- (a) minimize χ^2+1 subject to $(\chi-2)(\chi-4) \le 0$. Since $(\chi-2)(\chi-4) \le 0$, we have $2 \le \chi \le 4$ which is equal to the feasible set. And $2 \le \chi \le 4 \iff 4 \le \chi^2 \le 16 \iff 5 \le \chi^2+1 \le 17$, which means that the optimal value $p^*=5$ while the optimal point $\chi^*=2$.
- (b) $L(x, \lambda) = (x^2 + 1) + \lambda (x 2)(x 4) = (1 + \lambda)x^2 6\lambda x + (1 + 8\lambda)$

We can See that the minimum value of $\mathcal{L}(x,\lambda)$ over x is always less than p^* . We observe that $\min \mathcal{L}(x,\lambda)$ increases as λ from 0 to λ , reaches the maximum value at $\lambda = 2$, and $\min \mathcal{L}(x,\lambda)$ decreases when $\lambda > 2$. Hence, we have $p^* = \mathcal{L}(x,\lambda)$ when $\lambda = 2$.

And we have $g(\lambda) = \inf_{x \in D} \left((1+\lambda)x^2 - 6\lambda x + (1+\beta\lambda) \right)$. When $\lambda < -1$, $g(\lambda)$ can go to $-\infty$. When $\lambda \ge -1$, we have $\nabla_x J(x_0) = 2(1+\lambda)x - 6\lambda = 0 \Leftrightarrow \chi = \frac{3\lambda}{1+\lambda}$. Thus, we get $g(\lambda) = \int_{-1+\lambda}^{-1} \frac{-9\lambda^2}{1+\lambda} + 1+8\lambda$ if $\lambda \ge -1$

We can see that the dual function g is concave, and Its value is equal to $p^*=5$ when $\lambda=2$, and less for other λ .

(c) The Lagrange dual problem is: maximize $\frac{-9\lambda^2}{1+\lambda} + 1+8\lambda$ subject to $\lambda \ge 0$.

Let the objective functor as $h(\lambda) = \frac{-9\lambda^2}{1+\lambda} + 1+8\lambda$. $\frac{dh}{d\lambda} = \frac{-\lambda^2 - 2\lambda + \beta}{(1+\lambda)^2}$, $\frac{dh}{d\lambda^2} = \frac{-18\lambda - 18}{(1+\lambda)^4}$. Set $\frac{dh}{d\lambda} = 0$ we have $\lambda = 2$ and since $\frac{dh}{d\lambda^2} \le 0$ when $\lambda \ge 0$, which implies the dual optimum occurs at $\lambda = 2$ with $\lambda \le 0$. Since slater's constraint qualification is satisfied, strong duality holds for this example with $\lambda \ge 0$.

minimize x + 1 subject to $(x-2)(x-4) \le y$. Since $\inf ((x-2)(x-4)) = -1$, this constraint is infeasible when y < -1. When $y \ge -1$, we have $(x-2)(x-4) \le y < -1$ x = -1. When $y \ge -1$ y = -1 y

Hence, we have:

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \\ 1 & \text{if } u \ge 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} p^{*}(u) + u \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -| \le 8 \end{cases}$$

$$p^{*}(u) = \begin{cases} 1 + u - 6 \sqrt{1+u} & \text{if } -|$$

$$\frac{dP^{*}(0)}{du} = 1 - \frac{6}{2\sqrt{1+u}} = 1 - 3 = -2 = -\lambda^{*}$$

For
$$\lambda = 0$$
, $g(\lambda) = \inf_{x \in D} c^T x = -\infty$.

For
$$\lambda > 0$$
, $g(\lambda) = \inf_{x \in D} \left(c^{7}x + \lambda f(x) \right) = \lambda \inf_{x \in D} \left(f(x) - \left(\frac{c}{\lambda} \right)^{7} \right) = -\lambda f^{*} \left(\frac{c}{\lambda} \right)$

When $\lambda > 0$, -g(λ) is the perspective function of f^* . Since f^* is convex even if

f is not convex, we know - g(x) is convex which implies g(x) is an care.

The dual problem is maximize - 2 f* (-C) subject to 2 20.

5.12

Introduce new variables y_i and equality constraints $y_i = b_i - a_i x$. Then we can rewrite the problem $as = minimize - \sum_{i=1}^{m} log y_i$ subject to y = b - Ax, where $A \in \mathbb{R}^{m \times n}$ has a_i as its ith row.

The Lagrangian is =
$$\mathcal{L}(x,y,v) = -\sum_{i=1}^{m} \log y_i + v(y-b+Ax)$$
.

 $U^T A \times can go to - \infty$ unless $U^T A = 0$. The terms in y are unbounded below if $U \neq 0$, and achieve there minimum when $Y_i = \frac{1}{V_i}$.

Then we get the dual function as: $g(u) = \begin{cases} \frac{m}{2} \log u + m - b^{T}u & \text{if } Au=0, u>0 \\ -m & \text{otherwise} \end{cases}$

And the dual problem is maximize $\sum_{T=1}^{M} \log U_i + m - b^T U$

Subject to $A\nu = 0$

- norm ([X+2+y, X-y]) is correctly identify as convex, but the equality constraints are only valid when both left and right hand sides are affine. Since the norm of a vector is zero if and only if the vector is zero. Hence, we can rewrite the constraints as X+2+y==0 and x-y==0, which are equal to X==0 and y==0.
- (b) The timer square is acceptable since square is convex and its expr = x+y is enabline func. However, the outer square is not acceptable because square over not accept a convex argument. We can use square—pos instead since it accepts convex argument, then we have: $square-pos\left(square\left(x+y\right)\right) \leq x-y$

Or we can also denote the constraint as: $(x+y)^4 \le x-y$

- (C) $\frac{1}{x}$ and $\frac{1}{y}$ are convex if $x, y \in \mathbb{R}_{++}$. Thus, we have to rewrite the constraints as $\frac{1}{x}$ inv-pos(x) + inv-pos(y) <= 1. The inv-pos function has domain on \mathbb{R}_{++} , at the same time include x > 0 and y > 0.
- norm() is convex if norm() is increasing / decreasing in its arguments and its exprs are convex/concave. We know that the exprs $\max(x,1)$ and $\max(y,2)$ are convex, but norm() are not always increasing. We have to make the exprs as affine functions to satisfy the DCP rules. In norm(). Let's set $\max(x,1) \leq U$, $\max(y,2) \leq V$, then we have:

norm ([u,v]) <= 3+x+ymax (x,1) <= umax (y,z) <= v.

This works since norm() is convex and monotonic over $(u_1v) \in \mathbb{R}^2$, $u \in [1, M]$ and $v \in [2, M]$

- Greater than >= constraints, where the left hand expression is concave. However, by is not concave on $X \geq 0$ and $y \geq 0$. We can rewrite the contraints as: $X \geq 1$ inv-pos(y).
- The original constraint expression fails since we divide a convex function by a concave function. We can rewrite the constraint as = $guad-over_i$ for (x+y), sgrt(y) (x+y+5). Since $guad-over_i$ in is monotone decreasing in the second argument, so we can put a concave function in its second argument, and sgrt is concave.
- The function $x^3 + y^3$ is convex for $x \ge 0$ and $y \ge 0$, but x^3 or y^3 is now convex when x < 0 Br y < 0. Hence, we can rewrite the constraint as:

pow-pos(x,3) + pow-pos(y,3) <=1, x>=0, y>=0.

This since xy in the sqrt is not convex, which makes CVX to reject the statement. We know that $\sqrt{xy-z^2}=\sqrt{x(y-z^2/x)}$. And we know that $\int_{-\infty}^{\infty} e^{-mean}(1) dx$ concave if it is increasing in argument i and exprisis concave. We see that $\int_{-\infty}^{\infty} e^{-mean} dx$ increases according to x and $y-\frac{z^2}{x}$, and x, $y-\frac{z^2}{x}$ are concave. Hence, we can rewrite the Constraint as:

 $X + Z \le 1 + geo_mean ([X], y-guad_over_Gn(Z,X)])$ X >= 0 $\exists y >= 0.$

- A3.10
- (a) Since EC = Co, we have $EC^Tx = C^Tx$. Hence, the problem becomes as a LP as: minimize G^Tx , subject to $Ax \leq b$.
- (b) We have $Var(C^Tx) = \mathbb{E}(C^Tx \mathbb{E}C^Tx)^2 = \mathbb{E}(C^Tx C^Tx)^2$

$$=\mathbb{E}\left(\left(\mathbb{C}-\mathbb{C}_{0}\right)^{T}\times\right)^{2}=\mathbb{E}\times^{T}\left(\mathbb{C}-\mathbb{C}_{0}\right)\left(\mathbb{C}-\mathbb{C}_{0}\right)^{T}\times$$

$$= x \mathbb{E}(c-c)(c-c) = x \mathbb{I} \times$$

Then the risk - sensitive cost can be solved by minimizing the follow:

minimize
$$C_0 x + r x^T \Sigma x$$

Subjecto to $Ax \leq b$

which is a convex quadratic problem in \times since $r \geq 0$ and $\sum \geq 0$.

- (C) If $\gamma < 0$, then the objective function $C_0 + \gamma + \gamma + \gamma = 0$ becomes concave.

 Thus, it is not a convex optimization problem.
 - We know that C^Tx is a random variable, normally distribution with mean G^Tx and variance $x^T \Sigma x$. Thus, we have $\operatorname{prob}(C^Tx \geq \beta) = \Phi\left(\frac{\beta C^Tx}{\|\Sigma^Tx\|}\right)$ where $\Phi(T) = \frac{1}{\|\Sigma^Tx\|} \int_{x}^{\infty} e^{-\frac{t^2}{2}} du$ $\Phi \text{ is monotone decreasing, so } \operatorname{prob}(C^Tx \geq \beta) \leq d \iff \frac{\beta C^Tx}{\|\Sigma^Tx\|} \geq \Phi(d)$

$$\Leftrightarrow$$
 $\Phi^{-1}(\alpha) \| \Sigma^{\frac{1}{2}} \times \| + c^{\top} \times \leq \beta.$

If $\alpha \le 0.5$, we have $\Phi'(\alpha) \ge 0$, so this is a convex constraint over x.

The original problem can be rewritten as:

minimize β , subject to $\Phi(a) \| \Sigma^{\frac{1}{2}} \times \| + C_0 \times \leq \beta$, $A \times \leq b$.

The problem is a second order cone programming since the objective function is linear, $\vec{\mathbb{P}}'(\alpha) \| \vec{\Sigma}^{\frac{1}{2}} \chi \| + \vec{G}^{\frac{1}{2}} \chi \leq \beta \text{ is a second order cone constraint, and } \Delta \chi \leq b \text{ is a linear inequality.}$ constraint.

If the $\alpha > 0.5$, we then get a risk-seeking problem. If $\alpha > 0.5$, then $\Phi'(\alpha) < 0.5$ of $\beta < E^T \times = C^T \times$

one is that we can decrease the experted value such that the PDF shifts to left. The other is that we can increase the variance, which is a resk-seeking choice.

4335:

(a) We have to prove the Birt first. If u > 0, then I(u > 0) = 1 and $I + \lambda u > 1$, so $(I + \lambda u)_{+} > 1$. If $u \le 0$, then I(u > 0) = 0 and $(I + \lambda u)_{+} > 0$. Hence, we have $(I + \lambda u)_{+} \ge I(u > 0)$ for all $u \in \mathbb{R}$. Let $u = f_{i}(x)$, we have $(I + \lambda f_{i}(x))_{+} \ge I(f_{i}(x) > 0)$ for all i. If we sum up both sides of the inequality from i = 1 to m, we get $\sum_{i=1}^{m} I(f_{i}(x) > 0) \le \sum_{i=1}^{m} (I + \lambda f_{i}(x))_{+} \longrightarrow 0$

The constraint $\sum_{i=1}^{m} (1 + \lambda f_i(x)) + \leq m - k$ in the original problem combines with D, we get $\sum_{i=1}^{m} (f_i(x) > 0) \leq m - k$. Thus, $f_i(x) > 0$ for at most m - k value of i, which means that $f_i(x) \leq 0$ for at least k values of i.

 $\lambda > 0$ then $(\lambda u)_+ = \lambda(u)_+$ for all $u \in \mathbb{R}$, which implies that $(1+\lambda f_1(x))_+ = \lambda(\lambda + f_2(x))_+$. Then the constraint can be rewritten as:

$$\sum_{i=1}^{m} (1+\lambda f_i(x))_+ \le m - 1c \Leftrightarrow \sum_{i=1}^{m} \lambda (\lambda^+ f_i(w))_+ \le m - 1c$$

$$\Leftrightarrow \sum_{i=1}^{m} (\dot{a} + f_i(n))_+ \leq \frac{1}{a} (m-1c)$$

Set a = 10, then the problem can be expressed as:

minimize
$$f_0(x)$$

subject to $\sum_{i=1}^{\infty} (M + f_i(x))_+ \leq M (m - |c|)$
 $M > 0$

The function (·)+ = max {., o} is convex and nondecreasing, and M+filx) is convex in M and X, so (M+fi(x))+ is convex and it is a convex optimization problem. After solving the problem and getting the optimal value u*, the optimal value 2 is 2* = 1.

The optimal value of A is $A^{+}=242$, 98. The objective value is -8.45. The constraints satisfied is 66. If we take the tentative solution, choose the le constraints with the smallest values of fi(x) and minimize fo(x) subject to these & constraints, We get the objective value = -8.80 (by using CVXOPI solver).

python implementation =

- 1. import ouxpy as oux
- 2. from satisfy _ some _ constraints _ data import *
- 3. X = Cvx. Variable(n)
- 4. mu = CVXI Variable ()
- 5. Constraints = [cvx.sum(cvx.pos(mu + A xx -b)) <= (m-k) x mu, MU >=07
- 6. Problem = CVX. Problem (OVV. Minimize (C.TXX), Constraints)
- 7. Problem. Solve (Solver = CUX, OUXOPT)

- 8. least_violated = np. argsort(A-dot (x, value) b) [= k]
- 9. constraints = [A[least_violated] * xc=b[least_violated]]
- 10. problem = cux. Problem (cux. Minimize (C.T*x), constraints)
- 11. problem. solve (solver = ovx. OXOPT)

A4.3:

The Lagrangian is =

$$J(x, \lambda_1, \lambda_2) = \sum_{k=1}^{n} x_k \log \frac{x_k}{y_k} + \lambda_1^T (Ax - b) + \lambda_2^T (Ix - 1)$$

$$= \sum_{k=1}^{n} x_k \log \frac{x_k}{y_k} + \sum_{k=1}^{n} a_k^T \lambda_1 x_k - b^T \lambda_1 + \lambda_2 \sum_{k=1}^{n} x_k - \lambda_2$$

Minimizing over XK gives us the conditions:

Purtang @ itto D gives us the Lagrange dual function:

$$g(\lambda_{1},\lambda_{2}) = \sum_{k=1}^{n} y_{k}e^{-(q_{k}\lambda_{1}+\lambda_{2}+1)} - (q_{k}\lambda_{1}+\lambda_{2}+1) + \sum_{k=1}^{n} q_{k}\lambda_{1}y_{k}e^{-(q_{k}\lambda_{1}+\lambda_{2}+1)}$$

$$-b\lambda_{1} + \lambda_{2}\sum_{k=1}^{n} y_{k}e^{-(q_{k}\lambda_{1}+\lambda_{2}+1)} - \lambda_{2}$$

$$= -b\lambda_{1} - \lambda_{2} - \sum_{k=1}^{n} y_{k}e^{-(q_{k}\lambda_{1}+\lambda_{2}+1)} - 3$$

The dual problem is: maximize -b1, -12 - 2, yre -(922,+12t1)

The dual problem can be simplified if we optimize over λ_2 by setting $\sqrt{1}_2 g = 0$, then we have :

Substituting (a) That (a) gives us: $g(\lambda_{i}) = -b\lambda_{i} + 1 - log \sum_{k=1}^{n} y_{k} e^{-q_{k}\lambda_{i}} - \sum_{k=1}^{n} y_{k} e^{-(a_{k}\lambda_{i} - 1 + log \sum_{k=1}^{n} y_{k} e^{-q_{k}\lambda_{i}})}$ $= -b\lambda_{i} - log \sum_{k=1}^{n} y_{k} e^{-q_{k}\lambda_{i}}$

If we set
$$-\lambda_1 = Z$$
, then we get $g(\lambda_1) = b^T Z - log \sum_{k=1}^{m} y_k e^{akZ}$

Hence, the Lagrange dual problem is: