1. v_rest, v_reset 是不是都是以细胞内为0电压, 然后取细胞外电压?

2 .

论文的 table 2 中,有这个说明,那不是意味着 mu 随着 t 变化? 我们需要这样吗?

$u_{\text{rest}} = \hat{\mu} + J_{\theta} \hat{r} \text{ [mV]}$	20.123	20.362	35.478		28.069	37.578	29.33	35.92	32.081
step stimulus ("thalamic input")									
RI _{ext} [mV]	0.	0.	19.		11.964	0.	0.	9.896	3.788
μ(t) [mV]					$u_{\text{rest}} + RI_{\text{ext}}$ for $t \in [0.06s, 0.09s]$, else u_{rest}				
network parameters									
N	20683	5834	21915		5479	4850	1065	14395	2948
	from annulation 0								

- 3. Nest 的包输入可以选 binomial 分布或 Poisson 分布,但是论文里后面在算 mesoscopic variable 的时候都用的 Poisson,所以选 binomial 是指什么呢/
- 4. 预测参数的时候, 一般给定哪些参数, 预测哪些参数呢?
- 5. 确认下,这里 tao^E_s 是指 presynapsis 是 excitatory,即针对一个 excitatory 输出而言的? (而不是当前 synapsis 是 excitatory)

modeled by a set of differential equations for a finite number of synaptic variables $y_{i,\ell}$, t=1, ..., L. In simulations, we model the synaptic kernel by a single exponential with constant delay $\Delta^{\alpha\beta} = \Delta$, $\epsilon^{\alpha\beta}(t) = \Theta(t-\Delta)/\tau_s^\beta/\tau_s^\beta$, where $\Theta(t)$ denotes the Heaviside step function. The synaptic time constants are $\tau_s^E = 3$ ms and $\tau_s^I = 6$ ms for excitatory and inhibitory synapses, respectively. This kernel can be realized by a single synaptic variable $v_i^{\alpha\beta}(t)$, which obeys the first-order kinetics $\tau_s^\beta\dot{y}_i^{\alpha\beta} = -y_i^{\alpha\beta} + \sum_{i\in \Gamma} s_i^\beta(t-\Delta)$ with $\beta\in\{E,I\}$.

Generalized integrate-and-fire model. Neurons are modeled by a leaky integrate-and-

6. 打钩的这四条代码,我有点小疑惑。J 是单个细胞的 synapsis 的 weight,而最后的 J_syn 里包含了 CO/C,相当于认为总权重(单个细胞 weight 乘上细胞连接数量)是固定的,如果 C 变化,单个细胞的 weight 就变了,意味着 J 本质是单个细胞的参考 weight,只有在 C=C0 时,J 才是真正的单个细胞的 weight。所以,让总权重(单个细胞 weight 乘上细胞连接数量)恒定的意义是什么呢?(因为要我写代码,我就直接写 J_syn = np.array([[J, -g * J], [J, -g * J]]),不会有 C 和 CO)

```
# connectivity

J = 0.3  # excitatory synaptic weight in mV if number of input connections is CO (see below)

g = 5.  # inhibition-to-excitation ratio, -g*J is the weight for inhibitory signals

pconn = 0.2 * np.ones((M, M)) # probability of connections

delay = 1. * np.ones((M, M)) # every two populations have a delay constant

CO = np.array([[S00, 200], [800, 200]]) * 0.2 # constant reference matrix for connections

C = np.vstack((N, N)) * pconn # numbers of input connections

J_syn = np.array([[J, -g * J], [J, -g * J]]) * CO / C # final synaptic weights scaling as 1/C

# step current input
```

7. 论文里求电流用的 membrane resistance, 但是代码看起来像是用的 excitatory 和 inhibitory 的 resistance (conductance), 哪里弄错了吗?

$$R^{\alpha}I_{\text{syn},i}^{\alpha}(t) = \tau_{\text{m}}^{\alpha} \sum_{\beta=1}^{M} w^{\alpha\beta} \sum_{j \in \Gamma_{i}^{\beta}} \left(\epsilon^{\alpha\beta} * s_{j}^{\beta} \right) (t), \tag{22}$$

where \textit{R}^{α} and τ_{m}^{α} are the membrane resistance and membrane time constant of a neuron in

8 .

我们需要算 spectrum 吗?如果需要,是不是只用基于最后的 neural activity(每个 time bin 的 firing number)直接算即可,相当于是一个以 A 为输入,spectrum 为输出的函数,这个有现成的吗?