MATH 4000/6000 - Homework #4 #5

posted March 13, 2019; due by 5 PM on March 18, 2019

The essence of mathematics lies in its freedom. - Georg Cantor

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

- 1. 3.1.2(a), and then $f(x) = x^2 + 2x + 2$, $g(x) = x^2 + 1$, $F = \mathbb{Z}_3$
- 2. 3.1.6.
- 3. 3.1.8.
- 4. 3.1.10(a,c,e).
- 5. Let F be a field. Prove that the units in F[x] are precisely the nonzero elements of F.
- 6. Let F be a field. Recall the definition of the gcd in F[x]: a gcd of a(x), b(x) is a common divisor of a(x) and b(x) in F[x] that is divisible by every common divisor in F[x].

Show that if $d(x) \in F[x]$ is a gcd of a(x), b(x), then so is $c \cdot d(x)$ for every nonzero $c \in F$. Conversely, show that every gcd of a(x), b(x) has the form $c \cdot d(x)$ for some nonzero $c \in F$.

- 7. Let F be a field. Give a detailed proof that every nonconstant polynomial in F[x] can be written as a product of irreducible polynomials. (You are not asked to prove uniqueness in this problem.)
- 8. In Chapter 4, we will construct a field K with 4 elements containing \mathbb{Z}_2 as subfield. In this exercise, assume K is such a field. Then in addition to 0, 1 from \mathbb{Z}_2 , the field K has two extra elements; call these α and β .
 - (a) Show that $\alpha + 1 = \beta$.
 - (b) Show that $\alpha^2 = \beta$.
- 9. Let F be a subfield of K, and let $\alpha \in K$. Suppose that α is a root of the irreducible polynomial $p(x) \in F[x]$. Let n be the degree of p(x). Show that every element of $F[\alpha]$ has a unique representation in the form

$$a_0 + a_1 \alpha + a_2 \alpha^2 + \dots + a_{n-1} \alpha^{n-1},$$

where $a_0, a_1, ..., a_{n-1} \in F$.

Hint: We [will have] proved this in class without the uniqueness requirement. So your job is (only) to prove uniqueness.

10. (*) (An example where there is no gcd) Let $\sqrt{-3}$ denote the complex number $i\sqrt{3}$. Define $\mathbb{Z}[\sqrt{-3}]$ as $\{a+b\sqrt{-3}: a,b\in\mathbb{Z}\}$. Then $\mathbb{Z}[\sqrt{-3}]$ is a subring of \mathbb{C} . (This is easy to check, but you are not asked to do so.) Prove that the elements a=4 and $b=2+2\sqrt{-3}$ do not have a gcd in $\mathbb{Z}[\sqrt{-3}]$, meaning that they have no common divisor in $\mathbb{Z}[\sqrt{-3}]$ divisible by every common divisor.

Hint: Define a function N(z) on $\mathbb{Z}[\sqrt{-3}]$ by putting $N(z)=z\bar{z}$. You may use without proof that N(z) is nonnegative-integer valued, that N(z)=0 iff z=0, that N(z)=1 iff z is a unit, and that N(zw)=N(z)N(w). (The proofs are the same as for $\mathbb{Z}[i]$.) It may help to first prove the lemma that if $a\mid b$ (in $\mathbb{Z}[\sqrt{-3}]$), then $N(a)\mid N(b)$ (in \mathbb{Z}).