Challenges in Standards-Based Interoperability for Digital Twins

Georg Grossmann, Karamjit Kaur, Matt Selway, Markus Stumptner UniSA STEM – Industrial Al

Support for Lifecycle in Asset Management

https://www.pwc.com/ca/en/services/consulting/operations/asset-life-management.html

- Start at planning and design
- Up to the point where asset is decommissioned
- In our context: asset "life" much longer than information systems (30+ years)
- In Digital Twins: often focus on operate and maintain

The need for interoperability

The need for interoperability

The need for interoperability – semantics!

The need for interoperability – semantics!

Standards Landscape

Standards Landscape for Digital Twins

	AAS	DTDL	NGSI-LD	OData	STA	WoT
Resource Description						
Resource Term	Asset	Interface	Entity	Entity	Thing	Thing
Model Type(s)	Meta	Meta	Meta Cross-Domain	Meta	Cross-Domain	Meta
Resource Identification	IRI IRDI custom	DTMI	URI	URL custom	URL custom	URI
Type System (based on)	XSD	custom	JSON GeoJSON JSON-LD	custom	JSON SWE-standards	JSON JSON Schema
Resource Interlinking	X	X	X	X	_ a	X
Semantic Annotation Resource Elements	X	Ор	X	-	Oc	X
Properties	X	X	Χ	X	X	X
Services	Χ	X	_	O d	O	X
Events	Χ	X	O e	_	O e	X
Serialization Format	JSON RDF XML OPC UA AutomationML	JSON RDF Avro Protobuf	JSON RDF	JSON XML	JSON	JSON RDF
Supported Kind of Data						
geo-spatial	-	-	X	X	X	-
temporal	-	-	X	X	X	-
historical	-	-	X	-	O f	-

Jacoby and Uslaender in Appl. Sci. 2020, 10(18), 6519; https://doi.org/10.3390/app10186519

Need for Model-Driven Engineering Approach

- Understanding
- Abstraction
- Specify a common ground for interoperability
- Verification
- Reasoning

Introduction to ISO 15926

D. Leal, ISO 15926 "Life-cycle Data for Process Plant": An Overview. Oil & Gas Science and Technology 60 (4) 2005, pp. 629 – 637.

Example on the right:
A Slurry Pump Impeller with serial number XXX is part of a Weir MC Series Centrifugal Pump with serial number XYZ.

Application of Multi-Level Modelling

Example:

A Slurry Pump Impeller with serial number XXX is part of a Weir MC Series Centrifugal Pump with serial number XYZ.

Benefits of an MDE Approach

- Simplify understanding of standards
- Identify inconsistencies from Software Engineering point of view
- Different end users: separation of concerns
- Matching: reducing the number of matching candidates
- Different languages: explicit representation through linguistic dim.
- Extensibility: simplified by separation of concerns

Challenges

- Standards evolve over time
 - Impact of change
 - Guidance in adapting change
 - Self-adaptive metamodels?

Traceability

- Temporal aspect
- Keeping track of change
 - What happened when? Metamodel/Model/Data level

Thank you

