Teoría de la Información

Trabajo Integrador N°1

Alumnos:

- Pérez Cabanas, Sebastián (sebasperezcabanas@gmail.com)
- Vila, Juan Martín (vilamartin21@gmail.com)

Índice

Resumen	2
Introducción	2
Desarrollo	3
Primer parte	3
Segunda parte	7
Conclusión	12
Anexo	13
Tabla 1	13
Tabla 2	14
Tabla 3	18
Tabla 4	30
Tabla 5	31
Tabla 6	35

Resumen

Este trabajo integrador abarca los contenidos desarrollados en la primera parte de la materia Teoría de la Información de la Universidad Nacional de Mar del Plata. En el mismo, se tratan conceptos y definiciones relacionados con la capacidad y fidelidad para transmitir información, tales como la cantidad de información que proporciona un mensaje, el tipo de fuente que lo genera, la longitud de sus símbolos o la codificación que lo compone. También se desarrollan procedimientos para encontrar el código óptimo de un mensaje y de esta forma asegurar un mayor ahorro en el almacenamiento y la transmisión, y una máxima fiabilidad y seguridad del mismo.

Introducción

Se nos proporcionó un archivo codificado, el cual fue emitido por una fuente determinada, compuesto por miles de unos y ceros. Dicho trabajo está compuesto por dos partes. Para ambas, se nos plantearon tres escenarios posibles.

En la primera parte, tuvimos que hallar para cada escenario, la fuente en cuestión con sus símbolos correspondientes y las probabilidades de ocurrencia para cada uno. A partir de esto, se hallaron sus principales características, tales como la cantidad de información emitida por la fuente, su entropía, su tipo y se compararon los resultados obtenidos.

Para la segunda parte, se identificaron los tipos de código presentes y se hallaron los valores para la inecuación de Kraft, inecuación de McMillan, la longitud media de cada código, su rendimiento y redundancia para luego hacer un análisis con esta información y obtener conclusiones. Finalmente, se nos pidió reconstruir el archivo original a partir de una nueva codificación para cada fuente, obtenida mediante los algoritmos de Huffman o Shannon-Fano.

Los algoritmos realizados para la resolución del problema tratado fueron desarrollados en lenguaje Java.

Desarrollo

Primer parte

Pseudocódigo utilizado para generar las fuentes en cada escenario:

A partir del archivo "anexo1.txt", el método obtiene palabras código de una longitud determinada y las agrega a la fuente contando su frecuencia de ocurrencia.

```
genera Fuente() {
      inicio = 0
      final = longitud de palabra código
      código = cadena desde inicio hasta final
      agrega a la fuente (código)
      mientras (final < tamaño del archivo ) {
             inicio = final
             final = final + longitud de palabra código
             código = cadena desde inicio hasta final
             símbolo actual = primer símbolo de la fuente
             mientras ( haya siguiente símbolo && código de símbolo actual != código) {
                    símbolo actual = siquiente símbolo
             si (código de símbolo actual == código)
                    (frecuencia de símbolo actual)++
             sino
                    agrega a la fuente (código)
      }
}
```

a) Entropía de un fuente:

$$H(S) = \sum [P(S_i) * log_r(\frac{1}{P(S_i)})]$$

Cantidad de información de un símbolo:

$$I(S) = \log_r(\frac{1}{P(S_i)})$$

Escenario 1: palabras código de 5 dígitos

Fuente generada (32 símbolos): <u>Ver Tabla 1 en anexo</u>

H(S) = 4.99761 [bits/símbolo]

Escenario 2: palabras código de 7 dígitos

Fuente generada (128 símbolos): Ver Tabla 2 en anexo

H(S) = 6.98132 [bits/símbolo]

Escenario 3: palabras código de 9 dígitos

Fuente generada (512 símbolos): Ver Tabla 3 en anexo

H(S) = 8.89165 [bits/símbolo]

La cantidad de información que nos brinda un símbolo depende de la probabilidad de su ocurrencia, como su ecuación lo refleja. Mientras menor sea dicha probabilidad, mayor será la cantidad de información que nos dará ese símbolo. Por ejemplo, en el escenario 1, podemos observar que el símbolo S14 es el que posee la menor probabilidad de ocurrencia y, por lo tanto, el que brinda mayor cantidad de información (5,1617 bits).

La entropía de una fuente se define como la cantidad media de información por símbolo de la misma. Luego de hallar las entropías de las fuentes correspondientes a cada escenario, pudimos observar que en los tres casos sucede que ésta es muy próxima a la máxima posible. Esto se debe a que las probabilidades de los símbolos son prácticamente equiprobables.

A pesar de que la cantidad de bits de datos del archivo no fue alterada en ningún momento, las entropías calculadas para cada escenario fueron

diferentes. La fuente del escenario 3 fue la que presentó la mayor cantidad media de información, como así también la mayor cantidad de símbolos debido a la longitud de sus palabras código y al conjunto de datos brindados. La cantidad media de información más baja se presentó en el escenario 1 debido a que el mismo conjunto de datos analizado para esta fuente presenta una información redundante.

b) Fuente:

Símbolo	Código
S1	00
S2	01
S3	10
S4	11

Pseudocódigo utilizado para el cálculo de las probabilidades condicionales:

A partir del archivo "anexo1.txt", el método lee una palabra código del mismo y acumula la frecuencia de ocurrencia de esa palabra de acuerdo a la siguiente. Luego, para cada símbolo se divide esa frecuencia calculada por la frecuencia total de aparición del mismo y se setea la probabilidad condicional correspondiente.

```
probabilidad_Condicional() {
    inicio = 0
    final = longitud de palabra código
    código anterior = cadena desde inicio hasta final
    mientras (final < tamaño del archivo ) {
        inicio = final
        final = final + longitud de palabra código
        código = cadena desde inicio hasta final
        símbolo actual = primer símbolo de la fuente
        mientras ( haya siguiente símbolo && código de símbolo actual != código anterior) {
            símbolo actual = siguiente símbolo
        }
        según sea (código) {
            caso 00:
```


}

Universidad Nacional de Mar del Plata Facultad de Ingeniería Ingeniería en Informática Teoría de la Información


```
(frecuencia con que símbolo actual precede a 00)++
             caso 01:
                    (frecuencia con que símbolo actual precede a 01)++
             caso 10:
                    (frecuencia con que símbolo actual precede a 10)++
             caso 11:
                    (frecuencia con que símbolo actual precede a 11)++
      código anterior = código
mientras ( haya siguiente símbolo) {
      símbolo actual = siguiente símbolo
      probabilidad con que símbolo actual precede a 00 = frecuencia con que
                        símbolo actual precede a 00 / frecuencia de símbolo actual
      probabilidad con que símbolo actual precede a 01 = frecuencia con que
                        símbolo actual precede a 01 / frecuencia de símbolo actual
      probabilidad con que símbolo actual precede a 10 = frecuencia con que
                        símbolo actual precede a 10 / frecuencia de símbolo actual
      probabilidad con que símbolo actual precede a 11 = frecuencia con que
                        símbolo actual precede a 11 / frecuencia de símbolo actual
}
```

Matriz de probabilidades condicionales:

	S1	S2	S3	S4
S1	0.24678	0.25025	0.2536	0.26219
S2	0.24498	0.24649	0.24552	0.24866
S3	0.25322	0.25276	0.25183	0.24866
S4	0.25502	0.25025	0.24905	0.24049

Partiendo de la suposición de considerar la fuente en cuestión como una secuencia de símbolos codificados como 00, 01, 10 y 11, se calcularon las probabilidades condicionales citadas en la matriz de arriba. Se observó que las

mismas son prácticamente equiprobables, por lo tanto se pudo determinar en base a ello que la fuente es de memoria nula.

c) En caso de haber sido una fuente de memoria no nula, para determinar si es ergódica deberíamos haber revisado que todos los estados del proceso sean alcanzables desde otro estado. Para establecer su vector estacionario (en caso de ser ergódica) se resuelve la ecuación:

$$V = M * V$$
 $(M - I) * V = 0$

Siendo M la matriz de probabilidades condicionales e I la matriz identidad.

Segunda parte

- a) El tipo de los códigos propuestos en el inciso a) de la primera parte son: códigos bloque, no singulares, unívocos e instantáneos. Son códigos bloque ya que a cada símbolo le corresponde una palabra código única que permanece constante a través del tiempo. Son no singulares ya que cada símbolo de la fuente tiene un código distinto. Son unívocos o unívocamente decodificables ya que a toda secuencia de palabras código le corresponde una única secuencia de símbolos. Son instantáneos ya que cumplen la propiedad de prefijo, debido a que los códigos de cada símbolo poseen la misma longitud con lo cual ninguna palabra código es prefijo de otra. Estos últimos dos tipos se verificaron a través de las inecuaciones de McMillan y Kraft, respectivamente, los cuales serán desarrollados a continuación en el siguiente inciso.
- **b)** Inecuación de Kraft / McMillan:

$$\sum_{i=1}^{q} r^{-l_i} \le 1$$

Longitud media:

$$L = \sum_{i=1}^{q} p_i * l_i$$

Escenario 1: palabras código de 5 dígitos
Inecuación de Kraft / McMillan = 1.0
Longitud media = 5.0000000000001 [bits/símbolo]

Escenario 2: palabras código de 7 dígitos Inecuación de Kraft / McMillan = 1.0 Longitud media = 6.999999999999 [bits/símbolo]

Escenario 3: palabras código de 9 dígitos Inecuación de Kraft / McMillan = 1.0 Longitud media = 9.0000000000016 [bits/símbolo]

La inecuación de Kraft que condiciona la longitud de las palabras código es una medida cuantitativa, ya que no nos asegura que el código sea instantáneo. Para ello, se debe cumplir además, la condición de prefijo. McMillan demostró la recíproca para los códigos unívocos, es decir que, si existe un código unívoco se cumple esta inecuación, ya que éstos incluyen a los códigos instantáneos.

Se verificó que para los 3 escenarios la inecuación de Kraft se cumple, obteniendo como resultado 1.0 para cada uno de ellos.

La longitud media calculada para cada escenario es prácticamente igual a la entropía y la menor de todas las longitudes medias posibles. Esto nos asegura que los códigos de cada escenario son compactos.

c) Rendimiento:

$$\eta = (\frac{H(S)}{L}) * 100\%$$

Redundancia:

$$(1 - \eta) * 100\%$$

Escenario 1: palabras código de 5 dígitos

Rendimiento = 99.95227 % Redundancia = 0.04773 %

Escenario 2: palabras código de 7 dígitos

Rendimiento = 99.73313 % Redundancia = 0.26687 %

Escenario 3: palabras código de 9 dígitos

Rendimiento = 98.79609 % Redundancia = 1.20391 %

El rendimiento calculado para los 3 escenarios es cercano al 100%, lo que significa que los mismos casi no presentan redundancia y son compactos

d) Pseudocódigo utilizado para codificar los símbolos de la fuentes por el método de Huffman:

Este método, primero ordena la fuente en forma descendente de acuerdo a la probabilidad de los símbolos. Luego, en cada llamado recursivo, agrupa los dos símbolos de menor probabilidad y las suma hasta llegar al caso base de una fuente con dos símbolos. A la vuelta de la recursividad, va generando los códigos de cada símbolo y le asigna su probabilidad original.

```
huffman (fuente_huffman) {
    ordenar fuente por probabilidad descendente (fuente_huffman)
    si (tamaño de fuente_huffman == 2) {
        código de primer símbolo de fuente_huffman = 0
        código de segundo símbolo de fuente_huffman = 1
    }
    sino {
        anterior símbolo = anteúltimo símbolo de fuente_huffman
        último símbolo = último símbolo de fuente_huffman
        probabilidad de anterior símbolo = probabilidad de anterior símbolo
```


}

Universidad Nacional de Mar del Plata Facultad de Ingeniería Ingeniería en Informática Teoría de la Información

remover de fuente_huffman (último símbolo)
huffman(fuente_huffman)
agregar a fuente_huffman (último símbolo)
probabilidad de anterior símbolo = probabilidad de anterior símbolo probabilidad de último símbolo
ordenar fuente por probabilidad descendente (fuente_huffman)
código de último símbolo = código de anterior símbolo + 1
código de anterior símbolo = código de anterior símbolo + 0
}

Escenario 1: palabras código de 5 dígitos

Fuente generada por Huffman (32 símbolos): <u>Ver Tabla 4 en anexo</u>
H(S) = 4.99761 [bits/simbolo]
Longitud media = 5.0000000000001 [bits/símbolo]

Escenario 2: palabras código de 7 dígitos

Fuente generada por Huffman (128 símbolos): $\underline{Ver\ Tabla\ 5\ en\ anexo}$ H(S) = 6.98132 [bits/simbolo] Longitud media = 6.9986666666665 [bits/símbolo]

Escenario 3: palabras código de 9 dígitos

Fuente generada por Huffman (512 símbolos): <u>Ver Tabla 6 en anexo</u>
H(S) = 8.89165 [bits/simbolo]
Longitud media = 8.922285714285639 [bits/símbolo]

Para codificar los nuevos símbolos de las fuentes de cada escenario se utilizó el método de Huffman, el cual es un procedimiento recursivo que en cada paso agrupa los símbolos menos probables para formar uno nuevo. Luego, reconstruimos el archivo brindado a partir de las nuevas codificaciones obtenidas.

Se observa que luego de haber aplicado el algoritmo, las longitudes medias para los escenarios 2 y 3 disminuyeron levemente respecto de los escenarios originales. También, en consecuencia, aumentó el rendimiento

para cada una y disminuyó su redundancia manifestando ser códigos más compactos que los originales.

Pseudocódigo utilizado para generar los archivos con la nueva codificación de cada fuente:

A partir del archivo "anexo1.txt", este método lee palabras código del mismo y a través de una búsqueda, identifica el símbolo y concatena su nuevo código en el archivo.

```
rebuild File (nombre de archivo, fuente_huffman) {
  inicio = 0
  final = longitud de palabra código
  nueva codificación = cadena donde se concatenan los códigos
  mientras (final <= tamaño del archivo) {
         código = cadena desde inicio hasta final
         símbolo actual = primer símbolo de la fuente
         mientras ( haya siguiente símbolo && código de símbolo actual != código) {
                símbolo actual = siquiente símbolo
         símbolo huffman = primer símbolo de la fuente de huffman
         mientras ( haya siguiente símbolo && id de símbolo actual != id de símbolo huffman) {
                símbolo huffman = siguiente símbolo
         concatenar en nueva codificación (código de símbolo huffman)
         inicio = final
         final = final + longitud de palabra código
  }
  escribir en archivo (nombre de archivo, nueva codificación)
}
```


Conclusión

En este trabajo integrador se aplicaron los conocimientos adquiridos en la materia, combinando definiciones y conceptos teóricos, para llevarlos a cabo en un caso práctico con diferentes escenarios y ser resueltos a través de programación orientada a objetos.

Para la primera parte, se concluyó que las fuentes de cada escenario eran de memoria nula y que la entropía de cada una, fue mayor según la longitud de las palabras código.

Para la segunda parte, se observó que las codificaciones de las fuentes de cada escenario eran instantáneas y compactas.

Por último, luego de hallar las nuevas codificaciones a través del procedimiento de Huffman pudimos notar que el tamaño del nuevo archivo de datos generado se redujo para los escenarios 2 y 3 comprobando la correcta ejecución del algoritmo y verificando así que la nueva codificación es más compacta que la original.

Anexo

Tabla 1

Símbolo	Código	Probabilidad	Cant. Información
S1	01010	0.02968	5.07424
S2	10100	0.03048	5.03617
S3	10010	0.03508	4.83323
S4	00010	0.03492	4.83978
S5	10110	0.03111	5.00643
S6	00100	0.0319	4.97008
S7	00110	0.03349	4.90004
S8	01011	0.02937	5.08975
S9	11100	0.03159	4.98451
S10	11010	0.03032	5.04371
S11	01001	0.03	5.05889
S12	00000	0.03254	4.94166
S13	00101	0.03286	4.92765
S14	10001	0.02794	5.1617
S15	11101	0.03159	4.98451
S16	11110	0.02905	5.10544
S17	01000	0.02968	5.07424
S18	10101	0.03111	5.00643
S19	11111	0.02937	5.08975
S20	01100	0.02841	5.13732
S21	10000	0.03048	5.03617
S22	00011	0.03317	4.91378
S23	10011	0.03063	5.02868
S24	11011	0.03175	4.97728
S25	11000	0.03238	4.94871
S26	11001	0.03444	4.85958
S27	00111	0.03302	4.9207
S28	01110	0.03222	4.9558
S29	00001	0.02905	5.10544
S30	10111	0.03032	5.04371
S31	01101	0.03159	4.98451
S32	01111	0.03048	5.03617

Tabla 2

Símbolo	Código	Probabilidad	Cant. Información
S1	0101010	0.00978	6.67628
S2	1001001	0.00822	6.92626
S3	0000101	0.00533	7.55075
S4	0110001	0.006	7.38082
S5	0000110	0.00867	6.85031
S6	0101100	0.01044	6.58112
S7	1001011	0.00667	7.22882
S8	0111001	0.00933	6.74339
S9	1100110	0.00933	6.74339
S10	1000110	0.00711	7.13571
S11	0100100	0.00667	7.22882
S12	0000010	0.00644	7.27773
S13	0001010	0.008	6.96578
S14	0111101	0.00644	7.27773
S15	0011011	0.00778	7.00643
S16	1100100	0.00867	6.85031
S17	0101011	0.00733	7.09132
S18	1111011	0.00756	7.04825
S19	0010000	0.00644	7.27773
S20	0001101	0.00778	7.00643
S21	1001000	0.01133	6.46328
S22	1111111	0.00911	6.77816
S23	0011000	0.01	6.64386
S24	0100111	0.00711	7.13571
S25	1001110	0.00867	6.85031
S26	1110001	0.00756	7.04825
S27	1101100	0.00667	7.22882
S28	0011111	0.00733	7.09132
S29	1010010	0.00844	6.88778
S30	1011011	0.006	7.38082
S31	0000001	0.00844	6.88778
S32	1111010	0.00889	6.81378
S33	0001001	0.00756	7.04825
S34	0010111	0.008	6.96578
S35	1010100	0.00889	6.81378
S36	0001110	0.00844	6.88778
S37	1000011	0.00844	6.88778
S38	0101001	0.00822	6.92626
S39	1101001	0.00489	7.67628

S40	1011111	0.00711	7.13571
S41	1110000	0.00756	7.04825
S42	0010110	0.00822	6.92626
S43	1011110	0.00911	6.77816
S44	1101010	0.00689	7.18151
S45	1100101	0.00978	6.67628
S46	0000100	0.00756	7.04825
S47	0100010	0.00756	7.04825
S48	0000011	0.00689	7.18151
S49	1010011	0.00689	7.18151
S50	1101000	0.00689	7.18151
S51	0100001	0.00644	7.27773
S52	1100011	0.00844	6.88778
S53	0011001	0.00844	6.88778
S54	1111100	0.00711	7.13571
S55	0100011	0.00733	7.09132
S56	1111101	0.00733	7.09132
S57	1100000	0.00889	6.81378
S58	0111010	0.00667	7.22882
S59	0011101	0.00667	7.22882
S60	1110010	0.00644	7.27773
S61	1110101	0.00933	6.74339
S62	1101110	0.00622	7.32835
S63	1100111	0.00778	7.00643
S64	0010001	0.00956	6.70944
S65	0001111	0.00778	7.00643
S66	0001011	0.00822	6.92626
S67	1010111	0.00667	7.22882
S68	1101111	0.01	6.64386
S69	0110011	0.00733	7.09132
S70	1000101	0.00933	6.74339
S71	0001100	0.00756	7.04825
S72	0101110	0.008	6.96578
S73	0110100	0.00689	7.18151
S74	0100110	0.006	7.38082
S75	0101000	0.00889	6.81378
S76	1011010	0.00756	7.04825
S77	0010011	0.00667	7.22882
S78	0010101	0.00756	7.04825
S79	1011101	0.00622	7.32835
S80	1111000	0.00978	6.67628
S81	1111110	0.00756	7.04825
S82	1000010	0.00844	6.88778

S83	1000000	0.01	6.64386
S84	0111111	0.00733	7.09132
S85	0111000	0.00822	6.92626
S86	0101111	0.00689	7.18151
S87	1010110	0.00889	6.81378
S88	1001010	0.00711	7.13571
S89	0110000	0.00756	7.04825
S90	1000111	0.006	7.38082
S91	1100010	0.00822	6.92626
S92	0111110	0.00756	7.04825
S93	1101011	0.00756	7.04825
S94	0011100	0.01022	6.61215
S95	1010000	0.00844	6.88778
S96	0001000	0.00578	7.43527
S97	1110100	0.00711	7.13571
S98	0111011	0.00844	6.88778
S99	1110011	0.00667	7.22882
S100	0011010	0.008	6.96578
S101	1011100	0.00933	6.74339
S102	0101101	0.00822	6.92626
S103	1111001	0.00622	7.32835
S104	0111100	0.00956	6.70944
S105	1011000	0.01067	6.55075
S106	0010100	0.00844	6.88778
S107	0110101	0.008	6.96578
S108	0110111	0.008	6.96578
S109	0100101	0.00978	6.67628
S110	0110010	0.00733	7.09132
S111	1110111	0.00689	7.18151
S112	1001101	0.00978	6.67628
S113	0000000	0.00644	7.27773
S114	1000001	0.00667	7.22882
S115	0010010	0.008	6.96578
S116	0100000	0.01	6.64386
S117	1011001	0.00644	7.27773
S118	1100001	0.00978	6.67628
S119	1001111	0.00778	7.00643
S120	0011110	0.00711	7.13571
S121	1010001	0.00733	7.09132
S122	0110110	0.00844	6.88778
S123	0000111	0.006	7.38082
S124	1000100	0.00556	7.49185
S125	1101101	0.00756	7.04825
1			

S126	1010101	0.00511	7.61215
S127	1001100	0.00778	7.00643
S128	1110110	0.00822	6.92626

Tabla 3

Símbolo	Código	Probabilidad	Cant. Información
S1	010101010	8.6E-4	10.18818
S2	010010000	0.00314	8.31371
S3	101011000	0.00229	8.77314
S4	100001100	0.00229	8.77314
S5	101100100	0.00314	8.31371
S6	101101110	0.002	8.96578
S7	011100110	0.00114	9.77314
S8	100011001	0.00229	8.77314
S9	001000000	0.00229	8.77314
S10	010000101	0.00229	8.77314
S11	001011000	0.00257	8.60321
S12	111101001	0.002	8.96578
S13	101111001	0.00286	8.45121
S14	000101011	0.00257	8.60321
S15	111101100	0.002	8.96578
S16	10000001	0.00229	8.77314
S17	011111110	0.002	8.96578
S18	011000111	0.00257	8.60321
S19	101101001	0.00229	8.77314
S20	111001110	0.00314	8.31371
S21	111000111	0.002	8.96578
S22	011000011	0.00171	9.18818
S23	010110110	0.00257	8.60321
S24	000001100	0.00343	8.18818
S25	100111110	0.00286	8.45121
S26	101001001	0.00286	8.45121
S27	010011100	0.00286	8.45121
S28	010010010	0.00171	9.18818
S29	111101010	0.00314	8.31371
S30	010100100	0.00171	9.18818
S31	001110100	0.00257	8.60321
S32	001101010	0.00143	9.45121
S33	011101001	0.00114	9.77314
S34	101111111	0.00143	9.45121
S35	10000010	0.00114	9.77314
S36	110101111	0.00257	8.60321
S37	011010101	0.002	8.96578
S38	100101001	0.00143	9.45121
S39	101100001	0.002	8.96578

	·		
S40	001001110	0.002	8.96578
S41	000110111	0.00314	8.31371
S42	001100111	0.00343	8.18818
S43	101010001	0.00257	8.60321
S44	000000111	0.00171	9.18818
S45	010011001	0.00314	8.31371
S46	011100001	0.00114	9.77314
S47	001101000	0.00143	9.45121
S48	010000111	0.00257	8.60321
S49	000110011	8.6E-4	10.18818
S50	001111110	0.00257	8.60321
S51	001000110	0.00171	9.18818
S52	001010010	0.00229	8.77314
S53	101011111	0.00114	9.77314
S54	010100111	0.002	8.96578
S55	110100111	0.00286	8.45121
S56	010001110	0.00286	8.45121
S57	111000110	0.00286	8.45121
S58	010000001	0.00229	8.77314
S59	100111100	0.00257	8.60321
S60	101110101	0.00257	8.60321
S61	110111000	0.002	8.96578
S62	000111100	0.002	8.96578
S63	111000010	0.00229	8.77314
S64	011011000	0.00343	8.18818
S65	010001000	0.00143	9.45121
S66	111111001	0.00171	9.18818
S67	000001011	0.00371	8.0727
S68	001100110	0.002	8.96578
S69	101111101	0.00114	9.77314
S70	111011001	0.00114	9.77314
S71	110001010	0.002	8.96578
S72	001100011	0.00286	8.45121
S73	000110010	0.004	7.96578
S74	011101111	0.00171	9.18818
S75	010111001	0.00343	8.18818
S76	101000111	0.00229	8.77314
S77	010010011	0.00257	8.60321
S78	011111000	0.002	8.96578
S79	101000101	0.00286	8.45121
S80	101000001	0.00171	9.18818
S81	001110001	0.00143	9.45121
S82	111000100	0.00314	8.31371

	·		
S83	011011001	0.00229	8.77314
S84	000010101	0.00171	9.18818
S85	011000110	0.00229	8.77314
S86	010110111	0.002	8.96578
S87	010000100	0.002	8.96578
S88	000111111	0.00257	8.60321
S89	000101111	0.00171	9.18818
S90	000010100	0.002	8.96578
S91	010110000	0.00171	9.18818
S92	001111011	0.00143	9.45121
S93	110110000	0.002	8.96578
S94	011001101	0.00257	8.60321
S95	110100100	0.002	8.96578
S96	011001100	0.00343	8.18818
S97	111111010	0.00171	9.18818
S98	111011111	0.00171	9.18818
S99	001000010	0.00257	8.60321
S100	010011011	0.00229	8.77314
S101	111000011	0.002	8.96578
S102	001011100	0.00314	8.31371
S103	001011111	0.00114	9.77314
S104	001010101	0.002	8.96578
S105	101001010	0.00229	8.77314
S106	001110010	0.00371	8.0727
S107	101110010	0.00257	8.60321
S108	100101111	0.00314	8.31371
S109	100111011	0.00343	8.18818
S110	00000010	0.002	8.96578
S111	110001001	0.00314	8.31371
S112	111101101	0.002	8.96578
S113	011111010	0.00286	8.45121
S114	100111000	0.002	8.96578
S115	111000101	0.00286	8.45121
S116	000010111	0.002	8.96578
S117	110001011	0.00114	9.77314
S118	000100010	0.00229	8.77314
S119	101001000	0.002	8.96578
S120	000100001	0.00171	9.18818
S121	101010000	0.002	8.96578
S122	011001001	0.00229	8.77314
S123	001100001	0.00257	8.60321
S124	100001000	0.00257	8.60321
S125	111111100	0.00143	9.45121

S126	100011110	0.00143	9.45121
S127	100011101	0.00343	8.18818
S128	111001001	0.00171	9.18818
S129	001010111	0.00229	8.77314
S130	000011001	0.002	8.96578
S131	011100000	0.00229	8.77314
S132	001000011	0.00143	9.45121
S133	100110011	0.00114	9.77314
S134	000100000	0.00286	8.45121
S135	000110101	0.00171	9.18818
S136	110011100	0.00143	9.45121
S137	111011000	0.00229	8.77314
S138	000011011	0.00114	9.77314
S139	100100010	0.002	8.96578
S140	110000100	0.00143	9.45121
S141	110101011	0.00257	8.60321
S142	010010110	0.002	8.96578
S143	111111101	0.00286	8.45121
S144	011100011	0.00171	9.18818
S145	110111001	0.00229	8.77314
S146	000101000	0.002	8.96578
S147	100001110	0.00143	9.45121
S148	110110011	0.00114	9.77314
S149	101010111	0.00229	8.77314
S150	101111010	0.00343	8.18818
S151	101101011	0.00286	8.45121
S152	111101011	0.00371	8.0727
S153	110111110	0.002	8.96578
S154	111100000	0.002	8.96578
S155	010110001	0.00229	8.77314
S156	111000001	0.00171	9.18818
S157	001100000	0.00257	8.60321
S158	101001100	0.00229	8.77314
S159	010100011	0.00371	8.0727
S160	011101110	0.00171	9.18818
S161	111010001	0.00257	8.60321
S162	001000001	0.00171	9.18818
S163	010010101	0.00171	9.18818
S164	000001001	0.00314	8.31371
S165	010111110	0.00171	9.18818
S166	010110010	0.00171	9.18818
S167	010111000	0.00229	8.77314
S168	011101010	0.00229	8.77314

	r		
S169	100001101	8.6E-4	10.18818
S170	110101001	0.00286	8.45121
S171	001011011	0.00257	8.60321
S172	000011010	2.9E-4	11.77314
S173	010001111	0.00257	8.60321
S174	111010010	0.00143	9.45121
S175	000111001	0.00229	8.77314
S176	110101100	0.00429	7.86625
S177	111000000	0.00229	8.77314
S178	010011111	0.00143	9.45121
S179	110111111	0.00286	8.45121
S180	100001001	0.00171	9.18818
S181	111110110	0.002	8.96578
S182	000101110	0.00257	8.60321
S183	101000100	0.00114	9.77314
S184	010011110	0.00143	9.45121
S185	100100001	0.002	8.96578
S186	110111011	0.00143	9.45121
S187	000010001	0.00286	8.45121
S188	001101101	0.00257	8.60321
S189	110110100	8.6E-4	10.18818
S190	000011111	0.00171	9.18818
S191	100011011	0.002	8.96578
S192	000111000	0.00371	8.0727
S193	000110110	0.00143	9.45121
S194	000101001	0.00171	9.18818
S195	100011000	0.00371	8.0727
S196	010111100	0.002	8.96578
S197	100011111	0.00286	8.45121
S198	010110011	0.002	8.96578
S199	110111100	0.00343	8.18818
S200	100100011	0.002	8.96578
S201	100111101	0.00314	8.31371
S202	001010110	0.00114	9.77314
S203	011011100	0.00229	8.77314
S204	100110100	0.00143	9.45121
S205	111001111	0.00143	9.45121
S206	001101111	0.00143	9.45121
S207	011010011	0.00286	8.45121
S208	111100001	0.00314	8.31371
S209	001101011	0.00257	8.60321
S210	00000100	0.00171	9.18818
S211	101111000	0.00114	9.77314

	·		
S212	001101110	0.00314	8.31371
S213	010101111	0.00143	9.45121
S214	011001110	0.00171	9.18818
S215	101101010	0.002	8.96578
S216	000001000	0.00114	9.77314
S217	011000001	0.00229	8.77314
S218	010010100	0.002	8.96578
S219	010001011	0.00457	7.77314
S220	110100001	0.00171	9.18818
S221	101001111	0.00143	9.45121
S222	110000010	0.00114	9.77314
S223	101110001	0.00257	8.60321
S224	110100011	0.00114	9.77314
S225	101100110	0.00229	8.77314
S226	100110111	0.00171	9.18818
S227	010111111	0.00114	9.77314
S228	000100111	0.00171	9.18818
S229	000001101	0.00143	9.45121
S230	001100010	0.00171	9.18818
S231	000111011	0.00314	8.31371
S232	101010100	0.00229	8.77314
S233	011110010	0.00171	9.18818
S234	110000001	0.00314	8.31371
S235	110100010	0.00229	8.77314
S236	100110101	0.004	7.96578
S237	101000011	0.00286	8.45121
S238	011011101	5.7E-4	10.77314
S239	100101000	0.00171	9.18818
S240	001010000	0.00229	8.77314
S241	011010110	0.00229	8.77314
S242	010011010	0.00114	9.77314
S243	110000101	0.00229	8.77314
S244	001111100	0.00314	8.31371
S245	010010001	0.00171	9.18818
S246	010100000	0.00114	9.77314
S247	00000101	0.00257	8.60321
S248	101101000	0.002	8.96578
S249	110011011	0.002	8.96578
S250	110000000	0.00229	8.77314
S251	111100010	0.00257	8.60321
S252	110101110	0.00143	9.45121
S253	111010100	0.00286	8.45121
S254	100111010	0.00143	9.45121

	r		
S255	000011101	0.00257	8.60321
S256	100111001	0.00143	9.45121
S257	100010011	5.7E-4	10.77314
S258	110010100	0.00343	8.18818
S259	100100110	0.00314	8.31371
S260	101100010	0.00171	9.18818
S261	010011101	0.00143	9.45121
S262	000100011	0.002	8.96578
S263	010100010	0.002	8.96578
S264	100100000	0.00171	9.18818
S265	011101100	0.00171	9.18818
S266	000010010	0.00343	8.18818
S267	100001010	0.00229	8.77314
S268	000111101	0.00229	8.77314
S269	000111110	8.6E-4	10.18818
S270	100101110	0.00371	8.0727
S271	101110100	0.00286	8.45121
S272	010001001	0.00171	9.18818
S273	010100101	0.00257	8.60321
S274	111001000	0.00171	9.18818
S275	100000110	0.00171	9.18818
S276	100101100	0.00229	8.77314
S277	101000010	0.00143	9.45121
S278	111111111	0.00229	8.77314
S279	000000110	0.00343	8.18818
S280	100001111	0.00171	9.18818
S281	001000101	0.00143	9.45121
S282	100101010	0.00171	9.18818
S283	111010011	0.00114	9.77314
S284	100100100	0.002	8.96578
S285	001010011	0.00143	9.45121
S286	110101000	0.00286	8.45121
S287	001111101	0.002	8.96578
S288	100000000	0.00143	9.45121
S289	010000000	0.00257	8.60321
S290	010001100	0.002	8.96578
S291	101100011	0.00257	8.60321
S292	000011100	0.00143	9.45121
S293	111011110	0.00229	8.77314
S294	110001101	0.00171	9.18818
S295	100000111	0.00171	9.18818
S296	001110111	0.002	8.96578
S297	110000111	0.00286	8.45121

S298	111110111	0.00143	9.45121
S299	111010101	0.00371	8.0727
S300	110010000	0.00229	8.77314
S301	101111011	0.00143	9.45121
S302	10000011	0.00257	8.60321
S303	000100101	0.00171	9.18818
S304	110101101	0.002	8.96578
S305	111111011	0.00257	8.60321
S306	100101101	0.00143	9.45121
S307	011011010	0.00171	9.18818
S308	101000110	0.00114	9.77314
S309	001010100	0.002	8.96578
S310	100110001	0.00143	9.45121
S311	101101101	0.00286	8.45121
S312	001000111	0.00171	9.18818
S313	000001010	0.00143	9.45121
S314	010111101	0.00143	9.45121
S315	010111010	8.6E-4	10.18818
S316	110100000	0.00229	8.77314
S317	101110000	0.002	8.96578
S318	111100111	0.00114	9.77314
S319	111010110	0.00143	9.45121
S320	011011011	0.00114	9.77314
S321	010101001	0.00314	8.31371
S322	010101101	0.00171	9.18818
S323	001001011	8.6E-4	10.18818
S324	00000000	0.00171	9.18818
S325	001111000	0.00143	9.45121
S326	100110000	0.00229	8.77314
S327	001001101	0.002	8.96578
S328	101000000	0.00171	9.18818
S329	010110100	0.00257	8.60321
S330	001001111	0.002	8.96578
S331	000101100	0.00171	9.18818
S332	001110000	0.00171	9.18818
S333	100010001	0.00257	8.60321
S334	100011100	8.6E-4	10.18818
S335	011001111	0.00229	8.77314
S336	001110101	0.00171	9.18818
S337	001100101	0.002	8.96578
S338	100010101	8.6E-4	10.18818
S339	101011001	0.00143	9.45121
S340	101100111	8.6E-4	10.18818

	·		
S341	011101011	0.00229	8.77314
S342	011100100	0.00314	8.31371
S343	011110000	0.00114	9.77314
S344	110000011	0.00171	9.18818
S345	110110010	0.00286	8.45121
S346	100001011	0.00229	8.77314
S347	000111010	0.002	8.96578
S348	111001011	0.002	8.96578
S349	001111111	0.002	8.96578
S350	011010010	0.002	8.96578
S351	001001100	0.00257	8.60321
S352	111011011	0.00229	8.77314
S353	111100101	0.00229	8.77314
S354	000011110	0.00114	9.77314
S355	110110111	0.00314	8.31371
S356	011010111	0.00286	8.45121
S357	001011110	0.00229	8.77314
S358	100000100	0.002	8.96578
S359	001011001	0.00257	8.60321
S360	010000110	0.00286	8.45121
S361	110001100	0.00143	9.45121
S362	011111101	0.00229	8.77314
S363	111010000	0.00114	9.77314
S364	000001110	0.00286	8.45121
S365	101110110	0.00114	9.77314
S366	011001011	8.6E-4	10.18818
S367	000100100	0.00171	9.18818
S368	001011010	0.00314	8.31371
S369	011000010	0.002	8.96578
S370	010100001	0.00143	9.45121
S371	110011001	8.6E-4	10.18818
S372	000010011	8.6E-4	10.18818
S373	100011010	0.00143	9.45121
S374	011010000	0.00171	9.18818
S375	111110101	8.6E-4	10.18818
S376	111111110	0.00114	9.77314
S377	111001100	0.00229	8.77314
S378	110110001	8.6E-4	10.18818
S379	010001101	0.00114	9.77314
S380	111001101	0.00286	8.45121
S381	011110111	0.00114	9.77314
S382	111101000	0.00257	8.60321
S383	101010101	0.002	8.96578

	1		
S384	111100100	0.00171	9.18818
S385	101011100	0.002	8.96578
S386	011101101	0.00257	8.60321
S387	110010010	0.00143	9.45121
S388	011110101	0.00257	8.60321
S389	011100101	0.002	8.96578
S390	111001010	0.002	8.96578
S391	100010010	0.00229	8.77314
S392	001101001	0.00314	8.31371
S393	110011000	0.00171	9.18818
S394	101001110	0.00114	9.77314
S395	010101011	0.00143	9.45121
S396	111110001	8.6E-4	10.18818
S397	011001010	0.00114	9.77314
S398	000101010	0.00114	9.77314
S399	101011010	0.002	8.96578
S400	110010101	0.00286	8.45121
S401	100110110	0.00143	9.45121
S402	011000100	0.002	8.96578
S403	001011101	0.00229	8.77314
S404	110110110	0.00171	9.18818
S405	110110101	0.00114	9.77314
S406	110011101	0.00171	9.18818
S407	011000000	0.00257	8.60321
S408	00000011	0.00171	9.18818
S409	011000101	0.002	8.96578
S410	111110100	0.00171	9.18818
S411	011011111	0.00371	8.0727
S412	00000001	0.00143	9.45121
S413	101101100	0.00314	8.31371
S414	011110001	0.00143	9.45121
S415	001000100	0.002	8.96578
S416	010111011	0.002	8.96578
S417	000110100	0.00143	9.45121
S418	100010111	0.00143	9.45121
S419	011100111	0.00143	9.45121
S420	111101111	0.00257	8.60321
S421	110001111	5.7E-4	10.77314
S422	100111111	0.00171	9.18818
S423	011110110	0.002	8.96578
S424	010101110	0.00143	9.45121
S425	110011010	0.00143	9.45121
S426	100010100	0.002	8.96578

	T		
S427	011011110	0.00286	8.45121
S428	010101000	0.00171	9.18818
S429	100110010	0.00114	9.77314
S430	110011111	0.00114	9.77314
S431	011110011	0.00171	9.18818
S432	001101100	5.7E-4	10.77314
S433	100101011	0.002	8.96578
S434	001111010	8.6E-4	10.18818
S435	101100101	0.002	8.96578
S436	110001000	8.6E-4	10.18818
S437	110111010	0.00171	9.18818
S438	010110101	8.6E-4	10.18818
S439	111111000	0.00257	8.60321
S440	110010111	0.00257	8.60321
S441	101011101	0.00143	9.45121
S442	111110011	0.002	8.96578
S443	111011100	0.00229	8.77314
S444	101101111	5.7E-4	10.77314
S445	110010001	0.002	8.96578
S446	110101010	5.7E-4	10.77314
S447	110100110	0.00171	9.18818
S448	111100011	0.00171	9.18818
S449	000001111	2.9E-4	11.77314
S450	110010011	0.00229	8.77314
S451	101001011	0.00171	9.18818
S452	101111100	8.6E-4	10.18818
S453	001110011	0.00229	8.77314
S454	010010111	0.00114	9.77314
S455	101011011	0.002	8.96578
S456	011100010	0.002	8.96578
S457	111101110	5.7E-4	10.77314
S458	001001010	0.00114	9.77314
S459	111010111	0.00171	9.18818
S460	001110110	0.00114	9.77314
S461	011111001	8.6E-4	10.18818
S462	101010110	0.00114	9.77314
S463	111100110	8.6E-4	10.18818
S464	011010001	8.6E-4	10.18818
S465	010011000	0.00143	9.45121
S466	110100101	0.002	8.96578
S467	101010010	0.002	8.96578
S468	110011110	0.00171	9.18818
S469	011010100	8.6E-4	10.18818

S470	111011010	8.6E-4	10.18818
S471	100010000	0.00229	8.77314
S472	01111111	8.6E-4	10.18818
S473	101111110	0.00143	9.45121
S474	000110001	0.00171	9.18818
S475	001001001	0.00171	9.18818
S476	011111100	0.00114	9.77314
S477	110000110	0.00114	9.77314
S478	111011101	0.00114	9.77314
S479	110010110	8.6E-4	10.18818
S480	100000101	0.00143	9.45121
S481	000011000	0.00171	9.18818
S482	000110000	0.00143	9.45121
S483	110001110	0.00143	9.45121
S484	111110000	0.002	8.96578
S485	010100110	0.00171	9.18818
S486	011101000	0.00143	9.45121
S487	010101100	0.002	8.96578
S488	010000011	8.6E-4	10.18818
S489	101001101	8.6E-4	10.18818
S490	101110011	0.002	8.96578
S491	101100000	0.002	8.96578
S492	010001010	0.00143	9.45121
S493	100100101	0.00114	9.77314
S494	101011110	5.7E-4	10.77314
S495	001111001	0.002	8.96578
S496	100100111	0.00114	9.77314
S497	100010110	8.6E-4	10.18818
S498	101010011	0.00143	9.45121
S499	000101101	5.7E-4	10.77314
S500	000010000	8.6E-4	10.18818
S501	001001000	5.7E-4	10.77314
S502	110111101	0.00114	9.77314
S503	000010110	8.6E-4	10.18818
S504	011001000	0.00171	9.18818
S505	111110010	0.00143	9.45121
S506	001100100	5.7E-4	10.77314
S507	101110111	5.7E-4	10.77314
S508	001010001	0.00114	9.77314
S509	000100110	0.00114	9.77314
S510	011110100	8.6E-4	10.18818
S511	010000010	5.7E-4	10.77314
S512	011111011	2.9E-4	11.77314

Tabla 4

Símbolo	Código
S3	00000
S4	00001
S26	00010
S7	00011
S22	00100
S27	00101
S13	00110
S12	00111
S25	01000
S28	01001
S6	01010
S24	01011
S31	01110
S15	01101
S9	01100
S18	10000
S5	01111
S23	10001
S2	10010
S21	10011
S32	10100
S10	10101
S30	10110
S11	10111
S1	11000
S17	11001
S8	11010
S19	11011
S16	11100
S29	11101
S20	11110
S14	11111

Tabla 5

Símbolo	Código
S21	111110
S105	0000000
S6	0000001
S94	0000010
S116	0000100
S68	0000110
S23	0000011
S83	0000111
S1	0001100
S112	0001000
S80	0001010
S45	0001101
S109	0001011
S118	0001001
S64	0001110
S104	0001111
S8	0010010
S9	0010011
S70	0010001
S101	0010100
S61	0010000
S43	0010110
S22	0010101
S75	0011000
S35	0011010
S32	0010111
S57	0011011
S87	0011001
S25	0011110
S5	0011100
S16	0011101
S53	0100000
S106	0100100
S95	0100110
S37	0100010
S31	0101000
S29	0011111
S36	0101001
S52	0100011
1	

_				
	S82	0100001		
	S98	0100111		
	S122	0100101		
	S102	0101010		
	S85	0101100		
	S42	0101110		
	S38	0110001		
	S66	0101111		
	S91	0101101		
	S128	0101011		
	S2	0110000		
	S115	0111000		
	S107	0110010		
	S72	0110100		
	S13	0110110		
	S34	0110111		
	S100	0110101		
	S108	0110011		
	S127	0111110		
	S65	0111010		
	S20	0111100		
	S15	0111001		
	S63	0111101		
	S119	0111011		
	S125	1001100		
	S81	1001010		
	S76	1000100		
	S47	1000110		
	S26	1000010		
	S18	0111111		
	S33	1000011		
	S46	1000001		
	S71	1000111		
	S78	1000101		
	S89	1001011		
	S93	1001001		
	S92	1001000		
	S41	1000000		
	S84	1001110		
	S28	1010010		
	S17	1001101		
	S55	1010011		
	S69	1010001		
-1		İ		

S110	1001111
S121	1010100
S56	1010000
S97	1010110
S54	1011000
S24	1011010
S10	1010101
S40	1011011
S88	1011001
S120	1010111
S44	1100000
S111	1100010
S73	1011100
S49	1011110
S48	1100001
S50	1011111
S86	1011101
S99	1101000
S67	1101010
S58	1100100
S11	1100110
S7	1100011
S27	1100111
S59	1100101
S77	1101011
S114	1101001
S12	1110000
S117	1110010
S60	1101100
S19	1101110
S14	1110001
S51	1101111
S113	1101101
S62	1110011
S103	1110101
S79	1110100
S123	1111010
S74	1110110
S30	1111001
S90	1110111
S4	1111000
S96	1111011
S124	1111110

S3	1111111
S126	00001010
S39	00001011

Tabla 6

Símbolo	Código
S219	00100101
S176	01010001
S73	01111100
S236	01111101
S299	10000100
S195	10000110
S106	10000010
S67	01111111
S152	10000011
S192	10000001
S270	10000111
S411	10000101
S159	10000000
S24	11000000
S266	10010010
S199	10011100
S127	10011110
S96	10011000
S64	10011010
S42	11000001
S75	10011011
S109	10011001
S150	10011111
S258	10011101
S279	10010011
S108	11010000
S2	11011000
S392	11000010
S355	11001100
S321	11001110
S244	11001000
S231	11001010
S208	11010100
S164	11010110
S82	11010010
S41	11000100
S20	11000110
S5	11011001
S29	11000111

S45	11000101
S102	11010011
S111	11010001
S201	11010111
S212	11010101
S234	11001011
S259	11001001
S342	11001111
S368	11001101
S413	11000011
S113	000010000
S25	000011000
S427	11111010
S380	11100100
S360	11100110
S345	11100000
S297	11100010
S271	11101100
S237	11101110
S197	11101000
S179	11101010
S151	000010100
S134	000010110
S72	000010010
S56	11011100
S27	11011110
S13	11011011
S26	000011001
S55	11011111
S57	11011101
S79	000010011
S115	000010001
S143	000010111
S170	000010101
S187	11101011
S207	11101001
S253	11101111
S286	11101101
S311	11100011
S356	11100001
S364	11100111
S400	11100101
S439	000110100

	-
S407	000110110
S386	000110000
S359	000110010
S333	000111100
S305	000111110
S291	000111000
S273	000111010
S251	000100100
S223	000100110
S188	000100000
S173	000100010
S161	000101100
S141	000101110
S123	000101000
S99	000101010
S88	001000100
S60	001000110
S43	001000010
S31	000011100
S18	000011110
S14	001001001
S23	000011111
S36	000011101
S48	001000011
S59	001000001
S77	001000111
S94	001000101
S107	000101011
S124	000101001
S157	000101111
S171	000101101
S182	000100011
S209	000100001
S247	000100111
S255	000100101
S289	000111011
S302	000111001
S329	000111111
S351	000111101
S382	000110011
S388	000110001
S420	000110111
S440	000110101

S11	001001000
S50	001000000
S3	010100000
S471	001101110
S450	001101000
S403	001101010
S377	010010100
S357	010010110
S352	010010000
S341	010010010
S326	010011100
S300	010011110
S278	010011000
S268	010011010
S250	010000100
S241	010000110
S235	010000000
S225	010000010
S203	010001100
S175	010001110
S167	010001000
S155	010001010
S145	001010100
S131	001010110
S122	001010000
S105	001010010
S85	001011100
S76	001011110
S58	001011000
S19	001011010
S10	001001100
S8	001001110
S4	010100001
S9	001001111
S16	001001101
S52	001011011
S63	001011001
S83	001011111
S100	001011101
S118	001010011
S129	001010001
S137	001010111
S149	001010101

S158	010001011
S168	010001001
S177	010001111
S217	010001101
S232	010000011
S240	010000001
S243	010000111
S267	010000101
S276	010011011
S293	010011001
S316	010011111
S335	010011101
S346	010010011
S353	010010001
S362	010010111
S391	010010101
S443	001101011
S453	001101001
S433	011100000
S495	010101100
S490	010101110
S484	010101000
S466	010101010
S455	011100100
S442	011100110
S423	011100010
S415	011101100
S402	011101110
S390	011101000
S385	011101010
S369	011010100
S350	011010110
S348	011010000
S337	011010010
S327	011011100
S309	011011110
S296	011011000
S287	011011010
S263	011000100
S249	011000110
S218	011000000
S200	011000010
S196	011001100
	1

S185	011001110
S154	011001000
S146	011001010
S139	010110100
S121	010110110
S116	010110000
S112	010110010
S104	010111100
S95	010111110
S90	010111000
S86	010111010
S71	011110100
S62	011110110
S54	011110000
S39	011110010
S21	010100100
S15	010100110
S6	011111100
S12	011111101
S17	010100111
S37	010100101
S40	011110011
S61	011110001
S68	011110111
S78	011110101
S87	010111011
S93	010111001
S101	010111111
S110	010111101
S114	010110011
S119	010110001
S130	010110111
S142	010110101
S153	011001011
S181	011001001
S191	011001111
S198	011001101
S215	011000011
S248	011000001
S262	011000111
S284	011000101
S290	011011011
S304	011011001

S317	011011111
S330	011011101
S347	011010011
S349	011010001
S358	011010111
S383	011010101
S389	011101011
S399	011101001
S409	011101111
S416	011101101
S426	011100011
S435	011100001
S445	011100111
S456	011100101
S467	010101011
S487	010101001
S491	010101111
S504	101010110
S481	101010000
S474	101010010
S459	101011100
S448	101011110
S437	101011000
S428	101011010
S410	101000100
S406	101000110
S393	101000000
S374	101000010
S344	101001100
S332	101001110
S328	101001000
S322	101001010
S307	101110100
S295	101110110
S282	101110000
S275	101110010
S272	101111100
S264	101111110
S245	101111000
S233	101111010
S228	101100100
S220	101100110
S210	101100000

	S190	101100010
	S166	101101100
	S163	101101110
	S160	101101000
	S144	101101010
	S128	100010100
	S98	100010110
	S91	100010000
	S84	100010010
	S74	100011100
	S51	100011110
	S30	100011000
	S22	100011010
	S28	100011011
	S44	100011001
	S66	100011111
	S80	100011101
	S89	100010011
	S97	100010001
	S120	100010111
	S135	100010101
	S156	101101011
	S162	101101001
	S165	101101111
	S180	101101101
	S194	101100011
	S214	101100001
	S226	101100111
	S230	101100101
	S239	101111011
	S260	101111001
	S265	101111111
	S274	101111101
	S280	101110011
	S294	101110001
	S303	101110111
	S312	101110101
	S324	101001011
	S331	101001001
	S336	101001111
	S367	101001101
	S384	101000011
	S404	101000001
ı		

S408	101000111
S422	101000101
S431	101011011
S447	101011001
S451	101011111
S468	101011101
S475	101010011
S485	101010001
S174	000000000
S498	111110110
S486	111110000
S482	111110010
S473	111111100
S441	111111110
S424	111111000
S418	111111010
S414	111100100
S401	111100110
S387	111100000
S370	111100010
S339	111101100
S319	111101110
S313	111101000
S306	111101010
S298	0000010100
S288	0000010110
S281	0000010000
S261	0000010010
S254	0000011100
S229	0000011110
S213	0000011000
S205	0000011010
S193	000000100
S184	000000110
S140	000000010
S132	0000001100
S125	0000001110
S81	000001000
S47	0000001010
S32	110110101
S38	0000110101
S65	0000001011
S92	0000001001

S126	0000001111
S136	0000001101
S147	000000011
S178	000000001
S186	000000111
S204	000000101
S206	0000011011
S221	0000011001
S252	0000011111
S256	0000011101
S277	0000010011
S285	0000010001
S292	0000010111
S301	0000010101
S310	111101011
S314	111101001
S325	111101111
S361	111101101
S373	111100011
S395	111100001
S412	111100111
S417	111100101
S419	111111011
S425	111111001
S465	111111111
S480	111111101
S483	111110011
S492	111110001
S505	111110111
S34	0000110100
S509	0011011010
S502	0011000100
S493	0011000110
S477	0011000000
S462	0011000010
S458	0011001100
S430	0011001110
S405	0011001000
S397	0011001010
S381	0011110100
S376	0011110110
S363	0011110000
S343	0011110010
1	1

S318	0011111100
S283	0011111110
S242	0011111000
S224	0011111010
S216	0011100100
S202	0011100110
S148	0011100000
S133	0011100010
S103	0011101100
S69	0011101110
S46	0011101000
S33	0011101010
S7	0000110111
S35	0011101011
S53	0011101001
S70	0011101111
S117	0011101101
S138	0011100011
S183	0011100001
S211	0011100111
S222	0011100101
S227	0011111011
S246	0011111001
S308	001111111
S320	0011111101
S354	0011110011
S365	0011110001
S379	0011110111
S394	0011110101
S398	0011001011
S429	0011001001
S454	0011001111
S460	0011001101
S476	0011000011
S478	0011000001
S496	0011000111
S508	0011000101
S510	00001101100
S1	1101101000
S500	1010101110
S489	1010101000
S479	1010101010
S470	1001010100

S464	1001010110
S461	1001010000
S438	1001010010
S434	1001011100
S378	1001011110
S372	1001011000
S366	1001011010
S338	1001000100
S323	1001000110
S269	1001000000
S169	1001000010
S49	1101101001
S189	1001000011
S315	1001000001
S334	1001000111
S340	1001000101
S371	1001011011
S375	1001011001
S396	1001011111
S436	1001011101
S452	1001010011
S463	1001010001
S469	1001010111
S472	1001010101
S488	1010101011
S497	1010101001
S503	1010101111
S507	00110110110
S501	00110110000
S494	00110110010
S446	00110111100
S432	00110111110
S257	01010110100
S238	00001101101
S421	01010110101
S444	00110111111
S457	00110111101
S499	00110110011
S506	00110110001
S511	00110110111
S449	010101101100
S172	01010110111
S512	010101101101

