Zihang Liu

🛘 +1 3106259919 | % Homepage | @ zihang.liu@berkeley.edu | 🛅 LinkedIn | 🗘 GitHub | 🕈 Berkeley, CA

EDUCATION

University of California, Berkeley

Berkeley, CA

Master in Electrical Engineering and Computer Science

Aug 2024 - Present

Beijing University of Posts and Telecommunications

Beijing, China

B.Eng. in Intelligence Science and Technology GPA: 90%, Rank: 4/68

Sep 2020 - Jun 2024

Research Interests: Transparency of Deep Learning, Large-scale Optimization and Efficiency of Neural Networks, Numerical Algorithm Discovery.

Publications

[1] Principal Weights Emerge after Rank Reduction for Sparse Fine-Tuning

ICML 2025

Z. Liu, T. Pang, O. Balabanov, C. Yang, T. Huang, L. Yin, Y. Yang, S. Liu

[2] Model Balancing Helps Low-data Training and Fine-tuning

EMNLP 2024 Oral

Z. Liu, Y. Hu, T. Pang, Y. Zhou, P. Ren, Y. Yang

[3] EnsembleMOT: A Step Towards Ensemble Learning of Multiple Object Tracking

arXiv preprint

Y. Du, Z. Liu, F. Su

RESEARCH EXPERIENCE

Numerical Algorithm Discovery with Deep Learning

Berkeley, CA

Graduate Researcher, Advised by Prof. Michael Mahoney at UC Berkeley

Aug 2024 - Present

- Designed a neural network training pipeline to generate polynomial preconditioners to accelerate power iteration method for solving eigenproblems with provable guarantees. Introduced a novel training method with random sketching to dramatically improve inference efficiency and generalization in input matrix size and distribution.
- Proposed a transformer-based linear system solver that utilizes to learn preconditioning through in-context learning. Reaches comparable performance to conjugate gradient and steepest descent method.
- Designed an algorithm discovery pipeline with LLMs such as LLaMA-3.1-70B and GPT-40. Introducing MCTS decoding algorithm to numerical algorithm discovery for the first time. Conducted empirical analysis of LLM's function discovery ability with level-1 and level-2 reasoning.

Weight Matrix Analysis of Foundation Models

Hanover, NH

Undergraduate Researcher, Advised by Prof. Yaoqing Yang at Dartmouth College

Jul 2023 - Jul 2024

- Proposed a layer-wise learning rate scheduler based on heavy-tailed self-regularization theory(HT-SR), that balances temperature parameters of neural network models.
- Modeled the heavy-tail behavior of optimizers (SAM) and model architectures. Rescheduling the learning rate to optimize the regularization effects, significantly improving performance on Image Classification and Language Modeling (NeurIPS 2023 Spotlight)
- Diagnosing the limitations of low-data training using Heavy-Tail metrics, and propose layer-wise model balancing to achieve model alignment, achieving up to 10% improvement in LLM fine-tuning. (EMNLP 2024 Oral)

Ensemble Methods in Multiple Object Tracking

Beijing, China

Undergraduate Research Assistant, Advised by Prof. Fei Su

Jun 2022 - Jan 2023

- Proposed a model-independent ensemble method that integrates results from various MOT trackers to achieve higher overall performance, which we named EnsembleMOT.
- Proposed to use both spatial and temporal IoU(Intersection over Union) to merge and prune trajectories, achieving 3% improvement in MOTA and IDF1, alleviating ID-switch and abnormal bounding box problems.
- Co-authored a paper with an MCPRL lab member and submitted our work to the International Conference on Acoustics, Speech and Signal Processing (Submitted to ICASSP 2023).

Awards & Services

Reviwer: NeurIPS 2024 Workshop on Foundation Models for Science, ICLR 2025 Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models, ICLR 2025 Workshop on Sparsity in LLMs

Services: EMNLP 2024 Student Volunteer Coordinator

Grants: Berkeley Conference Travel Grant (2024)

Scholarships: UC Berkeley Fung Excellence Scholarship (\$10000, 2024), First-class Scholarship (Ranked 1/68, 2023),

Second-class Scholarship (Ranked 4/68, 2021, 2022)

Talks

EMNLP 2024 Model Balancing Helps Low-data Training and Fine-tuning (Recording) Nov 12, 2024

SKILLS

English Proficiency: TOEFL IBT 114 (reading 30 listening 29, speaking 27, writing 28), GRE 328 (Quant 170)

Programming Languages: Python, C/C++, SQL, Rust, VHDL

Frameworks: Linux, Pytorch, Git, Slurm

Sports: I was a tennis athlete representing BUPT and have entered quarterfinals in regional and national

championships as a doubles player.