

(2,000円)

特 許 顧 (特許法第38条ただし書 の規定による特許出願) 昭和49年9月/7日

特許庁長官 斎藤英雄殿

- マクゴウかン セイソプウホウホウナラ シングラス 発明の名称 複合質の製造方法並びに装置
- 2. 特許請求の範囲に記載された発明の数 2
- 5. 発明者

住所 兵庫県芦屋市撃ヶ丘19-10-303 た名 草 野 弘

4. 特許出願人

住所 大阪市浪速区船出町2丁目22番地名称 (105) 久保田鉄工株式会社 代表者 代表取締役社長 廣 慶太郎

5. 代理人 . 〒 662

住所 兵庫県西宮市門戸荘15番1年氏名 (5906) 弁理士 清 水 実

6. 游附書類の目録

- (1) 明細 4
- (2) 図 面
- (3) 顧整 剧本
- (4) 委任状

1 通 3 葉 1 通

49-107335

明 細 書

/ 発明の名称 複合管の製造方法並びに装置

- 2 特許請求の範囲
 - (1) 硬化性樹脂含覆繊維層と骨材混合硬化性樹脂層との複合層からなるパイプを成形し、該成形パイプを加熱硬化させて複合管を製造する場合・上記の骨材混合硬化性樹脂層を、真空で脱気処理した骨材混合硬化性樹脂により成形することを特徴とする複合管の製造方法。
 - (2) 特許請求の範囲の第 / 項に記載した発明における。 骨材混合硬化性樹脂の混練供給装置であり、 真空引き室と、 押出口が上記真空引き室に開口された後方のスクリュー式混練シリンダーと、 材料供給口が上記真空がして開口された前方のスクリュー式混練シリンダーとを有することを特徴とする。 複合管の製造に使用される骨材混合硬化性樹脂の混練供給装置。
- 3. 発明の詳細な説明

19 日本国特許庁

公開特許公報

①特開昭 51-66367

43公開日 昭51. (1976) 6 8

②1特願昭 49-107335

②出願日 昭49. (1974) 9.17

審查請求有

庁内整理番号 2/39 32

6683 37

62日本分類

2515)T3 2515)T12 (51) Int. C12.

B290 11/00 B290: 3/02

(全4 頁)

本発明は複合FRP(ガラス繊維強化ブラスチック)管の製造方法・並びに該製造時に使用される骨材混合硬化性樹脂の混練供給装置に関するものである。

複合FBP管は、外層を外圧に対して強靱な樹脂含浸ガラス繊維(例えば、不飽和ボリエステル含浸ガラス繊維、エボキシ樹脂含浸ガラス繊維、アガーで発動な上記と同じ樹脂合設ガラス繊維でそれぞれ形成し、この内外層間に、骨材例えば砂と樹脂との混合物、所謂樹脂モルタルの中間層を形成し、かよる複合成形バイブを加熱により硬化させて製造されている。

ところで・上記複合FRP管の製造において機械的強靱性が要求される内外層の樹脂含浸がラス繊維層の成形にあたつては・内外層の機械的強靱性を向上させるための細心の配慮が払われているが・中間層の樹脂モルタル層の成形については・その中間層に期待される機械強度上の依存度が小さいために・機械的強度向上化の

特別な工夫はほとんどなされていない。現に、樹脂モルタルには空気が含有されており、複合FRP管の加熱硬化時には・上記空気が熱膨脹のために気泡に成長して・樹脂モルタル中間層にはかなりの気泡が形成される結果・樹脂モルタル材度が樹脂モルタル材度が樹脂モルタル材度が砂強酸はなされていない。

-3-

置であり、熱硬化性樹脂と骨材、例えば碓砂と が真空下で脱気されつつ混練され、押出口51 からは脱気処理された樹脂モルタルの帯条体8 が押出されてくる。6は一端が押出口51に取 付けられ他端が芯金1に近接されたガイドシュ - ト · 7 は連続的に供給されてくる押え用テー プであり、押出口51から押出されてくる樹脂 モルタル帯条体8をガイドシュート6により。 上記の回転しながら前方に進行しつつある内層 4′上に供給して捲き付け、この捲き付け直後に 押 乞用 テープ 7 を 捲 き 付 け 1 樹 脂 モル タ ル 層 8′ を押え用テーブ層 7'で保持して。内層 4'と共に 進行する中間層 78 を形成する。かくして成形 された樹脂モルタル中間層 78 は。中間硬化炉 9 を通過する間に硬化され、この硬化した樹脂 モルタル中間層 78′上に、上記内層 4′の成形と 同様にして、熱硬化性樹脂含浸ガラス繊維11 を螺旋状に捲き付けて中間層78′と共に進行す る外層 11'を成形し、そして仕上硬化炉 12 を 通過させ、次いで所定の長さどとに切断して、 種々の利点を選成し得るものであり、硬化性樹脂合設繊維層と骨材混合硬化性樹脂層との複合層からなるバイブを成形し、該成形バイブを加熱硬化させて複合管を製造する場合。上記の骨材混合硬化性樹脂により成形することを特徴とするものである。

以下,本発明を図面に示す実施例により説明する。

-4-

所定長さの複合FRP管を得る。

本発明に係る複合FRP管の製造方法においては・上記実施例により説明した通り・樹脂モルタル中間層は脱気処理した樹脂モルタルにより形成されるから・樹脂モルタル中間層の加熱硬化時における発泡は充分に防止され得・中間層に樹脂モルタル自体そのまゝの機械的強度を賦与し得る。

本発明において・樹脂モルタルの脱気は、樹脂モルタルの混練中に行なわれ・その装置は第 2 図に示す通りである。

第 2 図において・1 3 は真空引き室である。
1 4 は真空引き室 1 3 に材料押出口 1 4 1 が開口された後方シリンダ・1 5 は真空引き室 1 3 に材料流入口 1 5 1 が解放された前方シリンダであり・これらのシリンダ 1 4・1 5 は基台 1 6 上に・それぞれスタンド 1 7・1 8 を介して支持されている。19 は後方シリンダ 1 4 に設けられた硅砂供給口である。21 は後方シリンダ 1 4 内のスクリュー・22 はスクリュー 2 1 の駆動

軸であり、電動機23 により減速器24 を介し て駆動される。25 は、 基台 16 上に移動自在 に 設けられた移動台であり、上記の減速器 24 は移動台 2.5 上の架台 2.6 に固定され、上記ス クリュー 2 1 は移動台 2 5 の N 方向移動により シリンダー14 内より脱出される。27 は空気 シリンダ28 の駆動により往復移動されるピニ オンである。28'は移動台25 に取付けられた ラックである。 29 は基台 16 に取付けられた ラックであり、空気シリンダ 28 によりピニォ ン 2 7 が 引 張 られ て ラ ッ ク 2 9 上 を 回 転 移 動 す ると , 移動台 2 5 は ラック 2 8 'の ため に , N 方 向に移動される。30 は前方シリンダ15 内の スクリュー, 31 は該スクリュー30 の駆動軸 であり、移動台 2 5 上に軸受けスタンド 3 2,33 を介して支持され、そして、上記スクリユー21 の外軸と歯合せるギャ34を介して、上記の電 動機 23 により駆動される。このスクリュー30 は上記後方シリンダ14内のスクリュー21と 共 に . 移 動 台 2 5 の N 万 向 移 動 に よ り 前 方 シ リ

給口19 からの硅砂と混練され、真空引き室13 に押出される。 この押出しは, 硅砂混合樹脂の 脱気を効果的に行うために、細線状に押出され る。との場合・真空引き室13 内の押出口141 前面にカッターを取付け、上記細線状樹脂を粉 細するようにしてもよい。このようにして脱気 処理された硅砂混合樹脂は更に、前方シリンダ 15 内に送り込まれ、混練されて押出口51 よ り借状に押出される。上記の真空引き時・後方 シリンダ14内と真空引き室13.並びに前方シ リンダ15内と真空引き室13とは樹脂モルタ ル自体によりシールされ、また前方シリンダ15 のスクリユー軸30と真型引き室13とは、軸 30 に設けられたブイクス301 により気密に シールされるので、真空引き室 13 は充分な真 空度に保持され得、上記の脱気処理は効果的に 行なわれ得る。なむ、後方シリンダ14内並び に前方シリンダ 15 内のそれぞれのスクリュー 21,30は、空気シリンダー28 の駆動により、 ピニオン27 をラック281,29 に対して回転

ング15 内より脱出される。35 は上記後方シリング14 にダクト36 を介して連通されたシリングであり・熱硬化性樹脂が投入されるボツバー37 を有する。36 は上記シリング35 内ののまであり・電動機38 により減速器39 を介のスクリュー、37 a は該スクリュー36 の駆動であり・電動機38 により減速器39 を介いシリング35 内への供給量を調整するためのにがルプであり・空気シリング41 により開閉のバルプであり・オーバーロード時に・スクリコー36 の外軸と駆動軸37 a との連結を解放するためのものである。

-8-

させ、移動台 2 5 を N 方向に移動させることにより容易に抜き出せ得、装置使用後の各シリンダ 1 4 、 1 5 内の滑掃も容易に行なわれ得る。

上述した通り・本発明によれば・FRP複合管の間にの発泡を防止し機械を防止し機械をしているが、大人のの機械をしているが、大人のの機械を大人のの機械を大力のの機械を大力のの強度を使用するが、大人ののは、大人のない。

4. 図面の簡単な説明

第1図Aは本発明に係る複合管の製造方法の一実施例を示すための説明図・第1図Bは第1図AにおけるBーB切線断面図・第2図は本発明において使用される樹脂モルタルの混練供給装置を示す一部縦断側面図である。

図において、4'は硬化性樹脂含浸繊維層からなる内層、8'は骨材混合硬化性樹脂層からなる

中間層・11′は硬化性樹脂含浸繊維層からなる外層・13 は真空引き室・14 は後方のスクリュー式混練シリンダ・15 は前方のスクリュー式混練シリング。

代理人 弁理士 潜 水

-//-

TIDB

DERWENT-ACC-NO: 1976-56765X

DERWENT-WEEK: 197630

COPYRIGHT 2010 DERWENT INFORMATION LTD

TITLE: Mfg composite FRP pipe having high mechanical

strength avoiding blowholes in intermediate resin

layer

PATENT-ASSIGNEE: KUBOTA LTD [KUBI]

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

JP 51066367 A June 8, 1976 JA

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
JP 51066367A	N/A	1974JP-107335	September 17, 1974

INT-CL-CURRENT:

TYPE	IPC DATE
CIPP	B05D7/24 20060101
CIPS	B29C57/00 20060101
CIPS	B29C67/00 20060101
CIPS	B29C70/06 20060101

ABSTRACTED-PUB-NO: JP 51066367 A

BASIC-ABSTRACT:

A mould-releasing tape is wound around a core, a glass fibre impregnated with a thermosetting resin is wound on the tape to form an inner layer, a thermosetting resin and aggregate are charged into a kneading/supply device and kneaded, the resin is extruded from an extruding port and wound up around the layer, immediately a retaining tape is wound thereon to form an intermediate layer, the

wound resin is hardened in a hardening oven, another glass fibre impregnated with a thermosetting resin is wound around the layer to form an outer layer, the layer is then hardened and cut into desired lengths of FRP pipes.

TITLE-TERMS: MANUFACTURE COMPOSITE FRP PIPE HIGH MECHANICAL STRENGTH AVOID BLOWHOLE INTERMEDIATE RESIN LAYER

DERWENT-CLASS: A32 A88

CPI-CODES: A11-B09A; A12-H02B;

POLYMER-MULTIPUNCH-CODES-AND-KEY-SERIALS:

Multipunch Codes: 03-231 308 309 359 415 431 441 443 450 46& 473

477 489 551 567 674 723