CENG 223

Discrete Computational Structures

Fall 2019-2020

Take Home Exam 2

Due date: October 29 2019, Tuesday, 23:55

Question 1

- a) Given sets A, B, and C, express each of the following sets in terms of A, B, and C, using the symbols \cup , \cap , and -.
 - (i) $D = \{x \mid x \in A \land (x \in B \lor x \in C)\}$
 - (ii) $E = \{x \mid (x \in A \land x \in B) \lor x \in C\}$
 - (iii) $F = \{x \mid x \in A \land (x \in B \rightarrow x \in C)\}$
- b) Prove or disprove the following
 - (i) $(A \times B) \times C = A \times (B \times C)$
 - (ii) $(A\cap B)\cap C=A\cap (B\cap C)$
 - (iii) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$

Note that $A \oplus B$ denotes the **symmetric difference** which is defined as the set containing those elements either in A or B but not in both A and B.

To prove A = B, show that $A \subseteq B$ and $B \subseteq A$, to disprove give a counterexample and/or explanation. You can use the laws given in the Table 1 (page 130) of the textbook with reference. You should give proofs for other set identities (if any) that you use.

Question 2

Let $f: A \to B$ be a function, $A_0 \subset A$, $B_0 \subset B$ and f^{-1} denote the **preimage** of B_0 under f defined by

$$f^{-1}(B_0) = \{ a \mid f(a) \in B_0 \}$$

- a) Show that $A_0 \subseteq f^{-1}(f(A_0))$ and that equality holds if f is injective.
- **b)** Show that $f(f^{-1}(B_0)) \subseteq B_0$ and that equality holds if f is surjective.

Question 3

Let A be a nonempty set. Show that the following are equivalent

- (i) A is countable
- (ii) There is a surjective function $f: \mathbb{Z}^+ \to A$
- (iii) There is an injective function $f: A \to \mathbb{Z}^+$

Note: It is sufficient to show that (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i).

Question 4

A binary string is a sequence of 0s and 1s. A binary string is called **finite** if it is a finite sequence, and **infinite** if it is an infinite sequence of 0s and 1s.

- a) Show that the set of finite binary strings is countable.
- b) Show that the set of infinite binary strings is uncountable.

Question 5

- a) Determine whether $\log n!$ is $\Theta(n \log n)$.
- b) Which function grows faster, n! or 2^n ? Justify your answer algebraically.

Regulations

- 1. You have to write your answers to the provided sections of the template answer file given.
- 2. Late Submission: Not allowed.
- 3. Cheating: We have zero tolerance policy for cheating. People involved in cheating will be punished according to the university regulations.
- 4. Updates & Announces: Possible updates will be announced via Odtuclass (odtuclass.metu.edu.tr).
- 5. **Evaluation:**Your latex file will be converted to pdf and evaluated by course assistants. The .tex file will be checked for plagiarism automatically using "black-box" technique and manually by assistants, so make sure to obey the specifications.

Submission

Submission will be done via Odtuclass. Download the given template answer file the2.tex. When you finish your exam upload the .tex file with the same name to Odtuclass.

Note: You cannot submit any other files. Make sure that your .tex file successfully compiles in Inek machines using the command below.

\$ pdflatex the2.tex