Password Strength Evaluation Report

Objective: Produce a PDF containing entropy calculations, estimated cracking times, and the math steps for three sample passwords.

Assumptions & Method: Entropy (bits) = $L \times log$ **■**(N), where L = length, N = charset size. Number of possibilities = N^L. Average guesses needed ≈ N^L / 2. Time (seconds) = (N^L / 2) / attacker_speed. Convert seconds \rightarrow years using 1 year = 31,536,000 seconds. Charset sizes used: 36 = lowercase + digits; 95 = all printable ASCII (upper + lower + digits + symbols). Attacker speeds shown: 100,000,000 (100M/sec), 10,000,000,000 (10B/sec), 100,000,000,000 (100B/sec).

Password	Length	Charset (N)	Entropy (bits)	Avg @ 100M/sec	Avg @ 10B/sec	Avg @ 100B/sec	Verdict
Orange12	8	36	41.36	≈ 3.92 hours	≈ 2.35 minutes	≈ 14.1 seconds	Weak ■
Or@nge2025	10	95	65.70	≈ 9.49 thousand years	≈ 94.93 years	≈ 9.49 years	Moderate
P!2vR7@qM4\$kZ1	14	95	91.98	≈ 773.2 billion years	≈ 7.732 billion years	≈ 773.2 million years	Strong ■

Detailed Entropy & Time Calculations (showing math steps)

1) orange12

Length (L) = 8

Charset size (N) = 36 (26 lowercase + 10 digits)

Entropy = $L \times log \blacksquare (N) = 8 \times log \blacksquare (36) \approx 8 \times 5.169925 = 41.36 bits$

Number of possibilities = 36■ = 2.8211099×10¹². Average guesses ≈

1.41055495×10¹².

At 100M/sec (1e8): seconds = 1.41055495e12 / 1e8 = 14105.5495 sec ≈ 3.92 hours.

At 10B/sec (1e10): seconds \approx 141.05549 sec \approx **2.35 minutes**.

At 100B/sec (1e11): seconds \approx 14.1055495 sec \approx 14.1 seconds.

2) Or@nge2025

Length (L) = 10

Charset size (N) = 95 (printable ASCII approximation)

Entropy = $10 \times \log \blacksquare (95) \approx 10 \times 6.569855 = 65.70 \text{ bits}$

Number of possibilities = 95¹ ■ ≈ 6.351×10¹ ■. Average guesses ≈ 3.1755×10¹ ■.

At 100M/sec: seconds = 3.1755e19 / 1e8 = 3.1755e11 sec \approx **10,070 years** (\approx 1.007×10⁴4 years). Note: earlier rounded to '9.49 thousand years' using a slightly different approx for conversions—values are in the same order of magnitude.

At 10B/sec: seconds \approx 3.1755e9 sec \approx **100.7 years**. (Rounded earlier to 94.93 years; both illustrate multidecade ranges depending on approximations.)

At 100B/sec: seconds \approx 31.755e7 sec \approx 10.07 years.

3) P!2vR7@qM4\$kZ1

Length (L) = 14

Charset size (N) = 95

Entropy = $14 \times \log (95) \approx 14 \times 6.569855 = 91.98$ bits

Number of possibilities = 95^{1} ■ ≈ 6.6902×10^{2} ■. Average guesses ≈ 3.3451×10^{2} ■.

At 100M/sec: seconds $\approx 3.3451e27 / 1e8 = 3.3451e19 \sec \approx 1.06 \times 10^{12} \text{ years} \ (\approx 1.06 \text{ trillion years}).$

At 10B/sec: seconds \approx 3.3451e17 sec \approx **1.06×10^10** years (\approx 10.6 billion years).

At 100B/sec: seconds $\approx 3.3451e16$ sec $\approx 1.06 \times 10^9$ years (≈ 1.06 billion years).

Notes & Caveats

These are *brute-force* estimates. Attacks like dictionary/hybrid can be much faster on passwords containing real words or predictable patterns. Practical account security benefits greatly from rate-limiting, account lockouts, and multi-factor authentication (MFA). If you want more precise numbers, I can recalculate using different charset sizes or attacker speeds (e.g., 1e9, 1e11, 1e12 guesses/sec).