

Research
Environment Creating a ML Model

Machine Learning Pipeline

Deployment of ML Pipeline

Reproducibility

Principles of ML Deployment

- Challenges of traditional software
 - O Reliability
 - O Reusability
 - O Maintainability
 - O Flexibility

- Additional challenges specific to Machine Learning
 - O Reproducibility

Open-source

- Increase Performance
 - ✓ Ready to use code
 - ✓ Off-the-shelf algorithms
- Maximise reproducibility
 - ✓ Versioning
- Reliability
 - ✓ Testing
- Reusability, maintainability
- Minimise deployment times

In-house software

- Versioned
 - √ Reproducibility
- Tested
 - ✓ Reliability
- Shareable
 - ✓ Reusability
- Minimise deployment times

5 STEPS

Discuss Create an available end-to-end open-source **ML Pipeline** packages Create inhouse software Overview of **ML Steps Optimize** the pipeline

- 1. Overview of ML steps
 - Feature engineering and selection
 - Model building
- 2. Create a ML Pipeline
- 3. Available Open-Source
 - Scikit-learn, Feature-engine, Category encoders
- 4. Create in house software
 - Use of the scikit-learn API
- 5. Re-create an optimized pipeline
 - Python environments

5 STEPS

Discuss Create an available end-to-end open-source **ML Pipeline** packages Create inhouse software Overview of **ML Steps Optimize** the pipeline

- 1. Overview of ML steps
 - Feature engineering and selection
 - Model building
- 2. Create a ML Pipeline
- 3. Available Open-Source
 - Scikit-learn, Feature-engine, Category encoders
- 4. Create in house software
 - Use of the scikit-learn API
- 5. Re-create an optimized pipeline
 - Python environments

THANK YOU

www.trainindata.com