Namen:	

Aufgabe	7.1	7.2	7.3	Z7.1	Z7.2	Z7.3	Z7.4	\sum
Punkte								

Höhere Analysis – Übungsblatt 7

Wintersemester 2020/2021, Universität Heidelberg

Prof. Dr. Hans Knüpfer

Denis Brazke

denis.brazke@uni-heidelberg.de

Aufgabe 7.1

5 Punkte

Sei $g:(0,1)\times(0,1)\longrightarrow\mathbb{R}$ gegeben durch

$$g(x,y) := \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 für alle $x, y \in (0,1)$. (1.1)

Berechnen Sie

$$\int_{(0,1)} \int_{(0,1)} g(x,y) \, \mathrm{d}x \, \mathrm{d}y \qquad \qquad \text{und} \qquad \qquad \int_{(0,1)} \int_{(0,1)} g(x,y) \, \mathrm{d}y \, \mathrm{d}x. \tag{1.2}$$

Warum stimmen die beiden Integrale nicht überein? Begründen Sie Ihre Antwort.

Aufgabe 7.2 5 Punkte

Sei $U := (1, \infty) \times (-\pi, \pi) \times (0, \infty)$. Wir definieren die Abbildung $\Phi \colon U \longrightarrow \mathbb{R}^3$ durch

$$\Phi(r, s, t) := (rt\cos(s), rt\sin(s), \sqrt{r^2 - 1})$$
 für alle $(r, s, t) \in U$. (2.1)

- a) Bestimmen Sie $\Phi(U)$ und det $D\Phi$.
- b) Zeigen Sie, dass $\Phi: U \longrightarrow \Phi(U)$ ein C^1 -Diffeomorphismus ist.
- c) Sei $H := \{x \in \mathbb{R}^3 : x_3 \in [0,2], \ \frac{1}{2}(1+x_3^2) \le x_1^2 + x_2^2 \le 2(1+x_3^2)\}$. Bestimmen Sie $\Phi^{-1}(H)$.
- d) Berechnen Sie

$$\int_{H} x_1^2 x_3 \, \mathrm{d}x. \tag{2.2}$$

Aufgabe 7.3 5 Punkte

Wir betrachten den Maßraum $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mathcal{L}^n)$. Seien $f, g \in L^1(\mathbb{R}^n)$. Wir definieren die Faltung $f * g : \mathbb{R}^n \longrightarrow \mathbb{R}$ durch

$$(f * g)(x) := \int_{\mathbb{R}^n} f(y) g(x - y) dy \qquad \text{für alle } y \in \mathbb{R}^n.$$
 (3.1)

Zeigen Sie, dass $f * g \in L^1(\mathbb{R}^n)$ und dass

$$\int_{\mathbb{R}^n} (f * g)(x) \, \mathrm{d}x = \left(\int_{\mathbb{R}^n} f(x) \, \mathrm{d}x \right) \left(\int_{\mathbb{R}^n} g(x) \, \mathrm{d}x \right). \tag{3.2}$$

Zusatzaufgabe 7.1 (Volumen von Rotationskörpern)

3 Punkte

Seien $a,b \in \mathbb{R}$ und a < b. Sei $f : [a,b] \longrightarrow [0,\infty]$ eine messbare Funktion. Zeigen Sie, dass die Menge

$$V := \{ x \in \mathbb{R}^3 : x_1^2 + x_2^2 \le f(x_3)^2 \}$$
(4.1)

eine messbare Menge ist, und dass

$$\mathcal{L}^3(V) = \pi \int_a^b f^2(x) \, \mathrm{d}x. \tag{4.2}$$

Abgabe bis spätestens 14.01.2021, 14:00 Uhr in Moodle.

Zusatzaufgabe 7.2 Wir betrachten den Maßraum $(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathscr{L}^1)$. Sei $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ definiert durch $f(x) \coloneqq \frac{\sin(x)}{x}$.

- a) Zeigen Sie, dass $f \notin L^1(\mathbb{R})$.
- b) Zeigen Sie, dass f uneigentlich Riemann-integrierbar ist.
- c) Zeigen Sie, dass

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = \pi. \tag{5.1}$$

Hinweis: Zur Erinnerung: Sei $f: \mathbb{R} \longrightarrow \mathbb{R}$, so dass $f|_J$ Riemann-integrierbar ist für alle abgeschlossenen Intervalle $J \subset \mathbb{R}$. Dann heißt f uneigentlich Riemann-integrierbar, falls ein $c \in \mathbb{R}$ existiert, so dass die Limiten

$$\lim_{R \to \infty} \int_{c}^{R} f(x) dx \qquad \text{und} \qquad \lim_{R \to \infty} \int_{-R}^{c} f(x) dx \qquad (5.2)$$

existieren. Wir schreiben

$$\int_{-\infty}^{\infty} f(x) dx := \lim_{R \to \infty} \int_{c}^{R} f(x) dx + \lim_{R \to \infty} \int_{-R}^{c} f(x) dx.$$
 (5.3)

Zu a): Betrachten Sie |f|. Zu b): Nutzen Sie das Cauchy-Kriterium. Zu c): Benutzen Sie die Identität

$$\frac{1}{x} = \int_0^\infty e^{-xt} \, \mathrm{d}t,$$

partielle Integration, Konvergenzsätze und den Satz von Fubini.

Zusatzaufgabe 7.3 (Interpolationsungleichung)

3 Punkte

Sei (X, \mathcal{E}, μ) ein Maßraum und $0 < \theta < 1$. Seien $p, q, r \in (0, \infty)$ und es gelte $\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$. Zeigen Sie, dass $L^p(X, \mu) \cap L^q(X, \mu) \subset L^r(X, \mu)$, und dass

$$||f||_{L^{r}(X,\mu)} \le ||f||_{L^{p}(X,\mu)}^{\theta} ||f||_{L^{q}(X,\mu)}^{1-\theta}$$
 für alle $f \in L^{p}(X,\mu) \cap L^{q}(X,\mu)$. (6.1)

Zusatzaufgabe 7.4 3 Punkte

Wir betrachten den Maßraum $(\mathbb{R}, \mathscr{B}(\mathbb{R}), \mathscr{L}^1)$. Widerlegen Sie die folgenden Aussagen:

- a) Eine Funktion $f : \mathbb{R} \longrightarrow \mathbb{R}$ ist genau dann messbar, wenn |f| eine messbare Funktion ist.
- b) Eine Funktion $f: \mathbb{R} \longrightarrow \mathbb{R}$ ist genau dann integrierbar, wenn |f| eine integrierbare Funktion ist.
- c) Sei $\Omega \subset \mathbb{R}$ eine messbare Menge. Dann existiert eine Folge offener Mengen $\Omega_k \subset \mathbb{R}$, so dass $\Omega = \bigcup_k \Omega_k$.
- d) Sei $\Omega \subset \mathbb{R}$ eine messbare Menge. Dann existiert eine Folge offener Mengen $\Omega_k \subset \mathbb{R}$, so dass $\Omega = \bigcap_k \Omega_k$.
- e) Sei $f \in L^1(\mathbb{R})$, dann ist $f \in L^2(\mathbb{R})$.
- f) Sei $f \in L^2(\mathbb{R})$, dann ist $f \in L^1(\mathbb{R})$.