2009-2010 学年第一学期 高等数学(2-1) 期中试题参考答案

一、 填空题(共6小题,每小题3分,满分共18分)

1.
$$\[\] g(x) = 3x + 1, \quad f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \end{cases}, \[\] \[f(g(x)) = \begin{cases} 3x + 1, -\frac{1}{3} \le x \le 0 \\ 1 - 3x, \ 0 < x \le \frac{1}{3} \end{cases}. \]$$

3. 设
$$y = f(x + f(x))$$
 二阶可导, $\frac{d^2y}{dx^2} =$

$$f''(x+f(x))(1+f'(x))^2+f'(x+f(x))f''(x)\;.$$

4. 试用" ε - δ "语言叙述 $\lim_{x \to x_0-} f(x) = A$ 的定义

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x : 0 < x_0 - x < \delta, \Rightarrow |f(x) - A| < \varepsilon$$

5. 设
$$f(x) > 0$$
且在点 $x_0 = a$ 处可导,则 $\lim_{n \to \infty} n \ln \frac{f(a + \frac{1}{n})}{f(a)} = \frac{f'(a)}{f(a)}$.

6. 当
$$x \to \infty$$
时, $\frac{1}{x^k}$ 与 $\sin \frac{1}{x^2+1}$ 是等价无穷小,则 $k = 2$.

- 二 选择题 (共4小题,每小题3分,满分12分)
- 1. 设函数 y = f(x) 在点 x_0 处可微,则下面表达式不正确的是 (C).

$$A. \qquad \lim_{x \to x_0} f(x) = f(x_0).$$

B.
$$dy|_{x=x_0} = f'(x_0)dx$$
.

C.
$$f(x) = f(x_0) + f'(x_0)(x - x_0)$$
. D. $dy - \Delta y = o(\Delta x)$ $(\Delta x \to 0)$.

D.
$$dy - \Delta y = o(\Delta x)$$
 $(\Delta x \rightarrow 0)$.

- 设函数 f(x) 在($-\infty$, $+\infty$) 内连续,其导函数的图形如图[1]所示,则 f(x)有(C).
 - A. 一个极小点和一个极大点.
- B. 两个极小点和一个极大点.
- C. 两个极小点和两个极大点. D. 三个极小点和一个极大点.
- 3. 下列命题错误的是(D).
 - A. 在 x_0 某去心邻域内 $f(x) \neq 0$,且 $\lim_{x \to x_0} f(x) = 0$,

则
$$\lim_{x \to x_0} \frac{1}{f(x)} = \infty$$
.

C. 若
$$\lim_{x \to x_0} f(x)$$
, $\lim_{x \to x_0} g(x)$ 存在,则 $\lim_{x \to x_0} (f(x) + g(x))$ 存在.

D. 若
$$\lim_{x \to x_0} (f(x) + g(x))$$
 存在,则 $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ 分别存在.

4. 曲线
$$y = 2x + \frac{\ln x}{x-1} + 4$$
 的渐近线的条数为 (C).

- A. 0. B. 1.

- D. 3.

三、计算题(共6小题,每小题6分,满分36分)

1.
$$\lim_{x \to +\infty} \frac{\sqrt{1+x}-3}{2+\sqrt{x}} = 1$$
. 2. $\lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(2x-\pi)^2} = -\frac{1}{8}$.

2.
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(2x - \pi)^2} = -\frac{1}{8}$$

3.
$$\lim_{x \to 0} \left(\frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{x}} = e^{-\frac{1}{2}}.$$

$$\mathbf{R} \frac{dy}{dx} = \frac{a\cos t}{a(\frac{1}{\tan^2 \frac{t}{2}} \frac{1}{\cos^2 \frac{t}{2}} \frac{1}{2} - \sin t)} = \frac{\sin t}{\cos t}, \qquad \frac{d^2 y}{dx^2} = \frac{\sin t}{a\cos^4 t}.$$

$$\frac{d^2y}{dx^2} = \frac{\sin t}{a\cos^4 t}$$

5. 设
$$f(x) = \frac{x^3}{x-1}$$
, 求 $f(x)$ 在点 $x_0 = 2$ 处的 n 阶导数值.

$$\mathbf{f}(x) = x^2 + x + 1 + \frac{1}{x - 1} \qquad f^{(n)}(x) = \frac{(-1)^n n!}{(x - 1)^{n+1}} \qquad f^{(n)}(2) = (-1)^n n!$$

6. 设 y = y(x) 是由方程 $y^x = x^y$ 所确定的函数, x > 0, y > 0, 求微分 dy.

解 由
$$y^x = x^y$$
 $\Rightarrow x \ln y = y \ln x$,

$$\ln y + x \frac{1}{y} y' = y' \ln x + y \frac{1}{x} \qquad dy = \frac{y(y - x \ln y)}{x(x - y \ln x)} dx.$$

四、应用题(共4小题,每小题6分,满分24分)

1. 设
$$f(x) = \begin{cases} a(x+1)^2, & x < 1 \\ b, & x = 1,$$
 选取合适的 $a \lor b \lor c$ 使 $f(x)$ 在点 $x = 1$ 处连续、可 $c + \arctan x, \quad x > 1$

투.

解
$$f(1^-) = 4a$$
, $f(1^+) = c + \frac{\pi}{4}$, 当 $f(1^-) = f(1^+) = f(1)$ 时,

即
$$4a = c + \frac{\pi}{4} = b$$
 时-----(1)

f(x)在点x = 1处连续

$$f'_{-}(1) = \lim_{x \to 1^{-}} \frac{a(x+1)^{2} - 4a}{x-1} = 4a,$$

$$f'_{+}(1) = \lim_{x \to 1^{+}} \frac{a + \arctan x - a - \arctan 1}{x - 1} = (\arctan x)' \big|_{x = 1} = \frac{1}{1 + x^{2}} \big|_{x = 1} = \frac{1}{2}$$

当
$$f'_{-}(1) = f'_{+}(1)$$
时,即 $4a = \frac{1}{2}$ 时, (2)

f(x)在点x = 1处可导.综合(1)、(2),得

当
$$a = \frac{1}{8}, b = \frac{1}{2}, c = \frac{1}{2} - \frac{\pi}{4}$$
时, $f(x)$ 在点 $x = 1$ 处连续、可导.

2. 设函数 $f(x) = \frac{x|x-2|}{(x^2-4)\sin x}$, 指出函数的间断点,并判断其类型.

解 f(x)的间断点为2,-2,0, $k\pi$ ($k = \pm 1, \pm 2, \cdots$).

因为
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{x \mid x-2\mid}{(x^2-4)\sin x} = -\frac{1}{2}$$
,所以 $x=0$ 为可去间断点。

因为
$$\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} \frac{x |x-2|}{(x^2-4)\sin x} = \frac{1}{2\sin 2} \lim_{x\to 2^+} \frac{|x-2|}{x-2} = \frac{1}{2\sin 2}$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x \mid x - 2 \mid}{(x^{2} - 4)\sin x} = \frac{1}{2\sin 2} \lim_{x \to 2^{-}} \frac{\mid x - 2 \mid}{x - 2} = -\frac{1}{2\sin 2},$$

所以x=2是跳跃间断点。

因为
$$\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{x |x-2|}{(x^2-4)\sin x} = -\frac{2}{\sin 2} \lim_{x \to -2} \frac{1}{x+2} = \infty$$
,所以 $x = -2$ 是无穷间断点。

因为
$$\lim_{\substack{x \to k\pi \\ (k \neq 0, k \in \mathbb{Z})}} f(x) = \lim_{\substack{x \to k\pi \\ (x^2 - 4) \sin x}} \frac{x | x - 2 |}{(x^2 - 4) \sin x} = \infty$$
,所以 $x = k\pi(k = \pm 1, \pm 2, \cdots)$ 是无穷间断点。

3. 求函数 $y = e^{\frac{x^{-}}{2}}$ 的极值、凸凹区间及曲线的拐点坐标。

解
$$f'(x) = e^{-\frac{x^2}{2}}(-x)$$
 $f''(x) = e^{-\frac{x^2}{2}}(x^2 - 1)$, 令 $f''(x) = 0$, 得 $x = 1, x = -1$ 上凸区间为 $[-1, 1]$, 下凸区间为 $[-\infty - 1]$, $[1, +\infty)$

据点为 $(-1.e^{\frac{-1}{2}})$. $(1, e^{\frac{-1}{2}})$.极大值为 1.

4. 一气球从离开观察员 500 米处离开地面铅直上升, 其速率为 140 米/分, 当气球高度为 500 米时, 观察员视线的仰角增加率是多少?

解 设仰角为 α , 高度变量为 h, 由题意知 $\frac{dh}{dt} = 140$, $\tan \alpha = \frac{h}{500}$,

$$\frac{1}{\cos^2\alpha}\frac{d\alpha}{dt} = \frac{1}{500}\frac{dh}{dt} \qquad \text{ BP} \quad \frac{d\alpha}{dt} = \frac{1}{500}\cos^2\alpha\frac{dh}{dt} \; ,$$

五、证明题(共2题,每小题5分,满分10分)

1.设 f(x) 在 [a,b] 上连续,且恒为正,证明对于任意的 $x_1, x_2 \in (a,b), x_1 < x_2$,

必存在一点
$$\xi \in [x_1, x_2]$$
, 使 $f(\xi) = \sqrt{f(x_1)f(x_2)}$.

证 令
$$F(x) = f^2(x) - f(x_1)f(x_2)$$
 $x \in [x_1, x_2] \subset [a, b]$ 则 $F(x)$ 在[x_1, x_2]上连续.

$$\mathbb{X} F(x_1)F(x_2) = -f(x_1)f(x_2)(f(x_2) - f(x_1))^2 \le 0$$

当等号立时, 即
$$f(x_1) = f(x_2)$$
,此时 $\xi = x_1$ 或 x_2 , 使得 $f(\xi) = \sqrt{f(x_1)f(x_2)}$ 成立.

$$\stackrel{\text{"}}{=}$$
 $F(x_1)F(x_2) = -f(x_1)f(x_2)(f(x_2) - f(x_1))^2 < 0$ 时,

由零值定理,
$$\exists \xi \in (x_1, x_2) \subset [a, b]$$
 使 $F(\xi) = 0$,即

$$f(\xi) = \sqrt{f(x_1)f(x_2)}$$

综上所述,
$$\exists \xi \in [x_1, x_2]$$
 使得 $f(\xi) = \sqrt{f(x_1)f(x_2)}$

2. 证明: 当
$$0 < x < 1$$
时, $e^{2x} < \frac{1+x}{1-x}$.

$$f'(x) = (1 - 2x)e^{2x} - 1 x \in [0,1]$$

$$\mathbb{Z} f''(x) = -4xe^{2x} < 0$$
 $x \in [0,1]$

故
$$f'(x) = (1-2x)e^{2x} - 1$$
 在[0,1]单减,

所以
$$f'(x) < f'(0) = 0$$
 $0 < x < 1$

$$(1-x)e^{2x} < 1+x$$
 $x \in (0,1)$ $\mathbb{P} e^{2x} < \frac{1+x}{1-x}$ $x \in (0,1)$