

By @kakashi_copiador

Índice

1) Noções Iniciais sobre Médias	3
2) Medidas de Posição	4
3) Notação de Somatório	6
4) Média Aritmética Simples	16
5) Média Ponderada	33
6) Média para Dados Agrupados	39
7) Média Geométrica	53
8) Média Harmônica	59
9) Desigualdade das Médias	66
10) Questões Comentadas - Média Aritmética Simples - Multibancas	75
11) Questões Comentadas - Média Ponderada - Multibancas	183
12) Questões Comentadas - Média para Dados Agrupados - Multibancas	210
13) Questões Comentadas - Média Geométrica - Multibancas	248
14) Questões Comentadas - Média Harmônica - Multibancas	250
15) Questões Comentadas - Desigualdade das Médias - Multibancas	253
16) Lista de Questões - Média Aritmética Simples - Multibancas	256
17) Lista de Questões - Média Ponderada - Multibancas	305
18) Lista de Questões - Média para Dados Agrupados - Multibancas	318
19) Lista de Questões - Média Geométrica - Multibancas	336
20) Lista de Questões - Média Harmônica - Multibancas	338
21) Lista de Questões - Desigualdade das Médias - Multibancas	340

Introdução

A **média** é um número que, de algum modo, **resume as características de um grupo**. Nosso contato com a média surge ainda na escola, quando os professores calculam a média das nossas avaliações. Suponha que um aluno tenha obtido as seguintes notas em determinada disciplina: 4; 10; 8; 10; 7; 9. Com base nesses dados, podemos concluir que a **média aritmética** desse aluno nessa disciplina será 8. Assim, a média é capaz de representar o conjunto dos valores observados.

A **média** está presente em nosso cotidiano. Com certa frequência, as notícias abordam conceitos que estão relacionados com a **média**: expectativa de vida dos brasileiros; idade média de uma população; renda domiciliar per capita brasileira; consumo médio de combustível; tempo médio de deslocamento em um trajeto.

Vamos analisar o primeiro exemplo. Quando o noticiário diz que expectativa de vida no Japão teve um aumento recorde na última década, chegando a 84,2 anos. O que você entende diante dessa informação? Essa informação reflete a qualidade de vida da população japonesa. Ela nos mostra que a população japonesa está envelhecendo de forma saudável e que o sistema de saúde está sendo eficaz.

Se o noticiário também disser que a expectativa de vida em Angola gira em torno de 60 anos, você será capaz comparar essas duas populações, certo? A resposta é sim. Quando comparados, os números mostram que a qualidade de vida em Angola não é tão boa quanto a do Japão. Também nos dizem que os angolanos tendem a viver, em média, 24 anos a menos que os japoneses.

Ao longo dessa aula, aprenderemos a calcular a média em diversas situações. Vamos ver que, a depender de como os dados nos forem apresentados, o cálculo será feito de uma forma diferente. Além disso, conheceremos algumas propriedades da média que facilitam a resolução de questões.

MEDIDAS DE POSIÇÃO

Muitas vezes, queremos resumir um conjunto de dados apresentando um ou alguns valores que sejam representativos de uma série toda. As medidas de posição são estatísticas que caracterizam o comportamento dos elementos de uma série de dados, orientando quanto à posição da distribuição em relação ao eixo horizontal do gráfico da curva de frequência.

Em outras palavras, podemos dizer que as medidas de posição indicam a tendência de concentração dos elementos de uma série, apontando o valor que melhor representa o conjunto de dados. Por exemplo, podemos ter uma medida para representar a posição de maior frequência de uma distribuição:

As medidas de posição podem ser divididas em:

a) medidas de tendência central: representam o ponto central ou o valor típico de um conjunto de dados, indicando onde está localizada a maioria dos valores de uma distribuição. As medidas mais utilizadas são:

- média aritmética: é a medida de posição mais utilizada, sendo o valor resultante da divisão entre a soma de todos os valores de uma série de observações e o número de observações;
- mediana: valor que ocupa a posição central de uma série de observações, quando organizadas em ordem crescente ou decrescente; e
- moda: valor mais frequente em uma série de observações, ou seja, o que aparece o maior número de vezes dentro de um conjunto de valores observados.

Apenas a título de exemplo, vejamos como as medidas de tendência central se posicionam em relação a uma distribuição de frequências. Notem que essas medidas **tendem a ocupar as posições centrais** da distribuição, por isso são denominadas de medidas de tendência **central**.

b) medidas separatrizes: dividem (ou separam) uma série em duas ou mais partes, cada uma contendo a mesma quantidade de elementos. As medidas mais utilizadas são:

- mediana: divide uma série em duas partes iguais. Reparem que, além de ser uma medida separatriz, a mediana também é uma medida de tendência central;
- quartis: dividem uma série em quatro partes iguais;
- decis: dividem uma série em dez partes iguais; e
- percentis: dividem uma série em cem partes iguais.

A seguir, podemos ver como os quartis se relacionam com uma determinada distribuição de frequências. Reparem que os quartis dividem a distribuição em quatro partes com iguais quantidades de elementos.

NOTAÇÃO DE SOMATÓRIO

Com frequência, as fórmulas matemáticas exigem a adição de muitas variáveis, como é o caso da média aritmética. O somatório ou notação sigma é uma forma simples e conveniente de abreviação, usada para fornecer uma expressão concisa para a soma dos valores de uma variável. Por exemplo, se quisermos representar a soma de um número de termos tais como

$$1+2+3+4+5$$

ou

$$1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

em que há um padrão evidente para os números envolvidos.

De modo geral, se tomarmos uma sequência de números $x_1, x_2, x_3, \dots, x_n$, então podemos escrever a soma desses números como $x_1 + x_2 + x_3 + \dots + x_n$. Nesse conjunto, x_1 representa o primeiro termo; x_2 representa o segundo; x_3 , o terceiro; e x_i o i-ésimo termo da soma.

Essa soma pode ser representada de uma forma mais simples e concisa, deixando que x_i represente o **termo geral** da sequência. Para isso, empregamos a seguinte notação:

$$\sum_{i=1}^{n} x_i$$

Então, em vez de usarmos vários elementos para determinarmos o somatório, utilizamos apenas o símbolo do somatório:

$$X_1 + X_2 + X_3 + \dots + X_n$$

$$\sum_{i=1}^n x_i$$

Essa notação envolve um símbolo de somatório, Σ, que é a letra grega maiúscula Sigma (S). Basicamente, esse símbolo está nos instruindo a somar determinados elementos de uma sequência. Os elementos típicos da sequência que está sendo somada aparecem à direita do símbolo de somatório:

$$\sum_{i=1}^{l...l} x_i$$

Observe que essa notação também **requer a definição de um índice**, **que fica localizado abaixo do símbolo de somatório**. **Esse índice é frequentemente representado por** *i*, embora também seja comum encontrarmos questões adotando *j* ou *n*.

Esse índice normalmente aparece como uma expressão, por exemplo, i = a, em que o índice assume um valor inicial atribuído no lado direito da equação, conhecido como limite inferior (a). Se considerarmos que i = 1, estamos dizendo que o primeiro elemento da sequência a ser considerado é o de índice igual a 1, isto é, o primeiro elemento da sequência. A condição de parada ou limite superior do somatório é o valor localizado acima do símbolo, no caso (b). A condição de parada indica o último elemento da sequência a ser considerado no somatório.

$$\sum_{i=a}^{b} x_i$$

Então, se tivermos uma sequência de 10 valores, devemos interpretar a notação a seguir como a soma dos valores da sequência x_i , com i variando de 1 a 10:

$$\sum_{i=1}^{10} x_i$$

Vejamos alguns exemplos típicos de operações envolvendo somatórios. Para isso, tomaremos como exemplo a sequência $\{x_i\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$:

Representa a soma dos valores de
$$x$$
, começando em x_1 e terminando em x_{nx} .

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \dots + x_n$$

$$\sum_{i=1}^{n} x_i = 1 + 2 + 3 + \dots + 10 = 55$$
Representa a soma dos valores de x , começando em x_1 e terminando em x_{10} .

$$\sum_{i=1}^{10} x_i = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}$$

$$\sum_{i=1}^{n} x_i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$$

10	Representa a soma dos valores de x , começando em x_3 e terminando em x_{10} .
$\sum_{i=3}^{10} x_i$	$\sum_{i=3}^{10} x_i = x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10}$
	$\sum_{i=3}^{10} x_i = 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55$
	Os limites do somatório são frequentemente entendidos como sendo $i = 1$ e n . Assim, a notação abaixo e acima do símbolo de somatório pode ser omitida. Portanto, essa expressão representa a soma dos valores de x , começando em x_1 e terminando em x_n .
$\sum x$	$\sum x = x_1 + x_2 + x_3 + \dots + x_n$
	$\sum x = 1 + 2 + 3 + \dots + 10 = 55$
	Representa a soma dos quadrados dos valores de x , começando em x_1 e terminando em x_n .
$\sum_{i=1}^{n} x_i^2$	$\sum_{i=1}^{n} x_i^2 = x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2$
i=1	$\sum_{i=1}^{n} x_i^2 = 1^2 + 2^2 + 3^2 + \dots + 10^2 = 385$
	Representa a soma dos termos da sequência $\{2n+1\}$, com k começando em 1 e terminando em 4.
$\sum_{k=1}^{4} (2x_k + 1)$	$\sum_{k=1}^{4} (2x_k + 1) = (2 \times 1 + 1) + (2 \times 2 + 1) + (2 \times 3 + 1) + (2 \times 4 + 1)$
k=1	$\sum_{k=1}^{4} (2x_k + 1) = 3 + 5 + 7 + 9 = 24$

3 e terminando em 5.

 $\sum_{i=3}^{5} \left(\frac{x_i}{x_i + 1} \right)$

Representa a soma dos termos da sequência $\left\{\frac{x_i}{x_i+1}\right\}$, com *i* começando em

$$\sum_{i=3}^{5} \left(\frac{x_i}{x_i+1}\right) = \frac{3}{3+1} + \frac{4}{4+1} + \frac{5}{5+1}$$

$$\sum_{i=3}^{5} \left(\frac{x_i}{x_i+1}\right) = \frac{3}{4} + \frac{4}{5} + \frac{5}{6} = \frac{45+48+50}{60} = \frac{143}{60}$$

Agora que já entendemos o funcionamento básico dessa notação, precisamos analisar outras operações aritméticas que também podem ser realizadas com as variáveis dentro de um somatório. Para tanto, vamos tomar como base as sequências $\{x_i\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e $\{y_i\} = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30\}$.

Por exemplo, na **SOMA DOS PRODUTOS**, multiplicamos x_1 por y_1 ; x_2 por y_2 ; e assim por diante, até x_n por y_n . Em seguida, somamos os resultados de cada multiplicação. A **SOMA DOS PRODUTOS** da variável x pela variável y, com i variando de 1 a 10, pode ser representada por meio da seguinte expressão:

$$\sum_{i=1}^{n} x_i \times y_i = x_1 \times y_1 + x_2 \times y_2 + x_3 \times y_3 + \dots + x_n \times y_n$$

$$\sum_{i=1}^{10} x_i \times y_i = 1 \times 3 + 2 \times 6 + 3 \times 9 + \dots + 10 \times 30 = 1155$$

Observe que essa expressão é diferente de $\sum_{i=1}^{n} x_i \times \sum_{i=1}^{n} y_i$, que representa o **PRODUTO DAS SOMAS** dessas duas variáveis. No **PRODUTO DAS SOMAS**, primeiro somamos toda a sequência x, depois toda a sequência y e, em seguida, multiplicamos o resultado das somas:

$$\sum_{i=1}^{10} x_i \times \sum_{i=1}^{10} y_i = (1+2+3+\dots+10) \times (3+6+9+\dots+30)$$

$$\sum_{i=1}^{10} x_i \times \sum_{i=1}^{10} y_i = 55 \times 165 = 9075$$

Dessa forma, temos que a SOMA DOS PRODUTOS é diferente do PRODUTO DAS SOMAS:

$$\sum_{i=1}^{10} x_i \times y_i \neq \sum_{i=1}^{10} x_i \times \sum_{i=1}^{10} y_i$$

$$x_1 \times y_1 + x_2 \times y_2 + x_3 \times y_3 + \dots + x_n \times y_n \neq (x_1 + x_2 + x_3 + \dots + x_n) \times (y_1 + y_2 + y_3 + \dots + y_n)$$

$$1 \times 3 + 2 \times 6 + 3 \times 9 + \dots + 10 \times 30 \neq (1 + 2 + 3 + \dots + 10) \times (3 + 6 + 9 + \dots + 30)$$

$$1155 \neq 9075$$

Também podemos utilizar a notação para representar o **QUADRADO DA SOMA** dos valores de *x*, com *i* iniciando em 1 e terminando em 10. No **QUADRADO DA SOMA**, somamos toda a sequência e elevamos o resultado ao quadrado:

$$\left(\sum_{i=1}^{n} x_i\right)^2 = (x_1 + x_2 + x_3 + \dots + x_n)^2$$

$$\left(\sum_{i=1}^{n} x_i\right)^2 = (1 + 2 + 3 + \dots + 10)^2$$

$$\left(\sum_{i=1}^{n} x_i\right)^2 = (55)^2 = 3025$$

Veja que essa expressão é diferente de $\sum_{i=1}^{n} x_i^2$, que representa a **SOMA DOS QUADRADOS**. Na **SOMA DOS QUADRADOS**, cada elemento da sequência é elevado ao quadrado e depois os resultados são somados:

$$\sum_{i=1}^{n} x_i^2 = 1^2 + 2^2 + 3^2 + \dots + 10^2 = 385$$

Logo, podemos afirmar que o QUADRADO DA SOMA é diferente da SOMA DOS QUADRADOS:

$$\left(\sum_{i=1}^{n} x_i\right)^2 \neq \sum_{i=1}^{n} x_i^2$$
$$(x_1 + x_2 + x_3 + \dots + x_n)^2 \neq x_1^2 + x_2^2 + x_3^2 + \dots + x_n^2$$

Por fim, ainda podemos representar o somatório de uma constante k. Digamos que essa constante tenha valor igual a 3:

$$\sum_{i=1}^{n} k = k + k + \dots + k = k \times n$$

$$\sum_{i=1}^{n} 3 = 3 + 3 + \dots + 3 = 3 \times n$$

Propriedades do Somatório

As propriedades apresentadas nesta seção facilitam o desenvolvimento de expressões algébricas com a notação de somatório.

 $1^{\underline{a}}$. Propriedade: O somatório de uma constante k é igual ao produto do número de termos pela constante.

$$\sum_{i=1}^{n} k = k + k + \dots + k = k \times n$$

Para demonstrar essa propriedade, consideraremos que cada constante está multiplicada pelo valor um, isto é:

$$\sum_{i=1}^{n} k = k \times 1 + k \times 1 + \dots + k \times 1$$

Agora, colocaremos os novos valores em evidência:

$$\sum_{i=1}^{n} k = k \times \left(\underbrace{1 + 1 + \dots + 1}_{n \text{ termos}}\right) = k \times n$$

Considere uma lista composta por noventa e nove elementos repetidos e iguais a 9:

$$\{9,9,9,9,9,\dots,9\}$$
.

O somatório dos elementos dessa lista será:

$$\sum_{i=1}^{99} 9 = \underbrace{9 + 9 + 9 + 9 + 9 + 9 + \dots + 9}_{99 \text{ termos repetidos}} = 9 \times \left(\underbrace{1 + 1 + 1 + 1 + \dots + 1}_{99 \text{ termos}}\right) = 9 \times 99 = 891$$

2^a. Propriedade: O somatório do produto de uma constante por uma variável é igual ao produto da constante pelo somatório da variável.

$$\sum_{i=1}^{n} k \times x_{i} = k \times x_{1} + k \times x_{2} + \dots + k \times x_{n} = k \times \sum_{i=1}^{n} x_{i}$$

Para demonstrarmos essa propriedade, colocaremos em evidência cada constante k:

$$\sum_{i=1}^{n} k \times x_{i} = k \times x_{1} + k \times x_{2} + \dots + k \times x_{n} = k \times (x_{1} + x_{2} + \dots + x_{n})$$

Já sabemos que $\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$. Logo:

$$\sum_{i=1}^{n} k \times x_i = k \times \sum_{i=1}^{n} x_i$$

Portanto, a constante pode sair de dentro do somatório, passando a multiplicá-lo.

Cinco funcionários de um escritório de contabilidade recebem os seguintes salários: R\$\$1.000, R\$\$1.250, R\$\$1.500, R\$\$1.750 e <math>R\$\$2.000. O patrão propõe dobrar seus salários quando o faturamento do escritório aumentar em 50%. Quando a meta for alcançada, quanto o patrão passará a desembolsar por essa equipe?

Os salários atuais podem ser representados pela sequência:

$$\{x_n\} = \{1.000, 1.250, 1.500, 1.750, 2.000\}$$

A soma dos termos dessa sequência é dada por:

$$\sum_{i=1}^{5} x_i = 1.000 + 1.250 + 1.500 + 1.750 + 2.000 = 7.500$$

Agora, vamos multiplicar cada um dos termos por 2, tendo em vista que os salários serão dobrados.

$$\{2 \times x_n\} = \{2.000, 2.500, 3.000, 3.500, 4.000\}$$

A soma dos termos da nova sequência será:

$$\sum_{i=1}^{5} 2 \times x_i = 2.000 + 2.500 + 3.000 + 3.500 + 4.000 = 15.000$$

Como base na propriedade ora analisada, também poderíamos simplesmente ter feito:

$$\sum_{i=1}^{5} 2 \times x_i = 2 \times \sum_{i=1}^{5} x_i = 2 \times 7.500 = 15.000$$

3ª. Propriedade: O somatório de uma soma ou subtração é igual à soma ou à subtração dos somatórios dessas variáveis.

$$\sum_{i=1}^{n} (x_i \pm y_i) = \sum_{i=1}^{n} x_i \pm \sum_{i=1}^{n} y_i$$

Podemos demonstrar essa propriedade da seguinte forma:

$$\sum_{i=1}^{n} (x_i \pm y_i) = (x_1 \pm y_1) + (x_2 \pm y_2) + \dots + (x_n \pm y_n)$$

$$\sum_{i=1}^{n} (x_i \pm y_i) = (x_1 + x_2 + \dots + x_n) \pm (y_1 + y_2 + \dots + y_n)$$

$$\sum_{i=1}^{n} (x_i \pm y_i) = \sum_{i=1}^{n} x_i \pm \sum_{i=1}^{n} y_i$$

Cinco funcionários de uma fábrica de bolas de futebol recebem os seguintes salários: R\$\$1.500, R\$\$2.000, R\$\$2.500, R\$\$3.000 e <math>R\$\$3.500. O patrão propõe um bônus de R\$\$1.000, para cada funcionário, nos meses em que houver um aumento de produção acima de 10%. Nos meses em que a meta for alcançada, quanto o patrão pagará a essa equipe?

Os salários atuais podem ser representados pela seguinte sequência:

$${x_n} = {1.500, 2.000, 2.500, 3.000, 3.500}$$

O bônus de cada funcionário pode ser representado pela sequência:

$${y_n} = {1.000, 1.000, 1.000, 1.000, 1.000}$$

Assim, a sequência $\{x_n+y_n\}$ é dada por:

$${x_n + y_n} = {2.500, 3.000, 3.500, 4.000, 4.500}$$

Dessa forma, temos que:

$$\sum_{i=1}^{5} x_i = 1.500 + 2.000 + 2.500 + 3.000 + 3.500 = 12.500$$

$$\sum_{i=1}^{5} y_i = 1.000 + 1.000 + 1.000 + 1.000 + 1.000 = 5.000$$

$$\sum_{i=1}^{5} x_i + \sum_{i=1}^{5} y_i = 12.500 + 5.000 = 17.500$$

Além disso, sabemos que $\sum_{i=1}^{5} (x_i + y_i)$ representa o somatório dos termos da sequência $\{x_n + y_n\}$. Logo,

$$\sum_{i=1}^{5} (x_i + y_i) = 2.500 + 3.000 + 3.500 + 4.000 + 4.500 = 17.500$$

Portanto, em conformidade com a propriedade ora em análise, temos que:

$$\sum_{i=1}^{5} (x_i + y_i) = \sum_{i=1}^{5} x_i + \sum_{i=1}^{5} y_i$$

MÉDIA ARITMÉTICA SIMPLES

A média aritmética simples está muito presente em nosso cotidiano, seja no consumo médio de combustível, na temperatura média ou na renda per capita. Essa medida é definida como o QUOCIENTE entre a SOMA DE TODOS OS ELEMENTOS e o NÚMERO DELES. A propriedade principal da média é preservar a soma dos elementos de um conjunto de dados.

Podemos adotar o seguinte raciocínio para encontrarmos a fórmula da média aritmética. Dada uma lista de n números, $\{x_1, x_2, \dots, x_n\}$, a soma de seus termos é igual a:

$$\underbrace{x_1 + x_2 + \dots + x_n}_{n \ fatores}$$

A média aritmética dessa lista é um número \bar{x} , tal que, se todos os elementos forem substituídos por \bar{x} , a soma da lista permanecerá preservada. Assim, substituindo todos os elementos por \bar{x} , teremos uma nova lista, $\{\bar{x}, \bar{x}, \cdots, \bar{x}\}$, cuja soma é:

$$\underbrace{\bar{x} + \bar{x} + \dots + \bar{x}}_{n \ fatores} = n \times \bar{x}$$

Como as somas das duas listas são iguais, temos:

$$n \times \bar{x} = x_1 + x_2 + \dots + x_n$$

Portanto, a média aritmética é:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Reparem que no numerador somamos todos os elementos, ao passo que no denominador temos a quantidade de elementos somados (n).

Calcule a média aritmética dos números 8, 16, 26 e 30.

Para responder a essa questão, somaremos os quatro números e, em seguida, dividiremos o resultado por quatro:

$$\bar{x} = \frac{8 + 16 + 26 + 30}{4} = \frac{80}{4} = 20$$

Portanto, 20 é o valor da média aritmética dos números 8, 16, 26 e 30.

Repare que a soma dos números da lista é 8+16+26+30=80. Se os quatro números forem substituídos por 20, a soma também será 20+20+20=80. Por isso, dizemos que a média aritmética preserva a soma dos números.

Sempre que a questão não especificar qual o tipo de média, faremos o cálculo da média aritmética.

Sobre a média aritmética, podemos afirmar que:

I – ela preserva a soma dos elementos da lista de números;

II – ela é obtida pelo quociente entre a soma de todos os elementos de um conjunto e quantidade de elementos nele existentes $\left(\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}\right)$.

A soma total de um conjunto de dados é dada pela multiplicação entre a média do conjunto e a quantidade de termos. Isso decorre da própria definição de média aritmética:

$$\overline{x} = \frac{soma}{n} \implies soma = n \times \overline{x}$$

Trata-se da mesma fórmula apresentada anteriormente, tendo apenas o termo "n" passado para o outro lado da igualdade, multiplicando a média.

(VUNESP/FITO/2020) O gráfico apresenta as notas de um aluno, nas disciplinas de matemática e química, nos três quadrimestres de 2019.

A média das notas de matemática desse aluno corresponde, da média das notas de química, a

- a) 120%
- b) 125%
- c) 130%
- d) 135%
- e) 140%

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Pelos valores dados no enunciado, a média das notas de matemática é:

$$\bar{x}_{mat} = \frac{5+6+4}{3}$$

$$\bar{x}_{mat} = \frac{15}{3}$$

$$\bar{x}_{mat} = 5$$

Já a média das notas de química é:

$$\bar{x}_{quim} = \frac{4,5+3,5+4}{3}$$

$$\bar{x}_{quim} = \frac{12}{3}$$

$$\bar{x}_{quim} = 4$$

Com isso, em termos percentuais, a média das notas de matemática desse aluno corresponde, da média das notas de química, a:

$$\frac{5}{4}$$
 = 1,25 = 125%

Gabarito: B.

(CESPE/UNCISAL/2019) A crise mundial tem contribuído para o aumento da entrada de estrangeiros no Brasil. A maior parte vem de países vizinhos, a exemplo do Paraguai. A tabela a seguir apresenta, de acordo com dados do Ministério da Justiça, a quantidade de paraguaios que vieram para o Brasil nos anos de 2009, 2011 e 2012.

Ano	Paraguaios
2009	11000
2010	?
2011	19000
2012	27300

Disponível em: http://reporterbrasil.org.br. Acesso em: 9 nov. 2018 (adaptado).

Se a média anual de imigrantes paraguaios para o Brasil, no período de 2009 a 2012, foi de 17 600, então, quantos paraguaios imigraram para o Brasil em 2010?

- a) 13 100
- b) 14 325
- c) 15 000
- d) 15 840
- e) 17 600

Comentários:

A questão informa que a média anual de imigrantes paraguaios no Brasil, no período de 2009 a 2012, foi de 17.600. Como sabemos, a média é dada pela soma dos dados dividida pelo número de observações. Então, se considerarmos que o número de imigrantes em 2010 foi x, teremos:

$$\bar{x} = \frac{11000 + x + 19000 + 27300}{4}$$

$$17600 = \frac{57300 + x}{4}$$

$$4 \times 17600 = 57300 + x$$

$$70400 = 57300 + x$$

$$x = 70400 - 57300$$

$$x = 13.100$$

Gabarito: A.

(CESPE/PM AL/2018) Acerca de análise de dados, julgue o próximo item.

O gráfico a seguir mostra a distribuição de frequência de delitos ocorridos em determinado bairro nos seis primeiros meses de 2018.

Nesse caso, a média dos delitos ocorridos no semestre considerado foi superior à média dos delitos ocorridos no segundo trimestre.

Comentários:

Precisamos calcular duas médias: do segundo trimestre e do semestre inteiro.

Conforme o gráfico, para o segundo trimestre, temos:

$$\begin{cases} abril = 30 \ delitos \\ maio = 24 \ delitos \\ junho = 18 \ delitos \end{cases}$$

A média é dada pela soma de todos os valores dividida pelo número de meses. Logo:

$$\bar{x} = \frac{30 + 24 + 18}{3}$$
$$\bar{x} = \frac{72}{3} = 24$$

Para o semestre, temos:

Logo:

$$\bar{x} = \frac{27 + 30 + 21 + 72}{6}$$

$$\bar{x} = \frac{150}{6} = 25$$

Então, podemos concluir que o número de delitos no semestre foi maior que no segundo trimestre.

Gabarito: Certo.

Propriedades da Média Aritmética

Nessa seção, vamos estudar algumas propriedades importantes sobre a média aritmética.

<u>1ª Propriedade:</u> Dado um conjunto com $n \ge 1$ elementos, a média aritmética sempre existirá e será única.

Desde que o conjunto tenha pelo menos um elemento, podemos afirmar que a média aritmética sempre existe, pois sempre conseguiremos calcular o quociente entre a soma dos elementos e o número deles. Além disso, como o somatório dos elementos resulta em um único número, o valor da média também sempre será único.

<u>2ª Propriedade</u>: A média aritmética \overline{x} de um conjunto de dados satisfaz a expressão $m \le \overline{x} \le M$, em que m e M são, respectivamente, os elementos que representam o valor mínimo e o valor máximo desse conjunto.

mínim $o \le \overline{x} \le M$ áximo

Essa propriedade diz respeito ao fato de a média aritmética sempre se encontrar entre os números mínimo e máximo de um conjunto.

Para exemplificar essa propriedade, vamos tomar como base a sequência $\{x_n\}=\{1,2,3,4,5\}$, com média $\bar{x}=3$.

Reparem que o valor mínimo desse conjunto é 1 e o máximo é 5. Portanto, a média encontrada satisfaz a 2ª propriedade:

$$1 \le \bar{x} \le 5$$

Se a sequência fosse $\{y_n\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, teríamos como média:

$$\bar{y} = \frac{1+2+3+4+5+6+7+8+9}{9} = \frac{45}{9} = 5$$

Assim, o valor mínimo seria 1 e o máximo 9. Novamente a propriedade continuaria válida, pois:

$$1 \le \bar{x} \le 9$$

Essa propriedade sempre será válida, seja qual for a sequência escolhida.

Alguns alunos costumam me pedir para demonstrar as propriedades apresentadas na aula, pois sentem mais facilidade de assimilar o conteúdo dessa maneira. Entendo, porém, que essa informação não é relevante para a maioria. Por isso, sempre que a demonstração for um pouco mais complexa, colocarei a dedução em uma seção "indo mais fundo!". Vamos lá!

Se m e M são os valores mínimo e máximo de um conjunto, então, necessariamente, todos os elementos desse conjunto serão maiores ou iguais a m e menores ou iguais a M, ou seja, $m \le x_i \le M$, para $i = 1, 2, 3, \cdots, n$. Assim, podemos fazer:

$$m \le x_1 \le M$$

$$m \le x_2 \le M$$

:

$$m \le x_n \le M$$

Somando as n inequações, obtemos:

$$n \times m \le x_1 + x_2 + \dots + x_n \le n \times M$$

Agora, dividindo tudo por n, temos:

$$m \le \frac{x_1 + x_2 + \dots + x_n}{n} \le M$$

Portanto, concluímos que a média está sempre entre os valores mínimo e máximo de um conjunto:

 $m \leq \overline{x} \leq M$

 $3^{\underline{a}}$ Propriedade: Somando-se (ou subtraindo-se) uma constante c de todos os valores de uma variável, a média do conjunto fica aumentada (ou diminuída) dessa constante.

$$\overline{y} = \overline{x} + c$$
 ou $\overline{y} = \overline{x} - c$

Para exemplificar essa propriedade, vamos tomar como base a sequência $\{x_n\}=\{1,2,3,4,5\}$, com média $\bar{x}=3$.

Se adicionarmos uma constante 5 a cada um de seus números, vamos obter uma nova lista $\{x_n + 5\} = \{6, 7, 8, 9, 10\}$, cuja média é:

$$\overline{x+5} = \frac{6+7+8+9+10}{5} = \frac{40}{5} = 8$$

Veja que, como acrescentamos 5 a cada um dos números da lista, a média também aumentou 5 unidades, de 3 foi para 8.

Vejamos como demonstrar a propriedade para a adição de uma constante. Esse mesmo raciocínio pode ser seguido para a subtração de uma constante.

Seja $\{x_n\}$ uma sequência de números:

$$\{x_n\} = \{x_1, x_2, \cdots, x_n\},\$$

e \bar{x} a média aritmética dos termos dessa sequência:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Seja $\{y_n\}$ uma sequência de números formada pela adição de uma constante c a cada um dos termos de $\{x_n\}$:

$${y_n} = {x_n + c} = {x_1 + c, x_2 + c, \cdots, x_n + c},$$

e \bar{y} a média aritmética dos termos dessa nova sequência:

$$\bar{y} = \frac{(x_1 + c) + (x_2 + c) + \dots + (x_n + c)}{n}$$

$$\bar{y} = \frac{(x_1 + x_2 + \dots + x_n) + \overbrace{(c + c + \dots + c)}^{n \text{ termos}}}{n}$$

$$\bar{y} = \frac{(x_1 + x_2 + \dots + x_n) + n \times c}{n}$$

$$\bar{y} = \frac{(x_1 + x_2 + \dots + x_n) + n \times c}{n}$$

$$\bar{y} = \frac{(x_1 + x_2 + \dots + x_n)}{n} + \frac{n \times c}{n}$$

$$\bar{y} = \frac{(x_1 + x_2 + \dots + x_n)}{n} + c$$

Portanto, ao adicionarmos uma constante c aos elementos de um conjunto, a média do novo conjunto foi aumentada em c:

$$\bar{y} = \bar{x} + c$$

<u>4ª Propriedade:</u> Multiplicando-se (ou dividindo-se) uma constante c de todos os valores de uma variável, a média do conjunto fica multiplicada (ou dividida) por esta constante.

$$\overline{y} = \overline{x} \times c$$
 ou $\overline{y} = \overline{x} \div c$

Para exemplificar essa propriedade, vamos tomar como base a sequência $\{x_n\}=\{1,2,3,4,5\}$, com média $\bar{x}=3$.

Se multiplicarmos cada um de seus elementos por uma constante 5, vamos obter uma nova lista $\{x_n \times 5\} = \{5, 10, 15, 20, 25\}$, cuja média é:

$$\overline{x \times 5} = \frac{5 + 10 + 15 + 20 + 25}{5} = \frac{75}{5} = 15$$

Veja que, como multiplicamos cada um dos números da lista por 5, a média também foi multiplicada por 5, aumentando de 3 para 15.

Vejamos como demonstrar a propriedade para a multiplicação por uma constante. Esse mesmo raciocínio pode ser seguido para a divisão por uma constante.

Seja $\{x_n\}$ uma sequência de números:

$$\{x_n\} = \{x_1, x_2, \cdots, x_n\},\$$

e \bar{x} a média aritmética dos termos dessa sequência:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Seja $\{y_n\}$ uma sequência de números formada pela multiplicação de cada um dos termos de $\{x_n\}$ por uma constante c:

$$\{y_n\} = \{x_n \times c\} = \{x_1 \times c, x_2 \times c, \cdots, x_n \times c\},\$$

e \bar{y} a média aritmética dos termos dessa nova sequência:

$$\bar{y} = \frac{(x_1 \times c) + (x_2 \times c) + \dots + (x_n \times c)}{n}$$
$$\bar{y} = \frac{(x_1 + x_2 + \dots + x_n) \times c}{n}$$
$$\bar{y} = \left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) \times c$$

Portanto, ao multiplicarmos os elementos de um conjunto por uma constante c, a média do novo conjunto também foi multiplicada por c:

$$\bar{y} = \bar{x} \times c$$

5ª Propriedade: A soma algébrica dos desvios em relação à média é nula.

$$\sum_{i=1}^{n} (x_i - \overline{x}) = 0$$

Para exemplificar essa propriedade, vamos tomar como base a sequência $\{x_n\} = \{1, 2, 3, 4, 5, 6, 7\}$, com média $\bar{x} = 4$.

O desvio em relação à média é a diferença entre cada elemento da sequência e a média aritmética. Como a sequência possui 7 elementos, teremos o mesmo número de desvios para calcular. Logo, basta encontrarmos a diferença entre cada elemento e a média:

$$d_1 = x_1 - \bar{x} = 1 - 4 = -3$$

$$d_2 = x_2 - \bar{x} = 2 - 4 = -2$$

$$d_3 = x_3 - \bar{x} = 3 - 4 = -1$$

$$d_4 = x_4 - \bar{x} = 4 - 4 = 0$$

$$d_5 = x_5 - \bar{x} = 5 - 4 = 1$$

$$d_6 = x_6 - \bar{x} = 6 - 4 = 2$$

$$d_7 = x_7 - \bar{x} = 7 - 4 = 3$$

Agora, somaremos todos esses desvios:

$$\sum_{i=1}^{7} d_i = d_1 + d_2 + d_3 + d_4 + d_5 + d_6 + d_7$$

$$\sum_{i=1}^{7} d_i = (-3) + (-2) + (-1) + 0 + 1 + 2 + 3$$

$$\sum_{i=1}^{7} d_i = 0$$

Portanto, não importa qual a sequência de números, a soma dos desvios em relação à média é sempre igual a zero.

Vejamos como demonstrar essa propriedade.

Seja $\{x_n\}$ uma sequência de números:

$$\{x_n\} = \{x_1, x_2, \cdots, x_n\},\$$

e \bar{x} a média aritmética dos termos dessa sequência:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \Rightarrow x_1 + x_2 + \dots + x_n = \bar{x} \times n$$

A soma dos desvios em relação à média é dada por:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x}$$

A média é um valor constante para essa sequência de números, portanto, podemos tirá-la do somatório:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \bar{x} \times \sum_{i=1}^{n} 1$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \bar{x} \times n$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = (x_1 + x_2 + \dots + x_n) - \bar{x} \times n$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \bar{x} \times n - \bar{x} \times n$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0$$

<u>6ª Propriedade:</u> A soma dos quadrados dos desvios da sequência de números $\{x_i\}$, em relação a um número a, é mínima se a for a média aritmética dos números.

$$\sum_{i=1}^{n} (x_i - a)^2 \ge \sum_{i=1}^{n} (x_i - \overline{x})^2$$

Essa propriedade afirma que, caso os desvios sejam calculados com relação a um número diferente da média, e os resultados de tais desvios sejam elevados ao quadrado e somados, teremos um número necessariamente maior do que obteríamos caso a mesma operação fosse realizada utilizando-se a média.

Para exemplificar essa propriedade, vamos tomar como exemplo a sequência $\{x_n\} = \{1, 2, 3, 4, 5, 6, 7\}$, com média $\bar{x} = 4$. Já calculamos os desvios desses números em relação à média, vamos relembrar:

$$d_1 = x_1 - \bar{x} = 1 - 4 = -3$$

$$d_2 = x_2 - \bar{x} = 2 - 4 = -2$$

$$d_3 = x_3 - \bar{x} = 3 - 4 = -1$$

$$d_4 = x_4 - \bar{x} = 4 - 4 = 0$$

$$d_5 = x_5 - \bar{x} = 5 - 4 = 1$$

$$d_6 = x_6 - \bar{x} = 6 - 4 = 2$$

$$d_7 = x_7 - \bar{x} = 7 - 4 = 3$$

Na propriedade anterior, vimos que a soma dos desvios é sempre igual a zero. Agora, calcularemos a soma dos quadrados desses desvios. Em outras palavras, vamos elevar cada um deles ao quadrado e somar todos os resultados:

$$\sum_{i=1}^{7} d_i^2 = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2 + d_7^2$$

$$\sum_{i=1}^{7} d_i^2 = (-3)^2 + (-2)^2 + (-1)^2 + 0^2 + 1^2 + 2^2 + 3^2$$

$$\sum_{i=1}^{7} d_i^2 = 9 + 4 + 1 + 0 + 1 + 4 + 9$$

$$\sum_{i=1}^{7} d_i^2 = 28$$

A propriedade nos garante que, para essa sequência numérica, o valor 28 é o menor valor possível. Isto é, se encontrarmos os desvios em relação a outro número (diferente da média) e, em seguida, calcularmos a soma dos quadrados dos desvios, o valor obtido será maior que 28.

Vamos ver o que acontece ao calcularmos o desvio em relação ao número 6:

$$d_1 = x_1 - \bar{x} = 1 - 6 = -5$$

$$d_2 = x_2 - \bar{x} = 2 - 6 = -4$$

$$d_3 = x_3 - \bar{x} = 3 - 6 = -3$$

$$d_4 = x_4 - \bar{x} = 4 - 6 = -2$$

$$d_5 = x_5 - \bar{x} = 5 - 6 = -1$$

$$d_6 = x_6 - \bar{x} = 6 - 6 = 0$$

$$d_7 = x_7 - \bar{x} = 7 - 6 = 1$$

Agora, calcularemos a soma dos quadrados desses números:

$$\sum_{i=1}^{7} d_i^2 = (-5)^2 + (-4)^2 + (-3)^2 + (-2)^2 + (-1)^2 + 0^2 + 1^2$$
$$\sum_{i=1}^{7} d_i^2 = 25 + 16 + 9 + 4 + 1 + 0 + 1 = 56$$

Como esperávamos, o resultado foi maior do que 28.

Vejamos como demonstrar essa propriedade.

Seja $\{x_n\}$ uma sequência de números:

$$\{x_n\} = \{x_1, x_2, \cdots, x_n\},\$$

e \bar{x} a média aritmética dos termos dessa sequência:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} \Rightarrow x_1 + x_2 + \dots + x_n = \bar{x} \times n$$

A soma dos quadrados dos desvios em relação a um número $m{a}$ é dada por:

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} [(x_i - \bar{x}) + (\bar{x} - a)]^2$$

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + \sum_{i=1}^{n} [2 \times (x_i - \bar{x}) \times (\bar{x} - a)] + \sum_{i=1}^{n} (\bar{x} - a)^2$$

O valor de $(\bar{x} - a)$ é uma constante, portanto, podemos simplificar essa expressão:

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \times (\bar{x} - a) \times \sum_{i=1}^{n} (x_i - \bar{x}) + (\bar{x} - a)^2 \sum_{i=1}^{n} 1$$

Pela propriedade anterior, sabemos que o somatório dos desvios em relação à média é zero, logo:

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2 \times (\bar{x} - a) \times 0 + (\bar{x} - a)^2 \sum_{i=1}^{n} 1$$
$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n \times (\bar{x} - a)^2$$

Para que o valor da soma seja mínimo, é necessário que $(\overline{x} - a)^2 = 0$. Para qualquer valor diferente disso, teremos um valor maior que o mínimo. Logo, para que a soma dos quadrados tenha valor mínimo, obrigatoriamente, teremos $a = \overline{x}$.

MÉDIA PONDERADA

Muitas vezes, certos elementos de um conjunto de dados possuem relevância maior que os demais. Nessa situação, para calcular a média de tais conjuntos, devemos encontrar uma média ponderada. <mark>Uma média ponderada é a média de um conjunto de dados cujos valores possuem pesos variados.</mark>

Ela é calculada pela igualdade a seguir, em que *p* é o peso de cada valor de *x*:

$$\overline{x} = \frac{\sum_{i=1}^{n} (x_i \times p_i)}{\sum_{i=1}^{n} p_i}$$

Observe que no numerador cada valor será multiplicado pelo seu respectivo peso, enquanto no denominador teremos a soma de todos os pesos.

Suponha que um candidato tenha prestado um concurso público para o cargo de Auditor Fiscal, alcançando as seguintes notas:

Disciplina	Nota (x_i)
Língua Portuguesa	4,0
Direito Administrativo	4,0
Direito Constitucional	4,0
Direito Tributário	7,0
Legislação Tributária	7,0
Contabilidade	8,0
Auditoria	8,0

Considere, também, que o edital desse concurso previa que algumas disciplinas teriam importância maior do que outras, por isso foram atribuídos pesos diferentes às várias disciplinas. Digamos que os pesos tenham sido distribuídos da seguinte forma:

Disciplina	Peso (p _i)
Língua Portuguesa	1
Direito Administrativo	2
Direito Constitucional	2
Direito Tributário	3
Legislação Tributária	3
Contabilidade	3
Auditoria	3

Agora, admita que o candidato deveria alcançar uma nota 7,0 ou superior na prova objetiva para que fosse convocado para a etapa discursiva. Se você fosse um dos avaliadores desse concurso, você consideraria o candidato aprovado na prova objetiva?

Para responder a esse questionamento, devemos calcular a média aritmética ponderada desse candidato, levando em consideração os pesos de cada disciplina. Dessa forma, devemos multiplicar cada nota pelo seu respectivo peso, somar esses produtos e dividir pela soma dos pesos.

Disciplina	Nota (x_i)	Peso (p _i)	$x_i \times p_i$
Língua Portuguesa	4,0	1	4,0 x 1 = 4,0
Direito Administrativo	4,0	2	4,0 x 2 = 8,0
Direito Constitucional	4,0	2	4,0 x 2 = 8,0
Direito Tributário	6,0	3	6,0 x 3 = 18,0
Legislação Tributária	6,0	3	6,0 x 3 = 18,0
Contabilidade	7,0	3	$7.0 \times 3 = 21.0$
Auditoria	7,0	3	$7.0 \times 3 = 21.0$

Nesse ponto, temos uma lista contendo todos os produtos de notas e pesos. Então, a média aritmética ponderada é dada por:

$$\bar{x} = \frac{x_1 \times p_1 + x_2 \times p_2 + \dots + x_n \times p_n}{p_1 + p_2 + \dots + p_n}$$

$$\bar{x} = \frac{4,0+8,0+8,0+18,0+18,0+21,0+21,0}{1+2+2+3+3+3+3} = \frac{98}{15} \approx 6,53$$

Veja que, com essas notas, o candidato não seria convocado para a etapa discursiva.

A média ponderada pode ser calculada por meio das seguintes etapas:

Multiplicamos os valores por seus respectivos pesos.

Somamos as operações de multiplicação da etapa anterior e guardamos o resultado.

Dividimos o resultado pela soma dos pesos.

(VUNESP/AVAREPREV/2020) Uma loja trabalha com produtos que são classificados em apenas três tipos. Na tabela, constam os preços de venda de cada tipo do produto:

Tipo do produto	Preço unitário de venda
А	R\$ 10,00
В	R\$ 12,00
С	R\$ 15,00

No último dia útil de funcionamento, foram vendidos produtos dos três tipos, sendo que, do total de unidades vendidas, $\frac{1}{4}$ foi de produtos do tipo A, $\frac{2}{5}$ foi de produtos do tipo B, e o restante, de produtos do tipo C. Naquele dia, o preço médio unitário de venda dos produtos vendidos foi de

- a) R\$ 11,95.
- b) R\$ 12,30.
- c) R\$ 12,55.
- d) R\$ 13,50.
- e) R\$ 13,95.

Comentários:

Segundo o enunciado, temos que:

- total de produtos do tipo A vendidos: $\frac{1}{4} = 25\%$;
- total de produtos do tipo B vendidos: $\frac{2}{5} = 40\%$;
- total de produtos do tipo C vendidos: 100% 25% 40% = 35%.

Portanto, o preço médio unitário de venda será definido como uma média ponderada, em que os pesos serão as porcentagens acima. Nesse sentido, devemos lembrar que a média ponderada é o somatório dos produtos de cada valor por seu respectivo peso, dividido pela soma dos pesos.

Logo,

$$\bar{x} = \frac{10 \times 25\% + 12 \times 40\% + 15 \times 35\%}{25\% + 40\% + 35\%}$$

$$\bar{x} = \frac{10 \times 25\% + 12 \times 40\% + 15 \times 35\%}{100\%}$$

$$\bar{x} = 10 \times 0.25 + 12 \times 0.40 + 15 \times 0.35$$

$$\bar{x} = 2.5 + 4.8 + 5.25$$

$$\bar{x} = R\$ 12.55$$

Gabarito: C.

(CESPE/Pref. São Cristóvão/2019) A tabela seguinte mostra a distribuição das idades dos 30 alunos da turma A do quinto ano de uma escola de ensino fundamental.

Idade (em anos)	9	10	11	12	13	14
Quantidade de estudantes	6	22	0	1	0	1

A partir dessa tabela, julgue o item.

Se, em outra turma B, as frequências das idades fossem respectivamente iguais ao dobro das frequências da turma A, então a média aritmética das idades da turma B seria igual ao dobro da média da turma A.

Comentários:

A média das idades da turma A é uma média ponderada, em que os pesos são representados pelas quantidades de alunos. Assim, a média resulta da divisão entre o somatório dos produtos de idades e quantidades de estudantes e o total de estudantes:

$$\bar{x} = \frac{9 \times 6 + 10 \times 22 + 11 \times 0 + 12 \times 1 + 13 \times 0 + 14 \times 1}{6 + 22 + 0 + 1 + 0 + 1}$$
$$\bar{x} = \frac{300}{30}$$
$$\bar{x} = 10$$

Na turma B, teremos que duplicar as frequências. Dessa forma, a média da turma B será dada por:

$$\bar{x} = \frac{9 \times 12 + 10 \times 44 + 11 \times 0 + 12 \times 1 + 13 \times 0 + 14 \times 2}{12 + 44 + 0 + 2 + 0 + 2}$$
$$\bar{x} = \frac{600}{60}$$
$$\bar{x} = 10$$

Com isso, percebemos que a média não mudará o seu valor.

Gabarito: Errado.

(CESPE/IFF/2018) No registro das quantidades de filhos de 200 casais, verificaram-se os valores mostrados na tabela seguinte.

Quantidade de filhos	1	2	0	3	4	5	6
Quantidade de casais	50	40	40	30	25	10	5

Nesse caso, a quantidade média de filhos para esse grupo de casais é igual a

- a) 0.
- b) 1.
- c) 2.
- d) 2,5.
- e) 3.

Comentários:

A quantidade média de filhos é uma média ponderada, em que os pesos são representados pelas quantidades de casais. Portanto, a média é resultado da divisão entre o somatório dos produtos de quantidades de filhos e quantidades de casais, dividido pelo total de casais:

$$\bar{x} = \frac{1 \times 50 + 2 \times 40 + 0 \times 40 + 3 \times 30 + 4 \times 25 + 5 \times 10 + 6 \times 5}{200}$$

$$\bar{x} = \frac{50 + 80 + 90 + 100 + 50 + 30}{200}$$

$$\bar{x} = \frac{400}{200}$$

$$\bar{x} = 2$$

Gabarito: C.

MÉDIA PARA DADOS AGRUPADOS

Em estatística, os dados podem ser definidos como informações que representam os atributos qualitativos ou quantitativos de uma variável ou de um conjunto de variáveis. Esses dados podem ser classificados em agrupados e não-agrupados. Normalmente, logo após a etapa de coleta, temos dados não-agrupados ou dados brutos.

Por exemplo, suponha que o Estratégia Concursos esteja realizando um experimento com um grupo de dez alunos, para mensurar o tempo médio de resposta a uma questão de estatística. Logo após a coleta, os dados ainda estão brutos, pois não passaram por nenhuma análise nem foram agrupados de alguma forma. Então, teríamos uma tabela similar a seguinte:

Aluno	1	2	3	4	5	6	7	8	9	10
Tempo médio (em min)	1	3	5	7	9	6	6	5	3	9

Por sua vez, os dados agrupados são aqueles que passaram por algum nível de análise, o que significa que já não são brutos. **Os dados agrupados podem ser organizados por frequência de um determinado valor ou por intervalos de classes**. Quando por frequência de valor, os dados são organizados de forma ascendente e suas ocorrências são contabilizadas:

Tempo médio (X_i)	Frequência (f_i)
1	1
3	2
5	2
6	2
7	1
9	2

Quando por intervalos de classes, os dados também são organizados de forma ascendente, porém, em classes preestabelecidas, e as ocorrências de cada classe são contabilizadas:

Tempo médio (X_i)	Frequência (f_i)
$0 \le x < 2$	1
$2 \le x < 4$	2

$4 \le x < 6$	2
$6 \le x < 8$	3
$8 \le x < 10$	2

Para dados agrupados e apresentados como diagramas ou tabelas, a definição da média permanece inalterada, então, tudo o que estudamos até o momento permanece válido, mas teremos métodos específicos para obtenção da média. A seguir, veremos como proceder em cada caso.

Média para Dados Agrupados por Valor

Dando continuidade ao nosso exemplo, vamos a calcular a média aritmética de dados que estão agrupados por valor. Os dados foram organizados na tabela a seguir:

Tempo médio (X_i)	Frequência (f_i)
1	1
3	2
5	2
6	2
7	1
9	2

Como podemos interpretar essa tabela? Basta você saber que as frequências refletem o número de repetições de cada valor da nossa variável tempo médio. Isto é, um aluno conseguiu responder à questão em 1 minuto, dois alunos conseguiram em 3 minutos, dois alunos conseguiram em 5 minutos, e assim sucessivamente.

Para calcularmos a média a partir de uma tabela de frequências como esta, devemos utilizar a seguinte fórmula:

$$\overline{x} = \frac{\sum_{i=1}^{n} (X_i \times f_i)}{\sum_{i=1}^{n} f_i}$$

A aplicação dessa fórmula é bem simples. O raciocínio é exatamente o mesmo adotado para a média ponderada, sendo que, agora, o peso é representado pela frequência. Desse modo, vamos multiplicar cada valor por sua respectiva frequência, somar tudo e dividir pela soma das frequências:

Tempo médio (X_i)	Frequência (f_i)	$X_i \times f_i$
1	1	1 x 1 = 1
3	2	3 x 2 = 6
5	2	5 x 2 = 10
6	2	6 x 2 = 12
7	1	7 x 1 = 7
9	2	9 x 2 = 18

Após isso, somaremos todos os valores da coluna $X_i \times f_i$, obtendo o termo $\sum_{i=1}^n (X_i \times f_i)$, e também somaremos os termos da coluna f_i , obtendo o termo $\sum_{i=1}^n f_i$. Veja a última linha da tabela:

Tempo médio (X_i)	Frequência (f_i)	$X_i \times f_i$
1	1	1 x 1 = 1
3	2	3 x 2 = 6
5	2	5 x 2 = 10
6	2	6 x 2 = 12
7	1	7 x 1 = 7
9	2	9 x 2 = 18
Total	10	54

Agora, basta dividirmos um valor pelo outro, obtendo:

$$\bar{x} = \frac{\sum_{i=1}^{n} (X_i \times f_i)}{\sum_{i=1}^{n} f_i} = \frac{54}{10} = 5.4$$

Portanto, a média dos dados apresentados na tabela é 5,4.

(VUNESP/Pref. Cananéia/2020) Na tabela, identificam-se informações sobre as notas tiradas por 30 alunos, em uma prova cujas notas variaram de 0,0 a 5,0.

Nota	Quantidade de Alunos
0,0	1
1,0	3
2,0	4
3,0	7
4,0	?
5,0	?

Sabendo que o número de alunos que tirou nota 4,0 foi o dobro do número de alunos que tirou nota 5,0, a média aritmética simples das notas dessa prova foi maior que

- a) 3,0 e menor ou igual a 3,1.
- b) 3,1 e menor ou igual a 3,2.
- c) 3,2 e menor ou igual a 3,3.
- d) 3,3 e menor ou igual a 3,4.
- e) 3,4 e menor ou igual a 3,5.

Comentários:

Seja x a quantidade de alunos que tirou nota 5,0 e 2x a quantidade de alunos tirou nota igual a 4,0. Sabemos que o total de alunos é igual a 30. Portanto, temos:

$$1 + 3 + 4 + 7 + 2x + x = 30$$
$$15 + 3x = 30$$
$$3x = 15$$
$$x = 5 \text{ alunos}.$$

Agora, com base nos valores apresentados na tabela, temos que a média das notas é dado por

$$\bar{x} = \frac{0 \times 1 + 1 \times 3 + 2 \times 4 + 3 \times 7 + 4 \times 2x + 5 \times x}{1 + 3 + 4 + 7 + 2x + x}$$

$$\bar{x} = \frac{0 \times 1 + 1 \times 3 + 2 \times 4 + 3 \times 7 + 4 \times 10 + 5 \times 5}{1 + 3 + 4 + 7 + 10 + 5}$$

$$\bar{x} = \frac{3 + 8 + 21 + 40 + 25}{30}$$

$$\bar{x} = \frac{97}{30}$$

$$\bar{x} \cong 3,23$$

Gabarito: C.

(VUNESP/IPSM-SJC/2018) A tabela mostra grupos de funcionários de uma empresa e os respectivos salários individuais dos componentes de cada grupo.

DISTRIBUIÇÃO SALARIAL POR GRUPO				
GRUPO	NÚMERO DE FUNCIONÁRIOS	SALÁRIO (R\$)		
А	8	800,00		
В	10	1.100,00		
С	12	1.200,00		

A diferença de salário de cada funcionário do grupo A e a média aritmética ponderada de todos os salários é de aproximadamente

- a) 15%
- b) 18%
- c) 22%
- d) 25%
- e) 27%

Comentários:

Primeiro, vamos calcular a média aritmética de todos os salários:

Grupo	Salário (x)	Frequência (f)	$x \times f$
Α	800	8	6.400
В	1.100	10	11.000
С	1.200	12	14.400
Total		30	31.800

A média é dada pela divisão entre os dois totais:

$$\bar{x} = \frac{31.800}{30} = \frac{3.180}{3} = 1.060$$

No grupo A, cada funcionário tem salário de R\$ 800,00. Portanto, a diferença para a média é:

$$1.060 - 800 = 260$$

Para determinar a diferença percentual, basta dividirmos esse valor pela média:

$$\frac{260}{1.060} \cong 24,52\%$$

Gabarito: D.

(CESPE/FUB/2016) Em um almoxarifado há, em estoque, 100 caixas na forma de paralelepípedos retângulos. Na tabela a seguir são mostrados alguns valores da frequência absoluta, da frequência relativa e da porcentagem da variável, volume interno da caixa, em litros (L).

Volume da caixa (L)	Frequência absoluta	Frequência relativa	Porcentagem (%)
10	10	*	*
20	*	*	*
45	*	0,2	*
60	*	*	40
Total	100	1	100

Considerando essas informações, julgue o seguinte item.

A média aritmética dos volumes dessas caixas é igual a 40 L.

Comentários:

Nessa questão, teremos que calcular a frequência relativa e completar a tabela apresentada. Assim, temos que a frequência relativa é dada pela divisão entre a frequência absoluta e o total de elementos. Iniciaremos completando a tabela pelas linhas que já possuem informações de frequência e porcentagem.

Na primeira linha (Vol. = 10 litros), temos que a frequência absoluta é igual a 10. Como a frequência absoluta total é 100, podemos usar regra de três simples para encontrar a porcentagem (%) e a frequência relativa:

$$f_{abs}$$
 - % $10 - x$ $100 - 100$

Assim, temos que:

$$x = \frac{100 \times 10}{100} = 10\%$$

Logo, a porcentagem é 10% e a frequência relativa é 0,1.

Na terceira linha (Vol = 45 litros), temos que a frequência relativa é igual a 0,2. Como a frequência relativa total é 1, podemos usar regra de três simples para encontrar a frequência absoluta:

$$f_{abs} - f_{rel}$$

y - 0,2
 $100 - 1,0$

Dessa forma, descobrimos que:

$$y = \frac{100 \times 0.2}{1.0} = 20$$

Portanto, a frequência absoluta é 20.

O mesmo raciocínio deve ser seguido para a quarta linha da tabela, restando, portanto, apenas a segunda linha. Essa linha será descoberta pelo confronto com a linha totalizadora. Assim, após descobrirmos os valores de todas as células, teremos a seguinte tabela:

Volume da caixa (L)	Frequência absoluta	Frequência relativa	Porcentagem (%)
10	10	0,1	10
20	30	0,3	30
45	20	0,2	20
60	40	0,4	40
Total	100	1	100

Calculando a média:

$$\bar{x} = \frac{10 \times 10 + 20 \times 30 + 45 \times 20 + 60 \times 40}{100}$$

$$\bar{x} = \frac{100 + 600 + 900 + 2.400}{100}$$

$$\bar{x} = \frac{4.000}{100}$$

$$\bar{x} = 40$$

Gabarito: Certo.

(CESPE/PRF/2012)

Q	P (%)	
1	50	
2	20	
3	15	
4	10	
5	5	

A tabela acima mostra a distribuição da quantidade Q de pessoas transportadas, incluindo o condutor, por veículo de passeio circulando em determinado município, obtida como resultado de uma pesquisa feita nesse município para se avaliar o sistema de transporte local. Nessa tabela, P representa a porcentagem dos veículos de passeio circulando no município que transportam Q pessoas, para Q = 1, ..., 5. Com base nessas informações, julgue o seguinte item.

Em média, cada veículo de passeio que circula no referido município transporta duas pessoas. Portanto, se, em determinado momento, houver 10 mil veículos circulando nesse município, a quantidade esperada de pessoas que estão sendo transportadas por todos esses veículos, incluindo-se os condutores, será igual a 20 mil.

Comentários:

Inicialmente, precisamos verificar se a média realmente vale 2. Para isso, basta multiplicarmos a quantidade de pessoas por suas respectivas frequências. Assim, temos:

$$1 \times 0.5 = 0.5$$
$$2 \times 0.2 = 0.4$$
$$3 \times 0.15 = 0.45$$
$$4 \times 0.1 = 0.4$$
$$5 \times 0.05 = 0.25$$

Somando todos os resultados:

$$\frac{0.5 + 0.4 + 0.45 + 0.4 + 0.25}{0.5 + 0.2 + 0.15 + 0.1 + 0.05} = 2$$

Portanto, a média realmente vale 2.

Assim, basta multiplicarmos a média por 10.000:

$$2 \times 10.000 = 20.000$$
 pessoas

Gabarito: Certo.

Média para Dados Agrupados por Classe

Retomando nosso exemplo, vamos calcular a média aritmética de dados que estão agrupados por classe. Os dados foram organizados na tabela a seguir:

Tempo médio (X_i)	Frequência (f_i)	
$0 \le x < 2$	1	
$2 \le x < 4$	2	
$4 \le x < 6$	2	
$6 \le x < 8$	3	
$8 \le x < 10$	2	

Como podemos interpretar essa tabela? Basta sabermos que as frequências refletem o número de ocorrências em cada um dos intervalos definidos para a variável tempo médio. Isto é, um aluno respondeu à questão com tempo médio abaixo de 2 minutos, dois responderam com tempo médio entre 2 e 4 minutos, dois com tempo médio entre 4 e 6 minutos, e assim sucessivamente.

Ao agruparmos os dados em classes, precisaremos fazer uma modificação em relação ao cálculo anterior: substituir os intervalos pelos seus respectivos pontos médios. Como assim? Ao invés de considerarmos o intervalo de 0 a 2 minutos, por exemplo, substituiremos pelo valor de 1 minuto.

Em nosso exemplo, a identificação dos pontos médios é relativamente fácil. Mas é possível que você encontre situações em que isso não seja tão trivial. Como fazer nesses casos? Devemos calcular a média dos dois extremos do intervalo. Assim, o ponto médio (*PM*) é calculado pela seguinte expressão:

$$PM = \frac{l_{inf} + l_{sup}}{2}$$

em que l_{inf} e l_{sup} são, respectivamente, os limites inferior e superior do intervalo considerado.

Na tabela abaixo, repare que foi incluída uma nova coluna para o cálculo dos pontos médios:

Tempo médio (X_i)	Ponto Médio (PM_i)	Frequência (f_i)
$0 \le x < 2$	(0+2)/2 = 1	1
$2 \le x < 4$	(2+4)/2 = 3	2
$4 \le x < 6$	(4+6)/2=5	2
$6 \le x < 8$	(6+8)/2=7	3
$8 \le x < 10$	(8+10)/2=9	2

O próximo passo consiste em calcular os valores das multiplicações $PM_i \times f_i$, multiplicando essas duas colunas. Vamos ver:

Tempo médio (X_i)	Ponto Médio (PM_i)	Frequência (f_i)	$PM_i \times f_i$
$0 \le x < 2$	1	1	1 x 1 = 1
$2 \le x < 4$	3	2	3 x 2 = 6
$4 \le x < 6$	5	2	5 x 2 = 10
$6 \le x < 8$	7	3	7 x 3 = 21
$8 \le x < 10$	9	2	9 x 2 = 18

Após isso, somaremos todos os valores da coluna $PM_i \times f_i$, obtendo o termo $\sum_{i=1}^n (PM_i \times f_i)$, e também somaremos os termos da coluna f_i , obtendo o termo $\sum_{i=1}^n f_i$. Veja a última linha da tabela:

Tempo médio (X_i)	Ponto Médio (<i>PM_i</i>)	Frequência (f_i)	$PM_i \times f_i$
$0 \le x < 2$	1	1	1 x 1 = 1
$2 \le x < 4$	3	2	3 x 2 = 6
$4 \le x < 6$	5	2	5 x 2 = 10
$6 \le x < 8$	7	3	7 x 3 = 21
$8 \le x < 10$	9	2	9 x 2 = 18
Total		10	56

Agora, basta dividirmos um valor pelo outro, obtendo:

$$\bar{x} = \frac{\sum_{i=1}^{n} (PM_i \times f_i)}{\sum_{i=1}^{n} f_i} = \frac{56}{10} = 5.6$$

Finalmente, repare que a média de dados agrupados por classe (5,6) foi diferente da média de dados agrupados por valor (5,4). Por que isso ocorreu? Isso ocorreu porque, ao agruparmos os valores da variável em classes, perdemos detalhes que eram relevantes para o cálculo exato da média, embora a forma de apresentação tenha sido simplificada.

(CSEP/IFPI/2019) Na tabela abaixo, estão relacionadas as durações das chamadas telefônicas feitas em um dia, em uma empresa.

Duração (em minutos)	Frequência (f_i)	
0 ⊢ 2	90	
2 ⊢ 6	55	
6 ⊢ 10	35	
10 ⊢ 15	20	
15 ⊢ 2 0	12	
20 ⊢ 30	17	
30 ⊢ 40	5	
40 ⊢ 60	1	
Total	235	

Assim, a duração média das chamadas telefônicas é mais próxima de

- a) 6 min e 14 seg.
- b) 7 min e 14 seg.
- c) 7 min e 23 seg.
- d) 7 min e 32 seg.
- e) 8 min e 23 seg.

Comentários:

Para dados agrupados em classes, a média aritmética é calculada a partir da média dos pontos centrais de cada classe. Vejamos:

Duração (em minutos)	Ponto Médio (PM _i)	Frequência (f_i)	$PM_i \times f_i$
0 ⊢ 2	$\frac{0+2}{2}=1$	90	$1 \times 90 = 90$
2 ⊢ 6	$\frac{2+6}{2}=4$	55	$4 \times 55 = 220$
6 ⊢ 10	$\frac{6+10}{2}=8$	35	$8 \times 35 = 280$
10 ⊢ 15	$\frac{10+15}{2} = 12,5$	20	$12,5 \times 20 = 250$
15 ⊢ 2 0	$\frac{15+20}{2}=17,5$	12	$17.5 \times 12 = 210$
20 ⊢ 30	$\frac{20+30}{2} = 25$	17	$25 \times 17 = 425$
30 ⊢ 40	$\frac{30+40}{2} = 35$	5	$35 \times 5 = 175$
40 ⊢ 60	$\frac{40 + 60}{2} = 50$	1	$50 \times 1 = 50$
Total		235	1700

A média é dada pela divisão entre os dois totais:

$$\bar{x} = \frac{1700}{235} \cong 7,23 \ min$$

Transformando 0,23 minutos em segundos:

$$0,23 \times 60seg = 13,8seg$$

Portanto, a média em segundos é:

$$\bar{x} = 7min14seg$$

Gabarito: D.

(CESPE/DEPEN/2015)

Idade (x)	Percentual
$18 \le x < 25$	30%
$25 \le x < 30$	25%
$30 \le x < 35$	20%
$35 \le x < 45$	15%
$45 \le x < 60$	10%
Total	100%

Felipe M. Monteiro, Gabriela R. Cardoso e Rafael da Silva. A seletividade do sistema prisional brasileiro e as políticas de segurança pública. *In*: XV Congresso Brasileiro de Sociologia, 26 a 29 de julho de 2011. Curitiba (PR). Grupo de Trabalhos - Violência e Sociedade (com adaptações).

A tabela precedente apresenta a distribuição percentual de presos no Brasil por faixa etária em 2010, segundo levantamento feito por Monteiro et al. (2011), indicando que a população prisional brasileira nesse ano era predominantemente jovem. Com base nos dados dessa tabela, julgue os itens a seguir.

A maior parte da população prisional brasileira em 2010 era formada por pessoas com idades inferiores a 30 anos. Porém, a média da distribuição das idades dos presos no Brasil nesse ano foi superior a 30 anos.

Comentários:

A tabela nos permite concluir que a primeira parte do item está correta, pois há 30% + 25% = 55% de pessoas com idades inferiores a 30 anos. Agora, para terminarmos de analisar o item, teremos que calcular a média.

Como os dados estão agrupados em classe, devemos calcular o ponto médio de cada uma das classes:

Idade (x)	Percentual (f_i)	Ponto Médio (<i>PM</i> _i)	$PM_i \times f_i$
$18 \le x < 25$	30% = 0,30	21,5	6,450
$25 \le x < 30$	25% = 0,25	27,5	6,875
$30 \le x < 35$	20% = 0,20	32,5	6,500
$35 \le x < 45$	15% = 0,15	40,0	6,000
$45 \le x < 60$	10% = 0,10	52,5	5,250
	100% = 1,00		31,075

Portanto, a média é:

$$\bar{x} = \frac{\sum (PM_i \times f_i)}{\sum f_i} = \frac{31,075}{1} = 31,075$$

Gabarito: Certo.

(CESPE/STF/2013)

Com referência à figura acima, que mostra a distribuição da renda mensal — x, em quantidades de salários mínimos (sm) — das pessoas que residem em determinada região, julgue o item subsequente.

Considerando a forma de cálculo para dados agrupados, a distribuição da renda mensal x possui média igual a 9,75 sm.

Comentários:

A questão requer o cálculo da média de dados agrupados. Para achar a média precisamos, inicialmente, determinar o ponto médio de cada classe. Teremos:

- de 5 a 10 ponto médio = 7,5;
- de 10 a 15 ponto médio = 12,5;
- de 15 a 20 ponto médio = 17,5.

Agora, a média da amostra é dada pela média ponderada dos pontos médios multiplicados por suas respectivas frequências.

$$\bar{x} = \frac{7,5 \times 65\% + 12,5 \times 25\% + 17,5 \times 10\%}{65\% + 25\% + 10\%}$$
$$\bar{x} = \frac{4,875 + 3,125 + 1,75}{1,00}$$
$$\bar{x} = 9.75$$

Gabarito: Certo.

MÉDIA GEOMÉTRICA

A **média geométrica** é uma medida estatística muito utilizada em situações de **acumulação de percentuais**, fato muito comum em problemas financeiros. Também é encontrada na **geometria plana**, quando, por exemplo, devemos fazer com que a área de um quadrado seja igual à área de um retângulo.

Essa medida é definida, para o conjunto de números positivos, como a raiz n-ésima do produto de n elementos de um conjunto de dados. A propriedade principal dessa média é preservar o produto dos elementos de um conjunto de dados.

O raciocínio para encontrarmos a fórmula da média geométrica é análogo ao adotado para a média aritmética. Dada uma lista de n números, $\{x_1, x_2, \dots, x_n\}$, o produto de seus termos é igual a:

$$\underbrace{x_1 \times x_2 \times \cdots \times x_n}_{n \ fatores}$$

A média geométrica dessa lista é um número G, tal que, se todos os elementos forem substituídos por G, o produto da lista permanecerá preservado. Assim, substituindo todos os elementos por G, teremos uma nova lista, $\{G, G, \dots, G\}$, cujo produto é:

$$\underbrace{G \times G \times \cdots \times G}_{n \text{ fatores}} = G^n$$

Como os produtos das duas listas são iguais, temos:

$$G^n = x_1 \times x_2 \times \cdots \times x_n$$

Portanto, temos que:

$$G = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$$

Repare que a raiz varia de acordo com a quantidade de elementos da lista de números, isto é, se a lista contém dois números, teremos uma raiz quadrada; se a lista contém três números, teremos uma raiz cúbica.

Vejamos um exemplo numérico: qual a média geométrica dos números 4, 20 e 100?

Para responder a essa questão, primeiro, calcularemos o produto dos três números e, em seguida, a raiz cúbica dele:

$$G = \sqrt[3]{4 \times 20 \times 100} = \sqrt[3]{8000} = 20$$

Extrair a raiz cúbica de um número, contudo, nem sempre é tão trivial. Na hora da prova, é mais fácil adotarmos o processo de fatoração:

Vocês lembram como fazemos para fatorar um número? Primeiro, dividimos esse número pelo seu menor divisor primo $(2,3,5,7,11,13,\cdots)$. Em seguida, dividimos o quociente obtido pelo seu menor divisor primo. Depois, fazemos isso de forma sucessiva até obtermos o valor 1.

Por meio da fatoração, concluímos que:

$$4 = 2 \times 2 = 2^{2}$$

$$20 = 2 \times 2 \times 5 = 2^{2} \times 5^{1}$$

$$100 = 2 \times 2 \times 5 \times 5 = 2^{2} \times 5^{2}$$

Levando essa informação para a fórmula da média geométrica, temos que:

$$G = \sqrt[3]{(2^2) \times (2^2 \times 5^1) \times (2^2 \times 5^2)}$$

 $G = \sqrt[3]{4 \times 20 \times 100}$

E agora? Vocês lembram como fazemos multiplicação de potências de mesma base? Sim, é isso mesmo, repetiremos as bases e somaremos os expoentes. Assim, $2^2 \times 2^2 \times 2^2 = 2^6$ e $5^1 \times 5^2 = 5^3$. Portanto, ficaremos com:

$$G = \sqrt[3]{2^6 \times 5^3}$$

Agora, por ser uma raiz cúbica, devemos dividir cada um dos expoentes por 3:

$$G = 2^{6/3} \times 5^{3/3}$$

$$G = 2^2 \times 5^1 = 4 \times 5 = 20$$

Portanto, 20 é o valor da média geométrica dos números 4, 20 e 100.

Reparem que o produto dos números da lista é $4 \times 20 \times 100 = 8000$. Se os três números forem substituídos por 20, o produto também será $20 \times 20 \times 20 = 8000$. Por isso, dizemos que a média geométrica preserva o produto dos números.

Vejamos algumas situações em que empregamos a média geométrica:

1) no setor financeiro: o preço de um produto, nos últimos 3 meses, sofreu aumentos de, respectivamente, 3%, 8%, 9%. Qual foi o aumento médio percentual nesse período?

$$j = \sqrt[3]{3 \times 8 \times 9}$$
$$j = \sqrt[3]{3 \times 2^3 \times 3^2}$$
$$j = \sqrt[3]{2^3 \times 3^3} = 6\%$$

2) na geometria espacial: um prisma de base retangular possui o mesmo volume que um cubo. Se as dimensões do prisma são 4 cm x 10 cm x 25 cm, qual é o valor do lado do cubo em centímetros?

$$l^{3} = 4 \times 10 \times 25$$

$$l = \sqrt[3]{4 \times 10 \times 25}$$

$$l = \sqrt[3]{2^{2} \times 2 \times 5 \times 5^{2}}$$

$$l = \sqrt[3]{2^{3} \times 5^{3}} = 10cm$$

Sobre a média geométrica, podemos afirmar que:

I – ela preserva o produto dos elementos de uma lista de números;

II – ela é obtida por meio da raiz n-ésima do produto de n elementos de um conjunto, $G = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$.

Somente definimos a média geométrica para números não-negativos. Assim, evitamos situações em que a média geométrica não existe. Por exemplo, não conseguiríamos calcular a média geométrica de 1 e -1, pois a raiz quadrada de -1 não existe no campo dos números reais.

(VUNESP/Pref. de Sertãozinho/2018) O gráfico a seguir mostra as notas das duas provas obtidas por um aluno em matemática e as duas notas obtidas em língua portuguesa, nesse bimestre.

Seus professores afirmaram que, nesse bimestre, a média de matemática e de língua portuguesa será a raiz quadrada do produto de Mat1 x Mat2e a raiz quadrada do produto de LP1 e LP2. Dessa forma, a média de matemática desse aluno será maior que sua média de língua portuguesa em

- a) 0,5 ponto.
- b) 1,0 ponto.

- c) 1,5 ponto.
- d) 2,0 pontos.
- e) 2,5 pontos.

Comentários:

Do gráfico, extraímos que:

$$\begin{cases} Mat_1 = 4.5 \\ Mat_2 = 8.0 \end{cases} e \begin{cases} LP_1 = 2.0 \\ LP_2 = 8.0 \end{cases}$$

Como a média de matemática será calculada pela raiz quadrada do produto de $Mat_1 \times Mat_2$, então a média desse aluno em matemática será de:

$$\sqrt{Mat_1 \times Mat_2} = \sqrt{4.5 \times 8} = \sqrt{36} = 6.0 \ pontos$$

A média de língua portuguesa, por sua vez, será dada pela raiz quadrada de $LP_1 \times LP_2$. Assim, a média desse aluno em português será de:

$$\sqrt{LP_1 \times LP_2} = \sqrt{2 \times 8} = \sqrt{16} = 4.0 \ pontos$$

Portanto, a média de matemática desse aluno será maior que sua média de língua portuguesa em:

$$6.0 - 4.0 = 2.0$$
 pontos

Gabarito: D.

(AOCP/Pref. de Pinhais/2017) Sejam a, b, e c três números reais e positivos tais que:

- A média aritmética entre a e b é igual a 15;
- A média aritmética entre b e c é igual a 11;
- A média aritmética entre a e c é igual a 5.

Dessa forma, a média geométrica entre a, b, e c será igual a

- a) $3\sqrt[3]{7}$
- b) ²√7
- c) $7\sqrt[3]{3}$
- d) $\sqrt[2]{3}$
- e) $\sqrt[2]{189}$

Comentários:

Por definição, a média aritmética é a soma total dos termos dividida pelo número total dos termos.

Pelos dados apresentados, sabemos que:

$$\begin{cases} \frac{a+b}{2} = 15\\ \frac{b+c}{2} = 11\\ \frac{a+c}{2} = 5 \end{cases}$$

De forma equivalente, temos que:

$$\begin{cases} a+b=30\\ b+c=22\\ a+c=10 \end{cases}$$

Temos um sistema de equações lineares formado por três equações e três incógnitas. Para resolvê-lo, podemos utilizar a técnica de substituição de incógnitas. Pela primeira equação, temos que:

$$a = 30 - b$$

Isolando a incógnita c na segunda equação, teremos:

$$c = 22 - b$$

Agora, vamos substituir o valor na terceira equação:

$$a + c = 10$$

$$(30 - b) + (22 - b) = 10$$

$$52 - 2b = 10$$

$$52 - 10 = 2b$$

$$42 = 2b$$

$$b = 21$$

Dessa forma, teremos:

$$a = 30 - b = 30 - 21 = 9$$

 $c = 22 - b = 22 - 21 = 1$

Logo, ao resolver o sistema, descobrimos que a=9, b=21 e c=1. Assim, sendo a média geométrica a raiz cúbica do produto desses números, então:

$$G = \sqrt[3]{a \times b \times c}$$

$$G = \sqrt[3]{9 \times 21 \times 1}$$

$$G = \sqrt[3]{3^2 \times (3 \times 7) \times 1}$$

$$G = \sqrt[3]{3^3 \times 7}$$

$$G = 3 \times \sqrt[3]{7}$$

Gabarito: A.

MÉDIA HARMÔNICA

A **média harmônica** é muito utilizada quando precisamos trabalhar com grandezas inversamente proporcionais. É o caso de problemas clássicos, como o **cálculo da velocidade média de um automóvel** ou da **vazão de torneiras** (quanto tempo duas ou mais torneiras levam para encher um tanque).

Essa medida é definida, para o conjunto de números positivos, como o inverso da média aritmética dos inversos. A propriedade principal dessa média é preservar a soma dos inversos dos elementos de um conjunto de números.

O raciocínio para encontrarmos a fórmula da média harmônica é similar ao adotado para as médias aritmética e geométrica. Dada uma lista de n números, $\{x_1, x_2, \cdots, x_n\}$, a soma dos inversos de seus termos é igual a:

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}$$
n fatores

A média harmônica dessa lista é um número H, tal que, se todos os elementos forem substituídos por H, a soma dos inversos permanecerá preservada. Assim, substituindo todos os elementos por H, teremos uma lista, $\{H, H, \cdots, H\}$, cuja soma dos inversos é:

$$\underbrace{\frac{1}{H} + \frac{1}{H} + \dots + \frac{1}{H}}_{n \ fatores} = \frac{n}{H}$$

Como as somas dos inversos das duas listas são iguais, temos:

$$\frac{n}{H} = \frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}$$

$$n = H \times \left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)$$

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

em que n corresponde à quantidade de termos que integram o conjunto.

Como vimos no início, muitas vezes, **a média harmônica é descrita como o inverso da média aritmética dos inversos**. Isso porque a fórmula acima também pode ser escrita na forma mostrada a seguir, em que $\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)/n$ corresponde à média aritmética dos inversos.

$$H = \frac{1}{\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)}$$

Vejamos um exemplo numérico. Qual a média harmônica dos números 15 e 60?

Para responder a essa questão, iniciaremos calculando o valor da soma dos inversos desses números:

$$\frac{1}{15} + \frac{1}{60}$$

Calculando o M.M.C de 15 e 60, temos:

$$2^2 \times 3 \times 5 = 60$$

Então, temos que:

$$\frac{1}{15} + \frac{1}{60} = \frac{4+1}{60} = \frac{5}{60} = \frac{1}{12}$$

Agora, por serem somente dois números, devemos dividir a soma dos inversos por 2. Dessa forma encontraremos a média dos inversos:

$$\frac{\left(\frac{1}{12}\right)}{2} = \frac{1}{12} \times \frac{1}{2} = \frac{1}{24}$$

Desse modo, temos que:

$$H = \frac{1}{\left(\frac{1}{24}\right)} = 1 \times 24 = 24$$

Portanto, 24 é o valor da média harmônica dos números 15 e 60.

Repare que a soma dos inversos dos números da lista é 1/15 + 1/60 = 1/12. Se os dois números forem substituídos por 24, a soma dos inversos também será 1/24 + 1/24 = 1/12. Por isso, dizemos que a média harmônica preserva a soma dos inversos dos números.

Vejamos algumas situações em que empregamos a média harmônica:

1) no cálculo da velocidade média: durante a metade de um percurso um veículo manteve a velocidade de 80 km/h e durante a metade restante sua velocidade foi de 120 km/h. Qual a velocidade média do veículo durante o percurso?

Primeiro, precisa ficar claro o motivo de adotarmos a média harmônica. Note que as distâncias percorridas são iguais, o que muda é a velocidade e, consequentemente, o tempo. Se aumentarmos a velocidade, o tempo que levaremos para percorrer uma mesma distância diminuirá, logo, essas grandezas são inversamente proporcionais.

$$v_{m \in d} = \frac{n}{\frac{1}{v_1} + \frac{1}{v_2}} = \frac{2}{\frac{1}{80} + \frac{1}{120}}$$

Calculando o M.M.C de (80, 120):

$$2^4 \times 5 \times 3 = 240$$

Então, temos que:

$$v_{m\acute{e}d} = \frac{2}{\frac{3+2}{240}} = \frac{2}{\frac{5}{240}}$$
$$v_{m\acute{e}d} = 2 \times \left(\frac{240}{5}\right)$$
$$v_{m\acute{e}d} = \frac{480}{5} = 96 \ km/h$$

2) no cálculo da vazão de duas torneiras: para encher um tanque, uma torneira leva 12 horas. Para encher esse mesmo tanque, outra torneira leva 6 horas. Caso as duas torneiras fossem abertas ao mesmo tempo, quanto tempo elas levariam para encher o tanque?

Repare que vazão e tempo são grandezas inversamente proporcionais, pois, quanto maior a vazão da torneira, menor será o tempo que ela levará para encher o tanque. Desse modo, utilizaremos a média harmônica para encontrarmos o tempo médio das duas torneiras.

$$t_{m\acute{e}d} = \frac{2}{\frac{1}{6} + \frac{1}{12}}$$

$$t_{m\acute{e}d} = \frac{2}{\frac{2+1}{12}}$$

$$t_{m\acute{e}d} = \frac{2}{\frac{3}{12}}$$

$$t_{m\acute{e}d} = 2 \times \left(\frac{12}{3}\right)$$

$$t_{m\acute{e}d} = \frac{24}{3} = 8 \ horas$$

Como as torneiras serão ligadas simultaneamente em um único tanque, precisamos dividir esse tempo por 2, pois cada torneira leva, em média, 8 horas. Então, concluímos que o tempo de espera com as duas torneiras ligadas seria de 4 horas.

$$8 \div 2 = 4 horas$$

Sobre a média harmônica, podemos afirmar que:

I – ela preserva a soma dos inversos de uma lista de números;

II – ela é definida como o inverso da média aritmética dos inversos, $H = \frac{n}{\left(\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}\right)}$

Somente definimos a média harmônica para números não-negativos. Assim, evitamos situações em que a média harmônica não existe. Por exemplo, não conseguiríamos calcular a média geométrica de 1 e -1, pois a soma dos inversos resultaria em zero e, como sabemos, a divisão por zero é impossível de ser calculada.

(FCC/SEFAZ-GO/2018) Os matemáticos definem diferentes tipos de médias entre dois números positivos e, para cada aplicação, escolhem qual o tipo mais adequado a ser utilizado. A média harmônica H entre os números positivos a e b, por exemplo, é definida como o inverso da média aritmética dos inversos desses números, ou seja,

$$H = \frac{1}{\frac{1}{\underline{a} + \frac{1}{\underline{b}}}}$$

A média aritmética dos números 5 e 20 supera a média harmônica desses mesmos números em

- a) 4,75 unidades.
- b) 5 unidades.
- c) 4 unidades.
- d) 4,25 unidades.
- e) 4,5 unidades.

Comentários:

A média aritmética é dada por:

$$\frac{5+20}{2}$$
 = 12,5

A média harmônica é o inverso da média aritmética dos inversos. O primeiro passo é calcularmos a soma dos inversos:

$$\frac{1}{5} + \frac{1}{20} = \frac{4+1}{20} = \frac{5}{20} = \frac{1}{4}$$

Assim, podemos calcular a média aritmética dos inversos. Para isso, basta dividirmos a soma dos termos por 2:

$$\frac{\frac{1}{4}}{2} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

Portanto, a média aritmética supera a média harmônica em 12,5-8=4,5 unidades.

Também, podemos calcular a média harmônica de dois números de forma mais rápida. Para tanto, basta desenvolvermos a própria fórmula que foi dada na questão:

$$H = \frac{1}{\frac{1}{\frac{a}{b} + \frac{1}{b}}}$$

$$H = \frac{2}{\frac{1}{\frac{a}{b} + \frac{1}{b}}}$$

$$H = \frac{2}{\frac{a+b}{a \times b}}$$

$$H = \frac{2 \times a \times b}{a+b}$$

Assim, a média harmônica de dois números é o quociente do dobro do produto dos números pela soma dos números. Voltando ao enunciado, queremos calcular a média harmônica dos números 5 e 20, logo:

$$H = \frac{2 \times 5 \times 20}{5 + 20} = \frac{200}{25} = 8$$

Gabarito: E.

(FCC/ARTESP/2017) Considere as seguintes informações

I. (A) = média harmônica dos números 4, 6 e 12.

II. (B) = média geométrica dos números 4, 6 e 12.

A média aritmética entre (A) e (B) é igual a

- a) 6,81.
- b) 5,68.
- c) 6,30.
- d) 5,41.
- e) 6,93.

Comentários:

A média geométrica é:

$$G = \sqrt[3]{4 \times 6 \times 12}$$
$$G = \sqrt[3]{2^2 \times 2 \times 3 \times 2^2 \times 3}$$

$$G = 2 \times \sqrt[3]{36}$$

Agora, a nossa dificuldade será encontrar a raiz cúbica de 36. Sabemos que $3^3 = 27$ e que $4^3 = 64$. Portanto, o número que procuramos está entre 3 e 4. E deve ser ligeiramente maior que 3. Vamos aproximar uma só casa, testando valores:

$$3,1^3 = 29,791$$

$$3,2^3 = 32,768$$

$$3.3^3 = 35.937$$

Portanto, já chegamos bem próximo do valor que queríamos (36). Assim, vamos considerar a raiz cúbica de 36 aproximadamente igual a 3,3.

$$G = 2 \times \sqrt[3]{36}$$

$$G = 2 \times 3.3$$

$$G = 6.6$$

A média harmônica é

$$H = \frac{1}{\frac{1}{4} + \frac{1}{6} + \frac{1}{12}}$$

Vamos calcular, em primeiro lugar, a soma dos inversos:

$$\frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{3+2+1}{12} = \frac{6}{12} = \frac{1}{2}$$

Agora, vamos calcular o valor médio da soma dos inversos:

$$\frac{\frac{1}{4} + \frac{1}{6} + \frac{1}{12}}{3} = \frac{\frac{1}{2}}{3} = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

Finalmente, vamos encontrar o inverso da média da média aritmética dos inversos:

$$H = \frac{1}{\frac{1}{4} + \frac{1}{6} + \frac{1}{12}} = \frac{1}{\frac{1}{6}} = 1 \times 6 = 6$$

$$H = 6$$

Agora, vamos descobrir o valor da média aritmética entre G e H:

$$\frac{6,6+6}{2} = 6,3$$

Gabarito: C.

DESIGUALDADE DAS MÉDIAS

Dada uma lista de n números positivos, $\{x_1, x_2, \dots, x_n\}$, podemos afirmar que:

$$\overline{x} \geq G \geq H$$

em que \bar{x} é a média aritmética; G é a média geométrica e H é a média harmônica.

Significa dizer que a **média aritmética** será **sempre maior ou igual** à **média geométrica** que, por sua vez, será **sempre maior ou igual** à **média harmônica**. A igualdade ocorrerá quando os números da lista forem todos iguais.

Tomemos como exemplo os números 4, 12 e 20. Como sabemos, a média aritmética será:

$$\bar{x} = \frac{4+12+20}{3} = 12$$

A média geométrica será:

$$G = \sqrt[3]{4 \times 12 \times 20} \cong 9.86$$

E a média harmônica será:

$$H = \frac{3}{\frac{1}{4} + \frac{1}{12} + \frac{1}{20}} \cong 2,61$$

Obtivemos, portanto, uma média aritmética ($\bar{x}=12$) maior que a média geométrica (G=9,86) que, por sua vez, é maior que a média harmônica (H=2,61).

Agora, analisaremos um caso em que as três médias são iguais: considere uma lista composta pelos números 5, 5 e 5. Nesse caso, temos que \bar{x} , G e H são, respectivamente:

$$\bar{x} = \frac{5+5+5}{3} = 5$$

$$G = \sqrt[3]{5 \times 5 \times 5} = 5$$

$$H = \frac{3}{\frac{1}{5} + \frac{1}{5} + \frac{1}{5}} = 5$$

Portanto, quando todos os números da lista são iguais, as médias aritmética (\bar{x}) , geométrica (G) e harmônica (H) também são iguais.

(CESPE/SEFAZ-RS/2018) Para a, b e c, números reais, positivos e distintos, são verdadeiras as seguintes propriedades:

- a < c
- $b < \frac{a+c}{2} < \sqrt{bc}$

A partir dessas propriedades, é correto concluir que

a)
$$\frac{a+c}{2} < \frac{a+b+c}{3}$$

- b) a > b
- c) $c < \frac{a+b}{2}$
- d) a < b < c
- e) b > c

Comentários:

Essa questão pode ser respondida de duas formas numericamente, por meio da atribuição de valores às variáveis, ou algebricamente, por meio da manipulação das variáveis.

Primeiro, vamos resolver de forma numérica. Para isso, devemos considerar que, para a, b e c, números reais positivos e distintos, são verdadeiras as seguintes propriedades:

$$a < c$$

$$b < \frac{a+c}{2} < \sqrt{bc}$$

Como temos \sqrt{bc} , podemos atribuir valores às variáveis b e c, tais como b=9 e c=16, de forma que a raiz resulte em um número inteiro. Dessa forma, $\sqrt{bc}=\sqrt{9\times16}=\sqrt{144}=12$. Assim, temos que:

Temos ainda que:

$$b < \frac{a+c}{2} < \sqrt{bc}$$

$$9 < \frac{a+16}{2} < 12$$

Vamos multiplicar todos os termos por 2.

$$18 < a + 16 < 24$$

Nesse ponto, devemos subtrair 16 de todos os termos.

$$18 - 16 < a < 24 - 16$$
$$2 < a < 8$$

Portanto, a pode ser qualquer valor nesse intervalo. Vamos supor que a=4. Assim, vamos assumir que a=4, b=9 e c=16. Agora, podemos partir para a análise das alternativas:

a)
$$\frac{a+c}{2} < \frac{a+b+c}{3}$$

$$\frac{4+16}{2} < \frac{4+9+16}{3}$$

b) a > b

c)
$$c < \frac{a+b}{2}$$

$$16 < \frac{4+9}{2}$$

d)
$$a < b < c$$

$$4 < 9 < 16$$
 (verdadeiro)

e)
$$b > c$$

Agora, vamos usar o método algébrico para responder à questão. Retomando o que diz o enunciado, temos que, para a, b e c, números reais positivos e distintos, são verdadeiras as seguintes propriedades:

$$a < c$$

$$b < \frac{a+c}{2} < \sqrt{bc}$$

Assim, já sabemos que a < c.

A segunda desigualdade nos diz que $b < \sqrt{bc}$. Em outras palavras, b é menor que a média geométrica entre b e c. Como a **média geométrica** sempre fica entre os números, podemos concluir que b < c. Podemos verificar isso da seguinte forma:

$$b^2 < bc$$

Precisamos, agora, saber a relação entre a e b.

A segunda desigualdade informou que $\frac{a+c}{2} < \sqrt{bc}$. O lado esquerdo representa a **média aritmética** entre os números a e c. Sabemos que a **média aritmética** é sempre maior que a média geométrica. Portanto,

$$\sqrt{ac} < \frac{a+c}{2}$$

Logo,

$$\sqrt{ac} < \frac{a+c}{2} < \sqrt{bc}$$

Agora, sabemos que:

$$\sqrt{ac} < \sqrt{bc}$$

$$ac < bc$$

$$a < b$$

Assim, temos que a < b e b < c. Portanto, a < b < c. A resposta está na alternativa D, mas analisaremos as demais alternativas.

a)
$$\frac{a+c}{2} < \frac{a+b+c}{3}$$

Sabemos que b < a + c, isto é, b é menor que a média entre a e c. Assim, se formos incluir no cálculo da média, o resultado dessa média diminuirá. Logo, a alternativa A está errada.

b) a > b

Falso, pois concluímos que a < b.

c)
$$c < \frac{a+b}{2}$$

Falso, pois c é o maior valor. Logo, também será maior que a média dos dois menores.

d) a < b < c

Alternativa correta

e) b > c

Falso, pois b < c.

Assim, comprovamos que a resposta correta é a alternativa D.

Gabarito: D.

RESUMO DA AULA

MEDIDAS DE POSIÇÃO

NOTAÇÃO DE SOMATÓRIO

Nessa notação, temos:

- 1) um **símbolo de somatório**, Σ , que é a letra grega maiúscula Sigma (S);
- 2) um **indice** que vai variar do limite inferior *a* até o limite superior *b*;
- 3) um limite inferior;
- 4) um limite superior ou condição de parada;
- 5) o termo geral de uma sequência.

Propriedades do Somatório

 $1^{\underline{a}}$. Propriedade: O somatório de uma constante k é igual ao produto do número de termos pela constante.

$$\sum_{i=1}^{n} k = k + k + \dots + k = k \times n$$

<u>2ª. Propriedade:</u> O somatório do produto de uma constante por uma variável é igual ao produto da constante pelo somatório da variável.

$$\sum_{i=1}^{n} \mathbf{k} \times \mathbf{x}_{i} = \mathbf{k} \times \mathbf{x}_{1} + \mathbf{k} \times \mathbf{x}_{2} + \dots + \mathbf{k} \times \mathbf{x}_{n} = \mathbf{k} \times \sum_{i=1}^{n} \mathbf{x}_{i}$$

3ª. Propriedade: O somatório de uma soma ou subtração é igual à soma ou à subtração dos somatórios dessas variáveis.

$$\sum_{i=1}^{n} (x_i \pm y_i) = \sum_{i=1}^{n} x_i \pm \sum_{i=1}^{n} y_i$$

MÉDIA ARITMÉTICA SIMPLES

A média aritmética de um conjunto de dados é definida como o **quociente entre a soma de todos os elementos e o número deles**.

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

A propriedade principal da média é preservar a soma dos elementos de um conjunto de dados.

A soma total de um conjunto de dados é calculada pela multiplicação entre a média do conjunto e a quantidade de elementos nele existentes. Trata-se da mesma fórmula apresentada anteriormente, tendo apenas o termo "n" passado para o outro lado da igualdade, multiplicando a média.

$$\overline{x} = \frac{soma}{n} \Longrightarrow soma = n \times \overline{x}$$

Propriedades da Média Aritmética

<u>1ª Propriedade</u>: Dado um conjunto com $n \ge 1$ elementos, a média aritmética sempre existirá e será única.

<u>2ª Propriedade</u>: A média aritmética \overline{x} de um conjunto de dados satisfaz a expressão $m \leq \overline{x} \leq M$, em que m e M são, respectivamente, os elementos que representam o valor mínimo e o valor máximo desse conjunto.

$$minimo \leq \overline{x} \leq Maximo$$

 $3^{\underline{a}}$ Propriedade: Somando-se (ou subtraindo-se) uma constante c de todos os valores de uma variável, a média do conjunto fica aumentada (ou diminuída) dessa constante.

$$\overline{y} = \overline{x} + c$$
 ou $\overline{y} = \overline{x} - c$

<u>4ª Propriedade:</u> Multiplicando-se (ou dividindo-se) uma constante c de todos os valores de uma variável, a média do conjunto fica multiplicada (ou dividida) por esta constante.

$$\overline{y} = \overline{x} \times c$$
 ou $\overline{y} = \overline{x} \div c$

5ª Propriedade: A soma algébrica dos desvios em relação à média é nula.

$$\sum_{i=1}^{n} (x_i - \overline{x}) = \mathbf{0}$$

<u>6ª Propriedade</u>: A soma dos quadrados dos desvios da sequência de números $\{x_i\}$, em relação a um número a, é mínima se a for a média aritmética dos números.

$$\sum_{i=1}^{n} (x_i - a)^2 \ge \sum_{i=1}^{n} (x_i - \overline{x})^2$$

MÉDIA PONDERADA

A média ponderada é a média de um conjunto cujos valores possuem pesos variados. Ela é calculada pela igualdade a seguir, em que p é o peso de cada valor de x:

$$\overline{x} = \frac{\sum_{i=1}^{n} (x_i \times p_i)}{\sum_{i=1}^{n} p_i}$$

Observe que no numerador cada valor será multiplicado pelo seu respectivo peso, enquanto no denominador teremos a soma de todos os pesos.

MÉDIA PARA DADOS AGRUPADOS

Média para Dados Agrupados por Valor

A média para dados agrupados por valor é calculada pela seguinte fórmula:

$$\overline{x} = \frac{\sum_{i=1}^{n} (X_i \times f_i)}{\sum_{i=1}^{n} f_i}$$

O raciocínio é exatamente o mesmo adotado para a média ponderada, sendo que, agora, o peso é representado pela frequência. Desse modo, multiplicamos cada valor por sua respectiva frequência, somamos tudo e dividimos pela soma das frequências.

Média para Dados Agrupados por Classe

A diferença em relação ao cálculo anterior consiste na substituição dos intervalos pelos seus respectivos **pontos médios**. O **ponto médio (***PM***)** é calculado pela média dos dois extremos do intervalo, pela seguinte expressão:

$$PM = \frac{l_{inf} + l_{sup}}{2}$$

A média para dados agrupados por classe é calculada pela seguinte fórmula:

$$\overline{x} = \frac{\sum_{i=1}^{n} (PM_i \times f_i)}{\sum_{i=1}^{n} f_i}$$

MÉDIA GEOMÉTRICA

A média geométrica é definida como a raiz *n*-ésima do produto de *n* elementos de um conjunto de dados:

$$G = \sqrt[n]{x_1 \times x_2 \times \cdots \times x_n}$$

A propriedade principal dessa média é preservar o produto dos elementos de um conjunto de dados.

Somente definimos a média geométrica para números não-negativos.

MÉDIA HARMÔNICA

A média harmônica é definida como o inverso da média aritmética dos inversos:

$$H = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

A propriedade principal dessa média é preservar a soma dos inversos dos elementos de um conjunto de números.

Somente definimos a média geométrica para números não-negativos.

DESIGUALDADE DAS MÉDIAS

A média aritmética (\bar{x}) é sempre maior ou igual a média geométrica (G) que, por seu turno, é sempre maior ou igual a harmônica (H).

$$\overline{x} \geq G \geq H$$

A igualdade ocorre quando os números da lista são todos iguais.

QUESTÕES COMENTADAS

Média Aritmética Simples

- 1. (FCC/TRT 18ª Região/2023) Em uma turma de 60 alunos, 10 foram reprovados. Sabendo-se que a média dos alunos aprovados foi 8,5 e a média dos alunos reprovados foi de 3,4, a média da turma foi
- a) 8,35
- b) 7,65
- c) 7,95
- d) 6,95
- e) 7,05

Comentários:

A média é dada pelo quociente entre a soma de todos os elementos e a quantidade de elementos. Para sabermos a média da turma, precisamos incialmente saber a soma das notas dos alunos aprovados e dos alunos reprovamos, então temos:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$

Temos um total de 60 alunos na turma, se 10 foram reprovados, então 50 foram aprovados. Assim, para os alunos aprovados, temos:

$$soma_{Apv} = \bar{x} \times n$$

 $soma_{Apv} = 8.5 \times 50$
 $soma_{Apv} = 425$

Agora, calculando a soma das notas para os alunos reprovados, temos:

$$soma_{Rpv} = \bar{x} \times n$$

 $soma_{Rpv} = 3.4 \times 10$
 $soma_{Rpv} = 34$

Sabendo a soma das notas, podemos calcular a média da turma:

$$\bar{x} = \frac{425 + 34}{60} = \frac{459}{60}$$
$$\bar{x} = 7,65$$

Gabarito: B.

2. (FUNDATEC/CIGA-SC/2023) Luciana está contabilizando quanto tempo utiliza as redes sociais e anotou a quantidade de minutos diários em que utilizou as redes em uma semana conforme a tabela a seguir:

Dia da semana	Tempo em minutos
Segunda-feira	75
Terça-feira	63
Quarta-feira	124
Quinta-feira	25
Sexta-feira	133
Sábado	92
Domingo	118

A média, em horas, que Luciana utilizou as redes sociais durante esses sete dias foi de:

- a) 1,3 horas.
- b) 1,9 horas.
- c) 1,5 horas.
- d) 1 hora.
- e) 1,4 horas.

Comentários:

A média aritmética é definida como a divisão entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{75 + 63 + 124 + 25 + 133 + 92 + 118}{7}$$

$$\bar{x} = \frac{630}{7}$$

$$\bar{x} = 90$$

Logo, Luciana usou as redes sociais, em média, 90 minutos por dia. Como 60 minutos correspondem a 1 hora, a média de Luciana equivale a 1,5 horas.

Gabarito: C.

- 3. (IBADE/Fundação Faceli/2023) Uma sala de aula possui 30 alunos. A média das notas dos alunos da turma em matemática é igual à 8. Um aluno novo chega à turma e decide que irá ajudar a elevar a média geral. Dessa forma, qual deve ser a nota do aluno para que a média suba para 8,05?
- a) 10
- b) 9,55
- c) 9,25
- d) 8,45
- e) 8,25

A média é definida como o quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n}$$

Então, vamos calcular a soma das notas dos alunos:

$$8 = \frac{soma}{30}$$

$$soma = 8 \times 30$$

$$soma = 240$$

Agora, com a entrada de um aluno novo, queremos que a média passe a ser de 8,05:

$$8,05 = \frac{soma}{31}$$

$$soma = 8.05 \times 31$$

$$soma = 249,55$$

Para identificarmos a nota do novo aluno, basta subtrairmos as somas das notas antes e após a entrada dele:

$$249,55 - 240 = 9,55$$

Portanto, para que a média suba para 8,05, com a entrada do novo aluno, a nota dele deverá ser igual a 9,55. Gabarito: B.

- 4. (VUNESP/Pref. Jaguariúna/2023) A média aritmética simples de três orçamentos para o mesmo serviço é de R\$ 860,00. Tomando-se apenas os orçamentos de valores mais alto e mais baixo, a média aritmética simples é de R\$ 880,00. Logo, o valor do terceiro orçamento está compreendido entre
- a) R\$ 795,00 e R\$ 805,00.

- b) R\$ 805,00 e R\$ 815,00.
- c) R\$ 815,00 e R\$ 825,00.
- d) R\$ 825,00 e R\$ 835,00.
- e) R\$ 835,00 e R\$ 845,00.

Para resolvermos a questão, vamos precisar calcular a soma dos três orçamentos. Sabemos que a média é igual à soma dos valores dividida pela quantidade. Assim, temos que:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$
 $soma = 860 \times 3$
 $soma = 2.580$

O enunciado também nos disse que, se tomarmos apenas os orçamentos de valores mais alto e mais baixo, a média aritmética simples é de R\$ 880,00. Logo, podemos calcular a soma desses dois valores:

$$soma = 880 \times 2$$
$$soma = 1.760$$

Agora, basta subtrairmos a segunda soma da primeira e encontraremos o terceiro valor:

$$2.580 - 1.760 = 820$$

Portanto, o terceiro orçamento é igual a 820.

Gabarito: C.

- 5. (VUNESP/Pref. Marília/2023) Um álbum possui 9 músicas, e o tempo médio de duração de cada música é 3 minutos e 20 segundos. As três primeiras músicas têm duração 2 minutos e 40 segundos cada, e as três músicas seguintes têm duração de 4 minutos e 10 segundos cada. A média aritmética da duração das três últimas músicas desse álbum é 3 minutos e
- a) 5 segundos.
- b) 10 segundos.
- c) 15 segundos.
- d) 20 segundos.
- e) 25 segundos.

Comentários:

Primeiramente, vamos transformar o tempo médio das 9 músicas em segundos para facilitar os cálculos. A questão diz que o tempo médio é de 3 minutos e 20 segundos. Ora, se 1 minuto corresponde a 60 segundos, podemos transformar tudo em segundos:

$$\bar{x} = 3 \times 60 + 20$$
$$\bar{x} = 180 + 20$$
$$\bar{x} = 200$$

Portanto, o tempo médio das 9 músicas do álbum é de 200 segundos.

Vamos fazer a mesma transformação para as demais informações do enunciado. As três primeiras músicas têm duração 2 minutos e 40 segundos cada, então:

$$M_{1,2,3} = 2 \times 60 + 40$$
$$M_{1,2,3} = 160$$

Assim, as músicas 1,2 e 3 têm 160 segundos cada. Logo, a soma das três primeiras músicas é de 480 segundos:

$$S_{1,2,3} = 3 \times 160 = 480$$

As três músicas seguintes têm duração de 4 minutos e 10 segundos cada. Então:

$$M_{4,5,6} = 4 \times 60 + 10$$
$$M_{4,5,6} = 250$$

Assim, as músicas 4,5 e 6 têm 250 segundos cada. Logo, a soma das três próximas músicas é de 750 segundos:

$$S_{456} = 3 \times 250 = 750$$

Como temos a média de tempo de todas as músicas e a quantidade de músicas do álbum, podemos calcular o somatório de tempo de todas as músicas:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$
 $soma = 200 \times 9$
 $soma = 1800$

Ora, se a soma do tempo de todas as músicas é de 1800 segundos, e já temos a soma de tempo das 6 primeiras, podemos calcular a soma de tempo das três últimas músicas. Dessa forma, temos que:

$$soma = S_{1,2,3} + S_{4,5,6} + S_{7,8,9}$$

$$1800 = 480 + 750 + S_{7,8,9}$$

$$1800 = 1230 + S_{7,8,9}$$

$$S_{7,8,9} = 1800 - 1230$$

$$S_{7,8,9} = 570$$

Portanto, a soma do tempo das três últimas músicas é de 570 segundos. Agora, basta calcularmos o tempo médio de cada uma:

$$M_{7,8,9} = \frac{570}{3}$$

$$M_{7.8.9} = 190$$

Assim, as músicas 7,8 e 9 têm 190 segundos cada. Transformando de volta para minutos, temos:

$$190 \div 60 = 3 \text{ e sobra } 10$$

Portanto, tempo médio das últimas 3 músicas é de 3 minutos e 10 segundos.

Gabarito: B.

6. (VUNESP/DPE SP/2023) Considere a tabela de preços de quatro produtos obtidos na Loja Me na Loja P.

Loja M		Loja P		
Produto A	R\$ 12,50	Produto A	R\$ 13,00	
Produto B	R\$ 17,00	Produto B	R\$ 16,20	
Produto C	R\$ 21,50	Produto C	R\$ 19,80	
Produto D	R\$ 28,00	Produto D	R\$ 31,00	

Calculando a média aritmética simples dos preços desses quatro produtos em cada loja, é correto afirmar que a média dos preços da Loja M é menor do que a média dos preços da Loja P em uma porcentagem igual a

- a) 0,25.
- b) 0,50.
- c) 0,75.
- d) 1,00.
- e) 1,25.

Comentários:

Vamos inicialmente calcular as médias para as duas lojas. Para a loja M, temos a seguinte média:

$$\bar{x}_M = \frac{12,50 + 17,00 + 21,50 + 28,00}{4}$$

$$\bar{x}_M = \frac{79}{4}$$

$$\bar{x}_M = 19,75$$

Para a loja P, temos:

$$\bar{x}_P = \frac{13,00 + 16,20 + 19,80 + 31,00}{4}$$

$$\bar{x}_P = \frac{80}{4}$$

$$\bar{x}_P = 20$$

Portanto, a loja M tem a média de preços R\$ 0,25 menor que a média dos preços da loja P. Logo, a porcentagem menor de M em relação a P é de:

$$\frac{0,25}{20} = 0,0125 \Longrightarrow 1,25\%$$

Gabarito: E.

7. (VUNESP/CAMPREV/2023) A tabela mostra o número de unidades (representados por x e múltiplos de x) de veículos eletrificados vendidos mensalmente por uma concessionária no último quadrimestre de 2022.

Mês	Nº de unidades
Setembro	Х
Outubro	1,2 x
Novembro	1,4 x
Dezembro	2 x

Sabendo-se que, em outubro, foram vendidas 4 unidades a mais que o número de unidades vendidas em setembro, é correto afirmar que a média aritmética do número de unidades vendidas mensalmente nesse período é igual a

a)	20.

b) 22.

c) 24.

d) 26.

e) 28.

Comentários:

Podemos determinar o valor de x com base nos dados do enunciado e nos valores da tabela. O enunciado diz que em outubro foram vendidas 4 unidades a mais que em setembro. Ora, se em setembro foram vendidas x unidades e em outubro 4 a mais, podemos relacionar as quantidades usando os dados tabelados:

$$outubro = setembro + 4$$

$$1,2x = x + 4$$

$$1,2x - x = 4$$

$$0,2x = 4$$

$$x = \frac{4}{0,2}$$

$$x = 20$$

Agora que sabemos o valor de x, podemos completar a tabela para todos os meses:

Mês	Nº de unidades
Setembro	20
Outubro	$1,2 \times 20 = 24$
Novembro	$1,4 \times 20 = 28$
Dezembro	$2 \times 20 = 40$

Basta calcularmos a média para os quatro meses:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{20 + 24 + 28 + 40}{4}$$

$$\bar{x} = \frac{112}{4}$$

$$\bar{x} = 28$$

Portanto, a média de unidades vendidas no último quadrimestre é de 28.

Gabarito: E.

8. (VUNESP/CAMPREV/2023) Em uma ação judicial, um advogado precisa informar o valor da média aritmética simples das 5 últimas contribuições previdenciárias de seu cliente, que foram de R\$ 350,00, R\$ 375,00, R\$ 360,00, R\$ 345,00 e R\$ 355,00. Feito corretamente o cálculo solicitado, o advogado informará o valor de

a) R\$ 358,00.

- b) R\$ 357,00.
- c) R\$ 356,00.
- d) R\$ 355,00.
- e) R\$ 354,00.

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Portanto:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{350 + 375 + 360 + 345 + 355}{5}$$

$$\bar{x} = \frac{1785}{5}$$

$$\bar{x} = 357$$

Portanto, a média das últimas 5 contribuições previdenciárias é igual a 357.

Gabarito: B.

9. (CESPE/FUB/2022) No item a seguir apresenta uma situação hipotética seguida de uma assertiva a ser julgada com relação a análise combinatória, probabilidade e estatística.

A média aritmética simples das idades dos seis servidores lotados em um instituto da UnB é de 35 anos. Um novo servidor chega e integra a equipe desse instituto, então a média aritmética simples das idades passa a ser de 38 anos. Nesse caso, a idade do novo servidor é de 41 anos.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e a quantidade de elementos existentes. Para determinarmos a idade do novo servidor, temos que conhecer a soma das idades.

Inicialmente, temos seis servidores e a média das idades é 35 anos. Assim, temos que:

$$ar{X} = rac{soma}{n} \Longrightarrow soma = n imes ar{X}$$

$$35 = rac{soma}{6}$$

$$soma = 35 imes 6$$

$$soma = 210$$

Logo, a soma das idades dos seis servidores é de 210.

Agora, adicionaremos o novo servidor e chamaremos de i a nova idade. Logo, temos que:

$$\bar{X} = \frac{soma}{n}$$

$$38 = \frac{210 + i}{7}$$

$$210 + i = 38 \times 7$$

$$210 + i = 266$$

$$i = 266 - 210$$

$$i = 56$$

Portanto, a idade do novo servidor é 56 anos.

Gabarito: Errado.

10. (CESPE/PETROBRAS/2022) No que diz respeito aos conceitos e cálculos utilizados em probabilidade e estatística, julgue o item a seguir.

Se, de 2016 a 2020, o total de petróleo produzido pela PETROBRAS, em milhões de barris, foi respectivamente 2,51; 2,62; 2,59; 2,78 e 2,94, então, nesse período, a PETROBRAS produziu, em média, mais de 2,72 milhões de barris de petróleo.

Comentários:

A média é definida pelo quociente entre a soma de todos os elementos e o número deles. Assim, a média dos valores informados no enunciado será:

$$\bar{x} = \frac{2,51 + 2,62 + 2,59 + 2,78 + 2,94}{5} = 2,688$$

Então, a média foi de 2,688 milhões de barris de petróleo, ou seja, inferior a 2,72 milhões. Logo, a alternativa está errada.

Gabarito: Errado.

11. (CESPE/TELEBRAS/2022) Com respeito ao conjunto de dados {5a, 2a, 2a}, em que a representa uma constante não nula, julgue o próximo item.

A média amostral desse conjunto de dados é igual a 2a.

A média é definida pelo quociente entre a soma de todos os elementos e o número deles. Calculando a média para os dados apresentados, temos:

$$\bar{x} = \frac{5a + 2a + 2a}{3} = \frac{9a}{3} = 3a$$

Gabarito: Errado.

12. (FCC/TRT 5ª Região/2022) Numa prova com dez questões, a pontuação na correção de cada questão pode variar entre 0 e 10 pontos. A média dos pontos obtidos por um estudante nas 6 primeiras questões é 6,5. A pontuação média nas quatro últimas questões para que ele atinja um total de 71 pontos na prova deverá ser:

- a) 7
- b) 7,5
- c) 8
- d) 8,5
- e) 9

Comentários:

Se a média dos pontos obtidos por um estudante nas 6 primeiras questões é 6,5, então, apenas nessas seis primeiras questões, o estudante alcançou um total de $66 \times 6,5 = 39$ pontos. Logo, ele ainda precisa conquistar um total de 71 - 39 = 32 pontos nas últimas quatro questões.

Para que consiga alcançar 32 pontos nas últimas 4 questões, a pontuação média deve ser:

$$\bar{x} = \frac{32}{4} = 8$$

Gabarito: C.

13. (FCC/TRT 5ª Região/2022) Na tabela, temos o registro do número semanal de livros novos recebidos pela biblioteca.

Sem 1	Sem 2	Sem 3	Sem 4	Sem 5	Sem 6	Sem 7	Sem 8
15	8	12	?	?	30	26	35

Sabe-se que a média semanal de recebimento de livros é de 21 livros; no entanto, os números correspondentes às semanas 4 e 5 foram perdidos. A informação que foi recuperada é que o número de livros recebidos na semana 5 é 10% superior ao número da semana 4. Na semana 5 foram recebidos:

- a) 12 livros.
- b) 15 livros.
- c) 19 livros.
- d) 22 livros.
- e) 25 livros.

Comentários:

Vamos considerar que na semana 4 tenham sido recebidos x livros. De acordo com o enunciado, o número de livros recebidos na semana 5 foi 10% superior ao da semana 4. Logo, na semana 5, o total de livros recebidos foi igual a:

$$x + 10\% \times x = 1.1 \times x$$

Agora, sabendo que a média semanal de recebimento de livros é de 21 livros, podemos descobrir o valor de x. Para isso, somamos os valores correspondentes a todas as semanas e dividimos pelo número de semanas, encontrando a média. Vejamos:

$$\bar{x} = \frac{15 + 8 + 12 + x + 1,1x + 30 + 26 + 35}{8}$$

$$21 = \frac{126 + 2,1x}{8}$$

$$168 = 126 + 2,1x$$

$$42 = 2,1x$$

$$x = 20$$

Portanto, o número de livros na semana 5 foi:

$$1.1 \times 20 = 22 \ livros$$

Gabarito: D.

14. (FCC/TRT 23ª Região/2022) Uma escola de ensino médio possui 30 alunos e 5 professores. A idade média dos alunos é de 16 anos e a dos professores é de 34 anos. Um professor acaba de ser contratado e a idade média dessas 36 pessoas passou a ser de 19 anos.

A idade do novo professor é:

- a) 56 anos.
- b) 26 anos.

- c) 35 anos.
- d) 40 anos.
- e) 34 anos.

A idade média dos alunos é de 16 anos e são 30 alunos, logo, a soma das idades dos alunos é:

$$\bar{x}_{alunos} = \frac{soma_{alunos}}{n_{alunos}} \Rightarrow soma_{alunos} = \bar{x}_{alunos} \times n_{alunos} = 16 \times 30 = 480$$

A idade média dos professores é de 34 anos e são 5 professores, logo, a soma das idades dos professores é:

$$\bar{x}_{profs} = \frac{soma_{profs}}{n_{profs}} \Rightarrow soma_{profs} = \bar{x}_{profs} \times n_{profs} = 34 \times 5 = 170$$

Após a contratação do novo professor, com X anos de idade, a idade média das 36 pessoas passou a ser de 19 anos:

$$\bar{x}_{pessoas} = \frac{soma_{pessoas}}{n_{pessoas}} \Rightarrow 19 = \frac{480 + 170 + X}{36}$$

$$684 = 480 + 170 + X$$

$$684 = 650 + X$$

$$X = 34$$

Portanto, o novo professor tem 34 anos de idade.

Gabarito: E.

15. (FCC/PGE AM/2022) Uma ginasta executa três vezes uma determinada prova. Suas notas, na primeira e segunda tentativas foram, respectivamente, metade e dois terços da nota da terceira tentativa. A média aritmética das notas das três tentativas foi de 32,5 pontos. A nota da primeira prova foi

- a) 20,5 pontos.
- b) 30,0 pontos.
- c) 22,5 pontos.
- d) 45,0 pontos.
- e) 20,0 pontos.

Comentários:

Conforme o enunciado, o ginasta executou três vezes uma determinada prova, obtendo as notas N_1 , N_2 e N_3 . Ainda de acordo com o enunciado, $N_1=\frac{1}{2}N_3$ e $N_2=\frac{2}{3}N_3$. Portanto, a média aritmética das três tentativas foi de:

$$\bar{x} = \frac{N_1 + N_2 + N_3}{3}$$
$$\bar{x} = \frac{\frac{1}{2}N_3 + \frac{2}{3}N_3 + N_3}{3}$$

Como o enunciado disse que a média aritmética foi igual a 32,5, podemos estabelecer que:

$$32,5 = \frac{\frac{1}{2}N_3 + \frac{2}{3}N_3 + N_3}{3}$$

$$97,5 = \frac{1}{2}N_3 + \frac{2}{3}N_3 + N_3$$

$$97,5 = \left(\frac{1}{2} + \frac{2}{3} + 1\right)N_3$$

$$97,5 = \left(\frac{3+4+6}{6}\right)N_3$$

$$97,5 = \left(\frac{13}{6}\right)N_3$$

$$N_3 = 97,5 \times \left(\frac{6}{13}\right) = 45$$

Como $N_1 = \frac{1}{2}N_3$, temos que $N_1 = 22,5$.

Gabarito: C.

16. (VUNESP/CMSJC/2022) A média das idades dos funcionários de uma empresa é igual a 44 anos. No próximo mês, 5 funcionários irão se aposentar, sendo que um tem 64 anos, dois têm 65 anos e dois têm 69 anos. Para substituí-los, serão contratados 8 pessoas, cujas idades têm média igual a 28 anos. Sabendo que os atuais funcionários e os futuros contratados já fizeram aniversário esse ano, e que, após a substituição de todos os envolvidos, a nova média das idades dos funcionários dessa empresa será igual a 42 anos, o número atual de funcionários da empresa é

- a) 105.
- b) 109.
- c) 113.
- d) 117.
- e) 121.

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Conforme o enunciado, a média das idades dos funcionários na situação inicial é igual a 44:

$$\bar{x}_{inicial} = \frac{Soma_{inicial}}{N}$$
 $Soma_{inicial} = 44 \times N$

Na situação final, após a contratação de um grupo de 8 funcionários com média de 28 anos; e a aposentadoria de 5 funcionários, a média passa a ser 42 anos. Assim, temos que:

$$\bar{x}_{final} = \frac{Soma_{inicial} - 1 \times 64 - 2 \times 65 - 2 \times 69 + 8 \times 28}{N - 8 + 5}$$

$$42 = \frac{Soma_{inicial} - 108}{N - 3}$$

$$42 \times (N - 3) = Soma_{inicial} - 108$$

Agora, vamos substituir o valor de $Soma_{inicial}$:

$$42 \times (N-3) = 44 \times N - 108$$

 $42 \times N - 126 = 44 \times N - 108$
 $234 = 2 \times N$
 $N = 117$

Portanto, o número total de funcionários da empresa é 117.

Gabarito: D.

- 17. (VUNESP/DOCAS PB/2022) A média aritmética simples das idades de 4 pessoas é de 24 anos. Sabendose que, com base na idade da pessoa mais nova do grupo, as demais têm 2, 9 e 13 anos a mais, a pessoa com a maior idade, do grupo, tem
- a) 28 anos.
- b) 29 anos.
- c) 30 anos.
- d) 31 anos.
- e) 32 anos.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Então, a média é dada por:

$$\bar{x} = \frac{soma}{n}$$

Vamos denominar a idade da pessoa mais nova do grupo de Y. Então, de acordo com o enunciado, as idades das outras três pessoas do grupo são: Y+2; Y+9; e Y+13.

Já sabemos que a média é 24, então, vamos colocar a soma das idades na nossa equação:

$$24 = \frac{Y + Y + 2 + Y + 9 + Y + 13}{4}$$

$$24 = \frac{4Y + 24}{4}$$

$$4Y + 24 = 96$$

$$4Y = 96 - 24$$

$$4Y = 72$$

$$Y = 18$$

Portanto, a pessoa mais nova do grupo tem 18 anos.

Sendo assim, a pessoa mais velha do grupo tem:

$$18 + 13 = 31$$

Logo, a pessoa mais velha tem 31 anos.

Gabarito: D.

18. (VUNESP/DOCAS PB/2022) O gráfico a seguir refere-se ao primeiro semestre de 2021 em um determinado porto.

Já se sabe que, nesse mesmo porto, a quantidade de navios atracados em Julho, Agosto, Setembro, Outubro e Novembro de 2021 foi um total de 163. Para que a média mensal de navios atracados no segundo semestre ultrapasse em 7 navios a média mensal do primeiro semestre, é preciso que o número de navios que tenham atracado em Dezembro seja igual a

- a) 54.
- b) 51.

- c) 47.
- d) 45.
- e) 40.

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Assim, a média é expressa por:

$$\bar{x} = \frac{soma}{n}$$

Vamos identificar a média para o primeiro semestre com base nos dados apresentados no gráfico:

$$\bar{x}_1 = \frac{15 + 21 + 19 + 33 + 41 + 39}{6} = \frac{168}{6} = 28$$

Para que a média do segundo semestre ultrapassa em 7 a do primeiro, a nova média deverá ser igual a:

$$\bar{x}_2 = 28 + 7 = 35$$

Assim, podemos montar o cálculo da quantidade de navios em dezembro, que chamaremos de D:

$$\bar{x}_2 = \frac{soma}{n}$$

$$\bar{x}_2 = \frac{163 + D}{6}$$

$$35 = \frac{163 + D}{6}$$

$$163 + D = 210$$

$$D = 210 - 163$$

$$D = 47$$

Portanto, número de navios atracados em dezembro deve ser igual a 47.

Gabarito: C.

19. (VUNESP/IPSM SJC/2022) Um depósito contém 6 caixas numeradas de 1 a 6. As caixas 1 e 2 têm a mesma massa e a caixa 3 tem 5 kg de massa a mais do que a caixa 4. A massa da caixa 2 somada com a massa da caixa 4 é igual a 12 kg e a soma das massas das caixas 5 e 6 é igual a 19 kg.

A média aritmética das massas dessas 6 caixas é igual a

- a) 7,5 kg.
- b) 8 kg.
- c) 8,5 kg.

d) 9 kg.

e) 9,5 kg.

Comentários:

Vamos interpretar o que diz o enunciado. Temos 6 caixas, cada uma com as seguintes massas:

$$C_1 = C_2$$

$$C_3 = C_4 + 5 \text{kg}$$

$$C_2 + C_4 = 12 \text{kg}$$

$$C_5 + C_6 = 19 \text{kg}$$

Agora, vamos calcular a média das massas de cada caixa:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{C_1 + C_2 + C_3 + C_4 + C_5 + C_6}{6}$$

Substituindo, temos:

$$\bar{x} = \frac{C_1 + C_2 + \underbrace{C_4 + 5}_{C_3} + C_4 + \underbrace{19}_{C_5 + C_6}}{6}$$

$$\bar{x} = \frac{C_1 + \underbrace{C_2 + C_4}_{12kg} + \underbrace{C_4 + 5}_{C_3} + \underbrace{19}_{C_5 + C_6}}{6}$$

$$\bar{x} = \frac{C_1 + 12 + C_4 + 5 + 19}{6}$$

Temos que $C_1=C_2$, então podemos fazer mais uma substituição:

$$\bar{x} = \frac{C_1 + 12 + C_4 + 5 + 19}{6}$$

Reorganizando:

$$\bar{x} = \frac{\underbrace{C_2 + C_4}_{12Kg} + 12 + 5 + 19}{6}$$

$$\bar{x} = \frac{12 + 12 + 5 + 19}{6}$$

$$\bar{x} = \frac{48}{6}$$

$$\bar{x} = 8$$

Gabarito: B.

20. (VUNESP/IPSM SJC/2022) Determinada verba foi distribuída entre 5 departamentos de uma empresa de modo que a média dos três departamentos que mais receberam foi R\$ 4.100,00, e a média dos dois departamentos que menos receberam foi R\$ 450,00 a menos do que a média dos cinco departamentos juntos. Se o valor mais alto recebido superou em R\$ 500,00 a média dos cinco departamentos juntos, então, o maior valor recebido foi

- a) R\$ 3.200,00.
- b) R\$ 3.350,00.
- c) R\$ 3.800,00.
- d) R\$ 4.300,00.
- e) R\$ 4.500,00.

Comentários:

De início, vamos determinar a soma dos valores recebidos. O enunciado nos diz que são 5 departamentos. Chamaremos de X, Y e Z os três que mais receberam.

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$

Calculando a soma dos três que mais receberam, temos:

$$X + Y + Z = \bar{x} \times n$$
$$X + Y + Z = 4100 \times 3$$
$$X + Y + Z = 12.300$$

Segundo o enunciado, a média dos dois departamentos que menos receberam foi R\$ 450,00 a menos do que a média dos cinco departamentos juntos. Chamar de A e B os dois departamentos que menos receberam. Então, temos:

$$\bar{x}_{AB} = \bar{x}_{total} - 450$$

$$\frac{A+B}{2} = \frac{A+B+X+Y+Z}{5} - 450$$

$$\frac{A+B}{2} = \frac{A+B+12300}{5} - 450$$

Colocando todas as frações na mesma base, temos:

$$\frac{5 \times (A+B)}{10} = \frac{2 \times (A+B) + 24600}{10} - \frac{4500}{10}$$
$$5 \times (A+B) = 2 \times (A+B) + 24600 - 4500$$

$$5 \times (A+B) - 2 \times (A+B) = 24600 - 4500$$
$$3 \times (A+B) = 20100$$
$$(A+B) = \frac{20100}{3}$$
$$(A+B) = 6700$$

Agora que sabemos a soma de todos os departamentos, podemos calcular a média total:

$$\bar{x}_{total} = \frac{A + B + X + Y + Z}{n}$$

$$\bar{x}_{total} = \frac{6700 + 12300}{5}$$

$$\bar{x}_{total} = \frac{19000}{5}$$

$$\bar{x}_{total} = 3800$$

Para sabermos o valor mais alto recebido, basta somarmos R\$ 500 à média total:

$$3800 + 500 = 4300$$

Portanto, o maior valor recebido foi de 4300.

Gabarito: D.

21. (VUNESP/PM SP/2022) A média aritmética simples das idades dos 27 aprovados em um concurso para um cargo A foi de 26 anos, enquanto que a média aritmética simples dos 23 aprovados para um cargo B, no mesmo concurso, foi de 31 anos.

Considerando- se apenas esses dois cargos, a média aritmética simples das idades dos aprovados foi de

- a) 28,0 anos.
- b) 27,8 anos.
- c) 29,0 anos.
- d) 28,3 anos.
- e) 27,0 anos.

Comentários:

Para resolvermos a questão, precisamos descobrir qual a soma das idades dos aprovados para o cargo A e a soma das idades dos aprovados para o cargo B. Já temos a média dos aprovados e a quantidade de aprovados, então o cálculo fica:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$

Para o cargo A, temos:

$$soma_A = \bar{x} \times n$$
$$soma_A = 26 \times 27 = 702$$

Para o cargo B, temos:

$$som a_B = 31 \times 23 = 713$$

Agora que já sabemos a soma de totas as idades, podemos calcular a média das idades para os dois cargos:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{702 + 713}{27 + 23} = \frac{1415}{50}$$

$$\bar{x} = 28.3$$

Gabarito: D.

22. (VUNESP/PM SP/2022) A tabela, que consta da Pesquisa Nacional por Amostra de Domicílios Contínua – Rendimentos de todas as fontes 2020, publicada pelo *Instituto Brasileiro de Geografia e Estatística* (IBGE), mais precisamente na página 10, apresenta informações sobre o rendimento médio mensal real domiciliar per capita dos 50% da população com menores rendimentos, segundo as Grandes Regiões do Brasil.

Brasil e Grandes Regiões	Rendimento médio mensal real domiciliar per capita dos 50% população com menores rendimentos (R\$)			
	2012	2014	2019	2020
Brasil	415	462	436	453
Norte	280	310	276	325
Nordeste	253	292	259	301
Sudeste	556	604	585	570
Sul	622	688	687	661
Centro-Oeste	520	573	566	556

Com base na análise das informações apresentadas na tabela, assinale a alternativa que contém uma afirmação necessariamente verdadeira.

- a) Para mais da metade das Regiões, o ano de 2020, dentre os apresentados na pesquisa, foi o ano em que o rendimento médio mensal, por pessoa, foi o mais alto, para os 50% da população com menores rendimentos.
- b) Para os anos apresentados na pesquisa, 2014 foi, para a Região Sudeste, aquele em que os 50% da população com menores rendimentos receberam o maior rendimento médio mensal, por pessoa.
- c) Na Região Norte, em 2020, cada brasileiro que fazia parte dos 50% da população com menores rendimentos recebeu, mensalmente, R\$ 325,00.
- d) Em 2019, nenhum brasileiro, dos 50% da população com menores rendimentos, recebeu rendimento médio mensal menor que R\$ 436,00.
- e) A Região Sul, para os anos apresentados na pesquisa, é a que teve os maiores rendimentos médios mensais, por pessoa, dentre toda a população brasileira.

Vamos analisar cada uma das afirmações:

Alternativa A: **Incorreta**. Observando a tabela, percebemos que o ano de 2014 teve um rendimento médio mensal por pessoa mais alto. Isso é observado também, no ano de 2014, para as regiões Sudeste, Sul e Centro-Oeste, ou seja, mais da metade das Regiões, se comparado ao ano de 2020.

Alternativa B: **Correta**. Em 2014, a Região Sudeste teve o maior rendimento médio mensal por pessoa, conforme podemos observar na tabela a seguir:

	2012	2014	2019	2020
Sudeste	556	604	585	570

Alternativa C: **Incorreta**. A tabela traz a informação de rendimento médio. Portanto, em 2020, na região Norte, cada brasileiro que fazia parte dos 50% da população com menores rendimentos recebeu, em média, R\$ 325,00. Não significa dizer, necessariamente, que cada um tenha recebido exatamente R\$ 325,00.

Alternativa D: **Incorreta**. Como dito anteriormente, a tabela apresenta o rendimento médio. Para julgarmos a questão, basta olharmos para o rendimento de cada região. Em 2019, o rendimento médio brasileiro foi de 436 reais, mas cada região apresentou médias diferentes. Ou seja, uns receberam valores maiores e outros valores menores.

Alternativa E: **Incorreta**. A Região Sul não necessariamente apresenta os maiores rendimentos médios mensais por pessoa dentre toda a população brasileira. A tabela ilustra somente a realidade dos 50% da população com menores rendimentos (R\$). Não podemos dizer que a Região Sul é a que apresenta os maiores rendimentos médios para toda a população, justamente porque não temos informações acerca dos 50% restantes da população.

Gabarito: B.

23. (VUNESP/Pref. Campinas/2022) Considere a tabela a seguir para resolver a questão.

Campinas em 2022			
REGIÃO	14 de março	4 de abril	
Norte	20	70	
Sul	7	28	
Leste	14	54	
Sudoeste	12	42	
Noroeste	2	26	

(Secretaria Municipal de Saúde)

Compare a média aritmética simples de incidência de casos de dengue, por 100 mil habitantes, nas 5 regiões, em 14 de março, com a média aritmética simples de incidência de casos nas 5 regiões, em 4 de abril. O aumento dessa média foi, em números de casos por 100 mil habitantes, igual a

- a) 27.
- b) 24.
- c) 39.
- d) 44.
- e) 33.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n}$$

Determinando a média para 14 de março, temos:

$$\bar{x}_{Março} = \frac{20 + 7 + 14 + 12 + 2}{5}$$

$$\bar{x}_{Março} = \frac{55}{5} = 11$$

Determinando a média para 4 de abril, temos:

$$\bar{x}_{Abril} = \frac{70 + 28 + 54 + 42 + 26}{5}$$
$$\bar{x}_{Abril} = \frac{220}{5} = 44$$

O aumento de março para abril foi de:

$$44 - 11 = 33$$

Gabarito: E.

24. (VUNESP/Pref. Campinas/2022) De acordo com informações apresentadas pelo Instituto Brasileiro de Geografia e Estatística (IBGE), no município de Campinas, em 2019 e em 2020, estavam matriculados, na Educação Infantil, 58 100 e 56 929 alunos, respectivamente. Se a média aritmética simples do número de matriculados na Educação Infantil, naquele município, nos anos de 2019, 2020 e 2021 é de 55 654 alunos, então o número de alunos matriculados na Educação Infantil, em 2021, no município de Campinas era igual a

- a) 53 721.
- b) 52 845.
- c) 54 647.
- d) 51 933.
- e) 55 519.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n}$$

O enunciado informa a média dos três anos (2019, 2020 e 2021) e o número de alunos matriculados em 2019 e 2020, então, precisamos saber os matriculados de 2021, que chamaremos de Y:

$$55654 = \frac{58100 + 56929 + Y}{3}$$
$$115029 + Y = 166962$$
$$Y = 166962 - 115029$$
$$Y = 51933$$

Portanto, o número de alunos matriculados em 2021 é igual a 51933.

Gabarito: D.

25. (VUNESP/Pref. Campinas/2022) Para a entrada em um congresso, 26 estatísticos formaram uma fila e começaram a entrar um por vez. Um painel no congresso indicava a média das idades dos estatísticos que já haviam entrado e, quando o segundo estatístico entrou, o painel indicava 22 anos. Curiosamente, a cada estatístico que entrava, a média das idades aumentava em 1 ano, logo a idade do último estatístico a entrar era

- a) 69 anos.
- b) 67 anos.
- c) 71 anos.
- d) 65 anos.
- e) 73 anos.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n}$$

O enunciado informa que há 26 estatísticos e que, após o segundo estatístico entrar, a média passou a ser de 22 anos. Se a média aumentava em 1 ano a cada estatístico, então podemos calcular a média final. Como já entraram 2 estatísticos, sabemos que faltam 24 estatísticos para entrar, logo, basta somarmos a média 22+24 para encontrarmos a média final:

$$\bar{x}_{26} = 22$$
 $\bar{x}_{26} = 22 + 24$
 $\bar{x}_{26} = 46$

Agora, para identificarmos a idade do último estatístico, precisamos primeiro identificar a soma das idades até o 25º estatístico. Se a média final é 46, então, com um estatístico a menos, a média era de 45. Calculando a soma, temos:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$
 $soma_{25^{\circ}} = 45 \times 25$
 $soma_{25^{\circ}} = 1125$

Pronto, já temos a soma até o 25º estatístico e temos a média final. Agora, já podemos calcular a idade do 26º estatístico:

$$\bar{x}_{26} = \frac{soma_{25^{\circ}} + idade_{26^{\circ}}}{n}$$

$$46 = \frac{1125 + idade_{26^{\circ}}}{26}$$

$$1125 + idade_{26^{\circ}} = 46 \times 26$$

$$idade_{26^{\circ}} = 1196 - 1125$$

$$idade_{26^{\circ}} = 71$$

Portanto, o último estatístico tem 71 anos.

Gabarito: C.

26. (VUNESP/Pref. Jundiaí/2022) A tabela a seguir apresenta os números de filhos de alguns funcionários de uma empresa, sendo que alguns valores são desconhecidos:

Nome do funcionário	Nº de filhos
Adão	x
Baltazar	6
Ciro	У
Dario	1
Emanuel	5

Sabe-se que Adão tem 2 filhos a mais que Ciro; e que, se for calculada a média aritmética simples dos números de filhos levando-se em conta os 5 funcionários, será obtido o valor médio de 4 filhos por funcionário. Então, é correto afirmar que y é igual a

b) 2.

c) 3.

d) 4.

e) 5.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, a média simples do número de filhos é de:

$$\overline{M} = \frac{x+6+y+1+5}{5} = 4$$

Além disso, o enunciado disse que Adão tem 2 filhos a mais que Ciro, portanto, temos que:

$$x = y + 2$$

Jogando a relação anterior na expressão da média:

$$\frac{x+6+y+1+5}{5} = 4$$

$$\frac{x+6+y+6}{5} = 4$$

$$\frac{x+y+12}{5} = 4$$

$$x+y+12 = 20$$

$$x+y=8$$

$$(y+2)+y=8$$

$$2y+2=8$$

$$2y=6$$

$$y=3$$

Portanto, o valor de y é igual a 3.

Gabarito: C.

27. (VUNESP/Pref. Piracicaba/2022) O gráfico mostra o número de alunos do Ensino Médio que faltaram às aulas, em uma determinada escola, em 5 dias de uma semana.

O número de faltas na sexta-feira superou a média de faltas desses cinco dias em

- a) 1.
- b) 2.
- c) 3.

- d) 4.
- e) 5.

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Então, a média é dada por:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{3+6+5+9+12}{5} = \frac{35}{5} = 7$$

Assim, a média é igual a 7. Logo, o número de faltas na sexta feira superou a média em:

$$12 - 7 = 5$$

Gabarito: E.

28. (VUNESP/Pref. Piracicaba/2022) A média aritmética das notas obtidas por Flora nas três provas de Matemática realizadas em certo mês foi igual a 6,1. Sabendo-se que as notas da segunda e da terceira prova foram, respectivamente, iguais a $\frac{5}{4}$ e a $\frac{4}{5}$ da nota da primeira prova, conclui-se que a nota obtida por Flora na segunda prova foi

- a) 8,1.
- b) 7,5.
- c) 7,2.
- d) 6,8.
- e) 6,4.

Comentários:

Inicialmente, precisamos descobrir a somas das notas. Vamos chamar de X, Y e Z a primeira, a segunda e a terceira notas, respectivamente. A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Então, a média é dada por:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$
 $soma = 6.1 \times 3$
 $soma = 18.3$

O enunciado diz que a segunda nota é igual a $\frac{5}{4}$ da primeira. Então:

$$Y = \frac{5}{4} \times X$$

$$Y = \frac{5X}{4}$$

A terceira nota é igual a $\frac{4}{5}$ da primeira. Então:

$$Z = \frac{4}{5} \times X$$

$$Z = \frac{4X}{5}$$

Somando as notas podemos determinar o valor de X (primeira nota):

$$soma = 18,3$$

$$X + \frac{5X}{4} + \frac{4X}{5} = 18,3$$

$$\frac{20X + 25X + 16X}{20} = 18,3$$

$$61X = 366$$

$$X = \frac{366}{61}$$

$$X = 6$$

Achamos o valor da primeira nota. Agora, basta calcularmos o valor de Y (segunda nota):

$$Y = \frac{5X}{4} \implies Y = \frac{5 \times 6}{4}$$

$$Y = \frac{30}{4}$$

$$Y = 7.5$$

Gabarito: B.

29. (VUNESP/Pref. Piracicaba/2022) A tabela apresenta algumas informações sobre o número de funcionários que tiraram licença médica (LM) nos últimos quatro meses do ano, em uma empresa.

Mês	Nº de funcionários em LM
Setembro	3
Outubro	X

Novembro	X+1
Dezembro	2x

Se o número de funcionários que tiraram licença médica em outubro foi igual a média aritmética dos que tiraram licença médica em setembro e novembro, então, nesses últimos quatro meses do ano, a média de licenças médicas, por mês, foi igual a

- a) 2.
- b) 3.
- c) 4.
- d) 5.
- e) 6.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Incialmente, vamos determinar a média dos meses de setembro (3) e novembro (X+1), para determinarmos o valor de outubro (X). Então a média é dada por:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{3 + X + 1}{2}$$

$$\bar{x} = \frac{4 + X}{2}$$

Pronto, já sabemos o quanto vale a média, podemos, então, igualar esse valor ao mês de outubro, determinado por X. Assim, teremos:

$$X = \frac{4+X}{2}$$
$$2X = 4+X$$
$$X = 4$$

Agora que já sabemos o valor de X, podemos preencher a tabela e calcular a média:

$$\bar{x} = \frac{3+4+(4+1)+(2\times4)}{4} = \frac{3+4+5+8}{4}$$

$$\bar{x} = \frac{20}{4} = 5$$

Logo, a média das licenças médicas nos últimos quatro meses é igual a 5.

Gabarito: D.

30. (VUNESP/Pref. Piracicaba/2022) A tabela relaciona as capacidades totais, em litros, dos reservatórios de água de um condomínio.

Reservatório	Capacidade (em litros)
М	5100
N	X+400
R	4800
Р	X
Q	X+800

Se a média aritmética das capacidades desses reservatórios é igual a 4 500 litros, então a capacidade total do reservatório Q é de

- a) 4 600 litros.
- b) 4 400 litros.
- c) 4 200 litros.
- d) 4 000 litros.
- e) 3 800 litros.

Comentários:

Vamos calcular a soma da capacidade de todos os reservatórios para, posteriormente, determinarmos a capacidade do reservatório Q:

$$\bar{x} = \frac{soma}{n}$$

$$4500 = \frac{5100 + x + 400 + 4800 + x + x + 800}{5}$$

$$5100 + x + 400 + 4800 + x + x + 800 = 22500$$

$$3x + 11100 = 22500$$

$$3x = 11400$$

$$x = 3800$$

Para o reservatório Q, temos:

$$Q = x + 800$$
$$Q = 3800 + 800$$
$$Q = 4600$$

Gabarito: A.

31. (VUNESP/Pref. Pres. Prudente/2022) No último dia de janeiro de 2022, a média aritmética simples das idades de 20 amigos era de 25 anos. Se apenas 2 desses amigos já tinham feito aniversário em 2022, e nenhum deles faz aniversário em dezembro, é correto afirmar que, no final de 2022, a média aritmética simples das idades desses amigos será de

- a) 25,5 anos.
- b) 25,6 anos.
- c) 25,7 anos.
- d) 25,8 anos.
- e) 25,9 anos.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$

O enunciado nos diz que a média simples dos 20 amigos, no final de janeiro, era de 25 anos. Então, vamos calcular a soma das idades desses 20 amigos:

$$soma = \bar{x} \times n$$
$$soma = 25 \times 20$$
$$soma = 500$$

Portanto, a soma das idades dos 20 amigos é 500. O enunciado diz que dois desses amigos já tinham feito aniversário em 2022. Então, quer dizer que 18 desses amigos ainda somariam mais 1 ano até dezembro de 2022. Portanto, a soma das idades até dezembro de 2022 seria de:

$$soma = 500 + 18$$
$$soma = 518$$

Agora, basta calcularmos a média das idades em dezembro quando todos os amigos já tiverem completado ano:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{518}{20}$$

$$\bar{x} = 25,9$$

Gabarito: E.

32. (VUNESP/Pref. Pres. Prudente/2022) Em uma prova com 10 questões, cada questão só era corrigida como certa, caso em que 1 ponto era obtido, ou corrigida como errada e nenhum ponto era atribuído a questão. A nota de cada prova é a soma dos pontos obtidos e a média aritmética simples das notas dos 80 alunos que fizeram essa prova foi igual a 5. Para aumentar essa média, a professora atribuiu mais 0,1 ponto para cada questão errada. Considerando apenas os alunos que foram beneficiados com pelo menos 0,1 ponto, a média de pontos ganhos por aluno foi igual a $\frac{5}{9}$. O número de alunos que tirou 10 nessa prova foi

- a) 5.
- b) 6.
- c) 8.
- d) 9.
- e) 11.

Comentários:

Inicialmente, vamos calcular o total de questões corrigidas. Ora, temos 10 questões e 80 alunos, então o total de questões corrigidas foi igual a $80 \times 10 = 800$.

A questão diz que cada questão certa vale 1 ponto e cada questão errada vale 0 pontos. A média aritmética simples das notas é igual a 80. Então, sabemos que das 800 questões corrigidas algumas receberam 1 ponto e outras receberam 0 pontos. Logo, o total de questões é igual a C + E (certas + erradas):

$$\bar{x} = \frac{C + E}{n}$$

$$5 = \frac{C + E}{80}$$

$$C + E = 5 \times 80$$

$$C + E = 400$$

$$C = 400 - \underbrace{E}_{0}$$

Como as questões erradas valem 0 pontos, então a quantidade de questões certas é igual a 400.

$$C = 400$$

Então, de um total de 800 questões, 400 estão certas e 400 estão erradas. Para aumentar essa média, a professora atribuiu mais 0,1 ponto para cada questão errada. Então, o total de pontos atribuídos pela professora foi de:

$$400 \times 0.1 = 40$$

Considerando apenas os alunos que foram beneficiados com pelo menos 0,1 ponto, a média de pontos ganhos por aluno foi igual a $\frac{5}{9}$. Assim, temos que:

$$\bar{x} = \frac{soma}{n}$$

$$\frac{5}{9} = \frac{40}{n}$$

Perceba que a nova média considerada agora é 5/9 e a soma dos pontos é 40, considerando apenas os alunos beneficiados. Queremos saber quantos alunos foram beneficiados. Então:

$$\frac{5}{9} = \frac{40}{n}$$

$$5n = 40 \times 9$$

$$5n = 360$$

$$n = \frac{360}{5}$$

$$n = 72$$

Assim, a quantidade de alunos que erraram pelo menos uma questão foi de 72. Ora, se temos um total de 80 alunos, basta subtrairmos para encontrarmos quantos alunos não erraram nenhuma questão:

$$80 - 72 = 8$$

Portanto, 8 alunos tiraram 10 na prova.

Gabarito: C.

33. (VUNESP/Pref. Sorocaba/2022) Uma pessoa comprou cinco revistas em uma banca de jornais, sendo uma revista de cada assunto. A tabela a seguir apresenta algumas informações sobre o valor de cada revista.

Assunto	Valor unitário
Saúde	R\$ 17,80
Culinária	R\$ 15,90
Esportes	R\$ 18,20

Carros	R\$ 21,50
Jardinagem	?

Considerando-se o número total de revistas compradas, na média, cada revista saiu por 18,00. O valor da revista sobre jardinagem era

- a) R\$ 17,20.
- b) R\$ 16,90.
- c) R\$ 16,60.
- d) R\$ 15,70.
- e) R\$ 15,10.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes:

$$\bar{x} = \frac{soma}{n}$$

Vamos chamar o preço da revista de jardinagem de J. Como a média é igual a 18, temos:

$$18 = \frac{17,80 + 15,90 + 18,20 + 21,50 + J}{5}$$

$$18 = \frac{73,40 + J}{5}$$

$$73,40 + J = 5 \times 18$$

$$J = 90 - 73,40$$

$$J = 16,60$$

A revista de Jardinagem custou R\$ 16,60.

Gabarito: C.

34. (VUNESP/Pref. Sorocaba/2022) A média aritmética simples dos salários de 3 pessoas é de R\$ 4.100,00. Tirando-se o menor desses salários, a média aritmética simples dos demais salários passa a ser de R\$ 4.550,00.

O menor desses salários é de

- a) R\$ 3.100,00.
- b) R\$ 3.200,00.

- c) R\$ 3.300,00.
- d) R\$ 3.400,00.
- e) R\$ 3.500,00.

Primeiro, vamos calcular a soma dos salários, cuja média é igual a 4100. Chamaremos de X, Y e Z cada um:

$$\bar{x} = \frac{X + Y + Z}{n} \Longrightarrow X + Y + Z = \bar{x} \times n$$

$$X + Y + Z = 4100 \times 3$$

$$X + Y + Z = 12300$$

Então, a soma dos três salários é 12300. Agora, calcularemos a soma dos dois maiores salários:

$$X + Y = 4550 \times 2$$
$$X + Y = 9100$$

Para encontrarmos o valor de Z, basta subtrairmos:

$$X + Y + Z = 12300$$

 $9100 + Z = 12300$
 $Z = 12300 - 9100$
 $Z = 3200$

Gabarito: B.

35. (CESGRANRIO/CEF/2021) Recentemente, a Organização Mundial da Saúde (OMS) mudou suas diretrizes sobre atividades físicas, passando a recomendar que adultos façam atividade física moderada de 150 a 300 minutos por semana. Seguindo as recomendações da OMS, um motorista decidiu exercitarse mais e, durante os sete dias da última semana, exercitou- se, ao todo, 285 minutos. Quantos minutos diários, em média, o motorista dedicou a atividades físicas na última semana?

- a) Mais de 46 min
- b) Entre 44 e 46 min
- c) Entre 42 e 44 min
- d) Entre 40 e 42 min
- e) Menos de 40 min

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Assim, para calcularmos o valor médio de minutos que o motorista dedicou à prática de atividade física por dia, basta dividirmos o total de minutos alcançados na semana pela quantidade de dias. Assim:

$$\bar{X} = \frac{285}{7} = 40,71$$

Logo, foram 40,71 minutos de atividade física praticada por dia.

Portanto, a resposta correta está contida na alternativa D, de 40 a 42 minutos.

Gabarito: D.

36. (CESPE/SEED PR/2021) Em uma sala de aula do 5.º ano do ensino fundamental, há um total de 10 meninos, com média de idade de 15 anos, e um total de 15 meninas, com média de idade de 13 anos. Foram incluídas nessa turma 3 novas crianças com 12 anos de idade e 2 novas crianças com 13 anos de idade.

Considerando essa situação hipotética, assinale a opção que indica, aproximadamente, a nova média de idade do total da turma em questão.

- a) 12,7
- b) 13,2
- c) 13,6
- d) 14,3
- e) 15,1

Comentários:

A média é definida pelo quociente entre a soma de todos os elementos e o número de elementos. Para determinarmos a média de idade do total da turma, somaremos as idades de todos os alunos dessa turma, tanto meninos quanto meninas.

Sabendo que a média de idade dos 10 meninos é de 15 anos, podemos determinar a soma das idades deles. Vamos considerar $Soma_{meninos}$ como a soma das idades dos meninos. Assim, temos que:

$$ar{X} = rac{soma}{n} \Longrightarrow soma = n imes ar{X}$$
 $Soma_{meninos} = 10 imes 15$
 $Soma_{meninos} = 150$

Repetindo esse procedimento para as idades das meninas. Ora, como a média de idade das 15 meninas é de 13 anos, então, temos:

$$Soma_{menings} = 15 \times 13$$

$$Soma_{meninas} = 195$$

Portanto, antes da inclusão dos novos alunos, tínhamos um total de:

$$Soma_{total} = 150 + 195$$

 $Soma_{total} = 345$

Logo, a soma de todas as idades é 345.

Agora, vamos incluir os novos alunos para calcularmos a média total de idades da turma:

$$\bar{X} = \frac{Soma_{total}}{n}$$

$$\bar{X} = \frac{345 + (3 \times 12) + (2 \times 13)}{10 + 15 + 3 + 2}$$

$$\bar{X} = \frac{345 + 36 + 26}{30}$$

$$\bar{X} = \frac{407}{30}$$

$$\bar{X} = 13,6$$

Assim, a média de idade do total da turma é de 13,6 anos.

Gabarito: C.

37. (CESPE/SEED PR/2021) Uma maneira bastante difundida de acompanhar a evolução da covid-19 em uma localidade é a média móvel de casos dos últimos 7 dias no n-ésimo dia (MV_n) . Por definição, no n-ésimo dia, para n=7,8,9,10 e 11, tem-se $MV_n=(\sum_{i=n-6}^n C_i)/7$, em que C_i é o número de novos casos de determinada região no n-ésimo dia.

A tabela seguinte apresenta dados sobre o número de novos casos de covid-19 em dois bairros (A e B) de uma mesma cidade, no transcorrer de 11 dias.

Dia	A	В
1	21	15
2	0	6
3	20	8
4	0	6
5	15	8

6	20	13
7	0	8
8	15	13
9	7	1
10	9	16
11	8	12

A média móvel de casos dos últimos 7 dias no dia 8 do bairro A é a média aritmética entre os casos ocorridos nesse bairro nos dias 2, 3, 4, 5, 6, 7 e 8, e assim por diante.

Com base nessas informações, e considerando-se n = 7, 8, 9, 10 e 11, é correto afirmar que a menor diferença entre as médias móveis dos bairros A e B ocorreu no dia

- a) 7.
- b) 8.
- c) 9.
- d) 11.
- e) 10.

Comentários:

Vamos calcular as médias móveis de A e B, para cada dia, tomando como base os dias 7, 8, 9, 10 e 11. Conforme diz o enunciado, a média móvel de casos dos últimos 7 dias, no dia 7, é a média aritmética entre os casos ocorridos nos dias 1, 2, 3, 4, 5, 6, e 7, e assim por diante.

Para o dia 7:

$$MM_A = \frac{21+0+20+0+15+20+0}{7} = \frac{76}{7} = 10,86$$

$$MM_B = \frac{15+6+8+6+8+13+8}{7} = \frac{64}{7} = 9,14$$

$$MM_A - MM_B = 1,72$$

Para o dia 8:

$$MM_A = \frac{0+20+0+15+20+0+15}{7} = \frac{70}{7} = 10$$

$$MM_B = \frac{6+8+6+8+13+8+13}{7} = \frac{62}{7} = 8,86$$

$$MM_A - MM_B = 1,14$$

Para o dia 9:

$$MM_A = \frac{20+0+15+20+0+15+7}{7} = \frac{77}{7} = 11$$

$$MM_B = \frac{8+6+8+13+8+13+1}{7} = \frac{57}{7} = 8,14$$

$$MM_A - MM_B = 2,86$$

Para o dia 10:

$$MM_A = \frac{0+15+20+0+15+7+9}{7} = \frac{66}{7} = 9,43$$

$$MM_B = \frac{6+8+13+8+13+1+16}{7} = \frac{65}{7} = 9,29$$

$$MM_A - MM_B = 0,14$$

Para o dia 11:

$$MM_A = \frac{15 + 20 + 0 + 15 + 7 + 9 + 8}{7} = \frac{74}{7} = 10,57$$

$$MM_B = \frac{8 + 13 + 8 + 13 + 1 + 16 + 12}{7} = \frac{71}{7} = 10,14$$

$$MM_A - MM_B = 0,43$$

Assim, a menor diferença entre as médias móveis de A e B ocorreu no dia 10.

Gabarito: E.

38. (CESPE/CBM AL/2021) Em determinado dia, em uma região atendida por uma unidade do corpo de bombeiros, ocorreram 16 acidentes, que resultaram em 48 vítimas, socorridas pelos bombeiros nos próprios locais de acidente. Entre essas vítimas, 4 vieram a óbito no momento do atendimento, e as demais sobreviveram.

Com base nessa situação hipotética, julgue o item a seguir.

Considerando-se que a média de idade de todas as vítimas desse dia seja igual a 50 anos, é correto concluir que não há crianças entre as vítimas.

Comentários:

A média aritmética de um conjunto de dados é definida como o quociente entre a soma de todos os elementos e o número de elementos que compõem esse conjunto. A principal propriedade da média é preservar a soma dos elementos de um conjunto de dados. Com base apenas na média, não somos capazes de determinar o menor e o maior valor da amostra. Portanto, não podemos concluir que não há crianças entre as vítimas.

Gabarito: Errado.

39. (CESPE/PM AL/2021) O próximo item apresenta uma situação hipotética seguida de uma assertiva, a ser julgada com base na matemática e em suas aplicações na atividade policial.

Ao analisar a média aritmética de ocorrências criminais anuais de uma região, um policial verificou que, nos 10 primeiros meses do ano, a média havia sido de 315 ocorrências por mês, contudo a média para o ano todo era 10% maior que a média dos 10 primeiros meses. Nessa situação hipotética, a média aritmética de ocorrências apenas nos dois últimos meses do ano é superior a 500 ocorrências por mês.

Comentários:

A média é definida pelo quociente entre a soma de todos os elementos e o número de elementos. Assim, inicialmente, precisamos determinar o número de ocorrências nos primeiros 10 meses:

$$ar{X} = rac{Soma_{10 \; meses}}{n} \Longrightarrow Soma_{10 \; meses} = n \times ar{X}$$

$$Soma_{10 \; meses} = 10 \times 315$$

$$Soma_{10 \; meses} = 3.150$$

O enunciado diz que a média para o ano todo, 12 meses, é 10% maior que a média dos 10 primeiros meses. Então, basta multiplicarmos:

$$\bar{X}_{ano} = 1.1 \times 315 = 346.5$$

Agora, temos que encontrar o total de ocorrências para o ano todo:

$$Soma_{12meses} = n \times \bar{X}_{ano}$$

 $Soma_{12meses} = 12 \times 346,5$
 $Soma_{12meses} = 4158$

Para sabermos a quantidade de ocorrências nos últimos 2 meses do ano, basta subtrairmos:

$$Soma_{12meses} - Soma_{10meses} = 4158 - 3150$$
$$Soma_{12meses} - Soma_{10meses} = 1008$$

Assim, foram registradas 1.008 ocorrências nos dois últimos meses do ano. Portanto, basta calcularmos a média dos dois últimos meses:

$$\bar{X} = \frac{Soma_{2 meses}}{n}$$

$$\bar{X} = \frac{1.008}{2} = 504$$

Logo, a média dos dois últimos meses é igual a 504.

Gabarito: Certo.

40. (FADESP/CM Marabá/2021) A média aritmética das alturas de 4 amigos é igual a 1,69m. Se os três primeiros medem 1,60m, 1,80m e 1,64m, o quarto amigo mede

a) 1,67m.

b) 1,68m.

c) 1,69m.

d) 1,70m.

e) 1,72m.

Comentários:

A média é definida pelo quociente entre a soma de todos os elementos e o número de elementos. Tomemos Q para representar o quarto amigo. Assim, temos que:

$$\bar{X} = \frac{soma}{n}$$

$$1,69 = \frac{1,60 + 1,80 + 1,64 + Q}{4}$$

$$1,60 + 1,80 + 1,64 + Q = 1,69 \times 4$$

$$5,04 + Q = 6,76$$

$$Q = 6,76 - 5,04$$

$$Q = 1,72$$

Portanto o quarto amigo tem 1,72m de altura.

Gabarito: E.

41. (FCC/MANAUSPREV/2021) Admita que a média móvel diária do número de casos registrados de uma doença seja calculada pela média aritmética simples do número de casos registrados no dia com os números de registros de casos dos quatro dias anteriores. Observe a tabela com os registros diários dos casos de uma doença e da média móvel diária, sendo que x e y representam números inteiros positivos.

	Domingo	2ª Feira	3ª Feira	4ª Feira	5ª Feira	6ª Feira	Sábado
Número de registros diário	19	26	28	26	31	x	31
Média móvel diária	23	23	24	24	у	27	28

Sabendo que a média aritmética simples de um conjunto de cinco números é igual à soma desses cinco números dividida por 5, na situação descrita, x – y é igual a

- a) -3.
- b) -2.
- c) 0.
- d) -1.
- e) 1.

Primeiro, calcularemos o valor da média móvel que corresponde ao valor de y. O enunciado informa que a média móvel é determinada pela média aritmética simples do número de casos registrados no dia com os números de registros de casos dos quatro dias anteriores, então, temos:

$$y = \frac{19 + 26 + 28 + 26 + 31}{5} = \frac{130}{5}$$
$$y = 26$$

Agora, sabendo que a média móvel para a sexta-feira é igual a 27, encontraremos o valor de x:

$$27 = \frac{26 + 28 + 26 + 31 + x}{5} = \frac{111 + x}{5}$$
$$111 + x = 27 \times 5$$
$$x = 135 - 111$$
$$x = 24$$

Por fim, basta calcular a diferença pedida na questão:

$$x - y = 24 - 26$$
$$x - y = -2$$

Gabarito: B.

42. (FGV/FunSaúde CE/2021) Em um conjunto de 12 números, a média de 4 deles é 15 e a média dos outros 8 é 18.

A média dos 12 números é

- a) 17.
- b) 16,8.
- c) 16,5.
- d) 16.
- e) 15,5.

Temos 12 números divididos em 2 conjuntos. O primeiro conjunto, que chamaremos de A, é formado por quatro números, e a média vale 15. O segundo conjunto, que chamaremos de B, é formado por oito números, e a média vale 18.

Sabemos que a média é determinada pela soma dos números do conjunto dividida pela quantidade de termos. Então, precisamos encontrar o somatório dos números de A e B para depois calcularmos a média total dos 12 números. Assim:

Para A:

$$ar{x} = rac{soma_A}{n}$$
 $15 = rac{soma_A}{4}$
 $soma_A = 15 \times 4$
 $soma_A = 60$

Para B:

$$ar{x} = rac{soma_B}{n}$$
 $18 = rac{soma_B}{8}$
 $soma_B = 18 \times 8$
 $soma_B = 144$

Agora, podemos calcular a média total para os 12 números:

$$\bar{x} = \frac{soma_A + soma_B}{n}$$

$$\bar{x} = \frac{60 + 144}{12}$$

$$\bar{x} = \frac{204}{12}$$

$$\bar{x} = 17$$

Gabarito: A.

43. (FGV/Pref Paulínia/2021) Um grupo de 10 amigos, em que o mais novo tem 55 anos, constatou que a média de suas idades é 64 anos. Se o mais novo e o mais velho saírem do grupo, a média das idades dos oito restantes continua sendo 64.

A idade do mais velho é

- a) 69.
- b) 70.
- c) 71.
- d) 72.
- e) 73.

Sabemos que a média aritmética é definida pela soma dos números de um conjunto dividida pela quantidade de termos nele existentes:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$

Assim, a soma das idades dos 9 amigos ($soma_9$) mais a idade do mais novo (55 anos) forma a soma das idades dos 10 amigos:

$$soma_9 + 55 = 64 \times 10$$

$$soma_9 + 55 = 640$$

Então, concluímos que a soma das idades dos 10 amigos, incluindo o mais novo, é igual a 640. Se excluirmos a idade do mais novo, teremos a soma das idades dos 9 amigos restantes:

$$soma_9 = 640 - 55$$

$$soma_9 = 585$$

Logo, a soma das idades dos 9 amigos é de 585 anos.

Agora, descobriremos a soma das idades para apenas 8 amigos, excluindo a idade do mais velho:

$$soma_8 = 64 \times 8$$

$$soma_8 = 512$$

Por fim, para sabermos a idade do mais velho basta subtraímos:

$$soma_9 - soma_8 = 585 - 512 = 73$$

Logo, a idade do mais velho é de 73 anos.

Gabarito: E.

44. (FGV/IMBEL/2021) A média de 6 números é 33. Um deles foi retirado e a média dos outros passou a ser 31.

Assinale a opção que indica o número que foi retirado.

a) 35.

- b) 37.
- c) 39.
- d) 41.
- e) 43.

A média aritmética simples é definida pela soma dos números do conjunto dividida pela quantidade de termos. Assim, temos que, para n igual a 6:

$$\bar{x} = \frac{soma}{n} \Longrightarrow soma = \bar{x} \times n$$
 $soma_6 = 33 \times 6$
 $soma_6 = 198$

Agora, para n igual a 5, a nova média é 31:

$$soma_5 = 31 \times 5$$
$$soma_5 = 155$$

Para descobrirmos o número que foi retirado, o qual chamaremos de x, basta subtrairmos:

$$x = 198 - 155$$
$$x = 43$$

Gabarito: E.

45. (FUNDATEC/CM Candelária/2021) Um contador preencheu, ao longo de 4 dias, todos com o mesmo tempo de trabalho, respectivamente, 48, 52, 39 e 47 declarações completas de imposto de renda de pessoa física. A média aritmética de declarações preenchidas nesse período é de:

- a) 42.
- b) 45.
- c) 47.
- d) 49.
- e) 94.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Pelos valores dados no enunciado, a média de declarações é de:

$$\bar{x} = \frac{48 + 52 + 39 + 47}{4}$$
$$\bar{x} = \frac{186}{4} = 46,5$$

Observando as alternativas, percebemos que há apenas números inteiros, portanto, a banca considerou como resposta correta o número inteiro mais próximo do resultado. Logo, a média de declarações foi de aproximadamente 47.

Gabarito: C.

46. (FUNDATEC/Pref. Vacaria/2021) Durante uma festa de aniversário, a quantia de bebidas ingeridas por quatro participantes foi medida e organizada na tabela a seguir:

Pessoa	Quantidade
А	700 ml
В	650 ml
С	950 ml
D	1.400 ml

A quantidade média de bebida ingerida pelos participantes A, B, C e D é:

- a) 700 ml.
- b) 825 ml.
- c) 925 ml.
- d) 1.375 ml.
- e) 1.400 ml.

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Pelos valores dados no enunciado, a média de bebidas ingeridas é de:

$$\bar{x} = \frac{soma}{n}$$

$$\bar{x} = \frac{700 + 650 + 950 + 1400}{4} = \frac{3700}{4}$$

$$\bar{x} = 925$$

Portanto, a média é de 925ml de bebida.

Gabarito: C.

47. (FUNDATEC/Pref. Tramandaí/2021) Em uma escola, o time de basquete tem, por média de altura, 1,80 m, sendo que são 10 jovens que participam do time. Para um campeonato municipal, devem ser inscritos 13 jovens por time. Para isso, foram chamados mais 3 jovens, com 1,90, 1,87 e 1,93 de altura. Qual a média de altura com os novos integrantes da equipe?

- a) 1,81.
- b) 1,82.
- c) 1,83.
- d) 1,84.

Comentários:

A média é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Para determinarmos a altura média do time somando os três novos participantes, precisamos conhecer a soma de todas as alturas.

Como temos 10 jovens com altura média de 1,80m, podemos determinar a soma das alturas usando a relação apresentada a seguir. Assim, temos:

$$egin{aligned} ar{X}_{10} &= rac{Soma_{10}}{n} \Longrightarrow Soma_{10} = n imes ar{X}_{10} \\ Soma_{10} &= 10 imes 1,80 \\ Soma_{10} &= 18 \ metros \end{aligned}$$

Logo, a soma de todas as alturas dos 10 jovens é 18m.

Agora, vamos incluir os novos participantes do time, 3 jovens, com 1,90m, 1,87m e 1,93m, para calcularmos a nova média de altura do time:

$$\bar{X}_{13} = \frac{Soma_{13}}{n}$$

$$\bar{X}_{13} = \frac{18 + 1,90 + 1,87 + 1,93}{13}$$

$$\bar{X}_{13} = \frac{23,7}{13}$$

$$\bar{X}_{13} = 1,82$$

Assim, a altura média do time é de 1,82 m.

Gabarito: B.

48. (FUNDATEC/Pref. B do Ribeiro/2021) As idades de um grupo de jovens são, respectivamente, 10, 13, 15 e 17 anos. Se mais um jovem entrar no grupo e ele tiver 12 anos, o que irá acontecer com a média de idade do grupo?

- a) A média irá aumentar para 13,75.
- b) A média irá cair para 13,75.
- c) A média irá cair para 13,4.
- d) A média irá aumentar para 13,4.
- e) A média irá permanecer igual.

Comentários:

A média é determinada pelo quociente entre a soma de todos os elementos e o número de elementos. Assim, a média de idade da formação inicial é:

$$\bar{X} = \frac{10 + 13 + 15 + 17}{4} = 13,75$$

Com a entrada de mais um jovem, de 12 anos, a média passará a ser:

$$\bar{X} = \frac{10 + 13 + 15 + 17 + 12}{5} = 13.4$$

Portanto, a média irá cair para 13,4.

Gabarito: C.

49. (FUNDATEC/Pref. Cariacica/2021) Na turma de matemática do 7º ano, a professora construiu uma tabela com as notas dos seus alunos, ao longo de três trimestres do ano, com as notas finais em cada trimestre. Ao final do ano, a professora calculou a média aritmética simples de cada aluno a fim de completar a tabela e verificar quais alunos estavam aprovados e quais deveriam fazer a atividade de recuperação. Observando que, para ser aprovado sem recuperação, a média aritmética simples das notas dos três trimestres deve ser maior ou igual a 6,0.

		Nota no 2º trimestre	Nota no 3º trimestre	Média aritmética simples de cada aluno
Ana	5,6	7,5	4,3	5,8

Bruno	6,9	4,6	8,4	6,6
Camila	6,5	5,5	5,5	
Daniel	4,8	6,8	6,7	
Evandro	7,7	4,3	5,0	5,7
Fabiana	8,9	9,4	6,7	

Após completar a tabela, é correto afirmar que:

- a) Mais da metade dos alunos estão aprovados sem recuperação.
- b) A média mais baixa foi a da aluna Camila.
- c) A diferença entre a maior média e a menor média é igual a 2,0.
- d) O aluno Daniel ficou com média exatamente 6,0.
- e) A média mais alta foi da aluna Fabiana.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, calculando as médias dos demais participantes, temos:

$$\bar{x}_{Camila} = \frac{6,5+5,5+5,5}{3} = \frac{17,5}{3} = 5,8$$

$$\bar{x}_{Daniel} = \frac{4,8+6,8+6,7}{3} = \frac{18,3}{3} = 6,1$$

$$\bar{x}_{Fabiana} = \frac{8,9 + 9,4 + 6,7}{3} = \frac{25}{3} = 8,3$$

Logo, a maior média foi a de Fabiana.

Gabarito: E.

50. (FUNDATEC/CM Candelária/2021) O número de cidadãos maiores de 18 anos presentes nas 3 sessões plenárias ordinárias da câmara de vereadores do município foi de respectivamente: 231, 189 e 102. A média aritmética de participantes nessas 3 sessões é de:

- a) 164.
- b) 174.
- c) 208.

- d) 261.
- e) 522.

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, a média de idade dos participantes é de:

$$\bar{x} = \frac{231 + 189 + 102}{3} = \frac{522}{3} = 174$$

Gabarito: B.

51. (FUNDATEC/Pref. Candelária/2021) Um cuidador social realiza, em cinco dias úteis de uma determinada semana, respectivamente, 25, 27, 30, 25 e 28 atendimentos diários. A média diária de atendimentos é de:

- a) 25.
- b) 26.
- c) 27.
- d) 28
- e) 30.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, a média diária de atendimentos é de:

$$\bar{x} = \frac{25 + 27 + 30 + 25 + 28}{5} = \frac{135}{5} = 27$$

Gabarito: C.

52. (FUNDATEC/CARRIS/2021) Nos últimos anos, o valor da passagem de ônibus em Porto Alegre vem sofrendo alterações. As últimas quatro ocorrências são R\$ 2,90, R\$ 3,30, R\$ 3,80 e R\$4,30. A média aritmética desses valores está:

- a) Entre o segundo e o terceiro valor.
- b) Entre o primeiro e o segundo valor.
- c) Entre o terceiro e o quarto valor.
- d) Acima do quarto valor.

e) Idêntica ao terceiro valor.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, a média de ocorrências é de:

$$\bar{x} = \frac{2,90 + 3,30 + 3,80 + 4,30}{4} = \frac{14,3}{4} \approx 3,58$$

Gabarito: A.

53. (FUNDATEC/CARRIS/2021) Uma escola possui dados gerais sobre seus estudantes, dentre eles, quantos de seus egressos passaram no vestibular, conforme a tabela abaixo:

Ano	2015	2016	2017	2018
Estudantes aprovados	48	42	50	32

Um estudo afirma que, usando a média aritmética para calcular o número de aprovados, a escola é considerada "boa" se M (média do número de aprovados) é maior do que 45. Esse estudo é feito a cada 5 anos. Para que essa escola se enquadre como "boa", o número de aprovados em 2019 (ano que fecha o quinquênio) deve ser de, no mínimo:

- a) 43.
- b) 48.
- c) 50.
- d) 51.
- e) 54.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, a média aritmética do número de aprovados é de:

$$\overline{M} = \frac{48 + 42 + 50 + 32 + N}{5}$$

Para ser considerada boa, a média do número de aprovados deve ser maior que 45. Portanto, temos:

$$\frac{172+N}{5} > 45$$

$$172 + N > 225$$

Portanto, o número de aprovados em 2019 é de, no mínimo, 54.

Gabarito: E.

54. (VUNESP/Pref. Jaguariúna/2021) Para o desenvolvimento de determinado serviço, três orçamentos foram solicitados. Sabendo-se que a diferença entre os valores dos orçamentos de valor mais alto e o de valor mais baixo é de R\$ 3.800,00, e que o orçamento de valor intermediário é de R\$ 15.000,00 e corresponde à média dos valores dos demais orçamentos, o orçamento de valor mais baixo foi de

- a) R\$ 13.300,00.
- b) R\$ 13.200,00.
- c) R\$ 13.100,00.
- d) R\$ 13.000,00.
- e) R\$ 12.900,00.

Comentários:

Conforme o enunciado, foram elaborados três orçamentos. A diferença do orçamento de valor mais alto para o orçamento de valor mais baixo é de R\$ 3.800,00. Então,

$$A - B = 3.800$$

O enunciado também informou que o valor do orçamento intermediário é de R\$ 15.000, e que esse valor corresponde à média dos outros dois orçamentos. Então, temos que:

$$\frac{A+B}{2} = 15.000$$

$$A + B = 30.000$$

Agora, vamos resolver o sistema linear:

$$\begin{cases} A - B = 3.800 \\ A + B = 30.000 \end{cases}$$

Somando-se as duas equações, obtemos:

$$2A = 30.000 + 3.800$$

$$2A = 33.800$$

$$A = 16.900$$

Assim, podemos calcular o orçamento de valor mais baixo:

$$B = 16.900 - 3.800 = 13.100$$

Gabarito: C.

55. (VUNESP/Pref. F Vasconcelos/2021) Sabe-se que os cinco países que mais produzem gás natural são, nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, concluise que a produção anual de gás natural do Irã, em bilhões de m3, é igual a

- a) 269,7.
- b) 262,6.
- c) 214,5.
- d) 166,4.
- e) 159,1.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Conforme o enunciado, a média aritmética das produções anuais de gás natural dos Estados Unidos (A), da Rússia (B), do Irã (C), do Catar (D) e do Canadá (E) é de 395,7 bilhões de m³:

$$\bar{x}_{com\ o\ Ir\tilde{a}} = \frac{A+B+C+D+E}{5} = 395,7$$

Além disso, o enunciado disse que a média aritmética das produções anuais de gás natural passa a ser de 441 bilhões de m³ se excluirmos o Irã:

$$\bar{x}_{sem\ o\ Ir\tilde{a}} = \frac{A+B+C+E}{4} = 441$$

$$A + B + C + E = 4 \times 441 = 1.764$$

Relacionando as duas expressões, temos que:

$$\frac{1.764 + D}{5} = 395,7$$

$$1.764 + D = 1.978,5$$

Portanto, a produção anual de gás natural do Irã é de:

$$D = 214,5$$
 bilhões de m³

Gabarito: C.

56. (VUNESP/Pref. Marília/2021) O gráfico mostra algumas informações sobre o número de unidades vendidas de um produto, nos 5 dias de uma semana.

Sabendo que cada unidade desse produto foi vendida por R\$ 3,00, e que o valor total arrecadado com essas vendas foi R\$ 225,00, então, na média, o número de unidades vendidas por dia foi

- a) 24.
- b) 21.
- c) 18.
- d) 15.
- e) 12.

Comentários:

Conforme o enunciado, cada unidade do produto foi vendida por R\$ 3,00 e o valor arrecadado com essas vendas foi de R\$ 225,00. Então, o total de peças vendidas foi igual a

$$3 \times Total\ de\ Peças = 225$$

$$Total\ de\ Peças = \frac{225}{3}$$

$$Total\ de\ Peças = 75$$

Agora, podemos calcular a média de unidades vendidas por dia:

$$\bar{x} = \frac{Total \ de \ Peças}{5}$$

$$\bar{x} = \frac{75}{5}$$

$$\bar{x} = 15 \ pe$$
ças

Gabarito: D.

57. (VUNESP/Pref. Ribeirão Preto/2021) Os números de gols marcados pelos jogadores de certo time em um campeonato de futsal estão relacionados na tabela abaixo.

Jogador	Gols marcados
André	3
Rogério	1
Marcos	5
Fabiano	4
Jonas	2

Em virtude de violação das regras vigentes, Jonas foi desclassificado, de modo que foi calculada a média de gols por jogador levando em conta apenas os outros 4 jogadores. Se isso não tivesse ocorrido, e a média fosse calculada levando em conta os 5 jogadores, seria obtido um valor inferior ao valor da média anterior em

- a) 0,10 gol por jogador.
- b) 0,25 gol por jogador.
- c) 0,40 gol por jogador.
- d) 0,50 gol por jogador.
- e) 0,65 gol por jogador.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, calculando-se a média de gols para os quatro jogadores, temos:

$$\bar{x} = \frac{3+1+5+4}{4} = \frac{13}{4} = 3,25$$

Agora, considerando os 5 jogadores, descobrimos que:

$$\bar{x} = \frac{3+1+5+4+2}{5} = \frac{15}{5} = 3$$

Portanto, vai haver uma redução de 0,25 gol por jogador.

Gabarito: B.

58. (VUNESP/Pref. Araçariguama/2021) O gráfico a seguir mostra o percentual da população de quatro países da América do Sul que guardam dinheiro, segundo pesquisa realizada em 2017.

— América do Sul —

Pessoas que guardaram dinheiro

Porcentagem nos últimos 12 meses (2017)

(https://www.nexojornal.com.br. Adaptado)

O Brasil ocupa a quarta posição no ranking sul-americano e, ao comparar o percentual brasileiro com a média aritmética do percentual indicado para os 3 primeiros países do gráfico, tem-se que o percentual brasileiro está

- a) 3,3 pontos percentuais abaixo.
- b) 3,7 pontos percentuais abaixo.
- c) 4,1 pontos percentuais abaixo.
- d) 4,5 pontos percentuais abaixo.
- e) 4,9 pontos percentuais abaixo.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Calculando-se a média dos percentuais dos 3 países apresentados no gráfico, teremos:

$$\bar{x} = \frac{21,2 + 19,4 + 16,4}{3}$$
$$\bar{x} = \frac{57}{3}$$
$$\bar{x} = 19\%.$$

Assim, podemos concluir que o percentual brasileiro está 19-14.5=4.5% pontos percentuais abaixo. Gabarito: D.

59. (VUNESP/Pref. V Paulista/2021) A lista a seguir apresenta, em ordem crescente, os salários, em reais, de 16 funcionários de um dos departamentos de uma empresa.

1.500, 1.500, 1.500, 1.800, 1.800, 1.800, 1.800, 2.400, 2.400, 3.600, 6.000, 6.000, X, 8.000, 8.000, 8.000.

Sabe-se que o salário médio desses 16 funcionários é R\$ 3.975,00. Desse modo, o salário X é igual a

- a) R\$ 6.000,00.
- b) R\$ 6.750,00.
- c) R\$ 7.500,00.
- d) R\$ 7.750,00.
- e) R\$ 8.000,00.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto.

Conforme o enunciado, o salário médio dos 16 funcionários é igual a 3.975, então:

$$\bar{S} = \frac{3 \times 1500 + 4 \times 1800 + 2 \times 2400 + 3600 + 2 \times 6000 + 3 \times 8000 + X}{16}$$

$$\frac{3 \times 1500 + 4 \times 1800 + 2 \times 2400 + 3600 + 2 \times 6000 + 3 \times 8000 + X}{16} = 3.975$$

$$\frac{56.100 + X}{16} = 3.975$$

$$56.100 + X = 63.600$$

$$X = 7.500$$

Gabarito: C.

60. (VUNESP/CM Potim/2021) A lista de números a seguir apresenta, em unidades reais, os salários dos funcionários de uma das seções de uma empresa.

Serão contratados mais dois funcionários que terão o mesmo salário. Com essa contratação, a média salarial passará a ser R\$ 3.200,00. Assim, o salário de cada um desses novos contratados será

- a) R\$ 1.875,00.
- b) R\$ 2.150,00.
- c) R\$ 2.500,00.
- d) R\$ 3.090,00.
- e) R\$ 3.120,00.

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, somando-se todos os salários e dividindo-se o resultado por 11 (os 9 funcionários atuais mais os 2 novos), obtemos a média de R\$ 3.200,00:

$$\bar{S} = \frac{3 \times 2500 + 3 \times 3000 + 2 \times 3600 + 1 \times 7200 + 2 \times X}{11}$$

$$\frac{3 \times 2500 + 3 \times 3000 + 2 \times 3600 + 1 \times 7200 + 2 \times X}{11} = 3.200$$

$$\frac{30.900 + 2 \times X}{11} = 35.200$$

$$30.900 + 2 \times X = 35.200$$

$$2 \times X = 4.300$$

$$X = 2.150$$

Portanto, o salário de cada um dos novos contratados é de R\$ 2.150,00.

Gabarito: B.

61. (VUNESP/Pref. Ribeirão Preto/2021) Um ranking, elaborado por um órgão da área econômica, relaciona as empresas varejistas do País que apresentaram os maiores faturamentos brutos em 2020, sendo a média aritmética dos faturamentos das 10 empresas listadas igual a R\$ 31,7 bilhões. Se o faturamento médio das empresas que ocuparam as 5 primeiras colocações nesse ranking foi igual a R\$ 45,2 bilhões, então o faturamento médio das empresas que ocuparam as 5 últimas colocações nesse ranking foi igual a

- a) R\$ 13,5 bilhões.
- b) R\$ 15,3 bilhões.
- c) R\$ 16,1 bilhões.
- d) R\$ 17,4 bilhões.
- e) R\$ 18,2 bilhões.

Comentários:

Conforme o enunciado, o faturamento médio das empresas que ocuparam as 5 primeiras colocações no ranking foi igual a R\$ 45,2 bilhões. Então, temos:

$$\bar{x} = \frac{Soma_{primeiras}}{n}$$

$$45,2 = \frac{Soma_{primeiras}}{5}$$

$$Soma_{primeiras} = 226$$

Sabemos também que o faturamento médio das 10 empresas foi de R\$ 31,7 bilhões. Portanto,

$$31,7 = \frac{Soma_{primeiras} + Soma_{ultimas}}{10}$$

$$317 = Soma_{primeiras} + Soma_{ultimas}$$

$$317 = 226 + Soma_{ultimas}$$

$$Soma_{ultimas} = 317 - 226 = 91$$

Agora, de posse dessa informação, podemos calcular o faturamento médio das cinco últimas empresas:

$$\bar{x} = \frac{Soma_{ultimas}}{5} = \frac{91}{5} = 18,2$$

Gabarito: E.

62. (VUNESP/Pref. Ribeirão Preto/2021) Três famílias possuem quatro membros cada. As médias das alturas dos membros de cada uma das famílias são, respectivamente, iguais a 161 cm, 163 cm e 164 cm. Considerando a pessoa mais alta de cada família, as suas alturas são, respectivamente, 167 cm, 170 cm e 184 cm. Considerando as três pessoas mais baixas de cada família, formamos um grupo de 9 pessoas, cuja média das alturas é igual a

- a) 156 cm.
- b) 159 cm.
- c) 162 cm.
- d) 165 cm.
- e) 168 cm.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Como as médias das alturas dos membros de cada uma das famílias são, respectivamente, iguais a 161 cm, 163 cm e 164 cm, então:

$$161 = \frac{Soma\ das\ alturas\ da\ primeira\ família}{4} \Rightarrow Soma\ das\ idades\ da\ primeira\ família = 644\ cm$$

$$163 = \frac{Soma\ das\ alturas\ da\ segunda\ família}{4} \Rightarrow Soma\ das\ idades\ da\ segunda\ família = 652\ cm$$

$$164 = \frac{Soma\ das\ ida\ da\ terceira\ família}{4} \Rightarrow Soma\ das\ idades\ da\ terceira\ família = 656\ cm$$

Agora, considerando apenas as três pessoas mais baixas de cada família, formamos um grupo composto por 9 pessoas, cuja média das alturas é igual a

$$\bar{x} = \frac{Soma\ das\ alturas\ das\ pessoas\ mais\ baixas}{9}$$

$$\bar{x} = \frac{Soma\ de\ todas\ as\ alturas - 167 - 170 - 184}{9}$$

$$\bar{x} = \frac{644 + 652 + 656 - 167 - 170 - 184}{9}$$

$$\bar{x} = \frac{1431}{9}$$

$$\bar{x} = 159\ cm$$

Dessa forma, concluímos que a média das alturas das pessoas mais baixas de cada família é de 159cm.

Gabarito: B.

63. (VUNESP/Pref. Jaguariúna/2021) Uma empresa comercializa 5 tipos diferentes de cestas básicas. A tabela mostra o valor de cada tipo de cesta.

Tipo de cesta	Valor da cesta
Α	R\$ 160,00
В	R\$ 210,00
С	R\$ 280,00
D	R\$ 320,00
E	R\$ 370,00

Na média, o valor de uma cesta dessa empresa sai por

- a) R\$ 257,00.
- b) R\$ 268,00.
- c) R\$ 274,00.
- d) R\$ 285,00.
- e) R\$ 292,00.

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, podemos concluir que uma cesta dessa empresa sai por:

$$\bar{x} = \frac{Soma}{n}$$

$$\bar{x} = \frac{160 + 210 + 280 + 320 + 370}{5}$$

$$\bar{x} = \frac{1.340}{5}$$

$$\bar{x} = 268$$

Gabarito: B.

64. (VUNESP/Pref. V Paulista/2021) O gráfico apresenta o número de acidentes envolvendo motos, e o número de acidentes envolvendo somente automóveis, registrados em 5 meses em determinada cidade.

Nesses 5 meses, a média mensal do número de acidentes envolvendo somente automóveis supera a média mensal de acidentes envolvendo motos em

- a) 6 acidentes.
- b) 5 acidentes.
- c) 4 acidentes.
- d) 3 acidentes.
- e) 2 acidentes.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, podemos concluir o número médio de acidentes com motos é de:

$$\bar{x}_{motos} = \frac{3+2+3+5+7}{5} = \frac{20}{5} = 4$$

Da mesma forma, o número médio de acidentes com automóveis é de:

$$\bar{x}_{carros} = \frac{5+3+6+9+12}{5} = \frac{35}{5} = 7$$

Assim, o número médio de acidentes com automóveis supera o número de acidentes com motos em 3 unidades.

Gabarito: D.

65. (VUNESP/Pref. F Vasconcelos/2021) Uma empresa utilizou as máquinas A, B e C para a produção de um lote de certa peça. Os tempos de trabalho de cada máquina na produção desse lote estão relacionados na tabela, em que os tempos da máquina B e da máquina A estão representados por x e por um submúltiplo de x, respectivamente.

Máquina	Tempo trabalhado (em minutos)
Α	1,2 x
В	Х
С	564

Sabendo-se que a média aritmética dos tempos de trabalho das três máquinas é igual a 870 minutos, é correto afirmar que, na produção desse lote de peças, a máquina A trabalhou durante

- a) 15 horas e 30 minutos.
- b) 16 horas e 46 minutos.
- c) 17 horas e 30 minutos.
- d) 18 horas e 06 minutos.
- e) 18 horas e 36 minutos.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. O enunciado nos informou que a média de trabalho das três máquinas foi de 870 minutos, então:

$$870 = \frac{1,2x + x + 564}{3}$$
$$2.610 = 2,2x + 564$$
$$2.046 = 2,2x$$
$$x = 930 \text{ minutos.}$$

Transformando em horas, temos a máquina A trabalhou durante:

$$A = 1.2 \times 930 = 1.116 = 18 \times 60 + 36 = 18 \text{ horas e } 36 \text{ minutos.}$$

Gabarito: E.

66. (VUNESP/FITO/2020) O consumo médio de um determinado produto ao longo do primeiro semestre de 2019 foi de 36 unidades. Já a quantidade consumida mês a mês desse produto em alguns dos demais meses desse mesmo ano pode ser verificada na tabela a seguir:

Mês	Unidades
Julho	40
Agosto	38
Setembro	32
Outubro	35
Novembro	34

Considerando que, no segundo semestre, o consumo médio do semestre anterior foi mantido, a quantidade de unidades consumida em dezembro de 2019 foi de

- a) 33
- b) 37
- c) 39
- d) 42
- e) 44

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes.

O enunciado informou que o consumo semestral foi de 36 unidades, e pediu a quantidade de unidades consumidas em dezembro. Assim, se denominarmos o total de unidades consumidas em dezembro de D, então podemos concluir que:

$$\bar{x} = \frac{40 + 38 + 32 + 35 + 34 + D}{6}$$

$$36 = \frac{40 + 38 + 32 + 35 + 34 + D}{6}$$

$$216 = 179 + D$$

$$D = 37 \text{ unidades}$$

Gabarito: B.

67. (VUNESP/FITO/2020) A média aritmética simples das idades de 5 pessoas de uma mesma família é 20 anos. Se 2 membros dessa família são irmãos gêmeos, e a média das idades dos outros 3 membros dessa família é 24 anos, então a idade de cada irmão gêmeo é

- a) 14 anos
- b) 15 anos
- c) 16 anos
- d) 17 anos
- e) 18 anos

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes.

O enunciado nos disse que a média aritmética simples das idades de 5 pessoas de uma mesma família é 20 anos. Portanto,

$$\bar{x} = \frac{soma~das~idades~dos~5~membros~da~família}{5}$$

$$20 = \frac{soma~das~idades~dos~5~membros~da~família}{5}$$

Soma das idades dos 5 membros da família = 100 anos

A questão nos informou que dois membros são gêmeos e que a média das idades dos outros 3 membros dessa família é 24 anos, então:

$$24 = \frac{Soma\ das\ idades\ dos\ 3\ membros\ da\ família}{3}$$

Soma das idades dos 3 membros da família = 72 anos

Desse modo, se x for a idade de cada um dos gêmeos, temos:

Soma das idades dos 5 membros da família = 100Soma das idades dos 3 membros da família + x + x = 100

$$72 + 2x = 100$$
$$2x = 28$$
$$x = 14 \text{ anos}$$

Gabarito: A.

68. (VUNESP/FITO/2020) O gráfico apresenta as notas de um aluno, nas disciplinas de matemática e química, nos três quadrimestres de 2019.

A média das notas de matemática desse aluno corresponde, da média das notas de química, a

- a) 120%
- b) 125%
- c) 130%
- d) 135%
- e) 140%

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Pelos valores dados no enunciado, a média das notas de matemática é:

$$\bar{x}_{mat} = \frac{5+6+4}{3}$$

$$\bar{x}_{mat} = \frac{15}{3}$$

$$\bar{x}_{mat} = 5$$

Já a média das notas de química é:

$$\bar{x}_{quim} = \frac{4,5+3,5+4}{3}$$

$$Q = \frac{12}{3}$$

$$Q = 4$$

Com isso, em termos percentuais, a média das notas de matemática desse aluno corresponde, da média das notas de química, a:

$$\frac{5}{4}$$
 = 1,25 = 125%

Gabarito: B.

69. (VUNESP/VALIPREV/2020) A tabela apresenta algumas informações sobre o número de unidades vendidas de um produto em 5 dias de uma semana.

Dia da semana	Nº de unidades vendidas
2ª feira	X
3ª feira	13
4ª feira	15
5ª feira	25
6ª feira	28

Sabendo que o número de unidades vendidas na 2a feira foi igual à metade da média diária do número de unidades vendidas nesses 5 dias, então, a média diária do número de unidades vendidas nesses 5 dias foi

- a) 21
- b) 18
- c) 15
- d) 12
- e) 9

Comentários:

A média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto e a quantidade de valores nele existentes. Para os valores apresentados, temos que a média diária do número de unidades vendidas em 5 dias foi:

$$\bar{x} = \frac{x+13+15+25+28}{5}$$
$$\bar{x} = \frac{x+81}{5}$$

Como o número de unidades vendidas na 2ª feira foi igual à metade da média diária do número de unidades vendidas nesses 5 dias, então:

$$\bar{x} = \frac{\bar{x}}{2} + 81$$

$$5\bar{x} = \frac{\bar{x}}{2} + 81$$

Multiplicando todos os termos por 2 para eliminar a fração $\bar{x}/_2$:

$$2 \times (5\bar{x}) = 2 \times \left(\frac{\bar{x}}{2}\right) + 2 \times 81$$

$$10\bar{x} = \bar{x} + 162$$

$$9\bar{x} = 162$$

$$\bar{x} = \frac{162}{9}$$

$$\bar{x} = 18.$$

Gabarito: B.

70. (CESPE/UNCISAL/2019) A tabela a seguir apresenta a inflação anual no Brasil no triênio 2016–2018, segundo dados do IBGE.

Ano	Inflação (%)
2016	6,3
2017	2,9
2018	3,7

Considerando-se as informações precedentes, um produto que custava R\$ 1.000,00 em dezembro de 2018 e que tenha sido reajustado em janeiro de 2019 pela média aritmética da inflação do triênio 2016–2018 passou a custar, após o reajuste,

- a) R\$ 1.029,00.
- b) R\$ 1.037,00.
- c) R\$ 1.043,00.
- d) R\$ 1.172,00.
- e) R\$ 1.133,00.

Comentários:

Inicialmente, vamos calcular a média aritmética da inflação para os três anos:

$$\bar{x} = \frac{6,3\% + 2,9\% + 3,7\%}{3}$$
$$\bar{x} = \frac{12,9\%}{3}$$
$$\bar{x} = 4,3\%$$

Agora, basta multiplicarmos o valor do produto (R\$ 1.000,00) pelo índice de reajuste do triênio 2016-2018:

Índice de Reajuste =
$$1 + 4.3\% = 1.043$$

 $1.000 \times 1.043 = 1043$

Assim, o produto que custava R\$ 1.000,00 em dezembro de 2018, passará a custar R\$ 1.043,00 em janeiro de 2019.

Gabarito: C.

71. (CESPE/UNCISAL/2019) A crise mundial tem contribuído para o aumento da entrada de estrangeiros no Brasil. A maior parte vem de países vizinhos, a exemplo do Paraguai. A tabela a seguir apresenta, de acordo com dados do Ministério da Justiça, a quantidade de paraguaios que vieram para o Brasil nos anos de 2009, 2011 e 2012.

Ano	Paraguaios
2009	11000
2010	?
2011	19000
2012	27300

Disponível em: http://reporterbrasil.org.br. Acesso em: 9 nov. 2018 (adaptado).

Se a média anual de imigrantes paraguaios para o Brasil, no período de 2009 a 2012, foi de 17 600, então, quantos paraguaios imigraram para o Brasil em 2010?

- a) 13 100
- b) 14 325
- c) 15 000
- d) 15 840
- e) 17 600

Comentários:

A questão informa que a média anual de imigrantes paraguaios no Brasil, no período de 2009 a 2012, foi de 17.600. Como sabemos, a média é dada pela soma dos dados dividida pelo número de observações. Então, se considerarmos que o número de imigrantes em 2010 foi x, teremos:

$$\bar{x} = \frac{11000 + x + 19000 + 27300}{4}$$

$$17600 = \frac{57300 + x}{4}$$

$$4 \times 17600 = 57300 + x$$

$$70400 = 57300 + x$$

$$x = 70400 - 57300$$

$$x = 13.100$$

Gabarito: A.

72. (CESPE/Pref. São Cristóvão/2019) Segundo o IBGE, a massa da renda média mensal real domiciliar per capita em 2016 foi de aproximadamente R\$ 264 bilhões; a população brasileira nesse ano era de aproximadamente 190 milhões de pessoas.

A partir dessas informações, julgue o item a seguir.

A renda média mensal dos brasileiros em 2016 foi superior a R\$ 1.300.

Comentários:

Conforme o enunciado, a renda domiciliar per capita em 2016 foi de aproximadamente 264 bilhões de reais e a população brasileira nesse ano era de 190 milhões de pessoas.

Como sabemos, a média aritmética é definida pelo quociente entre a soma dos valores de um determinado conjunto de medidas e o número de valores nele existentes. Então, a renda média dos brasileiros é:

$$\bar{x} = \frac{264.000.000.000}{190.000.000}$$

$$\bar{x} = \frac{26.400}{19}$$

$$\bar{x} \cong 1.389.5 \ reais$$

Gabarito: Certo.

73. (CESPE/Pref. São Cristóvão/2019) Segundo o IBGE, a massa da renda média mensal real domiciliar per capita em 2016 foi de aproximadamente R\$ 264 bilhões; a população brasileira nesse ano era de aproximadamente 190 milhões de pessoas.

A partir dessas informações, julgue o item a seguir.

O gráfico a seguir mostra que, em 2016, mais de 40% da massa de renda mensal real domiciliar per capita coube a 10% da população; ao restante coube menos de 60% dessa massa de renda. A partir do gráfico, é correto inferir que, naquele ano, em média, a renda mensal desses 10% da população era superior a R\$ 10.000.

PNAD-C | distribuição da massa de rendimento mensal real domiciliar per capita

90%
da população

56,6%
da massa total

Comentários:

De acordo com o enunciado, a população é de 190 milhões de pessoas. O percentual de 10% da população corresponde a 19 milhões de pessoas.

A renda domiciliar per capita em 2016 foi de aproximadamente 264 bilhões de reais. O percentual de 43,4% desse valor equivale a:

Assim, a média da renda mensal desses 10% da população será de:

$$\bar{x} = \frac{114,6 \ bilh\~{o}es}{19 \ milh\~{o}es} = \frac{114.600.000.000}{19.000.000} \cong R\$ \ 6.031.$$

Gabarito: Errado.

74. (FCC/SABESP/2019) A média dos salários dos 25 trabalhadores de uma pequena empresa é de R\$ 2.320,00. Um desses trabalhadores, e apenas ele, terá um aumento de 10% em seu salário e, com isso, a média dos salários passará a ser R\$ 2.360,00. O salário desse trabalhador, sem o aumento, é

- a) R\$ 10.400,00
- b) R\$ 9.800,00
- c) R\$ 10.000,00
- d) R\$ 8.000,00
- e) R\$ 11.000,00

Comentários:

Primeiramente, vamos considerar que $s_1, ..., s_{24}$ representam os salários de 24 dos trabalhadores da empresa, e que x representa o salário do trabalhador que teve o aumento, tudo em reais. A média dos salários era R\$ 2.320,00, logo:

$$\frac{s_1 + \dots + s_{24} + x}{25} = 2.320 \Rightarrow s_1 + \dots + s_{24} + x = 58.000$$

Aumentar em 10% equivale a multiplicar por 1,1. Portanto, o salário desse trabalhador passou a ser 1,1x. Como a nova média é de R\$ 2.360,00, então:

$$\frac{s_1 + \dots + s_{24} + 1,1x}{25} = 2.360 \Rightarrow s_1 + \dots + s_{24} + 1,1x = 59.000$$

Isolando $s_1 + \cdots + s_{24}$ na primeira equação, obtemos:

$$s_1 + \dots + s_{24} = 58000 - x.$$

Então, substituindo na equação anterior temos:

$$58.000 - x + 1,1x = 59.000$$
$$0,1x = 1000$$
$$x = 10.000$$

Outra forma de resolvermos essa questão é calculando a diferença da média: A média passou de R\$ 2.320,00 para R\$ 2.360,00, ou seja, uma diferença de R\$ 40,00. Como são 25 trabalhadores, então o aumento total foi de:

$$25 \times R$$
\$ $40,00 = R$ \$ $1.000,00$

Como esse aumento corresponde a 10% do salário do tal trabalhador, então seu salário sem o aumento é R\$ 10.000,00, pois 10% desse valor é R\$ 1.000,00.

Gabarito: C.

75. (FCC/SABESP/2019) A média de 3x + 8, 7x - 6 e -4x + 2 é

a)
$$x + \frac{4}{3}$$

b)
$$2x + \frac{4}{3}$$

c)
$$2x + \frac{3}{4}$$

d)
$$\frac{4}{3}$$

e) 2*x*

Comentários:

A média aritmética é definida pela soma dos valores de um determinado conjunto de medidas, dividindo-se o resultado dessa soma pela quantidade dos valores que foram somados. Para os valores do problema, a média será dada por:

$$\bar{x} = \frac{(3x+8) + (7x-6) + (-4x+2)}{3}$$
$$\bar{x} = \frac{3x + 7x - 4x + 8 - 6 + 2}{3}$$
$$\bar{x} = \frac{6x - 4}{3}$$

$$\bar{x} = 2x + \frac{4}{3}$$

Gabarito: B.

76. (FCC/SABESP/2019) João realizou três das quatro provas e a média dessas três provas é de 88 pontos. Para obter média final igual ou superior a 90, sua nota na quarta prova deve ser de, pelo menos,

- a) 98
- b) 96
- c) 100
- d) 94
- e) 92

Comentários:

A média aritmética resulta da divisão entre a soma dos valores de um determinado conjunto de medidas e a quantidade de valores nele existentes.

Sabemos que a média nas três primeiras provas foi de 88 pontos. Logo, considerando N_1 , N_2 , N_3 , N_4 as notas das 4 provas, temos que:

$$88 = \frac{N_1 + N_2 + N_3}{3}$$

$$264 = N_1 + N_2 + N_3$$

O problema pede o valor mínimo da quarta prova para que a média seja igual ou maior que 90, ou seja,

$$\frac{N_1 + N_2 + N_3 + N_4}{4} \ge 90$$

Substituindo $N_1 + N_2 + N_3 = 264$, temos:

$$\frac{264 + N_4}{4} \ge 90$$

$$264 + N_4 \ge 360$$

$$N_4 \ge 96 \ pontos$$

Gabarito: B.

77. (FCC/CM Fortaleza/2019) Em um teatro com 200 lugares, houve quatro apresentações de uma peça. Na primeira apresentação foram vendidos todos os ingressos; na segunda apresentação foram vendidos 88% dos ingressos; na terceira, 56% dos ingressos e, na quarta, 44% dos ingressos. Em média, a quantidade de ingressos vendidos por apresentação foi de

- a) 72
- b) 144
- c) 56

- d) 76
- e) 140

Comentários:

Em primeiro lugar, precisamos identificar a média percentual de ingressos nas apresentações. Depois, analisaremos qual a quantidade de ingressos que esse valor representa.

Então, a média percentual de ingressos vendidos é a soma dos percentuais vendidos nas apresentações dividido pelo número de apresentações. Logo,

$$ar{x}_{\%}=rac{soma\ dos\ percentuais}{n\'umero\ de\ apresentaç\~oes} \ ar{x}_{\%}=rac{100\%+88\%+56\%+44\%}{4} \ ar{x}_{\%}=rac{288\%}{4} \ ar{x}_{\%}=72\%$$

A média de ingressos vendidos por apresentação foi de 72%. Sabendo que o teatro tinha 200 lugares, a quantidade de ingressos vendidos, em média, foi:

$$72\% \ de \ 200$$
 $\frac{72}{100} \ de \ 200$ $0.72 \times 200 = 144 \ ingressos$

Gabarito: B.

78. (FCC/TRF 3ª Região/2019) Havia cinco garrafas de vinhos em uma adega. O preço médio desses vinhos era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é

- a) 130,00
- b) 120,00
- c) 150,00
- d) 140,00
- e) 160,00

Comentários:

O preço médio das garrafas é a razão entre a soma dos preços e o número de garrafas:

$$\bar{x} = \frac{soma~dos~preços}{n\'umero~de~garrafas}$$

Temos que a média dos preços das 5 garrafas da adega era R\$ 120,00. Logo, teremos:

$$120 = \frac{S_5}{5}$$

Ou seja, a soma dos preços das 5 garrafas era:

$$S_5 = R$$
\$ 600,00

Agora, com o desaparecimento de uma garrafa, a média de preço das 4 garrafas que ficaram na adega era R\$ 110,00. Então, ficaremos com:

$$110 = \frac{S_4}{4}$$

$$S_4 = R$$
\$ 440,00

Se a soma dos preços das 5 garrafas era R\$ 600,00 e, depois que uma delas despareceu, a soma dos preços das outras 4 garrafas ficou R\$ 440,00, então o preço da garrafa que sumiu era:

$$600 - 440 = R$$
\$ 160.00

Gabarito: E.

79. (FCC/Pref. SJRP/2019) Uma prova com questões de múltipla escolha foi realizada por 100 candidatos em um concurso. O número médio de acertos foi 68. Após um recurso, uma questão foi anulada, isto é, a questão foi considerada correta para todos os candidatos, e a média passou de 68 para 68,4 pontos. O número de candidatos que tinham errado a questão anulada foi de:

- a) 4
- b) 20
- c) 40
- d) 44
- e) 8

Comentários:

Conforme o enunciado, o número médio de acertos foi de 68 e a quantidade de candidatos foi de 100. Calculando a média, temos que:

$$68 = \frac{total}{100} \Rightarrow total = 68 \times 100 = 6800$$

Após a anulação de uma questão, a média passou de 68 para 68,4 pontos. Logo, fazendo a nova média:

$$68,4 = \frac{total}{100} \Rightarrow total = 68,4 \times 100 = 6840$$

Por fim, a diferença entre os totais equivale à quantidade de alunos que haviam errado a questão:

$$6840 - 6800 = 40 \ alunos$$

Gabarito: C.

80. (FGV/Pref. Salvador/2019) Em uma pequena empresa, a média salarial dos 12 funcionários era de R\$ 2400,00. Lúcio Mauro, que ganhava R3000,00, se aposentou e para ocupar sua vaga foi contratado Felipe, com um salário de R\$ 1800,00.

Assinale a opção que indica a nova média salarial dos 12 funcionários dessa empresa.

- a) R\$ 2350,00
- b) R\$ 2300,00
- c) R\$ 2280,00
- d) R\$ 2250,00
- e) R\$ 2200,00

Comentários:

Temos que a média salarial dos 12 funcionários era R\$ 2.400,00, então a soma dos salários era:

$$soma = m\'edia \times quantidade$$

 $soma = R$ 2.400,00 \times 12 = R$ 28.800,00$

Saindo Lúcio Mauro, que ganhava R\$ 3.000,00, e entrando Felipe, com um salário de R\$ 1.800,00, a soma dos salários passa a ser:

$$R$ 28.800,00 - RS 3.000,00 + R$ 1.800,00 = R$ 27.600,00$$

Portanto, a nova média salarial dos 12 funcionários é igual a:

$$\bar{x} = \frac{R\$ 27.600,00}{12} = R\$ 2.300,00$$

Gabarito: B.

81. (FGV/Pref. Angra/2019) A média dos pesos de cinco crianças é de 33,6 kg. Quatro delas pesam, respectivamente, 31 kg, 34 kg, 38 kg e 30 kg. A 5ª criança pesa

- a) 32 Kg
- b) 35 Kg
- c) 36 Kg
- d) 37 Kg
- e) 38 Kg

Comentários:

A média aritmética resulta da divisão entre a soma de um conjunto de valores e o número de valores. Assim, temos que a média dos pesos de cinco crianças é de 33,6 kg e quatro delas pesam, respectivamente, 31 kg, 34 kg, 38 kg e 30 kg, logo:

$$33,6 = \frac{31 + 34 + 38 + 30 + x}{5}$$

$$168 = 133 + x$$
$$x = 35 Kg$$

Gabarito: B.

82. (CESPE/IFF/2018) Considere que o peso de 5 pessoas, juntas em um elevador, seja de 340 kg. Se, em determinado andar, mais um indivíduo entrar no elevador, sem que dele ninguém desça, e a média aritmética dos pesos dessas 6 pessoas passar a ser de 70 kg, esse sexto indivíduo pesa

- a) 68,3 kg.
- b) 69 kg.
- c) 70 kg.
- d) 80 kg.
- e) 82 kg.

Comentários:

De acordo com o enunciado, o peso de 5 pessoas juntas em um elevador é de 340kg. Se mais um indivíduo entrar no elevador, sem que dele ninguém desça, a média aritmética das pessoas dessas 6 pessoas passará a ser de 70 kg. A questão quer saber o peso do último indivíduo a entrar no elevador.

A média aritmética resulta da divisão entre a soma dos pesos e o número de pessoas. Então, temos:

$$\bar{x} = \frac{340 + x}{6}$$

$$70 = \frac{340 + x}{6}$$

$$6 \times 70 = 340 + x$$

$$420 = 340 + x$$

$$x = 420 - 340$$

$$x = 80$$

Gabarito: D.

83. (CESPE/ABIN/2018)

	Evolução da quantidade de docentes por etapa de ensino Brasil 2013 - 2017				
Ano	Educação infantil	Anos iniciais do ensino fundamental	Anos finais do ensino fundamental	Ensino médio	
2013	478.811	750.366	802.902	507.617	

2014	502.445	757.950	797.577	522.426
2015	518.308	758.840	786.140	522.826
2016	540.567	763.927	778.561	519.883
2017	557.541	761.737	764.731	509.814
Soma total das quantidades de docentes no período	2.597.672	3.792.820	3.929.911	2.582.566

Com base nos dados da tabela anterior, extraídos do Relatório das Notas Estatísticas do Censo Escolar de 2017, do INEP, julgue os itens a seguir.

A média do quantitativo de docentes do ensino médio entre os anos de 2013 e 2017 foi superior à média do quantitativo de docentes da educação infantil para o mesmo período.

Comentários:

No período em análise, o total de docentes do ensino médio foi de 2.582.566. Logo, a média anual é de:

$$\bar{x}_{EM} = \frac{2.582.566}{5} = 516.513,2$$

Por seu turno, o total de docentes da educação infantil foi de 2.597.672. Assim, a média anual é de:

$$\bar{x}_{EI} = \frac{2.597.672}{5} = 519.534,4$$

Portanto, $\bar{x}_{EM} < \bar{x}_{EI}$.

Gabarito: Errado.

84. (FCC/SABESP/2018) Para que a média aritmética dos números: 8, 8, 1, 10, 11, 12, 7, 2, 10, 6, x e 5 seja 7, o valor de x deverá ser

- a) 2
- b) 4
- c) 8
- d) 5
- e) 3

Comentários:

Conforme o enunciado, a média aritmética de um conjunto composto por 12 números é igual a 7. A questão pede para encontrarmos o valor de um número pertencente a esse conjunto.

Como sabemos, para calcular a média aritmética, temos que somar todos os números e dividir o resultado por 12:

$$\bar{x} = \frac{8+8+1+10+11+12+7+2+10+6+x+5}{12} = 7$$

$$80+x=7\times12$$

$$80+x=84$$

$$x=4$$

Gabarito: B.

85. (FCC/TRT 15ª Região/2018) Os funcionários de um Tribunal estão alocados em 21 equipes de trabalho distintas, cada uma delas com pelo menos um funcionário. A média da quantidade de funcionários de cada uma dessas equipes é 13. Assim, a quantidade de funcionários da maior equipe de trabalho desse Tribunal é,

- a) no mínimo, 18.
- b) no máximo, 13.
- c) no mínimo, 14.
- d) no máximo, 26.
- e) no mínimo, 13.

Comentários:

De acordo com o enunciado, a média de funcionários por equipe é 13.

Se a maior equipe tiver 12 funcionários, as demais terão 12 funcionários ou menos. Portanto, nessa situação, a média aritmética será sempre inferior a 12.

Por outro lado, se a maior equipe tiver 13 funcionários, as demais terão, necessariamente, 13 funcionários. Isso, porque, se uma equipe tiver menos de 13 funcionários, a média será inferior a 13.

Finalmente, se a maior equipe tiver mais de 13 funcionários, teremos, necessariamente, equipes com menos de 13 funcionários, de modo que a média seja igual a 13.

Portanto, a maior equipe precisa ter, no mínimo, 13 funcionários.

Gabarito: E.

86. (FCC/TRT 15ª Região/2018) Um Tribunal Regional do Trabalho celebrou acordos conciliatórios no valor de R\$ 1,210 milhão. Em 55 audiências independentes umas das outras, o percentual de audiências com acordo foi de 40%.

(Adaptado de: http://portal.trt15.jus.br/ Acessado em: 30/03/18)

Considerando apenas as audiências em que houve acordo, o valor médio dos acordos por audiência foi de

a) F	\$ 5	.50	0,00	
------	------	-----	------	--

- b) R\$ 55.000,00.
- c) R\$ 88.000,00.
- d) R\$ 8.800,00.
- e) R\$ 36.600,00.

Comentários:

Conforme o enunciado, os acordos conciliatórios foram celebrados em 40% das audiências:

$$40\% \ de \ 55 = \frac{40}{100} \times 55 = 22 \ acordos$$

Para calcularmos a média dos acordos, dividiremos o total de R\$ 1.210.000,00 pelos 22 acordos:

$$\frac{1.210.000}{22} = 55.000 \ por \ acordo$$

Gabarito: B.

87. (FGV/ALE-RO/2018) A média de dez números diferentes é 8. A média dos quatro menores desses números é 5. A média dos seis maiores daqueles dez números é

- a) 12.
- b) 11.
- c) 10.
- d) 9.
- e) 8.

Comentários:

De acordo com o enunciado, a média de dez números diferentes é 8. Logo, a soma dos 10 números é:

$$soma = média \times quantidade$$

$$S_{10} = 8 \times 10 = 80$$

Além disso, a questão informa que a média dos quatro menores números é 5. Assim, a soma deles é:

$$S_4 = 5 \times 4 = 20$$

Portanto, a soma dos outros 6 números é 80-20=60. Agora, para calcularmos a média, basta dividirmos essa soma pela quantidade de números restantes:

$$\bar{x} = \frac{60}{6} = 10$$

Gabarito: C.

88. (FGV/BANESTES/2018) A média dos quatro maiores salários de uma determinada empresa é R\$ 14.700,00. A média dos cinco maiores salários dessa mesma empresa é R\$ 14.250,00.

O quinto maior salário dessa empresa é:

- a) R\$ 12.450,00;
- b) R\$ 12.500,00;
- c) R\$ 12.550,00;
- d) R\$ 12.600,00;
- e) R\$ 12.650,00.

Comentários:

Para calcular a soma de uma lista de números, basta multiplicar a média aritmética pela quantidade de termos.

Sabemos que a média dos quatro maiores salários é igual a 14.700. Assim, a soma dos quatro maiores salários é

$$S_4 = 14.700 \times 4 = 58.800$$

Também sabemos que a média dos cinco maiores salários é 14.250. Portanto, a soma dos cinco maiores salários é

$$S_5 = 14.250 \times 5 = 71.250$$

O quinto maior salário é justamente a diferença entre as somas acima.

Para ficar mais claro, vamos detalhar um pouco mais. Sejam x_1, x_2, x_3, x_4, x_5 os cinco maiores salários.

A soma dos 4 maiores salários é 58.800:

$$x_1 + x_2 + x_3 + x_4 = 58.800$$

A soma dos cinco maiores salários é 71.250:

$$x_1 + x_2 + x_3 + x_4 + x_5 = 71.250$$

Observe:

$$\underbrace{x_1 + x_2 + x_3 + x_4}_{=58.800} + x_5 = 71.250$$

$$58.800 + x_5 = 71.250$$

$$x_5 = 71.250 - 58.800$$

$$x_5 = 12.450$$

Gabarito: A.

89. (FGV/COMPESA/2018) Em um determinado dia de julho, em Recife, a diferença entre a temperatura máxima e a temperatura mínima foi de 6,8ºC. A média entre a temperatura máxima e a mínima, nesse dia, foi de 24,3ºC. Nesse dia, a temperatura mínima em Recife foi

- a) 20,9°C.
- b) 21,1ºC.
- c) 21,3°C.
- d) 21,5ºC.
- e) 21,7ºC.

Comentários:

Sendo $x_{m\acute{a}x}$ e $x_{m\acute{i}n}$ as temperaturas máxima e mínima, respectivamente, a diferença entre essas temperaturas é 6,8:

$$x_{m\acute{a}x} - x_{m\acute{i}n} = 6.8$$

$$x_{m \pm x} = x_{m \pm n} + 6.8$$

Conforme o enunciado, a média entre a temperatura máxima e a mínima, nesse dia, foi de 24,3ºC:

$$\frac{x_{m\acute{a}x} + x_{m\acute{i}n}}{2} = 24,3$$

$$x_{m\acute{a}x} + x_{m\acute{i}n} = 48,6$$

Agora, vamos substituir $x_{m\acute{a}x}$ por $x_{m\acute{i}n}$ + 6,8:

$$x_{min} + 6.8 + x_{min} = 48.6$$

$$2 \times x_{min} = 41.8$$

$$x_{min} = 20,9$$

Gabarito: A.

90. (FGV/CGM Niterói/2018) Um casal pesou suas quatro malas no aeroporto para o embarque. As três primeiras malas pesaram 8 kg, 12 kg e 9 kg. Sabe-se que a média dos pesos das quatro malas foi de 11 kg. O peso da quarta mala é

- a) 12 kg.
- b) 13 kg.
- c) 14 kg.
- d) 15 kg.
- e) 16 kg.

Comentários:

Conforme o enunciado, a média dos pesos das quatro malas foi de 11 kg. Assim, a soma dos pesos das quatro malas é:

$$Soma = m\'edia \times quantidade$$

$$Soma = 11 \times 4 = 44 kg$$

As três primeiras malas juntas pesam:

$$8 + 12 + 9 = 29 kg$$

Portanto, o peso da quarta mala é:

$$44 - 29 = 15 kg$$

Gabarito: D.

91. (FGV/Pref. Boa Vista/2018) No exame médico, os pesos das cinco crianças da sala de Joana foram: 29,0 kg, 27,5 kg, 31,0 kg, 22,5 kg e 32,0 kg. O peso médio dessas crianças é:

- a) 27,8 kg;
- b) 28,0 kg;
- c) 28,2 kg;
- d) 28,4 kg;
- e) 28,6 kg.

Comentários:

Para calcularmos a média dos pesos das cinco crianças, somaremos os valores e dividiremos o resultado pela quantidade de crianças:

$$\bar{x} = \frac{29,0 + 27,5 + 31,0 + 22,5 + 32,0}{5} = \frac{142}{5} = 28,4$$

Gabarito: D.

92. (FUNDATEC/CM Eldorado do Sul/2018) O consumo, em Quilowatt-hora (kWh), de energia elétrica, em uma determinada residência nos meses de junho, julho e agosto foram respectivamente iguais a 396 kWh, 267 kWh e 189 kWh. Considerando esses três meses, a média aritmética do consumo de energia, em kWh, foi equivalente a:

- a) 284.
- b) 295.
- c) 342.
- d) 426.
- e) 512.

Comentários:

Para calcularmos a média aritmética do consumo de energia, devemos somar os consumos dos três meses e dividir o resultado por três:

$$\bar{x} = \frac{x_1 + x_2 + x_3}{3}$$

$$\bar{x} = \frac{396 + 267 + 189}{3} = \frac{852}{3}$$

$$\bar{x} = 284 \, kWh$$

Gabarito: A.

93. (VUNESP/CM de Indaiatuba/2018) A tabela mostra o tempo gasto por um funcionário para ir e voltar no trajeto casa e trabalho em 5 dias da semana.

Funcionário	Casa Trabalho	Trabalho Casa
2ª feira	1h 12min	55 min
3ª feira	58 min	52 min
4ª feira	1h 8min	1h 6min
5ª feira	1h 14min	1h 10min
6ª feira	1h 22min	1h 8min

Nessa semana, a diferença entre o tempo médio diário no sentido Casa-Trabalho e o tempo médio diário no sentido Trabalho-Casa é igual a

- a) 8min36s
- b) 8min42s
- c) 8min6s
- d) 8min18s
- e) 8min54s

Comentários:

Para resolvermos essa questão, precisaremos calcular a média do tempo diário no sentido casa-trabalho e no sentido trabalho-casa, depois, teremos que calcular a diferença entre esses valores.

Para tanto, vamos converter os valores informados em horas para minutos.

Funcionário	Casa-Trabalho	Trabalho-Casa
2ª feira	1h12min = 72 min	55 min

3ª feira	58 min	52 min
4ª feira	1h08min = 68 min	1h06min = 66 min
5ª feira	1h14min = 74 min	1h10min = 70 min
6ª feira	1h22min = 82 min	1h08min = 68 min

Agora, calcularemos as médias:

$$\bar{x}_{ct} = \frac{72 + 58 + 68 + 74 + 82}{5} = \frac{354}{5} = 70,8 \text{ minutos}$$

$$\bar{x}_{tc} = \frac{55 + 52 + 66 + 70 + 68}{5} = \frac{311}{5} = 62,2 \text{ minutos}$$

Portanto, a diferença entre as médias é:

$$70.8 - 62.2 = 8.6 \, minutos$$

Transformando 0,6 minutos em segundos:

$$0.6 \times 60 \text{ segundos} = 0.36 \text{ segundos}$$

Assim, a diferença também pode ser representada da seguinte forma:

8*min*36*s*

Gabarito: A.

94. (VUNESP/IPSM São José dos Campos/2018) A média aritmética diária de vendas realizadas em seis dias por um estabelecimento comercial foi de R\$ 6.700,00. Na tabela, constam os valores das vendas de alguns desses dias:

Dia da semana	Valor em vendas
Segunda-feira	R\$ 4.800,00
Terça-feira	R\$ 6.900,00
Quarta-feira	R\$ 8.200,00
Quinta-feira	Х
Sexta-feira	у

Sábado z

Com base nas informações, é correto afirmar que a média aritmética diária dos três últimos dias de vendas é maior que a média aritmética diária dos seis dias em, aproximadamente,

- a) R\$ 65,00.
- b) R\$ 67,00.
- c) R\$ 69,00.
- d) R\$ 71,00.
- e) R\$ 73,00.

Comentários:

O enunciado informou que a média dos 6 dias é de R\$ 6.700. Para calcular a média, devemos somar os 6 valores e dividi-los por 6:

$$6.700 = \frac{4.800 + 6.900 + 8.200 + x + y + z}{6}$$

$$6.700 \times 6 = 4.800 + 6.900 + 8.200 + x + y + z$$

$$40.200 = 19.900 + x + y + z$$

$$x + y + z = 20.300$$

Dessa forma, acabamos descobrindo que o valor total em vendas nos três últimos dias da semana foi de R\$ 20.300. Sabendo disso, para encontrar a média dos três últimos dias, basta dividir o valor total em vendas nos três últimos dias por 3.

$$\bar{x} = \frac{20.300}{3} \cong 6.766,66$$

Finalmente, o enunciado diz que a média dos últimos três dias é maior que a média aritmética dos seis dias em uma determinada quantidade de reais e pede o valor aproximado dessa diferença. Assim, para calcular essa diferença, basta fazer:

$$6.766,66 - 6.700,00 = 66,66$$
 reals

Gabarito: B.

95. (VUNESP/PAULIPREV/2018) A média aritmética simples dos salários de 30 funcionários de uma empresa era R\$ 1.610,00. Esses funcionários tiveram um aumento em seus salários de maneira que os que recebiam R\$ 1.500,00 ou mais tiveram um acréscimo de R\$ 20,00, e os que recebiam menos de R\$ 1.500,00 tiveram um acréscimo de R\$ 50,00. Após esse reajuste, a média dos salários dos 30 funcionários passou a ser R\$ 1.641,00; logo o número de funcionários que tiveram um aumento de R\$ 50,00 é um número entre

- a) 25 e 30.
- b) 19 e 24.
- c) 13 e 18.
- d) 7 e 12.

e) 1 e 6.

Comentários:

Segundo o enunciado, a média dos salários de 30 funcionários é de R\$ 1.610,00. Para encontrar a média, devemos somar os 30 salários e dividir o resultado por 30:

$$\bar{x} = \frac{S_{30}}{30}$$

$$1.610 = \frac{S_{30}}{30}$$

$$S_{30} = 1.610 \times 30$$

Após o reajuste, a média dos salários dos 30 funcionários passou a ser R\$ 1.641,00. Portanto, a soma total dos salários passou a ser:

$$1.641 \times 30 = 49.320$$
 reais

A diferença entre o total reajustado e o valor anterior corresponde a quantia que foi paga em aumentos:

$$49.320 - 48.300 = 930$$
 reais

O enunciado nos informou que uma parte dos funcionários, x, recebeu um aumento de 50 reais. Juntos, eles receberam um aumento de 50x reais. Como são 30 funcionários, então (30 - x) funcionários receberam um aumento de 20 reais. A empresa desembolsou a mais por estas pessoas:

$$20 \times (30 - x) = 600 - 20x.$$

Já vimos que a soma dos aumentos é 930 reais. Logo:

$$50x + (600 - 20x) = 930$$
$$30x = 330$$
$$x = \frac{330}{30} = 11$$

Portanto, concluímos que 11 pessoas receberam um aumento de 50 reais.

Gabarito: D.

96. (VUNESP/PM-SP/2018) O gráfico apresenta o número de pontos obtidos pelos grupos A, B, C e D, que participaram de uma atividade recreativa.

Sabendo que o número de pontos obtidos pelo grupo A foi 30% maior que o número de pontos obtidos pelo grupo C, então, na média, o número de pontos obtidos por um grupo foi

- a) 55.
- b) 60.
- c) 70.
- d) 65.
- e) 50.

Comentários:

Conforme o enunciado, o número de pontos obtido pelo grupo A foi 30% maior que o número de pontos obtidos pelo grupo C. Assim, se C corresponde a 100%, então A corresponde a 130%:

Pontos	Percentual (%)
x	100
52	130

Fazendo a regra de três, temos:

$$130 \times x = 52 \times 100$$

$$x = \frac{52 \times 100}{130} = 40$$

Agora, calcularemos a média dos 4 valores:

$$\bar{x} = \frac{52 + 85 + 40 + 63}{4} = \frac{240}{4} = 60$$

Gabarito: B.

97. (FCC/SABESP/2017) A média aritmética de três números a, b e c é 20. A média aritmética de a e b é 16. O valor de c é igual a

- a) 24.
- b) 26.
- c) 30.
- d) 28.
- e) 32.

Comentários:

Segundo o enunciado, a média dos números a, b e c é 20. Isto é:

$$\frac{a+b+c}{3} = 20$$

Por sua vez, a média dos números a e b é 16. Logo:

$$\frac{a+b}{2} = 16$$

$$a + b = 32$$

Agora, voltaremos à primeira equação:

$$\underbrace{a+b}_{32} + c = 60$$

$$32 + c = 60$$

$$c = 28$$

Gabarito: D.

98. (FGV/Pref. de Salvador/2017) Em um grupo de 10 pessoas, o peso médio é de 86 kg. Duas pessoas, uma pesando 90 kg e outra pesando 70 kg, saíram do grupo. O peso médio das pessoas restantes é de

- a) 81,5 kg.
- b) 83,0 kg.
- c) 87,5 kg.
- d) 85,5 kg.
- e) 89,0 kg.

Comentários:

A média dos pesos das 10 pessoas é 86 kg.

Assim, a soma dos pesos das 10 pessoas é:

$$Soma = média \times quantidade$$

$$Soma = 86 \times 10 = 860kg$$

Duas pessoas, uma pesando 90 kg e outra pesando 70 kg, saíram do grupo.

A soma dos pesos das 8 pessoas restantes é

$$860 - 90 - 70 = 700$$

Para calcular a média dos pesos das 8 pessoas restantes, devemos dividir 700 por 8.

$$\bar{x} = \frac{700}{8} = 87,5$$

Gabarito: C.

99. (VUNESP/PM-SP/2017) A média aritmética das idades dos cinco jogadores titulares de um time de basquete é 22 anos. Um dos jogadores titulares desse time, que tem 20 anos de idade, sofreu uma lesão e

foi substituído por outro jogador, o que fez com que a nova média das idades dos cinco jogadores do time titular passasse a ser de 23 anos. Então, a idade do jogador que substituiu o jogador lesionado é

- a) 25 anos.
- b) 24 anos.
- c) 22 anos.
- d) 21 anos.
- e) 23 anos.

Comentários:

De acordo com a questão, a média dos 5 jogadores é 22 anos. Assim, a soma de suas idades é:

$$5 \times 22 = 110 \ anos.$$

Se o jogador de 20 anos saiu, a soma caiu para:

$$110 - 20 = 90$$
 anos.

Agora, com a entrada do novo jogador, a média de suas idades passará a ser de 23 anos. Portanto, a soma delas será de:

$$5 \times 23 = 115 \ anos.$$

Desta forma, a idade do jogador que entrou é:

$$115 - 90 = 25$$
 anos.

Gabarito: A.

100. (VUNESP/UNESP/2017) Utilize os dados do gráfico a seguir, que mostra o número de rascunho vendas realizadas pelo vendedor Carlos em seis dias de uma semana, para responder às questões.

A média diária de vendas de Carlos, nessa semana, é, aproximadamente, igual a

- a) 12.
- b) 15.
- c) 18.
- d) 20.

e) 21.

Comentários:

O enunciado pede para calcularmos a média diária de vendas de Carlos em uma determinada semana. Para resolvermos a questão, devemos identificar a quantidade de vendas realizadas por Carlos em cada dia da semana. Veja que as quantidades vendidas foram:

$$\underbrace{15}_{2^{a}f}$$
, $\underbrace{20}_{3^{a}f}$, $\underbrace{10}_{4^{a}f}$, $\underbrace{25}_{5^{a}f}$, $\underbrace{15}_{6^{a}f}$, $\underbrace{25}_{S\acute{a}\acute{b}}$

Agora, para calcularmos a média desses valores, devemos somá-los e dividir o resultado por 6:

$$x = \frac{15 + 20 + 10 + 25 + 15 + 25}{6} = \frac{110}{6} \approx 18,33$$

Gabarito: C.

101. (CESPE/FUNPRESP/2016)

Adesão ao plano	1	1	0	1	0	0	1	0	1	0
Salário (em R\$)	5.000	8.000	4.000	6.000	2.000	3.000	4.000	4.000	4.500	7.000

Considerando que os dados na tabela mostram salários de diferentes servidores que aderiram ou não aderiram (0) a determinado plano de previdência complementar, julgue o item subsecutivo.

A média dos salários do grupo que aderiu ao plano de previdência complementar é menor que a do que não aderiu ao plano.

Comentários:

De acordo com o enunciado, os servidores que aderiram ao plano estão indicados pelo número 1 e os servidores que não aderiram estão indicados pelo número 0.

Para calcularmos a média, somaremos os elementos pertencentes a cada grupo e dividiremos o resultado pela quantidade de elementos de cada grupo. Assim, os salários dos cinco servidores que aderiram ao plano são: 5.000, 8.000, 6.000, 4.000, 4.500. Logo, a média de seus salários é:

$$\overline{x_1} = \frac{5.000 + 8.000 + 6.000 + 4.000 + 4.500}{5} = \frac{27.500}{5} = 5.500$$

Por sua vez, os salários dos cinco servidores que não aderiram ao plano são: 4.000, 2.000, 3.000, 4.000, 7.000. Assim, a média de seus salários é:

$$\overline{x_2} = \frac{4.000 + 2.000 + 3.000 + 4.000 + 7.000}{5} = \frac{20.000}{5} = 4.000$$

Portanto, a média dos salários dos servidores que aderiram ao plano é maior do que a média dos salários dos servidores que não aderiram ao plano.

Gabarito: Errado.

102. (FGV/COMPESA/2016) A média das idades dos 6 jogadores de um time de vôlei é de 28 anos e o jogador mais velho do time, que tem 35 anos, aposentou-se. A média das idades dos 5 jogadores restantes é

- a) 26 anos.
- b) 26,2 anos.
- c) 26,4 anos.
- d) 26,6 anos.
- e) 26,8 anos.

Comentários:

A média das idades dos 6 jogadores é 28 anos. Assim, a soma das idades é:

$$Soma = média \times quantidade$$

$$Soma = 28 \times 6 = 168$$

Um jogador de 35 anos sairá do grupo. Portanto, a nova soma passará a ser:

$$168 - 35 = 133$$
.

A média das idades dos 5 jogadores restantes será:

$$\bar{x} = \frac{133}{5} = 26,6$$

Gabarito: D.

103. (FGV/Pref. de Paulínia/2016) Um agricultor cultiva batatas e vende seu produto em sacos de, aproximadamente, 10 kg. Um comprador escolheu 5 sacos e o peso médio dos sacos escolhidos foi de 9,9 kg. Porém, antes de fechar o negócio, o comprador escolheu mais um saco para levar e, com os seis sacos, o peso médio dos sacos passou a ser de 10,2 kg. O peso do último saco escolhido pelo comprador foi de

- a) 10,7kg.
- b) 10,9kg.
- c) 11,2kg.
- d) 11,5kg.
- e) 11,7kg.

Comentários:

Conforme o enunciado, o peso médio dos 5 sacos é 9,9kg. Assim, a soma dos pesos dos 5 sacos é:

$$Soma = média \times quantidade$$

$$Soma = 9.9 \times 5 = 49.5ka$$

Ao adicionarmos mais um saco, a média dos seis sacos passou a ser igual a 10,2kg. Logo, a soma dos seis sacos é:

$$Soma = média \times quantidade$$

$$Soma = 10.2 \times 6 = 61.2$$

Dessa forma, o peso do saco adicionado é justamente a diferença entre a soma final e a soma inicial.

$$61.2 - 49.5 = 11.7kg$$

Gabarito: E.

104. (FGV/Pref. de Paulínia/2016) Após calcular a média das notas de seus N alunos, um professor, inadvertidamente, incluiu a média calculada ao conjunto das N notas dos alunos e calculou a média dos N+1 números obtidos. A razão entre a segunda média calculada pelo professor e a média correta é

- a) 2
- b) 1
- c) 1/2
- d) $\frac{N}{N+1}$
- e) $\frac{N+1}{N}$

Comentários:

Vamos analisar um exemplo numérico para compreendermos a questão. Vamos supor que tenhamos uma lista de cinco números: 3, 5, 8, 9, 35. Como já vimos, a média desses números é:

$$\frac{3+5+8+9+35}{5} = \frac{60}{5} = 12$$

Se adicionarmos a média $\bar{x}=12$ a essa lista, teremos uma nova lista de 6 números: 3, 5, 8, 9, 35, 12. A média dessa nova lista é:

$$\frac{3+5+8+9+35+12}{6} = \frac{72}{6} = 12$$

Perceba que a média não foi alterada quando incorporamos a própria média à lista dos números. Assim, a razão entre a nova média e a média original é 12/12 = 1.

Agora vamos provar esse fato algebricamente. Consideremos uma lista de números x_1, x_2, \cdots, x_n com média \bar{x} .

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$x_1 + x_2 + \dots + x_n = n \times \bar{x}$$

Vamos acrescentar \bar{x} à essa lista.

A nova lista será $x_1, x_2, \cdots, x_n, \bar{x}$. A média dessa nova lista com n+1 termos será:

$$\bar{y} = \frac{x_1 + x_2 + \dots + x_n + \bar{x}}{n+1}$$

Lembre-se que $x_1+x_2+\cdots+x_n=n\times \bar{x}$. Logo,

$$\bar{y} = \frac{n \times \bar{x} + \bar{x}}{n+1}$$

Colocando x em evidência, temos:

$$\bar{y} = \frac{(n+1) \times \bar{x}}{n+1} = \bar{x}$$

Assim, a nova média é novamente \bar{x} .

Portanto, a razão entre a nova média e a média original é

$$\frac{\bar{y}}{\bar{x}} = \frac{\bar{x}}{\bar{x}} = 1$$

Gabarito: B.

105. (FUNDATEC/Prefeitura de Soledade-RS/2016) A média aritmética simples de seis notas de um aluno é 80. Se a sétima nota for 94, a média aritmética simples das sete notas será:

- a) 82.
- b) 84.
- c) 85.
- d) 87.
- e) 89.

Comentários:

Segundo o enunciado, a média aritmética de 6 notas de um aluno é igual a 80. Para calcularmos a soma das 6 notas, basta multiplicarmos a média pela quantidade de notas.

$$\sum_{i=1}^{6} x_i = 6 \times \bar{x}_6$$

$$\sum_{i=1}^{6} x_i = 6 \times 80 = 480$$

Agora, acrescentaremos uma nota de valor 94. Assim, a soma passará a ser:

$$480 + 94 = 574$$

Portanto, a média das 7 notas será:

$$\bar{x}_7 = \frac{\sum_{i=1}^7 x_i}{7} = \frac{574}{7} = 82$$

Gabarito: A.

106. (FGV/SSP-AM/2015) Uma tabela com 7 linhas e 13 colunas contém 91 números inteiros positivos. Marcelo somou os números de cada uma das 7 linhas e depois calculou a média das 7 somas, obtendo como resultado o número A. Solange somou os números de cada uma das 13 colunas e depois calculou a média das 13 somas, obtendo como resultado o número B. É verdade que:

- a) 7A = 13B;
- b) 7B = 13A;
- c) A=B;
- d) 7A = 91B;
- e) 13B = 91A.

Comentários:

Conforme o enunciado, Marcelo somou os valores das 7 linhas. Por sua vez, Solange somou os valores das 13 colunas. Ao final, os dois somaram todos os números da tabela. Dessa forma, a soma obtida por Marcelo foi a mesma obtida por Solange.

$$S_{Marcelo} = S_{Solange}$$

Como Marcelo calculou a média das 7 somas, então ele divide a soma S por 7. A média encontrada por ele foi A.

$$A = \frac{S_{Marcelo}}{7}$$

$$S_{Marcelo} = 7 \times A$$

Como Solange calculou a média das 13 somas, então ela divide a soma S por 13. A média encontrada por ela foi B.

$$B = \frac{S_{Solange}}{13}$$

$$S_{Solange} = 13 \times B$$

Sabemos que:

$$S_{Marcelo} = S_{Solange}$$

Logo:

$$7 \times A = 13 \times B$$

Gabarito: A.

107. (FGV/SSP-AM/2015) Os pesos de cada um dos cinco operários que trabalham juntos em um grupo são: 82kg, 76kg, 94kg, 70kg e 78kg. Se um deles sair do grupo, o maior valor que poderá ter a média dos pesos dos trabalhadores restantes é:

a) 66,0kg;

- b) 72,5kg;
- c) 76,5kg;
- d) 82,5kg;
- e) 84,0kg.

Comentários:

Para obtermos a maior média possível, devemos excluir o menor dos cinco pesos (70kg). Assim, a lista resultante será formada pelos números 82, 76, 94 e 78.

Portanto, a média da nova lista será:

$$\bar{x} = \frac{82 + 76 + 94 + 78}{4} = 82,5$$

Gabarito: D.

108. (FGV/TCE-SE/2015) A média de cinco números de uma lista é 19. A média dos dois primeiros números da lista é 16. A média dos outros três números da lista é:

- a) 13;
- b) 15;
- c) 17;
- d) 19;
- e) 21.

Comentários:

De acordo com o enunciado, a média de cinco números de uma lista é 19. Portanto, a soma dos cinco números é igual a:

 $Soma = m\'edia \times quantidade$

$$\sum x_i = n \times \bar{x}$$

$$\sum x_i = 19 \times 5 = 95$$

Além disso, a questão informou que a média dos dois primeiros números é 16. Assim, a soma deles é

$$2 \times 16 = 32$$
.

Logo, a soma dos outros três números é:

$$95 - 32 = 63$$
.

Dessa forma, a média dos números restantes é:

$$\frac{63}{3} = 21$$

Gabarito: E.

109. (FGV/TJ-RO/2015) A média do número de páginas de cinco processos que estão sobre a mesa de Tânia é 90. Um desses processos, com 130 páginas, foi analisado e retirado da mesa de Tânia. A média do número de páginas dos quatro processos que restaram é:

- a) 70;
- b) 75;
- c) 80;
- d) 85;
- e) 90.

Comentários:

Conforme o enunciado, a média dos números de páginas de 5 processos é 90. Portanto, a soma total de páginas é:

 $Soma = média \times quantidade$

$$\sum x_i = n \times \bar{x}$$

$$\sum x_i = 90 \times 5 = 450$$

Ao retirarmos um processo de 130 páginas, a nova soma passa a ser:

$$450 - 130 = 320 páginas$$

Agora, como sobraram 4 processos, a média de páginas é:

$$\frac{320}{4} = 80 \ p\'{a}ginas$$

Gabarito: C.

110. (FCC/METRO-SP/2014) A média de idade de cinco vagões de uma composição de trens do Metrô é de 13 anos. Nenhum dos vagões dessa composição tem menos do que 7 anos. Levando- se em consideração apenas essas informações, é correto afirmar que a idade máxima possível de um dos vagões dessa composição, em anos, é igual a

- a) 30.
- b) 37.
- c) 15.
- d) 24.
- e) 32.

Comentários:

O enunciado afirma que a média de idade de cinco vagões é de 13 anos. Para calcularmos a soma das idades dos vagões, podemos multiplicar o número de vagões (5) pela média de idade deles.

$$Soma = número de vagões \times média de idade$$

$$Soma = 13 \times 5 = 65$$

Como queremos calcular a idade máxima que um desses vagões pode ter, vamos considerar que um dos vagões terá a maior idade possível, enquanto os outros 4 terão a menor idade possível. Assim, colocaremos 4 vagões com a idade mínima de 7 anos.

Dessa forma, a idade máxima do quinto vagão será x:

$$7 + 7 + 7 + 7 + x = 65$$

 $28 + x = 65$
 $x = 37$

Portanto, a maior idade possível para um vagão é 37.

Gabarito: B.

111. (FGV/Prefeitura de Osasco/2014) A média das idades de cinco agentes é 28 anos. O mais velho desses cinco agentes é Marcos, que tem 40 anos. A média das idades dos outros quatro agentes, em anos, é:

- a) 26;
- b) 25;
- c) 24;
- d) 23;
- e) 22.

Comentários:

Conforme o enunciado, a média das idades dos 5 agentes é 28 anos. Assim, a soma das idades dos 5 agentes é:

 $Soma = média \times quantidade$

$$\sum x_i = n \times \bar{x}$$

$$\sum x_i = 28 \times 5 = 140$$

Ao retirarmos o agente mais velho de 40 anos, a soma das idades passa a ser:

$$140 - 40 = 100$$

Assim, como sobraram 4 agentes, a nova média é:

$$\frac{100}{4} = 25$$

Gabarito: B.

112. (CESPE/CNJ/2013) Um estagiário deve organizar uma pilha de n processos de acordo com o valor, em reais, das sentenças e por número, em três estantes: I, II e III. O desvio padrão do valor das sentenças é R\$ 50. A estante I é para processos referentes a sentenças com valores inferiores a R\$ 500; a II, para processos com sentenças de valores entre R\$ 500 e R\$ 2.000 e a III, para processos com sentenças de valores acima de R\$ 2.000.

A respeito dessa organização de processos, julgue o item a seguir.

Considerando que, em média, os processos na estante I tenham 100 páginas, os da estante II, 150 páginas e os da estante III, 300 páginas, e que as probabilidades de um processo pertencer às estantes I, II ou III sejam iguais a 4/5, 3/20 e 5/100, respectivamente, então a quantidade média de páginas de um processo será superior a 130.

Comentários:

O enunciado informou que as probabilidades de um processo pertencer às estantes I, II ou III são iguais a 4/5, 3/20 e 5/100, respectivamente.

Então, precisamos encontrar um denominador comum para essas frações, para que possamos comparar quantos processos temos em cada estante, com base em uma mesma proporção. Teremos:

$$\frac{4}{5}; \frac{3}{20}; \frac{5}{100} \Rightarrow \frac{16}{20}; \frac{3}{20}; \frac{1}{20}$$

Assim, para cada 20 processos, teremos a seguinte distribuição: 16 estarão na estante I, 3 estarão na estante II e 1 estará na estante III.

Portanto, basta multiplicarmos a quantidade de processos de cada estante pelo número de páginas das respectivas estantes.

Estante I: 100 páginas $\rightarrow 16 \times 100 = 1.600$

Estante II: 150 páginas $\rightarrow 3 \times 150 = 450$

Estante III: 300 páginas $\rightarrow 1 \times 300 = 300$

Já temos o total de páginas de cada estante, portanto, basta somarmos tudo e dividirmos pelo número de processos. Dessa forma, temos a seguinte média:

$$\bar{x} = \frac{1.600 + 450 + 300}{20}$$
$$\bar{x} = \frac{2.350}{20}$$
$$\bar{x} = 117.5$$

Assim, a quantidade média de páginas de um processo é inferior a 130.

Gabarito: Errado.

113. (FGV/ALE-MA/2013) Três pessoas estão no elevador e o peso médio delas é de 72kg. Em seguida, uma menina de 36kg entra no elevador. O peso médio dessas quatro pessoas é:

- a) 27 kg.
- b) 36 kg.

- c) 46 kg.
- d) 54 kg.
- e) 63 kg.

Comentários:

Conforme o enunciado, a média dos pesos das 3 pessoas no elevador é 72kg. Portanto, a soma dos pesos das três pessoas é:

 $Soma = m\'edia \times quantidade$

$$\sum x_i = n \times \bar{x}$$

$$\sum x_i = 72 \times 3 = 216kg$$

Adicionando o peso da menina que entrou no elevador, 36kg, a nova soma é:

$$216 + 36 = 252$$

Portanto, a média dos 4 pesos é:

$$\bar{x} = \frac{252}{4} = 63$$

Gabarito: E.

114. (CESPE/CBM-DF/2011) Uma cidade, localizada em uma região plana, foi planejada de modo que suas ruas fossem todas retilíneas e os quarteirões, quadrados com 500 m de lado. Representada a cidade em um sistema de coordenadas cartesianas ortogonais xOy, o eixo positivo Ox aponta para o leste e o eixo positivo Oy, para o norte, com distâncias medidas em quilômetros; as ruas de maior trânsito, Monteiro Lobato e Olavo Bilac, são expressas pelas equações 3x + 4y = 10 e 3x + 4y = 30, respectivamente. O quartel do corpo de bombeiros localiza-se na esquina da rua Monteiro Lobato com a rua Rui Barbosa, perpendiculares entre si, tendo saída para essas duas ruas. A fim de otimizar o atendimento às ocorrências de acidentes, uma viatura fica estacionada na esquina da Olavo Bilac com a Rui Barbosa. A tabela a seguir apresenta a média mensal de acidentes de trânsito em ruas da cidade, nos últimos 12 meses.

Rua	Acidentes por mês (média)
Monteiro Lobato	14
Olavo Bilac	10
Todas as ruas paralelas à Monteiro Lobato	6

Infere-se das informações apresentadas que, nos últimos 12 meses, ocorreram menos de 350 acidentes de trânsito na cidade em questão.

Comentários:

Os valores informados na questão mostram que a média global de acidentes por mês era de:

$$14 + 10 + 6 = 30$$
.

Portanto, se considerarmos os 12 meses, encontraremos um total de $30 \times 12 = 360$ acidentes.

Gabarito: Errado.

115. (CESPE/CBM-DF/2011) O governador do estado do Rio de Janeiro, Sérgio Cabral, voltou a defender a política de reajuste salarial oferecida pelo governo ao corpo de bombeiros, que prevê ganhos de 1% a cada mês em relação ao salário do mês imediatamente anterior até 2014. O governador afirmou que o efetivo de bombeiros do Rio é proporcionalmente muito superior ao de todos os estados. "O Rio de Janeiro tem 16.500 bombeiros militares, com 16 milhões de habitantes. São Paulo, com 40 milhões de habitantes, tem 8.500 bombeiros. Minas Gerais tem 20 milhões de habitantes e 5 mil bombeiros militares. Sergipe, referência de excelente salário, tem 630 bombeiros. De maneira que nós temos de ter responsabilidade. Esta política tem de seguir uma estratégia, que não é a ideal, mas é a possível." Segundo números apresentados pelo governo fluminense, o efetivo de bombeiros do Rio de Janeiro corresponde a 25% do total de bombeiros em todo o país.

Internet: <www.correiobraziliense.com.br> (com adaptações).

Com referência ao texto apresentado acima, julgue os itens:

Segundo as informações do texto, entre os estados citados a quantidade média de bombeiros é superior a 7.600.

Comentários:

Para calcularmos a média, somaremos as quantidades de bombeiros e dividiremos o resultado pela quantidade de estados considerados:

$$\bar{x} = \frac{5.000 + 16.500 + 5.000 + 630}{4} = 7.657,5$$

Gabarito: Certo.

116. (CESPE/CBM-DF/2011) Uma cidade, localizada em uma região plana, foi planejada de modo que suas ruas fossem todas retilíneas e os quarteirões, quadrados com 500 m de lado. Representada a cidade em um sistema de coordenadas cartesianas ortogonais xOy, o eixo positivo Ox aponta para o leste e o eixo positivo Oy, para o norte, com distâncias medidas em quilômetros; as ruas de maior trânsito, Monteiro Lobato e Olavo Bilac, são expressas pelas equações 3x + 4y = 10 e 3x + 4y = 30, respectivamente. O quartel do corpo de bombeiros localiza-se na esquina da rua Monteiro Lobato com a rua Rui Barbosa, perpendiculares entre si, tendo saída para essas duas ruas. A fim de otimizar o atendimento às ocorrências de acidentes, uma viatura fica estacionada na esquina da Olavo Bilac com a Rui Barbosa. A tabela a seguir apresenta a média mensal de acidentes de trânsito em ruas da cidade, nos últimos 12 meses.

Rua	Acidentes por mês (média)
Monteiro Lobato	14
Olavo Bilac	10
Todas as ruas paralelas à Monteiro Lobato	6

Sabendo-se que a cidade tem pelo menos 10 ruas paralelas à rua Monteiro Lobato, é correto afirmar que, em média, ocorreram menos de 4 acidentes de trânsito nessas ruas nos últimos 12 meses.

Comentários:

Conforme o enunciado, as ruas Monteiro Lobato e Olavo Bilac são paralelas. Em média, temos 10+6=16 acidentes por mês nas ruas paralelas à rua Monteiro Lobato. Assim, em um ano, são $16\times12=192$ acidentes.

Gabarito: Errado.

117. (CESPE/SEFAZ-ES/2010)

Órgão	Despesa total com Quantidade de salários de pessoal cargos (x r\$ 10.000) comissionados		Quantidade de cargos efetivos
Α	100	40	180
В	120	40	182
С	150	50	220
D	180	100	230

Considere que, a fim de avaliar despesas com salários do pessoal lotado em órgãos do Poder Executivo, determinada secretaria de fazenda decidiu fazer um levantamento em quatro órgãos em relação ao mês de agosto de 2009. Os dados observados estão apresentados na tabela acima. Com base nessas informações, julgue os próximos itens.

Em agosto de 2009, os salários médios do pessoal nesses órgãos foram superiores a R\$ 4.500,00.

Comentários:

De acordo com o enunciado, a despesa total no órgão A foi de 100 x 10.000 = 1.000.000 reais. Como são 220 cargos, a média é:

$$\bar{x}_A = \frac{1.000.000}{220} \cong 4.545,45 > 4.500$$

A despesa total do órgão B foi de 120 x 10.000 = 1.200.000 reais e devemos dividir por 222 funcionários:

$$\bar{x}_B = \frac{1.200.000}{222} \cong 5.405,40 > 4.500$$

A despesa total do órgão C foi de 150 x 10.000 = 1.500.000 reais e devemos dividir por 270 funcionários:

$$\bar{x}_C = \frac{1.500.000}{270} \cong 5.555,55 > 4.500$$

Por fim, a despesa do órgão D foi de 180 x 10.000 = 1.800.000 reais para dividir por 330 funcionários:

$$\bar{x}_D = \frac{1.800.000}{330} \cong 5.454,54 > 4.500$$

Logo, todas as médias são superiores a R\$ 4.500,00.

Gabarito: Certo.

118. (CESPE/BB/2009)

Tendo como referência a figura acima, que mostra os valores das taxas de juros anuais, em dois anos consecutivos, denominados anterior e atual, em 10 países, julgue os itens seguintes.

O valor médio das taxas atuais dos 10 países em questão é inferior a 5%.

Comentários:

Para calcularmos a média das 10 taxas atuais, devemos somar os 10 valores e dividir o resultado por 10:

$$\bar{x} = \frac{9,5+4+10,5+0,5+11,25+5,5+10,5+10,5+1,5+3,25}{10} = 6,7$$

Gabarito: Errado.

119. (CESPE/ANTAC/2009)

	Variável	2003	2004	2005	2006	2007
Exportação	X	40	46	50	52	54
Importação	Υ	20	21	22	24	27
Total	X+Y	60	67	72	76	81

Internet: <www.portodesantos.com> (com adaptações)

Considerando a tabela acima, que apresenta a movimentação anual de cargas no porto de Santos de 2003 a 2007, em milhões de toneladas/ano e associa as quantidades de carga movimentadas para exportação e importação às variáveis X e Y, respectivamente, julgue os itens subsequentes.

A média das diferenças X - Y no período mostrado foi superior a 25,5 milhões de toneladas/ano.

Comentários:

Primeiro, precisamos calcular as diferenças entre os valores de X e Y:

Variável	2003	2004	2005	2006	2007
X	40	46	50	52	54
Υ	20	21	22	24	27
X - Y	20	25	28	28	27

Agora, vamos calcular a média dessas diferenças:

$$\overline{x-y} = \frac{20 + 25 + 28 + 28 + 27}{5} = 25,6 \text{ milhões de toneladas/ano}$$

Gabarito: Certo.

120. (CESPE/PRF/2008)

Ficou pior para quem bebe

O governo ainda espera a consolidação dos dados do primeiro mês de aplicação da Lei Seca para avaliar seu impacto sobre a cassação de CNHs. As primeiras projeções indicam, porém, que as apreensões subirão, no mínimo, 10%. Antes da vigência da Lei Seca, eram suspensas ou cassadas, em média, aproximadamente 155.000 CNHs por ano. Se as previsões estiverem corretas, a média anual deve subir para próximo de 170.000. A tabela a seguir mostra esses resultados nos últimos anos (fonte: DENATRAN).

	CNHs				
Ano	Concedidas (milhões)	Suspensas ou cassadas			
2003	1,8	148.500			
2004	3,4	314.200			
2005	3,2	115.700			
2006	2,2	98.800			
2007	2,8	112.100			
2008	1,5*	64.500*			
Total	14,9	853.900			

*dados de janeiro a junho

Veja, ed. 2.072, 6/8/2008, p.51 (com adaptações)

Para que a média de CNHs suspensas ou cassadas, de 2003 a 2008, atinja o valor previsto de 170.000, será necessário que, em 2008, a quantidade de CNHs suspensas ou cassadas seja um número

- a) inferior a 180.000.
- b) superior a 180.000 e inferior a 200.000.
- c) superior a 200.000 e inferior a 220.000.
- d) superior a 220.000 e inferior a 240.000.
- e) superior a 240.000.

Comentários:

Para calcularmos a média, devemos somar todos os valores e dividir o resultado pela quantidade de anos. Sendo S a soma dos termos e \bar{x} a média aritmética deles, temos:

$$\bar{x} = \frac{S}{n}$$

$$170.000 = \frac{S}{6}$$

$$S = 6 \times 170.000 = 1.020.000$$

Conforme a tabela apresentada na questão, de 2003 até junho de 2008, a soma total é de 853.900. Contudo, para que a média seja de 170.000, a soma total deve ser 1.020.000.

Assim, de julho a dezembro de 2008, a quantidade de CNHs suspensas ou cassadas deve ser igual a:

$$1.020.000 - 853.900 = 166.100$$
.

Portanto, o total de CNHs suspensas ou cassadas em todo o ano de 2008 foi igual a:

$$64.500 + 166.100 = 230.600.$$

Gabarito: D.

121. (CESPE/PRF/2008) O gráfico a seguir, que ilustra a previsão das reservas monetárias de alguns países, em 2008, deve ser considerado para o julgamento dos itens.

Com base nas informações do gráfico apresentado acima, julgue os seguintes itens.

Entre as reservas apresentadas no gráfico, apenas as da Rússia e da China superam a média aritmética das reservas de todos eles.

Comentários:

A média de reservas monetárias dos 5 países é:

$$\bar{x} = \frac{1.500 + 480 + 290 + 260 + 190}{5} = 544 \text{ bilhões de dólares}$$

Portanto, as reservas da Rússia não superam a média:

480 bilhões de dólares < 544 bilhões de dólares.

Gabarito: Errado.

122. (CESPE/ANCINE/2005)

Tabela I

Finalidade do projeto	N.º de projetos atendidos	N.º de projetos não-atendidos
produção de obras cinematográficas nacionais	10	20
construção/reforma de salas de exibição	20	60
comercialização/distribuição de obras cinematográficas nacionais	70	20
formação de recursos humanos/capacitação dos profissionais para o cinema nacional	100	200
total	200	300

Tabela II

Finalidade do projeto	Valor distribuído (r\$ milhões)
produção de obras cinematográficas nacionais	10
construção/reforma de salas de exibição	5
comercialização/distribuição de obras cinematográficas nacionais	3
formação de recursos humanos/capacitação dos profissionais para o cinema nacional	2
total	20

Tabela III

Projeto atendido	1	2	3	4	5	6	7	8	9	10	total
Valor (R\$ milhões)	2,0	1,6	1,0	1,0	1,0	0,8	0,8	0,7	0,6	0,5	10

A tabelas I e II acima apresentam informações referentes a um programa hipotético de incentivo a projetos na área cinematográfica no Brasil, classificados quanto às finalidades dos projetos avaliados pelo

programa. A tabela III apresenta os valores que foram aplicados nos 10 projetos atendidos que tinham como finalidade a produção de obras cinematográficas nacionais.

Com relação às informações apresentadas acima, julgue o item a seguir, considerando o universo de projetos atendidos e não- atendidos pelo programa de incentivo mencionado.

Dos recursos distribuídos pelo programa, 25% foram destinados à construção/reforma de salas de exibição, sendo concedidos, em média, R\$ 250 mil por projeto desse tipo.

Comentários:

Primeiro, precisamos identificar o valor distribuído total para o programa. Essa informação encontramos na segunda tabela, sendo o valor total distribuído de R\$ 20 milhões. Na tabela II também temos a quantia destinada à construção/reforma de salas de exibição, sendo R\$ 5 milhões. Assim, basta calcularmos quanto R\$ 5 milhões representam de R\$ 20 milhões. Temos:

$$Y = \frac{5}{20} = 0.25$$

$$Y = 25\%$$

Então, sabemos que 25% do valor total foram destinados à construção/reforma de salas de exibição. Agora, precisamos descobrir a média dos valores destinados a cada projeto de construção/reforma de salas de exibição, com base nas informações da tabela I. Foram atendidos 20 projetos, então basta dividirmos os R\$ 5 milhões pelos 20 projetos e teremos a média dos valores.

$$\bar{x} = \frac{5}{20} = 0.25 \text{ milhões}$$

Isso corresponde a R\$ 250 mil por projeto desse tipo.

Gabarito: Certo.

QUESTÕES COMENTADAS

Média Ponderada

- 1. (CESGRANRIO/BB/2023) Considere que, em uma agência bancária, o tempo médio que um cliente aguardou para começar a ser atendido, na primeira semana de um determinado mês de 2022, foi de 8min 30s e, na semana seguinte, esse tempo médio passou para 5min 30s. Considere, ainda, que na primeira semana foram atendidos 2.700 clientes, e na segunda semana, 1.350 clientes.
- O tempo médio de espera para um cliente começar a ser atendido no caixa, considerando essas duas semanas, foi de, aproximadamente,
- a) 5min 50s
- b) 6min 30s
- c) 6min 50s
- d) 7min 30s
- e) 7min 50s

Comentários:

A questão trata de média ponderada, isto é, da média de um conjunto de valores com pesos variados. Ela é calculada pela igualdade a seguir, em que p é o peso de cada valor de x:

$$\bar{x} = \frac{\sum_{i=1}^{n} (x_i \times p_i)}{\sum_{i=1}^{n} p_i}$$

Para resolvermos a questão, primeiro precisamos calcular o total de clientes atendidos nas duas semanas, para, então, determinarmos o peso de cada semana.

Foram atendidos 2.700 clientes na primeira semana e 1.350 na segunda semana. Somando, temos:

$$Clientes = 2700 + 1350$$

$$Clientes = 4050$$

Para determinarmos os pesos das semanas, basta dividirmos as quantidades de clientes de cada semana pelo total:

a) primeira semana:

$$P_1 = \frac{2700}{4050} = 0,666$$

b) segunda semana:

$$P_2 = \frac{1350}{4050} = 0.333$$

Agora, basta multiplicarmos o tempo médio de cada semana pelo seu respectivo peso. Para facilitar o cálculo do tempo, vamos considerar o valor de 0,5 minutos para 30 segundos. Aplicando a fórmula, temos:

$$\bar{x} = \frac{(8,5 \times 0,666) + (5,5 \times 0,333)}{0,666 + 0,333}$$

$$\bar{x} = \frac{5,661 + 1,8315}{0,999}$$

$$\bar{x} = \frac{7,4925}{0,999}$$

$$\bar{x} = 7,5$$

Portanto, o tempo médio das duas semanas é de 7,5 minutos, ou seja, 7min e 30 segundos.

Gabarito: D.

2. (FUNDATEC/CM São Gabriel/2023) Lívia está requisitando pessoas para fazerem parte da sua equipe. Ela tem dois candidatos e a seleção deles é realizada por meio de prova, análise de curriculum e entrevistas. A prova tem peso 3, o Curriculum, 3 e a entrevista peso 4. Ângela tirou 7,5 na prova, 7,5 no currículo e 8,0 na entrevista. Sabendo que Patrick tirou 8,0 na prova e 9,0 no currículo, qual deve ser a nota que Patrick deve tirar na entrevista para ter exatamente 1 ponto a mais que Ângela na média final?

- a) 9,75.
- b) 9,5.
- c) 9.
- d) 8,8.
- e) 6,5.

Comentários:

A questão trata de média ponderada, isto é, da média de um conjunto de valores com pesos variados. Ela é calculada pela igualdade a seguir, em que p é o peso de cada valor de x:

$$\bar{x} = \frac{\sum_{i=1}^{n} (x_i \times p_i)}{\sum_{i=1}^{n} p_i}$$

No numerador, cada valor é multiplicado pelo seu respectivo peso. No denominador, todos os pesos são somados. Então, a média aritmética ponderada é dada por:

$$\bar{x} = \frac{x_1 \times p_1 + x_2 \times p_2 + \dots + x_n \times p_n}{p_1 + p_2 + \dots + p_n}$$

Agora, vamos calcular a média de Ângela:

$$\bar{x}_{Angela} = \frac{7,5 \times 3 + 7,5 \times 3 + 8 \times 4}{3 + 3 + 4}$$

$$\bar{x}_{Angela} = \frac{77}{10}$$

$$\bar{x}_{Angela} = 7,7$$

A questão pede que Patrick tenha exatamente 1 ponto a mais que Ângela na média final, então, a média de Patrick será considerada 8,7. Montando a equação, temos:

$$8,7 = \frac{8 \times 3 + 9 \times 3 + E_P \times 4}{3 + 3 + 4}$$

$$8,7 = \frac{51 + E_P \times 4}{10}$$

$$51 + E_P \times 4 = 87$$

$$E_P \times 4 = 87 - 51$$

$$E_P \times 4 = 36$$

$$E_P = \frac{36}{4}$$

$$E_P = 9$$

Portanto, para que a média final de Patrick seja exatamente 1 ponto maior que a de Ângela, a nota de Patrick na entrevista deverá ser igual a 9.

Gabarito: C.

3. (VUNESP/Pref. Marília/2023) Em 31 de agosto, em uma turma de alunos de medicina, cinco alunos tinham 19 anos, cinco tinham 20 anos, cinco tinham 21 anos e cinco tinham 22 anos. Se no dia 30 de setembro a média aritmética das idades desses 20 alunos era 20,9 anos, o número de alunos que fazem aniversário em setembro é

- a) 4.
- b) 5.
- c) 6.
- d) 7.
- e) 8.

Comentários:

Vamos iniciar a resolução calculando a média das idades em 31 de agosto. Desse modo, vamos multiplicar a quantidade de alunos por sua respectiva idade, somar tudo e dividir pela quantidade total de alunos:

$$\bar{x} = \frac{5 \times 19 + 5 \times 20 + 5 \times 21 + 5 \times 22}{20}$$

$$\bar{x} = \frac{410}{20}$$

$$\bar{x} = 20.5$$

Ora, se em 30 de setembro a média desses 20 alunos passou para 20,9, temos uma diferença de:

$$20.9 - 20.5 = 0.4$$

Se multiplicarmos essa diferença pela quantidade de alunos, encontraremos a quantidade de alunos que fizeram aniversário:

$$0.4 \times 20 = 8$$

Logo, 8 alunos fazem aniversário em setembro.

Gabarito: E.

4. (FCC/TRT 17ª Região/2022) Um professor de matemática tem três turmas: A com 16 alunos, B com 24 alunos e C com 30 alunos. Após aplicar o mesmo teste nas três turmas, observou que a média da turma B foi um ponto superior à média da turma A, mas foi um ponto inferior à média da turma C. Se a média geral de todos os alunos foi 14,2, a média da turma A foi

- a) 14
- b) 12
- c) 13
- d) 15
- e) 16

Comentários:

Vamos esquematizar as informações trazidas pelo enunciado:

a) a média da turma B foi um ponto superior à média da turma A:

$$\bar{x}_B = \bar{x}_A + 1 \Rightarrow \bar{x}_A = \bar{x}_B - 1$$

b) a média da turma B foi um ponto inferior à média da turma C:

$$\bar{x}_B = \bar{x}_C - 1 \Rightarrow \bar{x}_C = \bar{x}_B + 1$$

Agora, vamos utilizar a média geral de todos os alunos para encontrar a média da turma B. A média geral de todos os alunos é calculada por meio da média das médias individuais ponderadas pelos tamanhos das turmas. Vejamos:

$$\bar{x} = \frac{16 \times \bar{x}_A + 24 \times \bar{x}_B + 30 \times \bar{x}_C}{16 + 24 + 30}$$

$$14,2 = \frac{16 \times (\bar{x}_B - 1) + 24 \times \bar{x}_B + 30 \times (\bar{x}_B + 1)}{70}$$

$$994 = 16 \times (\bar{x}_B - 1) + 24 \times \bar{x}_B + 30 \times (\bar{x}_B + 1)$$

$$994 = 16 \times \bar{x}_B - 16 + 24 \times \bar{x}_B + 30 \times \bar{x}_B + 30$$

$$994 = (16 + 24 + 30) \times \bar{x}_B + 14$$

$$980 = 70 \times \bar{x}_B$$

$$\bar{x}_B = 14$$

Como $\bar{x}_A = \bar{x}_B - 1$, temos que:

$$\bar{x}_A = 14 - 1 = 13$$

Gabarito: C.

5. (FCC/SEDU ES/2022) Em uma turma de matemática, a média das notas dos aprovados foi 8,4, a média das notas dos reprovados foi 3,6 e a média da turma foi 6,6. A porcentagem de alunos reprovados foi de

- a) 37,5%.
- b) 62,5%.
- c) 25,7%.
- d) 35,7%.
- e) 55,5%.

Comentários:

De acordo com o enunciado, a média das notas dos aprovados foi igual a 8,4, enquanto a média dos reprovados foi igual a 3,6. Considerando a turma, a média alcançada foi igual a 6,6.

Temos, então, que encontrar os pesos da média ponderada entre a média dos alunos aprovados e a média dos alunos reprovados. Vamos considerar A o total de alunos aprovados e R o total de alunos reprovados. Assim, A + R será igual a 100%.

Vejamos como fica a média ponderada:

$$\bar{x} = \frac{A \times \bar{x}_A + R \times \bar{x}_R}{A + R}$$

$$\bar{x} = \frac{(100\% - R) \times \bar{x}_A + R \times \bar{x}_R}{100\%}$$

$$6,6 = \frac{(100\% - R) \times 8,4 + R \times 3,6}{100\%}$$

$$6,6 = \frac{840\% - R \times 8,4 + R \times 3,6}{100\%}$$

$$660\% = 840\% - R \times 8,4 + R \times 3,6$$

$$-180\% = -R \times 4.8$$

$$R = \frac{180\%}{4.8} = 37,5\%$$

Gabarito: A.

6. (FGV/TCE-TO/2022) Uma variável aleatória discreta X tem função de probabilidade dada por

Valores de X	-3	-1	0	1	3
Probabilidades	0,1	0,2	0,3	0,2	0,2

A média de X é igual a:

- a) 0,1;
- b) 0,2;
- c) 0,3;
- d) 0,4;
- e) 0,5

Comentários:

Para calcularmos a média, precisamos inicialmente multiplicar todos os valores de X por suas respectivas probabilidades. Assim, teremos:

$$\bar{X} = \frac{(-3 \times 0.1) + (-1 \times 0.2) + (0 \times 0.3) + (1 \times 0.2) + (3 \times 0.2)}{0.1 + 0.2 + 0.3 + 0.2 + 0.2}$$
$$\bar{X} = \frac{0.3}{1} = 0.3$$

Gabarito: C.

7. (FUNDATEC/IPE Saúde/2022) Em uma turma de matemática, o professor aplicou dois trabalhos e duas provas ao longo do trimestre. Para cada trabalho, o professor atribuiu peso 2 e, para cada prova, atribuiu peso 3. Ao final do trimestre, a aluna Mariana obteve as seguintes notas:

Nome da	Nota trabalho	Nota trabalho	Nota prova	Nota prova
aluna	1	2	1	2
Mariana	6,8	7,3	5,4	8,0

Com base nessas notas e no peso atribuído pelo professor a cada atividade, podemos dizer que, ao final do trimestre, a aluna Mariana obteve média igual a:

- a) 6,84.
- b) 6,88.
- c) 6,90.
- d) 7,00.
- e) 7,63.

Comentários:

Para calcularmos a média para o trimestre, precisamos calcular a média ponderada dos trabalhos e das provas. Sabemos o peso dos trabalhos é 2 e das provas é 3. Dessa forma, devemos multiplicar cada nota pelo seu respectivo peso, somar esses produtos e dividir pela soma dos pesos.

$$\bar{x} = \frac{6,8 \times 2 + 7,3 \times 2 + 5,4 \times 3 + 8,0 \times 3}{2 + 2 + 3 + 3}$$
$$\bar{x} = \frac{68,4}{10}$$
$$\bar{x} = 6,84$$

Gabarito: A.

8. (FCC/UNILUS/2021) Em uma empresa a média salarial das mulheres é R\$ 1.100,00 e a dos homens R\$ 1.500,00. A média de todos os salários é R\$ 1.200,00. A proporção de mulheres nessa empresa é:

- a) $\frac{5}{8}$
- b) $\frac{3}{4}$
- c) $\frac{2}{3}$
- d) $\frac{5}{9}$
- e) $\frac{7}{12}$

Comentários:

Sabemos que a média de todos os salários é o somatório das médias dos homens e das mulheres dividido pelo total de funcionários (homens +mulheres). Então, temos:

$$\bar{X} = \frac{soma}{n}$$

$$1200 = \frac{1100m + 1500h}{m+h}$$

$$1200 \times (m+h) = 1100m + 1500h$$

$$1200m + 1200h = 1100m + 1500h$$

$$1200m - 1100m = 1500h - 1200h$$

$$100m = 300h$$

$$m = \frac{300h}{100}$$

$$m = 3h$$

Assim, podemos concluir que o número de mulheres é 3 vezes o número de homens. Logo, a cada 4 pessoas da empresa, 3 são mulheres e 1 é homem. Logo, a proporção é:

 $\frac{3}{4}$

Gabarito: B.

9. (FGV/IMBEL/2021)

ATENÇÃO: tomando por base a tabela, responda a questão a seguir.

Consumo de um produto ao longo de 4 meses.

Mês	Consumo	Pesos	Me	T _e	P
1	100	0,1		20	100
2	120	0,2			
3	132	0,3			
4	156	0,4			
5	170				?

Dados:

- Me é a média exponencial;
- Te é a tendência exponencial;

• P é a previsão de consumo no mês.

Considerando os métodos da média simples e da média ponderada, as previsões de consumo no mês 5 seriam, respectivamente, de

- a) 127 e 127
- b) 127 e 136
- c) 127 e 142
- d) 136 e 127
- e) 136 e 142

Comentários:

A média aritmética de um conjunto de dados é definida como o quociente entre a soma de todos os elementos e o número de elementos do conjunto. Então, vamos calcular a média simples para o mês 5, como pede a questão:

$$\bar{x} = \frac{100 + 120 + 132 + 156}{4} = \frac{508}{4} = 127$$

Uma média ponderada é a média de um conjunto de dados cujos valores possuem pesos variados. Calculando a média ponderada para o mês 5, temos:

$$\bar{x} = \frac{(100 \times 0.1) + (120 \times 0.2) + (132 \times 0.3) + (156 \times 0.4)}{0.1 + 0.2 + 0.3 + 0.4} = \frac{136}{1} = 136$$

Logo, a média simples é 127 e a média ponderada é 136.

Gabarito: B.

- 10. (FUNDATEC/Pref. Candelária/2021) A movimentação econômica de um município é calculada pela média ponderada. Considerando o agronegócio com peso 4, a indústria com peso 3 e os serviços com peso 3. Se em determinado mês essas respectivas áreas registraram transações nos valores de R\$ 30.000,00, R\$ 50.000,00 e R\$ 25.000,00, então a média ponderada dessa movimentação econômica é:
- a) R\$ 35.000,00.
- b) R\$ 34.700,00.
- c) R\$ 34.600,00.
- d) R\$ 34.500,00.
- e) R\$ 34.200,00.

Comentários:

Para calcularmos a média ponderada da movimentação econômica, primeiro, vamos multiplicar os valores das transações por seus respectivos pesos; na sequência, dividiremos esse valor pela soma dos pesos:

$$\bar{x} = \frac{4 \times 30.000 + 3 \times 50.000 + 3 \times 25.000}{4 + 3 + 3} = \frac{345.000}{10} = 34.500,00$$

Gabarito: D.

11. (FUNDATEC/Pref. Bom Jesus/2021) Uma faculdade tem quatro tipos de avaliação para compor a nota final de seus alunos por semestre, sendo esta nota a média ponderada dessas avaliações. A tabela abaixo apresenta as notas obtidas por uma aluna da faculdade nas quatro avaliações realizadas no semestre e os pesos de cada uma das avaliações:

Avaliação	Nota	Peso
Prova objetiva	6	4
Prova dissertativa	7	4
Portfólio	8	2
Apresentação de trabalho	9	2

A nota final dessa aluna será, aproximadamente, de:

- a) 9.
- b) 8,6.
- c) 8.
- d) 7,5.
- e) 7,2.

Comentários:

Para calcularmos a nota final da aluna, vamos multiplicar cada nota por seu respectivo peso; na sequência, dividiremos esse valor pela soma dos pesos:

$$\bar{x} = \frac{4 \times 6 + 4 \times 7 + 2 \times 8 + 2 \times 9}{4 + 4 + 2 + 2} = \frac{24 + 28 + 16 + 18}{12} = \frac{86}{12} \cong 7,2$$

Gabarito: E.

12. (VUNESP/EsFCEx/2021) O salário médio pago aos 50 funcionários de uma empresa é de R\$ 2.000,00, sendo que, dentre os 50 funcionários, 10 são chefes de seções. Se desconsiderarmos os chefes de seções do cálculo, o salário médio cai para R\$ 1.500,00. Qual é o salário médio pago somente aos chefes de seções?

- a) R\$ 2.000.
- b) R\$ 4.000.
- c) R\$ 1.500.
- d) R\$ 6.000.
- e) R\$ 10.000.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Conforme o enunciado, o salário médio pago aos 50 funcionários de uma empresa é de R\$ 2.000,00:

$$\bar{x}_{total} = \frac{40 \times E + 10 \times C}{50} = 2.000$$

em que E representa a média salarial dos empregados e C representa a média salarial dos chefes de seções.

Desconsiderando-se os chefes de seções, a média cai para R\$ 1.500,00. Portanto, a média salarial dos empregados é de R\$ 1.500,00. Assim, temos que:

$$\frac{40 \times 1.500 + 10 \times C}{50} = 2.000$$

$$\frac{60.000 + 10 \times C}{50} = 2.000$$

$$60.000 + 10 \times C = 100.000$$

$$10 \times C = 40.000$$

$$C = 4.000$$

Gabarito: B.

13. (VUNESP/Pref. Ribeirão Preto/2021) A média das alturas de um grupo de 32 pessoas é igual a 167 cm. Retirando-se as 6 mulheres mais novas desse grupo, a média das alturas das pessoas restantes continua 167 cm. Retirando-se desse novo grupo os 6 homens mais novos, a média das alturas do grupo restante passa a ser igual a 177 cm. A média das alturas, em cm, das 12 pessoas retiradas do grupo original é um número entre

- a) 135 e 140.
- b) 140 e 145.
- c) 145 e 150.
- d) 150 e 155.
- e) 155 e 160.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Assim, para a média de altura de todas as pessoas, temos:

$$\frac{Soma}{32} = 167$$

$$Soma = 32 \times 167$$

$$Soma = 5.344$$

Retirando-se as 6 meninas mais novas, permanecemos com a mesma média:

$$\frac{Soma - 6 \times M}{26} = 167$$

$$Soma - 6 \times M = 167 \times 26$$

$$Soma - 6 \times M = 4.342$$

$$6 \times M = 5.344 - 4.342$$

$$6 \times M = 1.002$$

$$M = 167 cm$$

Agora, excluindo-se os 6 meninos mais novos, a média de altura passa a ser 177cm:

$$\frac{Soma - 6 \times M - 6 \times H}{20} = 177$$

$$4.342 - 6 \times H = 3.540$$

$$-6 \times H = 3.540 - 4.342$$

$$6 \times H = 802$$

$$H = 133,67cm$$

Logo, a média de altura das 12 pessoas retiradas do grupo é:

$$\bar{x} = \frac{6 \times H + 6 \times M}{12} = \frac{802 + 1.002}{12} = 150,33.$$

Gabarito: D.

14. (VUNESP/CM Potim/2021) Na semana anterior, de segunda a quarta-feira, foram atendidas 60 pessoas em um posto de saúde, e observou- se que a média aritmética simples das idades dessas pessoas era de 40 anos. Na quinta e sexta-feira daquela semana, foram atendidas, ao todo, 40 pessoas no posto, e a média das idades foi de 45 anos. Sendo assim, é correto afirmar que a média das idades, em anos, de todas as pessoas atendidas, de segunda até sexta-feira da semana passada, naquele posto de saúde, foi de

- a) 44,0.
- b) 43,5.
- c) 43,0.
- d) 42,5.
- e) 42,0.

Comentários:

O enunciado nos informou que a média das idades de 60 pessoas é de 40 anos, então a soma das idades dessas pessoas é de:

$$40 \times 60 = 2.400$$
 anos.

Como as outras 40 pessoas atendidas possuem média de idade de 45 anos, então a soma dessas idades é de:

$$40 \times 45 = 1.800$$
 anos.

Agora, para obtermos a média de todas as idades, basta dividirmos a soma de todas as idades pelo número de pessoas atendidas:

$$60 + 40 = 100$$

Então, temos:

$$\bar{x} = \frac{2.400 + 1.800}{100} = \frac{4.200}{100} = 42,0$$

Gabarito: D.

15. (CESPE/SEFAZ-DF/2020) A partir de uma amostra aleatória simples de tamanho n, sabe-se que a média aritmética de uma variável X foi igual a 3. Considerando que os valores possíveis para a variável X sejam - 1 e +4, julgue o item que se segue.

Nessa amostra aleatória, a quantidade de observações iguais a +4 foi igual a 0,8 n.

Comentários:

Nessa questão, precisamos descobrir as frequências relativas de (-1) e (+4).

Para isso, vamos adotar que o valor +4 tem frequência relativa igual a fr(+4) = p. Também poderíamos adotar fr(-1) = p, apenas fazendo alguns pequenos ajustes na metodologia de cálculo.

Como a amostra é composta apenas por valores -1 e +4, podemos concluir que a soma das frequências relativas desses dois valores deve corresponder a 100%. Logo, temos:

$$fr(-1) + fr(+4) = 1$$

 $fr(-1) = 1 - p$

A média aritmética é dada pela soma da multiplicação de cada valor por sua respectiva frequência, assim:

$$\bar{x} = \frac{4 \times p + (-1) \times (1-p)}{p + (1-p)} = \frac{4 \times p + (-1) \times (1-p)}{1} = 4 \times p + (-1) \times (1-p)$$

O enunciado diz que a média vale 3, portanto:

$$3 = 4 \times p + (-1) \times (1 - p)$$

Aplicando a propriedade distributiva, temos que:

$$3 = 4p - 1 + p$$

Isolando as constantes dos valores em função de p, temos:

$$3 + 1 = 4p + p$$
$$4 = 5p$$
$$p = \frac{4}{5}$$
$$p = 0.8$$

Concluímos que 80% das observações foram iguais a +4

Gabarito: Certo.

16. (CESPE/Pref. São Cristóvão/2019) A tabela seguinte mostra a distribuição das idades dos 30 alunos da turma A do quinto ano de uma escola de ensino fundamental.

Idade (em anos)	9	10	11	12	13	14
Quantidade de estudantes	6	22	0	1	0	1

A partir dessa tabela, julgue o item.

Se, em outra turma B, as frequências das idades fossem respectivamente iguais ao dobro das frequências da turma A, então a média aritmética das idades da turma B seria igual ao dobro da média da turma A.

Comentários:

A média aritmética das idades da turma A resulta da divisão entre a soma dos produtos das idades pelas quantidades de alunos, dividida pelo total de estudantes:

$$\bar{x} = \frac{9 \times 6 + 10 \times 22 + 11 \times 0 + 12 \times 1 + 13 \times 0 + 14 \times 1}{6 + 22 + 0 + 1 + 0 + 1}$$

$$\bar{x} = \frac{300}{30}$$
$$\bar{x} = 10$$

Na turma B, teremos que duplicar as frequências. Dessa forma, a média aritmética da turma B será dada por:

$$\bar{x} = \frac{9 \times 12 + 10 \times 44 + 11 \times 0 + 12 \times 1 + 13 \times 0 + 14 \times 2}{12 + 44 + 0 + 2 + 0 + 2}$$
$$\bar{x} = \frac{600}{60}$$
$$\bar{x} = 10$$

Com isso, percebemos que a média não mudará o seu valor.

Gabarito: Errado.

17. (CESPE/IFF/2018) No registro das quantidades de filhos de 200 casais, verificaram-se os valores mostrados na tabela seguinte.

Quantidade de filhos	1	2	0	3	4	5	6
Quantidade de casais	50	40	40	30	25	10	5

Nesse caso, a quantidade média de filhos para esse grupo de casais é igual a

- a) 0.
- b) 1.
- c) 2.
- d) 2,5.
- e) 3.

Comentários:

A quantidade média de filhos é resultado da divisão entre o somatório dos produtos das quantidades de filhos pelas quantidades de casais, dividido pelo total de casais. Precisamos multiplicar a quantidade de filhos por suas respectivas frequências:

$$\bar{x} = \frac{1 \times 50 + 2 \times 40 + 0 \times 40 + 3 \times 30 + 4 \times 25 + 5 \times 10 + 6 \times 5}{200}$$

$$\bar{x} = \frac{50 + 80 + 90 + 100 + 50 + 30}{200}$$

$$\bar{x} = \frac{400}{200}$$

$$\bar{x} = 2$$

Gabarito: C.

18. (CESPE/BNB/2018) Em uma faculdade, para avaliar o aprendizado dos alunos em determinada disciplina, o professor aplica as provas A, B e C e a nota final do aluno é a média ponderada das notas obtidas em cada prova. Na prova A, o peso é1; na prova B, o peso é 10% maior que o peso na prova A; na prova C, o peso é20% maior que o peso na prova B.

Nesse caso, se P_A , P_B , P_C forem as notas obtidas por um aluno nas provas A, B e C, respectivamente, então a nota final desse aluno é expressa por $\frac{P_A+1,2\times P_B+1,32\times P_C}{3.52}$.

Comentários:

O enunciado informou que o peso da prova A é 1. Além disso, foi dito que o peso da prova B é 10% maior que o peso da prova A. Portanto, o peso da prova B será:

$$1,00 \times (100\% + 10\%) = 1,00 \times 110\% = 1,00 \times 1,10 = 1,10$$

O peso da prova C é 20% maior que o preso da prova B. Portanto, o peso da prova C será:

$$1,10 \times (100\% + 20\%) = 1,10 \times 120\% = 1,10 \times 1,20 = 1,32$$

Para calcular a média ponderada, devemos multiplicar cada nota pelo seu respectivo peso e dividir o resultado pela soma dos pesos:

$$\bar{x} = \frac{1 \times P_A + 1,10 \times P_B + 1,32 \times P_C}{1 + 1,10 + 1,32}$$
$$\bar{x} = \frac{P_A + 1,10 \times P_B + 1,32 \times P_C}{3,42}$$

Gabarito: Errado.

- 19. (FGV/BANESTES/2018) Alberto aplicou um capital C da seguinte forma:
- a) 40% de C em papéis de Renda Fixa (R.F.);
- b) 60% de C em Letra de Crédito Imobiliário (L.C.I.).

Ao longo de um ano, nenhum novo depósito foi feito em qualquer das duas modalidades de aplicação. Nesse mesmo período, não houve qualquer resgate. Se as taxas efetivas de rendimento da R.F. e da L.C.I., no período referido, foram de 15% a.a. e 10% a.a., respectivamente, então essa estratégia conjunta de aplicação possibilitou a Alberto uma rentabilidade total sobre o capital C de:

- a) 25%;
- b) 19%;
- c) 15%;
- d) 12%;
- e) 5%.

Comentários:

Para facilitar a resolução da questão, podemos considerar que Alberto aplicou 1.000 reais. Assim, foram aplicados 400 reais em papéis de renda fixa e 600 reais em letras de crédito imobiliário.

Segundo o enunciado, ele obteve um rendimento de 15% em papéis de renda fixa e 10% em letras de crédito imobiliário:

$$rendimento = 15\% \times 400 + 10\% \times 600$$

 $rendimento = 0.15 \times 400 + 0.10 \times 600$
 $rendimento = 120 \ reais$

Como ele aplicou 1000 reais e obteve um rendimento de 120 reais, a rentabilidade total foi de:

$$\frac{12}{1000} = 12\%.$$

Gabarito: D.

20. (FGV/TJ-SC/2018) Uma pequena empresa tem 10 funcionários. A média salarial dos 6 funcionários com menores salários é R\$ 2600,00 e a média salarial dos 4 funcionários com maiores salários é R\$ 4200,00. A média salarial dos 10 funcionários dessa empresa é:

- a) R\$ 3480,00;
- b) R\$ 3440,00;
- c) R\$ 3400,00;
- d) R\$ 3360,00;
- e) R\$ 3240,00.

Comentários:

De acordo com a questão, a média salarial dos 6 funcionários com menores salários é R\$ 2600,00. Assim, a soma desses 6 salários é:

$$Soma = média \times quantidade$$

$$Soma = 2.600 \times 6 = 15.600$$

Além disso, a média salarial dos outros 4 funcionários é R\$ 4.200. Logo, a soma dos salários deles é:

$$Soma = 4.200 \times 4 = 16.800$$

Considerando os salários dos 10 funcionários, temos a soma:

$$15.600 + 16.800 = 32.400$$

Assim, a média dos 10 salários é:

$$\bar{x} = \frac{32.400}{10} = 3.240$$

Também podemos responder essa questão de outra forma. Sempre que estivermos trabalhando com dois ou mais conjuntos mutuamente excludentes, a média global será a média ponderada das médias dos conjuntos:

$$\bar{x} = \frac{\bar{x}_1 \times n_1 + \bar{x}_2 \times n_2}{n_1 + n_2}$$

$$\bar{x} = \frac{2.600 \times 6 + 4.200 \times 4}{6 + 4} = 3.240$$

Gabarito: E.

21. (FUNDATEC/Prefeitura de Corumbá/2018) No colégio Coração de Cristo, a nota final de um aluno é calculada a partir da média de suas pontuações obtidas em cada trimestre, sendo que a média precisa ser maior ou igual a 7,00 para obter aprovação. O aluno Joaquim, em Física, obteve respectivamente as notas: 4,50; 8,80 e 7,60, obtendo em seu boletim o status de reprovado. Caso a escola mudasse para o sistema de pesos, em que seriam atribuídos respectivamente os pesos 3, 3 e 4 aos trimestres, a situação de Joaquim passaria a ser:

- a) Reprovado por 0,1.
- b) Aprovado por 0,1.
- c) Reprovado por 0,03.
- d) Aprovado por 0,03.
- e) Nenhuma das anteriores.

Comentários:

Para calcular a média ponderada, precisamos multiplicar cada nota pelo seu respectivo peso, somar todos os produtos e dividir o resultado pela soma dos pesos:

$$\bar{x} = \frac{4,50 \times 3 + 8,80 \times 3 + 7,60 \times 4}{3+3+4} = \frac{70,30}{10} = 7,03$$

Outra forma de responder essa questão é organizar uma tabela com as notas, os pesos e os produtos dessas variáveis:

Nota	Peso	Nota x Peso
4,50	3	13,50
8,80	3	26,40
7,60	4	30,40
Total	10	70,30

Dessa forma, já temos o somatório tanto dos pesos quanto dos produtos:

$$\bar{x} = \frac{70,30}{10} = 7,03$$

Portanto, o aluno foi aprovado por 0,03.

Gabarito: D.

22. (CESPE/SEE-DF/2017) Iniciado em 2007, o processo gradativo de substituição do sinal de TV analógico pelo digital no Brasil começou a concretizar-se em 2016. Nesse período, intensificou-se o uso da TV por assinatura, segundo dados do IBGE. A tabela a seguir mostra o percentual aproximado de domicílios brasileiros que dispunham de diferentes modalidades de acesso a TV em 2014.

Zona	Sinal digital de TV aberta	TV por assinatura	antena parabólica
Urbana	44%	36%	32%
Rural	16%	8%	79%

IBGE (com adaptações).

Considerando essas informações e o fato de que, em 2014, 86% dos domicílios brasileiros situavam-se na zona urbana, julgue os itens subsequentes.

Em 2014, havia acesso ao sinal digital de TV aberta em mais de 50% dos domicílios brasileiros.

Comentários:

Conforme o enunciado, a zona urbana comporta 86% dos municípios brasileiros, dos quais 44% têm sinal digital de TV aberta. Por sua vez, a zona rural comporta 14% dos municípios brasileiros, dos quais 16% têm sinal digital de TV aberta. Assim, a média geral será uma média ponderada pelos percentuais de municípios em cada área:

$$\bar{x} = \frac{44\% \times 86\% + 16\% \times 14\%}{86\% + 14\%}$$
$$\bar{x} = \frac{44\% \times 86 + 16\% \times 14}{100}$$
$$\bar{x} = \frac{4.008\%}{100} = 40,08\%$$

Gabarito: Errado.

23. (CESPE/PM-AL/2017) Em um tanque A, há uma mistura homogênea de 240 L de gasolina e 60 L de álcool; em outro tanque B, 150 L de gasolina estão misturados homogeneamente com 50 L de álcool. A respeito dessas misturas, julgue os itens subsequentes.

Considere que em um tanque C, inicialmente vazio, tenham sido despejadas certas quantidades das misturas dos tanques A e B totalizando 100 L. Considere também que, depois de homogeneizada essa mistura no tanque C, a separação de álcool e gasolina por um processo químico tenha mostrado que nesses 100 L, 22 L eram de álcool. Nessa situação, para formar essa mistura no tanque C foram usados mais de 55 L da mistura do tanque A.

Comentários:

De acordo com os dados da questão, temos que:

- o tanque A possui 240 + 60 = 300 litros. Logo, o álcool representa 60/300 = 1/5 = 0,20 = 20% da mistura;
- o tanque B possui 150 + 50 = 200 litros. Logo, o álcool representa 50/200 = 1/4 = 0,25 = 25% da mistura; e
- o tanque C possui 22/100 = 22% de álcool.

Além disso, a questão informou que foram despejadas no tanque C certas quantidades das misturas dos tanques A e B. Assim, o percentual de álcool em C é uma média ponderada dos percentuais de álcool nos demais tanques. O que precisamos calcular são, justamente, os pesos de ponderação.

Consideraremos A o percentual do tanque C que foi retirado do tanque A; e B o percentual do tanque C que foi retirado do tanque B. Sabemos que A + B = 100% = 1. Portanto, B = 1 - A.

$$22\% = \frac{20\% \times A + 25\% \times B}{A + B}$$
$$22\% = \frac{20\% \times A + 25\% \times B}{1}$$
$$22\% = 20\% \times A + 25\% \times B$$

Substituindo B por (1 - A), temos:

$$22 = 20 \times A + 25 \times (1 - A)$$
$$22 = 20 \times A + 25 - 25 \times A$$
$$5 \times A = 3$$
$$A = \frac{3}{5} = 0,60 = 60\%$$

Logo, descobrimos que 60% do volume de C foi retirado do tanque A. Como o tanque C possuía 100 litros, então 60 litros de C vieram do tanque A.

Gabarito: Certo.

24. (FGV/SEE-PE/2016) A média das idades das seis mulheres que trabalham em uma pequena empresa é 27 anos e a dos quatro homens que trabalham na mesma empresa é 32 anos. A média das idades desses dez trabalhadores é

- a) 28 anos.
- b) 28 anos e meio.
- c) 29 anos.
- d) 29 anos e meio.
- e) 30 anos.

Comentários:

De acordo com a questão, a média das idades das seis mulheres que trabalham em uma pequena empresa é 27 anos. Portanto, a soma das idades das mulheres é:

$$S_M = \overline{M} \times n_M$$

$$S_M = 27 \times 6 = 162$$

A média das idades dos quatro homens é 32. Logo, a soma das idades dos homens é:

$$S_H = \overline{H} \times n_H$$
$$S_H = 32 \times 4 = 128$$

A soma de todas as idades é:

$$S_M + S_H = 162 + 128 = 290.$$

Assim, a média global das 10 pessoas é

$$\bar{x} = \frac{290}{10} = 29$$

Também podemos fazer de outra maneira. Quando juntamos dois ou mais conjuntos mutuamente excludentes, a média global é a média ponderada das médias dos conjuntos. Os pesos de ponderação são as quantidades de elementos de cada conjunto. Assim,

$$\bar{x} = \frac{\bar{H} \times n_H + \bar{M} \times n_M}{n_H + n_M}$$

$$\bar{x} = \frac{32 \times 4 + 27 \times 6}{4 + 6} = \frac{290}{10} = 29$$

Gabarito: C.

25. (FUNDATEC/Prefeitura de Soledade-RS/2016) Um automóvel foi avaliado por uma revista especializada e obteve as seguintes notas: 80 em consumo, 85 em conforto e 90 em design. Se a nota de consumo tem peso 9, a de conforto peso 8 e a de design peso 8, qual foi a média aritmética ponderada das notas dadas a esse automóvel?

- a) 83,2.
- b) 83,5.
- c) 84,0.
- d) 84,8.
- e) 85,3.

Comentários:

Para calcular a média ponderada, precisamos multiplicar cada nota pelo seu respectivo peso, somar todos os produtos e dividir o resultado pela soma dos pesos:

$$\bar{x} = \frac{80 \times 9 + 85 \times 8 + 90 \times 8}{9 + 8 + 8} = \frac{2.120}{25} = 84.8$$

Outra forma de responder essa questão é organizar uma tabela com as notas, os pesos e os produtos dessas variáveis:

Nota Peso Nota x Peso

80	9	720
85	8	680
90	8	720
Total	25	2.120

Dessa forma, já temos o somatório tanto dos pesos quanto dos produtos:

$$\bar{x} = \frac{2.120}{25} = 84.8$$

Gabarito: D.

26. (CESPE/TELEBRAS/2015) A equipe de atendentes de um serviço de telemarketing é constituída por 30 empregados, divididos em 3 grupos, que trabalham de acordo com a seguinte escala.

Grupo I: 7 homens e 3 mulheres, que trabalham das 6 h às 12 h.

Grupo II: 4 homens e 6 mulheres, que trabalham das 9 h às 15 h.

Grupo III: 1 homem e 9 mulheres, que trabalham das 12 h às 18 h. A respeito dessa equipe, julgue o item que se segue.

Se, nesse serviço de telemarketing, a média das idades das atendentes for de 21 anos e a média das idades dos atendentes for de 31 anos, então a média das idades de todos os 30 atendentes será de 26 anos.

Comentários:

Segundo o enunciado, a quantidade de homens é $\bar{h}=7+4+1=12$ e a quantidade de mulheres é $\bar{m}=3+6+9=18$. A média geral é a média ponderada das médias de idade de homens e mulheres, em que os pesos são as quantidades de homens e mulheres. Então, multiplicaremos a média de idade dos homens pela quantidade de homens, a média de idade das mulheres pela quantidade de mulheres, somaremos tudo e dividiremos pela quantidade total de pessoas.

$$\bar{x} = \frac{\bar{h} \times 12 + \bar{m} \times 18}{12 + 18} = \frac{31 \times 12 + 21 \times 18}{30} = \frac{750}{30} = 25$$

Gabarito: Errado.

27. (FGV/BNB/2014) Levantamento estatístico de uma empresa constatou que 70% dos funcionários eram do sexo masculino. Ainda de acordo com esse levantamento, a média salarial mensal dos funcionários do sexo masculino era de R\$ 3.000,00 e a média salarial mensal dos funcionários do sexo feminino era de R\$ 4.500,00. Considerando todos os funcionários dessa empresa, a média salarial mensal é de:

- a) R\$ 3.950,00
- b) R\$ 3.750,00
- c) R\$ 3.650,00

- d) R\$ 3.450,00
- e) R\$ 3.250,00

Comentários:

De acordo com o enunciado, 70% dos funcionários são do sexo masculino e 30% são do sexo feminino. Além disso, a média salarial dos homens é de 3.000 reais e a média salarial das mulheres é de 4.500 reais.

Ao trabalharmos com dois ou mais conjuntos mutuamente excludentes, a média global será a média ponderada das médias dos conjuntos:

$$\bar{x} = \frac{\bar{x}_1 \times n_1 + \bar{x}_2 \times n_2}{n_1 + n_2}$$

$$\bar{x} = \frac{3.000 \times 70 + 4.500 \times 30}{70 + 30}$$

$$\bar{x} = \frac{345.000}{100} = 3.450$$

Gabarito: D.

28. (FGV/Pref. de Osasco/2014) Os 20 homens e 10 mulheres que trabalham como vigias de uma fábrica foram examinados no departamento médico da empresa. Nesse exame constatou-se que o peso médio dos homens era de 84kg e o peso médio das mulheres era de 66kg. O peso médio dessas 30 pessoas era de:

- a) 70kg;
- b) 72kg;
- c) 74kg;
- d) 75kg;
- e) 78kg.

Comentários:

Ao trabalharmos com dois ou mais conjuntos mutuamente excludentes, a média global será a média ponderada das médias dos conjuntos:

$$\bar{x} = \frac{\bar{x}_1 \times n_1 + \bar{x}_2 \times n_2}{n_1 + n_2}$$
$$\bar{x} = \frac{84 \times 20 + 66 \times 10}{20 + 10}$$

$$\bar{x} = \frac{2.340}{30} = 78$$

Gabarito: E.

29. (CESPE/TCE-RS/2012) Uma instituição possui 15 empregados: 2 da referência A, 4 da B e 9 da referência C. O salário mensal de cada empregado da referência C é igual a R\$ 2.000,00; o de cada empregado da referência B, R\$ 3.500,00; e o salário mensal de cada empregado da referência A é igual a R\$ 5.000,00.

Se 6 empregados dessa instituição são do sexo masculino, então o salário médio dos homens que nela trabalham está entre R\$ 2.000,00 e R\$ 4.000,00.

Comentários:

Caso os 6 empregados sejam da referência C, a média terá o menor valor possível. Nesse caso, com todos ganhando R\$ 2.000,00, a média será igual a R\$ 2.000,00.

Agora, para calcularmos a maior média possível, devemos distribuir os 6 empregados nas referências A e B. Nesse caso, teremos 2 empregados na referência A, com salário de R\$ 5.000,00, e 4 empregados na referência B, ganhando R\$ 3.500,00. Assim, a média será:

$$\bar{x} = \frac{5.000 \times 2 + 3.500 \times 4}{6} = 4.000$$

Portanto, a menor média possível é 2.000 e a maior média possível é 4.000.

Gabarito: Certo.

30. (CESPE/PRF/2012) Considere os eventos A, B, C e D, definidos abaixo, relativos ao número de veículos por família em determinada cidade.

A = uma família possui 1 ou mais veículos;

B = uma família possui 2 ou mais veículos;

C = uma família possui 3 ou mais veículos;

D = uma família possui 4 ou mais veículos.

Considere, ainda, que as probabilidades de ocorrência desses eventos são: P(A) = 0.9; P(B) = 0.6; P(C) = 0.3 e P(D) = 0. Com base nessas informações, julgue o item que se segue.

O número médio de veículos por família na referida cidade é igual ou superior a 2.

Comentários:

O enunciado afirma que 90% das famílias têm pelo menos 1 carro. Ora, se 90% têm pelo menos 1 carro, significa dizer que 10% não tem nenhum carro: 100%-90%=10%.

Podemos pensar numa probabilidade acumulada, se A possui 1 ou mais carros, significa que 2, 3, 4 ou mais carros estão contemplados nessa expressão.

Então, vamos calcular as probabilidades para cada família, consideremos Y a família que não tem nenhum carro:

$$Y = 1 - 0.9 = 0.1 \rightarrow tem\ 0\ carros$$

$$A = 0.9 - 0.6 = 0.3 \rightarrow tem\ 1\ carro$$

 $B = 0.6 - 0.3 = 0.3 \rightarrow tem\ 2\ carros$
 $C = 0.3 - 0 = 0.3 \rightarrow tem\ 3\ carros$
 $D = 0 - 0 = 0 \rightarrow tem\ 4\ carros$

Assim, temos a quantidade exata da probabilidade de carros para cada família. Agora, basta multiplicarmos a quantidade de carros pela respectiva probabilidade e a soma disso será a média de veículos para cada família:

$$\bar{x} = \frac{(0 \times 0.1 + 1 \times 0.3 + 2 \times 0.3 + 3 \times 0.3 + 0)}{1}$$

$$\bar{x} = 1.8 \ carro$$

Logo, o número médio de carros por família é 1,8.

Gabarito: Errado.

31. (CESPE/CL DF/2006) Com o objetivo de criar um parâmetro para expressar a criminalidade, um estado adotou a seguinte tabela de pesos para os diferentes crimes:

crime	peso
furto	1
roubo	2
estupro	3
latrocínio	4
homicídio	5

Mensalmente, a cada cidade desse estado, é atribuído um índice de criminalidade, que é a média ponderada — de acordo com os pesos da tabela acima — do número de ocorrências de cada crime listado na tabela no mês em estudo, multiplicada por 1.000 e, em seguida, dividida pelo número de habitantes da cidade. Com base nessa situação hipotética, julgue o seguinte item.

Um município de 5.000 habitantes desse estado em que, em determinado mês, ocorreram 15 furtos, 12 roubos, 4 estupros, 2 latrocínios e 2 homicídios terá índice de criminalidade mensal mais baixo que um outro município de 50.000 habitantes desse estado em que, nesse mesmo mês, ocorreram 100 furtos, 120 roubos, 40 estupros, 20 latrocínios e 20 homicídios.

Comentários:

Vamos calcular a média ponderada para os dois municípios. Temos:

a) para o município 1:

$$\overline{x_1} = \frac{15 \times 1 + 12 \times 2 + 4 \times 3 + 2 \times 4 + 2 \times 5}{1 + 2 + 3 + 4 + 5}$$

$$\overline{x_1} = \frac{15 + 24 + 12 + 8 + 10}{15}$$

$$\overline{x_1} = \frac{69}{15}$$

$$\overline{x_1} = 4,6$$

Agora, multiplicamos por 1.000 e dividimos pelo número de habitantes:

$$\overline{x_1} = 4.6 \times 1.000 = 4.600$$

$$\overline{x_1} = \frac{4.600}{5.000}$$

$$\overline{x_1} = 0.92$$

b) para o município 2:

$$\overline{x_2} = \frac{100 \times 1 + 120 \times 2 + 40 \times 3 + 20 \times 4 + 20 \times 5}{1 + 2 + 3 + 4 + 5}$$

$$\overline{x_2} = \frac{100 + 240 + 120 + 80 + 100}{15}$$

$$\overline{x_2} = \frac{640}{15}$$

$$\overline{x_2} = 42,6$$

Agora, multiplicamos por 1.000 e dividimos pelo número de habitantes:

$$\overline{x_2} = 42.6 \times 1.000 = 42.666$$

$$\overline{x_2} = \frac{42.666}{50.000}$$

$$\overline{x_3} = 0.85$$

Então, o índice de criminalidade do município 1 é maior que o índice do município 2, isto é, 0,92>0,85.

Gabarito: Errado.

32. (CESPE/TC-DF/2002) Durante a recente desvalorização do real, foi reportado na imprensa que alguns exportadores estariam retardando as vendas com o intuito de especular com a cotação do dólar.

Considerando o gráfico acima, que compara as exportações de soja nos seis primeiros meses de 2001 e de 2002, julgue o item a seguir.

Durante os dois primeiros meses de 2001, a média diária de exportações de soja foi de US\$ 10,65 milhões.

Comentários:

O gráfico diz respeito à **média diária** de exportação de soja. Não podemos, portanto, tirar a média apenas somando os dois meses e dividindo o resultado por 2, pois, assim, estaríamos igualando os pesos dos dois meses. Sabemos que janeiro tem mais dias que fevereiro, portanto, precisamos considerar essa informação no cálculo. Sendo assim, vamos ponderar o cálculo da média pelo número de dias do mês. Assim:

$$\bar{x} = \frac{(12,4 \times 31) + (8,9 \times 28)}{31 + 28}$$
$$\bar{x} = \frac{384,4 + 249,2}{59}$$
$$\bar{x} = \frac{633,6}{59}$$
$$\bar{x} \cong 10,73$$

Gabarito: Errado.

QUESTÕES COMENTADAS

Média para Dados Agrupados

1. (CESGRANRIO/BASA/2022) A Tabela abaixo representa as frequências referentes aos resultados de alcatrão (mg) encontrados em cigarros sem filtro, a partir de uma amostra de 30 cigarros selecionados de várias marcas.

Alcatrão (mg)	Frequência
[10, 14)	2
[14, 18)	4
[18, 22)	х
[22, 26)	У
[26, 30]	2

Se a média de alcatrão na amostra foi de 20,4 mg, qual o valor de x-y?

- a) 6
- b) 8
- c) 10
- d) 12
- e) 14

Comentários:

Vamos reescrever a tabela multiplicando os pontos médios de cada classe por suas respectivas frequências:

Alcatrão (mg)	pontos médios(x)	Frequência (f)	$x \times f$
[10, 14)	12	2	24
[14, 18)	16	4	64

[18, 22)	20	Х	20x
[22, 26)	24	У	24y
[26, 30]	28	2	56
Total		30	144+20x+24y

Conforme informado no enunciado, a média é igual a 20,4 e o total das frequências (amostra) é igual a 30. Assim, temos que:

$$\bar{X} = \frac{144 + 20x + 24y}{30}$$

$$20,4 = \frac{144 + 20x + 24y}{30}$$

$$144 + 20x + 24y = 20,4 \times 30$$

$$144 + 20x + 24y = 612$$

$$20x + 24y = 612 - 144$$

$$20x + 24y = 468$$

Para simplificar, podemos dividir tudo por 4:

$$5x + 6y = 117$$

Sabemos que o total da amostra é 30, então, temos:

$$2+4+x+y+2=30$$

$$x+y=30-8$$

$$x+y=22$$

$$x=22-y$$

Substituindo x na equação anterior, temos:

$$5x + 6y = 117$$

$$5 \times (22 - y) + 6y = 117$$

$$110 - 5y + 6y = 117$$

$$y = 117 - 110 = 7$$

Já podemos encontrar o valor de x:

$$x = 22 - y$$
$$x = 22 - 7 = 15$$

A diferença entre x e y é:

$$x - y = 15 - 7$$
$$x - y = 8$$

Gabarito: B.

2. (CESPE/FUB/2022) Uma universidade está fazendo um estudo para verificar a distribuição dos tempos que os alunos do curso de mestrado levam até a defesa da dissertação. Os dados a seguir mostram a função de probabilidade desses tempos, em meses.

Tempo de Defesa (meses)	Probabilidade
12	0,01
15	0,02
18	0,04
20	0,10
22	0,22
24	0,31
25	0,18
26	0,04
28	0,03
30	0,05

Considerando essas informações, julgue o item subsequente.

Em média, os alunos levam mais de 24 meses para concluir o mestrado.

Comentários:

Para calcularmos a média aritmética, multiplicaremos cada valor de X (tempo de defesa) por sua respectiva probabilidade. Em seguida, o resultado da soma desses produtos deve ser dividido pela soma das probabilidades. Vamos reescrever a tabela com os cálculos:

(x)	(<i>f</i>)	$x \times f$
12	0,01	0,12
15	0,02	0,3
18	0,04	0,72
20	0,10	2
22	0,22	4,84
24	0,31	7,44
25	0,18	4,5
26	0,04	1,04

28	0,03	0,84
30	0,05	1,5
Total	1	23,3

Portanto, a média será determinada por:

$$\bar{X} = \frac{23,3}{1} = 23,3$$

Assim, em média, os alunos levam 23,3 meses para concluir o mestrado.

Gabarito: Errado.

3. (CESPE/FUB/2022) A tabela de frequência a seguir mostra dados coletados em uma pesquisa para se verificar o número de disciplinas que os estudantes de determinada universidade estão cursando por semestre.

Disciplinas	2	3	4	5	6	7	8
Estudantes	10	15	40	35	28	10	4

Considerando essas informações, julgue o item seguinte.

Em média, os alunos cursam entre 4 e 5 disciplinas por semestre.

Comentários:

Calculando a média da distribuição, temos que:

$$\bar{x} = \frac{(2 \times 10) + (3 \times 15) + (4 \times 40) + (5 \times 35) + (6 \times 28) + (7 \times 10) + (8 \times 4)}{10 + 15 + 40 + 35 + 28 + 10 + 4}$$
$$\bar{x} = \frac{670}{142} = 4,71$$

Portanto, os alunos cursam entre 4 e 5 disciplinas por semestre.

Gabarito: Certo.

4. (CESPE/PC RO/2022)

Estrato (h)	Média amostral do estrato (\overline{X}_h)	Peso do estrato (W_h)
1	5	0,1

2	4	0,4
3	3	0,5

Considerando-se que o quadro anterior mostre os resultados de uma amostragem aleatória estratificada de tamanho 1.000 efetuada sobre uma população de tamanho 5.000.000, a estimativa da média populacional é igual a

- a) 4,0.
- b) 3,9.
- c) 3,8.
- d) 3,7.
- e) 3,6.

Comentários:

Vamos calcular a média da distribuição. Já temos a média amostral de cada estrato na tabela, portanto, basta multiplicarmos cada média por seu respectivo peso e dividirmos o resultado pelo somatório dos pesos, que correspondem às frequências:

$$\bar{x} = \frac{(5 \times 0.1) + (4 \times 0.4) + (3 \times 0.5)}{0.1 + 0.4 + 0.5}$$
$$\bar{x} = \frac{3.6}{1} = 3.6$$

Gabarito: E.

5. (CESPE/PETROBRAS/2022)

Tabela A		
Classes	Freq.	
10-12	3	
12-14	7	
14-16	9	
16-18	12	
18-20	8	
20-22	6	

22-24	4
24-26	2

Tabela B				
Classes	Freq.			
2-4	1			
4-6	4			
6-8	5			
8-10	7			
10-12	10			
12-14	13			
14-16	17			
16-18	21			
18-20	18			
20-22	15			
22-24	11			
24-26	9			
26-28	6			
28-30	3			
30-32	2			

Com base nas tabelas de frequência A e B apresentadas anteriormente, julgue o item a seguir.

As médias aritméticas das séries A e B são idênticas, considerando o arredondamento até a segunda casa decimal.

Comentários:

Nessa questão, temos duas tabelas de dados agrupados em classes. Inicialmente, precisaremos calcular a média aritmética dos dados. Para isso, multiplicaremos os pontos médios de cada classe por suas respectivas frequências. Reescrevendo as tabelas, temos:

Tabela A				
x	f	PM	$PM \times f$	
10-12	3	11	$11 \times 3 = 33$	
12-14	7	13	$13 \times 7 = 91$	

14-16	9	15	$15 \times 9 = 135$
16-18	12	17	$17 \times 12 = 204$
18-20	8	19	$19 \times 8 = 152$
20-22	6	21	$21 \times 6 = 126$
22-24	4	23	$23 \times 4 = 92$
24-26	2	25	$25 \times 2 = 50$
Total	51		883

A média para a tabela é dada pela divisão entre os dois totais:

$$\bar{x}_A = \frac{883}{51} = 17,31$$

Vamos adotar o mesmo procedimento para a tabela B:

Tabela B				
\boldsymbol{x}	f	PM	$PM \times f$	
2-4	1	3	$3 \times 1 = 3$	
4-6	4	5	$5 \times 4 = 20$	
6-8	5	7	$7 \times 5 = 35$	
8-10	7	9	$9 \times 7 = 63$	
10-12	10	11	$11 \times 10 = 110$	
12-14	13	13	$13 \times 13 = 169$	
14-16	17	15	$15 \times 17 = 255$	
16-18	21	17	$17 \times 21 = 357$	
18-20	18	19	$19 \times 18 = 342$	
20-22	15	21	$21 \times 15 = 315$	
22-24	11	23	$23 \times 11 = 253$	
24-26	9	25	$25 \times 9 = 225$	
26-28	6	27	$27 \times 6 = 162$	
28-30	3	29	$29 \times 3 = 87$	
30-32	2	31	$31 \times 2 = 62$	
Total	142		2.458	

Calculando a média para a tabela B, temos:

$$\bar{x}_B = \frac{2458}{142} = 17,31$$

Perceba que calculamos os valores das médias utilizando apenas duas casas decimais, logo, considerando o arredondamento até a segunda casa decimal, as médias aritméticas de A e B são sim idênticas.

Gabarito: Certo.

6. (CESPE/TELEBRAS/2022)

Considerando que o histograma apresentado descreve a distribuição de uma variável quantitativa X por meio de frequências absolutas, julgue o item que se segue.

A média amostral obtida com base nos pontos médios dos intervalos de classe que constituem o histograma é superior a 13.

Comentários:

Em um histograma, os dados são agrupados em classes. Para calcularmos a média, precisamos multiplicar os pontos médios de cada classe por suas respectivas frequências. Organizando os dados do histograma em formato tabular, temos:

Classes (x)	Freq. (f)	PM	$x \times f$
0-5	50	2,5	$2.5 \times 50 = 125$
5-10	200	7,5	$7.5 \times 200 = 1500$
10-15	400	12,5	$12,5 \times 400 = 5000$
15-20	300	17,5	$17,5 \times 300 = 5250$
20-25	150	22,5	$22,5 \times 150 = 3375$
Total	1.100		15.250

Agora, basta dividirmos os dois totais e encontraremos a média:

$$\bar{x} = \frac{15.250}{1.100} = 13,86$$

Assim, temos que a média amostral é superior a 13.

Gabarito: Certo.

7. (CESPE/PETROBRAS/2022) O item a seguir é apresentada uma situação hipotética seguida de uma assertiva a ser julgada a respeito de probabilidade e estatística.

Os preços de um determinado produto em 10 diferentes lojas são dados na tabela a seguir.

N.º de lojas	2	3	1	2	2
Preço (R\$)	195	210	220	235	240

A média aritmética dos preços encontrados foi de R\$ 219,00.

Comentários:

Vamos reescrever a tabela multiplicando cada valor por suas respectivas frequências. Depois, somaremos todos os valores e todas as frequências e dividiremos um pelo outro, conforme mostrado a seguir:

Preço (R\$) (<i>x</i>)	195	210	220	235	240	Total
N.º de lojas (ƒ)	2	3	1	2	2	10
$x \times f$	390	630	220	470	480	2.190

Agora, basta dividirmos os totais:

$$\bar{x} = \frac{2190}{10} = 219$$

Gabarito: Certo.

8. (CESPE/PETROBRAS/2022) Uma pessoa realizou uma pesquisa em todos os postos de combustíveis de uma cidade com a finalidade de verificar a variação dos preços de gasolina na cidade. Após terminar a pesquisa e rever suas anotações, a pessoa percebeu que apagou, acidentalmente, o preço de um dos postos, ficando suas anotações conforme a tabela abaixo:

Preço da gasolina nos 20 postos da cidade

Preço(R\$)	6,40	6,80	6,50	6,10	6,30	?
Quantidade de postos que oferecem esse preço	10	5	2	1	1	1

Com base nessa situação hipotética, julgue o item a seguir.

Se, antes de ter apagado, a pessoa tivesse anotado a média aritmética dos preços e esse valor fosse igual a R\$ 6,50 então o preço apagado na tabela é inferior a essa média.

Comentários:

Vamos reescrever a tabela multiplicando cada valor por suas respectivas frequências. Para isso, denominaremos de P o preço apagado:

Preço(R\$) (x)	6,40	6,80	6,50	6,10	6,30	Р	Total
Frequência (f)	10	5	2	1	1	1	20
$x \times f$	64	34	13	6,10	6,30	Р	123,4+P

Conforme o enunciado, a média é igual a 6,50. Assim, podemos estabelecer que:

$$\bar{x} = \frac{123.4 + P}{20}$$

$$6,50 = \frac{123.4 + P}{20}$$

$$6,50 \times 20 = 123.4 + P$$

$$130 = 123.4 + P$$

$$P = 130 - 123.4$$

$$P = 6.6$$

Portanto, concluímos que o preço apagado é igual a R\$6,60, que é superior à média.

Gabarito: Errado.

9. (CESPE/PETROBRAS/2022) Uma pessoa realizou uma pesquisa em todos os postos de combustíveis de uma cidade com a finalidade de verificar a variação dos preços de gasolina na cidade. Após terminar a pesquisa e rever suas anotações, a pessoa percebeu que apagou, acidentalmente, o preço de um dos postos, ficando suas anotações conforme a tabela abaixo:

Preço da gasolina nos 20 postos da cidade

Preço(R\$)	6,40	6,80	6,50	6,10	6,30	?
Quantidade de postos que oferecem esse preço	10	5	2	1	1	1

Com base nessa situação hipotética, julgue o item a seguir.

Considere que um visitante passando por essa cidade escolha aleatoriamente um posto para abastecer o seu veículo. A probabilidade de ele escolher um posto em que o preço da gasolina esteja acima da média de preços é menor que 0,25.

Comentários:

Vamos reescrever a tabela multiplicando cada valor por suas respectivas frequências. Para isso, denominaremos de P o preço apagado:

Preço(R\$) (x)	6,40	6,80	6,50	6,10	6,30	Р	Total
Frequência (f)	10	5	2	1	1	1	20
$x \times f$	64	34	13	6,10	6,30	Р	123,4+P

Conforme o enunciado, a média é igual a 6,50. Assim, podemos estabelecer que:

$$\bar{x} = \frac{123,4 + P}{20}$$

$$6,50 = \frac{123,4 + P}{20}$$

$$6,50 \times 20 = 123,4 + P$$

$$130 = 123,4 + P$$

$$P = 130 - 123,4$$

$$P = 6,6$$

Portanto, concluímos que o preço apagado é igual a R\$6,60, que é superior à média.

Observando a tabela, percebemos que há somente dois preços acima da média, R\$ 6,80 com frequência 5 e R\$ 6,60 com frequência 1. Ora, se temos 20 postos e apenas 6 deles têm preços acima da média, então, para sabermos a probabilidade de escolha do visitante, basta encontrarmos a razão entre o número de casos favoráveis e o número de casos possíveis:

$$p = \frac{6}{20} = 0.3$$

Logo, a probabilidade é maior que 0,25.

Gabarito: Errado.

10. (CESPE/PETROBRAS/2022)

Х	Frequência Relativa
0	0,23
1	0,22
2	0,50
3	0,05

Considerando que a tabela acima mostra a distribuição de frequências de uma variável obtida com base em uma amostra aleatória simples de tamanho igual a , julgue o item que se segue.

A média amostral da variável é inferior a 1,5.

Comentários:

Para calcularmos a média, multiplicaremos os valores de X por suas respectivas frequências e, em seguida, somaremos os resultados de cada operação:

$$\bar{X} = 0 \times 0.23 + 1 \times 0.22 + 2 \times 0.50 + 3 \times 0.05 = 1.37$$

Logo, a média é inferior a 1,5.

Gabarito: Certo.

11. (CESPE/TCE-RJ/2021)

X Frequência Absoluta

0	5
1	10
2	20
3	15
Total	50

Considerando que a tabela precedente mostra a distribuição de frequências de uma variável quantitativa X, julgue o item a seguir.

A média amostral da variável em tela é inferior a 2.

Comentários:

Para calcularmos a média, multiplicaremos cada valor de X por sua respectiva frequência e, em seguida, dividiremos o somatório dessas parcelas pela soma das frequências:

$$\bar{X} = \frac{(0 \times 5) + (1 \times 10) + (2 \times 20) + (3 \times 15)}{50}$$

$$\bar{X} = \frac{10 + 40 + 45}{50}$$

$$\bar{X} = 1.9$$

Assim, temos que a média amostral é inferior a 2.

Gabarito: Certo.

12. (CESPE/APEX/2021) A distribuição de prejuízos financeiros causados por não conformidades em processos de determinada organização é dada pela tabela a seguir.

Prejuízos financeiros (em reais)	Não conformidades
1.000	5
2.000	7
3.000	8

5.000	5
10.000	3

Considerando-se essa situação hipotética, é correto afirmar que a média de prejuízos financeiros dessa organização, em reais, equivale a

- a) 750.
- b) 3.500.
- c) 4.250.
- d) 5.750.

Comentários:

Para calcularmos a média, multiplicamos cada prejuízo (x), por sua respectiva não conformidade (f). Depois, dividimos o somatório dessas parcelas pela soma das frequências, conforme demonstra a tabela a seguir:

x	Frequência (<i>f</i>)	$x \times f$
1.000	5	5000
2.000	7	14000
3.000	8	24000
5.000	5	25000
10.000	3	30000
Total	28	98000

Agora, basta dividirmos os totais:

$$\bar{x} = \frac{98.000}{28}$$

$$\bar{x} = 3.500$$

Assim, temos que a média de prejuízos é igual a 3.500.

Gabarito: B.

13. (FUNDATEC/SEPOG RS/2022) Considerando a tabela de frequência apresentada abaixo, referente à distribuição de uma determinada variável X, pode-se dizer que o valor aproximado da média de X é de:

X	Frequência
0 - 10	25
10 - 20	10
20 - 30	49
30 - 40	88
40 - 50	28
TOTAL	200

- a) 39,2.
- b) 34,2.
- c) 29,2.
- d) 24,2.
- e) 22,2.

Comentários:

Para encontrarmos a média de dados agrupados, precisamos multiplicar os pontos médios de cada intervalo por suas respectivas frequências. Em seguida, a soma desses produtos deve ser dividida pelo total de frequências. Organizando a tabela, temos:

Classe	Frequência (<i>f</i>)	Ponto Médios (X)	$X \times f$
0 - 10	25	5	125
10 - 20	10	15	150
20 - 30	49	25	1225
30 - 40	88	35	3080
40 - 50	28	45	1260

Total 200		5840
-----------	--	------

A média é calculada pela razão entre os dois totais:

$$\bar{X} = \frac{5840}{200} = 29,2$$

Gabarito: C.

14. (CESPE/SEDUC AL/2021) Com base em estatística, julgue o item a seguir.

Considere que, em uma turma de matemática, o professor tenha distribuído as notas da primeira avaliação dos alunos conforme a tabela apresentada adiante. Com base nos dados dessa tabela, é correto afirmar que a média das notas dessa turma na primeira avaliação foi superior a 5.

Frequência	Nota
3	0
7	2
8	4
10	6
8	8
4	10

Comentários:

Para encontrarmos a média, precisamos multiplicar cada nota por sua respectiva frequência. Em seguida, o somatório desse produto deve ser dividido pelo total de frequências. Reorganizando a tabela apresentada no enunciado:

X	f	$X \times f$
0	3	0

10 Total	40	40 210
40		40
8	8	64
6	10	60
4	8	32
2	7	14

A média será dada pela razão entre os dois totais:

$$\bar{X} = \frac{210}{40} = 5,25$$

Logo, a média das notas é superior a 5.

Gabarito: Certo.

15. (FUNDATEC/Pref. Ametista do Sul/2021) Para a escalação da seleção olímpica de futebol, temos as seguintes idades dos jogadores:

Quantidade de jogadores	Idades
2	17
3	18
4	19
5	20
6	21

Sendo assim, a média de idade da seleção olímpica é de:

- a) 19.
- b) 19,5.

- c) 20.
- d) 20,5.
- e) 21.

Comentários:

Para encontrarmos a média, basta multiplicarmos as quantidades de jogadores pelas respectivas idades (frequência). Em seguida, dividimos esse somatório pelo total de frequências. Reescrevendo a tabela apresentada na questão, temos:

i	Quantidade de jogadores (x)	Idades (f)	$x \times f$
1	2	17	34
2	3	18	54
3	4	19	76
4	5	20	100
5	6	21	126
Total	20		390

Agora, basta dividirmos os totais:

$$\bar{x} = \frac{2 \times 17 + 3 \times 18 + 4 \times 19 + 5 \times 20 + 6 \times 21}{2 + 3 + 4 + 5 + 6} = \frac{390}{20} = 19,5$$

Portanto, a média de idade da seleção olímpica é de 19,5.

Gabarito: B.

16. (VUNESP/EsFCEx/2021) Uma pane pode ocorrer em qualquer ponto de uma rede elétrica de 15 quilômetros, com mesma probabilidade. O custo de reparo da rede depende da distância do centro de serviço ao local da pane. Considere que o centro de serviço está na origem da rede e que o custo é de R\$ 300,00 para distâncias até 4 quilômetros, de R\$ 750,00 entre 4 e 10 e de R\$ 1.200,00 para distâncias acima de 10 quilômetros. O custo esperado do conserto de uma pane é:

- a) R\$ 780,00.
- b) R\$ 975,00.

- c) R\$ 800,00.
- d) R\$ 750,00.
- e) R\$ 977,00.

Comentários:

O custo esperado do conserto de uma pane é calculado por meio da média do custo de reparo ponderado pela frequência de falhas, para cada um dos intervalos mencionados. Vamos organizar as informações do enunciado em uma tabela para facilitar nosso entendimento:

Distâncias	Custo de reparo (X)	Frequência de falhas (f)	$X \times f$
0 ⊢ 4	300	(4-0)/15 = 4/15	80
4 ⊢ 10	750	(10-4)/15 = 6/15	300
10 ⊢ 15	1.200	(15-10)/15 = 5/15	400
Total		1,0	780

Agora, para calcular a média (custo esperado), basta dividir os totais:

$$\bar{x} = \frac{780}{1,0} = R$ 780,00$$

Gabarito: A.

17. (VUNESP/CODEN/2021) O quadro a seguir apresenta os salários de 16 funcionários de um dos departamentos de uma empresa.

Nº de funcionários	Salário (R\$)
4	1.500,00
6	2.500,00
4	4.000,00
2	10.000,00

Serão contratados mais 4 funcionários, todos com o mesmo salário, para esse departamento de modo que a média salarial dos 20 funcionários seja igual a R\$ 3.500,00. Assim, o salário de cada um desses novos funcionários será de

- a) R\$ 4.000,00.
- b) R\$ 3.750,00.
- c) R\$ 3.500,00.
- d) R\$ 3.250,00.
- e) R\$ 3.000,00.

Comentários:

A média aritmética é determinada pelo quociente entre a soma de todos os elementos e o número de elementos do conjunto. Conforme o enunciado, os 4 novos funcionários contratados vão receber um salário de x reais, fazendo com que a média salarial da empresa passe a ser R\$ 3.500 reais. Então, temos que:

$$\bar{x} = \frac{Soma}{n}$$

$$3.500 = \frac{4 \times 1.500 + 6 \times 2.500 + 4 \times 4.000 + 2 \times 10.000 + 4 \times x}{20}$$

$$70.000 = 6.000 + 15.000 + 16.000 + 20.000 + 4 \times x$$

$$70.000 = 57.000 + 4 \times x$$

$$13.000 = 4 \times x$$

$$x = \frac{13.000}{4}$$

$$x = 3.250 \ reais$$

Gabarito: D.

18. (VUNESP/AVAREPREV/2020) Uma loja trabalha com produtos que são classificados em apenas três tipos. Na tabela, constam os preços de venda de cada tipo do produto:

Tipo do produto	Preço unitário de venda
Α	R\$ 10,00
В	R\$ 12,00
С	R\$ 15,00

No último dia útil de funcionamento, foram vendidos produtos dos três tipos, sendo que, do total de unidades vendidas, $\frac{1}{4}$ foi de produtos do tipo A, $\frac{2}{5}$ foi de produtos do tipo B, e o restante, de produtos do tipo C. Naquele dia, o preço médio unitário de venda dos produtos vendidos foi de

- a) R\$ 11,95.
- b) R\$ 12,30.
- c) R\$ 12,55.
- d) R\$ 13,50.
- e) R\$ 13,95.

Comentários:

Segundo o enunciado, temos que:

- total de produtos do tipo A vendidos: $\frac{1}{4} = 25\%$;
- total de produtos do tipo B vendidos: $\frac{2}{5} = 40\%$;
- total de produtos do tipo C vendidos: 100% 25% 40% = 35%.

Portanto, o preço médio unitário de venda será definido como uma média ponderada, em que os pesos serão as porcentagens acima. Nesse sentido, devemos lembrar que a média ponderada é o somatório dos produtos de cada valor por seu respectivo peso, dividido pela soma dos pesos.

Logo,

$$\bar{x} = \frac{10 \times 25\% + 12 \times 40\% + 15 \times 35\%}{25\% + 40\% + 35\%}$$

$$\bar{x} = \frac{10 \times 25\% + 12 \times 40\% + 15 \times 35\%}{100\%}$$

$$\bar{x} = 10 \times 0.25 + 12 \times 0.40 + 15 \times 0.35$$

$$\bar{x} = 2.5 + 4.8 + 5.25$$

$$\bar{x} = R\$ 12.55$$

Gabarito: C.

19. (FGV/BANESTES/2018) Em uma empresa, os funcionários são classificados em atendentes, técnicos ou gerentes. A tabela abaixo mostra a quantidade de funcionários de cada categoria e o salário que cada um recebe.

Atendente	10	1800
Técnico	8	3000
Gerente	2	4200

Nessa empresa, o salário médio dos seus funcionários é de:

- a) 2480 reais;
- b) 2520 reais;
- c) 2640 reais;
- d) 2700 reais;
- e) 3000 reais.

Comentários:

Para calcular a média de dados agrupados por valor, devemos multiplicar cada valor pela sua respectiva frequência, somar os resultados e dividir pela soma das frequências:

$$\bar{x} = \frac{1.800 \times 10 + 3.000 \times 8 + 4.200 \times 2}{10 + 8 + 2}$$
$$\bar{x} = \frac{50.400}{20} = 2.520$$

Gabarito: B.

20. (VUNESP/CM de São José dos Campos/2018) Em um grupo de 10 pessoas, duas têm 40 anos, quatro têm 21 anos, uma tem 25 anos e três têm a mesma idade. Sabendo-se que a média aritmética das idades dessas 10 pessoas é 22,5 anos, a soma das idades desconhecidas corresponde, da soma de todas as idades, a

- a) 12%
- b) 14%
- c) 16%
- d) 18%
- e) 20%

Comentários:

Primeiro, organizaremos os dados do enunciado em uma tabela:

Pessoas	Idade
2	40

4	21
1	25
3	Х

Para calcular a média ponderada, multiplicaremos cada idade pela quantidade de pessoas, somaremos tudo e dividiremos o resultado pelo total de pessoas:

Pessoas	Pessoas Idade Pesso	
2	40	2 x 40 = 80
4	21	4 x 21 = 84
1	25	1 x 25 = 25
3	Х	3 x X

$$\bar{x} = \frac{80 + 84 + 25 + 3x}{10}$$

$$22,5 = \frac{80 + 84 + 25 + 3x}{10}$$

$$22,5 \times 10 = 80 + 84 + 25 + 3x$$

$$225 = 189 + 3x$$

$$36 = 3x$$

$$x = 12$$

Como cada idade desconhecida tem valor igual a 12, a soma das idades desconhecidas é 3 x 12 = 36. Além disso, a soma de todas as idades é $10 \times 22,5 = 225$, resultante da multiplicação da média pelo total de pessoas.

Finalmente, a questão quer saber que percentual a soma das idades desconhecidas (36) corresponde em relação à soma de todas as idades (225). Para isso, basta dividir o valor 36 pelo total e multiplicar o valor resultante por 100%, para transformá-lo em porcentagem:

$$\frac{36}{225} \times 100\% = 16\%$$

Gabarito: C.

21. (VUNESP/CM de São José dos Campos/2018) Em um concurso, a nota final de cada candidato é calculada pela média aritmética ponderada das notas das três fases de avaliação previstas, com pesos 2, 3 e 5, para as primeira, segunda e terceira fases, respectivamente. Para ser classificado no concurso, o candidato tem que atingir nota final maior ou igual a 6. Sendo assim, um candidato que tirou notas 5 e 6 nas primeira e segunda fases, respectivamente, para ser classificado no concurso, precisa tirar, na terceira fase, uma nota mínima igual a

- a) 6,2.
- b) 6,4.
- c) 6,6.
- d) 6,8.
- e) 7,0.

Comentários:

Vamos resumir os dados da questão em uma tabela:

Notas	Pesos	Notas x Pesos
5	2	5 x 2 = 10
6	3	6 x 3 = 18
Х	5	5x

Para calcular a média ponderada, multiplicaremos cada nota pelo seu respectivo peso, somaremos tudo e, em seguida, dividiremos pela soma dos pesos.

$$\bar{x} = \frac{5 \times 2 + 6 \times 3 + x \times 5}{2 + 3 + 5}$$
$$\bar{x} = \frac{28 + 5 \times x}{10}$$

Conforme o enunciado, esta média precisa ser maior ou igual a 6. Logo:

$$\frac{28 + 5 \times x}{10} \ge 6$$

$$28 + 5x \ge 60$$

$$5x \ge 32$$

$$x \ge 6.4$$

Gabarito: B.

22. (VUNESP/IPRESB/2017) A tabela mostra o número de horas extras de determinada semana, trabalhadas pelos funcionários de uma empresa.

Número de funcionários	Número de horas extras
3	5
2	4

4	6
?	3

Considerando-se o número total de funcionários que fizeram horas extras nessa semana, o número de horas extras por funcionário foi, na média, 4,25. O número de funcionários que fizeram 3 horas extras nessa semana foi

- a) 7.
- b) 6.
- c) 5.
- d) 4.
- e) 3.

Comentários:

Para calcularmos a média, devemos multiplicar a quantidade de horas extras pelo número de funcionários, somar tudo e dividir pelo total de funcionários. Para isso, adicionaremos uma coluna na tabela fornecida no enunciado:

Nº de funcionários	Nº de horas extras	Nº de funcionários x Nº de horas extras
3	5	3 x 5 =15
2	4	2 x 4 = 8
4	6	4 x 6 = 24
x	3	3x

Agora, basta calcularmos a média e igualarmos a 4,25:

$$\frac{15 + 8 + 24 + 3x}{3 + 2 + 4 + x} = 4,25$$

$$\frac{47 + 3x}{9 + x} = 4,25$$

$$4,25 \times (9 + x) = 47 + 3x$$

$$38,25 + 4,25x = 47 + 3x$$

$$4,25x - 3x = 47 - 38,25$$

$$1,25x = 8,75$$

$$x = \frac{8,75}{1,25} = 7$$

Gabarito: A.

23. (CESPE/DEPEN/2015)

Dado que a participação dos presidiários em cursos de qualificação profissional é um aspecto importante para a reintegração do egresso do sistema prisional à sociedade, foram realizados levantamentos estatísticos, nos anos de 2001 a 2009, a respeito do valor da educação e do trabalho em ambientes prisionais. Cada um desses levantamentos, cujos resultados são apresentados no gráfico, produziu uma estimativa anual do percentual P de indivíduos que participaram de um curso de qualificação profissional de curta duração, mas que não receberam o diploma por motivos diversos. Em 2001, 69,4% dos presidiários que participaram de um curso de qualificação profissional não receberam o diploma. No ano seguinte, 2002, esse percentual foi reduzido para 61,5%, caindo, em 2009, para 30,9%.

A partir das informações e do gráfico apresentados, julgue os itens que se seguem.

Caso a quantidade total de presidiários participantes de um curso de qualificação profissional em 2001 seja igual a N, e esse total em 2002 seja igual a 2N, a estimativa do percentual P de indivíduos que participaram de um curso de qualificação profissional de curta duração e que não receberam o diploma por motivos diversos nos anos de 2001 e 2002 é inferior a 65%.

Comentários:

Podemos resumir os dados do problema por meio da seguinte tabela:

Ano	Percentual de presidiários que participaram do curso e não receberam o diploma (x_i)	$ extsf{N}^{ extsf{Q}}$ de presidiários participantes do curso (f_i)
2001	69,4%	N
2002	61,5%	2N

Para calcular a média, multiplicaremos cada valor pela sua respectiva frequência, somaremos tudo e dividiremos pela frequência total.

$$\bar{x} = \frac{69,4\% \times N + 61,5\% \times 2N}{N + 2N}$$
$$\bar{x} = \frac{69,4\% \times N + 123\% \times N}{3N}$$

$$\bar{x} = \frac{192,4\% \times N}{3N} = \frac{192,4\%}{3} \cong 64,13\%$$

Gabarito: Certo.

24. (FGV/CGE-MA/2014) No ano de 2013 uma empresa exportadora de grãos, exportou em cada um dos três primeiros meses do ano, 21.000 toneladas de soja. Em cada um dos sete meses seguintes exportou 27.000 toneladas de soja e, em cada um dos dois últimos meses do ano exportou 15.000 toneladas de soja. Em 2013 essa empresa exportou por mês, em média, a quantidade de

- a) 5.250 toneladas.
- b) 15.750 toneladas.
- c) 21.000 toneladas.
- d) 23.500 toneladas.
- e) 25.250 toneladas.

Comentários:

Para facilitar a resolução da questão, podemos organizar os dados em formato de tabela:

Toneladas	Meses	Toneladas x Meses
21.000	3	21.000 x 3 = 63.000
27.000	7	27.000 x 7 = 189.000
15.000	2	15.000 x 2 = 30.000
Total	12	282.000

Para calcular a média dos dados agrupados por valor, devemos multiplicar cada valor pela sua respectiva frequência, somar todos os produtos, e dividir o resultado pela soma das frequências:

$$\bar{x} = \frac{21.000 \times 3 + 27.000 \times 7 + 15.000 \times 2}{12}$$

$$\bar{x} = \frac{63.000 + 189.000 + 30.000}{12}$$

$$\bar{x} = \frac{282.000}{12}$$

$$\bar{x} = 23.500$$

Gabarito: D.

25. (FCC/TRT 5ª Região/2013) Considere a tabela abaixo, referente à distribuição de frequências relativas dos salários dos 400 empregados de uma empresa no mês de agosto de 2013, sabendo-se que (m+n)=10%.

CLASSE DE SALÁRIOS (R\$)	FREQUÊNCIA RELATIVA (%)
$2.500 \vdash 3.500$	2 m
$3.500 \vdash 4.500$	5 n
4 . 500 ⊢ 5 . 500	4 m
5.500 ⊢ 6.500	6 n
6.500 ⊢ 7.500	3 m
TOTAL	100

O valor da média aritmética dos salários dos empregados foi obtido considerando-se que todos os valores incluídos num intervalo de classe são coincidentes com o ponto médio deste intervalo. O número de empregados correspondente ao intervalo de classe a que pertence o valor da média aritmética é igual a

- a) 80.
- b) 60.
- c) 40.
- d) 100.
- e) 120.

Comentários:

De acordo com o enunciado, a soma de todas as frequências relativas é 100%:

$$2m + 5n + 4m + 6n + 3m = 100\%$$

 $9m + 11n = 100\%$

Além disso, a questão informou que que m+n=10%. Portanto, teremos o seguinte sistema de equações lineares:

$$\begin{cases} 9m + 11n = 100\% \\ m + n = 10\% \end{cases}$$

Vamos multiplicar a segunda equação por (-9), para cancelarmos a variável m.

$$\begin{cases} 9m + 11n = 100\% \\ -9m - 9n = -90\% \end{cases}$$

Agora, somaremos as duas equações:

$$2n = 10\%$$

$$n = 5\%$$

Se m + n = 10% e n = 5%, então m = 5%.

Substituindo esses valores na tabela, teremos:

Classe de Salários (R\$)	Frequência Relativa (%)
2.500 + 3.500	10
3.500 + 4.500	25
4 . 500 ⊢ 5 . 500	20
5 . 500 ⊢ 6 . 500	30
6.500 ⊢ 7.500	15
Total	100

Para calcularmos a média aritmética, precisamos encontrar os pontos médios de cada classe. Depois, multiplicaremos cada ponto médio pela sua respectiva frequência e somaremos os resultados:

Classe de Salários (R\$)	Frequência Relativa (%)	PM_i	$PM_i \times f_i$
2.500 ⊢ 3.500	10	3.000	3.000 x 10 = 30.000
3.500 + 4.500	25	4.000	4.000 x 25 = 100.000
4 . 500 ⊢ 5 . 500	20	5.000	5.000 x 20 = 100.000
5.500 ⊢ 6.500	30	6.000	6.000 x 30 = 180.000
6.500 ⊢ 7.500	15	7.000	7.000 x 15 = 105.000
Total	100		515.000

Agora, basta dividir a soma obtida por 100, que é a frequência total:

$$\bar{x} = \frac{515.000}{100} = 5.150$$

Nesse tipo de questão, também podemos trabalhar o conceito de mudança de variável. Para isso, vamos adicionar uma nova coluna, com a variável transformada y_i . A mudança de variável que vamos adotar é a subtração do primeiro ponto médio e a divisão pela amplitude:

$$y_i = \frac{x_i - 3000}{1000}$$

Adotando essa mudança de variável, obteremos uma coluna com os números naturais 0, 1, 2, 3, ...:

Classe de Salários (R\$)	Frequência Relativa (%)	y_i	$y_i imes f_i$
2.500 ⊢ 3.500	10	0	0 x 10 = 0
3.500 + 4.500	25	1	1 x 25 = 25
4 . 500 ⊢ 5 . 500	20	2	2 x 20 = 40
5.500 ⊢ 6.500	30	3	3 x 30 = 90
6.500 ⊢ 7.500	15	4	4 x 15 = 60
Total	100		215

A média da variável y_i é:

$$\bar{y} = \frac{215}{100} = 2,15$$

Agora, calcularemos a média da variável original:

$$\bar{y} = \frac{\bar{x} - 3.000}{1.000}$$

$$2,15 = \frac{\bar{x} - 3.000}{1.000}$$

$$\bar{x} - 3.000 = 2,15 \times 1.000$$

$$\bar{x} - 3.000 = 2.150$$

$$\bar{x} = 5.150$$

A mudança de variável pode simplificar muito o cálculo da média.

Certo, vamos continuar a resolver a questão. Já descobrimos que a média está contida no intervalo **4**. **500** ⊢ **5**. **500**. Como esse intervalo contém 20% das observações e o total de empregados é 400, o número de empregados pertencente a essa classe é:

$$20\% \ de \ 400 \ = \frac{20}{100} \times 400 = 80$$

Gabarito: A.

26. (CESPE/CAM DEP/2012)

Para avaliar os gastos com transporte de determinada diretoria, um analista coletou amostras de despesas com transportes (em R\$) registradas por servidores dos setores1 e 2. Para cada setor, a amostra é constituída por 50 registros. Essas amostras foram organizadas graficamente, e os resultados são mostrados na figura acima. Nesta figura, as frequências absolutas estão indicadas nos histogramas correspondentes. Os dados foram os seguintes:

Setor 1					
308,73	311,80	358,33	359,89	371,53	379,82
383,76	388,66	391,53	394,65	414,60	416,38
418,34	419,42	427,85	428,58	432,06	436,61
442,49	450,53	450,98	452,35	471,70	473,11
476,76	481,46	484,89	490,07	499,87	500,52
502,06	513,80	514,39	521,96	522,18	526,42
528,76	531,53	547,91	572,66	591,43	596,99
609,44	632,15	639,71	677,48	683,76	688,76
723,79	767,53				
Setor 2					
488,37	493,73	547,72	552,66	567,94	571,49
572,26	582,00	583,63	594,77	598,46	619,25
624,20	631,03	634,51	637,21	655,70	657,56

663,81	670,12	671,90	673,78	684,69	685,98
693,35	698,58	708,78	719,80	721,16	734,84
735,94	746,34	754,83	756,10	756,96	760,80
762,29	766,24	770,11	797,73	804,06	805,97
807,29	832,83	844,00	866,77	878,27	897,09
943,10	963,25				

Considerando essas informações, julgue o item.

A despesa média com transporte dos servidores do setor 1 é superior a R\$ 500,00.

Comentários:

Para simplificar a resolução, vamos organizar os dados em formato tabular. Para isso, precisamos saber o ponto médio de cada classe bem suas respectivas frequências. A frequência absoluta é dada pela frequência relativa dividida pelo total de observações. Por fim, iremos multiplicar as frequências absolutas pelos pontos médios. Assim:

Classes	Ponto médio	Frequência absoluta	Frequência relativa	Frequência x Ponto médio
300 - 400	350	10	0,2	$350 \times 0.2 = 70$
400 - 500	450	19	0,38	$450 \times 0.38 = 171$
500 - 600	550	13	0,26	$550 \times 0.26 = 143$
600 - 700	650	6	0,12	$650 \times 0,12 = 78$
700 - 800	750	2	0,04	$750 \times 0.04 = 30$
	Total	50		

Agora, basta somarmos o resultado dessa última multiplicação da tabela e encontraremos a média:

$$\bar{x} = \frac{70 + 171 + 143 + 78 + 30}{0.2 + 0.38 + 0.26 + 0.12 + 0.04}$$
$$\bar{x} = 492$$

Gabarito: Errado.

27. (CESPE/PRF/2012)

1	50
2	20
3	15
4	10
5	5

A tabela acima mostra a distribuição da quantidade Q de pessoas transportadas, incluindo o condutor, por veículo de passeio circulando em determinado município, obtida como resultado de uma pesquisa feita nesse município para se avaliar o sistema de transporte local. Nessa tabela, P representa a porcentagem dos veículos de passeio circulando no município que transportam Q pessoas, para Q = 1, ..., 5. Com base nessas informações, julgue o seguinte item.

Em média, cada veículo de passeio que circula no referido município transporta duas pessoas. Portanto, se, em determinado momento, houver 10 mil veículos circulando nesse município, a quantidade esperada de pessoas que estão sendo transportadas por todos esses veículos, incluindo-se os condutores, será igual a 20 mil.

Comentários:

Inicialmente, precisamos verificar se a média realmente vale 2. Para isso, basta multiplicarmos a quantidade de pessoas por suas respectivas frequências. Assim, temos:

$$1 \times 0.5 = 0.5$$
$$2 \times 0.2 = 0.4$$
$$3 \times 0.15 = 0.45$$
$$4 \times 0.1 = 0.4$$
$$5 \times 0.05 = 0.25$$

Somando todos os resultados:

$$\frac{0.5 + 0.4 + 0.45 + 0.4 + 0.25}{0.5 + 0.2 + 0.15 + 0.1 + 0.05} = 2$$

Portanto, a média realmente vale 2.

Assim, basta multiplicarmos a média por 10.000:

$$2 \times 10.000 = 20.000 \ pessoas$$

Gabarito: Certo.

28. (FUNDATEC/CM de Imbé-RS/ 2012) O histograma abaixo demonstra as frequências absolutas dos salários, em reais, de 100 funcionários de um determinado setor da Câmara Municipal de uma cidade, no mês de outubro deste ano.

Considerando as informações descritas acima, a melhor estimativa da média salarial desses funcionários corresponde a

- a) R\$800,00.
- b) R\$810,00.
- c) R\$860,00.
- d) R\$880,00.
- e) R\$890,00.

Comentários:

Para calcularmos a média, vamos substituir cada intervalo de classe pelo seu respectivo ponto médio:

PM_i	f_i
650	10
750	15
850	30
950	45

Agora, multiplicaremos cada valor pela sua respectiva frequência e somaremos os resultados:

PM_i	f_i	$PM_i \times f_i$
650	10	6.500

750	15	11.250
850	30	25.500
950	45	42.750
Total	100	86.000

Portanto, a média é igual a:

$$\bar{x} = \frac{\sum PM_i \times f_i}{\sum f_i} = \frac{86.000}{100} = 860$$

Gabarito: C.

29. (CESPE/INSS/2008)

i	Massa do ovo produzido (T) em gramas	Percentual (P_i)
1	$50 \le T \le 200$	48%
2	$200 \le T \le 300$	36%
3	$300 \le T \le 500$	12%
4	$500 \le T \le 1.000$	4%
	Total	100%

Segundo uma associação de indústrias de chocolate, em 2008 serão produzidos 100 milhões de ovos de Páscoa. A tabela acima apresenta a distribuição dos ovos segundo a massa de cada ovo e as quantidades produzidas nos anos anteriores.

Correio Braziliense, 17/2/2008, p. 26 (com adaptações).

Com base nessas informações, julgue o item subsequente.

A produção, em toneladas, esperada para o ano de 2008 é superior a 22 mil e inferior a 23 mil ovos de Páscoa.

Comentários:

De início, vamos calcular o ponto médio das classes e multiplicar pelas respectivas frequências. Organizando as informações em formato tabular para facilitar o entendimento:

Classes	Pontos médios	Frequência relativa	Ponto médio x frequência relativa
50 – 200	125	0,48	60
200 – 300	250	0,36	90
300 – 500	400	0,12	48
500 - 1.000	750	0,04	30
Т	otal	1	228

Portanto, temos que a média é:

$$\bar{x} = 228$$

Agora, basta multiplicarmos pela quantidade de ovos que serão produzidos:

$$228 \times 100 \times 10^6 = 22.800 \times 10^6 \ em \ gram as$$

Em toneladas fica:

$$228 \times 100 = 22.800 \ toneladas$$

Gabarito: Certo.

30. (CESPE/SEFAZ MT/2004) Considere a seguinte situação hipotética.

Um órgão do governo recebeu pela Internet denúncias de sonegação de impostos estaduais contra 600 pequenas empresas. Denúncias contra outras 200 pequenas empresas foram encaminhadas pessoalmente para esse órgão. Para a apuração das denúncias, foram realizadas auditorias nas 800 empresas denunciadas. Como resultado dessas auditorias, foi elaborada a tabela abaixo, que apresenta um quadro das empresas denunciadas e os correspondentes débitos fiscais ao governo. Das empresas denunciadas, observou-se que apenas 430 tinham débitos fiscais.

	Valor do débito fiscal (VDF), em R\$ mil, apurado após auditoria na empresa denunciada				
Forma de recebimento da denúncia	0 < <i>VDF</i> < 1	$1 \le VDF < 2$	2 ≤ <i>VDF</i> < 3	$3 \le VDF \\ \le 4$	Total
Pela internet	60	100	50	30	240
Pessoalmente	20	120	40	10	190

Total	80	220	90	40	430*
-------	----	-----	----	----	------

Nota: *Para as demais empresas, VDF=0

Com base na situação hipotética acima e de acordo com as informações apresentadas, julgue o item que se segue.

O débito fiscal médio das empresas denunciadas por meio da Internet é menor que o débito fiscal médio daquelas denunciadas pessoalmente.

Comentários:

Para resolvermos a questão precisamos, inicialmente, calcular o ponto médio de cada classe e depois multiplicar pela frequência das observações em cada classe. Faremos isso para as denúncias via internet e pessoalmente. Para facilitar a compreensão, vamos montar uma tabela com esses dados:

Pela internet					
Classes	Pontos médios	Frequência relativa	Pontos médios x frequência		
0 - 1	0,5	60	30		
1 - 2	1,5	100	150		
2 - 3	2,5	50	125		
3 - 4	3,5	30	105		
Total		240	410		

A média de débitos das empresas denunciadas pela internet é:

$$\bar{x} = \frac{410}{600}$$

$$\bar{x} = 0.68$$

Lembrando que foram denunciadas 600 empresas nessa modalidade.

Pessoalmente					
Classes	Pontos médios	Frequência relativa	Pontos médios x frequência		

0 - 1	0,5	20	10
1 - 2	1,5	120	180
2 - 3	2,5	40	100
3 - 4	3,5	10	35
Total		190	325

A média de débitos das empresas denunciadas pessoalmente é:

$$\bar{x} = \frac{325}{200}$$

$$\bar{x} = 1,62$$

Lembrando que foram denunciadas 200 empresas nessa modalidade.

Portanto, o débito médio das denúncias feitas pela internet é maior que as feitas pessoalmente.

Gabarito: Certo.

QUESTÕES COMENTADAS

Média Geométrica

- 1. (FCC/DPE-RS/2013) A média geométrica dos números 4, 8 e 16 é
- a) maior que a respectiva média aritmética.
- b) inferior a 6.
- c) igual a 8.
- d) igual a 4.
- e) superior a 9.

Comentários:

A média geométrica de 3 números é a raiz cúbica do produto desses números:

$$G = \sqrt[3]{4 \times 8 \times 16} = \sqrt[3]{64 \times 8}$$

Como sabemos, a raiz cúbica de 64 é 4 e a raiz cúbica de 8 é 2. Logo:

$$G = \sqrt[3]{64 \times 8} = 4 \times 2 = 8$$

Gabarito: C.

2. (CESPE/CBM-DF/2011) A média aritmética entre dois números reais não negativos a e b é definida por $M=\frac{a+b}{2}$, enquanto sua média geométrica é dada por $G=\sqrt{a\times b}$. São diversas as possíveis aplicações dessas duas médias no cotidiano. Por exemplo, se um investimento tem um rendimento de x% no primeiro ano e de y% no segundo ano, o rendimento médio anual será uma taxa equivalente à média aritmética entre x e y, sob um regime de capitalização simples, e à média geométrica entre 1+x e 1+y subtraída de uma unidade, sob um regime de capitalização composta, em que x e y devem ser expressos na forma unitária.

Com base nessas informações, julgue o próximo item.

Se um investidor obtiver, em dois anos, rendimento médio anual de 10% em um investimento regido pelo sistema de capitalização composta, e se o rendimento desse investidor, no segundo ano, for equivalente a 12%, então seu rendimento no primeiro ano será inferior a 7,8%.

Comentários:

Nessa questão, precisaremos calcular o rendimento médio de um investimento por meio da média geométrica. Para tanto, usaremos a fórmula da média geométrica dada no enunciado $G = \sqrt{a \times b}$.

O investimento tem rendimento x% no primeiro ano e de y% no segundo ano. Tomemos R para o rendimento médio anual. Montando a equação, temos:

$$R = \sqrt{(1+x)\times(1+y)} - 1$$

Substituindo rendimento médio anual de 10% (0,1) pelo sistema de capitalização composta, e rendimento de 12% (0,12) no segundo ano, temos:

$$0,1 = \sqrt{(1+x) \times (1+0,12)} - 1$$

$$1,1 = \sqrt{(1+x) \times 1,12}$$

$$1,21 = (1+x) \times 1,12$$

$$1+x = \frac{1,21}{1,12}$$

$$x = 1,08 - 1$$

$$x = 0,08$$

$$x = 80\%$$

Gabarito: Errado.

- 3. (FGV/SEFAZ-RJ/2011) Em uma repartição, foi tomada uma amostra do número de filhos de 4 funcionários. O resultado foi {2, 1, 4, 2}. A média geométrica simples dessa amostra é
- a) 2,25
- b) 1,75
- c) 2
- d) 2,4
- e) 2,5

Comentários:

A média geométrica de 4 números é a raiz quarta do produto desses números:

$$G = \sqrt[4]{2 \times 1 \times 4 \times 2} = \sqrt[4]{16} = 2$$

Gabarito: C.

QUESTÕES COMENTADAS

Média Harmônica

1. (FCC/SEFAZ-GO/2018) Os matemáticos definem diferentes tipos de médias entre dois números positivos e, para cada aplicação, escolhem qual o tipo mais adequado a ser utilizado. A média harmônica H entre os números positivos a e b, por exemplo, é definida como o inverso da média aritmética dos inversos desses números, ou seja,

$$H = \frac{1}{\frac{1}{a} + \frac{1}{b}}$$

A média aritmética dos números 5 e 20 supera a média harmônica desses mesmos números em

- a) 4,75 unidades.
- b) 5 unidades.
- c) 4 unidades.
- d) 4,25 unidades.
- e) 4,5 unidades.

Comentários:

A média aritmética é dada por:

$$\frac{5+20}{2} = 12,5$$

A média harmônica é o inverso da média aritmética dos inversos. O primeiro passo é calcularmos a soma dos inversos:

$$\frac{1}{5} + \frac{1}{20} = \frac{4+1}{20} = \frac{5}{20} = \frac{1}{4}$$

Assim, podemos calcular a média aritmética dos inversos. Para isso, basta dividirmos a soma dos termos por 2:

$$\frac{\frac{1}{4}}{2} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$

Portanto, a média aritmética supera a média harmônica em 12,5-8=4,5 unidades.

Também, podemos calcular a média harmônica de dois números de forma mais rápida. Para tanto, basta desenvolvermos a própria fórmula que foi dada na questão:

$$H = \frac{1}{\frac{1}{\underline{a} + \frac{1}{\underline{b}}}}$$

$$H = \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

$$H = \frac{2}{\frac{a+b}{a \times b}}$$

$$H = \frac{2 \times a \times b}{a+b}$$

Assim, a média harmônica de dois números é o quociente do dobro do produto dos números pela soma dos números. Voltando ao enunciado, queremos calcular a média harmônica dos números 5 e 20, logo:

$$H = \frac{2 \times 5 \times 20}{5 + 20} = \frac{200}{25} = 8$$

Gabarito: E.

2. (FCC/ARTESP/2017) Considere as seguintes informações

I. (A) = média harmônica dos números 4, 6 e 12.

II. (B) = média geométrica dos números 4, 6 e 12.

A média aritmética entre (A) e (B) é igual a

- a) 6,81.
- b) 5,68.
- c) 6,30.
- d) 5,41.
- e) 6,93.

Comentários:

A média geométrica é:

$$G = \sqrt[3]{4 \times 6 \times 12}$$

$$G = \sqrt[3]{2^2 \times 2 \times 3 \times 2^2 \times 3}$$

$$G = 2 \times \sqrt[3]{36}$$

Agora, a nossa dificuldade será encontrar a raiz cúbica de 36. Sabemos que $3^3 = 27$ e que $4^3 = 64$. Portanto, o número que procuramos está entre 3 e 4. E deve ser ligeiramente maior que 3. Vamos aproximar uma só casa, testando valores:

$$3,1^3 = 29,791$$

$$3,2^3 = 32,768$$

$$3.3^3 = 35.937$$

Portanto, já chegamos bem próximo do valor que queríamos (36). Assim, vamos considerar a raiz cúbica de 36 aproximadamente igual a 3,3.

$$G = 2 \times \sqrt[3]{36}$$
$$G = 2 \times 3.3$$
$$G = 6.6$$

A média harmônica é

$$H = \frac{1}{\frac{1}{4} + \frac{1}{6} + \frac{1}{12}}$$

Vamos calcular, em primeiro lugar, a soma dos inversos:

$$\frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{3+2+1}{12} = \frac{6}{12} = \frac{1}{2}$$

Agora, vamos calcular o valor médio da soma dos inversos:

$$\frac{\frac{1}{4} + \frac{1}{6} + \frac{1}{12}}{3} = \frac{\frac{1}{2}}{3} = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

Finalmente, vamos encontrar o inverso da média da média aritmética dos inversos:

$$H = \frac{1}{\frac{1}{4} + \frac{1}{6} + \frac{1}{12}} = \frac{1}{\frac{1}{6}} = 1 \times 6 = 6$$

$$H = 6$$

Agora, vamos descobrir o valor da média aritmética entre G e H:

$$\frac{6,6+6}{2} = 6,3$$

Gabarito: C.

QUESTÕES COMENTADAS

Desigualdade das Médias

- 1. (VUNESP/PB Saúde/2021) Dois números positivos apresentam uma média aritmética e uma média geométrica iguais a 10 e 8, respectivamente. A respectiva média harmônica desses dois números apresenta um valor igual a
- a) 6,4.
- b) 8,0.
- c) 10,0.
- d) 12,8.
- e) 16,0.

Comentários:

Com base no que estudamos sobre desigualdade das médias, sabemos que, se os números são diferentes, a média aritmética é maior que a geométrica que é maior do que a harmônica. Se os números são iguais, as médias são iguais.

$$A \geq G \geq H$$

Portanto, a média harmônica deve ser menor que 8, restando apenas a alternativa A.

Gabarito: A.

2. (CESPE/TCU/2009) Uma instituição realizou levantamento com vistas a comparar os valores de dez diferentes tipos de itens de consumo. Para cada item $i(i=1,2,\ldots,10)$, foi registrado um par de valores (x_i,y_i) , em que xi representa o valor do item i estabelecido pela empresa A, e y_i representa o valor desse mesmo item fornecido pela empresa B. Os seguintes resultados foram encontrados:

$$\sum_{i=1}^{10} (x_i + y_i) = 130 \qquad \sum_{i=1}^{10} (x_i - y_i) = 10$$

$$\sum_{i=1}^{10} (x_i + y_i)^2 = 1.790 \qquad \sum_{i=1}^{10} (x_i - y_i)^2 = 26$$

Com base nessas informações, julgue o item a seguir.

A média harmônica dos valores $x_1, x_2, ..., x_{10}$ é menor que 8.

Comentários:

Essa questão deve ser resolvida utilizando os conceitos de desigualdades das médias. Ao invés de começarmos calculando a média harmônica, partiremos do cálculo da média aritmética. Para isso, utilizaremos as duas primeiras equações, omitindo os limites e desmembrando as equações:

$$\sum (x_i + y_i) = 130$$

$$\sum (x_i) + \sum (y_i) = 130$$

$$\sum (x_i - y_i) = 10$$

$$\sum (x_i) - \sum (y_i) = 10$$

Somando as equações, temos:

$$\sum (x_i) + \sum (y_i) + \sum (x_i) - \sum (y_i) = 130 + 10$$
$$2 \sum (x_i) = 140$$
$$\sum (x_i) = \frac{140}{2}$$
$$\sum (x_i) = 70$$

Assim, descobrimos o valor de \bar{x} :

$$\bar{x} = \frac{\sum (x_i)}{10}$$
$$\bar{x} = 7$$

Sabemos que a média harmônica é sempre menor ou igual a média aritmética. Assim, concluímos que a média harmônica é menor ou igual a 7.

Gabarito: Certo.

3. (CESPE/TST/2008) Considere que, em um ambiente de trabalho industrial, as seguintes medições acerca da poluição do ar tenham sido observadas: 1, 6, 4, 3, 2, 3, 1, 5, 1, 4. Nessa situação, julgue o item que se segue.

As médias harmônica e geométrica são ambas inferiores a 3.

Comentários:

Antes de mais nada, devemos ter em mente que os cálculos da média geométrica e da média harmônica, para 10 números, exigiriam do candidato um esforço descomunal. Então, certamente a questão tem um caminho mais fácil. Vamos começar pela média aritmética:

$$\bar{x} = \frac{1+6+4+3+2+3+1+5+1+4}{10}$$
$$\bar{x} = \frac{30}{10} = 3$$

Agora, utilizaremos a desigualdade das médias. Quando pelo menos um dos números é diferente dos demais, a média aritmética é maior do que a média geométrica que, por sua vez, é maior que a média harmônica:

$$\bar{x} > G > H$$

Dessa forma, a média harmônica e a média geométrica são menores do que 3.

Gabarito: Certo.

LISTA DE QUESTÕES

Média Aritmética Simples

1. (FCC/TRT 18ª Região/2023) Em uma turma de 60 alunos, 10 foram reprovados. Sabendo-se que a mé	dia
dos alunos aprovados foi 8,5 e a média dos alunos reprovados foi de 3,4, a média da turma foi	

- a) 8,35
- b) 7,65
- c) 7,95
- d) 6,95
- e) 7,05

2. (FUNDATEC/CIGA-SC/2023) Luciana está contabilizando quanto tempo utiliza as redes sociais e anotou a quantidade de minutos diários em que utilizou as redes em uma semana conforme a tabela a seguir:

Dia da semana	Tempo em minutos
Segunda-feira	75
Terça-feira	63
Quarta-feira	124
Quinta-feira	25
Sexta-feira	133
Sábado	92
Domingo	118

A média, em horas, que Luciana utilizou as redes sociais durante esses sete dias foi de:

- a) 1,3 horas.
- b) 1,9 horas.
- c) 1,5 horas.
- d) 1 hora.
- e) 1,4 horas.

Loja M Loja P
6. (VUNESP/DPE SP/2023) Considere a tabela de preços de quatro produtos obtidos na Loja Me na Loja P.
e) 25 segundos.
d) 20 segundos.
c) 15 segundos.
b) 10 segundos.
a) 5 segundos.
5. (VUNESP/Pref. Marília/2023) Um álbum possui 9 músicas, e o tempo médio de duração de cada música é 3 minutos e 20 segundos. As três primeiras músicas têm duração 2 minutos e 40 segundos cada, e as três músicas seguintes têm duração de 4 minutos e 10 segundos cada. A média aritmética da duração das três últimas músicas desse álbum é 3 minutos e
e) R\$ 835,00 e R\$ 845,00.
d) R\$ 825,00 e R\$ 835,00.
c) R\$ 815,00 e R\$ 825,00.
b) R\$ 805,00 e R\$ 815,00.
a) R\$ 795,00 e R\$ 805,00.
4. (VUNESP/Pref. Jaguariúna/2023) A média aritmética simples de três orçamentos para o mesmo serviço é de R\$ 860,00. Tomando-se apenas os orçamentos de valores mais alto e mais baixo, a média aritmética simples é de R\$ 880,00. Logo, o valor do terceiro orçamento está compreendido entre
e) 8,25
d) 8,45
c) 9,25
b) 9,55
a) 10
3. (IBADE/Fundação Faceli/2023) Uma sala de aula possui 30 alunos. A média das notas dos alunos da turma em matemática é igual à 8. Um aluno novo chega à turma e decide que irá ajudar a elevar a média geral. Dessa forma, qual deve ser a nota do aluno para que a média suba para 8,05?

Produto A	R\$ 12,50	Produto A	R\$ 13,00
Produto B	R\$ 17,00	Produto B	R\$ 16,20
Produto C	R\$ 21,50	Produto C	R\$ 19,80
Produto D	R\$ 28,00	Produto D	R\$ 31,00

Calculando a média aritmética simples dos preços desses quatro produtos em cada loja, é correto afirmar que a média dos preços da Loja M é menor do que a média dos preços da Loja P em uma porcentagem igual a

b) 0,50.

c) 0,75.

d) 1,00.

e) 1,25.

7. (VUNESP/CAMPREV/2023) A tabela mostra o número de unidades (representados por x e múltiplos de x) de veículos eletrificados vendidos mensalmente por uma concessionária no último quadrimestre de 2022.

Mês	Nº de unidades
Setembro	х
Outubro	1,2 x
Novembro	1,4 x
Dezembro	2 x

Sabendo-se que, em outubro, foram vendidas 4 unidades a mais que o número de unidades vendidas em setembro, é correto afirmar que a média aritmética do número de unidades vendidas mensalmente nesse período é igual a

١.	
a	しつい

b) 22.

c) 24.

d) 26.

(م	128
_	

8. (VUNESP/CAMPREV/2023) Em uma ação judicial, um advogado precisa informar o valor da média
aritmética simples das 5 últimas contribuições previdenciárias de seu cliente, que foram de R\$ 350,00, R\$
375,00, R\$ 360,00, R\$ 345,00 e R\$ 355,00. Feito corretamente o cálculo solicitado, o advogado informará
o valor de

- a) R\$ 358,00.
- b) R\$ 357,00.
- c) R\$ 356,00.
- d) R\$ 355,00.
- e) R\$ 354,00.

9. (CESPE/FUB/2022) No item a seguir apresenta uma situação hipotética seguida de uma assertiva a ser julgada com relação a análise combinatória, probabilidade e estatística.

A média aritmética simples das idades dos seis servidores lotados em um instituto da UnB é de 35 anos. Um novo servidor chega e integra a equipe desse instituto, então a média aritmética simples das idades passa a ser de 38 anos. Nesse caso, a idade do novo servidor é de 41 anos.

10. (CESPE/PETROBRAS/2022) No que diz respeito aos conceitos e cálculos utilizados em probabilidade e estatística, julgue o item a seguir.

Se, de 2016 a 2020, o total de petróleo produzido pela PETROBRAS, em milhões de barris, foi respectivamente 2,51; 2,62; 2,59; 2,78 e 2,94, então, nesse período, a PETROBRAS produziu, em média, mais de 2,72 milhões de barris de petróleo.

11. (CESPE/TELEBRAS/2022) Com respeito ao conjunto de dados {5a, 2a, 2a}, em que a representa uma constante não nula, julgue o próximo item.

A média amostral desse conjunto de dados é igual a 2a.

12. (FCC/TRT 5ª Região/2022) Numa prova com dez questões, a pontuação na correção de cada questão pode variar entre 0 e 10 pontos. A média dos pontos obtidos por um estudante nas 6 primeiras questões é 6,5. A pontuação média nas quatro últimas questões para que ele atinja um total de 71 pontos na prova deverá ser:

a) 7									
b) 7,5									
c) 8									
d) 8,5									
e) 9									
13. (FCC/TRT 5 ^a pela biblioteca.	_	/2022) Na	tabela, te	emos o re	gistro do	número s	semanal d	e livros n	ovos recebido
	Sem 1	Sem 2	Sem 3	Sem 4	Sem 5	Sem 6	Sem 7	Sem 8	
	15	8	12	?	?	30	26	35	
Sabe-se que a média semanal de recebimento de livros é de 21 livros; no entanto, os números correspondentes às semanas 4 e 5 foram perdidos. A informação que foi recuperada é que o número de livros recebidos na semana 5 é 10% superior ao número da semana 4. Na semana 5 foram recebidos:									
a) 12 livros.									
b) 15 livros.									
c) 19 livros.									
d) 22 livros.									
e) 25 livros.									
14. (FCC/TRT 23ª Região/2022) Uma escola de ensino médio possui 30 alunos e 5 professores. A idade média dos alunos é de 16 anos e a dos professores é de 34 anos. Um professor acaba de ser contratado e a idade média dessas 36 pessoas passou a ser de 19 anos.									
A idade do novo	o profess	sor é:							
a) 56 anos.									
b) 26 anos.									
c) 35 anos.									
d) 40 anos.									
e) 34 anos.									

15. (FCC/PGE AM/2022) Uma ginasta executa três vezes uma determinada prova. Suas notas, na primeira e segunda tentativas foram, respectivamente, metade e dois terços da nota da terceira tentativa. A média aritmética das notas das três tentativas foi de 32,5 pontos. A nota da primeira prova foi
a) 20,5 pontos.
b) 30,0 pontos.
c) 22,5 pontos.
d) 45,0 pontos.
e) 20,0 pontos.
16. (VUNESP/CMSJC/2022) A média das idades dos funcionários de uma empresa é igual a 44 anos. No próximo mês, 5 funcionários irão se aposentar, sendo que um tem 64 anos, dois têm 65 anos e dois têm 69 anos. Para substituí-los, serão contratados 8 pessoas, cujas idades têm média igual a 28 anos. Sabendo que os atuais funcionários e os futuros contratados já fizeram aniversário esse ano, e que, após a substituição de todos os envolvidos, a nova média das idades dos funcionários dessa empresa será igual a 42 anos, o número atual de funcionários da empresa é
a) 105.
b) 109.
c) 113.
d) 117.
e) 121.
17. (VUNESP/DOCAS PB/2022) A média aritmética simples das idades de 4 pessoas é de 24 anos. Sabendose que, com base na idade da pessoa mais nova do grupo, as demais têm 2, 9 e 13 anos a mais, a pessoa com a maior idade, do grupo, tem
a) 28 anos.
b) 29 anos.
c) 30 anos.
d) 31 anos.
e) 32 anos.
18. (VUNESP/DOCAS PB/2022) O gráfico a seguir refere-se ao primeiro semestre de 2021 em um determinado porto.

Já se sabe que, nesse mesmo porto, a quantidade de navios atracados em Julho, Agosto, Setembro, Outubro e Novembro de 2021 foi um total de 163. Para que a média mensal de navios atracados no segundo semestre ultrapasse em 7 navios a média mensal do primeiro semestre, é preciso que o número de navios que tenham atracado em Dezembro seja igual a

- a) 54.
- b) 51.
- c) 47.
- d) 45.
- e) 40.

19. (VUNESP/IPSM SJC/2022) Um depósito contém 6 caixas numeradas de 1 a 6. As caixas 1 e 2 têm a mesma massa e a caixa 3 tem 5 kg de massa a mais do que a caixa 4. A massa da caixa 2 somada com a massa da caixa 4 é igual a 12 kg e a soma das massas das caixas 5 e 6 é igual a 19 kg.

A média aritmética das massas dessas 6 caixas é igual a

- a) 7,5 kg.
- b) 8 kg.
- c) 8,5 kg.
- d) 9 kg.
- e) 9,5 kg.

20. (VUNESP/IPSM SJC/2022) Determinada verba foi distribuída entre 5 departamentos de uma empresa de modo que a média dos três departamentos que mais receberam foi R\$ 4.100,00, e a média dos dois departamentos que menos receberam foi R\$ 450,00 a menos do que a média dos cinco departamentos juntos. Se o valor mais alto recebido superou em R\$ 500,00 a média dos cinco departamentos juntos, então, o maior valor recebido foi

a) R\$ 3.200,00.

- b) R\$ 3.350,00.
- c) R\$ 3.800,00.
- d) R\$ 4.300,00.
- e) R\$ 4.500,00.

21. (VUNESP/PM SP/2022) A média aritmética simples das idades dos 27 aprovados em um concurso para um cargo A foi de 26 anos, enquanto que a média aritmética simples dos 23 aprovados para um cargo B, no mesmo concurso, foi de 31 anos.

Considerando- se apenas esses dois cargos, a média aritmética simples das idades dos aprovados foi de

- a) 28,0 anos.
- b) 27,8 anos.
- c) 29,0 anos.
- d) 28,3 anos.
- e) 27,0 anos.

22. (VUNESP/PM SP/2022) A tabela, que consta da Pesquisa Nacional por Amostra de Domicílios Contínua – Rendimentos de todas as fontes 2020, publicada pelo *Instituto Brasileiro de Geografia e Estatística* (IBGE), mais precisamente na página 10, apresenta informações sobre o rendimento médio mensal real domiciliar per capita dos 50% da população com menores rendimentos, segundo as Grandes Regiões do Brasil.

Brasil e Grandes Regiões	Rendimento médio mensal real domiciliar per capita dos 50% da população com menores rendimentos (R\$)			
	2012	2014	2019	2020
Brasil	415	462	436	453
Norte	280	310	276	325
Nordeste	253	292	259	301
Sudeste	556	604	585	570
Sul	622	688	687	661
Centro-Oeste	520	573	566	556

Com base na análise das informações apresentadas na tabela, assinale a alternativa que contém uma afirmação necessariamente verdadeira.

- a) Para mais da metade das Regiões, o ano de 2020, dentre os apresentados na pesquisa, foi o ano em que o rendimento médio mensal, por pessoa, foi o mais alto, para os 50% da população com menores rendimentos.
- b) Para os anos apresentados na pesquisa, 2014 foi, para a Região Sudeste, aquele em que os 50% da população com menores rendimentos receberam o maior rendimento médio mensal, por pessoa.
- c) Na Região Norte, em 2020, cada brasileiro que fazia parte dos 50% da população com menores rendimentos recebeu, mensalmente, R\$ 325,00.
- d) Em 2019, nenhum brasileiro, dos 50% da população com menores rendimentos, recebeu rendimento médio mensal menor que R\$ 436,00.
- e) A Região Sul, para os anos apresentados na pesquisa, é a que teve os maiores rendimentos médios mensais, por pessoa, dentre toda a população brasileira.

23. (VUNESP/Pref. Campinas/2022) Considere a tabela a seguir para resolver a questão.

Incidência (casos/100 mil hab.) de dengue em Campinas em 2022			
REGIÃO	14 de março	4 de abril	
Norte	20	70	
Sul	7	28	
Leste	14	54	
Sudoeste	12	42	
Noroeste	2	26	

(Secretaria Municipal de Saúde)

Compare a média aritmética simples de incidência de casos de dengue, por 100 mil habitantes, nas 5 regiões, em 14 de março, com a média aritmética simples de incidência de casos nas 5 regiões, em 4 de abril. O aumento dessa média foi, em números de casos por 100 mil habitantes, igual a

- a) 27.
- b) 24.
- c) 39.

d) 44.
e) 33.
24. (VUNESP/Pref. Campinas/2022) De acordo com informações apresentadas pelo Instituto Brasileiro de Geografia e Estatística (IBGE), no município de Campinas, em 2019 e em 2020, estavam matriculados, na Educação Infantil, 58 100 e 56 929 alunos, respectivamente. Se a média aritmética simples do número de matriculados na Educação Infantil, naquele município, nos anos de 2019, 2020 e 2021 é de 55 654 alunos, então o número de alunos matriculados na Educação Infantil, em 2021, no município de Campinas era igual a
a) 53 721.
b) 52 845.
c) 54 647.
d) 51 933.
e) 55 519.
25. (VUNESP/Pref. Campinas/2022) Para a entrada em um congresso, 26 estatísticos formaram uma fila e começaram a entrar um por vez. Um painel no congresso indicava a média das idades dos estatísticos que já haviam entrado e, quando o segundo estatístico entrou, o painel indicava 22 anos. Curiosamente, a cada estatístico que entrava, a média das idades aumentava em 1 ano, logo a idade do último estatístico a entrar era
a) 69 anos.
b) 67 anos.
c) 71 anos.

26. (VUNESP/Pref. Jundiaí/2022) A tabela a seguir apresenta os números de filhos de alguns funcionários de uma empresa, sendo que alguns valores são desconhecidos:

d) 65 anos.

e) 73 anos.

Nome do funcionário	Nº de filhos
Adão	х
Baltazar	6

Ciro	У
Dario	1
Emanuel	5

Sabe-se que Adão tem 2 filhos a mais que Ciro; e que, se for calculada a média aritmética simples dos números de filhos levando-se em conta os 5 funcionários, será obtido o valor médio de 4 filhos por funcionário. Então, é correto afirmar que y é igual a

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

27. (VUNESP/Pref. Piracicaba/2022) O gráfico mostra o número de alunos do Ensino Médio que faltaram às aulas, em uma determinada escola, em 5 dias de uma semana.

O número de faltas na sexta-feira superou a média de faltas desses cinco dias em

- a) 1.
- b) 2.
- c) 3.
- d) 4.
- e) 5.

28. (VUNESP/Pref. Piracicaba/2022) A média aritmética das notas obtidas por Flora nas três provas de Matemática realizadas em certo mês foi igual a 6,1. Sabendo-se que as notas da segunda e da terceira prova foram, respectivamente, iguais a $\frac{5}{4}$ e a $\frac{4}{5}$ da nota da primeira prova, conclui-se que a nota obtida por Flora na segunda prova foi

d) 6,8.			
e) 6,4.			
29. (VUNESP/Pref. Piracicaba) funcionários que tiraram licenç		•	· ·
	Mês	Nº de funcionários em LM	
	Setembro	3	
	Outubro	Х	
	Novembro	X+1	
	Dezembro	2x	
Se o número de funcionários qu tiraram licença médica em sete licenças médicas, por mês, foi ig	mbro e novembro, então, i	_	
a) 2.			
b) 3.			
c) 4.			
d) 5.			
e) 6.			
30. (VUNESP/Pref. Piracicaba/2 de água de um condomínio.	022) A tabela relaciona as	capacidades tota	ais, em litros, dos reservatórios
	Reservatório	Capacidade (em litros)	

Μ

5100

a) 8,1.

b) 7,5.

c) 7,2.

N	X+400
R	4800
Р	X
Q	X+800

Se a média aritmética das capacidades desses reservatórios é igual a 4 500 litros, então a capacidade total do reservatório Q é de

_ 1			191
a	4	600	litros.

b) 4 400 litros.

c) 4 200 litros.

d) 4 000 litros.

e) 3 800 litros.

31. (VUNESP/Pref. Pres. Prudente/2022) No último dia de janeiro de 2022, a média aritmética simples das idades de 20 amigos era de 25 anos. Se apenas 2 desses amigos já tinham feito aniversário em 2022, e nenhum deles faz aniversário em dezembro, é correto afirmar que, no final de 2022, a média aritmética simples das idades desses amigos será de

a) 25,5 anos.

b) 25,6 anos.

c) 25,7 anos.

d) 25,8 anos.

e) 25,9 anos.

32. (VUNESP/Pref. Pres. Prudente/2022) Em uma prova com 10 questões, cada questão só era corrigida como certa, caso em que 1 ponto era obtido, ou corrigida como errada e nenhum ponto era atribuído a questão. A nota de cada prova é a soma dos pontos obtidos e a média aritmética simples das notas dos 80 alunos que fizeram essa prova foi igual a 5. Para aumentar essa média, a professora atribuiu mais 0,1 ponto para cada questão errada. Considerando apenas os alunos que foram beneficiados com pelo menos 0,1 ponto, a média de pontos ganhos por aluno foi igual a $\frac{5}{9}$. O número de alunos que tirou 10 nessa prova foi

a) 5.

b) 6.

c) 8.

- d) 9.
- e) 11.

33. (VUNESP/Pref. Sorocaba/2022) Uma pessoa comprou cinco revistas em uma banca de jornais, sendo uma revista de cada assunto. A tabela a seguir apresenta algumas informações sobre o valor de cada revista.

Assunto	Valor unitário
Saúde	R\$ 17,80
Culinária	R\$ 15,90
Esportes	R\$ 18,20
Carros	R\$ 21,50
Jardinagem	?

Considerando-se o número total de revistas compradas, na média, cada revista saiu por 18,00. O valor da revista sobre jardinagem era

- a) R\$ 17,20.
- b) R\$ 16,90.
- c) R\$ 16,60.
- d) R\$ 15,70.
- e) R\$ 15,10.

34. (VUNESP/Pref. Sorocaba/2022) A média aritmética simples dos salários de 3 pessoas é de R\$ 4.100,00. Tirando-se o menor desses salários, a média aritmética simples dos demais salários passa a ser de R\$ 4.550,00.

O menor desses salários é de

- a) R\$ 3.100,00.
- b) R\$ 3.200,00.
- c) R\$ 3.300,00.
- d) R\$ 3.400,00.
- e) R\$ 3.500,00.

- 35. (CESGRANRIO/CEF/2021) Recentemente, a Organização Mundial da Saúde (OMS) mudou suas diretrizes sobre atividades físicas, passando a recomendar que adultos façam atividade física moderada de 150 a 300 minutos por semana. Seguindo as recomendações da OMS, um motorista decidiu exercitarse mais e, durante os sete dias da última semana, exercitou- se, ao todo, 285 minutos. Quantos minutos diários, em média, o motorista dedicou a atividades físicas na última semana?
- a) Mais de 46 min
- b) Entre 44 e 46 min
- c) Entre 42 e 44 min
- d) Entre 40 e 42 min
- e) Menos de 40 min
- 36. (CESPE/SEED PR/2021) Em uma sala de aula do 5.º ano do ensino fundamental, há um total de 10 meninos, com média de idade de 15 anos, e um total de 15 meninas, com média de idade de 13 anos. Foram incluídas nessa turma 3 novas crianças com 12 anos de idade e 2 novas crianças com 13 anos de idade.

Considerando essa situação hipotética, assinale a opção que indica, aproximadamente, a nova média de idade do total da turma em questão.

- a) 12,7
- b) 13,2
- c) 13,6
- d) 14,3
- e) 15,1
- 37. (CESPE/SEED PR/2021) Uma maneira bastante difundida de acompanhar a evolução da covid-19 em uma localidade é a média móvel de casos dos últimos 7 dias no n-ésimo dia (MV_n) . Por definição, no n-ésimo dia, para n=7,8,9,10 e 11, tem-se $MV_n=(\sum_{i=n-6}^n \mathcal{C}_i)/7$, em que \mathcal{C}_i é o número de novos casos de determinada região no n-ésimo dia.

A tabela seguinte apresenta dados sobre o número de novos casos de covid-19 em dois bairros (A e B) de uma mesma cidade, no transcorrer de 11 dias.

Dia	A	В
1	21	15
2	0	6

3	20	8
4	0	6
5	15	8
6	20	13
7	0	8
8	15	13
9	7	1
10	9	16
11	8	12

A média móvel de casos dos últimos 7 dias no dia 8 do bairro A é a média aritmética entre os casos ocorridos nesse bairro nos dias 2, 3, 4, 5, 6, 7 e 8, e assim por diante.

Com base nessas informações, e considerando-se n = 7, 8, 9, 10 e 11, é correto afirmar que a menor diferença entre as médias móveis dos bairros A e B ocorreu no dia

- a) 7.
- b) 8.
- c) 9.
- d) 11.
- e) 10.

38. (CESPE/CBM AL/2021) Em determinado dia, em uma região atendida por uma unidade do corpo de bombeiros, ocorreram 16 acidentes, que resultaram em 48 vítimas, socorridas pelos bombeiros nos próprios locais de acidente. Entre essas vítimas, 4 vieram a óbito no momento do atendimento, e as demais sobreviveram.

Com base nessa situação hipotética, julgue o item a seguir.

Considerando-se que a média de idade de todas as vítimas desse dia seja igual a 50 anos, é correto concluir que não há crianças entre as vítimas.

39. (CESPE/PM AL/2021) O próximo item apresenta uma situação hipotética seguida de uma assertiva, a ser julgada com base na matemática e em suas aplicações na atividade policial.

Ao analisar a média aritmética de ocorrências criminais anuais de uma região, um policial verificou que, nos 10 primeiros meses do ano, a média havia sido de 315 ocorrências por mês, contudo a média para o ano

todo era 10% maior que a média dos 10 primeiros meses. Nessa situação hipotética, a média aritmética de ocorrências apenas nos dois últimos meses do ano é superior a 500 ocorrências por mês.

40. (FADESP/CM Marabá/2021) A média aritmética das alturas de 4 amigos é igual a 1,69m. Se os três primeiros medem 1,60m, 1,80m e 1,64m, o quarto amigo mede

- a) 1,67m.
- b) 1,68m.
- c) 1,69m.
- d) 1,70m.
- e) 1,72m.

41. (FCC/MANAUSPREV/2021) Admita que a média móvel diária do número de casos registrados de uma doença seja calculada pela média aritmética simples do número de casos registrados no dia com os números de registros de casos dos quatro dias anteriores. Observe a tabela com os registros diários dos casos de uma doença e da média móvel diária, sendo que x e y representam números inteiros positivos.

	Domingo	2ª Feira	3ª Feira	4ª Feira	5ª Feira	6ª Feira	Sábado
Número de registros diário	19	26	28	26	31	x	31
Média móvel diária	23	23	24	24	у	27	28

Sabendo que a média aritmética simples de um conjunto de cinco números é igual à soma desses cinco números dividida por 5, na situação descrita, x – y é igual a

- a) -3.
- b) -2.
- c) 0.
- d)-1.
- e) 1.

42. (FGV/FunSaúde CE/2021) Em um conjunto de 12 números, a média de 4 deles é 15 e a média dos outros 8 é 18.

A média dos 12 números é

- a) 17.
- b) 16,8.

c) 16,5.
d) 16.
e) 15,5.
43. (FGV/Pref Paulínia/2021) Um grupo de 10 amigos, em que o mais novo tem 55 anos, constatou que a média de suas idades é 64 anos. Se o mais novo e o mais velho saírem do grupo, a média das idades dos oito restantes continua sendo 64.
A idade do mais velho é
a) 69.
b) 70.
c) 71.
d) 72.
e) 73.
44. (FGV/IMBEL/2021) A média de 6 números é 33. Um deles foi retirado e a média dos outros passou a ser 31.
Assinale a opção que indica o número que foi retirado.
a) 35.
a) 35. b) 37.
b) 37.
b) 37. c) 39.
b) 37. c) 39. d) 41.
b) 37. c) 39. d) 41.
b) 37. c) 39. d) 41. e) 43. 45. (FUNDATEC/CM Candelária/2021) Um contador preencheu, ao longo de 4 dias, todos com o mesmo tempo de trabalho, respectivamente, 48, 52, 39 e 47 declarações completas de imposto de renda de pessoa
b) 37. c) 39. d) 41. e) 43. 45. (FUNDATEC/CM Candelária/2021) Um contador preencheu, ao longo de 4 dias, todos com o mesmo tempo de trabalho, respectivamente, 48, 52, 39 e 47 declarações completas de imposto de renda de pessoa física. A média aritmética de declarações preenchidas nesse período é de:
b) 37. c) 39. d) 41. e) 43. 45. (FUNDATEC/CM Candelária/2021) Um contador preencheu, ao longo de 4 dias, todos com o mesmo tempo de trabalho, respectivamente, 48, 52, 39 e 47 declarações completas de imposto de renda de pessoa física. A média aritmética de declarações preenchidas nesse período é de: a) 42.
b) 37. c) 39. d) 41. e) 43. 45. (FUNDATEC/CM Candelária/2021) Um contador preencheu, ao longo de 4 dias, todos com o mesmo tempo de trabalho, respectivamente, 48, 52, 39 e 47 declarações completas de imposto de renda de pessoa física. A média aritmética de declarações preenchidas nesse período é de: a) 42. b) 45.
b) 37. c) 39. d) 41. e) 43. 45. (FUNDATEC/CM Candelária/2021) Um contador preencheu, ao longo de 4 dias, todos com o mesmo tempo de trabalho, respectivamente, 48, 52, 39 e 47 declarações completas de imposto de renda de pessoa física. A média aritmética de declarações preenchidas nesse período é de: a) 42. b) 45. c) 47.

46. (FUNDATEC/Pref. Vacaria/2021) Durante uma festa de aniversário, a quantia de bebidas ingeridas por quatro participantes foi medida e organizada na tabela a seguir:

Pessoa	Quantidade
Α	700 ml
В	650 ml
С	950 ml
D	1.400 ml

A quantidade média de bebida ingerida pelos participantes A, B, C e D é:

a)	700	ml.

b) 825 ml.

c) 925 ml.

d) 1.375 ml.

e) 1.400 ml.

47. (FUNDATEC/Pref. Tramandaí/2021) Em uma escola, o time de basquete tem, por média de altura, 1,80 m, sendo que são 10 jovens que participam do time. Para um campeonato municipal, devem ser inscritos 13 jovens por time. Para isso, foram chamados mais 3 jovens, com 1,90, 1,87 e 1,93 de altura. Qual a média de altura com os novos integrantes da equipe?

a) 1,81.

b) 1,82.

c) 1,83.

d) 1,84.

48. (FUNDATEC/Pref. B do Ribeiro/2021) As idades de um grupo de jovens são, respectivamente, 10, 13, 15 e 17 anos. Se mais um jovem entrar no grupo e ele tiver 12 anos, o que irá acontecer com a média de idade do grupo?

- a) A média irá aumentar para 13,75.
- b) A média irá cair para 13,75.
- c) A média irá cair para 13,4.

- d) A média irá aumentar para 13,4.
- e) A média irá permanecer igual.

49. (FUNDATEC/Pref. Cariacica/2021) Na turma de matemática do 7º ano, a professora construiu uma tabela com as notas dos seus alunos, ao longo de três trimestres do ano, com as notas finais em cada trimestre. Ao final do ano, a professora calculou a média aritmética simples de cada aluno a fim de completar a tabela e verificar quais alunos estavam aprovados e quais deveriam fazer a atividade de recuperação. Observando que, para ser aprovado sem recuperação, a média aritmética simples das notas dos três trimestres deve ser maior ou igual a 6,0.

Nome do Aluno	Nota no 1º trimestre	Nota no 2º trimestre	Nota no 3º trimestre	Média aritmética simples de cada aluno
Ana	5,6	7,5	4,3	5,8
Bruno	6,9	4,6	8,4	6,6
Camila	6,5	5,5	5,5	
Daniel	4,8	6,8	6,7	
Evandro	7,7	4,3	5,0	5,7
Fabiana	8,9	9,4	6,7	

Após completar a tabela, é correto afirmar que:

- a) Mais da metade dos alunos estão aprovados sem recuperação.
- b) A média mais baixa foi a da aluna Camila.
- c) A diferença entre a maior média e a menor média é igual a 2,0.
- d) O aluno Daniel ficou com média exatamente 6,0.
- e) A média mais alta foi da aluna Fabiana.

50. (FUNDATEC/CM Candelária/2021) O número de cidadãos maiores de 18 anos presentes nas 3 sessões plenárias ordinárias da câmara de vereadores do município foi de respectivamente: 231, 189 e 102. A média aritmética de participantes nessas 3 sessões é de:

a) 164.

51. (FUNDATEC/Pref. Candelária/2021) Um cuidador social realiza, em cinco dias úteis de uma determinada semana, respectivamente, 25, 27, 30, 25 e 28 atendimentos diários. A média diária de atendimentos é de:	
a) 25.	
b) 26.	
c) 27.	
d) 28	
e) 30.	
52. (FUNDATEC/CARRIS/2021) Nos últimos anos, o valor da passagem de ônibus em Porto Alegre vem sofrendo alterações. As últimas quatro ocorrências são R\$ 2,90, R\$ 3,30, R\$ 3,80 e R\$4,30. A média aritmética desses valores está:	
a) Entre o segundo e o terceiro valor.	
b) Entre o primeiro e o segundo valor.	
c) Entre o terceiro e o quarto valor.	
d) Acima do quarto valor.	
e) Idêntica ao terceiro valor.	
53. (FUNDATEC/CARRIS/2021) Uma escola possui dados gerais sobre seus estudantes, dentre eles, quantos de seus egressos passaram no vestibular, conforme a tabela abaixo:	

2015

48

Um estudo afirma que, usando a média aritmética para calcular o número de aprovados, a escola é considerada "boa" se M (média do número de aprovados) é maior do que 45. Esse estudo é feito a cada 5 anos. Para que essa escola se enquadre como "boa", o número de aprovados em 2019 (ano que fecha o

Ano

Estudantes aprovados

quinquênio) deve ser de, no mínimo:

2016

42

2017

50

2018

32

b) 174.

c) 208.

d) 261.

e) 522.

a) 43.
b) 48.
c) 50.
d) 51.
e) 54.
54. (VUNESP/Pref. Jaguariúna/2021) Para o desenvolvimento de determinado serviço, três orçamentos foram solicitados. Sabendo-se que a diferença entre os valores dos orçamentos de valor mais alto e o de valor mais baixo é de R\$ 3.800,00, e que o orçamento de valor intermediário é de R\$ 15.000,00 e corresponde à média dos valores dos demais orçamentos, o orçamento de valor mais baixo foi de
a) R\$ 13.300,00.
b) R\$ 13.200,00.
c) R\$ 13.100,00.
d) R\$ 13.000,00.
e) R\$ 12.900,00.
55. (VUNESP/Pref. F Vasconcelos/2021) Sabe-se que os cinco países que mais produzem gás natural são, nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, concluise que a produção anual de gás natural do Irã, em bilhões de m³, é igual a
nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, conclui-
nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, concluise que a produção anual de gás natural do Irã, em bilhões de m³, é igual a
nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, concluise que a produção anual de gás natural do Irã, em bilhões de m³, é igual a a) 269,7.
nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, concluise que a produção anual de gás natural do Irã, em bilhões de m³, é igual a a) 269,7. b) 262,6.
nessa ordem, Estados Unidos, Rússia, Irã, Catar e Canadá, sendo a média aritmética de suas produções anuais igual a 395,7 bilhões de m³. Se excluirmos a produção anual do Irã, a média aritmética das produções anuais dos países restantes dessa relação passa a ser de 441 bilhões de m³. Portanto, concluise que a produção anual de gás natural do Irã, em bilhões de m³, é igual a a) 269,7. b) 262,6. c) 214,5.

Sabendo que cada unidade desse produto foi vendida por R\$ 3,00, e que o valor total arrecadado com essas vendas foi R\$ 225,00, então, na média, o número de unidades vendidas por dia foi

- a) 24.
- b) 21.
- c) 18.
- d) 15.
- e) 12.

57. (VUNESP/Pref. Ribeirão Preto/2021) Os números de gols marcados pelos jogadores de certo time em um campeonato de futsal estão relacionados na tabela abaixo.

Jogador	Gols marcados
André	3
Rogério	1
Marcos	5
Fabiano	4
Jonas	2

Em virtude de violação das regras vigentes, Jonas foi desclassificado, de modo que foi calculada a média de gols por jogador levando em conta apenas os outros 4 jogadores. Se isso não tivesse ocorrido, e a média fosse calculada levando em conta os 5 jogadores, seria obtido um valor inferior ao valor da média anterior em

a) 0,10 gol por jogador.

- b) 0,25 gol por jogador.
- c) 0,40 gol por jogador.
- d) 0,50 gol por jogador.
- e) 0,65 gol por jogador.

58. (VUNESP/Pref. Araçariguama/2021) O gráfico a seguir mostra o percentual da população de quatro países da América do Sul que guardam dinheiro, segundo pesquisa realizada em 2017.

— América do Sul —

Pessoas que guardaram dinheiro

Porcentagem nos últimos 12 meses (2017)

(https://www.nexojornal.com.br. Adaptado)

O Brasil ocupa a quarta posição no ranking sul-americano e, ao comparar o percentual brasileiro com a média aritmética do percentual indicado para os 3 primeiros países do gráfico, tem-se que o percentual brasileiro está

- a) 3,3 pontos percentuais abaixo.
- b) 3,7 pontos percentuais abaixo.
- c) 4,1 pontos percentuais abaixo.
- d) 4,5 pontos percentuais abaixo.
- e) 4,9 pontos percentuais abaixo.

59. (VUNESP/Pref. V Paulista/2021) A lista a seguir apresenta, em ordem crescente, os salários, em reais, de 16 funcionários de um dos departamentos de uma empresa.

1.500, 1.500, 1.500, 1.800, 1.800, 1.800, 1.800, 2.400, 2.400, 3.600, 6.000, 6.000, X, 8.000, 8.000, 8.000.

Sabe-se que o salário médio desses 16 funcionários é R\$ 3.975,00. Desse modo, o salário X é igual a

- a) R\$ 6.000,00.
- b) R\$ 6.750,00.

c) R\$ 7.500,00.
d) R\$ 7.750,00.
e) R\$ 8.000,00.
60. (VUNESP/CM Potim/2021) A lista de números a seguir apresenta, em unidades reais, os salários dos funcionários de uma das seções de uma empresa.
2.500; 2.500; 2.500; 3.000; 3.000; 3.600; 3.600; 7.200
Serão contratados mais dois funcionários que terão o mesmo salário. Com essa contratação, a média salarial passará a ser R\$ 3.200,00. Assim, o salário de cada um desses novos contratados será
a) R\$ 1.875,00.
b) R\$ 2.150,00.
c) R\$ 2.500,00.
d) R\$ 3.090,00.
e) R\$ 3.120,00.
61. (VUNESP/Pref. Ribeirão Preto/2021) Um ranking, elaborado por um órgão da área econômica, relaciona as empresas varejistas do País que apresentaram os maiores faturamentos brutos em 2020, sendo a média aritmética dos faturamentos das 10 empresas listadas igual a R\$ 31,7 bilhões. Se o faturamento médio das empresas que ocuparam as 5 primeiras colocações nesse ranking foi igual a R\$ 45,2 bilhões, então o faturamento médio das empresas que ocuparam as 5 últimas colocações nesse ranking foi igual a
a) R\$ 13,5 bilhões.
b) R\$ 15,3 bilhões.
c) R\$ 16,1 bilhões.
d) R\$ 17,4 bilhões.
e) R\$ 18,2 bilhões.
62. (VUNESP/Pref. Ribeirão Preto/2021) Três famílias possuem quatro membros cada. As médias das alturas dos membros de cada uma das famílias são, respectivamente, iguais a 161 cm, 163 cm e 164 cm. Considerando a pessoa mais alta de cada família, as suas alturas são, respectivamente, 167 cm, 170 cm e 184 cm. Considerando as três pessoas mais baixas de cada família, formamos um grupo de 9 pessoas, cuja

média das alturas é igual a

a) 156 cm.

- b) 159 cm.
- c) 162 cm.
- d) 165 cm.
- e) 168 cm.

63. (VUNESP/Pref. Jaguariúna/2021) Uma empresa comercializa 5 tipos diferentes de cestas básicas. A tabela mostra o valor de cada tipo de cesta.

Tipo de cesta	Valor da cesta
Α	R\$ 160,00
В	R\$ 210,00
С	R\$ 280,00
D	R\$ 320,00
E	R\$ 370,00

Na média, o valor de uma cesta dessa empresa sai por

- a) R\$ 257,00.
- b) R\$ 268,00.
- c) R\$ 274,00.
- d) R\$ 285,00.
- e) R\$ 292,00.

64. (VUNESP/Pref. V Paulista/2021) O gráfico apresenta o número de acidentes envolvendo motos, e o número de acidentes envolvendo somente automóveis, registrados em 5 meses em determinada cidade.

Nesses 5 meses, a média mensal do número de acidentes envolvendo somente automóveis supera a média mensal de acidentes envolvendo motos em

- a) 6 acidentes.
- b) 5 acidentes.
- c) 4 acidentes.
- d) 3 acidentes.
- e) 2 acidentes.

65. (VUNESP/Pref. F Vasconcelos/2021) Uma empresa utilizou as máquinas A, B e C para a produção de um lote de certa peça. Os tempos de trabalho de cada máquina na produção desse lote estão relacionados na tabela, em que os tempos da máquina B e da máquina A estão representados por x e por um submúltiplo de x, respectivamente.

Máquina	Tempo trabalhado (em minutos)
Α	1,2 x
В	Х
С	564

Sabendo-se que a média aritmética dos tempos de trabalho das três máquinas é igual a 870 minutos, é correto afirmar que, na produção desse lote de peças, a máquina A trabalhou durante

- a) 15 horas e 30 minutos.
- b) 16 horas e 46 minutos.
- c) 17 horas e 30 minutos.
- d) 18 horas e 06 minutos.
- e) 18 horas e 36 minutos.

66. (VUNESP/FITO/2020) O consumo médio de um determinado produto ao longo do primeiro semestre de 2019 foi de 36 unidades. Já a quantidade consumida mês a mês desse produto em alguns dos demais meses desse mesmo ano pode ser verificada na tabela a seguir:

Julho	40
Agosto	38
Setembro	32
Outubro	35
Novembro	34

Considerando que, no segundo semestre, o consumo médio do semestre anterior foi mantido, a quantidade de unidades consumida em dezembro de 2019 foi de

- a) 33
- b) 37
- c) 39
- d) 42
- e) 44

67. (VUNESP/FITO/2020) A média aritmética simples das idades de 5 pessoas de uma mesma família é 20 anos. Se 2 membros dessa família são irmãos gêmeos, e a média das idades dos outros 3 membros dessa família é 24 anos, então a idade de cada irmão gêmeo é

- a) 14 anos
- b) 15 anos
- c) 16 anos
- d) 17 anos
- e) 18 anos

68. (VUNESP/FITO/2020) O gráfico apresenta as notas de um aluno, nas disciplinas de matemática e química, nos três quadrimestres de 2019.

A média das notas de matemática desse aluno corresponde, da média das notas de química, a
a) 120%
b) 125%
c) 130%
d) 135%
e) 140%
69. (VUNESP/VALIPREV/2020) A tabela apresenta algumas informações sobre o número de unidades vendidas de um produto em 5 dias de uma semana.
Nº do unidados

Dia da semana	Nº de unidades vendidas
2ª feira	X
3ª feira	13
4ª feira	15
5ª feira	25
6ª feira	28

Sabendo que o número de unidades vendidas na 2a feira foi igual à metade da média diária do número de unidades vendidas nesses 5 dias, então, a média diária do número de unidades vendidas nesses 5 dias foi

- a) 21
- b) 18
- c) 15
- d) 12
- e) 9

70. (CESPE/UNCISAL/2019) A tabela a seguir apresenta a inflação anual no Brasil no triênio 2016–2018, segundo dados do IBGE.

Ano	Inflação (%)
2016	6,3
2017	2,9

2018	3,7
	-/-

Considerando-se as informações precedentes, um produto que custava R\$ 1.000,00 em dezembro de 2018 e que tenha sido reajustado em janeiro de 2019 pela média aritmética da inflação do triênio 2016–2018 passou a custar, após o reajuste,

- a) R\$ 1.029,00.
- b) R\$ 1.037,00.
- c) R\$ 1.043,00.
- d) R\$ 1.172,00.
- e) R\$ 1.133,00.

71. (CESPE/UNCISAL/2019) A crise mundial tem contribuído para o aumento da entrada de estrangeiros no Brasil. A maior parte vem de países vizinhos, a exemplo do Paraguai. A tabela a seguir apresenta, de acordo com dados do Ministério da Justiça, a quantidade de paraguaios que vieram para o Brasil nos anos de 2009, 2011 e 2012.

Ano	Paraguaios
2009	11000
2010	?
2011	19000
2012	27300

Disponível em: http://reporterbrasil.org.br. Acesso em: 9 nov. 2018 (adaptado).

Se a média anual de imigrantes paraguaios para o Brasil, no período de 2009 a 2012, foi de 17 600, então, quantos paraguaios imigraram para o Brasil em 2010?

- a) 13 100
- b) 14 325
- c) 15 000
- d) 15 840
- e) 17 600

72. (CESPE/Pref. São Cristóvão/2019) Segundo o IBGE, a massa da renda média mensal real domiciliar per capita em 2016 foi de aproximadamente R\$ 264 bilhões; a população brasileira nesse ano era de aproximadamente 190 milhões de pessoas.

A partir dessas informações, julgue o item a seguir.

A renda média mensal dos brasileiros em 2016 foi superior a R\$ 1.300.

73. (CESPE/Pref. São Cristóvão/2019) Segundo o IBGE, a massa da renda média mensal real domiciliar per capita em 2016 foi de aproximadamente R\$ 264 bilhões; a população brasileira nesse ano era de aproximadamente 190 milhões de pessoas.

A partir dessas informações, julgue o item a seguir.

O gráfico a seguir mostra que, em 2016, mais de 40% da massa de renda mensal real domiciliar per capita coube a 10% da população; ao restante coube menos de 60% dessa massa de renda. A partir do gráfico, é correto inferir que, naquele ano, em média, a renda mensal desses 10% da população era superior a R\$ 10.000.

PNAD-C | distribuição da massa de rendimento mensal real domiciliar *per capita*

74. (FCC/SABESP/2019) A média dos salários dos 25 trabalhadores de uma pequena empresa é de R\$ 2.320,00. Um desses trabalhadores, e apenas ele, terá um aumento de 10% em seu salário e, com isso, a média dos salários passará a ser R\$ 2.360,00. O salário desse trabalhador, sem o aumento, é

- a) R\$ 10.400,00
- b) R\$ 9.800,00
- c) R\$ 10.000,00
- d) R\$ 8.000,00
- e) R\$ 11.000,00

75. (FCC/SABESP/2019) A média de 3x + 8, 7x - 6 e -4x + 2 é

- a) $x + \frac{4}{3}$
- b) $2x + \frac{4}{3}$
- c) $2x + \frac{3}{4}$
- d) $\frac{4}{3}$
- e) 2*x*

76. (FCC/SABESP/2019) João realizou três das quatro provas e a média dessas três provas é de 88 pontos. Para obter média final igual ou superior a 90, sua nota na quarta prova deve ser de, pelo menos,
a) 98
b) 96
c) 100
d) 94
e) 92
77. (FCC/CM Fortaleza/2019) Em um teatro com 200 lugares, houve quatro apresentações de uma peça. Na primeira apresentação foram vendidos todos os ingressos; na segunda apresentação foram vendidos 88% dos ingressos; na terceira, 56% dos ingressos e, na quarta, 44% dos ingressos. Em média, a quantidade de ingressos vendidos por apresentação foi de
a) 72
b) 144
c) 56
d) 76
e) 140
78. (FCC/TRF 3ª Região/2019) Havia cinco garrafas de vinhos em uma adega. O preço médio desses vinhos era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00 d) 140,00
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00 d) 140,00
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00 d) 140,00 e) 160,00 79. (FCC/Pref. SJRP/2019) Uma prova com questões de múltipla escolha foi realizada por 100 candidatos em um concurso. O número médio de acertos foi 68. Após um recurso, uma questão foi anulada, isto é, a questão foi considerada correta para todos os candidatos, e a média passou de 68 para 68,4 pontos. O
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00 d) 140,00 e) 160,00 79. (FCC/Pref. SJRP/2019) Uma prova com questões de múltipla escolha foi realizada por 100 candidatos em um concurso. O número médio de acertos foi 68. Após um recurso, uma questão foi anulada, isto é, a questão foi considerada correta para todos os candidatos, e a média passou de 68 para 68,4 pontos. O número de candidatos que tinham errado a questão anulada foi de:
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00 d) 140,00 e) 160,00 79. (FCC/Pref. SJRP/2019) Uma prova com questões de múltipla escolha foi realizada por 100 candidatos em um concurso. O número médio de acertos foi 68. Após um recurso, uma questão foi anulada, isto é, a questão foi considerada correta para todos os candidatos, e a média passou de 68 para 68,4 pontos. O número de candidatos que tinham errado a questão anulada foi de: a) 4
era R\$ 120,00. Uma garrafa desapareceu e o preço médio das quatro garrafas que sobraram passou para R\$ 110,00. O valor, em reais, da garrafa que desapareceu é a) 130,00 b) 120,00 c) 150,00 d) 140,00 e) 160,00 79. (FCC/Pref. SJRP/2019) Uma prova com questões de múltipla escolha foi realizada por 100 candidatos em um concurso. O número médio de acertos foi 68. Após um recurso, uma questão foi anulada, isto é, a questão foi considerada correta para todos os candidatos, e a média passou de 68 para 68,4 pontos. O número de candidatos que tinham errado a questão anulada foi de: a) 4 b) 20

80. (FGV/Pref. Salvador/2019) Em uma pequena empresa, a média salarial dos 12 funcionários era de R\$ 2400,00. Lúcio Mauro, que ganhava R3000,00, se aposentou e para ocupar sua vaga foi contratado Felipe, com um salário de R\$ 1800,00.

Assinale a opção que indica a nova média salarial dos 12 funcionários dessa empresa.

- a) R\$ 2350,00
- b) R\$ 2300,00
- c) R\$ 2280,00
- d) R\$ 2250,00
- e) R\$ 2200,00
- 81. (FGV/Pref. Angra/2019) A média dos pesos de cinco crianças é de 33,6 kg. Quatro delas pesam, respectivamente, 31 kg, 34 kg, 38 kg e 30 kg. A 5ª criança pesa
- a) 32 Kg
- b) 35 Kg
- c) 36 Kg
- d) 37 Kg
- e) 38 Kg
- 82. (CESPE/IFF/2018) Considere que o peso de 5 pessoas, juntas em um elevador, seja de 340 kg. Se, em determinado andar, mais um indivíduo entrar no elevador, sem que dele ninguém desça, e a média aritmética dos pesos dessas 6 pessoas passar a ser de 70 kg, esse sexto indivíduo pesa
- a) 68,3 kg.
- b) 69 kg.
- c) 70 kg.
- d) 80 kg.
- e) 82 kg.

83. (CESPE/ABIN/2018)

Evolução da quantidade de docentes por etapa de ensino
Brasil 2013 - 2017

Ano Educação ensino ensino fundamental Ensino médio

2013	478.811	750.366	802.902	507.617
2014	502.445	757.950	797.577	522.426
2015	518.308	758.840	786.140	522.826
2016	540.567	763.927	778.561	519.883
2017	557.541	761.737	764.731	509.814
Soma total das quantidades de docentes no período	2.597.672	3.792.820	3.929.911	2.582.566

Com base nos dados da tabela anterior, extraídos do Relatório das Notas Estatísticas do Censo Escolar de 2017, do INEP, julgue os itens a seguir.

A média do quantitativo de docentes do ensino médio entre os anos de 2013 e 2017 foi superior à média do quantitativo de docentes da educação infantil para o mesmo período.

84. (FCC/SABESP/2018) Para que a média aritmética dos números: 8, 8, 1, 10, 11, 12, 7, 2, 10, 6, x e 5 seja 7, o valor de x deverá ser

- a) 2
- b) 4
- c) 8
- d) 5
- e) 3

85. (FCC/TRT 15ª Região/2018) Os funcionários de um Tribunal estão alocados em 21 equipes de trabalho distintas, cada uma delas com pelo menos um funcionário. A média da quantidade de funcionários de cada uma dessas equipes é 13. Assim, a quantidade de funcionários da maior equipe de trabalho desse Tribunal é,

- a) no mínimo, 18.
- b) no máximo, 13.
- c) no mínimo, 14.
- d) no máximo, 26.
- e) no mínimo, 13.

86. (FCC/TRT 15ª Região/2018) Um Tribunal Regional do Trabalho celebrou acordos conciliatórios no valor

e) 21,7ºC.

90. (FGV/CGM Niterói/2018) Um casal pesou suas quatro malas no aeroporto para o embarque. As três primeiras malas pesaram 8 kg, 12 kg e 9 kg. Sabe-se que a média dos pesos das quatro malas foi de 11 kg. O peso da quarta mala é
a) 12 kg.
b) 13 kg.
c) 14 kg.
d) 15 kg.
e) 16 kg.
91. (FGV/Pref. Boa Vista/2018) No exame médico, os pesos das cinco crianças da sala de Joana foram: 29,0 kg, 27,5 kg, 31,0 kg, 22,5 kg e 32,0 kg. O peso médio dessas crianças é:
a) 27,8 kg;
b) 28,0 kg;
c) 28,2 kg;
d) 28,4 kg;
e) 28,6 kg.
92. (FUNDATEC/CM Eldorado do Sul/2018) O consumo, em Quilowatt-hora (kWh), de energia elétrica, em uma determinada residência nos meses de junho, julho e agosto foram respectivamente iguais a 396 kWh, 267 kWh e 189 kWh. Considerando esses três meses, a média aritmética do consumo de energia, em kWh, foi equivalente a:
a) 284.
b) 295.
c) 342.
d) 426.
e) 512.
93. (VUNESP/CM de Indaiatuba/2018) A tabela mostra o tempo gasto por um funcionário para ir e voltar no trajeto casa e trabalho em 5 dias da semana.

Funcionário	Casa Trabalho	Trabalho Casa
2ª feira	1h 12min	55 min
3º feira	58 min	52 min
4º feira	1h 8min	1h 6min

5ª feira	1h 14min	1h 10min
6ª feira	1h 22min	1h 8min

Nessa semana, a diferença entre o tempo médio diário no sentido Casa-Trabalho e o tempo médio diário no sentido Trabalho-Casa é igual a

- a) 8min36s
- b) 8min42s
- c) 8min6s
- d) 8min18s
- e) 8min54s

94. (VUNESP/IPSM São José dos Campos/2018) A média aritmética diária de vendas realizadas em seis dias por um estabelecimento comercial foi de R\$ 6.700,00. Na tabela, constam os valores das vendas de alguns desses dias:

Dia da semana	Valor em vendas
Segunda-feira	R\$ 4.800,00
Terça-feira	R\$ 6.900,00
Quarta-feira	R\$ 8.200,00
Quinta-feira	x
Sexta-feira	у
Sábado	Z

Com base nas informações, é correto afirmar que a média aritmética diária dos três últimos dias de vendas é maior que a média aritmética diária dos seis dias em, aproximadamente,

- a) R\$ 65,00.
- b) R\$ 67,00.
- c) R\$ 69,00.
- d) R\$ 71,00.
- e) R\$ 73,00.

95. (VUNESP/PAULIPREV/2018) A média aritmética simples dos salários de 30 funcionários de uma empresa era R\$ 1.610,00. Esses funcionários tiveram um aumento em seus salários de maneira que os que recebiam R\$ 1.500,00 ou mais tiveram um acréscimo de R\$ 20,00, e os que recebiam menos de R\$ 1.500,00

tiveram um acréscimo de R\$ 50,00. Após esse reajuste, a média dos salários dos 30 funcionários passou a ser R\$ 1.641,00; logo o número de funcionários que tiveram um aumento de R\$ 50,00 é um número entre

- a) 25 e 30.
- b) 19 e 24.
- c) 13 e 18.
- d) 7 e 12.
- e) 1 e 6.

96. (VUNESP/PM-SP/2018) O gráfico apresenta o número de pontos obtidos pelos grupos A, B, C e D, que participaram de uma atividade recreativa.

Sabendo que o número de pontos obtidos pelo grupo A foi 30% maior que o número de pontos obtidos pelo grupo C, então, na média, o número de pontos obtidos por um grupo foi

- a) 55.
- b) 60.
- c) 70.
- d) 65.
- e) 50.

97. (FCC/SABESP/2017) A média aritmética de três números a, b e c é 20. A média aritmética de a e b é 16. O valor de c é igual a

- a) 24.
- b) 26.
- c) 30.
- d) 28.
- e) 32.

98. (FGV/Pref. de Salvador/2017) Em um grupo de 10 pessoas, o peso médio é de 86 kg. Duas pessoas, uma pesando 90 kg e outra pesando 70 kg, saíram do grupo. O peso médio das pessoas restantes é de

- a) 81,5 kg.
- b) 83,0 kg.
- c) 87,5 kg.
- d) 85,5 kg.
- e) 89,0 kg.

99. (VUNESP/PM-SP/2017) A média aritmética das idades dos cinco jogadores titulares de um time de basquete é 22 anos. Um dos jogadores titulares desse time, que tem 20 anos de idade, sofreu uma lesão e foi substituído por outro jogador, o que fez com que a nova média das idades dos cinco jogadores do time titular passasse a ser de 23 anos. Então, a idade do jogador que substituiu o jogador lesionado é

- a) 25 anos.
- b) 24 anos.
- c) 22 anos.
- d) 21 anos.
- e) 23 anos.

100. (VUNESP/UNESP/2017) Utilize os dados do gráfico a seguir, que mostra o número de rascunho vendas realizadas pelo vendedor Carlos em seis dias de uma semana, para responder às questões.

A média diária de vendas de Carlos, nessa semana, é, aproximadamente, igual a

- a) 12.
- b) 15.
- c) 18.
- d) 20.
- e) 21.

101. (CESPE/FUNPRESP/2016)

Adesão ao plano	1	1	0	1	0	0	1	0	1	0
Salário (em R\$)	5.000	8.000	4.000	6.000	2.000	3.000	4.000	4.000	4.500	7.000

Considerando que os dados na tabela mostram salários de diferentes servidores que aderiram ou não aderiram (0) a determinado plano de previdência complementar, julgue o item subsecutivo.

A média dos salários do grupo que aderiu ao plano de previdência complementar é menor que a do que não aderiu ao plano.

102. (FGV/COMPESA/2016) A média das idades dos 6 jogadores de um time de vôlei é de 28 anos e o jogador mais velho do time, que tem 35 anos, aposentou-se. A média das idades dos 5 jogadores restantes é

- a) 26 anos.
- b) 26,2 anos.
- c) 26,4 anos.
- d) 26,6 anos.
- e) 26,8 anos.

103. (FGV/Pref. de Paulínia/2016) Um agricultor cultiva batatas e vende seu produto em sacos de, aproximadamente, 10 kg. Um comprador escolheu 5 sacos e o peso médio dos sacos escolhidos foi de 9,9 kg. Porém, antes de fechar o negócio, o comprador escolheu mais um saco para levar e, com os seis sacos, o peso médio dos sacos passou a ser de 10,2 kg. O peso do último saco escolhido pelo comprador foi de

- a) 10,7kg.
- b) 10,9kg.
- c) 11,2kg.
- d) 11,5kg.
- e) 11,7kg.

104. (FGV/Pref. de Paulínia/2016) Após calcular a média das notas de seus N alunos, um professor, inadvertidamente, incluiu a média calculada ao conjunto das N notas dos alunos e calculou a média dos N+1 números obtidos. A razão entre a segunda média calculada pelo professor e a média correta é

- a) 2
- b) 1
- c) 1/2

d) $\frac{N}{N+1}$
e) $\frac{N+1}{N}$
105. (FUNDATEC/Prefeitura de Soledade-RS/2016) A média aritmética simples de seis notas de um aluno é 80. Se a sétima nota for 94, a média aritmética simples das sete notas será:
a) 82.
b) 84.
c) 85.
d) 87.
e) 89.
106. (FGV/SSP-AM/2015) Uma tabela com 7 linhas e 13 colunas contém 91 números inteiros positivos. Marcelo somou os números de cada uma das 7 linhas e depois calculou a média das 7 somas, obtendo como resultado o número A. Solange somou os números de cada uma das 13 colunas e depois calculou a média das 13 somas, obtendo como resultado o número B. É verdade que:
a) 7A = 13B;
b) 7B = 13A;
c) A=B;
d) 7A = 91B;
e) 13B = 91A.
107. (FGV/SSP-AM/2015) Os pesos de cada um dos cinco operários que trabalham juntos em um grupo são: 82kg, 76kg, 94kg, 70kg e 78kg. Se um deles sair do grupo, o maior valor que poderá ter a média dos pesos dos trabalhadores restantes é:
a) 66,0kg;
b) 72,5kg;
c) 76,5kg;
d) 82,5kg;
e) 84,0kg.
108. (FGV/TCE-SE/2015) A média de cinco números de uma lista é 19. A média dos dois primeiros números da lista é 16. A média dos outros três números da lista é:
a) 13;
b) 15;
c) 17;

d) 19;
e) 21.
109. (FGV/TJ-RO/2015) A média do número de páginas de cinco processos que estão sobre a mesa de Tânia é 90. Um desses processos, com 130 páginas, foi analisado e retirado da mesa de Tânia. A média do número de páginas dos quatro processos que restaram é:
a) 70;
b) 75;
c) 80;
d) 85;
e) 90.
110. (FCC/METRO-SP/2014) A média de idade de cinco vagões de uma composição de trens do Metrô é de 13 anos. Nenhum dos vagões dessa composição tem menos do que 7 anos. Levando- se em consideração apenas essas informações, é correto afirmar que a idade máxima possível de um dos vagões dessa composição, em anos, é igual a
a) 30.
b) 37.
c) 15.
d) 24.
e) 32.
111. (FGV/Prefeitura de Osasco/2014) A média das idades de cinco agentes é 28 anos. O mais velho desses cinco agentes é Marcos, que tem 40 anos. A média das idades dos outros quatro agentes, em anos, é:
a) 26;
b) 25;
c) 24;
d) 23;
e) 22.
112. (CESPE/CNJ/2013) Um estagiário deve organizar uma pilha de n processos de acordo com o valor, em reais, das sentenças e por número, em três estantes: I, II e III. O desvio padrão do valor das sentenças é R\$

reais, das sentenças e por número, em três estantes: I, II e III. O desvio padrão do valor das sentenças é R\$ 50. A estante I é para processos referentes a sentenças com valores inferiores a R\$ 500; a II, para processos com sentenças de valores entre R\$ 500 e R\$ 2.000 e a III, para processos com sentenças de valores acima de R\$ 2.000.

A respeito dessa organização de processos, julgue o item a seguir.

Considerando que, em média, os processos na estante I tenham 100 páginas, os da estante II, 150 páginas e os da estante III, 300 páginas, e que as probabilidades de um processo pertencer às estantes I, II ou III sejam iguais a 4/5, 3/20 e 5/100, respectivamente, então a quantidade média de páginas de um processo será superior a 130.

113. (FGV/ALE-MA/2013) Três pessoas estão no elevador e o peso médio delas é de 72kg. Em seguida, uma menina de 36kg entra no elevador. O peso médio dessas quatro pessoas é:

- a) 27 kg.
- b) 36 kg.
- c) 46 kg.
- d) 54 kg.
- e) 63 kg.

114. (CESPE/CBM-DF/2011) Uma cidade, localizada em uma região plana, foi planejada de modo que suas ruas fossem todas retilíneas e os quarteirões, quadrados com 500 m de lado. Representada a cidade em um sistema de coordenadas cartesianas ortogonais xOy, o eixo positivo Ox aponta para o leste e o eixo positivo Oy, para o norte, com distâncias medidas em quilômetros; as ruas de maior trânsito, Monteiro Lobato e Olavo Bilac, são expressas pelas equações 3x + 4y = 10 e 3x + 4y = 30, respectivamente. O quartel do corpo de bombeiros localiza-se na esquina da rua Monteiro Lobato com a rua Rui Barbosa, perpendiculares entre si, tendo saída para essas duas ruas. A fim de otimizar o atendimento às ocorrências de acidentes, uma viatura fica estacionada na esquina da Olavo Bilac com a Rui Barbosa. A tabela a seguir apresenta a média mensal de acidentes de trânsito em ruas da cidade, nos últimos 12 meses.

Rua	Acidentes por mês (média)
Monteiro Lobato	14
Olavo Bilac	10
Todas as ruas paralelas à Monteiro Lobato	6

Infere-se das informações apresentadas que, nos últimos 12 meses, ocorreram menos de 350 acidentes de trânsito na cidade em questão.

115. (CESPE/CBM-DF/2011) O governador do estado do Rio de Janeiro, Sérgio Cabral, voltou a defender a política de reajuste salarial oferecida pelo governo ao corpo de bombeiros, que prevê ganhos de 1% a cada mês em relação ao salário do mês imediatamente anterior até 2014. O governador afirmou que o efetivo de bombeiros do Rio é proporcionalmente muito superior ao de todos os estados. "O Rio de Janeiro tem 16.500 bombeiros militares, com 16 milhões de habitantes. São Paulo, com 40 milhões de habitantes, tem 8.500 bombeiros. Minas Gerais tem 20 milhões de habitantes e 5 mil bombeiros militares. Sergipe, referência de excelente salário, tem 630 bombeiros. De maneira que nós temos de ter responsabilidade.

Esta política tem de seguir uma estratégia, que não é a ideal, mas é a possível." Segundo números apresentados pelo governo fluminense, o efetivo de bombeiros do Rio de Janeiro corresponde a 25% do total de bombeiros em todo o país.

Internet: <www.correiobraziliense.com.br> (com adaptações).

Com referência ao texto apresentado acima, julgue os itens:

Segundo as informações do texto, entre os estados citados a quantidade média de bombeiros é superior a 7.600.

116. (CESPE/CBM-DF/2011) Uma cidade, localizada em uma região plana, foi planejada de modo que suas ruas fossem todas retilíneas e os quarteirões, quadrados com 500 m de lado. Representada a cidade em um sistema de coordenadas cartesianas ortogonais xOy, o eixo positivo Ox aponta para o leste e o eixo positivo Oy, para o norte, com distâncias medidas em quilômetros; as ruas de maior trânsito, Monteiro Lobato e Olavo Bilac, são expressas pelas equações 3x + 4y = 10 e 3x + 4y = 30, respectivamente. O quartel do corpo de bombeiros localiza-se na esquina da rua Monteiro Lobato com a rua Rui Barbosa, perpendiculares entre si, tendo saída para essas duas ruas. A fim de otimizar o atendimento às ocorrências de acidentes, uma viatura fica estacionada na esquina da Olavo Bilac com a Rui Barbosa. A tabela a seguir apresenta a média mensal de acidentes de trânsito em ruas da cidade, nos últimos 12 meses.

Rua	Acidentes por mês (média)
Monteiro Lobato	14
Olavo Bilac	10
Todas as ruas paralelas à Monteiro Lobato	6

Sabendo-se que a cidade tem pelo menos 10 ruas paralelas à rua Monteiro Lobato, é correto afirmar que, em média, ocorreram menos de 4 acidentes de trânsito nessas ruas nos últimos 12 meses.

117. (CESPE/SEFAZ-ES/2010)

Órgão	Despesa total com salários de pessoal (x r\$ 10.000)	Quantidade de cargos comissionados	Quantidade de cargos efetivos
Α	100	40	180
В	120	40	182

С	150	50	220
D	180	100	230

Considere que, a fim de avaliar despesas com salários do pessoal lotado em órgãos do Poder Executivo, determinada secretaria de fazenda decidiu fazer um levantamento em quatro órgãos em relação ao mês de agosto de 2009. Os dados observados estão apresentados na tabela acima. Com base nessas informações, julgue os próximos itens.

Em agosto de 2009, os salários médios do pessoal nesses órgãos foram superiores a R\$ 4.500,00.

118. (CESPE/BB/2009)

Tendo como referência a figura acima, que mostra os valores das taxas de juros anuais, em dois anos consecutivos, denominados anterior e atual, em 10 países, julgue os itens seguintes.

O valor médio das taxas atuais dos 10 países em questão é inferior a 5%.

119. (CESPE/ANTAC/2009)

	Variável	2003	2004	2005	2006	2007
Exportação	X	40	46	50	52	54
Importação	Υ	20	21	22	24	27
Total	X+Y	60	67	72	76	81

Internet: <www.portodesantos.com> (com adaptações)

Considerando a tabela acima, que apresenta a movimentação anual de cargas no porto de Santos de 2003 a 2007, em milhões de toneladas/ano e associa as quantidades de carga movimentadas para exportação e importação às variáveis X e Y, respectivamente, julgue os itens subsequentes.

A média das diferenças X - Y no período mostrado foi superior a 25,5 milhões de toneladas/ano.

120. (CESPE/PRF/2008)

Ficou pior para quem bebe

O governo ainda espera a consolidação dos dados do primeiro mês de aplicação da Lei Seca para avaliar seu impacto sobre a cassação de CNHs. As primeiras projeções indicam, porém, que as apreensões subirão, no mínimo, 10%. Antes da vigência da Lei Seca, eram suspensas ou cassadas, em média, aproximadamente 155.000 CNHs por ano. Se as previsões estiverem corretas, a média anual deve subir para próximo de 170.000. A tabela a seguir mostra esses resultados nos últimos anos (fonte: DENATRAN).

	CNHs					
Ano	Concedidas (milhões)	Suspensas ou cassadas				
2003	1,8	148.500				
2004	3,4	314.200				
2005	3,2	115.700				
2006	2,2	98.800				
2007	2,8	112.100				
2008	1,5*	64.500*				
Total	14,9	853.900				

^{*}dados de janeiro a junho

Veja, ed. 2.072, 6/8/2008, p.51 (com adaptações)

Para que a média de CNHs suspensas ou cassadas, de 2003 a 2008, atinja o valor previsto de 170.000, será necessário que, em 2008, a quantidade de CNHs suspensas ou cassadas seja um número

- a) inferior a 180.000.
- b) superior a 180.000 e inferior a 200.000.
- c) superior a 200.000 e inferior a 220.000.
- d) superior a 220.000 e inferior a 240.000.
- e) superior a 240.000.

121. (CESPE/PRF/2008) O gráfico a seguir, que ilustra a previsão das reservas monetárias de alguns países, em 2008, deve ser considerado para o julgamento dos itens.

Com base nas informações do gráfico apresentado acima, julgue os seguintes itens.

Entre as reservas apresentadas no gráfico, apenas as da Rússia e da China superam a média aritmética das reservas de todos eles.

122. (CESPE/ANCINE/2005)

Tabela I

Finalidade do projeto	N.º de projetos atendidos	N.º de projetos não-atendidos
produção de obras cinematográficas nacionais	10	20
construção/reforma de salas de exibição	20	60
comercialização/distribuição de obras cinematográficas nacionais	70	20
formação de recursos humanos/capacitação dos profissionais para o cinema nacional	100	200
total	200	300

Tabela II

Finalidade do projeto	Valor distribuído (r\$ milhões)			
produção de obras cinematográficas nacionais	10			

construção/reforma de salas de exibição	5
comercialização/distribuição de obras cinematográficas nacionais	3
formação de recursos humanos/capacitação dos profissionais para o cinema nacional	2
total	20

Tabela III

Projeto atendido	1	2	3	4	5	6	7	8	9	10	total
Valor (R\$ milhões)	2,0	1,6	1,0	1,0	1,0	0,8	0,8	0,7	0,6	0,5	10

A tabelas I e II acima apresentam informações referentes a um programa hipotético de incentivo a projetos na área cinematográfica no Brasil, classificados quanto às finalidades dos projetos avaliados pelo programa. A tabela III apresenta os valores que foram aplicados nos 10 projetos atendidos que tinham como finalidade a produção de obras cinematográficas nacionais.

Com relação às informações apresentadas acima, julgue o item a seguir, considerando o universo de projetos atendidos e não- atendidos pelo programa de incentivo mencionado.

Dos recursos distribuídos pelo programa, 25% foram destinados à construção/reforma de salas de exibição, sendo concedidos, em média, R\$ 250 mil por projeto desse tipo.

GABARITO

Média Aritmética Simples

1.	LETRA B	41.	LETRA B	81.	LETRA B
2.	LETRA C	42.	LETRA A	82.	LETRA D
3.	LETRA B	43.	LETRA E	83.	ERRADO
4.	LETRA C	44.	LETRA E	84.	LETRA B
5.	LETRA B	45.	LETRA C	85.	LETRA E
6.	LETRA E	46.	LETRA C	86.	LETRA B
7.	LETRA E	47.	LETRA B	87.	LETRA C
8.	LETRA B	48.	LETRA C	88.	LETRA A
9.	ERRADO	49.	LETRA E	89.	LETRA A
10.	ERRADO	50.	LETRA B	90.	LETRA D
11.	ERRADO	51.	LETRA C	91.	LETRA D
12.	LETRA C	52 .	LETRA A	92.	LETRA A
13.	LETRA D	53.	LETRA E	93.	LETRA A
14.	LETRA E	54.	LETRA C	94.	LETRA B
15.	LETRA C	55.	LETRA C	95.	LETRA D
16.	LETRA D	56.	LETRA D	96.	LETRA B
17.	LETRA D	57.	LETRA B	97.	LETRA D
18.	LETRA C	58.	LETRA D	98.	LETRA C
19.	LETRA B	59.	LETRA C	99.	LETRA A
20.	LETRA D	60.	LETRA B	100.	LETRA C
21.	LETRA D	61.	LETRA E	101.	ERRADO
22.	LETRA B	62.	LETRA B	102.	LETRA D
23.	LETRA E	63.	LETRA B	103.	LETRA E
24.	LETRA D	64.	LETRA D	104.	LETRA B
25.	LETRA C	65.	LETRA E	105.	LETRA A
26.	LETRA C	66.	LETRA B	106.	LETRA A
27.	LETRA E	67.	LETRA A	107.	LETRA D
28.	LETRA B	68.	LETRA B	108.	LETRA E
29.	LETRA D	69.	LETRA B	109.	LETRA C
30.	LETRA A	70.	LETRA C	110.	LETRA B
31.	LETRA E	71.	LETRA A	111.	LETRA B
32.	LETRA C	72.	CERTO	112.	ERRADO
33.	LETRA C	73.	ERRADO	113.	LETRA E
34.	LETRA B	74.	LETRA C	114.	ERRADO
35.	LETRA D	75.	LETRA B	115.	CERTO
36.	LETRA C	76.	LETRA B	116.	ERRADO
37.	LETRA E	77.	LETRA B	117.	CERTO
38.	ERRADO	78.	LETRA E	118.	ERRADO
39.	CERTO	79.	LETRA C	119.	CERTO
40.	LETRA E	80.	LETRA B	120.	LETRA D

LISTA DE QUESTÕES

Média Ponderada

O tempo médio de espera para um cliente começar a ser atendido no caixa, considerando essas duas semanas, foi de, aproximadamente,

c) 6min 50s

d) 7min 30s

e) 7min 50s

2. (FUNDATEC/CM São Gabriel/2023) Lívia está requisitando pessoas para fazerem parte da sua equipe. Ela tem dois candidatos e a seleção deles é realizada por meio de prova, análise de curriculum e entrevistas. A prova tem peso 3, o Curriculum, 3 e a entrevista peso 4. Ângela tirou 7,5 na prova, 7,5 no currículo e 8,0 na entrevista. Sabendo que Patrick tirou 8,0 na prova e 9,0 no currículo, qual deve ser a nota que Patrick deve tirar na entrevista para ter exatamente 1 ponto a mais que Ângela na média final?

b) 9,5.

c) 9.

d) 8,8.

e) 6,5.

3. (VUNESP/Pref. Marília/2023) Em 31 de agosto, em uma turma de alunos de medicina, cinco alunos tinham 19 anos, cinco tinham 20 anos, cinco tinham 21 anos e cinco tinham 22 anos. Se no dia 30 de setembro a média aritmética das idades desses 20 alunos era 20,9 anos, o número de alunos que fazem aniversário em setembro é

a) 4.

b) 5.

c) 6.											
d) 7.											
e) 8.											
4. (FCC/TRT 17ª Região/202 alunos e C com 30 alunos. A foi um ponto superior à méd de todos os alunos foi 14,2,	após aplicar o mesmo dia da turma A, mas f	testo oi um	e nas	três t	urma	s, ob	servo	u que	a médi	ia da tur	rma E
a) 14											
b) 12											
c) 13											
d) 15											
e) 16											
5. (FCC/SEDU ES/2022) Em das notas dos reprovados fo								-			
a) 37,5%.											
b) 62,5%.											
c) 25,7%.											
d) 35,7%.											
e) 55,5%.											
6. (FGV/TCE-TO/2022) Uma	variável aleatória dis	screta	a X te	m fur	ıção d	le pro	babil	idade	dada p	or	
	Valores de X	-3	-1	0	1	3					
	Probabilidades	0,1	0,2	0,3	0,2	0,2					
A média de X é igual a:											
a) 0,1;											
b) 0,2;											
c) 0,3;											
d) 0,4;											

7. (FUNDATEC/IPE Saúde/2022) Em uma turma de matemática, o professor aplicou dois trabalhos e duas provas ao longo do trimestre. Para cada trabalho, o professor atribuiu peso 2 e, para cada prova, atribuiu peso 3. Ao final do trimestre, a aluna Mariana obteve as seguintes notas:

Nome da	Nota trabalho	Nota trabalho	Nota prova	Nota prova	
aluna	1	2	1	2	
Mariana	6,8	7,3	5,4	8,0	

Com base nessas notas e no peso atribuído pelo professor a cada atividade, podemos dizer que, ao final do trimestre, a aluna Mariana obteve média igual a:

- a) 6,84.
- b) 6,88.
- c) 6,90.
- d) 7,00.
- e) 7,63.

8. (FCC/UNILUS/2021) Em uma empresa a média salarial das mulheres é R\$ 1.100,00 e a dos homens R\$ 1.500,00. A média de todos os salários é R\$ 1.200,00. A proporção de mulheres nessa empresa é:

- a) $\frac{5}{8}$
- b) $\frac{3}{4}$
- c) $\frac{2}{3}$
- d) $\frac{5}{9}$
- e) $\frac{7}{12}$

9. (FGV/IMBEL/2021)

ATENÇÃO: tomando por base a tabela, responda a questão a seguir.

Consumo de um produto ao longo de 4 meses.

Mês Consumo Pesos M_e T_e P

1	100	0,1	•••	20	100
2	120	0,2			•••
3	132	0,3	•••		•••
4	156	0,4			
5	170				?

Dados:

- Me é a média exponencial;
- Te é a tendência exponencial;
- P é a previsão de consumo no mês.

Considerando os métodos da média simples e da média ponderada, as previsões de consumo no mês 5 seriam, respectivamente, de

- a) 127 e 127
- b) 127 e 136
- c) 127 e 142
- d) 136 e 127
- e) 136 e 142

10. (FUNDATEC/Pref. Candelária/2021) A movimentação econômica de um município é calculada pela média ponderada. Considerando o agronegócio com peso 4, a indústria com peso 3 e os serviços com peso 3. Se em determinado mês essas respectivas áreas registraram transações nos valores de R\$ 30.000,00, R\$ 50.000,00 e R\$ 25.000,00, então a média ponderada dessa movimentação econômica é:

- a) R\$ 35.000,00.
- b) R\$ 34.700,00.
- c) R\$ 34.600,00.
- d) R\$ 34.500,00.
- e) R\$ 34.200,00.

11. (FUNDATEC/Pref. Bom Jesus/2021) Uma faculdade tem quatro tipos de avaliação para compor a nota final de seus alunos por semestre, sendo esta nota a média ponderada dessas avaliações. A tabela abaixo apresenta as notas obtidas por uma aluna da faculdade nas quatro avaliações realizadas no semestre e os pesos de cada uma das avaliações:

Avaliação	Nota	Peso
Prova objetiva	6	4
Prova dissertativa	7	4
Portfólio	8	2
Apresentação de trabalho	9	2

A nota final dessa aluna será, aproximadamente, de:

b) 8,6.

c) 8.

d) 7,5.

e) 7,2.

12. (VUNESP/EsFCEx/2021) O salário médio pago aos 50 funcionários de uma empresa é de R\$ 2.000,00, sendo que, dentre os 50 funcionários, 10 são chefes de seções. Se desconsiderarmos os chefes de seções do cálculo, o salário médio cai para R\$ 1.500,00. Qual é o salário médio pago somente aos chefes de seções?

- a) R\$ 2.000.
- b) R\$ 4.000.
- c) R\$ 1.500.
- d) R\$ 6.000.
- e) R\$ 10.000.

13. (VUNESP/Pref. Ribeirão Preto/2021) A média das alturas de um grupo de 32 pessoas é igual a 167 cm. Retirando-se as 6 mulheres mais novas desse grupo, a média das alturas das pessoas restantes continua 167 cm. Retirando-se desse novo grupo os 6 homens mais novos, a média das alturas do grupo restante

passa a ser igual a 177 cm. A média das alturas, em cm, das 12 pessoas retiradas do grupo original é um número entre

- a) 135 e 140.
- b) 140 e 145.
- c) 145 e 150.
- d) 150 e 155.
- e) 155 e 160.

14. (VUNESP/CM Potim/2021) Na semana anterior, de segunda a quarta-feira, foram atendidas 60 pessoas em um posto de saúde, e observou- se que a média aritmética simples das idades dessas pessoas era de 40 anos. Na quinta e sexta-feira daquela semana, foram atendidas, ao todo, 40 pessoas no posto, e a média das idades foi de 45 anos. Sendo assim, é correto afirmar que a média das idades, em anos, de todas as pessoas atendidas, de segunda até sexta-feira da semana passada, naquele posto de saúde, foi de

- a) 44,0.
- b) 43,5.
- c) 43,0.
- d) 42,5.
- e) 42,0.

15. (CESPE/SEFAZ-DF/2020) A partir de uma amostra aleatória simples de tamanho n, sabe-se que a média aritmética de uma variável X foi igual a 3. Considerando que os valores possíveis para a variável X sejam - 1 e +4, julgue o item que se segue.

Nessa amostra aleatória, a quantidade de observações iguais a +4 foi igual a 0,8 n.

16. (CESPE/Pref. São Cristóvão/2019) A tabela seguinte mostra a distribuição das idades dos 30 alunos da turma A do quinto ano de uma escola de ensino fundamental.

Idade (em anos)	9	10	11	12	13	14
Quantidade de estudantes	6	22	0	1	0	1

A partir dessa tabela, julgue o item.

Se, em outra turma B, as frequências das idades fossem respectivamente iguais ao dobro das frequências da turma A, então a média aritmética das idades da turma B seria igual ao dobro da média da turma A.

17. (CESPE/IFF/2018) No registro das quantidades de filhos de 200 casais, verificaram-se os valores mostrados na tabela seguinte.

Quantidade de filhos	1	2	0	3	4	5	6
Quantidade de casais	50	40	40	30	25	10	5

Nesse caso, a quantidade média de filhos para esse grupo de casais é igual a

- a) 0.
- b) 1.
- c) 2.
- d) 2,5.
- e) 3.

18. (CESPE/BNB/2018) Em uma faculdade, para avaliar o aprendizado dos alunos em determinada disciplina, o professor aplica as provas A, B e C e a nota final do aluno é a média ponderada das notas obtidas em cada prova. Na prova A, o peso é1; na prova B, o peso é 10% maior que o peso na prova A; na prova C, o peso é20% maior que o peso na prova B.

Nesse caso, se P_A , P_B , P_C forem as notas obtidas por um aluno nas provas A, B e C, respectivamente, então a nota final desse aluno é expressa por $\frac{P_A+1,2\times P_B+1,32\times P_C}{3.52}$.

- 19. (FGV/BANESTES/2018) Alberto aplicou um capital C da seguinte forma:
- a) 40% de C em papéis de Renda Fixa (R.F.);
- b) 60% de C em Letra de Crédito Imobiliário (L.C.I.).

Ao longo de um ano, nenhum novo depósito foi feito em qualquer das duas modalidades de aplicação. Nesse mesmo período, não houve qualquer resgate. Se as taxas efetivas de rendimento da R.F. e da L.C.I., no período referido, foram de 15% a.a. e 10% a.a., respectivamente, então essa estratégia conjunta de aplicação possibilitou a Alberto uma rentabilidade total sobre o capital C de:

- a) 25%;
- b) 19%;
- c) 15%;
- d) 12%;
- e) 5%.

20. (FGV/TJ-SC/2018) Uma pequena empresa tem 10 funcionários. A média salarial dos 6 funcionários com menores salários é R\$ 2600,00 e a média salarial dos 4 funcionários com maiores salários é R\$ 4200,00. A média salarial dos 10 funcionários dessa empresa é:

- a) R\$ 3480,00;
- b) R\$ 3440,00;
- c) R\$ 3400,00;
- d) R\$ 3360,00;
- e) R\$ 3240,00.
- 21. (FUNDATEC/Prefeitura de Corumbá/2018) No colégio Coração de Cristo, a nota final de um aluno é calculada a partir da média de suas pontuações obtidas em cada trimestre, sendo que a média precisa ser maior ou igual a 7,00 para obter aprovação. O aluno Joaquim, em Física, obteve respectivamente as notas: 4,50; 8,80 e 7,60, obtendo em seu boletim o status de reprovado. Caso a escola mudasse para o sistema de pesos, em que seriam atribuídos respectivamente os pesos 3, 3 e 4 aos trimestres, a situação de Joaquim passaria a ser:
- a) Reprovado por 0,1.
- b) Aprovado por 0,1.
- c) Reprovado por 0,03.
- d) Aprovado por 0,03.
- e) Nenhuma das anteriores.
- 22. (CESPE/SEE-DF/2017) Iniciado em 2007, o processo gradativo de substituição do sinal de TV analógico pelo digital no Brasil começou a concretizar-se em 2016. Nesse período, intensificou-se o uso da TV por assinatura, segundo dados do IBGE. A tabela a seguir mostra o percentual aproximado de domicílios brasileiros que dispunham de diferentes modalidades de acesso a TV em 2014.

Zona	Sinal digital de TV aberta	TV por assinatura	antena parabólica
Urbana	44%	36%	32%
Rural	16%	8%	79%

IBGE (com adaptações).

Considerando essas informações e o fato de que, em 2014, 86% dos domicílios brasileiros situavam-se na zona urbana, julgue os itens subsequentes.

Em 2014, havia acesso ao sinal digital de TV aberta em mais de 50% dos domicílios brasileiros.

23. (CESPE/PM-AL/2017) Em um tanque A, há uma mistura homogênea de 240 L de gasolina e 60 L de álcool; em outro tanque B, 150 L de gasolina estão misturados homogeneamente com 50 L de álcool. A respeito dessas misturas, julgue os itens subsequentes.

Considere que em um tanque C, inicialmente vazio, tenham sido despejadas certas quantidades das misturas dos tanques A e B totalizando 100 L. Considere também que, depois de homogeneizada essa mistura no

tanque C, a separação de álcool e gasolina por um processo químico tenha mostrado que nesses 100 L, 22 L eram de álcool. Nessa situação, para formar essa mistura no tanque C foram usados mais de 55 L da mistura do tanque A.

24. (FGV/SEE-PE/2016) A média das idades das seis mulheres que trabalham em uma pequena empresa é 27 anos e a dos quatro homens que trabalham na mesma empresa é 32 anos. A média das idades desses dez trabalhadores é

- a) 28 anos.
- b) 28 anos e meio.
- c) 29 anos.
- d) 29 anos e meio.
- e) 30 anos.

25. (FUNDATEC/Prefeitura de Soledade-RS/2016) Um automóvel foi avaliado por uma revista especializada e obteve as seguintes notas: 80 em consumo, 85 em conforto e 90 em design. Se a nota de consumo tem peso 9, a de conforto peso 8 e a de design peso 8, qual foi a média aritmética ponderada das notas dadas a esse automóvel?

- a) 83,2.
- b) 83,5.
- c) 84,0.
- d) 84,8.
- e) 85,3.

26. (CESPE/TELEBRAS/2015) A equipe de atendentes de um serviço de telemarketing é constituída por 30 empregados, divididos em 3 grupos, que trabalham de acordo com a seguinte escala.

Grupo I: 7 homens e 3 mulheres, que trabalham das 6 h às 12 h.

Grupo II: 4 homens e 6 mulheres, que trabalham das 9 h às 15 h.

Grupo III: 1 homem e 9 mulheres, que trabalham das 12 h às 18 h. A respeito dessa equipe, julgue o item que se segue.

Se, nesse serviço de telemarketing, a média das idades das atendentes for de 21 anos e a média das idades dos atendentes for de 31 anos, então a média das idades de todos os 30 atendentes será de 26 anos.

27. (FGV/BNB/2014) Levantamento estatístico de uma empresa constatou que 70% dos funcionários eram do sexo masculino. Ainda de acordo com esse levantamento, a média salarial mensal dos funcionários do sexo masculino era de R\$ 3.000,00 e a média salarial mensal dos funcionários do sexo feminino era de R\$ 4.500,00. Considerando todos os funcionários dessa empresa, a média salarial mensal é de:

a) R\$ 3.950,00

b) R\$ 3.750,00
c) R\$ 3.650,00
d) R\$ 3.450,00
e) R\$ 3.250,00
28. (FGV/Pref. de Osasco/2014) Os 20 homens e 10 mulheres que trabalham como vigias de uma fábrica foram examinados no departamento médico da empresa. Nesse exame constatou-se que o peso médio dos homens era de 84kg e o peso médio das mulheres era de 66kg. O peso médio dessas 30 pessoas era de:
a) 70kg;
b) 72kg;
c) 74kg;
d) 75kg;
e) 78kg.
29. (CESPE/TCE-RS/2012) Uma instituição possui 15 empregados: 2 da referência A, 4 da B e 9 da referência C. O salário mensal de cada empregado da referência C é igual a R\$ 2.000,00; o de cada empregado da referência B, R\$ 3.500,00; e o salário mensal de cada empregado da referência A é igual a R\$ 5.000,00.
Se 6 empregados dessa instituição são do sexo masculino, então o salário médio dos homens que nela trabalham está entre R\$ 2.000,00 e R\$ 4.000,00.
30. (CESPE/PRF/2012) Considere os eventos A, B, C e D, definidos abaixo, relativos ao número de veículos por família em determinada cidade.
A = uma família possui 1 ou mais veículos;
B = uma família possui 2 ou mais veículos;
C = uma família possui 3 ou mais veículos;
D = uma família possui 4 ou mais veículos.
Considere, ainda, que as probabilidades de ocorrência desses eventos são: $P(A) = 0.9$; $P(B) = 0.6$; $P(C) = 0.3$ e $P(D) = 0$. Com base nessas informações, julgue o item que se segue.

31. (CESPE/CL DF/2006) Com o objetivo de criar um parâmetro para expressar a criminalidade, um estado adotou a seguinte tabela de pesos para os diferentes crimes:

O número médio de veículos por família na referida cidade é igual ou superior a 2.

furto	1
roubo	2
estupro	3
latrocínio	4
homicídio	5

Mensalmente, a cada cidade desse estado, é atribuído um índice de criminalidade, que é a média ponderada — de acordo com os pesos da tabela acima — do número de ocorrências de cada crime listado na tabela no mês em estudo, multiplicada por 1.000 e, em seguida, dividida pelo número de habitantes da cidade. Com base nessa situação hipotética, julgue o seguinte item.

Um município de 5.000 habitantes desse estado em que, em determinado mês, ocorreram 15 furtos, 12 roubos, 4 estupros, 2 latrocínios e 2 homicídios terá índice de criminalidade mensal mais baixo que um outro município de 50.000 habitantes desse estado em que, nesse mesmo mês, ocorreram 100 furtos, 120 roubos, 40 estupros, 20 latrocínios e 20 homicídios.

32. (CESPE/TC-DF/2002) Durante a recente desvalorização do real, foi reportado na imprensa que alguns exportadores estariam retardando as vendas com o intuito de especular com a cotação do dólar.

Considerando o gráfico acima, que compara as exportações de soja nos seis primeiros meses de 2001 e de 2002, julgue o item a seguir.

Durante os dois primeiros meses de 2001, a média diária de exportações de soja foi de US\$ 10,65 milhões

GABARITO

Média Ponderada

- LETRA D
 LETRA C
 LETRA E
 LETRA C
- **4.** LETRA C **5.** LETRA A
- 6. LETRA C7. LETRA A
- 8. LETRA B
- 9. LETRA B
 10. LETRA D
- **11.** LETRA E

- **12.** LETRA B
- **13.** LETRA D**14.** LETRA D
- **15.** CERTO
- 15. CERTO
- **16.** ERRADO**17.** LETRA C
- **18.** ERRADO
- **19.** LETRA D
- **20.** LETRA E
- 21. LETRA D22. ERRADO

- **23.** CERTO
- **24.** LETRA C
- **25.** LETRA D
- 26. ERRADO
- **27.** LETRA D
- **28.** LETRA E
- 29. CERTO
- 30. ERRADO31. ERRADO
- **32.** ERRADO

LISTA DE QUESTÕES

Média para Dados Agrupados

1. (CESGRANRIO/BASA/2022) A Tabela abaixo representa as frequências referentes aos resultados de alcatrão (mg) encontrados em cigarros sem filtro, a partir de uma amostra de 30 cigarros selecionados de várias marcas.

Alcatrão (mg)	Frequência
[10, 14)	2
[14, 18)	4
[18, 22)	x
[22, 26)	У
[26, 30]	2

Se a média de alcatrão na amostra foi de 20,4 mg, qual o valor de x-y?

- a) 6
- b) 8
- c) 10
- d) 12
- e) 14
- 2. (CESPE/FUB/2022) Uma universidade está fazendo um estudo para verificar a distribuição dos tempos que os alunos do curso de mestrado levam até a defesa da dissertação. Os dados a seguir mostram a função de probabilidade desses tempos, em meses.

Tempo de Defesa (meses)	Probabilidade
12	0,01
15	0,02
18	0,04
20	0,10

22	0,22
24	0,31
25	0,18
26	0,04
28	0,03
30	0,05

Considerando essas informações, julgue o item subsequente.

Em média, os alunos levam mais de 24 meses para concluir o mestrado.

3. (CESPE/FUB/2022) A tabela de frequência a seguir mostra dados coletados em uma pesquisa para se verificar o número de disciplinas que os estudantes de determinada universidade estão cursando por semestre.

Disciplinas	2	3	4	5	6	7	8
Estudantes	10	15	40	35	28	10	4

Considerando essas informações, julgue o item seguinte.

Em média, os alunos cursam entre 4 e 5 disciplinas por semestre.

4. (CESPE/PC RO/2022)

Estrato (h)	Média amostral do estrato (\overline{X}_h)	Peso do estrato (W_h)
1	5	0,1
2	4	0,4
3	3	0,5

Considerando-se que o quadro anterior mostre os resultados de uma amostragem aleatória estratificada de tamanho 1.000 efetuada sobre uma população de tamanho 5.000.000, a estimativa da média populacional é igual a

- a) 4,0.
- b) 3,9.
- c) 3,8.

- d) 3,7.
- e) 3,6.

5. (CESPE/PETROBRAS/2022)

Tabela A				
Classes	Freq.			
10-12	3			
12-14	7			
14-16	9			
16-18	12			
18-20	8			
20-22	6			
22-24	4			
24-26	2			

Tabela B			
Classes	Freq.		
2-4	1		
4-6	4		
6-8	5		
8-10	7		
10-12	10		
12-14	13		
14-16	17		
16-18	21		
18-20	18		
20-22	15		
22-24	11		
24-26	9		
26-28	6		

28-30	3
30-32	2

Com base nas tabelas de frequência A e B apresentadas anteriormente, julgue o item a seguir.

As médias aritméticas das séries A e B são idênticas, considerando o arredondamento até a segunda casa decimal.

6. (CESPE/TELEBRAS/2022)

Considerando que o histograma apresentado descreve a distribuição de uma variável quantitativa X por meio de frequências absolutas, julgue o item que se segue.

A média amostral obtida com base nos pontos médios dos intervalos de classe que constituem o histograma é superior a 13.

7. (CESPE/PETROBRAS/2022) O item a seguir é apresentada uma situação hipotética seguida de uma assertiva a ser julgada a respeito de probabilidade e estatística.

Os preços de um determinado produto em 10 diferentes lojas são dados na tabela a seguir.

N.º de lojas	2	3	1	2	2
Preço (R\$)	195	210	220	235	240

A média aritmética dos preços encontrados foi de R\$ 219,00.

8. (CESPE/PETROBRAS/2022) Uma pessoa realizou uma pesquisa em todos os postos de combustíveis de uma cidade com a finalidade de verificar a variação dos preços de gasolina na cidade. Após terminar a pesquisa e rever suas anotações, a pessoa percebeu que apagou, acidentalmente, o preço de um dos postos, ficando suas anotações conforme a tabela abaixo:

Preço da gasolina nos 20 postos da cidade

Preço(R\$)	6,40	6,80	6,50	6,10	6,30	?
Quantidade de postos que oferecem esse preço	10	5	2	1	1	1

Com base nessa situação hipotética, julgue o item a seguir.

Se, antes de ter apagado, a pessoa tivesse anotado a média aritmética dos preços e esse valor fosse igual a R\$ 6,50 então o preço apagado na tabela é inferior a essa média.

9. (CESPE/PETROBRAS/2022) Uma pessoa realizou uma pesquisa em todos os postos de combustíveis de uma cidade com a finalidade de verificar a variação dos preços de gasolina na cidade. Após terminar a pesquisa e rever suas anotações, a pessoa percebeu que apagou, acidentalmente, o preço de um dos postos, ficando suas anotações conforme a tabela abaixo:

Preço da gasolina nos 20 postos da cidade

Preço(R\$)	6,40	6,80	6,50	6,10	6,30	?
Quantidade de postos que oferecem esse preço	10	5	2	1	1	1

Com base nessa situação hipotética, julgue o item a seguir.

Considere que um visitante passando por essa cidade escolha aleatoriamente um posto para abastecer o seu veículo. A probabilidade de ele escolher um posto em que o preço da gasolina esteja acima da média de preços é menor que 0,25.

10. (CESPE/PETROBRAS/2022)

х	Frequência Relativa
0	0,23
1	0,22
2	0,50
3	0,05

Considerando que a tabela acima mostra a distribuição de frequências de uma variável obtida com base em uma amostra aleatória simples de tamanho igual a , julgue o item que se segue.

A média amostral da variável é inferior a 1,5.

11. (CESPE/TCE-RJ/2021)

х	Frequência Absoluta
0	5
1	10
2	20
3	15
Total	50

Considerando que a tabela precedente mostra a distribuição de frequências de uma variável quantitativa X, julgue o item a seguir.

A média amostral da variável em tela é inferior a 2.

12. (CESPE/APEX/2021) A distribuição de prejuízos financeiros causados por não conformidades em processos de determinada organização é dada pela tabela a seguir.

Prejuízos financeiros (em reais)	Não conformidades
1.000	5
2.000	7
3.000	8
5.000	5
10.000	3

Considerando-se essa situação hipotética, é correto afirmar que a média de prejuízos financeiros dessa organização, em reais, equivale a

- a) 750.
- b) 3.500.
- c) 4.250.
- d) 5.750.

13. (FUNDATEC/SEPOG RS/2022) Considerando a tabela de frequência apresentada abaixo, referente à distribuição de uma determinada variável X, pode-se dizer que o valor aproximado da média de X é de:

	_ ^ .
X	Frequência
0 - 10	25
10 - 20	10
20 - 30	49
30 - 40	88
40 - 50	28
TOTAL	200

- a) 39,2.
- b) 34,2.
- c) 29,2.

- d) 24,2.
- e) 22,2.

14. (CESPE/SEDUC AL/2021) Com base em estatística, julgue o item a seguir.

Considere que, em uma turma de matemática, o professor tenha distribuído as notas da primeira avaliação dos alunos conforme a tabela apresentada adiante. Com base nos dados dessa tabela, é correto afirmar que a média das notas dessa turma na primeira avaliação foi superior a 5.

Frequência	Nota
3	0
7	2
8	4
10	6
8	8
4	10

15. (FUNDATEC/Pref. Ametista do Sul/2021) Para a escalação da seleção olímpica de futebol, temos as seguintes idades dos jogadores:

Quantidade de jogadores	Idades
2	17
3	18
4	19
5	20

Sendo assim, a média de idade da seleção olímpica é de:

- a) 19.
- b) 19,5.
- c) 20.
- d) 20,5.
- e) 21.

16. (VUNESP/EsFCEx/2021) Uma pane pode ocorrer em qualquer ponto de uma rede elétrica de 15 quilômetros, com mesma probabilidade. O custo de reparo da rede depende da distância do centro de serviço ao local da pane. Considere que o centro de serviço está na origem da rede e que o custo é de R\$ 300,00 para distâncias até 4 quilômetros, de R\$ 750,00 entre 4 e 10 e de R\$ 1.200,00 para distâncias acima de 10 quilômetros. O custo esperado do conserto de uma pane é:

- a) R\$ 780,00.
- b) R\$ 975,00.
- c) R\$ 800,00.
- d) R\$ 750,00.
- e) R\$ 977,00.

17. (VUNESP/CODEN/2021) O quadro a seguir apresenta os salários de 16 funcionários de um dos departamentos de uma empresa.

Nº de funcionários	Salário (R\$)
4	1.500,00
6	2.500,00
4	4.000,00
2	10.000,00

Serão contratados mais 4 funcionários, todos com o mesmo salário, para esse departamento de modo que a média salarial dos 20 funcionários seja igual a R\$ 3.500,00. Assim, o salário de cada um desses novos funcionários será de

- a) R\$ 4.000,00.
- b) R\$ 3.750,00.
- c) R\$ 3.500,00.
- d) R\$ 3.250,00.
- e) R\$ 3.000,00.

18. (VUNESP/AVAREPREV/2020) Uma loja trabalha com produtos que são classificados em apenas três tipos. Na tabela, constam os preços de venda de cada tipo do produto:

Tipo do produto	Preço unitário de venda
Α	R\$ 10,00
В	R\$ 12,00
С	R\$ 15,00

No último dia útil de funcionamento, foram vendidos produtos dos três tipos, sendo que, do total de unidades vendidas, $\frac{1}{4}$ foi de produtos do tipo A, $\frac{2}{5}$ foi de produtos do tipo B, e o restante, de produtos do tipo C. Naquele dia, o preço médio unitário de venda dos produtos vendidos foi de

- a) R\$ 11,95.
- b) R\$ 12,30.
- c) R\$ 12,55.
- d) R\$ 13,50.
- e) R\$ 13,95.

19. (FGV/BANESTES/2018) Em uma empresa, os funcionários são classificados em atendentes, técnicos ou gerentes. A tabela abaixo mostra a quantidade de funcionários de cada categoria e o salário que cada um recebe.

Atendente	10	1800
Técnico	8	3000
Gerente	2	4200

Nessa empresa, o salário médio dos seus funcionários é de:

trabalhadas pelos funcionários de uma empresa.

a) 2480 reais;

b) 2520 reais;
c) 2640 reais;
d) 2700 reais;
e) 3000 reais.
20. (VUNESP/CM de São José dos Campos/2018) Em um grupo de 10 pessoas, duas têm 40 anos, quatro têm 21 anos, uma tem 25 anos e três têm a mesma idade. Sabendo-se que a média aritmética das idades dessas 10 pessoas é 22,5 anos, a soma das idades desconhecidas corresponde, da soma de todas as idades, a
a) 12%
b) 14%
c) 16%
d) 18%
e) 20%
21. (VUNESP/CM de São José dos Campos/2018) Em um concurso, a nota final de cada candidato é calculada pela média aritmética ponderada das notas das três fases de avaliação previstas, com pesos 2, 3 e 5, para as primeira, segunda e terceira fases, respectivamente. Para ser classificado no concurso, o candidato tem que atingir nota final maior ou igual a 6. Sendo assim, um candidato que tirou notas 5 e 6 nas primeira e segunda fases, respectivamente, para ser classificado no concurso, precisa tirar, na terceira fase, uma nota mínima igual a
a) 6,2.
b) 6,4.
c) 6,6.
d) 6,8.
e) 7,0.

22. (VUNESP/IPRESB/2017) A tabela mostra o número de horas extras de determinada semana,

Número de funcionários	Número de horas extras
3	5
2	4
4	6
?	3

Considerando-se o número total de funcionários que fizeram horas extras nessa semana, o número de horas extras por funcionário foi, na média, 4,25. O número de funcionários que fizeram 3 horas extras nessa semana foi

- a) 7.
- b) 6.
- c) 5.
- d) 4.
- e) 3.

23. (CESPE/DEPEN/2015)

Dado que a participação dos presidiários em cursos de qualificação profissional é um aspecto importante para a reintegração do egresso do sistema prisional à sociedade, foram realizados levantamentos estatísticos, nos anos de 2001 a 2009, a respeito do valor da educação e do trabalho em ambientes prisionais. Cada um desses levantamentos, cujos resultados são apresentados no gráfico, produziu uma estimativa anual do percentual P de indivíduos que participaram de um curso de qualificação profissional de curta duração, mas que não receberam o diploma por motivos diversos. Em 2001, 69,4% dos presidiários que participaram de um curso de qualificação profissional não receberam o diploma. No ano seguinte, 2002, esse percentual foi reduzido para 61,5%, caindo, em 2009, para 30,9%.

A partir das informações e do gráfico apresentados, julgue os itens que se seguem.

Caso a quantidade total de presidiários participantes de um curso de qualificação profissional em 2001 seja igual a N, e esse total em 2002 seja igual a 2N, a estimativa do percentual P de indivíduos que participaram de um curso de qualificação profissional de curta duração e que não receberam o diploma por motivos diversos nos anos de 2001 e 2002 é inferior a 65%.

24. (FGV/CGE-MA/2014) No ano de 2013 uma empresa exportadora de grãos, exportou em cada um dos três primeiros meses do ano, 21.000 toneladas de soja. Em cada um dos sete meses seguintes exportou 27.000 toneladas de soja e, em cada um dos dois últimos meses do ano exportou 15.000 toneladas de soja. Em 2013 essa empresa exportou por mês, em média, a quantidade de

- a) 5.250 toneladas.
- b) 15.750 toneladas.
- c) 21.000 toneladas.
- d) 23.500 toneladas.
- e) 25.250 toneladas.

25. (FCC/TRT 5ª Região/2013) Considere a tabela abaixo, referente à distribuição de frequências relativas dos salários dos 400 empregados de uma empresa no mês de agosto de 2013, sabendo-se que (m+n)=10%.

CLASSE DE SALÁRIOS (R\$)	FREQUÊNCIA RELATIVA (%)
$2.500 \vdash 3.500$	2 m
3.500 + 4.500	5 n
$4.500 \vdash 5.500$	4 m
5.500 ⊢ 6.500	6 n
6.500 ⊢ 7.500	3 m
TOTAL	100

O valor da média aritmética dos salários dos empregados foi obtido considerando-se que todos os valores incluídos num intervalo de classe são coincidentes com o ponto médio deste intervalo. O número de empregados correspondente ao intervalo de classe a que pertence o valor da média aritmética é igual a

- a) 80.
- b) 60.
- c) 40.
- d) 100.
- e) 120.

26. (CESPE/CAM DEP/2012)

Para avaliar os gastos com transporte de determinada diretoria, um analista coletou amostras de despesas com transportes (em R\$) registradas por servidores dos setores1 e 2. Para cada setor, a amostra é constituída por 50 registros. Essas amostras foram organizadas graficamente, e os resultados são mostrados na figura acima. Nesta figura, as frequências absolutas estão indicadas nos histogramas correspondentes. Os dados foram os seguintes:

Setor 1					
308,73	311,80	358,33	359,89	371,53	379,82
383,76	388,66	391,53	394,65	414,60	416,38
418,34	419,42	427,85	428,58	432,06	436,61
442,49	450,53	450,98	452,35	471,70	473,11
476,76	481,46	484,89	490,07	499,87	500,52
502,06	513,80	514,39	521,96	522,18	526,42
528,76	531,53	547,91	572,66	591,43	596,99
609,44	632,15	639,71	677,48	683,76	688,76
723,79	767,53				
Setor 2					
488,37	493,73	547,72	552,66	567,94	571,49
572,26	582,00	583,63	594,77	598,46	619,25
624,20	631,03	634,51	637,21	655,70	657,56

```
663,81
        670,12 671,90
                        673,78
                                684,69
                                         685,98
693,35
        698,58
                708,78
                        719,80
                                721,16
                                         734,84
735,94
        746,34
                754,83
                        756,10
                                756,96
                                         760,80
762,29
        766,24
                770,11
                        797,73
                                804,06
                                         805,97
807,29
        832,83
                844,00
                        866,77
                                878,27
                                         897,09
943,10
        963,25
```

Considerando essas informações, julgue o item.

A despesa média com transporte dos servidores do setor 1 é superior a R\$ 500,00.

27. (CESPE/PRF/2012)

Q	P (%)
1	50
2	20
3	15
4	10
5	5

A tabela acima mostra a distribuição da quantidade Q de pessoas transportadas, incluindo o condutor, por veículo de passeio circulando em determinado município, obtida como resultado de uma pesquisa feita nesse município para se avaliar o sistema de transporte local. Nessa tabela, P representa a porcentagem dos veículos de passeio circulando no município que transportam Q pessoas, para Q = 1, ..., 5. Com base nessas informações, julgue o seguinte item.

Em média, cada veículo de passeio que circula no referido município transporta duas pessoas. Portanto, se, em determinado momento, houver 10 mil veículos circulando nesse município, a quantidade esperada de pessoas que estão sendo transportadas por todos esses veículos, incluindo-se os condutores, será igual a 20 mil.

28. (FUNDATEC/CM de Imbé-RS/ 2012) O histograma abaixo demonstra as frequências absolutas dos salários, em reais, de 100 funcionários de um determinado setor da Câmara Municipal de uma cidade, no mês de outubro deste ano.

Considerando as informações descritas acima, a melhor estimativa da média salarial desses funcionários corresponde a

- a) R\$800,00.
- b) R\$810,00.
- c) R\$860,00.
- d) R\$880,00.
- e) R\$890,00.

29. (CESPE/INSS/2008)

i	Massa do ovo produzido (T) em gramas	Percentual (P_i)
1	$50 \le T \le 200$	48%
2	$200 \le T \le 300$	36%
3	$300 \le T \le 500$	12%
4	$500 \le T \le 1.000$	4%
	Total	100%

Segundo uma associação de indústrias de chocolate, em 2008 serão produzidos 100 milhões de ovos de Páscoa. A tabela acima apresenta a distribuição dos ovos segundo a massa de cada ovo e as quantidades produzidas nos anos anteriores.

Correio Braziliense, 17/2/2008, p. 26 (com adaptações).

Com base nessas informações, julgue o item subsequente.

A produção, em toneladas, esperada para o ano de 2008 é superior a 22 mil e inferior a 23 mil ovos de Páscoa.

30. (CESPE/SEFAZ MT/2004) Considere a seguinte situação hipotética.

Um órgão do governo recebeu pela Internet denúncias de sonegação de impostos estaduais contra 600 pequenas empresas. Denúncias contra outras 200 pequenas empresas foram encaminhadas pessoalmente para esse órgão. Para a apuração das denúncias, foram realizadas auditorias nas 800 empresas denunciadas. Como resultado dessas auditorias, foi elaborada a tabela abaixo, que apresenta um quadro das empresas denunciadas e os correspondentes débitos fiscais ao governo. Das empresas denunciadas, observou-se que apenas 430 tinham débitos fiscais.

	Valor do débito fiscal (VDF), em R\$ mil, apurado após auditoria na empresa denunciada				
Forma de recebimento da denúncia	0 < <i>VDF</i> < 1	$1 \le VDF < 2$	2 ≤ <i>VDF</i> < 3	3 ≤ <i>VDF</i> ≤ 4	Total
Pela internet	60	100	50	30	240
Pessoalmente	20	120	40	10	190
Total	80	220	90	40	430*

Nota: *Para as demais empresas, VDF=0

Com base na situação hipotética acima e de acordo com as informações apresentadas, julgue o item que se segue.

O débito fiscal médio das empresas denunciadas por meio da Internet é menor que o débito fiscal médio daquelas denunciadas pessoalmente.

Média para Dados Agrupados

1.	LETRA B
2.	ERRADO
3.	CERTO
4.	LETRA E
5.	CERTO
6.	CERTO
7.	CERTO
8.	ERRADO
9.	ERRADO

10. CERTO

11. CERTO
12. LETRA B
13. LETRA C
14. CERTO
15. LETRA B
16. LETRA A
17. LETRA D
18. LETRA C
19. LETRA B
20. LETRA C

21. LETRA B
22. LETRA A
23. CERTO
24. LETRA D
25. LETRA A
26. ERRADO
27. CERTO
28. LETRA C
29. CERTO
30. CERTO

LISTA DE QUESTÕES

Média Geométrica

- 1. (FCC/DPE-RS/2013) A média geométrica dos números 4, 8 e 16 é
- a) maior que a respectiva média aritmética.
- b) inferior a 6.
- c) igual a 8.
- d) igual a 4.
- e) superior a 9.
- 2. (CESPE/CBM-DF/2011) A média aritmética entre dois números reais não negativos a e b é definida por $M=\frac{a+b}{2}$, enquanto sua média geométrica é dada por $G=\sqrt{a\times b}$. São diversas as possíveis aplicações dessas duas médias no cotidiano. Por exemplo, se um investimento tem um rendimento de x% no primeiro ano e de y% no segundo ano, o rendimento médio anual será uma taxa equivalente à média aritmética entre x e y, sob um regime de capitalização simples, e à média geométrica entre 1+x e 1+y subtraída de uma unidade, sob um regime de capitalização composta, em que x e y devem ser expressos na forma unitária.

Com base nessas informações, julgue o próximo item.

Se um investidor obtiver, em dois anos, rendimento médio anual de 10% em um investimento regido pelo sistema de capitalização composta, e se o rendimento desse investidor, no segundo ano, for equivalente a 12%, então seu rendimento no primeiro ano será inferior a 7,8%.

- 3. (FGV/SEFAZ-RJ/2011) Em uma repartição, foi tomada uma amostra do número de filhos de 4 funcionários. O resultado foi {2, 1, 4, 2}. A média geométrica simples dessa amostra é
- a) 2,25
- b) 1,75
- c) 2
- d) 2,4
- e) 2,5

Média Geométrica

1. LETRA C

2. ERRADO

3. LETRA C

LISTA DE QUESTÕES

Média Harmônica

1. (FCC/SEFAZ-GO/2018) Os matemáticos definem diferentes tipos de médias entre dois números positivos e, para cada aplicação, escolhem qual o tipo mais adequado a ser utilizado. A média harmônica H entre os números positivos a e b, por exemplo, é definida como o inverso da média aritmética dos inversos desses números, ou seja,

$$H = \frac{1}{\frac{1}{a} + \frac{1}{b}}$$

A média aritmética dos números 5 e 20 supera a média harmônica desses mesmos números em

- a) 4,75 unidades.
- b) 5 unidades.
- c) 4 unidades.
- d) 4,25 unidades.
- e) 4,5 unidades.
- 2. (FCC/ARTESP/2017) Considere as seguintes informações
- I. (A) = média harmônica dos números 4, 6 e 12.
- II. (B) = média geométrica dos números 4, 6 e 12.

A média aritmética entre (A) e (B) é igual a

- a) 6,81.
- b) 5,68.
- c) 6,30.
- d) 5,41.
- e) 6,93.

Média Harmônica

1. LETRA E

2. LETRA C

LISTA DE QUESTÕES

Desigualdade das Médias

- 1. (VUNESP/PB Saúde/2021) Dois números positivos apresentam uma média aritmética e uma média geométrica iguais a 10 e 8, respectivamente. A respectiva média harmônica desses dois números apresenta um valor igual a
- a) 6,4.
- b) 8,0.
- c) 10,0.
- d) 12,8.
- e) 16,0.
- 2. (CESPE/TCU/2009) Uma instituição realizou levantamento com vistas a comparar os valores de dez diferentes tipos de itens de consumo. Para cada item $i(i=1,2,\ldots,10)$, foi registrado um par de valores (x_i,y_i) , em que xi representa o valor do item i estabelecido pela empresa A, e y_i representa o valor desse mesmo item fornecido pela empresa B. Os seguintes resultados foram encontrados:

$$\sum_{i=1}^{10} (x_i + y_i) = 130 \qquad \sum_{i=1}^{10} (x_i - y_i) = 10$$

$$\sum_{i=1}^{10} (x_i + y_i)^2 = 1.790 \qquad \sum_{i=1}^{10} (x_i - y_i)^2 = 26$$

Com base nessas informações, julgue o item a seguir.

A média harmônica dos valores $x_1, x_2, ..., x_{10}$ é menor que 8.

3. (CESPE/TST/2008) Considere que, em um ambiente de trabalho industrial, as seguintes medições acerca da poluição do ar tenham sido observadas: 1, 6, 4, 3, 2, 3, 1, 5, 1, 4. Nessa situação, julgue o item que se segue.

As médias harmônica e geométrica são ambas inferiores a 3.

Desigualdade das Médias

1. LETRA A

2. CERTO

3. CERTO