Name:	
Perm:	

 ${\bf Math~34A~Midterm~3,~Spring~2022}$

1. (6 pts) Use the graph below to approximate the next three values.

(a) $\log(10) + \log(0.316)$

(b) If $\log(y) = 6.3$, then

$$y =$$

(c) Find the average rate of change of 10^x between x = 0.7 and x = 0.9.

$$\frac{\Delta y}{\Delta x} =$$

2. (6pts) Compute the following derivatives.

(a)
$$\frac{d}{dx} (3x^5 - 2x^2 - 14\sqrt{x}) =$$

(b)
$$\frac{d}{dx} \left(4x^2 + 5e^{2x} - 5e^{3x} \right) =$$

(c) a and b are constants. If $f(x) = \frac{a}{\sqrt[3]{x}} - \frac{b}{(e^x)^2}$

then
$$f'(1) =$$

3	(8nts)	This	auestion	is	about	the	granh	of the	function	
J.	(Opis)) rms	question	19	about	one	graph	or one	Tuncuon	L

$$f(x) = 2x^3 + 3x^2 - 12x + 172.$$

(a) What is the slope of the graph at x = 0?

(b) What is the equation of the tangent line to the graph at x=2? Please use one of the following forms:

$$y = mx + b$$
 or $y = m(x - x_1) + y_1$.

$$y =$$

(c) For what x value (or x values) does the graph have 0 slope?

$$x =$$

(d) For which x values is the graph y = f(x) concave down?

4.	(10pts) A large Nerf ball is launched upward from the top of a cliff.	Its height in meters
	after t seconds is modeled by the equation	

$$h(t) = -5t^2 + 30t + 50.$$

(a) What is the (vertical) velocity of the ball after t seconds?

m m/s

(b) What is the initial height of the ball?

h = m

(c) What is the (upward) acceleration of the ball after 5 seconds?

(d) When is the (upward) speed of the ball 0?

(e) What was the ball's maximum height?

$(4pts)$ A bacteria colony on a petri dish is growing in a circle. After t days, the the circle is t^2+2t mm.	e radius of
(a) What is the area of the circle after t days?	
A(t) =	mm^2
(b) How quickly is the area of the circle growing after t days?	
A'(t) =	$\mathrm{mm}^2/\mathrm{day}$
(6pts) You have 600m of fencing for a rectangular field, but the field needs subdivided into 3 equal areas by fencing in addition to the perimeter. If ℓ and dimensions (length and width) of your pen, the total fencing equation below relength and width	w are the
$4\ell + 2w = 600.$ Here there are two extra "lengths" to serve as dividers between the three subd	ivisions
(a) You know the area of the pen in terms of ℓ and w . Express the area of terms of $\underline{\ell}$ only.	the pen in
$A(\ell) =$	$ m m^2$
(b) Find the length that results in the largest area $A(\ell)$ for your field.	
$\ell =$	m
(c) Use your answer in part (b) to find the maximum area for your field.	
$A_{\max} =$	ho $ ho$ $ ho$ $ ho$