Introducción a la materia

Introducción a los Sistemas Distribuidos (75.43)

Universidad de Buenos Aires, Facultad de Ingeniería

Septiembre, 2021

Docentes

Profesor Titular:

• José Ignacio Alvarez Hamelin

Docentes:

- Agustin Horn
- Juan Ignacio Lopez Pecora

Horarios

• Clase Teorica: Martes 19hs

• Clase Práctica: Viernes 19hs

Evaluaciones

- Primer parcial: Semana 12
- 1er Rec: Semana 14
- 2do Rec: primera fecha de final

Trabajos Prácticos

Grupales → ? integrantes

- Aprobación obligatoria
 - Desaprobar un TP implica que el alumno deberá recursar la materia.

No se aceptarán entregas fuera de término

Nota de cursada

$$\frac{1}{2} \times Parcial + \frac{1}{2} \times \frac{1}{n} \times \sum_{i=1}^{n} TP_{i}$$

Campus

Reglamento de la materia

Material de clases

Publicación y entrega de TPs

Publicación de notas

Normas de convivencia en el Aula Virtual

- Mantenerse muteados
- Durante la clase, preguntas en el chat.
- Durante las pausas, pueden desmutearse y preguntar.

Comunicación

- Exposicion
- Reflexion
- Evaluacion

Repaso

Métricas

Métricas de performance

- Pérdida de paquetes (Packet Loss)

- Latencia

Pérdida de paquetes

Paquete que se origina en un host pero nunca arriba a destino

Latencia

Retardo entre un estímulo y la respuesta

Latencia

¿Por qué es importante?

- Impacta en la UX
- Ciertas aplicaciones son sensibles a la latencia

¿Qué la origina?

- 1. Tiempo de inserción
- 2. Tiempo de propagación
- 3. Tiempo de procesamiento
- 4. Tiempo de encolado

Tiempo de inserción

Tiempo que demora el paquete en ser insertado en el enlace

¿De qué depende?

- L = largo del paquete
- R = Velocidad de serialización

$$t_{ins} = \frac{L}{R}$$

Tiempo de propagación

Tiempo que demora el paquete en propagarse por el enlace de un router al próximo

$$t_{prop} = \frac{d}{c}$$

¿De qué depende?

- Velocidad del medio
 - Aire = velocidad de la luz (3e8 m/s)
 - Fibra, Cobre, coax = 2/3 velocidad de la luz
- Distancia entre los extremos del enlace

Inserción vs Propagación

¿Cuál es realmente la diferencia?

Inserción

- Tiempo para insertar el paquete en el canal
- Independiente de la distancia entre hosts

Propagación

- Tiempo para atravesar el canal
- Independiente de la velocidad de serialización

Ejemplo: Ruta con peajes

Analogía

- Cabina de peajeRouter
- Tramo de ruta entre peajes < Enlace

V = 100 Km / h

Ejemplo: Ruta con peajes

Conclusiones

Distancias largas → Tiempo de Recorrido >> Tiempo peajes

Distancias cortas →

Tiempo peajes >> Tiempo de Recorrido

Tiempo de procesamiento

Es el tiempo que requiere el procesamiento del paquete en los routers

Causas

- Leer el header
- Tomar la decisión de por cual enlace se debe enviar

Orden de magnitud = ∩S - µS

Tiempo de encolado

Tiempo que espera paquete en el router desde que arriba hasta que es finalmente transmitido

¿De que depende?

- Tasa de ocupación del router
- Es decir del tamaño de la cola
- A mayor tráfico, mayor tiempo de encolado

Tiempo de encolado y pérdidas

¿El tiempo de encolado es constante?

No, varía con el tráfico (aleatorio)

Pensemos

- L: Largo del paquete
- a: tasa de arribo promedio de paquetes
- R: velocidad de serialización

Si L*a > R

- ⇒ Están arribando más datos de los que el router puede enviar
- ⇒ Esto quiere decir que la cola crece (y crece)
- ⇒ Se llenan los buffers
- ⇒ Se descartan paquetes

Tiempo de encolado y pérdidas

Deseo del dueño del SW

> Que esté Tx TODO el tiempo

Problema

> L*a = R -> la cola desborda

Solución

> L*a < R (subutilización)

Round-Trip Time (RTT)

Tiempo que tarda un paquete de datos enviado desde un emisor en volver al mismo emisor habiendo pasado por el receptor de destino.

Ping

Herramienta de software de administración de redes que se utiliza para probar la accesibilidad de un host en una red IP.

Ejercicio

Se quiere calcular el RTT para medir la latencia entre dos host bajo la siguiente configuración

	L1	L2	L3	L4
Distancia	100 m	10 km	4 km	100 m
Ancho de Banda	10 Mbps	200 Mbps	200 Mbps	10 Mbps
Velocidad de Propagación	1.7x 10 ⁵ km/s	2 x 10 ⁵ km/s	2 x 10 ⁵ km/s	1.7x 10 ⁵ km/s

1 Mbps = 10^6 bits / seg

El RTT se debe calcular utilizando un segmento de prueba de tamaño **1000 Bytes**, y será el mismo para la ida y la vuelta. Los tiempos de encolado y procesamiento son despreciables.

Tarea

Investigar:

- Throughput
- Bandwitdth
- Throughput vs Bandwidth

Captura de paquetes

Libpcap

Referencias

- Kurose, Ross, Computer Networking A Top-Down Approach 7ed
 - 1.4 Delay, Loss, and Throughput in Packet-Switched Networks

Libpcap and TCPdump
https://www.tcpdump.org/