Classification of Data Sets

Robert Stengel
Robotics and Intelligent Systems MAE 345,
Princeton University, 2015

Learning Objectives

- Unsupervised learning
 - Cluster analysis
 - · Patterns, Clumps, and Joining
- Supervised learning
 - Graph/tree search
 - Hypothesis testing
 - Linear discriminant
 - Nearest neighbor method
- Estimating classification errors

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Classification Objectives

- Class comparison
 - Identify feature sets for predefined classes [Induction]
- Class prediction
 - Develop mathematical function/algorithm that predicts class membership for a novel feature set [Inference]
- Class discovery
 - Identify new classes, sub-classes, or features related to classification objectives [Inference]

Microarray Application

cDNA produced from sample RNA, labeled, and hybridized to the array Array is washed, stained, scanned, and quantified

3

Comparison of Typical Gene Pairs in Microarray Data

- Each sample processed by a separate microarray
- Color of dot represents over- or underexpression of an RNA gene transcript in the sample

Class Comparison

- Feature sets for predefined classes
 - Group A samples from tumor tissue
 - Group B samples from normal tissue
 - · Genes overexpressed in Group A
 - · Genes overexpressed in Group B

5

- Algorithm that predicts class membership for a novel feature set
 - Genes of a new sample are analyzed
 - New sample in Group A or Group B?

Class Discovery

- New features revealed in classification
 - New class in universal set?
 - Novel sample type (e.g., antibody) correlates with group?
 - Novel characteristic (e.g., gender, age, or metastasis) correlates with group?

Example: Different stains used in histology

Example for Data Classification

Data set characterized by two features

Clustering of Data

- What characterizes a cluster?
- How many clusters are there?

9

Discriminants of Data

Where are the boundaries between sets?

The Data Set Revealed

Towns and Crossroads of Pennsylvania and New Jersey

Choosing Features for Classification

- How many?
- How "strong"?
- Correlation between strong and weak features
- Degree of overlap
- Use of exogenous information for selection
- Statistical significance
- Closeness to boundaries

- To distinguish New Jersey from Pennsylvania, we could consider
 - Longitude
 - Latitude
 - Altitude
 - Temperature
 - Population
 - # of fast-food stores
 - Cultural factors
 - Zip Code

13

Recall: Membership in a Set

- A = a particular set in U
 - defined in a list or rule, or a membership function
- Universal set = all quests at a party
- Particular sets = distinguishing features of guests

Distorted Membership Functions*: Photo

Ambiguity and uncertainty in data sets to be classified

* Photoshop

15

Distorted Membership Functions*: Map

Characteristics of Classification Features

- Strong feature
 - Individual feature provides good classification
 - Minimal overlap of feature values in each class
 - Significant difference in class mean values
 - Low variance in class
- Additional features
 - Orthogonal feature (low correlation) adds new information to the set
 - Co-expressed feature (high correlation) is redundant; averaging reduces error

17

Feature Sets

Best line or curve may classify with significant error

Best plane or surface classifies with equal or less error

Separable Sets

Gene Analysis (2-D)

Bacterial Response to Antibiotics (3-D)

19

Errors in Classification

- Expected error in classifier
 - Minimum possible error with statistically optimal discriminant (e.g., Delaware River) plus
 - Error due to constraint imposed by sub-optimal discriminant (e.g., straight vs. curved line) plus
 - Error due to sampling (i.e., number and distribution of points)

Errors in Classification

- Over-/under-fitting
 - Excessive/inadequate sensitivity to details in training data set
 - Lack of generalization to novel data

Validation

- Train with less than all available data
- Reserve some data for evaluation of trained classifier
- Vary sets used for training and validation

21

Validation of Classifier

- Reserve some data for evaluation of trained classifier
- Train with A, test with B
 - A: Training set (or sample)
 - B: Novel set (or sample)
 - Vary sets used for training and validation
- Leave-one-out validation
 - Remove a single sample
 - Train on remaining samples
 - Does the trained classifier identify the single sample?
 - Repeat with all sets, removing all samples, one-by-one

3 x 3 Confusion Matrix

Number of cases predicted to be in each class vs. actual numbers

	True Class		
Predicted			
Class	Cats	Dogs	Rabbits
Cats	5	2	0
Dogs	3	3	2
Rabbits	0	1	11

- Interpretation: Actually, there are
 - 8 cats: 5 predicted to be cats, 3 to be dogs, and none to be rabbits
 - 6 dogs: 2 predicted to be cats, 3 to be dogs, and 1 to be rabbit
 - 13 rabbits: None predicted to be cats, 2 to be dogs, and 11 to be rabbits

23

Classification of Overlapping Sets

False Classification May Be Inevitable

25

Categories of Classification Performance

(2 x 2 Confusion Matrix)

	Actual Class		
			Number in Predicted
Predicted Class	Positive	Negative	Class
	True Positive	False Positive	# Dradiated(+) - (#
D iki			# Predicted(+) = (#
Positive	(TP)	(FP)	TP + # FP)
	False Negative	True Negative	# Predicted(-) = (#
Negative	(FN)	(TN)	FN + # TN)
Number in	# Actual(+) = (#	# Actual(-) = (#	
Actual Class	TP + # FN)	FP + # TN)	

	Actual Class		
Predicted Class	Positive	Negative	Number in Predicted Class
Positive	True Positive (TP)	False Positive (FP)	# Predicted(+) = (# TP + # FP)
Negative	False Negative (FN)	True Negative (TN)	# Predicted(-) = (# FN + # TN)
Number in Actual Class	# Actual(+) = (# TP + # FN)	# Actual(-) = (# FP + # TN)	

Measures of Classification Performance

Sensitivity
$$(\%/100) = \frac{\text{\# True Positive}}{\text{\# Actual Positive}}$$

Specificity
$$(\%/100) = \frac{\# True \ Negative}{\# Actual \ Negative}$$

27

Measures of Classification Performance

Accuracy (%/100) =
$$\frac{\# True \ Positive + \# True \ Negative}{\# Actual \ Positive + \# Actual \ Negative}$$

Positive Predictive Value (%/100) =
$$\frac{\text{# True Positive}}{\text{# Predicted Positive}}$$

Negative Predictive Value (%/100) =
$$\frac{\text{# True Negative}}{\text{# Predicted Negative}}$$

Receiver Operating Characteristic* (ROC) Curve

- Comparison of 3 discriminants
- True positive rate (Sensitivity)
 vs. False positive rate (1 –
 Specificity) for a varying
 parameter (e.g., discriminant
 location)
- Choose discriminant to maximize the area under the ROC curve

* Devised during WWII to evaluate radar target detection

29

Unsupervised Learning

- Learning depends on "closeness" of related features
- Previously unknown correlations or features may be detected
- Meaning of classification occurs after learning via exogenous knowledge
- Same answer given for all questions

Cluster Analysis

- Recognize patterns within data sets
- Group data points that are close to each other
 - Hierarchical trees
 - Two-way clustering
 - k-means clustering

31

Pattern Recognition

Minimum spanning tree

- Find smallest total edge length
- Eliminate inconsistent edges
- (e.g., A-B much longer than others)
- Delete noisy points (e.g., bubble chamber track at right)
- Recognize and span gaps
- Delete necks by diameter comparison
- Group by similar density
- ... plus other methods of digital image analysis (shapes, edges, ...)

Distance Measures Between Data Points

- Distance between real vectors, x₁ and x₂:
 - Euclidean distance
 - Weighted Euclidean distance
 - Squared Euclidean distance
 - Manhattan distance
 - Chebychev distance
- "Distance" between different categories, x₁ and x₂:
 - Categorical disagreement distance

33

Hierarchical Trees (Dendrograms)

- Top-down evolution
 - Begin with 2 best clusters
 - Increase number of clusters
 - k-means clustering
 - · Self-organizing map

Centroid: $\overline{\mathbf{x}} = \frac{\sum_{i=1}^{N} \mathbf{x}_{i}}{N}$

Hierarchical Trees

(Dendrograms)

- Bottom-up evolution
 - Find nearest neighbor to each point in data set
 - Link pairs to closest pairs
 - · Single linkage: distance between nearest neighbors in clusters
 - · Complete linkage: distance between farthest neighbors in clusters
 - · Pair-group average/centroid

Supervised Learning

- Learning depends on prior definition and knowledge of class
- Complex correlation between features is revealed
- Classification is inherent in learning
- Different answers given for different questions

Discriminant Analysis

- Hypothesis test
 - Are 2 given populations different?
- Linear discriminant
 - What is(are) the best line(s)/plane(s)/ hyperplane(s) for separating 2 (or k) populations?

$$y = mx + b$$

37

Linear Discriminant

- What is(are) the best line(s)/plane(s)/ hyperplane(s) for separating 2 (or k) populations?
 - Fisher's linear discriminant
 - Gradient descent
 - Perceptron
- Nonseparable sets
 - Minimum square error

Distance

Discriminant

y = mx + b

Distance

http://en.wikipedia.org/wiki/
Linear_discriminant_analysis

Discriminant Analysis

- Nearest neighbor method
 - Ignore all points except those closest to evolving discriminant
 - Support vector machine
 - Reshape the space by transformation

39

Simple Hypothesis Test: *t* Test

Is A greater than B?

- Welch's t test compares mean values of two data sets
 - Unequal numbers and variances
 - If is reduced by uncertainty in the data sets (s)
 - It is increased by number of points in the data sets (n)

$$t = \frac{\left(m_A - m_B\right)}{\sqrt{\frac{\sigma_A^2}{n_A} + \frac{\sigma_B^2}{n_B}}}$$

- m = mean value of data set
- σ = standard deviation of data set
- n = number of points in data set
- It > 3, $m_A \neq m_B$ with \geq 99.7% confidence (error probability \leq 0.003 for Gaussian distributions) [n > 25]

Analysis of Variance

Variance

$$\sigma_x^2 = \frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{(N-1)}$$

F Statistic

$$F_{AB} = \frac{\sigma_{x_1}^2}{\sigma_{x_2}^2} = \frac{\sigma_A^2}{\sigma_B^2}$$

- F test of two populations
 - Populations are equivalent if

$$F_{\min} < F_{AB} < F_{\max}$$
 or $F_{AB} \approx 1$

- Populations are strongly equivalent if

$$F_{AB} \approx 1 \text{ and } t_{AB} \approx 0$$

41

Example of Gene-by-Gene Tumor/ Normal Classification by t Test

(Data from Alon et al, 1999)

- 1,151 genes are over/underexpressed in tumor/normal comparison, $p \le 0.003$
- **Genetically dissimilar** samples are apparent

"Cancer-positive gene sets"

"Cancer-negative gene sets"

Different Correlation Matrices from Same Data Set

Gene correlation (D = B B⁷)

• Sample correlation ($\mathbf{E} = \mathbf{C}^T \mathbf{C}$)

Χ

Ensemble Mean Values

 Treat each probe set (row) as a redundant, corrupted measurement of the same tumor/normal indicator

$$z_{ij} = k_i y + \varepsilon_{ij}$$
, $i = 1, m$, $j = 1, n$

• Compute column averages for each sample sub-group (i.e., sum each column and divide by *n*)

$$\hat{z}_j = \frac{1}{n} \sum_{i=1}^n z_{ij}$$

- Feature space is reduced from (# samples x # genes) to (# samples)
- Statistics of random variable sums are normal by central limit theorem

Two-Feature Discriminants for Class Prediction and Evaluation

(Alon, Notterman, 1999, data)

 Scatter plot presents average value of up genes vs. average value of down genes for each sample

$$\left[\hat{z}_{up_j},\hat{z}_{down_j}\right]$$

- Classification based on ensemble averages
- Mislabeled samples are identifiable

45

Clustering of Sample Averages for Primary Colon Cancer vs. Normal Mucosa

(PPG data, 2004)

- 144 samples, 3,437 probe sets analyzed
- 47 primary colon cancer
- 22 normal mucosa
- Affymetrix HGU-133A GeneChip
- All transcripts "Present" in all samples

Probe sets
Up: 1067
Down: 290
Constant: 19

Clustering of Sample Averages for Primary Polyp vs. Normal Mucosa

Clustering of Sample Averages for Primary Polyp vs. Primary Colon Cancer

Next Time: Introduction to Neural Networks

49

Supplemental Material

Dual Hierarchical Trees

- Two-way joining
 - -Trees derived from two independent variables
 - · Cluster by feature and by sample
 - Cluster by different components of measurement

51

"Big Data" and Data Mining

Multi-dimensional classification

... or infinite harm?

http://en.wikipedia.org/wiki/Big data