Tight Lower Bounds for Problems Parameterized by Rank-width

Séminaire ALGCO, LIRMM, December 1

Benjamin Bergougnoux, University of Warsaw

Feat Tuukka Korhonen and Jesper Nederlof

University of Bergen

University of Eindhoven

Recursively decompose a graph into simple cuts

Branch-decomposition: recursively cut the vertex set in two

Recursively decompose a graph into simple cuts

Branch-decomposition: recursively cut the vertex set in two

Recursively decompose a graph into simple cuts

Branch-decomposition: recursively cut the vertex set in two

Simplicity of cuts is measured with a cut function $f: cut \to \mathbb{N}$.

Different notions of **simplicity** = different **width parameters**.

Width of a decomposition $D = \max f(\text{cut})$ over the cuts of D.

Width of a graph = min widths of its decompositions.

Width of a graph class = max widths of its graphs.

Module-width [Rao, 2006]

Defined from $mw(A) := |\{N(v) \cap \overline{A} \mid v \in A\}|.$

Linearly equivalent to clique-width!

Theorem [Rao, 2006]

For all graphs G, we have $mw(G) \leq cw(G) \leq 2mw(G)$.

Rank-width [Oum, 2006]

Defined from $rw(A) := the rank of the adjacency matrix between A and <math>\overline{A}$ over the binary field.

Equivalent to clique-width!

Theorem [Oum, 2006]

For all cut (A, \overline{A}) , we have $rw(A) \leq mw(A) \leq 2^{rw(A)} + 1$.

Mim-width [Vatshelle, 2012]

Defined from mim(A) := size of a maximum induced matching in the bipartite graph between A and \overline{A} .

Theorem [Vatshelle, 2012]

For all cut (A, \overline{A}) , we have $mim(A) \leq rw(A)$.

Maximum matching width [Vatshelle, 2012]

Defined from mmw(A) := size of a maximum matching in the bipartite graph between A and \overline{A} .

Linearly equivalent to tree-width!

Theorem [Vatshelle, 2012]

For all graph G, we have $\frac{1}{3}$ tw $(G)+1 \leq mmw(G) \leqslant tw(G)$.

Maximum matching width [Vatshelle, 2012]

Defined from mmw(A) := size of a maximum matching in the bipartite graph between A and \overline{A} .

Theorem [Vatshelle, 2012]

For all cut (A, \overline{A}) , we have $mim(A) \leq rw(A) \leqslant mmw(A)$.

Comparing widths

Modeling power

Algorithmic applications

- Complexity of computing a good decomposition
 - NP-hardness everywhere
 - We know efficient FPT approximation algorithms for tree-width and rank-width

Modeling Power

Modeling Power

Computing Good Decomposition

Theorem [Oum and Seymour, 2006]

Rank-width can be **3-approximated** in time $8^{rw}n^{O(1)}$.

Theorem [Korhonen and Fomin, 2021]

Rank-width can be **2-approximated** in time $2^{2^{O(rw)}}n^2$.

rw(A) is symmetric and submodular

$$rw(X) + rw(Y) \ge rw(X \cap Y) + rw(X \cup Y)$$

Meta-Algorithmic Applications

mim-width A&C DN

twin-width

FO

clique-width

rank-width

 MSO_1

treewidth

mm-width

 MSO_2

Efficient Algorithms

Theorem [Oum, 2006]

For all cut (A, \overline{A}) , we have $mw(A) \leq 2^{rw(A)} + 1$.

• $2^{O(cw)}n^{O(1)}$ time algo. $\Rightarrow 2^{2^{O(rw)}}n^{O(1)}$ time algo.

Efficient Algorithms

Theorem [Oum, 2006]

For all cut (A, \overline{A}) , we have $mw(A) \leq 2^{rw(A)} + 1$.

• $2^{O(\text{cw})} n^{O(1)}$ time algo. $\Rightarrow 2^{2^{O(\text{rw})}} n^{O(1)}$ time algo.

Theorem [Bui-Xuan, Telle and Vatshelle, 2010] Independent Set and Dominating Set can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Efficient Algorithms

Theorem [Oum, 2006]

For all cut (A, \overline{A}) , we have $mw(A) \leq 2^{rw(A)} + 1$.

• $2^{O(\text{cw})} n^{O(1)}$ time algo. $\Rightarrow 2^{2^{O(\text{rw})}} n^{O(1)}$ time algo.

Theorem [Bui-Xuan, Telle and Vatshelle, 2010] Independent Set and Dominating Set can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Theorem [Ganian and Hliněný 2010]

Feedback Vertex Set can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Generalizations

Problems that can be solved in time $2^{O(rw^2)}n^{O(1)}$

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET MAX. INDUCED MATCHING

DOMINATING SET PERFECT CODE

INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Locally Checkable Vertex Partitioning (LCVP)

k-Coloring Odd Cycle Transversal H-Homomorphism Perfect Matching Cut H-Covering \cdots

[Bui-Xuan, Telle and Vatshelle, 2013]

Generalizations

Problems that can be solved in time $2^{O(rw^2)}n^{O(1)}$

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET MAX. INDUCED MATCHING

DOMINATING SET PERFECT CODE

INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Locally Checkable Vertex Partitioning (LCVP)

k-Coloring Odd Cycle Transversal H-Homomorphism Perfect Matching Cut H-Covering \cdots

[Bui-Xuan, Telle and Vatshelle, 2013]

CONNECTED, ACYCLIC LCVS
CONNECTED, ACYCLIC LCVP

CONNECTED DOMINATING SET FEEDBACK VERTEX SET

CONNECTED VERTEX COVER LONGEST INDUCED PATH

[Bergougnoux and Kante, 2019]

Generalizations

Problems that can be solved in time $2^{O(rw^2)}n^{O(1)}$

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET MAX. INDUCED MATCHING

DOMINATING SET PERFECT CODE

INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Locally Checkable Vertex Partitioning (LCVP)

k-Coloring Odd Cycle Transversal H-Homomorphism Perfect Matching Cut H-Covering \cdots

[Bui-Xuan, Telle and Vatshelle, 2013]

A&C DN

[Bergougnoux, Dreier and Jaffke, 2022+]

CONNECTED, ACYCLIC LCVS
CONNECTED, ACYCLIC LCVP

CONNECTED DOMINATING SET FEEDBACK VERTEX SET

CONNECTED VERTEX COVER LONGEST INDUCED PATH

[Bergougnoux and Kante, 2019]

Lower Bounds

ETH (roughly) [Impagliazzo and Paturi, 2001] There is no $2^{o(n)}n^{O(1)}$ time algorithm for 3-CNF SAT.

Linear reductions [Folklore]

Under ETH, there is no $2^{o(n)}n^{O(1)}$ time algorithm for:

- Independent Set
- Dominating Set
- Maximum Induced Matching
- Feedback Vertex Set

• ...

Lower Bounds

ETH (roughly) [Impagliazzo and Paturi, 2001]

There is no $2^{o(n)}n^{O(1)}$ time algorithm for 3-CNF SAT.

Linear reductions [Folklore]

Under ETH, there is no $2^{o(n)}n^{O(1)}$ time algorithm for...

$$\mathsf{tw}, \mathsf{cw}, \mathsf{rw} \leqslant n$$

Corrolary

For each $k \in \{\text{tw}, \text{cw}, \text{rw}\}$, under ETH, there is no $2^{o(k)} n^{O(1)}$ time algorithm for

- Independent Set
- ...

Results on Independet Set

Upper bound	ETH lower bound
$2^{O(k)}n^{O(1)}$ [Folklore]	$2^{o(k)}n^{O(1)}$ [Folklore]
$2^{O(k^2)}n^{O(1)}$ [Bui-Xuan et al., 2012]	$2^{o(k)}n^{O(1)}$ [Folklore]
$n^{O(k)}$	$n^{o(k/\log k)}$ [Bakkane and Jaffke, 2022+]
	$2^{O(k)}n^{O(1)}$ [Folklore] $2^{O(k^2)}n^{O(1)}$ [Bui-Xuan et al., 2012]

Results on Independet Set

Best known:	Upper bound	ETH lower bound
tree-width clique-width	$2^{O(k)}n^{O(1)}$ [Folklore]	$2^{o(k)}n^{O(1)}$ [Folklore]
rank-width	$2^{O(k^2)} n^{O(1)}$ [Bui-Xuan et al., 2012]	$2^{o(k^2)} n^{O(1)}$ [Us, 2022+]
mim-width	$n^{O(k)}$	$n^{o(k/\log k)}$
	[Bui-Xuan et al., 2013]	[Bakkane and Jaffke, 2022+]

Our results

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for

- Independent Set
- Weighted Dominating Set
- Maximum Induced Matching
- Feedback Vertex Set

The best known algorithms for these problems are **optimal** under ETH.

Holds also for linear rank-width

Algo. for Independent Set

Theorem [Bui-Xuan, Telle and Vatshelle, 2010] Independent Set can be solved in time $2^{O(rw^2)}n^{O(1)}$.

Theorem [Bui-Xuan, Telle and Vatshelle, 2013]

There is an algorithm for IS whose runtime is upper bounded by

- $2^{O(tw)} \cdot n^{O(1)}$
- $2^{O(cw)} \cdot n^{O(1)}$
- $2^{O(rw^2)} \cdot n^{O(1)}$
- *n*^{O(mim)}

- For a cut (A, \overline{A}) , partial solutions = independent sets of G[A]
- lacktriangle Two partial solutions $X, W \subseteq A$ are **equivalent** if

- lacktriangle For a cut (A, \overline{A}) , partial solutions = independent sets of G[A]
- lacktriangle Two partial solutions $X, W \subseteq A$ are equivalent if

For every pair X, W of **equivalent** partial solutions and $Y \subseteq \overline{A}$

 $X \cup Y$ is a solution $\iff W \cup Y$ is a solution

For every cut (A, \overline{A}) and each equivalence class C compute a partial solution $X \in C$ of maximum size.

Theorem [Vatshelle, 2013]

The nb. of eq. classes $|N(X) \cap \overline{A} \mid X \subseteq A\}|$ is at most

- $2^{\text{mmw}(A)}$
- $2^{mw(A)}$
- $2^{\text{rw}(A)^2}$
- $n^{\min(A)}$

For every cut (A, \overline{A}) and each equivalence class C compute a partial solution $X \in C$ of maximum size.

Theorem [Bui-Xuan, Telle and Vatshelle, 2013]

The running time of this algorithm is upper bounded by

- $2^{O(tw)} \cdot n^{O(1)}$
- $2^{O(cw)} \cdot n^{O(1)}$
- $2^{O(rw^2)} \cdot n^{O(1)}$
- *n*^{O(mim)}

This is tight under ETH for clique-width, tree-width and rank-width!

Lower bound

Theorem [B., Korhonen and Nederlof, 2022+] Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Independent Set

Universal rank cuts

Universal 2k-rank cut

- $A := \{a_s \mid s \subseteq [2k]\}$
- $B := \{b_s \mid s \subseteq [2k]\}$
- a_s and b_t are adjacent if and only if $|s \cap t|$ is **odd**

Universal rank cuts

The universal 2k-rank cut has rank-width 2k

Theorem [Bui-Xuan, Telle and Vatshelle, 2010]
The universal 2k-rank cut is the unique (inclusion-wise)

maximal cut of rank 2k with no twin vertices

Universal rank cuts

The universal 2k-rank cut has rank-width 2k

Theorem [Bui-Xuan, Telle and Vatshelle, 2010]

The universal 2k-rank cut is the unique (inclusion-wise) maximal cut of rank 2k with no twin vertices

Theorem [Bui-Xuan, Telle and Vatshelle, 2011]

$$|\{N(X)\cap B\mid X\subseteq A\}|=2^{\Omega(k^2)}$$

Overview

Reduction from 3-CNF SAT with k^2 variables

Lemma

Under ETH, there is no $2^{o(k^2)}(k+m)^{O(1)}$ time algorithm for 3-CNF SAT with k^2 variables

Universal 2k-rank cut

- $A := \{a_s \mid s \subseteq [2k]\}$
- $\bullet \ B := \{b_s \mid s \subseteq [2k]\}$
- a_s and b_t are adjacent if and only if $|s \cap t|$ is **odd**

$$var(\varphi) := \{v_{i,j} \mid i \in [k] \land j \in [k+1,2k]\}$$

with
$$k = 3$$
 $V_{1,4}$ $V_{1,5}$ $V_{1,6}$
 $V_{2,4}$ $V_{2,5}$ $V_{2,6}$
 $V_{3,4}$ $V_{3,5}$ $V_{3,6}$

Every **interpretation** $f: \text{var}(\varphi) \to \{0,1\}$ is associated with $X_f \subseteq A$

$$X_f = \{a_{s_1}, \dots, a_{s_k}\}$$

 $s_i = \{i\} \cup \{j \in [k+1, 2k] \mid f(v_{i,j}) = 1\}$

$$var(\varphi) := \{v_{i,j} \mid i \in [k] \land j \in [k+1,2k]\}$$

Every **interpretation** $f: \text{var}(\varphi) \to \{0,1\}$ is associated with $X_f \subseteq A$

$$X_f = \{a_{s_1}, \dots, a_{s_k}\}$$

 $s_i = \{i\} \cup \{j \in [k+1, 2k] \mid f(v_{i,j}) = 1\}$

Lemma

For every pair of distinct interpretations f, g, the neighborhoods of X_f and X_g

- are different
- have the same size $(2^{2k} 2^k)$

For every $i \in [k]$, let $A_i = \{a_s \in A^{2k} \mid s \cap [k] = \{i\}\}$ and

$$A'=A_1\cup\cdots\cup A_k$$
.

Lemma

Every maximal independent set of G[A'] is of the form X_f with f an interpretation

Clause gadget = a triangle and some edges with a copy of A'

Lemma

f satisfies C iff X_f can be completed with one vertex from the clause gadget

 φ is satisfiable iff there exists an independent set of weight W

Our result

- The linear rank-width of this graph is at most 2k + 4.
- This graph has $2^{O(k)}m$ vertices and can be constructed in $2^{O(k)}m$ time.

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Independent Set

Other problems

Given a graph G, we can construct G' such that $rw(G') \leq rw(G) + 1$ and the following are equivalent:

- G has an independent set of size k
- G' has an induced matching of size k
- G' has an induced forest of size 2k

Theorem [B., Korhonen and Nederlof, 2022+] Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for Max. Induced Matching and FVS.

Dominating Set

Theorem [B., Korhonen and Nederlof, 2022+]

Under ETH, there are no $2^{o(rw^2)}n^{O(1)}$ time algorithms for **Weighted** Dominating Set.

Boolean-width [Bui-Xuan, Telle, and Vatshelle, 2011] Defined from boolw(A) := $\log_2 |\{N(X) \cap \overline{A} \mid X \subseteq A\}|$.

Equivalent to clique-width and rank-width!

Theorem [Bui-Xuan, Telle, and Vatshelle, 2011] For all graph G, we have $\log_2 rw \leq boolw \leq O(rw^2)$.

Theorem [B., Korhonen and Nederlof, 2022+]

There are graphs with rank-width k and boolean-width $\Omega(k^2)$ for arbitrary large k.

Conclusion

First non-trivial ETH lower bounds for rank-width

Using $|\{N(X) \cap \overline{A} \mid X \subseteq A\}|$ leads to optimal algorithms for many width measures (tree-width, clique-width and rank-width) for several problems!

Theorem [Belmonte and Sau, 2021]

Some problems based on parity can be solved in time $2^{O(rw)}n^{O(1)}$.

Open questions

What about:

- Unweighted Dominating Set? (2^{O(rw²)}n^{O(1)})
- q-Coloring? (2^{O(qrw²)}n^{O(1)})
 Chromatic Number? (n^{2^{O(rw²)}})

We need tight lower bounds for mim-width and Independent Set!

$$n^{O(k)}$$
 $n^{o(k/\log k)}$ [Bui-Xuan et al., 2013] [Bakkane and Jaffke, 2022+]

Thank you!

