

Raport 4

Tabela 1: Czas permutacji w zależności od problemu

\overline{n}	T_{Joh}	T_{NEH}	T_{NEH+_1}	T_{NEH+_4}
1	29895	27050	26967	26879
2	30526	27428	27250	26936
3	30052	27010	26947	26988
4	31127	27298	27388	27067
5	29834	26685	26881	26674
6	30788	27231	27360	26985

Tabela 2: Czas wykonywania algorytmu w zależności od problemu

n	T_{Joh}	T_{NEH}	T_{NEH+_1}	T_{NEH+_4}
1	2	17524	34861	53295
2	1	17639	34888	51939
3	1	17527	34815	51921
4	1	17868	35887	52581
5	1	17561	35432	52313
6	1	17419	34928	51560

Rysunek 1: Zależności od wielkości instancji:

Algorytm johnsona jest niebywale szybki lecz wyniki jakie daje mogą być niezadowalające. Algorytm NEH daje bardzo dobre wyniki i ma możliwość znalezienie optymalnego rozwiązania, zależnie od rozszerzenia algorytm może dawać lepsze wyniki zależnie od danych. Mimo otrzymanych wysokich czasów

wykonania to trzeba wziąć pod uwagę że dane są bardzo obszerne, 500 zadań na 20 maszynach, użycie algorytmu zupełnego nie wchodzi w grę.