IN THE CLAIMS

1. (Currently Amended) A light scanning apparatus configured to scan a scanned face with a light beam, comprising:

a liquid crystal element configured to deflect the light beam to adjust the position of a light spot of said light beam formed on the scanned face, said liquid crystal element being provided between a light source and a polygon mirror; and

a compensating unit configured to compensate the <u>a</u> light intensity of the light beam at the scanned face due to a change caused by the <u>an</u> adjustment of the <u>a</u> position of the light spot.

- 2. (Previously Presented) The light scanning apparatus as claimed in claim 1, wherein said light scanning apparatus scans said scanned face with a plurality of N light beams emitted by N light sources, and said liquid crystal element further comprises at least N-1 deflecting units located between said light source and a scanning unit, wherein each of the deflecting units deflects a corresponding one of the plurality of light beams in sub-scan directions and adjusts scan line pitch.
- 3. (Previously Presented) The light scanning apparatus as claimed in claim 1, wherein said liquid crystal element further comprises a liquid crystal deflecting element.
- 4. (Original) The light scanning apparatus as claimed in claim 2, wherein said deflecting unit further comprises a semiconductor laser and a coupling lens combined with a holder rotatable around an axis parallel to the optical axis of said coupling lens, the emission source of said semiconductor laser being eccentric to said optical axis.

Application No. 10/617,033

Reply to Office Action of March 2, 2005

5. (Previously Presented) The light scanning apparatus as claimed in claim 4, wherein said deflecting unit further comprises an aperture combined with said holder configured to shape said light beam, said aperture being eccentric to the light path of said light beam emitted by said semiconductor laser and passing through the center of said coupling lens.

6. (Currently Amended) The light scanning apparatus as claimed in claim 1, wherein said liquid crystal element further comprises a <u>second</u> liquid crystal deflecting element array having a plurality of liquid crystal deflecting elements arrayed in main-scan directions, each of which is configured to deflect said light beam in sub-scan directions, said <u>second</u> liquid crystal deflecting element array being provided between said <u>seanning unitpolygon mirror</u> and said scanned face.

- 7. (Previously Presented) The light scanning apparatus as claimed in claim 1, further comprising a detecting unit configured to detect the intensity of said light beam.
- 8. (Previously Presented) The light scanning apparatus as claimed in claim 7, wherein said detecting unit is further configured to detect said light beam for synchronization of light scanning.
- 9. (Previously Presented) The light scanning apparatus as claimed in claim 1, wherein said compensating unit is configured to control the radiation intensity of said light source.
- 10. (Previously Presented) The light scanning apparatus as claimed in claim 1, further comprising an aperture provided between said light source and said scanning unit and

configured to shape said light beam, wherein said compensating unit is configured to displace said aperture.

- 11. (Currently Amended) The light scanning apparatus as claimed in claim 1, wherein said compensating unit is configured to control a transmissivity adjusting unit provided between said light source and said scanning unit polygon mirror.
- 12. (Original) The light scanning apparatus as claimed in claim 1, further comprising a resin lens provided in the optical path from said light source to said scanned face.
 - 13. (Previously Presented) An image forming apparatus, comprising:
 - a photosensitive medium; and
- a light scanning apparatus configured to scan said photosensitive medium with a light beam, said light scanning apparatus further comprising:
- a liquid crystal element configured to deflect the light beam to adjust the position of a light spot of said light beam formed on said photosensitive medium, said liquid crystal element being provided between a light source and a polygon mirror; and
- a compensating unit configured to compensate the light intensity of the light beam at the photosensitive medium due to a change caused by the adjustment of said position of the light spot.
- 14. (Previously Presented) The image forming apparatus as claimed in claim 13, wherein said photosensitive medium is a photoconductive photosensitive body, and an electrostatic latent image formed by the light scanning is made visible by being converted into a toner image.

Application No. 10/617,033

Reply to Office Action of March 2, 2005

15. (Currently Amended) The image forming apparatus as claimed in claim 14, wherein said light scanning apparatus is configured to scan said photoconductive photosensitive body with a plurality of N light beams emitted by N light sources, said liquid crystal element further comprises at least N-1 deflecting units located between said light source and a scanning unitsaid polygon mirror, each of the deflecting units being configured to deflect a corresponding one of the plurality of light beams in a sub-scan directions direction and to adjust a scan line pitch.

16. (Original) The image forming apparatus as claimed in claim 13, wherein said image forming apparatus is a tandem type in which one or more photosensitive bodies that are drum-shaped or belt-shaped are provided along the path of a toner image medium, and a toner image formed on each photosensitive body is transferred to said toner image medium generating a composite color image.

- 17. (Previously Presented) The image forming apparatus as claimed in claim 16, wherein four photosensitive bodies are provided corresponding to magenta, cyan, yellow, and black, or three photosensitive bodies are provided corresponding to red, green, and blue.
- 18. (Previously Presented) A method of scanning a scanned face with a light beam, comprising the steps of:

emitting, by a light source, said light beam;

deflecting, by a scanning unit, the emitted light beam; and

converging, by a converging unit, the deflected light beam forming a light spot, wherein the position of said light spot formed by the converged light beam on said scanned

face is adjustable by an adjusting unit, the light intensity of said light beam at said scanned face due to change caused by the adjustment of the position of said light spot is compensable by a compensating unit, and said adjusting unit is provided between said scanning unit and said scanned face and compensates the curvature of a scan line.

19-25. (Canceled)

26. (Currently Amended) A light scanning apparatus configured to scan a scanned face with a plurality of N light beams, comprising:

a plurality of adjusting units, each of which is configured to adjust the position of a scan line formed by a corresponding one of the plurality of light beams, wherein at least one N-1 of the plurality of adjusting units is agre liquid crystal element driven by an electric signal, at least N-1 of the plurality of adjusting units are liquid crystal elements, and a maximum deflecting angle of each liquid crystal element is + / - 4.0 (minute) or less.

27. (Canceled)

28. (Currently Amended) A light scanning apparatus configured to scan a scanned face with a plurality of N light beams, wherein the plurality of adjusting units each of which is configured to adjust to the position of a scan line formed by a corresponding one of the plurality of light beams, at least one of the plurality of adjusting units is a liquid crystal element driven by an electric signal, the plurality of adjusting units is agree liquid crystal elements driven by an electric signal, and the plurality of adjusting units are liquid crystal elements of which a maximum deflecting angle is +/- 2.0 (minute).

Application No. 10/617,033 Reply to Office Action of March 2, 2005

29-30. (Canceled)

31. (Previously Presented) A light scanning apparatus, comprising:

a liquid crystal element configured to deflect a light beam from a light source to adjust the position of a light spot formed by said light beam on a scanned face, wherein the ratio of a change in transmissivity (%) of said liquid crystal element caused by the deflection to a deflecting angle (minute) is equal to or smaller than 2.0 (%/minute).

32. (Original) The light scanning apparatus as claimed in claim 31, wherein said ratio is equal to or smaller than 2.0 (%/minute) in 10 or more ranges of said deflecting angle, said ranges appearing cyclically.

33. (Previously Presented) The light scanning apparatus as claimed in claim 31, further comprising:

a detecting unit configured to detect the intensity of said light beam on said scanned face.

- 34. (Previously Presented) The light scanning apparatus as claimed in claim 31, further comprising a compensating unit configured to compensate the intensity of said light beam on said scanned face.
 - 35. (Previously Presented) An image forming apparatus, comprising: a scanned face; and

a light scanning apparatus configured to scan said scanned face with a light beam and to form an electrostatic latent image on said scanned face, wherein said light scanning apparatus further comprises:

a liquid crystal element configured to deflect said light beam from a light source to adjust the position of a light spot formed by said light beam on said scanned face, wherein the ratio of a change in transmissivity (%) of said liquid crystal element caused by the deflection to a deflecting angle (minute) is equal to or smaller than 2.0 (%/minute).

36. (Currently Amended) A light scanning apparatus configured to scan a scanned face with a light beam, comprising:

an adjusting unit configured to adjust the position of a light spot of said light beam formed on the scanned face; and

a compensating unit configured to compensate the light intensity of the light beam at the scanned face due to a change caused by the adjustment of the position of the light spot, wherein said adjusting unit further comprises:

a liquid crystal deflecting element array having a plurality of liquid crystal deflecting elements arrayed in a main-scan directions direction, each of which being configured to deflect said light beam in a sub-scan directions direction, said liquid crystal deflecting element array being provided between said a scanning unit and said scanned face.