# Optimization Methods: Assignment 1 Report by Vidhi Rathore(2023121002)

# 1. Derivation of Jacobians and Hessians

#### 1.1 Trid Function

The Trid Function is defined as:

 $f(x) = \sum_{i=1}^{d} (x_i - 1)^2 - \sum_{i=2}^{d} x_{i-1}x_i$ 

#### Jacobian (First Derivative):

For \$i = 1\$:

 $\$  \frac{\partial f}{\partial x\_1} = 2(x\_1 - 1) - x\_2\$\$

For \$i = 2, 3, ..., d-1\$:

 $\frac{\hat{x_i} = 2(x_i - 1) - x_{i+1} - x_{i-1}$}$ 

For  $\dot{s}i = d\dot{s}$ :

 $\frac{\hat{f}_{\alpha} = 2(x_d - 1) - x_{d-1}$}$ 

#### Hessian (Second Derivative):

The Hessian matrix \$H\$ has elements:

 $H_{i,i} = 2$  for all \$i\$ (diagonal elements)

 $H_{i,i+1} = H_{i+1,i} = -1$  for i = 1, 2, ..., d-1 (off-diagonal elements)

All other elements are zero.

For a 2D case:

PROF

 $$$H = \left[ \frac{2 -1}{-1 & 2 \right]$ 

## 1.2 Three Hump Camel Function

The Three Hump Camel Function is defined as:

## Jacobian (First Derivative):

 $\frac{1}{2} = 4x_1 - 4.2x_1^3 + x_1^5 + x_2$ 

 $\frac{\hat x_2} = x_1 + 2x_2$ 

## Hessian (Second Derivative):

 $\frac{1^2}{\pi^2} = 4 - 12.6x_1^2 + 5x_1^4$ 

 $\frac{x_1}{\alpha} = \frac{x_1}{\alpha} x_1 = 1$ 

 $\frac{\pi^2 f}{\pi x_2^2} = 2$ 

The Hessian matrix is:

 $$H = \left[ \frac{1^4 + 12.6x_1^2 + 5x_1^4 & 1 \\ 1 & 2 \right]$ 

# 1.3 Styblinski-Tang Function

The Styblinski-Tang Function is defined as:  $\$f(x) = \frac{1}{2}\sum_{i=1}^{d}(x_i^4 - 16x_i^2 + 5x_i)$ \$

#### Jacobian (First Derivative):

For each dimension \$i\$:

#### Hessian (Second Derivative):

For diagonal elements:

 $\frac{1}{\pi}^2 = 6x_i^2 - 16$ 

For off-diagonal elements:

 $\frac{x_i}{partial} = 0 \text{ for } i \neq j$ 

The Hessian is a diagonal matrix:

\$\$H = \begin{bmatrix}

6x\_1^2 - 16 & 0 & \cdots & 0 \

0 & 6x\_2^2 - 16 & \cdots & 0 \

\vdots & \vdots & \vdots \

0 & 0 & \cdots & 6x\_d^2 - 16

\end{bmatrix}\$\$

#### 1.4 Rosenbrock Function

The Rosenbrock Function is defined as:

$$f(x) = \sum_{i=1}^{d-1}[100(x_{i+1} - x_{i}^2)^2 + (x_i - 1)^2]$$

#### Jacobian (First Derivative):

For \$i = 1\$:

 $\frac{1}{2} = -400x_1(x_2 - x_1^2) + 2(x_1 - 1)$ 

For \$i = 2, 3, ..., d-1\$:

\$\$\frac{\partial f}{\partial x\_i} = 200(x\_i - x\_{i-1}^2) - 400x\_i(x\_{i+1} - x\_i^2) + 2(x\_i - 1)\$\$

For \$i = d\$:

 $\frac{\hat x_d} = 200(x_d - x_{d-1}^2)$ 

# PROF

## Hessian (Second Derivative):

The Hessian is more complex for Rosenbrock. For a 2D case:

 $\frac{1^2}{\pi^2} = 1200x_1^2 - 400x_2 + 2$ 

 $\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = \frac{2}{2} = \frac{2}$ 

 $\frac{1}{2} f^2 = 200$ 

For higher dimensions, we get more terms and a banded matrix structure.

## 1.5 Root of Square Function (func\_1)

The Root of Square Function is defined as:

\$f(x) = \sqrt{1 + x\_1^2} + \sqrt{1 + x\_2^2}\$\$

#### Jacobian (First Derivative):

 $\frac{x_1}{\x 1} = \frac{x_1}{\x 1} = \frac{1^2}}$ 

 $\frac{x_2}{\ x_2}(x_1 + x_2^2)$ 

## Hessian (Second Derivative):

 $\frac{1}{2} = \frac{1}{(1 + x_1^2)^{3/2}}$ 

 $\frac{1}{partial^2 f}{partial x_1\pi x_2} = \frac{2 frac(partial^2 f){partial x_2} = 0$$ 

 $\frac{1}{(1 + x_2^2)^{3/2}}$ 

The Hessian matrix is:

\$ = \begin{bmatrix} \frac{1}{(1 + x\_1^2)^{3/2}} & 0 \ 0 & \frac{1}{(1 + x\_2^2)^{3/2}} \end{bmatrix}\$

# 2. Manual Computation of Minima

#### 2.1 Trid Function

To find the minimum, we set the gradient equal to zero:

For a 2D case:

 $\$  \nabla f(x) = \begin{bmatrix} 2(x\_1 - 1) - x\_2 \ 2(x\_2 - 1) - x\_1 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \end{bmatrix} \\$\$

This gives us:

 $$$2x_1 - 2 - x_2 = 0$$$ 

 $$$2x_2 - 2 - x_1 = 0$$$ 

Solving:

PROF

 $$$2x_1 - 2 - x_2 = 0 \neq x_2 = 2x_1 - 2$$ 

\$\$2(2x\_1 - 2) - 2 - x\_1 = 0 \Rightarrow 4x\_1 - 4 - 2 - x\_1 = 0 \Rightarrow 3x\_1 = 6 \Rightarrow x\_1 = 2\$\$

Substituting back:

 $$x_2 = 2(2) - 2 = 2$$ 

The minimum for the 2D Trid function is at  $x^* = (2, 2)$ .

To verify this is a minimum, we check that the Hessian is positive definite at this point:

The eigenvalues are  $\lambda_1 = 1$  and  $\lambda_2 = 3$ , which are both positive, confirming this is a minimum.

# 2.2 Three Hump Camel Function

Setting the gradient equal to zero:

 $\$  \nabla f(x) = \begin{bmatrix} 4x\_1 - 4.2x\_1^3 + x\_1^5 + x\_2 \ x\_1 + 2x\_2 \ \ \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ \end{bmatrix}\$

From the second equation:

 $$x_1 + 2x_2 = 0 \left( x_1 \right) = -\frac{x_1}{2}$ 

Substituting into the first equation:

 $$$4x_1 - 4.2x_1^3 + x_1^5 - \frac{x_1}{2} = 0$$ 

 $x_1(4 - \frac{1}{2} - 4.2x_1^2 + x_1^4) = 0$ 

This has solutions  $x_1 = 0$  and the roots of the quartic equation  $4 - \frac{1}{2} - 4.2x_1^2 + x_1^4 = 0$ .

When  $x_1 = 0$ , we get  $x_2 = 0$ , giving a stationary point at (0, 0).

To verify this is a minimum, we evaluate the Hessian at (0, 0):

 $$H_{(0,0)} = \left[ b \in \mathbb{Z} \right] 4 \& 1 \ 1 \& 2 \ end{bmatrix}$ 

The eigenvalues are positive (approximately 1.59 and 4.41), confirming (0, 0) is a local minimum.

# 2.3 Styblinski-Tang Function

To find the minimum, we set  $\frac{f}{\sqrt{partial x_i}} = 0$  for each \$i\$:

 $$$2x_i^3 - 16x_i + \frac{5}{2} = 0$$$ 

This cubic equation has the same solution for each dimension. Using numerical methods, we get  $x_i \neq -2.903534$  for all i.

To verify this is a minimum, the second derivative  $6x_i^2 - 16$  should be positive. At  $x_i \cdot 4$ , we get  $6(-2.903534)^2 - 16$  approx 34.5 which is positive, confirming this is a minimum.

## 2.4 Root of Square Function (func\_1)

Setting the gradient equal to zero:

 $\$  \frac{x\_1}{\sqrt{1 + x\_1^2}} \ frac{x\_2}{\sqrt{1 + x\_2^2}} \end{bmatrix} = \left[ begin{bmatrix} 0 \ 0 \end{bmatrix} \right]

This gives us  $x_1 = 0$  and  $x_2 = 0$ , making the minimum at (0, 0).

To verify this is a minimum, the Hessian at (0, 0) is:

 $$H_{(0,0)} = \left[ 0,0 \right] = \ 1 \ 0 \ 0 \ 1 \ \$ 

This is clearly positive definite, confirming (0, 0) is a minimum.

# 3. Algorithm Convergence Analysis

## 3.1 Steepest Descent Methods

The Steepest Descent algorithm generally showed the following behavior:

## • Backtracking-Armijo:

- Converged reliably for most functions, including Trid, Three Hump Camel, and Styblinski-Tang.
- Failed for Test Case 10 (Styblinski-Tang, initial point [-2.904, -2.904, -2.904, -2.904]), where it
  converged to the incorrect local minimum.
- Showed instability in **Test Case 14 (Root of Square Function)** where it returned [0, 0], possibly due to non-smoothness at the origin.

#### • Backtracking-Goldstein:

- Provided more stable convergence than Armijo alone but had occasional oscillations.
- Failed for **Test Case 10**, where it converged to [0, 0, 0, 0], an incorrect result.
- Also failed for Test Case 16 (Root of Square Function), where it diverged to [-3.5, 0.5], indicating instability near non-smooth regions.

#### • Bisection with Wolfe:

- Most reliable among steepest descent variants, successfully converging in most cases.
- Failed for **Test Case 10**, returning [-2.904, -2.904, -2.904], which may indicate convergence to a saddle point.
- In **Test Case 14**, it returned [-0, -0], which is acceptable but suggests slow progress near non-smooth regions.

#### 3.2 Newton's Methods

The Newton's Method variants showed the following behavior:

#### Pure Newton:

- Demonstrated quadratic convergence for well-conditioned problems like Trid and Styblinski-Tang.
- Failed catastrophically for Test Case 14, where it produced [-8.71896425e+115,
   -8.71896425e+115], indicating numerical instability.
- Also failed in Test Case 16, where it exploded to [1.61634765e+132, 0], highlighting issues with Hessian inversion.

## • Damped Newton:

- More robust than Pure Newton, successfully converging for most cases.
- Still failed in **Test Case 14**, where it returned [-0, -0], similar to Bisection.
- Also struggled in **Test Case 16**, likely due to the non-smooth nature of the function.

#### • Levenberg-Marquardt:

- Handled near-singular Hessians well and improved stability in ill-conditioned cases.
- Successfully avoided divergence in cases where Pure Newton failed.
- However, in **Test Case 14**, it returned [0, 0], which suggests that it struggled with the function's non-smooth nature.

#### · Combined Approach:

- The most robust method overall, converging correctly in almost all test cases.
- Avoided extreme divergence observed in Pure Newton.
- Failed in **Test Case 10**, where it returned [-2.904, -2.904, -2.904, -2.904], similar to other methods.
- Also struggled in **Test Case 16**, returning [0, 0].

## Summary

- Newton's Methods had the fastest convergence but were unstable for non-smooth functions (Root of Square).
- Steepest Descent methods were more stable but could be slow for ill-conditioned problems (Rosenbrock).
- Levenberg-Marquardt and Combined Newton approaches were the most reliable overall.

# 4. Function Value and Gradient Norm Plots

4.1 Trid Function

4.1.1 Initial Point: [-2.0, -2.0]

**Steepest Descent Methods:** 













**Newton's Methods:** 













Combined:





Similarly, for other functions, you can check the plots directory.

# 5. Contour Plots for 2D Functions

5.1 Trid Function

5.1.1 Initial Point: [-2.0, -2.0]

**Steepest Descent Methods:** 





# Bisection:



# **Newton's Methods:**







# Combined:



# 5.2 Three Hump Camel Function

# 5.2.1 Initial Point: [-2.0, -1.0]













# 5.3 Root of Square Function (func\_1)

# 5.3.1 Initial Point: [-.5, .5]













# 6. Final Results

| Test<br>case | Backtracking-<br>Armijo      | Backtracking-<br>Goldstein     | Bisection                          | Pure            | Damped             | Levenberg-<br>Marquardt | Combined           |
|--------------|------------------------------|--------------------------------|------------------------------------|-----------------|--------------------|-------------------------|--------------------|
| 0            | [2. 2.]                      | [2. 2.]                        | [2. 2.]                            | [2. 2.]         | [2. 2.]            | [2. 2.]                 | [2. 2.]            |
| 1            | [2. 2.]                      | [2. 2.]                        | [2. 2.]                            | [2. 2.]         | [2. 2.]            | [2. 2.]                 | [2. 2.]            |
| 2            | [-1.748 0.874]               | [-1.753 0.953]                 | [-1.748<br>0.874]                  | [-1.748 0.874]  | [-1.748<br>0.874]  | [-1.748<br>0.874]       | [-1.748<br>0.874]  |
| 3            | [ 1.748 -0.874]              | [ 1.753 -0.953]                | [ 1.748<br>-0.874]                 | [ 1.748 -0.874] | [ 1.748<br>-0.874] | [ 1.748<br>-0.874]      | [ 1.748<br>-0.874] |
| 4            | [-0. 0.]                     | [-0. 0.]                       | [-0. 0.]                           | [-1.748 0.874]  | [-1.748<br>0.874]  | [-1.748<br>0.874]       | [-1.748<br>0.874]  |
| 5            | [ 00.]                       | [ 00.]                         | [ 00.]                             | [ 1.748 -0.874] | [ 1.748<br>-0.874] | [ 1.748<br>-0.874]      | [ 1.748<br>-0.874] |
| 6            | [0.993 0.986<br>0.972 0.945] | [ 1.056 0.794<br>0.135 -1.148] | [0.998<br>0.996<br>0.992<br>0.984] | [1. 1. 1. 1.]   | [1. 1. 1.<br>1.]   | [1. 1. 1. 1.]           | [1. 1. 1. 1.]      |

| Test<br>case | Backtracking-<br>Armijo          | Backtracking-<br>Goldstein       | Bisection                              | Pure                                   | Damped                                 | Levenberg-<br>Marquardt                | Combined                               |
|--------------|----------------------------------|----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| 7            | [0.991 0.981<br>0.963 0.926]     | [-0.456 0.156<br>-1.014 1.533]   | [0.998<br>0.996<br>0.992<br>0.984]     | [1. 1. 1. 1.]                          | [1. 1. 1.<br>1.]                       | [1. 1. 1. 1.]                          | [1. 1. 1. 1.]                          |
| 8            | [-0.861 0.753<br>0.572 0.327]    | [-0.537 0.748<br>1.35 2.057]     | [-0.777<br>0.616<br>0.385<br>0.148]    | [-0.776 0.613 0.382<br>0.146]          | [-0.776<br>0.613<br>0.382<br>0.146]    | [-0.776<br>0.613 0.382<br>0.146]       | [-0.776<br>0.613<br>0.382<br>0.146]    |
| 9            | [-0.817 0.679<br>0.467 0.218]    | [-0.518 0.068<br>0.068 3.586]    | [0.998<br>0.996<br>0.992<br>0.984]     | [1. 1. 1. 1.]                          | [1. 1. 1.<br>1.]                       | [1. 1. 1. 1.]                          | [1. 1. 1. 1.]                          |
| 10           | [-2.904 -2.904<br>-2.904 -2.904] | [0. 0. 0. 0.]                    | [-2.904<br>-2.904<br>-2.904<br>-2.904] | [0.157 0.157 0.157<br>0.157]           | [0. 0. 0.<br>0.]                       | [0.157<br>0.157 0.157<br>0.157]        | [-2.904<br>-2.904<br>-2.904<br>-2.904] |
| 11           | [2.747 2.747<br>2.747 2.747]     | [2.747 2.747<br>2.747 2.747]     | [2.747<br>2.747<br>2.747<br>2.747]     | [2.747 2.747 2.747<br>2.747]           | [2.747<br>2.747<br>2.747<br>2.747]     | [2.747<br>2.747 2.747<br>2.747]        | [2.747<br>2.747<br>2.747<br>2.747]     |
| 12           | [-2.904 -2.904<br>-2.904 -2.904] | [-2.904 -2.904<br>-2.904 -2.904] | [-2.904<br>-2.904<br>-2.904<br>-2.904] | [-2.904 -2.904<br>-2.904 -2.904]       | [-2.904<br>-2.904<br>-2.904<br>-2.904] | [-2.904<br>-2.904<br>-2.904<br>-2.904] | [-2.904<br>-2.904<br>-2.904<br>-2.904] |
| 13           | [ 2.747 -2.904<br>2.747 -2.904]  | [ 2.747 -2.904<br>2.747 -2.904]  | [ 2.747<br>-2.904<br>2.747<br>-2.904]  | [ 2.747 -2.904<br>2.747 -2.904]        | [ 2.747<br>-2.904<br>2.747<br>-2.904]  | [ 2.747<br>-2.904<br>2.747<br>-2.904]  | [ 2.747<br>-2.904<br>2.747<br>-2.904]  |
| 14           | [0. 0.]                          | [3. 3.]                          | [-00.]                                 | [-8.71896425e+115<br>-8.71896425e+115] | [-00.]                                 | [0. 0.]                                | [0. 0.]                                |
| 15           | [-0. 0.]                         | [-0. 0.]                         | [-0. 0.]                               | [ 00.]                                 | [ 00.]                                 | [-0. 0.]                               | [-0. 0.]                               |
| 16           | [-0. 0.]                         | [-3.5 0.5]                       | [0. 0.]                                | [1.61634765e+132<br>0.00000000e+000]   | [-0. 0.]                               | [0. 0.]                                | [0. 0.]                                |

# 7. Conclusion

PROF

In this assignment, we implemented and analyzed various optimization algorithms including Steepest Descent with different line search methods and Newton's Method with various modifications.

The key findings are:

# 1. Convergence Performance:

• Newton's methods typically converged faster than steepest descent methods in terms of iteration count

• The combined approach of Damped Newton with Levenberg-Marquardt provided the most robust convergence across different functions

#### 2. Line Search Methods:

- Bisection with Wolfe conditions generally provided more reliable step sizes compared to backtracking methods
- Backtracking-Goldstein was more stable than Backtracking-Armijo alone

#### 3. Function-Specific Observations:

- Rosenbrock function was the most challenging to optimize due to its narrow valley structure
- Three Hump Camel function demonstrated the value of robust optimization methods for multimodal functions
- Styblinski-Tang function showed how the algorithms handle higher-dimensional optimization

#### 4. Practical Considerations:

- The choice of initial point significantly affected convergence behavior
- Newton's methods required more computation per iteration but fewer iterations overall
- For ill-conditioned problems, Levenberg-Marquardt modifications were essential for reliable convergence

This report demonstrates the importance of understanding the theoretical foundations of optimization algorithms and their practical implementation considerations.