CS500-Data Science Tools and Technique

K-Nearest Neighbor (KNN)
A Supervised Machine Learning Algorithm

Bahar Ali PhD Scholar, National University Of Computer and Emerging Sciences, Peshawar.

K Nearest Neighbor & Neural Networks Can we LEARN to recognise a rugby player?

What are the "features" of a rugby player?

Rugby players = short + heavy?

Ballet dancers = tall + skinny?

Rugby players "cluster" separately in the space.

K Nearest Neighbors

Step 1: Determine the value for K

Step 2: Calculate the distances between the new input (test data) and all the training data. The most commonly used metrics for calculating distance are **Euclidean, Manhattan and Minkowski**

Step 3: Sort the distance and determine k nearest neighbors based on minimum distance values

Step 4: Analyze the category of those neighbors and assign the category for the test data based on majority vote

Step 5: Return the predicted class

1. Measure distance to all points

- 1. Measure distance to all points
- 2. Find closest "k" points

← (here k=3, but it could be more)

- 1. Measure distance to all points
- 2. Find closest "k" points
- 3. Assign majority class

← (here k=3, but it could be more)

"Euclidean distance"

Euclidean distance still works in 3-d, 4-d, 5-d, etc....

$$d = \sqrt{(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2}$$

$$x = Height$$

 $y = Weight$
 $z = Shoe size$

Choosing the wrong features makes it difficult, too many and it's computationally intensive.

Possible features: - Shoe size 🧹 - Height - Age 🧹 - Weight Shoe size Age

• Example: Classify whether a customer will respond to a survey question using a 3-Nearest Neighbor classifier

Customer	Age	Income	No. credit cards	Response
John	35	35K	3	No
Rachel	22	50K	2	Yes
Hannah	63	200K	1	No
Tom	59	170K	1	No
Nellie	25	40K	4	Yes
David	37	50K	2	?

• Example : 3-Nearest Neighbors

• Example : 3-Nearest Neighbors

Three nearest ones to David are: No, Yes, Yes

Example : 3-Nearest Neighbors

Three nearest ones to David are: No, Yes, Yes

Artificial Neural Network

Biological Neuron/Biological Neural Network

Artificial Neuron/ Artificial Neural Network

Artificial Neuron/ Artificial Neural Network

Artificial Neural Network Layers

