PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: (11) International Publication Number: WO 00/11125 A1 C11D 1/58, 1/62, 1/66 (43) International Publication Date: 2 March 2000 (02.03.00) PCT/US99/18974 (81) Designated States: AU, CA, CN, FI, IN, JP, KR, PL, SG, (21) International Application Number: European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, 19 August 1999 (19.08.99) GB, GR, IE, IT, LU, MC, NL, PT, SE). (22) International Filing Date: **Published** (30) Priority Data: US With international search report. 20 August 1998 (20.08.98) 09/136,936 Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (71) Applicant: MONA INDUSTRIES, INC. [US/US]; 76 East 24th Street, Paterson, NJ 07544 (US). (72) Inventors: PERELLA, James, E.; 49 Brookwood Drive, Mahwah, NJ 07430 (US). KOMOR, Joseph, A.; 15 Colonial Heights Drive, Ramsey, NJ 07446 (US). KATSTRA, Richard, D., 151 Mt. Peter Road, Warwick, NY 10990 (74) Agent: SCHOENBERG, Franklyn; Norman E. Lehrer, P.C., 1205 North Kings Highway, Cherry Hill, NJ 08034 (US).

(54) Title: AMPHOTERIC DERIVATIVES OF ALIPHATIC POLYAMINES WITH FATTY ACIDS, ESTERS OR TRIGLYCERIDES

(57) Abstract

Amphoteric derivatives of aliphatic polyamines, such as diethylenetriamine or triethylenetetramine reacted with long chain fatty acids, esters or triglycerides from various natural or synthetic sources are effective in the softening/texture modification of substrates such as paper, textiles, human skin surfaces and hair tresses, as well as in applications for metal working and lubrication. The polyamines are first reacted with fatty acids, esters or triglycerides derived from various animal, vegetable or synthetic sources ranging in molecular distribution from butyric through erucic acids (e.g. milkfat, soy bean oil, rapeseed oil) to form diamides or imidazolines; they are then further reacted with unsaturated or halogenated carboxylic acids, carboxylated epoxy compounds or acid anhydrides (e.g. acrylic acid, itaconic acid, chloroacetic acid, maleic anhydrides octadecenyl anhydride) to form the various amphoteric structures.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM		FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TĐ	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinca	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	18	Iceland	MW	Malawi	US	United States of America
CA		lT	Italy	MX	Mexico	UZ.	Uzbekistan
CF	Central African Republic	JР	Japan	NE	Niger	VN	Viet Nam
CG	-	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	· ·	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM			Republic of Korea	PL	Poland		
CN		KR	Republic of Korea	PT	Portugal		
CU		KZ	Kazakstan	RO	Romania		
CZ		LC	Saint Lucia	RU	Russian Federation		
DE		Ll	Liechtenstein	SD	Sudan		
DK	•	LK	Sri Lanka	SE	Sweden		
EE		LR	Liberia	SG	Singapore		

1

AMPHOTERIC DERIVATIVES OF ALIPHATIC POLYAMINES WITH FATTY ACIDS, ESTERS OR TRIGLYCERIDES

FIELD OF THE INVENTION

present invention relates to amphoteric surface active agents, and more particularly to amphoteric 10 polyamines, of aliphatic such diethylenetriamine reacted with long chain fatty acids, or triglycerides. In addition to being materials, the amphoteric derivatives of this invention are variety of applications including 15 in a softening/texture modification of substrates such as paper, textiles, human skin surfaces and hair tresses, as well as in applications for metal working, and lubrication.

BACKGROUND OF THE INVENTION

20

30

35

compositions of. various Amphoteric including derivatives of polyamines are known and have been used over the years for a variety of applications including surfactants in detergent and dishwashing formulations, fabric and paper treating compositions, metal treating and 25 corrosion inhibition, and the like. For example, U.S. No. 2,999,069 to Masci teaches detergent amphoteric containing derivatives compositions amidoamines but does not teach or disclose diamide polyamide compositions having a reactive secondary, internal nitrogen amine site which is carboxyalkylated as provided in the present invention. Liquid dishwashing compositions disclosed in European Patent Application No. 92 203 230.5 to Jadwiga Palicka include amphoteric surface active agents; however, neither diamide nor polyamide compositions having a secondary, internal nitrogen amine site which is carboxyalkylated are disclosed by Palicka. U.S. Patent No. 5,322,630 to Williams et al. discloses

15

20

25

30

35

amphoteric derivatives of a broad range of polyamines, fatty amidoamines, fatty imidazoline amines and oilfield corrosion polyamines which are employed as There is, however, no disclosure or suggestion inhibitors. applications patent of the Williams amphoteric derivatives of the polyamines herein disclosed, including neither the softening/texture modification of substrates such as paper, textiles, human skin surfaces and nor applications for metal working hair tresses, lubrication.

Furthermore, providing non-irritating softening agents for fabric or paper substrates, or to human skin or hair, has been a long felt need. Fabrics tend to become slightly harsher after wear and laundering. Moreover, untreated personal hygiene facial tissue paper may be harsh and irritating to inflamed tissues, such as nasal orifice skin.

Various attempts have been made to soften fabrics such as suggested in patents directed to fabric softeners, for example, U.S. Patent No. 3,904,533 of Neiditch for a liquid fabric softener, and U.S. Patent Nos. 4,237,155 of Kardouche and 5,376,287 of Borcher et al which describe antistatic fabric softener sheets, which include fabric-softening agents, such as cationic and nonionic surfactants.

OBJECTS OF THE INVENTION

It is therefore an object of the present invention to define a family of amphoteric compounds comprising derivatives of aliphatic polyamines such as diethylenetriamine wherein the polyamines are first converted to polyamides or imidazoline/amide derivatives thereof.

A further object of the present invention is to define and describe a process by which the above described amphoteric derivatives of aliphatic polyamides [ADAPS] may be made.

10

15

20

25

30

35

It is another object of the present invention to provide an effective softener for various substrates which might contact human skin, as well as skin and hair substrates themselves.

It is a still further object of the present invention to provide amphoteric surface active agents for use in other applications, such as metal working, lubricating, etc.

SUMMARY OF THE INVENTION

present invention relates to amphoteric derivatives of aliphatic polyamines [ADAPS] that have important industrial and personal care uses, such as, for example, softeners, lubricants, and conditioners, etc. The comprise derivatives of compositions are intermediate aliphatic polyamides or imidazolines, and preferably aliphatic diamides, containing more than one substituent moiety selected from the group consisting of long alkyl chain fatty acids, esters and triglycerides, such as derived from animal, vegetable or synthetic sources ranging in molecular distribution from butyric through erucic acids. (e.g. milkfat, soybean oil, rapeseed oil).

The intermediate amide compound is then converted into an amphoteric compound by reacting it with unsaturated carboxylic acids, halogenated carboxylic acids, carboxylated epoxy compounds or in the case of the higher polyamines, acid anhydrides or polycarboxylic acids.

carboxyalkylation step οf the invention attaches an alkyl carboxylic acid functional group to at least one secondary internal amine nitrogen thereby forming the amphoteric products of The amphoteric product thus invention. is present polyamide or imidazoline derivative of the aliphatic polyamine starting material.

Compounds containing acidic functional groups suitable for use in reacting with aliphatic polyamides in accordance with the present invention include alkyl

4

carboxyl groups [i.e., carboxylic acid functional moiety, COOH] where the carboxylic acid is derived from one or more unsaturated or halogenated carboxylic acids, carboxylated acid anhydrides and/or polycarboxylic compounds, acids with the proviso that the amphoteric composition must contain at least one ionizable nitrogen site. purposes of the present invention such above-mentioned acids, halogenated carboxylic unsaturated compounds, acid anhydrides carboxylated epoxy polycarboxylic acids, comprise an amphoteric forming group because the product produced by reacting with one of the acids is an amphoteric product.

5

10

15

25

30

35

DETAILED DESCRIPTION OF THE INVENTION

Consistent with the above discussion, specific group of ADAPs of the present invention may derivatives of diethylenetriamine amphoteric comprise [DETA] wherein the amphoteric derivatives of the present invention are prepared by first reacting DETA as a starting material with at least one member selected from long-alkylchain plant, animal or synthetic derived fatty acids, for triglycerides, such as, example, esters and substituted or unsubstituted, compositions containing branched or straight chain, saturated or unsaturated alkyl chain groups ranging in molecular distribution from butyric through erucic acids, that is, containing from 3 to 21 carbon atoms in addition to the carbonyl group.

An intermediate substituted DETA predominately diamide (preferably) is thus formed having fatty alkylmoieties of 3 to 21 carbon atoms.

Amphoteric forming agents suitable for use in reacting with aliphatic polyamides in accordance with the present invention include alkyl carboxyl groups (i.e., carboxylic acid functional moiety, COOH) where the carboxylic acid is derived from one or more unsaturated or halogenated carboxylic acids, or carboxylated epoxy compounds. Exemplary suitable amphoteric forming agents

include vernolic acid, acrylic acid, itaconic acid, chloroacetic acid, maleic anhydride, octadecenyl anhydrides and adipic acid.

A further group of products having novel applications is comprised of amphoteric imidazolines which are prepared according to the method hereinafter described for preparation of the DETA or other polyamines.

The following general structural formulas numbered 1 through 3 comprise the novel compounds of the present invention, and are further exemplified and represented in Tables 1 and 2 below.

Formula 1, below, generically shows diethylenetriamine [DETA] amphoteric derivatives more particularly set forth in Table 1 below. Formula 1 is a diamide, having an amide group at each end of the molecule. The central (secondary) nitrogen site on the molecule is acidified to form the amphoteric end product of the present invention.

FORMULA 1:

20

30

35

15

5

10

25 wherein:

 R_1 is a saturated or unsaturated aliphatic mono or poly carboxylic acid moiety having one or more carbonyl functional groups derived from intermediates containing olefinic, halogenated or epoxy reactive sites, and may have one or more branched saturated or unsaturated, substituted or unsubstituted aliphatic chains containing from 2 to 18 carbon atoms; and

 $\rm R_2$ and $\rm R_3$, which may be the same or different, can be a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl chain of 3 to 21 carbon atoms.

6

Formula 2, below is a generic DETA-derived imidazoline, where the acidic functional group making the molecule amphoteric is attached to the quaternary nitrogen. Formula 2 is more particularly set forth in Table 1 below.

5

FORMULA 2:

15 .

20

wherein:

 $\rm R_2$ is a saturated or unsaturated aliphatic mono or poly carboxylic acid moiety having one or more carbonyl functional groups derived from intermediates containing olefinic, halogenated or epoxy reactive sites, and may have one or more straight or branched, saturated or unsaturated, substituted or unsubstituted aliphatic chains containing from 2 to 18 carbon atoms; and

25

 R_2 and R_3 , which may be the same or different, can be a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl chain of 3 to 21 carbon atoms.

Formula 3, below, is similar to Formula 2, except that Formula 3 shows a generic triethylenetetramine [TETA] amidoimidazoline amphoteric. Formula 3 is more particularly set forth in Table 2 below. Except for the fact that Formula 3 is TETA derived rather than DETA derived, the discussion of Formula 2 above applies to Formula 3.

35

FORMULA 3:

5

10

15

20

25

30

35

$$H_{2}C - CH_{2}$$
 $R_{1} - N_{+}$
 $N - CH_{2} - CH_{2} - N_{-} - CH_{2} - CH_{2} - N_{-} - CH_{2}$
 R_{5}
 R_{2}

wherein:

 R_1 is a saturated or unsaturated aliphatic mono or poly carboxylic acid moiety having one or more carbonyl functional groups derived from intermediates containing olefinic, halogenated or epoxy reactive sites, and may have one or more straight or branched, saturated or unsaturated, substituted or unsubstituted aliphatic chains containing from 2 to 18 carbon atoms;

 R_2 and R_3 , which may be the same or different, can be straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl chain of 3 to $2\bar{1}$ carbon atoms; and

 $R_{\rm 5}$ may be hydrogen, the same as $R_{\rm 1}$ or may be a straight or branched, saturated or unsaturated, substituted or unsubstituted alkyl chains having 3 to 21 carbon atoms derived from any appropriate alkylating group including anhydrides.

Table # 1

Polyamine-Derived Amphoterics

DETA Derivatives

where
$$R_1 = \frac{\Lambda}{\text{CH}_2\text{COOH}} = \frac{R_1}{\text{CH}_2\text{COOH}} = \frac{\frac{C}{\text{CH}_2\text{COOH}}}{\frac{C}{\text{CH}_2\text{CHCOOH}}}$$

$$\frac{G}{\text{CH}_2\text{CHCOOH}} = \frac{|I|}{\text{CH}_2\text{CHCOOH}}$$
where $R_2 \& R_3 = \frac{C_2 H_5}{\text{C}_2 H_5} = \frac{C_2 H_4}{\text{C}_2 H_5} = \frac{C_2 H_4}{\text{C}_2 H_5} = \frac{C_2 H_4}{\text{C}_2 H_5} = \frac{C_2 H_5}{\text{C}_2 H_5} = \frac{C_2 H_5}{\text{C$

<u>Polyamine-Derived Amphoterics</u> TETA Derivatives

where R_2 , R_3 , R_4 & $R_5 = C_2H_5$ to $C_{22}H_{45}$ or C_2H_4 to $C_{22}H_{44}$

25

30

The DETA polyamide and imidazoline-amide DETA and TETA intermediate compositions suitable for use in the preparation of amphoteric compositions of the present invention in accordance with the practice of the invention are well known and include those derived from substituted 5 or unsubstituted, branched or straight chain, saturated or unsaturated fatty acids, esters, or triglycerides with fatty alkyl amide moieties containing from 4 to 22 carbon Examples of suitable fatty acids, esters triglycerides include octanoic acid, decanoic acid, lauric 10 acid, myristic acid, palmitic acid, stearic acid, oleic. linoleic acid, linolenic acid, methyl esters or glyceride esters of such acids or mixtures thereof as are found in coconut oil, palm oil, sunflower oil, soybean oil, rapeseed oil, castor oil, fish oil, tallow fat, milk fat, 15 lard and other natural sources or may be of synthetic origin.

The materials of the present invention are embodied in reactions carried out under the following conditions, as noted in the Examples below.

For example, amphoterics are derived from DETA-diamides, such as shown in Example 1 below, wherein linoleic-DETA diamide monopropionate is produced, from a reaction wherein soybean oil and diethylenetriamine are first mixed. In a second reaction, acrylic acid is added.

In Example 2 below, oleic DETA diamide is produced from a mixture of olive oil and diethylenetriamine.

In Example 3 below, to the amide of example 2 there is added acrylic acid, to produce oleic DETA diamide monopropionate, or, as noted in Example 4 below, there is added itaconic acid, to produce oleic DETA diamide mono-3-carboxybutyrate.

As noted in Example 5 below, caprylic-capric-DETA diamide propionate is produced from the reaction of a mixture of caprylic-capric triglyceride and

5

10

15

30

35

11

diethylenetriamine, which is further reacted with acrylic acid.

Furthermore, as noted in Example 6 below, dioleyl-imidazoline-amide-propionate is produced from two reactions, namely a reaction of a mixture of oleic acid and diethylenetriamine, which is further reacted with glacial acrylic acid.

The foregoing present invention aliphatic intermediate derivatives of polyamine compounds amphoteric imidazolines, polyamides, resulting in preferably diamides having a carboxyalkylated secondary, internal amine nitrogen site. Carboxyalkylation is achieved substituted polyamine or reacting a polyamide intermediate with an amphoteric-forming group consisting of halogenated carboxylic acids, unsaturated carboxylic acids, suitable epoxy compounds, or anhydrides in the case of higher polyamines such as TETA.

The resulting compounds are useful as softeners for tissues, fabrics, hair and skin, and a novel method of softening is disclosed based on the use of the compounds described herein. Because the novel compounds of the present invention provide antiwear properties, a method of using these compounds of the present invention in metal working is also taught.

It is therefore a further aspect of the invention to use the amphoteric derivative compositions of the invention, for example, as softening agents for facial tissue paper, textiles, hair and human skin in amounts of 0.1 to 10% by weight and for metal working applications such as lubricating and antiwear compositions in amounts of from about 0.1% by weight.

The invention is noted in the following illustrative examples, which are provided herein for the purposes of illustration only, and are not intended to limit the scope of the present invention, as noted in the appended claims.

12 .

Pertinent examples of preparation of the novel materials of the present invention are embodied in reactions carried out under the following conditions.

5

10

15

Example 1.

Linoleic-DETA Diamide Monopropionate

To a three-necked flask fitted with a stirrer, thermometer and reflux condenser is charged 584.0gms. soybean oil and 103.0gms. [DETA] diethylenetriamine. The reaction mixture is heated at 180-190°C for four hours, at which time the alkali value drops to 90 (mm KOH/g). After cooling to 70°C, 79.2gms. acrylic acid was added. The addition is exothermic and the temperature rises to 102°C. The temperature is maintained at 90-100°C for an additional four hours. After the reaction is complete, the final alkali value is 75, the acid value is 64 and the 10% pH in isopropyl alcohol/water is 4.8.

Example 2.

20

25

Oleic-DETA-Diamide

To a three-necked flask fitted with a stirrer, thermometer and reflux condenser is charged 584.0 gms olive oil and 103.0 gms diethylenetriamine [DETA]. The reaction mixture is heated at 180-190°C for four hours at which time the alkali value drops to 90 (mm KOH/g).

Example 3.

Oleic-DETA Diamide-Monopropionate

To 68.7gms of the amide of above Example 2 at 30 90°C, in a reaction vessel is charged 7.9gms of acrylic acid. The mixture is heated with agitation at 95-105°C for five hours until reaction is complete, as evidenced by disappearance of acrylic acid.

13

Oleic-DETA Diamide Mono-3-Carboxybutyrate

To 68.7 gms of the amide of Example 2 at 90°C is charged 14.3gms of solid itaconic acid. The mixture is heated with agitation at 95-105°C for 5 hours, until reaction is complete, as evidenced by disappearance of itaconic acid.

Example 5.

Caprylic-Capric-DETA Diamide Propionate

To a three-necked flask fitted with a stirrer, 10 thermometer and reflux condenser there is charged 330gms of a caprylic capric-triglyceride, of the trade name Neobee Chemical Co., from Stepan and 103qms The mixture is heated at 180-185°C for diethylenetriamine. four hours, after which the alkali value dropped to 135 (mm 15 KOH/q). After cooling to 70°C, 72gms of acrylic acid are added and the mixture heated at 90-100°C for four hours, until the reaction is complete, as evidenced disappearance of acrylic acid.

20

25

30

35

5

Example 6.

Dioleyl-Imidazoline-Amide-Propionate

To a three-necked flask fitted with a stirrer, thermometer and distillation condenser there is charged 564gms. of oleic acid and 103.2 gms of diethylenetriamine. The reaction mixture is heated to 155°C where water of reaction begins to distill. The temperature is allowed to rise gradually to 190-200°C over about three hours at which time the alkali value is 105.6 and the acid value is 4.10. Vacuum was then applied gradually until a pressure of 11 mm Samples are taken periodically and checked Hq is reached. for imidazoline content. After about three hours at 190°C and 11 mm Hg, an imidazoline content of 90% is obtained. The product is then cooled to 70°C and the vacuum is released. 72 gms of glacial acrylic acid is added. The exothermic reaction carried the temperature to 95°C, which

14

is maintained for an additional 4 hours, until reaction is complete.

5

20

25

30

Example 7.

Milk Lipids - DETA Diamide Monopropionate

To a three-necked flask fitted with a stirrer, thermometer and reflux condenser is charged 490 gms. milk lipids and 103.0 gms. of diethylenetriamine (DETA). The reaction mixture is heated at 180-190°C for four hours, at which time the alkali value drops to 93 (mm KOH/g). After cooling to 70°, 72 gms of acrylic acid is added. The addition is exothemic and the temperature rises to 102°C. The temperature is maintained at 90-100°C for an additional four hours. After the reaction is complete, the final alkali value is 88, the acid value is 76 and the 10% pH in isopropyl alcohol/water is 65.

Example 8.

Milk Lipids-Imidazoline-Amide Dipropionate

To a three-necked flask fitted with a stirrer, thermometer and reflux condenser is charged 490gms of milk lipids and 103gms of diethylenetriamine (DETA). The reaction mixture is heated at 155° C where water of reaction begins to distill. The temperature is allowed to rise gradually to $190\text{-}200^{\circ}$ C over about three hours, at which time the alkali value is 96 (mm KOH/g).

Vacuum is then applied gradually until a pressure of l1mm of Hg is reached. Samples are taken periodically and checked for imidazoline content. After about three hours at 190°C and 11mm Hg, an imidazoline content of 90% is obtained. The product is cooled to 70°C and the vacuum is released.

To the molten imidazoline is added 172gms of methylacrylate and the mixture is heated at 90 to 100°C for four hours. After which the methylacrylate content is less than 5%. The reaction mixture is charged to a separate

flask containing a solution of 120gms of 50% caustic soda, 522gms of propylene glycol and 729gms of water and heated at 90° to 95°C for two hours to hydrolyze the methyl ester. After cooling to 50°C, the reaction product is a clear amber liquid with total solids of 34.6% having a 10% pH in isopropyl alcohol/water of 10.1.

Example 9.

Table #3 below outlines the procedure used, as well as the results obtained in evaluating several diethylenetriamine (DETA) amphoteric derivatives (Samples A-1, A-2, A-3 and A-4) for their softening properties on tissue paper.

The results of Table #3 indicate that all of the DETA-derived amphoterics tested (Samples A-1, A-2, A-3 and A-4) exhibited very good paper softening properties and are superior to the Control Sample 1, namely, a DETA imidazolinium quaternary derivative tested.

The amphoteric derivatives, Samples A-1, A-2, A-3 and A-4 in Table #3, are found to be very effective in softening challis wool swatches which are soaked in aqueous dispersions of the amphoterics and then rinsed and allowed to dry using the procedure similar to that used with facial tissue paper. It is also noted that the amphoteric derivative samples are effective in depositing a residual, smooth conditioned feeling to human skin and hair.

TABLE #3

FACIAL TISSUE SOFTNESS EVALUATIONS OF DIETHYLENETRIAMINE (DETA)

30 <u>DERIVATIVES</u>

Procedure:

WO 00/11125

5

10

15

20

25

- 1. 1% active test solutions/dispersions are prepared in deionized water and adjusted with lactic acid to the 4-8 pH range.
- 2. Evaluations are conducted using 8" x 9" untreated paper tissues weighing approximately 1.5 grams each. The lower half of each tissue is dipped briefly into the 1%

active solution being tested, then the tissues are withdrawn, allowed to drain, dried and equilibrated for several hours at ambient temperature and humidity. A deionized water blank is included in the test regimen.

- 3. Treated tissues are evaluated (undipped versus dipped portions) and ranked for softness by a small R&D expert panel. Numerical softness rankings are assigned as follows:
 - 0 = Poor/harsh texture

10 1 = Fair

2 = Good

3 = Very Good

4 = Excellent/very soft texture

After Dipping in 1% Active Dispersions

15 Followed by Draining and Drying

1% Active in Water Material Tested

Softness/Texture

Sample A-1 Milkfat DETA Imidazolinium Amphomonopropionate 3.5

Sample A-2 Soybean Oil DETA Diamide Amphomonopropionate 3.5

20 Sample A-3 Rapeseed Oil DETA Diamide Amphomonopropionate 3

Sample A-4 Milkfat DETA Imidazolinium Amphomonopropionate 3/3.5

Control 1 Milkfat DETA Imidazolinium Quaternary 2.5

Control 2 Deionized Water Blank 0

25 All of the DETA amphoteric derivatives tested exhibit very good paper softening properties and are superior to the quaternary softener (Control 1).

Example 10.

Table #4 below shows a comparison of two DETA-derived amphoterics, Sample B-1, namely, a disoya DETA amphomonopropionate as prepared in Example 1 and Sample B-2, namely, a di-caprylic-capric DETA amphomonopropionate as prepared in Example 5 versus a Control, namely, a commercial milk lipid amido propyl betaine, when used in a bath and shower cleanser. The DETA derivatives of Samples B-1 and B-2 exhibits better conditioning on skin and hair,

17

and better foam in the case of the caprylic-capric amphoteric than the Control, namely, milk lipid amidopropyl betaine.

5 TABLE #4

Bath and Shower Cleansers

Soya & C8-10 DETA Diamide Amphoterics

vs.

Milk Lipid Amidopropyl Betaine

		_		
10	Raw Material	R67.00-11A % by Weight	R67.00-11B % by Weight	R70.01-127 % by Weight
	Deionized Wate	r 45	45	45
	Sodium Chlorid	le 1	1	ı
15	Sodium Lauryl Sulfate (28%	10	10	10
	MONALAC MPL	2	2	2
	MONALAC MO	2	. 2	2
20	Sodium Laureth Sulfate (26%) Milk Lipid Amidopropyl E		35	35
	(MONALAC MAB) Sample B-1(Exa	Control 5	- 5	- -
25	Sample B-2(Exa	imple 5) -	-	5
	· .	2.2.2	2 14.1	atad mba mii

The ingredients are added in the order listed. The pH is adjusted to 6.0-6.5 and desired preservatives, fragrances, etc. are added.

30	Appearance:	Clear Liquid	Clear yellow Liquid	Opaque, Light Yellow Liquid
	Viscosity (ambient temp.	2,000 cps)	1,500 cps	1000
35	Viscosity with an additional 0.25% NaCl:	6,500 cps	3,500 cps	800
	pH:	6.37	6.38	6.36

After washing, all of the products give a very smooth conditioned feel to the skin and hair, but the di-

soya and di(C8-10) amphoterics, Sample B-1 and B-2, exhibit a higher level of smoothness than the milk lipid amidopropyl betaine. In addition, the di(C8-10) amphoteric (Sample B-2) exhibits much higher foam levels during washing.

Further application testing is carried out on polyamine amphoteric derivatives of the present invention in the areas of lubrication, hydraulic fluids, metalworking and anti-wear additives.

10 Example 11.

5

15

20

35

Table #5 below shows a list of Samples C-1 through C-8 tested for metal working, lubrication and antiwear additives. The "structure type" refers to the chemical structure noted in Tables 1 and 2 herein, wherein the Roman numerals refer to the basic molecular structure and the to the specific designations refer Alphabetical designations for the various "R" groups in the formulas of data are shown 1 2. Performance and experimental compositions evaluated in the zwitterionic acid forms, as well as the long chain alkylamine salts.

TABLE #5

<u>DESCRIPTIONS OF SAMPLES TESTED</u>

For Metalworking & Hydraulic Fluid Additives

25	Sample <u>Designation</u>	Structure Type	<u>R₂ & R₃</u>	Acid Form or Neutralizing Agent
	C-1	I-A	C_{17} H_{34} Acid	Form
	C-2	III	C ₁₇ H ₃₄ T	ridecyloxypropylamine
	C-3	III	C ₁₇ H ₃₄	Acid Form
30	C-4	I-C	C ₁₇ H ₃₄	Acid Form
	C-5	I-C	C ₁₇ H ₃₄ T	ridecyloxypropylamine
	C-6	I-B	C ₁₇ H ₃₄ T	ridecyloxypropylamine
	C-7	I-C	C ₁₇ H ₃₄ T	ridecyloxypropylamine
	C-8	I-B	Soya	Acid Form

Table #6 below shows that in ASTM 2783 studies of blends with paraffinic and naphthenic derived mineral oils,

marked decreases in coefficients of friction and steel ball scar diameters are noted for several of these derivatives.

TABLE #6
Results of Four-Ball Method Testing(ASTM D2783)

Sample Tested @ 0.1% in Mineral Oil	Coefficient of Friction	Scar Diameter (mm.)	2% ZnDTP Added to 0.1% in Mineral Oil	Coefficient of Friction	Scar Diam (mm.
C-6	0.0493	0.9	C-6	0.0586	0.5
C-7	0.0595	0.9	C-7	0.0510	0.4
C-2	0.0595	0.9	C-2	0.0782	0.5
C-1	0.0833	0.7	C-1	0.0510	0.5
C-5	0.0935	0.8	C-5	0.0773	0.5
Monacor 39*	0.0799	0.5	Monacor* 39	0.0595	0.5
			ZnDTP alone	0.0952	0.6

^{*} Commercial test products

^{**} Zinc dialky dithio phosphate

CLAIMS:

1. Texture and softening compositions for a wide range of paper, textile and human substrates comprising amphoteric compositions that are represented by the formula:

10

15

5

wherein:

R₁ is a saturated or unsaturated aliphatic mono or poly carboxylic acid moiety having one or more carboxyl functional groups derived from intermediates containing olefinic, halogenated or carboxylated epoxy reactive sites, and having one or more straight or branched, saturated or unsaturated aliphatic chains containing from 2 to 18 carbon atoms; and

20

25

- R_2 and R_3 , which may be the same or different, are a straight or branched, saturated or unsaturated alkyl chains of 3 to 21 carbon atoms.
- 2. Texture and softening compositions as in Claim 1, wherein further R_1 is derived from a chlorinated carboxylic acid having from 2 to 6 carbon atoms.
 - 3. Texture and softening compositions as in Claim 1, wherein further R_1 is derived from a carboxylic acid having an unsaturated alkyl carbon chain.
- 30 4. Texture and softening compositions as in Claim 1, wherein further R_1 is a carboxylic acid functional group having an unsaturated alkyl carbon chain.
- 5. Texture and softening compositions for a wide range of paper, textile and human substrates comprising amphoteric compositions represented by the general formula:

21

wherein:

5

10 .

15

20

25

30

35

 R_1 is a saturated or unsaturated aliphatic, mono or poly carboxylic acid moiety having one or more carboxyl functional groups derived from intermediates containing olefinic, halogenated epoxy or anhydride reactive sites, and having one or more straight or branched, saturated or unsaturated aliphatic chains containing from 2 to 18 carbon atoms; and

 $\rm R_2$ and $\rm R_3$, which may be the same or different, is a straight or branched, saturated or unsaturated alkyl chain of 3 to 21 carbon atoms; or

Compositions represented by the formula:

$$H_{2}C$$
 —— CH_{2} O R_{1} —— N N —— CH_{2} ——

wherein:

 $R_{\rm i}$ is a saturated or unsaturated aliphatic mono or poly carboxylic acid moiety having one or more carboxyl functional groups derived from intermediates containing olefinic, halogenated, epoxy or anhydride reactive sites, and having one or more straight or branched saturated or

25

unsaturated aliphatic chains containing from 2 to 18 carbon atoms;

 $\rm R_2$ and $\rm R_3$, which may be the same or different, is a straight or branched, saturated or unsaturated alkyl chain of 3 to 21 carbon atoms, and

 $R_{\scriptscriptstyle 5}$ which is hydrogen, the same as $R_{\scriptscriptstyle 1}$, or is derived from an alkylating group.

- 6. Texture and softening compositions as in Claim 5, wherein further, R₁ is an aliphatic mono or poly carboxylic acid moiety having one or more carboxyl functional groups, and wherein further, R₂ and R₃ are a straight or branched chain, saturated or unsaturated aliphatic chains having from 3 to 21 carbon atoms.
- 7. Texture and softening compositions as in Claim 5, wherein further, R_1 is derived from a chlorinated carboxylic acid functional group having from 2 to 6 carbon atoms.
- 8. Texture and softening compositions as in 20 Claim 5, wherein further, R_1 is a carboxylic acid functional group having an unsaturated alkyl carbon chain.
 - 9. Texture and softening compositions as in Claim 5, wherein further, R_1 is a chlorinated carboxylic acid functional group having an unsaturated alkyl carbon chain.
 - 10. Texture and softening compositions as in claim 1 represented by the general Formula as set forth below:

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

wherein:

R_i is a saturated or unsaturated aliphatic, mono or poly carboxylic acid moiety having one or more carboxyl functional groups derived from

15

25

30

intermediates containing olefinic or epoxylated epoxy reactive sites, having one or more straight or branched, saturated or unsaturated aliphatic chains containing from 2 to 18 carbon atoms; and

 R_2 and R_3 , which may be the same or different, are straight or branched, saturated or unsaturated alkyl chain of 3 to 21 carbon atoms.

11. Texture and softening compositions as in Claim 5 of the general Formula 3 as represented by the 10 following:

$$R_1$$
 C CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

20 wherein:

 R_1 is a saturated or unsaturated aliphatic mono or poly carboxylic acid moiety having one or more carboxyl functional groups derived from intermediates containing olefinic, halogenated, epoxy or anhydride reactive sites, and having one or more straight branched saturated or unsaturated aliphatic chains containing from 2 to 18 carbon atoms;

 R_2 and R_3 , which may be the same or different, is a straight or branched, saturated or unsaturated alkyl chain of 3 to 21 carbon atom; and

 R_s which is hydrogen, the same as R_1 , or is derived from an alkylating group.

12. Texture and softening compositions as in Claim 11, wherein further R_i is a chlorinated carboxylic acid functional group having from 2 to 6 carbon atoms.

WO 00/11125

10

15

24

PCT/US99/18974

- 13. Texture and softening compositions as in Claim 11, wherein further $R_{\rm l}$ is a carboxylic acid functional group having an unsaturated alkyl carbon chain.
- 14. A method of softening paper, textile and human substrates comprising contacting the substrate of an object to be softened with compositions comprising an effective amount of the compositions of claim 1; and, permitting the object to dry.
- 15. The method of claim 14 wherein the substrate to be softened is paper.
 - 16. The method of claim 14 wherein the substrate to be softened is textile fabric.
 - 17. A method of softening paper, textile and human substrates comprising contacting the substrate of an object to be softened with compositions comprising an effective amount of the compositions of claim 5; and permitting the object to dry.
 - 18. Metal treating compositions comprising an effective amount of the composition of claim 1.
- 20 19. Metal treating compositions comprising an effective amount of the composition of claim 5.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/18974

A. CLASSIFICATION OF SUBJECT MATTER						
IPC(7) :C11D 1/58, 1/62, 1/66 US CL :510/500, 501, 504						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum documentation searched (classification system follows	ed by classification symbols)					
U.S. : 510/500, 501, 504						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN structure search						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages Relevant to claim No.					
	SHI, M., QU, R. Synthesis and Bactiericidal Activity of Fatty Acyl Ethylene Glycine and Its Cyclocondensation Products (Abstract). April 1974. Pages 184-187.					
A US 4,362,737 A (SCHAFER et al) (text.	77 December 1982, see entire 5-9, 12, 13, 18 and 19					
	· · · · · · · · · · · · · · · · · · ·					
· V						
Further documents are listed in the continuation of Box (C. See patent family annex.					
Special categories of cited documents:						
- Special categories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance	*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention					
*E" earlier document published on or after the international filing date	*X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step					
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	when the document is taken alone 'Y' document of particular relevance; the claimed invention cannot be					
O document referring to an oral disclosure, use, exhibition or other means	considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art					
P document published prior to the international filing date but later than the priority date claimed	** document member of the same patent family					
Date of the actual completion of the international search	Date of mailing of the international search report					
13 DECEMBER 1999 27 JAN 2000						
Name and mailing address of the ISA/US Authorized officer						
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Box PCT COHN R HARDEF / WYM CVWC					
Facsimile No. (703) 305-3230	Telephone No. (703) 308-0661					

INTERNATIONAL SEARCH REPORT

International application No. PCT-US99/18974

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)				
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. Claims Nos.:				
because they relate to parts of the international application that do not comply with the prescribed requires an extent that no meaningful international search can be carried out, specifically:	nents to such			
	·			
3. Claims Nos.:				
because they are dependent claims and are not drafted in accordance with the second and third sentences of F	Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)				
This International Searching Authority found multiple inventions in this international application, as follows:				
Please See Extra Sheet.				
1. X As all required additional search fees were timely paid by the applicant, this international search report conclaims.	vers all searchable			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did no of any additional fee.	not invite payment			
3. As only some of the required additional search fees were timely paid by the applicant, this international se only those claims for which fees were paid, specifically claims Nos.:	arch report covers			
	8			
4. No required additional search fees were timely paid by the applicant. Consequently, this international restricted to the invention first mentioned in the claims; it is covered by claims Nos:	il search report is			
·				
Remark on Protest The additional search fees were accompanied by the applicant's protest.				
X No protest accompanied the payment of additional search fees.				

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99-18974

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s) 1-4, 10, 11, 14-17 AND 19, drawn to compositions containing bis-amidoamines.

Group II, claim(s) 5-9, 12, 13, 18 and 20; drawn to compositions containing imidazolyl compounds.

The inventions listed as Groups I and II do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Any structural feature which unites the two inventions does not make a contribution over the prior art, as shown by refrence marked to Shi et al., Riyong Huaxue Gongye, 1992, 4, 184-187.