一、选择题:

1. 如图所示,在真空中半径分别为 R 和 2R 的两个同心球面,其上分别均 匀地带有电荷+q 和-3q. 今将一电荷为+Q的带电粒子从内球面处由静止 释放,则该粒子到达外球面时的动能为:

- (D) $\frac{3Qq}{8\pi\varepsilon_0 R}$.
- 2. 真空中的细导线弯成半径为 R 的半圆形,通过的电流为 I,则圆心处的磁感应强度的大小为
 - (A) $\frac{\mu_0}{4\pi} \frac{1}{R}.$
- (B) $\frac{\mu_0}{2\pi} \frac{1}{R}$.
- (D) $\frac{\mu_0}{4} \frac{1}{R}$.
- 3. 有一"无限大"带正电荷的平面,若设平面所在处为电 势零点,取x轴垂直带电平面,原点在带电平面上,则其 周围空间各点电势 U 随距离平面的位置坐标 x 变化的关系 曲线为: 「

4. 在电荷为-Q的点电荷A的静电场中,将另一电荷为q的点电荷 B 从 a 点移到 b 点. a、b 两点距离点电荷 A 的距 离分别为 r_1 和 r_2 ,如图所示.则移动过程中电场力做的功为

(B)
$$\frac{qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2} \right).$$

(C)
$$\frac{-qQ}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$$
. (D) $\frac{-qQ}{4\pi\varepsilon_0(r_2 - r_1)}$

(D)
$$\frac{-qQ}{4\pi\varepsilon_0(r_2-r_1)}$$

5. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可 看出:

- (B) $E_A < E_B < E_C$, $U_A < U_B < U_C$.
- (C) $E_A > E_B > E_C$, $U_A < U_B < U_C$.
- (D) $E_A < E_B < E_C$, $U_A > U_B > U_C$. 1

6. 磁场由沿空心长圆筒形导体的均匀分布的电 流产生,圆筒半径为R,x坐标轴垂直圆筒轴线, 原点在中心轴线上.图(A)~(E)哪一条曲线表示 B -x 的关系?

	f个半径为 R 的机					牟相互垂耳	直放置.	电流 I
(A)		(B) $\frac{\mu_0 I}{4R}$.					\bigcap_{i}	
(C)	$\frac{\sqrt{2}\mu_0 I}{4R}.$	(D) $\frac{\mu_0 I}{R}$.				\triangleleft	<i>b</i>	
(E)	$\frac{\sqrt{2}\mu_0I}{8R}$.	[]				<u> </u>	`
8. 顺磁物]质的磁导率:							
` ′	比真空的磁导率	` '			F	7		
(C) j	远小于真空的磁	导举. (D):	远大十真空	的磁导率.	L			
点 O 转动 (A) (B) (C)	长载流导线 ab 和 并能靠近或离 顺时针转动同时 顺时针转动同时 顺时针转动同时 逆时针转动同时 逆时针转动同时	所 ab. 当电流 け离开 ab. け靠近 ab. け离开 ab.				<u>c</u>	$\frac{b \mid \bigwedge I}{a \mid O}$	
(D)	进 的针 转列内的	可靠 <i>U ab</i> .	L	J				
一处用导: 匀磁场中 图面向里	线围成的回路(两 线沿半径方向相 ,回路平面垂直 ,其大小随时间 感应电流的流向	连),放在轴线通 于柱轴,如图所 减小,则(A)→(通过 <i>O</i> 点的 示. 如磁场]圆柱形均 方向垂直	O. B) (A)	(O.)	(B)
[]				O. T) (C)	O.	(D)
二、填空	题:							
若把电介	.容器 1 和 2,串 质充入电容器 (填增大、	2 中,则电容器						的电荷
以致可以 ×10 ⁻⁹ N· 感应强度		空间内场是均匀 负方向;当此线	的.当此线 圈的 <i>p_m与 y</i>	题的 pm 与	z 轴平行时,原	斤受磁力 矩	巨大小为	M = 5
大小为	,方	向为	·					
	·行的"无限大" 、 <i>B、C、D</i> 三个			密度都是十	σ ,如图所	$A \mid B$	$\begin{vmatrix} \sigma + \sigma \end{vmatrix}$	7
$E_A = \underline{\hspace{1cm}}$,	$E_B = \underline{\hspace{1cm}}$				$A \mid B$	$C \mid C \mid$	D
$E_C = \underline{\hspace{1cm}}$, , E	$\overline{c}_D = \underline{}$	(设	方向向右为	正).			

4. 一个带电荷 q 、半径为 R 的金属球壳,壳内是真空,壳外是介电常量为 ε 的无限大各向同性均匀电介质,则此球壳的电势 $U=$
5. 若在磁感应强度 $B = 0.02T$ 的均匀磁场中,一电子沿着半径 $R = 1.00$ cm 的圆周运动,则这中子的 对象
则该电子的动能 $E_K =$ eV. 6. 金属圆板在均匀磁场中以角速度 ω 绕中心轴旋转,均匀磁场的方向平行
于转轴,如图所示. 这时板中由中心至 $\wedge ar{B}$
边缘点的总感应电动势的大小,方向
7. 自感系数 $L=0.3$ H 的螺线管中通以 $I=8$ A 的电流时,螺线管存储的磁场
能量 W =
9. 有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴 <i>OO'</i> 上,则直导线与矩形线圈间的互感系数为
10. 电子质量 m ,电荷 e ,以速度 \bar{v} 飞入磁感应强度为 \bar{B} 的匀强磁场中, \bar{v} 与 \bar{B} 的夹角为 θ ,电子作螺旋运动,螺旋线的螺距 $h=$,半 径 $R=$

三、计算题

中的感应电动势.

1.图中虚线所示为一立方形的高斯面,已知空间的场强分布为: $E_x = bx$, $E_y = 0$, $E_z = 0$. 高斯面边长 a = 0.1 m,常量 b = 1000 N/(C • m). 试求该闭合面中包含的净电荷.

- 2. 假想从无限远处陆续移来微量电荷使一半径为 R 的导体球带电.
 - (1) 当球上已带有电荷 q 时,再将一个电荷元 dq 从无限远处移到球上的过程中,外力作多少功?
 - (2) 使球上电荷从零开始增加到 Q 的过程中,外力共作多少功?
- 3. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为 W_0 . 若断开电源,使其所带电荷保持不变,并把它浸没在相对介电常量为 ε 。的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?
- 4.一面积为 S 的单匝平面线圈,在磁感应强度 $\bar{B}=B_0\sin\omega t\bar{k}$ 的均匀外磁场中以恒定角速度 ω 转动,转轴与线圈共面且与 \bar{B} 垂直(\bar{k} 为沿 z 轴的单位矢量)。设 t=0 时线圈的正法向与 \bar{k} 同方向,求线圈
- 5.一圆柱形电容器,外筒的半径为 2 cm,内柱的半径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为 E_0 = 200 KV/cm. 试求该电容器可能承受的最高电压. (自然对数的底 e=2.7183)

6. 一根半径为 R 的长直导线载有电流 I,作一宽为 R、长为 I 的假想平面 S,如图所示。若假想平面 S 可在导线直径与轴 OO' 所确定的平面内离开 OO' 轴移动至远处. 试求当通过 S 面的磁通量最大时 S 平面的位置(设直导线内电流分布是均匀的).

参考答案

一、选择题:

- 1. (C) 2. (D) 3.(B) 4. (C) 5. (D) 6. (B) 7.(A) 8. (B) 9. (D) 10. (B)
- 二、填空题:
- 1. 增大 , 增大
- 2.0.5 T, y 轴正方向

参考解:

$$\vec{M} = \vec{p}_m \times \vec{B}$$
, 由 \vec{p}_m 平行 y 轴时 $M = 0$ 可知 \vec{B} 必与 y 轴平行,

$$\bar{p}_m$$
沿 z 轴时 M 最大,故有 $B = \frac{M}{p_m} = 0.5$ T

由 $\vec{M} = \vec{p}_m \times \vec{B}$ 定出 \vec{B} 沿y轴正方向.

3.
$$-3\sigma/(2\varepsilon_0)$$
, $-\sigma/(2\varepsilon_0)$, $\sigma/(2\varepsilon_0)$, $3\sigma/(2\varepsilon_0)$

4.
$$\frac{q}{4\pi \varepsilon R}$$

5. 3.51×10^3

参考解:
$$E_K = \frac{1}{2}mv^2 = q^2B^2R^2/(2m) = 5.62 \times 10^{-16} \text{ J} = 3.51 \times 10^3 \text{ eV}$$

- 6. 相同(或 $\frac{1}{2}B\omega R^2$) , 沿曲线由中心向外
- 7. 9.6 J
- 9. 0
- 10. $2\pi m v \cos \theta / (eB)$, $m v \sin \theta / (eB)$

三、计算题

1. 解:设闭合面内包含净电荷为Q. 因场强只有x分量不为零,故只是二个垂直于x轴的平面上电场强度通量不为零. 由高斯定理得:

$$-E_1S_1 + E_2S_2 = Q / \varepsilon_0$$
 ($S_1 = S_2 = S$)
則 $Q = \varepsilon_0 S(E_2 - E_1) = \varepsilon_0 Sb(x_2 - x_1)$
 $= \varepsilon_0 ba^2 (2a - a) = \varepsilon_0 ba^3 = 8.85 \times 10^{-12} \text{ C}$

2.解: (1) 令无限远处电势为零,则带电荷为q 的导体球,其电势为

$$U = \frac{q}{4\pi\varepsilon_0 R}$$

将 dq 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电

势能
$$dA = dW = \frac{q}{4\pi\varepsilon_0 R} dq$$

(2) 带电球体的电荷从零增加到 Q 的过程中,外力作功为

$$A = \int dA = \int_{0}^{Q} \frac{q \, dq}{4\pi\varepsilon_{0}R} = \frac{Q^{2}}{8\pi\varepsilon_{0}R}$$

3.解:因为所带电荷保持不变,故电场中各点的电位移矢量 \bar{D} 保持不变,

$$\nabla = \frac{1}{2}DE = \frac{1}{2\varepsilon_0\varepsilon_r}D^2 = \frac{1}{\varepsilon_r}\frac{1}{2\varepsilon_0}D_0^2 = \frac{w_0}{\varepsilon_r}$$

因为介质均匀,::电场总能量 $W = W_0 / \varepsilon_r$

4.#: $\Phi = BS \cos \omega t = B_0 S \sin \omega t \cos \omega t$

$$d\mathbf{\Phi}/dt = B_0 S(-\sin^2 \omega t + \cos^2 \omega t)\omega = B_0 S\omega \cos(2\omega t)$$

$$\mathbf{E}_i = -B_0 S\omega \cos(2\omega t)$$

5.解:设圆柱形电容器单位长度上带有电荷为 λ ,则电容器两极板之间的场强分布为 $E=\lambda/(2\pi\varepsilon r)$

设电容器内外两极板半径分别为 ro, R, 则极板间电压为

$$U = \int_{r}^{R} \vec{E} \cdot d\vec{r} = \int_{r}^{R} \frac{\lambda}{2\pi\varepsilon r} dr = \frac{\lambda}{2\pi\varepsilon} \ln \frac{R}{r_0}$$

电介质中场强最大处在内柱面上,当这里场强达到 E_0 时电容器击穿,这时应有

$$\lambda = 2\pi\varepsilon r_0 E_0$$

$$U = r_0 E_0 \ln \frac{R}{r_0}$$

适当选择 r_0 的值,可使 U 有极大值,即令

$$dU/dr_0 = E_0 \ln(R/r_0) - E_0 = 0$$

得

$$r_0 = R/e$$

显然有 $\frac{\mathrm{d}^2 U}{\mathrm{d} {r_0}^2} < 0$, 故当 $r_0 = R/e$ 时电容器可承受最高的电压 $U_{\mathrm{max}} = R E_0/e = 147 \,\mathrm{kV}$

6.解:设x为假想平面里面的一边与对称中心轴线距离,

$$\begin{split} \varPhi &= \int B \operatorname{d} S = \int\limits_{x}^{R} B_{1} l \operatorname{d} r + \int\limits_{R}^{x+R} B_{2} l \operatorname{d} r \;, \\ \operatorname{d} S &= l \operatorname{d} r \\ B_{1} &= \frac{\mu_{0} I r}{2\pi R^{2}} \qquad \qquad (导线内) \\ B_{2} &= \frac{\mu_{0} I}{2\pi r} \qquad \qquad (导线外) \\ \varPhi &= \frac{\mu_{0} I l}{4\pi R^{2}} (R^{2} - x^{2}) + \frac{\mu_{0} I l}{2\pi} \ln \frac{x+R}{R} \end{split}$$

令 d Φ / dx = 0, 得 Φ 最大时 $x = \frac{1}{2}(\sqrt{5} - 1)R$