Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 With notes from R. Solis-Oba

Directed Graphs

Digraphs

- A digraph is a graphwhose edges are all directed
 - Short for "directed graph"
- Applications
 - one-way streets
 - flights
 - task scheduling

Digraph Properties

- □ A graph G=(V,E) such that
 - Each edge goes in one direction:
 - Edge (a,b) goes from a to b, but not b to a
- □ If G is simple, $m \le n \cdot (n-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

 Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- A directed DFS starting at a vertex s determines the vertices reachable from s

Reachability

 DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

Each vertex can reach all other vertices

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

 $v_1, ..., v_n$ of the vertices such that for every edge (v_i, v_i) , we have i < j

 Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints

A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

□ Number vertices, so that (u,v) in E implies u < v

Algorithm for Topological Sorting

```
Algorithm TopologicalOrdering(G)
In: Directed graph G
Out: Topological ordering for the vertices of G
Q ← empty queue
for each vertex u of G do {
   u.inDegree ← in-degree of u
   if u.inDegree = 0 then Q.enqueue(u)
while Q is not empty do {
   u ← Q.dequeue()
   print (u)
   for each outgoing edge (u,v) incident on u do {
      v.inDegree \leftarrow v.inDegree -1
      if v.inDegree = 0 then Q.enqueue (v)
```


