Machine Learning

Maximum Likelihood of the Normal Distribution with Restrictions

Irving Gómez Méndez

Let $y|X \sim \mathcal{N}(X^T\beta, \sigma^2)$, $\beta \in \mathbb{R}^p$ and assume that we want to maximize the log-likelihood subject to some linear conditions, that is, we want to maximize:

$$\ell(\beta, \sigma^2) = -\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta) - \frac{n}{2} \log(\sigma^2)$$
subject to $\mathbf{K}\beta = \mathbf{m}$

where **K** is a $q \times p$ matrix of range $q, q \leq p$.

The Lagrange function is given by

$$L(\sigma^2, \beta, \lambda) = -\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta) - \frac{n}{2} \log(\sigma^2) - \lambda^T (\mathbf{K}\beta - \mathbf{m})$$

Let be $\hat{\beta}_R$ and $\hat{\sigma}_R^2$ the values that maximize the log-likelihood and satisfy the restrictions. These values must satisfy

$$\left. \frac{\partial L}{\partial \sigma^2} \right|_{\left(\hat{\sigma}_R^2, \hat{\beta}_R, \hat{\lambda}\right)} = 0, \quad \left. \frac{\partial L}{\partial \beta} \right|_{\left(\hat{\sigma}_R^2, \hat{\beta}_R, \hat{\lambda}\right)} = 0, \quad \text{and} \quad \left. \frac{\partial L}{\partial \lambda} \right|_{\left(\hat{\sigma}_R^2, \hat{\beta}_R, \hat{\lambda}\right)} = 0$$

Thus,

$$\begin{split} \frac{\partial L}{\partial \sigma^2} \bigg|_{\left(\hat{\sigma}_R^2, \hat{\beta}_R, \hat{\lambda}\right)} &= 0 \\ \Leftrightarrow \frac{1}{2\hat{\sigma}_R^4} (\mathbf{Y} - \mathbf{X}\hat{\beta}_R)^T (\mathbf{Y} - \mathbf{X}\hat{\beta}_R) - \frac{n}{2\hat{\sigma}_R^2} &= 0 \\ \Leftrightarrow \hat{\sigma}_R^2 &= \frac{1}{n} (\mathbf{Y} - \mathbf{X}\hat{\beta}_R)^T (\mathbf{Y} - \mathbf{X}\hat{\beta}_R) \equiv \frac{1}{n} SSR(\hat{\beta}_R) \end{split}$$

$$\begin{aligned} \frac{\partial L}{\partial \beta} \Big|_{\left(\hat{\sigma}_{R}^{2}, \hat{\beta}_{R}, \hat{\lambda}\right)} &= 0 \\ \Leftrightarrow -\frac{1}{2\hat{\sigma}_{R}^{2}} \left(2\mathbf{X}^{T}\mathbf{X}\hat{\beta}_{R} - 2\mathbf{X}^{T}\mathbf{Y} \right) - \mathbf{K}^{T}\hat{\lambda} &= 0 \\ \Leftrightarrow \mathbf{X}^{T}\mathbf{X}\hat{\beta}_{R} + \hat{\sigma}_{R}^{2}\mathbf{K}^{T}\hat{\lambda} &= \mathbf{X}^{T}\mathbf{Y} \\ \Leftrightarrow \hat{\beta}_{R} + \hat{\sigma}_{R}^{2} \left(\mathbf{X}^{T}\mathbf{X} \right)^{-1} \mathbf{K}^{T}\hat{\lambda} &= \hat{\beta} \\ \Leftrightarrow \mathbf{K}\hat{\beta}_{R} + \hat{\sigma}_{R}^{2}\mathbf{K} \left(\mathbf{X}^{T}\mathbf{X} \right)^{-1} \mathbf{K}^{T}\hat{\lambda} &= \mathbf{K}\hat{\beta} \end{aligned}$$

On the other hand,

$$\begin{aligned} \frac{\partial L}{\partial \lambda} \Big|_{\left(\hat{\sigma}_{R}^{2}, \hat{\beta}_{R}, \hat{\lambda}\right)} &= 0 \\ \Leftrightarrow \mathbf{K} \hat{\beta}_{R} &= \mathbf{m} \end{aligned}$$

From the last expression, we have

$$\mathbf{m} + \hat{\sigma}_R^2 \mathbf{K} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{K}^T \hat{\lambda} = \mathbf{K} \hat{\beta}$$
$$\Leftrightarrow \hat{\lambda} = \frac{1}{\hat{\sigma}_R^2} \left[\mathbf{K} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{K}^T \right]^{-1} \left(\mathbf{K} \hat{\beta} - \mathbf{m} \right)$$

Substituting for $\hat{\beta}_R$,

$$\hat{\beta}_R + \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{K}^T \left[\mathbf{K} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{K}^T \right]^{-1} \left(\mathbf{K} \hat{\beta} - \mathbf{m} \right) = \hat{\beta}$$

$$\Leftrightarrow \hat{\beta}_R = \hat{\beta} - \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{K}^T \left[\mathbf{K} \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{K}^T \right]^{-1} \left(\mathbf{K} \hat{\beta} - \mathbf{m} \right)$$