\star Spé - St Joseph/ICAM Toulouse \star -

2020-2021 -

Math. - ES 1 - S1 - Epreuve 1

lundi 4 janvier 2021 - Durée 2 h

EXERCICE 1

1. Question préliminaire.

Soient E un \mathbb{R} —espace vectoriel de dimension finie d, f un endomorphisme de E et λ un réel. $\operatorname{Ker}(f)$ désigne le noyau de f, et $\operatorname{Im}(f)$ son image. On note $f^2 = f \circ f$. Enfin, Id_E est l'endomorphisme identité de E.

a. Démontrer que :

$$\operatorname{Ker}(f - \lambda \operatorname{Id}_E) \subset \operatorname{Ker}(f^2 - \lambda^2 \operatorname{Id}_E)$$

Quel lien peut-on en déduire entre les valeurs propres de f et celles de f^2 ?

b. Démontrer que si $Ker(f) \cap Im(f) \neq \{0\}$, alors

$$\dim (\operatorname{Ker}(f^2)) \ge \dim (\operatorname{Ker}(f)) + 1$$

c. On désigne par χ_f et χ_{f^2} les polynômes caractéristiques respectifs de f et f^2 . Démontrer que :

$$\chi_{f^2}(X^2) = (-1)^d \chi_f(X) \chi_f(-X)$$

2. Dans cette question, n désigne un entier naturel supérieur ou égal à 3, E est l'espace vectoriel $\mathbb{R}_n[X]$ des polynômes à coefficients réels de degré au plus n.

Soit f l'application définie, pour tout polynôme P de E, par :

$$f(P) = (X^2 - X + 1)P(-1) + (X^3 - X)P(0) + (X^3 + X^2 + 1)P(1)$$

- a. Démontrer que f est un endomorphisme de E.
- **b.** Déterminer Ker(f) et Im(f). Préciser leur dimension.
- **c.** f est-il injectif? Surjectif?
- **d.** Justifier que 0 est valeur propre de f. Que peut-on dire de sa multiplicité?
- e. Montrer que les polynômes $Q_1 = 3X^3 + 4X^2 3X + 4$ et $Q_2 = X^3 + X$ sont des vecteurs propres de f. Quelles sont les valeurs propres associées?
- **f.** A-t-on $Ker(f) \oplus Im(f) = E$?
- g. Quelles sont les valeurs propres de f^2 ? En déduire que f^2 est diagonalisable.
- \mathbf{h} . f est-il trigonalisable? Diagonalisable? Préciser ses valeurs propres et les sous-espaces propres.

Exercice 2

Soit n un entier naturel supérieur ou égal à 2. On travaille dans l'espace euclidien \mathbb{R}^n muni du produit scalaire usuel, noté $(\cdot|\cdot)$. On désigne par $\|\cdot\|$ la norme euclidienne de \mathbb{R}^n . On note $\mathscr{B} = (e_1, \ldots, e_n)$ la base canonique de \mathbb{R}^n .

On rappelle que si F et G sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^n alors la projection sur F parallèlement à G est un endomorphisme p de \mathbb{R}^n qui vérifie $p \circ p = p$. On a alors F = Im(p) et G = Ker(p). Cette projection est dite orthogonale si de plus F et G sont orthogonaux.

1. Soit p un projecteur orthogonal de \mathbb{R}^n . En écrivant, pour tout vecteur u de \mathbb{R}^n , u = p(u) + (u - p(u)), montrer que :

$$\forall u \in \mathbb{R}^n, \|p(u)\| \le \|u\|$$

2. Soit p un projecteur de \mathbb{R}^n vérifiant

$$\forall u \in \mathbb{R}^n, \ \|p(u)\| \le \|u\|$$

a. Soit $x \in \text{Im}(p)$ et $y \in \text{Ker}(p)$. En considérant le vecteur $u = x + \lambda y, \, \lambda \in \mathbb{R}$, montrer que :

$$\forall \lambda \in \mathbb{R}, \ \lambda^2 ||y||^2 + 2\lambda(x|y) \ge 0$$

En déduire que (x|y) = 0.

- **b.** Montrer que p est un projecteur orthogonal.
- 3. Soit f un endomorphisme de \mathbb{R}^n . On définit l'application f^* par

$$\forall x \in \mathbb{R}^n, \ f^*(x) = \sum_{i=1}^n (f(e_i)|x) e_i$$

- **a.** Vérifier que f^* est un endomorphisme de \mathbb{R}^n .
- **b.** En exprimant x dans la base \mathscr{B} , montrer que, pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$(f(x)|y) = (x|f^*(y))$$

c. Soit g un endomorphisme de \mathbb{R}^n vérifiant pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$(f(x)|y) = (x|g(y))$$

Montrer que $g = f^*$.

- **4.** Soit p un projecteur orthogonal de \mathbb{R}^n .
 - **a.** Montrer que, pour tout $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$,

$$(p(x)|y) = (p(x)|p(y))$$

- **b.** En déduire que $p = p^*$.
- **5.** Soit p un projecteur.
 - **a.** Montrer que $\operatorname{Im}(p^*) \subset (\operatorname{Ker}(p))^{\perp}$.
 - **b.** Soit $y \in (\text{Ker}(p))^{\perp}$. Montrer que, pour tout $x \in \mathbb{R}^n$, (x p(x)|y) = 0. En déduire que $y = p^*(y)$ puis que $(\text{Ker}(p))^{\perp} \subset \text{Im}((p^*))$.
 - **c.** Montrer que si $p = p^*$, alors p est un projecteur orthogonal.