Assignment 3.1 Exercises: 1, 3, 4, 7

Exercise 3.1.1

(3.1.1a):

Proof. By construction, we observe that $0 \in I_l$. Furthermore, I_l is closed under addition since both I and $k[x_{l+1}, \ldots, x_n]$ are. To show I_l is closed under multiplication in $k[x_{l+1}, \ldots, x_n]$, we let $f \in I_l$ and $h \in k[x_{l+1}, \ldots, x_n]$. Since $f \in I$ and $k[x_{l+1}, \ldots, x_n] \subseteq k[x_1, \ldots, x_n]$, it follows that $hf \in I$. It also follows that $hf \in k[x_{l+1}, \ldots, x_n]$ since $h, f \in k[x_{l+1}, \ldots, x_n]$ and $k[x_{l+1}, \ldots, x_n]$ is a ring. Therefore $hf \in I \cap k[x_{l+1}, \ldots, x_n] = I_l$.

(3.1.1b):

Proof. We have that

$$(I_{l})_{1} = I_{l} \cap k[x_{l+2}, \dots, x_{n}]$$

$$= (I \cap k[x_{l+1}, \dots, x_{n}]) \cap k[x_{l+2}, \dots, x_{n}]$$

$$= I \cap k[x_{l+2}, \dots, x_{n}] \qquad \text{since } k[x_{l+2}, \dots, x_{n}] \subseteq k[x_{l+1}, \dots, x_{n}]$$

$$= I_{l+1}$$

Exercise 3.1.3 We begin by computing a Groebner basis G for the ideal

$$\langle x^2 + 2y^2 - 2, x^2 + xy + y^2 - 2 \rangle$$

using lex order with x > y and find that

$$G = \{g_1, g_2, g_3\} = \{x^2 + 2y^2 - 2, xy - y^2, 3y^3 - 2y\}.$$

Solving g_3 for y yields $y = 0, \pm \sqrt{2/3}$. Substituting y = 0 into g_1 and g_2 yields $x = \pm \sqrt{2}$, while substituting $y = \pm \sqrt{2/3}$ into both g_1 and g_2 yields $x = \pm \sqrt{2/3}$. Therefore the solutions to the system are

$$(x,y) = \pm(\sqrt{2},0), \pm(\sqrt{2/3},\sqrt{2/3}).$$

Note that all of these solutions lie in \mathbb{C}^2 , and none exist in \mathbb{Q}^2 .

Exercise 3.1.4 We begin by computing a Groebner basis G for the ideal

$$\langle x^2 + y^2 + z^2 - 4, x^2 + 2y^2 - 5, xz - 1 \rangle$$

using lex order with x > y > z and find that

$$G = \{g_1, g_2, g_3\} = \{x + 2z^3 - 3z, y^2 - z^2 - 1, 2z^4 - 3z^2 + 1\}.$$

The Elimination Theorem then gives that

$$I_1 = \langle y^2 - z^2 - 1, 2z^4 - 3z^2 + 1 \rangle \subseteq \mathbb{Q}[y, z]$$

 $I_2 = \langle 2z^4 - 3z^2 + 1 \rangle \subseteq \mathbb{Q}[z].$

To find solutions over \mathbb{Q} , we use g_3 to find values $z=\pm 1,\pm \frac{1}{\sqrt{2}}$. Over Q, we ignore all irrational values for z and thus we have $z=\pm 1$. Substituting these values into g_2 yields $y=\pm \sqrt{2}$. Since these values are irrational, we see that there are no solutions to the system over \mathbb{Q} .

Exercise 3.1.7

(3.1.7a): Computing a Groebner basis for the ideal

$$I = \langle t^2 + x^2 + y^2 + z^2, t^2 + 2x^2 - xy - z^2, t + y^3 - z^3 \rangle$$

using lex order with t > x > y > z yields a Groebner basis $G = \{g_1, g_2, g_3, g_4, g_5\}$ defined by

$$g_{1} = t + y^{3} - z^{3}$$

$$g_{2} = x^{2} + y^{6} - 2y^{3}z^{3} + y^{2} + z^{6} + z^{2}$$

$$g_{3} = xy + y^{6} - 2y^{3}z^{3} + 2y^{2} + z^{6} + 3z^{2}$$

$$g_{4} = 3xz^{2} + xz^{6} - y^{11} + 4y^{8}z^{3} - 5y^{7} - 5y^{5}z^{6} - 3y^{5}z^{2} + 10y^{4}z^{3} - 5y^{3} + 2y^{2}z^{9} + 6y^{2}z^{5} - 3yz^{6} - 7yz^{2}$$

$$g_{5} = y^{12} - 4y^{9}z^{3} + 5y^{8} + 6y^{6}z^{6} + 6y^{6}z^{2} - 10y^{5}z^{3} + 5y^{4} - 4y^{3}z^{9} - 12y^{3}z^{5} + 5y^{2}z^{6} + 13y^{2}z^{2} + z^{12} + 6z^{8} + 9z^{4}.$$

Since only g_1 involves t, the remaining $\{g_2, g_3, g_4, g_5\}$ form a Groebner basis for $I \cap k[x, y, z]$ in lex order with x > y > z by the Elimination Theorem. g_4 has a total degree of 12.

(3.1.7b): Computing a Groebner basis for $I \cap \mathbb{Q}[x, y, z]$ in grevlex order with x > y > z yields

$$h_1 = x^2 - xy - y^2 - 2z^2$$

$$h_2 = y^6 - 2y^3z^3 + z^6 + xy + 2y^2 + 3z^2.$$

(3.1.7c): We wish to show that $\{g_1, h_1, h_2\}$ is a Groebner basis for the elimination order $>_1$. Let $f \in I$ be arbitrary. We then have two cases. In the first case, suppose the $LT_{>_1}(f)$ involves t. Then $LT_{>_1}(f)$ is divisible by $t = LT_{>_1}(g_1)$.

In the second case, $LT_{>_1}(f)$ does not involve t. That means that no other monomial term of f involves t because of the ordering we have chosen. It follows that $f \in I \cap k[x, y, z]$. Using Exercise 3.1.7b, we conclude that $LT_{>_{grevlex}}(f)$ is divisible by either $LT_{>_{grevlex}}(h_1)$ or $LT_{>_{grevlex}}(h_2)$. Note that both $>_1$ and $>_{grevlex}$ agree on k[x, y, z], so it must be that $LT_{>_1}(f)$ is divisible by either $LT_{>_1}(h_1)$ or $LT_{>_1}(h_2)$.

Therefore, in all cases, an arbitrary $f \in I$ has a leading term $LT_{>_1}(f)$ that is divisible by at least one of $LT_{>_1}(g_1)$, $LT_{>_1}(h_1)$, or $LT_{>_1}(h_2)$. Since $g_1, h_1, h_2 \in I$, we can conclude that $\{g_1, h_1, h_2\}$ is a Groebner basis for I on $>_1$.