Condensé de la terminale Mathématiques

Notations non vues en cours

```
Égal par définition
 :=
          Arrondir x à l'entier supérieur. (\lceil 5.1 \rceil = 6)
 \lceil x \rceil
 1.5
          Séparateur,
x \cdot y
          Multiplication \times
          {\bf Croiss ant}
          Décroissant
a \gtrapprox b
          Revient à écrire a > b, a = b et a > b
  \wedge
          "et"
          Point d'affixe z
\operatorname{Img} z
          Caractère utilisé pour représenter plusieurs opérations
  \Diamond
```

Contents

0	Out	ils	5
	0.1	Composition de fonction $f \circ g$	5
	0.2	Équations de cercle $(x - x_0)^2 + (y - y_0)^2 = R^2$	5
	0.3	Opérations avec des puissances	5
	0.4	Diverses théorèmes	5
		0.4.1 Application de fonctions aux inéquations	5
1	Suit	ces numériques	6
	1.1	Définition fonctionnelle	6
	1.2	Définition par récurrence	6
	1.3	Suite arithmétique	6
	1.4	Suite géométrique	6
	1.5	Limites	6
	1.6	Majoration et minoration	7
	1.7	Opérations sur les limites	7
	1.8	Comparaisons et limites	7
2	Pro	babilités	8
	2.1	Probabilité conditionnelle $P(A B)$	8
	2.2	Probabilités d'intersections $P(A \cap B)$	8
	2.3	Probabilités d'union $P(A \cup B)$	8
	2.4	Partitions	8
	2.5	Formule des probabilités totales	8
	2.6	Indépendance d'évenements	8
	2.7	Loi de Bernouilli ${\mathcal B}$	8
	2.8	Autre vocabulaire	9
	2.9	Probabilités à densité	9
	2.10	Loi uniforme	9
	2.11	Loi exponentielle	9
	2.12	Loi sans vieillissement	9
	2.13	Lois normales	10
		2.13.1 Loi normale centrée réduite $\mathcal{N}(0,1)$	10
		2.13.2 Probabilité d'intervalle centrée en 0	10
		2.13.3 Propriétés	10
3	Lim	ites lim	11
_	3.1	Notation	11
	3.2	Limites d'un quotient à la valeur indéfinie	11
	3.3	Opérations sur les limites	11
	3.4	Asymptotes	12
	3.5	Simplifications de limites	12
	5.5	3.5.1 Polynômes	12
		o.o.i i orynomics	14

	3.6	Fonctions composées
4	Cor	ntinuité des fonctions 13
	4.1	Définition
	4.2	Continuité de fonctions usuelles
	4.3	Théorèmes utilisant la continuité
		4.3.1 Valeurs intermédiaires
		4.3.2 Bijection
5	Nor	mbres complexes ${\mathbb C}$ 14
	5.1	Définition
	5.2	Partie imaginaire Im et réelle Re
		5.2.1 Définition
		5.2.2 Propriétés
	5.3	Conjugé \overline{z}
	5.5	5.3.1 Définition
		5.3.2 Identités
	F 1	
	5.4	Affixe Aff
		5.4.1 Propriétés
	5.5	Racines des polynômes de second degré $az^2 + bz + c$
	5.6	Coordonnées polaires avec z
		5.6.1 Module $ z $
		5.6.2 Argument arg
	5.7	Formes
		5.7.1 Propriétés de la forme exponentielle
	5.8	Inégalité triangulaire
6	Dér	rivées 17
	6.1	Opération sur des fonctions
7	Fon	action exponentielle exp 18
	7.1	Notation
	7.2	Caractéristiques
	7.3	Limites remarquables
	7.4	Propriétés
8	Các	ométrie dans l'espace 19
O		-
	8.1	
		8.1.1 Droite-droite, plan-plan
		8.1.2 Droite-plan
	8.2	Section d'un cube
	8.3	Orthogonalité \perp
	8.4	Plan \perp droite
	8.5	Plan médiateur

8.6	Propriétés	20
8.7	Coordonnées	20
8.8	Équations paramétriques	20
	8.8.1 D'une droite	20
	8.8.2 D'un plan	20
9 Le	logarithme népérien ln	22
9.1	Caractéristiques	22
9.2	Limites remarquables	22
9.3	Propriétés	22
10 Pr	rimitives F	23
10	.1 Définition	23
10	2 Propriétés	23
11 In	$t\acute{egrales} \ extstyle $	24
	1 Notation	24
11	.2 Unité d'aires <i>ua</i>	24
	11.2.1 Définition	24
11	3 Calcul	24
11	4 Propriétés	24
11	5 Valeur moyenne de f sur $[a;b]$	24
11	6 Primitives remarquables	25
12 Éc	chantillonage	26
12	.1 Fréquence de caractère X_n	26
12	.2 Fréquence de caractère dans échantillon F_n	26
12	3 Intervalle de fluctuation I_n	26
	12.3.1 Interprétation	26
12	4 Trouver p avec f et n	26

0 Outils

0.1 Composition de fonction $f \circ g$

Soit f et g des fonctions respectivement définies sur I et J

$$(f \circ g)(x) \iff f(g(x))$$

Attention: il faut que x soit défini dans I et que g(x) soit défini dans J

Plus généralement, soit Θ un ensemble de fonctions

$$\left(\bigcirc_{i=0}^{j}\Theta_{i}\right)(x) = \Theta_{0}(\Theta_{1}(\Theta_{2}(\Theta_{3}\dots(x\dots)))$$

0.2 Équations de cercle $(x - x_0)^2 + (y - y_0)^2 = R^2$

Soit R le rayon du cercle, et $O(x_0; y_0)$ le centre du cercle Un cercle dans le plan peut être décrit par l'équation suivante:

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$

0.3 Opérations avec des puissances

$$(x^{a})^{b} = x^{ab}$$

$$x^{a}x^{b} = x^{a+b}$$

$$x^{-a} = \frac{1}{x^{a}}$$

$$x^{\frac{1}{a}} = \sqrt[a]{x}$$

$$x^{0} = 1$$

0.4 Diverses théorèmes

0.4.1 Application de fonctions aux inéquations

Soit I une intervalle, f une fonction définie et croissante sur I, x et y deux nombres dans I

$$x \gtrsim y$$

$$\iff f(x) \gtrsim f(y)$$

1 Suites numériques

1.1 Définition fonctionnelle

Soit f une fonction:

$$u_n = f(n)$$

1.2 Définition par récurrence

Soit f une fonction

$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = f(u_n) \end{cases}$$

1.3 Suite arithmétique

Avec r la raison de la suite

Définition fonctionnelle $u_n = u_0 + r \cdot n$

Définition par récurrence
$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = u_n + r \end{cases}$$

Somme des termes de
$$i$$
 à f $\sum_{i=i}^{j} u_i = (j-i+1) \cdot \frac{u_j + u_i}{2}$

1.4 Suite géométrique

Avec q la raison de la suite

Définition fonctionnelle $u_n = u_0 \cdot q^n$

Définition par récurrence
$$u_n = \begin{cases} u_0 = \text{cste} \\ u_{n+1} = u_n \cdot q \end{cases}$$

Somme des termes de
$$i$$
 à f $\sum_{i=i}^{j} u_i = u_j \cdot \frac{1-q^{j-i+1}}{1-q}$

1.5 Limites

Suite convergeante vers L $\lim_{n\to +\infty} u_n = L$

Suite divergeante $\lim_{n\to+\infty}u_n\neq L$

$p \in \{0.5\} \cup \mathbb{N}$ $q \in \mathbb{R}$	$-\infty$	-1	0	1	$+\infty$
$\lim_{n \to +\infty} q^n$?		0	1	$+\infty$
$\lim_{n \to +\infty} n^p$	0		1	-	$+\infty$

Limites de type cste^n ou n^{cste}

1.6 Majoration et minoration

Soit (u_n) une suite définie sur les rangs dans I et L un réel

Suite majorée $\forall n \in I \ \exists M \ u_n \leq M$

Suite minorée $\forall n \in I \ \exists m \ u_n \geq m$

Suite bornée Suite majorée et minorée

$$\lim_{n\to+\infty}u_n\dots$$

Soit f la fonction associée à u_n

$$\lim_{n \to +\infty} u_n = L \implies \lim_{n \to +\infty} u_{n+1} = f(L)$$

1.7 Opérations sur les limites

 $Voir\ en\ 3.3$

1.8 Comparaisons et limites

Soit $L \in \mathbb{R}$, (u_n) , (v_n) et (w_n) trois suites et l_A la limite quand $n \to +\infty$ de la suite A_n

Nom du théorème	Conditions		Résultat	Explication graphique	
Par comparaison	$u_n \le v_n$	$l_u = +\infty$	$\implies l_v = +\infty$	(u_n) emporte (v_n) vers $+\infty$	
Tar comparaison	$u_n \ge v_n$	$l_u = -\infty$	$\implies l_v = -\infty$	(u_n) emporte (v_n) vers $-\infty$	
Théorème des gendarmes	$w_n \ge v_n \ge u_n$	$l_u = l_w = L$	$\implies l_v = L$	(u_n) et (w_n) forcent (v_n) à tendre vers L	

$\mathbf{2}$ Probabilités

2.1Probabilité conditionnelle P(A|B)

Probabilité que A soit réalisé sachant que B a déjà été réalisé.

$$P(A|B)$$
 ou $P_B(A) = \frac{P(A \cap B)}{P(B)}$ si $P(B) \neq 0$

2.2Probabilités d'intersections $P(A \cap B)$

Probabilité que A et B soit réalisées.

$$P(A \cap B) = P(B) \cdot P(A|B)$$
$$= P(A) \cdot P(B|A)$$

2.3Probabilités d'union $P(A \cup B)$

$$P(A \cup B) = P(A) + P(B)$$

Partitions

Si on a deux évenements ou plus tel que...

- Aucun évenement n'est vide $\iff B_i \neq \emptyset \quad \forall i$
- Aucun évenement ne recouvre un autre $\iff B_i \cap B_j = \emptyset \quad \forall i, j$
- L'union de chaque partition couvre l'univers entier $\iff \bigcup_{i=1}^{j} B_i = \Omega$

Formule des probabilités totales

Soit $B_1, B_2, ..., B_n$ des évenements formant une partition de Ω

$$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$$

2.6 Indépendance d'évenements

A et B sont indépendants $\iff \overline{B}$ et B forment une partition de Ω

 $\iff \overline{A} \text{ et } A \text{ forment une partition de } \Omega$

 $\iff \overline{A} \text{ et } \overline{B}, A \text{ et } \overline{B} \text{ et } B \text{ et } \overline{A} \text{ sont indépendants}$

Loi de Bernouilli \mathcal{B}

Épreuve de Bernouilli

2.8 Autre vocabulaire

Évenements incompatibles $P(A \cap B) = 0$

Variable aléatoire continue La variable aléatoire peut prendre n'importe quel valeur dans $I:=I\subset\mathbb{R}$

À partir d'ici, la connaissance des intégrales est requise (voir 10.2)

2.9 Probabilités à densité

f est une densité de probabilité si:

- $D_f \subset \mathbb{R}_+$
- \bullet f est continue
- $\bullet \int_{D_f} f(x)dx = 1$

La loi de
$$X$$
 admet f comme densité de probabilité $\iff P(X \in [a,b]) = \int_a^b f(t)dt$

$$\land \quad [a,b] \subseteq D_f \subset \mathbb{R}$$

$$\Rightarrow \forall n \in D_f \quad P(X=n) = 0$$

$$\Rightarrow \text{ Dans les conditions, } \quad \geq \iff > \land \leq \iff <$$

$$\Rightarrow P(X>k) = 1 - P(X < k)$$

$$\Rightarrow P(X \in [a,b]) = P(X < b) - P(X < a)$$

$$\Rightarrow P(X \in [a,b] \mid X \in [c,d]) = \frac{P(X \in [a,b] \cap [c,d])}{P(X \in [c,d])}$$

$$\Rightarrow E(X) = \int_{D_f} t f(t) dt$$

2.10 Loi uniforme

X suit la loi uniforme sur $[a,b] \iff$ La loi de X admet $x \mapsto \frac{1}{b-a}$ comme densité de probabilité

$$[c,d] \subseteq [a,b] \iff P(X \in [c,d]) = \frac{d-c}{b-a}$$

$$E(X) = \frac{a+b}{2}$$

2.11 Loi exponentielle

X suit la loi exponentielle de paramètre $\lambda \iff$ La loi de X admet $x \mapsto \lambda e^{-\lambda x}$ comme densité de probabilité

2.12 Loi sans vieillissement

$$P(X \ge t + h | X \ge t) = P(X \ge h)$$

2.13 Lois normales

2.13.1 Loi normale centrée réduite $\mathcal{N}(0,1)$

$$X$$
 suit la loi $\mathcal{N}(0,1) \iff P(X \in [a,b]) = \int_a^b \frac{1}{\sqrt{2\pi}} \exp{-\frac{x^2}{2}} dx$

2.13.2 Probabilité d'intervalle centrée en 0

$$X \sim \mathcal{N}(0,1) \iff \forall \alpha \in]0,1[\exists_{=1}u_{\alpha} \in \mathbb{R}_{+}^{*} \quad P(X \in [-u_{\alpha},u_{\alpha}]) = 1 - u_{\alpha}$$

Deux valeurs remarquables

$$u_{0.05} = 1.96$$
$$u_{0.01} = 2.58$$

2.13.3 Propriétés

$$E(X) = 0 \iff \text{centr\'ee}$$

 $\sigma = 1 \iff \text{r\'eduite}$
 $\iff V = 1$

3 Limites lim

3.1 Notation

Soit x, C et D des nombres et Ψ un réel, $+\infty$ ou $-\infty$

$$\lim_{x\to\Psi}C=D\iff C\xrightarrow[x\to\Psi]{}D$$

$$\iff \text{Limite de }C\text{ quand }x\text{ tends vers }\Psi$$

$$\begin{split} \lim_{\substack{x\to\Psi\\>}} C &= D \iff C \xrightarrow[x\to\Psi^+]{} D \\ &\iff \text{Limite de } C \text{ en } \Psi \text{ par valeurs supérieures} \\ &\iff \text{Limite de } C \text{ à droite de } \Psi \end{split}$$

$$\begin{split} \lim_{x \to \Psi} C &= D \iff C \xrightarrow[x \to \Psi^-]{} D \\ &\iff \text{Limite de C en Ψ par valeurs inférieures} \\ &\iff \text{Limite de C à gauche de Ψ} \end{split}$$

3.2 Limites d'un quotient à la valeur indéfinie

Soit
$$f: x \mapsto \frac{p(x)}{q(x)}$$
 et $r \in \mathbb{R}$ tq. $q(r) = 0$

- 1. Calculer $\lim_{x \to x} p(x)$
- 2. Par valeurs supérieures Calculer $\lim_{x\to r^+}q(x)$: 0^+ ou 0^- Par valeurs inférieures Calculer $\lim_{x\to r^-}q(x)$: 0^+ ou 0^-
- 3. Conclure par quotient: $0^+ \rightarrow +$ et $0^- \rightarrow -$

3.3 Opérations sur les limites

Les opérations entre deux limites réelles sont comparables aux opérations sur des nombres

FI Forme Indéterminée

x, y	x+y	$x \cdot y$	x/y	
$\pm \infty$	$\begin{array}{ccc} \text{Signes} = & \pm \infty \\ \text{Signes} \neq & \text{FI} \end{array}$	(règle des signes)	FI	
		x = 0 FI	y = 0	FI
\mathbb{R} ou $\pm \infty$	$\pm \infty$	$x = 0 \text{FI}$ $x > 0 \pm \infty$	$y = 0$ $y = \pm \infty$	0
10 0 d ± 00		$x < 0 \mp \infty$	$x = \pm \infty \text{ et } y \in \mathbb{R}^*$	$\pm \infty$

3.4 Asymptotes

Soit $L \in \mathbb{R}$, f une fonction, Γ la courbe d'équation y = f(x) et Ψ un nombre ou symbole

$$f(x) \xrightarrow[x \to L]{} L \iff \Gamma \text{ admet en } \Psi \text{ une asymptote (horizontale) d'équation } y = L$$

$$\begin{cases} f(x) \xrightarrow[x \to L^+]{} \pm \infty \\ f(x) \xrightarrow[x \to L^-]{} \pm \infty \end{cases} \iff \Gamma \text{ admet en } L \text{ une asymptote (verticale) d'équation } x = L$$

3.5 Simplifications de limites

3.5.1 Polynômes

Pour les limites en $+\infty$ ou en $-\infty$, on peut simplifier la limite d'un polynôme à la limite du terme de plus haut degré:

$$\lim_{x \to +\infty} 2x^3 - 4x + 1 = \lim_{x \to +\infty} 2x^3$$

Ça marche aussi avec les fractions:

$$\lim_{x \to +\infty} \frac{4x^9 + x^3 - 2}{5x^3 - 8x^{18} + 420} = \lim_{x \to +\infty} \frac{4x^9}{-8x^{18}}$$

3.6 Fonctions composées

Soit a, b et $c \in \mathbb{R} \cup \{-\infty; +\infty\}$, f et g des fonctions

$$\begin{cases} f(x) \xrightarrow[x \to a]{x \to a} b \\ g(x) \xrightarrow[x \to b]{c} c \end{cases} \implies (f \circ g)(x) \xrightarrow[x \to a]{c} c$$

4 Continuité des fonctions

4.1 Définition

Une fonction est continue quand "on peut tracer sa courbe sans lever le stylo". Plus rigoureusement, la fonction f est continue sur l'intervalle I si, pour tout $a \in I$, $f(a) \xrightarrow[x \to a]{} f(a)$.

4.2 Continuité de fonctions usuelles

Polynôme \mathbb{R} \sqrt{x} \mathbb{R}^+

Rationnelle Ensemble de définition

De plus, n'importe quelle fonction créée par +, ×, o ou ÷ à partir de fonctions continues sont continues

4.3 Théorèmes utilisant la continuité

4.3.1 Valeurs intermédiaires

Soit a et b des réels, f une fonction continue sur [a; b].

 $\forall k \in [f(a); f(b)], \quad f(x) = k \text{ admet au moins une solution dans } [a; b]$

4.3.2 Bijection

Soit I une intervalle, a et b des réels dans I et f une fonction définie sur I ou plus grand

 $\begin{cases} f \text{ est continue sur } I \\ f \text{ est strictement monotone sur } I \end{cases} (1)$ $k \in [f(a); f(b)] \quad (2)$ $\implies f(x) = k \text{ admet une unique solution dans } [a; b]$

(1) quand elle ne l'est pas, on étudie séparémment chaque intervalle où la fonction est strictement monotone (2) si a ou $b = \pm \infty$, on calcule la limite pour l'intervalle image:

Montrer que f(x) = k n'admet qu'une seule solution dans \mathbb{R}

$$k \in \left[\lim_{x \to -\infty} f(x); \lim_{x \to +\infty} f(x) \right]$$

Attention: pour montrer que f(x) = k n'a pas de solutions on n'utilise pas la bijection mais le tableau de variations

5 Nombres complexes $\mathbb C$

5.1 Définition

$$i^2:=-1,\quad a,b\in\mathbb{R},\quad z\in\mathbb{C}$$

$$z=a+ib$$

Ensemble des imaginaires purs: $i\mathbb{R} := \mathbb{C} \setminus \mathbb{R}$

5.2 Partie imaginaire Im et réelle Re

5.2.1 Définition

- $\operatorname{Re}(a+ib) := a$
- $\operatorname{Im}(a+ib) := b$

5.2.2 Propriétés

- $\operatorname{Re} z = 0 \iff z \in \mathbb{R}$
- $\operatorname{Im} z = 0 \iff z \in i\mathbb{R}$

5.3 Conjugé \bar{z}

5.3.1 Définition

$$\overline{z} := \operatorname{Re} z - i \operatorname{Im} z$$

5.3.2 Identités

 \diamond représente les opérations +, × et \div

- $z \cdot \overline{z} = (\operatorname{Im} z)^2 + (\operatorname{Re} z)^2$
- $\bullet \ \ \overline{z \, \diamond \, w} = \overline{z} \, \diamond \, \overline{w}$
- $\overline{z^n} = (\overline{z})^n$
- $\bullet \ \overline{\overline{z}} = z$
- $\bullet \ \overline{z} = z \iff z \in \mathbb{R}$

5.4 Affixe Aff

L'affixe est un nombre complexe représenté par un point ou un vecteur dans le plan:

$$Aff \begin{pmatrix} a \\ b \end{pmatrix} = a + ib$$

Réciproquement, l'image de a + ib est (a; b)

5.4.1 Propriétés

•
$$\operatorname{Aff}(\overrightarrow{AB}) = \operatorname{Aff}(B) - \operatorname{Aff}(A)$$

5.5 Racines des polynômes de second degré $az^2 + bz + c$

$$az^2 + bz + c = 0$$
 $a, b, c \in \mathbb{R}$, $\Delta := b^2 - 4ac$

$$\begin{cases} \Delta < 0 & \Longrightarrow \frac{-b \pm i\sqrt{-\Delta}}{2a} \\ \Delta = 0 & \Longrightarrow \frac{-b}{2a} \\ \Delta > 0 & \Longrightarrow \frac{-b \pm \sqrt{\Delta}}{2a} \end{cases}$$

5.6 Coordonnées polaires avec z

Figure 1: Représentation géométrique de l'affixe de z et de ses propriétés

5.6.1 Module |z|

$$|z| = \sqrt{\operatorname{Re}^2 z + \operatorname{Im}^2 z}$$

Propriétés

 \diamond représente les opérations \times et \div

$$|z^n| = |z|^n$$
$$|z \diamond z'| = |z| \diamond |z'|$$

5.6.2 Argument arg

$$\forall z \in \mathbb{C}^*$$

$$\arg z := \left(\vec{x}; \ \overline{O\operatorname{Img}z}\right)$$

$$= \begin{cases} \cos(\arg z) &= \frac{\operatorname{Re}z}{|z|} \\ \sin(\arg z) &= \frac{\operatorname{Im}z}{|z|} \end{cases}$$

Propriétés

On note z_{\diamond} l'affixe du point ou vecteur \diamond

•
$$(\vec{w}, \overrightarrow{w}') = \arg \frac{z_{w'}}{z_w}$$

•
$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg \frac{D-C}{B-A}$$

Propriétés de produit, puissance, quotient et inverse identiques à ln, voir 9.2

5.7 Formes

Notations usuelles: $r:=|z|, \ \theta:=\arg z, \ x:=\operatorname{Re} z, \ y:=\operatorname{Im} z$

5.7.1 Propriétés de la forme exponentielle

$$e^{-i\theta} = \overline{e^{i\theta}}$$

Les autres propriétés découlent de celles de l'exponentielle, voir 7.3

5.8 Inégalité triangulaire

$$|z+z'| \le |z| + |z'|$$

6 Dérivées

6.1 Opération sur des fonctions

Soit u et v des fonctions.

$$(uv)' = u'v + v'u$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$$

$$(u^n)' = nu'u^{n-1} \quad \forall n \in \mathbb{N} \cup \{0.5; -1\}$$

$$(u \circ v)' = u'(v' \circ u)$$

$$\sin' = \cos$$

$$\cos' = -\sin$$

7 Fonction exponentielle exp

7.1 Notation

$$e^x := \exp x$$

7.2 Caractéristiques

Soit $x\in\mathbb{R}$ et u une fonction définie sur \mathbb{R}

Dérivée
$$(e^x)' = e^x \\ (e^u)' = u'e^u$$

Réciproque
$$\ln(e^x) = x$$

Signe
$$e^x > 0$$

$$f Variations$$
 strictement croissante sur $\Bbb R$

Limites
$$e^x \xrightarrow[x \to +\infty]{} +\infty$$

$$e^x \xrightarrow[x \to +\infty]{} 0$$

7.3 Limites remarquables

lim	$x \rightarrow$	=		
$e^x - 1/x$	0	1		
Par croissance comparée \				
xe^x	$-\infty$	0		
e^x/x	$+\infty$	$+\infty$		

7.4 Propriétés

$$e^a \gtrsim e^b \iff a \gtrsim b$$

$$\begin{array}{c|cc}
e^{a \diamond b} & e^a \diamond e^b \\
+ & \times \\
- & \vdots \\
\hline
(e^a)^n & e^{an}
\end{array}$$

8 Géométrie dans l'espace

8.1 Intersections

8.1.1 Droite-droite, plan-plan

Soit a et b des droites et P et Q des plans

	Coplanaires				
	Parallèles		Sécantes	Non-coplanaires	
	Strictement	Confondues	Secantes		
$a \cap b$	Ø	$a ext{ et } b$	{point}	Ø	
$P\cap Q$	Ø	P et Q	droite	Ø	

8.1.2 Droite-plan

	Parallèl	Sécants	
	Strictement	$a \subset P$	Decants
$a \cap P$	Ø	droite	{point}

8.2 Section d'un cube

2 points dans la même face Relier directement

[AB] sur une face, C sur face opposée Tracer la parallèle à [AB] passant par C

[AB] sur une face E, C sur face adjaçente Prolonger une arrête et (AB) jusqu'à intersection en DTracer (DC). La partie du segment qui est sur la face E est la section.

8.3 Orthogonalité \perp

$$d \underset{\text{orth.}}{\perp} d' \iff \gamma \underset{\text{perp.}}{\perp} \gamma' \quad \exists \gamma \parallel d, \gamma' \parallel d'$$

8.4 Plan \perp droite

$$d\bot P \iff d\bot \gamma \wedge d\bot \gamma' \quad \forall \gamma \cap \gamma' = \text{point}$$
$$\implies \gamma\bot d \quad \forall \gamma \in P$$

8.5 Plan médiateur

$$P \operatorname{med} [AB] \iff P \perp (AB) \land I \in P \quad \forall I \operatorname{mil} [AB]$$

$$\iff P = \{C \mid CA = CB\}$$

8.6 Propriétés

$$d \parallel d' \implies P \perp d \quad \forall P \perp d'$$

$$\iff d \parallel \gamma \wedge d' \parallel \gamma$$

$$\iff P \cap P' = d' \wedge d \parallel P \wedge d \parallel P'$$

$$P \parallel P' \iff P \perp d \wedge P' \perp d$$

$$\iff P \parallel \Delta \wedge P' \parallel \Delta$$

$$\iff d_1 \parallel d'_1 \wedge d \parallel d' \quad \forall d \cap d' = \text{point}, d_1 \cap d'_1 = \text{point}$$

$$\implies \Gamma \cap P' = \gamma \wedge \Gamma \cap P = \gamma' \wedge \gamma \parallel \gamma' \quad \forall \Gamma \cap P = \text{droite}$$

$$\Delta \parallel d \wedge \Delta \parallel d' \iff d \parallel d' \wedge d \subset P \wedge d' \subset P' \wedge P \cap P' = \Delta$$

$$\Delta \parallel P \iff \Delta \parallel d \quad \forall d \subset P$$

$$P \parallel Q \wedge \Gamma \cap P = \gamma \implies \Gamma \cap Q = \gamma' \wedge \gamma \parallel \gamma'$$

8.7 Coordonnées

Un triplet (x; y; z).

Les propriétés de la géométrie planaire (milieu, colinéarité et vecteurs) se traduisent trivialement

8.8 Équations paramétriques

8.8.1 D'une droite

Soit...

$$A := (x_A; y_A; z_A)$$

 $\vec{u} := (x_u; y_u; z_u)$
 $M := (x; y; z)$

D:=droite passant par A de vecteur directeur \vec{u}

On a:

$$M \in D \iff \begin{cases} x = x_u t + x_A \\ y = y_u t + y_A \\ z = z_u t + z_A \end{cases}$$

8.8.2 D'un plan

Soit...

$$A := (x_A; y_A; z_A)$$

$$\vec{u} := (x_u; y_u; z_u)$$

$$\vec{w} := (x_w; y_w; z_w)$$

$$M := (x; y; z)$$

 $P := \operatorname{plan}$ passant par A de vecteur directeurs \vec{u} et \vec{w}

On a:

$$M \in D \iff \begin{cases} x = x_u t + x_w t' + x_A \\ y = y_u t + y_w t' + y_A \\ z = z_u t + z_w t' + z_A \end{cases}$$

9 Le logarithme népérien \ln

Aussi appelé "logarithme naturel" ou "logarithme base e"

9.1 Caractéristiques

Notation $\ln x$

Réciproque exp

Ensemble $\mathbb{R}_+^* \to \mathbb{R}$

Limites $\lim_{x \to \infty} \ln x = -\infty$

 $\lim_{x \to 0^+} \ln x = -\infty$ $\lim_{x \to +\infty} \ln x = +\infty$

Dérivée d'une variable $\frac{1}{x}$

Dérivée d'une fonction $u' \ln u$

Variations Croissante sur \mathbb{R}_+^*

Continue sur \mathbb{R}_+^*

Valeurs remarquables $\ln 1 = 0$

9.2 Limites remarquables

$$\lim_{x \to +\infty} \frac{\ln x}{r} = 0$$

$$\lim_{x\to 0^+} x \ln x = 0$$

9.3 Propriétés

$$\begin{array}{c|c}
\ln(a \diamond b) & \ln a \diamond \ln b \\
\times & +
\end{array}$$

$$\begin{array}{c|cc} \times & + \\ \hline \div & - \\ \hline a^n & n \ln a \end{array}$$

10 Primitives F

10.1 Définition

 $\forall x \in \mathbb{R}$

$$F'(x) = f(x)$$

10.2 Propriétés

- $\forall C \in \mathbb{U}$ $x \mapsto F(x) + C$ est une primitive de f
- F + G primitive de f + g
- $\forall k \in \mathbb{R}$ kF primitive de kf

11 Intégrales ∫

11.1 Notation

Soit $A_f \in \mathbb{R}$ l'aire sous la courbe de f de x=a à x=b par rapport à l'axe des abcisses

$$\int_{a}^{b} f(x)dx = A_{f}$$

$$\int_{\text{borne inf.}}^{\text{borne sup.}} \text{expression} \quad d \text{var. d'intégration}$$

11.2 Unité d'aires ua

 $\forall x \in [a;b] \ f(x) \geq 0 \land b \geq a \iff A_f \ \text{est exprimée en } ua.$

11.2.1 Définition

$$1ua = ||\vec{i}|| \cdot ||\vec{j}||$$

11.3 Calcul

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b}$$
$$= F(b) - F(a)$$

11.4 Propriétés

Pour alléger les notations: $\exists = f(x) dx, \, \Game = g(x) dx$ et $\int = \int_a^b$

- $\int_a^a d = 0$
- $\bullet \ \int_a^b \exists = -\int_b^a \exists$
- $\int_a^c \exists = \int_a^b \exists + \int_b^c \exists$ (Relation de Chasles)
- $\int k d = k \int d$
- $\int (f(x) + g(x))dx = \int \exists + \int \exists$
- $\int \exists \geq 0 \implies f(x) \geq 0$
- $f(x) \ge g(x) \implies \int \exists \ge \int \eth$

11.5 Valeur moyenne de f sur [a; b]

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

11.6 Primitives remarquables

$$\begin{array}{ccc} f & F & \in I \; (\mathbb{R} \; \mathrm{par} \; \mathrm{d\'efaut}) \\ \hline k & kx \\ x & \frac{1}{2}x^2 \\ x^n & n \not \in \{0,-1\} & \frac{1}{n+1}x^{n+1} \end{array}$$

Table 1: Formes remarquables de primitives

12 Échantillonage

12.1 Fréquence de caractère X_n

Soit le caractère C dont la proportion de présence dans une population est p. X_n associe à la taille d'échantillon n le nombre de caractères présents dans l'échantillon.

$$X_n \sim \mathcal{B}(n, p)$$
.

12.2 Fréquence de caractère dans échantillon F_n

$$F_n = \frac{X_n}{n}$$
.

12.3 Intervalle de fluctuation I_n

Soit Z la loi normale centrée réduite, $\alpha \in]0,1[,$ $u_{\alpha} \in \mathbb{R}$ tq. $P(Z \in [-u_{\alpha},u_{\alpha}]) = 1-\alpha$, q:=1-p

$$I_n = \left[p - u_a \frac{\sqrt{pq}}{\sqrt{n}}, p + u_a \frac{\sqrt{pq}}{\sqrt{n}} \right]$$

$$\lim_{n \to \infty} P(F_n \in I_n) = 1 - \alpha$$

12.3.1 Interprétation

Pour un n assez grand, $F_n \in I_n$ avec une probabilité d'approximativement $1-\alpha$. On admet que

$$P(F_n \in I_n) \approx 1 - \alpha.$$

Quand:

- $n \ge 30$
- $np \ge 5$
- $nq \ge 5$

Si au moins une des conditions n'est pas remplie, il faudra utiliser une intervalle de fluctuation

12.4 Trouver p avec f et n

$$\exists n_0: n \geq n_0 \implies P\left(p \in \left[F_n - \frac{1}{\sqrt{n}}, F_n + \frac{1}{\sqrt{n}}\right]\right) \geq 0.95.$$