MatchVision Project Report

Approach and Methodology

The objective of this project was to identify and match the same players appearing in two different video sources: a **tacticam** (close-up view) and a **broadcast** (wide-angle view). We followed a step-by-step pipeline:

1. Player Detection using YOLOv5

We used a pre-trained YOLOv5 model (best.pt) to detect players in both videos. The output was a set of cropped player images from each frame.

2. Feature Extraction

From these cropped images, we extracted visual embeddings using a deep CNN. These embeddings represent players in a feature space.

3. Player Matching

We compared the embeddings from both videos using cosine similarity to find the closest matches.

4. Annotation and Evaluation

We visualized the matches by overlaying unique IDs on the tacticam video. To measure performance, we generated a dummy ground truth CSV and calculated accuracy using scikit-learn metrics.

Techniques Tried and Their Outcomes

• YOLOv5 for Detection:

Player detection worked well under good lighting and visibility. However, it missed detections when players were occluded or far from the camera.

• Cosine Similarity for Matching:

Simple and fast method for comparing features, but didn't work well in challenging scenes. Accuracy was very low (almost 0%) when using auto-generated ground truth — likely due to incorrect or noisy matches.

• Streamlit Frontend (planned):

Though not fully implemented, the idea was to use a Streamlit app to visualize matches interactively. This would help with manual corrections and debugging.

Challenges Faced

• Large File Sizes:

.mp4, .pt, and .npy files were too large to push to GitHub, leading to 408 errors. We had to re-clone the repo and properly use .gitignore.

• Data Issues:

The auto-generated ground truth was not reliable. It treated predicted matches as true labels, leading to inaccurate accuracy scores.

• Model Limitations:

The embedding model wasn't trained specifically for re-identification in sports, so mismatches were common.

• Workflow Glitches:

Several manual fixes were needed (e.g., folder creation, file placement, virtual environment issues).

What's Left / Future Work

• Ground Truth Curation:

Manually label correct matches to evaluate the model honestly.

• Model Improvements:

Use or fine-tune a re-ID-specific architecture like a Siamese or Triplet network on player images.

• Better Visualization:

Upgrade video annotation to make matches more understandable. Maybe allow a human to review and approve them.

• Streamlit Interface:

Add a simple UI for uploading videos, viewing results, and correcting mismatches.

• Performance & Scale:

Optimize the pipeline to handle longer videos with many players.