

Machine Learning Kernel Methods

Dariush Hosseini

dariush.hosseini@ucl.ac.uk Department of Computer Science University College London

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

By the end of this lecture you should:

- Know that Kernel Methods provide a mechanism for tractably accessing non-linear features for use with linear machine learning methods
- 2 Understand the relationship between feature maps and kernels via Mercer's Theorem
- 3 Understand when it is sensible to apply kernel methods via a consideration of the Representer Theorem

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

Overview

- Kernel methods seek to implicitly map our data into a higher-dimensional feature space so that linear machine learning algorithms can be used in this feature space
- Why?
 - Linear methods are well understood and often efficient
 - An implicit mapping allows us to access high, even infinite, dimensional feature spaces efficiently

Overview

- Usually kernel based methods will follow two steps:
 - 1 Map the data from the input space, \mathbb{X} , to a higher-dimensional feature space, \mathbb{V} , using some non-linear mapping, $\phi: \mathbb{X} \to \mathbb{V}$
 - 2 Run a linear machine learning algorithm in this new space
- This approach has wide applicability many learning algorithms can be transformed into non-linear high dimensional methods, for example:
 - Ridge Regression
 - Support Vector Machine
 - PCA

■ Input Data:

- $\blacksquare x = x_1 \in X$
- $\quad \blacksquare \ \mathbb{X} \subseteq \mathbb{R}^1$

■ Feature Mapped Data:

- $\quad \blacksquare \ \mathbb{V} \subseteq \mathbb{R}^2$

■ Input Data:

- $\blacksquare \mathbf{x} = [x_1, x_2]^T \in \mathbb{X}$
- $\quad \blacksquare \ \mathbb{X} \subseteq \mathbb{R}^2$

■ Feature Mapped Data:

$$\Phi(\mathbf{x}) = [x_1^2, \sqrt{2}x_1x_2, x_2^2]^T \in \mathbb{V}$$

 \blacksquare $\mathbb{V}\subseteq\mathbb{R}^3$

Considerations: Why

- Are we justified in applying this strategy?
- Why should a linear relationship exist in a higher dimensional space?
- Cover's Theorem gives some intuition

Cover's Theorem

- Assume that our problem is that of binary classification
- The theorem states that the probability that *n* data points can be linearly separated in *m* dimensions is given by:

$$\begin{cases}
1, & n \leq m+1 \\
\frac{1}{2^{n-1}} \sum_{i=0}^{m} \binom{n-1}{i}, & n \geq m+1
\end{cases}$$

■ Thus the probability of *n* instances being linearly separable increases with growing dimensionality *m*

Considerations: How

- How can we operate efficiently in a high dimensional space?
 - For example, consider **matrix inversion** in ridge regression for an infinite dimensional feature space
- We would like to be able to enjoy the benefits of feature mapping without having to perform that mapping or to perform manipulations in elevated dimensions **explicitly**
- The **Kernel Trick** let's us do exactly this

Kernel Trick

- lacktriangle Consider two input points, $\mathbf{x}^{(i)}$, $\mathbf{x}^{(j)} \in \mathbb{X}$
- Consider a feature mapping, $\phi : \mathbb{X} \to \mathbb{V}$
- We can define an **inner product** on \mathbb{V} , via the **kernel function**, κ , such that:

$$\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$

Kernel Trick

- Let us consider the description of our learning algorithm for a moment:
- 'If an algorithm is described solely in terms of inner products, $\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$, in input space, then it can be lifted into feature space by replacing the occurrence of those inner products by $\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ ' [Rasmussen & Williams (2006)]
- But what kind of algorithm looks like that?

Aside: Ridge Regression

■ Recall the optimisation problem associated with Ridge Regression:

$$\min_{\mathbf{w}} \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)} \right)^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

■ This is equivalent to:

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{n} \xi^{(i)2} + \lambda ||\mathbf{w}||_{2}^{2}$$
 (1)

subject to: $\xi^{(i)} = y^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)}$

Aside: Ridge Regression & Lagrange Duality

- From the Appendix we see this problem can be solved by seeking the solution to its dual optimisation problem
- First we write the Lagrangian for problem (1):

$$\mathcal{L}(\boldsymbol{\xi}, \mathbf{w}, \widetilde{\boldsymbol{\alpha}}) = \sum_{i=1}^{n} \xi^{(i)2} + \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)} \left(y^{(i)} - \xi^{(i)} - \mathbf{w} \cdot \mathbf{x}^{(i)} \right) + \lambda \|\mathbf{w}\|_{2}^{2}$$

Here $\widetilde{\alpha} = [\widetilde{\alpha}^{(1)}, ..., \widetilde{\alpha}^{(n)}]$ are Lagrange Multipliers

■ The dual objective can be written:

$$\mathcal{D}(\widetilde{\boldsymbol{\alpha}}) = \min_{\boldsymbol{w}, \boldsymbol{\xi}} \mathcal{L}(\boldsymbol{\xi}, \boldsymbol{w}, \widetilde{\boldsymbol{\alpha}})$$

Aside: Ridge Regression & Lagrange Duality

■ This is an unconstrained optimisation which we can solve by seeking stationary points:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial \mathbf{w}} &= -\sum_{i=1}^{n} \widetilde{\alpha}^{(i)} \mathbf{x}^{(i)} + 2\lambda \mathbf{w}^* = 0 & \Longrightarrow & \mathbf{w}^* = \frac{1}{2\lambda} \sum_{i=1}^{n} \widetilde{\alpha}^{(i)} \mathbf{x}^{(i)} \\ \frac{\partial \mathcal{L}}{\partial \xi^{(i)}} &= 2\xi^{(i)*} - \widetilde{\alpha}^{(i)} = 0 & \Longrightarrow & \xi^{(i)*} = \frac{\widetilde{\alpha}^{(i)}}{2} \end{split}$$

Aside: Ridge Regression & Lagrange Duality

■ Substituting these expressions back into $\mathcal{D}(\widetilde{\alpha})$ yields:

$$\mathcal{D}(\widetilde{\boldsymbol{\alpha}}) = \frac{1}{4} \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)2} + \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)} \boldsymbol{y}^{(i)} - \frac{1}{2} \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)2}$$

$$- \frac{1}{2\lambda} \sum_{i,j=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)} \widetilde{\boldsymbol{\alpha}}^{(j)} \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)} + \lambda \left(\frac{1}{4\lambda^{2}} \left\| \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)} \boldsymbol{x}^{(i)} \right\|_{2}^{2} \right)$$

$$= -\frac{1}{4} \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)2} + \sum_{i=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)} \boldsymbol{y}^{(i)} - \frac{1}{4\lambda} \sum_{i,j=1}^{n} \widetilde{\boldsymbol{\alpha}}^{(i)} \widetilde{\boldsymbol{\alpha}}^{(j)} \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)}$$

$$= -\lambda^{2} \sum_{i=1}^{n} \alpha^{(i)2} + 2\lambda \sum_{i=1}^{n} \alpha^{(i)} \boldsymbol{y}^{(i)} - \lambda \sum_{i=1}^{n} \alpha^{(i)} \alpha^{(j)} \boldsymbol{x}^{(i)} \cdot \boldsymbol{x}^{(j)}$$

where: $\widetilde{\alpha}^{(i)} = 2\lambda \alpha^{(i)}$

Aside: Ridge Regression & Dual Problem

■ This leads to the following dual problem:

$$\begin{aligned} & \max_{\alpha} & -\lambda \|\alpha\|^2 + 2\alpha \cdot \mathbf{y} - \alpha^T (\mathbf{X} \mathbf{X}^T) \alpha \\ \text{or:} & \max_{\alpha} & -\alpha^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}) \alpha + 2\alpha \cdot \mathbf{y} \end{aligned}$$

■ The solution to which is:

$$\begin{aligned} \boldsymbol{w}^* &= \boldsymbol{X}^T \boldsymbol{\alpha} \\ \boldsymbol{\alpha} &= (\boldsymbol{X} \boldsymbol{X}^T + \lambda \boldsymbol{I})^{-1} \boldsymbol{y} \end{aligned}$$

Kernel Trick: Revisited

- Again let us consider the description of our learning algorithm:
- 'If an algorithm is described solely in terms of inner products, $\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}$, in input space, then it can be lifted into feature space by replacing the occurrence of those inner products by $\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ ' [Rasmussen & Williams (2006)]
 - For example, consider the dual problem of Ridge Regression:

$$\begin{split} & \max_{\alpha} \quad -\alpha^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I}) \alpha + 2\alpha \cdot \mathbf{y} \\ & \Longrightarrow \max_{\{\alpha^{(i)}\}_{i=1}^n} \quad -\sum_{i,j=1}^n \alpha^{(i)} \alpha^{(j)} \mathbf{x}^i \cdot \mathbf{x}^j - \lambda \sum_{i=1}^n \alpha^{(i)2} + 2\sum_{i=1}^n \alpha^{(i)} y^{(i)} \end{split}$$

Kernel Trick

- This is the **Kernel Trick**:
 - It means that, for certain problems, we can enjoy the benefits of feature mapping without ever having to calculate $\phi(\mathbf{x})$ explicitly
 - Instead we can calculate the mapping **implicitly** by calculating $\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$
- In particular, it turns out that for many machine learning algorithms, when their associated optimisation problem is re-cast in its **dual form**, the inner product arises naturally:
 - We shall investigate the characteristics of such problems later on

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

What is a Kernel?

- We now know that we can exploit the kernel trick to replace the inner products in (certain) learning algorithms with a kernel function
- And we would like to be able to work directly with such functions
- But how do we know if a particular function, κ, really has a feature map, φ, associated with it such that, $\kappa(\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$?
- And what characterises a valid function, κ?

Mercer's Theorem

■ Definition:

The **Gram Matrix**, **K**, is an $n \times n$ matrix with elements, $\{\mathbf{K}_{ij} = \kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})\}_{i=1,j=1}^{n,n}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^m$

■ Definition:

 $\kappa : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$ is positive semidefinite (psd) if it is symmetric and if the Gram Matrix, **K**, is psd for all n and for all $\mathbf{x}^{(i)} \in \mathbb{R}^m$

Mercer's Theorem

■ Mercer's Theorem:

A kernel function, κ , is psd if and only if:

$$\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$
 where $\mathbf{x}^{(i)}, \mathbf{x}^{(j)} \in \mathbb{R}^m$

For some feature map, $\phi : \mathbb{R}^m \to \mathbb{W}$ (and Hilbert Space \mathbb{W})

■ We call a kernel which satisfies this theorem a Mercer Kernel

Mercer's Theorem: Aside

- Let us prove the only if:
 - If:

$$\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{x}^{(j)})$$

■ Then:

$$\mathbf{c}^{T}\mathbf{K}\mathbf{c} = \sum_{i,j=1}^{n} c_{i}c_{j}\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \left(\sum_{i=1}^{n} c_{i}\phi(\mathbf{x}^{(i)})\right) \cdot \left(\sum_{j=1}^{n} c_{j}\phi(\mathbf{x}^{(j)})\right)$$
$$= \|c_{i}\phi(\mathbf{x}^{(i)})\|_{2}^{2} \geqslant 0$$

This holds for all $\mathbf{c} \in \mathbb{R}^n$ where c_i is the *i*-th element of \mathbf{c}

Polynomial Kernel

■ The **polynomial kernel** can be used to compute a compact version of the polynomial feature mapping up to degree *p*:

$$\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = (1 + \mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)})^{p}$$

■ Let's try expanding for p = 2 and $\mathbf{x} \in \mathbb{R}^2$:

$$\begin{split} \kappa(\mathbf{x}^{(i)},\mathbf{x}^{(j)}) &= (1+x_1^{(i)}x_1^{(j)}+x_2^{(i)}x_2^{(i)})^2 \\ &= 1+2x_1^{(i)}x_1^{(j)}+2x_2^{(i)}x_2^{(j)}+\left(x_1^{(i)}x_1^{(j)}\right)^2+\left(x_2^{(i)}x_2^{(j)}\right)^2+2x_1^{(i)}x_2^{(i)}x_1^{(j)}x_2^{(j)} \end{split}$$

■ In other words our use of the kernel is equivalent to a mapping into 6-dimensional feature space:

$$\phi(\mathbf{x}) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]^T$$

Radial Basis Function Kernel

■ The **RBF kernel** is a flexible measure of similarity parameterised by a **bandwidth** hyperparameter, σ^2 :

$$\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \exp\left(-\frac{\|\mathbf{x}^{(i)} - \mathbf{x}^{(j)}\|_2^2}{2\sigma^2}\right)$$

The RBF kernel actually gives access to an infinite dimensional feature space.

Document Kernel

- Kernels can be constructed for a variety of data types (graphs, categorical data, etc.)
- The cosine similarity kernel can be used as a document kernel for the bag-of-words representation:

$$\kappa(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \frac{\mathbf{x}^{(i)} \cdot \mathbf{x}^{(j)}}{\|\mathbf{x}^{(i)}\|_2^2 \|\mathbf{x}^{(j)}\|_2^2}$$

■ Here the input attributes are all counts, and so the measure falls in the range [0, 1]

Recap

- We now know that:
 - Mercer's Theorem allows us to specify a feature map implicitly if we specify a Mercer kernel
 - And the Kernel Trick makes clear that if our learning problem can be written in terms of dot products of the input vectors then we can move to this kernel-defined feature space by simply replacing the dot products with the corresponding kernel mapped output
 - ...But how do we know if a particular learning problem can be written in this way...
 - ...For this we need to consider the **Representer Theorem**

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

Notation

■ Training Sample:

$$\{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) | \mathbf{x}^{(i)} \in \mathbb{X} \subseteq \mathbb{R}^m, \mathbf{y}^{(i)} \in \mathbb{R}\}_{i=1}^n$$

■ Feature Map:

$$\phi: \mathbb{R}^m \to \mathbb{R}^k$$

■ Weight Vector:

$$\mathbf{w} \in \mathbb{R}^k$$

■ Linear Prediction Function:

$$f(\mathbf{x}) = \mathbf{w} \cdot \mathbf{\phi}(\mathbf{x})$$

■ Loss Function:

$$\widetilde{L}: (y, f(\mathbf{x})) \mapsto \widetilde{L}(y, f(\mathbf{x})) \in \mathbb{R}$$

And some function:

$$\Omega: \mathbf{w} \mapsto \Omega(\mathbf{w}) \in \mathbb{R}$$

Representer Theorem: Sketch

■ For a regularised loss function, *L*, defined such that:

$$L(\mathbf{w}) = \sum_{i=1}^{n} \widetilde{L}(\mathbf{y}^{(i)}, \mathbf{w} \cdot \phi(\mathbf{x}^{(i)})) + \Omega(\mathbf{w})$$

■ If and only if $\Omega(\mathbf{w})$ is a non-decreasing function of $\|\mathbf{w}\|_2^2$ then, if \mathbf{w}^* minimises L, it admits the following representation:

$$\mathbf{w}^* = \sum_{i=1}^n lpha_i \varphi(\mathbf{x}^{(i)})$$
 where: $lpha_i \in \mathbb{R}$

■ And therefore for a novel test point, z:

$$f(\mathbf{z}) = \mathbf{w} \cdot \phi(\mathbf{z}) = \sum_{i=1}^{n} \alpha_i \kappa(\mathbf{x}^{(i)}, \mathbf{z})$$

Representer Theorem

- This is a powerful result
 - For learning algorithms whose optimisation problem satisfies the conditions of the representer theorem...
 - ...We need never directly seek w* (whose dimensions are possibly infinite)
 - lacktriangle Instead we need only seek the n parameters which characterise lpha
 - Furthermore, when evaluating a test point we need never explicitly calculate $\phi(\mathbf{z})$
 - Instead we need only sum over a weighted set of n kernel function outputs, evaluated as the contraction of \mathbf{z} and each of the training points $\{\mathbf{x}^{(i)}\}_{i=1}^n$

Representer Theorem: Sparsity

- Note that a **sparsity-inducing** regulariser sich as $\Omega(\mathbf{w}) = \|\mathbf{w}\|_1^1$, as in the **LASSO**, does not satisfy the conditions of the Representer Theorem
- This explains why we cannot use the kernel trick in conjunction with this sort of **feature selection**
- Sparsity comes at a price!

Lecture Overview

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

Ridge Regression: Primal Form

■ Recall our **Ridge Regression** optimisation problem, where we have elevated our input attributes to a k-dimensional feature space via the map, $\phi : \mathbb{R}^m \to \mathbb{R}^k$:

$$\underset{\mathbf{w}}{\operatorname{argmin}} \quad \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w} \cdot \phi(\mathbf{x}^{(i)}) \right)^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

Here the so-called **primal solution** is generated by the **revised normal equations**:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$
 (2)

Where **X** is the $n \times k$ feature mapped **design matrix**, $\mathbf{X} = [\Phi(\mathbf{x}^{(1)}), \Phi(\mathbf{x}^{(2)}), ..., \Phi(\mathbf{x}^{(n)})]^T$

■ And the associated prediction for a novel test point **z** is:

$$f(\mathbf{z}) = \mathbf{w} \cdot \varphi(\mathbf{z}) = \mathbf{y}^T \mathbf{X} (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \varphi(\mathbf{z})$$

Ridge Regression: Dual Form

■ Left multiply equation (1) by $(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})$:

$$\mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda\mathbf{w} = \mathbf{X}^{T}\mathbf{y}$$

$$\mathbf{w} = \lambda^{-1}\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$= \mathbf{X}^{T}\alpha$$
(3)

Here:

$$\begin{split} &\alpha = \lambda^{-1}(\mathbf{y} - \mathbf{X}\mathbf{w}) \\ &\lambda \alpha = (\mathbf{y} - \mathbf{X}\mathbf{w}) \\ &\lambda \alpha = (\mathbf{y} - \mathbf{X}\mathbf{X}^T \alpha) \qquad \text{From equation (3)} \\ &\alpha = (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1}\mathbf{y} \end{split}$$

This is the so-called dual solution

Ridge Regression: Dual Form

■ And the associated prediction for a novel test point **z** is:

$$f(\mathbf{z}) = \mathbf{w} \cdot \phi(\mathbf{z})$$

$$= \mathbf{y}^{T} (\mathbf{X} \mathbf{X}^{T} + \lambda \mathbf{I})^{-1} \mathbf{X} \phi(\mathbf{z})$$

$$= \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}^{(i)}) \cdot \phi(\mathbf{z})$$

- In fact the same result follows from:
 - The Representer Theorem
 - The Lagrangian Dual solution...as we observed earlier

Ridge Regression: Kernel Version

■ We may re-write this using kernels as:

$$f(\mathbf{z}) = \sum_{i=1}^{n} \alpha_i \kappa(\mathbf{x}^{(i)}, \mathbf{z})$$

Where:

$$\begin{aligned} & \boldsymbol{\alpha} = (\boldsymbol{X}\boldsymbol{X}^T + \lambda \boldsymbol{I})^{-1}\boldsymbol{y} \\ & (\boldsymbol{X}\boldsymbol{X}^T)_{ij} = \kappa(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}) \end{aligned}$$

■ We see that $\phi(\mathbf{x})$ is never explicitly evaluated either within the calculation of α_i or within the kernelised prediction function

Ridge Regression: The Value of the Kernel Trick

- We note that the primal solution involves an inversion of the design matrix, X^TX, an operation of complexity O(k³)
 ...and prediction involves an operation of complexity O(k)
- Meanwhile the dual solution involves an inversion of the **Gram matrix**, $\mathbf{X}\mathbf{X}^T$, an operation of complexity $\mathbb{O}(n^3)$...and prediction involves an operation of complexity $\mathbb{O}(n|\kappa|)$ (where $|\kappa|$ is the number of operations involved in the caluclation of an inner product)
- Thus, for $k \gg n$ the value of the dual form and the kernel trick becomes apparent

Lecture Overview

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

Summary

- 1 We can attempt to enhance the **linear** algorithms of machine learning by affecting a **feature map** of the input attributes in order to elevate them to a higher dimensional **non-linear** space
- This is a sensible and a tractable strategy if we can employ the **Kernel**Trick and work only via the dot product of feature mapped data points
- 3 The kernel trick is manifest iff a Representer Theorem holds for our optimisation problem
- In this case, Mercer's Theorem offers us a mechanism for defining a valid feature space via Mercer Kernels, without the need to ever explicitly define the feature mapping

Lecture Overview

- 1 Lecture Overview
- 2 The Kernel Trick
- 3 Mercer's Theorem
- 4 The Representer Theorem
- 5 Example: Ridge Regression
- 6 Summary
- 7 Appendix: Lagrange Duality

Multiple Constraints: Problem

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}) \\ \text{subject to:} & \begin{cases} g^{(i)}(\mathbf{x}) \leqslant 0 \}_{i=1}^m \\ \left\{ h^{(j)}(\mathbf{x}) = 0 \right\}_{j=1}^p \end{cases} \end{aligned}$$

Multiple Constraints: Lagrangian

■ We express the Lagrangian as:

$$\mathcal{L}(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) + \sum_{i=1}^{m} \mu^{(i)} g^{(i)}(\mathbf{x}) + \sum_{j=1}^{p} \lambda^{(j)} h^{(j)}(\mathbf{x})$$

Where:

$$\begin{split} &\boldsymbol{\lambda} = [\boldsymbol{\lambda}^{(1)},...,\boldsymbol{\lambda}^{(p)}]^T, \{\boldsymbol{\lambda}^{(j)} \in \mathbb{R}\}_{j=1}^p; \\ &\boldsymbol{\mu} = [\boldsymbol{\mu}^{(1)},...,\boldsymbol{\mu}^{(m)}]^T, \{\boldsymbol{\mu}^{(i)} \in \mathbb{R}^{\geqslant 0}\}_{i=1}^m; \\ &\text{are Lagrange multipliers} \end{split}$$

Multiple Constraints: Problem Reformulation

■ And we can solve our problem by seeking stationary solutions $(\mathbf{x}^*, \{\mu^{(i)*}\}, \{\lambda^{(j)*}\})$ which satisfy the following:

$$\begin{split} \nabla_{\mathbf{x}}\mathcal{L} &= \mathbf{0} \\ \text{subject to:} & \begin{cases} \{g^{(i)}(\mathbf{x}) \leqslant 0\}_{i=1}^m, \{h^{(j)}(\mathbf{x}) = 0\}_{j=1}^p \\ \{\mu^{(i)} \geqslant 0\}_{i=1}^m \\ \{\mu^{(i)}g^{(i)}(\mathbf{x}) = 0\}_{i=1}^m \end{cases} \end{split}$$

Duality: Primal Problem

- The original problem is sometimes know as the **primal problem**, and its variables, **x**, are known as the **primal variables**
- It is equivalent to the following formulation:

$$\min_{\boldsymbol{x}} \left[\max_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geqslant 0} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \right]$$

■ Here the bracketed term is known as the **primal objective** function

Duality: Barrier Function

■ We can re-write the primal objective as follows:

$$\max_{\boldsymbol{\lambda},\boldsymbol{\mu}\geqslant 0}\mathcal{L}(\mathbf{x},\boldsymbol{\lambda},\boldsymbol{\mu}) = f(\mathbf{x}) + \max_{\boldsymbol{\lambda},\boldsymbol{\mu}\geqslant 0} \left[\sum_{i=1}^m \boldsymbol{\mu}^{(i)} g^{(i)}(\mathbf{x}) + \sum_{j=1}^p \boldsymbol{\lambda}^{(j)} h^{(j)}(\mathbf{x}) \right]$$

Here the second term gives rise to a barrier function which enforces the constraints as follows:

$$\max_{\boldsymbol{\lambda},\boldsymbol{\mu}\geqslant 0} \left[\sum_{i=1}^m \boldsymbol{\mu}^{(i)} g^{(i)}(\mathbf{x}) + \sum_{j=1}^p \boldsymbol{\lambda}^{(j)} h^{(j)}(\mathbf{x}) \right] = \begin{cases} 0 & \text{if } \mathbf{x} \text{ is feasible} \\ \infty & \text{if } \mathbf{x} \text{ is infeasible} \end{cases}$$

Duality: Minimax Inequality

In order to make use of this barrier function formulation, we will need the minimax inequality:

$$\max_{\boldsymbol{y}} \min_{\boldsymbol{x}} \varphi(\boldsymbol{x},\boldsymbol{y}) \leqslant \min_{\boldsymbol{x}} \max_{\boldsymbol{y}} \varphi(\boldsymbol{x},\boldsymbol{y})$$

■ Proof:

$$\min_{\mathbf{x}} \varphi(\mathbf{x}, \mathbf{y}) \leqslant \varphi(\mathbf{x}, \mathbf{y}) \qquad \forall \mathbf{x}, \mathbf{y}$$

This is true for all **y**, therefore, in particular the following is true:

$$\max_{\boldsymbol{y}} \min_{\boldsymbol{x}} \varphi(\boldsymbol{x},\boldsymbol{y}) \leqslant \max_{\boldsymbol{y}} \varphi(\boldsymbol{x},\boldsymbol{y}) \qquad \forall \boldsymbol{x}$$

This is true for all \mathbf{x} , therefore, in particular the following is true:

$$\max_{\boldsymbol{y}} \min_{\boldsymbol{x}} \varphi(\boldsymbol{x},\boldsymbol{y}) \leqslant \min_{\boldsymbol{x}} \max_{\boldsymbol{y}} \varphi(\boldsymbol{x},\boldsymbol{y})$$

Duality: Weak Duality

■ We can now introduce the concept of weak duality:

$$\min_{\boldsymbol{x}} \left[\max_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geqslant 0} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \right] \geqslant \max_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geqslant 0} \left[\min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \right]$$

- Here the bracketed term on the right hand side is known as the **dual objective** function, $\mathcal{D}(\lambda, \mu)$
- If we can solve the right hand side of the inequality then we have a lower bound on the solution of our optimisation problem

Duality: Weak Duality

- And often the RHS side of the inequality is an **easier** problem to solve, because:
 - \blacksquare min_x $\mathcal{L}(\mathbf{x}, \lambda, \mu)$ is an **unconstrained** optimisation problem for a given value of (λ, μ) ...
 - ...And if solving this problem is not hard then the overall problem is not hard to solve because:
 - $\max_{\lambda,\mu\geqslant 0} \left[\min_{\mathbf{x}} \mathcal{L}(\mathbf{x},\lambda,\mu)\right]$ is a maximisation problem over a set of affine functions thus it is a **concave maximisation** problem or equivalently a **convex minimisation** problem, and we know that such problems can be efficiently solved
 - Note that this is true regardless of whether f, $g^{(i)}$, $h^{(j)}$ are nonconvex

Duality: Strong Duality

■ For certain classes of problems which satisfy **constraint qualifications** we can go further and **strong duality** holds:

$$\min_{\boldsymbol{x}} \left[\max_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geqslant 0} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \right] = \max_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geqslant 0} \left[\min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \right]$$

- There are several different constraint qualifications. One is **Slater's**Condition which holds for convex optimisation problems
- Recall, these are problems for which f is convex and $g^{(i)}$, $h^{(j)}$ are convex sets
- For problems of this type we may seek to solve the dual optimisation problem:

$$\max_{\boldsymbol{\lambda}, \boldsymbol{\mu} \geqslant 0} \left[\min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \right]$$

Duality: Strong Duality

- Another reason for adopting the dual optimisation approach to solving contrained optimisation problems is based on dimensionality:
- If the dimensionality of the dual variables, (m + p), is less than the dimensionality of the primal variables, n, then dual optimisation often offers a more efficient route to solutions
- This is of particular importance if we are dealing with infinite dimensional primal variables