## Uno strano linguaggio

Considera il linguaggio

$$L_1 = \{a^{\ell}b^mc^n \mid \ell, m, n \ge 0 \text{ e se } \ell = 1 \text{ allora } m = n\}.$$

- (a) Mostra che  $L_1$  non è regolare.
- (b) Mostra che  $L_1$  si comporta come un linguaggio regolare rispetto al Pumping Lemma. In altre parole, dai una lunghezza del pumping k e dimostra che  $L_1$  soddisfa le condizioni del Pumping Lemma per questo valore di k.
- (c) Spiega perché i punti (a) e (b) non contraddicono il Pumping Lemma.

## Soluzione

(a) **Prima alternativa:** Possiamo dimostrare che  $L_1$  non è regolare modificando la dimostrazione che il linguaggio  $\{0^n1^n \mid n \geq 0\}$  non è regolare. Supponiamo che  $L_1$  sia regolare: allora deve esistere un DFA A che lo riconosce. Il DFA avrà un certo numero di stati k. Consideriamo la computazione di A con l'input  $ab^k$ :



Poiché la sequenza di stati  $p_1, p_2, \ldots, p_{k+1}$  che legge  $b^k$  è composta da k+1 stati, allora esiste uno stato che si ripete: possiamo trovare i < j tali che  $p_i = p_j$ . Chiamiamo q questo stato. Cosa succede quando l'automa A legge  $c^i$  partendo da q?

- Se termina in uno stato finale, allora l'automa accetta, sbagliando, la parola  $ab^{j}c^{i}$ .
- $\bullet\,$  Se termina in uno stato non finale allora l'automa rifiuta, sbagliando, la parola  $ab^ic^i$

In entrambi i casi abbiamo trovato un assurdo, quindi  $L_1$  non può essere regolare.

Seconda alternativa: Per le proprietà di chiusura dei linguaggi regolari, sappiamo che l'intersezione di linguaggi regolari è un linguaggio regolare. Se intersechiamo  $L_1$  con un linguaggio regolare e quello che otteniamo non è un linguaggio regolare, allora possiamo concludere che  $L_1$  non può essere regolare. Consideriamo il linguaggio  $L' = L_1 \cap \{ab^*c^*\} = \{ab^mc^m \mid m \geq 0\}$ , e usiamo il Pumping Lemma per dimostrare che non è regolare. Supponiamo per assurdo che L' sia regolare:

- $\bullet$  sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola  $w = ab^kc^k$ , che appartiene ad L' ed è di lunghezza maggiore di k;
- sia w = xyz una suddivisione di w tale che  $y \neq \varepsilon$  e  $|xy| \leq k$ ;
- siccome  $|xy| \le k$ , allora x e y devono cadere all'interno del prefisso  $ab^k$  della parola w. Ci sono due casi possibili, secondo la struttura di y:
  - -y contiene la a iniziale. In questo caso la parola  $xy^2z$  non appartiene ad L' perché contiene due a;
  - -y contiene solamente b. In questo caso la parola  $xy^2z$  non appartiene ad L' perché contiene più b che c.

In entrambi i casi abbiamo trovato un assurdo quindi L' non è regolare, e possiamo concludere che neanche  $L_1$  può essere regolare.

- (b) Mostriamo che  $L_1$  si comporta come un linguaggio regolare rispetto al Pumping Lemma.
  - Poniamo come lunghezza del pumping k=2.
  - Data una qualsiasi parola  $w = a^{\ell}b^{m}c^{n} \in L_{1}$  di lunghezza maggiore o uguale a 2, si possono presentare vari casi, secondo il numero di a presenti nella parola:
    - se c'è una sola a, allora  $w = ab^m c^m$ . Scegliamo la suddivisione  $x = \varepsilon$ , y = a e  $z = b^m c^m$ . Per ogni esponente  $i \ge 0$ , la parola  $xy^iz = a^ib^mc^m$  appartiene a  $L_1$ : se i = 1 allora il numero di b è uguale al numero di c come richiesto, mentre se  $i \ne 1$  il linguaggio non pone condizioni sul numero di b e c;

- se ci sono esattamente due a, allora  $w = aab^mc^n$ . Scegliamo la suddivisione  $x = \varepsilon$ , y = aa e  $z = b^mc^n$ . Per ogni esponente  $i \ge 0$ , la parola  $xy^iz = a^{2i}b^mc^n$  appartiene a  $L_1$ : il numero di a è pari, quindi sempre diverso da 1, e ricadiamo nelle situazioni in cui il linguaggio non pone condizioni sul numero di b e c;
- se ci sono almeno tre a, allora  $w = a^{\ell}b^{m}c^{n}$  con  $\ell \geq 3$ . Scegliamo la suddivisione  $x = \varepsilon$ , y = a e  $z = a^{\ell-1}b^{m}c^{n}$ . Per ogni esponente  $i \geq 0$ , la parola  $xy^{i}z = a^{i+\ell-1}b^{m}c^{n}$  contiene almeno due a, e quindi appartiene a  $L_{1}$ , perché rientra nelle situazioni in cui il linguaggio non pone condizioni sul numero di  $b \in c$ ;
- se non ci sono a, allora  $w = b^m c^n$ . Scegliamo la suddivisione che pone  $x = \varepsilon$ , y uguale al primo carattere della parola e z uguale al resto della parola. Per ogni esponente  $i \geq 0$ , la parola  $xy^iz$  sarà nella forma  $b^p c^q$  per qualche  $p, q \geq 0$  e quindi appartenente a  $L_1$ , perché quando non ci sono a il linguaggio non pone condizioni sul numero di b e c.

In tutti i casi possibili la parola può essere pompata senza uscire dal linguaggio, quindi  $L_1$  rispetta le condizioni del Pumping Lemma.

(c) Il Pumping Lemma stabilisce che se un linguaggio è regolare, allora deve rispettare certe condizioni. Il verso opposto dell'implicazione non è vero: possono esistere linguaggi, come  $L_1$ , che rispettano le condizioni ma non sono regolari. Di conseguenza, i punti (a) e (b) non contraddicono il lemma.