Problem A. Manhattan

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

На Манхэттене для каждого целого i существуют улицы x = i и y = i. Дом Snuke и дом Smeke расположены около улиц, при этом обычное (евклидово) расстояние между ними равно d.

Вычислите наибольшее возможное расстояние между их домами в случае, когда передвигаться разрешено только вдоль улиц.

Input

Входной файл содержит одно число d, такое, что $0 < d \le 10$, а десятичная запись числа d содержит ровно три знака после десятичной точки.

Output

Выведите ответ с абсолютной или относительной точностью не хуже 10^{-9} .

standard input	standard output
1.000	2.00000000000
2.345	3.316330803765

Problem B. Dictionary

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

У Snuke есть словарь, который содержит n попарно различных слов s_1, \ldots, s_n . Каждое слово состоит из строчных латинских букв. Слова отсортированы лексикографически, то есть $s_1 < \cdots < s_n$.

К сожалению, некоторые буквы в словаре стёрлись и стали нечитаемыми. Эти буквы заменены символами '?'. Вычислите количество способов восстановить корректный словарь. Так как ответ может быть слишком большим, выведите остаток от деления ответа на $10^9 + 7$.

Input

Первая строка входа содержит одно целое число n ($1 \le n \le 50$). Далее следуют n строк, i-я из которых содержит слово s_i ($1 \le |s_i| \le 20$, s_i состоит из строчных английских букв или является '?').

Output

Выведите одно целое число — ответ к задаче.

standard input	standard output
2	703286064
?sum??mer	
c??a??mp	
3	1
snuje	
????e	
snule	

Problem C. Clique Coloring

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

Дан полный граф с т вершинами. Изначально ни одно ребро графа не окрашено.

Snuke для каждого $i(1 \le i \le n)$ делает следующее действие: выбирает a_i вершин из графа и окрашивает все рёбра, которые соединяют какие-то две из выбранных вершин, цветом i. При этом ни одно ребро перекрашивать не пришлось.

При каком наименьшем значении m это возможно?

Input

Первая строка входа содержит одно целое число n ($1 \le n \le 5$). Далее идут n строк, i-я из которых содержит одно целое число a_i ($2 \le a_i \le 10^9$).

Output

Выведите наименьшее возможное значение m.

Examples

standard input	standard output
2	5
3	
3	
5	12
2	
3	
4	
5	
6	

Note

В первом примере занумеруем вершины в графе как 1, 2, 3, 4, 5. Тогда можно раскрасить граф следующим образом:

- Выберем три вершины 1, 2, 3 и покрасим рёбра между ними в первый цвет.
- Выберем три вершины 1, 4, 5 и покрасим рёбра между ними во второй цвет..

Problem D. Dense Amidakuji

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Аmidakuji — известная японская игра. Игра содержит w (где w — чётное) длинных вертикальных отрезков и Snuke может добавить несколько коротких горизонтальных отрезков между ними. Каждый горизонтальный отрезок соединяет два соседних вертикальных отрезка. Всего есть h слоёв и каждый горизонтальный отрезок лежит в одном из слоёв. Таким образом, всего есть h(w-1) слотов для горизонтальных отрезков.

Пусть (a, b) - a-й сверху и b-й слева при нумерации с единицы слот (см. рисунок). Snuke сначала добавляет горизонтальные отрезки во все слоты (a, b), соответствующие $a \equiv b \pmod{2}$. Затем он удаляет n горизонтальных отрезков в слотах $(a_1, b_1), \ldots, (a_n, b_n)$.

Игра идёт следующим образом. Сначала Snuke выбирает i-й вертикальный отрезок. Затем он начинает движение с самого верха выбранного отрезка вниз. Когда он достигает какого-то горизонтального отрезка, он перемещается по этому отрезку и продолжает движение вниз уже по соседней вертикали. Игра прекращается, когда Snuke дойдёт до нижнего конца вертикального отрезка. Для каждого i вычислите номер вертикального отрезка, на котором Snuke финиширует.

Input

Первая строка входа содержит три целых числа h, w и n $(1 \le h, w, n \le 2 \cdot 10^5, w$ чётно). Далее идут n строк; i-я из них содержит два целых числа a_i и b_i $(1 \le a_i \le h, 1 \le b_i \le w - 1, a_i \equiv b_i \pmod 2, (a_i, b_i)$ попарно различны).

Output

Выведите w строк. В i-й строке выведите номер вертикального отрезка, в котором Snuke финиширует при старте на i-м отрезке.

Examples

standard input	standard output
4 4 1	2
3 3	3
	4
	1
10 6 10	1
10 4	4
4 4	3
5 1	2
4 2	5
7 3	6
1 3	
2 4	
8 2	
7 5	
7 1	

Note

(1, 1)	(1, 2)	(1, 3)
(2, 1)	(2, 2)	(2, 3)
(3, 1)	(3, 2)	(3, 3)
(4, 1)	(4, 2)	(4, 3)

XV Open Cup named after E.V. Pankratiev Stage 6, Grand Prix of Japan, Division 2, Sunday, February 1, 2015

	<u> </u>			
Если Snuke выберет сами $(1,1),(2,2),(4,2)$ и фини	ый левый вертикальный	і отрезок в первом пр	оимере, он будет перем	ещаться по слотам
(1,1),(2,2),(4,2) и фини	ширует на втором слев	а отрезке		,

Problem G. Snake

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

Назовём змейкой ломаную с n вершинами без самопересечений. Первоначально координаты i-й вершины змейки равны (x_i, y_i) , Змейка может непрерывно двигаться параллельным переносом и вращением, но она не может менять свою форму (то есть длины отрезков и углы между ними).

Прямая y=0 является стеной, и в точке (0,0) есть отверстие. Проверьте, пройдёт ли змейка в отверстие; иначе говоря, первоначально y-координаты всех точек змейки были положительны; после движения эти координаты должны стать отрицательными.

Input

Первая строка входа содержит одно целое число n ($2 \le n \le 1000$). Далее следуют n строк, i'я из которых содержит два целых числа x_i и y_i ($0 \le x_i \le 10^9$, $1 \le y_i \le 10^9$, $(x_i, y_i) \ne (x_{i+1}, y_{i+1})$). Ломаная не содержит самопересечений; никакие три точки ломаной не находятся на одной прямой.

Output

Если змейка может пройти сквозь отверстие, выведите "Possible". Иначе выведите "Impossible".

Examples

standard input	standard output
4	Possible
0 1	
1 1	
1 2	
2 2	
11	Impossible
63 106	
87 143	
102 132	
115 169	
74 145	
41 177	
56 130	
28 141	
19 124	
0 156	
22 183	

Note

Для первого примера решение может выглядеть так:

XV Open Cup named after E.V. Pankratiev Stage 6, Grand Prix of Japan, Division 2, Sunday, February 1, 2015

- Сдвинуться на 1 в направлении -y.
- Повернуться на 90 градусов против часовой стрелки вокруг точки (0,0).
- Сдвинуться на 1 в направлении -y.
- Повернуться на 90 градусов по часовой стрелке вокруг точки (0,0).
- Сдвинуться на 1 в направлении -y.
- Повернуться на 90 градусов против часовой стрелки вокруг точки (0,0).
- Сдвинуться на 2 в направлении -y.

Problem J. Hyperrectangle

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Snuke получил в подарок на день рождения d-мерный гиперпараллелепипед размером $l_1 \times \cdots \times l_d$. Snuke разместил гиперпараллелепипед так, чтобы i-я координата его точек принимала значения от 0 до l_i и откусил кусок гиперпараллелепипеда, содержащий все точки, удовлетворяющие условию $x_1 + \cdots + x_d \leq s$. (здесь x_i обозначает i-ю координату).

Пусть V — объём съеденной части. Можно показать, что d!V (V умножить на факториал d) всегда является целым числом, если d_i и s также целые. Вычислите остаток от деления d!V на $10^9 + 7$.

Input

Первая строка входа содержит одно целое число d ($2 \le d \le 300$). Далее следуют d строк, i-я из которых содержит одно целое число l_i ($1 \le l_i \le 300$). Последняя строка содержит одно целое число s ($0 \le s \le \sum l_i$).

Output

Выведите остаток от деления d!V на $10^9 + 7$.

Examples

standard input	standard output
2	15
6	
3	
4	
5	433127538
12	
34	
56	
78	
90	
123	

Note

Иллюстрация к первому примеру:

Problem K. Beads (Division 2 Only!)

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Задано ожерелье из N жемчужин, пронумерованых последовательными целыми числами от 1 до N по часовой стрелке. Каждая жемчужина помечена заглавной латинской буквой. Таким образом, если прочитать эти буквы последовательно по часовой стрелке, получится строка длины N. Так как ожерельне замкнуто, то в зависимости от того, с какой жемчужины начинать чтение, можно получить различные строки.

Требуется найти среди этих строк лексикографически наименьшую.

Input

Первая строка входа содержит целое число N ($1 \le N \le 2 \cdot 10^6$) — длину ожерелья. Во второй строке задано само ожерелье. Ожерелье задаётся строкой, содержащей N заглавных латинских букв; k-я буква — это буква, написанная на k-й жемчужине.

Output

Выведите номер жемчужины, начиная с которой, можно прочитать по часовой стрелке лексикографичски наименьшую строку длиной N. Если ответов несколько, выведите наименьший.

standard input	standard output
6	2
CABCAB	

Problem L. The Maximum Sum (Division 2 Only!)

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Заданы N целых положительных чисел. Среди них выбираются два, сумма которых является наибольшей, не превосходящей заданного числа M. Требуется найти значение соответствующей суммы.

Input

Первая строка входа содержит два целых положительных числа N (3 $\leq N \leq 100$) и M (1 $\leq M \leq 100$). Вторая строка содержит N целых положительных чисел.

Output

Выведите одно число — требуемую сумму.

standard input	standard output
5 8	8
5 3 4 6 5	
4 116	115
31 52 73 84	

Problem M. Spellcheck (Division 2 Only!)

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Вася написал спеллчекер, который выдаёт ошибки в следующих случаях:

- "u" или "ur" вместо "you" или "your".
- "would of", "should of" вместо "would have", "should have".
- "lol". Более того, программа выдаёт ошибку на любое слово, в котором можно прочитать "lol" как подслово (если слово содержит "lol" несколько раз, как словл "olololo", всё равно выдаётся одна ошибка).

Напишите программу, которая считывает предложения одно за другим и для каждого предложения определяет, сколько ошибок найдёт новый спеллчекер.

Input

Первая строка входа содержит целое число T ($1 \le T \le 50$) — количество предложений в тесте. Каждая из последующих T строк содержит одно предложение — одно или несколько слов, разделённых пробелами. Слова состоят из строчных латинских букв. Слова разделены ровно одним пробелом, пробелы в начале и в конце предложения отсутствуют. Общая длина каждого предложения (вместе с пробелмаи) не превосходит 100 символов.

Output

Для каждого предложения в отдельной строке выведите, сколько ошибок найдёт в нём новый спеллчекер.

standard input	standard output
5	2
r u haz trololo	0
my name is vasya	1
i got the lollipop	3
u should of lollollol	0
i should off line	

Problem N. Bluetooth (Division 2 Only)

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 256 mebibytes

Вы пытаетесь отправить сообщение другу через Bluetooth. Смартфон может соединяться по Bluetooth с любым смартфоном, если расстояние между ними не превышает D.

Определите, можно ли отправить сообщение «по цепочке» (напрямую или через некоторое количество промежуточных смартфонов).

Input

Первая строка входа содержит два целых числа N ($1 \le N \le 10$) и D ($1 \le D \le 10$), где N — общее количество смартфонов с Bluetooth в помещении, а D — максимальное расстояние, на котором два смартфона соединяются по Bluetooth.

Каждая из следующих N строк содержит по два целых числа — координаты X и Y очередного смартфона. При этом первая строка задаёт координаты Вашего смартфона, последняя — координаты смартфона Вашего друга ($0 \le X, Y \le 100$).

Output

Выведите 'у', если сообщение передать можно и 'n' в противном случае.

standard input	standard output
4 7	У
1 4	
6 2	
9 7	
14 4	
5 6	n
7 1	
5 5	
1 6	
8 7	
20 15	