Example: Aquifer draining into Valles Marinevis

Consider a linear

confined aguifor draining into a suddenly created crack.

We have the following

model problem:

PDE:
$$\frac{2h}{2t} - D \nabla^2 h = 0 \quad x \in [0, \infty)$$

$$BC: h(0,t) = 0 h_a \uparrow$$

$$TC: h(x,0) = h_0$$

$$D = \frac{k}{s_s}$$
 hydraulic diffusivity $\begin{bmatrix} L^2 \\ T \end{bmatrix}$

Q: How fast does the head front propagate?

Scaling the problem

Because we are on a half space there is no external length scale, but IDE has units of length.

What about
$$x' = \frac{x}{\sqrt{Dt}}$$
?

Here we are not just scaling with parameters we are scaling independent variable +!

=> results in a new independent variable

By introducing $y \sim \frac{x}{\sqrt{f}}$ we reduce PDE to an ODE?

y is called the similarity variable and

the solution is said to be self-similar.

Q: What is the ODE?

First we scale
$$h' = \frac{h}{h_0}$$
 so that IC $h' = 1$

Solution:
$$h'(x,t) = \Pi(y(x,t))$$

Transform derivatives:

$$\frac{\partial h'}{\partial t} = \frac{d\Pi}{d\eta} \frac{\partial h}{\partial x}$$

$$\frac{\partial h'}{\partial x} = \frac{d\Pi}{d\eta} \frac{\partial h}{\partial x}$$

$$y = \frac{x}{\sqrt{4Dt}}: \quad \frac{\partial y}{\partial x} = \frac{1}{\sqrt{4Dt}}, \quad \frac{\partial y}{\partial t} = -\frac{y}{2^{2}t}$$

$$\frac{\partial h'}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{d\Pi}{d\eta} \frac{\partial \eta}{\partial x} \right) = \left(\frac{\partial \eta}{\partial x} \right)^2 \frac{d^2\Pi}{d\eta^2} = \frac{1}{4Dt} \frac{d\tilde{\Pi}}{d\eta^2}$$
Substitute Into PDE:

$$\frac{3h'}{2h} + D \frac{3h'}{3x} = -\frac{h}{2h} \frac{d\Pi}{dt} - \frac{B}{4Dt} \frac{d\tilde{\Pi}}{dt^2} = 0$$

ODE:
$$\frac{d^{2}\Pi}{dy^{2}} + 2y \frac{d\Pi}{dy} = 0 \quad \gamma \in [0, \infty)$$
BC:
$$\Pi(0) = 0 \quad \lim_{h \to \infty} \Pi = 1$$

BC:
$$\Pi(0) = 0$$
 $\lim_{y \to \infty} \Pi = 1$

Solve ODE:

1) substitute:
$$u = \frac{d\Pi}{d\eta} \Rightarrow \frac{du}{d\eta} + 2\eta u = 0$$

2) separate variables:
$$\frac{du}{u} = -2\eta d\eta$$

$$\log u = -\eta^2 + a$$

$$u = ce^{-\eta^2}$$

4) separate:
$$d\Pi = ce^{-\gamma^2} d\gamma$$

$$\Pi(\gamma) = c\int^{\gamma} e^{-z^2} dz \qquad z = dumuy var.$$

$$does not have known analytic soln$$

$$\Rightarrow give it a name and move on$$

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\frac{x^{2}}{2}} dx$$

Properties of error function:

•
$$erf(x) \approx x$$
 $|x| \ll |x|$

Therefore:
$$T(y) = c \frac{\sqrt{\pi}}{z} \operatorname{erf}(y)$$

Self-similar solution:
$$\Pi(y) = erf(y)$$

$$\Pi(y) = erf(y)$$

Transient evolution of head:

$$h(x_1t) = h_0 \operatorname{erf}\left(\frac{x}{4Dt^1}\right)$$

The front is defined as the location, x_f , where h has changed by the from its initial value ho. We are looking for $h(x_f,t) = h_0 - \varepsilon h_0 = h_0 (1-\varepsilon)$

$$\Rightarrow h_0(1-\epsilon) = h_0 \operatorname{erf}\left(\frac{\chi_f}{\sqrt{4Dt}}\right)$$

$$\frac{\chi_f}{\sqrt{4Dt}} = \operatorname{erf}^{-1}(1-\epsilon) = \alpha(\epsilon) = \operatorname{coust}.$$

$$\Rightarrow$$
 $x_f = \alpha(\epsilon) \sqrt{4Dt}$

Head per turbations propagate as It in

confined aguifers.