Exercise sheet

Lecturer: Georgios P. Karagiannis georgios.karagiannis@durham.ac.uk

Part 1. Stochastic learning

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. If g is convex function then f is convex function.

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then f is a $(\beta ||x||^2)$ -smooth.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Exercise 4. $(\star)f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $f(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial f(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

The following is given as a homework (Formative assessment 1)

Exercise 6. (*)Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to \{-1, +1\}$ with

$$(0.1) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$(0.2) = \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$ it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$.

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

(0.3)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\mathsf{T}}x) + \lambda \|w\|_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following tasks.

Hint-1:: We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0\\ +1, & \text{if } \xi > 0 \end{cases}$$

Hint-2:: The notation ± 1 means either -1 or +1.

HInt-3:: We define $\mathbb{R}_+ := (0, +\infty)$

Hint-4:: We denote $\|x\|_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ the Euclidean distance.

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (0.3) is convex.

Hint:: You may use Example 13 from Handout 1.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (0.3) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$.

Hint: You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $1 - yw_2^\top x > \text{or} < 0$ and $1 - yw_1^\top x > \text{or} < 0$ to deal with the max.

(3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

(0.4)
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm have to be tailored to 0.3.

- (5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
 - (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
 - (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (0.4).
 - (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
data_generating_model <- function(n,w) {</pre>
z \leftarrow rep(NaN, times=n*3)
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x < -z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
\#z_{obs}2[z_{obs}[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```

Exercise 7. (\star) Assume a Bayesian model

$$\begin{cases} z_i | w & \stackrel{\text{ind}}{\sim} f(z_i | w), \ i = 1, ..., n \\ w & \sim f(w) \end{cases}$$

and consider that our objective is the discovery of MAP estimate w^* i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left(-\log\left(L_n\left(w\right)\right) - f\left(w\right)\right) = \arg\min_{\forall w \in \Theta} \left(-\sum_{i=1}^n \log\left(f\left(\mathbf{z_i}|\mathbf{w}\right)\right) - \log\left(f\left(w\right)\right)\right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left(f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$ of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbb{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left(f\left(z_i | w^{(t)}\right) \right)$$