Automorphismes des Variétés de Caractères

Christopher-Lloyd Simon joint work with Julien Marché

Départment de mathématiques, ENS Lyon

Laboratoire Paul Painlevé. Lille

Géométrie complexe, Nancy, Printemps 2020

La variété des caractères

Définition : variété des caractère $X(\Sigma)$

- Σ une surface orientable compacte sans bord, genre $g \geq 2$.
- Variété des représentations $\operatorname{Hom}(\pi_1(\Sigma),\operatorname{SL}_2(\mathbb{C}))$ admet
- une action algébrique $SL_2(\mathbb{C})$ par conjugaison au but.
- Variété des caractères $X(\Sigma) = \operatorname{\mathsf{Hom}}(\pi_1(\Sigma),\operatorname{\mathsf{SL}}_2(\mathbb{C}))//\operatorname{\mathsf{SL}}_2(\mathbb{C})$
- définie comme quotient algébrique = Spec(Fonctions invariantes)
- Pour $\alpha \in \pi_1(\Sigma)$, fonction invariante : $t_\alpha : \rho \mapsto \text{Tr}(\rho(\alpha))$

Théorème [Procesi] : Présentation de l'algèbre des caractères

L'algèbre $\mathbb{C}[X(\Sigma)]$ des fonctions invariantes est

- engendrée par les $t_{\alpha} \colon [\rho] \mapsto \mathsf{Tr}(\rho(\alpha))$ pour $\alpha \in \pi_1(\Sigma)$
- ullet idéal de relations engendré par $t_1=2$ et $t_lpha t_eta=t_{lphaeta}+t_{lphaeta^{-1}}$

Point de vue géométrique : l'espace de Teichmüller

Observation : Les points réels contiennent l'espace de Teichmüller

- If y a descopies de l'espace de Teichmüller dans $X(\Sigma, \mathsf{SL}_2(\mathbb{R}))$
- on relève les représentations d'holonomie $\rho \colon \pi_1(\Sigma) \to \mathsf{PSL}_2(\mathbb{R})$
- fonction trace revient à longueur géodésique : $t_{\alpha}=2\cosh(I_{\alpha}/2)$
- Teichmüller forme un espace Zariski dense, donc : relations géométriques entre longueurs géodésiques sur Teichmüller

relations algébriques entre leurs fonction traces sur $X(\Sigma)$

Pointde vue géométrique : compactification de Teichmüller

Rappel : Laminations mesurées et complexe des courbes

- ullet Compactification $Mod(\Sigma)$ -equivariante de Teichmüller par $\P ML$
- Sur ML structure PL entière
 - ightharpoonup points entiers : multicourbes $\Gamma \subset \Sigma$
 - ▶ le volume de Thurston
 - la forme d'intersection
- Complexe courbes (C, \bot)
 - ightharpoonup sommets : courbes simples lpha (multicourbes à une composante)
 - ▶ arêtes : lorsque $\alpha \perp \beta$ c'est-à-dire $i(\alpha, \beta) = 0$

Automorphismes

Définition : Action du groupe modulaire

- $\mathsf{Mod}(\Sigma) = \mathsf{Out}(\pi_1(\Sigma))$ par Dehn-Nielsen-Baer
- $\mathsf{Mod}(\Sigma) \curvearrowright X(\Sigma)$ selon $\phi \cdot [\rho] = [\rho \circ \phi^{-1}]$
- ullet Multiplication par une représentation centrale $\pi_1(\Sigma) o \{\pm 1\}$
- Représentation centrales = $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z})$
- On en déduit $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z}) \rtimes \mathsf{Mod}(\Sigma) \to \mathsf{Aut}(X(\Sigma))$

Théorème [M-S] : $Aut(X(\Sigma)) \approx Out(\pi_1(\Sigma))$

Si $g \geq 3$ alors $H^1(\Sigma; \mathbb{Z}/2\mathbb{Z}) \rtimes \mathsf{Mod}(\Sigma) \to \mathsf{Aut}(X(\Sigma))$ isomorphisme.

Si g=2 elle a noyau $\mathbb{Z}/2\mathbb{Z}$ engendré par l'involution hyperelliptique.

Résultats géométrique analogues

Résultats : rigidité des actions de $\mathsf{Mod}(\Sigma)$

Des structures qui ont $\mathsf{Mod}(\Sigma)$ pour groupe d'automorphismes :

- Teichmüller + métrique (Teichmüller, Weil-Petersen ou Thurston)
- ML + structure PL (ou symplectique ou intersection)
- Le complexe des courbes (\mathcal{C}, \perp)

Résultats de Earle-Kra, Masur-Wolf, Walsh; Papadopoulos; Ivanov. (Voir aussi un survey de Aramayona-Souto.)

Stratégie : retrouver algébriquement les actions connues

Définition : l'espace $\mathcal V$ des valuations $v\colon \mathbb C[X(\Sigma)]^* \to \mathbb R_+$ telles que

- $v(\mathbb{C}^*) = \{0\}$
- v(fg) = v(f) + v(g)
- $v(f+g) \le \max\{v(f), v(g)\}$ (où l'on étend $v(0) = -\infty$)

Munissons \mathcal{V} de la topologie de la convergence ponctuelle sur $\mathbb{C}[X(\Sigma)]$. L'anneau de valuation régulier $\mathcal{O}_{\nu}^+ = \{ f \in \mathbb{C}[X(\Sigma)] \mid \nu(f) \leq 0 \}$.

Plan : plonger ML $\hookrightarrow \mathcal{V}$ puis caractériser algébriquement ML & (\mathcal{C}, \bot)

- ML correspond aux valuations simples
 - Les valuations indomptables en forment un sous ensemble qui est dense
 - Les valuations indomptables sont préservées par $Aut(X(\Sigma))$
- La structure de (C, \bot) est intrinsèque à la structure algébrique
 - valuations simples et discrètes correspondent aux multicourbes duales
 - le nombre de composantes se lit sur l'anneau de valuation
 - caractère disjoint se lit sur l'intersection des anneaux de valuation

Base linéaire et valuations simples

Théorème [Procesi] : Présentation de l'algèbre des caractères

L'algèbre $\mathbb{C}[X(\Sigma)]$ est engendrée par les t_{α} pour $\alpha \in \pi_1(\Sigma)$ avec pour idéal de relations engendré par $t_1 = 2$ et $t_{\alpha}t_{\beta} = t_{\alpha\beta} + t_{\alpha\beta^{-1}}$ pour $\alpha, \beta \in \pi_1(\Sigma)$.

Application : Décomposer t_{α} et termes des traces de courbes simples en utilisant la relation de trace pour résoudre les s intersections de α :

$$-t_{lpha}=(-1)^{s}\sum_{2s+t+s}\cdot\prod_{j}-t_{\gamma_{j}}$$

Base linéaire et valuations simples

Théorème [Procesi] : Présentation de l'algèbre des caractères

L'algèbre $\mathbb{C}[X(\Sigma)]$ est engendrée par les t_{α} pour $\alpha \in \pi_1(\Sigma)$ avec pour idéal de relations engendré par $t_1 = 2$ et $t_{\alpha}t_{\beta} = t_{\alpha\beta} + t_{\alpha\beta^{-1}}$ pour $\alpha, \beta \in \pi_1(\Sigma)$.

Définition : multicourbes et leur trace

Multicourbe $\Gamma \subset \Sigma$ union disjointe de courbes simples γ_j et $t_{\Gamma} = \prod t_{\gamma_j}$.

Théorème [Przytycki-Sikora] : Base Linéaire (analogue des monomes)

Les t_{Γ} pour Γ multicourbe forment une base linéaire de l'algèbre $\mathbb{C}[X(\Sigma)]$.

Définition : valuations simples (analogue des valuations monomiales) Une valuation $v \in \mathcal{V}$ est *simple* si pour $f = \sum m_{\Gamma} t_{\Gamma}$ dans $\mathbb{C}[X(\Sigma)] \setminus \{0\}$:

$$v(f) = \max\{v(t_{\Gamma}) \mid m_{\Gamma} \neq 0\}$$

Les laminations mesurées sont des valuations simples

Proposition : plongement de ML dans les valuations simples

Soit $\lambda \in \mathsf{ML}$: il existe une unique valuation simple $v_\lambda \in \mathcal{V}$ telle que

$$v_{\lambda}(t_{\alpha}) = i(\lambda, \alpha) \quad \forall \alpha \in \pi_1(\Sigma)$$

• Bien défini : formule D. Thurston, intersection avec une courbe simple.

$$i(lpha,\lambda) = \bigvee_{\Gamma} \sum_{\gamma_j} i(\gamma_j,\lambda) = \max\{i(\Gamma,\lambda) \mid ext{etats}\,\Gamma\} = v_\lambda(t_lpha)$$

• Morphisme v(fg) = v(f) + v(g): intégrité d'un anneau gradué associé à la valuation (pas \mathcal{O}_v^+)

Domination des valuations

Définition : structure d'ordre et valuations indomptables

Ordre partiel sur $V: v \leq w$ si $v(f) \leq w(f)$ pour tout $f \in \mathbb{C}[X(\Sigma)]$. Une valuation u est *indomptable* si $u \leq v$ entraı̂ne v = Cu avec $C \in \mathbb{R}$.

Théorème [Morgan-Otal-Skora, M-S] : domination de $\mathcal V$ par ML

Pour toute valuation $v \in \mathcal{V}$ il existe $\lambda \in ML$ telle que $v \leq v_{\lambda}$, et de plus $v(t_{\alpha}) = v_{\lambda}(t_{\alpha})$ pour tout $\alpha \in \pi_1(\Sigma)$.

Corollaires (Importants)

- Valuations Simples = ML (en particulier ML est fermé dans V).
- ullet Les indomptables ${\cal U}$ sont dans ML.

Temporisation et remarque sur l'invariance

Un plongement $ML \subset \mathcal{V}$ simple certes, mais à priori non canonique...

- On a caractérisé les lamination mesurées en termes de valuations.
- Pas clair que les valuations simples soient préservées par $\operatorname{Aut}(X(\Sigma))$. En effet, nous n'avons pas caractérisé algébriquement la base linéaire.
- Les valuations indomptables sont évidement préservées par $\operatorname{Aut}(X(\Sigma))$.
- Pour montrer que les simples aussi il suffit de montrer $\overline{\mathcal{U}} = ML...$

Corollaire à la domination par ML en admettant la densité $\overline{\mathcal{U}} = \mathsf{ML}$ L'action par $\mathsf{Aut}(X(\Sigma)) \curvearrowright \mathcal{V}$ préserve notre plongement $\mathsf{ML} \subset \mathcal{V}$.

Densité des indomptables dans les laminations mesurées

Définition: valuations strictes.

Valuation stricte : $v(t_{\Gamma}) \neq v(t_{\Delta})$ si $\Gamma \neq \Delta$.

Cela entraı̂ne simple : $v(f) \neq v(g) \implies v(f+g) = \max\{v(f), v(g)\}.$

On montre que les valuations strictes sont de μ_{Th} -mesure pleine dans ML (ce qui est plus fort que générique au sens de Baire).

Topologie du support de $\lambda \in \mathsf{ML}$: deux conditions μ_{Th} génériques

- maximalité du support (équivaut complémentaire = union de triangles)
- unique ergodicité : supporte une unique mesure invariante [Masur]

Proposition : densité $\overline{\mathcal{U}} = ML$

Les valuations strictes provenant de laminations uniquement ergodiques et maximales sont indomptables.

Presque toute lamination mesurée est indomptable, en particulier $\overline{\mathcal{U}} = \mathsf{ML}.$

Rappel de la stratégie

Plonger ML dans V et montrer son invariance par $Aut((X(\Sigma))$

OK ML correspond aux valuations simples

Dur Les valuations indomptables en forment un sous ensemble dense

Sur Les valuations indomptables sont préservées par $\operatorname{Aut}(X(\Sigma))$

La structure de (\mathcal{C}, \perp) est intrinsèque à la structure algébrique de \mathcal{V}

- Les valuations simples et discrètes sont $ML(\mathbb{Z})^*$: les $\frac{1}{2}\Gamma \in H^1(\Sigma; \mathbb{Z})$
- courbes simple : v simple discrète telle que $\operatorname{codim}(\mathcal{O}_{v}^{+})=1$
- courbes simples disjointes $\gamma \perp \delta \iff \operatorname{codim}(\mathcal{O}_{\gamma}^{+} \cap \mathcal{O}_{\delta}^{+}) = 2$

Valuations discrètes

Définition : valuations discrètes

Une valuation $v \in \mathcal{V}$ est discrète si elle prend ses valeurs dans $\mathbb{N} \cup \{-\infty\}$.

Proposition : valuations simples et discrètes = multicourbes duales

Une valuation simple v_{λ} est discrète ssi $\lambda = \frac{1}{2}\Gamma$ pour Γ multicourbe nulle dans $H_1(\Sigma; \mathbb{Z}/2\mathbb{Z})$ (poids demi entiers sur les multicourbes qui bordent).

L'anneau $\mathcal{O}_{\lambda}^+ = \{ f \in \mathbb{C}[X(\Sigma)] \mid v_{\lambda}(f) \leq 0 \} = \text{Vect}(\{t_{\Delta} \mid i(\lambda, \Delta) = 0 \}).$ Sa codimension de Krull est la dimension de l'image $X(\Sigma) \to X(\Sigma \setminus \lambda).$

Proposition : Composantes et intersection en termes de codimension

Le nombre de composantes distinctes d'une multicourbe Γ est codim \mathcal{O}_{Γ}^+ . Pour des courbes simples, on a codim $\mathcal{O}_{\gamma}^+ \cap \mathcal{O}_{\delta}^+ \leq 2$ avec égalité ssi $\gamma \perp \delta$.

Conclusion

Dernier coup de pioche.

On a donc un morphisme $\operatorname{Aut}(X(\Sigma)) \to \operatorname{Aut}(\mathcal{C}, \bot)$ qui est surjectif, d'image $\operatorname{Mod}(\Sigma)$ (quotienté par l'involution hyperelliptique en genre 2). Noyau: $H^1(\Sigma; \mathbb{Z}/2)$ agit par multiplication des représentations centrales.

Plonger ML dans $\mathcal V$ puis caractériser algébriquement ML et $(\mathcal C, \perp)$

- ML correspond aux valuations simples
 - Les valuations indomptables en forment un sous ensemble dense
 - Les valuations indomptables sont préservées par $Aut(X(\Sigma))$
- ullet La structure de (\mathcal{C}, \perp) est intrinsèque à la structure algébrique
 - valuations simples et discrètes correspondent aux multicourbes duales
 - le nombre de composantes se lit sur l'anneau de valuation
 - le caractère disjoint se lit sur l'intersection des anneaux de valuation

Merci pour votre attention.

Appendice : Preuve du théorème de domination

Théorème : Domination de ${\mathcal V}$ par ML

Pour toute valuation $v \in \mathcal{V}$ il existe $\lambda \in ML$ telle que $v \leq v_{\lambda}$, et de plus $v(t_{\alpha}) = v_{\lambda}(t_{\alpha})$ pour tout $\alpha \in \pi_1(\Sigma)$.

- Représentation tautologique $\pi_1(\Sigma) o \mathsf{SL}_2(K)$ où $[K \colon \mathbb{C}(X(\Sigma))] = 2$
- On relève v sur $\mathbb{C}(X(\Sigma))$ en \tilde{v} sur K.
- L'arbre de Bass-Serre $T_{\tilde{v}}$ pour $(SL_2(K), \tilde{v})$
- admet une action par isométries du $\pi_1(\Sigma)$
- ullet Morgan-Otal donne $T_{\lambda} o T_{ ilde{
 u}}$ application contractante (domination)
- avec Skora on montre isométrie sur son image (égalité sur $\pi_1(\Sigma)$)