Multigerbes

Chris Kottke

. . . .

gerbe

loop spaces

Multigerbes: a new theory of higher gerbes

Chris Kottke Joint work in progress with R. Melrose

New College of Florida

Workshop on Geometric Quantization BIRS, April 2018

Line bundles : $H^2(X; \mathbb{Z})$

Multigerbes

Chris Kottke

Gerbes Higher

gerbes

loop spaces

- ▶ A complex line bundle $L \longrightarrow X$ has a Chern class $c_1(L) \in H^2(X; \mathbb{Z})$.
- Naturality:

$$c_1(\underline{\mathbb{C}}) = 0,$$
 $c_1(L \otimes L') = c_1(L) + c_1(L'),$
 $c_1(L^{-1}) = -c_1(L),$ $c_1(f^*L) = f^*c_1(L)$

• $c_1(L) = c_2(L')$ if and only if $L \cong L'$.

Line bundles : $H^2(X; \mathbb{Z})$

Multigerbes

Chris Kottke

Gerbes

Relation

Relation to loop spaces

- ▶ A complex line bundle $L \longrightarrow X$ has a Chern class $c_1(L) \in H^2(X; \mathbb{Z})$.
- Naturality:

$$c_1(\underline{\mathbb{C}}) = 0,$$
 $c_1(L \otimes L') = c_1(L) + c_1(L'),$
 $c_1(L^{-1}) = -c_1(L),$ $c_1(f^*L) = f^*c_1(L)$

- $ightharpoonup c_1(L) = c_2(L')$ if and only if $L \cong L'$.
- ▶ Explicit in Čech cohomology: $[L] \in \check{C}^1(X; \mathbb{C}^*)$ satisfies d[L] = 0, unique up to dh, $h \in \check{C}^0(X; \mathbb{C}^*)$, so

$$[L] \in \check{H}^1(X; \mathbb{C}^*) \cong H^2(X; \mathbb{Z}).$$

Multigerbes

Chris Kottke

▶ Various versions: Giraud, Brylinski, Hitchin and Chattergee, Murray.

Gerbes Higher

Relation to loop spaces Multigerbes

Chris Kottke

Gerbes Higher

Relation t loop spaces Various versions: Giraud, Brylinski, Hitchin and Chattergee, Murray.

▶ Murray: a bundle gerbe (L, Y, X) is

a locally split map (meaning surjective with local sections)

$$p: Y \longrightarrow X$$
,

a line bundle

$$L \longrightarrow Y^{[2]} = Y \times_X Y = \{(y_1, y_2) : p(y_1) = p(y_2) \in X\}$$

▶ with a product

$$\phi: L_{(y_1,y_2)} \otimes L_{(y_2,y_3)} \xrightarrow{\cong} L_{(y_1,y_3)}, \quad (y_1,y_2,y_3) \in Y^{[3]}$$

satisfying associativity:

$$\phi \circ (1 \otimes \phi) = \phi \circ (\phi \otimes 1) : L_{(y_1, y_2)} \otimes L_{(y_2, y_3)} \otimes L_{(y_3, y_4)} \cong L_{(y_1, y_4)},$$
$$(y_1, y_2, y_3, y_4) \in Y^{[4]}$$

▶ (L, Y, X) has a Dixmier Douady class $DD(L, Y, X) \in H^3(X; \mathbb{Z})$.

Multigerbes

Chris Kottke

Gerbes

gerbe

Relation to loop spaces

Multigerbes

Chris Kottke

Gerbes Higher

Relation :

loop spaces

$$\begin{array}{ccc}
Q & L \\
\downarrow & \downarrow \\
X & \stackrel{p_1}{\longleftarrow} Y^{[2]}
\end{array}$$

▶ Trivialization: an isomorphism $L \cong \delta Q := p_0^* Q \otimes p_1^* Q^{-1}$ for some line bundle $Q \longrightarrow Y$.

Multigerbes

Chris Kottke

Gerbes Higher gerbes

loop spaces

$$X \leftarrow_{p} Y \rightleftharpoons_{p_0}^{p_1} Y^{[2}$$

- ▶ Trivialization: an isomorphism $L \cong \delta Q := p_0^* Q \otimes p_1^* Q^{-1}$ for some line bundle $Q \longrightarrow Y$.
- ► Inverse: $(L, Y, X)^{-1} = (L^{-1}, Y, X)$.
- ▶ Product: $(L, Y, X) \otimes (L', Y', X) = (\pi_1^* L \otimes \pi_2^* L', Y \times_X Y', X)$
- ▶ Pullback: $f^*(L, Y, X) = (f^*L, f^*Y, X')$

Multigerbes

Chris Kottke

Gerbes Higher

loop spaces

$$X \leftarrow_{p} Y \xleftarrow{p_1}_{p_0} Y^{[2]}$$

- ▶ Trivialization: an isomorphism $L \cong \delta Q := p_0^* Q \otimes p_1^* Q^{-1}$ for some line bundle $Q \longrightarrow Y$.
- ▶ Inverse: $(L, Y, X)^{-1} = (L^{-1}, Y, X)$.
- ▶ Product: $(L, Y, X) \otimes (L', Y', X) = (\pi_1^* L \otimes \pi_2^* L', Y \times_X Y', X)$
- ▶ Pullback: $f^*(L, Y, X) = (f^*L, f^*Y, X')$
- ▶ Relation with DD class:
 - ▶ DD(L) = 0 if and only if L is trivial.
 - $\triangleright DD(L^{-1}) = -DD(L)$
 - $DD(L \otimes L') = DD(L) + DD(L')$
 - $DD(f^*L) = f^*DD(L).$
 - ▶ DD(L) = DD(L') if and only if L and L' are stably isomorphic, i.e., $L \otimes Q \cong L' \otimes Q'$ for trivial gerbes Q and Q'.
 - ▶ Better: DD(L) = DD(L') if and only if there is a 1-isomorphism (a la Waldorf) $(L, Y, X) \longrightarrow (L', Y', X)$.

Example: lifting bundle gerbes

Multigerbes

Chris Kottke

Gerbes Higher

Relation to loop spaces

 $ightharpoonup E \longrightarrow X$ principal G bundle, where G has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{G} \longrightarrow G \longrightarrow 1$$

- $lackbox{}\widehat{G}\longrightarrow G$ defines an associated line bundle $L=\widehat{G} imes_{\mathrm{U}(1)}\mathbb{C}\longrightarrow G$
- ▶ Difference map $u: E^{[2]} \longrightarrow G$, where $u(y_0, y_1) = g$ such that $y_1 = y_0 g$.
- \blacktriangleright (u^*L, E, X) is the *lifting bundle gerbe* for E.

$$\begin{array}{ccc}
u^*L & L \\
\downarrow & & \downarrow \\
E^{[2]} & \xrightarrow{u} & G \\
\downarrow & & X
\end{array}$$

▶ $DD(u^*L, E, X) \in H^3(X; \mathbb{Z})$ is the obstruction to lifting E to a \widehat{G} bundle $\widehat{E} \longrightarrow X$.

Multigerbes

Chris Kottke

Gerbes Higher

gerbes

loop spaces

$$X \longleftarrow Y \longleftarrow Y^{[2]} \biguplus Y^{[3]} \biguplus Y^{[4]} \cdots$$

▶ These higher fiber products define a *simplicial space* over X, i.e., a sequence $\{Y_n = Y^{[n+1]} : n \in \mathbb{N}_0\}$ of spaces with *face maps* $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and *degeneracy maps* $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (all commuting with maps to X), satisfying the relations of standard simplices.

Multigerbes

Chris Kottke

Gerbes Higher

gerbes

loop spaces

$$X \longleftarrow Y \longleftarrow Y^{[2]} \biguplus Y^{[3]} \biguplus Y^{[4]} \cdots$$

▶ These higher fiber products define a *simplicial space* over X, i.e., a sequence $\{Y_n = Y^{[n+1]} : n \in \mathbb{N}_0\}$ of spaces with *face maps* $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and *degeneracy maps* $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (all commuting with maps to X), satisfying the relations of standard simplices.

Multigerbes

Chris Kottke

Gerbes Higher

Relation

$$X \longleftarrow Y_0 \longleftarrow Y_1 \longleftarrow Y_2 \longleftarrow Y_3 \cdots$$

► These higher fiber products define a *simplicial space* over X, i.e., a sequence $\{Y_n = Y^{[n+1]} : n \in \mathbb{N}_0\}$ of spaces with *face maps* $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and *degeneracy maps* $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (all commuting with maps to X), satisfying the relations of standard simplices.

Multigerbes

Chris Kottke

Gerbes Higher

Relation to loop spaces

- ▶ These higher fiber products define a *simplicial space* over X, i.e., a sequence $\{Y_n = Y^{[n+1]} : n \in \mathbb{N}_0\}$ of spaces with *face maps* $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \dots, n$ and *degeneracy maps* $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \dots, n-1$ (all commuting with maps to X), satisfying the relations of standard simplices.
- ▶ [Brylinski-McLaughlin]: A simplicial line bundle is a line bundle $L \longrightarrow Y_1$ with a trivialization of $\delta L = p_0^* L \otimes p_1^* L^{-1} \otimes p_2^* L$ pulling back to the canonical trivialization of $\delta^2 L$.

Multigerbes

Chris Kottke

Gerbes

High

loop spaces

- ▶ These higher fiber products define a *simplicial space* over X, i.e., a sequence $\left\{Y_n = Y^{[n+1]} : n \in \mathbb{N}_0\right\}$ of spaces with *face maps* $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and *degeneracy maps* $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (all commuting with maps to X), satisfying the relations of standard simplices.
- ▶ [Brylinski-McLaughlin]: A simplicial line bundle is a line bundle $L \longrightarrow Y_1$ with a trivialization of $\delta L = p_0^*L \otimes p_1^*L^{-1} \otimes p_2^*L$ pulling back to the canonical trivialization of $\delta^2 L$.
- ▶ In case Y_{\bullet} consists of fiber products $Y^{[\bullet-1]}$ of a locally split map $Y \longrightarrow X$, this precisely recovers the definition of a bundle gerbe.

Multigerbes

Chris Kottke

Gerbes Higher

Relation t

- ▶ These higher fiber products define a *simplicial space* over X, i.e., a sequence $\{Y_n = Y^{[n+1]} : n \in \mathbb{N}_0\}$ of spaces with *face maps* $p_j : Y_n \longrightarrow Y_{n-1}, j = 0, \ldots, n$ and *degeneracy maps* $s_j : Y_{n-1} \longrightarrow Y_n, j = 0, \ldots, n-1$ (all commuting with maps to X), satisfying the relations of standard simplices.
- ▶ [Brylinski-McLaughlin]: A simplicial line bundle is a line bundle $L \longrightarrow Y_1$ with a trivialization of $\delta L = p_0^* L \otimes p_1^* L^{-1} \otimes p_2^* L$ pulling back to the canonical trivialization of $\delta^2 L$.
- ▶ In case Y_{\bullet} consists of fiber products $Y^{[\bullet-1]}$ of a locally split map $Y \longrightarrow X$, this precisely recovers the definition of a bundle gerbe.

Multigerbes

Chris Kottke

Gerbes

gerbe

loop spaces

Multigerbes

Chris Kottke

Gerbes

gerbe

loop spaces

Multigerbes

Chris Kottke

Gerbes

gerbe

loop spaces

This double complex is vertically *exact* for $Y \longrightarrow X$ locally split. In particular the total cohomology is isomorphic to $\check{H}^{\bullet}(X; \mathbb{C}^*)$.

▶ The Čech chains are with respect to pairs of "admissible covers" of (X, Y) to which $p: Y \longrightarrow X$ and its local sections are adapted, including higher intersections.

Multigerbes

Chris Kottke

Gerbes

gerb

loop spaces

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y^{[2]};\mathbb{C}^{*}) \overset{\delta\uparrow}{\to} \overset{\delta\uparrow}{\check{C}^{1}}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{1}(Y;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(Y;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(X;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{1}(X;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(X;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

- ▶ The Čech chains are with respect to pairs of "admissible covers" of (X,Y) to which $p:Y\longrightarrow X$ and its local sections are adapted, including higher intersections.
- ▶ Fiber products of the pair of covers give covers of $Y^{[k]}$ for k > 1.

Multigerbes

Chris Kottke

Gerbes

gerb

loop spaces

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y^{[2]};\mathbb{C}^{*}) \overset{\delta\uparrow}{\to} \overset{\delta\uparrow}{\check{C}^{1}}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{1}(Y;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(Y;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(X;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{1}(X;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(X;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

- ▶ The Čech chains are with respect to pairs of "admissible covers" of (X,Y) to which $p:Y\longrightarrow X$ and its local sections are adapted, including higher intersections.
- ▶ Fiber products of the pair of covers give covers of $Y^{[k]}$ for k > 1.
- ▶ The local sections of *p* induce chain homotopy contractions of each vertical complex.

Multigerbes

Chris Kottke

Gerbes

gerbe

loop spaces

- ▶ The Čech chains are with respect to pairs of "admissible covers" of (X, Y) to which $p: Y \longrightarrow X$ and its local sections are adapted, including higher intersections.
- ▶ Fiber products of the pair of covers give covers of $Y^{[k]}$ for k > 1.
- ▶ The local sections of *p* induce chain homotopy contractions of each vertical complex.
- ► Take the direct limit over all admissible pairs of covers. Over X and Y this is equivalent to the direct limit over all covers.

Multigerbes

Chris Kottke

Gerbes Higher gerbes

Relation t loop spaces

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y^{[2]};\mathbb{C}^{*}) \overset{\delta}{\to} \overset{\delta\uparrow}{\check{C}^{1}}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \overset{\delta\uparrow}{\check{C}^{2}}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y;\mathbb{C}^{*}) \overset{d}{\to} \overset{\delta\uparrow}{\check{C}^{1}}(Y;\mathbb{C}^{*}) \overset{d}{\to} \overset{\delta\uparrow}{\check{C}^{2}}(Y;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(X;\mathbb{C}^{*}) \overset{d}{\to} \overset{\delta\uparrow}{\check{C}^{1}}(X;\mathbb{C}^{*}) \overset{d}{\to} \overset{\delta\uparrow}{\check{C}^{2}}(X;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

The Dixmier-Douady class is the image in $\check{H}^2(X;\mathbb{C}^*)$ of the pure cocycle $-[L] \in \check{C}^1(Y^{[2]};\mathbb{C}^*) \subset \check{C}^{\bullet}(Y^{[\bullet]};\mathbb{C}^*)$ in $\check{H}^2(X;\mathbb{C}^*)$.

Multigerbes

Chris Kottke

Gerbes Higher

Relation t loop spaces

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y^{[2]};\mathbb{C}^{*}) \overset{\delta\uparrow}{\to} \overset{\delta\uparrow}{\check{C}^{1}}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(Y^{[2]};\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(Y;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{1}(Y;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(Y;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

$$\overset{\delta\uparrow}{\check{C}^{0}}(X;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{1}(X;\mathbb{C}^{*}) \overset{d}{\to} \check{C}^{2}(X;\mathbb{C}^{*}) \overset{d}{\to} \cdots$$

The Dixmier-Douady class is the image in $\check{H}^2(X; \mathbb{C}^*)$ of the pure cocycle $-[L] \in \check{C}^1(Y^{[2]}; \mathbb{C}^*) \subset \check{C}^{\bullet}(Y^{[\bullet]}; \mathbb{C}^*)$ in $\check{H}^2(X; \mathbb{C}^*)$.

$$\begin{array}{c}
0\\
\uparrow\\
-[L] \longrightarrow 0\\
\uparrow\\
\beta \longrightarrow d\beta \rightarrow 0\\
\uparrow\\
\alpha \longrightarrow 0
\end{array}$$

so
$$DD(L) = [\alpha] \in \check{H}^2(X; \mathbb{C}^*) \cong H^3(X; \mathbb{Z}).$$

Multigerbes Chris Kottke

Gerbes

gerbe

loop spaces

The Dixmier-Douady class is the image in $\check{H}^2(X; \mathbb{C}^*)$ of the pure cocycle $-[L] \in \check{C}^1(Y^{[2]}; \mathbb{C}^*) \subset \check{C}^{\bullet}(Y^{[\bullet]}; \mathbb{C}^*)$ in $\check{H}^2(X; \mathbb{C}^*)$.

$$\begin{array}{c}
0 \\
\uparrow \\
-[L] \longrightarrow 0 \\
\uparrow \\
\beta \longrightarrow d\beta \longrightarrow 0
\end{array}$$

so $DD(L) = [\alpha] \in \check{H}^2(X; \mathbb{C}^*) \cong H^3(X; \mathbb{Z})$. It also follows that Y supports a bundle gerbe with class $[\alpha] \in H^3(X; \mathbb{Z})$ iff $p^*[\alpha] = 0 \in H^3(Y; \mathbb{Z})$.

Multigerbes

Chris Kottke

C--k--

Higher gerbes

Relation t loop spaces ► Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.

Multigerbes

Chris Kottke

Gerbes

Higher gerbes

loop spaces Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.

▶ A bundle 2-gerbe (L, Z, Y, X) is a "simpicial bundle gerbe"

- ▶ A locally split map $Y \longrightarrow X$,
- ightharpoonup A gerbe $\mathbb{L} = (L, Z, Y^{[2]}),$
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,

Multigerbes

Chris Kottke

Gerbes

Higher gerbes

loop spaces Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.

 \blacktriangleright A bundle 2-gerbe (L, Z, Y, X) is a "simplicial bundle gerbe"

- ▶ A locally split map $Y \longrightarrow X$,
- ▶ A gerbe $\mathbb{L} = (L, Z, Y^{[2]}),$
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,
- ► A 2-morphism (did I mention gerbes have 2-morphisms?) relating the induced trivialization of $\delta^2 \mathbb{L}$ to the canonical one,
- A coherency condition on pulled back 2-morphisms over Y^[5].

Multigerbes

Chris Kottke

Gerbes

Higher gerbes

loop spaces Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.

 \blacktriangleright A bundle 2-gerbe (L, Z, Y, X) is a "simplicial bundle gerbe"

- ▶ A locally split map $Y \longrightarrow X$,
- ightharpoonup A gerbe $\mathbb{L} = (L, Z, Y^{[2]}),$
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,
- ▶ A 2-morphism (did I mention gerbes have 2-morphisms?) relating the induced trivialization of $\delta^2 \mathbb{L}$ to the canonical one,
- A coherency condition on pulled back 2-morphisms over Y^[5].
- ▶ (L, Z, Y, X) has a well-defined characteristic class $C(L, Z, Y, X) \in H^4(X; \mathbb{Z})$.

Multigerbes

Chris Kottke

Gerbes

gerbes Relation Stevenson: gerbes have pullbacks, trivializations, morphisms, so we can play the same game again.

▶ A bundle 2-gerbe (L, Z, Y, X) is a "simpicial bundle gerbe"

- ightharpoonup A locally split map $Y \longrightarrow X$,
- A gerbe $\mathbb{L} = (L, Z, Y^{[2]})$,
- A trivialization of $\delta \mathbb{L} = p_0^* \mathbb{L} \otimes p_1^* \mathbb{L}^{-1} \otimes p_2^* \mathbb{L}$ over $Y^{[3]}$,
- ► A 2-morphism (did I mention gerbes have 2-morphisms?) relating the induced trivialization of $\delta^2 \mathbb{L}$ to the canonical one,
- ► A coherency condition on pulled back 2-morphisms over Y^[5].
- ▶ (L, Z, Y, X) has a well-defined characteristic class $C(L, Z, Y, X) \in H^4(X; \mathbb{Z})$.
- ▶ For higher gerbes $(H^{\geq 5}(X; \mathbb{Z}))$, higher and more complicated coherency conditions will appear.
- ▶ The roles of *Y* and *Z* are very asymmetric.

Chris Kottke

Higher gerbes

loop spaces A new version of 2-gerbes:

▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ locally split.

loop spaces

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ locally split.
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ locally split forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger.

Bigerbes

Multigerbes

Chris Kottke

Gerbe

Higher gerbes

loop spaces

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ locally split.
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ locally split forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger.
- ▶ Fill out the diagram by fiber products.

loop spaces

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ locally split.
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ locally split forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger.
- Fill out the diagram by fiber products.

Bigerbes

Multigerbes

Chris

Kottke

Gerbes

Higher gerbes

loop spaces

- ▶ Start with $Y \longrightarrow X$ and $Z \longrightarrow X$ locally split.
- ▶ Take $W \longrightarrow Y$, $W \longrightarrow Z$ locally split forming a commutative square. Minimal choice: $W = Y \times_X Z$, but typically W will be larger.
- ▶ Fill out the diagram by fiber products.
- $\blacktriangleright W^{[\bullet,\bullet]}$ forms a bisimplicial space over X.

Bigerbes

Multigerbes

Chris Kottke

Gerb

Higher gerbes

loop spaces

Definition

A bundle bigerbe is a "bisimplicial line bundle" over $W^{[\bullet,\bullet]}$, i.e., a line bundle L over $W^{[2,2]}$, with trivializations of $\delta_0 L$ and $\delta_1 L$, such that the induced trivializations of $\delta_0 \delta_1 L$ agree and which induce the canonical trivializations of $\delta_1^2 L$ and $\delta_0^2 L$.

Bigerbes

Multigerbes

Chris Kottke

Gerbe

Higher gerbes

loop spaces

Definition

A bundle bigerbe is a "bisimplicial line bundle" over $W^{[\bullet,\bullet]}$, i.e., a line bundle L over $W^{[2,2]}$, with trivializations of $\delta_0 L$ and $\delta_1 L$, such that the induced trivializations of $\delta_0 \delta_1 L$ agree and which induce the canonical trivializations of $\delta_1^2 L$ and $\delta_0^2 L$.

- ▶ Products, inverses, pull backs straightforward to define.
- ▶ A trivialization is an isomorphism $L \cong \delta_1 Q$ (equivalently $L \cong \delta_0 Q'$) for a line bundle Q over $W^{[1,2]}$ (Q' over $W^{[2,1]}$).

Theorem

A bundle bigerbe (L, W, X) has a well-defined characteristic class $C(L) \in H^4(X; \mathbb{Z})$, with

$$C(L^{-1}) = -C(L),$$

$$C(L \otimes L') = C(L) + C(L'),$$

$$C(f^*L) = f^*C(L).$$

C(L) = 0 if and only if L is trivial. C(L) = C(L') if and only if L and L' are stably isomorphic.

Theorem

A bundle bigerbe (L,W,X) has a well-defined characteristic class $C(L) \in H^4(X;\mathbb{Z})$, with

$$C(L^{-1}) = -C(L),$$

$$C(L \otimes L') = C(L) + C(L'),$$

$$C(f^*L) = f^*C(L).$$

C(L) = 0 if and only if L is trivial. C(L) = C(L') if and only if L and L' are stably isomorphic.

► This generalizes in a straightforward manner to higher degree (Exercise), leading to *bundle multigerbes*.

Theorem

A bundle multigerbe L of degree n has a well-defined characteristic class $C(L) \in H^{2+n}(X; \mathbb{Z})$, with

$$C(L^{-1}) = -C(L),$$

$$C(L \otimes L') = C(L) + C(L'),$$

$$C(f^*L) = f^*C(L).$$

C(L) = 0 if and only if L is trivial. C(L) = C(L') if and only if L and L' are stably isomorphic.

► This generalizes in a straightforward manner to higher degree (Exercise), leading to *bundle multigerbes*.

Bigerbes and Čech cohomology

Multigerbes Chris Kottke

Gerbes Higher

gerbes Relatio Taking Čech cochains with respect to a certain class of covers, we obtain a triple complex $(\check{C}^{\bullet}(W^{[\bullet,\bullet]};\mathbb{C}^*),d,\delta_0,\delta_1)$.

▶ The simplicial complexes $(\check{C}^p(W^{[\bullet,q]};\mathbb{C}^*),\delta_0)$ and $(\check{C}^p(W^{[q,\bullet]};\mathbb{C}^*),\delta_1)$ are exact; in fact they admit chain homotopy contractions (commuting with each other, but not with the Čech differential).

Bigerbes and Čech cohomology

Multigerbes Chris

Kottke

Higher gerbes

loop spaces Taking Čech cochains with respect to a certain class of covers, we obtain a triple complex $(\check{C}^{\bullet}(W^{[\bullet,\bullet]};\mathbb{C}^*),d,\delta_0,\delta_1)$.

- ▶ The simplicial complexes $(\check{C}^p(W^{[\bullet,q]};\mathbb{C}^*),\delta_0)$ and $(\check{C}^p(W^{[q,\bullet]};\mathbb{C}^*),\delta_1)$ are exact; in fact they admit chain homotopy contractions (commuting with each other, but not with the Čech differential).
- ► The tototal cohomology of $(\check{C}^{\bullet}(W^{[\bullet,\bullet]};\mathbb{C}^*),d,\delta_0,\delta_1)$ is isomorphic to $\check{H}^{\bullet}(X;\mathbb{C}^*)$.

to $\check{H}^{\bullet}(X; \mathbb{C}^*)$.

 $[L] \in \check{C}^1(W^{[2,2]}; \mathbb{C}^*).$

a triple complex $(\check{C}^{\bullet}(W^{[\bullet,\bullet]};\mathbb{C}^*),d,\delta_0,\delta_1)$.

gerbes

Multigerbes

Chris Kottke

Higher

$\check{C}^p(Z^{[3]}) \stackrel{\delta_0}{\rightarrow} \check{C}^p(W^{[1,3]}) \stackrel{\delta_0}{\rightarrow} \check{C}^p(W^{[2,3]}) \stackrel{\delta_0}{\rightarrow} \check{C}^p(W^{[3,3]})$ $\check{C}^p(Z^{[2]}) \xrightarrow{\delta_0} \check{C}^p(W^{[1,2]}) \xrightarrow{\delta_0} \check{C}^p(W^{[2,2]}) \xrightarrow{\delta_0} \check{C}^p(W^{[3,2]})$ $\begin{array}{ccc} \delta_1 \uparrow & \delta_1 \uparrow & \delta_1 \uparrow & \delta_1 \uparrow \\ \check{C}^p(Z) \xrightarrow{\delta_0} \check{C}^p(W^{[1,1]}) \xrightarrow{\delta_0} \check{C}^p(W^{[2,1]}) \xrightarrow{\delta_0} \check{C}^p(W^{[3,1]}) \end{array}$ $\check{C}^p(X) \xrightarrow{\delta_0} \check{C}^p(Y) \xrightarrow{\delta_0} \check{C}^p(Y^{[2]}) \xrightarrow{\delta_0} \check{C}^p(Y^{[3]})$ ▶ The simplicial complexes $(\check{C}^p(W^{[\bullet,q]};\mathbb{C}^*),\delta_0)$ and $(\check{C}^p(W^{[q,\bullet]};\mathbb{C}^*),\delta_1)$ are exact; in fact they admit chain homotopy contractions (commuting with each other, but not with the Čech differential). ▶ The tototal cohomology of $(\check{C}^{\bullet}(W^{[\bullet,\bullet]};\mathbb{C}^*),d,\delta_0,\delta_1)$ is isomorphic

 $ightharpoonup C(L) \in \check{H}^3(X; \mathbb{C}^*) \cong H^4(X; \mathbb{Z})$ is the image of the pure cocycle

Multigerbes

Chris Kottke

Relation to spaces

- ▶ Suppose *X* is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .

Multigerbes

Chris Kottke

Gerbes

Relation to loop spaces

- ▶ Suppose X is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .
- ▶ In this case, the gerbe product is also known as the "fusion product" (Stolz-Teichner, Waldorf), and *L* is a "fusion line bundle".

Multigerbes

Chris Kottke

Gerbes

Relation to loop spaces

- ▶ Suppose X is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .
- ▶ In this case, the gerbe product is also known as the "fusion product" (Stolz-Teichner, Waldorf), and *L* is a "fusion line bundle".
- Likewise, if X is simply connected, with $Y=Z=\mathcal{P}_*X$ and $W=\mathcal{P}_*\mathcal{P}_*X$, Then $W^{[2,2]}=\Omega^2X$, the double based loop space of X.
- Every class in $H^4(X;\mathbb{Z})$ is represented by a bundle bigerbe $(L,\mathcal{P}_*X,\mathcal{P}_*\mathcal{P}_*X,X)$, equivalently a "doubly fusion" line bundle $L\longrightarrow \Omega^2X$. (c.f. Carey Johnson Murray Stevenson Wang)

Multigerbes

Chris Kottke

Gerbes

Relation to loop spaces

- ▶ Suppose X is connected, and take $Y = \mathcal{P}_*X$, the based path space.
- ▶ Then $Y^{[2]} = \mathcal{P}_*^{[2]} X \cong \Omega X$, the based loop space.
- Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe (L, \mathcal{P}_*X, X) , i.e., a simplicial line bundle L on ΩX .
- ▶ In this case, the gerbe product is also known as the "fusion product" (Stolz-Teichner, Waldorf), and *L* is a "fusion line bundle".
- Likewise, if X is simply connected, with $Y = Z = \mathcal{P}_*X$ and $W = \mathcal{P}_*\mathcal{P}_*X$, Then $W^{[2,2]} = \Omega^2X$, the double based loop space of X.
- Every class in $H^4(X;\mathbb{Z})$ is represented by a bundle bigerbe $(L,\mathcal{P}_*X,\mathcal{P}_*\mathcal{P}_*X,X)$, equivalently a "doubly fusion" line bundle $L\longrightarrow \Omega^2X$. (c.f. Carey Johnson Murray Stevenson Wang)

Proposition

If X is k-connected, then every class in $H^{3+k}(X; \mathbb{Z})$ is represented by a multigerbe on $\Omega^{2+k}X$, (aka a 2+k-fold fusion line bundle).

Existence: free loop spaces

Multigerbes

Chris Kottke

Gerbes

Highe

Relation to loop spaces

- ▶ Alternatively, take $Y = \mathcal{P}X$, the free path space, fibering over X^2 .
- ▶ Then $Y^{[2]} = \mathcal{P}^{[2]}X \cong \mathcal{L}X$, the free loop space.

Existence: free loop spaces

Multigerbes

Chris Kottke

Gerbes

Relation to loop spaces

- ▶ Alternatively, take $Y = \mathcal{P}X$, the free path space, fibering over X^2 .
- ▶ Then $Y^{[2]} = \mathcal{P}^{[2]}X \cong \mathcal{L}X$, the free loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe $L = (L, \mathcal{P}X, X^2)$ on $\mathcal{L}X$, with the additional condition of a trivialization of the alternating product of pullbacks to the "figure-of-eight" loop space [K-Melrose, 2013].
- ► Figure-of-eight is yet another simplicial condition "over" the simplicial space

$$X \longleftarrow X^2 \longleftarrow X^3$$

guaranteeing that the class in $H^3(X^2; \mathbb{Z})$ comes from $H^3(X; \mathbb{Z})$.

Existence: free loop spaces

Multigerbes

Chris Kottke

Gerbes

Relation to loop spaces

- ▶ Alternatively, take $Y = \mathcal{P}X$, the free path space, fibering over X^2 .
- ▶ Then $Y^{[2]} = \mathcal{P}^{[2]}X \cong \mathcal{L}X$, the free loop space.
- ▶ Every class in $H^3(X; \mathbb{Z})$ is represented by a bundle gerbe $L = (L, \mathcal{P}X, X^2)$ on $\mathcal{L}X$, with the additional condition of a trivialization of the alternating product of pullbacks to the "figure-of-eight" loop space [K-Melrose, 2013].
- ► Figure-of-eight is yet another simplicial condition "over" the simplicial space

$$X \longleftarrow X^2 \longleftarrow X^3$$

guaranteeing that the class in $H^3(X^2; \mathbb{Z})$ comes from $H^3(X; \mathbb{Z})$.

Proposition

Every class in $H^{3+k}(X;\mathbb{Z})$ is represented by a multisimplicial (and multi figure-of-eight) line bundle on $\mathcal{L}^{2+k}X$.

Multigerbes

Chris Kottke

Highe

Relation to loop spaces

Multigerbes

Chris Kottke

Gerbes

Highe gerbe

Relation to loop spaces

- ▶ Take $\alpha \in H^3(X; \mathbb{Z})$ and $L \longrightarrow \mathcal{L}X$ with $DD(L, \mathcal{P}X, X^2) = \alpha$.
- ▶ $c_1(L) \in H^2(\mathcal{L}X; \mathbb{Z})$ is the *transgression* of α :

▶ Loses information since it forgets the simplicial properties of *L*.

Multigerbes

Chris Kottke

Gerbes

gerbe

Relation to loop spaces ▶ Take $\alpha \in H^3(X; \mathbb{Z})$ and $L \longrightarrow \mathcal{L}X$ with $DD(L, \mathcal{P}X, X^2) = \alpha$.

▶ $c_1(L) \in H^2(\mathcal{L}X; \mathbb{Z})$ is the *transgression* of α :

- ▶ Loses information since it forgets the simplicial properties of *L*.
- ► [K.-Melrose, 2015]: "Loop-fusion" Čech cohomology $H^{\bullet}_{lf}(\mathcal{L}X;\mathbb{Z})$ such that transgression factors through an isomorphism

$$H^k(X;\mathbb{Z}) \stackrel{\cong}{\longrightarrow} H^{k-1}_{\mathrm{lf}}(\mathcal{L}X;\mathbb{Z}) \longrightarrow H^{k-1}(\mathcal{L}X;\mathbb{Z}).$$

Multigerbes

Chris Kottke

Gerbe

Higher gerbes Relation to

spaces

- ▶ Take $\alpha \in H^3(X; \mathbb{Z})$ and $L \longrightarrow \mathcal{L}X$ with $DD(L, \mathcal{P}X, X^2) = \alpha$.
- ▶ $c_1(L) \in H^2(\mathcal{L}X; \mathbb{Z})$ is the *transgression* of α :

$$H^{k}(X;\mathbb{Z}) \xrightarrow{\operatorname{ev}^{*}} H^{k}(\mathbb{S}^{1} \times \mathcal{L}X;\mathbb{Z})$$

$$\downarrow^{\int_{\mathbb{S}^{1}}} H^{k-1}(\mathcal{L}X;\mathbb{Z})$$

- ▶ Loses information since it forgets the simplicial properties of *L*.
- ► [K.-Melrose, 2015]: "Loop-fusion" Čech cohomology $H^{\bullet}_{lf}(\mathcal{L}X;\mathbb{Z})$ such that transgression factors through an isomorphism

$$H^k(X;\mathbb{Z}) \stackrel{\cong}{\longrightarrow} H^{k-1}_{\mathrm{lf}}(\mathcal{L}X;\mathbb{Z}) \longrightarrow H^{k-1}(\mathcal{L}X;\mathbb{Z}).$$

Theorem

On $\mathcal{L}^{\ell}X$ there is a well-defined loop-fusion cohomology $\check{H}^{\bullet}_{lf}(\mathcal{L}^{\ell}X;\mathbb{Z})$ through which iterated transgression factors as an isomorphism:

$$H^k_{\mathrm{lf}}(\mathcal{L}^{\ell}X;\mathbb{Z}) \stackrel{\cong}{\longrightarrow} H^{k-n}_{\mathrm{lf}}(\mathcal{L}^{\ell+n}X;\mathbb{Z}).$$

Chern-Simons 2-gerbe as a bigerbe

Multigerbes

Chris Kottke

Gerbes

gerbe

Relation to loop spaces ▶ Let X be a manifold and $E \longrightarrow X$ a principal G bundle for a simple, simply connected Lie group G (e.g. $G = \operatorname{Spin}$).

▶ Then $\mathcal{L}E \longrightarrow \mathcal{L}X$ is a $\mathcal{L}G$ bundle, and $\mathcal{L}G$ has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\mathcal{L}G} \longrightarrow \mathcal{L}G \longrightarrow 1$$

Chern-Simons 2-gerbe as a bigerbe

Multigerbes

Chris Kottke

Gerbes

gerbe

Relation to loop spaces ▶ Let X be a manifold and $E \longrightarrow X$ a principal G bundle for a simple, simply connected Lie group G (e.g. $G = \mathrm{Spin}$).

▶ Then $\mathcal{L}E \longrightarrow \mathcal{L}X$ is a $\mathcal{L}G$ bundle, and $\mathcal{L}G$ has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\mathcal{L}\mathcal{G}} \longrightarrow \mathcal{L}\mathcal{G} \longrightarrow 1$$

▶ A lift of $\mathcal{L}E$ to a $\widehat{\mathcal{L}G}$ -bundle may be thought of as a "spin structure" on loop space [Atiyah, Witten].

Chern-Simons 2-gerbe as a bigerbe

Multigerbes Chris Kottke

Gerbe

Relation to loop spaces Let X be a manifold and $E \longrightarrow X$ a principal G bundle for a simple, simply connected Lie group G (e.g. $G = \mathrm{Spin}$).

▶ Then $\mathcal{L}E \longrightarrow \mathcal{L}X$ is a $\mathcal{L}G$ bundle, and $\mathcal{L}G$ has a central extension

$$1 \longrightarrow \mathrm{U}(1) \longrightarrow \widehat{\mathcal{L}G} \longrightarrow \mathcal{L}G \longrightarrow 1$$

A lift of $\mathcal{L}E$ to a $\widehat{\mathcal{L}G}$ -bundle may be thought of as a "spin structure" on loop space [Atiyah, Witten].

Proposition

The lifting bundle gerbe $(u^*\widehat{\mathcal{LG}},\mathcal{LE},\mathcal{LX})$ is a bundle bigerbe associated to the bisimplicial space generated by

$$E^2 \longleftarrow \mathcal{P}E$$

$$\downarrow \qquad \qquad \downarrow$$

$$X^2 \longleftarrow \mathcal{P}X$$

with Dixmier-Douady class $\frac{1}{2}p_1(E) \in H^4(X; \mathbb{Z})$.

c.f. McLaughlin, Redden, CJMSW, Waldorf, K.-Melrose.

Questions and future directions

Multigerbes

Chris Kottke

High

Relation to loop spaces

- ► Connection structures, representations of differential cohomology when *X*, *Y*, *Z*, *W* are manifolds.
- ▶ Satisfactory notion of morphisms for multigerbes.
- ▶ On $\mathcal{L}X$ (and generally \mathcal{L}^kX), equivariance of L with respect to action of $\operatorname{Diffeo}^+(\mathbb{S}^1)$ (and its central extension) [c.f. Brylinski].
- ▶ Loop-fusion K-theory of $\mathcal{L}X$ and $\mathcal{L}^{\ell}X$.