MAULANA AZAD NATIONAL INSTITUTE OF TECHNOLOGY, BHOPAL

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

End Term Examination, July 2020

Course: B.Tech. Semester: IV th		Branch: ECE	
Subject Name: Electromagnetic Fields Subject Code: EC-225			
Time: 2 Hours Maximum Marks: 30			
Note: Answer all questions. Assume necessary data if necessary.			
Q.1	For a given vector \mathbf{A} = xy \mathbf{a}_x – 2x \mathbf{a}_y , verify Stoke's theorem over a quarter circle with a radius 6 in first quadrant.		
Q.2	Determine the direction of the wave which is travelling in a dielectric and hits a conducting surface head on. Do not use the formula for reflection coefficient, use boundary conditions and Poynting vector to logically deduce the direction after the hit.		
Q.3 (a)	Analyze effects on various parameters (Attenuation and Phase constants, velocity, skin depth, Intrinsic impedance and phase difference between E and H of a wave due to different types of mediums (Lossless, Air, lossy and good conductor).		
Q.4 (a)	A plane wave E= $30\cos(\omega t$ -z) a_x V/m in air normally hits a lossless medium ($\mu=\mu_0$, $\epsilon=4\epsilon_0$) at z=0. 5 Find $\mathbf{E_r}$, $\mathbf{H_r}$, $\mathbf{E_t}$, $\mathbf{H_t}$, reflection coefficient and transmission coefficient.		
Q.5 (a)	Given $\mathbf{H} = H_m e^{j(wt + \beta z)} \mathbf{a}_x$ A/m in free space. Find electric field \mathbf{E} .		
Q.6 (a)	Two parallel sheets of glass (ε_r =8) mounted vertically are separated by 5their inner surface. The sheets properly sealed are immersed in oil below. A uniform electric field of strength 2000 V/m makes an angle glass surface. Calculate magnitude and direction of electric field in glass G_{r} G_{r	l ($\epsilon_r = 3$) as shown in figure le of 75° with normal to the	