Covariância

O arquivo HorasScore.csv contém os dados relativos às horas de treinamento e a pontuação de um atleta mostrados no exemplo 1.

O código a seguir lê os dados do arquivo na tabela T.

Atribui os valores da coluna Horas para a varável X.

Atribui os valores da coluna Pontos para a variável Y.

Aplica o algoritmo apresentado em sala de aula para calcular R.

Concatena as variáveis X e Y na matriz Z e calcula calcula a matriz de covariância.

```
T = readtable('HorasScore.csv')
```

T =	12×2 table	
	Horas	Score
1	9	39
2	15	56
3	25	93
4	14	61
5	10	50
6	18	75
7	0	32
8	16	85
9	5	42
10	19	70
11	16	66
12	20	80

```
SHP = 112.7014
```

```
% Construir a matriz X concatenando H e P
X = [H P];
% Calcula maytriz de covariância
cov(X,1) % o segundo argumento informa para usa a divisão por n (ao invés de n-1)
```

```
ans = 2x2
43.7431 112.7014
112.7014 339.2431
```

Coeficiente de Correlação

O arquivo MaketingVendas.csv contém os dados relativos aos gastos com propaganda e vendas de uma empresa mostrados no exemplo 2.

O código a seguir lê os dados do arquivo na tabela T.

Atribui os valores da coluna Marketing para a varável X.

Atribui os valores da coluna Vendas para a variável Y.

Aplica o algoritmo apresentado em sala de aula para calcular R.

Usa função readmatix para ler a matriz Z.

Usa função corr para calcular a calcula a matriz de coeficientes de correlação.

Usa função heatmap para visualizar as correlações.

Coeficiente de correlação de Pearson

```
% Lê os dados para a tabela T
T = readtable('MarketingVendas.csv')
```

 $T = 8 \times 2 \text{ table}$

	Marketing	Vendas
1	2.4000	228
2	1.7000	190
3	2	220
4	2.6000	240
5	1.4000	180
6	1.6000	184
7	2.1000	188
8	2.2000	215

```
den = sqrt((n*sum(X2)-sum(X)^2))*sqrt((n*sum(Y2)-sum(Y)^2));
R = num/den
R = 0.8892
% Usa readmatrix para ler diretamente a matriz
Z = readmatrix('MarketingVendas.csv')
z = 8 \times 2
   2.4000 228.0000
   1.7000 190.0000
   2.0000 220.0000
   2.6000 240.0000
   1.4000 180.0000
   1.6000 184.0000
   2.1000 188.0000
   2.2000 215.0000
% Matriz de coeficinetes de correlação
R = corr(Z,'Type','Pearson')
R = 2 \times 2
   1.0000
             0.8892
   0.8892
            1.0000
% Mapa de calor
heatmap(R)
```


Coeficiente de correlação de Spearman

```
Ro = corr(Z,'Type','Spearman')

Ro = 2x2
1.0000 0.8810
```

FORMATIVA

0.8810

1.0000

Matriz de covariância e matriz de coeficientes de correlação

O arquivo DadosDataCenter contém 100 medidas de quatro métricas de desempenho de um datacenter, armazenados nas variáveis V1, V2, V3 e V4

Calcular a matriz de covariância, a matriz de coeficientes do correlação e o mapa de calor entre as variáveis.

```
% Lê os dados
matrizFormativa = readmatrix('DadosDataCenter.csv')
matrizFormativa = 100x4
  38.7937 2.3946 4.7717
                          0.4250
  17.3294 3.4592 5.2809 0.5688
         4.3305 11.5831 0.8884
  15.2657
  33.4756
         2.6175 9.7240
                          0.8419
  24.2862
         5.0935 6.9048
                           0.7473
         6.1509 10.2395
  11.8213
                           0.7537
           4.4715 10.3005
                           0.7918
  22.8005
         5.2036 2.4038
5.3119 8.8293
                           0.6296
  23.1420
  19.7583
                            0.7828
  21.4044
          4.9760 7.4160
                           0.7370
```

tabelaFormativa = readtable('DadosDataCenter.csv')

tabelaFormativa =		100×4	table
-------------------	--	-------	-------

	V1	V2	V3	V4
1	38.7937	2.3946	4.7717	0.4250
2	17.3294	3.4592	5.2809	0.5688
3	15.2657	4.3305	11.5831	0.8884
4	33.4756	2.6175	9.7240	0.8419
5	24.2862	5.0935	6.9048	0.7473
6	11.8213	6.1509	10.2395	0.7537
7	22.8005	4.4715	10.3005	0.7918
8	23.1420	5.2036	2.4038	0.6296
9	19.7583	5.3119	8.8293	0.7828
10	21.4044	4.9760	7.4160	0.7370
11	29.2480	5.2441	7.5187	0.7989

	V1	V2	V3	V4
12	32.9526	5.5872	9.8602	0.8982
13	23.6875	4.6508	8.8864	0.7703
14	33.6727	5.4948	7.5117	0.8352
15	20.3425	4.4233	8.2591	0.7209
16	33.4745	4.4233	4.6704	0.4235
17	16.1017	5.3353	4.0704	0.4233
18	17.0421	4.2560	9.7347	0.3376
19	43.4043	1.4437	4.4851	0.7264
20				
21	37.0869	2.8816	8.9525	0.9679
22	23.4083	5.9257	7.9443	0.8168
23	36.6783	3.5935	8.1089	0.7567
24	27.4681	4.8186	8.8118	0.7990
25	11.8938	6.4223	9.7866	0.7580
	22.3016	3.7435	7.6613	0.6786
26	30.7772	5.2140	6.5561	0.7799
27	20.3016	4.1173	4.9564	0.4172
28	37.2401	0.9857	7.9169	0.4999
29	34.5459	3.6943	10.0600	0.8532
30	22.8401	3.9412	2.2919	0.5530
31	25.7880	4.4349	7.5102	0.7340
32	24.5509	3.0655	8.5631	0.6765
33	27.8997	3.2345	7.2890	0.6713
34	42.3448	2.7893	7.7646	0.8412
35	24.1283	3.8617	5.6240	0.4428
36	14.1158	6.3345	6.9834	0.6972
37	25.2183	4.7583	10.1877	0.8191
38	17.8058	4.4648	5.0413	0.3231
39	48.6086	4.3625	11.0364	0.9283
40	31.7291	5.1780	11.1153	0.9015
41	23.8514	5.0345	11.8510	0.8704
42	19.5186	4.9189	12.8193	0.9629
43	26.8947	4.6192	3.2989	0.2408
44	39.9678	5.5241	12.6500	0.9986

	V1	V2	V3	V4
45	23.7013	4.8500	5.6118	0.4964
46	30.6305	4.9202	9.3120	0.8343
47	29.6937	5.5973	8.9343	0.8582
48	24.3512	4.2860	11.7268	0.8274
49	24.5882	5.3301	8.6704	0.8085
50	33.1111	4.1540	6.7715	0.7368
51	17.6691	4.9173	1.0035	0.1165
52	17.7706	5.2439	9.6502	0.7874
53	19.6764	4.3297	10.8155	0.8781
54	27.5213	4.5496	4.0057	0.4586
55	30.5359	4.7910	9.2899	0.8259
56	8.7786	6.0434	9.5240	0.7592
57	34.5972	4.1997	11.0951	0.8593
58	12.9747	5.7761	7.8411	0.7360
59	16.9373	4.1792	4.6511	0.3908
60	6.7502	7.4707	2.5647	0.4272
61	5.1461	8.9198	6.8122	0.6424
62	16.4514	4.3987	9.9569	0.7383
63	21.1163	4.9511	6.5610	0.5115
64	24.7845	5.1735	8.1872	0.7881
65	18.2528	5.3340	9.0572	0.7802
66	36.0657	4.6917	7.1182	0.6906
67	25.8239	4.7018	6.5546	0.7245
68	37.7837	4.7528	7.8358	0.8207
69	26.0064	4.9799	7.7926	0.7736
70	27.4382	1.7247	3.5353	0.4850
71	26.2422	5.1515	2.6354	0.6503
72	11.0720	6.5047	13.4606	0.8958
73	34.4473	2.2088	5.6807	0.6179
74	25.1192	3.8383	10.1947	0.8663
75	28.8636	5.1058	4.6663	0.7146
76	31.0153	4.0741	8.2064	0.7592
77	23.1861	3.5480	6.3346	0.6380

	V1	V2	V3	V4
78	30.8211	3.1230	7.6426	0.6893
79	25.8356	4.9491	9.6862	0.8203
80	16.5965	5.2379	10.1702	0.7926
81	36.1462	5.6765	7.4520	0.5558
82	26.7100	4.1592	2.8358	0.6015
83	37.8570	5.2057	6.5117	0.8123
84	22.6608	3.8657	8.3652	0.7060
85	20.8642	4.1809	9.2126	0.7352
86	30.0391	4.9479	8.3923	0.8089
87	3.8179	5.3333	6.2348	0.5763
88	0	4.6220	6.8908	0.3908
89	47.4267	3.3906	5.4668	0.4369
90	14.5630	3.8605	5.2501	0.5714
91	22.5422	4.3990	8.8830	0.7492
92	10.4782	6.0648	9.7637	0.7821
93	43.1718	5.2199	9.3028	0.9094
94	33.6020	3.1594	7.4684	0.7007
95	25.8525	4.6341	7.8827	0.7554
96	19.5939	2.9531	9.4092	0.7625
97	27.5616	4.1807	9.1231	0.7712
98	15.3278	3.8151	4.2802	0.5491
99	28.9378	4.5276	15.0390	0.9725
100	36.8700	5.6936	11.8123	0.9438

17.3294

15.2657

33.4756 24.2862 3.4592

2.6175

5.0935

4.3305 11.5831

5.2809

9.7240

6.9048

0.5688

0.8884

0.8419

0.7473

```
23.1420
            5.2036
                     2.4038
                              0.6296
  19.7583
            5.3119
                     8.8293
                              0.7828
  21.4044
            4.9760
                   7.4160
                              0.7370
cov(A, 1)
ans = 4x4
                            0.3484
  88.6678
           -4.9893
                    1.5050
                   0.4590
                            0.0417
           1.3593
  -4.9893
                              0.3816
   1.5050
            0.4590
                   7.0699
   0.3484
            0.0417
                    0.3816
                              0.0306
% Calcula matriz de coeficientes de correlação de Pearson
R = corr(matrizFormativa, 'Type', 'Pearson')
R = 4 \times 4
   1.0000
           -0.4545
                     0.0601
                              0.2114
  -0.4545
            1.0000
                     0.1481
                              0.2042
   0.0601
            0.1481
                     1.0000
                              0.8199
   0.2114
            0.2042
                     0.8199
                            1.0000
Ro = corr(matrizFormativa,'Type','Spearman')
Ro = 4 \times 4
   1.0000
                            0.2621
          -0.3113 0.0165
          1.0000 0.1759
  -0.3113
                            0.2577
   0.0165
          0.1759 1.0000
                            0.8403
   0.2621
            0.2577
                   0.8403
                            1.0000
% Mapa de calor da matriz de correlação
```

11.8213

22.8005

6.1509

heatmap(matrizFormativa)

4.4715 10.3005

10.2395

0.7537

0.7918

Com base nos resultados dos coeficientes de correlação de Spearman responder:

Quais variáveis apresentam correlação negativa entre si? (responder aqui)

Possuem a mesma

Quais as duas variáveis que possuem maior correlação positiva? (responder aqui)

Possuem a mesma

Quais as duas variáveis que são menos correlacionadas? (responder aqui)

Sperman

Formativa

O escritório de projetos deseja identificar se existe corelação entre a estimativa de horas e o esforço em horas despendido em seu desenvolvimento. Os dados utilizados encontram-se no arquivo "AMP_esforco_sprint.csv".

Avaliação de correlação

```
T = readtable("AMP_esforco_sprint.csv")
```

 $T = 80 \times 5 \text{ table}$

. . .

Realizado_Horas	Estimativa_Horas	Estimativa_UCP	ID_SPRINT	
84.7000	91.8900	16.7437	1	1
194	225.7400	41.3325	2	2
94	111.6500	26.0250	3	3
41	49.6900	11.4835	4	4
217	261.5300	44.3278	5	5
219.9000	283.8600	49.2950	6	6
85.6000	101.0300	23.5032	7	7
259.9000	186.9900	43.7396	8	8
230.1000	171.3100	39.8510	9	9
119.3000	130.8000	17.1645	10	10
68	68.5500	15.9470	11	11
262	284.0800	66.5514	12	12
85	95.1500	22.1351	13	13
35	44.6900	10.3950	14	14
245.9000	264.6600	61.5668	15	15
22.1700	16.3200	3.7973	16	16
116	100.5100	23.3811	17	17
10.8300	10.3500	2.4077	18	18
122.8000	110.3200	25.6640	19	19
166.3200	170.2500	39.6039	20	20
140.1700	135.7300	8.3113	21	21
129.6500	107.9900	25.1214	22	22
217.5000	288.2900	57.0634	23	23
45.6000	42.1500	9.8040	24	24
62.6000	87.0100	20.2406	25	25
129.8000	114.4800	26.6305	26	26
64.4000	84.6800	15.0453	27	27
52.3300	40.4800	9.4157	28	28
234.4000	173.6600	42.2704	29	29
64.7000	66.1300	15.3824	30	30
150	189.0400	43.9759	31	31
20	20.3500	4.7349	32	32
142.5000	152.4800	35.4713	33	33

	ID_SPRINT	Estimativa_UCP	Estimativa_Horas	Realizado_Horas
34	34	37.3295	160.4700	211.4300
35	35	6.8153	29.3000	35
36	36	12.0159	51.6500	31.6000
37	37	21.0622	90.5400	86.3000
38	38	8.5145	43.6000	24.7300
39	39	47.0685	217.2800	256.1200
40	40	26.9838	116	143.7000
41	41	26.8078	115.2400	151.4200
42	42	5.6851	94.4400	72.9200
43	43	36.3884	156.4300	192
44	44	4.8065	20.6600	18.5000
45	45	6.3179	117.1600	92.7000
46	46	14.7574	63.4400	76.7000
47	47	50.3940	173.6400	200.9300
48	48	6.9571	49.9100	35
49	49	45.2938	214.7100	163.6700
50	50	44.6338	191.8700	241.3800
51	51	64.6212	277.7900	238.3700
52	52	53.9129	226.7000	218
53	53	36.3043	156.0600	148.4700
54	54	17.4482	75.0100	59.6700
55	55	16.2258	69.7500	73.3300
56	56	26.0273	111.8900	109
57	57	8.1363	34.9800	32.6500
58	58	30.1959	129.8100	129
59	59	9.0114	38.7400	42.4800
60	60	5.5682	63.9400	42.1700
61	61	12.8395	55.1900	83
62	62	45.9896	154.7100	173.5800
63	63	11.2611	48.4100	47.5000
64	64	4.4002	18.9200	16.1000
65	65	38.1989	164.2100	115.5800
66	66	56.4599	242.7100	244.8500

	ID_SPRINT	Estimativa_UCP	Estimativa_Horas	Realizado_Horas
67	67	5.4351	53.3600	35.5800
68	68	51.3956	220.2500	219.6500
69	69	13.6361	58.6200	49.7500
70	70	41.1542	176.9100	153
71	71	48.4944	208.4700	182.6000
72	72	7.2325	31.0900	28.6000
73	73	5.9796	65.7000	50.7800
74	74	7.0998	30.5200	33.6700
75	75	15.1255	65.0200	40.7300
76	76	26.3983	113.4800	83.4200
77	77	11.8821	59.9200	68
78	78	22.9869	98.8200	84.5800
79	79	30.4373	130.8400	138.4000
80	80	11.2890	48.5300	58.6000

```
matrizT = readmatrix("AMP_esforco_sprint.csv")
```

```
matrizT = 80 \times 5
   1.0000 16.7437 91.8900 84.7000
                                        1.0000
   2.0000 41.3325 225.7400 194.0000
   3.0000 26.0250 111.6500 94.0000
                                        1.0000
   4.0000 11.4835
                   49.6900 41.0000
                                        1.0000
   5.0000 44.3278 261.5300 217.0000
   6.0000 49.2950 283.8600 219.9000
                                        1.0000
          23.5032 101.0300
   7.0000
                             85.6000
                                        1.0000
          43.7396 186.9900 259.9000
   8.0000
                                        1.0000
           39.8510 171.3100 230.1000
   9.0000
                                        1.0000
  10.0000 17.1645 130.8000 119.3000
                                        1.0000
```

Plotar o diagrama de dispersão e calcular o coeficiente de correlação.

Dicas:

- Salvar as estimativas de horas no vetor X
- Salvar quantidade de horas realizadas em horas no vetor Y
- Usar o comando scatter do Matlab para plotar o diagrama de dispersão
- Concatenar os vetores X e Y na matriz Z
- Calcular R usando a função corrcoef do MatLab passando Z como argumento
- Calcular o mapa de calor da matrz de coeficieentes de correlação

```
quantidadeAmostra = size(T,1)
```

quantidadeAmostra = 80

```
% Salvar as estimativas de horas no vetor X
X = T.Estimativa_Horas;
% Salvar o realizado em horas no vetor Y
Y = T.Realizado_Horas;
% Calcular a matriz de coeficientes de correlação de Pearson
R = corr(matrizT,'Type','Pearson')
```

% Calcular o mapa de calor da matriz de coeficientes de correlação heatmap(matrizT)

