SMALLEST NUMBER IN AN ARRAY

EXP NO: 16

AIM: To find the smallest number from an array using 8085 processor.

ALGORITHM:

- 1) Load the address of the first element of the array in HL pair.
- 2) Move the count to B register.
- 3) Increment the pointer.
- 4) Get the first data in A register.
- 5) Decrement the count.
- 6) Increment the pointer.
- 7) Compare the content of memory addressed by HL pair with that of A register.
- 8) If carry=1, go to step 10 or if carry=0 go to step 9
- 9) Move the content of memory addressed by HL to A register.
- 10) Decrement the count.

PROGRAM:

LXI H,2050

MOV C,M

DCR C

INX H

MOV A,M

LOOP1: INX H

CMP M

JC LOOP

MOV A,M

LOOP: DCR C

JNZ LOOP1

STA 2058

HLT

INPUT:

OUTPUT:

ASCENDING ORDER

EXP NO: 17

AIM: To compute ascending order of an array using 8085 processor.

ALGORITHM:

- 1) Initialize HL pair as memory pointer.
- 2) Get the count at memory and load it into C register
- 3) Copy it in D register (for bubble sort (N-1)) times required).
- 4) Get the first value in A register.
- 5) Compare it with the value at next location.
- 6) If they are out of order, exchange the contents of A register and memory.
- 7) Decrement D register content by 1
- 8) Repeat step 5 and 7 till the value in D register become zero.
- 9) Decrement the C register content by 1.
- 10) Repeat steps 3 to 9 till the value in C register becomes zero.

PROGRAM:

LOOP: LXI H,3500

MVI D,00

MVI C,05

LOOP1: MOV A,M

INX H

CMP M

JC LOOP2

MOV B,M

MOV M,A

DCX H

MOV M,B

INX H

MVI D,01

LOOP2: DCR C

JNZ LOOP1

MOV A,D

RRC

JC LOOP

DESCENDING ORDER

EXP NO: 18

AIM: To compute descending order of an array using 8085 processor.

ALGORITHM:

- 1) Initialize HL pair as memory pointer.
- 2) Get the count at memory and load it into C register
- 3) Copy it in D register (for bubble sort (N-1)) times required).
- 4) Get the first value in A register.
- 5) Compare it with the value at next location.
- 6) If they are out of order, exchange the contents of A register and memory.
- 7) Decrement D register content by 1
- 8) Repeat step 5 and 7 till the value in D register become zero.
- 9) Decrement the C register content by 1.
- 10) Repeat steps 3 to 9 till the value in C register becomes zero.

PROGRAM:

LOOP: LXI H,3500

MVI D,00

MVI C,05

LOOP1: MOV A,M

INX H

CMP M

JNC LOOP2

MOV B,M

MOV M,A

DCX H

MOV M,B

INX H

MVI D,01

LOOP2: DCR C

JNZ LOOP1

MOV A,D

RRC			
JC LOOP			
HLT			
INPUT:			
INI UI.			
OUTPUT:			

ADDITION OF N NUMBERS

EXP NO: 19

AIM: To compute addition of N numbers using 8085 processor.

ALGORITHM:

- 1) Load the base address of the array in HL register pair.
- 2) Load the memory with data to be added.
- 3) Take it as count.
- 4) Initialize the accumulator with 00.
- 5) Add content of accumulator with content of memory.
- 6) Decrement count.
- 7) Load count value to memory location.
- 8) Repeat step 5.
- 9) Check whether count has become 0.
- 10) Halt.

PROGRAM:

LXI H,8000

MOV C,M

MVI A,00

MOV B,A

LOOP: ADD C

JNC SKIP

INR B

SKIP: DCR C

JNZ LOOP

LXI H,8007

MOV M,A

INX H

MOV M,B

HLT

INPUT:			
OUTPUT:			

SWAPPING OF NUMBERS

EXP NO: 20

AIM: To compute swapping of numbers using 8085 processor.

ALGORITHM:

- 1) Load a 8-bit number from memory location into accumulator.
- 2) Move value of accumulator into register H.
- 3) Load a 8-bit number from next memory location into accumulator.
- 4) Move value of accumulator into register D.
- 5) Exchange both the registers pairs.
- 6) Halt

PROGRAM:

LDA 2001

MOV B,A

LDA 2002

MOV C,A

STA 2003

MOV A,B

STA 2004

HLT

INPUT:

OUTPUT:

SQUARE OF NUMBER

EXP NO: 21

AIM: To compute square of number using 8085 processor.

ALGORITHM:

- 1) Load the base address of the array in HL register pair.
- 2) Assign accumulator as 0.
- 3) Load the content of memory location specified into register.
- 4) Add content of memory location with accumulator and decrement register content by 01.
- 5) Check if register holds 00, if so store the value of accumulator in memory location.

PROGRAM:

LXI H,8000

XRA A

MOV B,M

LOOP: ADD M

DCR B

JNZ LOOP

STA 8001

HLT

INPUT:

OUTPUT:

ONES AND TWOS COMPLEMENT

EХР	NO:	22

AIM: To compute one's and two's complement using 8085 processor.

ALGORITHM:

- 1) Load the base address of the array in a register pair.
- 2) Move the data from memory location into accumulator.
- 3) Convert all ones into zeros and zeros into ones.
- 4) Add 01 to the accumulator content.
- 5) Store the results of one's and two's complement.

PROGRAM:

LDA 3000

CMA

STA 3001

ADI 01

STA 3002

HLT

INPUT:

OUTPUT:

ROTATE LEFT OPERATION

EXP NO: 23
AIM: To compute rotation of given data in left without carry using 8085 processor.
ALGORITHM:
1) Load the base address of the array in HL register pair.
2) Move the data from memory location into accumulator.
3) Shift left the accumulator content for four times.
4) Store the result in the specified location.
PROGRAM:
MVI A,02
RLC
RLC
RLC
RLC
STA 2000
HLT
INPUT:

RESULT: Thus the program was executed successfully using 8085 processor simulator.

OUTPUT:

ROTATE RIGHT OPERATION

EXP NO: 24
AIM: To compute rotation of given data in right without carry using 8085 processor.
ALGORITHM:
1) Load the base address of the array in HL register pair.
2) Move the data from memory location into accumulator.
3) Shift right the accumulator content for four times left.
4) Store the result in the specified location.
PROGRAM:
MVI A,03
RRC
RRC RRC
RRC
STA 2000
HLT
INPUT:
OUTPUT:

LOGICAL OPERATIONS

EXP NO: 25

AIM: To compute various logical operations using 8085 processor.

ALGORITHM:

- 1) Load data to accumulator.
- 2) Load another data in register
- 3) Perform logical operations like AND, OR and XOR (Use ANA, ORA, XRA) with the accumulator content.
- 4) Store the result in specified memory location.

PROGRAM:

AND OPERATION:

MVI A,06

MVI B,04

ANA B

STA 2500

HLT

OR OPERATION:

MVI A,07

MVI B,06

ORA B

STA 2000

HLT

XOR OPERATION:

MVI A,03

MVI B,04

XRA B

STA 2000

HLT

INPUT:

OUTPUT: