

الرقمي المنطق الرقمي عال - تصميم المنطق الرقمي CSC 211 - Digital Logic Design First Term 1439/1440

Solution to Midterm #2

General Information

• Date: Sunday, December 2nd, 2018

Duration: 60 minutesTotal marks: 20

Instructions and Guidelines

- No books or notes are permitted.
- Computer usage is prohibited.
- Cell phones must be turned off.
- Calculators are not allowed.
- Try to answer all questions.
- Write down your answers neatly in this booklet.
- To earn partial marks, justify your answers.
- If you need extra paper, request some from a proctor.

Grading

Question	Q1	Q2	Q3	Q4	Q5	Total
Points	4	3	5	3	5	20

Student Name:	
ID Number:	

Q1 [4 Points]

Simplify the following expression using Boolean algebra. Justify each step in your solution by referring to the Boolean rule or law or theorem you use.

$$Z = (B + \bar{B}C)(\overline{A}\overline{B}) + AC + \bar{B}\overline{C}$$

$$Z = (B + \overline{B}C)(\overline{AB}) + AC + \overline{B}\overline{C}$$

$$= (B + C)(\overline{AB}) + AC + \overline{B}\overline{C}$$
 [R11]
$$= (B + C)(\overline{A} + \overline{B}) + AC + \overline{B}\overline{C}$$
 [DM Theorem]
$$= (B + C)(\overline{A} + B) + AC + \overline{B}\overline{C}$$
 [R9]
$$= B + \overline{A}C + AC + \overline{B}\overline{C}$$
 [R12]
$$= B + (\overline{A} + A)C + \overline{B}\overline{C}$$
 [Dist. Law]
$$= B + 1.C + \overline{B}\overline{C}$$
 [R6]
$$= B + C + \overline{B}\overline{C}$$
 [R4]
$$= B + C + \overline{B}$$
 [R11]
$$= 1 + C$$
 [R6]
$$= 1$$
 [R2]

Q2 [3 Points]

Write a Boolean expression for the output of the following circuit (Z) and then simplify that expression using Boolean algebra.

$$Z = (\overline{(\overline{A}\overline{B})} + \overline{C})D$$
$$= (\overline{A}\overline{B}\overline{C})D$$

$$= (ABC)D$$

$$= ABCD$$

Given below two copies of a Karnaugh map that describes a Boolean variable Z.

a. Construct a minimum SOP expression for Z.

AB	00	01	11	10	_
00	0	X	0	0	
01	X	1	1	0	
11	X	1	1	1	
10	1	0	1	1	

$$Z = BD + AC + A\overline{D}$$

b. Construct a minimum POS expression for Z.

AB	00	01	11	10	
00	0	X	0	0	
01	X	1	1	0	
11	X	1	1	1	
10	1	0	1	1	
					•

$$Z = (A+B)(A+D)(B+C+\overline{D})$$

Q4 [3 Points]

Implement the following Boolean expression using NOR gates: $Z = A(\overline{B} + C)$.

Step 1: Starting with the AND-OR implementation:

Step 2: Converting every NOT/AND/OR gate to NOR gate:

Q5

Given the following logic circuit:

a. Fill up the truth table of Y and Z.

Inputs			Outputs		
Α	В	С	Y	Z	
0	0	0	1	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	1	0	0	

b. Draw the waveforms of Y and Z.

