Research on Factors that affect ski resort pricing

Xinyuan Chen Yizhan Xue May 13, 2022

- □ 1. Research Background and Introduction
- 2. Dataset Description
- □ 3. Research Methods Introduction
- 4. Multiple Linear Regression (MLR)
- □ 5. Principal Component Analysis (PCA)
- 6. Logistic Regression (LR)
- 7. Result and Conclusion

Research Background and Introduction

Background:

- Skiing is an increasingly popular sport.
- 6114 ski resorts operated worldwide.
- 470 ski resorts operated in the United States.

Research Question:

- What factors decide whether a ski resort is an expensive or an economic ski resort?
- What factors do the ski resort managers design their pricing strategy based on?
- How to help tourists choose the most cost-effective ski resorts?
- [Future Work] What factors should investors be most aware of when managing a ski resort?

Most expensive ski resorts

Cheapest ski resorts

- 1. Research Background and Introduction
- 2. Dataset Description
- □ 3. Research Methods Introduction
- 4. Multiple Linear Regression (MLR)
- □ 5. Principal Component Analysis (PCA)
- 6. Logistic Regression (LR)
- 7. Conclusion

Dataset Description

- Contains 512 samples and 19 variables.
- Each sample containing information about one ski resort from worldwide.
- DayPassPrice is chosen as the dependent variable, the other 18 variables are independent variables.

Variable	Definition	Data Type
Ski pass prices adult	The price shows what it costs for 1 adult for 1 day in the main season in Euro €.	int
Beginner slopes	The total amount of "beginner" slopes in kilometer at the resort.	int
Highest point	The highest mountain point at the ski resort	num(number)
(19 variables in total)		

- 1. Research Background and Introduction
- 2. Dataset Description
- **□** 3. Research Methods Introduction
- 4. Multiple Linear Regression (MLR)
- □ 5. Principal Component Analysis (PCA)
- 6. Logistic Regression (LR)
- 7. Conclusion

Research Methods

- Multiple Linear Regression (MLR)
 - The Multiple R-squared is 0.5823

important dimensions for the research.

- Principal Component Analysis (PCA)
 Dimensionality Reduction. Show <u>resort facilities</u> and <u>natural location</u> as the two most
- Logistic Regression (LR)
 - The accuracy is 0.88 and the F-1 score is 0.94.
 - DayPrice was changed from a numeric to a nominal variable by using the median as a dividing criterion.

- 1. Research Background and Introduction
- 2. Dataset Description
- □ 3. Research Methods Introduction
- □ 4. Multiple Linear Regression (MLR)
- □ 5. Principal Component Analysis (PCA)
- 6. Logistic Regression (LR)
- 7. Conclusion

(1) Checking the Assumptions

- Linear Relationship
- Multivariate Normality
- Multicollinearity
- Homoscedasticity

- Draw scatter plots

 Remove variables which has non-linear relationship with target value or use stepwise regression.
- Examine a normal Predicted Probability (P-P) plot
- Checking the VIF
 Make sure VIF < 5 for all independent variables
 to ensure no multicollinearity.
- Examine the scatterplot of the residuals

Scatterplots between independent variables and dependent variable

Checking VIF

Lowest.point	Highest.point
4.725760	5.459112
Intermediate.slopes	Beginner.slopes
5.289118	7.581188
Longest.ru	Difficult.slopes
1.435026	2.666369
Chairlifts.etc	Surface.lift.etc.
4.595630	3.946818
Lift.capacity	Gondola.etc.
1.38099	3.693212
Avgsnow.depth.last.5.seasons	Snow.cannons
1.376913	1.238450
	Best.week
	1.237614

Before Removal

Difficult.slopes 1.899314	Lowest.point 1.255519
Surface.lift.etc.	Longest.run
2.537932	1.194631
Gondola.etc.	Chairlifts.etc.
2.383379	3.413269
Snow.cannons	Lift.capacity
1.215108	1.372948
Best.week	Avgsnow.depth.last.5.seasons
1.232025	1.361284
_	

After Removal

Diagnostic Plots

 The dataset is not totally satisfied with the assumption of the MLR except no multicollinearity.


```
Residuals:
    Min
              10 Median
                                        Max
                            7.034
-62.658 -8.533 -0.906
                                    61.209
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    30.23084
                                 1.82916
                                           16.527 < 2e-16 ***
                                          11.595 < 2e-16
                     0.55756
                                 0.04809
Difficult.slopes
Surface.lift.etc. -0.58451
                                 0.08215 -7.115 3.81e-12 ***
                     7.06089
                                 1.28242
                                            5.506 5.83e-08
Lowest.point
                     1.01288
                                 0.18738
                                            5.405 9.95e-08
Longest.run
Chairlifts.etc.
                     0.37781
                                 0.10515
                                            3.593 0.000359 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14.5 on 499 degrees of freedom
Multiple R-squared: 0.5823, Adjusted R-squared: 0.5697
F-statistic: 46.37 on 15 and 499 DF, p-value: < 2.2e-16
Y_{ticket-price} = 30.231 + 0.558* Difficult.slopes -0.585* Surface.lift.etc +7.061* Lowest.point +1.013* Longest.run +0.378* Charlifts.etc
```

- The linear model is statistically significant with 0.05 level.
 - Check the p-value.
- The dependent variable has not sufficiently been explained by this model.
 - The R-squared < 0.7.</p>
 - May be because it is not satisfied all assumptions.
- Can be used as a baseline model to suggest a reliable daily ticket price.

- 1. Research Background and Introduction
- 2. Dataset Description
- 3. Research Methods Introduction
- 4. Multiple Linear Regression (MLR)
- **□** 5. Principal Component Analysis (PCA)
- □ 6. Logistic Regression (LR)
- 7. Conclusion

Step 1: Determine the Number of Components

The Kaiser-Meyer-Olkin Method

Step 1: Determine the Number of Components (cont)

The Knee Method

Step 2: Determine the Rotate Components

Loadings:			
	RC1	RC2	RC3
Beginner.slopes	0.907		
Intermediate.slopes	0.832		
Surface.lift.etc.	0.885		
Chairlifts.etc.	0.852		
Gondola.etc.	0.840		
Lift.capacity	0.552		
Continent		0.677	
Highest.point		0.768	
Lowest.point		0.771	
Ski.pass.price.adult		0.800	
Difficult.slopes	0.489	0.696	
Child.friendly			0.504
Summer.skiing			-0.597
Avgsnow.depth.last.5.seasons	5		0.542
Best.week			0.740
Longest.run			
Snowparks			
Nightskiing			
Snow.cannons			
	RC3		
SS loadings 4.979 3.168 1.5			
Proportion Var 0.262 0.167 0.0			
Cumulative Var 0.262 0.429 0.5	511		

```
Ytourist-feeling = 0.907*Beginner.slopes + 0.832*Intermediate.slopes + 0.885*Surface.lift.etc. + 0.852*Chairlifts.etc. + 0.840*Gondola.etc. + 0.552*Lift.capacity + 0.489*Difficult.slopes
```

- 1. Research Background and Introduction
- 2. Dataset Description
- 3. Research Methods Introduction
- 4. Multiple Linear Regression (MLR)
- 5. Principal Component Analysis (PCA)
- □ 6. Logistic Regression (LR)
- 7. Conclusion

Step 1: Output the Odds Ratio Indexes

Characteristic	OR ¹	95% CI ¹	p-value
Continent	60.1	11.2, 712	<0.001
Highest.point	0.18	0.01, 1.75	0.2
Lowest.point	8.33	0.80, 112	0.088
Child.friendly	0.00	0.00, 14,179,007,188,836,818	>0.9
Beginner.slopes	1.00	0.96, 1.03	0.9
Intermediate.slopes	1.06	1.03, 1.10	<0.001
Difficult.slopes	1.02	0.99, 1.05	0.3
Longest.run	0.84	0.68, 1.01	0.083
Snowparks	0.20	0.05, 0.68	0.014
Nightskiing	2.41	0.91, 6.65	0.080
Summer.skiing	0.04	0.00, 0.32	0.006

Surface.lift.etc.	0.79	0.66, 0.90	0.003
Chairlifts.etc.	1.14	1.05, 1.25	0.003
Gondola.etc.	1.06	0.84, 1.37	0.6
Lift.capacity	1.00		>0.9
Snow.cannons	1.01	1.00, 1.01	0.011
Avgsnow.depth.last.5.seasons	1.00	1.00, 1.00	0.6
Best.week	1.01	0.93, 1.08	0.9
¹ OR = Odds Ratio, CI = Confidence			

Step 1: Output the Odds Ratio Indexes (cont)

```
Coefficients:
                                Estimate Std. Error z value Pr(>|z|)
                               5.384e+00 1.959e+03
                                                     0.003 0.997807
(Intercept)
                               4.706e+00 1.460e+00
Continent
                                                     3.223 0.001269 **
                              -8.485e-01 1.704e+00
Highest.point
                                                    -0.498 0.618474
Lowest.point
                               1.058e+00 1.741e+00
                                                     0.608 0.543218
Child.friendly
                              -1.611e+01 1.959e+03
                                                    -0.008 0.993439
                               1.898e-02 2.653e-02
Beginner.slopes
                                                     0.715 0.474397
Intermediate.slopes
                               8.742e-02 2.564e-02
                                                     3.409 0.000652 ***
Difficult.slopes
                               1.966e-02 1.994e-02
                                                     0.986 0.324133
                              -4.808e-01 1.741e-01
                                                    -2.762 0.005742 **
Longest.run
                              -2.656e+00 9.330e-01 -2.847 0.004414 **
Snowparks
Nightskiing
                               2.139e+00 7.609e-01
                                                     2.811 0.004934 **
                              -3.049e+00 1.570e+00 -1.942 0.052090
Summer.skiina
Surface.lift.etc.
                              -3.658e-01 1.285e-01
                                                    -2.847 0.004412 **
Chairlifts.etc.
                               8.878e-02 4.563e-02
                                                     1.946 0.051683 .
                               1.841e-02 1.848e-01
Gondola.etc.
                                                     0.100 0.920640
Lift.capacity
                              -1.451e-03 7.023e-03
                                                     -0.207 0.836302
                               2.405e-03 2.509e-03
                                                     0.959 0.337682
Snow.cannons
Ava..snow.depth.last.5.seasons 8.109e-05 1.144e-04
                                                     0.709 0.478302
```

```
P = \frac{e^{(5.394e+00)+(4.706e+00)*Continent+(8.742e-02)*Intermediate.slopes-(4.808e+01)*Longest.run-(2.656e-00)*Snoparks+(2.139e+00)*Nightskiing-(3.658e+01)*Surface.lift.etc}}{1+e^{(5.394e+00)+(4.706e+00)*Continent+(8.742e-02)*Intermediate.slopes-(4.808e+01)*Longest.run-(2.656e-00)*Snoparks+(2.139e+00)*Nightskiing-(3.658e+01)*Surface.lift.etc}}
```

Step 2: Further Predicting Through Classification

```
Confusion Matrix and Statistics
```

```
\begin{array}{cccc} & & \text{Reference} \\ \text{Prediction} & \text{0} & \text{1} \\ & \text{0} & \text{132} & \text{12} \\ & \text{1} & \text{6} & \text{5} \end{array}
```

Accuracy : 0.8839

95% CI : (0.8227, 0.9297)

No Information Rate : 0.8903 P-Value [Acc > NIR] : 0.6605

Kappa: 0.2965

Mcnemar's Test P-Value : 0.2386

Sensitivity : 0.9565 Specificity : 0.2941 Pos Pred Value : 0.9167 Neg Pred Value : 0.4545 Precision : 0.9167

Recall: 0.9565 F1: 0.9362

Prevalence : 0.8903

Detection Rate : 0.8516 Detection Prevalence : 0.9290 Balanced Accuracy : 0.6253

'Positive' Class : 0

Step 3: Output the ROC Curve and AUC values

modnames dsids curvetypes aucs
1 m1 1 ROC 0.9539642
2 m1 1 PRC 0.6576714

AUC values

ROC Curve

Comparison of the three models

Multiple Linear Regression

Advantages:

The ability to determine the relative influence of one or more predictor variables to the criterion value.

Easy to identify outliers, or anomalies.

Disadvantages:

Outliers can have huge effects on the linear regression model;

Looks at a relationship between the mean of the dependent variables and the independent variables.

Principal Component Analysis

Advantages:

Easy to compute;

Speeds up other machine learning algorithms;

Counteracts the issues of high-dimensional data.

Disadvantages:

Low interpretability of principal components;

The trade-off between information loss and dimensionality reduction.

Logistic Regression

Advantages:

Performs well when the dataset is linearly separable;

Less prone to overfitting but it can overfit in high dimensional datasets;

Disadvantages:

Can only be used to predict discrete functions;

- 1. Research Background and Introduction
- 2. Dataset Description
- 3. Research Methods Introduction
- 4. Multiple Linear Regression (MLR)
- □ 5. Principal Component Analysis (PCA)
- ☐ 6. Logistic Regression (LR)
- □ 7. Conclusion

Conclusion

Limitation:

Dataset Limitation;

The characteristics of factors are not obvious enough:

Too much missing data;

Suggestions and Future Work:

Safety factors are most important to consider;

Choose a place with a relatively low altitude to build a ski resort;

Various emergency measures to protect safety need to be followed up

Conclusion:

Resorts' facilities, and resorts location are the factors that tourists concern most when choosing a ski resort as a destination.

The more advanced the ski facilities, and the better the location of the resort, the higher the ticket price will be.

Reference

Berard-Chenu, L., Cognard, J., François, H., Morin, S., & George, E. (2021). Do changes in snow conditions have an impact on snowmaking investments in French Alps ski resorts?

International Journal of Biometeorology, 65(5), 659-675.

Boris, D., Makajić-Nikolić, D., Ćirović, M., Petrović, N., & Suknović, M. (2020). A ski injury

risk assessment model for ski resorts. Journal of Risk Research, 23(12), 1590-1602.

https://doi-org.proxy2.library.illinois.edu/10.1080/13669877.2020.1749113

Carus, L., & Castillo, I. (2021). Managing risk in ski resorts: Environmental factors affecting actual and estimated speed on signposted groomed slopes in a cohort of adult

recreational alpine skiers. Plos one, 16(8), e0256349.

Eberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, 165-187.

Hatzenbuehler, J., Glazer, J., & Kuhn, C. (2009). Awareness of Altitude Sickness Among Visitors

to a North American Ski Resort, Wilderness & Environmental Medicine, 20(3), 257–260.

https://doi-org.proxy2.library.illinois.edu/10.1580/08-WEME-OR-191R.1

https://ski-resort-stats.com/find-ski-resort/

Sciences, 374(2065), 1–16.

Retrieved May 12, 2022, from

Vanat , L. (2021, April). 2021 International Report on Snow & Amp; Mountain Tourism. vanat.ch. Retrieved May 11, 2022, from https://www.vanat.ch/RM-world-report-2021.pdf.

Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent

Lange, D. (2020, November 25). Number of ski resorts United States 1990-2020. Statista.

Ormiston, D., Gilbert, A., & Manning, R. E. (1998). Indicators and standards of quality for ski

resort management. Journal of travel research, 36(3), 35-41.

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An Introduction to Logistic Regression

Analysis and Reporting. The Journal of Educational Research, 96(1), 3-14.

Ski-resort-stats. (2020, April 12). Find resort. Ski resort statistics. Retrieved May 5, 2022, from

developments. Philosophical Transactions: Mathematical, Physical and Engineering

https://www.statista.com/statistics/206534/number-of-ski-resorts-operating-in-the-us-since-1990/

25

Thank You Q & A

Advantages:

- Easy to compute;
- 2) Speeds up other machine learning algorithms;
- 3) Counteracts the issues of high-dimensional data.

Disadvantages:

- Low interpretability of principal components;
- 2) The trade-off between information loss and dimensionality reduction.

Logistic Regression (LR)

Advantages:

- 1) Logistic Regression performs well when the dataset is linearly separable;
- 2) Logistic regression is less prone to overfitting but it can overfit in high dimensional datasets.
- 3) Logistic Regression not only gives a measure of how relevant a predictor (coefficient size) is, but also its direction of association (positive or negative)

Disadvantages:

- If the number of observations are lesser than the number of features, Logistic Regression should not be used, otherwise it may lead to overfit.
- 2) Logistic Regression can only be used to predict discrete functions.

What does PCA mean?

One of the most important dimensionality-reduction methods. Its main principle is to find the most prominent dimensions in the data and replace the original data with the most important aspects of the data.

