EDITORIAL

門松グラフ

問題文概要

どの長さ2のパスを取り出しても 門松列になっているものを門松グラフと呼ぶ.

頂点数,辺の数が与えられるので 単純グラフな門松グラフが構築できるか判定せよ.

グラフ鑑賞

- どんな数字の割り当て方をしても 門松グラフになれないグラフとは?
- a = (3,4,5)は

 &じゃない...
- 何を割り当てても過にできない

考察1

- 門松パスのみで構成される奇サイクルは存在しない?
- N頂点から成るサイクルを考える.
- $a_1 < a_2$, aは互いに異なる.

考察1

- #なので
 - $a_1 < a_2$, $a_2 > a_3$, $a_3 < a_4$,…と交互に続く
 - iが奇数なら $a_i < a_{i+1}$
 - iが偶数なら $a_i > a_{i+1}$

考察1

- ループするので
 - $a_{N-1} < a_N$, $a_N > a_1$, $a_1 < a_2$
 - iが偶数なら $a_i > a_{i+1}$
 - よってNは偶数

知識

• 奇サイクルが存在しないグラフ=2部グラフ

問題文に戻る

- 頂点数N, 辺の数Mが与えられる. 門松グラフ2部グラフを構築できるか?
- 完全2部グラフの辺の本数: |A| × |B|
- N = |A| + |B|
- 辺の本数を最大化すると,
 - $|A| = \lfloor N/2 \rfloor$
 - |B| = N |A|
 - 証明略

門松グラフが存在する条件

- $M \leq \left\lfloor \frac{N}{2} \right\rfloor \times \left\lceil \frac{N}{2} \right\rceil$
 - 前ページ参照
- $N-1 \leq M$
 - グラフは連結

以上を全て満たすと2部グラフを構築できる

- N = 7, M = 10のケース
 - |A| = 3, |B| = 4, |A||B| = 12
 - 構築可能

- 頂点に数字を書き込む
 - Aの要素 < Bの要素 を満たすようにすると うまくいく

連結になるように線を引く

• あと4本辺を引く必要がある

- 残りの線を引く
 - A_i は既に B_{i-1} と B_i に繋がっている
 - 右図はA₁からBへ辺を引いている
- あと1本

- 残りの線を引く
 - A_i は既に B_{i-1} と B_i に繋がっている
 - 右図はA₂からBへ辺を引いている
- 全部引けた

