Esercizi circuiti aritmetici

Esercizi 9.9/9.10

Moltiplicare ciascuna delle seguenti coppie di numeri con segno in complemento a 2 usando sia l'algoritmo di Booth che la ricodifica bit-pair. A rappresenta il moltiplicando e B il moltiplicatore:

A = 010111 B = 110110

 $A = 110011 \quad B = 101100$

A = 001111 B = 001111

BOOTH:

a.

b.

c.

001111	15							0	0	1	1	1	1
×001111	× 15						×	0	+1	0	0	0	-1
	225	1	1	1	1	1	1	1	1	0	0	0	1
		0	0	0	0	1	1	1	1				
		0	0	0	0	1	1	1	0	0	0	0	1

BIT-PAIR:

a.

010111							0	1	0	1	1	1
× 110110								-1		+2		-2
	1	1	1	1	1	1	0	1	0	0	1	0
	0	0	0	0	1	0	1	1	1	0		
	_1	1	11	0	1	0	0	1				
	1	1	1	1	0	0	0	1	1	0	1	0

b.

c.

001111							0	0	1	1	1	1
001111								+1				-1
× 001111	1	1	1	1	1	1	1	1	0	0	0	1
	0	0	0	0	1	1	1	1				
	0	0	0	0	1	1	1	0	0	0	0	1

Esercizio 9.20

Usando i circuiti sequenziali in figura, eseguire le operazioni A * B e A / B sui numeri a 5 bit senza segno A = 10101 e B = 00101. Per eseguire le operazioni usare diagrammi simili all'esempio in figura.

$A \times B$:									
	M 00101								
D	00000	10101	configurazione iniziale						
C	A	Q							
0	$^{00101}_{00010}$	10101 11010	1º ciclo						
0	00010 00001	11010 01101	2° ciclo						
0	00110 00011	01101 00110	3º ciclo						
D D	00011 00001	00110 10011	4º ciclo						
0	00110 00011	10011 01001	5° ciclo						
	prodotto								

Esercizio 9.11:

Indicare in generale come modificare il diagramma in figura per realizzare la moltiplicazione di numeri a n bit in complemento a due con uso dell'algoritmo di Booth, specificando in modo chiaro gli ingressi e le uscite del Sequenzializzatore del controllo e ogni altro cambiamento necessario attorno all'addizionatore e al registro A.

VERSIONE BOOTH:

