

ML WITH A LARGE SET OF VARIABLES: FEATURE SELECTION FOR REGRESSION

June 2nd, ML Prague 2023

Aneta Havlínová, Martin Koryťák

Aneta Havlínová

Data Scientist

Martin Koryt'ák

Data Scientist

- Data with too many variables: **introduction**
- Feature selection **algorithms overview**
- Practical use-case introduction
- Part I: Linear models for feature selection
- Part II: Tree-based models for feature selection
- **06** Feature selection algorithm: how to choose and validate

Set-up

- A. Go to GitHub: ml-prague-2023
- B. Clone this repository locally

Set-up

- A. Go to GitHub: ml-prague-2023
- B. Clone this repository locally

ਮੂੰ main →

Know the audience

https://t.ly/x9-V

DATA WITH MANY VARIABLES: INTRODUCTION

Example 1: HR data about employees

wor	ker_data.head	d()									
	compa_ratio	high_performer	high_potential	is_leader	is_manager	length_of_service	total_compensation	age	compa_ratio_range -> Above Compa- Ratio	compa_ratio_range	
0	1.088	False	False	False	False	1.573	4788.30	24.0	1	0	
1	0.826	False	False	False	False	4.129	1238.43	28.0	0	0	
2	0.998	False	False	False	False	7.463	2395.47	29.0	0	1	
3	0.918	False	False	False	False	0.129	4133.05	22.0	0	0	
4	1.343	True	False	False	False	1.307	1745.30	39.0	1	0	

Goal: Predicting salaries using employee data such as experience, position, etc.

Example 1: HR data about employees

wor	ker_data.head	d()									
	compa_ratio	high_performer	high_potential	is_leader	is_manager	length_of_service	total_compensation	age	compa_ratio_range -> Above Compa- Ratio	compa_ratio_range -> At Compa-Ratio	
0	1.088	False	False	False	False	1.573	4788.30	24.0	1	0	
1	0.826	False	False	False	False	4.129	1238.43	28.0	0	0	
2	0.998	False	False	False	False	7.463	2395.47	29.0	0	1	
3	0.918	False	False	False	False	0.129	4133.05	22.0	0	0	
4	1.343	True	False	False	False	1.307	1745.30	39.0	1	0	

1000 rows x 404 columns

Example 1: HR data about employees

wor	ker_data.head	d()										
	compa_ratio	high_performer	high_potential	is_leader	is_manager	length_of_service	total_compensation	age	compa_ratio_range -> Above Compa- Ratio	compa_ratio_range -> At Compa-Ratio		
0	1.088	False	False	False	False	1.573	4788.30	24.0	1	0) .	
1	0.826	False	False	False	False	4.129	1238.43	28.0	0	0		
2	0.998	False	False	False	False	7.463	2395.47	29.0	0	1		
3	0.918	False	False	False	False	0.129	4133.05	22.0	0	0		
4	1.343	True	False	False	False	1.307	1745.30	39.0	1	0		

Angry boyfriend

Manual feature selection time: 2 days

Example 2: Biology experiment with genetics data

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5
Batch 1	0.405	0.326	0.234	0.348	0.748
Batch 2	0.089	0.293	0.192	0.123	0.385
Batch 3	0.459	0.125	0.543	0.334	0.218
Batch 4	0.123	0.389	0.238	0.651	0.972

Goal: Predicting protein production of a cell using gene expressions data

Example 2: Biology experiment with genetics data

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5
1	0.405	0.326	0.234	0.348	0.748
2	0.089	0.293	0.192	0.123	0.385
3	0.459	0.125	0.543	0.334	0.218
4	0.123	0.389	0.238	0.651	0.972

^{~200} rows x 10 000+ columns

Example 2: Biology experiment with genetics data

Gene 1	Gene 2	Gene 3	Gene 4	Gene 5
0.405	0.326	0.234	0.348	0.748
0.089	0.293	0.192	0.123	0.385
0.459	0.125	0.543	0.334	0.218
0.123	0.389	0.238	0.651	0.972
	0.405 0.089 0.459	0.405 0.326 0.089 0.293 0.459 0.125	0.405 0.326 0.234 0.089 0.293 0.192 0.459 0.125 0.543	0.089 0.293 0.192 0.123 0.459 0.125 0.543 0.334

~200 rows x 10 000+ columns

Manual feature selection time: 2 years Very angry wife

Dataset with too many variables: So what can we do?

Go home and cry

Do the manual selection anyway

Use all features Use feature selection algorithm

Option 1

Option 2

Option 3

Option 4

Using all the features → not the best idea

A) Interpretability

C) Inefficiency

B) Correlation among features

D) Overfitting

A) Interpretability

I can't 100 features 1 000 features I cannot I am unable 10 000 features to can

B) Correlated features

Too many features \rightarrow likely many are highly correlated.

Some models such as those based on linear regression (Ridge, Lasso, OMP) have an **assumption of no multicollinearity**

 \rightarrow if high correlation is present, we get **biased coefficient estimates.**

C) Efficiency

Less data \rightarrow algorithms are trained faster.

Feature selection is especially useful for algorithms that are trained repeatedly.

D) Overfitting

→ Model works very well with training data, but does not generalise well with unseen data.

Example: ML Doctor

Training observations

Testing observation

Features: green t-shirt, dark hair → label: flu

Features: green t-shirt, dark hair, cough → label: flu

D) Overfitting

→ Error on testing dataset is much higher than on training dataset

Using all the features → not the best idea

A) Interpretability

C) Inefficiency

B) Correlation among features

D) Overfitting

Dataset with too many variables: So what can we do?

Go home and cry

Option 1

Do the manual selection anyway

Option 2

Use all features

Option 3

Use feature selection algorithm

Option 4

FEATURE SELECTION ALGORITHMS

Feature selection: how many features are too many?

Rule of thumb: 10 samples to one feature

Research: Hua, Jianping, et al. (2005)

- **Uncorrelated features:** optimal number of features is N-1 (N = sample size)
- As **feature correlation** increases, optimum is approximately \sqrt{N}

Other factors to consider:

- the type of ML problem
- model complexity
- data quality and availability
- performance improvement with more features
- etc.

Feature selection: methods

Feature extraction

- = Getting features typically by transforming them to a new feature space.
- → dimensionality reduction

Example: PCA creates new variables by linearly combining the original ones.

VS.

Feature selection

- = Choosing a **subset** of the original features set.
- → Feature selection is a special case of dimensionality reduction.

Feature selection: methods

1. FILTER METHODS

Features are selected based on their scores in various statistical tests.

→ Correlation, ANOVA, Chi-Squared, ...

2. WRAPPER METHODS

Many model specifications are tested - based on one model's result, we decide about inclusion/exclusion of a variable in the next model.

→ Boruta, Orthogonal Matching Pursuit, Backward Elimination, ...

3. EMBEDDED METHODS

Algorithms with **built-in methods** for selecting features.

→ Random Forest, Ridge, LASSO, ...

Feature selection: methods

FILTER METHODS

- Quick and less computationally expensive
- Ignore feature dependencies

WRAPPER METHODS

- Usually provide better model performance than filter methods
- Can have high computational cost

EMBEDDED METHODS

- Combine the best characteristics of filtering and wrapping
- Might be also computationally heavy

Feature selection: methods we will cover

1. FILTER METHODS

Features are selected based on their scores in various statistical tests.

→ Correlation, ANOVA, Chi-Square, ...

2. WRAPPER METHODS

According to the conclusions drawn from the previous model, we decide whether to include/exclude certain features.

→ Boruta, Orthogonal Matching Pursuit, Backward Elimination, ...

3. EMBEDDED METHODS

Algorithms with built-in methods for selecting features.

→ Random Forest, Ridge, LASSO, ...

PRACTICAL USE-CASE INTRODUCTION

HR Analytics: Predicting salaries

HR Dataset

- Each row represents individual employee
- Each employee has some attributes:
 - Legal Name
 - Gender
 - o Employee ID
 - o Job Profile
 - Ethnicity
 - Location
 - Salary
 - 0 ...

HR Dataset: Why predicting salaries?

- Fair Compensation: based on their skills, qualifications, experience, and contributions to the organization.
- **Transparency:** establishing a transparent and objective system for determining salaries, promoting equality and reducing biases.
- **Employee Retention and Satisfaction:** identifying any discrepancies, such as underpayment or overpayment.

HR Dataset: Example

	compa_ratio	compa_ratio_range	cost_center	country	current_rating	employee_id	ethnicity	gender	generation	high_performer	• • •	org_level_2
0	1.545	Above Compa-Ratio	AMER - United States of America	United States of America	4 - Exceeds Expectations	1000	Asian	Female	Generation X (1965-1980)	False		NaN
1	1.021	At Compa-Ratio	AMER - United States of America	United States of America	3 - Meets Expectations	1001	White	Male	Generation Z (1997 and onwards)	False		Board
2	0.981	At Compa-Ratio	Global Support - Asia/Pac	South Korea	5 - Outstanding Performance	1002	Asian	Male	Generation Y/Millenials (1981-1996)	True		Board
3	1.342	Above Compa-Ratio	AMER - Canada	Canada	2 - Needs Improvement	1003	Asian	Male	Generation X (1965-1980)	False		NaN
4	1.290	Above Compa-Ratio	Global Support - Asia/Pac	South Korea	3 - Meets Expectations	1004	Asian	Female	Generation Y/Millenials (1981-1996)	False		Board

DATA PREPROCESSING PRACTICAL PART

PART I: LINEAR REGRESSION MODELS

Linear Regression: The simplest example

youtube	\$ sales
276.12	26.52
53.40	12.48
20.64	11.16
181.80	22.20
216.96	15.48
10.44	8.64
69.00	14.16
144.24	15.84
10.32	5.76
239.76	?
79.32	?
257.64	?

Linear Regression: The simplest example

Assumptions

We need to check that model assumptions hold.

•	Linear	relatio	nship
---	--------	---------	-------

- No multicollinearity
- Random sample
- No omitted variable

- → biased betas
- → high variance of beta estimates
- → biased betas
- → biased betas

Impact on values of betas

- Homoskedasticity
- Normality

- → invalid inference (use robust errors)
- → invalid inference (large sample desired)

Impact on validity of inference

LINEAR REGRESSION PRACTICAL PART

Orthogonal Matching Pursuit (OMP)

- Iterative greedy algorithm for sparse recovery
- OMP uses Linear Regression for estimation of coefficients in each iteration
- Improved version of Matching Pursuit algorithm

Properties

- Convergence guaranteed for any target (signal) that is in the space spanned by the dictionary
- The error decreases monotonically
- At each step, the residuals are orthogonal to the selected features (atoms)

Orthogonal Matching Pursuit (OMP)

Input: X - input dataset, y - target variable

Output: z - selected features, β - weights corresponding to selected Top Drivers

normalize X s.t. L2 norm of each column equals 1 (optional step) and standardize X residuals <- y z <- empty set

while y is **not sufficiently explained** do

- 1. compute a **pseudo correlation score** of residuals for each column in X as a dot product
- 2. select column from X which has the **highest absolute score** in step 1 and save its index to z
- 3. form a **new input dataset** consisting of columns in z and name it X'
- 4. w <- solve Least square problem using X' and y
- 6. calculate new predictions for all rows in X using coefficients β
- 7. update residuals as a difference between y and new predictions obtained in step 6

OMP PRACTICAL PART

Inputs

Target (Signal) y: [1.65, -0.25]

Goal

• Estimate coefficients for each vector in dictionary such that signal can be recovered, i.e. D * $x \approx y$

Dictionary D consists of 3 atoms (vectors) b_1 , b_2 and b_3 :

- $b_1 = [-0.707, 0.707]$
- \bullet b₂ = [0.8, 0.6]
- $b_3^- = [0, -1]$

We try to estimate coefficients in vector x using dictionary D and Signal y such that: $b_1 * x_1 + b_2 * x_2 + b_3 * x_3 = [-0.707, 0.707] * x_1 + [0.8, 0.6] * x_2 + [0, -1] * x_3 \approx y$

Let's find the contribution of atoms to Signal y using b_i 'y:

- $b_1^{T}y = [-0.707, 0.707] * [1.65, -0.25] = -0.707 * 1.65 0.707 * 0.25 =$ **-1.34**
- $b_2^T y = [0.8, 0.6] * [1.65, -0.25] = 1.17$
- $b_3^{-\tau}y = [0, -1] * [1.65, -0.25] = 0.25$

Atom b_1 has the highest contribution while neglecting the negative value. Furthermore, atom b_1 forms basis A.

Next, we calculate the contribution of basis A to signal y. This leads to the Least Square Problem which is formulated as follows:

$$min ||A * x - y||_2$$

which can be solved as:

$$A^{+} = (A^{T} * A)^{-1} * A^{T}$$

- Residuals = Signal current predictions
- $r = y A * x = y b_1 * x_1 = [0.7, 0.7]$

Second iteration and so on:

- b₂ contributes better than b₃
- Coefficients are updated as follows x = [-1.2, 1, 0]
- Residuals are zeros after update, i.e. [0, 0, 0]
- The algorithm stops after this iteration as residuals are already vanished

OMP: Summary

```
x, r, \Lambda = \text{OMP}(\Phi, y);
x^0 \leftarrow 0;
r^0 \leftarrow y;
                                                                                                         // r = y - \Phi x
\Lambda^0 = \varnothing;
                                                   // Index set of chosen atoms
k \leftarrow 0;
                                                                                // Iteration counter
repeat
         h^{k+1} \leftarrow \Phi^T r^k:
                                                                                                                    // Match
     \lambda^{k+1} = \underset{j \notin \Lambda^k}{\arg \max} |h_j^{k+1}|;
\Lambda^{k+1} \leftarrow \Lambda^k \cup \{\lambda^{k+1}\};
                                                                                                          // Identify
                                                                  // Update support
      \begin{array}{lll} x_{\Lambda^{k+1}}^{k+1} \leftarrow \Phi_{\Lambda^{k+1}}^{\dagger} y \; ; & \text{// Update representation LS} \\ y^{k+1} = \Phi x^{k+1} \; ; & \text{// Update approximation} \\ r^{k+1} \leftarrow y - y^{k+1} \; ; & \text{// Update residual} \\ k \leftarrow k+1; & \text{// Update iteration counter} \end{array}
until halting criteria is satisfied;
x \leftarrow x^k : \Lambda \leftarrow \Lambda^k : r \leftarrow r^k :
```

Quiz

Are these statements true or false?

- OMP sequentially selects atoms from the dictionary that best match the residual signal.
- OMP guarantees exact recovery of the sparse signal in a finite number of iterations.
- OMP assumes that the signal can be represented as a linear combination of a few dictionary atoms.

PART II: TREE-BASED METHODS FOR FEATURE SELECTION

01	Decision	Trees:	the	intro	algorithm
					- ()

- Random Forest explained
- Random Forest implementation
- Boruta explained
- Boruta implementation

DECISION TREES

Decision Tree: the starting algorithm

EXAMPLE:

Predicting if a person will buy given product or not

Decision Tree for regression: non-linearity

Decision Tree for regression: non-linearity

Regression tree example

Regression tree example - multiple variables

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female		98
20	73	Male		0
35	54	Female		100
5	12	Male		44
etc	etc	etc	etc	etc

Building a tree - predicting effectiveness by dosage

What condition do we start with?

Is this the best tree?

Building a tree - predicting effectiveness by dosage

What condition do we start with?

We try all possible thresholds, and see which threshold gives us the lowest error.

Sum of squared residuals = \sum (Predicted value - Observed value)²

Patient ID	Gender F	Weight	Diabetes	Effectiveness - observed	Effectiveness - predicted
111	1	55	1	65	67
112	1	68	0	72	74
113	0	80	0	33	32
114	1	59	0	83	79

Predicting effectiveness using multiple variables

We calculate sum of squared residuals for every threshold of every variable.

→ We choose the one with the lowest error value

Decision Tree: Pros and Cons

Advantages

- easy to visualize
- non-linear patterns can be captured easily
- no special data processing needed

Disadvantages

• overfitting (imprecise predictions on new data) \rightarrow large variance

RANDOM FOREST

Random Forest

- Ensemble method that builds multiple decision trees
- It can have 50, 100, 200, 500, ... trees → depends on the data size

Random Forest

In classification, the prediction is the majority vote of all decision trees' predictions.

Random Forest

In regression, the prediction is the average of all decision trees' predictions.

Random Forest: How it works

- Each tree is build based on a random sample from training data.
- The algorithm randomly selects a subset of explanatory variables for each split in each decision tree.
- We use the majority vote/average as the final prediction.

Random Forest: Hyperparameters tuning

a) Maximum depth of the trees

- b) Number of trees in the forest
- c) Maximum number of features to be considered at each node split

Random Forest: Hyperparameters tuning

d) Minimum number of samples required to split a nodee) Minimum number of samples in a leaf node

RF feature selection: Variable importance

- Measure for ranking our explanatory variables
- Not interpreted as betas in linear regression

Variable Importance → increase in node purity: how much the sum of squared errors is reduced whenever a variable is chosen to split.

RF feature selection: Variable importance

Final set of features:

- best k attributes
- best **x** % of attributes
- make a cutoff at the biggest difference in importance scores

Random Forest for feature selection

- One of the most accurate algorithms available (even with a lot of missing data)
- Efficient with large datasets
- Variable importance as a straightforward metrics
- However, gives us just relative ranking, not the magnitude of feature impact

Quiz

Are these statements true or false?

- Random forest randomly selects a subset of explanatory variables for each split in each decision tree.
- There is no generally applicable variable importance threshold.
- Decision tree maximizes the sum of squared residuals when it selects the decision conditions.

RANDOM FOREST PRACTICAL PART

Boruta

An algorithm that builds up on random forest

 First, another data frame is created from original X data by randomly shuffling each feature

 The newly created data frame is attached to the original dataframe → now we have twice as many columns

Boruta: shadow features

 Variables created by random shuffling of original values are called shadow features

	age	height	weight	shadow_age	shadow_height	shadow_weight
0	25	182	75	51	176	75
1	32	176	71	32	182	71
2	47	174	78	47	168	78
3	51	168	72	25	181	72
4	62	181	86	62	174	86

 Random Forest is run with all (old + shadow) features and variable importance is calculated

Boruta: feature selection

Threshold for variable selection: a feature must have importance higher than the highest feature importance recorded among the shadow features

→ **The main idea:** a feature is useful only if it's capable of doing better than the best randomized feature.

Boruta: feature selection

→ Based on a high variable importance, we tag some features as 'important'

→ If some features have significantly lower importance than the best shadow feature, we tag them as 'unimportant' and remove them

Boruta: multiple randomized runs

We use multiple boruta runs:

- a specified number of iterations, or
- until all features are tagged as 'important' or 'unimportant'

A series of *n* trials follows a binomial distribution.

Boruta: final decision for selection

Boruta has three areas:

- area of refusal (red): features are dropped
- area of irresolution (blue): Boruta is indecisive about these features → up to a data scientist, but these features are typically kept
- area of acceptance (green): features are kept

Quiz

Are these statements true or false?

- For each variable, Boruta gives us a definite answer on whether to keep it in the model or not.
- Boruta uses original features and shadow features in one model all at the same time.
- Shadow features are created by randomly shuffling values of the original features.

BORUTA PRACTICAL PART

CONCLUSION

How are the selected features similar?

Jaccard similarity:

$$J(A,B) = \frac{|A \cap B|}{|A \cap B|}$$

Selected features by all models:

```
{'age', 'compa_ratio', 'cost_center -> Global Support - Asia/Pac', 'is_leader', 'job_level -> M5', 'job_level -> M6', 'job_level -> M7', 'job_level -> M8', 'job_level -> P1', 'job_level -> P3', 'job_level -> P5', 'region -> AMER'}
```

	ОМР	RF	Boruta
ОМР	1	0.43	0.48
RF	0.43	1	0.87
Boruta	0.48	0.87	1

How to choose your algorithm?

Multiple metrics which are used for model evaluation on the testing dataset.

Metric	ОМР	RF	Boruta
RMSE	24,917	6,821	6,700
MAPE	9.84 %	0.5 %	0.46 %

How to evaluate/compare models?

- Compare performance metrics (consider multiple metrics)
- Check results of other models (consistency of outputs)
- Consider **model complexity** (architecture, number of parameters or training time always prefer less complex model)
- Consider domain-specific knowledge and interpretability
- External **benchmarks** (SOTA models in the field)
- Consider also models not covered in this workshop such as Lasso, Ridge and Gradient boosted trees

Conclusion

What we learned today:

- Issues when dealing with too many features: interpretability, correlation, efficiency, overfitting
- Algorithms: linear & tree based methods
- Metrics (RMSE, MAPE) to evaluate models
- Select the best model based on: performance, consistency, complexity, or domain knowledge

Conclusion

What we learned today:

- Issues when dealing with too many features: interpretability, correlation, efficiency, overfitting
- Algorithms: linear & tree based methods
- Metrics (RMSE, MAPE) to evaluate models
- Select the best model based on: performance, consistency, complexity, or domain knowledge

Thank You

Questions?

Your feedback is important!

https://t.ly/u9R6

Sources

https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f

https://towardsai.net/p/programming/decision-trees-explained-with-a-practical-example-fe47872d3b53

Taboga, Marco (2021). "Decision tree", Lectures on machine learning. https://www.statlect.com/machine-learning/decision-tree.

 $Statquest: Decision\ Trees\ https://www.youtube.com/watch?v=7VeUPuFGJHk\&ab_channel=StatQuestwithJoshStarmer$

https://towardsdatascience.com/decision-tree-ensembles-bagging-and-boosting-266a8ba60fd9

https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0

Hua, Jianping, et al. "Optimal number of features as a function of sample size for various classification rules." *Bioinformatics* 21.8 (2005): 1509-1515

https://datascience.stackexchange.com/questions/11390/any-rules-of-thumb-on-number-of-features-versus-number-of-instances-small-da

https://graphite-note.com/how-much-data-is-needed-for-machine-learning#:~:text=A%20rule%2Dof%2Dthumb%20approach,types%20of%20m achine%2Dlearning%20problems.

https://h2o.ai/wiki/feature-selection/#:~:text=In%20the%20machine%20learning%20process,why%20feature%20selection%20is%20important.

https://www.analyticsvidhya.com/blog/2016/12/introduction-to-feature-selection-methods-with-an-example-or-how-to-select-the-right-variables/

https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f#:~:text=Feature%20selection%20using%20Random%20forest%20comes%20under%20the%20category%20of,built%2Din%20feature%20selection%20methods.

http://www.cs.man.ac.uk/~nogueirs/files/SLIDES-master.pdf

https://www.researchgate.net/figure/Merits-and-demerits-of-filter-wrapper-and-embedded-feature-selection-methods tbl1 313098800

https://www.yourdatateacher.com/2021/10/11/feature-selection-with-random-forest/

https://www.kaggle.com/code/prashant111/random-forest-classifier-feature-importance

https://towardsdatascience.com/feature-selection-with-boruta-in-python-676e3877e596

https://www.listendata.com/2017/05/feature-selection-boruta-package.html

Sources cont.

https://www.displayr.com/how-is-variable-importance-calculated-for-a-random-forest/

https://towardsdatascience.com/best-practice-to-calculate-and-interpret-model-feature-importance-14f0e11ee660

https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67 e3

https://korediantousman.staff.telkomuniversity.ac.id/files/2017/08/main-1.pdf

https://www.statisticshowto.com/

https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/

https://datascience.stackexchange.com/questions/11390/any-rules-of-thumb-on-number-of-features-versus-number-of-instances-small-da

https://www.frontiersin.org/files/Articles/977747/fcvm-09-977747-HTML/image m/fcvm-09-977747-g003.jpg

https://analyticsindiamag.com/hands-on-guide-to-automated-feature-selection-using-boruta/