D. Khaja Nawaz RA2311047060037

Deep Learning Techniques (LaB)

		reconsques (Las)
Date	Title	Sign
24/07/2025		- Automatical and a second a second and a second a second and a second a second and
3167625	2. Implement a classifier using, open-source doutaset 3. Study of the classifiers with respect to statisfical parameter 4. Build a simple feed forward neurol	the state of the s
31/07/25	4. Build a simple feed forward neuroli network to recognize handwritten character	5 - 14 18/25
22/08/25	5. Study of Activation functions and their sole	A Day
09/09/25	6. Implement gradient descent and backpropagation in deep neural network 7 Builda CNN model to Classify Cat and Dog image	
16/09/25	Cat and Dog mage	att 23/2/25

10125 LaB: 7 Build a CNN model to classify cat and image +Aim = To build and train a convolutional Neural network (CNN) model that classifies images into cont or pag categories + Objective: No Brown of Marions 1. To understand the working can for image 2001-01-01-01/3 4500) classification 2. To preprocess and normalize image data for efficient learning. 3. To design and implement a CNN architecture with comolutional pooling and fully connected layers 4. To train the CNN model on the cat and Dog 5. To evaluate the model using accuracy and loss metrics. 1. I report required libraries (Tensor Plow/keras Hungy, matphotlib). * Pseudocode : 2. Load doctaset (catusdiogs). 3. preprocess data:

- Normalize pixel values (0-1).

- Sput into train and test sets. -) Latter layer (image size)

-) Lonvolutional layer + Rely activation.

-) Maxpooling layer.

-) Repeat convitooling layers to extra

-) Repeat convitooling layers to extra 4. De fine Model: Flatten layer ted pense layer with felle

tradition from 22 of 30 2018 traditions of about mos in - KNO3+ 504-10 い事はいらいにいる gas po ma continue of sons (104) Brank of water of the Mark of the Ma T. [14] AY [17] &B 212 4. Hourseley opente (Grobient Descent): 2 w Cij/ w Cij- a * do Cij 2 w Cij/ w Cij- a * do Cij 3 your on the open of ox max oboch is Pyterch whented all gradient wightlines for later marin restrand a provide delision boundary to specifica 10 10 11/12 3 2200/ 2 9000)

- 5. compêle model with:
 - -) loss function = Binary crossentropy
 - -) Optimizex = adam
 - -) Metrics Accuracy
- 6. Train model on training data.
- 7 Validate Using test/Validation data.
- 8. Evaluate model performance (accuracy, Loss)
- 9. save the model for future predictions

End

* observation=

- -) The CNN model successfully learns to differentiate conta and dogs after multiple epochs.
- -) Data augmentation (FIP, ZOOM, rotation) improving
- -) Training accuracy gradullary increases and validation accuracy stabilizes around 85-95% depending on dataset

-> overfitting can occur if training too long without droupa or augmentation

* pesult:

SUCCERSfully implemented cateur 209 classification using can.

output = Epoch 1/10 - Train AC: 0.6116 , Vall ACC: 0.6220 Epoch 2/10 - Train Ac: 0.6790 (Val Ac: 10-6960) Epoch 3/10 - Train Ac: 0.7147, Val AC: 0.7160 Epoch 4/10 - Train Ac: 0.7455, val Ac: 0-7300 Sport 5/10 - Train Ac : 0.7005, Val Ac : 0.7380 Epoch 6/10 - Train Ac: 0-7804, val Al: 0-7415 Epoch 7/10 - Train Ac: 0-8009 val Ac: 0-7370 Epoch 9/10 - Train 40: 0-8266, Val Al: 0-7455 Epoch volto - Train Ac - 0-8558 val Action of val AC: 0-7500 Accuracy MEZOTES 6.83 4000 802mg (de) Haystaty 1 (2 Bops 1 10990 ms 1 1-16 0-80 -Dans 0.75-Tot NI Day En Cope of Drays mag + sapel lovesty Joursel 0-45saped pres 243 40 200)

```
Commands + Code + Text ▶ Run all ▼
   [1]

// 3m
               import torch
               import torch.nn as nn
               import torch.optim as optim
               from torch.utils.data import DataLoader, Subset
               import torchvision
               import torchvision.transforms as transforms
               import numpy as np
               import matplotlib.pyplot as plt
               import random
               # Device configuration
               device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
               print(f"Using device: {device}")
               # STEP 1: Load and Prepare Dataset
               transform = transforms.Compose([
                   transforms.ToTensor(),
                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
               1)
               train_dataset_full = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
               test_dataset_full = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
               # Filter for cats (3) and dogs (5)
               def filter_cat_dog(dataset):
                   idx = [i for i, (_, label) in enumerate(dataset) if label in [3, 5]]
```

Untitled25.ipynb ☆ △

File Edit View Insert Runtime Tools Help

```
# Remap labels: cat (3) -> 0, dog (5) -> 1
0
    for i in range(len(train_dataset)):
        img_idx = train_dataset.indices[i]
        if train_dataset_full.targets[img_idx] == 3:
            train_dataset_full.targets[img_idx] = 0
        elif train_dataset_full.targets[img_idx] == 5:
            train_dataset_full.targets[img_idx] = 1
    for i in range(len(test_dataset)):
        img_idx = test_dataset.indices[i]
        if test_dataset_full.targets[img_idx] == 3:
            test_dataset_full.targets[img_idx] = 0
        elif test_dataset_full.targets[img_idx] == 5:
            test_dataset_full.targets[img_idx] = 1
    # Split train set for validation
    n_train = int(len(train_dataset) * 0.8)
    n_val = len(train_dataset) - n_train
    train_subset, val_subset = torch.utils.data.random_split(train_dataset, [n_train, n_val])
    batch_size = 64
    train_loader = DataLoader(train_subset, batch_size=batch_size, shuffle=True, num_workers=2)
    val_loader = DataLoader(val_subset, batch_size=batch_size, shuffle=False, num_workers=2)
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=2)
    print(f"Train size: {len(train_subset)}, Val size: {len(val_subset)}, Test size: {len(test_dataset)}")
    # ------
    # STEP 2: CNN Model
    class CatDogCNN(nn.Module):
```

1]

```
Edit View Insert Runtime Tools Help
          + Code + Text
                             ▶ Run all ▼
mmands
           class CatDogCNN(nn.Module):
[1]
               def __init__(self):
√ 3m
                   super(CatDogCNN, self).__init__()
                   self.features = nn.Sequential(
                       nn.Conv2d(3, 32, kernel_size=3, padding=1),
                       nn.ReLU(),
                       nn.MaxPool2d(2, 2),
                       nn.Conv2d(32, 64, kernel_size=3, padding=1),
                       nn.ReLU(),
                       nn.MaxPool2d(2, 2),
                       nn.Flatten()
                   self.classifier = nn.Sequential(
                       nn.Linear(64 * 8 * 8, 128),
                       nn.ReLU(),
                       nn.Dropout(0.5),
                       nn.Linear(128, 1),
                       nn.Sigmoid()
               def forward(self, x):
                   x = self.features(x)
                   x = self.classifier(x)
                   return x
           model = CatDogCNN().to(device)
           print(model)
           # STEP 3: Train
           criterion = nn.BCELoss()
           optimizer = optim.Adam(model.parameters(), lr=0.001)
```

```
for epoch in range(epochs):
   # Train
   model.train()
   running_loss, running_corrects = 0.0, 0.0
    for inputs, labels in train_loader:
        inputs, labels = inputs.to(device), labels.float().to(device).unsqueeze(1)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item() * inputs.size(0)
        preds = (outputs > 0.5).float()
        running_corrects += torch.sum(preds == labels.data)
    train_loss = running_loss / len(train_subset)
    train_acc = running_corrects.double() / len(train_subset)
    train_losses.append(train_loss)
    train_accs.append(train_acc.item())
   # Validate
   model.eval()
   running_loss, running_corrects = 0.0, 0.0
   with torch.no_grad():
        for inputs, labels in val_loader:
            inputs, labels = inputs.to(device), labels.float().to(device).unsqueeze(1)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            running_loss += loss.item() * inputs.size(0)
           preds = (outputs > 0.5).float()
            running_corrects += torch.sum(preds == labels.data)
```

```
Commands + Code + Text > Run all -

val_loss = running_loss / len(val_subset)

val_acc = running_corrects.double() / len(val_subset)

val_losses.append(val_loss)
```

```
val_losses.append(val_loss)
   val_accs.append(val_acc.item())
   print(f"Epoch {epoch+1}/{epochs} - Train Acc: {train_acc.item():.4f}, Val Acc: {val_acc.item():.4f}")
# STEP 4: Graphs
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_accs, label="Train Acc")
plt.plot(val_accs, label="Val Acc")
plt.legend(); plt.title("Accuracy")
plt.subplot(1, 2, 2)
plt.plot(train_losses, label="Train Loss")
plt.plot(val_losses, label="Val Loss")
plt.legend(); plt.title("Loss")
plt.show()
# ------
# STEP 5: Evaluate
model.eval()
corrects = 0
with torch.no_grad():
    for inputs, labels in test_loader:
       inputs, labels = inputs.to(device), labels.float().to(device).unsqueeze(1)
       outputs = model(inputs)
       preds = (outputs > 0.5).float()
       corrects += torch.sum(preds == labels.data)
```

```
Commands
                                ▶ Run all ▼
             + Code + Text
               # SIEP 6: Prediction Example
   ✓ 3m
               def imshow(img):
                   img = img / 2 + 0.5 # unnormalize
                   npimg = img.cpu().numpy()
                   plt.imshow(np.transpose(npimg, (1, 2, 0)))
                   plt.axis('off')
               dataiter = iter(test_loader)
               images, labels = next(dataiter)
               idx = random.randint(0, images.size(0) - 1)
               sample_img = images[idx]
               sample_label = "Dog" if labels[idx] == 1 else "Cat"
               with torch.no_grad():
                   output = model(sample_img.unsqueeze(0).to(device))
                   pred = output.item()
               pred_label = "Dog" if pred > 0.5 else "Cat"
               imshow(sample_img)
               plt.title(f"True: {sample_label}, Pred: {pred_label}")
               plt.show()

→ Using device: cpu

                             | 170M/170M [00:04<00:00, 39.4MB/s]
               100%
               Train size: 8000, Val size: 2000, Test size: 2000
              CatDogCNN(
                (features): Sequential(
                   (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
                  (1): ReLU()
                   (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
                   (3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
```

