

**KANSAS CITY** 

# Learning about Compressive Sensing using the Intel Atom E680 Processor

Bruno Vizcarra, bovhx5@umkc.edu
Walter D. Leon-Salas, PhD.
Computer Science Electrical Engineering Department
University of Missouri-Kansas City
Kansas City, Missouri
USA

## Motivation

The standard sample-then-compress framework suffers from three (3) inherent inefficiencies [1]:

- 1) We must start with a potentially large number of samples of N even if the ultimate desired K is small.
- 2) The encoder must compute all of the N transform coefficients even though it will discard all but K of them.
- 3) The encoder faces the overhead of encoding the locations of the large coefficients.

# Introduction to Compressive Sensing

The standard sample-then-compress process can be simplified via the following method [2]:

- 1) Directly acquire a signal in a condensed representation with **M** less than **N** measurements and place them in the vector **y**.
- 2) **y** is equivalent to the inner product of **x** and **M** other vectors. **x** is the **N**-sample vector from the standard sampling example.
- 3) If we stack these M other vectors into the matrix  $\Phi$ , then the overall equation becomes:

#### у=Фх=ФΨѕ

This operation is illustrated in Figure 1. We considered the basis matrix,  $\Psi$ , equal to identity.

4) Gaussian noise works well for creating the  $\Phi$  matrix. So, the only really difficult math to be done here is in designing a reconstruction algorithm to obtain  $\mathbf{x}$ ' from  $\mathbf{y}$ .





- 1) With MATLAB we generate our y.
- 2) Using L1 optimization techniques we can exactly reconstruct **K**-sparse vectors with high probability and stability. This is a **convex optimization** problem which conveniently reduces to a linear program known as **Basis Pursuit (BP)** [3]. CVXGEN ouputs our solver code according to these linear constraints.
- 3) Using y and  $\Phi$  as inputs, we compile and run the custom solver (complexity of  $N^3$ ) on the IFC-9402 to generate our recovered x'.

## Results

|         |                     | Table 1    |                 | K=1                 | K=6   | K=7   |
|---------|---------------------|------------|-----------------|---------------------|-------|-------|
| Table 1 |                     |            |                 | $M\sim(CKlog(N/K))$ |       |       |
| N       | M <sub>actual</sub> | Array Size | Solve time      | M <sub>1</sub>      | $M_6$ | $M_7$ |
| 10      | 3                   | 30         | 0 s             | 2.00                | 2.66  | 2.17  |
| 100     | 5                   | 500        | 10 milliseconds | 4.00                | 14.66 | 16.17 |
| 80      | 16                  | 1280       | 10 milliseconds | 3.81                | 13.50 | 14.81 |
| 100     | 13                  | 1300       | 10 milliseconds | 4.00                | 14.66 | 16.17 |
|         |                     |            | CCL out of      |                     |       |       |
| 70      | 20                  | 1400       | memory error    | 3.69                | 12.80 | 14.00 |

Setting M equal to 2Klog(N/K) should suffice for a JPEG/JPEG2000 compressible image and in our specific case it served as a good guideline.



### Conclusions and Future Work

- ☐ The original signal was recovered using compressive sensing within 10 milliseconds following the results of Table 1 above.
- ☐ The IFC-9402, complete with a Linux OS, proved as an easy-to-use tool in understanding digital signal processing techniques.
- ☐ We will implement the above procedure using Orthogonal Matching Pursuit (OMP) & Basis Pursuit with Inequality Constraints (BPIC).