2009.9.28 (担当:佐藤)

□ キーワード:内積、ベクトルのなす角、空間ベクトルの外積

問題 **1.4.** 次のベクトル u, v の (i) 長さ |u|, |v|, (ii) 内積 $u \cdot v$ および (iii) u と v のなす角 θ の余弦 $(\cos \theta)$ の値を求めなさい.

- (1) $\mathbf{u} = (1, \sqrt{3}), \ \mathbf{v} = (-2, 2\sqrt{3})$
- (2) a = (5,3), b = (2,0) に対し、u = a 2b, v = -a + 7b
- (3) a = (2,0,1), b = (1,-1,3) に対し、u = 2a b, v = -2a b

問題 1.5. 次の空間ベクトル a,b の外積 $a \times b$ を計算しなさい。また、内積 $(a \times b) \cdot a$ および $(a \times b) \cdot b$ を計算しなさい。

- (1) $\mathbf{a} = (2,0,1), \ \mathbf{b} = (1,-1,3)$
- (2) $\mathbf{a} = (1, -1, 0), \ \mathbf{b} = (2, -1, 3)$

問題 **1.6.** a = (1,2,3), b = (2,-1,1), c = (3,1,-2) に対し、次を計算しなさい。

- (1) $\boldsymbol{a} \times (\boldsymbol{b} \times \boldsymbol{c})$
- (2) $(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}$
- (3) $(\boldsymbol{a} \cdot \boldsymbol{c})\boldsymbol{b} (\boldsymbol{a} \cdot \boldsymbol{b})\boldsymbol{c}$

問題 1.7. 次の空間ベクトル a,b に対し,a と b の両方に直交し,長さが 1 のベクトルを求めなさい.

- (1) $\mathbf{a} = (1, 1, 1), \ \mathbf{b} = (2, -1, 0)$
- (2) $\mathbf{a} = (3,0,1), \ \mathbf{b} = (1,2,2)$

問題 **1.8.** ベクトル a, b を 2 辺とする三角形の面積が $\frac{1}{2}\sqrt{|a|^2|b|^2-(a\cdot b)^2}$ に等しいことを示しなさい. *1

問題 1.9. ベクトル a, b を 2 辺とする平行四辺形の面積が, a, b の外積の長さ $|a \times b|$ に等しいことを示せ. *2

^{*1} \triangle OAB の面積が $\frac{1}{2}$ (OA の長さ) \times (OB の長さ) \times sin θ であること(ただし $\theta = \angle$ AOB),内積の性質 $\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$ と三角関数の性質 $\sin^2 \theta + \cos^2 \theta = 1$ を用いて示せ.

^{*2} 問題 **1.8** より, \boldsymbol{a} と \boldsymbol{b} を 2 辺とする平行四辺形の面積は $\sqrt{|\boldsymbol{a}|^2\,|\boldsymbol{b}|^2-(\boldsymbol{a}\cdot\boldsymbol{b})^2}$ に等しい(三角形の面積の 2 倍).ベクトル \boldsymbol{a} , \boldsymbol{b} を成分表示し, $|\boldsymbol{a}\times\boldsymbol{b}|^2=(\boldsymbol{a}\times\boldsymbol{b})\cdot(\boldsymbol{a}\times\boldsymbol{b})$ と $|\boldsymbol{a}|^2\,|\boldsymbol{b}|^2-(\boldsymbol{a}\cdot\boldsymbol{b})^2$ が等しいことを示せ.