

Санкт-Петербургский государственный университет Кафедра системного программирования

Разработка библиотеки методов обработки данных акустической эмиссии на языке Python

Павел Андреевич Макарихин, 21.М07-мм группа

Научный руководитель: к.т.н., доц. каф. информатики А.В. Григорьева

Санкт-Петербург 2022

Введение. Неразрушающий контроль

- Акустический
- Электромагнитный
- Оптический
- Радиационный
- Ультразвуковой
- ...

Введение. Акустическая эмиссия

Постановка задачи

Целью данной выпускной квалификационной работы является разработка библиотеки методов обработки данных АЭ для автоматизации процесса их анализа. Для достижения цели были поставлены следующие задачи:

- Переписать разработанные ранее алгоритмы на язык программирования Python
- Разработать новые методы для анализа данных
- Апробировать новые методы на реальных данных
- Сформировать библиотеку методов

Основные области анализа АЭ

- Локация источников
- Кластеризация сигналов
- Классификация сигналов

Локация источника

Различные подходы для локации источников:

- Анализ мод волны
- Вейвлет-анализ волн
- Дополнительные условия
- Аналитические решения
- Анализ на основе априорно известных значений

Кластеризация данных

Существует множество алгоритмов кластеризации:

- DBSCAN
- К-средних
- Affinity Propagation
- Агломеративная иерархическая кластеризация
- Нейронные сети
- прочие

Классификация данных

Существующие подходы классификации:

- По формам волн
- По различным физическим параметрам
- С помощью эмпирических знаний
- Нейронные сети
- прочие

Существующее программное обеспечение

Широко используемое ПО:

- Vallen AE Suite Software
- Physical Acoustics' AEWin и Noesis
- A-Line

Vallen Systeme также разработала библиотеку pyVallenAE, однако, там очень небольшой функционал для анализа.

Схожие работы

ВКР магистра Жибаря Марка Артуровича, защищенная на кафедре программной инженерии в 2022 году: Программный комплекс для анализа данных АЭ, состоящий из нескольких приложений, написанных на разных языках программирования (Java и Python).

Отличия данной работы

- Единая библиотека
- Разные применяемые методы

Архитектура

Первичная обработка

	CHAN A	TRAI	E(TE)	R	D THR	RMS	CNTS	ALIN	Ni:	ld	Channel	Time	MSec	Amplitude	Energy	Duration	Counts
[hhmmss] [ms.µs]	[dB]		[eu]	[µs]	[µs] [dB]	[µV]		[µV]	0	LE	9	00:00:43	937,538	88,5	9370000	11894,4	1174
La Label 1: '14:11 DT 7 Ноябрь 2017 г.									0	Ht	1	00:00:43	937,5558	56.5	3800	3500.8	161
Ev00:00:03 66.2965		14:11	215E-1	0,4	5,0 40,0	3,7	- 1	114	0	Ht	7	00:00:43	937 5956	80.3	11300	3237.6	255
Ev00:00:03 00,2303			986E-1	40,2	195,2 40,0	4,5	7	161	n	H	3	00:00:43	937,6193	63.3	25000	4144	356
Ev00:00:19 223,2265	4 45,2	1	896E-1	7,4	76,8 40,8	3,8	4	183	0	ui	6	00:00:43	937 6333	59.9	9480	2916.8	214
Ev00:00:24 41,7766	4 48,6	2	143E00	56,6	173,0 40,0	3,7	16	270		m m		00:00:43	937 6708	54.7	4350	2533.6	191
Ev00:00:36 840,8211	2 48,3		719E-1	10,4	55,8 40,0	3,7	6	259		HI	8						
Ev00:00:49 313,9390	3 43,7	4	116E00	5,0	219,0 40,0	3,7	9	154	U	Ht	6	00:00:43	937,6803	53,5	2140	2072	118
Ev00:01:01 313,9168	3 40,7		297E-1	0,2	0,8 40,0	3,7	1	109	1	LE	1	00:00:47	714,1407	57,7	3830	3544	179
Ev00:01:17 277,1777	3 52,0	5	211E00	37,4	120,0 40,0	3,7	11	399	1	Ht	9	00:00:47	714,143	92,3	13300000	8819,2	955
Ev00:01:20 563,9134	3 42,6		334E-1	4,4	9,2 40,0	3,7	1	135	1	Ht	7	00:00:47	714,2131	62.6	18100	3229,6	264
Ht00:01:20 564,0599	9 45,2 4 48,6		125E00 430E00	121,2	194,0 40,0 626,0 40,0	4,5 3.8	6 28	183 270	1	Ht	3	00:00:47	714,2197	69,3	51700	4107,2	348
Ev00:01:21 537,8829 Ev00:01:34 14,4855	2 44.5		148E00	66,0	300.8 40.0	4,2	11	168	1	HI	5	00:00:47	714 2382	64.4	18400	3000.8	243
Ht00:01:34 14,46537	6 42,6		797E-1	41,8	161,0 40,0	3,9	4	135		u.		00:00:47	714.2434	58	6010	2740.8	211
Ev00:01:34 14,0037	3 41.9	۰	489E-1	4,6	27,4 40,0	3,7	2	124		Ht	10	00.00.47	714,2654	52.8	3150	2626.4	166
Ev00:01:48 669,3676			100E01	197.0	435,0 40,0	4,5	44	455			10	******					
Ev00:02:13 728,6979			184E00	8.0	81,6 40,0	4,5	9	399	2	LE	9	00:00:51	801,4268	85,5	3050000	7366,4	718
Ev00:02:51 261,4181	1 45,2	9	139E00	70.8	156,4 40,0	4,0	8	183	2	Ht	1	00:00:51	801,4843	55	1640	1577,2	74
Ev00:03:01 459,7859	1 43,0		209E-1	29,2	33,8 40,0	4,0	1	141	2	Ht	7	00:00:51	801,5094	57,7	4320	2508,8	161
LE00:03:04 543,9642			279E01	47,0	2468,0 40,0	4,0	131	589	2	Ht	3	00:00:51	801,5151	61,8	13300	3073,6	243
Ht00:03:04 544,0345	7 53,5	11		464,2	2153,6 40,0	3,5	110	475	2	Ht	5	00:00:51	801,5298	56,5	4220	2428,8	142
Ht00:03:04 544,0361	3 74,2	12	262E03	139,0	5803,2 40,0	3,7	540	5142	2	Ht	6	00:00:51	801 6042	49.8	807	1631.6	58
Ht00:03:04 544,0429	9 93,4		318E04	384,0	3601,6 40,0	4,5		46848	2	us.		00:00:51	801.6172	52	2000	2307.2	128
Ht00:03:04 544,0595	5 63,7	13	245E02	126,8	3307,2 40,0	3,6	308	1529	2	LE	0		60.7406	91.9	15100000		890
Ht00:03:04 544,0896 Ht00:03:04 544.1383		- 14	503E01 476E01	523,6	2617,6 40,0	4,4	169 156	671 589	3		3	00:00:58				9504	
LE00:03:04 544,1383	8 55,4 1 55,8	14	476E01 259E01	814,8 51,6	2293,6 40,0 1910,4 40,0	4,3	116	616	3	Ht	1	00.00.58	60,7457	60,3	7240	3435,2	207
Ht00:03:10 761,0021	3 74,6	19	160E03	143,4	4926,4 40,0	3,7	429	5370	3	Ht	3	00:00:58	60,8186	86,7	54300	4300,8	375
HC00.03.10 701,1330		15	100003	270.2	3513 6 40 0	3,7	227	2276	3	Ht	5	00:00:58	68,8404	62,9	26100	3606,4	279

Локация источника

Максимальное расстояние источника сигнала, относительно первых зафиксировавших датчиков:

$$d_{max} = \frac{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}{2},$$
 (1)

где x_i , y_i - координаты i-го датчика, по порядку фиксирования.

$$v_1 - v_2 < accuracy,$$
 (2)

где accuracy - заранее заданная точность

$$\begin{cases} v_{1} = \left| \frac{\sqrt{(x_{2} - \overline{x})^{2} + (y_{2} - \overline{y})^{2}} - \sqrt{(x_{1} - \overline{x})^{2} + (y_{1} - \overline{y})^{2}}}{t_{2} - t_{1}} \right| \\ v_{2} = \left| \frac{\sqrt{(x_{3} - \overline{x})^{2} + (y_{3} - \overline{y})^{2}} - \sqrt{(x_{2} - \overline{x})^{2} + (y_{2} - \overline{y})^{2}}}{t_{3} - t_{2}} \right| \end{cases}$$
(3)

где $\overline{x},\overline{y}$ - координаты вершины сетки, x_i,y_i - координаты датчиков, t_i -

Кластеризация данных

Для кластеризации данных был выбран алгоритм DBSCAN, поскольку он:

- Не требует заранее знать количество кластеров
- Дает одинаковый результат для одного и того же набора данных
- Устойчив к выбросам
- Достаточно прост для понимания специалистом

Алгоритм DBSCAN

Пусть і - основной элемент, если в его окрестности радиуса $\mathcal E$ находится хотя бы m элементов ($\mathcal E$ -соседей). Тогда абстрактно алгоритм состоит из следующих шагов:

- Для каждого элемента проверяем, основной он или нет
- ullet Если основной, то формируем кластер и переходим на ${\mathcal E}$ -соседей
- Если не основной, то добавляем его к кластеру ближайшего основного \mathcal{E} -соседа, иначе считаем шумом
- ullet Для ${\mathcal E}$ -соседей аналогично
- ullet Если ${\mathcal E}$ -соседей нет, то берем случайный следующий

Метрика расстояния для двух точек

$$f(i,j) = w_1 * l + w_2 * v + w_3 * a, \tag{4}$$

i, j – точки из набора данных; w_1, w_2, w_3 – весовые коэффициенты расстояния, скорости и амплитуды соответственно;

$$I = \sqrt{\left(\sum_{k=0}^{n} \frac{x_{ik}}{n} - \sum_{k=0}^{m} \frac{x_{jk}}{m}\right)^{2} + \left(\sum_{k=0}^{n} \frac{y_{ik}}{n} - \sum_{k=0}^{m} \frac{y_{jk}}{m}\right)^{2}}$$
 (5)

$$v = |\sum_{k=0}^{n} \frac{v_{ik}}{n} - \sum_{k=0}^{m} \frac{v_{jk}}{m}|$$
 (6)

$$a = \min(\sum_{k=0}^{n} \frac{a_{ik}}{n}; \sum_{k=0}^{n} \frac{a_{ik}}{n})$$
 (7)

где x, y, v, a — усредненные координаты, скорость, амплитуда из наборов, полученных в результате локализации, n, m — количество точек в этих наборах.

Уточнение параметров

Гиперпараметр \mathcal{E} , использующийся в DBSCAN, рассчитывается по формуле:

$$\mathcal{E} = w_1 * \mathcal{E}_l + w_2 * \mathcal{E}_v + w_3 * \mathcal{E}_a \tag{8}$$

Для рассчета \mathcal{E}_{l} , \mathcal{E}_{v} , \mathcal{E}_{a} выбирается одна из зон, в которой известно, что был дефект. Далее на основе значений параметров точек, попавших в выбранню зону происходит расчет.

Весовые коэффициент w_1, w_2 и w_3 можно задать вручную, либо также рассчитать автоматически.

Классификация сигналов

Классификация сигналов реализуется с помощью метода супер-сигналов из статьи Assessment of the Integrity of the Object Based on the Correlation of Super-Signals. С помощью коэффициента корелляции Пирсона для каждого кластера высчитываются супер-сигналы, как представители этого кластера, с которыми в дальнейшем будут сравниваться новые сигналы.

Эксперимент 1

Эксперимент 2

Эксперимент 3

Использование разработанной метрики

К-средних

Affinity Propagation

Агломеративная иерархическая кластеризация

Заключение

В ходе работы были выполнены следующие задачи:

- Разработанные за последние 3 года обучения в бакалавриате и магистратуре СПБГУ методы локации и классификации были переписаны на язык программирования Python;
- Была разработана метрика для вычисления расстояния между элементами кластеров с учетом значимости параметров;
- Был разработан метод кластеризации данных АЭ с использованием алгоритма DBSCAN;
- Была сформирована библиотека методов;
- Методы библиотеки были апробированы на нескольких экспериментах.

На основе новых методов было написано 2 статьи, одна из которых вошла в перечень РИНЦ, а другая - в Scopus.