SEQUENCE LISTING

		<110>	Rhône-Poulenc Rorer	
		<120>	Polypeptides capable of interacting with	
	, 5		oncogenic mutants of the p53 protein	
		<130>	Sequences	
			oddenees	
		<140>		
	10	<141>		
		<150>	FR9812754	
9 11			1998-10-12	
727				
	15	<160>	33	
Tree and the same		<170>	PatentIn Ver. 2.1	
E.		<210>	1	
i.	20	<211>	23	
## # 1.00m web#		<212>	DNA	
		<213>	Artificial sequence	
		<220>		
	25	<223>	Artificial sequence description: oligonucleoti	de
		<400> 1		
		agatetg	tat ggaggagccg cag	23
		<210>	2	
	30 -	<211>	29	
	•	<212>	DNA	
		<213>	Artificial sequence	
		<220>		

<223> Artificial sequence description: 3'-393

oligonucleotide (p53)

```
<400> 2
          agateteate agtetgagte aggecette
                                                                 29
      5
         <210>
                 3
         <211>
                15
         <212>
                 DNA
         <213>
                Artificial sequence
     10
         <220>
         <223>
                 Artificial sequence description: 3' H175
                 oligonucleotide
          <400> 3
          ggggcagtgc ctcac
                                                                 15
     15
         <210>
         <211>
                 15
         <212> DNA
11
ļ.
     20 <213>
                Artificial sequence
         <220>
         <223>
                Artificial sequence description: 3' W248
                 oligonucleotide
     25
          <400> 4
          gggcctccag ttcat
                                                                 15
         <210>
                5
         <211> 15
     30 <212> DNA
         <213>
               Artificial sequence
```

Here were the three the terms of the terms o į.

<220>

Artificial sequence description: 3' H273

```
and the first that the table that the fact
 He Hill He
```

<223>

```
oligonucleotide
     <400> 5
    acaaacatgc acctc
                                                             15
 5
    <210>
            б
    <211>
            15
    <212> DNA
    <213> Artificial sequence
10
    <220>
    <223>
            Artificial sequence description: 3' G281
            oligonucleotide
     <400> 6
    gegeeggeet eteec
                                                             15
15
    <210>
            7
    <211>
            23
    <212>
            DNA
20 <213>
            Artificial sequence
    <220>
           Artificial sequence description: 5'-73
    <223>
            oligonucleotide
25
    <400> 7
    agatetgtgt ggcccctgca cca
                                                            23
    <210>
            8
    <211>
          1021
30 <212>
          DNA
    <213>
           Artificial sequence
    <220>
    <221>
           CDS
```

<222> (1)..(885)

<220>

<223> Artificial sequence description: murine MBP1

5 C-term fragment

<40	S < 0															
	acc															48
	gat Asp		-	_				_	_		_	_			-	96
ccg Pro	ggc Gly	tcc Ser 35	ttt Phe	cga Arg	tgc Cys	cag Gln	tgt Cys 40	gag Glu	cca Pro	ggc	ttc Phe	cag Gln 45	ttg Leu	gga Gly	cct Pro	144
	aac Asn 50															192
	gag Glu															240
	cag Gln															288
	gag Glu															336
gag Glu	cca Pro	ggc Gly 115	cga Arg	ttc Phe	tcc Ser	tgt Cys	cac His 120	tgc Cys	cca Pro	caa Gln	ggc Gly	tac Tyr 125	cag Gln	ctg Leu	ctg Leu	384
gct Ala	aca Thr 130	agg Arg	ctc Leu	C Aa c	caa Gln	gat Asp 135	att Ile	gac Asp	gag Glu	tgt Cys	gaa Glu 140	aca Thr	ggt	gca Ala	cac Hıs	432
caa Gln 145	tgt Cys	tct Ser	gag Glu	gec Ala	caa Gln 150	acc Thr	cgt Cys	gtc Val	aac Asn	ttc Phe 155	cat His	GJÀ aaa	ggt Gly	tac Tyr	ege Arg 160	480
tgt Cys	gtg Val	gac Asp	acc Thr	aac Asn 165	cgt Arg	tgt Cys	gtg Val	gag Glu	ecc Pro 170	tat Tyr	gcc Val	caa Gln	gtg Val	tca Ser 175	gac Asp	528
aac Asn	Arg	tgc Cys	ctc Leu 180	tgc Cys	cct Pro	gcc Ala	ser,	aat Asn 185	ccc Pro	ctt Leu	tgt Cys	cga Arg	gag Glu 190	cag Gln	ect Pro	576
tca Ser	tcc Ser	att Ile 195	gtg Val	cac His	cgc Arg	tac Tyr	atg Met 200	agc Ser	atc Ile	acc Thr	tca Ser	gag Glu 205	cga Arg	agt Ser	gtg Val	624
cct	gct	gac	gtg	ttt	cag	atc	cag	gca	acc	tct.	gtc	tac	cct	ggt	gcc	672

Pro Ala Asp Val 210	Phe Gln Ile Gln 215		al Tyr Pro Gly Ala 20	
-	-		ag ggg gac ttc tac ln Gly Asp Phe Tyr 240	720
Ile Arg Gln Ile			tc ctc gcc agg cca al Leu Ala Arg Pro 255	768
			ag atg gtc acc atg lu Met Val Thr Met 270	816
			tg aga ctc acg gtc eu Arg Leu Thr Val 285	864
ttt gtg gga gcc Phe Val Gly Ala 290	_	agaceet caggga	aggg ccacgtgggg	915
gececttece ectee	catag cttaagcago	cccgggggcc t	agggatgac cgttctgctt	975
aaaggaacta tgatg	tgaag gacaataaag	g ggagaaagaa g	gaaaa	1021
<210> 9				
<211> 295				
<212> PRT				
<213> Artif:	icial sequend	ce		
<223> Artif:	icial sequend	ce descript	tion: murine MBP	1

C-term fragment

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 1 5 10 15

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu
20 25 30

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40 45

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 50 55

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys 65 70 75 80

Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 85 90 95

Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105 110

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 125

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His

Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg 145 150 155 160

Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln Val Ser Asp 165 170 175

Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro 180 185 190

Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser Glu Arg Ser Val

Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala 210 215 220

Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly Asp Phe Tyr 225 230 230 240

Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro

Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met 260 265 270

Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 275 280 285

Phe Val Gly Ala Tyr Thr Phe

```
<210>
                  10
          <211>
                  39
          <212>
                 DNA
          <213>
                 Artificial sequence
      5
         <220>
         <223>
                 Artificial sequence description: 5' c-myc
                 oligonucleotide
          <400> 10
          gatecatgga geagaagetg ateteegagg aggaeetga
                                                                  39
     10
         <210>
                 11
         <211>
                 39
         <212>
                 DNA
         <213>
                 Artificial sequence
     15
         <220>
         <223> Artificial sequence description: 3' c-myc
                 oligonucleotide
         <400>
                 11
     20
IJ.
         gateteaggt cerectegga gateagette tgetecatg
                                                                  39
         <210> 12
         <211> 45
     25 <212> DNA
         <213>
               Artificial sequence
         <220>
         <223>
                Artificial sequence description: 5' MCS
     30
                 oligonucleotide
         <400> 12
         gatctcggtc gacctgcatg caattcccgg gtgcggccgc gagct
                                                                 45
         <210>
                13
    35 <211>
                 37
```

the time the time the time that the time that ļ÷

```
<212>
            DNA
    <213>
            Artificial sequence
    <220>
 5 <223>
            Artificial sequence description: 3' MCS
            oligonucleotide
     <400> 13
     cgcggccgca cccgggaatt gcatgcaggt cgaccga
                                                             37
10 <210>
            14
    <211>
            22
    <212>
            DNA
    <213>
           Artificial sequence
15 <220>
    <223>
           Artificial sequence description: 3' mMBP1
            oligonucleotide
     <400> 14
    cggtactggc agaggtaact gg
                                                             22
20
    <210>
            15
    <211> 1513
    <212>
           DNA
    <213> Artificial sequence
25
    <220>
    <221> CDS
    <222>
           (49)..(1377)
30 <220>
           Artificial sequence description: murine MBP1
            (complete sequence)
     <400> 15
    getgtggeag aaacccctga ettetgeeca ecaceteeca geeteagg atg ete eet 57
                                                  Met Leu Pro
```

								ttg Leu								105
								cag Gln								153
tac Tyr	acg Thr	gaa Glu	tgc Cys	aca Thr 40	gat Asp	ggc	tat Tyr	gag Glu	tgg Trp 45	gat Asp	gca Ala	gac Asp	agc Ser	cag Gln 50	cac His	201
tgc Cys	cgg Arg	gat Asp	gtc Val 55	aac Asn	gag Glu	tgc Cys	ctg Leu	acc Thr 60	atc Ile	ccg Pro	gag Glu	gct Ala	tgc Cys 65	aag Lys	ggt Gly	249
	-		_					ggg Gly					_		_	297
								cat Hls								345
								cct Pro								393
								gtg Val								441
								tgc Cys 140								489
cag Gln	cya	acc Thr 150	tgc Cys	cct Pro	gat Asp	ggt Gly	tac Tyr 155	cga Arg	aaa Lys	att Ile	gga Gly	ccc Pro 160	gaa Glu	tgt Cys	gtg Val	537
Aap	ata Ile 165	gat Asp	gag Glu	tgt Cys	cgt Arg	tac Tyr 170	cgc Arg	tat Tyr	tgc Cys	cag Gln	cat His 175	cga Arg	tgt Cys	gtg Val	aac Asn	585
ctg Leu 180	ccg Pro	Gly	tct Ser	ttt Phe	cga Arg 185	tgc Cys	cag Gln	tgt Cys	gag Glu	cca Pro 190	ggc Gly	ttc Phe	cag Gln	ttg Leu	gga Gly 195	633
Pro	aac Asn	aac Asn	cgc Arg	tct Ser 200	tgt Cys	gtg Val	gat Asp	gtg Val	aat Asn 205	gag Glu	tgt Cys	gac Asp	atg Met	gga Gly 210	gcc Ala	681
cca Pro	tgt Cys	gag Glu	cag Gln 215	cgc Arg	tgc Cys	ctc Phe	aac Asn	tcc Ser 220	tat Tyr	Gly 999	acc Thr	ttc Phe	ctg Leu 225	Cya Cya	Arg cgc	729
								cgg Arg								דרד

		230					235					240				
			tgc Cys													825
			ggc Gly													673
ctg Leu	gct Ala	aca Thr	agg Arg	ctc Leu 280	tgc Cys	caa Gln	gat Asp	att Ile	gac Asp 285	gag Glu	tgt Cys	gaa Glu	aca Thr	ggt Gly 290	gca Ala	921
cac His	caa Gln	tgt Cys	tct Ser 295	gag Glu	gcc Ala	caa Gln	acc Thr	tgr Cys 300	gtc Val	aac Asn	ttc Phe	cat His	999 Gly 305	Gly	tac Tyr	969
cgc Arg	tgt Cys	gtg Val 310	gac	acc	aac Asn	cgt Arg	tgt Cys 315	gtg Val	gag Glu	ccc Pro	tat Tyr	gtc Val 320	caa Gln	gtg Val	tca Ser	1017
gac Asp	aac Asn 325	arg	tgc Cys	ctc Leu	tgc Cys	cct Pro 330	gcc Ala	tcc Ser	aat neA	ccc Pro	ctt Leu 335	tgt Cys	cga Arg	gag Glu	cag	1065
			att Ile													1113
gtg Val	cct Pro	gct Ala	gac Asp	gtg Val 360	ttt Phe	cag Gln	atc Ile	cag Gln	gca Ala 365	acc Thr	tct Ser	gtc Val	tac Tyr	cct Pro 370	ggt	1161
gcc Ala	tac Tyr	aat Asn	gcc Ala 375	ttt Phe	cag Gln	atc Ile	cgt Arg	tot Ser 380	gga Gly	aac Asn	aca Thr	cag Gln	385 Gly 999	gac Asp	ttc Phe	1209
tac Tyr	att Ile	agg Arg 390	caa Gln	atc Ile	aac Asn	aat Asn	gtc Val 395	agc Ser	gcc Ala	atg Met	ctg Leu	gtc Val 400	ctc Leu	gcc Ala	agg Arg	1257
cca Pro	gtg Val 405	acg Thr	gga Gly	ccc Pro	Arg	gag Glu 410	tac Tyr	gtg Val	ctg Leu	gac Asp	ctg Leu 415	gag Glu	atg Met	gtc Val	acc Thr	1305
atg Met 420	aat Asn	tcc Ser	ctt Leu	atg Met	agc Ser 425	tac Tyr	cgg Arg	gcc Ala	agc Ser	tct Ser 430	gta Val	ctg Leu	aga Arg	ctc Leu	acg Thr 435	1353
gtc Val	ttt Phe	gtg Val	gga Gly	gcc Ala 440	tat Tyr	acc Thr	ttc Phe	tgaa	gaco	ct o	caggg	jaago	iā co	atgt	: a gag	1407
gec	ctto	ecc o	ctco	cata	ig ct	taag	cago	ccc	9999	igcc	tago	gato	gac o	gtto	tgctt	1467
aaac	gaac	ta t	gate	gtgaa	ıg ga	caat	aaag	g gga	gaaa	gaa	ggaa	aa				1513

	<210>	16
	<211>	443
	<212>	PRT
	<213>	Artificial sequence
5	<223>	Artificial sequence description: murine MBP1
		(complete sequence)

Met Leu Pro Phe Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 1 5 10

Phe Leu Leu Leu Leu Gly Ala Ala Ser Pro Gln Asp Pro Glu Glu 20 25 30

Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Ala Asp 35 40 45

Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala 50 60

Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys 65 70 75 80

Leu Pro Arg Ser Ala Ala Val Ile Ser Asp Leu His Gly Glu Gly Pro 85 90 95

Pro Pro Pro Ala Ala His Ala Gln Gln Pro Asn Pro Cys Pro Gln Gly 100 105 110

Tyr. Glu Pro Asp Glu Gln Glu Ser Cys Val Asp Val Asp Glu Cys Thr 115 120 125

Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 130 135 140

Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 145 150 155 160

Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 165 170 175

Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe 180 185 190

Glm Leu Gly Pro Asm Asm Arg Ser Cys Val Asm Val Asm Glu Cys Asp 195 200 205

Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe 210 215 220

Leu Cys Arg Cys Asn Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser 225 230 235

Cys Ser Asp Ile Asp Glu Cys Gly Tyr Ser Ser Tyr Leu Cys Gln Tyr
245 250 255

Arg Cys Val Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly 260 265 270

15

<212>

<213>

DNA

Artificial sequence

Tyr Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Thr Gly Ala His Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His 295 Gly Gly Tyr Arg Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Val Gln Val Ser Asp Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Ser Ile Thr Ser 345 Glu Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val 360 Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ser Gly Asn Thr Gln Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu 420 Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 440 <210> 17 <211> 21 <212> DNA <213> Artificial sequence <220> Artificial sequence description: 3' hMBP1 oligonucleotide <400> 17 ctccgctccg aggtgatggt c 21 <210> 18 <211> 21

```
<220>
     <223>
              Artificial sequence description: 5' hMBP1
               oligonucleotide
  5
       <400> 18
       tgtagctact ccagctacct c
                                                                        21
     <210>
               19
     <211>
              1122
1.0
    <212> DNA
     <213> Artificial sequence
     <220>
     <223>
              Artificial sequence description: human MBP1 cDNA
15
               (partial sequence)
      <400> 19
      aagecageeg agecgeeaga geegegggee gegggggtgt egegggeeca accceaggat 60
      geteceetge geeteetgee taccegggte tetactgete tgggegetge tactgttget 120-
      cttgggatca gettetecte aggattetga agageeegae agetacaegg aatgeaeaga 180
      tggctatgag tgggacccag acagccagca ctgccgggat gtcaacgagt gtctgaccat 240
      ccctgaggcc tgcaaggggg aaatgaagtg catcaaccac tacgggggct acttgtgcct 300
      geocegetec getgeegtea teaacgaeet acaeggegag ggaceeeege caecagtgec 360
      tecegeteaa caceeeaace eetgeecace aggetatgag eeegacgate aggacagetg 420
      tgtggatgtg gacgagtgtg cecaggeest gcacgactgt cgccccagos aggactgcca 480
      taacttgeet ggeteetate agtgeaectg ceetgatggt taeegeaaga tegggeeega 540
      gtgtgtggac atagacgagt geogetaccg ctactgccag caccgetgcg tgaacctgec 600
      tggeteette egetgeeagt gegageeggg etteeagetg gggeetaaca accgeteetg 660
      tgttgatgtg aacgagtgtg acatgggggc cccatgcgag cagcgctgct tcaactccta 720
      tgggaccttc ctgtgtcgct gccaccaggg ctatgagctg catcgggatg gcttctcctg 780
      cagtgatatt gatgagtgta gctactccag ctacttctgt cagtaccgct gcgtcaacga 840
      gecaggeegt treteergee actgeecaca gggtraceag etgetggeea caegeeretg 900
      ccaagacatt gatgagtgtg agtotggtgc gcaccagtgc tccgaggccc aaacctgtgt 960
      caacttccat gggggctacc gctgcgtgga caccaaccgc tgcgtggagc cctacatcca 1020
      ggtctctgag aaccgctgtc tctgcccggc ctccaaccct ctatgtcgag agcagccttc 1080
      atecattgtg cacegoraca tgaccatcae creggagegg ag
    <210>
              20
20 <211>
              684
    <212>
              DNA
    <213>
              Artificial sequence
    <220>
```

15

<223> Artificial sequence description: human MBP1 cDNA (partial sequence)

```
<400> 20
      tgtagctact ccagctacct ctgtcagtac cgctgcgtca acgagccagg ccgtttctcc 60
      tgccactgcc cacagggtta ccagetgetg gccacaegcc tetgccaaga cattgatgag 120
      tgtgagtctg gtgcgcacca gtgctccgag gcccaaacct gtgtcaactt ccatgggggc 180
      taccgctgcg tggacaccaa ccgctgcgtg gagccctaca tccaggtctc tgagaaccgc 240
      tgtetetgee eggeeteeaa ecetetatgt egagageage etteateeat tgtgeacege 300
      tacatgacca teacetegga geggagegtg ecegetgaeg tgttecagat ceaggegaee 360
      teegtetace eeggtgeeta caatgeettt cagateegtg etggaaacte geagggggae 420
      ttttacatta ggcaaatcaa caacgtcage gccatgetgg teetegeeeg geeggtgaeg 480
      ggcccccggg agtacgtgct ggacctggag atggtcacca tgaattccct catgagctac 540
      egggeeaget etgtaetgag geteaeegte tttgtagggg cetaeaeett etgaggagea 600
      ggagggagcc accetecetg cagetaceet agetgaggag cetgttgtga ggggcagaat 660
      gagaaaggca ataaagggag aaag
    <210>
              21
    <211>
              1480
    <212>
             DNA
10 <213>
             Artificial sequence
    <220>
    <221>
             CDS
    <222>
            (59)..(1387)
    <220>
    <223>
             Artificial sequence description: human MBP1
```

(complete sequence)

	0 > 2 ccag	l ccg :	agco	qcca	ga g	cege	qqqc	c ge	444 4	gtgt	cgc	qqqc	cca	accc.	cagg	58
atg	ctc	ccc Pro	tgc	gcc	tcc	tgc	cta	ccc	999	tct	cta	ctg	ctc	tgg	gcg	106
		ctg Leu														154
		agc Ser 35														202
agc Ser	cag Gln 50	cac His	tgc Cys	cgg Arg	gat Asp	gtc Val 55	aac Asn	gag Glu	tgt Cys	ctg Leu	acc Thr 60	atc Ile	cct Pro	gag Glu	gcc Ala	250
		gly aaa		_	_	_									_	298
ctg Leu	ccc Pro	cgc Arg	tcc Ser	gct Ala 85	gcc Ala	gtc Val	atc Ile	aac Asn	gac Asp 90	cta Leu	cac Hıs	ggc Gly	gag Glu	gga Gly 95	ccc Pro	346
ccg Pro	cca Pro	cca Pro	gtg Val 100	cct Pro	ccc Pro	gct Ala	caa Gln	cac His 105	ccc Pro	aac Asn	ccc Pro	tgc Cys	cca Pro 110	cca Pro	Gly agc	394
tat Tyr	gag Glu	ccc Pro 115	gac Asp	gat Asp	cag Gln	gac Asp	agc Ser 120	tgt Cys	gtg Val	gat Asp	gtg Val	gac Asp 125	gag Glu	tgt Cys	gcc Ala	442
cag Gln	gcc Ala 130	ctg Leu	cac His	gac Asp	tgt Cys	cgc Arg 135	ccc Pro	agc Ser	cag Gln	gac Asp	tgc Cys 140	cat His	aac Asn	ttg Leu	cct Pro	490
ggc Gly 145	tcc Ser	tat Tyr	cag Gln	tgc Cys	acc Thr 150	tgc Cys	cct Pro	gat Asp	ggt Gly	tac Tyr 155	cgc Arg	aag Lys	atc Ile	gly ggg	ccc Pro 160	538
gag Glu	tgt Cys	gtg Val	gac Asp	ata Ile 165	gac Asp	gag Glu	tgc Cys	cgc Arg	tac Tyr 170	cgc Arg	tac Tyr	tgc Cys	cag Gln	cac His 175	cgc Arg	586
tgc	gtg	aac	ctg	cct	ggc	tec	ttc	cgc	tgc	cag	tgc	gag	ccg	ggc	ttc	634

Сув	Val	Asn	Leu 180	Pro	Gly	Ser	Phe	Arg 185	Cys	Gln	Cys	Glu	Pro 190	Gly	Phe	
		999 Gly 195				-			_	-				_	-	682
		gcc Ala														730
ctg Leu 225	tgt Cys	cgc Arg	tgc Cys	cac His	cag Gln 230	ggc	tat Tyr	gag Glu	ctg Leu	cat His 235	cgg	gat Asp	ggc	ttc Phe	tcc Ser 240	778
tge Cys	agt Ser	gat Asp	att Ile	gat Asp 245	gag Glu	tgt Cys	agc Ser	tac Tyr	tcc Ser 250	agc Ser	tac Tyr	ctc Leu	tgt Cys	cag Gln 255	tac Tyr	826
cgc Arg	tgc Cys	gtc Val	aac Asn 260	gag Glu	cca Pro	Gly	egt Ary	ttc Phe 265	tcc Ser	tgc Cys	cac His	tgc Cys	cca Pro 270	cag Gln	Gly	874
tac Tyr	cag Gln	ctg Leu 275	ctg Leu	gcc Ala	aca Thr	Arg	ctc Leu 280	tgc Cys	caa Gln	gac Asp	att Ile	gat Asp 285	gag Glu	tgt Cys	gag Glu	922
		gcg Ala														970
302 GJÅ 888	GJÀ āāc	tac Tyr	cgc Arg	tgc Cys	gtg Val 310	gac Asp	acc Thr	aac Asn	cgc	tgc Cys 315	gtg Val	gag Glu	ccc Pro	tac Tyr	atc Ile 320	1018
cag Gln	gtc Val	tct Ser	gag Glu	aac Asn 325	cgc Arg	tg: Cys	ctc Leu	tgc Cys	ccg Pro 330	gcc Ala	tcc Ser	aac Asn	cct Pro	cta Leu 335	tgt Cys	1066
cga Arg	gag Glu	cag Gln	ect Pro 340	tca Ser	tcc Ser	att Ile	gtg Val	cac His 345	cgc Arg	tac Tyr	atg Met	acc Thr	atc Ile 350	acc Thr	tog Ser	1114
gag Glu	cgg Arg	agc Ser 355	gtg Val	ccc Pro	gct Ala	Asp	gtg Val 360	ttc Phe	cag Gln	atc Ile	cag Gln	gcg Ala 365	acc Thr	tcc Ser	gtc Val	1162
tac Tyr	ccc Pro 370	ggt Gly	gcc Ala	tac Tyr	aat Asn	gcc Ala 375	ttt Phe	cag Gln	atc Ile	cgt Arg	gct Ala 380	gga Gly	aac Aan	t cg Ser	cag Gln	1210
382 GJÀ aaa	gac	ttt Phe	tac Tyr	att Ile	agg Arg 390	caa Gln	atc Ile	aac Asn	aac Asn	gtc Val 395	agc Ser	gcc Ala	atg Met	ctg Leu	gtc Val 400	1258
ctc Leu	gcc Ala	cgg	ccg Pro	gtg Val 405	acg Thr	ggc Gly	ccc	cgg	gag Glu 410	tac Tyr	gtg Val	ctg Leu	gac Asp	ctg Leu 415	gag Glu	1306

atg gtc acc atg aat too otc atg ago tac ogg gcc ago tot gta otg 1354
Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu
420 425 430

agg ctc acc gtc ttt gta ggg gcc tac acc ttc tgaggagcag gagggagcca 1407 Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe 435

controling agotactita getgaggage etgitgigag gggcagaatg agaaaggcaa 1467

taaagggaga aag 1480

Met Leu Pro Cys Ala Ser Cys Leu Pro Gly Ser Leu Leu Leu Trp Ala 1 5 10 15

Leu Leu Leu Leu Gly Ser Ala Ser Pro Gln Asp Ser Glu Glu
20 25 30

Pro Asp Ser Tyr Thr Glu Cys Thr Asp Gly Tyr Glu Trp Asp Pro Asp 35 40

Ser Gln His Cys Arg Asp Val Asn Glu Cys Leu Thr Ile Pro Glu Ala 50 55 60

Cys Lys Gly Glu Met Lys Cys Ile Asn His Tyr Gly Gly Tyr Leu Cys 65 70 75 80

Leu Pro Arg Ser Ala Ala Val Ile Asn Asp Leu His Gly Glu Gly Pro 85 90 95

Pro Pro Pro Val Pro Pro Ala Gln His Pro Asn Pro Cys Pro Pro Gly 100 105

Tyr Glu Pro Asp Asp Gln Asp Ser Cys Val Asp Val Asp Glu Cys Ala 115 120 125

Gln Ala Leu His Asp Cys Arg Pro Ser Gln Asp Cys His Asn Leu Pro 130 140

Gly Ser Tyr Gln Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro 145 150 155

Glu Cys Val Asp Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg 165 170 175

Cys Val Asn Leu Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe 180 185 190

Gln Leu Gly Pro Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp 195 200 205 Met Gly Ala Pro Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe 215 Leu Cys Arg Cys His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys 330 Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser 345 Glu Arg Ser Val Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val 360 Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln 375 Gly Asp Phe Tyr Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu 410 Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu

<210> 23
5 <211> 817
 <212> DNA
 <213> Artificial sequence

435

Arg Leu Thr Val Phe Val Gly Ala Tyr Thr Phe

440

<220>

15

25

agcottotoo atggtggtga agac

Artificial sequence description: murine MBP1 <223> cDNA (partial sequence)

```
<400> 23
     getgtggcag aaacceetga ettetgeeca ecaecteeca geetcaggat getecetttt 60
     gcottottgcc teccegggte tittgetgete tgggegttte tgetgttgct cttgggagea 120
     gegreeceae aggateeega ggageeggae agetaeaegg aargeaeaga rggerargag 180
     tgggatgcag acagccagca ctgccgggat gtcaacgagt gcctgaccat cccggaggct 240
     tgcaagggtg agatgaaatg catcaaccac tacgggggtt atttgtgtct gcctcgctct 300
     gotgoogtoa toagtgatot coatggtgaa ggacotocao egocagegge coatgotoaa 360
     caaccaaacc ettgecegca gggetaegag eetgatgaac aggagagetg tgtggatgtg 420
     gacgagtgta cocaggettt geatgactgt egecetagte aggactgeea taacetteet 480
     ggctcctacc agtgcacctg ccctgatggt taccgaaaaa ttggacccga atgtgtggac 540
     atagatgagt gtcgttaccg ctattgccag catcgatgtg tgaacctgcc gggctctttt 600
     eqatqccagt gtgaqccaqq cttccagttg ggacctaaca accgctcttg tgtggatgtg 660
     aatqaqtqtq acatgqqaqc cccatgtqag cagcgctgct tcaactccta tgggaccttc 720
     etgtgteget graaceaggg etatgagetg cacegggatg getteteetg cagegatate 780
     gatgagtgcg gctactccag ttacctctgc cagtacc
             24
    <210>
    <211>
             24
    <212>
             DNA
    <213>
             Artificial sequence
    <220>
             Artificial sequence description: sense-GAPDH
    <223>
             oligonucleotide
     <400> 24
     eggagteaac ggatttggte gtat
                                                                     24
    <210>
             25
    <211>
             24
    <212> DNA
20 <213> Artificial sequence
    <220>
             Artificial sequence description: antisense-GAPDH
     <223>
             oligonucleotide
      <400> 25
```

24

```
of the live that the control of the limit of
```

```
<210>
            26
    <211>
           25
    <212> DNA
    <213>
           Artificial sequence
    <220>
    <223>
           Artificial sequence description: oligonucleotide
     <400> 26
     cggttggcct tggggttcag ggggg
                                                          25
10
    <210> 27
    <211>
           21
    <212> DNA
    <213> Artificial sequence
15
    <220>
    <223>
           Artificial sequence description: sense MBP1
           oligonucleotide
     <400> 27
    gccctgatgg ttaccgcaag a
                                                           21
20
    <210>
           28
    <211>
           21
    <212> DNA
25 <213>
           Artificial sequence
    <220>
    <223> Artificial sequence description: antisense MBP1
           oligonucleotide
30
    <400> 28
    agccccatg gaagttgaca c
                                                           21
   <210>
           29
   <211>
           20
```

<212>

DNA

<213> Artificial sequence <220> Artificial sequence description: sense-actin <223> oligonucleotide <400> 29 grggggcgcc ccaggcacca 20 10 <210> 30 <211> 1358 <212> DNA <213> Artificial sequence 15 <220> <221> CDS <222> (1)..(885)<220> Artificial sequence description: human MBP1 20 <223> C-term fragment <400> 30 tgc acc tgc cct gat ggt tac cgc aag atc ggg ccc gag tgt gtg gac Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp ata gac gag tgc cgc tac cgc tac tgc cag cac cgc tgc gtg aac ctg Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu cet gge tee tte ege tge cag tge gag eeg gge tte cag etg ggg eet 144 Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40

aac Asn	aac Asn 50	Cgc Arg	tcc Ser	tgt Cys	gtt Val	gat Asp 55	gtg Val	aac Asn	gag Glu	tgt Cys	gac Asp 60	atg Met	Gly 333	gcc	cca Pro	192
		cag Gln														240
		Gly														288
		tgt Cys														336
		ggc Gly 115														384
		cgc Arg														432
		tcc Ser														480
		gac Asp														528
aac Asn	cgc Arg	tgt Cys	ctc Leu 180	tgc Cys	ecg Pro	gcc Ala	tcc Ser	aac Asn 185	cct Pro	cta Leu	tgt Cys	cga Arg	gag Glu 190	cag Gln	cct Pro	576
		att Ile 195			_		_								_	624
	_	gac	-		_		-				_					672
		gcc Ala														720
		caa Gln				-	-	_	-	_	-		_			768
_		Gly						-	_	_	-	-	-			816
		ctc Leu														864

ilmit.	7
147	
ilmit.	Ğ
fteren	
13.51	
1	
	Ц
that!	Ī
SE	
17,11,77	
==	===
	122
ndlu	Ē
-	olia
Tint?	

Ļš

275 280 285 ttt gta ggg gcc tac acc ttc tgaggagcag gagggagcca ccctccctgc 915 Phe Val Gly Ala Tyr Thr Phe 290 agetaceeta getgaggage etgttgtgag gggcagaatg agaaaggcaa taaagggaga 975 aagaaagtee tggtggetga ggtgggeggg teacaetgea ggaageetea ggetggggca 1035 gggtggcact tgggggggca ggccaagttc acctaaatgg gggtctctat atgttcaggc 1095 ccaggggccc ccattgacag gagctgggag ctctgcacca cgagcttcag tcaccccgag 1155 aggagaggag gtaacgagga gggcggactc caggccccgg cccagagatt tggacttggc 1215 tggcttgcag gggtcctaag aaactccact ctggacagcg ccaggaggcc ctgggttcca 1275 ttcctaactc tgcctcaaac tgtacatttg gataagccct agtagttccc tgggcctgtt 1335 tttctataaa acgaggcaac tgg 1358 <210> 31 <211> 295 <212> PRT <213> Artificial sequence <223> Artificial sequence description: human MBP1

C-term fragment

Cys Thr Cys Pro Asp Gly Tyr Arg Lys Ile Gly Pro Glu Cys Val Asp 1 5 10

Ile Asp Glu Cys Arg Tyr Arg Tyr Cys Gln His Arg Cys Val Asn Leu 20 25 30

Pro Gly Ser Phe Arg Cys Gln Cys Glu Pro Gly Phe Gln Leu Gly Pro 35 40 45

Asn Asn Arg Ser Cys Val Asp Val Asn Glu Cys Asp Met Gly Ala Pro 50 60

Cys Glu Gln Arg Cys Phe Asn Ser Tyr Gly Thr Phe Leu Cys Arg Cys
65 70 75 80

His Gln Gly Tyr Glu Leu His Arg Asp Gly Phe Ser Cys Ser Asp Ile 85 90 95

Asp Glu Cys Ser Tyr Ser Ser Tyr Leu Cys Gln Tyr Arg Cys Val Asn 100 105 110

Glu Pro Gly Arg Phe Ser Cys His Cys Pro Gln Gly Tyr Gln Leu Leu 115 120 125

Ala Thr Arg Leu Cys Gln Asp Ile Asp Glu Cys Glu Ser Gly Ala His 130 135 140

Gln Cys Ser Glu Ala Gln Thr Cys Val Asn Phe His Gly Gly Tyr Arg

145 155 160 150 Cys Val Asp Thr Asn Arg Cys Val Glu Pro Tyr Ile Gln Val Ser Glu 165 170 Asn Arg Cys Leu Cys Pro Ala Ser Asn Pro Leu Cys Arg Glu Gln Pro Ser Ser Ile Val His Arg Tyr Met Thr Ile Thr Ser Glu Arg Ser Val 200 Pro Ala Asp Val Phe Gln Ile Gln Ala Thr Ser Val Tyr Pro Gly Ala Tyr Asn Ala Phe Gln Ile Arg Ala Gly Asn Ser Gln Gly Asp Phe Tyr 230 Ile Arg Gln Ile Asn Asn Val Ser Ala Met Leu Val Leu Ala Arg Pro 245 250 Val Thr Gly Pro Arg Glu Tyr Val Leu Asp Leu Glu Met Val Thr Met Asn Ser Leu Met Ser Tyr Arg Ala Ser Ser Val Leu Arg Leu Thr Val 280 Phe Val Gly Ala Tyr Thr Phe 290 <210> 32 <211> 1663 <212> DNA <213> Artificial sequence <220> <221> CDS <222> (1)..(999)<220> Artificial sequence description: murine fibulin <223> 2 c-term fragment

<40)> 3:	2														
gæg Glu l	ggc	tct Ser	gaa Glu	tgt Cys 5	gtg Val	gat Asp	gtg Val	aat Asn	gag Glu 10	tgt Cys	gag Glu	aca Thr	ggt Gly	gtg Val 15	cat His	48
egc Arg	tgt Cya	Gly ggc	gag Glu 20	Gly ggc	caa Gln	ctg Leu	tgc Cys	tat Tyr 25	aac Asn	ctc Leu	cct Pro	gga Gly	tcc Ser 30	tac Tyr	egc	96
tgt Cys	gac Asp	tgc Cys 35	aag Lys	ccc Pro	Gly ggc	ttc Phe	cag Gln 40	agg Arg	gat Asp	gca Ala	ttc Phe	ggc Gly 45	agg	act Thr	tgc Cys	144
att Ile	gat Asp	gtg Val	aac Asn	gaa Glu	tgc Cys	tgg Trp	gtc Val	tog Ser	ccg Pro	ggc Gly	cgc Arg	ctg Leu	tgc Cys	cag Gln	cac His	192

60 50 aca tgt gag aac aca eeg gge tee tac ege tge tee tge get get gge Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly 65 70 tto ott ttg god goa gat ggd aaa cat tgt gaa gat gtg aac gag tgd Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys 85 gag act egg ege tge age cag gaa tgt gee aac ate tat gge tee tat 336 Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr 105 110 384 cag tgc tac tgc cgt cag ggc tac cag ctg gca gag gat ggg cat acc Gin Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr 432 tgc aca gac atc gat gag tgt gca cag ggc gcg ggc att ctc tgt acc Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr 480 the ege tgt gtc aac gtg cet ggg age tac cag tgt gca tgc cca gag Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu caa ggg tat aca atg atg gee aac ggg agg tee tge aag gae etg gat 52B Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp 170 gag tgt gca ctg ggc acc cac aac tgc tct gag gct gag acc tgc cac 576 Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His 624 aat atc cag ggg agt ttc cgc tgc ctg cgc ttt gat tgt cca ccc aac Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn 195 200 205 tat gtc cgt gtc tca caa acg aag tgc gag cgc acc aca tgc cag gat Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp 210 atc acg gaa tgt caa acc tca cca gct cgc atc acg cac tac cag ctc Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu 225 230 235 aat ttc cag aca ggc cta ctg gta cct gca cat atc ttc cgc atc ggc Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly cot get coo ged tit get ggg gad acc atd too dtg acc atd acg aag Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys gge aat gag gag gge tac ttc gtc aca cgc aga ctc aat gec tac act Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr ggt gtg gta tcc ctg cag cgg tct gtt ctg gag ccg cgg gac ttt gcc 912

Gly Val Val Ser Leu Gln Arg Ser Val Leu G 290 295	Glu Pro Arg Asp Phe Ala 300
cta gat gtg gag atg aag ctt tgg cgc cag Leu Asp Val Glu Met Lys Leu Trp Arg Gln (305 310	ggc tct gtc act acc ttc 960 Gly Ser Val Thr Thr Phe 315 320
ctg gcc aag atg tac atc ttc ttc acc act Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr 325 330	
tgtcaggcaa tccctccagg tgatgcctgg gcggtgg	gca gctgcgccac tcctaagtgg 1069
ctttttgctg tgactctgta acttaactta atcatgc	tga gctggttggt cttgagtctc 1129
taccctagag ggagggagat gcaccccagc aggcact	gag tacaggccag ggtcacccga 1189
ggctagatgg tgacctgcaa actggaaaca gccatag	ggg gcttctgaac tccactcctc 1249
aactatggct acagctgaca ttccattees teateca	ctg tgttcctcaa ttaaaaaaaa 1309
aaatcagctg tgcatggtag cacagacctt taatect.	agc actggggagg cagaggtagg 1369
tagatototg agttocagge cagootggts tacactg	gga gttctaacca gccagagcta 1429
catagagaga coctatotoa acaaggaaaa aacgaaa	gaa atototgtga gttocaggeo 1489
agcctggtct acgctgggag ttctaaccag ccagagc	tac atagagagat cotatotoaa 1549
caaggaaaaa tgaaagaaat cattttaaaa ggttttt	ttt tttgctgttg ttgtttaatg 1609
ataagagtag cacatataca ttattaaaaa tgatcaa	ata gcacagaaag gtta 1663

<210> 33

<211> 333

5 <212> PRT

<213> Artificial sequence

<223> Artificial sequence description: murine fibulin 2 c-term fragment

Glu Gly Ser Glu Cys Val Asp Val Asn Glu Cys Glu Thr Gly Val His 1 5 10 15

Arg Cys Gly Glu Gly Gln Leu Cys Tyr Asn Leu Pro Gly Ser Tyr Arg 20 25 30

Cys Asp Cys Lys Pro Gly Phe Gln Arg Asp Ala Phe Gly Arg Thr Cys 35 40 45

Ile Asp Val Asn Glu Cys Trp Val Ser Pro Gly Arg Leu Cys Gln His 50 55 60

Thr Cys Glu Asn Thr Pro Gly Ser Tyr Arg Cys Ser Cys Ala Ala Gly 65 70 75 80

Phe Leu Leu Ala Ala Asp Gly Lys His Cys Glu Asp Val Asn Glu Cys 85 90 95 Glu Thr Arg Arg Cys Ser Gln Glu Cys Ala Asn Ile Tyr Gly Ser Tyr
100 105 110

Gln Cys Tyr Cys Arg Gln Gly Tyr Gln Leu Ala Glu Asp Gly His Thr 115 120 125

Cys Thr Asp Ile Asp Glu Cys Ala Gln Gly Ala Gly Ile Leu Cys Thr 130 135 140

Phe Arg Cys Val Asn Val Pro Gly Ser Tyr Gln Cys Ala Cys Pro Glu 145 150 155 160

Gln Gly Tyr Thr Met Met Ala Asn Gly Arg Ser Cys Lys Asp Leu Asp 165 170 175

Glu Cys Ala Leu Gly Thr His Asn Cys Ser Glu Ala Glu Thr Cys His 180 185 190

Asn Ile Gln Gly Ser Phe Arg Cys Leu Arg Phe Asp Cys Pro Pro Asn 195 200 205

Tyr Val Arg Val Ser Gln Thr Lys Cys Glu Arg Thr Thr Cys Gln Asp 210 215 220

Ile Thr Glu Cys Gln Thr Ser Pro Ala Arg Ile Thr His Tyr Gln Leu 225 230 235 240

Asn Phe Gln Thr Gly Leu Leu Val Pro Ala His Ile Phe Arg Ile Gly 245 250 255

Pro Ala Pro Ala Phe Ala Gly Asp Thr Ile Ser Leu Thr Ile Thr Lys
260 265 270

Gly Asn Glu Glu Gly Tyr Phe Val Thr Arg Arg Leu Asn Ala Tyr Thr 275 280 285

Gly Val Val Ser Leu Gln Arg Ser Val Leu Glu Pro Arg Asp Phe Ala 290 295 300

Leu Asp Val Glu Met Lys Leu Trp Arg Gln Gly Ser Val Thr Thr Phe 305 310 315 320

Leu Ala Lys Met Tyr Ile Phe Phe Thr Thr Phe Ala Pro 325 330