How to build Game Server 2.0

Peter Rybár

Requirements

- Performance
 - Fast responses < 0.1 s
- Scalability
 - Number of player sessions ~100k
- High Availability
 - 24/7 service
- Fault Tolerance
 - Minimize outages

Principles

- Linear Scalability
 - No manual configuration!
 - Automatic upscale, downscale
- IMDG In Memory Data Grid
 - Distributed data performance
 - Replicated IM data Fault Tolerance (FT)
- Cluster
 - High Availability (HA)
 - Zones based on application node roles

Data

Configuration data

- Games, Campaigns... **small volumes**
- Central data, cacheable massive **reading**

Players data

- Wallets, Running game sessions small volumes
- Central data, cacheable massive reading and writing

Operation data

- Application specific, easy to change runtime data
- Optimized for performance (in memory) massive reading and writing

Historical data

- Game rounds, sessions big volumes
- Time based stream of events massive writing
- Invoicing, Audit, Replay games
- Important for production, not needed for demo / test

Data management

- Sharding Horizontal partitioning
 - Way how to scale Big Data volumes
 - Way how to scale IO and DB transaction
 - Storing rows of a same table in multiple databases
 - Use proper database for specific data category
 - Some databases are natively sharded Cassandra,
 HBase, HDFS, and MongoDB

Data sharding

Algorithmic Sharding

- Uniform distribution of data
- Determine a given partition's database without any help

Dynamic Sharding

- Nonuniform distribution of data
- Clients need to consult the locator service first

Entity Groups

- Queries within a single physical shard (RDBM) are efficient.
- Stronger consistency (ACID) semantics can be achieved within a shard.

Game data

Players data

- Entity groups sharding
- Sharding by player ID
- Partitioning by player, game session
 - scalability of sharding while retaining most of its flexibility

Historical data

- Algorithmic sharding
- Dynamic sharding

Polyglot Persistence

using multiple data storage based upon the way data is being used by application

Game processing – IO

- Separate game processor code from data
- Separate data persistence from game logic

Data persistence

Polyglot Persistence – using multiple data storage (RDBMS, NoSql, IMDG) based upon the way data is being used by applications

Architecture – Scaling, FT, HA

IMDG – in memory data grid			
GS zone	BO zone	A zone	BI zone
Game Server	Back Office	Alarms	Business intelligence
Game Server	Back Office	Alarms	Business intelligence
Game Server			
•••	•••	•••	•••

Communication — GS ↔ Casino

- - Money transaction based protocol not game based!
 - Money transactions are only mandatory to operate
 - Game specific meta-data protocol extensions
 - Extensions for different types of games even social gaming
 - Casino interaction (IO) strategy scale casino IO !!!
 - Session Wallet IO once per game session
 - Deep Wallet IO once per game round
 - Hybrid Wallet IO based on casino performance
 - Different strategies for casinos, game types, wallet value, ...
 - Deep Wallet, Session Wallet only corner cases
 - One protocol implementation not two (DW, SW)
 - Hybrid Wallet Simpler casino platform integration

Technologies

- Java 8 streams, lambdas, datetime types, ...
- **IMDG** Apache Ignite
 - Clustering auto cluster discovery
 - Cache decrease IO, increase performance
 - Transactions, concurrency
 - Memory data replication FT, HA
- PostgreSQL best open source RDBMS, JSON support
- **Jetty** Web server fast, embedded, lightweight
- DbUtils, Datanucleus RDMBS persistence
- FasterXML serializers to JSON, MsgPack, XML
- **Signal / Slot** pattern QT like, modularity, reusability
- React web user interface

. . .

Project roadmap

Summarize requirements

Business and technical requirements

Technical analysis

GS core functionality, determine modules

Technical design – Architecture

- GS core, GS modules and protocols
- Crucial part Art of SW architecture

Prototyping of GS 2.0

Performance tests, Storage tests

Project roadmap

- Implementation build GS 2.0 components
 - Game server core
 - Back Office
 - Alarms
 - Business Intelligence
 - Demo Casino

Development – Principles

- KISSS Keep It
 - Small
 - Simple
 - Scalable
- Incrementally deliver
 - long term project
- Iteration cycle
 - Build, Prototype
 - Measure, **Test**
 - Learn, **Tune**
 - Deliver

Development – Methodology

- Scrum A fundamental time shift
 - Time-boxing doesn't work sometimes
- Kanban A fundamental incremental improvements
 - Can be event-driven instead of time-boxed (scrum)
 - Can add new items whenever capacity is available
 - Cross-functional teams, specialist teams allowed

=> Kanban

suitable for our environment

Development – SCM

- Source Code Management
- Human gatekeeper
 - Workflow
 - Gatekeeper does code review
 - Merges the work into the main branch if it meets the necessary standards
 - Strong source control
 - My best experience
- Git
 - distributed, offline work

About me – Peter Rybár

- IT Consultant
- Project Leader
- Solutions Architect
- Technology Leader
- Senior Developer
- Certified Scrum Master
- HR consultant
- RNDr., PhD. In Physics
- A-Tech s.r.o. CEO, CTO

- > 20 years of IT experiences
- Dozens of IT projects
 - as leader, architect, developer
- Senior solution architect:
 - Softec s.r.o., Centaur s.r.o.
 - Davinci software s.r.o.
 - VECTARY
- Customers:
 - T-Mobile Slovensko, a.s.
 - Telefónica O2, s.r.o.
 - Orange a.s.
 - Allianz
 - OVB
 - SPP
 - TraviAustria

http://prest-tech.appspot.com/peter-rybar

- ...