STUDENT ID NO									

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2019/2020

EME1046 – PRINCIPLES OF THERMODYNAMICS (ME)

24 OCTOBER 2019 9.00 a.m -11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 5 printed pages (including cover page and appendix) with four questions.
- 2. Attempt ALL FOUR questions. Each question carries 25 marks.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. All necessary workings must be shown.
- 5. A property tables booklet is provided.

Question 1

Air undergoes a thermodynamic cycle consisting of three processes as shown in **Figure 01**:

Process 1–2: Isothermal expansion from $T_1 = 400 \text{ K}$, $P_1 = 6 \text{ bar}$, $V_1 = 0.03 \text{ m}^3$ to $V_2 = 3V_1$

Process 2–3: Constant volume to P_3 where $(P_3 < P_2)$

Process 3-1: Adiabatic compression to state 1.

There are no significant changes in kinetic or potential energy.

(Use $C_v = 0.718 \text{ kJ/kg}$, R = 0.287 kJ/kg, k = 1.40)

Figure Q1

a) Determine the mass of the air.

[2 marks]

b) Determine P_2 , P_3 and T_3 .

[6 marks]

c) Calculate the heat transfer per unit mass, \mathbf{q} , work output per unit mass, \mathbf{w} , and change of internal energy per unit mass, $\Delta \mathbf{u}$, for each process in kJ/kg.

[10 marks]

- d) Calculate the net heat transfer per unit mass, q_{net} , and net work output per unit mass, w_{net} , for whole process in kJ/kg. [2 marks]
- e) Is the net work output per unit mass of a closed system during a cycle equal to the net heat input per unit mass? Why?

 [3 marks]
- f) Is this a power cycle or a refrigeration cycle? Explain your answer. [2 marks]

Question 2

a) Complete the blank cells in the following table of properties of <u>water</u>. In the last column describe the condition of water as compressed liquid, saturated liquid, saturated liquid-vapor mixture, saturated vapor, superheated vapor, or insufficient information; and, if applicable, give the quality.

P, kPa	T, °C	ν, m³/kg	u, kJ/kg	Quality, x	Condition description
100	70				
200					saturated vapor
20,000	40				
400			3170.5		
	120		2022.6		

[13 marks]

Continued ...

- b) A Carnot heat engine receives heat from a reservoir at 900 °C at a rate of 800 kJ/min and rejects the waste heat to the ambient air at 27 °C. The entire work output of the heat engine is used to drive a refrigerator that removes heat from the refrigerated space at -5 °C and transfers it to the same ambient air at 27 °C. Determine
 - i) The maximum rate of heat removal from the refrigerated space and [7 marks]
 - ii) The total rate of heat rejection to the ambient air.

[5 marks]

Question 3

A hot-water stream at 80°C enters a mixing chamber with a mass flow rate of 0.5 kg/s where it is mixed with a stream of cold water at 20 °C as shown in **Figure Q3**. Assume all the streams are at a pressure of 250 kPa. If it is desired that the mixture leave the chamber at 42 °C, determine

a) the enthalpy of hot-water stream,

[3 marks]

b) the enthalpy of cold-water stream,

[3 marks]

c) the enthalpy of mixture leave the chamber,

[3 marks]

d) the mass balance equation,

[4 marks]

e) the energy balance equation, and

[8 marks]

f) the mass flow rate of the cold-water stream.

[4 marks]

Continued ...

Question 4

A 0.5-m^3 rigid tank contains refrigerant-134a initially at 200 kPa and 40 percent quality. Heat is transferred now to the refrigerant from a source at 35 °C until the pressure rises to 400 kPa. Determine

a)	initial internal energy,	
,		[2 marks]
U)	initial entropy,	[2 marks]
c)	initial specific volume,	[2 marks]
d)	final internal energy,	-
e)	final entropy,	[2 marks]
f)	mass of the refrigerant,	[2 marks]
,		[3 marks]
g)	the entropy change of the refrigerant,	[3 marks]
h)	the entropy change of the heat source, and	[6 marks]
i)	the total entropy change for this process.	
		[3 marks]

Continued ...

Appendix

Uniform State Uniform Flow (Unsteady Flow)

Continuity:

$$(m_2 - m_1) = \sum_i m_i - \sum_e m_e$$

First Law:

$$\begin{split} Q_{i} + W_{i} + \sum_{i} m_{i} \left(h_{i} + \frac{V_{i}^{2}}{2} + gZ_{i} \right) - Q_{e} - W_{e} - \sum_{e} m_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gZ_{e} \right) \\ = m_{2} \left(u_{2} + \frac{V_{2}^{2}}{2} + gZ_{2} \right) - m_{1} \left(u_{1} + \frac{V_{1}^{2}}{2} + gZ_{1} \right) \end{split}$$

Second Law:

$$m_{2}s_{2} - m_{1}s_{1} = \sum_{i} m_{i}s_{i} - \sum_{e} m_{e}s_{e} + \int_{0}^{t} \frac{\dot{\mathcal{Q}}_{cv}}{T} dt +_{1} S_{2 \ gen}$$

Ideal Gas

Ideal Gas Equations of State

$$Pv = RT$$

$$dh = C_p dT$$

$$du = C_v dT$$

Specific Heats and Ideal Gas Constants

$$C_p - C_v = R$$

$$\frac{C_p}{C_v} = k$$

Entropy Relationships

$$s_2 - s_1 = C_V \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1} \text{ if constant } C_V$$

$$= C_p \ln \frac{T_2}{T_1} - R \ln \frac{P_2}{P_1} \text{ if constant } C_p$$

$$= s_{T_2}^0 - s_{T_1}^0 - R \ln \frac{P_2}{P_1} \text{ otherwise}$$

For polytropic process

$$PV^n = constant$$
, $TV^{n-1} = constant$, $TP^{(\frac{n}{n-1})} = constant$

$$_{1}W_{2}$$
 = $\frac{P_{1}V_{1} - P_{2}V_{2}}{n-1} = \frac{mR(T_{1} - T_{2})}{n-1}$, $n \neq 1$
= $P_{1}V_{1} \ln \left(\frac{V_{2}}{V_{1}}\right)$, $n = 1$

End of Paper.