

BACK TO CLUSTERING

Classification. Training two Gaussians given data labeled +, - Clustering. Training two Gaussians given unlabeled data

Algorithms.

- 1. k-Means
 - a. Given hard labels, compute centroids
 - b. Given centroids, compute hard labels
- 2. Expectation-Maximization
 - a. Given soft labels, compute Gaussians
 - b. Given Gaussians, compute soft labels

MIXTURE MODELS

Model Parameters

$$p_1, \dots, p_k$$

$$\mu^{(1)}, \dots, \mu^{(k)}$$

$$\sigma_1^2, \dots, \sigma_k^2$$

MIXTURE MODELS

Points x – dots Label i – color of dots Prior p_i – proportion of dots Mean $\mu^{(i)}$ – center of circle Variance σ_i – size of circle

MIXTURE MODELS

Label. $i \sim \text{Multinomial}(p_1, ..., p_k)$

Point.
$$x \sim \mathcal{N}(\mu^{(i)}, \sigma_i^2)$$

Parameters. $\theta = \{p_1, ..., p_k, \mu^{(1)}, ..., \mu^{(k)}, \sigma_1^2, ..., \sigma_k^2\}$

Data.
$$\mathcal{D} = \{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$$

PDF of spherical Gaussian

$$P(x|\mu^{(i)}, \sigma_i^2) = (2\pi\sigma_i^2)^{-d/2} \exp\left\{-\frac{1}{2\sigma_i^2} \|x - \mu^{(i)}\|^2\right\}$$

PDF of mixture model

$$P(x|\theta) = \sum_{i=1}^{k} p_i P(x|\mu^{(i)}, \sigma_i)$$

OBSERVED LABELS

Hard Labels (Given).

$$\delta(i|x^{(t)}) = \begin{cases} 1 & \text{if label for } x^{(t)} \text{ is } i, \\ 0 & \text{otherwise.} \end{cases}$$

Log Likelihood.

$$\ell(\theta) = \sum_{x \in \mathcal{D}} \sum_{i=1}^{k} \delta(i|x) \log\{p_i P(x|\mu^{(i)}, \sigma_i^2)\}$$

$$= \sum_{i=1}^{k} \sum_{x \in \mathcal{D}} \delta(i|x) \log\{p_i P(x|\mu^{(i)}, \sigma_i^2)\}$$

$$= \sum_{i=1}^{k} \sum_{x \in \mathcal{D}} \delta(i|x) \log\{P(x|\mu^{(i)}, \sigma_i^2)\} + \sum_{i=1}^{k} \sum_{x \in \mathcal{D}} \delta(i|x) \log\{p_i\}$$

OBSERVED LABELS

Hard Labels (Given).

$$\delta(i|x^{(t)}) = \begin{cases} 1 & \text{if label for } x^{(t)} \text{ is } i, \\ 0 & \text{otherwise.} \end{cases}$$

Maximum Likelihood Estimate.

$$\begin{split} \hat{n}_i &= \sum_{x \in \mathcal{D}} \delta(i|x) & \text{(number of points with label } i) \\ \hat{p}_i &= \hat{n}_i/n & \text{(fraction of points with label } i) \\ \hat{\mu}^{(i)} &= \frac{1}{\hat{n}_i} \sum_{x \in \mathcal{D}} \delta(i|x)x & \text{(mean of points with label } i) \\ \hat{\sigma}_i^2 &= \frac{1}{d\hat{n}_i} \sum_{x \in \mathcal{D}} \delta(i|x) \big\| x - \hat{\mu}^{(i)} \big\|^2 & \text{(variance of points with label } i) \end{split}$$

HIDDEN LABELS

Log Likelihood.

$$\ell(\theta) = \sum_{x \in \mathcal{D}} \log \left\{ \sum_{i=1}^{k} p_i P(x | \mu^{(i)}, \sigma_i^2) \right\}$$

Numerical Algorithm.

- 1. Initialize parameters $\theta = \{p_1, \dots, p_k, \mu^{(1)}, \dots, \mu^{(k)}, \sigma_1^2, \dots, \sigma_k^2\}$
- 2. Repeat until convergence:
 - **E-Step.** Given parameters θ , compute soft labels p(i|x).
 - **M-Step.** Given soft labels p(i|x), compute parameters θ .

EXPECTATION-MAXIMIZATION

Initialize Parameters.

 $p_i=1/k~$ for all i $\mu^{(i)}$ centroids from k-means algorithm $\sigma_i^2=\sigma^2~$ the sample variance, for all i

Expectation Step.

Compute soft labels

$$p(i|x) = \frac{p(i,x)}{p(x)} = \frac{p_i P(x|\mu^{(i)}, \sigma_i^2)}{\sum_{j=1}^k p_j P(x|\mu^{(j)}, \sigma_j^2)}$$

EXPECTATION-MAXIMIZATION

Maximization Step.

$$\begin{split} \hat{n}_i &= \sum_{x \in \mathcal{D}} p(i|x) & \text{ (effective number of points with label } i) \\ \hat{p}_i &= \hat{n}_i/n & \text{ (effective fraction of points with label } i) \\ \hat{\mu}^{(i)} &= \frac{1}{\hat{n}_i} \sum_{x \in \mathcal{D}} p(i|x)x & \text{ (weighted mean of points with label } i) \\ \hat{\sigma}_i^2 &= \frac{1}{d\hat{n}_i} \sum_{x \in \mathcal{D}} p(i|x) \big\| x - \hat{\mu}^{(i)} \big\|^2 & \text{ (weighted variance of points with label } i) \end{split}$$

Caveat.

- Like k-means, it may get stuck in local minima.
- Unlike k-means, the local minima are more favorable because soft labels allow points to move between clusters slowly.

EXPECTATION-MAXIMIZATION

COMPARISON WITH K-MEANS

Different cluster analysis results on "mouse" data set:

SMOOTHING

Problem.

We want to maximize

$$\ell(\theta) = \sum_{x \in \mathcal{D}} \log \left\{ \sum_{i=1}^{k} p_i \left(2\pi \sigma_i^2 \right)^{-d/2} \exp \left(-\frac{1}{2\sigma_i^2} \left\| x - \mu^{(i)} \right\|^2 \right) \right\}$$

- Let $\mu^{(1)} = x^{(1)}$ be equal to a data point.
- Term in inner sum becomes $(2\pi\sigma_i^2)^{-d/2} \exp(0)$.
- As σ_i tends to zero, $\ell(\theta)$ will tend to infinity!
- In fact, if $x^{(1)}$ is the only point with soft label $p(1|x) \neq 0$, then

$$\hat{\sigma}_1^2 = \frac{1}{d\hat{n}_1} \sum_{x \in \mathcal{D}} p(1|x) \|x - \hat{\mu}^{(1)}\|^2 = 0.$$

SMOOTHING

Solution.

• Give prior probabilities to the σ_i .

$$p(\sigma_i^2 | \alpha_i, s_i^2) = C \left(2\pi\sigma_i^2\right)^{-\alpha_i d/2} \exp\left(-\frac{\alpha_i s_i^2}{2\sigma_i^2}\right)$$

New objective is to maximize the log posterior probability.

$$\ell(\theta) = \sum_{x \in \mathcal{D}} \log \left\{ \sum_{i=1}^{k} p_i P(x | \mu^{(i)}, \sigma_i^2) p(\sigma_i^2 | \alpha_i, s_i^2) \right\}$$

• New maximization step for $\hat{\sigma}_i^2$ is given by

$$\widehat{\sigma}_i^2 = \frac{1}{d(\alpha_i + \widehat{n}_i)} \Big(\alpha_i s_i^2 + \sum_{x \in \mathcal{D}} p(i|x) \|x - \widehat{\mu}^{(i)}\|^2 \Big).$$

MODEL SELECTION

- By setting $p_{k+1} = 0$, we see that (mixture model with k clusters) contained in (mixture model with k+1 clusters).
- Therefore, likelihood for (mixture model with k+1 clusters) is greater or equal to that of (mixture model with k clusters).
- How to choose the right k and prevent over-/under-fitting?

VALIDATION VS CROSS-VALIDATION

Method 1 (Simulation)

Estimate testing error using validation or cross-validation.

testing error

• $\widehat{R}(\mathcal{D})$

Training data to learn $\hat{r}(x)$

Testing data

 \mathcal{D}

k-fold cross-validation

•
$$\hat{R}_{\text{CV}} = \frac{1}{m} \sum_{i=1}^{m} \hat{R}(\mathcal{D}_i)$$

Training data to learn $\hat{r}(x)$

Testing data

BAYESIAN INFORMATION CRITERION

Method 2 (Marginal Likelihood)

Use marginal likelihood integral to select model. But computing this integral is tedious, so we approximate it using the BIC.

$$BIC(\theta) = \ell(\theta) - \frac{\# \text{ of free params}}{2} \log n$$

For Gaussian mixtures, we have k(d+2)-1 free parameters.

$$BIC(\theta) = \ell(\theta) - \frac{k(d+2)-1}{2}\log n$$

BAYESIAN INFORMATION CRITERION

SUMMARY

- Generative Models
 - Multinomial and Bag-of-Words
 - Multivariate and Spherical Gaussian
 - Independent and Identically Distributed
 - Maximum Likelihood Estimate
 - Stochastic Gradient Descent
 - Log Likelihood Ratio

- Expectation-Maximization
 - Mixture Model
 - Clustering
 - Hidden Variables
 - Soft Labels
- Generalization
 - Smoothing and Pseudo-Counts
 - Model Selection
 - Validation and Cross-Validation
 - Bayesian Information Criterion

