2022 Capstone

Shape Estimation and Data-driven
Intelligent Control of Soft Robotic
Upper-limb Exoskeletons for In-home
Telerehabilitation

Chen Liu, Jiazhi Xu, Xiaojia Pan, Yinuo Zhao

Client - MERIIT Lab, Dr.S.Farokh Atashzar Dr.Jacqueline Libby

Center for Urban Science + Progress Progress Presentation

Meet with the Team

Why Soft Robotics?

Product Function

Helping patients with limited mobility to maximize their ability to regain self-care in daily life

Advantage

- ➤ Light weight
- ➤ High wearing comfort
- ➤ High adaptability to target shape
- ➤ Low contact and collision force with human body

Soft Robotics in Telerehabilitation

Application Scenarios

- In-home Rehabilitation Physical Training
- Develop microtype to physical therapy

Target People

- People with neuromuscular diseases such as Parkinson's disease and stroke
- ➤ People suffering from other conditions that limit their mobility

Actionable Policy Insights

Existing Policy

2011 "National Robotics Plan"

Building U.S. leadership in next-generation robotics and applications to help bring manufacture industry back

2013 " US Robotics Technology Plan"

Utilized robotics technology to **improve** society's quality of life

2017 "National Robotics Plan 2.0"

Support basic robotics research and accelerate the development and practical application of collaborative robots

Potential Future Plan

- Address the self-care issues of an aging society.
- > Let robotics be more affordable & safe & accessible.
- Allow affordable rehabilitation to everyone.
- Develop microtype robotics to physical therapy.
- Propose Medicare reimbursement for physical therapy products for post-war wounded service members.

Overall Workflow

Overall Contribution

- > Process seven raw videos and creates relative datasets for multi-segmentation shape estimation.
- Implement and modified eleven models for different Lab actuators.
- Classify 12-21 actuator features and track the skeleton movement by detecting a set of features.
- > Evaluate out **the optimal neural network** for the actuators.
- > Produce interactive likelihood graph for frame refinement.
- > Create **function** for angle detection based on model result.

Problem Definition

Major Challenge

Perform smooth and correct shape estimation on banding angle

Priority Mission

- ➤ Build and train ML model via DeepLabCut
- > Find the optimal pre-trained model
- Improve shape estimation for soft robotic

Literature Discovery

Shape estimation

- Tradition methods
- Markeless shape estimation
- ➤ Machine Learning (ML) methods
- ➤ ML methods:
 - Supervised learning
 - Semi-Supervised learning
 - Unsupervised learning
 - Transfer learning
 - o reinforcement learning

A Traditional Methods

Lighthouse Tracking

IMU-based Tracking

Color-based Tracking

Traditional methods work ad-hoc: subjects need to be prepared, but no annotation is needed.

Literature Discovery

Transfer Learning: Pre-trained Model Approach

Transfer learning (TL) improve model performance and speed by **leveraging the already existing labeled data** of some related tasks.

- Pre-Trained Models
- All these model below are pre-trained on ImageNet
 - o ResNet_50
 - o MobileNetV2 1.0
 - o MobileNetV2 0.75
 - o EfficientNet B6

Literature Discovery

DeepLabCut (DLC)

- ➤ DeepLabCut is a **toolbox** for markerless pose estimation of animals performing various tasks.
- it performs **frame-by-frame prediction** and therefore can also be used for intermittent occlusions.
- > It also solve the problem of detecting body parts in dynamic environments.

DeepLabCut: a software package for

a software package for animal pose estimation

Data Preprocess Workflow

Actuator Model Creation

- I. Create project in client required naming conventions
- II. Upload actuator videos and copy into target folder
- III. Make sure select the multi-animal option

Please choose an option:				
 Create new project Load existing project 				
Name of the Project:	PkSsEnetYuna			
	V			
Name of the experimenter:	Yuna			
Choose Videos:	Total 1 Videos selected			
Optional Attributes				
	rowse			
Copy the videos				
✓ Is it a multi-animal project?				

Parameter Adjustment

- I. Edit the config file
- II. Set up label quantity
- III. Set up individual skeleton

```
config.vaml
   # Project definitions (do not edit)
Task: PkSsEnetYu02
scorer: Yuna
date: Jun24
multianimalproject: true
identity: false
   # Project path (change when moving around)
project_path: /Users/yinuozhao/PkSsEnetYu01-Yuna-2022-06-24-main
   # Annotation data set configuration (and individual video cropping parameters)
 /Users/yinuozhao/PkSsEnetYu02-Yuna-2022-06-24/videos/pink02-train-2022-02-21-20.05.09.mp4:
   crop: 0, 1080, 0, 1920
 /Users/yinuozhao/PkSsEnetYu01-Yuna-2022-06-24-main/videos/pink02-train-2022-02-21-20.05.09.mp4:
   crop: 0, 1080, 0, 1920
individuals:
- individual1
uniquebodyparts: []
multianimalbodyparts:

    bodypart1

- bodypart2
- bodypart3
- bodypart4
- bodypart5
- bodypart6
- bodypart7
- bodypart8

    bodypart9

- bodypart10
```

Time to get the frames!!

Data Preprocess Workflow

Data Extraction from videos

Based on Client's Requests:

- I. Manually grab frames from videos
- II. Normally grab $3\% \sim 5\%$ frames per video
- III. Extract more bulging parts frames than straight ones

Time to make the dataset!!!

Data Preprocess Workflow

Label Dataset Creation

- I. Manually label the extracted frames
- II. Create the key points dataset of labels
- III. Check if the labels and skeleton correct

Training Dataset Creation

- I. Set training parameters
- II. Choose pre-trained network
- III. Create dataset for model training

Ready For Model Training !!!

Data Preprocess

80% of time spent for Machine Learning Projects is allocated to Data related tasks

Business Value created

Based on 2022 On-Demand label price formula

> Point-annotation:

0.08/image frame + 0.04/point

Actuator label type	Total Image frame	Labeled Frame	Frame Refine	Point per frame	Label times	Cost
Pink Sealing 02	697	80	30	12	9	530.96
Pink Vally 01	1162	40	56	11	4	261.92
Pink Vally 02	697	35	36	11	6	243.2
Pink Peak 01	1162	30	60	12	6	352.16
Pink Peak 02	697	20	52	12	6	263.12
Pink Peak&Vally 01	1162	40	57	21	2	255.92
Pink Peak&Vally 02	672	24	50	21	6	426.72
Blue Seling	5134	60	45	12	7	763.52
Yellow Seling	5696	75	30	12	2	556.48
Orange Seling	5211	67	50	12	4	641.52
Green Seling	4466	65	80	12	2	496.48
					Total cost	4792

Training Parameters

- > The part of the model that is **learned** from historical training data.
- > Iterations is the number of batches needed to complete one epoch
- > Data Augmentation : Use imgaug for our image augmentation
- Crop frame into suitable size could improve model performance

Methodology

Methodology

HPC Training

- High-performance computing (HPC)
- Use supercomputers and computer clusters to solve advanced computation problems
- Improve Training Speed

Angle Detection

- Clockwise Angle Calculation with coordinate
- > Help to prove model accuracy
- >

Risk Identification

1st Manual label result in bad labels 2nd
Model is too easy
to re-write

3rd
Can't decide
which frame
to refine

Individual point checking based on likelihood

capstone2022-soft-robot

A People 5

Model rewrite

Google drive back-up

Frame Likelihood Graph Specification

,p bound=0.95, shuffle=0) Method uncertain found 15 putative outlier frames. Do you want to proceed with extracting 50 of those? If this list is very large, perhaps consider changing the parameters (start, sto **Command method** p, p bound, comparisonbodyparts) or use a different method. ves/noves Frames from video pink02-train-2022-02-21-20.05.09 already extracted (more will Loading video... Overall # of frames: 406 with (cropped) frame dimensions: Kmeans-quantization based extracting of frames from 4.19 seconds to 17.68 seco

22-02-21-20.05.09.mp4

>>> config = '/Users/yinuozhao/Downloads/PkSsEnetYu03-main/config.yaml' [>>> video = '/Users/yinuozhao/Downloads/PkSsEnetYu03-main/videos/pink02-train-20]

>>> deeplabcut.extract outlier frames(config, video,outlieralgorithm='uncertain'

Let's select frames indices: [139, 155, 156, 157, 158, 159, 214, 488, 490, 496,

Original DLC Graph

Evaluation Metrics

Result: Model Comparison

ResNet_50

EfficientNet_B6

Result: Label Comparison

PinkPeakVally_ResNet_50

Result: Other Color Actuators

Blue Model Yellow Model Orange Model Green Model

Result: Angle Detection

Reference for the project

- Mathis, A., Mamidanna, P., Cury, K., Abe, T., Murthy, V., Mathis, M. and Bethge, M., 2018. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. *Nature Neuroscience*, 21(9), pp.1281-1289.
- Mathis, A., Biasi, T., Schneider, S., Yüksekgönül, M., Rogers, B., Bethge, M., & Mathis, M. W. (2020, November 12). *Pre-training boosts out-of-domain robustness for pose estimation*. arXiv.org. From https://arxiv.org/abs/1909.11229
- Lauer, J., Zhou, M., Ye, S., Menegas, W., Nath, T., Rahman, M. M., Santo, V. D., Soberanes, D., Feng, G., Murthy, V. N., Lauder, G., Dulac, C., Mathis, M. W., & Mathis, A. (2021, January 1). *Multi-animal pose estimation and tracking with deeplabcut*. bioRxiv. From https://www.biorxiv.org/content/10.1101/2021.04.30.442096v1
- Raman, S., Maskeliūnas, R., & Damaševičius, R. (2021, December 24). *Markerless dog pose recognition in the wild using resnet deep learning model*. MDPI. From https://www.mdpi.com/2073-431X/11/1/2
- Reiter, A., Bajo, A., Iliopoulos, K., & Simaan, N. (2012, April). *Learning-based configuration estimation of a multi-segment Continuum Robot*. IEEE Xplore. From https://ieeexplore.ieee.org/document/6290702

Question Time

Any Questions?

Contact Information

- Chen Liu <cl5989@nyu.edu>
- ➤ Jiazhi Xu <jx2336@nyu.edu>
- Xiaojia Pan <xp2027@nyu.edu>
- Yinuo Zhao
 <yz8461@nyu.edu>

