Quiz Submissions - Midterm Exam	
Attempt 1	
Submission View	
Multiple Choice Questions	
Question 1 1/1 p Which of the following state transitions is not possible in the lifetime of a process?	point
○ Running → Waiting	
New → Ready	
Running → Terminated	
Waiting → Running	
Question 2 1/1p	point
The transition Running → Ready happens when:	
The process is waiting for an I/O event to happen	
An interruption has been caused by an event independent of the process	
The process is completed	
The process is in the busy-waiting state	
Question 3 1/1 p	point
Which of the following statements is correct about short term and long term scheduler?	
Long-term scheduler is invoked as frequent as the short-term scheduler	
Short-term scheduler is invoked very infrequently	
Short-term scheduler is invoked very frequently	
Long-term scheduler is invoked very frequently	
Question 4 1/1 p	point
The fork() system call in Unix:	
all of the above	
creates new process with the duplicate process_id of the parent process	
creates new process with the duplicate address space of the parent	
creates new process with a shared memory with the parent process	
Question 5 1/1 p	point
How many processes are <u>created</u> at the end of the following for loop?	
for(i=0; i<5; i++) fork();.	
○ 32	
<u></u> 5	
O 24	
● 31	
Question 6 1/1 p	point
What is the motivation for threads, which does not apply to processes?	
Low overhead in switching between the threads	
All of the above	
One thread handles user interaction while the other thread does the background work	

1 / 1 point
1 / 1 point
1 / 1 point
1 / 1 point
the
the
e current
0 / 1 point
0 / 1 point

3 sur 8

	1 .	٠.
nımbiis	screenshot app	nrint
1111110 010	bereemonet app	PIIII

Scheduling algorithms for each queue	
Number of queues	
None of the above	
Question 14	1 / 1 point
In a CPU scheduling algorithm, three queues are used (Q2, Q1, and Q0). Q0 has the highest priority whereas Q2 has the lost the scheduling algorithm is multi-level feedback queue, which of the following statements is correct?	
If Q2 is empty, the processes from Q0 are selected.	
If Q2 is empty, the processes from Q1 are selected.	
If Q0 is empty, the processes from Q1 are selected.	
If Q1 is empty, the processes from Q0 are selected.	
Question 15	1 / 1 point
In multi-processor scheduling, processor affinity can be guaranteed by	
keep processes running on the same physical CPU	
keep processes alternating on the multiple physical CPUs	
have processes run on the physical CPU with lowest throughput	
have processes run on the physical CPU with highest throughput	
Question 16	1 / 1 point
In priority scheduling,	
The processes at the same priority level can be handled via First-Come-First Serve scheduling	
support for real time processing is allowed	
All of the above	
The processes at the same priority level can be handled via Round Robin scheduling	
Question 17	1 / 1 point
In scheduling, the term "aging" involves	
higher priority processes preventing low-priority processes from ever getting the CPU	
oprocesses being stuck in ready queues so long that they die	
oprocesses that are ready to run but stuck waiting indefinitely for the CPU	
gradually increasing the priority of a process so that a process will eventually execute	
Question 18	0 / 1 point
In CPU scheduling, the term waiting time denotes the amount of time	-, - , - ,
it takes from when a request was submitted until the first response is produced	
a process has been waiting in the wait state	
a process has been waiting in the ready queue	
from job submission to its completion	
Question 19	1 / 1 point
In RR scheduling, the time quantum should not be the context-switch time.	
large with respect to	
small with respect to	
the same size as	
irrelevant to	
Question 20	1 / 1 point
Question 20	1 / 1 point

Context switching between processes is carried out by the	
short term scheduler	
(a) dispatcher	
thread manager	
interrupt handler	
roblem Solving Questions	

Consider the following set of processes, with the length of the CPU burst given in milliseconds. In the last column, 0 denotes the highest priority whereas 2 denotes the lowest priority level.

Process	Arrival Time (ms)	Burst Time (ms)	Priority
P1	0	10	2
P2	3	3	1
Р3	4	2	0
P4	5	3	0
P5	6	5	1

Draw three Gantt charts that illustrate the execution of these processes using FCFS, <u>preemptive</u> Shortest Job First (SJF), and priority scheduling with round robin (quantum = 2) scheduling algorithms.

The preemptive SJF does not use the priority to make its decision.

****To avoid confusion here: If a process of highest priority is currently scheduled, and another process of the highest priority class arrives, newly arriving process MUST WAIT UNTIL THE END OF THE QUANTUM OF THE ACTIVE PROCESS. If a process of a lower priority class is currently scheduled, and a process of higher priority class has arrived, the newly arriving process CAN PREEMPT THE ACTIVE PROCESS WITHOUT WAITING UNTIL THE END OF THE QUANTUM.****

Question 21 2 / 2 points

In the FCFS algorithm, find the time when each process ends.

__<u>15</u>__ P3

__<u>13</u>__ P2

__<u>18</u>__ P4

__<u>10</u>__ P1

__<u>23</u>__ P5

1. 1

2. 2

3. 3

4. 4

5. 5

. .

_ 7

8. 8

9. ⁹

10. ¹⁰

11. 11

12. ¹²

13. ¹³

14. ¹⁴

15. ¹⁵

16. ¹⁶

17. ¹⁷

18. ¹⁸

19. ¹⁹

20. ²⁰

21. ²¹

22. 22

stion 22		2 / 2 points
the Preemptive SJF algorithm, find the t	time when each process ends.	
	1. 1	
	2. 2	
	3. 3	
	4. 4	
	5. 5	
	6. 6	
	7. 7	
	8. 8	
	9. 9	
<u>1</u> P4	10 . ¹⁰	
<u>.6</u> _ P5	11. 11	
P3	12. 12	
P2	13 . ¹³	
3 P1	14 . ¹⁴	
	15, 15	
	16. 16	
	17. 17	
	18. 18	
	19. 19	
	20 . ²⁰	
	21. 21	
	22. 22	
	23. 23	
n 23		2 / 2 points
	time when each process ends.	2 / 2 points
	time when each process ends. ${\bf 1}. \ \ {\bf 1}$	2 / 2 points
		2 / 2 points
	1. 1	2 / 2 points
	1. 1 2. 2	2 / 2 points
	1. 1 2. 2 3. 3	2 / 2 points
	 1. 1 2. 2 3. 3 4. 4 5. 5 	2 / 2 points
	 1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 	2 / 2 points
	 1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 	2 / 2 points
	1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8	2 / 2 points
he RR algorithm with priority, find the	1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9	2 / 2 points
stion 23 the RR algorithm with priority, find the t	1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9 10. 10	2 / 2 points
the RR algorithm with priority, find the	1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9	2 / 2 points
the RR algorithm with priority, find the t	1. 1 2. 2 3. 3 4. 4 5. 5 6. 6 7. 7 8. 8 9. 9 10. 10	2 / 2 points

23. 23

16 P5	14. 14	
	15. ¹⁵	
	16. 16	
	17. ¹⁷	
	18. 18	
	19. ¹⁹	
	20. 20	
	21. ²¹	
	22. 22	
	23. 23	
Question 24		2 / 2 points
What is the turnaround time of P4 for each of the scheduling alg	orithms:	
	1. 1	
	2. 2	
	3. 3	
	4. 4	
	5 . 5	
	6. 6	
6 Preemptive SJF	7 . ⁷	
	8. 8	
Priority with RR	9. 9	
- 	10. 10	
	11. 11	
	12. 12	
	13. ¹³	
	14. 14	
	15 . ¹⁵	
Question 25		2 / 2 points
What is the waiting time of P2 for each of the scheduling algorithms.	hms:	
* Note that the choices start at 1 = 0ms wait		
	1. 0	
	2. 1	
	3. 2	
_6 Priority with RR	4. 3	
8 FCFS	5. 4	
	6 . 5	
1 Preemptive SJF	7. 6	
	8. 7	
	9. 8	
	10. None of the above	

Done

8 sur 8