احتمال پیشرفته		
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع
صفحه 15	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس

هفتهی پنجم - جلسهی نهم

فرض کنید $A=igcup_{n=1}^\infty A_n$ بهطوری که $A_1\subset A_2\subset \cdots$ در این صورت $A_1,A_2,\ldots\in \mathcal{F}$ عند دنبالهی منبسط $A\in \mathcal{F}$ است و مینویسیم $A\in \mathcal{F}$ یا $A_n\uparrow A$ یا $A_n\uparrow A$ بدیهی است که در این حالت $A_n\uparrow A$ است و مینویسیم $A_n\uparrow A$ یا $A_n\uparrow A$ بدیهی است که در این حالت $A_n\uparrow A$

فرض کنیـ د $A=\bigcap_{n=1}^\infty A_n$ بهطـوری کـه $A_1\supset A_2\supset\cdots$ در این صـورت $A_1,A_2,\ldots\in\mathcal{F}$ حـد دنبـالهی منقبض منقبخ منفیدهی $A\in\mathcal{F}$ است و مینویسیم $A\in\mathcal{F}$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A\in\mathcal{F}$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ یا $A_n\downarrow A$ است و مینویسیم $A_n\downarrow A$ یا $A_n\downarrow A$

قضیه (پیوستگی اندازهی احتمال): اگر $A_1,A_2,\ldots\in\mathcal{F}$ دنبالهای از پیشامدها باشد به طوری که $A_1,A_2,\ldots\in\mathcal{F}$ یا $\lim_{n\to\infty}P(A_n)=P(A)$ ، آنگاه $\{A_n\}\downarrow A$

برای دنبالهی دلخواه $\{A_n\}$ به صورت $\{A_n,A_2,\ldots\in\mathcal{F}\}$ به صورت زیر تعریف میشوند:

$$\limsup_{n} A_{n} = \{A_{n}; \text{i.o.}\} = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_{n}, \quad \liminf_{n} A_{n} = \{A_{n}; \text{a.a.}\} = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_{n},$$

درواقع A_n از برآمدهای $\Omega \in \Omega$ تشکیل شده است که ω در بینهایت از A_n است. همچنین $\omega \in \Omega$ ان a از برآمدهای $\omega \in \Omega$ تشکیل شده است که ω جز در تعداد متنهای، در همهی aها قرار دارد. بدیهی a ان a

 $\lim P(A_n) = P(A)$ مىتوان نشان داد كه اگر $A_n o A$ ، آنگاه

 $P(\liminf A_n) \leq \liminf P(A_n) \leq \limsup P(A_n) \leq P(\limsup A_n)$ قضيه (لم فاتو): همواره داريم

احتمال پیشرفته			
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع	
صفحه 16	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

قضیه (لم بورل-کانتلی): فرض کنید \mathcal{F} کنید $A_1,A_2,\ldots\in\mathcal{F}$ دنبالهای از پیشامدها باشند.

$$.P(\limsup A_n)=0$$
 آنگاه أ $\sum_{n=1}^\infty P(A_n)<\infty$ الف) اگر $\sum_{n=1}^\infty P(A_n)=1$ مستقل باشند، آنگاه $P(\limsup A_n)=1$ ب) اگر

مثال: در آزمایش تصادفی بینهابت بار پرتاب مستقل یک سکهی سالم، فرض کنید H_n بیانگر پیشامد شیر آمدن در -nامین پرتاب باشد. پیشامدهای زیر را در نظر بگیرید:

$$A_n = \bigcap_{i=1}^{\lceil \log_2 n \rceil} H_{n+i} = H_{2^n+1} \cap H_{2^n+2} \cap \dots \cap H_{2^n+\lceil \log_2 n \rceil}$$

$$C_n = \bigcap_{i=1}^{\lceil 2 \log_2 n \rceil} H_{n+i} = H_{2^n+1} \cap H_{2^n+2} \cap \dots \cap H_{2^n+\lceil 2 \log_2 n \rceil}$$

در این صورت $\{A_n\}$ دنبالهای از پیشامدهای مستقل و $\{C_n\}$ دنبالهای از پیشامدهای وابسته هستند. به علاوه

$$P(A_n) = \prod_{i=1}^{\lfloor \log_2 n \rfloor} P(H_{2^n + i}) = \frac{1}{2^{\lfloor \log_2 n \rfloor}} \approx \frac{1}{n}$$

$$P(C_n) = \prod_{i=1}^{\lfloor 2 \log_2 n \rfloor} P(H_{2^n + i}) = \frac{1}{2^{\lfloor 2 \log_2 n \rfloor}} \approx \frac{1}{n^2}$$

 $P(\limsup A_n)=1$ بنابراین $\sum_{n=1}^\infty P(C_n)<\infty$ اما $\sum_{n=1}^\infty P(C_n)<\infty$ از لم بورل-کـانتلی نتیجـه میشـود کـه

از پیشامدهای وابسته تشـکیل شـده اسـت $\{B_n\}$ دنبالهی $\{B_n\}$ از پیشامدهای وابسته تشـکیل شـده اسـت . $P(\limsup C_n)=0$

کے ہے۔ $\sum_{n=1}^{\infty} P(B_n) = \sum_{n=1}^{\infty} 1/4 = \infty$ کے ہے از لم بــورل-کــانتلی بــرای تعــیین مقــدار

استفاده کرد. با این حال زیردنبالهی $\{B_{2k}\}$ که تنها از جملات با اندیس زوج دنبالهی اصلی تشکیل $P(\limsup B_n)$

شده است دنبالهای از پیشامدهای مستقل را تشکیل میدهد که $\sum_{k=1}^{\infty} P(B_{2k}) = \sum_{k=1}^{\infty} 1/4 = \infty$ و بنـابر قسـمت

ب لم بورل-کانتلی داریم $P(\limsup B_{2k})=1$. با این حال چون $P(\limsup B_{2k})=1$ ، نتیجه میشود که

 $P(\limsup B_n) = 1$