Report page ExoTIC-ISM

W17_G141_lc_11395.txt - 11395

Input parameters:

Number of systematic models: 50 Wavelength mid point = 11380.141699602069 Wavelength half width = 90.80626964749172

Planet parameters:

Rp/R* = 0.1255 Epoch (MJD) = 57957.97108811848 Inclination (deg) = 86.93051272857655 Eccentricity = 0.0 Omega (deg) = 0.0 Period (days) = 3.7354850226 a/R* = 7.025

Stellar parameters:

FeH (dex) = -0.25Teff (K) = 6550.0 $\log(g) (cgs) = 4.2$

Output parameters:

Limb-darkening coefficients:

C1 = 0.8529625463058947 C2 = -0.8296916633180598 C3 = 0.7767245286699795 C4 = -0.2756867391195464

Top five systematic models by their weight

Check the chi-squared values and the AIC evidence for reasonable fits.

If the chi-squared values far exceed the DOF then it is likely that the input data contains additional noise, double check the spectral extraction.

Model numbers = $[18 \ 19 \ 23 \ 17 \ 43]$

DOF = [45. 44. 44. 46. 44.]

Chi-squared = [55.37153692 54.68610039 55.18283248 57.30579833 55.3151131]

AIC evidence = [339.57891576 339.42163403 339.17326799 339.11178506 339.10712767]

Weights = [0.1042506758832423 0.08907837585340858 0.06948775612153642

0.06534413175378025 0.06504050656035855]

SDNR = [293.07907639 291.253453 292.56903461 298.23600113 292.94609316]

Top model Noise Statistics:

White noise = 0.0Red noise = 0.0

Beta = 1.0

If the red-noise is significant it means the data is poorly fit by any of the systematic models. It is recommended that the input lightcurves are checked for additional noise sources.

Marginalised parameters:

If None, parameter was not fit for.

Rp/R* = 0.12299246762814105 +/- 0.0004816974733537 Epoch (MJD) = 57957.9702101891 +/- 0.0006150565073334445 Inclination (rad) = None +/- None Inclination (deg) = None +/- None System density (Ms+Mp/R^3) = None +/- None a/R* = None +/- None

Systematics

Marginalisation results

Top: Evidence-based weight associated with each systematic model when fit with the data. *Middle:* Standard deviation of the residuals after correcting for each systematic model. *Bottom:* Radius ratio

measured from the transit depth when the light curve has been corrected using each systematic model. *If present, grey crosses mark discarded systematic models (poor AIC evidence)*.

Lightcurves

First vs. best model

Top: Input lightcurve with no systematic model correction applied. *Middle:* Lightcurve corrected by highest weight systematic model plotted with the smooth planetary transit model centred on the mid-transit time. *Bottom:* Residuals and uncertainties associated with the middle panel lightcurve. The upper and lower standard deviation bounds are shown in dotted lines relative to zero.