Stochastische Prozesse Woche 1

Oliver Dürr

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

oliver.duerr@zhaw.ch

Winterthur, 24 Februar 2015

Kontakt

Oliver Dürr

School of Engineering

Rosenstrasse 3

8400 Winterthur

http://oduerr.github.com

E-Mail: oliver.duerr@zhaw.ch

Vorstellung des IDP Institut für Datenanalyse und Prozessdesign

We are "quants" and focus on:

Data Analysis
Optimization & Experimental Design
Business Analytics

Kurz zu meiner Person Oliver Dürr

- 1991-1998 Studium in Physik Uni Konstanz
- 1998-2003 Promotion in der theoretischen Physik Uni Konstanz (Diffusionsprozesse)
- 2003-2012 Genedata Basel
 - Softwareentwicklung und Consulting
- 2012- ZHAW IDP

Screening:
Daten von 1 Mio
Experimenten

Aktuell

Machine Learning Deep Learning KI

Mutationen in der DNA

Genexpressionsanalyse

Analyse von Netzwerken

Zurich University

No laptops, hones, no problems

Multitasking senkt Lerneffizienz: Keine Laptops im Theorie-Unterricht!

Vorlesungsbesuch ist freiwillig.

Organisatorisches

Vorlesungsmaterial ist auf

http://oduerr.github.com/teaching/stop

- Vorlesung 2h, Übungen 2h
 - Schein (definitiv in der Modulvereinbarung):
 - 1 Zwischenprüfungen (20 %). Am 14.4 um 8:00, freiwillig
 - Punkte beim Vorrechnen (10%).
 - 1 Endprüfung (mindestens 70 %).
 - Best of all
- Bei Anregungen / Problemen bitte melden

Literatur

- Vorlesungsmaterial: Skript, Folien
- Internet
 - Google, Wikipedia, ...
- Lehrbuch (optional)

Für Heute

- Einführung in das Thema
- Wiederholung wichtiger Konzepte aus WaSt2
- Wiederholung Lineare Algebra

Einführung

Stochastische Prozesse

- Zeitlich geordneten, zufälligen Vorgängen
- Mathematische Definition (kommt noch):
 - Folge von Zufallsvariablen X_t t ist Zeit

Gegenbeispiel:

Deterministische Zeitentwicklung ...

Gegenbeispiel Deterministisches Modell - Federpendel

Dabei ist

m die Masse.

d die Dämpfungskonstante und

k die Federkonstante (das Rückstellmoment).

Allgemeine Lösung

$$x(t) = X_1 e^{\lambda_1 t} + X_2 e^{\lambda_2 t}.$$

Schwingfall

System ist bestimmt (deterministisch). Es reicht aus was zu kennen?

Deterministisch:

Kennt man Ort und Geschwindigkeit zu einem Zeitpunkt, kennt man Ort und Geschwindigkeit zu allen anderen Zeitpunkten. Ort und Geschwindigkeit: Zustand

Stochastischer Prozess: Aktien

Es reicht **nicht aus**, den Wert der Aktie zu kennen, um exakte Vorhersagen für die Zukunft zu treffen. Nicht mal alle Ableitungen.

Das System entwickelt sich zufällig / stochastisch weiter.

Wie wahrscheinlich ist es (gegeben der blauen Kurve), dass sich System wie in der roten oder grünen Kurve weiterentwickelt.

Stochastisches Prozess: Brown'sche Molekularbewegung

http://www.youtube.com/watch?v=Dgi4SKp-YIA

Aus Wikipedia:

Als **brownsche Bewegung** (oder **brownsche Molekularbewegung**) wird die vom schottischen Botaniker <u>Robert Brown</u> im Jahr 1827 wiederentdeckte Wärmebewegung von Teilchen in <u>Flüssigkeiten</u> und <u>Gasen</u> bezeichnet

Zurich University of Applied Sciences

Stochastisches Prozess: Brown'sche Molekularbewegung

http://galileo.phys.virginia.edu/classes/109N/more stuff/Applets/brownian/brownian.html

Zustand: Ort des grossen (blauen Teilchens)

Einer der 3 Geistesblizte Einsteins im Wunderjahr 1905

"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen"

Stochastische Prozesse: Warteschlangen

Zustand (Personen in Schlange)

Fragestellungen:

Wie wahrscheinlich ist es, dass mehr als 10 Personen anstehen.

Soll ich jemand neues einstellen?

Analog: Serveranfragen...

Stochastische Model: DNA

Fragestellungen:

Wie wahrscheinlich ist es, dass ein A nach GATATATA kommt.

«Zeit» (Position in Basenpaare)

Die nächste Base G,A,T,C ist nicht mit Sicherheit vorherzusagen. Wir können nur Wahrscheinlichkeiten angeben, dass z. B. nach A ein T folgt.

Zeit ist allgemein zu verstehen.

Einteilung der stochastischen Prozesse

Zeit: Diskret / Stetig

Zustand: Diskret / Stetig In der Vorlesung nur diskrete Zustände

	Zustand Diskret	Zustand Stetig
Zeit Diskret	Tagesproduktion (#Autos)DNA	 Tagesregenmenge Siehe auch Vorlesung: Zeitreihen
Zeit stetig	Warteschlagen	MolekularbewegungAktien (Wiener/Ito-Prozesse)

Weitere Beispiele

Aufgabe Einteilung der stochasitischen Prozesse:

Geben Sie bitte jeweils an, ob es sich um einen stochastischen Prozess handelt und was die Zustände sind. Sind die Zustände und "Zeiten" diskret oder kontinuierlich?

Beispiele:

- 1. Temperatur in °C um 6:00 Uhr jeden Tages an einer meteorologischen Wetterstation
- 2. Position eines Wurfgeschosses, welches mit 10 m/sec geworfen wurde.
- 3. Die Geldmenge, die ein Spieler im Roulette gewinnt oder verliert.
- Webseiten die ein Besucher Ihrer Webseite auswählt.
- Anzahl der Personen, die in der Mensa anstehen.

- Markov-Ketten mit endlichem Zustandsraum Zeit diskret, Zustand diskret (sogar endlich)
- Punkt- und Zählprozesse Zeit kontinuierlich / 1 Zustand
- 3. Markov-Prozesse in kontinuierlicher Zeit Zeit kontinuierlich / endlich viele Zustände

Woche 1-8

Woche 9-11

Wiederholung WaSt2

Diskrete Wahrscheinlichkeitsverteilung und Verteilungsfunktion beim Würfel-Modell

P(x)=P(X=x) W'keit, dass ZV X den Wert x annimmt.