Practice Midterm 1

September 17, 2019

"I have adhered to the Duke Community Standard in completing this assignment."

Signature:

Name:

The following list of mathematical statements may be useful.

Definition. A *metric* on a set X is a function $d: X \times X \to \mathbb{R}$ that satisfies

1. $d(x,y) \ge 0 \quad \forall x,y \in X$ where equality holds if and only if x=y (non-negativity)

2.
$$d(x,y) = d(y,x) \quad \forall x, y \in X$$
 (symmetry)

3.
$$d(x,y) + d(y,z) \ge d(x,z) \quad \forall x,y,z \in X$$
. (triangle inequality)

Definition. For a metric space (X, d), a subset $A \subset X$ is *open* if, for every $x_0 \in A$, there is a $\delta > 0$ such that $B(x_0, \delta) \subseteq A$, where $B(x_0, \delta) \triangleq \{x \in X \mid d(x, x_0) < \delta\}$ is the *open ball* with radius ϵ centered at x_0 .

Definition. Let (X, d_X) and (Y, d_Y) be metric spaces. A function $f: X \to Y$ is *continuous* if, for all $x_0 \in X$ and any $\epsilon > 0$, there is a $\delta > 0$ such that if $x \in X$ and $d_X(x, x_0) < \delta$, then $d_Y(f(x), f(x_0)) < \epsilon$.

Definition. For a metric space (X, d), the sequence $x_1, x_2, \ldots \in X$ converges to $x \in X$ if, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that, for all n > N, we have $d(x_n, x) < \epsilon$.

Theorem. Let $f: X \to Y$ be a function between metric spaces. The function f is *continuous* at $x \in X$ if and only if, for every convergent sequence $x_n \to x$, the sequence $f(x_n)$ converges to f(x).

Definition. Let A be a subset of a metric space (X,d) and $f:X\to X$ be a function. The function f is a contraction on A if $f(A)\subseteq A$ and $d(f(x),f(y))\leq \gamma d(x,y)$ for all $x,y\in A$ and some $\gamma\in[0,1)$.

Theorem. Let (X, d) be a complete metric space and f be a contraction on a closed subset $A \subseteq X$. Then, f has a unique fixed point x^* in A such that $f(x^*) = x^*$ and the sequence $x_{n+1} = f(x_n)$ converges to x^* starting from any point $x_1 \in A$. Moreover, x_n satisfies the error bounds $d(x^*, x_n) \leq \gamma^{n-1} d(x_1, x_2)$ and $d(x^*, x_{n+1}) \leq d(x_n, x_{n+1}) \gamma / (1 - \gamma)$.

Euclid's Algorithm. For $a_1, a_2 \in \mathbb{N}$ with $a_1 > a_2$, define $a_{n+1} = a_{n-1} \mod a_n$ and $n^* = \min\{n \in \mathbb{N} \mid a_n = 0\}$. Then, $\gcd(a_1, a_2) = a_{n^*-1}$.

Problems:

- 1. True or False:
 - (a) 2.5 pt If a set is not open, then it is closed.
 - (b) **2.5 pt** The conditional $P \rightarrow \neg P$ is a contradiction.
 - (c) **2.5 pt** For sets $A, B \subseteq X$, we have $X (A \cup B) = (X A) \cap (X B)$.
 - (d) **2.5 pt** It always holds that $\neg(\forall x, \exists y, P(x,y)) \Rightarrow \forall y, \exists x, \neg P(x,y)$.
- 2. Short answer questions:
 - (a) **2.5 pt** Given a conditional statement of the form $P \to Q$, what is the name of the related statement $\neg Q \to \neg P$?
 - (b) **2.5 pt** If the statement $P \to Q$ is a tautology, what is the name of the meta-statement that characterizes P and Q?
 - (c) **2.5 pt** Is the following statement a tautology: $(P \land Q) \rightarrow P$?
 - (d) **2.5 pt** For metric spaces X, Y and $x \in X$, let $f: X \to Y$ be a function where $\lim_{n \to \infty} f(x_n) = f(x)$ for all sequences $x_n \in X$ satisfying $x_n \to x$. What property does f possess?
 - (e) **2.5 pt** Let R(x, y) be an expression with free variables x and y. Let U and V be collections of possible values of x and y, respectively. Negate the statement: $\exists x \in U, \forall y \in V, R(x, y)$.
 - (f) **2.5 pt** Let (X, d) be the standard metric space of real numbers and $Y = [-10, -1] \cup [1, 10]$. Is (Y, d) a compact metric space?
 - (g) 2.5 pt Negate the statement, "Every horse that is black and flies is named midnight moon".
 - (h) **2.5 pt** Suppose f and g are continuous functions from \mathbb{R} to \mathbb{R} . Is their composition $g \circ f$, defined pointwise by $(g \circ f)(x) = g(f(x))$, necessarily a continuous function?
- 3. Let $f: X \to Y$, $A, B \subseteq X$, and $C, D \subseteq Y$. Recall also that $f(A) \triangleq \{f(x) | x \in A\}$ and $f^{-1}(C) \triangleq \{x \in X | f(x) \in C\}$.

In this problem, proofs should only use the rules of logic and the following statements:

$$f(x) \in C \Leftrightarrow x \in f^{-1}(C)$$

$$x \in A \Rightarrow f(x) \in f(A)$$

$$x \in A \cup B \Leftrightarrow (x \in A) \lor (x \in B)$$

$$x \in A \cap B \Leftrightarrow (x \in A) \land (x \in B)$$

$$A = B \Leftrightarrow \forall x, (x \in A) \leftrightarrow (x \in B)$$

- (a) **5 pt** Prove that $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ (i.e., f^{-1} preserves unions).
- (b) 5 pt Unfortunately, $f(x) \in f(A) \to x \in A$ is not true in general. Give a counterexample.

4. Your friend claims that the following recursive program computes the greatest common divisor of any two positive integers.

```
int gcd(int a,int b)
{
  if (a==b) { return a; }
  if (a>b) { return gcd(b,a-b); }
  else { return gcd(a,b-a); }
}
```

- (a) **5 pt** Use this program to write three statements that should be verified to prove that this program computes gcd(a, b) correctly for $a, b \in \mathbb{N}$, assuming it terminates.
- (b) **5 pt** Prove the statements listed in part (a). Write a proof that this program terminates and computes gcd(a, b) correctly as long as $a, b \in \mathbb{N}$.
- (c) **5 pt** Unlike Euclid's algorithm, this algorithm does not use division. While that seems like an improvement, can you think of a reason why Euclid's algorithm might be preferred?
- 5. In a metric space (X, d), a set $A \subseteq X$ is called open if, for every $x_0 \in A$, there is a $\delta > 0$ such that $B(x_0, \delta) \subseteq A$. Use this definition to prove:
 - (a) **5 pt** The intersection of any two open sets is open.
 - (b) 5 pt The intersection of a finite number of open sets is open.
 - (c) **5 pt** The union of any two open sets is open.
 - (d) 5 pt If $\{A_t\}_{t\in T}$ is an arbitrary collection of open sets, then the union $U=\bigcup_{t\in T}A_t$ is open.
- 6. Consider finding the real positive solution of the equation $x^3 ax^2 b = 0$ for some $a, b \in \mathbb{R}_{>0}$. Note: Descartes' rule of signs shows there is exactly one real positive root.
 - (a) **5 pt** Show that any solution of this equation must also satisfy $x = f(x) \triangleq a + \frac{b}{x^2}$.
 - (b) **7.5 pt** For a=4 and b=32, show that f(x) is a contraction on A=[4.5,8] and compute a value for the contraction coefficient γ .
 - (c) **5 pt** For a=4 and b=32, prove that the sequence $x_{n+1}=f(x_n)$ converges starting from $x_1 \in A$? If so, what condition must its limit satisfy?
 - (d) **2.5 pt** For a=4 and b=32, what happens to the sequence $x_{n+1}=f(x_n)$ starting from $x_1=3$? Why?

7. Let \mathbb{R} be the field of real numbers equipped with absolute distance as a metric. Consider the set X = B[a, b] of bounded functions mapping [a, b] to \mathbb{R} equipped with the metric

$$d_{\infty}(f,g) = \sup_{t \in [a,b]} |f(t) - g(t)|.$$

A sequence of functions $f_n(t)$ converges *pointwise* if $f_n(t) \to f(t)$ for all $t \in [a,b]$. Uniform convergence also requires that, for all $\epsilon > 0$, there is a single N such that $|f_n(t) - f(t)| < \epsilon$ for all n > N and all $t \in [a,b]$.

- (a) 5 pt Show that convergence $f_n \to f$ in the metric space (X, d_∞) implies uniform convergence.
- (b) **5 pt** Let $W \subseteq X$ be the subset of continuous functions and let $g_n \in W$ be a sequence of functions that converges uniformly to g. Show that g is continuous.

[Hint: Apply the triangle inequality to $d_{\infty}(g(x), g(y))$ along the path $g(x), g_n(x), g_n(y), g(y)$.]

(c) $\mathbf{5}$ pt – Let $x_n \to x$ be a sequence in \mathbb{R} which converges. Use the above results to show that

$$\lim_{n \to \infty} \lim_{m \to \infty} g_n(x_m) = \lim_{m \to \infty} \lim_{n \to \infty} g_n(x_m).$$