Understanding Current Measurement with a Multimeter

When your multimeter displays **20mA**, it means that at **this exact moment**, the current flowing **through the circuit is 20mA**.

Current (Amperes, A) is measured in Coulombs per second, meaning:

- 1 Ampere (A) = 1 Coulomb per second
- 1 milliampere (mA) = 0.001 Coulombs per second

So when your multimeter shows 20mA, it means that 0.020 Coulombs of charge (electrons) are flowing through the circuit per second.

Does 20mA Mean Per Second, Per Hour, or What?

Current is an instantaneous value—it tells you how much charge is flowing at that exact moment.

It is **not measured per second**, **per minute**, **or per hour**—it is simply **the rate of flow** at the time of measurement.

If you want to calculate **total charge flow over time**, use:

$$Charge(Coulombs) = Current(Amps) * Time(seconds)$$

For example, if 20mA flows for 10 seconds:

$$Charge = 0.020A * 10s = 0.2 Coulombs$$

How Does the Multimeter Measure Current?

A multimeter in current mode (A/mA setting) actually becomes part of the circuit in series.

- Inside the multimeter, there is a very small internal resistor (shunt resistor).
- When current flows through this small resistor, a tiny voltage drop happens (Ohm's Law: V = IR).
- The multimeter measures this voltage drop and calculates the current using Ohm's Law.
- 4. It then displays the calculated **current in Amps or mA**.

Understanding Current (Amps) in Battery Charging

When your **bench power supply displays 2A** while charging a battery, it means that **at that exact moment, 2A of current is flowing** into the battery.

It does **not** mean "per hour"—it is simply the **instantaneous current** flowing at that moment. If the battery or the charging process changes, the current may increase or decrease over time.

What Does "3Ah" (Amp-Hour) Mean in a Battery?

Your battery is labeled **20V 3Ah** (3 amp-hours), which means:

- The battery can theoretically **supply 3A for 1 hour** before being fully discharged.
- Alternatively, it could provide 1.5A for 2 hours, or 6A for 30 minutes, etc.
- This does not mean it always draws 3A—only that it has a total energy storage capacity
 of 3A × 1h = 3Ah.

Difference Between "Amps" (Instantaneous) and "Amp-Hours" (Capacity Over Time)

Term	Meaning
Amps (A)	Instantaneous current—the rate of electron flow at a given moment. Example: Your power supply displays 2A, meaning 2 Coulombs per second are flowing at that exact moment.
Amp-Hours (Ah)	Total charge capacity—the amount of current a battery can supply over time. Example: A 3Ah battery can deliver 3A for 1 hour, 1.5A for 2 hours, etc.

Example Calculation: Charging a 3Ah Battery with 2A

If your **power supply provides 2A** to a **3Ah battery**, you can estimate charging time:

Time to charge =
$$\frac{Battery\ Capacity\ (Ah)}{Charging\ Current\ (A)} = \frac{3Ah}{2A} = 1.5\ hours$$

However, real-world charging is **not 100% efficient**—so it may take **longer** due to energy losses, heat, and charge tapering.

Amp-Hours (Ah) and Total Charge

Your battery is labeled **3Ah**, meaning:

- It can deliver 3A for 1 hour before being fully discharged.
- Or 1.5A for 2 hours, or 6A for 30 minutes, etc.

But this does **not** mean the total amount of **amps** in the battery is 180A - 3A * 60 minutes or 10800A - 3A * 3600 seconds.

How to Calculate Total Charge (Coulombs)

Amps (A) measure current, which is charge per second.

1 Ampere (A) = 1 Coulomb per second (C/s)

To find the total **charge stored** in the battery (measured in Coulombs), use:

$$Charge(Q) = Capacity(Ah) * 3600 seconds per hour$$

For your **3Ah** battery:

$$Q = 3Ah * 3600s/h = 10800 Coulombs$$

This means the battery stores a total of 10.800 Coulombs of charge.

Why It's **NOT 180A** or **10800A**

- Amps (A) is a rate—how fast charge flows at any given moment.
- Amp-hours (Ah) is a total capacity, not a total count of amps.
- If the battery provides **3A continuously**, then **every second** it delivers:

$$3A = 3C/s$$

Over 1 hour (3600 seconds):

$$3C/s * 3600s = 10800C$$

So the battery delivers **10.800 Coulombs** total, NOT "180A" or "10800A"—because **Amps** measure flow rate, not stored quantity.

Saying **10.800 Coulombs is 10.800 Amps** would be incorrect because Amps **require a time factor**.

If your battery **somehow** delivered all **10,800C** in **1 second**, then:

$$I = \frac{Q}{t} = \frac{10800C}{1s} = 10800A$$

This would mean a **very high current of 10.800A**, which doesn't happen in real-world battery use!

- 10,800 Coulombs is NOT 10,800 Amps.
- 10,800 Coulombs is a total charge—it must be divided over time to get current.
- Amps (A) tell you how fast the charge flows, not the total charge itself.
- The battery delivers 10,800C over 1 hour at 3A → It's a controlled flow of charge.

Key Takeaways

- The 20mA reading is instantaneous, meaning at that moment, 20mA (0.020 Coulombs per second) is flowing.
- It is **not measured per hour**—if you want to find charge over time, multiply by time.
- The multimeter measures a small voltage drop across an internal shunt resistor and calculates current using Ohm's Law.
- Amps (A) is instantaneous—when your power supply shows 2A, that's the current at that moment.
- Amp-hours (Ah) is a capacity measurement—it tells how much current a battery can supply over time.
- Your 20V 3Ah battery means it can supply 3A for 1 hour or equivalent variations.
- Charging with **2A will take around 1.5 hours**, assuming ideal conditions.
- A 3Ah battery does NOT store 180A or 10800A—it delivers current at a rate but does not "contain" a fixed amount of amps.
- The total charge stored is 10,800 Coulombs (C).
- Amp-hours (Ah) tells you how long the battery lasts at a given current—it does not mean there's a fixed amount of "amps" inside.