Bayesian Analysis Course A quick recap

Vasilis Gkolemis

ATHENA RC — HUA

June 2025

© Vasilis Gkolemis, 2025. Licensed under CC BY 4.0.

Program

Course Recap

Real-World Applications

Tools and Libraries

Course objective

Be able to apply probabilistic models to real-world problems.

Course objective

Be able to apply probabilistic models to real-world problems.

Be able to apply Bayesian models to real-world problems.

Session 1: Probabilistic Modeling and Reasoning

Key Topics

- The Role of Uncertainty in Machine Learning
- Probabilistic Modeling and Reasoning
- Application on the Altzheimer Test
- Key Rules of Probability

Modeling Uncertainty

Session 2: Probabilities and Random Variables

Key Topics

- Random Variables and Probability Distributions
- Basic Properties of Random Variables
 - Expectation $\mathbb{E}[X]$
 - Variance Var(X)
 - Sampling to approximate them
 - * $\mathbb{E}[X] \approx \frac{1}{N} \sum_{i=1}^{N} x_i$
 - $\star \ \mathsf{Var}(X) \stackrel{\cdot}{pprox} \frac{1}{N} \sum_{i=1}^{N} (x_i \mathbb{E}[X])^2$
- Common Probability Distributions
 - Bernoulli, Binomial, Poisson, Gaussian
 - Multivariate Gaussian: $\mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$

Random Variables are the Building Blocks

Session 3: Bayesian Modeling — A Unified Framework

Key Topics

- Probabilistic vs. Statistical vs. Bayesian Models
 - Probabilistic Model: a known probability distribution p(x, y)
 - Statistical Model: a model with unknown parameters θ , e.g., $p(x, y; \theta)$
 - * Defines a set of probabilistic models: $\{p(x, y; \theta)\}_{\theta \in \Theta}$
 - Bayesian Model: a statistical model with a prior distribution $p(\theta)$
- Prior $p(\theta)$
 - Our beliefs about the parameters before observing data
- Likelihood $p(y|x,\theta)$
 - How likely is the data given the parameters
- Posterior $p(\theta|\mathbf{x},\mathbf{y})$
 - Our updated beliefs about the parameters after observing data
- Predictive Posterior Distribution $p(y|\mathbf{x}, \mathcal{D})$
 - Predict on new inputs x

Session 4: Bayesian Linear Regression

Key Topics

- Linear Regression as a Probabilistic Model
 - Model: $y = \mathbf{x}^T \boldsymbol{\theta} + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$
 - ► Likelihood: $p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}(\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I})$
- Exact Inference with Conjugate Priors
 - Some prior-likelihood pairs lead to closed-form solutions
 - Conjugate Prior: A prior that, when combined with a likelihood, results in a posterior of the same family
 - * Example: Gaussian likelihood with Gaussian prior
- Posterior Distribution
 - Posterior: $p(\theta|\mathbf{X},\mathbf{y}) = \mathcal{N}(\boldsymbol{\mu},\mathbf{\Sigma})$ is Gaussian
 - Close-form solutions are available:
 - $\star \mathbf{\Sigma} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \sigma^{-2}\mathbf{I})^{-1}$
 - $\star \mu = \sigma^{-2} \mathbf{\Sigma} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

Session 5: Bayesian Logistic Regression

Key Topics

- Logistic Regression as a Probabilistic Model
 - Model: $p(y = 1 | \mathbf{x}, \mathbf{\theta}) = \sigma(\mathbf{x}^T \mathbf{\theta})$, where $\sigma(z) = \frac{1}{1 + e^{-z}}$
- Approximate Inference Methods:
 - Laplace Approximation
 - ★ Gaussian centered at the MAP estimate
 - * Hessian used to approximate the curvature
 - Importance Sampling
 - st Samples from a proposal distribution q(heta)
 - st Weights are computed as $w(heta) = rac{p(heta|X,y)}{q(heta)}$
 - Markov Chain Monte Carlo (MCMC)
 - Samples from the posterior distribution directly
 - Examples: Metropolis-Hastings, Gibbs Sampling

Session 6: Putting It All Together

Key Topics

- Let's solve a Real-World Problem with Bayesian Modeling
 - Application of all concepts learned in the course
- Two main datasets:
 - Bike Sharing Dataset
 - Predict the number of bike rentals based on weather and time features
 - Boston Housing Dataset
 - Predict house prices based on various features

From Theory to Practice

Program

Course Recap

Real-World Applications

Tools and Libraries

Dataset: Bike Sharing

What is it?

- Collected by Capital Bikeshare in Washington, D.C.
- Contains daily and hourly counts of bike rentals.
- Includes contextual and weather information.

Key Features

- datetime: Date and hour.
- season: Winter, spring, summer, fall.
- holiday: Whether the day is a holiday.
- workingday: Is it a workday?
- weather: Clear, mist, rain, snow.
- temp, atemp: Temperature, perceived temperature.
- humidity, windspeed

Bike Sharing: Prediction Goal

Prediction Task

- Predict the **total rental count** (count) for a given day or hour.
- Understand how weather, seasonality, and holidays affect demand.

Apply a Bayesian linear regression model.

Dataset: Boston Housing

What is it?

- Classic dataset from the 1970s housing data for Boston suburbs.
- Collected by the U.S. Census Service.
- Widely used for regression tasks.

Key Features:

- Socio-economic indicators such as crime rate, income levels, and education.
- Housing characteristics like the average number of rooms and age of buildings.
- Environmental factors including air pollution levels and proximity to the Charles River.
- Accessibility measures such as distances to employment centers and highways.
- Local taxation and zoning information.

Boston Housing: Prediction Goal

Prediction Task

- Predict **MEDV**: Median value of owner-occupied homes (\$1000s).
- Explore how socio-economic and environmental factors affect house prices.

Apply a Bayesian linear regression model.

Program

Course Recap

Real-World Applications

Tools and Libraries

Useful R Packages for Bayesian Modeling

Key R packages for Bayesian modeling and inference:

- rstan Interface to Stan for Bayesian inference using MCMC.
- brms Bayesian regression models using Stan; user-friendly formula syntax.
- bayesplot Flexible plotting of posterior distributions and diagnostics.
- tidybayes Tidy data tools for working with Bayesian models.
- coda Tools for MCMC output analysis and diagnostics.