# Fusion Based Deep CNN for Improved Large-Scale Image Action Recognition

Yukhe Lavinia Holly H. Vo Abhishek Verma



# Agenda

**Action Recognition** 

Convolutional Neural Networks (CNN)

GoogLeNet

**VGGNet** 

Residual Net (ResNet)

Dataset

Pre-processing

Methodology

**Experimental Setup** 

**Experimental Results** 

# Action Recognition

- Process of labeling actions in video and still images
- Action representation: video (sequence of frames) and still images
- Benefits of still image action recognition: reduce amount of video frames, image retrieval
- Broad applications: security surveillance, child and elder-care monitoring, human-computer interaction

# **Convolutional Layer**

| <b>1</b> <sub>×1</sub> | 1,0  | 1,  | 0 | 0 |
|------------------------|------|-----|---|---|
| <b>O</b> <sub>×0</sub> | 1,   | 1,0 | 1 | 0 |
| <b>0</b> <sub>×1</sub> | 0,×0 | 1,  | 1 | 1 |
| 0                      | 0    | 1   | 1 | 0 |
| 0                      | 1    | 1   | 0 | 0 |

**Image** 



Convolved Feature

# Pooling Layer





## LeNet-5



Input 32x32 CONV1-POOL1-CONV2-POOL2-CONV3-FC

## AlexNet



Input 224x224
CONV1-POOL1-CONV2-POOL2-CONV3-CONV4-CONV5-FC

## **ILSVRC Winners**

- ImageNet Large Scale Vision Recognition Challenge
- Advances in image classification and object detection
- Alexnet (2012): popularized deep CNN
- Winners: GoogLeNet, VGGNet, Residual Net

# GoogLeNet

- Inception-v1
- Wide, parallel 1x1 conv, 3x3 conv, 5x5 conv, max pooling
- Reduced dimension through 1x1 conv
- Auxiliary classifiers
- Fast



# GoogLeNet



## **VGGNet**

- Small filter
- Exhaustive sweep
- Homogenous architecture
- 3x3 conv, stride 1, maxpool 2x2
- 16 or 19 weight layers

| VGG-19    |    |
|-----------|----|
| Input     |    |
| Conv3-64  | x2 |
| maxpool   |    |
| Conv3-128 | x2 |
| maxpool   |    |
| Conv3-256 | x4 |
| maxpool   |    |
| Conv3-512 | x4 |
| maxpool   |    |
| Conv3-512 | x4 |
| maxpool   |    |
| fc        | х3 |
| softmax   |    |
|           |    |

## ResNet

- Current state-of-the-art
- Residual learning
- Skip connections
- Batch normalization
- Deeper network



### Dataset

#### Stanford 40 Action



40 classes
9532 total images
3200 training images
800 validation images
5532 test images

## Dataset: Stanford 40 Action

- One of the hardest still image action recognition datasets
- Background clutter, various visibility, various poses







# Pre-processing



## Methodology

- Aim: collect more features using 3 networks
- Pre-trained weights
- Benchmark VGGNet (16 and 19), GoogLeNet, and ResNet on Stanford 40 Action
- VGG-19 performed slightly better than VGG-16

## Methodology



# **Experimental Setup**

- Caffe
- NVIDIA DIGITS
- One NVIDIA GeForce GTX TITAN X GPU
- 12 GB VRAM
- Two Intel Xeon E5-2690 v3 2.60 GHz
- 48/24 logical/physical cores
- 256GB main memory

# Experiments

|              | VGG-19 | GoogLeNet | ResNet-50 |
|--------------|--------|-----------|-----------|
| Base LR      | 0.0002 | 0.0009    | 0.0009    |
| Gamma        | 0.96   | 0.1       | 0.1       |
| Batch Size   | 40     | 40        | 16        |
| Epoch        | 50     | 30        | 30        |
| Weight Decay | 0.0005 | 0.0005    | 0.0005    |
| Momentum     | 0.9    | 0.9       | 0.9       |
| Train (mins) | 147    | 9         | 58        |

# **Experimental Results**



# Summary

- Application of deep CNN on still image action recognition
- Fusion of two deep CNN models improved individual model accuracy
- Fusion of three deep CNN models further improved the two-nets fusion accuracy

## Questions?



## References

- Y. LeCun, et al., "Gradient-Based Learning Applied to Document Recognition," *Proceedings of the IEEE*, 86(11):2278-2324, November 1998.
- A. Krizhevsky et al., "ImageNet classification with deep convolutional neural networks," Annu. Conf. on Neural Information Processing Systems (NIPS), Lake Tahoe, 2012.
- C. Szegedy et al., "Going deeper with convolutions," *Int. Conf. on Comp. Vision and Pattern Recognition (CVPR)*, Boston, MA, 2015.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," *Int. Conf. on Learning Reprsentation (ICLR)*, 2015.
- K. He et al., "Deep residual learning for image recognition," *Int. Conf. on Comp. Vision and Pattern Recognition (CVPR)*, Las Vegas, NV, 2016.
- B. Yao and L. Fei-Fei, "Modeling mutual context of object and human pose in human-object interaction activities," *Int. Conf. on Comp. Vision and Pattern Recognition (CVPR)*, San Franciso, CA, 2010.
- Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," *arXiv* preprint arXiv:1408.5093, 2014.
- NVIDIA DIGITS Software. (2015). Retrieved April 23, 2016, from https://developer.nvidia.com/digits.