

Pontificia Universidad Católica de Chile Departamento de Estadística Facultad de Matemática

Profesor: Fernando Quintana Ayudante: Daniel Acuña León

## Ayudantía 10 EPG3310 - Probabilidad 22 de Mayo

- 1. Sea  $(\Omega, \mathcal{F}, P)$  un espacio de probabilidad y X una variable aleatoria en  $\Omega$  con  $E(|X|) < \infty$ . Sea  $\mathcal{G}$  una  $\sigma$ -sub-álgebra de  $\mathcal{F}$ . Muestre que si X es  $\mathcal{G}$ -medible, entonces  $E(X|\mathcal{G}) = X$  c. s.
- 2. Sea  $(\Omega, \mathcal{F}, P)$  un espacio de probabilidad. Sea  $\{X_n\}_{n\geq 1}$  una sucesión de variables aleatorias en  $\Omega$  tales que  $|X_n|\leq V$  para  $n\geq 1$ , donde V es una variable aleatoria con  $E(V)<\infty$  y  $X_n\to X$  c.s. Sea  $\mathcal{G}$  una  $\sigma$ -sub-álgebra de  $\mathcal{F}$ . Muestre que  $E(X_n|\mathcal{G})\to E(X|\mathcal{G})$  c.s.
- 3. Sea  $(\Omega, \mathcal{F}, P)$  un espacio de probabilidad y X una variable aleatoria en  $\Omega$  con  $E(|X|) < \infty$ . Sea  $\mathcal{G}$  una  $\sigma$ -sub-álgebra de  $\mathcal{F}$  y sea  $\mathcal{H}$  una  $\sigma$ -sub-álgebra de  $\mathcal{G}$ . Muestre que

$$E[E(X|\mathcal{G})|\mathcal{H}] = E(X|\mathcal{H})$$

4. Sea X una variable aleatoria en un espacio de probabilidad  $(\Omega, \mathcal{F}, P)$  con  $E(|X|) < \infty$ . Sea  $H \in \mathcal{F}$ . Muestre que

a) 
$$E[XI_H] = E[X|H] \cdot E[I_H] = E[X|H]P(H)$$

b) 
$$E[X] = E[X|H]P(H) + E[X|H^c]P(H^c)$$

5. Sea  $(\Omega, \mathcal{F}, P)$  un espacio de probabilidad. Sea Q una medida de probabilidad en  $(\Omega, \mathcal{F})$  tal que  $Q \ll P$ . Sea  $\mathcal{G}$  una  $\sigma$ -sub-álgebra de  $\mathcal{F}$  y  $X \in L^1(\Omega, \mathcal{F}, Q)$ . Sea L = dQ/dP la derivada de Radon-Nikodym. Muestre que

a) 
$$Q\{E_P[L|\mathcal{G}] > 0\} = 1$$
.

b)

$$E_Q[X|\mathcal{G}] = \frac{E_P[XL|\mathcal{G}]}{E_P[L|\mathcal{G}]}$$