[51]Int.Cl⁶

H05B 39/04 H03K 17/94

[12] 实用新型专利说明书

[21] ZL 专利号 95246399.7

[45]授权公告日 1997年5月21日

[11] 授权公告号 CN 2254615Y

[22]申请日 95.12.28 [24]颁证日 97.2.22 [73]专利权人 廖集明 地址 342802江西省宁都县石上乡湖岭 共同专利权人 丁小珍 [72]设计人 廖集明 丁小珍

[21]申请号 95246399.7 [74]专利代理机构 江西省赣州地区专利事务所 代理人 卢和炳

权利要求书 1 页 说明书 3 页 附图页数 1 页

[54]实用新型名称 人体感应器

一种电灯、报警用人体感应器,其电子电路包含电源部分的降压、整流、稳压电路。其特征是: (1) 一个红外感应讯号电路。包括 PIR、 C_{2-5} 、 R_{80} 放大电路由运算放大器 N_{2-4} 及外围元件组成。(2) 一个主要由光敏电阻 CPS 及 D_{11} 、 BG_1 组成的光控·讯号电路。讯号接到 N_3 脚 10。(3) 一个由 BG_{2-3} 、继电器组成的触发器执行电路。(4) 一个接于 N_4 管脚 6 的延时关断电路。本实用新型性能可靠、体积小、作用距离远、节能显著。

(BJ)第 1452 号

- 1、一种人体感应器,其电子电路包含电源部份: C₁、 R_{1~2} 降压电路, D_{1~4}整流电路, D_{5~7}、R_{3~7}、 N₁运算放大器组成的稳压电路, 其特征是:
- 一个红外感应讯号电路,包括红外传感头PIR, 电容 C_{2-5} 、电阻 R_0 , 放大电路包括运算放大器 N_{2-4} 、电阻 R_{10-12} 、 R_{15} 、电容 C_{6-8} 、二极管 D_{8-10} ,感应讯号经 C_3 连接 N_2 的管脚12, 放大讯号从管脚14经 D_8 、 R_{15} 连接 N_3 的管脚10, 管脚9接一基本标准电平, 管脚8通过 D_{10} 与 N_4 的管脚6相连,管脚5接另一基本标准电平;
- 一个光控讯号电路,包括光敏电阻CDS、二极管 D_{11} 、电阻 R_9 、 R_{16} 、 R_{19} 、电位器 W_1 、三极管 BG_1 , 输入端接于整流电路的正输 出端, BG_1 集电极输出连接 N_3 的管脚10;
- 一个触发器执行电路,包括三极管BG₂₋₃继电器J₀、电阻 R₂₂₋₂₄、二极管D₁₂、C₁₀, BG₂的基极与N₄的管脚7相连,继电器J₀. 接于BG₃集电极电路,J₀触点与控制负载M串联后,并接在220伏交流电源上:
- 一个延时电路,包括电容C₉、电位器W₂、R₂₀,接于N₄的管脚6上。

人体感应器

一种用于控制电灯、报警器的人体感应器,属电子遥感控制 技术领域。

目前,国内常见的感应节能开关大致有光控开关、声控开关、声光控自熄开关、亚波遥控节电开关。光控开关在光线暗时开关闭合,一进入夜间,电灯便常明,节能效果差;声控开关抗干扰能力差,易受外界声源干扰;声光控自熄开关,亚波遥控节电开关效果虽比上述开关要好,但其抗干扰能力还是难以满足要求。

本实用新型的目的是提供一种人体感应器,以提高电灯、报警装置自控开关的抗干扰性能。

本实用新型的技术方案是,它的电子电路包含电源部份, C_1 、 $R_{1\sim2}$ 降压电路。 $D_{1\sim4}$ 整流电路。 $D_{5\sim7}$ 、 $R_{3\sim7}$ 、 N_1 运算放大器组成的稳压电路。其特征是,

- 一个红外感应电路,包括红外传感头PIR、电容 C_{2-5} 、电阻 R_{8} 。放大电路包括运算放大器 N_{2-4} 、电阻 R_{10-12} 、 R_{15} 、电容 C_{6-8} 、二极管 D_{8-10} 。感应讯号经 C_{3} 连接 N_{2} 的管脚12,放大讯号从管脚14经 D_{8} 、 R_{15} 连接 N_{3} 的管脚10,管脚9接一基本标准电平,管脚8通过 D_{10} 与 N_{4} 的管脚6相连,管脚5接另一基本标准电平。
- 一个光控讯号电路,包括光敏电阻CDS、二极管D₁₁、电阻R₉、 R₁₆、R₁₉、电位器W₁、三级管BG₁。 输入端接于整流电路的正输

出端。BG集电极输出连接Na的管脚10。

一个触发器执行电路,包括三极管 BG_{2-3} 、继电器 J_0 、电阻 R_{22-24} 、二极管 D_{12} 、电容 C_{10} 。 BG_2 的基极与 N_4 的管脚7相连。继电器 J_0 接于 BG_3 的集电极电路, J_0 触点与控制负载M串联后,并接在220伏交流电源上。

一个延时电路,包括电容 C_9 、电位器 W_2 、 R_{20} ,接于 N_4 的管脚6上。

图1为本实用新型实施例的电路原理图。

现结合附图进一步说明其工作原理。

交流220伏电压经过降压、整流,得到一个约12伏的直流电压,再经过稳压电路得到一个约5.8伏的稳压直流电压。

当红外传感头PIR摄取到人体红外线信号后,传感头就有一个交流讯号输出。这一交流讯号通过电容 C3进入运算放大器 N2进行放大。管脚14放大电压经 D8输入到管脚10。 N3实为一比较器,当BG1截止时,N3管脚10的电压高于管脚9的基本标准电压,管脚8有高电平输出,D10导通。N4的管脚6的电压高于管脚5的基本标准电压,管脚7输出低电平。从而使三极管 BG2存在偏置电压而导通。继而BG3导通,继电器 J0 吸合。控制负载接通电源, 灯亮或发出报警信号。反之,当PIR没有摄取到红外线讯号, 电容 C3就没有电流通过,继电器 J0 不动作。

当光敏电阻CDS没有光线照射下, 其电阻很大, 故稳压二极

管D11不能击穿,三极管BG1因没有偏置电压而截止。此时,N3的管脚10的电平得到保持。当CDS有光线照射时,其电阻变小,稳压二极管D11负极电压上升,达到一定值时D11击穿,使BG1导通。这时N3的管脚10的讯号被短路,其电压始终低于管脚9的基本标准电压。管脚8输出低电平,D10截止。这种状态下整个电路被自锁。调节电位器W1可改变D11的导通极值电压。

当PIR有人体感应讯号时,二极管D₁₀导通,电容C₉被充电。 当人体感应讯号结束时,二极管D₁₀截止,C₉放电,使后面的BG₂、 BG₃执行电路延时关断。调节电位器W₂,可改变延迟时间。

本实用新型性能稳定, 抗干扰能力强, 体积小, 耗电微, 外围元件少, 作用距离远。用于控制走廊照明电灯时, 比普通开关节电百分之九十以上。

(Y