Sur le nombre de magmas de cardinal n

Matteo Wei

Juillet 2023

1 La formule de Cauchy-Frobenius-Burnside

Définition. Soit G un groupe de neutre e et X un ensemble. Une action de G sur X est une application $(g,x) \in G \times X \mapsto g.x \in X$ telle que :

- $-- \ \forall x \in X, e.x = x.$
- $\forall (g, h, x) \in G \times G \times X, g.(h.x) = (gh).x.$

On fixe pour la suite de cette partie G un groupe fini, X un ensemble fini, et $(g,x) \in G \times X \mapsto g.x \in X$ une action de G sur X.

Définition. On note :

- Pour $x \in X$, $\omega_G(x) = \{g.x \mid g \in G\}$ l'orbite de x sous l'action de G. Les orbites sous l'action de G forment une partition de X.
- Pour $x \in X$, $G_x = \{g \in G \mid g.x = x\}$ le stabilisateur de x sous l'action de G. C'est un sous-groupe de G.
- Pour $g \in G$, Fix_X $(g) = \{x \in X \mid g.x = x\}$ l'ensemble des points fixés par g.
- $N(G,X) = |\{\omega_G(x) \mid x \in X\}|$ le nombre d'orbites de X sous l'action de G.

Définition. On dit que l'action de G sur X est libre si tous les stabilisateurs sont triviaux.

Lemme. Soit $x \in X$. On a:

$$|G| = |\omega_G(x)||G_x|.$$

Démonstration. Si $(g,h) \in G^2$, on a $g.x = h.x \Leftrightarrow h^{-1}g.x = x \Leftrightarrow h^{-1}g \in G_x \Leftrightarrow g \in hG_x$, et par liberté de l'action de Cayley, $|hG_x| = |G_x|$. On en déduit facilement le résultat voulu.

Théorème (formule de Cauchy-Frobenius-Burnside). On a :

$$N(G, X) = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}_X(g)|.$$

Démonstration. Soit $x \in X$. On remarque qu'on a :

$$\sum_{y \in \omega_G(x)} \frac{1}{|\omega_G(x)|}.$$

On en déduit que

$$N(G,X) = \sum_{x \in X} \frac{1}{|\omega_G(x)|}.$$

Il vient alors, d'après le lemme 1,

$$\begin{split} N(G,X) &= \sum_{x \in X} \frac{|G_x|}{|G|} \\ &= \frac{1}{|G|} \sum_{x \in X} \sum_{g \in G} \mathbbm{1}_{g.x=x} \\ &= \frac{1}{|G|} \sum_{g \in G} \sum_{x \in X} \mathbbm{1}_{g.x=x} \\ &= \frac{1}{|G|} \sum_{g \in G} |\mathrm{Fix}_X(g)| \end{split}$$

ce qui conclut.

2 Dénombrement des magmas

On fixe pour toute la suite $n \in \mathbb{N}$.

Définition. Soit $\sigma \in \mathfrak{S}_n$. On note, pour $k \in [1, n]$, $\mu(\sigma)_k$ le nombre de ses cycles de longueur k.

Proposition. $II \ y \ a$

$$\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \prod_{1 \leq k, l \leq n} \left(\sum_{d \mid k \vee l} d\mu(\sigma)_d \right)^{\mu(\sigma)_k \mu(\sigma)_l k \wedge l}$$

magmas de cardinal n à isomorphisme près.

Démonstration. On se ramène bien entendu sur l'ensemble E = [1, n]; si * et * sont deux lois de compositions internes sur E, on a par définition

$$(E,*) \cong (E,\star) \Leftrightarrow \exists \sigma \in \mathfrak{S}_n : \forall (x,y) \in E^2, x * y = \sigma(\sigma^{-1}(x) \star \sigma^{-1}(y)).$$

On pose donc naturellement, pour $\sigma \in \mathfrak{S}_n$ et $\star \in E^{E^2}$,

$$\sigma.\star: (x,y) \in E^2 \mapsto \sigma(\sigma^{-1}(x) \star \sigma^{-1}(y)) \in E.$$

On vérifie que $(\sigma, \star) \in \mathfrak{S}_n \times E^{E^2} \mapsto \sigma. \star \in E^{E^2}$ définit bien une action de \mathfrak{S}_n sur E^{E^2} ; ce qu'on vient de voir montre que deux lois définissent des magmas isomorphes si, et seulement si, elles sont dans la même orbite pour cette action. Ainsi, on cherche à déterminer $N\left(\mathfrak{S}_n, E^{E^2}\right)$, or la formule de Cauchy-Frobenius-Burnside nous dit que :

$$N\left(\mathfrak{S}_{n}, E^{E^{2}}\right) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} \left| \operatorname{Fix}_{E^{E^{2}}}(\sigma) \right|.$$

On est donc ramené au calcul des cardinaux des ensembles des lois fixées par l'action de S_n . Soit $\sigma \in \mathfrak{S}_n$. Considérons une loi \star fixée par σ . Cette condition se réécrit

$$\forall (x, y) \in E^2, \sigma(x) \star \sigma(y) = \sigma(x \star y).$$

On en déduit que :

$$\forall k \in \mathbb{N}, \sigma^k(x) \star \sigma^k(y) = \sigma^k(x \star y).$$

On est donc conduit à considérer les actions naturelles de $\langle \sigma \rangle$ sur E^2 et E. On fait deux observations :

- Choisir $x\star y$ détermine intégralement les valeurs de \star sur $\omega_{\langle\sigma\rangle}(x,y)$.
- Pour que les choses bouclent correctement, il faut que $|\omega_{\langle\sigma\rangle}(x\star y)| \mid |\omega_{\langle\sigma\rangle}(x,y)|$.

Et on remarque facilement que ces conditions suffisent, c'est-à dire qu'en choisissant un élément vérifiant l'hypothèse de division des cardinaux pour chaque orbite pour l'action sur E^2 , et en complétant correctement, on crée une loi fixée par σ .

Soit $(k,l) \in [1,n]^2$. Il y a par définition $\mu(\sigma)_k$ orbites de cardinal k pour l'action sur E, et $\mu(\sigma)_l$ de cardinal l. Il y a donc $\mu(\sigma)_k\mu(\sigma)_lkl$ couples de la forme (x,y), avec $|\omega_{\langle\sigma\rangle}(x)| = k$ et $|\omega_{\langle\sigma\rangle}(y)| = l$; ces couples se répartissent sur des orbites de cardinal $k \vee l$ pour l'action sur E^2 , et il y a donc $\mu(\sigma)_k\mu(\sigma)_lk \wedge l$ telles orbites.

Par ailleurs, d'après la deuxième condition proposée plus haut, on a pour chacune de ces orbites exactement

$$\sum_{d|k\vee l} d\mu(\sigma)_d$$

choix possibles d'un élément.

On déduit de tout cela

$$\left|\operatorname{Fix}_{E^{E^2}}(\sigma)\right| = \prod_{1 \le k, l \le n} \left(\sum_{d \mid k \lor l} d\mu(\sigma)_d \right)^{\mu(\sigma)_k \mu(\sigma)_l k \land l}$$

puis la formule voulue.

On peut en déduire une formule dépendant uniquement des n-uplets de la forme des $\mu(\sigma)$, $\sigma \in \mathfrak{S}_n$:

Corollaire 1. Il y a

$$\sum_{\substack{\mu \in \mathbb{N}^n \\ \sum_{l=1}^n k\mu_k = n}} \frac{\prod_{1 \le k, l \le n} \left(\sum_{d|k \lor l} d\mu_d\right)^{\mu_k \mu_l k \land l}}{\prod_{k=1}^n k^{\mu_k} \mu_k!}$$

magmas de cardinal n à isomorphisme près.

Démonstration. Il s'agit de la formule précédente, combinée au dénombrement des permutations admettant un type cyclique donné. Pour construire une permutation admettant, pour $k \in [1, n]$, μ_k k-cycles :

— On choisit quels éléments mettre dans chaque cycle, ce qui revient à un calcul d'anagrammes : il y a $\frac{n!}{n}$ possibilités.

 $\prod_{k} k!^{\mu_k}$

- On construit chacun des cycles à partir des éléments dedans : il y a (k-1)! possibilités pour un cycle de longueur k, et donc \int_{k=1}^n (k-1)!^{\mu_k} possibilités au total.
 On constate qu'on construit une permutation donnée autant de fois qu'on peut permuter les cycles de
- On constate qu'on construit une permutation donnée autant de fois qu'on peut permuter les cycles de même longueur entre eux, il faut donc diviser par $\prod_{n} \mu_{k}!$.

Cela donne, au total,

$$\frac{n!}{\prod_{k=1}^{n} k^{\mu_k} \mu_k!}$$

telles permutations, ce qui est bien le résultat voulu.

On en déduit aussi des expressions dépendant des types cycliques.

Définition. Soit $\sigma \in \mathfrak{S}_n$. On note $\lambda(\sigma) = (\lambda(\sigma)_k)_{k=0}^{r(\sigma)}$ son type cyclique.

Corollaire 2. Il y a

$$\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} \prod_{1 \le k, l \le r(\sigma)} \left(\sum_{\substack{1 \le d \le r(\sigma) \\ \lambda(\sigma)_d | \lambda(\sigma)_k \vee \lambda(\sigma)_l}} \lambda(\sigma)_d \right)^{\lambda(\sigma)_k \wedge \lambda(\sigma)_l}$$

magmas de cardinal n à isomorphisme près.

Démonstration. Soit $\sigma \in \mathfrak{S}_n$. Remarquons que, si $(k,l) \in [1,n]^2$, on a :

$$\sum_{\substack{1 \le d \le r(\sigma) \\ \lambda(\sigma)_d \mid k \lor l}} \lambda(\sigma)_d = \sum_{d \mid k \lor l} d\mu(\sigma)_d.$$

En effet, ces deux quantités sont le nombre d'éléments dans des cycles de longueurs divisant $k \vee l$. Par ailleurs, comme il y a $\mu(\sigma)_k$ cycles de longueur k, et $\mu(\sigma)_l$ de longueur l,

$$\left(\sum_{\substack{1 \leq d \leq r(\sigma) \\ \lambda(\sigma), |k| \vee l}} \lambda(\sigma)_d\right)^{k \wedge l}$$

apparaît $\mu(\sigma)_k \mu(\sigma)_l$ fois dans le produit du corollaire 2, ce qui donne bien le résultat voulu.

L'expression correspondante à celle du corollaire 1, en fonction des partitions de n, est moins intéressante car elle nécessite quand même de compter les cycles d'une longueur donnée.