PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-264192

(43)Date of publication of application: 20.09.1994

(51)Int.CI.

7

C22C 38/00 C21D 6/00 C21D 8/00 C22C 38/40

(21)Application number: 05-078580

(71)Applicant: NKK CORP

(22)Date of filing:

15.03.1993

(72)Inventor: HIRAI TATSUYUKI

KIMURA HIDETO KOBAYASHI YASUO

(54) HIGH STRENGTH AND HIGH TOUGHNESS MARTENSITIC STAINLESS STEEL FOR WELDING STRUCTURE AND ITS PRODUCTION

(57)Abstract:

PURPOSE: To develop martensitic stainless steel excellent in ductility—toughness, workability, weldability and the softening resistance in the weld heat affected zone by subjecting low C and low N- contg. Ni-Cr stainless steel to hot working and heat treatment under specified conditions.

CONSTITUTION: The ingot of low C and low N-contg. Ni-Cr stainless steel having a compsn. contg., by weight, <0.03% C, <1.0% Si, <1.0% Mn, 0.05 to 1.0% Cu, 5.0 to 7.0% Ni, 13.0 to 17.0% Cr, <2.0% Mo and <0.02% N, and the balance Fe and satisfying the inequalities 1, 2 and 3 is heated to a temp. T satisfying the formula 4 or below and is thereafter subjected to hot working capable of being finished in the temp. range of $\ge700\%$ C. Immediately after that, it is cooled to the temp. range of the Mf point or below at $\ge3\%$ C/min colling rate, is furthermore heated to the temp. range of 450% C to the Ac1 point and is subsequently cooled. The martensitic stainless steel having 0.2% proof stress at ≥800 MPa and furthermore excellent in corrosion resistance can be produced.

1 g×0 f (8)... (1 f × k 5... (8) + 2 3 × 8 1 (8) + 9 × 9 7 (8) + 2 × G 2 (8) + 1 9 0 × G (8)

C (%) +K (%) ≤0. 03

2:7, 6 % C r (20) - 1, 1 × V o (2) + 1, 5 × 5 (%) -2 × c (2) + 0, 1 × C r (2) + 6 8 × 7 (2) -3,4 × N (8) ≤ 23 (6

T-450×K((%)+ 00×Cy(%)+85C9×C(%) +8009×K(%)=800×C?(%) -750×K((%)-1000×K((%)

4

3

ij.

LEGAL STATUS

[Date of request for examination]

31.10.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]2921324[Date of registration]30.04.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

30.04.2002

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-264192

(43)公開日 平成6年(1994)9月20日

技術表示箇	FΙ	庁内整理番号	}	識別記与			51)Int.Cl.5	
			Z	302	00	38/	C 2 2 C	
		9269-4K	J	102	00	6/	C 2 1 D	
		7412-4K	E		00	8/		
					40	38/	C 2 2 C	
未請求 請求項の数3 FD (全 11 J	審査請求							
000004123	(71)出願人			^z 5-7858	特願	号	21)出願番号	
日本鋼管株式会社								
東京都千代田区丸の内一丁目1番2号		₹15 日) 3 月	年(1993	平成		(22)出願日	
平井 龍至	(72)発明者							
東京都千代田区丸の内一丁目1番2号								
本鋼管株式会社内								
木村 秀途	(72)発明者							
東京都千代田区丸の内一丁目1番2号								
本鋼管株式会社内				•				
小林 泰男	(72)発明者							
東京都千代田区丸の内一丁目1番2号								
本鋼管株式会社内								
弁理士 煤孫 耕郎	(74)代理人							

(54)【発明の名称】 溶接構造用高強度・高靭性マルテンサイト系ステンレス鋼及びその製造方法

(57)【要約】

【構成】 重量%で、C:0.03%以下、Si:1.0%以下、Mn:1.0%以下、Cu:0.05~1.0%、Ni:5.0~7.0%、Cr:13.0~17.0%、Mo:2.0%以下、N:0.02%以下を

 $C (\%) + N (\%) \le 0.03$

含み、且つ前記元素の含有量が(1)~(3)式を満足し、残部実質的にFe及び不可避的不純物からなることを特徴とする800MPa以上の0.2%耐力を有した溶接構造用高靱性マルテンサイト系ステンレス網。

· · · (1)

【特許請求の範囲】

【請求項1】 重量%で、C:0.03%以下、Si: 1.0%以下、Mn:1.0%以下、Cu:0.05~ 1. 0%, Ni: 5. 0~7. 0%, Cr: 13. 0~ 17.0%、Mo:2.0%以下、N:0.02%以下*

 $C (\%) + N (\%) \le 0.03$

*を含み、且つ前記元素の含有量が(1)~(3)式を満 足し、残部実質的にFe及び不可避的不純物からなるこ とを特徴とする800MPa以上の0.2%耐力を有し た溶接構造用高靭性マルテンサイト系ステンレス鋼。

 \cdots (1)

 $12 \times Cr$ (%) $+15 \times Mo$ (%) $+20 \times Si$ (%) $-9 \times N i$ (%) $-2 \times C u$ (%) $-190 \times C$ (%) \cdots (2) $-160 \times N (\%) \le 154$

27. $6 \le Cr$ (%) +1. $3 \times Mo$ (%) +1. $5 \times Si$ (%) $+2 \times N i$ (%) $+0.7 \times C u$ (%) $+6.8 \times C$ (%) $+54 \times N$ (%) ≤ 31.6 \cdots (3)

【請求項2】 請求項1に記載された鋼の製造におい て、熱間加工後、850~1000℃の温度域に加熱 後、3℃/min以上の冷却速度でMf点以下の温度域 まで冷却し、さらに、450℃~Ac1 点の温度域に加 熱後、冷却することを特徴とする800MPa以上の 0. 2%耐力を有した溶接構造用高靭性マルテンサイト 系ステンレス鋼の製造方法。

【請求項3】 請求項1に記載された鋼の製造におい ※20

℃/min以上の冷却速度でMf点以下の温度域まで冷 却し、さらに、450℃~Ac1 点の温度域に加熱後、 . 冷却することを特徴とする800MPa以上の0.2% 耐力を有した溶接構造用高靭性マルテンサイト系ステン レス鋼の製造方法。

※て、(4)式で表せるT℃以下の温度域に加熱後、70

0℃以上の温度域で仕上がる熱間加工を行い、直ちに3

 $T = 450 \times N i$ (%) $+100 \times C u$ (%) $+9500 \times C$ (%) $+8000\times N$ (%) $-600\times C$ r (%) $-750 \times Mo$ (%) $-1000 \times Si$ (%) +8750

30

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高速船の水中翼等の材 料として利用できる、溶接構造用高強度・高靱性ステン レス鋼及びその製造方法に関するものである。

[0002]

【従来の技術】水力発電用ランナー等の高速流水環境で は、従来、耐キャビテーションエロージョン性(以下、 耐CE性と呼ぶ)に優れたSCS6等の13%Cr-4 ~6%Ni鋳鋼が用いられてきた。この鋼はNiを含有 させることにより、Cを0.03~0.05%程度に低 減しても δ フェライトがほとんど無く、さらに Ac_1 点 以上の高温焼戻により残留オーステナイトが数10%生 成するため、マルテンサイト系ステンレス鋼としては比 較的良好な靭性と溶接性を有している。

【0003】しかし、近年、高速船の大型化、ハイスピ 40 ード化にともない、水中翼等の部材の軽量化及び耐CE 性の向上が必要とされている。軽量化、ならびに耐CE 性の向上には、いずれも高強度化を図ることが最も有効 な手段であり、現在800MPa以上の0.2%耐力を 有する高強度ステンレス鋼が要求されているが、高温焼 戻を施している13Cr-3~6Ni鋼の0.2%耐力 は500~700MPa程度である。800MPa以上 の0. 2%耐力を有する高強度ステンレス鋼としては、 SUS630 (17-4PH) 等の析出硬化型マルテン

 \cdots (4)

り著しく析出強化されたこの鋼は延靭性が不良で、ま た、δフェライトを含有するため熱間加工性にも劣る。 さらに、溶接時の熱影響でCu析出物が再固溶するた め、溶接継手の強度が著しく低下する。このため、溶接 後に時効処理を施す必要があり、大型構造物への適用が 困難であった。

【0004】これに対し、特公平1-218827号公 報では、前記したNi含有の低Cマルテンサイト系ステ ンレス鋼にV、Alを微量添加し低温焼戻を施すことに より、微細な針状マルテンサイト組織となり、SUS6 30並の強度を有し、且つ優れた延靭性が得られると開 示されている。また、特開昭62-124218号公報 及び特開平3-188215号公報によれば、このよう な微量元素を添加したNi含有の低Cマルテンサイト系 ステンレス鋼は、Aci 点以上の高温域で焼戻を施すこ とにより、前者では微細かつ安定な逆変態オーステナイ トが形成し、後者では逆変態オーステナイトがより微細 なマルテンサイトに変態するため、強度、靭性のみなら ず、溶接熱影響部の軟化抵抗にも優れると開示されてい る。

[0005]

【発明が解決しようとする課題】しかし、特公平1-2 8827号公報、特開昭62-124218号公報及び 特開平3-188215号公報による鋼の延靭性は、C u 等の析出により著しく強化された析出硬化型ステンレ サイト系ステンレスが挙げられる。しかし、Cu等によ 50 ス鋼に比べ優れているものの、いずれも伸びで20%程

度、0℃のシャルピー吸収エネルギーで200 J程度が 上限であり、強加工や低温使用を考慮するといまだ問題 があった。また、特公平1-28827号公報及び特開 昭62-124218号公報によるものは、析出硬化型 ステンレス鋼と同様に、1 h r 以上という長時間焼戻処 理が必要であり、製造効率の向上及びコスト低減の観点 から、熱処理の簡略化が要求されている。本発明は上記 のような問題点を解決するためになされたもので、高速 船の水中翼等の材料として利用できる、800MPa以 上の0.2%耐力を有し、且つ延靱性、加工性、溶接 性、ならびに溶接熱影響部の軟化抵抗に優れたステンレ ス鋼を安価に得ることを目的とする。

[0006]

7

【課題を解決するための手段】本発明者らは、前述した Ni含有の低Cマルテンサイト系ステンレス鋼の延靭性 劣化因子を検討した結果、微量元素の添加により析出し た炭窒化物あるいは金属間化合物が延靭性を著しく劣化 させることを見出した。また、特開昭62-12421 8号公報には微量元素を含有しない鋼種も併せて開示さ れているが、この場合、高強度化のためにC, N、ある 20 いはSi含有量を増加させる必要があるため、同様に靭 性が劣化した。さらに、いずれの鋼種も最高強度の得ら*

*れる500℃近傍の低温域で焼戻を行った場合に、延靭 性の低下が最も著しかった。

【0007】そこで、本発明者らは析出物を形成するよ うな微量合金元素を添加しないNi含有のマルテンサイ ト系ステンレス鋼の成分及び熱処理条件を詳細に検討し た結果、極低C、N化及びδフェライトの低減を図り、 且つ少量の残留オーステナイトを含有させると、500 ℃近傍の温度域で焼戻を施しても良好な延靭性が得られ ることを見出した。さらに、極低C, N化は同時に加工 性向上及び溶接時の低温割れ抑制にも有効であった。以 上の知見に基づくと、前記した課題は以下に述べる成分 限定、製造方法により解決される。

【0008】第1発明は、重量%で、C:0.03%以 下、Si:1.0%以下、Mn:1.0%以下、Cu: 0. 05~1. 0%, Ni:5. 0~7. 0%, Cr: 13.0~17.0%、Mo:2.0%以下、N:0. 02%以下を含み、且つ前記元素の含有量が(1)~ (3) 式を満足し、残部実質的にFe及び不可避的不純 物からなることを特徴とする800MPa以上の0.2 %耐力を有した溶接構造用高靱性マルテンサイト系ステ ンレス鋼である。

 $C (\%) + N (\%) \le 0.03$ \cdots (1) $12 \times Cr$ (%) $+15 \times Mo$ (%) $+20 \times Si$ (%) $-9 \times N i$ (%) $-2 \times C u$ (%) $-190 \times C$ (%) $-160 \times N (\%) \le 154$ \cdots (2) 27. $6 \le C r$ (%) +1. $3 \times Mo$ (%) +1. $5 \times Si$ (%) $+2 \times N i$ (%) $+0.7 \times C u$ (%) $+6.8 \times C$ (%) $+54 \times N$ (%) ≤ 31.6 $\cdot \cdot \cdot (3)$

た鋼の製造において、熱間加工後、850~1000℃ の温度域に加熱後、3℃/min以上の冷却速度でMf 点以下の温度域まで冷却し、さらに、450℃~Ac1 点の温度域に加熱後、冷却することを特徴とする800 MPa以上の0.2%耐力を有した溶接構造用高靭性マ ルテンサイト系ステンレス鋼の製造方法である。

【0010】第3発明は、同じく第1発明の要件を満た※

【0009】第2発明は、前記第1発明の要件を満たし $30\,\%$ した鋼の製造において、(4)式で表せるT $m{\mathbb{C}}$ 以下の温 度域に加熱後、700℃以上の温度域で仕上がる熱間加 エを行い、直ちに3℃/min以上の冷却速度でMf点 以下の温度域まで冷却し、さらに、450℃~Ac1 点 の温度域に加熱後、冷却することを特徴とする800M Pa以上の0. 2%耐力を有した溶接構造用高靭性マル テンサイト系ステンレス鋼の製造方法である。

> $T = 450 \times Ni$ (%) $+100 \times Cu$ (%) $+9500 \times C$ (%) $+8000\times N$ (%) $-600\times C_{r}$ (%) $-750\times M_{o}$ (%) \cdots (4) $-1000 \times Si$ (%) +8750

[0011]

【作用】以下に、この発明のステンレス鋼の成分限定理 由を述べる。Cは、強度増加に有効な成分であり、ま た、オーステナイト生成元素であるためNi量の低減を 図ることができるが、含有量が多くなると靭性、溶接性 及び加工性が劣化するため、その上限値は0.03%と する。好ましくは0.02%以下である。Siは、脱酸 作用を有する成分であるが、フェライト生成元素である ためCr添加量が制限される。また、多量の添加は延靭 性の劣化を招くため、上限値は1.0%とする。

【0012】Mnは、Siと同様脱酸作用を有する成分 であり、オーステナイト生成元素として知られている。 しかし、この鋼においてはオーステナイト生成元素とし ての効果は認められず、その含有量が1.0%を超える と耐食性を低下させることが明らかになった。したがっ て、Mn含有量の上限値は1.0%以下とする。Cu は、耐食性向上に有効な成分であり、オーステナイト生 成元素でもある。しかし、耐食性に及ぼす効果は、Cu 含有量が0.05%未満では発揮されず、1.0%を超 50 えるとその効果が飽和する。また、多量の添加は延靭性

7

を劣化させるので、Cu含有量は0.05~1.0%と する。

【0013】Niは、オーステナイト生成元素であり、 延靱性及び溶接性に優れたマルテンサイトを得るのに必 須の成分である。ただし、詳細は後述するがNi含有量 が 5. 0%未満では他の成分を調整しても残留オーステ ナイトが生成せず、強度、靭性が低下する。また、7. 0%を超える添加は高価になるばかりでなく、残留オー ステナイトが過剰となり、強度が低下する。したがっ て、Ni含有量は5.0~7.0%とする。Crは、耐 10 食性に最も重要な元素であり、13.0%以上の添加に よりその効果が顕著となる。しかし、フェライト形成元 素でもあるため、その含有量が17.0%を超えるとδ フェライトが増加するとともに、残留オーステナイトも 過剰となり、強度、靭性が著しく低下する。したがっ て、Cr含有量は13.0~17.0%とする。

 $C (\%) + N (\%) \leq 0.03$

【0016】さらに、本発明者らはこの鋼におけるδフ ェライトの体積率 δ f 及び残留オーステナイトの体積率 びуғ(%)が各々(5)及び(6)式で表せることを 見出した。この鋼ではδフェライトを低減し、少量の残 留オーステナイトを有するマルテンサイト組織とするこ とによりAcι 点以下の低温焼戻を施しても良好な延靭※ *【0014】Moは、Crと同様、耐食性向上に有効な 元素でありフェライト形成元素でもあるため置換が可能 である。しかし、2.0%を超える添加は靭性を低下さ せるため、その上限値は2.0%とする。Nは、Cと同 様オーステナイト形成元素でありNi含有量の低減が図 れるが、強度増加にはほとんど寄与しない。また、その 含有量が増加すると延靱性、溶接性が劣化するため、上 限値は0.02%とする。

【0015】また、一般にマルテンサイト系ステンレス 鋼ではC, N量の低減により溶接時の低温割れ感受性が 低下することが知られているが、高強度化を図った本鋼 では(1)式を満たすことにより低温割れ感受性が著し く低下するのみならず、加工成形性も向上することを発 明者らは見出した。したがって、(C+N)量は上記の 限定に加え、(1)式を満たす範囲とする。

 \cdots (1)

※性が得られるが、具体的にはδfが5%を超えると靭性 が劣化するばかりでなく、強度も低下する。一方、уғ γ f と成分との関係を詳細に検討した結果、 δ f (%)及 20 が 1%未満では靭性向上の効果が発揮されず、10%を 超えると溶接熱影響部の軟化抵抗が低下する。したがっ て、前記元素の含有量は上記限定に加え、(2)及び (3) 式を満たす範囲とする。

> $\delta f = 1.2 \times C r$ (%) + 1.5 × Mo (%) + 2.0 × S i (%) $-9 \times N i$ (%) $-2 \times C u$ (%) $-190 \times C$ (%) $-160 \times N$ (%) -149 \cdots (5) $\log \gamma_f = [Cr (\%) + 1. 3 \times Mo (\%) + 1. 5 \times Si (\%)]$ $+2 \times N i$ (%) $+0.7 \times C u$ (%) $+68 \times C$ (%) • • • (6) $+54 \times N$ (%)] /4-6. 9 $12 \times Cr$ (%) $+15 \times Mo$ (%) $+20 \times Si$ (%) $-9 \times N i$ (%) $-2 \times C u$ (%) $-190 \times C$ (%) $-160 \times N (\%) \le 154$ 27. $6 \le C r$ (%) +1. $3 \times Mo$ (%) +1. $5 \times Si$ (%) $+2 \times N i$ (%) $+0.7 \times C u$ (%) $+6.8 \times C$ (%) · · · (3) $+54 \times N$ (%) ≤ 31.6

【0017】次に、製造方法の限定理由を述べると、こ の鋼では600~700℃の温度域で粒界にCr炭化物 が析出し、靭性及び耐食性を低下させる。焼入処理は熱 間加工により析出したCr炭化物の固溶と靭性に優れた 40 性改善のため実施される。しかし、この鋼ではAct点 マルテンサイト組織を得る目的により実施する。しか し、熱間加工後の焼入温度が850℃未満になるとCr 炭化物が固溶せず、1000℃を超える温度域で実施す ると、結晶粒が粗大化し靭性が劣化する。したがって、 熱間加工後の焼入温度は850~1000℃の範囲とす る。また、焼入時の冷却条件について検討を行った結 果、冷却速度が3℃/min未満になると焼きは十分に 入るものの、冷却中に前記のCr 炭化物が再析出する。 さらに、冷却停止温度がMf点を超えるとyfが (6) 式 で表せる値よりも著しく大きくなり、継手の軟化抵抗が 50

低下する。したがって、焼入時の冷却は3℃/min以 上の冷却速度でMf点以下の温度域まで実施する。

【0018】焼入後行われる焼戻処理は、一般に、延靭 を超える高温焼戻を行うと y f が (6) 式で表せる値に 比べ著しく増加するため、焼戻はAc1 点以下の低温域 で実施する必要がある。さらに、この鋼では前述したよ うに極短時間(製品全体が均熱される程度)の低温焼戻 により高強度化を図ることが可能であり、析出硬化型ス テンレス鋼等に比べ熱処理が容易である。しかし、焼戻 温度が450℃未満、あるいはAc1点を超えると強度 向上の効果が発揮されない。したがって、焼戻温度は4 50℃~Aci点の範囲とする。

7

log γ_f = [Cr (%) +1. 3×Mo (%) +1. 5×Si (%) +2×Ni (%) +0. 7×Cu (%) +68×C (%) +54×N (%)]/4-6. 9 ··· (6)

【0019】さらに、焼入性に優れたこの鋼の特徴を活かし、前述した再加熱による焼入処理を省略した製造方法を検討した。通常、熱間加工前の加熱は1100~1300℃の温度域で行われるが、この鋼は加熱温度が1050℃を超えると δ fが(5)式で表せる値よりも増加する。また、加熱時の δ fは熱間加工後の δ fとほぼ同一の値となり、続く焼戻処理によっても変化しないことが明らかになった。そこで、本発明者らは δ fの増加による製品の強度、靭性低下を防ぐため、1300℃以下の温度域における加熱温度及び成分と δ fとの関係を詳細に調べた結果、その値が5%以下となる最高温度T

(℃) は(4) 式で表せることを見出した。したがっ *

*て、熱間加工前の加熱温度は(4)式で表せるT℃以下の温度域とする。ただし、加熱温度が1300℃を超えると製品の表面性状が劣化するため、そのような加熱は望ましくない。

【0020】また、靭性、耐食性に優れたマルテンサイト組織を得るためには、熱間加工の終了温度はCr炭化10 物が析出しない温度域とする必要があるため、その温度は700℃以上とする。また、熱間加工後の冷却も焼入処理と同様、3℃/min以上の冷却速度でMf点以下の温度域まで実施する。以上の熱間加工一直接焼入処理は、再加熱焼入処理と同等の効果を有するため、続く焼栗処理も再加熱焼入材と同様の条件で行う。

 $\delta_{f} = 1 \ 2 \times C \ r \ (\%) \ + 1 \ 5 \times Mo \ (\%) \ + 2 \ 0 \times S \ i \ (\%)$ $-9 \times N \ i \ (\%) \ - 2 \times C \ u \ (\%) \ - 1 \ 9 \ 0 \times C \ (\%)$ $-1 \ 6 \ 0 \times N \ (\%) \ - 1 \ 4 \ 9 \ 0 \times C \ (\%)$ $+8 \ 0 \ 0 \times N \ (\%) \ - 6 \ 0 \times C \ r \ (\%) \ - 7 \ 5 \ 0 \times Mo \ (\%)$ $-1 \ 0 \ 0 \times S \ i \ (\%) \ + 8 \ 7 \ 5 \ 0 \ \cdots \ (4)$

[0021]

7

【実施例】本発明によるものの具体的な実施例について 説明すると、以下の如くである。

【実施例1】表1に示す化学成分の50kgインゴット に対して、1250℃加熱、800℃仕上後空冷(冷却 速度:50℃/min)の熱間圧延を行い、15mm厚の 鋼板を製造した。鋼板に対して900℃×5min加熱 後、Mf点以下の50℃まで空冷する焼入処理を行い、 さらに、Aci 点以下の550℃×5min加熱後、空 30 冷の焼戻処理を施した後、ミクロ組織観察用サンプル、 X線回析用サンプル、引張試験片、曲げ試験片、2mmV ノッチ付きシャルピー衝撃試験片及び孔食電位測定用サ ンプルを採取した。δfはミクロサンプルを20%Na OH電解エッチングすることにより、また、yfはX線 回析法により各々測定した。その結果を表1に併せて示 す。加工性は曲げ半径:0.5 t、曲げ角度:180° の表曲げ試験による割れの有無で評価した。また、孔食 電位はJIS G0577により、電流密度が100 μ A/cm² となる電位を求めた。さらに、溶接性の評価の ため、上記熱処理鋼板からYわれ試験片(IIS Z3 158)を採取し、市販の被覆アーク溶接棒(0.04 C-5Ni-12Cr鋼) を用いて10℃、RH:60 %、入熱:10KJ/cmの条件で本溶接を行い、断面検 鏡法によりルート割れの有無を調べた。一方、溶接熱影 響部の軟化抵抗は、X開先の溶接継手を市販のMIGワ イヤ(0.02C-5Ni-12Cr鋼)を使用して作 成し、継手引張試験(JIS Z3121)の破断位置 で評価した。なお、MIG溶接は入熱:20KJ/cmの 多層溶接とした。

【0022】 δf及び0℃、-50℃での吸収エネルギーと成分との関係を図1に示す。図1によればこの鋼の δfはこれを表す指標Bの値とよい対応を示しており、Bの値が154を超えるとC、N含有量が低くても靭性は著しく劣化することが解る。γf、0℃、-50℃での吸収エネルギー及び継手引張の破断位置と成分との関係を図2に示す。すなわち、この図2によればこの鋼の γfはこれを表す指標Cの値とよい対応を示しており、Cの値が27.6未満では靭性が低下し、31.6を超

0 Cの値が27.6未満では靭性が低下し、31.6を超 えると溶接熱影響部が軟化することが理解される。

【0023】表2には発明鋼1~10及び比較鋼11~19の引張特性、曲げ加工性、0℃、-50℃における吸収エネルギー、Yわれ試験結果、継手引張の破断位置及び孔食電位をまとめて示した。表2によれば本発明鋼の強度、延靭性、加工性、溶接性、継手特性及び耐食性はともに優れていることが解る。特に、強加工や予熱なしの溶接を行うためには、(C+N) 含有量を0.03%以下にする必要があることが理解される。次に表1、

- 40 表2を示す。なお表1中の、アンダーラインは本発明鋼の限定条件外であることを示す。また、表1中の1)、
 - 2)、3)、 δf 、 γf は、
 - 1) A = C (%) + N (%)
 - 2) $B = 1.2 \times C r$ (%) $+ 1.5 \times Mo$ (%) $+ 2.0 \times Si$ (%) $9 \times Ni$ (%) $2 \times Cu$ (%) $1.90 \times C$ (%) $1.60 \times N$ (%)
 - 3) C=Cr (%) +1. 3×Mo (%) +1. 5×S i (%) +2×Ni (%) +0. 7×Cu (%) +68 ×C (%) +54×N (%)
- 50 δf、γfは実測値である。

[0024]

【表1】

	略	化 学 成 分					(10	ass%)		1)	2)	3)	81	71
1 _	号	С	Si	Mn	Cu	Ni	Cr	Мо	1. N	A	В	C	(%)	(%)
	1	0.007	0.97	0.46	0.59	5.6	13.0		0.019	0.03	119	27.6	0	1
発	2	0.024	0.61	0.59	0.95	5.0	13.7	1.9	0.006	0.03	153	29.7	3	3
	3	0.011	0.85	0.32	0.77	6.8	14.1		0.009	0.02	120	30.7	0	5
	4	0.007	0.63	0.40	0.05	7.0	14.6	0.6	0.008	0.02	131	31.3	0	9
明	5	0.010	0.59	0.53	0.45	6.2	15.0		0.011	0.02	131	29.9	0	4
i	6	0.008	0.75	0.64	0.83	5.3	15.2		0.015	0.02	144	28.9	0	2
	7	0.013	0.26	0.37	0.68	5.8	15.5	1.4	0.014	0.03	154	31.4	5	8
網	8	0.005	0.43	0.78	0.39	6.5	15.8	0.9	0.007	10.0	150	31.6	1	10
	9	0.020	0.51	0.95	0.54	5.6	16.3		0.009	0.03	149	30.5	0	4
	10	0.016	0.38	0.61	0.22	6.1	16.9		0.005	0.02	151	31.2	2	8
	U	0.010	0.84	0.65	0.79	6.7	12.3		0.013	0.02	99	28.9	0	2
	12	0.010	0.38	0.59	0.20	5.9	13.1		0.008	0.02	108	<u> 26.6</u>	0	0
1	13	0.010	0.63	0.53	0.51	5.9	13.3	2.4	0.007	0.02	151	30.6	3	5
比	14	0.015	0.78	0.38	0.01	5.1	13.5		0.007	0.02	128	<u>26.3</u>	0	0
	15	<u>0.038</u>	0.53	0.71	0.49	5.5	13.7	2.0	0.009	0.05	146	31.5	0	10
1	16	0.005	0.46	0.52	0.62	4.5	14.0	0.9	0.006	0.01	147	26.0	0	0
1	17	0.008	1.67	0.57	0.44	6.5	14.2		0.008	0.02	142	31.0	0	6
	18	0.012	0.70	0.84	0.57	<u>7.5</u>	14.4		0.010	0.02	114	32.2	0	16
較	19	0.007	0.35	0.35	0.28	6.6	14.8		0.032	0.04	118	30.9	0	7
	20	0.017	0.60	1.55	0.45	6.2	15.0		0.009	0.03	131	30.3	0	4
	21	0.004	0.42	0.49	0.71	5.7	15.3	0.8	0.025	0.03	147	30.5	0	6
	22	0.019	0.61	0.61	0.33	6.4	15.5	1.2	0.017	0.04	152	<u>33.2</u>	3	26
	23	0.008	0.49	0.47	0.68	5.3	15.9	0.7	0.010	0.02	<u>159</u>	29.7	9	3
鋼	24	0.009	0.34	0.53	0.75	6.9	16.2	0.5	0.011	0.02	142	<u>32.9</u>	0	19
	25	0.011	0.57	0.60	<u>1.73</u>	5.7	16.5		0.010	0.02	151	31.3	2	9
	26	0.006	0.87	0.55	0.15	6.0	16.7		0.008	0.01	161	31.0	11	6
	27	0.009	0.69	0.49	0.84	6.1	17.5		0.011	0.02	164	32.4	16	15

[0025]

【表2】

									<u>. </u>	
	略	0.2%耐力	引張強さ	伸び	曲げ試験	吸収エネル		Yわれ	継手引張	孔食電位
	号	(MPa)	(MPa)	(%)	(R=0.5t)	0°C	-50°C	銀 斌	破断位置	(nY)
	1	811	888	24.8	割れ無し	229	218	割れ無し	母 材	161
発	2	819	896	25.4	割れ無し	235	215	割れ無し	母材	224
	3	865	935	26.7	割れ無し	274	244	割れ無し	母材	189
	4	872	939	27.3	割れ無し	267	259	割れ無し	母材	213
明	5	857	928	25.5	割れ無し	277	258	割れ無し	母材	205
	6	824	899	26.0	割れ無し	251	233	割れ無し	母材	196
	7	836	914	24.9	割れ無し	248	240	割れ無し	母材	240
鐲	8	848	909	25.7	割れ無し	283	257	割れ無し	母材	233
	9	850	924	24.5	割れ無し	244	226	割れ無し	母材	217
	10	881	950	27.0	割れ無し	278	265	割れ無し	母材	220
	11	844	910	25.9	割れ無し	257	235	割れ無し	母材	107
1	12	806	877	20.4	割れ無し	183	86	割れ無し	母材	151
1 .	13	828	894	18.9	割れ無し	181	123	割れ無し	母材	228
比	14	812	880	23.1	割れ無し	172	35	割れ無し	母材	119
	15	869	971	16.0	割れ有り	180	93	割れ有り	母材	222
	16	759	838	18.0	割れ無し	108	20	割れ無し	母材	179
1 1	17	874	934	14.9	割れ無し	165	67	割れ無し	母材	183
	18	877	945	25.2	割れ無し	268	246	割れ無し	熱影響部	206
較	19	856	923	13.5	割れ有り	63	40	割れ有り	母材	198
	20	869	946	25.4	割れ無し	261	243	割れ無し	母材	132
	21	820	884	15.7	割れ無し	135	71	割れ無し	母材	210
	22	855	949	19.6	割れ有り	159	90	割れ有り	熱影響部	215
	23	801	870	24.3	割れ無し	160	119	割れ無し	母材	223
鋼	24	860	933	26.8	割れ無し	281	258	割れ無し	熱影響部	239
	25	864	927	16.7	割れ無し	174	72	割れ無し	母材	220
	26	829	902	23.5	割れ無し	148	121	割れ無し	母材	206
	27	832	898	24.0	割れ無し	123	84	割れ無し	熱影響部	234

[0026]

【実施例2】表3に示す化学成分の50kgインゴットを、表4に示す条件の熱間圧延及び熱処理により15mm 30厚の鋼板となした。なお、直接焼入材の熱間圧延後、あるいは再加熱焼入材の焼入処理時は表4に示す冷却速度でMf点以下の50℃まで冷却し、他行程の冷却はいずれも空冷(50℃/min程度)とした。サンプルはミクロ観察用サンプル、X線回析用サンプル、引張試験片、2mmVノッチ付きシャルピー衝撃試験片及び孔食電位測定用サンプルを採取した。また、実施例1と同様のMIG溶接により溶接継手を作成し、継手引張を併せて

実施した。なお、各種試験は実施例1と同一の方法により行った。表4の方法で製造した鋼板の引張特性、0 ℃、-50℃での吸収エネルギー、継手引張の破断位置及び孔食電位を表5に示す。表5によれば本発明方法で製造した鋼の0.2%耐力はいずれも800MPa以上の値を有し、伸び:25%以上、-50℃での吸収エネルギー:230J以上と延靭性にも優れている。また、溶接部の軟化抵抗及び耐食性も十分であることが理解される。

【0027】 【表3】

		13								14		
	略	1	٤	产 原	ጀ	}	(IB-	ass%)		1) A	2;] B	C.
	号	С	Si	Mn	Cu	Ni	Cr	Mo	T. N			
発	1	0.015	0.68	0.58	0.93	5.5	13.4		0.009	0.02	119	27.6
	2	0.007	0.86	0.42	0.27	6.4	14.0	1.7	0.011	0.02	149	31.6
明	3	0.010	0.60	0.65	0.49	5.9	15.1		0.008	0.02	136	29.3
1	4	0.012	0.57	0.53	0.66	5.3	15.8	0.4	0.012	0.02	154	29.7
鋼	5	0.009	0.45	0.37	0.37	6.0	16.7		0.010	0.02	151	30.8
比	6	0.011	0.41	0.49	0.39	5.2	13.7		0.008	0.02	122	26.2
1	7	0.007	0.64	0.60	0.98	6.5	14.9	1.5	0.010	0.02	151	32.5
較	8	0.015	0.89	0.57	0.55	6.9	15.9		0.012	0.03	141	<u>33. 1</u>
鋼	9	0.009	0.55	0.51	0.70	5.7	16.6	0.5	0.009	0.02	<u>162</u>	31.1

アンダーラインは本発明鋼の限定条件外であることを示す。

- 1) A = C(%) + N(%)
- 2) $B = 12 \times Cr(\%) + 15 \times Mo(\%) + 20 \times Si(\%) 9 \times Ni(\%)$

 $-2\times Cu(x)-190\times C(x)-160\times N(x)$

3) $C = C_{\Gamma}(x) + 1.3 \times N_{O}(x) + 1.5 \times Si(x) + 2 \times Ni(x)$ $+0.7\times Cu(\%)+68\times C(\%)+54\times N(\%)$

[0028]

ć

【表4】

	符号	鋼種	т.	圧延条 加 熱 温 度	牛 (°C) 仕 上 温 度	焼 入 温 度 (°C)	冷却速度 (°C/m)	焼 戻 温 度 (°C)	δ, (%)	7 r (%)
	1	1	>1300	1300	800	_	10	500	0	1
発	ם	2	1277	1250	750	_	5	450	4	10
明	ハ	3	>1300	1250	800	1000	3	550	0	3
193	=	3	>1300	1200	700		>100	500	0	3
法	ホ	4	1061	1150	650	850	50	450	5	4
	^	5	1183	1150	700	_	3	550	4	6
	1	1	>1300	1250	800	<u>1050</u>	10	500	0	l
1	チ	1	>1300	1150	<u>650</u>	-	>100	550	0	l t
	リ	2	1277	1200	750	900	3	<u>400</u>	0	9
比	ヌ	2	1277	<u>1300</u>	850	-	50	450	12	14
	ענ	3	>1300	1150	650	<u>800</u>	>100	<u>600</u>	0	16
	ヲ	3	>1300	1250	800	_	<u>1</u>	550	0	2
	フ	3	>1300	1200	<u>650</u>		>100	450	0	3
較	力	4	1061	1200	750	1100	50	500	15	4
**	3	4	1061	1150	700	950	5	<u>400</u>	5	3
ı	9	4	1061	<u>1100</u>	700	_	10	550	14	3
1	レ	5	1183	<u>1200</u>	750	-	5	450	11	6
	ソ	5	1183	1150	700		50	<u>600</u>	3	18
法	ツ	6	>1300	1250	800	-	>100	550	0 ·	0
	ネ	7	1215	1200	750	-	>100	450	5	17
	ナ	8	>1300	1250	800	900	>100	500	0	25
	ラ	9	<1050	1250	800	1000	>100	550	12	7

アンダーラインは本発明法の限定条件外であることを示す。

δι、γιは実測値

冷却速度は

再加熱焼入材:焼入処理時の冷却速度 直接焼入材:熱間圧延後の冷却速度

を示す。

* $T = 450 \times Ni(%) + 100 \times Cu(%) + 9500 \times C(%) + 8000 \times N(%)$ $-600 \times Cr(\%) - 750 \times Cr(\%) - 1000 \times Si(\%) + 8750$

[0029]

【表5】

	符	鋼	0.2%耐力	引張強さ	伸び	吸収エネル	ŧ. (J)	継手引張	孔食電位
L	号	種	(MPa)	(MPa)	(%)	0°C	-50°C	破断位置	(mV)
	1	1	B33	900	26.5	279	263	母材	181
発	D	2	849	911	24.7	262	240	母材	208
明	ハ	3	840	909	25.3	285	268	母材	205
נעיין	=	3	B56	914	24.9	266	246	母材	200
法	ホ	4	838	897	26.3	255	238	母材	219
	12	5	B54	928	26.8	272	259	母材	221
	١	1	836	899	25.1	234	65	母材	185
1	F	1	829	906	27.4	284	233	母材	57
1	ין	2	775	840	24.8	281	254	母材	210
比	ヌ	2	819	882	25.3	151	119	熱影響部	206
	ル	3	728	797	25.5	269	261	熱影響部	86
	ヲ	3	838	905	26.3	270	258	母材	139
}	フ	3	860	922	25.8	283	266	熱影響部	101
較	カ	4	831	886	27.1	105	28	母材	215
*X	3	4	770	828	24.6	249	225	母材	218
	夕	4	809	880	26.6	128	77	母材	212
	レレ	5	847	904	25.8	162	104	母材	227
1	ソ	5	764	833	26.6	283	260	熱影響部	229
法	ツ	6	805	875	20.6	112	25	母材	170
1	ネ	7	845	908	26.2	278	246	熱影響部	235
1	ナ	8	883	841	25.8	265	249	熱影響部	220
<u>L</u>	ラ	9	826	898	24.6	160	113	母材	229

[0030]

【発明の効果】以上のように、この発明によれば800 MPa以上の0.2%耐力が微量元素等の添加によらず 簡便な熱処理で達成できるため、延靭性、加工性及び溶 接性に優れるとともに、溶接熱影響部の軟化抵抗及び耐 食性も良好なマルテンサイト系ステンレス鋼が得られる 効果がある。したがって、高速船の水中翼等の材料とし 30 の関係を示す図。

て利用できる安価なステンレス鋼の提供が可能となる。 【図面の簡単な説明】

【図1】本発明の実施例1による鋼のδf及び0℃、-50℃での吸収エネルギーと成分との関係を示す図。 【図2】同じく実施例1による鋼のγf、0℃、-50℃での吸収エネルギー及び継手引張の破断位置と成分との関係を示す図。 【図1】

B: 12×Cr(%)+15×Mo(%)+20×Si(%)-9×Ni(%)
-2×Cu(%)-190×C(%)-160×N(%)

【図2】

