Two Optimization Problems

Yinan Zhou

29th June 2024

Table of Contents

Part 1: Rockhill Shipping & Transport Company	:
TI G I	
Part 2: Investment Allocations	8

Part 1: Rockhill Shipping & Transport Company Analysis

Introduction

The goal of this part is to minimize the transportation costs for Rockhill Shipping & Transport Company when transporting hazardous waste from six plants to three disposal sites. The analysis involves two scenarios: direct shipping from plants to disposal sites and shipping with intermediate drop-offs at other plants and disposal sites. The Excel data input and Solver setup have been used to derive the optimal routes and respective costs.

Analysis

(i) Direct Shipping Model

In the direct shipping model, the costs are calculated for shipping directly from each plant to each disposal site. The following steps were followed:

1. Data Input:

• **Shipping Costs**: The cost per barrel from each plant to each disposal site was entered into the Excel table.

	<u> </u>	Vaste Proposal Sit	<u>te</u>
Plant:	Orangeburg	Florence	Macon
Denver	\$12	\$15	\$17
Morganton	14	9	10
Morrisville	13	20	11
Pineville	17	16	19
Rockhill	7	14	12
Statesville	22	16	18

• Waste Generated: The weekly waste production for each plant was listed.

Supply (Waste Generated):						
<u>Plant:</u>	Waste per Week (bbl)					
Denver	45					
Morganton	26					
Morrisville	42					
Pineville	53					
Rockhill	29					
Statesville	38					

• **Disposal Site Capacity**: The maximum capacity of each disposal site was specified.

Capacity of Waste Disposal Sites:					
Waste Disposal	Waste per Week				
Site:	<u>(bbl)</u>				
Orangeburg	65				
Florence	80				
Macon	105				

2. Solver Setup:

• **Objective Function**: The total transportation cost was set as the objective to minimize.

Function in Excel: =SUMPRODUCT(CostMatrix, DecisionVariables)

• **Decision Variables**: The number of barrels shipped from each plant to each disposal site.

A numerical seed for decision variables was established to facilitate the solution process. This seed acted as an initial set of values for the decision variables, providing a starting point for the optimization algorithm. Setting up these numerical seeds is crucial as it can influence the efficiency and outcome of the solver's search for an optimal solution.

- The total barrels shipped from each plant must equal the waste generated by that plant.
- The total barrels received at each disposal site must not exceed its capacity.

	Transportation						
Solution:	Decision Variables	:					
		Orangeburg	Florence	Macon	Ship From	Constraints:	Supply
	Denver	42	1	2	45	=	45
	Morganton	0	0	26	26	=	26
	Morrisville	0	0	42	42	=	42
	Pineville	0	53	0	53	=	53
	Rockhill	23	0	6	29	=	29
	Statesville	0	26	12	38	=	38
	Ship To	65	80	88			
	Constraints:	<=	<=	<=			
		65	80	105			
	Objective Function	n:					
	Minimize the total						
	transportation						
	cost	\$2,988.00					

3. **Results**:

The Solver determined the optimal number of barrels to be shipped from each plant to each disposal site, minimizing the total cost to \$2,988.00.

Optimal Shipping Routes:

- From Denver:
- To Orangeburg: 42 barrels
- To Florence: 1 barrel
- To Macon: 2 barrels
- From Morganton:
- To Macon: 26 barrels
- From Morrisville:
- To Macon: 42 barrels
- From Pineville:
- To Florence: 53 barrels
- From Rockhill:
- To Orangeburg: 23 barrels
- To Macon: 6 barrels
- From Statesville:
- To Florence: 26 barrels
- To Macon: 12 barrels

(ii) Intermediate Shipping Model

In the intermediate shipping model, additional routes were considered, where waste could be dropped off at other plants or disposal sites before reaching the final destination. The following steps were followed:

1. Data Input:

• **Shipping Costs**: The cost per barrel for shipping between plants and between disposal sites was added to the Excel table. Notably, since there are no routes between the same points, an arbitrary

large number (in this case, \$1000) is entered for the cost. This ensures that Solver will avoid selecting those routes.

	Transshipment													
Data Input:						Int	ermediates					Destinations		
Shipping costs			Denver	Morganton	Morrisville	Pineville	Rockhill	Statesville	Orangeburg	Florence	Macon	Orangeburg	Florence	Macon
		Denver	1000	3	4	9	5	4	12	15	17	12	15	17
		Morganton	6	1000	7	6	9	4	14	9	10	14	9	10
	Origins	Morrisville	5	7	1000	3	4	9	13	20	11	13	20	11
	Ŭ	Pineville	5	4	3	1000	3	11	17	16	19	17	16	19
		Rockhill	5	9	5	3	1000	14	7	14	12	7	14	12
		Statesville	4	7	11	12	8	1000	22	16	18	22	16	18
		Denver	1000	3	4	9	5	4	12	15	17	12	15	17
		Morganton	6	1000	7	6	9	4	14	9	10	14	9	10
		Morrisville	5	7	1000	3	4	9	13	20	11	13	20	11
	Intermediates	Pineville	5	4	3	1000	3	11	17	16	19	17	16	19
		Rockhill	5	9	5	3	1000	14	7	14	12	7	14	12
		Statesville	4	7	11	12	8	1000	22	16	18	22	16	18
		Orangeburg	12	14	13	17	7	22	1000	12	10	1000	12	10
		Florence	15	9	20	16	14	16	12	1000	15	12	1000	15
		Macon	17	10	11	19	12	18	10	15	1000	10	15	1000

2. Solver Setup:

 Objective Function: Similar to the direct shipping model, the total transportation cost was minimized.

Function in Excel: =SUMPRODUCT(IntermediateCostMatrix, IntermediateDecisionVariables)

 Decision Variables: The number of barrels shipped between all possible routes, including intermediate points.

- The total barrels shipped from each plant and through intermediate points must equal the waste generated.
- The total barrels received at each disposal site must not exceed its capacity.
- For each intermediate point, the total barrels shipped from origins must equal the total barrels shipped to destinations.

Solution:	Decision Variables	:															
						Int	ermediates						Destinations				
			Denver	Morganton	Morrisville	Pineville	Rockhill	Statesville	Orangeburg	Florence	Macon	Orangeburg	Florence	Macon	Ship From	Constraints:	Supply
		Denver	0	45	0	0	0	0	0	0	0	0	0	0	45	=	45
		Morganton	0	0	0	0	0	0	0	0	0	0	0	26	26	=	26
	Origins	Morrisville	0	0	0	0	0	0	0	0	0	0	0	42	42	=	42
	Origins	Pineville	0	0	17	0	36	0	0	0	0	0	0	0	53	=	53
		Rockhill	0	0	0	0	0	0	0	0	0	29	0	0	29	=	29
		Statesville	0	0	0	0	0	0	0	0	0	0	38	0	38	=	38
		Denver	0	0	0	0	0	0	0	0	0	0	0	0	0		
		Morganton	0	0	0	0	0	0	0	0	0	0	42	3	45		
		Morrisville	0	0	0	0	0	0	0	0	0	0	0	17	17		
		Pineville	0	0	0	0	0	0	0	0	0	0	0	0	0		
	Intermediates	Rockhill	0	0	0	0	0	0	0	0	0	36	0	0	36		
		Statesville	0	0	0	0	0	0	0	0	0	0	0	0	0		
		Orangeburg	0	0	0	0	0	0	0	0	0	0	0	0	0		
		Florence	0	0	0	0	0	0	0	0	0	0	0	0	0		
		Macon	0	0	0	0	0	0	0	0	0	0	0	0	0		
		Ship To	0	45	17	0	36	0	0	0	0	65	80	88			
											Constraints:	<=	<=	<=			
												65	80	105			
	Objective Function	1:															
	Minimize the total transportation cost																
		\$2,674.00															

3. **Results**:

The Solver determined the optimal number of barrels to be shipped between each possible route, including intermediate drop-offs, reducing the total cost to \$2,674.00.

Optimal Shipping Routes:

Origins to Destinations	Origins to Intermediates	Intermediates to Destinations
From Morganton:	From Denver:	From Morganton:
To Macon: 26 barrels	To Morganton: 45 barrels	To Florence: 42 barrels
From Morrisville:	From Pineville:	To Macon: 3 barrels
To Macon: 42 barrels	To Morrisville: 17 barrels	From Morrisville:
From Rockhill:	To Rockhill: 36 barrels	To Florence: 17 barrels
To Orangeburg: 29 barrels		From Rockhill:
From Statesville:		To Orangeburg: 36 barrels
To Florence: 38 barrels		

In the intermediate shipping solution, the flexibility to drop and pick up loads at various plants and disposal sites allowed for a more cost-effective transportation strategy.

Conclusion

The analysis indicates that considering intermediate shipping routes significantly reduces the total transportation costs for Rockhill Shipping & Transport Company. While the direct shipping model

resulted in a total cost of \$2,988.00, the intermediate shipping model brought the total cost down to \$2,674.00. The optimal routes involve strategic use of intermediate points, ensuring that waste is transported efficiently and cost-effectively from the plants to the disposal sites.

Part 2: Investment Allocations

Introduction

In this part of the project, I focus on optimizing the investment allocation for an investor who aims to achieve a minimum baseline expected return with the least risk. The investment portfolio consists of six asset types: bonds, high-tech stocks, foreign stocks, call options, put options, and gold. We utilize historical data to estimate the expected returns and covariance matrix of these assets' returns. The goal is to find the optimal investment fractions that minimize the portfolio's risk for various baseline returns and to analyze the relationship between risk and expected return.

Analysis

(i) Investment Allocation for Minimum Baseline Return of 11%

1. Data Input

• Expected Returns

The expected returns for each asset type are as follows:

	Expected Returns
Bonds	7%
High tech stocks	12%
Foreign stocks	11%
Call options	14%
Put options	14%
Gold	9%

• Covariance Matrix

The covariance matrix indicates the variance of each asset (diagonal entries) and the covariances between pairs of assets (non-diagonal entries):

	Bonds	High tech stocks	Foreign stocks	Call options	Put options	Gold
Bonds	0.001	0.0003	-0.0003	0.00035	-0.00035	0.0004
High tech stocks	0.0003	0.009	0.0004	0.0016	-0.0016	0.0006
Foreign stocks	-0.0003	0.0004	0.008	0.0015	-0.0055	-0.0007
Call options	0.00035	0.0016	0.0015	0.012	-0.0005	0.0008
Put options	-0.00035	-0.0016	-0.0055	-0.0005	0.012	-0.0008
Gold	0.0004	0.0006	-0.0007	0.0008	-0.0008	0.005

2. Solver Setup:

• **Objective Function**: Minimize the total risk.

The risk (variance) is calculated using the covariance matrix of the assets' returns and the investment fractions: Risk = $x^T \Sigma x$

where x is the vector of investment fractions and Σ is the covariance matrix.

Function in Excel: =MMULT(TRANSPOSE(Fractions), MMULT(CovarianceMatrix, Fractions))

• **Decision Variables**: Investment fractions for each asset type.

A numerical seed for decision variables was established to facilitate the solution process. This seed acted as an initial set of values for the decision variables, providing a starting point for the optimization algorithm. Setting up these numerical seeds is crucial as it can influence the efficiency and outcome of the solver's search for an optimal solution.

- The sum of the investment fractions must equal 100%.
- The total expected return must be at least 11%.

Solution:	(i) Investment Allocation	n:		
	Decision Variables:			
		Investment Fraction		
	Bonds	19%		
	High tech stocks	11%		
	Foreign stocks	27%		
	Call options	5%		
	Put options	25%		
	Gold	13%		
	Sum	100%		
	Constraint:	=		
		100%		
			Constraint:	
	Total Expected Return	0.11	>=	11%
	Objective Function:			
	Minimize the total risk	0.00074		

The Solver in Excel was used to find the optimal investment fractions by setting the objective function to minimize the total risk and adding constraints for the expected return and the total investment fraction.

3. Results:

• The Solver determined the optimal investment fractions for achieving a minimum baseline return of 11% with minimized risk.

Optimal Investment Fractions:

• Bonds: 19%

• High tech stocks: 11%

• Foreign stocks: 27%

• Call options: 5%

• Put options: 25%

• Gold: 13%

Total Expected Return: 11%

Minimized Risk: 0.00074

(ii) Successive Baseline Returns and Risk

In this section, I examined how different baseline returns affect the investment allocation and risk. By using baseline returns of 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, and 13.5%, I determine the optimal investment fractions that minimize risk while meeting these returns. This analysis helps understand the risk-return trade-off more comprehensively.

1. Data Input:

• Expected Returns

The expected returns for each asset type are as follows:

	Expected Returns
Bonds	7%
High tech stocks	12%
Foreign stocks	11%
Call options	14%
Put options	14%
Gold	9%

Covariance Matrix

The covariance matrix indicates the variance of each asset (diagonal entries) and the covariances between pairs of assets (non-diagonal entries):

	Bonds	High tech stocks	Foreign stocks	Call options	Put options	Gold
Bonds	0.001	0.0003	-0.0003	0.00035	-0.00035	0.0004
High tech stocks	0.0003	0.009	0.0004	0.0016	-0.0016	0.0006
Foreign stocks	-0.0003	0.0004	0.008	0.0015	-0.0055	-0.0007
Call options	0.00035	0.0016	0.0015	0.012	-0.0005	0.0008
Put options	-0.00035	-0.0016	-0.0055	-0.0005	0.012	-0.0008
Gold	0.0004	0.0006	-0.0007	0.0008	-0.0008	0.005

2. Solver Setup:

• **Objective Function**: Minimize the total risk.

The risk (variance) is calculated using the covariance matrix of the assets' returns and the investment fractions: Risk = $x^T \Sigma x$

where x is the vector of investment fractions and Σ is the covariance matrix.

Function in Excel: =MMULT(TRANSPOSE(Fractions), MMULT(CovarianceMatrix, Fractions))

• **Decision Variables**: Investment fractions for each asset type, based on a series of baseline returns starting from 10% and increasing in increments of 0.5% up to 13.5%.

A numerical seed for decision variables was established to facilitate the solution process. This seed acted as an initial set of values for the decision variables, providing a starting point for the optimization algorithm. Setting up these numerical seeds is crucial as it can influence the efficiency and outcome of the solver's search for an optimal solution.

- **Total Investment Constraint:** The sum of the investment fractions must equal 100%.
- **Expected Return Constraint:** The weighted sum of the expected returns of the assets must be greater than or equal to the baseline return.

(ii) Investment Allocat	ion:						
Baseline return = 10%		Baseline return = 10.5%		Baseline return = 11%		Baseline return = 11.5	-
	Investment Fraction		Investment Fraction		Investment Fraction		Investment Fraction
Bonds	37%	Bonds	28%	Bonds	19%	Bonds	10%
High tech stocks	7%	High tech stocks	9%	High tech stocks	11%	High tech stocks	13%
Foreign stocks	23%	Foreign stocks	25%	Foreign stocks	27%	Foreign stocks	29%
Call options	2%	Call options	3%	Call options	5%	Call options	6%
Put options	20%	Put options	23%	Put options	25%	Put options	28%
Gold	11%	Gold	12%	Gold	13%	Gold	14%
Sum	100%	Sum	100%	Sum	100%	Sum	100%
Constraint:	=	Constraint:	=	Constraint:	-	Constraint:	=
	100%		100%		100%		100%
Baseline return = 12%		Baseline return = 12.5%		Baseline return = 13%		Baseline return = 13.5	16
	Investment Fraction		Investment Fraction		Investment Fraction		Investment Fraction
Bonds	1%	Bonds	0%	Bonds	0%	Bonds	0%
High tech stocks	14%	High tech stocks	16%	High tech stocks	14%	High tech stocks	10%
Foreign stocks	32%	Foreign stocks	31%	Foreign stocks	24%	Foreign stocks	10%
Call options	8%	Call options	13%	Call options	22%	Call options	36%
Put options	31%	Put options	35%	Put options	39%	Put options	44%
Gold	15%	Gold	5%	Gold	0%	Gold	0%
Sum	100%	Sum	100%	Sum	100%	Sum	100%
Constraint:	=	Constraint:	=	Constraint:	=	Constraint:	=
	100%		100%		100%		100%

Objective Function:			
Minimize the total risk			
r (risk)	e (expected return)	Constraints:	Baseline return
0.00051	10.00%	>=	10.00%
0.00060	10.50%	>=	10.50%
0.00074	11.00%	>=	11.00%
0.00091	11.50%	>=	11.50%
0.00113	12.00%	>=	12.00%
0.00146	12.50%	>=	12.50%
0.00210	13.00%	>=	13.00%
0.00350	13.50%	>=	13.50%

3. Results

I repeated the analysis for baseline returns of 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13%, and 13.5%. The results are summarized as follows:

Baseline Return	Minimized Risk	Investment Fractions	
10%	0.00051	Bonds: 37%, High tech stocks: 7%, Foreign stocks: 23%,	
		Call options: 5%, Put options: 20%, Gold: 11%	
10.5%	0.00060	Bonds: 28%, High tech stocks: 9%, Foreign stocks: 25%,	
		Call options: 3%, Put options: 23%, Gold: 12%	
11%	0.00074	Bonds: 19%, High tech stocks: 11%, Foreign stocks: 27%,	
		Call options: 5%, Put options: 25%, Gold: 13%	
11.5%	0.00091	Bonds: 10%, High tech stocks: 13%, Foreign stocks: 29%,	
		Call options: 6%, Put options: 28%, Gold: 14%	
12%	0.00113	Bonds: 1%, High tech stocks: 14%, Foreign stocks: 32%,	
		Call options: 8%, Put options: 31%, Gold: 15%	
12.5%	0.00146	Bonds: 0%, High tech stocks: 16%, Foreign stocks: 31%,	
		Call options: 13%, Put options: 35%, Gold: 5%	
13%	0.00210	Bonds: 0%, High tech stocks: 14%, Foreign stocks: 24%,	
		Call options: 22%, Put options: 39%, Gold: 0%	
13.5%	0.00350	Bonds: 0%, High tech stocks: 10%, Foreign stocks: 10%,	
		Call options: 36%, Put options: 44%, Gold: 0%	

4. Plot and Analysis

I plotted the expected return (e) against the minimized risk (r) for each baseline return value:

Observations:

- The plot demonstrates a concave relationship between expected return and risk.
- As the baseline return increases, the risk also increases, but at an increasing rate.
- This indicates that higher returns can only be achieved by accepting significantly higher risks,
 showcasing the trade-off between risk and return.

Conclusion

This analysis highlights the importance of balancing risk and return in investment portfolios. By using optimization techniques, investors can achieve desired returns while managing their risk exposure effectively. The concave relationship between risk and expected return underscores the need for careful consideration of the risk-return trade-off when making investment decisions.