CSE2209: Digital Electronics and Pulse Techniques

Course Conducted By:

Nowshin Nawar Arony Lecturer, Dept of CSE, AUST

Multivibrators

A MULTIVIBRATOR is an electronic circuit that generates square, rectangular, pulse waveforms, also called nonlinear oscillators or function generators.

Multivibrator is basically two amplifier circuits arranged with regenerative feedback.

There are three types of Multivibrator:

Astable Multivibrator: Circuit is not stable in either state—it continuously oscillates from one state to the other. (Application in Oscillators)

Monostable Multivibrator: One of the state is stable but the other is not. (Application in Timer)

Bistable Multivibrator: Circuit is stable in both the state and will remain in either state indefinitely. The circuit can be flipped from one state to the other by an external event or trigger. (Application in Flip flop)

Astable Multivibrators

The astable circuit has no stable state. With no external signal applied, the transistors alternately switch from cutoff to saturation at a frequency determined by the RC time constants of the coupling circuits.

Astable multivibrator circuit consist of two cross coupled RC amplifiers.

Consists of two amplifying devices cross-coupled by resistors and capacitors.

Typically, R2 = R3, R1 = R4, C1 = C2 and R2 >> R1.

☐ The circuit has two states

State 1: V_{C1} LOW, V_{C2} HIGH, Q₁ ON (saturation) and Q₂ OFF.

State 2: V_{C1} HIGH, V_{C2} LOW, Q₁ OFF and Q₂ ON (saturation).

☐ It continuously oscillates from one state to the other.

Astable Multivibrator

- ➤ When the circuit is first powered up, neither transistor is ON.
- \triangleright Both V_{B1} and V_{B2} rise via base resistor R₃ and R₂ respectively. Any one of the transistor will conduct faster than other due to some circuit imbalance. We cannot say which transistor will turn on first so for analysis purpose we assume Q₁ conducts first and Q₂ off (C₁ is fully charged).
- \triangleright Since Q₁ conducts and Q₂ off hence V_{c1} = 0V and V_{c2} = V_{CC}. state1

Charging $C_2(T_2 = R_4C_2)$

R1 R2 R3 R4 VC1 V_{B1} V_{B2} V_{C2}

Discharging $C_1(T1 = R_2C_1)$

- Since Q_1 conducts and Q_2 off hence $V_{c1} = 0V$ and $V_{c2} = V_{CC}$. Due to higher voltage at V_{c2} , capacitor C_2 will be charged via R_4 (low resistance path because $R_4 < R_2$). C_1 (which was charged earlier, and can not hold the charge for indefinite period) starts discharging via R_2 (high resistance path because $R_2 > R_1$). Time taken to discharge $C_1(T_1 = R_2C_1) > 0$ time taken to charge $C_2(T_2 = R_4C_2)$
- When C_2 is fully charged then left plate of C_2 will be at $-V_{cc}$ which switch off the Q_1 . When C_1 is fully discharged then left plate of C_1 will be at $+V_{cc}$ which switch on the Q_2 . State 2

When V_{B2} reaches V_{on}, the circuit enters in state 1 again, and the process repeats.

Monostable Multivibrators

- ➤ One of the state is stable but the other is not. For that capacitive path between Vc2 and VB1 removed.
- ➤ In stable state any one transistor conducts and other is off.
- Application of external trigger change the state.
- When the external signal goes high
 - ✓ V_{B2} charges up to Vcc through R₂
 - ✓ After a certain time T, V_{B2}=V_{ON}, Q2 turns on
 - ✓ Vc₂ pulled to 0V, Q1 turns off.
- > Enters state 1 and remains there
- ➤ When VB2 is momentarily pulled to ground by an external signal
 - ✓ Vc2 rises to Vcc
 - ✓ Q1 turns on
 - √ Vc₁ pulled to 0V

Bistable Multivibrators

- Both capacitors removed
 - ✓ Stable for either state 1 or 2
 - ✓ Can be forced to either state by Set or
 - ✓ Reset signals
- > If Set is low,
 - ✓ Q1 turns off
 - ✓ Vc1 (Vout) and VB2 rises towards Vcc
 - ✓ Q2 turns on
 - ✓ Vc2 pulled to 0V
 - ✓ V_{B1} is latched to 0V
 - ✓ Circuit remains in state 2 until Reset is low
- ➤ If Reset is low
 - ✓ Similar operation
 - ✓ Circuit remains in state 1 until Set is low
 - ✓ Behave as an RS flip-flop (memory element)
- Behave as an RS flip-flop (memory element)

• Multivibrators find applications in a variety of systems where square waves or timed intervals are required.

Question:

Why multivibrator is used in electrical circuit? Explain the working principle of different types of multivibrator with their application.

Reference:

- Dr. A. P. VAJPEYI, Lec-18: Multivibrators, Analog & Digital Electronics, Course No: PH-218,
 Department of Physics, Indian Institute of Technology Guwahati, India
- Chapter 18 Transistor Oscillators and Multivibrators, Electronic Devices and Circuits by Allen Mottershed