

NASA Capabilities That Could Impact Terrestrial Smart Grids of the Future

Electro Expo

**Raymond F. Beach
NASA Glenn Research Center**

March 11, 2015

NASA Glenn Research Center Lead Center for Aerospace Power

1960

1970

1980

1990

2000

SPACE POWER

The Future of Human Space Exploration

NASA's Building Blocks to Mars

U.S. companies provide affordable access to low Earth orbit

Mastering the fundamentals aboard the International Space Station

Pushing the boundaries in cis-lunar space

Developing planetary independence by exploring Mars, its moons, and other deep space destinations

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion crew capsule

Missions: 6 to 12 months
Return: hours

Earth Reliant

Proving Ground

Missions: 1 month up to 12 months
Return: days

Earth Independent

The Future of American Human SPACEFLIGHT

National Aeronautics and Space Administration

Human Spaceflight Capabilities

Mobile Extravehicular
Activity and
Robotic Platform

Deep Space
Habitation

Advanced Spacesuits

Advanced Space
Communication

Advanced In-Space
Propulsion

In Situ Resource
Utilization

Human-Robotic
Systems

Solar Electric Propulsion (SEP)

NASA is developing high-performance SEP capability to enable future in-space exploration missions.

- High propellant efficiency
- Reduced launch mass
- Lower mission cost

Orion MPCV Electrical Power System

Solar Array Wings

- 4 wings with 3 deployable panels
- Triple junction solar cells for high conversion efficiency
- Two axis articulation for sun tracking
- 11.1 kW total power for user loads and battery recharge

Battery Energy Storage

- 4 batteries of \approx 30 A-hr each
- Li ion chemistry for high energy density
- High voltage for direct connection to power distribution
- Cell balancing for high charge/discharge cycle life

Power Distribution Equipment

- 4 power distribution channels
- High voltage (120 VDC) distribution for reduced weight
- Current-limiting SiC switchgear for fault protection
- Transient protection for lightning strikes (on ground)

Potential Deep Space Vehicle Power System Characteristics

- Power 10 kW average
- Two independent power channels with multi-level cross-strapping
- Solar array power
 - 24+ kW Multi-junction arrays
- Lithium Ion battery storage
 - 200+ amp*hrs
 - Sized for deep space or low lunar orbit operation
- Distribution
 - 120 V secondary (SAE AS 5698)
 - 2 kW power transfer between vehicles

Deep space vehicle concept

NEO Mission Scenario

Our Challenge and Opportunity

- **Communication and recovery times are longer than any previous experience**

Mission	Duration of Mission After Incident	Communication Latency Time
Deep Space Habitat	9 months to 1 year	15 to 45 mins.
Apollo/Orion	3 – 5 days	1 to 2 sec.
Mount Everest	1 – 2 days	Real time
Deep Sea Submersible	8 hours	Real time
Shuttle	2 – 5 hours	Real time
Submarine	1 – 2 hours	Real time

- **Power Is Highest Criticality System On Board Vehicle**
 - System will need high level of availability
 - System will need to operate autonomously for long periods of time

**Present power systems rely on
continuous real-time support from
mission control**

NASA Autonomy Levels

Level	Observe	Orient	Decide	Act
5	The data is monitored onboard without assistance from ground support	The calculations are performed onboard without assistance from ground support	The decision is made onboard without assistance from ground support	The task is executed onboard without assistance from ground support
4	The majority of the monitoring will be performed onboard with available assistance from ground support	The majority of the calculations will be performed onboard with available assistance from ground support	The decision will be performed onboard with available assistance from ground support	The task is executed onboard with available assistance from ground support
3	The data is monitored both onboard and on the ground.	The calculations are performed both onboard and on the ground.	The decision is made both onboard and on the ground and the final decision is negotiated between them.	The task is executed with both onboard and ground support.
2	The majority of the monitoring will be performed by ground support with available assistance onboard	The majority of the calculations will be performed by ground support with available assistance onboard	The decision will be made by ground support with available assistance onboard	The task is executed by ground support with available assistance onboard
1	The data is monitored on the ground without assistance from onboard	The calculations are performed on the ground without assistance from onboard	The decision is made on the ground without assistance from onboard	The task is executed by ground support without assistance from onboard

Algorithm Verification and Validation

Terrestrial Utility Grid Directions

AERO POWER

Aircraft Turboelectric Propulsion

Projected Timeframe for Achieving Technology Demonstration (TRL-6)

Spinoff Technologies Benefit
More/All Electric
Architectures:

- High-power density electric motors replacing hydraulic actuation
- Electrical component and transmission system weight reduction

Aircraft Turboelectric Propulsion

Power is distributed electrically from turbine-driven generators to motors that drive the propulsive fans.

Advanced Power Technologies Needs and Directions

Power System Taxonomy

Sources

Solar Arrays

Brayton Rotating Unit

Stirling Radioisotope

Fuel Cells

Loads

Electric Propulsion

Communications

Instruments

Actuators

Power Management And Distribution

Source Regulator

Power Distribution

Charge/Discharge Regulator

Energy Storage

Batteries

Power System Control

Load Converters

Load Leveling

Flywheel Energy Storage

Photovoltaic Arrays

Current State	Drivers	Missions
<ul style="list-style-type: none">• Solar Cell Efficiency approx. 30%• 6 mil thick, non-flexible cells• Relatively high cost with only limited automation 	<ul style="list-style-type: none">• High Power Scalability• Higher efficiency• Lower Cost• Lower Mass• Improved Radiation Resistance• Survive Space Environments• High bus voltage capability• Increased Reliability• Improved stowed volume and deployability• High temperature/high intensity and low temperature/low intensity operation	<ul style="list-style-type: none">• Low cost, low mass blanket technology using automated manufacturing methods <ul style="list-style-type: none">• Large multi-hundred kilowatt solar arrays w/ improved stowed volume and deployability.• Arrays tailored for low intensity / low light operation
<ul style="list-style-type: none">• Honey-comb panels @ 10-15 kW power levels• Stowed volume limits power levels available		

Nuclear Power Generation

Current State	Drivers	Future State
<p>MMRTG</p> <ul style="list-style-type: none">• 110 W modules• Low efficiency	<ul style="list-style-type: none">• Long duration deep space missions• Greater distance from sun• Planet surface ops• Large power generations for nuclear electric propulsion• 100sW – MW needs	<ul style="list-style-type: none">• Advanced Stirling Generation> 20% Conversion Efficiency <ul style="list-style-type: none">• Nuclear surface power <ul style="list-style-type: none">• Large fission for NEP

Batteries

Current State	Drivers	Future State
<ul style="list-style-type: none">• Rechargeable: Ni-H₂ (45Wh/kg, > 10 years); Li-Ion (100 Wh/kg, > 5 years life)• Primary: Ag-Zn (100 Wh/kg; 20 cycles); Li-SO₂ (200 Wh/kg; 5 years life)• Heavy, Bulky• Safety Concerns	<ul style="list-style-type: none">• Very high specific energy Rechargeable batteries to enable longer operation• Emphasis on safety• Longer cycle life• Extreme temperature environments	<ul style="list-style-type: none">• “Beyond Li ion” Rechargeable Batteries: > 500 Wh/kg, 5 yrs• Rechargeable Li ion Long cycle life batteries:> 220 Wh/kg, 5 yrs• Primary: 1000 Wh/kg, > 20 yrs

Current State	Drivers	Future State
	<h2 data-bbox="664 159 1240 217">Regenerative Fuel Cells</h2>	
<ul data-bbox="92 253 597 498" style="list-style-type: none"> • Power rating 2-10 kW • 35-50% Efficient • Life: 50 Cycles • Heavy, Bulky, Complex, Safety Concerns 	<ul data-bbox="687 253 1240 858" style="list-style-type: none"> • Longer missions – days / weeks • High Efficiency • “Passive” management of fluids and gasses • High Power Rating and energy storage capability • Long Life, high reliability, safe • Operate with flexible fuels 	<ul data-bbox="1269 253 1800 858" style="list-style-type: none"> • Power Rating: 10-30 kW >8 hrs. • Operable with reactants at > 2000 psi to reduce tank volume • Life: 10,000 hours • 70% Efficient, Reliable & Safe • Solid oxide fuel cells capable of CO₂ processing and oxygen production
	<h2 data-bbox="837 901 1102 959">Flywheels</h2>	
<ul data-bbox="92 995 481 1081" style="list-style-type: none"> • Specific Energy 50Whr/kg 	<ul data-bbox="687 995 1134 1333" style="list-style-type: none"> • High power • Long life • High Energy Density • High Strength Fibers • Low Loss Bearings • Reliability • Mass 	<ul data-bbox="1269 995 1800 1333" style="list-style-type: none"> • Carbon fiber or Graphene specific power >200+ W-hr/kg. • Cycle life >150,000 cycles • Operating temperature -150C to +150C

Current State	Drivers	Future State
<h2>Power Conversion and Distribution Systems</h2>		
<ul style="list-style-type: none"> • Power converters 94% efficient • Power Distribution: 170V and 120 V • Switchgear – Solid State, Electromechanical Relays 	<ul style="list-style-type: none"> • Need for unique vehicle configurations • Extreme Space environments • Maximize efficiency, power density, safety, reliability • Minimize mass/volume, DDT&E costs, integration and operations cost 	<ul style="list-style-type: none"> • Modular PMAD • Power Converter >97% • Voltage >300V • Novel Switching Devices • Superconductors • High radiation tolerance
<h2>Intelligent Power Management Systems</h2>		
<ul style="list-style-type: none"> • Spacecraft power managed by ground controllers 	<ul style="list-style-type: none"> • Long term autonomous operations • Load and energy management under constrained capacity • Failure diagnostics and prognostics • Integration with Mission Manager 	<p>Autonomous Vehicle Management with Ground Oversight</p>

Electric Machines for Commercial Aircraft Propulsion

Current State	Drivers	Future State
<ul style="list-style-type: none">Commercial aircraft use turbofans or turbo props. Electric aircraft propulsion only implemented on small experimental planes.Motors, generators, power distribution, and energy storage to heavy and inefficient to exceed performance of baseline system	<ul style="list-style-type: none">High Specific Power Electric Machines (>8HP/lb)High Efficiency Electric MachinesHigh reliability/redundancyHigh Specific Energy batteries for some configurations	<ul style="list-style-type: none">10-100MW aircraft propulsion electric system for regional, single aisle and larger commercial aircraft.Reduced aircraft fuel burn, NOx emissions, and noiseElectric propulsion power system able to meet or exceed current safety standards (engine out, redundancy, others).

