- 1. Pumping Lemma is used to check
 - (a) whether a language is non-regular
 - (b) whether a language is regular
 - (c) can check both regularity and non-regularity
 - (d) can check whether a language has a DFA or not
- 2. Which of the following languages are non-regular
 - (a) $L = \{a^{2n}\}$
 - (b) $L = \{a^{n^2}\}$
 - (c) $L = \{a^{2n+5m}\}$
 - (d) $L = \{a^{Fibonacci(n)}\}\$
- 3. Which of the following languages are regular
 - (a) $L = \{1^n \mid nmod5 = 0\}$
 - (b) $L = \{1^n 0^m \mid gcd(m, n) = 1\}$
 - (c) $L = \{x \mid x \in \{a, b\}^*, \text{ the number of a's is just one more than the number of b's} \}$
 - (d) All strings over $\{a,b\}^*$ of length 100.
- 4. Consider the following CFG

$$S \to aB$$
 $S \to bA$

$$B \to b$$
 $A \to a$

$$B \to bS$$
 $A \to aS$

$$B \to aBB$$
 $A \to bAA$

Consider the following derivation

$$S \Rightarrow aB$$

$$\Rightarrow aaBB$$

$$\Rightarrow aaBb$$

$$\Rightarrow aabSb$$

$$\Rightarrow aabbAb$$

$$\Rightarrow aabbab$$

This derivation is

- (a) a leftmost derivation
- (b) a rightmost derivation
- (c) both leftmost and rightmost derivation
- (d) neither leftmost nor rightmost derivation
- 5. Consider the following language

$$L = \{a^n b^n / n \ge 1\}$$

$$L$$
 is

- (a) CFL but not regular
- (b) CSL but not CFL

- (c) regular
- (d) type 0 language but not type 1
- 6. Which of the following is true for an arbitrary language L.

(a)
$$L^* = \bigcup_{i=1}^{\infty} L^i$$

- (b) $L^* = L^+ \cup \{\lambda\}$
- (c) $L^* = L^+$
- (d) $L^* = L^+ \{\lambda\}$
- 7. Which of the following denotes Chomskian hiearchy?
 - (a) $REG \subset CFL \subset CSL \subset type0$
 - (b) $CFL \subset REG \subset type0 \subset CSL$
 - (c) $CSL \subset type0 \subset REG \subset CFL$
 - (d) $CSL \subset CFL \subset REG \subset type0$
- 8. Which of the following regular expressions denotes a language comprising of all possible strings over $\Sigma = \{a, b\}$ of length n where n is a multiple of 3.
 - (a) $(a + b + aa + bb + aba + bba)^*$
 - (b) $(aaa + bbb)^*$
 - (c) $((a+b)(a+b)(a+b))^*$
 - (d) (aaa + ab + a) + (bbb + bb + a)
- 9. Which of the following statement is wrong?
 - (a) Any regular language can be generated by a context-free grammar
 - (b) Some non-regular languages cannot be generated by any CFG
 - (c) the intersection of a CFL and regular set is a CFL
 - (d) All non-regular languages can be generated by CFGs.
- 10. R_1 and R_2 are regular sets. Which of the following is not true?
 - (a) $R_1 \cap R_2$ neet not be regular
 - (b) $\Sigma^* R_1$ is regular
 - (c) $R_1 \cup R_2$ is regular
 - (d) R_1^* is regular
- 11. Which of the following regular expression identity is true?
 - (a) $r(*) = r^*$
 - (b) $(r^*s^*)^* = (r+s)^*$
 - (c) $(r+s)^* = r^* + s^*$
 - (d) $r^*s^* = r^* + s^*$
- 12. Which one of the following statement is FALSE?
 - (a) context-free languages are closed under union

- (b) context-free languages are closed under concatenation
- (c) context-free languages are closed under intersection
- (d) context-free languages are closed under Kleene closure
- 13. Which of the following conversion is not possible (algorithmically)?
 - (a) regular grammar to context-free grammar
 - (b) nondeterministic FSA to deterministic FSA
 - (c) nondeterministic PDA to deterministic PDA
 - (d) nondeterministic TM to deterministic TM
- 14. Which of the following statements is TRUE?
 - (a) infinite union of regular sets is regular
 - (b) infinite union of finite sets is regular
 - (c) finite union of finite sets is regular
 - (d) complement of a finite set need not be regular
- 15. Consider the languages

```
L_1 = \{ww^R/w \in \{0,1\}^*\}

L_2 = \{wcw^R/w \in \{0,1\}^*\}
```

$$L_2 = \{wcw^R/w \in \{0,1\}^*\}$$

$$L_3 = \{ww/w \in \{0,1\}^*\}$$

Which one of the following is TRUE?

- (a) L_1 is deterministic CFL
- (b) L_2 is deterministic CFL
- (c) L_3 is a CFL but not a deterministic CFL
- (d) L_3 is deterministic CFL

$$L_2 = \{a^{n+m}b^{n+m}c^m/n, m > 0\}$$

16.
$$L_1 = \{a^{n+m}b^nc^m/n, m \ge 0\}$$

 $L_2 = \{a^{n+m}b^{n+m}c^m/n, m \ge 0\}$
 $L_3 = \{a^{n+m}b^{n+m}c^{n+m}/n, m \ge 0\}$

Which of these languages are not CF.

- (a) L_1 only
- (b) L_3 only
- (c) L_1 and L_2
- (d) L_2 and L_3
- 17. If s is a string over $(0+1)^*$ then let $m_0(s)$ denote the number of 0's in s and $n_1(s)$ the number of 1's in s. Which one of the following languages is not regular?
 - (a) $L = \{s \in (0+1)^*/n_0(s) \text{ is a 3-digit prime}\}$
 - (b) $L = \{s \in (0+1)^* / \text{ for every prefix } s' \text{ of } s, |n_0(s') n_1(s')| \le 2\}$
 - (c) $L = \{s \in (0+1)^*/|n_0(s) n_1(s)| \le 4\}$
 - (d) $L = \{s \in (0+1)^* / n_0(s) \mod 7 = n_1(s) \mod 5 = 0\}$
- 18. For $s \in (0+1)^*$ let d(s) denote the decimal value of s (eg. d(|0|) = 5). Let $L = \{s \in (0+1)^*\}$ $1)^*|d(s) \mod 5 = 2 \text{ and } d(s) \mod 7 \neq 4$

Which one of the following statements is TRUE?

- (a) L is recursively enumerable but not recursive
- (b) L is recursive, but not context-free
- (c) L is context-free, but not regular
- (d) L is regular