Faster Coroutine Pipelines: A Reconstruction

Ruben Pieters

Tom Schrijvers

Stream Processing

Data Processing

- Large amounts
- Handle efficiently

End result

Example: read from file, write to database...

Side-Effects

Output

Pipes and Three-Continuation Approach

`Faster Coroutine Pipelines` by Spivey

Data

`Continuations and Transducer Composition` by Shivers and Might

Basic Building Blocks

Basic Building Blocks: Input

Basic Building Blocks: Output

The rest of the pipeline, which can depend on i

Output an o value

The rest of the pipeline

Basic Building Blocks: Return

- Take a value i as input
- The rest of the pipeline,
 which can depend on i
- Output an o value
- The rest of the pipeline
 - Return an a value

> run example input:


```
> run example
input:
42
```



```
> run example
input:
42
output: 42
```



```
> run example
input:
42
output: 42
```



```
> run example
input:
42
output: 42
input:
-1
```



```
> run example
input:
42
output: 42
input:
-1
return: a
Pipeline finished
```

Pipelines as Building Blocks

Pipelines as Building Blocks

One-Sided Pipes

Consumer:

Producer:

One-Sided Pipes

Consumer:

Only Input

Producer:

One-Sided Pipes

Consumer:

Producer: Only Output

One-Sided Pipes: Merge Example

One-Sided Pipes: Merge Example

Downstream:

One-Sided Pipes: Merge Example

One-Sided Pipes: Merge Example

Consumer:

Consumer:

```
data Consumer i = C (i \rightarrow Consumer i)
C (\langle i_0 \rightarrow C (\langle i_1 \rightarrow C (\ldots) \rangle))
```

```
data Producer o = P o (Producer o)

P o_0 (P o_1 (P o_2 (...)))
```

Consumer: $i + i + i + \cdots$ data Consumer i = C ($i \rightarrow C$ Consumer i) C ($\setminus i_0 \rightarrow C$ ($\setminus i_1 \rightarrow C$ (...)))

```
data Producer o = P \circ (Producer \circ)

P \circ_0 (P \circ_1 (P \circ_2 (...)))
```

Consumer:

Consumer:

: Function

Producer:

Function

Consumer:

Church

Consumer:

$$\k \rightarrow k \(\i_0 \rightarrow k \(\i_1 \rightarrow k \(\dots)))$$

Consumer:

Scott

Consumer:

$$\langle k_0 - k_0 \rangle = \langle k_1 - k_1 \rangle = \langle k_1 - k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_1 - k_2 - k_2 \rangle = \langle k_1 - k_2 - k_2 \rangle = \langle k_1 - k_2 - k_2 - k_2 \rangle = \langle k_1 - k_2 - k_2 - k_2 - k_2 - k_2 \rangle = \langle k_1 - k_2 - k_2$$

$$\langle k_0 - k_0 | o_0 | (\langle k_1 - k_1 | o_1 (\langle k_2 - k_2 | o_2 (...))) \rangle$$

Consumer:

run run run
$$\langle k_0 \rangle = \langle k_0 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_2 \rangle = \langle k_1 \rangle = \langle k_2 \rangle = \langle$$

Producer: run run run run $\langle k_0 \rangle \langle k_0 \rangle \langle k_1 \rangle \langle k_1 \rangle \langle k_1 \rangle \langle k_2 \rangle \langle$

```
merge = apply(
where apply(f,x) = f x
```

```
merge = apply(
b - b - w
```

*Haskell: modulo newtype wrappers

```
bbbb

where apply(f,x) = f x
```

The Paper

Presents a stepwise approach to arrive at this representation.

The Paper

Infinite Pipes

Consumer:

: $K_i \rightarrow A$

Producer:

 $K_0 \rightarrow A$

Infinite Pipes

Pipe_∞:

Infinite Pipes

Pipe_∞:

(Not Scott Encoding)

Merge Example

Merge Example

$$K_i \rightarrow K_o \rightarrow A$$

$$K_i \rightarrow K_o \rightarrow A$$

$$K_i \rightarrow K_o \rightarrow A$$

Adding Return?

Pipe:

:
$$(A \rightarrow K_i \rightarrow K_o \rightarrow R)$$

 $\rightarrow K_i \rightarrow K_o \rightarrow R$

Adding Return?

Pipe:

:
$$(A \rightarrow K_i \rightarrow K_o \rightarrow R)$$

-> $K_i \rightarrow K_o \rightarrow R$

Three-Continuation Approach

Adding Return?

:
$$(A \rightarrow K_b \rightarrow K_o \rightarrow R) \leftarrow (A \rightarrow K_i \rightarrow K_o \rightarrow R)$$

-> $K_b \rightarrow K_o \rightarrow R$
-> $K_i \rightarrow K_o \rightarrow R$
: $(A \rightarrow K_i \rightarrow K_b \rightarrow R)$
-> $K_i \rightarrow K_b \rightarrow R$

Extended To Bidirectional Pipes

Summary

Building Blocks

ruben.pieters@cs.kuleuven.be Images source: *Machinarium*