DAA Assignment Phase-1

Title: A heuristic-based solution of Knuth-Morris Pratt algorithm related problems.

Name 1	Dhruv Maheshwari	Registration Number	2019A7PS0020U
Name 2	Adaya Neeraj	Registration Number	2019A7PS0045U
Name 3	Keerthi Pachala	Registration Number	2019A7PS0076U

Abstract:

String matching is one of the most difficult, delicate, and time-consuming tasks because it is used in so many contemporary applications, such as text editing, graphics, literature retrieval, biochemistry and so on.

The aim of this paper is to conduct an extensive literature survey and compare all the available approaches related to pattern matching algorithms. The benefits of an efficient KMP algorithm are vast both in terms of both technical and biological world. For example, it can help in detection of tumor cells in a given genome. It can also be used to detect spam emails.

By reducing additional comparisons of letters in text with pattern, KMP improved the native algorithm. Many studies have attempted to increase the serial version's matching efficiency, but recently, some researchers presented a more effective technique to improve the performance of the KMP algorithm by employing the concept of parallel processing. It uses a greedy approach to reduce the number of comparisons between the pattern (input) and text (dataset).

We want to identify all the real life situations where the KMP algorithm can be used and optimize it further.

Problem definition:

String searching algorithm, also known as string pattern match algorithm is one of the most important and fundamental algorithms in computer science. The algorithm has a number of different applications in our day-to-day life. Even the internet as we know it today uses string matching algorithms to better the user experience. With rapid speeds of data being processed online, there is a huge need for efficient and fast pattern matching algorithms. Apart from this, the algorithm is used for binary matching, DNA sequence matching, etc.

We aim to find the best, most-efficient string searching algorithms by analysing different pre-existing algorithms like BF algorithm,BM algorithm, KMP algorithm, Rabin-Karp Algorithm etc. By analysing these algorithms using different parameters, we can determine the best suited algorithm with least time complexity and space complexity. We aim to use these algorithms in above mentioned real life applications and observe the results.

Objectives:

- To study and analyse previous works done in pattern matching algorithms.
- To reduce time complexity and increase the accuracy of KMP algorithm
- To implement algorithm and compare its performance to other algorithms available

Sr no	Objective	Problem statement	Methodology	Dataset	Algorithm	Advantage	Disadvantage	Performance Measure value
1	Make parallel KMP; design a spam filter	Use enhanced version of KMP algorithm with GPU computation to outperform traditional serial versions on CPUs and use it to make spam filter	Divides the dataset into smaller parts and searches in parallel using the GPU's capabilities. Dynamic thread size is used. When pattern size is huge, thread size is 15x pattern size. When pattern size is small, thread size is 30x pattern size. Data cleaning and stop words are considered in data pre-processing	A) String of 194 MB generate d of English alphabets Random substring s taken of size 94.36 MB and 5.38 MB. Pattern length consisted of 7, 34, 134, 495.	We must first compute the number of matches that match with the pattern's final 1 to m-1 characters and the number of matches with the pattern's beginning 1 to m-1 characters. An array, called a preallocated look up table, is designed to store the number of matches found to the left and right of the chunk. The stored values are compared at the end of execution, and the number of matches at the borders is	Reduces time complexity significantly as highlighted.	There's an decrease in accuracy of predicting mail is spam. Takes into account only keywords and not a group of words to detect spam. Sometimes a group of words also help in classifying an email as spam.	Runtime and accuracy of model. A) Speed of 12x remained constant and parallel KMP outperformed B) Speed increased by 100% (from 27.72 to 13.56 s). However accuracy falls from 92% to 85%. For the text size, n, and pattern size,
				101, 1001	determined. This			m, Serial
				B) Enron	entire procedure is			Version
				Dataset;	carried out in a single			comes out to
				5172	loop.			be $O(m + n)$.

2	Propose a	To select in	The algorithm considers	email consistin g of 3672 ham emails and 1500 spam emails A long	The proposed algos	As it stores	It doesn't	Its parallel run is O(n / Tn + c), where Tn is the total no of threads.
	word matching technique for locating a	what sequence the letters of the letter/word in pattern P	the frequency and location of letters or a pair of letters in a word.	text string of Holy Quran	name is WORD-MATCHING. It creates a frequency	the frequency vector, it can significantly reduce search	provide any advantage while working on smaller	execution time was evaluated.
	word's valid shifts in a text stream.	should be equated to the letters in the words in	This knowledge aids in determining the order in which the letters in the input word should be	was taken and the word "الرح"	vector first, which is required to establish the sequence in which the letters in the word	time on large datasets.	datasets compared to KMP	Pre- processing time for algo was 6730 ms
		dataset T. Non- matching terms of T can be eliminated in	equated to the letters in the dataset. This sequencing eliminates mismatched words in T	was matched.	should be equated to the letters of the tokens generated afterward.			compared to KMPs 201ms.
		fewer comparisons	in a lesser no of comparisons than		It then compares input			text size increased,
		and a faster search can be returned by	ordinary comparison ordering.		with min frequency pair and min distance between two pairs.			new algo performed better by
		sorting these comparisons.			It iterates till letters in word are over or a			factor of almost 200%
					conflicting match happens.			

2	D	D	TTI (1	Tr. :- 41	The EOD 1 141	TT-1	T-1 '	TT1
3	*	Propose FOB			The FOB algorithm	Helps in	Takes time	The
	new string	that analyzes		Holy	first ranks the letters	quickly	initially to	comparison is
	matching	the letters in P	1	Quran's	in pattern P with	looking for a	construct the	based on how
	algorithm	against the		text,	respect to their	word in a	frequency	many if-
	based on	current frame	frequency. The letters of	which	frequencies.	given text.	table.	statement
	frequency	on T from least	patterns are then	has				comparisons
	occurrence of	frequency to	compared against text T	77,439	After ranking, the		Uses more	there are in
	letters in text	highest,	in order of their	words.	letter with least		memory than	the two
		attempting to	frequency of		frequency is passed		KMP as it has	algorithms
		arrive at an	occurrence. The		onto GET-SEARCH-		to store data	(FOB and
		equal frame in	iteration starts with the		LETTER-WITH-		on frequency	KMP).
		T with the			RANK which		of letters.	ĺ
		fewest number	1 2		matches the letter in			FOB showed
		of			text T. Once a match			39.6%
		comparisons.			is found, the other			improvement
		F			literals are matched			compared to
					with a call to			KMP when
					SEARCH function			searched for a
					which acts in			word.
					recursion.			.,
					10001011			In 2 nd exp, P
					Epochs=3000.			wasn't present
					Zpodna booo.			in T. FOB
								performed
								better by
								51.7%.
								21.770.
								KMP and
								FOB
								algorithm was
								run with a set
								of randomly
								of failubility

								selected 1,000
								words from T,
								each of length
								3 up to 10.
								OBF clearly
								outperformed
								KMP by 33%
4	pattern	In web	To detect a "Pattern" P	India's	Declare a 1-	KMP method	Uses a good	Time
	searching in	application	in a dataset T the KMP	Centraliz	dimensional array	is employed	amount of	complexity
	complaints	issues, there	algorithm compares	ed Public	(LPS[p]) where p is	for its	space to	was the
	reported	are numerous	letter to letter from left	Grievanc	the length of the input	operational	construct the	evaluative
	using KMP	types of	to right. As soon as a	e	pattern. Create	capability,	Prefix Table.	criteria.
	algorithm.	information to	nonmatch is found, it	Reportin	variables I and j with I	and as		
	_	be found.	employs a pre-	g And	= 0, j = 1 and LPS[0] =	previously		n->text
		The aim of this	processed table namely	Monitori	0. Evaluate Pattern[i]	said, it		m->pattern
		paper is to give	the "Prefix Table" to	ng	with Pattern[j]. If a	minimizes		length
		a changed	skip character analysis	System	match is found, set	time		
		adaptation of	during the matching	(CPGRA	LPS[j] = i+1 and add	complexity.		Brute force:
		the KMP	process. We use the	MS)	one to both the I and j			O(n-m+1)m)
		algorithm for	table's results of the	provided	values. If neither of			
		text matching.	previous character of the	the data.	them match, look at			Boyer
			non matching alphabet		the value of the			Moore:
			in the pattern at place of		variable I Set LPS[j] =			$O(m+(\sum)),$
			mismatch.		0 and increment 'j' by			O(n)
					one if it is '0;' if it isn't			
					'0,' assign i=LPS[i-1].			KMP: O(m),
					Rep the processes			O(m+n)
					above until all of the			` '
					LPS[] values are			Rabin Karp:
					filled.			$\Theta(m)$,
								$\Theta(n+m)$

5	Research on string matching Algorithm Based on KMP and BMHS2	The goal of this study is to combine multiple matching algorithms in order to increase the speed of text matching	The KMP algorithm mainly eliminates the main string pointer's backtracking problem in the BF algorithm's matching process, and uses the partial matching results to shift the pattern string P to the right as distant as possible and then continue to compare, thereby improving the algorithm's effectiveness.	Pattern string P length is around 20 letters. The text T length is around 10M bytes. The window size to be matched is 100, and the length of the text string to be matched is set to 2 million bytes.	When there's no match found, the i pointer does not need to retrace; instead, it can utilize the "partial match" result to check if the value of I needs to be adjusted, and then "slide" the pattern to the right many positions before completing the comparison. If T[i]!=P[j], add if(i+j-km &&P[j]! =T[i+j-k]) I I +j -k;" As a consequence, the string pointer I increases even when a nonmatch occurs, resulting in enhanced matching performance.	Avoids the BF algorithm's frequent backtracking and increases pattern matching efficiency.,	Has higher space complexity	When the pattern matches with the text T string, the enhanced algorithm's performance increases by 20% compared to the I KMP algorithm and 15% compared to the BMSH2.
6	Using KMP Algorithm in Enrekang- Indonesian Language Translator	This paper aims to show the implementatio n of the KMP algorithm in	When the pattern and string are not matching, the KMP algorithm conducts the initial step by initializing the variables i and j as a	Enrekan g regional vocabula ry data set	First, we'll enter the query word to search then, the algorithm will start comparing the pattern from the left direction, if the	It results in enhanced algorithm performance and is more efficient than	A far more complex research will be needed to translate	According to KMP, the classification system was determined to be 100

		1.	C 4 C 1:C	• ,		.1	1 /	, ,
		making a	focus to perform shift	consist	pattern matches then	other	complete	percent
		regional	calculations.	of a table	it'll be checked,	algorithms.	sentences.	capable of
		language	Furthermore, on	of	otherwise it'll shift			translating the
		translator	performing pattern and	regional	one step and will			words entered
		Enrekang to	string matching if there	Enrekan	repeat the same			during
		Indonesia with	is a condition, if the two	g words	process.			testing. In
		focus to input	are matched, the	and				terms of
		in the form	matching result will be	punctuati				performance,
		of characters	saved in a new variable.	ons				the
		and	In the event that there is					implementati
		punctuation.	no match, a movement					on takes
			from left to right will be					0.01901
			made					milliseconds
								to complete.
7	To determine	The goal of	It is divided into four	The data	The badminton court	It is an	The marking	There are 3 of
	the next move	this study is to	stages: defining the	used in	is divided into various	efficient	of zones and	17
	of the player	develop a	stroke zone and type,	this	zones (A-I). Each shot	algorithm	the shot	simulations
	in Badminton	computational	pre-processing data,	experime	such as lob, drop,	used for	offered to	that are not
	based on the	model that can	matching sequence	nt is	smash etc is given a	string	create the	match with
	previous shot	assist players	using the Knuth-Morris-	obtained	number. Thus the	matching	dataset	the actual
	using the	and coaches	Pratt algorithm, and	from 20	sequence consists of	hence used in	requires a lot	movements.
	KMP	with	finally making a	world	alphanumeric	this	of time and	So, based on
	Algorithm	predictions and	judgment.	badminto	characters. Next the	experiment	requires a lot	this
		recommendati		n	user enters a zone-	-	of manual	experiment
		ons for		matches.	shot, the algo then		work.	the accuracy
		shuttlecock			finds the pattern in			of the system
		placement			text. Hence the user			on the fitting
		-			sees all possible next			step is 82.3%.
					shots.			
8	Analyse	This paper	The KMP Pattern	'Alpha'	The first step of the	The KMPBS	Although the	For a selected
	existing	aims to study	process has a pattern	is a	algorithm checks for	algorithm	time	string of
	pattern	two most	matching process 'p'	character	the character at the	performs	complexity is	length l=24,a

matching	commonly	and the text matching	table	last position of the	much better	greatly	string of
algorithms to	used string	process as 't', where	which is	string for pattern	than the KMP	reduced, the	length l=4 is
develop an	pattern	both are compared from	used that	matching and this is	and BM	KMPBS	compared.
enhanced,	matching	left to right whereas the	has a	done using the KMP	algorithms.	algorithm	The KMPBS
more efficient	algorithms and	Boyer-Moore algorithm	default	algorithm.	The KMPBS	does not	algorithm
algorithm for	tries to propose	compares the string	number		algorithm is	entirely	finishes the
string	a new and	pattern from L-R and	of ASCII	The variable 'i' is	preferred	address the	string pattern
searching.	better string	the characters are	character	assigned to the current	because it	space	search in 10
	matching	compared from R-L.	s,i.e. 256	character position in	reduces the	complexity	iterations of
	algorithm.		character	the text string. It keeps	number of	issue. With	the character
		The combination of	S.	checking for every	iterations	strings of long	search,
		these algorithms gives		character in the string	through each	length, the	whereas the
		the new and improved		till a match is	of the	KMPBS	KMP
		KMPBS algorithm. The		found(loops till match	characters in	algorithm	algorithm
		last character of the		fails), and once the	string pattern	needs more	finds the
		pattern string p[m] is		pattern is matched, it	matching for	space	string pattern
		compared to characters		sets the flag value	pattern match	allocation,	in 16
		of text string T. If there		true. If match fails,	processes.	and also the	iterations.
		is a match, KMP		then the flag value is		right value	
		algorithm is used to		set to false and the		and single	With a total
		match them from L-R.		position of 'i' is		values need to	text length of
		If no match is found,		changed to the		be addressed.	327 and
		the characters from text		unmatched character.			pattern length
		of T are used to identify		After this BMHSI			of 13, the KMPBS
		the pattern of string P while the jth pointer		algorithm is implemented to obtain			performs the
		position will reset to the		a new position. This			process 57
		first character position.		algorithm keeps			times whereas
		mst character position.		looping till the next			the KMP
				match fails or			algorithm
				succeeds.			takes 628
				succeds.			taxes 020

	1	 T		1	
					number of
					comparisons.
					1
					With a text
					length of
					1025 45
					1035, the
					KMPBS
					Algorithm
					performs the
					best with only
					94 number of
					model series,
					whereas the
					KMP
					algorithm
					takes 1020
					times. The
					BM
					Algorithm
					performs
					slightly
					better, taking
					586 number
					of model
					series'.
					series.
					The
					KMPBS
					algorithm is
					approx
					$(1/10\sim1/6)$ of
					the KMP
1			<u> </u>	<u> </u>	the ixivit

								algorithm and the BM algorithm (approx 1/5~1/3), significantly reducing the number of the matching efficiency.
9	Applications of the Knuth	With the internet	Traffic data pockets consist of the majority	Verifyin g the	The KMP algorithm sets the pointer 't' and	KMP algorithm	As length of data	Test input file of 50,000
	Morris Pratt	growing	of data on the internet.	KMP	'p' at the starting	greatly	increases, i.e	messages is
	Algorithm in	rapidly every	To read a message	algorith	position of the text	reduces the	size of	provided to
	network flow	second, string	quickly, a high speed	m is in	and divides the	time	alphabets	find the
		lookup is	systematic tool is	fact	partition and then	complexity,	increase, the	substring
		relatively more	required to achieve this	capable	compares the current	O(m+n),	KMP shows	"FireFox" and
		time	function. According to	of field	pointer to the	whereas the	reduced	"Chrome" to
		consuming.	the need of users,	processin	character analogous in	BF algorithm	performance.	test the total
		This paper	different keywords need	g, a	the starting position of	has an		time
		aims to find a	to be matched and	performa	the string. The next()	efficiency of		consumption
		more suitable	generated accurately.	nce test	function is given and	O(mn).	For large and	of the field
		string	The efficiency of the	input file	the partition is made If		heavy traffic	matching
		searching	BF (Brute Force)	for	they match, t and p are	The IZMD	data pockets,	methods.
		algorithm for	algorithm is very low.	50,000	moved respectively,	The KMP	special	To find
		high speed networks.	So, the KMP algorithm	messages	else p is moved away from the starting	algorithm's	hardware selection is	To find "Firefox",
		networks.	is implemented that can reduce the time process	(ordinary LAN	from the starting position so the pointer	biggest advantage to	required to	the Brute
			for string matching and	Traffic)	t does not have to back	the BF	boost the	Force
			string lookup for high	is used.	track and restart the	algorithm is	performance	algorithm
			speed internets.	is asca.	entire process.	the	of the KMP	consumed
			speca miernets.		chino process.		algorithm.	0.116 seconds

						elimination of backtracking.		of CPU time,whereas the KMP took 0.074s. To find "Chrome", BF algorithm took 0.109s and the KMP Algorithm took 0.056s.
10	Comparison of Search Algorithms in Javanese-Indonesian dictionary applications	Search processes typically use string match algorithms as a data search algorithm. This paper aims to find the accuracy and avg. CPU processing time of search results for three different string matching algorithms —	We first test the performance of the BM,KMP and the Horspool algorithm in the Indonesian-Javanese dictionary application. First, the input data string is given and then the pre-processing phase is initiated. In this phase, the text is mined and data is represented in a structured format till the data is ready to be processed. After testing out the different algorithms, the last stage is the output stage where the calculations	The three string matching algorith ms are tested on the existing Javanese dictionar y, on 1500 vocabula ries with 400 experime nts.	The BM algorithm first matches the pattern at the beginning of the text. It matches from R-Lt to match the substring pattern characters with the characters in the matched text until a match is found. The KMP algorithm matches the pattern from the beginning of the test. It matches the pattern by matching each character till a match is found.	The BM and KMP algorithm have more accuracy compared to the Horspool algorithm. The avg.time for processing of KMP is better than that of BM and Horspool Algorithms. CPU processing	The biggest drawback for the BM algorithm is the preprocessing time and space required for string matching. This depends on the size of alphabets or patterns. For really small patterns	After testing the dataset, the accuracy of the Horspool algorithm is 85.3% while that of KMP and BM is 100%. Accuracy Level = (No.of successful samples/total samples)*100

	1		T	Т		ı		1
		BM	are performed in the			time of KMP	with no	The fastest
		Algo,KMP	form of translation of		The Horspool	algorithm is	overlapping	speed of the
		Algo and	vocabulary or search		algorithm only uses	at least n^2 and	strings, it is	KMP
		Horspool	string data.		bad-character	n values.	better to use	algorithm
		algorithm.	_		shifting(depends on		the naïve	with an
					character mismatch).		algorithm or	average of
					It uses the rightmost		Rabin-Karp	25ms,
					character to find the		algorithm that	Horspool
					shift distance that		take O(mn)	39.9ms and
					needs to be		time in worst	BM took
					performed.		cases.	44.2ms.
					p of the contract of the contr			
								Testing on
								efficiency of
								space
								complexity,
								the BM
								algorithm has
								an overall
								n(11n), the
								KMP has an
								overall of
								n(8n) and
								Hosrpool has
								an overall of
								n(10n).
11	To analyze	String search	Firstly, we match the	For	The Enhanced Rabin-	The pre-	The string	After
	already	algorithms	text patterns by	experime	Karp algorithm uses	existing KMP	matching	experimentati
	existing	have many	analysing the text inthe	ntation	the hash() function to	algorithm has	algorithms are	on, the
	string	practical	documents using string	of the	identify a e set of	the best	only analysed	parameters
	matching	applications in	matching algorithms.	different		efficieny for	as a small	for testing are

algorithms to	real life like	For this, we use pre-	algorith	patterns in a	the dataset,	finite length	time, number
develop new	pattern	existing string match	ms, the	particular input text.	whereas, the	in single lines	of iterations
string pattern	searching in	algorithms-	performa		Enhanced	and files in	and accuracy.
match	alphabets,	BF,KMP,BM and	nce	The Enhanced KMP	KMP	the dataset.	
algorithms .	binary	Rabin-Karp algorithm.	testing is	algorithm checks for	algorithm		
_	alphabets or	The performance	done	pattern p within a	gives better	For increasing	The pre-
	DNA	factors are generated	using	string t by applying	accuracy over	size of the	existing KMP
	alphabets in	for these four	two	that when a mismatch	the selected	strings and	algorithm
	genome	algorithms.	types of	occurs, the suffix is	dataset	patterns, the	performs
	sequencing.	Then, two new string	documen	matched with the	parameters	KMP	better than
	This paper	matching algorithms are	tsdocx,	prefix and the search	when	algorithm has	any other
	aims to analyse	proposed for string	.txt.	is continued from	compared to	decreased	algorithms
	two algorithms	matching and both the		after that suffix so as	the pre-	efficiency and	over the
	to find the best	results are compared to		to avoid re-checking	existing	accuracy	selected
	performing	find the best pattern		of the entire string	string	rates.	dataset
	algorithm for	matching algorithm.		from the beginning.	matching		parameters.
	string pattern				algorithms.		
	matching.						

References:

- 1. V. K. P. Kalubandi and M. Varalakshmi, "Accelerated spam filtering with enhanced KMP algorithm on GPU," 2017 National Conference on Parallel Computing Technologies (PARCOMPTECH), 2017, pp. 1-7, doi: 10.1109/PARCOMPTECH.2017.8068335.
- 2. M. AbuSafiya, "Word Matching Algorithm based on Relative Positioning of Letters," 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), 2019, pp. 69-72, doi: 10.1109/JEEIT.2019.8717531.
- 3. M. AbuSafiya, "String Matching Algorithm based on Letters' Frequencies of Occurrence," 2018 8th International Conference on Computer Science and Information Technology (CSIT), 2018, pp. 186-188, doi: 10.1109/CSIT.2018.8486384.
- 4. Ashok, Anchana, Sumy Roslin Joseph, Anjana Vinod, and Juby Mathew. "COMPLAINT REPORTING AND PATTERN SEARCHING USING KMP ALGORITHM."
- 5. Y. Zhou and R. Pang, "Research of Pattern Matching Algorithm Based on KMP and BMHS2," 2019 IEEE 5th International Conference on Computer and Communications (ICCC), 2019, pp. 193-197, doi: 10.1109/ICCC47050.2019.9064076.
- 6. D. Anggreani, D. P. I. Putri, A. N. Handayani and H. Azis, "Knuth Morris Pratt Algorithm in Enrekang-Indonesian Language Translator," 2020 4th International Conference on Vocational Education and Training (ICOVET), 2020, pp. 144-148, doi: 10.1109/ICOVET50258.2020.9230139.
- 7. Riza, Lala Septem, Muhammad Irfan Firmansyah, Herbert Siregar, Dian Budiana, and Alejandro Rosales-Pérez. "Determining strategies on playing badminton using the Knuth-Morris-Pratt algorithm." *Telkomnika* 16, no. 6 (2018): 2763-2770.
- 8. Hou Xian-feng, Yan Yu-bao and Xia Lu, "Hybrid pattern-matching algorithm based on BM-KMP algorithm," 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 2010, pp. V5-310-V5-313, doi: 10.1109/ICACTE.2010.5579620.
- 9. Q. Meng, Z. Lei, D. He and H. Wang, "Application of KMP algorithm in customized flow analysis," 2017 3rd IEEE International Conference on Computer and Communications (ICCC), 2017, pp. 2338-2342, doi: 10.1109/CompComm.2017.8322953.
- 10. Yana Aditia, Gerhana, Lukman Nur, Huda Arief Fatchul, Alam Cecep Nurul, Syaripudin Undang, and Novitasari Devi. "Comparison of search algorithms in Javanese-Indonesian dictionary application." *TELEKOMIKA Telecommunication, Computing, Electronics and Control* 18, no. 5 (2020): 2517-2524.
- 11. Sri, M. Bhagya, Rachita Bhavsar, and Preeti Narooka. "String matching algorithms." *Int. J. Eng. Comput. Sci* 7, no. 3 (2018): 23769-23772.