Méthodes d'apprentissage IFT603 - 712

Concepts fondamentaux Par Pierre-Marc Jodoin Hugo Larochelle

Apprentissage Automatique

Question : comment reconnaître des caractères manuscrits?

Réponse : Énumérer des règles?

- ➤ Une série de pixels alignés => '1'
- ➤ Une série de pixels en rond => '0'
- ➤ Etc.

2

Apprentissage Automatique

Question : comment reconnaître des caractères manuscrits?

Réponse : Énumérer des règles? NON!

 \succ Généralise mal à tous les cas/ 1 / / / 1)

Apprentissage Automatique

Question: comment reconnaître des caractères manuscrits?

Réponse: Laisser l'ordinateur « apprendre » les règles

> Algorithmes d'apprentissage (machine learning)

Deux grandes approches

Apprentissage supervisé

Apprentissage non-supervisé.

6

Apprentissage supervisé

On fournit à l'algorithme des données d'entraînement

000010111

...et l'algorithme retourne une fonction capable de **généraliser** à de nouvelles données

/ 1 | 0 | 0 0 2 2 2 2 2 2 2 2

7

Apprentissage supervisé

On fournit à l'algorithme des données d'entraînement

On note l'ensemble d'entraînement

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

où $\vec{x}_i \in \mathbb{R}^d$ est une **entrée** (donnée brute) et t_i est la **cible**

8

Objectif des algorithmes d'apprentissage

Partant d'un **ensemble d'entraînement:** $D = \{(\vec{x}_1, t_1), (\vec{x}_2, t_2), ..., (\vec{x}_N, t_N)\}$

 $\vec{x}_i \in \Re^d$ donnée t_i cible associée à \vec{x}_i

le but est **d'apprendre** une function qui sache prédire t_i partant de \vec{x}_i

 $y_{\vec{w}}(\vec{x}_i) \rightarrow t_i$

où \vec{w} sont les **paramètres** du modèle

Apprentissage supervisé

Une fois le modèle $\mathcal{Y}_{\vec{w}}(\vec{x})$ entraîné, on utilise un **ensemble de test** D_{test} pour mesurer la performance du modèle en **généralisation.**

10

10

Deux grandes approches

Apprentissage supervisé

Apprentissage non-supervisé.

11

11

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

> Partitionnement de données / clustering

Apprentissage non supervisé L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée > Partitionnement de données / clustering

Apprentissage non supervisé L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée ➤ A souvent pour but d'apprendre une loi de probabilité p(x) dont les données sont issues

16

17

Apprentissage non supervisé

L'apprentissage non-supervisé est lorsqu'une cible n'est pas explicitement donnée

➤ A souvent pour but d'apprendre une loi de probabilité *p*(*x*) dont les données sont issues

Autres applications

- Compression de fichiersVisualisation de données
- Segmentation d'images
 etc.

Supervisé vs non supervisé

Apprentissage supervisé : il y a une cible

$$D = \{ (\vec{x}_1, t_1), (\vec{x}_2, t_2), \dots, (\vec{x}_N, t_N) \}$$

Apprentissage non-supervisé : la cible n'est pas fournie

$$D = \left\{ \vec{x}_1, \vec{x}_2, \dots, \vec{x}_N \right\}$$

19

Apprentissage supervisé

Deux grandes familles d'applications

- ightharpoonup Classification : la cible est un indice de classe $t \in \{1, \dots, K\}$

 - Exemple : reconnaissance de caractères

 \$\vec{\pi} \tilde{\pi}\$: vecteur des intensités de tous les pixels de l'image

 \$\vec{t}\$: identité du caractère
- ➤ Régression: la cible est un nombre réel t∈ R
 Exemple: prédiction de la valeur d'une action à la bourse
 √ x̄: vecteur contenant l'information sur l'activité économique de la journée
 ✓ t: valeur d'une action à la bourse le lendemain

20

Exemple simple de classification binaire

29

Exemple de base de données de classification

Inria person dataset

- 2 classes
- 20,252 images,
 - => 14,596 entraînement
 - => 5,656 test
- Chaque image est en RGB
 - =>64x128x3

On peut simplement **vectoriser ces images** et les représenter par des vecteurs de 64x128x3 = **9,984 dimensions**.

Exemple de base de données de classification

Exemples, Cifar10

- 10 classes
- 60,000 images,
 - => 50,000 entraînement
 - => 10,000 test
- Chaque image est RGB
 - => 32x32x3

On peut simplement **vectoriser ces images** et les représenter par des vecteurs de 32x32x3 = 3072 dimensions.

32

Exemple de base de données de classification Exemples, mnist

Exemple de base de données de classification

Exemples, mnis

- 10 classes
- 70,000 images
 - => 60,000 entraînement
 - => 10,000 test
- Les images sont en niveaux de gris
 - => 28x28

On peut simplement vectoriser ces images et les représenter par des vecteurs de $28 \times 28 =$ **784 dimensions.**

34

Exemple formel: régression 1D

 $-y_{\bar{w}}(x)$

37

Régression 1D

Exemple simple: régression 1D

Données

✓ entrée : scalaire x ✓ cible : scalaire t

ightharpoonup Ensemble d'entraı̂nement D contient:

$$\checkmark X = (x_1, \dots, x_N)^T$$

$$\checkmark T = (t_1, \dots, t_N)^T$$

> Objectif:

✓ Faire une prédiction \hat{t} pour chaque nouvelle entrée \hat{x}

38

Régression 1D

Exemple simple: régression 1D

➤ **Données**✓ entrée : scalaire *x*✓ cible : scalaire *t*

ightharpoonup Ensemble d'entraı̂nement D contient:

$$\begin{array}{l} \checkmark \quad X = (x_1, \ldots, x_N)^T \\ \checkmark \quad T = (t_1, \ldots, t_N)^T \end{array}$$

➤ Objectif:

Faire une prédiction \hat{t} pour chaque nouvelle entrée \hat{x}

Régression polynomiale

➤ Une fois entraîné, un modèle prédit la cible d'une nouvelle entrée x à l'aide d'un bout de code comme celui-ci:

def predict(x,w):
 x_poly = x ** np.arange(len(w))
 return np.dot(x_poly,w)

- $ightharpoonup y_{\vec{w}}(x)$ est notre **modèle**

 - ✓ Représente nos hypothèses sur le problème à résoudre ✓ Un modèle a toujours des paramètres qu'on doit trouver (ici \vec{w})

43

43

Régression polynomiale

 \triangleright Connaissant M, comment trouver le bon \vec{w} ?

Le « meilleur » \vec{w} est celui qui minimise la somme de notre perte / erreur / coût sur les données d'entraînement

$$E_D(\vec{w}) = \sum_{n=1}^{N} (y_{\vec{w}}(x_n) - t_n)^2$$

➤ La solution à ce problème sera vue au chapitre 3.

$$\vec{w} = \arg\min_{\vec{w}} E_D(\vec{w})$$

44

Sur- et sous-apprentissage

➤ Comment trouver le bon *M*?

Le problème avec les hyper-paramètres est qu'ils ne peuvent pas être estimés à l'aide des algorithmes d'optimisation classiques (descente de gradient, méthode de Newton, etc.) comme pour les paramètres \vec{w} .

Par conséquent, on fixe souvent « à la main » les hyper-paramètres.

Mais attention, leur valeur influence grandement le résultat final.

Régularisation

Valeurs apprise des paramètres \vec{w} pour différents M sans régularisation

	M = 0	M = 1	M = 3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Régularisation

Lorsqu'on souhaite éviter qu'on modèle sur-apprenne

- 1. On sélectionne un petit « M »
- 2. On réduit la capacité du modèle par régularisation

Exemple : on pénalise la somme du carré des paramètres $E_D(\vec{w}) = \sum_{n=1}^N (t_n - y_{\vec{w}}(\vec{x}))^2 + \lambda \|\vec{w}\|^2$
Modèle de Ridgel $\|\vec{w}\|^2 = \vec{w}^T \vec{w} = w_0^2 + w_1^2 + ... + w_M^2$

52

Régularisation

Forte régularisation = modèle moins flexible

53

Régularisation

Forte régularisation a un influence sur l'erreur d'entraînement et de test

On peut également sur- et sousapprendre en classification

$$\begin{split} E_D(\vec{w}) &= \sum_{n=1}^N \bigl(y_{\vec{w}}(x_n) - t_n\bigr)^2 + \lambda \bigl\lVert \vec{w} \bigr\rVert^2 \\ \bigl\lVert \vec{w} \bigr\rVert^2 &= \vec{w}^T \vec{w} = w_0^2 + w_1^2 + \ldots + w_M^2 \end{split}$$

Sélection de modèle

Comment trouver les bons hyper-paramètres?

M et λ

58

58

Sélection de modèle

Comment trouver le bon M et le bon λ ?

- Très mauvaise solution : choisir au hasard
- Mauvaise solution: prendre plusieurs paires (M, λ) et garder celle dont l'erreur d'entraînement est la plus faible
 Sur-apprentissage
- Mauvaise solution: prendre plusieurs paires (M, λ) et garder celle dont l'erreur de test est la plus faible
 D_{test} ne doit pas être utilisé pour entraîner le modèle
- Bonne solution: prendre plusieurs paires (M, λ) et garder celle dont <u>P'erreur de validation</u> est la plus faible

59

59

Validation croisée (cross-validation)

1- Diviser au hasard les données d'entraînement en 2 groupes

2- Pour M allant de M_{\min} à M_{\max} Pour λ allant de λ_{\min} à λ_{\max}

Entraîner le modèle sur $\,D_{\it train}\,$ Calculer l'erreur sur $\,D_{\it valid}\,$

3- Garder la paire (M, λ) dont <u>l'erreur de validation</u> est la plus faible

61

Erreur moyenne Ecart type 2.832 (+/-0.116) for ('regression': 'poly', 'M': 3, 'lambda': 0.01) 1.854 (+/-0.072) for ('regression': 'poly', 'M': 3, 'lambda': 0.1) 1.910 (+/-0.065) for ('regression': 'poly', 'M': 3, 'lambda': 1) 1.902 (+/-0.077) for ('regression': 'poly', 'M': 3, 'lambda': 1) 2.864 (+/-0.101) for ('regression': 'poly', 'M': 4, 'lambda': 0.01) 2.864 (+/-0.05) for ('regression': 'poly', 'M': 4, 'lambda': 0.1) 1.994 (+/-0.065) for ('regression': 'poly', 'M': 4, 'lambda': 1) 1.894 (+/-0.080) for ('regression': 'poly', 'M': 4, 'lambda': 1) 1.994 (+/-0.064) for ('regression': 'poly', 'M': 5, 'lambda': 0.1) 1.994 (+/-0.069) for ('regression': 'poly', 'M': 5, 'lambda': 1) 1.870 (+/-0.090) for ('regression': 'poly', 'M': 5, 'lambda': 1) 2.866 (+/-0.090) for ('regression': 'poly', 'M': 6, 'lambda': 0.01) 2.996 (+/-0.052) for ('regression': 'poly', 'M': 6, 'lambda': 0.1) 1.994 (+/-0.055) for ('regression': 'poly', 'M': 6, 'lambda': 0.1) 1.994 (+/-0.075) for ('regression': 'poly', 'M': 6, 'lambda': 1) 2.858 (+/-0.112) for ('regression': 'poly', 'M': 6, 'lambda': 1)

62

En résumé, un algorithme d'apprentissage

- ✓ entraîne un modèle à partir d'un ensemble d'entraînement, pouvant faire des prédictions sur de nouvelles données
- √ a des hyper-paramètres qui contrôlent la capacité du modèle entraîné, choisis à l'aide d'une procédure de sélection de modèle
- ✓ mesure sa performance de généralisation sur un ensemble de test
- ✓ Aura une meilleure performance de généralisation si la quantité de données d'entraînement augmente
- ✓ Peut souffrir de sous-apprentissage (pas assez de capacité) ou de sur-apprentissage (trop de capacité)

