Евгений Борисов

Задача автоматического определения частей речи POS (Part of Speech) tagging

предварительная обработка текста для извлечения информации

YACTIN PEHIN

САМОСТОЯТЕЛЬНЫЕ ЧАСТИ РЕЧИ

ИМЯ СУЩЕСТВИТЕЛЬНОЕ

ОБОЗНАЧАЕТ ПРЕДМЕТ

KTO? 4TO?

СОБАКА, ДЕВОЧКА, ПТИЦА, СОЛНЦЕ, ЧУВСТВО, ПИРОГ

ИМЯ ПРИЛАГАТЕЛЬНОЕ

ОБОЗНАЧАЕТ ПРИЗНАК ПРЕДМЕТА

KAKOŇ? KAKAЯ? KAKOE? KAKUE? ЧЕЙ?

УМНЫЙ, БОЛЬШАЯ, ЖЁЛТОЕ, ДОБРЫЕ, ДЕДУШКИН

ГЛАГОЛ

ОБОЗНАЧАЕТ ДЕЙСТВИЕ ИЛИ СОСТОЯНИЕ ПРЕДМЕТА

ЧТО ДЕЛАТЬ? ЧТО СДЕЛАТЬ?

БЕГАТЬ, РИСОВАТЬ, ЖИТЬ, ИЗУЧИТЬ, РАССКАЗАТЬ

имя числительное

ОБОЗНАЧАЕТ КОЛИЧЕСТВО ИЛИ ПОРЯДОК ПРИ СЧЁТЕ

СКОЛЬКО? КОТОРЫЙ?

ЧЕТЫРЕ, ОБА, НЕСКОЛЬКО, ПЕРВЫЙ, ДЕСЯТЫЙ

МЕСТОИМЕНИЕ

УКАЗЫВАЕТ НА ПРЕДМЕТ, ПРИЗНАК, КОЛИЧЕСТВО, **НЕ НАЗЫВАЯ ИХ**

КТО? ЧТО? КАКОЙ? ЧЕЙ? СКОЛЬКО? который?

Я, ТЫ, ВЫ, МЫ, ОНИ, НИКТО, ТАКОЙ, НИЧЕЙ, НЕМНОГО, ЛЮБОЙ

НАРЕЧИЕ

ОБОЗНАЧАЕТ ПРИЗНАК ДЕЙСТВИЯ

ГДЕ? КОГДА? КУДА? ПОЧЕМУ? КАК?

БЛИЗКО, ДАВНО, НАПРАВО, СГОРЯЧА, МЕДЛЕННО

СЛУЖЕБНЫЕ ЧАСТИ РЕЧИ

ОСОБАЯ ЧАСТЬ РЕЧИ

ПРЕДЛОГ

СЛУЖИТ ДЛЯ СВЯЗИ СЛОВ В СЛОВОСОЧЕТАНИИ

В, НА, К, О, ПЕРЕД, ИЗ

союз

служит для связи однород-НЫХ ЧЛЕНОВ ИЛИ ЧАСТЕЙ сложного предложения

И, ИЛИ, НО, КОГДА

ЧАСТИЦА

ВЫРАЖАЕТ ОТТЕНКИ ЗНАЧЕний слов, словосочетаний и предложений, ОБРАЗУЕТ ФОРМЫ СЛОВА

НЕ, НИ, БЫ, ДА, НЕТ

МЕЖДОМЕТИЕ

ВЫРАЖАЕТ ЭМОЦИИ ИЛИ НОРМЫ ЭТИКЕТА

АХ. АЙ. ОЙ. АЙ. ЭЙ, УРА, УВЫ, ЗДРАВСТВУЙТЕ, СПАСИБО, ПОЖАЛУЙСТА

Задача автоматической разметки частей речи POS (Part of Speech) tagging

Части речи

S — существительное (яблоня, лошадь, корпус, вечность)

А — прилагательное (коричневый, таинственный, морской)

NUM — числительное (четыре, десять, много)

ANUM — числительное-прилагательное (один, седьмой, восьмидесятый)

V — глагол (пользоваться, обрабатывать)

ADV — наречие (сгоряча, очень)

PRAEDIC — предикатив (жаль, хорошо, пора)

PARENTH — вводное слово (кстати, по-моему)

SPRO — местоимение-существительное (она, что)

APRO — местоимение-прилагательное (который, твой)

ADVPRO — местоименное наречие (где, вот)

PRAEDICPRO — местоимение-предикатив (некого, нечего)

PR — предлог (под, напротив)

CONJ — союз (и, чтобы)

PART — частица (бы, же, пусты)

INTJ — междометие (увы, батюшки)

открытые классы

- существительные
- глаголы
- прилагательные

закрытые классы (новые слова не появляются)

- местоимения
- предлоги

Tag	Meaning	English Examples
ADJ	adjective	new, good, high, special, big, local
ADP	adposition	on, of, at, with, by, into, under
ADV	adverb	really, already, still, early, now
CONJ	conjunction	and, or, but, if, while, although
DET	determiner, article	the, a, some, most, every, no, which
NOUN	noun	year, home, costs, time, Africa
NUM	numeral	twenty-four, fourth, 1991, 14:24
PRT	particle	at, on, out, over per, that, up, with
PRON	pronoun	he, their, her, its, my, I, us
VERB	verb	is, say, told, given, playing, would
	punctuation marks	.,;!
X	other	ersatz, esprit, dunno, gr8, univeristy

Задача автоматической разметки частей речи POS (Part of Speech) tagging

Пример разбора средствами NLTK:

```
'Today morning, Arthur felt very good.'
```

```
[ ('Today', 'NN'), ('morning', 'NN'), (',', ','), ('Arthur', 'NNP'), ('felt', 'VBD'), ('very', 'RB'), ('good', 'JJ'), ('.', '.') ]
```

```
NN Noun, Singular.
NNP Proper Noun, Singular.
VBD Verb, Past Tense. (took)
RB Adverb. (very, silently)
JJ Adjective.
```

Задача автоматической разметки частей речи POS (Part of Speech) tagging

- алгоритмы на правилах (regexp)
- алгоритмы на трансформациях
- статистические модели
- ML модели

Задача автоматической разметки частей речи POS (Part of Speech) tagging

алгоритмы на правилах (RegexpTagger)

```
>>> patterns = [
        (r'.*ing$', 'VBG'),
                                             # gerunds
... (r'.*ed$', 'VBD'),
... (r'.*es$', 'VBZ'),
                                             # simple past
                                             # 3rd singular present
      (r'.*ould$', 'MD'),
                                             # modals
      (r'.*\'s$', 'NN$'),
                                             # possessive nouns
      (r'.*s$', 'NNS'),
                                             # plural nouns
        (r'^-?[0-9]+(\.[0-9]+)?$', 'CD'), # cardinal numbers
        (r'.*', 'NN')
                                             # nouns (default)
. . . ]
```

Задача автоматической разметки частей речи POS (Part of Speech) tagging

алгоритмы на трансформациях (Brill tagger)

последовательно подбираем правила разметки, следующее должно улучшать результат предыдущего

пример:

- 1. разметить все слова как NN (существительное)
- 2. для окончаний '...ский' изменить тег на JJ (прилагательное)

• • •

n. если слово имеет приставку S и предыдущий тег X то изменить тег на Z

Задача автоматической разметки частей речи POS (Part of Speech) tagging

статистические модели - HMM POS Tagger

для последовательности слов w подобрать последовательность тэгов t c максимальной вероятностью

$$\hat{t}_1^n = \arg\max_{t_1^n} P(t_1^n | w_1^n)$$

$$\hat{t}_1^n = \underset{t_1^n}{\arg\max} \frac{P(w_1^n | t_1^n) P(t_1^n)}{P(w_1^n)}$$

применяем формулу Байеса

$$\hat{t}_1^n = rg \max_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$
 последовательность слов не меняется, $P(w)$ на максимизацию не влияет

Задача автоматической разметки частей речи POS (Part of Speech) tagging

статистические модели - HMM POS Tagger

$$\hat{t}_1^n = \arg\max_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

Дополнительные предположения

оценка слова зависит только от тега

$$P(w_1^n | t_1^n) = \prod_{i=1}^n P(w_i | t_i)$$

тег разметки зависит только от предыдущего тега

$$P(t_1^n) = \prod_{i=1}^n P(t_i|t_{i-1})$$

Задача автоматической разметки частей речи POS (Part of Speech) tagging

статистические модели - HMM POS Tagger

$$\hat{t}_1^n = \arg\max_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

оценка слова зависит только от тега

$$P(w_1^n | t_1^n) = \prod_{i=1}^n P(w_i | t_i)$$

тег разметки зависит только от предыдущего тега

$$P(t_1^n) = \prod_{i=1}^n P(t_i|t_{i-1})$$

- выбираем наиболее вероятную последовательность тегов
- используем алгоритм Витерби
- используем сглаживание

разные варианты разметки

Задача автоматической разметки частей речи POS (Part of Speech) tagging

модели ML - строим классификатор

```
собираем размеченный датасет [ [ <контекст>, слово ] , метка слова ] обучаем классификатор размечать слова по контексту
```

Литература

git clone https://github.com/mechanoid5/ml_nlp.git

Турдаков Д.Ю.

Основы обработки текстов. лекция 3. Разметка частей речи. ИСП РАН, 2017 https://www.youtube.com/watch?v=seAxPaKw33g

Steven Bird, Ewan Klein, and Edward Loper Analyzing Text with the Natural Language Toolkit https://www.nltk.org/book/

D.Jurafsky, J.H. Martin Speech and Language Processing. third edition, 2020