ClinVar Report

James Diao

November 4, 2016

Contents

1	1.1	lect and Merge ClinVar Data Import ClinVar VCF	
2	Sun 2.1	nmary Statistics Fraction of Individuals with Pathogenic Non-Reference Sites	3
3		netrance Estimates	4
	3.1	Max/Min Penetrance as a Function of $P(D)$ and $P(V D)$	4
	3.2	Penetrance Estimates by Ancestry	5
	3.3	Empirical CDFs for All Penetrance Plots	7
	3.4	Comparing Mean Penetrance between ExAC and 1000 Genomes	7
		ng ClinVar input from: clinvar_2016-01-04.vcf ng output to: Report_2016-01-04.pdf	

1 Collect and Merge ClinVar Data

1.1 Import ClinVar VCF

Processed ClinVar data frame 94971 x 14 (selected rows/columns):

1.2 Merge ClinVar with 1000 Genomes and ExAC

Breakdown of ClinVar Variants

Subset_ClinVar	Number_of_Variants
Total ClinVar	94971
LP/P-ClinVar	29342
LP/P-ClinVar & ACMG	5923
LP/P-ClinVar & ACMG & ExAC	938
LP/P-ClinVar & ACMG & 1000	165
Genomes	

Breakdown of ACMG-1000 Genomes Variants

Subset_1000_Genomes	Number_of_Variants
Total 1000_Genomes & ACMG	139335
1000_Genomes & ACMG & ClinVar	3840
1000_Genomes & ACMG &	165
LP/P-ClinVar	

Breakdown of ACMG-ExAC Variants

Subset_ExAC	Number_of_Variants
Total ExAC & ACMG	58873
ExAC & ACMG & ClinVar	7777
ExAC & ACMG & LP/P-ClinVar	938

2 **Summary Statistics**

Fraction of Individuals with Pathogenic Non-Reference Sites 2.1

3 Penetrance Estimates

3.1 Max/Min Penetrance as a Function of P(D) and P(V|D)

The left end of the boxplot indicates P(D) AND P(V|D) = lower value, the bold line in the middle indicates P(D) AND $P(V|D) = geometric_mean(values)$, the right end of the boxplot indicates P(D) AND P(V|D) = upper value.

Note: Prevalence ranges of 5x were assumed for all point estimates of prevalence. For example: a point estimate of 0.022 would be given the range 0.01-0.05.

3.2 Penetrance Estimates by Ancestry

Penetrance by Ancestry (ExAC)

3.3 Empirical CDFs for All Penetrance Plots

3.4 Comparing Mean Penetrance between ExAC and 1000 Genomes

Breast-ovarian... Retinoblastoma... 1e-02 -Left ventricular ... Aortic aneurysm... Malignant hyperth... Familial hypercho... Dilated cardiomyo... Danlos syn... Li-Fraumeni syndr... Penetrance_ExAC Marfan's syndrome... Lynch syndrome... Familial hypertro... Arrhythmogenic... Catecholaminergic... PTEN hamartoma... Adenomatous polyp... Familial medullar... Tuberous sclerosi... MYH-associated... Multiple endocrin... Fabry's disease... Brugada syndrome... 1e-05 -Long QT syndrome...

Penetrance Means: ExAC v. 1000 Genomes

The Pearson correlation is 0.94. Max penetrance values computed using 1000 Genomes are 1.6-fold larger than those computed using ExAC.

1e-03

Penetrance_1000_Genomes

1e-02

1e-01

1e+00

1e-04

Paragangliomas...

1e-05

1e-06 -

1e-06