Algebra per Informatica

Esame 07/09/2023

Svolgere nel foglio di consegna i seguenti esercizi motivando chiaramente le risposte.

Esercizio 1. Sia dato l'insieme $A = \{x \in \mathbb{Z} \mid -6 \le x \le 6\}$. Determinare la cardinalità dei seguenti insiemi:

- 1. $R = A/\sim_1$, dove \sim_1 è la relazione d'equivalenza diagonale, cioè $x \sim_1 y \iff x = y$.
- 2. $S=A/\sim_2$, dove \sim_2 è la relazione d'equivalenza data da $x\sim_2 y \iff x-y=4k,\ k\in\mathbb{Z}.$
- 3. $T = A/\sim_3$, dove \sim_3 è la relazione d'equivalenza data da $x \sim_3 y \iff x^2 = y^2$.
- 4. $V = A \times A$.

Soluzione. 1. Siccome $x \sim_1 y \iff x = y$, le classi di equivalenza sono costituite da singoletti, pertanto

$$R = \{\{-6\}, \{-5\}, \dots, \{6\}\}$$

e quindi |R| = 13.

- 2. Abbiamo 4 classi di equivalenza distinte, corrispondenti alle possibili classi di resto modulo 4. Pertanto |S|=4.
- 3. Abbiamo $x \sim_3 y \iff x^2 = y^2 \iff x = \pm y$. Pertanto, le classi di equivalenza sono

$$\{0\}, \{1, -1\}, \{2, -2\}, \dots, \{6, -6\}.$$

Quindi |T| = 7.

4. Abbiamo $|V| = |A \times A| = |A| \cdot |A| = 13 \cdot 13 = 169$.

Esercizio 2. Sia $f: \mathbb{Z}^2 \to \mathbb{Z}$ l'applicazione data da f(x,y) = 44x + 21y.

- 1. Determinare se f è iniettiva e/o surgettiva.
- 2. Determinare $f^{-1}(0)$, $f^{-1}(44)$.

Soluzione. Si ricordi che l'equazione diofantea ax + by = c ha soluzioni intere se e soltanto se $MCD(a,b) \mid c$. Inoltre, se $(x_0,y_0) \in \mathbb{Z}^2$ è una soluzione dell'equazione diofantea ax + by = c con MCD(a,b) = 1, allora tutte le soluzioni si scrivono come $(x,y) = (x_0 + bk, y_0 - ak)$ al variare di $k \in \mathbb{Z}$.

- 1. La funzione f è surgettiva in quanto MCD(44,21)=1, pertanto per ogni $c \in \mathbb{Z}$ esistono sempre $(x_0,y_0) \in \mathbb{Z}^2$ tali che $f(x_0,y_0)=c$. La funzione f non è iniettiva, si consideri ad esempio f(21,-44)=0=f(0,0).
- 2. $f^{-1}(0)=\{(x,y)\in\mathbb{Z}^2:44x+21y=0\}$. Una soluzione particolare dell'equazione diofantea 44x+21y=0 è data da $(x_0,y_0)=(0,0)$. Pertanto abbiamo

$$f^{-1}(0) = \{(21k, -44k) : k \in \mathbb{Z}\}.$$

• Una soluzione particolare dell'equazione diofantea 44x + 21y = 44 è data da $(x_0, y_0) = (1, 0)$ e quindi

$$f^{-1}(44) = \{(x,y) \in \mathbb{Z}^2 : 44x + 21y = 44\} = \{(1+21k, -44k) : k \in \mathbb{Z}\}.$$

Esercizio 3. Sia dato il numero complesso

$$z = ((2i+1)(3+i) - 8i^5)^8$$

Scrivere z in forma a+ib con $a,b\in\mathbb{R}$, in forma trigonometrica, e in forma esponenziale.

Soluzione. Svolgiamo prima i calcoli all'interno della parentesi più esterna

$$(2i+1)(3+i) - 8i^5 = 6i + 2i^2 + 3 + i - 8i = 6i - 2 + 3 + i - 8i = 1 - i.$$

Pertanto, $z=(1-i)^8$. Per eseguire l'elevamento a potenza, scriviamo 1-i in forma trigonometrica. La norma è $|1-i|=\sqrt{1^2+(-1)^2}=\sqrt{2}$. L'argomento θ di 1-i è dato da

$$\begin{cases} \cos \theta = \frac{1}{\sqrt{2}} \\ \sin \theta = -\frac{1}{\sqrt{2}} \end{cases}$$

cioè $\theta = -\frac{\pi}{4}$, o equivalentemente $\theta = \frac{7}{4}\pi$. Possiamo scrivere

$$1 - i = \sqrt{2} \left(\cos \left(\frac{7}{4} \pi \right) + i \sin \left(\frac{7}{4} \pi \right) \right).$$

Dalla formula di De Moivre ricaviamo

$$z = (1 - i)^8 = (\sqrt{2})^8 \left(\cos\left(8 \cdot \frac{7}{4}\pi\right) + i\sin\left(8 \cdot \frac{7}{4}\pi\right)\right)$$

$$= 16 \left(\cos(14\pi) + i\sin(14\pi)\right)$$

$$= 16 \left(\cos(2\pi) + i\sin(2\pi)\right)$$

$$= 16e^{2\pi i}$$

$$= 16.$$

Esercizio 4. Si consideri \mathbb{Z}_{28} .

- 1. Calcolare $\overline{9}^{147}$.
- 2. Determinare l'ordine dei seguenti elementi del gruppo degli elementi invertibili $(U(\mathbb{Z}_{28}), \cdot, \overline{1})$:

$$\overline{9}$$
, $\overline{3}$, $\overline{2}$.

Soluzione. Per prima cosa calcoliamo $\varphi(28)=12$ e ricordiamo che per il teorema di Eulero, dato $x\in\mathbb{Z}$ tale che $\mathrm{MCD}(x,28)=1$ allora $\overline{x}^{12}=\overline{1}$ in \mathbb{Z}_{28} .

1. Consideriamo la divisione euclidea $147 = 12 \cdot 12 + 3$, abbiamo pertanto

$$\overline{9}^{147} = \overline{9}^{12 \cdot 12 + 3} = \left(\overline{9}^{12}\right)^{12} \cdot \overline{9}^{3} = \overline{1} \cdot \overline{9}^{3} = \overline{9}^{2} \cdot \overline{9} = \overline{81} \cdot \overline{9} = \overline{25} \cdot \overline{9} = \overline{225} = \overline{1}.$$

- 2. Ricordiamo che l'ordine moltiplicativo di un elemento in $U(\mathbb{Z}_{28})$ dev'essere un divisore dell'ordine $|U(\mathbb{Z}_{28})| = \varphi(28) = 12$.
 - Abbiamo già calcolato $\overline{9}^2 = \overline{25} \ e \ \overline{9}^3 = \overline{1}$. Pertanto $\operatorname{ord}(\overline{9}) = 3$.
 - Calcoliamo soltanto le potenze $\overline{3}^d$ con $d \mid 12$.

$$\overline{3}^2 = \overline{9},$$
 $\overline{3}^3 = \overline{27} = -\overline{1},$
 $\overline{3}^4 = (\overline{3}^2)^2 = \overline{9}^2 = \overline{81} = \overline{25},$
 $\overline{3}^6 = (\overline{3}^3)^2 = (-\overline{1})^2 = \overline{1}.$

Pertanto $\operatorname{ord}(\overline{3}) = 6$.

• Osserviamo che $MCD(2,28) = 2 \neq 1$, pertanto $\overline{2} \notin U(\mathbb{Z}_{28})$, cioè $\overline{2}$ non è un elemento del gruppo.

¹Notare che sapendo che $\operatorname{ord}(\overline{9}) = 3$ nel punto 1. si sarebbe potuto effettuare la divisione euclidea di 147 per 3 anzichè per 12.