# KDD E MINERAÇÃO DE DADOS O Processo de KDD: Visão Geral

Prof. Paulo Mello

#### KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]



KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Interação: Combinação de Ações Homem-Máquina.

KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Iteração: Refinamentos Sucessivos.

KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Padrão: Forma de Representação do Conhecimento.

KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Compreensão: Padrão Representado de Forma Intelegível.

KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Validade: Aplicação Adequada a um Contexto.

KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Inovação: Mudança de Ctos Anteriores p/ Ctos Descobertos.

KDD – Knowledge Discovery in Databases

"É um processo, de várias etapas, não trivial, interativo e iterativo, para identificação de padrões compreensíveis, válidos, novos e potencialmente úteis a partir de bases de dados." [Fayyad et al., 1996]

Utilidade: Benefícios da Aplicação.

## Aplicação de KDD:

• Envolve os seguintes elementos:







#### Tipos de Profissionais em Aplicações de KDD:

- Especialista em KDD
- Especialista do Domínio da Aplicação de KDD

## Tipos de Conhecimento em Aplicações de KDD:

- Conhecimento Independente do Domínio da Aplicação
- Conhecimento Dependente do Domínio da Aplicação
- Conhecimento em KDD Aplicado ao Domínio da Aplicação

#### **Elementos do Problema:**



#### Elementos do Problema: Conjunto de Dados

- Estrutura tabular bidimensional  $(R \subseteq dom(A_1) \times dom(A_2) \times ... \times dom(A_n))$
- Contém Casos (aspecto extensional)
- Contém Características (aspecto intensional)
- Esquema é o conjunto de características
- Não necessariamente um Data Warehouse



#### Elementos do Problema: Conjunto de Dados

Cada caso corresponde a um vetor em um espaço n-dimensional



Renda

Fundamentação: Álgebra Linear.

Conceito de *similaridade* ou *distância* entre pontos (vetores).

Qto *menor* a *distância* entre 2 pontos, *maior* a *similaridade* entre os objetos representados.

#### Elementos do Problema: Conjunto de Dados – Distância

O conceito de distância é formalizado como uma função  $D : E \times E \to R$  (a cada par de pontos associa um valor real) que atende às seguintes restrições:

$$-\mathbf{D}(\mathbf{x},\mathbf{x})=\mathbf{0}$$

$$\boldsymbol{x}$$

$$- \mathbf{D}(\mathbf{x}, \mathbf{y}) = \mathbf{D}(\mathbf{y}, \mathbf{x})$$

$$x \bullet y$$

$$- D(x,y) \le D(x,z) + D(z,y)$$



## Elementos do Problema: Especialista do Domínio da Aplicação

- Conhecimento sobre o domínio da aplicação (background knowledge)
- Consenso quando possível
- Dispõe de metadados sobre o conjunto de dados
- Papel importante na formulação dos objetivos
- Papel importante na avaliação de resultados

## Elementos do Problema: Objetivos da Aplicação

- Retratam **restrições e expectativas** acerca do modelo a ser gerado
- Em geral dependem da opinião dos especialistas no domínio da aplicação
- Nem sempre conseguem ser bem definidos no início do processo de KDD

#### **Elementos dos Recursos:**



#### Elementos dos Recursos: Especialista em KDD

- Dispõe de conhecimento prévio sobre como realizar KDD
- Deve ter experiência neste tipo de trabalho técnico
- Interage com o especialista no domínio da aplicação
- Em geral pertence a uma equipe
- Responsável pela condução do processo de KDD

#### Elementos dos Recursos: Algoritmos e Técnicas (Ferramentas)

- Referem-se aos **recursos de software** disponíveis para aplicação nas etapas do Processo de KDD.
- Algoritmos podem ser adaptados.
- Devem ser compatíveis com a plataforma computacional disponível.
- Uma mesma operação de KDD pode ser implementada por diversos destes recursos, de forma isolada ou conjugada.

#### Elementos dos Recursos: Plataforma Computacional

- Referem-se aos recursos de hardware disponíveis para execução das Operações de KDD.
- São de grande relevância em Aplicações de KDD devido ao grande consumo de tempo em geral requerido.
- Mais memória e mais capacidade de processamento → maior dinâmica ao processo de KDD.
- Plataformas que viabilizem computação paralela e distribuída podem otimizar o desempenho de inúmeras Aplicações de KDD.

#### **Elementos dos Resultados:**



#### Elementos dos Resultados: Mod. de Conhecimento Descoberto

- Abstração de dados expressa em alguma linguagem obtida a partir da aplicação de KDD.
- Deve ser avaliado em relação ao cumprimento das expectativas formuladas nos objetivos da aplicação.
- Comparação entre modelos de conhecimento é muito comum.
- Conjugação de modelos pode ocorrer.

#### Elementos dos Resultados: Trilhas do Processo de KDD

- Estruturas de Dados que permitem armazenamento conciso de **fatos, ações e resultados intermediários** registrados ao longo do processo (históricos).
- O conteúdo destas estruturas pode ser utilizado como **Problema em Aplicações de KDD** cujo **objetivo** seja extrair conhecimento **sobre como realizar o Processo de KDD**.
- Podem viabilizar um processo de aprendizado para uma Máquina de Assistência à Orientação do Processo de KDD.

## Áreas de Origem:



# Áreas de Origem:



# Áreas de Origem:

## Aprendizado de Máquina - Inteligência Artificial:

- Redes Neurais
- Algoritmos Genéticos
- Lógica Nebulosa
- Lógica Indutiva
- Árvores de Decisão

# Áreas de Origem:



## Áreas de Origem:

#### **Banco de Dados / Data Warehouses:**

- Data Warehousing
- SQL
- OLAP
- DMQL
- KMQL
- NoSQL

# Áreas de Origem:



## Áreas de Origem:

#### **Estatística:**

- Classificadores Bayesianos
- Redes Bayesianos
- EDA Exploratory Data Analysis

Gerações da Mineração de Dados [Piatetsky-Shapiro, 2001]

- 1ª Geração
  - **Anos 90**
  - Ferramentas de Pesquisa voltadas a uma única tarefa, sem suporte às demais etapas de KDD
  - Exemplos: c4.5, Rede Neural, Autoclass, etc...

Gerações da Mineração de Dados [Piatetsky-Shapiro, 2001]

- 2ª Geração
  - Meados dos anos 90
  - Ferramentas chamadas "suites": Pacote para aplicação com suporte ao pré-processamento e à visualização
  - Requerem conhecimento significativo da teoria estatística
  - Exemplos SPSS, Intelligent Miner, SAS, etc...

Gerações da Mineração de Dados [Piatetsky-Shapiro, 2001]

- 3ª Geração
  - Final dos anos 90
  - Soluções orientadas à resolução de problemas específicos em empresas
  - Possuem interfaces orientadas aos usuários
  - Escondem a complexidade da MD
  - Exemplos: Falcon (Detecção Fraude em Cartão)

#### **Uma Taxonomia:**



[Goldschmidt et al., 2002a]

#### **Uma Taxonomia:**



[Goldschmidt et al., 2002a]

#### Processo de Descoberta do Conhecimento em Bases de Dados

• Visão Pragmática [Goldschmidt et al., 2002a]:



Operações e Métodos de KDD

Processo de Descoberta do Conhecimento em Bases de Dados

Exemplos de Operações de KDD – Pré-Processamento:

- Redução de Dados: Vertical / Horizontal
- Limpeza: Remoção Inconsistências / Preenchimento Valores Ausentes
- Codificação: Categórica-Numérica / Numérica-Categórica
- Normalização de Dados: Linear / Máximo / Soma
- Partição dos Dados: Treino-Teste / K-Folders

Operações de Pré-Processamento: Seleção/Redução de Dados

- Horizontal: escolha de casos
  - Amostragem
  - Segmentação do BD

- Vertical: escolha de características
  - Atributos relevantes
  - Redução de dimensionalidade

#### Operações de Pré-Processamento : Limpeza

- Verificação de consistência entre informações
- Correção de erros
- Eliminação de informações redundantes
- Eliminação de valores não pertencentes ao domínio

#### **Exemplo: Data de Nascimento**

- Corretas nas seguradoras de vida;
- 30% a 40% em branco ou incorretas nos bancos;

### Operações de Pré-Processamento : Limpeza

- Complementação de Valores Ausentes
- ✓ A complementação utiliza técnicas de diferentes níveis de complexidade, na tentativa de recuprar valores que se perderam com o tempo.
- ✓ Apóia-se em abordagens estatísticas e de Inteligência Artficial.
- ✓ Pode inclusive se utilizar de recursos de mineração de dados, apenas para descobrir valores durante o préprocessamento.

#### Operações de Pré-Processamento : Limpeza

• Complementação de Valores Ausentes



Operações de Pré-Processamento: Codificação

• Divide valores de atributos contínuos em intervalos codificados.

[0, 1000] → Faixa 1 [1001, 3000] → Faixa 2 [3001, 5000] → Faixa 3 etc...

 Representa valores de atributos categóricos por códigos.

Ex: Sexo  $M \rightarrow 1$   $F \rightarrow 0$ 

Operações de Pré-Processamento: Enriquecimento

**Ex: Perfil do Cliente** 

**Atributos:** 

- Renda
- Despesas
- Tipo de Residência
- Bairro de Residência



**Atributos:** 

- Renda
- Despesas
- Tipo de Residência
- Bairro de Residência
- Valor Médio Imóvel

Processo de Descoberta do Conhecimento em Bases de Dados

Exemplos de Operações de KDD – Mineração de Dados:

- Classificação
- Associação
- Sequências
- Previsão de Séries Temporais
- Detecção de Desvios
- Clustering

# Operações de Mineração de Dados: Classificação

### Ex de Aplicação:

| Sexo | País       | Idade | Comprar |
|------|------------|-------|---------|
| M    | França     | 25    | Sim     |
| M    | Inglaterra | 21    | Sim     |
| F    | França     | 23    | Sim     |
| F    | Inglaterra | 34    | Sim     |
| F    | França     | 30    | Não     |
| M    | Alemanha   | 21    | Não     |
| M    | Alemanha   | 20    | Não     |
| F    | Alemanha   | 18    | Não     |
| F    | França     | 34    | Não     |
| M    | França     | 55    | Não     |
|      |            |       |         |

Operações de Mineração de Dados: Classificação

Ex de Aplicação:

#### **Algumas Regras:**

- Se (País = Alemanha) Então Comprar = Não
- Se (País = Inglaterra) Então Comprar = Sim
- Se (País = França e Idade ≤ 25) Então Comprar = Sim
- Se (País = França e Idade > 25) Então Comprar = Não

Processo de Descoberta do Conhecimento em Bases de Dados

Exemplos de Operações de KDD – Pós-Processamento:

- Análise de Modelos
- Corte de Regras / Poda de Árvores (Tree Pruning)
- Visualização de Gráficos
- Organização de Resultados
- Avaliação do Modelo de Conhecimento Gerado
- Conversão de Representações

Operações de Pós-Processamento: Análise de Modelos Exemplo (Árvore de Decisão):

