Porównanie testów dla parametru proporcji w rozkładzie dwumianowym

Szymon Malec, Michał Wiktorowski

1. Wstęp

Niniejsza praca poświęcona jest przedstawieniu trzech testów dla parametru proporcji (prawdopodobieństwa sukcesu w próbie Bernoulliego) rozkładu dwumianowego. Dla pewnej realizacji zmiennej losowej $S \sim \mathcal{B}(n,p)$ rozważmy hipotezy:

- H_0 : $p = p_0 = 0.5$
- H_1 : $p \neq p_0 = 0.5$,

gdzie H_0 i H_1 są odpowiednio hipotezą zerową i alternatywną. Sprawdzimy ich poprawność przy użyciu trzech testów:

- testu opartego o **przedział Wilsona**,
- testu opartego o przedział Cloppera-Pearsona,
- testu opartego o **przedział Jeffreysa**,

na poziomie istotności $\alpha = 0.05$. Następnie porównamy wspomniane testy pod kątem mocy, aby odpowiedzieć na pytanie, czy można wyłonić wśród nich test jednostajnie najmocniejszy.

2. Test oparty o przedział Wilsona

Do konstrukcji przedziału wykorzystamy fakt, że rozkład dwumianowy można przybliżać rozkładem normalnym. Przyjmuje się, że przybliżenie to jest dobre, gdy np > 5, n(1-p) > 5 oraz wartość p jest bliskia 0.5. Wartość oczekiwana S to ES = np, a odchylenie standardowe równe jest $Std(S) = \sqrt{np(1-p)}$, zatem dla pewnej zmiennej losowej $Z \sim \mathcal{N}(0,1)$ możemy powiedzieć, że

$$\frac{S - np_0}{\sqrt{np_0(1 - p_0)}} \stackrel{\text{d}}{\approx} Z$$

pod warunkiem, że H_0 jest prawdziwa. Korzystając z tego, zapisujemy

$$P\left(-z < \frac{S - np_0}{\sqrt{np_0(1 - p_0)}} < z\right) \approx 1 - \alpha,$$

gdzie z jest kwantylem rzędu $1-\frac{\alpha}{2}$ rozkładu $\mathcal{N}(0,1)$. Podnosząc strony nierówności wewnątrz funkcji prawdopodobieństwa do kwadratu dostajemy

$$P\left(\frac{(S - np_0)^2}{np_0(1 - p_0)} < z^2\right) \approx 1 - \alpha,$$

a następnie rozwiązując ukrytą wewnątrz nierówność kwadratową względem p_0 otrzymamy

$$P(p_0 \in W) \approx 1 - \alpha$$

gdzie

$$W = \left[\frac{S + \frac{1}{2}z^2}{n + z^2} - \frac{z}{n + z^2} \sqrt{\frac{S(n - S)}{n} + \frac{z^2}{4}} \right], \quad \frac{S + \frac{1}{2}z^2}{n + z^2} + \frac{z}{n + z^2} \sqrt{\frac{S(n - S)}{n} + \frac{z^2}{4}} \right]$$

nazywamy przedziałem Wilsona. Widzimy zatem, że przedział ten będzie zmieniać się w zależności od wartości S i jeśli hipoteza zerowa jest prawdziwa, p_0 będzie wpadać do niego z częstością zbliżoną do $1-\alpha$.

3. Test oparty o przedział Cloppera-Pearsona

Oznaczmy kwantyl rzędu γ rozkładu $\mathcal{B}eta(\alpha,\beta)$ jako $b_{\gamma}(\alpha,\beta)$. Dla pewnej realizacji zmiennej S, przedział Cloppera-Pearsona przedstawia się w postaci

$$CP = \left[b_{\frac{\alpha}{2}}(S, n - S + 1), b_{1-\frac{\alpha}{2}}(S + 1, n - S) \right],$$

gdzie

$$P(p_0 \in CP) \approx 1 - \alpha$$

pod warunkiem prawdziwości hipotezy zerowej.

4. Test oparty o przedział Jeffreysa

Przedział ten definiuje się podobnie jak przedział Cloppera-Pearsona, z tą różnicą, że tutaj korzystamy wyłącznie z kwantyli rozkładu $\mathcal{B}(S+0.5,\ n-S+0.5)$. Dla pewnej realizacji zmiennej S ma on zatem następującą postać:

$$J = \left[b_{\frac{\alpha}{2}}(S + 0.5, \ n - S + 0.5), \ b_{1-\frac{\alpha}{2}}(S + 0.5, \ n - S + 0.5) \right],$$

gdzie

$$P(p_0 \in J) \approx 1 - \alpha$$

pod warunkiem, że hipoteza H_0 jest prawdziwa.

5. Porównanie testów

W powyższych sekcjach przedstawione zostały trzy różne sposoby na testowanie parametru p w rozkładzie dwumianowym. Odpowiemy teraz na pytanie, który z nich oferuje największą moc. W tym celu skorzystamy z metody Monte Carlo. Dla kolejnych wartości $p \in (0,1)$ wykonujemy następujące kroki:

- 1. generujemy N=10~000 realizacji zmiennej losowej $S \sim \mathcal{B}(n,p)$,
- 2. dla każdego S z próbki testujemy hipotezę $H_0: p=p_0=0.5$ na poziomie istotności $\alpha=0.05$, przy pomocy wszystkich trzech testów,
- 3. dla każdego z testów zliczamy ile razy hipoteza zerowa została zaakceptowana i dzielimy tę liczbę przez N, co daje nam przybliżoną wartość mocy dla danego p.

Porównanie mocy wykonamy dla $n \in \{7, 35, 250\}$.

Wykres 1: Wykres zależności mocy testów od parametru p dla n=7.

Wykres 2: Wykres zależności mocy testów od parametru p dla n=35.

Wykres 3: Wykres zależności mocy testów od parametru p dla n=250.

Na wykresach 1, 2 i 3 dostrzec można, że krzywe mocy testów dla każdego n wyraźnie się pokrywają. Jak się okazuje, wyliczone wartości mocy są identyczne dla wszystkich trzech testów. Wynik ten, na pierwszy rzut oka, może budzić pewne wątpliwości, jednakże jest on w pełni poprawny. Główną przyczyną takich samych wartości mocy jest to, że przeprowadzane testy dotyczą rozkładu dwumianowego, który jest rozkładem dyskretnym. Oznacza to, że zmienna $S \sim \mathcal{B}(n,p)$ przyjmuje ograniczoną liczbę wartości. Przykładowo dla n=7, zmienna S przyjmuje jedynie wartości $0,1,2,\ldots,7$. Zatem w tym przypadku mamy 8 możliwych przedziałów.

Wykres 4: Przedziały testowe w zależności od wartości S dla n=7 z wartością $p_0=0.5$ oznaczoną zieloną linią.

Okazuje się, że gdy S przyjmuje wartości od 1 do 6, wszystkie z trzech testowych przedziałów zawierają wartość $p_0 = 0.5$, co prowadzić będzie do akceptacji H_0 . Z kolei dla S = 0 i S = 7 wartość 0.5 nie wpada do żadnego z przedziałów (wykres 4). Stąd każdy z testów zachowuje się dokładnie tak samo.

Wykres 5: Przedziały testowe w zależności od wartości Sdla n=35z wartością $p_0=0.5$ oznaczoną zieloną linią.

Wykres 6: Przedziały testowe w zależności od wartości Sdla n=250z wartością $p_0=0.5$ oznaczoną zieloną linią.

Na wykresach 5 i 6 zobaczyć można jak wyglądają przedziały trzech testów w zależności od wartości S w kolejnych dwóch przypadkach, czyli n=35 oraz n=250. Jak się okazuje, mamy do czynienia z tą samą sytuacją. Nie występuje ani jedna wartość S, dla której któryś z przedziałów zawierałby 0.5, a któryś nie (taka sytuacja spowodowałaby różnicę w mocy). Zatem dla rozpatrywanych przez nas wartości n oraz $\alpha=0.05$ nie da się wyłonić testu jednostajnie najmocniejszego, ponieważ wszystkie testy są równe. Nie oznacza to jednak, że jest tak dla każdego n i dowolnego poziomu istotności α . Zwiększenie wartości α spowodowałoby zwiększenie długości przedziałów, co mogłoby skutkować tym, że któryś z przedziałów "zjadłby" 0.5. Na podstawie wykresów możemy wywnioskować, że tym przedziałem byłby ten pochodzący z testu Cloppera-Pearsona, ponieważ jest on największy.

Rozpatrzmy jeszcze przypadek n=5. Na wykresie 7 dostrzec można coś ciekawego. Mianowicie przedział Cloppera-Pearsona dla każdego S zawiera p_0 , czego nie można powiedzieć o dwóch pozostałych przedziałach. Takie zachowanie będzie prowadziło do sytuacji, w której niezależnie jaką wartość przyjmie S, test Cloppera-Pearsona będzie akceptował fałszywą hipotezę zerową (czyli będzie popełniał błąd II rodzaju), skutkiem czego test ten będzie miał moc równą zero dla każdego $p \in (0,1)$, co zobaczyć możemy na wykresie 8.

Wykres 7: Przedziały testowe w zależności od wartości S dla n=5 z wartością $p_0=0.5$ oznaczoną zieloną linią.

Wykres 8: Wykres zależności mocy testów od parametru p dla n=5.

6. Podsumowanie

Rozważaliśmy trzy testy dla parametru p rozkładu dwumianowego $\mathcal{B}(n,p)$ oparte o następujące przedziały:

- przedział Wilsona,
- przedział Cloppera-Pearsona,
- przedział Jeffreysa.

Aby stwierdzić, który z tych testów jest jednostajnie najmocniejszy, przeprowadziliśmy symulację mocy dla $n \in \{7,35,250\}$. Jak się okazało, wszystkie testy były tak samo mocne. Nie oznacza to jednak, że dla innych wartości n jest tak samo - dla n=5 przeprowadziliśmy analogiczną symulację. Okazało się, że w tym przypadku można wyłonić test najsłabszy - test Cloppera-Pearsona.