Topology Course Notes (KSM1C03)

Day 15: 25th September, 2025

Zorn's lemma -- well-ordering principle -- ultrafilter lemma

15.1 A digression: Zorn's Lemma and applications

Definition 15.1: (Partial ordering)

A relation \leq on a set X is called a *partial order* if it satisfies the following.

- 1. $x \le x$ for all $x \in X$.
- 2. $x < y, y < z \Rightarrow x < z$
- 3. $x \le y, y \le x \Rightarrow x = y$

The tuple (X, \leq) is called a *partially ordered set* (or a *poset*). A point $x \in X$ is called a *maximal element* if for any $y \in X$ with $x \leq y$, we have x = y.

Definition 15.2: (Chain)

A subset C of a poset (X, \leq) is called a *chain* if C is totally ordered with respect to \leq , i.e, for any $c_1, c_2 \in C$, either $c_1 \leq c_2$ or $c_2 \leq c_1$ holds.

Lemma 15.3: (Zorn's lemma)

Given a non-empty poset (X, \leq) , suppose every chain has an upper bound in X. Then, X has a maximal element.

Theorem 15.4: (Basis of a vector space)

Given a field \mathbb{K} , any non-zero vector space V over \mathbb{K} admits a basis.

Proof

Consider the collection

$$\mathcal{B} \coloneqq \{B \subset V \mid B \text{ is linearly independent over } \mathbb{K}\}.$$

Note that $\mathcal{B} \neq \emptyset$, since for any $0 \neq v \in V$, we have $B = \{v\} \in \mathcal{B}$. Define

$$B_1 \leq B_2 \Leftrightarrow B_1 \subset B_2, \qquad B_1, B_2 \in \mathcal{B}$$

which is clearly a partial order. Let us consider a chain $\mathcal{C} = \{B_i\}_{i \in I}$ in (\mathcal{B}, \leq) . Consider the set $B = \bigcup_{i \in I} B_i$. We check that B is linearly independent. Say, $b_1, \ldots, b_k \in B$. Since \mathcal{C} is a chain,

without loss of generality, we have $b_1, \ldots, b_k \in B_{i_0}$ for some $i_0 \in I$. But then clearly $\{b_1, \ldots, b_k\}$ is linearly independent. Hence, $B \in \mathcal{B}$. By construction, we have $B_i \leq B$ for all $i \in I$. Thus, B is an upper bound of \mathcal{C} . Then, we have a maximal element, say, $\mathfrak{B} \in \mathcal{B}$. We claim that \mathfrak{B} is a basis of V. If not, then \mathfrak{B} fails to span V. Thus, we must have some

$$v_0 \in V \setminus \operatorname{Span} \langle \mathfrak{B} \rangle$$
.

Consider the set $\mathfrak{B}_0 = \mathfrak{B} \sqcup \{v_0\}$. Clearly, \mathfrak{B}_0 is linearly independent, and $\mathfrak{B} \subsetneq \mathfrak{B}_0$. Thus contradicts the maximality of \mathfrak{B} . Hence, $V = \operatorname{Span} \langle \mathfrak{B} \rangle$. Thus, V admits a basis.

Theorem 15.5: (Well-ordering principle)

Every nonempty set S admits a well-ordering.

Proof

Consider the collection

$$\mathcal{W} = \{(W, \leq_W) \mid \emptyset \neq W \subset S, \text{ and } \leq_W \text{ is a well-ordering on } W\}.$$

Clearly $W \neq \emptyset$, since for any $x \in S$, we have the singleton set $\{x\}$ is trivially well-ordered. Let us define $(A, \leq_A) \preceq (B, \leq_B)$ if and only if

- i) $A \subset B$,
- ii) \leq_A is the restriction of \leq_B (i.e., $a_1 \leq_A a_2$ if and only if $a_1 \leq_B a_2$), and
- iii) for any $b \in B \setminus A$ we have $b >_B a$ for all $a \in A$.

It is easy to see that \preceq is a total order on \mathcal{W} (Check!). Suppose $\mathcal{C} = \{(W_{\alpha}, \leq_{\alpha})\}_{\alpha \in I}$ is a chain in (\mathcal{W}, \preceq) . Consider

$$W = \bigcup_{\alpha \in I} W_{\alpha}.$$

Let us define \leq_W as follows. For any $w_1, w_2 \in W$, using the chain condition, we have $w_1, w_2 \in W_{\alpha_0}$ for some $\alpha_0 \in I$. Then, define

$$w_1 \leq_W w_2 \Leftrightarrow w_1 \leq_{\alpha_0} w_2.$$

Again from the chain condition, it follows that \leq_W is well-defined (Check!). Moreover, it is easy to see that \leq_W is a total order (Check!). Let us show that \leq_W is actually a well-order. Say, $\emptyset \neq A \subset W$ is given. Then, $A \cap W_\alpha \neq \emptyset$ for some $\alpha \in I$. Now, (W_α, \leq_α) being a well-order, we have a least element $m_0 = \min A \cap W_\alpha$. We claim that m_0 is the least element of A in the order \leq_W . If not, then there is some $a \in A$, with $a <_W m_0$. Now, $a \in W_\beta$ for some $\beta \in I$. From the chain condition, we have two cases.

- 1. If $W_{\beta} \leq W_{\alpha}$, then we have $a \in W_{\beta} \subset W_{\alpha}$. But then $a \in W_{\alpha} \cap A \Rightarrow m_0 \leq_{\alpha} a \Rightarrow m_0 \leq_{W} a$, a contradiction.
- 2. Say, $W_{\alpha} \leq W_{\beta}$. We again have two possibilities.
 - (a) Say, $a \in W_{\beta} \setminus W_{\alpha}$. Then, by the definition of \preceq , we have $a \geq_{\beta} x$ for all $x \in W_{\alpha}$. In particular, $a \geq_{\beta} m_0 \Rightarrow a \geq_W m_0$, a contradiction.

(b) Say, $a \in W_{\alpha}$. But then $m_0 \leq_{\alpha} a \Rightarrow m_0 \leq_W a$, again a contradiction.

Thus, it follows that $m_0 = \min A$ in the order \leq_W . Thus, $(W, \leq_W) \in \mathcal{W}$. Clearly, it is an upper bound of the chain \mathcal{C} (Check!). Now, by Zorn's lemma, there exists a maximal element, say, $(\mathfrak{W}, \leq_{\mathfrak{W}}) \in \mathcal{W}$. We claim that $\mathfrak{W} = S$. If not, then there exists $x \in S \setminus \mathfrak{W}$. Consider

$$\mathfrak{W}_0 = \mathfrak{W} \sqcup \{x\} .$$

Define an order \leq_0 on \mathfrak{W}_0 by extending the order $\leq_{\mathfrak{W}}$, and declaring $w <_0 x$ for all $w \in \mathfrak{W}$. Then, (\mathfrak{W}_0, \leq_0) is a well-order, which moreover satisfies $(\mathfrak{W}, \leq_{\mathfrak{W}}) \prec (\mathfrak{W}_0, \leq_0)$ (Check!). This violates the maximality. Hence, $\mathfrak{W} = S$, and thus, S admits a well-ordering.

Theorem 15.6: (Ultrafilter lemma)

A filter \mathcal{F} on a set X is contained in an ultrafilter on X.

Proof

Consider the collection

$$\mathfrak{F} \coloneqq \{F \mid F \text{ is a filter on } X, \text{ and } \mathcal{F} \subset F.\}$$

Then, $\mathfrak{F} \neq \emptyset$ as $\mathcal{F} \in \mathfrak{F}$. Order \mathfrak{F} by inclusion, i.e, $F_1 \leq F_2$ if and only if $F_1 \subset F_2$. Clearly (\mathfrak{F}, \leq) is a poset. Consider a chain $\mathcal{C} = \{F_i\}_{i \in I}$ in (\mathfrak{F}, \leq) . Consider

$$F = \bigcup_{i \in I} F_i.$$

Clearly $\mathcal{F} \subset F$. Let us check that F is a filter on X.

- i) Since $\emptyset \not\in F_i$ for all $i \in I$, we have $\emptyset \not\in F$.
- ii) For any $A, B \in F$, by the chain condition, we have $A, B \in F_{i_0}$ for some $i_0 \in I$. But then $A \cap B \in F_{i_0} \Rightarrow A \cap B \in F$.
- iii) Say $A \in F$, and $B \supset A$. Now, $A \in F_i$ for some $i \in I$, and then, $B \in F_i \Rightarrow B \in F$.

Thus, F is a filter on X, containing \mathcal{F} , and clearly, it is an upper bound of \mathcal{C} . Then, by Zorn's lemma, there exists some maximal element, say, $\mathcal{U} \in \mathfrak{F}$. We claim that \mathcal{U} is an ultrafilter on X, which evidently contains \mathcal{F} . If not, then there exists some set $S \subset X$ such that

$$S \not\in \mathcal{U}$$
, and $X \setminus S \not\in \mathcal{U}$.

Then, the collection $\mathcal{U}_0 = \mathcal{U} \cup \{S\}$ has finite intersection property (Check!). But then there is a filter, say, $\mathcal{F}_0 \supset \mathcal{U}_0 \supsetneq \mathcal{U}$, a contradiction to maximality. Hence, \mathcal{U} is an ultrafilter, containing $\mathcal{F}.\Box$

Here are some more applications, that you can try to do if you want! Or have a look at this note by Keith Conrad.

Exercise 15.7: (Existence of spanning tree)

Using Zorn's lemma, show that every connected (undirected) graph has a spanning tree.

Exercise 15.8: (Existence of maximal ideal)

Let R be a commutative ring with 1. Using Zorn's lemma, show that every ideal $I\subset R$ is contained in a maximal ideal.

Exercise 15.9: (Description of nilradical)

Let ${\cal R}$ be a commutative ring with 1. Using Zorn's lemma, show that

$$\bigcap_{\mathfrak{p}\,\subset\,R\text{ is a prime ideal}}=\left\{x\in R\mid x^n=0\text{ for some }n\geq 1\right\},$$

which is also known as the *nilradical* of R.