Lecture 9: Families of Continuous Random Variable

CPE251 Probability Methods In Engineering

Dr. Zaid Ahmad, MIEEE Advisor, IEEE CUI Lahore COMSATS University Islamabad, Lahore Campus

1

Families of Continuous Random Variable

Continuous Uniform Random Variable

Exponential Random Variable

Gaussian (Normal) Random Variable

Continuous Uniform Random Variable

The pdf of continuous uniform random variable X on the interval [a, b] is

$$E(X) = \frac{a+b}{2}$$

$$VAR(X) = \frac{(b-a)^2}{12}$$

3

Exponential Random Variable

The continuous random variable X is exponential with parameter λ if its pdf is given by

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0, \lambda > 0\\ 0 & \text{otherwise} \end{cases}$$

Where λ is the arrival rate.

$$E(X) = \frac{1}{\lambda_1}$$
$$VAR(X) = \frac{1}{\lambda^2}$$

4

Gaussian (Normal) Random Variable

The pdf of the normal random variable is X with mean μ and variance σ^2 , is

$$\mathcal{N}(\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} \quad -\infty < x < \infty$$

5

Gaussian (Normal) Random Variable

6

Gaussian (Normal) Random Variable

Symmetry of Gaussian Random Variable

7

Gaussian (Normal) cdf

$$F_X(x) = \int_{-\infty}^x e^{-\frac{t^2}{2}} dt$$

where $t = \frac{u - \mu}{\sigma}$. This is a closed form expression and evaluated empirically using the following function:

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

When $\mu = 0$ and $\sigma = 1$, this reduces to $\Phi(x)$

Intervals of Gaussian Random Variable

Probability of an interval of Gaussian random variable is computed using the area under the normal curve:

 $P[x_1 < x < x_2] = \frac{1}{\sqrt{2\pi}\sigma} \int_{x_1}^{x_2} e^{-\frac{1}{2\sigma^2}(x-\mu)^2} dx = \Phi\left(\frac{x_2 - \mu}{\sigma}\right) - \Phi\left(\frac{x_1 - \mu}{\sigma}\right)$

 $P(x_1 < X < x_2) =$ area of the shaded region

 $P(x_1 < X < x_2)$ for different normal curves

9

Standard Normal Random Variable

The area under the curve for all values of μ and σ cannot be evaluated.

The normal random variable with zero mean ($\mu = 0$) and unit variance ($\sigma^2 = 1$):

$$Z = \frac{x - \mu}{\sigma}$$

and

$$F_Z(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-\frac{z^2}{2}} dz = \Phi(z)$$

The original and transformed normal distributions

Standard Normal Random Variable

Symmetry of Standard Gaussian Random Variable

11

Complimentary Standard Gaussian cdf

In electrical engineering, Q-function is used as a matter of convention, which is defined by:

$$Q(z) = 1 - \Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-\frac{z^2}{2}} dz$$

Q-function is also known as the tail of the standard normal distribution.

$$Q(-z) = 1 - Q(z) = \Phi(z)$$

Gaussian cdf and complimentary cdf

Intervals of Standard Normal Random Variable

$$P[z_1 < z < z_2] = \frac{1}{\sqrt{2\pi}\sigma} \int_{z_1}^{z_2} e^{-\frac{z^2}{2}} dz = \Phi(z_2) - \Phi(z_1)$$

$$P[z_1 < z < z_2] = Q(z_2) - Q(z_1)$$

13

Example

Given a standard normal distribution, find the area under the curve that lies

- (a) to the right of z = 1.84 and
- (b) between z = -1.97 and z = 0.86.

Example

X is the Gaussian (0,1) random variable and Y is the Gaussian (0,2) random variable. Sketch the PDFs $f_X(x)$ and $f_Y(y)$ on the same axes and find:

(a) $P[-1 < X \le 1]$,

(b) $P[-1 < Y \le 1]$,

(c) P[X > 3.5],

(d) P[Y > 3.5].

15

Example

Given a random variable X having a normal distribution with $\mu=50$ and $\sigma=10$, find the probability that X assumes a value between 45 and 62.

16

Example

In an optical fiber transmission system, the probability of a bit error is $Q(\sqrt{\gamma/2})$, where γ is the signal-to-noise ratio. What is the minimum value of γ that produces a bit error rate not exceeding 10^{-6} ?

17

Example

A communication system accepts a positive voltage V as input and outputs a voltage $Y = \alpha V + N$, where $\alpha = 10^{-2}$ and N is a Gaussian random variable with parameters m = 0 and $\sigma = 2$. Find the value of V that gives $P[Y < 0] = 10^{-6}$.

The probability P[Y < 0] is written in terms of N as follows:

$$\begin{split} P[Y < 0] &= P[\alpha V + N < 0] \\ &= P[N < -\alpha V] = \Phi\bigg(\frac{-\alpha V}{\sigma}\bigg) = Q\bigg(\frac{\alpha V}{\sigma}\bigg) = 10^{-6}. \end{split}$$

From Table 4.3 we see that the argument of the Q-function should be $\alpha V/\sigma = 4.753$. Thus $V = (4.753)\sigma/\alpha = 950.6$.

Example

A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year. Assuming that battery life is normally distributed, find the probability that a given battery will last less than 2.3 years.

19

References

- 1. Walpole, R.E., Myers, R.H., Myers, S.L. and Ye, K. (2007) *Probability & Statistics for Engineers & Scientists*. 9th Edition, Pearson Education, Inc.
- 2. Leon-Garcia, A. (2008). *Probability, Statistics, and Random Processes for Electrical Engineering*. 3rd Edition, Pearson/Prentice Hall.