

Interspeech 2025 Tutorial: Interpretability Techniques for Speech Models

Context-Mixing in Speech Transformers

Hosein Mohebbi

August 17, 2025

Rotterdam

Transformers for speech processing

Transformer

What is Context Mixing?

Measures of Context-mixing

Attention

• Attention-Norm

Diagonality

Two distinct roles

$$CAD_{h} = \int_{r=0}^{1} \frac{1}{T} \sum_{i=1}^{T} \left(\sum_{\substack{j=\max(1,\\i-r(T-1))\\i-r(T-1)}}^{\min(T,\\i+r(T-1))} A_{h}[i,j] \right) dr = \int_{r=0}^{1} D(r) dr$$

(Shim et al., 2022)

Diversity Loss

Attention → Highest

Value vectors → Lowest

Diversity loss	dev	dev-other	test	test-other
$d^{\rm A}(m,n)$	6.37	6.02	6.31	6.10
$d^{\mathbb{Q}}(m,n)$	0.53	0.59	0.54	0.55
$d^{\mathbf{K}}(m,n)$	0.57	0.61	0.61	0.58
$d^{\rm V}(m,n)$	0.13	0.14	0.13	0.14

Table 3: Attention diversity losses summed over all layers of the Conformer acoustic encoder for the baseline full-context Librispeech model.

Attention-Norm

$$C_{i,j} =$$
?

$$egin{aligned} oldsymbol{x}_1,...,oldsymbol{x}_n \ oldsymbol{q}_i^h = oldsymbol{x}_i oldsymbol{W}_Q^h + oldsymbol{b}_Q^h \ oldsymbol{k}_i^h = oldsymbol{x}_i oldsymbol{W}_K^h + oldsymbol{b}_K^h \ oldsymbol{v}_i^h = oldsymbol{x}_i oldsymbol{W}_V^h + oldsymbol{b}_V^h \end{aligned} egin{aligned} lpha_{i,j} = \operatorname{softmax}_{oldsymbol{x}_j \in \mathcal{X}} \left(oldsymbol{q}_i oldsymbol{k}_j^ op \\ oldsymbol{v}_i^h = oldsymbol{x}_i oldsymbol{W}_V^h + oldsymbol{b}_V^h \end{aligned}$$

$$oldsymbol{z}_i^h = \sum_{j=1}^n lpha_{i,j}^h oldsymbol{v}_j^h$$

$$egin{aligned} oldsymbol{z}_i &= ext{Concat}(oldsymbol{z}_i^1,...,oldsymbol{z}_i^H)oldsymbol{W}_O \ & oldsymbol{z}_i &= ext{LN}_{ ext{MHA}}(oldsymbol{z}_i+oldsymbol{x}_i) \end{aligned}$$

$$\mathcal{C}_{i,j} =$$
?

$$oldsymbol{v}_j^h \leftarrow \mathbf{0}, orall h \in H \ \mathcal{C}_{i,j} = oldsymbol{ ilde{x}}_i^{
eg j} * oldsymbol{ ilde{x}}_i$$

Let's Evaluate!

Evaluation

Controlled task: homophony in French

Elle a perdu les livres

(She lost the books)

Evaluation

Controlled task: homophony in French

Elle a perdu <u>les</u> livres

Defined Templates

Pattern	Examples of transcription	#
Det_Noun	C'est <u>le</u> septième titre de champion de Syrie de l'histoire du club Il y mène <u>une</u> vie d'études et de recherches	720
Pronoun_Verb	Chaque jour, leurs concurrents les voient sortir de pistes dont <u>ils</u> ignorent l'existence <u>On</u> y trouve une plage naturiste	257
Det_Noun_Verb	Peu après cette élimination, <u>le club</u> et Alexander se séparent à l'amiable À la fin, <u>les enfants</u> se révoltent et détruisent l'école.	23

Table 1: Examples of the extracted audios from the Common Voice corpus based on defined patterns. Last column shows the number of examples obtained. Cue and Target words are <u>underlined</u> and **bolded**, respectively.

Cue Contribution score

Target word

Cue word

Cue Contribution

Figure 1: Layer-wise cue contribution according to different analysis methods averaged over all examples for XLSR-53, trained (left) vs. randomly initialized (right).

(Mohebbi et al., 2023)

Cue Contribution

Figure 1: Layer-wise cue contribution according to different analysis methods averaged over all examples for XLSR-53, trained (left) vs. randomly initialized (right).

Figure 2: Layer-wise cue contribution according to different analysis methods averaged over all examples for Whisper-medium, trained (top) vs. randomly initialized (bottom).

Mohebbi et al., 2023

Cue Contribution v.s. 'Number encoding' probe

Figure 1: Layer-wise cue contribution according to different analysis methods averaged over all examples for XLSR-53, trained (left) vs. randomly initialized (right).

Figure 2: Layer-wise cue contribution according to different analysis methods averaged over all examples for Whisper-medium, trained (top) vs. randomly initialized (bottom).

Figure 4: Accuracy of probing classifiers trained on frozen target representations obtained from various ASR models. The depth of Whisper-base (6) and Whisper-small (12), has been normalized to 1 to facilitate comparisons.

(Mohebbi et al., 2023)

Wrapping up

- Analyzed the pattern of attentions in speech Transformers (e.g., diagonality, diversity)
- Pointed out the limitations of attention as a measure of context-mixing
- Analyzed context-mixing beyond attention (using e.g., Attention-Norm, Value Zeroing)
- Context-mixing vs. Feature attribution

Context-Mixing vs. Feature Attribution

Thanks! Question?

Feel free to reach out for any questions:

Email: h.mohebbi@tilburguniversity.edu

X: @hmohebbi75

Thank you!

Website

Notebook