AI-Powered Loan Approval Prediction
A Data Science Report
By Rohit Ashokkumar Tolani

Table of Contents

1.	Introduction Page 3
2.	Objective <i>Page 3</i>
3.	Dataset Overview Page 3
4.	Data Preprocessing Page 3
	o 4.1 Handling Missing Data & Encoding <i>Page 3</i>
	o 4.2 Feature Scaling
5.	Exploratory Data Analysis (EDA) Page 4
	o 5.1 Correlation Heatmap Page 4
	 5.2 Loan Approval Distribution Page 4
	 5.3 Loan Amount vs Interest Rate Page 5
6.	Machine Learning Model Page 5
	 6.1 Model Selection Page 5
	o 6.2 Model Performance
7.	Feature Importance Analysis Page 6
8.	Key Insights & Conclusion Page 6
9.	Future Scope <i>Page 6</i>

1. Introduction

The financial industry faces challenges in efficiently determining loan eligibility. This project aims to develop an advanced machine learning model to predict loan approvals based on **applicant background, financial status, and credit history**. By leveraging data-driven insights, financial institutions can make fair and accurate lending decisions.

2. Objective

The goal of this project is to:

- Build a predictive model for **loan approval classification**.
- Identify the most **influential features** impacting approvals.
- Optimize model performance for real-world deployment.

3. Dataset Overview

• File Name: Loan approval prediction.csv

Number of Rows: 58,645Number of Columns: 12

Key Features:

Demographics: Age, home ownership, employment length.
Financials: Income, loan amount, interest rate, credit history.

o **Approval Status:** Accepted (1) or Rejected (0).

4. Data Preprocessing

4.1 Handling Missing Data & Encoding

- Replaced missing values in numerical columns with **median values**.
- Encoded categorical variables such as **loan intent**, **home ownership**, **and default history**.

4.2 Feature Scaling

- Standardized numerical features using StandardScaler.
- Ensured uniformity in data distribution for better model performance.

5. Exploratory Data Analysis (EDA)

5.1 Correlation Heatmap

A correlation heatmap was used to identify relationships between key features, highlighting the most relevant factors for loan approval.

5.2 Loan Approval Distribution

A **bar chart** revealed that the dataset is imbalanced, with significantly more rejected applications than approved ones.

5.3 Loan Amount vs Interest Rate

Higher loan amounts tend to have **higher interest rates**, but loan approval does not solely depend on these factors.

6. Machine Learning Model

6.1 Model Selection

The **Random Forest Classifier** was selected due to its high interpretability and efficiency in handling structured financial data. Hyperparameter tuning was performed using **GridSearchCV**.

6.2 Model Performance

- Accuracy Score: High accuracy achieved post-optimization.
- **ROC-AUC Score:** Strong classification capability in distinguishing between approvals and rejections.
- Confusion Matrix: Demonstrates effective classification results.

7. Feature Importance Analysis

The most influential factors in determining loan approvals were:

- Loan Percent Income Ratio of loan amount to applicant's income.
- **Credit History Length** Longer history improves approval odds.
- Loan Grade & Interest Rate Indicators of financial stability

8. Key Insights & Conclusion

- 1. Loan-to-Income ratio and Credit History Length are critical factors for approval.
- 2. The model performs well with a strong ROC-AUC score and high accuracy.
- 3. Future improvements could include testing deep learning models like XGBoost.

9. Future Scope

- Implementing real-time loan approval scoring.
- Expanding the model with **additional risk analysis** features.
- Improving bias detection to ensure fair lending policies.