Lasso/Ridge Regression + Eigenvalue Analysis + PCA

An Introduction to Statistical Learning

황성원

선형모델 확장 이유1: 예측 정확도 향상

선형 모델의 확장!

- 1. 예측 정확도 향상
 - 2. 모델 해석 용이

선형모델 확장 이유2: 모델 해석 용이

선형 모델의 확장!

1. 예측 정확도 향상 2. 모델 해석 용이

표준 선형 모델

$$Y = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p + \epsilon$$

입출력 사이의 관계가 단순해져 서로 간의 관계를 더욱 쉽게 파악!

→ 모델 해석 용이!

p(입력 종류 수) 줄이는 방법 (1/3)

1. 부분집합 선택(Subset Selection)

표준 선형 모델

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

출력과 관계 없는 입력 변수X를 없애는 방법으로

최종적으로 줄어든 입력들로 최소자승 Fitting을 수행!

p(입력 종류 수) 줄이는 방법 (2/3)

2. Shrinkage or Regularization

표준 선형 모델

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

계수를 줄이거나, 0으로 정확히(최소자승법으론 불가능) 수렴 시킨다

모든 p개의 입력들로 Fitting을 수행하지만, 최소자승이 아닌 다른 형태를 사용!

p(입력 종류 수) 줄이는 방법 (3/3)

3. 차원 축소 (Dimension Reduction)

표준 선형 모델

p차원 입력 공간 $Y=\beta_0+\beta_1X_1+\cdots+\beta_pX_p+\epsilon$

M차원 입력 공간

$$Y = \beta_0 + \beta_1 V_1 + \dots + \beta_M V_M + \varepsilon$$

2. Shrinkage or Regularization

Ridge Regression (L2 Regularization)

1. 일반 선형 회귀 에러
$$\bigcap$$
 RSS $=\sum_{i=1}^n \left(y_i-eta_0-\sum_{j=1}^p eta_j x_{ij}
ight)^2$

2. Ridge 회귀 에러
$$\displaystyle \frac{1}{\sqrt{1+\lambda}} \sum_{j=1}^p \beta_j^2$$

Lasso Regression (L1 Regularization)

1. 일반 선형 회귀 에러
$$\bigcap$$
 RSS $=\sum_{i=1}^n \left(y_i-eta_0-\sum_{j=1}^p eta_j x_{ij}
ight)^2$

2. Lasso 회귀 에러
$$\displaystyle \sum_{j=1}^p |eta_j|$$

Another Formulation for Lasso/Ridge

- 제한조건 -

1. Lasso minimize
$$\left\{\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij}\right)^2\right\}$$
 With
$$\sum_{j=1}^{p} |\beta_j| \le s$$

$$\sum_{j=1}^{p} |\beta_j| \le s$$

2. Ridge minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{with} \quad \left[\sum_{j=1}^{p} \beta_j^2 \le s \right]$$

$$\sum_{j=1}^{p} \beta_j^2 \le s$$

Intuition for Lasso/Ridge regression

Norm, Regularizer L1, L2, ...

Norm: 간단하게 벡터의 크기!

$$(\sum_{i} \|\theta_i\|^p)^{\frac{1}{p}}$$

$$p = 1$$

$$\sum_{j=1}^{p} |\beta_j| \le s$$

1. Lasso

$$p = 2$$

$$\sum_{j=1}^{p} \beta_j^2 \le s$$

2. Ridge

Extended Version

$$\sum_{j} |\beta_{j}|^{q}$$

Ridge VS. Lasso

400 Income Limit Standardized Coefficients 300 Rating Student 200 100 0 100 300 1e-02 1e+04 1e+00 1e+02

1. Lasso

2. Ridge

Lasso VS. Ridge

1. Lasso

2. Ridge

Lasso VS. Ridge

45개 변수가 모두 연관된 경우

45개 변수 중 2개만 연관된 경우

3. Dimension Reduction

사전지식 – 고유값, 고유벡터

선형 변환 (Linear Transformation)

$$Ax = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x' = \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}$$

선형 변환

여러 가지 선형 변환

	scaling	unequal scaling	rotation	horizontal shear	hyperbolic rotation
illustration					
matrix	$\begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$	$\begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$	$\begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ $c = \cos \theta$ $s = \sin \theta$	$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} c & s \\ s & c \end{bmatrix}$ $c = \cosh \varphi$ $s = \sinh \varphi$

$$Ax = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x'$$

선형 변환 VS. 좌표 변환

■ 점의 회전이동

■ 좌표축의 회전이동

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

고유 값, 고유 벡터 (Eigenvalue, Eigenvector)

$$Ax = \lambda x$$

Reference for intuition of eigenvector!

2D 기존 원리 바탕으로 한 고유벡터 설명

https://www.youtube.com/watch?v=wXCRcnbCsJA

https://www.youtube.com/watch?v=8UX82qVJzYI

3D 예제

https://www.youtube.com/watch?v=ue3yoeZvt8E

Simple Example – Graphical Explanation

Simple Example – Animation

고유 값, 고유 벡터 (Eigenvalue, Eigenvector)

$$Ax = \lambda x$$

[역 행렬]

$$(A - \lambda I)x = 0$$

$$(A - \lambda I)^{-1} = \frac{1}{\det |A - \lambda I|} \times \dots$$

 $\det |A - \lambda I| = 0$

*역 행렬 존재할 경우: Trivial Solution (x=0인 자명해)

따라서, Non-trivial Solution을 찾기 위해 역 행렬 존재 X

Simple Example

$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} x = \lambda x$$

$$\begin{pmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{pmatrix} x = 0$$

$$(2-\lambda)^2-1=0$$

$$\lambda = 1, 3$$

 $eigenvalue = \lambda = 1,$ eigenvector = (1, -1)

 $eigenvalue = \lambda = 3$,

eigenvector = (1, 1)

Principle Component Analysis (PCA)

주성분 분석

Standard basis

고유벡터에서 행렬A는 PCA에서는?

$$Ax = \lambda x$$

$$\sum x = \begin{pmatrix} \sigma_x & \sigma_{xy} \\ \sigma_{yx} & \sigma_y \end{pmatrix} x = \lambda x$$

절차

Principal components *2

- "Center" the data at zero: $x_{i,a} = x_{i,a} \mu$
 - subtract mean from each attribute
- Compute covariance matrix Σ
 - covariance of dimensions x_1 and x_2 :
 - do x₁ and x₂ tend to increase together?
 - or does x₂ decrease as x₁ increases?
- Multiply a vector by Σ : $\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} -1 \\ +1 \end{pmatrix} \rightarrow \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix}$ again $\rightarrow \begin{pmatrix} -2.5 \\ -1.0 \end{pmatrix} \rightarrow \begin{pmatrix} -6.0 \\ -2.7 \end{pmatrix} \rightarrow \begin{pmatrix} -14.1 \\ -6.4 \end{pmatrix} \rightarrow \begin{pmatrix} -33.3 \\ -15.1 \end{pmatrix}$

 \rightarrow var(a) = $\frac{1}{n}\sum_{ia}^{n}x_{ia}^{2}$

 $cov(b,a) = \frac{1}{n} \sum_{ib}^{n} x_{ib} x_{ia}$

- turns towards direction of variance
- Want vectors e which aren't turned: Σ e = λ e
 - e ... eigenvectors of Σ , λ ... corresponding eigenvalues
 - principal components = eigenvectors w. largest eigenvalues

- Select dimension e which maximizes the variance
- Points x_i "projected" onto vector e:
- Variance of projections: $\frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \mu \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \right)^2$
- Maximize variance
 - want unit length: ||e||=1
 - add Lagrange multiplier

$$\begin{cases} \sum_{j=1}^{d} \operatorname{cov}(1,j)e_{j} = \lambda e_{1} \\ \vdots \\ \sum_{j=1}^{d} \operatorname{cov}(d,j)e_{j} = \lambda e_{d} \end{cases} \Rightarrow \begin{cases} \overline{\partial e_{a}} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) x_{ia} - 2\lambda e_{a} = \overline{n} \sum_{i=1}^{d} \left(\sum_{j=1}^{d} x_{$$

$$V = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \right)^2 - \lambda \left(\left(\sum_{k=1}^{d} e_j^2 \right) - 1 \right)$$

$$\frac{\partial V}{\partial e_a} = \frac{2}{n} \sum_{i=1}^n \left(\sum_{j=1}^d x_{ij} e_j \right) x_{ia} - 2\lambda e_a = 0$$

hold for
$$2\sum_{j=1}^{d} e_{j} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ia} x_{ij} \right) = 2\lambda e_{a}$$
covariance of a,j

마지막으로 생각할 부분 – 힘과 분산!

마지막으로 생각할 부분 – 주응력

$$A = \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{pmatrix}$$

Thank you!