

www.sites.google.com/site/faresfergani

<u>السنة الدراسية : 2015/2014</u>

المحتوى المفاهيمي :

مفاهيم أساسية في الكيمياء العضوية

• تعريف المركبات العضوية:

- تشمل المركبات العضوية كل المركبات التي مصدر ها كائن حي بالإضافة إلى بعض المركبات التي تصنع في المخابر و لها نفس ميزات المركبات ذات المصدر كان حي .
 - تتميز المركبات العضوية بعدة مميزات أهمها:
 - كل المركبات العضوية هي مركبات جزيئية .
- كل المواد العضوية قابلة للإحتراق بالأكسجين أو الهواء، فتعطي غاز ثاني أكسيد الكربون و بخار الماء ، كما تعطى موادا أخرى أحيانا مثل غاز الكلور ، غاز الأزوت
- كل المركبات العضوية تحتوي على عنصر الكربون ، كما يدخل في تركيبها أيضا من العناصر، حسب درجتها في تكوين هذه المشتقات ، و أهم هذه العناصر نذكر : الهيدروجين، الأوكسجين ، الأزوت

أصناف المركبات العضوية:

نظرا لكثرة عدد المركبات العضوية، و الذي يتزايد يوما بعد يوم، فقد قسمت لتسهيل دراستها، إلى فئات رئيسية حسب تركيبها العنصري و أهم هذه الفئات هي:

الفحوم الهيدروجينية:

هي المركبات العضوية التي تحتوي فقط على عنصري الكربون و الهيدروجين صيغتها الجزيئية العامة هي :

 C_xH_y

- المركبات العضوية الأكسجينية:
- هي المركبات التي تحتوي على عناصر الكربون و الهيدروجين ، و الأكسجين صيغتها الجزيئية العامة هي :

 $C_xH_yO_z$

المركبات العضوية الأزوتية:

- هي المركبات العضوية الآزوتية التي تحتوي على عناصر الكربون ، الأكسجين ، الآزوت ، صيغتها الجزيئية العامة هي:

 $C_x H_y N_z \\$

● الألكانات:

- الألكانات هي فحوم هيدر وجينية مشبعة ، ذات سلسلة كربونية خطية (غير متفرعة) ، صيغتها الجزيئية العامة تكون من الشكل :

 C_nH_{2n+2}

.... C_3H_8 ، C_2H_6 ، CH_4 ، مثل: n عدد طبیعی ، مثل: n

- يشتق إسم الألكان ذو السلسلة الكربونية الخطية (غير المتفرعة) بإضافة الحرفين " ان " إلى الإسم الموافق لعدد ذرات الكربون التي يحتوي عليها الجزيء باللغة اليونانية، كما مبين في الجدول التالي:

الإسم	الصيغة الجزيئية	ما يوافق (n) باليونانية	n
الميثان	CH_4	میث	1
الإيثان	C_2H_6	ایث	2
البروبان	C_3H_8	برب	3
البوتان	C_4H_{10}	بوت	4
البنتان	C_5H_{12}	بنت	5
الهكسان	C_6H_{14}	هکسـ	6
الهبتان	C_7H_{16}	هبت	7
الأوكتان	C_8H_{18}	أوكت	8
النونان	C_9H_{20}	نون	9
الديكان	$C_{10}H_{22}$	دیک	10

- عند نزع ذرة هيدروجين واحدة من جزيء ألكان نحصل على ما يسمى بالجذر الألكيلي ، و هذه الجذور لا توجد بشكل طليق، و إنما نجدها مرتبطة بالسلسلة الكربونية لجزيء المركب العضوي ، يرمز للجذر الألكيلي بـ: R و صيغته الجزيئية العامة من الشكل :

(اختصار R - او C_nH_{2n+1} -

- يشتق إسم الجذر الألكيلي من الألكان الموافق بنزع النهاية " ان " من اسم الألكان و تعويضها بـ " يل " .

أمثلة:

(C _ن H _{1+ن})	الجذر الألكيلي (- $_{2}$	$C_{\dot{0}}H_{2+\dot{0}}$	$_2$ الألكان
الصيغة	الإسم	الصيغة	الإسم
CH ₃ -	الميثيل	CH_4	الميثان
C_2H_5 -	الإيثيل	C_2H_6	الإيثان
C ₃ H ₇ -	البروبيل	C_3H_8	البروبان

- لتسمية الألكانات في حالة سلسلة كربونية متفرعة نتبع الخطوات التالية:

نختار أطول سلسلة كربونية و التي تعتبر السلسلة الرئيسية .

نرقم هذه السلسلة من الطرف إلى الطرف ، ابتدءا من ذرة الكربون الأقرب إلى أول تفرع .

• نكتب إسم الجذر الألكيلي (أو الجذور الألكيلية) المرتبط بالسلسة الكربونية ، و نسبقه برقم (أو أرقام) ذرة الكربون المرتبط بها ، (ترتب الجذور وفق ترتيب الحروف الأبجدية اللاتينية في حالة وجود عدة جذور) ، بعد ذلك نكتب إسم الألكان (الخطي) الذي يكون فيه عد ذرات الكربون مساوي لعدد ذرات كربون السلسلة الرئيسية (الأطول)

• إذا كان يتصل بالسلسلة الكربونية المرقمة عدة جذور ألكيلية متشابهة نستعمل كلمة " ثنائي" في حالة جذرين متشابهين و كلمة " ثلاثي" في حالة ثلاث عناصر أو جذور متشابهة ... و هكذا.

● الكحولات:

- الكحولات هي مركبات عضوية أكسجينية تتميز بوجود مجموعة هيدروكسيل (OH -) (أو أكثر) مرتبطة بذرة كربون رباعية ، صيغتها الجزيئية العامة تكون من الشكل :

$$C_nH_{2n+1}OH$$
 أو R-OH

 $(C_nH_{2n+1}-)$: هو جذر ألكيلي صيغته العامة (R-) هو جذر

- إن مجموعة الهيدروكسيل (OH-) هي المجموعة المميزة للكحولات ، تسمى بـ المجموعة الوظيفية الكحولية .

- تسمى ذرة الكربون الحاوية على مجموعة الهيدروكسيل (OH-) (المجموعة الوظيفية) بـ الكربون الوظيفي .

- يشتق إسم الكحول أحادي الوظيفة من إسم الألكان الذي له نفس الهيكلُ الكربوني ، بإضافة المقطع (ول) ، إلى نهاية هذا الإسم ، مع إعطاء أصغر رقم ممكن للكربون الوظيفي عند ترقيم السلسلة الكربونية الأطول ، و يكون ترتيب الجذور حسب ترتيب الحروف الأبجدية اللاتينية .

- تصنف الكحو لات إلى ثلاث أصناف رئيسية حسب موقع المجموعة (OH-) في السلسلة الكربونية كما يلي : الكحو لات الأولوقية

و هي الكحو لأت التي يكون فيها الكربون الوظيفي مرتبط بذرتين هيدروجين و جذر ألكيلي واحد، أو مرتبط بثلاث ذرت هيدروجين (ذرة هيدروجين بدل الجذر الألكليلي)، ومنه فالصيغة الجزيئية العامة للكحولات الأولية تكون كما يلي :

$$\begin{array}{|c|c|c|}\hline R-\mathbf{C}H_2\mathbf{OH} & & & & H \\ & & & & R-\mathbf{C}-\mathbf{OH} \\ & & & & H \\ \end{array}$$

<u>الكحولات الثانوية :</u>

و هي الكحولات التي يكون فيها الكربون الوظيفي مرتبط بذرة هيدروجين و جذرين ألكيليين ، و منه فالصيغة الجزيئية العامة للكحولات الثانية تكون كما يلي :

$$\begin{array}{c|c} R_1 \\ R - \mathbf{C}H\mathbf{OH} \end{array} \qquad \dot{\mathbf{R}}_1 \\ R_2 - \mathbf{C} - \mathbf{OH} \\ H \end{array}$$

الكحولات الثالثية:

و هي الكحولات التي يكون فيها الكربون الوظيفي مرتبط بثلاث جذور ألكيلية ، و منه فالصيغة الجزيئية العامة للكحولات الثالثية تكون كما يلي :

$$\begin{array}{c|c} R_1 \\ R_2 - \mathbf{C} - \mathbf{OH} \\ R_3 \end{array}$$

● الأحهاض الكريوكسيلية :

- الأحماض الكربوكسيلية ، هي مركبات عضوية أكسجينية ثنائية الأكسجين ، يحتوي جزيء كل منهما على المجموعة الوظيفية التربوكسيلية .

و هذه المجموعة تكون مرتبطة في جزيء الحمض الكربوكسيلي بجذر ألكيلي -R ، ومنه تكون الصيغة الجزيئية العامة للأحماض الكربوكسيلية من الشكل:

- تسمى ذرة الكربون الحاوية على المجموعة الوظيفية الحمضية الكربوكسيلية (COOH-) بـ الكربون الوظيفي .
- يشتق إسم الحمض الكربوكسيلي من إسم الألكان الموافق له ، بإضافة المقطع (ويك) ، إلى نهاية هذا الإسم ، مع اختيار أطول سلسلة كربونية تحتوي على مجموعة الكربوكسيل ، و إعطاء الرقم (1) للكربون الوظيفي .

● الأسترات :

- الأسترات ، هي مركبات عضوية أكسجينية صيغتها الجزيئية من الشكل:

$$\begin{array}{|c|c|c|}\hline R-\mathbf{COO}-R' & \mathbf{j} & \hline R-\mathbf{C}' & \mathbf{O} \\ \hline \mathbf{O}-R' & \\ \hline \end{array}$$

- تسمى ذرة الكربون الحاوية على المجموعة الوظيفية الكربوكسيلية (-COO-) بـ الكربون الوظيفى .

- تتميز الأحماض الكربوكسيلية و الأسترات بنفس المجموعة الوظيفية و هي المجموعة الوظيفية الكربوكسيلية ، كما أن لها نفس الصيغة الجزيئية المجملة التالية:

 $C_nH_{2n}O_2$

- يتكون إسم الأستر 'R-COO-R من حدين:

الحد الأول:

يشتق من إسم الألكان الموافق للمجموعة -R-COO ، بإضافة الأحرف (وات) . مع اختيار أطول سلسلة كربونية تحتوي على مجموعة الكربوكسيل ، و إعطاء الرقم (1) للكربون الوظيفي .

الحد الثاني : نحصل عليه بكتابة إسم الجذر الألكيلي 'R .

خلاصة لتسمية بعض المركبات العضوية و أصناف الكحولات

10	9	8	7	6	5	4	3	2	1
دیک	نون	أوكت	هبت	هکسـ	بنت	بوت	بروبـ	إيث	میث
dec	non	oct	hpt	hex	pent	but	prop	éth	méth

الصيغة العامة	$C_nH_{2n}O_2$ الأستر	$\mathrm{C_nH_{2n}O_2}$ الحمض الكربوكسيلي	$C_nH_{2n+2}O$: الكحول
المجموعة الوظيفية	R-C, O-R;	R - C, O - H	H R - C - OH H
الصيغة نصف المفصلة	R - COO - R'	R – COOH	R -C H ₂ OH
التسمية	ألكانوات الألكيل	حمض الأكانويك	ألكانــ x- ول
	كحول ثالثي	كحول ثانوي	كحول أولي
أصناف الكحولات مفصلة انصا	R_1 $R_2 - \mathbf{C} - \mathbf{OH}$	$R_2 - \mathbf{C} - \mathbf{OH}$ H	H R – C – OH H
عولات نصف مفصلة	R_3	R ₁ R – C H OH	R- C H ₂ OH

<u>التمرين (1) :</u>

أكتب إسم المركبات العضوية ذات الصيغ الجزيئية نصف المفصلة التالية:

- 01) CH₃OH
- 02) $CH_3 CH_2OH$
- 03) $CH_3 CH_2 CH_2OH$
- $04) \ CH_3-CHOH-CH_3$
- 05) $CH_3 CH CH_2 CH_2OH$ CH_3
- 06) $CH_3 CH_2 COH CH_3$ CH_3
- 07) $CH_3 CH CHOH CH_2 CH_3$ CH_3
- 08) $CH_3 CH_2 CH CH CH_2OH$ $CH_2 \quad CH_3$ CH_3
- 09) CH₃ CH CH CH₂OH CH₃ CH₃
- 10) H COOH
- 11) CH₃ COOH
- 12) CH₃ CH COOH CH₃
- 13) $H COO CH_3$
- $14) \quad CH_3-COO-CH_3$
- 15) CH₃ CH COO CH₃ CH₃
- 16) $CH_3 COO CH_2 CH CH_3$ CH_3

الأجوبة :

- 01) ميثانول (كحول أوالي).
- 02) إيثانول (كحول أولى).
- 03) بروبان-1-ول (كحول أولي).
- 04) بروبان-2- ول (كحول ثانوي) .
- (05) 3- میثیل بوتانا ولی (کحوال أولی).
- 06) 2- ميثيل بوتان-2- ول (كحول ثالثي) .
- (07) 2- میثیل بنتان-3- ول (کُحول ثانوی) .
 - 08) 3- إيثيل ، 2- ميثيل بنتانــ1- ول .
 - 09) (3،2) ثنائى مىثىل بوتان-1- ول .
- 10) حمض الميثانويك أو (حمض كربوكسيلي).
- 11) حمض الإيثانويك أو (حمض كربوكسيلي).
- 12) حمض 2- ميثيل بروبانويك (حمض كربوكسيلي).
 - 13) ميثانوات الميثيل (أستر).
 - 14) إيثانوات الميثيل (أستر).
 - 15) 2- ميثيل بروبانوات الميثيل (أستر).
 - 16) إيثانوات ، 2- ميثيل بروبيل (أستر) .
 - 17) 2- ميثيل بروبانوات ، 2- ميثيل بروبيل (أستر).