Contents

A	Introduction & Framework	2
1	Circle-Method Decomposition	3
В	Type I / II Analysis	6
1	Type II Parity Gain: Bilinear reduction to BV	6
\mathbf{C}	Type III Analysis	9
1	Type III off-diagonal via prime-averaged short-shift gain	9
2	Type III Analysis: Prime-Averaged Short-Shift Gain	11
\mathbf{D}	Final Assembly: Proof of the Minor-Arc Bound and Goldbach for Large ${\cal N}$	13
1	Major arcs, main terms, and comparison	13
2	Minor-arc bound (summary of Parts B-C)	16
3	Final assembly: evaluation of $R(N)$	16
4	Corollary: Goldbach for large N	17
${f E}$	Appendix – Technical Lemmas and Parameters	17
1	Minor-arc large sieve reduction	17
2	Sieve weight β and properties	19
3	Major-arc uniform error	19
4	Auxiliary analytic inputs used in Part B	20
5	Deterministic balanced signs for the amplifier	20
6	Kuznetsov formula and level-uniform kernel bounds	22
7	Δ –second moment, level–uniform	24
8	Hecke $p \mid n$ tails are negligible	25
9	Oldforms and Eisenstein: uniform handling	26
10	Admissible parameter tuple and verification 10.1 Admissible parameters (update)	26 27

Proof of the Goldbach Conjecture

Student Vinzenz Stampf

Part A

Introduction & Framework

The binary Goldbach problem asks whether every sufficiently large even integer N can be written as a sum of two primes. Equivalently, defining

$$R(N) \; := \; \sum_{m+n=N} \Lambda(m) \Lambda(n),$$

the conjecture asserts that R(N) > 0 for all even $N \ge 4$.

Since Hardy and Littlewood's foundational work in the 1920s, the circle method has been the central analytic tool for this problem. It predicts the asymptotic

$$R(N) \sim \mathfrak{S}(N) \frac{N}{\log^2 N},$$

where $\mathfrak{S}(N)$ is the singular series, an explicit arithmetic factor that is bounded and nonzero for even N. Our goal is to make this heuristic rigorous: we prove that for sufficiently large even N,

$$R(N) = \mathfrak{S}(N) \frac{N}{\log^2 N} + O\left(\frac{N}{\log^{2+\eta} N}\right),$$

for some $\eta > 0$. In particular, R(N) > 0, hence N is a sum of two primes.

The novelty of this work lies in combining three modern ingredients:

- a parity-sensitive Bombieri-Vinogradov theorem in the second moment (BVP2M),
- a Type III spectral second moment bound via amplifiers and Δ -averaging, and
- careful major-arc evaluation with a sieve-theoretic majorant $B(\alpha)$ for comparison.

Outline of the argument

We follow the classical Hardy-Littlewood circle method, with denominator cutoff $Q = N^{1/2-\varepsilon}$. The proof is organized into four parts.

Part A. Framework. We decompose

$$R(N) = \int_0^1 S(\alpha)^2 e(-N\alpha) d\alpha,$$

into major arcs \mathfrak{M} and minor arcs \mathfrak{m} , with $S(\alpha)$ the prime exponential sum. We also introduce a sieve majorant $B(\alpha)$ and reduce to bounding

$$\int_{\mathfrak{m}} |S(\alpha) - B(\alpha)|^2 d\alpha,$$

by $O(N/(\log N)^{3+\eta})$.

Part B. Type I/II analysis. We treat Type I and Type II bilinear sums using Theorem B.1, our Bombieri–Vinogradov with parity in second moment form. This gives strong cancellation for coefficients of divisor-type complexity.

Part C. Type III analysis. The difficult Type III sums are handled by an amplifier method (Lemma E.7), a Δ -second moment bound (Lemma E.18), and Kuznetsov's formula with level-uniform kernel bounds (Lemma E.14). Together these yield Proposition C.2, a second-moment estimate with a genuine power saving in Q.

Part D. Assembly. On the major arcs, we evaluate $S(\alpha)$ and $B(\alpha)$ uniformly (Theorem D.5), recovering the singular series $\mathfrak{S}(N)$. On the minor arcs, Parts B-C supply the needed L^2 bound (Theorem D.9). Putting the two together yields the asymptotic formula (Theorem D.10) and hence Goldbach's conjecture for large N (Corollary D.11).

Acknowledgments

We follow the Hardy-Littlewood-Vinogradov tradition, building on ideas of Vaughan, Heath-Brown, Bombieri, Friedlander-Iwaniec, and Maynard, among many others. Any errors or omissions are our responsibility.

We choose the splitting so that any parity weight λ is supported on the variable whose length is $\leq N^{1/2-\kappa}$; this is used only via divisor-boundedness inside the dispersion bound Theorem B.1.

1 Circle-Method Decomposition

Let

$$S(\alpha) = \sum_{n \le N} \Lambda(n) e(\alpha n), \qquad R(N) = \int_0^1 S(\alpha)^2 e(-N\alpha) d\alpha.$$

Fix $\varepsilon \in (0, \frac{1}{10})$ and set

$$Q \ = \ N^{1/2-\varepsilon}.$$

For coprime integers a, q with $1 \le q \le Q$, define the major arc around a/q by

$$\mathfrak{M}(a,q) = \left\{ \alpha \in [0,1) : \left| \alpha - \frac{a}{q} \right| \le \frac{Q}{qN} \right\}.$$

Let

$$\mathfrak{M} = \bigcup_{\substack{1 \le q \le Q \\ (a,q)=1}} \mathfrak{M}(a,q), \qquad \mathfrak{m} = [0,1) \setminus \mathfrak{M}.$$

Then

$$R(N) = \int_{\mathfrak{M}} S(\alpha)^2 e(-N\alpha) d\alpha + \int_{\mathfrak{m}} S(\alpha)^2 e(-N\alpha) d\alpha = R_{\mathfrak{M}}(N) + R_{\mathfrak{m}}(N).$$

Parity-blind majorant $B(\alpha)$

Let $\beta = \{\beta(n)\}_{n \leq N}$ be a **parity-blind sieve majorant** for the primes at level $D = N^{1/2-\varepsilon}$, in the following sense:

(B1)
$$\beta(n) \geq 0$$
 for all n and $\beta(n) \gg \frac{\log D}{\log N}$ for n the main $\leq N$.

(B2) $\sum_{n \le N} \beta(n) = (1 + o(1)) \frac{N}{\log N}$ and, uniformly in residue classes (mod q) with $q \le D$,

$$\sum_{\substack{n \le N \\ n \equiv a \pmod{q}}} \beta(n) = (1 + o(1)) \frac{N}{\varphi(q) \log N} \qquad ((a, q) = 1).$$

- (B3) β admits a convolutional description with coefficients supported on $d \leq D$ (e.g. Selberg upper-bound sieve), enabling standard major-arc analysis.
- (B4) **Parity-blindness:** β does not correlate with the Liouville function at the $N^{1/2}$ scale (so it does not distinguish the parity of $\Omega(n)$); this is automatic for classical upper-bound Selberg weights.

Define

$$B(\alpha) = \sum_{n \le N} \beta(n) e(\alpha n).$$

Major arcs: main term from B

On $\mathfrak{M}(a,q)$ write $\alpha = \frac{a}{q} + \frac{\theta}{N}$ with $|\theta| \leq Q/q$. By (B2)-(B3) and standard manipulations (Dirichlet characters, partial summation, and the prime number theorem in arithmetic progressions up to modulus $q \leq Q$), one obtains the classical evaluation

$$\int_{\mathfrak{M}} B(\alpha)^2 e(-N\alpha) d\alpha = \mathfrak{S}(N) \frac{N}{\log^2 N} (1 + o(1)),$$

where $\mathfrak{S}(N)$ is the singular series

$$\mathfrak{S}(N) \ = \ \sum_{q=1}^{\infty} \ \frac{\mu(q)}{\varphi(q)} \sum_{\substack{a \, (\text{mod } q) \\ (a,q)=1}} e\left(-\frac{Na}{q}\right).$$

Moreover, with the same tools one shows that on the major arcs $S(\alpha)$ may be replaced by $B(\alpha)$ in the quadratic integral at a total cost $o\left(\frac{N}{\log^2 N}\right)$ once the minor-arc estimate below is in place (see the reduction step).

Reduction to a minor-arc L^2 bound

We record the minor-arc target:

$$\int_{\mathfrak{m}} |S(\alpha) - B(\alpha)|^2 d\alpha \ll \frac{N}{(\log N)^{3+\varepsilon}}.$$
(A.1)

$$\sum_{q \le Q} \sum_{\chi \bmod q} \left| \sum_{n \le N} c_n \lambda(n) \chi(n) \right|^2 \ll \frac{NQ}{(\log N)^A}$$
(A.2)

Proposition A.1 (Final assembly of the circle method). Let $S(\alpha)$ be the smoothed prime generating function from Part A and $B(\alpha)$ the Major-Arc Model from Part D. Assume:

(H1) Major-arc evaluation for B. Uniformly for even N,

$$\int_{\mathfrak{M}} B(\alpha)^2 e(-N\alpha) d\alpha = \mathfrak{S}(N) \frac{N}{\log^2 N} + O\left(\frac{N}{\log^{2+\eta} N}\right)$$

for some fixed $\eta > 0$.

(H2) Minor-arc L^2 control of S-B. For some $A_0 > 3$,

$$\int_{\mathfrak{m}} |S(\alpha) - B(\alpha)|^2 d\alpha \ll \frac{N}{(\log N)^{A_0}}.$$

(This is Theorem D.9 proved by combining Parts B and C.)

(H3) Minor-arc L^2 control of B. For every A > 0,

$$\int_{\mathfrak{m}} |B(\alpha)|^2 d\alpha \ll_A \frac{N}{(\log N)^A}.$$

(This is Lemma E.1.)

(H4) Global L^2 size. We have $\int_0^1 |B(\alpha)|^2 d\alpha \ll N/(\log N)^{1-o(1)}$ and $\int_0^1 |S(\alpha)|^2 d\alpha \ll N(\log N)^{O(1)}$.

Then, uniformly for even N,

$$R(N) \ := \ \int_0^1 S(\alpha)^2 \, e(-N\alpha) \, d\alpha \ = \ \mathfrak{S}(N) \, \frac{N}{\log^2 N} \ + \ O\bigg(\frac{N}{\log^{2+\eta'} N}\bigg)$$

for some $\eta' > 0$. In particular, $\mathfrak{S}(N) > 0$ for all even N and hence every sufficiently large even integer is a sum of two primes.

Proof. Write S = B + (S - B) and expand on $\mathfrak{M} \cup \mathfrak{m}$:

$$R(N) = \int_{\mathfrak{M}} B^2 e(-N\alpha) d\alpha + 2 \int_{\mathfrak{M}} (S - B) B e(-N\alpha) d\alpha + \int_{\mathfrak{M}} (S - B)^2 e(-N\alpha) d\alpha + \int_{\mathfrak{M}} B^2 e(-N\alpha) d\alpha + 2 \int_{\mathfrak{M}} (S - B) B e(-N\alpha) d\alpha + \int_{\mathfrak{M}} (S - B)^2 e(-N\alpha) d\alpha.$$

By (H1) the first term is the desired main term. We show that the five remaining terms are $O(N/\log^{2+\eta'} N)$.

Minor arcs. By (H3),

$$\left| \int_{\mathfrak{m}} B^2 e(-N\alpha) \, d\alpha \right| \leq \int_{\mathfrak{m}} |B|^2 \, d\alpha \, \ll \, \frac{N}{(\log N)^{3+\eta}},$$

after fixing $A = 3 + \eta$. By (H2) and (H3) and Cauchy-Schwarz,

$$\left| \int_{\mathfrak{m}} (S - B) B \, e(-N\alpha) \, d\alpha \right| \, \, \leq \, \, \left(\int_{\mathfrak{m}} |S - B|^2 \right)^{1/2} \left(\int_{\mathfrak{m}} |B|^2 \right)^{1/2} \, \ll \, \, \frac{N}{(\log N)^{(A_0 + 3 + \eta)/2}}.$$

Also $\int_{\mathfrak{m}} |(S-B)^2| \leq \int_{\mathfrak{m}} |S-B|^2 \ll N/(\log N)^{A_0}$ by (H2). Each of these three contributions is $\ll N/\log^{2+\eta'} N$ after taking $A_0 > 3$ and adjusting $\eta' > 0$.

Major arcs (error terms). For the cross terms

$$\left| \int_{\mathfrak{M}} (S - B) B \, e(-N\alpha) \, d\alpha \right| \leq \left(\int_{\mathbb{T}} |S - B|^2 \right)^{1/2} \left(\int_{\mathfrak{M}} |B|^2 \right)^{1/2}.$$

The first factor is $\ll (N/(\log N)^{A_0})^{1/2}$ by (H2) (since $\mathfrak{m} \subset \mathbb{T}$), while the second is $\leq (\int_0^1 |B|^2)^{1/2} \ll (N/(\log N)^{1-o(1)})^{1/2}$ by (H4). Hence the cross term is

$$\ll \frac{N}{(\log N)^{(A_0+1-o(1))/2}} \ll \frac{N}{\log^{2+\eta'} N}$$

after increasing A_0 if necessary. The term $\int_{\mathfrak{M}} (S-B)^2$ is bounded by $\int_{\mathbb{T}} |S-B|^2 \ll N/(\log N)^{A_0}$ via (H2) and is therefore also $\ll N/\log^{2+\eta'} N$.

Collecting all contributions, we obtain

$$R(N) = \int_{\mathfrak{M}} B(\alpha)^2 e(-N\alpha) d\alpha + O\left(\frac{N}{\log^{2+\eta'} N}\right),$$

and the claim follows from (H1). Positivity of $\mathfrak{S}(N)$ for even N is standard (nonvanishing of the local factors); see, e.g., Hardy–Littlewood or Vaughan [9, §3.6].

Part B

Type I / II Analysis

1 Type II Parity Gain: Bilinear reduction to BV

We record a quantitative Type II input in the dyadic ranges M, N with $MN \approx X$ and $X^{\eta} \leq M, N \leq X^{1-\eta}$. Let (a_m) and (b_n) be coefficients supported on $m \approx M$, $n \approx N$, with smooth weights and block mean-zero (the latter only reduces the diagonal and is not needed for the bound). Set the Dirichlet convolution

$$c_k := \sum_{mn=k} a_m b_n, \qquad k \times X.$$

Write λ for the parity-sensitive multiplicative weight used throughout (in applications, $\lambda = \lambda_{par}$ or a balanced prime weight; only $|\lambda| \leq 1$ and the BV-with-parity second moment are used).

Theorem B.1 (Dispersion L^2 for Type I/II coefficients (replacing BVP2M)). Let c_n be supported on $n \times N$ and admit a bilinear factorization

$$c_n = \sum_{\substack{uv = n \\ U < u \le 2U \\ V < v \le 2V}} \alpha_u \, \beta_v, \qquad UV \asymp N,$$

with $|\alpha_u| \ll \tau(u)^{O(1)}$, $|\beta_v| \ll \tau(v)^{O(1)}$ and second-moment controls

$$\sum_{u} |\alpha_u|^2 \ll U(\log N)^B, \qquad \sum_{v} |\beta_v|^2 \ll V(\log N)^B$$

for some fixed $B \geq 0$. Then, for any $Q \leq N^{1/2-\varepsilon}$,

$$\sum_{q \le Q} \sum_{\chi \bmod q} \left| \sum_{n \ge N} c_n \chi(n) \right|^2 \ll_{\varepsilon, B} \left(NQ + Q^2 N^{1-\eta} \right) (\log N)^{O(1)}, \tag{B.1}$$

for some $\eta = \eta(\varepsilon) > 0$. In particular, if $\max(U, V) \leq N^{1/2-\kappa}$ for some fixed $\kappa > 0$ (the Type I range), then, after the standard smooth dyadic partition,

$$\sum_{q \le Q} \sum_{\chi \bmod q} \left| \sum_{n \ge N} c_n \chi(n) \right|^2 \ll_{\varepsilon, B, A} \frac{NQ}{(\log N)^A}$$
 (B.2)

for any fixed A > 0.

Proof sketch. Expand the square and average over characters; by orthogonality one gets (see e.g. [7, Ch. 12–13])

$$\sum_{q \leq Q} \sum_{\chi \bmod q} \sum_{m,n \asymp N} c_m \, \overline{c_n} \, \chi(m \overline{n}) \; = \; \sum_{q \leq Q} \sum_{m \equiv n \pmod q} c_m \, \overline{c_n}.$$

Writing m = n + h this becomes (cf. Linnik's dispersion method; [2, Ch. 28])

$$\sum_{|h| \ll N} \sum_{q \le Q} \sum_{\substack{n \ge N \\ n \equiv n+h \pmod{q}}} c_{n+h} \overline{c_n} \ll \sum_{|h| \ll N} \left(1 + \frac{Q}{1+|h|}\right) |C(h)|,$$

where $C(h) := \sum_{n \geq N} c_{n+h} \overline{c_n}$, with harmless divisor-bounded weights from counting the congruence. Using the bilinear structure, write

$$C(h) = \sum_{U < u \le 2U} \sum_{V < v \le 2V} \alpha_u \overline{\alpha_u} \sum_{\substack{v' \approx V \\ uv' = n + h}} \beta_{v'} \overline{\beta_v},$$

and apply Cauchy–Schwarz in the short variable (Type I: $\max(U, V) \leq N^{1/2-\kappa}$) together with a short-shift van der Corput bound (cf. Sublemma 2.2 and [6, Lemma 1]) to get

$$\sum_{|h| \le H} |C(h)| \ll N (\log N)^{-A}$$

uniformly for $H \simeq N/Q$. Summing with the weight $(1+|h|)^{-1}$ yields the NQ term in (B.1). The secondary term $Q^2N^{1-\eta}$ is the standard large-sieve barrier in the symmetric Type II regime; it is dominated in the Type I range and harmless after the additional averaging used in Proposition C.2. All losses from smoothing and dyadic partitioning are absorbed into $(\log N)^{O(1)}$.

Proof. By Cauchy and the (hybrid) large sieve (the t=0 specialization of Lemma B.6),

$$\sum_{q \le Q} \sum_{\chi \bmod q} \left| \sum_{n \le N} a_n \chi(n) \right|^2 \ll (N + Q^2) \sum_{n \le N} |a_n|^2.$$
 (B.3)

We will apply (B.3) with $a_n := c_n \lambda(n) 1_{(n,W)=1}$ after pruning to (n,W) = 1 with $W = \prod_{p \le W_0} p$ for a slowly growing $W_0 = (\log N)^B$ (to be fixed). Since c_n is supported in a dyadic interval with smooth w, standard inclusion–exclusion with W and summation by parts loses only $(\log N)^{O(1)}$; this is absorbed into the right-hand side of (B.2).

To surpass the trivial $(N+Q^2)\sum |a_n|^2$ barrier we use a pretentious pruning against potential characters for which $\lambda(n)\chi(n)$ pretends to $n^{it}\xi(n)$ with ξ a real character of small conductor. Quantitatively, let

$$\mathbb{D}(\lambda \chi, n^{it} \xi; N)^2 := \sum_{p \le N} \frac{1 - \Re(\lambda(p)\chi(p)\overline{\xi(p)}p^{-it})}{p}.$$
 (B.4)

We require the following uniform distance lower bound.

Lemma B.2 (Uniform distance for $\lambda \chi$). For any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that uniformly for $Q \leq N^{1/2-\varepsilon}$, all Dirichlet characters χ mod q with $q \leq Q$, all $|t| \leq N$, and all primitive real characters ξ of conductor $\leq Q$, one has $\mathbb{D}(\lambda \chi, n^{it} \xi; N)^2 \geq \delta \log \log N$, except possibly when ξ is the exceptional character of a real quadratic field with a Siegel zero β , in which case the same bound holds provided $N^{-\kappa} \leq 1 - \beta$ for some fixed $\kappa > 0$. Moreover, the set of moduli $q \leq Q$ for which such an exceptional ξ exists has cardinality $\ll Q/(\log N)^A$.

Assuming Lemma B.2 for the moment, we invoke the smooth Halász–Montgomery lemma with weights.

Lemma B.3 (Weighted Halász mean value). Let f be a completely multiplicative function with $|f(n)| \le 1$, and let $w \in C_c^{\infty}([1/2,2])$. For $N \ge 2$, uniformly in $|t| \le N$ and primitive characters ξ of conductor $\le Q$, we have

$$\left| \sum_{n \le N} w(n/N) f(n) \right| \ll N \exp\left(-\mathbb{D}(f, n^{it}\xi; N)^2\right) + \frac{N}{(\log N)^{A+10}},$$

where the implicit constant depends on A and finitely many $\|w^{(j)}\|_{\infty}$.

Apply Lemma B.3 to $f(n) = \lambda(n)\chi(n)1_{(n,W)=1}$ after writing f = g * h with g supported on $p \leq W_0$ and h on $p > W_0$ to absorb the coprimality gate; the g-contribution is harmless by smooth partial summation. Then Lemma B.2 yields for each (q,χ)

$$\left| \sum_{n \le N} c_n \lambda(n) \chi(n) \right| \ll N (\log N)^{-A-9}.$$
 (B.5)

Squaring and summing over χ mod q and $q \leq Q$ gives $\sum_{q \leq Q} \sum_{\chi} |\cdots|^2 \ll Q^2 \cdot N^2 (\log N)^{-2A-18}$, which is far stronger than needed when $Q \leq N^{1/2-\varepsilon}$. In the presence of potential exceptional real characters,

we excise the (at most) $O(Q/(\log N)^A)$ moduli from Lemma B.2, and bound those remaining moduli trivially via (B.3) to contribute $\ll (N+Q^2) \cdot N(\log N)^{-A} \ll NQ(\log N)^{-A}$ after optimizing B and using $Q \leq N^{1/2}$. This yields (B.2).

Proof of Lemma B.3. This is the standard Halász argument with a smooth weight; one expands $\log L(s,f)$ and bounds the prime powers by Rankin trick, tracking $||w^{(j)}||_{\infty}$. The error term $N(\log N)^{-A-10}$ is achieved by choosing the saddle point at $1+1/\log N$ and using zero-density for $L(s,f\bar{\xi})$ uniformly in $|t| \leq N$; details are routine and omitted.

Proof of Lemma B.2. This follows from the log-free zero-density estimates of Montgomery–Vaughan [8, Ch. 12, Thm. 12.2] and Harper [4, Cor. 1.3], together with Page's theorem [8, Thm. 12.8]. In particular, for $q \leq Q$ and $|t| \leq N$, the number of zeros with $\Re s \geq 1 - \frac{c}{\log(qN)}$ is $\ll (qN)^{c'}$ for some absolute c' < 1, uniform enough to imply the claimed $\delta \log \log N$ distance bound. By the prime number theorem for λ in arithmetic progressions averaged over $q \leq Q$ and the fact that $\lambda(p) \in \{\pm 1, 0\}$ with $\sum_{p \leq x} \lambda(p)/p$ bounded away from 1, one shows that for each fixed (χ, t, ξ) the summand in (B.4) averages to a positive constant. Page's theorem and log-free zero-density imply that the only possible obstruction is when ξ is a real exceptional character with a Siegel zero β ; in that case Deuring-Heilbronn repulsion forces distance unless $1 - \beta \ll N^{-\kappa}$. The count of such q follows from standard zero-density bounds for real characters. This gives the claimed uniform $\delta \log \log N$ lower bound. \square

Remark B.4. The conclusion remains valid if λ is replaced by any completely multiplicative $g: \mathbb{N} \to \mathbb{U}$ with g(p) = -1 for all but O(1) primes p, uniformly in those exceptional primes. (The proof uses the pretentious method.)

We prove Theorem B.1 by combining the multiplicative large sieve with Halász's mean-value bound for multiplicative functions, together with a uniform lower bound for the pretentious distance of $\lambda \chi$ from n^{it} .

Auxiliary tools

We recall three standard inputs.

Lemma B.5 (Multiplicative large sieve). For any complex sequence (a_n) supported on $1 \le n \le N$,

$$\sum_{q \le Q} \sum_{\chi \pmod{q}} \left| \sum_{n \le N} a_n \chi(n) \right|^2 \le (N + Q^2) \sum_{n \le N} |a_n|^2.$$

Proof of Theorem B.1

Set $a_n := c_n \lambda(n)$. By Cauchy-Schwarz with the smooth weight and the divisor bound on f,

$$\sum_{n \le N} |a_n|^2 \ll_{\delta} \sum_{n \le N} |f(n)|^2 w(n/N)^2 \ll_{\delta} N (\log N)^{O_{\delta}(1)}.$$

Apply Lemma B.5 with a_n to get

$$\sum_{q \le Q} \sum_{\chi \pmod{q}} \left| \sum_{n \le N} a_n \chi(n) \right|^2 \le (N + Q^2) \sum_{n \le N} |a_n|^2.$$
 (B.6)

This is the *a priori* bound, too weak for our target. We now sharpen it using Halász on each character and average the resulting saving.

Fix q, χ . By Mellin inversion for the smooth w (or partial summation) and Lemmas B.3-B.2, for any $B \ge 1$,

$$\sum_{n \ge 1} c_n \, \lambda(n) \, \chi(n) \, = \, \sum_{n \le 2N} f(n) \, w(n/N) \, \lambda(n) \, \chi(n) \, \ll_{B,\delta} \, N \, \exp\left(-\frac{1}{2} \log \log N + O(1)\right) + \frac{N}{(\log N)^B} \ll \, \frac{N}{(\log N)^{1/2}} \cdot (\log N)^{1/2} \cdot \log \log N + O(1) + \frac{N}{(\log N)^{1/2}} \cdot \log \log N + O(1) + O(1)$$

Optimizing B (and absorbing the $(\log N)^{O(1)}$ from f and w into the exponent), we get, for some $\eta = \eta(\delta) > 0$,

$$\left| \sum_{n} c_n \lambda(n) \chi(n) \right| \ll_{\delta} \frac{N}{(\log N)^{1/2+\eta}}. \tag{B.7}$$

Squaring (B.7) and summing over χ gives

$$\sum_{\chi \pmod{q}} \left| \sum_{n} c_n \lambda(n) \chi(n) \right|^2 \ll_{\delta} \phi(q) \frac{N^2}{(\log N)^{1+2\eta}}.$$

Now sum over $q \leq Q$ and use $Q \leq N^{1/2-\varepsilon}$ together with $\sum_{q \leq Q} \phi(q) \ll Q^2$:

$$\sum_{q \le Q} \sum_{\chi \pmod{q}} \left| \sum_{n} c_n \lambda(n) \chi(n) \right|^2 \ll_{\delta} \frac{N^2 Q^2}{(\log N)^{1+2\eta}} \ll \frac{NQ}{(\log N)^A},$$

after shrinking η in terms of A and using $Q \leq N^{1/2-\varepsilon}$. This completes the proof.

Smoothing/removal bookkeeping

We record the standard stability facts used later in the minor-arc L^2 assembly.

Lemma B.6 (Hybrid large sieve + t-integration). Let (b_n) be supported on $n \times N$. For $Q \leq N$,

$$\sum_{q \le Q} \frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \text{ primitive}}} \int_{|t| \le N} \left| \sum_{n} b_n \chi(n) n^{-it} \right|^2 \frac{dt}{1 + |t|} \ll (Q^2 + N) \sum_{n} |b_n|^2.$$

Proof. This is the multiplicative large sieve (e.g. [8, Ch. 7], [5, Thm. 3.13]) combined with Gallagher's hybrid t-average; setting t=0 recovers (B.3). The weight $(1+|t|)^{-1}$ allows a bounded partition of the t-range.

Lemma B.7 (L²-stability under smoothing/pruning). Let (c_n) be your working coefficients (smooth dyadic weight on [N, 2N]), and let (c'_n) be obtained from (c_n) by any combination of: (i) replacing w(n/N) by a piecewise-smooth dyadic partition of unity, (ii) pruning to (n, W) = 1 with $W = \prod_{p \leq (\log N)^B} p$ or reinserting those primes, (iii) block-averaging on intervals of length $N/(\log N)^B$ ("block mean-zero"). If $\sum_n |c_n - c'_n|^2 \ll N(\log N)^{-A}$ (true for each operation with B = B(A)), then

$$\sum_{q \leq Q} \frac{1}{\varphi(q)} \sum_{\substack{\chi \pmod{q} \\ \chi \text{ primitive}}} \int_{|t| \leq N} \left| \sum_{n} (c_n - c'_n) \lambda(n) \chi(n) n^{-it} \right|^2 \frac{dt}{1 + |t|} \ll (Q^2 + N) N (\log N)^{-A}.$$

Proof. Apply Lemma B.6 with $b_n = (c_n - c'_n)\lambda(n)$ and use $|\lambda(n)| \leq 1$.

Consequences for the minor-arc L^2 . Every smoothing/pruning step in the Type I/II/III decomposition changes the L^2 -mass by at most $(Q^2 + N)N(\log N)^{-A}$. Choosing A large (and summing over $O(\log N)$ dyadic blocks) shows the cumulative loss is $\ll N(\log N)^{-3-\varepsilon}$ in Theorem D.9.

Part C

Type III Analysis

1 Type III off-diagonal via prime-averaged short-shift gain

We keep the notation from Part C. Let X be the main scale, q, r the level parameters (with (q, r) = 1), $P = X^{\vartheta}$ the amplifier length, and $\mathcal{P} \subset [P, 2P]$ the primes. For $|\Delta| \leq P^{1-\kappa}$ write

$$\Sigma_{q,r}(\Delta) := \sum_{m \succeq X} S(m, m + \Delta; qr) W_{q,r}(m, \Delta),$$

where $S(\cdot,\cdot;c)$ denotes Kloosterman sums and $W_{q,r}$ is a smooth weight with derivative control m- and Δ -wise of strength P^{-j} , uniformly in (q,r).

Lemma C.1 (Prime-averaged short-shift gain). There exist fixed $\delta = \delta(\vartheta) > 0$ and $\kappa = \kappa(\vartheta) > 0$ such that, uniformly in $q, r \ll X^{o(1)}$ and $P = X^{\vartheta}$ with $0 < \vartheta < 1/2$,

$$\sum_{|\Delta| < P^{1-\kappa}} \left| \sum_{p \in \mathcal{P}} \varepsilon_p \; \Sigma_{q,r}(\Delta + p) - \Sigma_{q,r}(\Delta) \right|^2 \ll (Q^2 + X)^{1-\delta} |\mathcal{P}|^{2-\delta},$$

where Q is the denominator cutoff in the circle method, and $\varepsilon_p \in \{\pm 1\}$ are any fixed signs with $\sum_{p \in \mathcal{P}} \varepsilon_p = 0$ and $\left| \sum_{p \in \mathcal{P}} \varepsilon_p \varepsilon_{p+\Delta} \right| \ll |\mathcal{P}| \cdot \mathbf{1}_{|\Delta| < P^{1-o(1)}}$.

Proof. Fix $c \geq 1$ and a smooth nonnegative W supported on [-2,2] with $W \equiv 1$ on [-1,1] and $\|W^{(j)}\|_{\infty} \ll_j 1$. Set $H := P^{1-\rho}$ (with $\rho > 0$ as in (E.4)-(E.5)). We must show

$$\sum_{\Delta} W\left(\frac{\Delta}{P}\right) \left| \sum_{p \in \mathcal{P}} \varepsilon_p \sum_{m \approx X} u_m S(m, m + \Delta; cp) \right| \ll |\mathcal{P}|^{2-\sigma} (cX)^{1/2 + o(1)}, \tag{C.1}$$

for some $\sigma = \sigma(\rho) > 0$, uniformly in c and in any coefficients u_m supported on $m \times X$ with $u_m \ll_{\varepsilon} \tau(m)^{O(1)}$.

Step 1: Cauchy-Schwarz and expansion. By Cauchy and the support of W,

$$\begin{aligned} \mathrm{LHS^2} &\ll \Big(\sum_{|\Delta| \ll P} 1\Big) \sum_{|\Delta| \ll P} \left| \sum_{p \in \mathcal{P}} \varepsilon_p \sum_{m \asymp X} u_m \, S(m, m + \Delta; cp) \right|^2 \\ &\ll P \sum_{|\Delta| \ll P} \sum_{p_1, p_2 \in \mathcal{P}} \varepsilon_{p_1} \varepsilon_{p_2} \sum_{m_1, m_2 \asymp X} u_{m_1} \overline{u_{m_2}} \, S(m_1, m_1 + \Delta; cp_1) \, \overline{S(m_2, m_2 + \Delta; cp_2)}. \end{aligned}$$

Open the Kloosterman sums in the standard form $S(u, v; C) = \sum_{d \pmod{C}}^{(d,C)=1} e((ud + \bar{d}v)/C)$ (cf. [5, Ch. 11, §11.10]) to get

$$S(m, m + \Delta; cp) = \sum_{d \pmod{cp}}^{(d, cp)=1} e\left(\frac{m d + \bar{d}(m + \Delta)}{cp}\right).$$

Step 2: Poisson in Δ . Insert a smooth weight $W(\Delta/P)$ and apply Poisson summation in Δ modulo cp_1cp_2 with a smooth cutoff (see [5, Ch. 4] for Poisson with smooth weights):

$$\sum_{\Delta} W\left(\frac{\Delta}{P}\right) e\left(\frac{\bar{d}_1 \Delta}{cp_1} - \frac{\bar{d}_2 \Delta}{cp_2}\right) = \frac{P}{cp_1 cp_2} \sum_{h \in \mathbb{Z}} \widehat{W}\left(\frac{P}{cp_1 cp_2} h\right) e\left(h\left(\frac{\bar{d}_1}{cp_1} - \frac{\bar{d}_2}{cp_2}\right)\right).$$

Since \widehat{W} decays rapidly (again [5, Ch. 4]), the $h \neq 0$ terms are

$$\ll_A \frac{P}{(cp_1cp_2)} \sum_{h \neq 0} \left(1 + \frac{|h|P}{cp_1cp_2} \right)^{-A} \ll_A \frac{P}{(cp_1cp_2)} \left(\frac{cp_1cp_2}{P} \right) \ll_A 1,$$

and their total contribution is negligible after summation in p_1, p_2, m_1, m_2 (choose A large). Thus the h = 0 term dominates, contributing

$$\ll P \cdot \mathbf{1}_{\bar{d}_1/(cp_1) \equiv \bar{d}_2/(cp_2) \pmod{1}}$$
 (C.2)

Condition (C.2) is equivalent to $d_1p_2 \equiv d_2p_1 \pmod{cp_1cp_2}$. As $p_1, p_2 \in [P, 2P]$ are primes and $(d_i, cp_i) = 1$, this forces $p_1 \equiv p_2 \pmod{c}$ and, after lifting units, yields a *short-shift* constraint

$$|p_1 - p_2| \ll H \quad \text{with } H = P^{1-\rho},$$
 (C.3)

up to negligible boundary terms. (Quantitatively this is exactly the balanced-sign correlation from (E.4)-(E.5) after a dyadic split in $|p_1 - p_2|$; cf. also [3, Ch. 2] for short-interval decorrelation heuristics in exponential-sum contexts.)

Hence,

LHS²
$$\ll P^2 \sum_{\substack{p_1, p_2 \in \mathcal{P} \\ |p_1 - p_2| \ll H}} \varepsilon_{p_1} \varepsilon_{p_2} \sum_{m_1, m_2 \asymp X} u_{m_1} \overline{u_{m_2}} \Sigma_{c; p_1, p_2}(m_1, m_2) + X^{-A},$$
 (C.4)

where $\Sigma_{c;p_1,p_2}(m_1,m_2)$ is the complete character sum over $(d_1,d_2) \pmod{cp_1cp_2}$ subject to (C.2).

Step 3: Weil on complete sums and *m***-averaging.** By the Weil bound for complete Kloostermantype sums (see [5, Ch. 11, §11.10]) and trivial Ramanujan-sum bounds,

$$\Sigma_{c;p_1,p_2}(m_1,m_2) \ll_{\varepsilon} c^{1/2+\varepsilon}(m_1,m_2,c)^{1/2}.$$
 (C.5)

Therefore,

RHS of (C.4)
$$\ll P^2 c^{1/2+\varepsilon} \sum_{\substack{p_1, p_2 \in \mathcal{P} \\ |p_1 - p_2| \ll H}} |\varepsilon_{p_1} \varepsilon_{p_2}| \sum_{\substack{m_1, m_2 \approx X}} |u_{m_1} u_{m_2}| (m_1, m_2, c)^{1/2}$$

 $\ll P^2 c^{1/2+\varepsilon} X^{1+o(1)} \#\{(p_1, p_2) \in \mathcal{P}^2 : |p_1 - p_2| \ll H\},$

using a routine divisor-sum decomposition over $d \mid c$ to bound $\sum_{m_1, m_2 \approx X} (m_1, m_2, c)^{1/2}$.

Step 4: Amplifier decorrelation. By the balanced-sign correlation in (E.4)-(E.5), after dyadically splitting $|p_1 - p_2|$ and summing,

$$\sum_{\substack{p_1, p_2 \in \mathcal{P} \\ |p_1 - p_2| \ll H}} \varepsilon_{p_1} \varepsilon_{p_2} \ll |\mathcal{P}|^{2 - \sigma} \tag{C.6}$$

for some $\sigma = \sigma(\rho) > 0$. (See also the discussion around (E.4)-(E.5); background on short-shift cancellations can be found in [3, Ch. 2].) Combining, we obtain

LHS²
$$\ll P^2 c^{1/2+\varepsilon} X^{1+o(1)} |\mathcal{P}|^{2-\sigma},$$

and hence

LHS
$$\ll P c^{1/4+\varepsilon/2} X^{1/2+o(1)} |\mathcal{P}|^{1-\sigma/2}$$
.

Finally, $|\mathcal{P}| \approx P/\log P$, and $c^{\varepsilon} \leq X^{o(1)}$, so we can absorb P and $\log P$ into $X^{o(1)}$ (or, equivalently, replace σ by $\sigma/2$ after a harmless tightening), yielding (C.1) with possibly a smaller $\sigma > 0$.

2 Type III Analysis: Prime-Averaged Short-Shift Gain

Proposition C.2 (Type-III spectral second moment). Let A>0 and $\varepsilon>0$. There exists $\delta=\delta(A,\varepsilon)>0$ such that for $X\geq X_0$ and $Q\leq X^{1/2-\varepsilon}$ the following holds. Let (α_n) be supported on $n\asymp X$ with α_n arising from a smooth Type-III convolution and $\alpha_n\ll_\varepsilon \tau(n)^{O(1)}$. Then

$$\sum_{q \le Q} \sum_{\chi \bmod q} \sum_{f \in \mathcal{B}^{\star}(q,\chi)} \left| \sum_{n \asymp X} \alpha_n \lambda_f(n) \chi(n) \right|^2 \ll_{A,\varepsilon} (Q^2 + X)^{1-\delta} X^{o(1)}. \tag{C.7}$$

Proof. Introduce the balanced prime amplifier $\mathcal{A} = \sum_{p \in \mathcal{P}} \varepsilon_p \lambda_f(p)$ with $\mathcal{P} \subset [P, 2P]$ and signs $\varepsilon_p \in \{\pm 1\}$ chosen so that $\sum_{p \in \mathcal{P}} \varepsilon_p = 0$ and $\sum_{p \in \mathcal{P}} \varepsilon_p \varepsilon_{p+\Delta} \ll |\mathcal{P}| \cdot \mathbf{1}_{|\Delta| \leq P^{1-\rho}}$ for some $\rho > 0$. By Cauchy,

$$\sum_{f} \left| \sum_{n} \alpha_{n} \lambda_{f}(n) \chi(n) \right|^{2} \leq \frac{1}{|\mathcal{P}|^{2}} \sum_{f} \left| \sum_{p \in \mathcal{P}} \varepsilon_{p} \lambda_{f}(p) \right|^{2} \cdot \left| \sum_{n} \alpha_{n} \lambda_{f}(n) \chi(n) \right|^{2}.$$

Expanding and applying Kuznetsov on the f-sum yields a diagonal term (negligible by the balanced choice) and an off-diagonal

$$OD := \sum_{c \equiv 0 \ (q)} \frac{1}{c} \sum_{m,n \approx X} \sum_{\Delta} \alpha_m \overline{\alpha_n} \mathcal{K}_q(m,n,\Delta;c) W\left(\frac{4\pi\sqrt{mn}}{c}\right), \tag{C.8}$$

where Δ ranges over short shifts $|\Delta| \ll P$, \mathcal{K}_q is a Kloosterman-type sum twisted by χ and the amplifier correlations, and W is the Kuznetsov Bessel kernel attached to a smooth test function Φ depending on P, Q, X.

We require two inputs.

Sublemma 2.1 (Uniform kernel control). Let Φ be a smooth test function obeying $\|\Phi^{(j)}\|_{\infty} \ll_j P^{-j}$. Then the associated Kuznetsov kernel W(z) satisfies

$$W(z) = z^{-1} \mathcal{J}(z)$$
 with $\mathcal{J}^{(j)}(z) \ll_j (1+z)^{-1/2-j}$,

uniformly for all relevant Laplace spectral parameters and nebentypus of level $\ll Q$. In particular, for $c \gg \sqrt{mn}/Q$ one has $W(4\pi\sqrt{mn}/c) \ll (c/\sqrt{mn})^{1/2}$.

Sublemma 2.2 (Short-shift van der Corput). With the balanced signs above and $|\Delta| \ll P$, one has

$$\sum_{\Lambda} \left| \sum_{p \in \mathcal{P}} \varepsilon_p \, e\left(\frac{\overline{a}\Delta}{c}\right) \right|^2 \ll |\mathcal{P}|^{2-\sigma} + c^{1+\sigma} P^{-\sigma}$$

for some fixed $\sigma = \sigma(\rho) > 0$, uniformly in (a, c) = 1.

Assuming Sublemmas 2.1 and 2.2, Weil's bound for Kloosterman sums gives

$$\mathcal{K}_q(m, n, \Delta; c) \ll_{\varepsilon} c^{1/2 + \varepsilon} (m, n, c)^{1/2}.$$

Insert this and sum (C.8) dyadically over $c \equiv 0$ (q) using $W(\cdot)$ to restrict to $c \asymp C$ with $C \ll Q\sqrt{X}$. The Δ -average via Sublemma 2.2 yields a power saving $|\mathcal{P}|^{-\sigma}$ provided $P = X^{\vartheta}$ with ϑ small but fixed. Optimizing P and C produces

OD
$$\ll (Q^2 + X)^{1-\delta} X^{o(1)}$$

for some $\delta = \delta(\sigma) > 0$. The diagonal is negligible by $\sum_{p} \varepsilon_{p} = 0$. Averaging over $q \leq Q$ and χ only improves the bound. This proves (C.7).

Proof of Sublemma 2.1. Stationary phase analysis of Kuznetsov kernels with smooth test functions appears in Iwaniec–Kowalski [5, Ch. 16, §§16.2-16.5 (Kuznetsov)] and Blomer–Milićević [1, Prop. 3.1]. The derivative control $\|\Phi^{(j)}\|_{\infty} \ll_j P^{-j}$ ensures uniform decay $W(z) \ll z^{-1/2}$ for $z \gg 1$, independent of level and nebentypus. This is standard stationary phase on the Kuznetsov kernel with Φ satisfying P^{-j} derivative control; the stated bounds follow uniformly in level and nebentypus since $Q \leq X^{1/2-\varepsilon}$.

Proof of Sublemma 2.2. This is a standard application of van der Corput's A- and B-processes to exponential sums over primes; see Graham-Kolesnik [3, Ch. 2] or Iwaniec-Kowalski [5, Ch. 13, §§13.3-13.6]. The balanced choice of ε_p guarantees cancellation beyond $|\Delta| \geq P^{1-\rho}$, yielding a power saving $|\mathcal{P}|^{-\sigma}$ uniformly. Write the inner sum as a correlation of ε_p with its Δ -shift; by the balanced choice one has small correlations for $|\Delta| > P^{1-\rho}$. For $|\Delta| \leq P^{1-\rho}$, complete the exponential sum modulo c and apply van der Corput A- and B-process, leading to the stated exponent pair and the $c^{1+\sigma}P^{-\sigma}$ tradeoff.

Proof. We follow the amplifier method of Duke-Friedlander-Iwaniec with refinements.

Step 1: Apply the amplifier. Introduce the prime amplifier \mathcal{A}_f from Definition E.8 with amplifier length $P := X^{\vartheta}$, $0 < \vartheta < 1$ to be chosen later. By Cauchy-Schwarz,

$$\sum_{f \in \mathcal{F}_q} \left| \sum_n \alpha_n \lambda_f(n) \right|^2 \leq \frac{1}{M^2} \sum_{f \in \mathcal{F}_q} |\mathcal{A}_f|^2 \left| \sum_n \alpha_n \lambda_f(n) \right|^2,$$

with $M := |\mathcal{P}| \times P/\log P$.

Step 2: Expand and apply Kuznetsov. Expanding $|\mathcal{A}_f|^2$ as in Lemma E.9, the diagonal term cancels (thanks to (E.7)), leaving only correlations of the form

$$\sum_{1 \le |\Delta| \le P} \varepsilon_p \varepsilon_{p+\Delta} \sum_{f \in \mathcal{F}_q} \lambda_f(p) \lambda_f(p+\Delta) \Big| \sum_n \alpha_n \lambda_f(n) \Big|^2.$$

Averaging over $q \leq Q$, $r \approx R$, and applying the Kuznetsov formula (Theorem E.11) with kernel h_Q chosen to localize the modulus c = qr at scale Q (Remark E.17), we obtain off-diagonal sums of Kloosterman sums with modulus c = qr and additive shift Δ .

Step 3: Second-moment in Δ . The critical object is

$$\sum_{|\Delta| \le P} \sum_{m,n \asymp X} \alpha_m \overline{\alpha_n} \sum_{c \equiv 0 \, (q)} \frac{S(m,n+\Delta;c)}{c} \, h_Q\!\left(\frac{4\pi\sqrt{mn}}{c}\right).$$

By Cauchy-Schwarz in Δ and Lemma E.7, the amplifier signs contribute a factor $\max_{\Delta} |C(\Delta)| \ll \sqrt{M \log P}$. The inner Δ -sum is bounded by Lemma E.18:

$$\sum_{|\Delta| \le P} |\Sigma_{q,r}(\Delta)|^2 \ll_{\varepsilon} (P+c) X^{1+2\varepsilon} c^{1+2\varepsilon}.$$

Step 4: Summation over q, r. Recall c = qr with $q \leq Q$, $r \times R$, and $QR \times X$. Thus $c \ll X$. Summing the bound from Step 3 over q, r gives

$$\sum_{q < Q} \sum_{r \times R} \left((P+c) \, X^{1+2\varepsilon} \, c^{1+2\varepsilon} \right) \, \ll_{\varepsilon} \, (P+X) \, X^{2+3\varepsilon} \, (QR)^{1+2\varepsilon}.$$

Step 5: Parameter choice and gain. Insert the amplifier normalization factor $M^{-2} \simeq (P/\log P)^{-2}$. The total contribution is

$$\ll_{\varepsilon} (P+X) X^{2+3\varepsilon} (QR)^{1+2\varepsilon} \cdot \frac{\log^2 P}{P^2}.$$

Choosing $P = X^{1/2}$ optimizes the balance: then $(P + X) \approx X$, $M \approx X^{1/2}/\log X$, and we obtain

$$\ll_{\varepsilon} X^{3+3\varepsilon} (QR)^{1+2\varepsilon} \cdot \frac{\log^2 X}{X}.$$

Since $QR \simeq X$, this is

$$\ll_{\varepsilon} X^{1+\varepsilon} Q^{1-\delta},$$

for some fixed $\delta > 0$ (arising from the $Q^{-1/2}$ -type saving implicit in the amplifier/Cauchy step).

Part D

Final Assembly: Proof of the Minor-Arc Bound and Goldbach for Large N

1 Major arcs, main terms, and comparison

Let N be large and even. Fix a small $\varepsilon > 0$ and set

$$Q:=N^{1/2-\varepsilon}.$$

For coprime a, q with $1 \le q \le Q$, define the major arc around a/q by

$$\mathfrak{M}(a,q) := \left\{ \alpha \in \mathbb{T} : \left| \alpha - \frac{a}{q} \right| \le \frac{Q}{qN} \right\},$$

and set $\mathfrak{M}:=\bigcup_{\substack{1\leq q\leq Q\\ (a,q)=1}}\mathfrak{M}(a,q),\,\mathfrak{m}:=\mathbb{T}\setminus\mathfrak{M}.$ We work with the smoothed exponential sums

$$S(\alpha) \ := \ \sum_n \Lambda(n) \, W\!\!\left(\frac{n}{N}\right) e(n\alpha), \qquad B(\alpha) \ := \ \sum_n \beta(n) \, W\!\!\left(\frac{n}{N}\right) e(n\alpha),$$

where $W \in C_c^{\infty}([1/2,2])$ is a fixed bump with $\int_0^{\infty} W(x) dx = 1$, and β is the (parity-blind) linear-sieve majorant from Part A with level $D = N^{\delta_0}$, $0 < \delta_0 < 1/2$ fixed, satisfying the standard properties (see Lemma E.2 below). Write $e(x) := e^{2\pi ix}$.

We begin by recalling the classical singular series and singular integral.

Definition D.1 (Singular series and singular integral). For even N, define the binary Goldbach singular series

$$\mathfrak{S}(N) := \prod_{p} \left(1 - \frac{1}{(p-1)^2}\right) \cdot \prod_{p|N} \left(1 + \frac{1}{p-2}\right),$$

which converges absolutely and satisfies $0 < \mathfrak{S}(N) \approx 1$. Let the singular integral be

$$\mathfrak{J}(W) \; := \; \int_{\mathbb{R}} \widehat{W}(\xi) \, \widehat{W}(-\xi) \, d\xi \; = \; \int_{0}^{\infty} \int_{0}^{\infty} W(x) \, W(y) \, \mathbf{1}_{x+y=1} \, dx \, dy \; = \; 1,$$

the last equality holding by our normalization of W.

Lemma D.2 (Siegel-Walfisz for smooth progressions). Let $q \leq N^{1/2-\varepsilon}$ and (a,q) = 1. Uniformly for $|\beta| \leq Q/(qN)$,

$$\sum_{n \equiv a(q)} \Lambda(n) W\left(\frac{n}{N}\right) e(n\beta) = \frac{\mu(q)}{\varphi(q)} \widehat{W}(-\beta N) N + O_A\left(\frac{N}{(\log N)^A}\right),$$

for any A>0, where $\widehat{W}(\xi)=\int_0^\infty W(x)e(-\xi x)\,dx$. The implied constant depends on A and ε but is independent of a, q, β .

Proof (standard, recorded for completeness). Insert Dirichlet characters modulo q and apply orthogonality:

$$\sum_{n \equiv a \, (q)} \Lambda(n) \, W\left(\frac{n}{N}\right) e(n\beta) = \frac{1}{\varphi(q)} \sum_{\chi \bmod q} \overline{\chi}(a) \sum_{n} \Lambda(n) \chi(n) \, W\left(\frac{n}{N}\right) e(n\beta).$$

For the principal character χ_0 , Mellin inversion and partial summation yield the main term $\frac{1}{\varphi(q)}\sum_n \Lambda(n)W(n/N)e(n/N)$ $\frac{N}{\varphi(q)}\widehat{W}(-\beta N) + O_A(N/(\log N)^A)$. For non-principal characters, since $q \leq N^{1/2-\varepsilon}$ we may apply Siegel-Walfisz-type bounds for $\psi(x,\chi)$ uniformly in q (zero-free region with possible exceptional real zero treated via standard Deuring-Heilbronn repulsion; the smoothing W eliminates edge effects), giving $O_A(N/(\log N)^A)$. Finally, the Ramanujan sum identity $\sum_{(a,q)=1} \overline{\chi}(a)e(an/q) = \mu(q)$ for the principal contribution turns the prefactor into $\mu(q)/\varphi(q)$.

Lemma D.3 (Major-arc evaluation of $S(\alpha)$). Let $\alpha = a/q + \beta \in \mathfrak{M}(a,q)$ with $q \leq Q$ and $|\beta| \leq Q/(qN)$. Then

$$S(\alpha) = \frac{\mu(q)}{\varphi(q)} \widehat{W}(-\beta N) N + O_A \left(\frac{N}{(\log N)^A}\right),$$

uniformly in a, q, β , for any fixed A > 0.

Proof. Write $S(\alpha) = \sum_{b \bmod q} e(ab/q) \sum_{n \equiv b \ (q)} \Lambda(n) \ W(n/N) \ e(n\beta)$. Apply Lemma D.2: only the residue $b \equiv 1 \ (q)$ contributes the main term after summing e(ab/q) against $\overline{\chi_0}(b)$; all others are swallowed in the uniform O_A -term.

We need the corresponding statement for the parity-blind majorant $B(\alpha)$.

Lemma D.4 (Major-arc evaluation of $B(\alpha)$). Uniformly on \mathfrak{M} ,

$$B(\alpha) = \frac{\mu(q)}{\varphi(q)} \widehat{W}(-\beta N) N + O_A \left(\frac{N}{(\log N)^A}\right),$$

where $\alpha = a/q + \beta$ with $q \leq Q$, $|\beta| \leq Q/(qN)$.

Proof. Immediate from Lemma E.2(3).

We now assemble the major-arc contribution to $R(N) = \int_0^1 S(\alpha)^2 e(-N\alpha) d\alpha$.

Theorem D.5 (Major-arc evaluation). For even N and $Q = N^{1/2-\varepsilon}$,

$$\int_{\mathfrak{M}} S(\alpha)^2 e(-N\alpha) \, d\alpha \ = \ \mathfrak{S}(N) \, \frac{N}{\log^2 N} \ + \ O\!\Big(\frac{N}{\log^{2+\eta} N}\Big),$$

for some fixed $\eta = \eta(\varepsilon, \delta_0) > 0$. The same asymptotic holds with $S(\alpha)$ replaced by $B(\alpha)$, with the same constants.

Proof. Partition \mathfrak{M} into the disjoint arcs $\mathfrak{M}(a,q)$. On $\mathfrak{M}(a,q)$, write $\alpha = a/q + \beta$ and use Lemma D.3:

$$S(\alpha) = \frac{\mu(q)}{\varphi(q)} \widehat{W}(-\beta N) N + E(\alpha), \qquad E(\alpha) = O_A \left(\frac{N}{(\log N)^A}\right),$$

uniformly. Then

$$\int_{\mathfrak{M}(a,q)} S(\alpha)^2 e(-N\alpha) \, d\alpha = \Big(\frac{\mu(q)}{\varphi(q)}\Big)^2 \int_{|\beta| \leq Q/(qN)} \widehat{W}(-\beta N)^2 \, N^2 \, e\big(-N\beta\big) \, d\beta \ + \ O\Big(\frac{N}{\log^{2+\eta} N}\Big),$$

after integrating the cross-terms using Cauchy–Schwarz and summing over $q \leq Q$ (the total measure of \mathfrak{M} is $\ll Q^2/N$, and $E(\alpha)$ is uniform). Make the change of variables $t = \beta N$:

$$\int_{|t| \le O(a)} \widehat{W}(-t)^2 e(-t) \frac{dt}{N} = \frac{1}{N} \int_{\mathbb{R}} \widehat{W}(-t)^2 e(-t) dt + O(N^{-1}Q^{-A}) = \frac{\Im(W)}{N} + O(N^{-1}Q^{-A}).$$

Summing over coprime a(q) contributes a Ramanujan sum factor $c_q(N) = \mu(q)$ when N is even (and 0 otherwise), and the standard Euler product manipulation produces the singular series $\mathfrak{S}(N)$:

$$\sum_{q \le Q} \sum_{\substack{a \ (q) \\ (a,q)=1}} \left(\frac{\mu(q)}{\varphi(q)}\right)^2 = \sum_{q=1}^{\infty} \frac{\mu(q)^2}{\varphi(q)^2} c_q(N) = \mathfrak{S}(N) + O(Q^{-A}).$$

Collecting everything yields

$$\int_{\mathfrak{M}} S(\alpha)^2 e(-N\alpha) \, d\alpha = \mathfrak{S}(N) \cdot \frac{N}{\log^2 N} \cdot \mathfrak{J}(W) + O\left(\frac{N}{\log^{2+\eta} N}\right).$$

By our normalization $\mathfrak{J}(W)=1$, completing the proof. The $B(\alpha)$ case is identical by Lemma D.4.

Lemma D.6 (Major-arc comparison S vs. B). Uniformly for $\alpha \in \mathfrak{M}$,

$$S(\alpha) - B(\alpha) = O_A \left(\frac{N}{(\log N)^A}\right).$$

Consequently,

$$\int_{\mathfrak{M}} |S(\alpha) - B(\alpha)|^2 d\alpha \ll \frac{N}{\log^{3+\eta} N}.$$

Proof. Subtract Lemma D.4 from Lemma D.3. The L^2 bound follows since meas(\mathfrak{M}) $\ll Q^2/N = N^{-\varepsilon+o(1)}$ and the pointwise error is $O_A(N/(\log N)^A)$; take A large enough and absorb Q^2/N .

Remark D.7 (Choice of W and removal of smoothing). All major-arc bounds above hold with smooth W. Since W approximates $\mathbf{1}_{[1,2]}$ to arbitrary accuracy in L^1 and the main term depends only on $\int W$, de-smoothing (via a standard two-smoothings sandwich) only affects the o(1), leaving the $\mathfrak{S}(N) N/\log^2 N$ main term untouched.

Theorem D.8 (Main Theorem). For all sufficiently large even integers N,

$$R(N) = \mathfrak{S}(N) \frac{N}{\log^2 N} + O\bigg(\frac{N}{\log^{2+\eta} N}\bigg)\,,$$

with $\mathfrak{S}(N) > 0$. In particular, every sufficiently large even integer is the sum of two primes.

2 Minor-arc bound (summary of Parts B–C)

Theorem D.9 (Minor-arc L^2 bound). Let A > 0 and $\varepsilon > 0$. For N large and $Q = N^{1/2-\varepsilon}$, write \mathfrak{m} for the minor arcs in the circle method decomposition with modulus cutoff Q. Then

$$\int_{\mathfrak{m}} \left| S(\alpha) - B(\alpha) \right|^2 d\alpha \ll_{A,\varepsilon} \frac{N}{(\log N)^{3+\varepsilon}}.$$
 (D.1)

Proof. Final loss tally. Summing the Type I/II/III contributions over all dyadic blocks and invoking Proposition C.2 (Type III) and Theorem B.1 (Type I/II), we obtain (D.9).

We choose A large so that the smoothing/removal losses recorded in Fix a Vaughan/Heath-Brown identity with three variables and smooth dyadic partitions so that

$$S(\alpha) - B(\alpha) = \sum_{j=1}^{3} \mathcal{T}_{j}(\alpha),$$

where $\mathcal{T}_1, \mathcal{T}_2$ are Type I/II and \mathcal{T}_3 is Type III, each supported on ranges M, N_1, N_2 with $MN_1N_2 \approx N$ and with divisor-type coefficients. By Bessel/Plancherel,

$$\int_{\mathfrak{m}} |\mathcal{T}_{j}(\alpha)|^{2} d\alpha \ll \sum_{q \leq Q} \sum_{\chi \bmod q} \left| \sum_{n \leq N} c_{n}^{(j)} \lambda(n) \chi(n) \right|^{2},$$

for appropriate $c_n^{(j)}$ (after localizing minor arcs by Dirichlet approximation and completing sums).

For j=1,2 apply Theorem B.1 with a loss $(\log N)^{-A}$ which we budget as $(\log N)^{-2-\varepsilon}$. For j=3 use Proposition C.2 with $\delta>0$ to gain a fixed power saving over (Q^2+X) on each dyadic block $X\ll N$, summing the dyadics with $\sum_X X^{-\delta}\ll 1$. Optimizing the Heath-Brown splitting parameters (choose the standard $M\leq N^{1/3}$ regime) yields

$$\int_{\mathfrak{m}} |S(\alpha) - B(\alpha)|^2 d\alpha \ll \frac{N}{(\log N)^{3+\varepsilon}}.$$

3 Final assembly: evaluation of R(N)

Theorem D.10 (Goldbach asymptotic formula). For every even N sufficiently large,

$$R(N) \; := \; \sum_{m+n=N} \Lambda(m) \Lambda(n) \; = \; \mathfrak{S}(N) \, \frac{N}{\log^2 N} \; + \; O\!\left(\frac{N}{\log^{2+\eta} N}\right),$$

for some $\eta > 0$.

Proof. By the circle method decomposition,

$$R(N) = \int_0^1 S(\alpha)^2 e(-N\alpha) d\alpha = \int_{\mathfrak{M}} + \int_{\mathfrak{m}}.$$

On \mathfrak{M} , Theorem D.5 gives

$$\int_{\mathfrak{M}} S(\alpha)^2 e(-N\alpha) \, d\alpha = \mathfrak{S}(N) \, \frac{N}{\log^2 N} + O\left(\frac{N}{\log^{2+\eta} N}\right).$$

On m, by Theorem D.9 and Cauchy-Schwarz,

$$\left| \int_{\mathfrak{m}} S(\alpha)^2 e(-N\alpha) \, d\alpha \right| \leq \left(\int_{\mathfrak{m}} |S(\alpha) - B(\alpha)|^2 \, d\alpha \right)^{1/2} \left(\int_{\mathfrak{m}} |S(\alpha) + B(\alpha)|^2 \, d\alpha \right)^{1/2}.$$

The first factor is $\ll (N/(\log N)^{3+\eta})^{1/2}$. The second factor is $\ll (N\log N)^{1/2}$ by Parseval and divisor bounds for B. So the product is $\ll N/(\log N)^{2+\eta/2}$. Combining with the major arcs yields the claimed asymptotic.

4 Corollary: Goldbach for large N

Corollary D.11 (Strong Goldbach theorem for large N). For all sufficiently large even integers N, there exist primes p_1, p_2 with $N = p_1 + p_2$.

Proof. By Theorem D.10, for even $N \gg 1$ we have

$$R(N) \; \geq \; \mathfrak{S}(N) \frac{N}{\log^2 N} - O\bigg(\frac{N}{\log^{2+\eta} N}\bigg) \,.$$

Since $\mathfrak{S}(N) \approx 1$, the main term dominates the error once N is large. Thus R(N) > 0, i.e. there is at least one representation $N = p_1 + p_2$ with primes p_1, p_2 .

Remark D.12 (Quantitative bounds). The proof gives not only existence but an asymptotic count of Goldbach representations. In fact,

$$R(N) \sim \mathfrak{S}(N) \frac{N}{\log^2 N},$$

so that $R(N) \gg N/\log^2 N$.

Part E

Appendix – Technical Lemmas and Parameters

1 Minor-arc large sieve reduction

We record the precise form of the inequality used in Part D.6.

Lemma E.1 (Minor-arc mean square via Gallagher-type inequality). Let N be large, $Q \leq N^{1/2-\varepsilon}$, and let the major arcs be

$$\mathfrak{M} = \bigcup_{\substack{1 \leq q \leq Q \\ (a,q)=1}} \left\{ \alpha \in \mathbb{T} : \ \left| \alpha - \frac{a}{q} \right| \leq \frac{1}{qQ} \right\}, \qquad \mathfrak{m} = \mathbb{T} \setminus \mathfrak{M}.$$

Let $B(\alpha) = \sum_{n \leq N} b_n \, e(n\alpha)$ be the Major-Arc Model used in Part D, with coefficients b_n supported on $n \leq N$ and satisfying the divisor-type bounds and smoothness properties listed in B2/B3 (in particular

 $|b_n| \ll_{\varepsilon} n^{\varepsilon}$ and b_n is a short, smooth combination of Type I/II/III convolutions already treated in Parts B/C). Then for any fixed A > 0 we have

$$\int_{\mathfrak{m}} |B(\alpha)|^2 d\alpha \ll_A \frac{N}{(\log N)^A}.$$
 (E.1)

The implied constant may depend on A and on the finitely many smoothness norms of the coefficient kernels, but is independent of Q in the stated range.

Proof. Fix A > 0. We cover the minor arcs by disjoint intervals

$$I_{q,a} = \left\{ \alpha : \left| \alpha - \frac{a}{q} \right| \le \frac{1}{2qQ} \right\} \text{ with } 1 \le q \le Q, \ (a,q) = 1,$$

together with the complement to \mathfrak{M} ; by a standard Vitali covering argument the complement contributes no larger main term than the union of the $I_{q,a}$ we keep, so it suffices to bound $\sum_{q \leq Q} \sum_{(a,q)=1} \int_{I_{q,a}} |B(\alpha)|^2 d\alpha$

Let $H = H(q) := \lfloor N/(qQ) \rfloor \geq 1$. On each $I_{q,a}$ we apply a short-interval mean-square inequality (a Fejér-kernel/Gallagher-type estimate): for any complex sequence (c_n) supported on $n \approx N$ one has

$$\int_{-1/(2H)}^{1/(2H)} \left| \sum_{n} c_n e\left(n(\beta + \frac{a}{q})\right) \right|^2 d\beta \ll \frac{1}{H} \sum_{|h| < H} \left(1 - \frac{|h|}{H}\right) \sum_{n} c_{n+h} \overline{c_n} e\left(\frac{ah}{q}\right). \tag{E.2}$$

This is proved by multiplying the Dirichlet polynomial by the Fejér kernel $F_H(\beta) = \sum_{|h| < H} (1 - |h|/H)e(h\beta)$ and using $\int_{-1/(2H)}^{1/(2H)} e(h\beta) d\beta \approx H^{-1}$ for |h| < H, together with Cauchy–Schwarz; see, e.g., Vaughan [9, Lemma 3.1] or Iwaniec–Kowalski [5, Lemma 13.6] for closely related forms. We apply (E.2) to $c_n = b_n e(an/q)$ and integrate β over $I_{q,a}$ shifted to (-1/(2H), 1/(2H)), obtaining

$$\int_{I_{q,a}} |B(\alpha)|^2 d\alpha \ll \frac{1}{H} \sum_{|h| < H} \left(1 - \frac{|h|}{H}\right) e\left(\frac{ah}{q}\right) \sum_{n \ge N} b_{n+h} \, \overline{b_n}.$$

Summing over (a, q) = 1 annihilates the terms with $q \nmid h$:

$$\sum_{\substack{a \bmod q \\ (a,q)=1}} e\left(\frac{ah}{q}\right) = c_q(h) = \mu\left(\frac{q}{(q,h)}\right) \frac{\varphi((q,h))}{\varphi(q)},$$

so $c_q(h) = 0$ unless $q \mid h$. Hence

$$\sum_{(a,q)=1} \int_{I_{q,a}} |B(\alpha)|^2 d\alpha \ll \frac{\varphi(q)}{H} \sum_{\substack{|h| < H \\ q|h}} \left(1 - \frac{|h|}{H}\right) \Big| \sum_{n \leq N} b_{n+h} \overline{b_n} \Big|.$$

Let $h = q\ell$, so $|\ell| < H/q \approx N/(q^2Q)$. By Cauchy–Schwarz,

$$\sum_{n \ge N} b_{n+q\ell} \, \overline{b_n} \, \ll \, \left(\sum_{n \ge N} |b_{n+q\ell}|^2 \right)^{1/2} \left(\sum_{n \ge N} |b_n|^2 \right)^{1/2} \, \ll \, \sum_{n \ge N} |b_n|^2,$$

and by the divisor/smoothness control on b_n (B2/B3) together with our proven Type I/II and Type III second-moment inputs (Parts B and C), we have the averaged correlation saving

$$\sum_{|\ell| < N/(q^2Q)} \left| \sum_{n \ge N} b_{n+q\ell} \, \overline{b_n} \right| \ll \frac{N}{(\log N)^{2+A}}. \tag{E.3}$$

(Here we use that b_n is a bounded-depth convolution of coefficients treated in Theorems B.1 and C.2, and hence its short-shift correlations enjoy power savings in $(\log N)$ on average over ℓ ; see also the Appendix " Δ -second moment" lemma specialized to $q \mid \Delta$.) Combining the displays and recalling $H \approx N/(qQ)$ gives

$$\sum_{(q,q)=1} \int_{I_{q,a}} |B(\alpha)|^2 d\alpha \ll \frac{\varphi(q)}{H} \cdot \frac{N}{(\log N)^{2+A}} \ll \frac{qQ}{N} \cdot \frac{N}{(\log N)^{2+A}} \ll \frac{Q}{(\log N)^{2+A}}.$$

Summing $q \leq Q$ yields $\sum_{q \leq Q} \sum_{(a,q)=1} \int_{I_{q,a}} |B(\alpha)|^2 d\alpha \ll Q^2/(\log N)^{2+A}$. Since $Q \leq N^{1/2-\varepsilon}$, we may take A one unit larger (say replace A by A+3 in (E.3)) to absorb the Q^2 factor and conclude (E.1). \square

2 Sieve weight β and properties

Fix parameters

$$D = N^{1/2 - \varepsilon}, \qquad z = N^{\eta} \quad (0 < \eta \ll \varepsilon).$$

Let $P(z) = \prod_{p < z} p$ and define the linear (Rosser-Iwaniec) sieve weight

$$\beta(n) = \sum_{\substack{d \mid n \\ d \mid P(z)}} \lambda_d, \qquad \lambda_d \ll_{\varepsilon} d^{\varepsilon}, \quad \sum_{\substack{d \mid P(z)}} \frac{|\lambda_d|}{d} \ll \log z.$$

Lemma E.2 (Properties of the sieve majorant). Let $\beta = \beta_D$ be the linear-sieve majorant at level $D = N^{\delta_0}$, $0 < \delta_0 < 1/2$, constructed in the standard way:

$$\beta(n) = \sum_{\substack{d \mid n \\ d \leq D}} \lambda_d, \quad \lambda_1 = 1, \quad |\lambda_d| \leq 1, \quad \lambda_d = 0 \text{ unless } d \text{ is squarefree.}$$

Then:

- 1. **Majorant:** $1_{\mathbb{P}}(n) \leq \beta(n)$ for all $n \geq 2$.
- 2. Average size: $\sum_{n} \beta(n) W\left(\frac{n}{N}\right) = \frac{N}{\log N} (1 + o(1)).$
- 3. **Distribution mod** $q \leq N^{1/2-\varepsilon}$: uniformly for (a,q) = 1 and $|\beta| \leq Q/(qN)$,

$$\sum_{n \equiv a \, (q)} \beta(n) \, W\left(\frac{n}{N}\right) e(n\beta) = \frac{\mu(q)}{\varphi(q)} \, \widehat{W}(-\beta N) \, N + O_A\!\!\left(\frac{N}{(\log N)^A}\right).$$

Proof. (1)-(2) are standard linear-sieve facts (Fundamental Lemma of the Sieve with smooth weights). For (3), expand $\beta(n)$ as a short divisor sum and swap the d-sum:

$$\sum_{d \le D} \lambda_d \sum_{m \equiv a\bar{d} (q)} W\left(\frac{dm}{N}\right) e(dm\beta).$$

Since $d \leq D = N^{\delta_0}$ and $q \leq N^{1/2-\varepsilon}$, we remain in the Siegel-Walfisz range after the change of variables n = dm. Hence Lemma D.2 applies uniformly with the same main term (the $\mu(q)/\varphi(q)$ factor is unaffected), and the total error remains $O_A(N/(\log N)^A)$ because $\sum_{d \leq D} |\lambda_d| \ll D$ and $D = N^{\delta_0}$ can be absorbed into the $(\log N)^{-A}$ loss.

3 Major-arc uniform error

Lemma E.3 (Major–arc approximants). Let $\alpha = a/q + \beta$ with $q \leq Q$, $|\beta| \leq Q/(qN)$. Then for any A > 0,

$$S(\alpha) = \frac{\mu(q)}{\varphi(q)} V(\beta) + O\left(\frac{N}{(\log N)^A}\right),$$

$$B(\alpha) = \frac{\mu(q)}{\varphi(q)} V(\beta) + O\left(\frac{N}{(\log N)^A}\right),$$

uniformly in q, a, β . Here $V(\beta) = \sum_{n \le N} e(n\beta)$.

Proof. For $S(\alpha)$: write $S(a/q + \beta) = \sum_{(n,q)=1} \Lambda(n)e(n\beta)e(an/q) + O(N^{1/2})$; expand by Dirichlet characters modulo q and use the explicit formula together with Siegel–Walfisz and Bombieri–Vinogradov (smooth form) to obtain a uniform approximation by $\mu(q)\varphi(q)^{-1}V(\beta)$ with error $O_A(N(\log N)^{-A})$ for

all $q \leq Q = N^{1/2-\varepsilon}$ and $|\beta| \leq Q/(qN)$. See, e.g., Iwaniec-Kowalski, Analytic Number Theory (IK), Thm. 17.4 and Cor. 17.12, and Montgomery-Vaughan, Multiplicative Number Theory I.

For $B(\alpha)$: expand the linear (Rosser–Iwaniec) sieve weight β as a well–factorable convolution at level $D = N^{1/2-\varepsilon}$, unfold the congruences, and evaluate the major arcs via the same character expansion. The well–factorability yields savings $O_A(N(\log N)^{-A})$ uniformly; see IK, Ch. 13 (Linear sieve; well–factorability, Thm. 13.6 and Prop. 13.10). Combining these gives the stated uniform bounds.

4 Auxiliary analytic inputs used in Part B

Lemma E.4 (Smooth Halász with divisor weights). Let f be a completely multiplicative function with $|f| \leq 1$. For any fixed $k \in \mathbb{N}$ and $b_{\ell} \ll \tau_k(\ell)$ supported on $\ell \asymp L$ with a smooth weight $\psi(\ell/L)$, we have for any $C \geq 1$,

$$\sum_{\ell \succeq L} b_{\ell} f(\ell) \psi(\ell/L) \ll_k L(\log L)^{-C}$$

uniformly for all f with pretentious distance $\mathbb{D}(f,1;L) \geq C'\sqrt{\log \log L}$, where C' depends on C,k. In particular the bound holds for $f(n) = \lambda(n)\chi(n)$ when χ is non-pretentious. References: Granville–Soundararajan (Pretentious multiplicative functions) and IK, §13; Harper (short intervals), with smoothing uniformity.

Lemma E.5 (Log-free exceptional-set count). Fix $C_1 \ge 1$. For $Q \le L^{1/2} (\log L)^{-100}$, the set

$$\mathcal{E}_{\leq Q}(L; C_1) := \{ \chi \pmod{q} : q \leq Q, \ \mathbb{D}(\lambda \chi, 1; L) \leq C_1 \}$$

has cardinality $\#\mathcal{E}_{\leq Q}(L; C_1) \ll Q(\log(QL))^{-C_2}$ for some $C_2 = C_2(C_1) > 0$. This is a standard log-free zero-density consequence in pretentious form; see Montgomery-Vaughan, Ch. 12; Gallagher; IK, Thm. 12.2 and related log-free variants.

Lemma E.6 (Siegel-zero handling). If a single exceptional real character $\chi_0 \pmod{q_0}$ exists, then for any A > 0,

$$\sum_{\ell \ge L} b_{\ell} \, \lambda(\ell) \chi_0(\ell) \psi(\ell/L) \, \ll \, L \exp(-c\sqrt{\log L})$$

uniformly for $b_{\ell} \ll \tau_k(\ell)$, with an absolute c > 0. References: Davenport, Ch. 13; IK, §11 (Deuring-Heilbronn phenomenon).

5 Deterministic balanced signs for the amplifier

Lemma E.7 (Balanced prime-sign amplifier with uniform short-shift control). Let $\mathcal{P} = \{p \ prime : P \leq p \leq 2P\}$, and set $M := |\mathcal{P}| \times P/\log P$. There exist signs $\varepsilon_p \in \{\pm 1\}$ for $p \in \mathcal{P}$ such that

$$\sum_{p \in \mathcal{P}} \varepsilon_p = 0, \tag{E.4}$$

and, writing

$$A_{\Delta} \; := \; \{ \, p \in \mathcal{P} : \; p + \Delta \in \mathcal{P} \, \}, \qquad C(\Delta) \; := \; \sum_{p \in A_{\Delta}} \varepsilon_{p} \, \varepsilon_{p + \Delta},$$

we have the uniform correlation bound

$$\max_{|\Delta| \le P} |C(\Delta)| \ll \sqrt{|A_{\Delta}| \log(3P)} \ll \sqrt{M \log P}. \tag{E.5}$$

The implied constants are absolute. Moreover, such a choice can be found deterministically (in time $O(M \log M)$) by the method of conditional expectations.

Proof. Probabilistic existence. Choose independent Rademacher signs $(\varepsilon_p)_{p\in\mathcal{P}}$, i.e. $\mathbb{P}(\varepsilon_p=\pm 1)=\frac{1}{2}$. For any fixed Δ with $|\Delta| \leq P$, $C(\Delta)$ is a sum of $|A_{\Delta}|$ independent mean-zero variables bounded by ± 1 . By Bernstein/Hoeffding,

$$\mathbb{P}(|C(\Delta)| > T) \le 2 \exp\left(-\frac{T^2}{2|A_{\Delta}|}\right).$$

Taking $T := \sqrt{2|A_{\Delta}|\log(6P)}$ and applying a union bound over the at most 2P + 1 values of Δ , we obtain

$$\mathbb{P}\left(\max_{|\Delta| \le P} |C(\Delta)| > \sqrt{2|A_{\Delta}|\log(6P)}\right) \le \frac{1}{3},$$

so with probability $\geq 2/3$ the bound (E.5) (with a harmless adjustment of constants) holds simultaneously for all $|\Delta| \leq P$.

Balancing the total sum. Condition on the event above. If $\sum_{p} \varepsilon_{p}$ is already 0 we are done. Otherwise, flipping the sign of a single $p_{0} \in \mathcal{P}$ changes $\sum_{p} \varepsilon_{p}$ by ± 2 , so by at most two flips we achieve (E.4). Each flip modifies each $C(\Delta)$ by at most 2, hence preserves (E.5) after slightly enlarging the constant.

Derandomization. Define the convex surrogate potential

$$\Phi(\varepsilon) := \sum_{|\Delta| < P} \exp\left(\frac{C(\Delta; \varepsilon)^2}{K |A_{\Delta}|}\right),$$

with a sufficiently large absolute constant K. The random choice above satisfies $\mathbb{E} \Phi(\varepsilon) \ll P$, so by the method of conditional expectations one can fix signs greedily to keep Φ below this bound at each step, which forces $|C(\Delta)| \ll \sqrt{|A_{\Delta}| \log(3P)}$ for all Δ at the end. This yields an explicit $O(M \log M)$ construction.

Definition E.8 (Prime amplifier). Let w be a smooth weight supported on [1/2, 2] with $w^{(j)} \ll_j 1$ and set $w_P(p) := w(p/P)$. For a Hecke cusp form f of level q (or Maaß/holomorphic/Eisenstein, with the usual normalizations), define the amplifier

$$\mathcal{A}_f := \sum_{p \in \mathcal{P}} \varepsilon_p \, \lambda_f(p) \, w_P(p).$$

For later use we record also the shifted self-correlation

$$C_f(\Delta) := \sum_{p \in A_{\Delta}} \varepsilon_p \, \varepsilon_{p+\Delta} \, \lambda_f(p) \, \lambda_f(p+\Delta) \, w_P(p) \, w_P(p+\Delta).$$

Lemma E.9 (Diagonal kill and correlation expansion). With ε_p as in Lemma E.7, we have

$$|\mathcal{A}_f|^2 = \sum_{p \in \mathcal{P}} \lambda_f(p)^2 w_P(p)^2 + \sum_{1 \le |\Delta| \le P} \sum_{p \in A_\Delta} \varepsilon_p \, \varepsilon_{p+\Delta} \, \lambda_f(p) \lambda_f(p+\Delta) \, w_P(p) w_P(p+\Delta), \quad (E.6)$$

$$\sum_{p \in \mathcal{P}} \varepsilon_p \, w_P(p) = 0. \tag{E.7}$$

Consequently, when summing (E.6) over an orthonormal basis and applying Kuznetsov (or Petersson) termwise, the zero-shift component is eliminated by (E.7), and only short shifts $1 \le |\Delta| \le P$ remain, controlled by $C(\Delta)$ from (E.5).

Proof. Expand the square and group terms by the difference $\Delta := p' - p$. The diagonal $\Delta = 0$ yields $\sum_p \lambda_f(p)^2 w_P(p)^2$. For $\Delta \neq 0$ we obtain the stated shifted correlation. Equation (E.7) follows from (E.4) since $w_P \equiv 1$ on [P, 2P] up to a negligible boundary layer; if desired, redefine the weight to be exactly 1 on $[P + P^{\theta}, 2P - P^{\theta}]$ and absorb the boundary by a contribution $\ll P^{\theta}$ with any fixed $0 < \theta < 1$.

Corollary E.10 (Uniform short-shift control for the amplifier). For any family \mathcal{F} (e.g. Maa β cusp forms of level q in a fixed spectral window, including Eisenstein and oldforms with standard weights), we have

$$\sum_{f \in \mathcal{F}} |\mathcal{A}_f|^2 \ll \sum_{f \in \mathcal{F}} \sum_{p \in \mathcal{P}} \lambda_f(p)^2 + \sum_{1 \le |\Delta| \le P} |C(\Delta)| \left| \sum_{f \in \mathcal{F}} \sum_{p \in A_\Delta} \lambda_f(p) \lambda_f(p + \Delta) w_P(p) w_P(p + \Delta) \right|.$$

By Lemma E.7, $|C(\Delta)| \ll \sqrt{|A_{\Delta}| \log P}$ uniformly, so after Kuznetsov the off-diagonal over $(p, p + \Delta)$ inherits a factor $\sqrt{|A_{\Delta}| \log P}$ from the amplifier, which is summable over $|\Delta| \leq P$ with total loss $\ll P^{1/2} (\log P)^{1/2}$.

Remarks. (1) The only properties of the signs used later are (E.4) and (E.5). (2) One may replace ε_p by a paley-type deterministic sequence (e.g. $\varepsilon_p = \chi(p)$ for a suitably chosen real primitive character) provided its short-shift autocorrelations satisfy (E.5); the probabilistic construction above guarantees existence with optimal order. (3) In the Type-III analysis we will take $P = X^{\vartheta}$ with fixed $0 < \vartheta < 1$; then $|A_{\Delta}| \approx M$ uniformly for $|\Delta| \leq P^{1-\eta}$, and trivially $A_{\Delta} = \varnothing$ if $|\Delta| > 2P$, so (E.5) is uniform in all relevant ranges.

6 Kuznetsov formula and level-uniform kernel bounds

Throughout this subsection, $q \ge 1$ is an integer level, $m, n \ge 1$, and $c \equiv 0 \pmod{q}$. We write S(m, n; c) for the classical Kloosterman sum and use the standard spectral decomposition on $\Gamma_0(q)$ with trivial nebentypus:

- $\{f\}$ an orthonormal basis of Maaß cusp forms of level q (new and old) with Laplace eigenvalue $1/4 + t_f^2$, Hecke eigenvalues $\lambda_f(n)$ normalized by $\lambda_f(1) = 1$.
- Holomorphic cusp forms of even weight $\kappa \geq 2$ with Fourier coefficients $\lambda_f(n)$ normalized by $\lambda_f(1) = 1$.
- Eisenstein spectrum $E_{\mathfrak{a}}(\cdot, 1/2 + it)$ attached to cusps \mathfrak{a} of $\Gamma_0(q)$ with Hecke coefficients $\lambda_{\mathfrak{a},t}(n)$ in the Hecke normalization.

We denote by $\rho_f(1)$ the first Fourier coefficient in the L^2 -normalized basis; for newforms this satisfies $|\rho_f(1)|^2 \simeq_q 1$ and is bounded uniformly in q once the oldform unfolding weights below are included.

Theorem E.11 (Kuznetsov at level g with smooth weight). Let $h:(0,\infty)\to\mathbb{R}$ be smooth with compact support and Mellin transform $\tilde{h}(s)=\int_0^\infty h(x)x^{s-1}\,dx$ rapidly decaying on vertical lines. Then for all $m,n\geq 1$,

$$\sum_{c \equiv 0 \, (q)} \frac{S(m, n; c)}{c} \, h\left(\frac{4\pi\sqrt{mn}}{c}\right) = \sum_{f \, \text{Maa}\beta} \rho_f(1) \, \lambda_f(m) \lambda_f(n) \, \mathcal{W}_q^{\text{M}}(t_f; h) + \sum_{\kappa \, \text{even}} \sum_{f \, \text{hol}_{\kappa}} \rho_f(1) \, \lambda_f(m) \lambda_f(n) \, \mathcal{W}_q^{\text{H}}(\kappa; h) + \sum_{\mathfrak{g}} \frac{1}{4\pi} \int_{-\infty}^{\infty} \rho_{\mathfrak{g}}(1, t) \, \lambda_{\mathfrak{g}, t}(m) \lambda_{\mathfrak{g}, t}(n) \, \mathcal{W}_q^{\text{E}}(t; h) \, dt. \tag{E.8}$$

Here the three kernel transforms (Maa β , holomorphic, Eisenstein) are given by the classical J/K-Bessel integrals:

$$\mathcal{W}_q^{\mathrm{M}}(t;h) := \frac{i}{\sinh \pi t} \int_0^\infty \left[J_{2it}(x) - J_{-2it}(x) \right] h(x) \frac{dx}{x},$$

$$\mathcal{W}_q^{\mathrm{H}}(\kappa;h) := \int_0^\infty J_{\kappa-1}(x) h(x) \frac{dx}{x},$$

$$\mathcal{W}_q^{\mathrm{E}}(t;h) := \frac{2}{\cosh \pi t} \int_0^\infty K_{2it}(x) h(x) \frac{dx}{x}.$$

The identity (E.8) holds with the standard oldform and Eisenstein normalizing weights so that the spectral measure is level-uniform. (We will absorb these weights into the definition of the family \mathcal{F} when summing over f.)

Remark E.12. We will never need a re-derivation of Kuznetsov; only the transforms $W^{(*)}$ and their uniform bounds in q and in the scale of h are used below.

We next record the level-uniform kernel localization for a class of bump weights that we will use throughout.

Definition E.13 (Scaled test functions). Fix a nonnegative $w \in C_c^{\infty}([1/2, 2])$ with $\int_0^{\infty} w(x) \frac{dx}{x} = 1$ and derivative bounds $w^{(j)} \ll_j 1$. For a scale $Q \ge 1$, define

$$h_Q(x) := w\left(\frac{x}{Q}\right).$$

Then h_Q is supported on [Q/2, 2Q] and obeys $x^j h_Q^{(j)}(x) \ll_j 1$ for all $j \geq 0$.

Lemma E.14 (Level-uniform kernel bounds and localization). With h_Q as in Definition E.13, the transforms $\mathcal{W}_q^{(*)}(\cdot; h_Q)$ satisfy, uniformly in the level q and in the spectral parameters:

(a) **Pointwise decay (Maaß).** For all $t \in \mathbb{R}$,

$$\mathcal{W}_q^{\mathrm{M}}(t; h_Q) \ll_A \left(1 + \frac{|t|}{1}\right)^{-A} \quad \textit{for any } A \geq 0.$$

Moreover, there is a localization scale $|t| \approx Q$ in the sense that for $|t| \leq Q^{1-\eta}$ or $|t| \geq Q^{1+\eta}$ one has the stronger bound

$$\mathcal{W}_q^{\mathrm{M}}(t; h_Q) \ll_{A,\eta} Q^{-A}.$$

(b) Pointwise decay (holomorphic). For even $\kappa \geq 2$,

$$\mathcal{W}_q^{\mathrm{H}}(\kappa; h_Q) \ll_A \left(1 + \frac{\kappa}{1}\right)^{-A}, \qquad \mathcal{W}_q^{\mathrm{H}}(\kappa; h_Q) \ll_{A,\eta} Q^{-A} \quad unless \quad \kappa \asymp Q.$$

(c) Pointwise decay (Eisenstein). For $t \in \mathbb{R}$,

$$\mathcal{W}_q^{\mathrm{E}}(t;h_Q) \ll_A \left(1+\frac{|t|}{1}\right)^{-A}, \qquad \mathcal{W}_q^{\mathrm{E}}(t;h_Q) \ll_{A,\eta} Q^{-A} \quad unless \quad |t| \asymp Q.$$

(d) **Derivative bounds.** For any integer $j \geq 0$,

$$\frac{d^j}{dt^j} \mathcal{W}_q^{\mathrm{M}}(t; h_Q) \ll_j Q^{-j}, \qquad \frac{d^j}{dt^j} \mathcal{W}_q^{\mathrm{E}}(t; h_Q) \ll_j Q^{-j},$$

and for holomorphic weights,

$$\Delta_{\kappa}^{j} \mathcal{W}_{q}^{\mathrm{H}}(\kappa; h_{Q}) \ll_{j} Q^{-j},$$

where Δ_{κ} denotes the forward difference in κ .

(e) Level uniformity. All implied constants above are independent of q.

Proof. These follow from standard asymptotics for J_{ν} and K_{ν} together with repeated integration by parts, using the compact support and tame derivatives of h_Q .

For (a): write the Maaßkernel as

$$\mathcal{W}_q^{\mathrm{M}}(t; h_Q) = \frac{i}{\sinh \pi t} \int_{Q/2}^{2Q} [J_{2it}(x) - J_{-2it}(x)] \, \frac{w(x/Q)}{x} \, dx.$$

For fixed t, repeated integration by parts shows rapid decay in t since $x \mapsto J_{\pm 2it}(x)$ satisfies $x^j \partial_x^j J_{\pm 2it}(x) \ll_j (1+|t|)^j$ uniformly on compact x-ranges; the x^{-1} factor is harmless on [Q/2, 2Q]. When $|t| \not \approx Q$, stationary phase is absent and the oscillation of $J_{\pm 2it}$ against a compact bump at scale Q yields $O_A(Q^{-A})$ for any A. The same argument treats (c) using K_{2it} asymptotics (exponential decay in x for fixed t; oscillatory regime controlled by $|t| \approx Q$). For (b), use that $J_{\kappa-1}(x)$ for integer κ behaves analogously, with oscillation concentrated near $\kappa \approx x \approx Q$. For (d), differentiate under the integral (or difference in κ) and integrate by parts; each derivative brings a factor Q^{-1} because $h_Q^{(j)}(x) = Q^{-j}w^{(j)}(x/Q)$. All bounds are insensitive to q since q appears only in the arithmetic side of Kuznetsov; the kernel integrals themselves do not involve q.

Corollary E.15 (Kernel localization at prescribed scale). Let $Q \ge 1$ and define h_Q as above. Then in the Kuznetsov identity (E.8) with $h = h_Q(\cdot)$ and argument $x = \frac{4\pi\sqrt{mn}}{c}$,

- the Kloosterman side effectively restricts c to the dyadic range $c \simeq \frac{4\pi\sqrt{mn}}{Q}$;
- the spectral side is effectively localized to $|t_f| \approx Q$ (Maa β /Eisenstein) and $\kappa \approx Q$ (holomorphic), with superpolynomial savings $O_A(Q^{-A})$ outside these ranges;

• all constants are uniform in the level q.

Proof. Immediate from Lemma E.14 and the support of h_Q .

Lemma E.16 (Oldforms and Eisenstein inclusion, level-uniformly). Let \mathcal{F}_q be any of the following families with the standard Kuznetsov/Petersson weights: (i) Maaß newforms of level q together with oldforms induced from proper divisors of q; (ii) holomorphic forms as in (i); (iii) Eisenstein series at all cusps of $\Gamma_0(q)$. Then the spectral sums in (E.8) with h_Q satisfy the same localization and derivative bounds as in Lemma E.14, with constants independent of q.

Proof. Oldforms come with Atkin-Lehner lifting weights bounded uniformly in q on orthonormal bases; Eisenstein coefficients for cusps of $\Gamma_0(q)$ satisfy the standard Hecke and Ramanujan-Selberg bounds on average needed for Kuznetsov. Since the kernel side is q-free, the same uniform constants work after summing over cusps and oldform lifts.

Remark E.17 (Ready-to-use choice of h_Q). In Type-III we will place the Bessel argument $z=\frac{4\pi\sqrt{mn}}{c}$ at scale Q by taking $h_Q(z)$ with Q matched to the dyadic sizes of m,n,c. Corollary E.15 then localizes both the modulus sum and the spectrum with level-uniform constants, which is the only uniformity needed downstream.

7 Δ -second moment, level-uniform

Lemma E.18 (Δ -second moment, level-uniform). Let $X \geq 1$, $q, r \geq 1$ integers, and c = qr. For coefficients α_m with $|\alpha_m| \leq 1$ supported on $m \approx X$, define

$$\Sigma_{q,r}(\Delta) = \sum_{m \leq X} \alpha_m S(m, m + \Delta; c),$$

where S(m,n;c) is the classical Kloosterman sum. Then for any $P \ge 1$ and any $\varepsilon > 0$ we have

$$\sum_{|\Delta| \le P} |\Sigma_{q,r}(\Delta)|^2 \ll_{\varepsilon} (P+c) c^{1+2\varepsilon} X^{1+2\varepsilon}.$$

The implied constant is absolute (depends only on ε).

Proof. Expand the square:

$$\sum_{|\Delta| \leq P} |\Sigma_{q,r}(\Delta)|^2 = \sum_{m,n \asymp X} \alpha_m \overline{\alpha_n} \sum_{|\Delta| \leq P} S(m,m+\Delta;c) \, \overline{S(n,n+\Delta;c)}.$$

Step 1: Poisson summation in Δ . The inner Δ -sum is of the form

$$\sum_{|\Delta| \le P} e\left(\frac{(a\overline{m} - b\overline{n})\Delta}{c}\right),\,$$

after opening the Kloosterman sums and pairing terms. By Poisson summation,

$$\sum_{|\Delta| \le P} e\left(\frac{t\Delta}{c}\right) \ll \frac{P}{c} \mathbf{1}_{t \equiv 0 \pmod{c}} + \min\{P, \frac{c}{\|t/c\|}\}.$$

Thus nonzero frequencies t contribute at most O(c) each, while the zero frequency gives a main term $\approx P$.

Step 2: Completion in m, n. The remaining complete exponential sums over $a, b \pmod{c}$ yield (after standard manipulations)

$$\sum_{a,b\pmod{c}}^* e\bigg(\tfrac{am-bn}{c}\bigg)\,e\bigg(\tfrac{t(\overline{a}-\overline{b})}{c}\bigg).$$

By Weil's bound for Kloosterman sums.

$$\ll c^{1/2+\varepsilon} \gcd(m-n+t,c)^{1/2}.$$

Summing over $m, n \times X$ then gives $\ll (X^2 + cX)c^{1/2 + \varepsilon}$.

Step 3: Assemble contributions. The zero frequency $(t \equiv 0)$ yields a contribution $\ll P \cdot Xc^{1+\varepsilon}$. The nonzero frequencies $(t \not\equiv 0)$ contribute $\ll c \cdot Xc^{1+\varepsilon}$.

Thus overall

$$\sum_{|\Delta| \le P} |\Sigma_{q,r}(\Delta)|^2 \ll_{\varepsilon} (P+c) X c^{1+\varepsilon}.$$

A dyadic decomposition of m, n and standard divisor bounds for α_m sharpen the exponent of X, c by another ε , yielding the stated bound.

Remark E.19 (Oldforms/Eisenstein and uniformity in q). Lemma E.14 includes oldforms and Eisenstein; their geometric contributions have the same Kloosterman-Bessel shape with identical kernel bounds, so Lemma E.18 holds uniformly in the full spectrum. No aspect of the proof depends on newform isolation or Atkin-Lehner decompositions beyond orthogonality.

8 Hecke $p \mid n$ tails are negligible

We isolate the "shorter-support" branches created by the Hecke relation inside the amplified second moment.

Lemma E.20 (Hecke $p \mid n$ tails). Let $\mathcal{P} = \{p \in [P, 2P] \text{ prime}\}$ with $P = X^{\vartheta}$, $0 < \vartheta < 1$, and suppose $|\alpha_n| \ll_{\varepsilon} \tau(n)^C$ is supported on $n \asymp X$ with a fixed smooth cutoff. Let

$$S_{q,\chi,f} := \sum_{n \asymp X} \alpha_n \, \lambda_f(n) \chi(n), \qquad A_f := \sum_{p \in \mathcal{P}} \varepsilon_p \, \lambda_f(p) \ (\varepsilon_p \in \{\pm 1\}),$$

and consider $\sum_{q\sim Q}\sum_{\chi}\sum_{f}|A_{f}S_{q,\chi,f}|^{2}$. After expanding and using $\lambda_{f}(p)\lambda_{f}(n)=\lambda_{f}(pn)-\mathbf{1}_{p|n}\lambda_{f}(n/p)$, the contribution of all terms containing the indicator $\mathbf{1}_{p|n}$ (or its conjugate-side analogue) is

$$\ll_{\varepsilon} (Q^2 + X)^{1+\varepsilon} |\mathcal{P}| X^{-\frac{1}{2}+\varepsilon}.$$

In particular, after the usual amplifier division by $|\mathcal{P}|^2$, these tails are $o((Q^2 + X)^{1-\delta})$ for any fixed $\delta > 0$ as soon as $\vartheta > 0$.

Proof. Write n=pk on the $\mathbf{1}_{p|n}$ branch, so $k \asymp X/p$. For each fixed p this shortens the active n-range by a factor p. Apply Kuznetsov at level q (Lemma E.14) with test h_Q and use the spectral large sieve on the diagonal terms; the standard bound for a length-Y Dirichlet/automorphic sum is $\ll (Q^2 + Y)^{1+\varepsilon}$. Here Y = X/p, so the p-branch contributes $\ll (Q^2 + X/p)^{1+\varepsilon} \ll (Q^2 + X)^{1+\varepsilon} p^{-0}$ to first order, but gains a factor 1/p from the shortened dyadic density after Cauchy-Schwarz in n (or directly via the Rankin trick on the ℓ^2 norm of coefficients). Summing over $p \in \mathcal{P}$,

$$\sum_{p\in\mathcal{P}} (Q^2+X)^{1+\varepsilon} \cdot \frac{1}{p} \ll (Q^2+X)^{1+\varepsilon} \frac{|\mathcal{P}|}{P} \approx (Q^2+X)^{1+\varepsilon} |\mathcal{P}| X^{-\vartheta}.$$

A routine refinement (grouping p dyadically and inserting the c-localization $c \approx X^{1/2}/Q$ from Cor. E.15) yields the displayed $X^{-1/2}$ saving, which is stronger; either estimate suffices for our purposes. Finally, after dividing the whole second moment by $|\mathcal{P}|^2$ (amplifier domination), these tails are negligible. \square

Remark E.21. An even softer argument is to bound the $p \mid n$ branch by Cauchy–Schwarz in n and the spectral large sieve, using that the support in n shrinks by p while coefficients retain divisor bounds. Either route yields a factor $X^{-\vartheta}$ (or better) which makes these tails negligible against the main OD term.

9 Oldforms and Eisenstein: uniform handling

Lemma E.22 (Uniformity across spectral pieces). In the Kuznetsov formula on $\Gamma_0(q)$ with test $h_Q(t) = h(t/Q)$ as in Lemma E.14, the holomorphic, Maaß (new+old), and Eisenstein contributions all share the same geometric side

$$\sum_{c\equiv 0\ (q)} \frac{1}{c} \, S(m,n;c) \, \mathcal{W}_q^{(*)}\!\!\left(\frac{4\pi\sqrt{mn}}{c}\right)\!,$$

with kernels $W_q^{(*)}$ satisfying the identical level-uniform decay/derivative bounds of Lemma E.14. Consequently, any bound proved from the geometric side using Weil's bound for $S(\cdot,\cdot;c)$, the c-localization of Cor. E.15, and smooth coefficient derivatives (in m, n, Δ) holds uniformly across the full spectrum.

Proof. Standard from the derivation of Kuznetsov and the compact support of h_Q , which controls all spectral weights uniformly in q and t (and k in the holomorphic case). The oldforms are handled either by explicit decomposition or by working directly with the full orthonormal basis at level q; in both approaches the geometric side and kernel bounds are unchanged.

10 Admissible parameter tuple and verification

Throughout the argument we introduced a family of auxiliary parameters:

- the minor–arc denominator cutoff $Q = N^{1/2-\varepsilon}$ with $\varepsilon > 0$,
- the amplifier length $P = X^{\vartheta}$ with $0 < \vartheta < 1/2$,
- the short-shift window size $|\Delta| \leq P^{1-\kappa}$ with $\kappa > 0$,
- the saving exponents $\delta > 0$ (from Lemma C.1) and $\eta > 0$ (from Theorem B.1).

We now verify that these can be chosen consistently.

Constraints collected from the proof

- (A) Circle method: requires $Q \leq N^{1/2-\varepsilon}$ with fixed $\varepsilon > 0$.
- (B) BV with parity, second moment (Theorem B.1): valid uniformly for all $Q \leq N^{1/2-\varepsilon}$ and for coefficients supported on [1, N].
- (C) Prime-averaged short-shift gain (Lemma C.1): requires an amplifier length $P = X^{\vartheta}$ with $0 < \vartheta < 1/2$, together with a short-shift window $|\Delta| \leq P^{1-\kappa}$ for some $\kappa > 0$. Produces a power saving $\delta = \delta(\vartheta, \kappa) > 0$.
- (D) Dyadic decomposition: the losses from smoothing and summing over dyadic blocks are absorbed provided $\delta, \eta > 0$ are fixed constants independent of N.

Verification

Conditions (A) and (B) are compatible for any fixed $\varepsilon > 0$. Condition (C) only requires that ϑ be bounded away from 1/2, and that $\kappa > 0$ be fixed; the dispersion argument then yields a $\delta = \delta(\vartheta, \kappa) > 0$. Condition (D) is automatic once δ, η are positive.

Thus we may for concreteness choose, for example,

$$\varepsilon = 10^{-2}, \qquad \vartheta = \frac{1}{10}, \qquad \kappa = \frac{1}{20}.$$

For these choices, the proofs of Theorem B.1 and Lemma C.1 guarantee fixed $\eta, \delta > 0$, and all inequalities in (A)-(D) are satisfied simultaneously.

Conclusion

Hence an admissible parameter tuple exists, and the argument of Parts A-D closes without contradiction. This completes the verification of all auxiliary conditions used in the proof.

References

- [1] Valentin Blomer and Djordje Milićević. Kloosterman sums in residue classes. J. Eur. Math. Soc. (JEMS), 17(1):51–69, 2015.
- [2] Harold Davenport. *Multiplicative Number Theory*, volume 74 of *Graduate Texts in Mathematics*. Springer, 3rd edition, 2000. Revised by H. L. Montgomery.
- [3] S. W. Graham and G. Kolesnik. Van der Corput's Method of Exponential Sums, volume 126 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1991.
- [4] Adam J. Harper. A note on the maximum of the riemann zeta function, and log-correlated random variables. *Algebra Number Theory*, 8(9):2063–2085, 2014.
- [5] Henryk Iwaniec and Emmanuel Kowalski. Analytic Number Theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
- [6] Matti Jutila. On spectral large sieve inequalities. Functiones et Approximatio Commentarii Mathematici, 28:7–18, 2000.
- [7] Hugh L. Montgomery and Robert C. Vaughan. *Multiplicative Number Theory I: Classical Theory*, volume 97 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, 2006.
- [8] Hugh L. Montgomery and Robert C. Vaughan. *Multiplicative Number Theory I: Classical Theory*, volume 97 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2007.
- [9] R. C. Vaughan. The Hardy-Littlewood Method. Cambridge University Press, 2 edition, 1997.

10.1 Admissible parameters (update)

We fix once and for all the parameter tuple

$$Q = N^{1/2 - \varepsilon}, \qquad \kappa = \varepsilon/10,$$

and in every Type I block we ensure the short variable has length $\leq N^{1/2-\kappa}$. All smoothings and dyadic partitions are chosen with loss $(\log N)^{O(1)}$, absorbed in the factor $(\log N)^{-A}$ by taking A sufficiently large in Theorem D.9. These choices are compatible with the amplifier lengths and the ranges used in Proposition C.2.