(Week 4) Graph Seach motivations 1. cheeb if a nebwork is connected (get from A to B) 2 down ny directions (path fliraugh networks 3. (sudoku?) - formulate a plan 4. compute "preces" (companies) of a graps clusterny, structure of wel graps, etc

General Graph Search @ don't explore everything time Goal (mith) frame starting Generic Algor. Hum (grayen G, verbers) - unitrally only s is explored - while possible - choos an edge (u, v) u, the in explored and is unexplored - mark it explored so it doesn't explore trice and frond everything findable

Claim at the end of the algorithm, is explored G has a parthe from s to v BIS IS DES how to select a node to explore next? both O(men) · Breadth- First Search 1375 FIFO - explores in "layers" - can compute shortest path - can compute connected components of an underected graph · Depth - Kirst Scard UFS LIPO/recursion - explore agressively, bochbrack only when necessary compute topological ordering of a directed regular grape conquete connected congresses

BES a explore in "layers · Shorbest path · connected components BFS (graph G, start vertex s) [all nodes are initially unexplored] - mark s as explored - lela = queue, initialized with 5 -while Q+Q vernore V - first from Q for each eggs (ie, w) if w - unexproved mark was explored add w to a

Basie BES progrestres at the end of BFS, v explored => Claim#1 Ghas a path from s to re (see generic algorithm) Claim to 2 O(men) running time I in seached from 5 by code ex inspection Application: Shorbest Poth Conquete dest (v) the fewest number of
lagers on the path from 5 to ce

extra code distlu)= 1 0 un balization when considering edge (10, 120) if we unexplored set dest(w) = dest(re) + 1 at termination dist(w) = 1 (=> Claim: Vis in the it layer distro Special property of BSE

Application: Underected Connectivity bet G = (V, E)
be an underected
graph 0-0 1 6 6 Connected components -the pieces of G 6 0 2 0)5 Cornal Definition: equivalence closses of the relation Werv => Conservents there is a u-u porta in 6 Goal: compule all connected components Why? is network disconnected? greeph is succeization clustering (quick and dirty)

Connected Components M [assume sooies Cahelled I to n] for inlean if i not explored BFG(Gi) Running times O(n em)
O(1) per node O(1) per ecigo in BFS Dept Depth- First Search explore agressively Kun time bockbrack when necessary O(n+m)

- computes a topological ordering of a diverbed acyclic graph - and strongly connected components OFS: sauce as BFS, but # using stack Recursive version DFS (grouph G, start vertex 5) more s as explored for every eage (s, ee) if (a) is unexplored DFS(G, w) Clown 1 at the end of the algorithm, there exists a porth from 5 to we in Claim 2: Running fine is O(arms) Reachable from 5

Opological sort A topological ordering of a directed graph G is a labelling of G's nodes such that 1. the flu)'s are the set 11, ..., ng 2 (4,0) EG => f(u) < f(v) 1) first case 3 second Case all edges go forward.

Motivation Sequence fasts while respecting all precedence con strains (courses at ani, etc) If 6 has a cycle, it has the topological ordering no directed cycle > Theorems con conquebe topological ordering in O (men) Stranget forward Solution every directed acyclis graph has a syn sinh vertes 2001

To compute topological ordering of a sinh vertex of a V recurse on 6- Euz (conquering backwords, finding a sinh on each iteration) Why does it work? when wis assigned to position i all outcoing acct arcs already deleted = all lead to later vertices in But it can be computed comy DFS very quickly DES (ignath & verters)
Hatts mark's expressed

So we fond a sink DFS (graph G, vertex 5) and then backward to the beginning - for every edge (s, v) -if a not visited OFS 8 math a explored 075 (G, a) set f(s) = current-label & this wil airent-label = airent label -1 finda f(x) = 1 f(x) = 3 f(x) = 3 f(x) = 3 f(x) = 4 f(x) = 2 f(x) = 4 f(x) = 2 f(x) = 2 f(x) = 3 f(x) = 3and here in Soul a Called will be assigned DFS-loop (graph 6) verter 5) mark all wades unexplored for each verbes global entering it v not express DFS (Gv)

Correctness if (u, v) is an lage, f(u) < f(u) fu) (iv) Case 1 a visited by DE before w before the call to te (DPS!) => f(v) > f(u) w & visited before u, Case 2 v's call finished before u's even starts f(u) > f(u)

Computing Strong Components Strongly connected you com get to any foint from any point Romal Reforebon (SCCs) - of a directed graph 6 are the equivalence classes of the relation U -> V (=) there exists a path u - U and a path v - u in & 1.8-

Brased of DFS 3
. Where to start?
- W. Pl depends on the starting point with good s.p. we may discover a SCC
- o with bad, the whole graph
Kosaraju's Tho-Ross Alponthum
Kosaraju s
1 iet Grew = Gwith all ares vouersed
let f(v) = "finishing time"
2 Rem PPS - Coop on Grev let f(v) = "finishing time" conquite magical 3. Run PPS - Loop on G
processing nodes in descover the SCG: decreasing order one Gone of finishing time
of pristing time
[SCCs - hodes with the same beader"]

DFS-loop (graph a) global var t=0 Il number of nodes processed so for global S = NULL

mode

most recent mode

mitrated

mitrated Assume nodes tabelled I to n for i= h down to 1 if I not yet explored DFS (G, c) DPS (graph G, node i) mark i as explored leader (i) = nade s for each arc(i,)) in G: if j not yet explored DPS(Gi) - from shop time ter; set ((i) = t

Example What is a possible set of finishing times for the nodes 1. 9 When the DFS - coop is executed on the grapm! leader (i) 19 19 19 19 19 19 t=0. 123456789 12 DPS(G9) for 9 to 1: maris leader (5) 2 9 9 not get explored and call 6. DFS (6,9) mark 6 +2 DFS(6,8) =4 1 DFS(6,8) DFS(6,3) 6/ leader (2) 29 mark 8 mark 3 leader (8) = 9 beaucis) = 9 t=1 | D=5(6,5 t=3 t=4 f(6) 21 maru 5 f(8)=3 f(3)= 4 ilaorer (5) = 9

if from 6 go to 3, 7318251946 = t they from 7 start from 9 fl6725 8 fca)= 4 (4) 28 f(3) 21 6(4)28 f(2)=3 (Sisalready ings ted) the point of the first posts is to compute Example : Second Pass a magical ordering (these finishing times) how we will reproce on gonal node names with finishing times and it's run on the original graph, not reverted (as the to 15t pass) 70-00 Clader = 9 don't held to compute times in second pass nine is our leader. So let's Stort from 9 next is 6 next is

10

Running Time: 2-BPS = O(men) The correctness Ley Lemma two disparent GCCs: $\begin{pmatrix} C_3 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & c_1 \end{pmatrix}$ let f(w) = frostrong times of DFS-loop in Grew then max f(re) < max f(re) rec_1 rec_2 Corollary hashing time in a sink SCC" huaso
finishing for (Cs)
fine

fine

for the fine

for the for the forme

for the to - smalest no outgoing

by corollary! End pass of DFS-loop begnes somewhere in a south - First call to DPS discours nothing else! - Swoud Pass : PES (G, E) pelle oft "
the SCCs " one by-one in reverse fopological order Web Graph vertices - web pages Edges - byper Guls