答案

在图中已知 I_{sc} =50mm, I_{co} =35mm, I_{4D} =30mm, AD 为固定件。

- (1) 如果该机构能成为曲柄摇杆机构,且 AB 为曲柄,求 I_{AB} 的值;
- (2) 如果该机构能成为双曲柄机构, 求 I_{48} 的值;
- (3) 如果该机构能成为双摇杆机构, 求 I_{AB} 的值。

解: 这是一个需要灵活运用格拉霍夫(Grashoff)定律的题目。

(1) 如果能成为曲柄摇杆机构,则机构必须满足"最长杆与最短杆长度之和小于或等于其它两杆长度之和,且 AB 为最短杆"。则有

$$I_{AB} + I_{BC} \leqslant I_{CD} + I_{AD}$$

代入各杆长度值,得

$$1_{\mathit{AB}}\!\leqslant\!15\mathrm{mm}$$

- (2) 如果能成为双曲柄机构,则应满足"最长杆与最短杆长度之和小于或等于其它两杆长度之和,且杆 AD 为最短杆"。则
 - 1) 若 BC 为最长杆,即 I_{AB} ≤100mm,则

$$I_{BC} + I_{AD} \leqslant I_{AB} + I_{CD}$$

$$I_{AB} \geqslant 45$$
mm

所以 45mm≤I_M≤50mm

2) 若 AB 为最长杆,即 $I_{AB} \geq 50$ mm,则

$$I_{AB} + I_{AD} \leqslant I_{BC} + I_{CD}$$

$$I_{AB} \leq 55$$
mm

所以 50mm≤1_{AB} ≤55mm

将以上两种情况进行分析综合后, 148 的值应在以下范围内选取, 即

- (3) 若能成为双摇杆机构,则应分两种情况分析。第一种情况: 机构各杆件长度满足"杆长之和条件",但以最短杆的对边为机架;第二种情况: 机构各杆件长度不满足"杆长之和条件"。在本题目中, AD已选定为固定件,则第一种情况不存在。下面就第二种情况进行分析。
 - 1) 当 I_{AB} <30mm, AB 为最短杆, BC 为最长杆

$$I_{AB} + I_{BC} > I_{CD} + I_{AD}$$

 $I_{AB} > 15$ mm

即 15mm<1_{AB}< 30mm

2) 当 IAB 为中长杆时, AD 为最短杆, BC 为最长杆,则

$$I_{AD} + I_{BC} > I_{AB} + I_{CD}$$

 I_{AB} <45mm

 \mathbb{R}^3 30mm $\leq I_{AB} < 45$ mm

3) 当 IAB>100时, AB 为最长杆, AD 为最短杆,则

$$I_{AB} + I_{AD} > + I_{CD}$$

 $I_{AB} > 55 \text{ mm}$

另外,AB增大时,还应考虑到,BC与 CD成伸直共线时,需构成三角形的边长关系,即

$$I_{AB} < (I_{BC} + I_{CD}) + I_{AD}$$

$$I_{AB} < 115 \text{ mm}$$

则 55 mm < I_{AB} <115 mm

综合以上情况,可得 148 的取值范围为:

 $15 < I_{AB} < 45, 55 < I_{AB} < 115$

除以上分析方法外,机构成为双摇杆机构时, L₈ 的取值范围亦可用以下方法得到: 对于以上给定的杆长, 若能构成一个铰链四杆机构, 则它只有三种类型: 曲柄摇杆机构、双曲柄机构、双摇杆机构。故分析出机构为曲柄摇杆机构、双曲

柄机构时 I_{AB} 的取值范围后,在 $0\sim220$ mm 之内的其余值即为双摇杆机构时 I_{AB} 的 取值范围。

- 2-3 答案:由于 $I_{AB}+I_{AD} \leq I_{BC}+I_{CD}$,且以最短杆AB的邻边为机架。故 该铰链四杆机构为曲柄摇杆机构。AB为曲柄。
- 1)以曲柄AB为主动件,作业摇杆CD的极限位置如图所示。

:.
$$AC_1 = I_{AB} + I_{BC} = 80$$

 $AC_2 = I_{BC} - I_{AB} = 24$

极位夹角 0:

$$\theta = \angle C2AD - \angle C1AD$$

$$= COS^{-1}[(AC_2^2 + AD^2 - C_2D^2) / 2 AC_2 * AD] - COS^{-1}[(AC_1^2 + AD^2 - C_1D^2) / 2 AC_1 \times AD]$$

$$= COS^{-1}[(24^2 + 72^2 - 50^2)/2 \times 24 \times 72] - COS^{-1}[(80^2 + 72^2 - 50^2)/2 \times 80 \times 72]$$

$$\approx 18.56^{\circ}$$

行程速比系数 $K = (180°+\theta) / (180°-\theta) \approx 1.23$ 最小传动角γmin 出现在AB与机架AD重合位置(分正向重合、 反向重合)如下图。

分别求出β1、β2, 再求最小传动角。

 $\beta_1 = COS^{-1}[CD^2 + BC^2 - (CD - AB)^2]/2 \times CD \times BC \approx 51.06^{\circ}$

 $\beta_{2} = \cos^{-1}[CD^{2} + BC^{2} - (AD + AB)^{2}]/2 \times CD \times BC \approx 157.26^{\circ}$

曲柄处于 $A B_1$ 位置时,传动角 $\gamma_1 = \beta_1$. 曲柄处于 $A B_2$ 位置时,传动角 $\gamma_2 = 180^{\circ} - \beta_2$. 现比较的 γ_1 、 γ_2 大小,最小传动角取 γ_1 、 γ_2 中最小者.

 $\therefore \gamma_{min} = 22.74^{\circ}$

求Φ: 摇杆的最大摆角Φ:

 $\varphi = \angle B_1 DC_1 - \angle B_2 DC_2$

 $= \frac{1}{1000} \left[\left(B_1 D^2 + C_1 D^2 - B_1 C_1^2 \right) / 2 \times B_1 D \times C_1 D \right] - \cos^{-1} \left[\left(B_1 D^2 + C_1 D^2 - B_1 C_1^2 \right) / 2 \times B_2 D \times C_2 D \right]$

 $= \cos^{-1} \left[(44^{2} + 50^{2} - 52^{2}) /2 \times 44 \times 50 \right] - \cos^{-1} \left[(100^{2} + 50^{2} - 52^{2}) /2 \times 100 \times 50 \right]$

 $=70.55^{\circ}$

- 2) 2) 取AB为机架,该机构演化为双曲柄机构。因为在曲柄摇杆机构中取最短杆作为机架,其2个连架杆与机架相连的运动副A、B均为整转副。C、D两个转动副为摇转副。
- 2-4、图示六杆机构中,各构件的尺寸:

 $l_{AB}=30mm$, $l_{BC}=55mm$, $l_{AD}=50mm$, $l_{CD}=40mm$, $l_{DE}=20mm$, $l_{EF}=60mm$,

滑块为运动输出构件。

试确定: (1) 四杆机构 ABCD 类型; (2) 求机构行程时间比系数 K; (3) 滑块 F的行程 H;

- (4) 机构的最小传动角 γ_{\min} 和最大传动角 γ_{\max} ;
- (5) 导轨 DF 在什么位置时滑块在运动中的压力角最小。

- 解: (1) 四杆机构 ABCD 为曲柄摇杆机构。
 - (2) 机构 K 也即是四杆机构 ABCD 的 K.

极位夹角
$$\theta = \angle DAC'' - \angle DAC' = 35.3^{\circ}$$
, $K = \frac{180^{\circ} + \theta}{180^{\circ} - \theta} = 1.49$

(3) 在 $\Delta AC'D$ 和 $\Delta AC''D$ 中,利用余弦定理得:

$$\cos \varphi_1 = \frac{l_{AD}^2 + l_{CD}^2 - (l_{AB} + l_{BC})^2}{2 \times l_{AD} \times l_{CD}} = -0.78125$$

$$\cos \varphi_2 = \frac{l_{AD}^2 + l_{CD}^2 - (l_{BC} + l_{AB})^2}{2 \times l_{AD} \times l_{CD}} = 0.86875$$

同样在 $\Delta DE'F'$ 和 $\Delta DE''F''$ 中用余弦定理可以得到:

$$DF' = 43mm$$
, $DF'' = 77mm$, 故行程 $H = DF'' - DF' = 34mm$

(4) 最小传动角出现在 DE 垂直于 DF 时, $\gamma_{\min} = \arccos \frac{DE}{EF} = 70.5^{\circ}$

由于 CD 不能和 DF 重合, 所以最大传动角出现在机构运动的极限位置,

在
$$E'$$
 点时, $\gamma = \arccos \frac{DE' \cdot \sin(180^\circ - \phi_1)}{E'F'} = 78.0^\circ$

在
$$E''$$
 点时, $\gamma = \arccos \frac{DE'' \cdot \sin \phi_2}{E''F''} = 80.5^\circ$, 所以 $\gamma_{\max} = 80.5^\circ$

(5) 传动角与压力角互为余角,所以导轨 DF 在DF''时滑块在运动中的压力角最小。

- 2-6 如题图 2-6 所示,对于一偏量曲柄滑块机构,已知曲柄长为r,连杆求。
 - 1) 当曲柄为原动件机构传动角的表达式;说明曲柄 r、连杆 l 和偏距 e)
 - 2) 说明出现最小传动角时的机构位置;
- 3) 若令 e=0 (即对心式曲柄滑块机构), 其 传动角在何处最大?何处最小?并比较其行程 H 的变化情况。

- (1) $\cos \gamma = \frac{r \sin \theta + e}{l}$ 。当 e与r 增大时,传动角变小,当l 增大时,传动角变大。
- (2) 最小传动角出现时, θ 应为最大。即曲柄与导路垂直时出现最小传动角。
- $\gamma_{
 m max}$ 在曲柄与导路重合时取得, $\gamma_{
 m min}$ 出现在曲柄与导路垂直时。
- 2-8、各机构在图示位置时全部瞬心的位置。

2-9、如图所示,三个轮子互相作纯滚动运动,试用相对瞬心 P_{13} 来求轮 1 和轮 3 的速度比。

$$\omega_1 : \omega_3 = \overline{P_{13}P_{36}} : \overline{P_{13}P_{16}}$$

解:
$$:: \triangle OAP_{12} \sim_{\triangle} CBP_{12}$$
, $:: \frac{l_{AP_{12}}}{l_{BP_{12}}} = \frac{l_{OP_{12}}}{l_{CP_{12}}}$

设
$$I_{AP_{12}}$$
 为 x ,则 $\frac{x}{50+\sqrt{22^2+x^2}} = \frac{\sqrt{22^2+x^2}}{80+x}$ 可 得 $x = 28.6$ 。

$$\vdots \quad \omega_1 \bullet l_{AP_{12}} = \omega_2 \bullet l_{CP_{12}} , \quad \vdots \quad \omega_2 = 2.63 \text{ rad/s}.$$