ปัญหา 1 ค่าพัสดุ (parcel_price)

บริษัทรับขนส่งพัสดุทางไปรษณีย์แห่งหนึ่ง คิดค่าขนส่งดังนี้ 1) น้ำหนักน้อยกว่าหรือเท่ากับ 1 กิโลกรัม คิดค่าขนส่ง 50 บาท 2) ถ้าน้ำหนักเกิน 1 กิโลกรัม แต่ไม่เกิน 10 กิโลกรัม จะคิดกิโลกรัมแรก 50 บาท ส่วนที่เหลือกิโลกรัมละ 40 บาท และ 3) ถ้าน้ำหนักตั้งแต่ 11 กิโลกรัมขึ้นไป จะคิดแบบ คงที่กิโลกรัมละ 30 บาท

จงเขียนโปรแกรมคำนวณค่าส่งพัสดุ โดยโปรแกรมรับข้อมูลเข้าเป็นเป็นจำนวนเต็มของน้ำหนักพัสดุ จากนั้นโปรแกรมจะคำนวณและแสดงผลค่าขนส่งออกมาทางหน้าจอ

ข้อมูลเข้า

• น้ำหนักพัสดุแต่ละชิ้น มีหน่วยเป็นกิโลกรัม

ผลลัพธ์

• ราคาค่าส่งพัสดุชิ้นนั้น

ตัวคย่าง

น้ำหนักพัสดุ	ค่าส่ง
1 กิโลกรัม	50
2 กิโลกรัม	90
10 กิโลกรัม	410

น้ำหนักพัสดุ	ค่าส่ง
6 กิโลกรัม	250
15 กิโลกรัม	450
11 กิโลกรัม	330

คำอธิบายตัวอย่าง

- ถ้าส่งพัสดุ กิโลกรัม ค่าส่งจะเป็น 50 บาท
- ส่งพัสดุ 6 กิโลกรัม กิโลกรัมแรกราคา 50 บาท อีก 5 กิโลกรัมที่เหลือกิโลกรัมละ 40 รวม ราคา 50 + (5 x 40) = 250 บาท
- ส่งพัสดุ 10 กิโลกรัม กิโลกรัมแรก 50 บาท ที่เหลือกิโลกรัมละ 40 บาท รวม 50+360 = 410 บาท
- ส่งพัสดุ 11 กิโลกรัม คิดราคาคงที่กิโลกรัมละ 30 บาท ค่าส่งจึงเป็น 11 x 30 = 330 บาท
- ส่งพัสดุ 15 กิโลกรัม คิดราคาคงที่กิโลกรัมละ 30 บาท ค่าส่งจึงเป็น 15 x 30 = 450 บาท

ปัญหา 2 น้ำหนักและรายได้ต่อคัน (weight_income_per_truck)

ถ้าให้การส่งพัสดุคุ้มค่า ควรจะใส่พัสดุให้เต็มน้ำหนักบรรทุกของรถขนพัสดุจึงจะดีที่สุด โดยรถขน พัสดุสามารถขนพัสดุได้มากที่สุดเป็นน้ำหนักรวม 1000 กิโลกรัม

จงเขียนโปรแกรมที่จะวนรับน้ำหนักของพัสดุที่ละรายการ โดยอัตราค่าขนส่งพัสดุแต่ละชิ้นคิดตาม เงื่อนไขในข้อ 1 และโปรแกรมจะคำนวณค่าขนส่งที่ได้รับ จากนั้นโปรแกรมจะวนรับน้ำหนักของพัสดุไปเรื่อย ๆ จนกว่าจะมีน้ำหนักมากกว่าน้ำหนักบรรทุกสูงสุดของรถ (ถ้าน้ำหนักที่รับมาสุดท้ายทำให้น้ำหนักรวมเกิน รายการสินค้านั้นจะไม่ถูกนับรวมและไม่ถูกส่ง) จากนั้นโปรแกรมจะรายงานผลน้ำหนักรวมที่จะต้องขน และ ค่าขนส่งทั้งหมดที่ได้รับออกมาทางหน้าจอ

ข้อมูลเข้า

- น้ำหนักของพัสดุแต่ละชิ้น วนรับเข้ามาทีละชิ้น จนกว่าจะถึงเงื่อนไขให้หยุดการวนรับ
 ลดัพธ์
 - น้ำหนักรวมของพัสดุทั้งหมดที่ต้องขน
 - ค่าขนส่งพัสดุทั้งหมดที่บริษัทได้รับ

ตัวคย่าง

ตัวอย่างที่ 1

ข้อมูลเข้า	ผลลัพธ์
500 300 201	800 24000

ตัวอย่างที่ 2

ข้อมูลเข้า	ผลลัพธ์
500 300 200 20	1000 30000

ตัวอย่างที่ 3

ข้อมูลเข้า	ผลลัพธ์
1 3 5 7 9 10 20 30 40 1 10 100	937 29050
500 20 1 1 1 3 2 8 5 9 20 40 60 1	
30 100	

ตัวอย่างที่ 4

ข้อมูลเข้า	ผลลัพธ์
1 1 1 1	1000 50000
(เลข 1 จำนวน	
1001 ตัว)	

คำอธิบายตัวอย่าง

- จากตัวอย่างที่ 1 มีพัสดุเข้ามา 3 รายการ แต่พัสดุรายการที่ 3 ที่เข้ามาทำให้น้ำหนักรวมเป็น
 1001 กิโลกรัม เกินน้ำหนักบรรทุกของรถ ทำให้รถสามารถขนพัสดุได้เพียงรายการที่ 1 และ 2 เท่านั้น ทำให้น้ำหนักรวมของการขนคือ 800 กิโลกรัม และแต่ละรายการได้ราคาค่าส่งเป็นอัตรา เหมาจ่ายกิโลกรัมละ 30 บาท ค่าขนส่งของทั้งสองรายการรวมเป็นเงิน 24000 บาท
- จากตัวอย่างที่ 2 พัสดุเข้ามา 4 รายการ 3 รายการแรกทำให้น้ำหนักรวม 1000 กิโลกรัมพอดี ส่วนรายการที่ 4 ทำให้น้ำหนักรวมเกิน ทำให้คิดค่าส่งจากแค่ 3 รายการแรก
- จากตัวอย่างที่ 3 น้ำหนักของพัสดุคละเคล้ากันไป พัสดุรายการสุดท้าย 100 กิโลกรัมทำให้ น้ำหนักรวมเกิน ทำให้รถขนได้แต่รายการก่อนหน้า ราคารวมมาจากเรทค่าส่งของพัสดุแต่ละชินที่ แตกต่างกันไป
- จากตัวอย่างที่ 4 มีพัสดุทั้งหมด 1001 รายการ ทุกรายการน้ำหนัก 1 กิโลกรัมหมด ค่าส่งต่อ ขึ้น 50 บาท และส่งได้เพียง 1000 รายการ ราคาค่าส่งทั้งหมดที่รับมา 50000 บาท (50 x 1 x 1000)

คำแนะนำ

- ตัวแปรที่อาจจะต้องใช้สำหรับการทำงานในข้อนี้ อาจจะประกอบด้วยตัวแปร X สำหรับรับค่า น้ำหนักพัสดุแต่ละรายการ ตัวแปร price สำหรับเก็บราคาค่าขนส่งแต่ละรายการ ตัวแปร weight สำหรับเก็บค่าน้ำหนักรวมของพัสดุทุกรายการ และตัวแปร income สำหรับเก็บค่า ขนส่งรวมของทุกรายการที่บริษัทได้รับ
- เนื่องจากไม่สามารถบอกได้ว่าพัสดุจะมีกี่รายการ Loop ที่เหมาะสมสำหรับข้อนี้ควรจะมีการทำงาน แบบไม่รู้จบ เพื่อรับค่าพัสดุในแต่ละรอบการทำงานก่อน แล้วตรวจว่าพัสดุที่เข้ามาใหม่ทำให้ค่า น้ำหนักรวมเกินหรือเปล่า ถ้าเกินก็จะหยุดการทำงาน Loop ถ้าไม่เกินก็เพิ่มค่าน้ำหนักและคำนวณ ค่าขนส่งต่อไป
- การแสดงผลลัพธ์ จะกระทำเมื่อการทำงานของ Loop สิ้นสุดลงแล้ว
- การเขียนโปรแกรมในข้อ 2 นี้ นักศึกษาต้องระวังในการคำนวณค่าน้ำหนักรวม และการคิดค่า ขนส่งของพัสดุแต่ละรายการ ถ้าการคำนวณน้ำหนักรวมและค่าขนส่งผิดในข้อนี้ จะส่งผลให้การ ทำงานในข้อ 3 ผิดตามไปด้วย

ปัญหา 3 กำไรหรือขาดทุน (gain or lose)

เจ้าของบริษัทขนส่ง มีต้นทุนที่ต้องจ่ายในการส่งพัสดุด้วย โดยมีค่าเช่าซื้อรถพร้อมค่าแรงคนขับที่เป็น อัตราตายตัววันละ 2,000 บาท โดยรถ 1 คันสามารถขนพัสดุได้ไม่เกิน 1000 กิโลกรัม และค่า น้ำมันคิดตามต้นทุนระยะทางเฉลี่ยกิโลเมตรละ 5 บาท สมมุติว่าทุกระยะการขนส่งสามารถส่งได้ทันใน 1 วัน

จงเขียนโปรแกรมแสดงต้นทุนและกำไรจากการขนส่ง โดยโปรแกรมจะเริ่มต้นวนรับข้อมูลน้ำหนักพัสดุ
ที่ละรายการ จากนั้นคำนวณค่าขนส่งของรายการนั้น ๆ จนกว่าจะมีน้ำหนักเท่ากับหรือใกล้เคียงกับ
น้ำหนักบรรทุกสูงสุดของรถก็จะหยุดรับค่าน้ำหนักแบบเดียวกับข้อ 2 จากนั้นโปรแกรมจะรับค่าข้อมูล
ระยะทางรวมที่ต้องส่งพัสดุ เป็นกิโลเมตร

โปรแกรมจะคำนวณและแสดง 1)ต้นทุนค่าใช้จ่ายในการขนส่งพัสดุ (cost) 2)แสดงรายได้จาก ค่าส่งพัสดุ (income) 3)รายงานด้วยว่าบริษัทได้กำไรหรือขาดทุน (gain or lose) เท่าใด โดย ถ้า income มากกว่า cost ถือว่าได้กำไร

ข้อมูลเข้า

- -● น้ำหนักของพัสดุแต่ละชิ้น วนรับเข้ามาที่ละชิ้น จนกว่าจะถึงเงื่อนไขให้หยุดการวนรับ
- ระยะทางทั้งหมดที่ต้องส่งพัสดุ

ผลลัพก์

- ต้นทุนค่าใช้จ่ายในการส่งพัสดุ และรายได้จากค่าส่งพัสดุ
- แสดงข้อความว่าได้กำไร (gain) หรือขาดทุน (lose) และจำนวนเงินที่ได้กำไรหรือขาดทุน

ตัวอย่าง ตัวอย่างที่ 1

ข้อมูลเข้า	ผลลัพธ์
1000 1 100	2500 30000 gain 27500

ตัวอย่างที่ 2

ข้อมูลเข้า	ผลลัพธ์
1000 1	52000 30000 lose
10000	22000

ตัวคย่างที่ 3

NI OLI INNI	
ข้อมูลเข้า	ผลลัพธ์
1 3 5 7 9	8000 29050 gain
10 20 30 40	21050
1 10 100	
500 20 1 1	
1 3 2 8 5 9	
20 40 60 1	
30 100 1200	

ตัวคย่างที่ 4

ข้อมูลเข้า	ผลลัพธ์
1 1 1 1	172000 50000 lose
34000	122000
(ରେଥ 1	
จำนวน 1001	
ตัว ตามด้วย	
34000)	

คำคลิบายตัวคย่าง

- จากตัวอย่างที่ 1 ข้อมูลเข้ามีแค่ 2 รายการ รายการแรก 1000 กิโลกรัม รายการที่ 2 คือ 1 กิโลกรัม ทำให้ส่งได้เฉพาะรายการที่ 1 จากนั้นรับค่าระยะทาง 100 กิโลเมตร หลังการาคำนวณ โปรแกรมจะรายงานผลว่าต้นทุน 1200 บาท (ค่าคนขับ 2000 กับค่าน้ำมัน 500 บาท) ได้รับค่าขนส่งรวม 30000 บาท ทำให้ได้กำไร 27500 บาท
- จากตัวอย่างที่ 2 ข้อมูลเข้าคล้ายกับตัวอย่างที่ 1 แต่ระยะทางรวมเป็น 10000 กิโลเมตร ทำ ให้ต้นทุนเป็น 52000 บาท จึงขาดทุน 22000 บาท

ปัญหา 4 จัดคิวรถ (truck arrangement)

เนื่องจากจำนวนพัสดุในแต่ละวันมีไม่เท่ากัน และการส่งเป็นการส่งแบบไม่เร่งด่วนมากนัก ดังนั้นเพื่อ เป็นการมุ่งเน้นกำไรสูงสุดของบริษัท จึงมีนโยบายว่าถ้าน้ำหนักพัสดุยังไม่ถึง 500 กิโลกรัม จะยังไม่มีการ ส่ง แต่จะรอรวมกับพัสดุในวันต่อ ๆ ไปจนกว่าจะมีน้ำหนักพัสดุตั้งแต่ 500 กิโลกรัมขึ้นไป เช่นถ้า น้ำหนักพัสดุรวม 2600 กิโลกรัม แปลว่าวันนั้นต้องใช้รถส่งพัสดุ 3 คัน (สองคันแรกส่งพัสดุ 1000 กิโลกรัม คันที่ 3 ส่ง 600 กิโลกรัม) แต่ถ้ามีพัสดุน้ำหนัก 2200 กิโลกรัมจะใช้รถส่งพัสดุแค่ 2 คัน (ทั้ง 2 คันส่งพัสดุรวม 2000 กิโลกรัม เหลืออีก 200 กิโลกรัมเอาไว้รวมกับน้ำหนักพัสดุในวันต่อไป)

จงเขียนโปรแกรมเพื่อคำนวณจำนวนรถที่จะใช้ขนพัสดุในแต่ละวัน โดยข้อมูลเข้าจะเป็นน้ำหนักพัสดุ ในแต่ละวันมีหน่วยเป็นกิโลกรัม และแสดงผลจำนวนรถที่ต้องใช้ในวันนั้น โปรแกรมจะทำงานไปเรื่อย ๆ จนกว่าจะได้รับข้อมูลเข้าที่เป็นตัวเลขติดลบ จึงจะหยุดการทำงาน

ข้อมูลเข้า

• น้ำหนักรวมของพัสดุที่ต้องขนในวันนั้น

ผลลัพก์

• จำนวนรถที่ต้องใช้เพื่อขนพัสดุในวันนั้น ๆ

ข้อมูลเข้า	ผลการทำงาน
1000	1
2200	2
400	1
3400	3
-1	

ข้อมูลเข้า	ผลการทำงาน
200	0
200	0
200	1
9000	9
0	0
2800	3
-500	

*คำแนะนำ วิธีหนึ่งในการเขียนโปรแกรมนี้ อาจเริ่มต้นจากการกำหนดตัวแปร **3** ตัว คือ w รับน้ำหนักพัสดุใหม่ในแต่ละวัน

number ใช้เก็บผลการคำนวณจำนวนรถ และ

remain ใช้เก็บน้ำหนักพัสดุที่เหลือในแต่ละวัน ในกรณีที่น้ำหนักรวมไม่ถึง 500 กิโลกรัม
**คำเตือน ในทุกรอบการทำงาน อย่าลืม reset จำนวนรถ และน้ำหนักพัสดุที่ได้ส่งไปแล้วให้ถูกต้อง ด้วย มิฉะนั้นโปรแกรมอาจจะทำงานผิดพลาดในรอบต่อ ๆ ไป

<u>ปัญหา</u> สัดส่วนของจุดในพื้นที่วงกลม

วงกลมหนึ่งมีรัศมี R=1 จุดศูนย์กลาง (0, 0) เมื่อพิจารณาพื้นที่ใน Quadrant ที่ 1 ของวงกลม ที่มีค่า x และ y อยู่ในช่วง [0,1] ดังภาพด้านล่าง และทฤษฎีปีทากอรัสจะสามารถ คำนวณหาว่าพิกัดของจุด (x,y) ใดๆ จะอยู่ห่างจากจุดศูนย์กลางของวงกลมเท่ากับ d ตามสมการ คือ $d=sqrt(x^2+y^2)$

เนื่องจากวงกลมมีรัศมี R = 1 ดังนั้น ถ้ามีจุด (x,y) ที่ทำให้ d > 1 แสดงว่าจุดนั้นอยู่ นอกพื้นที่วงกลม

จงเขียนโปรแกรมรับพิกัดจุด (x,y) โดยค่า x และ y อยู่ในช่วง [0.0,1.0] เพื่อคำนวณ สัดส่วนของจุดที่อยู่ในพื้นที่วงกลม ดังนี้

- 1) รับค่าจำนวนจุด
- 2) รับพิกัดจุด (x,y) โดยค่า x และ y อยู่ในช่วง [0.0,1.0] (เป็นเลขทศนิยม) จนกว่าจะครบ
- 3) จากค่าพิกัดที่รับมา ให้คำนวณสัดส่วนของจุดที่อยู่ในพื้นที่วงกลม ข้อมูลเข้า

เลขตัวแรกเป็นจำนวนเต็มบวกแทนจำนวนจุด (รอบการรับข้อมูล)

จำนวนเต็มอีกชุดแทนพิกัดจุด (x,y) โดยโปรแกรมจะรับเข้ามาเรื่อย ๆ จนกว่าจะครบ

คำแนะนำในการกำหนดตัวแปร

ตัวแปร<u>ทุกตัว</u>ที่อยู่ใน loop <u>ยกเว้น</u>ตัวแปรนับรอบการรับข้อมูล ควรกำหนดเป็น **double** ทั้งหมด **หมายเหตุ**

ผลลัพก์

มีหนึ่งบรรทัดโดยแสดงสัดส่วนของจุดที่อยู่ในพื้นที่วงกลมเป็นเลขเลขทศนิยม 3 ตำแหน่ง

ตัวคย่าง

ข้อมูลเข้า	ผลลัพธ์	ข้อมูลเข้า	ผลลัพธ์	ข้อมูลเข้า	ผลลัพธ์
2	0.500	5	0.600	10	0.700
0.817621 0.758777		0.816447 0.028109		0.817105 0.077283	
0.766720 0.262196		0.425922 0.464676		0.896769 0.991287	
		0.814759 0.651392		0.567207 0.043964	
		0.949814 0.532752		0.901562 0.557388	
		0.963483 0.259026		0.024381 0.773230	
				0.668507 0.594015	
				0.614851 0.802840	
				0.332787 0.144829	
				0.138545 0.519907	
				0.078299 0.977264	

อธิบายตัวอย่างที่ 1

จากข้อมูลเข้าตัวแรก คือ 2 เป็นจำนวนจุด

ข้อมูลชุดถัดมา (บรรทัดที่ 2-3) คือ พิกัดจุด (x,y)

โดยจะต้องคำนวณค่า d ของจุด 2 จุด จาก

 $d = sqrt(0.817621^2 + 0.758777^2) = 1.115458$

และ

 $d = sqrt(0.766720^2 + 0.262196^2) = 0.810312$

จากการคำนวณพบว่า ค่า d ของพิกัด (0.817621,0.758777) มีค่ามากกว่า 1 ซึ่งหมายความ ว่าพิกัดนี้อยู่นอกวงกลม ดังนั้นจึงมีพิกัด (0.766720, 0.262196) เพียงจุดเดียวที่อยู่ในพื้นที่วงกลม คิดเป็นสัดส่วน 1.000/2 = 0.500