Prog & Alg I (COMS10002) Week 5 - Intro to Theory

Dr. Oliver Ray
Department of Computer Science
University of Bristol

Wednesday 29th October, 2014

Timetable for Weeks 5-8

	Mon	Tue	Wed	Thu	Fri
9					
10		LAB (Group 1)	LEC (Oliver)		
11					
12					
1					
2					
3	LEC (IAN)	LAB (Group 2)			
4				TUT (Group 2)	
5				TUT (Group 1)	

Key Topics for Theory Content

- Introduction to program correctness
 - Show that a program computes what is intended by logical specification, induction, loop invariants, ...
- Introduction to program complexity
 - Show how its performance scales to larger inputs by asymptotic function approximation, Big-O, ...
- Introduction to program transformation
 - Rewrite program equivalently but more efficiently by accumulator variables, tail recursion, ...

Integer Exponentiation: Definition

Recall the definition of integer exponentiation

$$x^{n} = \begin{cases} 1 & if & n = 0 \\ x \cdot x \cdot x^{n-1} & if & n > 0 \end{cases}$$

Let's just check this is correct by trying some examples

e.g.
$$2^5$$
 5^2 $(-2)^5$ $(-5)^2$ 1^2 1^1 1^0 0^2 0^1 0^0

Thus, we can agree it is correct for all (x,n)∈(Z×N)/{(0,0)} (as mathematicians usually regard 0⁰ as being undefined)

Integer Exponentiation: Code

Recall the corresponding C-code (omitting types)

```
p(x,n) {
   if (n==0) return 1;
   else return x*p(x,n-1);
}
```

And confirm it behaves as expected

```
e.g. 2^5 	 5^2 	 (-2)^5 	 (-5)^2 	 1^2 	 1^1 	 1^0 	 0^2 	 0^1 	 )
```

So, it works in these particular cases; but can we prove that it is always correct?

Observe the close fit of definition and code

Now do a proof by induction

Theorem

$$p(x, n)$$
 returns x^n

for all
$$(x, n) \in (Z \times N) / \{(0, 0)\}$$

Proof

by induction on *n*

Base Case (n = 0)

 \rightarrow show p(x,0) returns x^0

for all $x \in \mathbb{Z}/\{0\}$

(next slide)

Induction Step (n = k > 0)

assume p(x, k-1) returns x^{k-1}

for some k > 0 and all $x \in Z$

 \rightarrow show p(x,k) returns x^k

(slide after next)

Base Case

$$x^{n} = \begin{cases} 1 & if & n = 0 \\ x & x \cdot x^{n-1} & if & n > 0 \end{cases}$$

```
p(x,n) {
    if (n==0) return 1;
    else return x*p(x,n-1);
}
```

- We need to show that p(x,0) returns x⁰
- But p(x,0) returns 1 by the if-case of its definition
- And $x^0=1$ by the base case of its definition
- Thus p(x,0) returns x⁰

QED!

Induction Step

$$x^{n} = \begin{cases} 1 & if & n = 0 \\ x \cdot x \cdot x^{n-1} & if & n > 0 \end{cases}$$

```
p(x,n) {
    if (n==0) return 1;
    else return x*p(x,n-1);
}
```

- Assuming that p(x,k-1) returns x^{k-1} where k>0
- We need to show p(x,k) returns x^k
- But p(x,k) returns x*p(x,k-1) by the else-case of its definition
- Which equals x.x^{k-1} by the inductive hypothesis
- And $x^k = x \cdot x^{k-1}$ by the recursive case of its definition
- Thus p(x,k) returns x^k for all x

NB: Strong induction can be more convenient

Theorem

$$p(x, n)$$
 returns x^n

Proof

by induction on n

Base Case
$$(n = 0)$$

 \rightarrow show p(x,0) returns x^0

Induction Step (n = k > 0)

assume p(x, n) returns x^n for all $n \in [0, k)$

 \rightarrow show p(x,k) returns x^k

i.e. Assume true for all n<k (not just k-1)

Tail Recursion

- Recursive programs are easy to write and reason about but can be wasteful of stack resources (variable copies)
- Tail recursion is a special form of recursion which can be handled very efficiently by modern compilers
- Tail recursive calls must all occur at the end of a branch of the computation which simply returns the result of the recursive call (unmodified in any way)

```
f(x1,..,xn) {
    ...
    return f(y1,..,yn);
    ...
}
```

 Tail recursion is often achieved by adding accumulator variables into a function prototype (here it is easy but this is not always the case in practice!)

From General Recursion to Tail Recursion

Exercise

Prove (by induction) that

```
q(x, n, a) returns ax^n for all a \in \mathbb{Z}, (x, n) \in (N \times \mathbb{Z})/\{(0, 0)\}
```

Hint: modify the previous proof!

Recursion and Iteration

- Recursion can always be transformed into iteration and vice versa (though this is sometimes difficult in practice)
- But tail recursion can be easily turned into iteration by
 - treating function parameters as variables
 - initialising accumulator variables to their intended start value
 - setting the loop condition as the negation of any base case tests
 - simulating the recursive parameter computations within the body of the loop
- So we can obtain an equivalent program that won't run out of stack space when given large inputs!

From Tail Recursion to Iteration

```
q(x,n,a) {
    if (n==0) return a;
    else return q(x,n-1,x*a);
}
```


tail recursion

iteration