Домашняя работа к занятию 7

Решите задачи Коши.

1.1
$$\begin{cases} xy'' + y' = x \\ y(-1) = 0 \\ y'(-1) = 0 \end{cases}$$
1.2
$$\begin{cases} 2y'' = (y')^2 + 1 \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$
2.1
$$\begin{cases} xyy'' = 2x(y')^2 + yy' \\ y(1) = 1 \\ y'(1) = -2 \end{cases}$$
2.2
$$\begin{cases} y'' = (y')^2 + y^2y' \\ y(0) = 0 \\ y'(0) = -2 \end{cases}$$

3.1 Решите задачу Коши
$$\begin{cases} m\ddot{x} = f(\dot{x}) \\ x(t_0) = x_0 & (v_0 \neq 0, \ f(v_0) \neq 0). \\ \dot{x}(t_0) = v_0 \end{cases}$$
 Убедитесь, что если $f(v_0) = 0$, то уравнение имеет решение $x = x_0 + v_0 t$. Если при этом интеграл $\int_{v_0}^v \frac{ds}{f(s)}$ сходится в точке v_0 , то рассматриваемое

уравнение не может описывать реальный физический процесс. Объясните, почему.

3.2 В момент времени t=0 точка P находится на плоскости xOy в начале координат, а точка Q — на оси Oy на высоте h. Точка P начинает двигаться вдоль оси Ox с постоянной скоростью u, а точка Q устремляется к ней так, что ее вектор скорости всегда направлен в точку P и имеет постоянную длину v. Отношение скоростей $k = \frac{u}{v} < 1$.

Уравнение $yy'' = k \cdot (y')^2 \sqrt{1 + (y')^2}$ описывает траекторию погони на плоскости xOy (штрих означает дифференцирование по x). Решите это уравнение.

Ответы и указания

1.1 Указание: понижаем порядок уравнения, полагая y' = u(x).

Other:
$$y = \frac{x^2 - 1}{4} - \frac{1}{2}\ln(-x)$$
.

1.2 Указание: полагая y'=p(y), получаем $2p\cdot p'=1+p^2$, откуда $dy=\frac{2pdp}{1+p^2}$. Если положить y'=p(x), то $2p'=1+p^2$ и $dx=\frac{2dp}{1+p^2}$.

Отсюда $y = \ln(1+p^2) + C_1$, $x = 2 \operatorname{arctg} p + C_2$.

Ответ:
$$\begin{cases} x = 2 \arctan p \\ y = \ln(1+p^2) \end{cases}$$
 или $y = -2 \ln|\cos \frac{x}{2}| = -\ln \frac{1+\cos x}{2}.$

2.1 Указание: уравнение однородное, поэтому полагаем u(x) = y'/y. Это приводит нас к уравнению Бернулли $xu' = u + xu^2$. Его решение $\frac{1}{u} = \frac{C}{x} - \frac{x}{2}$

Из начальных условий u(1)=-2, следовательно C=0. Интегрируя уравнение $\frac{y'}{y}=-\frac{2}{x}$, получаем $x^2y=D$

Ответ:
$$y = \frac{1}{x^2}$$
.

2.2 Указание: понижаем порядок уравнения, полагая y' = u(y).

Ответ:
$$y = \operatorname{tg}(\frac{\pi}{4} - x) - 1$$
, где $x \in (-\frac{\pi}{4}; \frac{3\pi}{4})$.

3.1 Полагая $\dot{x}=v(t)$, приходим к уравнению $m\dot{v}=f(v)$. Отсюда $m\int\limits_{v_0}^v \frac{ds}{f(s)}=t-t_0$. Полагая $\dot{x}=v(x)$, получаем mvv'=f(v). Отсюда $m\int\limits_{v_0}^v \frac{sds}{f(s)}=x-x_0$.

Otbet:
$$\begin{cases} t - t_0 = m \int_{v_0}^{v} \frac{ds}{f(s)} \\ x - x_0 = m \int_{v_0}^{v} \frac{sds}{f(s)} \end{cases}$$

3.2 Дополним уравнение $yy'' = k \cdot (y')^2 \sqrt{1 + (y')^2}$ начальными условиями $y(0) = h, \lim_{x \to 0+} y'(x) = -\infty.$

Указание: введите параметр $y' = \operatorname{tg} p(y)$.

Ответ: кривая погони
$$x = \frac{kh}{1-k^2} - \frac{h}{2} \left(\frac{1}{1-k} \left(\frac{y}{h} \right)^{1-k} - \frac{1}{1+k} \left(\frac{y}{h} \right)^{1+k} \right).$$

Если 0 < k < 1, то встреча произойдет в точке $x^* = \frac{kh}{1-k^2}$, время погони $t^* = x^*/u$.