Optimality in RL

Quiz, 5 questions

1 point	
1.	
What a	re the main sources of randomness in Reinforcement Learning?
	There is no randomness.
	Randomness of the action given state.
	Randomness of reward, given state and action.
	Randomness of expected return given policy and MDP
	Randomness of the next state, given state and action
1 point 2.	
What is	the definition of value function $v_\pi(s)$ for policy π ?
	Minimum reward, that agent can get out from the environment, staring from state s and acting according to π .
	Mean reward, that agent can get out from the environment, staring from state s and acting according to π .
	Maximum reward, that agent can get out from the environment, staring from state s and acting according to optimal policy.
	Minimum reward, that agent can get out from the environment, staring from state s and acting according to optimal policy.
	Mean reward, that agent can get out from the environment, staring from state s and acting according to optimal policy.
	Maximum reward, that agent can get out from the environment, staring from state s and acting according to $\pi.$

Optimality in RL

Οť	ιiz,	5	a	ues	sti	or	าร

3

3.	
What is	the definition of action-value function $q_\pi(s,a)$ for policy π ?
	Minimum reward, that agent can get out of the environment after making action a in state s and subsequently acting according to optimal policy.
	Maximum reward, that agent can get out of the environment after making action a in state s and subsequently acting according to π .
	Mean reward, that agent can get out of the environment after making action a in state s and subsequently acting according to optimal policy.
	Minimum reward, that agent can get out of the environment after making action a in state s and subsequently following current policy.
	Mean reward, that agent can get out of the environment after making action a in state s and subsequently acting according to π .
	Maximum reward, that agent can get out of the environment after making action a in state s and subsequently acting according to optimal policy.
1 point	
4.	
How m	any deterministic optimal policies are there in a finite MDP?
	Only one.
	It depends on the particular MDP: there may be no optimal deterministic policies at all.
	One or more.
	Infinite.

5.

point

What from the list below allow to conclude an agent follows the optimal policy π^* ? Consider each option in isolation from others.

 Optin	Provided the first state s_0 is fixed, agent plays the policy \hat{s} that achieves the maximum possible $v_\pi(s_0)$				
Quiz, 5 qu	uestions An agent acts in the way that allow it to come to a state s that has highest $v_\pi(s)$ for the current agent's policy π				
	In each state s an agent makes the action maximising the $q_\pi(s,a)$ for the current agent's policy π				
	In each state s agent makes the action that maximises the value function $v_\pi(s')$ of the next state s' for the current agent's policy π				
	In each state s an agent makes the action maximising the $R(s,a,s^\prime)$				
0	Jiadai Zhao, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code				
Submit Quiz					