1 Normalteiler

Definition 1.1. Sei (G, \circ) eine Gruppe und $H \subset G$ eine Untergruppe. H heißt Normalteiler

$$:\iff \forall g\in G\ \forall u\in H: g\circ u\circ g^{-1}\in H$$

$$\iff \forall g\in G: gHg^{-1}=H$$

$$\iff \forall g\in G: gH=Hg.$$

Beispiel 1.1. Einige Beispiele für Normalteiler:

- Die triviale Untergruppe $\{e\}$ ist immer Normalteiler, denn es gilt für alle $g \in G : g \circ \{e\} = \{g\} = \{e\} \circ g$.
- G ist immer Normalteiler in sich selbst, denn es gilt $\forall g \in G \ \forall g' \in G : g \circ g' \circ g^{-1} \in G$.
- Ist G kommutativ, so ist jede Untergruppe $H \subset G$ Normalteiler, denn es gilt $\forall g \in G \ \forall u \in H : g \circ u \circ g^{-1} = g \circ g^{-1} \circ u = e \circ u = u \in H$.

 $\operatorname{TODO}:$ Faktorgruppe einbauen, ggf. zweite und dritte Definition in Definition 1 entsprechend verschieben

2 Normalisator

Sei (G, \circ) Gruppe, $U \subset G$ Untergruppe.

Im Allgemeinen ist U kein Normalteiler in G. Also suchen wir uns eine größtmögliche Untergruppe von G, sodass U in dieser Untergruppe Normalteiler ist. Formal wollen wir eine Untergruppe $V \subset G$ finden, sodass

- 1. $U \subset V$ (U ist in V enthalten)
- 2. U ist Normalteiler in V
- 3. Ist V' eine weitere Untergruppe von G die 1. und 2. erfüllt, so gilt $V' \subset V$. (V ist größtmöglich)

Bemerkung 2.1. V existiert immer.

Ist U Normalteiler in G, so wähle V = G.

Ist U kein Normalteiler in G, so erfüllt V'=U die ersten beiden Eigenschaften, also lässt sich auch eine größtmögliche Untergruppe V finden, die die ersten beiden Eigenschaften erfüllt.

Definition 2.1.

$$N_G(U) := \{ g \in G \mid gUg^{-1} = U \}$$

heißt Normalisator von U in G.

Satz 2.1. $N_G(U)$ ist Untergruppe von G und erfüllt die Eigenschaften 1. bis 3.

Beweis: Untergruppe:

Die Assoziativität wird vererbt.

Es gilt $e \in N_G(U)$, denn $e \in G$ und $eUe^{-1} = eUe = U$.

Sei $n \in N_G(U)$. Dann gilt

$$nUn^{-1} = U$$

$$\iff n^{-1}nUn^{-1}n = n^{-1}Un$$

$$\iff U = n^{-1}Un,$$

also auch $n^{-1} \in N_G(U)$.

Seien $n_1, n_2 \in N_G(U)$. Dann gilt:

$$(n_1 n_2) U(n_1 n_2)^{-1} = n_1 n_2 U n_2^{-1} n_1^{-1}$$

$$= n_1 (n_2 U n_2^{-1}) n_1^{-1}$$

$$= n_1 U n_1^{-1}$$

$$= U,$$

also auch $n_1 \circ n_2 \in N_G(U)$.

Damit ist $N_G(U)$ Untergruppe von G.

U ist Normalteiler in sich selbst, also gilt $\forall u \in U : uUu^{-1} = U$. Zudem gilt $U \subset G$. Per Definition von $N_G(U)$ folgt sofort $U \subset N_G(U)$.

Es gilt per Definition $\forall n \in N_G(U) : nUn^{-1} = U$, d.h. U ist Normalteiler in

Sei $V' \subset G$ eine weitere Untergruppe mit $U \subset V'$ und sodass U Normalteiler in

Sei $v \in V'$. Da U Normalteiler in V' ist, gilt $vUv^{-1} = U$, also per Definition $v \in N_G(U).$ $\Longrightarrow V' \subset N_G(U).$