Lecture 10 Heterogenous Firms: Hopenhayn Model

Macroeconomics EC417

Jane Olmstead-Rumsey

London School of Economics, Fall 2022

Heterogeneous Agent Models

- 1. Heterogeneous household models: Aiyagari-Bewley-Huggett
 - Stationary wealth and income distribution
 - Motivated by skewed wealth distribution, high MPCs, etc.
- 2. Heterogeneous firm models: Hopenhayn-Rogerson
 - Stationary employment and productivity distribution
 - Firm size (measured by employment) distrib. highly skewed
 - Firms do not perfectly adjust to productivity shocks

Motivation for Hopenhayn-Rogerson Model

- Productivity shocks are idiosyncratic to firms in the data
- "Business dynamism" varies across countries and industries:
 - Industries differ substantially in their entry/exit rates
 - US has higher turnover of firms and jobs than Europe
 - Ex: in U.S. manufacturing industries, 40% of firms disappear within 5 years, covering 30% of jobs
- Can policy differences explain patterns of business dynamism?
 - Firing costs (e.g. severance) may reduce business dynamism

Key Papers/Resources

- 1. Hopenhayn (1992): original industry model
- 2. Hopenhayn and Rogerson (1993): application to firing costs in GE (we focus on this one)
- 3. Coding resources:

https://www.vfitoolkit.com/updates-blog/2020/entry-exit-example-based-on-hopenhayn-rogerson-1993/

Model Overview

- 1. Idiosyncratic uncertainty only: firm-specific productivity (or demand) shocks
- 2. Decreasing returns to scale imply an optimal size for each firm
- 3. Endogenous exit: productivity becomes too low
- 4. Endogenous entry: expected productivity sufficient to cover a fixed entry cost
- 5. Entry and exit rates equal and constant in equilibrium
- 6. Stationary firm size distribution

Firm Problem: Profits

$$\max_{n_t} p_t f(n_t, a_t) - n_t - p_t c_f - g(n_t, n_{t-1})$$

- n_t : number of workers today
- p_t : output price, firms take as given (wage rate normalized to 1)
- c_f : fixed operating cost, needed for exit
- $f(n_t, a_t)$ firm-level production function:

$$f(n_t, a_t) = a_t n_t^{1-\alpha}, \quad 1 - \alpha \in [0, 1]$$

• $g(n_t, n_{t-1})$: cost of adjusting labor: e.g. mandated severance

Ex:
$$g(n_t, n_{t-1}) = \tau \cdot \max\{0, n_{t-1} - n_t\}$$

• a_t : stochastic productivity following AR(1) in logs:

$$\log(a_t) = \bar{a} + \rho \log(a_{t-1}) + \epsilon_t, \epsilon_t \sim N(0, \sigma_\epsilon^2), \bar{a} \geq 0, 0 \leq \rho < 1$$

Firm Problem: Timing for Incumbents

"Incumbent" firm with $n_{t-1} > 0$ and productivity a_{t-1} last period.

At the start of period t:

- 1. Exit decision: if exit, pay $g(0, n_{t-1})$, firm disappears
- 2. If continue, observe a_t and pay $p_t c_f$
- 3. Production stage: choose n_t

$$\max_{n_t} p_t f(n_t, a_t) - n_t - p_t c_f - g(n_t, n_{t-1})$$

Firm Problem: Timing for Potential Entrants

Mass of potential entrants with unknown productivities.

At the start of period t:

- 1. Pay entry cost $p_t c_e$
- 2. Observe productivity a_t drawn from distribution ν
- 3. Production stage: choose n_t

$$\max_{n_t} p_t f(n_t, a_t) - n_t - p_t c_f - g(n_t, 0)$$

Entry decision will depend on expected productivity.

Firm Bellman Equations

Value function of incumbents:

$$V(a, n; p) = \max_{n' \ge 0} pa(n')^{1-\alpha} - n' - pc_f - g(n', n)$$
$$+ \beta \max\{E_a(V(a', n'; p), -g(0, n'))\}$$

- "Guess and verify" that prices are constant over time in eqm
- Max operator captures exit decision at beginning of next period
- Policy functions for labor demand N(a, n; p) and exit X(a, n; p)

Given V(a, n; p), entrants' value (gross of entry cost) is:

$$V^{e}(p) = \int V(a, 0; p) d\nu(a)$$

In equilibrium, free entry condition will hold:

$$V^e(p) = pc_e \tag{1}$$

Firm Problem: No Firing Costs

If $g(n_t, n_{t-1}) = 0$, firm's optimality implies:

$$\log n_t = \frac{1}{\alpha} (\log(1 - \alpha) + \log(p) + \log a_t)$$

Firm size, measured by employment, is increasing in:

- The price of the firm's output
- The firm's productivity a_t

The firm will exit $(X(a, n; p) = 1, \text{ or } n_t = 0)$ when $a_t \leq a^*$ for some a^*

Households

Representative household (household members share income):

$$\max_{c_t, n_t} \sum_{t=0}^{\infty} \beta^t \left(\log(c_t) - A n_t \right)$$

subject to:

$$p_t c_t \le n_t + \Pi_t + G_t$$

- Disutility of labor A > 0
- Π_t : profits of the firms
- G_t : government transfers tax receipts back to households
- \bullet Call the household's solution to labor supply problem L^s

Aggregate Objects

Let $\mu(a, n)$ the measure of firms at each point in state space (a, n), M the measure of entrants and $T(\mu, M; p) : \mu' = T(\mu, M; p)$:

$$Y(\mu, M; p) = \int [f(N(a, n; p), a) - pc_f] d\mu(a, n)$$

$$+ M \int f(N(a, 0; p), a) d\nu(a) \qquad [Output]$$

$$L^{d}(\mu, M; p) = \int N(a, n; p) d\mu(a, n) + M \int N(a, 0; p) d\nu(a) \text{ [Lab. Demand]}$$

$$R(\mu, M; p) = \int ([1 - X(a, n; p)] \int g(N(a', n'; p), n') dF(a, a')$$

$$+ X(a, n; p)g(0, n')) d\mu(a, n) \qquad [Adj. Costs]$$

$$\Pi(\mu, M; p) = pY(\mu, M; p) - L^{d}(\mu, M; p) - R(\mu, M; p) - Mpc_{e} \text{ [Profits]}$$

Stationary Equilibrium Definition

A stationary equilibrium of this model is $\{p^* \geq 0, M^* \geq 0, \mu^*\}$ such that the following conditions hold:

- 1. Labor market clearing:
 - $L^{s}(p^{*}, \Pi(\mu^{*}, M^{*}; p^{*}) + R(\mu^{*}, M^{*}; p^{*})) = L^{d}(\mu^{*}, M^{*}; p^{*}).$
- 2. Stationary distribution: $T(\mu^*, M^*; p^*) = \mu^*$.
- 3. Free entry condition: $V^e(p^*) \le p^*c_e$, with equality if $M^* > 0$.
- 4. Goods market clearing:

$$Y(\mu^*, M^*; p^*) = p^*c + M^*p^*c_e$$

Stationary Equilibrium Definition

A stationary equilibrium of this model is $\{p^* \geq 0, M^* \geq 0, \mu^*\}$ such that the following conditions hold:

1. Labor market clearing:

$$L^{s}(p^{*}, \Pi(\mu^{*}, M^{*}; p^{*}) + R(\mu^{*}, M^{*}; p^{*})) = L^{d}(\mu^{*}, M^{*}; p^{*}).$$

- 2. Stationary distribution: $T(\mu^*, M^*; p^*) = \mu^*$.
- 3. Free entry condition: $V^e(p^*) \le p^*c_e$, with equality if $M^* > 0$.
- 4. Goods market clearing:

$$Y(\mu^*, M^*; p^*) = p^*c + M^*p^*c_e$$

Possibility of multiple equilibria without entry (Hopenhayn (1992)).

- We will focus on stationary equilbrium with $M^* > 0$.
- If one such equilibrium exists, it is unique.

Unique Steady State with Positive Entry/Exit

Algorithm for finding the unique steady state has three steps:

- 1. Find the p^* such that $V^e(p^*) = c_e p^*$
- 2. Find μ^* as the fixed point of $T(\mu^*, M^*; p^*)$. Existence of a fixed point requires that expected exit age is finite (otherwise μ is growing over time) which requires a joint restriction on N(a, n; p), X(a, n; p), and F(a, a') (see Hopenhayn (1992) for details).
- 3. Find M^* that clears the labor or goods market.

Role of Fixed Costs and Entry Costs

Some "comparative statics" (how parameters affect the steady state):

- 1. Proposition 1: an increase in the fixed cost c_f increases p, the average firm size, and the exit rate.
 - Intuition: holding price fixed, this causes small firms near a^* to want to exit, raising average firm size. At the old price no new firms would want to enter so the price must increase to induce more entry.
- 2. Proposition 2: an increase in entry cost c_e increases p and decreases the exit rate.
 - Intuition: at the old price, no firms will want to enter when c_e increases, so the price must rise, which reduces exit and partially offsets the decline in entry.

Numerical Solution: Sketch of Computational Algorithm

- 1. Discretize state space (a, n) with 20 points for a and 250 points for n (can have more nowadays!)
 - Maximum n is set to 5000 employees
 - a grid discretizes the productivity process into 20 points
 - Q: transition matrix for a with persistent productivity?
- 2. Guess a p^* and use value function iteration to find $V(a, n; p^*)$, $X(a, n; p^*)$, $N(a, n; p^*)$.
- 3. Check whether free entry condition 1 is satisfied. If no, return to step 2. If yes, proceed to step 4
- 4. Solve for the stationary distribution $\mu(a, n)$ associated with M = 1 mass of entrants.
- 5. Find the scale factor M^* that clears the goods market.

Data Source: Census of Manufactures

U.S. Census of Manufactures dataset: Link to CFM data for 2017

- Survey of U.S. manufacturing establishments and firms
- Variables include:
 - number of employees
 - sales
 - labor costs
 - input costs (materials, energy, etc.)
 - detailed industry codes and types of products produced
 - geographic information
- Can play around w/ synthetic micro-data for all U.S. industries here: Link to Synthetic Longitudinal Business Database

Calibrating the Model

Calibration rather than estimation: simulated method of moments. Period is 5 years (data = Census of Manufactures, 5 year freq.)

param.	interp	target
α	1 - labor share	labor share of 0.64
β	discount factor	$\beta = \frac{1}{1+r}$, ann. real interest rate 4%
ρ	prod. persistence	inferred from emp. growth regs
σ_{ϵ}	s.d. prod. shock	inferred from emp. growth regs.
C_f	fixed cost	avg. $log(n)$ in the data
ā	mean prod.	avg. 5-year exit rate in the data
ν(a)	prod. distrib.	size distrib. of firms ages 0-6 years
Ce	entry cost	set so that $V^e(p) = p^*c_e$
A	disutil of labor	emp. to pop. ratio of 0.6
$g(n_t, n_{t-1})$	adj. cost	no adj. cost in baseline

Sensitivity analysis: how much do variations of $\pm 10\%$ in individual parameters change the results (holding others fixed)?

Model Fit of the Data

All data moments computed at 5-year intervals using Census data:

Moment	Data	Model
Serial corr. in log emp	0.93	0.92
Variance in emp. growth rates	0.53	0.55
Mean employment	61.7	61.2
Exit rate	37%	39%
Share of firms with 1-19 emp.	0.74	0.52
Share of firms with 20-99 emp.	0.18	0.37
Share of firms with 100-499 emp.	0.08	0.10
Share of firms with 500+ emp.	0.01	0.01

Policy Experiments

Introduce firing costs of the form:

$$g(n_t, n_{t-1}) = \tau \cdot \max\{0, n_{t-1} - n_t\}$$

Interpretation with period length 5 years (and wages = 1):

- $\tau = 0.1$ is 6 months' wages per worker
- $\tau = 0.2$ is 1 years' wages per worker
- etc...

Effect of Firing Costs on Model Steady State

Effect of Changes in τ (Benchmark Model)

	$\tau = 0$	$\tau = .1$	$\tau = .2$
Price	1.00	1.026	1.048
Consumption (output)	100	97.5	95.4
Average productivity	100	99.2	97.9
Total employment	100	98.3	97.5
Utility-adjusted consumption	100	98.7	97.2
Average firm size	61.2	61.8	65.1
Layoff costs/wage bill	0	.026	.044
Job turnover rate	.30	.26	.22
Serial correlation in $log(n)$.92	.94	.94
Variance in growth rates	.55	.45	.39

Interpreting the Results

- 1. Firms make fewer adjustments in response to shocks:
 - Higher serial correlation in log(n)
 - Lower variance in growth rates
 - Lower job turnover (fraction of jobs destroyed each period)
- 2. Fewer jobs created overall (lower total employment)
- 3. Consumption falls, utility-adjusted consumption falls by less because leisure increased
 - Quite a large drop in utility as a result of the policy: 2.8%
- 4. Lower average productivity: firms farther from optimal size = "misallocation"

Consumption-Equivalent Welfare Measure

Let $U(\tau)$ be the lifetime utility of the household in steady state with adjustment cost τ , and define $c(\tau)$, $n(\tau)$ the steady state levels of consumption and labor supply.

Recall the household's utility function:

$$U(0) = \sum_{t=0}^{\infty} \beta^{t} (\log(c(0)) - An(0))$$

Consumption equivalent welfare ξ for a given τ solves:

$$U(0) = \sum_{t=0}^{\infty} \beta^t \left(\log(c(\tau)(1+\xi)) - An(\tau) \right)$$

In the $\tau=0.2$ case, $\xi=0.028$ or 2.8%. Consumption has to increase 2.8% each period to make households in different between the no tax case and the case with firing costs.

Limitations of Hopenhayn-Rogerson Model

- 1. No physical capital (for computational reasons)
- 2. No aggregate uncertainty
- 3. Goods are homogeneous
- 4. Households can perfectly share income
- 5. Take employment contracts as given-might respond to policies
- 6. Long run effects only—what about transition dynamics?
- 7. ...others?

Takeaways: Heterogeneous Agent Models

- Like HH wealth distribution, firm size distribution highly skewed
- Apply similar techniques (Bellman equations, value function iteration, calibration...) across variety of het. agent models
- Can use these models to study policy questions/welfare
 - Agents may disagree about policies: winners and losers
 - Ex: regulations that increase entry costs in this model
- Others?

Plan for Last Lecture: Review Session

1. Particular topics we should cover?