Institut d'enseignement à distance Licence 1 - Programmation impérative Documentation utilisateur - Cx25

BLANCHARD Patrice Numéro étudiant : 18904701

14 mai 2020

Table des matières

1	Présentation du programme cx25.1	;
2	Comment exécuter le programme cx25.1 ?	7
3	Quelles sont les options du débogueur?	7
4	Quelles erreurs peut-on rencontrer?	12

1 Présentation du programme cx25.1

Ce programme n'est autre qu'un interprète du langage suivant :

add #	20	A← A + V
add @	60	A←A +(@)
add *@	E0	A←A + *(@)
sub #	21	A← A - V
sub @	61	A ← A - (@)
sub *@	E1	A ← A - *(@)
nand #	22	$A \leftarrow \neg [A \And V]$
nand @	62	A ← ¬[A &(@)]
nand *@	E2	A ← ¬[A &*(@)]
load #	00	$A \leftarrow V$
load @	40	A ← (@)
load *@	C0	A ← *(@)
store @	48	(@) ← A
store *@	C8	*(@) ← A
in @	49	(@) ← Entrée
in * @	C9	*(@) ← Entrée
out @	41	Sortie ← (@)
out *@	C1	Sortie ← *(@)
jump @	10	PC ← @
brn @	11	Si A<0 : PC ← @
brnz @	12	si A = 0 : PC ← @

autrement dit, ce programme lit le code d'un autre programme présent dans un fichier, puis simule ce que un processeur fictif ferait pour exécuter ce code.

Le fichier comprend une suite d'instructions à effectuer (ou exécuter). L'adresse de la première instruction est placé dans le registre (Program Counter) qui sera incrémenter au fur et à mesure des cycles de décodage.

En effet, le programme répète un cycle constitué de trois phases : La première phase est la recherche d'instruction (Registre PC), la deuxième phase contient le décodage de l'instruction et sa réalisation proprement dite (recherche de l'opérande et calcul éventuel), les résultats des opérations sont toujours rendus dans l'accumulateur (registre A), la troisième phase permet de pointer vers l'instruction suivante.

ADD	CODE	Mnémonique	Commentaire
23	00	LOAD #00	Charger le registre de l'accumulateur avec la valeur 0
24	00		
25	48	STORE 47	RANGER LA VALEUR DU REGISTRE DE L'ACCUMULATEUR À L'ADRESSE 47 (RÉSULTAT)
26	47		
27	49	IN 45	Saisir la valeur du premier nombre (NB1), l'enregistrer à l'adresse 45
28	45		
29	40	LOAD 45	Charger le registre de l'accumulateur avec la valeur de NB1
2A	45	DD7 44	0 ND(0 D0 (4) A
2B	12	BRZ 41	Si NB1 = 0 alors PC ← 41 : Affichage de la valeur à l'adresse 47 (Résultat)
2C	41	INL 4C	CALOUR LA MALEUR DU OFGOND MONDRE : NIDO
2D 2E	49 46	IN 46	SAISIR LA VALEUR DU SECOND NOMBRE : NB2
2E 2F	46 40	LOAD 46	Charger le registre de l'accumulateur avec la valeur de l'adresse 46 : NB2
30	40 46	LOAD 46	CHARGER LE REGISTRE DE L'ACCUMULATEUR AVEC LA VALEUR DE L'ADRESSE 40 . INDZ
31	12	BRZ 41	Si NB2 = 0 alors PC ← 41 : affichage du résultat présent à l'adresse 47
32	41	DI 12 41	STIND2 - 0 ALONS TO - 41 . ATTICITAGE DO RESOLIAT FRESENT A LADRESSE 47
33	48	STORE 46	RANGER LA VALEUR DU REGISTRE DE L'ACCUMULATEUR À L'ADRESSE 46 (NB2)
34	46	010112 10	TIMALITER WILLOT BUTTLE BE ENGLOWED TO (NBE)
35	40	LOAD 47	CHARGER LE REGISTRE DE L'ACCUMULATEUR AVEC LA VALEUR DE L'ADRESSE 47 (RÉSULTAT)
36	47		(11)
37	60	ADD 45	AJOUTER NB1 AU RÉSULTAT
38	45		
39	48	STORE 47	RANGER LA VALEUR DU REGISTRE DE L'ACCUMULATEUR À L'ADRESSE 47
3A	47		
3B	40	LOAD 46	Charger la valeur de l'adresse 46 (NB2)
3C	46		
3D	21	SUB # 1	Soustraire un à la valeur de NB2 présent dans le registre de l'accumulateur
3E	01		
3F	10	JUMP 31	RÉALISER UN SAUT À L'ADRESSE 31
40	31	OUT 47	47 (7)
41	41	OUT 47	Afficher la valeur de l'adresse 47 (Résultat)
42	47	II INAD OO	Dá
43	10	JUMP 23	RÉALISER UN SAUT À L'ADRESSE 23 (DÉBUT DU PROGRAMME)
44 45	23 ??		Le premier nombre : NB1
45 46	? ? ? ?		LE DEUXIÈME NOMBRE : NB2
46 47	; ; ??		LE RÉSULTAT FINAL OU TEMPORAIRE
47	: :		LE RESOLIAI FINAL OU TEMPONAINE

Ce même programme sous la forme d'une suite numérique d'instructions :

```
paper13.5.hexcode
   Ouvrir ▼
                                                                  Enregistrer
                oldsymbol{f \oplus}
                                                                                   ≡
                                                                                          ×
offset
code
00 00
48 47
                                                                         I
49 45
40 45
12 41
49 46
40 46
12 41
48 46
40 47
60 45
48 47
40 46
21 01
10 31
41 47
10 23
           Texte brut ▼ Largeur des tabulations : 8 ▼
                                                               Lig 17, Col 6
                                                                                       INS
```

FIGURE 1 – Le programme d'une multiplication

```
ⅎ
                        patrice@g3-3590:~/Documents/cx25
                                                                Q
                                                                     Ħ
                                                                           ×
(base) [patrice@g3-3590 cx25]$ ./cx25.1 paper13.5.hexcode
gdb - cx25.1
Voulez-vous afficher la valeur de PC?
(Continuer : O/N): o
Voulez-vous afficher les la valeur de A?
(Continuer : O/N): o
Début du programme :
PC : 037 | A : 000 | STORE 47
                               data[47] = A
PC : 039 | A : 000 | IN 45
                               data[45] = input(val ?)
Saisir une valeur en décimal : 3
PC : 041 | A : 000 | LOAD 45
                              A = data[45]
PC : 043 | A : 003 | BRZ 41
                               Si A = 0 alors PC = 41
PC: 045 | A: 003 | IN 46
                               data[46] = input(val ?)
Saisir une valeur en décimal : 2
PC : 047 | A : 003 | LOAD 46
                              A = data[46]
PC : 049 | A : 002 | BRZ 41
                              Si A = 0 alors PC = 41
PC: 051 | A: 002 |
                    STORE 46
                               data[46] = A
PC: 053 | A: 002 | LOAD 47
                               A = data[47]
PC : 055 | A : 000 | ADD 45
                               A += data[45]
PC: 057 | A: 003 | STORE 47
                               data[47] = A
PC : 059 | A : 003 | LOAD 46
                               A = data[46]
PC: 061 | A: 002 |
                    SUB #01
                               A -= 01
                   JUMP 31
PC: 063 | A: 001 |
                               PC = 31
PC : 049 | A : 001 | BRZ 41
                               Si A = 0 alors PC = 41
PC : 051 | A : 001 | STORE 46
                               data[46] = A
PC : 053 | A : 001 | LOAD 47
                               A = data[47]
PC: 055 | A: 003 |
                   ADD 45
                              A += data[45]
PC : 057 | A : 006 | STORE 47
                               data[47] = A
PC : 059 | A : 006 | LOAD 46
                               A = data[46]
PC: 061 | A: 001 |
                    SUB #01
                              A -= 01
PC : 063 | A : 000 | JUMP 31
                              PC = 31
PC: 049 | A: 000
                               Si A = 0 alors PC = 41
                    BRZ 41
PC: 065 | A: 000 | OUT 47
                              print(data[47])
OUT en décimal : 6
(Continuer : O/N): n
(base) [patrice@g3-3590 cx25]$
```

FIGURE 2 – L'exécution de la multiplication par l'interprète

2 Comment exécuter le programme cx25.1?

De deux manières :

- cx25.1 <nom fichier>

L'affichage de l'ensemble des instructions se produit sans attendre.

— cx25.1 -d <nom_fichier> active un débogueur (stepper)

L'affichage des instructions se déroule pas à pas.

Dans les deux cas, au début du programme, il est possible d'afficher ou non : la valeur de l'instruction présente dans le Program Counter : PC, la valeur présente dans l'accumulateur : A.

Lorsque le déboggeur est activé, une option d'aide est disponible au démarrage ou lors de l'exécution du programme renseignant des différentes commandes pouvant être mise en œuvre avant la fermeture de celui-ci.

3 Quelles sont les options du débogueur?

display <adresse> : affiche la valeur de l'adresse demandée

```
⊞
       patrice@g3-3590:~/Documents/cx25 — ./cx25.1 -d paper13.5.hex...
                                                                    Q
                                                                                ×
(base) [patrice@g3-3590 cx25]$ ./cx25.1 -d paper13.5.hexcode
gdb - cx25.1
Voulez-vous afficher la valeur de PC?
(Continuer : O/N): o
Voulez-vous afficher les la valeur de A?
(Continuer : O/N): o
Voulez-vous afficher l'aide avant de commander ?
(Continuer : O/N): n
Début du programme :
PC: 035 | A: 000 | LOAD #00 A = 00
display 40
45
```

FIGURE 3 – Un exemple d'utilisation de la commande display <adresse>

```
Q
 lacktriangledown
       patrice@g3-3590:~/Documents/cx25 — ./cx25.1 -d paper13.5.hex...
                                                                           ×
PC: 035 | A: 000 | LOAD #00 A = 00
display all
data[35] == 0
data[36] == 0
data[37] == 48
data[38] == 47
data[39] == 49
data[40] == 45
                                                                           I
data[41] == 40
data[42] == 45
data[43] == 12
data[44] == 41
data[45] == 49
data[46] == 46
data[47] == 40
data[48] == 46
data[49] == 12
data[50] == 41
data[51] == 48
data[52] == 46
data[53] == 40
data[54] == 47
data[55] == 60
data[56] == 45
data[57] == 48
data[58] == 47
data[59] == 40
data[60] == 46
data[61] == 21
data[62] == 1
data[63] == 10
data[64] == 31
data[65] == 41
data[66] == 47
data[67] == 10
data[68] == 23
```

FIGURE 4 – Un exemple d'utilisation de la commande display all

store <adresse> <valeur> : enregistre une nouvelle valeur à l'adresse demandée, un fichier new_version sera crée également. Il s'agit d'une copie du fichier initial avec la nouvelle valeur modifiée.

FIGURE 5 – Un exemple d'utilisation de la commande store <adresse> <valeur>

help: afficher l'aide

FIGURE 6 – Un exemple d'utilisation de la commande help

quit : ferme le programme

```
⊕
                                                                 Q
                        patrice@g3-3590:~/Documents/cx25
                                                                      ×
(base) [patrice@g3-3590 cx25]$ ./cx25.1 -d paper13.5.hexcode
gdb - cx25.1
Voulez-vous afficher la valeur de PC?
(Continuer : O/N): o
Voulez-vous afficher les la valeur de A?
(Continuer : O/N): o
Voulez-vous afficher l'aide avant de commander ?
(Continuer : O/N): n
Début du programme :
PC : 035 | A : 000 | LOAD #00 A = 00
(base) [patrice@g3-3590 cx25]$
```

FIGURE 7 – Un exemple d'utilisation de la commande quit

4 Quelles erreurs peut-on rencontrer?

Échec lors de l'ouverture du fichier :

FIGURE 8 – Une erreur liée à une faute d'orthographe lors du passage du nom de fichier en argument

Erreur liée à un mauvais usage des arguments :

```
oldsymbol{f \oplus}
                          patrice@g3-3590:~/Documents/cx25
                                                                    Q
                                                                          ≡
                                                                                ×
(base) [patrice@g3-3590 cx25]$ ./cx25.1
Chargement du bootstrap...
Chargement du bootstrap terminé !
Démarrage du programme...
Success
Usage : <nom du programme> [-d] <nom du fichier>
(base) [patrice@g3-3590 cx25]$ ./cx25.1 -d paper13.5.hexcode fichier
Chargement du bootstrap...
Chargement du bootstrap terminé !
Démarrage du programme...
Success
Usage : <nom du programme> [-d] <nom du fichier>
(base) [patrice@g3-3590 cx25]$ ./cx25.1 -d
Chargement du bootstrap...
Chargement du bootstrap terminé !
Démarrage du programme...
Success
Usage : <nom du programme> [-d] <nom du fichier>
(base) [patrice@g3-3590 cx25]$
```

FIGURE 9 – Exemple d'usage des arguments induisant une erreur

Erreur liée à l'utilisation d'une lettre au lieu d'un chiffre attendu ou l'inverse :

```
oldsymbol{\oplus}
                      patrice@g3-3590:~/Documents/cx25
                                                          Q
                                                              ≡
                                                                    ×
Chargement du bootstrap terminé !
Démarrage du programme...
gdb - cx25.1
Voulez-vous afficher la valeur de PC?
(Continuer : O/N): 1
Seulement O ou N sont acceptables.
(Continuer : O/N): o
Voulez-vous afficher les la valeur de A?
(Continuer : O/N): O
Voulez-vous afficher l'aide avant de commander ?
(Continuer : O/N): n
Début du programme :
PC : 037 | A : 000 | STORE 47 data[47] = A
Saisir une valeur en décimal :
Success
Erreur de saisie, la valeur doit être un chiffre
(base) [patrice@g3-3590 cx25]$
```

FIGURE 10 – Exemple d'erreur de saisie

Erreur liée à une instruction intégrée au fichier qui ne correspond pas à une commande du langage :

FIGURE 11 - Exemple d'erreur dans le fichier paper 13.5. hexcode présentant une commande non reconnue par le langage