Max Shi September 13, 2019 Professor Li MA 332 Homework 2

I pledge my honor that I have abided by the Stevens Honor System.

1 (i) pbinom (8.25, 20, 0.4) [1] 0.5955987 pbinom (8.25, 30, 0.4) [1] 0.09401122 pbinom (8.25, 50, 0.4) [1] 0.0002305229 pbinom (8.25, 100, 0.4) [1] 5.431127e-13

1 (ii).
$$P(N \le 8.25) = \varphi(\frac{8.25-np}{\sqrt{np(1-p)}})$$
 For n = 20, $P(N \le 8.25) = \varphi(\frac{8.25-np}{\sqrt{20*0.4(1-0.4)}}) = \varphi(\frac{0.25}{\sqrt{4.8}}) = \varphi(0.1141) = 0.5454$ For n = 30, $P(N \le 8.25) = \varphi(\frac{8.25-30*0.4}{\sqrt{30*0.4(1-0.4)}}) = \varphi(\frac{-3.75}{\sqrt{7.2}}) = \varphi(-1.397) = 0.08113$ For n = 50, $P(N \le 8.25) = \varphi(\frac{8.25-50*0.4}{\sqrt{50*0.4(1-0.4)}}) = \varphi(\frac{-11.75}{\sqrt{12}}) = \varphi(-3.392) = 0.000347$ For n = 100, $P(N \le 8.25) = \varphi(\frac{8.25-100*0.4}{\sqrt{100*0.4(1-0.4)}}) = \varphi(\frac{-31.75}{\sqrt{24}}) = \varphi(-6.481) = 4.556 * 10^{-11}$ 1 (iii).

1 (iv). I perceive that as the amount of trials goes up, the Laplace theorem becomes more and more accurate toward the actual value and behavior of a binomial distribution.

2(iii).

2(iv).

The points seem to be distributed toward the center bottom of the plot. The first equation tends to 0, or distributes close to 0, no matter what the value of n is. However, the range of the first equation decreases as n increases, and it has a tighter distribution around 0. The second equation seems to also tend toward lower numbers, however increases in range as n increases.