hhu,

Übung 10

Datenbanken: Eine Einführung

Funktionale Abhängigkeiten

Funktionale Abhängigkeit (FD)

- Abhängigkeit zwischen Attributmengen einer Relation
- Notation $\alpha \to \beta$, wobei α und β Attributmengen
 - \blacksquare zB: $PLZ \rightarrow Ort$
 - **z**B: $AB \rightarrow C$ (keine Mengenklammern oder Kommata!)
- Damit eine FD gilt, muss in <u>jeder</u> Ausprägung muss <u>für alle</u> Tupel gelten: Wenn die Werte in α gleich sind, dann müssen die Werte in β gleich sein
- Eine FD gilt nicht, wenn in <u>einer Ausprägung zwei</u> Tupel existieren, sodass beide in α gleiche Werte haben, aber unterschiedliche Werte in β

Ableitungsregeln

aus einer FD-Menge lassen sich mit Hilfe von Ableitungsregeln andere FDs herleiten.

Aufgabe Abhängigkeit herleiten wiederholte Anwendung von Ableitungsregeln

Aufgabe Gegenbeispiel erstellen

- 1. gegebene FD verletzen
- 2. keine andere FD aus F verletzen

Hüllen

Hülle einer FD-Menge *F*:

• F^+ = Menge aller FDs, die sich aus F ableiten lassen

Hülle einer Attributmenge bzgl. einer FD-Menge:

- X_F^* = Menge aller Attribute, die sich aus der Attributmenge X mithilfe von FDs aus F ableiten lassen.
- Iterative Methode zur Berechnung:
 - $X^0 = X$
 - $X^{i+1} = X^i \cup \{A \mid \exists Y \to Z \in F \ mit \ Y \subseteq X^i \ und \ A \in Z\}$
 - X* erreicht, wenn sich die Menge nicht mehr vergrößert

Membership-Problem

- Eine FD X → Y lässt sich aus der FD Menge F herleiten genau dann, wenn Y in der Hülle von X bzgl. F enthalten ist.
- Also: $X \to Y \in F^+ \iff Y \subseteq X_F^*$

Aufgabe Membership-Problem

- 1. Hülle von linker Attributmenge berechen
- 2. Prüfen, ob rechte Attributmenge enthalten

Schlüssel

Gegeben eine Relation R mit FD-Menge F.

- Eine Attributmenge X erfüllt die Schlüsseleigenschaft, wenn alle Attribute von R funktional von X abhängen.
 - d.h. $X \to A \in F^+$ für alle Attribute A in R, also $A \in X_F^*$ für alle Attribute A in R

Kandidatenschlüssel

- erfüllt Schlüsseleigenschaft
- ist minimal d.h. es kann kein Attribut aus X entfernt werden, ohne dass die Schlüsseleigenschaft verletzt wird

Aufgabe Erkennen, ob Schlüssel

- 1. Hülle berechnen
- 2. Prüfen, ob alle Attribute drin sind
- 3. ggf. Minimalität prüfen

Achtung: Nicht Anzahl Attribute zählen! Entscheidung komplett unabhängig von anderen Kandidatenschlüsseln!

Superschlüssel

- erfüllt Schlüsseleigenschaft (nicht notwendigerweise minimal)
- Erinnerung Ableitungsregeln R2: $X \to R \models XY \to R$, d.h. jede Obermenge erfüllt ebenfalls Schlüsseleigenschaft

4 hhu.de