяча, которые после игры возвращаются в ящик. Для второй игры также наугад берутся три мяча.

Задача:

Найти вероятность того, что все мячи, взятые для второй игры, новые.

Решение:

Создадим функцию для получения входных данных – в данной задаче это состав коробки и количество вытаскиваемых шаров:

```
def get_input_data():
   box = [1] * 9 + [0] * 6
   count_to_taken = 3
   return box, count_to_taken
```

Далее создадим симуляцию одной игры:

```
def simulate_game(box, count_to_taken):
    random.shuffle(box)
    first_game = random.sample(box, count_to_taken) # выбираем 3 мяча для первой игры
    for ball in first_game:
        box.remove(ball) # удаляем выбранные мячи из ящика
    box.extend([0] * count_to_taken)
    second_game = random.sample(box, count_to_taken) # выбираем 3 мяча для второй игры
    return all(ball == 1 for ball in second_game) # проверяем, все ли мячи новые
```

Напишем основную функцию, вызывая симуляцию множество раз:

```
def main():
    box, count_to_taken = get_input_data()
    num_experiments = 1000000 # количество экспериментов
    num_successes = 0 # количество успешных экспериментов

for _ in range(num_experiments):
    if simulate_game(box.copy(), count_to_taken):
        num_successes += 1

probability = num_successes / num_experiments
    print(f'Bepoятность того, что все мячи для второй игры будут новыми: {probability}\n'
        f'Teopeтическая вероятность: 0.089 для коробки 9 новых мячей и 6 старых')
```

Полученный вывод:

```
Вероятность того, что все мячи для второй игры будут новыми: 0.089452
Теоретическая вероятность: 0.089 для коробки 9 новых мячей и 6 старых
```

Как видно результат моделирования совпадает с теоретическими ожиданиями.

4. Ссылки

Ссылка на репозиторий с моделированием: github.com