Intro to Reinforcement Learning

Supervised Learning

- Data comes with labels
- We give immediate feedback to model
- Classification purpose
- Used in: Image tagging, Patient diagnosis, Spam filtering

Unsupervised Learning

- Data has no labels
- We give no feedback to model
- Clustering purpose
- Used in: Customer segmentation, Sentiment analysis, Recommender systems

Reinforcement Learning

- Data is evaluated using reward signals
- Feedback can be delayed
- Automatization purpose
- Used in: Game AI, Real-time decisions, Robot control

Keywords in RL

- Agent
 - Car
- Action
 - Start the engine, turn wheels, brake
- State
 - Speed of the car, location
- Reward
 - Keep the car on the road, not crashing
- Environment
 - Highway, city streets

Visualization of RL Keywords

Reinforcement Learning Setup

Major Components of an RL Agent

- Policy: agent's behaviour function
- Value function: how good is each state and/or action

Policy

- A policy is the agent's behaviour
- It is a map from state to action

$$a=\pi(s)$$

Value function

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And therefore to select between actions

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Maze example

Rewards: -1 per timestep

Actions: N, S, W, E

States: Agent's location

Maze example: Policy

Rewards: -1 per timestep

Actions: N, S, W, E

States: Agent's location

Maze example: Value function

Start

Rewards: -1 per timestep

Actions: N, S, W, E

States: Agent's location

-14 -13 -12 -11 -10 -9 -16 -8 -15 -12 -16 -17 -6 -7 -18 -5 -19 -24 -20 -4 -3 -23 -22 -21 -22 -2 -1

Goal

Q-learning

- Extension of Value function
- Takes into account values of specific actions in specific states
- Uses also discount factor gamma (0, 1)

$$Q^{\pi}(s_t, a_t) = E[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | s_t, a_t]$$

Exploration vs exploitation

Epsilon-greedy algorithm

Saving optimal policy

	A ₁	A ₂ S	A_3	A ₄ E
S ₁	/	/	/	-16
S_2	-15	-17	-17	/
S_3	-16	/	/	-18
S ₄	/	-16	/	-14
• • • •	• • •	• • •	• • •	• • •
• • • •	•••	•••	•••	•••
• • • •	• • •	• • •	• • •	• • •
S ₂₇	/	/	-3	-1

DeepMind

- British Al company
- Founded in September 2010
- Acquired by Google in 2014
- Mostly known for AlphaGo

AlphaGo

- Program that uses deep reinforcement learning
- Applied in the game of Go
- First, supervised learning is used
- Next, reinforcement learning is used
- Game is played thanks to Policy and Value network
- Defeated Lee Sedol 1 to 4 in a 5-game match

Victory of Al in game of Go

- It was predicted that solving Go using AI is approx. decade away
- Game of Go itself is simple... BUT!

The number of board positions is about

10170

In our universe there are

 10^{80} atoms

Live Demo

- Task -> land spaceship
- Input -> 8 sensors
- Output -> 4 actions

Conclusion

- Reinforcement learning scenario is described by
 - States, actions, rewards, agent and environment
- Major components of RL agent are policy and value function
- Q-learning is extension of value function
- AlphaGo made breakthrough using novel RL method
- We have tested actual RL agent

Materials

- David Silver's lectures http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- An Introduction to Reinforcement Learning, Sutton and Barto, 1998 http://incompleteideas.net/book/bookdraft2017nov5.pdf
- Python machine learning libs: Tensorflow (https://www.tensorflow.org/),
 PyTorch(https://pytorch.org/)

Thank you very much