MA - 2019

AI24BTECH11015 - Harshvardhan Patidar

1) Let $1 \le p < q < \infty$. Consider the followings statements:

I.
$$l^p \subset l^q$$

II.
$$L^p[0,1] \subset L^q[0,1]$$
,

where $l^p = \{(x_1, x_2, ...) : x_i \in \mathbb{R}, \sum_{i=1}^{\infty} |x_i|^p < \infty \}$ and

$$L^{p}[0,1] = \left\{ f : [0,1] \to \mathbb{R} : f \text{ is } \mu - \text{measurable}, \right\}$$

$$\int_{[0,1]} |f|^p d\mu < \infty, \text{ where } \mu \text{ is the Lebesgue measure}$$

(\mathbb{R} is the set of all real numbers)

Which of the following statements is/are TRUE?

- a) Both I and II
- b) I only
- c) II only
- d) Neither I nor II
- 2) Consider the differential equation

$$t\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + ty = 0, t > 0, y(0+) = 1, \left(\frac{dy}{dt}\right)_{t=0+} = 0$$

If Y(s) is the Laplace transform of y(t), then the value of Y(1) is off to 2 places of decimal).

(Here, the inverse of trigonometric functions assume principal values only)

3) Let R be the region in the xy-plane bounded by the curves $y = x^2$, $y = 4x^2$, xy = 1and xy = 5.

Then the value of the integral $\int \int_R \frac{y^2}{x} dy dx$ is equal to ____. 4) Let V be the vector space of all 3×3 matrices with complex entries over the real field. If

$$W_1 = \left\{ A \in V : A = \bar{A}^T \right\}$$
 and $W_2 = \left\{ A \in V : \text{trace of } A = 0 \right\}$,

then the dimension of $W_1 + W_2$ is equal to ____. $(\bar{A}^T$ denotes the conjugate transpose of A)

- 5) The number of elements of order 15 in the additive group $\mathbb{Z}_{60} \times \mathbb{Z}_{50}$ is . $(\mathbb{Z}_n$ denotes the group of integers modulo n, under the operation of addition modulo n, for any positive integer n)
- 6) Consider the following cost matrix of assigning four jobs to four persons: Then the minimum cost of the assignment problem subject to the constraint that job J_4 is assigned to the person P_2 , is .

		Jobs			
		J_1	J_2	J_3	J_4
Persons	P_1	5	8	6	10
	P ₂	2	5	4	8
	P ₃	6	7	6	9
	P ₄	6	9	8	10

TABLE 6

7) Let $y: [-1,1] \to \mathbb{R}$ with y(1) = 1 satisfy the Legendre differential equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 6y = 0$$
 for $|x| < 1$.

Then the value of $\int_{-1}^{1} y(x) (x + x^2) dx$ is equal to ____ (round off to 2 places of decimal).

- 8) Let \mathbb{Z}_{125} be the ring of integers modulo 125 under the operations of addition modulo 125 and multiplication modulo 125. If m is the number of maximal ideals of \mathbb{Z}_{125} and n is the number of non-units of \mathbb{Z}_{125} , then m+n is equal to ____.
- 9) The maximum value of the error term of the composite Trapezoidal rule when it is used to evaluate the definite integral

$$\int_{0.2}^{1.4} (\sin x - \log_e x) \, dx$$

with 12 sub-intervals of equal length, is equal to ____ (round off to 3 places of decimal).

10) By the Simplex method, the optimal table of the linear programming problem:

Maximize
$$Z = \alpha x_1 + 3x_2$$

subject to $\beta x_1 + x_2 + x_3 = 8$,
 $2x_1 + x_2 + x_4 = \gamma$
 $x_1, x_2, x_3, x_4 \ge 0$,

where α, β, γ are real constants, is

$C_j \rightarrow$	α	3	0	0	
Basic Variable	x_1	x_2	<i>x</i> ₃	x_4	Solution
x_2	1	0	2	-1	6
x_1	0	1	-1	1	2
$z_j - c_j$	0	0	2	1	-

TABLE 10

Then the value of $\alpha + \beta + \gamma$ is ____.

11) Consider the inner product space P_2 of all polynomials of degree at most 2 over the field of real numbers with the inner product $\langle f, g \rangle = \int_0^1 f(t) g(t) dt$ for $f, g \in P_2$.

Let $\{f_0, f_1, f_2\}$ be an orthogonal set in P_2 , where $f_0 = 1$, $f_1 = t + c_1$, $f_2 = t^2 + c_2 f_1 + c_3$ and c_1, c_2, c_3 are real constants. Then the value of $2c_1 + c_2 + 3c_3$ is equal to _____.

12) Consider the system of linear differential equations

$$\frac{dx_1}{dt} = 5x_1 - 2x_2, \frac{dx_2}{dt} = 4x_1 - x_2,$$

with the initial conditions $x_1(0) = 0$, $x_2(0) = 1$.

Then $\log_e (x_2(2) - x_1(2))$ is equal to ____.

13) Consider the differential equation

$$x(1+x^2)\frac{d^2y}{dx^2} - 9\frac{dy}{dx} + 7y = 0.$$

The sum of the roots of the indicial equation of the Frobenius series solution for the above differential equation in a neighborhood of x = 0 is equal to ____.