ASEN 5044, Fall 2024

Statistical Estimation for Dynamical Systems

Lecture 18:

More on Stochastic Processes; White Noise Processes; Stochastic Linear CT and DT Models

Prof. Nisar Ahmed (Nisar.Ahmed@Colorado.edu)

Tuesday 10/15/2024

Announcements

• Homework 5: due this Fri 10/18 on Gradescope

- HW 6 out this Thurs 10/17 (will be due in 2 weeks)
- Quiz 6 out this Fri 10/18, due Tues 10/22

Midterm 1 being graded...

Overview

Last Time:

- Functional transformations of random variables
- Derivation/proof that linear transformations y=f(x) of Gaussian random vectors x →
 Gaussian random vectors y

- Intro to stochastic processes
 - Mean and autocorrelation functions

$$\bar{X}(t_i) = \bar{X}_i = E[X(t_i)] = \int_{-\infty}^{\infty} X(t_i) p(X(t_i)) dX(t_i)$$

$$R_X(t_i, t_j) = E[X(t_i) X(t_j)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(t_i) X(t_j) p(X(t_i), X(t_j)) dX(t_i) dX(t_j)$$

$$X(t_1) \triangleq X_1$$
$$X(t_2) \triangleq X_2$$
$$\vdots$$

$$X(t_n) \triangleq X_n$$

Today...

More on stochastic processes

Power spectral density (PSD) and white noise intensity

Additive white noise: continuous/discrete time (CT/DT) versions

DT Stochastic Linear State Space Systems

• Let's look at *sample values of* $R_x(\tau)$ [time shift/lag $\tau = t_i - t_j$] for realizations of:

$$X_{0}(t) = 10\sin(2\pi t)$$

 $X_{1}(t) = 10\sin(2\pi t + \theta), \ \theta \sim \mathcal{U}[0, 2\pi]$
 $X_{2}(t) = \text{jump to A, every 1.5 secs, } A \sim \mathcal{U}[-0.5, 0.5]$
 $X_{3}(t) = Q + \sin(0.2\pi t + \theta), \ Q \sim \mathcal{U}[-1, 1], \ \theta \sim \mathcal{U}[0, \pi/2]$
 $X_{4}(t) = A\sin(\theta), \ A \sim \mathcal{U}[0, 1], \ \theta \sim \mathcal{U}[0, 2\pi]$

• Use the "autocorr.m" on sample realizations in Matlab to approximate $R_x(\tau)$ in CT with DT version (see Matlab doc for details on fxn)

• sample autocorrelation function for realizations of:

$$X_1(t) = 10\sin(2\pi t + \theta), \ \theta \sim \mathcal{U}[0, 2\pi]$$

X2(t) sample • sample autocorrelation function for realizations of: $X_2(t) = \text{jump to A, every 1.5 secs, } A \sim \mathcal{U}[-0.5, 0.5]$ X2(t) SAMPLE R_ν(τ) X2(t) ENSEMBLE AVG R_ν(τ) ENSEMBLE AVG $R_{\chi}(\tau)$ SAMPLE $R_{\chi}(\tau)$ 0.2 -1.5 -0.5 0.5 1.5 -1.5 0.5 1.5

• sample autocorrelation function for realizations of:

$$X_3(t) = Q + \sin(0.2\pi t + \theta), \ Q \sim \mathcal{U}[-1, 1], \ \theta \sim \mathcal{U}[0, \pi/2]$$

• sample autocorrelation function for realizations of:

$$X_4(t) = A\sin(\theta), \ A \sim \mathcal{U}[0,1], \ \theta \sim \mathcal{U}[0,2\pi]$$

White Noise

• Let's take the result of last example to the extreme: what if X(t) is COMPLETELY uncorrelated with itself for ALL τ EXCEPT at τ = 0?

• In other words, such a signal has absolutely no memory of itself from one infinitesimal instant to the next! (i.e. contains no predictable information)

• If $R_x(\tau)$ = Dirac delta, then X(t) is said to be white noise

Why "White" Noise?

- The "color of noise" has to do with **frequency content** of the signal
- Look at spectral power via Fourier transform of R_x(τ): power spectral density (PSD) (※)
- Math: Parseval's theorem: energy in time domain = energy in frequency domain

Therefore, integral of PSD says how much energy in X(t) at different frequencies

White Noise is Physically Non-Realizable!!

- White noise is pure mathematical fiction
- Impossible to have a signal that can go infinitely far infinitely fast!
- All "real world" noise has SOME physical memory/inertia

- "worst case" scenario for noise: hit with everything possible!
- Makes math analysis MUCH simpler (band limited noise models are nasty)
- All "colored" or correlated noise (with finite spectral energy):
 can be modeled as white noise passing through a filter!

Discrete Time Random Sequences (DT Processes)

Let $\{\cdots, x(k-2), x(k-1), x(k), x(k+1), \cdots\}$ be a set of random vectors ordered by time index k. Define $X^k = \{\cdots, x(k-1), x(k)\}$ to be a set of all random vectors in the sequence up to time k.

• Markov sequence: if $p(x(k) \mid X^j = \{\cdots, x(j-1), x(j)\}) = p(x(k) \mid \underline{x(j)}) \ \forall k > j$

then the sequence is said to be a **Markov sequence** (i.e. has the Markov property)

- ⇒ means that all important info about past for purposes of (imperfectly) predicting the future x(k) is completely summarized by x(j)
- White noise sequence: random sequence Σ of elements $\underline{w(k)} \in \mathbb{R}^n$ such that
 - (i) $E[w(k)] = 0 \ \forall k$

(ii)
$$\operatorname{cov}(w(k), w(j)) = E[w(k)w^T(j)] = \delta_{kj} \cdot Q(k) \ \forall k$$

where
$$\delta_{kj} = \begin{cases} 1, & \text{if } k = j \\ 0, & \text{if } k \neq j \end{cases}$$
 (Kronecker delta)

 $(ii) \quad \operatorname{cov}(w(k), w(j)) = E[w(k)w^{T}(j)] = \delta_{kj} \cdot Q(k) \ \forall k$ where $\delta_{kj} = \begin{cases} 1, & \text{if } k = j \\ 0, & \text{if } k \neq j \end{cases}$ (Kronecker delta) and Q(k) = posdef covariance matrix(white noise intensity covariance matrix)

Describing DT Random Sequences

Can also define mean and autocorrelation functions

(mean:)
$$\bar{x}(k) = E[x(k)] = \int_{-\infty}^{\infty} x(k) \cdot p(|x(k)|) dx(k)$$

(autocorr:) $R(k,j) = E[x(k)x^T(j)] = \int_{-\infty}^{\infty} x(k)x^T(j) \cdot p(|x(k)|, |x(j)|) dx(k) dx(j)$

• Stationarity: sequence $X = \{\cdots, x(k-1), x(k), x(k+1), \cdots\}$ is wide sense stationary (WSS) if:

- (i) $\bar{x}(k) = \text{constant indep. of time}$
- (ii) R(k,j) = R(k-j,0) = R(k-j) (function of time shift/difference only)

• **Ergodicity:** sequence X is ergodic if ensemble averages are same as time averages:

$$E[f(x(k))] = \int_{-\infty}^{\infty} f(x(k)) \cdot p(x(k)) dx(k) = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{k=-N}^{N} f(x(k))$$

(where f(x(k)) is some arbitrary function of x(k))