Project Report: Weather Insights in Forbes Top 100 Cities

Autor: Maria Jose Teran

1. Introduction

Objective:

Analyze the weather data of Forbes' Top 100 Cities from 2020 to 2024, and uncover potential relationships between weather conditions and social factors.

Dataset Overview:

Dataset name: Forbes Top 100 Cities Weather Data (2020 - YTD)

Source: Kaggle

The dataset provides a detailed look at the climate for some of the world's most influential cities. Contains weather attributes (e.g., temperature, precipitation,

humidity) for leading global cities.

This dataset tracks the weather of the principal urban centers, which affects Travel and Tourism, Urban Living and Economic Impacts. Analyzing this data unlocks opportunities to create more sustainable and efficient cities, smarter business strategies, and enhance the quality of life for people around the world.

For this project it was chosen the daily temperature records over the hourly records.

Dataset Creation:

The dataset was downloaded from Kaggle and charged into Google Cloud, using Buckets. Then, importing into the dataset created.

2. Data Exploration

Initial data exploration:

1. Table: cities

Highlights:

- This table provides information about 100 cities, including: City names, their latitude (north-south position) and longitude (east-west position).
- It helps identify the location of each city on a map.

2. Table: daily_data

Key columns:

Column	Description		
city_name	Name of the city.		
datetime	Date of the data record.		
weather_code	Code describing the weather condition (e.g., sunny, rainy, cloudy).		
temperature 2m max	Maximum temperature at 2 meters above ground (°C).		
temperature_2m_min	Minimum temperature at 2 meters above ground (°C).		
temperature 2m mean	Average temperature at 2 meters above ground.		
apparent temperature max	Maximum apparent temperature (°C).		

apparent_temperature_min	Minimum apparent temperature (°C).
apparent_temperature_mean	Average apparent temperature (°C).
daylight_duration	Duration of daylight in hours.
precipitation_sum	Total precipitation (mm) (including rain, showers, and snowfall).
rain_sum	Total rainfall (mm).
snowfall_sum	Total snowfall (cm)
precipitation_hours	Total hours with precipitation.
wind_speed_10m_max	Maximum wind speed at 10 meters above ground (m/s).
shortwave_radiation_sum	Total shortwave solar radiation (kWh/m²).

Highlights:

- > This table provides a lot of information about the weather in each city across the years.
- > It contains nulls values, which should be removed.

3. Data Cleaning

Actions taken:

• Search rows without data in the columns "city_name" or "datetime", without results. So, no entire rows were dropped.

Create a new table, dropping some columns non relevant for the analysis.

Column	Description	Note
sunrise	Exact time of sunrise.	DROP: Data contemplated in daylight_duration.
sunset	Exact time of sunset.	DROP: Data contemplated in daylight_duration.
sunshine_duration	Duration of sunshine in hours.	DROP: Not relevant for analysis.
wind_gusts_10m_max	Maximum wind gust speed at 10 meters above ground (m/s).	DROP: The wind gust data is not relevant for the analysis.
wind_direction_10m_do minant	Dominant wind direction at 10 meters (degrees).	DROP: The wind direction is not relevant for the analysis.
et0_fao_evapotranspira tion	Total evapotranspiration following FAO standards (mm).	DROP: Parameter specific to agriculture.

Count the null values.

 Fill the null values with the average value of each column, and replace values in the table cleaned.

And finally, the data does not contain any NULL values.

0

4. Data Analysis

Research Questions:

Q1 - Which cities are most suitable for solar and wind energy projects across geographic regions?

- Purpose: Identify cities with high solar and wind speed potential for energy projects.
- Parameters Used: City name, Radiation sum, Wind speed, geographical location.

Findings:

```
TOP 10 cities with Solar potential for Energy projects (across all the data).
```

```
SELECT
     d.city_name,
     c.longitude,
     c.latitude,
     ROUND(AVG(d.shortwave_radiation_sum),2) AS avg_shortwave_radiation_sum,
     ROUND(AVG(d.wind_speed_10m_max),2) AS avg_wind_speed
FROM `ds203-finalproject.forbes_cities_weather.daily_data_cleaned` AS d
INNER JOIN `ds203-finalproject.forbes_cities_weather.cities` AS c
ON c.city_name = d.city_name
GROUP BY d.city_name, c.longitude, c.latitude
ORDER BY avg_shortwave_radiation_sum DESC
LIMIT 10;
    city_name ▼
                                                          avg_shortwave_radia avg_wind_speed •
Row
                               longitude ▼
                                             latitude ▼
   1
       Mexico City
                                    -99.127663
                                                  19.428471
                                                                    22.32
                                                                                   19.34
   2
                                    46.721851
                                                                    21.17
                                                                                   22.32
       Riyadh
                                                  24.687731
   3
       Muscat
                                    58.592201
                                                  23.613871
                                                                    21.12
                                                                                   19.01
   4
       Abu Dhabi
                                    54.366669
                                                  24.466669
                                                                    21.05
                                                                                   23.75
   5
       Dubai
                                    55.304722
                                                  25.258169
                                                                     21.0
                                                                                   23.37
   6
       Doha
                                    51.533333
                                                  25.286667
                                                                    20.92
                                                                                   24.18
   7 Las Vegas
                                    -105.2239
                                                                    20.33
                                                                                   23.76
                                                  35.593929
   8
       San Jose
                                   -121.894958
                                                   37.33939
                                                                    19.71
                                                                                   19.9
   9
       Bogota
                                    -74.063644
                                                   4.624335
                                                                    19.71
                                                                                   13.03
                                    47.978329
                                                   29.36972
                                                                    19.67
   10
       Kuwait City
                                                                                   25.44
```

Radiation: $0 - 22 + MJ/m^2$ (where 0 indicates no solar radiation, and the maximum values indicates exceptionally sunny, clear skies, or high altitude).

TOP 10 cities with Wind potential for Energy projects (across all the data).

```
SELECT

d.city_name,
c.longitude,
c.latitude,
ROUND(AVG(d.shortwave_radiation_sum),2) AS avg_shortwave_radiation_sum,
ROUND(AVG(d.wind_speed_10m_max),2) AS avg_wind_speed

FROM __ids203-finalproject.forbes_cities_weather.daily_data_cleaned_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.cities_ids203-finalproject.forbes_cities_weather.
```

Row	city_name ▼	longitude ▼	latitude ▼	avg_shortwave_radia	avg_wind_speed 🗸
1	Helsinki	24.93545	60.16952	10.9	29.04
2	San Francisco	-122.419418	37.774929	18.73	28.09
3	Tokyo	139.691711	35.689499	14.6	26.67
4	Auckland	174.743042	-36.85582	15.63	25.9
5	Copenhagen	12.56553	55.675941	11.43	25.76
6	Chicago	-87.650047	41.850029	15.15	25.64
7	Kuwait City	47.978329	29.36972	19.67	25.44
8	Busan	129.050003	35.133331	15.42	24.19

Wind speed: 1 – 29+km/h (where 1 Indicates calm conditions, and the maximum value represents high wind speeds).

Q2 - How have temperature and precipitation trends changed over the years across cities?

- Purpose: Detect long-term climate changes by exploring how temperature and precipitation patterns over the years.
- Parameters Used: City, Year, Temperature, Precipitation sum.

AV AV FROM _ GROUP ORDER	ty_name, TRACT(YEAR FROM dateti G(temperature_mean) AS G(precipitation_sum) A ds203-finalproject.for BY city_name, year BY city_name, year ASC	avg_temp S Avg_pre bes_citie	eratu cipit	ation_sum	a_cleaned`
Row	city_name ▼	year ▼	1.	avg_temperature_me	Avg_precipitation_su
1	Abu Dhabi		2020	27.91857923497	0.223770491803
2	Abu Dhabi		2021	28.52136986301	0.017260273972
3	Abu Dhabi		2022	28.17808219178	0.120273972602
4	Abu Dhabi		2023	28.26602739726	0.119726027397
5	Abu Dhabi		2024	29.02801866128	0.847204919208
6	Amsterdam		2020	11.34426229508	2.522131147540
7	Amsterdam		2021	10.19095890410	2.586027397260
8	Amsterdam		2022	11.22904109589	2.197534246575
9	Amsterdam		2023	11.41534246575	3.402191780821
10	Amsterdam		2024	12.41904856161	3.243550434158
11	Athens		2020	18.33989071038	1.583606557377

Average value across the years:

```
EXTRACT(YEAR FROM datetime) AS year,

AVG(temperature_mean) AS avg_temperature_mean,

AVG(precipitation_sum) AS Avg_precipitation_sum,

CORR(temperature_mean, precipitation_sum) AS Temp_Precip_Corr

FROM _ds203-finalproject.forbes_cities_weather.daily_data_cleaned

GROUP BY year

ORDER BY year ASC;
```

Row	year ▼	avg_temperature_me	Avg_precipitation_su	Temp_Precip_Corr
1	2020	15.31733606557	2.913418032786	0.041013587155
2	2021	14.90412328767	2.940742465753	0.054457254654
3	2022	15.14577260273	2.841756164383	0.052873006511
4	2023	15.52204109589	2.916939726027	0.020531668223
5	2024	16.65320470779	3.202464055421	0.022366072832

Findings:

- The average temperature has been increasing, going from around 15.3°C in 2020 to about 16.7°C in 2024.
- Precipitation has also been showing an upward trend, from 2.9 mm in 2020 to 3.2 mm in 2024, with variations.
- The correlation between temperature and precipitation is weak. Precipitation changes aren't directly ruled by temperature trends.

Q3 - Which cities have the best comfortable temperatures and precipitation levels?

- Purpose: Identify cities offering favorable conditions for outdoor activities for living and tourism.
- Parameters Used: City, "Feels Like" Temperature, Precipitation level and hours.

Comfortable weather	Comfortable temperature: 10 – 28 °C
conditions set	Comfortable precipitation level: until 10 mm (light to moderate rain)
	Comfortable precipitation hours: until 4 h (light to moderate rain)

```
SELECT
    city_name,
    AVG(temp_feels_like_mean) AS avg_temp_feels_like,
    AVG(temp_feels_like_min) AS avg_temp_feels_like_min,
    AVG(temp_feels_like_max) AS avg_temp_feels_like_max,
    AVG(precipitation_sum) AS Avg_precipitation_sum,
    AVG(precipitation_hours) AS Avg_precipitation_hours
FROM __ids203-finalproject.forbes_cities_weather.daily_data_cleaned_identify
GROUP BY city_name
HAVING (AVG(temp_feels_like_mean) >= 10 AND AVG(temp_feels_like_mean) <= 28
    AND AVG(temp_feels_like_min) >= 10 AND AVG(temp_feels_like_min) <= 28
    AND AVG(temp_feels_like_max) >= 10 AND AVG(temp_feels_like_max) <= 28
    AND AVG(temp_feels_like_max) <= 10 AND AVG(temp_feels_like_max) <= 28
    AND AVG(temp_feels_like_max) <= 28
    AND AVG(temp_feels_like_max) <= 10 AND AVG(temp_feels_like_max) <= 28
    AND AVG(temp_feels_like_max) <= 28
```

Number of cities with comfortable weather:

Count the number of cities with subquery.

```
SELECT COUNT(city_name) AS cities_confortable_weather

FROM (

SELECT

city_name,
    AVG(temp_feels_like_mean) AS avg_temp_feels_like,
    AVG(temp_feels_like_min) AS avg_temp_feels_like_min,
    AVG(temp_feels_like_max) AS avg_temp_feels_like_max,
    AVG(precipitation_sum) AS avg_precipitation_sum,
    AVG(precipitation_hours) AS Avg_precipitation_hours

FROM 'ds203-finalproject.forbes_cities_weather.daily_data_cleaned'

GROUP BY city_name

HAVING (AVG(temp_feels_like_mean) >= 10 AND AVG(temp_feels_like_mean) <= 28

AND AVG(temp_feels_like_min) >= 10 AND AVG(temp_feels_like_min) <= 28

AND AVG(temp_feels_like_max) >= 10 AND AVG(temp_feels_like_max) <= 28

AND AVG(precipitation_sum) <= 10 AND AVG(temp_feels_like_max) <= 28
```

Row cities_confortable_w 1 18

Top 10 Cities by Temperature and Precipitation:

```
SELECT
    city_name,
    AVG(temp_feels_like_mean) AS avg_temp_feels_like,
    AVG(temp_feels_like_min) AS avg_temp_feels_like_min,
    AVG(temp_feels_like_max) AS avg_temp_feels_like_max,
    AVG(precipitation_sum) AS Avg_precipitation_sum,
    AVG(precipitation_hours) AS Avg_precipitation_hours
FROM _ds203-finalproject.forbes_cities_weather.daily_data_cleaned`
GROUP BY city_name
HAVING (AVG(temp_feels_like_mean) >= 10 AND AVG(temp_feels_like_mean) <= 28
    AND AVG(temp_feels_like_min) >= 10 AND AVG(temp_feels_like_min) <= 28
    AND AVG(temp_feels_like_max) >= 10 AND AVG(temp_feels_like_max) <= 28
    AND AVG(temp_feels_lik
```

Row	city_name ▼	avg_temp_feels_like	avg_temp_feels_like_	avg_temp_feels_like_	Avg_precipitation_su	Avg_precipitation_ho
1	Tel Aviv	21.88843209743	17.57708520336	26.21475314111	1.472649648514	2.237230419977
2	Boston	21.09910179096	16.20478100359	27.44091659173	3.543364744995	3.495459704880
3	Philadelphia	18.84620735282	13.56437237703	25.59579740898	4.005964063951	3.609534619750
4	Nashville	18.38826183636	13.14598418180	25.10992907754	3.860788127515	3.438706015891
5	Athens	18.14927205203	13.45795921017	22.55493475291	1.291775641703	1.826901248581
6	Valencia	17.74944231309	13.26823162788	22.49386778356	1.330311396527	1.846197502837
7	Washington	17.62146274442	12.41874241108	24.08001988345	3.272763155892	3.395005675368
8	Naples	17.37106546860	14.87220438611	19.72502555881	3.183659864178	3.528944381384
9	Austin	17.30699055373	12.27816352345	23.71412885053	3.653523655324	3.270147559591
10	Los Angeles	16.72140599073	11.61760733730	24.23206301625	1.374579273939	1.439841089670

Findings:

- There are 18 cities that meet the conditions set for comfortable weather.
- Tel Aviv (21.8°C) and Boston (21°C) lead with the highest average "feels like" temperatures among the listed cities and few precipitation levels.

5. Data Visualization

Q1 - Which cities are most suitable for solar and wind energy projects across geographic regions?

• Purpose: Identify cities with high solar and wind speed potential for energy projects.

Visualization:

- Solar Energy Potential: Cities like Muscat, Tel Aviv, and Los Angeles have high solar radiation, making them ideal for solar energy projects.
- Wind Energy Potential: Helsinki, Tokio, and San Francisco have strong wind speeds, perfect for wind energy developments.
- Hybrid Opportunities: Locations like San Francisco, Doha and Kuwait show a mix of high solar radiation and wind speed, making them suitable for combined solar and wind energy initiatives.

Q2 - How have temperature and precipitation trends changed over the years across cities?

• Purpose: Detect long-term climate changes by exploring how temperature and precipitation patterns over the years.

Findings:

- The average temperature has been increasing, going from around from 2020 to 2024.
- Precipitation has also been showing an upward trend.
- This suggests a clear warming trend, which aligns with broader concerns about global climate change.

Q3 - Which cities have the best comfortable temperatures and precipitation levels?

 Purpose: Identify cities offering favorable conditions for outdoor activities for living and tourism.

Note:

Comfortable weather	Comfortable temperature: 10 − 28 °C
conditions set	Comfortable precipitation level: until 10 mm (light to moderate rain)
	Comfortable precipitation hours: until 4 h (light to moderate rain)

Findings:

- From the 18 cities that meet the conditions set for comfortable weather.
- From the top 5, Tel Aviv and Athens have the highest average "feels like" temperatures with few precipitation levels.

6. Conclusion

Findings:

Climate Trends:

- Average global temperatures and precipitation are rising across the years due to global warming.
- Temperature and precipitation trends are weakly correlated, suggesting independent drivers.

Energy Potential:

- High solar potential cities: Muscat, Tel Aviv, Los Angeles.
- High wind speed cities: Helsinki, Tokyo, San Francisco.
- Hybrid opportunities: San Francisco, Doha, Kuwait (suitable for combined solar and wind energy projects).

Comfortable Weather:

- 18 cities meet favorable conditions for outdoor activities.
- Top cities: Tel Aviv and Athens stand out with warm, consistent temperatures and low precipitation.

Recommendations:

- Focus solar energy developments in cities with high-radiation levels (e.g., Muscat).
- Invest in wind energy initiatives in areas with strong wind speeds (e.g., Helsinki).
- Explore hybrid energy projects in cities with mixed potentials (e.g., San Francisco).
- Prioritize tracking of temperature and precipitation to adapt urban and environmental strategies.
- Highlight cities with comfortable weather for tourism promotion (e.g., Tel Aviv).
- Explore across the findings to identify cities best suited for outdoor activities.

7. Appendix

References:

- Hourly and Daily Weather Dataset of Forbes Top 100 Best Cities To Live, Work And Visit from: https://www.kaggle.com/datasets/bwandowando/forbes-top-100-cities-weather-data2020-ytd?select=cities.csv
- https://open-meteo.com/en/docs/historical-weather-api#start_date=2020-01-01&end_date=2024-10-27