Financial Mathematics 2

Prof. Dr. Rudi Zagst, Matthias König, Tobias Lausser

Exercise sheet 2

The exercise sheet will be discussed in one group of in-person exercise sessions on 07.05.2025. For details, see the course's Moodle announcements and TUMonline. You should try to solve the exercises at home before the exercise.

Exercise 2.1

Let $X \sim \mathcal{N}_d(\mu, \Sigma)$ follow a multivariate normal distribution.

- a) Let $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^m$. Show that $Y := AX + b \sim \mathcal{N}_m(A\mu + b, A\Sigma A^T)$. Hint: You may use that $X \in \mathbb{R}^d$ has multivariate normal distribution if and only if a^TX is (univariate) normally distributed for any $a \in \mathbb{R}^d$.
- b) Let $W = \{W_t\}_{t \geq 0}$ be a Brownian motion. For some given $0 \leq t_1 < \dots < t_d$ define $X_i = W_{t_i}$. Show that $X \sim \mathcal{N}_d(0, \Sigma)$ with $\Sigma_{ij} = \min(t_i, t_j)$ for all $1 \leq i, j \leq d$.
- c) Assume Σ is invertible. Show that $X_1, ..., X_d$ are independent if and only if Σ is a diagonal matrix.
- d) Find an example for a random vector $(X,Y) \in \mathbb{R}^2$ such that the marginals X and Y are normally distributed and Cov(X,Y) = 0, but X + Y is not normally distributed.

Exercise 2.2

Let $Z \sim \mathcal{N}(0, \sigma^2)$ with $\sigma^2 > 0$. For given $\gamma \in \mathbb{R}$ define $L = \exp\left(-\frac{1}{2}\gamma^2\sigma^2 - \gamma Z\right)$ and $\tilde{\mathbb{Q}} : \mathcal{F} \to \mathbb{R}$ as

$$\tilde{\mathbb{Q}}(A) = \mathbb{E}\big[\mathbb{1}_A \cdot L\big].$$

- a) Show that $\tilde{\mathbb{Q}}$ is a probability measure.
- b) Show that $\tilde{\mathbb{Q}}$ is equivalent to \mathbb{Q} .
- c) Calculate the moment generating function

$$M_Z^{\tilde{\mathbb{Q}}}(t) = \mathbb{E}_{\tilde{\mathbb{Q}}}[\exp(t \cdot Z)] \qquad \forall t \in \mathbb{R},$$

of Z with respect to $\tilde{\mathbb{Q}}$.

d) Determine the distribution of Z with respect $\tilde{\mathbb{Q}}$.

Exercise 2.3

Let $W = \{W_t\}_{t\geq 0}$ be a Brownian motion. Show that for each of the following definitions of X_t , the stochastic process $X = \{X_t\}_{t\geq 0}$ is a Brownian motion.

- a) $X_t := -W_t$
- b) $X_t := tW_{\frac{1}{t}}$ for t > 0 and $X_0 := 0$. Hint: For verifying the continuity of X, you may use that $\lim_{t\to\infty} \frac{1}{t}W_t = 0$ holds \mathbb{Q} -a.s.
- c) $X_t := W_{t+\tau} W_{\tau}$, where τ is a positive constant.

Exercise 2.4

Let $W = \{W_t\}_{t>0}$ be a Brownian motion.

a) Write a Python-function def BM(T, n) that simulates W on the interval [0,T], using the grid $\triangle =$ T/n. The function should return the path of W as an n+1-dimensional vector. To this end recall that $W_{t_i}-W_{t_{i-1}}\sim \sqrt{t_i-t_{i-1}}~\mathcal{N}(0,1).$ Hint:~Use~ np.random.default_rng, rng.normal, np.cumsum.

- b) Set T = 10, n = 1000 and plot several simulated paths of the Brownian motion in one figure. Hint: Use matplotlib.pyplot.
- c) Simulate n different paths of a Brownian motion. Take a value t, with $0 < t \le T$. Use the realizations $W_t^{(1)}, W_t^{(2)}, \dots, W_t^{(n)}$ to determine the empirical distribution of W_t . Verify that $W_t \sim \mathcal{N}(0,t)$, by comparing the empirical density with the real density of a normal distribution. Hint: Use scipy.stats.gaussian_kde.
- d) For $0 \le s \le t < \infty$ write a similar Python-function def CovBM(s,t,m) that simulates m times the values W_s and W_t and calculates the empirical covariance of the samples:

$$Q := \frac{1}{m-1} \sum_{i=1}^{m} (W_s^i - \bar{W}_s)(W_t^i - \bar{W}_t),$$

where the index i denotes the i-th realization and \bar{W}_s and \bar{W}_t are the respective empirical means. Set s = 1, t = 2 and m = 10000 to illustrate numerically that $Cov(W_s, W_t) = min\{s, t\}$. Hint: Use np. cov.