ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт – Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича»

Отделение: Информационных технологий и управления в телекоммуникациях Специальность: 09.02.03 «Программирование в компьютерных системах»

МДК.03.03 ДОКУМЕНТИРОВАНИЕ И СЕРТИФИКАЦИЯ Раздел ПМ 3. Разработка программной документации

Преподаватель

Рожков А.И.

СПб ГУТ)))

ТЕМА 3.1. Документирование и сертификация

Лекция. Системы менеджмента качества

План занятия:

- 1. Менеджмент качества.
- 2. Предпосылки развития менеджмента качества.
- 3. Принципы обеспечения качества программных средств.
- 4. Основные международные стандарты в области ИТ: ISO/IEC 9126, ISO/IEC 14598 и ИСО/МЭК 9126-1

1. Менеджмент качества.

Менеджмент качества — это скоординированная деятельность по руководству (направлению) и оперативному управлению организацией (предприятием) применительно к качеству. Она направлена на достижение целей и осуществляется с помощью коммуникаций. Менеджмент качества выполняет свои задачи, скоординированные с целями предприятия и поддерживающие их. Цели менеджмента качества должны способствовать решению задач, стоящих перед бизнесом.

Коммуникации — это передача информации между участниками процесса и то, какие это имеет последствия. **Структура системы коммуникаций выглядит следующим образом:**

- объекты коммуникаций (передаваемая информация);
- субъекты коммуникаций (структурные единицы предприятия, являющиеся поставщиками и получателями информации);

- точки информации (моменты времени, в которые она отправляется и получается);
- инфраструктура: линии (каналы) движения информации, ее носители (в первую очередь документы) и места хранения.

Нормативное обеспечение менеджмента качества предусматривает регулирующие документы, устанавливающие правила, общие принципы или характеристики, касающиеся различных видов деятельности или результатов (Руководство ИСО/МЭК 2 «Общие термины и определения в области стандартизации и смежных видов деятельности»). В их числе — описывающие способы достижения определенных результатов в менеджменте качества (методические документы).

В настоящее время действует обширный перечень стандартов и других регулирующих документов, регламентирующих практически все аспекты деятельности предприятий, в том числе (и прежде всего) в области менеджмента качества.

Прежде всего это международные стандарты ИСО серии 9000 (ИСО 9000, ИСО 9001, ИСО 9004) и сопутствующие, дополняющие их стандарты и технические отчеты (ИСО 19011, ИСО/ТО 10013, ИСО 10005, ИСО 10006, ИСО 10007, ИСО 10002, ИСО/ТО 10014, ИСО 10015, ИСО/ТО 10017), а также тесно примыкающие к ним международные стандарты ИСО серии 14000 по экологическому менеджменту.

Существует целый ряд специализированных отраслевых стандартов, технических отчетов и технических условий на системы менеджмента, созданных на базе ИСО 9001:2000. Они охватывают такие отрасли, как автомобилестроение, аэрокосмическая промышленность, телекоммуникации, программные средства, пищевая промышленность, здравоохранение, образование, медицинские приборы и оборудование, нефтегазодобыча.

Указанные нормативы являются внешними по отношению к предприятию. Они необходимы, но недостаточны для функционирования эффективных систем менеджмента качества (СМК).

Нужны также внутренние нормативно-методические документы: корпоративные стандарты, документированные процедуры, инструкции, технические условия и т. п. Внешние нормативные документы формируют общие принципы деятельности, и их необходимо конкретизировать применительно к данному предприятию. Они также могут содержать определенный набор принципов, и предприятию нужно выбрать те варианты, которые будут использоваться.

Наконец, они могут содержать пробелы и не охватывать все области менеджмента, находящиеся в зоне внимания организации.

Предметом международных стандартов систем менеджмента является классификация требований к деятельности организации в конкретных областях управления. Но требования международных стандартов за редким исключением неконкретны (и не могут быть таковыми), поскольку предназначены для применения в различных условиях. Поэтому важнейшим аспектом международных стандартов (отдельных или целых семейств) является совокупность принципов — основополагающих требований, регулирующих деятельность.

2. Предпосылки развития менеджмента качества.

Интерес к менеджменту качества возник со становлением массового промышленного производства. С конца 19 века и до сегодняшнего времени менеджмент качества прошел несколько этапов, которые связаны с развитием определенных технологий производства. Эти этапы не имеют четко выделенных границ. Более правильным будет говорить о перекрывающихся этапах, т.к. развитие и становление тех или иных методов управления и технологий производства не начинается и не заканчивается в один момент.

На первом этапе менеджмент качества уделял наибольшее внимание контролю параметров и характеристик изделий. Этот этап приходится на конец 19, начало 20 века. Он характеризуется пристальным вниманием к продукту и выявлению проблем в продукте. В этот период на заводах появляются развитые и большие службы контроля качества, которые занимаются проверкой каждого изделия. Контроль, как правило, осуществляется в конце производственного цикла и требует привлечения специально подготовленных инспекторов.

Второй этап относится примерно к периоду 20-х, 50-х годов 20 века. Этот этап называют «этапом контроля процессов» или «управления процессами». Менеджмент качества переносит акцент с продукта на производственные процессы. Такой переход стал возможен за счет разработки статистических методов контроля процессов и контрольных карт. В результате удалось значительно снизить затраты на контроль и повысить качество изделий.

Третий этап своего развития менеджмент качества прошел в период с 50-х до начала 80-х годов. В значительной степени переход связан с усилиями, которые предпринимались японскими компаниями для повышения конкуренции своей продукции. Этот этап можно назвать «этапом повышения качества» или «гарантии качества». В этот период менеджмент качества основное внимание фокусирует на улучшении подсистем предприятия в комплексе — производственные процессы, процессы управления, процессы обеспечения, управления персоналом, закупок, продаж, сбыта продукции и пр.

Четвертый этап начал формироваться примерно в конце 60-х, начале 70-х годов. Он связан с акцентированием внимания на наиболее важных для потребителя характеристиках изделия. В этот период значительно возрастает конкуренция между производителями. Менеджмент качества наибольшее внимание стал уделять планированию качества, поэтому этот этап можно назвать «этапом планирования качества».

3. Принципы обеспечения качества программных средств.

Управление качеством программ предполагает формализацию технологий их разработки, а также выделение в специальный процесс поэтапное измерение и анализ текущего качества программных компонентов.

В процесс управления качеством ПС входит:

- Анализ системных требований к ПС, выделение и ранжирование обобщенных показателей качества конечного продукта
- Декомпозиция обобщенных показателей качества по контролируемым этапам и объектам разработки и создание разделов по качеству в спецификациях требований на программные компоненты
- Выбор и создание методов, технологий и средств автоматизации разработки ПС, с заданными показателями качества

Системы менеджмента качества

- Создание методов и средств объективного измерения качества программных компонентов на фиксированных этапах их создания и всего ЖЦ
- Разработка методик и стандартов контроля соблюдения правил и технологии проектирования и обеспечения всего ЖЦ
- Организация обучения и стимулирования коллективов специалистов на создание компонентов и ПС в целом, в максимальной степени удовлетворяющих требованиям заказчикам и пользователям

2. Основные международные стандарты в области ИТ: ISO/IEC 9126, ISO/IEC 14598 и ИСО/МЭК 9126-1

На данный момент наиболее распространена и используется обеспечения, программного многоуровневая модель качества наборе стандартов ISO 9126. представленная В показателей качества регламентирования систем является международный стандарт ISO 9126 «Информационная технология. Оценка программного продукта. Характеристики качества **применению».** В руководство ЭТОМ стандарте ПО ИХ многоуровневое распределение характеристик ПО. На верхнем уровне выделено 6 основных характеристик качества ПО, каждую из которых определяют набором атрибутов, имеющих соответствующие метрики для последующей оценки (рисунок).

На верхнем уровне выделено 6 основных характеристик качества ПО, каждую из которых определяют набором атрибутов, имеющих соответствующие метрики для последующей оценки.

Стандарт ISO/IEC 14598-1:1999 регламентирует метод оценки качества программных средств, который основан на иерархической модели качества, определённой в ISO/IEC 9126-1:2001. Процесс оценки состоит из 4 стадий:

1.Установка требований к оценке. Этапы:

- 1. Установка цели оценки
- 2. Идентификация типов продуктов
- 3. Определение модели качества

2.Определение оценки. Этапы:

- 1. Выбор метрик
- 2. Установка уровней оценки (ранжирования) для метрик
- 3. Установка критериев для оценки

3. Проектирование оценки. Этапы:

1. Разработка плана оценки

4. Выполнение оценки. Этапы:

- 1. Выполнение измерений
- 2. Сравнение с уровнями оценки
- 3. Оценка результатов

Рис. Iso/iec 9126-1:2001. Свойства и критерии обоснованности метрик качества программных средств. Согласно ГОСТ Р ИСО/МЭК 25040-2014, который пришел на замену ISO/IEC 14598-1:1999 процесс оценки состоит уже из 5 стадий:

Рис. ГОСТ Р ИСО/МЭК

программного продукта.

Процесс

качества

25040-2014.

оценки

Желательные свойства метрик:

- 1) надежность связана со случайной ошибкой; метрика свободна от случайной ошибки, если случайные изменения не влияют на результаты метрики;
- 2) повторяемость использование метрики для того же продукта теми же специалистами по оценке, используя ту же спецификацию оценки (включая ту же окружающую среду), тот же тип пользователей и окружения, должно привести к тем же результатам с соответствующими допусками; соответствующие допуски должны учитывать такие компоненты, как усталость и результат накопленных познаний;
- 3) **однотипность** применение метрики для того же продукта различными специалистами по оценке, используя ту же спецификацию оценки (включая ту же окружающую среду), тот же тип пользователей и окружения, должно привести к тем же результатам с соответствующими допусками;

- 4) **применимость** метрика должна четко указывать условия (например, наличие определенных атрибутов), которые ограничивают её употребление;
- 5) показательность это способность метрики идентифицировать части или элементы программы, которые должны быть улучшены, на основании сравнения измеренных и ожидаемых результатов;
- 6) **корректность** метрика должна обладать следующими свойствами:- объективность; беспристрастность; адекватность точности;
- 7) **значимость** измерение должно давать значащие результаты, касающиеся поведения программы или характеристик качества.

Разработчик метрики должен доказать ее обоснованность. Метрика должна удовлетворять хотя бы одному из следующих **критериев обоснованности метрики**:

- 1) корреляция изменение в значениях характеристик качества (оперативно определенных по результатам измерения основных метрик), обусловленное изменением в значениях метрики, должно определяться линейной зависимостью
- 2) **трассировка** если метрика М непосредственно связана с величиной характеристики качества Q (оперативно определенной по результатам измерения основных метрик), то изменение величины Q (Т1), имеющейся в момент времени Т1, к величине Q (Т2), полученной в момент времени Т2, должно сопровождаться изменением значения метрики от М (Т1) до М (Т2) в том же направлении (например, если увеличивается Q, то М тоже увеличивается);

- 3) **непротиворечивость** если значения характеристик качества (оперативно полученные по результатам измерения основных метрик) Q1, Q2,..., Qn,связанные с продуктами или процессами 1, 2..., n, определяются соотношениемQ1> Q2> ... > Qn, то соответствующие значения метрики должны удовлетворять соотношению M1> M2> ... > Mn.
- 4) **предсказуемость** если метрика используется в момент времени Т1 для прогноза значения (оперативно полученного по результатам измерения основных метрик) характеристики качества Q в момент времени Т2, то ошибка прогнозирования, определяемая выражением прогнозное (Q(T2) фактическое Q(T2))/фактическое Q(T2) должна попадать в допустимый диапазон ошибок прогнозирования;
- 5) **селективность** метрика должна быть способной различать высокое и низкое качество программного средства.

Термины качества

Целевое Качество – Goal Quality (ЦК) означает необходимое и достаточное качество, которое отражает реальные потребности пользователя.

Требуемое Качество Продукта – Required Product Quality (ТКП) - это качество, фактически установленное в спецификации требований к качеству.

Качество Проекта - Design Quality (КП) – это качество, представленное в основных частях или основе проекта ПО, например, в архитектуре ПО, структуре программы и стратегии проектирования интерфейса пользователя.

Оценочное (или прогнозируемое) качество продукта — Estimated (or Predicted) Product Quality (ОКП) — это качество, оцененное или предсказанное для конечного ПП на каждой стадии разработки и базирующееся на КП.

Качество поставленного продукта — Delivered Product Quality (КПП) - это качество поставленного продукта, обычно прошедшего испытания в смоделированной среде с имитированными данными.

Качество в использовании - Quality in Use (КВИ) — это качество системы, содержащей ПО, которое воспринимается пользователями, и оно измеряется скорее в терминах результата использования ПО, чем свойств самого ПО.

В 2011 году принят стандарт ISO 25010, заменяющий ISO 9126-1 и несколько изменяющий набор характеристик и атрибутов внутреннего качества ПО, а в 2015 г принят идентичный стандарт в РФ.

ГОСТ Р ИСО/МЭК 25010-2015

ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСТ Р ИСО/МЭК 25010— 2015

Информационные технологии

СИСТЕМНАЯ И ПРОГРАММНАЯ ИНЖЕНЕРИЯ

Требования и оценка качества систем и программного обеспечения (SQuaRE). Модели качества систем и программных продуктов

ISO/IEC 25010:2011

Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models (IDT)

Издание официальное

Предисловие

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Информационно-аналитический вычислительный центр» (ООО «ИАВЦ») на основе собственного аутентичного перевода на русский язык международного стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 22 «Информационные технологии»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 мая 2015 г. № 464-ст

4 Настоящий стандарт идентичен международному стандарту ИСО/МЭК 25010:2011 «Системная и программная инженерия. Требования и оценка качества систем и программного обеспечения (SQuaRE). Модели качества систем и программных продуктов» (ISO/IEC 25010:2011 «Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models»).

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5 (пункт 3.5)

4.Настоящий стандарт идентичен международному стандарту ИСО/МЭК 25010:2011* "Системная и программная инженерия. Требования и оценка качества систем и программного обеспечения (SQuaRE). Модели качества систем и программных продуктов" (ISO/IEC 25010:2011 "Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - System and software quality models", IDT).

ГОСТ Р ИСО/МЭК 25010-2015

Введение

Настоящий стандарт является составной частью серии международных стандартов SQuaRE, которая состоит из следующих разделов:

- раздел «Менеджмент качества» (ИСО/IEC 2500n),
- раздел «Модель качества» (ИСО/МЭК 2501n),
- раздел «Измерение качества» (ИСО/МЭК 2502n),
- раздел «Требования к качеству» (ИСО/МЭК 2503n),
- раздел «Оценка качества» (ИСО/МЭК 2504n),
- раздел «Расширение SQuaRE» (ИСО/МЭК 25050 ИСО/МЭК 25099).

Для выполнения разнообразных функций как в бизнесе, так и для персонального назначения в современных условиях все большее распространение получают программные продукты и преимущественно программные вычислительные системы. Реализация целей и задач для удовлетворения личных потребностей, для успеха в бизнесе и / или для безопасности человека опирается на высококачественные программное обеспечение и системы. Высококачественные программные продукты и преимущественно программные вычислительные системы имеют важное для заинтересованных сторон значение в производстве материальных ценностей и предотвращении возможных негативных последствий.

У программных продуктов и преимущественно программных вычислительных систем много заинтересованных сторон, в число которых входят разработчики, приобретатели, пользователи или клиенты компаний, использующих преимущественно программные вычислительные системы. Подробная спецификация и оценка качества программного обеспечения и преимущественно программных вычислительных систем являются ключевыми факторами в обеспечении полезности для заинтересованных сторон. Оценка может быть выполнена на основе определения необходимых и требуемых характеристик качества, связанных с задачами заинтересованных сторон и целями системы, включая характеристики качества, относящиеся к системе программного обеспечения и данным, а кроме того, и воздействие системы на ее заинтересованные стороны. Важно, чтобы, по возможности, характеристики качества были определены, измерены и оценены с использованием проверенных или широко распространенных показателей и методов измерения. Для идентификации соответствующих характеристик качества, которые могут далее использоваться для определения требований, кристериев их удовлетворения и соответствующих показателей. могут быть использованы модели качества из настоящего документа.

Настоящий международный стандарт разработан на основе ИСО/МЭК 9126 «Программная инженерия — Качество продукта», который был разработан для удовлетворения вышеуказанных нужд и в котором были определены шесть характеристик качества и описана модель процесса оценки программного продукта.

ИСО/МЭК 9126 был заменен двумя связанными между собой стандартами: ИСО/МЭК 9126 «Программная инженерия — Качество продукта и ИСО/МЭК 14598 «Программная инженерия — Оценка продукта».

Данный международный стандарт является результатом пересмотра ИСО/МЭК 9126-1. В него входят те же характеристики качества программного обеспечения с некоторыми поправками:

- область применения моделей качества была расширена, с тем чтобы включить в себя вычислительные системы и качество при использовании с системной точки зрения;
- в качестве характеристики качества при использовании было добавлено «Покрытие контекста» с подхарактеристиками, «Полнота контекста» и «Гибкость»;
- как характеристика, а не подхарактеристика функциональности была добавлена «Безопасность», с подхарактеристиками «Конфиденциальность», «Целостность», «Безотказность», «Отслеживаемость» и «Подлинность»;
- была добавлена как характеристика «Совместимость» (включая функциональную совместимость и сосуществование);
- были добавлены следующие подхарактеристики: «Функциональная полнота» «Емкость», «Защищенность от ошибки пользователя», «Доступность», «Готовность», «Модульность» и «Возможность многократного использования»;
- подхарактеристики соответствия были удалены, поскольку они являются в соответствии с законами и правилами частью общих требований к системе, а не частью характеристики качества;
 - модели внутреннего и внешнего качества были объединены в составе модели качества продукта;

Настоящий международный разработан стандарт основе ИСО/МЭК 9126 "Программная инженерия Качество продукта", который разработан удовлетворения ДЛЯ вышеуказанных нужд и в котором были определены шесть характеристик качества и описана модель процесса оценки программного продукта.

ИСО/МЭК 9126 был заменен двумя связанными между собой стандартами: ИСО/МЭК 9126 "Программная инженерия - Качество продукта" и ИСО/МЭК 14598 "Программная инженерия - Оценка продукта".

Данный международный стандарт является результатом пересмотра ИСО/МЭК 9126-1. В него входят те же характеристики качества программного обеспечения с некоторыми поправками:

Системы менеджмента качества

- область применения моделей качества была расширена, с тем чтобы включить в себя вычислительные системы и качество при использовании с системной точки зрения;
- в качестве характеристики качества при использовании было добавлено "Покрытие контекста" с подхарактеристиками, "Полнота контекста" и "Гибкость";
- как характеристика, а не подхарактеристика функциональности была добавлена "Безопасность", с подхарактеристиками "Конфиденциальность", "Целостность", "Безотказность", "Отслеживаемость" и "Подлинность";
- была добавлена как характеристика "Совместимость" (включая функциональную совместимость и сосуществование);
- были добавлены следующие подхарактеристики: "Функциональная полнота", "Емкость", "Защищенность от ошибки пользователя", "Доступность", "Готовность", "Модульность" и "Возможность многократного использования";
- подхарактеристики соответствия были удалены, поскольку они являются в соответствии с законами и правилами частью общих требований к системе, а не частью характеристики качества;
- модели внутреннего и внешнего качества были объединены в составе модели качества продукта;
- там, где это представилось возможным, специфичные для программного обеспечения определения были заменены на универсальные;
- <mark>нескольким характеристикам и подхарактеристикам были даны более точные названия</mark>