Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

UNITED STATES DEPARTMENT OF AGRICULTURE

Agricultural Research

Western Region and the Agricultural

Experiment Stations of the Western States

Quality Characteristics of Cultivars and New Germplasm of Wheat Bred and Grown in the Western States1/

Thirty-Sixth Annual Report

of the

Western Wheat Quality Laboratory

1983 Crop 2/

WRU No. 5802-20050-010

G.L. Rubenthaler, H.C. Jeffers, P.L. Finney, P.D. Anderson, A.D. Bettge, D.A. Engle, P.S. Green and P.A. Sperry

Sept. 1984

- 1/ In cooperation with the Arizona, California, Idaho, Montana, Oregon, Utah, and Washington Agricultural Experiment Stations who developed and grew the experimental wheat selections studied.
- This is a Progress Report of cooperative investigations of the milling and baking characteristics of current commercial cultivars and new germplasm of wheat grown in the Western states. Interpretation of the data may be changed with further experimentation; therefore, data in this report are not for publication, display, or distribution without prior written approval of the Agricultural Research Service, USDA and the cooperating agencies concerned.

UNITED STATES DEPARTMENT OF AGRICULTURE

Agricultural Research

Western Region and the Agricultural

Experiment Stations of the Western States

Quality Characteristics of Cultivars and New Germplasm of Wheat Bred and Grown in the Western States 1/

Thirty-Sixth Annual Report

of the

Western Wheat Quality Laboratory

1983 Crop 2/

WRU No. 5802-20050-010

G.L. Rubenthaler, H.C. Jeffers, P.L. Finney, P.D. Anderson, A.D. Bettge, D.A. Engle, P.S. Green and P.A. Sperry

Sept. 1984

- In cooperation with the Arizona, California, Idaho, Montana, Oregon, Utah, and Washington Agricultural Experiment Stations who developed and grew the experimental wheat selections studied.
- This is a Progress Report of cooperative investigations of the milling and baking characteristics of current commercial cultivars and new germplasm of wheat grown in the Western states. Interpretation of the data may be changed with further experimentation; therefore, data in this report are not for publication, display, or distribution without prior written approval of the Agricultural Research Service, USDA and the cooperating agencies concerned.

Thirty-Sixth Annual Report

of the

Western Wheat Quality Laboratory

1983 Crop

	Page
TABLE OF CONTENTS	ii
SUMMARY OF ACCOMPLISHMENTS	iii
INDEX OF NURSERIES	iv
ABBREVIATION DESCRIPTION	vi
INTERPRETATION OF DATA	vii
INTRODUCTION	
METHODS	2
PUBLICATIONS AND REPORTS (CY 84)	12
INVITED TECHNICAL PRESENTATIONS	13
VISITORS	14
SUMMARY LIST OF EARLY GENERATION NURSERIES EVALUATED	15

Western Wheat Quality Laboratory 1983 Crop

SUMMARY OF ACCOMPLISHMENTS

Evaluation for end-use milling and baking quality of 1889 experimental wheat crosses grown and harvested as the 1983 crop were made. The selections were submitted from the wheat breeding programs in the Western states. To-date analysis and evaluation has been completed on about 150 selections from the 1984 crop. Test criteria used to determine acceptability were flour yield, protein, ash and color; cookie diameter; loaf volume and crumb score; dough mixing requirements and water absorption; Japanese sponge cake volume and texture; Udon noodle yield, texture, color and score; and some developed test for Middle-Eastern style flat breads. Many of these experimental selections were judged as having acceptable end-use quality fitting their market classes. This work is an integral part of the wheat improvement programs to assure release of good agronomic and high quality wheat varieties. Results of the analysis can be found in the tables of data in Nursery Codes #1 through #63. See the Index of Nurseries (Page iv) for nursery titles, locations, and breeders.

In addition, the evaluation of milling and baking properties were made on 2371 early generation selections from the wheat breeding programs that were grown in 1983. Studies included materials from snowmold, foot rot, dwarf smut, yield trial, and various crop management studies. 738 (31%) of the experimental crosses were rated as having promise in overall quality characteristics. This material represents a new generation of experimental selections that are candidates for advancing and further testing to determine their desirability as possible commercial varieties. See Summary List of Early Generation Nurseries Evaluated on Page 15. No data is included.

In co-operation with a grant from the PNW Grains Council the milling and baking evaluation were made on commercial composites representing the wheat crop (1983) of WA, OR, and ID. The data was used in their marketing brochures. See Nursery Code number 20.

In co-operation with the Montana Wheat Quality Council we assisted in the pilot milling and baking evaluation of 31 hard red winter and spring samples. The samples were advanced selections from the Montana wheat breeding program, which were candidates for commercial variety release following industry evaluation. See Nursery Code 019 for results. Similarly we collaborated with the Hard Red Winter Wheat Quality Council by baking evaluation of 20 hard red winter wheats. For these results see Nursery Code 045.

2282880

PBAR	0 8 8 1 0
000	0-0-0
CACO NOCO	0-0-0
000	0-0
RCO C	-00
SDATE BRCO COCO	83154 83179 83196 83207
NOSAM BLABNO	830001 830010 830013 830193
SAM	180
ON	1 S ERMAN
BREED	KRUMPI VOGT
B	HAL A. LEWIS P.H. KRUMPERMAN H.E. VOGT
	OR
OCATION	AZ LLIS, CA
L0C/	YUMA, AZ CORVALLIS, DAVIS, CA AUSTRALIA
	. HRS
	(S AD)
NAME	REEDER
NURSERY NAME	ANT BE
NUN	NL PL/ HENCE
	ATTONZ DD SC
	INTERNATIONAL PLANT BREEDERS ADV. HRS OSU FOOD SCIENCE QUALITY VS ELECTROPHORETIC BANDS AUSTRALIAN WHEAT
NURS	= 688
NURS NURS CODE 1D	0002

-0-0----0000-0--0000-----83214 83221 83221 83220 83220 83220 83225 83255 83255 83256 83259 83259 83259 83259 83259 83260 83300 83300 83300 83300 83300 83300 83300 83200 83214 83214 83308 83308 83308 83314 83314 83325 83325 83325 83325 83325 83346 83346 83350 83350 83350 83350 83353 830197 830199 830229 830256 830283 830313 830373 830493 830521 830557 830606 830631 830691 830722 830744 830788 830788 830801 830852 830883 831203 831214 831346 831409 831421 831439 830547 830916 831347 831373 831397 831547 1489 831507 831184 831188 831463 831589 C.J. PETERSON
G.W. BRUEHL
C.T. LIU
C.O. QUALSET
H.E. VOGT
C.J. PETERSON
MCNEAL & TAYLOR L.F. JACKSON
L.F. JACKSON
L.F. JACKSON
L.F. JACKSON
L.F. JACKSON
S. PETTYGROVE KRONSTAD KRONSTAD KONZAK KONZAK KRONSTAD KRONSTAD W. MCPROUD
D. WALKER
C.F. KONZAK
K. BOYD
W.E. KRONSTAD
C.F. KONZAK
C.F. KOHDE
C.R. ROHDE
C.R. ROHDE PETERSON ROHDE ROHDE ALLAN ROHDE XXCC.X M.M.R.R.M. MOSCOW, ID DAVIS, CA DAVIS, CA PULLMAN, WA HV, SD, MG, BZ, CN, MONT. WA, OR, ID CULDESAC, ID SS M CA MANSFIELD/PULLMAN WA SUTTER CO., CA
BUTTE CO., CA
DAVIS, CA
SAN JOAQUIN DELTA C M MOSES LAKE, WA PULLMAN, WA LIND, ROYAL SLOPE, CHENEY, WA WESTSIDE STA. UC, MESTSIDE STA. UC, ROYAL SLOPE, WA KS, TX, NE, OK PENDLETON, OR LIND, CONNÉLL WA PULLMAN, R. SLOPE TULELAKE, CA PENDLETON, OR PENDLETON, OR OR PENDLETON, OR PULLMAN, WA PULLMAN, WA PULLMAN, WA PULLMAN. WA POMEROY, WA PENDLETON, CORVALLIS, PENDLETON, CORVALLIS, PENDLETON. FULELAKE, MORO, OR LIND, WA POMEROY, PULLMAN PRELIMINARY HARD RED (80-85)
PRELIMINARY HARD RED (80-85)
ADVANCED SOFT WHITE
ADVANCED HARD RED WINTER (1-1V)
PRELIMINARY HARD RED WINTER
ADVANCED HARD RED WINTER
ADVANCED HARD RED SPRING
WESTERN PLANT BREEDERS HRS
SWW FELITE
SWW PRELIMINARY YIELD TRIAL
SWW PRELIMINARY YIELD TRIAL
STATE HARD RED SPRING
STATE SOFT WHITE SPRING
FERTILIZER X VARIETY TEST
FERTILIZER X VARIETY TEST
FERTILIZER STUDY
PRELIMINARY SOFT WHITE WINTER ADVANCED COMMON WHEAT YIELD TRIAL SEPTORIA ADVANCED YIELD TRIAL HARD RED WINTER WHEAT COUNCIL ADVANCED SPRING WHEAT BI-STATE SPRING WHEAT ADVANCED HARD RED WINTER WHEAT FERTILIZATION X IRRIGATION POMEROY SOFT WHITE YIELD TRIAL POMEROY HARD RED YIELD TRIAL PRELIMINARY SOFT WHITE WINTER SEED MIXTURE STUDY MONTANA WHEAT QUALITY COUNCIL PNWGC CROP QUALITY SURVEY SOFT WHITE WINTER WHEAT ADVANCED SOFT WHITE WINTER ADVANCED SOFT WHITE WINTER ADVANCED HARD RED SPRING HRW WHEAT ELITE NURSERY ADVANCED WHITE WINTER SUTTER REGIONAL WHEAT UCD REGIONAL WHEAT COLUMBIA BASIN SEEDS HESSIAN FLY EXP. 07 DUAL PURPOSE #20 DELTA REGIONAL WHEAT MSFS REGIONAL WHEAT PULLMAN LATE SOFT AUSTRALIAN WILLAI NAB I SCO-CHENEY SNOW MOLD

SWS ADVANCED WHEAT THEST ADVANCED WHEAT THEST FROM THE WINTER WHEAT WA, ID, OR W.E. KRONSTAD CORVALLIS, OR W.E. KRONSTAD CORVALLIS, OR W.E. KRONSTAD CORVALLIS, OR W.E. KRONSTAD CORVALLIS, OR W.E. KRONSTAD W.E. KRONSTAD			
CORVALLIS, OR W.E. KRONSTAD 11 831615 CORVALLIS, OR W.E. KRONSTAD 12 831642 CORVALLIS, OR W.E. KRONSTAD 12 831642 WA, 1D, OR WA, 1D, OR WA, 1D, MT, OR WA, 1D, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA J.C. WAINES 17 831770 BLYPLOID WHEATS RIVERSIDE, CA PULLMAN, LIND WA J.D. RHOADES 12 831864 ID, WA COOKIE CODE CACE CODE NOODLE CODE	PBAR	001 84 601 88	
CORVALLIS, OR W.E. KRONSTAD 11 831615 CORVALLIS, OR W.E. KRONSTAD 12 831642 CORVALLIS, OR W.E. KRONSTAD 12 831642 WA, 1D, OR WA, 1D, OR WA, 1D, MT, OR WA, 1D, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA J.C. WAINES 17 831770 BLYPLOID WHEATS RIVERSIDE, CA PULLMAN, LIND WA J.D. RHOADES 12 831864 ID, WA COOKIE CODE CACE CODE NOODLE CODE	NOCO	000-0-0-0-00	בוסעג
CORVALLIS, OR W.E. KRONSTAD 11 831615 CORVALLIS, OR W.E. KRONSTAD 12 831642 CORVALLIS, OR W.E. KRONSTAD 12 831642 WA, 1D, OR WA, 1D, OR WA, 1D, MT, OR WA, 1D, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA J.C. WAINES 17 831770 BLYPLOID WHEATS RIVERSIDE, CA PULLMAN, LIND WA J.D. RHOADES 12 831864 ID, WA COOKIE CODE CACE CODE NOODLE CODE	CACO	000-0-0-0-000	MEAN
CORVALLIS, OR W.E. KRONSTAD 11 831615 CORVALLIS, OR W.E. KRONSTAD 12 831642 CORVALLIS, OR W.E. KRONSTAD 12 831642 WA, 1D, OR WA, 1D, OR WA, 1D, MT, OR WA, 1D, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA J.C. WAINES 17 831770 BLYPLOID WHEATS RIVERSIDE, CA PULLMAN, LIND WA J.D. RHOADES 12 831864 ID, WA COOKIE CODE CACE CODE NOODLE CODE	0000	-00-0-0-0-	SERI
CORVALLIS, OR W.E. KRONSTAD 11 831615 CORVALLIS, OR W.E. KRONSTAD 12 831642 CORVALLIS, OR W.E. KRONSTAD 12 831642 WA, 1D, OR WA, 1D, OR WA, 1D, MT, OR WA, 1D, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA J.C. WAINES 17 831770 BLYPLOID WHEATS RIVERSIDE, CA PULLMAN, LIND WA J.D. RHOADES 12 831864 ID, WA COOKIE CODE CACE CODE NOODLE CODE	srco (
CORVALLIS, OR W.E WA, ID, OR WA, ID, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA SIVERSIDE, CA PULLMAN, LIND WA ID, WA ID, WA C.J PULLMAN, WA C.J PULLMAN, WA ID, WA C.J COOKIE CODE CACO = CAKE CODE	SDATE	N98444000055333	
CORVALLIS, OR W.E WA, ID, OR WA, ID, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA SIVERSIDE, CA PULLMAN, LIND WA ID, WA ID, WA C.J PULLMAN, WA C.J PULLMAN, WA ID, WA C.J COOKIE CODE CACO = CAKE CODE	SLABNO	831615 831626 831642 831642 831664 831750 831770 831770 831770 831864 831864	
CORVALLIS, OR W.E WA, ID, OR WA, ID, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA SIVERSIDE, CA PULLMAN, LIND WA ID, WA ID, WA C.J PULLMAN, WA C.J PULLMAN, WA ID, WA C.J COOKIE CODE CACO = CAKE CODE	SAM	11 16 12 32 32 37 13 17 10 10 10 10	E CODE
WINTER WHEAT WINTER WHEAT SWHEAT SLYPLOID WHEATS BLABNO = BE BCOOKIE CODE		W.E. KRONSTAD W.E. KRONSTAD W.E. KRONSTAD D.G. WAINES J.D. RHOADES C.J. PETERSON C.J. PETERSON C.J. PETERSON C.J. PETERSON	NOCO = NOCOL
WINTER WINTS WHEAT S WHEAT	LOCATION	CORVALLIS, OR CORVALLIS, OR CORVALLIS, OR WA, ID, OR WA, ID, MT, OR BET-DAGAN, ISRAEL PULLMAN, WA RIVERSIDE, CA PULLMAN, LIND WA RIVERSIDE, CA PULLMAN, LIND WA RIVERSIDE, CA PULLMAN, WA ID, WA	CACO = CAKE CODE
557 557 557 557 557 557 557 557 557 557		WINTER RED WINT S WHEAT S SLYPLOID	
	ODE		BRCO =

ABBREVIATION DESCRIPTION

We have implemented a computer program to store, calculate, and retrieve our milling and baking data. The following is a list of abbreviations used as column headings in the following tables of data.

NURSCO - Nursery Code Number (located upper left corner of table).

LABNUM - Laboratory Number (first two digits crop year).

VAR - Variety or selection name.

IDNO - CI or Selection Identification Number.

TWT - Test weight in lbs/bu.

FASH - Flour ash percent at 14% moisture basis.

FYELD - Percent of flour obtained.

MSCOR - Milling score.

FPROT - Flour protein percent at 14% moisture basis.

FABSC - Farinograph water absorption corrected to 14% moisture basis.

FPEAK - Farinograph mixing peak time in minutes.

FSTAB - Farinograph stability in minutes.

BABS - Bake water absorption at 14% moisture basis.

BABSC - Bake absorption corrected to mean protein of nursery.

MTIME - Optimum mixing time in minutes.

LVOL - Bread loaf volume observed in cc's.

LVOLC - Bread loaf volume (cc) corrected for protein to the mean protein of the nursery. (See table 1 or 2, page ix)

BCRGR - Bread crumb grain rating code. (See table 3, page x)

CODE	MEANING	
1	Excellent	(S*)
2	Satisfactory	(S)
3		(Ø−S)
4	Questionable-Satisfactory	(Q-S)
5		(Q-\$)
6	Questionable	(Q)
7	•.	(Q-N)
8	Questionable-Unsatisfactory	(Q-U)
a	Uncaficfactory	(11)

- CODI Cookie diameter in cm's.
- CODIC Cookie diameter (cm) corrected for protein to the mean protein of the nursery. (See table 1 or 2, page ix)
- VISC Brookfield viscosity (observed)
- VISCC Brookfield viscosity corrected for protein to the mean protein of the nursery.
- CAVOL Japanese Sponge Cake Volume in cc's.
- SCSCOR Sponge cake score (scale 1-100)
- WIIN Noodle weight increase (percent).
- NYELD Noodle yield.
- NOSCORE- Noodle score (1-100)
- MABS Mixograph absorption at 14% moisture (%).
- MABSC Mixograph absorption corrected for protein (%).
- MITYPE Mixograph Type From Mixograph Reference Chart.

RATE - Overall Rating when used see table 3.
RMKS - Remarks.

Western Wheat Quality Laboratory

INTERPRETATION OF DATA

As in the past reports, decisions were based on the results of the tests after adjustment to an average protein content of the nursery using correction factors derived from several years of data on particular varieties and/or classes of wheat. These correction factors and scale for ranking codes can be found in the following tables 1-3.

CORRECTION FACTORS - TABLE 1

VTN	VARIETY	(VC) LOAF VOLUME	(CC) COOKIE
		•	
1	Anza	61	0
2 3	Burt	51	.078
	Coulee	76	.070
4	Fortuna	64	-0
5	Gaines	38	.136
6	Hyslop	0	.137
7	Inia 66	68	0
8	Itana	60	0
9	Kharkof	57 -	0
10	Luke	0	.085
11	Marfed	61	.098
12	McCall	52 ·	0
13	McDermid	0	.106
14	Moro	0	.094
15	Nugaines	62	.118
16	Omar	0	.083
17	Paha	0	.037
18	Sprague	0.	.062
19	Springfield	0	.042
20	Twin	0	.149
21	Yamhill	0 .	.124
22	Wanser	69	0
23	Wared	62	0

Variety name (VAR) not found or where the value is zero in Table 1, use correction factor for class of sample in Table 2.

VTN = Computer system variety number

viii

CORRECTION FACTORS - TABLE 2

CLASS	(VC) LOAF VOLUME	(CC) COOKIE
SWW	60	.110
SWS	60	.110
CLUB	55	.071
HRW	62	.080
HRS	62	.080
HVW	62	.080
HWS	62	.080

RANKING AND RATING CODES - TABLE 3

CODE BREAD CRUMB GRAIN	MEANING	
1	Excellent	(S*)
2	Satisfactory	(S)
3		(n-s)
4	Questionable-Satisfactory	(Q-S)
5	0	(Q-\$)
7	Questionable	(Q) (Q-ば)
8	Questionable-Unsatisfactory	(Q-U)
9	Unsatisfactory	(U)

Thirty-Sixth Annual Report of the Western Wheat Quality Laboratory

1983 Crop

G.L. Rubenthaler, H.C. Jeffers, P.L. Finney, P.D. Anderson, A.D. Bettge, D.A. Engle, P.S. Green and P.A. Sperry 1/, 2/

INTRODUCTION

This is the Thirty-Sixth Annual Report of the Western Wheat Quality Laboratory of cooperative investigations with breeder, geneticists, and pathologists in the seven Western states to evaluate the milling and baking quality characteristics of experimental wheat selections grown and harvested as the 1983 crop. These investigations included several market classes and sub-classes of wheat which are commercially grown in the Pacific Northwest and the Western region and relates to their quality for commercial production and consumer acceptance. These studies deal with the physical-chemical flour properties associated with a wheat's suitability for commercial pastry and bread products.

The nurseries have been arranged in nurseries (Nursery Index in Table of Contents) and the varieties and selections are listed in the tables in order of their assigned laboratory Number. Mixograms were run on all samples evaluated, but none were reproduced for inclusion in this report. Alternately, each mixogram was characterized by type as described in the Methods Section.

- Research Food Technologist, Research Food Technologist, Research Food Technologist, Physical Science Technician, Physical Science Technician, Biological Technician and Clerk-Typist, respectively, U.S. Department of Agriculture, Agricultural Research Service, Western Region, assigned to the Western Wheat Quality Laboratory, Wheat Genetics Unit, Pullman, Washington
- Credit is due Garrison King, Washington State University Laboratory Technician II for the flour milling and physical-chemical determinations made on early generation material. This work was supported by grant funds from the Washington Wheat Commission.

METHODS USED BY USDA, WESTERN WHEAT QUALITY LABORATORY

All wheat samples were fumigated when received with 800 cc of methyl bromide/50 gal. drum overnight and then aerated, cleaned, scoured, test weight (1, Method 84-10) determined, sub-sampled for approximate analysis, and placed in the storeroom until experimentally milled by the following methods:

Buhler Milling: All of the 1982 samples of Advanced and Regional Nurseries were milled on a Buhler, pneumatic, laboratory mill. The samples were tempered to a predetermined moisture content ranging from 14.0% to 16.0%, depending on the hardness and the known flour-bolting properties. The harder wheats require the most water. Thus, the grain was conditioned so that the most rapid and most complete separation of endosperm could be made. The temper water contained a wetting agent (.1% Aerosol OT) to hasten moisture pentration and the tempered wheat was allowed to rest for 16-24 hours before milling to permit uniform distribution of the moisture. An aditional 0.5% water was added 15-20 minutes prior to milling. The Buhler experimental mill schematic flow is shown in Figure 1.

All six flour streams were combined to make a straight-grade flour. The first and second break and first and second reduction streams were combined for a patent flour. All straight-grade flour was rebolted on a 120 stainless steel wire screen and blended thoroughly.

Flour Yield: The percent of the total products recovered as straight-grade white flour.

Milling Time: The minutes required to mill a 2000-gram sample with the Buhler experimental mill and obtain a normal separation of bran, shorts, and flour. Time is determined by visual observations and adjustments by an experienced miller.

Milling Score: Calculated as follows:

```
100 - [(80 - flour yield) + 50 (Flour ash - .30) + .48 (Milling time - 15) + .5 (65 - % long patent) + .5 (16 - lst tempering moisture)]
```

Modified Quadurmat Milling Method: The preliminary nurseries were experimentally milled on Modified Quadurmat system (500g). The procedure was discribed in the 27th Annual Report, Oct. 1976 (pages 1-14). Conversion of the data to give a predicted Buhler flour yield and milling score was done with the following linear equations:

Flour Yield Milling Score

```
Soft wheat (y = 14.0671 + .83474X) Soft wheat (y = -21.60185 + 1.27367X) Hard wheat (y = 13.4166 + .83298X) Hard wheat (y = -3.43818 + 1.0448X)
```

The Modified Procedure is schematically shown in Figure 2. Modifications include those described by Jeffers and Rubenthaler (11).

Thirty-Sixth Annual Report of the Western Wheat Quality Laboratory

1983 Crop

G.L. Rubenthaler, H.C. Jeffers, P.L. Finney, P.D. Anderson, A.D. Bettge, D.A. Engle, P.S. Green and P.A. Sperry 1/, 2/

INTRODUCTION

This is the Thirty-Sixth Annual Report of the Western Wheat Quality Laboratory of cooperative investigations with breeder, geneticists, and pathologists in the seven Western states to evaluate the milling and baking quality characteristics of experimental wheat selections grown and harvested as the 1983 crop. These investigations included several market classes and sub-classes of wheat which are commercially grown in the Pacific Northwest and the Western region and relates to their quality for commercial production and consumer acceptance. These studies deal with the physical-chemical flour properties associated with a wheat's suitability for commercial pastry and bread products.

The nurseries have been arranged in nurseries (Nursery Index in Table of Contents) and the varieties and selections are listed in the tables in order of their assigned laboratory Number. Mixograms were run on all samples evaluated, but none were reproduced for inclusion in this report. Alternately, each mixogram was characterized by type as described in the Methods Section.

- Research Food Technologist, Research Food Technologist, Research Food Technologist, Physical Science Technician, Physical Science Technician, Biological Technician and Clerk-Typist, respectively, U.S. Department of Agriculture, Agricultural Research Service, Western Region, assigned to the Western Wheat Quality Laboratory, Wheat Genetics Unit, Pullman, Washington
- Credit is due Garrison King, Washington State University Laboratory Technician II for the flour milling and physical-chemical determinations made on early generation material. This work was supported by grant funds from the Washington Wheat Commission.

METHODS USED BY USDA, WESTERN WHEAT QUALITY LABORATORY

All wheat samples were fumigated when received with 800 cc of methyl bromide/50 gal. drum overnight and then aerated, cleaned, scoured, test weight (1, Method 84-10) determined, sub-sampled for approximate analysis, and placed in the storeroom until experimentally milled by the following methods:

Buhler Milling: All of the 1982 samples of Advanced and Regional Nurseries were milled on a Buhler, pneumatic, laboratory mill. The samples were tempered to a predetermined moisture content ranging from 14.0% to 16.0%, depending on the hardness and the known flour-bolting properties. The harder wheats require the most water. Thus, the grain was conditioned so that the most rapid and most complete separation of endosperm could be made. The temper water contained a wetting agent (.1% Aerosol OT) to hasten moisture pentration and the tempered wheat was allowed to rest for 16-24 hours before milling to permit uniform distribution of the moisture. An aditional 0.5% water was added 15-20 minutes prior to milling. The Buhler experimental mill schematic flow is shown in Figure 1.

All six flour streams were combined to make a straight-grade flour. The first and second break and first and second reduction streams were combined for a patent flour. All straight-grade flour was rebolted on a 120 stainless steel wire screen and blended thoroughly.

Flour Yield: The percent of the total products recovered as straight-grade white flour.

Milling Time: The minutes required to mill a 2000-gram sample with the Buhler experimental mill and obtain a normal separation of bran, shorts, and flour. Time is determined by visual observations and adjustments by an experienced miller.

Milling Score: Calculated as follows:

100 - [(80 - flour yield) + 50 (Flour ash - .30) + .48 (Milling time - 15) + .5 (65 - % long patent) + .5 (16 - 1st tempering moisture)]

Modified Quadurmat Milling Method: The preliminary nurseries were experimentally milled on Modified Quadurmat system (500g). The procedure was discribed in the 27th Annual Report, Oct. 1976 (pages 1-14). Conversion of the data to give a predicted Buhler flour yield and milling score was done with the following linear equations:

Flour Yield

Milling Score

Soft wheat (y = 14.0671 + .83474X) Soft wheat (y = -21.60185+1.27367X) Hard wheat (y = 13.4166 + .83298X) Hard wheat (y = -3.43818+1.0448X)

The Modified Procedure is schematically shown in Figure 2. Modifications include those described by Jeffers and Rubenthaler (11).

BUHLER EXPERIMENTAL MILL

Clean Tempered

Figure 1. Schematic flow of the Buhler experimental mill showing a range of the average feed rates, flour yields, and flour ash of the various classes of wheat. Roll settings are varied for optimum clean-up and reduction of the stock, and feed rates according to the bolting and reduction properties.

** BASIS TOTAL PRODUCTS RECOVERED FROM MILL *** ASH CONTENT OF STRAIGHT-GRADE FLOUR

SURFACE - 300 SQUARE INCHES

BOLTING SURFACE - 288 SQUARE INCHES

MODIFIED QUADRUMAT SR. MILLING PROCEDURE

BREAK UNIT
BRABENDER QUADRUMAT JR. WITH
QUADRUMAT SR BREAK ROLLS

REDUCTION UNIT BRABENDER QUADRUMAT SR. REDUCTION HEAD

ROLLS:

DIAMETERS: 2.8 INCHES

SPEED:

FAST ROLLS: 1200 RPM SLOW ROLLS: 560 RPM

DIFFERENTIAL: 2.14 TO 1

TEMPER:

TO 15% FOR 24 HOURS WITH

WETTING AGENT

SIFTERS: 8 INCH TYLER TESTING SIEVES ON ZELENY SEDIMENTATION SIEVE SHAKERS

SIFTING SCHEDULE

BREAK STOCK:

BRAN: REMOVED AFTER I MIN.
MIDDLINGS: REMOVED AFTER AN
ADDITIONAL 2 MIN. (3 MIN. TOTAL)

REDUCTION STOCK: 3 MIN.

SAMPLE SIZE: 100-250 GRAMS TEMPERED WHEAT (HELD CONSTANT WITHIN EACH COMPARISON GROUP)

OUTPUT: 5-7 SAMPLES PER HOUR

Figure 2. Semi micro experimental mill flow with the roll corrugations per inch. The break rolls have corrugation spirals of 1.25, 1.75, 1.88, and 1.25 inch/ft. in progressive order, and the middling reduction roll spirals are 1.25, 1.25, and frosted smooth. Roll spacings for first, second and third break are 0.035, 0.0035, and 0.002 inch respectively. The middling rolls are set at 0.0015, 0.0020 and 0.0015 inch respectively.

Semi Micro Flour Quality:* Wheats milled on the semi-micro mill which gave satisfactory flour yields were evaluated by the following tests and all others with unsafisfactory milling properties were discarded: NIR protein, mixograph (3, 9), and AWRC test (14,10) to distinguish whether they fit the sub-class of club or soft common and/or hard wheats.

Micro Milling of Single Plant Selections:* The 5-10 gm samples of grain were accurately weighed, placed in vials, and water added to bring them to 14% moisture. The tempered grain was milled on the micro mill which consists of two pairs of corrugated rolls and double sifters with 38- and 135-mesh stainless steel screens. The bran over the 38-mesh sifters was evaluated for milling properties by visual examination for the degree of bran clean-up. The throughs of the 135-mesh stainless steel screen, of those samples considered to be good milling types, were examined for flour quality by means of the Modified Micro Sedimentation Method (12). Protein and lysine are determined on these materials by NIR analysis (15). A schematic flow diagram of the micro mill is shown in Figure 3 (2, 13).

Moisture Content of Wheat & Flour: These values have not been given in these reports, but the methods are as follows: The reference test is two grams of ground wheat in an aluminum moisture dish are heated in a forced draft oven for 40 minutes at 140° C., allowed to cool in a desiccator and weighed. Flour Moisture is determined in the same manner except that it is heated only 20 minutes. The NIR (Technicon 400) is routinely used as calibrated to the above method.

Ash of Wheat and of Flour: The ash from a 4-gram sample of wheat meal or flour heated for 15 hours at 550° C. in a muffle furnace. (1, Method 08-01).

Protein of Wheat and Flour: The protein content of the samples was determined by the NIR method, and checked (about 10% of the material) by the Kjeldahl method (1, Method 46-12).

Alkaline Water Retention Capacity (AWRC): The percent increase in weight of 7.5 g flour due to absorption of water from 35 ml of .1 normal NaHCO₃ solution (17).

Viscosity: Dial reading x 7.5 of a RVT Brookfield Synchro-Lectric Viscometer fitted with a No. 2 spindle at 50 R.P.M. using a suspension of 20 grams of flour in 100 ml of water and 7 ml of 1 N lactic acid (15).

Mixogram: Used to characterized new selections as to market class and estimate baking properties. The recently developed 10 gm instruments were used and the testing procedure and interpretation of K.F. Finney(9) was followed. To reduce the time and expense involved in reproducing the mixograms a reference chart was developed to characterize each curve as to type ranging from very weak to expectionally long and strong types. The chart and instructions for its use are found on pages 7 and 8.

"Supported by special grant of funds from the Washington Department of Agriculture and the Washington Wheat Commission to permit extensive early deneration (F_3-F_4) testing.

MICRO-MILL FLOW

ROLL SPACING 1B .012 INCH 2B .0025 "

Four samples are milled and sifted simultaneously and feed rate is held constant by a vibratory feeder. Schematic and flow of the micro experimental mill. Figure 3.

USE OF MIXOGRAM REFERENCE CHART

In addition to determining mixing time for optimum dough development by observation during baking test, mixing time and mixing tolerance, two important baking properties of wheat flour, can be determined independently from a mixogram. A mixogram is determined with 10g of flour and appropriate amount of water to give optimum absorption. It is really nothing more than a recording mixer reflecting the resistance the dough has to be mixed over a period of time. Most mixograms are run either 7 or 8 minutes which is sufficient time for most flours to give a full picture of their mixing time and to show what happens when mixing continues beyond this point (mixing peak) as reflected in the tail of the curve and commonly referred to as tolerance.

Final evaluation must be made with consideration given to the protein content of the flour, because of the effect protein content has on the mixing characteristics within the same variety. As protein increases, mixing time will decrease with an apparent increase of tolerance. To illustrate this, compare #1 high(H) with #2 medium (M) and #3 low (L) which are typical mixograms of the club wheat Paha at 12, 9, and 6% protein respectively.

Similarly, 2H, 3M, and 4L are typical for Nugaines at these protein levels.

Little change can be observed on any wheat above 13.0 or below 7.5% protein.

This chart will be used to identify the curve characteristics which most closely fit the sample and will be reported as numbers 1L, 1M, 1H, etc. through 8H.

Cookie Baking: 40 g of flour, micro method, using 25% absorption, 60% sugar, 30% emulsified shortening, 3% dry skim milk, 1% NH₄HCO₃, 1% NaCL, 1% NaHCO₃, was employed (8).

Cookie Diameter is the average diameter, in centimeters, of cookies baked on two separate days.

Farinograph: The Farinograph was equipped with a 50-g bowl and the Constant Flour Weight Procedure was employed (1, Method 54-21A).

Farinograph Absorption is the amount of water required to center the highest portion of the Farinograph curve on the 500 unit line.

Peak or Farinograph Mixing Time is the time interval, in minutes, from the first addition of water until the tip of the curve reaches its maximum height.

Stability of Period of Resistance is the number of minutes the top of curve remains above the 500 unit line when the highest portion (peak) is centered on the 500 unit line.

Bread Baking: An optimum absorption, optimum mixing, optimum bromate, 100 g flour and straight dough method using 7.2% yeast, 1 1/2% salt, 6% sugar, 1/4% malt extract, 4% dry milk solids, 65 ppm ascorbic acid, and 3% hydrogenated shortening was employed (5,6,7,10).

Baking Absorption: The amount of water required to make a dough of proper consistency for bread baking when mixed to optimum conditions as judged by an experienced baker using the baking method described above (4).

Mixing Time: Time in minutes required to mix the flour and the other bread dough constituents to the optimum condition as judged by an experienced baker (5).

Optimum Bromate: The amount of potassuim bromate required to produce the optimum break, shred, crust, and grain characteristics of the loaf of bread (5).

Flour Color: The slurry method using 20 g of flour, 25 ml of water, stirred for 2 minutes with a glass stirring rod fitted with a llmm policeman, and allowed to stand for 5 minutes. Reading is taken on an Agtron (F_2) calibrated with standard color discs #63 = 0 and #85 = 100.

REFERENCES

- 1. American Association of Cereal Chemists Cereal Laboratory Methods (7th ed.) The Association: St. Paul, Minn. (1962).
- 2. Everson, E. H. and Seeborg, E. F. The heritability of milling quality as measured by the separation of the bran and endosperm.

 Agron. Jour. 50: 511-513 (1958).
- 3. Finney, K. F. Evaluation of Wheat quality. Proceedings A.A.A.S. Section O Symposium on Food Quality as Affected by Production Practices and Processing. Dec. 27, 1962, Also Finney, et al., Quality Characteristics of Hard Winter Wheat Varieties Grown in the Southern, Central, and Northern Great Plains of the United States, 1963 Crop. Hard Winter Wheat Quality Laboratory, Manhattan, Kans. CR-77-64, Dec. (1964).
- 4. Finney, K.F. Methods of estimating and the effect of variety and protein level on the baking absorption of flour. Cereal Chem. 22: 149-158 (1945).
- 5. Finney, K.F. and Barmore, M.A. Optimum vs. fixed mixing time at various potassium bromate levels in experimental bread baking.

 Cereal Chem. 22: 244-254 (1945).
- 6. Finney, K.F. and Barmore, M.A. Varietal responses to certain baking ingredients essential in evaluating the protein quality of hard winter wheats. Cereal Chem 22: 225-243 (1945).
- 7. Finney K.F. and Barmore, M.A. Yeast variability in wheat variety test baking. Cereal Chem. 20: 194-200 (1943).
- 8. Finney, K.F., Morris, V.H. and Yamazaki, W.T. Micro versus macro cookie baking procedures for evaluation the cookie quality of wheat varieties. Cereal Chem. 27: 42-49 (1950).
- 9. Finney, K.F. and Shogren, M.D. A Ten-Gram Mixograph for Determining and Predicting Functional Properties of Wheat Flours. Baker's Digest.
- 10. Finney, P.L., Magoffin, C.D. Hoseney, R.C. and Finney, K.F. Short-Time Baking Systems. I. Interdependence of yeast concentration, fermentation time and oxidation requirement. Cereal Chem. 53: 126-134 (1976).
- 11. Jeffers, H.C. and Rubenthaler, G.L. Effect of Roll Temperature on Flour Yield with the Brabender Quadrumat Experimental Mills. Cereal Chem. 54(5): 1018-1025 (1979)
- 12. Kitterman, J.S., and Barmore, M. A. A modified micro sedimentation test for screening early-generation wheat selections. Cereal Chem. 46: 273-280 (1969).
- 13. Kitterman, J.S., Seeborg, E.F. and Barmore, M.A. A note on the modification of the five-gram milling quality test and the five-gram micro-mill. Cereal Chem. 37: 762-764 (1960).

REFERENCES -- Continued

- 14. Kitterman, J.S. and Rubenthaler, G.L. Assessing the quality of early generation wheat selections with the micro ARWC test. Cereal Science Today 16: 313-328 (1971).
- 15. Kitterman, J.S. and Rubenthaler, G.L. Application of the Brookfield Viscomete. for measuring the apparent viscosity of acidulated flourwater suspensions. <u>Cereal Science Today</u> 16: 275-276 (1971).
- 16. Rubenthaler, G.L. and Bruinsma, B.L. Lysine Estimation in Cereals by Near Infrared Reflectance. Crop Science 18: 1039-1042 (1978).
- 17. Yamazaki, W.T. An alkaline water retention capacity test for evaluation of cookie baking potentialities of soft winter wheat flours.

 Cereal Chem 30: 242-246 (1953).

PUBLICATIONS (Jan. 1 - Dec. 31/84)

- 1. Faridi, H.A., and Rubenthaler, G.L. Effect of Baking time and Temperature on Bread Quality, Starch Gelatinization, and Staling of Egyptian Balady Bread. Cereal Chem. 61(2):151-154. 1984
- 2. Rubenthaler, G.L. Wheat Hardness Determination. 7th International Symposium on Near Infrared Analysis. Proceedings Tarrytown, NY, July. 1984
- 3. Abdelrahman, A., Leung, H.K., Finney, P.L., Nagel, C.W., and Rubenthaler, G.L. Effect of Humectants on Bread Making Properties. Cereal Foods World 29(8):497, Abstract #45. 1984
- 4. Faridi, H.A., and Rubenthaler, G.L. Effect of Various Flour Extractions, Flour Water Absorption, Baking Temperature and Shortening Levels on Physical Quality and Shelf-Life of Pita (Pocket) Bread Made from Soft White Wheat. Cereal Foods World 29(9):575-576. 1984
- 5. Beal, L., Finney, P.L., and Mehta, T. Effects of Germination and Dietary Calcium on Zinc Bioavailability from Peas. Journal of Food Science 49:637-641. 1984

INVITED TECHNICAL PRESENTATIONS

Rubenthaler, G.L., 1984

Presented seminar "Breeding Wheat for Quality" and tour of Laboratory for Washington County Extension Service Agents, Pullman, Washington, January 16, 1984.

Presented results of NIR wheat hardness studies at Wheat Classing Workshop ARS/FGIS, Beltsville, MD, March 8, 1984.

Presented a talk "Functions and Activities of the Western Wheat Quality Lab.", to Nez Perce and Lewis County Wheat Growers Association, Craigmont, Idaho, March 20, 1984.

Presented a talk "Soft White Wheat Quality in the Market Place", to Chamber of Commerce, Moscow, Idaho, May 2, 1984.

Presented seminar "Function and Role of Western Wheat Quality Lab." to a visiting Egyptian Wheat Team, Pullman, Washington, May 25, 1984.

Presented paper "Wheat Hardness Determination" 7th International NIRA Symposium, Tarrytown, New York, July 10, 1984. (#98)

Presented a seminar and Lab tour (3 hrs.) "Function and Role of the Western Wheat Quality Lab" to U.S. Wheat Associates -- Korean Wheat Team, August 8, 1984.

Presented a seminar and Lab tour (3 hrs.) "Function and Role of The Western Wheat Quality Lab", to U.S. Wheat Associates -- Japanese Government Team, August 29, 1984.

Presented a seminar and Lab tour (3 hrs.) "Wheat Quality Components", to visiting PRC Delegation of Chinese Physiology/Biochemistry Study Group, September 4, 1984.

Presented a seminar and Lab tour (3 hrs.) "Bread Made from Soft White Wheats", to U.S. Wheat Associates -- India Trade Team, September 7, 1984.

Presented a seminar and Lab tour (3 hrs.) "Function and Role of the Western Wheat Quality Lab.", to U.S. Wheat Associates -- Tiawan Flour Millers Team, September 14, 1984.

Presented a paper "Determining Wheat Hardness by NIR" at Joint Annual Technical meeting of PNW-AACC Section/PNW District Association of Operative Millers, Great Falls, MT, September 28, 1984.

Western Wheat Quality Laboratory 1983 Crop

VISITORS

The Western Wheat Quality Laboratory Staff was pleased to have had the opportunity to meet, discuss, and give tours of our facilities with some 121 visitors this past year. Several of these people were wheat breeders, grain buyers, flour millers, students and various government officials with an interest in wheat quality. The following is a list, not all inclusive, to those who visited our facilities and signed our guest book:

U. of I. Investigation of Foods	14
W.S.U. Agronomy and Soils Dept. Cereals Quality Class	20
W.S.U. Food Science & Human Nutrition, Food Analysis	18
U.S. Wheat Workers	22
Foreign:	
Australia	2
Egypt	5
France	2
India	4
Japan	9.
Korea	5
Morocco	1
Pakistan	1
Peoples Republic of China	13
Tiawan	5

EARLY GENERATION NURSERIES 1983 Crop

NURSERY	LOCATION	BREEDER	CLASS	NUMBER TESTED	NUMBER PROMISING
Soft White Yield Trial	Ritzville	C.J. Peterson	SWW	120	74
Soft White (Single Plot)	Pullman	Konzak/Davis	SWW	95	61
Hard Red (Single Plot)	Pullman	Konzak/Davis		84	51
Hessian Fly	Pullman	Konzak/Davis		12	3
Management Trials	Pullman	Allan/Pritchet		706	0
Foot Rot	Pullman	R.E. Allan	SWW	73	46
Club Nursery	Walla Walla	R.E. Allan		77	53
Adv. 2-Gene & Restorers	Walla Walla	R.E. Allan	SWW	34	18
New 2-Gene Dwarfs	Pullman	R.E. Allan	SWW	44	0
New Restorers	Pullman	R.E. Allan		30	11
F-5 Commons	Pullman	R.E. Allan	SWW	72	24
Reselect TCK & CB Lines		Allan/Pritchet		47	14
F-5 Clubs	Pullman	R.E. Allan	Club	59	56
NC Hybrid	Walla Walla	R.E. Allan		24	0
NC Hybrid - Early	Pullman	R.E. Allan	SW & HR	24	0
.NC Hybrid - Late	Pullman	R.E. Allan	SW & HR	24	0
NC Hybrid - Management	Pullman	R.E. Allan	SW & HR	12	0
EE Bkhl. by NGN & Paha	Walla Walla	R.E. Allan	SWW	160	112
EE Bkhl. by NGN & Paha - Late	Pullman	R.E. Allan	SWW	160	118
Spring Spray Trial	P6 SE	R.E. Allan	SWW	368	0
Pullman Early Exp. #10	Pullman	M. Davis	HRS	57	25
Exp. #13	Royal Slope	M. Davis	HRS	45	39
Snow Mold	Douglas Co., WA		SW & HR	44	33

HAL A. LEWIS

NURSCO 1

YUMA, AZ

LABNUM	VARIETY	VO CLASS	SS TWT	FYELD	MSCOR	FASH 1/	FPROT	WPROT	MABSC 3/	MTYPE
830001 YECORA ROJO 830002 YOLO 830003 ANZA 830004 830005	UC112 UC353 UC353 C115284 188312 188314	HRS HRS HRS 284 HRS 12 HWS	\$ 64.6 \$ 65.3 \$ 65.1 \$ 65.1	64.0 67.2 66.1 63.2 70.9	71.2 77.6 75.2 69.6 84.0	0.42 0.40 0.41 0.41 0.43	11.0 8.6 8.2 9.7	10.25	62.3 60.2 61.0 61.3	3.H 4.H 4.H 4.H
830006 830007 830008 830009	158316 158319 158322 158325	HWS HRS HRS HRS HRS	\$ 64.8 \$ 63.4 \$ 66.2	66.4 65.8 69.1 60.3	73.1 72.1 78.7 63.5	0.47 0.48 0.48 0.48	10.1	11.3	67.9 61.9 64.7 62.8	2H 2H 2H 2H
1/ Observed Values 3/ Absorption at 14 4/ Observed Values	1/ Observed Values Corrected to 14% Moisture Basis 3/ Absorption at 14% Moisture Corrected to 10% Producted to 10% Protein	sis. Protein.	5/ Parti 6/ Promis	Particularly Promising Overall Quality Characteristics Promising Overall Quality Characteristics.	romisin	g Overa lity Ch	sing Overall Quality Ch Quality Characteristics	ity char istics.	acteris	tics.

HAL A. LEWIS

HRS
ADV.
BREEDERS
PLANT
IONAL
INTERNAT

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO

YUMA, AZ

830001 YECORA ROJO 830002 YOLO 830003 ANZA 830004		CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR RMKS
	UC112 UC353 UC353 C115284	HRS HRS HWS	65.5 58.4 65.2	64.5 60.4 65.5 65.5	3.4.1.0	925 775 570 705	863 862 680 724	4 VP-MTIME, LVOL, BCRGR 9 VP-MTIME, LVOL, BCRGR 9 VP-LVOL, BCRGR
830006 830007 830008 830009	5/158316 158316 6/158322 158325	HHHH RAKK SONON	72.2 65.1 69.0 67.8	72.1 66.1 68.9 67.0	2000	820 550 805 780	814 612 799 730	Q-FYELD, LVOL, BCRGR 9 VP-LVOL, BCRGR 2 Q-LVOL 9 VP-FYELD, LVOL, BCRGR

properties of the check varieties were lower than normal, but used as a reference for the experimental selections. Proteins were lower than desirable levels, which influence loaf volume.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		OSU FOOD SCIENCE	CIENCE						PAGE
NURSCO 2		CORVALLIS, OR	, or					P.H. KRI	KRUMPERMAN
LABNUM	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC 3/	MTYPE
830010 AOSU FOOD SCIENCE 830011 BOSU FOOD SCIENCE 830012 COSU FOOD SCIENCE		MMS MMS	60.0 59.7 59.3	72.5	0.43	79.1	7.8	53.2	2L 5L 8L
LABNUM	ONO	CLASS	CODI	C0D1C	CAVOL	SCSOR	NITA	NOSCO	RMKS
830010 AOSU FOOD SCIENCE 830011 BOSU FOOD SCIENCE 830012 COSU FOOD SCIENCE		MMS MMS MMS	8.99	8.97 8.84 8.75	1325 1320 1290	79.0	366 369 363	77 76 75	

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics. 1/ Observed Values Corrected to 14% Moisture Basis. 2/ Absorption at 14% Moisture Corrected to 8% Protein. 3/ Observed Values Corrected to 8% Protein.

by Dr. P.H. Krumperman, Department of Food Science at Oregon State University. No difference in milling These three soft white winter wheats were experimentally milled and baked in co-operation with a study quality was found. Sample A is slightly better than B or C in cookie diameter, cake score, and noodle score, but not significant. COMMENTS:

QUALITY VS ELECTROPHORETIC BANDS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 3			DAVIS, (CA					н. Е. VOG	T:
LABNUM V.	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE
830013 ANZA X CAJEME 71 (830014 "-15D-0D-3D-0D 830015 "-35D-0D-3D-0D 830016 "-60D-0D-3D-0D 830017 "-69D-0D-1D-0D	CA71503-14D-0D-1D-0D	303/1E1 303/2E2 303/3E3 303/4E4 303/5E5	HRW HRW HRW	64.0 64.8 64.8 63.6 64.8	72.3 68.7 71.4 70.3	0.41 0.40 0.41 0.42 0.42	86.3 85.5 86.0	88.0	57.8 55.7 56.5 56.5	7L 88M 6L 2M
830018 " -790-00-20-0D 830019 " -880-00-30-0D 830020 " -970-00-30-0D 830021 " -? 830022 " -810-10-10-10-3	3D-0D	303/6E6 303/7E7 303/8E8 303/9E9 303/10E10	HRW HRW HRW HRW	64.4 63.2 62.0 64.4 64.4	70.5 72.2 71.6 72.6	0.38 0.41 0.43 0.39 0.42	86.3 86.2 85.0 87.7	8.88 1.77.8	56.4 56.9 55.7 55.1	2L 4M 8M 8M
830023 " -127D-2D-4D-3D-1D 830024 " -155D-4D-4D-4D-2D-3D 830025 " -267D-4D-1D-3D-1D 830026 " -267D-4D-1D-3D-3D 830027 " -268D-4D-4D-2D-1D	10-00 30-00 10-00 30-00 10-00	303/11E11 303/12E12 303/13E13 303/14E14 303/15E15	HRW HRW HRW HRW	61.6 64.0 62.8 63.6 63.6	69.3 73.2 71.8 71.4	0.48 0.43 0.41 0.40 0.40	79.8 86.3 86.0 83.8	7.6 7.8 7.8 7.8 9.9	56.3 55.7 53.7 55.0	9 N N N N N N N N N N N N N N N N N N N
830028 " -98D-3D-3D-3D-3D- 830029 " -? 830030 " -302D-2D-4D-2D-0D 830031 " -313D-3D-3D-1D-0D 830032 " -314D-4D-2D-3D-0D	00-00 00 00-00	303/16E16 303/17E17 303/18E18 303/19E19 303/20E20	HRW HRW HRW	65.6 64.4 64.0 62.4 63.6	72.3 72.3 72.3 72.3 72.3	0.39 0.40 0.42 0.42 0.42	86.5 846.5 83.1	9.2 7.3 7.8 8.1	57.2 54.6 56.4 55.8	2 N N N N N N N N N N N N N N N N N N N
830033 " -330D-1D-2D-2D-830034 " -369D-3D-3D-2D-830035 " -? 830036 " -? 830037 " -369D-3D-3D-2D-	Q0- Q0-	303/21E21 303/22E22 303/23E23 303/24E24 303/25E25	HRW HRW HRW HRW	64.4 64.4 62.0 64.4 63.2	73.1 69.5 69.5 72.1 71.6	0.42	86.7 82.9 83.0 87.0 82.8	7.6 9.13 7.55 4.55	55.2 57.7 58.1 55.0	2L 8M 2L 3L
830038 " -370D-20-3D-3D-830039 " -371D-1D-1D-3D-830040 " -371D-2D-2D-2D-830041 " -373D-1D-1D-2D-830042 " -373D-2D-3D-2D-	Q00 1111	303/26E26 303/27E27 130/28E28 303/29E29 303/30E30	HRW HRW HRW	63.6 62.0 62.8 62.8 62.8	71.2 69.2 70.7 70.1 69.2	0.46 0.46 0.43 0.46 0.52	82.8 80.5 84.0 81.6	8.23	57.1 56.3 55.0 57.3	3 M 3 M 3 M 3 M
830044 " -378D-4D-2D-1D-2D-830044 " -381D-2D-1D-2D-830045 " -394D-1D-1D-2D-830046 " -394D-4D-2D-2D-830047 " -12D-1D-4D-3D-0	00 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	303/31E31 303/32E32 303/33E33 303/34E34 303/35E35	HRW HRW HRW	63.2 62.8 64.4 64.4 62.4	72.4 71.8 72.2 72.8 69.9	0.53 0.50 0.38 0.42 0.46	88 88.03 86.13 7.15	88.0 4.88.0 7.88.0 7.80	54.2 54.3 53.8 53.6	22M 4L 4L 4L
1/ Observed Values Con	Corrected to 14% Moisture	ure Basis.	12/	Particula	arly Promi	ising ov	erall Qu	ality Cha	racteris	tics.

^{6/} Promising Overall Quality Characteristics. $\overline{3}/$ Absorption at 14% Moisture Corrected to 8% Protein.

^{4/} Observed Values Corrected to 8% Protein. COMMENTS: Analysis were done in co-operation with Dr.'s Calvin Qualset, U. of C., Davis,CA, Michel Rousset, Clermont-Ferrand, France, and Jose Carrillo, Madrid Spain. Statistical analysis will be conducted at UC, Davis

to interrelate baking properties with electrophoretic patterns.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		QUALITY VS	ELECTROPHORETIC		BANDS				CONTD.	PAGE 1
NURSCO 3			DAVIS, C	CA					H.E. VOG	
LABNUM		IDNO	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
ME 71 CA71503 D-0D D-0D D-0D	-14D-0D-1D-0D	303/1E1 303/2E2 303/3E3 303/4E4 303/5E5	HREW HREW HREW	59.5 63.7 58.8 57.7	59.5 62.9 62.1 58.7	135.64	910 860 913 885 875	910 810 845 879 832	ひりょう	
830018 " -79D-0D-2D-0D 830019 " -88D-0D-3D-0D 830020 " -97D-0D-3D-0D 830021 " -? 830022 " -81D-1D-1D-1D-3D-0D		303/6E6 303/7E7 303/8E8 303/9E9 303/10E10	HRW HRW HRW HRW	59.5 58.9 59.1 57.1	59.6 59.0 57.4 59.3	3.23.4	735 950 790 825 915	741 900 784 844 872	00800	
830023 " -1270-20-40-30-10-00 830024 " -1550-40-40-20-30-00 830025 " -2670-40-10-30-10-00 830026 " -2670-40-10-30-30-00 830027 " -2680-40-40-20-10-00		303/11E11 303/12E12 303/13E13 303/14E14 303/15E15	HRW HRW HRW	60.6 58.0 56.7 54.7 60.4	61.0 57.3 56.9 59.9	8.5 2.0 3.1 3.1	780 900 845 840 885	805 857 852 829	0,80,800	
830028 " -98D-3D-3D-3D-0D 830029 " -? 830030 " -302D-2D-4D-2D-0D 830031 " -313D-3D-3D-1D-0D 830032 " -314D-4D-2D-3D-0D		303/16E16 303/17E17 303/18E18 303/19E19 303/20E20	HHHHHHHRW	60.6 55.7 58.4 63.9 60.4	59.4 58.3 64.1	3.8 1.7 3.8 6.0 4.7	900 775 850 880 935	826 818 844 892 910	00000	
830033 " -3300-10-20-20-00 830034 " -3690-30-30-20-00 830035 " -? 830036 " -? 830037 " -3690-30-30-20-00		303/21E21 303/22E22 303/23E23 303/24E24 303/25E25	H H H K K K K K K K K K K K K K K K K K	56.0 61.2 64.2 55.7	56.22 56.22 56.22 56.22	1.6 7.9 7.9 2.1	800 845 920 750 860	825 826 833 781 835	80000	
830038 " -370D-2D-3D-3D-0D 830039 " -371D-1D-1D-3D-0D 830040 " -371D-2D-2D-2D-0D 830041 " -373D-1D-1D-2D-0D 830042 " -373D-2D-3D-2D-0D		303/26E26 303/27E27 130/28E28 303/29E29 303/30E30	HHRRW	61.2 60.1 60.2 59.5 61.7	60.3 61.0 69.2 61.5	4.0 4.0 1.0 1.0 1.0	880 765 900 865 805	824 821 906 846 793	L00180	
830044 " -378D-4D-2D-1D-0D 830044 " -381D-2D-1D-2D-0D 830045 " -394D-1D-1D-2D-0D 830046 " -394D-4D-2D-2D-0D 830047 " -12D-1D-4D-3D-0D		303/31E31 303/32E32 303/33E33 303/34E34 303/35E35	HRW HRRW HRWW HRW	55.9 55.9 54.6 57.0 58.1	55.9 55.1 54.0 58.3	33.22	805 810 790 820 810	805 785 753 820 822	∞ ∞ ∞ ∞ ∞	

men in a summer source or make

一个多年 日空

E 2		YPE							
PAGI	VOGT	MTY	4L 6M 5M	31 22 22 22	4L 7M 6M 2L 2L	32 23 2 3 4 4 L L	3L 8R 8M	28871	88 33 7 1
	H.E. V	MABSC	56.3 54.5 57.5 55.3	55.3 55.3 54.3 54.3	55 56 58 58 54 54 54 54 54	553.4 553.0 555.1	55.3 55.8 56.4	54.7 53.6 53.0 54.0	52.8 56.4 55.2 54.4 55.6
		FPROT	7.7 8.8 9.9 9.8	77.7.88	8.2 9.6 7.2 7.9	8.6 7.2 7.5 7.6	7.27	7.57	8.6
		MSCOR	882.4 833.2 833.2 1.6	81.2 82.3 87.4 86.4 86.7	81.6 78.9 81.3 86.3	83.2 88.0 87.3 83.5 79.0	81.4 80.4 86.8 82.0 81.7	82.3 82.8 81.8 81.1	82.5 77.3 80.9 84.9 80.3
		FASH	0.44 0.41 0.42 0.43 0.43	0.45 0.45 0.39 0.41	0.45 0.48 0.45 0.41	0.43 0.37 0.39 0.41 0.48	77.0 0.40 0.40 0.40 0.40	00.44	0.46 0.53 0.44 0.41
BANDS		FYELD	70.0 69.4 69.8 70.0	69.3 70.2 72.2 72.2	69.5 68.8 69.2 72.0	70.1 71.8 72.1 69.5 68.7	69.1 69.6 72.0 69.4 69.1	68.6 69.1 69.1 68.4 70.7	71.0 69.4 68.3 70.7 68.3
ECTROPHORETIC B	CA	TWT	64.0 62.8 65.6 64.8	64, 4 62, 4 64, 8 65, 2	64.4.4 64.9 64.9 64.9 64.8	64.4 65.2 65.2 64.0	63.6 64.8 64.0 64.2	62.8 63.6 64.0 64.0	64.8 64.0 64.0 64.0 64.0
EL	DAVIS, C	CLASS	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW
QUALITY VS		ONGI	303/36E36 303/37E37 303/38E38 303/39E39 303/40E40	303/41E41 303/42E42 303/43E43 303/44E44 303/45E45	303/46E46 306/47E47 303/48E48 303/49E49 303/50E50	303/51E51 303/52E52 303/53E53 303/54E54 303/55E55	303/56E56 303/57E57 303/58E58 303/59E59 303/60E60	303/61E37 303/62E19 303/63E29 303/64E28 303/65E49	303/66E20 303/67E47 303/68E22 303/69E17 303/70E11
EA AR WHEAT QUALITY LAB. , WA.	3	VARIETY	" -12D-2D-3D-3D-0D " -19D-1D-1D-3D-0D " -57D-1D-4D-2D-0D " -57D-2D-4D-3D-0D " -58D-1D-4D-2D-0D	" -580-3D-40-10-00 " -650-20-20-30-00 " -720-10-20-30-00 " -740-20-40-40-00 " -400-10-10-20-00	" -53D-2D-3D-1D-0D " -76D-2D-2D-2D-0D " -77D-3D-2D-3D-0D " -? " -134D-3D-3D-2D-0D	" -1390-30-20-10-00 " -1500-10-10-10-00 " -1500-10-40-10-00 " -1520-20-30-30-00	" -154D-4D-1D-1D-0D " -162D-4D-3D-1D-0D ANZA CAJEME 71 YECORA ROJO		
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.	NURSCO	LABNUM	830048 830049 830050 830051 830052	830053 830054 830055 830056 830056	830058 830059 830060 830061 830062	830063 830064 830065 830066 830066	830068 830069 830070 830071 830072	830073 830074 830075 830076 830076	830078 830079 830080 830081 830082

				24426
			ख्या - व्या राज्य प्रचार	
		\$2.80 2.000		
	25256			

一 9年2 - - - 京集 中国以外市 多州南北市 化分子和

14848 18338 33557 743 V 3155

BODES CHEST HORN MOSES CHESTS

A ARV PALLER PROPER CARROLS CONTRACT CO

FERRE PERSON

QUALITY VS ELECTROPHORETIC BANDS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 3			DAVIS, C	CA					H.E. VOGT	-
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC	MTYPE
830083 830084 830085 830086		303/71E23 303/72E16 303/73E3 303/74E39 303/75E27	HHRRE	64.8 64.8 64.8 64.4	69.8 71.8 71.3 69.5 68.8	0.45 0.43 0.44 0.44	82.0 85.0 84.4 82.1	9.68	56.7 58.0 56.2 54.9	8L 8M 7M 3L 2L
830088 830089 830090 830091		303/76E4 303/77E18 303/78E2 303/79E41 303/80E36	HRW HRW HRW	63.2 64.4 64.8 64.0	68.5 68.5 69.3	0.43	81.2 83.1 81.3 79.7	27.7 8.8 1.8 1.0 0.0	55.5 54.6 54.7	31 22 4 4 31 4 4
830094 830094 830095 830096		303/81E50 303/82E30 303/83E46 303/84E8 303/85E5	H H H R W H R W W K W W K W W K W W K W W K W W K W W K W W K W	64.0 63.6 64.4 62.8 64.8	70.3 69.0 70.2 69.7	0.40	84.9 78.4 82.0 81.7 85.6	8.07.77.77.77.74.44.76.76.76.76.76.76.76.76.76.76.76.76.76.	53.4 55.7 56.1 54.18	22L 33L 35L 22L
830098 830099 830100 830101		303/86E59 303/87E53 303/88E9 303/89E44 303/90E52	H H H H K K K K K K K K K K K K K K K K	63.2 64.8 64.4 65.8	69.3 72.0 71.7 70.6	0.46 0.40 0.40 0.42 0.37	8888 866.99 855.69	1.5 7.5 7.9 4.0	57.5 54.1 54.7 57.2	88 11 22 23 23
830103 830104 830105 830106 830107		303/91E34 303/92E57 303/93E51 303/94E38 303/95E43	HRW HRW HRW	63.75 64.75 64.00	71.5 68.9 68.7 69.3	0.40 0.51 0.45 0.43	86.3 77.5 80.6 82.1 85.8	7.4 8.5 8.8 7.2	53.8 54.4 58.0 53.8	55 66 66 16
830108 830109 830110 830111		303/96E13 303/97E21 303/98E56 303/99E40 303/100E54	HRW HRW HRW	62.0 64.0 62.2 64.4 63.6	70.3 71.3 68.1 69.0	0.39 0.40 0.42 0.43 0.43	85.3 86.2 81.4 81.1	77.77.77.88.3	55.3 53.0 53.5 54.9	22 11 22 31 31
830113 830114 830115 830117		303/101E6 303/102E60 303/103E55 303/104E45 303/105E12	HRW HRW HRW HRW	64.4 64.0 62.4 64.0 64.0	69.1 69.1 68.8 71.7 72.5	0.40 0.49 0.49 0.38	83.9 78.8 79.8 87.5	7.7 7.7 7.7	55.1 54.4 55.0 53.8	22L 88M 4L 22L 33L

NURSCO 3 LABNUM VARIETY 830083 830084 830085									
		DAVIS,	CA					H.E. VOGT	_
3008 3008 3008	DNO I	CLASS	BABS	BABSC	MTIME	TAOL	TAOFC	BCRGR	RMKS
3008	303/71E2 303/72E 303/73E 303/74E3 303/75E2	23 HRW 16 HRW 3 HRW 27 HRW	64.2 62.7 62.2 60.0	63.3 60.9 60.9 60.9	0.17 0.13 0.13 0.13	880 880 900 875 740	824 768 819 794 777	004t00	
830088 830089 830090 830091	303/76E ¹ 303/77E ² 303/78E ² 303/79E ¹ 303/80E ²	HRW HRW H1 HRW 36 HRW	58.6 528.6 60.9 61.9	58.7 58.8 601.6 60.8	22.4 43.1 53.1 5.3	790 825 825 810 775	796 837 775 804 775	88780	
830093 830094 830095 830096	303/81E 303/82E 303/83E 303/84E	50 HRW 46 HRW 8 HRW 5 HRW	54.6 61.9 68.0 58.9	54. 622.4 559.3 560.3	2.73	660 795 800 725 785	660 826 819 762 735	σονσο	
830098 830099 830100 830101	303/86E 303/87E 303/88E 303/89E	HRW 9 HRW 9 HRW 144 HRW 52 HRW	5555 8555 860 8660 8660	61.7 555.3 557.9 577.4	23.126	885 675 740 845 740	817 706 746 802 653	00000	
830103 830104 830105 830106 830107	303/91E 303/92E 303/93E 303/94E	34 HRW 57 HRW 51 HRW 38 HRW 43 HRW	55.9 660.4 564.5 55.2	56.3 55.6 55.7 56.0	3.59	800 830 755 840 710	837 855 724 790 760	00000	
830108 830109 830110 830111	303/96E 303/97E 303/98E 303/99E	13 HRW 21 HRW 56 HRW 40 HRW E54 HRW	56.6 54.1 58.2 561.0 561.0	57.5 54.7 57.9 61.2	2.7.2.3.7.7.3.0	725 680 750 810 800	781 717 731 822 843	00877	
830113 830114 830115 830116 830117	303/1018 303/1028 303/1038 303/1048	E6 HRW E60 HRW E55 HRW E45 HRW E12 HRW	60.1 64.4 60.2 55.1 57.7	60.3 63.4 60.6 55.7 58.0	2.5 7.9 4.4 2.0 2.6	770 900 845 705 840	782 838 870 742 859	0 m 4 0 m	

\$ \$ - JARS

on a remain nation about provide an expension

THE STREET STREET STREET STREET STREET

· 新春春春 · 西春春

MTYPE 2 2 4 4 1 3 1 3 1 3M 4L 6M 6M 8 6 7 7 7 7 7 22L 22L 32L 82L 37 37 37 37 **V0GT** MABSC 01.00-60853 7537 20000 10001 58.1 57.6 58.6 56.7 5-55 ٠. 5524 5555 554. 56. 57. 54. 57. 555. 556. **FPROT** 73.55 74.78 74 02000 71187 88.777.78 777.88 L00.87 $\infty \infty \infty \infty \infty$ MSCOR 86.4 85.5 82.3 84.9 79.8 シュカのヤ 81.4 82.5 84.5 86.2 87.1 82.8 81.9 79.5 82.5 79.1 81.6 81.0 82.9 80.3 450000 00000 86.28 82. 83. 84. 0.40 0.49 0.41 0.47 FASH 40 38 45 41 50 40 40 40 40 0.43 0.44 0.45 0.46 0.43 43 47 50 50 00000 00000 00000 00000 00000 FYELD 70.07 70.7 70.7 71.5 71.5 70.0 70.4 70.7 71.5 71.1 72.5 69.9 70.8 70.6 69.9 71.9 70.9 70000 300 to 46498 69. 69. 70. 69. 02000 QUALITY VS ELECTROPHORETIC BANDS 24800 40040 40887 90408 40004 872480 90948 TWI 63. 63 67 67 64 64 61 62 62 62 64 65 64 63 63 64 64 64 64 CA SIVAC CLASS HRW 303/121E46 303/122E38 303/123E25 303/124E13 303/125E21 303/106E58 303/107E33 303/108E7 303/109E42 303/110E31 303/111E35 303/112E32 303/113E15 303/114E26 303/115E24 303/116E14 303/117E25 303/118E1 303/119E48 303/120E10 303/126E29 303/127E48 303/128E31 303/129E32 303/130E57 31E3 32E8 33E18 34E42 35E37 36E22 37E2 38E19 39E11 40E39 IDNO 303/1 303/1 303/1 303/1 303/1 303/1 303/1 303/1 ETY VARI USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA. 830138 830139 830140 830141 830143 830144 830145 830146 830148 830149 830150 830151 830152 830128 830129 830130 830131 830133 830134 830135 830136 830137 830118 830119 830120 830121 830123 830124 830125 830126 NURSCO LABNUM

THE WAY TO STATE OF THE PROPERTY OF THE PROPER

N 10 W 12 W

TO MERCIA

TOTAL STATE OF THE STATE OF THE

PAGE 4	_	RMKS							
CONTD.	н.Е. VOG	BCRGR	00000	00000	0,00,00	81-800	01487	r0000	00000
		LVOLC	775 755 821 824 880	804 782 777 790 775	780 829 892 773 842	855 795 830 638 732	773 769 855 758 832	770 729 802 737	751 709 728 761 778
		LVOL	750 730 815 855 880	785 850 845 840 725	755 860 880 860 830	805 820 780 700 670	785 800 830 770 820	820 710 765 700 715	770 740 740 680 815
		MTIME	0.00.00	22.13	44401 44401 771 771	75.857 7.08559	7-10-47 6-98570	7.30 2.30 2.10 5.10	3,44,0
BANDS		BABSC	57.5 56.9 57.5 57.6	58.7 558.3 55.4 55.4	55.7 59.7 62.4 60.7	60.9 56.7 56.3 56.9	60.2 58.9 62.2 8.9	63.7 61.3 59.7 59.2 61.0	62.8 63.3 64.3 61.9
ECTROPHORETIC E	CA	BABS	577 56.5 58.1 59.3	58.4 56.4 59.6 51.2	55.5 56.3 56.3 56.3 56.3 56.3 56.3 56.3	60.1 55.5 55.5 55.5	60 63.9 58.5 62.4 62.4	64.5 61.0 59.1 58.6 60.1	63.1 64.5 62.6 62.6
ELECTROF	DAVIS, C	CLASS	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW
QUALITY VS		ONGI	303/106E58 303/107E33 303/108E7 303/109E42 303/110E31	303/111E35 303/112E32 303/113E15 303/114E26 303/115E24	303/116E14 303/117E25 303/118E1 303/119E48 303/120E10	303/121E46 303/122E38 303/123E25 303/124E13 303/125E21	303/126E29 303/127E48 303/128E31 303/129E32 303/130E57	303/131E3 303/132E8 303/134E42 303/135E37	303/136E22 303/137E2 303/138E19 303/139E11 303/140E39
QUALITY LAB.		VARIETY							
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.	NURSCO 3	LABNUM	830118 830119 830120 830121 830122	830123 830124 830125 830126 830127	830128 830129 830130 830131	830133 830134 830135 830136 830137	830138 830139 830140 830141	830143 830144 830145 830146	830148 830149 830150 830151 830152

0.000 0.0000

STATE THE RESERVE THE SERVE THE THE STATE OF THE STATE OF

The second with the second sec

MARKE PARKE OF FUEL ACESUS ELECTED AND A STAR AND MARKET

19099 11125 15141 45412 15811

PAGE 5		MTYPE							
PA	VOGT	Σ	21 31 21 41 41	31 21 31 31 31 31 31 31 31 31	31 22 22 88	31 21 21 21 21 21 21 21 21 21 21 21 21 21	8L 2L 1L 3L 2L	22L 88L 22L	217
	H.E. V(MABSC	55.4 57.2 56.2 53.7	56.6 54.2 56.4 55.6	54.0 56.2 55.4 55.6 57.3	55.0 55.0 55.0 56.3	56.3 54.6 54.6 54.9	56.0 57.1 54.6 54.3 56.9	56.1 55.5 55.5 54.8
		FPROT	7.5 2.7.7 7.7	7.8	7.7.7.5	8.3 7.0 7.5 7.5	8.4 7.7 7.2 8.1 7.4	6.9 7.7 7.6 7.6	88.8
		MSCOR	83.1 81.3 78.9 81.1 84.0	79.6 86.7 86.6 86.9 81.4	84.7 86.0 86.6 80.9	86.1 85.8 87.0 85.1 88.4	85.3 85.9 86.3 85.4 87.6	81.4 82.4 82.4 82.8 84.4	885.6 885.3 885.0 862.2
		FASH	0.42 0.47 0.51 0.47 0.43	0.48 0.39 0.40 0.40	0.44 0.41 0.38 0.39 0.47	0.41 0.41 0.39 0.42 0.38	0.44 0.40 0.39 0.43 0.39	0.44 0.44 0.44 0.41 0.41	0.40 0.40 0.38 0.43 0.39
BANDS		FYELD	69.8 70.5 69.8 70.2	69.3 71.5 72.1 69.5	72.0 70.4 71.6 71.6	72.1	69.7 71.4 72.1 72.3	69.1 69.9 68.9 70.6	70.9 71.4 70.7 69.4 70.9
ETIC	Y.	TWT	64.0 64.8 63.6 63.6	64.8 63.6 64.4 64.4	64.0 64.0 64.4 64.0 64.8	64.8 64.0 66.0 66.0 66.0	64.8 65.2 64.0 64.0	62.4 64.8 64.4 64.4	66.0 64.4 65.2 65.6 65.6
ELECTROPHOR	DAVIS, C	CLASS	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HHRW HRW HRW	HRW HRW HRW HRW
QUALITY VS	7	ONG	303/141E54 303/142E36 303/143E30 303/144E35 303/145E50	303/166E41 303/147E45 303/148E1 303/149E9	303/151E34 303/152E28 303/153E33 303/154E17 303/155E47	303/15/6644 303/157/658 303/15/8653 303/15/9620 303/160E12	303/161E23 303/162E5 303/163E14 303/164E7 303/165E43	303/166E27 303/167E60 303/168E4 303/169E6 303/170E10	303/171E16 303/172E49 303/173E52 303/174E56 303/175E15
QUALITY LAB.		VARIETY							
QUALI									
	က								
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.	NURSCO	LABNUM	0153 0154 0155 0156	0158 0159 0160 0161	0163 0164 0165 0166	0168 0169 0170 0171	\$0173 \$0174 \$0175 \$0176	\$0178 \$0179 \$0180 \$0181	10183 10184 10185 10186 10187
WE	N	1	88888	88888	& & & & & & & & & & & & & & & & & & &	88888	88888	88888	888888

TOTAL TOTAL

USDA, SEA AR WESTERN WHEAT QUAL PULLMAN, WA.	QUALITY LAB.	QUALITY VS	ELECTRO	ELECTROPHORETIC	BANDS				CONTD.	PAGE 5
NURSCO 3			DAVIS, (CA					H.E. VOG	-
LABNUM	VARIETY	ONO	CLASS	BABS	BABSC	MTIME	LVOL	LVOLC	BCRGR	RMKS
830153 830154 830155 830156		303/141E54 303/142E36 303/143E30 303/14E35 303/14E55	HRW HRW HRW HRW	58.9 682.9 59.2 55.2	59.1 63.9 60.1 55.4	0.888.0 0.888.0 0.888	735 735 800 765 760	747 766 831 821 779	00000	
830158 830159 830160 830161		303/166E41 303/147E45 303/148E1 303/149E9 303/150E40	HRW HRW HRW HRW	56.1 56.1 59.7 56.2 61.8	60.8 56.9 60.1 56.8 61.9	3.2.2	825 705 875 745 820	837 755 900 782 826	@@@@@	
830164 830164 830165 830166		303/151E34 303/152E28 303/153E33 303/154E17 303/155E47	HRW HRW HRW HRW	58.4 59.4 56.7 56.1	58.7 59.9 57.1 56.8 64.5	48.00.0 - 2.00.0 - 5.00.0	840 850 785 720 880	859 881 810 763 799	\$\times 0.00\tag{0}	
830168 830170 830171 830171		303/156E44 303/157E58 303/158E53 303/159E20 303/160E12	HRW HRW HRW HRW	59.5 56.7 55.2 55.2 7.7	59.2 56.2 56.3 56.3	142.2	900 745 650 900 805	881 712 712 888 836	00000	
830174 830174 830175 830176		303/161E23 303/162E5 303/163E14 303/164E7 303/165E43	HRW HRW HRW HRW	55.7 55.0 55.0 55.9	62.3 57.5 55.8 59.8	2.00	880 785 750 890 750	855 804 800 884 787	00000	
830178 830179 830180 830181		303/166E27 303/167E60 303/168E4 303/170E10	HRW HRW HRW HRW	60.1 59.5 58.6 60.7	61.2 63.8 59.8 59.0 61.1	2.3 4.2 4.2	790 915 850 715 860	858 872 869 740 885	0080N	
830184 830184 830185 830186 830187		303/171E16 303/172E49 303/173E52 303/174E56 303/175E15	HRW HRW HRW HRW	62.1 55.2 60.1 57.0 58.7	55.3 55.8 56.7 56.8	3.8 22.5 1.4	855 700 775 785 730	805 737 750 773 780	NOOOO	

· 电性对对图 图 - - 数据记录图 医外面图象 表面语语: 张德克斯·

Labor names acces and manue and the state

£ 78 559 11 54554 5255

TOWN TOWN THE PARTY OF THE PART

PAGE 6		RMKS	
CONTD. PAGE	H.E. VOGT	BCRGR	\$000N
		LVOLC	778 778 848 781 781
		TAOL	840 790 805 775
		MTIME	2.0 2.3 6.5 6.5
SANDS		BABSC	59.7 59.3 58.6 63.0
ELECTROPHORETIC BANDS	AC.	BABS	60.7 58.6 58.5 63.4
	DAVIS, CA	CLASS	HRW HRW HRW
QUALITY VS		IDNO	303/176E26 303/177E24 303/178E55 303/179E51 303/180E59
QUALITY LAB.		VARIETY	
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 3	LABNUM	830188 830189 830190 830191

AUSTRALIAN WHEAT	
USWA - Bahrain	

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 4

LABNUM VARIETY	ONG	CLASS	TWT		FYELD	FA	FASH	MSCOR		FPROT	MABSC
830193 PRIME HARD 830194 STANDARD WHITE 830195 SOFT 830196 PNW WHITE WINTER		MMH MMS MMS MMS	63.	nnn	69.6 69.1 71.3 74.3	0000	42 47 41 39	81.6 75.9 81.7 89.8		9.6	62.8 57.8 57.3
LABNUM	ONGI	CLASS	MTYPE	PE	CODI	00	CODIC	CAVOL		SCSOR	RMKS
830193 PRIME HARD 830194 STANDARD WHITE 830195 SOFT 830196 PNW WHITE WINTER		MMS MMS MMS	4 H 6 M 3 M 2 M		7.81 8.00 8.59 9.06	8 2 2 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	08 82 42 93	1155 1165 1250 1370	9978	65.0 67.0 71.0 80.0	
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA. NURSCO 4	` Ä	AUSTRALIAN WHEAT USWA - Bahrai	N WHEAT ahrain								PAGE 1
LABNUM	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC	MTYPE	BABS	BABSC
830193 PRIME HARD 830194 STANDARD WHITE 830195 SOFT 830196 PNW WHITE WINTER		MWS WWS SWW SWW	63.3 61.3 63.3	69.6 69.1 71.3 74.3	0.42 0.47 0.41 0.39	81.6 75.9 81.7 89.8	14.3 9.5 9.8	62.8 57.8 57.3	4H 23M 23M	69.4 57.9 55.5 54.5	66.1 59.5 57.0 55.7
LABNUM VARIETY	IDNO	CLASS	MTIME	LVOL	LVOLC	BCRGR	CODI	CODIC	CAVOL	SCSOR	RMKS
830193 PRIME HARD 830194 STANDARD WHITE 830195 SOFT 830196 PNW WHITE WINTER		HWW SWW SWW SWW	3.1	1037 863 865 910	832 959 955 982	1007	7.81 8.00 8.59 9.06	8.08 7.82 8.42 8.93	1155 1165 1250 1370	65.0 67.0 71.0 80.0	

	8 5 6
	00000
	3-45
	EETI
	5555

TATHE HALLMARE

178151

PAGE		DIC RMKS	25 19	5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.
		00 100	9.27 9.25 9.29 9.20	Charac cs.
		FYELD FASH MSCOR FPROT MABSC MTYPE CODI CODIC RMKS		$\frac{5}{6}$ Particularly Promising Overall Quality Chaelity Chaelising Overall Quality Characteristics
		T MABS	9.8 54.7 2M 9.9 55.6 2M	erall Chara
		FPR0		ng Ove
		MSCOR	60.0 74.3 0.46 86.5 60.0 74.3 0.46 86.5	omisir 11 Qua
		FASH 1/	94.0	ly Pro
		FYELD	74.3	cular
CHENEY	MA.	TWT	0.09	Parti
NAB I SCO-CHENEY	CHENEY, WA	CLASS TWT	SWW	
NAE	S	ONG		ure. o 10% Protein. in.
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		VARIETY	830197 SAMPLE 1 (DAWS?) 830198 SAMPLE 2 (BARBEE?)	1/ Observed Values Corrected to 14% Moisture. 3/ Absorption at 14% Moisture Corrected to 10% 4/ Observed Values Corrected to 10% Protein.
USDA, SEA AR WESTERN WHEA' PULLMAN, WA.	NURSCO 5	LABNUM	830197 SAM 830198 SAM	$\frac{1}{3}$ Absorpt $\frac{3}{4}$ Observe

See Completed at the request of Nabisco Brands, Inc., Cheney, WA., to identify the variety of wheats. Page 2 for Phenol test identification completed by Seed Laboratory, W.S.U.. COMMENTS:

WASHINGTON STATE UNIVERSITY SEED LABORATORY Pullman, Washington

ab No. 3003		ved: 7-21-83 Date of Test: 7-26-83
Sample Information	#1	(Nabisco Mills in Cheney)
-		

Gordon Rubenthaler Wilson Hall - Room 7 4004

Kind of Seed Wheat			Per Cent
Phenol Test	Daws check sample: This sample:	Dark Brown Fawn Dark Brown Fawn	40 60 42 58

Remarks:

According to the Phenol Reaction Chart, this sample is apparently Daws.

Analyst_____

The name of Washington State University must not be used for advertising purposes in connection with this report.

WASHINGTON STATE UNIVERSITY SEED LABORATORY Pullman, Washington

Lab No. 30033	_ Date Received:_	7-21-83	_ Date of	Test:	7-26-83
Sample Information:	#2	(Nabisco	Mills i	n Cheney)	

Gordon Rubenthaler Wilson Hall 7 4004

Kind of Seed Wheat			Per Cent
Phenol Test	Barbee check sample: This sample:	Dark Brown Fawn Dark Brown Fawn	55 45 55 45

According to the Phenol Reaction Chart, this sample is apparently Remarks: Barbee.

Analyst____

The name of Washington State University must not be used for advertising purposes in connection with this report.

PAGE 1	MTYPE	8 3 3 4 4 8 8 3 8 3 8 8 8 8 8 8 8 8 8 8	6H 7333 733 74 75 75 75 75 75 75 75 75 75 75 75 75 75	8WW W 2 2 4 4 4 8 W W 2 2 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 4 8 W W 2 2 4 4 4 4 8 W W 2 2 4 4 4 4 4 8 W W 2 2 4 4 4 4 4 8 W W 2 2 4 4 4 4 4 8 W W 2 2 4 4 4 4 4 8 W W 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	WWWWW 23300th	5H 33M 6H	76 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
L.F. JA	MABSC 3/	57.7 59.4 60.4 59.9	586 500 500 500 500 500 500 500 500 500 50	59.6 60.0 61.5 56.7	555.55	60.5 61.6 61.6 62.5	60 50 58 58 60 58 58
	FPROT 1/	10.2 10.4 10.9	12.50	11.0	011100	12.3	2.01 2.01 2.01 0.01
	MSCOR	89.8 88.9 90.4 89.6	91.8 90.3 84.3 91.7	888 889.3 87.5	888 888.9 83.7 83.7.2	85.7 87.0 86.1 88.7 81.4	81.6 91.4 88.7 87.3 85.1
	FASH	0.36 0.36 0.37 0.37 0.36	0.34 0.33 0.41 0.31 0.36	0.36 0.37 0.37 0.35 0.35	0.34 0.37 0.42 0.36	0.38 0.37 0.37 0.35	0.44 0.35 0.36 0.37
	FYELD	73.2 72.0 72.6 73.5	73.9 72.0 70.2 72.6 69.0	71.5 71.6 73.7 72.0 67.9	71.1 72.7 72.7 70.7 66.9	70.1 70.9 70.2 71.5 67.5	69.0 73.8 72.1 71.2 69.2
. WHEAT	TWT	64.4 64.4 62.8 64.0 62.0	65.6 63.6 66.0 66.0	64.8 63.2 63.2 63.6	633.2 653.2 59.0 59.0	61.2 63.2 62.8 63.6 59.2	62.4 64.3 64.8 64.8
FS REGIONAL STSIDE STA.	CLASS	HRS HRS HRS	HWS HRSS HRSS HRS	H H H K S S S S S S S S S S S S S S S S	HRS HRS HRS HRS	THHHH XXXXX XXXXX	HRS HRS HWS HRS
WSF	ONGI	20 112 221 353 412	4115 4436 493 521	6/536 06/5337 06/5344 06/544	6/546 547 548 552	6/573 6/589 6/590 592	5000 2000 2000 2000 2000 2000 2000 2000
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA. NURSCO 6	LABNUM	830199 ANZA (C1015284) 830200 YECORA ROJO 830201 PHOENIX 830202 YOLO 830203 PROBRAND 771	830204 KLASIC 830205 OSLO 830206 GENERO F81 830207 BC60-C113232/166//ANZA 830208 WESTBRED 911	830209 NK2437 830210 NK3940 830211 NK4236 830212 TADORNA/INIA 830213 TADORNA/INIA	830214 TADORNA/INIA 830215 NUDIF/INIA/ANZA 830216 GLENNSON M81 830217 URES T81 830218 BC60/CALIDAD//ANZA	830219 W5706 830220 WS501 830221 WS502 830222 WS503 830223 WPB7023	830224 WRP 9-15 830225 ERA/PITIC 62 830226 ANZA/4/ERA/TOB/LOV! 11/3/MNMN6916 830227 SGW010C 830228 NK2940

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics. Absorption at 14% Moisture Corrected to 11% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 11% Protein.

		23	

		10000	
			1020
30000 50000			

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	MS	WSFS REGIONAL	- WHEAT					CONTD, PAGE 1
	X	WESTSIDE STA.	. uc, ca					L.F. JACKSON
LABNUM	ONG	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR RMKS
830199 ANZA (C1015284) 830200 YECORA ROJO 830201 PHOENIX 830202 YOLO 830203 PROBRAND 771	20 112 221 353 412	HRS HWW HRS HRS	59.1 64.0 62.0 61.0 63.0	59.9 62.6 62.6 61.1 62.3	0.4.0.0. 0.2.0.0.	845 1005 975 990 1030	895 918 1012 996 987	6 LOW LVOL, P-BCRGR 2 2 5 5 5 2 5 2 5 2
830204 KLASIC 830205 OSLO 830206 GENERO F81 830207 BC60-C113232/166//ANZA 830208 WESTBRED 911	411 493 527 727	HWS HRS HRS HRS	61.6 63.7 60.5 61.2 63.1	60.6 62.2 61.0 63.0	400.00	1045 995 850 880 920	983 902 838 868 914	2 8LOW LVOL, P-BCRGR 9LOW LVOL, P-BCRGR 4Q-LVOL, P-BCRGR
830209 NK2437 830210 NK3940 830211 NK4236 830212 TADORNA/INIA 830213 TADORNA/INIA	5336 5337 544 545	HRS HRS HRS	62.7 62.2 63.1 57.4	61.8 62.2 53.7 58.6	www.v. 80004	985 930 930 965	929 950 967 831	2CRUMB GRAIN CREAMY 3 8L-LVOL, P-MTIM/BCRGR 2Q-FYELD
	546 547 548 552	H H H H K S S S S S S S S S S S S S S S	57.5 59.0 59.5 63.1	57.7 59.1 59.0 62.3 58.2	3.5.98	845 915 930 870 940	857 921 899 820 971	8L-LVOL, P-BCRGR 3Q-CRUMB GRAINCREAMY 8P-LVOL&BCRGR 5P-FYELD&BCRGR
830219 W5706 830220 WS501 830221 WS502 830222 WS503 830223 WPB7023	573 588 590 590 590	H H H H R S S S S S S S S S S S S S S S	64.0 65.6 62.1 66.0	622.7 63.8 63.8 65.2	400.00	1025 1075 1000 1065	944 963 1000 929 1018	2 4Q-BCRGR 2Excellent Protein 4P-FYELD,Q-BCRGR
830224 WRP 9-15 830225 ERA/PITIC 62 830226 ANZA/4/ERA/TOB/LOVI 11/3/MNMN6916 830227 SGW010C 830228 NK2940	00000 00000 00000 00000	HRRS HRRS SSSS	63.7 59.9 59.2 62.0 63.0	64.2 60.8 60.2 60.2 62.0	1.8 2.2 4.1 1.1	900 840 845 955	931 896 907 881 893	4Q-FYELD&BCRGR 8P-LVOL&BCRGR 8P-LVOL&BCRGR 4P-LVOL,Q-BCRGR 2Q-FYELD&LVOL

texture (spring or winter?). See the footnotes in IDNO column for those with overall promising quality COMMENTS: Three of the group are hard white wheats (Phoenix, Klasic, and SGW010C), others were all hard red in properties and Remarks column for deficiencies of the remainder.

L = Low, Q = Questionable, P = Poor

		1000年	
			100 100 100 100 100
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	grant. B. H. att		
- 120' Mar			

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	SUTTER		REGIONAL WHEAT						PAGE 1
NURSCO 7		SUTTER CO.	, CA					L.F. JAC	JACKSON
LABNUM	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
830229 ANZA (C1015284) 830230 PH0ENIX 830231 PR0BRAND 771 830232 KLASIC 830233 OSLO	20 221 412 415 6/436	HRS HWW HWS	62.9 61.2 64.7 63.6	70.6 69.5 69.4 71.8	0.44 0.45 0.36 0.38	83.0 81.2 86.0 87.4	7.7.6.6.6.0.8.	55.1 54.6 54.1 57.8	11 88 6M 6M
830234 GENERO F81 830235 BC60-C113232/166//ANZA 830236 WESTBRED 911 830237 NK2437 830238 NK3940	497 497 521 6/537	HRAS HRAS RAS S S S S S S S S S S S S S S S S	62.9 64.3 62.8 63.9 64.4	67.9 70.3 66.8 70.0	0.47 0.37 0.39 0.39	78.7 86.4 83.0 85.2 86.4	× 1.88 %	56.9 56.4 55.4 55.3	31 51 77 61
830249 NK4236 830240 TADORNA/INIA 830241 TADORNA/INIA 830242 TADORNA/INIA 830243 NUDIF/INIA/ANZA	6/538 544 545 546 547	H H H H H K S S S S S S S S S S S S S S	57.9 62.8 62.7 62.2 59.1	68.8 69.8 67.9 70.3	0.35 0.35 0.35 0.36	81.1 86.7 85.1 86.8	10.6 6.9 6.9 7.0	55.0 52.5 54.8 53.8	6M 1L 3L 2L
830244 GLENNSON M81 830245 URES T81 830246 W5706 830247 W5501 830248 W5502	548 5749 588 588	HRRS RAR RAR RAR RAR RAR RAR RAR RAR RAR	63.6 63.5 63.3 62.9	70.1 66.7 70.8 67.8	74.0 0.47 0.49 0.40	81.1 77.7 80.8 82.1 82.1	8888 6.08.00 6.03.30	54.4 55.7 56.7 55.2	31 41 40 41 31
830249 WS503 830250 WPB7023 830251 WRP 9-15 830252 ERA/PITIC 62 830253 ANZA/4/ERA/TOB/LOVI 11/3/MN6916	6/590 592 593 594 595	HR HR HR S S S S S S S S S S S S S S S S	62.5 62.1 62.7 61.8	71.6 69.2 67.8 69.8	0.43 0.57 0.48 0.41 0.42	84.5 75.1 78.1 83.9 81.0	2.000	56.0 56.7 57.6 54.9	6M 4L 7L 1L
830254 SGW010C 830255 NK2940	<u>6/598</u> 599	HWS	63.5	70.4	0.42	83.8	9.6	54.9	7M 7M
1/ Observed Values Corrected to 14% Moisture Basis. $\frac{3}{4}$ Absorption at 14% Moisture Corrected to 8% Protein. $\frac{4}{4}$ Observed Values Corrected to 8% Protein.	Basis. Protein.		5/ Particu 6/ Promisi	larly ng Ove	omising 11 Quali	Overall Quality ty Characterist	ity Characteri istics.	ceristics.	

|--|--|--|--|--|

		A STATE		
Carlott paragraph				12 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
21				

The following the second secon

-
4
لبنا
4HE/
~
1
\overline{z}
ONAL
⇆
0
REG
ш
\propto
2
ш
_
_
-
ns
01

NURSCO 7		SUTTER CO.,	, CA					L.F. JACKSON	KSON
LABNUM	ONGI	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	RMKS
830229 ANZA (CI015284) 830230 PHOENIX 830231 PROBRAND 771 830232 KLASIC 830233 OSLO	20 221 412 436	HRS HWW HRS HWS	56.5 57.1 58.0 58.9	57.3 57.3 57.3 61.0	37372	600 705 835 785 910	650 717 717 723 798	8 ~ 4 ~ 8 ~ 6 ~ 6 ~ 6 ~ 6 ~ 6 ~ 6 ~ 6 ~ 6 ~ 6	P-1VOL & BCRGR P-BCRGR Q-BCRGR
830234 GENERO F81 830235 BC60-C113232/166//ANZA 830236 WESTBRED 911 830237 NK2437 830238 NK3940	491 497 536 537	HRS HRS HRS HRS	59.9 57.7 59.9 60.0	60.1 57.6 59.6 57.9	0.00 0.00 0.00 0.00	580 600 660 770 850	592 594 641 677 782	00000	P-LVOL & BCRGR P-LVOL & BCRGR P-FYELD & BCRGR P-BCRGR
830239 NK4236 830240 TADORNA/INIA 830241 TADORNA/INIA 830242 TADORNA/INIA 830243 NUDIF/INIA/ANZA	538 544 546 547	HRSS HRSS HRSS	561.7 56.1 53.6 55.4 55.0	59.1 57.2 54.7 57.0 56.0	23.7.2.0	915 555 650 575 595	754 623 718 674 657	00000	Q-FYELD VP-LVOL & BCRGR VP-LVOL & BCRGR VP-LVOL & BCRGR VP-LVOL & BCRGR
830244 GLENNSON M81 830245 URES T81 830246 W5706 830247 WS501 830248 WS502	5448 549 588 589	HRRS HRRS HRRS KRRS	56.9 57.9 59.2 62.7 57.4	56.6 57.9 57.9 57.4 57.4		790 575 770 848 755	771 575 751 705 755	8 3 7 8 8 8 9 8 8 9 9 8 8 9 9 9 9 9 9 9 9 9	VP-LVOL & BCRGR VP-LVOL & BCRGR P-LVOL & BCRGR Q-FYELD P-FLYED & BCRGR
830249 WS503 830250 WPB7023 830251 WRP 9-15 830252 ERA/PITIC 62 830253 ANZA/4/ERA/TOB/LOV! 11/3/MN6916	590 592 594 594	HRSS HRSS HRSS	59.5 50.5 56.7 56.4	58.2 60.4 59.8 57.1	2.22	830 715 730 565 590	749 709 736 608 602	99887	D-MSCOR & BCRGR D-MSCOR & BCRGR D-LVOL & BCRGR
830254 SGW010C 830255 NK2940	598	HWS	58.7	59.7	83.0	820 740	721	2 8 P-F	P-FYELD & BCRGR

could not have been a factor. Those that have good overall quality are noted with footnotes. See the REMARKS column for deficiencies. Protein content was low for good meaningful baking data, however most of the selections in this group are so poor that the protein COMMENTS:

VP = Very Poor; P = Poor; Q = Questionable

	7, 8000.			
5-				
		and the second		
				-49

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	BUT	BUTTE REGION	REGIONAL WHEAT						PAGE 1
NURSCO 8		BUTTE CO.,	, CA					L.F. JAC	JACKSON
LABNUM	ONG	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
830256 ANZA (C1015284) 830257 YECORA ROJO 830258 PHOENIX 830259 YOLO 830260 PROBRAND 771	20 112 221 353 5/412	H H H H K S S S S S S S S S S S S S S S	63.5 63.3 62.1 62.0	70.6 70.7 69.8 71.9	0.41 0.39 0.39 0.39	84.8 85.7 84.7 87.3	8.01 8.05.5 6.05.5 7.05.5	58.7 58.7 58.7 58.7	2L 4M 3L 6M
830261 KLASIC 830262 OSLO 830263 GENERO F81 830264 BC60-C113232/166//ANZA 830265 WESTBRED 911	415 436 491 497 521	HWS HRS HRS HRS	63.6 63.0 62.6 64.2 62.3	71.1 70.4 67.7 67.0	0.38 0.42 0.42 0.36	86.8 84.1 81.3 84.3	10.01	58.0 57.0 57.9 58.2	88 66 31 77 77
830266 NK2437 830267 NK3940 830268 NK4236 830269 TADORNA/INIA 830270 TADORNA/INIA	536 537 5/538 544 545	HRS HRS HRS SRS SRS	62.5 63.5 61.0 63.2 62.9	68.9 70.3 72.3 69.8 67.4	0.40 0.39 0.36 0.36	83.5 85.4 87.4 86.2 87.6	11.2 10.6 10.5 8.5 7.8	58.0 58.3 60.2 57.3 56.0	ttM ttM 2CL 5CL
830271 TADORNA/INIA 830272 NUDIF/INIA/ANZA 830273 GLENNSON M81 830274 W5706 830275 WS501	546 547 543 578 588	HR HR HR HR S S S S S S S	63.3 60.8 63.3 63.7 62.1	70.4 71.4 68.5 70.0 68.4	0.36 0.40 0.47 0.39 0.39	87.2 86.3 79.5 85.0 83.3	88.3	56.2 56.8 56.3 58.0	3L 2L 4H 2H
830276 WS502 830277 WS503 830279 WRP 9-15 830280 ANZA/4/ERA/TOB/LOV! 11/3/MN6916	6/589 5990 592 593 595	HRS HRS HRS HRS	61.5 62.1 61.7 62.5 63.0	68.8 69.6 69.9	0.40 0.41 0.41 0.41 0.40	82.1 85.7 82.6 82.3 84.4	00.00 0.00 0.00 0.00 0.00	57.9 58.8 58.7 59.0	2 X X X X X X X X X X X X X X X X X X X
830281 SGW 010C 830282 NK2940	<u>6</u> /598 599	HRS	63.7	70.3	0.41	84.6	10.1	56.9	7M th
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protei	sis. Protein.		5/ Part 6/ Prom	Particularly Prom Promising Overall	ising Quali	Overall Quality ty Characterist	ity Characteri istics.	eristics.	

^{4/} Observed Values Corrected to 10% Protein.

-
0
1.1
-
1
WHEA
ONAL
->
~
0
_
()
\sim
REG
\propto
1.1
ш
-
-
BU
8

ABNUM 30256 ANZA (C10 30257 YECORA RC1 30258 PHOENIX 30259 YOLO 30260 PROBRAND 30261 KLASIC 30262 OSLO 30263 GENERO F8 30264 BC60-C113			The second secon						
	ONGI	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
	20 112 221 353 412	HRS HWW HRS HRS	59.1 63.1 58.6 57.1 61.8	60.9 62.6 60.4 58.9	3.00	640 870 740 855 950	752 839 852 967 919	07000 0000	P-LVOL & BCRGR Q-BCRGR P-BCRGR
830265 WESTBRED 911	415 436 491 497 521	HRWS HRRS HRRS R	61.3 63.5 60.4 61.1 62.4	61.2 62.7 61.2 61.6 63.4	70000 0000 0000	875 915 675 770 760	869 865 725 801 822	10100 1000 1000 1000	-BCRGR -BCRGR & BCRGR -FYELD & BCRGR -FYELD & BCRGR
830266 NK2437 830267 NK3940 830268 NK4236 830269 TADORNA/INIA 830270 TADORNA/INIA	536 537 538 544 545	HRS HRS HRS SRS	63.4 62.1 63.9 59.0 55.9	62.2 61.5 63.4 60.5 57.2	20.8.2.2	888 905 955 755	814 868 924 743 833	77NO0	Q-BCRGR Q-BCRGR VP-LVOL & BCRGR VP-LVOL & BCRGR
830271 TADORNA/INIA 830272 NUDIF/INIA/ANZA 830273 GLENNSON M81 830274 W5706 830275 WS501	546 547 548 573 588	HRS HRS HRS HRS	57.7 58.6 60.0 65.6 65.1	59.4 60.0 59.9 63.2	23.7.7.5	675 730 840 878 925	780 817 834 872 807	V 2 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P-LVOL & BCRGR P-LVOL & BCRGR -FYELD & BCRGR -BCRGR -FYELD
830276 WS502 830277 WS503 830278 WPB7023 830279 WRP 9-15 830280 ANZA/4/ERA/TOB/LOVI 11/3/MN6916	589 590 592 593 595	HRS HRS HRS HRS	59.2 64.0 62.5 63.2 58.3	59.6 63.5 64.2 59.8	23.54	845 913 810 805 620	870 882 866 867 713	80080	P-FYELD & BCRGR P-FYELD & BCRGR P-BCRGR VP-LVOL & BCRGR
830281 SGW 010C 830282 NK2940	598 599	HWS	62.5	61.1	4.0	855	846	ж Ф	-FYELD

COMMENTS: Klasic did not perform as expected in baking. Most of these selections are unsatisfactory in overall quality. See REMARKS for deficiencies.

VP = Very Poor; P = Poor; Q = Questionable

Sidemoisses O Carry - A Choose Assessment

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	on .	UCD REGIONAL WHEAT	L WHEAT						PAGE 1
NURSCO 9		DAVIS,	CA					L.F. JA	JACKSON
LABNUM VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
830283 ANZA (C1015284) 830284 YECORA ROJO 830285 PHOENIX 830286 YOLO 830287 PROBRAND 771	20 112 221 353 412	HRS HRW HRS HRS	63.59 63.59 63.50 59.50	73.7 71.8 72.6 73.5	0.39 0.40 0.40 0.40	89.1 86.5 87.3 87.6	9.01 9.09 7.09 7.01	57.5 59.7 58.3 57.2	22 833 72 833 72 833 72 833 72 833 72 833 72 833 72 833 72 833 72 833 72 833 72 833 72 833 72 834 834 834 834 834 834 834 834 834 834
830288 KLASIC 830289 OSLO 830290 GENERO F81 830291 BC60-C113232/166//ANZA 830292 WESTBRED 911	415 436 491 497 521	HWS HRS HRS HRS	63.6 61.0 63.3 64.5 62.8	72.9 72.6 69.2 73.2 69.5	0.37 0.37 0.40 0.35 0.43	89.0 89.1 83.7 90.6	1.01	57.7 59.6 58.1 57.0	72547 72547
830293 NK2437 830294 NK3940 830295 NK4236 830296 TADORNA/INIA 830297 TADORNA/INIA	0/5336 0/5337 0/5338 0/544 0/545	HRS HRS HRS SRS SRS	62.9 62.3 57.5 61.5	71.3	0.39 0.40 0.43 0.40 0.39	86.4 86.3 84.1 85.8	200000	58.4 62.2 56.7 53.1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
830298 TADORNA/INIA 830299 NUDIF/INIA/ANZA 830300 GLENNSON M81 830301 URES T81 830302 BC60/CALIDAD//ANZA	544 544 5548 552	H H H H K S S S S S S S S S S S S S S S	61.6 62.5 63.7 63.3 55.8	71.4 73.1 70.5 68.8 64.6	0.40 0.38 0.46 0.43 0.39	86.0 89.1 82.1 79.7	9.8 10.01 10.00 10.00	56.6 57.0 54.5	3 3 3 3 4 4 t
830303 W5706 830304 W5501 830305 W5502 830306 W5503 830307 WPB7023	5/573 5/588 5/590 5/590	HRS HRS HRS HRS	623.3 63.3 559.9 55.0	71.7 72.2 71.4 73.5 65.8	0.39 0.39 0.42 0.37 0.47	87.0 87.5 85.0 89.8	10.3	60.1 63.3 61.5 59.8	5 H H M M H M M M M M M M M M M M M M M
830308 WRP 9-15 830309 ERA/PITIC 62 830310 ANZA/4/ERA/TOB/LOVI 11/3/MN6916 830311 SGW 010C 830312 NK2940	2002 2004 2004 2002 2002 2003 2003 2003	HRS HRS HWS HRS	59.9 63.8 62.8 61.9	67.8 72.7 71.0 68.5 68.7	0.45 0.37 0.39 0.42	79.6 88.8 86.3 81.8	7.000 7.000	560.2 58.1 56.7 60.5	80 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5/ Particularly Promising Overall Quality Characteristics, 6/ Promising Overall Quality Characteristics. 1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.

		A TOP OF THE PROPERTY OF THE P

L.F. JACKSON	BCRGR RMKS	6 Q-BCRGR	2 2 9 P-FYELD, LVOL, BCRGR 8 P-MTIME, LVOL, BCRGR 4 P-FYELD, MTIME, BCRGR	2 2 2 6 P-BCRGR 2 (soft texture)	4 Q-BCRGR 6 P-BCRGR 4 Q-FYELD&BCRGR 8 P-FYELD,LVOL&BCRGR 2 VP-MILLING(FYELD)	2 2 2 2 2 2 VP-MILLING(FYELD)	2 P-MILLING(FYELD) 6 P-MTIME&BCRGR 6 P-MTIME&BCRGR 2 P-FYELD 2 P-FYELD
	LVOLC 4/	922 919 924 992 1004	1019 970 841 879 880	916 912 1010 912 970	937 904 881 770 906	926 950 1024 985 934	974 900 918 875 1048
	LVOL	885 975 893 955 1035	1025 1100 785 885 868	935 980 1035 900 940	925 910 875 770 925	945 1080 1030 1035 990	955 850 875 925 1005
	MTIME	52.71	4-13.t-1 5.000.5 5.000.5	4.53.0 6.00 7.00	23.37.20	3.7.5.84	53.33
	BABSC 3/	58.7 59.4 59.9 59.9	60.9 60.8 61.3 58.2 68.0	61.6 60.6 65.4 58.9 55.3	57.8 59.1 61.7 61.2 56.7	62.3 66.5 60.9 63.7	64.4 58.0 60.3 58.9 64.7
4	BABS	58.3 64.3 57.9 60.4	61.0 62.9 60.4 58.3 67.8	61.9 65.7 58.7 54.8	57.6 59.2 61.6 61.2 57.0	62.6 68.6 61.0 64.5 65.9	64.1 57.2 59.6 59.7 64.0
DAVIS, CA	CLASS	HRS HWW HRS HRS	HRSS HRSS HRSS	HRS HRS HRS SRS	HRS HRS HRS HRS	HRRS RRS RRS RS RS RS	HRS HRS HWS HRS
	IDNO	20 112 252 353 412	415 436 491 521	536 537 544 545	546 547 548 549 552	573 588 590 592	593 594 595 598 599
NURSCO 9	LABNUM	830283 ANZA (CI015284) 830284 YECORA ROJO 830285 PHOENIX 830286 YOLO 830287 PROBRAND 771	830288 KLASIC 830289 OSLO 830290 GENERO F81 830291 BC60-C113232/166//ANZA 830292 WESTBRED 911	830293 NK2437 830294 NK3940 830295 NK4236 830296 TADORNA/INIA 830297 TADORNA/INIA	830298 TADORNA/INIA 830299 NUDIF/INIA/ANZA 830300 GLENNSON M81 830301 URES T81 830302 BC60/CALIDAD//ANZA	830303 W5706 830304 W5501 830305 W5502 830306 W5503 830307 WPB7023	830308 WRP 9-15 830309 ERA/PITIC 62 830310 ANZA/4/ERA/TOB/LOV! 11/3/MN6916 830311 SGW 010C 830312 NK2940

COMMENTS: The selections with acceptable overall milling an baking quality are noted with footnotes in the table. See "REMARKS" for the specific quality deficiencies of the others.

P = Poor; VP = Very Poor; Q = Questionable

ETTER TOTAL TOTAL STEET FAMILY

godie igher broke break force grow

The above as a super recent hashes

\$200 by the same of the same o

191 - 1942 1988 | Sin 1 2274 | G-197

le s de f e facilité fonde

December 12, 1990

Agricultural Research Service Pacific West Area

Western Wheat Quality Lab Wilson 7, WSU Pullman, WA 99164-4004 (509) 335-4062

SUBJECT:

1989 Crop Report

FROM:

Craig F. Morris, Director, WWQL

Please find enclosed the 1989 crop quality data from the Western Region cooperating breeding programs. For economy, the introductory section has been omitted; it is the same as in the 1988 Crop Report. If you need additional information please let me know.

Wastern Word Productions
Where I IV 90
Pinyo a Die 20100-e00

the 1989 archigudate from the Western Bagina and archigunation of the section of

DELTA REGIONAL WHEAT

NURSCO 10	SAN	JOAQUIN	DELTA CA			•		L.F. JAC	JACKSON
LABNUM	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
830313 ANZA (CI015284) 830314 YECORA ROJO 830315 PHOENIX 830316 YOLO 830317 PROBRAND 771	20 112 221 353 412	HHWW SS S	64.4 63.5 62.4 61.2	72.5	0.39 0.38 0.40 0.40	888 888.0 96.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	10.7 13.0 10.9 13.1	57.2 61.7 58.5 59.4	4 H H H H H H H H
830318 KLASIC 830319 OSLO 830320 GENERO F81 830321 BC60-C113232/166//ANZA 830322 WESTBRED 911	415 436 491 497 521	H H H H K S S S S S S S S S S S S S S S	63.9 63.0 61.8 64.7 62.3	72.5 72.1 69.6 70.9 68.8	0.35 0.34 0.37 0.35 0.38	889.7 885.5 84.1	12.8 13.3 12.7 12.4	60.8 64.4 56.5 59.0 62.0	5H 2H 4H
830323 NK2437 830324 NK3940 830325 NK4236 830326 TADORNA/INIA 830327 TADORNA/INIA	5/536 5/537 6/538 6/544 6/545	HRS HRS HRS SRS SRS SRS	63.5 63.8 57.8 63.8 64.4	71.9 72.7 69.2 71.8	0.36 0.39 0.42 0.36 0.36	888.44 882.5 89.55 69.68	12.9 13.2 11.8	63.1 62.8 66.0 57.5 54.7	4H 4H 1H 2H
830328 TADORNA/INIA 830329 NUDIF/INIA/ANZA 830330 GLENNSON M81 830331 URES T81 830332 BC60/CALIDAD//ANZA	546 547 548 549 552	HRS HRS HRS S RRS S RRS	64.3 62.5 62.7 62.5 57.0	71.5 72.1 69.8 70.1	0.35 0.38 0.42 0.40 0.39	88.6 88.0 83.2 84.8	12.5 12.5 12.5 12.5 12.5 13.5	55.8 57.8 60.5 60.2 55.7	3H 3H 2H
830333 W5706 830334 W5501 830335 W5502 830336 W5503 830337 WPB7023	5/573 5/588 5/590 6/590	H H H H H K S S S S S S S S S S S S S S	63.4 63.1 63.2 62.7 60.6	72.5 71.5 71.5 73.1	0.40 0.38 0.37 0.39 0.40	87.4 87.2 887.9 88.5 84.6	12.1 13.4 13.9 12.3	63.3 64.3 64.8 64.8	2H 1H 5H
830338 WRP 9-15 830339 ERA/PITIC 62 830340 ANZA/4/ERA/TOB/LOVI 11/3/MN6916 830341 SGW 010C 830342 NK2940	6/593 594 594 595 6/598	HRS HRS HWS HRS	61.8 63.9 63.4 62.8	70.3 72.5 69.1 71.0	0.42 0.40 0.40 0.41	84.0 87.4 83.6 85.1	10.6	62.4 59.1 58.6 62.3 62.9	54 54 54 54 54 54 54 54 54 54 54 54 54 5
1/ Observed Values Corrected to 14% Moisture	Bacic A/ Da	0	0		3				

 $\underline{6}/$ Particularly Promising Overall Quality Characteristics, $\underline{5}/$ Promising Overall Quality Characteristics. 1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 12% Protein. 4/ Observed Values Corrected to 12% Protein.

		300-		
			massa	

ANZA (C1015284) YECORA ROJO	SAN	JOAQUIN	DELTA CA					L.F. JACKSON	SON
1	ONGI	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	RMKS
830315 PHOENIX 830316 YOLO 830317 PROBRAND 771	20 112 221 353 412	HRS HRS HRS	57.1 66.9 58.0 59.0 66.0	58.4 65.9 59.7 60.1	3.17.53.00	875 1075 910 1005 1120	956 1013 1015 1073	NNQN0	
830318 KLASIC 830319 OSLO 830320 GENERO F81 830321 BC60-C113232/166//ANZA 830322 WESTBRED 911	415 436 491 497 521	HWS HRS HRS HRS	64.8 66.4 61.1 65.5	64.0 65.1 60.7 66.2	3 - 1 3 - 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1110 1135 915 930 950	1060 1054 872 905	22 22 22 22 22 22 22 22 22 22 22 22 22	P-FYELD P-MTIME&BCRGR P-FYELD
830323 NK2437 830324 NK3940 830325 NK4236 830326 TADORNA/INIA 830327 TADORNA/INIA	536 537 538 544 545	HRS HRS HRS SRS	67.9 65.9 70.4 58.5 56.3	67.3 65.0 69.2 58.7	49.80.11	1070 1105 1105 855 970	1033 1049 1031 867	39988 39988 3998	-FYELD -MTIME,LVOL&BCRGR -TEXTURE(soft)
830328 TADORNA/INIA 830329 NUDIF/INIA/ANZA 830330 GLENNSON M81 830331 URES T81 830332 BC60/CALIDAD//ANZA	546 547 548 549	HRS HRS HRS SRS SRS	58.0 60.5 64.1 64.0 59.4	58.0 60.0 63.7 63.4 58.9	25.00	835 975 1020 915 1015	835 944 995 878 984	9 P P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9	P-MTIME, LVOL&BCRGR P-MTIME, BCRGR Q-FYELD&BCRGR + P-MTIME, LVOL&BCRGR 2 VP-MILLING(FYELD)
830333 W5706 830334 WS501 830335 WS502 830336 WS503 830337 WPB7023	573 588 589 590 592	HARS HARS HARS	67.6 67.9 60.4 67.3 67.8	67.5 66.5 66.5 66.0	3.5 1.1 2.1 4.0	1025 1165 960 1135 1090	1019 1078 966 1054	00400 F	-MIME,Q-BCRGR
830338 WRP 9-15 830339 ERA/PITIC 62 830340 ANZA/4/ERA/TOB/LOVI 11/3/MN6916 830341 SGW 010C 830342 NK2940	593 594 595 598 599	HRS HRS HWS HWS	66.5 59.9 59.6 67.0 69.2	66.6 61.3 60.8 66.5 68.1	3.7 1.88 4.7.3	1060 875 875 1010 11110	1066 962 949 979 1042	0 0 0 0 1 N N N N N N N N N N N N N N N	-MTIME&BCRGR -MTIME&BCRGR

COMMENTS: The selections with acceptable overall milling and baking quality are noted with footnotes in the table. See "REMARKS" for the specific quality deficiencies of the others.

VP = Very Poor; P = Poor; Q = Questionable

-/-B			

S. PETTYGROVE

CA

WESTSIDE STA. UC,

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 11

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC	MTYPE
						1/		-1	3/	
8303443 YECORA ROJO 830344 YECORA ROJO 830345 YECORA ROJO 830346 YOLO 830347 YOLO		6/2(11, T0) 6/3(11, T1) 4(11, T2) 5(11, T1)	HRS HRS HRS HRS	65.0 64.5 63.4 62.4	70.9 71.3 71.0 73.7	0.44 0.41 0.38 0.36	883.6 86.9 88.4 90.4	80 47 8 7.8.7.8.	59.7 60.0 58.2 56.5	8L 8M 57H 3.L
830348 YOLO 830349 PROBRAND 771 830350 PROBRAND 771 830351 PROBRAND 771 830352 YECORA ROJO		6(11, T2) 7(11, T0) 8(11, T1) 9(11, T2) 10(12, T0)	HRS HRS HRS HRS	63.8 62.9 60.6 61.9 64.8	73.7 70.8 70.1 73.0 69.7	0.35 0.35 0.37 0.33 0.44	90.8 87.4 86.5 91.6 82.4	10.2 8.0 11.2 8.8	92.02.6	33M 88L 73M 8L
830353 YECORA ROJO 830354 YECORA ROJO 830355 YOLO 830356 YOLO 830357 YOLO		6/12(12, 71) 6/12(12, 72) 13(12, 72) 14(12, 71) 6/15(12, 72)	HRS HRS HRS HRS	64.7 63.8 62.7 62.7	70.0 69.6 72.4 73.3	0.40 0.37 0.37 0.37	84.6 86.0 88.9 89.2 89.7	12.0 7.9 10.4	58.6 59.1 55.3 55.1	33 3 X X X X X X X X X X X X X X X X X
830358 PROBRAND 771 830350 PROBRAND 771 830360 PROBRAND 771 830361 YECORA ROJO 830362 YECORA ROJO		16(12, T0) 6/17(12, T1) 5/18(12, T2) 19(13, T0) 20(13, T1)	HRS HRS HRS HRS	62.3 62.7 61.4 65.1 64.9	69.5 70.7 70.9 69.7	0.37 0.36 0.34 0.41	887.5 883.8 86.2	2.6 1.6 7.0 7.0 7.0	56.7 57.3 59.3 59.6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
830363 YECORA ROJO 830364 YOLO 830365 YOLO 830366 YOLO 830367 PROBRAND 771		6/21(13, T2) 22(13, T0) 23(13, T1) 24(13, T2) 25(13, T0)	HRS HRS HRS HRS	64.6 62.9 63.4 63.9	72.5 72.5 73.5 74.2	0.37 0.36 0.36 0.36	888.9 900.1 91.1 86.9	11 00000 0.0004	5555 5555 5555 5555 5555 5555 5555 5555 5555	5H 22L 33L 81 81
830368 PROBRAND 771 830369 PROBRAND 771 830370 YECORA ROJO 830371 YECORA ROJO		26(13, T1) 6/27(13, T2) 6/28(11, T1) 6/39(11, T1) 6/30(11, T1)	HRS HRS HRS HRS	62.4 62.0 64.5 64.5 64.5	71.2 72.1 72.1 72.1 71.8 71.1	0.35 0.33 0.37 0.40	88.7 90.4 88.4 87.6 86.0	9.3	56.7 56.9 60.1 59.0 60.3	87 66 64 64 64

 $\frac{1}{2}$ Observed Values Corrected to 14% Moisture Basis. $\frac{5}{2}$ Particularly Promising Overall Quality Characteristics. $\frac{3}{4}$ Absorption at 14% Moisture Corrected to 10% Protein. $\frac{6}{2}$ Promising Overall Quality Characteristics. $\frac{4}{4}$ Observed Values Corrected to 10% Protein.

- 1.40 GODES - 00-5 PORTS - 00-00 PORTS - 00-000 PORTS - 00-00 PORTS - 00-000 PORTS - 00-00 PORTS -

THE THE SERVE OF THE BUTCH THE WEST

京都 加州 山州市

entrollment in the major

A STORY

The till players of the terms of the plates of the same and the same of the sa

GE
10
$\overline{}$
ĕ
a
1
Andres
_
_
Z
_
\circ
~
\circ
00
0
0

USDA, SEA AR WESTERN WHEAT QUALITY LAB PULLMAN, WA.	LAB.	FERTILIZAT	ZATION X	IRRIGATION	z				CONTD. PAGE 1
NURSCO 11		WEST	WESTSIDE STA.	UC, CA					S. PETTYGROVE
LABNUM	VARIETY	IDNO	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR RMKS
830344 YECORA ROJO 830344 YECORA ROJO 830345 YECORA ROJO 830346 YOLO 830347 YOLO		2(11, T0) 2(11, T1) 3(11, T2) 4(11, T0) 5(11, T1)	HRS HRS HRS HRS	62.4 63.9 54.0	63.9 63.7 61.4 57.2 55.9	7.1 6.7 2.2 2.2	805 890 1015 730 850	898 902 860 928	4 Q-BCRGR 2 VP-MTIME&BCRGR 9 VP-MTIME&BCRGR
830349 YOLO 830349 PROBRAND 771 830350 PROBRAND 771 830351 PROBRAND 771 830352 YECORA ROJO		6(11, 72) 7(11, 70) 8(11, 71) 9(11, 72) 10(12, 70)	HRS HRS HRS HRS	56.6 57.4 59.2 63.9	59.4 59.4 58.0 65.1	6.79	955 855 930 1025 825	943 979 955 951 899	9 VP-MTIME&BCRGR 6 P-BCRGR 6 P-BCRGR 4 P-BCRGR 5 P-BCRGR
830353 YECORA ROJO 830354 YECORA ROJO 830355 YOLO 830356 YOLO 830357 YOLO		11(12, T1) 12(12, T2) 13(12, T0) 14(12, T1) 15(12, T2)	HRS HRS HRS HRS	62.7 65.3 54.4 56.0	62.8 63.3 56.5 57.0 57.3	30000	890 990 775 925 1020	896 866 905 987	2 2 VP-BCRGR 4 P-MTIME&BCRGR 2 ATYPICAL BAKING/YOLO
830358 PROBRAND 771 830359 PROBRAND 771 830360 PROBRAND 771 830361 YECORA ROJO 830362 YECORA ROJO		16(12, T0) 17(12, T1) 18(12, T2) 19(13, T0) 20(13, T1)	HRS HRS HRS HRS	58.6 59.7 62.1 63.2 64.5	59.4 60.6 64.5 64.8	で で で で で り り り り り り り り り り り	880 910 1035 800 840	930 966 936 881 859	6 P-BCRGR 2 2 6 P-BCRGR 4 P-BCRGR
830363 YECORA ROJO 830364 YOLO 830365 YOLO 830366 YOLO 830367 PROBRAND 771		21(13, T2) 22(13, T0) 23(13, T1) 24(13, T2) 25(13, T0)	HRS HRS HRS	63.9 54.6 56.0 57.0	62.4 57.7 57.7 57.1 61.3	500-130	985 710 860 950 915	892 902 965 956 1014	2 P-MTIME, LVOL&BCRGR 6 P-MTIME&BCRGR 6 P-MTIME&BCRGR 9 P-BCRGR
830368 PROBRAND 771 830369 PROBRAND 771 830370 YECORA ROJO 830371 YECORA ROJO		26(13,11) 27(13,12) 28(11,11) 29(11,11) 30(11,11)	HRS HRS HRS HRS	61.2 62.5 65.9 64.7 65.2	61.9 61.1 64.3 63.2 64.5	5.77 6.00 4.74	925 1030 1000 965 970	968 943 901 872 927	6 P-BCRGR 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

See the footnotes for those entries that have good overall quality. Id. No. 15 has baking properties atypical of Yolo, with the exception of water absorption. See "REMARKS" for specific deficiencies of other entries. COMMENTS:

Q = Questionable; VP = Very Poor; P = Poor

ETERSON	RMKS		Q-MS00R	Q-CODI Q-CODI Q-FYELD Q-FYELD&MSCOR	o-copi			P-FYELD&CODI P-FYELD&MSCOR Q-MSCOR
C.J. P	CODIC	8.46 9.18 9.06 9.13 8.93	9.12	9.02 8.75 8.73 9.24	8.80 9.34 8.96 9.03	8.78 9.17 9.05 9.20	9.07 8.92 9.34 9.47	88.83 88.52 98.66 9.25 6
	MTYPE CODI	8.39 9.22 9.10 9.10	9.15 9.24 9.34 9.52	8.95 8.79 8.65 9.30	8.79 9.37 8.99 9.10	8.89 9.29 9.09 9.31	9.12 8.97 9.29 9.46	8.95 8.66 8.85 9.26
	MABSC MT	59.1 4M 55.4 3M 54.8 3M 55.6 2M 56.0 5M	53.6 2L 54.6 2M 55.2 4M 55.8 3M 56.0 2M	57.4 3M 55.9 4L 58.6 2M 56.4 2L 58.6 4M	58.9 6M 50.2 3M 55.9 3L 56.4 2M	55.6 3L 57.1 3L 51.7 1L 53.4 2L 54.2 2L	54.6 3L 52.5 1M 57.1 3M 55.0 2M 55.3 2M	53.1 1L 58.8 4M 53.4 4L 56.2 4L 54.1 2M
	FPROT 1/	7.50	177.18 100.88	8.6 7.7 7.5 7.8	8.1 7.7 7.8 7.4 9.2	7.0	88877	0.888.0
	MSCOR	87.2 88.8 90.4 86.1	89.9 91.4 87.8 92.9 84.6	887.0 886.4 888.5 86.5	90.8 89.3 87.3 89.8	87.6 88.8 84.4 92.6	90.4 88.1 88.8 87.7 86.4	88.7 88.5 78.8 81.6 83.8
	FASH 1/	0.41 0.34 0.35 0.40 0.36	0.35 0.35 0.38 0.37 0.42	0.38 0.39 0.42 0.31	0.38 0.34 0.36 0.38 0.38	0.38 0.35 0.39 0.34 0.38	0.37 0.39 0.37 0.40 0.40	0.41 0.38 0.41 0.39 0.40
	FYELD	72.2 70.4 71.8 71.2	71.6 72.8 71.2 74.7 71.0	70.5 70.9 73.8 68.8 70.0	73.9 70.5 70.0 72.9 70.8	71.1 70.5 69.4 73.1 73.4	73.1 72.4 71.8 72.2 71.3	73.4 71.8 65.8 67.1
, WA	TWT	61.8 62.2 61.6 59.0 60.9	61.5 60.2 62.1 60.8 62.9	62.8 62.0 61.8 63.7 62.7	65.0 61.9 63.0 62.0 61.0	61.6 63.1 60.9 60.8 61.5	60.3 61.7 60.3 62.3 59.8	62.1 65.0 58.6 58.4
POMEROY,	CLASS	HRW SWW SWW SWW SWW	MMS MMS MMS MMS	MMS MMS MMS	MMS MMS MMS	SWW CLUB CLUB CLUB CLUB	CLUB SWW SWW CLUB	MMS MMS MMS MMS
	1 DNO	C1001442 6/0R007794 5/0R00797 6/0RCW8110	5/ ORCP0004 5/ OR000835 6/ OR007996 5/ WA006813 6/ WA006915	6/ WA006819 WA006696 WA006910 6/ WA006911	6/ WA006914 6/ WA007047 C1013968 0R068007 C1017569	C1017419 C1017909 C1017417 C1017590 C1017951	C1017773 6/ WA006698 6/ WA007050 2/ OR007792 2/ C1013740	C1011755 C1017962 1D745318 0R008188 0R007956
	VARIETY							
NURSCO 12	LABNUM	830373 KHARKOF 830374 830375 830376 830377	830378 830379 830380 830381 830382	830384 830384 830385 830386	830389 830390 NUGAINES 830391 830392	830393 DAWS 830394 LEWJAIN 830395 BARBEE 830396 FARO 830397 CREW	830398 TYEE 830399 830400 830401 830402 MORO	830403 ELGIN 830404 PHOENIX 830405 830406 830407

 $[\]underline{1}/$ Observed Values Corrected to 14% Moisture Basis. $\underline{3}/$ Absorption at 14% Moisture Corrected to 8% Protein. $\underline{4}/$ Observed Values Corrected to 8% Protein.

 $[\]overline{5}/$ Particularly Promising Overall Quality Characteristics. $\underline{6}/$ Promising Overall Quality Characteristics.

-	
4	2
TOLAL	
_	
C	
_	
-	ī
	ä
<u></u>	
_	
	ī
Щ	H
-	
14	4
- 1	
_	
7	
-	
3	
Z	
SOFT WE	
SOFT	-
	-
SOFT	-

NURSCO 12			POMEROY,	', WA							C .I PETERSON
LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	LL	MSCOR	FPROT	A A	PE CODI	1000
						-1		-	2		4/
830408 830409 830410 830411		VD081002 5/VD081108 6/WA006581 5/VD078181	MMS MMS MMS	63.0 63.0 62.2	68.5 72.4 72.2	0.38	84.3 89.6 87.3	9.7	51.9 1M 51.4 3M 52.9 2M 50.8 2L	9.36	9.55 P-FYELD 9.17 9.12
830413 830414 830415 830416		VH079309 VH078119 6/VJ079132 6/VH079085 VH075298	MMS MMS MMS	· - 50000	9 -80.81	w 4 w w w	0.000		4.7 3	L L 4000	10 2-00
830418		VH080833	SWW	٦ -		٠, د	7 0		3.6 4	.2	. 29
		C1014586 VH076279 6/VH081371 5/VH080752	MMS MMS MMS	62.8 61.3 62.0	68.0 67.7 70.9 72.5	0.34 0.37 0.39 0.36	887.0 86.8 90.8	0.889	55.4 4M 55.0 4L 53.8 4L 52.0 4L	8.69 9.04 9.25	8.80 VP-MILLING 9.05 Q-MILLING 9.37 P-MILLING 9.04
830423 830424 830425 830426 830427		<u>6</u> /∨H080390 ∨H081496 <u>5</u> /∨H080368 <u>6</u> /∨H080505 ∨M801041	MMS MMS MMS	62.3 63.5 65.0 62.7	71.0 66.1 72.6 69.1	89870	L0010-	08/21	7000	0 7-01	.80 .39 P
830428 830429 830430 830431 830432		6/VH081054 VJ081146 6/VH080487 VH081535 6/VJ080172	MMS MMS MMS MMS	62.2 60.0 61.8 58.5	8-12-0	37 41 40 40	20000	±0000+	33.7	00000	0000
830433 830434 830435 830435		VH080214 5/VD082007 VD082010 6/VD082011 VC082154			00000	3888.39	0 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	-0040	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0404	10 70 70 80 80 80 80 80 80 80 80 80 80 80 80 80
830438 830439 830440 830441 830442		6/VD082162 VJ082023 6/VJ082027 VJ082029 VJ082029	SWW SWW	60.8 62.4 63.5	69.6 0 67.5 0 70.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38 88 37 8 37 8 37 8 37 8	03.038	000000	200.4 200.4 200.4 200.4 200.4 200.4	-0000	とちょうこ ち

_	
<	1
d L	_
-	
	1
ū	
>	
4	_
~	-
3	7 7 3
 -	
SOFT	
S.)
>	
ć)
L	į
POMFROY	
<u>P</u>	

PETERSON	RMKS		Q-00DI	VP-MILLING		P-MILLING&CODI	FYELD FYELD CODI	-cobi	-MILLING&CODI
C.J. F	CODIC	4	9.20 9.38 9.47	18 18 19 01	9.04 9.00 9.25 8.98 9.19	9.01 9.32 9.18 8.56 F	9.03 9.15 8.79 9.75 8.52 9.75	88.886 9.30 9.30 9.30	9.17 9.69 P 9.15 8.93 P
	PE CODI		8.81 9.42 9.39 9.54	9.36 8.91 9.20 9.39	9.11 9.32 9.21 9.32	9.16 9.49 9.35 8.89	9.10 9.22 8.99 8.56	8.86 8.47 8.67 9.34	9.20 8.64 9.09 8.45 8.97
	MABSC MTYPE	2	54.2 5L 54.9 2L 52.6 2M 50.5 1L 53.2 3L	54.0 3L 53.5 6L 54.1 3L 54.9 3L	54.7 5L 54.1 2L 53.2 2M 56.1 4L 53.5 3L	54.3 2L 53.9 5L 54.8 3L 55.6 6M 54.0 2M	52.6 2L 55.0 3L 56.1 3L 54.7 3L 52.9 1M	54.0 2M 55.8 1M 54.5 2L 54.1 5L 56.6 3L	54.3 4L 54.3 4L 553.7 3L 56.3 4L 54.4 5L
	FPROT	-	6.00	6.4 7.5 6.2 5.9	6.93	88.55 88.37 88.33	7.4	6.77.8	78857
	MSCOR		89.4 91.1 89.3 90.5	87.7 81.2 86.7 87.7 85.8	87.4 86.4 88.3 90.2 89.5	87.3 89.2 86.4 83.4 88.5	84.2 84.4 89.7 86.5	88.1 88.3 84.7 85.1	86.0 79.0 87.0 77.0 81.8
	E	-	0.37 0.38 0.36 0.39	0.38 0.36 0.37 0.37 0.41	0.37 0.39 0.33 0.34 0.35	0.38 0.34 0.37 0.39 0.35	0.36 0.35 0.40 0.40	0.37 0.40 0.38 0.39 0.41	0.38 0.40 0.39 0.45 0.45
	FYELD		72.2 73.8 71.4 74.1 71.0	71.4 65.4 70.1 70.8	70.4 71.0 69.5 71.5	70.8 70.7 69.7 68.2 70.5	67.4 67.3 70.6 71.3 74.3	70.9 72.7 68.7 69.8 72.2	69.8 771.4 66.5 66.1
, WA	TWT		60.3 61.4 63.5 62.2 61.7	62.8 62.9 64.4 64.0 59.8	61.4 62.9 61.2 61.1	60.3 62.1 61.0 62.9 62.7	62.6 63.3 62.5 61.6 62.5	63.0 62.1 61.9 63.2 62.8	62.3 61.8 60.2 62.1
POMEROY,	CLASS		MMS MMS MMS	MMS MMS MMS MMS	MMS MMS MMS MMS	MMS MMS MMS MMS	MMS MMS MMS	SWW SWW SWW HRW	MMS MMS MMS
	ONGI		6/VJ082033 5/VJ082037 5/VJ082189 5/VJ082193 6/VJ082203	6/VJ082215 VH082053 6/VH082055 6/VH082061 6/VH082089	6/VH082123 6/VH082123 6/VH082124 6/VH082244 6/VH082252	6/VH082254 6/VH082257 6/VH082258 VH082271 6/VH082293	VH082296 VH082316 VH082366 VH082397 Z/VH082402	6/∨H082406 ∨M082430 ∨H082321 6/∨H082338 C1015922	6/VH082051 VH082047 6/VH079121 VM082760 VH080412
	VARIETY								
12								CERCO	
NURSCO	LABNUM		830443 830444 830445 830446 830447	830448 830449 830450 830451 830452	830453 830454 830455 830456 830457	830458 830459 830460 830461 830461	830463 830464 830465 830466 830466		830473 830474 830475 830476 830477

z			9	0000	ပ
C.J. PETERSON	CODIC RMKS	4/	8.99 Q-MILLING 8.80 9.08 9.05	9.05Q-MILLING 8.68P-MILLING 8.73P-MILLING 8.87Q-MILLING 9.06	9.08 9.01 8.89P-MILLING 9.33 8.81
	CODI		8.92 8.80 9.06 9.05		9.30 9.05 9.27 8.85
	MABSC MTYPE	3/	56.2 57.4 57.8 31. 55.2 57.2 57.2 57.2 57.2 57.2 57.2 57.	1200-	54.4 3L 55.0 5L 54.2 3L 54.4 3L 53.0 3L
	FPROT	1	88888		6.0 7.6 7.1 8.5 7.6
	MSCOR		884.2 887.3 86.13		90.4 87.4 83.7 85.9 88.7
	FASH		0.40 0.37 0.38 0.40		0.35 0.37 0.37 0.37
	FYELD FASH		69.6 71.8 71.1 71.5	69.0 66.0 67.8 69.6 70.9	72.0 70.8 67.2 69.6 71.4
WA.	TWT		62.9 62.6 61.5 61.2	61.6 63.0 62.0 62.5	62.6 61.1 63.7 60.1 62.2
POMEROY,	CLASS		MMS MMS MMS MMS	MMS MMS MMS MMS	MMS MMS MMS MMS
	OND		6/ VH081029 6/ VH081047 6/ VC081086 6/ VD081095 6/ VD081103	VD081110 VH081262 VH081398 6/ VH081479 6/ VH081482	6/ VM801034 6/ VJ076485 VH081496 6/ VJ080156 6/ VJ081009
	VARIETY				
NURSCO 12	LABNUM		830478 830479 830480 830481 830482	830483 830484 830485 830486 830487	830488 830489 830490 830491

flour properties. Several of the selections with stronger dough mixing properties were baked in bread test. Those with There are many promising selections among the entries in this yield trial. The following five however are outstanding: WA6813, VD82007, VJ82037, VJ82193, and VH82402. They reprent significant improvement in flour yield with good pastry asterisks appear to have some potential for bread baking and/or dual purpose properties. Q = Questionable; P = Poor; VP = Very Poor COMMENTS:

	BCRSC	9	4	9	4	_∞	4	5	5	9	9	∞	4	∞	9	9	6	9	4	9
	LVOL	805	870	770	828	770	815	850	825	750	840	670	825	029	700	735	009	750	800	770
MIX	TIME	3.2	3.2	3.1	2.7	3.5	2.7	2.0	2.6	7.7	3.6	4.2	3.6			5.5		4.2	4.3	4.2
BREAD DATA	BABS	64.2	58.2	60.2	57.7	62.7	60.2	59.7	58.2	62.2	62.2	58.0	57.0	61.0	56.0	55.0	61.2		61.7	60.2
BREA	IDNO	Kharkof	*0R007996	WA006696	*WA006912	WA006914	*WA007047	Nugaines	WA007050	Phoenix	VH080833	VH080390	*VJ082023	VJ082029	VJ082031	VH082244	Cerco	VM082760	*VH081029	VH081262
	LAB. NO.	83373	83380	83384	83387	2	83389	83390	83400	83404	83418	83423	83439	83441	83442	83456	83472	83476	83478	83484

* Some promise for bread baking quality.

USDA, SE, WESTERN ! PULLMAN,	USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		SNOW MOLD	ΓD							PAGE 1
NURSCO	14 C	MANS	MANSFIELD/PULLMAN	LLMAN WA					9	G.W. BRUEHL	±
LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	BABS
830521 830522 830523 830524 830524	1 SPRAGUE/LUKE//498MANSFIELD 2 P1173467/GNO-292-1//MORO 3 SPRAGUE/3/NORTENO YAMHILL//SPRAGUE 4 SPRAGUE/CAPPELLO F1//SPRAGUE 5 SPRAGUE/CAPPELLO F1//SPRAGUE	5/77-136 5/77-261 79-177 5/80-73	SWW CLUB HWW SWW SWW	61.6 60.0 63.0 61.3	74.5 76.8 71.6 72.4 73.0	0.35	91.0 95.3 88.7 90.2	55.7	52.4 52.3 57.0 51.7	22 22 22 22 22 22 22 22 22 22 22 22 22	
830526 830527 830528 830529 830530	6 SPRAGUE/CAPPELLO F1//SPRAGUE 7 SPRAGUE/CAPPELLO F1//SPRAGUE 8 CJP CLUB/SPRAGUE 9 DAWS 0 JACMAR	80-98 <u>6</u> /80-124 <u>6</u> /WA6819 C1017419 WA6585	SWW SWW SWW CLUB	61.6 61.7 60.4 62.1 59.6	70.3 72.9 72.0 74.1	0.39 0.38 0.34 0.40	85.9 89.9 90.9 89.7	00000	53.7 53.3 51.7	25 25 25 27	
830531 830532 830533 830534 830534	1 LEWJAIN 2 SPRAGUE 3 CJP CLUB/SPRAGUE 4 399-6/LUKE//498PULLMAN 5 CJP CLUB/SPRAGUE	C1017969 C1015376 77-289 <u>6</u> /77-136	SWW CLUB SWW SWW	62.6 62.0 56.8 58.0 61.2	74.1 74.4 69.7 73.0	0.37 0.38 0.52 0.44 0.41	91.9 91.5 76.9 86.0 88.6	0.50 7.77 9.90 9.90	53.3 49.2 49.3	211122	
830536 830537 830538 830539 830540	6 JACMAR 7 SPRAGUE/NORTENO YAMHILL//SPRAGUE 8 SPRAGUE/CAPPELLO//SPRAGUE 9 SPRAGUE/CAPPELLO//SPRAGUE 0 SPRAGUE/NORTENO YAMHILL//SPRAGUE	WA6585 79-177 80-98 80-115 2/80-168	CLUB HWW SWW SWW SWW	58.0 61.5 57.9 60.2 61.1	74.7 70.8 71.5 72.6 74.3	0.41 0.40 0.44 0.49 0.49	89.9 85.6 83.9 87.8	2888 2000 2000 2000	51.5 52.6 49.8 49.9 50.8	113 13 13 13 13 13 13 13 13 13 13 13 13	
830541 830542 830543 830544 830544	1 FR-20/77-291//77-294 2 127/236//236-7/STURDY 3 7437/MC//UT755204/3/237-3 4 236-7/STURDY//UT755204 5 GOLILS CROSS	BULK 77-99 77-233 80-1 COLILS	HWW HWW HRW HRW SRW	60.8 62.4 61.5 59.6	70.5 71.7 73.2 72.6 70.4	0.39 0.38 0.35 0.44 0.43	85.7 87.2 90.6 85.4 83.3	7.00 9.50 9.50 7.00	53.4 55.9 56.7 55.0	t t M M M M M M M M M M M M M M M M M M	60.3
830546	6 CARGILL		HRW	63.2	75.0	0.44	87.5	7.6	52.4	2M	57.3
1/ Obs	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 7% Protein.	s. tein.		5/ Par 6/ Pro	Particularly Promising Ove	Promi	Overall ty Chara	Quality C	Characteristics.	stics.	

 $[\]underline{3}/$ Absorption at 14% Moisture Corrected to 7% Protein. $\underline{4}/$ Observed Values Corrected to 7% Protein.

NURSCO 14

MANSFIELD/PULLMAN WA

CONTD. PAGE

G.W. BRUEHL

LABNUM	VARIETY	ONGI	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC RMKS	
830521 830522 830523 830524 830524	SPRAGUE/LUKE//498MANSFIELD P1173467/GNO-292-1//MORO SPRAGUE/3/NORTENO YAMHILL//SPRAGUE SPRAGUE/CAPPELLO F1//SPRAGUE SPRAGUE/CAPPELLO F1//SPRAGUE	77-136 77-261 79-177 80-73 80-83	SWW CLUB HWW SWW SWW						9.56 9.55 8.64 9.14	9.46 9.46 8.57 Short mixing-Low COD 9.10 9.29Q-FYELD	.ng-Low COD
830526 830527 830528 830529 830530	SPRAGUE/CAPPELLO F1//SPRAGUE SPRAGUE/CAPPELLO F1//SPRAGUE CJP CLUB/SPRAGUE DAWS JACMAR	80-98 80-124 WA6819 C1017419 WA6585	SWW SWW SWW SWW CLUB						9.17 9.12 9.11 8.95 9.90	9.08 9.04 9.01 8.82	
830531 830532 830533 830534 830534	LEWJAIN SPRAGUE CJP CLUB/SPRAGUE 399-6/LUKE//498PULLMAN CJP CLUB/SPRAGUE	C1017909 C1015376 77-289 77-136 77-287	SWW SWW CLUB SWW SWW						9.47 9.14 9.06 9.45	9.36 9.06 9.11P-MILLING 9.55Q-MILLING	
830536 830537 830538 830539 830540	JACMAR SPRAGUE/NORTENO YAMHILL//SPRAGUE SPRAGUE/CAPPELLO//SPRAGUE SPRAGUE/CAPPELLO//SPRAGUE SPRAGUE/NORTENO YAMHILL//SPRAGUE	WA6585 79-177 80-98 80-115 80-168	CLUB HWW SWW SWW SWW						9.37 8.49 9.11 9.04 9.34	9.43 8.61Short mix-L-CODI 9.28Low MSCOR 9.25Low MSCOR	cob1
830541 830542 830543 830543 830544	FR-20/77-291//77-294 127/236//236-7/STURDY 7437/MC//UT755204/3/237-3 236-7/STURDY//UT755204 GOLILS CROSS	BULK 77-99 77-233 80-1 60L1LS	HWW HWW HRW HRW SRW	58.1 58.4	4.7	730	594	∞ ∞	8.61 8.31 8.46 8.60 8.69	8.67Short mix -Low C 8.49L-LVOL & BCRGR 8.66L-LVOL & BCRGR 8.75 8.98L-FYELD & MSCOR	-Low CODI CRGR CRGR
830546	830546 CARGILL		HRW	54.6	2.1	855	688	9	8.75	8.97	

Several of the soft white and the club selection (77-261) are promising in overall quality characteristics. Selections 79-177, the bulk of FR-20/77-291//77-294, and 77-99 are hard textured white wheats and 77-233 and 80-1 are hard red winters. Protein content was too low for meaningful bread baking tests of the hard wheats. COMMENTS:

Q = Questionable; l = Low; P = Poor

SALL CONTRACTOR

~		
	À	
7		

	\$ £ 1		
	200 CO		
	- 沈陽- 6		
		10.10.10	
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		
	00000000000000000000000000000000000000		
1, 1 m to 1 sept			
28 - 7 - 7 - 100 -			

NURSCO 15

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FYELD FASH	1	FPROT	MSCOR FPROT MABSC MTYPE CODI	E C0D1		CODIC RMKS
830547 NUGAINES		C1013968	SWW	59.1			85.4	5.7	-	9.56	9.11	
830548 DAWS		C1017419	SWW	59.7	72.2		86.7	0.9	53.4 1L	9.21	9.10	
		C1017569	SWW	58.7			89.3	0.9	~	9.37	9.56	
		105318	SWW	60.09			82.3	6.1	2	9.00	8.90	-Ö-MILLING
830551		1080-1239	HMH	62.6	69.1	0.41	83.2	7.2	58.2 2L	8.36	8.38	Hard - P-MILLING
												COOKIE
830552		1080-994	SWW	61.5	70.0	0.45	81.9	7.4	5	8.81	8.86	O-MILLING
830553		7,1080-855	TWI I	62.3	68.4	0.43	81.3	6.5	0	8.66	8.62	H-P-MILL & COOKIE
830554		2/1080-628	SWW	58.6	71.7	0.39	87.7	6.1	52.5 2L	9.35	9.25	
830555		1,1080-270	HRW	62.4	70.2	0.40	85.0	7.9	9	8.40	8.47	L-ABS. Short Mixo
830556		6/1080-038	SRW	62.5	71.2	0.35	89.5	8.0	2	9.00	9.11	Soft - Short Mixo

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics. Absorption at 14% Moisture Corrected to 7% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 7% Protein. Selections ID5318 and ID80-994 have fair baking properties but are questionable in milling characteristics. suited for bread making, as both are low in absorption and short in dough mixing properties. ID80-038 selections were also low in flour yield, particularly for hard wheats. Neither of the two red wheats ID80-1239 and 80-855 have hard endosperm, which was reflected in small cookie diameters. These two is soft and does have good overall soft wheat quality. COMMENTS:

Q = Questionable; H = Hard; P = Poor; L = Low

13		

	MTYPE							
QUALSET	Σ	NE STATE OF THE ST	22H 472H 472H	30000 30000 30000	MAMMA AAAMA	37000 31000	88 68 7 3 3 4 3 4 5 8 7	######################################
c.o. qu	MABSC 3/	58.6 59.6 59.9 58.7	59.3 61.3 61.6	59.1 60.8 57.3 62.4 58.7	59.6 60.5 62.8 60.5	58.4 58.7 58.8 58.8	59.0 60.0 58.6 57.7	58.00
	FPROT 1/	9.0 10.1 10.1 9.9	-00000 -00000	40.800	80889 7.8.7.6.	88808	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	9.2
	MSCOR	84.7 91.6 84.8 90.3 85.6	90.0 889.4 886.3 89.0	88.6 89.0 84.1 89.5 87.0	89.5 82.6 82.1 82.0	89.4 86.1 86.4 87.6	888.73 888.73 888.5	85.1 89.7 89.3 88.2
	FASH 1/	00.33 00.33 00.35 00.35	0.37 0.38 0.39 0.39	000000000000000000000000000000000000000	0.38 0.44 0.40 0.36 0.42	0.37 0.42 0.36 0.38 0.39	0.37 0.38 0.42 0.39	0.39 0.39 0.38 0.37 0.41
	FYELD	70.1 73.4 69.2 72.7	73.8 73.5 73.0 71.1	73.2 73.6 67.7 72.9	73.9 73.0 67.4 67.0 68.3	72.9 72.1 72.9 70.5	70.0 73.0 68.9 72.3 73.2	70.1 72.5 74.0 73.2 73.9
QA CA	TWT	65.4 64.8 62.2 65.9 64.7	64.9 64.9 64.5 64.0 64.0	64.7 64.6 64.8 65.1	64.5 63.5 63.5 63.4	64.8 65.4 64.5 64.5	60.4 63.5 63.3 64.0	66.1 64.3 64.5 65.7
DAVIS, C	CLASS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HWS HRS	HRS HRS HRS HRS S
	ONGI	310/E5 6/310/E6 310/E11 310/E12 310/E13	310/E14 5/310/E15 5/310/E16 310/E19 5/310/E20	6/310/E22 310/E22 310/E23 6/310/E25 310/E25	310/E29 310/E30 310/E32 310/E33 310/E33	310/E35 310E36 310/E37 310/E38 310/E39	310/E41 310/E42 310/E43 310/E44 310/E44	310/E47 6/310/E48 6/310/E49 5/310/E50 310/E51
NURSCO 16	LABNUM	830557 AZTECA X ANZA 830558 (TOB X CIANO 5) X ANZA 830559 JILGUERO X SEL 44 830560 PORTOLA X ANZA 830561 STURDY X ANZA	830562 TZPP X ANZA2 830563 TZPP X ANZA2 830564 TZPP X ANZA2 830565 TZPP X ANZA2 830566 TZPP X ANZA2	830567 TZPP X ANZA2 830568 TZPP X ANZA2 830569 TZPP X ANZA2 830570 TZPP X ANZA2 830571 ANZAZ X P1190982	830572 (SEL14 X BURT-2-16) X 166 X TAN-71 830573 ANZA X 7166 X (SEL14*2BURT-2-16) 830574 CUCKOO S' 830575 CNO-INIA S' X B6 830576 VEERY S'	830577 LRR ANZA 830578 CM43367 830579 ANZA 830580 YECORA ROJO 830581 YOLO	830582 NK PROBRAND 771 830584 WEST BRED 911 830585 KLASIC 830586 BB SIX ANZA	830587 AZTECA X ANZA 830588 ((INIA X CNO) X CALIDAD) X ANZA 830589 ((INIA X CNO) X CALIDAD) X ANZA 830590 ((INIA X CNO) X CALIDAD) X ANZA 830591 ((INIA X CNO) X CALIDAD) X ANZA

^{1/} Observed Values Corrected to 14% Moisture Basis. $\overline{3}/$ Absorption at 14% Moisture Corrected to 10% Protein. $\overline{4}/$ Observed Values Corrected to 10% Protein.

 $[\]underline{5}/$ Particularly Promising Overall Quality Characteristics. $\underline{6}/$ Promising Overall Quality Characteristics.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	ADVANCED COMMON	OMMON WHEAT	YIELD	TRIAL				CONTD.	PAGE 1
NURSCO 16		DAVIS, C	CA					C. 0. QUAI	QUALSET
LABNUM	ONGI	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	RMKS
830557 AZTECA X ANZA 830558 (TOB X CIANO 5) X ANZA 830559 JILGUERO X SEL 44 830560 PORTOLA X ANZA 830561 STURDY X ANZA	310/E5 310/E6 310/E11 310/E12 310/E12	HRS HRS HRS	59.8 62.3 60.8 59.8	60.8 62.2 61.1 59.9	23.12	810 945 905 870 900	872 883 889 889 906	00000 00000	7-FYELD, P-LVOL&BCRGR 7-LVOL&MTIME 7-FYELD, Q-BCRGR 7-LVOL&BCRGR
830562 TZPP X ANZA2 830563 TZPP X ANZA2 830564 TZPP X ANZA2 830565 TZPP X ANZA2 830566 TZPP X ANZA2	310/E14 310/E15 310/E16 310/E19	HITTH SOSON	59.1 62.9 62.3 61.8	60.0 63.3 62.5 62.4 62.8	- 0.074.0 - 0.03.03	840 960 965 835 958	896 985 977 872 964	5 P-L	P-LVOL&BCRGR VP-LVOL&BCRGR
830567 TZPP X ANZA2 830568 TZPP X ANZA2 830569 TZPP X ANZA2 830570 TZPP X ANZA2 830571 ANZA2 X P1190982	310/E21 310/E22 310/E23 310/E25	THER WWWWW WWWW	61.2 62.0 57.0 65.0	61.8 63.0 58.5 59.1	7.8.2.3.7.	945 855 760 925 840	982 917 853 931 896	88 88 89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Q-BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR Q-BCRGR VP-LVOL&BCRGR
830572 "(SEL14 X BURT-2-16) X 166" X TAN-71 830573 ANZA X [166 X (SEL14*2BURT-2-16)] 830574 CUCKOO S' 830575 CNO-INIA "S' X B6 830576 VEERY "S'	310/E29 310/E30 310/E32 310/E33	TTTTT WWWWW	59.5 63.2 64.7 63.0	60.8 64.5 66.0 63.7	w w w w w w w w w w w w w w w w w w	845 900 750 755 805	926 912 831 836 848	4 V PP-1	VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR
830577 LRR ANZA 830578 CM43367 830579 ANZA 830580 YECORA ROJO 830581 YOLO	310/E35 310E36 310/E37 310/E38 310/E38	H H H H K S S S S S S S S S S S S S S S	599 509.5 58.0 58.0	60.4 61.6 59.4 64.0 60.0		815 710 830 940 905	889 776 915 946 986	5 VP-1 6 VP-1 3 Q-BG	VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR Q-BCRGR
830582 NK PROBRAND 771 830583 OSLO 830584 WEST BRED 911 830585 KLASIC 830586 BB "S' X ANZA	310/E41 310/E42 310/E43 310/E44 310/E46	HR S S S S S S S S S S S S S S S S S S S	60.8 61.8 64.5 61.0	60.7 65.2 60.8 58.4	0.45.00 8-0.60	980 1040 825 1025 940	974 997 868 1013	2 P-L 5 P-L 6 P-L	P-LVOL&BCRGR P-LVOL&BCRGR
830587 AZTECA X ANZA 830588 ((INIA X CNO) X CALIDAD) X ANZA 830589 ((INIA X CNO) X CALIDAD) X ANZA 830590 ((INIA X CNO) X CALIDAD) X ANZA 830591 ((INIA X CNO) X CALIDAD) X ANZA	310/E47 310/E48 310/E49 310/E50 310/E51	H H H H H H H H K S S S S S S S S S S S	61.3 60.5 60.9 59.4	62.1 60.5 60.6 61.2 59.9	2.7 2.0 2.0 2.1	840 930 930 855	890 930 930 886	5 P-L	Q-MTIME Q-BCRGR P-LVOL&BCRGR

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	ADVANCED COMMON WHEAT YIELD TRIAL	OMMON WHE	AT YIELD	TRIAL					PAGE 2
NURSCO 16		DAVIS, (CA					C.O. QUALSET	LSET
LABNUM	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
830592 (CNO2 X INIA) X ANZA 830593 STURDY X ANZA 830594 ANZA X "166 X (SEL142 X BURT-2-16)" 830595 M18143 830596 BB S' X ANZA	310/E52 310/E53 310/E57 310/E60	HRSS HRSS HRSS	64.1 64.2 64.2 63.5	72.0 70.8 73.0 74.6	0.37 0.39 0.36 0.42 0.42	888 889. 889. 689.	9.01 10.09 8.88 0.01	55 55 55 55 55 55 55 55 55 55 55 55 55	4H X X X X X X X X X X X X X X X X X X X
830597 YR "S' (R) X MEXIFEN 830598 (CI13232 X R50) X ANZA 830599 ANZA X "(SEL14 X 50-3) X 166" 830600 ((BC60 X CI13232) X 166) X ANZA 830601 (BB X CHA) X FKN2 X (FR X (KAD X GB))"	5/ 310/E62 310/E64 310/E65 310/E68 7 310/E68	HRS HWS HWS	63.8 62.2 61.9 63.7 64.9	72.7 70.4 68.9 73.0	0.38 0.37 0.41 0.46 0.46	88.3 86.6 82.7 85.0 87.6	01.00.00.00.00.00.00.00.00.00.00.00.00.0	58.5 60.1 56.1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
830602 CIMMYT 81CB/55 830603 TZPP X ANZA2 830604 TZPP X ANZA2 830605 TZPP X ANZA2	310/E73 310/E75 310/E76 310/E77	HWS HRS HRS	63.8 64.5 65.5 63.7	69.2 74.7 73.4 73.1	0.36 0.39 0.36 0.38	85.6 90.1 88.9	12.7 9.6 9.5 9.0	59.8 60.1 58.5	2H 2H 3M

UALSET	RMKS	P-BCRGR P-BCRGR P-BCRGR P-BCRGR	P-BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR	P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR
C.O. QUALSET	BCRGR	£00¢	unoon	NOFE
	LVOLC 4/	947 902 902 802 950	958 946 846 675	738 855 901 852
	ראסר	910 935 840 730 950	970 965 815 615 870	905 830 870 790
	MTIME	23.52	2.2106	0000 0000
	BABSC 3/	58.0 63.1 60.0 57.7 63.0	60.7 60.1 61.3 56.3 62.8	63.0 61.4 62.3 59.2
CA	BABS	57 533.2 56.5 63.0	60.9 60.4 60.8 55.3	65.7 61.0 61.8 58.2
DAVIS, CA	CLASS	HR K S S S S S S S S S S S S S S S S S S	HRS HWS HWS	HRS S R
	ONGI	310/E52 310/E53 310/E57 310/E60 310/E60	310/E62 310/E64 310/E65 310/E68 310/E69	310/E73 310/E75 310/E76 310/E77
	VARIETY	(CNO2 X INIA) X ANZA STURDY X ANZA ANZA X 166 X (SEL142 X BURT-2-16) M18143 BB S' X ANZA	YR "S' (R) X MEXIFEN (C113232 X R50) X ANZA ANZA X "(SEL14 X 50-3) X 166" ((BC60 X C113232) X 166) X ANZA (BB X CHA) X FKN2 X (FR X (KAD X GB))"	CIMMYT 81CB/55 TZPP X ANZA2 TZPP X ANZA2 TZPP X ANZA2
NURSCO 16	LABNUM	830592 (CNO2) 830593 STURDY 830594 ANZA X 830595 M18143 830596 BB S1	830597 YR "S' 830598 (CI1323 830599 ANZA X 830600 ((BC60 830601 (BB X	830602 CIMMYT 81CB/ 830603 TZPP X ANZA2 830604 TZPP X ANZA2 830605 TZPP X ANZA2

Many of these experimental crosses are carrying the poor baking characteristics of Anza (short dough mixing properties, low loaf volume, and heavy coarse crumb grain structure). Several do however have good overall baking properties and are noted with footnotes (5/and $\underline{6}/)$. See Remarks for specific deficiencies. COMMENTS:

P = Poor; Q = Questionable; VP = Very Poor

THE PARTY OF PROPERTY AND A MAN A STATE OF

NURSCO 17			DAVIS, C	CA					H.E. VOGT	_
LABNUM	VARIETY	DNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC 3/	MTYPE
830606 TADORNA * 166 830607 TADORNA * 166 830608 TADORNA * 166 830609 TADORNA * 166		306/E3 306/E4 306/E6 306/E7 306/E7	HRS HRS HRS HRS	63.9 64.5 64.5	66.9 70.7 69.4 70.6 68.3	0.31 0.33 0.37 0.36 0.36	86.1 88.9 87.3 87.0	7.8 4.8 7.1 9.3	55.9 57.3 56.7 56.7	81 37 38 38
830611 TADORNA * 166 830612 CLEO * 166 830613 (NUDIF TP250 * 830614 (NUDIF TP250 *	166) * ANZA 166) * ANZA	306/E9 306/E10 306/E13 306/E15 306/E15	HTHR RSSSSS	64.3 64.0 64.2 61.9 63.2	68.4 66.5 70.6 71.6 67.1	0.35 0.35 0.38 0.38	8877.7 877.7 7.7.7	V 8 8 V 9 · 8 · 8 · 9 · 9 · 9 · 9 · 9 · 9 · 9 ·	553.0 57.5 55.7 55.7	22L 33M 6L
830616 P.WALKER MONRO * 166R-830617 TADORNA * 166 830618 CLEO * 166 830619 (TADORNA * 166)E4 * ANZ 830620 (TADORNA * 166) * 166R	ONRO * 166R" * "(CLEO * 66 166) Et * ANZA 166) * 166R	306/E19 306/E21 306/E24 306/E27 306/E27	HRSS HRRS HRSS SSSS	62.6 64.3 63.0 64.2 64.1	66.3 66.7 67.5 70.7	0.30 0.33 0.37 0.37	85.7 885.3 86.7 84.7	88.6 8.7 7.9	555.9 558.1 558.1 558.1	66L 44L 44L 32L 33L
830622 (CLEO * 166) * 830623 (CLEO * 166) * 830623 (CLEO * 166) * 830624 * KL.REND * 166	166) * 166R 5) * ANZA 6) * ANZA 166R * "(CLEO * 166)166R" * SAL-SEAT)YEC.ROJO *	306/E32 306/E37 306/E38 307/E3	HRS HRS HRS HRS	655.0 655.1 655.1	68.8 66.8 65.8 70.4	0.37 0.38 0.38 0.44 0.43	84.7 82.5 81.3 80.9	0.08889	556.55 56.22 56.72 56.72	2 3 3 3 4 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L 2 L
830626 (MEXP 65 * "SAL-SE 830627 (CLEO * 166) * ANZA 830628 (TADORNA * 166) * 1 830629 ANZA(CI015284) 830630 YECORA ROJO	(MEXP 65 * "SAL-SEAT")YEC.ROJO" * (CLEO * 166) * ANZA (TADORNA * 166) * 166R ANZA(C1015284) YECORA ROJO	307/E10 307/E38 308/E25 306/E5 306/E5	HRS HRS HRS HRS	643.7 644.4 643.5 59.9	70.5 70.4 66.0 70.4 69.1	0.42 0.32 0.41 0.41	83.6 84.1 84.7 84.7 84.7	7.6 10.0 11.8 11.8	56.4 57.7 54.7 54.0 57.9	33L 133L 4H
Control of the second of the s	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0			-	i d		

Observed Values Corrected to 14% Moisture Basis. $\frac{3}{4}$ Absorption at 14% Moisture Corrected to 8% Protein $\frac{4}{4}$ Observed Values Corrected to 8% Protein

Absorption at 14% Moisture Corrected to 8% Protein.

 $[\]underline{5}/$ Particularly Promising Overall Quality Characteristics. $\underline{6}/$ Promising Overall Quality Characteristics.

ост	RMKS	VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR	VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR VP-LVOL&BCRGR	VP-LVOL&BCRGR		
H.E. VOG1	BCRGR	L8000	0,0,00m	00000	00000	0,0000,00
	LVOLC 4/	692 815 709 667 594	616 514 836 732 818	780 738 825 616 752	593 618 653 704 821	760 759 651 650 709
	LVOL	680 840 715 630 675	585 545 855 720 880	805 775 825 610 740	655 680 690 735 740	735 765 775 700 945
	MTIME	で こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ	22.02.4	2.29.0	34.2.20	23.8
	BABSC 3/	58.6 56.1 62.5 62.9	58.7 62.7 60.9 58.3	60.3 58.3 56.0 60.1	61.7 63.0 64.4 63.4	60.6 61.9 58.9 58.2 63.1
CA	BABS	58.7 59.8 64.2	58.2 54.7 63.0 60.7 59.3	600 600 50 50 50 50 50 50 50 50 50 50 50 50 5	62.7 64.0 65.0 63.9 61.5	60.2 62.0 60.9 59.0 66.9
DAVIS,	CLASS	HRS HRS HRS S S S S	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS
	IDNO	306/E3 306/E4 306/E6 306/E7 306/E8	306/E9 306/E10 306/E13 306/E15 306/E17	306/E21 306/E21 306/E24 306/E27 306/E27	306/E32 306/E37 306/E38 307/E3	307/E10 307/E38 308/E25 306/E5 306/E5
	VARIETY	TADORNA * 166	TADORNA * 166 CLEO * 166 (NUDIF TP250 * 166) * ANZA (NUDIF TP250 * 166) * ANZA TADORNA * 166	P. WALKER MONRO * 166R * "(CLEO * TADORNA * 166 CLEO * 166 (TADORNA * 166)E4 * ANZA (TADORNA * 166) * 166R	(TADORNA * 166) * 166R (CLEC * 166) * ANZA (CLEO * 166) * ANZA * KL.REND * 166R * (CLEO * 166)166R (MEXP 65 * SAL-SEAT)YEC.ROJO *	(MEXP 65 * SAL-SEAT)YEC.ROJO * (CLEO * 166) * ANZA (TADORNA * 166) * 166R ANZA(C1015284) YECORA ROJO
NURSCO	LABNUM	830606 TX 830607 TX 830608 TX 830609 TX 830610 TX	830611 TV 830612 CI 830613 (I 830614 (I	830616 830617 830617 830618 (830620	830621 (830622 (830623 (830624 830624	830626 830627 (830628 (830629 A 830630 Y

Yecora Rojo and Sel. 308/E25) for the most meaningful analysis; however, protein quality is not the dominant problem, as they lack basic bread making properties for their protein level. Selection 306/E17 appears to be significantly better than all others, but These selections are extremely poor (as a group) in milling and baking quality. They were low in protein (with the exception of does have a low flour yield. COMMENTS:

VP = Very Poor

STUDY	
XTURE	
Ξ	
SEED	

PAGE	C.J. PETERSON	FASH MSCOR FPROT MABSC MTYPE CODI CODIC	0 53.1 2L 8.99 9.14 49.9 2L 8.97 9.54 50.2 2L 8.96 9.54 9.56 9.54 9.54 9.54 9.54	33 89.3 7.6 49.9 2L 9.41 9.4 3.4 87.6 7.9 48.9 1L 9.30 9.41 9.4 9.30 86.4 7.2 48.1 1L 9.42 9.50 3.4 92.5 7.9 48.2 1L 9.42 9.50 3.3 3.4 91.0 7.2 49.0 11 9.42 9.50	6 88.0 6.9 50.9 2L 8.92 8.9 5 88.8 7.4 50.4 2L 9.05 9.0 5 98.4 7.3 51.3 2L 9.15 9.15 90.0 7.2 50.6 2L 9.41 9.41	4 88.0 7.3 49.5 2L 9.01 9.0 4 86.2 7.0 48.4 1L 9.20 9.21 5 88.8 7.7 48.2 2L 9.05 9.1 4 90.5 7.3 50.0 2L 8.94 8.91 4 92.0 8.3 49.6 2L 0.15 0.25	9.7 7.5 50.6 2L 9.39 9.44 9.2 8.0 50.8 3L 9.32 9.44 8.5 7.8 50.0 2L 9.29 9.38 7.9 8.7 48.6 1L 8.94 9.18	8 48.4 2L 9.59 9.6 4 49.7 2L 9.02 9.0 7 51.7 3L 9.57 9.6 3 51.5 5L 9.50 9.50 6 50.6 2L 9.50	6 50.2 2L 9.51 9.5 3 50.5 1L 9.47 9.5 1 50.2 5L 9.25 9.21 1 50.4 2L 9.41 9.43 3 51.1 3L 9.24
EED MIXTURE STUDY	PULLMAN, WA	CLASS TWT FYELD	SWW 59.5 72.6 SWW 59.8 70.3 SWW 59.4 70.5 SWW 59.0 70.4 SWW 58.9 70.9	59.0 70. 58.9 69. 56.9 69. 57.2 73.	SWW 61.2 70.5 SWW 61.0 70.9 SWW 60.0 70.3 SWW 60.2 71.7 SWW 59.7 69.4	SWW 59.9 69.7 SWW 57.8 68.3 SWW 57.2 70.6 SWW 58.6 71.5 SWW 60.2 72.5	SWW 60.8 70.8 SWW 60.0 71.0 SWW 59.8 70.3 SWW 59.2 70.0 SWW 57.9 70.0	SWW 57.8 71.6 SWW 57.9 70.8 SWW 60.3 69.8 SWW 59.9 70.7 SWW 58.9 70.2	SWW 60.4 69.3 SWW 58.6 69.3 SWW 57.9 70.4 SWW 57.5 72.0 SWW 59.0 71.6
38		ONGI	C1017596		C1017419	C1017954		C1017909	C1014586
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 18	LABNUM	830631 STEPHENS 830632 STEPHENS/DAWS 830633 STEPHENS/HILL 81 830634 STEPHENS/LEWJAIN 830635 STEPHENS/LUKE	830636 STEPHENS/WA6910 113 830637 STEPHENS/WA6912 115 830638 STEPHENS/BARBEE 830639 STEPHENS/JACMAR 830640 STEPHENS/TYEE	830641 DAWS 830642 DAWS/HILL 81 830643 DAWS/LEWJAIN 830644 DAWS/LUKE 830645 DAWS/WA6910	830646 DAWS/WA6912 830647 DAWS/BARBEE 830648 DAWS/JACMAR 830649 DAWS/TYEE 830650 HILL 81	830651 HILL 81/LEWJAIN 830652 HILL 81/LUKE 830653 HILL 81/WA6910 830654 HILL 81/WA6912 830655 HILL 81/BARBEE	830656 HILL 81/JACMAR 830657 HILL 81/TYEE 830658 LEWJAIN 830659 LEWJAIN/LUKE 830660 LEWJAIN/WA6910	830661 LEWJAIN/WA6912 830662 LEWJAIN/BARBEE 830663 LEWJAIN/JACMAR 830664 LEWJAIN/TYEE 830665 LUKE

^{3/} Absorption at 14% Moisture Corrected to 7% Protein. 4/ Observed Values Corrected to 7% Protein.

^{5/} Particularly Promising Overall Quality Characteristics.
6/ Promising Overall Quality Characteristics.

	LAB.	
	QUALITY	
SEA AR	HEAT	MM
DA, SE	WESTERN M	MAN
USI	WES	PIII

PULLMAN, WA C.J. PETERSON	CLASS TWT FYELD FASH MSCOR FPROT MABSC MTYPE CODI CODIC RMKS	SWW 59.3 71.2 0.33 90.5 7.3 51.6 2L 9.31 9.35 SWW 59.2 70.3 0.34 89.2 7.2 49.7 2L 9.25 9.27 SWW 57.3 71.0 0.35 89.2 7.0 49.4 1L 9.66 9.66 SWW 57.4 71.2 0.33 90.8 7.2 49.6 2L 9.39 9.41 SWW 58.0 72.4 0.34 91.6 7.1 49.9 2L 9.31 9.32	SWW 58.9 68.9 0.36 86.1 7.2 49.2 2L 9.29 9.31 SWW 59.3 68.2 0.35 85.7 7.3 49.5 1L 9.36 9.40 SWW 56.3 67.1 0.35 84.0 6.8 48.2 1L 9.49 9.47 SWM 56.0 70.7 0.37 87.5 6.9 49.9 2L 9.57 9.56 SWW 57.8 70.7 0.37 87.8 7.7 48.0 2L 9.29 9.36	SWW 57.2 68.8 0.33 87.5 7.5 49.0 1L 9.27 9.33 SWW 57.3 67.4 0.35 84.7 7.1 48.0 1L 9.19 9.20 SWW 55.4 70.6 0.36 88.4 7.3 48.6 1L 9.37 9.41 SWW 57.2 71.6 0.34 90.6 7.0 49.2 1L 9.60 9.60 -17 CLUB 55.0 68.1 0.34 86.1 7.1 48.3 1L 9.26 9.27	CLUB 54.0 69.1 0.36 86.0 7.3 48.0 1L 9.34 9.36 CLUB 54.8 70.0 0.34 88.8 7.1 48.1 1L 9.32 9.33 CLUB 53.0 71.1 0.35 89.5 7.1 47.2 1L 9.57 9.58 CLUB 55.0 71.4 0.34 90.0 7.1 48.7 1L 9.44 9.44 7.2 1L 9.24 9.44 9.44	SWW 59.0 69.7 0.34 88.3 7.1 51.2 2L 9.12 9.14 SWW 57.2 71.3 0.34 90.5 7.1 50.2 2L 9.34 9.35 SWW 55.2 70.2 0.35 88.2 7.0 48.8 1L 9.57 9.57 SWW 59.0 70.6 0.37 87.7 7.5 50.1 3L 9.59 9.64 SWW 59.4 68.0 0.34 86.2 7.2 49.6 2L 9.24 9.26
		.33 90 .34 89 .35 89 .33 90 .34 91	36 86 35 85 35 84 37 87	.33 87 .35 84 .36 88 .34 90 .34 86	36 86 34 88 35 89 34 90 34 92	34 88 34 90 35 88 37 87 34 86
	FYELD			8 + 0 - 8	3.1.09	
	TWT	9677.8	86.99		1つの下	95.50
PULLMAN	CLASS	MMS MMS MMS MMS	MMS MMS MMS MMS	SWW SWW SWW CLUB	CLUB CLUB CLUB CLUB	MMS MMS SWM SWM SWM SWM
	ONGI			C1017417	WA6585 C1017773	
18	VARIETY	LUKE/WA6910 LUKE/WA6912 LUKE/BARBEE LUKE/JACMAR LUKE/TYEE	WA6910 WA6910/WA6912 WA6910/BARBEE WA6910/JACMAR WA6910/TYEE	WA6912 WA6912/BARBEE WA6912/JACMAR WA6912/TYEE BARBEE	BARBEE/JACMAR BARBEE/TYEE JACMAR JACMAR/TYEE	STEPHENS/DAWS/LEWJAIN STEPHENS/LEWJAIN/TYEE BARBEE/JACMAR/TYEE HILL 81/LEWJAIN/WA6910 LEWJAIN/WA6912
NURSCO	LABNUM	830666 1 830667 1 830668 1 830669 1	830671 V 830672 V 830673 V 830674 V	830676 \ 830677 \ 830678 \ 830679 \ 830680 I	830681 830682 830683 830684 830684	830686 830687 830688 830689 830690

WA6912, and Barbee are reflected when they constitute a proticn of the blend. Similarly, the large CODI of Jacmar and the smaller CODI of Daws are reflected when they are in the blend. All are acceptable in baking quality. The milling quality of WA69108 and No statistical analysis were conducted, but the following general observations are submitted: The lower flour yield of WA6910, WA6912 is very questionable. COMMENTS:

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		MONTANA	ANA WHEAT QUALITY COUNCIL	ITY COUN	710					PAGE
NURSCO 19		HV	, SD, MC, BZ,	CN, MONT.					MCNEAL	
LABNUM	VARIETY	ONGI	CLASS	FASH 1/	FPROT	FABSC	FPEAK	FSTAB	MABSC 3/	
830691 830692 830693 830694 830694		HV151 HV152 HV153 HV154 SD155	HRS HRS HRS HRS	0.40 0.40 0.42 0.38	12.8 10.8 11.9	66.6 69.4 71.8 68.2	13.5 7.8 7.6 6.9	10.2 10.0 12.0 6.6	62.9 62.9 61.1 63.0	
830696 830697 830698 830699 830700		\$D156 \$D157 \$D158 \$D159 \$C160	H H H H K S S S S S S S S S S S S S S S	0.48 0.50 0.50 0.44 0.46	14.4 14.5 13.2 14.7	65.2 68.4 67.9 69.0 65.4	17.9 14.2 14.9 9.4	21.4 24.2 20.5 13.1	mm = 00	
830701 830702 830703 830704 830705		MC161 MC162 MC163 MC164 BZ230	HRS HRS HRS HRW	0.45 0.40 0.45 0.43 0.43	14 173.0 14.1 13.0	662 665.6 695.3 69.3	10.0 15.4 18.4 1.9	16.9 17.4 20.5 10.7 6.5	62.3 63.7 63.7 63.7 59.9	
830706 830707 830708 830709 830710		BZ233 BZ234 BZ235 HV236 HV239	HRW HRW HRW	0.42 0.39 0.37 0.39	13.8	65.4 64.3 67.5 66.0 65.7	2. t t t t t . 5 . 5 . 5 . 5 . 5 . 5 . 5	873.70	61.1 60.1 61.3 59.4 61.4	
830711 830712 830713 830714		HV240 HV241 MC242 MC246 MC247	HRW HRW HRW	0.36 0.35 0.36 0.36	12.5 12.5 12.9 12.7	65.4 66.0 63.4 65.5	7.00.8	7.7 12.5 15.7 1.4	60.2 62.3 60.8 60.9	
830716 830717 830718 830720		CN252 CN253 HV150 CN251 CN251	HRW HRW HRW HRW	0.42 0.39 0.43 0.38	10.9	64.2 67.7 67.0 69.7	- 1 - 1 - 2 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	9.4 9.4	61.2 60.4 61.3 63.2 63.0	
830721		MC245	HRW	0.36	11.3	9.19	1.5	7.7	65.9	

三五 美工艺艺艺 电三元压器

a mon - na

A 100 10 2

CONTD. PA	
MONTANA WHEAT QUALITY COUNCIL	
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	

NURSCO 19			HV	HV, SD, MC, BZ,	BZ, CN, MONT.					MCNEAL 8	& TAYLOR
LABNUM	VARIETY	>	ONGI	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
830691 830692 830693 830694 830694	CHECK SAMPLE	•	HV151 HV152 HV153 HV154 SD155	HRS HRS HRS HRS	65.9 62.1 65.1 66.8	66.1 66.1 64.3 66.2 64.9	3.6 2.3 8.5 8.5	1025 1005 1010 955	1037 980 1146 1023 982	00020	B-Protein G-Baking & milling L-Pro., G-Baking Q-BCRGR
830696 830697 830698 830699	CHECK SAMPLE	•	\$0156 \$0157 \$0158 \$0159 MC160	HRS HRS HRS HRS HRS S	67.4 69.0 68.0 66.6	66.0 67.5 67.8 66.0 67.5	33.7.0	1165 1185 1223 1033	1078 1092 1211 996 913	00000 90000	G-Baking G-Baking L-Pro., G-LVOL L-Pro., VG-LVOL
830701 830702 830703 830704 830704	CHECK SAMPLE	•	MC161 MC162 MC163 MC164 BZ230	HRS HRS HRS HRW	66.8 70.4 66.9 68.9	65.5 68.4 66.8 67.9	23.57.88 3.67.88	1068 1045 1128 1020 1030	987 921 1122 958 1011	0 0 0 c -	G-Overall quality G-Overall quality L-Pro.&FYELD,G-Baking G-Bake,L-Pro,P-FYELD
830706 830707 830708 830709	CHECK SAMPLE	0 0 0 0	BZ233 BZ234 BZ235 HV236 HV239	HRW HRW HRW HRW	61.5 63.4 62.3 62.5	63.3 62.3 62.6 64.1	33.2008	910 1055 1000 985 905	1022 1005 1006 1004 1004	7 × × × × × × × × × × × × × × × × × × ×	L-Pro.&P-BCRGR Weak dough properties Weak dough properties P-BCRGR
830711 830712 830713 830714	CHECK SAMPLE		HV240 HV241 MC2112 MC246 MC246	HRW HRW HRW	61.6 62.9 62.9 62.9	62.4 63.4 65.5 63.0	000000 0000000000000000000000000000000	1065 920 950 980 935	951 975 986 954		E-BCRGR&LVOL P-FYELD Weak dough G-FYELD G-BAKING PROP.
830716 830717 830718 830719	CHECK SAMPLE		CN252 CN253 HV150 CN251 CN251	HRW HRW HRW HRW	61.3 64.3 62.5 63.4	63.6 63.5 65.4 65.4	33.03.34	900 775 945 640 855	1030 905 895 820 967	_	
830721			MC245	HRW	63.4	65.1	3.6	800	905	7 P-L	P-LVOL&BCRGR
1/ Observed Valu 3/ Absorption at 4/ Observed Valu	Observed Values Corrected to 14% Moisture Absorption at 14% Moisture Corrected to 1 Observed Values Corrected to 13% Protein.	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 13% Protein. Observed Values Corrected to 13% Protein.	tein.		5/ Parti 6/ Promi	Particularly Promising Overall Quality Characteristics Promising Overall Quality Characteristics.	omising Ove 11 Quality	character	ity Charactistics.	eristics.	

B = Better; G = Good; L = Low; Q = Questionable; P = Poor; E = Excellent

PNWGC CROP QUALITY SURVEY

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

	A.A. FYELD FABS FPEAK FSTAB	.081 71.9 54.1 1.2 1.9 .065 70.7 53.7 1.6 2.1 .085 69.3 60.8 4.0 8.5 .058 71.3 63.1 6.6 6.3 .075 72.4 53.6 1.1 1.6	.083 71.6 53.5 1.8 2.5 1.142 73.8 50.7 1.3 1.1 12.6 59.2 8.1 12.6 70.0 63.1 7.0 10.7 1.3 53.5 1.4 1.4	.085 72.3 53.2 1.0 1.5 1.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.116 73.5 51.2 1.0 1.0 1.0 094 67.4 60.6 1.0 1.3 0.55 71.2 54.1 1.0 2.3 .066 72.5 51.6 1.0 1.0 1.0 .063 70.1 58.0 9.7 12.5	.048 68.2 66.3 4.7 5.9
	WPROT F.N.	8.6 327 9.6 318 10.2 314 11.4 360 8.9 288	9.1 264 8.3 217 9.5 290 111.4 192 8.9 244	8.8 8.2 7.1 8.8 8.8 7.4 225 7.4	7.8 241 8.6 273 8.4 294 8.5 316	13.3 407
	WMIST	0.0000 0.00000 0.00000	00000	00000	99.74	4.6
WA, OR, ID	CLASS TWT	SWW 61.7 SWW 60.8 HRW 62.0 HRS 61.8 SWW 62.1	SWW 61.8 CLUB 60.2 HRW 63.7 HRS 63.5 SWW 61.7	SWW 61.3 SWW 61.2 CLUB 60.8 SWW 59.3 SWW 62.6	CLUB 60.9 HRW 64.0 SWW 61.2 CLUB 61.9 HRW 62.8	HRS 62.9
	I DNO CI					ada N
NURSCO 20	LABNUM	830722 AREA 1 SWW (NORTH IDAHO) 830723 AREA 2 SWW (SOUTH IDAHO) 830724 AREA 2 HRW (SOUTH IDAHO) 830725 AREA 2 HRS (SOUTH IDAHO) 830726 AREA 3 SWW (PALOUSE)	830727 AREA 4 SWW (BIG BEND) 830728 AREA 4 CLUB (BIG BEND) 830729 AREA 4 HRW (BIG BEND) 830730 AREA 4 HRS (BIG BEND) 830731 AREA 5 SWW (WALLA WALLA)	830732 AREA 6 SWW (NORTH PENDLETON) 830733 AREA 7 SWW (COLUMBIA RIVER) 830734 AREA 7 CLUB (COLUMBIA RIVER) 830735 AREA 8 SWW (WILLAMETTE VALLEY) 830736 AREA 9 SWW (WATERVILLE)	830737 AREA 9 CLUB (WATERVILLE) 830738 AREA 9 HRW (WATERVILLE) 830739 AREA 10 SWW (HORSE HEAVEN) 830740 AREA 10 CLUB (HORSE HEAVEN) 830741 AREA 10 HRW (HORSE HEAVEN)	830742 AREA 10 HRS (HORSE HEAVEN)

. PAGE 1		BCRGR	25 4	Nm		∞ ~	2
CONTD.		LVOL	840 950	835 940		640	975
		NOSCO	73 76	78 79 79	75	77 99 97	75
		WIIN	366 379	367	351 351 353 349	363	374
		SCSOR	77.0		72.0 72.0 78.0 67.0	70.0 61.0 74.0	68.0
		CAVOL	1320	1305	1245 1250 1325 1185	1270	1320
		CODI	8.92	60. 7.	8.90 9.19 9.143 9.12	9.41	8.61
RVEY		FPROT	7.4		77.7.0	6.6	11.9
LITY SUF	01.	FASH	0.38	0.39 0.35 0.37 0.42	0.38 0.36 0.38 0.39	00000	0.45
NWGC CROP QUALITY SURVEY	WA, OR, 1D	CLASS	SWW SWW HRW HRS	SWW CLUB HRW HRS SWW	SWW SWW CLUB SWW SWW	CLUB HRW SWW CLUB HRW	HRS
PNWGC		ONG					
- QUALITY LAB.		VARIETY	SWW (NORTH IDAHO) SWW (SOUTH IDAHO) HRW (SOUTH IDAHO) HRS (SOUTH IDAHO) SWW (PALOUSE)	SWW (BIG BEND) CLUB (BIG BEND) HRW (BIG BEND) HRS (BIG BEND) SWW (WALLA WALLA)	SWW (NORTH PENDLETON) SWW (COLUMBIA RIVER) CLUB (COLUMBIA RIVER) SWW (WILLAMETTE VALLEY) SWW (WATERVILLE)	9 CLUB (WATERVILLE) 10 SWW (HORSE HEAVEN) 10 CLUB (HORSE HEAVEN) 10 HRW (HORSE HEAVEN)	O HRS (HORSE HEAVEN)
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.	NURSCO 20	LABNUM	830722 AREA 1 830723 AREA 2 830724 AREA 2 830725 AREA 2 830726 AREA 3	830727 AREA 4 830728 AREA 4 830729 AREA 4 830730 AREA 4	830732 AREA 6 830733 AREA 7 830734 AREA 7 830735 AREA 8	830737 AREA 9 830738 AREA 9 830739 AREA 1 830740 AREA 1	830742 AREA 1 830743 AREA 1

NURSCO 21		O	CULDESAC, ID	c, 1D							W. MCP	MCPROUD
LABNUM	VARIETY	I DNO	CLASS	TWT	FYELD FASH	FASH 1/	MSCOR	FPROT 1/	MABSC MT	MTYPE CODI	COD1C	RMKS
830744 STEPHENS 830745 DAWS 830746 NUGAINES 830747		C1017596 C1017419 C1013968 6/ 79-WW-57A 79-WM-96A	SWW SWW SWW HWW	61.6 62.4 62.0 62.0	73.5	0.38 0.37 0.38 0.38	90.2 89.8 88.0 88.3	88.9	53.9 2L 53.7 3L 53.6 2M 53.0 2L 54.8 3L	9.24 8.79 9.02 9.15 8.76	9.23 8.77 8.95 9.05	Hard texture
830749 830750 830751 830752 830753		79-WW-130A 79-WW-130B 79-WW-176B 5/80-WW-1 80-WW-3	HWW SWW HWW HWW	62.8 62.4 61.2 62.0 62.8	72.3 72.5 74.1 73.2 72.4	0.40 0.39 0.42 0.36 0.36	87.8 88.6 88.7 91.6 89.4	8.8 8.9 7.00 7.00 7.00 7.00	53.5 3L 53.0 3L 52.3 3M 53.2 1M 52.7 3L	8.89 9.00 8.21 9.19 8.91	88.099	Hard texture Hard texture Hard texture Hard texture
830754 830755 830756 830757		80-WW-5 6/80-WW-6 80-WW-9 6/80-WW-23	HWW SWW SWW	62.0 61.6 62.0 62.1	72.6 71.3 70.8 72.7	0.40	888.0 85.6 84.9	888.8	51.5 2L 52.6 2M 53.4 2M 51.9 3L	8.85 9.31 8.86 9.02	88.88	Hard texture Q-FYELD

5/ Particularly Promising Overall quality Characteristics. 6/ Promising Overall Quality Characteristics. 1/ Observed Values Corrected to 14% Moisture Basis. $\overline{3}/$ Absorption at 14% Moisture Corrected to 9% Protein. $\overline{4}/$ Observed Values Corrected to 9% Protein.

However, since this characteristic was not expressed in cookie diameter they may warrant further testing. Those that have Several of these selections were hard in texture (See class column) and are therefore questionable for soft wheat quality. good overall quality are noted with footnotes. COMMENTS:

Q = Questionable

. three from to

D. WALKER

USDA, SEA AR WESTERN WHEAT QUALITY LAB.	COLUMBIA BASIN SEEDS	
PULLMAN, WA.		

MOSES LAKE, WA

NURSCO 22

MTYPE	22 32 11 11
MABSC 3/	
-	52.3 52.13 50.9
FPROT	7.3 8.3 6.9 7.0
MSCOR	84.3 78.9 76.9 72.9
FASH 1/	0.41 0.43 0.44 0.44
FYELD	72.5 69.5 69.2 67.0
TWT	59.9 60.5 59.9
CLASS	MMS/9
ONO	C1017596 C1017419
VARIETY	
LABNUM	830758 STEPHENS 830759 DAWS 830760 EXP. 88 830761 EXP. 89

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics. 1/ Observed Values Corrected to 14% Moisture Basis.
3/ Absorption at 14% Moisture Corrected to 8% Protein.
4/ Observed Values Corrected to 8% Protein.

RMKS	FYELD
NOSCO	77 78 73 66 Low F
MTIN	357 372 359 352
SCSOR	73.0 68.0 72.0 73.0
CAVOL	1245 1200 1275 1265
CODIC 4/	8.64 8.57 8.77 8.91
1000	8.71 8.54 8.89 9.02
CLASS	MMS MMS MMS
ONGI	C1017596 C1017419
VARIETY	
LABNUM	830758 STEPHENS 830759 DAWS 830760 EXP. 88 830761 EXP. 89

COMMENTS: No. 88 appears to be similar to Daws in most quality factors. No. 89 is poor in milling properties as reflected by low flour yield.

Barrier Color and Color Color

N WHEAT QUALITY LAB. N, WA		O	CANADIAN SOFT WHITE	SOFT	WHITE					PAGE 1
	VARIETY	IDNO	IDNO CLASS	TWT	FYELD	FASH	FYELD FASH MSCOR FPROT MABSC MTYPE	FPROT	MABSC	MTYPE
CANADIAN SWW			SWW	61.2	61.2 69.6 0.42 78.9 8.9 52.0	0.42	78.9	8.9	52.0	2M
	VARIETY	IDNO	CLASS	CODI	IDNO CLASS CODI CODIC CAVOL SCSOR WTIN NOSCO RMKS	CAVOL	SCSOR	WTIM	NOSCO	RMKS

WESTERN PULLMAN

NURSCO

LABNUM

830762

Promising Overall Quality Characteristics. Particularly Promising Overall Quality Low flour yield and milling score. Very good cookie spread and sponge cake baking Characteristics. 5/ 19 Absorption at 14% Moisture Corrected to 9% Protein. Observed Values Corrected to 14% Moisture Basis. Observed Values Corrected to 9% Protein. COMMENTS: 1/4/4/

sticky noodle properties.

properties. Low noodle score due to soft and

388

82.0

1405

8.95

8.85

SWW

830762 CANADIAN SWW

LABNUM

C.F. KONZAK

NURSCO 23

1
0
٩
X
L
\searrow
F
_
AN
_
S
ESS
I

PULLMAN, WA

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	BABS
830763 WAMPUM/TIFTON 3725 NZ SEL.3 830764 FIELDER//K78504/K74129-19 NZ SEL.9 830765 K78570/(K74129-19.1D44/WA6021) 830766 FIELDER//K78504/K74129-19 NZ SEL.12 830767 K74142-10/K78510,TIF2408/URQUIE NZ	WAMPUM/TIFTON 3725 NZ SEL.3 FIELDER//K78504/K74129-19 NZ SEL.9 K78570/(K74129-19.1D44/WA6021) FIELDER//K78504/K74129-19 NZ SEL.12 K74142-10/K78510,TIF2408/URQUIE NZ SEL.7	6/HF820005 HF820006 6/HF820011 HF820016 7 HF820017	SRS HRS HWS SWS	60.4 62.0 60.4 64.0 59.6	72.8 70.6 72.7 68.5	0.42 0.37 0.37 0.33	887.3 900.1 886.5	11.4 10.4 10.5 10.6	55.0 54.0 56.7 52.8	2003 2003 2003	63.8
830768 K78504/K74129-49 NZ SEL.3 830769 K78504/K74129-33//K780664 830770 FIELDER//K78504/K74129-19 830771 FIELDER//K78504/K74129-19 830772 FIELDER//K78504/K74129-19	5 NZ SEL.24 NZ SEL.1 NZ SEL.2 NZ SEL.2	5/HF820028 6/HF820029 HF820033 HF820034 HF820034	SWS HWS HWS	61.6 60.8 63.2 63.2 64.0	71.5 69.1 67.7 67.6	0.38 0.35 0.33 0.33	87.8 85.2 84.5 86.0 84.0	10.1 10.4 10.7 10.6	51.0 55.0 57.2 57.2 57.2	2 2 M M M M M M M M M M M M M M M M M M	62.5 66.0 64.5
830773 F1ELDER//K78504/K74129-19 830774 K78504/K74129-33//K780664 830775 K78504/K74129-33//K780664 830776 K78504/K74129-33//K780664	780664 5 NZ SEL.4 780664 5 NZ SEL.9 780664 5 NZ SEL.12 780664 5 NZ SEL.15 780664 5 NZ SEL.15	HF820036 HF820053 HF820056 HF820056 HF820059	SWS SWS SWS SWS	63.6 61.6 60.4 60.8 60.8	70.1 67.4 68.9 68.2 69.6	0.39 0.36 0.40 0.37 0.37	85.5 83.4 86.5 86.5	11.3 10.4 10.0 10.2 9.8	551.0	322M 322M 322M	0.49
830778 WAVERLY 830779 DIRKWIN 830780 WAMPUM		C1017911 C1017745 C1017769	SWS SWS HRS	60.8 58.8 60.4	70.6 70.7 71.4	0.35 0.37 0.34	89.0 87.5 89.0	10.1	52.3 49.7 57.2	2 2 3 3 4 4 5 4 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	62.2
$1/$ Observed Values Corrected to 14% Moisture Basis. $\overline{3}/$ Absorption at 14% Moisture Corrected to 10% Protein. $\overline{4}/$ Observed Values Corrected to 10% Protein.	to 14% Moisture Basis. e Corrected to 10% Prot to 10% Protein.	ein.		5/ Pari 6/ Prot	Particularly Promising Overall Quality Cha Promising Overall Quality Characteristics.	Promising erall Qual	Overall lity Chara	Quality C	Characteristics cs.	stics.	

┣~	ķ
-	ı
<u>_</u>	2
	9
0	
	į
×	l
i.	î
0-de	
_	J
-	
_	
~	8
4	i
•	1
16	١
×	Ĭ
V.	J
1 1	ı
7	
	HESSIAN FIV FXP 07

USDA, SEA AR

WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	HES	HESSIAN FLY	EXP. 07						
NURSCO 23		PULLMAN, WA	WA					S	C.F. KONZAK
LABNUM	ONGI	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC RMKS
830763 WAMPUM/TIFTON 3725 NZ SEL.3 830764 FIELDER//K78504/K74129-19 NZ SEL.9 830765 K78570/(K74129-19.1D44/WA6021) 830766 FIELDER//K78504/K74129-19 NZ SEL.12 830767 K74142-10/K78510,TIF2408/URQUIE NZ SEL.7	HF820005 HF820006 HF820011 HF820016	SRS HRS SRS HWS SWS	63.4	8 8 8	875	850	9 9	9.12 8.42 9.00 8.36 8.90	9.28 Soft Red 8.46 P-LVOL&BCRGR 9.05 Soft Red 8.41 P-LVOL&BCRGR 8.91Q-FYELD
830768 K78504/K74129-49 NZ SEL.3 830769 K78504/K74129-33//K780664 5 NZ SEL.24 830770 FIELDER//K78504/K74129-19 NZ SEL.1 830771 FIELDER//K78504/K74129-19 NZ SEL.2 830772 FIELDER//K78504/K74129-19 NZ SEL.2	HF820028 HF820029 HF820033 HF820034 HF820035	SWS SWS HWS HWS HWS	61.8 65.4 63.7	# 33.0 ±.38	930 935 945	8887 898 895	ユ ゃゃ	9.30 9.30 8.30 8.37	9.40Q-FYELD 9.34 8.36P-FYELD&BCRGR 8.42Q-FYELD&BCRGR 8.36P-FYELD
830773 FIELDER//K78504/K74129-19 NZ SEL.4 830774 K78504/K74129-33//K780664 5 NZ SEL.9 830775 K78504/K74129-33//K780664 5 NZ SEL.12 830776 K78504/K74129-33//K780664 5 NZ SEL.15 830777 K78504/K74129-33//K780664 5 NZ SEL.19	HF820036 HF820053 HF820056 HF820059 HF820059	HWS SWS SWS SWS SWS	62.7	. s	950	869	m	8.71 9.19 9.44 9.07	8.82 P-LVOL&BCRGR 9.23 P-FYLED 9.44 Q-FYELD 9.10 Q-FYELD 9.19
830778 WAVERLY 830779 DIRKWIN 830780 WAMPUM	C1017911 C1017745 C1017769	SWS SWS HRS	61.4	4.6	1030	980	~	9.14 9.26 8.76	9.21

COMMENTS: Flour yield seems to be the weakest character of these Hessian Fly selections. Two selections, HF820005 and HF820011 are red seeded soft wheats with good overall pastry wheat properties.

P = Poor; Q = Questionable

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	LAB.	าัด	DUAL PURPC	PURPOSE #20								PAGE 1
NURSCO 24		LINE	LIND, ROYAL SLOPE,		WA					Ö	C.F. KONZAK	ZAK
LABNUM	VARIETY	ONGI	CLASS	FASH 1/	FYELD	FYELD MSCOR	FPROT 1/	MABS	MABSC 3/	MTYPE	BABS	BABSC 3/
830781 WAVERLY 830782 WAMPUM 830783 C101472/(C1015926, WARED) 830784 K74136/POTAM 70 830785 K74182/POTAM 70	926, WARED)	C1017911 C1017691 K8005223 K8005424 K8005604	SWS HRS SWS SWS SWS	0.40 0.44 0.38 0.38	70.9	82.0 82.0 83.6 83.0	10.7	55.4 61.1 56.9 57.2	55.3 60.4 56.5 56.9	33313 00440	56.6 63.3 59.1 59.4	56.5 58.7 59.1 58.6
830786 K74322/POTAM 70 830787 K74322/POTAM 70 830788 LIFN*2-N1220/POTAM 70512	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/ K8005701 / K8005705 WA6921	SMS	0.41	71.5 72.0 69.8	82.4 82.1 77.6	10.0	57.2 56.7 54.7	57.2 55.4 54.5	3 W W S	57.9 58.9 55.9	57.9 57.6 55.7
1/ Observed Values Corrected to 14% Moisture 3/ Absorption at 14% Moisture Corrected to 14/ Observed Values Corrected to 10% Protein.	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.	ů. Ci			5/ Part 6/ Prom	ticularly	Particularly Promising Overall Quality Cha Promising Overall Quality Characteristics	ing Over	all Qual	5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.	acterist	rics.

C.F. KONZAK

#20
PURPOSE
DUAL

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 24

LIND, ROYAL SLOPE, WA

RAMKS	CRGR&CODI	ODI
SCSOR	71.0 61.0 73.0 P-8 71.0 P-8	74.0 71.0 Q-C 72.0 P-M
CAVOL	1285 1195 1280 1260 1305	1290 1305 1295
COD1C	8.50 8.12 8.28 8.46	8.46 8.51 8.62
1000	8.49 8.06 8.24 8.46 8.46	8.46 8.36 8.60
BCRGR	いたたいの	000
LVOLC 4/	889 942 901 965	908 897 888
LVOL	895 985 965 968	908
MTIME	- N.	1223
CLASS	SWS HRS SWS SWS SWS	SWS SWS SWS
ONGI	C1017911 C1017691 K8005223 K8005424 K8005604	K8005701 K8005705 WA6921
VARIETY	830781 WAVERLY 830782 WAMPUM 830783 C101472/(C1015926, WARED) 830784 K74136/POTAM 70 830785 K74182/POTAM 70	K74322/POTAM 70 K74322/POTAM 70 LIFN*2-N1220/POTAM 70512
LABNUM	830781 WAVERLY 830782 WAMPUM 830783 C101472/(C10 830784 K74136/POTAM 830785 K74182/POTAM	830786 K74322/POTAM 70 830787 K74322/POTAM 70 830788 LIFN*2-N1220/PO

COMMENTS: Two of these selections (K8005604 & K8005701) appear to have promise in overall dual purpose properties, and a possible third selection (K8005705) is good except for a questionable cookie spread.

P = Poor; Q = Questionable

	C.F. KONZAK
PRELIMINARY SOFT WHITE (26,27,28)	PILL MAN. WA
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	

PULLMAN, WA

NURSCO 25

MINAL	VABLETY	IDNO	CLASS	TWI	FYELD	FASH	MSCOR	FPROT	MSCOR FPROT MABSC MTYPE CODI	MTYPE	CODI	CODIC RMKS	
						7		7	3/			4/	
830789 830790 830791 830792 830793	K76181/(K7500438,C114482/N680221/3/NB68) K76181/(K7500438,C114482/N680221/3/NB68) K76185/(K7500455,C114482//C113438/MF,68) K76185/(K7500455,C114482//C113438/MF,68) K76185/(K7500455,C114482//C113438/MF,63)	K8205088 K8205095 K8205279 K8205286 K8205286	SWS SWS SWS SWS	59.2 63.2 58.0 59.2 60.0	69.4 67.9 68.8 68.5	0.37 0.38 0.38 0.38	85.8 85.9 84.2 84.2	100.1 9.9 9.5	53.90	22L 22L 2M	9.11 8.94 9.39 9.06	8.95 Q-CODI 8.95 Q-CODI 9.37 LOW FYELD 9.26 LOW FYELD 9.02 LOW FYELD	
830794 830795 830796 830797		K8205298 <u>5</u> / K8205319 C1017745 C1017911 K8205357 <u>6</u> /	SWS SWS SWS SWS	59.6 59.6 58.4 60.0	70.2 67.7 69.7 70.2	0.36 0.37 0.36 0.34 0.34	87.5 83.6 87.2 87.5	9.3 10.2 4.9 10.1	52.3 52.5 53.0 52.5	33 J Z L	9.50 9.20 9.22 9.22 9.42	9.42 9.22 Low FYELD 9.25 9.24 9.30	
830799	830799 K76249/(K76182, LUKE MUTANT WA00 830800 K76249/(K76182, LUKE MUTANT WA0061	K8205492 K8205504 <u>5</u> /	SMS	59.2	68.1	0.40	82.2	9.4	49.9 51.8	5L 3M	8.89	8.82 Low FYELD&COD 9.34	3000
1/ C5s 3/ Abs	1/ Coserved Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.	in.		5/ Pa 6/ Pr	rticula	rly Pro	omising 11 Qual	Overal ity Cha	5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Óverall Quality Characteristics.	ty Charstics.	acteri	stics.	

COMMENTS: Selections K8205088 and K8205095 are border-line in cookie making. See "Remarks" for deficiencies of other selections.

Q = Questionable

of spinot benefit .

			1000
		10 M	

NURSCO	26		PULLMAN,	MA					С. F. КО	KONZAK	
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	
830801 830802 830803 830804 830804	ID000112/(K7500044, BANK12050/MINTER K7500566/RAGENI 15 K76130/(K7500062, BANK1205//MINTER/B K76131/(K7400148, K68028-01/(K670146 K76131/(K7500002, BEZ-1/(14X53-01)BU	6/k8200039 k8200082 6/k8200118 6/k8200127 6/k8200131	HRS HRS HRS HRS	60.8 61.6 61.6 62.0	72.0 69.4 72.8 69.8	0.33 0.33 0.33 0.28	88.7 87.5 91.2 87.1	9.4 10.2 11.1	57.3 60.1 60.0 58.6 60.4	6L 7L 8M 8M 8M	
30806 30807 30808 30809 30810	K76132/(K7500002, BEZ-1/(14X53-101)BURT. K76186/(K7500062, BANK1205//MINTER/BURT. K76231/WW15 K76237/(K7500044, BANK1205/MINTER/	. K8200154 . K8200202 . K8200204 . K8200263 . K8200263	HRS S RH	60.8 63.6 62.8 60.0	72.2 70.4 68.9 73.0	0.33 0.33 0.33 0.33	91.8 89.5 86.9 92.5 89.7	10.9 11.2 11.8 7.9	58.6 61.1 61.2 58.7	7L 6M 3M 4L	
330811 330812 330813 330814 330815	K76243/PITIC 62 K76243/PITIC 62 K76243/PITIC 62 K76243/(WA6108, WA5243/3/C3845/H7-5 K76243/(WA6108, WA5243/3/C3845/H7-5	K8200286 K8200295 K8200296 5/K8200308	HRS HRS HRS HRS	61.2 60.0 58.4 61.6	71.2 69.6 70.9 73.7	0.42 0.32 0.40 0.30 0.30	8935.0 935.0 356.0	10.3 9.7 11.8 11.3	60.5 57.8 59.4 61.4	BR 4L 4M 3M	
830816 830817 830818 830819 830820	K76243/(WA6108, WA5243/3/C3845/H7-5 K76243/(WA6108, WA5243/3/C3845/H7-536 K76243/(WA6108, WA5243/3/C3845/H7-536 K76243/(WA6108, WA5243/3/C3845/H7-536	6/K8200315 6/K8200317 K8200321 K8200330	HRS HRS HRS HRS	61.6 62.0 59.6 61.6 62.0	71.6	0.32 0.34 0.37 0.37	8900.088 0.00.088	11.7	60.2 60.9 60.6 61.0	₩ # # # # # # # # # # # # # # # # # # #	
830821 830822 830823 830824 830824	K76243/(WA6108, WA5243/3/C3845/H7-536 K76243/(WA6108, WA5243/3/C3845/H7-536 K76243/(WA6108, WA5243/3/C3845/H7-536 K76243/(WA6108, WA5243/3/C3845/H7-536	K8200342 K8200346 K8200348 K8200350 C1017903	HRS S S S S S S S S S S S S S S S S S S	62.0 61.6 59.6 61.2 62.0	71.8 74.2 70.5 72.2 71.0	0.32 0.32 0.37 0.36	88.98.4 886.8 899.1	9.8 11.8 12.0 10.7	60.7 59.6 62.0 59.5 59.5	M M M M M M M M M M M M M M M M M M M	
830826 830827 830828 830829 830830		C1017691 . K8200372 K8200388 6/K8200397 K8200412	HRS HRS HRS HRS	60.0 60.8 59.2 62.0 60.4	70.5 70.1 72.2 72.2	00.35	87.7 87.4 87.4 91.1	4.01 10.0 9.8 8.0 7.0 8.0	558.5 579.5 57.3 57.3 57.3 57.3 57.3 57.3 57.3 57	3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
830831 830832 830833 830834 830835	K76267/(K7500459,CI14482/CI13438/MF K76297/(WA6108,,WA5243/3/C3845/H7-53 W/S75393/(K7500002,BEZ-1(14X53-101)B W/S75393/(K7500002,BEZ-1(14X53-101)B MCKAY	6/K8200416 K8200462 K8200499 K8200510 C1017903	HRS HRS HRS HRS	59.6 60.0 62.0 62.0	70.6 70.5 72.5 71.0 69.2	0.36 0.36 0.31 0.29	87.5 87.5 92.1 90.5	7.01 9.3 10.3 4.01	59.9 57.5 60.1 61.2 58.9	8M 4L 8M 8M	
bse	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 11% Protein. Observed Values Corrected to 11% Protein.	ejn.		5/ Part. 6/ Prom	Particularly Prom Promising Overall	ising Quali	chara	Quality Characteri	teristics.		

^{6/} Promising Overall Quality Characteristics.

		9 5		
		.3		
		2 A &		
		N. A. Ser		
The state of				
\$25.00 \$21.000000000000000000000000000000000000				

-
ш
PAGE
6
~
-
0
_
MID
7
~
0
CON

CONTD. PAGE 1	C.F. KONZAK	BCRGR RMKS	2 3Q-LVOL&BCRGR 2Q-LVOL 2	4 P-BCRGR 3 Q-LVOL&BCRGR 5 P-BCRGR 3 P-LVOL&BCRGR 8 P-LVOL&BCRGR	4 P-LVOL&BCRGR 8 P-LVOL&BCRGR 4 P-LVOL&BCRGR 1	2 Q-PROT./VOL. 2 Q-PROT./VOL. 2 Q-PROT./VOL.	6 P-BCRGR 2 P-LVOL 4 P-BCRGR 4 P-BCRGR 2	2 5 P-BCRGR 5 P-BCRGR 3 4 P-BCRGR	2 P-LVOL&BCRGR 7 P-LVOL&BCRGR 3 P-LVOL&BCRGR 2
		LVOLC 4/	999 940 954 979 988	946 941 975 900 916	1013 931 968 965	962 895 893 905	974 895 936 933	1042 962 964 986 993	974 980 824 918 1092
		LVOL	900 890 935 985 1025	940 953 975 950 835	970 850 875 1015	1005 963 930 955 1000	900 945 995 980	1005 900 890 955	955 875 750 875 1055
		MTIME	000040 040040	3.23.43 5.33.43	2.4 2.7 2.6 4.6 7.6	のよれない のかがよっ	40004 80-00	70000 40800 67804	0.80.00
85)		BABSC 3/	61.0 63.3 61.8 65.6	60.8 63.9 61.4 59.9	63.7 60.0 61.6 64.6 62.9	62.4 66.8 65.1 64.8 65.7	64.9 63.8 63.7 63.7	63.1 62.7 60.7 61.5	64.6 61.7 63.8 65.4 63.1
RED (80-85	WA	BABS	59.4 62.5 61.9 66.2	60.7 66.0 63.9 62.2 58.6	63.0 58.7 60.1 65.4 63.2	63.1 67.9 65.7 65.6 65.6	63.7 64.6 68.1 64.7 63.0	62.5 61.7 59.5 61.0 58.2	64.3 60.0 62.6 64.7 62.5
PRELIMINARY HARD	PULLMAN,	CLASS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS
PRELIMIN		1 DNO	K8200039 K8200082 K8200118 K8200127 K8200131	K8200202 K8200202 K8200204 K8200263 K8200263	K8200295 K8200295 K8200296 K8200308	K8200315 K8200317 K8200321 K8200330 K8200333	K8200342 K8200346 K8200348 K8200350	C1017691 K8200372 K8200388 K82003976/ K8200412	K8200416 6/ K8200462 K8200499 K8200510 C1017903
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 26	LABNUM VARIETY	830801 ID000112/(K7500044, BANK12050/MINTER 830802 K7500566/RAGENI 15 830803 K76130/(K7500062, BANK1205//MINTER/B 830804 K76131/(K7400148, K68028-01/(K670146 830805 K76131/(K7500002, BEZ-1/(14X53-01)BU	830806 K76132/(K7500002,BEZ-1/(14X53-101)BURT. 830807 K76186/(K7500062,BANK1205//MINTER/BURT. 830808 K76186/(K7500062,BANK1205//MINTER/BURT. 830809 K76231/WW15 830810 K76231/(K7500044,BANK1205/MINTER/	830811 K76237/(WA006108.WA5243/3/C3845/H7 830812 K76243/PITIC 62 830813 K76243/PITIC 62 830814 K76243/(WA6108, WA5243/3/C3845/H7-5 830815 K76243/(WA6108, WA5243/3/C3845/H7-5	830816 K76243/(WA6108, WA5243/3/C3845/H7-5 830817 K76243/(WA6108, WA5243/3/C3845/H7-536 830818 K76243/(WA6108, WA5243/3/C3845/H7-536 830819 K76243/(WA6108, WA5243/3/C3845/H7-536 830820 K76243/(WA6108, WA5243/3/C3845/H7-536	830821 K76243/(WA6108, WA5243/3/C3845/H7-536 830822 K76243/(WA6108, WA5243/3/C3845/H7-536 830823 K76243/(WA6108, WA5243/3/C3845/H7-536 830824 K76243/(WA6108, WA5243/3/C3845/H7-536	830826 WAMPUM 830827 K76245/(K76209, RACENT 15/(WA6108, WA5243. 830828 K76245/(WA6108, WA5243/3/G3845/H7-536 830829 K76245/(WA6108, WA5243/3/G3845/H7-536 830830 K76245/(WA6108, WA5243/3/G3845/H7-536	830831 K76267/(K7500459,CI14482/CI13438/MF 830832 K76297/(WA6108, WA5243/3/C3845/H7-53 830833 W/S75393/(K7500002,BEZ-1(14X53-101)B 830834 W/S75393/(K7500002,BEZ-1(14X53-101)B 830835 MCKAY

	pn-10			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			19, 2	
THE RELEASE TO SELECT THE PROPERTY OF THE PARTY OF THE PA		TOTAL TOTAL PROPERTY OF THE PR		STATE TO COLORS A STATE OF STA

USDA, SE/ WESTERN V PULLMAN,	USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	PRELIMIN	PRELIMINARY HARD	RED (80-85)	(5)					PAGE 2
NURSCO	26		PULLMAN,	MA					C.F. KON	KONZAK
LABNUM	VARIETY	ONG	CLASS	TWT	FYELD	FASH 1/	MSCOR	F PROT	MABSC 3/	MTYPE
830836 830837 830838 830839 830840	WAMPUM W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU	C1017691 K8200534 K8200543 6/K8200545 K8200550	HHRRS	62.00 62.00 62.00 62.00	70.1 70.7 71.0 73.3	0.33 0.28 0.28 0.28	88.2 91.4 91.7 94.1	10.3	62.0 59.7 61.6 59.0	2222 200 200 200 200 200 200 200 200 20
830841 830842 830843 830844 830844	W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU	K8200553 K8200558 K8200569 6/K8200578	HRS HRS HRS S	60.8 61.2 61.6 61.6	71.5 71.6 69.7 70.8	0.30	91.2 91.2 88.7 889.8	10.2	61.9 59.4 60.1 61.7	5H 6CL 6M 6M
830846 830847 830848 830849 830850	W/S75343/(K750002, BEZ-1(14x53-101)BU W/S75343/(K750002, BEZ-1(14x53-101)BU W/S75343/(K750002, BEZ-1(14x53-101)BU W/S75343/(K750002, BEZ-1(14x53-101)BU W/S75343/(K750002, BEZ-1(14x53-101)BU	K8200595 6/K8200596 K8200598 K8200599 K8200601	HRS HRS HRS HRS	62.8 62.0 61.6 58.0	72.0 71.1 71.2 70.4 72.0	0.27 0.27 0.29 0.31	93.4 92.4 91.7 89.7 90.8	10.7	59.0 60.6 61.0 59.3	B T W T W W W W W W W W W W W W W W W W
830851	WAMPUM	C1017691	HRS	61.6	70.8	0.34	88.7	10.1	61.5	W9

, _ _ _

and in

NZAK	RMKS	2 6P-LVOL&BCRGR 9P-LVOL&BCRGR 3Q-BCRGR 8P-LVOL&BCRGR	6P-LVOL&BCRGR 8P-LVOL&BCRGR 5P-LVOL&BCRGR 3	7P-LVOL&BCRGR 3 5P-LVOL&BCRGR 4P-LVOL&BCRGR 4P-LVOL&BCRGR
C.F. KONZAK	BCRGR	9968	980 mm	7P- 44P- 44P-
	LVOLC 4/	1088 823 774 947 887	926 818 950 945 968	839 956 861 915 932
	TOOT	1045 835 780 935 825	870 775 900 933 943	820 993 830 890 870
	MTIME	3.58	33.782.00	4 5.66.23 8 5.66.23
	BABSC 3/	65.3 64.7 63.9 67.3 64.2	66.1 62.6 64.3 65.7 67.4	64.2 64.3 66.0 67.2 64.5
WA	BABS	64.6 64.9 67.1 63.2	65.2 61.9 63.5 67.0	63.9 665.5 665.5 63.3 62.8
PULLMAN, WA	CLASS	HRSS HRSS HRSS	HRS HRS HRS HRS	HRSS R HRRS R R HRRS R R R HRRS
	ONGI	C1017691 K8200534 K8200543 K8200545 K8200550	K8200553 K8200558 K8200569 K8200578 K8200588	K8200595 K8200596 K8200598 K8200599 K8200601
26	VARIETY	WAMPUM W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU W/S75343/(K750002, BEZ-1(14X53-101)BU	W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU	W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU W/S75343/(K750002,BEZ-1(14x53-101)BU
NURSCO	LABNUM	830836 830837 830838 830839 830840	830841 830842 830843 830844 830844	830846 W/S753 830847 W/S753 830848 W/S753 830849 W/S753 830850 W/S753

COMMENTS: The selections footnoted have some promise. All were excellent milling, but none appear to have the loaf volume performance of Wampum.

P = Poor; Q = Questionable

ш
-
_
I
¥
~
-
L
SOF
S
0
ED
ANCI
=
4
⋖
>
Ó
7

NURSCO	27		PULLMAN,	, WA							C. F. KONZAK
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE COD	CODIC RMKS
830852 830853 830854 830855 830855	POTAM 70/(WA006021, BRONS) K74129/POTAM 70 K74129/POTAM 70 K74129/POTAM 70 LIFN*2-N1220/(WA6150)	6/ K8005027 K8005300 5/ K8005317 6/ K8005339 6/ K7905566	SMS SMS SMS SMS	61.3 61.6 61.7 58.6	70.1 68.6 69.4 70.7	0.37 0.35 0.33 0.37 0.44	86.9 86.1 88.6 87.3 81.6	0.01 8.00 7.01	55.2 1M 52.1 4L 50.8 2M 53.1 3L 53.7 2M	9.12 9.09 9.30 9.32 9.32	9.12 9.07 L-FYELD 9.40 9.29 9.17
830857 830858 830859 830860 830861	LIFN*2-N1220/(WA6150) LIFN*2-N1220/(WA6151) K74549/POTAM 70 K74555/POTAM 70 LIFN*2-N1220/(WA6150)	K7905605 5/ K7905631 K8005965 K8006008 K8006008	SWS SWS SWS SWS SWS	58.2 61.1 60.1 58.5	66.9 71.6 69.2 67.5 68.2	0.43 0.35 0.37 0.36 0.46	78.7 89.7 85.7 84.3	7.01 9.7 9.4 10.0 10.6	53.7 3M 53.1 3L 54.3 7M 52.8 3M 53.5 3M	9.25 9.17 8.92 9.15 9.15	9.33 L-FYELD 9.14 8.86 L-CODI 9.15 L-FYELD 9.20 L-FYELD
830862 830864 830864 830865 830865	LIFN*2-N1220/WA6150 DIRKWIN WAVERLY K76152 K7400313/POTAM 70 K76152 K7400313/POTAM 70	K8006579 C1017745 C1017911 K8105522 5/ K8105552	SWS SWS SWS SWS SWS	58.5 58.0 58.8 58.2 60.7	68.4 70.5 69.7 67.8 70.4	0.46 0.42 0.37 0.37 0.34	79.1 84.3 86.2 83.7	10.00 14.00 14.00 19.00 19.00	54.0 2M 50.0 1M 52.3 2M 53.2 6L 52.0 2M	9.05 9.34 9.25 8.94 9.54	9.12 L-FYELD 9.27 9.29 8.86 L-FYELD&CODI 9.52
830867 830868 830869 830870 830871	K76165 K7400317/POTAM 70 K76181 LIFN*2/N1220 K76157 K7400315/POTAM 70 K76157 K7400315/POTAM 70 K76157 K7400315/POTAM 70	K8105569 5/ K8105626 K8105773 K8105787 6/ K8105790	SWS SWS SWS SWS SWS	58.5 61.1 60.4 57.2 57.4	67.3 70.4 67.2 68.0 69.1	0.34 0.38 0.34 0.41	85.1 86.5 84.8 81.7	10.01	53.9 3M 52.7 3M 52.3 3L 52.3 2M	9.21 9.46 9.16 9.26 9.37	9.20 L-FYELD 9.46 9.17 L-FYELD 9.24 L-FYELD 9.40
830872 830873 830874 830875 830875	2 K76157 K7400315/POTAM 70 3 K76157 K7400315/POTAM 70 4 DIRKWIN 5 WAVERLY 5 K76157 K7400315/POTAM 70	K8105794 K8105822 C1017745 C1017911 K8105870	SWS SWS SWS SWS SWS	58.3 58.7 59.1	68.2 68.3 69.6 69.4 67.4	0.37 0.41 0.35 0.35	84.4 82.1 86.0 86.9 83.6	9.3 10.0 10.2 10.7	53.1 2M 51.7 3M 51.3 1M 52.6 3M	9.40 9.26 9.19 9.10	9.32 L-FYELD 9.26 L-FYELD 9.09 9.12 9.35 L-FYELD
830877 830878 830879 830880 830881	7 K76157 K7400315/POTAM 70S 8 K76157 K7400315/POTAM 70S146 9 K76217 U1L23-AL66/C01266-S1 1 K79299-20	K8105887 K8105891 K8105937 HF920050 HF820064	SWS SWS SWS SWS SWS	59.0 56.8 59.4 60.7	66.9 67.3 67.3 68.3 64.9	0.36 0.38 0.34 0.39	83.1 85.5 83.2 81.8	10.9 7.01 9.3 9.8	51.2 2M 52.2 3L 53.1 7M 51.3 2M 52.5 3M	9.22 9.21 9.29 8.92	9.32 L-FYELD 9.18 L-FYELD 9.18 L-FYELD 9.21 L-FYELD 8.90 VP-FYELD
830882	2 K79299-22	HF820066	SMS	60.1	62.4	0.32	80.3	7.6	53.1 2M	8.90	8.87 VP-FYELD
1/ Obse	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 10% Prot	e Basis. 10% Protein.		5/ Pa 6/ Pr	Particularly Promising Ove		Promising rall Quali	Overall ty Chara	ly Promising Overall Quality Characteristics Overall Quality Characteristics.	haracter:	stics.

5/ Absorption at 14% Moisture Corrected to 10% Protein.
4/ Observed Values Corrected to 10% Protein.

COMMENTS: Several of these selections were 1-2% lower in flour yield than the Dirkwin and Waverly checks, which are not strong milling wheats. All but K8005965 and K8105522 have good pastry properties.

			•	
				× 00 00 1
				0000
				a 14 (9)
Table or Material				
2 2 2				
	602 30.45574-08. 1858-1958-1958 1858-1958-1958 1858-1958-1958 1858-1958-1958-1958-1958-1958-1958-1958-			
	1 10 - 20 12 10 10 50			

YPE

ADVANCED HARD RED WINTER (I-IV)

NURSCO) 28			LIND,	WA					E. DONA	DONALDSON
LABNUM	VARIETY		ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTY
830883 830884 830885 830886 830886	3 CCP/3/OMAR/IT//13438/HN7(ADV. 4 N6754/SM7437/CERCO//N72 5 N6754/SM7437/CERCO//WA59 5 CLE//SM7437/N6754/3/N732 7 HTN SIB//SHORT WHEAT/SVT	<u>-</u>	N8200101 6/N8200502 N8200602 N8200701 N8200701	HRW HRW HRW HRW	62.7 62.8 62.4 62.3	72.0 71.8 72.7 72.0 72.3	0.37 0.35 0.35 0.35	88.1 90.2 88.4 89.2	10.8 11.7 13.0 11.7	62.4 63.1 62.0 62.0	3H 3H 3H 3H
830888 830889 830890 830891 830892	HIN SIB//SHORT WHEAT/SVT HIN SIB//SHORT WHEAT SVT HATTON 1 N700194/9342/100/TP/SPRA(ADV.	Ê	6/N8200914 N8200921 C1017772 N8201801 N8201802	HRW HRW HRW HRW	62.8 63.2 63.2 63.1	72.6 72.6 71.1 72.2	0.35 0.34 0.38 0.37	888.7 9.09 9.09 9.09 7.088 9.09	11.7	64.5 64.4 63.9 62.4 63.7	3.H 2.H 2.H 4.H
830893 830894 830895 830896 830897	3 WA5514/1T//CER 4 WA5514/1T//CER 5 WA5514/1T//CER 6 KAVKAZ/PAHA 7 167822/101//LUKE/3/WA700		6/N8201903 6/N8201905 5/N8201908 6/N8202302 N8202401	HRW HRW HRW HRW	63.1 62.8 63.2 63.2 63.2	70.7 71.3 72.0 71.3 74.3	0.36 0.37 0.36 0.37	87.1 87.7 88.6 87.3 90.4	12.4 12.4 11.9	63.5 63.8 62.7 63.7 61.1	2H 3H 2H 2H
830898 830899 830900 830901 830902	8 167822/101//LUKE/3/WA700 9 HATTON 0 N6754/SM7437//CERCO//N72(ADV. 1 N6754/SM7437//CERCO//WA59 2 HTN SIB//SHORT WHEAT/SVT	=	N8202403 C1017772 N8200503 N8200604 N8200604	HRW HRW HRW HRW	62.7 63.5 62.8 62.4 63.0	72.6 70.6 71.4 71.4	0.39 0.38 0.37 0.36	87.6 86.3 87.4 88.0	10.8 11.6 11.6 9.8	61.9 64.0 63.7 62.6 61.4	33 33 H H H H H H H H H H H H H H H H H
830903 830904 830906 830906 830907	3 HTN SIB//SHORT WHEAT/SVT 4 N7200043/CENTURK 5 N7200043/CENTURK 6 TP107/N6754/SM7437/N7134 7 NOT AVAILABLE		N8200932 N8201514 N8201518 6/N8201605 6/N8201606	HRW HRW HRW	63.3 63.5 62.0 61.9	73.6 73.2 74.0 71.6	0.33 0.36 0.38 0.39	91.9 90.1 89.8 86.9 86.7	10.1	62.2 63.8 63.0 63.0	2H 2H 3H 3H
830908 830909 830910 830911 830912	8 WA5514/IT//CER 9 HATTON 0 ALLEN#62/ID000092(ADV. IV) 1 CERCO/N7300101 2 TP107/5909/3/173467/GNS/		6/N8201909 C1017772 6/N8202503 N8203005 N8203104	HRW HRW HRW HRW	63.3 63.9 62.4 62.2 62.2	72.3 71.1 71.5 69.5	0.39 0.37 0.38 0.37	87.5 88.8 86.6 87.5 84.9	11.7 10.4 10.6 11.6	63.5 63.3 63.4 61.4	3H 3H 3H
830914 830914 830915	3 167822/101/9342/101//TP/ 4 14106/3/GNS//BURT/IT 5 HATTON		N8203304 N8204903 C1017772	HRW HRW HRW	62.6 63.5 64.1	71.7	0.39	87.1 89.6 86.2	11.7	63.4 63.5 63.0	2H 3H 2H
1/ 0bs 3/ Abs 4/ 0bs	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 11% Protein. Observed Values Corrected to 11% Protein.	ure Bas to 11% P	is. rotein.		5/ Parti 6/ Promi	cularly sing Ove	omising 11 Quali	orall Qua	ty Chara stics.	cteristics.	

DONALDSON	RMKS	P-LVOL Good Pro Q- Q-LVOL P-BCRGR	P-BCRGR&MTIME P-BCRGR	Q-MTIME	P-BCRGR P-BCRGR P-BCRGR P-BCRGR	1 1 1 1	P-BCRGR P-BCRGR&MTIME 0-FYELD	P-BCRGR P-BCRGR
E. DON	BCRGR	49009	いたいのい	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
	LVOLC 4/	862 917 801 867 884	892 919 904 874 890	904 883 929 929	882 904 903 878 889	L5/20	27000	942
	TAOL	850 960 925 910 890	935 925 985 915	985 970 1010 985	11487	815 900 940 950	980 890 943 915	985
	MTIME	3.6 3.6	3-22.8	20.20 20.20 20.20		23.23.8 3.3.8 4.5.8 4.5.8	3.20.00.00.00.00.00.00.00.00.00.00.00.00.	2.5
	BABSC 3/	66.6 66.3 65.7 65.2 66.3	67.7 67.6 67.1 64.6 66.9	66.2 66.0 64.9 65.4		4.99 68.0 66.2 66.2 64.6	67.7 66.1 69.0 65.6 67.7	67.6
WA	BABS	66.4 67.7 67.7 65.9 66.4	68.4 67.7 68.4 65.9 67.3	67.5 67.4 66.0 66.3 63.0	36773	65.5 68.7 67.2 67.2 65.4	68.4 68.5 68.5 68.8 68.8	68.3
LIND, V	CLASS	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW
	ONG I	N8200101 N8200502 N8200602 N8200701 N8200701	N8200914 N8200921 C1017772 N8201801	N8201903 N8201905 N8201908 N8202302 N8202401	N8202403 C1017772 N8200503 N8200604 N8200931	N8200932 N8201514 N8201518 N8201605 N8201606	N8201909 C1017772 N8202503 N8203005 N8203104	N8203304 N8204903
	e de l'anglement de la grande de	<u> </u>	Ê.		(i = 1			
28	VARIETY	CCP/3/OMAR/IT//13438/HN7(ADV. N6754/SM7437/CERCO//N72 N6754/SM7437/CERCO//WA59 CLE//SM7437/N6754/3/N732 HTN SIB//SHORT WHEAT/SVT	HTN SIB//SHORT WHEAT/SVT HTN SIB//SHORT WHEAT SVT HATTON N700194/9342/101/TP/SPRA(ADV. N700194/9342/100/TP/SPRA	WA5514/IT//CER WA5514/IT//CER WA5514/IT//CER KAVKAZ/PAHA 167822/101//LUKE/3/WA700	167822/101//LUKE/3/WA700 HATTON N6754/SM7437//CERCO//N72(ADV. N6754/SM7437//CERCO//WA59 HTN SIB//SHORT WHEAT/SVT	HTN SIB//SHORT WHEAT/SVT N7200043/CENTURK N7200043/CENTURK TP107/N6754/SM7437/N7134 NOT AVAILABLE	WA5514/IT//CER HATTON ALLEN#62/ID000092(ADV. IV) CERCO/N7300101 TP107/5909/3/173467/GNS/	167822/101/9342/101//TP/ 14106/3/GNS//BURT/1T
NURSCO	LABNUM	830884 830884 830885 830886	830888 830889 830890 830891	830893 830894 830895 830896	830898 830899 830900 830901 830902	830903 830904 830905 830906 830907	830908 830909 830910 830911	830913

COMMENTS: Selection N820062 is high in protein. See "Remarks" column for deficiencies of selections not footnoted for good overall quality.

P = Poor; Q = Questionable

MURSCO 29			LIND,	XX							
LABNUM	VARIETY	IDNO	CLASS	TWT		FYELD	YEL	YELD FA	YELD FASH 1/	YELD FASH MSCOR FPROT MAB	YELD FASH MSCOR FPROT 1/ 1/ 1/
830916 HATTON 1 830917 830918 830919		C1017772 6/ N8300402 N8300404 5/ N8302602 N8305801	HRW HRW HRW HRW	64.0 63.2 64.0 62.8 62.8	71 68 73 73	068		1290	0 0.36 87. 9 0.35 86. 2 0.33 86. 1 0.33 91.	0 0.36 87.8 11. 9 0.35 86.1 12. 2 0.33 86.1 12. 1 0.33 91.6 12. 1 0.35 86.2 10.	0 0.36 87.8 11.1 64. 9 0.35 86.1 12.0 64. 2 0.33 86.1 12.0 65. 1 0.33 91.6 12.1 62. 1 0.35 86.2 10.9 65.
&30921 &30922 &30923 &30924		6/ N8305903 N8310704 6/ N8310705 N8310705 N8310701	HRW HRW HRW HRW	62.4 61.1 62.0 62.0	72.7 67.2 69.6 68.1		00000		.35 90. .36 88. .36 84.	.35 90.1 10.36 83.7 11.36 86.2 11.36 84.8 11.36 85.2 10.	.35 90.1 10.8 63. .36 83.7 11.6 64. .36 86.2 11.6 64. .36 84.8 11.5 65. .36 85.2 10.2 64.
\$30926 \$30927 HATTON 2 \$30928 NUGAINES 2 \$30929		5/ N8310702 C1017772 C1013968 N8310703 N8302703	HRW HRW SWW HRW	61.6 63.6 62.0 62.0	69.0 70.1 67.6 69.6 70.6		000035	α	35 86. 35 887. 35 885. 35 886.	35 86.1 11. 35 87.4 10. 35 85.0 8. 35 86.8 11. 35 87.9 11.	.35 86.1 11.6 64. .35 87.4 10.6 62. .35 85.0 8.9 57. .35 86.8 11.0 64. .35 87.9 11.0 60.
\$30931 \$30932 \$30933 \$30934		N8302704 N8302705 6/ N8302701 N8302702 N8302601	HRW HRW HRW	62.4 62.4 61.6 61.6 62.8	70.0 70.2 70.7 68.2		0.34 0.32 0.35 0.37 0.38	n n n n n	32 88. 35 87. 37 84. 38 91.	34 87.5 10. 35 88.7 11. 35 87.8 11. 37 84.5 13. 38 91.2 10.	.34 87.5 10.7 61. 35 88.7 11.2 61. 35 87.8 11.0 65. 37 84.5 13.9 62. 38 91.2 10.9 60.
\$30936 \$30937 HATTON 3 \$30938 \$30940		N8300201 C1017772 N8300301 <u>6</u> / N8300403	HRW HRW HRW	62.8 63.6 62.4 62.0 62.4	72.4 70.3 68.9 67.6		0.37 0.36 0.37 0.34	α	37 887. 36 87. 37 84. 34 85.	37 88.5 9. 36 87.0 11. 37 84.9 10. 34 85.3 11. 36 85.6 12.	37 88.5 9.9 60. 36 87.0 11.2 64. 37 84.9 10.7 62. 34 85.3 11.8 66. 36 85.6 12.0 63.
\$30941 \$30942 \$30943 \$30944 \$30945 HATTON 4		6/ N8300501 N8300502 N8300801 N8300902 C1017772	HRW HRW HRW HRW	61.6 60.8 62.4 61.2 63.6	68.4 67.7 71.6 68.3		0.37 0.35 0.37 0.34	m m m m m	37 84. 35 84. 37 87. 34 85. 36 87.	37 84.4 11. 35 84.6 10. 37 87.9 10. 34 85.8 11. 36 87.0 10.	.37 84.4 11.0 64. 35 84.6 10.8 61. 37 87.9 10.5 64. 34 85.8 11.7 62. 36 87.0 10.5 64.
830946 830947 830948 830949		5/ N8300901 N8301105 N8301106 5/ N8301101 N8301102	HRW HRW HRW	62.4 61.2 61.6 62.0 62.0	68.9 67.2 67.6 70.8 68.2		0.35 0.37 0.34 0.35 0.35	n	35 85. 37 83. 34 85. 35 87.	.35 85.8 10. .37 83.2 10. .34 85.2 10. .35 87.9 11.	.35 85.8 10.7 62. .37 83.2 10.1 63. .34 85.2 10.1 62. .35 87.9 11.9 63. .37 84.0 10.8 61.

^{6/} Promising Overall Quality Characteristics. Absorption at 14% Moisture Corrected to 11% Protein.

4 Observed Values Corrected to 11% Protein.

USDA, SEA AR WESTERN WHEAT QUALITY LAB.	PREI	PRELIMINAF	Y HARD	RY HARD RED WINTER	ER					CONTD.	PAGE 1
PULLMAN, WA. NURSCO 29			LIND, V	WA					الما	. DONALDSON	SON
LABNUM	IETY		CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	C0D1	CODIC 4/	RMKS
830916 HATTON 1 830917 830918 830919	C 017 N8300 N8300 N8302 N8305	1017772 3300402 3300404 3302602 3305801	HRW HRW HRW HRW	66.6 67.0 68.8 65.4 65.4	023.4	920 980 933 1000 950	914 918 871 932 956	£0000		т. С	P-Crumb Grain Q-BCRGR
830921 830922 830923 830924 830924	N N N S 3 1 1 0 N	3305903 3310704 3310705 3310706	HRW HRW HRW HRW	66.2 67.7 66.7 68.6 67.7	70407	895 960 960 975 915	907 923 924 944 965	たいのなり		0 00	Q-BCRGR&FYELD Q-MSCOR&BCRGR Q-MSCOR&BCRGR
830926 830927 HATTON 2 830928 NUGAINES 2 830929	N8310702 C1017772 C1013968 N8310703 N8302703	702 7772 3968 3703 2703	HRW SWW HRW HRW	67.7 64.4 57.7 66.9	7.81 7.00 3.00 3.00	1015 908 880 948 780	978 933 1006 948 780	~ N O J O		ĞŒ	Q-BCRGR P-BCRGR&LVOL
3093 3093 3093 3093	N 8 3 0 2 2 8 3 0 2 2 8 3 0 2 2 8 3 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3302704 3302705 3302701 3302702 3302601	HRW HRW HRW HWW	65.5 64.2 67.3 65.3	13.13.0	795 830 955 975 865	814 818 955 795 871	800190			-BCRGR&LVOL -BCRGR&LVOL -LVOL&BCRGR -BCRGR&LVOL
3093 3093 3093	N8300201 C1017772 N8300301 N8300403 N8300503	0201 7772 0301 0403 0503	HRW HRW HRW HRW	66.8 66.3 69.4 68.5	かららい ない たっこう ない かい	875 955 980 1018	943 943 968 968	N-000			-BCRGR&LVOL -FYELD
3094 3094 3094 3094 3094 3094	N8300501 N8300502 N8300801 N8300902 C1017772	0501 0502 0801 0902 7772	HRW HRW HRW HRW	67.0 66.1 68.3 65.7	49 the contract of the contrac	1025 980 893 1010	1025 992 924 967 936	NUNN		0100	Q-FYELD P-FYELD Q-BCRGR Q-BCRGR
30946 30947 30948 30949 30949	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	300901 301105 301106 3301101	HRW HRW HRW HRW	64.6 66.5 66.7 64.6	5.5.5.2 7.60 7.60 7.60	950 965 950 1055 1060	969 1021 1006 999 1072	NNWNN			Q-FYELD Q-FYELD Q-FYELD

Parker of the Share of the Shar

8 1868 g 188

The second section is a second second

THE SECTION OF THE SE

SS TWT FYELD FASH MSC 62.4 69.8 0.35 86. WW 661.2 69.8 0.35 87. WW 662.8 67.5 0.35 88. WW 662.0 72.5 0.35 88. WW 662.0 70.5 0.35 88. WW 662.0 70.7 0.34 88. WW 662.0 70.7 0.35 88. WW 6	CLASS TWT FYELD FASH MSCOR FPF 103 HRW 62.4 69.8 0.35 86.8 10.104 HRW 63.6 69.7 0.35 86.8 10.104 HRW 63.2 69.7 0.35 86.9 9.10.104 HRW 62.8 67.5 0.35 86.9 9.10.104 HRW 62.0 72.5 0.35 88.8 11.104 HRW 62.0 70.8 0.35 87.9 10.105 HRW 62.0 70.7 0.34 88.5 11.105 HRW 62.0 70.7 0.35 87.8 11.105 HRW 62.0 70.7 0.35 88.5 70.1 11.105 HRW 62.	CLASS TWT FYELD FASH MSCOR FPROT MAE 103 HRW 62.4 69.8 0.35 86.8 10.9 61. 104 HRW 63.6 70.0 0.35 86.8 10.9 61. 105 HRW 64.0 72.3 0.33 85.7 11.5 64. 106 HRW 62.8 67.5 0.38 83.2 10.3 60. 107 HRW 64.0 72.5 0.38 83.2 10.3 60. 108 HRW 62.0 70.5 0.35 87.2 10.7 62. 109 HRW 62.0 70.5 0.35 87.2 10.7 62. 101 HRW 62.0 70.5 0.35 87.2 10.7 62. 102 HRW 62.0 70.5 0.35 87.2 10.7 62. 103 HRW 62.0 70.5 0.35 87.2 10.7 62. 104 HRW 62.0 70.5 0.35 89.6 11.1 63. 105 HRW 62.0 70.5 0.35 89.6 11.1 63. 106 HRW 62.0 70.5 0.35 89.6 11.1 63. 107 HRW 62.0 70.2 0.33 88.5 10.8 62. 108 62.0 70.2 0.33 88.5 11.4 64. 109 HRW 62.0 70.7 0.34 88.4 11.1 63. 109 HRW 62.0 70.7 0.35 89.2 11.4 64. 109 HRW 62.0 70.7 0.34 88.7 11.9 63. 109 HRW 62.0 70.7 0.34 88.7 11.9 63. 109 HRW 62.0 70.7 0.34 88.7 11.9 64.
5S TWT FYELD FASH WASS TWT FY FASH WAS TWT FY FASH WASS TWT FY FASH WAS TWT FASH WAS TWT FY	62.4 FYELD FASH MSCOR F 69.8 0.35 86.8 1 69.8 0.35 86.8 1 65.0 0.35 86.8 1 65.0 0.35 86.9 1 65.0 0.35 87.2 1	SS TWT FYELD FASH MSCOR FPROT MABSC 1
TWT FYELD FASH M 62.4 69.8 0.35 8 8 64.0 69.8 0.35 8 8 65.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 8 66.0 0.35 8 66.0 0.3	TWT FYELD FASH MSCOR F 10.00 0.35 86.8 1 63.6 69.8 0.35 86.8 1 64.0 69.8 0.35 86.8 1 64.0 72.3 0.33 90.5 1 62.0 70.8 0.35 88.8 1 62.0 70.5 0.35 87.2 1 62.0 70.5 0.35 87.2 1 62.1 72.7 0.34 88.4 1 62.2 4 67.8 0.35 88.5 1 62.4 67.8 0.37 83.7 1 62.6 0.35 88.5 1 62.1 72.1 0.35 87.8 1 62.2 4 72.1 0.35 87.8 1 62.8 66.8 0.34 89.4 1 62.8 66.8 0.34 84.2 1 62.8 66.8 0.34 84.2 1 62.8 66.8 0.34 84.2 1	FYELD FASH MSCOR FPROT MABSC 17
YELD FASH YELD 17.5 99.8 99.8 90.35 99.7 7.5 3 99.8 99.8 90.35 99.7 7.5 90.35 99.8 90.35 99.8 90.35 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.8 99.9 99.35 99.9 99.35 99.9 99.35 99.9 99.35 99.9 99.35 99.9 99.35 99.9 99.35 99.	YELD FASH MSCOR F 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	YELD FASH MSCOR FPROT MABSC 1/ 1/ 2/ 2/ 9.8 0.35 86.8 10.9 61.7 9.8 0.35 85.7 11.5 64.2 8.3 0.33 80.5 11.6 62.0 7.5 0.35 87.2 10.3 60.9 1.5 0.35 87.2 10.3 60.9 1.5 0.35 87.2 10.6 64.6 2.5 0.35 87.2 10.7 62.9 2.7 0.34 90.5 11.1 64.3 0.37 83.7 12.1 64.3 0.38 86.5 11.4 64.3 0.37 88.5 10.8 62.8 0.38 86.5 11.4 64.3 0.37 88.5 10.8 62.8 0.38 86.5 11.4 64.6 1.7 0.34 89.4 12.5 64.0 65.8 0.36 87.5 11.4 64.6 1.7 0.35 87.8 11.9 63.0
ASH 1.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.3.4.4.6.7.3.4.4.6.7.3.3.4.4.6.7.3.4.4.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.6.7.3.4.4.4.6.7.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	ASH MSCOR F 3.35 3.35 3.36 3.37 3.38 8.37 3.37 8.37	ASH MSCOR FPROT MABSC 17 1/ 2/ 18 86.8 10.9 61.7 38 85.7 10.7 64.2 38 87.2 10.7 64.2 39 85.9 11.6 62.0 38 83.2 10.3 60.9 39 88.8 11.1 61.7 31 90.5 11.6 62.0 32 91.3 90.9 58.7 31 87.2 10.7 62.9 32 87.2 10.7 62.9 34 88.4 11.1 64.3 35 89.5 11.4 64.6 35 89.2 11.4 64.6 36 89.2 11.4 64.6 36 89.2 11.4 64.6 37 88.7 12.1 64.3 38 86.5 11.4 64.6 39 89.2 11.4 64.6 31 88.7 12.9 63.0 32 89.2 11.4 64.6 33 89.2 11.4 64.6
	800 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15COR FPROT MABSC 11 3/ 2/ 3/ 64.2 15.8 10.9 61.7 15.8 10.3 60.5 16.9 9.8 58.9 16.9 9.8 58.9 17.2 10.3 60.9 17.2 10.3 60.9 17.2 10.3 60.9 17.3 10.8 62.9 17.5 10.7 62.9 17.5 10.7 62.9 17.6 11.1 64.3 17.7 12.1 64.3 17.8 11.9 62.8 17.8 11.9 63.0 17.9 12.5 64.0 17.9 12.9 63.0
		PROT MABSC 1/ 3/ 10.9 61.7 61.7 64.2 9.8 58.9 11.6 62.0 60.9 11.1 64.6 62.8 1.1 64.3 1.1 64.6 62.8 1.1 64.6 63.0 1.1 64.6 63.0 1.1 64.6 63.0 1.1 64.6 1.1 64.6 1.1 64.6 1.1 64.6 1.1 64.6 1.1 64.6
1ABSC	MTYP MTYP MTYP MTYP MTYP MTYP MTYP MTYP	

	1
	ı
	в
	п
	ı
	ľ
	6
	ű
	1
	1
	1
	1
	1
	E
	ĺ,
	ı
	1
	ı
	ú
	1
	ú
	5
	k
	ĺ
	a

CONTD. PAGE 2	. DONALDSON	CODIC RMKS	P-LVOL&BCRGR P-LVOL&BCRGR	P-FYELD&BCRGR P-LVOL&BCRGR	P-BCRGR P-BCRGR	P-FYELD	P-FYELD	P-LVOL&BCRGR P-LVOL&BCRGR	P-MTIME Q-MTIME Q-BCRGR P-LVOL&BCRGR
	LU	BCRGR CODI	80887	~ V N M &	ころからら	N N N N N	~~~~~	00000	<i>N N N M </i>
		L LVOLC	5 961 5 1014 0 929 5 784 5 959	5 963 5 969 5 927 5 903	9200 0000 0000 0000 0000	942 9839 985 979	975 978 969 974	962 970 937 949	948 943 1021 880 842
		MTIME LVOL	4.1 959 4.4 104 3.8 910 1.9 869 4.2 888	3.1 1000 22.5 33.5 971 33.4 833.4	3.4 940 22.2 940 22.5 885 44.8 955 3.7 1005	4.8 1010 2.4 945 4.5 970 3.6 1010	6.3 1000 5.0 1010 3.8 975 4.8 1030	950 920 927 925 7.7 855 875	985 985 985 985 985 985 985
RED WINTER	WA	BABSC M	63.9 65.2 66.4 62.7	64.2 653.9 65.2 65.2	666.2 666.2 666.2 666.2	67.5 63.8 66.0 66.2	67.8 67.6 66.4 66.2	65.0 65.2 65.2 61.8 62.5	61.8 66.0 67.7 63.5 62.0
ARY HARD	LIND, Y	CLASS	HRW HRW HRW	HRW HRW HRW	HRWW HRWW HRWW	HHREY HREY KY	HRRE HRRE HRRE HRRE HRRE HRRE HRRE HRRE	HRW HRW HRW	HRW HRW HRW HRW
PRELIMIN		ONGI	N8301103 N8301104 C1017772 N8301801 N8301802	N8302002 N8302001 N8302302 N8302303	C1017772 N8302501 N8303901 C1017772	N8304301 N8304301 N8304804 N8304804 N8304805	N8304802 N8304803 N8300101 C1017772 N8300601	N8301001 N8301401 C1017772 N8302201 N8302801	N8303101 N8304201 N8304501 N8305301 N8305402
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		VARIETY	TON 5		TON 6		HATTON 8	HATTON 9	
USDA, SEA WESTERN WH PULLMAN, W	NURSCO 29	LABNUM	830951 830952 830953 830954 830955	830956 830957 830958 830959 830959	830962 830962 830963 830964 830965 HATTON	830966 830967 830968 830969 830970	830971 830972 830973 830974 HAT	830976 830977 830978 HAT 830979 830980	830981 830982 830984 830984 830985

LIND, WA	VARIETY IDNO CLASS TWT FYELD FA	1 HRW 62.8 69.1 0. 2 HRW 63.6 71.3 0. 3 HRW 63.2 70.2 0. 1 HRW 64.4 72.2 0.	HATTON 10 CI017772 HRW 63.6 70.2 0. N8306202 HRW 62.0 70.6 0. N8306201 HRW 62.4 69.9 0. 6/N8301303 HRW 62.0 70.7 0.	2 HRW 63.2 69.4 0. 2 HRW 64.0 70.4 0. 1 HRW 62.0 69.6 0. 1 HRW 62.0 68.5 0.	HATTON 12 6/N8302401 HRW 62.4 71.6 0.5 C1017772 HRW 64.0 69.9 0.5 N8302901 HRW 62.4 71.7 0.5 N8302901 HRW 62.4 71.7 0.5 N8303204 HRW 62.0 69.8 0.5 N8303204 HRW 62.0 N8303204	5 HRW 63.6 68.3 0. HRW 63.2 68.6 0. HRW 62.4 70.6 0. HRW 62.8 70.1 0.	2 HRW 62.0 69.8 0. 4 HRW 62.8 70.3 0. 5 HRW 62.4 72.6 0. 1 HRW 62.0 69.8 0. 2 HRW 62.0 70.3 0.	N8303403 HRW 62.8 69.8 0.3 C1017772 HRW 64.0 70.2 0.3 N8303701 HRW 61.6 72.1 0.3 N8303801 HRW 62.8 69.6 0.3 6/N8303803 HRW 62.0 71.8 0.3
	FASH MSCOR FF	34 87.0 11 34 86.4 10 35 88.5 10 32 88.8 10 36 88.9 10	35 87.0 10 33 88.2 9 35 87.4 111 35 88.6 111	35 88.0 10 35 85.9 12 35 87.5 9 37 84.6 9	35 88.8 9 37 88.0 11 36 86.6 10 39 86.8 10 36 86.5 10	33 86.5 10 33 86.7 11 35 87.7 11 35 87.7 9	35 86.9 8 34 87.9 8 36 89.5 9 38 85.6 9	34 87.5 9 35 87.4 10 35 89.6 11 35 86.8 10 38 87.3 111
	PROT MABSC	1.3 65.6 0.6 64.0 0.0 64.2 0.8 63.2 0.7 62.5	64.0 661.3 662.5 662.7 662.7	.8 62.1 .8 65.7 .0 60.7	5 60.9 0 663.2 0 662.0	.2 60.5 .0 62.3 .9 59.7 .1 60.2	62.1 65.9 8.56.9 60.6	.2 57.0 .8 63.1 .9 61.8 .3 63.0
E. DONALDSON	MTYPE	22H 22H 22H 22H 22H 23H	77804 778804	WWWII ttoout	WWW THE	ΣΗΣΣΣ 8 4 7 8 7	NOOND	N H W H W
NOS	BABS	68.1 65.8 65.4 64.2 63.4	64.7 63.4 64.6 65.9 66.0	65.6 70.1 62.1 61.9 61.5	62.6 62.6 64.4 63.2 62.9	62.9 64.5 62.8 63.0 62.6	62.2 60.1 64.9 57.4 60.6	57.9 65.1 64.9 64.9

Series Balkan Series of the se

	LAB.	
	QUALITY	
SEA AR	WHEAT	MA.
USDA, S	8	PULLMAN

USDA, SEA AR WESTERN WHEAT QUALITY LAB PULLMAN, WA.	LAB.	PRELIMINARY		HARD RED WINTER	IER					CONTD.	PAGE 3
NURSCO 29			LIND,	WA					ш	DONALDSON	SON
LABNUM	VARIETY	ONG	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	CODIC	RMKS
830986 830987 830988 830988 830989		N8305501 N8305601 N8305702 N8305703 N8305703	HRW HRW HRW	67.8 66.2 66.4 64.4	7.32.1.	955 840 860 880 905	936 865 922 892 924	りひたひの		O-0 0 0 0	Q-BCRGR P-LVOL&BCRGR P-LVOL&BCRGR Short MTIME
830991 HATTON 10 830992 830993 830994 830994		C1017772 N8306202 N8306201 N8301303 N8301304	HRW HRW HRW HRW	65.2 64.5 65.7 65.9 65.9	13887 4.38	913 870 850 925 980	944 938 918 925	NNTON		<u> </u>	-LVOL&BCRGR -LVOL&BCRGR
830996 830997 830998 HATTON 11 830999 831000		N8301301 N8301302 C1017772 N8301701 N8301901	HRW HRW HRW	65.8 63.3 62.9 62.9	22.35	925 990 860 785 790	937 916 934 847 871	04800		مٰمٰ	P-LVOL&BCRGR P-LVOL&BCRGR
831001 831002 831003 HATTON 12 831004 831005		N8301902 N8302401 C1017772 N8302901 N8303204	HRW HRW HRW	64 1 62.4 65.4 64.2 63.0	20000	805 895 860 825 790	898 883 922 887 796	W W W W W		d dd	P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR
831006 831007 831008 831009 831010		N8303205 N8303201 N8303202 N8303203 N8303301	HRW HRW HRW HRW	63.7 64.5 62.9 62.9 63.9	5.000.0	710 865 780 825 805	760 865 786 819 886	t00t0		4444	P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR
831012 831012 831013 831014 831015		N8303302 N8303404 N8303405 N8303401 N8303401	HRW HRW HRW	63.3 62.5 66.0 59.1	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	855 780 840 755 735	923 929 908 860 871	88400		44444	P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR
831016 831017 HATTON 13 831018 831019 831020		N8303403 C1017772 N8303701 N8303801 N8303803	HRW HRW HRW	59.7 65.3 64.0 65.0	5.808.1 7.1.7.02.	715 990 950 900 965	827 1002 950 906 946	0,01mm01		4 00	P-LVOL&BCRGR Q-BCRGR Q-BCRGR

	LAB.	
	QUALITY	
SEA AR	-	WA.
USDA, SE	WESTERN	PULLMAN,

CONTD. PAGE 4	E. DONALDSON	CODIC RMKS	Q-BCRGR Q-BCRGR	Q-BCRGR P-LVOL&BCRGR	P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR Q-FYELD&BCRGR	O-BCRGR P-BCRGR	P-BCRGR Q-BCRGR&LVOL P-BCRGR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Short Mix P-LVOL&BCRGR P-LVOL&BCRGR P-FYELD-Short Mi
JARY HARD RED WINTER	LIND, WA	BCRGR CODI	みのひな	വനന⊅ന	∞ 0√0∞	たるののな	ಣಬಸಣಐ	といせのよ	u
		LVOLC 4/	973 948 935 951	995 937 861	921 882 865 906 913	88 5 930 917 960	984 966 953 838 861	937 915 944 944	915 822 858 900 949
		TAOL	855 905 935 940	970 935 900 855 890	840 870 875 875	885 880 830 910	910 910 900 805	925 890 925 925 855	1020 810 790 900 955
		MTIME	ンドキシン	50-00 00-00 00-00	22.55 43.78 7.00	よいより5	7888	81.22.5	4-648
		BABSC 3/	64.5 66.7 66.0 66.0	66.6 66.6 65.4 64.6 64.3	64.0 65.6 65.8 66.0	66.8 66.1 67.2 65.9 66.0	65.6 66.4 65.7 67.5 58.3	66.4 65.1 65.8 63.9	65.0 62.7 63.5 64.4 64.4
		CLASS	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW
PRELIMINA		ONG	N8304001 N8304102 N8304103 N8304104 N8304104	N8304401 N8304601 C1017772 N8304702 N8304701	N8304901 N8305001 N8305904 C1017772 N8305901	N8305902 N8306001 N8306002 N8306101 N8306602	N8306601 N8306701 N8306802 N8306801	C1017772 N8307101 N8307102 N8307103 N8307201	N8307301 N8307401 N8307402 N8307403 N8307501
EA AR WHEAT QUALITY LAB. , WA.	29	VARIETY		HATTON 14	HATTON 15			HATTON 16	
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.	NURSCO	LABNUM	831021 831022 831023 831024 831024	831026 831027 831028 831029	831031 831032 831033 831034 831035	831036 831037 831038 831039 831040	831041 831042 831043 831044 831045	831046 831047 831048 831049 831050	831051 831052 831053 831054 831055

DONALDSON	TYPE BABS	64.4 66.1 64.5 63.4 65.2	65.3 655.4 657.2	65.8 64.9 63.2	65.8 66.0 67.5 64.2 63.7	64.8 65.0 63.2 64.8	64.5 65.0 65.0 67.0	64.3 64.3 64.5 65.7
E. DC	Σ	0 3H 0 6M 0 6M	1 5H 1 3H 7 4M 0 4M	0 3H 6 3H 1 2H 4 2H 9 2H	4H 4H 4H 4H	2H 2H 3H 2H	08 4 H H O	8 T X X X X X X X X X X X X X X X X X X
	r MABSC 3/	62. 62. 67.	633.	64.0 64.0 62.1 62.1	62.0 63.3 61.9 62.3	62.25	63.6 63.6 62.5 62.7	61.7 62.3 62.7 61.2 62.8
	FPROT 1/	10.6	10.07	10.01	11.6	10.9	11.6	10.1
	MSCOR	85.8 90.0 88.0 87.7	88.0 89.1 89.3 90.8	90.7 90.5 91.9 91.9	90.2 88.5 4.88.3 86.3	86.9 87.3 86.6 86.9	87.5 87.0 86.6 85.9 86.9	86.2 88.0 85.6 87.0 90.8
LIND, WA	FASH 1/	0.39 0.36 0.37 0.36	0.37 0.36 0.33 0.35	0.33 0.33 0.32 0.32	0.36 0.36 0.36 0.38	0.38 0.37 0.37 0.37	0.36	0.35
	FYELD	70.9 73.1 71.8 71.1	71.8 72.3 72.4 72.0	72.7 72.1 72.0 72.8	72.3 72.0 72.6 71.6	71.07.71.270.5	71.1 70.3 69.9 69.4 69.9	69.5 70.6 69.3 71.1 72.4
	TWT	60.8 65.2 64.4 64.4	64.8 65.2 64.4 64.4	1.19 1.19 1.19 1.19	64.0 64.4 65.2 65.2 63.6	65.2 64.8 64.4 64.4	64.8 64.4 64.8 63.6	64.0 63.2 63.2 64.0
	CLASS	HHRRE	HRW HRW HRW HRW	HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW	HRW HRW HRW HRW	HRW HRW HRW
	ONGI	6/N8307601 5/N8307901 N8308001 N8308103 6/N8308104	N8308101 5/N8308102 5/N8308502 N8308501 N8308602	0/N8308603 0/N8308601 N8308702 5/N8308703 N8308703	5/N8308803 6/N8308801 6/N8308802 C1017772 6/N8308901	6/N8309001 6/N8309002 6/N8309003 6/N8309004 N8309004	N8309006 N8309404 N8309405 N8309406 N8309406	N8309401 N8309402 N8309403 C1017772 N8309501
	VARIETY							
29					HATTON 17			HATTON 18
NURSCO	LABNUM	831056 831057 831058 831059 831060	831061 831062 831063 831064 831065	831066 831067 831068 831069 831070	831071 831072 831073 831074 831074	831076 831077 831078 831079 831080	831081 831082 831083 831084 831085	831086 831087 831088 831089 831090

PRELIMINARY HARD RED WINTER

P-LVOL P-LVOL&BCRGR Q-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-MTIME&LVOL P-MTIME&LVOL P-LVOL&BCRGR Q-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR Q-LVOL&BCRGR RMKS Q-MTIME P O-FYELD O-BCRGR O-MTIME DONALDSON CODIC 4 CODI BCRGR れらろって NONON NENNO TOTO たるいる ひのけいい LVOLC 972 945 888 913 902 885 934 932 889 953 903 899 880 909 1013 921 927 930 955 934 908 853 850 866 866 934 931 941 924 894 4 865 865 905 930 860 940 LVOL 940 925 935 905 925 920 890 850 785 810 860 860 855 MTIME 43.57 ろろしらる \$-00± 99600 こられらり 0000 3.0 するのです いいいい 20-20 20000 の下のする BABSC 64.7 66.5 65.2 64.1 65.4 66.2 66.8 64.3 64.6 65.1 65.2 65.5 67.1 64.5 とたるとら 2011 m 8 2 0 m 2 のらなはら 65. 64. 65. 64. 64. 64. 65. MA LIND, CLASS HRW HRWW HRWW HRWW HRW HRW HRW HRW HRW HRW HRW HRW N8309006 N8309404 N8309405 N8309406 N8309406 N8308803 N8308801 N8308802 C1017772 N8308901 N8308102 N8308102 N8308502 N8308501 N8308602 N8308603 N8308601 N8308702 N8308703 N8308703 N8309001 N8309002 N8309003 N8309004 N8309005 N8309401 N8309402 N8309403 C1017772 N8309501 N8307601 N8308001 N8308103 N8308103 N8308104 ONG VARIETY HATTON 17 18 HATTON 29 831071 831072 831073 831074 831075 831086 831087 831088 831089 831076 831077 831078 831079 831080 831081 831082 831083 831084 831084 831056 831057 831058 831059 831060 831066 831067 831068 831069 831070 831061 831062 831063 831064 831064 NURSCO LABNUM

NO	BABS	62.2 63.2 62.9 64.0	64.9 65.5 65.7 65.3	68.2 70.2 69.5 63.2 68.7	69.2 66.5 64.3 64.1	63.8 62.2 63.5 67.3	63.9	62.1 63.5 63.4
DONALDSON	MTYPE	ΣΣΣΣΣ	IZIII		IIISI	ΙΣΙΣΙ	~~~	~ ~ ~ ~ ~ ~
เมื	MABSC 3/	60.8 4 60.9 4 62.2 6	61.6 2 63.3 4 63.7 4 63.7 4	63.3 64.6 65.1 63.8 64.5	65.5 51 63.0 41 62.2 31 61.6 61	3.25	8.8 3M 8.8 3M 22.6 44M 7.8 2M	10.6 3M 16.8 2M 17.5 2M 10.7 3H
	FPROT	9.7 10.8 10.6 10.6	12.1 112.2 111.4 10.9	12.2	2010.8	9.6 9.6 9.7 9.7 6	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.6 9.4 9.4 50 10.6
	MSCOR	886.99 886.99 88.88	85.9 886.2 86.8 87.5	87.4 89.0 86.2 88.2	89.7 84.5 86.9 86.9	88.0 84.2 89.9 87.0 86.3	85.9 83.7 87.7 84.1	84.6 84.1 80.6 91.4 86.0
	FASH 1/	0.37 0.37 0.36 0.36	0.37 0.36 0.38 0.38	0.37 0.37 0.34 0.37 0.35	0.32 0.38 0.37 0.37	0.36 0.37 0.34 0.34	0.34 0.40 0.36 0.37 0.40	0.41 0.40 0.36 0.39
	FYELD	69.8 71.5 70.6 71.7	69.9 71.4 70.2 71.0	71.0 71.3 71.2 70.1	70.9 68.9 71.4 70.6	71.1 68.2 72.3 69.1	68.1 69.2 70.8 68.0	70.3 69.7 66.7 74.7
MA	TWT	64.4 63.2 64.8 64.8	62.8 63.2 64.4 64.8	64.8 64.8 63.6 65.5	63.2 63.2 63.6 62.3 62.3	65.6 63.6 62.8 64.4 64.0	64.4 62.8 65.6 63.6	63.2 64.8 64.4 65.2
LIND, M	CLASS	HRW HRW HRW	H H H R W W W W W W W W W W W W W W W W	H H H R W W W W W W W W W W W W W W W W	HHRW HRWW HRWW	HRW HRW HWW HWW	SWW SWW HRW SWW SWW	HWW SWW SWW HWW HRW
	ONGI	N8309601 N8309705 N8309702 N8309703 N8309704	N8309802 6/N8309801 5/N8309902 N8309901 C1017772	6/N8310002 5/N8310003 5/N8310004 0/N8310102	5/N8310201 6/N8310201 5/N8310502 6/N8310501	C1017772 C1013968 N8310801 N8300504 6/N8300505	6/N8300701 6/N8300702 C1017772 C1013968 5/N8300703	0/8301201 6/N8301501 N8301502 5/N8301601 C1017772
	VARIETY		19			20 ES 20	21 ES 21	22
29			HATTON			HATTON 2	HATTON	HATTON
NURSCO	LABNUM	831091 831092 831093 831094 831095	831096 831097 831098 831099 831100	831101 831102 831103 831104 831104	831106 831107 831108 831109 831110	8311112 831112 8311114 8311114	831116 831117 831118 831119 831120	831121 831122 831123 831124 831125

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	PRELIM	IINARY HARD RED	RED WINTER	TER					CONTD.	PAGE 6
NURSCO 29		LIND,	WA					Ш	. DONALDSON	NOSON
LABNUM	ONG I	CLASS	BABSC 3/	MTIME	TOOT	. LVOLC	BCRGR	CODI	COD1C	RMKS
831091 831092 831093 831094 831095	N8309601 N8309705 N8309702 N8309703 N8309704	HRW HRW HRW	63.5 63.5 64.4 63.9	1.00.00	730 815 850 850	811 834 862 875 840	~99mm			P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR Q-BCRGR Q-LVOL&BCRGR
831096 831097 831098 831099 831100 HATTON 19	N8309802 N8309801 N8309902 N8309901 C1017772	HRWW HRWW HRWW	63.8 64.8 67.5 64.9	0 m m m m m m m m m m m m m m m m m m m	860 950 975 775 840	792 907 901 750 846	t8-153			Q-BCRGR P-LVOL&BCRGR PoorHatton
831101 831102 831103 831104 831105	N8310002 N8310004 N8310004 N8310102	HHRRW	67.5 68.8 68.3 62.0	30.44.0 0.44.0 0.44.0	925 1015 1000 855 875	882 928 926 781 813	いたいいい		9	Q-BCRGR
831106 831107 831108 831109 831110	N8310101 N8310201 N8310502 N8310501	HHRRE	67.7 66.7 64.4 63.8	333.00	925 955 950 910	832 967 956 910 943	のこのなっ			
831111 HATTON 20 831112 NUGAINES 20 831113 831114 831115	C10177772 C1013968 N8310801 N8300504	HRW HWW HWW	64.2 63.1 64.8 67.4	0.00 4.00 7.00 7.00	935 923 808 883	960 979 889 889	N m 9 N	9.11	8.96	Short MTIME P-LVOL&BCRGR
831116 831117 831118 HATTON 21 831119 NUGAINES 21 831120	N8300701 N8300702 C1017772 C1013968 N8300703	SWW SWW HRW SWW	64.3	3.0	935	096	8	8.84 9.17 8.96 9.26	8.72 8.99 8.80 9.08 E	Excellent FYELD
831121 831122 831123 831124 831125 HATTON 22	N8301201 N8301501 N8301601 C1017772	HWW SWW SWW HWW HRW	62.8 62.9 63.8	3.0	955 1010 920	998	2 22	9.06	8.91 8.92 P	P-BCRGR P-FYELD Outstanding

NO	BABS	62.5 62.5	63.5 60.0 62.9	59.7	0 00	m m 00	0 m m N	
DONALDSON	MTYPE	ΣΣΣΣΣ	ΣΣΣΣΣ	ΣΣΣΣΣ				
u	MABSC	7. t.	2 1 2 2 2 4 2 3 3 2 4 4 3 3 3 5 4 4 5 3 5 4 4 5 5 5 4 5 5 5 6 6 6 6 6 6 6 6 6 6	80.27	6.0 2M 6.0 2M 6.4 3M 9.8 4M	70000	.0 3M .2 4H .9 4H .0 2H	.5 3H .6 2H .6 2H .6 2H .5 5H
	FPROT	90-90	, 60000 , runna	20.00	0.00000	- M- 80	00000	6 61 0 59 5 62 7 62
	MSCOR	1.7.18	10734	5.00	1.05.1	<u>ν</u> & &	8.2 10 6.9 10 6.8 10	6.2 10 8.2 10 9.2 13 7.2 10 5.7 12
	FASH	0.40 80.39 80.41 80.41 80.41	338837		42 .399 77 .399 88		37 78 35 88 34 86 39 86	356 886 356 356 886 886 885
	FYELD	67.7 73.2 71.6 69.0	9.00-07	7.8 6.8 8.3 1.7	1.0 2.4 1.9 2.9 0 2.9	0.8 3.0 1.7 0.8	3.2 0	2.5
	TWT	664.8	3354	3.2 7 14.0 6 14.4 6	2.8 7 3.2 6 4.0 7 4.0 7 4.0 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5.2 3.2 4.0 7.0 7.0 7.0 6.0 7.0 7.0 8.0 8.0 8.0 8.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	23.6 7 6 7 3.2 7 3.6 7 7 7 9.6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	23.2
LIND, WA	CLASS	MMS MMS MMS		SWW 6 SWW 6 SWW 6 SWW 6	MMH 9 MMH	HRW 6 SWW 6 HRW 6 HRW 6 HRW 6	SWW 6 HRW 6 HRW 6 HRW 6	RRW RRW RWW RWW 66
	ONGI	C1013968 N8301803 N8302101 6/N8303501 6/N8305201	N8306401 N8306402 C1017772 C1013968 N8306501	N8305502 N8307001 N8307701 6/N8307801	5/ N8308401 N8309201 N8309301 N8309407 N8309407	C1017772 C1013968 6/N8310301 N8305101 N8305401	N8308201 N8308804 6/N8309101 N8303601 H	6/ N8306301 H C1017772 H 6/ N8303102 H N8310401 H 6/ N8300401 H
	VARIETY	22	23			24		5 TO NURSERY 1
29		NUGAINES	HATTON 23 NUGAINES			HATTON 24 NUGAINES 2		HATTON 25 BELONGS T
NURSCO	LABNUM	831126 831127 831128 831129 831129	831131 831132 831133 831134 831135	831136 831137 831138 831139 831140	831141 831142 831143 831144 831145	831146 831147 831148 831149 831150	831151 831152 831153 831154 831154	831156 831157 831158 831159 831160 E

THE PERSON OF MANAGEMENT AND PARTY A

USDA, SEA AR WESTERN WHEAT QUALITY LAB PULLMAN, WA.	LAB.	PRELIMIN	MINARY HARD RED	RED WINTER	ER					CONTD. PAGE 7
NURSCO 29			LIND, 1	WA					F	. DONALDSON
LABNUM	VARIETY	ONGI	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	1000	CODIC RMKS
831126 NUGAINES 22 831127 831128 831129		C1013968 N8301803 N8302101 N8303501	SWW SWW HWW HWW SWW	63.8	3.2	875 915	956	9-	8.89	8.77 8.52 P-CODI P-BCRGR 8.88
831131 831132 831133 HATTON 23 831134 NUGAINES 23		N8306401 N8306402 C1017772 C1013968 N8306501	HWW HWW HRW SWW SWW	64.8 61.5 63.7	34.5	890 845 895	971 938 945	500	8.75	P-BCRGR P-BCRGR 8.55 8.86 Q-FYELD
831136 831137 831138 831140		N8306502 N8307001 N8307701 N8307801	SWW HWW SWW HRW	61.1	3. 2.	875	962	ιΛ &	9.22	9.06 Q-FYELD P-MTIME&BCRGR 9.18 Q-FYELD 8.78 P-LVOL&BCRGR
831141 831142 831143 831144 831145		N8309201 N8309201 N8309301 N8309407 N8309701	WWH NAWH	61.7 62.0 63.3	2.3	800 785 860	850 897 910	7 88	9.86	P-LVOL&BCRGR 8.69 8.98 VP-FYELD P-LVOL&BCRGR Q-LVOL&BCRGR
831146 HATTON 24 831147 NUGAINES 24 831148 831149		C1017772 C1013968 N8310301 N8305101	HRW SWW HRW HRW	64.7 63.7 63.2 62.1	3.0	900 875 930 815	956 869 1004 902	0 800	8.90	8.70 P-BCRGR P-BCRGR
831151 831152 831153 831154 831155		N8308804 N8309101 N8303501 N8303802	SWW HRW HRW HRW	61 9 64.3 63.6 63.2	3.69.tr	825 868 900 900	937 893 937 943	V W W V	8.84	8.75 VP-FYELD P-BCRGR P-BCRGR
831156 831157 HATTON 25 831158 831159 831160 BELONGS TO NURS	NURSERY 1	N8306301 C1017772 N8303102 N8310401 N8300401	HRW HRW HRW HRW	64.2 64.0 61.8 64.8 64.9	8.5.5.8	905 900 960 835 960	930 956 836 866	000m0		TOAT-Ò

NURSCO 30		LIND, 1	WA					C.F. KO	KONZAK
LABNUM	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831161 C1008500, MAHRATTA 831162 WA5949, CIANO//SON64/KL, REND 831163 E7130071-1, MAGNIF 41 MUT 831164 1D000043, N58/TC//TC/KF 831165 1D000043 N58/TC//TC/KF	6/k7900041 k7800658 6/k7900732 5/k8000121	HRS HRS HRS HRS	61.5 61.5 61.5 61.5	71.3 69.9 70.5 72.5 71.9	0.38 0.39 0.37 0.36	87.0 85.1 86.5 89.4	6.0111	63.4 62.4 63.9 60.2 60.2	27 H W W H
831166 WA6118, WS#19B K75038 831167 WAMPUM 831168 K761011 831169 RAGENI 15 K76010 831170 ID0000107/(K7205139, WA5261/3)	6/K8000797 C1017691 6/K8100037 6/K8100259	HRS HRS HRS HRS	63.5 63.6 63.8 63.8	70.3 70.4 71.2 72.4 71.0	0.40 0.41 0.39 0.37	84.9 84.6 86.6 88.6	200100.2	61.9 62.1 61.6 59.5 59.9	22H 22H 22H
831171 ID0000107/(K7205139, WA5261 831172 K72050708/JRAL"S"(B)K76 831173 WA602/(K76143, K7400222 831174 (DND-7CXDAL-BB)PU"S" 831175 W/S 6107-11	5/k8100289 6/k8100338 k8101108 18W80073 W/S80078	HRS HRS HRS SRS	63.0 60.6 62.5 63.4 62.1	72.6 70.7 73.2 68.9 65.6	0.35 0.41 0.37 0.39	90.1 84.9 89.6 84.0 80.8	11.22	61.8 63.0 60.7 62.5 57.5	3337H 337H 347H 347H 347H
831176 K7205078/(CI14193, RED 831177 K7205078/(CI14193, RED 831178 K7205088/SON64 X TZPP 831180 K7305095/JARAL"S"/8 S.2	5/k8105304 k8105321 6/k8105331 6/k8105353 8105405	HRS HRS HRS HRS	62.9 63.1 62.9 63.1 60.3	72.1 71.0 72.6 71.3 68.6	0.37 0.39 0.38 0.38	888.4 85.0 87.6 86.8	10.6	62.4 61.5 62.7 62.8 61.7	50 HH
831181 C114193/(WA618, WS#19B 831182 WAMPUM 831183 NK761011	6/8105944 C1017691 5/NK000751	HRS HRS	62.1 61.6 62.7	70.5	0.38 0.42 0.37	86.2 85.1 88.2	11.5	63.2	6H 3H 4H
						11 000	the Characte	oriction.	

¹⁾ Observed Values Corrected to 14% Moisture Basis.
3/ Absorption at 14% Moisture Corrected to 11% Protein.
4/ Observed Values Corrected to 11% Protein.

^{5/} Particularly Promising Overall Quality Characteristics.
6/ Promising Overall Quality Characteristics.

C.F. KONZAK

LIND, WA

NURSCO 30

LABNUM	ONG	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR RM	RMKS
831161 C1008500, MAHRATTA 831162 WA5949, CIANO//SON64/KL, REND 831163 E7130071-1, MAGNIF 41 MUT 831164 1D000043, N58/TC//TC/KF 831165 1D000043 N58/TC//TC/KF	K7900041 K7800658 K7900732 K8000121 K8000123	HRS HRS HRS	65.2 64.7 65.2 64.4 63.1	64.6 66.1 64.6 63.9 62.3	64044 66630	995 855 1043 1010	958 942 1006 969 960	2 P-BCRGR 2 2 1	
831166 WA6118, WS#19B K75038 831167 WAMPUM 831168 K761011 831169 RAGENI 15 K76010 831170 ID0000107/(K7205139, WA5261/3)	K8000797 C1017691 NK000751 K8100037 K8100259	HRS HRS HRS HRS	63.3 59.9 62.7 61.0 63.4	64.1 50.3 62.8 60.7 62.6	22333 14660	970 988 1020 890 990	1020 1013 1026 871 940	2 2 2 6 P-LVOL&BCRGR 3 Q-BCRGR	BCRGR
831171 1D0000107/(K7205139, WA5261 831172 K72050708/JRAL"S"(B)K76 831173 WA602/(K76143, K7400222 831174 (DND-7CXDAL-BB)PU"S" 831175 W/S 6107-11	K8100289 K8100338 K8101108 IBW80073 W/S80078	HRS HRS HRS SRS	64.2 64.4 62.2 67.0 56.8	64.0 63.2 61.9 66.2 57.7	40.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1030 1120 955 1000 1000	1018 1046 936 950 1054	2 2 P-BCRGR 2 Q-FYELD 4 P-MTIME&B	&BCRGR
831176 K7205078/(CI14193, RED 831177 K7205078/(CI14193, RED 831178 K7205078/(CI14193, RED 831179 K7205088/SON64 X TZPP 831180 K7305095/JARAL"S"/8 S.2	K8105304 K8105321 K8105331 K8105353 8105405	HRS HRS HRS HRS	64.2 62.7 65.1 65.6 63.9	64.6 64.2 64.9 65.0 63.9	3.7.7. 3.8. 6.6.	1005 1005 1045 1025	1080 1098 1033 988 955	1 P-BCRGR 2 2 2 3 P-FYELD	
831181 C114193/(WA618,WS# 9B 831182 WAMPUM 831183 NK761011	K8105944 C1017691 NK000751	HRS HRS HRS	64.9 59.5 63.9	64.4 60.2 64.2	33.9	1015 935 1020	984 978 1039	ณฅณ	

deficiencies of other selections.

Q = Questionable; P = Poor

	LAB.	
	QUALITY	
	T QUA	
EA AR	WHEA	MA.
JA, SI	STERN	PULLMAN, WA.
USE	WES	PUL

WESTERN PLANT BREEDERS HRS

NURSCO 31		MA						K. BOYD	
LABNUM VARIETY	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831184 NK751 831185 906-R K-3 RANCHES 831186 906-R ANDERSON FIELD 1 831187 906-R ANDERSON FIELD 2		6/ HRS 6/ HRS HRS	63.6 63.7 62.8 61.0	69.9 71.1 70.1 66.0	0.46 0.46 0.43 0.41	80.5 81.5 76.5	10.3	63.0 62.4 62.6 64.1	7111
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture corrected to 12% Protein. 4/ Observed Values Corrected to 12% Protein.	5/ ein. 6/	Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.	oromising O	werall Qua y Characte	lity Chare	cteristics.			

RMKS	78LVOL
	P-FYELD
BCRGR	0000
LVOLC 4/	1015 977 956 914
LVOL	910 940 950 1075
MTIME	0 m m m 0 0 v v
BABSC 3/	65.2 66.1 66.3 67.3
BABS	65.55
CLASS	HRS HRS HRS
ONG	
VARIETY	NK751 906-R K-3 RANCHES 906-R ANDERSON FIELD 1 906-R ANDERSON FIELD 2
LABNUM	831184 NK751 831185 906-R K- 831186 906-R AN 831187 906-R AN

These four hard red spring wheats were evaluated in co-operation with Western Plant Breeders. The environmental difference of the growing cites for 906-R become apparent in the flour milling characteristics. Anderson field #2 was very poor in flour yield, and while this sample had the highest protein it had a low loaf volume/protein. The other two 906-R cites are acceptable. COMMENTS:

KRONSTAD

W.E.

RMKS

CODIC

4

	*	MSCOR FPROT M	1/ 5/	86.3 6.8 52.7 2L 9.	83.1 6.1 54.7 2L 8.	85.5 6.1 51.5 2L 9.	86.6 6.	86.7 5.5 54.6 2L 9.	84.4 6.0 53.3 2L 8.	82.6 6.3 54.0 21 8.92	85 0 7 1 53 4 21 8	81.8 7.1 55.5 2L 8.
		FYELD FASH		5 0.	0 0	0 0	73.8 0.42	0 0.	0	71.6 0.41		0
ITE	S, OR	TWT		60.3	4.09	57.6	60.3	61.2	9.09	60.4	200	59.8
SWW ELITE	CORVALLIS, OR	CLASS		SWW	MMS	CLUB	MMS	MMS	NMS	MMS	MMS	MMS
	0	ONGI		84SWELT1	84SWELT2	84SWELT3	84SWELT4	84SWELT5	6/84SWELT7	6/845WELT8	6/84SWF! T10	84SWELT11
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 32	W					HILL 81 C1017954 (83-6)	2 LEWJAIN (WA6363 OR C1017909) (83-7)		4 SWH /2053-5H-2H-2H-P (83-14) 5 OWW74337C-1H-H-OH (83-18)	_	_
USDA, WESTE PULLM	NURSC	LABNUM		831188	831189	831190	831191	831192	831193	831194	831196	831197

to Daws

9.00

to Daws to Daws

8.85 Similar 48.95 Similar 48.95 Similar 48.85 Similar 48.710-ASH & C

8.78 8.680-cobi 9.16 8.97

8.71 8.72 9.16 8.97

251

54.8 54.2 53.3

7.7

84.9 88.2 87.4 86.2 83.3

0.38 0.40 0.40 0.41 0.41

74.6 74.2 74.2 74.0

61.5 62.6 61.5 61.5 60.3

MMS SWM SWM SWM SWM

6/84SWELT12 6/84SWELT13 84SWELT14 5/84SWELT15 6/84SWELT16

OWW74348D-1H-1P-0H (83-25) SWM754666*-01H-2P-0P (83-29) SWM754666*-03H-1H-0H (83-30) SWM754666*-04H-1P-0P (83-31) OWW71448- OR CW8416 (83-15)

831198 831199 831200 831201 831202

6 12 Absorption at 14% Moisture Corrected to 7% Protein, Observed Values Corrected to 14% Moisture Basis 77

Particularly Promising Overall Quality Characteristics,

Promising Overall Quality Characteristics

Observed Values Corrected to 7% Protein.

See "Remarks" column for deficiencies and questionable Most of these selections offer some promise for good overall quality. properties. COMMENTS:

- Questionable 0

		Po 60 11 CB

LABNUM	VARIETY	i DNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831204 HILL 81 C1017594 831204 HILL 81 C1017954 831205 SWM754397 OR CW8 831206 SWM754361 OR CW8 831207 SWM742426 OR CW8	C1017596 1017954 OR CW8417 (83-17) OR CW8418 (83-19) OR CW8419 (83-20)	84SWELT17 84SWELT18 84SWELT19	SWW SWW SWW SWW SWW	61.1 61.0 62.4 61.6 62.3	71.9 72.2 72.0 68.3	0.38 0.42 0.37 0.44 0.44	84.3 82.4 85.5 74.7	8.1 7.1 7.1 6.8	54.0 53.5 53.8 58.6 54.5	31 2M 1L 8L
831209 OWW76098 OR (831209 OWW754666 OR 831211 SWM754666 OR 831211 OWW750239 OR	CW8421 (83-28) CW8422 (83-34) R CW8423 (83-44) R CW8424 (83-50) R CW8425 (83-54)	84SWELT21 6/ 84SWELT22 5/ 84SWELT23 84SWELT24 84SWELT24	SWW SWW HWW HWW	60.1 61.3 62.0 62.4 63.7	70.6 72.3 75.1 69.5 69.8	0.40 0.40 0.39 0.41	80.6 83.1 89.1 79.3	88.3 7.6 6.0.7 9.0	54.6 51.6 53.7 60.0 58.2	33. 11. 41.
831213 SWM766027 OR	R CW8426 (83-56)	84SWELT26	HMH	63.1	70.8	0.43	9.08	7.4	60.2	41
LABNUM	VARIETY	IDNO	CLASS	1000	CODIC	CAVOL	SCSOR	WIIN	NOSCO	RMKS
831203 STEPHENS C101759 831204 H1LL 81 C1017954 831205 SWM754397 OR CW8 831206 SWM754361 OR CW8 831207 SWM742426 OR CW8	C1017596 1017954 OR CW8417 (83-17) OR CW8418 (83-19) OR CW8419 (83-20)	84 SWELT17 84 SWELT18 84 SWELT19	SWW SWW SWW HWW SWW	8.72 8.74 8.91 8.35	8.28 8.28 8.28	1233 1226 1188 1152	76.0 72.0 69.0 68.0 74.0	372 369 383 347 356	75 72 740-0 75 Har 730-F	75 74 Q-CAVOL 75 Hard-P-CODI&CAVOL 73 Q-FYELD
831208 OWW76098 OR 831209 OWW76274 OR 831210 SWM754666 OI 831211 SWM754666 OI 831212 OWW750239 OI	R CW8421 (83-28) R CW8422 (83-34) OR CW8423 (83-44) OR CW8424 (83-50) OR CW8425 (83-54)	845WELT21 845WELT22 845WELT23 845WELT24 845WELT25	SWW SWW SWW HWW HWW	8.60 8.64 8.64 7.87	8.68 8.67 8.48 7.79	1193 1236 11229 1122	71.0 73.0 74.0 64.0	370 376 346 340 369	710-6 640-N	71 Q-FYELD 64 Q-NOSCO 77 75 Hard-P-FYELD&CODI 70 Hard-P-FYELD&CODI
831213 SWM766027 0	OR CW8426 (83-56)	84SWELT26	HWM	7.76	7.71	1098	0.49	351	69 Har	Hard-P-FYELD&CODI
1/ Observed Values C 3/ Absorption at 14%	rected t	asis.			icularly Prising Overs	romising Ov	Particularly Promising Overall Quality Characteristics.	ity Charac istics.	69 Har	d-P-ryelbkoo

COMMENTS: Note four of these selections are hard endosperm. See "Remarks" for other deficiencies.

			Ido					
CODIC RMKS	9.32 9.08 8.97 Q-CODI 9.32 9.01 Q-MSCOR&CODI	7.24 7.07 P-FYELD 7.06 P-FYELD 7.01 P-FYELD 7.48 P-FYELD	.35 Q-FYELD .33 Q-FYELD .99 Q-FYELD .40 P-FYELD .59 Q-FYELD	.36 High FASH .35 P-FYELD .44 P-FYEED .89 P-FYELD	.46 Q-FYELD .45 .19 Q-FYELD .90 P-FYLED&CODI	.70 P-FYELD&CODI .04 Q-FYELD .92 Q-CODI .09	.04 P-FYELD .01 Q-FYELD .99 Q-CODI&FYELD .07 Q-CODI&FYELD	Characteristics.
CODI	9.22 9.10 9.25 9.25	9.25 8.91 8.92 9.41	9.29 9.27 8.95 8.95 9.20 9.51	9.14 9 9.30 9 9.16 9 9.35 9 8 8 2 8 8	9.36 9 9.09 9 9.25 9 8.81 8	8.69 8 8.96 9 8 8.91 8 9.04 9 9.01 9	9.06 8.96 9.01 8.06 9.02 9.22	1
MABSC MTYP	53.2 2L 52.8 5L 53.6 2L 52.4 5L 53.2 2L	54.2 2L 54.8 3L 54.1 8L 55.3 4L 53.5 2L	52.9 2L 52.9 2L 52.2 2L 52.1 2M 53.8 2L	49.7 2M 552.3 5L 51.7 5L 51.9 5L	51.5 2L 552.4 3L 553.7 3L 52.9 5L 54.0 3L	54.7 8L 54.9 3L 53.0 3L 53.7 3L	53.7 5L 55.0 6L 55.2 6L 54.9 4L 53.7 8L	Overall Quality
FPROT 1/	7.9 6.8 7.6 6.9	6.9 88.7 7.8 7.6	7.76	7.55	7.87.9	1.7.7.	6.8	Promising
MSCOR	86.0 83.6 85.3 83.0	83.4 76.2 75.3 83.1 76.2	80.2 82.4 81.4 77.0	78.0 82.8 79.9 78.4	81.7 84.3 83.0 82.4 79.5	85.2 84.8 91.6 86.3	81.0 81.0 82.6 82.7	1
FASH 1/	0.38 0.44 0.42 0.42 0.42	0.45 0.45 0.43 0.38	0.43 0.42 0.42 0.47	0.51 0.40 0.38 0.40	0.41 0.40 0.41 0.39	0.34 0.34 0.34 0.34 0.38	0.40 0.41 0.41 0.39 0.42	rticularly
FYELD	70.0 71.2 71.3 69.7	69.4 65.9 64.0 67.7 65.0	68.1 68.6 68.2 67.3 68.3	70.0 68.6 65.4 64.9 66.8	68.3 68.5 65.3 65.3	67.3 67.1 68.4 72.3	66.9 67.6 68.6 68.1 65.0	5/ Par
TWT	60.8 58.8 61.6 62.0	60.8 59.6 62.0 61.2	59.2 60.8 61.6 58.0	60.4 59.2 60.8 58.0	59.2 62.0 59.2 60.4	60.0 60.0 60.4 62.4 61.2	58.0 60.8 61.2 62.0 59.2	
CLASS	SWW SWW SWW SWW	MMS MMS MMS MMS	SWW SWW SWW SWW	SWW SWW SWW SWW	SWW SWW SWW	SWW SWW SWW SWW	MMS MMS MMS MMS	
	9186	132110	15 19 19	20 22 23 24	25 26 27 28 29	30 33 33 34	35 36 37 40	
ONO	6/84SWRPN 84SWRPN 6/84SWRPN 84SWRPN	6/84SWRPN 84SWRPN 84SWRPN 84SWRPN 84SWRPN	84SWRPN 6A4SWRPN 84SWRPN 84SWRPN 84SWRPN	6/84SWRPN 6/84SWRPN 84SWRPN 84SWRPN 84SWRPN	84SWRPN 6A4SWRPN 6A4SWRPN 6A4SWRPN 84SWRPN	84SWRPN 6,84SWRPN 84SWRPN 5/84SWRPN 6/84SWRPN	84SWRPN 84SWRPN 84SWRPN 84SWRPN 84SWRPN	°
								e Basis
>	3-12) 3-12) 3-17)	3-27) (83-45) (83-58) (83-72)	(83-73) (83-75) (83-76) (83-77) (83-77)	(83-84) (83-87) (83-87) (83-88) (83-94)	(83-103) (83-105) (83-107) (83-107)	(83-110) (83-111) (83-114) (83-114)	(83-124) (83-127) (83-128) (83-129) (83-135)	14% Moisture
VARIET	C1017596 (83- *-2H-5H-0P (8 *-1P-2P-0P (8 *-3P-2H-0P (8 A-6H-1P-0P (8	7A-2P-1P-0P (8 **-1P-1H-2H-0P **-1H-1P-2S-0P **-1H-5P-1S-0H	195*-6H-4H-1H-0P 16*-3H-1P-1P-0P 16*-3H-1P-2P-0P 16*-8H-1P-1H-0P 16*-10H-1H-1S-0P	16*-10H-2S-1P-0P 28*-1H-1P-1S-0P 48*-6H-1H-1H-0P 48*-6H-1H-1S-0P 175*-9P-4P-2S-0P	235*-5H-3S-2S-0P 260*-8P-1P-3S-0P 260*-9P-1P-1S-0P 293*-2P-1H-2S-0P 326*-2H-1P-2H-0H	328*-1H-3H-1P-0P 328*-1H-1P-1H-0H 328*-1H-4P-2S-0P 332*-4H-4P-1S-0P 339*-1H-2H-2H-0P	885*-4H-1H-1P-0H 885*-4H-1H-1P-0H 885*-4H-1H-2P-0P 885*-4H-1H-3P-0H 885*-6H-1S-1S-0P	Values Corrected to
	STEPHE DWW780 DWW780 DWW780	0WW780 0WW770 0WW770 0WW770	O		OWW772 OWW772 OWW772 OWW773	7777	<u> </u>	
LABNUM	831214 831215 831216 831217 831218	831219 831220 831221 831222 831223	831224 831225 831226 831227 831228	831229 831230 831231 831232 831233	831234 831235 831235 831237 831237	831239 831240 831241 831242 831242	831244 831245 831246 831247 831249	1/ Observed
	VARIETY IDNO CLASS TWT FYELD FASH MSCOR FPROT MABSC MTYPE CODIC CODIC	31214 STEPHENS C1017596 (83-12) 6/845WRPN 6 SWW 60.8 70.0 0.38 86.0 7.9 53.2 2L 9.22 9.32 845WRPN 7 SWW 60.4 69.7 0.42 85.3 7.4 53.6 2L 8.92 8.97 81217 0WW780215*-3P-2H-0P (83-17) 845WRPN 8 SWW 60.4 69.7 0.42 83.0 7.6 52.4 5L 9.02 9.01 3.22 845WRPN 9 SWW 60.0 69.6 0.43 82.5 6.9 53.2 2L 9.02 9.01	ABNUM VARIETY IDNO CLASS TWT FYELD FASH MSCOR FPROT MABSC MTYPE CODI CODIC	ABNUM	SWM SWM	1 1 1 2 1 2 2 2 2 2	ABMUNH	ABRUM WARLETY INDEX COLOTS OF (83-12)

6/ Promising Overall Quality Characteristics.

 $[\]underline{3}/$ Absorption at 14% Moisture Corrected to 7% Protein. $\underline{4}/$ Observed Values Corrected to 7% Protein.

								P-C0DI
. KRONSTAD	CODIC RMKS	7 P-FYELD 3 Q-FYELD 8 Q-FYELD 7 Q-FYELD	3 P-FYELD 2 P-CODI 0 VP-FYELD 9 Q-CODI 4 Q-FYELD	3 Q-FYELD 6 Q-FYELD 2 VP-FYELD 4 VP-FYELD 8 VP-FYELD	2 P-FYELD 7 P-FYELD 1 VP-FYELD 8 P-FYELD	3 P-FYELD 2 P-CODI 0 P-FYELD 1 Q-FYELD	5 P-FYELD 3 Q-FYELD 5 P-FYELD 8 P-FYELD	4 Q-FYELD P. 5 Q-FYELD P. 7 Q-CODI
X.	000	0.0000	0.86	00000	80000	00000	00000	9.00
	MTYPE CODI	8.79 9.49 8.95 9.14	8.957 8.94 8.52 9.06	9.10 9.12 8.97 8.97	8.87 9.24 9.22 9.26 9.26	9.34 9.01 8.69 9.20 9.06	9.46 9.21 9.37 9.24 9.04	9.22 88.08 9.05 9.29
	MABSC MT	54.8 8M 52.9 8L 54.4 3L 54.9 8L 54.0 4L	54.4 6L 56.0 4L 55.4 8L 55.9 6L 53.7 5L	53.0 2L 53.5 3L 54.6 3L 5.0 4L	3.5 1L 3.3 2L 3.7 2L 3.8 4L	3.9 4L 5.8 4L 4.9 4L 7.3 4L	0.6 1L 0.7 1M 9.6 1M 0.9 2M 2.4 3L	2.2 4L 3.4 4L 5.8 4L 2.6 5L
	FPROT 1/	9.7.7.7	7.53.6	7.63.35	7.003.7	8.30 55 55 55 55 55 55 55 55 55 55 55 55 55	77.78	7.1 5 7.0 5 7.2 5 5 7.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	MSCOR	72.2 86.9 80.3 83.4	80.9 82.3 76.6 88.9	81.0 83.7 75.4 75.2	79.2 81.2 85.8 80.5 79.4	83.1 78.5 87.0 78.7 83.1	83.2 87.0 85.1 87.1 73.8	82.3 79.7 83.3 83.4 82.5
	FASH 1/	0.47 0.39 0.42 0.39 0.39	0.42 0.40 0.40 0.35 0.43	0.44 0.39 0.44 0.41 0.41	0.43 0.41 0.38 0.37 0.37	0.40 0.41 0.35 0.45	0.32 0.31 0.31 0.39 0.48	0.44 0.40 0.40 0.40
	FYELD	63.9 71.0 67.5 68.6 68.7	67.9 68.2 63.4 70.7 67.9	68.9 68.6 64.8 63.0 66.4	67.3 67.6 69.7 65.0 67.9	68.7 65.8 69.0 67.5	64.8 67.3 66.0 71.1 65.3	68.5 68.8 68.9 68.9
S, OR	TWT	61.6 59.6 63.2 64.4 62.8	64.0 64.0 62.4 64.4 61.6	60.4 61.6 59.2 58.0 60.4	58.0 63.2 61.6 62.8 62.4	62.0 60.8 60.0 60.4	60.0 60.4 63.6 62.4 61.2	59.6 62.0 61.6 59.2 59.6
CORVALLIS	CLASS	MMS MMS MMS MMS	MMS MMS MMS MMS MMS	MMS MMS MMS MMS	MAS MAS MAS MAS MAS	MMS SWW SWW SWW SWW	MMS MMS SWM SWM SWM	MWS WWS WWS WWS
Ö		N 42 N 443 N 443 N 45	NN 46 NN 47 NN 49 NN 50	NNNN 554301	NN 56 NN 57 NN 59 NN 59 NN 59	NN 62 NN 65 NN 65	000 000 000 000 000 000 000 000 000 00	N 72 N 72 N 74 N 74
	ONGI	84SWRPI 5/84SWRPI 84SWRPI 6/84SWRPI	84SWRPP 84SWRPP 84SWRPP 6/84SWRPP 84SWRPP	6/84SWRPI 6/84SWRPI 84SWRPI 84SWRPI 84SWRPI	845WRPP 845WRPP 6/845WRPP 845WRPP 845WRPP	6/84SWRPP 84SWRPP 84SWRPP 84SWRPP 6/84SWRPP	84SWRPN 6/84SWRPN 84SWRPN 5/84SWRPN 84SWRPN	684SWRPN 84SWRPN 6/84SWRPN 84SWRPN 84SWRPN
	>	(83-142) (83-146) (83-156) (83-157)	(83-167) (83-168) (83-169) (83-171)	(83-181) (83-182) (83-189) (83-190)	(83-215) (83-215) (83-216) (83-218) (83-222)	(83-224) (83-227) (83-228) (83-228) (83-250)	(83-252) (83-255) (83-256) (83-271) (83-276)	(83-310) (83-312) (83-315) P (83-364) 3-391)
34	VARIETY	OWW77385*-3P-1H-2S-0H OWW77415*-2P-1S-1P-0P OWW77510*-6H-1S-2P-0P OWW77510*-7H-1S-1S-0H	OWW77511*-3P-2H-1S-0H OWW77511*-3P-3H-2H-0P OWW77511*-3P-4H-1S-0H OWW77511*-4P-1H-2H-0P OWW77580A-1S-1H-2S-0H	OWW77580A-1S-3H-1P-0H OWW77580A-1S-3S-1H-0H OWW77585F-1H-2P-1S-0H OWW77585F-1H-2S-2P-0P	OWW77596A-1S-2S-2S-0P OWW77632A-1P-2S-1S-0H OWW77632A-2S-2S-1S-0H OWW77632A-8S-2P-1H-0H	OWW76012*-04P-2H-1H-0H OWW76012*-08P-2H-1P-0P OWW76024*-02H-1H-3S-0H OWW76031*-02H-1H-3H-0H	OWW76049*-01H-2H-2S-0P OWW76049*-01H-4H-1H-0P OWW76049*-01H-4H-3H-0H OWW76062*-06P-1P-1P-0P	OWW76085*-10P-4H-2H-0P OWW76097*-10H-1H-1H-0P OWW76098*-04P-1H-2P-0P OWW750241*-01H-1H-1P-0P SWM789152*-2P-2P-0H (83-
NURSCO 3	LABNUM	831250 0W 831251 0W 831252 0W 831253 0W 831254 0W	831255 0W 831256 0W 831257 0W 831258 0W 831259 0W	831260 ON 831261 ON 831262 ON 831263 ON 831264 ON	831265 0V 831266 0V 831267 0V 831268 0V 831269 0V	831270 0V 831271 0V 831272 0V 831272 0V 831274 0V	831275 OV 831276 OV 831277 OV 831278 OV 831279 OV	831280 0V 831281 0V 831282 0V 831283 0V 831284 SV

		CODI		IQU	HWW HWW	HWM HWM	Id	
KRONSTAD	C RMKS	Q-MSCOR Excellent P-FYELD	P-FYELD P-FYELD	Q-MSCOR P-FYELD&CODI Q-FYELD Q-FYELD	P-FYELD VP-CODI - VP-FYELD VP-FYELD P-CODI - H	P-CODI - H Q-CODI - H VP-CODI - I Q-FYELD	Q-CODI P-FYELD&CODI Q-FYELD	Q-FYELD Q-FYELD
W.E.	CODIC	9.07 9.24 9.64 8.97 9.32	9.27 9.02 9.12 9.31	9.17	9.00 8.56 9.37 9.14	8.72 8.82 8.49 8.95	9.11 8.96 8.68 9.07 9.41	9.18
	PE CODI	9.05 9.27 9.62 9.10 9.40	9.27 8.96 9.06 9.24 9.26	9.16 9.06 9.22 9.22	8.96 8.53 9.39 9.09	8.72 8.89 8.54 8.95	9.17 9.00 8.79 9.20 9.50	9.15
	MABSC MTYPE	1.6 4L 2.4 4L 5.0 4L 3.4 2L	3.7 3L 2.1 2M 2.8 3L 2.5 2L	2.3 2L 5.7 4L 2.9 2L 2.6 4L	1.7 2L 3.1 2M 3.0 4L 4.5 4L 5.7 5L	6.3 2L 2.7 4L 8.2 4L 4.3 3L 5.9 4L	5.0 4L 4.8 4L 6.2 4L 4.5 4L 3.2 4L	5.0 4L 4.0 4L 5.3 4L 4.2 3L 3.7 4L
	FPROT M	5.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	5.7.5	6.9	7.707.7 .0.83.3 .0.0000	5.00 5.00	6.06.4	7.5.3 7.1.7 7.4.7 7.4.5
	MSCOR	888.2 888.2 889.3 7.5 7.5	82.2 89.5 77.9 79.4	82.0 78.7 81.2 81.8 83.4	81.0 80.2 78.4 79.1	81.6 87.4 80.6 81.3	87.7 87.9 80.9 84.6	84.7 85.3 83.9 80.5
	FASH 1/	0.45 0.37 0.36 0.40	0.37 0.36 0.40 0.41 0.41	0.43 0.39 0.40 0.40 0.39	0.39 0.47 0.38 0.39	0.45 0.42 0.46 0.40 0.39	0.35 0.34 0.38 0.39 0.35	0.39 0.38 0.42 0.42
	FYELD	70.1 71.4 71.7 72.6 66.6	66.5 72.0 64.8 66.1 71.4	69.1 64.8 67.0 67.6 68.6	66.6 70.2 63.9 64.9 70.6	70.1 73.0 70.0 67.2 71.8	69.8 69.7 65.7 69.2 67.6	69.4 69.5 68.9 67.7 68.2
S, OR	TWT	60.8 60.8 62.4 60.4 61.2	62.8 63.2 62.8 60.4	62.0 61.2 61.6 62.4 62.4	59.2 58.8 60.4 63.2	61.6 58.8 58.4 60.4 61.2	62.4 60.8 60.0 60.0	60.4 60.4 62.0 58.8 61.2
CORVALLI	CLASS	SWW SWW SWW SWW	SWW SWW SWW SWW	SWW SWW SWW SWW	MMM SWW NAW SWAN SWAN	HWW HWW SWW SWW	SWW SWW SWW SWW	MMS MMS MMS MMS
00	IDNO	6/84SWRPN 76 5/84SWRPN 77 5/84SWRPN 78 6/84SWRPN 79 84SWRPN 79	845WRPN 81 845WRPN 82 845WRPN 83 845WRPN 84 5/845WRPN 85	6/84SWRPN 86 84SWRPN 87 84SWRPN 88 84SWRPN 89 6/84SWRPN 90	845WRPN 91 845WRPN 92 845WRPN 93 845WRPN 94 845WRPN 94	845WRPN 96 845WRPN 97 845WRPN 98 845WRPN 99	6/84SWRPN101 6/84SWRPN102 84SWRPN103 6/84SWRPN104 6/84SWRPN109	6/845WRPN106 6/845WRPN107 6/845WRPN108 845WRPN109 845WRPN110
34	VARIETY	SWM789206*-2P-1P-0H (83-393) PBT79-2H-1P-1P-0P (83-417) SWM777829*-4P-1P-1S-0P (83-448) SWM777970*-1P-2H-1S-0H (83-453) SWM765598*-04H-1H-4H-0H (83-474)	SWM765598*-04H-1H-3P-0H (83-475) SWM765612*-01P-1H-2P-0H (83-484) SWM765704*-11P-2H-3P-0P (83-487) SWM766184*-04P-1P-2S-0H (83-495) SWM766290*-04H-1P-2H-0H (83-496)	SWM756290*-04H-1P-3S-0P (83-498) SWM753995*-05H-1P-1P-0H (83-521) SWM754308*-01H-1H-1H-0H (83-525) SWM754666*-03P-2H-0H (83-532) SWM754666*-03P-3P-2H-0H (83-533)	SWM789206*-06P-2H-OH (83-537) SWM789206*-06H-3H-OH (83-538) OWW72409-3-09-1S-OP (83-548) YE611-1-1-3-0E (83-557) YE308-12-1-3-1-0E (83-563)	SWM789783*-1H-HHHH11 (83-570) OWW780043*-HRH-HHH 1 (83-607) OWW780047*-HRH-HHH 2 (83-611) WEKF28001-HRHH 4 (83-616) WEKF28008-HRHH 1 (83-626)	WEKF28008-HRHH13 (83-638) WEKF28008-HRHH14 (83-639) SWM789783*-1H-HHH10 (83-643) PB820076 (83-8) PB820207 (83-11)	PB820054 (83-12) PB820156 (83-14) PB820187 (83-15) PB820074 (83-16) PB820149 (83-19)
NURSCO	LABNUM	831285 831286 831287 831288 831289	831290 831291 831292 831293 831294	831295 831296 831297 831298 831299	831300 831301 831302 831303 831304	831305 831306 831307 831308	831310 831311 831312 831314	831315 831316 831317 831318 831318

SWW PRELIMINARY YIELD TRIAL

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

AD		~ ~ ~ ~	D&CODI	œ	000×E	&CODI	
1.E. KRONSTAD	CODIC RMKS	9.44 9.33 Q-MSCOR 9.24 Q-MSCOR 9.16 Q-MSCOR 9.21 Q-MSCOR	9.18 P-FASH 9.15 Q-FYELD 8.97 Q-FYELD& 9.17 Q-MSCOR 9.50	9.30 Q-MSCOR 9.39 9.22 9.35	9.15 P-FYELD 9.50 P-FYELD 9.07 P-MSCOR 9.08 VP-MSCOR	8.99 Q-MSCOR8(9.06 P-MSCOR8 9.46 P-MSCOR8 9.49 P-MSCOR8 8.96 Q-CODI	36 P-FYELD
3	E COD!	9.29 9.20 9.24 9.24	9.22 9.19 8.97 9.20	9.31 9.40 9.27 9.41	9.02	88.99.98 9.41.49.99.99.99.99.99.99.99.99.99.99.99.99.	9.24 9
	MABSC MTYPE	53.4 4L 553.4 4L 553.5 4L 555.2 4L 54.3 4L	54.3 4L 54.4 4L 54.5 4L 54.7 4L	54.0 4L 52.2 4L 54.4 4L 53.0 4L 57.2 4L	53.2 4L 54.7 3L 54.7 3L 54.2 4L 53.0 4L	52.7 3L 55.7 3M 54.1 4L 55.8 4L 55.7 4L	53.3 3L
	FPROT 1/	7.777.776.33	6.6	6.59	8.1 7.2 7.2 8.1	88.2	8
	MSCOR	83.8 82.9 82.2 81.5	81.7 81.5 83.0 82.7	80.5 86.0 89.5 84.3	79.4 76.6 82.3 78.8	79.8 73.6 78.7 79.6 82.1	80.5
	FASH 1/	0.41 0.40 0.44 0.43 0.43	0.46 0.44 0.41 0.41	0.44 0.39 0.36 0.40 0.41	0.43 0.48 0.41 0.47 0.47	0.46 0.49 0.48 0.48	0,40
	FYELD	69 69 69 69 69 69 69	70.6 69.4 69.1 68.9 71.1	68.8 70.4 71.7 70.5	67.3 67.8 68.4 68.8 63.0	69.0 65.6 69.4 70.0 68.8	66.7
S, 0R	TWT	60.8 61.2 60.4 60.4 60.0	58.4 60.8 61.2 61.2 60.0	60.4 61.2 61.6 60.0	61.2 62.4 58.8 58.0	61.2 58.0 56.0 57.2 60.0	61.2
CORVALLIS,	CLASS	MMS MMS MMS MMS	MMS MMS MMS MMS MMS	MMS MMS MMS MMS	MMS MMS MMS MMS	MMS MMS MMS MMS	NMS
00	IDNO	6/84SWRPN111 6/84SWRPN112 6/84SWRPN113 84SWRPN114 6/84SWRPN115	6/84SWRPN116 6/84SWRPN117 84SWRPN118 6/84SWRPN119 5/84SWRPN120	845WRPN121 6/845WRPN122 5/845WRPN123 5/845WRPN124 6/845WRPN125	84SWRPN126 84SWRPN127 84SWRPN128 84SWRPN129 84SWRPN130	845WRPN131 845WRPN132 845WRPN133 845WRPN134	84SWRPN136
34	VARIETY	PB820106 (83-21) PB820007 (83-23) PB820132 (83-25) PB820006 (83-26) KG820040 (83-53)	KG820133 (83-54) KG820053 (83-55) PB820187 (83-6) PB820149 (83-4) PB820094 (83-5)	PB820132 (83-9) M820619 (83-3) M820647 (83-9) M820648 (83-11) M820687 (83-21)	OWW77083*-1H-2P-2P-0P (83-61) OWW77095*-6H-1H-1H-0P (83-70) OWW77385*-2H-1H-2S-0H (83-123) OWW77385*-4H-1P-1S-0H (83-131)	OWW77580A-1S-1H-1S-OH (83-176) OWW77580A-5S-1P-2S-OP (83-185) OWW76024*-04P-1H-1P-0H (83-229) OWW76024*-04P-1H-1P-0H (83-230) OWW76027*-04H-1H-2P-0H (83-234)	SW0780045A-1P-1P-0P (83-407)
NURSCO	LABNUM	831320 831321 831322 831323 831323	831325 831326 831327 831328 831329	831330 831331 831332 831333 831334	831335 831336 831337 831338 831338	831340 831341 831342 831344	831345

COMMENTS: Many of these selections had poor to marginal milling properties (low flour yield and/or high flour ash). Please see "Remarks" column for these and other deficiencies.

VP = Very Poor; P = Poor; Q = Questionable

day - part part to a second

このでは、一般の変化である。

THE PARTY OF THE P

C. L. State Co.

9.39 9.42 P-FYELD

7.3 52.2 2L

62.4 66.4 0.36 82.9

SWW

84SWRPN137

831346 SW0780271A-1H-2P-0P (83-411)

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.

PAGE	W.E. KRONSTAD	DI CODIC RMKS
SWW PRELIMINARY YIELD TRIAL	CORVALLIS, OR	IDNO CLASS TWT FYELD FASH MSCOR FPROT MABSC MTYPE CODI CODIC RMKS
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		VARIETY
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.	NURSCO 35	LABNUM

1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 7% Protein. 4/ Observed Values Corrected to 7% Protein.

COMMENTS: See "Remarks" column for deficiencies.

A Language 191 on the A Language Manager 191 (8)

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.		STATE	STATE HARD RED	D SPRING						PAGE
NURSCO 36		L	LIND, CONNELL	LL WA					C.F. KO	KONZAK
LABNUM		ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831347 WAMPUM 831348 NK761011 831349 VH070251/TWIN 831350 E7130071-1/(C1008500, MAH 831351 E7130071-1/(C1008500, MAH	ାଦାଦୀର	C1017691 NK000751 K7901395 K7900103	HRS HRS HRS RS RS	61.6 62.5 61.4 60.9	70.7 70.7 72.3 72.2	0.42 0.39 0.37 0.38	83.9 84.9 87.9 83.8	12.1	63.6 62.9 62.4 65.4	4H 4H 5H 5H
831352 E7130071-1/(C1008500, MAH 831353 K73772/(1D000043, N58 831354 K73469/(1D000043, N58 831355 K73493/SARIC 70, K74424 831356 K74096/(C117267, BORAH	000	K7900115 K7900748 K8000349 K8000392 K8000770	HRS HRS HRS HRS	59.5 63.3 60.9 61.6	70.5 71.6 68.9 70.4 71.8	0.38 0.39 0.39 0.40	865.3 883.1 84.7 86.6	12.22	62.3 62.6 60.6 62.3	324
831357 K74096/(C117267, BORAH 831358 K74096/(WA6118, WS198 831359 K74118/C117267, BORAH 831360 KK74153/K74093, WA6096 831361 WA6171/(K74027, VJ720503	जिला जि	K8000784 K8000797 K8000900 K8000946 K8001209	HRS HRS HRS HRS HRS	63.3 63.3 62.3 62.3 62.3	72.1 69.4 71.5 70.5	0.40 0.42 0.36 0.37 0.37	86.6 81.8 87.9 85.7	11.2	62.1 64.2 64.6 62.5	25H 44H 44H 44H
831362 WA6171/(K74027,VJ720503 831363 WA6171/(K74032,VJ7206 831364 (219321/CH53-ANXGB56)A 831365 JARAL"S"(B)/(K720511 831366 JARAL"S"(B)/(K720511	(ବାଦ (ଦାଦ	K8001214 K8001234 K8001257 K8001307 K8001309	HRSS HRSS HRSS RH RSS Rh RSS Rh RSS Rh RSS Rh RSS Rh RSS Rh Rss Rh Rss Rh Rss Rh Rss Rn Rss Rh Rss Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs	61.3 63.2 60.4 61.1	73.8 72.0 71.2 70.7 69.9	0.40 0.40 0.43 0.43	88.0 87.0 86.0 82.5	11.2 12.0 11.9	61.8 62.3 65.0 63.9	2H 4H 5H 5H
831367 MARCO JUAREZ INIA/(K720 831368 K7205209//VH073324,C59287 831369 K7205209//VH073324,C59287 831370 K7205209//VH073324,C59287 831371 WAMPUM/TIFTON 3725	/9	K8001336 K8001394 K8001424 K8001436 HF830002	HRSS SS	622.55	69.0 72.7 70.5 69.7	0.44 0.41 0.41 0.45	88 88 88 88 88 88 88 88 88 88 88 88 88	13.8 11.2 10.8 13.1	63.7 62.0 62.3 61.9	35H 35H 35H
831372 WS-503		WS000503	HRS	62.2	71.0	74.0	83.9	12.4	63.7	2H

^{5/} Particularly Promising Overall Quality Characteristics.
6/ Promising Overall Quality Characteristics.

^{1/} Observed Values Corrected to 14% Moisture Basis.
3/ Absorption at 14% Moisture Corrected to 12% Protein.
4/ Observed Values Correct to 12% Protein

STATE HARD RED SPRING

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

P = Poor; Q = Questionable

C.F. KONZAK

PULLMAN, R. SLOPE WA

	27	0

NURSCO

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC MTYPE	PE BABS	BABSC 3/	MTIME
831373 F1 831374 UR 831375 D1 831376 WA	FIELDER URQUIE DIRKWIN WAVERLY ID000065/(WA006021,BRONS/KOELZ-7941	C1017268 C1017413 C1017745 C1017911 6/ K8005049	SWS SWS SWS SWS	61.8 60.8 62.2 62.3	68.8 69.7 70.7 71.1 69.0	0.38 0.38 0.39 0.36	80.7 81.0 81.7 84.1	0.08	56.4 3H 54.3 2M 52.4 1M 54.0 2M 54.3 2M			
831378 PP 831380 KP 831381 KP 831381 KP 831382 KP	ID000065/(WA006021, BRONS/KOELZ-7941 POTAM 70/(WA006021, BRONS/KOELZ-7941 K74129/POTAM 70 K74131/POTAM 70 K74135/POTAM 70	6/K8005063 6/K7905147 6/K8005271 5/K8005274 K8005457	SWS SWS SWS SWS SWS	63.4 62.5 62.9 63.1	68.1 68.5 70.2 70.5 69.6	0.32 0.40 0.39 0.36	81.9 79.3 81.5 82.3	0.00	53.8 3M 57.9 3M 52.2 3L 54.2 6L			
831383 K 831384 K 831385 K 831386 K 831386 K	K74135/POTAM 70 K7205209/(VH073414,C59287/0/1834/17 K7205209/(VH073414,C59287/0/1834/17 K74132/POTAM 70	6/K8005461 K8005463 K8006366 K8006368 K8006395	SWS SWS SWS HWS SWS	62.5 62.6 63.7 63.4	71.0 72.1 67.4 69.1 68.2	0.39 0.39 0.38 0.38	83.0 86.7 78.4 81.9	9.60 7.01 5.00 8.00	55.2 6L 55.2 4L 52.6 3M 59.1 4H	65.5	64.8	8
831388 K 831389 K 831390 K 831391 W 831392 P	K74469/POTAM 70 K74469/POTAM 70 K74560/POTAM 70 WA6171/(C1014588,TWIN) PROSPUR/(K750050,K70340/3/ERA//ATL66	K8005860 6/K8005861 0/K8006090 K8006224 K8006596	SWS SWS SWS HWS SWS	62.6 62.8 63.0 63.2	69.1 70.9 70.7 68.4 69.0	0.39	80.2 83.7 83.0 81.5	10.2	54.2 4M 54.1 3M 52.4 2M 58.1 6M	63.9	63.3	3.0
831393 K 831394 K 831395 W 831396 8	K78504/K74129-33/K7806645,K79299-10 K78504/K74129-33/K7806645,K79299-11 WSMP-4120 81AS-3013	HF820054 5/HF820055 5/WS004120 NK790655	SWS SWS SWS HWS	62.5 62.0 63.6 60.4	67.9 71.1 70.7 68.7	0.40 0.40 0.39 0.41	77.5 82.9 81.2	9.60	52.4 3M 51.4 3M 56.5 2M	57.5	57.7	1.4
1/ Obse 3/ Abso	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 10% Protein	sture Basis. to 10% Prote	ein.		5/ Pa 6/ Pr	Particularly Promising Ov	larly ng Ove	ly Promising Overall Qual	sing Overall Quality C Quality Characteristic	all Qua	Quality C	Characteristics.

 $[\]frac{4}{4}$ Observed Values Corrected to 10% Protein.

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

C.F. KONZAK	I CODIC CAVOL SCSOR WTIN NOSCO RMKS	5 8.18 1225 67.0 368 69P-CODI&CAVOL 4 8.92 1355 77.0 386 72 2 8.87 1320 78.0 390 66P-Noodle Score 4 8.85 1325 77.0 381 77 1 8.92 1405 81.0 381 73	7 8.97 1360 78.0 376 790-FYELD 4 9.25 1325 79.0 363 71 2 9.11 1285 75.0 375 71 6 8.77 1285 73.0 368 730-cobi&scsoR	4 8.79 1265 72.0 368 74Q-CAVOL 4 8.63 1310 76.0 380 75Q-CODI 7 8.84 1265 69.0 359 77P-FYELD&CAVOL 1 8.07 1205 64.0 361 75P-LVOL&BCRGR 5 8.59 1135 76.0 362 78P-FYELD	8.96 1340 73.0 378 76 8.96 1340 73.0 378 76 8.78 1315 76.0 380 71 8.06 1250 67.0 365 72P-CODI&CAVOL 4 8.88 1400 80.0 383 70	8.54 1315 74.0 369 76P-FYELD, CODI 8.92 1390 77.0 373 74 5.9.00 1365 79.0 384 74 8.53 1275 72.0 365 67P-BCRGR&CODI
	LVOLC BCRGR CODI	8.92 8.92 8.84 8.91	8.92 8.92 9.34 9.12 8.86	8.84 8.64 8.87 8.01 8.01	8.056 8.056 8.01 8.01 8.01	8.59 9.06 8.55
MA	BCRG			∞	Ŋ	4
	LVOLC			805	992	905
	LVOL			848	803	890
PULLMAN, R. SLOPE	CLASS	SAS SAS SAS SAS	SMS SMS SMS SMS	SWS SWS SWS HWS SWS	SWS SWS SWS SWS	SWS SWS SWS HWS
PU	ONGI	C1017268 C1017413 C1017745 C1017745 K8005049	K8005063 K7905147 K8005271 K8005274 K8005457	K8005461 K8005463 K8006366 K8006368 K8006399	K8005860 K8005861 K8006090 K8006224 K8006596	HF820054 HF820055 WS004120 NK790655
ico 37	IUM VARIETY	1373 FIELDER 1374 URQUIE 1375 DIRKWIN 1376 WAVERLY 1377 ID000065/(WA006021, BRONS/KOELZ-7941	378 ID000065/(WA006021, BRONS/KOELZ-7941 879 POTAM 70/(WA006021, BRONS/KOELZ-7941 880 K74129/POTAM 70 881 K74131/POTAM 70 882 K74135/POTAM 70	383 K74135/POTAM 70 384 K74135/POTAM 70 385 K7205209/(VH073414,C59287/0/1834/17 386 K7205209/(VH073414,C59287/0/1834/17 387 K74132/POTAM 70	388 K74469/POTAM 70 389 K74469/POTAM 70 390 K74560/POTAM 70 391 WA6171/(C1014588,TW!N) 392 PROSPUR/(K750050,K70340/3/ERA//ATL66	1393 K78504/K74129-33/K7806645, K79299-10 1394 K78504/K74129-33/K7806645, K79299-11 1395 WSMP-4120 1396 81AS-3013
NURSCO	LABNUM	831373 831374 831375 831376 831377	831378 831379 831380 831381 831382	831384 831384 831385 831386	831388 831389 831390 831391 831392	831393 831394 831395 831396

COMMENTS: See "Remarks" for deficiencies of selections which are not noted with footnotes $(\frac{5}{2})$ or $\frac{6}{6}$) for good overall quality.

P = Poor; Q = Questionable

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	FERTILIZER	R X VARIETY	Y TEST						PAGE 1
NURSCO 38	UL	TULELAKE, CA						Y.P. PUR	2
LABNUM VARIETY ID	DNO C	CLASS TW	11	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831397 YECORA ROJO O LBS. N 831398 YOLO (CI017961) O LBS. N 831399 FIELDER (CI017268) O LBS. N 831400 YECORA ROJO 100 LBS. N 831401 YOLO (CI017961) 100 LBS. N 83-1	1134 262 260 157 237	HRS 63 SWS 64 HRS 64 HRS 64 HRS 64	63.2 62.0 63.2 64.4 63.2	69.4 71.0 69.3 70.6	0.47 0.38 0.37 0.40	79.8 87.1 85.6 85.1	7.8 6.8 6.5 10.2	59.4 57.5 57.8 57.8	8L 5L 2C 8M
83-1402 FIELDER (C1017268) 100 LBS. N 83-1 831403 YECORA ROJO 200 LBS. N 83-1 831404 YOLO (C1017961) 200 LBS. N 83-1 831405 FIELDER (C1017268) 200 LBS. N 83-1 831406 YECORA ROJO 300 LBS. N 83-1	1239 1160 1288 1286	SWS 63 HRS 64 HRS 62 SWS 63 HRS 64	98820	70.0 71.2 72.7 69.5 68.4	0.42 0.42 0.42 0.40	84.9 85.0 86.6 84.4			2 = 5 E E E
831408 FIELDER (C1017268) 300 LBS. N 83-1	263	HRS 63 SWS 63	2.5	73.2	0.41		9.5		2M 1M
LABNUM VARIETY 1D	IDNO CI	CLASS BA	ВАВЅ	BABSC 3/	MITME	TOAT	LVOLC 4/	BCRGR	RMKS
831397 YECORA ROJO 0 LBS, N 831398 YOLO (CIO17961) 0 LBS, N 831399 FIELDER (CIO17268) 0 LBS, N 831400 YECORA ROJO LBS, N 831401 YOLO (CIO17961) 100 LBS, N 831401 YOLO (CIO17961) 100 LBS, N	134 262 260 157 237	HRS 61. HRS 56. SWS 53. HRS 63.	<u> ಇಬ್</u> ಟೆ ಬ್	62.6 58.7 55.7 62.0 58.2	23.5	700 635 1/20 890 650	772 767 570 816	80 00 00 00 00 00 00 00 00 00 00 00 00 0	VP-BCRGR VP-BCRGR Vp-BCRGR
831402 FIELDER (C1017268) 100 LBS. N 83-1 831404 YCCORA ROJO 200 LBS. N 83-1 831404 YOLU (C1017961) 260 LBS. N 83-1 831405 FIELDER (C1017268) 200 LBS. N 83-13 831406 YECORA ROJO 300 LBS. N 83-1	239 160 288 286	SWS 52 HRS 65 HRS 56 SWS 50 HRS 67	000000	53.8 62.9 556.5 51.7	0.51.0	510 970 685 500 985	564 840 704 554 823		VP-MTIME&BCRGR VP-MTIME&BCRGR
831408 FIELDER (C1017268) 300 LBS. N 83-12	-1263 H	IRS 55 SWS 49		54.5	1.0	780	749		VP-MTIME&BCRGR VP-MTIME&BCRGR
COMMAENTS: All three varieties showed response (2-4% increase) will levels. Yolo, a HRS failed make adequate protein even lb/N and lacks all desirable bread making properties. (SWS) is not a bread wheat and performed as expected, of loaf volume vs flour protein, page 2.	S	h fertility at 300 Fielder See figure	Yecora Yolo Fielder Yecora	Yecora Rojo Yolo Fielder Yecora Rojo Yolo	0 7.8 6.8 6.5 700 700 635	FLOUR PROTEIN 100 200 10.2 11.1 7.6 8.7 8.1 8.1 LOAF VOLUME 890 970 650 685	3000 11. 99. 985 780 500		

A CAST SOLD STREET OF THE STRE	

Y. P. PURI

STUDY
LIZER
FERTI

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 39

TULELAKE, CA

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD FASH	FASH 1/	MSCOR	FPROT 1/	MSCOR FPROT MABSC MTYPE LVOL 1/ 3/	LVOL	BCRGR RMKS
831410 YECORA ROJO 831410 YECORA ROJO 831411 YECORA ROJO 831412 YECORA ROJO 831413 YECORA ROJO		83-1-A-3 83-1-B-2 83-1-B-2	HRS HRS HRS HRS	64.4 65.2 65.2 64.8 64.8	71.2 69.1 69.8 69.8 68.9	0.44 0.44 0.44 0.44 0.44	84.2 81.3 82.7 82.4 82.4	0 0 0 0 0 0 0	60.4 8M 59.1 8L 60.6 8L 62.1 8M 59.6 8L		
831414 YECORA ROJO 831415 YECORA ROJO 831416 YECORA ROJO 831417 YECORA ROJO 831418 YECORA ROJO		883-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	HRS HRS HRS HRS	65.2 65.6 64.4 64.8 64.8	70.6 69.5 69.8 70.9 69.3	0.42	84.2 83.1 83.1 84.8 82.8	9.2 8.3 10.2 1.8	62.1 8M 60.3 8L 61.8 8M 61.8 6H 62.4 8L		
831419 YECORA ROJO 831420 YECORA ROJO		83-1-F-2 83-1-F-3	HRS	65.6	69.5	0.42	83.0	9.8	61.2 8L 63.3 7M		
1/ Observed Values Corrected to 14% Moistun 3/ Absorption at 14% Moisture Corrected to 4/ Observed Values Corrected to 9% Protein	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 9% Protein. 4/ Observed Values Corrected to 9% Protein.	·		5/ Pari 6/ Prof	ticular nising (ly Prom Overall	ising O Qualit	verall y Chara	5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.	cterist	ics.

Because of the low protein content and apparent lack of response to treatment no bread baking tests were conducted on this material. Milling was unaffected by the fertilizer treatments. COMMENTS:

edinanteary resilities ear yo barnelianu asw gaille.

	PRODUCTION OF THE PROPERTY OF			
	Promising Oversil Odelich Characteristics.	\$ 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
9 9 9 3	66	0,0	0000000	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
y voni framears but inainou niaiona	o 14% Moisthia Basis. Collected fo 8% bloisiu.	69 50 50 50 50 50 50 50 50 50 50 50 50 50		10 m V m 13 1
but instrop disting wol sail to estrock to the same	Conserved (altes Consciente de leg Moisture Basis.			

NURSCO 40

NURSCO 40		PENDLETON,	N, OR							C.R. ROHDE
LABNUM VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	MSCOR FPROT	MABSC M	MABSC MTYPE CODI	CODIC RMKS
					1/		7	3/		4/
831421 STEPHENS/P1173438(M76-479)PW7716.K-3363 831422 CERCO/TJB 841/1543 831423 CD/P101//DRC.6720-69-13.CB297 831424 STEPHENS/P1173438(M76-479).PW77-16.K.361 831425 CEBCO 14B//CNO S/INIA.S//LEN/3/K//PET	08245 0WW76028 M-340 1 0R8254 M-27	5/SWW HRW 6/SWW SWW SWW	57.3 64.2 56.8 54.5 54.5	71.4 63.0 66.6 64.2 63.8	0.40 0.43 0.41 0.42	86.4 75.4 79.6 76.3	7.6 7.1 7.1 7.7	52.5 2L 57.8 6L 56.5 4L 53.9 2L 54.0 2L	9.10 8.02 8.95 9.26 9.01	9.06 8.03 P-FYELD&CODI 8.88 Q-FYELD 9.16 P-FYELD 8.99 P-FYELD
831426 55-1744/ZC//SUW/ROED.SW0730902F-1H-1H 831427 EMU/V6707.SWM755202*-01H-1M-0H 831428 65-11-70MBW-2/RIEB F1//65-116-70-MB 831429 STEPHENS/SM-4(7436)(M76-473)PW77-15 831430 HILL 81 (OR68007)	. M-230 M-220 . M-46 K-359 C1017954	HWW SOWW SWW SWW SWW SWW SWW	58.4 58.5 56.5 56.8	65.1 67.3 68.6 69.3 68.9	0.41 0.41 0.41 0.39	78.8 81.5 82.5 84.5 79.9	8.7.6	56.3 3M 53.5 5L 53.4 5L 51.7 2L 53.0 2L	8.42 9.30 9.25 9.29 9.10	
831431 DAWS 831432 1-607/CAMA//SENCOR CLUB.168-5 831433 67-2337-534/178383.M76-324//OR7464.78-2 831434 1-607/CAMA/3//M68-880/HYS/YMH/HYS.69 831435 1-601/CAMA//OR7464.165-2	C1017419 K-197 K-18 K-221 K-147	SWW 6/SWW 6/SWW 6/SWW	55.6 56.2 56.5 55.2	66.1 66.3 64.3 67.5	0.41 0.37 0.40 0.40	79.0 79.4 79.9 81.4	7.1	53.2 5L 55.6 5L 58.2 6L 56.2 6L 54.5 5L	8.56 9.00 8.56 9.17	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
831436 STEPHENS/PI173438(M76-4479). PW77-16 831437 MCDERMID/ROMANIAN//STEPHENS.540-7 831438 FARO	K-361 K-84 C1017590	SWW 6/SWW CLUB	55.6 58.2 52.7	65.9 68.1 68.3	0.41	78.9 83.7 76.9	7.2	53.1 3L 53.7 3L 51.6 3L	9.17 9.12 9.24	9.09 Q-FYELD 9.06 9.20
1/ Observed Values Corrected to 14% Moisture Basis.			5/ Pa	Particularly Promising	rly Pro	mising (Overall	Quality	Overall Quality Characteristics.	stics.

 $\overline{\bf 3}/$ Absorption at 14% Moisture Corrected to 8% Protein. $\overline{\bf 4}/$ Observed Values Corrected to 8% Protein.

COMMENTS: With the exception of OWW76028, all entries in this nursery were low in test weight which probably is responsible for the atypical flour yield and milling scores. Cookie baking properties appear near normal.

6/ Promising Overall Quality Characteristics.

1 0

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO) 41	PE	PENDLETON,	OR				C.R. ROHDE	t. I
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSO 3/
831439 831440 831441 831442 831442	MCDERMID/ROMANIAN//OR7141.K-83 STEPHENS HYS/NORCO//CAMA/3/SM-4(7436).M76-502 RIEBESEL/HYSOP,C588-SE-03W5.CB114 HILL 81 (OR68007)	0R8270 C1017596 0R8188 <u>6</u> / M-132 C1017954	MMS MMS MMS MMS	57.8 56.5 60.0 59.9 58.2	66.9 67.4 69.7 67.4 69.2	0.41 0.43 0.45 0.45 0.41	73.6 72.5 76.4 74.5	87.72	54.5 53.5 54.3 52.9
831444 831445 831446 831447 831448	4 REW/LUKE.SEL.305 5 SUWON 92/3*OMAR.SEL.142 5 FARO 7 JACMAR 8 PAHA/SEL.65-2124(M76-423).A-1	6/ 0R7794 6/ 0R7142 C1017590 WA6585 6/ 0R814	SWW SWW CLUB CLUB	55.00 55.00	70.9 70.3 69.9 68.2 69.9	0.41 0.43 0.48 0.47 0.45	80.0 77.6 73.6 72.9 77.1	7.0 7.4 7.6 7.3	55.0 50.6 50.5 49.8 51.2
831449 831450 831451 831452 831452	9 HYSLOP/YAYLA//WA4995/3/CERCO.W-1980 0 DAWS 1 SCT/101//3469/P1178383/S1.AM07974 2 SW92/6*0/3/T.SP/CTL//3*0 3 HYS/YAYLA//63-112-66-4/3/HYS SF.F1/4/.	6/ 0R7996 C1017419 WA6914 5/ WA6698	SWW SWW CLUB SWW	550 50 50 50 50 50 50 50 50 50 50 50 50	69.6 68.0 66.5 70.0	0.45 0.42 0.42 0.43 0.43	75.4 74.0 73.0 76.0 76.5	7.77.4	52.9 52.7 56.5 50.1
831454 831455 831456 831457 831458	4 MNL//BB/7C SWM731377*-1H-100P 5 HRAY-26 6 65-116-MBW//63-189-66-7/BEZO 7 MILDRESS/3/YMH//RIEB/WA4995 8 61-1228-6-706//69-148//NUG	SWM73137*- HRAY-26 6/ OWW72339 6/ OWW70094 OWW71730	HWW HRW SWW SWW	559.5 573.1 57.3	66.8 69.1 70.1 69.6	0.43 0.41 0.43 0.40	72.7 77.8 75.1 78.0	7 7 7 7 7 8 . 0 8 . 7 7 7 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	58.5 58.4 52.9 51.1
831459 831460 831461 831462	9 NDD/P101//V6400-6-2-33 0 TAST/TOR+M 1 7C-MORO 2 STEPHENS 2*/CAMA.K-115	6/ OWW750144 SWM754397 OWW68100 OR8262	SWW SWW CLUB HWW	60.1 60.8 61.9 61.0	70.1 67.4 69.8 69.0	0.41 0.41 0.38 0.40	78.3 74.6 80.4 78.0	7.8 6.9 7.8	533.14
1/0bse 3/ Abs 4/ Obs	1/Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 8% Protein. 4/ Observed Values Corrected to 8% Protein.	ein.		5/ Partic 6/ Promis	Particularly Promising Overall Quality Ch Promising Overall Quality Characteristics	sing Overall Quality Chara	Quality Characteristics	cteristics.	

	ď	
	u	
	-	
	Z	
	_	
	Z 3	
	ш	
,	<u> </u>	
	I	
	¥	
	\vdash	
	4	
	0	
	SOFI	
	ليبا	
	ANCED	
	Z	
	ADV.	
	Ø	

NURSCO 41	d	PENDLETON, OR	OR				C.R. ROHDE
LABNUM	I DNO	CLASS	MTYPE	CODI	COD1C	CAVOL	SCSOR RMKS
831439 MCDERMID/ROMANIAN//OR7141.K-83 831440 STEPHENS 831441 HYS/NORCO//CAMA/3/SM-4(7436).M76-502 831442 RIEBESEL/HYSOP,C588-SE-03W5.CB114 831443 HILL 81 (OR68007)	0R8270 C1017596 0R8188 M-132 C1017954	MMS MMS MMS MMS	% % % % % % % % % % % % % % % % % % %	8.37 8.50 8.32 8.67	88.32 88.54 88.54 8.64	1061 1204 1167 1185 1188	60.0 P-CODI&CAVOL 72.0 67.0 P-CODI&SCSOR 69.0 68.0
831444 REW/LUKE.SEL.305 831445 SUWON 92/3*OMAR.SEL.142 831446 FARO 831447 JACMAR 831448 PAHA/SEL.65-2124(M76-423).A-1	0R7794 0R7142 C1017590 WA6585 0R814	SWW CLUB CLUB CLUB	2 2 2 2 2 2 2 2 2 2 2 3 2 4 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	8.99 8.99 8.99 8.84	88.83 8.96 79	1251 1237 1295 1238	77.0 73.0 74.0 76.0
831449 HYSLOP/YAYLA//WA4995/3/CERCO.W-1980 831450 DAWS 831451 SCT/101//3469/P!178383/S1.AM07974 831452 SW92/6*0/3/T.SP/CTL//3*0 831453 HYS/YAYLA//63-112-66-4/3/HYS SF.F1/4/	OR7996 C1017419 WA6914 WA6698	SWW SWW CLUB SWW	311	8.85 8.42 8.64 8.89	8.82 8.36 8.60 8.84 8.64	1221 1164 1107 1250	74.0 70.0 61.0 P-SCSOR 75.0 68.0 Q-CAVOL&SCSOR
831454 MNL//BB/7C SWM731377*-1H-100P 831455 HRAY-26 831456 65-116-MBW//63-189-66-7/BEZO 831457 M1LDRESS/3/YMH//R1EB/WA4995 831458 61-1228-6-706//69-148//NUG	SWM73137*- HRAY-26 OWW72339 OWW70094 OWW71730	HWW HRW SWW SWW	4L 31 22 22 22	8.11 8.04 8.52 9.12	8.10 8.04 8.46 9.05	1161 1028 1236 1274 1227	66.0 P-CODI&SCSOR 56.0 P-CODI&SCSOR 71.0 72.0 67.0 Q-SCSOR
831459 NDD/P101//V6400-6-2-33 831460 TAST/TORIM 831461 7C-MORO 831462 STEPHENS 2*/CAMA.K-115	OWW750144 SWM754397 OWW68100 OR8262	SWW SWW CLUB HWW	32 22 32 32 32 32 32 32 32 32 32 32 32 3	8.74 8.59 9.19 8.35	8.70 8.61 9.11	1226 1149 1177 1070	73.0 Q-CAVOL&SCSOR 69.0 Q-CAVOL&SCSOR 68.0 Q-CAVOL&SCSOR 60.0 P-CODI&CAVOL

These wheats were atypical in milling and baking properties. All, including the check varieties were poor in flour yield and milling score, which may have been the results of low test weights. The experimental selections were judged in comparison with the check varieties performance, which may or may not hold under different growing conditions and more typical test weights. See "Remarks" for deficiencies of those selections not footnoted as promising in quality characteristics. COMMENTS:

A LONG S. STREETS . TO LONG TO

	7.5 M. C. S.		
		200 M C M	
		-41 LD (00 EN LO	
		20024	

NURSCO	42		MORO,	OR							C.R.	ROHDE
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT	MABSC MTYPE	PE COD!	CODIC	C RMKS
831463 831464 831465 831466	STEPHENS REW/CAMA//OR74131.K-271 67-237-534/178383.M76-324//OR7464.K-182 STEPHENS/CAMA//OR765.K-300 1-607/CAMA//SENCOR CLUB.K-198	C1017596 0R8233 0R8214 0R8238 0R8218	SWW 6/SRW HRW HRW 6/SWW	61.6 63.3 63.2 63.8	71.2 73.3 67.5 72.5 71.2	0.35 0.35 0.38 0.38	89.5 91.4 84.6 89.3 88.6	6.3	53.2 2L 51.7 2L 62.1 4L 53.9 3L 52.1 5L	9.31 9.34 8.16 9.39	9.24 9.30 8.18 8.70 9.50	NOTE;Red Color P-FYELD-HRW Hard Texture(Red)
831468 831469 831470 831471 831472	CERCO/ROMANIAN//STEPHENS.K-233 1-607/CAMA//OR7464,K-145 1-607/CAMA//OWW69-028-3W5.K-144 1-607/CAMA//OWW69-028-3W5/K-135 SEL.101/CAMA//1-72/CAMA.K-40	0R8224 0R824 0R823 0R826 0R826	6/SWW SRW SWW SWW 6/SRW	61.6 62.2 63.3 62.0	69.9 68.5 67.4 68.1 71.8	0.36 0.37 0.33 0.34 0.38	86.9 84.8 86.0 86.4 88.3	5.6 7.7 7.5	54.7 2L 57.6 8L 53.4 8L 53.4 8L 53.8 3L	9.05 8.97 9.39 9.37	9.01 8.84 9.43 9.43 8.98	Q-FYELD Q-FYELD P-FYELD P-FYELD
831474 831474 831475 831476	CAMA/3/ELGIN//166910/ELGIN.K-7 DAWS 0705CLEMENT.WWPN6 DISPONENT.CB-178 CHIEFTAN.MCB1478	0R8265 C1017419 M-37 M-139 M-172	HRW SWW SRW HRW SRW	63.0 63.1 61.4 63.2 61.2	69.6 70.3 66.8 72.1 68.0	0.37 0.35 0.33 0.40	85.7 885.7 85.2 86.6 83.9	7.7	57.1 5L 52.1 5L 51.3 1L 50.8 5L 52.4 2L	8.79 8.96 9.25 8.69	8.84 8.95 9.23 8.75	Hard Texture (Red) P-FYELD Hard Texture Q-FYELD,P-MSCOR
831478 831479 831480 831481 831482	FARO 9 VG4059-2-16-117-69/ERA.MCB-647 0 GOLDEN VALLEY/PICH S.HRPYT-104 1 F60212-76.MEXCB78240 2 F60213-76.MEXCB78241	C1017590 M-199 M-221 M-247 M-248	CLUB HRW HRW HRW HRW	61.9 65.4 63.8 63.7 64.4	72.6 69.8 72.1 68.8	0.35 0.35 0.34 0.33	91.3 86.7 89.8 86.9	000000000000000000000000000000000000000	51.6 1L 55.8 3M 56.2 4L 54.8 1M 52.3 1M	9.34 8.67 8.55 8.74	9.23 8.83 8.63 8.81	Hard Texture (Red) Hard Texture (Red) Hard Texture (Red) Hard Texture (Red)
831483 831484 831485 831486	3 GK-FERTODI-2/NE701134,730713.MCB669 4 BEZ 1/PRODUCIORE(128-1)/AU FUN59 71 5 STEPHENS/CAMA//OR765,414-1 6 CERCO/ROMANIAN//STEPHENS,423-2 7 CERCO/ROMANIAN//STEPHENS,423.4	M-282 K-307 K-310 K-311	HRW HRW 6/SRW HRW HRW	61.1 63.7 62.4 63.6 64.6	71.7 73.4 69.2 67.7 68.5	0.37 0.35 0.36 0.34 0.33	88.6 92.2 86.1 85.6 86.5	7.0 8.4 7.7 7.4	55.1 6L 52.7 2M 52.4 4L 57.5 6L 58.9 6L	8.72 9.17 8.37 8.49	8.72 8.93 9.25 8.41	Hard Texture (Red) Hard Texture (Red) NOTE: Red Color P-FYELD Hard
831488	8 WANSER	C1013844	HRW	64.2	68.5	0.34	86.2	8.0	56.7 6L	8.68	8.76	P-FYELD Hard
1/ Observ 3/ Absorp	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 7% Protein.	·		5/ Par 6/ Pro	Particularly Promising Ove			Overall ty Chare	sing Overall Quality Cha Quality Characteristics.	Characteristics.	tics.	

4/ Observed Values Corrected to 7% Protein.

COMMENTS: Many of these selections were red seeded and hard in texture. Because of the low protein content they were not tested for bread baking properties. Others were soft reds (See Class column and Remarks). Selection M-285 is noteworthy for milling properties and cookie diameter for a HRW.

ADVANCED HARD RED SPRING

C.F. KONZAK	LVOLC BCRGR RMKS	1026 8P-BCRGR 986 2 996 2 963 3Q-BCRGR 955 2	975 2 972 2 949 3Q-LVOL&BCRGR 976 3Q-BCRGR 4Q-BCRGR	891 4P-BCRGR 871 2 940 2Q-LVOL 948 1 965 2	966 2Q-FYELD 2 1018 2 1000 2 5P-LVOL&BCRGR
	TAOL	970 955 990 1000 955	975 935 980 975	910 945 965 985	985 1005 975 950 895
	MTIME	33330	0.8.8.v.8.	000000	2000 to 1000 t
	BABSC 3/	63.2 65.1 67.6 69.9	67.8 65.9 69.8 71.1 69.5	67.5 66.5 67.8 68.1	67.7 69.7 66.6 67.3 68.3
, WA	BABS	62.3 64.6 67.5 70.5	67.8 65.3 70.3 71.4 69.4	67.8 67.7 68.2 68.7 66.7	68.0 70.2 65.9 66.5
ROYAL SLOPE, WA	CLASS	HRS HRS HRS HRS	HRS SH	HRS HRS HRS S HRS	HRS HRS HRS HRS
RC	1 DNO	HP830002 HP830003 HP830004 HP830006	HP830008 HP830014 HP830016 HP830017 HP830019	HP830022 HP830023 HP830024 HP830025 HP830026	HP830028 HP830029 HP830030 WA007075
NURSCO 44	LABNUM	831507 C1017689/WARED, K74102-118 NZ SEL2 831508 C1017689/WARED, K74102-118 NZ SEL3 831509 C1017689/WARED, K74102-118 NZ SEL4 831510 C1017689/WARED, K74102-118 NZ SEL8 831511 C1017689/WARED, K74102-118 NZ SEL10	831512 C1017689/WARED, K74102-118 NZ SEL11 831513 C1017689/WARED, K74102-118 NZ SEL23 831514 BORAH/C1017689, K74127-339 NZ SEL1 831515 BORAH/C1017689, K74127-339 NZ SEL4 831516 BORAH/C1017689, K74127-339 NZ SEL7	831517 BORAH/C1017689, K74127-474 NZ SEL7 831518 BORAH/C1017689, K74127-474 NZ SEL8 831519 BORAH/C1017689, K74127-474 NZ SEL10 831520 BORAH/C1017689, K74127-474 NZ SEL12 831521 BORAH/C1017689, K74127-474 NZ SEL13	831522 V761-28-J4-B2 NZ SEL8 831523 V761-28-J4-B2 NZ SEL11 831524 WAMPUM C1017691 831525 K73579/BORAH 831526 K74153/(K74093,WA6096//

perform as expected in loaf volume response to that protein. Selection HP830023 has the highest protein in the group, but it failed to COMMENTS:

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 45		KS, TX, NE, OK	, ОК						
LABNUM	ONG	CLASS	FASH 1/	FPROT 1/	MABSC 3/	MTYPE	FABS	FPEAK	FSTAB
831527 CONTROL (802)(803)(804) GROUP 831528 EXPERIMENTAL 831529 EXPERIMENTAL 831530 EXPERIMENTAL 831531 CONTROL (806)) GROUP 1 6/83-801 83-802 83-804 83-804	HRW HRW HRW	0.43 0.44 0.41 0.39 0.38	12.3 12.9 11.0	61 59.8 59.6 58.6	M H H H H t t t t t t t t t t t t t t t	61.9 61.8 60.4 62.2 62.8	84844 vv00v	34.0 88.5 26.0 11.5
831532 EXPERIMENTAL 831533 CONTROL GROUP 2 831534 EXPERIMENTAL 831535 EXPERIMENTAL 831536 CONTROL GROUP 3	83-806 83-807 6/83-808 6/83-809 83-819	HRW HRW HRW	0.39 0.43 0.45 0.45	12.3 12.3 12.8	58.7 57.8 61.0 59.0 60.1	t D D D D D D D D D D D D D D D D D D D	63.4 57.1 57.3 58.6	3335000	0.0000000000000000000000000000000000000
831537 EXPERIMENTAL 831538 EXPERIMENTAL 831540 CONTROL GROUP 4 831541 EXPERIMENTAL	83-811 83-812 83-813 83-814 6/83-815	HRW HRW HRW HRW	0.48 0.44 0.47 0.46 0.46	12.5 12.0 10.5 11.2	57.1 57.1 57.3 59.7 58.4	WWWW 2200000000000000000000000000000000	556.9 57.2 57.1 57.6	00000 00000	0.27 0.88 0.09 0.09
831542 CONTROL GROUP 5 831543 EXPERIMENTAL 831544 EXPERIMENTAL 831545 EXPERIMENTAL 831546 EXPERIMENTAL	83-816 6/83-817 83-818 6/83-819 83-820	HRW HRW HRW HRW	0.44 0.44 0.44 0.44 0.49	12.3 12.7 13.0 12.6	59.8 57.8 59.7 59.7	4H 4M 4M 4M	57.6 59.5 62.2 63.3	40000 00000	11.0 24.0 23.5 11.5 8.0
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to12% Protein. 4/ Observed Values Corrected to 12% Protein.	14% Moisture Basis. prrected to12% Protein. 12% Protein.		5/ Part 6/ Prom	icularly Puising Overa	romising O	Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.	ity Charac istics.	teristics.	

NURSCO 45

¥
OK.
NE
X
KS.

BCRGR RMKS	2 2 4 Heavy BCRGR 3Q-BCRGR 2	4 Heavy BCRGR 2 2 2 2 2	4 P-LVOL&BCRGR 3 Q-BCRGR 3 Q-LVOL&BCRGR 2	2 1 2 Q-LVOL 2 Q-LVOL
LVOLC 4/	966 967 984 1008 950	946 1015 1006 1000	949 1025 960 1083 1040	1024 980 967 1003 971
LVOL	985 1023 1065 925	958 990 1025 1050	980 1025 1003 990 990	1043 1023 1010 1065 1008
MTIME	90004	2000 2000 2000	2000 co	
BABSC 3/	64.3 64.1 65.3 62.8	63.9 62.5 64.7 62.7	60.3 62.0 63.9	64.0 62.5 63.4 63.7
BABS	64.6 65.0 64.8 65.3	662.1 663.0 683.0 683.0 683.0	60.8 58.3 62.7 62.4	64.3 63.2 64.1 64.7 64.0
CLASS	HRW HRW HRW	HRW HRW HRW HRW	HRRE	HRW HRW HRW HRW
ONGI	83-801 83-802 83-802 83-804 805	83-806 83-807 83-807 83-809 83-810	883-1 831-1 831-1 831-1 831-1 8114	83-816 83-817 83-819 83-819 83-820
VARIETY	CONTROL (802)(803)(804) GROUP 1 EXPERIMENTAL EXPERIMENTAL EXPERIMENTAL CONTROL (806)	EXPERIMENTAL CONTROL GROUP 2 EXPERIMENTAL EXPERIMENTAL CONTROL GROUP 3	EXPERIMENTAL EXPERIMENTAL EXPERIMENTAL CONTROL GROUP 4	CONTROL GROUP 5 EXPERIMENTAL EXPERIMENTAL EXPERIMENTAL EXPERIMENTAL
LABNUM	831527 C 831528 E 831529 E 831530 E	831532 8 831533 6 831534 8 831535 8	831537 831538 831539 831540 831541	831542 831543 831544 831544 831546

COMMENTS: These flours were evaluated in collaboration with the Hard Red Winter Wheat Council.

LABNUM	VARIETY	IDNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	BABS
831547 E 831548 1 831549 V 831550 E	DIRKWIN TWIN WARED BORAH FIELDWIN	C1017745 C1014588 C1015926 C1017267 C1017425	SWS SWS HRS HRS SWS	59.3 60.2 63.7 62.3	67.2 67.1 70.1 69.8 68.8	0.42 0.44 0.40 0.36 0.35	80.0 78.5 84.5 86.6	7.60	48.7 48.9 55.1 55.7	1L 2L 8M 2L 2L	59.5
831552 831553 831554 831554 831555	FEDERATION WAMPUM BORAH/3/11-60-10//TZPP/SN64 K71051/WA5949 OWENS	C1004734 C1017691 1D0153 6/WA6749 C1017904	SWS HRS HRS KWS	60.4 61.3 62.0 62.2 62.6	65.5 68.7 68.6 66.1	0.38 0.42 0.38 0.42 0.36	80.1 82.2 82.2 82.3	7.7 8.3 9.1 8.6	559.7 559.7 550.7 53.7	2L 7L 8M 3L	57.3 62.9 58.5
831557 831558 831559 831560 831561	MCKAY WAVERLY FBR/5/BBII/4/7*SF/3/AS/FR//A631675-A-5 6/100236 YECORA ROJO 100067*2/BB 5'RESEL, A73345-23-4	C1017903 C1017911 6/100236	HRS SWS SWS HRS SWS	63.2 61.0 62.0 64.1 60.2	66.2 71.8 68.7 70.3 65.2	0.38	82.7 88.3 84.4 85.6 80.1	9.8	56.9 50.9 58.5 49.9	88W 44M 2L	60.3
831562 831563 831564 831564 831566	ST5958/ARANA STK/CNO/EMU ORS750573 HORK/YMH//KAL/BB	ORSO6558 ORSO6367 ORS750573 ORS791432 ORS44421	HWS HRS HWS HWS	62.3 61.6 62.6 63.6 62.6	69.0 66.1 67.1 70.0 69.1	0.41 0.44 0.39 0.38	83.0 78.3 80.3 85.5	7.8 8.7 7.8 7.6	56.7 54.0 58.9 59.1	33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	59.7 60.9 62.5 63.1

^{1/} Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 8% Protein. 4/ Observed Values Corrected to 8% Protein.

Promising Overall Quality Characteristics. 9

		V 34 D 10 0

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

LABNUM VARIETY 831547 DIRKWIN 831549 WARED 831550 BARED 831550 BARED											
		ONGI	CLASS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	1000	C0D1C	RMKS
831221 FIELDWIN		C1017745 C1014588 C1015926 C1017267	SWS SWS HRS HRS	58.3 62.9	# t t t t t t t t t t t t t t t t t t t	845 795	771	αrv	9.19 9.11 8.65 8.42 9.29	9.21 9.16 8.75 8.55	
831552 FEDERATION 831553 WAMPUM 831554 BORAH/3/II-60-10//TZPP/SN64 831555 K71051/WA5949 831556 OWENS		C1004734 C1017691 100153 WA6749 C1017904	SWS HRS HRS SWS	57.0 61.8 57.9	4.6	800 760 825	781 692 788	いたり	9.05 8.90 8.49 8.70	8.92 8.58 P- 8.75 Si	P-LVOL&BCRGR Similar to Wampum
831557 MCKAY 831558 WAVERLY 831559 FBR/5/BBII/4/7*SF/3/AS/FR//A631675-A-5 831560 YECORA ROJO 831561 ID0067*2/BB~5'RESEL.A73345-23-4	31675-A-5	C1017903 C1017911 ID0236 ID0227	HRS SWS SWS HRS SWS	59.1	5.7	900	826	α α	8.92 9.20 9.41 8.45 9.20	9.02 9.20 9.56 8.63 9.14 Low	w FYELD
831562 ST5958/ARANA 831563 STK/CNO/EMU 831564 ORS750573 831565 HORK/YMH//KAL/BB 831566 ORS44421		ORSO6558 ORSO6367 ORS750573 ORS791432 ORS44421	HWS HRS HWS HWS	59.9 60.2 62.1 63.3 59.6	44.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	595 765 710 760	677 552 740 722 784	たのたのの	8.36 8.32 8.65 8.36	8.34 VP 8.38 VP 8.68 P-1 8.34 P-1 8.73 P-1	VP-LVOL&BCRGR VP-LVOL,BCRGR&FYELD P-LVOL&BCRGR&FYELD P-LVOL&BCRGR

COMMENTS: Several of the white wheat selections were hard endosperm (See Class). These wheat did not perform well in bread baking trials, but the protein was too low to be very conclusive.

P = Poor; VP = Very Poor

SA TANA TANA			

NURSCO 47

NURSCO	47		PENDLETON,	, OR						C.R. ROHDE	LL)
LABNUM	VARIETY	ONO	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC	MTYPE	BABS
						1/		1/	3/		
831567 831568 831569 831570 831571	URQUIE OWENS UNKNOWN 1D46/1D53/5/4YT54//NRN10/BUR/3/NGN/4/6/1D26 1D0046/1D0053//FIELDWIN	C1017413 C1017904 5/100264 6/10265	SWS SWS SWS SWS SWS	53.6 57.4 56.9 57.2	66.0 66.7 71.9 67.0 70.5	0.48 0.51 0.47 0.53	74.5 73.8 82.4 72.8 81.0	9.4 10.6 10.8 10.8	53.3 56.2 55.1 56.9	ZZZZZ Nanona	
831572 831573 831574 831575	A77745-6 S*TWIN/4/ID20/3/SN/FR//LMH66/5/TWIN/6/.6/1D02 MCKAY WAMPUM BORAH//A678259-B-48-1	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SWS SWS HRS HRS	57.8 54.7 60.3 56.2 58.7	66.3 68.0 72.9 68.0 71.9	0.53 0.53 0.43 0.49	71.9 73.7 86.3 77.8 86.3	12.0	59.0 62.8 64.2 65.0	25 M M M M M M M M M M M M M M M M M M M	66.5
831577 831578 831578 831580 831581	1D0047-3/A70330S-B-33-1 BORAH/3/!!-60-101//TZPP/SN64/4/!D42//\$/!D02 MRN/TBR66/33/TZPP/3*AN//B61-136.AB.SEL.1 !D02 !D0134//!D0064/!D0042 MAX!GENE/!D0134	5/100270 5/100271 5/100272 5/100273 5/100274	HRS S HRS HRS S HRS S	59.9 59.8 58.6 58.6	73.6 73.6 73.0 71.3	0.42 0.41 0.39 0.43	87.2 87.8 88.3 84.2 85.6	12.27	651.8 653.6 63.6 63.7	6H 6H 6H 6H	65 69 68 68 65 65 65 65
831582 831583 831584 831585 831586	A6726S-114-1-4/A7390S-1-4 WA6030/CRANE.543-10//BORAH/3/SAWTELL WA6030/CRANE.543-10//PRODAX/3/BORAH WA6030/CRANE.543-10//PRODAX/3/BORAH BORAH//WA6030/CRANE.543-10	6/100275 6/100276 5/100277 5/100278 6/100279	HRS HRS HRS HRS	58.6 58.2 58.1 59.9 57.5	69.5 72.0 72.0 73.4 71.9	0.45 0.44 0.42 0.43 0.48	81.3 84.5 85.7 86.7	12.7 12.9 12.3 12.3	65.3 64.2 63.2 63.8	57 57 57 57 57	69.2 67.3 65.7 66.7
831587	DIRKWIN	C1017745 C1014588	SMS	55.0	68.5	0.52	75.3	10.7	54.2	1H 2H	
1/ Obse 3/ Abso	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 12% Protein.	oi.		5/ Particula	rly	ising	Overall Quality Characteristics	Jality Cha	aracteris	stics.	

 $[\]underline{4}$ / Observed Values Corrected to 12% Protein.

^{6/} Promising Overall Quality Characteristics.

			西京京京系 シのマルマ
edustrial disease			

NURSCO 47		PENDLETON, OR	, OR					0	C.R. ROHDE	
LABNUM	IDNO	CLASS	BABSC	MTIME	LVOL	LVOLC	BCRGR	CODI	CODIC	RMKS
			3/			4/			4/	
831567 URQUIE 831568 OWENS 831569 UNKNOWN 831570 1D46/1D53/5/4YT54//NRN10/BUR/3/NGN/4/ 831571 1D0046/1D0053//FIELDWIN	C1017413 C1017904 100264 10265	SMS SMS SMS						8.92 8.94 9.35 9.19	8.64 9.14 9.02	
831572 A77745-6 831573 S*TWIN/4/ID20/3/SN/FR//LMH66/5/TWIN/6/ 831574 MCKAY 831575 WAMPUM 831575 BORAH//A678259-B-48-1	. 100267 . 100268 . 1017903 . 100269	SWS SWS HRS HRS	67.0 68.4 69.2	6.9	985 1015 1040	1016 978 1040	N 0 F	9.02 9.20 8.84 8.29 8.29	8.93 Q-1 9.14 8.80 8.34 8.34	Q-MILLING
831577 ID0047-3/A70330S-B-33-1 831578 BORAH/3/II-60-101//TZPP/SN64/4/ID42// 831579 MRN/TBR66/33/TZPP/3*AN//B61-136.AB.SEL.1 831580 ID0134//ID0064/ID0042 831581 MAXIGENE/ID0134	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HRS HRS HRS	66.0 69.6 66.8 68.4 65.3	5.20	1055 1090 1115 1040 1050	1086 1078 1072 1015	000	88.550 88.550 88.29	8.52 8.52 8.32 8.44	
831582 A6726S-114-1-4/A7390S-1-4 831583 WA6030/CRANE.543-10//B0RAH/3/SAWTELL 831584 WA6030/CRANE.543-10//PRODAX/3/B0RAH 831585 WA6030/CRANE.543-10//PRODAX/3/B0RAH 831586 B0RAH//WA6030/CRANE.543-10	100275 100276 100277 100278	HRS HRS HRS HRS	68.5 68.6 66.4 65.4 66.0	# W = W = W = W = W = W = W = W = W = W	1075 1040 1145 1040	1032 984 1089 1021	00000	8.11 8.62 8.55 8.55	8.35 8.35 8.57 8.57	
831587 DIRKWIN 831588 TWIN	C1017745 C1014588	SMS						8.89 9.26	8.74	

Several of the HRS selections have particularly good COMMENTS: All but one of these selections (ID0267) have promising end-use quality. overall quality, exceeding McKay and Wampum (See footnotes),

Q = Questionable

NURSCO	84		PENDLETON	1, 0R					O	C.R. ROHDE	ш
LABNUM	VARIETY	1 DNO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	BABS
831589 831590 831591 831592 831593	HATTON 55-1744/CIETE CERROS//SUWON/ROEDEL SEL.101/CAMA//I-372/CAMA.K277 STEPHENS/CAMA//OR765.K-312 I-607/CAMA//OR7464.K-146	C1017772 HRPYT-21 0R8234 0R8239 0R825	HRW HRW HRW SRW	63.7 60.3 58.9 60.6 57.3	65.8 63.5 64.9 64.9	0.44 0.44 0.46 0.39 0.42	70.6 67.1 72.8 71.3	88.5	58.3 56.1 57.3	3M 3M 2L 2L 6L	62.0 61.5 58.2
831594 831595 831596 831597 831598	REW2*/CAMA, K-269 67-237-53H/178383.M76-324//OR7464.K-181 1-607/CAMA//OWW69-028-3W5.K-186 1-607/CAMA//OWW69-028-3W5.K-135 CERCO/TJB841/1543.OWW/6028*-CB130	0R8232 0R8213 0R8216 0R822 M-148	SRW HRW SRW HRW	56.0 56.0 56.5 56.5	61.2 60.8 63.5 64.0 60.7	0.38 0.47 0.41 0.41	66.6 62.1 65.6 67.5	8.3 7.7 8.0	55.8 59.8 54.0 62.6	22 61 81 81	63.3
831599 831600 831601	WWP7147.CB-330 STEPHENS/CAMA//OR765.K-284 OWW70134-3W4//MCD/178383.K-8	M-379 OR8250 OR8266	HRW HRW HRW	61.2 57.4 59.4	65.1 66.6 64.8	0.38	73.6 72.4 68.5	9.6	58.7 54.7 58.0	6L 2L 6L	64.0
LABNUM	M VARIETY	1 DNO	CLASS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	CODI	CODIC 4/	RMKS
831589 831590 831591 831592 831593	9 HATTON 0 55-1744/CIETE CERROS//SUWON/ROEDEL 1 SEL.101/CAMA//I-372/CAMA.K277 2 STEPHENS/CAMA//OR765.K-312 3 1-607/CAMA//OR7464.K-146	C1017772 HRPYT-21 0R8234 0R8239	HRW HRW HRW SRW SRW	61.5 60.8 58.3	3.58	710 605 550	679 562 556	r00	8.11 7.71 7.92 8.49 8.15	8.15 7.77P-F 7.92P-L 8.450-C 8.13P-C	8.15 7.77P-FYELD&LVOL 7.92P-LVOL&BCRGR 8.45Q-CODI 8.13P-CODI
831594 831595 831596 831597 831598	4 REW2*/CAMA.K-269 5 67-237-53H/178383.M76-324//OR7464.K-181 6 1-607/CAMA//OWW69-028-3W5.K-186 7 1-607/CAMA//OWW69-028-3W5.K-135 8 CERCO/TJ8841/1543.OWW/6028*-CB130	OR8232 OR8213 OR8216 OR822 M-148	SRW HRW SRW SRW HRW	63.0	6.5	500	481	6	8.52 7.64 8.47 7.20	8.480-CODI 7.66P-FYELD8 8.450-CODI 8.740-FYELD 7.20P-CODI	480-codi 66P-FYELD&LVOL 450-codi 740-FYELD 20 P-codi
831599 831600 831601	9 WWP7147.CB-330 0 STEPHENS/CAMA//OR765.K-284 1 OWW70134-3W4//MCD/178383.K-8	M-379 OR8250 OR8266	HRW HRW HRW	62.4	4.9	625	526	6 6	7.71 8.02 7.80	7.84P-L 8.01P-C 7.81P-L	P-LVOL&CODI P-CODI P-LVOL&BCRGR
1/ Ob	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 8% Protein.	in.		5/ Part 4/ Prom	Particularly Promising Ove	Promising rall Qual	Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.	Mality C	haracteri s.	stics.	

COMMENTS: Note the selections that were soft endosperm (CLASS). All of the hard wheats were significantly poorer in loaf volume and crumb

grain than the Hatton check variety.

4/ Observed Values Corrected to 8% Protein.

PULLMAN LATE SOFT

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

LABNUM VARIETY IDNO CLASS THT FYELD FASH MSCOR FPROT HABBG MSCOR FPROT MABBG MSCOR FPROT HABBG MSCOR FPROT HABBG MSCOR FPROT FASH MSCOR FPROT FASH MSCOR FPROT FASH MSCOR FPROT FASH MSCOR FASH FAS	NURSCO 49			PULLMAN, Y	WA				R.E. ALLAN	~
Type Color Type Color Type	LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/
MA7166 MA7164 M	TYEE LJN SPN WA716	7773) 909) 596)	83-83 83-85 83-85 83-93 83-102	CLUB SWW SWW SWW	57.6 58.9 59.1 60.8 62.1	73.2 72.0 71.7 67.5	0.37 0.36 0.36 0.34 0.34	899.2 883.7 785.2 87.2	7.0 7.2 7.8 8.2 9.1	53.5 54.2 554.5 55.2
TYEE (C1017773) TYEE (C10177773) TYEE (C1017773) TYEE (C1017773) TYEE (C10177773) TYEE (C1017773) TYE			83-133	CLUB	61.1	74.1				56.4
TYEE (C1017773) 17 E (C1017773) 18 3-8 3 SWW 4L 9.39 9.39 1405 82.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83	LABNUM	VARIETY	IDNO	CLASS	MTYPE	CODI	CODIC	CAVOL	SCSOR	RMKS
WA7166 WA7166 8.85 8.86 1285 72.0 0-SPONGE CAKE WA7164 WA7164 \$3-149 SWW 2M 8.96 9.02 1295 73.0 0-SPONGE CAKE Irred Values Corrected to 14% Moisture Basis. 5/ Promising Overall Quality Characteristics. 5/ Promising Overall Quality Characteristics.		17773) 7909) 7596)	83-83 83-85 83-85 83-93 83-102	CLUB SWW SWW SWW	2 2 3 3 3 3 3 3 3	9.46 9.39 9.26 9.09	9.39 9.30 9.24 9.11	1405 1350 1345 1320 1280	00000	
Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% Protein. Observed Values Corrected to 8% Protein			83-133 83-149	CLUB	4L 2M	8.85	8.86	1285		SPONGE CAKE & SPONGE CAKE &
	1/ Observed Values 3/ Absorption at 1 4/ Observed Values	Corrected to 14% Moisture Bar 4% Moisture Corrected to 8% P Corrected to 8% Protein	sis. rotein.			ularly Promising Overall (sing Overall Wality Chara	Quality Chara	cteristics.	

Q = Questionable; P = Poor

The Grant Statement of the Statement of

⁻ The Company of th

NURSCO 50		PENDLETON,	, or					W.E. KRONSTAD	ONSTAD
LABNUM	ONO	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831609 WANSER (83-1) 831610 ORCR8312 (83-12) 831611 ORCR8319 (83-19) 831612 ORCR8320 (83-20) 831613 ORCR8412 (83-4)	C1013844 84HRELT5 84HRELT8 84HRELT9 84HRELT12	HRW HRW HRW HRW	63.0 62.8 62.1 64.6 59.4	67.1 66.3 65.2 70.3	0.39 0.42 0.43 0.41	76.6 72.9 71.2 80.7 80.6	9.9	59.8 60.3 61.3 63.0	3 W W W W W W W W W W W W W W W W W W W
831614 ORCR8413 (83-13)	84HRELT13	HRW	61.2	4.07	0.44	0.62	11.9	62.8	2H
LABNUM	ONGI	CLASS	BABS	BABSC 3/	MTIME	TOAT	LVOLC 4/	BCRGR	RMKS
831609 WANSER (83-1) 831610 ORCR8312 (83-12) 831611 ORCR8319 (83-19) 831612 ORCR8320 (83-20) 831613 ORCR8412 (83-4)	C1013844 84HRELT5 84HRELT8 84HRELT9 84HRELT12	HRW HWW HRW HRW	61.5 63.4 67.5 65.3	62.0 64.5 64.5 64.2	23.22.2	800 665 600 750 700	831 671 600 731 632	3 P-1 9 P-1 7 P-1	P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR
831614 ORCR8413 (83-13)	84HRELT13	HRW	68.9	0.79	2.3	795	21.9	1-d h	P-LVOL&BCRGR
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.	e Basis. 10% Protein.		5/ Part 6/ Prom	icularly Prising Overa	omising Ov	5/ Particularly Promising Overall Quality Characteristics 6/ Promising Overall Quality Characteristics.	ity Charact Stics.	eristic.	

None of these selections have satisfactory bread baking properties, i.e. they are low in loaf volume and poor to very poor in bread crumb structure. COMMENTS:

1.0			
133			

W.E. KRONSTAD

	3.	
	LAB	
	QUALITY	
A AR	WHEAT	MM
SDA, SE	VESTERN WHEAT	III MAN

NURSCO 51

SWS ADVANCED WHEAT

CORVALLIS, OR

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FYELD FASH 1/	MSCOR	FPROT 1/	MSCOR FPROT MABSC MTYPE CODI	PE CODI	CODIC RMKS
831615 OWENS (C1017904) 831616 TWIN (C1014588) 831617 FIELDER (C1017268) 831618 FIELDWIN (C1017428) 831619 EII728554-2E-4E-61	OWENS (C1017904) TWIN (C1014588) FIELDER (C1017268) FIELDWIN (C1017425) E11728554-2E-4E-6E	83SPSWA1 83SPSWA2 83SPSWA3 83SPSWA4 83SPSWA12	SWS SWS SWS SWS	61.6 58.0 56.8 56.0 64.0	70.1 68.8 69.2 68.1 69.8	0.51	83.6 76.4 73.8 75.8	8.7 10.3 19.1	53.2 1L 552.0 2M 556.5 3M 553.0 2M 56.7 3M	9.35 9.36 8.71 8.96	9.21 9.26 8.75 LOW T.W.,P-MSCOR 8.86 LOW T.W.,P-MSCOR 8.79LOW CODI
831620 CM33483-F7 JUN.S 831621 CM43405-F8 CMT/MO//TRM 831622 CM43405-F8 CMT/YR//MON 831623 CM47768A-F8 IBWSN15173 831624 DIRKWIN (CIO17745)	.s BSV50//CAN.S//	6/ 83SPSWA13 6/ 83SPSWA14 83SPSWA15 83SPSWA16	SWS SWS SWS SWS SWS	59.6 61.6 62.0 59.6 60.0	67.8 68.0 66.8 64.3 70.4	0.48 0.48 0.50 0.50	76.5 76.8 76.9 70.5	11.8 11.4 11.3 10.3	55.8 4M 55.4 3M 55.3 2M 55.3 2M	8.74 8.96 9.03 8.72 9.03	8.94Q-CODI 9.12 9.17P-FYELD 8.75P-FYELD&CODI 9.03
831625 OWENS (C1017904)	(1017904)	83SPSWA18	SMS	9.69	0.89	64.0	7.97	10.1	55.1 2M	9.29	9.30
1/ Observed Value 3/ Absorption at 4/ Observed Value	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.	۰		5/ Par 6/ Pro	ticular	ly Prom Overall	nising (Qualit	verall y Chara	Particularly Promising Overall Quality Characteristics Promising Overall Quality Characteristics.	racteri	stics.

COMMENTS: Selections 83SPSWA13 and 83SPSWA14 appear about equal to Owens or Twin, but typical of the poor milling quality of soft white spring wheats.

Q = Questionable; P = Poor

	LAB.	
	QUALITY	
EA AR	WHEAT	, WA.
USDA, S	WESTERN WHEAT	PULLMAN

HRS ADVANCED WHEAT

NURSCO 52		S	CORVALLIS,	, OR					W.E. KR	KRONSTAD
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831626 MCKAY 831627 ANZA (C1015284) 831628 BORAH (C1017267) 831629 CM37705K-24-7M-3 831630 BS MEX 80001-K1	MCKAY ANZA (C1015284) BORAH (C1017267) CM37705K-24-7M-3Y-1M-04 MINIVET,S BS MEX 80001-K1	C1017903 83SPHRA3 83SPHRA4 6/83SPHRA5 83SPHRA5	HRS HRS HRS HRS	62.0 61.2 61.6 62.0 60.8	71.4 69.1 70.7 70.1 68.8	0.43 0.43 0.46 0.46	84.4 82.3 86.2 81.4 80.3	7.7 10.0 10.9 10.2	57.6 58.0 61.3 60.7	8 T W W W W W W W W W W W W W W W W W W
831631 CM30136-3Y-1 831632 CM33203G-5M- 831633 CM336821-1Y- 831634 CM37705K-2Y- 831635 CM381996-1Y-	CM33203G-3Y-1Y-1M-5Y-8-Y TITMOUSE, S CM33203G-5M-6Y-M-Y-M-Y BOBWHITE, S CM336821-1Y-1Y-4M-YBYM HAHN, S CM37705K-2Y-7M-3Y-1M-0Y MINIVET, S CM381996-1Y-1M-1Y-0M DORE, S	83SPHRA13 83SPHRA16 83SPHRA17 6/83SPHRA19 6/83SPHRA19	HRS HRS HRS HRS	62.4 63.2 59.6 62.4 60.4	67.5 69.2 69.0 69.9 68.2	0.43 0.43 0.49 0.47	80.1 82.4 78.9 82.2 79.1	10.4	61.5 60.1 58.9 57.2	2 4 H H H H H H H H H H H H H H H H H H
831636 CM42398-27Y-3M-1Y-3 831637 CM43903H-4Y-2M-1Y-2 831638 CM31678-F10-4 BUC.S 831640 CM31678-F09-6 BUC.S	CM42398-27Y-3M-1Y-3M-YB AZT/PVN,S CM43903H-4Y-2M-1Y-2M-YB KVZ/TRM CM31678-F10-4 BUC.S CM31678-F09-6 BUC.S CM33023-F8 BUC.S	83SPHRA22 83SPHRA23 83SPHRA24 83SPHRA25	HRS HRS HRS HRS	64.0 62.8 61.2 60.8 61.2	68.0 71.3 70.1 69.3 68.6	0.29 0.42 0.48 0.39	884.8 80.4 80.2 84.2	11.7	61.8 60.1 60.8 58.2	MH HH W M M M M M M M M M M M M M M M M
831641 CM3992-F6 JUP/BJY.S	UP/BJY.S	83SPHRA29	HRS	63.6	65.5	0.42	78.6	10.4	62.9	8 M
1/ Observed Values C 3/ Absorption at 14% 4/ Observed Values C	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.	is. rotein.		5/ Par 6/ Pro	ticularly mising Ove	Promising (rall Quali	Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.	lity Chara ristics.	cteristics	

^{5/} Particularly Promising Overall Quality Characteristics.
6/ Promising Overall Quality Characteristics

W.E. KRONSTAD

-
EA
WHEA
Q
ANCED
A
ADV.
HRS
_

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 52

CORVALLIS, OR

LABNUM	VARIETY	IDNO	CLASS	BABS	BABSC	MTIME	TAOL	LVOLC	BCRGR	RMKS
					2/			7		
831626 MCKAY	>	C1017903	HRS	57.5		4.7	810	953	5	
	ANZA (C1015284)	83SPHRA3	HRS	59.2	59.5	1.1	745	745	6	
	BORAH (C1017267)	83SPHRA4	HRS	4.49			046	884	2	
	CM37705K-24-7M-3Y-1M-04 MINIVET, S	83SPHRA5	HRS	63.1		3.0	096	846	20-FASH	SH
	BS MEX 80001-K1	83SPHRA9	HRS	62.3			096	917	2Low	SLOW FYELD
831631 CM30	CM30136-3Y-1Y-1M-5Y-8-Y TITMOUSE.S	83SPHRA13	HRS	64.1	63.7	2.1	905	880	4P-FY	4P-FYELD, BCRGR
	3203G-5M-6Y-M-Y-M-Y BOBWHITE, S	83SPHRA16	HRS	62.4	62.3	2.7	845	839	8P-LV	8P-LVOL&BCRGR
	36821-1Y-1Y-4M-YBYM HAHN. S	83SPHRA17	HRS	61.5	59.6	1.3	910	792	FM-99	6P-MTIME&BCRGR
	7705K-2Y-7M-3Y-1M-0Y MINIVET, S	83SPHRA18	HRS	63.2	62.1		046	872	2	
	CM381996-1Y-1M-1Y-0M DORE, S	83SPHRA19	HRS	60.5	6.09		905	930	3Q-FY	FYELD
831636 CM42	2398-27Y-3M-1Y-3M-YB AZT/PVN.S	83SPHRA22	HRS	65.7	0.99	5.1	825	844	6P-BCRGR	RGR
	CM43903H-4Y-2M-1Y-2M-YB KVZ/TRM	83SPHRA23	HRS	63.0	61.3	1.5	955	850	4P-MTIME&	IME&BCRGR
831638 CM3	CM31678-F10-4 BUC.S	83SPHRA24	HRS	64.7	62.9	1.7	980	868	2P-MTIME	IME.
	CM31678-F09-6 BUC.S	83SPHRA25	HRS	63.7	63.0	1.8	875	832	5P-MT	5P-MTIME&BCRGR
	CM33023-F8 BUC.S	83SPHRA28	HRS	9.09	4.09	2.3	800	788	6P-LV	6P-LVOL&BCRGR
831641 CM3	8316h1 CM3002-F6 HIP/BIV S	83SPHRA29	HRS	69.5	69 1	4 4	838	813	4 P-FY	4 P-FYFI D&BCRGR

See "Remarks" column. The most promising of those Many of these selections lack desirable dough mixing and bread making properties. footnoted for satisfactory overall quality is No. 83SPHRA5. COMMENTS:

Q = Questionable; P = Poor

W.E. KRONSTAD

F
LAB.
<u> </u>
USDA, SEA AR WESTERN WHEAT QUALITY LAB PULLMAN, WA.
AR EAT A.
SEA NH
DA, STER
WE

ITE SPRING WHEAT

		SORVALLIS,	OR					X	E. KKUNSIAU	IAU
						90000	FDBOT	MARSC	MTYPE	BABS
ABIETV	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	וסעגג			!
ANIELI					1		1/	3/		
		ogn		71.1			7.6	56.4	Wh	57.3
	C1017903	HRS		9.99			7.6	59.6	W	2.00
	G1017267	HRS		0.69			10.9	58.0	W 2	63.2
16)	058306	HRS		66.0			10.9	58.1	3M	62.7
CTK/CNO//EMU (83SPELT9)	088309	HKS								2 / 2
OFF Indiagram	058310	SRS	4.09	66.5	94.0		8.6	54.5	W 7	
CTK/CNO//EMU (835FELLIO	0583116/	HRS	63.2	70.1	0.43		٧. ٥١	59.4	THT TH	62.8
L112)	AL C	HRS	8.09	66.8 68.0	0.24		10.0	61.2	H [†] 1	
LT13)		HRS	64.8	68.0	0.48		6.6	62.1	5H	
, F5 MNV S (835PEL114))				4	7 0)	חכ	66.0
121	058317	HRS	0.09	67.7	0.51	76.3	1.1	55.7	31	53.1
3SPELT18)	C1017904	SMS	62.0	9.79	0.43	6.61	0.			
	LABNUM VARIETY 831642 MCKAY (1D0167) 831644 BORAH 831645 MPC770928 (83SPELT6) 831646 SWM6367-1Y-4K-0K CTK/CNO//EMU (83SPELT10) 831646 KBWN750020 PV18A/CNO (83SPELT11) 831649 MPC750573 (83SPELT12) 831650 MPC770302 (83SPELT13) 831651 PC790501 CM37705, F5 MNV S (83SPELT14) 831652 BUCK BUCK S (83SPELT17) 831652 OWENS (1D0185)(83SPELT17)	TY IDNO C1017903 C1003976 C1017267 CS8306 CNO//EMU (83SPELT10 0S8310 (83SPELT11) (83SPELT11) (83SPELT11) (83SPELT11) (83SPELT11) (883116/ 0S83116/ 17) C1017904	576	CORVALLIS, CLASS CLASS 33 HRS	CORVALLIS, C CLASS 33 HRS HRS HRS HRS HRS HRS HRS HRS HRS HRS	CORVALLIS, OR CLASS TWT CLASS TWT 13 HRS 62.4 HRS 62.4 HRS 59.2 HRS 60.4 HRS 60.4 HRS 60.4 HRS 60.8 HRS 64.4 HRS 64.8 HRS 64.8 HRS 64.8 HRS 64.8 HRS 64.8	CORVALLIS, OR CLASS TWT FYELD FA 13 HRS 62.4 71.1 0. 14 HRS 59.2 66.0 0. 15 HRS 59.6 66.0 0. 16 HRS 63.2 66.0 0. 16 HRS 63.2 70.1 0. 17 HRS 60.4 66.5 0. 18 HRS 64.4 68.9 0. 18 HRS 64.8 68.0 0. 19 HRS 64.8 68.0 0. 10 SWS 66.0 0.	CORVALLIS, OR CLASS TWT FYELD FASH MSCOR F 1/ 1/ 1/ HRS 62.4 71.1 0.43 84.0 77.8 77.8 76.4 66.6 0.46 77.8 77.8 77.8 77.8 77.8 77.8 77.8 77.9 0.44 81.6 17.9 0.49 76.2 76.0 0.44 66.5 0.46 76.2 76.1 0.49 76.2 76.1 0.49 76.2 76.1 0.49 76.2 76.1 0.49 76.2 76.1 0.49 76.2 76.1 0.49 76.3 76.1 0.49 76.3 76.1 0.49 76.3 76.1 0.49 76.3 76.3 17.0 76.3 79.9	CORVALLIS, OR CLASS TWT FYELD FASH MSCOR FPROT MABSC 1	CORVALLIS, OR CLASS TWT FYELD FASH MSCOR FPROT MABSC MT 1/ 1/ 3/ 1/ 3/ HRS 62.4 71.1 0.43 84.0 9.7 56.4 4M 76 HRS 59.2 69.0 0.44 81.6 10.9 60.6 6M FRS 59.6 66.0 0.44 81.6 10.9 58.1 3M FRS 60.4 66.5 0.46 76.2 9.8 54.5 2M FRS 60.8 66.8 0.54 74.0 10.7 59.4 4H FRS 60.0 67.7 0.51 76.3 11.1 62.7 2H FRS 60.0 67.7 0.51 76.3 11.1 62.7 2H FRS 60.0 67.6 0.443 79.9 7.8 55.1 3L

1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 10% Protein. 4/ Observed Values Corrected to 10% Protein.

5/ Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.

A THE STATE OF THE

ELITE SPRING WHEAT

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 53		9	CORVALLIS, OR	, or					3	W.E. KRONSTAD	4STAD
LABNUM	VARIETY	ONO	CLASS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	CODI	COD1C	RMKS
831642 MCKAY (100167) 831643 SHASTA 831644 BORAH 831645 MPC770928 (83S	MCKAY (1D0167) SHASTA BORAH MPC770928 (83SPELT6) SWM6367-1Y-4K-0K CTK/CNO//EMU (83SPELT9) 0S8309	C1017903 C1003976 C1017267 0S8306 0S8309	HRS HRS HRS HRS	57.6 60.8 63.8 62.6 61.8	23.74.0	900 875 910 825 740	919 912 854 788 684	00mpm			P-FYELD, LVOL, BCRGR VP-FYELD, LVOL, BCRGR
831647 SWM6367 831648 KBWN750 831649 MPC7505 831650 MPC7703	SWM6367-5Y-2K-0K CTK/CNO//EMU (83SPELT10 KBWN750020 PV18A/CNO (83SPELT11) MPC750573 (83SPELT12) MPC770302 (83SPELT13) PC790501 CM37705, F5 MNV S (83SPELT14)	0S8310 0S8311 0S8312 0S8313 0S8314	SRS HRS HRS HRS	56.7 60.1 62.1 64.9 65.3	1.6 3.0 4.0 6.0	640 875 920 840 895	652 881 877 840 901	00000	8.71	8.69	P-FYELD P-FYELD P-LVOL&BCRGR Q-FYELD
831652 BUCK BI 831653 OWENS	831652 BUCK BUCK S (83SPELT17) 831653 OWENS (1D0185)(83SPELT18)	0S8317 C1017904	HRS	64.9	2.1	925	857	ю Ø	9.32	9.08	P-FYELD P-FYELD

COMMENTS: Note 0S8310 is a soft red selection. 0S8311 and 0S8314 appear to have some promise as HRS's.

VP = Very Poor; P = Poor; Q = Questionable

The second of a control of the

	an an Ar		
	in the second		
		-01-3	

NURSCO 54

WA, ID, OR

ABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH	MSCOR	FPROT	MABSC
						1/		1	3/
831654 KHARKOF 831655 ELGIN 831656 MORO 831657 NUGAINES 831658 STEPHENS		C1001442 C1011755 C1013740 C1013698 C1017596	HRW CLUB CLUB SWW SWW	61.8 60.4 60.1 59.1	69.9 72.5 72.4 69.0	0.35 0.41 0.41 0.37 0.40	87.1 87.3 87.3 87.3 84.9	0.00000 0.00000 0.00000	250 488 50 50 50 6 51
831659 FARO 831660 HILL 81 (831661 WA4765//E 831662 CREW 831663 TYEE	FARO HILL 81 (OR68007) WA4765//BURT/P1178383 CREW TYEE	C1017590 C1017954 10745318 C1017951 C1017773	CLUB SWW CLUB CLUB	59.0 60.6 58.9 59.7	71.2 72.4 65.2 71.5	0.40 0.42 0.42 0.41 0.37	86.3 86.5 77.4 86.3 88.6	88887 88408	1400. 1400. 1400. 1400. 1400.
831664 REW/LUKE, SE 831665 C11448/MORO, 831666 DAWS/WA5829, 831667 SW92/6*0/3/T 831668 LUKE/VH76375	REW/LUKE, SEL.305 CI1448/MORO, SEL.E109 DAWS/WA5829, VH079141 SW92/6*0/3/T.SP/CTL//3*0 LUKE/VH76375	6/0R7794 6/0R797 6/WA6696 5/WA6813	SWW SWW CLUB SWW	62.2 61.3 61.2 59.5	70.3 69.6 69.9 71.7	0.37 0.38 0.41 0.40	87.0 88.5 86.3 88.3	7.88 7.57 7.50	51.0 47.12 50.0 9.0
831669 PAHA/OR6 831670 CJPCLUB/ 831671 SCT/101/ 831672 MARIS HU	PAHA/OR6857.SEL.204 CJPCLUB/SPRAGUE 3/ SCT/101//3469/P!178383/S1, AM07974 MARIS HUNTSMAN/VH74521, VH08490 WA6240/NORCO, VJ080129	5/0R7792 WA6819 WA6914 WA6910 WA6911	CLUB SWW SWW SWW	61.7 61.0 62.7 60.3 62.2	72.7 69.9 69.8 70.7 68.5	0.40	888 833.3 44,4 6843.9	დ. ფ. ფ. ფ. ფ. გ. უ. ა. ფ. ⊷.	50.2 48.7 52.8 51.0
831674 BVR/C115 831675 1523 DRC 831676 SPN/6318 831677 1523 DRC 831678 1523 DRC	BVR/C115923/NGS, VH074575 1523 DRC DWF/YMH SPN/63189-66-71/BEZ 1523 DRC/RBS 1523 DRC/RBS	6/WA6912 ORCW8110 6/ORCW8113 6/ORCP04 5/ORSEL.835	MMS MMS MMS	61.7 57.3 60.2 59.2 60.1	70.3 68.3 69.6 69.7	0.41 0.42 0.40 0.40 0.38	84.5 84.3 84.2 86.0	888888	44400 00000 00000
831679 SPRAGUE/ 831680 HYS/YAYL 831681 DRC/68-2 831682 P1173467 831683 NORCO/VH	SPRAGUE/LUKE//498, B77-136 HYS/YAYLA//WA4995/3/CERCO, W-1980 DRC/68-23, OWM68109-1M6, R241 P1173467/GNS, SEL.292-1//MORO, 77261 NORCO/VH72297, VH080717	WA6915 0R7996 0R7956 6/WA7050 WA7047	SWW SWW CLUB SWW	61.3 57.3 59.7 61.0	68.2 67.4 68.0 72.0 69.1	00.00	81.8 80.8 86.7 83.0	8.7 9.0 9.1 7.9	49.5 500.7 500.4 510.1
831684 HYS/NORCO//C 831685 PHOENIX, WW33	HYS/NORCO//CAMA///SM4,A1358 PHOENIX,WW33	0R8188 C1017962	MMH	61.0	70.3	0.42	83.9	9.0	52.0
				7 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lieron Oronal	0.0	Charactorictics	

^{1/} Observed Values Corrected to 14% Moisture Basis.
3/ Absorption at 14% Moisture Corrected to 8% Protein.
4/ Observed Values Corrected to 8% Protein.

^{5/} Particularly Promising Overall Quality Characteristics. 6/ Promising Overall Quality Characteristics.

-

54

NURSCO

WA, ID, OR

LABNUM	VARIETY	ONGI	CLASS	MTYPE	CODI	CODIC 4/	CAVOL	SCSOR	RMKS
831654 K 831655 E 831655 N 831657 N	KHARKOF ELGIN MORO NUGAINES STEPHENS	C1001442 C1011755 C1013740 C1013698 C1017596	HRW CLUB CLUB SWW SWW	33 22 31 22	8.27 9.26 9.12 9.26	8.40 9.26 9.29 9.29	1205 1410 1345 1355	70.0 Long T. 85.0 80.0 76.0 80.0	Check
	FARO HILL 81 (OR68007) WA4765//BURT/P1178383 CREW	C1017590 C1017954 1D745318 C1017951 C1017773	CLUB SWW CLUB CLUB	21 21 41 11	9.10 9.42 9.20 9.00	9.12 9.51 9.05 9.37	1355 1360 1295 1335 1340	83.0 80.0 75.0 P-FYELD,Q-CAVOL 79.0	Q-CAVO
831664 831665 831666 831667	REW/LUKE, SEL.305 CI1448/MORO, SEL.E109 DAWS/WA5829, VH079141 SW92/6*0/3/T.SP/CTL//3*0	0R7794 0R797 WA6696 WA6698 WA6813	SWW SWW CLUB SWW	11 31 31	9.07 9.21 9.11 9.20	9.03 9.22 9.24 9.24	1320 1280 1275 1330	78.0 74.0 Q-SCSOR 76.0 78.0	
	PAHA/OR6857.SEL.204 CJPCLUB/SPRAGUE 3/ SCT/101//3469/P!178383/S1, AMO7974 MARIS HUNTSMAN/VH74521, VH08490 WA6240/NORCO, VJ080129	0R7792 WA6819 WA6914 WA6910	CLUB SWW SWW SWW	3L 4M 1L	9.39 9.17 8.77 8.67	9.43 9.23 8.81 8.76	1325 1260 1190 1420	75.0 Q-MILLING, P-CAVO 73.0 Q-MILLING, P-CAVO 67.0 P-CAVOL, CODI 73.0 P-CODI, CAVOL 82.0 P-FYELD	VG, P-CA CODI
31674 31675 31676 31677	BVR/C115923/NGS, VHO74575 1523 DRC DWF/YMH SPN/63189-66-71/BEZ 1523 DRC/RBS	WA6912 ORCW8110 ORCW8113 ORCPO4 ORSEL.835	MMS MMS MMS MMS MMS	4M 2L 2L 2L 2L	9.44 9.15 9.26 9.32 9.09	9.50 9.20 9.28 9.40	1355 1375 1300 1355	78.0 80.0 P-FYELD 76.0 Q-SCSOR 79.0	-
	SPRAG HYS/Y DRC/6 P1173 NORCO	WA6915 OR7996 OR7956 WA7050 WA7047	SWW SWW SWW CLUB SWW	2M 4L 3L 3L	9.57 9.19 8.97 9.36	9.65 9.23 9.08 9.37	1355 1280 1260 1335 1270	79.0 P-FYELD 76.0 P-FYELD,CAVOL 74.0 P-FYELD,CAVOL 76.0 70.0 Q-MILLING,P-CAV	CAVOL CAVOL
831684		OR8188 C1017962	SWW	3L 3M	8.86	8.85	1250	69.0 P-CODI,CAVOL	ite

Please see "Remarks" for those selections which have deficiencies. The most common deficiency was poor flour yield. The selections with good overall quality are footnoted. COMMENTS:

VOL

P = Poor; Q = Questionable

ADDITIONAL COMMENTS: Because of the stronger dough mixing properties of WA6914 and WA6912 bread tests were made. The loaf volume and crumb scores were 760 and 798, and 6 and 7, respectively. The loaf volumes were acceptable for the protein (8.3 and 8.6), but the crumb structure was poor.

NURSCO	55	WA, MT		٠						
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831686 831687 831688 831689 831690	KHARKOF WANSER WESTON BEZOSTAJA//BURT/178383/3/ARK BEZOSTAJA//BURT/178383/3/ARK	C1001442 C1013844 C1017727 ID51021 ID51022	HRW HRW HRW HRW	61.6 61.9 63.7 62.7	67.8 70.0 71.4 64.3	0.35 0.35 0.35 0.35	84.4 87.2 88.7 86.5	11.4	60.4 61.0 62.2 63.1 62.1	2H 2H 2H 2H
831691 831692 831693 831694 831694	TRIUMPH/LANCER, SEL.126 FRD/BEZ C61-9/WLT//CRT WINRIDGE BEZOSTAJA/SPRAGUE, SEL.18-24	0R792 MT77002 MT77066 C101902 0R7921	HRW HRW HRW	61.1 62.1 62.5 62.2 62.0	65.3 71.6 70.6 71.8 68.1	0.35 0.35 0.36 0.36	82.3 88.9 86.3 88.6	11.3	59.4 61.8 60.5 60.1	WHITE SOUTH
831696 831697 831698 831699 831700	CLARIFEN/WA5836, SEL.27-26 SM4/TD//3*IT/P!178383 A667W-46/RANGER WA4765/3/BEZOSTAJA//BURT/178383 ID5012/WA5866	6/0R7925 6/100216 6/103518 WA6816	HRW HRW HRW HRW	60.2 61.8 63.2 59.6 61.7	70.0 70.4 73.1 67.6 71.3	0.36 0.36 0.35 0.35	86.7 87.1 89.9 84.7	10.9	60.6 60.5 58.9 60.0	3 C C C C C C C C C C C C C C C C C C C
831701 831702 831703 831704 831704	DLM/P1173438//CLM/3/DLM/4/C19342/11/5/HN UT1. SM4/TD//3*1T/P1178383 1160-155/C114106//MC/6/RGR/5/FRC/FRN/YQ/ 1D0 4 ALBA/GNS//FN/SONORA 64 5 JEFF///11-60-155/C114106//MC,A7389W-338- 1D0	100242 100242 100245 0RCR8107 6/ 100259 5/	HRW HRW HRW HRW	61.5 62.2 62.6 62.4 62.4	68.6 71.5 71.5 69.7	0.35 0.35 0.35 0.35	888. 1 888. 1 886. 2 6 . 9 8	11.4	59.7 59.9 60.9 62.2	43 CH CH
831706 831707 831708 831709 831710	5 DLM/PI173438//CLM///DLM/4/JEFF,A72244W-B 7 BURT/CI12929//DLM/4/NBR///NRN10/BVR/CNN/ 8 WRR/CI13837//PI173438///HANSEL 9 KR/SVE//RDT///IT/4/PI173438/5/DLM/PI1783 0 GWB127/GWB236//GWB236-7/STURDY	100260 <u>6/</u> 100261 <u>6/</u> 11132569 <u>6/</u> 11132712 <u>6/</u> WA6820 <u>6/</u>	HRW HRW HRW HRW	62.8 61.4 61.5 62.4 61.9	69.1 72.4 72.7 70.5 69.8	0.36 0.39 0.38 0.34 0.34	88.5 88.5 82.0 88.2 87.5	12.1	62.5 62.7 60.9 62.6 62.0	4H 4H 33H 33H
831711	LIND SEL.A	6/ WA7048 WA7049	HRW	62.5	71.1	0.35	88.3	10.6	62.0	3H 4M
1/ Obs	1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 11% Protein.	in.		5/ Part 6/ Prom	Particularly Promising Promising Overall Quali	romising O	sing Overall Quality Ch Quality Characteristics	Quality Characteristics.	Characteristics.cs.	

 $[\]frac{3}{4}$ Absorption at 14% Moisture Corrected to 11% Protein. $\frac{4}{4}$ Observed Values Corrected to 11% Protein.

NURSCO 55

WA, MT
3

LABNUM	VARIETY	ONGI	CLASS	BABS	BABSC 3/	MTIME	TAOL	LVOLC 4/	BCRGR	RMKS
831686 KHARKOF 831687 WANSER 831688 WESTON 831689 BEZOSTAJA//BI 831690 BEZOSTAJA//BI	KHARKOF WANSER WESTON BEZOSTAJA//BURT/178383/3/ARK BEZOSTAJA//BURT/178383/3/ARK	C1001442 C1013844 C1017727 1D51021	HRW HRW HRW	62.5 63.9 65.4 66.9	62.1 64.4 65.8 62.8	2.000	990 985 1050 1040	967 937 988 972 1021	2 2 2 2P-MTIME 2P-FYELD	2 2 2P-MTIME 2P-FYELD&MTIME
831691 TRIUMPH/LANCER, SEL.126 831692 FRD/BEZ 831693 C61-9/WLT//CRT 831694 WINRIDGE 831695 BEZOSTAJA/SPRAGUE, SEL.	TRIUMPH/LANCER, SEL.126 FRD/BEZ C61-9/WLT//CRT WINRIDGE BEZOSTAJA/SPRAGUE, SEL.18-24	OR792 MT77002 MT77066 C101902 OR7921	HHRW HRW HRW HRW	62.0 65.8 61.0 60.0	61.6 64.5 60.7 59.8 60.2	0.8.2	980 950 1020 1040 950	955 869 1001 1028 962	3P-FYEL 2Q-LVOL 4P-MTIN 3P-MTIN 6P-MTIN	3P-FYELD&Q-BCRGR 2Q-LVOL 4P-MTIME&BCRGR 3P-MTIME&BCRGR 6P-MTIME&BCRGR
831696 CLARIFEN/WA5836, SEL.2 831697 SM4/TD//3*IT/PI178383 831698 A667W-46/RANGER 831699 WA4765/3/BEZOSTAJA//B 831700 ID5012/WA5866	CLARIFEN/WA5836, SEL.27-26 SM4/TD//3*1T/P1178383 A667W-46/RANGER WA4765/3/BEZOSTAJA//BURT/178383 ID5012/WA5866	OR7925 1D0216 1D0217 1D3518 WA6816	HRW HRW HRW HRW	62.2 63.9 59.9 59.8	64.3 61.7 62.9 59.6 62.2	0 8 6 7	968 1005 980 973 925	974 931 918 961	3Q-BCRGR 2P-MTIME 2 2Q-FYELD 5P-BCRGR	RGR IME ELD RGR
831701 DLM/PI173438//CLM/3/DL 831702 SM4/TD//3*IT/PI178383 831703 1160-155/C114106//MC/6 831704 ALBA/GNS//FN/SONORA 64 831705 JEFF///II-60-155/C1141	DLM/P1173438//CLM/3/DLM/4/C19342/17/5/HN SM4/TD//3*IT/P1178383 1160-155/C114106//MC/6/RGR/5/FRC/FRN/YQ/ ALBA/GNS//FN/SONORA 64 JEFF///11-60-155/C114106//MC,A7389W-338-	UT125327 100242 100245 0RCR8107 100259	HRW HRW HRW HRW	64.0 62.0 62.7 63.7	63.6 60.9 62.1 63.1 64.9	3.83.83.93.93.14.10.83	1000 960 940 985 1015	975 892 903 948 978	220-F-F-M-Y	29-FYELD 2P-MTIME&LVOL 3Q-LVOL&BCRGR 2
831706 DLM/PI173438 831707 BURT/CI12929 831708 WRR/CI13837/ 831709 KR/SVE//RDT/ 831710 GWB127/GWB23	DLM/PI173438//CLM///DLM/4/JEFF,A72244W-B BURT/C112929//DLM/4/NBR///NRN10/BVR/CNN/ WRR/C113837//PI173438///HANSEL KR/SVE//RDT///IT/4/PI173438/5/DLM/PI1783 GWB127/GWB236//GWB236-7/STURDY	1D0260 1D0261 UT132569 UT132712 WA6820	HRW HRW HRW	665.22 665.22 665.22 666.44	65.2 64.9 65.1 65.8	8 9 0 0 F O	1040 1005 965 960 975	972 986 959 923 932	22 - BC	-BCRGR
831711 LIND SEL.A 831712 LIND SEL.B		WA7048 WA7049	HRW	65.3	65.7	2.6	930	955	3Q-BCRGR 4 P-BCRGR	RGR

See the footnotes for those satisfactory in overall milling and baking quality, and "Remarks" for deficiencies of other selections. Short and weak dough mixing and heavy coarse bread crumb are the most common serious deficiencies. COMMENTS:

P = Poor; Q = Questionable

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 56

WA, ID, MT, OR

^{6/} Promising Overall Quality Characteristics.

^{3/} Absorption at 14% Moisture Corrected to 10% Protein, 4/ Observed Values Corrected to 10% Protein.

F 4 L	0 4 47	
014	2	2
- 000		
CICLC	-	
TOL FOL	NY L	
-	3	

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 56

WA, ID, MT, OR

RMKS	J0/1-9	Q-ASH Q-LVOL&BCRGR P-LVOL Q-LVOL	VP-LVOL&BCRGR P-LVOL&BCRGR P-LVOL&BCRGR	P-LVOL&BCRGR VP-FYELD,SOFT	P-MILLING	Q-MILLING Q-MILLING Q-MILLING	Q-MILLING P-FYELD, LVOL P-BCRGR P-BCRGR
CODIC 4/		30440	>44	9.13 9.35 7.09	9.06 9.33 9.12 9.25	9.07 9.07 9.03 9.13	9.26
CODI			٠	9.25 9.26 9.39	9.15 9.05 9.19 9.32	9.15 9.30 9.15 9.07	9.35
BCRGR	NNNNN	00000	たのののい	7			ららな
LVOLC 4/	1023 927 988 918	961 961 937 904 936	957 954 845 877 938	873			896 936 929
LVOL	1060 970 1100 955 1030	1035 930 980 935 1010	1025 1010 870 920 1025	935			890 930 905
MTIME	46470	544.00 50000	34.146	4.0			2.0
BABSC 3/	60.9 61.8 66.7 66.7	65.3 61.4 63.0 61.3	65.1 61.1 61.4 62.6 63.4	63.5			58.1 64.3 58.4
CLASS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS HRS HRS HRS	HRS SRS SWS SWS SWS	SWS SWS SWS SWS	SWS SWS SWS SWS	SWS SWS HWS HWS
ONG	C1017903 UT541774 1D0238 1D0247 UT0209	UT2746 UT541815 UT541842 UT541954 ID0258	100262 100263 0RS6367 0R750573 WA7075	WA7076 1D0250 C1017904 C1017911 C1004734	WA6831 100236 100227 100246 WA6916	WA6917 WA6918 WA6920 WA6920	100249- 100174- 0RS06558- 0R791421- 0RS44421
VARIETY	MCKAY BANNOCK/738-274-1 BORAH/3/MRN//PJSIB/GB55,A44165-24-1 TZPP/AN3//B61-136AB SEL1/3/II-60-157/MC/ UTAH W498-259/PROSPUR	UTAH W498-165/BORAH BANNOCK/738-274-1 BANNOCK/738-274-1 BANNOCK/738-274-1 ABERDEEN SELECTION	ABERDEEN SELECTION ABERDEEN SELECTION CTK/CNO//EMU CTK/CNO//EMU K73579/BORAH	K74153/WA6096//ATL66/NAP HAL-34 ABERDEEN SELECTION OWENS WAVERLY FEDERATION	POTAM 70/WA6021, K7905209 FBR/5/BB1+/4/7*SFL/3/AS/FR//A63167S-A-1- 100067*2/BB"5"RESEL., A73341S-23-4 BB11/4/7*SFL/3/AS/FR//A63167S-A-1-50-45- POTAM 70/WA6021, K7905130	POTAM 70/WA6021, K7905130 POTAM 70/WA6021, K7905130 POTAM 70/WA6021, K7905130 POTAM 70/WA6021, K7905130 ABERDEEN SELECTION	ABERDEEN SELECTION ABERDEEN SELECTION ST5958/ARANA HORK/YMH/KA//BB
LABNUM	831713 831714 831715 831716	831718 831719 831720 831721 831722	831723 831724 831725 831726 831727	831728 831729 831730 831731 831732	831733 831734 831735 831736 831736	831738 831739 831740 831741 831742	831743 831744 831745 831746

RED

PAGE 2		BABS	
		MTYPE	3 M M M
		MABSC 3/	52.4 52.3
		FPROT 1/	9.1
		MSCOR	78.6
		FASH 1/	0.43
HEAT		FYELD	4.79
SPRING	, OR	TWT	6.09
WESTERN REGIONAL SPRING WHEAT	WA, ID, MT, OR	CLASS TWT	SMS
WESTERN		ONGI	WA7073 6/WA7074
LITY LAB.		VARIETY	831748 PTM70/WA6021, BRONS/KOEL12-7941,570-5 831749 PTM70/WA6021, BRONS/KOEL12-7941,570-5
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 56	LABNUM	831748 PTM70/WA60: 831749 PTM70/WA60:

WESTERN REGIONAL SPRING WHEAT

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

56

NURSCO

8.80 Q-CODI, MILLING 9.13 RMKS CODIC 4 8.90 CODI BCRGR LVOLC 4 LVOL MTIME BABSC 3 WA, ID, MT, OR CLASS SMS WA7073 WA7074 ONG 831748 PTM70/WA6021, BRONS/KOEL12-7941,570-5 831749 PTM70/WA6021, BRONS/KOEL12-7941,570-5 VARIETY LABNUM

flour yield, but were similar to the check varieties and were scored accordingly. See "Remarks" for deficiencies and questionable See footnotes for the selections with good overall quality. NOTE: Many of the soft white selections were lower than desirable in properties. Composite of equal parts was made from all locations in ID, OR, MT, and WA. COMMENTS:

Q = Questionable; P = Poor; VP = Very Poor.

		2	
	1		
)
	6	2	_
	5	2	
		1	
	(1)
		_	
		۰	
	-		
	4	4	
	۵	Y	2
	(- L C Y /)
	1		

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 57		81	ET-DAGAN,	ISRAEL					M. ZUR	
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCORW	W/PRO*	MABSC 3/	MTYPE
831750 831751 831752 831753 831754		1108/83 1115/83 1116/83 1117/83	HRW HRW HRW HRW	59.2 57.0 60.0 61.0 56.2	69.5 69.5 66.2 66.2	0.32 0.32 0.32 0.32	84.514.5 80.914.4 84.516.8 84.916.8 79.914.9	5 10.2 4 11.0 8 13.8 8 13.1 9 11.6	59.8 64.4 64.1 65.0 65.0	6M 5H 2H 3H
831755 831756 831757 831758 831759		1166/83 1190/83 1287/83 1335/83	HRW HRW HRW HRW	59.8 60.2 59.8 53.5	69.7 66.6 71.8 70.4	0.43 0.37 0.39 0.47	82.813. 82.514. 87.014. 79.414.	2 10.1 7 11.8 7 12.1 6 10.7 8 11.0	60.1 63.4 60.1 61.9 64.7	22M 4H 4H 5H
831760 831761 831762		1393/83 1404/83 1405/83	HRW HRW HRW	54.8 59.7 56.8	71.1 66.5 64.8	0.43 0.40 0.41	84.114. 80.714. 78.914.	7 11.6 8 10.7 2 10.9	62.5 60.1 59.6	2H 6M 6L
LABNUM	VARIETY	ONO	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
831750 831751 831752 831753 831754		1108/83 1115/83 1116/83 1117/83	HRW HRW HRW HRW	63.1 68.1 68.8 68.7 67.3	63.9 68.1 66.0 66.6 66.7	3.3 4.9 1.9 3.1	920 920 1093 978 920	970 920 919 848 883		Q-FASH P-MTIME&LVÖL
831755 831756 831757 831758		,1166/83 1190/83 1287/83 1335/83	HRW HRW HRW HRW	61.8 70.3 62.8 64.2 67.3	62.7 69.5 61.7 64.5	4.30.33	805 978 920 920 978	861 928 852 939 978	2 VP.	VP-LVOL&BCRGR Q=MTIME&LVOL P-FASH
831760 831761 831762		1393/83 1404/83 1405/83	HRW HRW HRW	64.7 64.4 65.1	64.1 64.7 65.2	1.8	863 863 920	826 882 926	000	P-MTIME,LVOL&BCR Q-MILLING&LVOL Q-MILLING
1/ Observed Values 3/ Absorption at 14 4/ Observed Values	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 11% Protein Observed Values Corrected to 11% Protein	dasis. Protein.		5/ Part 6/ Prom	Particularly Promising Overall Quality Characteristics Promising Overall Quality Characteristics.	omising Ov	sing Overall Quality Ch Quality Characteristics	ty Charactostics.	eristics.	

RGR

 $\overline{3}/$ Absorption at 14% Moisture Corrected to 11% Protein. 4/ Observed Values Corrected to 11% Protein. These samples of high protein <u>Dicoccides</u> derivatives were evaluated by micro (10g) baking tests, with loaf volumes adjusted to 100g basis. A few had low milling scores due to high flour ash. Protein content was significantly different among them. Loaf volume was corrected to an average of 11%. Wheat to flour protein conversion ratio showed an unusual high loss. See "Remarks" for COMMENTS:

* Bet-Dagen

deficiencies.

PNW COLLABORATIVE TESTS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO

M PULLMAN.

70P-CAVOL ENOSCO FYELD 73Q-CODI&CAVOL 74 71P-NOSCO VISCC 94 72 94 63 63 36 RMKS Particularly Promising Overall Quality Characteristics. NOSCO VISC 70 55 55 72 75 MTYPE MILM 367 367 362 361 367 381 Promising Overall Quality Characteristics. MABSC SCSOR 553.08 50.1 71.0 71.0 70.0 67.0 78.0 3 FPROT CAVOL 2.7.7.7.57.7.5 7.3 1204 1204 1182 1145 1296 1 CODIC FASH 0.42 0.37 0.43 0.39 0.42 8.54 8.79 8.83 8.70 8.44 9.21 4 1 FYELD 75.9 8.62 8.85 8.86 8.70 8.35 77.2 9.24 CODI 50 CLUB CLUB CLASS CLASS MMS NAM SWM SWM SWM SWM SWM SWW SWW SWW SWW SWW SWW C1017419 OR7794 OR7796 OR8188 WA6910 6/0R7794 0R7794 0R7796 0R8188 WA6910 C1014485 WA6698 C1014485 5/WA6698 DNO DNO Protein. Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% VARIETY VARIETY DAMS PAHA PAHA DAWS 831768 831764 831764 831765 831766 831768 831763 831764 831765 831766 LABNUM LABNUM -J WJ 4J

The flours from the SWW wheats were found to be abnormal in all baking tests. No plausable cause is known. Milling properties appeared we decided it would be unwise and most probably meaningless to send these flours to the PNW industry collaborators for their evaluation. normal and quite good with the exception of WA6910 which was very vitreous in appearance and was found hard and granular in texture. Because of the abnormal baking properties of the five SWW, including Daws, The spring wheats in the 83 crop nursery were discarded prior to milling because of shriveling and high protein (near 13\$). 2 and 3 for cummulative ash curves from the milling tests. Paha and experimental selection WA6698 were near normal. COMMENTS:

Observed Values Corrected to 8% Protein.

% of Total Products

of Total Products

J.G. WAINES

	ě	- X - X - X - X - X - X - X - X - X - X	1	1
	i			
	Ē			,
	9	Ķ	2	Ļ
	Į	į	L	Į
	ä			
	ä	į	ì	
	å		S	
	1	ŕ		١
	١	i		
	i	i		
	(i	ì	١
				ì
	2	7	i	
	Ę			•
	1	١	ś	
	•			1
			į	i
	ζ		į	2
	ĺ	ì	ı	
	r			
		č	2	
	į	į	•	į
		١	4	۰
				۰
	ĺ	١	4	
		2	ď	•
	ì		١	۰
	á	8	2	
				í
	1	Į	į	
		١	ì	
	ŀ		4	
		2 4 2		,
	١	į		•
		4		į
	Ė		9	
	ä			۰
	į	į	į	,
	9	á	i	
	L	J		į
	Ć	١	ı	
	į		į	į
	i	2 L L 2 L	١	i
	L	į		į

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 59

RIVERSIDE, CA

LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE	BABS
831770 AMPHIPLOID #1 83-6X 831771 AMPHIPLOID #4 83-6X 831772 AMPHIPLOID #22 83-6X 831773 AMPHIPLOID #26 83-6X 831774 AMPHIPLOID #29 83-6X	3-6× 83-6× 83-6× 83-6× 83-6×		HRS HRS HRS	52.4 48.4 53.2 49.6	56.8 57.6 55.1 61.6	0.69 0.70 0.75 0.51	55.7 56.2 50.7 70.3	15.0 17.0 13.5 13.5	49.6 49.2 51.6 50.6	#####	53.0 52.5 55.9 54.5
831775 T. MONOCOCCCUM G3327 82-2X 831776 T. MONOCOCCUM G3309 82-2X 831777 AMPHIPLOID #31 83-6X 831778 AMPHIPLOID #36 83-6X 831779 MEXICALE 82-4X	27 82-2X 09 82-2X -6X		SWS SWS HRS HRS	59.6 60.0 50.4 53.2	68.4 68.3 57.8 56.3	0.30 0.36 0.68 0.59	89.3 57.4 560.6 56.2	12.9 13.3 15.7 13.2	46.9 46.0 49.7 51.0 68.3	######################################	52.7 50.7 54.0 57.1
831781 PRODURA 82-4X 831781 PRODURA 82-4X 831782 CRANE B 82-4X 831783 WS3 82-4X 831784 ANZA 82-6X		C1015284	HRS HRS HRS HRS	62.0 62.0 61.2 58.4 63.6	59.7 52.3 52.6 69.4	0.69 0.64 0.65 0.65 0.44	58.7 53.1 52.8 82.0	13.0 14.8 12.9 11.8	67.5 61.4 67.7 67.7	4H 1H 3M 3M	73.6 69.3 68.6 73.6 65.0
831785 CHINESE SPRING 83-6X 831786 C.S. RYE SUB LINE (2	CHINESE SPRING 83-6X C.S. RYE SUB LINE (2RL-2AS/2A) 83-6X		HRS	56.4	55.4	0.50	63.9	15.0	60.6	五五	70.7
1/ Observed Values Corrected to 14% Moisture Basis. 3/ Absorption at 14% Moisture Corrected to 14% Protein. 4/ Observed Values Corrected to 14% Protein.	ed to 14% Moisture Basis. The Corrected to 14% Proteined to 14% Protein.	•		5/ Part 6/ Pron	Particularly Promi Promising Overall	Promising rall Qual	Particularly Promising Overall Quality Characteristics Promising Overall Quality Characteristics.	Quality C	haracteri s.	stics.	

	LAB	
	QUALITY	
	-	
	\leq	
	S	
X	WHEA!	<
SEA	3	1.1
SE	7	-

NUESCO 60

PULLMAN, LIND WA

DRILL STRIPS

LAFNUM	VARIETY	IDNO	CLASS	TWT	WPROT	FYELD	FASH 1/	MSCOR	FMIST	FPROT 1/	AGTRO
831787 BURTPULLMAN WINTER 831788 MORO 831789 WANSER 831790 NUGAINES 831791 PAHA	ER-	C1012696 C1013740 C1013844 C1013968 C1014485	HWW CLUB HRW SWW CLUB	57.3 58.7 59.4 56.5	10.0 10.0 9.2 9.4	69.9 73.5 70.9 64.9 73.1	0.43 0.36 0.39 0.30	79.1 87.5 82.3 76.6 86.5	13.1 12.4 12.4 12.4	88.5	59.5 77.5 60.3 82.8 80.5
831792 YAMHILL 831793 HYSLOP 831794 LUKE 831795 DAWS 831796 STEPHENS		C1014563 C1014564 C1014586 C1017419 C1017569	MMS SWM SWM SWM SWM	56.1 58.7 57.8 60.5	10.0 9.3 8.3 7.9	70.0 69.7 70.8 70.4	0.38 0.35 0.33 0.37 0.35	79.2 81.8 82.3 82.1	12.2	7.8	78.3 85.5 87.5 84.0 88.0
831797 FARO 831798 HATTON 831799 TYEE 831800 LEWJAIN 831801 CREW		C1017772 C1017772 C1017773 C1017909	CLUB HRW CLUB SWW CLUB	57.3 63.3 57.0 58.8 58.0	8 7 . 5 . 7 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	71.6 77.0 73.8 70.3 73.8	0.35 0.47 0.36 0.34 0.40	84.2 86.6 87.9 83.0 85.9	12.3 12.4 12.4	6.5 6.5 7.6 6.0	83.5 49.0 85.3 86.3
831802 HILL 81 (OR 68007) 831803 JACMAR 831804 831805 831806		C1017954 WA6585 6/ WA6698 WA6910 6/ WA6912	SWW CLUB CLUB SWW SWW	59.2 54.5 60.1 61.3 59.0	7.8 8.2 8.7 10.1	72.6 73.8 73.5 69.6 73.3	0.36 0.37 0.39 0.39	86.4 86.6 86.4 78.8 86.0	12.0	6.3 6.7 7.6 5.9	88.8 83.5 82.3 74.3
831807 831809 831810 BAARTPULLMANSPRING		6/ OR 7794 6/ OR 7796 OR 8188 C101697 C1015926	SWW SWW SWS HRS	60.9 59.9 60.6 53.2 56.8	9.3 10.2 12.9	71.6 70.0 70.5 65.7	0.35 0.39 0.36 0.41	83.8 80.1 83.0 74.0 78.4	11.8	7.0 7.2 8.6	84.5 80.8 82.0 77.0 55.5
831812 FIELDER 831814 WAMPUM 831815 DIRKWIN 831816 MCKAY		C1017268 C1017413 C1017691 C1017745	SWS SWS HRS SWS HRS	54.2 50.8 54.5 53.7 58.4	11.7	66.8 61.8 68.1 68.6	0.39 0.39 0.44 0.43	74.8 65.1 77.3 75.3 81.6	11.8 12.8 11.4	10.00 10.00	74.5 75.0 61.0 77.5
831817 OWENS 831818 WAVERLY 831819 POTAM70/WA6021 831820 831821 PROBRAND 751		C1017904 C1017911 V WA6831 WA6917 6/ NK	SWS SWS SWS SWS HRS	56.7 56.1 54.1 57.6 58.3	11.4 12.9 11.9 13.4	66.4 66.0 65.8 63.6 71.2	0.37 0.40 0.40 0.40 0.43	75.0 72.4 72.5 70.4 81.4	11.7	10.2	74.8 76.8 69.0 74.3 71.0
1/ Observed Values Corrected to	d to 14% Moisture Basis.			5/ Part	rticularly	Promising	Overall	Quality C	Characteri	stics.	

 $\underline{6}/$ Promising Overall Quality Characteristics.

 $[\]frac{3}{4}$ Absorption at 14% Moisture Corrected to 9% Protein. $\frac{4}{4}$ Observed Values Corrected to 9% Protein.

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

	VISCC	107	76 104 108 168	97 257 138 137	99 76 69 89 136	100 105 102 97	1111	114 93 111 121
	VISC	81 25 27	54 56 42 68 37	40 38 49 36	34 33 32 32	52 57 87	101	128 134 146 157
	FSTAB	5.5		4.4		14.4	32.2	13.3
	FPEAK	4.8		5.3		و. د .	19.9	10.3
	FABS	61.0	·	71.5		62.3	58.0	60.2
	MTYPE	41 22 41 22 11	7255	41 41 12 1	22 22 13 8 8	5L 4L 31 5H	22M 33M 22M 71H	33M 44N 77L 57H
D WA	MABSC 3/	63.0 51.1 62.7 54.0 49.9	54.0 54.8 53.0 54.5 52.9	51.7 67.9 52.7 54.2 50.3	53.0 50.8 49.9 52.5	53.0 54.4 54.2 51.7	52.4 63.1 62.6 62.1	54.3 54.3 62.2 62.8
PULLMAN, LIND WA	CLASS	HWW CLUB HRW SWW CLUB	MMS MMS MMS MMS	CLUB HRW CLUB SWW CLUB	SWW CLUB CLUB SWW SWW	SWW SWW SWW SWS HRS	SWS SWS HRS SWS HRS	SWS SWS SWS SWS HRS
PUL	IDNO	C1012696 C1013740 C1013844 C1013968 C1014485	C1014563 C1014564 C1014586 C1017419 C1017569	C1017590 C1017772 C1017773 C1017909 C1017951	C1017954 WA6585 WA6698 WA6910 WA6912	OR 7794 OR 7796 OR 8188 C101697 C1015926	C1017268 C1017413 C1017691 C1017745 C1017903	C1017904 C1017911 WA6831 WA6917 NK
						1		
60	VARIETY	BURTPULLMAN WINTER MORO WANSER NUGAINES	YAMHILL HYSLOP LUKE DAWS STEPHENS	FARO HATTON TYEE LEWJAIN CREW	JACMAR	BAARTPULLMANSPRING- WARED	FIELDER URQUIE WAMPUM DIRKWIN	OWENS WAVERLY POTAM70/WA6021 PROBRAND 751
NURSCO	LABNUM	831787 B 831786 M 831789 W 831790 N	831792 Y 831793 H 831794 L 831795 D 831796 S	831797 H 831798 H 831799 1 831800 L 831801 C	831802 H 831803 3 831804 831805	831807 831808 831809 831810 B	831812 831812 831813 831815 831815	831817 831818 831818 831820 831821

	~	
	ITY LAB.	
	7	
	H	
	AL	
	WESTERN WHEAT QUAL	
~	-	
1 AR	11.	< /
SEA	M	-
S,	Z	A 8.5
2	-	2.4
VOST	50	Dill I RANAS 1/1
1	7	10

NURSCO 60

PULLMAN, LIND WA

DRILL STRIPS

LABNUM	VARIETY	ONGI	CLASS	BABS	BABSC 3	MTIME	LVOL	LVOLC	BCRGR	1000
1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			75			7		
831787 BURT PULLMAN WINTER- 831788 MORO	TER-1	C1012696 C1013740	HWW CI UB	63.2	63.7	3.3	675	902	©	8.89
		C1013844	HRW	63.2	63.9	4.3	610	658	80	7.59
		C1013968	SWW							40.6
831/91 PAHA		C1014485	CLUB						*	9.10
		C1014563	NMS							9.02
		C1014564	SWM							
831794 LUKE 831795 DAWS		C1014586	NAM S							9.39
		C1017569	MMS							
831797 FARO		C1017590	CLUB							
		C1017772	HRW						6	
831/99 IYEE		C1017773	CLUB							
831801 CREW		C1017909	CLUB							9.20
831802 HILL 81 (OR 68007)	7)	C1017954	SWW							6.05
803 JACMAR		WA6585	CLUB							9.21
83.10001		WA6910	SWW							8.39
831806		WA6912	SWW							9.27
831807		OR 7794 OR 7796	SWW							8.72
1809		OR 8188	MMS							8.79
831811 WARED	SPR NG	C101697	SWS	1 99	64 5	0 17	875	730	۲	8.84
()						ר	00.
831812 FIELDER 831813 URQUIE		C1017268 C1017413	SWS							8.89
831814 WAMPUM 831815 DIRKWIN		C1017691	HRS	65.8	63.3	9.9	1060	905	2	8.25
16		C1017903	HRS	65.7	63.3	8.0	975	826	2	9.02 8.26
		C1017904	SMS							9,14
831819 POTAM70/WA6021		C1017911 WA6831	SMS							8,85
831820 831821 PROBRAND 751		WA6917	SWS	0 1	-	-	2 P	!		8.34
		MIX	SAL	2.10	0.40	5.4	1075	877	2	7.85

NOSCO RMKS	73 74 72	71 73 76 69	78 76 75 78	75 74 81 73 P-MILLING, CODI&SCSOR 70 Q-NSCOR	74 Q-CODI 71 Q-SCSOR 74 P-SCSOR 73	75 66 70	74 72 71 70 P-FYELD&CODI
WITN	370 350 378	362 346 342 353 353	364 345 345 364	361 351 355 329	353 353 346 365	384 361 389	382 365 384 380
SCSOR	69.0	67.0 64.0 76.0 68.0	73.0 73.0 76.0	76.0 74.0 72.0 66.0 78.0	72.0 70.0 64.0 78.0	80.0 79.0 72.0	77.0 71.0 70.0 71.0
CAVOL	1190	1170 1125 1255 1140	1245 1295 1285	1270 1250 1230 1110 1260	1180 1170 1130	1295 1305 1225	1290 1220 1230 1270
C0D1C	7.73 8.79 7.53 8.81 9.02	8.88 8.54 9.17 8.34 8.72	8.83 7.10 8.92 9.14 8.99	8.73 8.91 8.93 8.93	8.50 8.87 8.59 7.84	8.94 8.99 8.45 9.07	9.19 9.05 9.09 8.47
CLASS	HWW CLUB HRW SWW CLUB	MMS MMS MMS MMS	CLUB HRW CLUB SWW CLUB	SWW CLUB CLUB SWW SWW	SWW SWW SWS HRS	SWS SWS HRS SWS HRS	SWS SWS SWS SWS HRS
IDNO	C1012696 C1013740 C1013844 C1013968 C1014485	C1014563 C1014564 C1014586 C1017419 C1017569	C1017590 C1017772 C1017773 C1017909 C1017951	C1017954 WA6585 WA6698 WA6910 WA6912	OR 7794 OR 7796 OR 8188 C101697 C1015926	C1017268 C1017413 C1017691 C1017745 C1017745	C1017904 C1017911 WA6831 WA6917 NK
VARIETY	BURTPULLMAN WINTER MORO WANSTR NUGAINES	YAMHILL HYSLOP LUKE DAWS STEPHENS	FARO HATTON TYEE LEWJAIN CREW	JACMAR (OR 68007)	BAARIPULLMANSPRING WARED	FIELDER URQUIE WAMPUM DIRKWIN	OWENS WAVERLY POTAM70/WA6021 PROBRAND 751
MONGA	831787 BL 831788 MC 831789 WA 831790 NU	831792 Y/ 831793 HV 831794 LU 831795 D/ 831796 S1	831797 F/ 831798 H/ 831799 T/ 831800 L/ 831801 C/	831802 H 831803 J 831804 831805 831806	831807 831808 831819 8318110 B	831812 U 831813 U 831814 W 831815 D 831815 D	831817 831818 W 831819 P 831820 831821 P

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 60

		<u></u>
		MSCOR
		FASH
		FYELD
		WPROT FYELD
ND WA		TWT
PULLMAN, LIND WA		CLASS
		ONGI
		VARIETY
NURSCO 60	NOTE TO THE PROPERTY OF THE PR	LABNUM

IDNO CLASS TWI WPROT FYELD FASH MSCOR FMIST FPROT	C1012696 HWW 62.5 11.4 71.9 0.44 82.9 12.3 10 C1013740 CLUB 59.0 11.3 70.3 0.40 79.6 11.5 9 C1013844 HRW 62.5 11.5 72.3 0.38 87.2 12.5 11 C1013968 SWW 61.7 10.5 68.7 0.39 78.9 11.4 9 C1014563 SWW 59.6 11.7 70.7 0.42 79.5 11.7 10	C1014564 SWW 59.4 11.1 69.3 0.40 78.1 11.7 9 C1014586 SWW 61.5 11.1 68.1 0.39 75.7 11.7 9 C1017419 SWW 60.8 10.6 69.0 0.40 77.9 11.7 9 C1017569 SWW 60.3 11.0 71.4 0.39 81.6 11.3 9 C1017590 CLUB 58.5 10.8 73.4 0.41 82.8 11.3 9	C1017772 HRW 64.3 11.2 70.2 0.39 83.0 12.3 10 C1017773 CLUB 59.0 10.7 74.3 0.41 85.4 11.4 9 C1017909 SWW 61.9 11.0 66.9 0.38 75.7 11.4 9 C1017951 CLUB 59.5 10.8 72.1 0.42 81.9 11.5 9 C1017954 SWW 61.2 11.3 71.4 0.42 80.9 11.4 8	C1018376 SWW 61.7 10.9 66.3 0.37 75.4 12.0 9. WA6585 CLUB 56.6 12.2 68.4 0.39 76.5 11.8 9. CLUB 60.2 10.7 72.1 0.41 82.6 11.9 9. CLUB 58.8 61.1 12.2 68.0 0.41 74.5 11.4 10. C1015926 HRS 63.3 12.7 69.2 0.41 79.8 12.6 11.	C1017267 HRS 63.2 12.8 71.3 0.38 83.8 12.2 11. C1017268 SWS 62.4 12.1 68.3 0.37 77.7 11.4 10. C1017413 SWS 64.0 11.4 71.3 0.38 81.6 11.4 9. C1017424 HRS 62.3 12.6 71.2 0.41 83.1 12.3 12. C1017691 HRS 62.1 12.0 71.2 0.45 81.4 12.5 11.	C1017745 SWS 61.2 11.8 69.4 0.41 78.2 11.4 10. C1017904 SWS 62.8 11.9 66.2 0.36 77.0 11.4 10. C1017911 SWS 61.6 12.4 69.1 0.37 79.5 11.4 10. E/ WA6831 SWS 61.4 11.0 68.9 0.37 79.2 11.6 9. E/ NK HRS 62.5 11.9 70.7 0.41 82.9 12.4 11.
LABNUM	831822 BURTLINDWINTER 831823 MORO 831824 WANSER 831825 NUGAINES 831826 YAMHILL	831827 HYSLOP 831828 LUKE 831829 DAWS 831830 STEPHENS 831831 FARO	831832 HATTON 831833 TYEE 831834 LEWJAIN 831835 CREW 831836 HILL 81 (OR 68007)	831837 SPRAGUE 831838 JACMAR 831839 831810 TWINLINDSPRING	831842 BORAH 831843 FIELDER 831844 URQUIE 831845 SAWTELL 831846 WAMPUM	831847 DIRKWIN 831848 OWENS 831849 WAVERLY 831850 POTAM 70/WA6021 831851 PROBRAND 751

2022 3142

	LAB.	
	TY	
	1 QUAL	
SEA AR	MILA	MA.
	WESTERN WI	HI LMAN,
USDA	WES	PUL

	á	
	į	
	8	
		,
		4
	e	
	'	
	p	
	m	
	-	ŕ
		•

PULLMAN, LIND WA

DRILL STRIPS

VISCC	96 60	77 79 97 97 100	98 87 63 81	101 69 42 58	92	97
VISC	108	93 104 85 105	101 94 66 79	108 82 45 79	105	90 123 154 109
FSTAB	3.5		10.5	0.9	12.3 22.0 11.5	7.5
FPEAK	5.0		6.2	7.2	9.7 15.4 10.5	11.0
FABS	62.7		63.4	62.4	66.1	63.1
MTYPE	HETEE	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1 м 2 м 1 м	3 1 1 M M M M M M M M M M M M M M M M M	2H 2M 4H	22M 22M 44H
MABSC 3/	62.7.8 54.9 54.9	52.9 54.0 53.0 52.8 49.7	62.6 50.4 53.7 49.4 51.6	52.9 51.1 48.3 52.0 62.1	63.0 51.9 50.6 64.0 62.7	48.9 53.4 54.4 52.4
CLASS	HWW CLUB HRW SWW SWW	SWW SWW SWW CLUB	HRW CLUB SWW CLUB	SWW CLUB CLUB SWS HRS	HRS SWS SWS HRS	SWS SWS SWS SWS HRS
ONGI	C1012696 C1013740 C1013844 C1013968	C1014564 C1014586 C1017419 C1017569	C1017772 C1017773 C1017909 C1017951 C1017954	C1018376 WA6585 WA6698 C1014588	C1017267 C1017268 C1017413 C1017424 C1017691	C1017745 C1017904 C1017911 WA6831
VARIETY	BURTLINDWINTER MORO WANSER NUGAINES YAMHILL	HYSLOP LUKE DAWS STEPHENS FARO	HATTON TYEE LEWJAIN CREW HILL 81 (OR 68007)	SPRAGUE JACMAR TWINLINDSPRING	BORAH URQUIE SAWTELL WAMPUM	DIRKWIN OWENS WAVERLY POTAM 70/WA6021 PROBRAND 751
LAFNUM	831822 BURT1 831823 MORO 831824 WANSER 831825 NUGAINE	831827 HYSLOP 831828 LUKE 831829 DAWS 831830 STEPHE 831831 FARO	831832 HATTON 831833 TYEE 831834 LEWJAI 831835 CREW	831837 SPRAGU 831838 JACMAR 831839 831840 TWIN 831841 WARED	831842 BORAH 831843 FIELDE 831844 URQUIE 831845 SAWTEL 831846 WAMPUM	831847 DIRKW 831848 OWENS 831849 WAVER 831850 POTAM 831851 PROBRA

DRILL STRIPS

USDA, SEA AR WESTERN WHEAT QUALITY LAB. FULLMAN, WA.

	1000	88.04 88.96 88.96	8.77 8.82 8.60 8.61 8.70	8.07 9.22 8.89 8.89	8.97 9.21 8.85 7.89	7.86 8.91 8.94 7.79	8.19 8.47 8.91 8.61 7.94
	BCRGR	N Ν.		2	2	e 0	α α
	LVOLC 4/	777		788	831	795	904
	LVOL	910		875	1005	975	1065
	MTIME	3.7		3.0	3.9	3.6	3.8
	BABSC 3/	64.0		63.8	62.8	63.7	62.4
MA ON	BABS	64.2		65.2	65.6	66.6	65.0
PULLMAN, LIND WA	CLASS	HWW CLUB HRW SWW SWW	SWW SWW SWW CLUB	HRW CLUB SWW CLUB SWW	SWW CLUB CLUB SWS HRS	HRS SWS SWS HRS	HRS SWS SWS SWS HRS
PL	ONGI	C1012696 C1013740 C1013844 C1013968 C1014563	C1014564 C10114586 C1017419 C1017569	C1017772 C1017773 C1017909 C1017951 C1017954	C1018376 WA6585 WA6698 C1014588	C1017267 C1017268 C1017413 C1017424	C1017691 C1017745 C1017904 C1017911 WA6831
09 00	UM	22 BURTLINDWINTER 23 MORO 24 WANSER 25 NUGAINES 26 YAMHILL	27 HYSLOP 28 LUKE 29 DAWS 30 STEPHENS 31 FARO	32 HATION 33 TYEE 34 LEWJAIN 35 CREW 36 HILL 81 (OR 68007)	37 SPRAGUE 38 JACMAR 39 40 TWINLINDSPRING		1846 WAMPUM 1847 DIRKWIN 1848 OWENS 1849 WAVERLY 1850 POTAM 70/WA6021 1851 PROBRAND 751
NURSCO	LABNUM	831822 831823 831824 831825 831826	831827 831828 831829 831830 831831	83 1832 83 1833 83 1834 83 1835 83 1335	831837 831838 831839 831840 831841	831842 831844 831844 831844	m mmmm

NUESCO 60

PULLMAN, LIND WA

RMKS						
NOSCO R	69	73 76 80 73	75 74 75	79 67 72 72	74 79	67 75 75
MIIN	379 367 373	364 375 387 370 366	365 374 373 375	376 359 370 390	396	368 386 377 381
SCSOR	65.0 64.0 70.0	67.0 71.0 65.0 65.0 70.0	70.0 70.0 72.0 62.0	69.0 76.0 69.0 62.0	0.69	55 59.0 36 15 73.0 38 15 63.0 38
CAVOL	1185	1135 1220 1150 1150 1225	1205 1205 1225 1135	1225 1280 1230 1145	1205	100
COD1C	8.16 9.04 8.20 8.97	8.87 8.63 8.63 8.71	8.19 8.89 9.26 8.90 8.88	8.99 9.27 8.87 8.81	8.09 9.03 9.04 8.03 8.40	8.65 9.03 8.79 9.00 8.13
CLASS	HWW CCLUB HRW SWW	SWW SWW SWW SWW	HRW CLUB SWW CLUB SWW	SWW CLUB CLUB SWS HRS	HRS SWS SWS HRS HRS	SWS SWS SWS SWS HRS
IDNO	C1012696 C1013740 C1013844 C1013968 C1014563	C1014564 C1014586 C1017419 C1017569 C1017590	C1017772 C1017773 C1017909 C1017951 C1017954	C1018376 WA6585 WA6698 C1014588 C1015926	C1017267 C1017268 C1017413 C1017424 C1017691	C1017745 C1017904 C1017911 WA6831 NK
1 VARIETY	BURTLINDWINTER MORO H WANSER NUCAINES	HYSLOP LUKE DAWS STEPHENS FARO	HATTON TYEE LEWJAIN CREW HILL 81 (OR 68007)	SPRAGUE JACMAR TWINLINDSPRING	BORAH FIELDER URQUIE SAWTELL WAMPUM	DIRKWIN OWENS WAVERLY POTAM 70/WA6021 PROBRAND 751
LABNUM	831822 831823 831824 831825 831825	831827 831828 831829 831830 831831	831832 831833 831834 831835 831835	831837 831838 831839 831840 831841	831842 831844 831844 831845 831845	831847 D 831848 O 831849 W 831850 P 831851 P

more grown at the request of the Western Wheat Qual. Lab. by the Dept. of Agronomy & Soils. Washington State University. They serve as a source for research materials for which we appreciate and thank the Agronomy and Soils Dept..

PAGE 1	
SALINITY STUDY	RIVERSIDE, CA
USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.	NURSCO 61

			NIVERSIDE,	5					J.D. RHG	RHOADES
LABNUM	VARIETY	ONGI	CLASS	TWT	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831852 VECORA ROTO								i	,	
31853 YECORA		201/AAAA	HRS	62.6	66.5					Ma
YECORA		202/AAAA	HRS							2 0
YECORA		203/AAAM	HRS		68.9	0.47				Σ α
YFCORA		ZO4/AAAW	HRS							E a
		ZUS/AMAA	HRS			0.52	72.4	10.5	61.5	E W
831857 YECORA ROJO		2000		4						5
YECORA		COD/AMAM	HRS	59.5						Wa
YECORA		COI/AWAA	HKS	62.3			4			Σ α
YECORA		ZUB/AWAW	HRS	61.1				0		2 20
YECORA		ZUY/MMAA	HRS	62.0	69.1	0.49	75.5			Ξ ×
		Z I U / MIMAM	HKS	61.0				10.6	61.6	- E
831862 YECORA ROJO		211/WWA	007		ř					
831863 YECORA ROJO		7744/177	271	0	67.5		2		-	N X
		MMMM/VIV	HRS	0	6.99	0.49	71.8	10.4	62.2	₩ ₩
LABNUM	VARIETY	ONO	CLASS	BABS	BABSC	MTHME	10/1	0.000		
							LVOL	LVOLU	BCKCK	KMKS
					3/			4/		
YECORA		201/AAAA	HRS		62.0	1	200			
YECORA		202/AAAA	HRS		03.0	4	865	877	2	
YECORA		203/AAAM	HRS		7 - 10	٠	885	885	2	
		204/AAAW	HRS	•	7.4.4		903	878	2	
831856 YECORA ROJO		205/AMAA	HRS		65.4	7.7	8693	874	2	
1					0.00		880	849	m	
		206/AMAM	HRS		2		872	- 1	(
YECORA		207/AWAA	HRS		٠.	0	0 4 C C	400	N (
		208/AWAW	HRS		2	۰	000 000 000 000	679	N	
Y FCORA		209/MMAA	HRS		77		000	540	2	
03 1661 YECUKA KUJU		210/MMAM	HRS	66.4	65.8	7.7	070	826	20	
831862 VECORA BOLO					`		0.0	653	N	
		211/WWAA	HRS	6.99	67.2		823	Rho	c	
		ZIZ/WWWW	HRS		6.99	4.4	890	865	2 <	
1/ Observed Values Corrected to 14% Moisture Dagie	The Mointing Bosso			1.						
-	STSPERING PRINTS			5/ Parti	Particularly Pro	Promising Overall	erall Ouali	Ouality Characteristics	eridice	
	Austribution at 14% Moisture Corrected to 10% Protein.	in.		6/ Promi	Promising Overall	1 Onality	Onality Characterist			
4/ Observed Values Corrected to 10% Protein.	d to 10% Protein.					-	10000	ecarae.		

were lower in flour ash (.45-.46%) than those with medium or high salinity water (M and W). It is questionable whether there is any See page 2 for identification of the coding (IDNO) for previous cropping and water used at the germination and growing stage of the wheat samples. There is some variability in flour yield and flour ash levels. Samples 201 and 202 with California Aqueduct water Samples were evaluated in co-operation with Maura Bean, USDA, ARS, WRRC and James D. Rhoades, USDA, ARS, U.S. Salinity Laboratory, significant difference in dough properties or loaf volume attributable to irrigation water salinity. COMMENTS:

March, 1984

	Water Q	quality	Water Qua	lity
	Before	Wheat ²	For Wheat Pr	oduction
Lab Code	Cotton Germination Stage	Cotton Growing Stage	Germination Stage	Growing Stage
201	A	A	A	A (1)
202	A	A	A	A (2)
203	A	A	A	М
204	A	A	A	W
205	A	М	A	A
206	A	М	A	М
207	A	W	A	A
208	A	W	A	พิ
209	М	М	A	A
210	M	М	A	м
211	W	W	A	A
212	W	W	W	W

Pre-Whe	at →	AA	AM	AW	MM	WW
Wheat AA	+	xx	х	х	X	Х
AM		x	X		х	
AW		Х		x		
WW						х

Reference: Letter from James D. Rhoades, U.S. Salinity Laboratory, Riverside, CA, March 2, 1984.

² Four consecutive years of cotton production

A - California Aqueduct Water - 300.0 mg/l TDS

M - Medium Salinity Water - 3000 mg/1 TDS

W - High Salinity Water - 6000 mg/1 TDS

March, 1984

	nested on Avera seest.	001100) 00118711000 001887
4		
		68 60

LATE HARD RED WINTER

USDA, SEA AR WESTERN WHEAT QUALITY LAB. PULLMAN, WA.

NURSCO 62			PULLMAN,	WA					C.J. PE	PETERSON
LABNUM	VARIETY	ONGI	CLASS	TWI	FYELD	FASH 1/	MSCOR	FPROT 1/	MABSC 3/	MTYPE
831864 WANSER 831865 WESTON 831866 831867 831868		C1013844 C1017727 0R7925 1D0217 UT125327	HRW HRW HRW	57.6 64.4 52.4 65.2	68.2 71.1 64.4 71.8 66.8	0.32 0.37 0.40 0.36	86.8 87.5 78.9 88.7	88.8	59.0 60.4 58.9 58.9	4L 4M 4M 4L 8L
831869 831870 831871 831872 831873		VJ81019 WA7048 VJ81169 VH81319 VH81522	HRW HRW HRW HRW HRW	59.6 62.4 63.2 63.2 63.2	64.3 68.7 68.9 70.1 67.4	0.34 0.37 0.32 0.33 0.36	81.5 84.6 87.5 88.5	8.4 7.4 9.1	57.6 57.7 60.1 56.1	31 81 61 7M
LABNUM	VARIETY	ONGI	CLASS	BABS	BABSC 3/	MTIME	LVOL	LVOLC 4/	BCRGR	RMKS
831864 WANSER 831865 WESTON 831866 831867 831868		C1013844 C1017727 0R7925 1D0217 UT125327	HRW HRW HRW HRW	61.4 63.3 62.9 60.3 60.7	61.2 62.6 62.1 60.1 62.6	3.88	750 710 640 700 500	736 667 590 688 618	88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 P-FYELD, LVOL&BCRGR 8 Q-LVOL 9 P-FYELD, LVOL&BCRGR
831869 831871 831872 831873		VJ81019 WA7048 VJ81169 VH81319 VH81522	HRW HRW HRW	59.7 58.4 61.7 57.7 62.9	59.3 62.3 57.3 61.8	0.00000	630 560 620 700	605 653 657 675 637	00000	9 P-FYELD, LVOL&BCRGR 9 P-LVOL&BCRGR 9 P-LVOL&BCRGR 6
1/ Observed Values Corrected to 14% Moistur 3/ Absorption at 14% Moisture Corrected to 4/ Observed Values Corrected to 8% Protein.	Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% Protein. Observed Values Corrected to 8% Protein.	٠.		5/ Part: 6/ Promi	Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.	omising Ov 11 Quality	using Overall Quality Cha Quality Characteristics.	ity Charact Istics.	eristics.	

Selections VH81319 and VH 81522 may have some promise for hard red bread wheats, as they appear slightly better in bread crumb structure than Wanser and Weston. The protein was too low for trustworthy data. COMMENTS:

	48333		
			\$ 7 3 m B
provide that as not be tracked the factor of			

LAB.
- 177
QUALITY
UAL
Total Control
USDA, SEA AR WESTERN WHEAT PULLMAN, WA.
A X X
ERN MAN
SDA
2 X Z

NURSCO 63			ID, WA	4							C.J. PETERSON	
LABNUM VARIETY		ONGI	CLASS	TWT	FYELD	FYELD FASH	MSCOR	MSCOR FPROT	MABSC MTYPE CODI	E CODI	CODIC RMKS	
831874 BARBEEWALLA WALLA 831875 831876 BARBEECAVENDISH 831877 831878 BARBEERITZVILLE		C1017417 WA6912 C1017417 WA6912 C1017417	CLUB SWW CLUB SWW CLUB	56.9 61.2 57.5 59.1 58.2	66.3 70.3 68.9 72.6 70.8	0.45 0.41 0.40 0.38	73.1 77.9 78.4 82.5 81.1	10.3 7.0 6.1 6.1	53.4 2M 56.4 3M 51.6 1L 52.6 2L 50.2 1L	8.71 8.67 9.07 9.12 9.49	8.88 8.78 9.00 8.92 9.35	
831879 831880 BARBEELEWISTON 831881 831882 BARBEEPULLMAN LATE		WA6912 C1017417 WA6912 C1017417 WA6912	SWW CLUB SWW CLUB SWW	60.1 59.1 58.9 62.3	72.5 70.5 70.2 70.7	0.39	83.6 79.9 79.7 81.6 86.2	6.6 9.9 10.0 7.6 6.1	52.8 2L 53.7 1M 56.3 3M 48.8 2L 54.0 4L	9.27 8.87 8.80 8.95 9.36	99.12 9.02 9.92 15	
831884 BARBEEPULLMAN EARLY 831885 831886 BARBEEPOMEROY 831887 831888 BARBEECUNNINGHAM		C1017417 WA6912 C1017417 WA6912 C1017417	CLUB SWW CLUB SWW CLUB	60.1 61.5 62.8 52.3	70.8 68.4 70.1 72.8 66.2	0.40 0.32 0.38 0.31	81.0 82.1 80.7 87.4 69.3	7.7.7.9	49.3 1L 53.0 4L 50.7 1L 54.4 4M 53.6 1M	8.99 9.00 8.82 8.82 8.51	8.94 8.75 8.74 8.74	
831889		WA6912	SWW	56.5	68.1	0.47	72.7	9.5	55.8 4M	8.61	8.74	
		BARBEE Avg. WA6912 Avg.	CLUB		69.2		78.1	8.2	51.4	8,95		
 Observed Values Corrected to 14% Moisture Basis. Absorption at 14% Moisture Corrected to 8% Protein. Observed Values Corrected to 8% Protein. 	ture Basis. to 8% Protei in.	ċ			5/ Pa 6/ Pr	rticula	orly Pro	omising 11 Qual	Particularly Promising Overall Quality Characteristics. Promising Overall Quality Characteristics.	ity Char istics.	acteristics.	

COMMENTS: WA6912 has better flour yield and overall milling properties than Barbee when averaged over these eight locations. Protein was about .5% lower, water absorption 3.0% higher, and cookie diameter the same as Barbee.

The state of the s	
	18 cycle 61

As the states after the states and assess one econe uniquese the rane of failure A Charles Asjon Colleges of the Solution of th

一大大学 一大小学

