Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report No. CHTEW19100135 Report verification :

Project No. SHT1909064404EW

FCC ID.....: 2AJZP-G450A1

Applicant's name.....: Mason America, Inc

Manufacturer...... Mason America, Inc

Test item description: PAD

Trade Mark MASON/yprime

Model/Type reference...... G450A1

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.225

Date of receipt of test sample........... Sep 27, 2019

Date of testing...... Sep 28, 2019- Oct 28, 2019

Date of issue...... Oct 29, 2019

Result...... PASS

Testing Laboratory Name:

Compiled by

(position+printedname+signature)...: File administrators Silvia Li

Silviali

Supervised by

(position+printedname+signature)....: Project Engineer Aaron Fang

Aaron.Fang

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Shenzhen Huatongwei International Inspection Co., Ltd.

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,

Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Page: 1 of 24

Report No : CHTEW19100135 Page 2 of 24 Issued:2019-10-29

Contents

<u>1.</u>	IEST STANDARDS AND REPORT VERSION	ა
1.1.	Test Standards	3
1.2.	Report version information	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	EUT operation mode	6
3.4.	EUT configuration	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	AC Power Conducted Emissions	11
5.3.	Field Strength of the Fundamental and Mask Measurement	14
5.4.	20dB Bandwidth	16
5.5.	Radiated Emission	18
5.6.	Frequency Stability	22
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	23
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	24

Report No : CHTEW19100135 Page 3 of 24 Issued:2019-10-29

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version information

Revision No.	Date of issue	Description
N/A	2019-10-29	Original

Report No : CHTEW19100135 Page 4 of 24 Issued:2019-10-29

2. TEST DESCRIPTION

Test Item	Section in CFR 47	Result	Test Engineer	
Antenna requirement	15.203	PASS	Jiongsheng Feng	
AC Power Line Conducted Emissions	15.207	PASS	Kang Yang	
Field Strength of the Fundamental and Mask Measurement	15.225(a)(b)(c)	PASS	Xu Yang	
20dB Bandwidth	15.215	PASS	Jiongsheng Feng	
Radiated Emission	15.225(d)&15.209	PASS	Yuantao Liang	
Frequency Stability	15.225(e)	PASS	Jiongsheng Feng	

Report No : CHTEW19100135 Page 5 of 24 Issued:2019-10-29

3. **SUMMARY**

3.1. Client Information

Applicant:	Mason America, Inc
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121
Manufacturer:	Mason America, Inc
Address:	2101 4th Avenue Suite 1550, Seattle WA, 98121

3.2. Product Description

Name of EUT:	PAD		
Trade Mark:	MASON/yprime		
Model No.:	G450A1		
Listed Model(s):	-		
Power supply:	DC 3.8V		
Adapter information 1:	Model:A121A-12015OU-EU2 Input: 100-240Va.c., 50/60Hz, 0.5A Output: 5.0Vd.c., 2.5A/9.0Vd.c.,2.0A/12Vd.c.,1.5A		
Adapter information2:	Model: A138A-120150U-US2 Input: 100-240Va.c., 50/60Hz, 0.5A Output: 5.0Vd.c., 2.5A/9.0Vd.c.,2.0A/12Vd.c.,1.5A		
RF Specification			
Operation frequency:	13.56MHz		
Channel number:	1		
Modulation Type:	ASK		
Antenna type:	FPC+Ferrite Antenna		

Report No : CHTEW19100135 Page 6 of 24 Issued:2019-10-29

3.3. EUT operation mode

TEST MODE

For RF test items
The engineering test program was provided and enabled to make EUT continuous transmit.
For AC power line conducted emissions:
The EUT was set to connect with large package sizes transmission.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- supplied by the lab

Manufacturer :	/
Model No. :	/
Manufacturer :	/
Model No. :	/

Report No: CHTEW19100135 Page 7 of 24 Issued:2019-10-29

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377A

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report No: CHTEW19100135 Page 8 of 24 Issued:2019-10-29

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors in calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to TR-100028-01 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system according to ISO/IEC 17025. Further more, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Here after the best measurement capability for Shenzhen Huatongwei is reported:

Test Items	Measurement Uncertainty	Notes
Conducted Disturbance 9KHz-30MHz	3.02 dB	(1)
Radiated emissions below 1GHz	4.90 dB	(1)
Radiated emissions above 1GHz	4.96 dB	(1)
Occupied Bandwidth	15 Hz	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : CHTEW19100135 Page 9 of 24 Issued:2019-10-29

4.5. Equipments Used during the Test

•	Conducted Emission						
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2019/10/26	2020/10/25
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2019/10/23	2020/10/22
•	Pulse Limiter	R&S	HTWE0033	ESH3-Z2	100499	2019/10/23	2020/10/22
•	RF Connection Cable	HUBER+SUHNE R	HTWE0113-02	ENVIROFLEX_ 142	EF-NM- BNCM-2M	2019/10/23	2020/10/22
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A

•	Radiated Emission-6th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2021/09/29	
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2019/10/26	2020/10/25	
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2017/04/05	2020/04/04	
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	2018/11/14	2019/11/13	
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	2019/8/21	2020/8/20	
•	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	501184/4	2019/5/27	2020/5/26	
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A	

•	Radiated emission-7th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)	
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/30	2021/09/29	
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2019/10/26	2020/10/25	
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2017/04/01	2020/03/31	
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2019/05/23	2020/05/22	
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	RE-7-FH	N/A	2019/05/10	2020/05/09	
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A	

Report No : CHTEW19100135 Page 10 of 24 Issued:2019-10-29

5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

TEST RESULTS

The directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.

5.2. AC Power Conducted Emissions

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207:

Fraguency range (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10:2013
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

- 1) Transd = Cable lose + Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin = Limit Level

Report No: CHTEW19100135 Page 14 of 24 Issued:2019-10-29

5.3. Field Strength of the Fundamental and Mask Measurement

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.225(a)(b)(c)

Fundamental frequency(MHz)	Field strength of fundamental (uV/m @30m)	Field strength of fundamental (dBuV/m @3m)
13.553-13.567	15848	124.0
13.410-13.553&13.567-13.710	334	90.5
13.110-13.410&13.710-14.010	106	80.5

Note: Limit dBuV/m @3m =Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Report No : CHTEW19100135 Page 16 of 24 Issued:2019-10-29

5.4. 20dB Bandwidth

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.215

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band 13.553~13.567MHz.

TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

5.5. Radiated Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209&15.225(d)

Limit for frequency below 30MHz:

Frequency	Limit (uV/m)	Measurement Distance(m)	Remark
0.009~0.490	2400/F(kHz)	300	Quasi-peak
0.490~1.705	24000/F(kHz)	30	Quasi-peak
1.705~30.0	30	30	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80, Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40*log(30/3)= Limit dBuV/m @30m + 40*log(30/3)

Limit for frequency above 30MHz:

Frequency	Limit (dBuV/m@3m)	Remark
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz-1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
ADOVE IGHZ	74.00	Peak

TEST CONFIGURATION

• 9 kHz ~ 30 MHz

● 30 MHz ~ 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 30MHz:
 - RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold;
 - (3) 30MHz to 1 GHz:
 - RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
 - (4) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Below 30MHz:

Frequency(MHz)	QuasiPeak(dBuV/m)	Limit(dBuV/m)	Test Result
0.0278	48.48	118.74	Pass
0.1057	40.93	107.12	Pass
0.7769	49.23	69.80	Pass
1.8813	44.63	68.09	Pass
4.5380	39.26	60.44	Pass
13.5527	46.34	N/A	Pass

Above 30MHz:

zation:					Vertical				
Level [dBµV/m]									
80									
70	 	++				+	. + +	; ; -+	
1 1				i i		i I		i i	
60	+	++				+	+	- +	1F-1
50	$\frac{1}{1} \frac{1}{1} \frac{1}{1}$			 -	- <u></u> -	 	$\frac{1}{1} \frac{1}{1}$		
40						Ļ	ļ		1 L _X
30								and restaurable residences	ALL THE STATE OF T
	X	+	~	~~~~~~	· · · · · ·	mmmmm	Maria Maria		1 1 1
20	F			· <u>-</u>			ii	- †	ii-i
1 I i									
10				+ -			++	- 	{ {
	OM 60M 70N	4 100		200	 M	300M 4			0M 1G
0 30M 40M 5	OM 60M 70N	Л 100		200ľ requency [Hz		300M 4	00M 500M 6	600M 80	0M 1G
0 30M 40M 5	136038_red			requency [Hz		300M 4	1 1 00M 500M 6	- † † 500M 80	0M 1G
0 30M 40M 5 x x x MES GM19101 MEASUREMENT 10/13/2019 4	######################################	: "GM19	1013603	requency[Hz	[]				
0 30M 40M 5 × × × MES GM19101	36038_red		F	requency [Hz			OOM 500M 6	000M 80	
0 30M 40M 5 x x x MES GM19101 MEASUREMENT 10/13/2019 4 Frequency	36038_red **RESULT: 3398 4398 Level	: "GM19	1013603 Limit	requency[Hz 38_red" Margin	[]	Height	Azimuth		zation
0 30M 40M 5 X X X MES GM19101 MEASUREMENT 10/13/2019 4 Frequency MHz 31.940000 64.920000	RESULT: :43PM Level dBµV/m 35.20 25.30	: "GM19 Transd dB -8.7 -7.0	1013603 Limit dBµV/m 40.0 40.0	Margin dB	Det. QP QP	Height cm	Azimuth deg 215.00 180.00	Polari VERTIC. VERTIC.	zation AL AL
0 30M 40M 5 X X X MES GM19101 MEASUREMENT 10/13/2019 4 Frequency MHz 31.940000 64.920000 171.620000	RESULT: :43PM Level dBµV/m 35.20 25.30 29.30	: "GM19 Transd dB -8.7 -7.0 -8.5	1013603 Limit dBμV/m 40.0 40.0 43.5	######################################	Det. QP QP QP QP	Height cm 100.0 100.0 100.0	Azimuth deg 215.00 180.00 288.00	Polari VERTIC VERTIC VERTIC	zation AL AL AL
0 30M 40M 5 X X X MES GM19101 MEASUREMENT 10/13/2019 4 Frequency MHz 31.940000 64.920000	RESULT: :43PM Level dBµV/m 35.20 25.30	: "GM19 Transd dB -8.7 -7.0	1013603 Limit dBµV/m 40.0 40.0	Margin dB	Det. QP QP	Height cm	Azimuth deg 215.00 180.00	Polari VERTIC. VERTIC.	zation AL AL AL AL

Report No: CHTEW19100135 Page 22 of 24 Issued:2019-10-29

5.6. Frequency Stability

LIMIT

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The equipment under test was connected to an external power supply.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25[°]C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to −20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10℃ increased per stage until the highest temperature of +50℃ reached.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Test Enviroment		Frequency	Frequency	Limit	Result
Voltage	Temperature(°C)	Reading(MHz)	Error(%)	LIIIII	Result
	-20	13.56008	0.0006%	±0.01%	Pass
	-10	13.56007	0.0005%	±0.01%	Pass
	0	13.56007	0.0005%	±0.01%	Pass
DC3.8V	10	13.56009	0.0007%	±0.01%	Pass
DC3.6V	20	13.56008	0.0006%	±0.01%	Pass
	30	13.56009	0.0007%	±0.01%	Pass
	40	13.56012	0.0009%	±0.01%	Pass
	50	13.56015	0.0011%	±0.01%	Pass
DC4.35V	20	13.56007	0.0005%	±0.01%	Pass
DC3.60V	20	13.56009	0.0007%	±0.01%	Pass

6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Reference to the test report No.: CHTEW19100128

-----End of Report-----