COPPERBELT UNIVERSITY'S CHEMISTRY DEPARTMENT

- 1. Write the expression for K_C for the following reactions. In each case indicate whether the reaction is homogeneous or heterogeneous.
 - (a) $3NO(g) \rightleftharpoons N_2O(g) + NO_2(g)$

ANSWER:
$$K_C = \frac{[N_2 0][NO_2]}{[NO]^3}$$
 Homogeneous

(b)
$$CH_4(g) + 2H_2S(g) \rightleftharpoons CS_2(g) + 4H_2(g)$$

ANSWER:
$$K_C = \frac{[CS_2][H_2]^4}{[CH_4][H_2S]^2}$$
 Homogeneous

(c)
$$Ni(CO)_4(g) \rightleftharpoons Ni(s) + 4CO(g)$$

ANSWER:
$$K_C = \frac{[CS_2][H_2]^4}{[CH_4][H_2S]^2}$$
 Homogeneous

(d)
$$HF(aq) \rightleftharpoons H^+(aq) + F^-(aq)$$

ANSWER:
$$K_C = \frac{[H^+][F^-]}{[HF]}$$
 Homogeneous

(e)
$$2Ag(s) + Zn^{2+}(aq) \Rightarrow 2Ag^{+}(aq) + Zn(s)$$

ANSWER:
$$K_C = \frac{[Ag^+]^2}{[Zn^{2+}]}$$
 Heterogeneous

- 2. When the following reactions come to equilibrium, does the equilibrium mixture contain mostly reactants or mostly products?
 - (a) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g); K_C = 1.5 \times 10^{-10}$ ANSWER: It contains mostly reactants because $K_C \ll 1$

(b)
$$2 SO_2(g) + O_2(g) \Rightarrow 2SO_3(g); K_P = 2.5 \times 10^9$$

ANSWER: It contains mostly products because $K_c \gg 1$

3. If $K_C = 0.042$ for $PCl_3(g) + Cl_2(g) \Rightarrow PCl_5(g)$ at 500 K, what is the value of K_P for this reaction at this temperature?

ANSWER: While
$$K_P = \frac{P_{PCl_5}}{P_{PCl_3}P_{Cl_2}}$$
, $K_C = \frac{[PCl_5]}{[PCl_3][Cl_2]}$

Since from the ideal gas law
$$[PCl_5] = \frac{n_{PCl_5}}{V} = \frac{P_{PCl_5}}{RT}$$
,

$$\begin{aligned} [PCl_3] &= \frac{n_{PCl_3}}{V} = \frac{P_{PCl_3}}{RT} \text{ and} \\ [Cl_2] &= \frac{n_{Cl_2}}{V} = \frac{P_{Cl_2}}{RT} \end{aligned}$$

Substituting the last term in the equation gives

$$\mathbf{K}_{\mathbf{C}} = \frac{[\mathbf{PCl}_{5}]}{[\mathbf{PCl}_{3}][\mathbf{Cl}_{2}]} = \mathbf{K}_{\mathbf{P}}(\mathbf{RT})^{-\Delta \mathbf{n}}$$

where
$$\Delta n = \sum_{products} n - \sum_{reactants} n$$

Since $\sum_{products} n = 1$ and $\sum_{reactants} n = 2$ we see that

$$\Delta n = 1 - 2 = -1$$
 so that $-\Delta n = +$ and

$$K_C = K_P(RT)^{-\Delta n} = K_P(RT)$$

From the above equation, we see that

$$K_P = K_C(RT)^{\Delta n}$$
 or $K_C(RT)^{-1}$

that is

that is
$$\begin{split} K_P &= 0.042 \left(\frac{1}{8.205 \times 10^{-2} \times 500} \right) = \left(\frac{4.2}{8.205 \times 5} \right) \times 10^{-2} \\ \underline{K_P} &= 1.0 \times \underline{10}^{-3} \end{split}$$

At 1000 K, $K_P = 1.85$ for the reaction

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

What is the value of K_P for the reaction) $SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$? **ANSWER:**

Since the reaction
$$SO_2(g) + \frac{1}{2}O_2(g) \approx SO_3(g)$$
 has $K_P = \frac{P_{SO_3}}{P_{SO_2}P_{O_2}^{\frac{1}{2}}}$

and the reaction
$$SO_3(g) \rightleftharpoons SO_2(g) + \frac{1}{2}O_2(g)$$
 has $K_P = \frac{P_{SO_2}P_{O_2}^{\frac{1}{2}}}{P_{SO_3}}$

It is clear that the latter reaction is reverse of the former and its equilibrium constant is the inverse of the former reaction so that

$$K_{P}^{'} = \frac{P_{SO_{2}}P_{O_{2}}^{1/2}}{P_{SO_{3}}} = \frac{1}{K_{P}} \text{ or } K_{P}^{'} = \left(\frac{1}{1.85}\right) = 0.54$$

What is the value of K_P for the reaction $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$? (b) **ANSWER:**

Since the reaction
$$SO_2(g) + \frac{1}{2}O_2(g) \Rightarrow SO_3(g)$$
 has $K_P = \frac{P_{SO_3}}{P_{SO_2}P_{O_2}^{\frac{1}{2}}}$ and the reaction $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$ has

$$K_{P}^{'} = \left(\frac{P_{SO_{3}}}{P_{SO_{2}}P_{O_{2}}^{\frac{1}{2}}}\right) \times \left(\frac{P_{SO_{3}}}{P_{SO_{2}}P_{O_{2}}^{\frac{1}{2}}}\right) \text{ or } K_{P}^{'} = \left(\frac{P_{SO_{3}}}{P_{SO_{2}}P_{O_{2}}^{\frac{1}{2}}}\right)^{2} = \frac{P_{SO_{3}}^{2}}{P_{SO_{2}}^{2}P_{O_{2}}}$$

It is clear that the latter is doubling of the former and its equilibrium constant is the square of the former reaction so that

$$K'_{P} = \frac{P_{SO_3}^2}{P_{SO_2}^2 P_{O_2}} = K_{P}^2 \text{ or } K'_{P} = (1.85)^2 = 3.42$$

(c) What is the value of K_C for the reaction in part (b)?

ANSWER:

Since the relationship between K_P and K_C is $K_C = K_P (RT)^{-\Delta n}$ and $\Delta n = 2 - 3 = -1$, $K_C = K_P(RT)^{-(-1)} = K_P(RT)$ Substituting appropriate values in the latest equation gives

$$K_C = K_P(RT) = 3.42 \times 8.31 \times 1000 = 28441.$$

5. The following equilibria were attained at 823 K:

$$CoO(s) + H_2(g) \rightleftharpoons Co(s) + H_2O(g)$$
 $K_C = 67$
 $CoO(s) + CO(g) \rightleftharpoons Co(s) + CO_2(g)$ $K_C = 490$

Based on these equilibria, calculate the equilibrium constant for

$$H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$$
 at 823K.

ANSWER:

The first two equations involve heterogeneous reactions whereas the third reaction is a homogeneous reaction. The mass action laws or the equilibrium constant equations are as follows:

For reaction
$$CoO(s) + H_2(g) \rightleftharpoons Co(s) + H_2O(g)$$
 we have $K_{C_1} = \frac{[H_2O]}{[H_2]} = 67$ with $\frac{1}{K_{C_1}} = \frac{[H_2]}{[H_2O]} = \frac{1}{67}$

Similarly, for the reaction $CoO(s)+CO(g) \neq Co(s)+CO_2(g)$ we have

$$K_{C_2} = \frac{[\text{CO}_2]}{[\text{CO}]} = 490$$
 with $\frac{1}{K_{C_2}} = \frac{[\text{CO}]}{[\text{CO}_2]} = \frac{1}{490}$

Finally, for the reaction $H_2(g) + CO_2(g) \rightleftharpoons CO(g) + H_2O(g)$ we have

$$K_{C_3} = \frac{[\text{H}_2\text{O}[\text{CO}]]}{[\text{H}_2][\text{CO}_2]} = \left(\frac{[\text{H}_2\text{O}]}{[\text{H}_2]}\right) \left(\frac{[\text{CO}]}{[\text{CO}_2]}\right) = K_{C_1} \left(\frac{1}{K_{C_2}}\right) = \frac{67}{490} = 0.\,\mathbf{14}$$

A mixture of 0.10 mol of NO, 0.050 mol of H₂, and 0.10 mol of H₂O is placed in a 1.0 L vessel at 300 K. The following equilibrium is established:

$$2NO(g) + 2H_2(g) \Rightarrow N_2(g) + 2H_2O(g)$$

At equilibrium [NO] = 0.062 M.

Calculate the equilibrium concentrations of H₂, N₂, and H₂O.

ANSWER: Completing the ICE table below, gives

Moles	2NO(g) +	2H ₂ (g)	1	$N_2(g) +$	2H ₂ O(g)
Initial	0.10	0.050		0.00	0.10
Change	-2x	-2x		+x	+2 <i>x</i>
Equilibrium	0.10 - 2x	0.050-2x		+x	0.10 + 2x

Since we are given that at equilibrium [NO] = 0.062 M and V=1.0 L, then

$$n_{NO} = 0.062 \, mol/L \times 1.0 \, L = 0.062 \, mol.$$

We can thus use this numbers of moles to determine the value for x by solving the equation

$$0.10 - 2x = 0.062 \text{ or } 2x = 0.10 - 0.062 \text{ or } 2x = 0.10 - 0.062 \text{ or } 2x = 0.06$$

$$2x = 0.10 - 0.062 = 0.038$$
 so that $x = \frac{0.038}{2} = 0.019$ moles

Thus, the H_2 moles and concentration are 0.050 - 0.038 = 0.012 mol and 0.012 M, respectively;

Similarly, N_2 moles and concentration are 0.019 mol and $\underline{0.019 \text{ M}}$, respectively while H_2O moles and concentration are 0.10 + 2x or $(0.10+(2\times0.019)) = 0.138$ mol and 0.138 M, respectively.

(b) Calculate K_C.

ANSWER: The mass action law gives

$$K_C = \frac{[N_2][H_20]^2}{[N0]^2[H_2]^2} = \frac{(0.019) \times (0.138)^2}{(0.062)^2 \times (0.012)^2} = 580.1$$

7. A mixture of 0.2000 mol of CO₂, 0.1000 mol of H₂, and 0.1600 mol of H₂O is placed in a 2.000 L vessel. The following equilibrium is established at 500 K:

$$CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$$

(a) Calculate the initial partial pressures of CO_2 , H_2 , and H_2O .

ANSWER: Table completion with $R=8.205\times 10^{-2}L$ atm $K^{-1}mol^{-1}$ and T=500 K so that $RT=8.205\times 10^{-2}L$ atm $K^{-1}mol^{-1}\times 500$ K i. e. 41.025 L atm mol^{-1} final row of required partial pressures.

Moles	$CO_2(g) +$	$H_2(g)$	=	CO(g) +	H ₂ O(g)
Initial moles (n_i)	0.2000	0.1000		0.0000	0.1600
Concentration Equation	0.2000	0.100		-	0.16000
$C_i = \frac{n_i}{V}$ in mol L^{-1}	2.000	2.000			2.000
Concentration value C_i	0.1000	0.0500		-	0.0800
Partial Pressure Equation	0.1000	0.0500		_	0.0800
$P_i = \frac{n}{V}RT \ or \ P_i = C_iRT$	× 41.025	× 41.025			× 41. 025
Partial Pressure in atm	4. 10 atm	2.05 atm		_	3.28 atm

(b) At equilibrium $P_{H_2O} = 3.51$ atm. Calculate the equilibrium partial pressures of CO_2 , H_2 , and CO.

(c) ANSWER: Completing the ICE table below using pressures instead of concentrations gives,

Substance	$CO_2(g) +$	$H_2(g)$	≓	CO(g) +	$H_2O(g)$
Initial (atm)	4.10	2.05		0.00	3.28
Change	-x	-x		+x	+x
Equilibrium	4.10 - x	2.05 - x		+x	3.28 + x

Since we are given that at equilibrium $P_{H_2O} = 3.51$ atm, then

$$P_{H_2O} = 3.51 = 3.28 + x \text{ or } x = 3.51 - 3.28 = 0.23 \text{ atm}$$

We can thus use this value for x by solving the P_{CO_2} equation as

$$P_{CO_2} = 4.10 - 0.23 = 3.87 atm$$

And

$$P_{CO} = x = 0.23 atm$$

- 8. At 100°C the equilibrium constant for the reaction $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$ has the value $K_C = 2.19 \times 10^{-10}$. Are the following mixtures of $COCl_2$, CO, and Cl_2 at 100°C at equilibrium? If not, indicate the direction that the reaction must proceed to achieve equilibrium.
 - a) $[COCl_2] = 2.00 \times 10^{-3} \text{ M}, [CO] = 3.3 \times 10^{-6} \text{ M}, [Cl_2] = 6.62 \times 10^{-6} \text{ M};$
 - (b) $[COCl_2] = 4.50 \times 10^{-2} \text{ M}, [CO] = 1.1 \times 10^{-7} \text{ M}, [Cl_2] = 2.25 \times 10^{-6} \text{ M};$
 - (c) $[COCl_2] = 0.0100 \text{ M}, [CO] = [Cl_2] = 1.48 \times 10^{-6} \text{ M}$
 - ANSWER: Key to this question is to compare the reaction quotient, Q, to the equilibrium constant Kc. If $Q \neq K_C$ the system is not at equilibrium. If $Q = K_C$ then the system is at equilibrium.
 - a) $[COCl_2] = 2.00 \times 10^{-3} \text{ M}, [CO] = 3.3 \times 10^{-6} \text{ M}, [Cl_2] = 6.62 \times 10^{-6} \text{ M};$

$$Q = \frac{[\text{CO}][\text{Cl}_2]}{[\text{COCl}_2]} = \frac{(3.3 \times 10^{-6})(6.62 \times 10^{-6})}{2.00 \times 10^{-3}} = 1.09 \times 10^{-8}$$

Since $K_C = 2.19 \times 10^{-10}$ we easily see that $K_C < Q$ and the system is not at equilibrium.

(b)
$$[COCl_2] = 4.50 \times 10^{-2} M$$
, $[CO] = 1.1 \times 10^{-7} M$, $[Cl_2] = 2.25 \times 10^{-6} M$;

$$Q = \frac{[\text{CO}][\text{Cl}_2]}{[\text{COCl}_2]} = \frac{(1.1 \times 10^{-7})(2.25 \times 10^{-6})}{4.50 \times 10^{-2}} = 5.50 \times 10^{-10}$$

Since $K_C = 2.19 \times 10^{-10}$ we easily see that $K_C < Q$ and the system is not at equilibrium.

(c)
$$[COCl_2] = 0.0100 \text{ M}, [CO] = [Cl_2] = 1.48 \times 10^{-6} \text{ M}$$

$$Q = \frac{[\text{CO}][\text{Cl}_2]}{[\text{COCl}_2]} = \frac{(1.48 \times 10^{-6})(1.48 \times 10^{-6})}{1.00 \times 10^{-2}} = 2.21 \times 10^{-10}$$

Since K_{C} = 2. 19×10^{-10} we easily see that $K_{C}\approx Q$ and the system is at equilibrium.

9. (a) At 1285°C, the equilibrium constant for the reaction $Br_2(g) \rightleftharpoons 2Br(g)$ is $K_C = 1.04 \times 10^{-3}$. A 0.200 L vessel containing an equilibrium mixture of the gases has 0.245 g $Br_2(g)$ in it. What is the mass of Br(g) in the vessel?

ANSWER: Completing the ICE table below using pressures instead of concentrations gives.

 51, 65,					
Substance	Br ₂ (g)	=	2Br(g) +		
Initial (atm)	y		0		
Change	-x		+2x		
Equilibrium	y-x		+2 <i>x</i>		

Given
$$K_C = 1.04 \times 10^{-3}$$
, V=0.200 L and $m_{Br_2} = 0.245$ g

$$y$$
 is moles of Br_2 or $n_{Br_2} = \frac{m_{Br_2}}{M_{Br_2}}$

Since
$$M_{Br_2} = 79.9 \times 2 = 159.8 \frac{g}{mol}$$
,

Then
$$y = n_{Br_2} = \frac{0.245}{159.8} = 0.00153 \text{ mol}$$

Now
$$K_C = \frac{[Br]^2}{[Br_2]}$$
 and $[Br_2] = \frac{n_{Br_2}}{V} = \frac{.0015}{0.200} = 0.0076$ M

So that $K_C = \frac{[Br]^2}{[Br_2]}$ with appreciate substitution becomes

$$K_{C} = \frac{(2x)^{2}}{7.6 \times 10^{-3}}$$

This on substituting value of K_C becomes the equation

1.04 × 10⁻³ =
$$\frac{4x^2}{7.6 \times 10^{-3}}$$
 or

$$1.04 \times 10^{-3} = \frac{x^2}{1.9 \times 10^{-3}}$$

Making x the subject gives $x^2 = 1.04 \times 10^{-3} \times 1.9 \times 10^{-3}$

Solving for x gives
$$x = \sqrt{1.04 \times 1.9} \times 10^{-3} = 1.41 \times 10^{-3}$$

- (b) For the reaction $H_2(g) + I_2(g) \Rightarrow 2HI(g)$, $K_C = 55.3$ at 700 K. In a 2.00 L flask containing an equilibrium mixture of the three gases, there are 0.056 g H_2 and 4.36 g I_2 . What is the mass of HI in the flask?
 - (d) ANSWER: We first need to determine the moles and concentrations of the given substances followed by completing the ICE table.

Since
$$m_{H_2} = 0.056$$
 g and $M_{H_2} = 1.01 \times 2 = 2.02 \frac{g}{mol}$

$$n_{\rm H_2} = \frac{0.0056}{2.02} = 0.0277 \, \text{mol}$$

So, the concentration of is

$$C_{H_2} = \frac{0.0277}{2.00} = 0.01385 \text{ mol/L}$$
Page 6 of 8

And since
$$m_{I_2}=4.36~g$$
 and $M_{I_2}=126.90\times 2=253.8\frac{g}{mol}$

$$n_{I_2} = \frac{4.36}{253.8} = 0.0172 \text{ mol and } C_{I_2} = \frac{0.0172}{2.00} = 0.0086 \text{ mol/L}$$

Substance	$H_2(g) +$	I ₂ (g)	=	2HI(g) +
Initial		-//		-
Change	3-()	-		_
Equilibrium	0.01385	0.0086	1	x

Writing the equilibrium equation gives us

$$K_C = \frac{[HI]^2}{[H_2][I_2]} \text{ or } 55.3 = \frac{x^2}{(1.385 \times 10^{-2}) \times (8.6 \times 10^{-3})}$$

Solving for x gives

$$x = \sqrt{5.53 \times 1.385 \times 8.6} \times 10^{-2} = 8.1 \times 10^{-2}$$

From this concentration, the moles of HI is

$$\mathbf{n_{HI}} = \mathbf{C_{HI}} \times V = 8.1 \times 10^{-2} \times 2.00 = 0.162 \ mol$$

The mass of HI is give by the expression

$$m_{HI} = n_{HI} \times M_{HI}$$

Substituting the appropriate values where $M_{\rm HI}$ =126.90+1.01=127.91 g/mol, we have

$$\mathbf{m}_{HI} = 0.162 \times 127.91 = 20.72 \,\mathrm{g}$$

- 10. For the reaction $I_2 + Br_2(g)$ \longrightarrow 2 IBr(g), Kc = 280 at 150°C. Suppose that 0.500 mol IBr in a 1.00- L flask is allowed to reach equilibrium at 150°C. What are the equilibrium concentrations of IBr, I_2 , and Br_2 ?
- 11. Consider the following equilibrium, for which $\Delta H < 0$

$$2 SO_2(g) + O_2(g) \longrightarrow 2 SO_3(g)$$

How will each of the following changes affect an equilibrium mixture of the three gases?

- a) $O_2(g)$ is added to the system;
- b) the reaction mixture is heated;
- (c) the volume of the reaction vessel is doubled;

- (d) a catalyst is added to the mixture;
- (e) the total pressure of the system is increased by adding a noble gas;
- (f) $SO_3(g)$ is removed from the system.

