

Applied Research Laboratories

The University of Texas at Austin

The GPSTk:
New Features,
Applications,
and Changes

R. Benjamin Harris (presenting), Tracie Conn, Thomas Gaussiran, Chris Kieshnick, Jon Little, Richard Mach, David Munton, Brent Renfro, Brian Tolman, Jonathan Vorce *Applied Research Laboratories, The University of Texas at Austin*

Dagoberto Salazar
Grupo de Astronomia y Geomatica, Universitat Politècnica de Catalunya

ION-GNSS-2007 September 27, 2008 Fort Worth, Texas

Overview

- Fundamentals of the GPSTk
- Web presence
- Functionality
- Getting Started
- Library changes in version 1.3
- New application: GPS signal tracking simulation
- Wish list

GPSTk Fundamentals

- Ultimate goal: free researchers and developers from GNSS algorithm development
- Design and implementation
 - Core library + Applications
 - Object oriented, ISO standard C++, platform independent \rightarrow portable
 - Version 1.3 contains 200,000 lines of code
 - Estimated value of \$7 million
 - Generated using David A. Wheeler's SLOCCount utility
 - Ver 1.1: 70,000 lines of code
 Ver 1.2: 150,000 lines of code
- Released under Lesser GNU Public License, or LGPL
 - You have the right to use, modify and redistribute this code
 - LGPL license is not *viral*, unless
 - You modify the GPSTk to make your derivative work AND
 - You are externally distributing that work
 - The license file in the distribution contains the full license

Project Web Presence

- Website at http://www.gpstk.org/
 - Site is a wiki: Users can reprogram the site
 - Features include
 - Equations in LaTeX
 - Revision history
 - Powerful searching
 - Question and answer application
 - Tagging
 - Daily snapshot of library documentation
 - Future goal: port user manual to wiki site
- SourceForge services provide
 - Download of source or binaries
 - Code repository
 - Access to the developer mailing list
- IRC channel #gpstk at freenode.net for developers interaction in real time

Website Google Analytics Report

Library Capabilities

- RINEX manipulation
- Time conversion, manipulation and storage
- Matrix computation
- Basic transforms of time and location
- Precise ephemeris processing
- Range prediction and error modeling
- Reference frame computations
- Statistics
- Troposphere delay models
- Earth orientation transforms
- Expression evaluation

- FIC processing
- Almanac processing
- Low level BINEX input and output
- Broadcast ephemeris processing
- Clock models
- Code generation
- Cycle slip and discontinuity correction
- Numerical integration
- Combinations and difference computations
- Data structures
- Navigation solution

Getting Started

- You can download the stable packages
 - Binaries for Windows 32 bit, Linux x386, Linux x86_64, Solaris, ...
 - Source
- You can also get the latest code using Subversion, an open source revision control system
 - To anonymously check out the code base
 svn checkout https://gpstk.svn.sourceforge.net/svnroot/gpstk
 - To update your code base: svn update
- To build the project
 - Requires the jam utility, which automates compiling and linking
 - Change to the gpstk dev directory and type jam.
 - Grab some coffee...
 - make can be used as well. Check the website for details.
- To build the library documentation
 - Requires Doxygen, a utility that generates documentation from code and Graphviz, a package for graphs and visualizations
 - Change to the gpstk dev directory and type doxygen
 - Go check your email...

Code Repository Directory Structure

Data Structures

- Prior 1.3, library data structures supported matrices of observations, or nested maps
- GNSS Data Structures (GDS) have been added
 - Data structures can be chained to processing objects and vice versa
 - Processing objects can provide smoothing, differences, transformations
 - Successive operations add, modify or remove information to the stream
 - Connection is made using C++ streaming operator >>

• Examples:

```
gRin >> myFilter >> model >> solver;
gRin >> myFilter >> model >> baseChange >> solverNEU;
gRin >> getPC >> getLC >> getLI >> getMW >> markCSLI >> markCSMW >> smoothPC >> pcFilter >> modelPC >> mopsW >> baseChange >> solverWMS;
```

Signal Tracking Simulation Toolchain

- Research tool to simulate tracking GPS signals like a software receiver
- ◆ 1:1 correspondence of hardware elements to classes or applications
 - RF signal
 - Local oscillator
 - Mixer
 - Downconversion
 - Digitization
 - Correlators
- C/A- and P-Code
- Applications form a toolchain. Example:

gpsSim -q 2 -t 2e-3 -c p:1:1:50:0:p | corltr -q 2 -c p:1:1:0:0 | plot

Wish List

- Macintosh port
- Replace the GPS stack on the OpenMoko phone (left)
 - Phone is 100% open except for GPS processing
 - Funding likely as part of Google's Summer of Code 2008
- BINEX standard messages, conversion utilities
- MATLAB (MEX) bindings

Questions? Comments?

http://www.gpstk.org/

gpstk@arlut.utexas.edu