Mandatory Assignment 2 Functional Analysis

Katrine Fredensborg Dedenroth Student ID: cph273

Problem 1 Let H be an infinite dimensional separable Hilbert space with orthonormal basis $(e_n)_{n\geq 1}$. Set $f_N = N^{-1} \sum_{n=1}^{N^2} e_n$, for all $n \geq 1$.

a) We wish to show, that $f_N \to 0$ weakly, as $N \to \infty$. Let $x = \sum_{n=1}^{\infty} a_n e_n$ be any element of H. Then $\langle x, f_N \rangle = N^{-1} \sum_{n=1}^{N^2} a_n$. Given that $a_n \in \ell_2$ we must show, that $N^{-1} \sum_{n=1}^{N^2} a_n \to 0$. Let $\epsilon > 0$. Choose m such that $\sum_{m=1}^{\infty} |a_n|^2 < \epsilon$. Since $N^{-1} \sum_{n=1}^{M-1} a_n \to 0$ if suffices to show that $N^{-1} \sum_{n=1}^{N^2} a_n \to 0$.

Let *K* be the norm closure of $co\{f_N : N \ge 1\}$.

bounted and weathy closed

We wish to argue that K is weakly compact, and that $0 \in K$. Hilbert spaces are reflexive and by Alaoglu's Theorem any weakly bounded sets in them are weakly compact. Moreover, the weak closure of a convex set is the same as its norm closure. It follows that K is weakly closed and bounded, hence weakly compact. Since 0 is in the weak closure of $\{f_N : N \ge 1\}$, it is also in the weak closure of its convex hull, hence 0 is in the norm closure of $\{f_N : N \ge 1\}$. Thus, we have $0 \in K$.

c) We wish to show that 0, as well as each f_N , $N \ge 1$, are an extreme point in K.

First, we wish to show, that $0 \in \operatorname{Ext}(K)$. Assume for contradiction, that $0 \notin \operatorname{Ext}(K)$. Then we can write 0 as a non-trivial convex combination of distinct elements of K, that is, 0 = pu + qv for $u, v \in K$ for which $u \neq v$, and p, q > 0 for which p + q = 1. But every element of K is contained in the intersection of the closed convex half spaces $H_k = \{u \in H : \langle e_k, u \rangle \geq 0\}$. Thus, for each k we have $u, v \in H_k$, hence $0 = p\langle e_k, u \rangle + q\langle e_k, v \rangle$. Since 0 is an extreme point of the set of non-negative reals, this imply that u = v = 0, which is a contradiction to the supposition. Thus, $0 \in \operatorname{Ext}(K)$.

d) We wish to find out whether there are any other extreme points in K or not.

Let $F = \{f_N\} \cup \{0\}$. By c) we have that $F \subseteq \operatorname{Ext}(K)$. Since we know $0 \in K$, we see that the closed convex hull of F is equal to K. If there was any extreme point $e \in \operatorname{Ext}(K)$ not in F, then we could strictly separate e from the closed convex hull of F with a hyperplane. But K is the closed convex hull of F and by the Krein-Milman Theorem also of $\operatorname{Ext}(K)$, so this cannot be. Hence, there would be a contradiction.

Problem 2 Let *X* and *Y* be infinite dimensional Banach spaces.

a) Let $T \in \mathcal{L}(X,Y)$. For a sequence $(x_n)_{n \ge 1}$ in X and $x \in X$, we wish to show that $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

We know by problem 2 HW4 that $x_n \to x$ weakly, as $n \to \infty$, holds if and only if $Fx_n \to Fx$ for all $F \in X^*$. Now, take $G \in Y^*$. Then the composition $G \circ T \in X^*$ meaning $(G \circ T)(x_n) \to (G \circ T)(x)$ as $n \to \infty$ for all $G \in Y^*$. This means exactly that $Tx_n \to Tx$ weakly, as $n \to \infty$.

b) Let $T \in \mathcal{K}(X, Y)$. For a sequence $(x_n)_{n \ge 1}$ in X and $x \in X$, we wish to show that $x_n \to x$ weakly, as $n \to \infty$, implies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$.

Suppose for $x \in X$ that $x_n \to x$ weakly, as $n \to \infty$, and that $||Tx_n - Tx|| \to 0$, as $n \to \infty$. Then there exists a subsequence $(x_{n_k})_{k \ge 1}$ and $\epsilon > 0$ such that $||Tx_{n_k} - Tx|| > \epsilon$ for all $k \ge 1$. Since $x_n \to x$ weakly, as $n \to \infty$, then $x_{n_k} \to x$ weakly, as $k \to \infty$, whereas $(x_{n_k})_{k \ge 1}$ is bounded. This means that it has a subsequence $(x_{n_{k_i}})_{i \ge 1}$ such that $||Tx_{n_{k_i}} - Tx'|| \to 0$, as $i \to \infty$, for some $x' \in X$. Now, since $x_{n_k} \to x$ weakly, as $k \to \infty$, then by 2(a), $Tx_{n_k} \to Tx$ weakly, as $k \to \infty$, and so

especially $Tx_{n_{k_i}} \to Tx$ weakly, as $i \to \infty$. However, if something converges by norm to something, then it must weakly converge to the same thing. This follows from the fact, that if $(y_n)_{n\geq 1}$ is in some Banach space Y, then for all $G \in Y^*$ we have $|Gy_n - Gy| \leq C ||y_n - y||$ for some constant C > 0, so if $||y_n - y|| \to 0$ then $|Gy_n - Gy| \to 0$, meaning $y_n \to y$ weakly, as $n \to \infty$. Hence, we can conclude, that Tx' = Tx, which means that $||Tx_{n_{k_i}} - Tx|| \to 0$ as $i \to \infty$, but this contradicts the fact, that $||Tx_{n_k} - Tx|| > \epsilon$ for all $k \geq 1$, and so we must have that $||Tx_n - Tx|| \to 0$, as $n \to \infty$.

c) Let H be a separable infinite dimensional Hilbert space. We wish to show that if $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, whenever $(x_n)_{n \ge 1}$ is a sequence in H converging weakly to $x \in H$, then $T \in \mathcal{K}(H,Y)$.

Take $T \in \mathcal{L}(H,Y)$ such that whenever $(x_n)_{n\geq 1} \in X$ satisfies $x_n \to x$ weakly as $n \to \infty$, then $||Tx_n - Tx|| \to 0$. Furthermore, suppose that T is not compact. This holds if and only if

 $T(B_X(0,1))$ is not totally bounded, i.e. There exists $\delta > 0$ such that every finite union of open balls with radius δ does not cover $T(B_X(0,1))$.

Define a sequence $(x_n)_{n\geq 1}$ recursively. Now, we take $x_1\in B_X(0,1)$. Suppose we found $x_2,x_3,...,x_n$ such that $||Tx_q-Tx_r||\geq \delta$ for all $q,r\leq n,q\neq r$. Now, consider the set

$$T(B_X(0,1)) \cap \left(\bigcup_{i=1}^n B_Y(Tx_i,\delta)\right)^c.$$

This is non-empty, or else $T(B_X(0,1)) \subset \bigcup_{i=1}^n B_Y(Tx_i,\delta)$, but this is not true, since T is not totally bounded. Thus, we may pick $x_{n+1} \in B_X(0,1)$ such that $Tx_{n+1} \in B_X(0,1)$

 $T(B_X(0,1)) \cap (\bigcup_{i=1}^n B_Y(Tx_i,\delta))^c$. So $Tx_{n+1} \in (\bigcup_{i=1}^n B_Y(Tx_i,\delta))^c = \bigcap_{i=1}^n (B_Y(Tx_i,\delta))^c$, which means that $Tx_{n+1} \notin B_Y(Tx_i,\delta)$ for all $i \ge n$, meaning $||Tx_{n+1} - Tx_i|| \ge \delta$ for all $i \ge n$. Continuing this way, we obtain a sequence $(x_n)_{n\ge 1}$ such that $||Tx_n - Tx_m|| \ge \delta$ for all $n \ne \infty$.

H

As X is a Banach space, then so is X^* , and by Alaoglu's Theorem we may conclude, that the closed unit ball $\bar{B}_{X^{**}}(0,1)$ is compact in the w^* -topology. As X is reflexive then X^{**} is separable, thus, X^* is separable. By Theorem 5.13 in the lecture notes, we get that $(\bar{B}_{X^{**}}(0,1), \tau_{w^*})$ is metriziable. So as $\bar{B}_{X^{**}}(0,1)$ is compact in the w^* -topology, then it is also sequentially compact. In the w^* -topology.

Now, consider $(z_n)_{n\geq 1}\in \bar{B}_X(0,1)$ then $(\hat{z}_n)_{n\geq 1}\in \bar{B}_{X^{**}}(0,1)$. As $\bar{B}_{X^{**}}(0,1)$ is sequentially compact in the w^* -topology, then $(\hat{z}_n)_{n\geq 1}$ has a convergent subsequence $(\hat{z}_{n_k})_{k\geq 1}$, i.e. $\hat{z}_{n_k}\to \hat{z}$ as $k\to\infty$ is the w^* -topology. This holds if and only if $f(\hat{z}_{n_k})=\hat{z}_{n_k}(f)\to \hat{z}(f)=f(z)$ for all $f\in X^*$ as $k\to\infty$, meaning $\bar{B}_X(0,1)$ is weakly sequentially compact. As $\bar{B}_X(0,1)$ is weakly sequentially compact, we let $(\hat{z}_{n_k})_{k\geq 1}$ be the weakly convergent subsequence of $(x_n)_{n\geq 1}$. However as $||Tx_n-Tx_m||\geq \delta$ for all $n\neq m$, then $||Tx_{n_k}-Tx||\to 0$ as $k\to\infty$. But this is a contradiction and hence, T must be compact.

- d) We wish to show that each $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact. weakly, I assume?

 Let $(x_n)_{n\geq 1} \in X$ and suppose further that $x_n \to x$ as $n \to \infty$. Then by a) we know that $Tx_n \to Tx$ weakly in $\ell_1(\mathbb{N})$, but by remark 5.3 we know that this holds if and only if $||Tx_n Tx|| \to 0$ as $n \to \infty$. This means by c) that T is compact.
- e) We wish to show that no $T \in \mathcal{K}(X,Y)$ is onto. Suppose that $T \in \mathcal{L}(X,Y)$ is compact and onto. By the Open mapping Theorem T is open. As X,Y are normed vector spaces and T is open then there exists r > 0 such that $B_Y(0,r) \subset T(B_X(0,1))$. As closure preserves inclusion, we get $\overline{B_Y(0,r)} \subset \overline{T(B_X(0,1))}$. Since T is a compact operator, then $\overline{T(B_X(0,1))}$ is compact, thus, $\overline{B_Y(0,r)}$ is compact. Now, lets consider different values of r, and see what happens. r = 1: Then we have $\overline{B_Y(0,r)} = \overline{B_Y(0,1)}$ is compact, which is a contradiction by Mandatory Assignment 1.
 - r > 1: Then $\overline{B_Y(0,1)}$ is a closed set of the compact set $\overline{B_Y(0,r)}$, meaning that $\overline{B_Y(0,1)}$, which is a contradiction by Mandatory assignment 1.

r < 1: consider $f: Y \to Y$ by $x \to \frac{1}{r}x$, which is clearly continuous. Since the image under a continuous function of a compact set is compact, then we get that $f(\overline{B_Y(0,r)}) = \overline{B_Y(0,1)}$ is compact, which is a contradiction by Mandatory Assignment 1.

Thus, no $T \in \mathcal{K}(X,Y)$ is open, and hence, no $T \in \mathcal{K}(X,Y)$ is onto, by the Open mapping Theorem.

$$K(s,t) = \begin{cases} (1-s)t, & \text{if } 0 \le t \le s \le 1\\ (1-t)s, & \text{if } 0 \le s < t \le 1, \end{cases}$$

and consider $T \in \mathcal{L}(H, H)$ defined by

integral

$$(Tf)(s) = \int_{[0,1]} K(s,t)f(t)dm(t), \quad s \in [0,1], \quad f \in H.$$

- a) We wish to justify, that T is compact. First, we show that K is continuous, and this is equivalent to showing that the function $s \mapsto K(s,t)$ is continuous for all $t \in [0,1]$, and that the function $t \mapsto K(s,t)$ is continuous for all $s \in [0,1]$. For a given $t \in [0,1]$ consider the function $K_t: [0,1] \to \mathbb{R}$ given by $K_t(s) = K(s,t)$. This is easily seen to be continuous when restricted to either [0,t) or (t,1]. Furthermore, we notice that $K_t(s) \to (1-t)t$, when s approaches t from both the left and the right. Thus, K_t is continuous, and due to the definition of K, continuity of $t \mapsto K(s,t)$ is shown in a similar way. Hence K is continuous, and we can conclude (by the lectures), that T is compact.

 you should again that T_0 is larged compact the showled again that T_0 is larged compact the showled again that T_0 is larged compact the showled again that T_0 is equivalent b) We wish to show, that $T = T^*$. Since H is a Hilbert space, we know that $T = T^*$ is equivalent conclude (by the lectures), that *T* is compact.
- to $\langle Tf, g \rangle = \langle f, Tg \rangle$, for any $f, g \in H$. Let $f, g \in H$ be given and consider

$$\langle Tf, g \rangle = \int_{[0,1]} \left(\int_{[0,1]} K(s,t) f(t) dm(t) \right) \overline{g(s)} dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} K(s,t) f(t) \overline{g(s)} dm(t) dm(s).$$

In order of using Fubini's Theorem on changing the order of integration we need to show that No, integrable $K(s,t)f(t)\overline{g(s)}$ is measurable on $[0,1]\times[0,1]$ with the corresponding Lebesgue measure. Since K is continuous it is also measurable, and thus we only need look at $f(t)\overline{g(s)}$. We know that the function $h: [0,1] \times [0,1] \to \mathbb{R}$ defined by $h(s,t) = f(t)\overline{g(s)}$ is measurable if the

 $\int_{[0,1]} \int_{[0,1]} f(t) \overline{g(s)} dm(t) dm(s) = \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s)$ $= \int_{[0,1]} \int_{[0,1]} f(t) \overline{g(s)} dm(t) dm(s) = \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s)$ $= \int_{[0,1]} \int_{[0,1]} f(t) \overline{g(s)} dm(t) dm(s) = \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s)$ $= \int_{[0,1]} \int_{[0,1]} f(t) \overline{g(s)} dm(t) dm(s) = \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s)$ $= \int_{[0,1]} \int_{[0,1]} f(t) \overline{g(s)} dm(t) dm(s) = \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s)$ $= \int_{[0,1]} \int_{[0,1]} f(t) dm(s) = \int_{[0,1]} \int_{[0,1]} f(t) dm(t) dm(s)$ $= \int_{[0,1]} \int_{[0,1]} f(t) dm(s) = \int_{[0,1]} \int_{[0,1]} f(t) dm(t) dm(s)$

exists. Since $f \in H = L_2([0,1], m)$, we know from HW that we also have $f \in L_1([0,1], m)$. Thus,

$$\begin{split} \left| \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s) \right| &\leq \int_{[0,1]} \left(\int_{[0,1]} f(t) dm(t) \right) \overline{g(s)} dm(s) \\ &= \| f \|_1 \int_{[0,1]} g(s) dm(s) = \| f \|_1 \| g \|_1 < \infty. \end{split}$$

This does not

Hence h is measurable and $K(s,t)h(s,t) = K(s,t)f(t)\overline{g(s)}$ is measurable on $[0,1] \times [0,1]$. Using Fubini's Theorem we see

lds(t)f(t)g(s) E L1((0,1)2)

$$\langle Tf, g \rangle = \int_{[0,1]} \int_{[0,1]} K(s,t) f(t) \, \overline{g(s)} dm(s) dm(t)$$

$$= \int_{[0,1]} f(t) \, \overline{\int_{[0,1]} K(s,t) g(s) dm(s)} \, dm(t).$$

Now, it suffices to show, that for any $s_0, t_0 \in [0, 1], K(s_0, t_0) = K(t_0, s_0)$. But due to the way K is defined, this is clear. Thus, we see

$$\langle Tf,g\rangle = \int_{[0,1]} f(t) \overline{\int_{[0,1]} K(s,t)g(s)dm(s)} dm(t)$$

$$= \int_{[0,1]} f(t) \overline{\int_{[0,1]} K(t,s)g(s)dm(s)} dm(t) = \langle f,Tg\rangle.$$

Hence, we have $T = T^*$.

c) We wish to show that

$$(Tf)(s) = (1-s) \int_{[0,s]} tf(t) dm(t) + s \int_{[s,1]} (1-t)f(t) dm(t) \,, \qquad s \in [0,1], \qquad f \in H.$$

Let $s \in [0,1]$ be given. Then we know

$$\int_{[0,1]} K(s,t)f(t)dm(t) = \int_{[0,s]} K(s,t)f(t)dm(t) + \int_{[s,1]} K(s,t)f(t)dm(t).$$

By the definition of K we then get that

$$\int_{[0,1]} K(s,t)f(t)dm(t) = \int_{[0,s]} (1-s)tf(t)dm(t) + \int_{[s,1]} (1-t)sf(t)dm(t)$$
$$= (1-s)\int_{[0,s]} tf(t)dm(t) + s\int_{[s,1]} (1-t)f(t)dm(t),$$

which is what we wanted.

We now wish to use the above to show that Tf is continuous on [0,1]. For Tf to be continuous it now suffices to show, that the following functions are continuous

$$s \mapsto \int_{[0,s]} tf(t)dm(t)$$
 and $s \mapsto \int_{[s,1]} (1-t)f(t)dm(t)$.

Given $s, s_0 \in [0, 1]$ we have

$$\left| \int_{[0,s]} tf(t)dm(t) - \int_{[0,s_0]} tf(t)dm(t) \right| \le \int_{[s_0,s]} |tf(t)|dm(t) \le \int_{[s_0,s]} |f(t)|dm(t)$$

$$\le ||f||_1 < \infty.$$

Thus,

hence, the function $s \mapsto \int_{[0,s]} t f(t) dm(t)$ is continuous.

We can show that $s \mapsto \int_{[s,1]} (1-t)f(t)dm(t)$ is continuous in a similar way. Thus, Tf is composed of continuous functions, and hence, Tf is continuous itself.

Now, we wish to show that (Tf)(0) = (Tf)(1) = 0. If we have s = 0, then the first integral of (Tf)(s) will be an integral of an \mathcal{L}_2 -function on a null-set which is 0, and the other integral will be multiplied by a zero, and hence we have a sum of two zeros, and (Tf)(0) = 0. Choosing s = 1 we would get a similar result and thus, Tf(1) = 0.