Engineering Chemistry

ROOK . JI	une 2012			
CITATION 1		READS 119,790	0	
3 authors, including:				
	Baskar Chinnappan THDC Institute of Hydropower Engineering and Technology Tehri, Uttarakhand Te 48 PUBLICATIONS SEE PROFILE		Ranjit Dhillon Punjab Agricultural University 41 PUBLICATIONS 286 CITATIONS SEE PROFILE	

Some of the authors of this publication are also working on these related projects:

Contents

Prefac	v vii	
1. Ge	eneral Chemistry	
	rning Objectives	1
	1.1 Valence Bond Theory	1
	1.2 Hybridization and Shapes of Molecules	2
	sp Hybridization	3
	sp² Hybridization	5
	sp ³ Hybridization	5
	Lone Pair in Hybrid Orbitals	7
	1.3 Molecular Orbital Theory	8
	Linear Combination of Atomic Orbitals (LCAO)	9
	MO Diagram of Homodiatomic Molecules	11
	MO Diagram of Heteronuclear Diatomic Molecules	14
	1.4 Metallic Bond	17
	Theories of Metallic Bond	17
	1.5 Hydrogen Bond	20
	Types of Hydrogen Bond	21
	Consequences of Hydrogen Bonding	22
1	.6 van der Waals Forces	24
1	.7 Solid State	25
	Crystalline Solids	26
	Amorphous Solids	26
	Differences between Amorphous and Crystalline Solids	26
	1.8 Space Lattice and Unit Cell	27
	1.9 Types of Unit Cell	28
1.	10 Cubic Lattice	30
	Calculation of Number of Particles per Unit Cel	31
	Density Computation	31
1.	11 Crystal Structure	34
	Packing Efficiency	36
	Radius Ratio Rule	38
	Relation between Void Radius and Atom Radius in Close Packing	39
1.	12 Bragg's Law – X-Ray Structure of Crystals	42
	X-Ray Structure of Crystals	42
1.	13 Liquid Crystals and Their Applications	45
	Classification of Liquid Crystals	46
	Types of Mesophases	47
	Liquid Crystalline Behavior in Homologous Series	50
	Applications of Liquid Crystals	51

<u>x •</u>		CONTENTS
	1.14 Fullerenes – Structure and Applications	53
	Applications	54
ŀ	Key Terms	54
	Objective-Type Questions	55
	Review Questions	59
	Numerical Problems	61
	Answers	62
2. (Organic Reaction Mechanisms	65
I	Learning Objectives	65
	2.1 Bonding in Organic Molecules	65
	Homolytic Fission	65
	Heterolytic Fission	66
	2.2 Electronic Displacement Effects in Organic Molecules	66
	Inductive Effect	66
	Inductometric Effect	69
	Electromeric Effect	69
	Mesomeric or Resonance Effect	69
	Hyperconjugative Effect: Baker–Nathan Effect	72
	2.3 Reactive Intermediates	73
	Free Radicals	74
	Carbocations	76
	Carbanions	78
	Carbene	80
	2.4 Attacking Reagents in an Organic Reaction	81
	Electrophiles	81
	Nucleophiles	81
	2.5 Types of Organic Reactions	82
	2.6 Addition Reactions	82
	Nucleophilic Addition	83
	Electrophilic Addition	86
	Free Radical Addition	88
	2.7 Substitution Reactions	89
	Nucleophilic Substitution (SN)	89
	Electrophilic Substitution	92
	Nucleophilic Aromatic Substitution	96
	Free Radical Substitution	98
	2.8 Elimination Reactions	99
	Bimolecular Elimination Reactions (E ₂)	99
	Unimolecular Elimination Reactions (E_1)	100
	Elimination versus Substitution	101
	2.9 Rearrangement Reactions	101
2	2.10 Some Name Reactions	102
	Aldol Condensation	102

CONTENTS xi 104 Cannizzaro Reaction Pinacol-Pinacolone Rearrangement 106 Beckmann Rearrangement 108 Hofmann Rearrangement or Degradation 109 Key Terms 111 Objective-Type Questions 111 Review Questions 114 Answers 116 Stereochemistry 119 Learning Objectives 119 3.1 Stereoisomerism 119 Types of Stereoisomers 120 3.2 Chirality and Optical Activity 120 Concept of Chirality 120 Chirality and Symmetry Elements 121 Fischer Projections 123 Concept of Optical Activity 125 Measurement of Optical Activity 125 Relation between Chirality and Optical Activity 126 3.3 Optical Isomerism 130 Enantiomers and Optical Activity 130 Diastereomers and Optical Activity 131 Relation between Number of Optical Isomers and Stereogenic Carbons 132 3.4 Configuration 133 Relative Configuration (D and L System) 134 Absolute Configuration (R and S System) 136 3.5 Geometrical Isomerism 140 cis and trans Nomenclature 140 E and Z Nomenclature 142 Geometrical Isomerism in Cyclic Structures 143 3.6 Conformational Isomerism 144 Newman Projections 144 Conformations 144 Conformations of Ethane 145 Conformations of n-Butane 146 146 Conformations of Cyclohexane 148 Key Terms Objective-Type Questions 149 Review Questions 152 Numerical Problems 155

Answers

156

xii • CONTENTS

4.	Che	mical Kinetics	157
	Learn	ing Objectives	157
	4.1	Rate of Reaction	158
		Measurement of Rate of Reaction	158
		Factors Influencing Rate of Reaction	159
		Rate Laws	159
	4.2	Order and Molecularity	160
		Order	160
		Molecularity	162
	4.3	Integrated Rate Equations and Half Lives	163
		Zero-Order Reactions	163
		First-Order Reactions	163
		Second-Order Reactions	164
		Third-Order Reactions	167
		Higher nth Order Reactions	168
	4.4	Pseudo-First-Order	176
	4.5	Temperature Dependence of Rate of Reactions	177
		Temperature Coefficient	177
		Activation Energy	177
		Arrhenius Equation	178
	4.6	Theories of Reaction Rates	183
		Collision Theory	183
		Transition State Theory (Absolute Reaction Rate Theory or Activated Complex Theory)	185
	4.7	Catalysts	187
		Types of Catalysts	187
		Types of Catalytic Reactions	187
		Mechanism of Catalysis	188
	Кеу 7	Terms	189
	Objec	ctive-Type Questions	189
	Revie	w Questions	193
	Num	erical Problems	196
	Answ	ers	198
5 1	Elect	rochemistry	199
	Learn	ing Objectives	199
	5.1	Electrical Conductance	200
		Types of Electrolytes	200
		Conductivity of Solutions of Electrolytes	200
		Specific Conductance	201
		Equivalent Conductance	202
		Molar Conductance	202
		Ionic Conductance	202

204

Factors Affecting Conductance

CONTENTS • xiii

	Transport (Transference) Number	204
	Interionic Attraction Theory of Conductance	205
	Hydration of Ions	205
5.2	Electrochemical Cells	208
7.2	Redox Reactions	208
5.3	Electrode Potential	209
7.5	Origin of Electrode Potential	209
	Oxidation Potential	210
	Reduction Potential	210
	Standard Electrode Potential (E ⁰)	210
5.4	Galvanic Cells	211
,	Construction and Working	211
	Salt Bridge	212
	EMF of the Cell and Free Energy Change	212
	Electrochemical Conventions and Notations	213
5.5	Nernst Equation	214
	Derivation	214
5.6	Measurement of EMF of a Cell	221
	EMF and Potential Difference	221
	Potentiometric Measurement	221
5.7	Reference Electrodes	222
	Standard Hydrogen Electrode (Normal Hydrogen Electrode)	223
	Calomel Electrode	223
	Silver–Silver Chloride Electrode	224
5.8	Single Electrode Potential	225
	Measurement of Single Electrode Potential	226
	Applications	226
	Electrochemical Series	227
5.9	Types of Electrodes	230
5.10	Glass Electrode	233
	Construction	233
	Glass Electrode Potential	234
	Advantages and Limitations	235
	Determination of pH using Glass Electrode	236
5.11	Concentration Cells	239
	Electrode Concentration Cells	239
	Electrolyte Concentration Cells	239
	Applications of Concentration Cells	242
5.12	Batteries	244
	Discharging and Charging of a Battery	244
	Characteristics of a Battery	245
5.13	Classical Batteries	247
	Primary Cells	247
	Secondary (Storage) Cells	249
5.14	Modern Batteries	251

xiv	•		CONTENTS
		Maral Air Bassaire	25.1
		Metal—Air Batteries Niekol Metal Hudwide Batteries	251
		Nickel–Metal Hydride Batteries Lithium Batteries	252 253
	5.15	Fuel Cells	254
).1)	Comparison with Conventional Galvanic Cells	254
		Advantages and Limitations	255
		Cell Representation	255
		Hydrogen—Oxygen Fuel Cell	255
		Types of Fuel Cells	257
	5.16	Corrosion	259
	5.17	Corrosion in Metals and Alloys	259
	J.17	Causes of Corrosion	259
		Effects of Corrosion	260
	5.18	Corrosion Cell	260
	5.19	Types of Corrosion	261
	7.17	Dry Corrosion (Direct Chemical Attack)	261
		Wet Corrosion (Electrochemical Theory of Corrosion)	262
		Differences between Dry Corrosion and Wet Corrosion	263
	5.20	Types of Electrochemical Corrosion	264
	,,_,	Differential Metal Corrosion (Galvanic Corrosion)	264
		Differential Aeration Corrosion (Concentration Cell Corrosion)	265
		Waterline Corrosion	266
		Crevice Corrosion	266
		Pitting Corrosion	267
	5.21	Other Types of Corrosion	268
	5.22	Factors Influencing Rate of Corrosion	271
		Primary Factors	271
		Secondary Factors	272
	5.23	Corrosion Control Methods	274
	5.24	Protective Coatings	276
	Key 7		278
	Objec	tive-Type Questions	279
	Revie	w Questions	284
	Num	erical Problems	288
	Answ	ers	290
6.	Wat	er and Its Treatment	293
	Learn	ing Objectives	293
	6.1	Sources of Water	293
	6.2	Impurities in Water	294
	6.3	Hardness of Water	294
		Formation of Hard Water	294
		Types of Hardness	295
		Degree of Hardness	295
		Units of Hardness	296

CONTENTS XV 6.4 Determination of Hardness of Water 299 Soat Solution Method 299 Complexometric Titration Method Using EDTA 301 6.5 Alkalinity of Water 304 Types of Alkalinity 304 Estimation of Alkalinity 304 6.6 Analysis of Water 308 Determination of Chlorides by Argentometric Method 308 Determination of Fluoride by SPADNS Method 309 Determination of Nitrate by Phenol Disulphonic Method 309 Determination of Sulphate by Gravimetric Method 310 Determination of Dissolved Oxygen by Winkler's Method 311 6.7 Disadvantages of Hard Water 312 Domestic Purposes 312 Industrial Purposes 312 6.8 Potable Water 313 Pretreatment 313 Removal of Suspended Impurities 313 Disinfection 314 Desalination of Brackish Water 315 6.9 Boiler Feed Water 317 Characteristics of Boiler Feed Water 318 Boiler Troubles/Problems 318 6.10 Techniques for Water Softening 322 External Treatment for Softening Water 322 Internal Treatment for Softening Water 327 6.11 Sewage 333 Characteristics of Wastewater 333 Sewage Treatment 334 338 Key Terms Objective-Type Questions 338 Review Questions 342 Numerical Problems 346 Answers 350 7. Chemistry of Engineering Materials 353 353 Learning Objectives Some Important Terms and Definitions 354 7.2 Classification of Polymers 355 7.3 Types of Polymerization 358 Addition Polymerization or Chain-Growth Polymerization 358 Condensation Polymerization or Step-Growth Polymerization 358 360 Copolymerization 7.4 Mechanism of Addition Polymerization 361

Free Radical Mechanism

361

	Free Radical Mechanism	3/1
		361
7 5	Ionic Polymerization	362
7.5	Polymerization Techniques	366
	Bulk Polymerization	366
	Solution Polymerization Systems in (Partly Polymerization	366
	Suspension (Pearl) Polymerization	367
7 (Emulsion Polymerization	368
7.6	Molecular Weights of Polymers	369
7.7	Structure–Property Relationship of Polymers	372
7.0	Glass Transition Temperature (Tg)	374
7.8	Plastics	376
	Properties and Uses of Plastics as Engineering Materials	376
	Classification of Plastics	377
	Compounding of Plastics	377
	Casting of Plastics	379
	Spinning of Plastics	379
7.0	Plastic Molding Methods	381
7.9	Some Important Commercial Thermoplastics	387
	Polyethylene (PE)	387
	Polypropylene	389
	Polystyrene	389
	Polyvinylchloride	390
	Polyvinyl Acetate	391
	Polytetrafluoroethylene/Teflon	391
	Polymethyl Methacrylate/Plexiglass	392
7 10	Polyurethanes	392
7.10	Some Important Commercial Thermosetting Resins	393
	Phenol–Formaldehyde Resins	393
	Amino Resins	395
7 1 1	Silicone Resins	397
7.11	Elastomers (Rubbers)	398
	Natural Rubber (NR)	398
	Processing of Latex	398
	Processes for Improvement of Properties of Natural Rubber	399
7 1 2	Synthetic Rubbers	401
7.12	Some Important Synthetic Rubbers	401
	Butyl Rubber (GR-I Rubber)	401 402
	Polychloroprene (Neoprene or GR-M Rubber)	
	Styrene–Butadiene Rubber (SBR) (Buna-S or GR-S Rubber)	402
	Nitrile Rubber (NBR) (Buna-N or GR-A Rubber)	403
	Polysulphide Rubber	403
7 1 2	Silicone Rubber	404
7.13	Fibers	404
	Physical Properties	404
	Types of Fibers	405
	Spinning Processes	405

CONTENTS • xvii

7.14	Some Important Synthetic and Semisynthetic Fibers	406
/.14	Nylons (Polyamides)	406
	Polyethylene Terephthalate (Polyester)	408
	Acrylic Fibers (Polyacrylonitriles)	409
7.15	Composites	410
7.17	Classification of Composites	411
	Fiber Reinforced Plastics (FRPs)	412
7.16	Adhesives	413
7.10	Types of Adhesives	413
	Epoxy Resins (Araldite)	413
7.17	Conducting Polymers	414
	Conducting Polymers with Conjugated π -Electrons	415
	Applications of Conducting Polymers	418
7.18	Semiconducting Polymers	419
7.19	Natural Polymers (Biopolymers)	419
	Starch	419
	Cellulose	420
	Proteins	421
	Nucleic Acids	421
	Natural Rubber	421
7.20	Ion Exchange Resins	421
7.21	Biodegradable Polymers	422
	Classification of Biodegradable Polymers	423
	Applications of Biodegradable Polymers	423
7.22	Refractories	424
	Classification of Refractories	424
	Characteristics of Refractories	424
	Manufacture of Refractory Materials	427
	Some Common Refractories	428
	Causes for Failure of Refractory Material	429
7.23	Alloys	430
	Purpose of Making Alloys	430
	Manufacture of Alloys	431
	Classification of Alloys	431
7.24	Nanotechnology	434
	General Methods of Synthesis and Characterization	435
	Applications of Nanomaterials	438
	Carbon Nanotubes	439
Key 7	Terms	442
Objective-Type Questions		443
Review Questions		448
Numerical Problems		

Answers

454

8.	Fuel	ls and Combustion	455
	Learni	ing Objectives	455
	8.1	Classifications of Fuels	456
		Classification Based on Physical State	456
		Classification Based on Occurrence	457
		Characteristics of a Good Fuel	458
	8.2	Calorific Value	458
		Units	458
		Gross and Net Calorific Values	459
	8.3	Determination of Calorific Value	459
		Theoretical Determination	459
		Experimental Determination	461
	8.4	Combustion	466
		Concepts	466
		Calculations	467
	8.5	Solid Fuels – Coal	472
		Types of Coal	473
		Uses of Coal	473
		Pulverized Coal	473
	8.6	Proximate and Ultimate Analyses of Coal	474
		Proximate Analysis	474
		Ultimate Analysis	476
	8.7	Coke	479
		Coke as Metallurgical Fuel	480
		Caking and Coking Coals	480
		Coking Processes	480
	8.8	Biofuels	483
		Biomass	484
		Biodiesel	485
		Mechanism for acid-catalyzed transesterification (Figure 11):	487
		Mechanism for base-catalyzed transesterification (Figure 12):	488
		Biogas	489
	8.9	Liquid Fuels – Petroleum	490
		Origin	490
		Composition	490
		Production from Refining of Crude Oil	490
		Fractional Distillation	491
		Cracking	492
		Catalytic Reforming	494
		Compounds Isolated from Crude Oil	496
		Knocking	496
	8.10	Power Alcohol and Synthetic Petrol	498
		Power Alcohol	498
		Synthetic Petrol	499
	8.11	Gaseous Fuels	501

CONTENTS xix Liquefied Petroleum Gas 502 Natural Gas 502 Coal Gas 503 Producer Gas 504 Water Gas 505 Flue Gas Analysis 506 8.12 Lubricants 507 Principle of Lubrication 508 Mechanism of Lubrication 510 Classification of Lubricants 511 Additives for Lubricants 513 Properties of Lubricants and their Measurement 514 Rocket Propellants 521 8.13 8.14 Explosives 523 Classification of Chemical Explosives 523 Characteristics of Chemical Explosives 525 Preparation of Explosives 526 529 Key Terms Objective-Type Questions 529 Review Questions 532 Numerical Problems 537 Answers 541 Chemical Methods of Analysis 543 Learning Objectives 543 9.1 Physical Analysis 543 9.2 Chemical Analysis 544 9.3 Volumetric (Titrimetric) Analysis 545 Some Terms Used in Volumetric Analysis 545 Different Types of Volumetric Titrations 547 9.4 Neutralization Titrations (Acid-Base Titrations) 547 Selection of Indicators and Their Action 547 Acid-Base Titration Curves 548 Estimation of Alkalinity of Water 548 9.5 Redox Titrations 549 Redox Indicators 549 Potassium Permanganate Titrations 550 Potassium Dichromate Titrations 550 Iodine Titrations 550 9.6 Complexometric Titrations 551 Selection of Indicators 551 Estimation of Hardness of Water by EDTA Method 551 9.7 Precipitation Titrations 552 Argentometric Titration 552

XX • **CONTENTS** 9.8 Gravimetric Analysis 553 Precipitation Method 553 Volatilization Method 554 Key Terms 554 Objective-Type Questions 554 Review Questions 556 Answers 557 10. Instrumental Methods of Analysis 559 Learning Objectives 559 10.1 Electroanalytical Methods 559 Conductometry 559 Potentiometry 566 10.2 Electromagnetic Radiation 569 Characteristics of Electromagnetic Radiation 569 Electromagnetic Spectrum 569 10.3 Molecular Spectroscopy 570 Types of Energy Changes in a Molecule 570 Interaction of Electromagnetic Radiation with Molecule and Origin of Electronic Spectra 571 Laws of Absorbance of Radiation 572 10.4 Basic Spectroscopy Instrumentation 574 Essential Components 574 Block Diagrams for Standard Emission and Absorption Spectrometers 574 Resolving Power and Signal-to-Noise Ratio 575 Width and Intensity of Spectral Lines 576 10.5 Infrared Spectroscopy 576 Interaction between Infrared Radiations and Molecular Vibrations 577 Modes of Vibration 577 Analysis of IR Spectra 579 Recording of IR Spectrum (Instrumentation for IR Spectroscopy) 582 Applications of IR Spectroscopy 583 Fourier Transform (FT) 584 10.6 NMR Spectroscopy 586 Concepts and Theory 586 Interaction between Nuclear Spin and Magnetic Field 587 Instrumentation of NMR Spectroscopy 590 Chemical Shift 590 Spin-Spin Interaction 594 Interpretation of NMR Spectra 596 Representative NMR Spectra of Some Organic Molecules and Their Interpretation 598 Simplification of Complex Spectra 600 ¹³C NMR 601 UV-Visible Spectroscopy 604 10.7 604 Chromophore and Auxochrome

CONTENTS • xxi

	Electronic Transitions	604
	Representation of UV–Visible Spectra	605
	Applications of UV Absorption Spectroscopy	605
	Woodward–Fisher Rules for Calculating Absorption Maximum in Conjugated Dienes	606
10.8	Mass Spectrometry (MS)	609
	Theory	609
	Representation of Mass Spectra	609
	Instrumentation	613
	Mass Spectra of Some Simple Organic Compounds	617
10.9	Chromatography	621
	Types of Chromatography	621
Key Te	erms	624
Object	tive-Type Questions	624
Review Questions		628
Nume	rical Problems	634
Answe	rs	635

