Cours Algorithmique des systèmes parallèles et distribués Exercices

Série 1 Modélisation, programmation et vérification en TLA⁺ par Alessio Coltellacci et Dominique Méry 23 avril 2025

Modélisation et vérification avec TLA⁺

Exercice 1 $(disapp_td1_ex1.tla)$

Question 1.1 Modéliser sous forme d'un module TLA⁺ le réseau de Petri de la figure 1. Donner une instanciation possible des constantes. Préciser les conditions initiales correspondant à un système avec cinq (5) processeurs et deux (2) bus.

Question 1.2 On désire analyser le comportement de ce réseau et, pour cela, on souhaite savoir si la place p5 contiendra au moins un jeton. Expliquer comment on doit procéder pour obtenir une réponse en un temps fini. Préciser le message donné par le système TLAPS. naserie

Question 1.3 Est-ce que le réseau peut atteindre un point de deadlock?

Question 1.4 Enoncez trois propriétés de sûreté de ce réseau établissant une relation entre au moins deux places.

Exercice 2 (disapp_td1_ex2.tla)

Un réseau de Petri est un uple R=(S,T,F,K,M,W) tel que

- S est l'ensemble (fini) des places.
- T est l'ensemble (fini) des transitions.
- $-S \cap T = \emptyset$
- F est la relation du fl \hat{O} t d'exécution : $F \subseteq S \times T \cup T \times S$
- K représente la capacité de chaque place : $K \in S \rightarrow Nat$.
- M représente le initial marquage chaque place :
 - $M \in S \rightarrow Nat \ et \ v\'erifie \ la \ condition \ orall \ s \in S : M(s) \leq K(s).$
- W représente le poids de chaque $arc:W\in F o Nat$
- un marquage M pour R est une fonction de S dans Nat :
 - $M \in S \rightarrow Nat \ et \ respectant \ la \ condition \ \forall \ s \in S : M(s) < K(s)$.
- une transition t de T est activable à partir de M un marquage de R si
 - 1. $\forall s \in \{s' \in S \mid (s',t) \in F\} : M(s) \ge W(s,t)$.
 - 2. $\forall s \in \{s' \in S \mid (t,s') \in F\} : M(s) \leq K(s) W(s,t)$.
- Pour chaque transition t de T, Pre(t) est l'ensemble des places conduisant à t et Post(t) est l'ensemble des places pointées par un lien depuis t: $Pre(t) = \{ s' \in S : (s',t) \in F \}$ et $Post(t) = \{ s' \in S : (t,s') \in F \}$

Fig. 14. A Petri-net model of a multiprocessor system, where tokens in p_1 represent active processors, p_2 available buses, p_3 , p_4 , and p_5 processors waiting for, having access to, queued for common memories, respectively.

FIGURE 1 – Réseau de Petri

— Soit une transition t de T activable à partir de M un marquage de R:

1.
$$\forall s \in \{s' \in S \mid (s',t) \in F\} : M(s) \ge W(s,t)$$
.
2. $\forall s \in \{s' \in S \mid (t,s') \in F\} : M(s) \le K(s) - W(s,t)$.

— un nouveau marquage M' est défini à partir de M par : ' \forall $s \in S$,

$$M'(s) = \begin{cases} M(s) - W(s,T), \text{ si } s \in PRE(T) - POST(T) \\ M(s) + W(T,s), \text{ si } s \in POST(T) - PRE(T) \\ M(s) - W(s,T) + W(T,s), \text{ si } s \in PRE(T) \cap POST(T) \\ M(s), \text{ sinon} \end{cases}$$

On considère le réseau suivant :

- MODULE petri10

EXTENDS Naturals, TLC CONSTANTS Places, N, Q, B

VARIABLES M

 $Next \triangleq t1 \lor t2 \lor t3 \lor t4$

Question 2.1 Traduire ce réseau en un module TLA⁺ dont le squelette est donné dans le texte. Pour cela, on donnera la définition des quatre transitions t1, t2, t3, t4. On ne tiendra pas compte de la capacité des places : les places ont une capacité d'au plus un jeton, sauf la place pi qui peut contenir N jetons, la place p5 peut contenir au plus B jetons et la place po peut contenir au plus Q.

Question 2.2 Donner une relation liant les places po,p1,p3,p5,pi et la valeur N. Justifiez votre réponse.

Question 2.3 Si on suppose que la place po peut contenir au plus Q jetons, donnez une condition sur Q pour que tous les jetons de pi soient consommés un jour. Justifiez votre réponse.

Question 2.4 Expliquez ce que modélise ce réseau de Petri.

Cours Algorithmique des systèmes parallèles et distribués Exercices

Série : PlusCal pour la programmation répartie ou concurrente (II) par Alessio Coltellacci et Dominique Méry 23 avril 2025

$\textbf{Exercice 1} \ plus calappas pd 22.tla$

====

 $Compléter\ le\ module\ plus calappas pd 22.t la\ en\ proposant\ une\ assertion\ Q1\ correcte.$

```
----- MODULE pluscalappaspd22 ------
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex1{
variables x = 0;
process (one = 1)
variables u;
 A:
   u := x+1;
 AB:
   x := u;
   x := x +1;
};
process (two = 2)
{
 C:
   x := x - 1;
   assert E2;
} ;
end algorithm;
*)
```

Exercice 2 pluscalappaspd33.tla

Compléter le module plus calappaspd33.tla en proposant deux assertions R1 et R2 correctes.

```
----- MODULE pluscalappaspd33 -----
EXTENDS Integers, Sequences, TLC, FiniteSets
(*
--wf
--algorithm ex3{
variables x = 0, y = 2;
process (one = 1)
variable u;
 A:
 u := x+1;
 AB:
   x := u;
 В:
  y := y -1;
 C:
 assert E31;
process (two = 2)
 D:
  x := x - 1;
 E:
   y := y+2;
  x := x+2;
   assert E32;
};
}
end algorithm;
*)
```

Exercice 3 qquestion 1.tla voir Figure 2

====

On considère un système formé de deux processus one et two assurant les calculs suivants :

- one : le processus envoie les entiers pairs entre 0 et N via un canal de communication à two.
- two: le processus reçoit les valeurs envoyées par one et ajoute la valeur reçue à la variable s.
- three : le processus fait un calcul de la somme des entiers de 0 à N/4. On suppose que N est divisible par 4..

Question 3.1 Afin de vérifier que le calcul effectué par les deux processus est correct, on décide de vérifier que, quand tous les processus ont terminé la variable result contient la somme des entiers pairs entre 0 et N.

En utilisant le fichier question 1 a.tla, ajouter une propriété de sûreté safety 1 qui énonce la correction de cet algorithme.

Question 3.2 On décide de calculer avec le processus three la somme des entiers de 0 à N%4. Proposer une propriété à vérifier afin de monter que le calcul du processus two est correct.

Exercice 4 qquestion2a.tla voir Figure 3

Soit le petit module qquestion2a.tla.

Donner les deux expressions A1 et A2 à placer dans les parties assert afin que la vérification ne détecte pas d'erreurs dans cette assertion. Par exemple, on pourrait proposer $(x=1 \lor x=2) \land (y=0 \lor y=5)$ mais il vous appartient de simuler le programme pluscal pour vérifier que jamais l'assertion que vous proposerez ne soit fausse. La solution TRUE fonctionne mais n'est pas autorisée et les expressions demandées doivent contenir une occurence de x au moins et une occurence de y.

Exercice 5 petri2023.tla

La figure 4 est un réseau de Petri modélisant le système des philosophes qui mangent des spaghetti.

Question 5.1 Traduire le réseau de Petri sous la forme d'un module TLA, en utilisant le fichier petri2023.tla. En particulier, il faut compléter l'initialisation.

Question 5.2 Est-ce que le réseau peut atteindre un point de deadlock? Expliquez votre réponse.

Question 5.3 Proposer une propriété TLA pour répondre à la question suivante, en donnant des explications.

Est-ce que deux philosophes voisins peuvent manger en même temps?

```
Listing 1 – qquestion1.tla
```

```
----- MODULE question1a -----
EXTENDS Integers, Sequences, TLC, FiniteSets
CONSTANTS N
ASSUME N \% 4 = 0
--algorithm algo {
variable
        canal = <<>>;
        witness = -1;
        result = -1;
   Macro for sending primitive: sending a message m on the fifo channel chan
macro Send(m, chan) {
    chan := Append(chan, m);
  };
\* Macro for receiving primitive: receiving
a message m on the fifo channel chan
macro Recv(v, chan) {
    await chan # <<>>;
    v := Head(chan);
    chan := Tail(chan);
  };
process (one = 1)
variable
         x = 0;
{
        w: while (x \le N)  {
      a:x := x + 1;
      b: if (x \% 4 = 0) {
           c: Send(x, canal);
       };
};
d: Send(-1,canal);
};
process (two = 2)
variable s = 0, mes;
          w:while (TRUE) {
          a: if (canal # <<>>) {
             b:Recv(mes, canal);
                c:if (mes \# -1) \{ d: s := s + mes; \}
                 else {e: goto f;};
          };
          };
          f: print <<s>>;
          g: result := s;
};
process (three = 3)
variable
         i = 0;
         s = 0;
         b = N \setminus div 4;
        w: while (i \le b) {
    a:i := i + 1;
        b: s := s + i;
```

```
Listing 2 – qquestion2a.tla
```

----- MODULE qquestion2a ------EXTENDS Integers, Sequences, TLC, FiniteSets

```
(*
--wf
--algorithm ex3{
variables x = 0, y = 8;
process (one = 1)
 A:
  x := x + 1;
 y := y -1; C:
      assert A1;
};
process (two = 2)
 D:
   x := x - 1;
   y := y + 2;
   x := x+2;
   assert A2;
};
end algorithm;
```

*) ====

 $FIGURE\ 3-Programme$

FIGURE 4 – Réseau de Petri
