Feuille de td 4

Exercice 1 Calcul de produits

On considère les matrices suivantes.

$$A = \begin{pmatrix} 5 & 0 & 2 \\ 1 & 4 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 \\ -1 & 2 \\ 3 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}, \quad L = \begin{pmatrix} -1 & 2 \end{pmatrix}.$$

Effectuer tous les produits de deux matrices prises parmi A, B, C, L qui ont un sens.

Exercice 2 Groupe des quaternions

On considère les matrices suivantes dans $\mathcal{M}_2(\mathbb{C})$.

$$M_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad M_1 = \left(\begin{array}{cc} i & 0 \\ 0 & -i \end{array}\right), \quad M_2 = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \quad M_3 = \left(\begin{array}{cc} 0 & -i \\ -i & 0 \end{array}\right).$$

1. Calculer les produits M_iM_j pour i et j dans $\{0, 1, 2, 3\}$. Synthétiser les résultats sous forme de tableau.

××	M_0	M_1	M_2	M_3
M_0				
M_1				
M_2				
M_3				

- 2. En déduire que $G := \{M_0, M_1, M_2, M_3, -M_0, -M_1, -M_2, -M_3\}$ est un groupe.
- 3. Pour $a,\,b,\,c,\,d$ dans $\mathbb{R},$ développer et simplifier le produit

$$(aM_0 + bM_1 + cM_2 + dM_3)(aM_0 - bM_1 - cM_2 - dM_3).$$

En déduire que si $(a, b, c, d) \neq (0, 0, 0, 0)$ alors $aM_0 + bM_1 + cM_2 + dM_3$ est inversible.

Exercice 3 Théorème de Cayley Hamilton en dimension 2

On considère la matrice $M \in \mathcal{M}_2(\mathbb{C})$ donnée par

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

On pose appelle trace de M et déterminant de M les quantités $\operatorname{tr} M = a + d$ et $\det M = ad - bc$.

- 1. Calculer M^2 .
- 2. Montrer que $M^2 (\operatorname{tr} M)M + (\det M)I_2$ est la matrice nulle de $M \in \mathcal{M}_2(\mathbb{C})$.
- 3. Lorsque det $M \neq 0$, en déduire l'expression de M^{-1} .

Exercice 4 Blocs de Jordan

On considère les matrices

$$N = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$$

et $M = I_3 + N$.

- 1. Calculer N^2 et N^3 . Que vaut N^k si $k \geq 3$?
- 2. Développer le produit $(I_3 + N)(I_3 N + N^2)$; en déduire que M est inversible et donner son inverse.
- 3. Calculer M^n pour $n \in \mathbb{N}$.

Exercice 5 Trace et transposition

On appelle trace d'une matrice carrée $C = (c_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n} \in \mathcal{M}_n(\mathbb{R})$ la somme des coefficients diagonaux, autrement dit $\operatorname{tr}(C) = c_{1,1} + \cdots + c_{n,n}$. Soit $A = (a_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n} \in \mathcal{M}_{m,n}(\mathbb{R})$ et $B = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq m} \in \mathcal{M}_{n,m}(\mathbb{R})$.

- 1. Montrer que les quantités tr(AB) et tr(BA) ont un sens et sont égales.
- 2. Montrer que $A \times {}^t A$ a un sens, est symétrique, et que $\operatorname{tr}(A \times {}^t A) = 0$ si et seulement si $A = 0_{\mathcal{M}_n(\mathbb{R})}$.

Exercice 6 Matrices stochastiques

Soit $A = (a_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n} \in \mathcal{M}_{m,n}(\mathbb{R})$. On dit que A est stochastique si ses coefficients sont positifs et si sur chaque ligne, la somme des coefficients vaut 1, autrement dit si

- $-- \forall i \in [1, m], \ \forall j \in [1, n], \ a_{i,j} \ge 0;$
- $-- \forall i \in [1, m], \sum_{j=1}^{n} a_{i,j} = 1.$

On note $\operatorname{Sto}_{m,n}$ l'ensemble des matrices stochastique de taille $m \times n$. Pour tout entier $n \geq 1$, on note $Y_n \in \mathcal{M}_{n,1}$ la matrice colonne à m lignes dont tous les coefficients valent 1.

- 1. Donner un exemple de matrice stochastique de taille 2×3 et un de taille 3×2 .
- 2. Reformuler la deuxième condition à l'aide du produit AY_n .
- 3. Montrer que si A et B sont dans $\mathrm{Sto}_{m,n}$, et si α et β sont des réels positifs de somme 1, alors $\alpha A + \beta B$ est dans $\mathrm{Sto}_{m,n}$.
- 4. Montrer que si $A \in Sto_{m,n}$ et $B \in Sto_{m,p}$, alors $AB \in Sto_{m,n}$.
- 5. Soit $A \in \operatorname{Sto}_{m,n}$ et $X \in \mathcal{M}_{n,1}$. On note x_1, \ldots, x_n les coefficients de x. Soient j_1 et j_2 des indices tels que $x_{j_1} = \min(x_1, \ldots, x_n)$ et $x_{j_2} = \min(x_1, \ldots, x_n)$. Montrer que les coefficients de AX sont tous compris entre x_{j_1} et x_{j_2} .

Exercice 7 Multiplication par une matrice diagonale

On se donne deux matrices $A = (a_{i,j})_{1 \leq i,j \leq n}$ et D dans $\mathcal{M}_n(\mathbb{C})$. On suppose que D est diagonale, de coefficients diagonaux $\lambda_1, \ldots, \lambda_n$, ce qu'on écrit $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$.

- 1. Expliciter les coefficients (i, j) des matrices AD et DA.
- 2. Montrer que si A est diagonale alors AD = DA.
- 3. Montrer la réciproque lorsque les complexes $\lambda_1, \ldots, \lambda_n$ sont tous différents.
- 4. On suppose dans cette question que A commute avec toute matrice de $\mathcal{M}_n(\mathbb{C})$. En s'aidant des questions précédentes, montrer que $A = \lambda I_n$ pour un certain $\lambda \in \mathbb{C}$. On commencera par montrer que A est diagonale.

Exercice 8 Matrices de rang 1

On se donne deux matrices colonnes non nulles à ceofficients complexes :

$$U = \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix} \text{ et } V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}.$$

- 1. Montrer que la matrice $U \times {}^tV$ a un sens, donner sa taille la calculer, et montrer que son rang est 1.
- 2. Soit $M \in \mathcal{M}_{m,n}(\mathbb{C})$ une matrice de rang 1. Montrer qu'on peut écrire M comme produit d'une matrice colonne par une matrice ligne. On commencera par fixer deux indices i_0 et j_0 tels que le coefficient de M en (i_0, j_0) soit non nul.

Exercice 9 Matrice et expression d'une application linéaire dans deux bases On note \mathcal{B}_n la base canonique de \mathbb{R}^n .

1. Soit f une application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 dont la matrice dans les bases \mathcal{B}_2 et \mathcal{B}_3 est

$$M = \left(\begin{array}{cc} 7 & 1\\ 0 & -2\\ -5 & 3 \end{array}\right).$$

Quelle est l'image d'un vecteur $x = (x_1, x_2) \in \mathbb{R}^2$?

2. Donner la matrice dans les bases \mathcal{B}_4 et \mathcal{B}_3 de l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^3 définie par $f_4(x_1, x_2, x_3, x_4) = (x_1 - x_2, x_2 - x_3, x_3 - x_4)$?

Exercice 10 Exemples d'applications linéaires de \mathbb{R}^2 dans \mathbb{R}^2

On note $\mathcal{B} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 , $C = [0, 1]^2 = \{(x_1, x_2) : x_1 \in [0, 1] \text{ et } x_2 \in [0, 1]\}.$

- 1. Pour tout u et v dans \mathbb{R}^2 , on appelle segment [u,v] l'ensemble des vecteurs de la forme $(1-\theta)u+\theta v$ avec $\theta\in[0,1]$. Montrer que si f est un endomorphisme de \mathbb{R}^2 , alors f([u,v])=[f(u),f(v)].
- 2. On note $\mathcal{B} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 . Dessiner le carré $Q = [0, 1]^2 = \{(x_1, x_2) : x_1 \in [0, 1] \text{ et } x_2 \in [0, 1]\}$ et la lettre F à l'aide des segments $[0, 2e_2]$, $[2e_2, 2e_2 + e_1]$, $[e_2, e_2 + (1/2)e_1]$. On note $\mathcal{B} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 ,
- 3. Dessiner les images de Q et la lettre F par les endomorphismes de matrices

$$M_{1} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_{3} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad M_{4} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

$$M_{5} = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}, \quad M_{6} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad M_{7} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad M_{8} = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}.$$

dans la base \mathcal{B} .

Exercice 11 Multiplication dans \mathbb{C}

On note $\mathcal{B} = (1, i)$ la base canonique de \mathbb{C} vu comme espace vectoriel sur \mathbb{R} . Pour tout a et b dans \mathbb{R} , on note $f_{a,b}$ l'application de \mathbb{C} dans \mathbb{C} définie par $f_{a,b}(z) = (a+ib)z$. et g l'application de \mathbb{C} dans \mathbb{C} définie par $g(z) = \overline{z}$. On rappelle que ces applications sont \mathbb{R} -linéaires.

- 1. Donner les matrices $M_{a,b}$ et N des endomorphismes $f_{a,b}$ et g dans \mathcal{B} .
- 2. Pour tout a, b, c, d dans \mathbb{R} , calculer de la matrice $M_{a,b}M_{c,d}$ directement. Retrouver ce résultat en déterminant $f_{a,b} \circ f_{c,d}$.
- 3. Mêmes questions avec le produit $NM_{a,b}N$.
- 4. Que vaut $M_{a,b}M_{a,-b}$? En déduire que $(a,b) \neq (0,0)$, alors $M_{a,b}$ est inversible.

Exercice 12 Dérivation des polynômes

Soit $\mathbb{R}_3[X]$ l'ensemble des polynômes de degré ≤ 3 à coefficients réels. On note $\mathcal{B} = (1, X, X^2, X^3)$ la base canonique de $\mathbb{R}_3[X]$ et $\mathcal{B}' = (1, X, X^2/2, X^3/6)$.

- 1. Pourquoi \mathcal{B}' est-elle encore une base de $\mathbb{R}_3[X]$? Écrire la matrice de \mathcal{B}' dans \mathcal{B} .
- 2. Montrer que la dérivation est une application linéaire de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$.
- 3. On note d cette application. Écrire les matrices de d dans la base \mathcal{B} et dans la base \mathcal{B}' .
- 4. Calculer de deux manières différentes les matrices de $d^2 = d \circ d$ et $d^4 = d \circ d \circ d \circ d$ dans la base \mathcal{B}' .

Exercice 13 Opérateurs de translation sur les polynômes

Soit $\mathbb{R}_3[X]$ l'ensemble des polynômes de degré ≤ 3 à coefficients réels. On note $\mathcal{B} = (1, X, X^2, X^3)$ la base canonique de $\mathbb{R}_3[X]$.

- 1. Soit a unn réel. Montrer qu'on peut définir une application T_a de $\mathbb{R}_3[X]$ dans $\mathbb{R}_3[X]$ par $T_a(P)(X) = P(X+a)$ et que cette application est linéaire.
- 2. Soit M_a la matrice de T_a dans \mathcal{B} . Donner l'expression de M_a .
- 3. Montrer que pour tous réels a et b, $T_a \circ T_b = T_{a+b}$. En déduire le produit $M_a M_b$.
- 4. Soit G l'ensemble de toutes les matrices M_a pour a dans \mathbb{R} . En déduire que G est un sous-groupe de $GL_4(\mathbb{R})$.

Exercice 14 Image, noyau, changements de bases

On note $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et f l'endomorphisme dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{ccc} 0 & -1 & 1\\ 1 & 0 & -1\\ -1 & 1 & 0 \end{array}\right).$$

- 1. Soit $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. À quelle condition un vecteur x est-il dans Ker f? En déduire une base de Ker f.
- 2. Trouver une famille génératrice de $\operatorname{Im} f$, puis une base de $\operatorname{Im} f$.
- 3. Trouver une base de Ker f.
- 4. Montrer que le familles $\mathcal{B}' = (e_1, e_2, e_1 + e_2 + e_3)$ et $\mathcal{B}'' = (f(e_1), f(e_2), e_3)$ sont des bases de \mathbb{R}^3 , et donner les matrices $P = \operatorname{Mat}_{\mathcal{B}} \mathcal{B}'$ et $Q = \operatorname{Mat}_{\mathcal{B}} \mathcal{B}''$.
- 5. Écrire la matrice A' de f dans les bases \mathcal{B}' (au départ) et \mathcal{B}'' (à l'arrivée). Quelle relation y-a-t-il entre A, A', P et Q?

Exercice 15 Changement de base et calcul de puissances

On note $\mathcal{B} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et f l'endomorphisme dont la matrice dans \mathcal{B} est

$$A = \left(\begin{array}{cc} 3 & -1 \\ 2 & 0 \end{array}\right).$$

- 1. Soit $v_1 = (1,1)$ et $v_2 = (1,2)$. Montrer que $\mathcal{B}' = (v_1, v_2)$ est une base de \mathbb{R}^2 .
- 2. Calculer $f(v_1)$ et $f(v_2)$. En déduire la matrice A' de f dans la base \mathcal{B}' .
- 3. Écrire la matrice $P = \text{mat}_{\mathcal{B}}(v_1, v_2)$ et calculer son inverse (voir exercice 3).
- 4. Écrire la relation liant A, A' et P.
- 5. En déduire la valeur de A^n pour $n \in \mathbb{N}$.