REPORT: ROAD ACCIDENT SEVERITY PREDICTOR

This Report is a part of the peer graded assignment of the final course: Applied Data Science Capstone of the IBM Data Science Professional Certificate Course.

We will be following the CRISP-DM(Cross-Industry Standard Process for Data Mining) Approach to solve the problem and build a predictor model.

BUSINESS UNDERSTANDING:

Oftentimes, while travelling from one place to another we encounter accidents on the road, sometimes severe, sometimes fatal, sometimes not so severe. What if we knew in advance the severity of accidents beforehand and avoid travelling when the probability of accidents is more.

This project is useful for anyone and everyone: If you're travelling from 1 city to another, your daily commute to your workplace and back home, including your everyday and other travels. Knowing in advance the severity of an accident will help you save you and your time by avoiding taking that route. Moreover, it is useful for the government as well to check what conditions lead to more severe accidents and how to reduce it.

A better understanding of the problem will be established in subsequent sections.

DATA UNDERSTANDING:

There are 37 attributes in the dataframe that we're using for the model development and not all of that information is required to build the model. So we drop the unnecessary columns before working on the model.

	df.head													nixed types. Spec	ifv dtvpe
	opti in	on on import teractivity=	or set lo	w_memory=F	alse.	_	-			.,,	7 F	 ,	(,	,,,	,,,
Out[3]		SEVERITYCODE	Х	Υ .	OBJECTID	INCKEY	COLDETKEY	REPORTNO	STATUS	ADDRTYPE	INTKEY	 ROADCOND	LIGHTCOND	PEDROWNOTGRNT	SDOTCOLN
	0	2	-122.323148	47.703140	1	1307	1307	3502005	Matched	Intersection	37475.0	 Wet	Daylight	NaN	ı
	1	1	-122.347294	47.647172	2	52200	52200	2607959	Matched	Block	NaN	 Wet	Dark - Street Lights On	NaN	63540
	2	1	-122.334540	47.607871	3	26700	26700	1482393	Matched	Block	NaN	 Dry	Daylight	NaN	43230
	3	1	-122.334803	47.604803	4	1144	1144	3503937	Matched	Block	NaN	 Dry	Daylight	NaN	
	4	2	-122.306426	47.545739	5	17700	17700	1807429	Matched	Intersection	34387.0	 Wet	Daylight	NaN	40280
	5 row	vs × 38 column	S												
	4														

To build a better understanding of data we use the dtypes method on the dataframe to know the datatypes of different columns in the table:

In [8]: df	.dtypes	
Out[8]:	SEVERITYCODE	int64
	X	float64
	Υ	float64
	OBJECTID	int64
	INCKEY	int64
	COLDETKEY	int64
	REPORTNO	object
	STATUS	object
	ADDRTYPE	object
	INTKEY	float64
	LOCATION	object
	EXCEPTRSNCODE	object
	EXCEPTRSNDESC	object
	SEVERITYCODE.1	int64
	SEVERITYDESC	object
	COLLISIONTYPE	object
	PERSONCOUNT	int64
	PEDCOUNT	int64
	PEDCYLCOUNT	int64
	VEHCOUNT	int64
	INCDATE	object
	INCDTTM	object
	JUNCTIONTYPE	object int64
	SDOT_COLCODE	1nt64

In this model our <u>target variable (X) is SEVERITYCODE</u> and the potential Independent variables can be ROADCOND, WEATHER, LIGHTCOND, SPEEDING, UNDERINFL, INATTENTIONIND.

But, we see that most of these variables are of type object and difficult to be deployed in the model. So, we modified the values of these variables to int type. However, even when the SEVERITYCODE is an int type data type, we see that the values it stores are 1(for Property Damage) and 2(Injury Collision). So, we would like to change these values of 1 and 2 to 0 and 1 for a better model.

On modifying it, we use the describe() function on the modified datatype, plot a graph of the number of entries in each attribute and notice that some of our attributes have quite a less number of entries stored in them. We also can't drop all these fields, since the data may lose it's meaning. As a result, we not only need to change the datatype of these attributes but also fill the empty fields to make the data more reliable for building the model.

Moving on, we assign integers to each unique attribute in an attribute. So, the key that we have used to replace the values of different attributes is pretty simple. For variables storing binary information in the

form of yes/no, we used 1 for Yes and 0 for No. These attributes include UNDERINFL, SPEEDING and INATTENTIONIND. For LIGHTCOND, we distributed the data in 3 types: Light, Medium and Dark. We've used 0 for Light, 1 for Medium and 2 for Dark. Coming to ROADCOND the basis of indexing is 0 for Dry, 1 for Mushy and 2 for Wet. As for WEATHER, again we classified the data into 3 categories: 0 for clear or overcast, 1 for Windy, 2 for Rain and 3 for Snow.

For attributes with null values, those were assigned the value 0. And for the ones storing values like other or unknown, we couldn't happen to delete the rows because it would've adversely affected our model. So we used another unique value for them in the attributes that fell in this category.

Our data is now ready to be used. This is what it looks like:

