Absolute support sup (count) Relative support s The fraction of transactions that contains X (the probability that a transaction contains X) Association Rules (s,c)Support of X U Y Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%) Confidence of X \rightarrow Y The conditional probability that a transaction containing X also contains Y: $c = \sup\{X, Y\} / \sup\{X\} = 0.6$ (i.e., 60%) Confidence of X \rightarrow Y The conditional probability that a transaction containing X also contains Y: $c = \sup\{X, Y\} / \sup\{X\} = 0.6$

Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y X sa troppus emas eht htiw, X of the control of the c lossless compression: Reduces the # of patterns but does not lose the support information. Thus more desirable

Max-patterns: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y \supset X lossy compression We only know a subset of the max-pattern is frequent But we do not know the real support any more.

Downward closure (Apriori): Any subset of a frequent itemset must be frequent. Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! Outline of Apriori (level-wise, candidate generation and test): [Scan] DB once to get frequent 1-itemset [Repeat] Generate length-(k+1) candidate itemsets from length-k frequent itemsets--Test the candidates against DB to find frequent (k+1)-itemsets--Set k := k+1--[Until] no frequent or candidate set can be generated [Return] all the frequent itemsets

derived Partitioning: Scan Database Only Twice. Direct Hashing and Pruning (DHP) Hash Table Exploring Vertical Data Format: ECLAT An element may contain a set of items (also called events) Customer shopping Medical treatments Natural disasters Scientific

Experiments Stocks Markets Biological sequences, DNA /Protein depth-first. Apriori: A breadth-first search mining algorithm

GSP (Generalized Sequential Patterns); SPADEVertical format-based mining. PrefixSpan:Pattern-growth methods

Measure

Multiple-Level Associations (Uniform support, Reduced support; Efficient mining: Shared multi-level mining; Use group-based "individualized" min-support) Mining Multi-Dimensional Associations (Inter-dimension, Hybrid-dimension)

Mining Negative Correlations (s(A U B)/s(A) + s(A U B)/s(B))/2 = (0.01 + 0.01)/2 < c

Rangen n Null-Invariant? d D odvodov

ivicasure	Deminition	rvarig _{Mn}	ing Compresse	<u>a ana Ke</u>	dundar	<u>1cy-</u> Aw	vare Pa	tterns			
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0, \infty]$	No	Let $p = \frac{s(A \cup S)}{s(A)}$	$\frac{B)}{-} = P(I$	B A)		n distance i		T(D.)	$\cap T(P_n)$
Lift(A,B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0, \infty]$	No	$q = \frac{s(A)}{s(B)}$	$\frac{B}{B} = P(A)$	A B	δ-clust	$ist(P_1,I)$ ering: For ϵ	each patter	rn P, find al	l patterns
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0, 1]	105					can be exp within δ (δ		and whos	se distance
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0, 1]	Yes	o, q are null erate			date se	quence	es		
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{(A)\cdots(B)}}$	[0, 1]	Yes		Sil	ngleton *	singleto	n – <i>Total:</i>	(6 * 6)		
	$\sqrt{s(A)\times s(B)}$				<a>		<c></c>	<d>></d>	<e></e>	<f></f>	
Kulczynski(A, B)	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0, 1]	Yes	<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>	
11 attempt (11, 2)	- 0(11)	[0, 1]	100		<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>	
MaxConf(A, B)	$max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$	[0, 1]	Yes	<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>	
111 au Cort (21, 15)	max (s(A) , s(B))	[0, 1]	105	<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>	
IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in				<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>	
in (iiiibalalice natio).	ineasure the inibalance of	LAND ILEITIS	cts A allu b III	<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>	

rule implications: Neutral (Ku=0.5) $IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$

Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆

Definition

Sets (unordered) - Total: (6*5) / 2 <(ac)> <(ae)> <(bf)> <(bd)> <(be)> <(ce)> <(cf)> ■ w/o pruning (includes g and h

Apriori Pruning

8*8 + 8*7/2 = 92length-2 candidate

w/ pruning: 6*6 + 6*5/2 = 51length-2 candidate

Why Iceberg Cube: 1. No need to save nor show those cells whose value is below the threshold (iceberg condition) 2. Efficient methods may even avoid computing the un-needed, intermediate cells; 3. Avoid explosive growth Data Cube: A Lattice of Cuboid

Closed cube: A cell c is closed if there exists no cell d, such that d is a descendant of c, and d has the same measure value as c A closed cube is a cube consisting of only closed cells CubeShell: The cuboids involving only a small # of dimensions, e.g., 2 Idea: Only compute cube shells, other dimension combinations can be computed on the fly

	I	DUG					
	multiway	BUC					
Input format	Multi-dimensional array	Relational database					
Good for	Full cube	Iceberg cube					
Key idea	Simultaneously Aggregation	Partition and sort					
Calculation direction	ABO ACO BC	2 A 10 B 14 C 16 D 3 AB 7 AC 9 AD 11 BC 13 BD 15 CD 4 ABC 6 ABD 8 ACD 12 BCD					

Semi-Online Computational Model Use Frag-Shells for Online OLAP Query Computation Given a database of T tuples, D dimensions, and F shell fragment size, the fragment cubes' space $O\left(T\left\lceil\frac{D}{F}\right\rceil(2^F-1)\right)$

Pattern space pruning constraints Data space pruning constraints Anti-monotonic: If constraint c is violated, its further Data succinct: Data mining can be terminated space can be pruned at the initial pattern Monotonic: If c is satisfied, no need to check c again mining process Convertible: c can be converted to monotonic or Data anti-monotonic: If anti-monotonic if items can be properly ordered in a transaction t does not processing satisfy c, then t can be Succinct: If the constraint c can be enforced by pruned to reduce data directly manipulating the data processing effort

Data Mining in Cube Space Reports generated from a Data Cube can easily by drilled into through query in a drilldown fashion.

0D (Apex) cuboid be precalculated (Materialization)

$$T = \prod_{i=1}^{n} (L_i + 1)$$

