Пемма (Лебега о покрытии). X - компактное метрическое пространство Любые открытые покрытия $\{U_{\alpha}\}$ пространства X

$$\exists \delta > 0: \ \forall A \subset X, \ diamA < \delta \ \exists \alpha \ A \subset U_{\alpha}$$

Доказатель ство. X - метрическое $\implies \forall b \in X \; \exists r_b > 0: \; \exists \alpha: \; D_{r_b}(b) \subset U_{\alpha}$

$$\left\{D_{\frac{r_b}{2}}
ight\}$$
 - окрытое покрытие пространства X

$$X$$
 - компактное $\implies \exists b_1,\dots,b_n:\ X=\bigcup_{i=1}^n D_{\frac{r_{b_i}}{2}}(b_i)$

$$\delta \coloneqq \min\!\left\{\tfrac{r_{b_i}}{2}\right\}$$

Пусть $a \in A \; \exists i: \; a \in D_{\frac{r_{b_i}}{2}}(b_i)$ $\forall \subset D_{r_{b_i}}(b_i)$?

$$\forall c \in A \ \rho(c, b_i) \le \rho(c, a) + \rho(a, b_i) < \delta + \frac{r_{b_i}}{2} \le r_{b_i} \implies c \in D_{r_{b_i}}(b_i)$$
$$A \subset D_{r_{b_i}}(b_i) \subset U_{\alpha}$$

Теорема. При n>1 сфера S^n односвязна

Доказатель ство. Пусть $S^n \subset \mathbb{R}^{n+1}: \ \sum_{i=1}^n x_i^2 = 1$

$$x_0 = (1, 0, \dots, 0)$$

Пусть $u:\ I o S^n$ - петля с началом в точке x_0

1°. $u(I) \neq S^n \implies \exists N \in S^n \setminus u(I)$ Пусть $S_{p_N}: S^n \setminus N \to \mathbb{R}^n$ - стереографическая проекция с центром в точке N

$$\frac{|t|}{1} = \frac{|x|}{1 - x_{n+1}}$$

$$t=(t_1,\ldots,t_n)=rac{1}{1-x_{n+1}}(x_1,\ldots,x_n)$$
 - гомеморфизм

 $(S_{p_N}\circ u)$ - петля в \mathbb{R}^n с началом в точке $(1,0,\dots,0)$ \Longrightarrow \exists гомотопия h_t : $h_0=S_{p_N}\circ u,\ h_1=e_{x_0}$ $(S_{p_N})^{-1}\circ h_t$ - гомотопия, соединяющая u с e_{x_0}

 $2^{\circ}\ u(I)=S^{n}.$ Покроем сферу S^{n} открытыми полусферами $\{U_{\alpha}\}$

$$u:I o S^n$$
 непр $\implies \{u^{-1}(U_lpha\}$ - открытое покрытие отрезка I

I - компактное метр-ое $\Longrightarrow \exists$ разбиение $(t_0,t_1,\ldots,t_n): u([t_{i-1},t_i])\subset U_{\alpha}$ $u_i\coloneqq u|_{[t_{i-1},t_i]}$ - путь в $U_{\alpha}\neq S^n\Longrightarrow \exists N\in S^n\setminus U_{\alpha}, N\notin u_i[t_{i-1},t_i]\Longrightarrow S_{p_N}\circ u_i$ - путь в $\mathbb{R}^n\Longrightarrow$ он гомотопен линейному пути $\Longrightarrow S_{p_N}^{-1}$ заменяет путь u_i гомотопным ему путем \widetilde{u}_i $\Longrightarrow u=u_1u_2\ldots u_k\simeq \widetilde{u_1}\widetilde{u_2}\ldots\widetilde{u_n}=:\widetilde{u}$

 $\widetilde{u}(I)$ - объеденение дуг k окружностей $\implies \widetilde{u}(I) \neq S^n$ по 1° $\widetilde{u} \simeq e_{x_0} \implies u \simeq e_{x_0}$

 $3амечание. S^1$ не односвязна

Теорема (Критерий односвязности). Пусть Х линейно связано: следующие утверждения равносильны:

- 1. X односвязно, m.e. любая nemля в X c началом в ommeченной moчке x_0 гомоmoпна e_{x_0}
- $2.\,\, \mathit{Любая}\,\, nemля\,\, в\,\, X\,\, свободно\,\, гомотопна\,\, нулю$
- 3. любое непрерывное отображение $f:S^1 o X$ продолжается до непрерывного отображения $D^2 o X$
- 4. Любые два пути с одинаковыми началами и концами гомотопны как пути

Доказательство. 1 \implies 2? - очевидно по определению связанной гомотопии

 $2 \implies 3: \Pi$ усть $u: S^1 \to X$ - петля в X.

Существует гомотопия $H:S^1 imes I o X$

K - конус

 $pr_b: K o D^2$ - проекция на основанипе - гомеоморфизм

$$\implies \overline{H} \circ pr_b^{-1}: D^2 \to X$$

$$(\overline{H} \circ pr_b^{-1})|_{S^1 \times 0} = \overline{H}|_{S^1 \times 0} = H|_{S^1 \times 0} = f$$

по $3 \exists \overline{H}: D^2 \to X: \overline{H}|_{s_1} = s_0 \overline{s_1}$

 $\implies \overline{H} \circ pr$ - искомая гомотопия

 $4\implies 1$: т.к. петля u с началом в точке x_0 и петля e_{x_0} - частный случай пустей с общим началом и концом

Накрытия

Определение. Накрытием топологического пространства B называется непрерывное отображение p:XB, которое сюрьективно и $\forall b \in B \; \exists \;$ окрестность $U_b \subset B$ этой точки, для которой $p^{-1}(U_b) = \bigcup_{\alpha} V_{\alpha}, \; \forall \alpha.$ V_{α} - открыто в $X, \; p|_{V_{\alpha}}: \; V_{\alpha} \to U_b$ - гомеоморфизм и $V_{\alpha} \cap V_{\beta} = \varnothing$, если $\alpha \neq \beta$.

X - называется пространством накрытия. B - база накрытия. p - проекция накрытия