Sex and the City: Spatial Structural Changes and the Marriage Market

Min Fang¹ Zibin Huang² Yushi Wang³ Yu (Alan) Yang³

¹U Florida; ²SUFE; ³Peking U.

Sep.2025 @ The 25th Stockman!

- Marriage and fertility rates are declining globally;
- It is not only for developed economies, but also for developing countries.

Introduction Empirical Pattern Model Decomposition Conclusion 1/26

It also shows a clear spatial pattern:

- Singles rate for males is high in underdeveloped regions, low in developed regions;

- Singles rate for females is low in underdeveloped regions, high in developed regions.

Introduction Empirical Pattern Model Decomposition Conclusion 2/26

Figure Single Rate Gap (Male-Female) for People over 35 (living location)

Introduction Empirical Pattern Model Decomposition Conclusion 3/26

Marriage and Spatial Sorting

- **Spatial mismatch** in marriage market:
 - * (High-skill) women in developed/urban areas;
 - * (Low-skill) men in less developed/rural areas.

- Previous studies investigate these two issues separately (Ong et al., 2020; Edlund et al., 2013)
- What if they are two sides of the same coin from a spatial equilibrium perspective?
 - * Both jobs and marriage are local;
 - * People (by gender & skill) make migration decisions incorporating considerations of both.

Introduction Empirical Pattern Model Decomposition Conclusion 4/26

Marriage and Spatial Sorting

Goal of this paper:

- Quantitatively describe this location & marriage decision.
- Identify & quantify the sources of observed patterns in the spatial marriage market:

Gender-specific Spatial Structural Changes (SSC)

- * Educational shifter (more educated women than men);
- * Sectoral shifter (women sort to the service sector);
- * Spatial sectoral shifter (women sort to the service sector in developed regions).
- ⇒ Spatial distribution of gender and skill ⇒ Local marriage matching.

Introduction Empirical Pattern Model Decomposition Conclusion 5/26

This Paper (Empirical)

- Three stylized facts on China's labor and marriage markets that summarize our story:
 - ① **Spatial structural changes** $\left\{ \begin{array}{l} \text{Females get more and more education than males.} \\ \text{Females sort into service sector located in more developed cities.} \end{array} \right\} \Rightarrow$
 - 2 Persistent norms of marriage: Females marry up, males marry down.
 - 3 Spatial pattern of singles rate: high SES females in developed regions.

▶ It is a race between **persistent social norms** and **gender-biased spatial structural changes.**

Introduction Empirical Pattern Model Decomposition Conclusion 6/26

This Paper (Quantitative)

- Build a prefecture-level spatial equilibrium model:
 - * multi-sector and multi-skill production;
 - * migration across prefectures;
 - * local marriage market.
- ▶ Embed a marriage matching model à la Choo & Siow (2006).
- Parameterize the model to match the Chinese economy in 2015.
- Decompose & quantify the sources of observed spatial marriage patterns.
- Counterfactual policies.

Introduction Empirical Pattern Model Decomposition Conclusion 7/26

Preview of Results

- Gender-specific spatial structural changes matter: If we remove gender specificity:
 - * National singles rate \$\preceq\$ 30% for females; \$\preceq\$ 12% for males.
 - * Driven by high-skilled (low-skilled) females (males) in more developed (less developed) regions.
- ► We then decompose the SSCs into three parts:
 - * Educational shifter explains one-third of this decline.
 - * Spatial sectoral shifter explains the remaining two-thirds.
 - * Sectoral shifter alone plays a minimal role.
- ▶ We project that if the SSC continues to 2030:
 - * Spatial mismatch † in China.
 - * Singles rate \\$\, 60\% for females and 20\% for males.
- Marriage subsidies have a very limited policy effect, sadly.

Introduction Empirical Pattern Model Decomposition Conclusion 8/26

Dramatic Gender-specific Structural Changes

► **Gender educational gap** for females narrows and reverses over time:

^{*}For birth cohorts after 2005, undergraduate admission female/male has been over 2:1.

Dramatic Gender-specific Structural Changes

► **Gender employment gap** in the service sector decreases for females, particularly high-skill:

Education	Sector	2000	2005	2010	2015
College and Above	Agriculture	-45.0%	-32.3%	-16.2%	-13.2%
	Manufacturing	-34.6%	-26.9%	-23.3%	-22.7%
	Service	-16.6%	-1.4%	+12.0%	+21.2%
High School	Agriculture	-39.5%	-38.6%	-24.3%	-17.5%
	Manufacturing	-22.1%	-28.9%	-29.8%	-33.1%
	Service	- 0.4%	-3.4%	+1.1%	+4.1%
Middle School and Below	Agriculture	+14.9%	+17.8%	+19.0%	+18.6%
	Manufacturing	-18.6%	-18.0%	-17.7%	-24.1%
	Service	-14.6%	-11.2%	+4.7 %	+9.3%

► **Gender wage gap** in the service sector also narrows more for college females.

Introduction Empirical Pattern Model Decomposition Conclusion 10/26

Dramatic Gender-specific Structural Changes

Gender spatial employment gap:

Females are more likely to work in non-agricultural sectors in developed regions.

ntroduction Empirical Pattern Model Decomposition Conclusion 11/26

Persistent Social Norm in Marriage

- Married males have **higher education level** than their unmarried counterparts
- Married females have lower education level than their unmarried counterparts

Table Relative Socioeconomic Status Gap of Married versus Never-married

Census Year	2000		2005		2010		2015	
	Male	Female	Male	Female	Male	Female	Male	Female
College Degree	+0.05	-0.09	+0.04	-0.12	+0.04	-0.08	+0.06	-0.14
Education Year	+2.41	-0.56	+2.13	-0.62	+1.33	-0.69	+1.49	-0.66

Introduction Empirical Pattern Model Decomposition Conclusion 12/26

Persistent Social Norm in Marriage - homogamy/hypergamy

Table Relative Socioeconomic Status of Married Couples

Census Year	2000	2005	2010	2015
Panel A. College Degree				
Females marry up	3.44%	4.10%	3.87%	3.97%
Females marry down	0.86%	1.31%	1.48%	1.80%
Equal	95.70%	94.60%	94.65%	94.23%
Panel B. Education Year				
Females marry up	38.61%	37.90%	30.01%	28.33%
Females marry down	9.29%	9.67%	8.96%	9.77%
Equal	52.10%	53.23%	61.04%	61.90%

Introduction Empirical Pattern Model Decomposition Conclusion 13/26

Spatial Distribution of Singlehood - GDP p.c.

Figure GDP and Singles Rate of Age 30-45 (City-level, living pop)

Introduction Empirical Pattern Model Decomposition Conclusion 14/2

A Spatial Equilibrium Model with Marriage Matching

Overview of the Model

A quantitative spatial equilibrium migration model (Eaton & Kortum, 2002; Tombe & Zhu, 2019; Fang et al., 2022)

- → Embedded with a marriage matching model (Choo & Siow, 2006)
- ▶ **A set of prefectures** indexed by i = 1, ..., N, each with three sectors:
 - * [manufacturing, service] ← combine different skilled labor
 - * [agriculture] ← indifferent labor

► A measure of workers H_i: endowed with gender, skill, hometown. start as single; migrate, work, then participate in local marriage market.

Introduction Empirical Pattern Model Decomposition Conclusion 15/26

Location Preference and Migration

For an individual o of gender $g = \{male, female\}$ and edu/skill $e = \{high, med, low\}$, migrate from city i to city j and work in sector k:

$$U_{i,jk}^o = \overline{V_{jk}^{ge}} \cdot \frac{1}{\tau_{i,jk}^{ge}} \cdot \underbrace{z_{i,jk}^o}_{\substack{\text{location} \\ \text{payoff } i \ jk}} \cdot \underbrace{z_{i,jk}^o}_{\substack{\text{cost}}}$$

- Exogenous (iceberg) migration/allocation cost: flexible type- & flow-specific
- Gravity equation for the migration flow $\pi_{i.ik}^{ge}$.

Introduction Empirical Pattern Model Decomposition Conclusion 16/26

Workers: Utility of Married Individuals

A worker o in destination jk, married to e'-type spouse to form a household ω , has a log-linear utility:

$$V_{jk}^{\omega,o} = \ln \left[\underbrace{\left(\frac{c_{jk}^{\omega}}{\beta}\right)^{\beta}}_{\text{HH final goods consumption}} \cdot \underbrace{\left(\frac{h_{jk}^{\omega}}{1-\beta}\right)^{1-\beta}}_{\text{HH housing consumption}} / \underbrace{(1+\chi)}_{\text{economy of scale}} \right] + \underbrace{m_{j}^{\omega,o}(e')}_{\text{marital payoff}}$$

Introduction Empirical Pattern **Model** Decomposition Conclusion 17/26

Marriage Market

- ► In destination city *j*, there is a local marriage market (across sectors).
- Following Choo & Siow (2006), assume transferable utility (TU), individual o's marital payoff from marrying a type-e' spouse:

$$m_{j}^{\omega,o}(e') = \underbrace{\widetilde{\mu}_{j}^{ge}}_{\text{value of not single in } j} + \underbrace{\mu^{ge}(e')}_{\text{deterministic partner pref.}} + \underbrace{\delta_{j}^{ge}(e')}_{\text{eq'm marital transfer in } j} + \underbrace{\varepsilon_{j}^{o}(e')}_{\text{partner pref.}}$$

- * where $\widetilde{\mu}_{i}^{ge}$ is value of not being single in j (= 0 in reference city)
- * $\mu^{ge}(e')$ is deterministic marital return (or love) relative to being single;
- * $\delta^{ge}_j(e')$ is equilibrium transfer within couple, and $\delta^{ge}_j(e') = -\delta^{g'e'}_j(e)$;
- * $\varepsilon_i^o(e')$ is idiosyncratic preference for partner type, ~TIEV w/ dispersion σ_{ε} .
- ▶ Identification comes from variations of marriage matching eq'm across locations.

Introduction Empirical Pattern Model Decomposition Conclusion 18/26

Workers: Utility of Being Single

If a worker o in destination jk is single,

$$V_{jk}^{o}(\emptyset) = \ln \left[\underbrace{\left(\frac{c_{jk}^{o}}{\beta}\right)^{\beta}}_{\substack{\text{final goods} \\ \text{consumption}}} \cdot \underbrace{\left(\frac{h_{jk}^{o}}{1-\beta}\right)^{1-\beta}}_{\substack{\text{housing} \\ \text{consumption}}} \right] + m_{j}^{\omega,o}(\emptyset)$$

funded by own income W_{ik}^{ge} .

Marriage value of being single is determined by:

$$m_j^{\omega,o}(\emptyset) = \varepsilon_j^o(\emptyset)$$

Production, Housing market, Eqm, Data, and Estimation are skipped for today!

Introduction Empirical Pattern **Model** Decomposition Conclusion 19/26

Quantitative Analysis

Quantitative Analysis I: SSC Effect

- What is the impact of the gender-specific spatial structural changes on the singles rate?
- ▶ We consider three adjustments for males and females:
 - * (1) Equalizing gender education levels
 - * (2) Equalizing gender sectoral allocation costs $ar{ au}_k^{ge}$
 - st (3) Equalizing gender spatial-sectoral allocation costs $arepsilon_{i,ik}^{ge}$
- ▶ We first equalize (1), (2), (3) at the same time to erase all gender-specific SSCs
- ▶ Then, we equalize them one by one to implement a decomposition

Introduction Empirical Pattern Model **Decomposition** Conclusion 20/26

Quantitative Analysis I: SSC Effect

Table The Effects of Gender-specific Spatial Structural Changes on Singles Rate

National & Regional	Male				Female		
Singles Rate	National	Least Dev.	Most Dev.	National	Least Dev.	Most Dev.	
Panel A: Singles Rate and Percentage Changes							
Baseline	8.17%	8.98%	8.11%	3.46%	2.36%	5.09%	
No GS-SSCs	7.21%	8.03%	5.97%	2.45%	1.99%	3.11%	
% Changes	-11.75%	-10.58%	-26.39%	-29.19%	-15.68%	-38.90%	
Panel B: Decomposition of the Percentage Changes							
National Educational	32.29%	93.68%	-15.89%	31.68%	-18.92%	44.44%	
National Sectoral	-1.04%	-41.05%	15.89%	0.00%	16.22%	-6.06%	
Spatial Sectoral	68.75%	47.37%	100.00%	68.32%	102.70%	61.62%	

Introduction Empirical Pattern Model **Decomposition** Conclusion 21/26

Quantitative Analysis II: China in 2030

What will happen if the gender-specific SSCs continue to 2030?

► Gender college education rate is determined by the gender college enrollment rate of the cohort aged 20 in the Census 2020;

Gender specific sectoral changes are projected linearly using the trend from 2000 to 2015;

The Gender gap in spatial sectoral allocation costs is doubled.

Quantitative Analysis II: China in 2030

Introduction Empirical Pattern Model **Decomposition** Conclusion 23/26

Quantitative Analysis III: Marriage Subsidies

▶ Finally, we consider a universal marriage subsidy of 10% of lifetime family income.

▶ This would cost about 3.5% of the national GDP per year.

- ► This is much larger than most of the current marriage subsidies:
 - * Busan, Korea: \$15,000 (one-time)
 - * Guangzhou, China: Up to \$5,500 (one-time)

Introduction Empirical Pattern Model Decomposition Conclusion 24/26

Quantitative Analysis III: Marriage Subsidies

- ► The policy effect is very small, despite a large fiscal burden.
- A pure monetary reward cannot alter the fundamental trends of Gender-specific SSCs.

Introduction Empirical Pattern Model **Decomposition** Conclusion 25/26

Conclusion

- ▶ This paper develops a spatial GE migration model incorporated with local marriage matching.
- We closely match the spatial disparity of marriage outcomes by gender and skill.
 - * A race between the persistent social norm and the dramatic spatial structural changes.
- Using the spatial GE model, we find that
 - * Gender-specific SSC accounts for 30 (12) percent of the singles rate for females (males) in China.
 - * Marriage rate in China is likely to continue to drop amid the current trend.
 - * Marriage subsidy is costly and relatively ineffective.

Appendix

Figure Prefecture-level Singles Rate of People over 30 in China

Appendix 1/

Persistent Social Norm in Marriage: Marriage Willingness

► Marriage is still important in China

Young Chinese people still want to get married

% don't want to get married:						
(Age 18-45)						
Male	Female					
2.54	3.41					
2.41	2.88					
	(Ago Male 2.54					

Appendix 2/

Spatial Distribution of Singlehood - Service Sector Share

Figure Employment Share in Service and Singles Rate of Age 30-45 (City-level, living pop)

Appendix 3/6

Solve the spatial equilibrium: Productivities (Back)

- From profit maximization and zero profits, we can infer urban sectoral productivity from the data on employment and wages for $k = \{m, s\}$.
- ► First, we solve for productivity A_{jk}^h as a function of A_{jk}^l using the first order conditions $A_{jk}^h = A_{jk}^l (H_{jk}^h/H_{jk}^l)^{1/(\sigma_k-1)} (w_{jk}^h/w_{jk}^l)^{\sigma_k/(\sigma_k-1)}$.
- ▶ Plugging A_{ik}^h into the definition of Y_{ik} , we have:

$$Y_{jk} = A_{jk}^{l} H_{jk}^{l} \left[\frac{w_{jk}^{h} H_{jk}^{h} + w_{jk}^{l} H_{jk}^{l}}{w_{jk}^{l} H_{jk}^{l}} \right]^{\frac{\sigma_{k}}{\sigma_{k} - 1}} \equiv A_{jk}^{l} H_{jk}^{l} (\Xi_{jk}^{l})^{-\frac{\sigma_{k}}{\sigma_{k} - 1}}$$

where $\Xi^l_{jk} = \frac{w^l_{jk}H^l_{jk}}{w^l_{i}H^l_{i} + w^l_{i}H^l_{i}}$ is the share of labor income distributed to low skill workers.

- We also assume that agricultural productivity equals agricultural wages $A_{jr}^e = w_{jr}$, for both $e = \{h, m, l\}$. Intuitively, higher wages or skill shares require higher skill s productivity at equilibrium for urban sectors.
- ► We can then calculate the productivities for both skill types as follows:

$$A_{ik}^{l} = w_{ik}^{l}(\Xi_{ik}^{l})^{\frac{1}{\sigma_{k}-1}}, \quad A_{ik}^{h} = w_{ik}^{h}(1-\Xi_{ik}^{l})^{\frac{1}{\sigma_{k}-1}}.$$

Appendix 4.

Solve the spatial equilibrium: Land market clearing

From workers' first-order conditions for residential floor space and the summation of all workers residing in each prefecture and region *jk*,

we can calculate both urban and rural floor space:

$$S_{ju} = \frac{1 - \beta}{q_{ju}} \sum_{k} \left[w_{jk}^{l} H_{jk}^{l} + w_{jk}^{m} H_{jk}^{m} + w_{jk}^{h} H_{jk}^{h} \right], \qquad S_{jr} = \frac{1 - \beta}{q_{jr}} \left[w_{jr} H_{jr} \right]$$

▶ We can then back out the implied construction intensity $\phi_i = S_{iu}/L_i$.

Appendix 5 /

Solve the spatial equilibrium: Migration costs

- We first to compute the prefecture-level equally-divided rent income for residents $\frac{q_i S_i}{H_i}$ from the residential floor space S_i calculated above, to which we can add observed wages to determine incomes of workers of skill e moving from in to jk: $inc_{i,jk}^e = w_{jk}^e + \frac{q_{jn} S_{jn}^R}{H_i^R}$.
- ightharpoonup Second, we need to calculate the workers' marriage utility $m_{i,ik}^{ge}$.
- ▶ Then, we can calculate all migration costs between all prefecture pairs from the gravity equations.
- We assume the iceberg migration cost for staying in one's original prefecture is $\tau_{i,in}^{ge} = 1$.
- \blacktriangleright With q_i , $inc_{i,jk}^e$, $m_{i,jk}^e = E(m_{i,jk}^{ge})$, and $\pi_{i,jk}^e = \sum_{ge} \pi_{i,jk}^{ge}$ in hand, along with the gravity equation:

$$\Phi_{i}^{e} = \sum_{jk}^{JK} (\tau_{i,jk}^{ge} q_{jk}^{1-\beta})^{-\sigma_{z}} (inc_{i,jk}^{e} m_{i,jk}^{e})^{\sigma_{z}} = \frac{(q_{jk}^{1-\beta})^{-\sigma_{z}} (inc_{i,in}^{e} m_{i,jk}^{e})^{\sigma_{z}}}{\pi_{i,in}^{e}}$$

▶ By inserting Φ_i^e into the original gravity equation, we have:

$$\tau_{i,jk}^e = \frac{ic_{i,jk}^e m_{i,jk}^e}{q_{i,b}^{1-\beta}(\pi_{i,b}^e \Phi_i^e)^{1/\sigma_z}}, \text{ for } in \neq jk$$

Appendix 6/6