# **Project Progress Documentation**

Research by Jacqueline Zhu | Supervised by Dr. Shiva Akbari | SleepdB Lab

## 7.17.2025

• Completed batch1 avg 0719

#### 7.23.2025

- Brainstormed research update presentation
- Outlined 8 different data split methods:
  - o Five vowels together, five vowels separate (see, sahh, so, soo, set), average of five segmented vowels, median of five segmented vowels

## 7.26.2025

Started batch2\_all1\_0729

## 7.29.2025

- Completed batch2 all1 0729
- Prepared research update presentation



## 8.5.2025



- Started and finished annotating all the vowels from the May\_14\_2025 folder
- Wrote comments on all the videos and audios in "May14\_video-quality-check.xlsx"

## 8.6.2025

• Extracted all the features and AHI information from 5.14.2025 dataset

## 8.11.2025

- Reorganize the April16 May14 datasets combined all three batches to train on vowels
  - o Need to extract the filename + vowels from April 16 \_ batch 2
- Train models on individual vowels
- Split control vs cases for model training

Table 1: count of the number of samples available per each five vowels

| see             | so  | S00 | sahh | set |
|-----------------|-----|-----|------|-----|
| 99              | 100 | 100 | 100  | 100 |
| 01_DSCF0148.wav |     |     |      |     |

- Not all recording samples contain all five vowels | reasons:
  - o instructor's confusion between pronunciation of /so/ vs /soo/ and /see/ vs /set
  - o participant's confusion between pronunciation of /so/ and /soo/

Table 2: count of the total number of samples available per control and case

| control | case |
|---------|------|
| 295     | 204  |

#### 8.12.2025

- pearson/spearman coefficients, and mutual information on original data
- same statistical significiance methods applied for soo vowel
  - o mutual importance high for var
  - o need to try other four vowels
- is lost on what to do next because random forest also looks pretty bad lol

#### 8.13.2025

- MFCC  $0 \rightarrow$  Overall log-energy of the frame (roughly total power).
  - o MFCC\_0 (-200 to 50): log-energy can vary a lot depending on loudness of the frame. Big negative values correspond to very quiet frames.
- MFCC\_1, MFCC\_2 → Shape of the spectral envelope, low-frequency variations.
  - o MFCC\_1 (120 to 260) and MFCC\_2 (-100 to 60): capture large-scale spectral slope differences. The scale depends on how DCT was applied.
- MFCC\_3-MFCC\_12 → Finer spectral details, higher-frequency variations.
  - o MFCC\_3-MFCC\_12 (-60 to 40): represent higher-frequency envelope details. These are usually more stable because they capture subtle spectral shape differences rather than overall energy.

#### Meeting with Shiva:

- Should try MLP (smaller models, less layers)
- Try my method of not log scaling all the features
- Redo batch 2 code to generate similar graphs and get correlation coefficient (R) instead of R squared, or fit multiple correlation coefficients onto the graph

## 8.14.2025

If the simple, transparent models aren't capturing the relationships, try a neural net (MLP) with minimal complexity, then increase depth/width as needed.

- Read and learned about MLPs
- 04162025 05142025
  - Soo scaled = only specific features were applied log
  - Soo = no features were transformed / scaled
- 04162025\_05142025 / soo
  - o Soo in all features were applied yeo johnson