More Graph Problems / Complexity Theory

- Can you trace a path through this graph that travels along each edge exactly once?
- Can you trace a path through this graph that visits each vertex exactly once?

 Given a graph G, is it possible to construct a path (or a cycle, i.e. a path starting and ending on the same vertex) that visits each edge exactly once?

 Given a graph G, is it possible to construct a path (or a cycle, i.e. a path starting and ending on the same vertex) that visits each edge exactly once?

 Key fact: there is an Eulerian circuit (or cycle) if and only if all vertices have even degree.

Intuition: If all vertices have an even degree, when you arrive at a vertex you must also have a

way out.

- Key fact: there is an Eulerian circuit (or cycle) if and only if all vertices have even degree.
 - Intuition: If all vertices have an even degree, when you arrive at a vertex you must also have a way out.
- There will still be an Eulerian path if exactly 2 of the vertices have odd degree

- Key fact: there is an Eulerian circuit (or cycle) if and only if all vertices have even degree.
 - Intuition: If all vertices have an even degree, when you arrive at a vertex you must also have a way out.
- There will still be an Eulerian path if exactly 2 of the vertices have odd degree
- Algorithm:
 - Start at any vertex v, and start walking a path until you return to v (keeping track of which edges have been used).
 - If any vertex u along your path still has unused edges, go back to step 1 and find a circuit starting at u, then add that new path in the middle of the first path where u was reached.
 - Continue until no more vertices have unused edges
 - \circ Runtime: O(|E|)

- Can you trace a path through this graph that travels along each edge exactly once?
- Can you trace a path through this graph that visits each vertex exactly once?

- Can you trace a path through this graph that travels along each edge exactly once? Polynomial Time Algorithm
- Can you trace a path through this graph that visits each vertex exactly once?

Hamiltonian Paths

• Given a graph *G*, is it possible to construct a path (or a cycle, i.e. a path starting and ending on the same vertex) that visits each vertex exactly once?

Hamiltonian Paths

 Given a graph G, is it possible to construct a path (or a cycle, i.e. a path starting and ending on the same vertex) that visits each vertex exactly once?

Hamiltonian Paths

- Given a graph *G*, is it possible to construct a path (or a cycle, i.e. a path starting and ending on the same vertex) that visits each vertex exactly once?
- It turns out... we don't know how to find these paths quickly.
- Hamiltonian Paths is in a class of problems called NP-complete.

Complexity Theory

- Computational Complexity Theory is about grouping problems by their "difficulty."
- P is the class of all yes-no problems than can be solved in polynomial time.
 - o FP is the "functional equivalent" class, i.e. it's not just yes-no problems
 - Most of the polynomial time algorithms we've discussed have a related yes-no version that is in P.
- NP is the class of all yes-no problems for which a given solution can be verified in polynomial time.
 - Everything in *P* is in *NP*.
- Important open problem in CS: does P=NP?
 - Most people think the answer is no

Complexity Theory

- NP-hard is the class of all problems that NP problems can be reduced to in polynomial time.
 - i.e. if you had a solution to one of the *NP*-hard problems, you would effectively have a solution to the *NP* problems.
- NP-complete problems are NP-hard problems that are also in NP.

Source: Wikipedia

Complexity Theory

- NP-hard does NOT mean unsolvable!
- It just means we don't know whether it's possible to solve in polynomial time.
- Many NP-hard problems have reasonable polynomial approximation algorithms.
 - May or may not do a lecture on approximation algorithms later in the semester.
- Some NP-hard problems even have reasonable pseudo-polynomial algorithms.
 - Recall the Knapsack problem it has a dynamic programming algorithm for finding an exact solution in O(Wn).
- Generally if you need to solve an NP-hard problem today, you're either going to need to sacrifice time or accuracy.

Reductions

- Transforming an instance of problem *A* into an instance of problem *B* in a way that allows the solution to *B* to inform the solution of *A*.
 - Or, more usefully, determining a general algorithm for doing so for arbitrary instances of problem *A*.
- Not just a concept in complexity theory we've actually already seen examples!
 - Recall the motivating examples for the max flow lecture: network connectivity, school dance, project management
 - Each of these were solved by reducing them to a max flow problem

Max Flow: School Dance

 Boys and girls need to be paired up for the school dance, but the kids only want to be paired with someone that they know. Is such a pairing possible?
 And if so, what's the pairing?

- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
 - The decision version is whether there exists a route whose total distance is no greater than *L*.

- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
 - The decision version is whether there exists a route whose total distance is no greater than *L*.
- Seems awfully similar to Hamiltonian cycle
 - They're both graph problems
 - They're both looking for cycles
 - Biggest difference seems to be the edge weights
- Idea: we know Hamiltonian cycle is NP-complete. If we can reduce Hamiltonian cycle to Traveling Salesman Problem, we'll know TSP is NP-complete as well.
 - o Intuitively: we know Hamiltonian cycle is hard. If it's easy to take the solution to TSP and determine a solution for Hamiltonian, that must mean TSP is hard too.

What's the polynomial time reduction?

- Given graph G = (V, E) for the Hamiltonian Cycle problem.
- Create a new graph G' = (V, V×V) where e(v_i, v_j) = 1 if (v_i, v_j) ∈ E, otherwise e(v_i, v_j) = 2.
- Input G' into the Traveling Salesman Solver, where we're deciding whether a
 route exists with total distance ≤|V|.
- The solution to this TSP will be exactly the solution to whether the original graph *G* contains a hamiltonian cycle.
 - o If TSP outputs yes for *G*', that means it found a path visiting all nodes while only using edges in *E* (otherwise it would have to use an edge with value 2 or visit a node more than once).
 - If a Hamiltonian cycle exists in G, then that cycle will also exist in G' and will have total distance equal to |V|, which would have TSP output yes.

- The reduction only involved creating *G*′, which can be done in polynomial time.
 - o Therefore, the "hard part" must be in the TSP solver.
- TSP is NP-hard.
- TSP is in NP; given a route it's easy to check that it is valid and has total distance ≤ L.
- TSP is NP-complete.
- Note that this proof relies on the assumption that Hamiltonian Cycle is NP-complete.
 - This is true, but we haven't proven it here.

- Can you trace a path through this graph that travels along each edge exactly once? Polynomial Time Algorithm
- Can you trace a path through this graph that visits each vertex exactly once?

- Can you trace a path through this graph that travels along each edge exactly once? Polynomial Time Algorithm
- Can you trace a path through this graph that visits each vertex exactly once? NP-complete