One shot learning

Présenté par :

Kaoutar - Mohamed - Salma

I- Problématique du One shot learning

CNN en classification d'images :

- -Avantage: apprend high level features à partir de large dataset
- -Inconvénient: nécessite grand nombre d'exemple par classes dans l'ensemble d'entraînement!
- => One shot learning:
- -Apprend les informations sur les classes d'images à partir de peu d'exemples
- -Apprend une fonction de similarité
- -How? Siamese network

II- Les différents modèles d'apprentissage

II- Les différents modèles d'apprentissage

ANCHOR-POSITIVE-NEGATIVE

$$L(A, P, N) = max(d_f(A, P) - d_f(A, N) + \alpha, 0)$$

III- Les différents datasets préparés

-Databases: MNIST (60000 train/10000 test) & CIFAR-10 (50000train/10000 test)

-Train set:

*model 1 : des paires similaires et différents d'images de classes entre 0 et 4

*model 2 : des paires similaires et différents d'images de classes entre 0 et 4 + un exemple de paires de chaque classe entre 5 et 9

-Test set:

*type 1: easy (images de classes entre 0 et 4)

*type 2:medium (images de classes entre 0 et 9)

*type 3: hard (images de classes entre 5 et 9)

VI- Résultats expérimentaux

VI-1- Les accuracy dans un problème de paires

	Train set	Easy test set	Medium test set	Hard test set
Type 1 train set	99%	99%	92%	81%
Type 2 train set	99%	97%	91%	91%

Figure – Accuracy du modèle avec la contrastive loss pour MNIST database

	Train set	Easy test set	Medium test set	Hard test set
Type 1 train set	97%	96%	81%	70%
Type 2 train set	98%	95%	87%	80%

Figure – Accuracy du modèle avec la binary cross entropy loss pour MNIST database

VI-2- L'impact du seuil sur l'accuracy

VI-3 Comparaison des performances des modèles en n-way one shot learning

Moyennes des accuracy sur tous les tests :

Model	Accuracy	
Triplets	97%	
Contrastive	83%	
Loss Binary	65%	

VI- Résultats expérimentaux

VI-4 Illustration d'un 10-way one shot learning (triplet model)

VI-5 Illustration des images en 2-D en utilisant t-sne (triplet model)

VI- Résultats expérimentaux

VI- Impact du choix des triplets dans un modèle avec triplets

Easy triplets(faciles)

$$d_f(A, P) + \alpha < d_f(A, N)$$

Hard triplets (difficiles)

$$d_f(A, N) < d_f(A, P)$$

Random triplets (aléatoires)

mix of everything

