# Graph neural networks : A review of methods and applications

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun

발표자 : 김수지

# 목차

- 1. Intro
- 2. General design pipeline of GNNs
- 3. Applications
- 4. Variants considering graph type and scale
- 5. Instantiations of computational modules
- 6. Variants for different training settings
- 7. Example of Design

#### 1. Intro

GNN 이란?



# 1. Intro

#### GNN을 사용한 task



#### (1) 그래프 구조 찾기

응용 분야에서 그래프 구조를 파악

- 구조적 시나리오 : 그래프 구조가 명시적으로 주어짐 Ex ) 분자, 물리 시스템, 지식 그래프
- 비구조적 시나리오 : 그래프가 묵시적으로 주어짐 Ex ) 이미지, 텍스트



Ex) 지식 그래프

#### (2) 그래프 유형과 규모 지정

그래프 유형과 규모를 파악

- 그래프 유형
  - Directed/Undirected Graphs
  - Homogeneous/Heterogeneous Graphs
  - Static/Dynamic Graphs
- -> 그래프들이 제공하는 추가 정보를 고려

• 그래프 규모

그래프 크기 구분하는 명확한 기준 X

본 논문에서는, 그래프의 인접 행렬, 그래프 라플라시안을 장치에 저장하고 처리할 수 없는 경우

-> 대규모 그래프로 간주, 샘플링 방법 고려

#### (3) 손실 함수 설계

작업 유형과 학습 설정에 기반하여 손실 함수를 설계

- Node level: node classification, node regression, node clustering
- Edge level : edge classification, link prediction
- Graph level: graph classification, graph regression, graph matching
- Supervised setting : train을 위해 label이 지정된 데이터 제공
- Semi-supervised setting : 작은 양의 label이 지정된 node와 많은 양의 label이 지정되지 않은 node 제공
- Unsupervised setting : label이 지정되지 않은 데이터만 제공

#### (4) 계산 모듈을 사용하여 모델 구축

- Propagation Module
- Sampling Module
- Pooling Module



#### **GNN Layer = Message + Aggregation**

- Different instantiations under this perspective
- GCN, GraphSAGE, GAT, ...



Ex) Propagation module



1. Find graph structure.

2. Specify graph type and scale.

- 4. Build model using computational modules.

Fig. 2. The general design pipeline for a GNN model.

# 3. Applications

#### - 구조적 시나리오

: 데이터에 명시적인 관계 구조가 있는 경우

: 그래프 마이닝, 물리 시스템 및 화학 시스템 모델링, 지식 그래프, 교통 네트워크 및 추천 시스템 등

EX)

지식 그래프 ex) 저차원 임베딩 학습, 링크 예측, 다중 홉 추론

- R-GCN : 지식 그래프 임베딩과 GNN을 통합하는 첫번째 메소드
- Structure-Aware Convolutional Network

#### 추천시스템

- GC-MC : 사용자-아이템 평점 그래프에 GCN을 처음 적용
  - PinSage : 이분 그래프에 가중 샘플링 전략 사용
  - GraphRec : 아이템 측면과 사용자 측면에서 사용자 임베딩 학습

# 3. Applications

#### - 비구조적 시나리오

: 관계 구조가 암묵적이거나 없는 경우

: 이미지 (컴퓨터 비전)와 텍스트 (자연어 처리)가 포함



EX)

Fig. 1. Left: image in Euclidean space. Right: graph in non-Euclidean space.

이미지

(1); N-shot 이미지 분류를 쉽게 하기 위해 knowledge graph 사용

텍스트

(2) ; 텍스트를 단어 그래프로 나타내 비연속적이고 먼 거리의 단어들 간 의미 포착

# 4. Variants considering graph type and scale



#### 4. Variants considering graph type and scale

#### Heterogeneous graph

• Meta-path-based : 메타 패스의 두 끝 노드를 연결함으로써, 직접적으로 연결되지 않은 두 노드의 유사성을 포착



• 이외에도 Edge-based, Relational, Multiplex 등이 존재



Propagation module : 각 노드가 인접한 노드들(이웃)로부터 정보를 수집하고 전파



#### - Spectral

: 그래프 신경망에서 라프라시안(Laplacian) 행렬의 스펙트럴 분해를 기반

: 라프라시안 행렬의 고유값과 고유벡터를 계산하여 그래프 신경망의 컨볼루션 연산 수행

#### - Spatial

: 그래프 신경망에서 노드 자체와 이웃 노드들의 정보를 활용하여 컨볼루션 연산을 수행

: 각 노드는 그 자체와 주변 이웃의 정보를 종합하여 새로운 표현을 계산하며, 이 정보를 통해 그래프 상의 특징을 추출



Sampling module : 그래프(노드, 레이어, 서브그래프)를 샘플링하여 이웃 폭발 문제 완화

Node sampling : 각 노드의 이웃에서 하위 집합을 선택

Layer sampling : 각 계층에서 aggregation을 위해 작은 노드 집합 유지

Subgraph sampling : 다른 방식으로 여러 서브 그래프를 샘플링하고 서브 그래프 내에서 이웃 검색을 제한



Pooling module : 그래프의 노드를 그룹화하거나 집계하여 그룹 단위로 정보를 요약하는 과정

Direct pooling : 그래프의 노드를 직접적으로 그룹화하거나 집계하여 전역적인 정보를 추출

Hierarchical pooling : 그래프의 노드를 여러 단계로 나누어 계층 구조를 형성하고,

각 계층에서 그룹화 및 집계를 수행



#### (1) 그래프 구조 찾기

학술적 지식 그래프 및 추천 시스템 응용에 중점

추천 시스템에서는 사용자, 항목 및 리뷰를 node로 간주하고 이들 사이의 상호작용을 edge로 간주



(a) Schema and meta relations of Open Academic Graph (OAG)



(b) Schema and meta relations of Amazon Review Recommendation Dataset (Amazon)

#### (2) 그래프 유형과 규모 지정

해당 논문은 Heterogeneous graph에 집중

Academic graph 및 추천 graph에는 수백만개의 노드 포함

-> 대규모 heterogeneous graph에 초점

#### (3) 손실 함수 설계

해당 논문은 모두 노드 수준의 task (Paper-field 예측 등)

-> Pretrain 단계에서 노드 representation 학습

Label 지정된 데이터 X

-> Self-supervised graph generation task 설계



#### (4) 계산 모듈을 사용하여 모델 구축

- Propagation Module: HGT

- Sampling Module : HGSampling

- Pooling Module : 사용 X



# 감사합니다