Using Biomarkers to Characterize Human Benzene Metabolism

S. M. Rappaport

Schools of Public Health
University of North Carolina, Chapel Hill
University of California, Berkeley

Supported by grant P42ES10126 from the National Institute for Environmental Health Sciences and a contract from the Health Effects Institute

Benzene

- Human carcinogen
 - First linked with bone marrow toxicity in 1896 (Santesson, C. Arch Hyg Berl 31: 337) and with leukemia in 1928 Delore, P. and Borgomano, C. J Med Lyon 9: 227)
 - Dose-response poorly defined
 - Uncertain risks, particularly at low exposures
- Mechanism not completely understood
 - Linked to metabolism
- Metabolism is complex
 - Qualitatively similar in all mammals
 - Important quantitative differences among species
 - Can be affected by genetics (SNPs)
- Dose-related metabolism poorly characterized in humans

Benzene Metabolism

Benzene Biomarkers Among Chinese Workers

STUDY #1 (NCI, UC-Berkeley, UNC)

- 44 Exposed subjects and 44 controls in Shanghai, China
- Very high exposure (med. = 31 ppm)
- Focus on hematology and cytogenetics
- Developed and validated biomarkers of exposure (protein adducts, urinary benzene, and urinary metabolites)
- Evidence of saturable metabolism

Rothman et al., PNAS, 1995
Rothman et al., AJIM, 1996
Rothman et al., EHP 1996
Rothman et al., Cancer Res, 1997
Rothman et al., OEM, 1998
Smith et al., Cancer Res, 1998
Smith et al., PNAS, 2000
Yeowell-O'Connell et al., Carcinogenesis, 1998
Yeowell-O'Connell et al., CEBP, 2001
Waidyanatha et al., Carcinogenesis, 2001
Waidyanatha et al., Analyt Biochem, 2004
Rappaport et al., J Chromatog B, 2002

Benzene Biomarkers Among Chinese Workers

STUDY #2

134 Exposed subjects and 51 controls in Tianjin, China

Lower exposure (med. = 3.1 ppm)

 Focus upon hematology and biomarkers of exposure

Qu et al., AJIM, 2000 Qu et al., AJIM, 2002 Melikian et al., J Chromatog (B), 2002 Rappaport et al., Cancer Res, 2002

Benzene in Air and BO-Alb Adducts (STUDY #2)

Saturation of benzene metabolism beginning at about 1 ppm (much lower than previously suggested)

Greater unit risk at low exposure levels

Motivated EPA to reduce benzene content in gasoline (2007)

CAN THIS FINDING BE VERIFIED?

S. M. Rappaport

Benzene Biomarkers Among Chinese Workers

STUDY #3 (NCI, UC-Berkeley, UNC)

250 Exposed subjects and 140 controls in Tianjin, China

- Similar exposures (med. = 3.7 ppm)
- Focus on exposure-biomarker relationships and mechanism

Vermeulen et al., Ann Occup Hyg, 2004
Lan et al., Science, 2004
Lan et al., Zhang et al., Chem-Biol Interact, 2005
Lan et al., Cancer Res, 2005
Vermeulen et al., PNAS, 2005
Chen et al., Carcinogenesis, 2006
Kim et al., CEBP, 2006
Kim et al., PGEN, in press

Air Samples (n=2783) and Urinary Analytes (n=620)

Air; Unmetabolized benzene in urine

Major metabolites (99% of absorbed dose)

Urinary Benzene vs. Exposure

Urinary benzene detected in all exposed AND control subjects - Used to predict benzene exposures in controls

Metabolites vs. Exposure (Groups of 30 Workers)

Kim et al., Carcinogenesis, 27:772 (2006)

Dose-specific Metabolism

Groups (n = 30) after adjustment for background levels

 Reduced production of major & total metabolites at low exposures (0.01 - 1 ppm, never reported previously)

Modeling Metabolite Levels (Natural Splines)

12

Effects of Covariates [GLM+N5]

			Parameter	
Metabolite	Adj.R ²	Covariate	Estimate	<i>p</i> -value
	0.812	Intercept	1.15	< 0.0001
MA		Age	-0.016	0.001
		Sex (male)	-0.215	0.013
	0.744	Intercept	-6.04	< 0.0001
SPMA		Age	-0.016	0.086
		Sex (male)	-0.347	0.032
		Intercept	4.22	< 0.0001
PH	0.608	Age	-0.011	0.016
		Sex	-0.198	0.009
		Intercept	2.66	< 0.0001
CA	0.506	BMI	-0.022	0.028
CA		Sex (male)	-0.243	0.007
		Smoking	0.323	0.001
		Intercept	1.96	< 0.0001
HQ	0.689	Age	-0.013	0.003
— IIQ	0.009	Sex (male)	(-0.221)	0.019
		Smoking	0.338	0.001

Age: metabolite production reduced 1-2%/year of life

Sex: females produce more metabolites than males

Smoking: Cigarette smoke contains HQ and CA

No effect of:

- Alcohol
- Toluene co-exposure3

Dose-Related Metabolism of Benzene

Predicted levels of total metabolites (background adjusted, female subject, 29 y of age)

Effects of Metabolism Genes

Effects of Metabolism Genes

Effects of Metabolism Genes

Magnitudes of Genetic Effects and Gene-Environment Interactions

SNP EFFECTS ON BENZENE METABOLITES

Ratio of (Var:Var)/(Wild:Wild)

Matabalita	CND	Air concentration (ppm)			
Metabolite	SNP	0.1	1	10	100
MA	CYP2E1	0.941	0.666	0.472	0.333
IVIA	NQO1*2	0.976	0.832	0.708	0.603
	CYP2E1	0.675	0.619	0.567	0.519
	EPHX1	1.00	1.26	1.59	2.01
SPMA	GSTT1	0.328	0.236	0.17	0.122
SIMA	GSTM1	0.554	0.554	0.554	0.554
	NQO1*2 (Nonsmokers)	0.614	0.524	0.448	0.382
	NQO1*2 (Smokers)	1.74	1.48	1.27	1.08
	CYP2E1	0.75	0.542	0.392	0.283
PH	NQO1*2 (Nonsmokers)	0.714	0.714	0.714	0.714
	NQO1*2 (Smokers)	1.22	1.22	1.22	1.22
	EPHX1	1.15	1.15	1.15	1.15
CA	NQO1*2	0.902	0.789	0.69	
CA	EPHX1 (Nonsmokers)	1.29	1.10	0.938	0.8
	EPHX1 (Smokers)	0.685	0.584	0.498	0.425
HQ	CYP2E1	0.692	0.518	0.389	0.291
	NQO1*2	0.849	0.849	0.849	0.849

Several significant effects, most in expected directions

Most effects are small (< 3-fold)

Magnitudes of Genetic Effects and Gene-Environment Interactions

SNP EFFECTS ON BENZENE METABOLITES

Ratio of (Var:Var)/(Wild:Wild)

Metabolite	SNP	Air concentration (ppm)			
	SINI	0.1	1	10	100
MA	CYP2E1	0.941	0.666	0.472	0.333
IVIA	NQO1*2	0.976	0.832	0.708	0.603
	CYP2E1	0.675	0.619	0.567	0.519
	EPHX1	1.00	1.26	1.59	2.01
SPMA	GSTT1	0.328	0.236	0.17	0.122
SFMA	GSTM1	0.554	0.554	0.554	0.554
	NQO1*2 (Nonsmokers)	0.614	0.524	0.448	0.382
	NQO1*2 (Smokers)	1.74	1.48	1.27	1.08
	CYP2E1	0.75	0.542	0.392	0.283
PH	NQO1*2 (Nonsmokers)	0.714	0.714	0.714	0.714
	NQO1*2 (Smokers)	1.22	1.22	1.22	1.22
	EPHX1	1.15	1.15	1.15	1.15
$C\Lambda$	NQO1*2	0.902	0.789	0.69	0.603
CA	EPHX1 (Nonsmokers)	1.29	1.10	0.938	0.8
	EPHX1 (Smokers)	0.685	0.584	0.498	0.425
ШО	CYP2E1	0.692	0.518	0.389	0.291
HQ	NQO1*2	0.849	0.849	0.849	0.849

Most effects vary with conc. due to saturable metabolism and geneenvironment interactions

Magnitudes of Genetic Effects and Gene-Environment Interactions

SNP EFFECTS ON BENZENE METABOLITES

Ratio of (Var:Var)/(Wild:Wild)

Metabolite	SNP	Air concentration (ppm)			
Metabolite		0.1	1	10	100
MA	CYP2E1	0.941	0.666	0.472	0.333
MA	NQO1*2	0.976	0.832	0.708	0.603
	CYP2E1	0.675	0.619	0.567	0.519
	EPHX1	1.00	1.26	1.59	2.01
SPMA	GSTT1	0.328	0.236	0.17	0.122
	GSTM1	0.554	0.554	0.554	0.554
	NQO1*2 (Nonsmokers)	0.614	0.524	0.448	0.382
	NQO1*2 (Smokers)	1.74	1.48	1.27	1.08
	CYP2E1	0.75	0.542	0.392	0.283
PH	NQO1*2 (Nonsmokers)	0.714	0.714	0.714	0.714
	NQO1*2 (Smokers)	1.22	1.22	1.22	1.22
CA	EPHX1	1.15	1.15	1.15	1.15
	NQO1*2	0.902	0.789	0.69	0.603
	EPHX1 (Nonsmokers)	1.29	1.10	0.938	0.8
	EPHX1 (Smokers)	0.685	0.584	0.498	0.425
НО	CYP2E1	0.692	0.518	0.389	0.291
HQ	NOO1*2	0.849	0.849	0.849	0.849

Evidence of gene-smoking interactions

Conclusions

- Benzene is metabolized more efficiently at air concentrations below 1 ppm (about 9-fold for total metabolites)
 - Observed in two independent Chinese studies using two different biomarkers of exposure (protein adducts and urinary metabolites)
- Risk assessments based upon linear models may underestimate risks at low exposure levels
- Metabolism varies with age and differs between males and females
- Metabolizing genes and gene-environment interactions have detectable but small effects on metabolite production

Conclusions

Biomarkers can be used in observational studies to elucidate effects of metabolism and other phenomena of interest

IF exposures are carefully measured in the same subjects

With Thanks To:

- · UNC
 - Sungkyoon Kim
 - Suramya Waidyanatha
 - Karen Yeowell-O'Connell
 - Brent Johnson
- · NCI
 - Nat Rothman
 - Roel Vermeulen
 - Qing Lan
 - Stephen Chanock
- NYU
 - Qinshan Qu
 - Roy Shore
 - Beverley Cohen

- · UC-Berkeley
 - Martyn Smith
 - Luoping Zhang
- · IOM (Beijing)
 - Guilan Li
 - Songnian Yin

Work supported by NIEHS and HEI