Grafer og graf-gennemløb

En mængde V af knuder (vertices).

En mængde $E \in V \times V$ af *kanter* (edges). Dvs. par af knuder.

- Orienterede grafer: kanter er ordnede par.
- Uorienterede grafer: kanter er uordnede par.
- ▶ Vægtede grafer: hver kant har et tal tilknyttet.
- Notation: n = |V|, m = |E|.
- ▶ Bemærk at $0 \le m \le n^2$ for orienterede grafer og $0 \le m \le n^2/2$ for uorienterede grafer.

Læs yderligere om graf-terminologi i appendix B, side 1168–70.

Modeller for mange ting:

Ledningsnet (telefon, strøm, olie, vand,...).

- Ledningsnet (telefon, strøm, olie, vand,...).
- ► Vejnet.

- Ledningsnet (telefon, strøm, olie, vand,...).
- ► Vejnet.
- ▶ Venner på SoMe.

- Ledningsnet (telefon, strøm, olie, vand,...).
- ► Vejnet.
- ▶ Venner på SoMe.
- ► Følgere på SoMe.

- Ledningsnet (telefon, strøm, olie, vand,...).
- Vejnet.
- Venner på SoMe.
- ► Følgere på SoMe.
- ▶ WWW-grafen af sider og links.

- Ledningsnet (telefon, strøm, olie, vand,...).
- Vejnet.
- Venner på SoMe.
- Følgere på SoMe.
- ▶ WWW-grafen af sider og links.
- Medforfatterskaber.

Masser af algoritmiske spørgsmål på grafer

- ► Hvordan gemme grafer (datastruktur)?
- Findes en sti mellem to knuder?
- Korteste sti mellem to knuder?
- Mindste delmængde af kanter som stadig holder alle knuder forbundet?
- ► Største samling kanter som ikke deler knuder?

4/32

Eksempel på algoritmisk spørgsmål

Afgør om der findes en sti mellem to givne knuder.

Eksempel på algoritmisk spørgsmål

Afgør om der findes en sti mellem to givne knuder.

Eksempel på algoritmisk spørgsmål

Afgør om der findes en sti mellem to givne knuder.

Adjancency lists og adjancency matrix

Adjancency lists: listen for u indeholder v for alle kanter $(u, v) \in E$. Knuder er repræsenteret som heltal mellem 1 og n (eller mellem 0 og n-1).

Adjancency lists og adjancency matrix

Adjancency lists: listen for u indeholder v for alle kanter $(u, v) \in E$. Knuder er repræsenteret som heltal mellem 1 og n (eller mellem 0 og n-1).

Plads: O(n+m) for adjancency lists, $O(n^2)$ for adjancency matrix.

Adjancency lists og adjancency matrix

Adjancency lists: listen for u indeholder v for alle kanter $(u, v) \in E$. Knuder er repræsenteret som heltal mellem 1 og n (eller mellem 0 og n-1).

Plads: O(n+m) for adjancency lists, $O(n^2)$ for adjancency matrix.

Hvis ikke andet oplyses, bruges adjancency lists repræsentationen i algoritmer i dette kursus.

En kant i en uorienterede graf repræsenteres som to orienterede kanter (så mht. implementation er uorienterede grafer bare et specialtilfælde af orienterede grafer).

Grafgennemløb

Opgave: givet en graf i adjacency lists repræsentation, besøg alle knuder.

Generel idé: Besøg en startknude s. Brug kanter i nabolisterne for besøgte knuder til at besøge flere knuder.

- ► Hvide knuder: endnu ikke besøgt
- ► Grå knuder: besøgt, men ikke alle kanter i naboliste brugt
- Sorte knuder: besøgt, alle kanter i naboliste brugt

```
GENERICGRAPHTRAVERSAL1(s)

Gør s grå og resten af knuderne hvide

while der findes grå knuder:

vælg en grå knude v

if v's naboliste er brugt op

gør v sort

else

vælg en ubrugt kant (v, u) fra v's naboliste

if u hvid:

gør u grå
```

Grafgennemløb

- Hvide knuder: endnu ikke besøgt
- Grå knuder: besøgt, men ikke alle kanter i naboliste brugt
- Sorte knuder: besøgt, alle kanter i naboliste brugt

```
GENERICGRAPHTRAVERSAL1(s)

Gør s grå og resten af knuderne hvide

while der findes grå knuder:

vælg en grå knude v

if v's naboliste er brugt op

gør v sort

else

vælg en ubrugt kant (v, u) fra v's naboliste

if u hvid:

gør u grå
```

En knudes livs-cyklus: hvid \rightarrow grå \rightarrow sort. Når algoritmen stopper, er alle knuder enten hvide eller sorte.

Farven for en knude v opbevares i et felt v.color.

Grafgennemløb

Vi skal senere i kurset møde tre varianter, som bruger forskellige strategier for at vælge næste kant (v, u) at bruge, dvs. for valgene (*):

```
GENERICGRAPHTRAVERSAL1(s)

Gør s grå og resten af knuderne hvide

while der findes grå knuder:

vælg en grå knude v (*)

if v's naboliste er brugt op

gør v sort

else

vælg en ubrugt kant (v, u) fra v's naboliste (*)

if u hvid:

gør u grå
```

- ► Breadth-First-Search (BFS)
- Depth-First-Search (DFS)
- ► Priority-Search (Dijkstras algoritme, A*)

Hvor langt når vi rundt i grafen?

Vi når alt, som kan nås fra s:

Sætning: Hvis der er en sti fra s til v, vil v være sort (og dermed besøgt) når GENERICGRAPHTRAVERSAL1(s) stopper.

Bevis: Når algoritmen stopper, er alle knuder enten hvide eller sorte. Da s startede grå, må den nu være sort. Antages at v er hvid, må der være mindst én kant (u,w) på stien med u sort og w hvid. Men u kan kun være sort hvis (u,w) er blevet brugt, hvorved w blev grå og nu må være sort. Så antagelsen kan ikke gælde og v må være sort.

For at nå rundt i hele grafen:

```
GENERICGRAPHTRAVERSALGLOBAL()

Gør alle knuder hvide

for alle knuder s:

if s hvid:

GENERICGRAPHTRAVERSAL2(s)
```

```
GENERICGRAPHTRAVERSAL2(s)

Gør s grå

while der findes grå knuder:

vælg en grå knude v (*)

if v's naboliste er brugt op

gør v sort

else

vælg en ubrugt kant (v, u) fra v's naboliste (*)

if u hvid:

gør u grå
```

Hvis (*) tager tid O(1), er samlet køretid O(n+m). [En kant kan kun vælges én gang, så alt arbejde udført i **else**-del tager O(m) tid i alt. Resten tager O(n) tid i alt.]

Hvor langt når vi rundt i grafen per kald?

Sætning: Hvis der ved starten af et kald til GENERICGRAPHTRAVERSAL2(s) er en sti fra s til v bestående af hvide knuder (inkl. v), vil v være sort (og dermed besøgt) når GENERICGRAPHTRAVERSAL2(s) stopper.

Bevis: Det samme som før for GENERICGRAPHTRAVERSAL1(s).

Husk hvem der opdagede hvem:

Når en knude $u \neq s$ besøges første gang, husker den, fra hvilken knude den blev opdaget (dens predecessor) i variablen $u.\pi$. Bemærk at $u.\pi$ højst bliver sat én gang (efter initialisering til NIL), da u gøres grå samtidig.

```
GENERICGRAPHTRAVERSALGLOBALWITHPARENTS()

Gør alle knuder hvide og sæt deres \pi til NIL

for alle knuder s:

if s hvid:

GENERICGRAPHTRAVERSAL3(s)
```

```
GENERICGRAPHTRAVERSAL3(s)

Gør s grå

while der findes grå knuder:

vælg en grå knude v (*)

if v's naboliste er brugt op

gør v sort

else

vælg en ubrugt kant (v, u) fra v's naboliste (*)

if u hvid:

gør u grå

sæt u.π lig v
```

Husk hvem der opdagede hvem:

Sætning: De knuder, som er opdaget (gjort ikke-hvide) i et kald GENERICGRAPHTRAVERSAL3(s), udgør et træ med s som rod og π i opdagede knuder som parent pointers. For hver sti fra en knude v til roden i træet findes den samme sti i grafen, men i modsat retning (fra s til v).

Bevis: Det er nemt at se, at dette udsagn er en invariant som vedligeholdes under kørslen af GENERICGRAPHTRAVERSAL3(s).

Bemærk at i GENERICGRAPHTRAVERSALGLOBALWITHPARENTS() kaldes GENERICGRAPHTRAVERSAL3(s) gentagne gange. Hvert kald giver ét træ. Træerne fra forskellige kald deler ikke knuder, og tilsammen indeholder de alle knuder i grafen.

Strategi: Hold de grå knuder i en KØ, brug nabolister op med det samme.

Tilføj også en variabel v.d til alle knuder v (d for distance.)

Strategi: Hold de grå knuder i en KØ, brug nabolister op med det samme.

Tilføj også en variabel v.d til alle knuder v (d for distance.)

18

Mest brugt er versionen uden GLOBAL-del (for BFS er vi ofte mere interesserede i ét bestemt *s* fremfor at komme hele grafen rundt):

 $u \ color = BLACK$

```
BFS(G,s)
    for each vertex u \in G.V - \{s\}
        u.color = WHITE
      u d = \infty
       u \pi = NII
   s.color = GRAY
   s.d = 0
    s.\pi = NIL
    O = \emptyset
                                      Invariant:
    ENOUEUE(O, s)
                                      k\phi = alle grå knuder.
10 while O \neq \emptyset
11
        u = \text{DEQUEUE}(Q)
12
        for each v \in G.Adi[u]
            if v.color == WHITE
13
                v.color = GRAY
14
15
                 v.d = u.d + 1
16
                 v.\pi = u
                 ENQUEUE(Q, \nu)
17
```

Eksempel:

For BFS kan sætningen om GENERICGRAPHTRAVERSAL3(s) udvides til også at sige noget om værdierne af v.d:

Sætning: De knuder, som er opdaget (gjort ikke-hvide) i et kald GENERICGRAPHTRAVERSAL3(s), udgør et træ med s som rod og π i opdagede knuder som parent pointers. For hver sti fra en knude v til roden i træet findes den samme sti i grafen, men i modsat retning (fra s til v) og v.d er lig længden af denne sti.

Bevis: Det er nemt at se, at dette udsagn er en invariant som vedligeholdes under kørslen af BFS(G, s).

Bemærk at v.d højst bliver sat én gang (efter initialisering til $-\infty$): v.d sættes kun, når v er hvid, og v gøres ikke-hvid samtidig med at v.d sættes.

Egenskaber for BFS

Køretid: O(n+m).

Beviset er det samme som under GENERICGRAPHTRAVERSALGLOBAL, da valgene (*) i BFS tager O(1) tid. I BFS bruger man som sagt ofte kun at kalde på én startknude s, dvs. uden at bruge GLOBAL-delen. Men køretiden kan kun falde ved dette.

Egenskaber for BFS

Køretid: O(n+m).

Beviset er det samme som under GENERICGRAPHTRAVERSALGLOBAL, da valgene (*) i BFS tager O(1) tid. I BFS bruger man som sagt ofte kun at kalde på én startknude s, dvs. uden at bruge GLOBAL-delen. Men køretiden kan kun falde ved dette.

Definition: $\delta(s, v)$ er længden af en korteste sti, *målt i antal kanter*, fra startknuden s til knuden v. Findes ingen sti, defineres $\delta(s, v) = \infty$.

Sætning: Når BFS stopper, gælder $v.d = \delta(s, v)$ for alle knuder.

Dvs. BFS kan finde korteste veje (målt i antal kanter) fra s til alle v.

Bevis for sætning

De mulige værdier for $\delta(s, v)$ er $0, 1, 2, 3, \ldots$ samt ∞ .

Bevis for sætning

De mulige værdier for $\delta(s, v)$ er $0, 1, 2, 3, \ldots$ samt ∞ .

For knuder $v \mod \delta(s,v) = \infty$ findes der ikke en sti fra s til v. Så kan v ikke være opdaget (som vist tidligere er der en sti i grafen fra s til alle opdagede knuder). Derfor kan værdien $v.d = \infty$ sat under initialisering ikke ændres, så når BFS stopper, gælder $v.d = \delta(s,v)$.

Bevis for sætning

De mulige værdier for $\delta(s, v)$ er $0, 1, 2, 3, \ldots$ samt ∞ .

For knuder $v \mod \delta(s,v) = \infty$ findes der ikke en sti fra s til v. Så kan v ikke være opdaget (som vist tidligere er der en sti i grafen fra s til alle opdagede knuder). Derfor kan værdien $v.d = \infty$ sat under initialisering ikke ændres, så når BFS stopper, gælder $v.d = \delta(s,v)$.

For resten af knuderne er $\delta(s, v) = i < \infty$. For dem viser vi, via induktion på i, at

$$\delta(s,v)=i$$
 \Downarrow $v.d=i$ når BFS stopper

Tilsammen giver dette sætningen.

Observationer

- 1. BFS-algoritmen udtager, for $i=0,1,2,3,\ldots$, alle knuder med d-værdi lig i imens den indsætter alle knuder med d-værdi lig i+1 (og derefter fortsætter den med næste værdi for i).
 - Heraf ses, at d-værdierne for de udtagne knuder stiger monotont.
- 2. Vi ved allerede at $\delta(s, v) \leq v.d$, eftersom vi tidligere har vist, at der er en sti af længde v.d i grafen.

Induktionsbevis

Basis (i = 0): Hvis $\delta(s, v) = 0$ er v = s. BSF sætter s.d = 0.

Induktionsbevis

Basis (i=0): Hvis $\delta(s,v)=0$ er v=s. BSF sætter s.d=0. Induktionssskridt (i>0): Vi antager at $\delta(s,v)=j\Rightarrow v.d=j$ er sandt for j=i-1. Vi skal vise at det er sandt for j=i.

Induktionsbevis

Basis (i = 0): Hvis $\delta(s, v) = 0$ er v = s. BSF sætter s.d = 0.

Induktionssskridt (i > 0): Vi antager at $\delta(s, v) = j \Rightarrow v.d = j$ er sandt for j = i - 1. Vi skal vise at det er sandt for j = i.

Hvis $\delta(s,v)=i$, eksisterer en sti fra s til v af længde i. For næstsidste knude u på denne sti gælder $\delta(s,u)=i-1$ (hvis u havde en kortere vej, ville v også have det).

Fra induktionsantagelsen får vi så at $u.d = \delta(s,u)$ når BFS stopper. Da u blev taget ud af køen, var v (en nabo til u) enten hvid, eller v var allerede opdaget fra en knude t, som derfor allerede var taget ud og derfor (via observation 1) har $t.d \leq u.d$.

I begge tilfælde bliver v.d blev sat til højst $u.d+1=\delta(s,u)+1=(i-1)+1=i=\delta(s,v)$. Vi ved (via observation 2) at v.d er mindst $\delta(s,v)$. I alt har vi $v.d=\delta(s,v)$.

Dybde-Først-Søgning (DFS)

Strategi: Hold de grå knuder i en STAK, avancér minimalt i deres nabolister per gang.

Dybde-Først-Søgning (DFS)

Strategi: Hold de grå knuder i en STAK, avancér minimalt i deres nabolister per gang.

Stakken er implicit i den rekursive formulering nedenfor (dvs. er lig rekursionsstakken), men kan også kodes eksplicit. Mere præcist: elementerne på stakken er de grå knuder, hver med en delvist gennemløbet naboliste, nemlig gennemløbet i for-løkken i $\mathrm{DFS\text{-}Visit}$. [Bemærk: koden til venstre svarer til $\mathrm{GLobAL\text{-}delen}$ i terminologien fra tidligere.]

DFS tilføjer også timestamps u.d for "discovery" (hvid \rightarrow grå) og u.f for "finish" (grå \rightarrow sort) til alle knuder u. [u.d er ikke "distance" i DFS.]

```
DFS-VISIT(G, u)
                                                                  // white vertex u has just been discovered
                                  1 time = time + 1
DFS(G)
                                 2 u.d = time
   for each vertex u \in G.V
                                  3 \quad u.color = GRAY
       u.color = WHITE
                                                                  // explore edge (u, v)
                                  4 for each v \in G.Adi[u]
       u.\pi = NII.
                                         if v color == WHITE
4 time = 0
                                              \nu.\pi = u
5 for each vertex u \in G.V
                                             DFS-VISIT(G, \nu)
6
       if u.color == WHITE
                                  8 u.color = BLACK
                                                                  // blacken u; it is finished
            DFS-VISIT(G, u)
                                  9 time = time + 1
                                 10 u.f = time
```

Dybde-Først-Søgning (DFS)

Eksempel:


```
Køretid: O(n+m).
```

Beviset er det samme som under GenericGraphTraversalGlobal, da valgene (*) i DFS tager O(1) tid.

Køretid: O(n+m).

Beviset er det samme som under GENERICGRAPHTRAVERSALGLOBAL, da valgene (*) i DFS tager O(1) tid.

Observér:

- ▶ Discovery (hvid \rightarrow grå) af v = sæt v.d = kald af DFS-VISIT på v = PUSH af v på stakken.
- ▶ Finish (grå \rightarrow sort) af v = sæt v.f = retur fra kald af DFS-VISIT på v = POP af v fra stakken.

Køretid: O(n+m).

Beviset er det samme som under GENERICGRAPHTRAVERSALGLOBAL, da valgene (*) i DFS tager O(1) tid.

Observér:

- ▶ Discovery (hvid \rightarrow grå) af v = sæt v.d = kald af DFS-VISIT på v = PUSH af v på stakken.
- ▶ Finish (grå \rightarrow sort) af v = sæt v.f = retur fra kald af DFS-VISIT på v = POP af v fra stakken.

Kanten $(v, v.\pi)$ sættes ved kald af DFS-VISIT på v. Af dette, samt ovenstående, følger at:

- ► Kanterne $(v, v.\pi)$ udgør præcis rekursionstræerne for DFS-VISIT (ét træ for hvert kald fra DFS).
- Intervallet [v.d, v.f] er den periode v er på stakken.
- Knuden v er grå hvis og kun hvis den er på stakken.

Af måden en stak virker: Hvis to knuder u og v på et tidpunkt er på stakken samtidig, og v er øverst, må v poppes før u kan poppes.

Intervallet [v.d, v.f] er den periode v er på stakken. Det følger derfor, at for alle par af knuder u og v må intervallerne [u.d, u.f] og [v.d, v.f] enten være disjunkte (u og v var aldrig på stakken samtidig) eller det ene interval må være helt indeholdt i den andet (u og v var på stakken samtidig, knuden med det største interval kom på først).

Discovery- og finish-tider er derfor nestede som parenteser er det.

Når en kant (u, v) undersøges fra u haves flg. tilfælde:

- 1. tree-kanter: v hvid.
- 2. back-kanter: v er grå (er på stak).
- 3. forward-kanter: v er sort (den er ikke længere på stak, men har været det sammen med u).
- 4. cross-kanter: v er sort (den er ikke længere på stak, og har ikke været det sammen med u).

I lidt større detalje:

Når en kant (u, v) undersøges fra u haves flg. tilfælde:

- 1. tree-kanter: v hvid. Her er u.d < v.d = nu < v.f < u.f.
- back-kanter: v er grå (er på stak det må være under u, som er toppen af stakken (evt. u = v hvis self-loop)). Her er v.d ≤ u.d < nu < u.f ≤ v.f.
- 3. forward-kanter: v er sort (den er ikke længere på stak, men har været det sammen med u). Her er u.d < v.d < v.f < nu < u.f.
- 4. cross-kanter: v er sort (den er ikke længere på stak, og har ikke været det sammen med u). Her er v.d < v.f < u.d < nu < u.f.

Bemærk at disse cases kan genkendes under DFS via hvid/grå/sort-farvningen og *d*-værdierne i knuder.

For *uorienterede grafer* er der kun tree-kanter og back-kanter (såfremt en kant kategoriseres første gang den undersøges fra én af dens ender).

Dette følger af at u allerede må være blevet undersøgt fra v hvis v er sort (hele nabolisten er gennemløbet) og kanten (v, u) må derfor allerede være kategoriseret. Derved kan 3 og 4 ikke opstå.

- 1. tree-kanter: v hvid.
- 2. back-kanter: v er grå (er på stak).
- 3. forward-kanter: v er sort (den er ikke længere på stak, men har været det sammen med u).
- 4. *cross-kanter:* v er sort (den er ikke længere på stak, og har ikke været det sammen med u).

Hvid-sti lemma

Hvid-sti lemma:

Hvis findes en sti af hvide knuder (inkl. w) fra u til w til tid u.d, da gælder u.d < w.d < w.f < u.f.

Hvid-sti lemma

Hvid-sti lemma:

Hvis findes en sti af hvide knuder (inkl. w) fra u til w til tid u.d, da gælder u.d < w.d < w.f < u.f.

Bevis (lemma):

Da stien er hvid til tid u.d, gælder $u.d \le v.d$ for alle knuder v på stien. Af parentesstrukturen for d- og f-tider gælder så enten 1) $u.d \le v.d < v.f \le u.f$ eller 2) u.d < u.f < v.d < v.f.

Antag, at 2) forekommer og lad y være den første sådanne knude på stien. Da har y en forgænger x som opfylder 1) [evt. er x lig u, som jo opfylder 1)]. Men pga. kanten (x,y) må y opdages inden tid x.f, hvilket er i modstrid med at y opfylder 2).

DAG = Directed Acyclic Graph. En orienteret graf uden kredse (cycles).

DAG = Directed Acyclic Graph. En orienteret graf uden kredse (cycles). Bruges ofte til at modellere afhængigheder. Eksempel:

DAG = Directed Acyclic Graph. En orienteret graf uden kredse (cycles).

Bruges ofte til at modellere afhængigheder. Eksempel:

Topologisk sortering af en DAG: en lineær ordning af knuderne så alle kanter går fra venstre til højre.

Lemma: En orienteret graf har en kreds (cycle) ⇔ der findes back-edges under et DFS-gennemløb.

Lemma: En orienteret graf har en kreds (cycle) \Leftrightarrow der findes back-edges under et DFS-gennemløb.

Bevis:

 \Rightarrow : DFS (med GLOBAL ydre loop) opdager alle knuder. Se på første knude v i kredsen som bliver grå. Dvs. at til tid v.d er alle andre knuder hvide.

Af hvid-sti lemmaet fås så v.d < u.d < u.f < v.f for den sidste knude u i kredsen (som peger på v), hvorved kanten (u, v) erklæres en backedge (v er grå, når denne kant undersøges).

Lemma: En orienteret graf har en kreds (cycle) \Leftrightarrow der findes back-edges under et DFS-gennemløb.

Bevis:

 \Rightarrow : DFS (med GLOBAL ydre loop) opdager alle knuder. Se på første knude v i kredsen som bliver grå. Dvs. at til tid v.d er alle andre knuder hvide.

Af hvid-sti lemmaet fås så v.d < u.d < u.f < v.f for den sidste knude u i kredsen (som peger på v), hvorved kanten (u,v) erklæres en backedge (v er grå, når denne kant undersøges).

⇐: Når en back-edge findes: Der er en kreds af trækanter (mellem knuderne som lige nu er på stakken) og én back-kant.

Lemma: For en kant (u, v) gælder $u.f \le v.f \Leftrightarrow$ kanten er en back-edge.

Lemma: For en kant (u, v) gælder $u.f \le v.f \Leftrightarrow$ kanten er en back-edge.

Bevis: Check de fire cases for kanter (tree, back, forward, cross) og deres ordning af u.f og v.f, se tidligere slide.

Lemma: For en kant (u, v) gælder $u.f \le v.f \Leftrightarrow$ kanten er en back-edge.

Bevis: Check de fire cases for kanter (tree, back, forward, cross) og deres ordning af u.f og v.f, se tidligere slide.

Korollar til to foregående lemmaer: Graf er en DAG \Leftrightarrow DFS finder ingen back-edges \Leftrightarrow ordning af knuder efter faldende finish-tider giver en topologisk sortering.

Lemma: For en kant (u, v) gælder $u.f \le v.f \Leftrightarrow$ kanten er en back-edge.

Bevis: Check de fire cases for kanter (tree, back, forward, cross) og deres ordning af u.f og v.f, se tidligere slide.

Korollar til to foregående lemmaer: Graf er en DAG \Leftrightarrow DFS finder ingen back-edges \Leftrightarrow ordning af knuder efter faldende finish-tider giver en topologisk sortering.

Så følgende algoritme finder en topologisk sortering i en DAG:

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times ν . f for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Lemma: For en kant (u, v) gælder $u.f \le v.f \Leftrightarrow$ kanten er en back-edge.

Bevis: Check de fire cases for kanter (tree, back, forward, cross) og deres ordning af u.f og v.f, se tidligere slide.

Korollar til to foregående lemmaer: Graf er en DAG \Leftrightarrow DFS finder ingen back-edges \Leftrightarrow ordning af knuder efter faldende finish-tider giver en topologisk sortering.

Så følgende algoritme finder en topologisk sortering i en DAG:

TOPOLOGICAL-SORT(G)

- 1 call DFS(G) to compute finishing times ν . f for each vertex ν
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

Tid: O(n+m).