PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11348159 A(43) Date of publication of application: 21.12.1999

(51) Int. Cl **B32B 5/02**

B32B 5/18

(21) Application number: 10159207 (71) Applicant: SEKISUI CHEM CO LTD (22) Date of filing: 08.06.1998 (72) Inventor: NAKAGAWA HIROAKI

(54) PRODUCTION OF FIBER REINFORCED THERMOSETTING RESIN FOAMED LAMINATE

(57) Abstract:

PROBLEM TO BE SOLVED: To produce the subject laminate including a core material having almost all of staple fibers oriented in its thickness direction.

SOLUTION: A fiber reinforced thermosetting resin foamed laminate is produced by a method including a process flocking staple fibers 112 on an uncured foamable thermosetting resin sheet 11 to be pushed in the sheet 11 in the thickness of the sheet and heating, foaming and curing the sheet 11 and a process laminating long fibers impregnated with a foamable thermosetting resin on both surfaces of a core material to heat the whole to foam and cure the foamable thermosetting resin.

COPYRIGHT: (C)1999,JPO

(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-348159

(43)公開日 平成11年(1999)12月21日

(51) Int.Cl. ⁶		識別記号	FΙ		
B 3 2 B	5/02		B 3 2 B	5/02	D
	5/18			5/18	

審査請求 未請求 請求項の数3 〇L (全 9 頁)

(21)出願番号	特顯平10-159207	(71)出願人			
(22)出顧日	平成10年(1998) 6月8日		積水化学工業株式会社 大阪府大阪市北区西天満2丁目4番4号		
	MAIO (1000) 0 / 1 0 E	(72)発明者			
			京都市南区上鳥羽上調子町2-2 積水化 学工業株式会社内		
			,,,,,,,		

(54) 【発明の名称】 繊維補強熱硬化性樹脂発泡積層体の製造方法

(57)【要約】

【課題】 芯材の厚さ方向に殆ど全ての短繊維が配向さ れた芯材を備えた繊維補強熱硬化性樹脂発泡積層体の製 造方法を提供する。

【解決手段】未硬化の発泡性熱硬化性樹脂のシート11 の上に短繊維112を植毛し、短繊維112をシート1 1内にシート11の厚み方向に押し込み、シート11を 加熱発泡硬化させる工程と芯材11の両面側に発泡性熱 硬化性樹脂が含浸された長繊維122を積層し、加熱し て発泡性熱硬化性樹脂を発泡硬化させる工程とを含む。

【特許請求の範囲】

【請求項1】板状熱硬化性樹脂発泡体に短繊維が混入補強され、短繊維が板状熱硬化性樹脂発泡体の厚さ方向に平行な軸線に対して10度以下の角度で配向されている繊維補強熱硬化性樹脂発泡体を芯材とし、この芯材の両面側に外層が設けられた繊維補強熱硬化性樹脂発泡積層体の製造方法であって、未硬化の発泡性の熱硬化性樹脂シートの上に短繊維を植毛し、短繊維を熱硬化性樹脂シートの厚さ方向に押し込み、加熱発泡硬化させる板状芯材を製造する工程、及び、板状芯材の両面に発泡性熱硬化性樹脂が含浸された長繊維を積層し、加熱して熱硬化性樹脂を発泡硬化させることにより板状芯材の両面に少なくとも長手方向に配向された長繊維で補強された熱硬化性樹脂発泡体からなる外層を積層する工程を含むことを特徴とする繊維補強熱硬化性樹脂発泡積層体の製造方法。

【請求項2】請求項1記載の板状芯材を製造する工程において、未硬化の発泡性の熱硬化性樹脂シートを正電極と陰電極との間を通過させ、双方の電極間で短繊維を飛散させることにより短繊維を熱硬化性樹脂のシートに植毛することを特徴とする請求項1記載の繊維補強熱硬化性樹脂発泡積層体の製造方法。

【請求項3】請求項1記載の板状芯材を製造する工程において、一方向に長繊維が配向された繊維補強熱硬化性 樹脂発泡体を成形し、この繊維補強熱硬化性樹脂発泡体 をその長繊維を横断する方向に且つ短尺に切断すること を特徴とする請求項1記載の繊維補強熱硬化性樹脂発泡 積層体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は繊維補強熱硬化性樹 脂発泡積層体の製造方法に関するものである。

[0002]

【従来の技術】従来、例えば、特開昭53-85875 公報等に記載されているように、板状熱硬化性樹脂発泡 体に短繊維が混入補強された芯材の両面側に短繊維が混 入補強された樹脂の外層が設けられた繊維補強熱硬化性 樹脂発泡積層体の製造方法が知られている。

【0003】上記の特開昭53-85875公報等に記載されている繊維補強熱硬化性樹脂発泡積層体の製造方法においては、芯材の短繊維を厚さ方向に配向させるために、任意の方向に向いている短繊維を発泡体の発泡時の膨張により厚さ方向に配向させるようにするものである。

[0004]

【発明が解決しようとする課題】しかしながら、上記の 特開昭53-85875公報等に記載されている従来の 繊維補強熱硬化性樹脂発泡積層体の製造方法のように、 任意の方向に向いている短繊維を発泡体の発泡時の膨張 により厚さ方向に配向させる方法においては、発泡体の 発泡時の膨張による手段によっては長手方向に向いている短繊維を厚さ方向に配向させる作用は弱いものであるために、殆ど全ての短繊維を厚さ方向に配向することは 困難である問題があった。

【0005】本発明は、従来の繊維補強熱硬化性樹脂発 泡積層体の製造方法における、このような問題点に着目 してなされたものであり、その目的とするところは、上 記の問題を解決し、芯材の厚さ方向に殆ど全ての短繊維 が配向された芯材を備えた繊維補強熱硬化性樹脂発泡積 層体の製造方法を提供することにある。

[0006]

【課題を解決するための手段】上記目的を達成するため に、請求項1記載の本発明に係る繊維補強熱硬化性樹脂 発泡積層体の製造方法は、板状熱硬化性樹脂発泡体に短 繊維が混入補強され、短繊維が板状熱硬化性樹脂発泡体 の厚さ方向に平行な軸線に対して10度以下の角度で配 向されている繊維補強熱硬化性樹脂発泡体を芯材とし、 この芯材の両面側に外層が設けられた繊維補強熱硬化性 樹脂発泡積層体の製造方法であって、未硬化の発泡性の 熱硬化性樹脂シートの上に短繊維を植毛し、短繊維を熱 硬化性樹脂シートの厚さ方向に押し込み、加熱発泡硬化 させる板状芯材を製造する工程、及び、板状芯材の両面 に発泡性熱硬化性樹脂が含浸された長繊維を積層し、加 熱して熱硬化性樹脂を発泡硬化させることにより板状芯 材の両面に少なくとも長手方向に配向された長繊維で補 強された熱硬化性樹脂発泡体からなる外層を積層する工 程とを含むことを特徴とするものである。

【0007】又、請求項2記載の本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法は、請求項1記載の板状芯材を製造する工程において、未硬化の発泡性の熱硬化性樹脂シートを正電極と陰電極との間を通過させ、双方の電極間で短繊維を飛散させることにより短繊維を熱硬化性樹脂のシートに植毛することを特徴とするものである。

【0008】又、請求項3の本発明の繊維補強熱硬化性 樹脂発泡積層体の製造方法は、請求項1記載の板状芯材 を製造する工程において、一方向に長繊維が配向された 繊維補強熱硬化性樹脂発泡体を成形し、この繊維補強熱 硬化性樹脂発泡体をその長繊維を横断する方向に且つ短 尺に切断することを特徴とするものである。

【0009】本発明において、熱硬化性樹脂としては、加熱により硬化性を示す樹脂であればよいものであって特に限定されないが、例えば、ポリウレタン、不飽和ポリエステル、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリイミド、アクリル樹脂、ポリブタジェン等が使用でき、特に、発泡が容易であり耐衝撃性の高いポリウレタンを使用するのが好ましい。

【0010】又、本発明において、短繊維としては、製品形状により適宜選択して使用すればよいが、その材質は、ガラス、炭素等の無機質繊維でもよく、ナイロン、

ポリエステル、アラミド等の有機質繊維でもよい。その長さは、 $0.1\sim30\,\mathrm{mm}$ 程度であり、好ましくは、 $0.5\sim20\,\mathrm{mm}$ 程度であり、長さが $0.1\,\mathrm{mm}$ 未満の場合には、強化効果が小さく、 $30\,\mathrm{mm}$ を越えると繊維の配向が期待できない恐れがある。その太さは、 $1\sim100\,\mu\mathrm{m}$ 程度であり、好ましくは、 $5\sim50\,\mu\mathrm{m}$ 程度であり、 $1\,\mu\mathrm{m}$ 未満である場合には繊維配向が困難となる恐れがあり、 $100\,\mu\mathrm{m}$ を越えると強化効果が小さくなる恐れがある。

【0011】又、本発明においては、短繊維が板状熱硬化性樹脂発泡体の厚さ方向に平行な軸線に対して10度以下の角度で配向されていることが必要であり、好ましくは5度以下の角度で配向されていることであり、10度を越えると短繊維に働く応力は曲げ応力になってしまうため厚さ方向の補強効果は小さくなる。

【0012】又、本発明において、長繊維の材質は、ガラス、炭素等の無機質繊維でもよく、ナイロン、ポリエステル等の有機質繊維でもよい。その形態は、少なくとも長手方向に強化できるものであればよいものであって、ロービング等の一方向強化用のもの、マット等の二方向強化用のもの及びマットを縫い合わせた三方向強化用のいずれでもよい。

【0013】〔作用〕請求項1記載の本発明に係る繊維補強熱硬化性樹脂発泡積層体の製造方法においては、未硬化の発泡性の熱硬化性樹脂シートの上に短繊維を植毛し、短繊維を熱硬化性樹脂シートの厚さ方向に押し込み、加熱発泡硬化させる板状芯材を製造する工程においては、全ての短繊維を板状芯材の厚さ方向に配向させることができる。

【0014】更に、板状芯材を製造する工程、及び、板状芯材の両面に発泡性熱硬化性樹脂が含浸された長繊維を積層し、加熱して熱硬化性樹脂を発泡硬化させることにより板状芯材の両面に少なくとも長手方向に配向された長繊維で補強された熱硬化性樹脂発泡体からなる外層を積層する工程とを含むものであるから、全ての短繊維が厚さ方向に配向された板状芯材の両面側に少なくとも長手方向に配向された長繊維で補強された熱硬化性樹脂発泡体から外層が設けられるので、厚さ方向及び長手方向の双方の方向に充分に補強された繊維補強熱硬化性樹脂発泡積層体を容易に製造することができる。

【0015】又、請求項2記載の本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法においては、未硬化の発泡性の熱硬化性樹脂シートを正電極と陰電極との間を通過させ、双方の電極間で短繊維を飛散させることにより短繊維を熱硬化性樹脂のシートに植毛するものであるから、全ての短繊維を板状芯材の厚さ方向に容易に配向させることができる。

【0016】又、請求項3の本発明の繊維補強熱硬化性 樹脂発泡積層体の製造方法においては、一方向に長繊維 が配向された繊維補強熱硬化性樹脂発泡体を成形し、こ の繊維補強熱硬化性樹脂発泡体をその長繊維を横断する 方向に且つ短尺に切断するものであるから、長繊維は短 尺に切断されることにより短繊維となり、短繊維の方向 は全て短尺に切断された繊維補強熱硬化性樹脂発泡体の 厚さ方向に配向されている。

[0017]

【発明の実施の形態】次に、本発明の実施の形態を図面を参照しながら説明する。図1は本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法の一実施態様を示す説明図である。図1において、2は不織布等の基材の巻物、21は巻物2から矢印a方向に繰り出された基材、3は巻物2の前方に設けられたピンチロール、4はピンチロール3の前方に設けられた塗布台、41は塗布台4の上方に設けられた混合機であり、混合機41には矢印b、cで示すように熱硬化性樹脂、発泡剤、整泡剤、反応触媒等の添加剤が供給され、攪拌混合され、先端の吐出口411から下方に吐き出されるようになっている。

【0018】42は塗布台4の上方に設けられた押えロール、5は塗布台4の前方に設けられた植毛装置であり、51は植毛装置5の絶縁カバー、52は絶縁カバー51内の上方に設けられた短繊維のホッパーであり、ホッパー52には矢印dで示すように、短繊維112が供給されるようになっている。53はホッパー52内の下方に設けられた短繊維供給ロール、54は絶縁カバー51内の中途部に設けられた正電極であり、正電極54には直流高電圧発生器55から高電圧直流が負荷されるようになっている。56は絶縁カバー51内の下方に設けられた陰電極である。

【0019】6は植毛装置5の前方に設けられた押し込み台、61は押し込み台6の上方に設けられた押し込みロール、31は押し込み台6の前方に設けられたピンチロール、7はピンチロール31の前方に設けられた加熱炉であり、加熱炉7内には一対のプーリー71、71間に掛け渡された駆動ベルト72が上下に設けられている。

【0020】8は加熱炉7の前方に設けられた冷却炉であり、冷却炉8内には多数の噴水ノズル81が設けられている。9は冷却炉8の前方に設けられた引取機である。

【0021】次に、図1に示す装置により芯材11を製造する態様について説明する。巻物2から矢印a方向に繰り出された基材21はピンチロール3を経由して塗布台4上に導かれる。基材21は塗布台4上において、混合機41の先端の吐出口411から吐き出される熱硬化性樹脂、添加剤等の混合樹脂111が塗布され、押えロール42により押さえられ、塗布された混合樹脂の厚さが均一にされ、混合樹脂はシート状にされる。

【0022】次いで、基材21の上に塗布された混合樹脂が植毛装置5の絶縁カバー51内に導入される。絶縁カバー51内においてはホッパー52から落下する短繊

維112は正電極54を通過することにより帯電し、陰電極56に向かって飛散し、陰電極56の上を通過するシート状の混合樹脂111の上に垂直に植毛される。

【0023】短繊維が植毛されたシート状の混合樹脂は押し込み台6上において、押し込みロール61により短繊維がシート状の混合樹脂に押し込まれる。次いで、シート状の混合樹脂が加熱炉7内を通過することによりあり、発泡され、2本のベルト72、72の間に挟まれながら移動することにより硬化成形される。

【0024】次いで、発泡されたシート状の混合樹脂1 11は冷却装置8内を通過することにより冷却固化され、引取機9を通過し、矢印a方向に移動し、次工程に 到り、芯材11となる。

【0025】芯材11は図2に示すように、板状熱硬化性樹脂発泡体111に短繊維112が混入補強され、短繊維112が板状熱硬化性樹脂発泡体111の厚さ方向、即ち、ほぼ垂直方向に配向されている。

【0026】次に、芯材11を使用して繊維補強熱硬化性樹脂発泡積層体1を製造する態様を図3について説明する。図3において、1221は長繊維122の巻物、3、32、33、34はピンチロール、4は塗布台、41は混合機、7は加熱炉、8は冷却炉、9は引取機であり、これらの詳細な構造は図1に示すものと同様であるので説明を省略する。

【0027】芯材11がピンチロール32により矢印aで示す方向に移動されている。芯材11の上下において、巻物1221から繰り出される長繊維122は塗布台4の上において、混合機41の先端の吐出口411から吐き出される熱硬化性樹脂、添加剤等の混合樹脂121が塗布され、混合樹脂121は長繊維122に含浸され、シート状にされる。

【0028】シート状の混合樹脂121が含浸された長繊維122はピンチロール33、34を通過することにより芯材11の上下から積層される。次いで、加熱炉7を通過することにより発泡され、2本のベルト72、72の間に挟まれながら移動することにより硬化成形される。次いで、冷却炉8を通過することにより硬化され、引取機9に到り、図4に示す繊維補強熱硬化性樹脂発泡積層体1となる。

【0029】図4は本発明方法により製造された繊維補強熱硬化性樹脂発泡積層体の一例を示す斜視図である。

【0030】図4において、1は本発明方法により製造された繊維補強熱硬化性樹脂発泡積層体、11は積層体1の芯材、12は芯材11の表裏両面側に設けられた外層である。外層12は長手方向に配向された長繊維122で補強された熱硬化性樹脂発泡体121からなる。

【0031】図4に示す繊維補強熱硬化性樹脂発泡積層体1においては、両面側に設けられた外層12が長手方向に配向された長繊維122で補強された熱硬化性樹脂発泡体121からなるものであるため、長手方向におい

ても充分に補強されている。

【0032】繊維補強熱硬化性樹脂発泡積層体1の芯材11においては、図1に示すように、短繊維112を正電極54を通過させることにより帯電させ、陰電極56に向かって飛翔させて陰電極56の上を通過するシート状の混合樹脂111の上に垂直に植毛させた後、押し込みロール61により短繊維112をシート状の混合樹脂に押し込ませることにより短繊維112は芯材の厚さ方向に配向されている。このようにして製造された芯材11は短繊維112は芯材の厚さ方向に配向されているので、繊維補強熱硬化性樹脂発泡積層体1の厚さ方向の強度は大きいものとなる。

【0033】図5は本発明の繊維補強熱硬化性樹脂発泡積層体に使用する芯材の製造方法の他の実施態様を示す説明図である。図5に示す態様においては、図1に示す態様のように、植毛装置5の正電極54及び陰電極56を水平方向に向ける代わりに、正電極54及び陰電極56を水平面に対して角度αを8度だけ傾斜させたものである。その他の構成においては図1に示す態様と同様であるので、図5においても図1に使用した符号と同一の符号を使用し、説明を省略する。図5に示す装置を使用することにより図6に示す芯材11aが製造できる。

【0034】図6に示す芯材11 aは短繊維112が板 状熱硬化性樹脂発泡体111の厚さ方向、即ち、ほぼ垂 直方向に平行な軸線からの傾斜角度αが8度の方向に配 向されている。

【0035】図7は芯材の製造方法の更に異なる態様を示す説明図である。図7に示す芯材の製造方法においては、図7に示すように、長繊維122の束の上に混合機41の吐出口411から熱硬化性樹脂、添加剤等の混合樹脂121を吐き出して、混合樹脂111を長繊維122に含浸させ、シート状のもの100とする。

【0036】このシート状のもの100を金型300に入れて蓋301を閉め、加熱して熱硬化性樹脂を硬化させると共に発泡させて板状の長繊維強化熱硬化性樹脂発泡成形品102を成形する。この長繊維強化熱硬化性樹脂発泡成形品102には長繊維122が成形品102の長手方向に配向されている。

【0037】次いで、図7に示すように、回転鋸400を成形品102の長繊維122を横断する方向に入れて成形品102を短尺に切断する。このようにして成形品102から切断して得られた小片100bの複数個を各切断面が上下方向に向くように立ち上げ、側面に接着剤を塗布し、接着して芯材11bとした。芯材11bにおいては、長繊維122が短尺に切断されることにより形成された短繊維112が芯材11bの厚さ方向に配向されている。

【0038】図8は図7に示す製造方法により製造した 芯材11bを使用して繊維強化熱硬化性樹脂発泡積層体 を製造する態様を示す説明図である。図8に示す態様に おいては、図8に示すように、長繊維122の東の上に 混合機41の吐出口411から熱硬化性樹脂、添加剤等 の混合樹脂121を吐き出して、混合樹脂121を長繊 維122に含浸させ、シート状のもの100とする。

【0039】このシート状のもの100を芯材11bの表裏両面に重ね合わせて金型300内に入れ、蓋301を閉め、加熱して熱硬化性樹脂を硬化させると共に発泡させて芯材11bの表裏両面側に長手方向に配向された長繊維122で補強された熱硬化性樹脂発泡体121からなる外層12が設けられた長繊維強化熱硬化性樹脂発泡積層体1bが成形される。

【0040】〔実施例1〕図1に示す態様において、基 材21としてガラスロービング(外径12μmのモノフ ィラメント200本を収束し、それを60本撚ったも の)の37本を中200mm間に収まるように並べたも のを使用した。混合樹脂111としてポリウレタン原料 であるポリエーテルオール(〇H価=480)100重 量部、ポリメチレンポリフェニルポリイソシアネート (NCO%=31%) 160重量部、反応触媒としてジ ブチル錫ジラウレート〇. 15重量部、整泡剤としてシ リコンオイル 0.7重量部、発泡剤として水1.8重量 部を混合機41から基材21の上に1425g/分振り かけた。短繊維112として、ガラス繊維(外径124 m、10mm長にカット)を界面活性剤に12時間浸漬 した後に、100℃24時間乾燥したものを508g/ 分植毛する。直流高電圧発生機55から発生する電圧は 70KV、電極間距離は600mm。押し込みロール6 1の下面を基材21から10mmの上の位置にセットし た。加熱炉7は80°Cに昇温、ベルト72、72間の距 離25mm。冷却槽8においては、冷却水(15~20 で)を噴霧。ライン速度は1 m/分。成形された芯材1 1の寸法は中200mm、厚さ25mm。

【0041】〔実施例2〕図1に示す態様において、基材21として実施例1と同様であり、ガラスロービングが22本。混合樹脂111として、配合は実施例1と同様であり、吐出量が855g/分。短繊維112として、実施例1と同様で量が305g/分。直流高電圧発生機55については、実施例1と同様。押し込むロール61としては、実施例1と同様。加熱炉7は80℃に昇温、ベルト72、72間の距離15mm。冷却槽8においては、実施例1と同様。ライン速度は実施例1と同様。成形された芯材11の寸法は巾200mm、厚さ15mm。

【0042】〔実施例3〕図5に示す態様において、基材21として実施例1と同様。混合樹脂111として、実施例1と同様。短繊維112として、実施例1と同様。直流高電圧発生機55については、電圧及び電極間距離は実施例1と同様とし、製造ラインを水平に保ち、直流高電圧発生機55の正電極54及び陰電極56の軸線を水平方向に向かって俯角8度になるように設定。押

し込むロール61としては、実施例1と同様。加熱炉7 は実施例1と同様。冷却槽8においては、実施例1と同様。ライン速度は実施例1と同様。成形された芯材11 の寸法は実施例1と同様。

【0043】〔実施例4〕図7に示す態様において、金 型300の長さは1000mm、巾200mm、高さ1 00mm。長繊維122は、ガラスロービング(外径1 2μmのモノフィラメント200本を収束し、それを6 〇本撚ったもの)の1mを740本。混合樹脂111と してポリウレタン原料であるポリエーテルオール(OH 価=480)100重量部、ポリメチレンポリフェニル ポリイソシアネート(NCO%=31%)160重量 部、反応触媒としてジブチル錫ジラウレート 0.15重 量部、整泡剤としてシリコンオイル〇.7重量部、発泡 剤として水1.8重量部を混合機41から長繊維122 の上に5700g振りかけた。短繊維112として、ガ ラス繊維(外径12μm、10mm長にカット)を界面 活性剤に12時間浸漬した後に、100℃24時間乾燥 したものを508g/分植毛する。混合樹脂111を長 繊維122に含浸したもの100を80℃に加熱した金 型300に入れ蓋301をして密閉する。金型300を 80℃の恒温槽に10分間保管した後、板状の成形品1 02を取り出す。成形品102を長繊維122と直交す るように25mm巾に切断する。切断面が上下方向に向 くように立ち上げ側面にクロロプレン系接着剤(積水化 学社製の商品名「エスダイン276-FS」)を塗布 し、10個を接着して芯材11bとした。芯材11bの 寸法は長さ1000mm、巾200mm、厚さ25mm

【0044】〔実施例5〕図1に示す製造ラインの後に 図3に示す製造ラインを設置した。図3に示す態様にお いて、長繊維122は、ガラスロービング(外径12μ mのモノフィラメント200本を収束し、それを60本 撚ったもの)を48本(外層12を100体積%として とき6.5体積%に相当)。混合樹脂121として、ポ リウレタン原料であるポリエーテルオール(OH価=4 80)100重量部、ポリメチレンポリフェニルポリイ ソシアネート(NCO%=31%)140重量部、反応 触媒としてジブチル錫ジラウレート〇. 15重量部、整 泡剤としてシリコンオイル0.6重量部、発泡剤として 水0.9重量部を混合機41から長繊維122の上に4 20g/分振りかけた。加熱炉7は80℃に昇温、ベル ト72と実施例1の芯材11との距離は5mm。冷却槽 8においては、実施例1と同様。ライン速度は実施例1 と同様。成形された積層品1の寸法は巾200mm、厚 さ25mm。

【0045】〔比較例1〕図5に示す態様において、基材21は実施例と同様。混合樹脂111は実施例1と同様。短繊維112は実施例1と同様。直流高電圧発生機55については、電圧及び電極間距離は実施例1と同様

とし、製造ラインを水平に保ち、直流高電圧発生機55 の正電極54及び陰電極56の軸線を水平方向に向かっ て俯角45度になるように設定。押し込むロール61と しては、実施例1と同様。加熱炉7は実施例1と同様。 冷却槽8においては、実施例1と同様。ライン速度は実 施例1と同様。成形された芯材11の寸法は実施例1と 同様。

【0046】〔比較例2〕図8に示す態様において、金型300の長さは200mm、巾200mm、高さ25mm。長繊維122は、ガラスロービング(外径12 μ mのモノフィラメント200本を収束し、それを60本撚ったもの)の1mを740本。混合樹脂121とし

て、配合は実施例1と同様であり、量は410g。短繊維は一切使用しなかった。混合樹脂121を長繊維122に含浸したもの金型300に入れ蓋301をして密閉する。金型300を80℃のギアオーブン中に10分間保管した後、板状の成形品を取り出す。

【0047】〔評価〕表1に示すように、実施例1~5の芯材又は積層品は軽量であり、部分圧縮強度、曲げ強度、曲げ弾性率において比較例1、2のものに比較して優れていた。した。尚、部分圧縮強度、曲げ強度、曲げ弾性率はJIS-Z2101記載のものである。

[0048]

【表1】

	比重 (g/cm²)	部分圧縮強度 (kgf/cm²)	曲げ強度 (kgf/cm²)	曲 げ弾性率 (×10'kgf/cm ²)
実施例1	0.41	120	800	1. 3
実施例2	0.41	120	800	1. 3
実施例3	0.41	9 0	820	1. 4
実施例 4	0.42	150	750	1. 0
実施例 5	0.47	1 2 0	1350	5. 0
比較例1	0.41	4 0	8 1 0	1. 6
比較例 2	0, 41	5 0	900	1. 3

【0049】以上、本発明の実施の形態を図により説明 したが、本発明の具体的な構成は図示の実施の形態に限 定されることはなく、本発明の主旨を逸脱しない範囲の 設計変更は本発明に含まれる。

[0050]

【発明の効果】請求項1記載の本発明に係る繊維補強熱硬化性樹脂発泡積層体の製造方法においては、未硬化の発泡性の熱硬化性樹脂シートの上に短繊維を植毛し、短繊維を熱硬化性樹脂シートの厚さ方向に押し込み、加熱発泡硬化させる板状芯材を製造する工程においては、全ての短繊維を板状芯材の厚さ方向に配向させることができる。

【0051】更に、板状芯材を製造する工程、及び、板状芯材の両面に発泡性熱硬化性樹脂が含浸された長繊維を積層し、加熱することにより熱硬化性樹脂を発泡硬化させることにより板状芯材の両面に少なくとも長手方向

に配向された長繊維で補強された熱硬化性樹脂発泡体からなる外層を積層する工程とを含むものであるから、全ての短繊維が厚さ方向に配向された板状芯材の両面側に少なくとも長手方向に配向された長繊維で補強された熱硬化性樹脂発泡体から外層が設けられるので、厚さ方向及び長手方向の双方の方向に充分に補強された繊維補強熱硬化性樹脂発泡積層体を容易に製造することができる。

【0052】又、請求項2記載の本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法においては、未硬化の発泡性の熱硬化性樹脂シートを正電極と陰電極との間を通過させ、双方の電極間で短繊維を飛散させることにより短繊維を熱硬化性樹脂のシートに植毛するものであるから、全ての短繊維を板状芯材の厚さ方向に容易に配向させることができる。

【0053】又、請求項3の本発明の繊維補強熱硬化性

112 .-111

樹脂発泡積層体の製造方法においては、一方向に長繊維が配向された繊維補強熱硬化性樹脂発泡体を成形し、この繊維補強熱硬化性樹脂発泡体をその長繊維を横断する方向に且つ短尺に切断するものであるから、長繊維は短尺に切断されることにより短繊維となり、短繊維の方向は全て短尺に切断された繊維補強熱硬化性樹脂発泡体の厚さ方向に配向されている。

【図面の簡単な説明】

【図1】本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法の前半の一実施態様を示す説明図。

【図2】本発明方法により製造された繊維補強熱硬化性 樹脂発泡積層体の芯材の一例を示す斜視図。

【図3】図1に示す繊維補強熱硬化性樹脂発泡積層体の製造方法の後半の一実施態様を示す説明図。

【図4】本発明方法により製造された繊維補強熱硬化性 樹脂発泡積層体を示す斜視図。

【図5】本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法の前半の他の実施態様を示す説明図。

【図6】図5に示す方法により製造された芯材の一例を 示す斜視図。

【図7】本発明の繊維補強熱硬化性樹脂発泡積層体の製造方法の前半の更に異なる他の実施態様を示す説明図。

【図8】図7に示す芯材を使用して繊維補強熱硬化性樹脂発泡積層体を製造する態様を示す説明図。

【符号の説明】

1、1b 繊維補強熱硬化性樹脂発泡積層体

T	1	U	(地) 白 (以)月						
1	1		1	1	a,	1	1	b	芯杉

进入抵肥

111 板状熱硬化性樹脂発泡体、混合樹脂

112 短繊維

12 外層

121 硬化性樹脂発泡体、混合樹脂

122長繊維13第2の凸部2基材の巻物

21 基材

3、31、32・・ ピンチロール

4塗布台5植毛装置51絶縁カバー52ホッパー53供給ロール54正電極

55 直流高電圧発生器

 56
 陰電極

 6
 押し込み台

 61
 押し込みロール

 7
 加熱炉

引取機

7 1 プーリー 8 冷却炉 8 1 ノズル

(図1)

【図3】

【図5】

【図7】

【図8】

