МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Лабораторная работа №3:

«Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока»

по дисциплине Электротехника Вариант №12

Выполнил: Студент группы

R3237 Осинина Т. С

Преподаватель: Горшков К.С.

- 1) **Цель работы:** исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов
- 2) Объект исследования: исследование режимов работы.
- 3) Метод экспериментального исследования:
 - 1. Анализ
 - 2. Лабораторный эксперимент (в программе LTspice)

4) План работы

Часть 1:

1. Измерение действующих значений входного напряжения, тока и фазового сдвига между ними для каждого двухполюсника таблицы 1. Сравнение результатов с расчётными значениями.

Часть 2:

- 1. Исследование и анализ частотных характеристик электрической цепи с последовательным соединением резистивного, индуктивного и ёмкостного элементов.
- 2. Исследование и анализ частотных характеристик электрической цепи с параллельным соединением ветвей с индуктивным и ёмкостным элементами.

5) Часть 1

Таблица №1

№	Схема двухполюсника	Расчётные соотношения					
1	$R_{_1}$	$I = U/Z, R = R_1, X = 0, Z = R_1,$					
1	•———	$\varphi = \operatorname{arctg}(0/R_1) = 0$					
2	- C	$I = U/Z$, $R = 0$, $X = -X_C = -1/(\omega \cdot C)$,					
		$Z = X_C$, $\varphi = arctg(-\infty) = -\pi/2$					
3	R_1 C	$I = U/Z, R = R_1, X = -X_C = -1/(\omega \cdot C)$					
	•	$Z = \sqrt{R^2 + X^2}$, $\varphi = \operatorname{arctg}(X/R)$					
4	R_k L	$I = U/Z$, $R = R_k$, $X = X_L = \omega \cdot L$,					
4	•———	$Z = \sqrt{R^2 + X^2}$, $\varphi = \operatorname{arctg}(X/R)$					
5	R_1 R_k L	$I = U/Z, R = R_1 + R_k, X = X_L = \omega \cdot L,$					
3		$Z = \sqrt{R^2 + X^2}$, $\varphi = arctg(X/R)$					
	R_1 C R_k L	$I = U/Z, R = R_1 + R_k,$					
6		$X = X_L - X_C = \omega \cdot L - 1/(\omega \cdot C)$					
	— — —	$Z = \sqrt{R^2 + X^2}$, $\varphi = \operatorname{arctg}(X/R)$					
	R_1	$I = U \cdot Y$, $G = 1/R_1$, $B = -B_C = -\omega \cdot C$					
7		$Y = \sqrt{G^2 + B^2}$, $\varphi = arctg(B/G)$					
,		$T = \sqrt{G} + D$, $\psi = along(D/G)$					
	D	$I = U \cdot Y, G = G_1 + G_2, G_3 = 1/R_3,$					
	$ \begin{array}{c} $	$G_k = R_k / (R_k^2 + X_L^2), B = B_k - B_1,$					
8		$B_1 = 0, B_k = X_L / (R_k^2 + X_L^2)$					
	R_k	$Y = \sqrt{G^2 + B^2}$, $\varphi = arctg(B/G)$					
	P C	$I = U \cdot Y, G = G_1 + G_k, G_1 = R_1 / (R_1^2 + X_C^2),$					
		$G_k = R_k / (R_k^2 + X_L^2), B = B_k - B_1,$					
9	- " -	$B_1 = X_C / (R_1^2 + X_C^2), B_k = X_L / (R_k^2 + X_L^2)$					
	$\mathbb{L}_{\mathbb{L}}$	$Y = \sqrt{G^2 + B^2}$, $\varphi = arctg(B/G)$					

Таблица №2

Номер	Пара		зухполюс	ников	Резуль	гаты изме	Результаты вычислений		
схемы цепи	R_1	R_k	L	С	U	I	φ	I	φ
	Ом		мГн	мкФ	В	мА	0	мА	0
1	79	-	-	-	14,048	175	0	178	0
2	-	-	-	4,58	14	475	-90	483	-90
3	79	-	-	4,58	14,248	163	-22,5	180	-20,14
4	-	24	1751	-	14,403	1,7	90	1,1	89,9
5	79	24	1751	1	13,847	1,77	90	1,0	89,6
6	79	24	1751	4,58	14,063	1,4	90	1,1	89,5
7	79	-	-	4,58	14,056	477	-75	517	-69,9
8	79	24	-	4,58	14,062	175	0,85	178	0,34
9	79	24	1751	4,58	14,065	164	-21	167	-19,8

$$f=({
m N}^{
m o}$$
варианта) \cdot $(100)=(12)\cdot(100)=1200$ Гц $\omega=2\pi f=2*3,14*1200=7536$ рад/с ${
m A}=20$ ${
m \phi}=0$

$$I = \frac{U}{R} = \frac{14,048}{79} = 0,178 \,\text{A}$$

$$\varphi = arctg(0 / R) = 0^{\circ}$$

Схема и график цепи №2

Расчет:

$$I = -U \cdot (\omega \cdot C) = -14 \cdot (7536 \cdot 4,58 \cdot 10^{-6}) = 0,483 \text{ A}$$

$$\varphi = \arctan(-\infty) = -\frac{\pi}{2} = -90^{\circ}$$

Схема и график цепи №3

Расчет:

$$I = \frac{U}{\sqrt{R^2 + \left(\frac{-1}{\omega \cdot C}\right)^2}} = 0,18 \text{ A}$$

$$\varphi = arctg\left(\frac{-1}{\omega CR}\right) = -20,14^{\circ}$$

$$\varphi_u = -180^{\circ} \cdot \frac{\Delta h}{h} = -180^{\circ} \cdot \frac{60 * 10^{-6}}{480 * 10^{-6}} = -22,5^{\circ}$$

$$I = \frac{U}{\sqrt{R^2 + (\omega \cdot L)^2}} = 1,1 \text{ мA}$$

$$\varphi = \arctan\left(\frac{\omega L}{R}\right) = 89,9^{\circ}$$

$$\varphi_u = 180^{\circ} \cdot \frac{\Delta h}{h} = 180^{\circ} \cdot \frac{0,2 * 10^{-3}}{400 * 10^{-6}} = 90^{\circ}$$

$$I = \frac{U}{\sqrt{(R_1 + R_k)^2 + (\omega L)^2}} = 1,0 \text{ мA}$$

$$\varphi = \arctan\left(\frac{\omega L}{R_1 + R_k}\right) = 89,6^{\circ}$$

$$\varphi_u = 180^{\circ} \cdot \frac{\Delta h}{h} = 180^{\circ} \cdot \frac{0,22 * 10^{-3}}{440 * 10^{-6}} = 90^{\circ}$$

Схема и график цепи №6

Расчет:

$$X_L = \omega L = 13195,5$$

$$X_C = \frac{1}{\omega \cdot C} = 28,97$$

$$I = \frac{U}{\sqrt{(R_1 + R_k)^2 + (X_L - X_C)^2}} = 1,1 \text{ mA}$$

$$\varphi = \arctan\left(\frac{X_L - X_C}{R_1 + R_k}\right) = 89,5^\circ$$

$$\varphi_u = 180^\circ \cdot \frac{\Delta h}{h} = 180^\circ \cdot \frac{0,36 * 10^{-3}}{420 * 10^{-6}} = 90^\circ$$

Схема и график цепи №7

Расчет:

$$I = U \cdot \sqrt{\left(\frac{1}{R_1}\right)^2 + (-\omega \cdot c)^2} = 0,517A$$

$$\varphi = \arctan(-\omega \cdot CR_1) = -69,9^\circ$$

$$\varphi_u = -180^\circ \cdot \frac{\Delta h}{h} = -180^\circ \cdot \frac{0,2 * 10^{-3}}{480 * 10^{-6}} = -75^\circ$$

$$I = U \cdot \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{(R_k^2 + X_L^2)}\right)^2 + \left(\frac{X_L}{(R_k^2 + X_L^2)} - 0\right)^2} = 178 \text{ MA}$$

$$\varphi = \arctan\left(\frac{\frac{X_L}{(R_k^2 + X_L^2)} - 0}{\frac{1}{R_1} + \frac{R_k}{(R_k^2 + X_L^2)}}\right) = 0.34^{\circ}$$

$$\varphi_u = 180^{\circ} \cdot \frac{\Delta h}{h} = 180^{\circ} \cdot \frac{2 * 10^{-6}}{420 * 10^{-6}} = 0,85^{\circ}$$

$$I=U\cdot\sqrt{G^2\cdot B^2}=167\,\mathrm{mA}$$
 $arphi=\mathrm{arctg}\left(rac{B}{G}
ight)=-19,8^\circ$, где $G=rac{R_1}{(R_1^2-\!+\!X_c^2)}+rac{R_k}{(R_k^2+X_L^2)}=0,01$ $B=rac{X_L}{R_k^2+X_L^2}-rac{X_C}{R_1^2+X_c^2}=-0,004$ $arphi_u=-180^\circ\cdotrac{\Delta h}{h}=-180^\circ\cdotrac{50*10^{-6}}{420*10^{-6}}=-21^\circ$

Векторные диаграммы

Схема №1

Схема №2

Схема №3

Схема №4

Схема №5

Схема №6

Вывод: в процессе выполнения части 1 Лабораторной работы №3 были изучены двухполюсники. Также были измерены и вычислены значения входного напряжения, тока и фазового сдвига между ними для каждого двухполюсника. При сравнении результатов высинили, что значения совпадают (есть некоторые отличии, не превышающие погрешность), что показывает верность проведенной работы.

6) Часть 2

Схема двухполюсника №6

Расчёт резонансной частоты для параметров элементов (схема №6):

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{3,14*2*\sqrt{1,751*4,58*10^{\wedge}(-6)}} = 56,2$$
 Гц

Таблица №3

таолица луз												
	$U=14.268~\mathrm{B};~R_1$ =79 Ом; R_k =24 Ом; L =1751 м Γ н; C =4,58 мк Φ ; f_0 =56,2 Γ ц											
f		10 -30,2	Расчёт			Эксперимент						
			$Q_p =$					$Q_e = 1.27$				
			6,003			20 1,27						
	φ	I	U_{R1}	U_k	$U_{\rm C}$	φ	I	U_{R1}	U_k	Uc		
Гц	0	A		В		0	A		В			
5,620	-89,081	0,002	0,184	0,155	14,409	-90,000	0,003	0,202	0,575	13,543		
11,240	-88,057	0,005	0,380	0,605	14,852	-90,000	0,005	0,396	1,267	15,121		
16,860	-86,901	0,008	0,600	1,420	15,654	-90,000	0,008	0,600	2,250	15,512		
22,480	-85,508	0,011	0,865	2,721	16,931	-87,000	0,011	0,900	3,665	16,720		
28,100	-83,706	0,015	1,208	4,740	18,906	-84,000	0,015	1,255	5,882	19,143		
33,720	-81,166	0,021	1,688	7,944	22,024	-81,000	0,022	1,789	7,954	21,396		
39,340	-77,162	0,031	2,439	13,381	27,268	-76,000	0,032	2,542	13,445	27,793		
44,960	-69,726	0,048	3,798	23,808	37,160	-60,000	0,049	3,830	25,194	37,109		
50,580	-51,763	0,086	6,777	47,777	58,934	-54,000	0,080	6,360	46,001	54,885		
56,200	-0,033	0,139	10,943	85,706	85,650	0,000	0,125	9,329	79,580	80,122		
61,820	48,903	0,091	7,196	61,994	51,207	49,000	0,098	7,765	67,628	57,279		
67,440	65,595	0,057	4,527	42,540	29,529	66,000	0,058	4,618	42,126	30,756		
73,060	72,609	0,041	3,277	33,359	19,732	68,000	0,041	3,393	33,807	21,446		
78,680	76,382	0,033	2,584	28,319	14,444	72,000	0,034	2,705	29,164	16,066		
84,300	78,734	0,027	2,145	25,193	11,194	78,000	0,027	3,441	29,601	17,370		
89,920	80,344	0,023	1,843	23,086	9,016	81,000	0,024	2,372	28,662	15,157		
95,540	81,519	0,021	1,622	21,582	7,466	82,000	0,023	1,862	24,980	10,554		
101,16	82,417	0,018	1,452	20,459	6,314	83,000	0,020	1,603	21,158	7,800		
106,78	83,127	0,017	1,317	19,595	5,427	84,000	0,016	1,228	20,637	6,751		
112,40	83,705	0,015	1,208	18,911	4,727	86,000	0,016	1,277	19,002	5,856		

Расчет Q_р и Q_е:

Q_p =
$$\sqrt{\frac{L}{C}} \cdot \frac{1}{R_1 + R_k} = \sqrt{\frac{1,751}{4,58 * 10^{-6}}} \cdot \frac{1}{103} = 6,003$$

Q_e = $\frac{U_{C0}}{U} = \frac{16,992}{13,412} = 1,27$

Расчет ϕ , I, U_{R1} , U_k , U_C для f=f0:

$$\omega=2\pi f=2\cdot 3,14\cdot 56,2=352,936$$
 рад/с $X_L=\omega L=352,936\cdot 1751\cdot 10^{-3}=617,99$ Ом $X_C=\frac{1}{\omega\cdot C}=\frac{1}{352,936\cdot 4,58\cdot 10^{-6}}=618,64$ Ом $X=X_L-X_C=618-618,64=-0,649$ Ом $Z=\sqrt{R^2+X^2}=\sqrt{103^2+0,649^2}=103$ Ом $I=\frac{U}{Z}=\frac{14}{103}=0,13$ А

$$U_{R1} = I \cdot R_1 = 0.13 \cdot 79 = 10.27 \text{ B}$$

$$U_{C} = I \cdot X_{C} = 0.13 \cdot 618.64 = 80.42 \text{ B}$$

$$U_{k} = I \cdot \sqrt{R_{k}^{2} + X_{L}^{2}} = 0.13 \cdot \sqrt{24^{2} + 618^{2}} = 80.4 \text{ B}$$

Графики схемы №6:

2,000

0,000

20,000

40,000

60,000

80,000 100,000 120,000

Схема цепи №9

Расчёт резонансной частоты для параметров элементов (схема №9):

$$f_0' = rac{1}{2\pi\sqrt{LC}} \cdot \sqrt{rac{p^2 - R_k^2}{p^2 - R_1^2}} = rac{1}{2\pi\sqrt{LC}} \cdot \sqrt{rac{p^2 - R_k^2}{p^2 - R_1^2}} = 56,623$$
 Гц

, где
$$p = \sqrt{rac{L}{C}} = \sqrt{rac{1751*10^{\wedge}(-3)}{4,58*10^{\wedge}(-6)}} = 618,32$$

Таблица №4

	$U = 14,268 \text{ B}; R_1 = 79 \text{ Om}; R_k = 24 \text{ Om}; L = 1751 \text{ м}\Gamma\text{H}; C = 4,58 \text{ мк}\Phi;$									
f		$f_0 = 56,623$	3 Гц							
		F	асчёт		Эксперимент					
	φ	I	I1	I2	φ	I	I1	I2		
							К			
Гц	0		A		0		<u>а</u> мА			
5,662	68,731	0.210	0,164	0,002	69	0,20267	0,16474	0,0022492		
11,325	78,607		0,095	0,005	80	0.10289	0,09725	0,0045884		
16,987	81,763	,	0,067	0,007	82	· '	0,072294	0,0067324		
22,649	82,906	0,048	0,052	0,009	82	0,045645	0,054462	0,0089769		
28,312	82,903	0,034	0,042	0,011	80	0,032656	0,043663	0,011218		
33,974	81,767	0,024	0,036	0,013	78	0,023264	0,037454	0,013518		
39,636	78,883	0,017	0,031	0,015	77	0,016007	0,031231	0,015676		
45,298	72,193	0,011	0,027	0,017	72	0,010213	0,02734	0,017896		
50,961	53,842	0,006	0,024	0,019	57	0,0058195	0,024309	0,02011		
56,623	0,017	0,004	0,022	0,020	0	0,0042141	0,021879	0,02031		
62,285	-44,993	0,006	0,020	0,022	-45	0,0063519	0,019888	0,022498		
67,948	-59,518	0,009	0,018	0,024	-60	0,0095998	0,018226	0,024674		
73,610	-65,270	0,013	0,017	0,026	-67	0,012927	0,016826	0,026845		
79,272	-68,037	0,016	0,016	0,027	-68	0,016157	0,015633	0,02798		
84,935	-69,484	0,019	0,015	0,029	-70	0,019266	0,014589	0,02946		
90,597	-70,241	0,023	0,014	0,031	-70	0,022258	0,013676	0,03127		
96,259	-70,596	0,026	0,013	0,032	-71	0,025144	0,01287	0,03281		
101,921	-70,698	0,028	0,012	0,034	-71	0,027932	0,012151	0,03467		
107,584	-70,629	0,031	0,012	0,035	-72	0,030627	0,011507	0,03553		
113,246	-70,443	0,034	0,011	0,037	-71	0,033253	0,01093	0,037587		

Пример расчета ϕ , I, I1, I2:

$$\omega=2\pi f=2\cdot 3,14\cdot 56,623=355,762\ \mathrm{pag/c}$$
 $X_L=\omega L=355,592\cdot 1751\cdot 10^{-3}=622,94\ \mathrm{Om}$ $X_C=\frac{1}{\omega\cdot C}=\frac{1}{352,936\cdot 4,58\cdot 10^{-6}}=613,73\ \mathrm{Om}$ $X=X_L-X_C=9,21\ \mathrm{Om}$

$$G = G_1 + G_k = 2,715 * 10^{-4}$$

$$G_1 = \frac{R_1}{(R_1^2 + X_c^2)} = \frac{79}{79^2 + 613,73^2} = 2,097 * 10^{-4}$$

$$G_k = \frac{R_k}{(R_k^2 + X_L^2)} = \frac{24}{24^2 + 622,94^2} = 6,18 * 10^{-5}$$

$$B = \frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_c^2} = \frac{622,94}{24^2 + 622,94^2} - \frac{613,73}{79^2 + 613,73^2}$$

$$= 7,9 * 10^{-8}$$

$$I = U \cdot \sqrt{G^2 \cdot B^2} = 0,004 \text{ A}$$

$$I_1 = \frac{U}{R_k + X_L} = 0,022 \text{ A}$$

$$I_2 = \frac{U}{R_1 + X_C} = 0,024$$

$$\varphi = \operatorname{arctg}\left(\frac{B}{G}\right) = 0,017^\circ$$

Графики схемы №9:

Вывод: в части 2 лабораторной работы №3 были детальнее изучены и проанализированы электрическая цепь с параллельным соединением ветвей с индуктивным и ёмкостным элементами (схема №9) и электрическая цепь с последовательным соединением резистивного, индуктивного и ёмкостного элементов (схема №6). Также были изучены резонанс напряжений и токов. В части 2 производили расчет резонансную частоту (f_0), далее вычисляли и измеряли точки в диапазоне частот от $0.1 \cdot f_0$ до $2 \cdot f_0$ (таблица №3 и №4). Далее были составлены графики по значениям. Проанализировав графики, можно сказать, что данные вычислены верно, так как графики совпадают.