Math Notes

K

$March\ 6,\ 2020$

Contents

1	First Order Differential Equations 1.1 Separable Differential Equations	2 2
	1.2 Linear First Order Differential Equations Homogeneous Differential Equation	3
	1.3 Method of Integrating Factor	3
	1.3.1 Method of Substitution	4
	1.4 Exact Equations	7
2	Bernoulli Equation	8
3	Second Order Ordinary Differential Equations	10
	3.1 Type I	11
	3.2 Type II	$\frac{12}{12}$
	5.5 Initial value I roblem	12
4	Linear Second Order Differential Equations	13
	4.1 Initial Value Problem	13 13
	4.1.1 Theorem 1	10
5	Second Order Linear Differential Equations	14
	5.1 Homogeneous Equation	14
	5.2 Solving Initial Value Problem $(3) + (2) \dots \dots$	14
6	Method of Elimination	15
7	Method of Substitution	15
8	Homogeneous Equation with Constant Coefficients	16
9	Euler's Equation	17
10	Higher Order Differential Equation	17
11	Higher Order Linear Differential Equations	21
12	Linear Equation with Constant Coefficient	22
	12.1 Rules for Characteristic Equation	22
13	Complex Roots of Charatistics Equations	23
	13.1 Euler Formula	24
14	Method of Undetermined Coefficients	24
1 5	Non-Homogeneous Equation	25
10	NON-HOMOGENEOUS FAMALION	

16 Method of Undetermined Coefficients	25
17 Method of Variation of Parameters	29
18 Variation of Parameters	31
19 Linear Systems of First Order Differential Equations	33
20 Systems of 2 Equations for $x(t), y(t)$	34
21 Method of Elimination	35
22 System of first order Differential Equations	36
23 Method of Eigenvalues	37
24 Method of Eigenvalues	39
25 Eigenvalue Method to $\overline{X'}$	41

1 First Order Differential Equations

1.1 Separable Differential Equations

$$\frac{dy}{dx} = G(x) \cdot H(y) \mid \cdot dx$$

$$dy = G(x) \cdot H(y) dx \mid \cdot \frac{1}{H(y)}$$

$$\frac{dy}{H(y)} = G(x) dx$$

$$\int \frac{dy}{H(y)} = \int G(x) dx$$

$$h(y) + C_1 = g(x) + C_2$$

$$h(y) = g(x) + C$$

Example

$$\frac{dy}{dx} = y \sin x$$

$$dy = y \sin x (dx)$$

$$\frac{dy}{y} = \sin x dx$$

$$\int y^{-1} dy = \int \sin x dx$$

$$\ln |y| + C = -\cos x + C$$

$$\ln |y| = -\cos x + C$$

$$y = e^{-\cos x + C}$$

$$= e^{-\cos x} e^{C}$$

$$= \frac{1}{e^{\cos x}} \cdot e^{C}$$

$$= \frac{e^{C}}{e^{\cos x}}$$

$$D = e^{C}$$

$$= \frac{D}{e^{\cos x}}$$

1.2 Linear First Order Differential Equations Homogeneous Differential Equation

$$y'(x) + p(x)y(x) = q(x)$$

$$p(x), q(x) \text{ given } q(x) = 0, \text{ then } y' + p(x)y = 0$$

• Linear because all terms are to the power of 1

$$y' + y^2 = 0 \rightarrow \text{non-linear}$$

 $y' + y = 0 \rightarrow \text{linear}$

1.3 Method of Integrating Factor

$$\rho = e^{\int p(x)dx}$$

$$\begin{split} y'e^{\int p(x)dx} + P(x)ye^{\int p(x)dx} &= q(x)e^{\int p(x)dx} \\ \frac{d}{dx}(y\cdot e^{\int p(x)dx}) &= y'e^{\int p(x)dx} \cdot \frac{d}{dx}(\int p(x)dx) \\ &= y'e^{\int p(x)dx} + ye^{\int p(x)dx}p(x) \\ \frac{d}{dx}(y\cdot e^{\int p(x)dx}) &= q(x)\cdot e^{\int p(x)dx} \mid \cdot dx \int \\ \int \frac{d}{dx}(ye^{\int p(x)dx})dx &= \int q(x)\cdot e^{\int p(x)dx} \\ y\cdot e^{\int p(x)dx} &= \int (q(x)e^{\int p(x)dx})dy + e\cdot \frac{1}{e^{\int p(x)dx}} \\ y &= (\int (q(x)\cdot e^{\int p(x)dx})dx + C)e^{-\int p(x)dx} \end{split}$$

1.3.1 Method of Substitution

1.

$$y' = f(ax + by + c)$$

$$a, b, c given constants$$

$$f given functions$$

$$u = ax + by + c$$

$$\frac{du}{dy} = \frac{d}{dx}(ax + by + c)$$

$$\frac{du}{dy} = a + b\frac{dy}{dx} + 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{\frac{du}{dx} - a}{b}$$

$$\frac{\frac{du}{dx} - a}{b} = f(u)$$

$$\frac{du}{dx} = bf(u) + a \mid dx$$

$$du = (bf(u) + a)dx$$

$$\frac{du}{bf(u) + a} = dx$$

$$\int \frac{du}{bf(u) + a} = \int dx$$

$$F(u) = x + C$$

$$F(ax + by + C) = x + C$$

$$\frac{dy}{dx} = (x+y+3)^2$$

$$u = x+y+3$$

$$\frac{du}{dx} = \frac{d}{dx}(x+y+3)$$

$$\frac{du}{dx} = 1 + \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{du}{dx} - 1$$

$$\frac{du}{dx} - 1 = (u)^2$$

$$\frac{du}{dx} = 1 + (u)^2 \Big| \cdot dx$$

$$du = (1+u^2)dx \Big| \frac{1}{1+u^2}$$

$$\frac{du}{1+u^2} = dx$$

$$\int \frac{du}{1+u^2} = \int dx$$

$$\tan^{-1} u = x + C$$

$$\tan(\tan^{-1} u) = \tan(x+C)$$

$$u = \tan(x+C)$$

$$y = \tan(x+C) - x - 3$$

2.

$$y' = f(\frac{y}{x})$$

$$u = \frac{y}{x}, y = u \cdot x, \frac{dy}{dx} = \frac{du}{dx}x + 1 \cdot u$$

$$\frac{du}{dx} \cdot x + u = f(u) \to \frac{du}{dx}x = f(u) - u \mid \cdot dx$$

$$du \cdot x = (f(u) - u)dx \mid \frac{1}{x(f(u) - u)}$$

$$\frac{du}{f(u) - u} = \frac{dy}{x}$$

$$F(u) = \ln|x| + C$$

$$F(\frac{y}{x}) = \ln|x| + C$$

$$2xy \frac{dy}{dx} = 4x^2 + 3y^2$$

$$2xy \frac{dy}{dx} = 4x^2 + 3y^2 \mid \frac{1}{x^2}$$

$$2\frac{y}{x} \cdot \frac{dy}{dx} = 4 + 3(\frac{y}{x})^2$$

$$\frac{dy}{dx} = \frac{4 + 3(\frac{y}{x})}{2(\frac{y}{x})}$$

$$u = \frac{y}{x}, y = u \cdot x, \frac{dy}{dx} = \frac{du}{dx}x + u$$

$$\frac{du}{dx} = \frac{4 + 3u^2}{2u} - u$$

$$= \frac{4 + 3u^2 - 2u^2}{2u}$$

$$= \frac{4 + u^2}{2u}$$

$$x \cdot \frac{du}{dx} = \frac{4 + u^2}{2u} \mid dx$$

$$x \cdot du = \frac{4 + u^2}{2u} \cdot dx \mid \frac{1}{x \cdot \frac{4 \cdot u^2}{2u}}$$

$$\int \frac{2u}{4 + u^2} du = \int \frac{dx}{x}$$

$$z = 4 + u^2$$

$$dz = 2udu$$

$$\int \frac{dz}{dz} = \int \frac{dx}{x}$$

$$\ln|z| = \ln|x| + C$$

$$e^{\ln|z|} = e^{\ln|x| + C} = e^{\ln|x|} e^{C}$$

$$|z| = |x| e^{C}$$

$$z = e^{C} \cdot x = \pm e^{C} \cdot x$$

$$A = \pm e^{C}$$

$$z = Ax$$

$$4 + u^2 = Ax$$

$$4 + u^2 = Ax$$

$$4 + u^2 = Ax$$

$$4 + (\frac{y}{x})^2 = Ax \quad \text{(general solution)}$$

$$(\frac{y}{x})^2 = Ax - 4$$

$$\frac{y}{x} = \pm \sqrt{Ax - 4}$$

$$y = \pm \sqrt{Ax - 4}$$

$$y = \pm x\sqrt{Ax - 4} \quad \text{(explicit form)}$$

Two Types of U-Substitution

$$1. \ y' = f(ax + by + c)$$

2.
$$y' = f(\frac{x}{y})$$

1.4 Exact Equations

$$dF = M(x,y)dx + N(x,y)dy = 0$$

$$dF(x,y) = 0$$

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0$$

$$\left[\frac{\partial F}{\partial x} = N(x,y)\right]\left[\frac{\partial F}{\partial y} = M(x,y)\right]$$

$$\frac{\partial}{\partial y}\left[\frac{\partial F}{\partial x} = N(x,y)\right], \frac{\partial}{\partial x}\left[\frac{\partial F}{\partial y} = M(x,y)\right]$$

$$\frac{\partial^2 F}{\partial y dx} = \frac{\partial N}{\partial y}, \frac{\partial^2 F}{\partial x dy} = \frac{\partial M}{\partial x}$$

$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$$

$$\frac{\partial F}{\partial x} = N \mid \cdot dx \int$$

$$\int \frac{\partial F}{\partial x} = \int N(x,y)dx$$

$$F(x,y) = \int N(x,y)dx + g(y)$$

$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \int N(x,y)dx + g'(y) = M(x,y)$$

$$\Rightarrow g(y)$$

$$F(x,y) = \int N(x,y)dx + g(y)$$
(equation from earlier step)

Example

$$(6xy - y^3)dx + (4y + 3x^2 - 3xy^2)dx = 0$$

$$M(x, y) + N(x, y) = 0$$

$$\frac{\partial M}{\partial y}(6xy - y^3) = 6x - 3y^2$$

$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x}(4y + 3x^2 - 3xy^2) = 0 + 6x - 3y^2$$

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy$$

$$\frac{\partial F}{\partial x} = 6xy - y^3, \frac{\partial F}{\partial y} = 4y + 3x^2 - 3xy^2$$

$$\int \frac{\partial F}{\partial x}dx = \int (6xy - y^3)dx$$

$$F(x, y) = 6\frac{x^2}{2} \cdot y - y^3x + g(y)$$

$$\frac{\partial F}{\partial y} = 3x^2 \cdot 1 - x \cdot 3y^2 + g'(y)$$

$$\text{Remember: } \frac{\partial F}{\partial y} = 4y + 3x^2 - 3xy^2$$

$$3x^2 - 3xy^2 + g'(y) = 4y + 3x^2 - 3xy^2$$

$$g'(y) = 4y$$

$$\int g'(y)dy = \int 4ydy$$

$$g(y) = \frac{4y^2}{2} + C$$

$$\text{Remember: } F(x, y) = 6\frac{x^2}{2} \cdot y - y^3x + g(y)$$

$$F(x, y) = 3x^2 \cdot y - y^3x + 2y^2 + C$$

$$\int dF = 0, F(x, y) = C_1$$

$$3x^3y - y^3x + 2y^2 = C_1$$

$$y(x)$$

2 Bernoulli Equation

$$y'(x) + P(x)y(x) = Q(x)y^{n}(x)$$

 P, Q -given, $n \neq 1$

linear y' + p(x)y = q(x) by integrating factor $\rho = e^{\int p(x)dx}$

dividing by y^n to obtain

$$y^{-n}y' + P(x)y^{1-n} = Q(x)$$

$$z = y^{1-n}, (z(x))' = (y(x)^{1-n})'$$

$$\frac{dz}{dx} = (1-n)y^{1-n-1}\frac{dy}{dx}$$

$$= (1-n)\cdot y^{-n}\frac{dy}{dx}$$

$$y^{-n}y'(x) = \frac{dz}{dx} \cdot \frac{1}{1-n}$$

$$y' - \frac{3}{2x}y = \frac{2x}{y}$$

$$P(x) = -\frac{3}{2x}, Q = 2x, n = -1$$

$$y' - \frac{3}{2x}y = \frac{2x}{y} \mid y$$

$$z = y^{1-n}$$

$$yy' - \frac{3}{2x}y^2 = 2x$$

$$z = y^2, z'(x) = 2y \cdot y'(x)$$

$$\rightarrow y \cdot y'(x) = \frac{z(x)}{z}$$

$$\frac{z'(x)}{z} - \frac{3}{2x}z = 2x$$

$$\rho = e^{\frac{-3}{2}dx}$$

$$= e^{-\ln x}$$

$$= e^{\ln x^{-3}}$$

$$= x^{-3}$$

$$z'(x) - \frac{3}{x}z = 4x \mid \cdot \rho = x^{-3}$$

$$x^{-3} \cdot z'(x) - 3x^{-4}z(x) = 4x^{-2}$$

$$check \rightarrow \frac{d}{dx}(x^{-3} \cdot z) = 4x^{-2}$$

$$\frac{d}{dx}(x^{-3} \cdot z) = z'x^{-3} - 3x^{-4}z$$

$$= x^{-3}z' + z(-3) \cdot x^{-4}$$

$$= x^{-3}z' + z(-3) \cdot x^{-4}$$

$$= x^{-3}z' + z(-3) \cdot x^{-4}$$

$$= x^{-4}x + C$$

$$= -4x^2 + Cx^3$$

$$y^2 = 4x^2 + Cx^3$$

3 Second Order Ordinary Differential Equations

$$F(y'', y', y, x) = 0, y = y(x)$$

 $u = \pm \sqrt{-4x^2 + Cx^3}$

3.1 Type I

F(y''(x), y'(x), x) = 0Function of x

$$y'(x) = P(x), y''(x) = (y'(x))' = P'(x)$$

$$\to F(p'(x), p(x), x) = 0$$

$$\to p(x) = f(x, C_1)$$

$$y' = f(x, C_1) \mid \cdot dx \int$$

$$\to \int y'(x) dx = \int f(x, C_1) dx$$

$$y(x) = \int f(x, C_1) dx + C_2$$

$$xy'' + 2y' = 6x, y(x) = ?$$

$$xp'(x) + 2p = 6x$$

$$y' + p(x)y = q(x) \mid \qquad \qquad \cdot \rho = e^{\int \frac{2}{x} dx}$$

$$= e^{2 \ln x}$$

$$= x^{2}$$

$$\frac{d}{dx}(x^{2} \cdot p(x)) = 6x^{2}$$

$$\frac{d}{dx}(x^{2} \cdot p(x)) = p'(x)x^{2} + 2xp$$

$$\rho \cdot p(x)$$

$$\frac{d}{dx}(p(x), y(x)) = (p(x), y(x))'$$

$$\frac{d}{dx}(x^{2} \cdot p(x)) = 6x^{2} \mid \cdot dx \int$$

$$\int \frac{d}{dx}(x^{2} \cdot p(x)) dx = \int 6x^{2} dx$$

$$x^{2}p = \frac{6x^{2}}{3} + C, \qquad p(x) = 2x + \frac{C_{1}}{x^{2}}$$

$$= y'(x)$$

$$\Rightarrow \int y'(x) dx = \int (2x + C_{1}x^{-2}) dx$$

$$y(x) = \frac{2x^{2}}{2} - \frac{C_{1}}{y} + C_{2}$$

3.2 Type II

F(y''(x), y'(x), y(x)) = 0Function of y

$$y'(x) = p(y), y'' = (y'(x))'$$

$$= (P(y))''$$

$$= \frac{dP}{dy} \cdot \frac{dy}{dx}$$

$$= \frac{dp}{dy}p$$

Example

$$yy''(x) = (y'(x))^{2}$$

$$y\frac{dp}{dy} \cdot p = p^{2}, p \neq 0$$

$$y\frac{dp}{dy}, \frac{dp}{p} = \frac{dy}{y}, \int \frac{dp}{p} = \int \frac{dy}{y}$$

$$\to \ln|p| = \ln|y| + C_{1}$$

$$e^{\ln|p|} = e^{\ln|y| + C_{1}} = e^{\ln|x|} \cdot e^{C_{1}}$$

$$|p| = |y| \cdot e^{C_{1}}, p = \pm e^{C_{1}} \cdot y$$

$$A_{1} = \pm e^{C_{1}}$$

$$p = A_{1}y$$

$$\to y'(x) = A_{1}y$$

$$\frac{dy}{dx} = A_{1}y$$

$$\frac{dy}{dy} = A_{1}dx$$

$$\int \frac{dy}{y} = \int A_{1}dx$$

$$\to \ln|y| = A_{1}x + C_{2}$$

$$e^{\ln|y|} = e^{A_{1}x + C_{2}}$$

$$|y| = e^{A_{1}x}e^{C_{2}}$$

$$\to y = \pm e^{C_{2}}e^{A_{1}x}$$

$$A_{2} = \pm e^{C_{2}}$$

$$y = A_{2}e^{A_{1}x}$$

3.3 Inital Value Problem

(1) $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$

Then If f(x,y), $\frac{\partial f}{\partial y}$ (continuous function) on $R[a \le x \le b, c \le y \le d]$ there exists wuch interval $I \in [a,b]$ also $x_0 \in I$, where the inital value problem (1) has unique solution

Rectangle (R) is designated by the chosen value (can be very large or small)

$$y'' + p(x)y' + g(x)y = f(x), x \in (a, b)$$

 $p(x), q(x), f(x) - giveny(x)$?
 $y(x_0) = y_0, y'(x_0) = y_1$

Theorem 1 if p(x), q(x), f(x)

- continuous on $(a,b), x_0 \in (a,b)$ then (2) has unique solution

4 Linear Second Order Differential Equations

4.1 Initial Value Problem

$$y'' + p(x)y' + q(x)y = f(x), x \in (a, b)$$
$$p(x), q(x), f(x) - giveny(x)?$$
$$y(x_0) = y_0, y'(x_0) = y_1$$

4.1.1 Theorem 1

if p(x), q(x), f(x)

- continuous on $(a, b), x_0 \in (a, b)$ then (2) has unique solution

$$f(x) \equiv 0, y'' + p(x)y' + g(x)y = 0$$

homogeneous equation

0 = homogeneous equation $0 \neq \text{non homogeneous equation}$

$$y_1(x), y_2(x)$$
 — solutions of (3)
$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$
— is also solution of (3) linear combination, where C_1, C_2 — some constant

$$(C_1y_1 + C_2y_2)'' + p(x)(C_1y_1 + C_2y_2) = 0$$

$$C_1y_1'' + C_2y_2 + p(x)(C_1y_1' + C_2y_2') + q(x)(C_1y_1 + C_2y_2) = 0$$

$$C_1(y_1'' + p(x)y_1' + q(x)y_1) + C_2(y_2'' + p(x)y_2' + q(x)y_2) = 0$$

$$y_1'' + p(x)y_1' + q(x)y_1 = 0$$

$$y_2'' + p(x)y_2' + q(x)y_2 = 0$$

Definition $y_1(x), y_2(x)$ - linear independent on (a, b) if $C_1y_1(x) + C_2y_2(x) = 0$ if $C_1 = C_2 = 0$

$$y_1 = \left(-\frac{C_2}{C_1}\right) y_2(x)$$

$$y_1 = K \cdot y_2$$

$$\frac{y_1}{y_2} K$$

Example 1

 $y_1 = \sin x, y_1 = \cos x$

 $\frac{\sin x}{\sqrt{1 + x}} \neq K$

linear independent \rightarrow ratio is not equal to constant

$$\begin{array}{l} y_1=\sin 2x, y_2=\sin x\cos y \\ \frac{y_1}{y_2}=\frac{\sin 2x}{\sin x\cos x}=\frac{2\sin x\cos x}{\sin x\cos x}=2 \end{array}$$

5 Second Order Linear Differential Equations

1.
$$y'' + p(x)y' + q(x)y = f(y)$$

• non homogeneous equation

2.
$$y(x_0) = y_0, y'(x_0) = y_1$$

- inital conditions
- 3. $1+2 \rightarrow I.V.P.$ has unique solution when p(x), q(x), f(x) continuous

5.1 Homogeneous Equation

$$(3) f(x) = 0 \to y'' + p(x)y' + q(x)y = 0$$

$$y_1(x),y_2(x)\text{--}$$
 linear independent
$$\text{if } C_1y_1(x)+C_2y_2(x)=0 \\ \text{if } C_1=c_2=0 \\$$

$$y = \frac{C_2}{C_1} y_2, k = \frac{C_2}{C_1}$$
$$y_1 = k y_2$$

Theorem

If $y_1(x), y_2(x)$ - are solutions of equation (3) then if (1) y_1, y_2 - linear independent on (a, b) then wronskian:

$$W(y_1, y_2) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} \neq 0$$
for all $a < x < b$

(2)
$$y_1, y_2$$
 - linear dependent, then $\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = 0$ for all x .

Theorem

If $y_1(x), y_2(x)$ - linear independent solutions of (3), then $y = C, y_1 + C_2y_2(x)$ -general solution of (3), where C_1, C_2 - arbitrary constant

5.2 Solving Initial Value Problem (3) + (2)

- 1. find particular $y_1(x)$, $y_2(x)$ linear independence
- 2. Set up general solution of (3)

•
$$y = C_1 y_1 + C_2 y_2$$

- 3. Satisfy Initial Condition (2)
 - 1.e subset solution $y = C_1y_1 + C_2y_2$

$$\begin{aligned} y(x_0) &= C_1 y_1(x_0) + C_2 y_2(x_0) = y_0 \\ y'(x_0) &= C_1 y_1'(x_0) + C_2 y_2'(x_0) = y_1 \end{aligned} \right\} C_1, C_2 \\ \left\{ \begin{array}{l} a_{11} C_1 + a_{12} C_2 = d_1 \\ a_{21} C_1 + a_{22} C_2 = d_2 \end{array} \right| C_1, C_2 \end{aligned}$$

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0$$

 $a_{11}, a_{12}, a_{21}, a_{22}, d_1, d_2$ are given constants

6 Method of Elimination

 C_1, C_2 -?

$$\begin{cases} 5C_1 + 3C_2 = 1 \\ C_1 - 2C_2 = 8 \end{cases}$$

$$\begin{cases} 5C_1 + 3C_2 = 1 \\ C_1 - 2C_2 = 8 \end{cases} \cdot (-5)$$

$$(+) \begin{cases} 5C_1 + 3C_2 = 1 \\ -5C_1 + 10C_2 = 8 \end{cases}$$

$$0 + 13C_2 = -39$$

$$\rightarrow 13C_2 = -39$$

$$C_2 = -3$$

$$C_1 - 2(-3) = 8$$

$$C_1 = 2$$

7 Method of Substitution

$$5(2C_2 + 8) + 3C_2 = 1$$

$$13C_2 + 40 = 1$$

$$13C_2 = -39$$

$$C_2 = -3$$

$$C_1 = 2C_2 + 8$$

$$= 2(-3) + 8 = 2$$

$$C_1 - 2 \cdot (-3) = 8$$

$$C_1 = 2$$

8 Homogeneous Equation with Constant Coefficients

ay'' + by' + cy = 0; a, b, c - given constant

$$y = e^{rx}, r - \text{constant}$$

$$y' = e^{rx} \cdot r$$

$$y'' = e^{rx} \cdot r \cdot r = e^{rx} \cdot r^{2}$$

$$a(e^{rx}r^{2}) + b(e^{rx}r) + c(e^{rx}) = 0 \mid \frac{1}{e^{rx}}$$

$$ar^{2} + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

(1)
$$r = r_1, r = r_2$$
- distinct $r_1 \neq r_2$
 $y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$
-linear independent

$$W(y_1, y_2) = \begin{vmatrix} e^{r_1 x} & e^{r_2 x} \\ r_1 e^{r_1 x} & r_2 e^{r_2 x} \end{vmatrix}$$
$$= r_2 e^{r_1 x} e^{r_2 x} - r e^{r_1 x} e^{r_2 x}$$
$$= C_1 e^{r_1 x} + C_2 e^{r_2 x}$$
- general solution

Example 1

$$y'' - 5y' + by = 0$$
 $y = e^{rx}$
 $r^2 - 5r + 6 = 0$
 $r_1 = 3, r_2 = 2$
 $y_1 = e^{3x}, y_2 = e^{2x}$

$$y'' + 2y' = 0 \leftarrow y = e^{rx}$$

$$r^{2} + 2r = 0, r(r+2) = 0$$

$$r = 0, r = -2$$

$$y_{1} = e^{0 \cdot x} = 1, y_{2} = e^{-2x}$$

$$\rightarrow y = C_{1} + C_{2} \cdot e^{-2x}$$

$$ay'' + by' + cy = 0 \leftarrow e^{rx} = y$$

$$ar^{2} + br + c = 0$$

$$r = r_{1}, r = r_{2}, r_{1} = r_{2}$$

$$a(r - r_{1})^{2} = 0$$

$$a(r^{2} - 2r_{1}r + ar^{2}) = 0$$

$$b = (-2ar), c = (ar^{2})$$

$$y_{1}(x) = e^{r_{1}x}, y_{2}(x) = e^{r_{1}x}x$$

$$y = C_{1}e^{r_{1}x} + C_{2}e^{r_{2}x}$$

9 Euler's Equation

$$ax^2y''(x) + bxy'(x) + cy(x) = 0$$

Example 2

$$x^{2}y'' + xy' - y = 0$$

$$v = \ln x, y(v)$$

$$y'(x) = \frac{dy}{dv} \cdot \frac{dv}{dx} = \frac{dy}{dv} \cdot \frac{1}{x}$$

$$y''(x) = \frac{x}{dx}(y'(x))$$

$$= \frac{d}{dx} \left(\frac{dy}{dv} \cdot \frac{1}{x}\right)$$

$$= \frac{d}{dx} \left(\frac{dy}{dv}\right) \frac{1}{x} + \frac{dy}{dv} \left(-\frac{1}{x^{2}}\right)$$

$$= \frac{d}{dv} \left(\frac{dy}{dv}\right) \frac{dv}{dx} \cdot \frac{1}{x} - \frac{1}{x^{2}} \cdot \frac{dy}{dx}$$

$$= \frac{d^{2}}{dv} \cdot \frac{1}{x} \cdot \frac{1}{x} - \frac{1}{x} \cdot \frac{dy}{dv}$$

$$x^{2} \left(\frac{d^{2}y}{dy^{2}} \cdot \frac{1}{x} - \frac{dy}{dv} \cdot \frac{1}{x^{2}} \right) + x \left(\frac{dy}{dv} \cdot \frac{1}{x} \right) - y = 0$$

$$\frac{d^{2}y}{dy^{2}} - \frac{dy}{dv} + \frac{dy}{dv} - y$$

$$\frac{d^{2}y}{dv^{2}} - y = 0 \leftarrow y(v) = e^{rv}$$

$$r^{2} - 1 = 0, r_{1} = 1, r_{2} = -1$$

$$y = C_1 e^v + C_2 e^{-v}$$

$$= C_1 e^v + C_2 e^{\ln x} + C_2 e^{-\ln x}$$

$$= C_1 x + \frac{C_2}{r} = y$$

10 Higher Order Differential Equation

$$y^{(n)} + p_1(n)y^{(n-1)} + \dots + p_{n-1}(x)y'(x) + p_n(x)y = f(x)$$

 $p_1, p_2, p_3, \dots, p_n$

f-continuous function on (a, b)

if $f(x) \neq 0$ then equation is non-homogeneous if f(x) = g(x) then equation is homogeneous

 $y_(x), y_2(x), \dots, y_n(x) - n$ particular linear independent solutions of homogeneous equations

then
$$y(x) = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$

 C_1, C_2, \dots, C_n - constants

linear independent

$$W[y_1, y_2, \dots, y_n] \neq 0$$

$$W[y_1, y_2, \dots, y_n] = \begin{vmatrix} y_1 & y_2 & y_3 & \dots & y_n \\ y'_1 & y'_2 & y'_3 & \dots & y'_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{n-3} & y_3^{n-4} & \dots & y_n^{(n-1)} \end{vmatrix}$$

$$\neq 0$$

$$S_1,S_2,S_3,S_4,\ldots,S_n$$
 - linear independent if $C_1f_1(x)+C_2f_2(x)+\cdots+C_nf_n(x)=0$ if $C_1=C_2=\cdots=C_n=0$

Problem 3

$$f(x) = 0, g(x) = \sin x, \ln(x) = e^{x}$$

$$C_{1}f(a) + C_{2}g(x) + C_{3}e^{x} = 0$$

$$C_{x} \cdot 0 + C_{2}\sin x + C_{3}e^{x} = 0$$

$$C_{1} = 100, C_{2} = 0, C_{3} = 0$$

Determinate:

$$W[0, \sin x, e^x] = \begin{vmatrix} 0 & \sin x & e^x \\ 0 & \cos x & e^x \\ 0 & -\sin x & e^x \end{vmatrix}$$
$$\equiv 0$$

Problem 17

$$y^{(3)} - 3y'' + 3y' - y = 0$$
$$y(0) = 2, y'(0) = 0, y''(0) = 0$$
$$y_1 = e^x, y_2 = x \cdot e^x, y_3 = x^2 e^x$$

general solution

$$y = C_1 y_1 + C_2 y_2 + C_3 y_3$$

$$= C_1 e^x + C_2 x e^x + C_3 x^2 e^x$$

$$y(0) = C_1 e^0 + C_2 0 e^0 + C_3 0^2 e^0$$

$$= 2$$

$$y'(x) = C_1 e^0 + C_2 (e^x + x e^x) + e^x$$

$$y'(x) = C_1 e^0 + C_2 (e^x + xe^x) + C_3 (2xe^x + x^2 e^x)$$

$$y'(0) = C_1 e^0 + C_2 (e^0 + 0) + C_3 (0 + 0)$$

$$= 0$$

$$y''(x) = C_1 e^x + C_2 (e^x + e^x + e^x) + C_3 (2e^x + 2xe^x + 2xe^x + x^2 e^x)$$

$$y''(0) = C_1 e^0 + C_2 (e^0 + e^0 + 0) + C_3 (3e^0 + 0 + 0 + 0)$$

$$= 0$$

$$\begin{cases} C_1 = 2 \\ C_1 + 2 = 0 \\ C_1 + 2C_2 + 2C_3 = 0 \end{cases}$$

$$\begin{cases}
C_2 = -C_1 = -2 \\
2C_3 = -C_1 - 2C_2 = -2 - 2(-2) = 2 \\
C_3 = 1
\end{cases}$$

$$y = 2e^x - 2xe^x + x^2e^x$$

(1) $y^{(n)} + p_1(x)y^{(n-1)} + \dots + p_{n-1} \cdot y' + p_n y = 0$ homogeneous equation

general solution of (1): $y = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n$ y_1, y_2, \dots, y_3

91, 92, ..., 93

-linear independent particular solutions of (1)

- (2) $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)} = y_{n-1}$ -initial conditions
- (1) + (2) -Initial Value Problem
- (3) $y^{(n)} + p_1(x)y^{(n+1)} + \dots + p_{n-1}(x)y' + p_n(x) \cdot y = f(x)$

 $f(x) \neq 0$ non-homogenous equation

 \rightarrow General Solution of (3):

$$y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n + y_p$$

= (General Solution of (1)) + (Particular Solution of (3))
 $y_c = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$
Complementary Solution of (3)

$$y = y_c + y_p$$

= (General Solution of (1)) + (Particular Solution of (3))

 \rightarrow Initial Value Problem for (3): (3) + (2)

Example 1

$$y'' - y = 12x$$
$$y(0) = 5, y'(0) = 7$$

(1) homogeneous equation:

$$y'' - 4y = 0 \rightarrow y = e^{rx}$$
 $r^2 \dot{e}^{rx} - 4 = 0 \mid \frac{1}{e^{rx}}$
 $r^2 - 4 = 0$
 $r = r_1 = 2$
 $r = r_2 = -2$
 $y_1 = e^{2x}, y_2 = e^{-2x}$
 $y_1 = e^{2x} + C_2 e^{-2x}$
general solution

(2) non-homogeneous

$$y = y_c + y_p$$

$$y_c = C_1 e^{2x} + C_2 e^{-2x}$$

$$y_p = 3x \to 0 - 4(3x) \equiv -12x$$

$$y = C_1 e^{2x} + C_2 e^{-2x} + 3x$$
General Solution = $C_1 e^{2x} + C_2 e^{-2x}$
Particular Solution = $3x$

$$y(0) = C_1 e^0 + C_2 e^0 + 3 \cdot 0 = 5$$

$$y(0) = 2C_2 e^0 - 2C_2 e^0 + 3 = 7$$

$$C_1 + C_2 = 5$$

$$2C_1 - 2C_2 + 3 = 7$$

$$C_1 + C_2 = 5$$

$$C_1 - C_2 = 2$$

$$2C_1 + 0 = 7$$

$$C_1 = \frac{7}{2}$$

$$C_2 = 5 - C_1$$

$$= 5 - \frac{7}{2} = \frac{3}{2}$$

$$y = \frac{7}{2} e^{2x} + \frac{3}{2} e^{-2x} + 3x$$

11 Higher Order Linear Differential Equations

(1)
$$y^{(1)} + p_1 y^{(n-1)} + \cdots + p_{n-1} y' + p_n y = f(x)$$

- non homogeneous equation
general solution y of (1) is $y = y_c + y_p$,
 y_p - any particular solution of (1)
 y_c - complementary solution which is the general solution of homogeneous equation [(1) if $f(x) \equiv 0$]
 $y_c = C_1 y_1 + C_2 y_2 + \cdots + C_n y_n$, where y_1, y_2, \cdots, y_n
-linear independent solutions of homogeneous equations

$$y'' - 4y = -12x, y_p = 3x$$

$$y_C =? \to y'' - 4y = 0$$

$$y = C_1 y_1 + C_2 y_2 = C_1 e^{2x} + C_2 y e^{-2x}$$

$$y = y_C + y_P = C_1 e^{2x} + C_2 e^{-2x} + 3x$$

(2)
$$y(x_0) = y_0, y'(x_0) = y_1, y''(x_0) = y_2, \dots, y^{(n-1)}(x_0) = y_{n-1}$$
 problem (1) + (2) - Initial Value Proplem (IVP) for (1) $y' = f(x, y), y(x_0) = y_1$ $y'' + p_1 y' + p_2 y = f(x), y(x_0) = 0, y'(x_0) = y_1$

12 Linear Equation with Constant Coefficient

$$a_0, a_1, a_2, \dots, a_n$$

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y$$

$$= \sum_{i=1}^n a_{n-1} y^{(i)} = 0$$

$$y = e^{rx}$$

$$r^n e^{rx} + a_1 r^{n-1} e^{rx} + a_2 r^{n-2} e^{rx} + \dots + a_{n-1} r e^{rx} + a_n e^{rx} = 0$$

$$\frac{r^n e^{rx} + a_1 r^{n-1} e^{rx} + a_2 r^{n-2} e^{rx} + \dots + a_{n-1} r e^{rx} + a_n e^{rx}}{e^{rx}} = 0$$

$$r^n + a_1 r^{n-1} + a_2 r^{n-2} + \dots + a_{n-1} r + a_n = 0$$
-characteristic equation
$$r = r_1 (r - r_1)$$

12.1 Rules for Characteristic Equation

(1) roots are n distinct real numbers

$$r = r_1, r = r_2, \dots, r = r_n$$

$$\to y_1 = e^{r_1 x}, y_2 = e^{r_2 x}, y_3 = e^{r_3 x}, \dots, y_n = e^{r_n x}$$

$$y_n = e^{r_n x}$$

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} + \dots + C_n e^{r_n x}$$

$$= \sum_{r=1}^{n} C_1 e^{r_1 x}$$

(2) $r = r_s, r = r_s, \dots, r = r_s$ for k times

$$y_1 = e^{r_2 x}, y_2 = x \cdot e^{r_s \cdot x}, y_3 = x^2 \cdot e^{r_s \cdot x}, \dots, y_k = x^{k-1} e^{r_s x}$$

multiplicity of k

Example 2

$$y^{(3)} + 3y'' + 3y' + y = 0 \leftarrow ye^{rx}$$
$$r^{3}e^{rx} + 3r^{2}e^{rx} + 3re^{rx} + e^{rx} = 0$$
$$\frac{r^{3}e^{rx} + 3r^{2}e^{rx} + 3re^{rx} + e^{rx}}{e^{rx}} = \frac{0}{e^{rx}}$$
$$r^{3} + 3r^{2} + 3r + 1 = 0$$

General Rule of Algebraic Polynomials

• root is such number that divides all values as an integer

Long Division
$$(r+1)^3 = 0$$
 $(r+1)(r+1)(r+1) = 0$ $r = r_1 = -1, r = r_2 = -1, r = r_3 = -1$
One Repeated Root of Multiplicity 3

One Repeated Root of Multiplicity 3 $y_1 = e^{-x}, y_2 = xe^{-x}, y_3 = x^2e^{-x}$ $y = C_1e^{-x} + C_2e^{-x}x + C_3e^{-x}x^2$

Example 3 (P. 134 #26)

$$y^{(3)} + 10y'' + 25y' = 0; y(0) = 3, y'(0) = 4, y''(0) = 5$$

$$\rightarrow y = e^{rx}$$

$$r^{3}e^{ex} + 10r^{2}e^{rx} + 25re^{rx} = 0$$

$$\frac{r^{3}e^{ex} + 10r^{2}e^{rx} + 25re^{rx}}{e^{rx}} = \frac{0}{e^{rx}}$$

$$\rightarrow r^{3} + 10r^{2} + 25r = 0$$

$$r(r^{2} + 10r + 25) = 0$$

$$r(r + 5)^{2} = 0$$

$$repeated root of multiplicity 2$$

$$r = r_{1} = 0, r = r_{2} = -5, r = r_{3} = -5$$

$$y_{1} = e^{0}, y_{2} = e^{-5x}, y_{3} = e^{-5x}x$$

$$y = C_{1} + C_{2}e^{5}x + C_{3}e^{-5x}x$$

$$y'(x) = C_{2}(-5)e^{-5x} + C_{3}[e^{-5x} - 5xe^{-5x}]$$

$$y''(x) = C_{2}25e^{-5x} + C_{3}[-5e^{-5x} - 5e^{-5x} + 25xe^{-5x}]$$
Initial Conditions
$$\begin{cases} y(0) = C_{2} + C_{2}e^{0} + C_{3} \cdot 0 = 3 \\ y'(0) = -5C_{2}e^{0} + C_{3}[e^{0} - 0] = 4 \\ y''(0) = 25C_{2}e^{0} + C_{3}[-5e^{0}2 + 0] = 5 \end{cases}$$

$$\begin{cases} C_{1} + C_{2} = 3 \\ -5C_{2} + C_{3} = 4 \\ 25C_{2} - 10C_{3} = 5 \end{cases}$$

$$0 - 5C_3 = 25$$

$$25C_2 = 5 + 10C_3 = 5 - 50$$

$$C_2 = \frac{1}{5} - 10 = C_1 \frac{4}{1}$$

$$C_1 = 3 - C_2$$

13 Complex Roots of Charatistics Equations

Imaginary Number $\rightarrow \sqrt{-1} = i$ Complex Number $\rightarrow 3 \pm 4\sqrt{-1} = 3 \pm 4i$ Real Number \rightarrow Re $[3 \pm 4i] = 3$ Imaginary Number \rightarrow Re $[3 \pm 4i] = \pm 4$

Complex Number Plane

$$ay'' + by' + cy = 0, y = e^{rx}$$

 $ar^2 + br + c = 0$
 $r_{1,2} = \frac{b \pm \sqrt{b^2 - 4ac}}{2a}, b^2 - 4ac = 0$
 $r = \alpha \pm i\beta, \sqrt{-1} = i$
 $y_1 = e^{(\alpha + i\beta)x}, y_2 = e^{(\alpha - i\beta)x}$

13.1 Euler Formula

$$e^{i\beta x} = \cos(\beta x) + i\sin(\beta x)$$

$$e^{-i\beta x} = \cos(\beta x) - i\sin(\beta x)$$

$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x}(\cos \beta x + i\sin \beta x)$$

$$= e^{\alpha x}e^{\beta i}$$

$$y = u(x) + iw(x)$$

$$a(u+iw)'' + b(u+iw)' + c(u+w) \equiv 0$$

$$(a''bu + cu) + (aw'' + bw' + cw)i \equiv 0$$

$$0 + 0 = 0$$

$$y_1 = e^{\alpha x} \cos \beta x, y_1 = e^{\alpha x} \sin \beta x$$
$$y = C_1 e^{\alpha x} \cos \beta x + C_2 e^{\alpha x} \sin \beta x$$

14 Method of Undetermined Coefficients

$$(r^{2} + 4)(ar^{2} + br + c) = 0$$

$$\equiv 6r^{4} + 5r^{3} + 25r^{2} + 20r + 4$$

$$\equiv ar^{4} + br^{3} + cr^{2} + 4ar^{2} + 4br + 4c$$

$$r^{4}:6 = a$$

 $r^{3}:5 = b$
 $r^{2}:25 = c + 4a$
 $r:20 = 4b$
 $r^{0}:4 = 4C \rightarrow c = 1$

$$(r^2+4)(6r^2+5r+1)=0$$

15 Non-Homogeneous Equation

$$y^{(n)} + p_1 y^{n-1} + \dots + p_{n-1} y' + p_n y = f(x)$$

 $f(x) \neq 0$
general solution $y = y_c + y_p$
 y_c - general solution of homogeneous $(f(x) \equiv 0)$ equation
 y_p - any particular solution of non-homogeneous equation

16 Method of Undetermined Coefficients

(1)
$$f(x) = \sum_{k=0}^{n} nA_k x^k$$
$$\to y_p = \sum_{k=0}^{n} B_k x^k$$

$$y'' + 3y' + 4y = 3x + 2$$

$$\to y_p = Ax + B$$

$$(A+B)'' + 3(Ax+B)' + 4(Ax+B) = 3x + 2$$

$$0 + 3A + 4(Ax+B) = 3x + 2$$

$$x: 4A = 3 \to A = \frac{3}{4}$$

$$x^{0}: 3A + 4B = 2$$

$$B = \frac{2 - 3A}{4} = \frac{2 - 3 - \frac{3}{4}}{4}$$

$$= -\frac{1}{16}$$

(2)
$$f(x) = a \sin kx + b \cos kx$$
$$y_p = A \sin kx + B \cos kx$$
$$A, Bundetermined$$

Example 2

Example 3

$$y'' - 4y = 2e^{3x}, y_p = Be^{3x}$$
$$(Be^{3x})'' - 4Be^{3x} = 2e^{3x}$$
$$9Be^{3x} - 4Be^{3x} = 2e^{3x}$$
$$\rightarrow 9B - 4B = 2, B = \frac{2}{5}$$

 B_k - undetermined

$$y'' - 4y = 3x^2e^{3x}$$
$$y_p = (Ax^2 + B_x + C)e^{3x}$$

Example 5

$$y^{(n)} + \dots + p_n y = f(x)$$
$$y = y_c + y_p$$

- (1) $f(x) = \sum_{k=0}^{n} a_k x^n, y_p = \sum_{n=0}^{n} A_k + x^k$ when r = 0 is not a root of characteristic equation \rightarrow n-degree polynomial
- $y_p = \left(\sum_{k=0}^n a_k x^k\right) x^m$

if r = p is a root of characteristic equation of multiplicity m

- (2) $f(x) = e^{px} \sum_{k=0}^{n} a_k x^k, y_p = e^{px} \sum_{k=0}^{n} A_k x^k$ if r = p is not a root of characteristic equation $y_p = \left(e^{px} \sum_{k=0}^{n} A_k x^k\right) x^m$ if r = p is a root of characteristic equation of multiplicity m
- (3) $f(x) = e^{px}(p(x)\cos qx + Q_m(x)\sin(qx)),$ $y_p = e^px(\overline{p_k}(x)\cos(qx) + \overline{Q_k}(x)\sin(qx))$ where k = mx(n, m), if $r \neq p + iq$

 $y_p = e^{px}(\overline{p_k}(x)\cos(qx) + \overline{Q_k}(x)\sin(qx))x^m$ of multiplicity m, then

$$y^{(n)} + \dots + p_n y = f(x)$$

$$(1) \quad f(x) = e^{px} (p_n(x) \cos qx + Q_m(x) \sin qx)$$

$$y_p = e^{px} (\overline{p_k}(x) \cos qx + \overline{Q_k}(x) \sin qx) x^m$$

$$k = max(n, m)$$

 $y_p = e^{px}(\overline{p_k}\cos qx + \overline{Q_k}(x)\sin qx)x^m$ \rightarrow if p + iq = r - root of characteristic equation of multiplicity "m"

$$(2) \quad f(x) = e^{px}, P_k(x)$$
$$y_p = e^{px} \cdot Q_k(x), p = 0$$

$$y_p = e^{px} Q_n(x) x^m$$

if p=r -root of characteristic equation of multiplicity, "m"

if f(x) ith sum of the above functions,

$$y^{(n)} + \dots + p_n y = f_1(x) + f_2(x) \to y_p = (y_1)_p + (y_2)_p$$

$$(1) \quad y_1^{(k)} + \dots + p_k y_1 = f_1(x) \to (y_1)_p$$

$$(2) \quad y_2^{(k)} + \dots + p_k y_2 = f_2(x) \to (y_2)_p$$

(1)
$$f(x) = e^{px} [p_k(x) \sin(qx) + Q_m(x) \cos(qx)]$$
$$y_p = e^{px} [\overline{p_k}(x) \sin qx + \overline{Q_k}(x) \cos(qx)] x^m$$

$$\begin{array}{ll} (2) & f(x) = e^{px} \cdot P_k(x), p = r, m \\ y = e^{px} \frac{1}{P_k(x)} \cdot x^m \end{array}$$

Problem 25

$$y'' + 3y' + 2y = xe^{-x} - e^{2x}$$

$$y_p = (y_1)_p = (y_2)_p$$
1.
$$y''_1 + 3y'_1 + 2y_1 = x \cdot e^{-x} = f_1(x)$$

$$(y_1)_p = (ax + b)e^{-x}$$
2.
$$y''_2 + 3y'_2 + 2y_2 = xe^{-2x} = f_2(x)$$

$$(y_2)_p = (cx + d)e^{-2}$$

$$y = e^{rx} \to y'' + 3y' + 2y = 0$$

$$r^2 + 3r + 2 = 0$$

$$(r + 1)(r + 2) = 0$$

$$m = 1, \quad r = -1$$

$$r = -2$$

$$(y_1)_p = (ax+b)e^{-x}$$

$$= (ax^2 + bx)e^{-x}$$

$$(y_1)p' = (2ax+b)e^{-x} - (ax^2 + bx)e^{-x}$$

$$(y_1)p'' = 2ae^{-x} - e^{-x}(2a+b) - (2ax+b)e^{-x} + e^{-x}(ax^2 + b)$$

$$= 2ae^{-x} - 2e^{-x}(2ax+b) + e^{-x}(ax^2 + bx)$$

$$= 2ae^{-x} - 2e^{-x}(ax+b) + e^{-x}(ax^2 + bx) + 3[(2ax+b)e^{-x} - (ax^2 + bx)e^{-x}] + 2(ax^2 + bx)e^{-x}$$

$$= x \cdot e^{-x}$$

$$x^{2}: a - a = 0$$

$$x: -2a + b + ba - 3b + 2b = 1$$

$$x^{0}: 2a - 2b + 3b = 0$$

$$4a = 1 \to a = \frac{1}{4}$$

$$2a + b = 0 \to b = -2a = -\frac{1}{2}$$

$$(y_1)_p = (\frac{1}{4}x - \frac{1}{2})e^{-x} \cdot x$$

$$y_p = (y_1)_p + (y_2)_p$$

$$= (ax^2 + bx)e^{-x} + (cx + d)e^{-2x} \cdot x$$

17 Method of Variation of Parameters

$$y'' + P(x)y' + Q(x)y = f(x), y_p =?$$

1 step We solve y'' + P(x)y' + Q(x)y = 0 (2) we find solutions $y_1(x), y_2(x)$

• linear independent

$$y = C_1 y_1(x) + C_2 y_2(x)$$
 - general (2) solution of (2)

2 step We'll search for solution y_p (1) of (1) as $y_p = u_1(x) \cdot y_1(x) + y_2(x)y_2(x)$

$$\begin{aligned} y_p' &= u_1'(x) \cdot y_1(x) + u_1(x) \cdot y_1'(x) + u_2'(x)y_2(x) + u_2(x) \cdot y_2'(x) \\ y_p' &= u_1(x)y_1'(x) + u_2(x)y_2'(x) + u_1'y_1(x) + u_2'(x)y_2(x) \end{aligned}$$

Add restrictions

$$u_1'(x)y_1(x) + u_2'(x)y_2(x) = 0$$

$$y'_p = u_1(x)y'(x) + u_2(x)y'_2(x)$$

$$(y_p)'' = u'_1y'_1 + u_1y''_1 + u'_2y'_2 + u_2 \cdot y''_2$$

$$y'_p = u_1(x)y'_1(x) + u_2(x)y'_2(x)$$

from (1) we have:

$$f(x) = u'_1 y'_1 + u_1 \cdot y''_2 + u'_2 y'_2 + u_2 y''_2 + P(x)(u_1 y'_1 + u_2 y'_2) + Q(x)(u_1 y_1 + u_2 y_2)$$

$$y''_p = u'_1 y'_1 + u_1 \cdot y''_2 + u'_2 y'_2 + u_2 y''_2$$

$$y'_p = u_1 y'_1 + u_2 y'_2$$

$$y_p = u_1 y_1 + u_2 y_2$$

$$u_1[y_1'' + py_1' + Qy_1] + u_2[y_2'' + P \cdot y_2' + Qy_2] + u_1'y_1' + u_2'y + 2' = f(x)$$

$$y_1'' + py_1' + Qy_1 = 0$$

$$y_2'' + P \cdot y_2' + Qy_2 = 0$$

$$(3) \to u_1' = \int \phi(x) dx y_1 + \int \psi(x) dx \cdot y_2(x)$$
\(\sum \text{ parameter solution of (1)}

Example 1

$$y'' + y = \tan x$$

 $\underline{2 \text{ step}}$ $y_p = u_1(x) \cdot \cos x + u_2(x) \sin x$ system (3) in this case is, following

$$\begin{cases} u_1' \cos x + u_2' \sin x = 0 \\ u_1' (\sin x) + u_2' (\cos x) = \tan x \end{cases} \begin{vmatrix} \sin x \\ \cos x \end{vmatrix} (+)$$

$$0 + u_2'(\sin^2 x + \cos^2 x) = \tan x \cos x$$

$$u'_{2} = \sin x$$

$$u'_{1} = -u'_{2} \cdot \frac{\sin x}{\cos x}$$

$$= -\frac{\sin x \sin x}{\cos x}$$

$$u_2 = \int u_2' dx$$
$$= \int \sin x dx$$
$$= -\cos x$$

$$u_1 = \int u_1' dx$$

$$= \int \frac{\sin^2 x}{\cos x} dx$$

$$= -\frac{\sin^2 x}{\cos^2 x} \cos x dx$$

$$dy = \cos x dx$$

$$v = \sin x, dv = \cos x dx$$

$$= -\int \frac{v^2 dv}{1 - v^2}$$

$$= -\int \frac{(v^2 - 1 + 1)}{v^2 - 1} dv$$

$$= \int dv + \int \frac{dv}{v^2 - 1}$$

$$(v - 1)(v + 1) = v^2 - 1$$

$$= \int dv + \int \frac{dv}{(v - 1)(v + 1)}$$

$$= v + \int \frac{1}{2} \left[\frac{1}{v - 1} - \frac{1}{v + 1} \right] dv$$

$$u_1 = v + \frac{1}{2} [\ln|v - 1| - \ln|v + 1|]$$

= $\sin x + \frac{1}{2} \ln\left|\frac{\sin x - 1}{\sin x + 1}\right|$

$$y_p = u_1 y_1 + u_2 y_2$$

$$= \left(\sin + \frac{1}{2} \ln \left| \frac{\sin x - 1}{\sin x + 1} \right| \right) \cos x - \cos x \sin x$$

18 Variation of Parameters

$$y'' + P(x)y' + Q(x)y = f(x)$$
$$y_p = ?$$

Step 1

$$y'' + P(x)y' + Q(x) = 0, y_1(x), y_2(x)$$
$$y_c = C_1y_1(x) + C_2y_2(x)$$

Step 2

$$y_p = u_1(x)y_1(x) + u_2(x)y_2$$

$$\begin{cases} u'_1(x) \cdot y_1(x) + u'_2(x) \cdot y_2(x) = 0 \\ u'_1(x)y'_1(x) + u'_2(x)y'_2(x) = f(x) \end{cases}$$

$$u'_1(x) = \rho(x), u'_2(x) = \psi(x)$$

Problem 49 $y'' - 4y' + 4y = 2e^{2x}$ Step 1

$$y'' - 4y' + 4y = 0$$

$$y = e^{rx}$$

$$r^{2} - 4r + 4 = 0$$

$$(r - 2)^{2} = 0$$

$$r_{1} = 2, r_{2} = 2$$

$$\rightarrow y_{1} = e^{2x}, y_{2} = e^{2x} \cdot x$$

Step 2

$$y_{p} = u_{1}(x) \cdot y_{1}(x) + u_{2}(x)y_{2}$$

$$= u_{1}(x) \cdot e^{2x} + u_{2}(x)e^{2x}x$$

$$\begin{cases} u'_{1}e^{2x} + u'_{2}e^{2x} = 0 \\ u'_{1} \cdot 2e^{2x} + u'_{2}(x)(2e^{2x}x + e^{2x}) = 2e^{2x} \end{cases} \quad \left| \frac{1}{e^{2x}} \right|$$

$$\begin{cases} u'_{1} + u'_{2}x = 0 \\ 2u'_{1} + u'_{2}(2x + 1) = 0 \end{cases}$$

$$0 + u'_{2}(2x - 2x - 1) = -2$$

$$u'_{1} = 2$$

$$u'_{1} = -2$$

$$u = \int u'_{1}(x)dx$$

$$= -2 \int xdx$$

$$= \frac{-2x}{2}$$

$$u_{2} = \int u'_{2}(x)dx$$

$$= \int 2dx$$

$$= 2x$$

$$y_{p} = -x^{2}e^{2x} + 2xe^{2x}x$$

$$= x^{2}e^{2x}$$

19 Linear Systems of First Order Differential Equations

$$y_{1}(t), y_{2}(t), \cdots, y_{n}(t) - \text{unknown}$$

$$\frac{dy_{1}}{dt} = p_{11}y_{1} + p_{12}y_{2} + \cdots + p_{1n}y_{n} + f_{1}(t)$$

$$\frac{dy_{2}}{dt} = p_{21}y_{1} + p_{22}y_{2} + \cdots + p_{2n}y_{n} + f_{2}(t)$$

$$\cdots$$

$$\frac{dy_{n}}{dt} = p_{n1}y_{1} + p_{n2}y_{2} + \cdots + p_{nn}y_{n} + f_{n}(t)$$

 $p_{2i}(t)$ -given $f_i(t)$ -given

$$Y'(t) = \begin{bmatrix} y'_1 \\ y'_2 \\ \vdots \\ y'_n \end{bmatrix}, Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y'_n \end{bmatrix}, A = \begin{bmatrix} p_{11} & p_{12} & \cdots & y_{1n} \\ p_{21} & p_{22} & \cdots & y_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ p_{1n} & p_{2n} & \cdots & y_{nn} \end{bmatrix}, F = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{bmatrix}$$

$$y(0) = y_{10}, y_2(0) = y_{20}, \dots, y_n(0) = y_{n0}$$

Initial Conditions

20 Systems of 2 Equations for x(t), y(t)

$$\frac{dx}{dt} = a_{11}x + a_{12}y + f(t)$$

$$\frac{dy}{dt} = a_{21}x + a_{22}y + f(t)$$

$$Y = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, Y' = \begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, F = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}x + a_{12}y \\ a_{12}x + a_{22}y \end{bmatrix} + \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11}x + a_{12}y + f_1 \\ a_{12}x + a_{22}y + f_2 \end{bmatrix}$$

$$x' = a_{11} + a_{12}y + f_1$$

$$y' = a_{22} + a_{22}y + f_2$$

$$ay'' + by' + cy = t^2$$

 \rightarrow second order differential equation
 $y' = x$

$$ax' + bx + cy = t^2$$

$$x' = \frac{-bx - cy + t^2}{a}$$

$$\begin{cases} x' = -\frac{bx}{a} - \frac{c}{a}y + \frac{t^2}{a} & x(t) \\ y' = x \end{cases}$$

21 Method of Elimination

Example 1

$$x' = -2xy, y' = \frac{1}{2}x$$

$$\downarrow$$

$$(x'(t)) = (-2y)' \leftarrow \text{derivative with respect to } t$$

$$x''(t) = -2y'(t)$$

$$y'(t) = -\frac{x''(t)}{2}$$

$$-\frac{x''(t)}{2} = \frac{1}{2}x$$

$$-x''(t) + x = 0 \leftarrow xe^{rt}$$

$$r^2 + 1 = 0, r_{1,2} = \pm 2$$

$$x_1 = \cos t, x_2 = \sin t$$

$$x = C_1x_1 + C_2x_2$$

$$= C_1 \cos t + C_2 \sin t$$

$$y = -\frac{x'(t)}{2}$$

$$= -\frac{1}{2}(-C_1 \sin t + C_2 \cos t)$$

$$= \frac{C_1}{2} \sin t + \frac{C_2}{2} \cos t$$

Using Initial Conditions

$$x(0) = C_1 \cos 0 + C_2 \sin 0 = 0$$

$$y(0) = \frac{C_1}{2} \sin 0 - \frac{C_2}{2} \cos 0 = 0$$

$$C_1 = 2$$

$$C_2 = 0$$

$$x = 2 \cos t$$

$$y = \frac{2}{2} \sin t$$

$$\left(\frac{x}{2}\right)^2 = (\cos t)^2$$

$$\frac{(y)^2 = (\sin t)^2}{2}$$

$$\left(\frac{x}{2}\right)^2 + y^2 = \cos^2 t + \sin^2 t = 1$$

$$\frac{y^2}{2^2} + \frac{y^2}{2^2} = 1$$

Example 2

$$(1)x'(t) = 4x - 3y$$

$$(2)y'(t) = 6x - 7y$$

$$from (2)x = \frac{y'(t) + 7y}{6}$$

$$x'(t) = \frac{y'' + 7y'}{6}$$

$$from (1)\frac{y'' + 7y'}{6} = 4\frac{y' + 7y}{6} - 3y$$

$$y'' + 7y' = 4y' + 28y - 18y$$

$$y'' + 3y = 0 \leftarrow y = e^{rt}$$

$$r^2 + 3r - 10 = 0$$

$$r_1 = 2, r_2 = -5$$

$$y_1 = e^{2t}$$

$$y_2 = r^{-5t}$$

$$y = C_1 e^{2t} + C_2 e^{-5t}$$

$$x = \frac{2C_1 e^{2t} - 5C_2 e^{-5t} + 7(C_1 e^{2t} + C_2 e^{-5t})}{6}$$

$$= \frac{9C_1 e^{2t}}{6} + \frac{2C_2 e^{-5t}}{6}$$

$$= x$$

$$y = C_1 e^{2t} + C_2 e^{-5t}$$

22 System of first order Differential Equations

$$\overline{X}' = \overline{A} \cdot \overline{X} \rightarrow \begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$
 solutions
$$\begin{cases} x' = a_{11}x + a_{12}y \\ y' = a_{21}x + a_{22}y \end{cases}$$

$$\begin{cases} x' = C_1x_1 + C_2x_2 \\ y' = C_1y_1 + C_2y_2 \end{cases}$$

$$\overline{X} = C_1\overline{X_1} + C_2\overline{X_2}$$
 where
$$\overline{X} = \begin{bmatrix} x \\ y \end{bmatrix}, \overline{X_1} = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \overline{X_2} = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$

 $\overline{X_1}$, $\overline{X_2}$ particular solution of system 1 $\overline{X_1}$, $\overline{X_2}$ - linear independent or $C_1\overline{X_1}+C_2\overline{X_2}=0$, only if $C_1=C_2=0$

$$W = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \neq 0$$

Example 1

$$\overline{X'} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \overline{X}(t)$$

$$\overline{X_1} = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}, \overline{X_2} \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}$$

$$\overline{X_1}, \overline{X_2} - \text{linear independent}$$

Substitute $\overline{X_1}$, into the system gives

$$\begin{bmatrix}
(3e^{2t})' \\
(2e^{2t})'
\end{bmatrix} = \begin{bmatrix}
4 & -3 \\
6 & -7
\end{bmatrix} \begin{bmatrix}
3e^{2t} \\
2e^{2t}
\end{bmatrix}
\begin{bmatrix}
6e^{2t} \\
4e^{2t}
\end{bmatrix} = \begin{bmatrix}
4 \cdot 3 \cdot e^{2t} + (-3) \cdot 3 \cdot e^{2t} \\
6 \cdot 2 \cdot e^{2t} + (-7) \cdot 2 \cdot e^{2t}
\end{bmatrix}
= \begin{bmatrix}
6e^{2t} \\
4e^{2t}
\end{bmatrix}$$

Substitute $\overline{X_2}$ into the system:

$$\begin{bmatrix} (e^{-5t})' \\ (3e^{-5t})' \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}$$
$$\begin{bmatrix} -5e^{-5t} \\ -15e^{-5t} \end{bmatrix} = \begin{bmatrix} 4e^{-5t} + (-3)3e^{-5t} \\ 6e^{-5t} + (-7)3e^{-5t} \end{bmatrix}$$
$$= \begin{bmatrix} -5e^{-5t} \\ -15e^{-5t} \end{bmatrix}$$

$$W = \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = \begin{vmatrix} 3e^{2t} & e^{-5t} \\ 2e^{2t} & 3e^{-5t} \end{vmatrix}$$
$$= 3e^{2t} \cdot 3e^{-5t} - 2e^{2t} \cdot e^{-5t}$$
$$= 9e^{-3t} - 2e^{-3t}$$
$$= 7e^{-3t} \neq 0$$

Linear Independent

$$\overline{X} = C_1 \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix} + \begin{bmatrix} C_2 e^{-5t} \\ 3e^{-5t} \end{bmatrix}$$
$$x = 3C_1 e^{2t} + C_2 e^{-5t}$$
$$y = 2C_1 e^{2t} + 3C_2 e^{-5t}$$

23 Method of Eigenvalues

$$y^{\prime\prime}+ay^{\prime}+b=0, y=e^{rt}$$

$$\overline{X'} = \overline{A} \cdot \overline{X} \leftarrow \overline{X} = \overline{V} \cdot e^{\lambda t}, \overline{V} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\overline{V} \cdot \lambda e^{\lambda t} = \overline{A} \cdot \overline{V}$$

$$\rightarrow \overline{AV} - \lambda \overline{V} = 0$$

$$\overline{V} = \overline{IV}, I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$\overline{A} \cdot \overline{V} - \lambda I \overline{V} = 0 \leftarrow \text{ (cannot subtract constant from matrix)}$$

$$(\overline{A} - \lambda I) \cdot \overline{V} = 0$$

$$|(\overline{A} - \lambda I)| = 0 \leftarrow \text{ (infintely many solutions)}$$

$$\rightarrow \begin{vmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = 0$$

$$\rightarrow \begin{vmatrix} \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} = 0$$

$$\rightarrow \begin{vmatrix} \begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{12} & a_{22} - \lambda \end{bmatrix} = 0$$

$$(a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} = 0$$

$$\lambda^2 - \lambda(a_{11} + a_{22}) + a_{11}a_{12} - a_{12}a_{22} = 0$$

(2) Two distinct roots of characteristic equations $\lambda=\lambda_1,\,\lambda=\lambda_2,\,\lambda_1\neq\lambda_2$ substitute λ in $(\overline{A}\to I)\overline{V}=0$

$$\begin{pmatrix}
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$$

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$$

$$\begin{cases} (a_{11} - \lambda) + a_{12}b = 0 \\ a_{21}a + (a_{22} - \lambda_1)b = 0 \end{cases}$$

Problem 13

$$\begin{cases} x' = 2x + 4y + 3 \cdot e^t \\ y' = 5x - y - t^2 \end{cases}$$

$$\overline{X} = \begin{bmatrix} x \\ y \end{bmatrix}, \overline{F} \begin{bmatrix} 3e^t \\ -t \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 5 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 3e^t \\ -t^2 \end{bmatrix}$$

$$\overline{X'} = \begin{bmatrix} 2 & 4 \\ 5 & -1 \end{bmatrix} \cdot \overline{X} + \overline{F}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2x + 4y \\ 5x - y \end{bmatrix} + \begin{bmatrix} 3e^t \\ -t^2 \end{bmatrix}$$

$$= \begin{bmatrix} 2x + 4y + 3e^t \\ 5x - y - t^2 \end{bmatrix}$$

$$\begin{cases} x' = 2x + 4y + 3e^t \\ y' = 5x - y - t^2 \end{cases}$$

24 Method of Eigenvalues

$$\overline{X'} = \overline{A} \cdot \overline{X} \leftarrow \overline{X} = \overline{V}e^{\lambda t}, \overline{V} = \begin{bmatrix} a \\ b \end{bmatrix} \leftarrow \text{constant vector}$$

$$\overline{V}(e^{\lambda t})' = \overline{A} \cdot \overline{V}e^{\lambda t}$$

$$\lambda \overline{V}e^{\lambda t} = \overline{A} \cdot \overline{V}e^{\lambda t}$$

$$\rightarrow \overline{AV} - \lambda \overline{V} = 0$$

$$\rightarrow \overline{AV} - \lambda \overline{IV} = 0$$

$$\overline{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}
\rightarrow (\overline{A} - \lambda \overline{I}) - \overline{V} = \overline{0}
\overline{0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
\rightarrow \left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} a \\ b \end{bmatrix} = 0
\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\rightarrow \begin{bmatrix} (a_{11} - \lambda)a + a_{12}b \\ a_{21}a + (a_{22} - \lambda)b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\begin{cases} (a_{11} - \lambda)a + a_{12}b = 0 \\ a_{21}a + (a_{22} - \lambda)b = 0 \end{cases} (a, b)?
\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0
(a_{11} - \lambda)(a_{22} - \lambda) - a_{21}a_{12} = 0
\lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{21}a_{12} = 0$$

$$(1)\lambda = \lambda_1, \lambda = \lambda_2, \lambda_1 \neq \lambda_2$$

$$(2)\lambda_1 = \lambda_2$$

$$(3)\lambda_1,\lambda_2$$
 - complex

$$\overline{X_1} = \overline{V_1}e^{\lambda t}$$

Problem 3

$$\begin{cases} x_1' = 3x_1 + 4x_2 & x_1(0) = 1\\ x_2' = 3x_1 + 2x_2 & x_2(0) = 1 \end{cases}$$

$$\overline{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, A = \begin{bmatrix} 3 & 4 \\ 3 & 2 \end{bmatrix}$$
$$\rightarrow \overline{X'} = \begin{bmatrix} 3 & 4 \\ 3 & 2 \end{bmatrix} \overline{X}$$

substitute $\overline{X} = \begin{bmatrix} a \\ b \end{bmatrix} e^{\lambda t}$ after determining λ

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$
$$\begin{vmatrix} 3 - \lambda & 4 \\ 3 & 2 - \lambda \end{vmatrix} = 0$$
$$(3 - \lambda)(2 - \lambda) - 3 - 4 = 0$$
$$\lambda^2 - 5\lambda - 6 = 0$$
$$\lambda = \lambda_1 = 6, \quad \lambda = \lambda_2 = -1$$

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$$

$$\begin{cases} (a_{11} - \lambda)a + a_{12}b = 0 \\ a_{21}a + (a_{22} - \lambda)b = 0 \end{cases}$$

$$\downarrow$$

$$\begin{cases} (3 - \lambda)a + 4b = 0 \\ 3a + (2 - \lambda)b = 0 \end{cases}$$

(2)
$$\lambda = \lambda_1 = b$$

$$\begin{cases} (3-6)a + 4b = 0 \\ 3a + (2-6)b = 0 \end{cases}$$
$$\begin{cases} -3a + 4b = 0 \\ 3a - 4b = 0 \end{cases}$$

Test for valid equations, expect unlimited solutions Chose any value for a and b

$$a = 4, b = 3$$

$$\rightarrow \begin{bmatrix} 4 \\ 3 \end{bmatrix} \rightarrow \overline{X_1} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} e^{\lambda_1 t}$$

$$= \begin{bmatrix} 4 \\ 3 \end{bmatrix} e^{6t}$$

(3)
$$\lambda = \lambda_2 = -1$$

$$\begin{cases} (3 - (-1))a + 4b = 0 \\ 3a + (3 - (1))b = 0 \end{cases}$$
$$\begin{cases} 4a + 4b = 0 \\ 3a + 3b = 0 \end{cases}$$

Test for valid equation

choose values for a and b

$$a = -1, a = 1$$

$$\overline{X_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{\lambda_2 t} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = C_1 \begin{bmatrix} 4 \\ 3 \end{bmatrix} e^{6t} + C_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{-t}$$

$$= \begin{bmatrix} 4C_1 e^{6t} \\ 3C_1 e^{6t} \end{bmatrix} + \begin{bmatrix} C_2 e^{-t} \\ -C_2 e^{-t} \end{bmatrix}$$

$$= \begin{bmatrix} 4C_1 e^{6t} + C_2 e^{-t} \\ 3C_1 e^{6t} - C_2 e^{-t} \end{bmatrix}$$

$$\begin{cases} x_1 = 4C_1 e^{6t} + C_2 e^{-t} \\ x_2 = 3C_1 e^{6t} - C_2 e^{-t} \end{cases}$$

Using Initial Conditions

$$\begin{array}{l} x_1(0) = 4C_1e^0 + C_2e^0 = 1 \\ x_2(0) = 3C_1e^0 - C_2e^0 = 1 \end{array}$$

$$\begin{cases} 4C_1 + C_2 = 1 \\ 3C_1 - C_2 = 1 \end{cases} \oplus$$

$$7C_1 + 0 = 2$$
$$C_1 = \frac{2}{7}$$

$$4\left(\frac{2}{7}\right) + C_2 = 1$$

$$C_2 = 1 - 4 \cdot \frac{2}{7}$$

$$= -\frac{1}{7}$$

$$x_1 = \frac{8}{7}e^{6t} + \left(-\frac{1}{7}\right)e^{-t}$$
$$x_2 = \frac{6}{7}e^{6t} + \frac{1}{7}e^{-t}$$

25 Eigenvalue Method to \overline{X}'

$$\overline{X'} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \overline{X}$$

$$\overline{X'} = \begin{bmatrix} a \\ b \end{bmatrix} e^{\lambda t}$$

Characteristic Equation

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$
$$\rightarrow \lambda = \lambda_1, \lambda = \lambda_2$$

System of Equations for "a" and "b"

$$\begin{bmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$$

$$\rightarrow \begin{cases} (a_{11} - \lambda)a + a_{21}b = 0 \\ a_{21}a + (a_{22} - \lambda)b = 0 \end{cases}$$

$$\rightarrow \begin{bmatrix} a \\ b \end{bmatrix}$$

2. λ - complex number $\lambda_1 = \alpha + i\beta, \lambda_2 = \alpha - i\beta$

$$\begin{cases} (a_{11} - \lambda)a + a_{12}b = 0 \\ a_{21} \cdot a + (a_{22} - \lambda_1)b = 0 \end{cases}$$

$$\begin{cases} (a_{11} - \alpha - i\beta)a + a_{12}b = 0 \\ a_{21}a + (a_{22} - \alpha - i\beta)b = 0 \end{cases}$$

$$\rightarrow \begin{pmatrix} a = a_1 + ia_2 \\ b = b_1 + ib_2 \end{pmatrix}$$

$$\overline{X} = \begin{bmatrix} a_1 + ia_2 \\ b_1 + ib_2 \end{bmatrix} e^{(\alpha + i\beta)}t$$

Euler's Formula

$$\frac{dx_1}{dt} = 4x_1 - 3x_2$$

$$\frac{dx_2}{dt} = 3x_1 + 4x_2$$

$$\rightarrow A = \begin{bmatrix} 4 & -3\\ 3 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12}\\ a_{21} & a_{22} \end{bmatrix}$$

Characteristic Equation

$$\begin{vmatrix} 4 - \lambda & -3 \\ 3 & 4 - \lambda \end{vmatrix} = 0$$

$$(4 - \lambda)(4 - \lambda) - 3 \cdot (-3) = 0$$

$$\rightarrow (\lambda - 4)^2 + 9 = 0$$

$$(\lambda - 4)^2 = -9$$

$$\lambda - 4 = \pm 3i$$

$$\lambda_1 = 4 + 3i, \lambda_2 = 4 - 3i$$
for
$$\begin{bmatrix} a \\ b \end{bmatrix} : \begin{bmatrix} 4 - \lambda_2 & -3 \\ 3 & 4 - \lambda_2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$$

$$\begin{cases} 4 - (4(4 - 3i)) \cdot a + (-3)b = 0 \\ 3a + (4(4 - 3i))b = 0 \end{cases}$$

$$\begin{cases} 3ia - 3b = 0 \\ 3a + 3ib = 0 \end{cases}$$

$$\begin{cases} 4ia - b = 0 \\ a + ib = 0 \end{cases}$$

$$\Rightarrow ia - b = 0$$

$$a = i, b = -1$$

$$x = \begin{bmatrix} i \\ -1 \end{bmatrix} e^{(4-3i)t}$$

$$= \begin{bmatrix} i \\ -1 \end{bmatrix} e^{(4-3i)t}$$

$$= \begin{bmatrix} i \\ -1 \end{bmatrix} e^{(4y)(\cos 3t - i \sin 3t)e^{4t} \\ -1(\cos 3t - i \sin 3t)e^{4t} \end{bmatrix}$$

$$= \begin{bmatrix} (i\cos 3t - i \sin 3t)e^{4t} \\ (-\cos 3t + i \sin 3t)e^{4t} \end{bmatrix}$$

$$\overline{X_1} = \operatorname{Re}[\overline{X}]$$

$$= \begin{bmatrix} \sin 3t \cdot e^{4t} \\ -\cos 3t \cdot e^{4t} \end{bmatrix}$$

$$\overline{X_2} = \operatorname{Im}[\overline{X}]$$

$$= t \begin{bmatrix} \cos 3t \cdot e^{4t} \\ \sin 3t \cdot e^{4t} \end{bmatrix}$$

$$= \begin{bmatrix} \cos 3t \cdot e^{4t} \\ \sin 3t \cdot e^{4t} \end{bmatrix}$$

$$\overline{X} = C_1 \overline{X_1} + C_2 \overline{X_2}$$

$$= C_1 \begin{bmatrix} \sin 3te^{4t} + C_2 \cos 3te^{4t} \\ \sin 3te^{4t} \end{bmatrix} + C_2 \begin{bmatrix} \cos 3te^{4t} \\ \sin 3te^{4t} \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$x_1 = C_1 \sin 3te^{4t} + C_2 \cos 3te^{4t}$$

$$x_2 = -C_1 \cos 3te^{4t} + C_2 \sin 3te^{4t} + C_3 \sin 3te^{4t}$$