スリーステート バッファ・インバータ

2021-06-07

スリーステートバッファとインバータ

G(ゲート入力)によって制御されたバッファまたはインバータで、 Gがアクティブのとき 動作 Gがインアクティブなときはハイインピーダンス

スリーステートデバイス

メーカーによって呼び名が違う

構成 P-ch FETとNch-FETを組み合わせることにより、さまざまな論理回路を構成することができる。

東芝標準ロジック注意点より

用語集

アサート (assert) ネゲート (negate)

アサート/**ネゲート** (assert/negate) システムバスの信号線などにおいて、それが 有効(アクティブ)な状態にあることをアサートといい、無効(インアクティブ)な状態 にあることを**ネゲート**という。

ハイ・インピーダンス(High Impedance)

論理的には、'1'でも'0'でもない状態

電気的には、抵抗が大きく電気の流れない状態、出力が接続されても電気が流れない。状態を言う。

ハイ・インピーダンスというのは、電気信号に対して高抵抗を示す特性 のことで、「Hi-Z」で表す。具体的には、MOSデバイスのディジタル 動作などで、出力信号を遮断して外部と切り離したり、入出力兼用端子 を入力に切り替えたりするときに発生する状態です。東芝データシートより

ハイ・インピーダンス(High Impedance) 東芝データシートより

これらの状態は、1本の信号線を複数の出力が共用するときに、信号が衝突す ることを避けるために発生させます。内部的には、その信号線に対してリーク 電流というごくわずかな電流しか流れず、浮いた状態となり、これをフローテ ィングと呼びます。

なお、MOSデバイス同士の接続の場合、Hi-Z状態では、他に駆動源がないと入力(出力端子の場合、接続デバイスの入力)がフローティングとなり、入力バッファに貫通電流が流れる恐れがありますので、プルアップなどの処置が 必要となります。

CPU内部構成 教科書P85

スリーステートバッファでメモリアクセス

メモリの1ビットだけ切り出した

スリーステートバッファでメモリアクセス

16ビットのCPUなら並列に16並ん でいる

メモリへの書き込みはCPUからバスへ データが用意され、16個同時にメモリ ライトクロックで行う

同様にメモリからの読み込みは、CPU が入力状態になり、メモリ読み込み クロックがアクティブになり、データバス のB15~B0へ送り出されたデータを CPUが読み込む

9

スリーステートバッファで1/0アクセス

スイッチの状態をCPUが読み込むデータバスを入力 状態にしてCE1をアクティブにして、読み込む

10

スリーステートバッファでメモリアクセス

スリーステートバッファでメモリアクセス

入力状態が変化すると信号が出力される。 ビットを読む(CE1の立ち上がり)でリセットされる

11

12

スリーステートバッファでI/Oアクセス

スリーステートバッファでI/Oアクセス

1/

スリーステートバッファで1/0アクセス

アドレスマッピング と I/O・メモリのアクセス

15

ポートマップドI/O(**Port**-mapped **I/O**)

メモリマップドI/O(**Memory**-mapped **I/O**)

チャネル・コントローラ方式

汎用パソコン等2つのチップセットを使用 DMAの発展型

アドレスマッピング の例 メモリマップドI/O

168 #pragma A	DDRESS	admod_addr	009CH	// A/D Mode Register↓
169 L				
170 #pragma A	DDRESS	adinsel_addr	009DH	// A/D Input Select Register」
171 1				
172 #pragma A	DDRESS	adcon0 addr	009EH	// A/D Control Register O.
173 1				-
174 #pragma A	DDRESS	adicsr addr	009FH1	
175				VD Interrupt Control Status Register:
176				
177 #prasma A	DDRESS	pd1 addr	00A9H	// Port P1 Direction Registers
178				
179 #prasma A	DDRESS	pd3_addr	00ABH	// Port P3 Direction Registers
180				
181 #prasma A	DDRESS	pd4 addr	00ACH	// Port P4 Direction Registers
182				
183 #prasma A	DDRESS.	pda addr	00ADH	// Port PA Direction Register」
104	DDITEOU	p-da_adai	0011011	77 TOTAL THE DITCOLLOR HOSTOCOLS

R8C/M12Aのハードウエア ヘッダファイル

20