¿Por qué son más las nociones Hausdorff en álgebra que en topología?

Seminario de Álgebra, CUCEI 29 de noviembre de 2024

Juan Carlos Monter Cortés

Universidad de Guadalajara

Lo que veremos hoy ©

Preliminares

Aspectos libres de puntos

Hausdorff en Frm

Algo más débil que T₂

Algo más fuerte que T₂

Algo parecido a T₂

Una manera diferente de ver T₂

¿Cuál noción Hausdorff es mejor?

- A
- (A, \leqslant)

- (A, \leqslant, \lor, o) o $(A, \leqslant, \land, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, o, 1)$

•
$$(A, \leqslant)$$

•
$$(A, \leq, \vee, \circ) \circ (A, \leq, \wedge, 1)$$

•
$$(A, \leqslant, \bigvee, \bigwedge, 0, 1)$$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

•
$$(A, \leqslant)$$

•
$$(A, \leq, \vee, \circ) \circ (A, \leq, \wedge, 1)$$

•
$$(A, \leq, \bigvee, \bigwedge, 0, 1)$$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

- A
- (A, \leqslant)

- $(A, \leqslant, \lor, \circ) \circ (A, \leqslant, \land, 1)$
- $(A, \leqslant, \bigvee, \bigwedge, 0, 1)$

Un marco es una retícula completa que cumple cierta ley distributiva (ley distributiva de marcos), es decir,

$$(A, \leqslant, \bigvee, \land, o, 1), \quad a \land \bigvee X = \bigvee \{a \land x \mid x \in X\}$$

$$\mathbf{Frm} = \begin{cases} A, & \text{marcos} \\ f, & \text{morfismo de marcos} \end{cases}$$

• Estructuras simples.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.

HAUSDORFF EN Frm

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- **Loc** = **Frm**^{op} está en relación con **Top**.

- Estructuras simples.
- Existen herramientas que facilitan el estudio de los marcos.
- Correspondencias biyectivas.
- Buen comportamiento categórico.
- La topología de un espacio (OS) es un marco.
- **Loc** = **Frm**^{op} está en relación con **Top**.

¿Qué relación existe entre los marcos y los espacios topológicos?

$$\left(\mathbb{O}S,\subseteq,\cap,\bigcup,S,\emptyset\right)$$

- $\mathcal{O}(_) \colon \mathbf{Top} \to \mathbf{Frm}$
- $pt(\underline{\ }) : \mathbf{Frm} \to \mathbf{Top}$
- El funtor pt es adjunto izquierdo de O.

Axiomas de separación

En la topología clásica (topología sensible a puntos), tenemos la siguiente relación entre los axiomas de separación

$$T_4 \longrightarrow T_{3\frac{1}{2}} \longrightarrow T_3 \longrightarrow T_2 \longrightarrow T_1 \longrightarrow T_0$$

$$(norm) \qquad R_3 \longrightarrow R_2 \longrightarrow R_1 \longrightarrow R_0$$

donde
$$R_2 = (\mathbf{reg})$$
, $R_3 = (\mathbf{creg})$, $T_i = R_{i-1} + T_{i-1}$ y $T_{3\frac{1}{2}} = R_3 + T_3$, para $i = 1, 2, 3$.
 $T_4 = (\mathbf{norm}) + T_1$.

El axioma T_2

 T_2 : Sean $x \neq y \in S$, entonces existen $U, V \in OS$ tales que

$$x \in U$$
, $y \in V$, $U \cap V = \emptyset$.

• Es más fuerte que T_1 .

- Es más fuerte que T_1 .
- Es más débil que T₃.

- Es más fuerte que T_1 .
- Es más débil que T_3 .
- Un espacio S es T_2 si y solo si la diagonal es cerrada.

- Es más fuerte que T_1 .
- Es más débil que *T*₃.
- Un espacio S es T_2 si y solo si la diagonal es cerrada.
- Si S es T_2 , todo $Q \in QS$ es cerrado.

- Es más fuerte que T_1 .
- Es más débil que T₃.
- Un espacio S es T_2 si y solo si la diagonal es cerrada.
- Si S es T_2 , todo $Q \in QS$ es cerrado.
- Si S es T₂ y compacto, S es regular.

- Es más fuerte que T_1 .
- Es más débil que T₃.
- Un espacio S es T_2 si y solo si la diagonal es cerrada.
- Si S es T_2 , todo $Q \in QS$ es cerrado.
- Si S es T_2 y compacto, S es regular.
- El producto de espacios T_2 es T_2 .

- Es más fuerte que T_1 .
- Es más débil que T_3 .
- Un espacio S es T_2 si y solo si la diagonal es cerrada.
- Si S es T_2 , todo $Q \in QS$ es cerrado.
- Si S es T₂ y compacto, S es regular.
- El producto de espacios T_2 es T_2 .
- Los subespacios de un espacio T_2 son T_2 .

- Es más fuerte que T_1 .
- Es más débil que T_3 .
- Un espacio S es T_2 si y solo si la diagonal es cerrada.
- Si S es T_2 , todo $Q \in QS$ es cerrado.
- Si S es T₂ y compacto, S es regular.
- El producto de espacios T_2 es T_2 .
- Los subespacios de un espacio T_2 son T_2 .
- •

Sean $a, b \in A \in \mathbf{Frm}$.

• $\neg a =$ negación (pseudocomplemento).

- $\neg a =$ negación (pseudocomplemento).
- $a^* =$ complemento.

- $\neg a =$ negación (pseudocomplemento).
- $a^* =$ complemento.
- $(a \succ b) = \bigvee \{x \in A \mid x \land a \leqslant b\}.$

- $\neg a =$ negación (pseudocomplemento).
- $a^* =$ complemento.
- $(a \succ b) = \bigvee \{x \in A \mid x \land a \leqslant b\}.$
- $\neg a = (a \succ 0)$.

- $\neg a =$ negación (pseudocomplemento).
- $a^* = \text{complemento}$.
- $(a \succ b) = \bigvee \{x \in A \mid x \land a \leqslant b\}.$
- $\neg a = (a \succ 0)$.
- a es regular si $a = \neg \neg a$.

- $\neg a =$ negación (pseudocomplemento).
- $a^* = \text{complemento}$.
- $(a \succ b) = \bigvee \{x \in A \mid x \land a \leqslant b\}.$
- $\neg a = (a \succ 0)$.
- a es regular si $a = \neg \neg a$.
- $A \in \mathbf{Frm}$ es espacial si $A = \mathfrak{O}S$.

Definición:

Sea $L \in \mathbf{Loc}$. $S \subseteq L$ es un sublocal si:

- 1. $a, b \in S \Rightarrow a \land b \in S$.
- 2. $l \in L y s \in S \Rightarrow (l \succ s) \in S$.

Definición:

Sea $L \in \mathbf{Loc}$. $S \subseteq L$ es un sublocal si:

- 1. $a, b \in S \Rightarrow a \land b \in S$.
- 2. $l \in L y s \in S \Rightarrow (l \succ s) \in S$.

$$S$$
 es cerrado $\Leftrightarrow S = \overline{S}$

Definición:

Sea $L \in \mathbf{Loc}$. $S \subseteq L$ es un sublocal si:

1.
$$a, b \in S \Rightarrow a \land b \in S$$
.

2.
$$l \in Lys \in S \Rightarrow (l \succ s) \in S$$
.

$$S$$
 es cerrado $\Leftrightarrow S = \overline{S}$

¿Quién es \overline{S} ?

Definición:

Sea $L \in \mathbf{Loc}$. $S \subseteq L$ es un sublocal si:

1.
$$a, b \in S \Rightarrow a \land b \in S$$
.

2.
$$l \in Lys \in S \Rightarrow (l \succ s) \in S$$
.

$$S$$
 es cerrado $\Leftrightarrow S = \overline{S}$

¿Quién es \overline{S} ?

$$\overline{S} = \uparrow \bigwedge S$$

para cada sublocal S y $\bigwedge S \in S$.

Ajustado, subajustado y el axioma T_D

(aju) $\forall U, V \in \mathcal{O}S$, con $U \nsubseteq V$, $\exists W \in \mathcal{O}S$ tal que

$$U \cup W = S$$
 y $(W \cup V)^{\circ} \neq V$.

Ajustado, subajustado y el axioma T_D

(aju)
$$\forall U, V \in OS$$
, con $U \nsubseteq V$, $\exists W \in OS$ tal que

$$U \cup W = S$$
 y $(W \cup V)^{\circ} \neq V$.

$$(\mathbf{saju}) \ \forall \ U, V \in \mathfrak{O}S$$
, con $U \nsubseteq V$, $\exists \ W \in \mathfrak{O}S$ tal que

$$U \cup W = S \neq V \cup W$$
.

Ajustado, subajustado y el axioma T_D

(aju)
$$\forall U, V \in OS$$
, con $U \nsubseteq V$, $\exists W \in OS$ tal que

$$U \cup W = S$$
 y $(W \cup V)^{\circ} \neq V$.

$$(\mathbf{saju}) \ \forall \ U, V \in \mathcal{O}S$$
, con $U \nsubseteq V$, $\exists \ W \in \mathcal{O}S$ tal que

$$U \cup W = S \neq V \cup W.$$

$$T_D \quad \forall x \in S, \exists U \in OS \text{ tal que}$$

$$x \in U$$
 y $U \setminus \{x\} \in \mathcal{O}S$.

Ajustado, subajustado y el axioma T_D

(aju)
$$\forall U, V \in OS$$
, con $U \nsubseteq V$, $\exists W \in OS$ tal que

$$U \cup W = S$$
 y $(W \cup V)^{\circ} \neq V$.

$$(\mathbf{saju}) \ \forall \ U, V \in \mathcal{O}S$$
, con $U \nsubseteq V$, $\exists \ W \in \mathcal{O}S$ tal que

$$U \cup W = S \neq V \cup W.$$

$$T_D \quad \forall x \in S, \exists U \in \mathfrak{O}S \text{ tal que}$$

$$x \in U$$
 y $U \setminus \{x\} \in \mathcal{O}S$.

$$(aju) \Rightarrow (saju), (saju) \Rightarrow T_D, T_D \Rightarrow (saju)$$

Otra alternativa de ver los axiomas T_n

$$T_1 = T_D + (\mathbf{saju})$$

 $T_2 = N_2 + (\mathbf{saju})$
 $T_3 = N_3 + (\mathbf{saju})$
 $T_4 = N_4 + (\mathbf{saju})$

.

Otra alternativa de ver los axiomas T_n

$$egin{aligned} T_1 &= T_D + (extbf{saju}) \ T_2 &= N_2 + (extbf{saju}) \ T_3 &= N_3 + (extbf{saju}) \ T_4 &= N_4 + (extbf{saju}) \end{aligned}$$

donde N_i , para i = 2, 3, 4, son conocidas como propiedades de normalidad (ver [11]).

HAUSDORFF FN Frm

Otra alternativa de ver los axiomas T_n

$$egin{aligned} T_1 &= T_D + (extsf{saju}) \ T_2 &= N_2 + (extsf{saju}) \ T_3 &= N_3 + (extsf{saju}) \ T_4 &= N_4 + (extsf{saju}) \end{aligned}$$

donde N_i , para i = 2, 3, 4, son conocidas como propiedades de normalidad (ver [11]).

Existen otras maneras de definir los axiomas de separación en **Frm**

 $A \in \mathbf{Frm} \, y \, S = \mathsf{pt} \, A$, entonces

 $A \in \mathbf{Frm} \, \mathsf{y} \, S = \mathsf{pt} \, A$, entonces

• $p \in S$ si y solo si $p \neq 1$ y $\forall a, b \in A$ si

$$a \wedge b \leqslant p \Rightarrow a \leqslant p \circ b \leqslant p$$
.

HAUSDORFF EN Frm

Si $p \in S$ entonces p es primo.

 $A \in \mathbf{Frm} \, \mathsf{y} \, S = \mathsf{pt} \, A$, entonces

• $p \in S$ si y solo si $p \neq 1$ y $\forall a, b \in A$ si

$$a \wedge b \leqslant p \Rightarrow a \leqslant p \circ b \leqslant p$$
.

HAUSDORFF EN Frm

Si $p \in S$ entonces p es primo.

• $p \in A$ es semiprimo si $\forall a, b \in A$ con $a \land b = 0$, entonces $a \leqslant p$ o $b \leqslant p$.

HAUSDORFF EN Frm

Elemento máximo, primo y semiprimo

 $A \in \mathbf{Frm} \, y \, S = \mathsf{pt} \, A$, entonces

• $p \in S$ si y solo si $p \neq 1$ y $\forall a, b \in A$ si

$$a \wedge b \leqslant p \Rightarrow a \leqslant p \circ b \leqslant p$$
.

Si $p \in S$ entonces p es primo.

- $p \in A$ es semiprimo si $\forall a, b \in A$ con $a \land b = 0$, entonces $a \leqslant p$ o $b \leqslant p$.
- $p \in A$ es máximo si $\forall m \in A$ con $p \leqslant m$, entonces p = m o m = 1.

 $A \in \mathbf{Frm} \, \mathsf{y} \, S = \mathsf{pt} \, A$, entonces

• $p \in S$ si y solo si $p \neq 1$ y $\forall a, b \in A$ si

$$a \wedge b \leqslant p \Rightarrow a \leqslant p \circ b \leqslant p$$
.

Si $p \in S$ entonces p es primo.

- $p \in A$ es semiprimo si $\forall a, b \in A$ con $a \land b = 0$, entonces $a \leqslant p$ o $b \leqslant p$.
- $p \in A$ es máximo si $\forall m \in A$ con $p \leqslant m$, entonces p = m o m = 1.

máximo ⇒ primo ⇒ semiprimo

 (T_1) Todo elemento primo es máximo.

(libres de puntos)

(libres de puntos)

 (T_1) Todo elemento primo es máximo.

(reg)
$$\forall U \in \mathfrak{O}S$$
, con " \prec "= bastante por debajo

$$U = \bigcup \{V \mid V \prec U\}$$

(libres de puntos)

 (T_1) Todo elemento primo es máximo.

(reg)
$$\forall U \in OS$$
, con " \prec "= bastante por debajo

$$U = \bigcup \{ V \mid V \prec U \}$$

$$(T_3) = (reg) + (T_1)$$

(libres de puntos)

 (T_1) Todo elemento primo es máximo.

(reg)
$$\forall U \in OS$$
, con " \prec "= bastante por debajo

$$U = \bigcup \{ V \mid V \prec U \}$$

HAUSDORFF EN Frm

$$(T_3) = (reg) + (T_1)$$

(creg) $\forall U \in \mathcal{O}S$, con " $\prec \prec$ " = completamente por debajo

$$U = \bigcup \{ V \mid V \prec \prec U \}$$

(libres de puntos)

 (T_1) Todo elemento primo es máximo.

(reg)
$$\forall U \in OS$$
, con " \prec "= bastante por debajo

$$U = \bigcup \{ V \mid V \prec U \}$$

HAUSDORFF EN Frm

$$(T_3) = (reg) + (T_1)$$

(creg) $\forall U \in \mathcal{O}S$, con " $\prec \prec$ " = completamente por debajo

$$U = \bigcup \{ V \mid V \prec \prec U \}$$

$$(T_{3\frac{1}{2}}) = (creg) + (T_1)$$

(libres de puntos)

 (T_1) Todo elemento primo es máximo.

 $(reg) \quad \forall U \in \mathcal{O}S, \text{ con "} \prec "= bastante por debajo"$

$$U = \bigcup \{ V \mid V \prec U \}$$

$$(T_3) = (reg) + (T_1)$$

(creg) $\forall U \in \mathcal{O}S$, con " $\prec \prec$ " = completamente por debajo

$$U = \bigcup \{V \mid V \prec \prec U\}$$

$$(T_{3\frac{1}{2}}) = (creg) + (T_1)$$

 $(norm) \ \forall X, Y \in OS \ tales \ que \ X \cup Y = S, \exists U, V \in OS \ tales \ que$

$$X \cup U = S$$
, $Y \cup V = S$, $U \cap V = \emptyset$

(libres de puntos)

 (T_1) Todo elemento primo es máximo.

(reg) $\forall U \in \mathfrak{O}S$, con " \prec " = bastante por debajo

$$U = \bigcup \{ V \mid V \prec U \}$$

$$(T_3) = (reg) + (T_1)$$

(creg) $\forall U \in OS$, con " $\prec \prec$ "= completamente por debajo

$$U = \bigcup \{ V \mid V \prec \prec U \}$$

$$(T_{3\frac{1}{2}}) = (creg) + (T_1)$$

 $(norm) \ \forall X, Y \in \mathcal{O}S$ tales que $X \cup Y = S, \exists U, V \in \mathcal{O}S$ tales que

$$X \cup U = S$$
, $Y \cup V = S$, $U \cap V = \emptyset$

$$(T_{\scriptscriptstyle A}) = (norm) + (T_{\scriptscriptstyle 1})$$

HAUSDORFF EN Frm

Definition

1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .

HAUSDORFF EN Frm

Definition

- 1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .
- 2. Decimos que una propiedad en marcos *P* es suficientemente Hausdorff si y solo si P implica la propiedad Hausdorff espacial.

Definition

- 1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .
- 2. Decimos que una propiedad en marcos *P* es suficientemente *Hausdorff* si y solo si *P* implica la propiedad Hausdorff espacial.
- 3. Decimos que una propiedad en marcos *P* es de 1° *orden* si y solo si *P* es enunciada como una fórmula para elementos del marco.

Definition

- 1. Para un espacio S decimos que una propiedad P es conservativa si y solo si OS tiene la propiedad P_S .
- 2. Decimos que una propiedad en marcos *P* es suficientemente *Hausdorff* si y solo si *P* implica la propiedad Hausdorff espacial.
- 3. Decimos que una propiedad en marcos *P* es de 1° *orden* si y solo si *P* es enunciada como una fórmula para elementos del marco.
- 4. Decimos que una propiedad en marcos *P* es de 2° *orden* si y solo si *P* es enunciada como una caracterización de sublocales.

[Dowker y Strauss (1972)]

Esta noción sugiere ver T_2 como algo más fuerte que T_1 .

HAUSDORFF EN Frm 0000000000000

Débilmente Hausdorff

[Dowker y Strauss (1972)]

Esta noción sugiere ver T_2 como algo más fuerte que T_1 .

Definición

Sea $A \in \mathbf{Frm}$. Decimos que A es débilmente Hausdorff si se cumple lo siguiente:

HAUSDORFF EN Frm

(**dH**)
$$a \lor b = 1$$
 y $a, b \ne 1$, $\exists u, v \text{ tales que } u \nleq a, v \nleq b$ y $u \land v = 0$.

con a, b, $u, v \in A$.

Débilmente Hausdorff

[Dowker y Strauss (1972)]

Esta noción sugiere ver T_2 como algo más fuerte que T_1 .

Definición

Sea $A \in \mathbf{Frm}$. Decimos que A es débilmente Hausdorff si se cumple lo siguiente:

HAUSDORFF EN Frm

(**dH**)
$$a \lor b = 1$$
 y $a, b \ne 1$, $\exists u, v$ tales que $u \nleq a, v \nleq b$ y $u \land v = 0$.

con a, b, u, $v \in A$.

Recordemos que

$$T_1 = T_D + (\mathbf{saju}).$$

$$T_2 = (\mathbf{dH}) + (\mathbf{saju}).$$

HAUSDORFF EN Frm 0000000000000

$$T_2 = (\mathbf{dH}) + (\mathbf{saju}).$$

HAUSDORFF EN Frm 0000000000000

Observaciones

$$T_2 = (\mathbf{dH}) + (\mathbf{saju}).$$

HAUSDORFF EN Frm 0000000000000

Observaciones

• $(dH) = N_2$.

$$T_2 = (\mathbf{dH}) + (\mathbf{saju}).$$

HAUSDORFF EN Frm

Observaciones

- $(dH) = N_2$.
- Un espacio S cumple T_2 (espacial) $\Leftrightarrow OS$ cumple T_2 (en marcos).

$$T_2 = (\mathbf{dH}) + (\mathbf{saju}).$$

HAUSDORFF EN Frm

Observaciones

- $(dH) = N_2$.
- Un espacio S cumple T_2 (espacial) $\Leftrightarrow OS$ cumple T_2 (en marcos).
- (**dH**) no es suficientemente Hausdorff.

[Johnstone y Shu-Hau (1987)]

Esta noción sugiere ver T_2 como algo más débil que T_3 .

Hausdorff

[Johnstone y Shu-Hau (1987)]

Esta noción sugiere ver T_2 como algo más débil que T_3 .

Definición

Sea $A \in \mathbf{Frm}$ y consideremos $a, b \in A$. Decimos que a está bastante por debajo de b (denotado por " $a \prec b$ ") si $\exists c \in A$ tal que

HAUSDORFF EN Frm

$$a \wedge c = 0$$
 y $c \vee b = 1$

[Johnstone y Shu-Hau (1987)]

Esta noción sugiere ver T_2 como algo más débil que T_3 .

Definición

Sea $A \in \mathbf{Frm}$ y consideremos $a, b \in A$. Decimos que a está bastante por debajo de b (denotado por " $a \prec b$ ") si $\exists c \in A$ tal que

HAUSDORFF EN Frm

$$a \wedge c = 0$$
 y $c \vee b = 1$

 $(reg) \forall b \in A,$

$$b = \bigvee \{a \in A \mid a \prec b\}$$

Haciendo las respectivas modificaciones obtenemos

Haciendo las respectivas modificaciones obtenemos

Definición [Paseka y Smarda (1987)]:

Sea $A \in \mathbf{Frm}$ y sean $a, b \in A$ con $b \neq 1$. Decimos que " $a \sqsubset b$ " si

$$a \leqslant b$$
 y $\neg a \leqslant b$

Haciendo las respectivas modificaciones obtenemos

Definición [Paseka y Smarda (1987)]:

Sea $A \in \mathbf{Frm}$ y sean $a, b \in A$ con $b \neq 1$. Decimos que " $a \sqsubset b$ " si

HAUSDORFF EN Frm

$$a \leqslant b$$
 y $\neg a \leqslant b$

 $T_2 \quad \forall \ b \in A \text{ con } b \neq 1$

$$b = \bigvee \{a \in A \mid a \sqsubset b\}.$$

Haciendo las respectivas modificaciones obtenemos

Definición [Paseka v Smarda (1987)]:

Sea $A \in \mathbf{Frm}$ y sean $a, b \in A$ con $b \neq 1$. Decimos que " $a \sqsubset b$ " si

$$a \leqslant b$$
 y $\neg a \leqslant b$

 $T_{2} \quad \forall \ b \in A \text{ con } b \neq 1$

$$b = \bigvee \{a \in A \mid a \sqsubset b\}.$$

Equivalentemente

 $T_2 \quad \forall \ 1 \neq a \nleq b, \exists \ u, v \in A \text{ tales que}$

$$u \nleq a$$
, $v \nleq b$, $v \leqslant a$, $u \land v = 0$.

Johnstone y Shu-Hau modificaron la noción dada por Isbell y obtuvieron

(H)
$$\forall$$
 1 \neq $a \nleq b$, \exists $u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = o$.

Johnstone y Shu-Hau modificaron la noción dada por Isbell y obtuvieron

(H)
$$\forall$$
 1 \neq $a \nleq b$, \exists $u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = o$.

HAUSDORFF EN Frm 00000000000000

Johnstone y Shu-Hau modificaron la noción dada por Isbell y obtuvieron

(**H**)
$$\forall$$
 1 \neq $a \nleq b$, \exists u , $v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = o$.

Observaciones:

• T_2 (P. y S.) \Leftrightarrow (**H**).

Johnstone y Shu-Hau modificaron la noción dada por Isbell y obtuvieron

(H)
$$\forall$$
 1 \neq $a \nleq b$, \exists $u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = o$.

- T_2 (P. y S.) \Leftrightarrow (**H**).
- $(\mathbf{H}) \Leftrightarrow T_2 (D. y S.).$

Johnstone y Shu-Hau modificaron la noción dada por Isbell y

obtuvieron

(H)
$$\forall$$
 1 \neq $a \nleq b$, \exists $u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = o$.

- T_2 (P. y S.) \Leftrightarrow (**H**).
- (**H**) \Leftrightarrow T_2 (D. y S.).
- Un espacio cumple T_2 (espacial) $\Leftrightarrow OS$ cumple (**H**).

(H) \forall 1 \neq $a \nleq b$, $\exists u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = 0$.

HAUSDORFF EN Frm

Observaciones:

obtuvieron

- T_2 (P. y S.) \Leftrightarrow (**H**).
- (**H**) \Leftrightarrow T_2 (D. y S.).
- Un espacio cumple T_2 (espacial) $\Leftrightarrow OS$ cumple (**H**).
- (**H**) es hereditaria.

Johnstone y Shu-Hau modificaron la noción dada por Isbell y obtuvieron

(**H**)
$$\forall$$
 1 \neq $a \nleq b$, \exists $u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = 0$.

- T_2 (P. y S.) \Leftrightarrow (**H**).
- $(\mathbf{H}) \Leftrightarrow T_2 (D. y S.).$
- Un espacio cumple T_2 (espacial) $\Leftrightarrow OS$ cumple (**H**).
- (**H**) es hereditaria.
- (**H**) es cerrada bajo coproductos.

Johnstone y Shu-Hau modificaron la noción dada por Isbell y obtuvieron

(H)
$$\forall$$
 1 \neq $a \nleq b$, \exists $u, v \in A$ tales que

$$u \nleq a$$
, $v \nleq b$, $u \land v = 0$.

HAUSDORFF EN Frm

- T_2 (P. y S.) \Leftrightarrow (**H**).
- (**H**) \Leftrightarrow T_2 (D. y S.).
- Un espacio cumple T_2 (espacial) $\Leftrightarrow OS$ cumple (**H**).
- (**H**) es hereditaria.
- (**H**) es cerrada bajo coproductos.
- $(reg) \Rightarrow (H)$

 $A \in \mathbf{Frm}$ y sea

$$\tilde{A} = \{(x, y) \mid x \leqslant y\} \subseteq L \times \mathcal{B}(L),$$

HAUSDORFF EN Frm 0000000000000

donde

$$\mathcal{B}(L) = \{ x \in A \mid x = \neg \neg x \} = \{ x^* \mid x \in L \}$$

 $A \in \mathbf{Frm}$ y sea

$$\tilde{A} = \{(x, y) \mid x \leqslant y\} \subseteq L \times \mathcal{B}(L),$$

HAUSDORFF EN Frm 0000000000000

donde

$$\mathcal{B}(L) = \{ x \in A \mid x = \neg \neg x \} = \{ x^* \mid x \in L \}$$

 $A \in \mathbf{Frm}$ y sea

$$\tilde{A} = \{(x, y) \mid x \leqslant y\} \subseteq L \times \mathcal{B}(L),$$

HAUSDORFF EN Frm 00000000000000

donde

$$\mathcal{B}(L) = \{ x \in A \mid x = \neg \neg x \} = \{ x^* \mid x \in L \}$$

Observaciones:

• A es Hausdorff $\Rightarrow \tilde{A}$ es Hausdorff.

 $A \in \mathbf{Frm}$ y sea

$$\tilde{A} = \{(x, y) \mid x \leqslant y\} \subseteq L \times \mathcal{B}(L),$$

HAUSDORFF EN Frm

donde

$$\mathcal{B}(L) = \{ x \in A \mid x = \neg \neg x \} = \{ x^* \mid x \in L \}$$

- A es Hausdorff $\Rightarrow \tilde{A}$ es Hausdorff.
- $A \text{ compacto} \Rightarrow \tilde{A} \text{ compacto}$.

 $A \in \mathbf{Frm}$ y sea

$$\tilde{A} = \{(x, y) \mid x \leqslant y\} \subseteq L \times \mathcal{B}(L),$$

HAUSDORFF EN Frm

donde

$$\mathcal{B}(L) = \{ x \in A \mid x = \neg \neg x \} = \{ x^* \mid x \in L \}$$

- A es Hausdorff $\Rightarrow \tilde{A}$ es Hausdorff.
- $A \text{ compacto} \Rightarrow \tilde{A} \text{ compacto}$.
- A no es subajustado.

 $A \in \mathbf{Frm}$ y sea

$$\tilde{A} = \{(x, y) \mid x \leqslant y\} \subseteq L \times \mathcal{B}(L),$$

HAUSDORFF EN Frm

donde

$$\mathcal{B}(L) = \{ x \in A \mid x = \neg \neg x \} = \{ x^* \mid x \in L \}$$

- A es Hausdorff $\Rightarrow \tilde{A}$ es Hausdorff.
- $A \text{ compacto} \Rightarrow \tilde{A} \text{ compacto}$.
- A no es subajustado.
- \tilde{A} es Hausdorff y compacto, pero no regular.

Fuertemente Hausdorff

[Isbell (1972)]

Esta noción sugiere ver T_2 en marcos como algo similar a T_2 espacial.

Fuertemente Hausdorff

[Isbell (1972)]

Esta noción sugiere ver T_2 en marcos como algo similar a T_2 espacial.

HAUSDORFF EN Frm

Proposición:

S es T, $\Leftrightarrow \Delta = \{(x, x) \in (S \times S) \mid x \in S\}$ es cerrada en $S \times S$.

Fuertemente Hausdorff

[Isbell (1972)]

Esta noción sugiere ver T_2 en marcos como algo similar a T_2 espacial.

Proposición:

$$S$$
 es $T_2 \Leftrightarrow \Delta = \{(x, x) \in (S \times S) \mid x \in S\}$ es cerrada en $S \times S$.

La caracterización anterior es traducida para el producto de locales (coproducto de marcos).

Definición:

Sea L un local. Consideramos el coproducto binario $L \oplus L$. Decimos que un marco es fuertemente Hausdorff si y solo si el sublocal diagonal $\Delta[L]$ es cerrado en $L \oplus L$.

Definición:

Sea L un local. Consideramos el coproducto binario $L \oplus L$. Decimos que un marco es fuertemente Hausdorff si y solo si el sublocal diagonal $\Delta[L]$ es cerrado en $L \oplus L$.

HAUSDORFF EN Frm

La propiedad enunciada en la definición anterior puede ser reescrita de la siguiente manera.

$$(\mathbf{fH}) \quad \Delta[L] = \uparrow d_L,$$

donde d_L es el menor elemento de $\Delta[L]$, es decir,

$$d_L = \Delta(o) = \{(x, y) \mid x \land y \leqslant o\} = \downarrow \{(x, x^*) \mid x \in L\}.$$

• Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.

HAUSDORFF EN Frm 00000000000000

• Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.

HAUSDORFF EN Frm 000000000000000

• $(\mathbf{fH}) \Rightarrow (\mathbf{H})$.

• Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.

HAUSDORFF EN Frm 0000000000000000

- $(\mathbf{fH}) \Rightarrow (\mathbf{H})$.
- $(\mathbf{fH}) + \text{compacto} \Rightarrow (\mathbf{reg})$.

- Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.
- $(\mathbf{fH}) \Rightarrow (\mathbf{H})$.
- $(\mathbf{fH}) + \text{compacto} \Rightarrow (\mathbf{reg})$.
- Sean S un espacio T_0 y OS un marco fuertemente Hausdorff. Entonces S es T_2 .

HAUSDORFF EN Frm

- Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.
- $(\mathbf{fH}) \Rightarrow (\mathbf{H})$.
- $(\mathbf{fH}) + \text{compacto} \Rightarrow (\mathbf{reg})$.
- Sean S un espacio T_o y OS un marco fuertemente Hausdorff. Entonces S es T_2 .

HAUSDORFF EN Frm

• $(\mathbf{H}) + (\mathbf{saju}) \Rightarrow (\mathbf{fH}).$

- Cada sublocal de un marco fuertemente Hausdorff es fuertemente Hausdorff.
- $(\mathbf{fH}) \Rightarrow (\mathbf{H})$.
- $(\mathbf{fH}) + \text{compacto} \Rightarrow (\mathbf{reg})$.
- Sean S un espacio T_o y OS un marco fuertemente Hausdorff. Entonces S es T_2 .

HAUSDORFF EN Frm

- $(\mathbf{H}) + (\mathbf{saju}) \Rightarrow (\mathbf{fH}).$
- $(reg) \Rightarrow (fH)$.

Hausdorff punteados

[Rosicky y Smarda (1985)]

Esta noción sugiere ver T_2 como una propiedad relaciona con T_1 en marcos.

HAUSDORFF EN Frm

Hausdorff punteados

[Rosicky y Smarda (1985)]

Esta noción sugiere ver T_2 como una propiedad relaciona con T_1 en marcos.

HAUSDORFF EN Frm

Recordemos que

 (T_1) Todo elemento primo en A es máximo.

Hausdorff punteados

[Rosicky y Smarda (1985)]

Esta noción sugiere ver T_2 como una propiedad relaciona con T_1 en marcos.

HAUSDORFF EN Frm

Recordemos que

 (T_1) Todo elemento primo en A es máximo.

Definición:

Decimos que un marco A es Hausdorff punteado si cumple la siguiente propiedad

Todo elemento semiprimo en A es máximo.

HAUSDORFF EN Frm 000000000000000

Observaciones:

• S es T_2 (espacial) $\Leftrightarrow OS$ es (**Hp**).

HAUSDORFF EN Frm 000000000000000

- S es T_2 (espacial) $\Leftrightarrow OS$ es (**Hp**).
- $(\mathbf{H}) \Rightarrow (\mathbf{H}\mathbf{p})$.

HAUSDORFF EN Frm 000000000000000

- S es T_2 (espacial) $\Leftrightarrow OS$ es (**Hp**).
- \bullet (H) \Rightarrow (Hp).
- ¿Qué pasaría si tenemos (Hp) + (saju)?

- S es T_2 (espacial) $\Leftrightarrow OS$ es (**Hp**).
- \bullet (H) \Rightarrow (Hp).
- ¿Qué pasaría si tenemos (Hp) + (saju)?
- **(Hp)** caracteriza a algunos marcos espaciales.

HAUSDORFF EN Frm

- S es T_2 (espacial) $\Leftrightarrow OS$ es (**Hp**).
- \bullet (H) \Rightarrow (Hp).
- ¿Qué pasaría si tenemos (Hp) + (saju)?
- (**Hp**) caracteriza a algunos marcos espaciales.

HAUSDORFF EN Frm

• No existe mas información sobre (**Hp**).

(fH)

(reg)

$$(reg) \longrightarrow (H) + (saju) \longrightarrow (H) \longrightarrow T$$

En resumen

Axioma/Comportamiento	C.	1°	2°	S. H.	C. S. E.
(dH)	X	√	X	X	X
(H)	√	√	X	√	X
(Hp)	\checkmark	√	X	√	?
(fH)	X	X	√	\checkmark	\checkmark

- **C.**= Propiedad conservativa
- **S. H.**= Suficientemente Huasdorff
- C. S. E.= Comportamiento similar al espacial

• T_2 (D. y S.) no es suficientemente Hausdorff.

- T_2 (D. y S.) no es suficientemente Hausdorff.
- (**H**) podría ser un muy buen acercamiento a T_2 .

- T₂ (D. y S.) no es suficientemente Hausdorff.
- (**H**) podría ser un muy buen acercamiento a T_2 .
- (**fH**) reúne los aspectos espaciales, pero es complicado trabajar con ella.

- T₂ (D. y S.) no es suficientemente Hausdorff.
- (**H**) podría ser un muy buen acercamiento a T_2 .
- (**fH**) reúne los aspectos espaciales, pero es complicado trabajar con ella.
- (**Hp**) necesita ser aun explorada.

- T₂ (D. y S.) no es suficientemente Hausdorff.
- (**H**) podría ser un muy buen acercamiento a T_2 .
- (**fH**) reúne los aspectos espaciales, pero es complicado trabajar con ella.
- (**Hp**) necesita ser aun explorada.
- No podemos concluir con certeza cual noción Hausdorff en marcos es "la mejor".

©Gracias por su atención©

References I

- H. Dowker and D. Strauss, Separation axioms for frames. In topics in topology, pp. 223-240. Proc. Colloq., Keszthely, 1992.
- J. R. Isbell, Atomless parts of spaces. Math. Scand. 31 (1972) 5-32.
- P. T. Johnstone, *Stone spaces*, Cambridge Studies in Advanced Mathematics, vol. 3, Cambridge University Press, Cambridge, 1982. MR 698074

References II

- P.T. Johnstone, S.-H. Sun, Weak products and Hausdorff locales. In: Categorical algebra and its applications, pp. 173-193. Lecture notes in mathematics, vol. 1348. Springer-Verlag, Berlin, 1988.
- J. Monter; A. Zaldívar, El enfoque locálico de las reflexiones booleanas: un análisis en la categoría de marcos [tesis de maestría], 2022. Universidad de Guadalajara.

References III

- \blacksquare J. Paseka, B. Smarda, T_2 -frames and almost compact frames. Czechoslovak Math. J. 42 (1992) 297-313.
- J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, Springer Basel, 2012.
- J. Picado and A. Pultr, Separation in point-free topology, Springer, 2021.
- J. Rosicky, B. Smarda, *T*₁-locales. Math. Proc. Cambridge Philos. Soc. 98 (1985) 81-86.

References IV

- Harold Simmons, *The assembly of a frame*, University of Manchester (2006).
- Harold Simmons, The lattice theoretic part of topological separation properties, Proceedings of the Edinburgh Mathematical Society (1978), vol. 21, no 1, p. 41-48.
- A. Zaldívar, *Introducción a la teoría de marcos* [notas curso], 2024. Universidad de Guadalajara.

Sábados de T.A.C.O.S.

(TOPOLOGÍA, ÁLGEBRA, CATEGORÍAS Y ESTRUCTURAS ORDENADAS)

Dirigido a

Estudiantes de licenciatura y posgrado con interes en T.A.C.O.S.

Sábado

12:30-14:00hrs horario del centro de México

Seminario virtual a través de la plataforma Google Meet

Enlace de reuniones: https://meet.google.com/ttj-rdox-hww

> Únete a nuestro canal de difusión en WhatsApp

Seminario e investigación apoyada por el proyecto CONAHCYT CBF2023-2024-2630

Más información: juan.monter2902@alumnos.udg.mx

Dirección de Apoyo a la Investigación