PDE Tool Simulations- An example

Udayan Ganguly 18/1/2024

Simulations steps

- Set Options/grid to x :-1.5: 0.5:1.5 y:-1:0.5:1;
- Set Options/snap to grid
 - This makes drawings regular and not based on your dexterity
- Choose "Electrostatics"
- Draw shapes
- Set simulations domain lo
- Set PDE mode and set materials parameters in sub-domain (e.g. ρ and ϵ)
- Choose b.c. (Neumann or Derichlet)
- Define mesh fine enough (see next slide)
- Simulate and plot; write observation and conclusion for each plot

For each of the multiple domains (1&2), the PDE specs (ρ , ϵ) needs to be set

Grid Coarse vs fine

- Do coarse vs fine grid
- Is there a difference in the quality of solution

Exercise

- Guess the potential profile write down reasons (2 mins)
 - Draw equipotential lines
 - Draw E field lines
 - write down points.
- Check after simulation if this was close
 - Same equipotential lines, E-lines
 - Note differences with your guess
- Write down reasons for difference of Simulation with 1st Guess

Go to plot mode and play with the parameter section;

E field and contour lines plotted

Potential with contour

Exercise

Simulate the following-

 Between two parallel plates there is a dielectric of k=1. Embedded in this, there is a metal nanocrystal circle and a semiconductor

square "k=10"

Poor Mesh vs sufficient mesh

