DevOps with Kubernetes and Helm

Jessica Deen Cloud Developer Advocate

HELLO!

I am Jessica Deen

I am here because I love technology and community.

I focus heavily on Linux, OSS, DevOps and Containers.

I love Disney and CrossFit/Fitness.

You can find me at @jldeen on GitHub, Twitter, and Instagram.

Disclaimer

The next 60 minutes will NOT make you an expert, but it will:

- Get you thinking
- Show you what's possible
- Give you some sample code for you to get started on your own time

What we hear from developers

I need to create applications at a competitive rate without worrying about IT

New applications run smoothly on my machine but malfunction on traditional IT servers

My productivity and application innovation become suspended when I have to wait on IT

What we hear from IT

I need to manage servers and maintain compliance with little disruption I'm unsure of how to integrate unfamiliar applications, and I require help from developers I'm unable to focus on both server protection and application compliance

IT stress points

Cloud is a new way to think about a datacenter

Traditional model

Dedicated infrastructure for each application Purpose-built hardware

Distinct infrastructure and operations teams Customized processes and configurations

Cloud model

Loosely coupled apps and micro-services Industry-standard hardware Service-focused DevOps teams Standardized processes and configurations

DevOps: The Three Stage Conversation

People Process Products

DevOps is the union of people, process, and products to enable continuous delivery of value to our end users.

-Donovan Brown

Key DevOps Practices

Infrastructure as Code

Continuous Integration

Continuous Deployment

Automated Testing

Release Management Performance Monitoring

Availability Monitoring Load Testing & Auto Scale

Automated Recovery (Rollback & Roll Forward)

DevOps BenefitsIT Performance Metrics

	2015	2016	2017
Deployment Frequency	30x more frequent	200x more frequent	46x more frequent
Lead Time for Changes	200x faster	2,555x faster	440x faster
Mean Time to Recover (MTTR)	168x faster	24x faster	96x faster
Change Failure Rate		3x lower (1/3 as likely)	5x lower (1/5 as likely)

Why Containers?

Enable 'write-once, run-anywhere' apps Enables microservice architectures Great for dev/test of apps and services Production realism Growing Developer Community

Standardized development, QA, and prod environments

Abstract differences in OS distributions and underlying infrastructure

Higher compute density

Easily scale-up and scale-down in response to changing business needs

Portability, Portability, Portability

What is a Container?

Not a real thing. An application delivery mechanism with **process isolation** based on several **Linux kernel** features.

Namespaces (what a process can see)

Cgroups (what a process can use)

- **❖ PID**
- Mount
- Network
- **UTS**
- **❖ IPC**
- User
- Cgroup

- Memory
- **❖** CPU
- ❖ Blkio
- Cpuacct
- Cpuset
- Devices
- ❖ Net_prio

What is docker

- Open Source Container Runtime
- Mac, Linux, Windows Support
- Command Line Tool
- "Dockerfile" format
- The Docker image format with layered filesystem

Docker Layered Filesystem

Docker Layered Filesystem

Virtualization versus containerization

Virtualization Containerization Virtual machine Container Application XYZ Application 4-----App dependencies Dependencies Guest OS C C C VM VM VM Dependency 1 Dependency 2 VM VM VM Hypervisor 2 **Docker Engine** Hypervisor 1 Host OS Host OS Hardware Hardware Hardware

Type 1 Type 2

The container advantage

What did we just do?

Container Orchestration: Kubernetes

What is Kubernetes?

Open source container orchestrator that automates deployment, scaling, and management of applications.

Features include:

- ***** Automatic bin packing
- Self-healing
- Horizontal scaling
- Service discovery
- Load balancing
- ❖ Automated rollouts and rollbacks ❖ Over 2,300
- Secret and configuration management

- Designed by Google
 - Based on their system used to run BILLIONS of containers per week
- Over 2,300 contributors
- Graduated from CNCF

Who is using Kubernetes?

Morgan Stanley

Bloomberg

unacast.

Azure Kubernetes Service (AKS)

Your Kubernetes Cluster Managed by Azure

Why AKS?

Easy to use:

- Fastest path to Kubernetes on Azure
- Up and running with 3 simple commands
- **❖ I argue there are 2.5 commands**

Easy to manage:

- Automated upgrades and patching
- Easily scale the cluster up and down
- Self-healing control plane

Uses open APIs – 100% upstream Kubernetes

Getting Started with AKS

```
$ az aks create -g myResourceGroup -n myCluster --generate-ssh-keys
 Running ...
$ az aks install-cli
Downloading client to /usr/local/bin/kubectl ...
$ az aks get-credentials -g myResourceGroup -n myCluster
Merged "myCluster" as current context ...
$ kubectl get nodes
NAME
                          STATUS
                                   AGE
                                             VERSION
aks-mycluster-36851231-0
                          Ready
                                   4m
                                            v1.8.1
aks-mycluster-36851231-1
                          Ready 4m v1.8.1
aks-mycluster-36851231-2
                          Ready
                                  4m
                                            v1.8.1
```

Managing an AKS Cluster

\ Running ...

```
$ az aks list -o table
                  Location ResourceGroup KubernetesRelease
Name
ProvisioningState
                                                        1.7.7 Succeeded
myCluster
                 westus2 myResourceGroup
$ az aks upgrade -g myResourceGroup -n myCluster --kubernetes-version 1.8.1
\Running ..
$ kubectl get nodes
NAME
                        STATUS AGE
                                          VERSION
aks-mycluster-36851231-0
                        Ready 12m v1.8.1
aks-mycluster-36851231-1
                        Ready
                                 8m v1.8.1
aks-mycluster-36851231-2
                        Ready 3m
                                           v1.8.1
$ az aks scale -g myResourceGroup -n myCluster --agent-count 10
```

Kubernetes without AKS

Kubernetes with AKS

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release **Automation Tools**

Release automation tools

Simplifying the Kubernetes experience

Streamlined **Kubernetes** development The package manager for Kubernetes

Event-driven scripting for **Kubernetes**

Visualization dashboard for **Brigade**

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Helm

The best way to find, share, and use software built for Kubernetes

Manage complexity

Charts can describe complex apps; provide repeatable app installs, and serve as a single point of authority

Easy updates

Take the pain out of updates with inplace upgrades and custom hooks

Simple sharing

Charts are easy to version, share, and host on public or private servers

Rollbacks

Use helm rollback to roll back to an older version of a release with ease

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Helm

Helm Charts helps you define, install, and upgrade even the most complex Kubernetes application

Azure Container Instances (ACI)

Azure Container Registry

Open Service Broker API (OSBA)

Release Automation Tools

Draft

Simple app development and deployment – into any Kubernetes cluster

Simplified development

Using two simple commands, developers can now begin hacking on container-based applications without requiring Docker or even installing Kubernetes themselves

Language support

Draft detects which language your app is written in, and then uses packs to generate a Dockerfile and Helm Chart with the best practices for that language

5 Kubernetes Best Practices

- Build small containers
- Application architecture
 - Use Namespaces
 - Use helm charts
 - * RBAC
- Implement Health checks
- Set requests and limits
- Be mindful of your services
 - * Map external services
 - Don't rely on load balancers

THANKS!

Resources

aka.ms/devops/jaxlondon2018

Any questions?

You can find me at:

@jldeen \cdot jessica.deen@microsoft.com

