The Australian Imaging Biomarkers and Lifestyle Flagship Study of Ageing

(AUSTRALIAN ADNI)

July 2011 UPDATE – Imaging Christopher Rowe MD – *Neuroimaging stream leader*

¹¹C-PiB PET commenced at Austin Health in 2004 and expanded in 2006 through the AIBL study of aging

1000 subjects (25% imaged with PiB PET and MRI)

Major Sponsor

MELBOURNE

A multimodality clinical study

Databases

PET-PiB

Amyloid beta load

T1W Anatomy

CSF and structures

SWI Venous tree

FLAIR
White matter lesions

DWIWhite matter connection

Methods

- 366 Participants
- Neuropsychology: CDR, MMSE, LM, CVLT-II, Rey Figure, etc
- MRI: 3D MP-RAGE, FLAIR, +/- SWI, DTI
- PET: Equilibrium imaging at 40-70 min after 300 MBq of ¹¹C-PiB
- Image Analysis:
 - PiB PET: Standard uptake value ratios (SUVR) i.e. cortex ROIs: cerebellar grey matter
 - MRI: 3 tissue segmentation using expectation maximization probability maps

¹¹C-PIB – Image Quantification

Regions

Neocortical SUVR₄₀₋₇₀

= cortical activity / cerebellargrey matter activity from 40to 70 minutes post injection

Negative is <1.5

Follow-up PiB co-registered to baseline and saved prior ROI set used.

Single operator for all PiB scans.

Image Analysis

2. Automatic: co-registration + MRI segmentation (GM, WM, CSF) + AAL template + PVC

Imaging Cohort Demographics

	HC	MCI	AD
	(n=195)	(n=92)	(n=79)
Age	72	74	73
Gender (M:F)	47%	50%	50%
MMSE	29	27	21
CDR	0.0	0.5 ± 0.2	1.0 ± 0.5
CDR SOB	0.06 ± 0.2	1.25 ± 0.9	4.36 ± 1.7
% ApoE ε4	41%	61%	65%
Years of Education	13.4	12.5	12.4

Baseline Imaging Findings

PiB neocortical SUVR in AIBL+

Relation between ApoE, age, and Aß burden

% Healthy Elderly PiB+ve

Aβ burden vs Age

Older AD do not have less PiB binding

Neocortical SUVR₄₀₋₇₀

Age (years)

Calculated accuracy for PiB (AD vs HC)

HC PiB+: 11% in 60's, 32% in 70's, 51% in 80's (e4 prevalence corrected)

Age	Sens.	Specif.	Accuracy	PPV	NPV
60-69	95	88	92	89	95
70-79	95	68	84	75	93
+08	95	49	78	65	91

Aβ burden vs cognition

Gender Differences

Female but not male PiB+ HC have lower memory scores

Male AD have higher PiB

Aβ burden vs hippocampal volume

Follow-up Data

3 year PiB PET

Note: Atrophy correction did not change shape of graphs

5-year follow-up

AD with lower MMSE have slower PiB rise (n=40)

Average rate of atrophy over one year in HC PiB- vs PiB+.

Change in memory vs Baseline PiB: Decline >0.5 SDin HC with a 3 year follow-up (n=80)

Relation between baseline Aß burden and memory decline in healthy controls

(36 months follow-up)

Relation between rate of Aß deposition and rate of memory decline

3-5 year follow-up

Relation between rate of Aβ deposition and rate of memory decline

3-5 year follow-up

Prediction of Progression: HC to MCI/AD

20 months n=195

36 months n=178

PiB-ve Subjects: 135

Converters to MCI/AD 3 (2%)

PiB-ve Subjects: 124

Converters to MCI/AD 8 (6%)

PiB+ve Subjects: 60

Converters to MCI/AD 6 (10%)

PiB+ve Subjects: 54

Converters to MCI/AD 9 (17%)

Prediction of Progression: HC to MCI/AD

20 months

	ACCURACY	NPV	OR
Neocortical PiB+ve (SUVR >1.5)	0.54	0.98 (CI 0.93-0.99)	4.9

36 months

	ACCURACY	NPV	OR
Neocortical PiB+ve (SUVR >1.5)	0.56	0.94 (CI 0.87-0.97)	3.0

Prediction of Progression: MCI to Dementia

20 Months n=92

36 Months n=72

 PiB -ve:
 29

 Converters to AD
 2 (7%)

 DLB
 1 (3%)

 FTD
 2 (7%)

 VaD
 1 (3%)

 PiB -ve:
 19

 Converters to AD
 3 (16%)

 DLB
 1 (5%)

 FTD
 2 (10%)

 VaD
 1 (5%)

 PiB +ve:
 63

 Converters to AD
 32 (51%)

PiB +ve: 53

Converters to AD 39 (74%)

Prediction of Progression: MCI to Dementia (at 36 months follow-up)

	ACCURACY	Odds Ratio	NPV
PiB+ve (SUVR >1.5)	0.79	15	0.83 (CI 0.58-0.96)
ΑροΕ ε4+	0.78	11	0.77 (CI 0.50-0.92)
Composite Memory (<2.0)	0.68	5	0.64 (CI 0.36-0.86)
Hippocampal atrophy (<0.0021)	0.60	2	0.57 (CI 0.34-0.77)
PiB + Hipp Vol (n=30, ++ vs)	0.86	>20	1.00 (CI 0.52-1.00)

Summary

AIBL+ Findings

- Aβ deposition is slow and of similar rate in PiB+ HC and MCI (2% SUVR per year).
- A plateau occurs with advancing dementia.
- Aβ is common in older HC

```
11% if 60-69
```

32% if 70-79

51% if 80+ years

and strongly related to genetics i.e. ApoE-ε4 status (risk 2-3X)

Over 3 Years

- Aβ in HC is associated with faster cognitive decline and grey matter atrophy.
- 17% of PiB+ HC develop MCI/AD (c.f. 6% of PiB-)
- 74% PiB+ MCI develop AD c.f. 16% of PiB-Odds Ratio = 12 (but 20% PiB- develop other dementias)
- Combination of biomarkers provides better prediction (e.g. if PiB+ and hippocampal atrophy = 86% accuracy)