

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: M236H5 SUFFIX: L02

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your confirmand comments.	mation with your signature

Approved By	Checked By	Prepared By
Chao-Chun Chung	Roger Huang	Kimi Lin

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.1.1 TFT LCD MODULE 3.1.2 Vcc POWER DIP CONDITION 3.2 BACKLIGHT UNIT	 7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE (INPUT SIGNAL) 5.2 TFT LCD MODULE (POWER) 5.3 LVDS DATA MAPING TABLE 5.4 PIXEL FORMAT IMAGE 5.5 BACKLIGHT UNIT 5.6 COLOR DATA INPUT ASSIGNMENT	12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 16
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 19
8. PACKAGING 8.1 PACKING SPECIFICATIONS 8.2 PACKING METHOD	 22
9. DEFINITION OF LABELS 9.1 CMO MODULE LABEL	 24
10. RELIABILITY TEST	 26
11. PRECAUTIONS	 26
12. MECHANICAL CHARACTERISTICS	 28

REVISION HISTORY

Version	Date	Page	Description
Ver 2.0	Nov, 11, '09	All	M236H5-L02 Approval specifications was first issued.
Ver 2.1	Dec, 18, '09	26	Mod Altitude Test to be 40,000 ft / 24 hours @ Non-Operation
Ver 3.0	Mar, 18, '10	7	Mod 3.1.1 Electrical Characteristics of Rush Current (From 3A to 5A)
		7	Mod 3.1.1 Electrical Characteristics of Logic Voltage (Add VIH max. & VIL min.)
		19	Mod 7.2 Optical Specifications: Instrument change from CS-1000T to CS-2000
) / = = 0	M 00 (40	29	Mod Drawing Remark of LVDS Connector from FI-R51S to FI-RE51S
Ver 3.1	May, 28, '10	4	Mod 1.5 MECHANICAL SPECIFICATIONS of Weight (Typ. From 2880g to 2900g)
Ver 3.1	May, 28, '10	4	Mod 1.5 MECHANICAL SPECIFICATIONS of Weight (Max. From 2930g to 2960g)
ı			

1. GENERAL DESCRIPTION

1.1 OVERVIEW

M236H5-L02 is a 23.6" TFT Liquid Crystal Display module with 4 CCFL Backlight unit. A 15-pin power interface and a 51-pin 4ch-LVDS interface. This module supports 1920 x 1080 Full HD mode and can display up to 16.7M colors. The inverter module for Backlight is not built in.

1.2 FEATURES

- Extra-wide viewing angle
- High contrast ratio
- Fast response time
- High color saturation
- Full HD (1920 x 1080 pixels) resolution
- DE (Data Enable) only mode
- LVDS (Low Voltage Differential Signaling) interface
- Double frame rate (120Hz)
- RoHS compliance.

1.3 APPLICATION

- TFT LCD Monitor

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	521.28(H) x 293.22(V) (23.6" diagonal)	mm	(1)
Bezel Opening Area	525.22 (H) x 297.22 (V)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.2715 (H) x 0.2715 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally White	-	-
Surface Treatment	AG type, 3H hard coating, Haze 25	-	-
Module Power Consumption	32.37	Watt	(2)

1.5 MECHANICAL SPECIFICATIONS

Ite	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	544.3	544.8	545.3	mm	
Module Size	Vertical(V)	320.0	320.5	321.0	mm	(1)
	Depth(D)	18.2	18.7	19.2	mm	
We	ight	Ī	2900	2960	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Please refer to sec.3.1 & 3.2 for more information of power consumption

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Offic		
Storage Temperature	T _{ST}	-20	60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}	-	50	G	(3), (5)	
Vibration (Non-Operating)	V_{NOP}	-	1.5	G	(4), (5)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The temperature of panel display surface area should be 0 °C Min. and 60 °C Max

Note (3) 50G, 11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.

Note (4) 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
item	N	Min.	Max.	Offic	NOLE	
Power Supply Voltage	Vcc	-0.3	+6.0	V	(1)	
Logic Input Voltage	Vlogic	-0.3	+4.0	V	-	

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
iteiii	Syllibol	Min.	Max.	Offic	Note	
Lamp Voltage	V_{L}	-	2.5K	V_{RMS}	(1), (2)	
Lamp Current	ال	3.0	8.0	mA_{RMS}	(1) (2)	
Lamp Frequency	FL	40	80	KHz	(1), (2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to 3.2 for further information).

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

3.1.1 TFT LCD MODULE:

Ta = 25 ± 2 °C

		Symbol	Value			Unit	Note
		Syllibol	Min.	Тур.	Max.	Offic	Note
Power Supply	/ Voltage	Vcc	4.5	5.0	5.5	V	-
Ripple Vo	ltage	V_{RP}	=	-	300	mV	-
Power on Rus	h Current	I _{RUSH}	-	-	5	Α	(2)
	White		-	0.58	0.81	Α	(3)a
Power Supply Current	Black		-	1.21	1.69	Α	(3)b
	Vertical Stripe		-	1.08	1.51	Α	(3)c
Power Cons	umption	PLCD	-	6.05	8.45	Watt	(4)
LVDS differential input voltage		Vid	100	ı	600	mV	-
LVDS common input voltage		Vic	1.0	1.2	1.4	V	-
Logic High Input Voltage		VIH	2.64	ı	3.6	V	-
Logic Low Inpo	ut Voltage	VIL	0	1	0.66	V	-

Note (1) The module should be always operated within above ranges.

Note (2) Power on rush current measurement conditions:

Vcc rising time is 470µs

Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = $25 \pm 2 \text{ °C}$, Fr = 120 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current

3.1.2 Vcc Power Dip Condition:

Dip condition: 4.0V : Vcc : 4.5V, Td : 20ms

3.2 BACKLIGHT UNIT

Γ_{\sim}	_	25	_	2	00	
171	_	/2	-	_	٠,	

Parameter	Symbol	Value			Unit	Note
i arameter	Symbol	Min.	Тур.	Max.	Offic	Note
Lamp Input Voltage	V_L	810	930	1023	V_{RMS}	$I_{L} = (7.0) \text{ mA}$
Lamp Current	ال	3	7.0	8	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs	-	-	1480(25°C)	V_{RMS}	(2)
Lamp rum On voltage	v _S	-	-	1880(0°C)	V_{RMS}	(2)
Operating Frequency	F_L	40	60	80	KHz	(3)
Lamp Life Time	L_BL	50000	-	-	Hrs	(5), $I_L = (7.0) \text{ mA}$
Power Consumption	P_L	ı	26.32	-	W	(4) , $I_L = (7.0)$ mA

Note (1) Lamp current is measured by current amplify & oscilloscope as shown below:

Measure equipment:

Current Amplify:Tektronix TCPA300 Current probe: Tektronix TCP312

Oscilloscope: TDS3054B

- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise, the lamp may not be turned on normally.
- Note (3) The lamp frequency may produce interference with horizontal synchronization frequency from the display, which might cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronization frequency and its harmonics as far as possible.
- Note (4) $P_L = I_L \times V_L \times 4$ (for 4lamps)
- Note (5) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 7.0 mArms until one of the following events occurs:
 - (a) When the brightness becomes or lower than 50% of its original value.
 - (b) Effective lighting length decreases 80% under for initial. (Effective lighting length is a scope of luminance 80% over for average luminance at several point in lamp center.)
- Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the

inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform. (Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.

- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $\sqrt{2} \pm 10\%$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities

* Asymmetry rate:

$$|I_p - I_{-p}| / I_{rms} * 100\%$$

* Distortion rate

$$I_p$$
 (or I_{-p}) / I_{rms}

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

Note: On the same side, the same-polarity lamp voltage design for lamps is recommended.

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE (INPUT SIGNAL)

Pin	Name	Description
1	B RXO0-	B path_ Negative LVDS differential data input. Channel O0 (odd)
2	B_RXO0+	B path Positive LVDS differential data input. Channel O0 (odd)
3	B RXO1-	B path_ Negative LVDS differential data input. Channel O1 (odd)
4	B RXO1+	B path_ Positive LVDS differential data input. Channel O1 (odd)
5	B RXO2-	B path_ Negative LVDS differential data input. Channel O2 (odd)
6	B RXO2+	B path Positive LVDS differential data input. Channel O2 (odd)
7	GND	Ground
8	B RXOC-	B path_ Negative LVDS differential clock input. (odd)
9	B RXOC+	B path Positive LVDS differential clock input. (odd)
10	GND	Ground
11	B RXO3-	B path Negative LVDS differential data input. Channel O3(odd)
12	B RXO3+	B path_ Positive LVDS differential data input. Channel O3 (odd)
13	GND	Ground
14	B RXE0-	B path_ Negative LVDS differential data input. Channel E0 (even)
15	B RXE0+	B path_ Positive LVDS differential data input. Channel E0 (even)
16	B RXE1-	B path_ Negative LVDS differential data input. Channel E1 (even)
17	B RXE1+	B path Positive LVDS differential data input. Channel E1 (even)
18	B RXE2-	B path_ Negative LVDS differential data input. Channel E2 (even)
19	B RXE2+	B path_ Positive LVDS differential data input. Channel E2 (even)
20	GND	Ground
21	B RXEC-	B path_ Negative LVDS differential clock input. (even)
22	B_RXEC+	B path_ Positive LVDS differential clock input. (even)
23	GND	Ground
24	B_RXE3-	B path_ Negative LVDS differential data input. Channel E3 (even)
25	B_RXE3+	B path_ Positive LVDS differential data input. Channel E3 (even)
26	GND	Ground
27	F_RXO0-	F path_ Negative LVDS differential data input. Channel O0 (odd)
28	F_RXO0+	F path_ Positive LVDS differential data input. Channel O0 (odd)
29	F_RXO1-	F path_ Negative LVDS differential data input. Channel O1 (odd)
30	F_RXO1+	F path_ Positive LVDS differential data input. Channel O1 (odd)
31	F_RXO2-	F path_ Negative LVDS differential data input. Channel O2 (odd)
32	F_RXO2+	F path_ Positive LVDS differential data input. Channel O2 (odd)
33	GND	Ground
34	F_RXOC-	F path_ Negative LVDS differential clock input. (odd)
35	F_RXOC+	F path_ Positive LVDS differential clock input. (odd)
36	GND	Ground
37	F_RXO3-	F path_ Negative LVDS differential data input. Channel O3(odd)
38	F_RXO3+	F path_ Positive LVDS differential data input. Channel O3 (odd)
39	GND	Ground
40	F_RXE0-	F path_ Negative LVDS differential data input. Channel E0 (even)
41	F_RXE0+	F path_ Positive LVDS differential data input. Channel E0 (even)
42	F_RXE1-	F path_ Negative LVDS differential data input. Channel E1 (even)
43	F_RXE1+	F path_ Positive LVDS differential data input. Channel E1 (even)
44	F_RXE2-	F path_ Negative LVDS differential data input. Channel E2 (even)
45	F_RXE2+	F path_ Positive LVDS differential data input. Channel E2 (even)
46	GND	Ground
47	F_RXEC-	F path_ Negative LVDS differential clock input. (even)

48	F_RXEC+	F path_ Positive LVDS differential clock input. (even)
49	GND	Ground
50	F_RXE3-	F path_ Negative LVDS differential data input. Channel E3 (even)
51	F_RXE3+	F path_ Positive LVDS differential data input. Channel E3 (even)

Note (1) Connector Part No.: JAE FI-RE51S-HF or Compatible.

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.

5.2 TFT LCD MODULE (POWER)

Pin	Name	Description			
1	NC	For LCD internal use only, Do not connect			
2	NC	For LCD internal use only, Do not connect			
3	NC	For LCD internal use only, Do not connect			
4	GND	Ground			
5	GND	Ground			
6	GND	Ground			
7	GND	Ground			
8	NC	For LCD internal use only, Do not connect			
9	NC	For LCD internal use only, Do not connect			
10	GND	Ground			
11	V5VI	+5.0V power supply			
12	V5VI	+5.0V power supply			
13	V5VI	+5.0V power supply			
14	V5VI	+5.0V power supply			
15	V5VI	+5.0V power supply			

5.3 LVDS DATA MAPPING TABLE

LVDS Channel O0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVD3 Channel Ou	Data order	OG0	OR5	OR4	OR3	OR2	OR1	OR0
LVDS Channel O1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel OT	Data order	OB1	OB0	OG5	OG4	OG3	OG2	OG1
LVDS Channel O2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Charmer 02	Data order	DE	NA	NA	OB5	OB4	OB3	OB2
LVDS Channel O3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Channel Os	Data order	NA	OB7	OB6	OG7	OG6	OR7	OR6
LVDS Channel E0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDS Channel EU	Data order	EG0	ER5	ER4	ER3	ER2	ER1	ER0
LVDS Channel E1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVDS Channel E1	Data order	EB1	EB0	EG5	EG4	EG3	EG2	EG1
LVDS Channel E2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVDS Channel E2	Data order	DE	NA	NA	EB5	EB4	EB3	EB2
LVDS Channel E3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVDS Challilei ES	Data order	NA	EB7	EB6	EG7	EG6	ER7	ER6

Version 3.1 13 Date: 31 May 2010

5.4 PIXEL FORMAT IMAGE

Screen Format

5.5 BACKLIGHT UNIT:

Pin	Symbol	Description	Remark
1-1	HV	High Voltage	Pink
1-2	LV	Low Voltage	White
2-3	HV	High Voltage	Blue
2-4	LV	Low Voltage	Black

Note (1) Connector Part No.: YEONHO 35001HS-02L or equivalent

Note (2) User's connector Part No.: YEONHO 35001WR-02L or equivalent

5.6 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

	0.1											Da		Sigr											
	Color				Re									reer							Bli				
	Dii-	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3		B1	-
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dania	Green Blue	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0 1	1	1	1	1	1	1	1	1
Colors		1	0	0	1	1	0	0	0	-	0	1	1		0	0	0	1	1	1	1	1	1	1	1
	Magenta Yellow	1	1	1	1	1	1	1	1	0	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0) / Dark	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray																									
Scale	:	:	:				:	:	:	:	:	:	:	:		:	:		:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(254)	1	1	1	1	1	1	1	Ö	Ö	ő	Ö	0	0	0	0	0	0	0	0	0	Ö	0	0	0
1100	Red(255)	1	i	1	1	1	1	1	1	ő	ő	0	0	0	Ö	0	0	0	0	0	0	0	0	0	0
	1104(200)	•	•	•	•	•		•		ľ	ľ				ľ		Ū	ľ	Ĭ			ľ		ľ	Ŭ
	Green(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Crov	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	31.9	74.25	80.9	MHz	-
	Period	Tc	12.4	13.5	31.3	ns	
	Input cycle to cycle jitter	T_{rcl}	-100	-	100	ps	(1)
LVDS Clock	Spread spectrum modulation range	Fclkin_mod	0.98 * Fc	-	1.02 * Fc	MHz	(2)
	Spread spectrum modulation frequency	F _{SSM}	50	-	300	KHz	(2)
	High Time	Tch	-	4/7	-	Tc	-
	Low Time	Tcl	-	3/7	-	Tc	-
LVDS Data	Setup Time	Tlvs	600	-	-	ps	(2)
LVDS Data	Hold Time	Tlvh	600	-	-	ps	(3)
	Frame Rate	Fr	58	120	122	Hz	-
Vertical Active Display Term	Total	Tv	1100	1125	1180	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	1080	1080	1080	Th	-
	Blank	Tvb	Tv-Tvd	Tv-Tvd	Tv-Tvd	Th	-
	Total	Th	500	550	562	Tc	Th=Thd+Thb
Horizontal Active Display Term	Display	Thd	480	480	480	Tc	-
	Blank	Thb	Th-Thd	Th-Thd	Th-Thd	Tc	-

Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM

Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$

Note (2) The SSCG (Spread spectrum clock generator) is defined as below figures.

Note (3) The LVDS timing diagram and setup/hold time is defined and showing as the following figures.

LVDS RECEIVER INTERFACE TIMING DIAGRAM

Version 3.1 17 Date: 31 May 2010

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD module, the power on/off sequence should be as the diagram below.

Timing Specifications:

0.5< t1 10 msec

0 < t2 50 msec

0 < t3 50 msec

t4 500 msec

t5 450 msec

t6 90 msec

5 t7 100 msec

Note.

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) It is not guaranteed that products are damaged which is caused by not following the Power Sequence.
- (7) It is suggested that Vcc falling time follows t7 specification, else slight noise is likely to occur when LCD is turned off (even backlight is already off).

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25 <u>+</u> 2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC}	5.0	V
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
Inverter Current	ΙL	7.0	mA
Inverter Driving Frequency	FL	55	KHz
Inverter		Darfon VK.13165.101	

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.647			
	Reu	Ry			0.334			
	Green	Gx			0.284			
Color	Gleen	Gy		Typ – 0.03	0.607	Typ +		(4) (5)
Chromaticity (CIE 1931)	Blue	Вх	θ_{x} =0°, θ_{Y} =0°		0.151	0.03	-	(1), (5)
(CIE 1931)	blue	Ву	CS-2000		0.071	-		
		Wx	R=G=B=255 Grayscale		0.313			
	White	Wy	Grayscalc		0.329			
Center Lumina (Center of		L _C		250	300	-	cd/m ²	(4), (5)
Contrast	Ratio	CR		700	1000	-	-	(2), (6)
Respons	e Time	T_R	θ _x =0°, θ _Y =0°	-	1.5	2.5	ms	(3)
Respons	e illie	T _F	θ _x =υ , θγ =υ	-	3.5	5.5	ms	(3)
White Va	White Variation		θ_{x} =0°, θ_{Y} =0°	-	-	1.33	-	(5), (6)
Viouring Angle	Horizontal	$\theta_x^+ + \theta_x^-$	CR 10	150	170	-	Dog	(1) (5)
Viewing Angle	Vertical	$\theta_{Y}^{+} + \theta_{Y}^{-}$	UK 10	140	160	_	Deg.	(1), (5)
Viowing Angle	Horizontal	$\theta_{+}^{x} + \theta_{-}^{x}$	CR 5	160	178	-	Dog (1) (5	
Viewing Angle	Vertical	$\theta_{Y}^{+} + \theta_{Y}^{-}$	OIX 5	150	170	-	Deg.	(1), (5)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_{C} = L (5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = Maximum [L (1) \sim L (9)] / Minimum [L (1) \sim L (9)]$

Horizontal Line D D/10 D/10 D/2 D/10 W/10 W/10 Test Point X=1 to 9 Active Area

8. PACKAGING

8.1 PACKING SPECIFICATIONS

(1) 7 LCD modules / 1 Box

(2) Box dimensions: 620(L) X 348(W) X 430(H) mm

(3) Weight: approximately: 22.3 kg (7 modules per box)

8.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 1 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	·
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 45.7cm	Non Operation

Figure. 8-1 Packing method

For ocean shipping

Sea / Land Transportation (40ft HQ Container)

Sea / Land Transportation (40ft Container)

Figure. 8-2 Packing method

For air transport

Figure. 8-3 Packing method

9. DEFINITION OF LABELS

9.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

(a) Model Name: M236H5-L02

(b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc.

(c) CMO barcode definition:

Serial ID: XX-XX-X-XX-YMD-L-NNNN

Code	Meaning	Description
XX	CMO internal use	-
XX	Revision	Cover all the change
Х	CMO internal use	-
XX	CMO internal use	-
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
L	Product line #	Line 1=1, Line 2=2, Line 3=3,
NNNN	Serial number	Manufacturing sequence of product

(d) Customer's barcode definition:

Serial ID: CM-23H52-X-X-X-X-X-L-XX-L-YMD-NNNN

Code	Meaning	Description
CM	Supplier code	CMO=CM
23H52	Model number	M236H5-L02= 23H52
Х	Revision code	Non ZBD: 1,2,~,8,9 / ZBD: A~Z
Х	Source driver IC code	Century=1, CLL=2, Demos=3, Epson=4, Fujitsu=5, Himax=6, Hitachi=7, Hynix=8, LDI=9, Matsushita=A, NEC=B, Novatec=C, OKI=D, Philips=E, Renasas=F,
Х	Gate driver IC code	Samsung=G, Sanyo=H, Sharp=I, TI=J, Topro=K, Toshiba=L, Windbond=M
XX	Cell location	Tainan, Taiwan=TN ; Ningbo, China=CN
L	Cell line #	1,2,~,9,A,B,~,Y,Z
XX	Module location	Tainan, Taiwan=TN ; Ningbo, China=NP
L	Module line #	1,2,~,9,A,B,~,Y,Z
YMD	Year, month, day	Year: 2001=1, 2002=2, 2003=3, 2004=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, T, U, V
NNNN	Serial number	By LCD supplier

(e) FAB ID(UL Factory ID):

Region	Factory ID
TWCMO	GEMN
NBCMO	LEOO
NBCME	CANO
NHCMO	CAPG

10. RELIABILITY TEST

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50 , 80%RH, 240hours	-
High Temperature Operation (HTO)	Ta= 50 , 50%RH , 240hours	-
Low Temperature Operation (LTO)	Ta= 0 , 240hours	-
High Temperature Storage (HTS)	Ta= 60 , 240hours	-
Low Temperature Storage (LTS)	Ta= -20 , 240hours	-
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Half-sine Frequency: 10 - 300 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	-
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 11 ms Direction: ± X, ± Y, ± Z.(one time for each Axis)	-
Thermal Shock Test (TST)	-20 /30min , 60 / 30min , 100 cycles	-
On/Off Test	25 ,On/10sec , Off /10sec , 30,000 cycles	-
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω)	-
	Air Discharge: ± 15KV, 150pF(330Ω)	-
Altitude Test	Operation:10,000 ft / 24hours Non-Operation:40,000 ft / 24hours	-

11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.

(10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly, and the starting voltage of CCFL will be higher than room temperature.

11.2 SAFETY PRECAUTIONS

- (1) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

11.3 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

11.4 STORAGE

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35 And relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight.
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

11.5 OPERATION CONDITION GUIDE

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature: 20±15 Humidity: 65±20%

Display pattern: continually changing pattern (Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude, display pattern or operation time etc...It is strongly recommended to contact CMO for application engineering advice. Otherwise, its reliability and function may not be guaranteed.

11.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur.

