PRÁCTICA 4: INTERPOLACIÓN (I)

Objetivos:

- 1. Obtener polinomios interpoladores de Lagrange.
- 2. Analizar el error gráficamente.
- 3. Obtener interpoladores a trozos cúbico de Hermite y spline natural a partir de una función o de datos tabulados.
- 4. Uso de CHI en la interpolación a trozos.

Cargar el fichero auxiliar interpol18.mth utilizando Archivo>Leer>Utilidad.

1. Polinomio interpolador de Lagrange

1.1 Teclear en la línea de edición poly_interpolate([1,1;2,4;3,2],x) e introducir en la ventana de álgebra. La expresión obtenida

$$POLY_INTERPOLATE\left(\left[\begin{array}{cc} 1 & 1 \\ 2 & 4 \\ 3 & 2 \end{array}\right], x\right)$$

proporciona el polinomio interpolador de Lagrange que pasa por los puntos (1,1), (2,4), (3,2) (las filas de la matriz introducida). Simplificar y representar el polinomio obtenido.

Para dibujar los puntos que se han tomado como datos podemos iluminar la matriz de datos (sólo la matriz) y representarla (para que se vean mejor, fijar en el menú de la ventana gráfica *Opciones>Pantalla>Puntos: Grandes*). Conservar esta gráfica.

1.2 Cuando los datos proceden de una función, utilizaremos la orden

$$LF([x_0, x_1, \dots, x_n], x)$$

que proporciona el polinomio interpolador de la función f(x) en los nodos x_0, x_1, \ldots, x_n .

Introducir las siguientes líneas:

$$f(x) := cos(x)$$

$$lf([0,3,5,2],x)$$
 (I)

Para generar la tabla con los puntos de interpolación, lo haremos simplificando la orden table(f(x),x,[0,3,5,2]).

Representar en una ventana vacía la función f(x), el polinomio interpolador (I) y los datos utilizados para obtenerlo. Conservar esta gráfica.

 $\underline{\text{Nota}} \text{: El polinomio interpolador (I) también podría obtenerse con$

poly_interpolate([0,f(0);3,f(3);5,f(5);2,f(2)],x) o equivalentemente con poly_interpolate(table(f(x),x,[0,3,5,2]),x)

1.3 Definir los interpoladores $P_1(x)$ y $P_2(x)$ de la función cos x en los siguientes nodos:

$$P_1(x)$$
: nodos $0, 2, 3, 6$ $P_2(x)$: nodos $-1, 0, 3, 5, 6$

Completar las siguientes evaluaciones en x = 1:

$$P_1(1) \simeq 0.3 \ 4 \ 6 \ 4603 \ | \ | P_2(1) \simeq 0.2 \ 76 \ | \ | 9750 \ | \ | | | | f(1) - P_1(1) | \simeq 0.2 \ 6 \ 4 \ 8454 |$$

2. Error de interpolación (gráficamente)

2.1 Introducir la línea

$$f(x)-0.2 < y < f(x)+0.2$$
 and $-1 < x < 6$

y representarla en una ventana nueva junto a la función $f(x) = \cos x$. Añadir a esta ventana la representación del polinomio $P_2(x)$ del ejercicio 1. Conservar la ventana. ¿Aproxima $P_2(x)$ a f(x) en el intervalo [-1,6] con un error menor que 0.2? Razonar la respuesta.

2.2 Completar la siguiente elección de 5 nodos para que genere un polinomio de Lagrange con error menor que 0.2 para la función $\cos(x)$ en el intervalo [-1, 6]:

3. Interpolantes cúbico de Hermite y spline natural

3.1 Las siguientes funciones generan los interpoladores a trozos cúbico de Hermite y spline natural de una función f(x) (previamente definida) basados en los nodos x_0, x_1, \ldots, x_n

$$HCF([x_0, x_1, \dots, x_n], x)$$
 (cúbico de Hermite)
 $SPF([x_0, x_1, \dots, x_n], x)$ (spline natural)

Sea $f(x) := \frac{e^x - x^3 + 2x}{\cosh(x)}$. Obtener y representar los siguientes interpolantes de f(x) en los nodos indicados:

- h1(x): cúbico de Hermite en los nodos -1, 1.5, 5
- h2(x): cúbico de Hermite en los nodos -1, 1.5, 3.5, 5
- s1(x): spline natural en los nodos -1, 1.5, 5
- s2(x): spline natural en los nodos -1, 1.5, 3.5, 5

Completar la tabla de evaluaciones en x = 1 (4 dígitos significativos truncados):

	nodos -1, 1.5, 5	nodos -1, 1.5, 3.5, 5
Cúbica de Hermite		
Spline natural		

Tabla de evaluaciones en x = 1

El interpolante cúbico de Hermite a trozos en general se parece \boxed{m} a la función debido a la coincidencia de \boxed{y} en los nodos de la partición. Si añadimos un nodo vemos que $\boxed{(x)}$ sólo se modifica en el intervalo al que pertenece el nuevo nodo, mientras que $\boxed{(x)}$ se modifica en $\boxed{}$ los subintervalos.

3.2 La orden

$$HC([x_0, y_0, d_0; x_1, y_1, d_1; \dots; x_n, y_n, d_n], x)$$

permite obtener el interpolador cúbico de Hermite basado en los nodos x_0, x_1, \ldots, x_n cuando para cada nodo x_i se conocen la imagen y_i y la primera derivada d_i . Reproducir la gráfica de la Fig.1 y conservar.

Fig. 1

4. Interpolación polinómica a trozos con CHI

4.1 La gráfica de la Fig.2 puede obtenerse por interpolación a trozos. Completar la siguiente línea para que su simplificación genere dicho interpolante a trozos. Dibujar y conservar la gráfica.

Fig. 2

4.2 Sea $f(x) := \frac{e^x - x^3 + 2x}{\cosh(x)}$

En la Fig.3 se ha representado f(x) junto con un interpolante a trozos de f(x) en [-6,6] con polinomios de Lagrange. Reproducir esta gráfica y conservar. Dar la expresión del interpolante utilizada.

Fig. 3

4.3

 $tg \alpha = -5$

Obtener una expresión para el interpolador a trozos que reproduce la gráfica de la izquierda (problema 33 de los apuntes). Dibujarla seleccionando en la ventana gráfica Regi'on: Horizontal (Long=16, Centro=7, Inter=8), Vertical (Long=40, Centro=12, Inter=4). Conservar la ventana.