EE5351: CONTROL SYSTEM DESIGN LABORATORY 03

NAME : BANDARA LRTD

REG No. : EG/ 2021/ 4433

GROUP NO: CE07

DATE : 24/01/2025

Table 1: Summative Laboratory Form

Semester	05
Module Code	EE5351
Module Name	Control System Design
Lab Number	03
Lab Name	Laboratory Section 3
Lab conduction date	2024.11.05
Report Submission date	2025.01.24

Contents

1	OBSERVATION	6
2	CALCULATION	7
3	REFERENCES	13

List of Tables

Table 1: Summative Laboratory Form

Table 2: Observations 6

List of Figures

Figure 1: Simplified t/f Simulink Model	8
Figure 2: By creating closed loop function giving input as 1	8
Figure 3: Output from the closed loop function	9
Figure 4: Root Locus of DC Motor Position Control System	9
Figure 5: Math Lab code for increase the Omega by 10%	10
Figure 6: Root Locus for By increasing the omega	10
Figure 7: MathLab code for implement Step response	11
Figure 8: Time response before and after changing the omega	11
Figure 9: Time Domain Response $[\theta m(t)]$ of the closed loop	12
Figure 10: Design a compensator for the DC motor position control system	12

1 OBSERVATION

Table 1: Observations

Terminal Resistance (R _m)	8.4	Ω
Rotor inductance (L _m)	1.16	mH
Equivalent(J _{en})	2.09×10 ⁻⁵	kgm²
Torque constant (K _t)	0.042	Nm/A
Voltage constant (K _m)	0.042	Nm/A

2 CALCULATION

Q1.

i.

1. Voltage equation:

$$V_m = i_m R_m + L_m \frac{di_m}{dt} + e_b$$

2. Back EMF equation:

$$e_b = k_m \omega_m$$

3. Torque equation:

$$T_m = J_e q \frac{d\omega_m}{dt}$$

4. Motor torque relationship:

$$T_m = i_m k_t$$

ii.

By using equations (1), (2), (3), and (4):

$$\frac{\theta_m(s)}{V_m(s)} = \frac{k_t}{s\{J_{eq}s[R_m + L_m s] + k_m k_t\}}$$

$$\frac{\theta_m(s)}{V_m(s)} = \frac{0.042}{2.4244 \times 10^{-8} s^3 + 17.556 \times 10^{-5} s^2 + 1.764 \times 10^{-3} s}$$

Due to the negligible rotor inductance the simplified version is:-

$$\frac{\theta_m(s)}{V_m(s)} = \frac{k_t}{s\{J_{eq}sR_m + k_mk_t\}}$$

$$\frac{\theta_m(s)}{V_m(s)} = \frac{0.042}{1.756 \times 10^{-4}S^2 + 1.764 \times 10^{-3}S}$$

iii.

Figure 1: Simplified t/f Simulink Model

iv. By considering the closed loop transfer function

$$\frac{\theta_m(s)}{\theta_{ref}(s)} = \frac{\frac{\theta_m(s)}{V_m(s)}}{1 + \frac{\theta_m(s)}{V_m(s)}}$$

$$\frac{\theta_m(s)}{\theta_{ref}(s)} = \frac{0.042}{1.756 \times 10^{-4} S^2 + 1.764 \times 10^{-3} S + 0.042}$$

V. - Simulink

ULATON

DEBUG

DEBUG

Stop Time

Library

Library

PREPARE

STOP

FAR Restart

SANLATE

FORWARD

Stop Time

Stop Time
Stop Time

Stop Time

Figure 2: By creating closed loop function giving input as 1

Figure 3: Output from the closed loop function

Q2.

I.

% Define numerator and denominator of the transfer function num = 0.042; den = [17.556e-5, 1.764e-3, 0.042];

% Create the transfer function G = tf(num, den);

% Plot the root locus rlocus(G); title('Root Locus of DC Motor Position Control System'); grid on;

Figure 4: Root Locus of DC Motor Position Control System

```
Characteristic equation given as;

1.756 \times 10^{-4}S^2 + 1.764 \times 10^{-3}S + 0.042 = 0

By calculating the \omega given as

2\varepsilon\omega_n = 10.0455

\omega_n = 10.05
```

III.

Figure 5: Math Lab code for increase the Omega by 10%

Figure 6: Root Locus for By increasing the omega

```
% Plot time response of both systems
figure;
step(G, 'b', G_new, 'r');
title('Time Response: Original vs Updated System');
grid on;
```

Figure 7: MathLab code for implement Step response

Figure 8: Time response before and after changing the omega

Figure 10: Design a compensator **for** the DC motor position control system

Figure 9: Time Domain Response $[\theta m(t)]$ of the closed loop

3 REFERENCES

```
    [ "Control Tutorial," [Online]. Available:
    https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlRootLo
    ] cus.
    [ [Online]. Available: https://medium.com/@csoham358/a-hackers-guide-to-understanding-controllers-62fb26bed952.
    [ "LibreTexts," [Online]. Available:
    https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_
    ] Dynamics_and_Controls_(Woolf)/09%3A_Proportional-Integral-Derivative_(PID)_Control/9.02%3A_P_I_D_PI_PD_and_PID_control.
```