Naive Bayes

- 1 Probability
- @ Baye's Theorem

Inder	pendent	Events	
Rolls	ng a c	lice	
	€ 1,2,	3,4,5,6	}
PCD =	1/6, PC2)=1/6, PC	3)=1/6

Dependent Events

what is the probability of removing a white marble then a yellow marble.

Conditional probability

Bayes Theorem

$$P(A/B) = \frac{P(A)P(B/A)}{P(B)}$$

Bayes Theorem

$$\frac{\chi_1}{2} \frac{\chi_2}{2} \frac{\chi_3}{2} \frac{\chi_4}{2} \frac{\chi_5}{2} \frac{\chi$$

$$P(\forall es/(x_1,x_2,x_3)) = \frac{P(\forall es) P(\forall x_1/\forall es) P(\forall x_2/\forall es) P(\forall x_3/\forall es)}{P(\forall x_1) P(\forall x_2) P(\forall x_3)} = 2 constant$$

$$P(\forall x_1,x_2,x_3) = \frac{P(\forall x_1) P(\forall x_2) P(\forall x_3/y_2)}{P(\forall x_1) P(\forall x_2) P(\forall x_3/y_2)} = 2 constant$$

$$[\forall es,\forall x_1,x_2,x_3] = [0.60,0.40]$$

-> Example

Day	Outlook.	Temperature	Humidity	Wind	Play Tennis
1	Sunny	Hot	High	Weak	No
2 3	Sunny Overcast	Hot	High High	Strong	No Yes
q	Rain	Wild	High	Weak	Yes
5	Rain	Cool	Normal	Weak	Yes
6	Rain	Cool	Normal	Strong	No
7	Overcast	Cool	Normal	Strong	Yes
8	Sumy	Mild	High	weals	No
9	Sunny	Cool	Normal	weak	Yes
lo	Rain	Mild	Normal	weals	Yes
n .	Sumy	Mild	Normal	Strong	Yes
12	overcast	Mild	High	Strong	Yes
13	overcast	Hot	Normal	Weak	Yes
14	Rain	Mild	High	Strong	No

	Outlook
PC Yes) = 9/14	Yes No
P(No) = 5/14	Sunny 2 3
P(Sunny/45) = 2/59	overcast 4 0
P(overmst/2) = 4/9	Rain 3 2
	Temperature
P(Rain/yes) = 3/9	Yes No
P(Sumy/No) = 3/5	Hot 2 2
P(overcast/No) = 0	Mild 4 2
P(Rain/No) = 2/5	Cool 3)
P(Hot/Yes) = 2/9	Humidity
P(Hot/No) = 2/5	
P(MiW/yes) = 4/9	2 4
PCM119/No) = 2/5	Fig. (
P(Cool/yes) = 3/9	Moura
P(Cool/No) = 1/5	wind Test Data
P(High/ya) = 3/9	Ves No Sunny, Hot High, Strong
P(H137/NO) = 4/5	Strong 3 3
a (Normal /) - 6/9.	weak 6 2
D(Normal/No) = 1/5 P(Ye	s) P(Sumy/yes) P(Hot/yes) P(Hish/yes) P(Strong/yes)
= astromatic) = 3/9 = (4)	41/(3/(3/)(3/)(3/)
P(871079/No) = 3/5 =	$0.6035 = \frac{0.0035}{0.0035+0.04} = 0.08$
P(weats/yes) = 6/9 P(N	10) P(Sumy/N) P(Hot/N) P(Hish/No) P(Stroms/No)
PC weas/No) = 2/5 = (5	5/4)(3/5)(3/5)(3/5)
=	$0.041 = > \frac{0.041}{0.0035 + 0.041} = \boxed{0.92}$

> Naive Bayes Variants

> Bernoulli Naive Bayes

Whenever features are following a Bernoulli distribution
[0,1] or [Pass, Fail]

L'	fe.	Hydro
Yes	Male	Yes
Yes	Female	NO
No	Female	Yes
No	Make	Yes

> Multinomial Naive Bayes

Whenever input dada is in form of text

Dataset

Email Bodg	Spam/Not Spam		
Million Dollars	Spam		
Promotion	Not Spam		

> Gaussian Naive Bayes

If the features are following Gaussian Distribution, and have continuous features

Examples

① IRIS Dalaset

Age	weight	Height	polyput
52.	170	78	Yes
38	LBO	75	Yes
55	150	60	Nø
24	170	•35	Yes