

FIG. 3A

pROD(PK36) Leader Sequence

HIV2ROD ROD(PK36)	310 GTTGGCGCCT GTTGGCGCCT	320 GAACAGGGAC GAACAGGGAC	330 TTGAAGAAGA TTGAAGAAGA	340 CTGAGAAGTC CTGAGAAGTC	350 TTGGAACACG TTGGAACACG
HIV2ROD ROD(PK36)	360 GCTGAGTGAA GCTGAGTGAA	370 GGCAGTAAGG GGCAGTAAGG	380 GCGGCAGGAA GCGGCAGGAA	390 CAAACCACGA CAAACCACGA	400 CGGAGTGCTC CGGAGTGCTC
HIV2ROD ROD(PK36)		420 GCGGGCCGAG GCGGGCCGAG	430 GTACCAAAGO GTACCAAAGO	CAGCGTGTG	0 450 G AGCGGGAGGA G AGCGGGAGGA
HIV2ROD ROD(PK36)	460 GAAGAGGCCT GAAAGAGGCT		480 GTAAGTACCT GTAAGTACCT	ACACCAAAA	0 500 A CTGTAGCCGA
HIV2ROD ROD(PK36)	510 AAGGGCTTGC	520 TATCCTACCT	530 TTAGACAGGT	540 AGAAGATTGT T	550 GGGAGATGGG GGGAGATGGG

FIG. 3B

pROD(SK36) Leader Sequence

HIV2ROD ROD(SK36)	310 GTTGGCGCCT GTTGG		330 TTGAAGAAGA	340 CTGAGAAGTC	350 TTGGAACACG
HIV2ROD ROD(SK36)	360 GCTGAGTGAA	370 GGCAGTAAGG	380 GCGGCAGGAA	390 CAAACCACGA	400 CGGAGTGCTC
HIV2ROD ROD(SK36)	410 CTAGAAAGGC	420 GCGGGCCGAG	430 GTACCAAAGG	440 CAGCGTGTGG	
HIV2ROD ROD(SK36)		470 CCGGGTGAAG CCGGGTGAAG	480 GTAAGTACCT GTAAGTACCT		500 A CTGTAGCCGA A CTGTAGCCGA
HIV2ROD ROD(SK36)	510 AAGGGCTTGC AAGGGCTTGC	520 TATCCTACCT TATCCTACCT	530 TTAGACAGGT A		550 GGGAGATGGG GGGAGATGGG

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 6 of 28 Sheets

FIG. 3C pROD(SD36) Leader Sequence

HIV2ROD ROD(SD36)	310 320 330 340 350 GTTGGCGCCT GAACAGGGAC TTGAAGAAGA CTGAGAAGTC TTGGAACACG GTTGG					
HIV2ROD ROD(SD36)	360 370 380 390 400 GCTGAGTGAA GGCAGTAAGG GCGGCAGGAA CAAACCACGA CGGAGTGCTC					
HIV2ROD ROD(SD36)	410 420 430 440 45 CTAGAAAGGC GCGGGCCGAG GTACCAAAGG CAGCGTGTGG AGCGGGAGGA					
HIV2ROD ROD(SD36)	460 470 480 490 50 GAAGAGGCCT CCGGGTGAAG GTAAGTACCT ACACCAAAAA CTGTAGCCC CT CCGGGTGAAG GTAAGTACCT ACACC					
HIV2ROD ROD(SD36)	510 520 530 540 550 AAGGGCTTGC TATCCTACCT TTAGACAGGT AGAAGATTGT GGGAGATGGC GT GGGAGATGGC	3				
FIG. 3D pROD(CG36) Leader Sequence						
HIV2ROD	(Designed and to be created) 310 320 330 340 350 GTTGGCGCCT GAACAGGGAC TTGAAGAAGA CTGAGAAGTC TTGGAACACC	3				
ROD(CG36)	GTTGGCGCCT GAACAGGGAC TTGAAGAAGA CTGAGAAGTC TTGGAACACC	3				
HIV2ROD ROD(CG36)	360 370 380 390 400 GCTGAGTGAA GGCAGTAAGG GCGGCAGGAA CAAACCACGA CGGAGTGCTC GCTGAGTGAA GGCAGTAAGG					
HIV2ROD ROD(CG36)	410 420 430 440 4. CTAGAAAGGC GCGGGCCGAG GTACCAAAGG CAGCGTGTGG AGCGGGAGG	50 GA				
HIV2ROD ROD(CG36)	460 470 480 490 5 GAAGAGGCCT CCGGGTGAAG GTAAGTACCT ACACCAAAAA CTGTAGCCC CT CCGGGTGAAG GTAAGTACCT ACACC	600 GA				
HIV2ROD ROD(CG36)	510 520 530 540 550 AAGGGCTTGC TATCCTACCT TTAGACAGGT AGAAGATTGT GGGAGATGG GT GGGAGATGG	G				

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 7 of 28 Sheets

FIG. 3E

pROD(MR36) Leader Sequence (Designed and to be created)

	310	320	330	340	350
HIV2ROD		GAACAGGGAC	TTGAAGAAGA	CTGAGAAGTC	TTGGAACACG
ROD(MR36)	GTTGG				
	360	370	380	390	400
HIV2ROD	GCTGAGTGAA	GGCAGTAAGG	GCGGCAGGAA	7 / 7	
ROD(MR36)					CGGAGTGCTC
	410	100			4.40
MWanon	410	420	430	• • •	
HIV2ROD	CTAGAAAGGC				G AGCGGGAGGA
ROD(MR36)	CTAGAAAGGC	GCGGGCCGAG	GTACCAAAGC	GAGCGTGTG	G AGCGGGAGGA
	460	470	480	49	0 500
HIV2ROD	GAAGAGGCCT	CCGGGTGAAG	GTAAGTACCT	ACACCAAAA	A CTGTAGCCGA
ROD(MR36)	GAAAGAGGCT	CCGGGTGAAG	GTAAGTACCT	ACACC	
	510	520	530	540	550
HIV2ROD	AAGGGCTTGC	TATCCTACCT			550
ROD(MR36)	AAGGGCTTGC	IMICCIACCI	TTAGACAGGT	AGAAGATTGT	GGGAGATGGG
KOD(MK30)				GT	GGGAGATGGG

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 8 of 28 Sheets

FIG. 4A

HIV-2 pROD(SD36/EM) Sequence of Mutant Region of Envelope (Insertion mutant)

ROD (6351) ACAGAGGCTT TTGATGCAT
EM	ACAGAGGCTT TTGATGCATA GGTAGCGTGA GATCTTAGTG CA
ROD	G GAATAATA CA (6380)
EM	TAGGTAGC GTGAGATCTT AGTGCAAAGA TCGAATAATA CA

FIG. 4B

pCM-ENV(ROD)(B-14)

1	TCAATATTGG	CCATTAGCCA	TATTATTCAT	TGGTTATATA	GCATAAATCA
51	ATATTGGCTA	TTGGCCATTG	CATACGTTGT	ATCTATATCA	TAATATGTAC
101	ATTTATATTG	GCTCATGTCC	AATATGACCG	CCATGTTGGC	ATTGATTATT
151	GACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT	CATAGCCCAT
201	ATATGGAGTT	CCGCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA
251	CCGCCCAACG	ACCCCCGCCC	ATTGACGTCA	ATAATGACGT	ATGTTCCCAT
301	AGTAACGCCA	ATAGGGACTT	TCCATTGACG	TCAATGGGTG	GAGTATTTAC
351	GGTAAACTGC	CCACTTGGCA	GTACATCAAG	TGTATCATAT	GCCAAGTCCG
401	CCCCCTATTG	ACGTCAATGA	CGGTAAATGG	CCCGCCTGGC	ATTATGCCCA
451	GTACATGACC	TTACGGGACT	TTCCTACTTG	GCAGTACATC	TACGTATTAG
501	TCATCGCTAT	TACCATGGTG	ATGCGGTTTT	GGCAGTACAC	CAATGGGCGT
551	GGATAGCGGT	TTGACTCACG	GGGATTTCCA	AGTCTCCACC	CCATTGACGT
601	CAATGGGAGT	TTGTTTTGGC	ACCAAAATCA	ACGGGACTTT	CCAAAATGTC
651	GTAATAACCC	CGCCCCGTTG	ACGCAAATGG	GCGGTAGGCG	TGTACGGTGG
701	GAGGTCTATA	TAAGCAGAGC	TCGTTTAGTG	AACCGTCAGA	TCACTAGAAG
751	CTTTATTGCG	GTAGTTTATC	ACAGTTAAAT	TGCTAACGCA	GTCAGTGCTT
801	CTGACACAAC	GGTCTCGAAC	TTAAGCTGCA	GAAGTTGGTC	GTGAGGCACT
851	GGGCAGGTAA	GTATCAAGGT	TACAAGACAG	GTTTAAGGAG	ACCAATAGAA
901	ACTGGGCTTG	TCGAGACAGA	GAAGACTCTT	GCGTTTCTGA	TAGGCACCTA
951	TTGGTCTTAC	TGACATCCAC	TTTGCCTTTC	TCTCCACAGG	TGTCCACTCC
1001	CAGTTCAATT	ACAGCTCTTA	AGGCTAGAGT	ACTTAATACG	ACTCACTATA
1051	GGCTAGCCTC	GA	Т	ACACCAGAC A	AGTGAGTAT 180
GATGAATCAG	CTGCTTATTG (CCATTTTATT A	AGCTAGTGCT T	GCTTAGTAT A	TTGCACCCA 240
ATATGTAACT	GTTTTCTATG (GCGTACCCAC (GTGGAAAAAT G	CAACCATTC C	CCTCTTTTG 300
310	320	330	340	350	360
					TGATGATTA 360 AGTAACAGA 420
					TGTCAAACT 480
					GAACAACAC 540
AACCTCAAAG	AGCACAAGCA	CAACCACAAC	CACACCCACA G	SACCAGGAGC A	Agagataag 600
610	620	630	640	650	660
tgaggatact	ccatgcgcac	gcgcagacaa	ctactcagga	ttgggagagg	aagaaacgat 660
caattgccag	ttcaatatga	caggattaga	aagagataag	aaaaaacagt .	ataatgaaac 720
atggtactca	aaagatgtgg	tttgtgagac	aaataatagc	acaaatcaga	cccagtgtta 780
					attgggatgc 840
tataaggttt	agatactgtg	caccaccggg	ttatgcccta	ttaagatgta	atgataccaa 900

FIG. 4C 920 930 940 950 960 ttattcagge tttgcaecca actgttetaa agtagtaget tetacatgea ecaggatgat 960 ggaaacgcaa acttccacat ggtttggctt taatggcact agagcagaga atagaacata 1020 tatetattgg catggeagag ataatagaac tateateage ttaaacaaat attataatet 1080 cagttttgcat tgtaagaggc cagggaataa gatagtgaaa caaataatgc ttatgtcagg 1140 acatgtgttt cactcccact accagccgat caataaaaga cccagacaag catggtgctg 1200 1250 1220 1230 1240 1260 1210 qttcaaaggc aaatggaaag acgccatgca ggaggtgaag gaaacccttg caaaacatcc 1260 caggtataga ggaaccaatg acacaaggaa tattagcttt gcagcgccag gaaaaggctc 1320 agacccagaa gtagcataca tgtggactaa ctgcagagga gagtttctct actgcaacat 1380 gacttggttc ctcaattgga tagagaataa gacacacgc aattatgcac cgtgccatat 1440 aaagcaaata attaacacat ggcataaggt agggagaaat gtatatttgc ctcccaggga 1500 1540 1560 1510 1520 1530 1550 aggggagetg teetgeaact caacagtaac cagcataatt getaacattg actggcaaaa 1560 caataatcag acaaacatta cctttagtgc agaggtggca gaactataca gattggagtt 1620 gggagattat aaattggtag aaataacacc aattggcttc gcacctacaa aagaaaaaag 1680 atactcctct gctcacggga gacatacaag aggtgtgttc gtgctagggt tcttgggttt 1740 tetegeaaca geaggttetg caatgggege ggegteeetg acegtgtegg eteagteeeg 1800 1850 1810 1820 1830 1840 gactttactg gccgggatag tgcagcaaca gcaacagctg ttggacgtgg tcaagagaca 1860 acaagaactg ttgcgactga ccgtctgggg aacgaaaaac ctccaggcaa gagtcactgc 1920 tatagagaag tacctacagg accaggcgcg gctaaattca tggggatgtg cgtttagaca 1980 agtetgeeae actactgtae catgggttaa tgatteetta geacetgaet gggacaatat 2040 gacgtggcag gaatgggaaa aacaagtccg ctacctggag gcaaatatca gtaaaagttt 2100 2130 2140 2150 2160 2110 2120 agaacaggca caaattcagc aagagaaaaa tatgtatgaa ctacaaaaat taaatagctg 2160 ggatattttt ggcaattggt ttgacttaac ctcctgggtc aagtatattc aatatggagt 2220 gettataata gtageagtaa tagetttaag aatagtgata tatgtagtae aaatgttaag 2280 taggettaga aagggetata ggeetgtttt etetteece eeeggttata teeaacagat 2340 ccatatccac aaggaccggg gacagccagc caacgaagaa acagaagaag acggtggaag 2400 2450 2460 2410 2420 2430 2440 caacqqtqqa qacaqatact gqccctgqcc gataqcaTAT ATACATTTCC TGATCCGCCA 2460 GCTGATTCGC CTCTTGACCA GACTATACAG CATCTGCAGG GACTTACTAT CCAGGAGCTT 2520 CCTGACCCTC CAACTCATCT ACCAGAATCT CAGAGACTGG CTGAGACTTA GAACAGCCTT 2580 CTTGCAATAT GGGTGCGAGT GGATCCAAGA AGCATTCCAG GCCGCCGCGA GGGCTACAAG 2640 AGAGACTCTT GCGGGCGCGT GCAGGGGCTT GTGGAGGGTA TTGGAACGAA TCGGGAGGGG 2700 2720 2740 2750 2760 2710 2730

AATACTCGCG GTTCCAAGAA GGATCAGACA GGGAGCAGAA ATCGCCTCCT GTGAGGGACG 2760 GCAGTATAGC CAGGGAGACT TTATGAATAC TCCATGG

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 11 of 28 Sheets

FIG. 4D

					GGCGG
1101	CCGCTTCGAG	CAGACATGAT	AAGATACATT	GATGAGTTTG	GACAAACCAC
1151	AACTAGAATG	CAGTGAAAAA	AATGCTTTAT	TTGTGAAATT	TGTGATGCTA
1201	TTGCTTTATT	TGTAACCATT	ATAAGCTGCA	ATAAACAAGT	TAACAACAAC
1251	AATTGCATTC	ATTTTATGTT	TCAGGTTCAG	GGGGAGATGT	GGGAGGTTTT
1301	TTAAAGCAAG	TAAAACCTCT	ACAAATGTGG	TAAAATCGAT	AAGGATCCGG
1351	GCTGGCGTAA	TAGCGAAGAG	GCCCGCACCG	ATCGCCCTTC	CCAACAGTTG
1401	CGCAGCCTGA	ATGGCGAATG	GACGCGCCCT	GTAGCGGCGC	ATTAAGCGCG
1451	GCGGGTGTGG	TGGTTACGCG	CAGCGTGACC	GCTACACTTG	CCAGCGCCCT
1501	AGCGCCCGCT	CCTTTCGCTT	TCTTCCCTTC	CTTTCTCGCC	ACGTTCGCCG
1551	GCTTTCCCCG	TCAAGCTCTA	AATCGGGGGC	TCCCTTTAGG	GTTCCGATTT

FIG. 5A

SIV 5' LTR Leader Sequence

R→				
10	20	30	40	50
GCTCTGTATT	CAGTCGCTCT	GCGGAGAGGC	TGGCAGATTG	AGCCCTGGGA
60	70	80	90	100
GGTTCTCTCC	AGCACTAGCA	GGTAGAGCCT	GGGTGTTCCC	TGCTAGACTC
	100	120	1.40	150
110	120	130	140	150 CTTGCTTGCT
TCACCAGCAC	TTGGCCGGTG	CIGGGCAGAG	TGACTCCACG	
1.00	170	180	← R U5 - 190	200
160			AGAAGTAAGC	
TAAAGCCCTC	TICAATAAAG	CIGCCATTI	AGAAGTAAGC	INGIGIGIGI
210	220	230	240	250
TCCCATCTCT	CCTAGCCGCC	GCCTGGTCAA	CTCGGTACTC	
ICCCATCICI	cerndeedee	30013010111		
260	270	280	290	300
AGACCCTGGT	CTGTTAGGAC	CCTTTCTGCT	TTGGGAAACC	GAAGCAGGAA
	5 Leader →			
310	320	330	340	350
AATCCCTAGC	AGATTGGCGC	CTGAACAGGG	ACTTGAAGGA	GAGTGAGAGA
360	370	380	390	400
CTCCTGAGTA	CGGCTGAGTG	AAGGCAGTAA	GGGCGGCAGG	AACCAACCAC
410	420	430		450
GACGGAGTGC	TCCTATAAAG		GTACCAGACG	GCGTGAGGAG
		SD	400	~ 00
460	470	480		
CGGGAGAGGA	AGAGGCCTCC	GGTTGCAGGT	AAGIGCAACA	CAAAAAAGAA
£10	520	520	540	550
510	520		AAGATAGAGT	
ATAGCTGTCT	TITATCCAGG	AAUUUUIAAI	AAGATAGAGT	GOOMGAIGOG
560				
CCTCACAAAC				

CGTGAGAAAC

FIG. 5B

pSIV(SD36)

WTL SD36	320 GATTGGCGC GATTGG	330 CTGAACAGGG	340 ACTTGAAGGA	350 GAGTGAGAGA	360 CTCCTGAGTA
WTL SD36	370 CGGCTGAGTG	380 AAGGCAGTAA	390 GGGCGGCAGG	400 AACCAACCAC	GACGGAGTGC
WTL SD36	420 TCCTATAAAG	430 GCGCGGGTCG	440 GTACCAGACG	450 GCGTGAGGAG	460 CGGGAGAGGA
WTL SD36	470 AGAGGCCTCC CTCC	SD 480 GGTTGCAGGT GGTTGCAGGT	490 AAGTGCAACA AAGTGCAACA	500 CAAAAAAGAA CA	510 ATAGCTGTCT
WTL SD36	520 TTTATCCAGG	530 AAGGGGTAAT	540 AAGATAGAGT GT	550 GGGAGATGGG GGGAGATGGG	560 CGTGAGAAAC CGTGAGAAAC

FIG. 5C

pSIV(SDM)

WTL SDM	320 GATTGGCGC GATTGGCGC	330 CTGAACAGGG CTGAACAGGG	340 ACTTGAAGGA ACTTGAAGGA	350 GAGTGAGAGA GAGTGAGAGA	360 CTCCTGAGTA CTCCTGAGTA
WTL SDM	370 CGGCTGAGTG CGGCTGAGTG	380 AAGGCAGTAA AAGGCAGTAA	390 GGGCGGCAGG GGGCGGCAGG	400 AACCAACCAC AACCAACCAC	410 GACGGAGTGC GACGGAGTGC
WTL SDM	420 TCCTATAAAG TCCTATAAAG	430 GCGCGGGTCG GCGCGGGTCG SD	440 GTACCAGACG GTACCAGACG	450 GCGTGAGGAG GCGTGAGGAG	460 CGGGAGAGGA CGGGAGAGGA
WTL SDM	470 AGAGGCCTCC AGAGGCCTCC	480 GGTTGCAGGT GGTTGATATC	490 AAGTGCAACA GAGTGCAACA	500 CAAAAAAGAA CAAAAAAGAA	510 ATAGCTGTCT ATAGCTGTCT
WTL SDM	520 TTTATCCAGG TTTATCCAGG	530 AAGGGGTAAT AAGGGGTAAT	540 AAGATAGAGT AAGATAGAGT	550 GGGAGATGGG GGGAGATGGG	560 CGTGAGAAAC CGTGAGAAAC

FIG. 7A

pSGT5(SDM/RR)

IU3 -530 -520 GGAA GGGCTGTATT ACAGTGATAG -490 -480 -500 -520 -510 GAGACGTAGA GTCCTAGACA TATACTTAGA AAAGGAAGAG GGAATAATTG GAGACTGGCA -440 -430 -450 -460 GAACTATACT CATG GACCAG GAGTAAGGTA TCCAAAGTTC TTTGGGTGGT TATGGAAGCT -380 -370 -390 AGTACCAGTA GATGTCCCAC AAGA GGGAGA TGACAGTGAG ACTCACTGCT TAGTGCATCC -320 -310-340 -330 -350 AGCA CAAACA AGCAGGTTTG ATGACCCGCA TGGAGAAACA TTAGTTTGGA GGTTTGACCC -270 -260 CACGCTAGCT TTTAGCTACG AGGCCTTTAT TCGATACCCA GAGGAGTTTG GGTACAAGTC -190 -180-210 -200 AGGCCTGCCA GAGGATGAAT GGAAGGCAAG ACTGAAAGCA AGAGGGATAC CGTTAGCTA -130-140 -150 AAAACAGGAA CAGCTATACT TGGTCAGGGC AGGAAGTAAC TAACAGAAAA CAGCTGAGAC -90 -80 -100 TGCAGGGACT TTCCAGAAGG GGCTGTTACC AGGGGAGGA CATGGGAGGA GCCGGTGGGG -30 -20 -10 U3| AACGCCCTCA TACTTTCTGT ATAAATGTAC CCGCTACTCG CATTGTATTC 60 GTTCGCTCTG CGGAGAGGCT GGCAGATTGA GCCCTGGGAG GTTCTCTCCA GCACTAGCAG 90 100 110 80 TGGTCACCTG GGTGTTCCCT GCTAGACTCT CACCAGTGCT TGGCCGGCAC TGGGCAGACG 160 150 GCTCCACGCT TGCTTGCTTA AAAGACCTCT TAATAAAGCT GCCAGTTAGA AGCAAGTTAA 220 230 200 210 GTGTGTGCTC CCATCTCTCC TAGTCGCCGC CTGGTCATTC GGTGTTCATC TAAAGTAACA 280 290 300 260 270 250 AGACCCTGGT CTGTTAGGAC CCTTTCTGCT TTGGGAAACC AAGGCAGGAA AATCCCTAGC 320 330 U5|Leader 310 AGGTTGGCGC CCGAACAGGG ACTTGAAGAA GACTGAGAAG CCTTGGAACA CGGCTGAGTG 390 400 410 420 380 AAGGCAGTAA GGGCGGCAGG AACAAACCAC GACGGAGTGC TCCTAGAAAA GCGCAGGCCG

FIG. 7B

430 AGGTACCAAG GC	440 GCGGCGTGT GG	450 AGCGGGAG TGA	460 AAGAGGC CTCC	470 SDM CGGGTGA TATC	480 AGTGCC
490	500	510	520	530	540
TACACCAAAT AC	CAGTAGCCA GA	AGGGCTTG TTA	TCCTACC TTTA	GACGGG TAGA	AGATTG
Leader gag	560	570	580	590	600
TGGGAGATGC CA	ATGGTAGGG CO	GCGAGAAAC TCG	CGTCTTGA GAG	GGAAAAA AGC	AGACGAA
610		630			
TTAGAAAAGA TT	AGGTTACG GC	CCGGCGGA AAG	SAAAAAT ATA	GGCTAAA ACAT	TATTGTG
670	680	690	700		
TGGGCAGCGA AT	rgaattgga ca	GATTCGGA TTG	GCAGAGA GCC	CTGTTGGA GTC	AAAAGAG
730 GGTTGCCAAAA	740	750	760	770	780
GGTTGCCAAAA .	AAATTCTTAC A	GTTTTAGAT CCA	ATTAGTAC CGA	CAGGGTC AGA.	AAATTTA
790	800	810	820	830	
AAAAGCCTTT	TTAATACTGT C	rgcgtcatt tgc	STGTATAC ACGO	CAGAAGA GAAA	AGCGAAA
850				890	900
GATACTGAAG A	AAGCAAAACA A	AAAGGTACAG A	GACATCTAG TG	GCAGAAAC AA	AAACTACA
910		930			
GAAAAAATGC C	CAAGTACAAG T	AGACCAACA GO	CACCACCTA GCC	GGAACGG AGG	BAACTCGA
970	980	RRE(7661) 990	1000	1010	1020
ATGCATGGTG A	ACCGCGGCCG C	AGAGGTGTA TT	CGTGCTAG GG1	TCTTAGG TTTT	CTCACA
1030	1040	1050	1060	1070	1080
GCAGGAGCTG C					
1090	1100	1110	1120	1130	1140
GCCGGGATAG T	GCAGCAACA G	CAACAGCTG TT	GGACGTGG TCA	AAGAGACA ACA	AAGAAATG
1150	1160	1170	1180	1190	1200
TTGCGACTGA CO	CGTCTGGGG AA	ACAAAAAAT CTO	CCAGGCAA GAG	TCACTGC TATO	CGAGAAA
		1230			1260
TACTTAAAGG A	CCAGGCGC AA	CTAAATTCA TG	GGGATGTG CGT	CTAGACA AGT	CTGCCAC
1270	RRE(7960) poly(L)		(8770)	1310	1320
ACTACTGTAC C	ATGGGTAGC G	GCCGCTCGC GA	GTAGACCA TG	GAGAGCCC CAG	GCAGAAGG
1330	1340	1350	1360	1370	1380
GGAGAAAGGC T	CGTACAAGC A	ACAAAATAT GO	GATGATGTA GA	TTCAGATG ATO	GATGACCT
1390	1400	1410	1420	1430	1440
AGTAGGGGTC (TAAGAGAA AT	GACATATA GG	TTGGCAAG
1450	1460	1470	(8944) U3 1480	1490	1500
		AAGAAAAGGG G	GGACTGGAA G	GGCTGTATT AC	CAGTGATAG

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 19 of 28 Sheets

FIG. 7C

1510 GAGACGTAGA	1520 GTCCTAGACA	1530 TATACTTAGA	1540 AAAGGAAGAG	1550 GGAATAATTG	1560 GAGACTGGCA
1570 GAACTATACT				1610 TTTGGGTGGT	
1630 AGTACCAGTA				1670 ACTCACTGCT	
1690 AGCA CAAACA				1730 A TTAGTTTGGA	
1750 CACGCTAGCT				1790 GAGGAGTTTĞ C	
1810 AGGCCTGCCA	1820 GAGGATGAAT			1850 AGAGGGATAC	
1870 AAAACAGGAA			1900 AGGAAGTAAC		1920 CAGCTGAGAC
1930 TGCAGGGACT			1960 C AGGGGAGGG		1980 A GCCGGTGGGG
1990 AACGCCCTCA	2000 TACTTTCTGT	2010 ATAAATGTAC	2020 CCGCTACTCG	U3 R CATTGTATTC A	
2050 CGGAGAGGCT			0 208 G GTTCTCTCC	0 2090 A GCACTAGCAC	
2110 GGTGTTCCCT	2120 GCTAGACTCT		2140 TGGCCGGCAC	2150 TGGGCAGACG	2160 GCTCCACGCT
2170 TGCTTGCTTA		2190 Γ TAATAAAGC	•		

FIG. 7D

10	20	30	40	50 GTTACTGGCC	60 GAAGCCGCTT
TCTAGAGGAA	TTCCGCCCCT	CTCCCTCCCC	CCCCCTAAC		120
70	80 CGGTGTGCGT	90 TTGTCTATAT	100 GTTATTTTCC	110 ACCATATTGC	CGTCTTTTGG
GGAATAAGGC		150	160	170	180
130 CAATGTGAGG	140 GCCCGGAAAC	CTGGCCCTGT	CTTCTTGACG	AGCATTCCTA	GGGGTCTTTC
190	200	210	220	230	240
CCCTCTCGCC	AAAGGAATGC	AAGGTCTGTT	GAATGTCGTG	AAGGAAGCAG	TTCCTCTGGA
250	260	270	280	290	300
AGCTTCTTGA	AGACAAACAA	CGTCTGTAGC	GACCCTTTGC	AGGCAGCGGA	ACCCCCACC
310	320	330	340	350	360
TGGCGACAGG	TGCCTCTGCG	GCCAAAAGCC	ACGTGTATAA	GATACACCTG	CAAAGGCGGC
370	380	390	400	410	420
ACAACCCCAG	TGCCACGTTG	TGAGTTGGAT	AGTTGTGGAA	AGAGTCAAAT	GGCTCTCCTC
430	440	450	460	470	480
AAGCGTATTC	AACAAGGGGC	TGAAGGATGC	CCAGAAGGTA	CCCCATTGTA	TGGGATCTGA
490	500	510	520	530 AGGTTAAAAA	540 ACGTCTAGGC
TCTGGGGCCT	CGGTGCACAT	GCTTTACATG	TGTTTAGTCG		600
550	560	570 GGTTTTCCTT	580 TGAAAAACAC	590 GATGATAAGC	TTGCCACAAC
CCCCGAACC	ACGGGGACGT		640	650	660
610 CATGGCTGAA	620 CAAGATGGAT	630 TGCACGCAGG	TTCTCCGGCC	GCTTGGGTGG	AGAGGCTATT
	680	690	700	710	720
670 CGGCTATGAC	TGGGCACAAC	AGACAATCGG	CTGCTCTGAT	GCCGCCGTGT	TCCGGCTGTC
730	740	750	760	770	780
AGCGCAGGGG	CGCCCGGTTC	TTTTTGTCAA	GACCGACCTG	TCCGGTGCCC	TGAATGAACT
790	800	810	820	830	840
GCAGGACGAG	GCAGCGCGGC	TATCGTGGCT	GGCCACGACG	GGCGTTCCTT	GCGCAGCTGT
850	860	870	880	890	900
GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	CTGGCTGCTA	TTGGGCGAAG	TGCCGGGGCA
910	920	930	940	950	960 CTGATGCAAT
GGATCTCCTG	TCATCTCACC	TTGCTCCTGC	CGAGAAAGTA	TCCATCATGG	
970	980	990	1000 CTGCCCATTC	1010 GACCACCAAG	1020 CGAAACATCG
GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC			1080
1030	1040	1050 GGATGGAAGC	1060 CGGTCTTGTC	1070 GATCAGGATG	ATCTGGACGA
CATCGAGCGA				1130	1140
1090 AGAGCATCAG	1100 GGGCTCGCGC	1110 CAGCCGAACT	1120 GTTCGCCAGG	CTCAAGGCGC	GCATGCCCGA
		•	1180	1190	1200
1150 CGGCGAGGAT	1160 CTCGTCGTGA	1170 CCCATGGCGA	TGCCTGCTTG	CCGAATATCA	TGGTGGAAAA
	1220	1230	1240	1250	1260
1210 TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	CCGGCTGGGT	GTGGCGGACC	GCTATCAGGA
1270	1280	1290	1300	1310	1320
CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	AGAGCTTGGC	GGCGAATGGG	CTGACCGCTT
1330	1340	1350	1360	1370	1380
CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA	TTCGCAGCGC	ATCGCCTTCT	ATCGCCTTCT
1390	1400	1410			
TGACGAGTTC	TTCTGAGCGG	GATCGGCTAG	C :		

FIG. 7E

pSGT-5(SDM) 5'LTR-Leader Sequence

	10	20	30	40	50
HIV2ST	GTTCGCTCTG	CGGAGAGGCT	GGCAGATTGA	GCCCTGGGAG	GTTCTCTCCA
pSGT5(SDM)	GTTCGCTCTG	CGGAGAGGCT	GGCAGATTGA	GCCCTGGGAG	GTTCTCTCCA
	60	70	80	90	100
HIV2ST	GCACTAGCAG		GGTGTTCCCT	GCTAGACTCT	
pSGT5(SDM)	GCACTAGCAG	TGGTCACCTG	GGTGTTCCCT	GCTAGACTCT	CACCAGTGCT
	110	120	130	140	150
HIV2ST	TGGCCGGCAC		GCTCCACGCT		AAAGACCTCT
pSGT5(SDM)	TGGGCGCAC		GCTCCACGCT		AAAGACCTCT
•					
	160	170	180	190	200
HIV2ST	TAATAAAGCT		AGCAAGTTAA		CCATCTCTCC
pSGT5(SDM)	TAATAAAGCT	GCCAGTTAGA	AGCAAGTTAA	GTGTGTGCTC	CCATCTCTCC
	210	220	230	240	250
HIV2ST		CTGGTCATTC	GGTGTTCATC	TAAAGTAACA	
pSGT5(SDM)	TAGTCGCCGC		GGTGTTCATC	TAAAGTAACA	
F					
	260	270	280	290	300
HIV2ST	CTGTTAGGAC			AAGGCAGGAA	
pSGT5(SDM)	CTGTTAGGAC	CCTTTCTGCT	TTGGGAAACC	AAGGCAGGAA	AATCCCTAGC
	310	320	330	340	350
HIV2ST	AGGTTGGCGC			GACTGAGAAC	19
pSGT5(SDM)	AGGTTGGCGC			GACTGAGAAG	
FIG. 1. 1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
	360	370	380	390	400
HIV2ST		AAGGCAGTAA		AACAAACCAC AACAAACCAC	
pSGT5(SDM)	COOCIDAGIO	AAGGCAGTAA	OGGCGGCAGG	AACAAACCAC	GACGGAGTGC
	410	420	430	440	450
HIV2ST		GCGCAGGCCG		GGCGGCGTGT	
pSGT5(SDM)	TCCTAGAAAA (GCGCAGGCCG	AGGTACCAAG	GGCGGCGTGT	GGAGCGGGAG
	460	470	480	. 490	500
HIV2ST	TGAAAGAGGC C		AGGTAAGTGC		TACAGTAGCC
pSGT5(SDM)	TGAAAGAGGC C		TATC AGTGC	CTACACCAAA	TACAGTAGCC
•					
	£10	600	£20	540	<i>EE</i> 0
TITYOCT	510 AGAAGGCTT GT	520	530 TTTAGACGG G	540 Tagaagatt gi	550 TGGGAGATG
HIV2ST pSGT5(SDM)	AGAAGGGCTT GT	TATCCIAC C	TTAGACGG G	TAGAAGATT G	TGG AGATG
hag ra(anm)	ALGEBRAGO CELE OF				

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 22 of 28 Sheets

FIG. 7F

pSGT-5(SDM) Leader Sequence

HIV2ST pSGT5(SDM)	310 AGGTTGGCGC AGGTTGGCGC		330 ACTTGAAGAA ACTTGAAGAA	340 GACTGAGAAG GACTGAGAAG	CCTTGGAACA
HIV2ST pSGT5(SDM)	360 CGGCTGAGTG CGGCTGAGTG	370 AAGGCAGTAA AAGGCAGTAA	380 GGGCGGCAGG GGGCGGCAGG	390 AACAAACCAC AACAAACCAC	400 GACGGAGTGC GACGGAGTGC
HIV2ST pSGT5(SDM)	410 TCCTAGAAAA TCCTAGAAAA	420 GCGCAGGCCG GCGCAGGCCG	430 AGGTACCAAG AGGTACCAAG	440 GGCGGCGTGT (GGCGGCGTGT (
HIV2ST pSGT5(SDM)	460 TGAAAGAGGC (TGAAAGAGGC (many a series and	490 CTACACCAAA T CTACACCAAA T	
HIV2ST pSGT5(SDM)	510 AGAAGGGCTT G AGAAGGGCTT G		530 TTAGACGG GT TTAGACGG GT		

Attorney Ref. No. 4239-67517-01 Inventor: Suresh K. Arya U.S. Application No. 10/731,988 filed December 9, 2003 Title: LENTIVIRUS VECTOR SYSTEM REPLACEMENT DRAWINGS: Sheet 23 of 28 Sheets

FIG. 7G

pSGT-5(SDX) Leader Sequence

	310	320	330	340	350
HIV2ST	AGGTTGGCGC	CCGAACAGGG	ACTTGAAGAA	GACTGAGAAG	
pSGT5(SDX)	AGGTTGGCGC	CCGAACAGGG	ACTTGAAGAA	GACTGAGAAG	
				5.15.15.15.16.16	cerraganen
	360	370	380	390	400
HIV2ST	CGGCTGAGTG	AAGGCAGTAA		AACAAACCAC	
pSGT5(SDX)	CGGCTGAGTG	AAGGCAGTAA		AACAAACCAC (
,			GOGGGGGAGG	AACAAACCAC (JACOGAGIGC
	410	420	430	440	450
HIV2ST		GCGCAGGCCG	AGGTACCAAG	GGCGGCGTGT (GGAGCGGGAG
pSGT5(SDX)	TCCTAGAAAA	GCGCAGGCCG	AGGTACCAAG	GGCGGCGTGT	GGAGCGGGAG
	460	SD 470	400	400	
HIV2ST		470	480	490	500
pSGT5(SDX)		CTCCGGGTGA CTCCGG	AGGTAAGTGC	CTACACCAAA	
had ra(any)	IGAAAGAGGC	CICCGG	GC	CTACACCAAA	TACAGTAGCC
	510	520	530	540	550
HIV2ST	AGAAGGCTT C	STTATCCTAC CT	TTAGACGG GT	AGAAGATT GT	GGGAGATG
pSGT5(SDX)	AGAAGGGCTT G	TTATCCTAC CT	TTAGACGG GT	AGAAGATT GT	GG AGATG

