Tutorial

Solving L₀-norm Problems via Mixed-Integer Optimization

Théo Guyard

Simsmart team, Inria Rennes, France Applied Mathematics Department, Insa Rennes, France

MIND and SODA team seminar October 10th, 2023 Inria Paris Saclay, France

Sparse Optimization

Two goals, one problem

Signal processing

Compressive sensing

Signal processing

Compressive sensing

Find x such that $y \simeq Ax$

 $m \ll n$: no unique solution

Signal processing

Compressive sensing

Find x sparse such that $y \simeq Ax$

 $m \ll n$: no unique solution

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

			•	
Age	Sex	Cholesterol	Blood pressure	 Disease
31	М	50.3 mg/dl	95 mm/hg	 No
35	F	54.9 mg/dl	98 mm/hg	 Yes
42	F	49.8 mg/dl	92 mm/hg	 Yes
37	М	59.1 mg/dl	89 mm/hg	 No

Heart disease dataset (LIBSVM)

Disease	 Blood pressure	Cholesterol	Sex	Age
No	 95 mm/hg	50.3 mg/dl	М	31
Yes	 98 mm/hg	54.9 mg/dl	F	35
Yes	 92 mm/hg	49.8 mg/dl	F	42
No	 89 mm/hg	59.1 mg/dl	М	37

Finance

Portfolio selection problem

$$\left\{ \begin{array}{ll} \text{max} & \mathbf{c}^{\mathrm{T}}\mathbf{x} - \frac{\sigma}{2}\mathbf{x}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{x} \\ \text{s.t.} & \mathbf{1}^{\mathrm{T}}\mathbf{x} = \mathbf{1} \\ & \times \text{ is k-sparse} \end{array} \right.$$

 x_i : proportion of investment in asset i

 c_i : profit of asset i

 $\Sigma_{i,j}$: covariance of assets i and j

k : diversification budget

Objective, constraint or both?

Objective, constraint or both?

Constrainted version

$$\begin{cases} \min_{\mathbf{x}} & F(\mathbf{x}) \\ \text{s.t.} & \|\mathbf{x}\|_0 \le s \end{cases}$$

Minimized version

$$\begin{cases} \min_{\mathbf{x}} & \|\mathbf{x}\|_{0} \\ \text{s.t.} & F(\mathbf{x}) \leq \epsilon \end{cases}$$

Penalized version

$$\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \|\mathbf{x}\|_{0}$$

Why solving L0 problems?

Why solving L0 problems?

Sparse regression $y = Ax^{\dagger} + \epsilon$ 2.000 features 10 non-zeros in x^{\dagger} 20dB noise

Mixed-Integer Optimization

Handeling the L0-norm with MIO tools

Handeling the L0-norm with MIO tools

Handeling the L0-norm with MIO tools

The ℓ_0 -norm counts the number of non-zeros $\|x\|_0 = \operatorname{card}(\{i \mid x_i \neq 0\})$

It sums the entries of the binary vector z satisfying some logical relation with x

We have tools to deal with such binary vectors in MIO!

Linearizing the ℓ_0 -norm

Linearizing the $\ell_0\text{-norm}$

$$\min_{x,z} F(x) + \lambda \mathbf{1}^{T}z + H(x,z)$$

Linearizing the ℓ_0 -norm

$$\begin{aligned} & \min_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathbf{T}} \mathbf{z} + H(\mathbf{x},\mathbf{z}) \\ & \text{Big-M} \\ & \text{Big-M} \\ & \\ & \text{sig-M} \\ & \\ & \text{sig-M} \\ & \\ & \\ & \text{s.t.} \quad -M\mathbf{z} \leq \mathbf{x} \leq M\mathbf{z} \\ & \\ & \\ & \mathbf{x} \in \mathbf{R}^n, \ \mathbf{z} \in \mathbf{B}^n \end{aligned}$$

Linearizing the ℓ_0 -norm

Linearizing the ℓ_0 -norm

Let $x \in \mathbb{R}^n$ and $z \in \mathbb{B}^n$ such that $x_i = 0 \iff z_i = 0$, then $||x||_0 = 1^T z$.

Pros

- ✓ Fit the MIP formalism
- ✓ Available tools and methods
- ✓ Tailored solvers

Linearizing the ℓ_0 -norm

Let $x \in \mathbb{R}^n$ and $z \in \mathbb{B}^n$ such that $x_i = 0 \iff z_i = 0$, then $||x||_0 = 1^T z$.

Pros

- ✓ Fit the MIP formalism
- ✓ Available tools and methods
- ✓ Tailored solvers

Cons

- X Mostly commercial solvers
- X Unable to exploit sparsity
- X Not numerically efficient

Linearizing the ℓ_0 -norm

Let $x \in \mathbb{R}^n$ and $z \in \mathbb{B}^n$ such that $x_i = 0 \iff z_i = 0$, then $||x||_0 = 1^T z$.

Pros

- ✓ Fit the MIP formalism
- ✓ Available tools and methods
- ✓ Tailored solvers

Cons

- X Mostly commercial solvers
- X Unable to exploit sparsity
- X Not numerically efficient

We need specialized methods able to exploit the structure!

Specialized Solution Methods

Branch-and-Bound algorithms

Branch-and-Bound

"Enumerate all candidate solutions and discard sub-optimal ones."

Main principles

Branching: Divide the search space

Bounding: Test whether a region can contain optimal solutions

Pruning: Discard regions without optimal solutions

Tree exploration

Tree exploration

Observation

If z is fixed, then $\min_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x},\mathbf{z})$ is fairly easy to solve.

Tree exploration

Observation

If z is fixed, then $\min_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x},\mathbf{z})$ is fairly easy to solve.

Tree exploration

Observation

If z is fixed, then $\min_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x},\mathbf{z})$ is fairly easy to solve.

Tree exploration

Observation

If z is fixed, then $\min_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x},\mathbf{z})$ is fairly easy to solve.

Tree exploration

Observation

If z is fixed, then $\min_{\mathbf{x},\mathbf{z}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x},\mathbf{z})$ is fairly easy to solve.

Node problem

The problem at node $\nu = (S_0, S_1)$ where S_0 and S_1 are the indices of z fixed to zero and one reads

$$\rho^{\nu} = \begin{cases} \min_{\mathbf{x}, \mathbf{z}} & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \text{s.t.} & \mathbf{z}_{S_0} = \mathbf{0}, \ \mathbf{z}_{S_1} = \mathbf{1} \end{cases}$$

Node problem

The problem at node $\nu = (S_0, S_1)$ where S_0 and S_1 are the indices of z fixed to zero and one reads

$$p^{\nu} = \begin{cases} \min_{\mathbf{x}, \mathbf{z}} & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \text{s.t.} & \mathbf{z}_{S_0} = 0, \ \mathbf{z}_{S_1} = 1 \end{cases}$$

Find some lower bound on p^{ν} Find some upper bound on p^{ν}

Node problem

The problem at node $\nu = (\mathcal{S}_0, \mathcal{S}_1)$ where \mathcal{S}_0 and \mathcal{S}_1 are the indices of z fixed to zero and one reads

$$p^{\nu} = \begin{cases} \min_{\mathbf{x}, \mathbf{z}} & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \text{s.t.} & \mathbf{z}_{S_0} = \mathbf{0}, \ \mathbf{z}_{S_1} = \mathbf{1} \end{cases}$$

Find some lower bound on p^{ν} Find some upper bound on p^{ν}

Upper bounding

- We just need a feasible solution
- Fix entries that are still free to zero
- Optimize the resulting problem

Node problem

The problem at node $\nu = (\mathcal{S}_0, \mathcal{S}_1)$ where \mathcal{S}_0 and \mathcal{S}_1 are the indices of z fixed to zero and one reads

$$p^{\nu} = \begin{cases} \min_{\mathbf{x}, \mathbf{z}} & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \text{s.t.} & \mathbf{z}_{S_0} = \mathbf{0}, \ \mathbf{z}_{S_1} = \mathbf{1} \end{cases}$$

Find some lower bound on p^{ν} Find some upper bound on p^{ν}

Upper bounding

- We just need a feasible solution
- Fix entries that are still free to zero
- Optimize the resulting problem

Upper-bounding problem min_x $F(x_{S_1}) + \lambda |S_1| + H(x_{S_1}, 1)$

Idea: Convexify a part of the objective function

Node problem

$$p^{\nu} = \begin{cases} \min_{\mathbf{x}, \mathbf{z}} & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \text{s.t.} & \mathbf{z}_{S_0} = 0, \ \mathbf{z}_{S_1} = 1 \end{cases} \quad \min_{\mathbf{x}, \mathbf{z}} F(\mathbf{x}) + G(\mathbf{x}, \mathbf{z})$$

Idea: Convexify a part of the objective function

Idea: Convexify a part of the objective function

Let's sum up!

$$\ell_0$$
-penalized problem $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda ||\mathbf{x}||_0$

- ▶ Linking function H(x,z) to linearize the ℓ_0 -norm and fit the MIP formalism
 - Big-M and L2-norm strategies
- ▶ Generic solvers
 - Easy solution to implement
 - Unable to exploit sparsity
 - Numerically inefficient
- ► Specialized Branch-and-Bound
 - Tree exploration
 - Branch by fixing entries in z
 - Compute upper and lower bounds at each node
 - Leverage bi-conjugacy to compute lower bounds

Overview of Numerical

Performances

Overview of numerical performances

Dataset: Sparse regression $F(\cdot)$: Least-squares loss $H(\cdot, \cdot)$: Big-M constraints λ : Set statistically

Ongoing Research Directions

Contributors and research works

Take-home message

- In some cases, solving ℓ_0 -norm problems exactly worths-it
- There exists Mixed-Integer Optimization tools to do so
- Structure exploitation is the key to achieve competitive performances
- Active research area
 - → Theoretical results
 - → Efficiency, flexibility and accessibility of solution methods
 - → Software development
 - → Diffusion to other communities

Question time

Supplementary Slides

Node problem

$$p^{\nu} = \left\{ \begin{array}{ll} \min & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}}\mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \mathrm{s.t.} & \mathrm{z}_{\mathcal{S}_{\mathbf{0}}} = \mathbf{0}, \ \mathrm{z}_{\mathcal{S}_{\mathbf{1}}} = \mathbf{1} \end{array} \right.$$

Node problem

$$p^{\nu} = \begin{cases} \min & F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z}) \\ \text{s.t.} & z_{\mathcal{S}_0} = 0, \ z_{\mathcal{S}_1} = 1 \end{cases} \xrightarrow{\min_{\mathbf{x}, \mathbf{z}} P(\mathbf{x}, \mathbf{z})}$$

Lower-bounding problem

$$\tilde{p}^{\nu} = \min_{x,z} P^{\star\star}(x,z)$$

Bi-conjugate computation is also NP-hard

Graphical intuition

Bi-conjugate closed-form

$$G^{\star\star}(\mathsf{x}) = egin{cases} au | \mathsf{x}| & \text{if } |\mathsf{x}| \leq \mu \\ \lambda + H(\mathsf{x},1) & \text{otherwise} \end{cases}$$

Overview of numerical performances

 $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z})$

Dataset : Sparse regression

 $F(\cdot)$: Least-squares loss

 $H(\cdot,\cdot)$: L2-norm

 λ : Set statistically

Overview of numerical performances

 $\min_{\mathbf{x}} F(\mathbf{x}) + \lambda \mathbf{1}^{\mathrm{T}} \mathbf{z} + H(\mathbf{x}, \mathbf{z})$

Dataset: Sparse classification

 $F(\cdot)$: Logistic loss

 $\mathbf{H}(\cdot,\cdot)$: L2-norm

 λ : Set statistically

