

UNIVERSIDAD NACIONAL DE INGENIERÍA

Facultad de Ciencias Escuela Profesional de Ciencia de la Computación

Curso: Matemática Computacional CC3M2-A

Semestre 2023-I

Tercera Práctica Calificada

1. [6 puntos] Dado el siguiente problema de optimización

$$\begin{aligned} & \underset{x}{\text{máx}} & 3x_1 + x_2 + 3x_3 \\ & \text{s.a.} & 2x_1 + x_2 + x_3 \leq 2 \\ & x_1 + 2x_2 + 3x_3 \leq 5 \\ & 2x_1 + 2x_2 + x_3 \leq 6 \\ & x_1, x_2, x_3 \geq 0 \end{aligned}$$

- (a) (5 puntos) Resolver el problema aplicando el algoritmo símplex, mostrando en cada iteración la variable que ingresa y la que sale de la base.
- (b) (1 punto) Utilizar Python para resolver el problema y verificar sus cálculos de la parte (a)
- 2. [4 puntos] Considere el siguiente problema de optimización lineal

$$\begin{aligned} & \underset{x}{\text{máx}} & x_1 + x_2 \\ & \text{s.a.} & x_1 + 2x_2 \leq 4 \\ & 2x_1 - x_2 \leq 3 \\ & x_1 - 2x_2 \leq 3 \end{aligned}$$

- (a) Resolver el problema gráficamente
- (b) Resolver el problema considerando ahora como función objetivo: máx $-x_1 + x_2$
- (c) ¿ Existe una única solución óptima cuando la función objetivo es: máx $2x_1 x_2$?
- 3. [5 puntos] Considere el problema:

mín
$$cx$$

s.a. $Ax = b$
 $x \ge 0$

donde, $A \in \mathbb{R}^{n \times n}$, $c = b^T$ y $A = A^T$. Demostrar que si existe un x_0 tal que $Ax_0 = b$, $x_0 \ge 0$, entonces x_0 es una solución óptima.

4. **[5 puntos]** Mostrar sin utilizar el método simplex que $x=(\frac{5}{26},\frac{5}{2},\frac{27}{26})$ es una solución óptima del siguiente problema

$$\begin{aligned} & \underset{x}{\text{máx}} & 9x_1 + 14x_2 + 7x_3 \\ & \text{s.a.} & 2x_1 + x_2 + 3x_3 \leq 6 \\ & & 5x_1 + 4x_2 + x_3 \leq 12 \\ & & 2x_2 \leq 5 \\ & & x_1, x_2, x_3 & \text{irrestrictos} \end{aligned}$$