The semigroup of *-automorphisms $(x \rightarrow u_t x u_t^*)$ on $M_2(C)$ is identity preserving and of Schwarz type but the spectrum of its generator is $\{0, \lambda, \lambda^*\}$ hence is not additively cyclic.

It turns out that, in order to obtain a non commutative analogue of the Perron-Frobenius theorems, one has to consider semigroups which are irreducible. Recall that a semigroup S of positive operators on an ordered Banach space (E,E_+) is called $\frac{irreducible}{irreducible}$ if no closed face of E_+, different from {0} and E_+, is invariant under S . Here a face F in E is a subcone of E_+ such that the conditions $0 \le x \le y$, $x \in E$, $y \in F$ imply $x \in F$ (compare Definitions 3.1 in B-III and C-III).

In the context of W*-algebras M we call a semigroup S of positive maps on M weak*-irreducible, if no $\sigma(M,M_{\star})$ -closed face of M₊ is S-invariant. Since the norm closed faces of M_{*} and the $\sigma(M,M_{\star})$ -closed faces of M are related by formation of polars with respect to the dual system $\langle M,M_{\star} \rangle$ (see [Pedersen (1979), Theorem 3.6.11 and Theorem 3.10.7.]) a semigroup S is (norm) irreducible on M_{*} if and only if its adjoint semigroup is weak*-irreducible.

<u>Theorem</u> 1.10. Let T be an irreducible, identity preserving semigroup of Schwarz type with generator A on the predual of a W^* -algebra and suppose $P_{\sigma}(A)$ \cap $i\mathbb{R} \neq \emptyset$.

- (a) The fixed space of T is one dimensional and spanned by a faithful normal state.
- (b) $P_{\sigma}(A)$ \cap $i\mathbb{R}$ is an additive subgroup of $i\mathbb{R}$, $\sigma(A) = \sigma(A) \, + \, (P_{\sigma}(A) \, \cap \, i\mathbb{R})$ and every eigenvalue in $i\mathbb{R}$ is simple.
- (a)* The fixed space of the adjoint weak*-semigroup \mathcal{T}^* is one-dimensional.
- (b)* $P_{\sigma}(A')$ \cap $i\mathbb{R} = P_{\sigma}(A)$ \cap $i\mathbb{R}$ for the generator A' of the adjoint semigroup, and every $\gamma \in P_{\sigma}(A')$ \cap $i\mathbb{R}$ is simple.

<u>Proof.</u> Since $P_{\sigma}(A)$ \cap $i\mathbb{R}\neq\emptyset$ there exists $\psi\in Fix(T)_+$ of norm one (Corollary 1.5). If $F:=\{x\in M_+: \psi(x)=0\}$ then F is a $_{\sigma}(M,M_*)-$ closed, T'-invariant face in M, hence $F=\{0\}$. Therefore every $0\neq\psi\in Fix(T)_+$ is faithful. Let ψ_1 , $\psi_2\in Fix(T)_+$ be states such that