

PENENTUAN TARIF PREMI MURNI ASURANSI GEMPA BUMI DENGAN METODE GENERALIZED LINEAR MODELS

OLEH:

ERICHA MARGARETA LESTARI

NIM: 120410063

DOSEN PEMBIMBING:

- 1. INDAH GUMALA ANDIRASDINI, S.SI., M.SI.
- 2. MUKLAS RIVAI, S.STAT., M.SI.

DOSEN PENGUJI:

- 1. AYU SOFIA, S.Si., M.Si.
- 2. Dila Tirta Julianty S.Si., M.Si.

PROGRAM STUDI SAINS AKTUARIA
FAKULTAS SAINS
INSTITUT TEKNOLOGI SUMATERA
2024

Daftar Isi

- 02. METODE PENELITIAN
- 03. HASIL DAN PEMBAHASAN

04. KESIMPULAN DAN SARAN

PENDAHULUAN

Latar Belakang

Letak Geografis Indonesia

Bencana Alam

Risiko

Asuransi Gempa Bumi

Premi Murni

Metode Generalized Linear Model

Penelitian Terdahulu

2021 –TRI, PUTRA dan LESMANA

Penghitungan Premi Asuransi Kendaraan
Bermotor Menggunakan Generalized Linear
Models Dengan Berdistribusi Tweedie

Penentuan variabel prediktor yang berpengaruh terhadap variabel respon premi murni dengan menggunakan metode Generalized Linear Model.

Penentuan variabel prediktor yang berpengaruh terhadap variabel besar klaim dan frekuensi klaim dengan menggunakan metode Generalized Linear Model.

2023-PRABOWO, SULTHAN dan AGUNG

Penentuan Tarif Premi Asuransi Kendaraan

Dengan Besar Klaim Berdistribusi

Eksponensial dan Gamma

Penentuan premi murni dapat dilakukan dengan mengalikan nilai harapan frekuensi klaim dan nilai harapan jumlah klaim.

Penentuan premi murni menggunakan metode Generalized Linear Model dengan mengombinasikan nilai harapan frekuensi klaim dan besar klaim yang diperoleh dari hasil estimasi model

Rumusan Masalah

01.

Bagaimana menentukan Generalized Linear Models pada besar klaim asuransi gempa bumi ? **02**.

Bagaimana menentukan Generalized Linear Models pada frekuensi klaim asuransi gempa bumi ? 03.

Bagaimana menentukan dan menganalisis tarif premi murni asuransi gempa bumi berdasarkan Generalized Linear Models ?

Batasan Masalah

Sumber Data

Data sekunder dari salah satu perusahaan asuransi di Indonesia periode bulan januari tahun 2018 sampai dengan bulan september tahun 2023

Data yang digunakan

Data asuransi gempa bumi yaitu data besar klaim, data frekuensi klaim, data harga pertanggungan, data penyebab kejadian, data daftar okupasi dan data komisi

Metode

Metode Generalized Linear Models dengan distribusi Gamma dan Binomial Negatif

Outlier

Penelitian ini tidak memperhatikan outlier dalam variabel.

Tujuan Penelitian

01.

Menentukan Generalized Linear Models pada besar klaim **02**.

Menentukan Generalized Linear Models pada frekuensi klaim 03.

Menentukan dan menganalisis tarif premi murni asuransi gempa bumi berdasarkan hasil estimasi besar klaim dan frekuensi klaim

Sumber Data

Data asuransi gempa bumi berasal dari salah satu perusahaan asuransi di Indonesia dengan periode tahun 2018 hingga tahun 2023

Variabel Penelitian

Variabel	Keterangan	Skala	Satuan
Besar Klaim (Y)	Uang yang dibayarkan kepada pemegang polis yang disebabkan kerugian finansial akibat kejadian tidak terduga	Numerik	Rupiah
Frekuensi Klaim (Y)	Banyaknya klaim pada nomor polis dalam satu periode	Numerik	
Daftar Okupasi (X ₁)	 Rendah yaitu kawasan berpotensi terlanda goncangan dengan skala intensitas V-VI MMI Sedang yaitu kawasan berpotensi terlanda goncangan dengan skala intensitas VII-VIII MMI Tinggi yaitu kawasan berpotensi terlanda goncangan dengan skala intensitas lebih dari VIII MMI 	Kategorik	
Penyebab Kerugian (X_2)	 Kerusakan Lainnya Kerusakan akibat air Kebakaran Gempa Bumi 	Kategorik	
$Komisi(X_3)$	Uang yang diberikan atas jasa yang telah dilakukan	Numerik	Rupiah
Harga Pertanggungan (X_4)	Jumlah maksimal yang dapat dibayarkan perusahaan dalam kerugian.	Numerik	Rupiah

Flowchart Penelitian

HASIL DAN PEMBAHASAN

Statistika Deskriptif

BESAR KLAIM		
Minimal	Rp1.377.060	
Maksimal	Rp92.668.277	
Rata-rata	Rp24.210.663	
Jumlah Data	50	

Frekuensi Klaim	Banyak Polis
1	9
2	5
3	4
5	2
9	1

Variabel	Kategori	Jumlah
Daftar Okupasi (X ₁)	1. : Rendah	20
	2. : Sedang	22
	3. : Tinggi	8
Penyebab Kejadian (X_2)	1. : Kerusakan lainnya.	15
	2. : Kerusakan akibat air	13
	3. : Kebakaran	6
	4. : Gempa Bumi	16

	Komisi (X_3)	Harga Pertanggungan (X_4)
Minimal	Rp0	Rp100.000.000
Maksimal	Rp1.170.000	Rp6.500.000.000
Rata-rata	Rp70.943	Rp1.643.000.000

Identifikasi Multikolinearitas

Variabel Numerik

Variabel	Nilai VIF
(X_3)	1,335
(X_4)	2,471

Nilai VIF dapat diperoleh dengan rumus sebagai berikut:

$$VIF = \frac{1}{1 - R_I^2}$$

 R_I^2 : koefisien determinasi

Variabel Kategorik

Koefisien Korelasi Cramer	Tingkat Hubungan
0,024	Sangat Rendah

Koefisien korelasi cramer dapat diperoleh dengan rumus sebagai berikut :

$$C = \sqrt{\frac{\chi_{(a,df)}^2}{n(L-1)}}$$

 $\chi^2_{(a,df)}$: nilai chi – square

n: Jumlah observaasi

L: jumlah minimum dari baris atau kolom tabel

kotingensi

Identifikasi Variabel Respon

Besar Klaim

 H_0 : Data besar klaim berdistribusi gamma

 H_1 : Data besar klaim berdistribusi lainnya

Kriteria uji: Jika P-value > (0,05) a atau

Dhitung < Dtabel , maka H_0 tidak ditolak

Frekuensi Klaim

 H_0 : Data frekuensi klaim berdistribusi binomial negatif

 H_1 : Data frekuensi klaim berdistribusi lainnya

Kriteria uji : Jika P-value > (0,05) a, maka H_0 tidak

ditolak

P-Value	Keterangan	
0,299	Data berasal dari distribusi	
	gamma	

P-Value	Keterangan
0,770	Data berasal dari distribusi
	binomial negatif

Estimasi Paramater

Besar Klaim

Variabel	Parameter	Estimasi	P-Value
Intercept	eta_0	15,730	2×10^{-16}
X_{12}	eta_{12}	0,558	$7,27 \times 10^{-4}$
X_{13}	eta_{13}	1,058	$1,41 \times 10^{-4}$
X_{22}	eta_{22}	0,396	$9,435 \times 10^{-3}$
X_{23}	eta_{23}	0,606	$2,027 \times 10^{-3}$
X_{24}	eta_{24}	0,419	$5,621 \times 10^{-3}$
X_3	eta_3	$9,378 \times 10^{-8}$	0,728
X_4	eta_4	$1,661 \times 10^{-10}$	$8,21 \times 10^{-4}$

Model besar klaim yang diperoleh sebagai berikut:

$$\hat{\mu} = \exp(15,73 + 0.558X_{12} + 1.058X_{13} + 0.396X_{22} + 0.606X_{23} + 0.419X_{24} + 9.378 \times 10^{-8}X_3 + 1.66 \times 10^{-10}X_4)$$

Estimasi Paramater

Frekuensi Klaim

Variabel	Parameter	Estimasi	P-Value
Intercept	α_0	1,955	$8,04 \times 10^{-5}$
X_{12}	α_{12}	-0,991	0,011
X_{13}	α_{13}	-1,825	$2,85 \times 10^{-3}$
X_{22}	α_{22}	-0,779	0,165
X_{23}	α_{23}	-0,243	0,630
X_{24}	$lpha_{24}$	0,044	0,956

Model frekuensi klaim yang diperoleh sebagai berikut:

$$\widehat{\mu} = \exp(1,955 - 0,991X_{12} - 1,825X_{13} - 0,779X_{22} - 0,243X_{23} + 0,044X_{24})$$

Uji Signifikasi Parameter

Uji Simultan

Model Besar Klaim

 H_0 : Tidak ada pengaruh parameter terhadap besar klaim

 H_1 : Terdapat minimal satu parameter yang berpengaruh terhadap besar klaim Kriteria uji : Jika nilai $G > \chi^2_{(0,05;9)}$ atau p-value < a. Maka H_0 ditolak

G	df	$\chi^2_{0,05;9}$	Keterangan
18,398	9	16,919	Signifikan

Model Frekuensi Klaim

 H_0 : Tidak ada pengaruh parameter terhadap frekuensi klaim

 H_1 : Terdapat minimal satu parameter yang berpengaruh terhadap frekuensi klaim

Kriteria uji : Jika nilai $G > \chi^2_{(0,05;7)}$ atau p-value < a. Maka H_0 ditolak

G	df	$\chi^2_{0,05;7}$	Keterangan
17,760	7	14,071	Signifikan

Uji Signifikasi Parameter

Uji Parsial

Model Besar Klaim

 H_0 : Tidak ada pengaruh parameter terhadap besar klaim

 ${\cal H}_1$: Terdapat pengaruh parameter ke-k terhadap besar klaim

Kriteria uji : jika $W > \chi^2_{(0,05;1)}$ atau p- value < a = 0.05. Maka H_0 ditolak

$$\chi^2_{(0,05;1)} = 3,481$$

Parameter	Estimasi	\mathbf{W}	P-Value	Keterangan
eta_0	15,730	1709	2×10^{-16}	Signifikan
eta_{12}	0,558	13,30	$7,27 \times 10^{-4}$	Signifikan
eta_{13}	1,058	17,540	$1,41 \times 10^{-4}$	Signifikan
eta_{22}	0,396	7,390	$9,435 \times 10^{-3}$	Signifikan
eta_{23}	0,606	10,700	$2,027 \times 10^{-3}$	Signifikan
eta_{24}	0,419	8,510	$5,621 \times 10^{-3}$	Signifikan
eta_3	9,378× 10 ⁻⁸	0,121	0,728	Tidak Signifikan
eta_4	1,661× 10 ⁻¹⁰	12,900	$8,21 \times 10^{-4}$	Signifikan

Uji Signifikasi Parameter

Uji Parsial

Model Frekuensi Klaim

 H_0 : Tidak ada pengaruh parameter terhadap frekuensi klaim

 ${\cal H}_1$: Terdapat pengaruh parameter ke-k terhadap frekuensi klaim

Kriteria uji : jika $W > \chi^2_{(0,05;1)}$ atau p- value < a = 0.05. Maka H_0 ditolak

$$\chi^2_{(0,05;1)} = 3,481$$

Parameter	Estimasi	W	P-Value	Keterangan
α_0	1,955	15,050	$8,04 \times 10^{-5}$	signifikan
α_{12}	-0,991	6,219	0,011	Signifikan
α_{13}	-1,825	16,864	$2,85 \times 10^{-3}$	Signifikan
α_{22}	,	,	,	Tidak
	-0,779	1,588	0,165	signifikan
α_{23}				Tidak
	-0,243	0,190	0,630	signifikan
α_{24}				Tidak
	-0,044	0,010	0,956	signifikan

Uji Kebaikan Model

Model Besar Klaim

Hipotesis:

 H_0 : Model sudah cocok

 H_1 : Model tidak cocok

Kriteria uji : jika $Deviance > (X_{0,05;42}^2)$

atau p-value < a = 0.05. maka H_0

ditolak

Deviance	df	$\chi^2_{0,05,42}$	p – value	Keputusan
7,515	42	58,124	1	Model Cocok

Model Frekuensi Klaim

Hipotesis:

 H_0 : Model sudah cocok

 H_1 : Model tidak cocok

Kriteria uji : jika $Deviance > (X_{0.05:15}^2)$

atau p-value < a = 0.05. maka H_0

ditolak

Deviance	df	$\chi^2_{0,05,15}$	p – value	Keputusan
5,205	15	24,996	0,999	Model Cocok

Koefisien Determinasi

Model Besar Klaim

R- Squared	Adjusted R-Squared
0,912	0,905

Nilai R - Squared dapat diperoleh dengan rumus sebagai berikut :

$$R^2 = \frac{JKR}{JKT}$$

$$JKR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2$$
 $JKT = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$

Model Frekuensi Klaim

R- Squared	Adjusted R-Squared
0,733	0,704

Nilai Adjusted R - Squared dapat diperoleh dengan rumus sebagai berikut :

Adjusted
$$R^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - P - 1}$$

Pemodelan Premi Murni

Model Premi Murni

• Premi Murni dapat diperoleh dari persamaan sebagai berikut:

$$E\left[\sum_{i=1}^{N} C_i\right] = E[N] \times E[C_i]$$

 Berdasarkan model besar klaim dan model frekuensi klaim diperoleh model premi murni sebagai berikut

$$E\left[\sum_{i=1}^{N} C_{i}\right] = \exp\left((\beta_{0} + \alpha_{0}) + \sum_{j=1}^{3} (\beta_{1j} + \alpha_{1j})X_{1j} + \sum_{j=1}^{4} (\beta_{2j} + \alpha_{2j})X_{2j} + \beta_{3}X_{3} + \beta_{4}X_{4}\right)$$

Perhitungan Premi Murni

Simulasi perhitunggan dengan model premi yang telah didapatkan dapat dilihat sebagai berikut:

$$E[C_1]$$

$$= \exp((15,730+1,955)+(0,558-0,991)0+(1,058-1,825)1+(0,396-0,779)0+(0,606-0,243)0$$

Hasil Estimasi Premi Murni

Nomor Polis	Tahun	Besar Klaim	Frekuensi Klaim	Premi Murni
1	2019	Rp23.676.401	2	Dn66 650 220
1	2019	Rp19.297.417	1	Rp66.650.220
1	2020	Rp12.904.535	3	Rp38.713.606
:	:	:	:	• •
21	2021	Rp21.407.677	3	Rp64.223.031

Analisis Hasil Besar Klaim

Analisis Hasil Besar Klaim Tahun 2018

Analisis Hasil Besar Klaim Tahun 2019

Analisis Hasil Besar Klaim

Analisis Hasil Besar Klaim Tahun 2021

Analisis Hasil Besar Klaim

Analisis Hasil Besar Klaim Tahun 2023

Analisis Premi Murni

Pendapatan Perusahaan

Tahun	Pendapatan	Jumlah polis
	Perusahaan	
2018	Rp91.661.683	1
2019	Rp951.258.258	19
2020	Rp844.686.505	13
2021	Rp406.182.405	7
2022	Rp282.851.738	4
2023	Rp162.817.691	3

Analisis Premi Murni

Analisis Berdasarkan Daftar Okupasi

Kesimpulan Dan Saran

Kesimpulan

- 1. Berdasarkan data besar klaim asuransi gempa bumi pada salah satu perusahaan asuransi umum di Indonesia periode tahun 2018 hingga tahun 2023 diperoleh model GLM yang berdistribusi gamma dari besar klaim asuransi gempa bumi yang dapat dituliskan sebagai Persamaan 4.2 dengan variabel prediktor yang berpengaruhi secara signifikan diantaranya variabel daftar okupasi, variabel penyebab kejadian, dan variabel harga pertanggungan.
- 2. Berdasarkan frekuensi klaim asuransi gempa bumi diperoleh model GLM yang berdistribusi binomial negatif dari frekuensi klaim asuransi gempa bumi yang dapat dituliskan sebagai Persamaan 4.3 dengan variabel prediktor yang berpengaruhi secara signifikan adalah variabel daftar okupasi.
- 3. Berdasarkan hasil analisis perhitungan premi murni yang diperoleh dapat dijadikan sebagai acuan pendapatan perusahaan dan berpengaruh terhadap daftar okupasi yaitu daftar okupasi tinggi akan memiliki premi murni yang tinggi hal tersebut dapat dijadikan sebagai gambaran dalam estimasi premi murni kepada calon nasabah.

Kesimpulan Dan Saran

Adapun saran penulis untuk penelitian selanjutnya adalah melakukan perluasan model dalam mengestimasi besar klaim dan frekuensi klaim dengan menambahkan variabel prediktor lainnya yang berpengaruh terhadap besar klaim dan frekuensi klaim supaya model yang diperoleh lebih akurat dan mampu menjelaskan mengenai pembiayaan asuransi gempa bumi.

Daftar Pustaka

- [1] I. N. Setiawan, D. Krismawati, S. Pramana dan E. Tanur, "Klasterisasi Wilayah Rentan Bencana Alam Berupa Gerakan Tanah Dan Gempa Bumi Di Indonesia," *Seminar Nasional Official Statistuc*, pp. 669-675, 2022.
- [2] T. Yulita, C. T. Lubis dan A. S. E. Hidayat, "Penentuan Premi Murni DI Kabupaten Kepahing Provinsi Bengkulu Dengan Memperhitungkan Peluang Kejadian Gempa Bumi Dan Kerusakan Bangunan," *Variance*, pp. 147-158, 2023.
- [3] S. Yulianto, R. Khirudin, Apriliyanto, T. Winugroho, I. S. Ponangsera dan Wilopo, "Histori Bencana Alam dan Penaggulangannya di Indonesia Ditinjau dari Perspektif Keamanan Nasional," *Pendipa*, pp. 180-187, 2021.
- [4] T. D. Sudiarto, "Asuransi Kebencanaan dalam Perekonomian Nasional dan Daerah," *Jurnal Universitas Paramadina Vol. 13*, pp. 1497-1516, 2016.
- [5] O. J. Keuangan, "Surat Edaran Otoritas Jasa Keuangan Nomor 6/SEOJK.05/2017," 26 January 2017. [Online]. Available: https://www.ojk.go.id/id/kanal/iknb/regulasi/asuransi/surat-edaran-ojk/Documents/SAL%20-%20SE%20OJK%20Tarif%20Premi.pdf. [Diakses 27 Maret 2024].

TERIMA KASIH