Office Hours!

Instructor:

Trevor Klar, trevorklar@math.ucsb.edu

Office Hours:

Mondays 2–3PM Tuesdays 10:30–11:30AM Thursdays 1-2PM or by appointment

Office:

South Hall 6431X (Grad Tower, 6th floor, blue side, first door on the right)

© 2017 Daryl Cooper, Trevor Klar

Finding the log of any number

- (1) Write the number as $10^n \times (\text{number between 1 and 10})$
- (2) Find the log of the number between 1 and 10 using table or graph
- (3) Log is $n + \log(\text{number between 1 and 10})$

Example: Find $\log(573)$

(1)
$$\log(573) = \log(100 \times 5.73) = \log(100) + \log(5.73) = 2 + \log(5.73)$$

- (2) $\log(5.73) \approx 0.7582$
- (3) $\log(573) \approx 2 + 0.7582 = 2.7582$

Find $\log(57.3)$

$$A \approx 7.582 \quad B \approx 10 + 0.7582 \quad C \approx 1 + 0.7582 \quad D \text{ Other} \quad \boxed{C}$$

Find $\log(0.573)$

$$A \approx -1.7582$$
 $B \approx -1 + 0.7582$ $C \approx -0.7582$ D Other B

Example: 2.306 is not on x-axis of graph $y = 10^x$ or in middle of log table. So how do you use table or graph to find antilog(2.306)?

Think about it: antilog(2.306) =
$$10^{2.306}$$

= $\underbrace{10^2 \times \underbrace{10^{0.306}}_{\text{duh!}} \times \underbrace{10^{0.306}}_{\text{look it up!}} \times 100 \times 2.02$
= 202

This is like the moving decimal point trick for logs.

From log table: $10^{0.86} \approx 7.25$. Use this to find antilog(3.86)

$$\approx 7250$$

A= I got it right

B= I was close

C= I was wrong

First rule of logs: $\log(a \times b) = \log(a) + \log(b)$

Example: Find 2.7×1.6 using logs

Hint: $\log(2.7) \approx 0.43$ and $\log(1.6) \approx 0.20$

Method

- (i) Look up $\log(2.7)$ and $\log(1.6)$
- (ii) Add these
- (iii) Take the antilog of result from (ii)
- (iv) Think: Is the answer reasonable or did I goof up?

A = doneB= confused

§7.5: Using logs to multiply

First rule of logs: $\log(a \times b) = \log(a) + \log(b)$

Example: Find 2.7×1.6 using logs Hint: $\log(2.7) \approx 0.43$ and $\log(1.6) \approx 0.20$

Look how I write the answer.

- $\log(2.7 \times 1.6) = \log(2.7) + \log(1.6)$
- Look up $\log(2.7)\approx0.43$ and $\log(1.6)\approx0.20$, so $\log(2.7\times1.6)\approx0.43+0.20=0.63$
- Is this the answer? Heck No! It is the log of the answer
- $2.7 \times 1.6 \approx \text{antilog}(0.63) = 10^{0.63}$
- Look up $10^{0.63} \approx 4.3$
- Is my answer $\boxed{4.3}$ reasonable? Yes, about $2 \times 2 = 4$.

A Really Bad Answer

$$2.7 \times 1.6 \quad \log(2.7 \times 1.6) \quad \log(2.7) + \log(1.6)$$

= $0.43 = 0.20$
 $0.43 + 0.20 = 0.63 \leftarrow$ my answer!!

Common mistake: Writing math so badly it is not even wrong*.

Stare at what is written does it make any sense?

The answer can't be right: how can 2.7×1.6 be 0.43?

Where is the mistake? It is so badly written that there is no mistake to find because it is nonsense.

^{* &}quot;Not even wrong" is due to the physicist Wolfgang Pauli.

Summary of Good Advice

- Write your work properly.
- Eat your fruit & vegetables
- Exercise regularly
- Get enough sleep [This advice brought to you by your mother]

Example: Find 352×17.7 using logs and tables.

Hint: $\log(3.52) \approx 0.5465$ and $\log(1.77) \approx 0.2480$

A= done B= I'm working! C= confused

My Steps:

- (1) $\log(352) = 2 + \log(3.52) \approx 2.5465$ (move the decimal point)
- (2) $\log(17.7) = 1 + \log(1.77) \approx 1.2480$ (move the decimal point)
- (3) Add: $\log(352 \times 17.7) = \log(352) + \log(17.7) \approx 2.5465 + 1.2480 = 3.7945$
- (4) So: $352 \times 17.7 \approx \text{antilog}(3.7945) = 10^{3.7945} = 10^3 \times 10^{0.7945} \approx 6230$
- (5) Check: Is this reasonable? Should be about $300 \times 20 = 6000$

Did you get close?

$$A = Yes$$
 $B = No$ $C = Didn't$ finish

•00

Remember Log Rule (5): $|\log(a \div b)| = \log(a) - \log(b)$

Example: Use this rule to find 38.2/1.77Hint: $\log(3.82) \approx 0.58$ and $\log(1.77) \approx 0.25$

Method

- (i) Look up $\log(3.82)$ and $\log(1.77)$, find $\log(38.2)$
- (ii) Subtract!
- (iii) Take the antilog of result from (ii)
- (iv) Think: Is the answer reasonable or did I goof up?

A = doneB= confused

000

Remember Log Rule (5): $\log(a \div b) = \log(a) - \log(b)$

Example: Use this rule to find 38.2/1.77Hint: $\log(3.82) \approx 0.58$ and $\log(1.77) \approx 0.25$

Look how I write the answer.

- $\log(38.2 \div 1.77) = \log(38.2) \log(1.77)$ $\log(a/b) = \log(a) - \log(b)$
- $\log(38.2) = 1 + \log(3.82) \approx 1.58$ from graph and move decimal point
- $\log(1.77) \approx 0.25$ from graph
- $\log(38.2) \log(1.77) \approx 1.58 0.25 = 1.33$
- Therefore $38.2 \div 1.77 \approx \text{antilog}(1.33) = 10^{1.33}$
- From graph $10^{0.33} \approx 2.1$ so $10^{1.33} \approx 21$.
- Check: Is the answer 21 reasonable? Yes, about $40 \div 2 = 20$.

00

Examples:

Example: Find 352/17.7 using logs and tables.

Hint: $\log(3.52) \approx 0.5465$ and $\log(1.77) \approx 0.2480$

A = done B = I'm working!C = confused

My Steps:

- (1) $\log(352) = 2 + \log(3.52) \approx 2.5465$ (move the decimal point)
- (2) $\log(17.7) = 1 + \log(1.77) \approx 1.2480$ (move the decimal point)
- (3) Subtract: $\log(352 \div 17.7) = \log(352) - \log(17.7) \approx 2.5465 - 1.2480 = 1.2985$
- (4) So: $352 \div 17.7 \approx \text{antilog}(1.2985) = 10^{1.2985} = 10^1 \times 10^{0.2985} \approx 19.9$
- (5) Check: Is this reasonable? Should be about $350 \div 20 \approx 20$

Did you get close?

$$A = Yes$$
 $B = No$ $C = Didn't$ finish

Powers Using Logs

Or, exploting Log Rule (4):

$$\log(a^{\mathbf{p}}) = \mathbf{p}\log(a)$$

Use this and the graph of $y = 10^x$ to find $\sqrt{70}$.

One Approach:

- (i) Use graph and move decimal point trick to find log(70)
- (ii) $\log(\sqrt{70}) = \log(70^{1/2}) = (1/2)\log(70)$
- (iii) Take the antilog of result from (ii)
- (iv) Think: Is the answer reasonable or did I goof up?

Hint: $\log(7) \approx 0.84$

A= done B= working C= confused

Answer: $\sqrt{70} \approx 8.3$. Is that reasonable?

Computer Applications

One kilobyte (1 KB) is 2^{10} .

Problem: Calculate 2^{10} using logs. Hint: $\log(2) \approx 0.3$

 $A \approx 3$ $B \approx 10.3$ $C \approx 30$ $D \approx 1000$ $E \approx 1100$

So: $2^{10} \approx 10^3 = 1000$ (really $2^{10} = 1024$).

1KB is really $2^{10} = 1024 \approx 10^3$ (K is Kilo = thousand)

1MB is really $2^{20} = (2^{10})^2 \approx (10^3)^2 = 10^6$ (M is Mega = million)

1GB is really $2^{30} = (2^{10})^3 \approx (10^3)^3 = 10^9$ (**G** is **G**iga = billion)

1TB is really $2^{40} = (2^{10})^4 \approx (10^3)^4 = 10^{12}$ (T is Tera = trillion)

Example: suppose on a certain island the population of rabbits doubles every generation. After 20 generations it multiplies by... $2^{20} \approx 1$ million.

Powers of 2 are easy to do, even in your head. To work out 2^n the log of the answer is approximately 0.3n, so 2^n is 1 followed by 0.3n zeroes.

Summary of calculations with logs

[Courtesy of Daryl Cooper]

Calculate the log of the thing you want then take antilog of the result. Example: To calculate $puppy = 17^{3.1}$

- (i) doggy = log(puppy)
- (ii) rules of logs to expand doggy
- (iii) look up logs of individual terms in doggy. Move decimal point trick.
- (iv) Now have numerical value for doggy.
- (v) so $puppy = \text{antilog}(\frac{doggy}{})$ is the answer.

Make sure you never jot down a number on its own. It should always be part of an equation like $\log(945 \times 32) \approx 4.48$ This way one can read and understand what is written. Otherwise you get gibberish

Write math the way I do. With words and equations. One should be able to read and understand what is on the paper without being telepathic.

Imagine it is a report for your employer. In reality you are explaining