

Integracja urządzeń w portalu TIA ver.11 (cz. 1).

tej części artykułu zostaną omówione telegramy komunikacyjne oraz struktura pierwszego słowa sterującego oraz słowa wartości zadanej częstotliwości.

Struktura telegramów komunikacyjnych – PROFINET

Obszar telegramów jest podzielony na dwie części: Parametr Chanel (słowa **PKW**) i Process data area (słowa **PZD**). Poprzez obszar **PKW** mamy dostęp do wszystkich parametrów, możemy je odczytywać i modyfikować (ale tyl-

ko parametry poprzedzone symbolem P, parametry poprzedzone symbolem R można tylko odczytywać). **PKW** służy do komunikacji acyklicznej. Obszar **PZD** służy do sterowania pracą przekształtnika, przysyłamy w nim słowa sterujące oraz wartość zadaną częstotliwości. Umożliwia on również odczyt wartości prądów, napięć itp. w sposób ciągły. Jest to obszar przeznaczony do komunikacji cyklicznej. W zależności od potrzeb aplikacji mamy do dyspozycji różne telegramy komunikacyjne różniące się liczbą słów **PZD**. Słowa **PKW** możemy przesyłać jedynie za pośrednictwem telegramów 353 i 354. Pokazuje to tabela nr 1.

Tabela 1: Telegramy komunikacyjne dla przekształtnika SINAMICS G120

Telegramm	Parameter channel	Process data area (PZD)							
		PZD 01 STW1 ZSW1	PZD 02 HSW HIW	PZD 03	PZD 04	PZD 05	PZD 06	PZD 07	PZD 08
Telegram 1 Speed control, -		STW1	NSOLL_A	□ Receive telegram from PROFIBUS					
2 words	_	ZSW1	NIST_A	⇒ Send telegram to PROFIBUS					
Telegram 20		STW1	NSOLL_A						
Speed control, VIK/NAMUR	_	ZSW1	NIST_A_GLATT	IAIST	MIST	PIST	<1>		
Telegram 350		STW1	NSOLL_A	M_LIM	STW2				
Speed control, 4 words	_	ZSW1	NIST_A_GLATT	IAIST_	ZSW2				
Telegram 352 Speed control, PCS7	-	STW1	NSOLL_A	<3>	<3>	<3>	<3>		
		ZSW1	NIST_A_GLATT	IAIST	MIST	FAULT_CODE	WARN_CODE		
Telegram 353 Speed control,		STW1	NSOLL_A						
PKW 4/4 and PCD 2/2	Х	ZSW1	NIST_A_GLATT						
Telegram 354 Speed control,	Χ	STW1	NSOLL_A	<3>	<3>	<3>	<3>		
PKW 4/4 and PCD 6/6	Χ	ZSW1	NIST_A_GLATT	IAIST	MIST	FAULT_CODE	WARN_CODE		

STW1/STW2 – pierwsze/drugie słowo sterujące, ZSW1 – pierwsze słowo statusowe przekształtnika,

NSOLL_A – wartość zadana częstotliwości, NIST_A – wartość rzeczywista częstotliwości, IAIST – prąd wyjściowy,

MIST – moment napędowy na wale silnika, PIST – aktualna moc, M_LIM – ograniczenie momentu,

FAULT_CODE – kod błędu, WARN_CODE – kod alarmu.

W pierwszym słowie PZD przesyłamy pierwsze słowo sterujące, natomiast przekształtnik odpowiada pierwszym słowem statusowym. W drugim słowie PZD przesyłamy wartość zadaną częstotliwości, a w odpowiedzi otrzymujemy jej wartość rzeczywista itd.

Strukturę pierwszego słowa sterującego przedstawia tabela nr 2.

Tabela 2: Opis pierwszego słowa sterującego

00	ON/OFF 1 – załącz wyłącz	0	1
01	OFF 2 – wyłączenie wybiegiem	1	1
02	OFF 3 – wyłączenie awaryjne	1	1
03	Blokada impulsów sterujących	1	1
04	Zadajnik rozruchu – zezwolenie	1	1
05	Zadajnik rozruch – start	1	1
06	Blokada wartości zadanej	1	1
07	Kasowanie błędów	0	0
08	JOG prawo	0	0
09	JOG lewo	0	0
10	Sterowanie z PLC	1	1
11	Zmiana kierunku obrotów	0	0
12	- bit zarezerwowany -	0	0
13	MOP w górę	0	0
14	MOP w dół	0	0
15	Zależy od protokołu komunikacyjnego	0	0
	Wartość HEX	047E	047F

Jednostka sterująca CU 240 S PN F

Zatem, aby uruchomić silnik z obrotami w prawo do przekształtnika, powinniśmy wysłać pierwsze słowo sterujące o wartości **047F** w kodzie szesnastkowym, żeby wyłaczyć silnik **047E**. Bity 01, 02 03,04,05, 06 i 10 musza zawsze mieć wartość 1. W przeciwnym wypadku nie uruchomimy napędu, zmieniając wartość bitu 01 z 0 na 1.

Wartość częstotliwości zadanej przesyłanej w drugim słowie PZD jest również przesyłana w kodzie szesnastkowym. Jej zakres to 0-4000, odpowiada to 0-100% częstotliwości

> referencyjnej ustawionej w parametrze P2000. Fabrycznie P2000 ma wartość 50 Hz. Warto dodać, że wartość szesnastkowa czestotliwości zadanej powstaje poprzez konwersję wartości binarnej utworzonej w kodzie uzupełnień do 2. Oznacza to, że możemy zmieniać nie tylko częstotliwość obrotów silnika, ale również ich kierunek.

Przvkład:

4000 w kodzie szesnastkowym odpowiada 1000000000000 w kodzie binarnym. W kodzie uzupełnień do 2 musimy jeszcze dodać bit znaku przed naszą liczbą, 0 oznacza "+" a 1 "-". Czyli nasza liczba wynosi 01000000000000. Abv silnik obracał się w przeciwnym kierunku z tą samą prędkością, musimy przesłać do napędu liczbę przeciwną do 4000 w kodzie szesnastkowym. W ko-

dzie uzupełnień do 2 liczbę przeciwną tworzymy poprzez zamiane 0 na 1 i 1 na 0 oraz dodanie do nowej liczby 1. Zatem mamy 1011111111111111, po dodaniu 1 otrzymujemy 110000000000000, po konwersji na kod szesnastkowy otrzymaliśmy C000. Po przesłaniu tej wartości do przekształtnika silnik będzie się kręcił w lewo ze znamionową prędkością.

Oczywiście zmianę kierunku obrotów możemy uzyskać poprzez zmianę wartości bitu 11 w pierwszym słowie sterującym.

Dariusz Baraniak

SIEMENS

Siemens Sp. z o.o. I DT GMC ul. Żupnicza 11 03-821 Warszawa Tel.: +48 (22) 870-9876 Fax.: +48 (22) 870-9177 automatyka.pl@siemens.com

Integracja urządzeń w portalu TIA ver.11 (cz. 2).

poprzedniej części artykułu została omówiona struktura telegramów komunikacyjnych PROFINET oraz pierwszego i drugiego słowa sterującego. W tej części zostanie przedstawiona integracja sterownika S7-1200 z napędem SINAMICS G120 w środowisku TIA Portal ver. 11.

Aby była możliwa komunikacja poprzez PROFINET, wersja firmware S7-1200 musi być co najmniej 2.0. Wersje firmware sa do pobrania ze stron Siemens:

https://support.automation.siemens.com/WW/llisapi.dll?func=cslib.csinfo&lang=en&siteid=csius&aktprim=0&extranet=standard&viewreg=WW&objid=34612486&treeLang=en

Tworzenie nowego projektu

Klikamy prawym przyciskiem myszy na ikonę **New Project** [1]. Pojawi się okno dialogowe **Create a new project** [2], w którym nadajemy nazwę projektowi, określamy jego lokalizację na twardym dysku, wpisujemy autora i ewentual-

Rvs. 1.

Rys. 2.

Rys. 4.

Rys. 5.

ny komentarz. Następnie klikamy przycisk **Create** (rys. 1).

Tworzenie konfiguracji sprzętowej Dodanie sterownika PLC i jego modułów

W drzewie nowego projektu klikamy na **Add new device** [1], rozwijamy gałąź PLC, w CPU wybieramy **Unspecified CPU 1200** [2] (rys. 2).

Pojawi się okno jak na rys. 3. Klikamy na **Detect**, po którym pokaże się kolejne okno (rys. 4). Wybieramy typ komunikacji pomiędzy CPU a PG/PC [1], następnie kartę sieciową naszego PG/PC [2] i klikamy na **Detect** [3]. Zostanie przeprowadzona autodetekcja sterownika i jego modułów. Po jej zakończeniu wyświetli się konfiguracja naszego PLC (rys. 5).

Dodanie przekształtnika SINAMICS G120

Klikamy na **Network view** [1], jeżeli katalog sprzętu jest niewidoczny, klikamy na **Hardware catalog** [2]. Rozwijamy gałąź **Other field devices** [3]. Następnie z gałęzi SINAMICS wybieramy jednostkę sterującą CU [4]. CU wybieramy poprzez dwukrotne kliknięcie na jej nazwie lub metodą "przeciągnij i upuść". Zaznaczamy wskaźnikiem myszy zielony kwadracik na ikonie PLC, wciskamy lewy przycisk i przeciągamy do zielonego kwadracika na ikonie napędu i zwalniamy przycisk [5].

Dariusz Baraniak

Siemens Sp. z o.o. I DT GMC

SIEMENS

ul. Żupnicza 11 03-821 Warszawa

Tel.: +48 (22) 870-9876 Fax.: +48 (22) 870-9177 automatyka.pl@siemens.com

Rys. 6.

Integracja urządzeń w portalu TIA ver.11 (cz. 3).

poprzedniej części omówiono tworzenie nowego projektu oraz wprowadzenie do niego urządzeń w sieci. W tej części będzie kontynuowany ten wątek oraz zostanie pokazany krótki program do sterownika S7-1200 umożliwiający komunikację po magistralii PROFINET.

Zdefiniowanie telegramu komunikacyjnego

Po wprowadzeniu przekształtnika do projektu musimy określić telegram komunikacyjny do komunikacji ze sterownikiem. W tym celu klikamy dwukrotnie lewym przyciskiem myszy na ikonę napędu. Po prawej stronie wyświetli się okno z listą dostępnych telegramów. Klikamy dwukrotnie na wybrany telegram, zostanie on przypisany do naszego przekształtnika, a w środkowej dolnej części ekranu pojawi się okno pokazujące adresy I/O przypisane do napędu (rys. 1). W tym przypadku został wybrany telegram 354, czyli 4 słowa PKW i 6 słów PZD.

Rozwijamy **Program blocks**[1], następnie klikamy na **Add new block** [2], rozwinie się okno o tej nazwie. Klikamy na **Organization block** i wybieramy **Cyclic interrupt**. Potwierdzamy **OK**. Blok zostanie wprowadzony do projektu [6].

Ustawienie czasu trwania cyklu

Na rys. 3 pokazano, jak ustawić czas trwania cyklu. Klikamy prawym przyciskiem myszy na Cyclic interrupt [1], wybieramy Properties, a następnie Cyclic interrupt [2]. Wpisujemy żądany czas w okno dialogowe [3] i potwierdzamy OK [4]. Ważne jest, aby czas trwania cyklu był krótszy niż czas ustawiony w parametrze p8840 w napędzie. Parametr p8840 określa czas, w jakim napęd oczekuje na przyjście ramki telegramu od sterownika, więc jeżeli cykl jest od niego dłuższy, spowoduje to wyłączenie napędu z błędem F0070 (utrata wartości zadanej). Wartość fabryczna wynosi 20 ms, zatem ustawiamy czas trwania cyklu na 19 ms.

Rys. 1

Czyli będziemy wysyłali z PLC do przekształtnika 1 słowo PKW na adres QW100, 2 na QW102, 3 na QW104, a 4 na QW106. Analogicznie 1 słowo sterujące wysyłamy na QW108, a 2 na QW 110. Analogicznie odczytujemy słowa przesyłane przez przekształtnik do sterownika, czyli 1 PKW z adresu IW68 itd.

Wprowadzenie bloku organizacyjnego Cyclic interrupt (OB30) (rys. 2).

Rys. 2

Rys. 4

PROGRAM

Zdefiniowanie nazw zmiennych w tablicy Tag

Zmiennym, których używamy w programie, możemy przyporządkować własne nazwy, przez co nasz program staje się bardziej czytelny. Przykładowo można to zrobić jak na rysunku 4. Rozwijamy **PLC tags** [1], klikając dwukrotnie na **Add new tag table** [2], w drzewie projektu pojawi się **Tag table_1** [3], klikamy dwukrotnie i rozwija się okno o tej samej nazwie, gdzie możemy wprowadzić nazwy naszych zmiennych [4].

Dariusz Baraniak

SIEMENS

Siemens Sp. z o.o.
I DT GMC

ul. Żupnicza 11, 03-821 Warszawa Tel.: +48 (22) 870-9876

Fax.: +48 (22) 870-9177 automatyka.pl@siemens.com

Integracja urządzeń w portalu TIA ver.11 (cz. 4).

poprzedniej części zostato omówione tworzenie programu w TIA Portal. W tej części temat ten będzie kontynuowany.

Utworzenie tablicy zmiennych Watch table

Poniżej przedstawiono przykładową tabelę **Watch table_1**.

Rys. 1.

Wprowadzenie programu w języku drabinkowym (LAD) do bloku funkcyjnego Cyclic interrupt (OB30)

Otwieramy blok [1], następnie klikamy **Instructions** [2] w celu otwarcia biblioteki instrukcji, w folderze **Move operations** wybieramy instrukcję **MOVE**, przeciągamy ją

na pierwszą linię i upuszczamy [3] (rys. 2). Instrukcję **MOVE** w pierwszej linii parametryzujemy następująco:

IN = MW0, OUT1 = QW108

Podobnie wprowadzamy instrukcje MOVE do 5 następnych linii i parametryzujemy je jak niżej:

Linia 2: IN = MW2, OUT1 = QW110; Linia 3: IN = MW4, OUT1 = QW100 Linia 4: IN = MW6, OUT1 = QW102; Linia 5: IN = MW8, OUT1 = QW104 Linia 6: IN = MW10, OUT1 = QW106

Następnie należy zapisać projekt na dysku i załadować go do pamięci sterownika. Projekt zapisujemy, klikając na ikonę Save Project, znajdującą się w górnym prawym rogu ekranu.

Załadowanie konfiguracji sprzętowej i programu do sterownika

Prawym przyciskiem myszy klikamy na nazwę sterownika [1], następnie wybieramy **Download to device** [2] i klikamy na opcję **All** [3] (rys. 3). Jeżeli nie wystąpiły żadne błędy po przejściu w tryb **On line**, otrzymamy informacje jak na rys. 4.

Odczytywanie i zapisywanie parametrów poprzez obszar PKW

Obszar PKW składa się zawsze z 4 słów: PKE, IND, PWE1 i PWE2. W PKE zapisujemy typ żądania i numer parametru w formacie 16, w IND w części HIGH wartość indeksu w formacie dziesiętnym, a w LOW wartość stronicowania parametru, PWE1 i 2 wartość parametru w kodzie 16 (rys. 5).

Rys. 3.

Rys. 4.

Przykłady:

1. Odczyt wartości parametru 700.

Kod żądania odczytu 1, wartość 700 w kodzie 16 wynosi 2BC, zatem PKE=12BC, parametr nie ma indeksu, a jego wartość jest mniejsza niż 2000, czyli IND=0000, PKW1 i 2 = 0000

Odpowiedź napedu:

PKE=12BC, IND=0000, PKW1=0000, PKW2=0002, czyli parametr ma wartość 2 w kodzie 16.

2. Odczyt wartości parametru 2000 – częstotliwość maksymalna.

Żądanie odczytu 1, mamy tu do czynienia ze stronicowaniem, czyli wartość parametru wynosi 2000 - 2000 = 0 i IND =80 (patrz rys. 6) PKW1 i 2 mają wartość 0000.

Request	Meaning	Response identifier		
identifier		positive	negative	
0	No request	0	7/8	
1	Request parameter value	1/2	7/8	
2	Modify parameter value (word)	1	7/8	
3	Modify parameter value (double word)	2	7/8	
4	Request descriptive element *	3	7/8	
6	Request parameter value (array) 1	4/5	7/8	
7	Modify parameter value (array, word) 2	4	7/8	
8	Modify parameter value (array, double word) 2	5	7/8	
9	Request number of array elements	6	7/8	
11	Modify parameter value (array, double word) and store in EEPROM	5	7/8	
12	Modify parameter value (array, word) and store in EEPROM ²		7/8	
13	13 Modify parameter value (double word) and store in EEPROM		7/8	
14 Modify parameter value (word) and store in EEPROM		<u>1</u>	7/8	

Rys. 6. Identyfikatory żądania

Response identifier	Meaning			
0	No response			
1	Transfer parameter value (word)			
2	Transfer parameter value (double word)			
3	Transfer descriptive element			
4	Transfer parameter value (array, word) 2			
5	Transfer parameter value (array, double word) 2			
6	6 Transfer number of array elements			
7	7 Cannot process request (with error number)			
8	No master control status for PKW interface			

Rys. 7. Identyfikatory odpowiedzi

Parameter area	PNU extension (2 rd word (IND), lowbyte)			
	Binary	Hex		
01999	00000000	00		
20003999	10000000	80		
40005999	00010000	10		
60007999	10010000	90		
80009999	00100000	20		

Rys. 8. Kody stronicowania parametrów

Odpowiedź napedu: 2000. 2 zgodnie z rvs. 6 oznacza, że zmienna jest double Word, 0080, 4248, 0000.

4248 w kodzie 16 odpowiada 50.0 w formacie floating value. Przeliczanie liczb z formatu 16 na real iest bardzo pracochłonne i są stworzone do tego specjalne kalkulatory.

Odczyt parametru 9810 – adres docelowy PROFIsafe.

Żądanie odczytu 1, stronicujemy numer parametru, czyli 9810 - 8000=1810=712 hex, PKE=1712, IND=20, PKW1 i2 = 0000.

Odpowiedź napędu: 1720, 0020, 0000, 00C8 hex 00C8 hex = 200 dec, czyli adres wynosi 200.

4. Nadanie parametrowi 845 wartości 722.2.

Żądanie zapisu 3 (modyfikacja double Word), 845 dec=34D hex, czyli PKE=334D, IND=0000, 722 dec= 02D2 hex a 2 dec= 0002 hex zatem PKW1=02D2 a PKW2=0002.

Odpowiedź napędu: 234D, 0000, 02D2, 0002 oznacza, że zapis parametru był udany.

Przesyłanie danych do napedu przy pomocy tablicy zmiennych Watch table

Rys. 9

Przechodzimy w tryb On line, klikając na ikonę "okulary" [1], następnie wprowadzamy modyfikacje w kolumnie Modify value [2]. W tym przypadku częstotliwość wyjściowa jest ustawiona na 1/4, czyli 12,5 Hz. Odczytujemy wartość parametru nr 37 - temperatura przekształtnika. Wysyłamy modyfikacje do sterownika [3]. W kolumnie Monitor value otrzymujemy potwierdzenie częstotliwości wyjściowej, 1 słowo statusowe oraz wartość parametru 37 – 29,73 st. C.

Podsumowanie

Komunikacja po magistrali PROFINET jest obecnie bardzo mocno rozwijana ze względu na szybkość transmisji danych oraz na łatwą i tanią konfigurację sprzętową.

Sterowniki S7-1200 wraz z przekształtnikami SINAMICS G120 zapewniają niezawodną wymianę danych pomiędzy urządzeniami. Dzięki portalowi TIA integracja tych urządzeń w sieci PROFINET jest niezwykle łatwa i szybka.

Dariusz Baraniak

SIEMENS

Siemens Sp. z o.o. I DT GMC ul. Żupnicza 11 03-821 Warszawa Tel.: +48 (22) 870-9876 Fax.: +48 (22) 870-9177 automatyka.pl@siemens.com