INTEGRATED CIRCUITS

DATA SHEET

74HC08; 74HCT08 Quad 2-input AND gate

Product specification Supersedes data of 1990 Dec 01

Quad 2-input AND gate

74HC08; 74HCT08

FEATURES

- · Complies with JEDEC standard no. 8-1A
- ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 to +85 °C and -40 to +125 °C.

DESCRIPTION

The 74HC/HCT08 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT08 provide the 2-input AND function.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns.

SYMBOL	DADAMETED	CONDITIONS	TYF	UNUT	
	PARAMETER	CONDITIONS	74HC08	74HCT08	UNIT
t _{PHL} /t _{PLH}	propagation delay nA, nB to nY	C _L = 15 pF; V _{CC} = 5 V	7	11	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	10	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in ∞W).

$$P_D = C_{PD} \cdot V_{CC}^2 \cdot f_i \cdot N + \Sigma (C_L \cdot V_{CC}^2 \cdot f_o)$$
 where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \cdot V_{CC}^2 \cdot f_o)$ = sum of the outputs.

2. For 74HC08: the condition is V_I = GND to V_{CC} .

For 74HCT08: the condition is V_I = GND to V_{CC} - 1.5 V.

FUNCTION TABLE

INF	TUT	OUTPUT
nA	nB	nY
L	L	Ĺ
L	Н	L _Q
Н	L	L
Н	Н	Н

Note

1. H = HIGH voltage level;

L = LOW voltage level.

Quad 2-input AND gate

74HC08; 74HCT08

ORDERING INFORMATION

TVDE NUMBER	PACKAGE								
TYPE NUMBER	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE				
74HC08N	-40 to +125 °C	14	DIP14	plastic	SOT27-1				
74HCT08N	-40 to +125 °C	14	DIP14	plastic	SOT27-1				
74HC08D	-40 to +125 °C	14	SO14	plastic	SOT108-1				
74HCT08D	-40 to +125 °C	14	SO14	plastic	SOT108-1				
74HC08DB	-40 to +125 °C	14	SSOP14	plastic	SOT337-1				
74HCT08DB	-40 to +125 °C	14	SSOP14	plastic	SOT337-1				
74HC08PW	-40 to +125 °C	14	TSSOP14	plastic	SOT402-1				
74HCT08PW	-40 to +125 °C	14	TSSOP14	plastic	SOT402-1				
74HC08BQ	-40 to +125 °C	14	DHVQFN14	plastic	SOT762-1				
74HCT08BQ	-40 to +125 °C	14	DHVQFN14	plastic	SOT762-1				

PINNING

PIN	SYMBOL	DESCRIPTION
1	1A	data input
2	1B	data input
3	1Y	data output
4	2A	data input
5	2B	data input
6	2Y	data output
7	GND	ground (0 V)
8	3Y	data output
9	3A	data input
10	3B	data input
11	4Y	data output
12	4A	data input
13	4B	data input
14	V _{CC}	supply voltage

Quad 2-input AND gate

74HC08; 74HCT08

Quad 2-input AND gate

74HC08; 74HCT08

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DADAMETED	CONDITIONS	74HC08			74HCT08			UNIT
	PARAMETER		MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNII
Vcc	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	٧
VI	input voltage		0	-	Vcc	0	-	Vcc	٧
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	٧
T _{amb}	ambient temperature	see DC and AC characteristics per device	-40	+25	+125	-40	+25	+125	°C
t _r , t _f	input rise and fall	V _{CC} = 2.0 V	-	-	1000	-		=	ns
	times	V _{CC} = 4.5 V	-	6.0	500	-	6.0	500	ns
		V _{CC} = 6.0 V	-	-	400	-	=	-	ns

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input diode current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$	-	±20	mA
lok	output diode current	$V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	=	±20	mA
l _o	output source or sink current	-0.5 V < V _O < V _{CC} + 0.5 V	-	±25	mA
I _{CC} , I _{GND}	V _{CC} or GND current		-	±50	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation		53		
	DIP14 package	$T_{amb} = -40 \text{ to } +125 ^{\circ}\text{C}; \text{ note } 1$	-29	750	mW
	other packages	$T_{amb} = -40 \text{ to } +125 ^{\circ}\text{C}; \text{ note } 2$	-	500	mW

Notes

- 1. For DIP14 packages: above 70 °C derate linearly with 12 mW/K.
- 2. For SO14 packages: above 70 °C derate linearly with 8 mW/K.

For SSOP14 and TSSOP14 packages: above 60 °C derate linearly with 5.5 mW/K.

For DHVQFN14 packages: above 60 °C derate linearly with 4.5 mW/K.

Quad 2-input AND gate

74HC08; 74HCT08

DC CHARACTERISTICS

Family 74HC08

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

CVMDOL	DADAMETED	TEST CONDITIO	NS	MINI	TVD	MAY	LINUT	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT	
T _{amb} = 25 °	Ċ					1	•	
V _{IH}	HIGH-level input voltage		2.0	1.5	1.2	===	V	
			4.5	3.15	2.4	-	V	
			6.0	4.2	3.2	-	V	
V _{IL}	LOW-level input voltage		2.0	_	0.8	0.5	V	
	68 5005		4.5	-	2.1	1.35	V	
			6.0	-	2.8	1.8	V	
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}			*			
300 m 1 m		I _O = −20 ∞A	2.0	1.9	2.0	==	V	
		I _O = −20 ∝A	4.5	4.4	4.5	20	V	
		$I_{O} = -4.0 \text{ mA}$	4.5	3.98	4.32		V	
		I _O = −20 ∝A	6.0	5.9	6.0		V	
		I _O = −5.2 mA	6.0	5.48	5.81	-8	V	
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		I _O = 20 ∞A	2.0	-	0	0.1	V	
		I _O = 20 ∝A	4.5	=	0	0.1	V	
		$I_{O} = 4.0 \text{ mA}$	4.5	_	0.15	0.26	V	
		I _O = 20 ∞A	6.0	-	0	0.1	V	
		I _O = 5.2 mA	6.0	-	0.16	0.26	V	
ILI	input leakage current	V _I = V _{CC} or GND	6.0	-	0.1	±.0.1	∞A	
loz	3-state output OFF current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	6.0		=	±.0.5	αA	
Icc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	6.0		7700	2	∞A	

Quad 2-input AND gate

74HC08; 74HCT08

OVMDOL	PARAMETER	TEST CONDITIO	NS	NAINI	TVD	MAX.	UNIT
SYMBOL	FARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	IVIAA.	ONL
T _{amb} = -40	to +85 °C				M.		
V _{IH}	HIGH-level input voltage		2.0	1.5	-	-	V
	921 2-489		4.5	3.15	-	-	V
			6.0	4.2	-	-	V
V _{IL}	LOW-level input voltage		2.0	-	-	0.5	V
			4.5	-	-	1.35	V
			6.0	1 11 11		1.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					2
	46 (199)	I _O = −20 ∝A	2.0	1.9	_	==	V
		I _O = −20 ∞A	4.5	4.4	1-2	=======================================	V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.84			V
		I _O = −20 ∞A	6.0	5.9		2	V
		I _O = −5.2 mA	6.0	5.34	. 2:	===	V
V _{OL}	LOW-level output voltage	V _I = V _{IH} or V _{IL}				-	
	1 904 30594	I _O = 20 ∞A	2.0	_	-	0.1	V
		I _O = 20 ∞A	4.5	_	-	0.1	V
		$I_{O} = 4.0 \text{ mA}$	4.5	-		0.33	V
		I _O = 20 ∞A	6.0			0.1	V
		$I_{O} = 5.2 \text{ mA}$	6.0	170 4	1 11 2	0.33	V
I _{LI}	input leakage current	V _I = V _{CC} or GND	6.0		100 0	±1.0	×Α
l _{OZ}	3-state output OFF current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	6.0	-	-	±.5.0	«Α
I _{cc}	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$	6.0	-	-	20	«Α

Quad 2-input AND gate

74HC08; 74HCT08

OVMBOL	DADAMETED	TEST CONDITIO	NS	NAUNT .	T/D		
SYMBOL	PARAMETER	OTHER	V _{cc} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40	to +125 °C			dia.	to the state of th	***	
V _{IH}	HIGH-level input voltage		2.0	1.5	-	-	V
	721 25027		4.5	3.15	-	=	V
			6.0	4.2	-	-	V
V _{IL}	LOW-level input voltage		2.0	-	-	0.5	V
			4.5	-	-	1.35	V
			6.0	-	i a s	1.8	V
V _{OH}	HIGH-level output voltage	V _I = V _{IH} or V _{IL}					2
	100	I _O = −20 ∝A	2.0	1.9	-	-	V
		I _O = −20 ∝A	4.5	4.4	<u>=</u> :	==3	V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.7	-		V
		I _O = −20 ∝A	6.0	5.9	-	-	V
		$I_{\rm O}$ = -5.2 mA	6.0	5.2			V
V _{OL}	LOW-level output voltage	V _I = V _{IH} or V _{IL}					
	1 112	I _O = 20 ∞A	2.0	_	_	0.1	V
		I _O = 20 ∝A	4.5	_	_	0.1	V
		$I_{O} = 4.0 \text{ mA}$	4.5	-	-	0.4	V
		I _O = 20 ∞A	6.0	-	-	0.1	V
		I _O = 5.2 mA	6.0		. 	0.4	V
I _{LI}	input leakage current	V _I = V _{CC} or GND	6.0		1	±1.0	×Α
l _{OZ}	3-state output OFF current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND}$	6.0	-	-	±10.0	xΑ
Icc	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$	6.0	_	_	40	«Α

Quad 2-input AND gate

74HC08; 74HCT08

Family 74HCT08

At recommended operating conditions; voltages are referenced to GND (ground = 0).

OVMBOL	DA DAMETED	TEST CONDI	BAIN	TVD	MAN		
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = 25 °	Ċ		•				
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	1.6	T	٧
V _{IL}	LOW-level input voltage		4.5 to 5.5	-	1.2	0.8	٧
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = -20 ∞A	4.5	4.4	4.5	- -0	V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.84	4.32	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
	907 (6.5%)	I _O = 20 ∞A	4.5	-	0	0.1	٧
		$I_{O} = 4.0 \text{ mA}$	4.5	-	0.15	0.26	V
I _{LI}	input leakage current	$V_I = V_{CC}$ or GND	5.5	-		±0.1	αA
l _{oz}	3-state output OFF current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND};$ $I_O = 0$	5.5	-	=	±0.5	∞A
I _{CC}	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$	5.5		=:	2	xΑ
Δl _{CC}	additional supply current per input	$V_1 = V_{CC} - 2.1 V;$ $I_0 = 0$	4.5 to 5.5	-	60	216	xΑ
T _{amb} = -40	to +85 °C	ñ-	10)	10	1):		
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	=	_	V
V _{IL}	LOW-level input voltage		4.5 to 5.5	-	-	0.8	٧
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = −20 ∝A	4.5	4.4	-		V
		$I_{O} = -4.0 \text{ mA}$	4.5	3.84	-	₩.	V
V _{OL}	LOW-level output voltage	V _I = V _{IH} or V _{IL}					
		I _O = 20 ∞A	4.5	-	-	0.1	V
		$I_{O} = 4.0 \text{ mA}$	4.5	-	-	0.33	V
ILI	input leakage current	$V_I = V_{CC}$ or GND	5.5	-	-	±1.0	∞A
l _{oz}	3-state output OFF current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND};$ $I_O = 0$	5.5	-	-	±5.0	∝A
Icc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$	5.5	-	-	20	∞A
Δl _{CC}	additional supply current per input	$V_1 = V_{CC} - 2.1 \text{ V};$ $I_0 = 0$	4.5 to 5.5	-	-	270	αA

Quad 2-input AND gate

74HC08; 74HCT08

OVMBOL	PARAMETER	TEST CONDI	MINI	TVD	MAY	LINIT	
SYMBOL	PARAMETER	OTHER	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = -40	to +125 °C		l ic			****	
V _{IH}	HIGH-level input voltage		4.5 to 5.5	2.0	-	-	٧
V _{IL}	LOW-level input voltage		4.5 to 5.5	-	-	0.8	٧
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = −20 ∞A	4.5	4.4			V
		$I_0 = -4.0 \text{ mA}$	4.5	3.7			V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = 20 ∞A	4.5	-	-	0.1	V
		I _O = 4.0 mA	4.5	=	_	0.4	V
ILI	input leakage current	V _I = V _{CC} or GND	5.5	_	=	±1.0	αA
l _{OZ}	3-state output OFF current	$V_I = V_{IH} \text{ or } V_{IL};$ $V_O = V_{CC} \text{ or GND};$ $I_O = 0$	5.5	-	-	±10	∝A
Icc	quiescent supply current	$V_1 = V_{CC}$ or GND; $I_0 = 0$	5.5	-		40	∝A
ΔI_{CC}	additional supply current per input	$V_1 = V_{CC} - 2.1 V;$ $I_0 = 0$	4.5 to 5.5		-	294	∞A

Quad 2-input AND gate

74HC08; 74HCT08

AC CHARACTERISTICS

Family 74HC08

GND = 0 V; $t_f = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$.

OVMBO!	DADAMETED	TEST CONDI	TIONS		T/D	MAY	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = 25 °C	Ċ			,			
t _{PHL} /t _{PLH}	propagation delay nA,	see Figs 7 and 8	2.0	·-	25	90	ns
	nB to nY		4.5	855	9	18	ns
			6.0	=	7	15	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7 and 8	2.0	-	19	75	ns
	741	-270	4.5	-	7	15	ns
			6.0	-	6	13	ns
T _{amb} = -40	to +85 °C						
t _{PHL} /t _{PLH}	propagation delay nA,	see Figs 7 and 8	2.0	-		115	ns
	nB to nY		4.5	1 2.	-	23	ns
			6.0	-	-	20	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7 and 8	2.0	~	-	95	ns
	34		4.5	-	-	19	ns
			6.0	-	-	16	ns
T _{amb} = -40	to +125 °C			,			
t _{PHL} /t _{PLH}	propagation delay nA,	see Figs 7 and 8	2.0	a=.	i	135	ns
	nB to nY		4.5	=	-	27	ns
			6.0	-	=	23	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7 and 8	2.0	=	-	110	ns
	\$ Page 10 Page		4.5	<u> </u>	-	22	ns
			6.0	-	-	19	ns

Quad 2-input AND gate

74HC08; 74HCT08

Family 74HCT08

GND = 0 V; $t_f = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$.

0\/4501	DADAMETED	TEST CONDI	TIONS		T/D	NA V	
SYMBOL	PARAMETER	WAVEFORMS	V _{CC} (V)	MIN.	TYP.	MAX.	UNIT
T _{amb} = 25 °C	Ċ			•		·	
t _{PHL} /t _{PLH}	propagation delay nA, nB to nY	see Figs 7 and 8	4.5	<u>-</u>	14	24	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7 and 8	4.5	=	7	15	ns
T _{amb} = -40	to +85 °C	•					_
t _{PHL} /t _{PLH}	propagation delay nA, nB to nY	see Figs 7 and 8	4.5	-	-	30	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7 and 8	4.5	-	-	19	ns
T _{amb} = -40	to +125 °C	i.i.	in .		24.		die .
t _{PHL} /t _{PLH}	propagation delay nA, nB to nY	see Figs 7 and 8	4.5	-	-	36	ns
t _{THL} /t _{TLH}	output transition time	see Figs 7 and 8	4.5	-	-	22	ns

AC WAVEFORMS

74HC08: $V_M = 50\%$; $V_I = GND$ to V_{CC} . 74HCT08: $V_M = 1.3$ V; $V_I = GND$ to 3 V.

Fig.7 Waveforms showing the input (nA, nB) to output (nY) propagation delays and the output transition times.

Quad 2-input AND gate

74HC08; 74HCT08

Quad 2-input AND gate

74HC08; 74HCT08

PACKAGE OUTLINES

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D (1)	E (1)	e	e ₁	L	ME	M _H	w	Z (1) max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFE	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14		99-12-27 03-02-13	

Quad 2-input AND gate

74HC08; 74HCT08

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	A_3	bp	С	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	Q	٧	w	у	Z (1)	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8
inches	0.069	0.010 0.004		0.01	0.019 0.014	0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ICCUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE		
SOT108-1	076E06	MS-012			99-12-27 03-02-19		

Quad 2-input AND gate

74HC08; 74HCT08

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	e	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	80

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ICCUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT337-1		MO-150			-99-12-27 03-02-19

Product specification Philips Semiconductors

Quad 2-input AND gate

74HC08; 74HCT08

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	e	HE	L	Lp	Q	v	w	у	Z (1)	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE		
SOT402-1		MO-153			99-12-27 03-02-18		

Quad 2-input AND gate

74HC08; 74HCT08

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Quad 2-input AND gate

74HC08; 74HCT08

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS(1)	PRODUCT STATUS(2)(3)	DEFINITION
ľ	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II [§]	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification □ The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition ☐ Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information ☐ Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications ☐ These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes ☐ Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2003

SCA75

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

613508/03/pp20

Date of release: 2003 Jul 25

Document order number: 9397 750 11265

Let's make things better.

