CS 4/5789 23 Feb 2021 Prof sarah Dean Lecture 10: Model Based RL MDP model $M = \{S, S_t, P, r, r, r\}$ infinite horizon tabular states actions transition remard discount without modern to discount distribution without the distribution of the finite horizon continuous. But now transitions/dynamics are unknown! 1) MBRL Algorithm with Query model The query model (also called generative model): For any s, a we can query the transition/dynamics model to sample the next state. $s' \sim P(s, a)$ (equivalently, $s' \sim f(s, a, w)$ st. $w \sim D$) Black-box sampling access. Applicable to games + physics simulators.

Also simple, so it is a good starting point to understand sample complexity: How many samples are required for good performance? Alg: MBRL with Query model Sample $s_i^* \sim P(s_i, a_i)$ and record (s_i^*, s_i, a_i) 2) Fit transition model \hat{P} from data $\mathcal{E}(s_i^*, s_i, a_i)$ $\mathcal{E}(s_i^*, s_i, a_i)$ 1) For i=1,-, N: Today we will investigate the sample complexity of this method in two specific settings: tabular & LQR.

2) Tabular Setting Specialiting the organithm to this setting:

1) sample all (s, a) evenly: N sA times each 2) Fit transition model by counting $\hat{P}(s'|s,a) = \sum_{i=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} \sum_{j=1}^{N} \frac{1}{2} \sum$ Zi=1 1 { Si=5 & ai=a} 3) Design ft with Policy Heration: $\hat{\Pi} = PI(\hat{P}, r)$ $V^{T} = (I - 8P)^{T}R$ $Q^{Tt} = Policy Eval (ITt; P, P)$ $V^{T} = (I - 8P)^{T}R$ $Q^{Tt}(S,a) = V(S,a) + V(V(S'))$ $V^{T} = (I - 8P)^{T}R$ $V^{T} =$ Initialize To Goal: Compare performance of ITx Vs. IT strategy: 1) compare P vs. P 11) Translate Prs. P into difference between value functions 111) Translate difference in value functions 1) PVS. P: similar to last lectures discussion Lemma . with probability 1-8, for all s, a $\leq |\widehat{P}(s'|s,\alpha) - P(s'|s,\alpha)| \leq \sqrt{\frac{s^2 A \log(2SA/8)}{k'}}$

Proof is out of scope

11) Value Functions: effect of model error Given a policy TT, what is the difference between the value Function defined by P compared to the value Function defined by B?

$$\sqrt{T}(S) = \mathbb{E}\left[\sum_{t=0}^{\infty} x^{t} V(S_{t}, \alpha_{t}) \Big|_{\substack{S_{0} = S \\ S_{t+1} \sim P(S_{t}, \alpha_{t})}}^{S_{0} = S}\right] \qquad \sqrt{T}(S) = \left[\sum_{t=0}^{\infty} x^{t} V(S_{t}, \alpha_{t}) \Big|_{\substack{S_{0} = S \\ S_{t+1} \sim P(S_{t}, \alpha_{t})}}^{S_{0} = S}\right]$$

Recall: Discounted State-action distribution $d_{so}^{T}(s,a) = (1-8) \overset{\approx}{\underset{t=0}{\sum}} 8^{t} P_{t}^{T}(s,a;s_{0})$

probability of visiting s,a at stept starting at initial state so

Simulation Lemma:

$$\sqrt[3]{(S_0)} - \sqrt[3]{(S_0)} \le \frac{1}{(1-8)^2} = \left[\frac{1}{10} \left(\frac{1}{10} \right) - \frac{1}{10} \left(\frac{1}{10} \right) \right] = \frac{1}{100} = \frac{1$$

By iterating this expression
$$K$$
 times,
 $\sqrt[4]{\pi}(s_0) - \sqrt[4]{\pi}(s_0) = \sum_{k=1}^{K} x^k \mathbb{E} \left[\mathbb{E} \left[\sqrt[4]{\pi}(s_k) \right] - \mathbb{E} \left[\sqrt[4]{\pi}(s_k) \right] \right] + x^k \mathbb{E} \left[\sqrt[4]{\pi}(s_k) - \sqrt{\pi}(s_k) \right] + x^k \mathbb{E} \left[\sqrt[4]{\pi}(s_k) - \sqrt{\pi}(s_k) \right]$

Letting
$$k \to \infty$$
, $\sqrt{T}(S_0) = \frac{1}{18} \sum_{S_0} \left[\mathbb{E} \left(\sqrt{T}(S_0) \right) - \mathbb{E} \left(\sqrt{T}(S_0) \right) \right]$

$$\mathbb{E} \left(\sqrt{T}(S_0) - \mathbb{E} \left(\sqrt{T}(S_0) \right) \right) = \mathbb{E} \left(\mathbb{P} \left(S_0 | S_0 \right) - \mathbb{P} \left(S_0 | S_0 \right) \right)$$

$$\mathbb{E} \left(\sqrt{T}(S_0) \right) - \mathbb{E} \left(\sqrt{T}(S_0) \right) = \mathbb{E} \left(\mathbb{P} \left(S_0 | S_0 \right) - \mathbb{P} \left(S_0 | S_0 \right) \right) \right]$$

$$\mathbb{E} \left(\sqrt{T}(S_0) \right) - \mathbb{E} \left(\sqrt{T}(S_0) \right) = \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) = \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right]$$

$$\mathbb{E} \left(\sqrt{T}(S_0) - \mathbb{P} \left(S_0 \right) \right) = \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) + \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right) \right) = \mathbb{E} \left(\mathbb{E} \left(S_0 | S_0 \right) \right$$

III) Policy Heration

Let $\Pi^* = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation

Let <math>T = PI(\hat{P}, r) = ignore iteration approximation$ comparing to true aptimal value.

$$V^{*}(S_{0}) - V^{\widehat{\Pi}^{*}}(S_{0}) \leq V^{*}(S_{0}) - V^{\widehat{\Pi}^{*}}(S_{0}) + V^{\widehat{\Pi}^{*}}(S_{0}) - V^{\widehat{\Pi}^{*}}(S_{0})$$

$$\widehat{\Pi}^{*} \text{ is optimal on } \widehat{P} \text{ so } V^{\widehat{\Pi}^{*}}(S_{0}) > V^{\widehat{\Pi}^{*}}(S_{0}) + V^{\widehat{\Pi}^{*}}(S_{0}) = V^{\widehat{\Pi}^{*}}(S_{0}) = V^{\widehat{\Pi}^{*}}(S_{0}) = V^{\widehat{\Pi}^{*}}(S_{0}) = V^{\widehat{\Pi}^{*}}(S_{0}) + V^{\widehat{\Pi}^{*}}(S_{0}) = V^{\widehat{\Pi}^{*}}(S_$$

$$(model round) \leq \frac{2}{(-8)^2} \sqrt{\frac{5 \log(254/8)}{N}} \quad W-p-1-8$$

Theorem: (Sample Complexity)

For
$$0 \le S \le 1$$
, $0 \le E \le 1 = 8$, let $N = \frac{4S^2 A \log(2SA)}{E^2(1-8)^4}$

Then with probability at least $1-8$,

 $V^*(So) - V^{ff*}(So) \le E$.

3) LQR
MBRL in this setting: 1) generate 1.id. samples Si~ N(0,021), ai~ N(0,021).
1) generate 11.d. samples Sin NCO,001, on Non
2) estimate parameters by least squares
$(\hat{A}, \hat{B}) = \operatorname{argmin} \sum_{i=1}^{n} (s_i - As_i - Ba_i)$
3) compute $K_* = LQR(\hat{A}, \hat{B}, Q, R)$
We won't derive results in detail for this setting. But at a high level,
1) parameter estimation
$\left \left[\frac{\hat{A} - A}{\hat{B}} \right] \right _{2} \lesssim \sqrt{\frac{(n_{s} + n_{a}) \log(1/8)}{N}}$
matrix norm
matrix 11) Difference in value $(V_{t}(s) = sTPs + P_{t})$
$\ P_{t}-\hat{P}_{t}\ _{2} \lesssim \ \hat{A}-A\ _{\hat{B}-B}$
111) Difference in performance $\hat{V}_{o}^{*}(S_{0}) - \hat{V}_{o}^{*}(S_{0}) \lesssim \ P_{+} - \hat{P}_{+}\ _{2} \lesssim \frac{(n_{s} + n_{a}) \log (V_{s})}{N}$
$V_0^*(S_0) - V_0^*(S_0) \lesssim \ P_t - \hat{P}_t\ _2 \lesssim \sqrt{\frac{N_S + N_a}{N}}$
Sample complexity: E-optimal policy
aller 1 months

after $N \gtrsim \frac{(n_s + n_a)}{\varepsilon^2}$ Samples