

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

4000 N/mm ²

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 37600 N
                                                                        M_{\star}
                                                                                    = 784000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 24400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 41100 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 43800 N
                                                                 M_{\star}
                                                                           = 882000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 17700 N
                                                                           = 200000 \text{ N/mm}^2
          = 48200 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 31100 N
                                                                        M_{\star}
                                                                                    = 946000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 19900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 51400 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 43300 N
                                                                 M_{\star}
                                                                            = -1230000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 36700 N
                                                                            = 200000 \text{ N/mm}^2
          = 83000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 46700 N	M _t	= 60100 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 39700 N	M_x	= -1350000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 53100 N
                                                                         M_{\star}
                                                                                    = -1540000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
            = 30000 N
                                                                                     = 220 \text{ N/mm}^2
                                                                                    = 200000 \text{ N/mm}^2
           = 69000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
                                                                                    = -1640000 Nmm
Ν
           = 38100 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 33300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 74400 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 68400 N
                                                                        M_{\star}
                                                                                    = 2930000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 55800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 143000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 74900 N
                                                                 M_{\star}
                                                                           = 3240000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 61200 N
                                                                           = 200000 \text{ N/mm}^2
          = 104000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 83500 N
                                                                        M_{\star}
                                                                                    = 3630000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 45000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 118000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 61000 N
                                                                        M_{\star}
                                                                                    = 3950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 50400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 130000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 37900 N
                                                                         M_{\star}
                                                                                    = 864000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 25200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 62100 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 40300 N
                                                                 M_{\star}
                                                                            = 943000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 27900 N
                                                                            = 200000 \text{ N/mm}^2
          = 44400 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 47000 N
                                                                        M_{\star}
                                                                                    = 1060000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 20100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 52100 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 33400 N
                                                                        M_{\star}
                                                                                    = 1140000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 22700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 55700 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 47300 N
                                                                 M_{\star}
                                                                            = 1420000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 36400 N
                                                                            = 200000 \text{ N/mm}^2
          = 88800 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 51300 N
                                                                         M_{\star}
                                                                                     = 1530000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
            = 40200 N
                                                                                     = 220 \text{ N/mm}^2
                                                                                     = 200000 \text{ N/mm}^2
           = 64500 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 57500 N
                                                                         M_{\star}
                                                                                     = 1810000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 29200 N
                                                                                     = 200000 \text{ N/mm}^2
           = 73300 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 41600 N
                                                                         M_{\star}
                                                                                     = 1910000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 32900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 79500 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 64600 N	M _t	= 137000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
T_y	= 57000 N	M_x	= -2600000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	_d =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$, =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 70200 N	M _t	= 99800 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_v	= 62700 N	M_x	= -2860000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 79400 N
                                                                 M_{\star}
                                                                           = -3250000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 45900 N
                                                                           = 200000 \text{ N/mm}^2
          = 114000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 57600 N
                                                                        M_{\star}
                                                                                    = -3510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 51500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 124000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 42000 N
                                                                         M_{\star}
                                                                                    = 959000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 27100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 77200 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 44800 N	M _t	= 55300 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 29800 N	M_x	= 1050000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_{v})_{s}$; =	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 51700 N
                                                                        M_{\star}
                                                                                    = 1170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 21800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 64400 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 36800 N
                                                                        M_{\star}
                                                                                    = 1260000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 24500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 69000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 51600 N
                                                                 M_{\star}
                                                                           = -1600000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 43400 N
                                                                           = 200000 \text{ N/mm}^2
          = 109000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
                                                                            = -1710000 Nmm
Ν
          = 55400 N
                                                                 M_{\star}
                                                                            = 220 \text{ N/mm}^2
          = 47900 N
                                                                            = 200000 \text{ N/mm}^2
          = 79000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 63800 N
                                                                 M_{\star}
                                                                            = -2000000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 34900 N
                                                                            = 200000 \text{ N/mm}^2
          = 92100 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 45600 N
                                                                         M_{\star}
                                                                                     = -2130000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 39200 N
                                                                                    = 200000 \text{ N/mm}^2
           = 98800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 64100 N
                                                                        M_{\star}
                                                                                    = 2500000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 52900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 128000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 69900 N
                                                                 M_{\star}
                                                                           = 2770000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 58100 N
                                                                           = 200000 \text{ N/mm}^2
          = 93800 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 78500 N
                                                                 M_{\star}
                                                                           = 3100000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 42700 N
                                                                           = 200000 \text{ N/mm}^2
          = 107000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 57200 N
                                                                 M_{\star}
                                                                           = 3370000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 47900 N
                                                                           = 200000 \text{ N/mm}^2
          = 117000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 44800 N
                                                                 M_{\star}
                                                                           = 1130000 Nmm
          = 30400 N
                                                                           = 220 \text{ N/mm}^2
                                                                           = 200000 \text{ N/mm}^2
          = 82900 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 47900 N	M _t	= 59500 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 33400 N	M_x	= 1230000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=	·	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 55200 N
                                                                        M_{\star}
                                                                                    = 1390000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 24400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 69300 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 39400 N
                                                                        M_{\star}
                                                                                    = 1490000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 27400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 74400 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 49200 N
                                                                  M_{\star}
                                                                             = 1410000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
           = 39300 N
                                                                             = 200000 \text{ N/mm}^2
          = 104000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 52900 N
                                                                        M_{\star}
                                                                                    = -1490000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 43300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 75100 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 60200 N
                                                                         M_{\star}
                                                                                    = 1740000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
            = 31300 N
                                                                                     = 220 \text{ N/mm}^2
                                                                                    = 200000 \text{ N/mm}^2
           = 86600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 43300 N
                                                                 M_{\star}
                                                                            = 1870000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 35400 N
                                                                            = 200000 \text{ N/mm}^2
          = 93400 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 75300 N
                                                                        M_{\star}
                                                                                    = 3210000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 64600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 176000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 82300 N
                                                                        M_{\star}
                                                                                    = 3560000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 71100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 128000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto D di CD Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 92100 N	M _t	= 146000 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
T_y	= 52100 N	M_x	= 3990000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	_l =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 67200 N
                                                                        M_{\star}
                                                                                    = 4330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 58400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 160000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 36400 N
                                                                        M_{\star}
                                                                                    = -742000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 23900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 59900 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 38200 N
                                                                  M_{\star}
                                                                             = -801000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
           = 26500 N
                                                                             = 200000 \text{ N/mm}^2
          = 42300 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 45300 N
                                                                  M_{\star}
                                                                             = 920000 Nmm
T_y \\ M_t
           = 19000 N
                                                                             = 220 \text{ N/mm}^2
                                                                             = 200000 \text{ N/mm}^2
          = 50500 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 32100 N
                                                                         M_{\star}
                                                                                    = 985000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 21600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 53800 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 44700 N
                                                                         M_{\star}
                                                                                    = -1290000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                     = 220 \text{ N/mm}^2
            = 36500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 86600 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                                  \sigma_{tresca} =
                                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                         \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 48000 N
                                                                 M_{\star}
                                                                            = -1400000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 39400 N
                                                                            = 200000 \text{ N/mm}^2
          = 62500 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 55000 N
                                                                       M_{\star}
                                                                                  = -1610000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 30000 N
                                                                                  = 220 \text{ N/mm}^2
                                                                                  = 200000 \text{ N/mm}^2
           = 72200 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 39400 N
                                                                       M_{\star}
                                                                                  = -1720000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 33100 N
                                                                                  = 200000 \text{ N/mm}^2
           = 77800 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 68500 N
                                                                      M_{\star}
                                                                                 = 2920000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 58500 N
                                                                                 = 200000 \text{ N/mm}^2
           = 144000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto B di BC Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 74800 N
                                                               M_{\star}
                                                                         = 3240000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 64300 N
                                                                         = 200000 \text{ N/mm}^2
          = 105000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 83700 N
                                                               M_{\star}
                                                                         = 3630000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 47100 N
                                                                         = 200000 \text{ N/mm}^2
          = 120000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 61100 N
                                                                      M_{\star}
                                                                                 = 3940000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 52900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 131000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 38400 N
                                                                M_{\star}
                                                                           = -885000 Nmm
T_y \\ M_t
                                                                           = 220 \text{ N/mm}^2
          = 27300 N
                                                                           = 200000 \text{ N/mm}^2
          = 63700 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 40400 N
                                                                 M_{\star}
                                                                            = -953000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 30200 N
                                                                            = 200000 \text{ N/mm}^2
          = 45000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 48300 N
                                                                  M_{\star}
                                                                             = -1110000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
          = 21800 N
                                                                             = 200000 \text{ N/mm}^2
          = 54200 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                     \sigma_{\text{IId}}
                                                                  \tau(T_{yc}) =
                                                                                                                                     \sigma_{tresca} =
                                                                                                                                     \sigma_{\text{mises}} =
                                                                                                                                     \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 34000 N
                                                                        M_{\star}
                                                                                    = -1180000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 24600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 57400 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Calcolo degli sforzi in * con forze baricentriche essendo * il punto D di CD Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 47600 N	M _t	= 88200 Nmm	σ_{a}	= 220 N/mm ²	G	$= 74000 \text{ N/mm}^2$
T_y	= 35100 N	M_x	= 1410000 Nmm	Е	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	_j =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{c}$	₁ =	σ_{tresca}	=		

@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.27.03.13

18.05.18

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 51700 N	M _t	= 64200 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_v	= 38500 N	M_x	= 1530000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
           = 57600 N
                                                                       M_{\star}
                                                                                  = 1780000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 28300 N
                                                                                  = 200000 \text{ N/mm}^2
           = 72500 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                              \sigma_{\text{IId}}
                                                                                                                                              \sigma_{tresca} =
                                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                       \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 74000 \text{ N/mm}^2
Ν
          = 41700 N
                                                                 M_{\star}
                                                                            = 1890000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 31700 N
                                                                            = 200000 \text{ N/mm}^2
          = 78800 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 65200 N	M,	= 137000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 54100 N	M_x	= 2620000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_{s}$; =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)_{c}$	_i =	σ_{tresca}	=	•	

Calcolo degli sforzi in * con forze baricentriche essendo * il punto D di CD Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 71200 N	M _t	= 100000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 74000 \text{ N/mm}^2$
T_y	= 59400 N	M_x	= 2910000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)$	_s =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_{\alpha}$	₁ =	σ_{tresca}	, =	•	