Tarea 2

Seminario de Álgebra B

Ejercicio 1 Sea $C \in \mathcal{E}$. Muestra que C^C es un objeto monoide en \mathcal{E} . Esto es, existen flechas $e: 1 \to C^C$ y $m: C^C \times C^C \to C^C$ tales que los siguientes diagramas conmutan

Ejercicio 2 Demuestra que la biyección $\mathscr{C}(A,\Omega) \cong \operatorname{Sub}_{\mathscr{C}}(A)$ es natural en A.

Ejercicio 3 Si $f: \Omega \to \Omega$ es un mono, entonces $ff = id_{\Omega}$.

Ejercicio 4 El par núcleo de una flecha $f:A\to B$ consta de dos flechas $a,b:R\to A$ tales que el diagrama

$$\begin{array}{ccc}
R & \xrightarrow{a} & A \\
\downarrow b & & \downarrow f \\
A & \xrightarrow{f} & B
\end{array}$$

es un producto fibrado. Demuestra que el par núcleo cumple lo siguiente:

- a) la flecha (a, b): $R \to A \times A$ es mono,
- b) la diagonal $\Delta_A: A \to A \times A$ está contenida en (a,b), es decir, existe $\rho: A \to R$ tal que el siguiente diagrama conmuta

c) (b,a) está contenida en (a,b), es decir, existe una flecha $\sigma: R \to R$ que hace conmutar al diagrama

d) Si consideramos el producto fibrado de abajo a la izquierda, entonces existe una flecha $\tau: T \to R$ tal que el diagrama de abajo a la izquierda conmuta

1