One More Thing: 物质

							W
V	άΠ	ill	팯	占	稿	理	À

- 一、原子的结构
- 1. 杨鹤孙原子模型 (1)电子的发现: 1897年,**仍是**通过对**天然及身现**。——的研究发现了电子,从 分,即原子是可以再分的。阴极射线

而说明电子是原子的组成部

- 1) 阴极射线的成分:
- 2) 阴极射线是看不到的。

(3)汤姆孙原子模型(葡萄干蛋糕式) 原子的正电荷和质量均匀分布于原子体内,带负电的 电子 镶嵌在原子体内。

(1)1909年,英国物理学家**卢莎莎**. 进行了 α 粒子散射实验,提出了核式结构模型.

(2)a 粒子散射实验

○1 a 粒子成分: <u>+0</u>, 符号

○2 实验结果

a.绝大多数 u 粒子穿过金箱后,与 原系的

(3)卢瑟福原子核式结构模型(又称为"行星模型")

- ① 在原子的中心有一个很小的核,叫做,原子.
 ② 原子的全部 止起 和几乎全部 发生 。
 ③ 带负电的 电 在核外空间绕着核旋转, __都集中在原子核里.

二、物质的放射性

1. 天然放射现象

1. 八派成别现录 (1)1896年,法国物理学家<u>了了</u>\$17.观察到铀盐能穿透黑纸使照相底片感光,从而发现了 天然放射现象。放射性的发现揭示了**为**2.7.5.7. 有复杂的结构

#放射性不是少数几种元素才有的,研究发现,原子序数大于 83 的所有元素,都能自发的放出,为15 次出射线,原子序数小于 83 的元素,有的也具有放射性. (3)放射性元素液出的射线究竟是什么? 2) 带正电的射线称为 射线, 带负电的射线称为 β 射线, 不带 电的射线称为 γ 射线。

二种射线(、6、7射线)

2. 三种身	付线(、 β、 γ	射线)		I the	电离能力	贯穿本领
(1)性质	成分	电量 e イン	质量 山	速度 e· C	3.2	33.33.
a	zHe e	ate the	4B		数数弧	好孩
β	10000000000000000000000000000000000000	£ 0	0	C	最超级	赞送 .

(n mm/3. kis).

(2)产生机理(注: 三种射线都系① 射线: 粒子由	R自原子核) 质子和	中子组合而成;反	应方程:
(I) M124.	°	时而产生。	
②β射线:β粒子由一个	变为一个	H1 (10)	
反应方程:	0	448立任的	1
@w 射线经常是伴随	β 射线和 β ——	别级一工品	371252
	-14	至是一个和	气泡室和半导体探测
②β射线:β粒子由一个 反应方程: ③γ射线经常是伴随 (3)射线的探测:常用的探测射经	线的仪器有_女名		
緊等。			
			~~振量时间
(4)放射性的应用			
一个四分中以上表达中的时线	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	51) 4/2r	一样机
利用 . 射线探伤仪检查金属图	内部有没有妙眼或者	文名义	-1764.4
一一一 440%险机器法转产	王的有音所电		
·····································	提育出新加加及印	一 正 44 16 16 16 16 16 16 16 16 16 16 16 16 16	
c.利用射线使 DNA 及生尺叉, d.经射线照射过的食品可长期保	R存 e.用放射线可靠	百行港任匠個	
②放射性同位素作为示踪原子			
		如八人一年可採母	的辐射剂量当量约为
(5)放射性辐射的防护;过量的辐	射对人体有害。一	放公从一中可该文	即他对对重 二三六八
3. 放射性元素的衰变		and the standard	Abom the miles 語 又 姓
3. 放射性元素的复变 (1)衰变:原子核由于放出	(某种粒子)而转受为	的变化四面源了包
的衰变,			
(2)规律:原子核衰变时	数和	数都守恒	
(3)衰变种类			
13 148 X 11 20			
① 衰变:原子自发放出	粒子 (射线)	的衰变	

② B 衰变:原子自发放出粒子(射线)的衰变 衰变方程: のハフ; 日ナミル
(4)半衰期 ①定义:放射性元素的原子核有 <u>一块。</u> 发生衰变所需的时间,叫做这种元素的半衰期。 ② 特点:半衰期是由元素原子核本身的因素决定的,与原子所处的或
已知半衰期 T 的放射性元素的原有质量 m ₀ , 求经过时间 t 后剩余的放射性元素质量?已知半衰期 T 的放射性元素的原有核数量 N ₀ , 求经过时间 t 后剩余的放射性元素的核数量? 三、原子核的人工结变
三、原子核的人工转变 1. 人工转变 (1)定义:用人工的方法使原则,发生转变的过程,上流流第一个实现了人工转变。
(2)质子的发现 ①发现者: P. 7. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
注意: 1) 银箔的厚度应恰好可以完全吸收从 A 射出的 粒子
2) 通人氮气后,荧光屏上出现闪光,即有新和丁广生
(4)原子核的组成 ①原子核由质子和 组成,质子和中子统称为 4 3 。 ②原子核符号: X 表示元素符号,Z 表示质子数,A 表示质量数: 质量(核子)数 A 等于质子数 Z 与 数之和。
2. 重核裂变
(2)裂变:
(3)链式反应 (1)定义:重核裂变时放出的 <u>+3</u> 引起其他重核的裂变,+3 可以使裂变不断进行下去,这就是链式反应。