a, c, n =constantes; u, v, x =variables o expresiones algebraicas

Método de los cuatro pasos

$$\frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Fórmulas básicas

1.
$$\frac{d}{dx}c = 0$$

2.
$$\frac{d}{dx}x = 1$$

3.
$$\frac{d}{dx}(u \pm v) = \frac{d}{dx}u \pm \frac{d}{dx}v$$

4.
$$\frac{d}{dx}(c \cdot v) = c \frac{d}{dx}v$$

$$5. \frac{d}{dx}v^n = n \cdot v^{n-1} \cdot \frac{d}{dx}v$$

6.
$$\frac{d}{dx}(u \cdot v) = u \frac{d}{dx}v + v \frac{d}{dx}u$$

7.
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{d}{dx}u - u\frac{d}{dx}v}{v^2}$$

8.
$$\frac{d}{dx}\sqrt{v} = \frac{\frac{d}{dx}v}{2\sqrt{v}}$$

Trascendentes

9.
$$\frac{d}{dx}\ln(v) = \frac{\frac{d}{dx}v}{v}$$

10.
$$\frac{d}{dx}\log_a(v) = \frac{\frac{d}{dx}v}{v \cdot \ln(a)}$$

11.
$$\frac{d}{dx}a^v = a^v \cdot \ln(a) \cdot \frac{d}{dx}v$$

12.
$$\frac{d}{dx}e^v = e^v \cdot \frac{d}{dx}v$$

13.
$$\frac{d}{dx}$$
sen $(v) = \cos(v) \cdot \frac{d}{dx}v$

14.
$$\frac{d}{dx}\cos(v) = -\sin(v) \cdot \frac{d}{dx}v$$

15.
$$\frac{d}{dx}\tan(v) = \sec^2(v) \cdot \frac{d}{dx}v$$

16.
$$\frac{d}{dx}\csc(v) = -\csc(v)\cot(v) \cdot \frac{d}{dx}v$$

17.
$$\frac{d}{dx}\sec(v) = \sec(v)\tan(v) \cdot \frac{d}{dx}v$$

18.
$$\frac{d}{dx}\cot(v) = -\csc^2(v) \cdot \frac{d}{dx}v$$

19.
$$\frac{d}{dx} \operatorname{sen}^{-1}(v) = \frac{\frac{d}{dx}v}{\sqrt{1-v^2}}$$

20.
$$\frac{d}{dx}\cos^{-1}(v) = -\frac{\frac{d}{dx}v}{\sqrt{1-v^2}}$$

21.
$$\frac{d}{dx} \tan^{-1}(v) = \frac{\frac{d}{dx}v}{1+v^2}$$

22.
$$\frac{d}{dx}\csc^{-1}(v) = -\frac{\frac{d}{dx}v}{v\sqrt{v^2-1}}$$

23.
$$\frac{d}{dx} \sec^{-1}(v) = \frac{\frac{d}{dx}v}{v\sqrt{v^2-1}}$$

24.
$$\frac{d}{dx}\cot^{-1}(v) = -\frac{\frac{d}{dx}v}{1+v^2}$$

Regla de la cadena

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

máximo f'(x) = 0f''(x) < 014/20 f'(x) = 0f''(x) > 0

Sugerencias algebraicas

$$\frac{ax}{b} = \frac{a}{b}x$$

$$\sqrt{x}\sqrt{x} = x$$

$$x^{\frac{3}{2}} = x\sqrt{x}$$

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\sqrt[3]{x} = x^{\frac{1}{3}}$$

$$\sqrt[n]{x^m} = x^{\frac{m}{n}}$$

$$x^{-n} = \frac{1}{x^n} \qquad \qquad x^n = \frac{1}{x^{-n}}$$

90°

$$x^n = \frac{1}{n-n}$$

$$\frac{a}{hx} = \frac{a}{h}x^{-1}$$

 ∞

Otras cosas útiles

Recta punto-pendiente: $y - y_1 = m(x - x_1)$

Pendiente de la Normal: $m_N = -\frac{1}{m_s}$

Ángulo entre dos rectas: $\theta = \tan^{-1} \left(\frac{m_2 - m_1}{1 + m_1 + m_2} \right)$

Longitud de la subtangente = $\frac{y_1}{m_2}$

Longitud de la subnormal = $y_1 \cdot m_t$

Ángulos Notables					
heta Deg	θ Rad	$\operatorname{sen} \theta$	$\cos \theta$	$\tan \theta$	
0 °	0	0	1	0	
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	

0

Fórmulas de Integración

a, b, c, n =constantes; u, v, x =variables o expresiones algebraicas

Básicas

1. $\int (u \pm v) dx = \int u \, dx \pm \int v \, dx$

 $2. \quad \int a \, dv = a \int dv$

3. $\int dx = x + c$

4. $\int v^n dv = \frac{v^{n+1}}{n+1} + c; n \neq -1$

5. $\int \frac{dv}{v} = \ln|v| + c$

Trascendentes

6. $\int a^{\nu} d\nu = \frac{a^{\nu}}{\ln a} + c$

7. $\int e^{v} dv = e^{v} + c$

8. $\int \operatorname{sen}(v) dv = -\cos(v) + c$

9. $\int \cos(v) dv = \sin(v) + c$

10. $\int \sec^2(v) dv = \tan(v) + c$

11. $\int \csc^2(v) dv = -\cot(v) + c$

12. $\int \sec(v) \tan(v) dv = \sec(v) + c$

13. $\int \csc(v) \cot(v) dv = -\csc(v) + c$

14. $\int \tan(v) dv = \ln|\sec(v)| + c$

15. $\int \cot(v) dv = \ln|\sin(v)| + c$

16. $\int \sec(v) dv = \ln|\sec(v) + \tan(v)| + c$

17. $\int \csc(v) dv = \ln|\csc(v) - \cot(v)| + c$

18. $\int \frac{dv}{\sqrt{a^2-v^2}} = \text{sen}^{-1}\left(\frac{v}{a}\right) + c$

19. $\int \frac{dv}{a^2+v^2} = \frac{1}{a} \tan^{-1} \left(\frac{v}{a} \right) + c$

20. $\int \frac{dv}{w\sqrt{v^2-a^2}} = \frac{1}{a} \sec^{-1} \left(\frac{v}{a} \right) + c$

21. $\int \frac{dv}{a^2 - v^2} = \frac{1}{2a} \ln \left| \frac{v + a}{v - a} \right| + c$

22. $\int \frac{dv}{v^2 - a^2} = \frac{1}{2a} \ln \left| \frac{v - a}{v + a} \right| + c$

Integración por partes

23. $\int u \, dv = uv - \int v \, du$

Integral definida y Teorema Fundamental del Cálculo

24. $\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$

 $\Delta x = \frac{b-a}{n}$

• $x_i = a + i \cdot \Delta x$

25. $\int_{a}^{b} f(x)dx = F(b) - F(a)$

Sustitución trigonométrica

Expresión	Sustitución	ldentidad	
$\sqrt{a^2-v^2}$	$v = a \operatorname{sen} \theta$; $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$1 - \sin^2 \theta = \cos^2 \theta$	
$\sqrt{a^2+v^2}$	$v = a \tan \theta; -\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$1 + \tan^2 \theta = \sec^2 \theta$	
$\sqrt{v^2-a^2}$	$v = a \sec \theta$; $0 \le \theta < \frac{\pi}{2} \acute{o} \pi \le \theta < \frac{3\pi}{2}$	$\sec^2\theta - 1 = \tan^2\theta$	

Progresiones

 $S_n = \frac{n(a_1 + a_n)}{2}$

Aritméticas

$$a_n = a_1 + (n-1)r$$

 $a_n = a_1 \cdot r^{n-1}$ $S_n = \frac{r \cdot a_n - a_1}{r}$

Geométricas

$$\bar{x} = \sum_{i=1}^{n} \left(\frac{a_i}{n}\right) = \frac{a_1 + a_n}{2}$$

 $\bar{x} = \sqrt[n]{\prod_{i=1}^{n} (a_i)} = a_1 \cdot \sqrt{r^{n-1}}$

Interés compuesto

 $C = c(1+r)^t$

Geométricas infinitas

$$S = \frac{a_1}{1-r}$$

Notación sigma

$$\sum_{i=1}^{n} c = nc \qquad \sum_{i=1}^{n} c a_i = c \sum_{i=1}^{n} a_i$$

$$\sum_{i=1}^{n} (a_i \pm b_i) = \sum_{i=1}^{n} (a_i) \pm \sum_{i=1}^{n} (b_i)$$

$$\sum_{i=1}^{n} (i) = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} (i^2) = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} (i^3) = \left[\frac{n(n+1)}{2}\right]^2$$