

ŘADA A

ČASOPIS
PRO ELEKTRONIKU
A AMATÉRSKÉ VYSÍLÁNÍ
ROČNÍK XXIX/1980 ČÍSLO 10

V TOMTO SEŠITĚ

Náš Interview	361
VVTŠ Liptovský Mikuláš	362
OK3KTY	363
Hloubkový průzkum, Čtenáři se ptají	364
Všeobecná výstava NTTM, Moskva '80	365
Polní den 1980	366
Výsledky soutěže k 30. výročí založení PO	367
Jak nato?	368
R 15 (Barevná hudba pro mládež)	370
Nf a ss miliivoltmetr	372
Zdvojovače kmitočtů	377
Zesilovač impulsů	378
Polovodíčkové paměti	379
Jakostní operační usměrňovač	383
Integrovaný stereodekodér z NDR	384
Seznamte se s gramofonovým přístrojem TESLA NZC420	386
Bezkontaktní stykač	388
Filtr pro telegrafii a SSB	389
Transverzor 28/145 MHz	390
Radioamatérský sport:	
Mládež a kolektivky	393
ROB	394
VKV, KV	395
Naše předpověď, DX	396
Přečteme si, Četli jsme	397
Inzerce	398

AMATÉRSKÉ RÁDIO ŘADA A

Vydává ÚV Svazarmu ve vydavatelství NAŠE VOJSKO, Vladislavova 26, PSC 113 66 Praha 1, tel. 26 06 51-7. Šéfredaktor ing. František Smolík, zástupce Luboš Kalousek. Redakční rada: K. Bartoš, V. Brzák, RNDr. V. Brunhofer, K. Donát, A. Glanc, I. Harminc, Z. Hradík, P. Horák, J. Hudec, ing. J. T. Hyun, ing. J. Jaroš, doc. ing. M. Joachim, ing. J. Klabal, ing. F. Králik, RNDr. L. Kryška, PhDr. E. Křížek, ing. E. Mocičík, K. Novák, RNDr. L. Ondříš, ing. O. Petráček, ing. M. Smolka, doc. ing. J. Vackář, laureát st. ceny KG, ing. J. Zima. Redakce Jungmannova 24, PSC 113 66 Praha 1, telefon 26 06 51-7, ing. Smolík linka 354, redaktoři Kalousek, ing. Engel, Hofhans l. 353, ing. Myslík, P. Pavliš l. 348, sekretářka l. 355. Ročně vydje 12 čísel. Cena výtisku 5 Kčs, poštovní předplatné 30 Kčs. Rozšíruje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1. Objednávky přijímá každá pošta i doručovatel. Objednávky do zahraničí vyřizuje PNS, vývoz tisku, Jindříšská 14, Praha 1. Tiskne Naše vojsko, n. p. závod 08, 162 00 Praha 6-Liboc, Vlastina 710. Inzerci přijímá vydavatelství NAŠE VOJSKO, Vladislavova 26, PSC 133 66 Praha 1, tel. 26 06 51-7, linka 294. Za původnost a správnost příspěvku ručí autor. Redakce rukopis vrátí, bude-li vyzádán a bude-li připojená frankovaná obálka se zpětnou adresou. Návštěvy v redakci a telefonické dotazy pouze po 14. hod. Č. indexu 46 043.

Toto číslo má výjde podle plánu 30. 9. 1980

© Vydavatelství NAŠE VOJSKO, Praha

náš interview A R

s J. Litomiským, OK1DJF, předsedou 607. ZO Svazarmu v Praze 6, (OK1KZD), k nadcházející výroční členské schůzce ZO.

Soudruhu předsedo, současné období je charakterizováno přípravou výročních členských schůz (VČS) Svazarmu. Jak se na svoji VČS připravuje vaše základní organizace?

Naše organizace má prozatím jedinou odbornost – radioamatérství, evidujeme kolem 90 členů a jako radioklub pracujeme již 20 let. Myslím, že každá svazarmovská organizace existuje ve svých daných specifických podmínkách, které určují obsah a formy její činnosti. Stále však rostou možnosti i nároky, ve kterých je tato činnost realizována. Právě příprava VČS je příležitostí k zamýšlení nad tím, jak co nejlépe využít daných možností i dobré plnění kladené nároky, k zamýšlení nad tím, co se v minulosti zdařilo a na co se zaměřit v příštím období.

Mám-li hovořit o naší přípravě na VČS, nemohu ji označit za „horečnou“. Rozhodně ne proto, že by nebylo co bilancovat, že bychom neměli problémy nebo plány do budoucna; právě naopak. Máme poměrně velký počet členů, velkou většinou mladých, to znamená, že u nás není nouze o nápady, co dělat, a také požadavky na nás kladené jsou vysoké. To nás přimělo již před delší dobou analyzovat všechny naše možnosti a rozpracovat dlouhodobou koncepci naší činnosti. Čas prověřil, že je zatím správná, jakkoli nebylo vždy snadné ji prosadit. Proto nebudeme na VČS muset řešit zásadní otázky, ale zaměříme se spíše na aktuální úkoly a konkrétní problémy.

Co bylo řečeno, zní možná trochu „papírově“, ale naším cílem je předně plnit společenské úkoly, které naše organizace má, ale i dosáhnout toho, aby všichni naši členové měli v rámci sportovní a technické činnosti dostatek prostoru k uspokojení svých zájmů. Je to bez koncepční práce možné jen obtížné.

Budeme se samozřejmě snažit, aby naše schůze nebyla jen výčtem akcí uskutečněných a plánovaných s formálním závěrečným usnesením, protože formalismus je pro dobrou práci zájmového kolektivu zhoubnou chorobou.

Takováto snaha má jistě úzkou souvislost s politickovýchovnou prací.

Ovšem. Velmi oceněujeme důraz, jaký se klade na jednotu slov a skutků jako na jeden z prostředků politickovýchovné práce. Péče by se měla ovšem věnovat i dalším metodám. Jako lektor jsem se nedávno zúčastnil školení rozhodčích telegrafie v Bratislavě; součástí tohoto školení byla i beseda lektorský zabezpečená Vojenskou akademii. Nesmírně mile mě překvapil oboustranný zájem a otevřenosť, s jakou se hovořilo o vnitropolitických a zahraničně politických otázkách. Takovýto politickovýchovných akcí nemůže být nikdy dostatek. Naproti tomu vezměme např. nástěnky – ve většině svazarmovských kluboven se na nástěnku příspěvky tabulka hodnotního označení na vojen-

J. Litomiský, OK1DJF

ských výložkách a celá propagace ČSLA je tím hotova. To sice nedá žádnou práci ani přemýšlení, ovšem výsledek také ne. Rezervy mohou být i jinde, vezměme jiný příklad z praxe: našemu radioklubu byl přidělen transceiver Boubín, jehož signál byl velmi nestabilní jen proto, že v oscilátoru byl použit nevhodný typ kondenzátoru. Nechci příliš hovořit o zklamání, hlavně mladých operátorů, i o práci navíc, vynaložené na odstranění závady, ale rád bych zdůraznil, že nesporný sportovní i politickovýchovný význam, který má skutečnost, že jsou pro radiokluby vyráběna vysílaci zařízení, může díky podobným maličkostem přijít vniveč.

Často se také hovoří o potřebě zkvalitnit a prohloubit řídící práci. Jaká zlepšení plánujete v tomto směru ve vaší organizaci?

Ačkoli tato slova snad na první pohled mnoho neříkají, dotýkají se jedné z nejcitlivějších stránek práce naší zájmové organizační a bezprostředních mezilidských vztahů. Je tedy tato otázka velmi důležitá.

Není řídkým jevem, že i v početné ZO „vytvářejí“ veškerou činnost dva tři lidé, kteří jsou potom přetíženi prací, zatímco ostatní členové nemají chuť (někdy ani možnost) se na práci ZO podílet, dochází k nesrovnanostem a neshodám, a takové ZO časem prakticky ztratí důvod existence. Něčeho takového se snažíme v naší ZO plánovitě vyvarovat. Podařilo se nám zaktivizovat všechny členy výboru ZO, schůze výboru jsou místem živých diskusí o všech problémech. Dbáme o to, aby každý z nás si vzal svým možnostem přiměřený úkol, třeba malý, vždy s cílem, aby bylo dosaženo pokroku a nikdo nebyl pracovně přetížen. Tím je také dán, že jak na plnění těch „méně přijemných“ úkolů, tak na využívání výhod, které může organizace svým členům nabídnout, se podílí každý aktivní člen. Tento styl práce se budeme snažit stále rozšiřovat.

Jiným velmi častým jevem je, že některé organizace „zazáří“ krátkodobě výbornými výsledky své práce, což je většinou způsobeno prací jednoho či více velmi zapálených a obětavých lidí. Když potom tito lidé již nemají možnost – z důvodu pracovních, rodinných či jiných – se práci věnovat, kolektiv se rozpadne a vynaložené úsilí a prostředky přijdou nazmar. Také těmto jevům se snažíme předcházet. Rozhodně se jako

kolektiv neuzavíráme, může mezi nás přijít kdokoli, a bude-li na bázi svazarmovského radioamatérského sportu chtít seriózně rozvíjet nějakou činnost tak, aby tím netrpěly ostatní již osvědčené činnosti, bude vítán a dostane se mu všeobecné podpory. Dalším zdrojem kádrových rezerv jsou kurzy radiových operátorů, které nepřetržitě pořádáme již řadu let. Nejenže těmito kurzy prošli radioamatéři, kteří dnes – někdy velmi úspěšně – pracují po celé republice, ale můžeme říci, že bez výjimky všichni členové našeho výboru jsou jejich odchovanci. Díky tomu nejsme na rozpacích, když se některý z našich funkcionářů ožení, přestěhuje nebo začne studovat. V posledních letech jsme neměli problémy s tím, jak někoho takového nahradit, jak udržet úroveň, již jsme v tom či onom směru dosáhli.

Myslím, že právě toto je hlavní měřítkem životoschopnosti našich základních organizací. Velice si vážím např. radioklubu OK1KIR, který reprezentuje naši VKV spěčku již po řadu let, nebo třeba RK v Příbrami, mnohonásobného vítěze Soutěže aktivity, jehož „Recept na úspěch“ (viz AR 11/79) by měl být podnětem k zamýšlení v nejednom radioklubu.

Bыло velmi žádoucí se nad účinností řídící práce důkladně zamyslet na všech úrovních, protože v této oblasti jsou skutečně značné rezervy. Uvedu jeden příklad: vždy před obdobím výročních schůzí a konferencí zpracováváme pracně několikacentimetrový svazek různých výkazů a hlášení pro různé orgány, přičemž obsah je prakticky stejný. Je samozřejmé, že pro dobré řízení jakékoliv činnosti jsou hlavním předpokladem přesné informace, nelze tedy ani administrativní práci podceňovat. Na druhé straně je třeba uvážit, že základní organizace nejsou žádným „úřadem“ a že čas strávený několikrát zpracováváním týchž údajů by mohl být využit podstatně lépe.

Za velmi důležitou považujeme aktivní spolupráci s vyššími orgány Svazarmu, jak územními, tak i s orgány metodického řízení naší odbornosti. Myslím, že stále ještě se v našich radioklubech nedostává chuti seriózně nahlídnout za hranice vlastního klubu, organizace i odbornosti; přitom právě to je cestou, jak využít jinde nabité zkušenosti i předejít zbytečným omylům a zklamáním. Proto by se měla více rozšířit spolupráce i mezi jednotlivými základními organizacemi a radiokluby.

Jak bude váš radioklub na VČS bilancovat svou práci s mládeží?

V práci s mládeží máme dlouholetou tradici. Mimo již zmíněných kurzů RO, které navštěvují i lidé velmi mladí, pořádáme v letních měsících na pionýrských táborech ukážky našeho sportu, a po celý školní rok u nás pracuje radiotechnický kroužek PO SSM.

O kádrové a materiální náročnosti této práce již bylo řešeno a napsáno mnoho, ale málo se hovoří o naprostém nedostatku metodických materiálů. Myslím, že komise mládeže rad radioamatérství zůstávají v tomto směru nemálo dlužný, zejména vezmemeli v úvahu, že ani na knižním trhu nejsou potřebné publikace. To se ovšem netýká jen práce s mládeží. Skutečnost, že jedinou publikaci pro radioamatéry, která se občas – navíc ve zcela nedostačujícím a okamžitě rozebraném nákladu – objeví na trhu, je Radioamatérský provoz, je nanejvýš žalostná a je pro nás sport vysloveně brzdou. A že se nejedná o neřešitelný problém, o tom svědčí praxe našich sousedů v SSSR, NDR či

PLR. Myslím, že jedním z možných řešení by bylo ustavení dobré a účinné pracující publikaci komise ÚRRA (komise ediční existuje – pozn. red.).

Velice mnoho v tomto směru vykonal a redakce AR, ovšem funkce dokonale systematicky zpracovaných knižních publikací je nezastupitelná. O tomto problému se diskutuje velmi často, a protože je u nás dosud lidé, kteří mohou velmi zasvěceně psát o všech stránkách našeho sportu, věřím, že problém bude brzy vyřešen.

Při plánování činnosti na příští rok se budou VČS Svazarmu muset také zabývat otázkou materiálně technického zabezpečení svojí činnosti.

V našem braně technickém sportu samozřejmě toto zabezpečení sehrává rozhodující roli. Stále více se zde jistě budou uplatňovat zařízení z produkce podniku Radiotehnika. Mnoha našim radioklubům právě díky této zařízení bylo umožněno pracovat na dalších pásmech a dalšími druhy provozu, současný masový rozvoj ROB by bez nich byl nemyslitelný. Na to by se nemělo zapomínat při občasných diskusích o kvalitě těchto přístrojů. V budoucnu bude ovšem třeba v obou směrech kvalitativně rozšířit výráběný sortiment. Nedovedu si totiž osobně představit patnáctiletého držitele osvědčení OL, který si kupuje za šest až osm tisíc korun

zařízení Jizera nebo Boubín, ani radioklub, který by s transceiverm Otava dosáhl výraznějšího výsledku v některém mezinárodním závodě na KV.

Samostatným problémem je získávání, využívání a údržba měřicích přístrojů. Zřízení měřicího pracoviště pro potřeby radioklubu nebo klubu elektroakustiky představuje investici mnoha desítek tisíc korun, přičemž další otázkou je kvalifikované využívání a údržba přístrojů. Výhledově zde bude patrně jediným řešením budování chystaných radiotechnických kabinetů.

V podmírkách našeho radioklubu získáváme vyřazené přístroje zejména od vysokých škol, jichž je v obvodě několik; tradiční spolupráci v tomto směru máme s VŠCHT a ČVUT. Taktéž získaná zařízení jsou ovšem již značně opotřebená a zastaralá a stojí mnoho úsilí dále prodlužovat jejich životnost. Proto je otázka měřicí techniky pro nás stále aktuální a budeme se ji nepochyběně zabývat i na VČS.

Na závěr bych rád všem čtenářům svazarmovcům popál, aby VČS pro ně byly opravdu místem k hodnocení i přípravě dobrých výsledků v práci sportovní, technické i společenský prospěšné, i dobré a příjemně naplněným volným časem.

Děkujeme za rozhovor.

Rozmlouval ing. A. Myslik

VVTŠ LIPTOVSKÝ MIKULÁŠ

Po levé straně silnice z Liptovského Mikuláše na Dernákovské Jeskyně stojí jedna z nejmodernějších vysokých škol u nás, Vysoká vojenská technická škola československo-sovětského přátelství (dále VVTŠ). Její název i její poloha připomínají, že před 35 lety (v únoru až dubnu 1945) zde bojovali společně vojáci 1. čs. armádního sboru s vojáky sovětské 18. armády za osvobození Liptovského Mikuláše. Podle slov generála Ludvíka Svobody to byly dva měsíce bojů, které lze přirovnat k těm nejtěžším bojům v Dukelském průsmyku. V této symbolických místech tedy dnes studují budoucí velitelé Československé lidové armády, které v těchto dnech, 6. října, slaví svůj svátek.

Posláním VVTŠ je připravovat pro ČSLA důstojníky s vysokoškolským vzděláním pro výkon velitelských funkcí. Uplatnění elektroniky v dnešní armádě nikoho jistě nepřekvapí, avšak přesněji představu o jejím rozsahu získáme výčtem fakult a stručně náplně studia na VVTŠ:

– fakulta protiletadlové techniky, protivzdušné obrany státu: studium speciálních elektronických, radiolokačních a automatizačních zařízení protivzdušné obrany státu;

– fakulta radiolokace: studium radiolokačních přístrojů a automatizovaných systémů velení radio-tehnického vojska;

– fakulta protivzdušné obrany pozemního vojska: studium radiotechnických zařízení, protiletadlové dělostřelecké techniky a automatizovaných systémů velení;

– fakulta spojovací: studium rádiové a speciální sdělovací techniky.

Elektronika a radiotechnika je tedy přednášena s různým zaměřením na všech fakultách. Její výuku zabezpečuje katedra aplikované elektroniky, fungující ve čtyřech specializacích: radiolokační technika, výpočetní technika, automatická regulační a impulsová technika. Ve nejblížší době bude mít VVTŠ vlastní výpočetní středisko s terminálovou sítí, pro něž katedra aplikované elektroniky právě připravuje softwarové vybavení. Praktická výuka elektronických oborů probíhá v moderních laboratořích (viz 3. strana obálky).

Většina z nás má asi pouze nepřesnou představu o tom, jaké je studium na vojenské vysoké škole. Ukážeme vám to na příkladu spojovací fakulty VVTŠ,

která se svou náplní studia prakticky shoduje s pojem působnosti radioamatérů.

Podmínky přijetí na VVTŠ jsou pro uchazeče o studium na všech fakultách stejné: československé státní občanství, ukončené středoškolské vzdělání, odpovídající morální a charakterové vlastnosti, fyzická zdatnost, maximální věková hranice 24 let, zájem o obor a samozřejmě úspěšné složení přijímací zkoušky, při níž uchazeči kromě ústních pohovorů prokazují písemnou formou svoje znalosti matematiky a fyziky, absolvovali psychodiagnostický test, jehož cílem je získat informace o všeobecných schopnostech a některých specifických vlastnostech uchazeče. Je-li uchazeč na VVTŠ přijat, stává se příslušníkem ČSLA a po dobu prvních pěti měsíců studia je v poměru vojáka náhradní služby.

Hlavní náplní studia na spojovací fakultě VVTŠ je provoz vojenské sdělovací techniky. Během čtyř let trvání studia zvládnou posluchači v teorii i praxi základy přijímací a vysílací techniky, antény, provoz na radiových, linkových a radioreléových prostředcích, způsoby realizace rádiového a kabelového spojení, šíření elektromagnetických vln, techniku přenosu dat i telefonního a telegrafního provozu. U radiotelegrafie na spojovací fakultě VVTŠ se zastavíme. Její odpůrce možná budou překvapení, jaký důraz je na ni v současné armádě kláden. Její spolehlivost je stále těžko nahraditelná a tam, kde končí rozlišovací schopnosti současných strojových dekodérů, při signálech na úrovni šumu, při více pracujících stanicích na jednom kmitočtu atd., tam teprve nejlépe oceníme dobrého radiotelegrafistu, který je i za těchto nepříznivých okolností stále schopen přijímat i předávat zprávy. Na přípravě kvalitních telegrafistů se podílí i svazarmovská kolektivní stanice při VVTŠ, OK3KTU, čehož snad nejlepším důkazem je fakt, že její členové získávají odznak třídního specialisty významného v svém ročníku. Chlapci z VVTŠ kromě toho působí i v okresním radioklubu v Liptovském Mikuláši, OK3KLM (VO OK3HO), kde nyní tvoří většinu členské základny, a mají svoje zástupce i v ORRA Svazarmu (OK3CTS). Podle jejich názoru není vliv kolektivní stanice na operátořskou zručnost radiotelegrafistů dostatečně oceňován.

Vraťme se však k samotnému studiu na spojovací fakultě VVTŠ. Její absolventi jako důstojníci spojo-

vacího vojska s vysokoškolským inženýrským vzděláním zvládnou během studia prakticky veškerou spojovací techniku, která je používána v ČSLA. Nejprve pomocí školní techniky, umístěné v učebnách, a ve 3. a 4. ročníku při tzv. polygonní praxi v terénu, kdy si studenti nejlépe a prakticky ověřují, jakou techniku a jaké druhy provozu pro určité trasy spojení používat. Polygonní praxe je u studentů oblibená, přestože známená značně psychické i fyzické zatížení – učí samostatnému rozhodování a umožňuje studentům vyzkoušet to, co budou jako příští velitelé využívat od svých podřízených.

Podle názoru náčelníka spojovací fakulty VVTŠ je obsah studia na této fakultě srovnatelný se studiem sdělovací techniky na elektrotechnických fakultách VUT nebo na Vysoké škole dopravy a spojů v Žilině. Vojenská sdělovací technika se od civilní iší hlavně svojí mobilitou a odolností, rozdíly jsou také ve

vzdálenostech a podmínkách, při nichž je spojení zabezpečováno.

Mimo předměty elektrotechnického charakteru jsou vyučovány na VVTŠ společenské vědy, jazyky (ruština, němčina a angličtina), teoretické předměty (matematika a fyzika) a vojenská odborná příprava. Důraz je kladen na psychologii a pedagogiku, protože budoucí velitelé jsou současně i budoucími pedagogy.

Studenti VVTŠ jsou pravidelnými účastníky celostátních kol armádní soutěže technické tvorivosti, armádní soutěže umělecké tvorivosti i studentské vědecké a odborné činnosti. Sportovní reprezentaci VVTŠ zabezpečuje VTJ Dukla Liptovský Mikuláš, v současné době nejúspěšnější v lehké atletice, střelbě a basketbalu.

Po ukončení školního roku se posluchačům uděluje třicetidenní řádná dovolená, týden studijního

volna v době vánocních svátků a týden studijního volna po skončení zimního semestru. S přihlédnutím k plnění základních studijních a vojenských povinností jsou posluchači na konci třetího ročníku povyšováni do hodnosti podporučíka. Služební příjem studentů VVTŠ se pohybuje v rozmezí 800 až 1000 Kčs, přičemž stravování, ubytování, vystrojení a učební pomůcky jsou zdarma.

Na závěr studia na VVTŠ se konají státní závěrečné zkoušky ze společenských věd, taktiky studovaného druhu vojska, z konstrukce a provozu studované techniky a obhajoba diplomové práce. Úspěšné studium je ukončeno promocií spojenou se slavnostním jmenováním absolventů VVTŠ ČSSP a odevzdáním diplomu inženýra.

pfm

OK3KTY

Značku OK3KTY najdete v poslední době v našem časopise velmi často. Je to v současné době jeden z nejaktivnějších slovenských radio klubů. Jeho historie začíná v roce 1954 a nebyla vždy tak úspěšná, jako je tomu nyní. Jano Lengyel, OK3VCI, a Ján Hudák, OK3CHP, si ještě pamatují Polní dny s OK3KTY v pásmu 86 MHz, ale také dobu, kdy byla jejich kolektivka přemístěna do nedalekého Svitu. Ávšak od roku 1973 má svoje trvalé QTH v nové budově OV Svažarmu v Popradě a je stále slyšet na KV, na VKV a stejně často je o ně slyšet i v radioamatérském ústředním podání, které již pět let OK3KTY pravidelně podporuje pořádání celoslovenských seminářů radioamatérů (z pověření SÚRRA).

Vedoucím operátorem čtyřčlenného kolektivu OK3KTY je Rudolf Včelařík, OK3IO. Společně s Jánem Ochothnicou, OK3ZGA, ing. Karolem Poleckým, OK3CAH, Ludmilou Laufovou (zatím bez značky), Kurtem Kawashem, OK3ZFB, Janem Hudákem, OK3CHP, a dalšími zabezpečují všechnou kvalitní činnost svého radio klubu:

V roce 1979 1. místo v OK v kategorii více operátorů v All Asian contestu (Otava a FT DX 505), na VKV pravidelný účast v PD i PDM z města Kráľova Hoľa (FT221).

V témež roce zvítězila OK3KTY v krajské lize telegrafie, přestože specialista na tuto disciplínu Jozef Lang, OK3CQW, nyní studuje na elektrotechnické fakultě v Bratislavě.

O patnácti mladých nadšenců pro ROB peče hlavně Ludmila Laufová. Tatranskou valašku, jejíž výsledky byly v rubrice ROB, pořádala OK3KTY letos již potřetí. Martin Michal, OL0CLD, je letošním přeborníkem SSR v ROB v kategorii B, ing. Eva Szontágová-Čermáková, OK3CKO, na přeboru SSR letos druhou, vám představovat jistě nemusíme.

Obr. 1. V klubovně OK3KTY. Zleva OL0CLB, OL0CLD, OK3ZGA a OK3CHP.

Spojovací služby pro jiné organizace: pravidelně při oslavách 1. máje, při různých lyžařských soutěžích v Tatrách, při Velké ceně Slovenska ...

Je toho tedy hodně a oceňují to nejen radioamatéři. Ředitel ZDS Fučíkova, kterou navštěvuje perspektivní telegrafista Jana Kubík, OL0CLB, se přijde v pondělí po soutěži Jana zeptat, jak to dopadlo. O to pozoruhodnější je odpověď, kterou dostala Marie Kerdíková od svých nadřízených v Odborném učilišti Vкус Spišská Stará Ves, když žádala o uvolnění na soutěž v ROB: „Kdybyste soutěžila za učiliště, tak snad, ale za Svažarm?“

Obr. 2. Správný kolektiv se neobejde bez správných YL. U FT221 je Ludmila Laufová (vpravo) a Mária, XYL OK3ZGA

„PLASTY V ELEKTRONICE“

Konference se tentokrát uskuteční v Táboře a předpokládaná účast je asi 140 československých a 30 zahraničních odborníků.

Tato akce se stala již pravidelným setkáním konstruktérů a technologů i pracovníků vývojových oddělení podniků a výzkumných ústavů.

Dvanáctý ročník je zaměřen na další racionalizaci zpracování plastů, na automatisaci a zavádění bezobslužných provozů, dále pak na materiály pro potřebu elektrotechnického průmyslu.

Účastníci konference obdrží sborník referátů, v němž budou přednášky vytiskeny pouze v originále a doplněny krátkým shrnutím v češtině. Je zajištěno simultánní tlumočení.

Přihlášky na konferenci „Plasty v elektronice XII“ přijímá. Dům techniky ČSVTS v Českých Budějovicích, tř. 5. května 42.

PŘIPRAVUJEME
PRO VÁS

Výkonový generátor TTL
Selektivní hybridní IO
Alfanumerický televizní displej

*

Hloubkový průzkum

nejen puškou a granátem ...

„Seznámím vás se situací na našem předním okraji...“ – promluvil sovětský nadporučík, velitel úseku, kde jsme prováděli rekognoskaci terénu.

„... Nás přední okraj: vpravo skupina stromů na blízkém horizontu, dále výšina s několika keři a končí okrajem lesa s průsekem a údolím na dalším horizontu.“

V úseku vaši předpokládané činnosti dva těžké kulomety s křížovou palbou do údolí k orientačnímu bodu 4. Chvílemi postelují okraje lesa vpravo od orientačního bodu 2. Obranný rajón roty na přívěráceném svahu, orientační bod 1-2, a na svazích asi 350 m od orientačního bodu 3-4. Předsunuté stráže zjištěny. Minová pole v údolí před námi nejsou přesně vymezena.“

Dále nás podrobň se seznamuje se situací vlastních jednotek a navrhuje nejvhodnější postup průzkumné skupiny.

„Podle potřeby vás mé jednotky budou krýt palbou – spojení rádiem a jen v nejnutnějším případě použijete světelné signály. Časový rozvrh akce a organizace návratu podle dohodnutých variant. Je přesně 11.35 hodin. Pohotovost k akci ve 23.15.“

Naše průzkumná skupina velitele sboru měla 17 členů, z toho tři důstojníci, dva radisté, dva ženisté a deset samopalníků jako přímá ochrana, doplněná jedním z nejlepších sovětských průzkumníků staršíou Čukalovem, nositelem nejvyšších vyznamenání včetně Hrdina SSSR.

K 36. výročí bojů u Dukly

Před válkou byl Čukalov lovčem kožešin na nějaké státní farmě daleko na Sibiři. Měl dobrodružnou výmluvnou tvář posetou těžkami od neštovic a silné rty s řadou krásných zubů. Vzhledem k jeho fyzickým proporcím se jen těžko nacházely součásti stejnokroje na jeho postavu, a proto budil dojem neupraveného vojáka. Chodil vždy zamyšlený, nepřistupný. Pracoval na zvláštních úkolech, které plnil vždy sám.

Seznámil jsem se s ním už dříve, když jsem jednou v týlu přebíral rádiovou stanici SCR 399 a byl jsem společně ubytován. Za několik měsíců na to se nečekaně objevil v naší skupině hloubkového průzkumu.

Ve 22.00 hod. dne 4. října 1944 celá průzkumná skupina stála připravena v hlubokém zákupe předsunutých sovětských pěších jednotek 233. střelecké divize. Na průzkum bereme jen to nejnutnější. Radiostanici RB náhradní zdroje, náboje a granáty.

Je hluboká, temná noc. V tuto chvíli je v našem úseku bojový klid. Jen občas se v dálce objeví světlice pro osvětlení terénu, nebo se ozve série ran ze samopalů nebo kulometů.

Vyrážíme. Skupina hloubkového průzkumu štábů 1. čs. sboru se pomalu krok za krokem prodírá k vytouženému cíli – směrem k čs. státní hranici – na kótu 493,5 jihozápadním směrem od polské osady Barwinek.

Rozkaz byl stručný a jasný. Najít mezeru ve fašistické obraně, nevázat se bojem, v prostoru Barwinek-Hunkovce, Stropkov – zjistit rozmištění jednotek nepřítel a přivést živého zajatce, pokud možno důstojníka nebo poddůstojníka.

„Během a přískoky jsme se přemisťovali noční tmou po značkách, které ze sebou zanechávala řídící dvojice v čele. Velitel dbal i kontroloval, zda je celá skupina pohromadě. Radisté desátník Hufa a Počujka vysílají domluvené signály, že zatím je vše v pořáku. Procházíme vlastními minovními poli, zátorasy protivníka a teď se již pohybujeme v předpolí fašistické obrany. Není souvislá, právě proto máme obavy z minovních polí a různých nástrah. Nás postup se stává stále opatrnejší a proto i pomalejší. Každá hodina se zdá být věčnosti. Velitel využívá k přesunu pravidelných intervalů v palbě těžkých kulometů z jednotlivých obranných sektorů. Bylo totiž zvykem Wehrmachtu, že čety v noci a za špatně viditelnosti se dorozumívaly dákami z kulometů. Měníme směr a za necelou půlhodinu se nacházíme

v hlubší proláklině, kde je vybudováno několik povrchových krytů. Jsou vybaveny dobře, prýčny jsou zastlány koňskými houšti, všude se poválují zbytky jídla, cigaret a všude spousta nábojů. Není zde živé duše. Zvyšujeme opatrnost a hledáme bojové doklady. Nacházíme nějaké dopisy a zbytky novin. Je to zřejmě narychlo opuštěné stanoviště.“

Znovu krátká porada, změna směru a postupujeme přímo k nejbližšímu kulometnému hřizdu. Staršína Čukalov v čele a my za ním v těsné blízkosti jej máme krýt palbou v případě přepadu. Uběhlo několik dlouhých minut, když jsme se přiblížili k postavení těžkého kulometu. Zastavíme se a napjatě posloucháme. Všude je klid. Pomalu a obezřetně se skupina sune do okopu a ve tmě osahávavé terén před sebou, abychom nevarovali obsluhu kulometu. K našemu překvapení v okopu nikdo není. Sáhnu na kulomet – je ještě horý, což je známka toho, že je nedávno střílen. Hmatem zjistí, že od spouště kulometu vede telefonní kabel, který přivedl naši skupinu do blízkého krytu, kde poloostrojená obsluha bezstarostně spala až na jednoho vojáka, který měl kabel přivázán k botě a u váděl jím kulomet v činnost v případě, že se ozval vedlejší. V koutku krytu hotel improvizovaný kahan, který vrhal stále se měnící stíny na spící obsluhu. Stačily jen tefiny, aby celá obsluha – čtyři muži – byla zneškodněna. Překvapení fašisté nebyli schopni odporu. Celá akce se odehrála velmi rychle bez jediného výstřelu.

Desky s plošnými spoji, uveřejňované v AR A I AR B, bývají označovány symbolem, jehož první částí je písmeno a druhou částí číslo. Můžete mi sdělit, co to znamená? (F. Konečný, Javorná).

Desky s plošnými spoji ke všem konstrukcím v AR jsou označovány tak, že písmeno v symbolu značí rok uveřejnění konstrukce, v níž deska byla použita (např. M – 1978, N – 1979, O – 1980) a číslice jsou pořadová čísla. Tato označená desky s plošnými spoji lze zakoupit „přes pull“ v prodejně Svažarmu v Praze-Vinohrady, Budečská ul. 7, nebo na dobirku na adresu Radiotechnika, expedice plošných spojů, Žižkovo nám. 32, 500 21 Hradec Králové.

Prodejna v Praze prodává desky s plošnými spoji, uveřejněné v posledních dvou ročních AR, starší desky (od roku 1974) lze objednat výlučně na dobirku v Hradci Králové.

• • •

Z brněnského družstva Služba jsme dostali připomínce k zprávě o možnostech oprav měřicích přístrojů, kterou jsme uveřejnili v AR-A č. 5/1980 v rubrice „Čtenáři se ptají“. V tomto družstvu opravují pouze přístroje typu DU 10, PU 110 a PU 120, nikoli tedy typu DU 20 a AVOMET I, jak bylo původně uvedeno. Redakce se za nepřesnost původní informace, získané telefonickým dotazem v pražském servisu měřicích přístrojů, omlouvá čtenářům v pracovníkům družstva Služba.

• • •

Čtenář D. Kondel z Karlových Varek nás upozornil na chybu v zapojení přístroje „Zdroj-tester“, jehož popis jsme uveřejnili v AR-A č. 6/1980. Aby zapojení mohlo pracovat správně, je nutno ve schématu celkového zapojení (obr. 7 na str. 214) přeřušit spojení mezi středními vývody pravých polovin přepínače. Horní z těchto středních vývodů má být tedy spojen pouze se žárovkou, dolní střední vývod s oběma červenými zdírkami a kladným polem baterie. Autor článku se všem čtenářům za tuto chybu omlouvá.

Máte zájem o amatérské vysílání?

Radioklub Svažarmu OK1KZD pro vás připravil další ročník kursu radiových operátorů třídy C a D. Naučíte se v něm vše, co potřebujete k tomu, abyste se mohli věnovat tomuto zajímavému a perspektivnímu sportu. Kurs bude probíhat od listopadu do května každou středu od 17 do 20 hodin v klubovně radioklubu v Českomalínské ulici 27 v Praze 6 Dejvicích. Blížší informace a přihlášky v uvedenou dobu tamtéž osobně, nebo na telefonním čísle 32 55 53.

S touto výzvou se na pražské zájemce obrací radioklub, který letos oslaví dvacátý rok své práce a čtvrtstoletí existence své ZO Svažarmu. Před pěti lety jsme čtenáře AR seznámili s radioklubem OK1KZD při příležitosti znovuotevření jeho dejvické klubovny po dvouleté adaptaci. Jistě bude zajímavé se podívat, jaké výsledky přinesly prostředky investované do adaptace a vybavení radioklubu.

Za pět let se členská základna ztrojnásobila, přičemž více než polovinu představují mladí lidé – žáci, učni, studenti. Je mezi nimi 14 koncesionářů, z toho 4 OL, a další dvě desítky operátorů. V činnosti klubu se tou čí onou formou objevuje většina odvětví radioamatérského sportu – vedle běžného provozu na KV účast v závodech na VKV, provoz na převáděčích VKV, pravidelné pořádání celopražských soutěží v telegrafii, pořádání propagačně náborových akcí u ROB, vedení radiotechnického kroužku PO SSM. Významné místo zaujímá práce lektorská a cvičitelská – kurzy RO jsou pořádány nepřetržitě již řadu let, při ZO je rovněž zřízeno výcvikové středisko branců.

Můžeme tedy říci, že investované prostředky a úsilí přinesly své ovoce. Je jisté, že rozsáhlá práce přináší jak uspokojení z výsledků, tak i starosti a problémy – ovšem ty nejsou jen tam, kde se nic nedělá. Dejvickým radioamatérům k výročí jejich ZO blahopřejeme a přejeme jim v dalších letech mnoho úspěchů. Nakonec – můžete to zkoušit s nimi.

-djj-

Obr. 1. Část výstavní plochy pavilonu

Obr. 3. Část bulharské expozice

VŠESVAZOVÁ VÝSTAVA NTTM, MOSKVA 1980

Největší přehlídkou prací vědeckotechnické tvorivosti mládeže v celosvětovém měřítku je všesvazová výstava NTTM (naučno-techničeskoje tvorčestvo molodoži), pořádaná pravidelně v Moskvě. Již delší dobu jsem si přál vidět tu výstavu na vlastní oči, neboť kromě jiného mi šlo o srovnání s podobnými podniky u nás a o srovnání technické úrovně, mechanických řešení atd. Letos jsem měl to štěstí, že jsem konečně dosáhl cíle – účastnit se slavnostního zahájení výstavy a vidět ono nekonečné množství nejrůznějších strojů, přístrojů, pomůcek a jiných výrobků, které vytvořili mladí konstruktéři SSSR. Letos byla výstava navíc zahájena v době těsně před olympiádou, což ji přidalo na významu, neboť byla zařazena organizačním výborem her XXII. olympiády do plánu kulturních akcí, probíhajících před, v průběhu a po olympiádě.

Moskva mne privítala koncem června horákem letním počasím, což vzhledem k trvale chladnému počasí u nás a vzhledem k účelu cesty nebylo právě to nejžádanější – bylo to však to jediné, na co jsem mohl během svého pobytu záhrat. Vše ostatní bylo možno označovat pouze přívlastky s předponou nej...

Vráťme se však k účelu mé návštěvy: aby si čtenář mohl udělat představu, o jak velkolepu akci jde, je třeba uvést předem několik faktů. Nad vědeckotechnickou činností mládeže má již od samého počátku patronát ÚV Komsomolu. Díky tomu a díky pěti dalších zúčastněných organizací byla první všesvazová výstava uspořádána již v roce 1967. Vzhledem k tomu, že všesvazová výstava je pouze tečkou za výstavami místními, oblastními, krajovými a republikovými, příležitost vystavovat své práce má každý mladý konstruktér; přitom si může přesně ověřit svoje schopnosti ve srovnání s ostatními mláďmi.

Obr. 2. Ultrazvukový přístroj k detekci a sledování srdečního rytmu plodu (TESLA V. Meziříčí)

techniky, neboť všechny exponáty jsou vyhodnocovány a do dalších kol postupují pouze konstruktéři nejlepších výrobků a prací. Tak se výstavy stávají jednou z nejefektivnějších forem práce se všemi amatérskými i profesionálními pracovníky a konstruktéry z řad mládeže. Výstavy jsou významnou pomocí i organizacím Komsomolu (na všech úrovních) při plnění úkolu, který jim uložil jejich ÚV: rozpracovat a realizovat komplexní programy zapojení mládeže do aktivní účasti v rozvoji vědeckotechnického pokroku, ukazovat na konkrétní potřeby národního hospodářství a umožňovat růst tvůrčí a pracovní aktivity mládeže s cílem dosáhnout co nejvyšší úrovně materiálně technické základny NTTM.

HLavním úkolem NTTM je tedy zapojit do vědeckotechnické činnosti mládež všech kategorií. Aby byl tento úkol splněn, komsomolské organizace ve všech odvětvích národního hospodářství pomáhají středním školám a technickým institutům; výsledkem je účast více než 8 milionů studentů a 1,5 milionu žáků technických učilišť na vědeckotechnické činnosti. Celé hnutí je podchyceno i organizačně: ve 4,5 tis. Paláců a Domů pionýrů, ve 2300 Stanicích a Klubech mladých techniků a 270 vědeckých zařízeních studentů pracuje více než 5 milionů mladých lidí.

Důsledkem takové aktivity v oblasti vědeckotechnické tvorivosti mládeže je i účast mladých na racionalizačním a novatorském hnutí. V současné době existuje přes 360 tisíc kolektívů mladých tvůrčů, přes 7500 hochů a dívek se každoročně vzdělává ve školách mladých racionalizátorů a novátorů.

A konečně jen pro představu, z čeho jsou vybírány exponáty na výstavě v Moskvě, je třeba uvést, že počet účastníků NTTM se pohybuje kolem 20 milionů. Konkrétní výsledky vědeckotechnické tvorivosti mládeže jsou představovány téměř 5 miliony racionalizačních návrhů a opatření za poslední čtyři roky, které přinesly sovětskému národnímu hospodářství ekonomický přínos v hodnotě téměř 6 miliard rublů.

Jako místo konání všesvazové přehlídky prací NTTM byla vybrána Moskva kromě jiného i proto, že komsomolské organizace moskevské oblasti se maximálně angažují v boji za nejlepší jakost práce a výrobků; přitom navíc úzce spolupracují s výbory Komsomolu Gosstandartu (obdoba našeho Úřadu pro normalizaci a měření).

Všesvazové přehlídky předcházelo 49 tisíc místních výstavek prací technické tvorivosti mládeže v celém SSSR. Za léta 10. pětiletky bylo v SSSR přes 130 tisíc výstavek mladých

tvůrčů. Výstavky nejsou ovšem samoučelné, využívají se jich ke konfrontaci prací mladých tvůrčů a jejich nedilnou součástí jsou i setkání s předními racionalizátory, novátoři, s vedoucími pracovníky z výroby i výzkumu, s vědci apod., při nichž zejména ti méně zkušení konstruktéři získávají cenné podněty pro svoji práci; učí se však i jejich starší, zkušenější kolegové.

Práce potřebná k tomu, aby v montrealském pavilonu v areálu výstavy úspěchů sovětského národního hospodářství bylo soustředěno vystavovaných 10 tisíc exponátů, byla obrovská, ale úspěšná. Vystavené práce asi 45 tisíc mladých novátorů jasně dokumentují všeobecnou péči státu o mladé techniky, vysokou odbornou úrovně mladých techniků a jejich zájem o celospolečenskou potřebu. Tato grandiozní přehlídka prací mládeže byla pro lepší přehled rozdělena do 25 dílčích expozic, které však měly všechny jednotnou ideu: „Komsomol – aktivní pomocník i rezerva Komunistické strany Sovětského svazu“. Z celé výstavy, ze všech expozic byla zřejmá účast mládeže na řízení státu, na řešení úloh XXV. sjezdu KSSS a XVIII. sjezdu Komsomolu, na zabezpečení jednoty ideově politické, pracovní a morální výchovy mladých lidí, což zvláště názorně dokumentoval i film „My, mladá garda“, promítaný na více plátnech variосkopickou technikou.

Obr. 4. Elektrojískrový stroj ESII (Motorpal V. Meziříčí)

Expozice „Mládež v boji za zvýšení efektivnosti a jakosti práce“ sledovala cíl ukázat masovou účast mladých pracujících v hnutí za vysokou jakost práce, seznámit se pracemi vítězů socialistické soutěže mezi komunistickými mládežnickými kolektivy a s pracemi laureátů cen Komsomolu.

V expozicích „Fantazie a skutečnost dětské tvorivosti“, „PTU – škola profesionálního technického vzdělávání“ a „Studenti věd, kultury a výrobě“ bylo možno vysledovat systém vzdělávání mladých novátorů již od školních lavic. Mezi exponáty v této expozici byly především modely strojů, lodí, makety budov, souvisejících se jménem V. I. Lenina (výstava NTTM byla zasvěcena 110. výročí narození V. I. Lenina). Mladí technici vystavovali množství originálních výrobků z oblasti názorných učebních pomůcek, vhodných pro všeobecný učební proces i pro výuku budoucích specialistů.

Velkou a zaslouženou pozornost upoutávala expozice „Laserová technika a holografie“, tj. expozice z oblasti, v nichž je SSSR na předním místě na světě. V této expozici např. studenti Jaroslavského pedagogického institutu vystavovali svoje originální zařízení k demonstraci pohybujícího se holografického obrazu.

Svou vlastní expozici měli i mladí vědci, pracující v ústavech Akademie věd SSSR. V expozici pod názvem „Mládež vědě“ byly nejrůznější přístroje pro kosmické výzkumy a např. přístroje ke snímání a registraci informací při průzkumu atmosféry planet atd.

Hlavní cesty při návrhu a realizaci robotů a robotomechanických systémů bylo možno vysledovat v expozici „Roboti v našem životě“. Nejpozoruhodnějším exponátem v této oblasti techniky byl robot Akvátor, návrh studentské konstrukční kanceláře. Šlo o dálkově řízeného robota, který může pracovat pod vodou; např. na mořském dnu. Expozice předváděla dále např. pět robotů, kteří demonstrovali možnosti tétoho strojů při různých technologických operacích.

„Seznamte se s programem PŘÍRODA“ byl název další expozice, níž byla ukázána vedoucí úloha Komsomolu při ochraně a využívání přírodního bohatství SSSR.

Mezi exponáty expozice „Dopravě komosomolu přeč“ byly asi nejzajímavějšími práce mladých leningradského dopravního uzlu, které slouží k rozvinutí spolupráce železničářů, námořníků, řidičů motorových vozidel a říční plavby. Velmi mnoho pěkných a moderních strojů a přístrojů bylo vystaveno v expozici „Lehký průmysl a sféra služeb“.

Jednou z nejbohatějších expozic, pokud jde o aplikovanou elektroniku, byla expozice „Ochrana zdraví“, nejrůznější přístroje pro laboratoře poliklinik, nemocnice atd., diagnostické přístroje, léčebné přístroje atd. měly velmi dobrou profesionální úroveň jak po funkční, tak po vzhledové stránce.

Obr. 6. Analyzátor zapalování

Obr. 7. Měřicí přístroj pro akupunkturu

Velmi silně obsazené byly i expozice „Strojírenství“, „Elektrotechnika a energetika“, „Radioelektronika a měřicí technika“, „Metalurgie“, „Chemie“, „Zemědělství“ a konečně i „Sport, turismus, Olympiáda 80“. V těsném okolí výstavního pavilonu byla expozice „Letectví“.

Poprvé v historii všeobecných výstav prací NTTM byly jako součást výstavy i expozice jednotlivých socialistických států. Československo bylo zastoupeno ukázkami výrobků, které vytvořili mladí technici v rámci akce Zenit (viz AR A7/80), obr. 2, 4 až 7.

Pro dokreslení uvedených informací je na 2. straně obálky a v textu několik fotografií zajímavých exponátů, vystavených na vše-

sazové výstavce prací NTTM. Jde o snímky z různých expozic, aby byla zřejmá mnohotvarost vystavovaných exponátů.

Neodmyslitelnou součástí výstavy byl její „mozkový trust“, informační středisko s počítačem EC-1060. Do operační paměti počítače byly uloženy stovky tisíc nejrůznějších informací: odpovědi na otázky z historie olympijských her, výsledky třeba i právě dokončených soutěží, popis technických novinek v různých sportech atd. Počítač, který může pracovat rychlostí až 1,3 milionu za sekundu, má operační pamět s kapacitou 2M byte a vnější pamět 261M byte. Počítač byl napojen na informační střediska ve všech městech SSSR, v nichž probíhaly olympijské soutěže, a nejen na ně, spojení měl např. i s Vladivostokem apod.

Na závěr bylo vhodné pokusit se nějak zhodnotit celkově vystavované exponáty, neboť není vzhledem k jejich množství možné popisovat je jednotlivě, na to by pravděpodobně nestačil celý ročník AR. Tedy: na první pohled byla zřejmá úloha elektroniky ve vědeckotechnické revoluci; převážná většina exponátů využívala moderních elektrotechnických součástek (i když přístrojů především s číslicovými integrovanými obvody bylo vystaveno relativně velmi málo). Na první pohled byla zřejmá i podpora, které se mladým konstruktérům dostává od organizací i závodů, neboť některé práce byly tak rozsáhlé a na takové úrovni, která je v domácích podmínkách nedosažitelná, navíc, jak jsem byl informován, v maloobchodním prodeji jsou integrované obvody velmi nesnadno dosažitelné. Mladí technici Šovětského svazu se na výstavě představili v tom nejlepším světle.

Zcela na závěr pak nechme promluvit jednoho z nejpopulárnějších, D. Gvišianih, akademika, zástupce předsedy Všeobecného výboru SSSR pro vědu a techniku: „Na letošní všeobecné výstavě vědeckotechnických prací mládeže jsou ukázány práce mladých tvůrců naší vlasti. Účastníci výstavy, tvůrci mládež, je avantgardou vědeckotechnické revoluce. A každý krok na cestě dalšího rozvoje vědy a techniky je krokem na cestě k zajištění materiálně technické základny komunismu“.

—ou—

POLNÍ DEN 1980

Obr. 5. Systém přenosu informací DAP100S (OKR, důl Paskov)

Již 32 let, tedy více než jednu celou generaci, vždy v létě vyjíždějí nebo vystupují radioamatérské kolektivy i jednotlivci na vrcholky kopců a hor, aby se zúčastnili největšího československého radioamatérského závodu v pásmech VKV – Polního dne. Je to tedy již závod s určitou tradicí. Bohužel v posledních letech je v době konání závodu tradiční i špatné počasí. Mimo dešť, na který si již závodníci zvykli, padaly na některých kótách ledové kroupy nebo sníh, samozřejmě doprovázené velkou zimou.

Většina osazení redakce AR se letos zúčastnila PD jako soutěžící pod značkou OK1RAR, aby se na závod podívali také „zevnitř“, já již jako obvykle odejel na návštěvu kót ve východočeském, severočeském a západoceském kraji. Předem byla naplánována návštěva deseti stanic, což se také podařilo splnit.

Do závodu se letos přihlásilo v Čechách a na Moravě 108 stanic. Některé stanice se nepřihlásily, protože neměly k dispozici předepsaný formulář, jako například stanice OK1KKL, která pravidelně jezdí na PD na

kótou Kozákov, HK37h. Přesto však přijeli a zúčastnili se PD ze stejného místa i letos, i když s malým rizikem, že může přijet někdo jiný, kdo si Kozákov přihlásil. V seznamu přihlášených kót, který nám dodala komise VKV ČURRA Svatarmu, se vyskytly některé nepřesnosti: např. u stanice OK1KEL byla uvedena kótka 600 m u Malé Skály, ve skutečnosti však OK1KEL pracovala za svého obvyklého přechodného stanoviště Kopanina, HK26d, 650 m.

Stoupá počet stanic, používajících transvertory: z navštěvených stanic používala

transvertor jedna třetina. Ve větší míře se objevují také profesionální zařízení, z nichž jen jediné (u navštívených stanic) – FT225RD stanice OK1KCU – bylo získáno za vítězství v Soutěži aktivity v roce 1978.

Proti loňskému PD se zvýšil počet účastníků i počet stanic, ale přesto měli někde s obsazením závodu PD mládeže potíže. V OK1KEP se mladí členové radioklubu nezúčastnili PDM ani PD, protože mají zájem pouze o radiový orientační běh a nikoliv o spojení na pásmech. Některé stanice, kde neměli pro VII. PDM vlastní operatéry, alespoň dělaly našim mládežníkům partnery, aby se mohli něco přiřídit při spojení se zkušenými rutinéry. Tak je to jistě správné, ovšem nevyplývá to zcela jasné z podmínek Polního dne mládeže, které nejprve přesně vymezují účastníky PDM pouze na operatéry kolektivních stanic třídy C, D a koncesionáře OL, kteří ještě nedosáhli 18 let, v jednom z dalších odstavců však připouštějí navazování spojení s blíže neurčenými „nesoutěžícími“ stanicemi.

Asi čtyřicet minut po zahájení PDM jsem zaslechl u některých stanic, že ve svém kódůu předávají číslo spojení vyšší než sto. Nechálo se mi věřit, že je někdo schopen v tomto závodě navázat za čtyřicet minut tak mnoho spojení – později jsem zjistil, že některí operatéři začínali z neznámých důvodů číslovat svoje spojení od stovky.

Jako již několik let, stejně tak i letos probíhaly ve stejném termínu jako PD ještě jiné sportovní akce – cyklistický závod Bohemia, Rallye Škoda a další. Při této soutěži se jednak uzavírají silnice, což bránilo v průjezdu nám, ale ještě navíc se musely kolektivy některých radioklubů rozdělit, aby při nich mohla být zabezpečena spojovací služba, jako např. stanice OK1KKS, která kromě účasti v PD a PDM obsazovala ještě tři stanice ve spojovací síti Rallye Škoda, pracující v pásmech 80 i 2 m a podle podmínek i přes převáděč OK0B. Při debatě o této spojovací síti se soudruzi z OK1KKS skromně zmínili o své nedávné spojovací službě při akci „obalec modřínový“ v Krkonoších a Jizerských horách. Bohuslav Janoušek, OK1AJA, nám vysvětlil, jakým způsobem organizovali spojovací síť po celé tři týdny v měsíci červnu, kdy denně od čtyř hodin od rána až do pozdního večera zajišťovali svazarmovští radioamatéři spojení mezi letištěm, pomocnými letištěmi pro vrtulníky, značkáři atd. Provoz probíhal v pásmech 2, 10 a 80 m a některá spojení se udržovala nepřetržitě po dobu 24 hodin. Tuto práci vysoko ohodnotil ředitel Státních lesů, označil celou akci za téměř stoprocentně úspěšnou na rozdíl od stejné akce v loňském roce, kdy bylo spojení zabezpečováno po veřejné telefonní síti.

Dalším aktivním kolektivem, který jsme si vybrali k návštěvě, je radioklub OK1KPU z Teplic. Jejich kótou je Cinovec, GK29a.

Zde vykonalí za uplynulý rok mnoho práce na zlepšení svého přechodného QTH: na místě starého baráku vybudovali zatím jednu provozní místnost a další jsou ještě v plánu. Ze bude splněn, o tom po zkušenostech s rekonstrukcí hradu Doubravka teplickými radioamatéry nepochybují.

O počtech navázaných spojení v době naší návštěvy zatím hovoří nebudeme a počkáme na oficiální vyhodnocení. Někde měli více spojení s Jugoslávií, jinde s Itálií, Dánskem,

Holandskem, Švédskem, NDR nebo NSR. Téměř určitě se však na některém z předních míst objeví značka OK1KIR a OK1KRG, které jsem rovněž navštívil.

Tento článek byl psán v době, kdy vrcholily XXII. olympijské hry v Moskvě. Připomeňme si proto na závěr (a také se podle něho v příštím roce řídme) Coubertinovo heslo: „Není důležité vyhrát, ale zúčastnit se.“

OKIASF

VÝSLEDKY SOUTĚŽE K 30. VÝROČÍ ZALOŽENÍ PIONÝRSKÉ ORGANIZACE

Základy jednotné organizace pro děti a mládež, Pionýrské organizace, byly položeny na slučovací konferenci do té doby národních svazů mládeže ve dnech 23. a 24. dubna 1949. Abychom připoměnuli toto významné datum, vypsal redakce AR v zastoupení vydavatelství Naše vojsko a ve spolupráci s Ústředním domem pionýrů a mládeže Julia Fučíka ve 3. čísle minulého ročníku celoroční soutěž pro mládež do 17 let, kterou dovaly cenami obě zúčastněné organizace – Vydavatelství NV a ÚDPM JF. Uzávěrka soutěže byla 24. 4. 1980.

Soutěž se zúčastnilo velké množství mladých lidí, ne všichni však vydrželi až do finiše. Po uzávěrce soutěže tak zbylo dvacet „vytrvalců“, kteří získali alespoň osm nálepek a mohli tak být podle propozic soutěže zařazeni do slosování o ceny.

K soutěži samotné je třeba předem říci, že některé z úkolů, které museli soutěžící řešit, byly velmi náročné a vyžadovaly maximální úsilí, vědomosti a znalosti a samozřejmě i určitou dávku vytrvalosti a cílevedomosti – tj. všechny vlastnosti, které jsou ozdobou každého mladého člověka. Všichni soutěžící, kteří se dostali do slosování o ceny, projevili dostatek uvedených vlastností – přesto je třeba vyzdvihnout jednoho z nich – Ivo Trojanu ze Svitav, jehož odpovědi na jednotlivé úkoly byly zpracovány nejdokonaleji a nejúplněji. S tímto jménem se čtenáři rubriky ještě v budoucnu setkají na stránkách AR, neboť materiály, které Ivo Trojan zaslal do soutěže, budou částečně využity i jako podklady pro obsah rubriky R 15.

Soutěž jsme vyhodnocovali během měsíce května, slosování výherců proběhlo v redakci dne 6. června 1980 v přítomnosti komise, kterou tvořili zástupci vydavatelství, ÚDPM JF a redakce. Do slosovací osudů bylo vloženo všech 20 jmen soutěžících, kteří vyhověli všem podmínkám soutěže. Vlastní losovací akt provedla A. Feitlová ze Světa motorů a to za účasti a pod dohledem členů komise.

Ve smyslu vyhlášených soutěžních podmínek bylo vylosováno celkem 20 výherců v tomto pořadí:

první cenu, tranzistorový přijímač, získal Ivan Svorčík, Levice; druhou až pátou cenu, radiotechnickou stavebnici a balíček radiotechnického materiálu, získali Květoslav Trávníček, Zlechov, Ivo Trojan, Svitavy, Rudolf Snájdřík, Kyjov a Zbyšek Bahenský, Praha; šestou až patnáctou cenu, odbornou knihu a předplatní obou řad našeho časopisu (AR A a AR B) na rok 1981, získali Luboš Tůma, Praha, Tomáš Macho, Brno, Ivan Vojáček, Frýdlant, Leo Janáček, Vratimov, Karel Palme, Frýdlant, Vítězslav Krčmář, Napajedla, Igor Lenhardt, Bratislava, Dušan Váškovic, Uherský Brod; šestnáctou až dvacátou cenu, balíček radiotechnického materiálu, získali Jiří Kroulík, Stochov, Petr Mrhač, Vratimov, Svatopluk Kořálek, Stochov, Petr Pastor, Vratimov, Vlastimil Jirovka, Praha.

Všem vylosovaným a odměněným účastníkům soutěže děkuje redakce za vytrvalost a za snahu po dosažení co nejlepších výsledků a těší se, že se s nimi opět setká například jako s přispěvatelem časopisu, nebo na jiných radiotechnických soutěžích (Integra apod.). Kromě uvedených cen získali vylosovaní účastníci soutěže i právo účastnit se letního

... a jako hlavní výherce byl vylosován I. Svorčík z Levice

A. Feitlová při losování výherců

Průběh losování bedlivě zkoumali členové komise

výcvikového tábora redakce AR, který je pořádán každoročně v prázdninovém období – protože je počet míst na táboře omezen, bylo vylosováno z účastníků soutěže sedm chlapců, kteří byli na tábor pozváni. Reportáž z letního tábora AR přineseme v AR č. 12.

Co napsat na závěr? Výsledky soutěže nás přesvědčily, že obliba a „dosah“ elektroniky se stále zvětšuje, a že v tomto trendu mají hlavní slovo především ti mladší a dříve narození – důkazem toho jsou i reportáže z činnosti radiotechnického kroužku, radio-klubu, zájmového pionýrského oddílu atd., které měli účastníci soutěže vypracovat jako jedenáctý, mimořádný úkol naši soutěže. Vybrané reportáže budeme postupně uveřejňovat v našem časopise, v rubrice R15. Jako první jsme vybrali reportáž vítěze soutěže k 30. výročí založení PO, Ivana Svorčíka z Levic.

Zodpovedný přístup k činnosti rádioklubu v Levicích

V nedávnej minulosti činnosť rádioklubu v Levicach bola zameraná hlavne na oblasť prevádzky na KV a VKV. V rádioklube je kolektívna stanica OK3KCM. Zvlášť dobré výsledky dosiahla skupina rádioamatérov na VKV pod vedením Jozefa Ivana. Rádioklub zápasil s problémami mladých a nedarilo sa mu rozprádiť technickú činnosť. Tieto problémy podrobne rozoberali členovia rádioklubu a okresná rada rádioamatérstva. Zvážarmu.

Pre zlepšenie práce navrhli:

- rozdeliť prácu úmerne medzi jednotlivých členov,
- zorganizovať prácu mladých, pionierov a mládeže,
- vytvoriť priestorové a materiálne podmienky pre technickú, prevádzkovú, výchovnú a klubovú činnosť,
- zúčastňovať sa a poriadať súťaže rádioamatérstva.

Pri dnešnom hodnotení môžeme povedať, že sa výsledky dostavili. Skupina rádioamatérov KV a VKV sa zúčastňuje a dosahuje pravidelne dobré výsledky v súťažiach. Vybudovali anténnu sústavu Quad (obr. 1) a zhodnotili koncový stupeň k transceiveru Oťáva. Koncom roka 1979 usporiadali súťaž v rých-

Obr. 2. Záběr z okresní soutěže radioamatérů (odpovědi na test)

lotelegrafii. Technická skupina zamerala svoju činnosť na usporiadanie priestorov, vybudovali sme klubovú miestnosť, miestnosť pre prevádzku vysielača KV, miestnosť merania

a sklad. Sústredil sa materiál, meracie prístroje, zaistili sme nové súčiastky a technické zariadenia. V roku 1978 sme usporiadali okresnú výstavu rádiotechnických prác, v roku 1980 prvú okresnú rádiotechnickú súťaž (obr. 2). V priebehu rokov 1977 až 1980 sa jeden člen zúčastňoval súťaže o zadaný rádiotechnický výrobok (poriadá UDPM JF), súťaž Integra 78, 79 a 80, súťaže k 30. výročiu PO.

V tomto roku sa zúčastnilo päťčlenné družstvo krajskej súťaže rádiotechnikov, kde sme vzhľadom na prvú účast získali dobré umiestnenie.

Začiatkom tohto roka sme získali pre prácu v rádioklube 15 nových členov, pionierov, a troch mládežníkov. Je predpoklad, že z tohto nového kolektívu vyrastú jedinci, ktorí budú úspešne reprezentovať naš rádioklub.

Ivan Svorčík, Levice

Drobné rady z praxe

Pri stavbě kovových skřínek je občas třeba svárovat. Nemáme-li tuto možnost, můžeme skříňku vyrobit z izolantu postupem podle obr. 1. Do stěn skříňky z izolantu 1 vyvrtáme díry pro šrouby M3 (2), zapustíme matice M3 tak, abychom je do izolantu mohli těsně zatlačit, přišroubujeme úhelníky 4 a desky na vnější straně polepíme umakartem 3. Úhelníky přišroubujeme nejen do rohů, ale i do míst, kde má být upevněn dolní a horní kryt, popřípadě vnitřní části konstrukce.

Při odřezávání volného konce přilepeného umakartu je důležité, aby se umakart netěpil, nebo neodtrhával. Tomu předejdeme podle obr. 2. K umakartu 1 přitlačíme tenký plech 3 a umakart 2 odřízneme v ruce drženým plátkem pilky na kov 4 tak, že pilka při řezání přitlačuje umakart 2 k umakartu 1.

Při výrobě dřevěných skřínek reproducčních soustav potřebujeme k sobě pevně přilepit jejich stěny. Vhodný je postup podle obr. 3. Do stěn 1 a 2 vyrýzeme (vyfrézujeme) drážku a do ní vložíme a zlepíme klín 3 (stačí pásek z umakartu). Tak můžeme slepovat (nejlépe epoxidovým lepidlem) nejen desky ze dřeva, ale i dřevotřísku popřípadě později. Spoj je velmi pevný.

Pružné dosedací destičky na dno přístroje můžeme vyrobit podle obr. 4. Do čtvercové destičky podle obr. 4. Dó čtvercové destičky z izolantu 1 zavrtáme a zlepíme šroub M3

Obr. 5.

Obr. 6.

(a k destičce 1 přilepíme plátek měkké pryže 3 stejných rozměrů jako má destička 1. Díru pro šroub 2 můžeme vyvrtat s průměrem $d_2 = 2,5$ mm, vyříznout do ní závit M3 a šroub zašroubovat a zlepít do destičky 1. Dosedací destičku kulatého tvaru vytvoříme podle obr. 5. Přes kulatou destičku 1 navlékeme těsně a zlepíme kovovou trubíčku 3 a do ní zatlačíme a přilepíme pryžový kotouček 4.

Chceme-li vyrobit rozpěrací tyčinky pro blokovou montáž a vyvrtat do nich ve směru jejich osy díry pro závit (např. M3), obtížně dosáhneme toho, aby díry byly přesně v ose. Podle obr. 6 vyvrtáme pomocí šablony 2 díru do tyčinky 1 přesně v ose. Šablonu tvoří kousek kulatin o průměru větším než d_1 tyčinky 1. Tu nejprve provrtáme (průměr d_1 např. pro závit M3) a potom z druhé strany do její části vyvrtáme slepuou díru o průměru d_1 tyčinky 1. Tyčinka bývá mosazná, šablona ocelová. Chceme-li však vyvrtat díru s průměrem $d_2 = 1$ mm (např. pro konektory synchronizačních zásuvek elektronických blesků), můžeme šablonu 2 zhotovit z mosazného drátu.

Někdy potřebujeme spolu spojit dva materiály, pro které nemáme společné lepidlo. Máme-li např. do vnějšího konce izolační vývodky z bakelitu zlepít průhledný kotouček z organického skla, můžeme postupovat podle obr. 7. Do bakelitové vývodky pro

Obr. 7.

Obr. 9.

Obr. 1. Sídlo radioklubu v Levicích s anténou Quad

Obr. 10.

BAREVNÁ HUDBA PRO MLÁDEŽ

Jar. Winkler, OK1AOU

Pro VI. ročník krajské soutěže mladých radiotechniků byl jako soutěžní výrobek připraven jeden kanál barevné hudby. Stručná zmínka o soutěži a o tomto soutěžním výrobku byla uveřejněna v AR 8/78 – protože neměla sloužit jako stavební návod, ale pouze jako informace o úrovni uvedené soutěže, neobsahovala o vlastní konstrukci barevné hudby žádné podrobnosti. Článek však vytváří značný zájem, který se projeví ve značném množství nejrůznějších písemných dotazů.

Jako odpověď na nejčastěji se vyskytující dotazy byla uveřejněna další krátká informace, týkající se této barevné hudby, v AR A/180.

Podle ohlasu (dalších dopisů) lze soudit, že tato informace všechny zájemce o stavbu barevné hudby neuspokojila. Aby stavba barevné hudby byla umožněna i těm zájemcům z řad mládeže, kteří nemají dostatek praktických zkušeností, byl zpracován tento podrobný stavební návod.

Barevnou hudbou nazýváme zařízení, které převádí nízkofrekvenční zvukový signál (např. z gramofonu či rozhlasového přijímače) na signál světelný a to tak, že určitému rozsahu zvukových kmitočtů odpovídá světlo jedné určité barvy. Protože kmitočet nízkofrekvenčních signálů se stále mění, dochází střídáním světel různých barev k zajímavým světelným efektům.

Část přístroje (barevné hudby), která vybírá určený rozsah kmitočtů, nazýváme kanál. Barevná hudba se staví většinou se třemi až čtyřmi kanály. Každý z kanálů je zakončen některým ze spinacích polovodičových prvků (tyristorem, triakem), kterým je spínána žárovka příslušné barvy.

Barvy žárovek (odpovídající různým kmitočtům) můžeme zvolit libovolně. Obvykle je na kanál hlubokých kmitočtů připojena žárovka červená, na kanál středních kmitočtů žárovka zelená a na kanál vysokých kmitočtů žárovka žlutá. Při čtyřech kanálech použijeme ještě žárovku modrou.

Konstrukční hlediska

Popisovaná hudba byla určena jako soutěžní výrobek pro soutěž mládeže. Její kon-

strukce proto vycházela z následujících hledisek:

1. **Úplná bezpečnost provozu.** S výjimkou napájecího zdroje proto není nikde použito sítové napětí. Žárovky jsou na nízké bezpečné napětí.

2. **Jednoduchost konstrukce.** Zapojení musí být přiměřené složité a desky s plošnými spoji musí umožňovat zhotovení kompletní barevné hudby i průměrně vyspělému technikovi ve věku 10 až 15 let.

Obr. 3. Celkové schéma tříkanálové barevné hudby. Odpor R_1 v usměrňovači je třeba volit podle sekundárního napětí sítového transformátoru; odpor uvedený na schématu použijete při sekundárním napětí 12,6 V)

Obr. 1. Deska s plošnými spoji jednoho kanálu barevné hudby (O54)

Obr. 2. Deska s plošnými spoji usměrňovače (O55)

3. *Nízká pořizovací cena.* Vzhledem k finančním možnostem budoucích konstruktérů bylo zvoleno zapojení s co nejmenším počtem dražších součástek (tranzistorů, tyristorů). Jako postačující bylo zvoleno zapojení se třemi kanály.

4. *Dostupnost součástek.* Všechny použité součástky jsou československé výroby, je možno použít i součástky II. jakosti.

5. *Snadné uvádění do chodu.* Barevnou hudbu je možno uvést do provozu při pečlivé práci a dostatku trpělivosti pouze se základními měřicími přístroji pro kontrolu napětí. Jednotlivé kanály se nastavují podle intenzity svítu žárovek.

Popis zapojení

Elektronická část barevné hudby je řešena jako stavebnice ze čtyř dílů:

kanál nízkých kmitočtů,
kanál středních kmitočtů,
kanál vysokých kmitočtů,
napájecí část.

Každý z dílů je na samostatné desce s plošnými spoji (obr. 1 a 2). Dalším samostatným dílem je vlastní svítidlo se žárovkami tří různých barev.

Jednotlivé kanály barevné hudby

Zapojení všech tří kanálů je shodné. Změna je pouze v kapacitách některých kondenzátorů (viz schéma na obr. 3). Nízkofrekvenční signál je přiváděn od reproduktoru přijímače, gramofonu nebo magnetofonu na sekundární vinutí výstupního transformátoru (výprodejní, že staršího elektronkového přijímače). Použít můžeme i jakýkoli jiný výprodejní transformátor s počtem primárních, závitů 50 až 100 a převodem 1:20 až 1:100, nebo výstupní transformátory pro tranzistorové přijímače typu VT38 nebo VT39, případně jiné. Transformátor převádí napětí na reproduktoru na větší, takové, jaké potřebujeme pro další zpracování. K výstupnímu vinutí transformátoru je připojen potenciometr, z jehož běžce přiváděme napětí na vstupy tří použitých kanálů. Nastavením tohoto potenciometru řídíme celkovou úroveň přiváděného napětí a tím intenzitu svitu žárovek všech tří kanálů. Nastavením trimru na vstupech řídíme intenzitu světla žárovek jednotlivých kanálů. Běžec trimru je k bázi tranzistoru T_1 připojen přes kondenzátor C_1 . Protože kondenzátor kladne střídavému proudu různých kmitočtů (nízkofrekvenčnímu signálu) různý odpor, řídíme kapacitou kondenzátoru velikost napětí na bázi T_1 při zvoleném středním kmitočtu kanálu.

V kolektoru tranzistoru T_1 je dále zapojen kondenzátor C_2 , který pracuje jako kmitočtově závislá zpětná vazba. Volbou jeho kapacity řídíme rovněž zesílení kanálu při zvole-

ném kmitočtu. Další součástkou, která má vliv na výběr určitých kmitočtů z ní signálu, je kondenzátor C_3 , který s odporem $1 \text{ k}\Omega$ tvoří kmitočtově závislý dělič napětí. Z tohoto děliče přivádíme napětí na řídící elektrodu tyristoru.

Použité kondenzátory mohou být prakticky libovolného provedení, elektrolytické postačí zeleně zalisované na napětí 15 V. Ostatní mohou být keramické polštářkové nebo trubičkové, popř. styroflexové (rovněž na nejméně 15 V). Důležitá je pouze jejich velikost: musíme volit takové typy, které se vejdou na desku s plošnými spoji.

Vzhledem k výrobním tolerancím (zvláště elektrolytických) kondenzátorů nemusí být kmitočtová pásmá jednotlivých kanálů přesně oddělena, což se projeví tak, že se svít žárovek v širokém rozmezí kmitočtů překrývá. Tento nedostatek odstraníme výměnou kondenzátoru za jiný s menší, popř. větší kapacitou.

Použité odpory jsou miniaturní TR 112a s výjimkou odporu R_1 , který je na zatížení min. 0,5 W (TR 152).

Použité tranzistory jsou typu KC147 (148) nebo KC507 (508). Použít můžeme i levné tranzistory KS500, popř. starší germaniové typy 102NU70. Tyristor KT501 můžeme zatížit proudem až 0,4 A při maximálním spinápnění napětí 50 V.

Podle žárovek, které máme k dispozici, a podle napětí zdroje pro žárovky zvolíme jejich vhodnou sériovou nebo paralelní kombinaci tak, aby nebyly překročeny mezní parametry tyristoru. Výhodné je použít žárovky pro vánoční stromky (s napětím 12 V), které již mají baňku z barevného skla. Pokud by světelný výkon barevné hudby s těmito žárovkami nevyhovoval, je možno využít výprodejní žárovek 24 V, 15 W. Tyristory pak musíme opatřit chladičem (nebo raději použít tyristory pro větší proud, např. KT710, které jsou ovšem dražší).

Při dalším zvyšování nároku na intenzitu světla by bylo nutno použít žárovky napájené přímo ze sítě. Tyristor KT501 by pak bylo nutno nahradit typem KT712 (nebo obdobným). Při použití síťového napětí musíme věnovat práci maximální pozornost a mladým radiotechnikům tuto konstrukci nedoporučují.

Napájecí zdroj

Barevná hudba není zvlášť náročná ani na filtrace, ani na stabilizaci napájecího napětí. Pro napájení proto postačí jednoduchý zdroj se stejnosměrným napětím 9 až 12 V, stabilizovaným Zenerovou diodou. Barevná hudba odebírá proud asi 200 mA. Nemáme-li vhodný zdroj, postačí i dvě ploché baterie. Napájecí zdroj se síťovým transformátorem lze postavit na desce s plošnými spoji podle obr. 2, která je stejně dlouhá jako desky pro kanály barevné hudby.

noduší by bylo použít továrně vyráběné svítidlo, do něhož bychom místo původní objímky instalovali tři objímky pro barevnou hudbu. Toto řešení je však nákladné. Proto bylo navrženo levnější a vskutku „amatérské“ řešení s vyhovujícím výsledkem.

Základem svítidla je dřevěná destička o rozměrech 22×22 cm, kterou sbrusíme a na nálekujeme bezbarvým lakem. Na tuto destičku připevníme např. lepidlem kotouč z Alobalu nebo lesklého plechu o průměru 17 cm. Tento kotouč bude odrážet světelné paprsky od žárovek směrem do místnosti. Na destičce je dále připevněn plechový úhelník s objímkami pro žárovky jednotlivých barev. Od objímek je vyvedena čtyřpramenná napájecí šňůra, zakončená zástrčkou. Alobalový kotouč včetně žárovek je překryt miskou na kompot o průměru 18 cm z plastické hmoty, která má povrch tvarovaný jako imitaci broušeného skla. Miska je připevněna k základní destičce dvěma plechovými úhelníky.

Obr. 5. Mechanické uspořádání svítidla

Vnitřní uspořádání svítidla pod miskou není vidět, zatímco vyzařované barevné světlo se na plochách zvorku misky různě lomí, čímž vznikají zajímavé světelné efekty. Mechanické uspořádání svítidla je na obr. 5.

Uvádění do chodu

Po osazení všech destiček součástkami ověříme nejprve, jak pracuje zdroj stejnosměrného napětí. Po vyzkoušení zdroj propojíme s jednotlivými kanály barevné hudby. Na anody tyristorů připojíme žárovky, na které přivedeme střídavé napětí ze sekundárního vinutí síťového transformátoru.

Na primární vinutí vstupního nf transformátoru přivedeme nízkofrekvenční signál z reproduktoru (magnetofonu, přijímače nebo gramofonu). Po úplném propojení se žárovky začnou rozsvěcovat podle přiváděného signálu. Jas žárovek jednotlivých kanálů nastavíme odporovými trimry tak, aby všechny žárovky svítily stejně intenzivně. Protože jednotlivé trimry jsou zapojeny paralelně, při nastavování se vzájemně ovlivňují. Nastavení jasu jednotlivých barev je proto nutno několikrát opakovat.

Uvedené zapojení neskrývá žádné základnosti a při použití dobrých součástek musí pracovat na první zapojení. Pokud by někdo z uživatelů byl náročnější, je možno tuto barevnou hudbu postavit i v provedení „stereo“. V tomto případě bylo nutno postavit dvě úplné soupravy barevné hudby a připojit je k oběma reproduktorem soustavám.

Obr. 4. Mechanické uspořádání barevné hudby

Desky s plošnými spoji mají na okrajích 10 mm široký pás, za který se připájí na plechové šasi tvaru U z pocínovaného plechu. Na tomto šasi je rovněž připevněn síťový transformátor, vstupní transformátor a svorkovnice s vyvedenými výstupy jednotlivých kanálů. Uspořádání jednotlivých dílů je na obr. 4.

Vlastní svítidlo

Zatímco elektronická část barevné hudby bude skryta ve vhodné skříni, vlastní svítidlo bude naopak středem pozornosti, je ho proto třeba zhotovit co nejpečlivěji. Nejjed-

Nf a ss milivoltmetr

Vladimír Jirka, Milan Chládek

Voltmetr je určen k měření stejnosměrných napětí v rozsazích 10 mV až 1000 V, odstupňovaných v poměru 1:3,16 (tj. 10 dB). Polarita se přepíná automaticky a je indikována červenou a zelenou svítivou diodou. Dále měří střídavá napětí v rozsazích 300 µV až 1000 V, odstupňovaných rovněž po 10 dB. Diody v tomto případě svítí obě, korekce údaje na efektivní hodnotu je automatická, není tedy nutné žádaté přepínání. Rovněž stupnice je pro ss i pro st měření shodná. Po stisknutí tlačítka „dB“ lze měnit zesílení v poměru 1:5 pro měření odstupu šumu a jiná poměrová měření. Kmitočtový rozsah je 10 Hz až 40 kHz s přesností 3 % a 20 Hz až 20 kHz s přesností 1 %. Součástky jsou umístěny na dvostranné desce s plošnými spoji o rozměrech 96×100 mm včetně ovládacích prvků (kromě samotného měřicího přístroje MP 80). Desku lze použít buď pro samostatné měřidlo nebo i v jiném (větším) zařízení.

Popis zapojení

Schéma zapojení je na obr. 1. Vstupní napětí je vedené na vstup přístroje buď přímo, nebo přes kondenzátor C_2 , který slouží k oddělení stejnosměrné složky v případě, chceeme-li měřit pouze střídavou složku napětí. Na prvních pěti rozsazích, tj. 316 µV, 1 mV, 3,16 mV, 10 mV a 31,6 mV prochází přepínačem bez útlumu přímo na vstup operačního zesilovače, pouze přes ochranný odpor 1 kΩ. Vstup operačního zesilovače MAA725 (µA725) je chráněn proti přetížení antiparalelně zapojenými „rychlými“ diodami KA222. Tyto diody jsou schopny uchránit vstup operačního zesilovače i při připojení přístroje, přepnutého na rozsah 316 µV, na napětí až 1000 V. V tom případě působí odpor R_7 jako pojistka. Proto je bezpodmínečně nutné použít typ pro nejmenší výkon (TR 212, TR 151, TR 190). Vstupní klídrový

proud obou vstupů operačního zesilovače je kompenzován obvodem tranzistorů T_1 , T_2 , T_3 , z toho T_1 a T_2 jsou zdroje konstantního proudu, nastavitelem trimry R_8 a R_{11} . Transistor T_3 se vytvoří teplotně závislé referenční napětí pro zdroje proudu. Při zvýšování teploty se zmenšuje napětí současně se zmenšováním vstupních proudu zesilovače. Napěťová symetrie vstupu je vyrovnaná trimrem R_{15} . Zesílení operačního zesilovače je určeno poměrem odporů děliče, složeného z odporů R_{25} až R_{30} , přičemž je nutno vzít v úvahu i odpor R_{17} . Na prvních třech rozsazích, tj. 316 µV, 1 mV a 3 mV je nastaveno stejnosměrné zesílení 1 a střídavé zesílení je určeno poměrem odporů děliče, který je k invertujícímu vstupu připojen přes kondenzátory C_6 , C_7 a C_8 . Ostatní rozsahy jsou již stejnosměrné (i střídavé) a přepíná se střídavé zesílení 30 dB (31,62) a 20 dB (10) – viz obr. 1. Vzhledem k tomu, že se zesílení

Výbrali jsme na obálku AR

Z KONKURSU AR a

přepínačem P_1 (paket b). Signál z výstupu operačního zesilovače je veden přes odpor R_{31} na konektor, který slouží např. k připojení osciloskopu. Dále postupuje zesílený signál na obvod operačního zesilovače IO_2 . Jeho vstup je chráněn Zenerovými diodami D_3 , D_4 .

Velké zesílení operačního zesilovače linearizuje průběh stupnice při střídavém měření tak, že je zcela shodná se stupnicí pro ss měření. Kondenzátory C_{18} a C_{19} společně s trimrem R_{35} korigují při střídavém napětí výchylku měřidla tak, aby ukazovalo efektivní hodnotu. Při stisknutí tlačítka „dB“ lze

Obr. 1. Schéma zapojení přístroje

přepíná ve značném rozsahu (10 až 1000) a je žádoucí udržet co největší kmitočtový rozsah, přepínají se se zesílením současně i obvody kmitočtových korekci operačního zesilovače, tvořené odporu R_{18} až R_{24} a kondenzátory C_9 až C_{15} . Korekční členy se přepínají

zesílení měnit plynule a nastavit tak výchylku měřidla na nulu decibelové stupnice při poměrových měření (odstup šumu, zkreslení aj.). Třetí operační zesilovač má vstup připojen paralelně ke vstupu operačního zesilovače IO_2 . Slouží jako komparátor pro

svítivé diody, indikující polaritu měřeného napětí. Přiveďte-li se na vstup přístroje napětí kladné vůči zemi, rozsvítí se červená dioda (D_{12}), při připojení záporného napětí se rozsvítí zelená dioda (D_{11}). Diody D_9 a D_{10} chrání nesvítící diodu, protože její závěrné napětí je velmi malé (asi 3 až 5 V). Zesílení tohoto komparátoru je zmenšeno zavedením záporné zpětné vazby odporem R_{43} . Nejvhodnější odpor si může každý nastavit podle svých požadavků. Je-li odpor příliš velký, rozsvěcují se diody vlastním šumem milivoltmetru; je-li příliš malý, nerozsvěcují se při malých výchylkách ručky. U zhotoveného kusu byl jako optimální zvolen odpor 4,7 M Ω . Považujte-li někdo indikaci polarity za zbytečný přepych, může celý obvod operačního zesílovače IO_3 vyněchat.

Použité součástky

Chtěl bych upozornit, že se jedná o měřicí přístroj. K tomu, aby skutečně měřil a neukazoval, je nezbytné použít odpovídající součástky, tedy keramické, pokud možno cermetové trimry, potenciometr R_{33} typu TP 190 5k/N nebo TP 195 4k7/N a odpory s kovovou vrstvou. R_2 až R_6 , R_{17} až R_{25} až R_{30} musí být odpory z řady TR 151 nebo TR 190, vybírané na přesnost 0,5 %. Tyto odpory postačí udržet přesnost 1,5 % v teplotním rozsahu 10 až 30 °C. Odpory R_7 , R_{16} , R_{31} , R_{32} , R_{39} , R_{40} , R_{44} , R_{45} a R_{18} až R_{24} postačí i z řady TR 112 (212); budou-li to TR 151, tím lépe. Ostatní odpory jsou běžné nevybírané odpory řady TR 151 popř. TR 190, kromě R_{43} , R_9 , R_{10} a R_1 . Odpor 10 M Ω se vyrábí až v řadě TR 153. Navíc musí být odpor R_1 také v toleranci 0,5 % (výběr). Kapacitní trim C_1 je běžný skleněný typ, používaný pro ladění vstupních dílů VKV. Kondenzátor C_3 je keramický trimr typu TK 810 o kapacitě 45 pF, popř. lze použít i kulaté keramické trimry 40 pF, které se prodávaly v partiové prodejně Klenoty, Václavská pašáž, Karlovo nám. 6.

Odpory R_{44} je třeba pro některé druhy svítivých diod zmenšit tak, aby červená i zelená dioda svítily stejně jasně (680 Ω až 1,5 k Ω). Operační zesílovač MAA725 může být i některý z levnějších typů, označených za číslem 725 ještě písmenem. Dá se za rozumou částku koupit rovněž v partiové prodejně Klenoty, Karlovo nám. 6. Operační zesílovače IO_2 a IO_3 jsou typy MAA503, které jsou původně v pouzdru DIL 14. Jejich pouzdro je z obou stran odříznuto, a to tak, že je odříznuta část pouzdra s vývody 1, 2, 13, 14 a na opačné straně vývody 7, 8 (viz obr. 2).

Obr. 2. Úprava IO MAA503

Před řezáním si nezapomeňte označit vývod č. 3 navrtáním malým vrtáčkem (asi 1,5 mm). Je samozřejmě možné použít operační zesílovače v pouzdrech mini DIP typu μ A709 nebo SN72709 a jejich ekvivalenty. Nehodí se zesílovače μ A741 vzhledem k tomu, že nemají dostatečnou rychlosť přeběhu (slew rate) a tím se zhorší kmitočtové vlastnosti milivoltmetru. Také lze použít operační zesílovače MAA501, 502, 504 v kulatých pouzdrech TO-5, u nichž se vývody vytvarují do dvou řad po čtyřech (1, 2, 3, 4 a 5, 6, 7, 8). I tyto operační zesílovače se dají koupit ve výše uvedené prodejně. Kondenzátory C_4 a C_5 musí být stabilní typy,

Obr. 3a. Deska s plošnými spoji O56

např. styroflexové, a musí být dostatečně přesné (alespoň 2 %). Pokud nebudou, zmenší se přesnost na vyšších kmitočtech (asi od 5 kHz). Vstupní a výstupní konektory lze v podstatě použít libovolné (raději souosé). Z vlastní zkušenosti doporučuji použít konektory typu BNC. Jsou malé, rychle spojovatelné a používají se zvláště poslední době na celém světě téměř bezvýhradně. Jedinou nevýhodou je, že se u nás obtížně shánějí. Kondenzátory C_6 a C_7 musí být tantalové, ale místo uvedených typů je možno použít zahraniční typy o podobné kapacitě (např. 0,68 nebo 100 μ F). Kondenzátory v obvodu kmitočtových korekci operačních zesílovačů a bloko-

vací kondenzátory v přívodech napájecího napětí jsou běžné keramické polštářkové kondenzátory. Tlačítko „dB“ je typu Isostat se dvěma prepínacími kontakty a vlastní aretací. Kontakty jsou spojeny paralelně, ale je možné přerušit plošný spoj a zbylé kontakty použít k rozsvěcování další (např. žluté) diody LED, která by indikovala přepnutí na dB, tedy to, že výchylka neodpovídá napětí ve voltech.

Obr. 3b. Rozložení součástek na desce s plošnými spoji

Postup stavby

Vyvrstanou desku s plošnými spoji (obr. 3) řádně předem očistíme (k tomu účelu používám jemný drátěný kartáček, který se koupí v obchodech s obuví a stojí asi 3 Kč), a nařeme kalafunovým lakem. Operaci je všemi součástkami, přičemž pro MAA725 doporučuji použít v každém případě objímku. Operační zesilovače IO_2 a IO_3 v pouzdrech mini DIP se oba vejdou do jedné objímky DIL se šestnácti vývody. Je potřeba z ní pouze upilovat postranní připevňovací otvory.

Přepínací rozsah je typu WK 533 39. Je třeba jej rozebrat, protože mezi čtvrtý a pátý segment je nutné vložit stínici přepážku (obr. 4). Celá stínici přepážka v rovinutém tvaru je na obr. 5. Sestava přepínací a již

Obr. 4. Uložení stínicí přepážky mezi segmenty přepínače

stínící kryt

Obř. 5. Rozměry stínícího přepážky

Obr. 6. Sestavený celek přepínače rozsahů (obrázek byl pořízen z ověřovaného vzorku, kde byly u přepážky navíc výstupky pro snažší pájení)

ohnuté stínicí přepážky je na obr. 6. Před opětovným sestavením se jednotlivé segmenty přepínače propojí a osadí odpory podle obr. 7. Obrázek je ve skutečné velikosti a je tedy možno si z něho odměřit potřebné délky vývodů, přičemž je vhodné si ponechat rezervu, která se po zapájení odštípne. Držáky potenciometru a přepínače jsou upravené typizované držáky do plošných spojů, výrobek TESLA Lanškroun typ WA 61400. Ti, kteří uvedené držáky nesezenou, mohou si je zhotovit podle obr. 8, ze kterého je zřejmá i úprava původních držáků TESLA. Uprostřed desky jsou tři velké otvory. Do nich se po osazení desky vloží dva vstupní a jeden výstupní souosý kabel, které povedou na konektory. Pro kondenzátor C_2 na desce není místo. Předpokládá se, že se dá přímo na přední panel jako propoj mezi příslušnými konektory. Jeho kapacita by měla být alespoň $0.1 \mu F$ a napětí pokud možno co největší.

ší (alespoň 630 nebo lépe 1000 V), podle prostoru. Tento kondenzátor je nutno důkladně stínit zvláštní plechovou krabičkou, která zakryje zadní části konektorů (kromě konektoru pro výstup). Po skončení montáže dáme běže všechny odpornové trimry na střed odpovídové dráhy a po připojení napájecího napětí můžeme udělat funkční zkoušku. Napájecí napětí může být 2×12 až 2×18 V a (popř. 2×15 V, jsou-li použity MAA 725, kterým výrobce povoluje pouze 15 V). Na jeho stabilitu nejsou kladený zvláštní nároky. Vyhoví např. zdroj podle obr. 9. Při funkční zkoušce zkusíme přivést napětí ploché baterie na vstup při zapnutém rozsahu 10 V. Měřidlo by mělo ukázat výchylku zhruba do poloviny stupnice a měla by svítit příslušná dioda. Při přepolování baterie by výchylka měla být přibližně stejná, měla by se rozsvítit druhá dioda LED. Je-li přístroj v pořádku, je možno iji začít nastavovat.

Obr. 7. Zapojení segmentů přepínače (pozor – při montáži a zapojování přepínače je nutno dodržet vzájemné pořadí segmentů podle obr. 3!)

Použité součástky

Obr. 8. Držáky přepínače a potenciometru (úprava pro potenciometr TP 190 je naznačena čárkovanou čarou)

Obr. 9. Schéma zapojení zdroje

Při nastavování přístroje doporučují po stupovat v tomto sledu. Přitom předpokládám, že odpory zejména v obvodu zpětné vazby a ve vstupním děliči jsou správně podle schématu:

- 1) zkratujeme diody D₃ a D₄. Trimr R₄₂ nastavíme tak, aby žádná z diod nesvítila.
- 2) vývody 2 a 3 operačního zesilovače IO₁ propojíme se společným vodičem (zemí) a běžec trimru R₁₅ nastavíme do polohy, v níž se mění indikaci polarity, tj. když zhasne červená a rozsvítí se zelená dioda nebo opačně.
- 3) odstraníme zkrat vývodu 2 na zem (zkrat vývodu 3 zatím ponecháme). Na přepínače nastavíme čtvrtý rozsah (tj. 10 mV). Trimr R₁₁ nastavíme tak, aby obě svítivé diody zhasly a na měřidle byla nulová výchylka.
- 4) ponecháme rozsah 10 mV a odstraníme zkrat vývodu 3 na zem. Trimr R₈ nastavíme tak, aby obě diody zhasly a ručka měřidla byla na nule.
- 5) tlačítko P₂ přepneme na měření vět voltech. Na vstup ss připojíme stejnosměrné napětí, jehož velikost je nám přesně známa (např. 1 V). Přepínač přepneme na příslušný rozsah a trimrem R₃₇ nastavíme správný údaj na měřidle.
- 6) na vstup ss připojíme střídavé napětí o kmitočtu 50 Hz, jehož velikost je nám přesně známa. Správnou výchylku měřidla nastavíme trimrem R₃₅.
- 7) na vstup ss připojíme nf generátor, nastavený na kmitočet 50 Hz. Nemáme-li jistotu, že nf generátor dává konstantní napětí v celém kmitočtovém rozsahu, připojíme k výstupním svorkám ještě spolehlivý milivoltmetr. Nastavíme výstupní napětí 100 mV, které by nás milivoltmetr měl ukázat. Potom přeladíme nf generátor na kmitočet 20 kHz a trimrem C₃ nastavíme výchylku měřidla na 100 mV.
- 8) generátor přepneme na výstupní napětí 1 V, které připojíme na vstup +20 dB, přičemž ponecháme rozsah 100 mV. Trimr C₁ nastavíme tak, aby údaj milivoltmetru při 20 kHz byl 100 mV.

Tím je nastavování skončeno a přístroj můžeme po vyzkoušení používat. Závěrem bych chtěl upozornit, že celá deska musí být rádně elektricky i magneticky stíněna od vnějších rušivých polí. To předpokládám zhotovit krabičku, ve které celá deska bude uložena, alespoň z 1 mm tlustého železného plechu. Tepřve taková jednotka se vloží do skřínky celého měřidla, jejíž provedení pocházejí na výkusu a technických možnostech každého konstruktéra. Celý přístroj lze napájet z baterií vzhledem k tomu, že odběr proudu ze zdroje je velmi malý.

Ověřeno v redakci

Poprvé jsme měli v redakci možnost ověřit činnost přístroje v rámci hodnocení konstrukcí při loňském konkursu AR - TESLA OP. Přístroj měl skutečně vlastnosti, udávané autorem, a z hlediska jak celkové koncepte, tak i jeho použití v amatérské praxi se nám zdál natolik zajímavý, že jsme se rozhodli ověřit i jeho stavbu. Přístroj, který jsme měli k dispozici při konkursu, byl určen k zástavbě do většího zařízení, jak se o tom autor ve svém popisu zmíňuje, a pro konkurs byl opatřen provizorním napájecím zdrojem i skřínkou. Proto jsme se rozhodli uveřejnit na titulní stránce AR obrázek milivoltmetru, postaveného v redakci tak, aby i jako konstrukční celek byl úplným, samostatným měřicím přístrojem. U něj byly na rozdíl od autorova popisu např. namísto konektorů typu BNC, které jsme neměli k dispozici, použity dostupné a levné trídutinkové nf konektory, které při použití plně vyhovují; přístroj jsme doplnili svítivou diodou pro indikaci relativní úrovně napětí v dB (je umístěna vpravo od tlačítka). Použili jsme měřidlo z nf milivoltmetru TESLA BN 310 (se základním rozsahem 200 μA), jehož původní stupnice přesně vyhovují pro naš přístroj. Na štítku pod stupnicí pro údaj v dB jsou velká znaménka + a -; toho jsme využili a po opatrném rozebrání měřidla jsme do téhoto míst stupnice upevnili (lepidlem Epoxy 1200) i dvě svítivé diody pro indikaci polarity měřeného ss napětí. Na rozdíl od autora jsme opět pro zjednodušení problémů s opatřováním součástek použili obě diody červené. Skříňku jsme zhotovili z hliníkového plechu tloušťky 1 mm a vnitřní prostor jsme přepážkami z téhož materiálu rozdělili na vzájemně stíněné části; v jedné jsou umístěny konektory, ve druhé síťový zdroj a měřidlo, ve třetí deska se součástkami.

Přívod k síťovému spínači a k doutnavce, indikující zapnutí přístroje, jsme rovněž odělili kovovou přepážkou. Přestože jsme nikde nepoužili železný plech, bylo stínění vyhovující a nevyskytly se problémy s nezádoucím indukováním síťového napětí. Tolik ke konstrukčnímu řešení.

Zkušenosti ze stavby a oživování přístroje nejlépe vysvítí z chronologického popisu naší práce. První starostí bylo sehnat součástky. Obtíže jsme měli s přesnými stabilními odpory, popř. s výběrem předepsaných hodnot, na jejichž přesnosti závisí i výsledné vlastnosti milivoltmetru. Je třeba měřit na co nejpřesnějším můstku (např. přesný polautomatický most TESLA BM 484). Stavbu jsme začali sestavením přepínače rozsahů jako montážního celku. Je to práce, vyžadující jemnost, přesnost a trpělivost. Přitom jsme si až v jejím průběhu všimli, že segmenty přepínače na obr. 7 nejsou nakresleny v pořadí, v němž jsou umístěny na přepínači ve skutečnosti (proto byl doplněn příslušný text pod obr.). Také při osazování desky součástkami je nutno pracovat s co největší pečlivostí – hustota součástek na desce je značná, spoje jsou v těsné blízkosti a páječka musí mít tenký hrot.

Po osazení desky s plošnými spoji, kontrole zapojení a připojení měřidla s diodami jsme přivedli napájecí napětí na příslušné body desky. Ručka měřidla „vyskočila“ ihned na plnou výchylku a kontrolou pomocí osciloskopu jsme zjistili, že zapojení trvale kmitá; kmity se podstatně změnily a téměř

Odpory	
R ₁	10 MΩ
R ₂	1 MΩ
R ₃	0,1 MΩ, TR 161
R ₄	10 kΩ, TR 161
R ₅	1 kΩ, TR 161
R ₆	111 Ω, TR 161
R ₇	1 kΩ, TR 151
R ₈	33 kΩ, TP 012
R ₉	10 MΩ
R ₁₀	10 MΩ
R ₁₁	33 kΩ, TP 012
R ₁₂	27 kΩ, TR 151
R ₁₃	8,2 kΩ, TR 151
R ₁₄	3,3 kΩ, TR 151
R ₁₅	0,1 MΩ, TP 012
R ₁₆	56 Ω, TR 151
R ₁₇	1 MΩ, TR 151
R ₁₈	470 Ω, TR 151
R ₁₉	150 Ω, TR 151
R ₂₀	47 Ω, TR 112
R ₂₁	56 Ω, TR 112
R ₂₂	680 Ω, TR 151
R ₂₃	270 Ω, TR 151
R ₂₄	27 Ω, TR 112
R ₂₅	99,2 Ω, TR 151
R ₂₆	214,5 Ω, TR 151
R ₂₇	680 Ω, TR 151
R ₂₈	2,161 kΩ, TR 151
R ₂₉	6,946 kΩ, TR 151
R ₃₀	0,1 MΩ, TR 161
R ₃₁	10 kΩ, TR 151
R ₃₂	3,3 kΩ, TR 151
R ₃₃	1,5 kΩ, TR 151
R ₃₄	10 kΩ, TR 151
R ₃₅	33 kΩ, TP 012
R ₃₆	1 kΩ, TR 161
R ₃₇	2,2 kΩ, TP 012
R ₃₈	5 kΩ lin., TP 190
R ₃₉	10 kΩ, TR 151
R ₄₀	10 kΩ, TR 151
R ₄₁	68 kΩ, TR 151
R ₄₂	33 kΩ, TP 012
R ₄₃	10 MΩ
R ₄₄	1,5 kΩ, TR 151
R ₄₅	1,5 kΩ, TR 151
<i>Kondenzátory</i>	
C ₁	5 pF, WK 70122
C ₂	viz text
C ₃	45 pF
C ₄	330 pF
C ₅	3,3 nF
C ₆	80 μF, TE 151
C ₇	80 μF, TE 151
C ₈	0,22 μF, TC 180
C ₉	1 nF
C ₁₀	3,3 nF
C ₁₁	10 nF
C ₁₂	22 nF
C ₁₃	680 pF
C ₁₄	1,5 nF
C ₁₅	47 nF
C ₁₆	470 pF
C ₁₇	18 pF
C ₁₈	0,47 μF, TC 180
C ₁₉	0,47 μF, TC 180
C ₂₀	1,5 nF
C ₂₁	3,3 pF
C ₂₂	0,1 μF
C ₂₃	0,1 μF
C ₂₄	0,1 μF
C ₂₅	0,1 μF
<i>Polovodičové součástky</i>	
D ₁ , D ₂	KA222
D ₃ , D ₄	KZ140
D ₅ až D ₈	GA205
D ₉ , D ₁₀	KA501
D ₁₁	LQ110
D ₁₂	LQ190
T ₁ , T ₂	KFY18
T ₃	KC508
IO ₁	MAA725
IO ₂ , IO ₃	MAA503
<i>Ostatní</i>	
měřidlo	MP 80 (40 μA), popř. DHR 8 (100 μA)
P _{f1}	miniaturní otočný přepínač WK 533 39
P _{f2}	tlačítko Isostat, dva přepínače kontakty, s aretací
4 ks konektorů na panel, nejlépe typu BNC	deska s plošnými spoji OS6
2 ks držáku potenciometru WA 614 00	

Obr. 1. Deska s plošnými spoji O57 komparátoru a rozmištěním součástek

ustaly po vyjmutí IO_3 a IO_2 z objímek. Po delších zkouškách a ve spolupráci s autorem bylo zjištěno, že potíže patrně způsobují špatné izolační vlastnosti materiálu desky (Cuprexitu). Po úmorné práci, během níž byly některé části desky vyříznuty pro zlepšení izolace, se přístroj téměř „umoudřil“, zato deska byla po mechanických zásazích a opětovném pájení ve velmi špatném stavu; proto jsme se rozhodli sestavit zapojení na nové desce. Přitom jsme však již kontrolovali činnost postupně – poprvé po sestavení části zapojení s IO_1 , přepínačem rozsahů a tranzistory T_1 až T_3 (až po odpor R_{32}); podruhé po

osazení obvodů měřidla (IO_2) a potřetí po doplnění zapojení obvody indikace polarity (IO_3 s příslušnými součástkami). Při prvních dvou kontrolách pracovaly obvody bez závad, při třetí jsme opět zjistili samovolné kmitání. Zajímavé je, že vzorek, dodaný do konkursu, byl postaven na stejně desce a sklon ke kmitání se u něj neprojevil.

Protože deska s plošnými spoji, jejichž obrazec není navržen z hlediska úrovní elektrických signálů ideálně (jsou blízko sebe spoje s velmi rozdílnými úrovněmi napětí), je velmi hustě osazena součástkami, zvolili jsme nejjednodušší řešení: obvod komparátoru (pro indikaci polarity) jsme sestavili na samostatné malé desce s plošnými spoji, která je propojena s deskou O56 pouze spojem mezi vývodem $5IO_3$ a odporem R_{39} , a umístili ji do prostoru pro měřidlo. Pak již pracoval milivoltmetr bez jakýchkoli problémů. Deska s plošnými spoji komparátoru O56 a rozmištění součástek jsou na obr. 1.

Oživování je při dodržení autorem předepsaného postupu snadné. Nepříjemně „osť“ je nastavování trimru R_8 , proto jsme jej zaměnili novým s odporem $10\text{ k}\Omega$ a doplnili na celkovou hodnotu odporem $22\text{ k}\Omega$. Kapacitní trimr C_1 jsme museli doplnit kondenzátorem asi 8 pF . U hotového přístroje jsme změřili kmitočtový rozsah (obr. 2), je o něco lepší, než udává autor. Přístroj pracuje spo-

lehlivě; jedinou nevýhodou je pomalé ustálení nuly (na citlivých rozsazích) po zapnutí přístroje. Abychom tuto nepříjemnost obešli, udělali jsme ve stěně skřínky otvor o průměru 3 mm v místě trimru R_8 pro tenký šroubovák k opravě „nuly“. Nulová výchylka se ustálí asi po patnácti až třiceti minutách provozu – po tuto dobu ponecháme přístroj zapnutý před konečným nastavováním.

Přístroj je spolehlivý, pracuje se s ním dobré. Indikace polarity je výhodná např. při měření v obvodech s operačními zesilovači, u nichž má napájecí napětí obě polarity vůči „zemí“. Komu případá cena součástek komparátoru neúměrná výhodě indikace polarity, může pochopitelně celou tuto část vyněchat. V amatérské praxi s přístrojem obsahujeme celou oblast ní techniky, včetně měření napětí v předmagazinu u magnetofonů (díky velké citlivosti milivoltmetru a známe-li jeho kmitočtovou charakteristiku). Pro zájemce o stavbu, kteří si budou vinout sifový transformátor, uvádíme údaje transformátoru, použitého u ověřovacího vzorku: jádro M 12 (42), vnější rozměry $42 \times 42\text{ mm}$, tloušťka jádra 15 mm ; primární vinutí 5500 závitů drátu CuL o průměru $0,1\text{ mm}$, sekundární 2×450 závitů drátu CuL o průměru $0,2\text{ mm}$. Několik fotografií, seznamujících zájemce o stavbu s přístrojem, postaveným v redakci, je na obr. 3 až 5.

Obr. 2. Kmitočtová závislost milivoltmetru

Obr. 4

Obr. 3. Deska, osazená součástkami v první etapě stavby (kromě montážního celku přepínače)

Obr. 5

Zdvojovače kmitočtu

Ing. Karel Kuchta

Problematice zdvojování kmitočtu logického signálu bylo v nedávné době věnováno několik článků v různých časopisech. Většinou se jednalo o metody velmi jednoduché, někdy až primitivní, a malou kvalitou průběhu obdélníkovitého signálu. Následující příspěvek porovnává různé možnosti jednoduchých zapojení a v závěru popisuje jednu netypickou aplikaci zdvojovače kmitočtu, vhodnou pro pokusy s elektronickou hudbou. Byla vyloučena zapojení využívající rezonančních obvodů LC a uvažována jen ta zapojení, pro něž má vstupní i výstupní signál obdélníkovitý průběh.

Možnosti zdvojovačů

Téměř všechna zapojení zdvojovačů předpokládají pro správnou činnost vstupní signál obdélníkovitého průběhu se střídou 1 : 1. To je sice dosti značné omezení aplikacních možností, na druhé straně však, obzvláště pokud slevíme z požadavků na tvar výstupního signálu, jsou tato zapojení velmi jednoduchá. Nejjednodušší bylo popsáno v [1]. Základní zapojení je na obr. 1. Vstupní signál X je přiveden na obvod EXCL-OR jednak

Obr. 1. Nejjednodušší zdvojovač

přímo, jednak přes zpožďovací člen se zpožděním τ . Na výstupu je pak signál Y s dvojnásobným kmitočtem vzhledem k X , představovaný sledem impulsů o délce τ . Každý impuls signálu Y je spouštěn buď náběžnou nebo sestupnou hranou vstupního signálu X , jak ukazuje obr. 2. Zpožďovací člen je tvořen buď kaskádou invertorů, nebo členem RC , případně složitějším obvodem. Vždy se však projeví nevýhoda tohoto zapojení: výstupní impulsy mají stále stejnou délku a střída signálu Y se mění s kmitočtem. Dokonalého zdvojení kmitočtu (tj. při zachování střídy) lze dosáhnout pouze při dodržení podmínky

$$\tau = \frac{1}{4} T = \frac{1}{4f} \quad (1)$$

kde $f(T)$ je kmitočet (délka periody) vstupního signálu X .

Obr. 2. Průběhy signálů v obvodu z obr. 1

Jestliže střídu souměrného logického signálu (1 : 1) označíme jako 1, střídu 2 : 1 jako 2, můžeme vyjádřit závislost střídy S na kmitočtu při daném zpoždění τ a odvodit z obr. 2

$$S = \frac{\tau}{T - \tau} \quad (2)$$

$$\text{a po úpravě } S = \frac{2\tau f}{1 - 2\tau f}.$$

Závislost střídy na kmitočtu pro obvody s různým τ je v následujícím přehledu:

f [kHz]	τ [μs]	1	2	3	5	10
20	0,042	0,087	0,136	0,25	1,49	0,67
60	0,136	0,315	0,562			
100	0,25	0,67	1,49			

Vidíme, že zdvojovače, pracující podle principu na obr. 1 mají značně omezený kmitočtový rozsah a tedy i omezené použití.

Kvalitnější zdvojovač byl popsán např. v [3]. V tomto článku byly násobitě rozděleny do tří skupin. Do první zahrnul autor obvody, pracující na principu logické derivace. K vytváření výstupních impulsů se používají dva monostabilní klopné obvody, z nichž jeden reaguje na náběžnou a druhý na sestupnou hranu vstupního signálu. Do třetí skupiny patří obvody, násobící vstupní kmitočet číslem větším než 2. Pro nás je nejjednodušší druhá skupina obvodů, pracující podle obr. 3. Podrobnější analýzu však zjistíme, že jde o zvláštní případ obvodu z obr. 1, kdy je nastaveno $\tau = T/4$. Opět se zde uplatňuje nepříznivá závislost střídy na kmitočtu.

Obr. 3. Průběhy signálů ve zdvojovači pro střídu výstupního signálu 1 : 1

Kvalitnějších výsledků by se zřejmě dosáhlo, kdyby se zdvojovač z obr. 1 doplnil podle obr. 4. Signálem, který odpovídá délce periody, se řídí obvod, generující nastavitelné zpoždění τ . Pokud dodržíme podmíinku (1), pak bude mít výstupní signál při každém kmitočtu střídu 1 : 1, bohužel i tehdy, nebudeme mít vstupní signál střídu 1 : 1.

Obr. 4. Zdvojovač se střídou výstupního signálu 1 : 1

Obr. 5. Zdvojovač zachovávající střídu

Obecné schéma ještě lepšího zapojení je na obr. 5. Zde je použit obvod, generující výstupní veličinu (např. napětí, úměrnou střídou vstupního signálu X). Jestliže však realizace obvodu vyhodnocujícího délku periody (případně kmitočtu na obr. 4) je poměrně složitá, o obvodu pro vyhodnocení střídy (obr. 5) to platí dvojnásob. Obvody měřící kmitočet, délku periody, případně střídu číslicovými metodami vynikají značnou složitostí a svým rozsahem se již blíží číslicovým syntezátorům. Obvody, pracující na základě analogové metody, jsou sice jednodušší, vlivem různých nonlinearit je však jejich kmitočtový rozsah omezen. Při návrhu je proto třeba volit určitý kompromis a posoudit, do jaké míry bude složitost obvodu vyvážena jeho lepšími parametry.

Zdvojovače kmitočtu se střídou výstupního signálu 1 : 1

Takový zdvojovač pracuje podle obecného schématu na obr. 4. Jeho blokové schéma je na obr. 6. Vstupní signál po vytvarování ve vstupním zesilovači spouští dvojici monostabilních vstupních obvodů. Na vstupu hradla ovládajícího spínače S pak dostáváme signál X_1 o dvojnásobném kmitočtu oproti vstupnímu signálu (obr. 7). Kondenzátor C_1 je nabíjen ze zdroje konstantního proudu I a vybíjen přes spínač S . Napětí U_{C1} má pak pilovitý průběh s dvojnásobným kmitočtem proti vstupnímu signálu. Toto napětí U_{C1} jde přes oddělovací obvod na paměťový kondenzátor C_2 , který se nabíjí na napětí U_{C1} , jemuž odpovídá maximální hodnota pilovitého napětí U_{C1} . Tatá hodnota však odpovídá době nabíjení kondenzátoru C_1 a tudíž i polovině délky periody vstupního signálu X (pokud má střídu 1 : 1). Přivedeme-li tedy napětí U_{C1} a U_{C2} na komparátor tak, aby překlápal v okamžiku, kdy napětí U_{C1} dosáhne poloviny napětí U_{C2} , na paměťovém kondenzátoru, dosáhneme na jeho výstupu napětí obdélníkovitého průběhu s dvojnásobným kmitočtem proti vstupnímu signálu se střídou 1 : 1. Výstupní signál se nakonec tvaruje tvarovacím obvodem.

Zapojení zdvojovače je na obr. 8. Obvod byl určen pro zdvojení kmitočtu elektrického hudebního nástroje v rozsahu pěti oktáv. Jak bude později ukázáno, je dosti obtížné navrhnut a realizovat analogovou část pro tak široký kmitočtový rozsah. Rozsah byl proto zúžen na rozsah kytary, tj. na čtyři oktávy.

Obr. 7. Průběhy některých napětí v blokovém schématu na obr. 6

Obr. 6. Bloková schéma zdvojovače se střídou výstupního signálu 1 : 1

Obr. 8. Celkové zapojení zdvojovače

Vstupní signál o kmitočtu f_1 je nejprve zesílen ve vstupním zesílovači s T_1 . Ten také přizpůsobuje úroveň obdélníkovitého signálu pro obvody TTL. Lze ho budit signálem o úrovni H (5 nebo 15 V), nikoli však přímo ze snímače kytry. Upravený signál spouští dva monostabilní klopné obvody, z nichž jeden reaguje na jeho náběžnou a druhý na sestupnou hranu. Na výstupu hradla 5 jsou impulsy $2f_1$.

Tranzistor T_3 pracuje jako zdroj proudu, jehož velikost určuje odporník R_5 , na kterém je napětí U_2 Zenerovou diodou D_3 , zmenšené asi o 0,7 V. Tímto proudem se nabíjí C_3 . Protože je toto napětí vedeno na vstup operačního zesílovače, nemělo by ani v případě nejdélší doby nabíjení překročit 10 V (tedy při nejnižším kmitočtu f_1). Platí

$$CU = It \quad (3)$$

a po úpravě

$$I = \frac{CU_{\max}}{t_{\max}} = \frac{CU_{\max}}{\frac{T_{\max}}{2}} = 2f_{\min}CU$$

$$I \doteq 20f_{\min}C \quad (4)$$

$$R_5 = \frac{U_2 - 0,7}{20f_{\min}C} \quad (5)$$

V praxi zapojíme místo R_5 odporný trimr a nastavíme požadovaný proud. Proud Zenerovou diodou se řídí odporem R_6 (asi 5 mA); proud bází T_3 nemusíme uvažovat.

Kondenzátor C_3 se po uplynutí doby $T/2$ vybije přes T_2 , který je buzen z hradla 5. Abyste byly výstupní signál kvalitní i při nejvyšších kmitočtech, je nutno délku impulsů monostabilních obvodů volit co nejkratší. Musí však být dostatečně dlouhá, aby se vybíjil C_3 na nulové napětí. Pro praxi postačuje doba 0,005 až 0,03 T_{\min} . Odporník R_7 volíme co nejmenší, nesmíme však překročit maximální povolený proud báze použitého tranzistoru.

Operační zesílovač A_1 pracuje jako impedanční transformátor se zesílením 1. Jeho výstupním napětím je nabíjení C_7 přes D_4 , která zabraňuje zpětnému vybíjení přes R_9 . Napětí na C_7 tak odpovídá špičkovému napětí na C_3 . Jako C_7 musíme použít kondenzátor s malým svodem. Napětí na C_7 se srovnává s okamžitým napětím na C_3 komparátorem A_2 tak, aby k překlopení docházelo tehdy,

je-li okamžité napětí na C_3 rovno jedné polovině maximálního napětí. Odporník R_9 nastavuje okamžik překlopení.

Výstupní signál z komparátoru A_2 (s kmitočtem $2f_1$) je veden do přizpůsobovacího obvodu s T_4 , kde je jednak upravena výstupní úroveň na 5 V, jednak jsou z výstupního signálu odstraněny záporné půlvalny z komparátoru A_2 (na výstupu je amplituda ± 15 V). Přestože komparátor A_2 pracuje prakticky bez kompenzace, je nutno výstupní logický signál ještě tvarovat klopovým obvodem R-S (hradla 6 a 7). Tranzistor T_5 je zapojen jako emitorový sledovač a zajišťuje malou výstupní impedanci zdvojovače.

Podle obr. 8 byl zhotoven funkční vzorek pro ověření parametrů. Monostabilní klopné obvody vytvářejí impulsy o délce asi 3 μ s, což je dostatečná doba pro vybití C_3 . Napětí na C_3 se mění podle obr. 9. Nejnižší použitelný

Obr. 9. Závislost napětí na kondenzátorech C_3 a C_7 na kmitočtu vstupního napětí

Zesílovač Impulsů

Na obr. 1 je zapojení multivibrátoru doplněné výkonovým zesílovačem, který si sice neční nárok na linearitu, avšak plně využívá maximálního zesílení tranzistorů. Je samozřejmě vhodný pouze pro impulsní techniku (např. multivibrátor poplašných zařízení). Čtyři koncové tranzistory, z nichž dva mají přechod p-n-p a dva přechod n-p-n, volíme podle požadovaného výkonu. Na výstupní svorky můžeme připojit zátěž, ve spojení

kmitočet vstupního signálu je 75 Hz, při němž je $U_C = 8,4$ V. Pro nižší kmitočty se již napětí nezvětšuje. Při kmitočtech vyšších než 2 kHz se začne projevovat zbytkové napětí na C_3 (asi 40 mV) a také rozdíl v časových konstantách monostabilních klopových obvodů. Špičkové napětí na C_3 bylo měřeno osciloskopem. Křivka na obr. 9 ukazuje závislost U_C na kmitočtu (měřeno elektronickým voltměrem). Střídavá složka tohoto napětí byla vždy menší než 20 mV. Na obr. 10 je znázorněna závislost chyběvouho součinitele $K = U_C / U_G$ na kmitočtu; tato závislost je způsobena úbytkem napětí na D_4 .

Obr. 10. Závislost chyběvouho součinitele K na kmitočtu vstupního napětí

Při středním kmitočtu uvažovaného rozsahu, v našem případě $f_1 = 80$ Hz, $f_2 = 1500$ Hz, $f_3 = 790$ Hz, nastavíme potenciometrem R_9 střidu výstupního signálu 1 : 1 ($S = 1$). Závislost střidy na vstupním kmitočtu je na obr. 11. Příčina této závislosti byla již popsána. „Násobič“ schopnost zařízení je zachována až do 20 kHz, výstupní signál má však střidu menší než 0,2.

Obr. 11. Závislost střidy na kmitočtu vstupního napětí

Literatura

- [1] Kyrš, F.: Digitální zdvojovač kmitočtu. AR A/4/78.
- [2] Budínský, J.: Polovodičové obvody pro číslicovou techniku. SNTL 1973.
- [3] Plzák, J.: Násobičky kmitočtu logického signálu. ST 4/78.

s multivibrátorem (siréna) přímo reproduktorem.

Hodnoty součástek ve schématu jsou jen informativní, hlavním účelem bylo naznačit použití koncového stupně. Zátež, připojená na výstupu musí omezit protékající proud tak, aby při zvoleném napájecím napětí neprotékal větší proud, než snesou použité koncové tranzistory! Rovněž je třeba dbát na to, aby na výstupu nedošlo ke zkratu, neboť by se tranzistory okamžitě zničily.

Jaromír Maděra

Obr. 1. Schéma zapojení

Položodičové paměti

Ing. Jiří Zíma

Jedním z hlavních směrů rozvoje položodičových technologií v tomto desetiletí jsou položodičové paměti. Z hlediska použití a funkce se dělí na paměti RAM, ROM, nábojové vázání paměti CCD a bublinkové paměti. Jiný způsob členění položodičových paměti se řídí podle vytvářecích technologií.

Obrovský rozmach sortimentu položodičových paměti umožňuje široce využívat těchto paměti ve všech kategoriích počítačů, v různých automatizačních zařízeních, v telefonických přenosových zařízeních a v řadě dalších zařízení pro nejrůznější účely. Jsou to např. široké sortimenty vědeckých a programovatelných kalkulaček, různá výuková zařízení pro učení výslovnosti (např. v učiteli výslovnosti fy Texas Instruments, který vyučuje syntetickou řeč, je paměť o kapacitě asi 120K byte) a zařízení pro hraní různých televizních her apod.

Volba paměti pro určitý druh použití má vycházet z optimálního sladění vnitřních kritérií, např.: cena paměti, nároky na rychlosť a kapacitu paměti, nároky na spotřebu energie a na fyzická rozměry, kompatibilitu paměti k dalším částem systému apod.

Podle vývoje v oblasti mikroprocesorů v posledních letech se ukazuje výrazná tendence směrem k pamětem se stále větší kapacitou, ke zjednodušování způsobu obsluhy paměti a ke snižování cen paměti.

Tento trend má bezprostředně za následek, že se stále více uplatňuje tzv. rezidentní software, které se dodává jako příslušné programy, umístěné v pamětech ROM, jako pevná součást mikropočítačů i minipočítačů. Např. k vývojovému systému Intel - model 210 až 230 se za příplatek dodává asi 20K byte systémového software, obsahujícího editor a asembler jako doplněk v pevně naprogramovaných pamětech EPROM. Obdobně se např. některé NC systémy dodávají s uživatelskými programy uloženými v pamětech ROM nebo v pamětech RAM CMOS s udržovacím napájením.

Obdobně se již některé vyšší třídy kalkulaček (jako TI 59) dodávají s tečkým sortimentem, tzn. software modulů, což jsou paměti ROM, které obsahují různé knihovny matematických, statistických a jiných programů, kterými lze podle potřeby značně rozšířit výpočetní kapacitu a užitnost těchto kalkulaček.

Všechny tyto skutečnosti v rozvoji položodičových paměti mají velmi příznivý vliv na cenu vývoje, výroby a údržby software. Vlivem pokroku technologií VLSI jsou již na trhu 1M bitové čipy paměti (např. 1M bitová bublinková paměť typ Intel 7110). Předpokládá se, že do roku 1985 se budou vyrábět položodičové čipy paměti, mikroprocesorů a různých řadičů o složitosti asi 1 milion prvků (což je přibližně ekvivalentní modelu počítače IBM 370/158).

První vážnější konkurenci do té doby nejrozšířenějších feritových paměti v počítačích byly po roce 1971 dynamické paměti typu 1103 o kapacitě 1K bit a po roce 1974 dynamické paměti typu 2107 o kapacitě 4K bitů. Přechod na nové typy paměti byl založen na vyšší spolehlivosti, lepších funkčních parametrech, výhodnější ceně a v neposlední míře i na potenciálních možnostech v dalším zvětšování kapacity a prudké redukci ceny – to bylo potvrzeno dynamickými paměti RAM o kapacitě 16K bitů a 64K bitů, pro které byly vyvinuty specializované obslužné obvody, které přiblížily pracnost a systémovou náročnost dynamických paměti na míru srovnatelnou se statickými paměti.

Soustavný výzkum v technologiích, jako jsou elektronová litografie, iontová implanta-

tace apod. umožňuje vyvíjet nové typy položodičových struktur na čipu, zmenšovat výkonovou ztrátu, zvětšovat rychlosť, řešit na společném čipu různé číslicové i analogové funkce, zvětšovat výtěžnost a zmenšovat cenu položodičových součástek. V současné době a ještě víc v budoucnosti se zvětšíuje podíl položodičových součástek MOS oproti bipolárním položodičovým součástkám. Podle odhadu, založených na prognózách výrobců v USA, bude do roku 1983 podíl bipolárních paměti a dalších bipolárních obvodů LSI činit pouze asi 5 % z trhu obvodů LSI. Dominantní postavení si ještě více upevní obvody MOS LSI a rovněž se rozšíří použití bublinkových paměti. Bipolární technologie budou tvořit základ především pro obvody MSI a SSI, jichž bude stále třeba k vytváření různých jednodušších funkcí v systému.

V tab. 1 jsou pro některé typické třídy aplikací uvedeny hlavní typy položodičových paměti. Všeobecně platí, že dynamické paměti NMOS a elektricky programovatelné paměti EPROM nacházejí široké uplatnění v mikropočítačích a minipočítačích, zatímco dosud pomale, elektricky reprogramovatelné paměti EAROM jsou spíše vhodné pro periferie:

Aplikace	Druh paměti
Hlavní paměť počítačů	64K NMOS dynamické paměti RAM, bublinkové paměti, MOS ROM.
Paměti mikroprogramu	bublinkové paměti, statické NMOS paměti RAM, ECL a TTL.
Náhrada disku	paměti PROM a RAM. 16K/64K dynamické paměti RAM, bublinkové paměti.
Paměti s bytovou organizací	NMOS a CMOS statické paměti RAM, bipolární paměti PROM, PLA.
Kompatibilita s EPROM	statické paměti NMOS RAM a ROM.
Malá spotřeba	CMOS PROM a RAM.
Nevolatilita	bipolární PROM, bublinkové paměti, bipolární MOS ROM, EAROM, EPROM.
Inteligentní terminály	bublinkové paměti, statické NMOS RAM.
Periferie	bublinkové paměti, bipolární PROM/ROM. EAROM, statické NMOS RAM.

V oblasti minipočítačů se jako velkokapacitní hlavní paměti téměř výhradně používají dynamické paměti NMOS. Bipolárních programovatelných paměti PROM se vzhledem k jejich vysoké rychlosti využívá k realizaci paměti mikroprogramu u rychlých minipočítačů, mikropočítačů a řadičů pro rychlé periferie. (ALU a další části těchto počítačů jsou obvykle řešeny pomocí tzv. bipolárních řezů, např. MH3002, AMD2901 apod.).

Stále méně se používají bipolární paměti RAM ve vyrovnaných pamětech minipočítačů a velkých počítačů, v nichž jsou nahrazovány rychlými statickými NMOS paměti RAM. Přispívají k tomu kromě rychlosti menší nároky na příkon, nižší pořizovací cena a dnes již podstatně širší nabízený sortiment. V jednodušších aplikacích mikroprocesorů se zcela vyhýbají používají statické NMOS paměti RAM a v aplikacích s většími nároky na kapacitu paměti se používají dynamické NMOS paměti RAM. Magnetické bublinkové paměti, paměti CCD a velkokapacitní paměti ROM (32K a 64K) postupně začínají nahrazovat klasická paměťová media, jako je magnetická páška, pružné disky a pevné disky.

Hodnocení položodičových pamětí vychází převážně z dosahované hustoty bitů na čipu nebo na paměťovou buňku, z rychlosti vyplývající z doby přístupu do paměti a z ceny paměti na 1 bit.

Hlavní rozlišení mezi paměti je ve způsobu, jakým je informace do paměti zapsána a jak je z paměti čtena. Paměti RAM pracují s architekturou sloupců a rádků uspořádaných v matici, což dovoluje uložit a vyjmout informaci z jakékoli paměťové buněky za přibližně stejnou dobu. Naopak paměti se sériovým způsobem přístupu, jako jsou např. posuvné registry, mají dobu přístupu u různých paměťových buněk zcela závislou na poloze paměťové buněky. Proto u paměti CCD a magnetických bublinkových pamětí, které pracují s obdobným způsobem informace jako posuvné registry, je obvykle udávána tzv. průměrná doba přístupu nebo horní a dolní mez doby přístupu.

Jiné hlavní rozlišení spočívá v uživatelské funkci paměti – zda jde o paměť určenou pro opakování zápis a čtení (paměť RAM), nebo zda jsou data do paměti zapsána trvale, nebo zda lze zápis opakovat jen za určitých předpokladů a naopak čist obsah paměti kdykoli (paměť ROM, PROM, EPROM).

Pro výrobu paměti se používají nejrůznější technologie, stejně jako pro číslicové logické obvody a systémy. Patří sem bipolární technologie, tranzistorově vázání logika TTL, emitorově vázání logika ECL, Schottkyho tranzistorově vázání logika STTL, integrovaná injekční logika IIL a izoplanární integrovaná injekční logika IIIL. Z MOS technologií uvedme v hrubém přehledu p kanál MOS (PMOS), n kanál MOS (NMOS), komplementární MOS (CMOS), vertikální n kanál MOS (VMOS) a n kanál MOS s velkou hustotou (HMOS).

Důležitými hledisky pro hodnocení a výběr paměti jsou jejich rychlosť a výkonová ztráta. Rychlé bipolární paměti ECL a STTL mají dobu přístupu od 5 do 100 ns, avšak všeobecně větší výkonovou spotřebu. Paměti MOS se výrazněji pro dobu přístupu od 10 ns do 500 ns. Jejich výkonová ztráta je všeobecně menší a rovněž nároky na stabilitu napájecích napětí jsou menší. V současné době došlo k posunu zájmu u MOS paměti z technologií PMOS na technologii BMOS, neboť NMOS struktury pracují s větší rychlosťí a poskytují větší hustotu. CMOS paměti jsou většinou pomalejší než NMOS (i když i z tohoto pravidla existují určité výjimky), mají podstatně menší výkonovou ztrátu, jsou ovšem cenově nákladnější.

Statické paměti pracují s vnitřní regenerací obsahu paměťových buněk, tj. jsou navrženy tak, aby byly chráněny proti falešným nebo nežádoucím operacím. Statické paměti se vyznačují velkou rychlosťí a malou spotřebou. Naopak dynamické paměti umožňují obnovovat obsah v periodických intervalech a pracují s velkými proudovými špičkami

v napájení. Cenově jsou výhodnější, výrobne jednodušší a vyžadují čip o menší ploše.

U paměti ROM se obsah programuje během finálních maskovacích kroků při výrobním procesu. Paměti ROM většinou slouží jako dekodéry, překladače nebo jako knihovna univerzálních nebo standardních dat. Programování jako součást výroby je velmi ekonomické pro střední nebo velké počty paměti ROM. Pro programy, které se používají jen v omezeném počtu paměti, se používají paměti PROM. U této paměti se permanentní změna v propojení buněk realizuje buď zájemným zničením tranzistorových přechodů nebo vypálením propojovacích spojek.

Bipolární paměti PROM

Většina bipolárních paměti PROM využívá Schottkyho TTL technologie a pracuje (podle organizace) s dobou přístupu od 30 do 90 ns. Podle tab. 2 je formát dat 4 nebo 8 bitů a organizace od 32 do 2048 slov. Napájecí proud se pohybuje od 65 do 180 mA.

K dispozici jsou PROM jak s výstupem s otevřeným kolektorem, tak i s trojstavovým výstupem. U prvních je použit na výstupu prořízení kapacity sbernic buď s malou impedancí. Výsledkem je strmá nábožná hrana při převodu. U trojstavových výstupů není zapotřebí žádny sčítací odporník.

Tab. 2.

Bipolární P/ROM	Celkový počet bitů	Počet slov	Doba přístupu T_{AA} [ns]	
			Schottky	Schottky s malým výkonem
8 bit šířka	16K	2K	65-90	120
	8K	1K	45-90	175
	4K	512	45-75	-
	2K	256	45-70	-
	512	64	40	-
	256	32	25	35
	16K	4K	70	-
	8K	2K	60-90	75
4 bit šířka	4K	50-80	65	
	2K	512	45-70	55
	1K	256	45-65	55

Rozdíly u bipolárních PROM jsou v propojovací technice a ve způsobu programování.

Používá se buď techniky přepalování propojovacích spojek, nebo techniky trvalé deformace tranzistorových přechodů. Jako materiály pro propalovací spojky jsou vhodné nichrom, polykrystalický křemík nebo slitina titanu s wolframem, která umožňuje pracovat s malým programovacím napětím a dává velmi dobré předpoklady pro zajištění spolehlivosti. Fa Intel dává přednost můstkům z polykrystalického křemíku.

Velmi často se stává, že bipolární PROM od několika výrobců jsou pak „pin to pin“ kompatibilní, protože se obvykle liší z pohledu programování. Vzhledem ke nevolatilnímu, ale již neměnitelnému obsahu po programování se PROM hodí pro prototypy. Monohé z bipolárních PROM jsou zcela zaměnitelné za ekvivalentní bipolární ROM. Rovněž je snaha po zaměnitelnosti užití několika typů PROM, např. paměti PROM 521 × 8 bitů, 24 vývodů, s paměti PROM 1K × 8 bitů, 24 vývodů. Obdobná snaha existuje i u jiných typů paměti.

Rychlé bipolární paměti PROM se v menším měřítku také používají pro rychlé mikroprocesory, např. pro Z80. Rovněž existuje přímá zaměnitelnost paměti PROM s jinými typy paměti. Např. bipolární pamět PROM Signetics 82S2708 je velmi rychlým ekviva-

lentem populární paměti EPROM Intel 2708. Obdobně existuje zaměnitelnost bipolárních PROM s MOS RAM. Např. bipolární PROM Monolithic Memories 6353 je zaměnitelná za MOS RAM Intel 2114 nebo MOS RAM Texas Instruments TMS4045 – samozřejmě vzniká rozdíl v rychlosti a ve výkonové ztrátě. Např. typy 2114 a 4045 mohou pracovat se zmenšenou spotřebou a 6353 nemůže.

Vrcholem v hustotě bipolárních paměti PROM jsou typy s organizací 2084 × 8-bit slov. Je to např. velmi rychlá pamět PROM 3636 fy Intel s dobou přístupu 65 ns a s příkonem na bit 0,05 mW. Ve vývoji se připravují typy s organizací 4056 × 4 bit. Rovněž se očekávají 32K PROM s organizací 4096 × 8 bit a 8142 × 4 bit a 64K PROM v konfiguraci 8192 × 8 bit (ohlášeno firmou Toshiba). Bipolární PROM jinak stejněho uspořádání se od sebe liší rychlostí a výkonovou ztrátou a způsobem řešení výstupu.

Zrychlení činnosti na dvojnásobek a redukci nároku na plochu na polovinu přinese zvážnutí technologie difúzních můstků eutektickým hliníkem a zavedení nových izolačních technik, jako je bipolární verze VMOF profilů a izolace polykrystalickým křemíkem a oxidem (IOP). Tyto techniky umožní řešit pamět PROM 1 × 4 bity s dobou přístupu 25 ns, příkonem 450 mW a použít pouze polovinu energie na programování (oproti současnemu stavu). Např. fa Fujitsu využila PROM MB 7122 s organizací 1K × 4 bity s dobou přístupu 25 ns a pro letošní rok ohlašuje paměti MB7132 s organizací 2K × 4 a 1K × 8.

Přestože v oblasti rychlých paměti PROM zaujmají dominantní postavení bipolární technologie, situace se začíná měnit, neboť i v této oblasti se stále více prosazují MOS PROM. Uvedme např. paměti MOS ROM a PROM fy Mostek s kapacitou 64K bitů s dobou přístupu 80 ns.

Bipolární paměti ROM

Před rokem 1978 byly bipolární paměti ROM dostupné pro rychlosti od 25 do 100 ns a ve složitosti od 256 do 16 334 bitů. Avšak vlivem zákaznického charakteru těchto pamětí a vlivem prosazování jiných druhů paměti se sortiment bipolárních paměti ROM zúžil.

Bipolární paměti ROM ustupují do pozadí, zvláště poté, když dva největší výrobci (fy Fairchild a Signetics) jejich výrobu zastavili a uvolněné kapacity převedly na programy v pamětech MOS. Bipolární paměti ROM se nahrazují paměti MOS EPROM a ROM, které mají větší hustotu, nižší cenu a menší výkonovou spotřebu. Přehled bipolárních paměti ROM je v tab. 3.

Paměti MOS EPROM

Paměti MOS EPROM jsou tzv. „volně“ programovatelné a reprogramovatelné. Vyráběné paměti EPROM podle tab. 4 používají techniku plovoucího hradla s ladinovou injekcí nosičů (floating gate avalanche injection – FAMOS). Termín plovoucí vyplývá ze skutečnosti, že hradlo každého z tranzistorů není připojeno, neboť „plave“ v izolační vrstvě kysličníku křemíčitého. Paměti MOS EPROM jsou asi pět až desetkrát pomalejší, než rychlé bipolární nebo NMOS paměti RAM. Starší verze pracují s několika napájecími napětími, ale u novějších typů se již prosazuje koncepce jednoho napájecího napětí 5 V. Po působení slunečního světla nebo ultrafialového záření jsou volatilné, neboť ztrácejí informaci. Vzhledem ke ztrátě napájecího napětí jsou nevolatilné. Přes nevýhodu v pomalosti jsou velmi oblíbené v aplikacích s mikroprocesory, neboť jsou poměrně laciné. Mohou být naprogramovány, potom použity a v případě potřeby

Tab. 3.

Organizace	Výrobce	Typ	Výstup	T_{AA} [ns]	I _{ccmax} [mA]
1024 × 8	Monolithic Memories	6280/6281-1	OC/TS	100	180
	Monolithic Memories	6280/6281-2	OC/TS	55	180
	Monolithic Memories	6282/6283-1	OC/TS	100	180
	Advanced Devices	AM27S80/S81	OC/TS	70 až 135	140/170
2048 × 8	National Semiconductor	DM85S29/S28	OC/TS	90	160
1024 × 9	Monolithic Memories	6275/6276-1	OC/TS	110	190
1024 × 10	Monolithic Memories	6260/6256-1	OC/TS	100	165
	Monolithic Memories	6255/6256-1	OC/TS	100	165

pozn.: OC – otevřený kolektor, TS – trojstavový výstup

Tab. 4. Paměti EPROM

Výrobci, typ	Zaměnitelné ROM	Kapacita	Doba přístupu [ns]	Napájecí napětí [V]	Maximální aktivní proud [mA]	Klidový
Intel 1702A	1302	2K	1000	5, -9	65 (885 mW)	65
Intel 2704	—	4K	450	12, =5	65 (800 mW)	65
TI TMS2508	—	8K	250, 300, 350	5	446 mW	131 mW
Intel 2708	2308	8K	350, 450	12, =5	65 (800 mW)	65
TI TMS27L08	—	8K	450	12, =5	580 mW	—
Intel 2708L	2308	8K	450	12, =5	425 mW	—
Intel 2758	—	8K	450	5	525/132 mW	—
Intel 2716	2316E	16K	350-450	5	100 (550 mW)	25 (138 mW)
TI TMS2716	—	16K	450	12, =5	45 (720 mW)	—
Mostek MK2716T	MK3100	16K	350, 490	5	N/A	N/A
TI TMS2516	—	16K	350, 450	5	285 (525 mW)	50 (131 mW)
Hitachi	—	16K	250	5	330 mW	—
Intel 2732	2332/2364	32K	450	5	150 (788 mW)	3- (158 mW)
TI TMS2532	TMS4732	32K	450	5	168 (840 mW)	10 (131 mW)
TI TMS25L32	TMS4732	32K	450	5	95 (500 mW)	131 mW
Motorola	MCM2532/25A32	MCM68A332	32K	350, 450	5	N/A
Motorola	MCM68764/68A764	MCM68A364	64K	350, 450	5	500 mW
TI TMS2564	TMS4764	64K	450	5	850 mW	131 mW

*) Není kompatibilní s I2716 nebo I2732, N/A není známo.

Všechny UF EPROM jsou v pouzdře DIP (24 vývodů) mimo TMS 2564 s DIP (28 vývodů)

TMS2732 není vývodově kompatibilní s I2732

MCM68764 je ve 24vývodovém pouzdře DIP

mohou být vymazány a může být do nich naprogramován nový obsah.

Programované vlastnosti jsou získány pomocí nábojové techniky tzv. rychlých nosičů, namísto destrukční techniky u bipolárních PROM. Působením většího napětí přes transistor vzniká tunelování nosiči s velkou energií, které otevíráji vodivý kanál k hradlu. Při osvětlení intenzitním ultrafialovým světlem vzniká fotoelektrický proud, který během několika minut vyrovná prostorový náboj v křemíku do rovnovážného stavu, tj. na nulu. Pokud se používá ultrafialové světlo o vlnové délce 2537 Å, lze vymazávat a znovu programovat paměti EPROM libovolněkrát. Vymazání mohou způsobovat i jiné zdroje světla, např. sodíkové výbojky nebo rtuťové výbojky. Vlivem značného současného ohřívání dochází v paměti EPROM k nevratným chemickým dějům, které značně omezí počet mazacích cyklů a obvykle každé následující mazání vyžaduje delší dobu než předchozí.

V tab. 4 je uveden přehled nejčastěji se vyskytujících pamětí EPROM. Prvním široce používaným typem byla paměť EPROM typ 1702 fy Intel. Dalším průmyslovým standardem se stala paměť EPROM 2708 od téhož výrobce. V posledních třech letech se rozbehla výroba nových typů s napájením 5 V. Mezi nejznámější patří paměti fy Intel 2758 (1K byte) a 2716 (2K byte). Nedávno byly uvedeny na trh paměti fy TI TMS 2532 a Intel 2732, které jsou organizovány v uspořádání 4K × bitů a pracují s jedním napájecím napětím.

U starších obdobných typů od různých výrobců se sledovala poměrně úzká kompatibilita v počtu a funkci vývodů z pouzdra. Obdobně existuje i poměrně dobrá slučitelnost a tím i snadná zaměnitelnost např. mezi typy Intel 2758, 2716 a 2732.

U typů s kapacitou 4K × 8 bitů a vlivem toho i u novějších typů s kapacitou 8K × 8 bitů se začínají používat nejen pouzdra s 24 vývody, ale i pouzdra s 28 vývody (tab. 5). Výrobci paměti se začínají dělit do dvou směrů (obdobně jako tomu bylo u dynamických NMOS 4K pamětí v roce 1974), což nepříznivě ovlivňuje kompatibilitu v pouzdrach nejen u dalších pamětí EPROM 64K, ale i u paměti 32K a 64K NMOS ROM a u statických NMOS paměti RAM s velkou kapacitou.

Hlavní rozdíl vyplývá z různosti funkcí na vývodech 18, 19, 20 a 21 u 32K paměti EPROM fy Texas Instruments a Intel (TMS2532 a I2732). Intel 2732 je funkčně i „pinově“ kompatibilní s Intel 2716 16K EPROM a s různými Intel ROM o kapacitě 16K bitů. Obdobně i typ MB 8532 fy Fujitsu je také „pinově“ kompatibilní s I2732. Naopak typ TMS2532 není kompatibilní s I2732 a jeho uspořádání bylo pozemněno s ohledem na možnost přímé kompatibility s typem TMS2564, tj. s pamětí EPROM o kapacitě 8K × 8 bitů. Hlavní rozdíl mezi pamětí EPROM Intel a TI je v tom, že paměti Intel pracují s aktivací výstupu (output enable), tj. s řízením výstupního bufferu pro eliminaci obsahu sběrník při multiplexně pracujících mikroprocesorových systémech. Paměti TI tuto vlastnost nemají. Svými vlastnostmi je TMS2532 kompatibilní s většinou vyráběných MOS ROM od různých výrobců. Také paměť EPROM Motorola MCM68764 64K bit je „pinově“ kompatibilní s TMS2532.

Vlivem funkční rozdílnosti (především ve funkci aktivace výstupu) se pro paměti ROM 64K používají pouzdra s 24 nebo 28 vývody. Typy s 28 vývody se snadněji připojují ke sběrníkům novějších rychlých mikroprocesorů a jsou funkčně kompatibilní s paměti I2732. Naopak typy s 24 vývody lze snadno zaměňovat za průmyslové standardy paměti ROM 32K a TMS2532 32K EPROM.

Tab. 5.

TI TMS2564 64K EPROM	INTEL 2364A 64K ROM	16K EPROM		32K EPROM		32K ROM	64K ROM			64K EPROM	
		32K EPROM /ROM	INTEL 2732	TI TMS2532	64K ROM (MK26000)		INTEL 2364A 64K ROM	TI TMS2564	Motorola MCM68764		
Üpp CS ₁	NC A12	1 28 2 27 A ₇ 1 24 A ₆ 2 23 A ₅ 3 22 A ₄ 4 21 A ₃ 5 20 A ₂ 6 19 A ₁ 7 18 A ₀ 8 17 O ₉ 9 16 O ₁ 10 15 O ₂ 11 14 GND 12 13 — 24	U _{CC} A ₈ A ₉ A ₁₀ A ₁₁ OE/U _{PP} A ₁₀ A ₁₁ OE/PGM A ₇ O ₇ O ₅ O ₄ O ₃	U _{PP} P _D /PGM A ₁₀ A ₁₁	CS ₂ /CS ₂ CS ₁ /CS ₁	A ₁₂ CE/CS	A ₁₁ A ₁₀ A ₁₁ O ₆	A ₈ A ₉ A ₁₀ CE O ₇ O ₅ O ₄ O ₃	A ₁₂ P _D /PGM A ₁₀ A ₁₁	A ₁₂ CE/U _{PP} A ₁₀ A ₁₁	
					24	24	24	28	28	24	

Pozn.: Průmyslový standard 32K ROM je dodáván také fy TI, Electronic Arrays, Motorola, National Semiconductor, NEC, Signetics a Synertek, počet vývodů

Tab. 6. Paměti CMOS

Výrobce Organizace	RCA	Motorola	Harris	Intersil	Hughes	Solid State Scientific	Super Tex
256 × 4		NCM14524	HM6611 (P/ROM) HM6661 (P/ROM)				
256 × 8	CDP1842 (P/ROM)		HM6641 (P/ROM)	IM6654 (EP)	HCMP1831 HCMP1832	SCP1831 SCP1832	
512 × 8	CD40032 CDP1831 CDP1832						
1024 × 4				IM6653 (EP)			
1024 × 8	CDP1833/34 CDP1834 ¹ (P/ROM)		HM6708 (EP)		HCMP1833/34	SCP1833 SCP1834	
1024 × 12			HM6312/A HM6716 (EP)	IM6312/A IM6316	HCMP1835/1836	SCM5316	
2048 × 8			HM6388	IM6364			
8192 × 8							CM3200
4096 × 8							

¹) Vývodová kompatibilita s I2758

Tab. 7. Paměti CMOS

Typ	Výrobce	Organizace	EPROM	ROM	T _{AA} max. [ns]	I _{CC} max. [mA]	Napájení [V]	DIP, počet vývodů
HM6611	Harris	256 × 4	X (F/L)		250	15/200	12	18
HM6661	Harris	256 × 4	X (F/L)		250	15/200	12	18
HM6641	Harris	512 × 8	X (F/L)		300	100	5	24
IM6654	Intersil	512 × 8	X		300, 450, 600	100	5	24
IM6653	Intersil	1024 × 4	X		300, 450, 600	100	5	24
HM6708/A	Harris	1024 × 8	X			350	5	24
HM6312/A	Harris	1024 × 12	X		220 (10 V) 350 (5 V)	10 mA/800	12	18
IM6312	Intersil	1024 × 12	X		400	100	5	18
IM6312A	Intersil	1024 × 12	X		200	500	12	18
MH6716B	Harris	2048 × 8	X		350	100	5	24
IM6316	Intersil	2048 × 8	X		350 (typ)	100	5	24
SCM5316	SSS	2048 × 8	X		450	7 mA/100/10	5	24
CM3200	Super Tex	4096 × 8	X		450	20 mA/20	5	24
HM6388	Harris	8192 × 8	X		550	100	5	24
HM6389	Harris	8192 × 8	X		550	100	5	28

Pozn.: F/L propalovací spojky

Všechny mají TTL kompatibilní V/V a trojstav. výstup

A) – vývodové kompatibilní s I2708

B) – vývodová kompatibilita s I2716

Nová generace paměti EPROM se vyznačuje snadnou aplikovatelností a malou výkonovou ztrátou a velkou cílibou uživatelů. Očekávají se další verze 32K a 64K paměti EPROM s větší rychlostí a menší výkonovou ztrátou. Do roku 1985 budou uvedeny na trh paměti 128K a 256K bit s dalším výrazným zlepšením funkčních vlastností.

Výrazná aktivita se také projevuje ve vývoji CMOS struktur paměti PROM a EPROM. V čele tohoto úsilí stojí fy Intersil a Harris. Intersil např. nabízí CMOS EPROM ve dvou verzích, 1K × 4 bity, typ 6603, a 512 × 8 bitů, typ 6604. Harris má verze 512 × 8, 1024 × 8 a 2048 × 8 bitů. Přehled CMOS paměti PROM a EPROM je v tab. 6 a 7.

Paměti MNOS a EAROM

Paměti MNOS (metal nitride oxid semiconductor) EAROM jsou vhodné pro aplikace s redukovaným příkonem a tak není kritická ani jejich rychlosť ani vyšší cena. Tyto paměti pracují s úplným nebo výběrovým zápisem bitů – při tomto způsobu může být paměť programována přímo v uživatelském zapojení. Případné změny stačí udělat pouze ve vybraných kritických paměťových buňkách.

Paměti MNOS EAROM jsou pomalé, s dobou pro čtení od 0,35 až asi do 5 μ s, jsou poměrně drahé a nejsou příliš používány. Relativně širší použití nachází ve vojenských a astronautických aplikacích, kde se využívají jejich nevolatilnosti. Přehled paměti MNOS EAROM je v tab. 8.

Paměti EAROM s plovoucím hradlem

Tato kategorie programovatelných pamětí pracuje s podobnou strukturou jako „ultrafialové“ paměti EPROM. Rozdíl spočívá v tom, že odpadá křemenné okénko pro osvětlení a zvláštní hradlo řídí elektricky zápis a mazání náboje v plovoucím hradlu. Programování je poměrně složité, neboť vyžaduje složitou sekvenci programovacích úkonů, které nelze realizovat v uživatelském zapojení, neboť jsou k nim třeba zvláštní programátory.

Paměti EAROM s plovoucím hradlem pracují se stejnými dobami přístupu při čtení jako „ultrafialové“ paměti EPROM. Doba potřebná pro elektrické mazání je však podstatně kratší, než u ultrafialových pamětí EPROM; typicky je kratší než 1 minuta. Přestože paměti jsou komerčně dostupné z několika zdrojů, dosud se více nerozšířily. Přehled typických představitelů je v tab. 9.

V poslední době se kombinují struktury NMOS RAM a elektricky mazatelných pamětí EAROM do jedné struktury za účelem získat nevolatilní paměti RAM. U fy Nixon se vyrábí nevolatilní NMOS paměti RAM typu X2201 a X202, které obsahují 1024×1 bit statickou NMOS paměti RAM s kapacitně identickou paměti EAROM.

Přenos dat mezi částí RAM a EAROM je ovládán dvěma signály TTL pro uložení a vyvolání slov z EAROM do RAM. Při signálu pro uložení se obsah paměti RAM kopíruje do paměti EAROM s možností pozdějšího vyvolání nebo modifikace. Naopak při signálu pro vyvolání se obsah paměti EAROM přepíše do paměti RAM.

K automatickému přepisu z nevolatilní paměti EAROM do paměti RAM dochází také vždy při pripojení napájení. Typ X2201 pracuje s úplným přepisem celého obsahu a typ X202 umožňuje vyvolávat obsah po jednom bitu.

MOS paměti ROM

LSI MOS paměti ROM se široce používají v mikroprocesorových systémech. Většina výrobců dodává tyto paměti v celé řadě až do kapacit 32K a 64K bitů. MOS paměti ROM jsou velmi rozšířeny, neboť jsou cenově nejefektivnější ze všech druhů polovodičových pamětí a s úspěchem nabízí jak nosisce rezidentního software magnetickou pásku nebo disk. Na trhu jsou již dostupné paměti ROM 64K bitů s dobou přístupu 80 ns a v blízké budoucnosti se mají objevit paměti MOS ROM s kapacitou 128K a 256K bitů. V této kategorii paměti se používají i technologie CMOS pro prvky s malými nároky na energii (tab. 6 a 7).

Bipolární paměti RAM

V oblasti bipolárních paměti RAM došlo ke změnám v rychlosti a v hustotě velkoplošné integrace. TTL paměti RAM používající izolaci pomocí kysličníku křemičitého se hodí pro rychlé vyrovnávací paměti a zápisníkové paměti velkých počítačů. Pro největší rychlosti se vyrábí paměti s emitorově vázanou

Tab. 8. Paměti MNOS EAROM

Výroba	EAROM	Organizace	Max. T_{AA} [μs]	Alternabilita	DIP, počet vývodů
Nitron	NC7033	21 x 16	2-5 (sériová data)	slovo	8
Nitron	NC7040	64 x 4	2-5 (paralelní data)	slovo	24
GI	ER2055	64 x 8	2	slovo	22
Nitron	NC7055	64 x 8	4	slovo	22
Nitron	NC7714	256 x 4	0,9-1,5 (paralelní data)	slovo	22
Nitron	NC7051	1024 x 1	2-5 (sériová data)	slovo	28
Nitron	NC7451	1024 x 4	2-5	slovo	22
GI	ER1400	100 x 14	833 (sériová data)	slovo	14
GI	ER2050/51	32 x 16	6-10	slovo	28
GI	ER2401/2402	1024 x 4	2	čip	24
GI	ER3400/01	1024 x 4	0,95	slovo	22
GI	ER2805/2810	2048 x 4	2,6	blok	24
Rockwell	10443	256 x 8	N/A	N/A	N/A
Nitron	7053	128 x 8	1,0	slovo	24
Nitron	7810	2048 x 4	1,4	čip	24

GI – General Electric

N/A – není známo

Tab. 9.

Výrobci	Typ	Organizace	Napětí [V]	T_{AA} max. [ns]	DIP, počet vývodů
SGS-ATES	N120	256 x 4	5	450	18
Hitachi	48016 ^{*)}	2048 x 8	5	250	24
RCA	1842	256 x 8	5	250	N/A
RCA	1843	1024 x 8	5	800	N/A
NEC	μ pD454 ^{**)}	256 x 8	12,5	250	24
Xicor	X2201/2202 ⁺⁾	1024 x 1	5	250	18
NEC	μ pD458	1024 x 8	12,5	450	28

^{*)} 2716VF zaměnitelná

^{**)} vývodově kompatibilní s I1702A

⁺) nevolatilní RAM obsahující $1K \times 1$ RAM $\times 1$ EPROM

N/A – není známo

Tab. 10. Paměti RAM

Aplikace	Doba přístupu T_{AA} [ns]	Druh
Zápisníková paměť	50	bipolární ECL a TTL RAM, statické HMOS a VMOS RAM
Rychlé vyrovnávací paměti	20 až 80	statické HMOS a VMOS RAM, bipolární RAM
Hlavní paměti	100 až 350	dynamické MOS RAM, bipolární ECL RAM
Minipočítací	100 až 250	dynamické MOS RAM, bipolární RAM
Mikroprocesory	200 až 500	statické NMOS RAM, dynamické MOS RAM

logikou ECL s dobou přístupu až 7 ns. Příkladem široce používaných TTL paměti RAM s kysličníkovou izolací jsou typy 93415/93F415 s kapacitou $1K \times 1$ bit s dobou přístupu 30/20 ns a 93412/93422 s kapacitou 256×4 bity s dobou přístupu 45 ns. S příchodem rychlých mikroprocesorů se předpokládalo, že se budou muset používat tyto rychlé bipolární paměti RAM, ale na jejich místě se čím dálé více prosazují „pin to pin“ kompatibilní VMOS a HMOS paměti RAM.

Volba paměti RAM závisí na druhu aplikace. Příklady některých aplikací a vhodné druhu paměti RAM jsou v tab. 10.

U většiny bipolárních paměti jsou paměťové buňky vytvořeny pomocí tranzistorových klopných obvodů, které vyžadují větší plochu křemíkové destičky a větší příkon oproti paměťovým buňkám MOS. Určitý zvrat v tomto vývoji se očekává od izoplanární paměti RAM 4K fy Fairchild typu 93470/471/F471, která potřebuje menší plochu křemíkové destičky, než srovnatelná dynamická NMOS 4K paměť MK 4027 fy Mostek. U dynamické paměti se dosahuje doby přístupu 120 ns a spotřeby 462 mW a u izoplanární paměti 30 ns a 850 mW.

V řadě případů začínají však aplikátoři dátavý přednost NMOS paměti RAM i v rychlostně kritických aplikacích. Statické paměti NMOS RAM jako např. Intel 2115H o kapacitě $1K \times 1$ bit s dobou přístupu 20 ns a vý-

konovou spotřebou 656 mW a Intel 2147H o kapacitě $4K \times 1$ bit s dobou přístupu 35 ns s výkonovou ztrátou 990 mW a Intel 21484 s kapacitou $1K \times 4$ bity a výkonovou ztrátou 825 mW a další podobné typy se úspěšně prosazují i v takových aplikacích, které byly donedávna výhradně doménou rychlejších typů bipolárních paměti RAM. Zatímco bipolární paměti RAM dosahly maxima v rychlosti (20 až 25 ns), u paměti MOS lze očekávat další vylepšení (např. u paměti RAM 4K pod 20 ns).

Dosažené výsledky začínají naznačovat, že NMOS paměti RAM budou dominovat v hustotách 4K a větších, zatímco velmi rychlé paměti ECL RAM se uplatní ve velmi rychlých, ale kapacitně jednodušších paměťových celcích. Tyto úvahy vycházejí např. z toho, že pouze fa Fairchild se zabývá pracemi na velkokapacitních bipolárních pamětech RAM a to ještě s velkými potížemi. Např. 4K paměti RAM typ S03470/71 a 93481 byly vyvinuty již před dvěma roky a ještě nejsou dodávány na trh. Obdobně o 16K paměti RAM typ 93483 se již dlouho diskutuje, aníž by byla dostupná na trhu. Jako oprávněná jsou zřejmě tvrzení, že tyto paměti nejsou natolik zvládnutny, aby byly reálné pro výrobu. V každém případě aplikaci úspěch těchto paměti bude omezený, neboť je nebudou dodávat jiní výrobci.

(Pokračování)

Jakostní operační usměřovač

Ing. Leopold Filouš

Usměřovače střídavých signálů pro účely měření, indikace, registrace a další jsou nezbytným a stále důležitým obvodem automatizačních zařízení a měřicích přístrojů.

Usměření střídavých signálů polovodičovými diodami vede ke značné nonlinearity převodové funkce, způsobené neideálními vlastnostmi těchto součástek. Pro signály s malou úrovní je polovodičová dioda tvarem své statické převodové charakteristiky nevhodná. V současné době jsou známa a používána různá zapojení usměřovačů s diodami v obvodu zpětné vazby operačního zesilovače nebo řízených usměřovačů s tranzistorovými spinači [1], u kterých jsou uvedené nežádoucí vlastnosti odstraněny.

U měřicích obvodů je snahou dosáhnout vždy co nejlepších parametrů, aby byla zajištěna co největší možná přesnost měření. Vynikající vlastnosti operačních zesilovačů umožňují stále častěji nahrazovat původní klasická zapojení novými, kvalitnějšími a přitom obvodově jednoduššími při realizaci. Jedním z mnoha případů vytvoření jakostního obvodu je i operační usměřovač.

Na obr. 1 je základní zapojení velmi přesného operačního usměřovače navrženého podle [2]. Uvedený obvod je vhodný k přesnému usměření střídavých signálů v rozsahu nízkých kmitočtů. Tvoří jej dva operační zesilovače ve funkci komparátoru K a operačního usměřovače OS, spinače S_1 a S_2 , a dva přesné odpory R_1 , R_2 . Řídicí signál pro ovládání operačního usměřovače OS je odvozen komparátorem přímo ze vstupního

Obr. 1. Základní zapojení operačního usměřovače

měřeného střídavého napětí U_1 . Při každé půlvalné vstupním napětí U_1 se změní polarita výstupního napětí komparátoru $U_k = U_{km} \operatorname{sign}[U_1 - U_r]$, a spinače se nastaví do takové polohy, že zesílení následujícího operačního usměřovače OS se mění z -1 na $+1$. Tak působí obvod s operačním zesilovačem jako dvoucestný usměřovač.

Vlivy působící na přesnost měření

Přesnost a jakost usměřovacího obvodu je závislá především na vlastnostech použitých součástí. Bude ovlivňována zejména tolerancí odporů R_1 , R_2 a vstupními parametry obou zesilovačů. Při použití přesných odporů R_1 a R_2 bodo absolutní hodnoty obou půlvalných výstupních napětí shodné. Ostatní vlivy, tj. napěťová nesymetrie U_N se dodatečně vykompenzují na vstupu operačního zesilovače. Vliv rušivého proudu OS se vyloučí

Obr. 2. Vliv driftu komparátoru na řídicí signál

zapojením odporu R_3 ($R_3 = \frac{1}{2} R_1$) do neinvertujícího vstupu. U komparátoru se napak volí dva stejné odpory.

Větší pozornost si zaslouží obvod komparátoru, který generuje řídicí napětí pro oba spinače S_1 a S_2 . Omezuje se parametrem je v tomto případě především velikost napěťové nesymetrie U_N a zesílení. Pokud nebude komparátor v oblasti průchodu střídavého vstupního napětí nulou dostatečně citlivý, má při sinusovém průběhu vstupního napětí výstupní napětí OS tvar, uvedený na obr. 2. Výstupní napětí komparátoru U_k lze matematicky vyjádřit ve tvaru

$$u_k(t) = U_{km} \operatorname{sign}[u_1(t) - u_r], \quad (1)$$

kde U_{km} je maximální hodnota výstupního napětí komparátoru a

sign. $[u_1 - u_r]$ popisuje případ, kdy $u_1 = u_r$.

Pro průběh výstupního napětí z obr. 2 platí

$$u_2(t) = u_1(t) \operatorname{sign}[u_1(t) - u_r]. \quad (2)$$

Je-li řídicí napětí odvozeno z napětí měřeného, tj. jsou-li obě napětí $u_1(t)$ a $u_k(t)$ synchronizována, pak výstupní napětí je

$$u_2(t) = u_1(t) \operatorname{sign}[u_1(t) - u_r] = |u_1(t)|. \quad (3)$$

Uvedený vztah platí pro ideální usměřovač. Ve skutečném usměřovači jsou poměry poněkud složitější. Při malých úrovních měřeného napětí se začíná uplatňovat vlastní drift komparátoru, který posouvá okamžíky průchodu řídicího napětí přes nulovou úroveň. Tím je narušena synchronizace obou napětí – měřeného $u_1(t)$ (body A, A₁ – obr. 3) a jeho řídicího napětí. Ve skutečném obvodu komparátoru; uvážíme-li jeho konečné parametry, budou průchody nulou posunuty o φ_1 do bodů C a C₁. V tomto případě bude výstupní napětí usměřovače

$$u_2(t) = |u_1(t)| (1 + \delta),$$

kde δ je relativní chyba, způsobená obvodem komparátoru.

Při určování chyby použijeme obr. 3. Část plochy P , vymezená úsekem sepnutí φ_1 (ΔABC), se odečte od základní půlvalny napětí (plocha P). K vyjádření střední hodnoty v praxi postačí integrovat část úseku od φ_1 do max. hodnoty napětí U_{lm} :

$$u_2(t) = \frac{4}{T} \int_{\varphi_1}^{\frac{\pi}{2}} U_{lm} \sin \omega t dt \quad (4)$$

Obr. 3. Průběh výstupního napětí operačního usměřovače

Posunutí φ_1 určíme z průběhu napěťového signálu $u_1(t)$, pro něž platí

$$u_1 = u_1(\varphi_1) = U_{lm} \sin \omega \varphi_1. \quad (5)$$

Odtud

$$\varphi_1 = \frac{1}{\omega} \arcsin \frac{u_1}{U_{lm}} \quad (6)$$

Po integraci a dosazení mezi do rovnice (4) obdržíme pro střední hodnotu výstupního napětí vztah

$$\bar{U}_2 = \frac{2}{\pi} U_{lm} \cos \arcsin \frac{U_1}{U_{lm}} \quad (7)$$

Pro u_1 velmi malé ($u_1 \ll 1$) lze výraz (7) upravit na konečný tvar

$$\bar{U}_2 = \frac{2}{\pi} U_{lm} \sqrt{1 - \left(\frac{u_1}{U_{lm}} \right)^2}, \quad (8)$$

U ideálního usměřovače bude střední hodnota napětí

$$\bar{U}_2 = \frac{2}{\pi} U_{lm}. \quad (9)$$

Z obou rovnic (8) a (9) se dá pomocí u_1 zjistit relativní chybu usměřovače:

$$\frac{U_{2i} - \bar{U}_2}{U_{2i}} = 1 - \sqrt{1 - \left(\frac{u_1}{U_{lm}} \right)^2}. \quad (10)$$

Uvedený názorný výpočet ukazuje, že se chyba zmenší s druhou mocninou poměru $\frac{u_1}{U_{lm}}$ a je při poměru 0,01 (např. $u_1 = 3 \text{ mV}$ a $U_{lm} = 0,3 \text{ V}$) jen 0,005 %. Z toho vyplývá, že se dá v mnoha případech použít komparátor bez dodatečné kompenzace napěťové nesymetrie vstupů U_N .

Všechny uvedené ovlivňující veličiny působí nezávisle na kmitočtu vstupního měřeného napětí. Pokud se týká kmitočtové závislosti, je dáná parametry použitých prvků, především šírkou kmitočtového pásma použitých operačních zesilovačů a dynamickými vlastnostmi spinačů.

Úplné zapojení operačního usměřovače

Na obr. 4 je uvedeno úplné zapojení operačního usměřovače. Při realizaci byly použity běžně dostupné součástky – operační zesilovače MAA501 a tranzistory KF521 a KSY82. Podstata činnosti obvodu spočívá ve změně přenosu OS v dané půlperiodě střídavého vstupního signálu. Tato změna je odvozena komparátorem při průchodu vstupního signálu přes nulovou úroveň. Při kladné půlvalné vstupním napětí je na výstupu komparátoru napětí $+U_k$. Tímto napětím se uzavře tranzistor T_2 a otevře T_1 . Zesílení operačního usměřovače OS je $+1$ a na výstup se přenese kladná půlvalna napětí. Při změně, tj. při záporné půlvalvě, je na výstupu komparátoru napětí $-U_k$. Tranzistor T_1 se uzavře a T_2 otevře. Tím se připojí odporník R_3 ke společnému vodiči. Zesilovač OS je ve stavu invertujícím, takže zesílení je -1 a na výstupu se objeví opět kladná půlvalna; tak se na výstupu získá absolutní hodnota vstupního napětí:

$$u_2(t) = |u_1(t)|.$$

Obvod je schopen zpracovat signály s napětím do 4 V. Tato mez je v našem konkrétním

Obr. 4. Úplné schéma zapojení operačního usměrňovače

případě dána spínačem T_2 , jehož dovolené maximální závěrné napětí (U_{EB}) je 4 V. Použijeme-li spínače lepších vlastností, zvětší se rozsah měřeného napětí.

Závěr

Použitím operačních zesilovačů v obvodu usměrňovače lze dosáhnout výrazně lepších vlastností při zjednodušení zapojení. Zpracování střídavých signálů v poměrně širokém rozsahu úrovní dává velké možnosti využití obvodu v měřicí technice, zvláště při zpracování signálů malé úrovně. Kmitočtové vlast-

nosti jsou uspokojivé. V navrženém zapojení byly získány tyto výsledky: chyba převodu nepřesáhla 0,03 % v rozsahu změn úrovně střídavého signálu od 10 mV do 4 V, rozsah kmitočtů je do 500 Hz. Do kmitočtu 2 kHz je přesnost převodu lepší než 0,1 %, pro signály do kmitočtu 5 kHz lepší než 0,5 %.

Literatura

[1] Filouš, L.: Převodníky střídavého napětí NC 10, NC 20 a proud NC 40, NC 50 z hlediska jejich použití pro měření zkresle-

ných průběhů napětí a proudu. Měřicí technika č. 3/1978, s. 1.

[2] Filouš, L.: Dvoucestný usměrňovač. PV 8815 - 75.

Seznam součástek

Odpory

R_1, R_2	$49,9 \text{ k}\Omega \pm 0,2 \text{ \% /2, TR 161}$
R_3	$22 \text{ k}\Omega, \text{TR 191}$
R_4	$1,5 \text{ k}\Omega, \text{TR 191}$
R_5	$220 \text{ k}\Omega, \text{TR 191}$
R_6, R_7	$15 \text{ k}\Omega, \text{TR 191}$
R_8, R_9	$100 \text{ k}\Omega, \text{TR 191}$
R_{10}	$1 \text{ M}\Omega, \text{TR 191}$
R_{11}	$8,2 \text{ k}\Omega, \text{TR 191}$
R_{12}	$0,1 \text{ M}\Omega, \text{TR 191}$
R_{13}, R_{14}	$10 \text{ k}\Omega, \text{TR 191}$
P_1	$220 \Omega, \text{TP 011}$

Kondenzátory

C_1	150 pF, TGL 5155
C_2, C_5	10 pF, TGL 5155
C_3	220 pF, TGL 5155
C_4	$4,7 \text{ pF, TK 754}$

Polovodičové součástky

IO_1, IO_2	MAA501
T_1	KF521
T_2	KSY82
D_1, D_2, D_3	KA206

Integrovaný stereodekodér s fázovým závěsem z NDR

V AR A5 a 6/1977 byl podrobně popsán monolitický integrovaný obvod MC1310P (stereodekodér s fázovým závěsem) i konstrukce jakostního dekodéru vyhovujícího požadavkům hi-fi. Množství inzerátů svědčí o oblibě tohoto obvodu a amatérům jistě uvítají, že prakticky stejný obvod s označením A290D vyrábí v NDR závod VEB Halbleiterwerk, Frankfurt/Oder. Podrobný návod pro aplikaci byl uveřejněn v Radio Fernsehen Elektronik 6/1977.

A290D je stereodekodér s časově multiplexním řízením. Kmitočet přepínacího napětí je odvozen z napěťové řízeného oscilátoru (dále jen NRO), který je fázově zavěšen na pilotní kmitočet vstupního MPX signálu. Podobně jako MC1310P, ani A290D nemá cívky a vyžaduje jen minimum vnějších součástek. Jeho nastavení spočívá pouze v kontrole pilotního kmitočtu. Obvod je ve čtrnáctivývodovém pouzdro DIL s plastické hmoty, zapojení vývodů (obr. 1) je shodné s obvodem MC1310P. Základní údaje jsou v tab. 1. I z blokového schématu obvodu na obr. 2 spolu s vnějším propojením vyplývá zřejmá podobnost s MC1310P.

Napětí U_1 stereofonního signálu MPX se přivádí na vývod 2. Po zesílení nf stupněm (asi 9 dB) jde signál jednak vnitřním spojem na vstup obvodu dekodéru, jednak vnějším kondenzátorem C_5 , připojeným k vývodům 3 a 11, na vstup smyčky fázového závěsu. Kondenzátor C_6 brání vlastním oscilacím.

Základem fázového závěsu je NRO, který tvoří Schmittův klopný obvod s přepínacími úrovněmi 1,5 V a 5,4 V. Kmitočet volně kmitajícího oscilátoru je určován členem RC , připojeným k vývodům 14 a 7. Dílčím odporem R_6 se nastavuje kmitočet oscilátoru na

76 kHz. Po průchodu kmitočtovými děliči 1 : 2 je na kontrolním výstupu (vývod 10) obdělníkovitý signál o kmitočtu 19 kHz. Ten se v prvním fázovém detektoru porovnává s přiváděným MPX signálem. Napětí úměrné fázové diferenci se upravuje pásmovou propustí a je zesílená stejnosměrná složka řídí NRO tak, aby na výstupu fázového detektoru bylo nulové napětí. V takovém případě je kmitočet NRO synchronní se složkou signálu MPX a je fázově posunut o 90°. Napětí z prvního děliče kmitočtu se přivádí také na vstup třetího děliče kmitočtu 1 : 2 a jeho výstupní napětí o kmitočtu 19 kHz s fázovým posunem 0° (180°) vzhledem k pilotnímu signálu je vstupním napětím druhého fázového detektoru.

Napětí se upravuje filtrem a je jím řízen společným obvodem. Přítomnost pilotního signálu se projeví napětím na výstupu 6, které rozsvítí signální žárovku. Napětí druhého výstupu společného obvodu otevří stereofonní přepínač, kterým se přivádí obdělníkovitý napětí o kmitočtu 38 kHz na vlastní dekodér s časově multiplexním řízením. Na jeho druhém vstupu jde MPX signál z výstupu nf stupně. Na výstupu dekodéru je MPX signál synchronně rozdělen v taktu 38 kHz do levého a do pravého kanálu. Symetrie vnitřních odporů v obvodech přepínacích tranzistorů určuje přeslechový útlum mezi oběma kanály. Přeslechový útlum 40 dB vyžaduje, aby diference nebyla větší než 10 %. Členy RC připojené k vývodům 5 a 6 pro výstup nf signálu levého a pravého kanálu mají časovou konstantu $\tau = 50 \mu\text{s}$.

Napájecí napětí U_1 (8 až 15 V) se připojuje k vývodům 1 a 7. Napětí U_2 je nejprve stabilizováno obvodem Zenerovy diody a pak ještě dvoutranistorovým stabilizátorem. Tímto napětím jsou pak napájeny jednotlivé funkční bloky. Stabilizátor žároveň obsahuje „proudovou banku“, tj. pět zdrojů referenčních proudů pro potřeby vnitřních obvodů (převážně fázových detektorů).

blokové uspořádání A290D a MC1310P je shodné a kromě drobných úprav (např. přidání jednoho zesilovacího stupně děličky) je stejně i obvodové řešení. Kromě ochranných odporů k vývodům 10 a 6 a odlišných hodnot některých součástek je shodné i zapojení vnějších obvodů dekodéru (obr. 3). Vlastnosti zapojení podle obr. 3 jsou v tabulce 3, maximální zatěžovací odpory obou kanálů pro různá napájecí napětí pak v tabulce 2.

Nastavení obvodu je rovněž shodné jako u MC1310P. Přes ochranný odpor se k vývodu 10 připoji kmitočtový čítač a odporom R_6 se přesně nastaví kmitočet 19 kHz.

Na závěr lze říci, že se našim severním sousedům podařilo realizovat monolitický stereofonní dekodér s fázovým závěsem, který plně nahrazuje dosud užívaný obliběný MC1310P. Doufajme, vzhledem k dobrým zkušenostem, že dostupnost a především cena budou příznivé i pro naše amatéry.

Ing. A. H.

Obr. 1. Rozložení vývodů A290D

- $+U_1$ (napájení)
- vstup MPX
- výstup MPX
- levý kanál nf
- pravý kanál nf
- signalační žárovka
- společný vodič
- přepínací filtr
- přepínací filtr
- výstup MB (19 kHz)
- vstup fázových detektorů
- pásmová propust
- pásmová propust
- připojení členu RC oscilátoru

Obr. 2. Blokové schéma A290D s vnějším propojením

Tab. 3. Elektrické parametry základního zapojení A290D ($\vartheta = 25^\circ\text{C}$, $U_5 = 15\text{ V}$)

Obr. 3. Typické zapojení s A290D

Tab. 1. Mezní údaje A290D

Napájecí napětí U_5 Proud sig. žárovky I_b Vstupní napětí U_1 Pracovní teplota	8 až 15 V 75 mA 2,8 V 0° až 70 °C	8 až 15 V 75 mA 2,8 V 0° až 70 °C
---	--	--

Tab. 2. Maximální zatěžovací odpory

U_5	8 V	10 V	12 V	15 V
$R_{L,p}$	2,7 k Ω	4,3 k Ω	6,2 k Ω	7,5 k Ω

Pozn. red.: Vzhledem k velkému zájmu, který je o integrované obvody z NDR, bude AR řady B, č. 6/1980, věnováno popisu technických vlastností a aplikací integrovaných obvodů z Německé demokratické re-

Veličina	Měřený údaj	Typické hodnoty
Odběr při vyp. žár.	$U_1 = 0$, volně kmitají	12,5 < 26,0 mA
Rozdíl úrovní (mono-stereo)	$U_1 = 2,8\text{ V}$ $f = 1\text{ kHz}$	0,3 < 1,6 dB
Úroveň spínání (stereo)	pouze pilot. signál	15,7 < 22,0 mV
Přeslechový útlum mezi kanály L \rightarrow R R \rightarrow L	signál MPX*, mod. L signál MPX*, mod. R	40,5 > 30 dB 40,5 > 30 dB
Úroveň na žárovce	$I_b = 75\text{ mA}$, $U_1 = 0,1\text{ V}$, $f = 19\text{ kHz}$	1,4 V
Úroveň vypínání (stereo)	pouze pilot. signál	7,9 mV
Hystereze spínání žárovky	-	5,9 dB
Zkreslení (mono) L R	$U_1 = 2,8\text{ V}$, $f = 1\text{ kHz}$	0,46 % 0,42 %
Zkreslení (stereo) L R	signál MPX*, mod. L signál MPX*, mod. R	0,27 % 0,29 %
Pásмо zachycení	$U_1 = 0,1\text{ V}$	18,25 až 20,5 kHz
Zesílení mono stereo	$U_1 = 2,8\text{ V}$, $f = 1\text{ kHz}$ signál MPX*, mod. L nebo R	-5,8 dB -5,8 dB
Potlačení signálů 19 kHz 38 kHz 67 kHz 114 kHz	signál MPX*	33,6 dB 37,3 dB 75,2 dB 57,1 dB
Potlačení pilotního signálu	$U_1 = 0,1\text{ V}$, $f = 19\text{ kHz}$	19,0 dB
Potlačení postran. pásem	signál MPX*	22,7 dB

* $U_1 = 2,8\text{ V}$, $f_{mod} = 1\text{ kHz}$, $U_{pil} = 0,1\text{ V}$, $f_p = 19,0\text{ kHz}$.

publiky. Uvedeny budou i nejpoužívanější, obvykle zcela běžně dostupné a relativně levné obvody.

SEZNAMTE SE...

s gramofonovým přístrojem TESLA NZC 420

Celkový popis

Gramofonový přístroj NZC 420 (obr. 1,2) je kombinací stereofonního zesilovače a gramofonového šasi typu HC 42. Technickými parametry odpovídá třídě přístrojů pro zvýšené nároky, hi-fi. Přenoskový systém je magnetodynamický s typovým označením VM 2101. Trubkové raménko přenosky je doplněno zvedacím mechanismem k snad-

nějšímu vkládání hrotu do náběhové drážky. Po dohrání desky se raménko s vložkou samočinně zvedne. Raménko je též opatřeno nastavitelným antiskatingem.

Pohon dvoudílného talíře obstarává synchronní motorek známého typu SMR 300. Pryžový řemínek pohání vnitřní část talíře, řemenice motorku je dvoustupňová a k přepínání obou rychlostí otáčení slouží obvyklá „vidlička“.

Obr. 1. Gramofonový přístroj NZC 420

Na celní stěně přístroje (obr. 1) jsou všechny ovládací prvky zesilovače. Kromě otočných regulátorů hlasitosti, hloubek, výšek a vyvážení, jsou tu i tlačítkové přepínače vstupů (magnetofon, radio, přenoska krystalová, přenoska magnetická), dále přepínače hloubkového a výškového filtru a přepínač mono-stereo. Vlevo vpředu je tlačítkový přepínač reproduktory-slučátko a síťový spínač. Horní část s gramofonem lze uzavřít víkem z organického skla s kouřovým zabarvením.

Hlavní technické údaje podle výrobce:

Zesilovač

Výstupní výkon: 2×15 W.

Zatížovací impedance: 4Ω .

Zkreslení: 2 % (při 63 Hz),

1 % (při 1 kHz),

1,5 % (při 5 kHz).

Kmitočtová charakteristika: 20 až 20 000 Hz v pásmu 4 dB.

Odstup: 64 dB (na vstupu tuneru).

Jmenovité citlivosti vstupů:

tuner: 200 mV, $0,5 \text{ M}\Omega$,
magnetofon: 200 mV, $0,5 \text{ M}\Omega$.

Rozsahy korekcií: ± 15 dB (na 40 Hz a 16 kHz).

Filtr „high“: -10 dB (na 20 kHz).

Filtr „low“: -10 dB (na 40 Hz).

Gramofon

Rychlosť otáčania: 45 a 33 1/3 ot/min.

Kolísanie rychlosť otáčania: $\pm 0,2\%$.

Použitá vložka: VM 2101.

Kmitočtová charakteristika:

31,5 až 63 Hz ± 10 dB,

63 až 8000 Hz ± 4 dB,

8000 až 16 000 Hz, ± 10 dB.

Přeslech: 20 dB (na 1000 Hz),

15 dB (na 15 kHz).

Svislá síla na hrot: 20 až 25 10^{-3} N.

Odstup cizích napětí: 35 dB.

Celkově

Napájecí napětí: 220 V/50 Hz.

Příkon: 80 VA.

Rozměry: 48 × 37 × 16 cm.

Hmotnost: 11 kg.

Funkce přístroje

Celý přístroj byl podrobně proměřen, nebyly však zjištěny žádné nedostatky vzhledem k výrobci uvedeným parametry. Tyto parametry byly vesměs splňovány s dosačující rezervou. Jediná závada byla objevena při přehrávání měřicí desky. V pravém kanálu nastával (asi od 2000 Hz výše) úbytek signálů vysších kmitočtů, takže u 10 kHz již bylo výstupní napětí pravého kanálu oproti levému asi o 12 dB nižší. Závada byla způsobována vadným systémem přenosky a od-

Obr. 2. Přístroj s odkrytým krycím víkem

stranit by ji bylo možno jen výměnou přenosky.

Několik drobných připomínek k elektrické části přístroje (obdobných jako u typu NZC 421, popsaném v AR A3/79) nikterak nemění skutečnost, že zesilovač jako celek je plně vyhovující.

Vnější provedení a uspořádání přístroje

Z hlediska vnějšího provedení se popisovaný přístroj nikterak neliší od ostatních výrobků téhož výrobce. provedením i vzhledem je naprostě uspokojující a může konkurovat zahraničním výrobkům kvalitní střední třídy. Za pochvalu stojí i perfektní kryt z organického skla s kourovým zabarvením

Uspořádání ovládacích prvků gramofonu i zesilovače je obvyklé a rovněž plně vyhovuje.

Vnitřní provedení a opravitelnost

I když k otevření přístroje postačí vyšroubovat na dně čtyři šrouby a vysunout ovládací knoflíky hlavních regulátorů, při další demontáži nastanou velké problémy. Celý horní díl s gramofonem lze sice vyjmout směrem nahoru, ale co pak s ním? Krátké přívody nedovolují postavit ho ani vpravo, ani vlevo, ani dozadu (svisle za spodní díl) – v této poslední poloze by byl horní díl velmi labilní, takže pro přístup k elektronické části bylo nutno horní díl vykloupat směrem nahoru a podložit ji šroubovákem, jak je patrné z obr. 3.

Stejně nevhovující je i způsob upevnění desek s plošnými spoji, které jsou k základní desce přisroubovány čtyřmi šrouby a propojeny kabelovými svazky. Z hlediska ekonomie oprav je tato konstrukce zcela nevhodná. A toto hledisko by moderních výrobků mělo být právě preferováno! Lze pochopitelně namítat, že – pokud bude přístroj fungovat – tato otázka zákazníka zajímat nebude, to však nic nemění na skutečnosti, že

Obr. 3. Vnitřní uspořádání NZC 420

by měl výrobce tomuto řešení u příštích typů věnovat více pozornosti!

Závěr

Pokud nebude brát v úvahu výše uvedené nedostatky, které u fungujícího přístroje zákazníkovi vadit nebudou, můžeme gramofonový přístroj NZC 420 označit za velmi

dobrý výrobek, který uspokojí i náročné zákazníky. Závadu v systému přenosky lze patrně považovat za náhodou nikoli konstrukční vadu. Lze se však domnívat, že se jednalo o vadu výrobní, která patrně existovala v okamžiku, kdy přístroj opouštěl výrobní linku. V takovém případě by patrně nejčlivější výstupní kontrolou bylo možno vadný výrobek zachytit ještě ve výrobním závodě.

-Lx-

BEZKONTAKTNÍ STYKAČ

Ing. Zdeněk Čuta

V článku je popsáno zapojení, umožňující nahradit „klasický“ mechanický stykač obvodem, konstruovaným s použitím polovodičových součástek.

Úvod

Při rozličných laboratorních měřeních a při provozu speciálních měřicích přístrojů se někdy setkáváme s problémem, jak zamezit opětovnému zapnutí měřicího zařízení po náhodném výpadku napájecího síťového napětí.

Opětovnému zapnutí je nutno zamezit například při provozu vysokonapěťových zdrojů (u scintilačních sond, elektronových mikroskopů ap.), tedy u přístrojů, u nichž je předepsán přesný sled operací při uvádění do provozu. Některé typy přístrojů jsou zabezpečovacím zařízením již vybaveny. V ostatních případech lze zapojit do přívodu síťového napájení relé nebo stykač; obě tyto součástky jsou však obvykle značně rozměr-

né a nelze je ve všech případech vestavět do přístroje dodatečně.

Z toho důvodu bylo navrženo zapojení s polovodičovými součástkami, mající vlastnosti relé při malých rozměrech a hmotnosti.

Obr. 2. Deska s plošnými spoji O58 a rozmístěním součástek; přívod fáze (vstup) je vhodné připojit přímo na anodu A1 triaku

ním síťového napětí a stabilizací Zenerovou diodou. Záporné napětí je na řídicí elektrodu triaku přiváděno přes tyristor, který je ovládán závislým „spínacím“ obvodem pomocí tlačítka START.

Princip činnosti

Navrhovaný obvod musí nahrazovat činnost stykače ovládaného tlačítky; po obnově; ní dodávky síťového proudu jím tedy nesmí procházet proud do spotřebiče.

Po připojení obvodu k síti bude na stabilizační diodě D₂ stejnosměrné ovládací napětí. Stisknutím tlačítka T₂ (START) se uvede do vodivého stavu tyristor, přes něj je přivedeno záporné napětí na řídicí elektrodu triaku. Tím je uveden i triak do vodivého stavu.

Při přerušení síťového napětí zanikne vodivost ovládacího tyristoru i triaku. Je-li síťové napětí opět zapojeno, uvede se triak do vodivého stavu až po stisknutí tlačítka T₂ (START) a teprve pak bude procházet proud do ovládaného přístroje.

Přístroj vypínáme stisknutím tlačítka T₁ (STOP); tím se přeruší proud ovládacím

tyristorem, který udržoval triak ve vodivém stavu.

Konstrukční uspořádání

Popisovaný obvod je umístěn na desce plošných spojů O58 (obr. 2), kterou lze umístit buďto přímo do zabezpečovaného přístroje, nebo ji lze vestavět do lišťové panelové krabice (obj. čís. 6482-04) z růzuvzdorné plastikové hmoty a tím řešit konstrukci obvodu jako samostatnou jednotku včetně síťových zásuvek. Uspořádání je zřejmé z obr. 3.

Závěr

Realizovaný obvod je vlastně polovodičovou obdobou mechanického stykače. Malých rozměrů je dosaženo na úkor vyšší ceny zařízení. Použitím obvodu však lze zmenšit pravděpodobnost vzniku závady ve složitých vysokonapěťových zařízeních a poruch na měřicích aparaturách, což také výváží náklady na navrhované zabezpečovací zařízení.

Obr. 3. Vnitřní uspořádání stykače

Seznam použitých součástek

D ₁	KY132/1000
D ₂	1NZ70
T _c	KT774
T _y	KT501
C ₁	1 μ F/450 V, TE993
C ₂	0,1 μ F/630 V, C210
R ₁	15 k Ω /15 W, TR 509
R ₂	1 k Ω , TR 112
R ₃	100 Ω , TR 112
R ₄	1 k Ω , TR 143
R ₅	120 Ω , TR 144
T ₁	rozpojovací tlačítko
T ₂	spinací tlačítko } bez aretace

Pozn. red.: Na rozdíl od „klasického“ stykače odebírá tento obvod malý proud ze sítě i při rozpojeném stavu. Tuto skutečnost je nutno brát při jeho použití v úvahu.

Literatura

- [1] Hrubý, F.: Způsoby řízení tyristorů a triaků. Sdělovací technika č. 11/1974, s. 407 až 410.
- [2] Mach, J.: Vlastnosti triaku, způsoby řízení a ochrany. Sdělovací technika č. 6/1973, s. 209 až 212.
- [3] -ib-: Síťový rozvod rychle a jednoduše. Amatérské radio řady A č. 5/1976, s. 170.

Filtr pro telegrafii a SSB

Pomocí aktivních filtrů s IO typu 741 nebo obdobnými lze jednoduše sestavit nejen úzkopásmový filtr pro příjem telegrafie, ale též „vyřezávací“ filtr, známý z literatury pod pojmem „NOTCH“ filtr. Ten nám umožňuje potlačit v slyšitelném spektru kmitočtu pásma asi 25 Hz, přičemž je možné kmitočet potlačovaných signálů měnit. Prokáže velmi dobrou službu hlavně při příjmu signálů SSB, rušených telegrafii. Potlačení nežádoucích signálů je asi 25 až 40 dB. Známá firma DATONG, která vyrábí různé doplňky k amatérským zařízením, prodává tento filtr pod označením FL 1. Sdružuje jednak aktivní filtr pro příjem telegrafních signálů s měni-

Obr. 1. Schéma filtru

telným kmitočtem a selektivitou kolem 100 Hz a výše zmíněným vyřezávacím filtr.

Schéma je velmi jednoduché a není k němu prakticky co dodávat. Potenciometr P_1 doporučují použít v provedení TP 289 se zaručeným souběhem a odpory R_4 , R_{10} spolu s kondenzátory C_2 a C_3 vybrat tak, aby rozdíl kapacit nepřevyšoval 5 % (na absolutní hodnotě tolik nezáleží). Napájecí napětí je ± 9 až 15 V, přičemž odebíraný proud neprestoupí 10 mA. S uvedenými hodnotami ve schématu je možné měnit kmitočet telegrafního a vyřezávacího filtru v mezech 400 až 2700 Hz. Zesílení celé soustavy je malé (závisí na kmitočtu, max. 8). Výstupní napětí na záťazi v obou funkcích zapojení (jejich shodnost) lze nastavit zvětšením odporu R_8 nebo R_9 .

QX

TRANSVERTOR 28/145 MHz PRO PŘIJÍMAČE KV

Zdeněk Říha, OK1AR

Sídlo větší počet kolektivních stanic i operátorů s vlastním osvědčením vlastní dobré SSB a CW zařízení pro KV, at už jsou to u nás nejrozšířenější stanice OTAVA, či svého času dovezené FTDX503, či TS520 a další. Tyto stanice mají velmi dobrou citlivost a selektivitu danou použitým krystalovým filtrem.

Z tohoto důvodu je vcelku neekonomické a technicky náročné stavět celé nové zařízení pro provoz v pásmu dvou metrů a vyplatí se použít stávající transceiver pro KV jako laděnou mezinfrekvenci a budič SSB a CW k transvertoru na 145 MHz. Pro převod kmitočtu se hodí nejlépe pásmo 28 MHz, i když použitím krystalu s jiným kmitočtem není vyloučeno použití některé z dalších amatérských pásem.

Jako základ popisovaného transvertoru bylo použito zapojení z jugoslávského časopisu Radioamater č. 7-8/1977. Zapojení bylo upraveno na u nás dostupné součástky a vyzkoušeno prozatím ve dvou verzích. Blokové schéma transvertoru je na obr. 1. Ze zapojení je zřejmé, že transvertor obsahuje tři podstatné části a to kmitočtovou ústřednu, vysílač konvertor a přijímací konvertor. V oscilátoru je použit krystal 38,667 MHz, kmitající na základním kmitočtu, v následujícím stupni se tento kmitočet násobí třikrát na kmitočet 116 MHz.

Přijímací část obsahuje vf zosilovač se ziskem 18 až 20 dB pro kmitočtu v pásmu 2 metrů. Za zosilovačem následuje směšovač, kde se od vstupního kmitočtu odečítá 116 MHz z násobice; tím se získá mezinfrekvenční kmitočet v pásmu 10 metrů. Tento signál se v následujícím mf zosilovači zosílí o 8 až 10 dB a odvádí se do přijímače krátkovlnného transceiveru. Vysílač část tvoří směšovač, kde se signál z transceiveru směšuje opět se signálem 116 MHz z kmitočtové ústředny a výsledný signál v pásmu 145 MHz se dále zesiluje až na výkonovou úroveň 1 W.

Na obr. 2 je zapojení transvertoru. Jak již bylo řečeno, oscilátor je řízen krystalem 38,667 MHz a je osazen tranzistorem KF173. Zpětná vazba oscilátoru je zavedena kapacitním děličem z kolektoru do emitoru a krystal je zapojen v bázi tranzistoru. Dodatečnou stabilizaci kmitočtu oscilátoru zajišťuje Zenerova dioda 5NZ70, čímž je zaručena vysoká stabilita signálu i po vynásobení na 116 MHz. Induktivní vazbou se přivádí signál z oscilátoru na bázi tranzistoru násobice (rovněž KF173). Klidový proud tranzistoru

je nastaven odpovídajícím děličem v bázi a odporem v emitoru na 1,5 mA. V kolektoru tranzistoru je zapojena pásmová propust laděná na 116 MHz. Z odběrky sekundárního vinutí se odvádí signál do směšovačů přijímací a vysílační části. Vf napětí na odběrce pásmové propusti bez připojených směšovačů se pohybuje okolo 1,3 V.

Signál z antény se přivádí přes kontakty relé na odběrku čívky L_1 , laděnou na střed pásmu 2 m. Odběrka zaručuje dobré přizpůsobení impedance antény ke vstupnímu obvodu a tím i selektivitu zosilovače. Ten je osazen tranzistorem FET (40673), který je občas k dostání v prodějnách s průmyslovým zbožím na Karlově náměstí v Praze. Zde bych chtěl podotknout, že lze s výhodou použít i u našich sousedů v NDR snadno dostupných a levných tranzistorů sovětské produkce KP350, bez podstatného zhoršení vlastností transvertoru. Signál ze vstupního obvodu se přivádí na GATE 1 tohoto tranzistoru. GATE 2 je vysokofrekvenčně uzemněn a napojen kladným napětím z odpovídajícího děliče, kterým nastavíme pracovní bod tranzistoru. Zesílený signál se přivádí přes pásmovou propust na G_1 směšovače, kde je rovněž použit tranzistor 40673. Šířka propustného pásmá je nastavena závislou kapacitou mezi L_2 a L_3 na 2,5 MHz při zeslabení asi 3 dB. Na G_2 směšovače je přiveden signál 116 MHz z násobice. Použití tranzistorů FET ve směšovači zaručuje větší

potlačení intermodulačních produktů a zapojení se vyznačuje větším dynamickým rozsahem směšovače, než při použití klasického tranzistoru. Pracovní bod směšovačního tranzistoru je nastaven odpovídajícím děličem, z kterého je napojena elektroda G_2 . Vf napětí, naměřené na G_2 , by mělo být v rozmezí 0,6 až 0,8 V. Výstup směšovače je od následujícího mf zosilovače 28 MHz pro zlepšení selektivity oddělen pásmovým filtrem, laděným na střed pásmu 10 metrů. Pásmová propust má nadkritickou vazbu a tak je zaručen rovnometrý přenos signálů v celém pásmu 28 až 30 MHz. Na mf stupni je opět použit tranzistor 40673 nebo jiný vyhovující typ. Výstupní filtr mf zosilovače je stejný, jako filtr předešlý. Signál 28 MHz se vzhledem k impedančnímu přizpůsobení odvádí do krátkovlnného zařízení z odběrky sekundárního vinutí L_7 .

Signál z krátkovlnného vysílače o kmitočtu 28 až 30 MHz se přivádí přes odpovídající dělič na G_1 směšovače vysílační části. Na G_2 tohoto směšovače se opět přivádí signál 116 MHz z násobice. Úroveň tohoto signálu se musí pohybovat v rozmezí 0,5 až 0,7 V. Laděný obvod na výstupu směšovače je laděn na střed pásmu 2 m. Kapacitní vazbou z tohoto obvodu je signál veden na bázi prvního vf zosilovače, osazeného tranzistorem KF173. Klidový proud, nastavený odpovídajícím děličem v bázi a emitorovým odporem, je okolo 2 mA. Tento proud při vybuzení stoupne asi na 10 mA. Následuje další vf zosilovače, osazený KF173, který má klidový proud 5 mA a při vybuzení 20 až 30 mA. Za tímto zosilovačem je již výkonový zosilovač, osazený tranzistorem 2N3866, pracujícím ve třídě AB. Klidový proud se nastaví děličem báze na 10 až 15 mA. Při vybuzení stoupne kolektorový proud na 150 až 170 mA, což odpovídá příkonu 1,8 až 2 W a výkonu

Obr. 1. Blokové schéma transvertoru

Obr. 2. Schéma zapojení transvertoru

přibližně 1 W na zátěži $75\ \Omega$. Nedoporučuji překročit kolektorový proud 200 mA, jinak hrozí bezprostřední zničení tranzistoru.

Sám tento transvertor provozuje s transceiverm TS520. Toto zařízení má značnou výhodu v tom, že má zabudován konektor s výstupním napětím 12 V pro napájení transvertoru a současně vypolen vstup příjmače a výstup vysílačního signálu o nízké úrovni. Uživatelé stanic Otava mají možnost výstup příjmací a vysílační části přepínat pomocí dalšího relé a využít tak přímo anténní konektor transceiveru. V tom případě se ale musí velký výstupní výkon „spálit“ na umělé zátěži, což je dost neekonomické. Další, mnohem vhodnější možností je zabudování ještě jednoho souosého konektoru, na který se přivede výstupní napětí o nižší úrovni z oddělovacího stupně Otavy. Výstupní konektor lze v tomto případě odebrat přes kondenzátor 100 pF z bodu 713 v mřížkovém obvodu koncového stupně Otavy. Lze

použít souosé zástrčky a zásuvky, jaké jsou použity v tranzistorových přijímačích řady Akcent, popřípadě i sluchátkového konektoru s radiopřijímačů. K propojení transcektoru s transvertorem plně využívá souosý kablík VFKP110 o Ø 2,8 mm. Dále je vhodné na zdroj Otavy přidat spínač žhavení koncových elektronek QQE03/12 a tím je celá úprava Otavy pro použití s transvertorem u konce.

Uvádění do provozu

Na obr. 3 je výkres obrazce plošných spojů a na obr. 4 rozmístění součástek, obojí v měřítku 1 : 1. Po osazení desky všemi součástkami kromě polovodičů nejprve předládime všechny rezonanční obvody pomocí GDO na příslušné kmitočty. Vstupní obvody ladíme bez připojených ochranných diod D_1 a D_2 . Poté připájíme tranzistory

oscilátoru a násobiče. Nejprve, bez připojeného krystalu, zkонтrolujeme nastavení pracovních bodů T_4 a T_5 . Pokud napětí souhlasí, připojí se krystal a pomocí GDO nebo absorbčního vlnoměru zkонтrolujeme na obvodu L_8 , L_9 , zda oscilátor kmitá. Poté pomocí Avometu nebo jiného měřicího přístroje měříme úbytek napětí na emitorovém odporu R_{20} . Jádrem cívky L_8 ladíme obvod na maximální úbytek napětí na R_{20} . Pak zkонтrolujeme, zda oscilátor nasazuje kmity spolehlivě i po případném snížení napětí o 1 až 2 V. Obvody násobiče kmitočtu L_{10} a L_{11} pak ladíme na maximální výchylku absorpčního vlnoměru na 116 MHz, případně na maximální výchylku při voltmetu připojeného na odbočku cívky L_{11} .

Nyní přistoupíme k ozivení přijímací části. S opatrností, kterou vyžadují tranzistory řízené polem, tyto zapojíme do desky a opět zkontrolujeme, případně poopravíme nastavení pracovních bodů jednotlivých tranzistorů. Obvody mř zesilovače L_4 , L_5 a L_6 , L_7 můžeme sladovat signálním generátorem nebo jednoduše tak, že připojíme anténu na vstup pásmové propusti L_4 , L_5 a ladíme podle některého z majáků nebo silné stanice pracující v pásmu 28 MHz. Úroveň signálu kontrolujeme v obou případech podle S-metru přijímače (transceiveru). Podle S-metru ladíme i ostatní obvody přijímací části transvertoru. Pokud pracuje v blízkém okolí některý z našich silných převáděčů či majáků, připojíme na vstup transvertoru anténu a ladíme obvody L_1 , L_2 , L_3 . Samozřejmě můžeme opět použít jiný zdroj signálu v pásmu 145 MHz.

Nastavení vysílací části je obdobné a velice jednoduché. Po příprávě tranzistorů T_6 až T_9 překontrolujeme opět nastavení pracovních bodů a klidových proudů a KV

Tab. 1. Údaje cívek použitých v transvertoru

cívka	závitů	odbočka	drát Ø [mm]	těliska Ø [mm]	poznámky
L ₁	5,5	2,25	CuAg 0,8	5	
L ₂	5,5	3,75	CuAg 0,8	5	
L ₃	5,5	3,75	CuAg 0,8	5	
L ₄	10,5	—	CuL 0,65	5	
L ₅	10,5	—	CuL 0,65	5	
L ₆	10,5	—	CuL 0,65	5	
L ₇	10,5	2,25	CuL 0,65	5	
L ₈	13	—	CuL 0,5	5	
L ₉	2,25	—	CuL 0,5	přes L ₈	
L ₁₀	5,5	3,75	CuAg 0,8		
L ₁₁	5,5	3,75	CuAg 0,8	5	
L ₁₂	4,75	—	CuAg 0,8	5	odbočka podle potřeby
L ₁₃	4,75	—	CuAg 0,8	5	
L ₁₄	3	1,5	CuAg 0,8	7	samonošná
L ₁₅	4	—	CuAg 0,8	7	samonošná
L ₁₆	15	—	CuL 0,1	2	vtlumivka na feritu
L ₁₇	4	—	CuAg 0,8	5	samonošná
L ₁₈	5	—	CuAg 0,8	7	samonošná

Obr. 3. Obrazec plošných spojů na desce O59.

Obr. 4. Rozmístění součástek na desce s plošnými spoji O59

zařízení přepneme na vysílání. Ještě před osazením tranzistory však zkонтrolujeme v napětí v bodě G_2 směšovacího tranzistoru, které nesmí být vyšší než 100 mV (vyhneme se tak zbytečným výdajům za nový tranzistor). Obvody L_{12} , L_{13} a L_{14} ladíme postupně vždy na nejvyšší úbytek napětí na emitorovém odporu následujícího stupně. Vysílačovou část sladíme s připojenou umělou záteží 75 Ω . Vf napětí na výstupu transverzoru kontrolujeme reflektometrem nebo v voltmetrech. Kondenzátory C_{47} a C_{48} nastavíme na největší výchylku měřidla při připojené umělé záteži. Na závěr překontrolujeme opět nalaďení všech obvodů jak vysílačové tak přijímačové části transverzoru a jádra cívek spolu s kondenzátorovými trimery zajistíme proti samovolnému otáčení.

V tab. 1 jsou údaje použitých cívek a tab. 2 obsahuje informativní naměřená napětí na elektrodách jednotlivých tranzistorů. Chtěl bych ještě upozornit na to, že použité d'voubázové tranzistory FET se při provozu měrně zahřívají, což je u těchto tranzistorů normální.

Komu by se snad výkon 1 W zdál nedostatečný, může použít ještě další výkonový zesilovač, ať již s tranzistorem či s elektronkou. Sám používám za tímto transverzorem zesilovač výkonu QQE03/12 a SRS4451 s příkonem 160 W. Tento zesilovač je ve společné skřínce o rozloze 30 x 15 x 15 cm spolu s tranzistorovou částí. Jednotlivé části jsou od sebe odděleny pouze přepážkou z Al plechu 2 mm a přesto se během absolovování čtyř čtyřiadvacetihodinových závodů neprojevila na transverzoru jediná závada a jednotlivé části se ani nikterak neovlivnily.

Závěrem bych chtěl poděkovat „stálému“ osazenstvu převáděče OK0E na Klinovci za praktické rady a těm, kteří se rozhodnou pro stavbu transverzoru, přejí mnoho pěkných spojení a těším se naslyšenou v pásmu 2 metrů.

Tab. 2. Informační tabulka naměřených napětí proti zemi ve voltech

Tranzistor	G ₁ (E)	G ₂ (B)	D (C)
T ₁	0	1,8	9
-T ₂	0	0,8	9
T ₃	0	2	9
T ₄	1	1,6	8,5
T ₅	0,4	1	9,5
T ₆	0	0,8	9
T ₇	0,5	1,1	11
T ₈	0,4	1	11,5
T ₉	0,1	0,7	12

kterých jsme na KV dosáhli. O těchto úspěších svědčí desítky diplomů na stěnách radioklubu, mezi nimiž nechybí mnohá čestná uznání a vyznamenání ÚV Svatého. V radioklubu byla vždycky snaha být při tom, kde se něco děje, a nebo kde je třeba naši pomoc. Více než dvacetiletou tradici má výcvik branců a záloh radistů, který provádějí ve výcvikovém středisku branců na závodě a v okresním městě operátoři OK2KMB. Každoročně zajišťujeme spojovací služby na akcích Svatého v rámci okresu, jako např. na přeborech ČSR v motokrosu, přeborech lodních modelářů, předváděme ukázky naší činnosti na branných dnech a v letošním roce jsme opět zajišťovali spojení při vystoupení cvičenců na ČSS 1980.

Uskutečnili jsme expedice do několika okolních neobsazených čtvrtí ČSR. V neposlední řadě je nutno vyzdvihnout také každoroční pomoc našich členů v zemědělství a velký počet opracovaných hodin v Akci Z.

Stalo se již tradici, že o prázdninách zajíždíme do letních pionýrských tábörů v okolí, kde mládež seznámuje s radioamatérskou činností. Během roku pořádáme besedy na školách a pořádáme náborové akce pro mládež. Každoročně pořádáme v Domě pionýrů a mládeže a na školách kurzy radiotechniky pro mládež a v kolektivní stanici kurzy operátorů, které navštěvují převážně uční SOU v Moravských Budějovicích. To je také úkolem kolektivní stanice, vychovávat nové zájemce o radioamatérský sport, i když se nám třeba uční po ukončení kurzu rozejdou pokračovat do svých domovů v jiných okresech. Důležité je, že doma budou pokračovat v radioamatérské činnosti a v radioklubech ve svém působišti.

Pravidelně se zúčastňujeme Soutěží aktivity radioklubů, pořádaných ČÚRRA Svatého. Odměnou za obětavou a všeobecnou činnost celého kolektivu, zaměřenou především na výchovu mládeže, bylo umístění mezi nejlepšími kolektivy v obou ročních Soutěží aktivity radioklubů a získané vysílání zařízení FT221 a OTava. Díky tomuto zařízení jsme již navázali také tisíce spojení provozem SSB a zvláště v pásmu VKV, kde se naši operátoři zúčastňují téměř všech domácích i zahraničních závodů.

Neméně významnou činností našeho kolektivu je vyhodnocování závodů a především OK – Maratónu, kterým nás kolektiv pověřil ÚRRA Svatého ČSSR. Snad jen účastníci OK-Maratónu dovedou ocenit to velké množství práce a času, který je třeba k vyhodnocování a organizaci této celoroční soutěže. Odměnou za tuto práci ještě stoupají počet účastníků OK-Maratónu ve všech kategoriích. Na prvním obrázku je Míla Brancuzský, OK2BHE, který se podílí pravidelně na vyhodnocování OK-Maratónu.

QRT

Dňa 14. 5. 1980 po dlouhé a fažké chorobě vo věku 71 let opustil naše rady

**Ing.
Blahoslav Dvořák,
OK3VAH**

nositel odznaku Za obětavou práci I. st., člen RK OK3KAH v Prešově. Radioklub v něm stráca nadšeného rádioamatéra, dobrého technika, ale především člověka – dobrého přítele, který vedel vždy parádě.

Všetci, kteří ste Slávu znali, venujte mu tichý spomienku.

OK3KAH

RADIOAMATÉR

SKY

SPORT

MLÁDEŽ A KOLEKTIVKY

Rubriku vede Josef Čech, OK2-4857, Tyršova 735, 675 51 Jaroměřice nad Rokytnou

25 let činnosti OK2KMB

V jednotlivých číslech AR jsem vám již v naší rubrice přiblížil činnost řady kolektivních stanic a radioklubů. Mám radost z vašich dopisů, ve kterých se mi svěřujete s úspěchy i neúspěchy svých kolektivů. Těším se, že mi napišete také o činnosti dalších kolektivních stanic a radioklubů a předáte dalším kolektivům své zkušenosti.

Dnes vás seznámím s činností kolektivní stanice, která je mi nejbližší, protože jsem jedním z jejích operátorů – s činností OK2KMB v Moravských Budějovicích, jejichž 25 členů oslavilo v letošním roce 25. výročí založení svého radioklubu.

Údolí 25 let je v životě kolektivu dost dlouhá doba, která dostatečně prověří činnost jeho členů v dobách úspěšných i neúspěšných. Uplynulé čtvrtstoletí činnosti OK2KMB si operátoři připomněli na slavnostní schůzi 27. června 1980. A bylo nač vzpomínat.

Tak jako většina malých venkovských kolektivů, také naše neměla nikdy na růžích ustálo. Přesto jsme nedostatky ve vybavení kolektivky nahrazovali svojí obětavostí, aby naše činnost byla úspěšná.

V roce 1955 se zájemci o radioamatérské vysílání rozhodli založit sportovní družstvo rádia a podali žádost o povolení ke zřízení kolektivní stanice. Byla jim udělena značka OK2KMB a VO se stala Míla Runkasová, OK2RC, která byla tehdy první YL VO kolektivní stanice v republice. Za velkého nadšení navázala Míla dne 27. 6. 1955 první telegrafní spojení se stanicí OK1KRK v Praze. Zájem o vysílání byl velký, počet navázaných spojení rychle rostl. S rozrůstající se činností však přibývalo také starostí a úkolů. Zvyšoval se počet operátorů, kteří se připravovali ke zkouškám a jak to jež v kolektivech bývá, některé odcházel, aby předávali svoje zkušenosti jinde. VO se stal další ze zakládajících, František Abrahám, OK2GO, později na řadu let Antonín Křivánek, OK2BCB. Nyní již deset let je VO Pravoslav Runkas, OK2BCN.

Již od svého založení se kolektiv potýkal s nedostatkem finančních prostředků a vhodného zařízení. Vysílali jsme na inkutantním vysílači S10K, později dlouhou dobu na vlastním 10 W vysílači, se kterým jsme dosáhli velkého úspěchu v celoroční soutěži OKK v letech 1958 a 1959. Po tomto úspěchu bylo započato se stavbou tehdy moderního 50 W vysílače pro pásmo 3,5 až 28 MHz, s nímž jsme vysílali až do roku 1978. K úplnému dokončení stavby tohoto vysílače podle původního plánu však bohužel nikdy nedošlo, když se zjistilo, že „to vysílal“. I tak všechno tomuto vysílači za desítky tisíc spojení s radioamatéry 218 zemí všech světadílů a za většinu úspěchů,

Obr. 1. Míla Brancuzská, OK2BHE

Jako většina mladých kolektivů, také nás kolektiv musel překonávat řadu obtíží a překážek. Vede neustálého nedostatku finančního a materiálního zabezpečení narušovalo naši činnost stěhování. V současné době pro výchovu mládeže užíváme učebny učňovského střediska, pro činnost kolektivní stanice však máme k dispozici pouze onu malou místnost, bez které se neobejde žádná domácnost.

Není možné v krátkosti uvést úplný přehled naší činnosti a úkolů, které stojí ještě před námi. Plánů máme dost, budeme se snažit úspěšně je vyplnit. Rádi bychom podchytily velký zájem mládeže o ROB, zatím nám však chybí potřebné vybavení. Chystáme se zahájit provoz RTTY na vyřazeném dálnopisu, který pro tento účel připravuje RO Jirka Klimeč.

Na druhém obrázku vidíte mladé učňy při práci v našem zájmovém kroužku radiotechniky.

Obr. 2. Mladí členové kroužku radiotechniky při práci

Závody

V měsíci listopadu bude uspořádáno několik důležitých závodů, kterých by se měli zúčastnit operátoři všech našich kolektivních stanic a posluchači. Bude to především

OK DX contest

který je započítáván do letošního mistrovství ČSSR v práci na KV. Bude uspořádán v neděli 9. listopadu od 00.00 UTC do 24.00 UTC v všech pásmech KV od 1,8 do 28 MHz provozem CW i SSB. Posluchači mohou zaznamenat kód každé zahraniční stanice na každém pásmu pouze jednou.

CQ WW DX contest

Telegrafní část tohoto světového závodu je posledním závodem, který je započítáván do letošního mistrovství ČSSR v práci na KV v kategorii kolektivních stanic a jednotlivců. Kategorie posluchačů v tomto závodě není vyhodnocována. Závod bude zahájen v sobotu 29. listopadu v 00.00 UTC a potrvá do neděle 30. listopadu 24.00 UTC. Probíhá ve všech pásmech KV od 1,8 do 28 MHz.

Soutěž MČSP na KV

Další ročník této soutěže bude probíhat ve dnech 1. až 15. listopadu ve všech pásmech CW i SSB. Upozorňuji vás, že body za zapojení se sovětskými stanicemi, která navážete nebo odposloucháte v závodě OK DX contest, se připočítávají k bodům, které získáte během soutěže MČSP. Věnujte patřičnou pozornost podmínce této soutěže, aby znovu nedocházelo ke zbytečným omylům a protestům. Soutěž MČSP je dlouhodobá a bylo by škoda vynaložené úsilí a čas zmařit odesíláním deníku k vyhodnocení na nesprávnou adresu.

Upozorňuji všechny ORRA Svazarmu, aby zodpověděně zajistily vyhodnocení soutěže v rámci svého okresu a v daném termínu odeslaly deníky soutěžících stanic k dalšímu vyhodnocení.

TEST 160

Jednotlivá kola tohoto závodu budou uspořádána v pondělí 3. listopadu a v pátek 21. listopadu v době od 20.00 do 21.00 SEČ v pásmu 1,8 MHz.

OK-Maratón

Většina účastníků v hlášení upozorňuje na dobré podmínky šíření a řadu vzácných stanic, které se v měsíci červnu objevily na pásmech.

Jirka, OK1-21568, slyšel stanici UBL – expedici horolezců na Leninův štít v pohoří Pamír, dálé stanice I8KCI a I8UDB z ostrova Egadi, JX9YY, VK9CCT, 6W8AR, XT3AA, VS5JM, M1C, JW9OH, IJ7DMK, ST2FF/ST0. Pavel, OK1-19973, slyšel NP4AZ (ostrov Deschoto), KH3AA, UPOL24, ZD7KA a 8Q7AY.

Do OK-Maratónu se zapojili další mladí operátoři kolektivní stanice OK1KSH ve věku do 15 let. Těším se na hlášení od dalších kolektivních stanic, OL i posluchačů. Formuláře měsíčních hlášení vám na požádání zašle kolektiv OK2KMB. Napište na adresu: Radioklub OK2KMB, Box 3, 676 16 Moravské Budějovice.

Přejí vám hodně úspěchů v listopadových závodech a těším se na vaše dopisy a připomínky.

73, Josef, OK2-4857

ROB

Prebor Slovenska v ROB 1980

Dostojným příspěvkem k bohaté dvadsátočné historii trvání ROB v ČSSR byl aj tohtoročný oficiálny prebor Slovenska, ktorého usporiadateľom bol okres Dolný Kubín v dňoch 14. až 16. 6. S odstupom niekoľkých rokov, kedy dolnokubínski rádiamatéri hostili najlepších čs. „honcov“ na oficiálnych majstrovstvách ČSSR (1976), celá športová rádiamatérská verejnosť očakávala s veľkým otázkou, ako dopadne súťaž v jubilejnom roku trvania ROB. Tu je potrebné pripomienú, že posledné celoštátne kolo spred štyroch rokov sa vyznačovalo prezývkou „oravský drasfák“, kedy v tvrde postavenom limite a náročnom horskom teréne pásmu 145 MHz dobiehlo v limite len niekoľko pretekárov a to totálne vyčerpávaných, čím sa súťaž zapísala medzi nezabudnuteľné. Letošná súťaž sa zapísala veľkými písmenami do kategórie pretekov so zlatou visačkou, ku ktorej je možné smieľo prikresliť aj malú hviezdičku. V tomto prípade nielen za perfektné „posadenú“ a „ušítú“ traf do náhernej scéne oravskej priehrady (autor P. Grančík, OK3CND), ale predovšetkým za perfektnú organizáciu zo strany usporiadateľov, pracovníkov a aktivistov z celého okresu Dolný Kubín. Táto skutočnosť nadobúda o to väčší význam, že tento názor vyjadrili v anonymnej ankete nielen rozhodcovia a funkcionári, ale aj 85 pretekárov všetkých 5. kategórií.

Kolektív organizátorov viedol predsedu okresného výboru Vzázarmu a člen Slovenskej ústrednej rady rádiamatérstva Ľudovít Pribula, ktorého sme po dobu pretekov snáď ani späť nevideli, pretože od skôr ranných hodín držal v ruke dirigentskú tankovku a ukladal ju až vtedy, keď boli vytlačené výsledkové listiny a odovzdané ceny pretekárom. Aktivistom udával zase tón Ján Polec, OK3CTP, ktorý je povedomý „najmä priaznivcom VKV za úspechy v EME. Svojím nápadom predbežnej výsledkové listiny systémom výmenných štítkov sa kladne zapísal do rodiny „Išškarov“. Zo všetkého, čo sa pred a počas súťaže vykonalo, bolo vidieť jednoznačne obrovskú snahu po dokonalom zvládnutí organizácie pretekov a starostlivosť o pretekárov, kde patrí podakovanie pracovníkom okresného výboru Vzázarmu s. Datejovej s jej dvomi pomocníčkami a s. Ištvanovou. Tradične dobrú prácu odviedla komisia ROB, ktorá spolu s delegovanými rozhodcami zvládla všetky úlohy bez jediného zakočilisania.

Obr. 2. Ing. Zdeněk Jeřábek bol najúspešnejším pretekárom v najnáročnejšej mužskej kategórii

Tohtoročný prebor SSR sa vzhľadom k rafidné narastajúcomu počtu pretekárov s predpisanou II. a vyššou VT uskutočnil naposledy ako spoločná súťaž všetkých piatich kategórií. Od budúceho roku sa počíta už s oddeleným preborom pre mládež a zvlášť pre staršie kategórie.

Výsledkové listiny obdržali nielen účastníci preboru SSR, ale aj kraje a okresy, ktoré na základe výsledkov by mali urobiť analýzu, ako sa podieľali na úspechoch (či neúspechoch) na vrcholnej súťaži prvého stupňa. Za rozhodovanie Štefana Reila (ktorý obhajoval I. rozhodcovskú triedu) mohli zvíťazíť len tí najlepší, takže medaily preborníkov SSR pre rok 1980 si v jednotlivých kategóriach odvezli títo športovci:

pásмо 3 MHz

Kat. A – Ing. Zdeněk Jeřábek, Dolný Kubín

Kat. B – Jozef Baláž, Prievidza

Kat. C1 – Ján Adamec, Dolný Kubín

Kat. C2 – Robert Kollár, Žilina

Kat. D – Eliška Beňušová, Bratislava

pásmo 145 MHz

Kat. A – Ing. Zdeněk Jeřábek, Dolný Kubín

Kat. B – Michal Martin, Poprad

Kat. C1 – Dušan Francúz, Bratislava

Kat. C2 – František Pudlák, Žilina

Kat. D – Marta Ďurcová, Čadca

OK3UQ

Přebor ČSR v ROB kategorie B

Ve dnech 13. až 15. června 1980 z pověření ČÚRRA Svazarmu uspořádal radioklub Písek, OK1KPI, v prostredí Orlického jezera v rekreačním středisku n. p. Jitex Písek přebor ČSR v ROB v kategorii juniorů. Hlavním rozhodčím soutěže byl Vladimír Vlach, ředitel soutěže Václav Kočvara a vedoucím technického úseku Josef Eger, OK1HBC, za spolupráce OK1PR, OK1YR a OK1HCC.

Výsledky

(údaje v pořadí: umístění, jméno, kraj, počet vysílačů, čas, VT)

pásmo 145 MHz

1. Jiří Vlach JM 4 65'40,2" II.

2. Aleš Prokeš SM 4 68'37,6" II.

3. František Vlasák ZČ 4 73'56,6" II.

4. Jan Fickert ZČ 3 68'19,6" II.

5. Radim Schreiber SM 3 70'52,8" II.

Celkem 28 soutěžících.

Obr. 1. Eliška Beňušová z Bratislav v potvrzila dobrú formu aj v tejto sezóne a k titulu majsterky pre rok 1979 pripísala víťazstvo v pásmu 80 m aj tento rok

pásma 3,5 MHz				
1. Miroslav Pola	JM	5	53'29,8"	II.
2. Pavel Čada	VC	5	54'46,4"	II.
3. Pavel Valach	JČ	5	57'29,8"	II.
4. Jan Fickert	ZČ	5	59'21,2"	
5. Roman Kožený	SC	5	62'53,1"	

Celkem 28 soutěžících.

432 MHz – stálé QTH				
1. OK3CGX	II66g	30	2 850	
2. OK1VEC	GJ27b	17	2 821	
3. OK1KRA	HK72a	18	1 789	
4. OK3CDR	II66c	17	1 726	
5. OK1DKM	HK73b	13	1 332	

Celkem hodnoceno 11 stanic.

Obr. 1. Čs. juniorský reprezentant Pavel Čada, OL5AZY

432 MHz – přechodné QTH				
1. OK1KIR	GK45d	58	9 138	
2. OK1AIY	HK28c	38	8 278	
3. OK1KPU	GK29a	32	5 710	
4. OK1DEF	HK37h	21	2 926	
5. OK3TTL	JI51a	17	2 659	

Celkem hodnoceno 12 stanic.

1296 MHz – přechodné QTH				
1. OK1KIR	GK45d	14	3 459	
2. OK1AIY	HK28c	3	485	
3. OK1DEF	HK37h	2	186	

Vyhodnotil RK OK3KTY. OK1MG

Rubriku vede ing. Jiří Peček, OK2QX, ZMS, Riedlova 12, 750 02 Přerov

Termíny závodů na KV v listopadu 1980

3. 11. TEST 160 m	19.00–20.00
8.–9. 11. Delaware party	17.00–23.00
8.–9. 11. 1,8 MHz RSGB contest	21.00–02.00
9. 11. OK-DX contest	00.00–24.00
15.–16. 11. All Austria 160 m	19.00–06.00
21. 11. TEST 160 m	19.00–20.00
29.–30. 11. CQ WW DX, část CW	00.00–24.00

Závod na VKV k Mezinárodnímu dni dětí 1980

1. OL6BAB/p IJ54g		52 QSO	2 422 body
2. OK1KCI/p HJ59e	36	1 416	
3. OK3KKF/p JI28e	31	1 358	
4. OL8CKL/p JI51a	30	1 111	
5. OK1KSH/p IK63h	33	1 070	
6. OK1KIV/p HK29d	41	1 044	
7. OK1KWP/p HJ17e	33	930	
8. OK2KZT/p JJ23b	36	840	
9. OK1KKL/p HK37h	32	720	
10. OK1KEL/p HK26d	32	696	
11. OK3KII, 12. OK1KBN/p, OK3KMY, 14. OK1KRI/p,			
15. OK1KCR/p, OK2KWL/p, 17. OK1KRZ, 18.			
OK2KNJ/p, 19. OK1KCU, 20. OK1KRY/p.			

V závodě se opět letos tak jako loni projevil nedostatek pochopení mezi vedoucími operátory našich kolektivních stanic pro práci s mládeží. Domnívám se, že mezi mladými operátory by bylo dostatek chuti zúčastnit se tohoto závodu, je potřeba jenom vytvořit jim vhodné podmínky. Snad se tomu tak stane v příštím ročníku.

OK1MG

Výsledky zimního závodu QRP klubu

Třída A		body
1. G4BUE		7320
8. OK1DKW		1586
11. OK2BMA		1371
25. OK1XM		297

Třída B		body
1. N4BP		6658
7. OK2PEG		908
15. OK2BTT		590
19. OK1MNV		424
21. OK1DOC		370
29. OK1FAO		105

Mezi posluchači obsadil OK1-19973 druhé místo.

Poznámka k podmínek a termínům závodu

V letním období došlo u vnitrostátních závodů k dohadům, podle jakého času se řídí, kdy závod začíná a končí. Skutečně pro ty, kdo sháněli podmínky na poslední chvíli a těšba na pásmu, mohlo být leccos nejasného, pozorovat čtenář rubriky KV však ještě nezávadil... Předně je třeba uvést, že v době, kdy se připravovaly podmínky závodů, nikdo nepředpokládal, že přechod na letní čas bude každoroční záležitostí. Proto byly vlastní podmínky závodů schváleny v čase SEČ a takto se také objevily jednak v AR, jednak i v dalších materiálech. Později, když se začalo hovořit o přechodu na letní čas i v roce 1980 a dále, byly komisí KV podmínky znovu projednány a schváleny jejich dodatek. Ve snaze zjednodušit co nejvíce znění podmínek a zajistit u všech závodů stejný začátek – půlnoc místního času, byla tato zásada dosti nešťastně formulována (viz AR 11/1979 v závěru podmínek závodů). Proto byla na dalším jednání komise KV schválena zásada, aby byly nadále podmínky všech závodů, tedy i vnitrostátních, uváděny v čase UTC (viz upozornění v AR 3/1980). V kalendáři závodů v rubrice KV je tato zásada beze zbytku dodržována a tam uvedené časy v UTC byly tedy správné. Aby pro příští rok nedocházelo k nejasnostem, bude v příštím čísle AR zveřejněna celoroční termínová listina našich závodů na KV včetně začátků a konců, v příštím ročníku budou pak podmínky našich závodů vždy měsíc dopředu zkopakovány.

U zahraničních závodů došlo několikrát v letošním roce, bohatěm právě na změny termínů, k ne-přesnostem v datech, případně časech. Opakování

nelze vzhledem k výrobním lhůtám vyloučit, neboť např. pro toto číslo musel být rukopis odevzdán v polovině července. Operativně lze změny zachytit jen při vysílání OKICRA a OK3KAB – nádří dojedou oficiální podmínky týden před závodem. Napište, žež i přes tyto nedostatky mají informace ve sloupcí termínů pro vás smysl. Pokud ne, jistě se najde vhodnější námet k vyplnění místa.

V květnu příštího roku budeme vzpomínat 60. výročí založení KSČ. Přivítáme návštěvu na netradiční závod, kterým by toho výročí bylo využito. Mohly by to být např. expedice do památných míst a navazání spojení s nimi – přemýšlejte!

Návrh podmínek diplomu CPR-D

Byl jsem Mezinárodním radioamatérským klubem (I.A.R.C.) požádán, abych připravil podmínky pro nový radioamatérský diplom, který bude označován CPR-D (Contributed to Propagation Research – Digital) a bude pokračováním diplomu CPR, který byl založen v roce 1963 a jehož vydávání bylo ukončeno v roce 1974. Než budou podmínky uveřejněny v mezinárodním měřítku, rád bych se přesvědčil o možném ohlasu mezi našimi radioamatéry. Proto v dalším uveřejňuji český text připravovaných podmínek vydávání tohoto diplomu:

- Diplom CPR-D je vydáván Mezinárodním radioamatérským klubem (I.A.R.C.), provozujícím stanici 4U1ITU v Ženevě, Švýcarsko.
- Účastnit se mohou jak současní tak bývalí radioamatéři (vysílači i posluchači). Rodiny zeměpisných rádiotelegrafistů rovněž mohou získat diplom CPR-D „in memoriam“.
- Prá potřeby tohoto diplomu platí rozdělení světa na 90 územních pásem, uvedených v přiložené mapě (obr. 1).
- Pro získání diplomu je možné započítat jakékoli rádiové spojení (v kterémkoliv roce i v minulosti) mezi různými územními pásmi, nebo příjem amatérského rádiového vysílání z jiného než vlastního územního pásma, za předpokladu, že spojení nebo zpráva o příjmu byly potvrzeny stanicími listkem a že bylo použito dekametrových vln v amatérských pásmech. Spojení s vlastním zeměpisným pásem se nepočítají. Spojení potvrzená jen ve stanicím deníku se berou v úvahu za předpokladu, že je tato skutečnost vyznačena příslušným symbolem (viz dále).
- Údaje musí být dřevány na normalizovaném 80sloupcovém štítku nebo zaznamenány na magnetickém pásku v kasetě podle mezinárodní normy ISO nebo příslušné národní normy v tomto pořadí:
 - čísla vyměřeného pásmo, vyznačené dvěma znaky: pásmo 160 m 02
pásmo 80 m 04
pásmo 40 m 07
pásmo 20 m 14
pásmo 14 m 21
pásmo 10 m 28
 - značka vlastní stanice, pro niž je vyhrazeno 12 míst (nepoužitá místa zůstanou prázdná);
 - vlastní zeměpisné pásmo, vyznačené dvěma znaky, tj. 09 až 90;
 - značka protištípanice, pro niž je vyhrazeno 12 míst (nepoužitá místa zůstanou prázdná);
 - zeměpisné pásmo protištípanice, vyznačené dvěma znaky, tj. 01 až 90;
 - datum, vyznačené šesti znaky v pořadí: den, měsíc, rok, tj. např. 010180 = 1. ledna 1980;
 - hodina a minuty světového koordinovaného času (UTC), vyznačené čtyřmi znaky od 0001 do 2400;
 - RST (nebo RS), pro něž jsou vyhrazena tři místa, přičemž při radiotelefonním provozu se místo údaje T uvede nula (0);
 - druh provozu, pro něž je vyhrazeno 1 místo a vyzaduje se symbolem:
CW 1
AM 2
SSB 3
 - údaj, zda spojení nebo zpráva jsou potvrzeny stanicími listkem, pro něž je vyhrazeno jedno místo, takto:
QSL 1
LOG 2;
 - výkon ve W, pro něž jsou vyhrazena čtyři místa, přičemž u výkonů 1 W a menších se uvede 0001;

na listopad 1980

Předpověd na listopad je založena na ionosférickém indexu $\Phi_{F2} = 186$ jánských, tj. asi $R_{12} = 138$.

i) počet elektronek nebo tranzistorů přijímače, pro nějž jsou vyhrazena dvě místa;
m) údaj, zda bylo použito horizontální nebo vertikální (nebo rámové) vysílačí antény, pro nějž je vyhrazeno jedno místo, takto:
horizontální anténa 1
vertikální anténa 2
rámová anténa 3;

n) počet prvků, pro nějž jsou vyhrazena dvě místa;
o) výška antény nad zemí v metrech, pro nějž jsou vyhrazena dvě místa.
Zbývající sloupce zůstanou neděrovány. Při magnetickém záznamu je jedno místo vyrazeno pro symbol „konec záznamu“, po němž následuje další záznam bezprostředně. Počet spojení,

o nichž se podává zpráva, musí být v žádosti uveden.

6. I.A.R.C. bude vydávat tyto diplomy:
- diplom CPR-D první třídy za více než 10 000 potvrzených amatérských spojení nebo příjmů
- diplom CPR-D druhé třídy za více než 5 000 potvrzených amatérských spojení nebo příjmů
- diplom CPR-D třetí třídy za více než 1 000 potvrzených amatérských spojení nebo příjmů
- diplom CPR-D čtvrté třídy, za více než 100 potvrzených amatérských spojení nebo příjmů
7. Žádosti o podání diplomů CPR-D se podávají prostřednictvím příslušných národních klubů.
8. V případě pochybností mohou být národní kluby požádat o ověření existence a správnosti záznamů uvedených v žádosti.
9. Žadatelé zasláním svých výsledků přijímají rozhodnutí I.A.R.C. v této věci. Děrné štítky ani kazety se nevracejí.

OK1WI

Rubriku vede ing. Jiří Peček, OK2QX, ZMS, Riedlova 12, 750 02 Přerov.

Prázdninové období bylo velmi chudé na expedice do vzácných oblastí. Ozvaly se jen krátkodobé „dovolenkové“ stanice z Andorry, OH5KG/OHO, OH2BDA/OHO a tak zvýšený ruch byl pouze kolem expedice OH2BH, který spolu s OH2MM tentokrát pracoval jako 6T1YP ze Súdánu a později pod značkou ST2FF/ŠTO z Jižního Súdánu. Pro první stanici je manažerem OH2BH, pro druhou OH2MM. Do 20. června se těž protáhla expediční činnost stanice CR9A (operátor KP2A, QSL přes WB2KXA).

Hned na počátku července však počal rušný provoz. Ozvaly se stanice HC8EE původně telegraficky (via HC1MM) a HC8KA provozem SSB (via HCSKA). Tentokrát se věnovali pásemu 160 až 40

metrù, kde však Evropany příliš neuspokojili – podmínky šíření prostě spojení neumožnily. Také 5W1AT uskutečnil svůj pravidelný zájezd na ostrov Tokelau (ZM7AT), avšak není známo, že by se někomu z Evropy podařilo navázat spojení.

Další expedici uspořádal mexický DX klub na ostrov Revilla Gigedo, odkud pracovaly stanice 4A4MDX telegraficky a 4B4MDX provozem SSB. QSL manažerem pro obě stanice je XE1OX. V Evropě byli slyšet hlavně v pátek 4. 7., v sobotu ještě ráno a špatné podmínky pak znamenaly našim stanicím ve větši míře spojení navazovat. Na SSB pracovala stanice hlavně z listů, které sestávaly např. JY3ZH.

Podle předpokladů začal hned zpočátku měsíce července pracovat z ostrova Willis VK9ZG. Pro nával práce se však objevoval jen v sítí P29JS. Jeho manažerem je VK3OT. Prefixovou expedici byly různé stanice Dominikánské republiky, pracující se svými suffixy a s přefixem H12 z ostrova Catalina dva víkendy v rozmezí 14 dnů. QSL přímo na Box 2181, Santo Domingo.

VE7BC má být v létě služebně v Číně a vzhledem k „dobrým stykům“ s tamějšími úřady, které navázal již v dřívější době, předpokládá, že mu bude umožněno odtamtud amatérské vysílání. Jistě i od nás by to mnozí, kdo potřebují doplnit tuto zemi pro skóre DXCC, přivítali.

Zájemcům o provoz RTTY můžeme prozradit podmínky hezkého diplomu – za spojení se 40 různými stanicemi VO, přičemž aspoň jedna je z VO2. Potvrzený seznam spojení se zasílá na adresu: SONRA Awards Manager, P. O. Box 501, Carboner, NFL AOA 1TO. Diplom se vydává zdarma.

Během července vysílali po dobu 10 dnů z Monaka stanice DF3EC/3A a DF3EK/3A – pro oba se zasílají QSL na domácí adresy.

Během CQ contestu 1978 byl v telegrafní části překonán dosavadní rekord tohoto závodu v kategorii více vysílačů. Pod značkou PJ 2CC pracovali operátoři K4BAI, WB1IH, W1GNC, K3EST, WB4SGV, K3KU, K4VX a YU3EY. Navázali 11 786 spojení (154 zóny a 522 země), všechny QSL vyfizuje K4BAI. Jaký byl celkový výsledek? 20 045 852 body! Jen o málo méně – 16 835 172 body dosáhla stanice 9Y4W, pracující ve stejně kategorii. Náš OK2RZ je třetím v celosvětovém pořadí stanic s jedním operátorem, všechna pásma, s výsledkem 2 916 045 bodů. Podrobné výsledky přinášíme v některém z dalších čísel AR.

Snaž dosáhnout uznání pro ostrov Faisans jako samostatné země DXCC se nesetkaly s porozuměním u ARRL. Podle předložených dokladů nemá tento ostrov samostatnou správu, vybrž je ve společné správě francouzských a španělských úřadů, obdobně jako je tomu na území mezi Finskem a Švédskem, které používá prefix LG5 nebo SJ9 a nazývá se Morokulien.

Cervnové číslo časopisu CQ komentuje slovy představitelů různých amatérských organizací záplní proslého West Coast DX Bulletin. Všechni se shodují v názoru, že prakticky neexistuje žádná náhrada v nynějších bulletinech, která by disponovala takovým množstvím čerstvých a spolehlivých informací.

Ed, operátor stanice HV3SJ, je nyní v Jižní Americe, odkud vysílá zatím pod značkou DJ0XW/HK4 a čeká na přidělení vlastní volací značky. Jeho QTH je Medellin.

Jednou z nejvzácnejších zemí z Evropy je TF – Island. Patří k několika dalším severním zemím do zóny 40 pro WAZ a jeho blízkost magnetickému severnímu pólu způsobuje značné nepravidelnosti v šíření vln. TF3CW např. popisuje, jak v roce 1978 v části fone CQ WW DX contestu nebylo možné precastovat v pásmech 80 a 10 metrů. QSL manažerem pro stanice TF je TF3AC a ročně nyní z Islandu odesílá přes 12 000 QSL. Kolektivní stanice, která se často účastní závodů, je TF3IRA. Uspořádala již expedice na ostrov Westmann (TF7V – 1978), Flatey (TF4F – 1977) a pod značkou TF6M do vulkanické oblasti v roce 1978. Nejvyšší povolený výkon stanicí na Islandu je 200 W.

Zprávy v kostce

V Botswaně (A22) bylo koncem března 1980 vydáno 30 licencí, z toho 23 místním obyvatelům.

● V Malawi je v současné době zakázán amatérský provoz. ● CZ6 a XJ5 byly prefixy používané k výročí 75 let od vzniku provincií Alberta a Saskatchewan. ● Manažerové stanice JY1 začínají docházet QSL za telegrafní provoz. Upozorňuje tedy všechny amatéry, že král Hussein, kterému tato značka patří, nikdy telegraficky nevysílá a ani v budoucnu nebude

● V Dánsku mají již v letošním roce povoleno vysílat telegraficky v pásmu 160 metrů s výkonem 10 W. Letošní zimní sezóna zájemce o toto nejnovější pásmo jistě uspořádají. ● V NSR bylo počátkem tohoto roku přes 39 500 soukromých koncesionálu, z toho 86 % členů DARC. Během posledního roku stoupí jejich počet o více než 12 %. QSL bylo DARC každodenně zpracovává 33 000 QSL. ● KB7JX při své cestě Pacifikem hodlá návštěvit některé vzácné země. Bude používat pravděpodobně vlastní volací značku lomenou oblastí, odkud vysílá, a manažerem je pro něj K6FM.

přečteme si

Zikán, J.; Nosek, J.: TECHNOLOGIE PRO 2. ROČNÍK UČNOVSKÝCH ŠKOL OBORU ELEKTROCHANIKA. SNTL: Praha 1980. 136 stran, 102 obr., 1 tabulka. Cena vás. 9 Kčs.

V této knize mohou zájemci najít poučení o základech konstrukce elektrických strojů, jejich částech a montáži, zapojování, použití a zkoušení, a to v rozsahu, odpovídajícím určení publikace.

Obsah je rozdělen do pěti kapitol. V první z nich, pojednávající všeobecně o montáži a demontáži elektrických strojů, přístrojů a zařízení, seznámuji autoři čtenáře s různými druhy montáže a demontáže podle účelu, za jakým jsou prováděny. Druhá kapitola je věnována částečně a mechanismům elektrických strojů a přístrojů, a to především jejich magnetickým obvodům, mechanické konstrukcemi, dálce elektrickým kontaktům, výpočtu tažné sily a závitu elektromagnetů apod. Ve třetí kapitole je popisováno navijení elektrických strojů a přístrojů; čtenář v ní seznámí s různými druhy vinutí, postupem při navijení statorových a rotorových částí a převíjením při opravách. Ve čtvrté kapitole jsou podrobněji rozvedeny montáž a demontáž elektrických strojů, přístrojů a zařízení. Závěrečnou pátou kapitolu věnují autoři popisu zkoušení elektrických strojů a zařízení; obsahuje i odkazy na nejdůležitější čs. státní normy a krátké pojednání o bezpečnosti práce.

Kniha je určena jako učební text pro druhý ročník učňovských škol obooru elektrotechnik a navazuje na znalosti, získané učni v předešlém odborném výcviku a polytechnické výchově. Výšla v druhém nezměněném a celkově již pátém vydání.

Způsob a rozsah výkladu je přizpůsoben okruhu čtenářů, kterému je určena, a až na drobné nedůslednosti nebo chybíčky (např. psaní jednotek velkým začátečním písmenem, které leží však příčist na vrub redakčnímu zpracování) může uspokojit čtenáře, kteří se chtějí seznámit všeobecně se základy konstrukce a technologie elektrických strojů.

–JB–

Dočkal, J.: ZÁKLADY AUTOMATIZACE PRO UČEBNÍ OBORY ELEKTROTECHNICKÉ. SNTL: Praha 1980. 148 stran, 133 obr. Cena vás. 10 Kčs.

Kniha obsahuje základní všeobecné informace o tom, co je automatizace, o jejím významu, o automatizačních prostředcích a jejich aplikaci, a to v nejjednodušší formě a rozsahu.

V první kapitole autor po úvodní části, v níž se zmíňuje o společenském dosahu automatizace, vysvětluje základní pojmy. Druhá kapitola pojednává o automatizačních prostředcích – snímačích a převodníkách a jejich druzích s ohledem na měření fyzikálních veličin, vyskytujících se nejčastěji v technické praxi: tlaku, průtoku, stavu hladiny, teploty, vlnnosti, měrné hmotnosti kapalin, viskozity, činitelé pH, chemického složení plynů, rychlosti otáčení a posunu nebo úhlové vychýlky. Ve třetí kapitole se autor zabývá zpracováním a použitím naměřených veličin v obvodech – dálkovým přenosem signálů, zosilovači, regulátory, akčními členy a měřicími a registracemi přístroji. V závěrečné kapitole jsou popisovány některé aplikace automatizačních prostředků v jednotlivých obvodech. Text uzavírá krátký seznam doporučené literatury, publikované v letech 1958 až 1970.

Forma výkladu i jeho celkový rozsah jsou v souladu s určením publikace. Kniha byla schválena jako učební text pro učební obory elektrotechnické v roce 1970 a letos vyšlo čtvrté, nezměněné vydání. To je znát i na obsahu knihy, jehož některé části i soužití zastaralé. Na str. 109 se například mladý čtenář dočte, že základním konstrukčním prvkem elektro-

nických zosilovačů je elektronka; popis její činnosti a použití jsou věnovány dvě strany textu a jsou uvedena dvě základní schéma zapojení zosilovače. Tranzistorový zosilovač, jež jsou uvedeny větou „V poslední době se stále častěji uplatňuje tzv. tranzistorové zosilovače“, je věnováno asi půl stránky bez jediného příkladu zapojení nebo aspoň schématického symbolu tranzistoru. O spínacích polovodičových součástkách nebo o integrovaných obvodech není v knize ani zmínka. Z této části knihy „dýchá“ na čtenáře historie. Bylo by zapotřebí, aby zejména příslušné orgány ministerstva školství věnovaly větší pozornost odborné aktuálnosti učebnic, a to alespoň v oborech, o nichž je všeobecně známo, že se využívají velmi rychle a kromě toho mají stále význam pro ekonomiku celé společnosti.

–Ba–

Radio (SSR), č. 3/1980

Feritové magnetické obvody – Anténa pro dvě pásmá – Fázové omezovače signálu řeči – Zkoušečka k propojování kabelů – Elektronika a rostlinná výroba – Logické zkoušečky – Regulovatelné stabilizátory s operačními zosilovači – Elektronické odpovídající automatické regulace kmitočtu – Zařízení k reprodukci hudby sovětské výroby roku 1980 – Třípásmová amatérská reproduktorková soustava – Univerzální korekční předzesilovač – Nf zosilovač se souřázovým stabilizátorem pracovního bodu – Zdonkový gramofon IIEPU-74S – Vysílač začínajícího radioamatéra – Generátor pravovýlných impulsů – Napájecí zdroj pro malý výkon – Generátor pro ladění hudebních nástrojů – Údaje sovětských operačních zosilovačů.

Radio, Fernsehen, Elektronik (NDR), č. 6/1980

Lipský jarní veletrh 1980: součástky pro elektroniku, televize, rozhlas, elektroakustiku, antény, jiná zařízení spotřební elektroniky, měřicí technika a získávání dat, sdělovací technika, technická zařízení – Čidla pro mikroelektroniku – Čidla pro průmyslové roboty – Moderní napájecí zdroje (6) – Pro servis – Informace o součástkách 6 – Automatické korekce nuly u analogových obvodů – IO K140MA1 použitý jako násobič stupně – Konstrukce zásuvné jednotky s pamětí RAM (CMOS) – Analogový zkoušec polovodičových součástek – Impedanční transformátor pro měření kmitů pomocí piezoelektrických měřicích měničů – Dekódér pro převod sedmisegmentového kódu na kód BCD – Ochranné obvody pro nf výkonové zosilovače – Časová jednotka řízená křemenným krystalem pro sekundové a minutové impulsy – Kompaktní kazeta pro „nekonečný“ provoz – Zkušenosť s R 4100 – Novinky v magnetických materiálech.

Funkamatér (NDR), č. 6/1980

Zkušenosť s provozem RTTY – Signály z oběžné dráhy – Novinky na jarním lipském veletrhu – „Phasing“, efektové zařízení pro hudebníky – Univerzální televizní hra – Základy radiového zaměřování – Světový systém čtverců QTH – Aplikace integrovaných obvodů pro řízení modelů (6) – Amatérská vysílání v pásmu 10 GHz (2) – Amatérská stavba krystalového filtru pro CW SSB – Přijímač vhodný pro amatérský provoz – Přijímač R250M – Experimentální zapojení s obvody MOS – Rubriky.

Radio, televizija, elektronika (BLR), č. 4/1980

Z historie průmyslu slaboproudé elektrotechniky v BLR – Diody PIN – Přijímač – vysílač pro několik pásem – Moderní stříhová automatická zařízení pro videotekniku s magnetickým páskem – Jakostní

stereoфонní sluchátka typu DS200 – Komprezor Dolby – NF milivoltmetr s lineární stupnicí – Generátory trojúhelníkového napětí s negatróny – Senzorové obvody pro plynulou změnu regulovaného parametru – Stabilizovaný usměrňovač s elektronickou ochranou – Otáčkoměr s číslicovou indikací – Lineární integrované obvody z ČSSR – Sovětské germaniové výtranzistory.

Radioelektronik (PLR), č. 4/1980

Z domova a ze zahraničí – Syntéza kmitočtů v příjimačích – Zpětná vazba v nf zesilovačích – Elektronický blesk s automatikou – Zdvoujovač ss napětí bez transformátoru – Rozhlasový přijímač ASIA – Regulovatelný stabilizovaný zdroj – Obvod časové základny pro osciloskop – Elektronické hodiny – Amatérské převaděče.

Radio – amatér (Jug.), č. 6/1980

Jednoduchý transverzor pro 432 MHz – Souprava pro měření výkonu – Univerzální modulátor světla – Dynamika oběžných druh amatérských komunikačních druzí – Bezpečnostní zařízení do automobilu – Rádiiový povelový systém (17) – Montáž elektronických součástek – Zkoušečka Zenerových diod – Registrární hodiny Iskra RDT-1 – Elektronický gong s různými melodiemi – Rubriky.

Rádiotechnika (MLR), č. 6/1980

Integrované nf zesilovače (37) – Zajímavá zapojení: nf zesilovač ve třídě B, obvod pro indikaci kmitů reléových kontaktů, stabilizovaný zdroj, přesné zdroje referenčních napětí – Postavme si transceiver SSB TS-79 (17) – Dimenzování krátkovlných spojů (13) – Výpočet druh dřužic (2) – Lineární transverzor 2/10 m – Třípásmová vertikální anténa – Amatérská zapojení – Přijímače barevné televize (2) – Servis modulového přístroje TC 1612 – Stereofonní nf zesilovač 2x 12 W s IO – Přijímač parabolické antény pro UHF (2) – Údaje TV antén – Programování kalkulátoru PTK-1072 (10) – Radiotechnika pro pionýry.

Rádiotechnika (MLR), č. 7/1980

Integrované nf zesilovače (38) – Polovodičové relé, relé budoucnosti – Antény „Quagi“ – Dimenzování krátkovlných spojů (14) – Amatérská zapojení – Doplňení automatického klíčovače o údaj RST – Přijímače barevné televize (3) – Údaje TV antén – Geometrie gramofonové přenosky – Příklady použití tyristoru Tungsram ST 103 – Reproduktoričová soustava Telefunken TLX – Stereofonní nf zesilovač 2x 12 W (2) – Přenosný přijímač Sokol 308 – HEXFET, nový zesilovač výkonový prvek – Radiotechnika pro pionýry – Mikroprocesor 8080 (3).

Radioelektronik (PLR), č. 5/1980

Z domova a ze zahraničí – Vývoj bytových sestav jakostních přístrojů spotřební elektroniky – Korekční předzesilovač – Zkoušeč tranzistorů – Elektronické hodiny (2) – Rozhlasový přijímač Julia-stereo – Nové rozdělení kmitočtových pásem – Zprávy z IARU – Použití integrovaného obvodu UAA170 – Univerzální přístroj do automobilu.

Radio, Fernsehen, Elektronik (NDR), č. 7/1980

Přenos z olympijských her 1980 – Střílení antenních zařízení ke zlepšení odolnosti proti rušení – Zkoušeč chyb součtu – Přenosný rozhlasový přijímač Steratrans R 230-00 a R 230-10 – Zkušenosti s kombinací Stereo-Compakt SC 1100 – Pětiwattový nf-výkonový zesilovač A 210 – Vliv tepoty na činnost bipolárních tranzistorů ve zdrojích referenčního napětí – Moderní napájecí zdroje (7) – Pro servis – Informace o polovodičových součástkách 167, 168, IO D 410 D, značení sovětských integrovaných obvodů – Současný stav a směry vývoje elektrolytických kondenzátorů – Periodické řízení skupin kmitů pomocí triaků – Elektrické problémy při použití dvoustranných desek s plošnými spoji –

Rychlý spoušťový obvod, pracující na principu spínaného proudu – Napětím řízený generátor proudu pro elektrodyynamické budice kmitů – Klávesnice se standardním připojením SIF 1000 a kódováním.

I N Z E R C E

Inzerční příjmač Vydavatelství Naše vojsko, inzerní oddělení (inzerce AR), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51-9, linka 294. Uzávěrka tohoto čísla byla dne 16. 7. 1980, do kdy jsme museli obdržet úhradu za inzerát. Neopomeneš uvést prodejní cenu, jinak inzerát neuvěříme! Text inzerátu piš na stroji nebo hukovým písmem, aby se předešlo chybám vznikajícím z nečitelnosti předlohy.

PRODEJ

Z574M (čísla, něm. ekviv. ZM1080T) (à 65). Koupím starší kap. přijímač i nehrájící). Popis cena. L. Safránek, S. Alende 262, 500 06 Hradec Králové.

Kompletní starší vysílačka na dvě serva Futaba (3000). Karel Čvancára, Borovského 2009, 734 01 Karviná 7.

Kalkulačka TI-58 (5300). F. Tichý, Bulhary 125, 690 02 Břeclav.

IO-7447, 75, 90, 192, 193 (80, 45, 55, 90, 90), DIL: 723, 741, 748, 2020 (65, 40, 35, 380). A. Bogyaj, Nábrežná 20, 940 01 N. Zámký.

Elektronky: AZ1-11, UY1N, UY82 (10). 6C10P, 6CC31, PL81, PL82, 6H31 (15), UBF11, UCH11, UCL11, UBL21, ECH21, EY86 (20), EL86, UCH21 (32) a jiné, různé trafa na převinutí EI16, 19, 25 mm 1 kg (15) drát smalt Ø 0,4 kg (80). Při dotažení vyp. a vypsanou obálku. Josef Lekki, Sadová 819, 735 81 Bohumín 1.

HI-FI 813A + repro 2 ks. 1PF0670835 W 8 Ω (8900) – 36. 1. a mgf B73 Hi-Fi, pásek BASF (5900) i jednotlivé. Výborný tech. stav. R. Reček, 9. května 796/10, 736 01 Havířov 3.

Obrazovku 6120Q44 (à 120), krystal 27 MHz (90) a staré elektronky i ruské (à 2). Seznam proti známce. Stanislav Ziegler, Klenovka 41, 535 01 Přelouč.

Různé krystaly – filtry keram. fréz. kondenzátory – materiál. Koupím: R4-R5 podobný. Cena prodejní 1500 Kčs. Václav Kratochvíl, Částková 3, 317 00 Plzeň 1.

Zesilovač Transilwatt TW40 Junior, typ B (1600), měnič frekvence do televizoru, kanály 26/4, typ 4956A-3 (200). Z. Böhm, Chlumova 20, 130 00 Praha 3.

Oscil. obraz. B13S a DG13-54, Ø 13 cm, perm. kryt. soki, schéma (300). Tom Poušek, Krausova 7, 616 00 Brno.

Kalkulačku Casio FX-80 4000 provozních hodin bez výměny baterií, 38 funkcí + základní početní úkony, automatické vypínání (2000). Václav Vítek, Přemyšlenská 18, 182 00 Praha 8-Kobylisy.

IO SN7493, 95, 193 (45), SN7476, 86, 107 (25), SN7402, 04, 40, 53 (15), 5NU74 (60), 6NU73 (30), KU611 (20), ZM1020 (70), TIP5530 (150), TIP3055 (150). Ladislav Petr, Černokostelecká 123, 100 00 Praha 10.

Digitální multimetr DMM1000, přesnost 0,1 %, tepelně cyklováný a prof. nastavený (4200), ev. i soc. org. M. Buchta, Bulharská 26, 101 00 Praha 10.

Plošné spoje – L03 (55), L25 (40), N222 (30), N223 (95), 002 (60), 0202 (30), 0203 (20), 0204 (70), TW40 720419 (60), 720418 (30), 720419 (60), TW60730329 (80). Přesně. Ing. Miloš Kvasnička, Pod stráni 2167, 100 00 Praha 10.

Měř. přístroj C4324, U, R, I, ss, st, 20 rozsahů, nový (500). Fr. Stupal, Bezruče 1, 736 01 Havířov 2.

Oscilograf BM370 + náhr. elektronky (2600), časopis Funk-Technik (NSR) svázaný ročník 1965, 1966, 1967 (600). Kniha J. Czech: Oszillographen Messtechnik (NSR) (220). Ludvík Šprysl, Kovařovicova 6/1137, 146 00 Praha 6.

AF239, AF239S, BF900, BF905 (70, 100, 140, 160). Z. Kratochvíl, U hřiště 1800, 288 01 Nymburk.

Síťovou 3 lampovku pro 20-80 m vložnou pro RP. (350). K. Frola, Vojtěškova 14, 162 00 Praha 6.

Magnetofon Hi-Fi Grundig TK248 (5400), 2 ks 3 pásmové výhýbky 8 Ω (4 Ω) (à 250), tuner Hi-Fi 814A (6800), gramo NC440 (2700), 2 ks ARZ668 (à 200), 2 ks plošné spoje 3MD593HC (à 100), všecko vo výborném stavu. F. Loja, Křižová 3, 052 01 Spišská Nová Ves.

Reprod. ARN930 (750), ARN669 (120) 2 ks, ARV088 (40) 2 ks vše nepouž. ARV161 (30), ARO711 (100), 4x ARE689 v bedně + žes. 20 W (250). Josef Vacátko, U rychty 14, 160 00 Praha 6, tel. 32 75 33 več.

IO na SQ dek. 1312, 1314, 1315P (700), CA7447 (60), ICL803CP (350), LM373N (400), XR2206CP (400), 2N3055 (80), 2N5320 (90), BC415 (12), BC108B (12). Pavel Kouba, Malostranské nábřeží 3, 110 00 Praha 1.

Televizní hry AY-3-8500 (1600) a jedny nedokončené tiště. dle AR a některé součástky (800). Libor Kubín, Jičínská 29, 130 00 Praha 3.

KOUPĚ

RaS-RS1/5 UD/42, EL10, Fug 16, EBI3 a ladici kond. auto Rx Hitachi. Jiří Košář, 338 21 Osek 53.

Zahraniční kondenzátory 800 µF – 1G2/300–360 V do fotoblesku. Největší možné rozměry – průměr 40 mm, délka 60 mm. Jiří Kosík, Partyzánská 688 01 Uherský Brod.

Různé IO MH, SN, NE, MC, SN, CM, LM, TCA, MM5314, DL747, LED Ø 3,5, TIP 3055/2955, krystal 100 kHz, tov. osciloskop, nf gen., měřic. kmitočty. Katalogy aplikace zahraničních IO. Časopisy HaZ. Karel Kožehuba, Rybník 1770, 755 01 Vsetín.

Antenní rotátor, tovární i amatérský výrobek. J. Uhřík, S. K. N. 395, 273 03 Stochov.

7QR20 okamžitý, případně výměnný za KC, KF, KU606. Miroslav Večerka, Talichova 3700, 767 01 Kroměříž.

Perf. mech. profes. mgf 30 cm/s, 2 náhr. chvějky k Shure M75-6, LED segment., konc. st. Sinclair. P. Novák, 2. května 1030, p. s. 23, 288 02 Nymburk. Nabídňete.

Výborný RX pro všechna amatérská pásmá nejraději Lambda. V. Příjedu. Sieghard Seidel, 468 61 Desná III 132.

Mgf šasi stereo, jdoucí. Rudolf Rataj, Hornická 537, 747 23 Břeclavice.

RK70-74, 77 1/75, 1/78, AR 73, 3/76, knihu Osciloskop od G. Tauša, mer. MP80, 120, DRH3, 5, 8, IO MM5316N, MAA725, 741, 748, TCA440. Krystaly 100 kHz, 1 MHz, LQ410 4 ks, filtr SFD 455. Prodám nebo vyměním krystaly 27, 045, 27, 100, 27, 555 MHz. Sadu jap. mf tr. AR 10/78, 9, 12/79, 1, 4, 5/80, ARB2, 3, 4/79. Vl. Jajcák, Štúrová 11, 900 27 Bernoláková.

Větší množství magnetpásů Ø 22 cm (např. Grundig GDR 22 Hi-Fi professional a jiné) a receiver Aiwa AX7550. Jen 100% stav. Z. Přibyl, J. Plachty 743, 708 00 Ostrava 8.

RAM SN(MH)74S201 a NE555. V. Šnobl, Partyzánská 1933/6, 434 00 Most.

IO 7400, 75, 90, 93, 121, OZ 741, 748, 501–504, NE555, KD601, 501, KC507–9, 147–9, KF506–8, 17, 18, 21, KT501–5, LED, konektory, izostaty, přesné R, C, obrazovku 7QR20. Nabídňete – cena. Zd. Malý, Jungmanova 1167, 664 34 Kuřim.

Integrovaný obvod TDA1046, popis a řadič 26 poloh, tří segmenty. Karel Glos, Smetanova 717, 550 00 Jaroměř. Pražské předm.

IO AY-3-8500, krystal 100 kHz, LQ100, DL747, MM5316. Přesomne, cena! P. Durkoth, Podhradová 31, 040 01 Košice.

NE555. Zdeněk Houda, Palackého 518, 391 01 Sezimovo Ústí I.

Nabídňete písomně (cena), 3x 7400, 2x 7404, 1x 7442, 2x 7447, 1x 7450, 14x 7490, 1x 745201, 2x MA7805, 3x OI410, 1x 7410.1x LUN2621, 40/6 V. VI. Brázdil, 739 13 Kunice pod. Ondř. 540.

KNIHA OLOMOUC nabízí

PRO DOPLNĚNÍ VAŠÍ KNIHOVNY

- Bozděch: Magnetofony I (1965–1970), Kčs 40,–.**
- Bozděch: Magnetofony II (1971–1975), Kčs 52,–.**
Knihy obsahují schéma mechanických a el. částí magnetofonů jak tuzemských, tak i zahraničních.
- Hodlnář: Zahraniční rozhlasové a televizní přijímače.**
Jedná se o přijímače, které byly dováženy do ČSSR do konce roku 1966. **Kčs 56,–.**
- Bém: Československé polovodičové součástky II. díl.**
Popis el. vlastností součástek vyráběných v n. p. TESLA Rožnov, dále pak jejich typické zapojení. **Kčs 37,–.**
- Kubát: Zvukař amatér.**
Informace a poznatky důležité k dosažení nejlepších výsledků při záznamu a reprodukci. **Kčs 30,–.**
- Kruml: Transformátory pro obroukové svařování.**
Jsou zde probrány všechny druhy regulací proudu svařovacích transformátorů a konstrukce svařovacích transformátorů. **Kčs 26,–.**
- Roškota: Navrhování el. zařízení podle předpisů ČSN.**
Řešení jednotlivých druhů el. vedení a pokyny pro správnou volbu el. rozvodů v obytných domech, prům. závodech a v prostorách s nebezpečným prostředím. **Kčs 53,–.**

Požadované tituly zakroužkujte a objednávku pošlete na adresu:
Specializované knihkupectví, pošt. schr. 31, 736 36 Havířov.

Objednávky vyřizujeme do vyčerpání zásob.

Vyplňte čitelně – strojem nebo hůlkovým písmem:

Jméno a příjmení:

Adresa:

PSČ

ELEKTRONIKA INFORMUJE

Zákazníci, kteří si v letošním roce u nás zakoupili osm základních dílů pro stavbu stereofonního gramofonu **TG120AS** nebo základní šasi **TG120ASM 330 6080**, obdrželi spolu s výrobkem „Odpovědní lístek“, pomocí kterého chceme získat poznatky a připomínky pro ověření a další zlepšování kvality.

Všechny nové připomínky vítáme a zároveň upozorňujeme, že 30. září t. r. je uzávěrka tématického úkolu – „NOVÉ ŘEŠENÍ FUNKCÍ A DOPLŇKŮ GRAMOFONU TG120 JUNIOR“ – k celostátní přehlídce HIFI-AMA 1980. Tento úkol vyhlásil ÚV Svazarmu spolu s podnikem Elektronika. Tří nejlepší řešení budou odměněna zvláštní cenou podniku. Podrobnosti se dozvítě v seznamu tématických úkolů, který na požádání obdržíte při své návštěvě ve středisku členských služeb podniku Elektronika, Ve Smečkách 22, Praha 1. Z naší nabídky stavebnic Vám nabízíme:

RS070 Plonýr – širokopásmový skříňkový reproduktor 5 W – MC 140 Kčs.
Jednoduchý akustický záříc s velkou účinností, vhodný především pro stereofonní zesilovače a magnetofony, s výkonom do 5 W. Mimořádně jednoduchá stavba a nízká cena odpovídají možnostem zájemců, kteří hledají vhodný začátek pro vlastní experimenty v elektroakustice.

TW40SM JUNIOR – stereofonní zesilovač 2× 20 W – MC 1900 Kčs. Kompletní soubor stavebních dílů s oziveným předzesilovačem a osazeným koncovým stupněm k rychlé montáži včetně stavebního návodu.

TW120S – koncový zesilovač 2× 60 W – MC 1860 Kčs. Ozivená kompletní stavebnice včetně návodu. Je určena pro dva ozvučovací sloupy RS508 nebo 2 až 4 reproduktarové soustavy RS238B.

Kromě našeho dalšího sortimentu hotových výrobků stavebnic a stavebních dílů Vám nabízíme celou řadu konstrukčních prvků jako jsou:

otočné a tahové stereofonní potenciometry, základní řadu spojovacích tří, pěti a sedmikolíkových vidlic a zásuvek, slídrové izolační podložky pod výkonové tranzistory 1 a 2NT4312. Aktuální nabídka podle okamžitého stavu našich skladových zásob obdržíte při Vaší návštěvě ve středisku členských služeb v Praze.

ELEKTRONIKA

Mimopražtí zájemci se musí se svými požadavky obrátit na Dům obchodních služeb Svazarmu – Valašské Meziříčí, Pospíšilova 12, tel. č. 2688 nebo 2060.

ELEKTRONIKA – středisko členských služeb, podnik ÚV Svazarmu
Ve Smečkách 22, 110 00 Praha 1
Telefony:
prodejna 24 83 00
odbyt 24 96 66
telex 12 16 01

ZÁVODY PRŮMYSLOVÉ AUTOMATIZACE NOVÝ BOR, národní podnik, NOVÝ BOR

výrobce progresívních prvků výpočetní a automatizační techniky

Přijme ihned nebo podle dohody:

- vedoucího útvaru energetiky,
- mistra kotelen,
- vedoucího metodika IS,
- samostatné referenty racionalizace
- analytiky a systémové pracovníky do výpočetního střediska
- vývojové konstruktéry a sam. technology
- vedoucího finanční účtárny

dále přijme:

- pracovníky dělnických profesí strojního, elektrotechnického i stavebního zaměření
- řidiče-automechanika
- pomocný obsluhující personál
- pracovníky různých oborů přednostně pro výrobní provoz (možnosti získání plné kvalifikace).

Informace podá:

Kádrový a personální úsek ZPA Nový Bor, n. p. Nový Bor

telefon 2452 nebo 2150

Nábor povolen v okrese Česká Lípa

KNIHY PORADIA RADIOAMATÉROM

Vám, ktorí si chcete prehliobiť vedomosti z oblasti rádiotelekomunikácií, televízie a elektroniky, sme pripravili malý výber kníh.

Ak si vyberiete, svoje objednávky posielajte na adresu:
SLOVENSKÁ KNIHA, n. p., odbyt, Rajecká 7, 010 91 ŽILINA

Objednávám(e)

.... výtl. **Beiser: Úvod do moderní fyziky**
Podáva ucelený prehľad fyzikálnych oborov, počínajúc teóriou relativity, kvantovou mechanikou, fyzikou atomov, molekúl a pevných častic až po jadrovú fyziku **46 Kčs**

.... výtl. **Sokol: Jak počítá počítač**
Zaoberá sa populárnym spôsobom vnútornou skladbou a zásadami činnosti samočinného počítača, vysvetluje najdôležitejšie pojmy a oznamuje so základmi programovania. **10 Kčs**

.... výtl. **Bém a kol.: Československé polovodičové součástky**
Obsahuje údaje kremíkových polovodičových súčiastok a integrovaných obvodov. Ide hlavne o bipolárne integrované obvody, kremíkové polovodičové diódy a usmerňovače, usmerňovacie bloky, mikrovlnné diódy a usmerňovacie analógové, číslicové integrované súčiastky. **37 Kčs**

.... výtl. **Štofko: Amatérske opravy televízorov**
V príručke sa opisujú opravy čierno-bielych televíznych prijímačov domácej výroby amatérskymi prostriedkami. Uvádzajú sa pomôcky a amatérské meracie prístroje na opravy televíznych prijímačov. **22 Kčs**

.... výtl. **Bozděch: Magnetofóny II (1971–1975)**
Popisy tuzemských a zahraničných magnetofónov a videomagnetofónov určených pre domáce použitie. Prináša schémy mechanické a elektrické časti magnetofónov, vysvetlenie funkcie, stručné nastavovacie predpisy a prehľad vlastností magnetických pások. **52 Kčs**

.... výtl. **Tříška: Zkoušenky a jednoduchá měření v praxi elektromontéře**
Prehľad o osvedčených skúšačkách a meriacich prístrojoch používaných v elektromontážnej praxi, uvádzajú aj návody na zhotovovanie jednoduchých skúšačiek a prípravkov, ktoré uľahčujú meranie v prevádzke. **20 Kčs**

.... výtl. **Moerder-Henke: Praktické výpočty v tranzistorové technice**
Kniha vysvetluje principy jednoduchých polovodičových obvodov, uvádzajú vyriešené príklady a dáva pokyny pre samostatný návrh základných elektronických obvodov. **16 Kčs**

Vyznačené knihy pošlite doberkou na adresu:
Meno a priezvisko:
Bydliško:
PSČ a pošta:
dátum:
podpis: