线性方程组

- 高斯消元法
- 系数矩阵&增广矩阵
- 解的存在性与唯一性

矩阵代数

- 矩阵的代数运算
- 矩阵的初等变换
- A可逆
 - \Leftrightarrow 习初等阵 P_1, P_2, L, P_k , 使得 $P_k L P_2 P_1 A = E$
 - $\Leftrightarrow AX = 0 \ \exists \ AX = 0$
 - $\Leftrightarrow |A| \neq 0$
- 对称矩阵: A^T = A
- 反对称矩阵: $A^T = -A$
- 对角形矩阵
- 正交矩阵: $A^T = A^{-1}$

行列式

- 行列式的性质
- $\bullet \ \ \, \begin{vmatrix} A & B \\ 0 & C \end{vmatrix} = |A||C| \qquad \begin{vmatrix} A & 0 \\ B & C \end{vmatrix} = |A||C| \qquad \begin{vmatrix} 0 & A \\ C & B \end{vmatrix} = (-1)^{mn}|A||C| \qquad \begin{vmatrix} B & A \\ C & 0 \end{vmatrix} = (-1)^{mn}|A||B|$

\$A是m阶矩阵,\C是n阶矩阵\$

• 范德蒙德行列式:

- 伴随矩阵: \$A^*,将每个元a_{ii}替换成其代数余子式A_{ii}\$
 - \$AA^*=A^*A=|A|E\$

 $\boldsymbol{A^{-1}=\frac1{|A|}A^*\end{aligned}}$

- $|A^*| = |A|^{n-1}$
- 克莱姆(Grammer)法则

\$n元线性方程组

\$当|A|\neq0,存在唯一解:\$

 $\label{lighed} $\ \phi_{aligned} x_j = \frac{11}&\dots\&a_{1(j-1)} \end{array} $$$

1)}&b_1&a_{1(j+1)}&\dots&a_{1n}\\a_{21}&\dots&a_{2(j-

1)}&b_2&a_{2(j+1)}&\dots&a_{2n}\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\a_{n1}&\dots&a_{n(j+1)}&b_n&a_{n(j+1)}&\dots&a_{nn} \end{vmatrix}=\frac{D_j}{|A|}\end{aligned}

\$D_j表示A的第j列换成常数列后的行列式\$

向量空间

向量的线性相关性

- 线性方程组\$BX=0\$与\$ABX=0\$解的关系
 - \$BX=0\$的解—定是\$ABX=0\$的解
 - 。 \$B\$的列向量线性相关,则\$AB\$的列向量也线性相关
 - 。 \$AB\$的列向量线性无关,则\$B\$的列向量也线性无关
 - 。 若\$A\$的列向量线性无关,则\$BX=0\$与\$ABX=0\$同解,此时\$AB\$列向量线性相关(无关)当 且仅当\$B\$的列向量线性相关(无关)。
- 向量组\$\{\alpha_1,\alpha_2,L,\alpha_p\}\ (p\ge2)\\(I)\$线性相关 ⇔ \$(I)\$中至少有一个向量可以由其余\$p-1\$个向量线性表出
- 向量组\$\{\alpha_1,\alpha_2,L,\alpha_p\}\\(I)\$线性无关,\$\{\alpha_1,\alpha_2,L,\alpha_p,\beta\}\\(II)\$线性相关,则\$\beta\$可由\$(I)\$线性表出,且唯一线性表出。
- 向量组\$\{\alpha_1,\alpha_2,L,\alpha_p\}\\(I)\$的一个部分组线性相关,则\$(I)\$线性相关。
- 向量组\$a_j=(a_{1j},a_{2j},a_{3j})^T\(j=1,2,3)\\(I)\$线性无关,分别在\$a_{j}\$的后面添加一个分量得\$\beta_j=(a_{1j},a_{2j},a_{4j})\(j=1,2,3)\$,则\$\beta_1,\beta_2,\beta_3\\(II)\$线性无关。
- \$n\$个\$n\$维列向量\$\alpha_1,\alpha_2,L,\alpha_n\$线性相关 ⇔ \$n\$阶行列式 \$\det(\alpha_1,\alpha_2,L,\alpha_n)=0\$
- 如果向量组所含向量个数比向量的分量数目更多,则向量组必然线性相关。

向量组的极大无关线性组和秩

- 若向量组\$A\$和向量组\$B\$可以互相线性表出,称向量组\$A\$与向量组\$B\$等价
- 若向量组\$\alpha_1,\alpha_2,L,\alpha_p\$可由\$\beta_1,\beta_2,L,\beta_t\$线性表出,且\$p>t\$,则向量组\$\alpha_1,\alpha_2,L,\alpha_p\$必线性相关。
 - 若线性无关向量组\$\alpha_1,\alpha_2,L,\alpha_p\$可由\$\beta_1,\beta_2,L,\beta_t\$线性表出,则 \$p\le t\$。
- 两个等价的线性无关向量组,必包含相同个数的向量
- 极大无关组的一些性质:
 - 。 任意一个极大无关组都与向量组本身等价
 - 。 一个向量组的任意两个极大无关组等价, 且所含向量个数相等。

子空间

- 列空间\$ColA\$是\$A\$的列向量的所有可能的线性组合构成的集合
- 行空间\$RowA\$是\$A\$的行向量的所有可能的线性组合构成的集合
- 零空间\$NuIA\$是齐次线性方程组\$Ax=0\$的所有解向量构成的集合
- 解空间是\$m\$个方程\$n\$个未知量的齐次线性方程组\$Ax=0\$的解集构成的集合

基和维数

• 基和维数

对于矩阵

\$A=\begin{bmatrix}-3&6&-1&1&-7\\1&-2&2&3&-1\\2&-4&5&8&-4\end{bmatrix}\$

\$A\rightarrow\begin{bmatrix}1&

-2&0&-1&3\\0&0&1&2&-2\\0&0&0&0\end{bmatrix}\$

取\$x_2,x_4,x_5\$为自由变量,则解为:

 $x_1=2x_2+x_4-3x_5$, $x_3=-2x_4+2x_5$

 $\times_{x_1\x_2\x_3\x_4\x_5\end{pmatrix}=x_2\end{pmatrix}_2\1\0\0\end{pmatrix}_3\1\0\-2\1\0\end{pmatrix}_3\0\2\0\1\end{pmatrix}=x_2\end{pmatrix}_3\0\0\2\0\1\end{pmatrix}=x_2\end{pmatrix}_3\end{pmatrix}_2\end{pmatri$

因此,

\$\{\alpha,\beta,\gamma\}\$是\$NulA\$的一组基,有3个向量,则维数\$dimNulA=3\$\$\{\alpha_2,\alpha_4,\alpha_5\}\$是\$ColA\$的一组基,有3个向量,则维数\$dimColA=3\$

• 过渡矩阵

设\$\epsilon_1,\epsilon_2,L,\epsilon_n\ (I)\$与\$\eta_1,\eta_2,L,\eta_n\ (II)\$是\$n\$维列向量空间\$R^n\$的两组基,则基\$(II)\$可由基\$(I)\$线性表出,即

\$(\eta_1,\eta_2,L,\eta_n)=

则称\$A=(a_{ij})_{n\times n}\$是基\$(I)\$到基\$(II)\$的过渡矩阵,其中的第\$j\$列是\$\eta_j\$在基\$(I)\$下的坐标

\$rankA+dimNulA=n\$

矩阵的秩

- \$r(A)=r(A^T)\$
- \$r(A\pm B)\le r(A)+r(B)\$
- \$A_{s\times n},B_{s\times m},r[A,B]\le r(A)+r(B)\$
- \$A_{s\times n},B_{s\times n},A与B等价\\Leftrightarrow\\r_A=r_B\$
- \$r(A)=n\ \ Leftrightarrow\ \ |A|\neq0\$

特征值与特征向量

矩阵的特征值与特征向量

- 特征值与特征向量的定义
- 特征值的性质:
 - \$\begin{aligned}\sum\limits_{i=1}^n\lambda_i=\sum\limits_{i=1}^na_{ii}\end{aligned}\$
 - \$\begin{aligned}\prod\limits_{i=1}^n\lambda_i=|A|\end{aligned}\$
 - 若\$\lambda\$是\$A\$的特征值,则\$f(\lambda)\$是\$f(A)\$的特征值若\$\alpha\$是\$A\$的对应特征值\$\lambda\$的特征向量,则\$\alpha\$也是\$f(A)\$的对应特征值\$f(\lambda)\$的特征向量
 - 方阵对应于不同特征值的特征向量线性无关

矩阵的相似及对角化

- 相似的定义: \$\exist P,P^{-1}AP=B\$,则\$A\$与\$B\$相似,记为\$A\sim B\$
- 相似的性质:
 - o \$|A|=|B|\$
 - \$rank(A)=rank(B)\$
 - \$|\lambda E-A|=|\lambda E-B|\$
 - o \$trA=trB\$
 - \$A^m\sim B^m,\ m\in N,\ 若A可逆,\ 则m可\in Z\$
 - \$A^T\sim B^T\$
 - \$kA\sim kB\$
 - \$h(A)\sim h(B),\ h(x)为任意多项式\$
- 可对角化的条件

实对称矩阵的对角化

- 存在正交矩阵\$Q(Q^T=Q^{-1})\$,使得\$Q^{-1}AQ\$为对角形矩阵(称为\$A\$正交相似于对角形矩阵)
- 施密特正交化:

```
$设\Sigma_1:\alpha_1,\alpha_2,...,\alpha_t是R^n中的线性无关组,令\\$
$\begin{aligned}&\beta_1=\alpha_1,\\&\beta_2=\alpha_2-(\beta_1,\beta_1)^{-1}
(\alpha_2,\beta_1)\beta_1\\&\dots\dots\\&\beta_t=\alpha_t-\sum\limits_{i=1}^{t-1}
(\beta_i,\beta_i)^{-1}(\alpha_t,\beta_i)\beta_i\end{aligned}$
```

\$则\sum_2:\beta_1,\beta_2,···,\beta_t为一正交组,将其单位化得 \sum_3:\gamma_1=\frac1{|\beta_1|}\beta_1,\gamma_2=\frac1{|\beta_2|}\beta_2,···,\gamma_t=\frac1{|\beta_t|}\beta_t\$

\$则\sum_3为一规范正交组,且对\forall k=1,2,···,t,向量组\alpha_1,\alpha_2,···,\alpha_k与\gamma_1,\gamma_2,···,\gamma_k等价\$

二次型

• 二次型的基本形式:

。 标准型: 只有平方项

○ 规范型: 系数为1,-1,0的标准型

- 化为标准型的方法:
 - 。 配方法
 - 。 正交变换发

• 分类: 正定、负定、半正定、半负定、不定