Data Structures Binary Search Homework 3

Mostafa S. Ibrahim
Teaching, Training and Coaching since more than a decade!

Artificial Intelligence & Computer Vision Researcher PhD from Simon Fraser University - Canada Bachelor / Msc from Cairo University - Egypt Ex-(Software Engineer / ICPC World Finalist)

Problem #1: Recursive Level Order Traversal

- def level_order_traversal_recursive(self)
- We would like to print the level-order traversal in a recursive way, instead of the iterative approach using a queue
 - Don't worry if much worse in complexity
- Compute the time complexity

Problem #2: LeetCode 103 - Binary Tree Zigzag Level Order Traversal

- Return a spiral way to the tree
 - Even levels are reversed
- Output
 - Level 0: A1
 - Level 1: B3 B2
 - Level 2: C4 C5 C6 C7
 - Level 3: D15 D14 D13 D12 D11 D10 D9 D8
- We can trivially, get the levels and do

Reversing.

Don't use reversing operation

Problem #3: LeetCode 958 - Check Completeness of a Binary Tree

Given the root of a binary tree, determine if it is a complete binary tree.

In a **complete binary tree**, every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2^h nodes inclusive at the last level h.

Example 1:

Input: root = [1,2,3,4,5,6]

Output: true

Explanation: Every level before the last is full (ie. levels with node-values {1} and {2, 3}), and all nodes in the last level ({4, 5, 6}) are as far left as possible.

Example 2:

Input: root = [1,2,3,4,5,null,7]

Output: false

Explanation: The node with value 7 isn't as far left as possible.

"Acquire knowledge and impart it to the people."

"Seek knowledge from the Cradle to the Grave."