# STL10\_PROJECT summary

# - Images classification of STL-10 dataset's selected classes with one and multi GPU processing

```
In [1]: import my_functions
import pandas as pd
```

## 1. Dataset

STL-10 dataset, containing of 5000 train labelled images and 8000 test labelled images.

# 2. Project folder structure

Module\_18\_model\_7.ipynb

Module 19a model7.ipynb

```
In [2]: ls /home/artur/STL10/STL10 PROJECT
                                            Module 19 model 7.ipynb
        0_Project_summary.ipynb
                                            Module 1 model 0.ipynb
        appendix env.ipynb
        inst_history.txt
                                            Module_2_Data_augmentation.ipynb
        Models/
                                            Module 3 model 0 augm.ipynb
        Module 0 Data preprocessing.ipynb
                                            Module 4 model 1.ipynb
        Module 10 Vis Filters.ipynb
                                            Module_5_model_2.ipynb
        Module_11_vgg16_filters.ipynb
                                            Module 6 model 3.ipynb
        Module 12 model 5.ipynb
                                            Module 7 model 4.ipynb
        Module_13_model_5.ipynb
                                            Module_8_Vis_Activations.ipynb
        Module_14_model_5.ipynb
                                            Module_9_Vis_Weights.ipynb
        Module 15 model 6.ipynb
                                            my functions.py
        Module_16_model_7.ipynb
                                            __pycache__/
        Module 17 model 7.ipynb
                                            read me.txt
```

results\_summary.txt

Used data/

```
In [3]: ls /home/artur/STL10/STL10_PROJECT/Used_data
```

```
TEST_IMAGES.npy TRAIN_IMAGES.npy TRAIN_X_EXTD.npy VALID_IMAGES.npy TEST LABELS.npy TRAIN LABELS.npy TRAIN Y EXTD.npy VALID LABELS.npy
```

```
classifier 0.h5
                               model 2 8-100-25-RMSp-trd.h5
classifier_1.h5
                               model_2_8-30-20-adlt-trd.h5
classifier_2.h5
                               model_2_8-30-40-sgd-trd.h5
classifier_3.h5
                               model_2_8-30-9-adlt-trd.h5
classifier 4.h5
                               model 2.h5
classifier 5.h5
                               model 3 8-100-100-adlt-trd.h5
conv base 0.h5
                               model 3 8-100-100-sgd-trd.h5
conv base 1.h5
                               model 3 8-100-20-adlt-trd.h5
conv_base_2.h5
                               model_3_8-100-30-RMSp-trd.h5
conv base 3.h5
                               model 3.h5
                               model 4 8-100-100-sgd-trd.h5
conv base 4.h5
model 0 0-100-100-RMSp-trd.h5
                               model 4 8-100-20-adlt-trd.h5
model 0 0-100-100-sgd-trd.h5
                               model 4 8-100-30-RMSp-trd.h5
model 0 0-100-120-rmsp-trd.h5
                               model 4 8-100-40-RMSp-trd.h5
model 0 0-100-150-adlt-trd.h5
                               model 4.h5
model 0 0-100-150-sgd-trd.h5
                               model 5 8-100-25-RMSp-trd.h5
                               model 5 8-100-50-sgd-trd.h5
model 0 0-15-15-rmsp-trd.h5
model 0 0-15-25-RMSp-trd.h5
                               model 5 8-100-70-sgd-trd.h5
model 0 0-15-40-sgd-trd.h5
                               model 6 8-100-100-sgd-trd.h5
model_0_0-30-100-sgd-trd.h5
                               model_6_8-100-17-adlt-trd.h5
model 0 8-100-100-sgd-trd.h5
                               model 6 8-100-25-RMSp-trd.h5
model 0 8-100-150-sgd-trd.h5
                               model 6 8-100-30-RMSp-trd.h5
model 0 8-100-21-RMSp-trd.h5
                               model 6 8-100-32-RMSp-trd.h5
model_0_8-100-30-adlt-trd.h5
                               model 6 8-100-40-adlt-trd.h5
model 0 8-100-30-RMSp-trd.h5
                               model_6_8-100-50-sgd-trd.h5
model_0_8-30-100-sgd-trd.h5
                               model 6.h5
model 0 8-30-30-adlt-trd.h5
                               model 7 8-100-100-0vgg16-trd.h5
model 0 8-30-32-sgd-trd.h5
                               model 7 8-100-12-0vgg16-trd.h5
model 0 8-30-8-adlt-trd.h5
                               model_7_8-100-12-1vgg16R-trd.h5
model 0 8-30-8-RMSp-trd.h5
                               model 7 8-100-20-1vgg16s-trd.h5
model_0.h5
                               model_7_8-100-20-2vgg16s-trd.h5
                               model 7 8-100-20-3vgg16s-trd.h5
model 1 8-100-100-sgd-trd.h5
model 1 8-100-30-RMSp-trd.h5
                               model 7 8-100-25-0vgg16-trd.h5
model 1 8-30-32-sgd-trd.h5
                               model 7 8-100-30-0vgg16-trd.h5
                               model_7_8-100-5-1vgg16s-trd.h5
model 1 8-30-40-sgd-trd.h5
model_1_8-30-9-adlt-trd.h5
                               model_7_8-100-5-2vgg16s-trd.h5
                               model_7_8-100-5-3vgg16s-trd_a.h5
model 1.h5
model 2 8-100-100-sgd-trd.h5
                               model 7 8-100-5-3vgg16s-trd.h5
```

# 3. Activities performed as parts of the project

# - Hardware and software environment preparation

It includes GPU cards installation in serwer HP DL-585, nVidia CUDA and cuDNN packages installation and configuration, installation of all needed python libraries including TensorFlow and Keras.

Notebook: appendix\_env.ipynb

## - Data preprocessing

An original data is a STL-10 dataset, containing of 5000 train labelled images and 8000 test labelled images. Although this dataset is described on https://cs.stanford.edu/~acoates/stl10/ (https://cs.stanford.edu/~acoates/stl10/) in this project more general case has been assumed where the data structure in unknown and requires of detailed recognition. It has been done in 'Module\_0' notebook, where the original data were finally transformed into two classes of images - planes and birds only - in totally 2600 images set, splitted up into 1600 train, 500 validation and 500 test ones.

Notebook: Module\_0\_Data\_preprocessing.ipynb

## - Basic model configuration and its training

Although there are only two classes this training and the rest ones in this project has been proceed not as binary classification mode but as multiclass classification, as more general approach. Training with one GPU.

Notebook: Module\_1\_model\_0.ipynb

## - The training set augmentation from 1600 into 8000

Due to the small quantity of training data the 'off-line' (into a file on hdd) augmentation has been done.

Data after augmentation:

In [5]: my\_functions.code\_block\_0()

#### Out[5]:

|   | set name | shape             | dtype | data sight      |
|---|----------|-------------------|-------|-----------------|
| 0 | TRAIN_X  | (8000, 96, 96, 3) | uint8 | [87, 73, 37]    |
| 1 | TRAIN_Y  | (8000,)           | uint8 | 2               |
| 2 | VALID_X  | (500, 96, 96, 3)  | uint8 | [204, 205, 210] |
| 3 | VALID_Y  | (500,)            | uint8 | 1               |
| 4 | TEST_X   | (500, 96, 96, 3)  | uint8 | [132, 167, 203] |
| 5 | TEST_Y   | (500,)            | uint8 | 1               |

Notebook: Module\_2\_Data\_augmentation.ipynb

### - Models' training

Different own models configurations' check. Training with one GPU.

Notebooks:

Module\_3\_model\_0\_augm.ipynb

Module\_4\_model\_1.ipynb

Module\_5\_model\_2.ipynb

Module\_6\_model\_3.ipynb

Module\_7\_model\_4.ipynb

# - Visualization of learning effects

Layers' activation visualization ---- notebook -- Module\_8\_Vis\_Activations.ipynb

Weights' visualization ----- notebook -- Module\_9\_Vis\_Weights.ipynb

#### - Trained VGG16 network overview

Notebook:

Module\_11\_vgg16\_filters.ipynb

## - The use of convolutional base from vgg16 network to the training

Training of the all vgg16 layers from the beginning with own classifier. Training with multi GPU mode.

Notebooks:

Module\_12\_model\_5.ipynb

Module\_13\_model\_5.ipynb

Module\_14\_model\_5.ipynb

## - Reduction of own model and training

The return to previous own model and decreasing of it depth. Training with one GPU.

Notebook:

Module\_15\_model\_6.ipynb

## - The use of trained weights from vgg16 network

Training of all frozen vgg16 convolutional layers with own classifier, trainings last one / last two / last three layers and the rest frozen + classifier. Training with multi GPU mode except of Module 19a.

Notebooks:

Module\_16\_model\_7.ipynb

Module\_17\_model\_7.ipynb

Module\_18\_model\_7.ipynb

Module\_19\_model\_7.ipynb

Module\_19a\_model7.ipynb

# 4. Results summary



In [7]: summary = pd.DataFrame(my\_functions.results\_preview())
summary.index = summary.index + 1
summary

| $\sim$  | 4  | $\Gamma \rightarrow 7$ | Ι. |
|---------|----|------------------------|----|
| ()      | нт |                        | ٠. |
| $\circ$ | uc | _ / _                  |    |
|         |    |                        |    |

|    | model_name                         | model_description | notebook | dataset_size | batch_size | epochs | optimizer            | асс   |
|----|------------------------------------|-------------------|----------|--------------|------------|--------|----------------------|-------|
| 1  | model_0_0-<br>100-150-sgd-<br>trd  | 32-64-128-256-512 | Module_1 | 1600         | 100        | 150    | sgd                  | 0.924 |
| 2  | model_0_0-<br>100-150-adlt-<br>trd | 32-64-128-256-512 | Module_1 | 1600         | 100        | 150    | adadelta             | 0.918 |
| 3  | model_0_0-<br>100-120-<br>rmsp-trd | 32-64-128-256-512 | Module_1 | 1600         | 100        | 120    | rmsprop              | 0.924 |
| 4  | model_0_0-<br>100-100-<br>RMSp-trd | 32-64-128-256-512 | Module_1 | 1600         | 100        | 100    | RMSprop(Ir=1e-<br>4) | 0.932 |
| 5  | model_0_0-<br>100-100-sgd-<br>trd  | 32-64-128-256-512 | Module_1 | 1600         | 100        | 100    | sgd                  | 0.904 |
| 6  | model_0_0-<br>30-100-sgd-<br>trd   | 32-64-128-256-512 | Module_1 | 1600         | 30         | 100    | sgd                  | 0.918 |
| 7  | model_0_0-<br>15-40-sgd-trd        | 32-64-128-256-512 | Module_1 | 1600         | 15         | 40     | sgd                  | 0.920 |
| 8  | model_0_0-<br>15-25-RMSp-<br>trd   | 32-64-128-256-512 | Module_1 | 1600         | 15         | 25     | RMSprop(lr=1e-<br>4) | 0.882 |
| 9  | model_0_0-<br>15-15-rmsp-<br>trd   | 32-64-128-256-512 | Module_1 | 1600         | 15         | 15     | rmsprop              | 0.926 |
| 10 | model_0_8-<br>100-150-sgd-<br>trd  | 32-64-128-256-512 | Module_3 | 8000         | 100        | 150    | sgd                  | 0.522 |
| 11 | model_0_8-<br>100-100-sgd-<br>trd  | 32-64-128-256-512 | Module_3 | 8000         | 100        | 100    | sgd                  | 0.934 |
| 12 | model_0_8-<br>30-100-sgd-<br>trd   | 32-64-128-256-512 | Module_3 | 8000         | 30         | 100    | sgd                  | 0.522 |
| 13 | model_0_8-<br>30-32-sgd-trd        | 32-64-128-256-512 | Module_3 | 8000         | 30         | 32     | sgd                  | 0.918 |
| 14 | model_0_8-<br>30-30-adlt-trd       | 32-64-128-256-512 | Module_3 | 8000         | 30         | 30     | adadelta             | 0.940 |
| 15 | model_0_8-<br>30-8-adlt-trd        | 32-64-128-256-512 | Module_3 | 8000         | 30         | 8      | adadelta             | 0.938 |
| 16 | model_0_8-<br>100-30-adlt-<br>trd  | 32-64-128-256-512 | Module_3 | 8000         | 100        | 30     | adadelta             | 0.928 |
| 17 | model_0_8-<br>30-8-RMSp-<br>trd    | 32-64-128-256-512 | Module_3 | 8000         | 30         | 8      | RMSprop(Ir=1e-<br>4) | 0.856 |
| 18 | model_0_8-<br>100-30-<br>RMSp-trd  | 32-64-128-256-512 | Module_3 | 8000         | 100        | 30     | RMSprop(lr=1e-<br>4) | 0.940 |
| 19 | model_0_8-<br>100-21-<br>RMSp-trd  | 32-64-128-256-512 | Module_3 | 8000         | 100        | 21     | RMSprop(Ir=1e-4)     | 0.890 |

|    | model_name                         | model_description       | notebook  | dataset_size | batch_size | epochs | optimizer            | асс   |
|----|------------------------------------|-------------------------|-----------|--------------|------------|--------|----------------------|-------|
| 20 | model_1_8-<br>100-100-sgd-<br>trd  | model_0 + Dropout       | Module_4  | 8000         | 100        | 100    | sgd                  | 0.930 |
| 21 | model_1_8-<br>30-32-sgd-trd        | model_0 + Dropout       | Module_4  | 8000         | 30         | 32     | sgd                  | 0.934 |
| 22 | model_1_8-<br>30-40-sgd-trd        | model_0 + Dropout       | Module_4  | 8000         | 30         | 40     | sgd                  | 0.922 |
| 23 | model_1_8-<br>30-9-adlt-trd        | model_0 + Dropout       | Module_4  | 8000         | 30         | 9      | adadelta             | 0.922 |
| 24 | model_1_8-<br>100-30-<br>RMSp-trd  | model_0 + Dropout       | Module_4  | 8000         | 100        | 30     | RMSprop(Ir=1e-<br>4) | 0.942 |
| 25 | model_2_8-<br>100-100-sgd-<br>trd  | model_0 + reg. L2       | Module_5  | 8000         | 100        | 100    | sgd                  | 0.900 |
| 26 | model_2_8-<br>30-40-sgd-trd        | model_0 + reg. L2       | Module_5  | 8000         | 30         | 40     | sgd                  | 0.904 |
| 27 | model_2_8-<br>30-9-adlt-trd        | model_0 + reg. L2       | Module_5  | 8000         | 30         | 9      | adadelta             | 0.898 |
| 28 | model_2_8-<br>30-20-adlt-trd       | model_0 + reg. L2       | Module_5  | 8000         | 30         | 20     | adadelta             | 0.930 |
| 29 | model_2_8-<br>100-25-<br>RMSp-trd  | model_0 + reg. L2       | Module_5  | 8000         | 100        | 25     | RMSprop(lr=1e-<br>4) | 0.872 |
| 30 | model_3_8-<br>100-100-sgd-<br>trd  | 32+64+128+128+256       | Module_6  | 8000         | 100        | 100    | sgd                  | 0.936 |
| 31 | model_3_8-<br>100-100-adlt-<br>trd | 32+64+128+128+256       | Module_6  | 8000         | 100        | 100    | adadelta             | 0.942 |
| 32 | model_3_8-<br>100-20-adlt-<br>trd  | 32+64+128+128+256       | Module_6  | 8000         | 100        | 20     | adadelta             | 0.946 |
| 33 | model_3_8-<br>100-30-<br>RMSp-trd  | 32+64+128+128+256       | Module_6  | 8000         | 100        | 30     | RMSprop(lr=1e-<br>4) | 0.932 |
| 34 | model_4_8-<br>100-100-sgd-<br>trd  | 32+64+128+128+128       | Module_7  | 8000         | 100        | 100    | sgd                  | 0.924 |
| 35 | model_4_8-<br>100-20-adlt-<br>trd  | 32+64+128+128+128       | Module_7  | 8000         | 100        | 20     | adadelta             | 0.926 |
| 36 | model_4_8-<br>100-30-<br>RMSp-trd  | 32+64+128+128+128       | Module_7  | 8000         | 100        | 30     | RMSprop(lr=1e-<br>4) | 0.946 |
| 37 | model_4_8-<br>100-40-<br>RMSp-trd  | 32+64+128+128+128       | Module_7  | 8000         | 100        | 40     | RMSprop(Ir=1e-<br>4) | 0.946 |
| 38 | model_5_8-<br>100-50-sgd-<br>trd   | vgg16 conv base<br>None | Module_12 | 8000         | 100        | 50     | sgd                  | 0.904 |
| 39 | model_5_8-<br>100-70-sgd-<br>trd   | vgg16 conv base<br>None | Module_13 | 8000         | 100        | 70     | sgd                  | 0.922 |
| 40 | model_5_8-<br>100-25-<br>RMSp-trd  | vgg16 conv base<br>None | Module_14 | 8000         | 100        | 25     | RMSprop(Ir=1e-4)     | 0.910 |

|    | model_name                                | model_description            | notebook   | dataset_size | batch_size | epochs | optimizer            | acc   |
|----|-------------------------------------------|------------------------------|------------|--------------|------------|--------|----------------------|-------|
| 41 | model_6_8-<br>100-50-sgd-<br>trd          | 32+64+128+128                | Module_15  | 8000         | 100        | 50     | sgd                  | 0.914 |
| 42 | model_6_8-<br>100-100-sgd-<br>trd         | 32+64+128+128                | Module_15  | 8000         | 100        | 100    | sgd                  | 0.932 |
| 43 | model_6_8-<br>100-40-adlt-<br>trd         | 32+64+128+128                | Module_15  | 8000         | 100        | 40     | adadelta             | 0.952 |
| 44 | model_6_8-<br>100-17-adlt-<br>trd         | 32+64+128+128                | Module_15  | 8000         | 100        | 17     | adadelta             | 0.934 |
| 45 | model_6_8-<br>100-25-<br>RMSp-trd         | 32+64+128+128                | Module_15  | 8000         | 100        | 25     | RMSprop(Ir=1e-<br>4) | 0.900 |
| 46 | model_6_8-<br>100-30-<br>RMSp-trd         | 32+64+128+128                | Module_15  | 8000         | 100        | 30     | RMSprop(Ir=1e-<br>4) | 0.952 |
| 47 | model_7_8-<br>100-30-<br>0vgg16-trd       | full vgg16 base<br>frozen    | Module_16  | 8000         | 100        | 30     | sgd                  | 0.978 |
| 48 | model_7_8-<br>100-12-<br>0vgg16-trd       | full vgg16 base<br>frozen    | Module_16  | 8000         | 100        | 12     | sgd                  | 0.964 |
| 49 | model_7_8-<br>100-20-<br>1vgg16s-trd      | last vgg16 layer<br>training | Module_17  | 8000         | 100        | 20     | sgd                  | 0.982 |
| 50 | model_7_8-<br>100-12-<br>1vgg16R-trd      | last vgg16 layer<br>training | Module_17  | 8000         | 100        | 12     | RMSprop(Ir=1e-<br>4) | 0.982 |
| 51 | model_7_8-<br>100-5-<br>1vgg16s-trd       | last vgg16 layer<br>training | Module_17  | 8000         | 100        | 5      | sgd                  | 0.978 |
| 52 | model_7_8-<br>100-20-<br>2vgg16s-trd      | 2 last vgg16 layers tr.      | Module_18  | 8000         | 100        | 20     | sgd                  | 0.984 |
| 53 | model_7_8-<br>100-5-<br>2vgg16s-trd       | 2 last vgg16 layers tr.      | Module_18  | 8000         | 100        | 5      | sgd                  | 0.982 |
| 54 | model_7_8-<br>100-20-<br>3vgg16s-trd      | 3 last vgg16 layers tr.      | Module_19  | 8000         | 100        | 20     | sgd                  | 0.984 |
| 55 | model_7_8-<br>100-5-<br>3vgg16s-trd       | 3 last vgg16 layers tr.      | Module_19  | 8000         | 100        | 5      | sgd                  | 0.988 |
| 56 | model_7_8-<br>100-5-<br>3vgg16s-<br>trd_a | 3 last vgg16 layers tr.      | Module_19a | 8000         | 100        | 5      | sgd                  | 0.986 |

# 5. Selected models' evaluation

Checking the models on test data.

```
In [8]: train x name = 'TRAIN X EXTD.npy'
        train_y_name = 'TRAIN_Y_EXTD.npy'
        TRAIN X, VALID X, TEST X, TRAIN Y, VALID Y, TEST Y = my_functions.data_conversion(train
        my_functions.code_block_1(TEST_X, TEST_Y)
        LOADED DATA (before conversion):
          set name
                              shape dtype
                                                data sight
          TRAIN X
                   (8000, 96, 96, 3) uint8
                                              [87, 73, 37]
                            (8000,)
        1 TRAIN Y
                                    uint8
        2 VALID X
                    (500, 96, 96, 3) uint8 [204, 205, 210]
        3 VALID Y
                              (500,)
                                    uint8
        4
           TEST X
                    (500, 96, 96, 3) uint8 [132, 167, 203]
        5
           TEST Y
                             (500,)
                                     uint8
       Using TensorFlow backend.
       DATA FOR TRAINING (after conversion):
          set name
                              shape
                                       dtype
                                                                      data sight
        0 TRAIN X (8000, 96, 96, 3) float32 [0.34117648, 0.28627452, 0.14509805]
         TRAIN Y
                          (8000, 2) float32
        1
                                                                      [0.0, 1.0]
        2 VALID X
                    (500, 96, 96, 3) float32
                                                      [0.8, 0.8039216, 0.8235294]
        3 VALID_Y
                           (500, 2) float32
                                                                      [1.0, 0.0]
                                                [0.5176471, 0.654902, 0.79607844]
        4
           TEST X
                    (500, 96, 96, 3) float32
        5
                           (500, 2) float32
           TEST Y
                                                                      [1.0, 0.0]
        500/500 [========== ] - 2s 4ms/step
        Model no. 33 (Module 6) , validation accuracy = 0.932 , test accuracy = 0.93599998950
        95825
        500/500 [========== ] - 0s 720us/step
        Model no. 37 (Module 7) , validation accuracy = 0.946 , test accuracy = 0.94599997997
        28394
        500/500 [========== ] - 0s 686us/step
        Model no. 46 (Module_15) , validation accuracy = 0.952 , test accuracy = 0.9340000152
        587891
        500/500 [========= ] - 3s 5ms/step
        Model no. 56 (Module 19a) , validation accuracy = 0.986 , test accuracy = 0.981999993
        3242798
In [ ]:
```

/