1 Определения

1. Абсолютная величина:

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x \geqslant 0 \end{cases}$$

- 2. Инъекция: $f: X \to Y$ называется инъективным (однозначным), если $(\forall x_1, x_2 \in X)(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
- 3. Сюръекция: $f: X \to Y$ называется сюръективным (накрывающим), если $\forall y \in Y \ \exists x \in X \mid f(x) = y$.
- 4. Биекция: отображение называют биективным, если он инъективно и сюръективно.
- 5. Счетное множество это множество, равномощное \mathbb{N} , т. е. элементы которого можно пронумеровать.
- 6. Континуальное множество это множество, равномощное \mathbb{R} .
- 7. Образ отображения это область значений функции.
- 8. Прообраз отображения это область определения функции.
- 9. Принцип Архимеда: $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} \mid n > x$.
- 10. Последовательность: Числовой последовательностью называется любое отображение $f: \mathbb{N} \to \mathbb{R}$.
- 11. Возрастающая последовательность (строго монотонно возрастающая): $\forall n \in \mathbb{N} \ x_n < x_{n+1}$.
- 12. Убывающая последовательность (строго монотонно убывающая): $\forall n \in \mathbb{N} \ x_n > x_{n+1}$.
- 13. Строго монотонная последовательность либо возрастающая, либо убывающая.
- 14. Невозрастающая последовательность (монотонно убывающая): $\forall n \in \mathbb{N} \ x_n \geqslant x_{n+1}$.
- 15. Неубывающая последовательность (монотонно возрастающая): $\forall n \in \mathbb{N} \ x_n \leqslant x_{n+1}$.
- 16. Монотонная последовательность либо невозрастающая, либо неубывающая.
- 17. Существует нижняя граница (посл. огр. снизу): $\exists \varepsilon \in \{a_n\} \mid \forall n \in \mathbb{N} \ a_n \geqslant \varepsilon$. Отр.: $\forall \varepsilon \in \{a_n\} \mid \exists n \in \mathbb{N} \ a_n < \varepsilon$.
- 18. Точная нижняя грань (наибольшая нижняя граница):

$$\inf \ \{a_n\} = A \Leftrightarrow \begin{cases} 1) & \exists A \mid \forall n \in \mathbb{N} \ a_n \geqslant A \\ 2) & \forall A' > A \ \exists a_n \in \mathbb{N} \mid a_n < A' \end{cases}$$

- 19. Существует верхняя граница (посл. огр. сверху): $\exists \varepsilon \in \{a_n\} \mid \forall n \in \mathbb{N} \ a_n \leqslant \varepsilon$. Отр.: $\forall \varepsilon \in \{a_n\} \mid \exists n \in \mathbb{N} \ a_n > \varepsilon$.
- 20. Точная верхняя грань (наименьшая верхняя граница):

$$\sup \{a_n\} = A \Leftrightarrow \begin{cases} 1) & \exists A \mid \forall n \in \mathbb{N} \ a_n \leqslant A \\ 2) & \forall A' < A \ \exists a_n \mid a_n > A' \end{cases}$$

- 21. Последовательность ограничена: $\exists M > 0 \mid \forall n \in \mathbb{N} \mid a_n \mid < M$.
- 22. Последовательность неограничена: $\forall M > 0 \; \exists n \in \mathbb{N} \mid |a_n| \geqslant M$.
- 23. Предел последовательности: $\lim_{n\to\infty}a_n=A \iff \forall \varepsilon>0 \ \exists n_0\in\mathbb{N} \ | \ \forall n>n_0 \ |a_n-A|<\varepsilon$.
- 24. Сходимость: последовательность сходится, если она имееет конечный предел:

$$\lim_{n \to \infty} a_n = A \in \mathbb{R} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \mid \forall n > n_0 \ |a_n - A| < \varepsilon, \ A \in \mathbb{R}$$

- 25. Расходимость: последовательность расходится, если у нее либо бесконечный предел, либо предел не существует.
- 26. Бесконечно малая $(a_n \to 0)$: $\lim_{n \to \infty} a_n = 0 \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ |a_n| < \varepsilon$.
- 27. Не является бесконечно малой: $\lim_{n\to\infty} a_n \neq 0 \iff \exists \varepsilon > 0 \mid \forall n_0 \in \mathbb{N} \ \exists n > n_0 \mid |a_n| \geqslant \varepsilon$.
- 28. Бесконечно большая $(a_n \to \infty)$: $\lim_{n \to \infty} a_n = \infty \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ |a_n| > \varepsilon$.
- 29. Не является бесконечно большой: $\lim_{n\to\infty}a_n\neq\infty \iff \exists \varepsilon>0\mid \forall n_0\in\mathbb{N}\ \exists n>n_0\mid |a_n|\leqslant \varepsilon.$
- 30. Теорема о зажатой последовательности: Если $\forall n \ b_n \leqslant a_n \leqslant c_n$, то при $n \to \infty$: $\lim b_n = \lim c_n = A \Rightarrow \lim a_n = A$.

- 31. Теорема Вейерштрасса: Любая монотонно возрастающая (убывающая) и ограниченная сверху (снизу) последовательное имеет предел.
- 32. Последоввательность фундаментальна, если $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall m,n > n_0 \ |a_m a_n| < \varepsilon$.
- 33. Последовательность не фундаментальна, если $\exists \varepsilon > 0 \ \forall n_0 \in \mathbb{N} \ | \ \exists m,n > n_0 \ |a_m a_n| \geqslant \varepsilon$.
- 34. Критерий Коши: $\{a_n\}$ фундаментальна $\Leftrightarrow \{a_n\}$ имеет конечный предел (сходится).
- 35. Отрицание критерия Коши: $\{a_n\}$ не фундаментальна $\Leftrightarrow \{a_n\}$ не имеет конечного предела (расходится).
- 36. Подпоследовательность: $\{a_{n_k}\}$ подпоследовательнось $\{a_n\}$, если $\{n_k\}$ строго возр. посл.
- 37. Частичный предел: Если $\lim_{k\to\infty} a_{n_k} = A$, то A частичный предел последовательности $\{a_n\}$.
- 38. Нижний предел последовательности есть наименьший частичный предел:

$$\underline{\lim}_{n \to \infty} a_n = \inf_{n \to \infty} \left\{ \lim_{k \to \infty} a_{n_k} \right\}$$

39. Верхний предел последовательности есть наибольший частичный предел:

$$\overline{\lim}_{n \to \infty} a_n = \sup_{n \to \infty} \left\{ \lim_{k \to \infty} a_{n_k} \right\}$$

- 40. Необходимое и достаточное условие существования предела: $\underline{\lim}_{n\to\infty}a_n=\overline{\lim}_{n\to\infty}a_n$.
- 41. Теорема Больцано-Вейерштрасса: Из ограниченной посл. можно выделить сходящуюся подпосл.
- 42. Число $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.
- 43. Окрестностью точки x_0 на числовой прямой наывается множество точек, удаленных от x_0 менее чем на ε , т. е. $O_{\varepsilon}(x_0) = \{x \mid |x x_0| < \varepsilon\}.$