Fill in the Blanks (Quiz) on Basic QC

partial
The languages of Quantum Mechanics are partial differential equations and linear algebra
Every electron is either or white and no other color black
Every electron is either or soft hard
A box exists to determine the color and hardness of an electron by the of the electron after it exits the device position
The function of a box that can determine color or hardness of an electron produces results that are 100% of the time repeatable
The degree of between electron color and hardness can be determined by the placement of multiple detection devices. correlation
The color and hardness of electrons are not when measuring correlated
In this tri-box scenario, of the electrons come out "white" 50%
No initial electron can determine the color or hardness of that electron after it has exited the first color-hardness detection box property
Probability is enforced by us by observation
The probability of the second box detection of color or hardness being 50/50 is immutable and of the materials and methods of the boxes functioning! independent
It is to build a dual function hardness/color detection box for electrons impossible
It is to say that an electron has a particular color and hardness

meaningless

The uncertainty of simultaneoulsy determining color and hardness of electrons scales	_ to massive particles
After electron color or hardness has been detected, a mirror will change the not the color or hardness direction	_ of the electron but
This is an example of a device that uses to cause electrons to reconvene. mirrors	
cannot be split in two or take two paths at once electrons	
An electron is hard or soft or both or neither is this scenario not	
Every electron exits a hard box as hard or soft but every electron needn't be hard or be in a of hardness or softness superposition	or soft, but rather can
Cathode ray tube is a gun that shoots at a phosphorescent screen electrons	
particles come from the decay of radioactive particles alpha	
We know that exists because if you shoot alpha particles at a thin foil of atoms, ricochet back in the direction of the shoot proving that there are high density cores nuclei	•
When you accelerate a charge it radiates	
In Classical Physics, atoms should not, because they don't behave like part exist	ticles should
Protons are paired by a force otherwise they would repel one another strong	
The rules of abstract vector space in Quantum Mechanics state that any vector constant to get a new vector	an be multiplied by a
The rules of abstract vector space in Quantum Mechanics state that every of to create a new vector pair	vectors can be added

The rules of abstract vector space in Quantum Mechanics state that every vector is represented by a column vector of numbers complex
The inner product of a vector times itself is always a real number and can be thought of as the square of the size of the vector or the magnitude of a vector positive
A Complex is a separate vector space and is a row vector that corresponds to a column vector conjugate
+> is an electron pointing up
-> is an electron pointing down
vectors in this vector space represent that state of the qubit normalized
Vector [a1 a2] is all the possible that a prepared electron could be pointing to directions
The of the coefficients of a column equals the probability for up and probability for down, and that probability must add up to 1 square
Anything that can be measured and quantified with a real number is called an observable
Observables can be thought of as points on a plane with each point representing a input number function
P-sub-n, is the that you get the nth-state of an observable probability
To figure the total probability of an observable you add up all of the observable function input points the given probability for each point (i.e. weight them according to their probability) times
Observables are related to the concept of a linear operator or a matrix
If an observable has a state that was one and zero everywhere else then the expected value would be the of the state that was a one. probability

For all possible observable, if you know how to calculate the average expected value then you can construct the probability of all expected values distribution
The mathematical representation of observables are matrices
A matrix is an on a vector operation
A is an operations on a vector matrix
If you multiply a vector by a matrix you get a new vector
To multiply a vector by a matrix you take the subsequent vector column entries individually and multiply then by the corresponding row entry in the matrix and the the products to return to the original dimensions of the vector add
The notion of a matrix corresponds to the notion of a real number Hermitian
If you take an element of a matrix M-sub-ij, and then there is M-sub-ji (the reflected matrix element), in a Hermitian matrix the new elements are the complex of the reflected position elements conjugates
A number that is, itself, equal to its complex conjugate is real
The of a Hermitian matrix are real always
The diagonal numbers are complex conjugates of each other off
Hermitian matrices are the quantum version of observables
The classic notion of observables are a function of their points. i.e. each point is like the sides of dice state
A complex number has a real part and and an part imaginary

The facts of life are (1) Atoms exist (2) exists (3) Atomic Spectra (4) Photoelectric Effect (5) Electron Diffraction (6) Bell's Poor Inequality randomness
The facts of life are (1) Atoms (2) Randomness exists (3) Atomic Spectra (4) Photoelectric Effect (5) Electron Diffraction (6) Bell's Poor Inequality exist
The facts of life are (1) Atoms exists (2) Randomness exists (3) Atomic (4) Photoelectric Effect (5) Electron Diffraction (6) Bell's Poor Inequality spectra
The facts of life are (1) Atoms exists (2) Randomness exists (3) Atomic Spectra (4) Effect (5) Electron Diffraction (6) Bell's Poor Inequality photoelectric
The facts of life are (1) Atoms exists (2) Randomness exists (3) Atomic Spectra (4) Photoelectric Effect (5) Electron (6) Bell's Poor Inequality diffraction

The facts of life are

- (1) Atoms exists
- (2) Randomness exists

- (3) Atomic Spectra
- (4) Photoelectric Effect
- (5) Electron Diffraction
- (6) Bell's Poor _____

inequality