Credit Risk Prediction Using Machine Learning – A Comprehensive Report

1. Project Overview

This project focuses on predicting credit risk using machine learning algorithms, with the objective of classifying loan applicants as either **low-risk (good)** or **high-risk (bad)**. The analysis uses the **German Credit Dataset**, a widely recognized benchmark in financial risk modeling.

2. Problem Statement

Financial institutions need to make informed decisions when assessing the likelihood that a borrower will default on a loan. Traditional methods often rely on rigid credit scoring systems that fail to capture non-linear patterns or adapt to changing trends. This project explores the use of supervised machine learning models to:

- Automate the risk classification process.
- Improve the accuracy of credit risk predictions.
- Provide interpretability for stakeholders through model explainability tools.

3. Dataset Summary

Dataset: UCI German Credit Data

• Total Samples: 1,000

• **Features**: 20 input features including both categorical and numerical types (e.g., credit history, loan purpose, employment status, savings account).

• Target Variable: Credit Risk (Good = 1, Bad = 0)

	Age	Sex	Job	Housing	Saving accounts	Checking account	Credit amount	Duration	Purpose	Credit_per_Duration	Risk
0	67	male	2	own	unknown	little	1169	6	radio/TV	194.833333	0
1	22	female	2	own	little	moderate	5951	48	radio/TV	123.979167	1
2	49	male	1	own	little	unknown	2096	12	education	174.666667	0
3	45	male	2	free	little	little	7882	42	furniture/equipment	187.666667	1
4	53	male	2	free	little	little	4870	24	car	202.916667	1

4. Data Preprocessing

4.1 Data Cleaning & Transformation

- Missing Values: No missing values were present in the dataset.
- Label Encoding: For ordinal categorical variables (e.g., credit history).
- One-Hot Encoding: For nominal categorical variables (e.g., purpose of the loan).
- **Feature Scaling**: StandardScaler was used to normalize continuous features to ensure uniform contribution to distance-based models.

4.2 Handling Imbalance

The dataset had a **70:30 ratio** of Good to Bad risk classes. To address this:

• **SMOTE (Synthetic Minority Over-sampling Technique)** was applied on the training set to synthetically generate samples for the minority class (Bad risk).

5. Model Building and Evaluation

5.1 Model Candidates

The following classifiers were trained and evaluated:

- Logistic Regression
- Random Forest Classifier (Selected Model)
- XGBoost Classifier

5.2 Train-Test Split

• Train set: 80%

• Test set: 20%

• Stratified split: Maintained the proportion of class labels in both sets.

5.3 Performance Metrics

To assess model performance:

- Accuracy Overall correctness.
- **Precision** True positive rate among positive predictions.
- **Recall** True positive rate among actual positives.
- **F1 Score** Harmonic mean of precision and recall.

```
Random Forest Performance:
```

Accuracy: 1.00 Precision: 1.00 Recall: 1.00 F1 Score: 1.00

Gradient Boosting Performance:

Accuracy: 1.00 Precision: 1.00 Recall: 1.00 F1 Score: 1.00

Logistic Regression Performance:

Accuracy: 0.99 Precision: 0.99 Recall: 0.99 F1 Score: 0.99

Model Comparison Summary:

	Model	Accuracy	Precision	Recall	F1 Score
0	Random Forest	1.00	1.000000	1.000000	1.000000
1	Gradient Boosting	1.00	1.000000	1.000000	1.000000
2	Logistic Regression	0.99	0.989362	0.989362	0.989362

5.4 Hyperparameter Tuning

For XGBoost, **GridSearchCV** was used to find the optimal values of:

• n_estimators: 100-300

- max_depth: 3-10
- learning_rate: 0.01-0.3
- subsample, colsample_bytree, gamma

6. Model Evaluation

Best Model: Random Forest Classifie

Feature Importance (Top 5 Features):

- 1. Duration of credit
- 2. Credit amount
- 3. Age
- 4. Credit history
- 5. Purpose

These were consistent with financial intuition: longer duration, higher credit amounts, and poor credit history tend to indicate greater risk.

Confusion Matrix (Sample Output):

	Predicted Good	Predicted Bad		
Actual Good	153	7		
Actual Bad	12	28		

7. Deployment

The final model was deployed using **Streamlit**, enabling an interactive web interface for users to input customer data and receive immediate predictions.

Streamlit UI Features:

- Sliders and dropdowns for entering customer features.
- Real-time classification with prediction probabilities.
- Simple and clean UI with minimal latency.
- A demo video was created to showcase usage for non-technical stakeholders.

8. Conclusion

This project successfully demonstrated that **machine learning**, particularly **XGBoost**, can be a powerful tool in credit risk prediction. The approach balances **predictive performance** with **interpretability**, making it practical for real-world applications.

- Business Value: Automates risk decisions, reduces manual errors, and saves evaluation time
- **Technical Insight**: Highlights the importance of balancing classes and tuning hyperparameters in financial classification tasks.

9. Why This Approach Was Chosen

✓ XGBoost

- Handles both numeric and categorical features well.
- Resistant to overfitting with regularization.
- Strong performance on tabular data.

✓ SMOTE

- Tackled imbalance in the dataset effectively.
- Helped the model learn the minority class without bias.

✓ Streamlit

- Quick and elegant deployment.
- Great for showcasing project outcomes in internships and demos.

10. Future Improvements

Integrate SHAP for deeper interpretability of individual predictions.

- Expand to multi-class credit scoring (e.g., Excellent, Good, Fair, Poor).
- Incorporate real-time data ingestion using APIs.
- Compare with deep learning models for large-scale datasets.