

ATK-MD0240 模块用户手册

高性能 2.4'TFTLCD 显示模块

用户手册

正点原子

广州市星翼电子科技有限公司

修订历史

版本	日期	原因
V1.0	2024/02/29	第一次发布

目 录

1,	特性参数	1
	使用说明	
	2.1 模块引脚说明	
	2.2 模块 SPI 时序介绍	3
	2.3 模块驱动说明	4
3,	结构尺寸	8
4,	其他	9

1,特性参数

ATK-MD0240 模块是正点原子推出的一款高性能 2.4'LCD 显示模块。该模块的 LCD 分辨率高达 320*240 像素,支持 16 位真彩色显示,模块采用 ST7789 作为 LCD 的驱动芯片,该芯片自带 RAM,无需外加驱动器或存储器,外接的主控芯片仅需使用 SPI 接口就可以轻易地驱动 ATK-MD0240 模块。

ATK-MD0240 模块的各项基本参数,如下表所示:

项目	说明
通信接口	四线 SPI / 三线 SPI / Inter 8080-16 位并口 / Inter 8080-8 位并口
颜色格式	RGB565
颜色深度	16 位
LCD 驱动芯片	ST7789
LCD 分辨率	320*240
屏幕尺寸	2.4'
视角方向	全视角
工作温度	-20°C~70°C
存储温度	-30°C~80°C
模块尺寸	72mm*43.65mm

表 1.1 ATK-MD0240 模块基本参数

ATK-MD0240 模块的各项电气参数,如下表所示:

项目	说明
电源电压	3.3V
IO 口电平 1	3.3V
功耗	50mA (Max)
Voh	2.64V (Min)
V _{OL}	0.66V (Max)
V _{IH}	2.64V (Min)
V _{IL}	0.66V (Max)

表 1.2 ATK-MD0240 模块电气参数

注1: ATK-MD0240 模块的 IO 电压为 3.3V, 如需外接 5V 系统, 需要做电平匹配处理。

2, 使用说明

2.1 模块引脚说明

本用户手册是针对 ATK-MD0240 模块使用 4 线 SPI 接口而编写。当将模块背面的 R9、R8 和 R6 焊接上电阻, 而 R10、R7 和 R5 不焊接, 这时候模块的接口便选择为 4 线 SPI 接口。

若选择为四线 SPI 接口,ATK-MD0240 模块通过 2*4 的排针(2.54mm 间距)同外部相连接,如下图所示。

图 2.1.1 ATK-MD0240 模块背面展示

该模块可直接与正点原子战舰 STM32F103 开发板和正点原子 MiniSTM32H750 开发板等开发板的 WIRELESS 接口(SPI 接口)连接,而对于没有板载 WIRELESS 接口的开发板,可以通过杜邦线连接。正点原子大部分的 STM32 开发板,我们都提供了本模块相应的例程,用户可以直接在这些开发板上,对模块进行测试。

ATK-MD0240 模块的外观,如下图所示:

图 2.1.2 ATK-MD0240 模块实物图

ATK-MD0240 模块的原理图,如下图所示:

图 2.1.2 ATK-MD0240 模块原理图

ATK-MD0240 模块通过一个 2*4 的排针(2.54mm 间距)同外部电路连接,各引脚的详细描述,如下表所示:

序号	名称	说明
1	VCC3.3	3.3V 电源供电
2	LCD_CS	SPI 通讯片选信号(低电平有效)
3	LCD_SDA	SPI 通讯 MOSI 信号线
4	LCD_RST	硬件复位引脚(低电平有效)
5	SLCD_DC	写命令/数据信号线(低电平:写命令;高电平:写数据)
6	SLCD_SCK	SPI 通讯 SCK 信号线
7	LCD_PWR	LCD 背光控制引脚(低电平:关闭;高电平:开启)
8	GND	电源地

表 2.1.1 ATK-MD0240 模块引脚说明

2.2 模块 SPI 时序介绍

ATK-MD0240 模块在四线 SPI 通讯模式下,最少仅需四根信号线(CS、SCK、SDA、WR(DC))就能够完成与 ATK-MD0240 模块的通讯,四线 SPI 接口时序如下图所示:

图 2.2.1 四线 SPI 接口时序图

上图中各个时间参数,如下图所示:

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
	T _{CSS}	Chip select setup time (write)	15		ns	
	T _{CSH}	Chip select hold time (write)	15		ns	
CSX	T _{CSS}	Chip select setup time (read)	60		ns	
	T _{SCC}	Chip select hold time (read)	65		ns	
	T _{CHW}	Chip select "H" pulse width	40		ns	
	T _{SCYCW}	Serial clock cycle (Write)	66		ns	-write command & data
	T _{SHW}	SCL "H" pulse width (Write)	15		ns	ram
SCL	T _{SLW}	SCL "L" pulse width (Write)	15		ns	Taili
SCL	T _{SCYCR}	Serial clock cycle (Read)	150		ns	-read command & data
	T _{SHR}	SCL "H" pulse width (Read)	60		ns	ram
	T _{SLR}	SCL "L" pulse width (Read)	60		ns	Taili
D/CX	T _{DCS}	D/CX setup time	10		ns	
DICX	T _{DCH}	D/CX hold time	10		ns	
SDA	T _{SDS}	Data setup time	10		ns	
(DIN)	T _{SDH}	Data hold time	10		ns	
DOUT	T _{ACC}	Access time	10	50	ns	For maximum CL=30pF
D001	T _{OH}	Output disable time	15	50	ns	For minimum CL=8pF

图 2.2.2 四线 SPI 接口时序时间参数

从上图中可以看出,ATK-MD0240 模块四线 SPI 的写周期是非常快的 $(T_{SCYCW}=66ns)$,而读周期就相对慢了很多 $(T_{SCYCR}=150ns)$ 。

更详细的时序介绍,可以参考 ST7789 的数据手册《ST7789VW SPEC V1.0.pdf》。

2.3 模块驱动说明

ATK-MD0240 模块采用 ST7789 作为 LCD 驱动器, LCD 的显存可直接存放在 ST7789 的片上 RAM 中, ST7789 的片上 RAM 有 240*320*3 字节, 并且 ST7789 会在没有外部时钟的情况下,自动将其片上 RAM 的数据显示至 LCD 上,以最小化功耗。

在每次初始化 ATK-MD0240 模块之前,必须先通过 RST 引脚对 ATK-MD0240 模块进行硬件复位,硬件复位要求 RST 至少被拉低 10 微秒,拉高 RST 结束硬件复位后,须延时 120 毫秒等待复位完成后,才能够往 ATK-MD0240 模块传输数据。

PWR 引脚用于控制 ATK-MD0240 模块的 LCD 背光,该引脚自带下拉电阻,当 PWR 引脚被拉低或悬空时,ATK-MD0240 模块的 LCD 背光都处于关闭状态,当 PWR 引脚被拉高时,ATK-MD0240 模块的 LCD 背光才会点亮。

ST7789 最高支持 18 位色深 (262K 色),但一般在 ATK-MD0240 模块上使用 16 位色深 (65K 色)的 RGB565 格式,这样可以在 16 位色深下达到最快的速度。在 16 位色深模式下,ST7789 采用 RGB565 格式传输、存储颜色数据,如下图所示:

图 2.3.1 16 位色深模式 (RGB565) 传输颜色数据

如上图所示,一个像素的颜色数据需要使用 16 比特来传输,这 16 比特数据中,高 5 比特用于表示红色,低 5 比特用于表示蓝色,中间的 6 比特用于表示绿色。数据的数值越大,对应表示的颜色就越深。

ST7789 支持连续读写 RAM 中存放的 LCD 上颜色对应的数据,并且连续读写的方向 (LCD 的扫描方向) 是可以通过命令 0x36 进行配置的,如下图所示:

36H		MADCTL (Memory Data Access Control)													
Inst / Para	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	HEX		
MADCTL	0	1	1	-	0	0	1	1	0	1	1	0	(36h)		
parameter	1	1	1	-	MY	MX	MV	ML	RGB	МН	-	-			
	-This command defines read/ write scanning direction of frame memory.														
	E	3it		NAME				DESCRIPTION							
)7		MY				Page Address Order							
)6			MX			Column Address Order							
)5			MV			Page/Column Order							
)4		ML					Line Address Order						
)3		RGB					RGB/BGR Order						
)2			МН			Display Data Latch Order							

图 2.3.2 命令 0x36

从上图中可以看出,命令 0x36 可以配置 6 个参数,但对于配置 LCD 的扫描方向,仅需 关心 MY、MX 和 MV 这三个参数,如下表所示:

	参数		LCD 扫描方向(RAM 自增方向)
MY	MX	MY	MX
0	0	0	从左到右,从上到下
1	0	0	从左到右,从下到上
0	1	0	从右到左,从上到下
1	1	0	从右到左,从下到上
0	0	1	从上到下,从左到右
1	0	1	从上到下,从右到左
0	1	1	从下到上,从左到右
1	1	1	从下到上,从右到左

表 2.3.1 命令 0x36 配置 LCD 扫描方向

这样一来,就能够大大地提高 ATK-MD0240 模块在刷屏时的效率,仅需设置一次坐标,然后连续地往 ATK-MD0240 模块传输颜色数据即可。

在往 ATK-MD0240 模块写入颜色数据前,还需要设置地址,以确定随后写入的颜色数据对应 LCD 上的哪一个像素,通过命令 0x2A 和命令 0x2B 可以分别设置 ATK-MD0240 模块显示颜色数据的列地址和行地址,命令 0x2A 的描述,如下图所示:

2AH					(CASET (Column Address Set)							
Inst / Para	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	HEX
CASET	0	1	1	-	0	0	1	0	1	0	1	0	(2Ah)
1 st parameter	1	1	1	-	XS15	XS14	XS13	XS12	XS11	XS10	XS9	XS8	
2 nd parameter	1	1	1	-	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	
3 rd parameter	1	1	1	-	XE15	XE14	XE13	XE12	XE11	XE10	XE9	XE8	
4 th parameter	1	1	1	-	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	

图 2.3.3 命令 0x2A

命令 0x2B 的描述,如下图所示:

2BH					RASET (Row Address Set)								
Inst / Para	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	HEX
RASET	0	1	1	-	0	0	1	0	1	0	1	1	(2Bh)
1 st parameter	1	1	1	-	YS15	YS14	YS13	YS12	YS11	YS10	YS9	YS8	
2 nd parameter	1	1	1	-	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	
3 rd parameter	1	1	1	-	YE15	YE14	YE13	YE12	YE11	YE10	YE9	YE8	
4 th parameter	1	1	1	-	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0	

图 2.3.4 命令 0x2B

以默认的 LCD 扫描方式(从左到右,从上到下)为例,命令 0x2A 的参数 XS 和 XE 和 命令 0x2B 的参数 YS 和 YE 就在 LCD 上确定了一个区域,在连读读写颜色数据时,ST7789 就会按照从左到右,从上到下的扫描方式读写设个区域的颜色数据。

3,结构尺寸

ATK-MD0240 模块的尺寸结构,如下图所示:

图 3.1 ATK-MD0240 模块尺寸图

4, 其他

1、购买地址:

天猫: https://zhengdianyuanzi.tmall.com

淘宝: https://openedv.taobao.com

2、资料下载

模块资料下载地址: http://www.openedv.com/docs/modules/lcd/1.3-lcd.html

3、技术支持

公司网址: www.alientek.com

技术论坛: http://www.openedv.com/forum.php

在线教学: www.yuanzige.com

B 站视频: https://space.bilibili.com/394620890

传真: 020-36773971 电话: 020-38271790

