1. Die Lebensdauer (in Stunden) von Energiesparlampen eines bestimmten Fabrikats kann durch eir mit dem Parameter $\lambda > 0$ expoentialverteilte Zufallsvariable X beschrieben werden. Die zugehörig	
Verteilungsfunktion $F: R \rightarrow [0;1]$ ist damit gegeben durch:	,-
$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$	
(a) Berechnen Sie für $\lambda=1/800$ die Wahrscheinlichkeit dafür, dass die Lebensdauer einer derartige Energiesparlampe	'n
i. höchstens 300 Stunden,	
Lösung:	
ii. mehr als 120 Stunden,	
Lösung:	
iii. mindestens 240 und höchstens 360 Stunden	
Lösung:	
beträgt.	
(b) Für welchen Wert des Parameters λ ergibt sich eine Lebensdauerverteilung, bei der mit Wah scheinlichkeit 0.99 die Lebensdauer einer derartigen Energiesparlampe mindestens 100 Stunde beträgt?	
Lösung:	