Exercises on H_{∞} control with Matlab

1 H_{∞} design

Let us consider the second order model of an unstable aerospace vehicle:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2 - 1}$$

The objective is to design an H_{∞} feedback controller K(s) to meet the template depicted in Figure 1 on the sensitivity function S. The model G is also subject to an additive uncertainty Δ whose an upper bound in the frequency-domain is plotted in Figure 2.

Figure 1: Template on the sensitivity function S.

- Translate this control problem using H_{∞} specifications and describe it using a block-diagram representation,
- Propose a set of weighting filters from Figures 2 et 1,
- Compute the state-space representation of the corresponding standard problem P(s),
- Design the controller K(s) using the Matlab Robust Control Toolbox:
 - firstly, using function hinfsyn (full order controller design),
 - secondly, using function systume (fixed-structure controller design), a multi-objective formulation of the control problem and a judicious controller structure,

- compare and comment the 2 solutions¹.
- Redesign, analyze and comment the controller obtained assuming that the measurement of \dot{y} is also available.

Figure 2: Uncertainty Δ upper bound.

 $^{^{1}}$ That is, plot the frequency-domain responses (function sigma) of the constrained closed-loop transfers and their templates.