Square Lattice

Hexagonal Lattice

Square Lattice Absorption Relevant for a< 550 nm

Temperature Change

$$\sigma_{abs} =$$
 absorption cross section

$$P =$$
 power of illumination

$$ar{\kappa}=$$
 average thermal conductivity

$$D =$$
 diameter of heated area

$$A =$$
 unit cell area of NP lattice

Confinement

$$\zeta = \frac{p^2}{3LR}$$

p= interparticle distance

L = beam diameter

 $R={\sf NP}$ radius

Heated Area Greatly Influences Temperature Change in the Lattice

Confinement Occurs with Reduced H

PAM Reduces the Temperature Change

Square Lattice

Hexagonal Lattice

Hexagonal Absorption Also Shifts with Lattice Spacing

PAM Hexagonal Arrays have Lower Temperature Even with small H

