Regression and Analysis of Variance Some Principles and Some Cautions

Lynne Billard

University of Georgia lynne@stat.uga.edu

 $\mathbf{4}^{th}$ International Summer School on Data Science -Split, Croatia September 9-13, 2019

In the beginning ...

1 Regression Analyses

- ► Models predictor variables?
- Prediction intervals
- ▶ Model Checking, Fits, Residuals, Normality, ...
- Outliers
- ► Indicator variables?

2 Analysis of Variance (ANOVA)

- ▶ One-way design, two-way design,...
- ► ANOVA as multiple regression
- Covariance
- ► Repeated measures
- Covariance in repeated measures design

Regression - Models Regression Analysis - Data from Emery, Lees, and Tootill (1951) Observe Y = Growth Lectobacillus leichmanniiat $X = \text{Dose of Vitamin } B_{12}$ (scaled dose) i : Is there a relationship between Growth and Dose, Y and X?

Regression - Models

Regression Analysis

Observe Y = Growth Lectobacillus leichmanniiat $X = \text{Dose of Vitamin } B_{12}$ (scaled dose)

Or, this relationship between Growth and Dose, Y and X?

Regression - Models

Regression Analysis

Observe Y = Growth Lectobacillus leichmanniiat $X = \text{Dose of Vitamin } B_{12}$ (scaled dose)

How do we decide what is the relationship between Y and X?

Multiple Regression Model:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + e$$

Y = dependent variable

 X_1, \dots, X_p are predictor/regression variables

 β_1, \ldots, β_p are regression coefficients

 β_0 is intercept on Y- axis of regression equation

e error term, $-e_i$'s independent with mean 0 and variance σ_e^2

Q? – How to estimate the parameters, $(\beta_0, \beta_1, \dots, \beta_p)$, σ_e^2 , for observations (Y_i, X_i) , i = 1, ..., n

Minimize sum of squares (SS)
$$SS = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y - \beta_0 - \beta_1 X_1 - \dots - \beta_p X_p)^2$$

If errors are normally distributed, these estimators are same as maximum likelihood estimators (mle)

Minimize sum of squares (SS)

$$SS = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (Y - \beta_0 - \beta_1 X_1 - \dots - \beta_p X_p)^2$$

p = 1,

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}} = \frac{SS_{xy}}{SS_{xx}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

p = p, write $\beta = (\beta_1, \dots, \beta_p)$, Data $(Y_i, X_{ij}, j = 1, \dots, p)$

$$\hat{\boldsymbol{\beta}} = [(\mathbf{X} - \mathbf{\bar{X}})'(\mathbf{X} - \mathbf{\bar{X}})]^{-1}(\mathbf{Y} - \bar{Y})'(\mathbf{X} - \mathbf{\bar{X}})$$

$$\hat{eta}_0 = \mathbf{ar{Y}} - \hat{eta}\mathbf{ar{X}}$$

$$\bar{X}_j = \frac{1}{n} \sum_{i=1}^n X_{ij}, \quad \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$$

Regression - Models Regression Analysis Observe Y = Growth Lectobacillus leichmanniiat $X = \text{dose of Vitamin } B_{12}$ (scaled dose) Linear relationship between Y and X, i.e., Y = 0.627 + 0.077 X


```
Regression - Is the Model a Good Fit?
      We have: Y = 0.5750 + 0.0773 X + 0.0025 X^2
      Is the model a Good Fit? – Is it an Adequate Fit?
      Do we need the X^2 term in the model (here)?
       Recall the general multiple linear regression model:
       Y=\beta_0+\beta_1X_1+\cdots+\beta_pX_p+e e error term, -e_i's independent with mean 0 and variance \sigma_e^2
       We want to do hypothesis test: (Or, a confidence interval for \beta_i)
      \begin{array}{ccc} H_0: \beta_j = \beta_{j0} & \text{against} & H_1: \beta_j \neq \beta_{j0} \\ \text{In particular:} & H_0: \beta_j = 0 & \text{against} & H_1: \beta_j \neq 0 \end{array}
      Need distribution of \hat{\beta}_j: Can show
                    \hat{\boldsymbol{\beta}} \sim N_{p+1}(\hat{\boldsymbol{\beta}}, \sigma^2((\mathbf{1}, \mathbf{X})'(\mathbf{1}, \mathbf{X}))^{-1})
      (In our example, X \equiv X_1 and X^2 \equiv X_2)
```

Regression - Is the Model a Good Fit?

We want to test the hypothesis:

$$H_0: \beta_j = \beta_{j0}$$
 against $H_1: \beta_j \neq \beta_{j0}$

Need distribution of $\hat{\beta}_j$: Can show

$$\hat{oldsymbol{eta}} \sim \mathcal{N}_{p+1}(oldsymbol{eta}, \sigma^2((\mathbf{1}, \mathbf{X})'(\mathbf{1}, \mathbf{X}))^{-1})$$

$$\widehat{\mathit{Var}(\hat{\boldsymbol{\beta}})} = \sigma^2((\mathbf{1},\mathbf{X})'(\mathbf{1},\mathbf{X}))^{-1}) \text{ is estimated by:} \\ \widehat{\mathit{Var}(\hat{\boldsymbol{\beta}})} = S^2((\mathbf{1},\mathbf{X})'(\mathbf{1},\mathbf{X}))^{-1}), \quad S^2 = \frac{1}{(n-p-1)}(\mathbf{Y}'\mathbf{Y} - \mathbf{Y}'(\mathbf{1},\mathbf{X})\hat{\boldsymbol{\beta}})$$

Test statistic (TS) is:

$$TS = \frac{\hat{eta}_j - eta_{j0}}{\widehat{S_{\sqrt{Var}(\hat{eta}_i)}}} \sim t_{n-p-1,lpha/2}$$

(errors normally distributed) Note: $t_{\nu,\alpha/2}^2 = F_{1,\nu,\alpha}$

Our example, to test

$$H_0: \beta_2 = 0, \rightsquigarrow TS = (0.00249)/(0.00037) = 6.68, p < .0001$$

Regression - Model Checking

Check the residuals:

- (a) Dependence in residuals ? β_0
- (b) Variance not constant (c) Residuals versus $X_j ? X_j^2$ or $X_j X_{j'}$ needed
- (d) Ideal variance constant, no dependencies missing

Regression - Model Checking Our example – plots of residuals versus \hat{Y} : Y = 0.627 + 0.077 X $Y = 0.572 + 0.077 X + 0.0026 X^2$ $Y = 0.575 + 0.0025X^2$ Y' = log(Y) = 0.755 + 0.51 X

Regression - Model Checking

Other important checks, and what to do about them:

- ► Are the errors normally distributed? QQ-plots
- ► Are variances constant?
- ▶ Transformations: log(Y), \sqrt{Y} , 1/Y, log(Y+1), $\sqrt{(Y+1)}$, . . .
- ▶ Outliers, Data cleaning
- **.**..

Regression - Outlier or Typo

Regression Analysis
Observe $Y = \text{Growth } Lectobacillus leichmannii}$ at $X = \text{Dose of Vitamin } B_{12}$ (scaled dose)

What about the observation: Y = 1, X = -5?
Check to see if it is a Typo: Y = 1, X = 5

11,50

values, models, very large data sets, ...

Other Regression Fits

Egg production - Faridi et al. (2011)

Growth models - many applications

Prediction:

We have the estimated model (take p = 1, $X_1 = X$)

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

Y = 0.627 + 0.077 X

Prediction and Prediction Intervals: (take p = 1, $X_1 = X$)

We have the estimated model: $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$

Prediction of E(Y) at $X_k \rightsquigarrow \hat{Y}_k = \hat{\beta}_0 + \hat{\beta}_1 X_k$

$$Var(\hat{Y}_k) = \sigma^2 \left[\frac{1}{n} + \frac{(X_k - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2} \right]$$

$$\hat{\sigma}^2 = S^2 = \frac{1}{(n-p-1)} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

Hence, $(1-\alpha)100\%$ prediction interval for Y_k at $X=X_k$ is

$$\hat{Y}_k \pm t_{n-p-1,\alpha/2} S \left[1 + \frac{1}{n} + \frac{(X_k - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}\right]^{1/2}$$

(data normally distributed)

28/9

Indicator variables

The issue of Indicator variables is too often mis-used.

- ► One indicator variable
- ► Two or more indicator variables

E.g., Suppose we have a response variable Y= salary and p regression /predictor variables, for two groups, males and females (say).


```
Correct Model: Take one X = years since degree \equiv years Y = \beta_0 + \beta_1 \text{ years} + \beta_2 \text{ gender} + \beta_3 \text{ gender} \times \text{years} + e For these data, the regression equation becomes \hat{Y} = 48134.0 + 917.2 \text{ years} + 1189.4 \text{ gender} + 271.3 \text{ gender} \times \text{years} gender = 1, males \Rightarrow \hat{Y} = 49323.4 + 1188.5 \text{ years} gender = 0, females \Rightarrow \hat{Y} = 48134.0 + 917.2 \text{ years}
```

```
Incorrect Model: Take one X = years since degree \equiv years Y=\beta_0+\beta_1 years +\beta_2 gender +e

For these data, the regression equation becomes \hat{Y}=46176.8+1064.7 years +2205.5 gender gender +20.5 gender +2
```

Correct Model: gender = 1, males \Rightarrow Y = 49323.4 + 1188.5 years gender = 0, females \Rightarrow Y = 48134.0 + 917.2 years Incorrect Model: gender = 1, males \Rightarrow Y = 48382.7 + 1064.7 years gender = 0, females \Rightarrow Y = 46176.8 + 1064.7 years

Fits: (Regression fits)

$$R^2 = \sum_{i=1}^n {\sf residual}_i^2 = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (\hat{Y}_i - Y_i)^2$$

Correct model

- Males $R_m^2 = 2802.7 \times 10^5$
- Females $R_f^2 = 2871.2 \times 10^5$

Incorrect model

- Males $R_m^2 = 2810.2 \times 10^5$
- ► Females $R_f^2 = 2925.7 \times 10^5$

(for one X model)

Fits – Tests of coincidences:

Q: Are the two regressions statistically significant? Here, are the male and females regressions the same? Take (X_1, X_2) Need model (and all male/female data)

$$Y = \beta_0 + \beta_1 \text{ degree} + \beta_2 \text{ employ} + \beta_3 \text{ gender} + \beta_4 \text{ gender} \times \text{degree} + \beta_5 \text{ gender} \times \text{employ}$$

For these data the regression equation is

$$\hat{Y} = 46773.0 + 581.3 \text{ degree} + 755.4 \text{ employ} - 3085.0 \text{ gender} \\ + 2197.8 \text{ gender} \times \text{degree} - 2583.4 \text{ gender} \times \text{employ}.$$

Test: H_0 : Full model (with all β_0, \ldots, β_5) against H_1 : Reduced model (with β_0, \ldots, β_3 only
This is an F-test (not the t-test for testing particular β_i values)

Here, p=.0002 – regressions are statistically significantly different Gender only ($H_0:\beta_3=0$), $p=.0995 \leadsto$ incorrect conclusion about gender

39/90


```
Disciplines / Groups: E.g., one X, g groups -
             Y = \beta_0 + \beta_1 X + \beta_2 \operatorname{group}_1 + \dots + \beta_g \operatorname{group}_{g-1}
                    + \beta_{g+1} \operatorname{group}_1 \times X + \cdots + \beta_{2g} \operatorname{group}_{g-1} \times X + e
For these data, the regression equation is:
          \hat{Y} = \!\! 43131.6 + 1018.7 \; \mathsf{years} + 428.4 \; \mathsf{group}_1 - 2634.8 \; \mathsf{group}_2
                   +~1990.4~{\rm group}_1\times~{\rm years} + 722.5~{\rm group}_2\times~{\rm years}.
group_1 = 1 and group_2 = 0, gives, for Group 1,
                          \hat{Y} = 43560.0 + 3009.1 years;
group_1 = 0 and group_2 = 1, gives, for Group 2,
                          \hat{Y} = 40469.8 + 1741.2 \text{ years};
\mathsf{group}_1 = 0 \text{ and } \mathsf{group}_2 = 0 \text{, gives, for Group 3,}
                          \hat{Y} = 43131.6 + 1018.7 years.
```

```
Disciplines / Groups: E.g., one X, g groups - Y = \beta_0 + \beta_1 X + \beta_2 \operatorname{group}_1 + \dots + \beta_g \operatorname{group}_{g-1} + \beta_{g+1} \operatorname{group}_1 \times X + \dots + \beta_{2g} \operatorname{group}_{g-1} \times X + e
```

```
Gender and Discipline: E.g. X = \text{years}; group = 0,1; gender = 0,1
Y = \beta_0 + \beta_1 \text{ years} + \beta_2 \text{ gender} + \beta_3 \text{ gender} \times \text{years}
+ \beta_4 \text{ group} + \beta_5 \text{ group} \times \text{years}
+ \beta_6 \text{ gender} \times \text{group} + \beta_7 \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ Group} \frac{4 \text{ Male}}{4 \text{ Group} 5 \text{ Nale}} + \frac{A}{A} \text{ group} \times \text{years} + e
\frac{A}{A} \text{ Group} \frac{4 \text{ Male}}{4 \text{ Group} 5 \text{ Nale}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ Group} \frac{4 \text{ Male}}{4 \text{ Group} 5 \text{ Nale}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ Group} \frac{4 \text{ Male}}{4 \text{ gender}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ Group} \frac{4 \text{ Male}}{4 \text{ gender}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ group} \frac{4 \text{ Male}}{4 \text{ gender}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ group} \frac{4 \text{ Male}}{4 \text{ gender}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{years} + e
\frac{A}{A} \text{ group} \frac{4 \text{ Male}}{4 \text{ gender}} + \frac{A}{A} \text{ gender} \times \text{group} \times \text{gender} \times \text
```

```
Gender and Discipline: E.g. X= years; group = 0,1; gender = 0,1 Y=\beta_0+\beta_1 \text{ years}+\beta_2 \text{ gender}+\beta_3 \text{ gender} \times \text{years}\\ +\beta_4 \text{ group}+\beta_5 \text{ group} \times \text{years}\\ +\beta_6 \text{ gender} \times \text{ group}+\beta_7 \text{ gender} \times \text{ group} \times \text{years}+e For these data, the regression equation is: \hat{Y}=48134.0+917.2 \text{ years}+1189.4 \text{ gender}+271.3 \text{ gender} \times \text{years}\\ -2550.7 \text{ group}+241.0 \text{ group} \times \text{years}\\ -3446.5 \text{ gender} \times \text{ group}+234.7 \text{ gender} \times \text{ group} \times \text{years}. Group 4, Males: group = 1, gender = 1 \Rightarrow \hat{Y}=43326.2+1664.2 \text{ years} Group4, Females: group = 1, gender = 0 \Rightarrow \hat{Y}=45583.3+1158.2 \text{ years} Group 5, Males: group = 0, gender = 1 \Rightarrow \hat{Y}=49323.4+1188.5 \text{ years} Group 5, Females: group = 0, gender = 0 \Rightarrow \hat{Y}=48134.0+917.2 \text{ years}
```


One more aspect:

Let us re-visit some of our calculations – Suppose p = 1, ie one X

Estimated variance = $\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ or, write Error Sum of Squares = SSE = $\sum_{i=1}^n (Y_i - \hat{Y}_i)^2$ = Residual variation Total SS = SSY = $\sum_{i=1}^n (Y_i - \hat{Y})^2$ = Total unexplained variation Regression SS = $\sum_{i=1}^n (\hat{Y}_i - \hat{Y})^2$ = Explained variation

Can show:

Total SS = Regression SS + Residual SS, or Total SS = Model SS + Residual SS

Can set out as an analysis of variance table: (MS = SS/df)

Source	df	SS	MS	F
Regression	p - 1	SSY - SSE		
Residual	n-p-1	SSE		
Total	n – 1	SSY		

 $\mathsf{Total}\;\mathsf{SS} = \mathsf{Regression}\;\mathsf{SS} + \mathsf{Residual}\;\mathsf{SS}$

(Kleinbaum Kupper and Muller, 1988)

Finally, Correlation:

Finally, Correlation: Estimated Correlation function =
$$\hat{\rho} = r = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{[\sum_{i=1}^{n} (Y_i - \bar{Y})^2 \sum_{i=1}^{n} (X_i - \bar{X})^2]^{1/2}} = \frac{SS_X}{5S_Y} \hat{\beta}_1$$

 ρ is a measure of the ${\bf linear}$ relationship between X and Y

In the beginning ... Half-way!

1 Regression Analyses \checkmark

- ► Models predictor variables?
- Prediction intervals
- ▶ Model Checking, Fits, Residuals, Normality, . . .
- Outliers
- ► Indicator variables?

2 Analysis of Variance (ANOVA)

- ▶ One-way design, two-way design, ...
- ► ANOVA as multiple regression
- Covariance
- Repeated measures
- Covariance in repeated measures design

Analysis of Variance (ANOVA)

ANOVA: - Some data:

Time Y to complete task for a = 4 workers (factor A), with r = 6 replications per worker

Worker						
1	20.1	20.5	23.1	22.8	25.0	25.2
2	17.2	16.9	20.0	19.8	22.1	22.1
3	16.0	15.9	17.2	17.1	24.3	23.8
4	18.8	19.1	23.7	23.2	25.0 22.1 24.3 24.3	21.8

Q: H_0 : Are times same for all workers?

This is a one-way analysis of variance design, or, completely randomized design

Analysis of Variance (ANOVA)

ANOVA: - Model:

$$Y_{ij} = \mu_i + e_{ij}, i = 1, ..., a, j = 1, ..., r_i,$$

= $\mu + \tau_i + e$

where

 $Y_{ij} = \text{observation for } j^{th} \text{ replication of treatment } i$

 $\mu_i = i^{th}$ treatment mean

 $\tau_i = \text{effect of } i^{th} \text{ treatment } (A_i)$

 $\mu = {\sf overall} \; ({\sf grand}) \; {\sf mean}$

 $e_{ij} = ij^{th}$ observational error

Assume $e_{ij} \sim IN(0, \sigma^2)$; $\sum \tau_i = 0$

Test H_0 : Are times same for all workers?

i.e., $H_0: \mu_i = \mu, i = 1, \dots, a$ i.e., $H_0: \tau_i = 0, i = 1, \dots, a$

ANOVA: - One-way Model:

Can show Sum of Squares (SS)

$$\mathsf{Total}\;\mathsf{SS} = (\mathsf{A})\mathsf{SS} + \mathsf{Residual}\;\mathsf{SS}$$

where

$$(A)SS = \sum_{i=1}^{a} r_i (\bar{Y}_{i.} - \bar{Y})^2 = \sum_{i=1}^{a} Y_{i.}^2 / r_i - CF$$
Total SS = $\sum_{i=1}^{a} \sum_{j=1}^{r_i} (Y_{ij} - \bar{Y})^2 = \sum_{i=1}^{a} \sum_{j=1}^{r_i} Y_{ij}^2 - CF$

Residual SS = Total SS - (A)SS

$$Y_{i\cdot} = \sum_{j=1}^{r_i} Y_{ij}, \quad CF = (\sum_{ij} Y_{ij})^2/N, \quad N = \sum_i r_i$$

Source	df	SS	MS	F	E(MS)
Α	a — 1	$\sum_{i} Y_{i\cdot}^2/r_i - CF$	1		$\sigma^2 + \frac{1}{(a-1)} \sum_i r_i \tau_i^2$
Residual	N – a	$\sum_{ij}(Y_{ij}-\bar{Y}_{i.})^2$	2		σ^2
Total	N - 1	$\sum_{ij} (Y_{ij} - \bar{Y})^2$			

df = degrees of freedom, MS = mean squares = SS/df

ANOVA: - One-way Model:

We have

Source	df	SS	MS	F	E(MS)
A	a — 1	$\sum_{i} Y_{i\cdot}^2/r_i - CF$	1	1)/2	$\sigma^2 + \frac{1}{(a-1)} \sum_i r_i \tau_i^2$
Residual	N – a	$\sum_{ij}(Y_{ij}-\bar{Y}_{i.})^2$	2		σ^2
Total	N-1	$\sum_{ij} (Y_{ij} - \bar{Y})^2$			

Test H_0 : Are times same for all workers?

i.e., $H_0: \mu_i = \mu, \ i = 1, \dots, a$ i.e., $H_0: \tau_i = 0, \ i = 1, \dots, a$ i.e., $H_0: \mathcal{E}((A)MS) = \sigma^2$

Test statistic is: $TS = (A)MS/ResidualMS = (1)/(2) \sim F_{a-1,N-a}$

Analysis of Variance (ANOVA)

ANOVA: - Our data:

Y = Time, for a = 4 workers (factor A), r = 6 replications

Worker	$\overline{Y_{ij}}$						
1	20.1	20.5	23.1	22.8	25.0	25.2	
2	17.2	16.9	20.0	19.8	22.1	22.1	
3	16.0	15.9	17.2	17.1	24.3	23.8	
4	18.8	20.5 16.9 15.9 19.1	23.7	23.2	24.3	21.8	

Source	df	SS	MS	F	р
Worker	3	55.633	18.544	2.41	.0967
Residual	20	153.660	7.683	-	-
Total	23	209.293			

p = .0967 > .05 suggests the workers all the same

- at least for this model and this analysis

However,

57/96

Two-way model:

	Y_{ijk}							
Worker	Worker Computer1 Computer2		Comp	outer3				
1	20.1	20.5	23.1	22.8	25.0	25.2		
2	17.2	16.9	20.0	19.8	22.1	22.1		
3	16.0	15.9	17.2	17.1	24.3	23.8		
4	18.8	19.1	23.7	23.2	24.3	21.8		

Y= Time, for a=4 workers (factor A), b=3 computers (factor B), and r=2 replications for each worker-computer combination Write model as:

$$Y_{ijk}=\mu+A_i+B_j+(AB)_{ij}+e_{ijk},\ i=1,\ldots,a, j=1,\ldots,b, k=1,\ldots,r$$
 where

$$A_i = \text{effect of } i^{th} \text{ level of } A,$$

$$B_j = \text{effect of } j^{th} \text{ level of } B,$$

 $(AB)_{ij} = \text{effect of interaction of } A_i \text{ with } B_j,$

$$\begin{array}{l} \sum_{i}A_{i}=0,\ \sum_{j}B_{j}=0,\ \sum_{i}(AB)_{ij}=0,\ \sum_{j}(AB)_{ij}=0\\ e_{ijk}\sim IN(0,\sigma^{2}) \end{array}$$

E0 /

Model: $Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + e_{ijk}$

Can show:

$$\mathsf{Total}\;\mathsf{SS} = (\mathsf{A})\mathsf{SS} + (\mathsf{B})\mathsf{SS} + (\mathsf{AB})\mathsf{SS} + \mathsf{ErrorSS}$$

ANOVA Table is

Source	df	SS	MS	F	E(MS)
A	a – 1	$\sum_{i} rb(\bar{Y}_{i\cdots} - \bar{Y})^{2}$	1		$\sigma^2 + \frac{br}{(s-1)} \sum_i A_i^2$
В	b-1	$\sum_{j} ra(\bar{Y}_{\cdot j} - \bar{Y})^2$	2		$\sigma^2 + \frac{ar}{(b-1)} \sum_i B_i^2$
AB	(a-1)(b-1)	$\sum_{ij} r(\bar{Y}_{ij} - \bar{Y}_{i\cdots} - \bar{Y}_{.j\cdot} + \bar{Y})^2$	3		$\sigma^2 + \frac{r}{(a-1)(b-1)} \sum_{ij} (AB)_{ij}^2$
Error	(r-1)ab	Difference	4		σ^2
Total	rab — 1	$\sum_{iik} (Y_{iik} - \bar{Y})^2$			

Model: $Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + e_{ijk}$

Source	df	SS	MS	F	E(MS)
A	a – 1	$\sum_{i} rb(\bar{Y}_{i} - \bar{Y})^2$	1	1)/4	$\sigma^2 + \frac{br}{(a-1)} \sum_i A_i^2$
В	b-1	$\sum_{i} ra(\bar{Y}_{.j.} - \bar{Y})^2$	2	2/4	$\sigma^2 + \frac{(a_{ar})}{(b-1)} \sum_i B_i^2$
AB	(a-1)(b-1)	$\sum_{ij} r(\overline{Y}_{ij} - \overline{Y}_{i} - \overline{Y}_{.j.} + \overline{Y})^2$	3	3/4	$\sigma^2 + \frac{r}{(s-1)(b-1)} \sum_{ij} (AB)_{ij}^2$
Error	(r - 1)ab	Difference	4		σ^2
Total	rah - 1	$\nabla (Y_{iii} - \overline{Y})^2$			

 H_0 : All workers same H_0 : H_0

 H_0 : All computers same H_0 : $B_j = 0$, $\forall j$ H_0 : $E(B)MS) = \sigma^2$ $TS = \frac{(B)MS}{Error MS} \sim F_{b-1,(r-1)ab}$

 $\ensuremath{\textit{H}}_0$: No interactions between worker and computer

 $H_0: (AB)_{ij} = 0, \ \forall \ i,j$ $H_0: E((AB)MS) = \sigma^2$

 $TS = (AB)MS/ErrorMS \sim F_{(a-1)(b-1),(r-1)ab}$

59/9

Our data:

		Y_{ijk}							
Worker	orker Computer1 Computer2			Comp	uter3				
1	20.1	20.5	23.1	22.8	25.0	25.2			
2	17.2	16.9	20.0	19.8	22.1	22.1			
3	16.0	15.9	17.2	17.1	24.3	23.8			
4	18.8	19.1	23.7	23.2	24.3	21.8			

Source	df	SS	MS	F	p
Worker	3	55.633	18.544	18.544	< .0001
Computer	2	121.561	60.780	200.38	< .0001
Worker×Computer	6	28.459	4.743	15.64	< .0001
Error	12	3.640	0.303	-	-
Total	23	209.293			

One-way model:

Source	df	SS	MS	F	р
Worker	3	55.633	18.544	2.41	.0967
Residual	20	153.660	7.683	-	-
Total	23	209.293			

Two-way model:

Source	df	SS	MS	F	р
Worker	3	55.633	18.544	18.544	< .0001
Computer	2	121.561	60.780	200.38	< .0001
$Worker \times Computer$	6	28.459	4.743	15.64	< .0001
Error	12	3.640	0.303	-	-
Total	23	209.293			

61/96

One-way model: D1

Source	df	SS	MS	F	р
Worker	3	55.633	18.544	2.41	.0967
Residual	20	153.660	7.683 X	-	-
Total	23	209 293			

Model: $Y_{ij} = \mu + A_i + e_{ij}$

Two-way model: D2

Source	df	SS	MS	F	p
Worker	3	55.633	18.544	18.544	< .0001
Computer	2	121.561	60.780	200.38	< .0001
Worker×Computer	6	28.459	4.743	15.64	< .0001
Error	12	3.640	0.303 ✓	-	-
Total	23	209.293			

Model: $Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + e_{ijk}$

Residual SS (of D1) = B SS + (A× B)SS + Error SS (of D2) (D1)
$$e_{ij} \equiv B_j + (AB)_{ij} + e_{ijk}$$
 (D2)

So far, we have assumed the (a=4) workers and (b=3) computers were 4 specific workers and 3 specific computers – conclusions apply to these only. Fixed effects model (also called parametric model.

Other options: df, SS, MS same; E(MS) and F-values change

- Random effects model workers randomly selected from (population of) workers, and computers randomly selected from (population of) computers
 - Conclusions apply to all workers and all computers
- Mixed effects model specific workers considered, and computers randomly selected from (population of) computers
 Conclusions apply to these specific workers for all computers
- Mixed effects model workers randomly selected from (population of) workers, and specific computers used Conclusions apply to all workers for these specific computers

62/9

64/96

General model: $Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + e_{ijk}$

Conditions include

Fixed model (Parametric)- $\sum_{i} A_{i} = 0, \ i^{th} \ \mathsf{A} \ \mathsf{effect}$ $\sum_{j} B_{j} = 0, \ j^{th} \ \mathsf{B} \ \mathsf{effect}$ $\sum_{ij} (AB)_{ij} = 0, \ (ij)^{th}, \ \mathsf{AB} \ \mathsf{interaction} \ \mathsf{effect}$

► Random model -

Random Hodel: $A_i \sim IN(0, \sigma_a^2), \ E(A_i) = 0 \ \forall \ i, \ i^{th} \ A \ \text{effect} \\ B_j \sim IN(0, \sigma_b^2), \ E(B_j) = 0 \ \forall \ j, \ j^{th} \ B \ \text{effect} \\ (AB)_{ij} \sim IN(0, \sigma_{ab}^2), \ E(AB_{ij}) = 0 \ \forall \ (i,j), \ (ij)^{th} \ \text{interaction} \\ \text{effect}, \ A \ \text{and} \ B \ \text{independent}$

► Mixed model - (take A fixed, B random)

Mixed model - (take A fixed, B fallowing) $\sum_{i} A_{i} = 0, i^{th} \text{ A effect}$ $B_{j} \sim IN(0, \sigma_{b}^{2}), E(B_{j}) = 0 \,\forall j, j^{th} \text{ B effect}$ $(AB)_{ij} \sim N(0, \sigma_{ab}^{2}), \sum_{i} (AB)_{ij} = 0 \,\forall j, E(A_{ij}) = 0 \,\forall i$

▶ All models: $e_{ijk} \sim IN(0, \sigma^2)$, $\forall i, j, k$

Now: df, SS, MS same;

E(MS) and F-values change – E(MS) tables are now:

Source	Fixed	Random
A	$\sigma^2 + \frac{br}{(a-1)} \sum_i A_i^2$	$\sigma^2 + r\sigma_{ab}^2 + rb\sigma_a^2$
В	$\sigma^2 + \frac{\langle ar \rangle}{(b-1)} \sum_i B_i^2$	$\sigma^2 + r\sigma_{ab}^2 + ra\sigma_b^2$
AB	$\sigma^2 + \frac{r}{(a-1)(b-1)} \sum_{ij} (AB)_{ij}^2$	$\sigma^2 + r\sigma_{ab}^2$
Error	σ^2	σ^2

Source	Mixed (A fixed)	Mixed (B fixed)
A	$\sigma^2 + r\sigma_{ab}^2 + \frac{br}{(a-1)}\sum_i A_i^2$	$\sigma^2 + rb\sigma_a^2$
В	$\sigma^2 + ra\sigma_b^2$	$\sigma^2 + \sigma_{ab}^2 + \frac{ar}{(b-1)} \sum_j B_j^2$
AB	$\sigma^2 + r\sigma_{ab}^2$	$\sigma^2 + r\sigma_{ab}^2$
Error	σ^2	σ^2

Our data:

Source	df	SS	MS	F	p
Worker	3	55.633	18.544	18.544	< .0001
Computer	2	121.561	60.780	200.38	< .0001
$Worker \times Computer$	6	28.459	4.743	15.64	< .0001
Error	12	3.640	0.303	-	-
Total	23	209.293			

		Fixed		Ra	ndom	Mixed		
Source	df	F	р	F	р	F	р	
A Worker	3	18.544	< .0001	3.91	.0732	F: 3.91	.0732	
B Computer	2	200.38	< .0001	12.81	.0068	R: 200.38	< .0001	
$A \times B$	6	15.64	< .0001	15.64	< .0001	15.64	< .0001	
Error	12	-	-	-	-	-	-	
Total	23							

ANOVA as Multiple Regression:

A study on a new citrus-flavored soft drink was undertaken to see what were the color preferences for customers. The observations are Y =number of cases sold per 1000 in the study. There were 5 replications for each of 4 colors.

Color i		Obse	Y_i .	\bar{Y}_i			
colorless	26.5	28.7	25.1	29.1	27.2	136.6	27.32
						147.8	
orange	27.9	25.1	28.5	24.2	26.5	132.2	26.44
lime	30.8	29.6	32.4	31.7	32.8	157.3	31.46

The one-way ANOVA model is:

$$Y_{ij} = \mu + \tau_i + e_{ij}, \ i = 1, \dots, 4, \ j = 1, \dots, 5$$

The multiple regression model (p = 3) is:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + e_i, i = 1, ..., 20$$

Color	X _{i1}	X_{i2}	X_{i3}	Υ	
colorless	0	0	0	26.5	
	0	0	0	28.7	
	0	0	0	25.1	
	0	0	0	29.1	$X_1 = 1$, if pink,
	0	0	0	27.2	- ' · '
pink	1	0	0	31.2	= 0, otherwise;
	1	0	0	28.3	
	1	0	0	30.8	
	1	0	0	27.9	$X_2 = 1$, if orange,
	1	0	0	29.6	0
orange	0	1	0	27.9	=0, otherwise;
	0	1	0	25.1	
	0	1	0	28.5	V 1 'C I'
	0	1	0	24.2	$X_3 = 1$, if lime,
	0_	1	0	26.5	= 0, otherwise.
lime	0	0	1	30.8	0, 01.10111301
	0	0	1	29.6	
	0	0	1	32.4	
	0	0	1	31.7	
	0	0	1	32.8	

Analyses Outputs:

ANOVA:

Source	df	SS	MS	F	р	
Color	3	76.8455	25.6152	10.49	.0005	Model
Error	16	39.0840	2.44275	-	-	
Total	19	115.9295				

$$\bar{Y}_1 = 27.32, \ \bar{Y}_2 = 29.56, \ \bar{Y}_3 = 26.44, \ \bar{Y}_4 = 31.46$$

Regression:

Source	df	SS	MS	F	р	
Model	3	76.8455	25.6152	10.49	.0005	Regression
Error	16	39.0840	2.44275	-	-	
Total	19	115.9295				

$$\hat{\beta}_0 = 27.32, \ \hat{\beta}_1 = 2.24, \ \hat{\beta}_2 = -0.88, \ \hat{\beta}_3 = 4.14$$

....

Regression and ANOVA Two cases – Take levels A_1 and A_3 – Same Y observations: $\begin{array}{c} Y \\ & A_3 \\ & A_1 \end{array}$ No errors $\sigma^2 = 0$ General case: errors present

One Factor ANCOVA

Analysis of COvariance - one factor A, covariate X

 $Y = \mu + A_i + \gamma X + e$

Y = response variable

 $\mu = \text{overall mean}$

 $A_i = \text{effect of } A_i$

X = predictor variable, covariate

 $\gamma = {\rm regression~parameter}$

 $e = \text{observation error}; Var(e_i) = \sigma^2$

An example:

A researcher wanted to study the effect of a=4 drugs in delaying atrophy of denervated muscles in rats. Atrophy is measured by the loss in weight; but the initial weight of the muscle could not be measured (without killing the rat). Instead the initial weight X of the rat was measured. After 12 days, the rats were killed and the weight Y of the denervated muscle was measured.

Drug A		Dru	g B	Drı	ıg C	Drug D		
X Y		- x		_X	Y -		Y -	
	198	0.34	233	0.41	204	0.57	186	0.81
	175	0.43	250	0.87	234	0.80	286	1.01
	199	0.41	289	0.91	211	0.69	245	0.97
	224	0.48	255	0.87	214	0.84	215	0.87
	796	1 66	1027	3.06	863	2 90	932	3 66

79/9

$$Y_{ij} = \mu + \tau_i + \gamma (X_{ij} - \bar{X}) + e_{ij}, \ i = 1, \dots, a, \ j = 1, \dots, r_i$$

SSS for Y $(A)SS_{y} = \sum_{i} r_{i} (\bar{Y}_{i} - \bar{Y})^{2}$ $ErrorSS_{y} = \sum_{ij} (Y_{ij} - \bar{Y}_{i})^{2}$ $TotalSS_{y} = \sum_{ij} (Y_{ij} - \bar{Y})^{2}$

 $\begin{array}{l} \text{SSs for X} \\ \text{(A)SS}_x = \sum_i r_i (\bar{X}_i - \bar{X})^2 \\ \text{ErrorSS}_x = \sum_{ij} (X_{ij} - \bar{X}_{i\cdot})^2 \\ \text{TotalSS}_x = \sum_{ij} (X_{ij} - \bar{X})^2 \end{array}$

Sum of Product - SP for XY
$$(A)SP = \sum_{i} r_{i}(\bar{X}_{i} - \bar{X})(\bar{Y}_{i} - \bar{Y})$$

$$ErrorSP = \sum_{ij} (X_{ij} - \bar{X}_{i\cdot})(Y_{ij} - \bar{Y}_{i\cdot})$$

$$TotalSP = \sum_{ij} (X_{ij} - \bar{X})(Y_{ij} - \bar{Y})$$

Adjustment for Regression:

 $\textit{Adjusted TotalSS}_y = \textit{TotalSS}_y - (\textit{TotalSP})^2 / \textit{TotalSS}_x$ Adjusted $ErrorSS_y = ErrorSS_y - (ErrorSP)^2 / ErrorSS_x$ Adjusted (A) $SS_y = Adjusted TotalSS_y - Adjusted ErrorSS_y$

No adjustment for regression

Source	df	SS	MS	F	р
Drugs	3	0.5288	0.1763	8.52	.0027
Residual	12	0.2484	0.0207	-	-
Total	15	0.7772			

$$\hat{\sigma}^2 = .2484/12 = .0207$$

With adjustment for regression

Source	df	SS	MS	F	р
Drugs	3	0.2982	0.0994	6.890	.0071
Residual	11	0.1587	0.0144	-	-
Total	15	0.7772			

$$\hat{\sigma}^2 = .1587/11 = .0144$$

As for SSs for Y, so should means be adjusted

	Drug A		Dr	ug B	D	rug C	Di	rug D	
	X -	Ā	- x	Ā	- x -	Ÿ	_ X	Y	
	198	0.34	233	0.41	204	0.57	186	0.81	
	175	0.43	250	0.87	234	0.80	286	1.01	
	199	0.41	289	0.91	211	0.69	245	0.97	
	224	0.48	255	0.87	214	0.84	215	0.87	
Totals	796	1.66	1027	3.06	863	2.90	932	3.66	
\bar{Y}_i		0.4150		0.7650		0.7250		0.9150	Unadjusted Means
\bar{Y}'_i		0.5014		0.6675		0.7580		0.8931	Adjusted Means

Example - Two-Factor Covariate Design

Example: Diet - A (High, Medium, Low protein content) feed to hens. Two different time periods week - B (B_1, B_2) . Interest in food intake = Y; three replications for each diet \times week combination. Temperature = Xwas also measured

		B - Week			
Α		E	31	Е	32
Diet	Hen	X	Y	Χ	Y
A_1	1	2	6	3	12
High	2	4	9	8	16
	3	10	14	13	20
A_2	4	1	4	0	6
Medium	5	7	10	8	12
	6	9	7	8	8
A ₃	7	6	8	3	8
Low	8	7	12	9	16
	9	8	13	11	20

Two-factor Covariance Model:

$$Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + +\gamma (X_{ij} - \bar{X}) + e_{ijk},$$

 $i = 1, ..., a, j = 1, ..., b, k = 1, ..., r$

Need –
$$SS_v$$
, SS_v , SP (Sum of Products)

$$\begin{array}{l} \text{Need} - \textit{SS}_y, \; \textit{SS}_x, \; \textit{SP} \; \big(\text{Sum of Products} \big) \\ \textit{SS}_y \colon \; \; (\textit{A}) \textit{SS}_y = \textit{rb} \sum_i (\bar{Y}_{i\cdot\cdot} - \bar{Y})^2, \quad (\textit{B}) \textit{SS}_y = \textit{ra} \sum_j (\bar{Y}_{\cdot j\cdot} - \bar{Y})^2 \\ \; (\textit{AB}) \textit{SS}_y = \textit{r} \sum_{ij} (\bar{Y}_{ij\cdot} - \bar{Y}_{i\cdot\cdot} - \bar{Y}_{\cdot j\cdot} + \bar{Y}_{ij\cdot})^2 \\ \; \textit{ErrorSS}_y = \sum_{ijk} (Y_{ijk} - \bar{Y}_{ji\cdot})^2 \equiv \textit{E}_{yy}, \quad \textit{TotalSS}_y = \sum_{ijk} (Y_{ijk} - \bar{Y})^2 \end{array}$$

$$\begin{array}{ll} \textit{SP:} & (\textit{A})\textit{SP} = \textit{rb} \sum_{i} (\bar{X}_{i..} - \bar{X}) (\bar{Y}_{i..} - \bar{Y}) \\ & (\textit{B})\textit{SP} = \textit{ra} \sum_{j} (\bar{X}_{.j.} - \bar{X}) (\bar{Y}_{.j.} - \bar{Y}) \\ & (\textit{AB})\textit{SP} = \textit{r} \sum_{ij} (\bar{X}_{ij.} - \bar{X}_{i..} - \bar{X}_{.j.} + \bar{X}_{ij.}) (\bar{Y}_{ij.} - \bar{Y}_{i..} - \bar{Y}_{.j.} + \bar{Y}_{ij.}) \\ & \textit{ErrorSP} = \sum_{ijk} (X_{ijk} - \bar{X}_{ij.}) (Y_{ijk} - \bar{Y}_{ij.}) \equiv E_{xy} \\ & \textit{TotalSP} = \sum_{ijk} (X_{ijk} - \bar{X}) (Y_{ijk} - \bar{Y}) \end{array}$$

We need to adjust SS_v 's for presence of regression:

Adjusted
$$SS_y \equiv SS'_y \equiv Adj SS_y$$

$$Adj \; ErrorSS = ErrorSS_y - \frac{(ErrorSP)^2}{ErrorSS_x}$$

$$Adj \; (A)SS = (A)SS_y + \frac{(ErrorSP)^2}{ErrorSS_x} - \frac{((A)SP + ErrorSP)^2}{(A)SS_x + ErrorSS_x}$$

$$Adj \; (B)SS = (B)SS_y + \frac{(ErrorSP)^2}{ErrorSS_x} - \frac{((B)SP + ErrorSP)^2}{(B)SS_x + ErrorSS_x}$$

$$Adj \; (AB)SS = (AB)SS_y + \frac{(ErrorSP)^2}{ErrorSS_x} - \frac{((AB)SP + ErrorSP)^2}{(AB)SS_x + ErrorSS_x}$$

Example - Two-Factor Design

Our data:

Factorial Design ignoring regression

C	.16	SS	MS		
Source	df	- 55	IVIS	F	р
Diet A	2	100.000	50.000	3.16	.0791
Week B	1	68.056	68.056	4.30	.0603
$A \times B$	2	16.444	8.222	0.52	.6077
Error	12	190.000	15.833 X		
Total	17	374.500			

Factorial Design adjusting for regression

Source	df	SS	MS	F	р
Diet A	2	54.420	27.210	6.32	.0149
Week B	1	40.708	40.708	9.45	.0106
$A \times B$	2	3.285	1.642	0.38	.6916
Error	11	47.369	4.306 ✓	-	-
Total	17	145.782			

As for SSs, so means should be adjusted for regression/covariate

	Unadjusted Means											
D: .												
Diet	B_1	B_2	\bar{Y}_i									
A_1	9.667	16.00	12.833									
A_2	7.000	8.667	7.833									
A_3	11.000	14.667	12.833									
$\overline{Y_j}$	9.222	13.111										

	Adjusted Means										
Diet $\mid B_1 \mid B_2 \mid \bar{Y}_i$											
$\frac{Bicc}{A_1}$	10.655	14.729	12.692								
A_2	7.706	9.655	8.681								
A_3	10.576	13.678	12.127								
\bar{Y}_j	9.646	12.687									

Repeated Measures

Consider an experimental design with one factor A with a levels Standard factorial design: One level of A is assigned to any one subject/hen/... This is, the a levels are assigned to a different subjects/hens/...

Repeated measures design: All levels of A are assigned to each subject/hen/... That is, the a levels are assigned to the same subject/hen/...

Repeated Measures

Consider an experimental design with one factor A with a levels

Standard factorial design: One level of A is assigned to any one subject/hen/... This is, the a levels are assigned to a different subjects/hens/...

Repeated measures design: All levels of A are assigned to each subject/hen/... That is, the a levels are assigned to the same subject/hen/...

The models and analyses differ depending on design Standard factorial design:

Total SS = (A)SS + Residual/Error SS

Repeated measures design:

Total SS = Between Subjects SS + Within Subjects SS

Total SS = Between Subjects SS + (A)SS + Error SS

Total SS = Between Subjects SS + $(A)SS + A \times Subjects SS + Error SS$

Repeated Measures - Two factors

Suppose there are two factors, A with a levels, and B with b levels There are $a \times b$ combinations of A and B (for each replication) Standard factorial design: One combination of A and B is assigned to any one subject/hen/... That is, the $a \times b$ combinations are assigned to $a \times b$ different subjects/hens/...

Repeated measures design: There are three possible designs -

- All combinations of A and B are assigned to each subject/hen/... That is, all $a \times b$ combinations are assigned to the same hen...
- One level of A and all b levels of B are assigned to each subject/hen/... That is, all levels of B are assigned to the same subject/hen/...but that hen only has one level of A; need a hens

Repeated Measures - Two factors

Suppose there are two factors, A with a levels, and B with b levels There are $a \times b$ combinations of A and B (for each replication)

Standard factorial design: One combination of A and B is assigned to any one subject/hen/... That is, the $a \times b$ combinations are assigned to $a \times b$ different subjects/hens/...

Repeated measures design: There are three possible designs -

- All combinations of A and B are assigned to each subject/hen/... That is, all $a \times b$ combinations are assigned to the same subject/hen/...
- One level of A and all b levels of B are assigned to each subject/hen/... That is, all levels of B are assigned to the same subject/hen/...but that hen only has one level of A; need a hens
- One level of B and all a levels of A are assigned to each subject/hen/... That is, all levels of A are assigned to the same subject/hen/...but that hen only has one level of A; need b hens

The models and analyses differ depending on (design, effects,...)

Example - Two-Factor Repeated Measures Design

Example: Diet - A (High, Medium, Low protein content) feed to hens. Two different time periods week - B (B_1, B_2) . Interest in food intake = Y; three replications for each diet \times week combination. Temperature = Xwas also measured. Now, same hen was used each week.

			B - Week			
Α		E	31	Е	32	
Diet	Hen	X	Y	Χ	Y	
A_1	1	2	6	3	12	
High	2	4	9	8	16	
	3	10	14	13	20	
	4	1	4	0	6	
Medium	5	7	10	8	12	
	6	9	7	8	8	
$\overline{A_3}$	7	6	8	3	8	
Low	8	7	12	9	16	
	9	8	13	11	20	

Example - Two-Factor Repeated Measures

Factorial Design:

Source	df	SS	MS	F	р
Diet A	2	100.000	50.000	3.16	.0791
Week B	1	68.056	68.056	4.30	.0603
$A \times B$	2	16.444	8.222	0.52	.6077
Error	12	190.000	15.833		
Total	17	374.500			

Repeated Measures Design:

Source	df	SS	MS	F	р
Between Hens	8	277.000			
Diet A	2	100.000	50.000	1.69	.2609
Hens(A)	6	177.000	29.500		
Within Hens	9	97.500			
Week B	1	68.056	68.056	31.41	.0014
A× B	2	16.444	8.222	3.79	.0861
Error	6	13.000	2.167		
Total	17	374.500			

Example - Two-Factor Repeated Measures - Covariate

Repeated Measures Design:

Source	df	SS	MS	F	р
Between Hens	8	277.000			
Diet A	2	100.000	50.000	1.69	.2609
Hens(A)	6	177.000	29.500		
Within Hens	9	97.500			
Week B	1	68.056	68.056	31.41	.0014
A× B	2	16.444	8.222	3.79	.0861
Error	6	13.000	2.167		
Total	17	374.500			

Repeated Measures Design - Covariate:

Source	df	SS	MS	F	р
Between Hens					
Diet A (adj) [†]	2	54.259	27.130	3.06	.1357
Hens(A) (adj) [†]	5	44.370	8.974		
Within Hens	9	97.500			
Week B (adj)†	1	31.547	31.547	52.61	.0008
A× B (adj)†	2	2.339	1.170	1.95	.2365
Error	5	2.998	0.600		
Total	17	374.500			

† Adjusted for presence of covariate

Example - Two-Factor Design - Our data Factorial Design:

	lo adjustment for Covariate						
Source	df	F	р				
Diet A	2	3.16	.0791				
Week B	1	4.30	.0603				
$A \times B$	2	0.52	.6077				
Error	12						
Total	17						

 $\hat{\sigma}^2 = 15.833$

Adjusted for Covariate							
Source	df	F	p				
Diet A [†]	2	6.32	.0149				
Week B [†]	1	9.45	.0106				
$A \times B^{\dagger}$	2	0.38	.6916				
Error [†]	11						
Total	17						
1 Adjusted for processes of covariate							

Repeated Measures Design:

Source Between Hens 1.69 .2609 Diet A Hens(A)
Within Hens 31.41 .0014 Week B A× B Error .0861 3.79 Total

 $\hat{\sigma}^2 = 2.167$

for presence $\hat{\sigma}^2 = 4.306$

Source df Diet A[†] Hens(A) (adj)[†] Within Hens 3.06 .1357 2 Week B (adj)† 52.61 .0008 1.95 .2365 A× B (adj)[†] Error Total

† Adjusted for presence of covariate $\hat{\sigma}^2 = 0.600$

Conclusion:

Moral is:

Regression: Scientific errors: when omit indicator interaction terms Philosophical errors: when using "tainted" variables such as rank

Analysis of variance:

Are all relevant factors included? Is a factor fixed, random? Are observations repeated measures?
Are there covariates present?

Hvala $\sim \sim$ Thankyou