【题 4.1】 分析图 P4.1 电路的逻辑功能,写出输出的逻辑函数式,列出真值表,说明电路逻 辑功能的特点。

解:从输入端到输出端逐级写出输出的逻辑函数式,然后化简,最后得到 Y = A'B'C' + A'BC + AB'C + ABC'

真值表如表 A4.1。这是一个三变量的奇偶检测电路,当输入变量中有偶数个 1 和全 0 时输 出为1,否则输出为0。

表 A4.1								
A	В	С	Y					
0	0	0	1					
0	0	1	0					
0	1	0	0					
0	1	1	1					
1	0	0	0					
1	0	1	1					
1	1	0	1					
. 1	1	1	0					

【题 4.3】 分析图 P4.3 电路的逻辑功能,写出 Y_1 、 Y_2 的逻辑函数式,列出真值表,指出电路 完成什么逻辑功能。

图 P4.3

解:从给定逻辑图的输入到输出逐级写出输出的逻辑式,最后得到输出为

 $Y_1 = ABC + (A+B+C) \cdot (AB+AC+BC)'$

=ABC+AB'C'+A'BC'+A'B'C

 $Y_2 = AB + BC + AC$

由真值表 A4.3 可见,这是一个全加器电路。 $A \setminus B \setminus C$ 为加数、被加数和来自低位的进位, Y_1 是和, Y_2 是进位输出。

A	В	С	Y_{1}	Y_2
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

表 A4.3 题 4.3 的真值表

【题 4.5】 用与非门设计四变量的多数表决电路。当输入变量 $A \setminus B \setminus C \setminus D$ 有 3 个或 3 个以上为 1 时输出为 1,输入为其他状态时输出为 0。

解:根据题意即可列出电路的逻辑真值表,如表 A4.5。从真值表写出逻辑式,得到

农 A 4.3 应 4.3 的具且农							
A	В		C		D	Υ	
0	0	Lat	0		0	0	
0	0		0		1	0	
0	0		1		0	0	
0	0		1		1	0	
0	1		0		0	0	
0	1		0		1	0	
0	1		1		0	0	
0	1		1		1	1	
1	0		0		0	0	
1	0		0		1	0	
1	0		1		0	0	
1	0		1		1	1	
1	1		0		0	0	
1	1		0		1	1	
1	1		1		0	1	
1	1		1		1	1	

表 A4.5 题 4.5 的真值表

$$Y = A'BCD + AB'CD + ABC'D + ABCD' + ABCD$$
$$= ABC + ABD + ACD + BCD$$

将上式化为与非-与非形式

$$Y = ((ABC)' \cdot (ABD)' \cdot (ACD)' \cdot (BCD)')'$$
(A4.5) b

(A4.5)a

根据式(A4.5)b画出的逻辑电路图如图 A4.5 所示。

【题 4.11】 画出用两片 4 线 - 16 线译码器 74LS154 组成 5 线 - 32 线译码器的接线图。图 P4.11 是 74LS154 的逻辑框图,图中的 S_A' 、 S_B' 是两个控制端(亦称片选端),译码器工作时应使 S_A' 和 S_B' 同时为低电平。当输入信号 $A_3A_2A_1A_0$ 为 $0000 \sim 1111$ 这 16 种状态时,输出端从 Y_0' 到 Y_{15} 依次给出低电平输出信号。

解: 因为 74LS154 只有 4 位输入代码,所以第 5 位输入代码只能借用 S'_{A} 和 S'_{B} 输入端。将 A_{4} 接至第(1)片 74LS154 的 S'_{A} 和 S'_{B} 输入端,同时将 A'_{4} 接至第(2)片 74LS154 的 S'_{A} 和 S'_{B} 输入端,如图 A_{4} 11 所示。当输入 A_{4} A_{3} A_{2} A_{1} A_{0} = **00000~01111** 时,便在第(1)片的 Z'_{0} ~ Z'_{15} 依次给出低电平

输出信号。当输入为 $A_4A_3A_2A_1A_0$ = **10000~11111** 时,便在第(2)片的输出端 $Z'_{16}\sim Z'_{31}$ 依次给出低电平输出信号。

【题 4.12】 试画出用 3 线-8 线译码器 74HC138(见图 4.4.7)和门电路产生如下多输出逻辑函数的逻辑图。

$$\begin{cases} Y_1 = AC \\ Y_2 = A'B'C + AB'C' + BC \\ Y_3 = B'C' + ABC' \end{cases}$$

解:将输入变量 $A \ C$ 分别接至 74HC138 的输入端 $A_2 \ A_1 \ A_0$,在它的输出端 $Y_0 \sim Y_1'$ 便给出了三变量全部 7 个最小项的反相输出 $m_0' \sim m_1'$ 。

把给定的函数 Y_1 、 Y_2 、 Y_3 化为 $m_0' \sim m_1'$ 的表达式,则得到

$$\begin{cases} Y_1(A,B,C) = AC = AB'C + ABC = m_5 + m_7 = \left(m_5'm_7' \right)' = \left(Y_5'Y_7' \right)' \\ Y_2(A,B,C) = A'B'C + AB'C' + BC = A'B'C + A'BC + AB'C' + ABC \\ = m_1 + m_3 + m_4 + m_7 = \left(m_1'm_3'm_4'm_7' \right)' = \left(Y_1'Y_3'Y_4'Y_7' \right)' \\ Y_3(A,B,C) = B'C' + ABC' = A'B'C' + AB'C' + ABC' \\ = m_0 + m_4 + m_6 = \left(m_0'm_4'm_6' \right)' = \left(Y_0'Y_4'Y_6' \right)' \end{cases}$$

根据上式即可画出如图 A4.12 所示的电路。

【题 4.17】 图 P4.17 是用两个 4 选 1 数据选择器组成的逻辑电路,试写出输出 Z 与输入 M、 N 、 P 、 Q 之间的逻辑函数式。已知数据选择器的逻辑函数式为

$$Y = [D_0 A_1' A_0' + D_1 A_1' A_0 + D_2 A_1 A_0' + D_3 A_1 A_0] \cdot S$$

图 P4.17

解:由图可以写出

$$\begin{split} Y_1 &= \left[\begin{array}{ccc} O \cdot N'M' + O \cdot N'M + QNM' + QNM \end{array} \right] P' = NP'Q \\ Y_2 &= \left[\begin{array}{ccc} QN'M' + QN'M + O \cdot NM' + O \cdot NM \end{array} \right] P = N'PQ \\ Z &= Y_1 + Y_2 = NP'Q + N'PQ \end{split}$$

【题 4.18】 试用 4 选 1 数据选择器产生逻辑函数

Y = AB'C' + A'C' + BC

解:已知 4 选 1 数据选择器的输出逻辑式为

 $Y = A_1'A_0' \cdot D_0 + A_1'A_0 \cdot D_1 + A_1A_0' \cdot D_2 + A_1A_0 \cdot D_3$

将给定的逻辑函数化为与上式对应的形式

$$Y = A'B' \cdot C' + A'B \cdot 1 + AB' \cdot C' + AB \cdot C$$

令数据选择器的输入接成 $A_1 = A$ 、 $A_0 = B$ 、 $D_0 = C'$ 、 $D_1 = 1$ 、 $D_2 = C'$ 、 $D_3 = C$, 如图 A4.18 所示,则数据选择器的输出 Y 就是所要求产生的逻辑函数。

解:由式(4.5.6)知 74HC151 的输出逻辑式可写为

$$Y = (A_2'A_1'A_0') \cdot D_0 + (A_2'A_1'A_0) \cdot D_1 + (A_2'A_1A_0') \cdot D_2$$
$$+ (A_2'A_1A_0) \cdot D_3 + (A_2A_1'A_0') \cdot D_4 + (A_2A_1'A_0) \cdot D_5$$
$$+ (A_2A_1A_0') \cdot D_6 + (A_2A_1A_0) \cdot D_7$$

将给定的逻辑函数式化成与上式对应的形式,得到

$$Y = (A'B'C') \cdot 0 + (A'B'C) \cdot D + (A'BC') \cdot D' + (A'BC) \cdot 1$$
$$+ (AB'C') \cdot D + (AB'C) \cdot 0 + (ABC') \cdot 1 + (ABC) \cdot 1$$

令 74HC151 的输入为 $A_2 = A$ 、 $A_1 = B$ 、 $A_0 = C$ 、 $D_0 = D_5 = 0$ 、 $D_1 = D_4 = D$ 、 $D_2 = D'$ 、 $D_3 = D_6 = D_7 = 1$,如图 A4.19 所示,则 74HC151 的输出 Y 就是要求产生的逻辑函数。

【题 4.21】 设计用 3 个开关控制一个电灯的逻辑电路,要求改变任何一个开关的状态都能控制电灯由亮变灭或者由灭变亮。要求用数据选择器来实现。

解:以A、B、C 表示三个双位开关,并用 0 和 1 分别表示开关的两个状态。以 Y 表示灯的状态,用 1 表示亮,用 0 表示灭。设 ABC=000 时 Y=0,从这个状态开始,单独改变任何一个开关的状态 Y 的状态都要变化。据此列出 Y 与 A、B、C 之间逻辑关系的真值表 A4.21。

	A	В	C	Y	A	В	C	Υ
	0	0	0	0	0	1	1	0
	0	0	1	1	1	0	1	0
	0	1	0	1	1	1	0	0
	1	0	0	1	1	1	1	1

表 A4.21 题 4.21 的真值表

从真值表写出逻辑式

Y = A'B'C + A'BC' + AB'C' + ABC

产生上述三变量逻辑函数用具有两位地址输入的4选1数据选择器即可。

已知 4 选 1 数据选择器输出的逻辑式可写为

$$Y = A_1'A_0' \cdot D_0 + A_1'A_0 \cdot D_1 + A_1A_0' \cdot D_2 + A_1A_0 \cdot D_3$$

只要令数据选择器的输入为 $A_1=A$ 、 $A_0=B$ 、 $D_0=D_3=C$ 、 $D_1=D_2=C'$,如图 A4.21 所示,则数据选择器的输出即为要求得到的函数。

【题 4.26】 能否用一片 4 位并行加法器 74LS283 将余 3 代码转换成 8421 的二-十进制代码?如果可能,应当如何连线?

解:由《数字电子技术基础(第六版)》第一章的表 1.5.1 可知,从余 3 码中减去 3(**0011**)即可得到 8421 码。减 3 可通过加它的补码实现。若输入的余 3 码为 $D_3D_2D_1D_0$,输出的 8421 码为 $Y_3Y_2Y_1Y_0$,则有

 $Y_3Y_2Y_1Y_0=D_3D_2D_1D_0+[\ {\bf 0011}\]_{\#}=D_3D_2D_1D_0+{\bf 1101}$ 于是得到图 A4.26 电路。

【题 4.28】 若用 4 位数值比较器 74LS85(见图 4.4.27)组成 10 位数值比较器,需要用几片? 各片之间应如何连接?

解:需要用三片74LS85,连接方法如图 A4.28 所示。

图 A4.28