Programmazione lineare multiobiettivo

Lavinia Amorosi Lezione XXIII

Formalizzazione matematica di un problema di PLMO

$$\min Cx$$

$$Ax \ge b$$

$$x \in \mathbb{R}^n : x \ge 0$$

$$x \in \mathbb{R}^n \to \mathbf{n} \text{ decisional variables}$$

$$C \in \mathbb{R}^{p \times n} \to \mathbf{p} \text{ objectives}$$

$$A \in \mathbb{R}^{m \times n} \to \mathbf{m} \text{ constraints}$$

Nuovo concetto di soluzione "ottima"

Assunzione

Consideriamo un problema di minimo

Definizione (Dominanza di Pareto)

Una soluzione ammissibile $x \in X$ è dominata da un'altra soluzione ammissibile $x' \in X$ se $Cx' \le Cx$ con una disuguaglianza stretta per almeno uno dei p obiettivi.

Definizione (Efficienza o Pareto Ottimalità)

Una soluzione ammissibile $x^* \in X$ è efficiente o Pareto ottima se non esiste un'altra soluzione $x \in X$ tale che $Cx \le Cx^*$ con una disuguaglianza stretta per almeno uno dei p obiettivi. Il corrispondente vettore $y^* = Cx^*$ è definito non dominato.

Nuovo concetto di soluzione "ottima"

Definizione (Insieme efficiente)

L'insieme delle soluzioni efficienti o Pareto ottime X_E è chiamato insieme efficiente

Definizione (Frontiera di Pareto o insieme non dominato)

L'insieme dei vettori non dominati Y_N è chiamato frontiera di Pareto o insieme non dominato.

Formalizzazione matematica di un problema di PLIMO

$$\min Cx$$

$$Ax \ge b$$

$$x \in \mathbb{Z}^n : x \ge 0 \text{ (or } x \in \{0,1\}^n \text{)}$$

$$x \in \mathbb{Z}^n \to \mathbf{n} \text{ decisional variables}$$

$$C \in \mathbb{Z}^{p \times n} \to \mathbf{p} \text{ objectives}$$

$$A \in \mathbb{Z}^{m \times n} \to \mathbf{m} \text{ constraints}$$

Come cambia la frontiera di Pareto?

Soluzione efficienti supportate e non supportate

Definizione (Soluzioni efficienti supportate)

Una soluzione efficiente x* è definita supportata se e solo se esiste

$$\lambda \in \mathbb{R}^p: \lambda_j \geq 0 \quad orall j=1,..,p$$
e $\sum_{j=1}^p \lambda_j = 1$

tale che x* è ottima per il seguente problema ottenuto come somma pesata dei p criteri:

$$min \lambda^T Cx$$

$$Ax = b$$

$$x \ge 0 \quad (integer)$$

Definizione (Soluzioni efficienti non supportate)

Una soluzione efficiente x^* è definita non supportata se non è ottima per alcun problema ottenuto come somma pesata dei p criteri.

Esempio

Punto ideale e punto Nadir

Definizione (Punto/Vettore ideale degli obiettivi)

Si definisce punto/vettore ideale degli obiettivi $y^{id} \in \mathbb{R}^p$ il vettore di componenti:

$$y_i^{id} = \min c_i x : x \in X$$

Definizione (Punto/Vettore di Nadir di 2 obiettivi)

Si definisce punto/vettore Nadir di due obiettivi y^N ∈ R^p il vettore di componenti:

$$y_i^N = \min \{y_i(x) : y_i(x) = y_i^I, j = 1, 2 : i \neq j\} : x \in X$$

Il punto ideale ed il punto Nadir definiscono un lower ed un upper bound sui valori degli obiettivi corrispondenti a soluzioni efficienti.

Esempio

Sia dato il seguente problema:

$$egin{aligned} \max(-x_1+2x_2,2x_1-x_2) \ & x_1+x_2 \leq 7 \ & -x_1+x_2 \leq 3 \ & x_1-x_2 \leq 3 \ & x_1, \ x_2 \geq 0 \ & x_1, \ x_2 \leq 4 \end{aligned}$$

Insieme ammissibile nello spazio delle decisioni

La regione ammissibile è rappresentata in figura:

Il perimetro del poligono X è la spezzata che unisce ordinatamente il punti O,A,B,C,D,E,F.

Frontiera di Pareto

Lo spazio degli obiettivi è rappresentato in figura:

Il perimetro del poligono Y è la spezzata che unisce ordinatamente i punti O,A,B,C,D,E,F. La frontiera Pareto efficiente è la spezzata che unisce ordinatamente i punti B,C,D,E.

Frontiera di Pareto

Nel caso di problemi bi-obiettivo la frontiera di Pareto si determina graficamente mediante la regola del quadrante inferiore (per problemi di minimo) e del quadrante superiore (per problemi di massimo).

Tecniche di scalarizzazione più comuni

- Metodo dei pesi
- Metodo E-constrained

Il metodo dei pesi

Nel metodo dei pesi viene risolto iterativamente il seguente problema singolo obiettivo:

min
$$\lambda^T Cx$$

 $Ax = b$
 $x \ge 0$ (integer)

dove $\lambda \in R^p$ è tale che $0 \le \lambda_j \le 1 \ \forall \ j=1,...,p$ e $e^T \lambda = 1$. Variando i pesi è possibile generare tutte le soluzioni efficienti (supportate). Il principale vantaggio di questo metodo è che per ogni $\lambda \in R^p$ il problema è difficile esattamente come la sua versione singolo obiettivo.

Il metodo E-constrained

Si tratta di un altro metodo mediante il quale è possibile generare tutte le soluzioni efficienti, e che consiste nel mantenere solo uno dei p obiettivi, diciamo l'obiettivo iesimo, e trasformando gli altri (p-1) obiettivi in vincoli nel modo seguente:

$$\begin{aligned} & \text{min } C_i x \\ & Ax = b \\ & C_k x \le \mathcal{E}_k \ \forall \ k \neq i \\ & x \ge 0 \ (\text{integer}) \end{aligned}$$

Tutte le soluzioni efficienti (supportate e non supportate) possono essere generate specificando opportunamente i termini noti \mathcal{E}_k . Lo svantaggio di questo metodo è la presenza di vincoli aggiuntivi (vincoli di knapsack) che rendono il problema più difficile da risolvere.

Esempio Knapsack Bi-obiettivo (6/6)

