HOMEWORK PROBLEMS #2

2-1Are the following two graphs Eulerian, semi-Eulerian, non-Eulerian, Hamiltonian, semi-Hamiltonian, and/or non-Hamiltonian graphs?

K5 is Eulerian, because the number of points with odd degrees is 0. Also, K5 is connected and there can be no isolated points.

K33 is a non-Eulerian, because the number of points with odd degrees is 6,not 2, so it is not a semi-Eulerian.

K5 and K33 are Hamiltonian. We can find the way

2-2 Find the shortest path length from A to G in the following graph:

	В	С	D	E	F	G
Α	30	45	١	١	١	١
AB	30	45	46	70	١	١
ABC	30	45	46	70	60	١
ABCD	ade 02 30	45	owade 46	70	denvi60e Ver	١
ABCDF	30	45	46	70	60	80
ABCDFE	30	45	46	70	60	80

We can use the Dijkstra $Path=A -> C -> F-> G \qquad the \ shortest \ length=80$

2-3 Solve the following Chinese postman problem:

We use Tpl represents "Total path-length", add three edges For each loop, we can find the increment is not longer than the original loop So it is a solution

A -> F -> E -> D -> C -> D -> F -> C -> B -> A -> B -> F -> A

And total path length is 3+3+4+4+6+6+8+5+14+10+5+9 = 77