Análisis Funcional I – 2024 Práctico 4

- (1) Demostrar que las inclusiones $i: \ell^1 \to \ell^2$, $i: \ell^2 \to \ell^\infty$ e $i: \ell^p \to \ell^q$ para todo $1 \le p \le q \le \infty$ son continuas. ¿Qué ejercicio del Práctico 1 permite aseguarlo?
- (2) Sean \mathcal{N} y \mathcal{M} espacios normados. Definimos $\mathcal{B}(\mathcal{N}, \mathcal{M}) := \{A : \mathcal{N} \to \mathcal{M} : A \text{ es lineal y continua}\}.$
 - (a) Probar que $\mathcal{B}(\mathcal{N}, \mathcal{M})$ es un espacio normado con $||A|| = \sup_{x:||x|| \le 1} ||Ax|| = \sup_{x:||x|| < 1} ||Ax|| = \sup_{x:||x|| = 1} ||Ax||$.
 - (b) Probar que $\mathcal{B}(\mathcal{N}, \mathcal{M})$ es de Banach si \mathcal{M} lo es.
- (3) Sea X espacio de Banach finitamente dimensional e Y un espacio de Banach. Probar que si $T: X \to Y$ es lineal, entonces T es continua.
- (4) Sea $X = \ell^1$, e Y un espacio de Banach finitamente dimensional. Probar que no todas las aplicaciones lineales son continuas.
- (5) (a) Sea \mathcal{N}_p es el espacio C[a,b] con $||\cdot||_p$ y definimos el operador A(f) := f(a) para toda f en C[a,b]. Probar que $A \in \mathcal{B}(\mathcal{N}_p,\mathbb{K})$ si y sólo si $p = \infty$.
 - (b) Demostrar que Id: $L^{\infty}[a,b] \to L^{2}[a,b] \to L^{1}[a,b]$ son continuas. Hallar sus normas. Probar que Id: $L^{1}[a,b] \to L^{2}[a,b] \to L^{\infty}[a,b]$ no son continuas.
- (6) Hacer los ejercicios 4.1, 4.2 y 4.3 de la página 96 del libro Linear Functional Analysis de Rynne y Youngson.
- (7) Dar un ejemplo de una isometría entre dos espacios de Banach que no sobreyectiva.
- (8) Probar que la composición de isometrías entre espacios normados es isometría.
- (9) ¿Cuáles son todas las aplicaciones lineales que son isometrías de \mathbb{R}^n en \mathbb{R}^n con respecto a $\|\cdot\|_2$?
- (10) Hacer los ejercicios 4.6, 4.7, 4.10 y 4.11 de la Sección 4.2 del libro Linear Functional Analysis de Rynne y Youngson.
- (11) Sean X e Y espacios de Banach. Sea $A: X \to Y$ lineal que satisface cada vez que $x_n \to 0$ en X y $Ax_n \to y$ en Y entonces y = 0. Probar que A es continua.
- (12) Sea N un espacio normado, $S \subseteq N$ un subespacio vectorial cerrado.

(a) Probar que N/S es normado con

$$||x + S|| = \inf_{y \in S} ||x + y||.$$

- (b) Probar que si N es un espacio de Banach entonces N/S es un espacio de Banach.
- (13) (a) Sean \mathcal{N} y \mathcal{M} espacios de Banach. Probar que $A \in B(\mathcal{N}, \mathcal{M})$ es inyectiva y $A(\mathcal{N})$ es cerrado si y sólo si existe k_1 tal que $||x|| \leq k_1 ||Ax||$.
 - (b) Sean \mathcal{N} y \mathcal{M} espacios de Banach. Probar que $A \in B(\mathcal{N}, \mathcal{M})$ tiene imagen $A(\mathcal{N})$ cerrada si y sólo si existe k_2 tal que para todo $y \in A(\mathcal{N})$ existe $x \in \mathcal{N}$ con Ax = y y $||x|| \le k_2||y||$.
 - (c) Sean \mathcal{N} de Banach y sea $A \in B(\mathcal{N}, \mathcal{N}) := B(\mathcal{N})$. Probar que A es inversible si y sólo si $\operatorname{Im}(A) = \mathcal{N}$ y existen $0 < c \le C < \infty$ tales que

$$c||x|| \le ||Ax|| \le C||x||,$$

para todo $x \in \mathcal{N}$.

- (14) Sean X_0 , X_1 , X_2 , X_3 espacios de Banach y sean $A_i: X_i \to X_{i+1}$ para i = 0, 1, 2 operadores lineales tales que
 - (a) A_0 , A_2 , $A_2A_1A_0$, son continuas,
 - (b) A_0 es biyectiva,
 - (c) A_2 es inyectiva.

Probar que A_1 es continua.

(15) Probar que si \mathcal{N} y \mathcal{M} , son espacios de Banach, el conjunto

$$\{A \in B(\mathcal{N}, \mathcal{M}) : A \text{ es invtectivo y } A(\mathcal{N}) \text{ es cerrado}\}$$

es abierto en $B(\mathcal{N}, \mathcal{M})$.

- (16) Probar que $L^2[0,1]$ es de primera categoría en $L^1[0,1]$ usando el Teorema de la aplicación abierta.
- (17) Demostrar el Teorema de Hellmger-Toepliz: Sea \mathcal{H} un espacio de Hilbert con producto interno $\langle \cdot, \cdot \rangle$. Si $A : \mathcal{H} \to \mathcal{H}$ es una aplicación lineal que satisface $\langle A(x), y \rangle = \langle x, A(y) \rangle$ para todo $x, y \in \mathcal{H}$, entonces A es continua.
- (18) Hacer los ejercicios 4.18, 4.19 y 4.21 de la página 120 del libro Linear Functional Analysis de Rynne y Youngson.

Ejercicio Extra. Transformada de Fourier en \mathbb{R} .

Dada $f \in L^1(\mathbb{R})$ se define su transformada de Fourier como la función \widehat{f} dada por

$$\widehat{f}(\xi) := \int_{\mathbb{D}} f(x)e^{-2\pi ix\xi} dx.$$

- (1) Probar que la aplicación $f\mapsto \widehat{f}$ es lineal y continua de $L^1(\mathbb{R})$ en $L^\infty(\mathbb{R})$.
- (2) Dada $f \in L^1(\mathbb{R})$ probar que \widehat{f} es continua y que $\lim_{|\xi| \to \infty} \widehat{f}(\xi) = 0$, es decir $\widehat{f} \in C_0(\mathbb{R})$.
- (3) Sea L_x el operador de traslación. Dada $f \in L^1(\mathbb{R})$ calcular $\widehat{L_x f}$.
- (4) Dada $f \in L^1(\mathbb{R})$ calcular $e^{2\pi i\lambda}$ $\widehat{(\cdot)}f$ para cualquier $\lambda \in \mathbb{R}$.
- (5) Para $\lambda \neq 0$ sea $D_{\lambda}(f)(x) = f(\lambda x)$. Dada $f \in L^{1}(\mathbb{R})$ calcular $\widehat{D_{\lambda}(f)}$.
- (6) Dadas f y g en $L^1(\mathbb{R})$, probar que $\int f\widehat{g} = \int \widehat{f}g$.
- (7) Calcular $\widehat{e^{-x^2/2}}$.
- (8) Probar que si f y \widehat{f} están en $L^1(\mathbb{R})$, entonces vale la fórmula de inversión

$$f(x) = \int_{\mathbb{R}} \widehat{f}(\xi)e^{i2\pi\xi x} d\xi$$
 ppx .

(9) Probar que la transformada de Fourier se extiende de $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ dando lugar a un isomorfismo isométrico de $L^2(\mathbb{R})$ en $L^2(\mathbb{R})$ (ver "Teorema de Plancherel").