Đồ HỌA 3D CHIẾU SÁNG

Định nghĩa

Là quá trình tính toán để xác định màu sắc cho tất cả các điểm trong cảnh

Các tham số tham gia trong quá trình tính toán

- Các nguồn sáng
- Các đối tượng
- Camera

Phân loại nguồn sáng

Dựa trên nguồn gốc

- 1. Nguồn sáng tự phát sáng
- 2. Nguồn sáng phản chiếu

Phân loại nguồn sáng

Dựa trên đặc tính hình học

- 1. Nguồn sáng point
- 2. Nguồn sáng spot

Các thuộc tính nguồn sáng

Các loại ánh sáng

Có ba loại ánh sáng

- 1. ánh sáng ambient
- 2. ánh sáng diffuse
- 3. ánh sáng specular

Mô hình màu

Mô hình màu RGB

Mô hình màu

Màu sắc được kết hợp từ 3 màu cơ bản : red, green, blue

Màu	red	green	blue
RED	255	0	0
GREEN	0	255	0
BLUE	0	0	255
WHITE	255	255	255
BLACK	0	0	0
LIGHTGRAY	192	192	192
DARKGRAY	128	128	128
YELLOW	255	255	0
CYAN	0	255	255
MAGENTA	255	0	255

Màu của nguồn sáng

$$L = \begin{pmatrix} L_{a} & L_{d} & L_{s} \end{pmatrix} = \begin{pmatrix} L_{ra} & L_{rd} & L_{rs} \\ L_{ga} & L_{gd} & L_{gs} \\ L_{ba} & L_{bd} & L_{bs} \end{pmatrix}$$

Hệ số phản xạ

$$R = \begin{pmatrix} R_a & R_d & R_s \end{pmatrix} = \begin{pmatrix} R_{ra} & R_{rd} & R_{rs} \\ R_{ga} & R_{gd} & R_{gs} \\ R_{ba} & R_{bd} & R_{bs} \end{pmatrix}$$

Công thức phản xạ tổng quát

$$\mathbf{I} = \mathbf{I}_{a} + \mathbf{I}_{d} + \mathbf{I}_{s}, \begin{pmatrix} \mathbf{I}_{r} \\ \mathbf{I}_{g} \\ \mathbf{I}_{b} \end{pmatrix} = \begin{pmatrix} \mathbf{I}_{ra} \\ \mathbf{I}_{ga} \\ \mathbf{I}_{ba} \end{pmatrix} + \begin{pmatrix} \mathbf{I}_{rd} \\ \mathbf{I}_{gd} \\ \mathbf{I}_{bd} \end{pmatrix} + \begin{pmatrix} \mathbf{I}_{rs} \\ \mathbf{I}_{gs} \\ \mathbf{I}_{bs} \end{pmatrix}$$

$$\mathbf{I}_{a} = \begin{pmatrix} \mathbf{R}_{ra} \mathbf{L}_{ra} \\ \mathbf{R}_{ga} \mathbf{L}_{ga} \\ \mathbf{R}_{ba} \mathbf{L}_{ba} \end{pmatrix}, \mathbf{I}_{d} = \begin{pmatrix} \mathbf{R}_{rd} \mathbf{L}_{rd} \\ \mathbf{R}_{gd} \mathbf{L}_{gd} \\ \mathbf{R}_{bd} \mathbf{L}_{bd} \end{pmatrix}, \mathbf{I}_{s} = \begin{pmatrix} \mathbf{R}_{rs} \mathbf{L}_{rs} \\ \mathbf{R}_{gs} \mathbf{L}_{gs} \\ \mathbf{R}_{bs} \mathbf{L}_{bs} \end{pmatrix}$$

$$\mathbf{I} = \begin{pmatrix} \mathbf{R}_{ra} \mathbf{L}_{ra} + \mathbf{R}_{rd} \mathbf{L}_{rd} + \mathbf{R}_{rs} \mathbf{L}_{rs} \\ \mathbf{R}_{ga} \mathbf{L}_{ga} + \mathbf{R}_{gd} \mathbf{L}_{gd} + \mathbf{R}_{gs} \mathbf{L}_{gs} \\ \mathbf{R}_{ba} \mathbf{L}_{ba} + \mathbf{R}_{bd} \mathbf{L}_{bd} + \mathbf{R}_{bs} \mathbf{L}_{bs} \end{pmatrix}$$

Phản xạ ambient

Cường độ ánh sáng ambient $\mathbf{L_a}$ là giống nhau cho mọi hướng. Vậy cường độ ánh sáng phản xạ ambient $\mathbf{I_a}$ tỉ lệ thuận với cường độ ánh sáng và hệ số phản xạ của chất liệu $\mathbf{k_a}$

$$I_a = K_a \cdot L_a$$

Phản xạ diffuse

Ánh sáng diffuse \mathbf{L}_{d} là ánh sáng định hướng. Ánh sáng phản xạ diffuse \mathbf{I}_{a} là giống nhau cho mọi hướng.

Phản xạ diffuse

Định luật Lambert's Cosine

Năng lượng ánh sáng phản xạ diffuse \mathbf{I}_d tỉ lệ thuận với $\cos(\theta)$, năng lượng ánh sáng diffuse \mathbf{L}_d và hệ số phản xạ của chất liệu \mathbf{k}_d

$$\mathbf{I}_{d} = \mathbf{k}_{d} \cdot \cos(\theta) \cdot \mathbf{L}_{d} = \mathbf{k}_{d} \cdot (\mathbf{n} \cdot \mathbf{l}) \cdot \mathbf{L}_{d}$$

Phản xạ diffuse

Phản xạ specular

Ánh sáng specular \mathbf{L}_{s} là ánh sáng định hướng. Ánh sáng phản xạ specular \mathbf{I}_{s} cũng là ánh sáng định hướng

Phản xạ specular

Định luật Snell

Năng lượng ánh sáng phản xạ specular \mathbf{I}_s tỉ lệ thuận với $\cos(\varphi)^{\rm nshiny}$, năng lượng ánh sáng specular \mathbf{L}_s và hệ số phản xạ của chất liệu \mathbf{k}_s

$$\mathbf{I}_{s} = \mathbf{k}_{s} \cdot \cos(\varphi)^{\text{nshiny}} \cdot \mathbf{L}_{s} = \mathbf{k}_{s} \cdot (\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{v}})^{\text{nshiny}} \cdot \mathbf{L}_{s}$$

Công thức phản xạ

Công thức Bùi Tường Phong

$$I = I_a + I_d + I_s$$

$$I = k_a \cdot L_a + k_d \cdot (\mathbf{n} \cdot \mathbf{l}) L_d + k_s \cdot (\mathbf{r} \cdot \mathbf{v})^{\text{nshiny}} L_s$$

Công thức phản xạ

$$I = I_1 + I_2 + ... + I_n$$

Độ suy giảm của ánh sáng

Một qui trình chiếu sáng đơn giản

Thuật toán

- Chiếu sáng từng đối tượng
 - Chiếu sáng từng đa giác

Tô Flat

Đối với từng tam giác

- Xác định màu ánh sáng phản xạ của một điểm bất kỳ trong đa giác
- Sử dùng màu này để tô toàn bộ đa giác

Tô Gouraud

Đối với từng tam giác

- Xác định màu ánh sáng phản xạ tại các đỉnh của đa giác
- Tô nội suy màu cho các điểm trong tam giác

Kỹ thuật nội suy màu

Tô Phong

Đối với từng đa giác

- Xác định màu ánh sáng phản xạ tại tất cả các điểm (pixel) của đa giác

Kỹ thuật nội suy vector pháp tuyến

Xác định pháp vector cho đỉnh

vector pháp tuyến của đỉnh là trung bình của vector pháp tuyến của các mặt xung quanh

ĐÒ HỌA 3D TEXTURE

Giảng viên : Bùi Tiến Lên

Định nghĩa

- Texture: "anh"

- **Texture Mapping** : quá trình phủ texture lên các đối tượng hình học

Phân loại texture

Có ba loại texture

- Texture 1D
- Texture 2D
- Texture 3D

Phân loại texture mapping

- 2D texture mapping
- Environmental mapping
- Bump mapping
- 3D texture mapping

LIGHTING & TEXTURE (OPENGL)