These are not full lecture notes. These are an outline for my lecture. I've omitted complicated LaTeX machinery like typing rules—I can remember these on the day of lecture.

#1 Natural deduction Rules of propositional logic

How to read natural deduction rules; Logical rules for:

1. \top , \bot , \wedge , \vee , and \Rightarrow .

#2 The syntax of the untyped lambda calculus

Grammar

$$x \in \Sigma^*$$

$$M ::= x \mid \lambda x.M \mid MM$$

#3 Natural deduction & Operational semantics

#3.1 Substitution

Define substitution of N over x in M, written M[N/x], inductively as:

$$x[N/x] = N$$

 $(\lambda y.M)[N/x] = \lambda y.(M[N/x])$
 $(M_1 M_2)[N/x] = M_1[N/x] M_2[N/x]$

(We follow the Barendregt convention and ignore the very-real challenge of variable capture.)

#3.2 Beta reduction

For lambda terms M, N define $M \to_{\beta} N$ as:

$$\overline{(\lambda x.M)[N/x] \to_{\beta} M[N/x]}$$

and the other congruence rules.

#3.3 Reflexive, transitive closures

We can define \rightarrow_{β}^* as the RTC of the \rightarrow_{β} relation.

#3.4 A comparison to "traces" and "configuration histories"

We can think of \rightarrow_{β}^* as expressing the same idea as the <u>yields</u> relation \Rightarrow^* on TM configurations.

#3.5 Normal forms, normalization

We say a term M is in <u>normal form</u> if there does not exist N such that $M \to_{\beta} N$. We say that a term M <u>diverges</u> if it has no normal form. We say that a calculus is <u>normalizing</u> if all terms have normal forms.

To the students: do you remember this claim in Lab 13A?

Claim 1. A Turing machine that halts does not repeat a configuration. OR: A Turing machine that repeats a configuration does not halt.

Draw a comparison.

#4 The Simply Typed Lambda Calculus

Doubtful I'll get this far.

#4.1 Type systems: what are they good for?

Type errors and nonsensical terms, etc.

#4.1.1 Divergence

Define $\Omega = \lambda x.xx$ and then consider the reduction of $\Omega\Omega$.

$$(\lambda x.x x)(\lambda x.x x) \rightarrow_{\beta} (\lambda x.x x)(\lambda x.x x) \rightarrow_{\beta} \dots \rightarrow_{\beta} (\lambda x.x x)(\lambda x.x x) \rightarrow_{\beta} \dots$$

So this term diverges. We can think of this as a type error: In the term $\lambda x.x.x$, x is behaving as both a function and an applicand. A type system can help us rule out this "type error".

#4.2 Typing Rules

Let's define the grammar of types and terms with types.

$$\begin{split} x \in \Sigma^* \\ M ::= x \mid \lambda x : T.M \mid M \, M \\ T ::= \circ \mid T \to T \end{split}$$

And now we introduce a relation $\Gamma \vdash M : T$ where the environment Γ has the following rules:

...

and $\Gamma \vdash M : T$ has the rules:

• •

#5 $\,$ The Curry-Howard Correspondence: Minimal logic and the STLC with products and sums

Implication, products, sums, etc.