Curso de Macroeconometria

Resolução da Lista 13

Rodney N Silva

4 de Janeiro de 2018

Resolução dos Exercícios

No chunk abaixo, você deve colocar os códigos do R.

```
setwd( "C:/Users/rodney/Documents/Macroeconometria/Aula13")
#1.
library(ggplot2)
library(easyGgplot2)
library(zoo)
library(BMR)
library(forecast)
library(urca)
library(stargazer)
library(ggthemes)
library(png)
library(xtable)
library(vars)
library(astsa)
library(lmtest)
library(aod)
dados <- read.table('arquivo21.csv', stringsAsFactors = FALSE, header=T, sep=';', dec=',')</pre>
dados$date <- as.Date(dados$date,format='%d/%m/%Y')</pre>
g1 <- ggplot(dados, aes(date, industria))+
geom_line(size=.8, colour='darkblue')+
xlab('')+ylab('')+
labs(title='Produção Industrial')
g2 <- ggplot(dados, aes(date, confianca))+</pre>
geom_line(size=.8, colour='red')+
xlab('')+ylab('')+
labs(title='Confiança da Indústria')
ggplot2.multiplot(g1, g2, cols=1)
```



```
g1 <- ggplot(dados, aes(date, inflacao))+
geom_line(size=.8, colour='darkblue')+
xlab('')+ylab('')+
labs(title='Inflação mensal IPCA')
g2 <- ggplot(dados, aes(date, expinf))+
geom_line(size=.8, colour='red')+
xlab('')+ylab('')+
labs(title='Expectativa para inflação')
ggplot2.multiplot(g1, g2, cols=1)</pre>
```



```
dados <- dados[complete.cases(dados),]

# Verificar Estacionariedade da Produção Industrial

setwd( "C:/Users/rodney/Documents/Series Temporais")
adf.t <- ur.df(dados$industria, type='trend')
source('LBQPlot.R')
source('LjungBoxTest.R')
LBQPlot(adf.t@res,lag.max = 10)</pre>
```

Ljung-Box Test


```
# Escolha do lag adequado para se ter um nível de confiança próximo
# de 95%

adf.t <- ur.df(dados$industria, type='trend',lags=6)
tab <- cbind(t(adf.t@teststat),adf.t@cval)
xtable(tab,caption="Teste ADF Indústria(com drift e tendência)")</pre>
```

	statistic	$1 \mathrm{pct}$	$5\mathrm{pct}$	$10 \mathrm{pct}$
tau3	-0.67	-3.99	-3.43	-3.13
phi2	1.45	6.22	4.75	4.07
phi3	2.16	8.43	6.49	5.47

Tabela 1: Teste ADF Indústria(com drift e tendência)

```
adf.d <- ur.df(dados$industria, type='drift',lags=6)
tab <- cbind(t(adf.d@teststat),adf.d@cval)
xtable(tab,caption="Teste ADF Indústria(com drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau2	-1.70	-3.46	-2.88	-2.57
phi1	1.46	6.52	4.63	3.81

Tabela 2: Teste ADF Indústria(com drift e sem tendência)

```
adf.n <- ur.df(dados$industria, type='none',lags=6)
tab <- cbind(t(adf.n@teststat),adf.n@cval)
xtable(tab,caption="Teste ADF Indústria(sem drift e sem tendência)")</pre>
```

	statistic	$1 \mathrm{pct}$	$5\mathrm{pct}$	$10 \mathrm{pct}$
tau1	0.02	-2.58	-1.95	-1.62

Tabela 3: Teste ADF Indústria(sem drift e sem tendência)

```
# Não podemos rejeitar a hipótese nula de não estacionariedade
# na Produção Industrial
```

```
# Verificar Estacionariedade da Confiança
setwd( "C:/Users/rodney/Documents/Series Temporais")
adf.t <- ur.df(dados$confianca, type='trend')
source('LBQPlot.R')
source('LjungBoxTest.R')
LBQPlot(adf.t@res,lag.max = 10)</pre>
```



```
# Escolha do lag adequado para se ter um nível de confiança próximo
# de 95%

adf.t <- ur.df(dados$confianca, type='trend',lags=6)
tab <- cbind(t(adf.t@teststat),adf.t@cval)
xtable(tab,caption="Teste ADF Indústria(com drift e tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau3	-2.43	-3.99	-3.43	-3.13
phi2	2.27	6.22	4.75	4.07
phi3	3.39	8.43	6.49	5.47

Tabela 4: Teste ADF Indústria(com drift e tendência)

```
adf.d <- ur.df(dados$confianca, type='drift',lags=6)
tab <- cbind(t(adf.d@teststat),adf.d@cval)
xtable(tab,caption="Teste ADF Indústria(com drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau2	-1.88	-3.46	-2.88	-2.57
phi1	1.78	6.52	4.63	3.81

Tabela 5: Teste ADF Indústria(com drift e sem tendência)

```
adf.n <- ur.df(dados$confianca, type='none',lags=6)
tab <- cbind(t(adf.n@teststat),adf.n@cval)
xtable(tab,caption="Teste ADF Indústria(sem drift e sem tendência)")</pre>
```

	statistic	1pct	$5\mathrm{pct}$	10pct
tau1	-0.32	-2.58	-1.95	-1.62

Tabela 6: Teste ADF Indústria(sem drift e sem tendência)

```
# Não podemos rejeitar a hipótese nula de não estacionariedade
# na Confiança
#
#
```

```
# Verificar Estacionariedade da Inflação
setwd( "C:/Users/rodney/Documents/Series Temporais")
adf.t <- ur.df(dados$inflacao, type='trend')
source('LBQPlot.R')
source('LjungBoxTest.R')
LBQPlot(adf.t@res,lag.max = 10)</pre>
```

Ljung-Box Test

o

1.0

0.8

9.0

0.4

```
# de 95%

adf.t <- ur.df(dados$industria, type='trend',lags=7)

tab <- cbind(t(adf.t@teststat),adf.t@cval)

xtable(tab,caption="Teste ADF Inflação(com drift e tendência)")
```

	statistic	1pct	5pct	10pct
tau3	-0.72	-3.99	-3.43	-3.13
phi2	1.55	6.22	4.75	4.07
phi3	2.31	8.43	6.49	5.47

Tabela 7: Teste ADF Inflação(com drift e tendência)

```
adf.d <- ur.df(dados$industria, type='drift',lags=7)
tab <- cbind(t(adf.d@teststat),adf.d@cval)
xtable(tab,caption="Teste ADF Inflação(com drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau2	-1.80	-3.46	-2.88	-2.57
phi1	1.63	6.52	4.63	3.81

Tabela 8: Teste ADF Inflação(com drift e sem tendência)

```
adf.n <- ur.df(dados$industria, type='none',lags=7)
tab <- cbind(t(adf.n@teststat),adf.n@cval)
xtable(tab,caption="Teste ADF Inflação(sem drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau1	0.04	-2.58	-1.95	-1.62

Tabela 9: Teste ADF Inflação(sem drift e sem tendência)

```
# Não podemos rejeitar a hipótese nula de não estacionariedade
# na Inflação mensal

# Verificar Estacionariedade da Expectativa para Inflação
setwd( "C:/Users/rodney/Documents/Series Temporais")
adf.t <- ur.df(dados$expinf, type='trend')
source('LBQPlot.R')
source('LJungBoxTest.R')
LBQPlot(adf.t@res,lag.max = 15)</pre>
```



```
# Escolha do lag adequado para se ter um nível de confiança próximo
# de 95%

adf.t <- ur.df(dados$expinf, type='trend',lags=12)
tab <- cbind(t(adf.t@teststat),adf.t@cval)
xtable(tab,caption="Teste ADF Exp. Inflação (com drift e tendência)")</pre>
```

	statistic	$1 \mathrm{pct}$	$5\mathrm{pct}$	10pct
tau3	-2.72	-3.99	-3.43	-3.13
phi2	3.52	6.22	4.75	4.07
_phi3	4.97	8.43	6.49	5.47

Tabela 10: Teste ADF Exp. Inflação (com drift e tendência)

```
adf.d <- ur.df(dados$expinf, type='drift',lags=12)
tab <- cbind(t(adf.d@teststat),adf.d@cval)
xtable(tab,caption="Teste ADF Exp. Inflação (com drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau2	-2.81	-3.46	-2.88	-2.57
phi1	4.27	6.52	4.63	3.81

Tabela 11: Teste ADF Exp. Inflação (com drift e sem tendência)

```
adf.n <- ur.df(dados$expinf, type='none',lags=12)
tab <- cbind(t(adf.n@teststat),adf.n@cval)
xtable(tab,caption="Teste ADF Exp. Inflação (sem drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau1	-1.36	-2.58	-1.95	-1.62

Tabela 12: Teste ADF Exp. Inflação (sem drift e sem tendência)

```
# Não podemos rejeitar a hipótese nula de não estacionariedade
# na Expectativa de Inflação
#
# Conclusão: As 4 séries não são estacionárias
# #dados
#
```

```
# Analisar se Inflação precede Expectativa
infl <- ts(dados[,2],start=c(2002,01,01),frequency = 12)
exp.infl <- ts(dados[,3],start=c(2002,01,01),frequency = 12)
dados1 <- cbind(infl,exp.infl)
def <- VARselect(dados1,lag.max=12,type="both")
def$selection</pre>
```

```
AIC(n) HQ(n) SC(n) FPE(n) 12 12 1 12
```

```
var2 <- VAR(dados1, p=1, type='both')
serial.test(var2)</pre>
```

```
Portmanteau Test (asymptotic) data: Residuals of VAR object var2 Chi-squared = 158.21, df = 60, p-value = 8.724e-11
```

```
# Aceita a hipotese nula de ausência de autocorrelação
plot(stability(var2))
```



```
#
var3 <- VAR(dados1, p=2, type='both')
# Expectativa não causa Inflação
wald.test(b=coef(var3$varresult[[2]]),
Sigma=vcov(var3$varresult[[2]]),
Terms=c(1,3))</pre>
```

Wald test: ——-Chi-squared test: X2 = 4.5, df = 2, P(> X2) = 0.11

```
# Não podemos rejeitar a hipotese nula de não causalidade.
# Não existem evidências de que expectativa causa inflação

# Analisar se Confiança precede Produção
ind <- ts(dados[,4],start=c(2002,01,01),frequency = 12)
conf <- ts(dados[,5],start=c(2002,01,01),frequency = 12)
dados1 <- cbind(ind,conf)
def <- VARselect(dados1,lag.max=12,type="both")
def$selection</pre>
```

AIC(n) HQ(n) SC(n) FPE(n) 8 2 2 8

```
var2 <- VAR(dados1, p=2, type='both')
serial.test(var2)</pre>
```

Portmanteau Test (asymptotic) data: Residuals of VAR object var2 Chi-squared = 80.927, df = 56, p-value = 0.01632

```
# Aceita a hipotese nula de ausência de autocorrelação
plot(stability(var2))
```



```
#
var3 <- VAR(dados1, p=2, type='both')
# Confiança não causa Produção
wald.test(b=coef(var3$varresult[[2]]),
Sigma=vcov(var3$varresult[[2]]),
Terms=c(1,3))</pre>
```

Wald test: ——-

Chi-squared test: X2 = 1.5, df = 2, P(> X2) = 0.48

Não podemos rejeitar a hipotese nula de não causalidade # Não foram encontradas evidências de que confiança causa produção