Maths Tutorial 7

Brandon Skerritt

Question 1

Let $A = \{1,2,3\}$ and $B = \{a, b\}$. Determine the set $A \times B$

Answer

All elements of A times by the first element of B then second etc. First step: 1a, 2a Second step: 2a, 2b Third step: 3a, 3b

AxB = {1a, 2a, 2a, 2b, 3a, 3b}

Question 2

Let A be a set. Determine the set $\mathsf{A} \times \varnothing$

Answer

arnothing is the empty set. Therefore anything times the empty set is also the empty set. Answer: arnothing

Question 3

Which ordered pairs are in the relation $R=\{(x, y)|x>y\}$ on the set $A=\{1,2,3,4\}$?

Answer

So a relation on itself (A X A) is every single possible combination in that set. But in this instance we want every single pair where x is more than y. Therefore this is:

 $\mathsf{R} = \{(2,1\),\, (3,\,1),\, (3,\,2),\, (4,\,1),\, (4,\,2),\, (4,\,3)\}$

Question 4

List all the binary relations on the set {0,1}.

Answer

So a binary relation is just any relation that contains every element in the relation. In this instance the binary relation is just: {(0, 1), (1, 0)} As there are only 2 possible ways to change the set of {0, 1} into an order due to 2 items being in the set.

Question 5

List the set of ordered pairs and draw the graphical representation of the relation R between {1,2,3,4} and {a, b, c} with the matrix:

Answer

So to do this we first need to decide what is T and what is F. We draw this

```
a b c
1 T F F
2 F F T
3 F T F
4 T F F
```

And this is what the relationship looks like. Now we simply list what is T (True). Relation = $\{(1, a), (2, c), (4, a)\}$

Question 6

Let R be the relation on (1,2,3,4) given by xRy if, and only if, x-y=0. Represent R in the following ways:

- As a set of ordered pairs
- In graphical form
- In matrix form

Answer

Okay so this question is a bit awkward. the relation rule is x - y = 0, so the first one take away the second must must equal 0. Because of this, x - y = 0, and y - y = 0, so the first one take away the second must must equal 0. Because of this, y - y = 0, and y - y = 0, so the first one take away the second must must equal 0. Because of this, y - y = 0, and y - y = 0, or y - y = 0, or y - y = 0, so the first one take away the second must must equal 0. Because of this, y - y = 0, and y - y = 0, or y - y = 0, or y - y = 0, so the first one take away the second must must equal 0. Because of this, y - y = 0, and y - y = 0, or y - y = 0, if it isn't equal. Therefore the set of ordered pairs is: y - y = 0, and y -

In graphical form this would be a diagraph.

As a matrix this would be:

```
1234
1 TFFF
2 FTFF
3 FFTF
4 FFFT
```

Question 7

Consider the following family tree:

Let A={Thelma, Thaddeus, Karen, Peter, Meg} be the set of all family members and B={Thaddeus, Peter} be the set of male members.

Let R be the relation between the sets A and B consisting of pairs(a, b), where a is a parent of b. Let S be the relation between sets B and A consisting of pairs(a, b), where a and b are siblings (brothers or sisters).

- Represent relations R and S in the matrix form.
- Use the matrix forms to compute R°S and S°R

Answer

R = {(Themla, Thaddeus), (Thelma, Karen), (Thelma, Peter), (Peter, Meg)} S = {(Thadeus, Karen), (Thadeus, Peter), (Karen, Peter)}

R in matrix form:

	Thelma	Peter
Thaddeus Karen Peter Meg	T	F
Karen	T	F
Peter	T	F
Meg	F	T