Data Mining - Lab - 2

Karan Sonagara Enrollment -- 24010101694 Rollno -- 138

Numpy & Perform Data Exploration with Pandas

Numpy

- 1. NumPy (Numerical Python) is a powerful open-source library in Python used for numerical and scientific computing.
- 2. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on them efficiently.
- 3. NumPy is highly optimized and written in C, making it much faster than using regular Python lists for numerical operations.
- 4. It serves as the foundation for many other Python libraries in data science and machine learning, like pandas, TensorFlow, and scikit-learn.
- 5. With features like broadcasting, vectorization, and integration with C/C++ code, NumPy allows for cleaner and faster code in numerical computations.

Step 1. Import the Numpy library

```
In [1]: import numpy as np
```

Step 2. Create a 1D array of numbers

```
In [19]: arr = np.array([1, 2, 3])
arr
Out[19]: array([1, 2, 3])
```

Step 3. Reshape 1D to 2D Array

Step 4. Create a Linspace array

```
In [7]: arr4 = np.linspace(1, 1, 5)
arr4

Out[7]: array([1., 1., 1., 1.])
```

Step 5. Create a Random Numbered Array

Step 6. Create a Random Integer Array

```
In [27]: arr6 = np.random.randint(2, 10, 10)
arr6
```

Out[27]: array([5, 4, 8, 7, 3, 3, 5, 9, 2, 7])

Step 7. Create a 1D Array and get Max, Min, ArgMax, ArgMin

```
In [29]: arr6.argmin()
Out[29]: 8
In [31]: arr6.min()
Out[31]: 2
In [33]: arr6.max()
Out[33]: 9
In [35]: arr6.argmax()
```

Step 8. Indexing in 1D Array

```
In [53]: arr8 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
arr8[:7:2]
Out[53]: array([1, 3, 5, 7])
```

Step 9. Indexing in 2D Array

```
arr9 = np.arange(12).reshape(3, 4)
In [71]:
          arr9
Out[71]: array([[ 0, 1, 2, 3],
                 [4, 5, 6, 7],
                 [ 8, 9, 10, 11]])
In [79]: arr9[::2]
Out[79]: array([[ 0, 1, 2, 3],
                 [8, 9, 10, 11]])
In [106...
          arr9
Out[106...
          array([[ 0, 1, 2, 3],
                 [4, 5, 6, 7],
                 [ 8, 9, 10, 11]])
In [122...
         arr9[:3:2]
Out[122... array([[ 0, 1, 2, 3],
                 [ 8, 9, 10, 11]])
```

Step 10. Conditional Selection

♦ You did it! 10 exercises down — you're on fire! ♦

Pandas

Step 1. Import the necessary libraries

```
In [158... import pandas as pd
```

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users and use the 'user_id' as index

```
In [160... users = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/d
users
```

Out[160...

	_	_	•	• -
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
•••				
939	26	F	student	33319
940	32	М	administrator	02215
941	20	М	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

age gender occupation zip_code

943 rows × 4 columns

Step 4. See the first 25 entries

In [166...

df = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data
df.head(10)

Out[166...

	user_id	age	gender	occupation	zip_code
0	1	24	М	technician	85711
1	2	53	F	other	94043
2	3	23	М	writer	32067
3	4	24	М	technician	43537
4	5	33	F	other	15213
5	6	42	М	executive	98101
6	7	57	М	administrator	91344
7	8	36	М	administrator	05201
8	9	29	М	student	01002
9	10	53	М	lawyer	90703

Step 5. See the last 10 entries

In [170...

df = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data
df.tail(10)

Out[170		user_id	age	gender	occupation	zip_code
	933	934	61	М	engineer	22902
	934	935	42	М	doctor	66221
	935	936	24	М	other	32789
	936	937	48	М	educator	98072
	937	938	38	F	technician	55038
	938	939	26	F	student	33319
	939	940	32	М	administrator	02215
	940	941	20	М	student	97229
	941	942	48	F	librarian	78209
	942	943	22	М	student	77841

Step 6. What is the number of observations in the dataset?

```
In [172... users.shape
Out[172... (943, 4)
```

Step 7. What is the number of columns in the dataset?

```
In [225... users.count()

Out[225... age     943
     gender     943
     occupation     943
     zip_code     943
     dtype: int64
```

Step 8. Print the name of all the columns.

```
In [178... df = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master/data
df.columns

Out[178... Index(['user_id', 'age', 'gender', 'occupation', 'zip_code'], dtype='object')
```

Step 9. How is the dataset indexed?

Step 10. What is the data type of each column?

```
In [184... users.dtypes

Out[184... age     int64
     gender     object
     occupation     object
     zip_code     object
     dtype: object
```

Step 11. Print only the occupation column

```
users.occupation
In [193...
          users['occupation']
Out[193... user_id
          1
                    technician
          2
                         other
          3
                        writer
                    technician
                          other
          939
                       student
               administrator
          940
          941
                       student
          942
                     librarian
          943
                       student
          Name: occupation, Length: 943, dtype: object
```

Step 12. How many different occupations are in this dataset?

Step 13. What is the most frequent occupation?

Step 14. Summarize the DataFrame.

```
In [210... users.describe()
```

	age
count	943.000000
mean	34.051962
std	12.192740
min	7.000000
25%	25.000000
50%	31.000000
75%	43.000000
max	73.000000

Out[210...

Step 15. Summarize all the columns

	•				
In [213	users.describe(include='all')				
Out[213		age	gender	occupation	zip_code
	count	943.000000	943	943	943
	unique	NaN	2	21	795
	top	NaN	М	student	55414
	freq	NaN	670	196	9
	mean	34.051962	NaN	NaN	NaN
	std	12.192740	NaN	NaN	NaN
	min	7.000000	NaN	NaN	NaN
	25%	25.000000	NaN	NaN	NaN
	50%	31.000000	NaN	NaN	NaN
	75%	43.000000	NaN	NaN	NaN
	max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

```
In [215... users.occupation.describe()

Out[215... count 943
    unique 21
    top student
    freq 196
    Name: occupation, dtype: object
```

Step 17. What is the mean age of users?

```
In [219... users.age.mean()
```

Out[219... 34.05196182396607

Step 18. What is the age with least occurrence?

You're not just learning, you're mastering it. Keep aiming higher! 💉