

고정식 압축 도시가스 자동차 충전의 시설·기술·검사 기준

Facility/Technical/Inspection Code for Stationary Compressed
Urban Gas Vehicles Refueling

가스기술기준위원회 심의·의결: 2021년 9월 10일

산업통상자원부 슝인 : 2021년 10월 8일

가 스 기 술 기 준 위 원 회

위 원 장 최 병 학 : 강릉원주대학교 교수

부위원장 장 기 현 : 귀뚜라미 전무

당 연 직 홍 순 파 : 산업통상자워부 에너지안전과장

곽 채 식 : 한국가스안전공사 안전관리이사

고압가스분야 최 병 학 : 강릉워주대학교 교수

송 성 진 : 성균관대학교 부총장 이 범 석 : 경희대학교 교수

윤 춘 석 : (주)한울이앤알 대표이사

안 영 훈 : (주)한양 부사장

액화석유가스분야 안 형 환 : 한국교통대학교 교수

권 혁 면 : 연세대학교 연구교수 천 정 식 : (주)E1 대표이사

강 경 수 : 한국에너지기술연구원 책임

이 용 권 : (주)대연 부사장

도시가스분야 신 동 일 : 명지대학교 교수

김 정 훈 : 한국기계전기전자시험연구원 수석

정 인 철 : (주)예스코 이사 장 기 현 : 귀뚜라미 전무

도시가스분야 이 광 원 : 호서대학교 교수

정 호 영 : 전남대학교 교수

강 인 용 : 에이치앤파워(주) 대표 백 운 봉 : 한국표준과학연구원 책임

이 기준은 「고압가스 안전관리법」 제22조의2, 「액화석유가스의 안전관리 및 사업법」 제27조의2 및 「도시가스사업법」 제17조의5에 따라 가스기술기준 위원회에서 정한 상세기준으로, 이 기준에 적합하면 동 법령의 해당 기준에 적합한 것으로 보도록 하고 있으므로 이 기준은 반드시 지켜야 합니다.

	Korea Gas Safety Code

	KGS Code 제·개정 이력
종목코드번호	KGS FP651 ²⁰²¹
코 드 명	고정식 압축 도시가스 자동차 충전의 시설·기 술·검사 기준

제·개 정 일 자	내 용
2010. 9. 24.	제 정 (지식경제부 공고 제2010-374호)
2012. 1. 5.	개 정 (지식경제부 공고 제2011-635호)
2013. 10. 14.	개 정 (산업통상자원부 공고 제2013-279호)
2014. 11. 17.	개 정 (산업통상자원부 공고 제2014-589호)
2015. 7. 3.	개 정 (산업통상자원부 공고 제2015-372호)
2015. 8. 7.	개 정 (산업통상자원부 공고 제2015-436호)
2016. 1. 8.	개 정 (산업통상자원부 공고 제2016-006호)
2017. 2. 10.	개 정 (산업통상자원부 공고 제2017-066호)
2017. 3. 8.	개 정 (산업통상자원부 공고 제2017-116호)
2017. 9. 29.	개 정 (산업통상자원부 공고 제2017-475호)
2018. 8. 10.	개 정 (산업통상자원부 공고 제2018-419호)
2018. 10. 16.	개 정 (산업통상자원부 공고 제2018-512호)
2019. 1. 16.	개 정 (산업통상자원부 공고 제2019-026호)
2019. 4. 5.	개 정 (산업통상자원부 공고 제2019-218호)

제·개 정 일 자	내 용
2019. 5. 21.	개 정 (산업통상자원부 공고 제2019-317호)
2019. 6. 14.	개 정 (산업통상자원부 공고 제2019-375호)
2019. 7. 16.	개 정 (산업통상자원부 공고 제2019-434호)
2020. 3. 18.	개 정 (산업통상자원부 공고 제2020-169호)
2020. 9. 4.	개 정 (산업통상자원부 공고 제2020-523호)
2021. 1. 12.	개 정 (산업통상자원부 공고 제2021-012호)
2021. 6. 8.	개 정 (산업통상자원부 공고 제2021-448호)
2021. 8. 9.	개 정 (산업통상자원부 공고 제2021-583호)
2021.10. 8.	개 정 (산업통상자원부 공고 제2021-699호)
	- 이 하 여 백 -

<u>목 차</u>

1. 일반사항	
1.1 적용 범위	1
1.2 기준의 효력	1
1.3 용어 정의	1
1.4 기준의 준용(내용 없음)	3
1.5 경과조치	3
1.5.1 필터 설치에 관한 경과조치	4
1.5.2 보호대 설치에 관한 경과조치 <신설 19. 4. 5.>	·····4
1.5.3 강판제 방호벽 설치에 대한 경과조치 <신설 21. 1. 12.>	4
1.5.4 제조소의 저장탱크실 방수조치에 관한 경과조치 <신설 21. 6. 8.>	4
1.5.5 방류둑 설치에 관한 경과조치 <신설 21. 8. 9.>	·····4
1.6 용품 사용 제한	
2. 시설 기준	·····5
2.1 배치 기준	·····5
2.1.1 보호시설과의 거리	·····5
2.1.2 화기와의 거리	6
2.1.3 다른 설비와의 거리(내용 없음)	6
2.1.4 사업소 경계와의 거리	6
2.1.5 도로 경계와의 거리	6
2.1.6 철도와의 거리	6
2.2 기초 기준	·····7
2.2.1 지반 조사	·····7
2.2.2 기초공사	9
2.2.3 저장탱크 고정	11
2.3 저장설비 기준	14
2.3.1 저장설비 재료	14
2.3.2 저장설비 구조	14
2.3.3 저장설비 설치	14
2.4 가스설비 기준	17
2.4.1 가스설비 재료	17

2.4.2 가스설비 구조(내용 없음)1	8
2.4.3 가스설비 두께 및 강도1	8
2.4.4 가스설비 설치2	3
2.4.5 가스설비 성능2	5
2.5 배관설비 기준2	5
2.5.1 배관설비 재료 ······2	
2.5.2 배관설비 구조3	
2.5.3 배관설비 두께3	2
2.5.4 배관설비 접합3	
2.5.5 배관설비 신축흡수조치3	3
2.5.6 배관설비 절연조치3	4
2.5.7 배관 설치3	
2.5.8 배관 부대설비 설치4	3
2.5.9 배관설비 성능4	4
2.5.10 배관설비 표시	5
2.6 사고예방설비 기준4	5
2.6.1 과압 안전장치 설치4	
2.6.2 가스누출 경보 및 자동 차단장치 설치	6
2.6.3 긴급 차단장치 설치5	8
2.6.4 역류 방지장치 설치6	1
2.6.5 역화 방지장치 설치(내용 없음)6	1
2.6.6 위험 감시 및 제어장치 설치(내용 없음)6	1
2.6.7 오발진 방지장치 설치6	1
2.6.8 전기방폭설비 설치	1
2.6.9 환기설비 설치	1
2.6.10 부식 방지설비 설치6	2
2.6.11 정전기 제거설비 설치6	2
2.6.12 전도 방지설비 설치(해당 없음)6	3
2.6.13 절연설비 설치(내용 없음)6	3
2.6.14 긴급 분리장치 설치6	3
2.7 피해저감설비 기준6	5
2.7.1 방류둑 설치6	
2.7.2 방호벽 설치	7
2.7.3 살수장치 설치(해당 없음)	$^{\circ}$

2.7.4 제독설비 설치(해당 없음)	70
2.7.5 중화·이송설비 설치(해당 없음) ······	70
2.7.6 풍향계 설치(해당 없음)	71
2.7.7 소화설비 설치	71
2.7.8 통행시설 설치	71
2.7.9 온도상승 방지설비 설치	71
2.8 부대설비 기준	·····72
2.8.1 계측설비 설치	·····72
2.8.2 비상전력설비 설치	·····73
2.8.3 통신설비 설치	75
2.8.4 운영 시설물 설치	
2.8.5 안전유지설비 설치	75
2.9 표시 기준	·····76
2.9.1 경계표시	·····76
2.9.2 식별표지 및 위험표지(해당 없음)	·····78
2.9.3 경계책	·····78
3. 기술 기준	·····78
3.1 안전유지 기준	
3.1.1 기초 유지관리(내용 없음)	
3.1.2 저장설비 유지관리	
3.1.3 가스설비 유지관리	
3.1.4 배관 유지관리(내용 없음)	
3.1.5 사고예방설비 유지관리	81
3.1.6 피해저감설비 유지관리(내용 없음)	
3.1.7 부대설비 유지관리	
3.2 제조 및 충전 기준	
3.2.1 제조 및 충전 준비(내용 없음)	
3.2.2 제조 및 충전 작업	
3.2.3 제조 및 충전 사후조치	
3.3 점검 기준	
3.3.1 전체 시설 점검(내용 없음)	
3.3.2 기초점검(내용 없음)	
3.3.3 저장설비 점검(내용 없음)	82

3.3.4 가스설비 점검	82
3.3.5 배관 점검(내용 없음)	84
3.3.6 사고예방설비 점검(내용 없음)	84
3.3.7 피해저감설비 점검	84
3.4 수리·청소 및 철거 기준 ······	86
3.4.1 수리·청소 및 철거 준비 ·····	86
3.4.2 수리·청소 및 철거 작업 ·····	86
3.4.3 수리 및 청소 시후조치	87
4. 검사 기준	88
4.1 검사 항목	88
4.1.1 중간검사	88
4.1.2 완성검사	88
4.1.3 정기검사	89
4.1.4 수시검사	89
4.2 검사 방법 <개정 20. 3. 18.>	89
4.2.1 중간검사 방법	89
4.2.2 완성검사 및 정기검사 방법	92

고정식 압축 도시가스 자동차 충전의 시설·기술·검사 기준

(Facility/Technical/Inspection Code for Stationary Compressed Urban Gas Vehicles Refueling)

1. 일반사항

1.1 적용 범위

이 기준은 「도시가스사업법 시행규칙」(이하 "규칙"이라 한다) 제2조제4항제3호에 따른 가스충전시설 중 고정식 압축 도시가스 자동차 충전시설(배관 또는 저장탱크를 통하여 공급받은 도시가스를 압축하여 자동차에 충전하는 시설, 이하 "충전시설"이라 한다)의 시설·기술·검사에 적용한다.

1.2 기준의 효력

1.2.1 이 기준은 「도시가스시업법」(이하 "법"이라 한다) 제17조의5제2항에 따라 「고압가스 안전관리법」제33조의2에 따른 가스기술기준위원회의 심의 · 의결(안건번호 제2021-7호, 2021년 9월 10일)을 거쳐 산업통상자원부장관의 승인(산업통상자원부 공고 제2021-699호, 2021년 10월 8일)을 받은 것으로, 법 제17조의5제1항에 따른 상세 기준으로서의 효력을 가진다.

1.2.2 이 기준을 지키고 있는 경우에는 법 제17조의5제4항에 따라 규칙 별표 6의2 제1호에 적합한 것으로 본다. <개정 15. 8. 7., 18. 8. 10.>

1.3 용어 정의

이 기준에서 사용하는 용어의 뜻은 다음과 같다.

1.3.1 "기연성가스" 란 아크릴로니트릴 · 아크릴알데히드 · 아세트알데히드 · 아세틸렌 · 암모니아 · 수소 · 황화수소 · 시안화수소 · 일산화탄소 · 이황화탄소 · 메탄 · 염화메탄 · 브롬화메탄 · 에탄 · 염화에탄 · 염화메탄 · 에틸렌 · 산화에틸렌 · 프로판 · 사이크로프로판 · 프로필렌 · 산화프로필렌 · 부탄 · 부타디엔 · 부틸렌 · 메틸에테르 · 모노메틸아민 · 디메틸아민 · 트리메틸아민 · 에틸아민 · 베젠 · 에틸벤젠, 그 밖에 공기 중에서 연소하는 가스로서, 폭발한계(공기와 혼합된 경우 연소를 일으킬 수 있는 공기 중의 가스 농도의 한계를 말한다. 이하 같다)의 하한이 10퍼센트 이하인 것과 폭발한계의 상한과 하한의 차가 20퍼센트 이상인 것을 말한다.

1.3.2 "액화가스" 란 가압 · 냉각 등의 방법으로 액체 상태로 되어 있는 것으로서, 대기압에서의 비점이 섭씨 40도 이하 또는 상용의 온도 이하인 것을 말한다.

- 1.3.3 "압축가스" 란 일정한 압력으로 압축되어 있는 도시가스를 말한다.
- 1.3.4 "저장설비" 란 도시가스를 저장하기 위한 설비로서, 저장탱크 및 충전용기 보관실을 말한다.
- 1.3.5 "저장탱크" 란 도시가스를 충전 · 저장하기 위하여 지상 또는 지하에 고정 설치된 탱크를 말한다.
- 1.3.6 "차량에 고정된 탱크" 란 도시가스의 수송 및 우반을 위하여 차량에 고정 설치된 탱크를 말한다.
- 1.3.7 "충전용기" 란 도시가스의 충전 질량 또는 충전 입력의 2분의 1 이상이 충전되어 있는 용기를 말한다.
- 1.3.8 "잔가스용기" 란 도시가스의 충전 질량 또는 충전 압력의 2분의 1 미만이 충전되어 있는 용기를 말한다.
- 1.3.9 "가스설비" 란 충전시설 중 도시가스가 통하는 부분을 말한다.
- 1.3.10 "고압설비" 란 가스설비 중 고압의 도시가스가 통하는 부분을 말한다.
- 1.3.11 "처리설비" 란 입축·액화 및 그 밖의 방법으로 도시가스를 처리할 수 있는 설비로서, 도시가스의 충전에 필요한 압축기, 기화기 및 펌프를 말한다.
- 1.3.12 "감압설비" 란 도시가스의 압력을 낮추는 설비를 말한다.
- 1.3.13 "처리능력"이란 처리설비 또는 감압설비에 따라 압축·액화나 그 밖의 방법으로 1일에 처리할수 있는 도시가스의 양(온도 섭씨 0도, 게이지 압력 0파스칼의 상태를 기준으로 한다. 이하 같다)을 말한다.
- 1.3.14 "불연재료" 란 「건축법 시행령」 제2조제1항제10호에 따른 재료를 말한다.
- 1.3.15 "방호벽" 이란 높이 2미터 이상, 두께 12센타미터 이상의 철근콘크리트 또는 이와 동등 이상의 강도를 가진 것으로서, 2.7.2에서 정하는 벽을 말한다.
- 1.3.16 "보호시설" 이란 다음의 제1종보호시설 및 제2종보호시설을 말한다.

1.3.16.1 제1종보호시설

- (1) 다음 중 어느 하나에 해당하는 건축물((1-4)의 경우에는 건축물 또는 공작물) <개정 20. 9. 4.>
- (1-1) 「초·중등교육법」제2조에 따른 학교 및 「고등교육법」제2조에 따른 학교 <신설 20. 9. 4.>
- (1-2) 「유아교육법」제2조제2호에 따른 유치원 <신설 20. 9. 4.>
- (1-3) 「영유아보육법」제2조제3호에 따른 어린이집 <신설 20. 9. 4.>
- (1-4) 「어린이놀이시설 안전관리법」제2조제2호에 따른 어린이놀이시설 <신설 20. 9. 4.>
- (1-5) 「노인복지법」제36조제1항제2호에 따른 경로당 <신설 20. 9. 4.>

- (1-6) 「청소년활동진흥법」제10조제1호에 따른 청소년수련시설 <신설 20. 9. 4.>
- (1-7) 「학원의 설립·운영 및 과외교습에 관한 법률」제2조제1호에 따른 학원 <신설 20. 9. 4.>
- (1-8) 「의료법」제3조제2항제1호 및 제3호에 따른 병원급 의료기관 및 의원급 의료기관 <신설 20. 9. 4.>
- (1-9) 「도서관법」제2조제1호에 따른 도서관 <신설 20. 9. 4.>
- (1-10) 「전통시장 및 상점가 육성을 위한 특별법」제2조제1호에 따른 전통시장 <신설 20. 9. 4.>
- (1-11) 「공중위생관리법」 제2조제1항제2호 및 제3호에 따른 숙박업 및 목욕장업의 시설 <신설 20. 9. 4.>
- (1-12) 「영화 및 비디오물의 진흥에 관한 법률」 제2조제10호에 따른 영화상영관 <신설 20. 9. 4.>
- (1-13) 「건축법 시행령」 별표 1 제6호에 따른 종교시설 <신설 20. 9. 4.>
- (1-14) 「장사 등에 관한 법률」 제29조제1항에 따른 장례식장 <신설 20. 9. 4.>
- (2) 사람을 수용하는 건축물(「건축법」제2조제1항제2호에 따른 건축물을 말하며, 가설건축물과 「건축법 시행령」 별표 1 제18호가목에 따른 창고는 제외한다)로서 사실상 독립된 부분의 연면적이 1천 m² 이상인 것 <개정 20. 9. 4.>
- (3) 「건축법 시행령」 별표 1 제5호가목 · 나목 및 라목에 따른 공연장 · 예식장 · 전시장에 해당하는 건축물, 그 밖에 이와 유시한 시설로서 「소방시설 설치유지 및 안전관리에 관한 법률 시행령」 별표 4에 따라 산정된 수용인원이 300명 이상인 건축물 <개정 20.9.4
- (4) 「사회복지시업법」 제2조제4호에 따른 사회복지시설로서 사회복지시설 신고증에 따른 수용 정원이 20명이상인 건축물 <개정 20. 9. 4.>
- (5) 「문화재보호법」제2조제2항에 따른 지정문화재로 지정된 건축물 <개정 20. 9. 4.>

1.3.16.2 제2종보호시설

- (1) 「건축법 시행령」 별표 1제1호 및 제2호에 따른 단독주택 및 공동주택 <개정 20. 9. 4.>
- (2) 사람을 수용하는 건축물(「건축법」제2조제1항제2호에 따른 건축물을 말하며, 가설건축물과 「건축법 시행령」 별표 1 제18호가목에 따른 창고는 제외한다)로서 사실상 독립된 부분의 연면적이 100 m² 이상 1천 m² 미만인 것 <개정 20. 9. 4.>
- 1.3.17 "충전설비" 란 용기나 고압가스 용기가 적재된 바퀴가 달린 자동차(이하 "이동충전차량" 이라 한다) 또는 차량에 고정된 탱크에 도시가스를 충전하기 위한 설비로서 충전기 및 부속설비를 말한다.
- 1.3.18 "압축가스설비" 란 압축기를 통해 압축된 가스를 저장하기 위한 설비로서, 압력용기를 말한다.
- 1.3.19 "설계압력" 이란 용기 등의 각 부의 계산 두께 또는 기계적 강도를 결정하기 위하여 설계된 압력을 말한다.
- 1.3.20 "상용압력" 이란 내압시험압력 및 기밀시험압력의 기준이 되는 압력으로서, 사용 상태에서 해당 설비 등의 각 부에 작용하는 최고사용압력을 말한다.
- 1.3.21 "설정압력(set pressure)" 이란 안전밸브의 설계상 정해진 분출압력 또는 분출 개시 압력으로서, 명판에 표시된 압력을 말한다.

- 1.3.22 "축적압력(accumulated pressure)" 이란 내부 유체가 배출될 때 안전밸브에 의하여 축적되는 압력으로서, 그 설비 안에서 허용될 수 있는 최대 압력을 말한다.
- 1.3.23 "초과압력(over pressure)" 이란 안전밸브에서 내부 유체가 배출될 때 설정압력 이상으로 올라기는 압력을 말한다.
- 1.3.24 "평형 벨로즈형 안전밸브(balanced bellows safety valve)" 란 밸브의 토출측 배압 변화에 따라 성능 특성에 영향을 받지 않는 안전밸브를 말한다.
- 1.3.25 "일반형 안전밸브(conventional safety valve)" 란 밸브의 토출측 배압의 변화에 따라 직접적으로 성능 특성에 영향을 받는 안전밸브를 말한다.
- 1.3.26 "배압(back pressure)" 이란 배출물 처리설비 등으로부터 안전밸브의 토출측에 걸리는 압력을 말한다.

1.4 기준의 준용(내용 없음)

1.5 경과조치

1.5.1 필터 설치에 관한 경괴조치

2.4.4.2.2 (5)에 따른 필터는 이 기준 시행일부터 6월 이내에 이 기준에 적합하게 설치한다.

1.5.2 보호대 설치에 관한 경과조치 <신설 19. 4. 5.>

2019년 4월 5일 이전에 검사 또는 기술 검토를 받은 시설은 2.6.15의 개정 기준에도 불구하고 종전의 기준에 따를 수 있다.

1.5.3 강판제 방호벽 설치에 대한 경과조치 <신설 21. 1. 12.>

2021년 1월 12일 이전에 하가·검사 또는 기술검토를 받은 시설은 2.7.2.3.1의 개정 기준에도 불구하고 종전 기준을 따를 수 있다.

1.5.4 제조소의 저장탱크실 방수조치에 관한 경괴조치 <신설 21. 6. 8.>

2021년 6월 8일 이전에 설치된 저장탱크실은 2.3.3.1의 개정기준에 적합한 것으로 본다.

1.5.5 방류둑 설치에 관한 경과조치 <신설 21. 8. 9.>

2021년 8월 9일 이전에 설치된 시설은 2.7.1의 개정 기준에 적합한 것으로 본다.

1.6 용품 사용 제한

충전시설에 설치·사용하는 제품이 「고압가스 안전관리법」제17조 또는 「액화석유가스의 안전관리 및 사업법」 제20조에 따라 검사를 받아야 하는 것인 경우에는 그 검사에 합격한 것으로 한다. <개정 12. 1. 5.>

2. 시설 기준

2.1 배치 기준

2.1.1 보호시설과의 거리

2.1.1.1 저장설비는 그 외면으로부터 보호시설(사업소 안에 있는 보호시설 및 전용공업지역 안에 있는 보호시설은 제외한다)까지 표 2.1.1.1에 따른 안전거리를 유지한다. 다만, 시장·군수 또는 구청장은 필요하다고 인정되는 지역에 다음 기준에 일정 거리를 더하여 안전거리를 정할 수 있다.

처리능력 및 저장능력(X)	제1종보호시설	제2종보호시설	
1만 이하	17 m	12 m	
1만 초과	01	1.4 ***	
2만 이하	21 m	14 m	
2만 초과	94	10	
3만 이하	24 m	16 m	
3만 초과	07	10	
4만 이하	27 m	18 m	
4만 초과	20	90	
5만 이하	30 m	20 m	
5만 초과	30 m(기연성가스 저온 저장탱크는	20 m(가연성가스 저온 저장탱크는	
99만 이하	$\frac{3}{25}\sqrt{X+10000}\mathrm{m})$	$\frac{2}{25}\sqrt{X+10000}\text{m}$	
99만 초과	30 m	20 m(기연성가스 저온 저장탱크는 80	
33단 소파	(가연성가스 저온 저장탱크는 120 m)	m)	

표 2.1.1.1 보호시설과 저장설비와의 이격거리 <개정 13. 10. 14.>

[비고] 1. 위 표 중 각 처리능력 및 저장능력란의 단위 및 X는 1일간 처리능력 또는 저장능력으로서, 압축가스의 경우에는 m², 액화가스의 경우에는 kg으로 한다.

2. 동일 사업소 안에 2개 이상의 처리설비 또는 저장설비가 있는 경우에는 그 처리능력별 또는 저장능력별 로 각각 안전거리를 유지한다.

21.1.2 처리설비 · 압축가스설비로부터 30 m 이내에 보호시설(사업소 안에 있는 보호시설 및 전용공업지역 안에 있는 보호시설은 제외한다)이 있는 경우에는 처리설비 및 압축가스설비의 주위에 2.7.2.1에 따른 방호벽을 설치한다. 다만, 처리설비 주위에 방류둑을 설치한 경우에는 방호벽을 설치하지 않을 수 있다.

2.1.2 화기외의 거리

저장설비 · 처리설비 · 압축가스설비 및 충전설비의 외면과 전선, 화기(그 설비 안의 것은 제외한다)를 취급하는 장소 및 인화성물질 또는 기연성물질 저장소와의 사이에는 그 화기가 저장설비 · 처리설비 · 압축 가스설비 및 충전설비에 악영향을 미치지 않도록 다음 기준에 따른 거리를 유지한다.

- **2.1.2.1** 저장설비 · 처리설비 · 압축가스설비 및 충전설비는 고압전선(직류의 경우에는 750 V를 초과하는 전선을, 교류의 경우에는 600 V를 초과하는 전선을 말한다)까지 수평거리 5 m, 저압전선(직류의 경우에는 750 V 이하의 전선을, 교류의 경우에는 600 V 이하의 전선을 말한다)까지 1 m 이상의 거리를 유지한다.
- 2.1.2.2 저장설비·처리설비·압축가스설비 및 충전설비의 외면으로부터 화기(그 설비 안의 것은 제외한다)를 취급하는 장소까지는 8 m 이상의 우회거리를 유지한다.
- 2.1.2.3 저장설비·처리설비·입축가스설비 및 충전설비는 인화성물질 또는 가연성물질의 저장소로부터 8m 이상의 거리를 유지한다.
- 2.1.2.4 저장설비와 화기를 취급하는 장소와의 사이에는 그 저장설비로부터 누출된 가스가 유동하는 것을 방지하기 위하여 다음 기준에 따라 유동방지시설을 설치한다.
- 2.1.2.4.1 유동방지시설은 높이 $2 \, \mathrm{m}$ 이상의 내화성 벽으로 하고, 저장설비 등과 화기를 취급하는 장소 사이는 우회수평거리 $8 \, \mathrm{m}$ 이상을 유지한다.
- 2.1.2.4.2 불연성 건축물 안에서 화기를 사용하는 경우 저장설비 등으로부터 수평거리 8 m 이내에 있는 건축물 개구부는 방화문 또는 망입유리로 폐쇄하고 사람이 출입하는 출입문은 2중문으로 한다.

2.1.3 다른 설비와의 거리(내용 없음)

2.1.4 시업소 경계와의 거리

저장설비, 처리설비(충전설비는 제외한다. 이하 같다), 압축가스설비 및 충전설비는 그 외면으로부터 시업소 경계(바스 차고지 안에 설치한 경우 차고지 경계를 사업소 경계로 보며, 시업소 경계가 비다·호수·하천·도로 등인 경우에는 그 반대편 끝을 경계로 본다)까지 10 m 이상의 안전거리를 유지한다. 다만, 처리설비(액확산방지시설 안에 설치된 처리설비는 제외한다) 및 압축가스설비의 주위에 2.7.2.1에 따른 방호벽을 설치하는 경우에는 5 m 이상의 안전거리를 유지할 수 있다.

2.1.5 도로 경계외의 거리

충전설비는 2.1.4에 불구하고 「도로법」에 따른 도로 경계까지 5 m 이상의 거리를 유지한다.

2.1.6 철도와의 거리

저장설비·처리설비·압축가스설비 및 충전설비는 철도까지 30m 이상의 거리를 유지한다.

2.2 기초 기준

저장설비 · 압축가스설비 및 그 부속품의 기초는 지반 침하로 설비에 유해한 영향을 끼치지 않도록 하기 위하여 견고한 철근콘크리트로 하고, 다음 기준에 따라 설치한다.

2.2.1 지반 조사

- 221.1 고압설비(저장능력이 압축가스는 100 m², 액화가스는 1톤 미만인 저장탱크, 배관, 펌프 및 압축가는 제외한다. 이하 같다)를 설치하려는 경우에는 그 설치 장소에 고압설비에 유해한 영향을 미치는 부등침하 등의 원인이 있는지 제1차 지반 조사를 한다.
- 2.2.1.2 제1차 지반 조시는 해당 장소에서 과거 부등침하 등의 실적조사, 보링 등의 방법으로 실시한다.
- 2.2.1.3 제1차 지반 조사 결과 그 장소가 습윤한 토지, 매립지로서 지반이 연약한 토지, 급경사지로서 붕괴의 우려가 있는 토지, 그밖에 사태(沙汰), 부등침하 등이 일어나기 쉬운 토지인 경우에는 그 정도에 따라 성토, 지반 개량, 옹벽 설치 등의 조치를 강구한다.
- 221.4 2.2.1.3의 조치를 강구한 후 그 지반의 허용지지력도 또는 기초파일첨단(尖端)의 지반허용지지력을 구하기 위하여 필요할 경우 다음 방법에 따라 제2차 지반 조시를 한다.
- 2.2.1.4.1 보링(boring)조사로 지반의 종류에 따라 필요한 깊이까지 굴착한다.
- 2.2.1.4.2 표준관입시험(標準貫入試驗)은 KS F 2307 흙의 표준 관입 시험 방법(2007. 9. 10.)에 따라 N값을 구한다.
- 2.2.1.4.3 베인(vane)시험은 베인시험용 베인을 흙 속으로 밀어 넣고 이를 회전하여 최대 토크(torque) 또는 모멘트를 구한다.
- 2.2.1.4.4 토질시험은 KS F 2314(흙의 일축 압축시험)에 따라 지반의 점착력, 지반의 단위 체적중량 및 1축 압축강도를 구하거나 3축 압축시험(원통형 시료에 고무 막을 씌운 것을 액체 속으로 넣어 측압 및 수직압을 기한 상태에서 시료의 용적 변화를 측정하는 방법으로 한다) 또는 직접전단(鄭新)시험(시료를 상하로 분리된 전단상자에 넣어 전단시험기로 전단력을 기하려는 방향과 직각의 방향으로 압축력을 가한 후 전단력을 기하여 전단하는 것으로 한다)에 따라 지반의 점착력 또는 내부 마찰력을 구한다.
- 2.2.1.4.5 평판 재하시험(評判載話誌驗)은 KS F 2310(도로의 평판 재하시험 방법)에서 정하는 방법에 준해서 시험하여 항복하중(降伏荷重) 및 극한하중(極限荷重)을 구한다.
- 221.46 파일 재하시험은 수직으로 박은 파일에 수직정하중(垂直新運)을 걸어 그 때의 하중과 침하량을 측정하는 방법으로 항복하중 및 극한하중을 구한다.
- 221.5 2.2.1.4의 제2차 지반 조사 결과를 기초로 식(2.1)이나 식(2.2)에 따라 그 지반의 허용지지력도를

구한다. 다만, 지반의 종류가 확인된 경우의 지반 허용지지력도는 그 지반의 종류에 따라 각각 표 2.21.5①의 값(2가지 이상의 종류로 된 지반은 가장 작은 값)으로 한다.

표 2.2.1.5① 지반의 종류에 따른 허용지지력도

지반의 종류	허용지지력도(MPa)	지반의 종류	허용지지력도(MPa)
암반	1	조밀한 모래질 지반	0.2
단단히 응결된 모래층	0.5	단단한 점토질 지반	0.1
황토흙	0.3	점토질 지반	0.02
조밀한 자갈층	0.3	단단한 롬(loam)층	0.1
모래질 지반	0.05	롬(loam)층	0.05

$$\begin{aligned} \mathbf{q}_{\mathrm{a}} &= \frac{1}{3} \left(\alpha \, C N_c + \frac{1}{10^6} \beta \gamma_1 B N_r + \frac{1}{10^6} \gamma_2 D_f N_q \right) \; \cdots \; (2.1) \\ \mathbf{q}_{\mathrm{a}} &= \frac{1}{3} \, N' \gamma_2 D_f + q_t \; \cdots \; (2.2) \end{aligned}$$

여기에서

qa : 지반의 허용지지력도(단위 : MPa)

 α 및 β : 기초하중면의 형상에 따른 표 2.2.1.5②에 기재하는 형상계수

표 2.2.1.5② 기초하중면의 형상계수

계수	フ]さ	초하중면의 형상
AIT	원형	원형이외의 형상
α	1.3	1.0+0.3 B/L
β	0.3	0.5-0.1 B/L

[비고] : 위 표에서 B 및 L은 각각 기초하중면의 짧은 변 또는 지름 및 긴 변 또는 긴 지름의 길이(m)를 표시한다.

C: 기초하중면 아래에 있는 지반의 점착력(IPI) 으로서, 3축 압축시험 결과[모어의 응력원(mohr's circle)을 그려서 구한 값I, 1축 압축시험의 결과(흐트러지지 않는 시료의 1축 압축시험 강도의 1/2) 또는 식(2.3)에 따라 얻는 값

$$\frac{0.06M}{\pi D^2(3H+D)}$$
··· (2.3)

여기에서

M: 베인시험에서 최대 토크 또는 모멘트(N·cm)

D: 베인의 직경(cm)

H: 베인의 축 방향의 길이(cm)

B: 기초하중면의 짧은 변 또는 지름(m)

 $N_c,\ N_r$ 및 N_q : 지반의 내부 마찰력에 따른 표 2.2.1.53에 기재하는 지지력 계수

내부마찰각 지지력 계수 0 5 10 15 20 25 28 32 36 40이상 N_c 5.3 5.3 5.3 6.5 7.9 9.9 11.4 20.9 42.2 95.7 N_r 0 0 0 1.2 2.0 3.3 4.4 10.6 30.5 114.0 5.9 7.6 83.2 3.0 3.4 3.9 4.7 9.1 16.1 33.6 N_{q}

표 2.2.1.5③ 지지력 계수

[비고] 1. 내부 마찰각은 직접전단시험의 결과(수직응력: 전단응력선도의 경시각으로부터 구한 값) 또는 3축 입축시험의 결과(모아의 응력원을 그려서 구한 값)로구한 값 또는 $\sqrt{15}$ N + 15 (N은 표준관입시험에 의한 30cm 당타격 횟수)로 한다. 2. 표 2.2.1.5③에 기재한 내부 마찰각 이외의 내부 마찰각에 따른 Nc, Nr, Nq는 동표에 기재한 수치를 각각 직선적으로 보간(補間) 한 수치로 한다.

 γ_1 : 기초하중면 이래에 있는 지반의 단위체적중량 또는 지하수면 이래에 있는 경우에는 수중 단위체적중 량 (N/m^2)

 γ_2 : 기초하중면보다 위쪽에 있는 지반의 평균 단위체적중량 또는 지하수면 아래에 있는 경우에는 수중 단위체적중량(N/m')

D: 기초에 근접한 최저 지반면으로부터 기초하중면까지의 깊이(m)

Q: 평판재하시험에 의한 항복하중도의 1/2의 수치 또는 극한응력도의 1/3의 수치 중 작은 것(N/IPa)

N': 기초하중면 아래의 지반의 종류에 따른 표 2.2.1.54에 기재한 계수

계수N'	지 반 의 종 류			
12	단단히 응결된 모래 또는 이와 유사한 지반			
9	조밀한 모래질 지반 또는 이와 유사한 지반			
6	단단한 점토질 지반 또는 이와 유시한 지반			
3	모래질 지반 또는 이와 유사한 지반			
3	점토질 지반 또는 이와 유사한 지반			

표 2.2.1.5④ 지반의 종류에 따른 계수

2.2.2 기초공사

2.2.2.1 기초는 2.2.1.5의 식(2.1) 또는 식(2.2)에 따라 구한 지반의 허용지지력 값이 해당 가스설비 등 그 내용물 및 그 기초의 단위면적당 하중을 초과하도록 공사한다. 다만, 저장능력이 압축가스는 100 ㎡, 액화가스는 1톤 미만인 저장탱크의 경우에는 콘크리트 기초로 공사할 수 있다.

2.2.2 안전 확보상 2.2.1.3의 방법을 따르는 것이 곤란한 지반에서는 기초파일로 보강한 후 기초공사를 한다. 이 경우 2.2.2.2.1이나 2.2.2.2.2에서 정하는 기초파일 첨단의 지반허용지지력, 기초파일과 그주위의 지반과의 마찰력 또는 기초파일의 허용지지력의 값이 해당 가스설비 등 그 내용물 및 기초의 하중을 초과하도록 공사한다.

2.2.2.1 지지파일은 다음 식에 따라 계산한 기초파일 첨단의 지반허용지지력 또는 기초파일의 허용응력 (주로 압축응력으로 하고, 필요에 따라 굽힘응력 또는 전단응력을 고려한 것으로 한다) 중에서 작은 값으로 한다.

$$R_a = q_a A_P$$

$$R_a = Q_t$$

$$R_a = \frac{F}{5S + 0.1}$$

$$R_a = -\frac{30}{3} N A_p$$

여기에서

Ra: 기초파일첨단의 지반허용지지력(N)

qa: 식(2.1)이나 식(2.2)에 따라 계산한 지반의 허용지지력도(N/m²)

Ap: 기초파일첨단의 유효 단면적(m²)

Q : 파일 재하시험에 의한 항복하중의 1/2 수치 또는 극한응력의 1/3 수치 중 작은 값(N)

F: 해머 타격에너지(J)

S: 기초파일의 최종 관입량(m)

N: 기초파일첨단 지반의 표준관입시험에 의한 타격 횟수(15를 초과할 때는 식(2.4)의 N'값으로 한다)

$$N' = 15 + \frac{1}{2}(N - 15) \cdots (2.4)$$

여기에서

N : 실 타격 횟수

N': 수정 N값

2.2.2.2 마찰파일은 다음 식에 따라 계산한 기초파일과 주위의 지반과의 마찰력 또는 기초파일의 허용지지력 중 작은 값으로 한다.

$$R_a = Qt$$

$$R_a = \frac{1}{3}\psi LC_a$$

여기에서

Ra: 기초파일과 그 주위의 지반과의 마찰력(N)

Q: 2.2.2.2.1의 Q와 같음

 ψ : 기초파일의 둘레 길이(m)

L : 기초파일의 매립 깊이(m)

Ca : 지반의 1축 압축강도의 1/2(3을 초과할 때는 3으로 한다) (N/m²)

2.2.2.3 저장탱크(저장능력이 압축가스는 100 ㎡, 액화가스는 1톤 이상의 것에만 적용한다)의 지주(지주가 없는 저장탱크는 아랫부분)는 부등침하로 그 설비에 유해한 영향을 끼치지 않도록 그림 2.2.2.3과 같이 동상(同上)의 수평기초면(2.2.1.4 및 2.2.1.5의 방법을 따르는 것이 안전 확보상 지장이 있는 지반은 기초파일로 보강한 것)에 설치하고, 지주 상호간은 단단히 연결한다.

그림 2.2.2.3 저장탱크의 수평기초면

2.2.3 저장탱크 고정

저장탱크(저장능력이 압축가스는 100 m², 압축가스는 1톤 미만인 저장탱크는 제외)를 기초에 고정하는 방법은 다음 기준에 따른다.

2.2.3.1 저장탱크를 기초에 고정할 때는 앵커볼트(기초 중의 철근에 용접하거나, 콘크리트로 기초에 고정한 것에만 적용한다) 또는 앵커스트랩(anchor strap) (기초 중의 철근에 용접하거나 콘크리트로 기초에 고정한 것 또는 기초를 관통하여 기초의 바닥면에 고정한 것에만 적용한다)에 따라 고정한다.

2.2.3.2 앵커볼트 · 너트 · 평와셔 및 앵커스트랩의 재료는 그 사용 온도에 따라 다음 규격에 적합한 것 또는 이들과 동등 이상의 강도를 가진 것 중 적당한 것으로 한다.

- (1) KS B 1012(6각 너트)
- **(2)** KS B 1326(평와셔)
- (3) KS D 3503(일반 구조용 압연강재)
- (4) KS D 3504(철근콘크리트 봉강)
- (5) KS D 3541(저온압력용기용 탄소강강판)
- (6) KS D 3586(저온압력용기용 니켈강판)
- (7) KS D 3705(열간 압연 스테인리스 강판 및 강대)
- (8) KS D 3706(스테인리스 강봉)
- (9) KS D 3867(기계 구조용 합금강 강재) <개정 14. 11. 17.>
- (10) SPS-KOSA0028-D3723-5093(특수 볼트용 합금봉강)1) <개정 16. 1. 8.>

2.2.3.3 앵커볼트의 모양, 치수 및 소요 수량의 예는 표 2.2.3.3 및 그림 2.2.3.3와 같다. 다만, 그 치수 및 소요 수량은 앵커볼트의 지름 및 강도(인장강도 및 전단강도)와 이에 작용하는 하중과의 관계에 대한 강도를 계신하여 구한 치수 및 수량으로 할 수 있다.

	치수		저장능력(T)별 앵커볼트의 호칭지름별 소요수량										
호칭지름 나사길이 :	전 길이 -	1	6	10	15	20	30	40	50	60	70	80	
오성시급	나사원이	선 설이 	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т
20	50	250	4	8	_	_	_	_	_	_	_	_	_
24	63	315	_	8	8	_	_	_	_	_	_	_	_
30	80	400	_	_	_	8	8	8	8	_	_	_	_
36	90	500	_	_	_	_	_	_	_	8	8	8	8

표 2.2.3.3 앵커볼트의 치수 및 소요 수량

그림 2.2.3.3 앵커볼트의 치수 표시

2.2.3.4 수평 원통형(水平圓筒形) 저장탱크의 안쪽 앵커볼트는 그림 2.2.3.4의 예와 같이 고정한다.

그림 2.2.3.4 앵커볼트의 고정 방법

2.2.3.5 수평 원통형 저장탱크 가대(架臺)의 지지 간격(span)이 5 m 이상인 저장탱크의 유동 측 가대에 접하는 기초 설치면과 가대 바닥면과의 사이에 다음 기준에 따라 미끄럼판을 설치한다.(그림 2.2.3.5참조)

2.2.3.5.1 미끄럼판은 기초에 튼튼하게 고정하고 가대가 저장탱크의 전후 방향으로 용이하게 미끄러질 수 있는 구조로 한다. 다만, 이 경우 미끄럼판은 가대의 바닥면보다 작지 않은 것으로 한다.

¹⁾ 국가기술표준원의 국기표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

2.2.3.5.2 미끄럼판(저온저장탱크의 것은 제외한다)의 재료는 KS D 3503(일반 구조용 압연강재)으로 하고, 두께는 12 mm 또는 16 mm를 표준으로 한다.

2.2.3.5.3 미끄럼판의 면은 휨 또는 끝 굽힘이 없는 것으로 한다.

그림 2.2.3.5 미끄럼판의 설치 방법

223.6 구형 저장탱크의 앵커볼트는 그림 2.2.3.6 또는 이와 동등 이상의 효과를 갖는 방법으로 설치한다.

그림 2.2.3.6 구형 저장탱크 지주와 기초에 앵커볼트 체결 방법

2.2.3.7 평저 원통형(平底圓筒型) 저장탱크의 앵커스트랩은 그림 2.2.3.7 또는 이들과 동등 이상의 효과를 갖는 방법으로 설치한다.

그림 2.2.3.7 평저형 저장탱크의 앵커스트립 설치 방법

2.3 저장설비 기준

2.3.1 저장설비 재료

저장탱크(가스홀더를 포함한다)의 재료는 그 저장탱크를 보호하고 그 저장탱크로부터의 가스 누출을 방지하기 위하여 사용 조건에 적합한 것을 사용한다.

2.3.2 저장설비 구조

저장탱크(가스홀더를 포함한다)는 그 저장탱크를 보호하고 그 저장탱크로부터의 가스 누출을 방지하며, 지진 발생 시 저장탱크를 보호하기 위하여 다음 기준에 적합한 구조로 설치한다.

23.21 저장탱크 및 가스홀더는 가스가 누출되지 않는 구조로 하고, 5 m² 이상의 가스를 저장하는 것에는 가스 방출장치를 설치한다.

23.2.2 저장능력이 5톤 또는 500 m² 이상인 저장탱크 및 입력용기(반응 · 분리 · 정제 · 증류 등을 행하는 탑류로서, 높이 5 m 이상인 것에만 적용함)와 저장탱크 및 압력용기의 지지구조물 및 기초는 KGS GC203(가스시설 및 지상 가스배관 내진설계 기준)에 따라 지진에 안전한 구조로 설계 · 제작 및 설치하고, 그 성능을 유지한다. <개정 18. 10. 16.>

2.3.3 저장설비 설치

2.3.3.1 저장탱크 설치

2.3.3.1.1 설치 위치

저장설비는 지상에 설치하는 것을 원칙으로 한다.

2.3.3.1.2 저장탱크 간 거리

- (1) 가연성가스의 저장탱크(저장능력이 $300 \, \mathrm{m}^1$ 또는 3톤 이상의 것에만 적용한다)와 다른 가연성가스 또는 산소의 저장탱크와의 사이에는 두 저장탱크의 최대 지름을 합산한 길이의 4분의 1 이상에 해당하는 거리(두 저장탱크의 최대 지름을 합산한 길이의 4분의 1이 $1 \, \mathrm{m}$ 미만인 경우에는 $1 \, \mathrm{m}$ 이상의 거리)를 유지한다.
- (2) (1)에 따른 거리를 유지하지 못하는 경우에는 다음 기준에 따라 물분무장치를 설치한다.
- (2-1-1) 물분무장치는 저장탱크의 표면적 1 m^2 당 8 L/min을 표준으로 하여 계산된 수량을 저장탱크 전 표면에 균일하게 방사할 수 있는 것으로 한다. 이 경우 보냉을 위한 단열재가 사용된 저장탱크는 다음과 같이 한다.
- (2-1-1-1) 그 단열재의 두께가 해당 저장탱크의 주변 화재를 고려하여 충분한 내화 성능을 가진 것[이하 (2)에서 "내화구조 저장탱크"라 한대은 그 수량을 4 L/min을 표준으로 하여 계신한 수량으로 한다.
- (2-1-1-2) 저장탱크가 두께 25 mm 이상의 암면 또는 이와 동등 이상의 내화 성능을 가진 단열재로 피복되고 그 외측을 KS D 3506(용융 아연 도금 강판 및 강대)에서 정한 두께 0.35 mm 이상의 SBHG2 또는 이와 동등 이상의 강도 및 내화 성능을 가진 재료로 피복한 것[이하 (2)에서 "준내화구조 저장탱크"라한대은 그 수량을 6.5 L/min을 표준으로 하여 계산한 수량으로 한다.
- (2-1-2) 소화전[호스 끝 압력이 0.3 씨 이상으로서, 방수능력 400 L/min 이상의 물을 방수할 수 있는 것을 말한다. 이하 (2)에서 같대]을 설치하는 경우에는 저장탱크 외면으로부터 40 m 이내에서 저장탱크에 어떤 방향에서라도 방사할 수 있는 것으로 하고, 해당 저장탱크의 표면적 30 m'당 1개의 비율로 계산된 수 이상으로 한다. 다만, 내화구조 저장탱크는 해당 저장탱크의 표면적 60 m'당, 준내화구조 저장탱크는 표면적 38 m' 당 1개의 비율로 계산된 수로 할 수 있다.
- (2-2) 기연성가스 저장탱크가 상호 인접된 경우 또는 산소 저장탱크와 인접한 경우로서, 인접한 저장탱크 간의 거리가 두 저장탱크의 최대 직경을 합산한 길이의 4분의 1을 유지하지 못한 경우[(2-1)의 경우는 제외한대에는 (2-2-1)이나 (2-2-2)에 따른 물분무장치 또는 (2-2-1)과 (2-2-2)의 기준을 혼합한 물분무장치를 설치한다.
- (2-2-1) 물분무장치는 저장탱크의 표면적 1 ㎡당 7 L/min을 표준으로 계산된 수량을 저장탱크의 전 표면에 균일하게 방사할 수 있도록 한다. 다만, 내화구조 저장탱크는 2 L/min을, 준내화구조 저장탱크는 4.5 L/min을 표준으로 계산된 수량으로 한다.
- (2-2-2) 소화전을 설치하는 경우에는 저장탱크 외면으로부터 $40\,\mathrm{m}$ 이내에서 저장탱크에 어떤 방향에서 도 방사되는 것으로서, 저장탱크의 표면적 $35\,\mathrm{m'}$ 당 1개의 비율로 계산된 수 이상으로 한다. 다만, 내화구조 저장탱크는 그 저장탱크 표면적 $125\,\mathrm{m'}$, 준내화구조 저장탱크는 그 저장탱크 표면적 $55\,\mathrm{m'}$ 당 1개의 비율로 계산된 수 이상으로 한다.
- (2-3) 물분무장치 등은 해당 저장탱크의 외면에서 15 m 이상 떨어진 안전한 위치에서 조작할 수 있어야 하고, 방류둑을 설치한 저장탱크에는 그 방류둑 밖에서 조작할 수 있도록 한다. 다만, 저장탱크의 주위에 예상되는 화재에 대비하여 유효하고 안전한 차단장치를 설치한 경우에는 본문의 물분무장치조작 기준을 적용하지 않을 수 있다.
- (2-4) 물분무장치 등은 동시에 방사할 수 있는 최대 수량을 30분 이상 연속하여 방사할 수 있는 수원에

접속된 것으로 한다.

2.3.3.1.3 저장탱크의 지하 설치

지하에 설치하는 저장탱크는 다음 기준에 따라 설치한다.

- (1) 저장탱크의 외면에는 부식 방지 코팅과 전기적 부식 방지를 위한 조치를 한다.
- (2) 저장탱크는 천장·벽 및 바닥의 두께가 각각 30 cm 이상인 방수조치를 한 철근콘크리트로 만든 곳(이하 "저장탱크실"이라 한다)에 설치한다.
- (3) 저장탱크실은 표 2.3.3.1.3의 레디믹스트 콘크리트(ready-mixed concrete)를 사용하여 수밀(水密) 콘크리트로 시공한다.

항 목	규 격
굵은 골재의 최대 치수	25 mm
설계강도	20.6-23.5 Ma
슬럼크(slump)	120-150 mm
공기량	4 %
물-결합재비	50 % 이하
기타	KS F 4009(레디믹스트 콘크리트)에 따른 규정

표 2.3.3.1.3 레디믹스트 콘크리트 규격 <개정 21. 6. 8.>

[비고] 수밀콘크리트의 시공 기준은 건설교통부가 제정한 "콘크리트 표준 시방서"를 준용한다.

- (4) 지하수위가 높은 곳 또는 누수의 우려가 있는 경우에는 콘크리트를 친 후 저장탱크실의 내면에 무기질계 침투성 도포방수제로 방수하고, 먼저 타설된 콘크리트와 나중에 타설된 콘크리트 사이에는 지수판 등으로 물이 저장탱크실 안으로 흐르지 않도록 조치한다. <개정 21. 6. 8.>
- (5) 저장탱크실의 콘크리트제 천장으로부터 맨홀·돔·노즐 등(이하 "돌기물"이라 한다)을 돌출시키기 위한 구멍 부분은 콘크리트제 천장과 돌기물이 접할 때 저장탱크 본체와 부착 부에 응력 집중이 발생하지 않도록 돌기물의 주위에 돌기물의 부식 방지 조치를 한 외면(이하 "외면 보호면"이라 한다)으로부터 $10 \, \mathrm{mm}$ 이상의 사이를 두고 강판 등으로 만든 프로텍터를 설치한다. 또한, 프로텍터와 돌기물의 외면 보호면 사이에는 빗물의 침입을 방지하기 위하여 피치, 아스팔트 등을 채운다.
- (6) 저장탱크실에 물이 침입한 경우 및 기온 변화 때문에 생성된 이슬방울의 굄 등에 대비하여 저장탱크실의 바닥은 물이 빠지도록 구배를 갖도록 하고 집수구를 설치한다. 이 경우 집수구에 고인 물은 쉽게 배수될 수 있도록 한다.
- (7) 지면과 거의 같은 높이에 있는 가스검지관, 집수관 등의 입구에는 빗물 및 지면에 고인 물 등이 저장탱크실 내로 침입하지 않도록 덮개를 설치한다.
- (8) 저장탱크의 주위에는 마른 모래를 채운다.
- (9) 지면에서 저장탱크의 정상부까지의 깊이는 60 cm 이상으로 한다.
- (10) 저장탱크를 2개 이상 인접하여 설치하는 경우에는 상호 간에 1 m 이상의 거리를 유지한다.
- (11) 저장탱크를 매설한 곳의 주위에는 지상에 경계표지를 설치한다.
- (12) 저장탱크에 설치한 안전밸브에는 지면에서 5m 이상의 높이에 방출구가 있는 가스빙출관을 설치한다.

2.3.3.1.4 저장탱크(처리설비)의 실내 설치

저장탱크 및 처리설비를 실내에 설치하는 경우에는 다음 기준에 따른다.

- (1) 저장탱크실과 처리설비실은 각각 구분하여 설치하고, 기계환기시설을 갖춘다.
- (2) 저장탱크실 및 처리설비실은 천장·벽 및 바닥의 두께가 30 cm 이상인 철근콘크리트로 만든 실로서, 방수처리가 된 것으로 한다.
- (3) 기연성가스 또는 독성가스의 저장탱크실과 처리설비실에는 가스누출검지경보장치를 설치한다.
- (4) 저장탱크의 정상부와 저장탱크실 천장과의 거리는 60 cm 이상으로 한다.
- (5) 저장탱크를 2개 이상 설치하는 경우에는 저장탱크실을 각각 구분하여 설치한다.
- (6) 저장탱크 및 그 부속시설에는 부식방지도장을 한다.
- (7) 저장탱크실 및 처리설비실의 출입문은 각각 따로 설치하고, 외부인이 출입할 수 없도록 자물쇠 채움 등의 조치를 한다.
- (8) 저장탱크실 및 처리설비실을 설치한 주위에는 경계표지를 한다.
- (9) 저장탱크에 설치한 안전밸브는 지상 5 m 이상의 높이에 방출구가 있는 가스 방출관을 설치한다.

2.3.3.2 저장실 설치(해당 없음)

2.3.3.3 저장탱크 부압 피괴 방지조치

가연성가스 저온저장탱크에는 그 저장탱크의 내부 입력이 외부 압력보다 낮아짐에 따라 그 저장탱크가 파괴되는 것을 방지하기 위하여 다음의 부압 파괴 방지설비를 설치한다.

- (1) 압력계
- (2) 압력경보설비
- (3) 그 밖에 다음 중 어느 하나 이상의 설비
- (3-1) 진공안전밸브
- (3-2) 다른 저장탱크 또는 시설로부터의 가스 도입배관(균압관)
- (3-3) 압력과 연동하는 긴급 차단장치를 설치한 냉동 제어설비
- (3-4) 압력과 연동하는 긴급 차단장치를 설치한 송액설비

2.3.3.4 저장탱크 괴충전 방지 조치(해당 없음)

2.3.3.5 저장설비 보호조치

저장설비는 충전소에 출입하는 자동차의 진 \cdot 출입로 이외의 장소에 설치하며, 자동차 충격 등으로부터 저장설비를 보호할 수 있는 조치를 한다. 다만, 2.7.2.1에 따른 방호벽 또는 방류둑을 설치한 경우에는 자동차 충격 등으로부터 저장설비를 보호할 수 있는 조치를 하지 않을 수 있다.

2.4 기스설비 기준

2.4.1 기스설비 재료

처리설비 · 압축가스설비 및 충전설비의 재료는 도시가스의 취급에 적합한 기계적 성질 및 화학적 성분을 가진 것을 사용한다.

2.4.2 기스설비 구조(내용 없음)

2.4.3 기스설비 두께 및 강도

가스설비는 그 도시가스를 안전하게 취급할 수 있도록 다음 기준에 적합한 강도 및 두께를 가진 것으로 한다.

- 2.4.3.1 고압설비는 상용압력의 2배 이상의 압력에서 항복을 일으키지 않는 두께를 가지고, 상용의 압력에 견디는 충분한 강도를 가진 것으로 한다.
- 2.4.3.2 고압설비의 두께 계산 방법은 다음과 같다.
- **24.3.21** 상용압력이 29.4 № 이하인 고압설비(다층 원통은 제외한다)의 두께 계산은 KS B 6750(압력용 기-설계 및 제조 일반)에 따른다. <개정 16. 1. 8.>
- 2.4.3.2.2 사용압력이 98 № 미만인 고압설비(다층 원통은 제외한다)의 두께 계산은 다음 식에 따른다. (1) 원통형의 것

표 2.4.3.2.2① 원통형 고압설비의 두께 계산식

고압설비의 구분 고압설비의 부분		동체 외경과 내경의 비가 1.2 미만인 것 동체 외경과 내경의 비가 1.2 ○			
	동 판	$t = \frac{PD}{0.5f\eta - P} + C$	$t = \frac{D}{2} \left(\sqrt{\frac{0.25 f \eta + P}{0.25 f \eta - P} - 1} \right) + C$		
접시형의 경우		$t = \frac{PDW}{f\eta - P} + C$			
경판 -	반타원체형의 경우		$t = \frac{PDV}{f\eta - P} + C$		
	원추형의 경우	$t = \frac{PD}{0.5f\eta\cos a - P} + C$			
	그 밖의 경우	$t = d\sqrt{\frac{KP}{0.25f\eta}} + C$			

[비고]

위의 표에서 "반타원체형" 이란 내면의 장축부 길이와 단축부 길이의 비가 2.6 이하인 것을 말한다.

(2) 구형의 것

$$t = \frac{PD}{f\eta - P} + C$$

- (1) 및 (2)에서
- t: 두께(mm)의 수치
- P: 상용압력(MPa)의 수치. 다만, 기운데가 볼록한 경판은 그 1.67배의 압력수치
- D: 원통형의 경우 동판은 동체의 내경, 접시형 경판은 그 중앙 만곡부의 내경, 반타원체형 경판은

반타원체 내면의 장축부 길이, 원추형 경판은 그 단곡부의 내경에서 그리고 구형의 경우에는 내경에서 각각 부식 여유에 상당하는 부분을 뺀 부분의 수치(mm)

W: 접시형 경판의 형상에 따른 계수로서, 다음 식으로 계산한 수치

$$\frac{3+\sqrt{n}}{4}$$

여기에서 n은 경관 중앙 만곡부의 내경과 단곡부 내경과의 비를 표시한다.

V : 반타원형 경판의 형상에 따른 계수로서, 다음 식으로 계산한 수치

$$\frac{2+m^2}{3}$$

여기에서 m은 반타원체형 내면의 장축부 길이와 단축부 길이의 비를 표시한다.

d : 부식 여유에 상당하는 부분을 제외한 동체의 내경(mm). 다만, K에 관한 표 중 d에 대하여 따로 정한 경우에는 그 수치(mm)

K : 경판의 부착 방법에 따른 계수로서, 표 2.4.3.2.2②의 왼쪽란에 규정한 부착 방법에 따라서 각각 표 2.4.3.2.2②의 오른쪽란에 규정한 수치

표 2.4.3.2.2② 경판의 부착 방법에 따른 계수 K

부 착	방 법	K의 수치	
	경판이 리벳 또는 <u>볼</u> 트로 부착된 경우		
t	경판이 동판과 일체로 되어 있으며, d가 600mm 이하이고 t가 0.05d 이상인 경우	0.162	
용접부 	경판이 동판에 용접되어 있으며, d가 600 mm 이하이고 t가 0.05 d 이상인 경우		
-tstt	경판이 동판과 일체로 되어 있고, 단곡부 내면의 반지름이 동판 두께(ts)의 3배 이상인 경우		
- ts - t - t	경판이 동판에 용접되고 단곡부 내면의 반지름이 동판 두께(ts) 의 3배 이상인 경우	0.250	

	경판이 겹치기 리벳 이음매 또는 나사조임으로 부착되고 단곡부 내면의 반지름이 3t 이상인 경우	
나사 교원형	경판이 나시조임링으로 부착되는 경우	0.300
P III I	경판이 패킹을 끼워 나시조임링 및 볼트로 부착되는 경우	
-t-	경판이 그림과 같은 방법으로 동 판에 용접되는 경우	0.500
- t	경판이 그림과 같은 방법으로 동 판에 용접되고 동판 두께(ts)의 2배 이상인 경우	0.500
30도 이상 45도 이하	경판이 그림과 같은 방법으로 동 판에 용접되는 경우	0.500
	경판이 볼트로 그림과 같이 부착 되는 경우	0.3 + 1.4 Wa H(d+2ts) 위의 산식에서는 전 볼트에 작용하는 힘(단위:kg)의 수치, a는 볼트 중 심원의 지름에서 d와 동판 두께(ts) 의 2배를 뺀 길이(단위:㎜)의 1/2의 수치, H는 경판의 접촉면 외경내의 면적에 작용하는 힘(단위:kg)의 수 치를 표시한다.
패 및 P	경판이 볼트로 패킹을 끼워 동판 에 부착되는 경우	0.3 + 1.4 Wa Hd 위의 산식에서 W는 전 볼트에 작용하는 힘(단위:kg)의 수치, a는 볼트 중심원의 지름에서 d를 뺀 길이(단위:mm)의 1/2수치, H는 패킹 외경내의 면적에 작용하는 힘(단위: kg)의 수치를 표시한다.

그 밖의 경우 0.750

f: 재료의 항복점 $\sigma_y(N)$ 에 다음 표의 왼쪽란에 규정하는 재료의 구분에 따라서 각각 같은 표의 오른쪽란에 규정하는 수치를 곱한 수치 또는 재료의 인장강도 $\sigma_b(CCR): N$ 에의 수치. 다만 σ_b 는 재료 규격상의 최소인장강도로 하고, 규격이 없는 경우에는 재료의 인장시험의 결과에 따른다. σ_y 는 재료 규격상의 최소항복점 또는 0.2% 내력으로 하고, 규격이 없는 경우에는 재료의 인장시험 결과에 따른다.

재료의 구분	수 치
KS D 3515에 규정한 SWS에 상당하는 재료 이상.	3.4-2γ
다만, 재료의 항복점과 인장강도의 비가 0.9를 넘는	위 산식에서 γ 은 그 재료의 항복점과 인장강도 비
것은 제외한다.	(0.7미만의 경우에는 0.7)를 표시한다.
그 밖의 강	1.6

사용 온도가 상온 이상인 경우에는 상기 수치에서 다음 표에 규정하는 온도에 따른 강도저하계수를 곱한 것을 f로 한다.(참고 : σ_v 와 σ_b 를 혼용하지 말 것)

상용온도 $\mathbb{C}(\theta)$	조질고장력강	일반 저탄소강·비조질 저합금강 및 합금강
0~50	1	상용온도에서 재료의 항복점(또는 인장강도)
50~150	$1 - \frac{\theta - 50}{1,000}$	항복점(또는 인장강도)의 규격 최소치
150~350	0.9	다만, 위의 산식의 비가 1을 넘을 경우에는 1로 한다.

 α : 원추형 경판의 꼭지각의 1/2에 해당하는 각도

C: 부식 여유의 두께(mm)

 η : 동체의 길이 이음매 또는 경판의 중앙부 이음매효율로서, 다음 구분에 따른 수치

① 리벳 이음매의 경우에는 다음 두 가지 식으로 계산한 수치 중 작은 것으로 한다.

$$\frac{1 - \frac{d_r}{P}}{\frac{\pi dr^2 fs}{4Ptf}}$$

여기에서

dr : 리벳의 지름(mm)

P : 리벳 간의 피치(mm)

 f_s : 리벳의 전단강도(N/mm)

② 용접이음때의 경우에는 다음 표의 갑란에 규정한 구분에 따라 각각 같은 표의 을란에 규정한 수치

갑		일
용접이음매의 종류	방사선검사의 구분	용접이음매효율(%)
맞대기양면용접이음매 또는 이와 동등하다고 인정되는 맞대	A	100
기한면 용접이음매	В	95
1. 제1층을 불활성가스 아크용접 또는 뒷면 물결용접 등으	С	70
로 충분히 용입하고 뒷면을 매끈하게 한 한면 용접		
2. 같은 금속으로 된 받침쇠로 한면 맞대기 방법으로 받침		
쇠를 용접한 후 떼어 내고 뒷면을 매끄럽게 다듬질한 것		
3. 종류가 다른 재료의 받침쇠로 충분히 용입하고 뒷면을		
매끈하게 한 한면 용접		
받침쇠를 사용한 맞대기한면용접이음매로서, 받침쇠를 남기	A	90
는 경우	В	85
	С	65
맞대기한면용접이음매	_	60
양면전두께필렛겹치기이음매	_	55
플러그용접을 한 한면전두께필렛겹치기이음매	_	50
플러그용접을 하지 않은 한면전두께필렛겹치기 이음매	_	45

[비고]

- 1. 방사선 검사의 구분
- 1.1 A는 용접선의 전 길이에 방사선 검사를 하여 다음 2의 합격 가준에 적합한 것 이때 투과사진의 상질은 보통급으로 한다.
- 1.2 B는 길이이음매 및 원주이음매에서 각각 임의로 채취하되, 그 가운데 적어도 1개소 이상은 길이이음매와 원주이음매의 교차부를 포함한 용접선 전 길이의 20% 이상 길이에 방사선 검사를 하여 2의 합격 기준에 적합한 것. 이때 투과사진의 상질은 보통급으로 한다.
- 1.3 C는 방사선 검사를 하지 않은 것.
- 2. 방사선 검사의 합격 기준

방사선 검사의 결과가 KS B 0845(강 용접 이음부의 방사선투과검사)에 따른 등급 분류의 2류(범주2) 이상일 때에는 해당 방사선 검사에 합격된 것으로 한다. 다만 방사선검사에 합격한 경우에도 인장강도의 규격치가 568.4 N/mii 이상의 탄소강관을 사용한 고압설비 및 인장강도에 관계없이 강관의 두께가 25 mm 이상인 탄소 강관을 사용한 고압설비는 KS D 0213(강자성 재료의 자분탐상검사 방법 및 자분 모양 분류) 또는 KS B 0816(침투탐 상시험방법 및 지시모양의 분류)에 따른 탐상시험을 실시하여 표면 및 그 밖의 부분에 유해한 결함이 없는 것으로 한다. <개정 21.10.08.>

- 3. 결함부의 보수 및 재시험 방법
- 3.1 전 길이에 방사선 검사를 한 것은 불합격의 원인이 된 결함부를 완전히 제거하고 재용접하여 그 부분에 방사선 검사를 다시 하여 합격한 것으로 한다.
- 3.2 부분 방사선 검사를 한 것은 불합격된 부분에 인접한 2개소 또는 불합격된 방사선 사진을 대표하는 용접이음매, 이음매 부분 또는 이음매군 중 임의의 2개소에 방사선 검사를 한다. 다만, 그 검사를 생략하고 해당 용접이음매, 이음매 부분 또는 이음매군의 전 길이에 방사선 검사를 할 수 있다.
- 3.2.1 3.2에서 말한 2개소 모두 방사선 검사에 합격한 경우에는 해당 용접이음매, 이음매 부분 또는 이음매군의 최초의 방사선 검사에서 불합격된 곳의 결함부를 완전히 제거해 재용접하고 그 부분에 방사선 검사를 다시 하여이에 합격한 것은 방사선 검사에 합격한 것으로 한다.
- 3.2.2 3.2에서 말한 2개소 중 적어도 1개소가 방사선 검사에 불합격된 경우에는 해당 용접이음매, 이음매 부분

또는 이음매군이 전 길이가 불합격된 것으로 보고 용접을 다시 한다. 다만, 해당 용접이음매, 이음매 부분 또는 이음매군의 전 길이에 방사선 검사를 하여 불합격된 모든 부분의 결함부를 완전히 제거하여 재용접한 후 방사선 검사를 다시 하고 그 결과 합격한 경우에는 용접을 다시 하지 않을 수 있다.

33 외관검사, KS D 0213(강자성 재료의 자분탐상검사 방법 및 자분 모양 분류) 또는 KS B 0816(침투탐상시험 방법 및 침투 지시 모양의 분류)에 따른 탐상시험에 따라 검출된 균열 및 흠 등의 결함 부분은 이를 깎아 내고 용접으로 결함 부분의 보수를 한다. 다만, 결함을 제거하기 위하여 깎아 낸 부분의 깊이가 호칭판 두께의 7% 또는 3 ㎜ 중 적은 것을 넘지 않는 경우(부식 여유를 포함할 필요가 있는 두께 미만으로 되어서는 안 된다)는 결함을 제거한 후 평면으로 다듬질만 할 수 있다. <개정 21.10.08.>

3.4 3.3에 따른 보수 후 재열처리를 한 것은 재열처리 후 3.3의 탐상시험을 하여 합격한 것으로 한다. 이 경우용접으로 보수를 한 것은 각각의 방사선 검사의 구분에 따라 3.1과 3.2에 따라 시험을 하고 이에 합격한 것으로 한다.

2.4.4 기스설비 설치

2.4.4.1 기스설비 설치 위치

처리설비·압축가스설비 및 충전설비는 지상에 설치하는 것을 원칙으로 한다.

2.4.4.2 설치 방법

충전시설에 설치하는 처리설비·압축가스설비·충전설비·압축장치·기화장치 및 고정식 펌프 등은 그 충전시설의 안전성 및 충전작업의 안정성을 확보할 수 있도록 다음 기준에 따라 설치한다.

2.4.4.2.1 처리설비 및 압축가스설비

- (1) 압축가스설비의 모든 밸브와 배관 부속품의 주위에는 안전한 작업을 위하여 $1 \, \mathrm{m}$ 이상의 공간을 확보한다. 다만, 압축가스설비가 밀폐형 구조물 안에 설치된 경우로서, 유지 · 보수를 위한 문 또는 창문이 설치된 경우에는 $1 \, \mathrm{m}$ 이상의 공간을 확보하지 않을 수 있다.
- (2) 처리설비 및 압축가스설비는 불연재료로 격리된 구조물 안에 설치한다. 다만, 27.2.1에 따른 방호벽을 설치한 경우 또는 방류둑을 설치한 경우에는 불연재료로 격리된 구조물 안에 설치하지 않을 수 있다.
- (3) 처리설비 및 압축가스설비는 충분한 환기(환기구의 환기 가능 면적 합계가 바닥 면적 1 m'마다 300 cm' 이상)를 유지할 수 있도록 한다. 다만, 충분한 환기를 유지할 수 없을 경우에는 기계환기설비(환기능력이 바닥 면적 1 m'마다 0.5 m'/분 이상)를 갖추도록 한다.
- (4) 처리설비 및 압축가스설비는 충전소에 출입하는 자동차의 진·출입로 이외의 장소에 설치하며, 자동차 충격 등으로부터 처리설비 및 압축가스설비를 보호할 수 있는 조치를 한다. 다만, 2.7.2.1에 따른 방호벽 또는 방류둑을 설치한 경우에는 자동차로 인한 충격 등으로부터 처리설비 및 압축가스설비를 보호할 수 있는 조치를 하지 않을 수 있다.

2.4.4.2.2 압축장치

- (1) 압축장치에는 흡입측 가스압력맥동이 가스 배관으로 전파되는 것을 방지하기 위한 완충탱크 등을 설치한다. 이 경우 완충탱크 용량은 가스가 노즐장치 등으로부터 완충탱크로 회수될 때의 회수 압력이 흡입완충탱크의 안전장치 개방 압력에 도달하지 않는 용량으로 한다.
- (2) 압축장치의 입구측에는 공기가 흡입되는 것을 방지하는 장치를 설치한다.
- (3) 압축장치에는 입·출구측의 압력이 설정압력 이상 도달할 경우에 압력조절장치 및 압축장치를

자동으로 정지시키는 장치를 설치한다.

- (4) 압축장치에는 압축장치의 출구측 온도가 설정온도 이상 도달할 경우 압축장치를 자동으로 정지시키는 장치를 설치한다.
- (5) 압축장치에서 발생하는 오일을 제거하기 위하여 압축장치의 출구측에는 유분리기와 필터를 설치하고, 우선순위 패널(전단이나 후단)과 충전기(전단이나 내부)에는 필터를 설치한다. 다만, 무급유식 압축기의 경우에는 그렇지 않다.
- **(6)** 동절기용 압축기 오일의 유동점은 -18[°]C 이하인 것을 사용한다.

2.4.4.2.3 충전설비

- (1) 충전설비는 지상에 고정하여 설치한다.
- (2) 충전설비에는 충전 중인 압축 도시가스 자동차 용기가 최고충전압력에 도달하면 가스 공급이 자동으로 차단하도록 하는 장치를 설치한다.
- (3) 가스 충전구는 완전한 접속이 이루어지지 않을 경우 가스의 흐름을 차단하는 구조로 한다.

2.4.4.3 고정식 펌프 설치

- 2.4.4.3.1 펌프의 기초는 동결되지 않도록 설계 및 시공한다.
- 2.4.4.3.2 펌프 및 압축장치에는 차단밸브를 설치하고, 펌프와 압축장치를 병렬로 설치하려는 경우에는 토출배관에 역류 방지밸브를 각각 설치한다.
- 2.4.4.3.3 펌프에는 안전밸브 또는 릴리프밸브를 설치하여 펌프에 과압(過數)이 발생하지 않도록 한다.

2.4.4.4 기회장치 설치

- 2.4.4.4.1 기화장치는 펌프 또는 그 밖의 가압장치의 최대 토출 압력 이상에서 견디는 구조로 한다.
- 244.42 기화장치의 출구밸브 · 배관 구성 부품 및 출구밸브의 전단에 설치된 릴리프밸브 등은 설계온도를 영하 162 ℃ 이하로 한다.
- **24.4.4.3** 강제 기화장치에는 열원 차단장치를 설치하고, 현장 및 기화장치로부터 최소 15 m 이상 떨어진 위치에서 원격으로 작동이 가능한 것으로 한다.
- 2.4.4.4.4 여러 대의 기화장치가 조합된 경우에는 집합장치로 연결하고, 각각의 기화장치 입구 및 출구 측에 밸브를 설치한다.
- **2.4.4.4.5** 대기식 및 강제 기화장치가 액화도시가스 저장탱크로부터 15 m 이내에 설치되는 경우에는 기화장치로부터 3 m 이상 떨어진 액체 배관에 자동 차단밸브를 설치한다.
- **2.4.4.4.**6 2.4.4.4.5에 따른 자동 차단밸브는 기화장치 근처에서 화재가 발생하거나 기화장치 출구의 온도가 설정온도 이하로 떨어질 때 자동으로 차단되는 구조로 한다.

2.4.4.5 압력조정기 설치

충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 압력조정기를 설치한다.

- 2.4.4.5.1 압력조정기의 접속부와 각 압력실은 안전율이 최소한 4 이상 되도록 설계한다.
- 2.4.4.5.2 압력조정기의 파손을 방지하기 위하여 저압실에 안전장치를 부착하거나 저압실의 강도를 인입측 압력실의 사용압력(온도가 21 ℃인 가스를 설비에 완전히 채운 상태에서 측정한 압력을 말한다. 이하 같다)에 견딜 수 있도록 설계한다.
- 24.4.5.3 압력조정기는 빗물의 결빙, 눈, 진눈깨비 등으로 인하여 작동에 영향 받지 않는 장소에 설치하거나 보호조치를 한다.

2.4.4.6 호스 설치

- 2.4.4.6.1 호스는 다음 용도 또는 장소 외에는 사용 또는 설치하지 않는다.
- (1) 자동차 주입 호스(길이가 8m 이하인 것에 한정한다)
- (2) 압축장치 인입 접속부
- (3) 배관의 길이가 1 m를 초과하지 않는 곳으로서, 유연성이 요구되는 장소
- 2.4.4.6.2 충전설비에 사용하는 호스(금속 호스를 포함한다)는 도시가스의 침식작용에 견딜 수 있는 것으로 한다.
- 2.4.4.6.3 호스는 팽창·수축·충격 및 진동을 고려하여 고정 설치한다.

2.4.5 기스설비 성능

가스설비는 그 도시가스를 안전하게 취급할 수 있도록 다음 기준에 적합한 내압 성능 및 기밀 성능을 가진 것으로 한다.

2.4.5.1 기스설비 기밀 성능

배관·튜브·호스 및 배관계 등은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 설치 후 상용압력 이상의 압력으로 기밀시험을 실시하여 이상이 없는 것으로 한다.

2.4.5.2 기스설비 내압 성능

특정 설비는 상용압력의 1.5배(그 구조상 물에 의한 내압시험이 곤란하여 공기·질소 등의 기체로 내압시험을 실시하는 경우와 압력용기 및 그 압력용기에 직접 연결되어 있는 배관의 경우에는 1.25배) 이상의 압력(이하 "내압시험압력"이라 한다)으로 내압시험을 실시하여 이상이 없는 것으로 한다.

2.5 배관설비 기준

2.5.1 배관설비 재료

배관의 재료는 도시가스의 취급에 적합한 기계적 성질 및 화학적 성질을 가진 것으로 한다.

2.5.1.1 배관설비 재료 선정

- **2.5.1.1.1** 배관(밸브를 포함한다. 이하 같다), 튜브, 피팅, 개스킷 및 패킹 재료는 도시가스에 적합한 것으로 한다. 이 경우 압축장치 후단에 설치하는 것은 설계온도를 영하 40 ℃ 이하로 한다.
- 2.5.1.1.2 배관은 한국산업규격 또는 관련 규격에 적합한 것으로 한다.
- 2.5.1.1.3 스트레이너 · 완충장치 · 신축이음매는 사용압력 등급이 표시된 것으로 한다.
- 2.5.1.1.4 배관(사업소 안의 배관은 제외한다. 이하 같다) · 관 이음매 및 밸브(이하 "배관등"이라 한다)의 재료는 도시가스의 종류 · 성질 · 상태 · 온도 및 압력 등에서 안전성을 확보할 수 있는 것으로서, 2.5.1의 배관설비 재료 기준에 적합한 것으로 한다.
- 2.5.1.1.5 사업소 밖에 설치하는 고입배관 등과 중압 이하의 배관등의 재료는 도시가스의 취급에 적합한 기계적 성질 및 화학적 성질을 가진 것으로 한다. 다만, 다음 배관은 같은 배관 재료 기준을 적용하지 않는다.
- (1) 최고사용압력이 98 MPa 이상인 배관
- (2) 최고사용 온도가 815 ℃를 초과하는 배관
- (3) 직접화기를 받는 배관
- (4) 이동제조설비용 배관

2.5.1.2 고압배관 재료

- 25.1.21 사업소 밖에 설치하는 고압배관등의 압력을 받는 부분(이하 "내압 부분" 이라 한다)에 사용하는 재료는 가스의 종류·성질·온도 및 압력 등의 사용 조건에 따라 다음 기준에서 정한 규격 재료 또는 이와 동등 이상의 화학적 성분 및 기계적 성질을 가진 재료를 사용한다.
- (1) 관 재료
- (1-1) KS D 3562(압력배관용 탄소강관)
- (1-2) KS D 3563(보일러 및 열교환기용 탄소강관)
- (1-3) KS D 3564(고압배관용 탄소강관)
- (1-4) SPS-KOSA0013-D3570-5078(고온 배관용 탄소강관)¹⁾ <개정 16. 1. 8.>
- (1-5) SPS-KOSA0015-D3573-5080(배관용 합금강 강관)²⁾ <개정 16. 1. 8.>
- (1-6) KS D 3576(배관용 스테인리스 강관)

¹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

²⁾ 국가기술표준원의 국기표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

- (1-7) KS D 3572(보일러, 열교환기용 합금강관)
- (1-8) KS D 3577(보일러, 열교환기용 스테인리스 강관)
- (1-9) KS D 3569(저온 배관용 강관)
- (1-10) KS D 3758(배관용 이음매 없는 니켈-크로뮴-철합금 관)
- (1-11) KS D 5301(이음매 없는 구리 및 구리 합금관)
- (1-12) KS D 5539(이음매 없는 니켈 동 합금관)
- (1-13) KS D 6761(이음매 없는 알루미늄 및 알루미늄 합금관
- (1-14) KS D 5574(배관용 타이타늄관)
- (1-15) KS 허가제품인 폴리에틸렌 피복강관
- (2) 형·판·대재
- (2-1) KS D 3503(일반 구조용 압연강재)···(1)
- (2-2) KS D 3560(보일러 및 압력용기용 탄소강 및 몰리브덴강 강판)
- (2-3) KS D 3515(용접 구조용 압연강재)…(1)(2)
- (2-4) KS D 3521(압력용기용 강판)
- (2-5) KS D 3540(중·상온 압력용기용 탄소강판)
- (2-6) KSD 3538(보일러 및 압력용기용 망가니즈 몰리브데넘강 및 망가니즈 몰리브데넘 니켈강 강판)
- (2-7) KS D 3541(저온 압력용기용 탄소강 강판)
- (2-8) KS D 3752(기계 구조용 탄소강재)
- (2-9) KS D 3867(기계 구조용 합금강 강재) 중 니켈 크로뮴강
- (2-10) KS D 3867(기계 구조용 합금강 강재) 중 니켈 크로뮴 몰리브데넘강
- (2-11) KS D 3867(기계 구조용 합금강 강재) 중 크로뮴강
- (2-12) KS D 3867(기계 구조용 합금강 강재) 중 크로뮴 몰리브데넘강
- (2-13) KS D 3867(기계 구조용 합금강 강재) 중 망가니즈강 및 망가니즈 크로뮴강
- (2-14) KS D 3543(보일러 및 압력용기용 크로뮴 몰리브데넘강 강판)
- (2-15) KS D 3756(알루미늄 크롬 몰리브덴 강재)
- (2-16) KS D 3705(열간 압연 스테인리스 강판 및 강대)
- (2-17) KS D 3698(냉간 압연 스테인리스 강판 및 강대)
- **(2-18)** KS D 3732(내열강판)
- (2-19) KS D 3532(내식내열 초합금판)
- (2-20) KS D 5201(동 및 동 합금의 판 및 띠)
- (2-21) KS D 5546(니켈 및 니켈 합금 판 및 조)
- (2-22) KS D 6701(알루미늄 및 알루미늄 합금판 및 조)
- (2-23) KS D 6759(알루미늄 및 알루미늄 합금 압출 형재)
- (2-24) KS D 6000(티탄늄 및 티타늄 합금의 판 및 띠)
- (3) 단조품
- (3-1) KS D 3710(탄소강 단강품)
- (3-2) KS D 4125(저온압력용기용 단강품)
- (3-3) KS D 4115(압력용기용 스테인리스강 단강품)
- (3-4) SPS-KFCA-D6770-5022(알루미늄 및 알류미늄 합금 단조품)1) <개정 16. 1. 8.>

¹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

(4) 주조품

- (4-1) SPS-KFCA-D4101-5004(탄소강 주강품)¹⁾ <개정 16. 1. 8.>
- (4-2) SPS-KFCA-D4106-5009(용접 구조용 주강품)²⁾ <개정 16. 1. 8.>
- (4-3) SPS-KFCA-D4103-5006(스테인리스강 주강품)3) <개정 16. 1. 8.>
- (4-4) SPS-KFCA-D4107-5010(고온 고압용 주강품)4) <개정 16. 1. 8.>
- (4-5) SPS-KFCA-D4111-5012(저온 고압용 주강품)⁵⁾ <개정 16. 1. 8.>
- (4-6) SPS-KFCA-D4302-5016(구상 흑연 주철품)6) <개정 17. 2. 10.>
- (4-7) SPS-KOSA0179-ISO5922-5244(가단 주철품) 중 흑심 가단 주철품?) <개정 16. 1. 8.>
- (4-8) SPS-KOSA0179-ISO5922-5244((기단 주철품) 중 백심 가단 주철품⁸⁾ <개정 16. 1. 8.>
- (4-9) SPS-KOSA0179-ISO5922-5244(가단 주철품) 중 필라이트 가단 주철품⁹⁾ <개정 16. 1. 8.>
- (4-10) KGS AC111 부록 J에서 정한 덕타일 철 주조품 <개정 16. 1. 8.>
- (4-11) KGS AC111 부록 J에서 정한 멜리어블 철 주조품 <개정 16. 1. 8.>
- (4-12) KS D 6024(구리 및 구리 합금 주물) 중 청동 주물
- (4-13) KS D 6008(알루미늄 합금 주물)
- (5) 봉재료
- (5-1) KS D 3503(일반 구조용 압연 강재)
- (5-2) KS D 3526(마봉강용 일반 강재)
- (5-3) KS D 3592(냉간압조용 탄소강 선재)
- (5-4) KS D 3752(기계 구조용 탄소 강재)
- (5-5) KS D 3706(스테인리스 강봉)
- (5-6) KS D 3731(내열 강봉)
- (5-7) KS D 3531(내식 내열 초합금 봉)
- (5-8) KS D 5101(구리 및 구리 합금 봉) 중 무산소동, 타프피치동, 인탈산동, 황동, 쾌삭황동, 단조용 황동, 네이벌황동)
- (5-9) KS D 6763(알루미늄 및 알루미늄 합금 봉 및 선)
- (5-10) KS D 5604(티탄늄 및 티타늄 합금봉)
- [비고] 1. (2-1)과 (2-3)의 재료는 2.5.1.5.3(1)의 사용 제한을 따른다.
- 2. (2-3)의 재료는 2.5.1.5.3(2)의 사용 제한을 따른다.
- 3. (4-6), (4-7), (4-8) 및 (4-9)의 재료는 2.5.1.5.4(1)의 사용 제한을 따른다.
- 4. (4-6)과 (4-7)의 재료는 2.5.1.5.4(2)의 사용 제한을 따른다.
- 5. (4-10)과 (4-11)의 재료는 2.5.1.5.4(3)의 사용 제한을 따른다.

¹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

²⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

³⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

⁴⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

⁵⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

⁶⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

⁷⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

⁸⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

⁹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

2.5.1.2.2 수소가 포함된 고압가스를 내용물로 하는 사업소 밖에 설치하는 배관의 경우에는 고온의 운전조건에서 수소침식을 방지하기 위하여 미국석유협회(american petroleum institute, API) Recomm ended Practice 941의 규정을 따른다.

2.5.1.3 중압 이하의 배관 재료

사업소 밖에 설치하는 중압 이하의 배관등의 압력을 받는 부분에 사용하는 재료는 사용 조건에 따라 다음 재료 또는 이와 동등 이상의 화학적 성분 및 기계적 성질을 가진 재료를 사용한다. 다만, 2.5.1.2 및 2.5.1.4에 따른 도시가스 배관 재료, 관 이음매 및 밸브는 중압 이하의 배관등에 사용할 수 있다. (1) 관 재료

- (1-1) KS D 3507(배관용 탄소강관)
- (1-2) KS D 3583(배관용 아크 용접 탄소강 강관)
- (1-3) KS 표시허가 제품인 가스용 폴리에틸렌관. 다만, 상용압력이 0.1 № 미만인 지하 매설 배관에만 사용할 수 있다. <개정 19. 7. 16.>
- (1-4) KS M 3404(일반용 경질 염화비닐관) 다만, 염소가스용으로 외부의 충격이나 열의 영향을 받지 않도록 피트 등 방호조치를 한 경우에만 사용할 수 있다.
- (2) 관 이음매
- (2-1) KS D 3507(배관용 탄소강관)
- (2-2) KS B 1543(강제 맞대기 용접식 관 이음쇠) <개정 19. 1. 16.>
- (2-3) KS B 1531(나사식 가단 주철제 관 이음쇠)
- (2-4) KS로 규정된 관 플랜지는 KS B 1501(철강제 관 플랜지의 압력 단계)에 규정된 범위 안에서 가스설비의 중압 이하의 배관등에 사용할 수 있다. 다만, 회주철제 플랜지는 사용하지 않는다.

2.5.1.4 배관 이음매 및 밸브

사업소 밖에 설치하는 배관 이음매 및 밸브는 가스의 종류 · 성질 · 온도 및 압력 등의 사용 조건에 따라 다음에 적합한 것 또는 이와 동등 이상의 기계적 성질을 가진 것을 사용한다.

- (1) 용접식 관 이음매 <개정 19. 1. 16.>
- (1-1) KS B 1542(배관용 강제 삽입 용접식 관 이음쇠)
- (1-2) KS B 1543(배관용 강판제 맞대기 용접식 관 이음쇠)
- (2) 관 플랜지 이음매 <개정 19. 1. 16.>
- (2-1) KS B 1501(철강제 관 플랜지의 압력 단계)
- (2-2) KS B 1519(관 플랜지의 개스킷 자리 치수)
- (2-3) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)
- (2-4) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 5K 플랜지의 기본 치수
- (2-5) KS B 1510(구리 합금제 관 플랜지의 기본 치수)
- **(2–6)** KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 10K 플랜지의 기본 치수
- (2-7) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 16K 플랜지의 기본 치수
- (2-8) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 20K 플랜지의 기본 치수

- (2-9) KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 30K 플랜지의 기본 치수
- **(2–10)** KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 40K 플랜지의 기본 치수 지수
- **(2–11)** KS B 1511(철강제 관 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 63K 플랜지의 기본 치수 및 치수 허용차)의 호칭 압력 63K 플랜지의 기본 치수
- (2-12) KS B 1503(강제용접식 관 플랜지)
- (2-13) 상기의 KS에 따른 플랜지는 KS B 1501 (철강제 관 플랜지의 압력 단계)에 따른 범위 안에서 도시가스 배관등에 사용할 수 있다.
- (3) 밸브
- (3-1) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 글로브밸브
- (3-2) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 앵글 밸브
- (3-3) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 바깥나사 게이트 밸브
- (3-4) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 스윙체크 밸브
- (3-5) KS B 2361(주강 플랜지형 밸브)의 10K 플랜지형 글로브 밸브
- (3-6) KS B 2361(주강 플랜지형 밸브)의 20K 플랜지형 앵글 밸브
- (3-7) KS B 2361(주강 플랜지형 밸브)의 20K 플랜지형 바깥나사 게이트 밸브
- (3-8) KS B 2361(주강 플랜지형 밸브)의 20K 플랜지형 스윙체크 밸브
- **(3-9)** KS B 2301(청동 밸브)

2.5.1.5 재료의 사용 제한

- 25.1.5.1 사업소 밖에 설치하는 배관 재료는 KS B 6750(입력용기 설계 및 제조 일반) 중 부표1-2에 표시된 허용응력값에 대응하는 온도 범위를 초과하여 사용해서는 안 된다. 또한 동등 이상의 재료는 설계온도에 대하여 다음 방법에 따라 충격시험을 실시하여 불합격한 것은 0 ℃미만에서 사용되는 배관 등의 재료로 사용하여서는 안 된다. <개정 16. 1. 8.>
- (1) 총격시험에 사용하는 시험편은 다음 기준에 따른다.
- (1−1) 시험편의 앙쪽 끝으로부터 용접선에 수직으로 폭 부분을 50 mm 잘라낸 나머지 부분의 열영향부 및 용착금속부에서 채취한 것으로 한다.
- (1-2) 시험편의 형상과 치수는 KS B 0809(금속 재료 충격시험편)의 4호 시험편에 따른다. 다만, 시험편의 치수에 따라 시험편 두께를 $10 \, \mathrm{mnz}$ 할 수 없을 경우에는 시험편 두께를 $7.5 \, \mathrm{mn} \cdot 5 \, \mathrm{mn}$ 또는 $2.5 \, \mathrm{mn}$ 가운데 가장 큰 것으로 한다.
- (2) 충격시험은 모든 시험편 모재의 설계온도 이하에서 KSB0810(금속 재료 충격시험 방법)의 사르파충격 시험에 따라 실시하고, 모든 시험편의 흡수에너지가 다음 표 2.5.1.5.1①에 따른 그 모재의 최소인장강도에 대응한 최소흡수에너지값[(1-2)의 단서의 경우에는 그 시험편 두께에 따라 다음 표 2.5.1.5.1②에 따른 시험편 두께에 대응한 값을 표 2.5.1.5.1①의 값으로 대체한 값)] 이상일 때에 이를 합격으로 한다.

표 2.5.1.5.1① 최소인장강도에 대응한 최소흡수에너지값

재료의 최소인장강도	최소흡수에너지(단위 : J)				
δ (N/mm)	3개의 평균치	1개의 최소치			
δ≤450	18	14			

450 < δ≤520	20	16
520 < δ≤660	27	20
660 < δ	27	27

표 2.5.1.5.1② 시험편의 두께에 대응한 최소흡수에너지

시험편의 두께(mm)	10	7.5	5	2.5
최소흡수에너지(J)	27	20	14	7
	20	15	10	5
	18	14	9	5
	16	12	8	4
	14	11	7	4

2.5.1.5.2 다음 재료는 도시가스 배관등의 내압 부분에 사용하지 않는다.

- (1) 탄소 함유량이 0.35 % 이상의 탄소강재 및 저합금강 강재로서, 용접구조에 사용되는 재료, 다만, KS D 3710(탄소강 단강품)과 같이 탄소 함유량의 규정이 없는 재료는 탄소 함유량을 확인한 후에 사용한다.
- (2) KS D 3507(배관용 탄소강관)
- (3) KS D 3583(배관용 아이크 용접 탄소강관)
- (4) SPS-KFCA-D4301-5015(회주철품)¹⁾ <개정 17. 2. 10.>
- 2.5.1.5.3 다음 탄소강 강재는 사업소 밖에 설치하는 배관 재료로 사용하지 않는다.
- (1) KS D 3503(일반 구조용 압연 강재) 및 KS D 3515(용접 구조용 압연 강재)의 1종 A, 2종 A 및 3종 A는 다음에 기재하는 것에 사용하지 않는다.
- (1-1) 독성가스를 수송하는 배관등
- (1-2) 설계압력이 1.6 MPa를 초과하는 내압 부분
- (1-3) 설계압력이 1 씨를 초과하는 길이 이음매를 가지는 관 또는 관 이음
- (1-4) 두께가 16 mm를 초과하는 내압 부분
- (2) KS D 3515(용접 구조용 압연 강재)[1종 A, 2종 A, 3종 A는 제외한다]는 설계압력이 3 IPp를 초과하는 배관등에 사용하지 않는다.
- 2.5.1.5.4 다음의 주철품은 사업소 밖에 설치하는 배관 재료로 사용하지 않는다.
- (1) SPS-KFCA-D4302-5016(구상흑연주철품)²⁾ 의 3종, 4종 및 5종, SPS-KOSA0179-ISO5922-5244 (기단 주철품)³⁾ 중 GCBM 30-06, 백심 기단 주철품, 펄라이트 가단 주철품은 다음에 기재하는 것에 사용하지 않는다. <개정 17. 2. 10.>
- (1-1) 독성가스를 수송하는 배관등
- (1-2) 설계압력이 0.2 №a 이상인 가연성가스의 배관등
- (1-3) 설계압력이 1.6 №를 초과하는 가연성가스 및 독성가스 외의 가스밸브 및 플랜지
- (1-4) 설계온도가 0 ℃ 미만 또는 250 ℃를 초과하는 배관등

¹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

²⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

³⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

- (2) SPS-KFCA-D4302-5016(구상흑연 주철품)1)의 1종, 2종 및 SPS-KOSA0179- ISO5922-5244 (기단주철품)2) 중 CCMB는 다음에 기재하는 것에 사용하지 않는다. <개정 17. 2. 10.>
- (2-1) 독성가스를 수송하는 배관등
- (2-2) 설계압력이 1.6 MPa를 초과하는 밸브 및 플랜지
- (2-3) 설계압력이 1.1 kg/lPa를 초과하는 가연성가스 및 독성가스 외의 가스를 수송하는 내압 부분으로, 밸브 및 플랜지 외의 것.
- (2-4) 설계온도가 0 ℃ 미만 또는 250 ℃를 초과하는 배관등
- (3) KGS AC111 부록 J에서 정한 덕타일 철 주조품 및 멜리어블 철 주조품은 다음에 기재하는 것에 사용하지 않는다. <개정 16. 1. 8.>
- (3-1) 독성가스(포스겐 및 시안화수소에 한정한다)를 수송하는 배관등
- (3-2) 설계압력이 2.4 Mba를 초과하는 밸브와 플랜지
- (3-3) 설계온도가 -5 ℃ 미만 또는 350 ℃를 초과하는 배관등
- 2.5.1.5.5 다음의 동·동 합금 및 니켈동 합금은 사업 소밖에 설치하는 배관 재료로 사용하지 않는다. (1) KS B 6750(압력용기 설계 및 제조 일반) 중 부표1에 표시된 허용인장응력치에 대응하는 온도를 초과하는 것. 다만, 압력계·액면계 연결관으로 사용하는 것은 제외한다. <개정 16. 1. 8.> (2) 동 및 동 함유량이 62 %를 초과하는 합금으로, 내부 유체에 아세틸렌이 함유된 것.
- 2.5.1.5.6 알루미늄 및 알루미늄 합금은 KS B 6750(압력용기 설계 및 제조 일반) 중 부표1에 표시된 허용인장력치에 대응하는 온도를 초과하여 사용하지 않는다. 다만, 압력계 · 액면계 연결관으로 사용하는 것은 제외한다. <개정 16. 1. 8.>
- 2.5.1.5.7 티탄은 KS B 6750(압력용기의- 설계 및 제조 일반) 중 부표1에 표시된 허용인장응력치에 대응하는 온도를 초과하여 사용하지 않는다. <개정 16. 1. 8.>

2.5.2 배관설비 구조

시업소 밖에 설치하는 배관등의 구조는 수송되는 도시가스의 중량, 배관등의 내압, 배관등 및 그 부속설비의 자체 무게, 토압, 수압, 열차 하중, 자동차 하중, 부력, 그 밖에 주하중과 풍화중, 설하중, 온도 변화의 영향, 진동의 영향, 지진의 영향, 배 닻으로 인한 충격의 영향, 파도 및 조류의 영향, 설치 시의 하중의 영향, 다른 공사로 인한 영향, 그 밖의 종하중으로 인하여 생기는 응력에 안전성이 있는 것으로 한다.

2.5.3 배관설비 두께

배관(튜브·피팅 및 배관 요소를 포함한다)은 안전율이 4 이상 되도록 설계한다.

2.5.4 배관설비 접합

2.5.4.1 배관의 접합은 용접을 원칙으로 하고 지하 매설 배관은 나사로 접합하지 않는다.

¹⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국주물공업협동조합의 단체표준으로 변경

²⁾ 국가기술표준원의 국가표준 민간 이양 정책 추진에 따라 한국철강협회의 단체표준으로 변경

2.5.4.2 사업소 밖에 설치하는 배관등의 접합 부분은 용접을 한다. 다만, 용접이 적당하지 않는 경우에는 안전 확보에 필요한 강도를 갖는 플랜지접합으로 할 수 있고, 이 경우에는 점검을 할 수 있는 조치를 한다.

2.5.4.3 사업소 밖에 설치하는 배관등의 용접은 아크용접 및 그 밖에 이와 동등 이상의 효과를 갖는 용접 방법으로 한다.

2.5.5 배관설비 신축흡수조치

배관에는 온도의 변화로 인한 길이의 변화에 따른 신축을 흡수하기 위하여 다음 기준에 따라 조치를 한다.

2.5.5.1 시업소 인의 배관

2.5.5.1.1 배관을 지하에 매설하는 경우에는 되메울 때 충분히 다지고, 배관은 균일하며, 적당한 마찰력을 가진 흙 중에 지지되도록 한다.

2.5.5.1.2 배관을 지상에 설치하는 경우에는 아래의 계산식에 따라 신축량을 계산하고, 굽힘관 루프 또는 벨로즈형이나 슬라이드형 신축이음매를 사용하는 등의 방법으로 신축량을 흡수할 수 있도록 한다. 신축량 = 선팽창계수×온도차×배관 길이

여기에서 온도차는 예상되는 최고 또는 최저의 사용 온도와 주위 평균 온도와의 차를 고려한다. 또한 선팽창계수는 탄소강에 적용할 때는 11.7×10^{-6} 으로 하고, 탄소강 이외의 재료에 적용할 때는 공인되는 값을 사용하다.

2.5.5.1.3 지상에 설치한 배관을 지지하는 행거, 서포트 등은 배관의 신축을 저해하지 않도록 배관을 지지하는 것일 것. 다만, 배관을 고정함으로써 배관에 과대한 응력이 발생할 우려가 없는 것이 명확한 경우에는 그렇지 않다.

2.5.5.2 시업소 밖의 배관

사업소 밖에 설치하는 배관에는 2.5.5.2.1과 2.5.5.2.2에 따라 신축으로 인한 파손의 위험이 생길 우려가 있는 부분에 그 신축을 흡수하는 조치를 한다.

25.5.21 곡관(bent pipe)을 사용한다. 다만, 입력 2㎞이하인 배관으로서, 곡관(bent pipe)을 사용하기가 곤란한 곳에는 벨로즈형(bellows type) 신축이음매를 사용할 수 있다. 이 경우 벨로즈형 신축이음매는 고정 지지되어 있고, 유체 압력, 운동으로 인한 작동력 및 마찰저항과 그 밖의 원인에 따른 끝부분의 반력에 견딜 수 있도록 설치한다.

2.5.5.2.2 곡관(bent pipe) 등의 종류, 배치 및 고정 방법은 온도 변화에 따라 배관에 발생하는 열변위합성응력이 다음 식에 따른 허용값 이하가 되도록 한다.

 $6_A = f(1.256_c + 0.256_n)$

여기에서

δ_A: 열변위합성응력의 허용값(N/mm)

- 6。: 정상운전이나 정지 기간 중에 예상되는 최저 금속 온도에서 그 재료의 표 2.5.5.2.2에서 정한 허용인장응력(N/mm)
- 6_n : 정상운전이나 정지 기간 중에 예상되는 최고 금속 온도에서 그 재료의 표 2.5.5.2.2에서 정한 허용인장응력(N/mn)

표 2.5.5.2.2 크리프 영역에 달하지 않는 설계온도에서의 허용인장응력

재 료	허 용 인 장 응 력
탄소강 강관 또는 저합금강 강관	상온에서 규격최소항복점의 50 %
스테인리스강관 또는 비철금속관	다음 값 중 최솟값으로 한다.
	1. 상온에서 규격 최소인장강도의 33.3 %의 값
	2. 설계온도에서 인장강도의 33.3%의 값
	3. 상온에서 규격최소항복점 또는 0.2% 내력의 66.7%의 값
	4. 설계온도에서의 항복점 또는 0.2%내력의 66.7%의 값 다만, 오스
	테나이트계 스테인리스강관은 3을 초과하지 않는 범위에서 각각의 값의
	99 %의 값

f : 응력감소 계수로서, 전 예상수명에 걸쳐 온도사이클을 합한 수에 따라 정해진 인자(factor)이며, 다음 표에서 정한 것으로 한다.

사이클을 합한 수	f
7 000 이하	1.0
7000 초과 14000 이하	0.9
14 000 초과 22 000 이하	0.8
22 000 초과 45 000 이하	0.7
45 000 초과 100 000 이하	0.6
100 000 초과	0.5

[비고] 전 예상수명이란 배관장치의 총 운전 예상 연수를 말한다.

2.5.6 배관설비 절연조치

배관에는 그 배관의 유지관리에 지장이 없고, 그 배관에 위해의 우려가 없도록 하기 위하여 다음 기준에 따라 절연설비를 설치한다.

- 2.5.6.1 배관장치에는 필요에 따라 안전용 접지나 이와 유사한 장치를 설치한다.
- 2.5.6.2 지지물에 이상전류가 흘러 배관장치가 대지전위(對地電位)로 인하여 부식이 예상되는 다음 장소에 설치된 배관은 안전 확보를 위하여 지지물 및 그 밖의 구조물로부터 절연하고 절연용 물질을 삽입한다. 다만, 절연이음물질 사용 등의 방법에 따라 매설 배관의 부식이 방지될 수 있는 경우에는 절연조치를 하지 않을 수 있다.
- (1) 누전에 의하여 전류가 흐르기 쉬운 곳
- (2) 직류전류가 흐르고 있는 선로(線路)의 자계(磁界)에 의하여 유도전류가 발생하기 쉬운 곳
- (3) 흙 속이나 물 속에서 미로전류(謎路電流)가 흐르기 쉬운 곳

- 2.5.6.3 배관장치에 접속되어 있는 기기, 저장탱크, 그 밖의 설비가 배관의 부식에 영향을 미칠 우려가 있는 경우에는 해당 설비와 배관을 절연이음물질로 절연한다. 다만, 해당 설비에 양극의 설치 등으로 전기방식의 효과를 얻을 수 있는 경우에는 절연을 하지 않을 수 있다.
- 2.5.6.4 배관을 구분하여 전기방식하는 것이 필요한 경우 지하에 매설된 배관 부분과의 경계, 배관의 분기부 및 지하에 매설된 부분 등에는 절연이음물질을 설치한다.
- 2.5.6.5 피뢰기(피뢰침과 고압철탑기 등 그리고 이들 접지케이블과 매설지선을 말한다)의 접지 장소에 근접하여 배관을 매설하는 경우는 다음 기준에 따라 절연조치를 한다.
- (1) 피뢰기와 배관 시이의 거리 및 흙의 전기저항 등을 고려하여 배관을 설치함과 동시에 필요한 경우에는 배관의 피복, 절연재의 설치 등으로 절연조치를 한다.
- (2) 피뢰기의 낙뢰전류(落雷電流)가 기기, 저장탱크, 그 밖의 설비를 지나서 배관에 흐를 우려가 있는 경우에 2.5.6.3 및 2.5.6.4에 따라 절연이음물질을 설치하여 절연함과 동시에 배관의 부식에 영향을 미치지 않는 방법으로 배관을 접지한다.
- (3) (1)과 (2)의 경우 절연을 위한 조치를 보호하기 위하여 필요한 경우에는 스파크 간극 등을 설치한다.

2.5.7 배관 설치

배관은 수송하는 가스의 특성 및 설치 환경 조건을 고려하여 위해의 우려가 없도록 다음 기준에 따라설치한다.

2.5.7.1 배관 설치 장소 선정

- 2.5.7.1.1 배관은 건축물의 내부 또는 기초 밑에 설치하지 않는다. 다만, 그 건축물에 가스를 공급하기 위한 배관은 건축물 내부에 설치할 수 있다.
- 25.7.1.2 도시가스충전시업소 내 배관은 자동차의 진·출입 시 영향을 받지 않도록 다음 기준에 적합하게 설치(가스미터, 주 밸브 등은 제외)한다. 이 경우 주 밸브로부터 압축장치까지의 배관은 피트 안에 설치할 수 있다.
- 2.5.7.1.3 도시가스충전사업소 안 배관은 다음 기준에 적합하게 설치한다.
- (1) 배관은 과거의 실적이나 환경 조건의 변화(토지 조성 등으로 지형의 변경이나 배수의 변화 등)를 고려하여 땅의 붕괴, 산사태 등의 발생이 예상되는 곳을 통과하지 않도록 한다.
- (2) 배관은 지반침하가 현저하게 진행 중인 곳이나 과거의 실적으로 미루어 지반침하의 우려가 추정되는 곳을 통과하지 않도록 한다.

2.5.7.2 배관 매몰 설치

2.5.7.2.1 시업소 안 배관의 매몰 설치

배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 위해의 우려가 없도록 다음 기준에 따라 설치한다. (1) 배관은 지면으로부터 최소한 1 m 이상의 깊이에 매설한다. 이 경우 공도(公道)의 지하에는 그

- 위를 통과하는 차량의 교통량 및 배관의 관경 등을 고려하여 더 깊은 곳에 매설한다.
- (2) 도로 폭이 8 m 이상인 공도의 횡단부 지하에는 지면으로부터 1.2 m 이상인 곳에 매설한다.
- (3) (1) 또는 (2)에서 정한 매설 깊이를 유지할 수 없을 경우에는 커버플레이트, 케이싱 등을 사용하여 보호한다.
- (4) 철도 등의 횡단부 지하에는 지면으로부터 $1.2\,\mathrm{m}$ 이상인 곳에 매설하거나 강제의 케이싱을 사용하여 보호한다.
- (5) 지하철도(전철) 등을 횡단하여 매설하는 배관에는 전기방식조치를 강구한다.

2.5.7.2.2 시업소 밖 배관의 매몰 설치

사업소 밖에 매몰 설치하는 배관은 다음 기준에 따라 설치한다.

- (1) 배관은 건축물과는 1.5 m, 지하도로 및 터널과는 10 m 이상의 거리를 유지한다.
- (2) 독성가스의 배관은 그 가스가 혼입될 우려가 있는 수도시설과 300m 이상의 거리를 유지한다.
- (3) 배관은 그 외면으로부터 지하의 다른 시설물과 0.3 m 이상의 거리를 유지한다.
- (4) 지표면으로부터 배관의 외면까지 매설 깊이는 산이나 들에서는 $1 \, \mathrm{m}$ 이상, 그 밖의 지역에서는 $1.2 \, \mathrm{m}$ 이상으로 한다. 다만, 다음 기준에 적합한 방호구조물 안에 설치하는 경우에는 그 방호구조물의 외면까지의 깊이를 $0.6 \, \mathrm{m}$ 이상으로 한다.
- (4-1) 케이싱파이프(casing pipe), 철근콘크리트박스, 실드세그멘트(shield segment), 공동구(共同溝) 등으로 해당 배관의 외면과 지표면과의 거리를 확보하는 것과 동등 이상의 안전성이 확보되도록 충분한 내구력(耐久力)을 갖도록 한다.
- (4-2) 배관의 구조에 지장을 주지 않는 구조로 한다.
- (4-3) 케이싱파이프(casing pipe)는 배관으로 사용하는 강관, 다음 중 어느 하나의 관 또는 콜러게이트관 등 배관의 설치 조건에 따라 적절한 것으로 한다.
- (4-3-1) KS D 3507(배관용 탄소강관)
- (4-3-2) KS D 3566(일반 구조용 탄소강관)
- (4-3-3) KS D 3583(배관용 아크 용접 탄소강 강관)
- (4-3-4) KS D 4308(덕타일 주철 이형관)
- (4-3-5) KS D 4311(덕타일 주철관)
- (4-3-6) KS F 4402(진동 및 전압 철근 콘크리트관) <개정 14. 11. 17.>
- (4-3-7) KS F 4403(원심력 철근콘크리트관) <개정 14. 11. 17.>
- (5) 배관은 지반의 동결로 손상을 받지 않는 깊이로 매설한다.
- (6) 성토하였거나 절토한 경사면 부근에 배관을 매설하는 경우에는 흙이나 돌 등이 흘러내려서 안전 확보에 지장이 없도록 안전률 1.3 이상의 미2러면을 유지한다.
- (7) 배관 입상부·지반 급변부 등 지지 조건이 급변하는 곳에는 곡관의 삽입·지반의 개량 및 그 밖에 필요한 조치를 한다.
- (8) 굴착 및 되메우기는 다음 기준에 따라 실시한다.
- (8-1) 배관은 가능한 한 균일하고 연속해서 지지되도록 시공한다.
- (8-2) 도로 및 그 밖의 공작물의 구조에 지장을 주지 않도록 시공한다.
- (8-3) 배관의 외면으로부터 굴착구의 측벽까지 15 cm 이상의 거리를 유지하도록 시공한다.
- (8-4) 굴착구의 바닥면은 배관 등에 손상을 줄 우려가 있는 암석(岩石) 등을 제거하고, 모래 또는 사질토(砂質土)를 20 cm(열차 하중 또는 자동차 하중을 받을 우려가 없는 경우는 10 cm) 이상의 두께로 깔거나 모래주머니를 10 cm 이상의 두께로 깔아서 평탄하게 한다.

(8-5) 도로의 차도(車道)에 매설할 경우에는 배관의 바닥 부분에서 노반 바닥까지의 사이를, 그 밖의 경우에는 배관의 바닥 부분에서 배관 정상부(頂上部)의 위쪽으로 30 cm(열차 하중 또는 자동차 하중을 받을 우려가 없는 경우는 20 cm)까지의 사이를 모래 또는 사질토(砂質土)로 채우고 충분히 다진다. (8-6) 배관등 또는 해당 배관 등의 도복장(塗覆裝)에 손상을 줄 우려가 있는 대형 다짐기를 사용하지 않는다.

2.5.7.2.3 배관 도로 매설

배관을 시업소 밖의 도로에 매설하려는 경우에는 2.5.7.2.2[2.5.7.2.2(3) 및 2.5.7.2.2(4)는 제외한다! 및 다음 기준에 따라 설치한다.

- (1) 원칙적으로 자동차 등의 허중의 영향이 적은 곳에 매설한다.
- (2) 배관의 외면으로부터 도로의 경계까지 1 m 이상의 수평거리를 유지한다.
- (3) 배관(방호구조물 안에 설치하는 경우에는 그 방호구조물을 말한다)은 그 외면으로부터 도로 밑의다른 시설물까지 0.3 m 이상의 거리를 유지한다.
- (4) 시가지의 도로 밑에 배관을 매설하는 경우에는 그 도로와 관련이 있는 공사로 손상을 받지 않도록 다음 중 어느 하나의 조치를 한다.
- (4-1) 다음 기준에 적합한 보호판을 배관의 정상부로부터 30 cm 이상 떨어진 그 배관의 직상부에 설치한다.
- **(4-1-1)** 보호판의 재료는 KS D 3503(일반 구조용 압연강재) 또는 이와 동등 이상의 화학적 성분 및 기계적 성질을 가진 것으로 한다.
- (4-1-2) 보호판에는 직경 30 mm 이상 50 mm 이하의 구멍을 3 m 이하의 간격으로 뚫어 누출된 가스가 지면으로 확산이 되도록 한다.
- (4-1-3) 보호판의 재질이 금속제인 경우에는 보호판과 보호판을 가접하거나 연결 철재고리로 고정 또는 겹침 설치하는 등의 방법으로 보호판과 보호판이 이격되지 않도록 한다. 다만, 매설 깊이를 확보할 수 없어 보호관 등을 사용한 경우에는 보호판을 설치하지 않을 수 있다.
- (4-1-4) 보호판은 쇼트브라스팅 등으로 내·외면의 이물질을 완전히 제거하고, 방청도료(primer)를 1회 이상 도포한 후, 도막 두께가 $80 \, \mu$ m 이상 되도록 에폭시 타입 도료를 2회 이상 코팅하거나 이와 동등 이상의 방청 및 코팅효과를 가진 것으로 한다.
- (4-1-5) 보호판의 치수는 표 2.5.7.2.3와 같다.

표 2.5.7.2.3 보호판의 치수

파이프관경	치 수(mm)								
D	A	В	L	R(곡률반경)	α (내각)	Т			
D	D+100	100	1,500 이상	5~10	90° ~135°	6			

[비고] 치수에 대한 허용차는 KS D 3500에 적합할 것

(4-2) 배관은 단단하고 내구력을 가지며 도로 및 배관의 구조에 지장을 주지 않는 방호구조물 안에

설치한다.

- (5) 시가지의 도로 노면 밑에 매설하는 경우에는 노면으로부터 배관의 외면까지의 깊이를 $1.5 \,\mathrm{m}$ 이상으로 한다. 다만, 방호구조물 안에 설치하는 경우에는 노면으로부터 그 방호구조물의 외면까지의 깊이를 $1.2 \,\mathrm{m}$ 이상으로 할 수 있다.
- (6) 시가지 외의 도로 노면 밑에 매설하는 경우에는 노면으로부터 배관의 외면(방호구조물 안에 설치하는 경우에는 그 방호구조물의 외면을 말한다)까지의 깊이를 1.2m 이상으로 한다.
- (7) 포장되어 있는 차도에 매설하는 경우에는 그 포장 부분의 노반(차단층이 있는 경우에는 그 차단층을 말한다. 이하 같다) 밑에 매설하고 배관의 외면(방호구조물 안에 설치하려는 경우에는 그 방호구조물의 외면을 말한다)과 노반의 최하부와의 거리는 0.5 m 이상으로 한다.
- (8) 인도·보도 등 노면 외의 도로 밑에 매설하려는 경우에는 지표면으로부터 배관의 외면까지의 깊이를 1.2 m 이상으로 한다. 다만, 방호구조물 안에 설치하려는 경우에는 그 방호구조물의 외면까지의 깊이를 0.6 m(시가지의 노면 외의 도로 밑에 매설하는 경우에는 0.9 m) 이상으로 할 수 있다.
- (9) 전선·상수도관·히수도관·기스관, 그 밖에 이와 유사한 것(각 사용 가구에 인입하기 위하여 설치되는 것에 한정한다)이 매설되어 있는 도로 또는 매설할 계획이 있는 도로에 매설하려는 경우에는 이들의 하부에 매설한다.

2.5.7.2.4 배관 철도부지 매설

배관을 사업소 밖의 철도부지에 매설하려는 경우에는 2.5.7.2.2[2.5.7.2.2(4)는 제외한다] 및 다음 기준에 따라 설치한다.

- (1) 배관의 외면으로부터 궤도 중심까지는 4 m 이상, 그 철도부지의 경계까지는 1 m 이상의 거리를 유지한다. 다만, 다음 중 어느 하나에 해당하는 경우에는 그렇지 않고, 철도부지가 도로와 인접되어 있는 경우에는 배관의 외면과 철도부지 경계 사이에 거리를 유지하지 않을 수 있다.
- (1-1) 배관을 열차 하중의 영향을 받지 않는 위치에 매설하는 경우
- (1-2) 배관이 열차 하중의 영향을 받지 않도록 적절한 방호구조물로 방호하는 경우
- (1-3) 배관의 구조가 열차 하중을 고려한 것인 경우
- (2) 지표면으로부터 배관의 외면까지의 깊이를 1.2 m 이상으로 한다.

2.5.7.2.5 배관 이천구역 매설

배관을 「하천법」에 따른 하천구역(연안구역)에 매설하려는 경우에는 하천 제방과 하천 관리상 필요한 거리를 유지한다.

2.5.7.2.6 배관 도로 횡단 매설

사업소 밖의 도로를 횡단하여 배관을 매설하려는 경우에는 다음 기준에 따라 설치한다.

- (1) 2중 보호관 및 그 밖의 방호구조물 안에 설치한다.
- (2) 2.5.7.2.3[2.5.7.2.3(1) 및 2.5.7.2.3(2)는 제외한대을 준용하여 설치한다.

2.5.7.2.7 배관 철도부지 횡단 매설

철도부지를 횡단하여 배관을 매설하려는 경우에는 2.5.7.2.4(2) 및 2.5.7.2.6(1)를 준용하여 설치한다.

2.5.7.2.8 배관 하천 휭단 설치

시업소 밖의 하천을 횡단하여 설치하는 배관은 다음 기준에 따라 설치한다.

- (1) 하천을 횡단하여 배관을 설치하려는 경우에는 교량에 설치한다. 다만, 교량에 설치할 수 없는 경우에는 하천 밑을 횡단하여 매설할 수 있다.
- (2) 교량에 설치할 수 없어 하천 밑을 횡단하여 매설하려는 경우, 배관의 외면과 계획하상높이(계획하상 높이)가 가장 깊은 하상 높이보다 높을 때에는 가장 깊은 하상 높이. 이하 같다)와의 거리는 원칙적으로 4.0 m 이상, 수로를 횡단하여 배관을 매설하는 경우에는 2.5 m 이상, 그 밖의 좁은 수로(용수로, 개천 또는 이와 유사한 것은 제외한다)를 횡단하여 배관을 매설하는 경우에는 1.2 m 이상으로 하고 이울러 제방 및 그 밖에 하천관리시설의 기존 또는 계획 중인 기초시설물에 지장을 주지 않으며 하상 변동ㆍ패임ㆍ닻 내림 등의 영향을 받지 않는 깊이에 매설한다.
- (3) 가연성가스는 다음 기준에 적합한 방호구조물 안에 설치한다.
- (3-1) 방호구조물은 충분한 내구력을 가진 것으로 한다.
- (3-2) 방호구조물은 하천용 또는 수로(水路) 및 배관의 구조에 지장을 주지 않는 구조로 한다. 이 경우 안전 확보가 필요한 경우에는 양 끝을 폐쇄한 것으로 하고, 방호구조물이 터널형(tunnel type)일 경우에는 그 내부를 점검할 수 있는 구조로 한다.
- (4) (3)에 따른 방호구조물은 다음 중 어느 하나의 조치를 강구하여 부앙이나 선박의 닻내림 등에 따른 손상을 방지한다.
- (4-1) 사용할 때의 2중관 또는 방호구조물(내포되는 공기 및 물의 중량을 포함한다)의 비중을 주위의 흙이 사질토(砂質土)인 경우에는 물의 비중 이상, 점질토인 경우에는 액성한계(液性限界)에서 흙의 단위체적중량 이상으로 한다.
- (4-2) 앵커(anchor)를 사용하여 2중관 또는 방호구조물을 고정한다.
- (4-3) 지반의 변동 또는 크리프(creep)로 인하여 부상(浮上)을 일으킬 우려가 없는 깊이에 2중관 또는 방호구조물을 설치한다.
- (4-4) 충분한 깊이에 케이싱터널(casing tunnel) 등을 설치한다.
- (5) 그 밖에 하천 및 수로를 횡단하는 배관은 2.5.7.2.2[2.5.7.2.2(3) 및 2.5.7.2.2(4)는 제외한대 와 2.5.7.3.2(교량에 설치하는 경우에는 2.5.7.3.2(2)는 제외한다)의 기준을 준용하여 설치한다.

2.5.7.2.9 이천 등 병행 매설

사업소 밖의 하천을 병행하여 설치하려는 배관은 다음 기준에 따라 설치한다.

- (1) 설치 지역은 하상(河床)이 아닌 곳으로 한다.
- (2) 정비가 완료된 하천으로서, 시장·군수·구청장이 하천부지 외에는 배관을 설치할 장소가 없다고 인정하는 경우에만 적용한다.
- (3) 배관은 견고하고 내구력을 갖는 방호구조물 안에 설치한다.
- (4) 매설 심도는 배관의 외면으로부터 2.5 m 이상 유지한다.
- (5) 배관 손상으로 인한 가스 누출 등 위급한 상황이 발생한 때에는 그 배관에 유입되는 가스를 신속히 차단할 수 있는 장치를 설치한다. 다만, 매설된 배관이 포함된 구간 안의 가스를 30분 이내에 화기 등이 없는 안전한 장소로 방출할 수 있는 벤트스택 또는 플레어스택을 설치한 경우에는 그렇지 않다.

2.5.7.3 배관 노출 설치

2.5.7.3.1 시업소 인의 배관 노출 설치

배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 위해의 우려가 없도록 다음 기준에 따라 설치하다.

- (1) 배관의 부식 방지와 검사 및 보수를 위하여 지면으로부터 30 cm 이상의 거리를 유지한다.
- (2) 배관의 손상 방지를 위하여 주위 상황에 따라 방책이나 가드레일 등의 방호조치를 한다.
- (3) 압축가스설비를 상호 연결하는 부분은 진동을 최소화하도록 조립한다.
- (4) 배관 또는 튜브를 굽힘으로써 배관이나 튜브의 강도가 약화될 우려가 있는 곳에서는 굽힘작업을 하지 않는다.
- (5) 배관의 단열 재료는 불연성 또는 난연성 재료를 사용하고, 화재나 열·냉기·물 등에 노출 시 그 특성이 변하지 않는 것으로 한다.
- (6) 배관 지지물은 화재나 초저온 액체의 유출 등을 충분히 견딜 수 있고 과다한 열 전달을 예방할 수 있도록 설계한다.

2.5.7.3.2 시업소 밖 배관 노출 설치

사업소 밖의 지역에 배관을 노출하여 설치하려는 경우에는 다음 기준에 따라 설치한다.

- (1) 배관은 도시가스의 종류에 따라 주택·학교·병원·철도, 그 밖의 이와 유사한 시설과 다음 기준에 따라 안전 확보상 필요한 거리를 유지한다.
- (1-1) 주택, 학교, 병원, 철도, 그밖에 이와 유사한 시설은 표 2.5.7.3.2①에 열거한 시설로 하고, 시설의 종류에 따라 안전 확보상 필요한 수평거리는 같은 표에 열거한 거리 이상의 거리로 한다. 다만, 교량에 설치하는 배관으로서, 적절한 보강을 하였을 때는 그 거리를 적용하지 않을 수 있다.

번호	시 설	가연성가스(m)	독성가스(m)
1	철도(화물 수송용으로만 쓰이는 것은 제외한다)	25	40
2	도로(전용공업지역 안에 있는 도로는 제외한다)	25	40
3	학교, 유치원, 새마을유아원, 사설 강습소	45	72
4	이동복지시설 또는 심신장애자복지시설로서, 수용능력이 20 인 이상인 건축물	45	72
5	병원(의원을 포함한다)	45	72
6	공공공지(도시계획시설에 한정한다) 또는 도시공원(전용공업 지역 안에 있는 도시공원은 제외한다)	45	72
7	극장, 교회, 공회당, 그밖에 이와 유사한 시설로서, 수용능력 이 300인 이상을 수용할 수 있는 곳	45	72
8	백화점, 공중목욕탕, 호텔, 여관, 그밖에 사람을 수용하는 건축물(가설 건축물은 제외한다)로서, 사실상 독립된 부분의 연면적이 1 000 ㎡ 이상인 곳	45	72
9	「문화재보호법」에 따라 지정문화재로 지정된 건축물	65	100
10	수도시설로서 도시가스가 혼입될 우려가 있는 곳	300	300
11	주택(앞 각 호에 열거한 것 도는 가설 건축물은 제외한다) 또는 앞 각 호에 열거한 시설과 유사한 시설로서, 다수인이 출입하거나 근무하고 있는 곳	25	40

표 2.5.7.3.2① 주택 등 시설과 지상배관의 수평거리

- (1-2) 상용압력이 1 № 미만인 배관은 (1-1)에 불구하고 (1-1)에서 정한 수평거리에서 각각 15 m를 뺀 거리로 한다.
- (2) 배관 양측에는 표 2.5.7.3.2②의 상용압력 구분에 따른 폭 이상의 공지를 유지한다. 다만, 다음 기준에 따라 안전에 필요한 조치를 강구한 경우에는 공지를 유지하지 않을 수 있다.

표 2.5.7.3.2② 배관의 공지 폭

상 용 압 력	공지의 폭
0.2 MPa 미만	5 m
0.2 № 이상 1 № 미만	9 m
1 MPa 이상	15 m

[비고] 공지의 폭은 배관 양쪽의 외면으로부터 계산하되, 다음에서 정하는 지역에 설치하는 경우에는 위 표에서 정한 폭의 3분의 1로 할 수 있다.

- 1. 도시계획법에 따른 전용공업지역 또는 일반공업지역
- 2. 그 밖에 산업통상자원부장관이 지정하는 지역 <개정 17. 9. 29.>
- (2-1) 배관(2개 이상의 배관이 인접하고 있는 경우에는 그중 임의의 배관)의 한쪽 면에 사도(私道) 및 그 밖에 해당 사업소의 관계자가 주로 통행하는 도로(전용공업지역 안에 있는 것에 한정한다) 또는 해당 배관의 방재(防災)활동 및 보전(保全)활동용으로 마련된 용지(用地)가 있는 경우
- (2-2) 가연성가스의 경우에는 (2-2-1) 또는 (2-2-2)의 조치를 강구한 경우
- (2-2-1) 해당 배관 구간의 배관 단위 표면적(m)당 5L/분 이상의 물을 살수할 수 있는 설비를 설치하고, 해당 배관에 관계되는 관련 사업소에 소방차 및 긴급 작업차를 배치한 경우
- (2-2-2) 기밀성(機密成)을 갖는 케이싱파이프(casing pipe) 등을 설치하고 배관과 케이싱(casing) 사이의 기체를 항상 흡입하여 가스의 누출을 검지하거나 이와 동등 이상의 검지조치를 취한 경우
- (3) 배관은 지진 · 풍압 · 지반 침하 · 온도 변화에 따른 신축 등에 안전한 구조의 지지물로 지지한다.
- (4) (3)의 지지물은 철근콘크리트구조 또는 이와 동등 이상의 내화성을 가지는 것으로 한다. 다만, 화재로 인한 변형의 우려가 없는 경우에는 내화성을 갖지 않는 것으로 할 수 있다.
- (5) 자동차 등의 충돌로 배관 또는 그 지지물이 손상을 받을 우려가 있는 경우에는 단단하고 내구력이 있는 방호설비를 적절한 위치에 설치한다.
- (6) 배관은 다른 시설물(그 배관의 지지물은 제외한다)과 그 배관의 유지관리에 필요한 간격을 유지한다.

2.5.7.4 배관의 수중 설치

- 배관은 그 배관의 유지관리에 지장이 없고, 그 배관에 위해의 우려가 없도록 다음 기준에 따라 설치한다. (1) 배관을 선박이 항해하는 수역의 해저에 설치하려는 경우에는 선박의 닻으로 인한 손상을 방지하기 위하여 선박의 크기와 해저 토질을 감안하여 필요하다고 인정되는 깊이 이상의 깊이에 매설한다.
- (2) 해저 · 하천 등 물의 유동으로 인하여 뻘 상태로 될 수 있는 토양 중에 배관을 설치하려는 경우에는 사용하지 않을 때의 배관의 비중을 사질토의 경우에는 물(해저의 경우는 해수)의 비중 이상, 점질토의 경우에는 액상 한계에서 토양의 단위 체적 중량 이상으로 하고, 앵커 등으로 배관의 부상이나 이동을 방지하는 조치를 한다.
- (3) 배관을 파도의 영향을 받는 접안부에 설치하려는 경우에는 파도나, 부유물 등으로 인한 배관의 손상을 방지하기 위하여 케이싱, 콘크리트 방호벽 또는 방파책 등으로 방호조치를 한다.
- (4) 배관을 하천에 설치하려는 경우에는 흐르는 물에 토사가 유실되지 않는 깊이 이상의 곳에 매설한다.
- (5) 배관을 수로가 불안정한 강바닥에 매설하려는 경우에는 수로가 얕은 부분에서도 깊은 부분의 배관과 수평으로 되도록 매설한다.

2.5.7.5 배관 해저 설치

사업소 밖의 해저에 설치하려는 배관은 다음 기준에 따라 설치한다.

- (1) 배관은 해저면 밑에 매설한다. 다만, 닻내림 등으로 배관 손상의 우려가 없거나 그 밖에 부득이한 경우에는 매설하지 않을 수 있다.
- (2) 배관은 원칙적으로 다른 배관과 교차하지 않도록 한다.
- (3) 배관은 원칙적으로 다른 배관과 30m 이상의 수평거리를 유지한다.
- (4) 두 개 이상의 배관을 동시에 설치하는 경우에는 해당 배관이 서로 접촉되지 않도록 다음 기준에 따라 조치를 강구한다. 이 경우 표지판의 설치, 잠수원(潛水員)의 검사 등으로 배관의 위치를 조사하고 되메우기 전과 필요한 경우에는 되메우기 한 후에 수중탐사기(水中探查機) 등으로 배관의 상대 위치를 확인한다.
- (4-1) 2개 이상의 배관을 형강(形鋼) 등으로 매거나 구조물에 조립하여 설치한다.
- (4-2) 충분한 간격을 두고 부설한다.
- (4-3) 부설한 후 적절한 간격이 되도록 배관을 이동하여 매설한다.
- (5) 배관의 입상부에는 방호시설물을 설치한다.
- (6) 배관을 매설하려는 경우에는 해저면으로부터 배관의 외면까지의 깊이는 닻내림 시험의 결과, 토질, 되메우기 재료, 선박 교통 사정 등을 참작하여 안전한 거리를 유지한다. 이때 그 배관을 매설하는 해저에 준설 계획이 있는 경우에는 계획되어 있는 준설 후의 해저면 밑 0.6 m를 해저면으로 본다.
- (7) 패일 우려가 있는 (7-1)부터 (7-4)까지의 장소에 매설하는 배관에는 (7-5)에 따른 패임을 방지하기 위한 조치를 강구한다.
- (7-1) 해류의 영향으로 해저가 패이거나 조류(潮流)의 간만(干滿)으로 해저의 모래가 이동하는 등의 표사현상(漂砂現狀)을 일으킬 우려가 있는 장소
- (7-2) 해안선의 앞바다에 있는 쇄파대(碎成帶)의 영향으로 해저가 패일 우려가 있는 장소
- (7-3) 해안 부근에서 해안 및 구조물의 영향으로 패일 우려가 있는 장소
- (7-4) 그 밖에 자연현상 등의 영향으로 해저가 패일 우려가 있는 장소
- (7-5) 패임을 방지하기 위하여 다음의 조치를 한다.
- (7-5-1) 해안선 형상의 변경, 구축물 등의 설치, 개조, 철거, 장애물 등으로 인한 패임의 발생을 방지하는 조치
- (7-5-2) 조류, 폭풍, 하천의 영향 등으로 패일 우려가 있는 경우에는 패임이 예상되는 깊이보다 깊은 위치에 배관을 매설하는 조치
- (8) 굴착과 되메우기는 안전이 유지되도록 적절한 방법으로 실시한다.
- (9) 해저면 밑에 배관을 매설하지 않고 설치하려는 경우에는 해저면을 고르게 하여 배관이 해저면에 닿게 한다.
- (10) 배관이 부앙하거나 이동할 우려가 있는 경우에는 다음 기준에 따라 이를 방지하기 위한 조치를 한다.
- (10-1) 배관의 비중을 주위의 흙이 사질토(砂質土)인 경우에는 해수(海水)의 비중 이상, 점질토인 경우에는 액성한계(液性限界)에서 흙의 단위체적중량 이상으로 한다.
- (10-2) 앵커(anchor) 등을 사용하여 배관을 고정한다.
- (10-3) 지반의 변동에 의하여 부상(浮上)을 일으킬 우려가 없는 깊이에 배관을 설치한다.
- (10-4) 배관을 매설할 수 없을 때에는 파랑 및 조류(潮流)의 영향을 고려하고, 필요한 경우에는 배관의 중량 조절, 새들(saddle)의 설치, 수중(水中)콘크리트 공사 등의 조치를 한다.

2.5.7.6 배관 해상 설치

사업소 밖의 해상 배관은 다음 기준에 따라 설치한다.

- (1) 배관은 지진·풍압·파도압 등에 안전한 구조의 지지물로 지지한다.
- (2) 배관은 선박의 항해로 인하여 손상을 받지 않도록 해면과의 사이에 필요한 공간을 확보하여 설치한다.
- (3) 선박의 충돌 등으로 배관 또는 그 지지물이 손상될 우려가 있는 경우에는 방호설비를 설치한다.
- (4) 배관은 다른 시설물(그 배관의 지지물은 제외한다)과 배관의 유지관리에 필요한 거리를 유지한다.

2.5.7.7 내진설계

시업소 밖에 설치하는 배관은 KGS GC203(가스시설 및 지상 가스배관 내진설계 기준) 및 KGS GC204(매설 가스배관 내진설계 기준)에 따라 지진에 안전한 구조로 설계 · 설치하고, 그 성능을 유지한다. <개정 18. 10. 16.>

2.5.8 배관 부대설비 설치

2.5.8.1 수취기 설치

천연 메탄을 수송하기 위한 배관과 이에 접속하는 압축기와의 사이에는 수취기를 설치한다.

2.5.8.2 압력계 및 온도계 설치

배관은 그 배관에 위해의 우려가 없도록 배관의 적당한 곳에 입축가스배관의 경우에는 압력계를, 액화가스배관의 경우에는 압력계 및 온도계를 설치한다. 다만, 초저온 또는 저온의 액화가스배관의 경우에는 온도계설치를 생략할 수 있다.

2.5.8.3 순회감시자동차 보유

시업소 밖의 배관 유지 상태를 감시하기 위하여 순회감시차를 보유하고, 필요한 경우에는 안전을 위한 기자재창고 등을 설치한다.

2.5.8.4 누출 확산 방지 조치

시가지·하천·터널·도로·수로 및 사질토 등의 특수성 지반(해저는 제외한다) 중에 배관을 설치하는 경우에는 도시가스의 종류에 따라 안전한 방법으로 누출된 가스의 확산 방지조치를 한다. 이 경우 도시가스의 종류 및 압력과 배관의 주위 상황에 따라 필요한 장소에는 배관을 2중관으로 하고, 가스누출검지경보장치를 설치한다.

2.5.8.5 운영 상태 감시장치 설치

25.8.5.1 사업소 밖의 배관장치(배관 및 그 배관과 일체가 되어 도시가스의 수송용으로 사용되는 입축기 · 펌프 · 밸브 및 이들의 부속설비를 포함한다. 이하 같다)에는 압축기 · 펌프 및 밸브의 작동 상황 등 그 배관장치의 우영 상태를 감시하는 장치를 다음 기준에 따라 설치한다.

- (1) 배관장치에는 적절한 장소에 압력계, 유랑계, 온도계(필요한 경우에 한정한다) 등의 계기류(計器類)를 설치한다.
- (2) 압축기 또는 펌프에 관련되는 계기실(배관장치의 경로에 설치한 관리실을 포함한다)에는 해당 압축기 또는 펌프의 작동 상황을 나타내는 표시등 및 긴급 차단밸브의 개폐 상태를 나타내는 표시등을 설치한다.

- 2.5.8.5.2 배관장치에는 입력 또는 유량의 이상 변동 등 이상상태가 발생한 경우에는 다음 기준에 따라 그 상황을 경보하는 장치를 설치한다.
- (1) 경보장치의 경보 수신부는 해당 경보장치가 경보를 울리는 때에 지체 없이 필요한 조치를 할 수 있는 장소에 설치한다.
- (2) 경보장치는 다음의 경우에 경보를 울리는 것으로 한다.
- **(2−1)** 배관 내의 압력이 상용압력의 1.05배(상용압력이 4 № 이상인 경우에는 상용압력에 0.2 №를 더한 압력)를 초과한 때
- (2-2) 배관 내의 압력이 정상운전 시의 압력보다 15% 이상 강하한 때
- (2-3) 배관 내의 유량이 정상운전 시의 유량보다 7 %이상 변동한 때(도시가스 제조시설에만 적용한다.)
- (2-4) 긴급 차단밸브의 조작회로가 고장난 때 또는 긴급 차단밸브가 폐쇄된 때

2.5.8.6 인전 제어장치 설치

- 25.8.6.1 사업소 밖의 배관장치에는 도시가스의 종류 · 성질 · 상태 및 압력과 배관의 길이에 따라 다음의 제어 기능을 갖는 안전 제어장치를 설치한다.
- (1) 압력 안전장치, 기스누출검지경보장치, 긴급 차단장치, 그 밖에 안전을 위한 설비 등의 제어회로가 정상 상태로 작동되지 않는 경우에 압축기 또는 펌프가 작동되지 않는 제어 기능
- (2) 다음의 이상 상태가 발생한 경우에 재해 발생 방지를 위하여 압축기 · 펌프 · 긴급 차단장치 등을 신속하게 정지 또는 폐쇄하는 제어 기능
- (2-1) 2.5.8.5.1(1)에 따라 설치한 압력계로 측정한 압력이 상용압력의 1.1배를 초과했을 때
- **(2-2)** (2-1)에서 정한 압력계로 측정한 압력이 정상 운전할 때의 압력보다 30% 이상 강하했을 때
- **(2-3)** 2.5.8.5.1(1)에 따라 설치한 유량계로 측정한 유량이 정상운전할 때의 유량보다 15 % 이상 증가했을 때
- (2-4) 2.6.2에 따라 설치한 가스누출경보기가 작동했을 때
- (3) 압력 안전장치, 가스누출검지경보설비 등과 그 밖에 안전을 위한 설비 등의 조작회로에 동력(動力)이 공급되지 않은 때 또는 경보장치가 경보를 울리고 있을 때에는 압축기 또는 펌프가 작동하지 않는 제어 기능
- 2.5.8.6.2 2.5.8.6.1에 따른 압력 안전장치는 다음 기준에 적합한 것으로 한다.
- (1) 배관내의 압력이 상용압력을 초과하지 않거나 워터해머(water hammer) 현상으로 생기는 압력이 상용압력의 1.1배를 초과하지 않도록 하는 제어기능을 갖춘 것
- (2) 재질 및 강도는 가스의 성질, 상태, 온도 및 압력 등에 상응되는 적절한 것
- (3) 배관장치의 압력 변동을 충분히 흡수할 수 있는 용량을 갖춘 것

2.5.8.7 피뢰설비 설치

시업소 밖의 배관장치에는 낙뢰 등으로부터 설비를 보호하기 위하여 KS C IEC 62305-1,2,3,4(피뢰 시스템)에 정하는 규격의 피뢰설비를 설치한다.

2.5.8.8 배관의 내용물 제거장치 설치

사업소 밖의 배관에는 서로 인접하는 긴급 차단장치의 구간마다 그 배관 안의 도시가스를 이송하고

불활성가스 등으로 치환할 수 있는 조치를 한다.

2.5.9 배관설비 성능

배관은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 다음 기준에 따라 내압시험 및 기밀시험을 한다.

2.5.9.1 배관·튜브·호스 및 배관계 등은 도시가스를 안전하게 수송할 수 있도록 하기 위하여 설치후 상용압력 이상의 압력으로 기밀시험을 실시하여 이상이 없는 것으로 한다.

2.5.9.2 사업소 밖의 지하에 설치하는 배관은 다음 시기에 실시하는 기밀시험 및 내압시험에 적합한 성능을 가진 것으로 한다.

- (1) 최초로 설치할 때
- (2) 기밀시험(공기나 불활성기체를 배관에 주입하여 가스 누출 여부를 확인하는 검시를 말한다. 이하 같다) 및 내압시험을 실시하고, 완성검사를 받은 날부터 15년이 경과한 연도 및 그 이후 매 4년이 경과한 날이 속하는 연도의 정기 보수 기간(해당 연도에 정기 보수를 하지 않는 경우에는 전년도 또는 다음 연도의 정기 보수 기간으로 한다)이나 그 기간 전후의 적절한 시기에 기밀시험을 실시한다.

2.5.10 배관설비 표시

배관의 안전을 확보하기 위하여 그 배관의 외부에는 도시가스를 사용하는 배관임을 명확하게 식별할 수 있도록 표시를 하고, 매설된 배관의 주위에는 그 배관이 매설되어 있음을 명확하게 알 수 있도록 다음 기준에 따라 표시한다.

2.5.10.1 배관을 지상에 설치하는 경우에는 지면으로부터 떨어뜨려 설치하고 보기 쉬운 곳에 도시가스의 배관임을 표시하며, 배관의 이상을 발견한 자는 연락처로 연락하여 줄 것을 부탁하는 내용의 표지판을 2.9.1.3에 따라 설치한다.

25.10.2 배관을 지하에 매설하는 경우에는 지면으로부터 1 m 이상의 깊이에 매설하고, 보기 쉬운 장소에 도시가스 배관을 매설하였음을 2.9.1.3에 따라 표시한다.

2.5.10.3 표지판에는 배관의 이상을 발견한 경우 연락처로 연락하여 줄 것을 부탁하는 내용을 포함한다.

2.6 시고예방설비 기준

2.6.1 괴압 인전장치 설치

저장설비 · 완충탱크 · 처리설비 · 압축장치의 각 단계 출구측 및 압축가스설비에는 그 설비의 압력이 상용압력을 초과하는 경우 즉시 그 압력을 상용압력 이하로 되돌릴 수 있도록 하기 위하여 다음 기준에 따라 과압 안전장치를 설치한다.

2.6.1.1 괴압 인전장치 선정

가스설비 등에서의 압력 상승 특성에 따라 다음 기준에 따른 과압 안전장치를 선정한다.

- (1) 기체 및 증기의 압력 상승을 방지하기 위하여 설치하는 안전밸브
- (2) 급격한 압력 상승, 독성가스의 누출, 유체의 부식성 또는 반응생성물의 성상 등에 따라 안전밸브를 설치하는 것이 부적당한 경우에 설치하는 파열판
- (3) 펌프 및 배관에서 액체의 압력 상승을 방지하기 위하여 설치하는 릴리프밸브 또는 안전밸브
- (4) (1)부터 (3)까지의 안전장치와 병행 설치할 수 있는 자동 압력 제어장치(고압설비 등의 내압이 상용의 압력을 초과한 경우 해당 고압설비 등으로의 가스 유입량을 줄이는 방법 등으로 해당 고압설비 등 내의 압력을 자동적으로 제어하는 장치)

2.6.1.2 괴압 인전장치 설치 위치

과압 안전장치는 고압설비 중 압력이 최고허용압력 또는 설계압력을 초과할 우려가 있는 다음 구역마다 설치하다.

- (1) 내 · 외부 요인으로 인한 압력 상승이 설계압력을 초과할 우려가 있는 압력용기 등
- (2) 토출측의 막힘으로 인한 압력 상승이 설계압력을 초과할 우려가 있는 압축기(다단 압축기의 경우에는 각 단) 또는 펌프의 출구측
- (3) 배관 내의 액체가 2개 이상의 밸브로 차단되어 외부 열원에 의한 액체의 열팽창으로 파열이 우려되는 배관
- (4) (1)부터 (3)까지 이외에 입력 조절 실패, 이상반응, 밸브의 막힘 등으로 인한 압력 상승이 설계압력을 초과할 우려가 있는 고압설비 또는 배관 등
- (5) 입축기에는 그 최종단에, 그 밖의 고압설비에는 압력이 상용압력을 초과한 경우에 그 압력을 직접 받는 부분

2.6.1.3 괴압 인전장치 구조 및 재질

2.6.1.3.1 안전장치는 한국산업규격 또는 관련 규격에 적합한 것으로 한다.

2.6.1.3.2 과압 안전장치의 구조 및 재질은 그 과압 안전장치가 설치되는 가스설비 등의 안에 있는 도시가스의 압력 및 온도에 견딜 수 있고, 그 도시가스에 내식성이 있는 것으로 한다.

2.6.1.4 괴압 인전장치 분출 면적

안전밸브·파열판 또는 릴리프밸브의 분출 면적이나 유출 면적은 다음 계산식에 따라 계산한 면적 이상으로 한다.

- (1) 기체 또는 증기로 분출되는 경우
- (1-1) 임계흐름압력이 배압보다 크거나 같은 경우(음속흐름)

$$A = \frac{13160W \sqrt{TZ}}{CK_{d}K_{b}K_{c}P_{1}\sqrt{M}} \cdots (2.5)$$

$$A = \frac{35250V \sqrt{TZM}}{CK_{d}K_{b}K_{c}P_{1}} \cdots (2.6)$$

$$A = \frac{189750V \sqrt{TZG}}{CK_{d}K_{b}K_{c}P_{1}} \cdots (2.7)$$

(1-2) 임계흐름압력이 배압보다 작은 경우(아음속흐름)

$$A = \frac{17.9W}{F_2 K_b K_c} \sqrt{\frac{ZT}{MP_1 (P_1 - P_2)}} \cdots (2.8)$$

$$A = \frac{47.95V}{F_2 K_b K_c} \sqrt{\frac{ZTM}{P_1 (P_1 - P_2)}} \cdots (2.9)$$

$$A = \frac{258V}{F_2 K_b K_c} \sqrt{\frac{ZTG}{P_1 (P_1 - P_2)}} \cdots (2.10)$$

식(2.5)부터 식(2.10)에서 k, P_1 , P_2 , A, W, V, G, C, T, M, Z 및 K는 각각 다음 수치를 나타내는 것으로 한다.

P1 : 분출량 결정압력(절대압력으로 설정압력과 초과압력의 합)(kPa)

$$\frac{P_{cf}}{P_1} = \left[\frac{2}{k+1}\right]^{\frac{k}{k-1}} \cdots (2.11)$$

여기에서

 P_{cf} : 임계흐름압력(절대압력을 말한다)(kPa(a))

 \mathbf{k} : 비열비($\frac{C_{_{P}}}{C_{_{V}}}$)의 수치

C_v: 정압비열, C_v: 정적비열

P2: 대기압을 포함하는 배압(절대압력을 말한다) (kPa)

A : 필요분출면적(mm)

W: 2.6.1.6에서 정한 필요분출량(kg/h)

C: 비열용량계수로서, 그림 2.6.1.4① 또는 표 2.6.1.4①에서 정한 값

T : 분출량 결정압력에서 가스의 절대온도(K)

M: 가스의 분자량

K_d: 분출계수(제작자의 설계분출계수)로서, 안전밸브는 0.975, 파열판은 0.62로 한다.

표 2.6.1.4① 비열용량계수

k	С	k	С	k	С	k	С
1.00	315	1.26	343	1.52	366	1.78	386
1.01	317	1.27	344	1.53	367	1.79	386
1.02	318	1.28	345	1.54	368	1.80	387
1.03	319	1.29	346	1.55	369	1.81	388
1.04	320	1.30	347	1.56	369	1.82	389
1.05	321	1.31	348	1.57	370	1.83	389
1.06	322	1.32	349	1.58	371	1.84	390
1.07	323	1.33	350	1.59	372	1.85	391
1.08	325	1.34	351	1.60	373	1.86	391
1.09	326	1.35	352	1.61	373	1.87	392
1.10	327	1.36	353	1.62	374	1.88	393
1.11	328	1.37	353	1.63	375	1.89	393
1.12	329	1.38	354	1.64	376	1.90	394
1.13	330	1.39	355	1.65	376	1.91	395
1.14	331	1.40	356	1.66	377	1.92	395
1.15	332	1.41	357	1.67	378	1.93	396

1.16	333	1.42	358	1.68	379	1.94	397
1.17	334	1.43	359	1.69	379	1.95	397
1.18	335	1.44	360	1.70	380	1.96	398
1.19	336	1.45	360	1.71	381	1.97	398
1.20	337	1.46	361	1.72	382	1.98	399
1.21	338	1.47	362	1.73	382	1.99	400
1.22	339	1.48	363	1.74	383	2.00	400
1.23	340	1.49	364	1.75	384		
1.24	341	1.50	365	1.76	384		
1.25	342	1.51	365	1.77	385		

K_b: 배압보정계수로서 대기압이면 1, 평형 벨로즈형(balanced bellows type)은 그림 2.6.1.4②, 일반형(conventional type)의 경우 그림 2.6.1.4③에서 구한 값

Kc: 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0

Z : 그림 2.6.1.44에서 나타낸 압축계수의 값. 단, 명확하지 않은 경우는 Z=1.0

V : 2.6.1.6에서 규정하는 필요분출량 [Nm/min(0 ℃, 101.325kh(a))]

G : 표준 상태에서의 가스 비중[0 ℃, 101.325 kh(a))]으로, 공기 1을 기준으로 한다.

 F_2 : 아음속계수로서, 그림 2.6.1.45에서 구한 값 또는 다음 식 (2.12)에 따라 계산한 값

$$F_2 = \sqrt{\left(\frac{k}{k-1}\right)r^{\frac{2}{k}}\left[\frac{1-r^{\frac{(k-1)}{k}}}{1-r}\right]} \cdots (2.12)$$

여기에서

 $r: P_2/P_1$

(2) 액체로 분출되는 경우

식(2.13)에 따라 분출 면적을 산출한다. 다만, 산업통상자원부장관이 그 성능을 인정하는 경우에는 식(2.14)에 따라 분출 면적을 산출할 수 있다. <개정 17. 9. 29.>

$$A = \frac{11.78Q}{K_d K_w K_c K_v K_p} \sqrt{\frac{G}{(1.25P - P_b)}} \cdots (2.13)$$

$$A = \frac{11.78Q}{K_d K_w K_c K_v} \sqrt{\frac{G}{(P_1 - P_2)}} \cdots (2.14)$$

식(2.13) 및 식(2.14)식에서

A : 필요분출면적(mm)

Q: 필요분출량(L/min)

Kc: 안전밸브와 파열판을 함께 설치한 경우 0.9. 안전밸브만 설치한 경우 1.0으로 한다.

Ka: 분출계수(제작자의 설계분출계수)로서, 안전밸브는 0.65, 파열판은 0.62로 한다

 K_w : 배압보정계수로서 대기압이면 1, 평형 벨로즈형(balanced bellows type)은 그림 2.6.1.46에서 구한 값으로 하며, 일반형(conventional type)의 경우 특별히 보정하지 않는다.

 K_v : 점도보정계수로서, 그림 2.6.1.47에서 구한 값 또는 다음 식에 따라 계산한 값으로 한다.

$$\begin{split} K_v &= (0.9935 + \frac{2.878}{R^{0.5}} + \frac{342.75}{R^{1.5}})^{-1.0} \\ R &= \frac{Q \left(18800 \times G\right)}{\mu \sqrt{A}} \\ R &= \frac{85220 \times Q}{U \sqrt{A}} \end{split}$$

여기에서

R: 레이놀드수(Reynold's Number)

 μ : 분출 온도에서의 절대점도(Centipoise)

U: 분출 온도에서의 절대점도(Saybolt Universal seconds, SSU)

 K_p : 과압보정계수로서, 그림 2.6.1.48에서 구한 값

P : 설정압력[kPa(g)]

P_b : 총배압[kPa(g)]

P1: 분출량 결정압력(설정압력과 초과압력의 합) [kPa(g)]

P₂: 배압[kPa(g)]

G: 분출 온도에서의 비중으로, 표준 상태에서 물을 기준으로 한다.

(3) 수증기(steam)로 분출되는 경우

$$A = \frac{190.4W}{P_1 K_d K_b K_c K_N K_{s.}}$$

여기에서

A : 필요분출면적(mm)

W : 필요분출량(kg/h)

 K_b : 배압보정계수로서 대기압이면 1, 평형 벨로즈형(balanced bellows type)은 그림2.6.1.4②, 일반형(conventional type)은 그림 2.6.1.4③에서 구한 값

K.: 안전밸브와 파열판을 함께 설치한 경우 0.9, 안전밸브만 설치한 경우 1.0으로 한다

 K_d : 분출계수(제작자의 설계분출계수)로서, 안전밸브는 0.975, 파열판은 0.62로 한다

K_n: Napier 방정식에 따른 보정계수로서, P₁이 10 339 kh(a) 이하인 경우 1, P₁이 10 339 kh(a) 초과 22 057 kh(a) 이하인 경우에는 다음 식으로 구한 값

$$K_n = \frac{0.02764P_1 - 1000}{0.03324P_1 - 1061}$$

 K_{sh} : 과열 수증기 보정계수로서 표 2.6.1.42에서 구한 값

표 2.6.1.4② 과열 수증기 보정계수

설정	 성압력		온도(°C/°F)								
MD ₀	-aia	149/	204/	260/	316/	371/	427/	482/	538/	593/	649/
MPa	psig	300	400	500	600	700	800	900	1000	1100	1200
0.10	15	1.00	0.98	0.93	0.88	0.84	0.80	0.77	0.74	0.72	0.70
0.14	20	1.00	0.98	0.93	0.88	0.84	0.80	0.77	0.74	0.72	0.70
0.28	40	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.74	0.72	0.70
0.41	60	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
0.55	80	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
0.69	100	1.00	0.99	0.93	0.88	0.84	0.81	0.77	0.75	0.72	0.70
0.83	120	1.00	0.99	0.94	0.89	0.84	0.81	0.78	0.75	0.72	0.70
0.90	140	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.10	160	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.24	180	1.00	0.99	0.94	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.38	200	1.00	0.99	0.95	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.52	220	1.00	0.99	0.95	0.89	0.85	0.81	0.78	0.75	0.72	0.70
1.66	240	_	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70

1.79	260	-	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
1.93	280	ı	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
2.07	300	-	1.00	0.96	0.90	0.85	0.81	0.78	0.75	0.72	0.70
2.41	350	-	1.00	0.96	0.90	0.86	0.82	0.78	0.75	0.72	0.70
2.76	400	-	1.00	0.96	0.91	0.86	0.82	0.78	0.75	0.72	0.70
3.45	500	-	1.00	0.96	0.92	0.86	0.82	0.78	0.75	0.73	0.70
4.14	600	-	1.00	0.97	0.92	0.87	0.82	0.79	0.75	0.73	0.70
5.52	800	-	_	1.00	0.95	0.88	0.83	0.79	0.76	0.73	0.70
6.90	1000	-	_	1.00	0.96	0.89	0.84	0.78	0.76	0.73	0.71
8.61	1250	-	_	1.00	0.97	0.91	0.85	0.80	0.77	0.74	0.71
10.30	1500	-	_	-	1.00	0.93	0.86	0.81	0.77	0.74	0.71
12.10	1750	-	_	_	1.00	0.94	0.86	0.81	0.77	0.73	0.70
13.79	2000	_	_	_	1.00	0.95	0.85	0.80	0.76	0.72	0.69
17.19	2500	_	_	_	1.00	0.95	0.82	0.78	0.73	0.69	0.66
20.69	3000	_	_	_	_	1.00	0.82	0.74	0.69	0.65	0.62

그림 2.6.1.4① 열용량비 *k=C_p/C_v*

그림 2.6.1.4② 밸런스 벨로즈형 안전밸브 배압보정계

그림 2.6.1.4③ Conventional 안전밸브 배압조정계수

그림 2.6.1.4⑥ 밸런스 벨로즈형 안전밸브 배압보정계수

그림 2.6.1.4⑦ 점도로 인한 용량보정계수

2.6.1.5 괴압 인전장치 축적압력

안전밸브·파열판 또는 릴리프밸브(이하 2.6.1.5에서 "안전밸브"라 한다)의 축적입력은 다음 기준에 적합한 것으로 한다. 이 경우 안전밸브의 축적압력·설정압력 및 초과압력의 예는 표 2.6.1.5와 같다. (1) 분출 원인이 화재가 아닌 경우

(1-1) 안전밸브를 1개 설치한 경우의 안전밸브의 축적압력은 최고허용압력(MAWP : Maxim Allowable Working Pressure. 이하 같다)의 110% 이하로 한다.

(1-2) 안전밸브를 2개 이상 설치한 경우의 안전밸브의 축적압력은 최고허용압력의 116% 이하로 한다.

(2) 분출 원인이 화재인 경우

안전밸브의 축적압력은 안전밸브의 수량에 관계없이 최고허용압력의 121% 이하로 한다.

표 2.6.1.5 안전밸브의 축적압력, 설정압력 및 초과압력

	안전밸브 1개 설치			안전밸브 2개 이상 설치		
원 인	최대	최대	초과	최대	최대	초과
	설정압력	축적압력	압력	설정압력	축적압력	압력

화재 시가 아닌	첫 번째 밸브	100%	110 %	10%	100 %	116%	16 %
경우	추가된 밸브	_	_	-	105 %	116 %	11 %
화재 시인 경우	첫 번째 밸브	100%	121 %	21 %	100 %	121 %	21 %
	추가된 밸브	_	_	-	105 %	121 %	16 %
	나머지 밸브	_	_	_	110 %	121 %	11 %
[보기] 모든 수치는 최대허용압력의 %임							

2.6.1.6 괴압 인전장치 분출량

안전밸브 또는 파열판의 필요분출량은 다음 (1)이나 (2)에서 규정한 계산식이나 (3)에 따라 구한 값 [다음 (1) 또는 (2)에서 규정한 계산식으로 구한 양이 해당 설비 내의 도시가스 양을 초과하는 경우에는 해당 설비 내의 도시가스 양 이상으로 한다.

(1) 액화가스의 고압설비 등이 외부 화재에 노출되어 분출되는 경우[다음 (3)에서 정한 경우는 제외한대 (1-1) 압력용기 등의 하부지면에 배수구 및 소화설비가 있는 경우

$$W = \frac{37,140A^{0.82}F}{L} \cdots (2.15)$$

(1-2) 압력용기 등의 하부지면에 배수구 및 소화설비가 없는 경우

$$W = \frac{61,000A^{0.82}F}{L} \cdots (2.16)$$

식(2.15) 및 식(2.16)에서

W: 시간당 필요분출량(kg/h)

A: 내부 액화가스가 접촉하고 있는 압력용기 등의 면적(m²)으로, 화재 시 지면으로부터 수직높이 7.6 m까지 내부 액화가스가 접촉한 면적을 계산한다.

F: 환경계수로서, 압력용기 등에 단열재를 사용하는 경우에는 표 2.6.1.6 또는 다음 식(2.17)에 따른다. 다만, 단열재의 재질은 화재 시 화염에 충분히 견딜 수 있는 것으로 한정한다.

$$F = \frac{\kappa (904 \, \text{C} - \text{T}_{\text{f}})}{57,000 \text{t}} \cdots (2.17)$$

여기에서

 κ : T_f와 940 ℃의 평균 온도로 계산된 열전도도(kml·m/m²h℃). 다만, 암면과 칼슘실리게이트(calcium silicate)의 경우에는 다음 식으로 산정할 수 있다.

$$\kappa = 0.03 + (2 \times 10^{-4} \text{ T}_{\text{f}})$$

 $T_f:$ 유체 온도($^{\circ}$ C)

t : 단열 두께(m)

L : 분출량 결정압력에서의 액화가스 증발잠열(kcal/kg)

F: 표 2.6.1.6의 환경계수

표 2.6.1.6 환경계수

구분	압력용기 등의 환경	F값
1	노출(Bare)된 압력용기 등	1
2	단열된 압력용기 등(단열재의 전열계수= κ/t, 분출 시 유 체 온도=15℃)	

	1) 19.5 km/m²h℃	0.3
	2) 9.8 km²/m²h℃	0.15
	3) 4.9 kcal/m³h℃	0.075
	4) 3.3 kcal/m³h°C	0.05
	5) 2.4 kcal/m³h°C	0.0376
	6) 2.0 kcal/m³h°C	0.03
	7) 1.6 kcal/m³h°C	0.026
3	물분무장치가 설치된 경우	1
4	감압시설 및 액이송설비가 설치된 경우	1
5	지상에 설치하고 흙으로 덮은 저장탱크	0.03
6	지하 매설 저장탱크	0.00

(2) 압축가스의 고압설비 등[다음 (3)에서 정한 경우는 제외한다]

 $W = 0.28V \gamma d^2$

여기에서

W : 시간당 소요분출량(kg/h)

V : 도입관 내의 압축가스 유속(m/sec)

 γ : 안전장치의 입구측의 가스 밀도 (kg/m^3)

d : 도입관의 내경(cm)

(3) 펌프 또는 압축기에서 시간당의 토출량(kg/h)을 시간당의 소요 분출량으로 한다.

(4) 고압설비 안의 기체 및 증기가 외부 화재에 노출되어 분출되는 경우

$$W = 0.277 (MP_1)^{0.5} \frac{(T_w - T_1)^{1.25} A}{T_1^{1.1506}}$$

여기에서

W : 필요 분출량(kg/h)

A : 용기의 노출 표면적(m²)

 P_1 : 분출량 결정압력(절대압력으로 설정압력과 초과압력의 합을 말한다) [kPa(a)]

M: 기체 또는 증기의 분자량

 $T_{\rm w}$: 용기 표면 온도(탄소강의 최대용기표면온도를 865 $^{\circ}$ K로 권장되며, 그 외의 합금강의 경우 좀 더 높은 온도를 권장), $^{\circ}$ K

T₁: 분출 시 온도로서, 다음 식에 따라 계산된 값으로 한다.

$$T_1 = T_n(\frac{P_1}{P_n})$$

여기에서

P_n: 정상운전 압력[kPa(a)] T_n: 정상운전 온도([°]K)

2.6.1.7 괴압 인전장치 작동압력

2.6.1.7.1 안전장치의 설정압력은 최고허용압력 또는 설계압력을 초과하지 않는 압력으로 한다.

2.6.1.7.2 고압설비에 부착하는 과압 안전장치는 내압시험압력의 10분의 8(액화산소탱크의 경우에는 상용압력의 1.5배) 이하의 압력에서 작동하는 것으로 한다.

26.1.7.3 액화가스의 고압설비등에 부착되어 있는 스프링식 안전밸브는 상용의 온도에서 해당 고압설비등 안의 액화가스의 상용의 체적이 해당 고압설비등 내의 내용적의 98 %까지 팽창하게 되는 온도에 대응하는 해당 고압설비등 내의 압력에서 작동하는 것으로 한다.

2.6.1.8 기스방출관 설치

2.6.1.8.1 저장설비·완충탱크·처리설비 및 압축가스설비의 안전장치에는 방출관을 설치하고, 방출관의 높이는 지상으로부터 5 m 이상 수직으로 설치하며, 방출관에는 적절한 빗물 방지용 캡을 설치한다. 다만, 저장설비 및 완충탱크 안전장치의 방출관은 지상으로부터 5 m의 높이 또는 저장설비 및 완충탱크의 정상부로부터 2 m의 높이 중 높은 위치로 한다.

2.6.1.8.2 2.6.1에 따라 설치한 과압 안전장치 중 안전밸브 또는 파열판에는 가스방출관을 설치한다. 이 경우 가스방출관의 방출구의 위치는 가연성가스의 저장탱크에 설치하는 경우에 지상으로부터 5 m 이상의 높이 또는 저장탱크의 정상부로부터 2m의 높이 중 높은 위치로서, 주위에 화기 등이 없는 안전한 위치에 설치한다.

2.6.1.9 국제공인기준 적용 특례

안전밸브 또는 파열판의 분출량 결정 및 설치는 API, ASME, ISO 공인기준을 적용한 경우와 그 밖에 산업통상자원부장관과 한국가스안전공사가 협의하여 인정하는 국제적인 공인기준을 적용한 경우에 2.6.1.1부터 2.6.1.8까지에도 불구하고 적합한 것으로 본다. <개정 17. 9. 29.>

2.6.2 기스누출 경보 및 지동 치단장치 설치

충전시설에는 가스가 누출될 경우 이를 신속히 검지하여 효과적으로 대응할 수 있도록 하기 위하여 다음 기준에 따라 가스누출검지경보장치(이하 "검지경보장치"라 한다)를 설치한다.

2.6.2.1 기스누출검지경보장치 기능

검지경보장치는 누출된 가스를 검지하여 경보를 울리면서 자동으로 가스 통로를 차단하는 것으로서, 다음 기능을 가진 것으로 한다.

26.2.1.1 경보는 접촉연소 방식, 격막갈바니전지 방식, 반도체 방식, 그 밖의 방식에 따라 검지엘리먼트의 변화를 전기적 신호에 의해 이미 설정하여 놓은 가스 농도(이하 "경보 농도"라 한다)에서 자동적으로 울리는 것으로 한다. 이 경우 가연성가스 경보기는 담배연기 등에, 독성가스용 경보기는 담배연기, 기계세척 유 가스, 등유의 증발가스, 배기가스 및 탄화수소계 가스 등 잡가스에는 경보하지 않는 것으로 한다.

26.21.2 경보 농도는 검지경보장치의 설치 장소와 주위 분위기 온도에 따라 가연성가스는 폭발하한계의 1/4 이하, 독성가스는 TLV-TWA(threshold limit value—time weight average, 정상인이 1일 8시간 또는 주 40시간 통상적인 작업을 수행함에 있어 건강상 나쁜 영향을 미치지 않는 정도의 공기 중 가스 농도를 말한다. 이하 같다) 기준 농도 이하로 한다.(다만, 암모니이를 실내에서 사용하는 경우에는 50

ppm으로 할 수 있다)

- **2.6.2.1.3** 경보기의 정밀도는 경보 농도 설정치를 가연성가스용일 경우는 $\pm 25\%$ 이하, 독성가스용일 경우는 $\pm 30\%$ 이하로 한다.
- 2.6.2.1.4 검지에서 발신까지 걸리는 시간은 경보 농도의 1.6배 농도에서 보통 30초 이내로 한다. 다만, 검지경보장치의 구조상 또는 이론상 30초가 넘게 걸리는 가스(암모니아, 일산화탄소 또는 이와 유사한 가스)일 경우에는 1분 이내로 할 수 있다.
- 26.21.5 검지경보장치의 경보 정밀도는 전원의 전압 등 변동이 $\pm 10\%$ 정도일 때에도 저하되지 않도록 한다.
- 2.6.2.1.6 지시계의 눈금은 가연성가스용은 0~폭발 하한계 값, 독성가스는 0~TLV-TWA 기준 농도의 3배 값(암모니아를 실내에서 사용하는 경우에는 150 ppm)을 명확하게 지시하는 것으로 한다.
- 2.6.2.1.7 경보를 발신한 후에는 원칙적으로 분위기 중 가스 농도가 변화하여도 계속 경보를 울리고, 그 확인 또는 대책을 강구함에 따라 경보가 정지되는 것으로 한다.
- 2.6.2.1.8 자동적으로 긴급 차단 신호를 발하는 농도 설정치는 1.25퍼센트 이하의 값으로 한다.

2.6.2.2 기스누출검지경보장치 구조

검지경보장치의 구조는 다음 기준에 적합한 것으로 한다.

- 2.6.2.2.1 충분한 강도(특히 검지엘리먼트 및 발신회로는 내구성을 갖는 것일 것)를 갖고, 취급 및 정비(특히 검지엘리먼트의 교체 등)가 쉬운 것으로 한다.
- 2.6.2.2.2 가스에 접촉하는 부분은 내식성의 재료 또는 충분한 부식방지 처리를 한 재료를 사용하고, 그 외의 부분은 도장이나 도금 처리가 양호한 재료로 한다.
- 2.6.2.2.3 가연성가스(암모니아는 제외한다)의 검지경보장치는 방폭 성능을 가진 것으로 한다.
- 2.6.2.2.4 2개 이상의 검출부에서 검지신호를 수신하는 경우 수신회로는 경보를 울리는 다른 회로가 작동하고 있을 때에도 해당 검지경보장치가 작동하여 경보를 울릴 수 있는 것으로서, 경보를 울리는 장소를 식별할 수 있는 것으로 한다.
- 2.6.2.2.5 수신회로가 작동 상태에 있는 것을 쉽게 식별할 수 있는 것으로 한다.
- 2.6.2.2.6 경보는 램프의 점등 또는 점멸과 동시에 경보를 울리는 것으로 한다.

2.6.2.3 기스누출검지경보장치 설치 장소 및 설치 개수

- 2.6.2.3.1 검지경보장치는 다음 장소에 설치한다.
- (1) 압축설비 주변
- (2) 압축가스설비 주변
- (3) 개별 충전설비 본체 내부
- (4) 밀폐형 피트 내부에 설치된 배관 접속부(용접 접속은 제외한다) 주위
- (5) 펌프 주변
- 2.6.2.3.2 검지경보장치는 다음에서 정한 수 이상으로 설치한다.
- (1) 압축설비 주변 또는 충전설비 내부에는 1개 이상
- (2) 압축가스설비 주변에는 2개
- (3) 배관 접속부마다 10 m 이내에 1개
- (4) 펌프 주변에는 1개 이상
- 2.6.2.3.3 제조설비에서 검지경보장치의 검출부 설치 장소 및 개수는 다음 기준에 따른다.
- (1) 건축물 안에 설치되어 있는 압축기, 펌프, 반응설비, 저장탱크((5)에 기재한 것은 제외한다) 등 가스가 누출하기 쉬운 고압설비 등((3)에 기재한 것은 제외한다)이 설치되어 있는 장소의 주위에는 누출된 가스가 체류하기 쉬운 곳에 이들 설비군의 바닥면 둘레 10 m에 1개 이상의 비율로 계산한 수
- (2) 건축물 밖에 설치되어 있는 (1)에 기재한 고압설비가 다른 고압설비, 벽이나 그 밖의 구조물에 인접하여 설치된 경우와 피트 등의 내부에 설치되어 있는 경우 및 누출된 가스가 체류할 우려가 있는 장소에 설치되어 있는 경우에는 누출된 가스가 체류할 우려가 있는 장소에 그 설비군의 바닥면 둘레 20 m마다 1개 이상의 비율로 계산한 수. 다만, (5)에 기재한 것은 제외한다.
- (3) 기열로 등 발화원이 있는 제조설비가 누출된 가스가 체류하기 쉬운 장소에 설치되는 경우에는 그 장소의 바닥면 둘레 20m마다 1개 이상의 비율로 계산한 수
- (4) 계기실 내부에는 1개 이상
- (5) 방류둑(2기 이상의 저장탱크를 집합방류둑 안에 설치한 경우에는 저장탱크 칸막이를 설치한 경우에만 적용한다) 안에 설치된 저장탱크의 경우에는 해당 저장탱크마다 1개 이상
- **2.6.2.3.4** 저장시설(배관은 제외한다. 이하 2.6.2.3.4에서 같다)에서의 검지경보장치의 검출부 설치 장소 및 개수는 다음 기준에 따른다.
- (1) 건축물 안에 설치되어 있는 감압설비, 저장설비, 판매설비, 특정 고압가스 사용 설비(버너 등은 파일럿 버너 방식의 인터록 기구를 설치하여 가스 누출의 우려가 없는 것에는 해당 버너 등의 부분을 제외한다) 등 가스가 누출되기 쉬운 설비를 설치하는 곳 주위에는 누출된 가스가 체류하기 쉬운 장소에 이들 설비군의 둘레 10 m마다 1개 이상의 비율로 계산한 수
- (2) 건축물 밖에 설치되어 있는 (1)에 기재한 설비 외의 설비와 벽 등 구조물에 인접하거나 피트 등의 내부에 설치되는 경우에는 누출된 가스가 체류할 우려가 있는 장소에 그 설비군의 바닥면 둘레 20 m마다 1개 이상의 비율로 계산한 수
- 2.6.2.3.5 다음의 배관 부분에는 검지경보장치의 검출부를 설치한다.
- (1) 긴급 차단장치의 부분(밸브피트를 설치한 곳에는 해당 밸브 피트 안)
- (2) 슬리이브관, 2중관 또는 방호구조물 등으로 밀폐되어 설치(매설을 포함한다)되는 부분
- (3) 누출된 가스가 체류하기 쉬운 구조인 부분

2.6.2.3.6 검지경보장치의 검출부는 가스 비중, 주위 상황, 가스설비 높이 등 조건에 따라 적절한 높이에 설치한다.

2.6.2.3.7 검지경보장치의 경보부, 램프의 점등 또는 점멸부는 관계자가 상주하는 곳으로, 경보가 울린 후 각종 조치를 하기에 적합한 장소에 설치한다.

2.6.3 긴급 치단장치 설치

가연성가스 또는 독성가스의 저장탱크(내용적 5천). 미만의 것은 제외한다)에 부착된 배관 및 시가지 · 주요 하천 · 호수 등을 횡단하는 배관(불활성 가스에 속하는 배관은 제외한다)에는 긴급할 때 가스의 누출을 효과적으로 차단하기 위하여 다음 기준에 따라 긴급 차단장치를 설치한다.

2.6.3.1 저장탱크에 긴급 치단장치 설치

저장탱크에는 다음 기준에 따라 긴급 차단장치를 설치한다.

- 2.6.3.1.1 저장탱크에 부착된 배관(액상의 가스를 송출 또는 이입하는 것에만 적용하고, 저장탱크와 배관과의 접속 부분을 포함한다)에는 그 저장탱크의 외면으로부터 5 m 이상 떨어진 위치에서 조작할 수 있는 긴급 차단장치를 설치한다. 다만, 액상의 기연성가스 또는 독성가스를 이입하기 위하여 설치된 배관에 역류 방지밸브를 설치한 경우에는 긴급 차단장치를 설치한 것으로 볼 수 있다.
- 2.6.3.1.2 2.6.3.1.1에 따른 배관에는 긴급 차단장치에 딸린 밸브 외에 2개 이상의 밸브를 설치하고, 그 가운데 1개는 그 배관에 속하는 저장탱크의 가장 가까운 부근에 설치한다. 이 경우 그 저장탱크의 가장 가까운 부근에 설치한 밸브는 가스를 송출 또는 이입하는 때 외에는 잠가 둔다.
- 26.3.1.3 긴급 차단장치 또는 역류 방지밸브는 저장탱크 주밸브(main valve) 외측에서 가능한 한 저장탱크 에 가까운 위치 또는 저장탱크의 내부에 설치하되, 저장탱크의 주 밸브(main valve) 와 겸용해서는 안 된다.
- 2.6.3.1.4 긴급 차단장치 또는 역류 방지밸브를 설치할 때에는 저장탱크의 침해 또는 부상, 배관의 열팽창 및 지진과 그 밖의 외력의 영향을 고려한다.

2.6.3.2 저장탱크 외의 설비에 긴급 치단장치 설치

- **2.6.3.2.1** 긴급 차단장치의 부착 위치 · 조작 기구 · 차단 성능 등은 2.6.3.1(역류 방지밸브에 관한 것은 제외한다)을 따른다.
- 2.6.3.2.2 긴급 차단장치의 차단 조작 위치는 수송되는 가스의 대량 유출에 따라 충분히 안전한 장소로 한다.
- 2.6.3.2.3 긴급 차단장치 설치 위치는 다음 기준에 적합한 위치로 한다.

- (1) 특수 반응설비 또는 연소열량의 수치가 6×10^7 이상의 고압설비[연소열량의 수치가 6×10^7 미만인 고압설비라도 정체량 (액화가스의 저장설비는 저장능력(톤)의 수치가 평방근의 수치(저장능력이 1톤 미만인 것은 저장능력(톤)의 수치), 압축가스의 저장설비는 저장능력(m)을 해당 가스의 상용 온도 및 압력에서의 가스 질량(톤)으로 환산하여 얻을 수 있는 수치가 평방근의 수치(환산하여 얻을 수 있는 수치가 1 미만인 것은 해당 ?무엇을 환산하여 얻을 수 있는 수치), 처리설비 안에 있는 가스 질량(톤)의 수치(이 100톤 이상인 고압설비에서는 100톤 이상의 고압설비에, 독성가스의 고압설비에서는 정체량이 30톤 이상인 것에, 산소의 고압설비에서는 정체량이 100톤 이상인 것에, 산소의 고압설비에서는 정체량이 100톤 이상인 것에 긴급 차단장치를 설치한다. 다만, 긴급 차단장치를 이들 설비에 설치함으로써 안전 확보에 지장을 미칠 우려가 있는 경우에는 이들설비의 가장 가깝고 안전한 위치에 긴급 차단장치를 설치할 수 있다.
- (2) (1)에 규정한 설비 외에 제조의 주요한 공정에 관한 2가지 이상의 고압설비는 이들 설비가 가연성 가스를 사용하는 고압설비일 경우에는 그 연소열량의 합계 수치가 6×10⁷ 이상(연소열량의 합계가 6×10⁷ 미만인 고압설비도 정체량의 합계가 100톤 이상인 고압설비에서는 100톤 이상), 독성가스의 고압설비에서는 정체량의 합계가 30톤 이상, 산소의 고압설비에서는 정체량의 합계가 100톤 이상이되지 않도록 공정을 구분하여 긴급 차단장치를 설치한다. 다만, 긴급 차단장치를 설치함으로써 안전확보에 지장을 미칠 우려가 있는 경우에는 이러한 공정으로 구분하여 가장 가깝고 안전한 위치에 긴급 차단장치를 설치할 수 있다.
- 2.6.3.2.4 충전시설에는 충전설비 근처 및 충전설비로부터 5 m 이상 떨어진 장소에 긴급할 때 가스의 누출을 효과적으로 차단할 수 있도록 하기 위하여 긴급 차단장치를 다음 기준에 따라 설치한다. (1) 충전설비 근처 및 충전설비로부터 5 m 이상 떨어진 장소에는 수동 긴급 차단장치를 각각 설치하고, 이 장치가 작동될 경우에는 압축기 · 펌프 및 충전설비에 공급되는 전원과 가스 공급이 자동으로 차단되도록 한다.
- (2) 긴급 차단장치가 작동되거나 전원이 차단된 경우에는 압축장치 및 펌프가 정지되고 이 경우 압축장치 및 펌프를 수동으로 조작하거나 재조정할 경우에만 압축장치 및 펌프가 작동될 수 있는 구조로 한다. (3) 압축기의 인입구에는 다음 중 어느 하나에 해당하는 경우 압축기에 가스의 공급을 차단하는 자동밸브를 설치한다.
- (3-1) 긴급 차단장치가 작동된 경우
- (3-2) 전원 공급장치가 고장 난 경우
- (3-3) 압축기로 공급되는 전원이 차단된 경우
- (3-4) 압축기의 인입구 압력이 설정압력 이하로 떨어진 경우
- (4) 압축가스설비와 충전설비 시이의 배관에는 다음 중 어느 하나에 해당하는 경우 자동으로 닫히는 밸브를 설치한다.
- (4-1) 충전설비의 전원이 차단된 경우
- (4-2) 충전시설의 긴급 차단장치가 작동된 경우

2.6.3.3 긴급 치단장치 치단 조작기구 및 기능

2.6.3.3.1 긴급 차단장치의 조작 동력원은 차단밸브의 구조에 따라 액압, 기압, 전기(어느 것이나 정전시에 비상전력 등으로 사용이 가능하게 한 것) 또는 스프링 등으로 한다.

2.6.3.3.2 긴급 차단장치를 조작할 수 있는 위치는 해당 저장탱크로부터 5 m 이상 떨어진 곳(방류두 등을 설치한 경우에는 그 외측)이고, 액화가스의 대량 유출 시에 대비하여 안전한 장소로 한다. 또한 상기 위치 이외의 주변 상황에 따라서 해당 차단 조작을 신속히 할 수 있는 위치로 한다.

2.6.3.3.3 차단 조작은 간단히 할 수 있고 확실하고 신속히 차단되는 구조로 한다.

263.34 제조자나 수리자가 긴급 차단장치를 제조 또는 수리하였을 경우 긴급 차단장치는 KS B 2304(밸브 검사통칙)에서 정하는 기준에 따라 수압시험 방법으로 밸브시트의 누출검사를 하여 누출되지 않는 것으로 한다. 다만 수압 대신에 공기 또는 질소 등의 기압을 사용하여 누출검사를 하는 경우에는 차압 0.5 ~ 0.6 때에서 분당 누출랑이 50 ml×[호칭 지름(mm)/25(mm)] (330 ml를 초과하는 경우에는 330 ml)를 초과하지 않는 것으로 한다.

2.6.3.4 긴급 치단장치 개폐 표시

긴급 차단장치의 개폐 상태를 표시하는 시그널램프 등을 설치하는 경우 그 설치 위치는 해당 저장탱크의 송출 또는 이입에 관련된 계기실이나 이에 준하는 장소로 한다.

2.6.3.5 긴급 치단장치 위터해머 방지조치

긴급 차단장치 또는 역류 방지밸브에는 그 차단에 따라 그 긴급 차단장치 또는 역류 방지밸브 및 접속하는 배관 등에서 워터해머(water hammer)가 발생하지 않도록 조치를 강구한다.

2.6.3.6 수동 조작밸브 설치

압축가스설비에는 수동 조작밸브를 설치하고, 수동 조작밸브의 위치는 2.6.4.1에서 정한 역류 방지밸브의 후단으로 한다.

2.6.4 역류 방지장치 설치

압축가스설비의 인입 배관 및 압축장치의 입구측 배관 등 위험성이 높은 고압설비 사이에는 긴급할 때 가스가 역류되는 것을 효과적으로 차단할 수 있도록 하기 위하여 다음 기준에 따라 역류 방지밸브를 설치한다.

2.6.4.1 압축가스설비의 인입 배관에는 배관·호스 등이 파손되었을 때 가스가 압축가스설비로부터 방출되는 것을 방지하기 위하여 역류 방지밸브를 설치한다.

2.6.4.2 압축장치의 입구측 배관에는 역류 방지밸브 등의 장치를 설치한다.

2.6.5 역화 방지장치 설치(내용 없음)

2.6.6 위험 감시 및 제어장치 설치(내용 없음)

2.6.7 오발진 방지장치 설치

충전시설에는 자동차의 오발진으로 인한 사고를 방지할 수 있는 조치를 취한다.

2.6.8 전기방폭설비 설치

충전시설에 설치 · 사용하는 전기설비는 누출된 가스의 점화원이 되는 것을 방지하기 위하여 KGS GC101 (가스시설의 폭발 위험 장소 종류 구분 및 범위 산정에 관한 기준) 및 KGS GC102(방폭전기기기의 설계, 선정 및 설치에 관한 기준)에 따라 방폭 성능을 갖도록 설치한다. <개정 19. 6. 14.>

2.6.9 환기설비 설치

기연성가스의 가스설비실 및 저장설비실에는 누출된 가스가 채류하지 않도록 다음 기준에 따라 환기설비를 설치하고, 환기가 잘 되지 않는 곳에는 강제 환기설비를 설치한다.

2.6.9.1 공기보다 가벼운 기연성가스의 경우 가스의 성질, 처리 또는 저장하는 가스의 양, 설비의 특성 및 실의 넓이 등을 고려하여 충분한 면적을 가진 2방향 이상의 개구부 또는 기계환기설비를 설치하거나 이들을 병설하여 환기를 양호하게 한 구조로 한다.

2.6.9.2 공기보다 무거운 기연성가스의 경우 가스의 성질, 처리 또는 저장하는 가스의 양, 설비의 특성 및 실의 넓이 등을 고려하여 충분한 면적을 갖고 또한 바닥면에 접하여 개구한 2방향 이상의 개구부 또는 바닥면 가까이에 흡입구를 갖춘 기계환기설비를 설치하거나 이들을 병설하여 주로 바닥면에 접한 부분의 환기를 양호하게 한 구조로 한다.

2.6.10 부식 방지설비 설치

2.6.10.1 저장설비 부식 방지설비 설치

충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 부식방지조치를 강구한다.

2.6.10.1.1 저장탱크 및 압축가스설비의 외면에는 부식 방지를 위하여 도장을 한다. 다만, 저장탱크를 지하에 매설하려는 경우에는 그 외면에 부식 방지 코팅 및 KGS GC202(가스시설 전기 방식 기준)에 따른 전기부식 방지조치를 한다.

2.6.10.2 배관 부식 방지설비 설치

지상 또는 지하에 설치하는 배관에는 부식을 방지하기 위하여 다음 기준에 따라 부식 방지조치를 강구한다.

2.6.10.2.1 배관을 지상에 설치하는 경우에는 그 외면에 녹이 슬지 않도록 도장을 한다.

2.6.10.2.2 부식성이 있는 가스의 수송용 배관에는 해당 가스에 침식되지 않는 재료를 사용하며, 배관 내면의 부식 정도에 따른 부식 여유를 두거나 코팅 등의 방법으로 내면 부식 방지조치를 한다.

26.10.2.3 수송되는 가스나 배관 재료에 부식성이 없다고 인정되는 경우(실용상 충분히 탈수한 경우에도 포함한다)에는 원칙적으로 부식 여유를 고려하지 않을 수 있다.

2.6.10.2.4 배관을 지하에 매설하는 경우에는 아스팔트 또는 콜타르, 에나멜 등의 도장재와 주트(jute : 황마), 비닐론크로스, 글래스매트 또는 글래스크로스 등과 같은 피복재와의 조합에 의한 도복장(塗覆裝)

또는 이들과 동등 이상의 성능을 가지는 합성수지나 아스팔트매스틱 등의 도장처리로 배관의 외면을 보호한다.

2.6.10.2.5 지하에 설치하는 배관에는 KGS GC202(가스시설 전기방식 기준)에 따라 전기부식 방지조치를 한다.

2.6.10.2.6 보온 · 보냉된 배관 중 빗물 유입, 누수, 살수설비 등에 노출되어 있는 부분 및 응축 등에 의한 국부 부식이나 응력 부식 균열이 발생할 수 있는 부분에는 부식 방지조치를 한다.

2.6.10.2.7 보온 · 보냉된 배관에는 다음 기준에 따라 부식 진행 여부 등을 확인할 수 있는 조치를 하고, 점검 주기, 점검 방법 및 판정 기준 등을 종합적 안전관리규정에 명시한다.

- (1) 점검구의 설치
- (2) 그 밖의 점검 가능한 방법

2.6.11 정전기 제거설비 설치

충전시설에는 그 시설에서 발생한 정전기가 점화되는 것을 방지하기 위하여 다음 기준에 따라 정전기 제거조치를 한다.

2.6.11.1 제조설비의 정전기 제거설비 설치

기연성가스 제조설비[2.6.11.2에 따른 것과 접지저항치의 총합이 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하의 것은 제외한대 등에서 발생하는 정전기를 제거하는 설비는 다음 기준에 따라 설치한다.

- (1) 탑류, 저장탱크, 열교환기, 회전기계, 벤트스택 등은 단독으로 접지한다. 다만, 기계가 복잡하게 연결되어 있는 경우나 배관 등으로 연속되어 있는 경우에는 본당용 접속선으로 접속하여 접지할 수 있다.
- (2) 본딩용 접속선 및 접지접속선은 단면적 5.5 m² 이상의 것(단선은 제외한다)을 사용하고 경납붙임, 용접, 접속 금구 등을 사용하여 확실히 접속한다.
- (3) 접지 저항치는 총합 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하로 한다.

2.6.11.2 이입·송출설비의 정전기 제거설비 설치

기연성가스를 용기, 저장탱크 또는 제조설비(이하 "용기등" 이라 한다)에 이충전하거나 기연성가스를 용기등으로부터 충전할 때에는 해당 용기등에 정전기를 제거하는 설비를 다음 기준에 따라 설치한다. 이 경우 접지저항치의 총합이 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하의 것은 정전기 제거설비를 설치하지 않을 수 있다.

- (1) 충전용으로 사용하는 저장탱크 및 제조설비는 접지한다. 이 경우 접지접속선은 단면적 5.5 mi 이상의 것(단선은 제외한다)을 사용하고, 경납붙임, 용접, 접속 금구 등을 사용하여 확실히 접속한다.
- (2) 차량에 고정된 탱크(용기 집합 장치류를 포함한다) 및 충전에 사용하는 배관은 반드시 충전하기 전에 접지하며, 이때 접지 접속선은 단면적 5.5㎡이상의 것(단선은 제외한다)을 사용하고, 접속 금구를 사용하여 확실히 접속함과 동시에 용기 등으로부터 떨어진 안전한 위치에 접지한다.
- (3) 접지 저항치는 총합 100Ω (피뢰설비를 설치한 것은 총합 10Ω) 이하로 한다.

2.6.12 전도 방지설비 설치(해당 없음)

2.6.13 절연설비 설치(내용 없음)

2.6.14 긴급 분리장치 설치

충전호스에는 충전 중 자동차의 오발진으로 인한 충전기 및 충전호스의 피손을 방지하기 위하여 다음 기준에 따라 긴급 분리장치를 설치한다.

26.14.1 자동차가 충전호스와 연결된 상태로 출발할 경우 가스의 흐름이 차단될 수 있도록 긴급 분리장치를 지면 또는 지지대에 고정하여 설치한다.

2.6.14.2 긴급 분리장치는 각 충전설비마다 설치한다.

2.6.14.3 긴급 분리장치는 수평 방향으로 당길 때 666.4 N(68 kg) 미만의 힘으로 분리되는 것으로 한다.

2.6.14.4 긴급 분리장치와 충전설비 사이에는 충전자가 접근하기 쉬운 위치에 90° 회전의 수동밸브를 설치한다.

2.6.15 충전기 보호설비 설치 <개정 19. 4. 5.>

충전설비의 주위에는 자동차의 충돌로부터 충전기를 보호하기 위하여 다음 기준에 따라 방호조치를 한다.

- (1) 보호대는 다음 중 어느 하나를 만족하는 것으로 한다. <신설 19. 4. 5.>
- (1-1) 두께 12 cm 이상의 철근콘크리트
- (1-2) 호칭 지름 100 A 이상의 KS D 3507(배관용 탄소 강관) 또는 이와 동등 이상의 기계적 강도를 가진 강관
- (2) 보호대의 높이는 80 cm 이상으로 한다. <신설 19. 4. 5.>
- (3) 보호대는 차량의 충돌로부터 충전기를 보호할 수 있는 형태로 한다. 다만, 말뚝 형태일 경우 말뚝은 2개 이상을 설치하고, 간격은 1.5m 이하로 한다. <신설 19. 4. 5.×/개정 19. 5. 21.>
- (4) 보호대의 기초는 다음 중 어느 하나를 만족하는 것으로 한다. 〈신설 19. 4. 5.〉
- (4-1) 철근콘크리트제 보호대는 콘크리트 기초에 25 cm 이상의 깊이로 묻고, 바닥과 일체가 되도록 콘크리트를 타설한다.
- (4-2) 강관제 보호대는 (4-1)과 같이 콘크리트 기초에 문거나, KS B 1016(기초볼트)에 따른 앵커볼트를 사용하여 표 2.6.15(4-2) 및 그림 2.6.15(4-2)와 같이 콘크리트 기초에 고정한다.

표 2.6.15(4-2) 강관제 보호대의 받침대 치수

보호대 관지름	받침대 치수(mm)			
D	a, b	Т		
100 A 이상	D+100 이상	6 ± 0.5 이상		
	·			

[비고] 받침대의 재료는 KS D 3503(일반 구조용 압연강재) 또는 이와 동등 이상의 기계적 강도를 갖는 것으로 한다.

그림 2.6.15(4-2) 강관제 보호대의 받침대 설치 방법

(5) 보호대의 외면에는 아간식별이 가능하도록 야광 페인트로 도색하거나 야광 테이프 또는 반사지 등으로 표시한다. <신설 19. 4. 5.>

2.7 피애저김설비 기준

2.7.1 방류둑 설치

액화도시가스 저장탱크의 저장능력이 500톤 이상(서로 인접하여 설치된 것은 그 저장능력의 합계)인 것의 주위에는 그 저장탱크를 보호하고 그 저장탱크로부터 가스가 누출되는 경우 재해 확대를 방지하기 위하여 다음의 기준에 따라 방류둑을 설치한다. 다만, 저장탱크가 이중 방호 및 완전 방호나 멤브레인 (membrane) 방호구조로 설계되었을 경우에는 저장탱크 주위에 방류둑 또는 이와 동등 이상의 효과가 있는 시설을 설치하지 않을 수 있다. <개정 21. 8. 9.>

2.7.1.1 방류독 기능

방류둑은 저장탱크의 액화가스가 액체 상태로 누출된 경우 액체 상태의 가스가 저장탱크 주위의 한정된 범위를 벗어나서 다른 곳으로 유출되는 것을 방지하는 기능을 갖는 것으로 한다. 다만, 다음 기준에 따른 저장탱크는 방류둑을 설치한 것으로 본다.

- (1) 저장탱크 저부가 지하에 있고 주위가 피트선 구조로 되어 있는 것으로서, 그 용량이 2.7.1.2에 따른 용량 이상인 것(빗물의 고임 등으로 용량이 감소되지 않는 것에만 적용한다)
- (2) 지하에 묻은 저장탱크로서, 그 저장탱크 안의 액화가스가 전부 유출된 경우에 그 액면이 지면보다 낮도록 된 구조인 것
- (3) 저장탱크 주위에 충분한 안전용 공지를 확보한 경우에는 저장탱크로부터 유출된 액화가스가 체류하지 않도록 지면을 경시지게 하여 안전한 유도구로 유출한 액화가스를 유도해서 고이도록 구축한 피트상의 구조물(피트상 구조물에 체류된 액화가스를 펌프 등의 이송설비로 안전한 위치에 이송할 수 있는 조치를 강구한 것에만 적용한다) 인 것
- (4) 법 적용을 받는 시설에 설치된 2중 구조의 저장탱크로서, 외조가 내조의 상용온도에서 동등 이상의 내압 강도를 가지고 있고, 외피와 내피 사이의 가스를 흡인하여 누출된 가스를 검지할 수 있는 것으로서, 긴급 차단장치를 내장한 것

2.7.1.2 방류둑 용량

방류둑의 수용 용량은 최대 저장 용량의 110% 이상으로 한다.

2.7.1.3 방류북 재료 및 구조

방류둑의 재료 및 구조는 다음 기준에 적합한 것으로 한다.

- 2.7.1.3.1 방류둑 재료는 철근콘크리트, 철골 · 철근콘크리트, 금속, 흙 또는 이들을 혼합한 것으로 한다.
- 2.7.1.3.2 철근콘크리트, 철골·철근콘크리트는 수밀성 콘크리트를 사용하고, 균열 발생을 방지할 수 있도록 배근, 리베팅 이음, 신축이음 및 신축이음의 간격, 배치 등을 정하도록 한다.
- 2.7.1.3.3 금속은 해당 가스에 침식되지 않는 것 또는 부식 방지 · 녹 방지 조치를 강구한 것으로 하고 대기압 하에서 액화가스의 기화 온도에 충분히 견디는 것으로 한다.
- 2.7.1.3.4 성토는 45° 이하의 기울기로 하여 쉽게 허물어지지 않도록 충분히 다져 쌓고, 강우 등에 유실되지 않도록 그 표면에 콘크리트 등으로 보호하고, 성토 윗부분의 폭은 30 cm 이상으로 한다.
- 2.7.1.3.5 방류둑은 액밀한 것으로 한다.
- 2.7.1.3.6 방류둑의 높이는 방류둑 안의 저장탱크 등의 안전관리 및 방재활동에 지장이 없는 범위에서 방류둑 안에 체류한 액의 표면적이 될 수 있는 한 적게 되도록 한다.
- 2.7.1.3.7 방류둑은 그 높이에 상당하는 해당 액화가스의 액두압에 견딜 수 있는 것으로 한다.
- 2.7.1.3.8 방류둑에는 계단, 사다리 또는 토시를 높이 쌓아 올린 형태 등으로 된 출입구를 둘레 50 m마다 1개 이상씩 설치하되. 그 둘레가 50m 미만일 경우에는 2개 이상을 분산하여 설치하다.
- 2.7.1.3.9 배관 관통부는 내진성을 고려하여 틈새를 통한 누출 방지 및 부식 방지를 위한 조치를 한다.
- 2.7.1.3.10 방류둑 안에는 고인 물을 외부로 배출할 수 있는 조치를 한다. 이 경우 배수조치는 방류둑 밖에서 배수 및 차단 조작을 할 수 있고, 배수할 때 이외에는 반드시 닫아 둔다.
- 2.7.1.3.11 집합 방류둑 안에는 기연성가스와 조연성가스 또는 기연성가스와 독성가스의 저장탱크를 혼합하여 배치하지 않는다. 다만, 가스가 기연성가스이고 독성가스인 것으로서, 집합방류둑 안에 동일한 가스의 저장탱크가 있는 경우에는 같이 배치할 수 있다.
- 2.7.1.3.12 저장탱크를 건축물 안에 설치한 경우는 그 건축물이 방류둑의 기능 및 구조를 갖도록 하여 유출된 가스가 건축물 외부로 흘러 나가지 않는 구조로 한다.

2.7.1.4 방류둑 내·외부 부속설비 설치

방류둑의 내부에는 입축장치·강제 기화장치 및 압축가스설비 등을 설치하지 않는다. 또한 방류둑의 내측 및 그 외면으로부터 10m 이내에는 그 저장탱크의 부속설비 외의 것을 설치하지 않는다. 다만, 다음 설비는 방류둑 내측 또는 그 외면으로부터 10m 이내에 설치할 수 있다.

- (1) 방류둑 내부에 설치할 수 있는 시설 및 설비
- (1-1) 해당 저장탱크에 속하는 송출 및 송액설비(저온저장탱크에 속한 것에 한정한다) 불활성가스의 저장탱크, 불분무장치 또는 살수장치(저장탱크 외면에서 방류둑까지 20m를 초과하는 경우에는 방류둑 외측에서 조작할 수 있는 소화설비를 포함한다), 가스누출검지경보설비(검지부에 한정한다), 재해설비(누출된 가스를 흡입하는 부분에 한정한다), 조명설비, 계기시스템, 배수설비, 배관 및 그 파이프랙(pipe rack)과 이들에 부속하는 시설 및 설비
- (1-2) (1-1)에서 정한 것 이외의 것으로서, 안전 확보에 지장이 없는 시설 및 설비
- (2) 방류둑 외부 10m 이내에 설치할 수 있는 시설 및 설비
- (2-1) 해당 저장탱크에 속하는 송출 및 송액설비, 불활성가스의 저장탱크, 냉동설비, 열교환기, 기화기, 가스누출검지경보설비, 재해설비, 조명설비, 누출된 가스의 확산을 방지하기 위하여 설치된 건물 형태의 구조물, 계기 시스템, 배관 및 그 파이프랙크와 이들에 부속하는 시설 및 설비
- (2-2) 배관(신축이음매 이외의 부분이 지면에서 4 m 이상의 높이를 가진 것에 한정한다) 및 그 파이프랙 방소화설비, 통로(해당 시업소에 설치된 것에 한정한다) 또는 지하에 매설되어 있는 시설(지상 중량물의 하중에 견딜 수 있는 조치를 한 것에 한정한다)
- (2-3) (2-1) 및 (2-2)에서 정한 것 이외의 것으로서, 안전 확보에 지장이 없는 시설 및 설비 (3) (2)에 불구하고 독성가스의 액화가스저장탱크의 경우 그 독성가스의 종류 및 저장능력에 따라 독성가스저장탱크 부속설비 이외의 설비와 방류둑의 외면 사이에는 표 2.7.1.4에서 정한 거리 이상을 유지한다.

독성가스의 종류	저장능력	안전거리(m)		
가연성	5 톤 이상 1 000 톤 미만 1 000 톤 이상	4(X-5)/995+6 10		
그 밖의 것	5톤 이상 1 000톤 미만 1 000톤 이상	4(X-5)/995+4 8		
[비고] X는 저장능력(단위 : 톤)을 지칭한다.				

표 2.7.1.4 독성가스 종류에 따른 설비 안전거리

2.7.2 방호벽 설치

저장설비와 사업소 안의 보호시설과의 사이, 압축장치와 충전설비 사이 및 압축가스설비와 충전설비사이에는 가스 폭발에 따른 충격에 견딜 수 있고 한 쪽에서 발생하는 위해 요소가 다른 쪽으로 전이되는 것을 방지하기 위하여 다음 기준에 따라 방호벽을 설치한다. 다만, 저장설비와 사업소 안의 보호시설과의사이에 방호벽의 설치로 인하여 조업이 불가능할 정도로 특별한 사정이 있다고 시장·군수 또는 구청장이인정하거나 2.1.1.1에 규정된 안전거리 이상의 거리를 유지한 경우에는 저장설비와 사업소 안의 보호시설과의 사이에 방호벽을 설치하지 않을 수 있으며, 압축장치와 충전설비사이 및 압축가스설비와 충전설비사이에 2.1.4의 단서에 따라 방호벽을 설치한 경우에는 압축장치와 충전설비사이 및 압축가스설비와 충전설비사이에 방호벽을 설치하지 않을 수 있다.

2.7.2.1 철근콘크리트제 방호벽 설치

철근콘크리트 방호벽은 그림 2.7.2.1.2① 및 그림 2.7.2.1.2②와 같이 처리설비, 압축가스설비 외면으로부터 방호벽 상단 및 양쪽 끝을 지나는 직선이 보호시설과 만나지 않도록 다음 기준에 따라 설치한다.

2.7.2.1.1 직경 9 mm 이상의 철근을 가로 · 세로 400 mm 이하의 간격으로 배근하고, 모서리 부분의 철근을 확실히 결속한 두께 120 mm 이상, 높이 2 000 mm 이상으로 한다.

2.7.2.1.2 기초는 다음 기준에 적합한 것으로 한다.

- (1) 일체로 된 철근콘크리트 기초로 한다.
- (2) 그림 2.7.2.1.2와 같이 높이는 350 mm 이상, 되메우기 깊이는 300 mm 이상으로 한다.
- (3) 기초의 두께는 방호벽 최하부 두께의 120% 이상으로 한다.

그림 2.7.2.1.2① 방호벽 설치 예(측면도)

그림 2.7.2.1.2② 방호벽 설치 예(평면도)

그림 2.7.2.1.2 철근콘크리트제 방호벽 설치 예

2.7.2.2 콘크리트블록제 방호벽 설치

콘크리트블록제 방호벽은 다음 기준에 따라 설치한다.

2.7.2.2.1 철근을 2.7.2.1.1에 따라 배근 · 결속하고 블록 공동부는 콘크리트 모르타르를 채운 두께 150 mm 이상, 높이 2000 mm 이상으로 한다.

2.7.2.2.2 두께 150 mm 이상, 간격 3 200 mm 이하의 보조벽을 그림 2.7.2.2.2와 같이 본체와 직각으로 설치한다.

2.7.2.2.3 보조벽은 그림 2.7.2.2.3과 같이 방호벽면으로부터 400 mm 이상 돌출한 것으로 하고, 그 높이는 방호벽의 높이보다 400 mm 이상 이래에 있지 않게 한다.

2.7.2.2.4 기초는 일체로 된 철근콘크리트 기초이고, 기초의 높이는 350 mm 이상으로 하되, 되메우기 깊이는 300 mm 이상으로 한다.

2.7.2.3 강판제 방호벽 설치

강판제 방호벽은 다음 기준에 따라 설치한다.

2.7.2.3.1 방호벽은 두께 $6^{+0.8}_{-0.4}$ mm 이상의 강판 또는 두께 $3.2^{+0.8}_{-0.4}$ mm 이상의 강판에 30 mm $\times 30$ mm 이상의 앵글강을 가로 · 세로 400 mm 이하의 간격으로 용접 보강한 강판을 $1\,800$ mm 이하의 간격으로 세운 지주와 용접 결속하여 높이 $2\,000$ mm 이상으로 한다. <개정 $21.\,1.\,12.>$

2.7.2.3.2 앵글강의 보강은 그림 2.7.2.3.2와 같이 한다.

그림 2.7.2.3.2 강판제 방호벽의 앵글강 보강

2.7.2.3.3 지주는 1800 mm 이하의 간격으로 하되, 벽면과 모서리 및 벽면 양쪽 끝에도 설치한다.

2.7.2.3.4 지주와 벽면은 그림 2.7.2.3.4와 같이 필렛용접으로 결속하고, 모서리 부의 지주는 모서리의 안쪽에, 벽부의 지주는 벽면의 바깥쪽(바깥쪽에 설치하기 곤란한 경우에는 안쪽에 설치할 수 있다)에 설치한다.

그림 2.7.2.3.4 지주의 설치 방법

2.7.2.3.5 지주 규격은 표 2.7.2.3.5의 치수 이상으로 한다.

표 2.7.2.3.5 지주로 사용하는 형강의 치수(단위 : mm)

등변 ㄱ 강	100×100
I 형 강	100×75
H 형 강	100×100
ㄷ 형 강	100×50

2.7.2.3.6 기초는 다음 기준에 적합한 것으로 한다.

- (1) 일체로 된 철근콘크리트 기초로 한다.
- (2) 높이는 350㎜ 이상, 되메우기 깊이는 300㎜ 이상으로 한다.
- (3) 지주는 그림 2.7.2.3.6의 보기와 같이 기초에 400 mm 이상의 깊이로 묻거나, M20 이상의 앵커볼트를 사용하여 고정한다.

그림 2.7.2.3.6 강판제 방호벽의 고정 방법 보기

2.7.3 살수장치 설치(해당 없음)

2.7.4 제독설비 설치(해당 없음)

2.7.5 중화·이송설비 설치(해당 없음)

2.7.6 풍양계 설치(해당 없음)

2.7.7 소화설비 설치

충전시설의 주변에는 등급 20-B:C 이상의 소화기를 비치한다.

2.7.8 통행시설 설치

사업소 사이를 연결하여 설치된 배관에는 사람이 통행할 수 있는 시설을 갖춘다.

2.7.9 온도상승 방지설비 설치

2.7.9.1 저장탱크의 온도상승 방지설비 설치

2.7.9.1.1 온도상승 방지설비 설치 범위

온도상승 방지방치를 설치해야 하는 저장탱크(지주를 포함한다)는 기연성기스 및 독성기스의 저장탱크와 그 밖의 저장탱크로서, 기연성가스 저장탱크 또는 기연성 물질을 취급하는 설비와 (1)부터 (3)까지의 거리 이내에 있는 저장탱크로 한다.

- (1) 방류둑을 설치한 가연성가스 저장탱크의 경우 해당 방류둑 외면으로부터 10 m 이내
- (2) 방류둑을 설치하지 않은 가연성가스 저장탱크의 경우 해당 저장탱크 외면으로부터 20m 이내
- (3) 가연성 물질을 취급하는 설비의 경우 그 외면으로부터 20m 이내

2.7.9.1.2 액회기스 저장탱크 온도상승 방지설비 설치

액화가스 저장탱크(저장탱크에 부속하는 액면계, 밸브류를 포함한다. 이하 같다)는 (1), (2) 또는 이들의

혼합에 따르며, 지주는 (3)에 따른다. 이 경우 보냉을 위하여 단열재를 사용한 초저온 · 저온 저장탱크[2중각 (二重殼) 단열구조를 말한다! 로서, 해당 단열재의 두께가 주변의 화재를 고려하여 충분한 내화성을 갖고 있을 때에는 그 상태에서 저장탱크 온도상승 방지조치를 한 것으로 본다.

- (1) 저장탱크 표면적 1 m'당 5I/분 이상의 비율로 계산된 수량을 저장탱크 전 표면에 분무[실수(撒水)를 포함한다. 이하 같대 할 수 있도록 고정된 장치를 설치한다. 이 경우 저장탱크가 암면 두께 25 mm 이상 또는 이와 동등 이상의 내화 성능을 가지는 단열재로 피복되고, 그 외측을 두께 0.35 mm 이상의 KS D 3506(용융 아연 도금 강판 및 강대) SBHG2 또는 이와 동등 이상의 강도 및 내화 성능을 가진 재료로 피복한 것(이하 "준내화구조저장탱크"라 한다)에는 그 표면적 1 m'당 2.5L/분 이상의 비율로 계산된 수량을 분무할 수 있는 고정된 장치를 설치한다.
- (2) 저장탱크 외면으로부터의 거리가 40 m 이내인 위치에, 저장탱크를 향하여 어느 방향에서도 방수할 수 있는 소화전(호스 끝 수압 0.3 № 이상, 방수능력 400L/분 이상의 것을 말한다. 이하 같다)을 해당 저장탱크 표면적 50 m'당 1개의 비율로 계산된 수 이상 설치한다. 이 경우 준내화구조저장탱크에는 해당 저장탱크의 표면적 100 m'당 소화전 1개의 비율로 계산된 수 이상의 소화전을 설치한다.
- (3) 높이 1 m 이상의 지주(구조물 위에 설치된 저장탱크에는 해당 구조물의 지주를 말한다)에는 두께 50 mm 이상의 내화콘크리트 또는 이와 동등 이상의 내화 성능을 가지는 불연성의 단열재로 피복한다. 다만, (1) 또는 (2)에서 정한 물분무장치나 소화전을 지주에 살수할 수 있도록 설치한 경우에는 해당조치를 한 것으로 본다.

2.7.9.1.3 압축가스 저장탱크 온도상승 방지설비 설치

압축가스 저장탱크 및 그 지주는 다음 기준에 따라 온도상승 방지조치를 한다.

- (1) 저장탱크 및 그 지주의 어느 부분에도 방수할 수 있도록 안전한 장소에 소화전을 설치한다.
- (2) (1)의 성능과 동등 이상의 수량을 방수할 수 있는 소방펌프 자동치를 갖춘다.

2.7.9.1.4 온도상승 방지설비의 수원

- (1) 분무장치와 소화전 등은 해당 설비를 30분 이상 연속하여 동시에 방수할 수 있는 수량을 가지는 수원에 접속한다.
- (2) 4기 이상의 저장탱크가 상호 인접하여 설치되어 있는 경우에는 2.7.9.1.2(1)이나 2.7.9.1.2(2)에 따른 분무 또는 방수용 펌프의 능력 및 수원의 수량을 그림 2.7.9.1.4와 같이 임의의 저장탱크와 인접하는 저장탱크의 조합을 저장탱크군으로 분류할 때 합계 표면적이 최대로 되는 저장탱크군의 표면적에 따라 계산하는 것으로 한다.

주) 사선 친 부분의 저장탱크가 대상표면적이 됨. 그림 2.7.9.1.4 온도상승 방지설비 능력 산정 기준

2.7.9.2 배관의 온도상승 방지조치

배관에는 다음 기준에 따라 그 온도를 40° C 이하로 유지할 수 있는 조치를 한다. 다만, 열팽창 안전밸브의 설치 등 안전조치를 한 경우에는 온도를 40° C 이하로 유지할 수 있는 조치를 하지 않을 수 있다. (1) 배관에 가스를 공급하는 설비에는 상용온도를 초과한 가스가 배관에 송입되지 않도록 필요한 조치를 한다.

- (2) 배관을 지상에 설치하는 경우 온도의 이상 상승을 방지하기 위하여 부식 방지 도료를 칠한 후 은백색 도료로 재도장하는 등의 조치를 한다. 다만, 지상 설치 부분의 길이가 짧은 경우에는 그렇지 않다.
- (3) 배관을 교량 등에 설치할 경우에는 가능한 한 교량 하부에 설치하여 직사광선을 피하도록 하는 조치를 한다.

2.8 부대설비 기준

2.8.1 계측설비 설치

2.8.1.1 압력계 설치

- 28.1.1.1 충전소에는 충전소에서 긴급사태가 발생하는 것을 방지하기 위하여 다음 기준에 따라 압력계를 설치한다.
- (1) 충전소에는 표준이 되는 압력계를 2개 이상 비치한다.
- (2) 압축장치 및 펌프의 토출압력, 저장설비 및 압축가스설비의 저장압력, 충전설비의 충전압력을 지시하기 위한 압력계를 각각 설치한다.
- (3) 압력계의 지시눈금은 압력계가 부착되는 설비의 설계압력의 최소 150퍼센트까지 지시할 수 있는 것으로 한다.
- 2.8.1.1.2 고압설비에 설치하는 압력계는 상용압력의 1.5배 이상 2배 이하의 최고눈금이 있는 것으로 하고, 압축·액화 및 그 밖의 방법으로 처리할 수 있는 가스의 용적이 1일 100 ㎡ 이상인 사업소에는 「국가표준기본법」에 따른 제품 인증을 받은 압력계를 2개 이상 비치한다.

2.8.1.2 액면계 설치

액화가스의 저장탱크에는 다음 기준에 따라 액면계(산소 또는 불활성가스의 초저온 저장탱크의 경우에만 환형 유리제 액면계 가능)를 설치한다.

- 2.8.1.2.1 액면계는 평형반사식 유리액면계, 평형투시식 유리액면계 및 플로트(float)식·치압식·정전용 량식·편위식·고정튜브식 또는 회전튜브식이나 슬립튜브식 액면계 등에서 액화가스의 종류와 저장탱크의 구조 등에 적합한 구조와 기능을 가진 것으로 선정·사용한다.
- **2.8.1.2.2** 유리액면계로 사용하는 유리는 KS B 6208(보일러용 수면계유리) 중 기호 B나 P의 것 또는 이와 동등 이상의 것으로 한다.

2.8.1.2.3 유리를 사용한 액면계에는 액면을 확인하기 위한 필요한 최소 면적 이외의 부분을 금속제 등의 덮개로 보호하여 그의 파손을 방지하는 조치를 한다.

28.1.2.4 일반 고압설비에 설치하는 고정튜브식 또는 회전튜브식이나 슬립튜브식 액면계는 그 액면계로부터 가스가 방출되었을 때 인화 또는 중독의 우려가 없는 가스의 경우에만 사용한다.

2.8.1.2.5 저장탱크(가연성가스 및 독성가스에만 적용한다)와 유리제 게이지를 접속하는 상하 배관에는 자동식 및 수동식의 스톱밸브를 설치한다. 다만, 자동식 및 수동식 기능을 함께 갖춘 경우에는 각각설치한 것으로 볼 수 있다.

2.8.1.3 온도계 설치

기화장치 및 히터 출구에는 온도계를 설치한다. 다만, 액체로 유입되어 기체로 저장탱크에 회수되는 대기식 압력 생성코일 기화장치는 온도계를 설치하지 않을 수 있다.

2.8.2 비상전력설비 설치

정전 등으로 충전설비 등의 기능이 상실되지 않도록 다음 기준에 따라 비상전력설비를 설치한다.

2.8.2.1 충전시설의 비상전력설비

충전시설에는 다음 기준에 따라 비상전력설비를 설치한다.

- (1) 비상전력 등이라 함은 정전 등의 경우에 충전설비 등을 안전하게 유지하고 정지하기 위하여 필요한 최소용량을 갖춘 전력 및 공기 등 또는 이와 동등 이상인 것을 말한다.
- (2) 비상전력 등은 정전 등으로 그 충전설비 등의 기능이 상실되지 않도록 지체 없이 전환될 수 있는 방식이어야 하고, 안전에 필요한 설비는 표 2.8.2.1에 규정한 것 또는 이들과 동등 이상으로 인정되는 것 중 같은 종류를 포함하여 두 가지 이상(평상시에 사용되는 전력을 포함한다)을 보유하도록 조치한다.

비상전력등	타처공급	자가	추거기지 니	엔진구동	스팀터빈구동	공기 또는
설비	전력	발전	축전지장치	발전	발전	질소설비
자동 제어장치	\circ	0	0			Δ
긴급 차단장치	0	0	0			Δ
살수장치	0	0	0	0	0	
방소화설비	0	0	0	0	0	
냉각수 펌프	0	0	0	0	0	
물분무장치	0	0	0	0	0	
독성가스제해설비	0	0	0	0	0	
비상조명설비	0	0	0			
가스누설검지경보설비	0	0	0			
통신시설	0	0	0			

표 2.8.2.1 충전시설에서의 비상전력 종류

[비고]

1. 위 표에서 ○표는 비상전력 중에서 두 가지 이상 보유하는 것을 표시하며, △표는 공기를 사용하는 자동 제어장치 또는 긴급 차단장치에 반드시 보유하도록 조치할 것을 표시한다.

- 2. 자기발전은 항상 가동되는 것으로서, 동일 선로에 타 처로부터 공급되는 전력 또는 별도의 자기발전설비와 병렬로 수전할 수 있는 것으로 한다.
- 3. 살수장치, 방소화설비, 냉각수 펌프, 물분무장치 등에서 엔진 또는 스팀터빈 구동 시 펌프를 사용하는 경우에는 이 표의 비상전력 등을 보유하는 조치를 하지 않아도 된다.
- 4. 자동 제어장치 또는 긴급 차단장치는 정전 등의 경우 1 또는 2에서 정한 비에 관계없이 자동 또는 원격 수동으로 즉시 안전하게 작동될 수 있는 것을 갖춤으로써 갈음할 수 있다.
- 5. (5-1), (5-2)는 비상전력 등을 보유한 것으로 본다.
- (5-1) 정전 시에 그 기능이 상실되지 않는 것
- (5-1-1) 긴급 차단장치 중 와이어 등으로 작동되는 것
- (5-1-2) 물분무장치, 방소화설비 및 살수장치 중 필요한 용수량을 필요한 수두압으로 항상 유지할 수 있는 물탱크 또는 저수지 등을 확보하고 있는 상태에서 펌프를 사용하지 않는 경우
- (5-1-3) 통신시설 중 메기폰
- (5-2) 비상조명 또는 통신시설로서, 전지를 사용하는 것은 항상 사용할 수 있는 예비전지를 보유하고 있 거나 충전식 전지일 것

2.8.2.2 배관장치의 비상전력설비

충전시설의 시업소 밖 배관에 설치된 다음 배관장치의 안전을 위한 설비에는 28.2.1에 따라 비상전력설비를 설치한다.

- **(1)** 운전 상태 감시장치
- (2) 안전 제어장치
- (3) 가스누출 검지 경보설비
- (4) 제독설비
- (5) 통신시설
- (6) 비상조명설비
- (7) 그 밖에 안전상 중요하다고 인정되는 설비

2.8.3 통신설비 설치

충전소 안에는 긴급사태가 발생할 때 이를 신속히 통보할 수 있도록 시업소 규모 · 구조에 적합한 표 2.8.3의 통신설비를 갖춘다.

표 2.8.3 통신설비의 구비 조건

사항별(통신 범위)	설치(구비)해야 할 통신설비	비고
1. 안전관리자가 상주하는 사업	1. 구내전화	사무소가 같은 위치에 있는 경우
소와 현장 사업소와의 사이 또	2. 구내 방송설비	는 제외한다.
는 현장 사무소 상호 간	3. 인터폰	
	4. 페이징설비	
2. 사업소 안 전체	1. 구내 방송설비	
	2. 사이렌	
	3. 휴대용 확성기	
	4. 페이징설비	
	5. 메가폰	
3. 종업원 상호 간(시업소 안 임	1 .페이징설비	사무소가 같은 위치에 있는 경우
의의 장소)	2. 휴대용 확성기	는 제외한다.

3. 트랜시버(계기 등에 영향이 없는	
경우에 한정한다)	
4. 메가폰	

[비고]

- 1. 사항별 2, 3의 메가폰은 해당 사업소 안 면적이 1500 ㎡ 이하인 경우에만 적용한다.
- 2. 위의 표 가운데 통신설비는 사업소의 규모에 적합하도록 1가지 이상을 구비한다.

2.8.4 운영 시설물 설치

2.8.4.1 계기실 설치(내용 없음)

2.8.4.2 건축물 설치

충전소 구역 건축물의 창 등의 유리는 망입유리 또는 안전유리로 한다.

2.8.4.3 조명등 설치

충전시설의 방류둑 근처에는 조명등을 설치한다.

2.8.5 인전유지설비 설치

2.8.5.1 냄새 첨가장치 설치

충전소에 공급하는 도시가스에는 가스 누출 시 신속하게 식별할 수 있도록 하기 위하여 다음 기준에 따라 공기 중 혼합 비율의 용량이 1천분의 1의 상태에서 감지할 수 있는 냄새가 나는 물질을 혼합하고 이를 위한 장치를 설치한다.

- (1) 냄새가 나는 물질을 첨가하는 때에는 그 특성을 고려하여 적정 농도로 주입한다.
- (2) 냄새가 나는 물질의 주입설비는 그 농도를 일정하게 유지할 수 있는 것으로 한다.

2.9 표시 기준

사업소·저장설비·처리설비 및 압축가스설비의 안전을 확보하기 위하여 필요한 곳에는 도시가스를 취급하는 시설 또는 일반인의 출입을 제한하는 시설이라는 것을 명확하게 알아볼 수 있도록 다음 기준에 따라 경계표지를 설치하고, 외부인의 출입을 통제할 수 있도록 경계책을 설치한다. 다만, 2.7.2.1에 따른 방호벽을 설치하거나 처리설비 및 압축가스설비가 밀폐형 구조물 안에 설치된 경우 또는 저장설비 및 처리설비가 액확산 방지시설 안에 설치된 경우에는 해당 저장설비·처리설비 및 압축가스설비의 외부에 경계책을 설치하지 않을 수 있다.

2.9.1 경계표시

도시가스 충전시설의 안전을 확보하기 위하여 필요한 곳에는 도시가스를 취급하는 시설 또는 일반인의 출입을 제한하는 시설이라는 것을 명확하게 알아볼 수 있도록 다음 기준에 따라 경계표지를 설치한다.

2.9.1.1 도시기스 충전시업소 경계표지

도시가스 충전사업소에 설치하는 경계표지는 다음 기준에 따라 설치한다.

29.1.1.1 시업소의 경계표지는 해당 시업소의 출입구(경계울타리, 담 등에 설치되어 있는 것) 등 외부에서 보기 쉬운 곳에 게시한다.

2.9.1.1.2 사업소 내 시설 중 일부만이 법의 적용을 받을 때에는 해당 시설이 설치되어 있는 구획, 건축물 또는 건축물 내에 구획된 출입구 등 외부로부터 보기 쉬운 장소에 게시한다. 이 경우 해당 시설에 출입 또는 접근할 수 있는 장소가 여러 방향일 때에는 그 장소마다 게시하고, 냉동설비, 저온액화탄산가스 저장설비 중에서 단체 설비(유닛형 냉동설비 등을 말한다) 또는 이동식 냉동설비에는 그 설비 외면의보기 쉬운 장소에 표시할 수 있다.

2.9.1.1.3 경계표지는 법의 적용을 받고 있는 시업소 또는 시설임을 외부 사람이 명확하게 식별할 수 있는 크기로 한다. 또한 해당 사업소에서 안전 확보를 위해 준수해야 할 주의사항을 부기할 수 있다.

○ ○ 가 스 지하저장소
고 압 가 스 제 조 사 업 소
○ ○ 가스 충 전 소
출 입 금 지
화 기 절 대 엄 금
○ ○ 가스 저 장 소
○ ○ 가스 기 계 실

2.9.1.2 가스 충전 또는 이입 장소 경계표지

용기에 가스를 충전하거나, 저장탱크 또는 용기 상호 간에 가스를 이입하는 장소에는 다음 기준에 따라 경계표지를 설치한다.

2.9.1.2.1 가스를 충전하거나 이입하는 작업을 하고 있는 고압설비 주변에 제3자가 보기 쉬운 장소에 경계표지를 게시한다. 이 경우 해당 설비에 접근할 수 있는 방향이 여러 곳일 경우에는 각각의 방향에 게시한다.

2.9.1.2.2 표지에는 도시가스를 충전 또는 이입 작업 중이라는 것 및 그 부근에서 화기 사용을 절대 금지한다(가연성가스 또는 산소의 경우에만 적용한다)는 주의문을 명확히 알 수 있도록 기재한다.

2.9.1.3 배관의 경계표지

배관의 경계표지는 다음 기준에 따라 설치한다.

2.9.1.3.1 표지판은 배관이 설치되어 있는 경로에 따라 배관의 위치를 정확히 알 수 있도록 설치한다.

다만, 표지판의 설치로 교통 등의 장해가 우려되는 경우에는 배관으로부터 가장 가깝고 일반인이 보기 쉬운 장소를 선택하여 설치할 수 있다.

29.1.32 지하에 설치된 배관은 500 m 이하의 간격으로, 지상에 설치된 배관은 1 000 m 이하의 간격으로 설치하며, 배관의 위치를 알기 어려운 곳(굽어지는 곳, 분리되는 곳, 다른 가스배관과 교차되는 곳 등)에는 표지판을 추가로 설치한다. 다만, 지상에 설치한 배관의 경우 배관의 표면에 가스의 종류, 연락처 등을 표시한 때에는 이를 표지판에 갈음할 수 있다.

2.9.1.3.3 하나의 도로에 2개 이상의 도시가스 배관이 함께 설치되어 있는 경우에는 시업자 간에 협의하여 공동 표지판을 2.9.1.3.1 및 2.9.1.3.2에 따라 설치한다.

2.9.1.3.4 표지판에는 도시가스의 종류, 설치 구역명, 배관 설치(매설) 위치, 신고처, 회사명 및 연락처 등을 명확하게 적는다.

제○○구역 도시가스배관의 표지판

이 지역에는 아래와 같이 도시가스배관이 설치(매설)되어 있습니다. 가스 누출이나 그 밖의 이상을 발견하신 분은 즉시 신고 또는 연락하여 주시기 바랍니다.

시고처 :	하구기	스이저고 시	-(지역국번-	-0019)	ᄄ느	소바서(110)
	인하기		(시리하면	OOLSI		ユペツ	1137

도시가스의 종류	표지판에서 본 배관위치	회사명 및 연락처
\sim	○방향	(취)₩
	○m지점	2 00-0000
\sim	○방향	(주)○○
	○m지점	2 00-0000
\sim	○방향	(취)₩
	○m지점	5 00-0000

2.9.1.4 저장탱크 표시

지상에 설치하는 저장탱크(국가보안목표시설로 지정된 것은 제외한다)의 외부에는 은색·백색 도료를 바르고, 주위에서 보기 쉽도록 가스의 명칭을 붉은 글씨로 표시한다. 다만, 국가보안목표시설로 지정된 것은 표시를 하지 않을 수 있다.

2.9.2 식별표지 및 위험표지(해당 없음)

2.9.3 경계책

도시가스시설의 안전을 확보하기 위하여 저장설비, 처리설비 및 감압설비를 설치한 장소 주위에는 외부인의 출입을 통제할 수 있도록 다음 기준에 따라 경계책을 설치한다. 다만, 저장설비, 처리설비 및 감압설비가 건축물 안에 설치된 경우 또는 차량의 통행 등 조업 시행이 현저히 곤란하여 위해 요인이 가중될 우려가 있는 경우에는 경계책을 설치하지 않을 수 있다.

- 2.9.3.1 경계책 높이는 1.5 m 이상으로 한다.
- 2.9.3.2 경계책의 재료는 철책 또는 철망 등으로 한다.

2.9.3.3 경계책 주위에는 외부 사람의 무단출입을 금하는 경계표지를 보기 쉬운 장소에 부착한다.

2.9.3.4 경계책 안에는 누구도 화기, 발화 또는 인화하기 쉬운 물질을 휴대하고 들어갈 수 없도록 필요한 조치를 강구한다. 다만, 해당 설비의 정비수리 등 불가피한 사유가 발생한 경우에 한정하여 안전관리 책임자의 감독하에 휴대 조치할 수 있다.

3. 기술 기준

3.1 인전유지 기준

3.1.1 기초 유지관리(내용 없음)

3.1.2 저장설비 유지관리

저장설비의 안전성 및 작동성을 확보하고 저장설비 주위에서의 위해 요소 발생을 방지하기 위하여 다음 기준에 따라 필요한 조치를 강구한다.

3.1.2.1 저장탱크

도시가스 저장탱크는 도시가스를 안전하게 저장하기 위하여 다음 기준에 따라 유지 · 관리한다.

3.1.2.1.1 저장탱크 용량 감시

압축기 운전실에는 그 운전실에서 항상 그 저장탱크 안에 들어 있는 가스의 용량을 알 수 있도록 한다.

3.1.2.1.2 저장탱크 침이방지조치

저장탱크(저장능력이 압축가스는 $100 \,\mathrm{m}$, 액화가스는 $1\mathrm{E}$ 미만인 저장탱크는 제외)의 침하로 인한 위해를 예방하기 위하여 다음 기준에 따라 주기적으로 침하 상태를 측정한다.

- (1) 저장탱크(계단, 사다리, 배관 등의 부속품을 포함한다. 이하 3.1.2.1.2에서 같다)의 침하 상태 측정 주기는 1년에 1회 이상으로 한다.
- (2) 저장탱크의 침하 상태 측정 방법은 다음과 같이 한다. 이 경우 저장능력이 100톤 이하인 저장탱크는 (2-1)에 따른 조치를 생략할 수 있다.
- (2-1) 벤치마크(bench mark: 수준점)나 가(仮) 벤치마크를 다음 기준과 같이 설정한다. 다만, 해당 저장탱크로부터 2 km 이내에 국립지리원의 일등수준점이 있는 경우에는 벤치마크나 임시벤치마크를 설정하지 않을 수 있다.
- (2-1-1) 벤치마크는 그림 3.1.2.1.2①의 예와 같이 지진, 사태(沙汰), 침하 및 그 밖에 외력에 의해 변형이 일어나지 않는 구조로 한다.

그림 3.1.2.1.2① 벤치마크의 구조

(2-1-2) 임시벤치마크는 그림 3.1.2.1.2②의 예와 같이 설정 한다.

- (2-1-3) 벤치마크는 해당 사업소내의 면적 50만 m²당 1개소 이상 설치한다.
- (2-1-4) 벤치미크 또는 임시벤치미크는 차량의 통행 등으로 파손되지 않은 위치이며 관측하기 쉬운 위치에 설치한다.
- (2-2) 해당 저장탱크의 기초를 관측하기 쉬운 곳에는 레벨차를 측정할 수 있도록 레벨측정기를 설치한다. (2-3) 침하 상태 측정은 해당 저장탱크의 기초면이나 밑판의 측정점과 벤치마크 또는 임시벤치마크와의 레벨차를 측정한다.
- (2-4) 측정의 결과에 따라 해당 저장탱크의 기초면이나 밑판의 침하로 인한 기울기가 최대로 되는 기초면 또는 밑판에 2점을 정하고, 그 2점 간의 레벨차(단위 : m, 기호 : h) 및 수평거리(단위 : m, 기호 : ℓ)를 측정한다.
- (2-5) (2-4)에서 측정한 결과로 침하량(h/ℓ)을 계산한다.

3.1.2.1.3 저장탱크 침하 상태에 따른 조치

저장탱크의 침하 상태에 따라 다음과 같이 안전조치를 한다.

- (1) 침하량(h/ℓ)이 0.5%를 초과한 경우
- (1-1) 3.1.2.1.2에 따라 침하량을 1년간 매월(저장탱크 내부를 개방하여 부분적인 침하량을 측정하는 경우에는 6개월마다)측정하여 기록한다.
- (1-2) (1-1)의 측정 결과, 침하가 진행되고 있는 경우로서, 다음 1년 동안의 침하량이 1%를 초과할

것으로 판단되는 경우에는 (1-1)의 측정을 계속한다.

- (2) 침하량 h/ℓ이 1%를 초과한 경우
- (2-1) 저장탱크의 사용을 중지하고 저장탱크의 형상, 구조, 용량 및 제조후의 경과 연수 등에 따라 다음 중 어느 하나의 조치나 이에 준하는 유효한 조치를 한다.
- (2-1-1) 앵커볼트를 분리한 후 저장탱크에 무리한 하중이 걸리지 않도록 지지하면서 저장탱크를 기초로부터 들어 올리고, 해당 기초의 경사 또는 침하량에 따라 필요한 두께의 라이너를 삽입하거나 무수축 콘크리트를 충전한다.
- (2-1-2) 저장탱크를 들어 올리고 침하되지 않은 쪽 아래의 토사를 수평이 될 때까지 깎아 낸다.
- (2-1-3) 저장탱크를 들어 올려 밑판을 떼어 내고 기초면을 수평으로 한 후 밑판을 설치한다.
- (2-2) 기초를 수정한 경우에는 저장탱크를 들어 올릴 때 특별히 응력이 발생할 것으로 추정되는 부분에는 다음의 방법 중 적절한 방법으로 시험을 하고 균열 등의 유해한 결함이 없음을 확인한다. 다만, 저온 및 초저온 저장탱크는 시험을 하지 않을 수 있고, 균열 등의 유해한 결함이 없음을 확인하지 않을 수 있다.
- (2-2-1) KS D 0213(강자성 재료의 자분탐상검사 방법 및 자분 모양 분류)에 따른 자분탐상시험 <개정 14. 11. 17., 21.10.08.>
- (2-2-2) KS B 0816(침투 탐상 시험 방법 및 침투 지시 모양의 분류)에 따른 침투탐상시험
- (2-2-3) KS B 0896(페라이트계 강용접 이음부에 대한 초음파 탐상검사)에 따른 초음파탐상시험 <개정 21.10.08.>
- (2-2-4) KS B 0845(강 용접 이음부의 방사선투과검사)에 따른 방사선투과시험 <개정 21.10.08.> (2-3) 기초를 수정한 경우[(2-2)에 따른 검사를 한 것은 그 검사를 한 휘에는 저장탱크의 외관검사 및 충수(充水)시험에 병행하여 기초의 침하 상태를 측정하여 이상이 없고 기초의 침하량이 설정치이하인 것을 확인한다.
- (2-4) 기초를 수정한 후에는 적어도 3개월에 2회, 그 후에는 6개월마다 1회씩 부등침하량을 측정하고 이상이 없음을 확인한다.

3.1.3 기스설비 유지관리

충전시설의 안전성 및 작동성을 확보하고, 충전설비 주위에서의 위해 요소 발생을 방지하기 위하여 다음 기준에 따라 상응하는 조치를 강구한다.

3.1.3.1 진동 방지조치

고압설비 중 진동이 심한 곳에는 진동을 최소한도로 줄일 수 있는 조치를 한다.

3.1.3.2 기스설비 접속

고압설비를 이음쇠로 접속할 때에는 그 이음쇠와 접속되는 부분에 잔류응력이 남지 않도록 조립하고, 이음쇠 밸브류를 나사로 조일 때에는 무리한 하중이 걸리지 않도록 하며, 상용의 압력이 19.6 № 이상이 되는 곳의 나사는 나사게이지로 검사한 것으로 한다.

3.1.3.3 스톱밸브의 유지관리

안전밸브 또는 방출밸브에 설치된 스톱밸브는 항상 완전히 열어 놓는다. 다만, 안전밸브 또는 방출밸브의 수리 등을 위하여 특히 필요한 경우에는 그렇지 않다.

3.1.3.4 기연성물질 취급

가스설비 주위에는 가연성 액체 등의 위험물을 두지 않는다.

3.1.3.5. 충전직업 금지

화기를 취급하는 곳이나 인화성의 물질 또는 발화성의 물질이 있는 곳이나 그 부근에서는 가연성가스를 용기에 충전하지 않는다.

3.1.3.6. 가스충전소에는 휴대용 가스누출검지기를 비치한다.

3.1.4 배관 유지관리(내용 없음)

3.1.5 시고예방설비 유지관리

3.1.5.1 긴급 치단장치

3.1.5.1.1 긴급 차단장치는 매년 1회 이상 밸브시트의 누출 및 작동 검시를 실시하여 그 누출랑이 안전상 지장이 없는가를 확인하고, 개폐 조작 기능 등이 원활하고 확실하게 되는가를 확인한다.

3.1.5.1.2 긴급 차단장치를 수리하였을 경우에는 소정의 검사에 합격한 것으로 한다.

3.1.5.2 정전기 제거설비

정전기 제거설비를 정상 상태로 유지하기 위하여 다음 사항을 확인한다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속 상태
- (3) 지상에서의 절선 및 그 밖에 손상 부분의 유무

3.1.6 피해저감설비 유지관리(내용 없음)

3.1.7 부대설비 유지관리

3.1.7.1 비상전력설비

비상전력 등은 그 기능을 정기적으로 검사하여 사용상 지장이 없게 한다.

3.2 제조 및 충전 기준

3.2.1 제조 및 충전 준비(내용 없음)

3.2.2 제조 및 충전 직업

압축 도시가스 충전작업의 안전 확보를 위하여 필요한 안전수칙을 준수하고, 압축 도시가스의 안전성 유지를 위하여 다음 기준에 따른 충전 기준을 준수한다.

3.2.2.1 압축 도시가스 자동차용기는 통상 온도에서 설계압력 이상으로 충전되어서는 안 되며, 용기의 사용압력에 적합하게 충전한다.

3.2.2.2 자동차에 압축 도시가스를 충전할 때에는 엔진을 정지하고, 자동차의 수동 브레이크를 채우도록 한다.

3.2.3 제조 및 충전 시후조치

충전 완료 후 충전설비를 분리할 경우에는 충전호스 안의 가스를 제거하는 조치를 한다.

3.3 점검 기준

충전시설의 안전 확보에 필요하여 설치한 설비는 다음 기준에 따라 주기적으로 작동 상황을 점검하고. 그 결과 이상이 있을 때에는 그 설비가 정상적으로 작동할 수 있도록 필요한 조치를 강구한다.

3.3.1 전체 시설 점검(내용 없음)

3.3.2 기초점검(내용 없음)

3.3.3 저장설비 점검(내용 없음)

3.3.4 기스설비 점검

충전시설의 사용 개시 전과 사용 종료 후에는 반드시 그 충전시설에 속하는 설비의 이상 유무를 점검하는 것 외에 1일 1회 이상 충전설비의 작동 상황을 점검 및 확인하고 이상이 있을 때에는 그 설비의 보수 등 필요한 조치를 한다.

3.3.4.1 사용 전·후 점검

가스설비의 사용 개시와 종료 시에는 다음 작업 수칙에 따라 해당 설비의 이상 유무를 점검한다.

- (1) 점검작업 준비
- (1-1) 안전관리 총괄자는 사전에 안전관리 담당자와 협의하여 점검 계획을 정하고, 이를 각각의 안전관리 부문 담당자에게 철저히 주지시킨다. 이를 변경한 때에도 또한 같다.
- (1-2) 점검 계획을 기준으로 점검표를 작성하고, 점검원에게 실시 요령 및 주의 사항을 철저히 주지시킨다.
- (1-3) 점검 계획에는 지시 및 보고체계를 명시한다.
- (1-4) 점검에 사용하는 공구, 측정 기구, 보호구 등을 준비하고 이를 확인한다.
- **(2)** 사용 개시 전 점검사항
- (2-1) 가스설비에 있는 내용물의 상황
- (2-2) 계기류의 기능, 특히 인터록(inter lock), 긴급용 시켄스, 경보 및 자동 제어장치의 기능
- (2-3) 긴급 차단 및 긴급 방출장치, 통신설비, 제어설비, 정전기방지 및 제거설비와 그 밖에 안전설비의
- (2-4) 각 배관 계통에 부착된 밸브 등의 개폐 상황 및 맹판의 탈착·부착 상항

- (2-5) 회전기계의 윤활유 보급 상황 및 회전구동 상황
- (2-6) 가스설비의 전반적인 누출 유무
- (2-7) 가연성가스 및 독성가스가 체류하기 쉬운 곳의 해당 가스 농도
- (2-8) 전기, 물, 증기, 공기 등 유틸리티시설의 준비 상황
- (2-9) 안전용 불활성가스 등의 준비 상황
- (2-10) 비상전력 등의 준비 상황
- (2-11) 그 밖에 필요한 사항의 이상 유무
- (3) 사용 종료 시 점검사항
- (3-1) 사용 종료 직전에 각 설비의 운전 상황
- (3-2) 사용 종료 후에 가스설비에 있는 잔유물의 상황
- (3-3) 가스설비 안의 가스, 액등의 불활성가스 등에 의한 치환 상황, 특히 수리점검 작업상 설비 안에 사람이 들어갈 경우에는 공기로의 치환 상황
- (3-4) 개방하는 가스설비와 다른 가스설비와의 차단 상황
- (3-5) 가스설비 전반의 부식, 마모, 손상, 폐쇄, 결합부의 풀림, 기초의 경사 및 침하, 그 밖의 이상 유무

3.3.4.2 일일점검

운전 중인 가스설비는 1일 1회 이상 다음 기준에 따라 해당 설비 등의 작동 상황에 대해 이상 유무를 점검한다.

- (1) 점검 기준
- (1-1) 점검하는 설비, 부문, 항목, 점검 방법, 판정 기준, 조치 등을 기재한 점검표를 작성한다.
- **(1-2)** 점검표에 지시, 보고체계 등을 정한다.
- (1-3) 점검에 사용하는 공구, 측정 기구, 보호구 등의 준비 상황을 확인한다.
- (2) 운전 중의 점검사항
- (2-1) 가스설비로부터의 누출
- (2-2) 계기류의 지시, 경보, 제어의 상태
- (2-3) 가스설비의 온도, 압력, 유량 등 조업 조건의 변동 상황
- (2-4) 가스설비의 외부 부식, 마모, 균열, 그 밖의 손상 유무
- (2-5) 회전기계의 진동, 이상음, 이상온도상승, 그 밖의 작동 상황
- (2-6) 탑류, 저장탱크류, 배관 등의 진동 및 이상음
- (2-7) 가스누출 경보장치 및 가스경보기의 상태
- (2-8) 저장탱크 액면의 지시
- (2-9) 접지접속선의 단선, 그 밖의 손상 유무
- (2-10) 그 밖에 필요한 사항의 이상 유무
- **(3)** 기타 점검사항
- (3-1) 압축기 오일의 주입량과 회수량을 측정 관리할 것
- (3-2) 1일 2회 이상 압축기 및 필터 오일 배출을 실시할 것

3.3.4.3 점검 결과 조치

운전 중인 가스설비 점검 결과 이상이 발견되었을 때에는 다음 기준에 따라 해당 설비의 보수 및 그 밖에 위험 방지조치를 강구하고, 또한 가스설비에서 일어날 수 있는 이상사태를 가상해 미리 각각의

조치에 대한 작업 기준 등을 작성 비치하여 긴급 시에 지시, 보고 및 연락 계통과 그 밖에 필요한 조치에 관한 비상연락망체계를 정한다.

- 3.3.4.3.1 가스설비에서 발생한 이상의 정도에 따라 다음 중 어느 하나 이상의 조치를 강구하여 위험을 방지한다.
- (1) 이상이 발견된 설비에 대한 원인의 규명과 제거
- (2) 예비기로 교체
- (3) 부하의 저하
- (4) 이상을 발견한 설비 또는 공정의 운전 정지 후 보수
- 3.3.4.3.2 이상상태로 충전설비 등의 운전을 정지한 경우에는 이상 원인을 규명하여 적절한 조치를 하고, 안전을 확인한 후 운전을 재개한다.

3.3.4.4 점검 기록

운전 중인 가스설비의 점검 결과에 따른 보수 등 실시 기록을 작성 및 비치하고, 이를 검토하여 설비의 열화 경향 및 그 밖의 특성을 파악하고 차기 점검, 보수 등의 계획과 설비 개선 등에 활용한다.

3.3.5 배관 점검(내용 없음)

3.3.6 시고예방설비 점검(내용 없음)

3.3.7 피애저김설비 점검

3.3.8 부대설비 점검 <신설 17. 3. 8.>

부대설비의 안전성 및 작동성을 확보하고 충전설비 주위에서의 위해 요소 발생을 방지하기 위하여 다음 기준에 따라 필요한 조치를 강구한다.

3.3.8.1 부취제 주입 설비 취급·관리

- 3.3.8.1.1 냄새가 나는 물질(이하 "부취제"라 한다) 이입 작업은 다음과 같이 실시한다.
- (1) 운반차량으로부터 부취제를 저장탱크 등에 이입할 경우 보호의, 보안경 등의 보호장비를 착용한 후 작업한다.
- (2) 운반차량은 저장탱크 등의 외면과 3m 이상 이격거리를 유지한다. 다만, 운반차량과 저장탱크 등 사이에 경계턱 등을 설치할 경우에는 3m 이상 유지하지 않을 수 있다.
- (3) 운반차량으로부터 부취제를 저장탱크 등으로 이입하는 경우 운반차량이 고정되도록 자동차 정지목 등을 설치한다.
- (4) 부취제 이입 시 이입 장비 등의 작동 상태를 확인한 후 이입 작업을 시작한다.
- (5) 부취제 이입 작업을 시작하기 전에 주위에 화기 및 인화성 또는 발화성 물질이 없도록 한다.
- (6) 운반차량에 발생하는 정전기를 제거하는 조치를 한다.
- (7) 부취제가 누출될 수 있는 주변에 중화제, 소화기 등을 구비하여 부취제 누출 시 곧바로 중화 및 소화작업을 한다.

- (8) 누출된 부취제는 중화 및 소화작업이 종료된 후에 안전하게 폐기한다.
- (9) 저장탱크 등에 이입을 종료한 후 설비에 남아 있는 부취제를 최대한 회수하고 누출 점검을 실시한다.
- (10) 부취제 이입 작업 시에는 안전관리자가 상주하여 이를 확인해야 하고, 작업 관련자 이외에 는 출입을 통제한다.
- 3.3.8.1.2 부취제 설비는 「위험물안전관리법」에 따라 안전하게 유지 · 관리한다.
- 3.3.8.1.3 부취제 주입 작업은 다음과 같이 실시한다.
- (1) 부취제를 첨가할 때에 그 특성을 고려하여 2.8.5.1에 따른 적정 농도로 주입될 수 있도록 한다.
- (2) 부취제 주입 작업 시 주위에 화기 사용을 금지하고 인화성 또는 발화성 물질이 없도록 한다.
- (3) 부취제가 누출될 수 있는 주변에 중화제, 소화기 등을 구비하여 부취제 누출 시 곧바로 중화 및 소화작업을 한다.
- (4) 누출된 부취제는 중화 및 소화작업이 종료된 후에 안전하게 폐기한다.
- (5) 부취제 주입작업 시에는 안전 관리자가 이를 확인해야 하고, 안내표지판을 설치하여 작업 관련자 이외에는 출입을 통제한다.

3.3.7.1 물분무장치 등 점검

물분무장치 등은 매월 1회 이상 작동 상황을 점검하여 원활하고 확실하게 작동하는지 확인하고, 그 기록을 작성 및 유지한다. 다만, 동결할 우려가 있는 경우에는 펌프 구동만으로 통수시험을 갈음할 수 있다.

3.4 수리 · 청소 및 철거 기준

가스설비를 수리 · 청소 및 철거하는 때에는 그 작업의 안전 확보와 그 설비의 작동성 유지를 위하여 다음 작업 안전수칙에 따라 수리 및 청소를 한다.

3.4.1 수리 · 청소 및 철거 준비

3.4.1.1 직업 계획 수립

가스설비의 수리·청소 및 철거(이하 "수리등"이라 한다)를 할 때에는 해당 수리등의 작업 내용, 일정, 책임자 및 그 밖의 작업 담당 구분, 지휘체제, 안전상의 조치, 소요 자재 등을 정한 작업 계획을 미리 해당 작업의 책임자 및 관계자에게 주지시키는 동시에 그 작업 계획에 따라 해당 책임자의 감독하에 실시한다.

3.4.1.2 기스의 치환

가연성가스설비의 수리등을 할 때에는 다음 기준에 따라 미리 그 내부의 가스를 불활성가스 또는 물 등 해당 가스와 반응하지 않는 가스 또는 액체로 치환한다.

3.4.1.2.1 가스설비의 내부 가스를 그 압력이 대기압 가까이 될 때까지 다른 저장탱크 등에 회수한

후 잔류 가스를 서서히 안전하게 방출하거나 연소장치에 유도하여 연소시키는 방법으로 대기압이 될 때까지 방출한다.

- 3.4.1.2.2 3.4.1.2.1의 처리를 한 후에는 잔류 가스를 불활성가스 또는 물이나 스팀 등 해당 가스와 반응하지 않는 가스 또는 액체로 서서히 치환한다. 이 경우에 가스 방출 방법은 3.4.1.2.1을 따른다.
- 3.4.1.2.3 3.4.1.2.1 및 3.4.1.2.2의 잔류 가스를 대기 중에 방출할 경우에는 방출한 가스의 착지 농도가 해당 가연성가스 폭발하한계의 1/4 이하가 되도록 방출관으로부터 서서히 방출한다. 농도 확인은 가스검지 기 및 그 밖에 해당 가스 농도 식별에 적합한 분석 방법(이하 "가스검지기등"이라 한다)으로 한다.
- 3.4.1.2.4 치환 결과를 가스검지기등으로 측정하고 해당 가연성가스의 농도가 그 가스의 폭발하한계의 1/4 이하가 될 때까지 치환을 계속한다.
- **3.4.1.2.5** 수리등의 작업 대상 및 작업 내용이 다음 기준에 해당하는 것은 3.4.1.2.1부터 3.4.1.2.4까지에 불구하고 가스치환 작업을 하지 않을 수 있다.
- (1) 가스설비의 내용적이 1 m³ 이하인 것
- (2) 출입구의 밸브가 확실히 폐지되어 있고, 내용적이 5 m² 이상의 가스설비에 이르는 사이에 2개 이상의 밸브를 설치한 것
- (3) 사람이 그 설비의 밖에서 작업하는 것
- (4) 화기를 사용하지 않는 작업인 것
- (5) 설비의 간단한 청소 또는 개스킷의 교환 및 그 밖에 이들에 준비하는 경미한 작업인 것

3.4.2 수리·청소 및 철거 직업

3.4.2.1 가스 재치환

가스설비의 수리등을 위하여 작업원이 그 가스설비 안에 들어갈 때에는 3.4.1.2의 치환작업에 사용된 가스 또는 액체를 다음 기준에 따라 공기로 재치환하고, 수리등을 하는 중에는 산소의 농도를 수시로 확인한다. 이 경우 3.4.1.2에 따른 치환을 불활성가스 등으로 하는 경우에는 특히 주의한다.

- 3.4.2.1.1 가연성 가스설비의 재치환 작업은 가스설비 내부에 남아 있는 가스 또는 액체가 공기와 충분히 혼합된 가스가 방출관, 맨홀 등으로부터 대기 중에 방출되어도 유해한 영향을 끼칠 염려가 없는 것을 확인한 후 3.4.1.2의 치환 방법에 따라 실시한다.
- 3.4.2.1.2 공기로 재치환 한 결과를 산소측정기 등으로 측정하여 산소의 농도가 18 % 부터 22 %까지로 된 것이 확인될 때까지 공기로 반복하여 치환한다.

3.4.2.2 기스 누출방지 조치

가스설비를 개방하여 수리등을 할 경우에는 다음 기준에 따라 가스가 누출되지 않도록 조치를 강구한다.

3.4.2.2.1 3.4.1.2에 따른 가스치환 조치(불활성가스의 경우에는 이에 준한 조치)가 완료된 후(해당 개방한 부분에 설치한 회수용 배관 등으로부터 직접 가스를 회수하는 경우에는 3.4.1.2의 조치를 하기

전)에는 개방하는 가스설비의 전후 밸브를 확실히 닫고 개방하는 부분의 밸브 또는 배관의 이음매에 맹판을 설치한다. 다만, 3.4.1.2.5에 해당하는 경우에는 맹판을 설치하지 않을 수 있다.

- 3.4.2.2.2 설비의 기능상 또는 작업상 수시로 개방할 필요가 있는 가스설비 작업(3.4.1.2.5에 따른 작업에만 적용한다)은 3.4.2.2.1 또는 다음 기준 중 어느 하나의 기준에 따라 실시한다. 다만, 다음 기준에 따라 작업하는 경우에는 그 작업 기준을 안전관리 규정에 명확하게 규정한다.
- (1) 개방하는 가스설비에 접속하는 배관 출입구에 2중으로 밸브를 설치하고, 2중 밸브 중간에 가스를 회수 또는 방출할 수 있는 회수용 배관 등을 설치하여 가스를 회수 또는 방출할 때 개방한 부분에 가스의 누출이 없음을 확인한다. 이 경우에 대기압 이하의 가스는 회수 또는 방출하지 않을 수 있다.
- (2) 개방하는 가스설비의 부분 및 그 전후 부분의 상용압력이 대기압에 가까운 설비(독성가스 이외의 가스설비로서, 압력계를 설치한 것에 한정한다)는 그 설비에 접속하는 배관의 밸브를 확실히 닫고 해당 부분에 가스의 누출이 없음을 확인한다.
- 3.4.2.2.3 3.4.2.2.1나 3.4.2.2.2의 조치를 하였을 때에는 밸브의 닫힌 부분이나 맹판의 설치 부분에 밸브 조작 또는 맹판 제거의 금지 표시를 하고, 자물쇠 채움 또는 봉인을 하거나 감시원을 배치하는 등의 조치를 한다. 이 경우 계기판 등에 설치된 조작 스위치 및 핸들 등에도 동일한 조치를 한다.

3.4.3 수리 및 청소 사후조치

가스설비의 수리등을 완료한 때에는 다음 기준에 따라 그 가스설비가 정상으로 작동하는지를 확인한다.

- 3.4.3.1 내압강도에 관계가 있는 부분을 용접으로 보수하거나 또는 부식 등으로 내압강도가 저하되었다고 인정될 경우에는 비파괴검사 및 내압시험 등으로 내압강도를 확인한다.
- 3.4.3.2 기밀시험을 실시하여 누출이 없는 것을 확인한다.
- 3.4.3.3 계기류가 소정의 위치에서 정상으로 작동하는 것을 확인한다.
- 3.4.3.4 수리등을 위하여 개방된 부분의 밸브 등은 개폐 상태가 정상으로 복구되고 설치한 맹판 및 표시 등이 제거되어 있는지 확인한다.
- 3435 안전밸브, 역류 방지밸브, 긴급 차단장치, 그 밖의 안전장치가 소정의 위치에서 이상 없이 작동하는지 확인한다.
- 34.36 회전기계 안에 이물질이 없고 구동 상태가 정상인지 또는 이상진동이나 이상음이 없는지 확인한다.
- 3.4.3.7 액화석유가스의 가스설비는 그 내부가 불활성가스 등으로 치흰되어 있는지 확인한다.

4. 검사 기준

4.1 검사 항목

4.1.1 중간검사

고정식 압축 도시가스 자동차 충전시설의 중간검사 항목은 다음과 같다.

- (1) 2.2에 따른 고압설비의 기초 설치 공정
- (2) 2.3에 따른 지하저장탱크의 지하 설치 공정
- (3) 2.3.2.2에 따른 내진설계 공정
- (4) 2.5.7에 따른 배관 지하 매설 공정
- (5) 2.5.9에 따른 배관등의 기밀 능력
- (6) 2.7.2에 따른 방호벽의 기초 설치 공정

4.1.2 완성검사

- 4.1.2.1 고정식 압축 도시가스 자동차 충전시설의 완성검사 항목은 2에서 정한 항목으로 한다. 다만, 중간검사에서 확인된 검사 항목은 제외할 수 있다.
- **4.1.2.2** 법 제16조제1항에 따라 공급시설의 전부가 완성되기 전이라 함은 다음에 해당하는 경우를 말한다.
- (1) 배관을 지상에 설치하는 경우 보기 쉬운 곳에 도시가스 배관임을 표시해야 하는 것 중 배관의 이상을 발견한 자에게 연락하여 줄 것을 부탁하는 내용의 표지판을 설치하지 않은 경우
- (2) 사업소·저장설비·처리설비 및 압축가스설비에 적절한 경계표지와 경계책을 설치하지 않은 경우
- (3) 충전소에 표준이 되는 압력계를 2개 이상 갖춰 두지 않은 경우
- (4) 가스설비 주위에 가연성 액체 등의 위험물을 둔 경우

4.1.3 정기검사

고정식 압축 도시가스 자동차 충전시설의 정기검사 항목은 2 및 3(3.1.3.2와 3.1.3.6은 제외)에서 정한 항목으로 한다.

4.1.4 수시검사

수시검사는 4.1.3에서 정한 정기검사 항목 가운데 다음에 열거하는 안전장치의 유지·관리 상태 중 필요한 사항과 법 제26조에 따른 안전관리규정 이행 실태에 대하여 실시한다.

- (1) 2.6.1에 따른 안전밸브
- (2) 2.6.3에 따른 긴급 차단장치
- (3) 2.6.2에 따른 가스누출검지경보장치
- (4) 2.3.3에 따른 물분무장치(살수장치포함) 및 소화전
- (5) 2.6.9에 따른 강제 환기시설
- (6) 2.6.8에 따른 안전용 접지 및 방폭전기기기
- (7) 그 밖에 안전관리상 필요한 사항

4.2 검사 방법 <개정 20. 3. 18.>

중간검사, 완성검사, 정기검사 및 수시검사는 그 검사 대상 시설이 종류별 대상 항목의 시설 기준 및 기술 기준에 적합한지 명확하게 판정할 수 있도록 다음 기준에 따른 방법으로 실시하고, 세부적인 방법은 한국가스안전공사 사장이 정하는 바에 따른다.

4.2.1 중간검사 방법

중간검시는 다음 검사 방법에 따라 실시한다.

4.2.1.1 중간검사 대상 지정

중간검사를 받이야할 공정 가운데 비파괴시험 및 배관의 매설 깊이 확인을 위한 공정은 다음 방법에 따라 지정한다.

4.2.1.1.1 시업소 내의 배관일 경우 중간검사 대상의 지정 개소는 검사 대상의 배관(법 제15조제6항에 따른 완성검사 대상의 배관을 말한다. 이하 같다) 길이 500 m마다 1개소 이상으로 하고, 지정한 부분의 길이의 합은 검사 대상 배관 길이의 10 % 이상이 되도록 한다.

4.2.1.1.2 4.2.1.1.1에 해당하는 배관 이외의 검사 대상 배관의 경우, 중간검사 대상의 지정 개소는 검사 대상 배관 길이 $500 \, \mathrm{mm}$ 다 1개소 이상으로 하고, 지정한 부분의 길이의 합은 검사 대상 배관 길이의 $20 \, \%$ 이상이 되도록 한다.

4.2.1.2 기초의 확인

기초 설치를 필요로 하는 공정의 경우 보링 조사, 표준관입시험, 베인시험, 토질시험, 평판 재하시험, 파일 재하시험 등을 하였는지와, 그 결과가 적합한지를 문서 등으로 확인한다. 검사 신청자는 그 시험한 기관의 서명이 된 보고서를 첨부해야 하며, 서류를 첨부하지 않는 경우 부적합한 것으로 처리한다.

4.2.1.3 배관의 확인

배관을 지하에 설치하는 경우 법에서 정한 시설 기준 및 기술 기준에 적합한지 확인해야 하며, 배관을 매설하기 위한 공정별 진행은 검사원이 확인 후 진행한다. 검사원이 확인하기 전에 설치자가 임의로 공정을 진행한 경우에는 불합격으로 처리한다. <개정 19. 7. 16.>

4.2.1.4 용접 및 비피괴 성능 확인

4.2.1.4.1 용접 기구 및 용접 재료는 KS D 7004(연강용 피복 아크용접봉) 등 관련 규격에 규정된 용접에 적합한 기구 및 재료가 사용되는지 확인한다.

4.2.1.4.2 용접 시공은 적합한 용접 절차서(W.P.S)에 따라 진행하고, 고압가스 특정 제조시설의 경우 그 용접 절차서가 적합한지는 검사원이 판단한다.

- 4.2.1.4.3 용접부의 비파괴시험 방법이 관련 기준에 적합한지 확인하고, 비파괴검사를 실시한 자가 서명한 결과보고서 및 필름을 첨부받아 적합한지를 확인하여 처리한다.
- 4.2.1.4.4 그 밖에 작업 공정은 검시원의 확인 없이 제작자 또는 설치자가 임의로 진행한 경우 불합격으로 처리한다.

4.2.1.5 내압 및 기밀시험

내압 및 기밀시험은 가스설비 또는 배관의 설치가 완료되어 시험을 실시할 수 있는 상태의 공정에서 다음 기준에 따라 실시한다.

4.2.1.5.1 내압시험 방법

- (1) 내압시험은 원칙적으로 수압으로 실시한다. 다만, 부득이한 이유로 물을 채우는 것이 부적당한 경우에는 공기 또는 위험성이 없는 기체의 압력으로 할 수 있다.
- (2) 고압설비와 사업소 안에 설치되는 배관에 공기 등의 기체의 압력으로 내압시험을 실시하는 경우에는 작업을 안전하게 하기 위하여 그 설비의 길이이음매, 원주이음매(배관은 그 설치 장소에서 용접을 한 것으로서, 바깥지름이 160 ㎜를 넘는 관의 원주이음매에만 적용한다) 및 경판의 제작을 위한 이음매 중 맞대기 용접한 강관 용접부의 전 길이(관은 용접부 전 길이의 20% 이상)에 내압시험 전에 KS B 0845(강 용접 이음부의 방사선투과검사)에 따라 방사선투과시험을 하고, 그 등급 분류가 2류(범주2)이상임을 확인한다. 다만 완성검사의 경우 배관의 길이 이음매에 해당 배관을 제조한 사업소에서 내압시험을 실시한 시험성적서 등으로 확인할 수 있는 것은 그렇지 않다. 또한 다음에 기재하는 용접부는 KS D 0213(강자성 재료의 자분탐상검사 방법 및 자분 모양 분류) 또는 KS B 0816(침투 탐상 시험 방법 및 침투 지시 모양의 분류)에 따라 탐상시험을 하고, 표면 및 그 밖의 부분에 유해한 결함이 없음을 확인한다. <개정 21.10.08.>
- (2-1) 인장강도 규격값의 최솟값이 568 N/m² 이상인 탄소강 강판을 사용한 고압설비의 용접부 (2-2) 판 두께가 25 mm 이상인 탄소강 강판을 사용한 고압설비의 용접부
- (2-3) 개구부, 노즐부(nozzle stub), 보강재 등의 부착물을 고압설비에 부착한 부분의 용접부(배관에
- 관한 것은 제외한다)

 (0.4) 메코이 이즈이오페에 코코 오건보고가 그 선권 가소에가 오건으로 그 즉 바라보트기가장으
- (2-4) 배관의 원주이음매에 관한 용접부로서, 그 설치 장소에서 용접을 한 것 중 방사선투과시험을 하지 않은 것
- (3) 시업소 경계 밖에 설치되는 배관은 KCS CC205(가스시설 용접 및 비파괴시험 기준)에 따라 비파괴시험 을 실시한다. 다만, 공기 등의 기체의 압력으로 내압시험을 실시하는 경우에는 작업을 안전하게 하기 위하여 내압시험 전에 비파괴시험을 실시한다.
- (4) 사업소 경계 밖에 설치되는 배관의 양 끝부에는 이음부의 재료와 동등 이상의 성능이 있는 배관용 앤드캡(end cap), 막음플랜지 등을 용접으로 부착하고, 비파괴시험을 실시한 후 내압시험을 실시한다. (5) 내압시험은 해당 설비가 취성 파괴를 일으킬 우려가 없는 온도에서 실시한다.
- (6) 내압시험은 상용압력의 1.5배(공기 등 기체의 압력으로 실시한 내압시험은 상용압력의 1.25배) 이상으로 하고, 규정 압력을 유지하는 시간은 5분에서 20분간을 표준으로 한다. 다만, 초고압(압력을 받는 금속부의 온도가 −50 ℃ 이상 350 ℃ 이하인 고압설비의 상용압력이 98 №인 것을 말한다. 이하 같다)의 고압설비와 초고압의 배관은 1.25배(운전압력이 충분히 제어될 수 있는 경우에는 공기 등 기체에 의한 상용압력의 1.1배) 이상의 압력으로 실시할 수 있다.
- (7) 내압시험에 종사하는 사람의 수는 작업에 필요한 최소 인원으로 하고, 관측 등을 하는 경우에는

적절한 방호시설을 설치하고 그 뒤에서 한다.

- (8) 내압시험을 하는 장소 및 그 주위는 잘 정돈하여 긴급한 경우 대피하기 좋도록 하고, 2차적으로 인체에 피해가 발생하지 않도록 한다.
- (9) 내압시험은 내압시험압력에서 팽창, 누설 등의 이상이 없을 때 합격으로 한다.
- (10) 내압시험을 공기 등 기체의 압력으로 하는 경우에는 먼저 상용압력의 50%까지 승압한 후 상용압력의 10%씩 단계적으로 승압하여 내압시험압력에 달하였을 때 누설 등의 이상이 없고, 그 후 압력을 내려 상용압력으로 하였을 때 팽창, 누설 등의 이상이 없으면 합격으로 한다.
- (11) 시공 관리자는 사업소 경계 밖에 설치되는 배관의 내압시험 시 시험이 시작되는 때부터 끝날 때까지 시험 구간을 순회점검하고 이상 유무를 확인한다.
- (12) 내압시험에 필요한 준비는 검사 신청인이 한다. <신설 15. 7. 3.>

4.2.1.5.2 내압시험 생략

사업소 경계 밖에 설치되는 배관의 내압시험을 생략할 수 있는 경우는 다음과 같다.

- (1) 내압시험을 위하여 구분된 구간과 구간을 연결하는 이음관으로서, 그 관의 용접부가 방사선투과시험에 합격된 경우
- (2) 길이가 15 m 미만인 배관의 이음부와 동일 재료, 동일 치수 및 동일 시공 방법으로 접합한 관을 이용하여 미리 상용압력의 1.5배(공기 등 기체의 압력에 의한 경우에는 1.25배) 이상인 압력으로 시험을 실시하여 합격된 경우

4.2.1.5.3 기밀시험 방법

고압설비와 배관의 기밀시험은 다음 기준에 따라 실시한다.

- (1) 기밀시험은 원칙적으로 공기 또는 위험성이 없는 기체의 압력으로 실시한다.
- (2) 기밀시험은 그 설비가 취성 파괴를 일으킬 우려가 없는 온도에서 한다.
- (3) 기밀시험압력은 상용압력 이상으로 하되, 0.7 ㎞를 초과하는 경우 0.7 № 압력 이상으로 한다. 이경우 표 4.2.1.5.3과 같이 시험할 부분의 용적에 따른 기밀유지시간 이상을 유지하고, 처음과 마지막시험의 측정압력차가 압력측정가구의 허용 오차 내에 있는 것을 확인한다. (처음과 마지막 시험의 온도차가 있는 경우에는 압력차에 대해 보정한다.)

77	4	2 1	153	םוכי	1ウァ	ス]フ}-

압력측정기구	용 적	기밀유지시간		
	1 m³ 미만	48분		
압력계 또는	1 m³ 이상 10 m³ 미만	480분		
자기압력기록계	10 m³ 이상	48×V분(다만, 2880분을 초과한 경우는 2		
	10 11 9 18	880분 <u>으</u> 로 할 수 있다)		
[비고] V는 피시험부분의 용적(단위: m²)이다.				

- (4) 검사의 상황에 따라 위험이 없다고 판단되는 경우에는 해당 고압설비로 저장 또는 처리되는 가스를 사용하여 기밀시험을 할 수 있다. 이 경우 압력은 단계적으로 올려 이상이 없음을 확인하면서 승압한다. (5) 기밀시험은 기밀시험압력에서 누설 등의 이상이 없을 때 합격으로 한다.
- (6) 기밀시험에 종사하는 인원은 작업에 필요한 최소 인원으로 하고, 관측 등은 적절한 장해물을 설치한 후 그 뒤에서 한다.

- (7) 기밀시험을 하는 장소 및 그 주위는 잘 정돈하여 긴급한 경우 대피하기 좋도록 하고, 2차적으로 인체에 피해가 발생하지 않도록 한다.
- (8) 사업소 경계 밖에 설치되는 배관으로서, 완성검사를 받은 날부터 15년 이상 경과한 매설 도시가스 배관의 기밀시험은 다음 기준에 따라 실시한다. <개정 19. 7. 16.>
- (8-1) 기밀시험은 (1)부터 (7)까지의 방법으로 실시한다.
- (8-2) 다음 중 어느 하나의 검사를 한 때에는 (8-1)의 기밀시험을 한 것으로 본다.
- (8-2-1) 피복 손상 탐지장치, 지하 매설 배관 부식 탐지장치 또는 그 밖에 배관의 손상 여부를 측정할 수 있는 장비를 이용하여 배관의 상태를 점검 · 측정하고, 이상 부위에 누출검시를 한 때. 이 경우 배관 피복 손상 여부는 희생양극의 실제 연결 부위 상태를 고려하여 판정한다.
- (8-2-2) 배관의 노선을 약 50 m 간격으로 깊이 약 50 cm 이상 보령을 하고 관을 이용하여 흡입한 후, 가스검지기 등으로 누출 여부를 검사한 때. 다만, 보도블록, 콘크리트 및 아스팔트 포장 등 도로 구조상 보령이 곤란한 경우에는 그 주변의 맨홀 등을 이용하여 누출 여부를 검사할 수 있다.
- (9) 기밀시험 및 누출 검사에 필요한 준비는 검사 신청인이 한다. <신설 15. 7. 3.>

4.2.2 완성검사 및 정기검사 방법

완성검사 · 정기검사 및 수시검사의 항목별 검사 방법은 다음과 같고, 시설검사 시 용기 등이 검사품인지를 확인한다.

4.2.2.1 인전거리

도시가스 처리설비 및 저장설비 외면과 제1종, 제2종 보호시설이 안전거리를 유지하고 있는지 실측한다.

4.2.2.2 설비 사이의 거리

설비 사이의 거리를 도면으로 확인 및 실측한다.

4.2.2.3 기스누출검지경보장치

가연성가스 · 독성가스 제조시설에 가스누출검지경보장치의 설치 여부와 성능 등을 확인한다.

4.2.2.4 긴급 치단장치

- (1) 특수반응설비 또는 고압설비(가연성가스·독성가스·산소에 한정함)에 설치한 긴급 차단장치의 설치 상황은 도면으로 확인한다.
- (2) 검사품인지를 확인하고, 작동 기능을 작동시험 또는 기록으로 확인한다.
- (3) 밸브시트의 누설 여부는 기록으로 확인한다.

4.2.2.5 저장탱크 등의 구조 및 설치

- (1) 저장탱크 등의 구조가 적합하지를 측정·확인하다.
- (2) 저장탱크 간에 적정 거리를 유지하고 있는지 수평거리로 측정한다.
- (3) 저장탱크의 적정 설치 여부를 측정·확인한다.
- (4) 저장탱크, 방류둑 및 긴급 차단장치의 적정 설치 여부, 저장탱크의 능력 및 방류둑의 용량의 적정 여부를 기록과 도면으로 확인한 후 도면과 일치하는지 등을 실측한다.

4.2.2.6 배관등

배관 검사는 다음 기준에 따라 실시한다.

4.2.2.6.1 시업소 외의 배관

- (1) 배관(시업소 안의 배관은 제외한다. 이하 4.226.1에서 같다) · 관 이음매 및 밸브의 재료는 KS허가제품 및 동등 이상의 것인지 시험성적서로 확인한다.
- (2) 배관등의 구조는 하중, 응력, 타 공사 등에 대한 안전성 여부를 조사 확인한다.
- (3) 배관에 부식을 방지하는 조치를 하였는지 확인하고 도면과 일치하는지 실측한다.
- (4) 배관을 지상 또는 지하에 매설한 경우에는 보기 쉬운 곳에 연락처 등 필요한 시항을 기록한 표지판이 설치되어 있는지 육안으로 확인한다.
- (5) 배관의 설치도면 또는 기록으로 확인 실측한다.
- (6) 배관을 지하에 매설하는 경우 적합하게 설치하였는지 관련 서류와 육안으로 확인 및 실측한다.
- (7) 배관을 도로 밑에 매설하는 경우 적합하게 설치하였는지 육안으로 확인 및 실측한다.
- (8) 배관을 철도부지 밑에 매설하는 경우 적합하게 설치하였는지 육안으로 확인 및 실측한다.
- (9) 배관을 「하천법」에 따른 연안구역 안에 매설하는 경우 하천 제방과 하천 관리상 필요한 이격거리를 유지하였는지 도면과 실측을 통해 확인한다.
- (10) 배관을 지상에 설치하는 경우 도면 및 기록에 따라 적합하게 설치하였는지 육안으로 확인 및 실측한다.
- (11) 배관을 도로에 횡단 설치하는 경우 적합하게 설치하였는지 육안으로 확인 및 실측한다.
- (12) 배관이 철도부지를 횡단하여 매설하는 경우 적합하게 설치하였는지 육안으로 확인 및 실측한다.
- (13) 배관을 하천 등에 횡단 매설 시는 적합하게 설치하였는지 육안으로 확인 및 실측한다.
- (14) 배관을 해저에 설치하는 경우 적합하게 설치하였는지 관련 기록 (도면)을 제출받아 확인한다.
- (15) 배관을 해상에 설치하는 경우 적합하게 설치하였는지 도면 또는 기록으로 확인한다.
- (16) 배관의 적정 설치 여부를 측정·확인한다.
- (17) 내압·기밀시험 기준은 4.2.1.5.1부터 4.2.1.5.3까지를 준용하고, 자기압력기록계 등을 사용하여 확인 및 계측한다.
- (18) 배관의 내진설계가 관련 서류 및 도면대로 적합하게 설치되었는지 확인 및 측정한다.

4.2.2.6.2 시업소 인의 배관

- (1) 배관의 적정 설치 여부를 측정 · 확인한다.
- (2) 배관을 지상 또는 지하에 매설한 경우에는 보기 쉬운 곳에 연락처 등 필요한 시항을 기록한 표지판이 설치되어 있는지 육안으로 확인한다.
- (3) 배관을 수중에 설치하는 경우 적합하게 설치하였는지 도면 또는 기록으로 확인한다.
- (4) 배관에는 부식을 방지하는 조치를 하였는지 확인하고, 도면과 일치하는지를 실측한다.
- (5) 배관을 지하에 매설하는 경우 적합하게 설치하였는지 관련 서류와 육안으로 확인 및 실측한다.
- (6) 배관을 지상에 설치하는 경우 도면 및 기록을 보고 적합하게 설치하였는지 육안 확인 및 실측하다.

4.2.2.7 누출 확산 방지조치

배관을 특수성 지반에 설치하는 경우 도시가스의 종류에 따라 안전한 방법으로 누출된 가스의 확산 방지조치를 하였는지와 도시가스의 종류 및 압력과 배관의 주위 상항에 따라 필요한 장소에 2중관 및 가스누출검지경보장치를 설치하였는지 확인한다.

4.2.2.8 운영 상태의 감시장치

배관장치에는 그 장치의 운영 상태를 감시하는 장치와 설치 상황을 도면 및 기록으로 확인한다.

4.2.2.9 안전 제어장치

안전 제어장치가 설치되어 있는지 도면 또는 기록으로 확인하고, 작동 상태에서 성능을 확인한다.

4.2.2.10 기스누출검지경보장치

배관장치에는 가스의 종류 및 압력과 배관의 주위 상황에 따라 필요한 장소에 가스누출검지경보장치가 적정하게 설치되어 있는지 확인하고, 작동하여 성능을 확인한다.

4.2.2.11 긴급 치단장치 등

시가지 · 주요 하천 · 호수 등을 횡단하는 배관에는 가스 공급을 긴급히 차단할 수 있는 긴급 차단장치 또는 이와 동등 이상의 효과가 있는 장치가 설치되어 있는지 확인하고, 검사품인지를 확인한다.

4.2.2.12 내용물 제거장치 등

배관에는 서로 인접하는 긴급 차단장치의 구간마다 그 배관 안의 도시기스를 이송하고 불활성가스 등으로 치환할 수 있는 조치가 되어 있는지 확인한다.

4.2.2.13 인전용 접지

안전용 접지 등의 상태를 확인 및 계측한다.

4.2.2.14 피뢰설비

배관장치에 피뢰설비를 설치하였는지 확인한다.

4.2.2.15 비상전력

- (1) 배관장치의 안전을 위한 설비에 비상전력을 공급할 수 있도록 조치하였는지 확인한다.
- (2) 정전 등에 대비한 비상전력은 작동시험으로 확인한다.

4.2.2.16 방호벽

방호벽 적정 설치 여부를 실측으로 확인한다.

4.2.2.17 충전시설의 규모 등

허가사항(충전시설 규모 , 저장탱크 능력) 및 그 밖의 시설 등을 확인한다.

4.2.2.18 화기와의 거리

가스설비 및 저장설비 주위의 화기 취급 상황이 도면과 일치하는지 확인하고 거리 등을 실측한다.

4.2.2.19 경계표지

경계표지 및 경계책 설치 장소가 도면과 일치하는지 및 적정 설치 여부를 측정을 통해 확인한다.

4.2.2.20 액면계

- (1) 액면계의 종류, 설치 상황이 도면과 일치하는지와 작동 상태를 확인한다.
- (2) 액면계에 설치된 스톱밸브 및 역류 방지밸브 작동시험을 확인한다.

4.2.2.21 저온저장탱크 피괴 방지조치

가연성가스 저온저장탱크의 부압 방지조치 설치 상황이 도면과 일치하는지 확인하고, 성능은 기록으로 확인한다.

4.2.2.22 온도상승 방지장치

물분무장치 또는 살수장치의 설치 상황이 도면과 일치하는지를 확인하고, 성능은 작동시험으로 확인한다.

4.2.2.23 부식방지도장

저장탱크의 외면에 도장을 하였는지 확인한다.

4.2.2.24 저장탱크의 표시

지상에 설치한 저장탱크의 도장 및 가스 명칭이 적정하게 표시되어 있는지 확인한다.

4.2.2.25 고입설비의 기초

고압설비 및 저장탱크의 기초는 관련 서류 또는 도면으로 확인 및 측정한다.

4.2.2.26 기스설비의 재료

가스설비의 재료는 제조자의 시험성적서로 확인한다.

4.2.2.27 기스설비의 구조

가스설비는 가스 누출 여부에 대하여 기밀시험을 실시하고, 내압시험을 기체로 실시한 경우에는 기밀시험을 생략한다. 다만, 정기검사 시 다음과 같은 경우에는 발포액, 누설 검지기 또는 디지털 압력계 등으로 누출 검사를 실시하다.

- (1) 고압설비 또는 배관이 가동 중에 있는 경우
- (2) 고압설비 또는 배관 안에 촉매가 충전되어 있는 경우
- (3) 그 밖에 기밀시험을 실시하는 것이 현저히 곤란한 경우

4.2.2.28 방폭구조

방폭 지역을 도면으로 확인하고, 전기설비의 방폭 성능을 성적서, 명판 등으로 확인한다.

4.2.2.29 불연재료 등

배관에 설치된 불연성의 재료 또는 난연성 재료의 설치 상황이 도면과 일치하는지 및 재료의 시험성적서를 확인한다.

4.2.2.30 고입설비의 내압 능력

- (1) 고압설비의 내압·기밀시험 기준은 4.2.1.5를 준용하고, 동 검사 방법은 자기압력기록계 등을 사용하여 계측 및 확인한다.
- (2) 「고압가스 안전관리법」제17조제1항 및 제2항에 따라 검사에 합격한 용기 · 냉동기 · 특정 설비에

대한 내압시험은 합격증명서 확인으로, 펌프 · 압축기 등에 대한 내압시험은 제조자의 시험성적서 확인으로 갈음한다.

(3) 튜브 및 호스로 설치된 배관계로서, 상용압력 이상으로 기밀시험을 실시한 경우에는 내압시험을 생략한다.

4.2.2.31 고입설비의 강도 등

고압설비의 두께 및 강도는 제조자의 KS표시 허가제품 또는 이와 동등 이상의 재료인지를 시험성적서 또는 규격에 따른 서류로 확인하고, 확인이 불가능한 경우는 두께 및 강도를 계측한다.

4.2.2.32 압력계

고압설비에 적합한 규격(눈금 범위)의 압력계가 도면과 맞게 설치되었는지를 확인한다.

4.2.2.33 인전장치 등

고압설비에 안전장치 및 안전밸브가 적정하게 설치되어 있는지와 검사품인지를 확인한다.

4.2.2.34 역류 방지밸브

역류 방지밸브의 규격 및 설치 장소가 도면과 일치하는지를 확인한다.

4.2.2.35 기스설비실 저장설비실

가스설비실 · 저장설비실의 환기 구조, 구분 설치 상황이 도면과 일치하는지 확인하고 성능시험을 실시한다.

4.2.2.36 정전기 제거

정전기 제거조치가 적정하게 설치되어 있는지 다음 사항을 확인 및 계측한다.

- (1) 지상에서 접지 저항치
- (2) 지상에서의 접속부의 접속 상태
- (3) 지상에서의 절선, 그 밖에 손상 부분의 유무

4.2.2.37 통신시설

통신시설의 구비 상황을 확인하고, 작동시험을 실시하여 성능을 확인한다.

4.2.2.38 통행시설

통행시설의 설치 상황이 도면과 일치하는지를 확인한다.

4.2.2.39 표준압력계

표준압력계의 비치사항과 주기적인 검 · 교정 검사 실시 여부를 확인하다.

4.2.2.40 내진설계

저장탱크 등의 내진설계가 관련 서류 및 도면에 따라 적합하게 설치되었는지를 확인하거나 측정한다.

4.2.2.41 그 밖의 검사 방법 <개정 20. 3. 18.>

그 밖의 검사 방법은 한국가스안전공사 사장이 정하는 바에 따른다.

KGS Code 기호 및 일련번호 체계

KGS(Korea Gas Safety) Code는 가스관계법령에서 정한 시설·기술·검사 등의 기술적인 사항을 상세기준으로 정하여 코드화한 것으로 가스기술기준위원회에서 심의·의결하고 산업통상자원부에서 승인한 가스안전 분야의 기술기준입니다.

분류		종류 및 첫째 자리 번호		분	류	종류 및 첫째 자리	번호
		냉동장치류 배관장치류	1 2		제조・충전	고압가스 제조시설 고압가스 충전시설	1 2
	기구(A)	밸브류	3		(P)	LP가스 충전시설	3
		압력조정장치류	4		(Productio	도시가스 도매 제조시설	4
	(Appliances)	호스류	5		n)	도시가스 일반 제조시설	5
		경보차단장치류	6			도시가스 충전시설	6
		기타 기구류	9			고압가스 판매시설	1
	연소기 (B) (Burners)	보일러류	1	시설	판매・공급	LP가스 판매시설	2
		히터류	2	(F) (Facilities)	(S) (Supply)	LP가스 집단공급시설	3
제품		레인지류	3			도시가스 도매 공급시설	4
(A)		기타 연소기류	9			도시가스 일반 공급시설	5
(Apparatus)	용기(C) (Containers)	탱크류	1			고압가스 저장시설	1
(дррагація)		실린더류	2		저장ㆍ사용	고압가스 사용시설	2
		캔류	3		(U)	LP가스 저장시설	3
		복합재료 용기류	4			LP가스 사용시설	4
		기타 용기류	9		(Use)	도시가스 사용시설	5
	수소	수소추출기류	1			수소 연료 사용시설	6
		수전해장치류	2	일반	공통	기본사항	1
	(H) (Hydrogen)	연료전지	3	(G)	(C)	공통사항	2
	(1 fycir Ogeri)			(General)	(Common)	3 3 7 0	

