LAB REPORT NO 5

CSE-202L Digital logic design lab

Submitted by: Muhammad Ali

Registration No:- 19PWCSE1801

Class Section: A

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

Submitted to:

Engr. Abdullah Hamid

Data:(1,1,2021)

Department of Computer Systems Engineering

University of Engineering and Technology, Peshawar

LAB 5

ADDER AND SUBTRACTOR

OBJECTIVES

After completing this experiment, you will be able to:

- Design and construct half adder, full adder, half subtractor and full subtractor circuits
- Verify their truth tables using logic gates

COMPONENTS REQUIRED

- 7430 or 7408 quad 2-input AND gates
- 7432 quad 2-input OR gates
- 7404 hex inverters
- 7486 quad 2-input XOR gates
- $520 \Omega / 1k \Omega$ resistors
- DIP Switch
- LEDs

THEORY

A digital adder circuit adds binary signals & a subtractor subtracts binary signals. Half Adder/Subtractor is a basic circuit that adds / subtracts 2 bits and generates Sum or Difference along with Carry / Borrow. Unlike Half Adder or Subtractor a Full Adder / Subtractor has the provision to take consideration of previous Carry / Borrow also.

LOGIC DIAGRAM HALF ADDER

TRUTH TABLE

A	В	CARRY	SUM
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Circuit image:-(for A=0,B=1)

Carry=Green led and Sum=Red led

LOGIC DIAGRAM FULL ADDER FULL ADDER USING TWO HALF ADDER

TRUTH TABLE

A	В	C	CARRY	SUM
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Circuit image:-:-(for A=0,B=0,C=1)

Carry=Red led and Sum=Green led

LOGIC DIAGRAM HALF SUBTRACTOR

TRUTH TABLE

A	В	BORROW	DIFFERENCE
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Circuit image:-:-(for A=1,B=0)

Difference = Yellow led and Borrow = Green led

LOGIC DIAGRAM FULL SUBTRACTOR

FULL SUBTRACTOR USING TWO HALF SUBTRACTOR

Circuit image:- :-(for A=0,B=1,C=0)

Difference = Red led and Borrow = Green led

TRUTH TABLE

A	В	С	BORROW	DIFFERENCE
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

PROCEEDURE

- Connections are given as per circuit diagram.
- Logical inputs are given as per circuit diagram.
- Observe the output and verify the truth table.