Lecture 3: Layer potential techniques

Habib Ammari

Department of Mathematics, ETH Zürich

- Layer potential techniques:
 - Conductivity equation;
 - Helmholtz equation.

• Fundamental solution to the Laplacian:

$$\Gamma_0(x) = \begin{cases} \frac{1}{2\pi} \ln |x| , & d = 2, \\ \\ \frac{1}{(2-d)\omega_d} |x|^{2-d} , & d \ge 3, \end{cases}$$

- ω_d : area of the unit sphere in \mathbb{R}^d .
- Ω : bounded domain in \mathbb{R}^d , $d \geq 2$, of class $\mathcal{C}^{1,\eta}$ for some $\eta > 0$.
- $\nu(y)$: outward unit normal to $\partial\Omega$ at y.

• Single- and double-layer potentials of $\varphi \in L^2(\partial\Omega)$:

$$\begin{split} \mathcal{S}^0_{\Omega}[\varphi](x) &:= \int_{\partial \Omega} \Gamma_0(x-y) \varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d, \\ \mathcal{D}^0_{\Omega}[\varphi](x) &:= \int_{\partial \Omega} \frac{\partial}{\partial \nu(y)} \Gamma_0(x-y) \varphi(y) \, d\sigma(y) \;, \quad x \in \mathbb{R}^d \setminus \partial \Omega. \end{split}$$

• Neumann-Poincaré operator: $\mathcal{K}^0_{\Omega}: L^2(\partial\Omega) \to L^2(\partial\Omega)$:

$$\mathcal{K}_{\Omega}^{0}[\varphi](x) := \frac{1}{\omega_{d}} \int_{\partial \Omega} \frac{\langle y - x, \nu(y) \rangle}{|x - y|^{d}} \varphi(y) \, d\sigma(y).$$

- $(\mathcal{K}^0_{\Omega})^*$: L^2 -adjoint of \mathcal{K}^0_{Ω} .
- \mathcal{K}^0_{Ω} and $(\mathcal{K}^0_{\Omega})^*$: compact in $L^2(\partial\Omega)$.

• Jump relations: For $\varphi \in L^2(\partial\Omega)$,

$$\begin{split} \left(\mathcal{D}_{\Omega}^{0}[\varphi]\right)\big|_{\pm}(x) &= \left(\mp\frac{1}{2}I + \mathcal{K}_{\Omega}^{0}\right)[\varphi](x) \quad \text{a.e. } x \in \partial\Omega; \\ \left. \mathcal{S}_{\Omega}^{0}[\varphi]\right|_{+}(x) &= \left.\mathcal{S}_{\Omega}^{0}[\varphi]\right|_{-}(x) \quad \text{a.e. } x \in \partial\Omega; \\ \left. \frac{\partial}{\partial\nu}\mathcal{S}_{\Omega}^{0}[\varphi]\right|_{+}(x) &= \left(\pm\frac{1}{2}I + (\mathcal{K}_{\Omega}^{0})^{*}\right)[\varphi](x) \quad \text{a.e. } x \in \partial\Omega. \end{split}$$

• For $\varphi \in L^2(\partial\Omega)$, $\partial \mathcal{D}^0_{\Omega}[\varphi]/\partial \nu$ exists (in $H^{-1}(\partial\Omega)$) and has no jump across $\partial\Omega$:

$$\left. \frac{\partial}{\partial \nu} \mathcal{D}_{\Omega}^{0}[\varphi] \right|_{+} = \left. \frac{\partial}{\partial \nu} \mathcal{D}_{\Omega}^{0}[\varphi] \right|_{-}.$$

• For $\varphi \in L^2(\partial\Omega)$,

$$\left.\frac{\partial}{\partial\nu}\mathcal{S}^0_{\Omega}[\varphi]\right|_{\perp}(x)-\frac{\partial}{\partial\nu}\mathcal{S}^0_{\Omega}[\varphi]\right|_{\perp}(x)=\varphi(x)\quad\text{a.e. }x\in\partial\Omega.$$

• Dirichlet-to-Neumann operator $\mathcal{N}: L^2(\partial\Omega) \to H^{-1}(\partial\Omega)$:

$$\mathcal{N}[\varphi] = \frac{\partial u}{\partial \nu} \bigg|_{\partial \Omega};$$

• *u*: solution to

$$\left\{ \begin{array}{ll} \Delta u = 0 & \text{in } \Omega, \\ \\ u = \varphi & \text{on } \partial \Omega, \end{array} \right.$$

• Identity:

$$\left. rac{\partial}{\partial
u} \mathcal{D}_{\Omega}^0[arphi]
ight|_{\pm} = (rac{1}{2} + (\mathcal{K}_{\Omega}^0)^*) \mathcal{N}[arphi].$$

- Capacity:
 - d=2; $(\varphi_e,a)\in L^2(\partial\Omega)\times\mathbb{R}$: $\left\{ \begin{array}{l} \displaystyle \frac{1}{2\pi}\int_{\partial\Omega}\ln|x-y|\varphi_e(y)d\sigma(y)+a=0 \quad \text{on } \partial\Omega, \\ \\ \displaystyle \int_{\partial\Omega}\varphi_e(y)d\sigma(y)=1. \end{array} \right.$
 - Logarithmic capacity of $\partial\Omega$: $\operatorname{cap}(\partial\Omega):=e^{2\pi a}$.
 - d=3; $\varphi_e\in L^2(\partial\Omega)$:

$$\left\{ \begin{array}{l} \displaystyle \int_{\partial\Omega} \frac{\varphi_e(y)}{|x-y|} d\sigma(y) = \text{constant} \quad \text{on } \partial\Omega, \\ \displaystyle \int_{\partial\Omega} \varphi_e(y) d\sigma(y) = 1. \end{array} \right.$$

• Capacity of $\partial\Omega$: $\frac{1}{\operatorname{cap}(\partial\Omega)}:=-\mathcal{S}^0_{\Omega}[\varphi_e].$

- Spectrum of the Neumann-Poincaré Operator:
 - $(\mathcal{K}^0_\Omega)^* : L^2(\partial\Omega) \to L^2(\partial\Omega)$.
 - Spectrum of $(\mathcal{K}^0_{\Omega})^*$:

$$\sigma(\mathcal{K}^0_{\Omega})^*) \subset (-1/2, 1/2].$$

- $(1/2) I + \mathcal{K}_{\Omega}^0$: invertible on $L^2(\partial \Omega)$.
- $-(1/2)I + \mathcal{K}_{\Omega}^0$: invertible on $L_0^2(\partial\Omega)$.
- $L_0^2(\partial\Omega) := \Big\{ \varphi \in L^2(\partial\Omega) : \int_{\partial\Omega} \varphi \, d\sigma = 0 \Big\}.$

- Proof by contradiction:
 - $\lambda \in (-\infty, -1/2] \cup (1/2, +\infty)$; $\varphi \in L^2(\partial \Omega)$ satisfies $(\lambda I (\mathcal{K}_{\Omega}^0)^*)[\varphi] = 0$ and $\varphi \neq 0$.
 - $\mathcal{K}_{0}^{0}[1] = 1/2 \Rightarrow$

$$0 = \int_{\partial\Omega} (\lambda I - (\mathcal{K}_{\Omega}^{0})^{*}) [\varphi] d\sigma = \int_{\partial\Omega} \varphi(\lambda - \frac{1}{2}) d\sigma.$$

- $\Rightarrow \int_{\partial \Omega} \varphi d\sigma = 0.$
- $\Rightarrow \mathcal{S}_{\Omega}^{0}[\varphi](x) = O(|x|^{1-d})$ and $\nabla \mathcal{S}_{\Omega}^{0}[\varphi](x) = O(|x|^{-d})$, $|x| \to +\infty$ for $d \ge 2$.
- $\varphi \neq 0 \Rightarrow (A, B)$ cannot be zero:

$$A = \int_{\Omega} |\nabla \mathcal{S}_{\Omega}^{0}[\varphi]|^{2} dx \text{ and } B = \int_{\mathbb{R}^{d} \setminus \overline{\Omega}} |\nabla \mathcal{S}_{\Omega}^{0}[\varphi]|^{2} dx.$$

• By contradiction: if A and B are zero, then $\mathcal{S}^0_{\Omega}[\varphi] = \text{constant}$ in Ω and in $\mathbb{R}^d \setminus \overline{\Omega} \Rightarrow \varphi = 0$.

Divergence theorem ⇒

$$A = \int_{\partial\Omega} (-\frac{1}{2}I + (\mathcal{K}_{\Omega}^{0})^{*})[\varphi] \, \mathcal{S}_{\Omega}^{0}[\varphi] \, d\sigma \text{ and } B = -\int_{\partial\Omega} (\frac{1}{2}I + (\mathcal{K}_{\Omega}^{0})^{*})[\varphi] \, \mathcal{S}_{\Omega}^{0}[\varphi] \, d\sigma.$$

- $(\lambda I (\mathcal{K}_{\Omega}^{0})^{*})[\varphi] = 0 \Rightarrow$ $\lambda = \frac{1}{2} \frac{B - A}{B + A} \Rightarrow |\lambda| < 1/2 \Rightarrow \text{ contradiction.}$
- For $\lambda \in (-\infty, -\frac{1}{2}] \cup (\frac{1}{2}, +\infty)$, $\lambda I (\mathcal{K}_{\Omega}^{0})^{*}$: one to one on $L^{2}(\partial \Omega)$.
- If $\lambda = 1/2$, then $A = 0 \Rightarrow S_{\Omega}^{0}[\varphi] = \text{constant in } \Omega$.
- ⇒
- $\mathcal{S}_{\Omega}^{0}[\varphi]$: harmonic in $\mathbb{R}^{d} \setminus \partial \Omega$;
- $\mathcal{S}_{\Omega}^{0}[\varphi](x) = O(|x|^{1-d}), |x| \to +\infty \text{ (since } \varphi \in L_{0}^{2}(\partial\Omega));$
- $\mathcal{S}_{\Omega}^{\overline{0}}[\varphi]$: constant on $\partial\Omega$.
- $(\mathcal{K}_{\Omega}^{0})^{*}[\varphi] = (1/2)\varphi \Rightarrow$

$$B = -\int_{\partial\Omega} \varphi \, S_{\Omega}^{0}[\varphi] \, d\sigma = C \int_{\partial\Omega} \varphi \, d\sigma = 0,$$

• $\Rightarrow \varphi = 0 \Rightarrow (1/2)I - (\mathcal{K}^0_{\Omega})^*$: one to one on $L^2_0(\partial \Omega)$.

- Symmetrization of $(\mathcal{K}^0_{\Omega})^*$:
 - Non-self-adjoint operator $(\mathcal{K}^0_\Omega)^*$: can be realized as a self-adjoint operator on $H^{-1/2}(\partial\Omega)$ by introducing a new inner product.
 - \mathcal{S}_{Ω}^{0} in $H^{-1/2}(\partial\Omega)$: self-adjoint and $-\mathcal{S}_{\Omega}^{0} \geq 0$ on $H^{-1/2}(\partial\Omega)$.
 - $(\mathcal{K}^0_\Omega)^* : H^{-1/2}(\partial\Omega) \to H^{-1/2}(\partial\Omega)$: compact.
 - Calderón identity ⇒

$$\mathcal{S}_{\Omega}^{0}(\mathcal{K}_{\Omega}^{0})^{*} = \mathcal{K}_{\Omega}^{0}\mathcal{S}_{\Omega}^{0}$$
 on $H^{-1/2}(\partial\Omega)$.

- Kernel of \mathcal{S}_{Ω}^{0} :
 - $d \geq 3$; $S_{\Omega}^{0}: H^{-1/2}(\partial\Omega) \rightarrow H^{1/2}(\partial\Omega)$ has a bounded inverse.
 - d=2; If $\phi_0\in \operatorname{Ker}(\mathcal{S}^0_\Omega)$, then u:

$$u(x) := \mathcal{S}_{\Omega}^{0}[\phi_{0}](x), \quad x \in \mathbb{R}^{2}$$

satisfies u=0 on $\partial\Omega\Rightarrow u(x)=0$ for all $x\in\Omega$.

Jump condition ⇒

$$(\mathcal{K}_\Omega^0)^*[\phi_0] = \frac{1}{2}\phi_0 \quad \text{on } \partial\Omega\,.$$

- If $\langle \chi(\partial\Omega), \phi_0 \rangle_{1/2, -1/2} = 0$, then $u(x) \to 0$ as $|x| \to \infty \Rightarrow u(x) = 0$ for $x \in \mathbb{R}^2 \setminus \Omega \Rightarrow \phi_0 = 0$.
- Eigenfunctions: one dimensional subspace of $H^{-1/2}(\partial\Omega)$.
- \Rightarrow Ker(\mathcal{S}_{Ω}^{0}): of at most one dimension.
- $S_{\Omega}^{0}: H^{-1/2}(\partial\Omega) \to H^{1/2}(\partial\Omega)$ has a bounded inverse iff $\ln \operatorname{cap}(\partial\Omega) \neq 0$.

• d = 3; inner product:

$$\langle u, v \rangle_{\mathcal{H}^*} = -\langle \mathcal{S}^0_{\Omega}[v], u \rangle_{\frac{1}{2}, -\frac{1}{2}},$$

- Equivalent: $H^{-1/2}(\partial\Omega)$.
- $(\mathcal{K}^0_{\Omega})^*$: self-adjoint in $\mathcal{H}^*(\partial\Omega)$;
- (λ_j, φ_j) , $j = 0, 1, 2, \ldots$ eigenvalue and normalized eigenfunction pair of $(\mathcal{K}^0_{\Omega})^*$ in $\mathcal{H}^*(\partial \Omega)$ with $\lambda_0 = 1/2$.
- $\lambda_j \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ for $j \geq 1$ with $|\lambda_1| \geq |\lambda_2| \geq \ldots \to 0$ as $j \to \infty$;
- Spectral representation formula: for any $\psi \in H^{-1/2}(\partial\Omega)$,

$$(\mathcal{K}_{\Omega}^{0})^{*}[\psi] = \sum_{j=0}^{\infty} \lambda_{j} \langle \varphi_{j}, \psi \rangle_{\mathcal{H}^{*}} \varphi_{j}.$$

• $\mathcal{H}(\partial\Omega)$: $H^{1/2}(\partial\Omega)$ equipped with the equivalent inner product

$$\langle u, v \rangle_{\mathcal{H}} = \langle v, (-S_{\Omega}^{0})^{-1}[u] \rangle_{\frac{1}{6}, -\frac{1}{6}}$$
.

• S_{Ω}^{0} : isometry between $\mathcal{H}^{*}(\partial\Omega)$ and $\mathcal{H}(\partial\Omega)$.

- d=2; $\mathcal{S}_{\Omega}^{0}: H^{-1/2}(\partial\Omega) \to H^{1/2}(\partial\Omega)$: not injective (in general).
- Substitute:

$$\widetilde{\mathcal{S}}_{\Omega}[\psi] := \left\{ egin{array}{ll} \mathcal{S}_{\Omega}^{0}[\psi] & \quad \text{if } \langle \chi(\partial\Omega), \psi
angle_{rac{1}{2}, -rac{1}{2}} = 0 \,, \\ -\chi(\partial\Omega) & \quad \text{if } \psi = arphi_{0} \,, \end{array}
ight.$$

- φ_0 : unique eigenfunction of $(\mathcal{K}^0_\Omega)^*$ associated with eigenvalue 1/2 s.t. $\langle \chi(\partial\Omega), \varphi_0 \rangle_{\frac{1}{2}, -\frac{1}{2}} = 1$.
- $\widetilde{\mathcal{S}}_{\Omega}: H^{-1/2}(\partial\Omega) \to H^{1/2}(\partial\Omega)$: invertible.
- Calderón identity:

$$\mathcal{K}_{\Omega}^{0}\widetilde{\mathcal{S}}_{\Omega}=\widetilde{\mathcal{S}}_{\Omega}(\mathcal{K}_{\Omega}^{0})^{*}.$$

• $(\mathcal{K}^0_\Omega)^*$: compact self-adjoint in $\mathcal{H}^*(\partial\Omega)$ equipped with

$$\langle u, v \rangle_{\mathcal{H}^*} = -\langle \widetilde{\mathcal{S}}_{\Omega}[v], u \rangle_{\frac{1}{2}, -\frac{1}{2}}.$$

- (λ_j, φ_j) , $j = 0, 1, 2, \ldots$; eigenvalue and normalized eigenfunction pair of $(\mathcal{K}_{\Omega}^0)^*$ with $\lambda_0 = \frac{1}{2}$. $\lambda_j \in (-\frac{1}{2}, \frac{1}{2})$ with $|\lambda_1| \ge |\lambda_2| \ge \ldots \to 0$ as $j \to \infty$;
- Twin property: For any $j \ge 1$, $\pm \lambda_j$: eigenvalues of $(\mathcal{K}_{\Omega}^0)^*$;
- $\mathcal{H}^*(\partial\Omega) = \mathcal{H}^*_0(\partial\Omega) \oplus \{\mu\varphi_0, \ \mu \in \mathbb{C}\}$, where $\mathcal{H}^*_0(\partial\Omega)$: zero mean subspace of $\mathcal{H}^*(\partial\Omega)$;
- For any $\psi \in H^{-1/2}(\partial\Omega)$,

$$(\mathcal{K}_{\Omega}^{0})^{*}[\psi] = \sum_{j=0}^{\infty} \lambda_{j} \langle \varphi_{j}, \psi \rangle_{\mathcal{H}^{*}} \varphi_{j}.$$

• $\mathcal{H}(\partial\Omega)$: $H^{1/2}(\partial\Omega)$ equipped with the equivalent inner product:

$$\langle u, v \rangle_{\mathcal{H}} = \langle v, -\widetilde{\mathcal{S}}_{\Omega}^{-1}[u] \rangle_{\frac{1}{2}, -\frac{1}{2}}.$$

• $\widetilde{\mathcal{S}}_{\Omega}$: isometry between $\mathcal{H}^*(\partial\Omega)$ and $\mathcal{H}(\partial\Omega)$.

• Neumann function: For Ω : smooth bounded domain in \mathbb{R}^d ,

$$\left\{ \begin{array}{l} -\Delta_x N(x,z) = \delta_z \quad \text{in } \Omega \ , \\ \left. \frac{\partial N}{\partial \nu_x} \right|_{\partial \Omega} = -\frac{1}{|\partial \Omega|} \ , \int_{\partial \Omega} N(x,z) \, d\sigma(x) = 0 \quad \text{for } z \in \Omega \ . \end{array} \right.$$

• $U(x) := \int_{\partial\Omega} N(x,z)g(z) d\sigma(z)$: solution to

$$\left\{ \begin{array}{l} \Delta U = 0 \quad \text{in } \Omega \; , \\ \left. \frac{\partial U}{\partial \nu} \right|_{\partial \Omega} = g \; , \\ \int_{\partial \Omega} U \, d\sigma = 0. \end{array} \right.$$

• N: symmetric in its arguments, N(x,z) = N(z,x) for $x \neq z \in \Omega$.

•

$$N(x,z) = \begin{cases} -\frac{1}{2\pi} \ln|x-z| + R_2(x,z) & \text{if } d = 2, \\ \frac{1}{(d-2)\omega_d} \frac{1}{|x-z|^{d-2}} + R_d(x,z) & \text{if } d \ge 3, \end{cases}$$

• $R_d(\cdot,z) \in H^{\frac{3}{2}}(\Omega)$ for any $z \in \Omega, d \geq 2$.

• For $D \subseteq \Omega$.

$$N_D[f](x) := \int_{\partial D} N(x,y)f(y) d\sigma(y), \quad x \in \Omega.$$

• Relation between the fundamental solution Γ_0 and the Neumann function N:

For $z \in \Omega$ and $x \in \partial \Omega$, let $\Gamma_z(x) := \Gamma_0(x-z)$ and $N_z(x) := N(x,z)$. Then

$$\left(-\frac{1}{2}I + \mathcal{K}_{\Omega}^{0}\right)[N_{z}](x) = \Gamma_{z}(x)$$
 modulo constants, $x \in \partial\Omega$.

• Outgoing fundamental solution $\Gamma_{\omega}(x)$ to the Helmholtz operator $\Delta + \omega^2$ in \mathbb{R}^d , d=2,3: $(\Delta_x + \omega^2)\Gamma_{\omega}(x) = \delta_0(x)$

$$\Gamma_{\omega}(x) = \begin{cases} -\frac{i}{4}H_0^{(1)}(\omega|x|), & d = 2, \\ -\frac{e^{i\omega|x|}}{4\pi|x|}, & d = 3, \end{cases}$$

- $H_0^{(1)}$: Hankel function of the first kind of order 0.
- Behavior of $H_0^{(1)}$ near 0:

$$-\frac{i}{4} H_0^{(1)}(\omega|x|) \sim \frac{1}{2\pi} \ln|x| \quad \big[\Delta_x(\frac{1}{2\pi} \ln|x|) = \delta_0(x) \big].$$

• Sommerfeld radiation condition:

$$\left|\frac{x}{|x|}\cdot\nabla\Gamma_{\omega}(x)-i\omega\Gamma_{\omega}(x)\right|=\begin{cases}O(|x|^{-3/2}), & d=2,\\O(|x|^{-2}), & d=3.\end{cases}$$

• Single- and double-layer potentials: For $\varphi \in L^2(\partial D)$,

$$S_D^{\omega}[\varphi](x) = \int_{\partial D} \Gamma_{\omega}(x - y)\varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d,$$

$$\mathcal{D}_D^{\omega}[\varphi](x) = \int_{\partial D} \frac{\partial \Gamma_{\omega}(x - y)}{\partial \nu(y)} \varphi(y) \, d\sigma(y), \quad x \in \mathbb{R}^d \setminus \partial D.$$

- $\Gamma_{\omega}(x)$ outgoing fundamental solution to the Helmholtz operator \Rightarrow
 - $\mathcal{S}^\omega_D[\varphi]$ and $\mathcal{D}^\omega_D[\varphi]$ satisfy the Helmholtz equation

$$(\Delta + \omega^2)u = 0$$
 in D and in $\mathbb{R}^d \setminus \overline{D}$.

• $\mathcal{S}^\omega_D[\varphi]$ and $\mathcal{D}^\omega_D[\varphi]$ satisfy the Sommerfeld radiation condition.

• Jump relations: For $\varphi \in L^2(\partial D)$,

$$\begin{split} \frac{\partial (\mathcal{S}_D^\omega[\varphi])}{\partial \nu}\bigg|_{\pm}(x) &= \bigg(\pm \frac{1}{2}I + (\mathcal{K}_D^\omega)^*\bigg)[\varphi](x) \quad \text{a.e. } x \in \partial D, \\ (\mathcal{D}_D^\omega[\varphi])\bigg|_{\pm}(x) &= \bigg(\mp \frac{1}{2}I + \mathcal{K}_D^\omega\bigg)[\varphi](x) \quad \text{a.e. } x \in \partial D, \end{split}$$

• \mathcal{K}_D^{ω} and $(\mathcal{K}_D^{\omega})^*$:

$$\mathcal{K}_{D}^{\omega}[\varphi](x) = \int_{\partial D} \frac{\partial \Gamma_{\omega}(x - y)}{\partial \nu(y)} \varphi(y) \, d\sigma(y);$$
$$(\mathcal{K}_{D}^{\omega})^{*}[\varphi](x) = \int_{\partial D} \frac{\partial \Gamma_{\omega}(x - y)}{\partial \nu(x)} \varphi(y) \, d\sigma(y).$$

- $(\mathcal{K}_D^{\omega})^*$: L^2 -adjoint of $\mathcal{K}_D^{-\omega}$ (complex inner product).
- \mathcal{K}_D^{ω} and $(\mathcal{K}_D^{\omega})^*$: compact on $L^2(\partial D)$.

- Ω : smooth bounded domain in \mathbb{R}^d ; ω^2 : not a Dirichlet eigenvalue in Ω .
- Dirichlet function:

$$\left\{ \begin{array}{l} \left. \Delta_x G_\omega(x,z) + \omega^2 G_\omega(x,z) = \delta_z \right. & \text{in } \Omega , \\ \left. G_\omega(x,z) \right|_{\partial\Omega} = 0 \quad \text{for } z \in \Omega . \end{array} \right.$$

• $V(x) := \int_{\partial\Omega} G_{\omega}(x,z) f(z) d\sigma(z)$: solution to

$$\left\{ \begin{array}{ll} \Delta V + \omega^2 V = 0 & \text{in } \Omega \; , \\ V\big|_{\partial \Omega} = f \; . \end{array} \right.$$

• Relation between Γ_{ω} and G_{ω} :

$$\left(\frac{1}{2}I + (\mathcal{K}_{\Omega}^{\omega})^*\right)\left[\frac{\partial G_{\omega}}{\partial \nu}\right] = \frac{\partial \Gamma_{\omega}}{\partial \nu} \ .$$

