Définition:

Déformation:

Déformation:

$$\alpha = \theta L$$

Effort intérieur:

$$M_T = M$$

Contrainte tangentielle:

$$\tau = G \theta \rho$$

Moment quadratique:

$$I_0 = \frac{\pi . D^4}{32}$$

$$I_0 = \frac{\pi}{32} (D^4 - d^4)$$

Relation entre MT et θ :

$$\mathbf{M}_{\mathrm{T}} = \mathbf{G}\mathbf{\theta}\mathbf{I}_{\mathbf{0}}$$

M_T: moment de torsion (N.mm)

G: module d'élasticité transversal (MPa)

 θ : angle unitaire de torsion (rd.mm⁻¹)

 I_0 : moment quadratique par rapportà G (mm⁴)

Relation entre MT et τ :

$$\tau = \frac{M_T}{I_0} . \rho$$

Concentration de contrainte :

Contrainte:

$$\tau_{maxi} = K_{ts} \tau_0 \qquad \text{avec} \qquad \tau_0 = \frac{Mt}{\underline{I_G}}$$