Ψηφιακή Σχεδίαση - Εργασία εξαμήνου

Τσακαλέρης Κωνσταντίνος (dai18071)

Γεννήτρια άρτιας ισοτιμίας

Επειδή δεν διευκρινιζόταν στην εκφώνηση, σχεδίασα γεννήτρια τριων bit (τέσσερα με το bit ισοτιμίας). Η σχεδίαση είναι παρόμοια και για παραπάνω bit.

πίνακας αληθείας:

, , ,			
i0	i1	i2	parity bit
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(όλα τα screenshots από τα αποτελέσματα βρίσκονται και στον φάκελο results)

αποτελέσματα περιγραφής ροής δεδομένων:

αποτελέσματα δομικής περιγραφής:

Κωδικοποιητής 8 σε 3

πίνακας αληθείας:

,	Είσοδοι								Έξοδοι		
i7	i6	i5	i4	i3	i2	i1	i0	d2	d1	d0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

αποτελέσματα περιγραφής ροής δεδομένων:

αποτελέσματα δομικής περιγραφής:

Αποπολυπλέκτης 1 σε 8 πίνακας αληθείας:

Είσοδος	σοδος Σήματα ελέγχου		Έξοδοι								
i	s2	s1	s0	d7	d6	d5	d4	d3	d2	d1	d0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

αποτελέσματα περιγραφής ροής δεδομένων:

αποτελέσματα δομικής περιγραφής:

Μετρητής 4 bit

αποτελέσματα περιγραφής ροής δεδομένων:

αποτελέσματα δομικής περιγραφής:

Αφαιρέτης 4 bit

Σχεδίασα το κύκλωμα του αφαιρέτη χρησιμοποιώντας το παρακάτω κύκλωμα πλήρους αφαιρέτη:

Για το testbench επέλεξα να υλοποιήσω τις παρακάτω αφαιρέσεις. Σε περίπτωση που η διαφορά είναι αρνητική θα πρέπει να λάβουμε ως αποτέλεσμα το συμπλήρωμα ως προς 2 μείον ένα της απόλυτης τιμής της.

$\frac{10}{-\frac{1}{9}}$	$ \begin{array}{r} 1010 \\ -0001 \\ \hline 1001 \end{array} $
$\frac{6}{-4}$	$ \begin{array}{r} 0110 \\ -0100 \\ \hline 0010 \end{array} $
$ \begin{array}{c} 2 \\ -9 \\ -7 \end{array} $	0010 - 1001 (1) 1001

3 -15 -12	0011 - 1111 (1) 0100
$\begin{array}{c} 0 \\ -1 \\ -1 \end{array}$	0000 - 0001 (1) 1111
$ \begin{array}{r} 11 \\ -4 \\ \hline 7 \end{array} $	$ \begin{array}{r} 1011 \\ -0100 \\ \hline 0111 \end{array} $

αποτελέσματα περιγραφής ροής δεδομένων:

	0 , , , , , , , , , , ,	10,000	20,000	30,000	40,000	50,000
tb_x[3:0]	3 a	6	2	3	0	b
tb_y[3:0]	f1	4	9	f	1	4
tb_d[3:0]	4 9	2	9	4	r	7
tb_borrow[4:0]	18 2	0	12	18	1e	8
x[3:0]	3 a	6	2	3	0	þ
y[3:0]	f1	4	9	T .	1	4
d[3:0]	4 9	2	9	4	f	7
borrow[4:0]	18 2	0	12	18	1e	8

αποτελέσματα δομικής περιγραφής:

	0,,,,,,,,,	10,000	20,000	30,000	40,000	50,000
tb_x[3:0]	a	6	2	3	0	b
tb_y[3:0]	1	4	9	F	1	4
tb_d[3:0]	9	2	9	4	r	7
tb_borrow[4:0]	2	0	12	18	1e	

	0	10,000	20,000	30,000	40,000	50,000
tb_x[3:0]	a	6	2	3	0	þ
tb_y[3:0]	1	4	9	F	1	4
tb_d[3:0]	9	2	9	4		7
tb_borrow[4:0]	2	0	12	18	1e	8
x[3:0]	à	6	2	3	0	þ
y[3:0]	1	4	9	r	1	4
d[3:0]	9	2	9	4	f	7
borrow[4:0]	2	0	12	18	ie	8