TEST 1 FINAL EXAM FOR CALCULUS III - Semester 20212 Subject Code: MI1134E. ICT-K66. Time: 90 Minutes

Note: Materials and textbooks are forbiden. Giám thi ký xác nhân mã đề thi

Prob 1. (2 points) Examine for convergence or divergence:

a)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{\ln(n+1)} \right)^n$$

a)
$$\sum_{n=1}^{\infty} \left(\frac{n+1}{\ln(n+1)} \right)^n$$
 b) $\sum_{n=2}^{\infty} (-1)^n \frac{(n+1)\pi^n}{3^{n-1}-1}$.

Prob 2. (1 point) Find the domain of convergence of the series of functions

$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin^3 nx}{3^n - 1}.$$

Prob 3. (3 points): Solve the following problems:

- a) $y' \cos y + 2x \sin x = 2x$.
- b) $y'' y' = 1 + e^x$.

c)
$$y'' + 2y' + y = \frac{e^{-t}}{1 + t^2}$$
,

Prob 4. (2 points) Solve the following problems:

a)

$$y(t) = 2te^{-t} + e^t \int_0^t y(u)e^{-u}du.$$

b)

$$\begin{cases} y^{(3)} - 4y' &= \begin{cases} 0 & \text{if } 0 < x < 2 \\ 4 & \text{if } x > 2 \end{cases}, \\ y(0) = y'(0) &= 0, \ y''(0) = 4. \end{cases}$$

Prob 5. (2 points) a) Expand f(x) = 2 - x, $x \in (0,4)$ in a Fourier Cosine series with period 8 on (0,8).

b) How should f(x) be defined at x = 0, x = 4 and x = 8 so that this Fourier Cosine series will converge to f(x) for $x \in [0,8]$.

Applying to find the following sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$

$$---$$
THE END $---$

TEST 2 FINAL EXAM FOR CALCULUS III - Semester 20212 Subject Code: MI1134E. ICT-K66. Time: 90 Minutes

Note: Materials and textbooks are forbiden. Giám thị ký xác nhận mã đề thi.

Prob 1. (2 points) Examine for convergence or divergence:

a)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{\ln(n^2 + 1)} \right)^n$$
 b) $\sum_{n=2}^{\infty} (-1)^n \frac{(n+1)\pi^n}{5^{n-1} - 1}$.

Prob 2. (1 point) Find the domain of convergence of the series of functions

$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 nx}{2^n - 1}.$$

Prob 3. (3 points): Solve the following problems:

- a) $y' \sin y + 4x \cos 2x = 4x$.
- b) $y'' + y' = 1 + e^{-x}$.

c)
$$y'' - 2y' + y = \frac{e^t}{1 + t^2}$$

Prob 4. (2 points) Solve the following problems:

$$y(t) = 2te^{-2t} + e^{2t} \int_{0}^{t} y(u)e^{-2u}du.$$

b)

$$\begin{cases} y^{(3)} - 9y' &= \begin{cases} 0 & \text{if } 0 < x < 3 \\ 9 & \text{if } x > 3 \end{cases}, \\ y(0) = y'(0) &= 0, \ y''(0) = 9. \end{cases}$$

Prob 5. (2 points) a) Expand f(x) = 4 - 2x, $x \in (0,4)$ in a Fourier Cosine series with period 8 on (0,8).

b) How should f(x) be defined at x = 0, x = 4 and x = 8 so that this Fourier Cosine series will converge to f(x) for $x \in [0,8]$.

Applying to find the following sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\longrightarrow$$
THE END \longrightarrow