

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Mid Exam. :: Trimester: Summer 2020

Course Code: CSE 2213, Course Title: DISCRETE MATHEMATICS

Total Marks: **20** Duration: 1 hour

Answer all the questions. Figures are in the right-hand margin indicate full marks. "Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules."

	as per U10 disciplinary rules."	
Question 1.		
a)	i) Find the power set $P(S)$ for the set $S = \{0, \{\emptyset\}, \emptyset\}$.	$[1.5 \times 2 = 3]$
	ii) Draw the Venn Diagram of the following set.	
	$(A \cap C) \cup (A \cap B)$	
b)	For each of the following "functions" f , determine whether they are Bijection.	[2×1=2]
	i) $f: Z \to Z^+, f(x) = x + 1$ ii) $f: Z \to Z^+, f(a) = \frac{a^3 + 1}{a^2 + 1}$	
Ques	stion 2:	
a)	Prove the following using truth table:	[3]
	(i) $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$	
b)	Given propositions A: X is a good person	[2]
ŕ	B: X respects everyone	
	C: X lacks manner	
	Translate the logical expression into a English sentence.	
	$(A \leftrightarrow B) \lor (C \to \neg A)$	
Ques	stion 3:	
a)	P(x): x is attentive.	$[1 \times 2 = 2]$
	Q(x): x does a good result in the examination.	
	Write down the following sentences using the above predicates, appropriate	
	quantifiers and logical connectives:	
	(i) All attentive students do good result in the examination.	
	(ii) Some students do not do a good result though they are attentive.	
b)		$[1 \times 3 = 3]$
	Here, the domain of each variable consists of all real numbers.	
	(i) $\forall x \exists y (x = y^2)$	
	(ii) $\exists y \forall x (x = y^2)$	
	$(iii) \neg \forall x (1 - x = x + 1)$	
Question 4:		
a)	Prove the following by using the principle of mathematical induction,	[3]
	$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{2}$	
	whenever n is a nonnegative integer.	
b)	Using proof by contraposition, prove the following:	[2]
	"For all integer n , if $n^2 + 5$ is even, then n is odd."	