HUST

ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

ONE LOVE. ONE FUTURE.

PLANNING OPTIMIZATION

Linear Programming

ONE LOVE. ONE FUTURE.

CONTENT

- Linear programs
- Geometric approach
- Simplex method
- Two-phase simplex method

Standard form

$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \le b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \le b_2$$

$$\dots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \le b_m$$

$$x_1, x_2, \dots x_n \in R, x_1, x_2, \dots x_n \ge 0$$

- Standardize general linear programs
 - $f(x) \rightarrow \min \Leftrightarrow -f(x) \rightarrow \max$
 - $g(x) \ge b \Leftrightarrow -g(x) \le -b$
 - $A = B \Leftrightarrow (A \leq B)$ and $(-A \leq -B)$
 - A variable $x_j \in R$ can be represented by $x_j = x_j^+ x_j^-$ where $x_j^+, x_j^- \ge 0$

• Example: Convert a general linear program forms into standard form

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \min$$

 $2x_1 + x_2 \le 7$
 $x_1 + 2x_2 = 8$
 $x_1 - x_2 \ge 2$
 $x_1, x_2 \in \mathbb{R}, x_2 \ge 0$

- Example: Convert a general linear program forms into standard form
 - Substitution: $x_1 = x_1^+ x_1^-$

$$f(x_1^+, x_1^-, x_2) = -3 x_1^+ + 3x_1^- - 2x_2 \rightarrow \max$$

$$2 x_1^+ - 2x_1^- + x_2 \le 7$$

$$x_1^+ - x_1^- + 2x_2 \le 8$$

$$- x_1^+ + x_1^- - 2x_2 \le -8$$

$$- x_1^+ + x_1^- + x_2 \le -2$$

$$x_1^+, x_1^-, x_2 \in R, x_1^+, x_1^-, x_2 \ge 0$$

- Constraints (inequalities) form a feasible region
- Optimal points will be one of the corners of the feasible region

$$f(x_{1}, x_{2}) = 3x_{1} + 2x_{2} \rightarrow \max$$

$$2x_{1} + x_{2} \leq 7$$

$$x_{1} + 2x_{2} \leq 8$$

$$x_{1} - x_{2} \leq 2$$

$$x_{1}, x_{2} \geq 0$$

$$f(x_{1}, x_{2}) = 3x_{1} + 2x_{2} \rightarrow \max$$

$$2x_{1} + x_{2} \leq 7$$

$$x_{1} + 2x_{2} \leq 8$$

$$x_{1} - x_{2} \leq 2$$

$$x_{1}, x_{2} \geq 0$$

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \max$$

$$2x_1 + x_2 \le 7$$

$$x_1 + 2x_2 \le 8$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$

- Special cases
 - Problem does not have optimal solutions
 - Problem does not have feasible solutions

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \max$$

$$-2x_1 - x_2 \le -7$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \in \mathbb{R}, x_1, x_2 \ge 0$$

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \max$$

$$2x_1 + x_2 \le 7$$

$$-4x_1 - 2x_2 \le -16$$

$$x_1, x_2 \in \mathbb{R}, x_1, x_2 \ge 0$$

Exercise

- A company must decide to make a plan to produce 2 products P1, P2.
 - The revenue received when selling 1 unit of P1 and P2 are respectively 5\$ and 7\$
 - The manufacturing cost when producing P1 and P2 are respectively 5\$ and 3\$
 - The storage cost in warehouses for 1 unit of P1 and P2 are respectively 2\$ and 3\$
- Compute the production plan so that
 - Total manufacturing cost is less than or equal to 200\$
 - Total storage cost is less than or equal to 150\$
 - Total revenue is maximal

• Standard form to standard equational form by adding slack variables y_1, y_2, \ldots, y_m

Standard form

$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \le b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \le b_2$$

$$\dots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \ldots + a_{m,n}x_n \le b_m$$

 $x_1, x_2, \ldots x_n \in R, x_1, x_2, \ldots x_n \ge 0$

Standard equality form

$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n + y_1 = b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n + y_2 = b_2$$

$$\dots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n + y_m = b_m$$

$$x_1, x_2, \dots x_n \in R, x_1, x_2, \dots x_n, y_1, y_2, \dots, y_m \ge 0$$

• Consider a Linear Program (LP) under a standard equational form

Standard equational form

max
$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n = b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n = b_2$$

$$\dots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n = b_m$$

 $x_1, x_2, \ldots x_n \in R, x_1, x_2, \ldots x_n \ge 0$

Standard equality form

$$f(x) = c^{\mathsf{T}}x \implies \max$$
$$Ax = b$$
$$x \ge 0$$

- Consider a Linear Program (LP) under a standard equational form
- Suppose rank(A) = m
- Let B be the matrix of m linearly independent columns (indexed $j_1, j_2, ..., j_m$) of A: $B = (A(j_1), A(j_2), ..., A(j_m))$
 - Solution x is called a basic solution if :
 - $x_i = 0$ for $j \in \{1, 2, ..., n\} \setminus \{j_1, j_2, ..., j_m\}$
 - Remain variables are found by solving this equation:

$$\begin{pmatrix}
a_{1,j_1} & a_{1,j_2} & \dots & a_{1,j_m} \\
a_{2,j_1} & a_{2,j_2} & \dots & a_{2,j_m} \\
\dots & \dots & \dots & \dots \\
a_{m,j_1} & a_{m,j_2} & \dots & a_{m,j_m}
\end{pmatrix}
\begin{pmatrix}
x_{j_1} \\
x_{j_2} \\
\dots \\
x_{j_m}
\end{pmatrix} = \begin{pmatrix}
b_1 \\
b_2 \\
\dots \\
b_m
\end{pmatrix}$$

$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n = b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n = b_2$$

$$\dots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n = b_m$$

$$x_1, x_2, \dots x_n \in R, x_1, x_2, \dots x_n \ge 0$$

- Let B be the matrix of m linearly independent columns (indexed j_1, j_2, \ldots, j_m) of A: $B = (A(j_1), A(j_2), \ldots, A(j_m))$
 - Solution x is called a basic solution if :
 - $x_j = 0$ for $j \in \{1, 2, ..., n\} \setminus \{j_1, j_2, ..., j_m\}$
 - Remain variables are found by solving this equation:

$$\begin{pmatrix}
a_{1,j_1} & a_{1,j_2} & \dots & a_{1,j_m} \\
a_{2,j_1} & a_{2,j_2} & \dots & a_{2,j_m} \\
\dots & \dots & \dots & \dots \\
a_{m,j_1} & a_{m,j_2} & \dots & a_{m,j_n}
\end{pmatrix}
\begin{pmatrix}
x_{j_1} \\
x_{j_2} \\
\dots \\
x_{j_m}
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\dots \\
b_m
\end{pmatrix}$$

- B is called a basis
- $j_1, j_2, ..., j_m$: basic indices, $j \in \{1, 2, ..., n\} \setminus \{j_1, j_2, ..., j_m\}$ is called non-basic index
- $x_{j_1}, x_{j_2}, \ldots, x_{j_m}$: basic variables and x_j ($j \in \{1, 2, \ldots, n\} \setminus \{j_1, j_2, \ldots, j_m\}$) is called non-basic variable
- A basic solution x with x ≥ 0 is called a basic feasible solution

Consider a linear program under a standard form

$$z = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} \rightarrow \max$$

$$a_{1,1}x_{1} + a_{1,2}x_{2} + \dots + a_{1,n}x_{n} \leq b_{1}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + \dots + a_{2,n}x_{n} \leq b_{2}$$

$$\dots$$

$$a_{m,1}x_{1} + a_{m,2}x_{2} + \dots + a_{m,n}x_{n} \leq b_{m}$$

$$b_{1}, b_{2}, \dots b_{m} \geq 0$$

$$x_{1}, x_{2}, \dots x_{n} \in R, x_{1}, x_{2}, \dots x_{n} \geq 0$$

$$z = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} \rightarrow \max$$

$$a_{1,1}x_{1} + a_{1,2}x_{2} + \dots + a_{1,n}x_{n} + y_{1} = b_{1}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + \dots + a_{2,n}x_{n} + y_{2} = b_{2}$$

$$\dots$$

$$a_{m,1}x_{1} + a_{m,2}x_{2} + \dots + a_{m,n}x_{n} + y_{m} = b_{m}$$

$$b_{1}, b_{2}, \dots b_{m} \ge 0$$

$$x_{1}, x_{2}, \dots x_{n} \in R, x_{1}, x_{2}, \dots x_{n}, y_{1}, y_{2}, \dots, y_{m} \ge 0$$

	1	2		n	n+1	n+2		n+m		
0	<i>X</i> ₁	<i>X</i> ₂	•••	X _n	<i>y</i> ₁	<i>y</i> ₂	•••	y _m	Z	RHS
1	a _{1,1}	a _{1,2}		a _{1,n}	1	0	•••	0	0	b_1
2	a _{2,1}	a _{2,2}		a _{2,n}	0	1	•••	0	0	<i>b</i> ₂
m	<i>a</i> _{m,1}	a _{m,2}		a _{m,n}	0	0		1	0	b_m
m+1	-c ₁	-c ₂	•••	-C _n	0	0	••	0	1	0

	1	2	•••	n	n+1	n+2	•••	n+m	n+m+1	
0	<i>X</i> ₁	<i>X</i> ₂		X _n	<i>X</i> _{n+1}	<i>X</i> _{n+2}		<i>X</i> _{n+m}	Z	RHS
1	$\alpha_{1,1}$	$\alpha_{1,2}$		$\alpha_{1,n}$	$\alpha_{1,n+1}$	$\alpha_{1,n+2}$		$\alpha_{1,n+m}$	$\alpha_{1,n+m+1}$	β_1
2	$\alpha_{2,1}$	$\alpha_{2,2}$		$\alpha_{2,n}$	$\alpha_{2,n+1}$	$\alpha_{2,n+2}$		$\alpha_{2,n+m}$	$\alpha_{2,n+m+1}$	β_2
•••					•••				••	
m	$\alpha_{m,1}$	$\alpha_{m,2}$		$\alpha_{m,n}$	$\alpha_{m,n+1}$	$\alpha_{m,n+2}$		$\alpha_{m,n+m}$	$\alpha_{m,n+m+1}$	β_{m}
m+1	$\alpha_{m+1,1}$	$\alpha_{m+1,2}$		$\alpha_{m+1,n}$	$\alpha_{m+1,n+1}$	$\alpha_{m+1,n+2}$		$\alpha_{m+1,n+m}$	$\alpha_{m+1,n+m+1}$	β_{m+1}

- $J = \{1, 2, ..., n, n+1, ..., n+m\}$
- Maintain linear constraints on each row k (k = 1, 2, ..., m+1):

$$\alpha_{k,1} X_1 + \alpha_{k,2} X_2 + \ldots + \alpha_{k,n} X_n + \alpha_{k,n+1} X_{n+1} + \ldots + \alpha_{k,n+m} X_{n+m} + \alpha_{k,n+m+1} Z = \beta_k$$
 (*)

- Let R_k be a vector containing elements on row k of the table (k = 1, 2, ..., m+1)
- Perform linear transformation below, constraint (*) is still satisfied:
 - Replace $R_k = R_k + \delta^* R_i$ (k, i = 1, 2, ..., m+1), with some constant δ

Optimality

	1	2	•••	m	m+1	m+2	•••	n+m	n+m+1	
0	<i>X</i> ₁	x ₂		X_m	<i>X</i> _{m+1}	<i>X</i> _{m+2}		<i>X</i> _{n+m}	Z	RHS
1	1	0		0	$\alpha_{1,m+1}$	$\alpha_{1,m+2}$		$\alpha_{1,n+m}$	0	β_1
2	0	1		0	$\alpha_{2,m+1}$	$\alpha_{2,m+2}$		$\alpha_{2,n+m}$	0	β_2
m	0	0		1	$\alpha_{m,m+1}$	$\alpha_{m,m+2}$		$\alpha_{m,n+m}$	0	β_{m}
m+1	0	0		0	$\alpha_{m+1,m+1}$	$\alpha_{m+1,m+2}$		$\alpha_{m+1,n+m}$	1	β_{m+1}

- With $\beta_1, \beta_2, ..., \beta_m \ge 0, \exists J_B = \{j_1, j_2, ..., j_m\}$ such that $\alpha_{m+1,j} = 0, \forall j \in J_B, \alpha_{m+1,j} \ge 0 \ \forall j \in J \setminus J_B$, columns $j_1, j_2, ..., j_m \ge 0$ \dots , j_m forms a unit matrix
- Without loss of generality, suppose that $J_B = \{1, 2, ..., n\}$, coefficients $\alpha_{m+1,m+1}, \alpha_{m+1,m+2}, ..., \alpha_{m+1,n+m} \ge 1$ 0, columns 1, ..., m forms a unit matrix: $\alpha_{1,1}, \alpha_{2,2}, \ldots, \alpha_{m,m} = 1$
- Constraint (*) is still satisfied. We have $\alpha_{m+1,m+1}x_{m+1}+\alpha_{m+1,m+2}x_{m+2}+\ldots, \alpha_{m+1,n+m}x_{n+m}+z=\beta_{m+1}$
- $z = \beta_{m+1} (\alpha_{m+1,m+1} x_{m+1} + \alpha_{m+1,m+2} x_{m+2} + \dots, \alpha_{m+1,n+m} x_{n+m}) \le \beta_{m+1}$ (because $\alpha_{m+1,m+1}, \alpha_{m+1,m+2}, \dots, \alpha_{m+1,n+m} x_{n+m} = 0$) $\alpha_{m+1,n+m} \ge 0$ and $x_{m+1}, ..., x_{n+m} \ge 0$).

Optimality

	1	2	•••	m	m+1	<i>m</i> +2	 n+m	n+m+1	
0	<i>X</i> ₁	X ₂		X _m	<i>X</i> _{m+1}	<i>X</i> _{m+2}	 X_{n+m}	Z	RHS
1	1	0	:	0	$\alpha_{1,m+1}$	$\alpha_{1,m+2}$	 $\alpha_{1,n+m}$	0	β_1
2	0	1		0	$\alpha_{2,m+1}$	$\alpha_{2,m+2}$	 $\alpha_{2,n+m}$	0	β_2
•••							 		
m	0	0		1	$\alpha_{m,m+1}$	$\alpha_{m,m+2}$	 $\alpha_{m,n+m}$	0	β_{m}
m+1	0	0		0	$\alpha_{m+1,m+1}$	$\alpha_{m+1,m+2}$	 $\alpha_{m+1,n+m}$	1	β_{m+1}

- Moreover, there exists a solution (nonnegative values for variables $x_1, x_2, ..., x_{n+m}$) described below:
 - $x_1 = \beta_1$, $x_2 = \beta_2$, ..., $x_m = \beta_m$
 - $x_{m+1} = x_{m+2} = \ldots = x_{n+m} = 0$

Satisfying given constraints. Also, the objective value at this solution is equal to the upper bound β_{m+1} . It means that this solution is an optimal solution to the given problem.

Simplex step

	1	2	•••	m	m+1	i	•••	n+m			
0	<i>X</i> ₁	<i>X</i> ₂		X _m	<i>X</i> _{m+1}	 Xi		<i>X</i> _{n+m}	Z	RHS	E
1	1	0		0	$\alpha_{1,m+1}$	 $\alpha_{1,i}$		$\alpha_{1,n+m}$	0	β_1	<i>E</i> ₁
2						 		***			
•••	0	1		0	$\alpha_{k,m+1}$	 $\alpha_{k,i}$		$\alpha_{k,n+m}$	0	β_k	E_k
m	0	0		1	$\alpha_{m,m+1}$	 $\alpha_{m,i}$		$\alpha_{m,n+m}$	0	β_{m}	E_m
m+1	0	0		0	$\alpha_{m+1,m+1}$	 $\alpha_{m+1,i}$		$\alpha_{m+1,n+m}$	1	β_{m+1}	

- Select column *i* such that the element on row m+1 (which is $\alpha_{m+1,i}$) is negative minimal
- Compute evaluations (column E): $E_j = +\infty$, if $\alpha_{j,i} \le 0$, and $E_j = \frac{\beta_j}{\alpha_{j,i}}$, if $\alpha_{j,i} > 0$, j = 1, 2, ..., m
- Select the row k such that E_k is minimal: if $E_k = +\infty$, then the problem is unbounded, otherwise
 - Update:
 - Row $R_k = R_k / \alpha_{k,i}$
 - Row $R_i = R_i \alpha_{i,j} * R_k$, $j = \{1, 2, ..., m+1\} \setminus \{k\}$

$$z = 3x_1 + 2x_2 \to \max$$

$$2x_1 + x_2 \le 7$$

$$x_1 + 2x_2 \le 8$$

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \in R, x_1, x_2 \ge 0$$

$$z = 3x_1 + 2x_2 \rightarrow \max$$

$$2x_1 + x_2 + x_3 = 7$$

$$x_1 + 2x_2 + x_4 = 8$$

$$x_1 - x_2 + x_5 = 2$$

$$x_1, x_2, x_3, x_4, x_5 \in R, x_1, x_2, x_3, x_4, x_5 \ge 0$$

X ₁	x ₂	<i>X</i> ₃	X ₄	X ₅	Z	RHS	E
2	1	1	0	0	0	7	
1	2	0	1	0	0	8	
1	-1	0	0	1	0	2	
-3	-2	0	0	0	1	0	

Example

1

2

3

1

X ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	Z	RHS	E
2	1	1	0	0	0	7	
1	2	0	1	0	0	8	
1	-1	0	0	1	0	2	
-3	-2	0	0	0	1	0	

Example

X ₁	<i>x</i> ₂	<i>x</i> ₃	X ₄	X ₅	z	RHS	E
2	1	1	0	0	0	7	
1	2	0	1	0	0	8	
1	-1	0	0	1	0	2	
-3	-2	0	0	0	1	0	

X ₁	X ₂	X ₃	X ₄	X ₅	Z	RHS	E
2	1	1	0	0	0	7	
1	2	0	1	0	0	8	
1	-1	0	0	1	0	2	
-3	-2	0	0	0	1	0	

	X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	2	1	1	0	0	0	7	
2	1	2	0	1	0	0	8	
3	1	-1	0	0	1	0	2	
4	-3	-2	0	0	0	1	0	

- Select column 1: the corresponding element at the last row is minimal
- Compute evaluation (column E)

X ₁	X ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
2	1	1	0	0	0	7	7/2
1	2	0	1	0	0	8	8/1
1	-1	0	0	1	0	2	2/1
-3	-2	0	0	0	1	0	

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X ₅	Z	RHS	E
1	2	1	1	0	0	0	7	
2	1	2	0	1	0	0	8	
3	1	-1	0	0	1	0	2	
4	-3	-2	0	0	0	1	0	

- Select column 1: the corresponding element at the last row is minimal
- Compute evaluation (column E)
- Select row R3: evaluation is minimal
- Update R3 = R3/1

x ₁	<i>x</i> ₂	X ₃	X ₄	X ₅	Z	RHS	E
2	1	1	0	0	0	7	7/2
1	2	0	1	0	0	8	8/1
1	-1	0	0	1	0	2	2/1
-3	-2	0	0	0	1	0	

	X ₁	X ₂	<i>X</i> ₃	X ₄	X ₅	Z	RHS	E
1	2	1	1	0	0	0	7	
2	1	2	0	1	0	0	8	
3	1	-1	0	0	1	0	2	
4	-3	-2	0	0	0	1	0	

- Select column 1: the corresponding element at the last row is minimal
- Compute evaluation (column E)
- Select row R3: evaluation is minimal
- Update R3 = R3/1
- R1 = R1 2R3; R2 = R2 R3; R4 = R4 + 3R3;

x ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	x ₅	Z	RHS	E
0	3	1	0	-2	0	3	
0	3	0	1	-1	0	6	
1	-1	0	0	1	0	2	
0	-5	0	0	3	1	6	

1

2

3

4

x ₁	x ₂	<i>X</i> ₃	X ₄	X ₅	Z	RHS	E
0	3	1	0	-2	0	3	
0	3	0	1	-1	0	6	
1	-1	0	0	1	0	2	
0	-5	0	0	3	1	6	

	X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	0	3	1	0	-2	0	3	
2	0	3	0	1	-1	0	6	
3	1	-1	0	0	1	0	2	
4	0	-5	0	0	3	1	6	

Select column 2: the corresponding element at the last row is minimal

_	7

X ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	X ₅	Z	RHS	E
0	3	1	0	-2	0	3	
0	3	0	1	-1	0	6	
1	-1	0	0	1	0	2	
0	-5	0	0	3	1	6	

	X ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
1	0	3	1	0	-2	0	3	
2	0	3	0	1	-1	0	6	
3	1	-1	0	0	1	0	2	
4	0	-5	0	0	3	1	6	

- Select column 2: the corresponding element at the last row is minimal
- Compute evaluations: column E

X ₁	<i>x</i> ₂	X ₃	X ₄	<i>X</i> ₅	Z	RHS	E
0	3	1	0	-2	0	3	3/3
0	3	0	1	-1	0	6	6/3
1	-1	0	0	1	0	2	+∞
0	-5	0	0	3	1	6	

	x ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
1	0	3	1	0	-2	0	3	
2	0	3	0	1	-1	0	6	
3	1	-1	0	0	1	0	2	
4	0	-5	0	0	3	1	6	

- Select column 2: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row R1: minimum evaluation

X ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	X ₅	Z	RHS	E
0	3	1	0	-2	0	3	3/3
0	3	0	1	-1	0	6	6/3
1	-1	0	0	1	0	2	+∞
0	-5	0	0	3	1	6	

	x ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	0	3	1	0	-2	0	3	
2	0	3	0	1	-1	0	6	
3	1	-1	0	0	1	0	2	
4	0	-5	0	0	3	1	6	

- Select column 2: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row R1: minimum evaluation
- Update R1 = R1/3

X ₁	<i>x</i> ₂	<i>x</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	
0	3	0	1	-1	0	6	
1	-1	0	0	1	0	2	
0	-5	0	0	3	1	6	

	X ₁	X ₂	<i>X</i> ₃	<i>X</i> ₄	X ₅	Z	RHS	E
1	0	3	1	0	-2	0	3	
2	0	3	0	1	-1	0	6	
3	1	-1	0	0	1	0	2	
4	0	-5	0	0	3	1	6	

- Select column 2: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row R1: minimum evaluation
- Update R1 = R1/3
- R2 = R2 3R1; R3 = R3 + R1; R4 = R4 + 5R1

X ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	X ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	
0	0	-1	1	1	0	3	
1	0	1/3	0	1/3	0	3	
0	0	5/3	0	-1/3	1	11	

1

2

3

4

X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	
0	0	-1	1	1	0	3	
1	0	1/3	0	1/3	0	3	
0	0	5/3	0	-1/3	1	11	

	x ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	0	1	1/3	0	-2/3	0	1	
2	0	0	-1	1	1	0	3	
3	1	0	1/3	0	1/3	0	3	
4	0	0	5/3	0	-1/3	1	11	

• Select column 5: the corresponding element at the last row is minimal

_	7
	,

x ₁	<i>x</i> ₂	<i>X</i> ₃	X ₄	X ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	
0	0	-1	1	1	0	3	
1	0	1/3	0	1/3	0	3	
0	0	5/3	0	-1/3	1	11	

	X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	0	1	1/3	0	-2/3	0	1	
2	0	0	-1	1	1	0	3	
3	1	0	1/3	0	1/3	0	3	
4	0	0	5/3	0	-1/3	1	11	

- Select column 5: the corresponding element at the last row is minimal
- Compute evaluations: column E

$\boldsymbol{x_1}$	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	+∞
0	0	-1	1	1	0	3	3
1	0	1/3	0	1/3	0	3	9
0	0	5/3	0	-1/3	1	11	

	x ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	0	1	1/3	0	-2/3	0	1	
2	0	0	-1	1	1	0	3	
3	1	0	1/3	0	1/3	0	3	
4	0	0	5/3	0	-1/3	1	11	

- Select column 5: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row 2: minimum evaluation

x ₁	<i>x</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	+∞
0	0	-1	1	1	0	3	3
1	0	1/3	0	1/3	0	3	9
0	0	5/3	0	-1/3	1	11	

	X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅	Z	RHS	E
1	0	1	1/3	0	-2/3	0	1	
2	0	0	-1	1	1	0	3	
3	1	0	1/3	0	1/3	0	3	
4	0	0	5/3	0	-1/3	1	11	

- Select column 5: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row 2: minimum evaluation
- Update: R2 = R2/1

X ₁	<i>x</i> ₂	<i>x</i> ₃	X ₄	x ₅	Z	RHS	E
0	1	1/3	0	-2/3	0	1	
0	0	-1	1	1	0	3	
1	0	1/3	0	1/3	0	3	
0	0	5/3	0	-1/3	1	11	

	x ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
1	0	1	1/3	0	-2/3	0	1	
2	0	0	-1	1	1	0	3	
3	1	0	1/3	0	1/3	0	3	
4	0	0	5/3	0	-1/3	1	11	

- Select column 5: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row 2: minimum evaluation
- Update: R2 = R2/1
- R1 = R1 + (2/3)R2; R3 = R3 (1/3)R2; R4 = R4+(1/3)R2

X ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
0	1	-1/3	2/3	0	0	3	
0	0	-1	1	1	0	3	
1	0	2/3	-1/3	0	0	2	
0	0	4/3	1/3	0	1	12	

	x ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	Z	RHS	E
1	0	1	1/3	0	-2/3	0	1	
2	0	0	-1	1	1	0	3	
3	1	0	1/3	0	1/3	0	3	
4	0	0	5/3	0	-1/3	1	11	

- Select column 5: the corresponding element at the last row is minimal
- Compute evaluations: column E
- Select row 2: minimum evaluation
- Update: R2 = R2/1
- R1 = R1 + (2/3)R2; R3 = R3 (1/3)R2; R4 = R4+(1/3)R2

x ₁	<i>x</i> ₂	<i>x</i> ₃	X ₄	x ₅	Z	RHS	E
0	1	-1/3	2/3	0	0	3	
0	0	-1	1	1	0	3	
1	0	2/3	-1/3	0	0	2	
0	0	4/3	1/3	0	1	12	

- Phương án tối ưu của bài toán là $x_1 = 2$ và $x_2 = 3$, $x_3 = 0$, $x_4 = 0$, $x_5 = 3$.
- Giá trị hàm mục tiêu tối ưu bằng 12

Consider a linear program under a standard equational form

(LP)
$$z = c_1x_1 + c_2x_2 + \ldots + c_nx_n \rightarrow \max$$

$$a_{1,1}x_1 + a_{1,2}x_2 + \ldots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \ldots + a_{2,n}x_n = b_2$$

$$\ldots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \ldots + a_{m,n}x_n = b_m$$

$$Coefficients b_1, b_2, \ldots b_m \ge 0$$

$$x_1, x_2, \ldots x_n \in R, x_1, x_2, \ldots x_n \ge 0$$

Consider a linear program under a standard equational form

(LP)
$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max$$

 $a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n = b_1$
 $a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n = b_2$
 \dots

$$a_{m,1}x_1 + a_{m,2}x_2 + \ldots + a_{m,n}x_n = b_m$$

Coefficients $b_1, b_2, \ldots b_m \ge 0$
 $x_1, x_2, \ldots x_n \in R, x_1, x_2, \ldots x_n \ge 0$

Introduce an auxiliary linear program (ALP) with m artificial variables y_1, y_2, \ldots, y_m

$$a_{m,1}x_1 + a_{m,2}x_2 + \ldots + a_{m,n}x_n + y_m = b_m$$

 $b_1, b_2, \ldots b_m \ge 0$

$$x_1, x_2, \ldots x_n \in R, x_1, x_2, \ldots x_n, y_1, y_2, \ldots y_m \ge 0$$

(ALP)
$$g = -y_1 - y_2 - \dots - y_m \rightarrow \max$$

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n + y_1 = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n + y_2 = b_2$$

$$\dots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n + y_m = b_m$$

$$b_1, b_2, \dots b_m \ge 0$$

$$x_1, x_2, \dots x_n \in R, x_1, x_2, \dots x_n, y_1, y_2, \dots, y_m \ge 0$$

- Solve the (ALP) by the Simplex Method under the Tabular form: Basis is the column vectors corresponding to artificial variables \rightarrow obtain an optimal solution (x^* , y^*) and basic indices set is J_B^*
- Proposition: The original (LP) problem has feasible solutions iff the corresponding (ALP) has an optimal solution (x^*, y^*) in which $y^* = 0$ (proof?)
- If $y^* \neq 0$, then the original (LP) problem does not have feasible solutions
- We consider the case that $y^* = 0$

	1	2	 n	n+1	n+2	 n+m	n+m+1	
0	<i>X</i> ₁	<i>X</i> ₂	 X _n	<i>y</i> ₁	<i>y</i> ₂	 Y _m	Z	RHS
1	$\alpha_{1,1}$	$\alpha_{1,2}$	 $\alpha_{1,n}$	$\alpha_{1,n+1}$	$\alpha_{1,n+2}$	 $\alpha_{1,n+m}$	0	β_1
2	$\alpha_{2,1}$	$\alpha_{2,2}$	 $\alpha_{2,n}$	$\alpha_{2,n+1}$	$\alpha_{2,n+2}$	$\alpha_{2,n+m}$	0	β_2
•••		•••	 			 	••	
m	$\alpha_{m,1}$	$\alpha_{m,2}$	 $\alpha_{m,n}$	$\alpha_{m,n+1}$	$\alpha_{m,n+2}$	 $\alpha_{m,n+m}$	0	β_m
m+1	$\alpha_{m+1,1}$	$\alpha_{m+1,2}$	 $\alpha_{m+1,n}$	$\alpha_{m+1,n+1}$	$\alpha_{m+1,n+2}$	 $\alpha_{m+1,n+m}$	1	β_{m+1}

- Case 1: J_B^* does not contain indices of artificial variables
 - Move to the second phase, solve the original (LP) problem
 - Remove columns corresponding to artificial variables: $n+1, \ldots, n+m$
 - Recompute elements on row m+1 (based on the original objective function)

	1	2	 n	n+1	n+2	 n+m	n+m+1	
0	<i>X</i> ₁	x ₂	 X _n	Y ₁	<i>y</i> ₂	 Y _m	Z	RHS
1	$\alpha_{1,1}$	$\alpha_{1,2}$	 $\alpha_{1,n}$	$\alpha_{1,n+1}$	$\alpha_{1,n+2}$	 $\alpha_{1,n+m}$	0	β_1
2	$\alpha_{2,1}$	$\alpha_{2,2}$	 $\alpha_{2,n}$	$\alpha_{2,n+1}$	$\alpha_{2,n+2}$	 $\alpha_{2,n+m}$	0	β_2
•••			 			 •••		
m	$\alpha_{m,1}$	$\alpha_{m,2}$	 $\alpha_{m,n}$	$\alpha_{m,n+1}$	$\alpha_{m,n+2}$	 $\alpha_{m,n+m}$	0	β_{m}
m+1	$\alpha_{m+1,1}$	$\alpha_{m+1,2}$	 $\alpha_{m+1,n}$	$\alpha_{m+1,n+1}$	$\alpha_{m+1,n+2}$	 $\alpha_{m+1,n+m}$	1	β_{m+1}

- Case 2: J_B^* contains some indices of artificial variables
 - Suppose J_B^* contains index n+j of the artificial variable (y_j) , perform the linear transformation to remove index n+j from J_B^* as follows:
 - Consider row k such that the element in row k and column n+j is 1 (column vector corresponding to column n+j is a unit vector)
 - Case 2.1: If all elements on row k, from column 1 to column n are equal to 0 ($\alpha_{k,1} = \ldots = \alpha_{k,n} = 0$): it means, the constraint of row k is linear dependent on other constraints \rightarrow we can remove this row k and column n+j from the table

	1	2	 n	n+1	n+2	 n+m	n+m+1	
0	<i>X</i> ₁	x ₂	 X _n	<i>y</i> ₁	<i>y</i> ₂	 Y _m	Z	RHS
1	$\alpha_{1,1}$	$\alpha_{1,2}$	 $\alpha_{1,n}$	$\alpha_{1,n+1}$	$\alpha_{1,n+2}$	 $\alpha_{1,n+m}$	0	β_1
2	$\alpha_{2,1}$	$\alpha_{2,2}$	 $\alpha_{2,n}$	$\alpha_{2,n+1}$	$\alpha_{2,n+2}$	 $\alpha_{2,n+m}$	0	β_2
•••			 			 •••	••	
m	$\alpha_{m,1}$	$\alpha_{m,2}$	 $\alpha_{m,n}$	$\alpha_{m,n+1}$	$\alpha_{m,n+2}$	 $\alpha_{m,n+m}$	0	β_{m}
m+1	$\alpha_{m+1,1}$	$\alpha_{m+1,2}$	 $\alpha_{m+1,n}$	$\alpha_{m+1,n+1}$	$\alpha_{m+1,n+2}$	 $\alpha_{m+1,n+m}$	1	β_{m+1}

- Case 2: J_{R}^{*} contains some indices of artificial variables
 - Case 2.2: There exists a column *i* such that $\alpha_{k,i} \neq 0$
 - In this optimal table, all artificial variables are equal to 0, so β_k is equal to 0
 - Perform the rotation with the pivot $\alpha_{k,i}$. With this rotation, column RHS is unchanged due to the fact that β_k is equal to 0. Hence β_{m+1} is always 0. It means that the new table corresponds to another optimal solution in which one artificial variable is replaced by an original variable x_i
 - The above procedure is repeated until all artificial variables are removed from the basic
 - We now process the computation as the case 1 (above)

• Example 1 (exercise in class)

(LP)
$$z = x_1 + 2x_2 - x_3 + x_4 \rightarrow \max$$

 $x_1 + x_2 - x_3 - x_4 = 4$
 $x_1 + x_3 + x_4 = 7$
 $2x_1 + x_2 = 2$
 $x_1, x_2, x_3, x_4 \in R, x_1, x_2, x_3, x_4 \ge 0$

• Example 2 (exercise in class)

(LP)
$$z = x_1 + 2x_2 - x_3 + x_4 \rightarrow \max$$

 $x_1 + x_2 - x_3 - x_4 = 4$
 $x_1 + x_3 + x_4 = 7$
 $x_1 - x_2 - x_3 = 2$
 $x_1, x_2, x_3, x_4 \in R, x_1, x_2, x_3, x_4 \ge 0$

• Example 3 (exercise in class)

(LP)
$$z = 40x_1 + 10x_2 + 7x_5 + 14x_6 \rightarrow \max$$

 $x_1 - x_2 + 2x_5 = 0$
 $-2x_1 + x_2 - 2x_5 = 0$
 $x_1 + x_3 + x_5 - x_6 = 3$
 $x_2 + x_3 + x_4 + 2x_5 + x_6 = 4$
 $x_1, x_2, x_3, x_4, x_5, x_6 \in R, x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

HUST hust.edu.vn f fb.com/dhbkhn

THANK YOU!