Curso propedeutico

A) Vamos aprender a programar y también la matemática y física detrás

1. Introducción

- a) Orientación hacia el problema
- b) Creación rápida de prototipos en Python
- c) La codificación de Matemáticas luce como Matemáticas
- d) Las unidades juegan un papel en los prototipos de la Física

2. Python

2.1. Instalación de Python

- 1. Windows y Linux
- 2. Evite el infierno de versiones de Python

2.2. Python como calculadora

- B) ipython
 - 1. Un medio mas tres octavos 5.2
 - 1.1 Enteros
 - 1.2 Números con decimales
 - 2. Un radian en grados 3

2.3. Importar modulos

- 1. numpy
 - 1.1 Creación de 1D ndarrays
 - 1.2 np.e 7.1.1
 - 1.3 np.pi
 - 1.4 Funciones clásicas 5.3
- 2. matplotlib 7.1.2
 - 2.1 Un grafico en un solo subplot

1

- 2.2 plt.plot()
- 2.3 plt.show(block=False)

3. Radian

- a) Un radian no tiene unidades
- b) Un radian en grados
- c) Circulo

4. Constantes y Unidades

4.1. Constantes

- a) import astropy.constants as cte
- b) Ver constantes disponibles
- c) Velocidad de la luz
- d) Aceleración de gravedad
- e) Las constantes tienen unidades

4.2. Unidades MKS

- a) import astropy.units as u
- b) Ver unidades disponibles
- c) Crear velocidad de 6 km/h
- d) Convertir a m/s
- e) Convertir velocidad de la luz a Km/h

4.3. Unidades imperiales

- a) import astropy.units.imperial as imp
- b) Ver unidades disponibles
- c) Crear una distancia de 6 pies
- d) Convertir aceleración de gravedad 6.1
- e) Calcular el perímetro de la Tierra en millas náuticas

5. Matemática

5.1. Trigonometria

- 1. Definiciones senos y cosenos sobre el circulo unitarion
- 2. Parámetros oscilatorios
- 3. Frecuencia
- 4. Periodo
- 5. Amplitud

5.2. Álgebra

- 1. isympy
- 2. Fracciones
- 3. fraction-sympy.py
- 1. Sistema de ecuaciones
- 2. Cuatro incógnitas
- 3. 4D.py

3

5.3. Utilizar funciones

- C) Muchos recursos para funciones disponibles
 - 1. Funciones clásicas
 - 2. three-random.py
 - 1. Nuestro propio modelo
 - 2. guess_a_number.py
 - 1. Cómo ajustar un polinomio a partir de un conjunto de puntos
 - 2. fit-polynomial.py

6. Física

6.1. Cinemática en una dimensión.

- 1. Aceleración de Galileo
- 2. freefall.py

6.2. Movimiento de proyectiles

- 1. Ecuaciones del proyectil
- 2. projectile.py
- 3. Compare con resistencia del aire

6.3. Leyes de Newton

- 1. Plano no inclinado con fricción
- 2. Plano inclinado con fricción

7. Ejemplos

7.1. Ejemplos en Matemática

7.1.1. Aproximar e

a) e-aprox.py

7.1.2. Modelar latidos

- a) modelar-ciclos.py
- b) np.arange()
- c) linewidth=, 'r-'

3

3

7.2. Ejemplos en Fisica

7.2.1.

a) cost-of-heat.py

actualización: 10 de abril de 2020 4