trees

sharp corners, colback = white, before skip = 0.5cm, after skip = 0.5cm, breakable alert colback = Dandelion!7.5, enhanced, colframe = Dandelion!7.5, borderline west = 4pt0ptDandelion!50, breakable bquote colback = url!5, enhanced, colframe = url!5, borderline west = 4pt0ptRoyalBlue!50, breakable sharp corners, colback = white, before skip = 0.5cm, after skip = 0.5cm, boxsep=0mm, breakable normalbox colback = white, enhanced, colframe = black, boxrule = 0.5pt, breakable

Cálculo de Programas

Trabalho Prático LEI — 2022/23

Departamento de Informática Universidade do Minho

Janeiro de 2023

Grupo nr.	50	
a96394	Ricardo Silva Machado Araújo	
a96569	Telmo José Pereira Maciel	
a97396	Pedro Dantas da Cunha Pereira	
a97746	Ricardo Lopes Lucena	

Preâmbulo

Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos cursos que têm esta disciplina, opta-se pela aplicação deste método à programação em Haskell (sem prejuízo da sua aplicação a outras linguagens funcionais). Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, a validá-los e a produzir textos técnicocientíficos de qualidade.

Antes de abodarem os problemas propostos no trabalho, os grupos devem ler com atenção o anexo A onde encontrarão as instruções relativas ao sofware a instalar, etc.

Problema 1

Suponha-se uma sequência numérica semelhante à sequência de Fibonacci tal que cada termo subsequente aos três primeiros corresponde à soma dos três anteriores, sujeitos aos coeficientes *a*, *b* e *c*:

```
f \ a \ b \ c \ 0 = 0

f \ a \ b \ c \ 1 = 1

f \ a \ b \ c \ 2 = 1

f \ a \ b \ c \ (n+3) = a * f \ a \ b \ c \ (n+2) + b * f \ a \ b \ c \ (n+1) + c * f \ a \ b \ c \ n
```

Assim, por exemplo, f 1 1 1 irá dar como resultado a sequência:

```
1,1,2,4,7,13,24,44,81,149,...

f 1 2 3 irá gerar a sequência:
1,1,3,8,17,42,100,235,561,1331,...

etc.
```

A definição de f dada é muito ineficiente, tendo uma degradação do tempo de execução exponencial. Pretendese otimizar a função dada convertendo-a para um ciclo for. Recorrendo à lei de recursividade mútua, calcule loop e initial em

```
fbl\ a\ b\ c = wrap \cdot for\ (loop\ a\ b\ c)\ initial
```

por forma a f e fbl serem (matematicamente) a mesma função. Para tal, poderá usar a regra prática explicada no anexo B.

Valorização: apresente testes de *performance* que mostrem quão mais rápida é *fbl* quando comparada com *f* .

Problema 2

Pretende-se vir a classificar os conteúdos programáticos de todas as UCs lecionadas no *Departamento de Informática* de acordo com o ACM Computing Classification System. A listagem da taxonomia desse sistema está disponível no ficheiro Cp2223data, começando com

(10 primeiros ítens) etc., etc.¹

Pretende-se representar a mesma informação sob a forma de uma árvore de expressão, usando para isso a biblioteca Exp que consta do material padagógico da disciplina e que vai incluída no zip do projecto, por ser mais conveniente para os alunos.

1. Comece por definir a função de conversão do texto dado em *acm_ccs* (uma lista de *strings*) para uma tal árvore como um anamorfismo de Exp:

```
tax :: [String] \rightarrow Exp String String 

tax = [[gene]]_{Exp}
```

Ou seja, defina o gene do anamorfismo, tendo em conta o seguinte diagrama²:

$$Exp \ S \ S + S \times (Exp \ S \ S)^*[ll]_{in \ Exp}$$
 $S^* @ /_1.5pc/[rr]_{gene}[r]^(0.35)out[u]^{tax} \ S + S \times S^*[r]^(0.45) \cdots \ S + S \times (S^*)^*[u]_{id+id\times tax^*}$

(2)

Para isso, tome em atenção que cada nível da hierarquia é, em *acm_ccs*, marcado pela indentação de 4 espaços adicionais — como se mostra no fragmento acima.

Na figura 1 mostra-se a representação gráfica da árvore de tipo Exp que representa o fragmento de *acm_ccs* mostrado acima.

2. De seguida vamos querer todos os caminhos da árvore que é gerada por *tax*, pois a classificação de uma UC pode ser feita a qualquer nível (isto é, caminho descendente da raiz "CCS" até um subnível ou folha). ³

Precisamos pois da composição de tax com uma função de pós-processamento post,

```
tudo :: [String] \rightarrow [[String]]
tudo = post \cdot tax
```

para obter o efeito que se mostra na tabela 1.

Defina a função post:: Exp String String $\rightarrow [[String]]$ da forma mais económica que encontrar.

¹Informação obtida a partir do site ACM CCS selecionando Flat View.

²S abrevia String.

³Para um exemplo de classificação de UC concreto, pf. ver a secção **Classificação ACM** na página pública de <u>Cálculo de Programas</u>.

[-,every node/.style=shape=rectangle,inner sep=3pt,draw] CSS [edge from parent fork down] [sibling distance=4cm] child node [align=center] General and

reference [sibling distance=4cm] child node Document types [sibling distance=2.25cm] child node [align=center] Surveys and overviews child node [align=center] Reference

works child node [align=center] General conference

proceedings child node [align=center] Biographies child node [align=center] General literature child node [align=center, xshift=0.75cm] Computing standards, RFCs and

guidelines child node [align=center] Cross-computing tools and techniques:

Figure 1: Fragmento de *acm_ccs* representado sob a forma de uma árvore do tipo Exp.

CCS			
CCS	General and reference		
CCS	General and reference	Document types	
CCS	General and reference	Document types	Surveys and overviews
CCS	General and reference	Document types	Reference works
CCS	General and reference	Document types	General conference proceedings
CCS	General and reference	Document types	Biographies
CCS	General and reference	Document types	General literature
CCS	General and reference	Cross-computing tools and techniques	

Table 1: Taxonomia ACM fechada por prefixos (10 primeiros ítens).

Sugestão: Inspecione as bibliotecas fornecidas à procura de funções auxiliares que possa re-utilizar para a sua solução ficar mais simples. Não se esqueça que, para o mesmo resultado, nesta disciplina "ganha" quem escrever menos código!

Sugestão: Para efeitos de testes intermédios não use a totalidade de *acm_ccs*, que tem 2114 linhas! Use, por exemplo, *take* 10 *acm_ccs*, como se mostrou acima.

Problema 3

O tapete de Sierpinski é uma figura geométrica fractal em que um quadrado é subdividido recursivamente em sub-quadrados. A construção clássica do tapete de Sierpinski é a seguinte: assumindo um quadrado de lado l, este é subdivido em 9 quadrados iguais de lado l/3, removendo-se o quadrado central. Este passo é depois repetido sucessivamente para cada um dos 8 sub-quadrados restantes (Fig. 2).

Figure 2: Construção do tapete de Sierpinski com profundidade 5.

NB: No exemplo da fig. 2, assumindo a construção clássica já referida, os quadrados estão a branco e o fundo a verde.

A complexidade deste algoritmo, em função do número de quadrados a desenhar, para uma profundidade n, é de 8^n (exponencial). No entanto, se assumirmos que os quadrados a desenhar são os que estão a verde, a complexidade é reduzida para $\sum_{i=0}^{n-1} 8^i$, obtendo um ganho de $\sum_{i=1}^{n} \frac{100}{8^i}\%$. Por exemplo, para n=5, o ganho é de 14.28%. O objetivo deste problema é a implementação do algoritmo mediante a referida otimização.

Assim, seja cada quadrado descrito geometricamente pelas coordenadas do seu vértice inferior esquerdo e o comprimento do seu lado:

type Square = (Point, Side)

Figure 3: Tapete de Sierpinski com profundidade 2 e com os quadrados enumerados.

```
type Side = Double

type Point = (Double, Double)
```

A estrutura recursiva de suporte à construção de tapetes de Sierpinski será uma Rose Tree, na qual cada nível da árvore irá guardar os quadrados de tamanho igual. Por exemplo, a construção da fig. 3 poderá⁴ corresponder à árvore da figura 4.

[level distance = 2cm, level 1/.style = sibling distance = 1.5cm, level 2/.style = sibling distance = 0.9cm,][draw, circle]1 child node [draw, circle]2 child node [draw, circle]10 child node [draw, circle]11 child node [draw, circle]12 child node [draw, circle]13 child node [draw, circle]14 child node [draw, circle]15 child node [draw, circle]16 child node [draw, circle]17 child node [draw, circle]2 child node [draw, circle]3 child node [draw, circle]3 child node [draw, circle]4 child node [draw, circle]5 child node [draw, circle]6 child node [draw, circle]7 child node [draw, circle]8 child node [draw, circle]9;

Figure 4: Possível árvore de suporte para a construção da fig. 3.

Uma vez que o tapete é também um quadrado, o objetivo será, a partir das informações do tapete (coordenadas do vértice inferior esquerdo e comprimento do lado), desenhar o quadrado central, subdividir o tapete nos 8 subtapetes restantes, e voltar a desenhar, recursivamente, o quadrado nesses 8 sub-tapetes. Desta forma, cada tapete determina o seu quadrado e os seus 8 sub-tapetes. No exemplo em cima, o tapete que contém o quadrado 1 determina esse próprio quadrado e determina os sub-tapetes que contêm os quadrados 2 a 9.

Portanto, numa primeira fase, dadas as informações do tapete, é construida a árvore de suporte com todos os quadrados a desenhar, para uma determinada profundidade.

```
squares::(Square,Int) \rightarrow Rose\ Square
```

NB: No programa, a profundidade começa em 0 e não em 1.

Uma vez gerada a árvore com todos os quadrados a desenhar, é necessário extrair os quadrados para uma lista, a qual é processada pela função *drawSq*, disponibilizada no anexo D.

```
rose2List :: Rose \ a \rightarrow [a]
```

Assim, a construção de tapetes de Sierpinski é dada por um hilomorfismo de Rose Trees:

```
sierpinski :: (Square, Int) \rightarrow [Square]
sierpinski = [gr2l, gsq]_R
```

Trabalho a fazer:

- 1. Definir os genes do hilomorfismo sierpinski.
- 2. Correr

⁴A ordem dos filhos não é relevante.

```
\begin{aligned} & sierp4 = drawSq \ (sierpinski \ (((0,0),32),3)) \\ & constructSierp5 = \textbf{do} \ drawSq \ (sierpinski \ (((0,0),32),0)) \\ & await \\ & drawSq \ (sierpinski \ (((0,0),32),1)) \\ & await \\ & drawSq \ (sierpinski \ (((0,0),32),2)) \\ & await \\ & drawSq \ (sierpinski \ (((0,0),32),3)) \\ & await \\ & drawSq \ (sierpinski \ (((0,0),32),4)) \\ & await \end{aligned}
```

3. Definir a função que apresenta a construção do tapete de Sierpinski como é apresentada em *construcaoSierp5*, mas para uma profundidade $n \in \mathbb{N}$ recebida como parâmetro.

```
constructSierp :: Int \rightarrow IO[()]

constructSierp = present \cdot carpets
```

Dica: a função *constructSierp* será um hilomorfismo de listas, cujo anamorfismo *carpets*:: $Int \rightarrow [[Square]]$ constrói, recebendo como parâmetro a profundidade n, a lista com todos os tapetes de profundidade 1..n, e o catamorfismo *present*:: $[[Square]] \rightarrow IO[()]$ percorre a lista desenhando os tapetes e esperando 1 segundo de intervalo.

Problema 4

Este ano ocorrerá a vigésima segunda edição do Campeonato do Mundo de Futebol, organizado pela Federação Internacional de Futebol (FIFA), a decorrer no Qatar e com o jogo inaugural a 20 de Novembro.

Uma casa de apostas pretende calcular, com base numa aproximação dos *rankings*⁵ das seleções, a probabilidade de cada seleção vencer a competição.

Para isso, o diretor da casa de apostas contratou o Departamento de Informática da Universidade do Minho, que atribuiu o projeto à equipa formada pelos alunos e pelos docentes de Cálculo de Programas.

Para resolver este problema de forma simples, ele será abordado por duas fases:

- 1. versão académica sem probabilidades, em que se sabe à partida, num jogo, quem o vai vencer;
- versão realista com probabilidades usando o mónade Dist (distribuições probabilísticas) que vem descrito no anexo C.

A primeira versão, mais simples, deverá ajudar a construir a segunda.

Descrição do problema

Uma vez garantida a qualificação (já ocorrida), o campeonato consta de duas fases consecutivas no tempo:

- 1. fase de grupos;
- 2. fase eliminatória (ou "mata-mata", como é habitual dizer-se no Brasil).

Para a fase de grupos, é feito um sorteio das 32 seleções (o qual já ocorreu para esta competição) que as coloca em 8 grupos, 4 seleções em cada grupo. Assim, cada grupo é uma lista de seleções.

Os grupos para o campeonato deste ano são:

```
type Team = String
type Group = [Team]
groups::[Group]
groups = [["Qatar", "Ecuador", "Senegal", "Netherlands"],
        ["England", "Iran", "USA", "Wales"],
```

⁵Os rankings obtidos aqui foram escalados e arredondados.

```
["Argentina", "Saudi Arabia", "Mexico", "Poland"],
["France", "Denmark", "Tunisia", "Australia"],
["Spain", "Germany", "Japan", "Costa Rica"],
["Belgium", "Canada", "Morocco", "Croatia"],
["Brazil", "Serbia", "Switzerland", "Cameroon"],
["Portugal", "Ghana", "Uruguay", "Korea Republic"]]
```

Deste modo, groups !! 0 corresponde ao grupo A, groups !! 1 ao grupo B, e assim sucessivamente. Nesta fase, cada seleção de cada grupo vai defrontar (uma vez) as outras do seu grupo.

Passam para o "mata-mata" as duas seleções que mais pontuarem em cada grupo, obtendo pontos, por cada jogo da fase grupos, da seguinte forma:

- vitória 3 pontos;
- empate 1 ponto;
- derrota 0 pontos.

Como se disse, a posição final no grupo irá determinar se uma seleção avança para o "mata-mata" e, se avançar, que possíveis jogos terá pela frente, uma vez que a disposição das seleções está desde o início definida para esta última fase, conforme se pode ver na figura 5.

Figure 5: O "mata-mata"

Assim, é necessário calcular os vencedores dos grupos sob uma distribuição probabilística. Uma vez calculadas as distribuições dos vencedores, é necessário colocá-las nas folhas de uma *LTree* de forma a fazer um *match* com a figura 5, entrando assim na fase final da competição, o tão esperado "mata-mata". Para avançar nesta fase final da competição (i.e. subir na árvore), é preciso ganhar, quem perder é automaticamente eliminado ("mata-mata"). Quando uma seleção vence um jogo, sobe na árvore, quando perde, fica pelo caminho. Isto significa que a seleção vencedora é aquela que vence todos os jogos do "mata-mata".

Arquitetura proposta

A visão composicional da equipa permitiu-lhe perceber desde logo que o problema podia ser dividido, independentemente da versão, probabilística ou não, em duas partes independentes — a da fase de grupos e a do "mata-mata". Assim, duas sub-equipas poderiam trabalhar em paralelo, desde que se garantisse a composicionalidade das partes. Decidiu-se que os alunos desenvolveriam a parte da fase de grupos e os docentes a do "mata-mata".

Versão não probabilística

O resultado final (não probabilístico) é dado pela seguinte função:

```
winner :: Team
winner = wcup groups
```

```
wcup = knockoutStage \cdot groupStage
```

A sub-equipa dos docentes já entregou a sua parte:

```
knockoutStage = ([id, koCriteria])
```

Considere-se agora a proposta do *team leader* da sub-equipa dos alunos para o desenvolvimento da fase de grupos:

Vamos dividir o processo em 3 partes:

- · gerar os jogos,
- · simular os jogos,
- preparar o "mata-mata" gerando a árvore de jogos dessa fase (fig. 5).

Assim:

```
groupStage :: [Group] \rightarrow LTree\ Team

groupStage = initKnockoutStage \cdot simulateGroupStage \cdot genGroupStageMatches
```

Comecemos então por definir a função genGroupStageMatches que gera os jogos da fase de grupos:

```
genGroupStageMatches :: [Group] \rightarrow [[Match]]

genGroupStageMatches = map generateMatches
```

onde

```
type Match = (Team, Team)
```

Ora, sabemos que nos foi dada a função

```
gsCriteria :: Match \rightarrow Maybe Team
```

que, mediante um certo critério, calcula o resultado de um jogo, retornando Nothing em caso de empate, ou a equipa vencedora (sob o construtor Just). Assim, precisamos de definir a função

```
simulateGroupStage :: [[Match]] \rightarrow [[Team]]

simulateGroupStage = map (groupWinners gsCriteria)
```

que simula a fase de grupos e dá como resultado a lista dos vencedores, recorrendo à função groupWinners:

```
groupWinners\ criteria = best\ 2 \cdot consolidate \cdot (>>= matchResult\ criteria)
```

Aqui está apenas em falta a definição da função matchResult.

Por fim, teremos a função initKnockoutStage que produzirá a LTree que a sub-equipa do "mata-mata" precisa, com as devidas posições. Esta será a composição de duas funções:

```
initKnockoutStage = [glt] \cdot arrangement
```

Trabalho a fazer:

1. Definir uma alternativa à função genérica *consolidate* que seja um catamorfismo de listas:

```
consolidate' :: (Eq\ a, Num\ b) \Rightarrow [(a,b)] \rightarrow [(a,b)]
consolidate' = \{cgene\}
```

- 2. Definir a função $matchResult :: (Match \rightarrow Maybe\ Team) \rightarrow Match \rightarrow [(Team, Int)]$ que apura os pontos das equipas de um dado jogo.
- 3. Definir a função genérica $pairup :: Eq \ b \Rightarrow [b] \rightarrow [(b,b)]$ em que generateMatches se baseia.
- 4. Definir o gene glt.

Versão probabilística

Nesta versão, mais realista, $gsCriteria :: Match \rightarrow (Maybe\ Team)$ dá lugar a

```
pgsCriteria :: Match \rightarrow Dist (Maybe Team)
```

que dá, para cada jogo, a probabilidade de cada equipa vencer ou haver um empate. Por exemplo, há 50% de probabilidades de Portugal empatar com a Inglaterra,

```
pgsCriteria("Portugal", "England")

Nothing 50.0%

Just "England" 26.7%

Just "Portugal" 23.3%
```

etc.

O que é Dist? É o mónade que trata de distribuições probabilísticas e que é descrito no anexo C, página 12 e seguintes. O que há a fazer? Eis o que diz o vosso *team leader*:

O que há a fazer nesta versão é, antes de mais, avaliar qual é o impacto de gsCriteria virar monádica (em Dist) na arquitetura geral da versão anterior. Há que reduzir esse impacto ao mínimo, escrevendo-se tão pouco código quanto possível!

Todos relembraram algo que tinham aprendido nas aulas teóricas a respeito da "monadificação" do código: há que reutilizar o código da versão anterior, monadificando-o.

Para distinguir as duas versões decidiu-se afixar o prefixo 'p' para identificar uma função que passou a ser monádica.

A sub-equipa dos docentes fez entretanto a monadificação da sua parte:

```
pwinner:: Dist Team
pwinner = pwcup groups
pwcup = pknockoutStage • pgroupStage
```

E entregou ainda a versão probabilística do "mata-mata":

```
pknockoutStage = mcataLTree' [return, pkoCriteria]
mcataLTree' g = k \text{ where}
k (Leaf a) = g1 a
k (Fork (x,y)) = mmbin g2 (k x, k y)
g1 = g \cdot i_1
g2 = g \cdot i_2
```

A sub-equipa dos alunos também já adiantou trabalho,

```
pgroupStage = pinitKnockoutStage \bullet psimulateGroupStage \cdot genGroupStageMatches
```

mas faltam ainda pinitKnockoutStage e pgroupWinners, esta usada em psimulateGroupStage, que é dada em anexo.

Trabalho a fazer:

- Definir as funções que ainda não estão implementadas nesta versão.
- Valorização: experimentar com outros critérios de "ranking" das equipas.

Importante: (a) código adicional terá que ser colocado no anexo E, obrigatoriamente; (b) todo o código que é dado não pode ser alterado.

Anexos

A Documentação para realizar o trabalho

Para cumprir de forma integrada os objectivos do trabalho vamos recorrer a uma técnica de programação dita "literária" [?], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a documentação de um programa deverão estar no mesmo ficheiro.

O ficheiro cp2223t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp2223t.lhs⁶ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp2223t.zip e executando:

```
$ lhs2TeX cp2223t.lhs > cp2223t.tex
$ pdflatex cp2223t
```

em que lhs2tex é um pré-processador que faz "pretty printing" de código Haskell em LATEX e que deve desde já instalar utilizando o utiliário cabal disponível em haskell.org.

Por outro lado, o mesmo ficheiro cp2223t.1hs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ ghci cp2223t.lhs
```

Abra o ficheiro cp2223t.1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

é seleccionado pelo GHCi para ser executado.

A.1 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de 3 (ou 4) alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo em todos os exercícios do trabalho, para assim poderem responder a qualquer questão colocada na *defesa oral* do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo E com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibT_EX) e o índice remissivo (com makeindex),

```
$ bibtex cp2223t.aux
$ makeindex cp2223t.idx
```

e recompilar o texto como acima se indicou.

No anexo D, disponibiliza-se algum código Haskell relativo aos problemas apresentados. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

A.2 Como exprimir cálculos e diagramas em LaTeX/lhs2tex

Como primeiro exemplo, estudar o texto fonte deste trabalho para obter o efeito:⁷

```
id = \langle f, g \rangle
\equiv \qquad \{ \text{ universal property } \}
\begin{cases} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{cases}
\equiv \qquad \{ \text{ identity } \}
\begin{cases} \pi_1 = f \\ \pi_2 = g \end{cases}
```

⁶O sufixo 'lhs' quer dizer *literate Haskell*.

⁷Exemplos tirados de [?].

Os diagramas podem ser produzidos recorrendo à package LATEX xymatrix, por exemplo:

$$@C = 2cm\mathbb{N}_0[d]_-(g) \qquad 1 + \mathbb{N}_0[d]^{id+(g)}[l]_-\text{in}$$

$$B \qquad \qquad 1 + B[l]^-g$$

$$(4)$$

B Regra prática para a recursividade mútua em \mathbb{N}_0

Nesta disciplina estudou-se como fazer programação dinâmica por cálculo, recorrendo à lei de recursividade mútua.8

Para o caso de funções sobre os números naturais (\mathbb{N}_0 , com functor F X = 1 + X) é fácil derivar-se da lei que foi estudada uma *regra de algibeira* que se pode ensinar a programadores que não tenham estudado Cálculo de Programas. Apresenta-se de seguida essa regra, tomando como exemplo o cálculo do ciclo-for que implementa a função de Fibonacci, recordar o sistema:

$$fib 0 = 1$$

$$fib (n+1) = f n$$

$$f 0 = 1$$

$$f (n+1) = fib n + f n$$

Obter-se-á de imediato

$$fib' = \pi_1 \cdot \text{for loop init where}$$

 $loop (fib,f) = (f,fib+f)$
 $init = (1,1)$

usando as regras seguintes:

- O corpo do ciclo loop terá tantos argumentos quanto o número de funções mutuamente recursivas.
- Para as variáveis escolhem-se os próprios nomes das funções, pela ordem que se achar conveniente.
- Para os resultados vão-se buscar as expressões respectivas, retirando a variável n.
- Em init coleccionam-se os resultados dos casos de base das funções, pela mesma ordem.

Mais um exemplo, envolvendo polinómios do segundo grau $ax^2 + bx + c$ em \mathbb{N}_0 . Seguindo o método estudado nas aulas 10 , de $f = ax^2 + bx + c$ derivam-se duas funções mutuamente recursivas:

$$f 0 = c$$

 $f (n+1) = f n + k n$
 $k 0 = a + b$
 $k (n+1) = k n + 2 a$

Seguindo a regra acima, calcula-se de imediato a seguinte implementação, em Haskell:

$$f'$$
 a b $c = \pi_1$ for loop init where loop $(f,k) = (f+k,k+2*a)$ init $= (c,a+b)$

⁸Lei (3.95) em [?], página 112.

⁹Podem obviamente usar-se outros símbolos, mas numa primeira leitura dá jeito usarem-se tais nomes.

¹⁰Secção 3.17 de [?] e tópico Recursividade mútua nos vídeos de apoio às aulas teóricas.

C O mónade das distribuições probabilísticas

Mónades são functores com propriedades adicionais que nos permitem obter efeitos especiais em programação. Por exemplo, a biblioteca Probability oferece um mónade para abordar problemas de probabilidades. Nesta biblioteca, o conceito de distribuição estatística é captado pelo tipo

newtype Dist
$$a = D \{unD :: [(a, ProbRep)]\}$$
 (5)

em que ProbRep é um real de 0 a 1, equivalente a uma escala de 0 a 100%.

Cada par (a,p) numa distribuição d:: Dist a indica que a probabilidade de a é p, devendo ser garantida a propriedade de que todas as probabilidades de d somam 100%. Por exemplo, a seguinte distribuição de classificações por escalões de A a E,

```
A 2%
B 12%
C 29%
D 35%
E 22%
```

será representada pela distribuição

```
d_1:: Dist Char d_1 = D[('A', 0.02), ('B', 0.12), ('C', 0.29), ('D', 0.35), ('E', 0.22)]
```

que o GHCi mostrará assim:

```
'D' 35.0%
```

'C' 29.0%

'E' 22.0%

'B' 12.0%

'A' 2.0%

É possível definir geradores de distribuições, por exemplo distribuições uniformes,

 $d_2 = uniform (words "Uma frase de cinco palavras")$

isto é

"Uma" 20.0% "cinco" 20.0% "de" 20.0% "frase" 20.0% "palavras" 20.0%

distribuição normais, eg.

$$d_3 = normal [10..20]$$

etc. Dist forma um **mónade** cuja unidade é *return* a = D[(a, 1)] e cuja composição de Kleisli é (simplificando a notação)

$$(f \bullet g) a = [(y,q*p) \mid (x,p) \leftarrow g \ a, (y,q) \leftarrow f \ x]$$

em que $g: A \to \mathsf{Dist}\, B$ e $f: B \to \mathsf{Dist}\, C$ são funções **monádicas** que representam *computações probabilísticas*.

Este mónade é adequado à resolução de problemas de *probabilidades e estatística* usando programação funcional, de forma elegante e como caso particular da programação monádica.

D Código fornecido

Problema 1

Alguns testes para se validar a solução encontrada:

¹¹Para mais detalhes ver o código fonte de <u>Probability</u>, que é uma adaptação da biblioteca <u>PHP</u> ("Probabilistic Functional Programming"). Para quem quiser saber mais recomenda-se a leitura do artigo [?].

```
test\ a\ b\ c = map\ (fbl\ a\ b\ c)\ x \equiv map\ (f\ a\ b\ c)\ x where x = [1..20] test\ l = test\ 1\ 2\ 3 test\ l = test\ (-2)\ 1\ 5
```

Problema 2

Verificação: a árvore de tipo Exp gerada por

```
acm\_tree = tax \ acm\_ccs
```

deverá verificar as propriedades seguintes:

- $expDepth\ acm_tree \equiv 7$ (profundidade da árvore);
- $length (expOps acm_tree) \equiv 432$ (número de nós da árvore);
- length (expLeaves acm_tree) $\equiv 1682$ (número de folhas da árvore). 12

O resultado final

```
acm\_xls = post acm\_tree
```

não deverá ter tamanho inferior ao total de nodos e folhas da árvore.

Problema 3

Função para visualização em SVG:

```
drawSq \ x = picd'' \ [Svg.scale \ 0.44 \ (0,0) \ (x \gg sq2svg)]
sq2svg \ (p,l) = (color \ \#67AB9F'' \cdot polyg) \ [p,p.+(0,l),p.+(l,l),p.+(l,0)]
```

Para efeitos de temporização:

```
await = threadDelay 1000000
```

Problema 4

Rankings:

```
rankings = [
  ("Argentina", 4.8),
  ("Australia", 4.0),
  ("Belgium", 5.0),
  ("Brazil", 5.0),
  ("Cameroon", 4.0),
  ("Canada", 4.0),
  ("Costa Rica", 4.1),
  ("Croatia", 4.4),
  ("Denmark", 4.5),
  ("Ecuador", 4.0),
  ("England", 4.7),
  ("France", 4.8),
  ("Germany", 4.5),
  ("Ghana", 3.8),
  ("Iran", 4.2),
  ("Japan", 4.2),
  ("Korea Republic", 4.2),
  ("Mexico", 4.5),
  ("Morocco", 4.2),
```

¹²Quer dizer, o número total de nodos e folhas é 2114, o número de linhas do texto dado.

```
("Netherlands",4.6),

("Poland",4.2),

("Portugal",4.6),

("Qatar",3.9),

("Saudi Arabia",3.9),

("Senegal",4.3),

("Serbia",4.2),

("Spain",4.7),

("Switzerland",4.4),

("Tunisia",4.1),

("USA",4.4),

("Uruguay",4.5),

("Wales",4.3)]
```

Geração dos jogos da fase de grupos:

```
generateMatches = pairup
```

Preparação da árvore do "mata-mata":

```
arrangement = (\gg swapTeams) \cdot chunksOf \ 4 \ where
swapTeams [[a_1,a_2],[b_1,b_2],[c_1,c_2],[d_1,d_2]] = [a_1,b_2,c_1,d_2,b_1,a_2,d_1,c_2]
```

Função proposta para se obter o ranking de cada equipa:

```
rank x = 4 ** (pap \ rankings \ x - 3.8)
```

Critério para a simulação não probabilística dos jogos da fase de grupos:

```
gsCriteria = s \cdot \langle id \times id, rank \times rank \rangle where s((s_1, s_2), (r_1, r_2)) = let d = r_1 - r_2 in if d > 0.5 then Just s_1 else if d < -0.5 then Just s_2 else Nothing
```

Critério para a simulação não probabilística dos jogos do mata-mata:

```
koCriteria = s \cdot \langle id \times id, rank \times rank \rangle where s((s_1, s_2), (r_1, r_2)) = \mathbf{let} \ d = r_1 - r_2 \ \mathbf{in} if d \equiv 0 \ \mathbf{then} \ s_1 else if d > 0 \ \mathbf{then} \ s_1 \ \mathbf{else} \ s_2
```

Critério para a simulação probabilística dos jogos da fase de grupos:

```
pgsCriteria = s \cdot \langle id \times id, rank \times rank \rangle where s((s_1, s_2), (r_1, r_2)) =  if abs(r_1 - r_2) > 0.5 then fmap Just(pkoCriteria(s_1, s_2)) else f(s_1, s_2) = D \cdot ((Nothing, 0.5):) \cdot map(Just \times (/2)) \cdot unD \cdot pkoCriteria
```

Critério para a simulação probabilística dos jogos do mata-mata:

```
pkoCriteria\ (e_1,e_2) = D\ [(e_1,1-r_2\,/\,(r_1+r_2)),(e_2,1-r_1\,/\,(r_1+r_2))] where r_1=rank\ e_1 r_2=rank\ e_2
```

Versão probabilística da simulação da fase de grupos: 13

```
psimulateGroupStage = trim · map (pgroupWinners pgsCriteria)

trim = top 5 · sequence · map (filterP · norm) where

filterP (D x) = D [(a,p) | (a,p) \leftarrow x,p > 0.0001]
```

 $^{^{13}\}mbox{Faz-se}$ "trimming" das distribuições para reduzir o tempo de simulação.

```
top \ n = vec2Dist \cdot take \ n \cdot reverse \cdot presort \ \pi_2 \cdot unD

vec2Dist \ x = D \ [(a, n/t) \ | \ (a, n) \leftarrow x] \ \mathbf{where} \ t = sum \ (\mathsf{map} \ \pi_2 \ x)
```

Versão mais eficiente da pwinner dada no texto principal, para diminuir o tempo de cada simulação:

```
pwinner:: Dist Team

pwinner = mbin f x \gg pknockoutStage where

f (x,y) = initKnockoutStage (x++y)

x = \langle g \cdot take \ 4, g \cdot drop \ 4 \rangle groups

g = psimulateGroupStage \cdot genGroupStageMatches
```

Auxiliares:

```
best n = \text{map } \pi_1 \cdot take \ n \cdot reverse \cdot presort \ \pi_2
consolidate:: (Num \ d, Eq \ d, Eq \ b) \Rightarrow [(b,d)] \rightarrow [(b,d)]
consolidate = map (id \times sum) \cdot collect

collect:: (Eq \ a, Eq \ b) \Rightarrow [(a,b)] \rightarrow [(a,[b])]
collect x = nub \ [k \mapsto [d' \mid (k',d') \leftarrow x,k' \equiv k] \mid (k,d) \leftarrow x]
```

Função binária monádica f:

```
mmbin :: Monad \ m \Rightarrow ((a,b) \rightarrow m \ c) \rightarrow (m \ a,m \ b) \rightarrow m \ c

mmbin f \ (a,b) = \mathbf{do} \ \{x \leftarrow a; y \leftarrow b; f \ (x,y) \}
```

Monadificação de uma função binária f:

```
mbin :: Monad \ m \Rightarrow ((a,b) \rightarrow c) \rightarrow (m \ a,m \ b) \rightarrow m \ c

mbin = mmbin \cdot (return \cdot)
```

Outras funções que podem ser úteis:

$$(f \text{ 'is' } v) x = (f x) \equiv v$$

 $rcons(x, a) = x ++ [a]$

E Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções para os exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto, diagramas e/ou outras funções auxiliares que sejam necessárias.

Valoriza-se a escrita de *pouco* código que corresponda a soluções simples e elegantes.

Problema 1

Começando por desenvolver a lei da recursividade mútua temos então

$$\begin{cases} h \cdot \mathbf{in} = j \cdot F \left\langle \left\langle h, g \right\rangle, f \right\rangle \\ g \cdot \mathbf{in} = k \cdot F \left\langle \left\langle h, g \right\rangle, f \right\rangle \\ f \cdot \mathbf{in} = l \cdot F \left\langle \left\langle h, g \right\rangle, f \right\rangle \\ \equiv \left\langle \left\langle h, g \right\rangle, f \right\rangle = \left(\left\langle \left\langle j, k \right\rangle, l \right\rangle \right) \end{cases}$$

Desenvolvendo mais ainda

$$\begin{cases} & h \cdot \underline{0} = jI \\ & h \cdot \mathrm{succ} = j2 \cdot \langle \langle h, g \rangle, j \rangle \\ & g \cdot \underline{0} = kI \\ & g \cdot \mathrm{succ} = k2 \cdot \langle \langle h, g \rangle, j \rangle \\ & f \cdot \underline{0} = lI \\ & f \cdot \mathrm{succ} = l_2 \cdot \langle \langle h, g \rangle, j \rangle \end{cases}$$

$$\equiv \langle \langle h, g \rangle, f \rangle = (\langle \langle [jI, j2], [kI, k2] \rangle, [II, l_2] \rangle)$$

O que por fim nos leva a

```
\begin{cases} & h \ 0 = a \\ & h \ (n+1) = j2 \ ((h \ n, g \ n), f \ n) \\ & g \ 0 = b \\ & g \ (n+1) = k2 \ ((h \ n, g \ n), f \ n) \\ & f \ 0 = c \\ & f \ (n+1) = l_2 \ ((h \ n, g \ n), f \ n) \end{cases}
\equiv \langle \langle h, g \rangle, f \rangle = \{ \langle \langle [a, j2], [\underline{b}, k2] \rangle, [\underline{c}, l_2] \rangle \}
```

Pegando na função original

```
f \ a \ b \ c \ 0 = 0

f \ a \ b \ c \ 1 = 1

f \ a \ b \ c \ 2 = 1

f \ a \ b \ c \ (n+3) = a * f \ a \ b \ c \ (n+2) + b * f \ a \ b \ c \ (n+1) + c * f \ a \ b \ c \ n
```

Podemos concluir que

```
g \ a \ b \ c \ n = f \ a \ b \ c \ (n+1)

g \ a \ b \ c \ (n+1) = f \ a \ b \ c \ (n+2) = h \ a \ b \ c \ n

h \ a \ b \ c \ n = f \ a \ b \ c \ (n+2)

h \ a \ b \ c \ (n+1) = f \ a \ b \ c \ (n+3) = h \ a \ b \ c \ n + g \ a \ b \ c \ n + f \ a \ b \ c \ n
```

E substituindo valores obtemos

```
 f a b c 0 = 0 
 g a b c 0 = 1 
 h a b c 0 = 1 
 \begin{cases} h a b c 0 = 1 \\ h a b c (n+1) = a * h a b c n + b * g a b c n + c * f a b c n \\ g a b c 0 = 1 \\ g a b c (n+1) = h a b c n \\ f a b c 0 = 0 \\ f a b c (n+1) = g a b c n \end{cases}
```

Substituindo na lei da recursividade mútua temos que

```
\begin{cases} h a b c 0 = a \\ h a b c (n+1) = h2 ((h a b c n, g a b c n), f a b c n) \\ g a b c 0 = b \\ g a b c (n+1) = k2 ((h a b c n, g a b c n), f a b c n) \\ f a b c 0 = c \\ f a b c (n+1) = l_2 ((h a b c n, g a b c n), f a b c n) \end{cases}
\equiv \langle \langle h, g \rangle, f \rangle = \{ \langle \langle [\underline{a}, j2], [\underline{b}, k2] \rangle, [\underline{c}, l_2] \rangle \}
```

Em que

$$a = 1$$

$$h2 = aux \ a \ b \ c$$

$$b = 1$$

$$k2 = \pi_1 \cdot \pi_1$$

$$c = 0$$

$$l_2 = \pi_2 \cdot \pi_1$$

Sendo que a função aux é a seguinte

$$aux \ a \ b \ c \ ((h,g),f) = a * h + b * g + c * f$$

Voltando a substituir, mais uma vez, os valores na lei da recursividade mútua

```
\begin{cases} & h \ a \ b \ c \ 0 = 1 \\ & h \ a \ b \ c \ (n+1) = aux \ ((h \ a \ b \ c \ n, g \ a \ b \ c \ n), f \ a \ b \ c \ n) \\ & g \ a \ b \ c \ 0 = 1 \\ & g \ a \ b \ c \ (n+1) = \pi_1 \cdot \pi_1 \ ((h \ a \ b \ c \ n, g \ a \ b \ c \ n), f \ a \ b \ c \ n) \\ & f \ a \ b \ c \ 0 = 0 \\ & f \ a \ b \ c \ (n+1) = \pi_2 \cdot \pi_1 \ ((h \ a \ b \ c \ n, g \ a \ b \ c \ n), f \ a \ b \ c \ n) \\ & \langle \langle h, g \rangle, f \rangle = \langle \langle \langle [1, aux], [1, \pi_1 \cdot \pi_1] \rangle, [0, \pi_2 \cdot \pi_1] \rangle \rangle) \end{cases} \\ & \equiv \qquad \{ \text{ lei da troca } \} \\ & \langle \langle h, g \rangle, f \rangle = \langle [\langle \langle [1, aux], [1, \pi_1 \cdot \pi_1] \rangle, \pi_2 \rangle \cdot \pi_1] \rangle) \\ & \equiv \qquad \{ \text{ propriedade ficha } 3 \ \} \\ & \langle \langle h, g \rangle, f \rangle = \langle [((1, 1), 0), \langle \langle aux, \pi_1 \cdot \pi_1 \rangle, \pi_2 \rangle \cdot \pi_1] \rangle) \\ & \equiv \qquad \{ \text{ definição de for b i } \} \\ & \langle \langle h, g \rangle, f \rangle = \text{ for } \langle \langle aux, \pi_1 \cdot \pi_1 \rangle, \pi_2 \cdot \pi_1 \rangle \ (1, 1), 0 \\ & \text{ Concluindo, as funções auxiliares pedidas são as seguintes:} \\ & loop \ a \ b \ c = \langle \langle aux \ a \ b \ c, \pi_1 \cdot \pi_1 \rangle, \pi_2 \cdot \pi_1 \rangle \\ & initial = ((1, 1), 0) \\ & wrap = \pi_2 \end{cases}
```

Por fim, apresentamos alguns testes de performance para concluir o quão mais rápida é a nossa implementação da fbl

```
[ghci> [f 1 1 1 n | n <- [0..25] ]
  [0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768,10609,19513,35890,66012,121415,223317,410744,755476,1389537]
  (4.35 secs, 3,187,056,568 bytes)
  ghci> [fb1 1 1 n | n <- [0..25] ]
  [[0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768,10609,19513,35890,66012,121415,223317,410744,755476,1389537]
  (0.01 secs, 753,296 bytes)
  [ghci> f 1 1 1 30
  29249425
  (41.61 secs, 30,610,986,328 bytes)
  [ghci> fb1 1 1 30
  29249425
  (0.01 secs, 130,088 bytes)
```

Figure 6: Comparações de performance entre f e fbl

Problema 2

Gene de tax:

```
gene = auxi \cdot out
auxi = \bot
-- auxi :: Either b (b,[b]) -¿ Either b (b,[[b]])
-- auxi (Left x) = Left x
-- auxi (Right (a,(h:t))) =
```

Função de pós-processamento:

```
post = \bot
```

Problema 3

```
squares = [[gsq]]_R

gsq = \bot

rose2List = [[gr2l]]_R

gr2l = \bot

carpets = \bot

present = \bot
```

Problema 4

Versão não probabilística

Gene de consolidate':

```
cgene :: (Eq \ a, Num \ b) \Rightarrow () + ((a,b), [(a,b)]) \rightarrow [(a,b)]
cgene \ (i_1 \ x) = []
cgene \ (i_2 \ ((x,y),xs)) = cgeneaux \ (x,y) \ xs
cgeneaux :: (Eq \ a, Num \ b) \Rightarrow (a,b) \rightarrow [(a,b)] \rightarrow [(a,b)]
cgeneaux \ (c,d) \ [] = [(c,d)]
cgeneaux \ (c,d) \ ((a,b) : xs)
| \ c \equiv a = cgeneaux \ (c,d+b) \ xs
| \ otherwise = (a,b) : cgeneaux \ (c,d) \ xs
```

Geração dos jogos da fase de grupos:

```
pairup :: Eq b \Rightarrow [b] \rightarrow [(b,b)]

pairup [] = []

pairup (x:xs) = map ((,)x) (filter (\neq x)xs) ++ pairup xs

matchResult :: (Match \rightarrow Maybe\ Team) \rightarrow Match \rightarrow [(Team,Int)]

matchResult f(a,b)

|(f(a,b) \equiv Just\ a) = [(a,3),(b,0)]

|(f(a,b) \equiv Just\ b) = [(b,3),(a,0)]

|otherwise = [(a,1),(b,1)]

glt :: [b] \rightarrow b + ([b],[b])

glt [x] = i_1 x

glt\ l = i_2 (firstHalf,secondHalf)

where (firstHalf,secondHalf) = splitAt\ length\ l \div 2\ l
```

Versão probabilística

```
\begin{aligned} &\textit{pinitKnockoutStage} = \bot \\ &\textit{pgroupWinners} :: (\textit{Match} \rightarrow \mathsf{Dist} \; (\textit{Maybe Team})) \rightarrow [\textit{Match}] \rightarrow \mathsf{Dist} \; [\textit{Team}] \\ &\textit{pgroupWinners} = \bot \\ &\textit{pmatchResult} = \bot \end{aligned}
```

Index

```
\text{LAT}_{E}X, \frac{10}{}
     bibtex, 10
     1hs2TeX, 10
    makeindex, 10
Cálculo de Programas, 1, 3, 10, 11
     Material Pedagógico, 9
       Exp.hs, 2, 3, 13
       LTree.hs, 6–8
       Rose.hs, 4
Combinador "pointfree"
    either, 7, 9
Fractal, 3
     Tapete de Sierpinski, 3
Função
     \pi_1, 10, 11, 15
     \pi_2, 10, 15
    for, 2, 11
    length, 13
    map, 7, 8, 13–15
Functor, 5, 8, 9, 11, 12, 15, 16
Haskell, 1, 10
    Biblioteca
       PFP, 12
       Probability, 12
     interpretador
       GHCi, 10, 12
    Literate Haskell, 9
Números naturais (IV), 11
Programação
     dinâmica, 11
     literária, 9
SVG (Scalable Vector Graphics), 13
U.Minho
     Departamento de Informática, 1, 2
```