Day 11: Recurrent Neural Networks

Word Embeddings

- · n-gram models
- · Bag of Words
 - o Ignores word order
 - No information on relationships between words
- TF-IDF

Can we represent words with vectors such that words with similar meanings are closer together?

- * (think of these like face descriptors)
- Example: "That lady was happy"; "That lady was glad", "That lady was mad"
 - o Ideally, the vector forms of "happy" and "glad" would be close, while "mad" would be further away.

- Word embedding representation of words as vectors in a continuous space (hopefully such that words with similar meaning are close together)
 - \circ We want to design/learn an embedding that captures common words relations (e.g. $ec{w}_{doctor} + ec{w}_{teeth} ec{w}_{body} = ec{w}_{dentist}$)
 - Start with a one-hot encoding (vectors with all zeros, except one 1 where the index of the word/part is present in the vocabulary); e.g. vocab "the", "black", "cat" $\rightarrow \vec{x}_{the} = [1,0,0], \vec{x}_{black} = [0,1,0], \vec{x}_{cat} = [0,0,1]$
 - ullet We want to find a function $f_{embed}(ec{x}_{cat})=ec{w}_{cat}$ where $ec{x}_{cat}$ has shape $ec{w}_{cat}$ has shape $ec{w}_{cat}$ has shape
 - \circ GLoVE-50 is a f_{embed} with D_embed==50

all words in its vocabulary are represented with a 50-D vector

o Method #1: One-hot Encoding

- Use one-hot encoding itself
- o Method #2: Learning Embedding via Language Modeling (Bengro et al. 2003)
 - Example: "glass of ?", where "?" is 1 of 1000 possible words N_vocab=1000
 - Go through a series of dense layers to transform the data across dimensions, along with concatenation with the next word (which has also been passed through multi-layer perceptrons), to ultimately convert to a softmax layer and obtain a set of predictions

- $w \sim$ learned embedding weights
- $\qquad \qquad L_{cross-entropy}(y^{(pred)},y^{(true)})$
- Applications
 - Autocompletion
 - Language ID (from grammatical structure)
 - Language translation

Method 3: word2vec → skip-gram

- Predict surrounding words (e.g. "? ? orange ? ?"
- We want the P("the tall, tree was" | "orange")

Method 4: word2vec → continuous bag of words

- E.g.: "glass of ? orange juice"
- "glass" $\rightarrow \vec{w} = []$, (1, 50)
- "of" $\rightarrow \vec{w} = []$, (1, 50)
- "orange" $\rightarrow \vec{w} = [], (1, 50)$
- "juice" $\rightarrow \vec{w} = [], (1, 50)$
- These values are summed, transformed, and put through softmax for final probabilities

• Method 5: GLoVE (Penmington et al. 2014)

$$\sum_{ij} f(x_{ij}) (ec{w}_i * ec{w}_j + b_i + b_j - log(X_{ij}))^2$$

- 1. Collect co-occurrence statistics X_{ij}
 - a. Needs window size
 - b. Decay based on offset: $\frac{1}{offset}$
 - c. Example: "I am a black cat."

	а	am	black	cat	I
а					1/2
am					1
black					
cat					
I					

- 2. We want: $ec{w}_i \cdot ec{w}_j + b_i + b_j = log X_{ij}$
- 3. $f(X_{ij})$ to downweight extremely common pairs
 - Scales to huge corpera
 - · Effective with small corpera
 - · Good matches with more words

Recurrent Neural Networks

- Concept: For sequential tasks, we can reuse the same neural network
- Example: part of speech labeling

• Network may be a series of transformations and layers in its own right

• Example Caption Generation

- · RNN's can model:
 - o one-to-many
 - o many-to-one
 - o many-to-many
- The XOR Problem (RNN motivating example)

- $\circ \ \ \mathsf{Example inputs:} \ \vec{x}_1 = [0,0,0,1,1,0]; \vec{x}_2 = [0,1,1,0,1,0]$
- $\circ~$ Example outputs: $y_{1,true}=1(even); y_{2,true}=0(odd)$
- Consider fram

