Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki áramlástan feladatgyűjtemény

Műszaki áramlástan Műszaki áramlástan és hőtan I. Műszaki áramlás- és hőtan

Tartalomjegyzék

Alapadatok		2
	A tárgy adatai	4
	A segédlet célja	4
	A tárgy adatai	
I.	title	;
1.	Hidrostatika 1/21. feladat	4
2.	Veszteségmentes csőáramlások 2/13. feladat	
3.	Folyadékáramlás erőhatásai, kifolyás tartályból	(
4.	Valós folyadék áramlása csővezetékben	,
5.	Összenyomhatatlan folyadék egyméretű áramlása	

Alapadatok

A tárgy adatai

Név: Műszaki áramlástan Kód: VEMKGEB143H

Kreditérték: 3 (2 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

• Irodalom.

I. rész

title

Hidrostatika

1/21. feladat: Elzáró szerkezet

Az ábrán látható egy $\bf A$ felületű lemez zár le, amelynek nyitása a $\bf G$ súlynak egy vízszintes karon való mozgatásával szabályozható. Mekkora $\bf x$ távolsággal kell a súlyt elmozdítani, hogy a folyadék éppen ne folyjon ki, ha a folyadékszint Δh magassággal nő?

$$\begin{split} \varrho_L &\cong 0, \\ \mathbf{h} &= 60\,\mathrm{cm}, \\ \Delta h &= 5\,\mathrm{cm}, \\ \mathbf{a} &= 20\,\mathrm{cm}. \end{split}$$

Veszteségmentes csőáramlások

2/13. feladat: Forgó könyökcső vízszállítása

Határozza meg a vízzel feltöltött könyökcső vízszállítását ℓ/s -ban, ha n = $400\,1/min$,

 $d = 30 \, \text{mm},$

u = 50 mm

 $r=0,\!2\,\mathrm{m},$

 $\varrho_v = 10^3 \, \mathrm{kg/m^3},$

 $g = 9.81 \,\mathrm{m/s^2}$

 $p_0 = 1 \, \text{bar}.$

Az áramlás veszteségmentesnek tekinthető.

Megoldási útmutatás:

Jelölje ki a vonatkoztatási szintet és a vizsgálandó pontokat! Írja fel a térerő változását integrál alakban és végezze el az integrálást egy célszerűen választott koordináták mentén!

Folyadékáramlás erőhatásai, kifolyás tartályból

Valós folyadék áramlása csővezetékben

Összenyomhatatlan folyadék egyméretű áramlása