

TK1114 Computer Programming

Lab 9

Classes

Simple Problem Solving

29, 30 Nov & 1 Dec 2016

Name:		
Matric Number:		

9	#
U	

PC2 CIRCLE CLASS

Input	Standard input
Output	Standard output
Topic	Classes : Sample Solution

Problem Description

A class named PC2Circle is defined as follows.

- Private instance variable named radius that represents the radius of the circle.
- The constructor PC2Circle() that initialised radius to 0.0.
- setRadius (double) method to set a new radius value
- getRadius () method that returns the radius
- getArea () method that returns the area of the circle.
- getCircumference() method to returns the circumference of the circle.

The UML Class Diagram for class PC2Circle is as the following.

PC2Circle		
-radius: double		
+PC2Circle()		
+setRadius(radius:double): void		
+getRadius(): double		
+getArea(): double		
<pre>+getCircumference(): double</pre>		

Write the code for PC2Circle class.

Write a program to test the PC2Circle class that reads the input and print the output as described below.

Input

The first line contains an integer n $(1 \le n \le 50)$ which determines the number of test cases. Each of the following n lines contains a positive real number r $(0.0 \le r \le 500.00)$ which represents the radius of the circle.

Output

For each test case, the output contains a line in the format "Case #x: ", where x is the case number (starting from 1) follows by the radius, area and circumference of the circle. Format the output in 4 decimal places.

Sample Input Output

Sample Input	Sample Output
2	Case #1: 9.000 254.4690 56.5487
	Case #2: 5.500 95.0332 34.5575
5.5	

Solution for this problem.

```
// File name: TestPC2Circle.java
import java.util.Scanner;
import java.text.DecimalFormat;
public class TestPC2Circle {
   public static void main(String[] args) {
      Scanner sc = new Scanner(System.in);
      DecimalFormat df = new DecimalFormat("0.0000");
      double radius, area, circumference;
      int N = sc.nextInt();
      for (int i = 1; i <= N; i++) {
        PC2Circle myCircle = new PC2Circle(); // create PC2Circle object
        radius = sc.nextDouble();
         myCircle.setRadius(radius); // sets radius
         area = myCircle.getArea();
                                      // returns area
         circumference = myCircle.getCircumference(); // returns
         System.out.println("Case #" + i + ": " +
               df.format(myCircle.getRadius()) + " " +
               df.format(area) + " " + df.format(circumference));
      }
   }
}
class PC2Circle {
                                // NOT a public class
   private double radius;
                                // private instance variable
   public PC2Circle() {
                                 // constructor without parameter
     radius = 0.0;
   void setRadius(double rad) {
      radius = rad;
   double getRadius() {
     return radius;
   double getArea() {
      return radius * radius * Math.PI;
   double getCircumference() {
     return 2 * Math.PI * radius;
```

00	MY R-TRIANGLE	
9C	Input	Standard input
	Output	Standard output
	Торіс	Classes : Simple problem solving

Problem Description

A class named RTriangle that represents a right angled triangle is defined as follows.

- Private instance variables named width and height that represents the width and height of the triangle.
- The constructor RTriangle () that initialized the width and height to 0.0.
- setSide (double) method to set a new side value
- getSide() method that returns the side value
- getArea() method that returns the area of the triangle.
- getPerimeter() method to returns the perimeter of the triangle.

The UML Class Diagram for class RTriangle is as the following.

```
RTriangle

-width: double
-height: double

+RTriangle()
+setWidth(width:double): void
+setHeight(height:double): void
+getWidth(): double
+getHeight(): double
+getArea(): double
+getPerimeter(): double
```

Write the code for RTriangle class.

Write a program to test the RTriangle class that reads the input and print the output as described below.

Input

The first line contains an integer n $(1 \le n \le 50)$ which determines the number of test cases. Each of the following n lines contains two positive real number w and h $(0.0 \le w, h \le 500.00)$ which represents the width and height of the right triangle.

Output

For each test case, the output contains a line in the format "Case #x: ", where x is the case number (starting from 1) follows by the width, height, area and perimeter of the triangle. (format the output in 2 decimal places).

Sample Input Output

Sample Input	Sample Output
2 9.0 7.33 5.5 8.88	Case #1: 9.00 7.33 32.98 27.94 Case #2: 5.50 8.88 24.42 24.83

Use the following program structure:

```
// File name: TestRTriangle.java

// import statements

public class TestRTriangle {
    public static void main(String [] args) {

        // code for test class
    }
}

class RTriangle { // NOT a public class

    // code for RTriangle class
}
```

00	MY TIME	
9D	Input	Standard input
	Output	Standard output
	Торіс	Classes : Problem solving

Problem Description

A class called MyTime, which represent time in 24-hour notation are described below.

MyTime contains the following private instance variables that represent a valid time in 24-hour notation:

- hour
- minute

Constructor methods

- MyTime (); // initialised all instance variable to 0
- MyTime (int h, int m) // initialised instance variables with the values

that invoke the setTime() method (described below) to set the instance variables.

MyTime contains the following public methods:

- setTime(int h, int m): sets the instance variables.
- Setter methods: setHour(int h), setMinute(int m)
- Getter methods: getHour(), getMinute().
- incrementMinutes (int min) : add min to the instance variable minute. Update the instance variables to a valid range.
- incrementHours (int hrs): add hrs to the instance variable hour. Update the instance variables to a valid range.
- toString(): returns "HH:MM".

Write the code for the MyTime class.

Write a test program named TestMyTime that reads two time values that represent the start time and duration for an event. Your program should calculate the end time of the event.

Input

The first line contains an integer n $(1 \le n \le 50)$ which determines the number of test cases. Each of the following n lines contains the start time (valid time in 24-hour notation) and a duration (in hour and minute) as shown in the sample input.

Output

For each test case, output a line in the format "Case #x: " where x is the case number (starting from 1), follow by the end time of the event in a valid 24-hour time notation.

Sample Input Output

Sample Input	Sample Output
2 8 10 1 01 12 20 5 50	Case #1: 09:11 Case #2: 18:10