Cálculo Avanzado

Departamento de Ingenería Mecánica Facultad Regional La Plata Universidad Tecnológica Nacional

Práctica: 4

Tema: Errores.

Profesor Titular: Manuel Carlevaro **Ayudante de Primera**: Christian Molina

Ejercicio 1.

Escriba los números 84.175, -528.685, 0.000924138 y -362005 como número con formato de punto flotante, redondeados a cinco cifras significativas.

Ejercicio 2.

La solución de la ecuación de segundo grado

$$ax^2 + bx + c = 0$$

es

$$x_{1,2}=\frac{1}{2a}\left(-b\pm\sqrt{b^2-4ac}\right)$$

Alternativamente, dado que $x_1x_2=c/a$, si primero obtenemos x_2 con la fórmula anterior podemos calcular x_1 usando

$$x_1 = \frac{c}{ax_2}$$

Resuelva $x^2-30x+1=0$ (a) primero con cuatro cifras significativas y (b) con dos cifras significativas.

Ejercicio 3.

Convierta los siguientes números binarios a decimales:

- a) 1011001₂
- b) 110.0101₂
- c) 0.01011₂

Ejercicio 4.

Los números hexadecimales, o de base 16, son números basados en los dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. Convierta el número hexadecimal $2c.0b7_h$ a decimal.

Ejercicio 5.

Convertir los siguientes números binarios en representación de punto flotante precisión simple a decimal:

- a) 01001010010000100011011001000000
- c) 010000000100100100001111111011010

Ejercicio 6.

Estime el resultado de las siguientes operaciones, con sus correspondientes cotas de error.

a)
$$(3.5 \pm 0.1) + (8.0 \pm 0.2) - (5.0 \pm 0.4)$$

b)
$$(3.5 \pm 0.1) \times (8.0 \pm 0.2)$$

c)
$$(3.5 \pm 0.1) \times (8.0 \pm 0.2)/(5.0 \pm 0.4)$$

Ejercicio 7.

Un ángulo θ se mide como $(125\pm2)^\circ$, y su valor se utiliza para calcular sen θ . Calcule este valor y su incerteza.