

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Referat - Präsentation Aufgabe 3 - Flußprobleme

15. Dezember 2019

Adrian Helberg

Prüfer: Prof. Dr. C. Klauck Vorlesung: Graphentheoretische Konzepte und Algorithmen

Inhalt

- Einleitung
- 2 Kontext
- 3 Entwurf
- 4 Laufzeitmessung
- Fazit

Einleitung

Regularien

- Schriftliche Ausarbeitung
- Implementierung

Überlegungen

Aufteilung in Arbeitspakete

Einleitung - Arbeitspakete

Arbeitspaket	Zeitabschätzung (in Stunden)
Recherche	2-3
Algorithmen verstehen	4-5
Entwurf	16
Implementierung	16

Vorbereitung

Wo kommt das Wissen her?

Einleitung - Quellen

- Prof. Dr. C. Klauck. Aufgabe 3: Flußprobleme, 2019. https://users.informatik.haw-hamburg.de/~klauck/GKA/aufg3.html.
- [2] Peter Läuchli. Algorithmische Graphentheorie. Birkhäuser, Basel, 9. edition, 1991. ISBN: 978-3-0348-5635-5.
- [3] Christoph Klauck & Christoph Maas. Graphentheorie für Studierende der Informatik. HAW Hamburg, 6. edition, 2015.
- [4] Carsten Milkau. Algorithmus von ford und fulkerson, Juni 2019. Revision 21.06.2019 https://de.wikipedia.org/wiki/Algorithmus_von_Ford_und_Fulkerson.
- [5] Marc van Woerkom. Erlang (programmiersprache), November 2019. https://de.wikipedia.org/wiki/Erlang_(Programmiersprache).

Kontext - Aufgabenstellung

Aufgabenstellung

- Der Algorithmus von Ford und Fulkerson ^a
- Der Algorithmus von Edmonds und Karp ^b
- Algorithmen ohne Residualnetzwerk
- Nachvollziehbare Ergebnisse
- Generierung von Graphen als SVG mit Angabe des Flusses
- printGFF
- Nachweise der erwarteten Komplexität
- Laufzeitmessungen
- Erstellen von Log-Dateien

[&]quot;,Ford-Fulkerson", 1956, L.R.Ford & D.R.Fulkerson

^b, Edmonds-Karp", 1970, Yefim Dinitz, 1972, J.Edmonds & R.Karp

Kontext - Recherche

Hauptquelle: Buch zur Vorlesung

- Flussprobleme: Kapitel 4 ab Seite 95
- Ford-Fulkerson Algorithmus: Seite 102/103

Kontext - Algorithmen

- 1. (Initialisierung)
 - Weise allen Kanten $f(e_{ij})$ als einen (initialen) Wert zu, der die Nebenbedingungen erfüllt. Markiere q mit (unde finiert. ∞).
- 2. (Inpektion und Markierung)
 - (a) Falls alle markierten Ecken inspiziert wurden, gehe nach 4.
 - (b) Wähle eine beliebige markierte, aber noch nicht inspizierte Ecke v_i und inspiziere sie wie folg (Berechnung des Inkrements)
 - (Vorwärtskante) Für jede Kante e_{ij} ∈ O(v_i) mit unmarkierter Ecke v_j und f(e_{ij}) < c(e_{ij}) markiere v_j mit (+v_i, δ_j), wobei δ_j die kleinere der beiden Zahlen c(e_{ij}) - f(e_{ij}) und δ_i ist.
 - (Rückwärtskante) Für jede Kante e_{ji} ∈ I(v_i) mit unmarkierter Ecke v_j und f(e_{ji}) > 0 markiere v_j mit (v_i, δ_j), wobei δ_j die kleinere der beiden Zahlen f(e_{ji}) und δ_i ist.
 - (c) Falls s markiert ist, gehe zu 3., sonst zu 2.(a).
- 3. (Vergrößerung der Flussstärke)
 Bei s beginnend lässt sich anhand der Markierungen der gefundene verg. Weg bis zur Ecke q rückwärts durchlaufen. Für jede Verwärtskante wird f(e_{ij}) um δ_s erhöht, und für jede Rückwärtskante wird f(e_{ji}) um δ_s vermindert. Anschließend werden bei allen Ecken mit Ausnahme von a die Markierungen entfernt. Gehe zu 2.
- Es gibt keinen verg. Weg. Der jetzige Wert von d ist optimal. Ein Schnitt A(X, X̄)
 mit c(X, X̄) = d wird gebildet von genau denjenigen Kanten, bei denen entweder die
 Anfanasecke oder die Endecke inspiziert ist.

Kontext - Algorithmen

Überlegung

Algorithmus baut auf dem Beweis des

Max-flow-min-cut Theorem von Ford und Fulkerson auf

Satz 4.3 (Max-flow-min-cut Theorem von Ford und Fulkerson) In einem schwach zusammenhängendem schlichten Digraphen G mit genau einer Quelle q und genau einer Senke s sowie der Kapazitätsfunktion c und dem Fluss f ist das Minimum der Kapazität eines q und s trennenden Schnitts gleich der Stärke eines maximalen Flusses von q nach s.

Kontext - Algorithmen

Besonderheiten

- Ford-Fulkerson und Edmonds-Karp unterscheiden sich nur in der Suchreihenfolge nach einem vergr. Weg.
- Edmonds-Karp verwendet hierzu eine Queue
- Durch den spezifizierten Rückgabewert
 [(Liste der im letzten Lauf inspizierten Knoten)]
 kann Schritt 4. der Algorithmen vernachlässigt werden

Kontext - Komplexität

aus 1. (Initialisierung)

- Setzen von Werten: O(1)
- Iterieren von Kanten: O(N)

aus 2. (Inspektion und Markierung)

- Markierung/Inspektion prüfen: O(1)
- Iterieren von Knoten: O(N)

Kontext - Komplexität

aus 2. (b)

- Wählen einer beliebigen Ecke: O(N)
- Wählen der nächsten Ecke aus der Queue: O(1)
- Inzidente Kanten abfragen: O(1)

Entwurf

Definition

- Alleinige Vorlage zu einer möglichen Implementierung unabhägig zur Programmiersprache
- Mögliche Probleme schnell erkennen, um Aufwand zu minimieren
- Grundlegendes für effiziente Implementierungen und damit gute Softwarelösungen schaffen

Entwurf - Algorithmen

Wirkungsprinzip

Der Algorithmus beruht auf der Idee, einen Weg von der Quelle zur Senke zu finden, entlang dessen der Fluss weiter vergrößert werden kann, ohne die Kapazitätsbeschränkungen der Kanten zu verletzen. [4] (Wirkungsprinzip)

Informationen an Ecken und Kanten

- Ecken: $(+/-, Vorgänger, \delta)$
- Kanten: Fluss, Kapazität

Entwurf - Datenstrukturen

aus 1. (Initialisierung)

 Setzen eines initialen Flusses durch rekursives Durchlaufen aller Kanten

aus 2. (Inspektion und Markierung)

- Knoten werden durch die Informationen "Vorzeichen", "Vorgänger" und "Delta" markiert
- Knoten werden inspiziert

Entwurf - Datenstrukturen

aus 2. (b)

- Ermitteln einer beliebigen Ecke
- Holen der Inzidenten Kanten der Ecke

aus 2. (Vergrößerung der Flussstärke)

• Knoten der Läufe von Vergrößerung sind zu halten

Entwurf - Programmfluss

Laufzeitmessung

Idee

- Erfassen der Laufzeitkomplexität durch skalierende Eingebedaten
- II. Vergleich beiden Algorithmen
- III. Herausarbeiten der Unterschiede beider Algorithmen

Idee

 Nutzen von gengraph zur Erstellung randomisierter Graphen für Laufzeitexperimente

Laufzeitmessung - Versuchsaufbau

zu I.					
	Edmonds-Karp	Ford-Fulkerson	Anzahl Ecken (Kanten)		
			10 (45)		
			20 (190)		
			30 (434)		
			40 (780)		
			50 (1225)		
			60 (1770)		
			70 (2415)		
			80 (3160)		
			90 (4005)		
			100 (4950)		

Laufzeitmessung - Versuchsdurchführung

zu I.				
Edmonds-Karp	Ford-Fulkerson	Anzahl Ecken (Kanten)		
5	7	10 (45)		
22	25	20 (190)		
79	93	30 (434)		
217	232	40 (780)		
443	503	50 (1225)		
886	1001	60 (1770)		
1662	1896	70 (2415)		
2729	3072	80 (3160)		
5003	5144	90 (4005)		
8111	8785	100 (4950)		

Laufzeitmessung - Versuchsdurchführung

zu II.

Edmonds-Karp	Ford-Fulkerson	δ
5	7	
22	25	
79	93	
217	232	
443	503	
886	1001	
1662	1896	
2729	3072	
5003	5144	
8111	8785	

Fazit_i

Laufzeitmessung - Versuchsdurchführung

zu II.

Edmonds-Karp	Ford-Fulkerson	δ
5	7	2
22	25	3
79	93	14
217	232	15
443	503	60
886	1001	115
1662	1896	234
2729	3072	343
5003	5144	141
8111	8785	674

Laufzeitmessung - Versuchsauswertung

Ende

Danke für Ihre Aufmerksamkeit!