

Inhoud

- Inleiding
- Koolstofkringloop
 - BPP en NPP
 - Verdeling
- Nutriëntenkringlopen
 - Biochemische cyclus
 - Biogeochemische cyclus
 - Geochemische cyclus
- Nutriëntenbeheer
 - Nutriëntengiften
 - Aangepast bosbeheer
 - boomsoortenkeuze
 - bosrandenbeheer
 - exploitatiewijze
 - plaggen en strooiselroof

Bosecologie en bosbeheer Hfdst 11 (p. 167-175) en 33 (p. 403-415)

Inleiding

- voorraden koolstof (C) en nutriënten (N, P, K, ...)
 - = dynamisch in tijd & ruimte
 - -> fluxen als gas en opgelost in water tussen:
 - verschillende compartimenten binnen ecosysteem
 - ecosystemen

11.1. Koolstofkringloop: BPP en NPP

- C = ½ droge stof van planten: lignine, cellulose, suiker, zetmeel
- fotosynthese: CO₂ -> suikers
- bruto primaire productie (BPP)= jaarlijkse productie v suikers
- deel BPP wordt verademd = autotrofe respiratie R_a
 - -> E-productie voor:
 - synthetiseren complexere molecules
 - nutriëntenopname
 - transport
 - **–** ...
- BPP R_a = netto primaire productie (NPP)
 - -> beschikbaar voor synthese biomassa: hout, wortels, blad, .

11.1. Koolstofkringloop: BPP & NPP

- biomassa -> strooiselval -> dode organische materie
 -> door microben & mesofauna afgebroken en omgezet tot CO₂ (ev. via humus) = heterotrofe respiratie R_h
- BPP-R_a-R_h = NPP-R_h = **netto ecosysteem productie** (NEP)
 - < 0: winter & 's nachts ($R_a \& R_h > BPP$) = bos verliest CO_2
 - − > 0: opname CO₂ uit atmosfeer
 - netto: > 0 en 20% v BPP
- vb: C-stromen in bestand grove den-zomereik in Kempen (ton C ha⁻¹ j⁻¹)

11.1. Koolstofkringloop: BPP & NPP

- C-verliezen:
 - houtoogst
 - brand
 - herbivorie

- uitlogen van organische C (opgelost in water)
- vervluchtigen organisch C (gas)
- -> nettoverandering in C-voorraad = netto ecosysteem
 koolstofbalans (NECB)
- NPP NH ≈ NPP LH
 - BPP: gematigd NH > gematigd LH
 - Ra: gematigd NH > gematigd LH (NPP > ½ BPP)

11.1. Koolstofkringloop: verdeling

- biomassa: hout, bladeren, wortels, vruchten,...
 - NPP -> 40% hout + 60% bladeren en fijne wortels
 - C-verdeling afhankelijk van:
 - leeftijd:
 - jong: fijne wortels & bladeren
 - ouder: belang hout (stam, tak, houtige wortels) ↑
 - 75j: houtige organen > 95% v totale biomassa-C
 - groeiplaats: bladeren en wortels prioritair bij lagere NPP
 - boomsoort

11.1. Koolstofkringloop: verdeling

- dood organisch materiaal in en op bodem
 - jonge bossen: > biomassa-C
 - oudere: ≈ biomassa-C
 - hoeveelheid strooisel afhankelijk van:
 - strooiselproductie
 - strooiselafbraak (CO₂ & humus) (zie verderop)
 - zandgrond vs. kleigrond
 - droge vs. natte bodems

Inhoud

- Inleiding
- Koolstofkringloop
 - BPP en NPP
 - Verdeling
- Nutriëntenkringlopen
 - Biochemische cyclus
 - Biogeochemische cyclus
 - Geochemische cyclus
- Nutriëntenbeheer
 - Nutriëntengiften
 - Aangepast bosbeheer
 - boomsoortenkeuze
 - bosrandenbeheer
 - exploitatiewijze
 - plaggen en strooiselroof

Bosecologie en bosbeheer Hfdst 11 (p. 167-175) en 33 (p. 403-415)

- drie schaalniveaus:
 - biochemisch: binnen een organisme, gericht op behoud
 - biogeochemisch: binnen ecosysteem, gestuurd door opname en

strooiselval en -afbraak

- geochemisch: tussen ecosystemen
- inhoud, voorraad of pool vs. flux
- 96% DS: H, O, C, N
- essentiële macro- & micronutriënten
 - N, P, K, Ca, Mg, S
 - Fe, Cu, Mn, Zn, B, Mo, Cl (< 100 ppm)

Element	Symbool	Atomair gewicht	Voorkomen in bodem	Opgenomen als	Voornaamste functie binnen de plant	Waar vnl. opgeslagen?
Stikstof	N	14.01	Organisch gebon- den, anorganisch als NO ₃ - en NH ₄ +	NO ₃ - NH ₄ +	Essentiële component van protoplasma en enzymen	Jonge scheuten, bladeren, knop- pen, zaden
Fosfor	P	30.98	Organisch gebon- den, anorganisch als Ca-, Fe- en Al-fosfaat	HPO ₄ ²⁻ en H ₂ PO ₄ ⁻	Basaal metabolisme	Meer in zaden & vruchten dan in vegetatieve structuren
Zwavel	S	32.07	Organisch gebon- den, mineralen, Ca-, Mg- en Na- sulfaten	SO ₄ ²⁻ , SO ₂ (uit lucht)	Component van protoplasma en enzymen	Bladeren, zaden
Kalium	K	39.10	Veldspaat, mica, klei	K ⁺	Regulatie van wateropname, elektrochemische proces- sen (membraanpotentiaal & osmoregulatie), fotosynthese, nitraatreductase	Meristeem, jong weefsel, schors
Calcium	Ca	40.08	Carbonaat, fos- faat, silicaat	Ca ²⁺	Regulatie van de waterop- name, enzymactivator, regula- tie van de lengtegroei	Bladeren, schors
Magnesium	Mg	24.32	Carbonaat, silicaat, sulfaat, chloride	Mg ²⁺	Regulatie van de waterop- name, basaal metabolisme (fotosynthese, fosfaattrans- port)	Bladeren

Biochemische cyclus

- opname -> verdeling in verschillende delen boom
 (bladeren, takken, spint- en kernhout, schors, wortels)
 - boomsoort

	Element	Blad/naald	Tak	Schors	Stam	Wortel	Totaal
		%	%	%	%	%	kg/ha
Douglas	N	<u>32</u>	19	15	24	10	320
Berk	N	14	<u>31</u>	<u>-</u>	27	<u>28</u>	<u>543</u>
Douglas	Р	44	19	14	14	9	66
Berk	Р	12	35	-	32	21	34
Douglas	K	28	17	20	24	11	220
Berk	K	22	23	-	32	23	200
Douglas	Ca	22	32	21	14	11	333
Berk	Ca	6	28	-	<u>42</u>	24	<u>651</u>
Douglas	Biomass	4.5	10.7	9.1	60	16	204000
Berk	Biomass	1.2	13.3	-	62	23	215500

- binnen kroon
 - positie
 - leeftijd
 - » NPK ↓
 - » Ca Mg 个

Biochemische cyclus

- interne herverdeling = nutriëntenbehoud
 - = verzekert boomgroei en –vitaliteit
 - vnl. bij continue of periodieke lage nutriëntenbeschikbaarheid
 - meestal vlak voor bladuitloop en bladval (=retranslocatie)
 - evengoed binnen groeiseizoen
- retranslocatie
 - gem. 25-30% v totale nutriëntenbehoefte
 - tot 80% totale bladvoorraad NPK
 - vnl. van belang voor bladverliezende soorten
 - naaldbomen: retranslocatie gerelateerd aan # jaren:
 vb. grove den (2 j) > fijnspar (4 j)
 - NPK (als verbindingen in celvocht of organellen) vs. andere nutriënten (ingebouwd in celweefsel -> strooiselval!)

- Biogeochemische cyclus: nutriëntenopname & -afgifte vanuit bodem
 - afhankelijk van:
 - beschikbaarheid & verspreiding nutriënten in bodemoplossing
 - waterhoeveelheid
 - snelheid watertransport
 - beworteling (bij minder mobiele nutriënten, P):
 - patroon
 - » boomsoort & voedingstoestand bodem
 - » > 90 % fijne wortels in humuslaag & bovenste 20 cm bodem
 - » bewortelingsdiepte LH > NH
 - fysiologische specialisatie
 - mycorrhiza: bevorderen opname door
 - hogere wateropname (groter contactoppervlak)
 - mycotrofie (organ. zuren lossen moeilijk beschikbare nutriënten op uit organisch materiaal & bodem)

- Biogeochemische cyclus: nutriëntenopname & -afgifte vanuit bodem
 - natuurlijke verzuring: compensatie door afgifte OH⁻ en H⁺
 - opname N₂-gas:
 - symbiose met Rhizobium in wortelknolletjes
 - 50-200 kg N ha⁻¹ j⁻¹
 - tot 90% van N in bladeren
 - belangrijk in N-gelimiteerde systemen (个 bodemvruchtbaarheid)
 - N niet-limiterend: hoge NO₃-concentraties bodemwater
 - vb. ...

- Biogeochemische cyclus: nutriëntenopname & -afgifte vanuit atmosfeer
 - gassen (O₂, CO₂, NH₃, NO₂, SO₂): via huidmondjes
 - opgeloste elementen (NH₄⁺, NO₃⁻, SO₄²⁻, K⁺, Ca²⁺, Mg²⁺):
 door apoplasma
 - opname H en NH₄⁺
 - afgifte van K⁺, Ca²⁺, Mg²⁺
 - afhankelijk van:
 - leeftijd bladeren
 - physiologie/seizoen
 - beschadiging
 - boomsoort
 - belangrijk aandeel vb.:
 - NH₄⁺ kroonopname = 50% N-behoefte
 - grove den Brasschaat: 10 kg N ha⁻¹ j⁻¹

- Biogeochemische cyclus: nutriëntenopname & -afgifte
 - nutrientenopname afhankelijk van:
 - bostype
 - LH nemen meer N, K⁺, Ca²⁺, Mg²⁺ op dan NH
 - snelheid van nutriëntencirculatie LH > NH
 - vb. gem. opname 14 LH & 13 NH

- ontwikkelingsstadium
 - jong: snelle groei & hoge beschikbaarheid

Nutriëntencycli en -behee oud: retranslocatie

- Biogeochemische cyclus: nutriëntenopname & -afgifte
 - nutrientenopname afhankelijk van:
 - boomsoort -> nutriëntenbehoefte!Hoge eisen Lage eisen

Zeer lage eisen

- Biogeochemische cyclus: nutriëntenopname & -afgifte
 - nutriënteninhoud & -verdeling binnen ecosysteem

Nutriëntencycli en -beheer

- Biogeochemische cyclus: strooiselval & decompositie <u>strooiselval</u> = flux dood organisch materiaal v bomen struiken: naalden/bladeren, bloemen, takken, vruchten, schors, wortels
 - herfst vs. ganse jaar
 - gematigd: 2.5-6.5 ton ha⁻¹ j⁻¹(bovengronds), f(bostype, leeftijd)
 - vrijstellen deel nutriënten opgenomen in biomassa
 - nutriëntenconcentraties & flux
 - algemeen LH > NH
 - grote verschillen tussen soorten (vb. in mg g⁻¹)

Boomsoort	N	P	Ca	K	Mg
Populier (cv. Robusta)	18.8	1.39	32.4	15.55	1.75
Zoete kers	15.9	1.07	24.4	8.29	3.63
Amerikaanse es	15.3	1.18	21.7	12.62	2.86
Winterlinde	18.4	1.05	19.8	4.10	1.17
Zwarte els	26.8	1.16	18.2	8.58	2.03
Amerikaanse eik	13.3	0.53	14.8	4.88	0.80
Beuk	17.1	0.78	10.4	4.49	1.18

- Biogeochemische cyclus: strooiselval & decompositie <u>decompositie</u> = vrijstellen van opneembare nutriënten, CO₂, water en stabiele humus door:
 - bodem- en strooiselfauna
 - fragmentatie: ↑ contactoppervlak & beschadigen waslaagje
 - begraving: gunstigere omstandigheden & contact micro-org.
 - micro-organismen
 - mineralisatie: omzetting organische → anorganische bestanddelen
 - N: ammonificatie (NH_4^+) + nitrificatie (NO_3^-)
 - na mineralisatie:
 - biotische immobilisatie (vegetatie & micro-organismen)
 - abiotische immobilisatie (klei, humus, Fe- & Al-oxiden)

Decomposition

- Biogeochemische cyclus: strooiselval & decompositie
 - afbraaksnelheid: micro-organismen & strooiselfauna hebben milieuvoorkeuren
 - bodem- en strooiselklimaat: T & RV
 warm en vochtig vs. te droog, te nat, koud, te warm
 - strooiselkwaliteit: chemische samenstelling
 - nutriëntenrijk (K, Ca, Mg), lagere zuurgraad, lagere C:N, lignine-arm

- Biogeochemische cyclus: strooiselval & decompositie
 - strooiselkwaliteit: chemische samenstelling
 - afhankelijk van:
 - » voedselrijkdom voedselrijke bodems: rijker strooisel met lagere ligninegehaltes
 - » bostype: gematigde LH (1-3 j) vs. gematigde en boreale NH (4-30 j)
 - » boomsoort

<u>Ca-concentratie = sleutelrol</u>

hoge Ca-concentraties

- -> hoge abundantie & diversiteit regenwormpopulaties
- -> hogere afbraaksnelheid
- -> meer plantopneembare K, Ca, Mg
- -> lagere zuurtegraad

Nutriëntencycli en -beheer

- Biogeochemische cyclus: strooiselval & decompositie
 - trage afbraak -> accumulatie -> morhumus
 - grote voorraad immobiele, niet-beschikbare nutriënten
 - zure bodem
 - snelle afbraak -> mullhumus
 - snelle nutriëntencirculatie
 - potentieel grote verliezen via uitspoeling als niet benut

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - natte, droge en occulte depositie
 - doorvaldepositie
 - bossen vs. heide, grasland, akkerland: groot opp. & ruwheid
 - variatie binnen bossen
 - locatie
 - bostype: NH vs. LH
 - » fijne naaldstructuur
 - » hoge LAI
 - » immergroen
 - bestandstructuur
 - afstand tot bosrand

Kroonuitwisseling

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S
 - NH_x: landbouw
 - NO_x, SO₂: verbranding fossiele brandstoffen (verkeer, industrie, huishoudens, landbouw)
 - -> versnelde bodemverzuring
 - nitrificatie: NH₄⁺ -> NO₃⁻
 - uitspoeling van SO₄²⁻ en NO₃⁻ met Mg²⁺, K⁺ en Ca²⁺ (vrijstelling Al &Fe)
 - Al-toxiciteit, voedingsonevenwicht

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S
 - -> vermesting: N-gelimiteerd -> N-(over)verzadigd
- •N-gelimiteerd: nutriëntenarme zandbodems zijn van nature zuur en N-gelimiteerd
 - N-cyclus van ecosysteem gesloten
 - input van N via strooisel en depositie volledig geconsumeerd door vegetatie en/of vastgelegd in humuslaag en bodem
 - zeer lage uitspoeling van NO₃- onder de wortelzone (weinig en enkel in winter)
- N-verzadigd: capaciteit van plant en bodem tot accumulatie van N is overschreden
 - de N-cyclus is niet in evenwicht
 - volledige verzadiging van vegetatie, humuslaag en bodem
 - NO₃ spoelt uit naar grond- en oppervlaktewater
 - output van N wordt volledig bepaald door de input: hoe hoger de N-depositie, hoe hoger de uitspoeling
 - NO₃⁻ uitspoeling
 - hogere groei -> hogere verdamping & nutriëntenvraag-> waterstress & nutriëntenonevenwichten
 - wijziging in samenstelling bodemvegetatie

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S
 - Vlaamse bos: 18-33 kg N en 10-22 kg S ha⁻¹ j⁻¹
 - lage industrialisatie & landbouwactiviteit: 0.5-3.5 kg N & S ha⁻¹ j⁻¹

Vermestende depositie in kg N/(ha.jaar) in 2006

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S

Z900 - 4350

300 - 700

1400 - 2770 = MLTD 2010

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S:
 - concept 'kritische last'
- "The concept of critical load (CL) was defined to express the tolerance of natural and seminatural habitats for anthropogenic air pollution (Nillson & Grennfelt 1988). It relates to the maximum exposure to one or more pollutants without occurrence of any significant harmful effect on for example biodiversity, forest vitality or nitrate leaching to groundwater, according to present knowledge."
- = maximale blootstelling aan één of meerdere polluenten zonder dat er schadelijke effecten voor biodiversiteit of bosvitaliteit of nitraatuitspoeling naar het grondwater optreden voor zover gekend door huidige wetenschappelijk kennis
- -> in functie van het beschouwde effect: nitraatuitspoeling, biodiversiteit, ...
 - KL N-depositie ter bescherming van biodiversiteit in bossen:
 - NH: 10 kg N ha⁻¹ j⁻¹
 - LH: 15 kg N ha⁻¹ j⁻¹
 - KL zuurdepositie ter bescherming van bossen tegen wortelschade:
 - NH: 2753 mol_c ha⁻¹ j⁻¹
 - LH: 3086 mol_c ha⁻¹ j⁻¹

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S: concept 'kritische last'

	1990	2000	2001	2002	2003	2004	2005	2006 doel	
totaal	99,7	99,5	98,5	98,0	93,7	95,5	91,9	90,6	
bos	100	100	100	100	100	100	100	100	
Nutriëntenc heide	100	100	100	100	100	100	100	100	
grasland	99,0	98,4	94,7	93,2	78,2	84,7	72,3	67,7	

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S:
 concept 'kritische last' (overschrijding 2006)

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - cyclus verstoord door verhoogde aanvoer N en S:
 concept 'kritische last' (overschrijding 2004)

- Geochemische cyclus: aanvoer nutriënten uit atmosfeer
 - verlaagde aanvoer basische kationen (K, Ca, Mg):
 - Europa & N-Amerika
 - sterkere bodemverzuring & verstoorde nutriëntenvoorziening
 - VIn & NI: aanvoer verzekerd door nabijheid zee
- Geochemische cyclus: aanvoer nuriënten uit bodem
 - fysische afbraak en chemische oplossing
 - samen met atmosferische aanvoer enige langetermijnbron voor basische kationen
 - snelheid
 - bodemtype (leem, klei > zand)
 - bodem-pH (hoger in zure bodems)
 - bodem: vrijgestelde BK 'binden' aan klei en organisch materiaal = kationenuitwisselingscomplex (CEC)

- Geochemische cyclus: afvoer nutriënten
 - uitspoeling: NO_3^- , SO_4^{2-} , K^+ , Ca^{2+} , Mg^{2+}
 - vijf Vlaamse bossen: 0.7-19 kg N en 11-24 kg S ha⁻¹ j⁻¹
 - tot 50 kg N ha⁻¹ j⁻¹ (NB op arme zandgrond in regio van intensieve veeteelt)
 - afhankelijk:
 - input (N-depositie)
 - bostype
 - leeftijd
 - voormalig landgebruik
 - beheermaatregelen
 - emissies: gasvormige verliezen N₂, N₂O en NO
 - door denitrificatie (NO₃ -> N₂O en N₂) en nitrificatie
 - afhankelijk van N-input, bodem-T en -RV
 - tot 15 kg N ha⁻¹ j⁻¹ (vb. fijnsparrenbos D: 8 kg NO en N₂O -N en 7 kg N₂-N ha⁻¹ j⁻¹)

Voorbeeld: N

Nutrië

36

Inhoud

- Inleiding
- Koolstofkringloop
 - BPP en NPP
 - Verdeling
- Nutriëntenkringlopen
 - Biochemische cyclus
 - Biogeochemische cyclus
 - Geochemische cyclus
- Nutriëntenbeheer
 - Nutriëntengiften
 - Aangepast bosbeheer
 - boomsoortenkeuze
 - bosrandenbeheer
 - exploitatiewijze
 - plaggen en strooiselroof

Bosecologie en bosbeheer Hfdst 11 (p. 167-175) en 33 (p. 403-415)

Nutriëntengiften

- bemesting (NPK) en bekalking (CaCO₃ en MgCO₃)
- nutriëntengehaltes voor optimale boomgroei?
 - afhankelijk van boomsoort
 - antagonistische effecten (vb. K & Mg tekort bij overmaat aan NH₄+)
 - afleiden van groeirespons:
- limiterend:
 toename beschikbaarheid -> hogere
 groei & ongewijzigde concentratie
- voldoende beschikbaar:
 toename beschikbaarheid -> geen effect
 op groei & concentraties stijgen

Toxische accumulatie

- Nutriëntengiften
 - nutriëntengehaltes voor optimale boomgroei?
 - nutriëntenstatus: vergelijking bladconcentraties met richtwaarden

		N	P	K	Ca	Mg
Beuk	Hoog	>28	>3.0	>8.0	-	>3.0
	Voldoende	22-28	1.5-3.0	6.0-8.0	≥4.0	1.5-3.0
	Laag	<22	<1.5	<6.0	<4.0	<1.5
Es	Hoog	>28	>1.9	>15.0	-	>1.9
	Voldoende	22-28	1.5-1.9	6.0-15.0	-	-
	Laag	<22	<1.3	<6.0	-	-
Zomereik	Hoog	>28	>1.7	>8.0	>17.0	>2.8
	Voldoende	23-28	1.4-1.7	6.0-8.0	3.0-17.0	1.6-2.8
	Laag	<23	<1.4	<6.0	<3.0	<1.6
Wintereik	Hoog	>28	>1.7	>8.0	-	>2.8
	Voldoende	23-28	1.3-1.7	6.0-8.0	3.0-18.0	1.5-2.8
	Laag	<23	<1.3	<6.0	<3.0	<1.5
Amerikaanse eik	Hoog	>25	>1.7	>8.0	-	>2.8
	Voldoende	21-25	1.3-1.7	6.0-8.0	3.0-18.0	1.6-2.8
	Laag	<21	<1.3	<6.0	-	<1.6
Lariks	Hoog	>25	>40	>15.0	-	>3.0
	Voldoende	18-25	2.0-4.0	7.0-15.0	≥3.0	1.0-3.0
	Laag	<18	<2.0	<7.0	(<3.0)	<1.0
Fijnspar	Hoog	>17	>2.0	>8.0	-	>1.0
	Voldoende	13-17	1.4-2.0	6.0-8.0	≥2.0	0.7-1.0
	Laag	<13	<1.4	<6.0	<2.0	<0.7
Corsicaanse den	Hoog	>18	>1.6	>7.0	>1.5	>1.0
	Voldoende	13-18	1.3-1.6	5.0-7.0	1.0-1.5	0.6-1.0
	Laag	<13	<1.3	< 5.0	<1.0	<0.6
Grove den	Hoog	>18	>1.7	>7.0		>1.0
	Voldoende	14-18	1.4-1.7	5.0-7.0	≥1.5	0.7-1.0
5 1	Laag	<14	<1.4	<5.0	<1.5	<0.7
Douglas	Hoog	>18	>2.2	>8.0	-	>1.0
	Voldoende	14-18	1.4-2.2		≥2.5	0.7-1.0
	Laag	<14	<1.4	<6.0	<2.5	<0.7

Nutriëntengiften

- bemesting met N: not done omwille van hoge N-input via depositie
- bekalking als:
 - nutriëntentekort of onevenwicht
 - compensatie van gevolgen bodemverzuring
 - deelmaatregel van geïntegreerd bodemherstel:
 - combinatie met boomsoortenverandering met diepwortelende soorten en rijk bladstrooisel (zie verder) en/of herintroductie van regenwormen
 - eventuele startbemesting bij sterk gedegradeerde bodems
- nadeel bekalking:

stimuleert de afbraak van OM door toename in biologische activiteit

- ⇒- hogere N-beschikbaarheid met effect op vegetatie
 - uitspoeling van nitraat
 - uitspoeling basische kationen
- ⇒ positief langetermijneffect? stijging van pH van korte duur

- Aangepast bosbeheer
 - boomsoortenkeuze
 - LH vs. NH
 - lagere aanvoer van N en S via atmosferische depositie
 - betere strooiselkwaliteit (veel lignine, weinig Ca)
 - hogere N-opname en opslag in biomassa en bodem

Verhouding van depositie in naald- en loofbos

Naaldbos > Loofbos Naaldbos = Loofbos Naaldbos < Loofbos

- boomsoorten:
 - naaldbomen, eik, beuk: bodemverzurend
 - es, kers, linde, populier: bodemverbeterend
- -> bosomvorming (naald -> loof) en keuze van bodemverbeterende soorten

- Aangepast bosbeheer
 - bosrandenbeheer
 - atmosferische depositie x 2.5 dan in boskern, 50 m diep
 - 58% van de totale bosoppervlakte = bosrand (bij 50 m)
 - indringingsdiepte & mate van toename afhankelijk van:
 - bostype: LH < NH
 - densiteit: kleinere depositietoename maar grotere indringingsdiepte in ijlere bossen
 - structuur: geleidelijk opgaande < scherpe bosrand

- Aangepast bosbeheer
 - bosrandenbeheer
 - aangepast bosrandenbeheer:
 - geen nieuwe bosranden creëren & nieuw bos aansluiten op bestaand bos
 - bosomvorming LH -> NH
 - aanleg of spontane ontwikkeling van mantel- en zoomvegetaties aan bestaande bosranden (+ ecologisch waardevol!)

exploitatiewijze

- kaalkap: versnelde afbraak & mineralisatie humuslaag en organisch materiaal
 - als weinig vegetatie aanwezig -> uitspoelen nutriënten naar grondwater
 - verliezen nog groter als bodem wordt gefreesd of geploegd
- schermkap of groepenkap (< 0.1 ha): kleinere verliezen
 - minder snelle vrijstelling nutriënten
 - aanwezige vegetatie neemt nutriënten op

- Aangepast bosbeheer
 - exploitatiewijze
 - nutriëntenverlies door oogst
 - enkel stamhout < volledige boom
 - » takhout en bladeren= belangrijk aandeel nutriëntenvoorraad
 - » N vs. basische kationen op rijke vs. arme bodems
 - bedrijfstijd
 - » jonge bomen: relatief meer nutriëntenrijkere schors en spinthout tov kernhout dan oude bomen

Oogst stammen					Oogst volledige boom				
Biomassa	N	P	K	Ca	Biomassa	N	P	K	Ca
281	478	56	225	23	318	728	96	326	411
134	161	27	81	-	165	325	56	140	-
155	141	19	121	272	232	410	59	245	537
48	67	4	43	129	111	242	19	128	344
43	58	7	48	130	178	277	41	216	544
64	110	7	36	410	175	323	23	123	1090
121	162	5	108	442	158	273	19	162	530
137	287	41	151	388	147	347	47	174	426
111	311	22	122	_	120	378	27	143	-
	Biomassa 281 134 155 48 43 64 121	Biomassa N 281 478 134 161 155 141 48 67 43 58 64 110 121 162 137 287	Biomassa N P 281 478 56 134 161 27 155 141 19 48 67 4 43 58 7 64 110 7 121 162 5 137 287 41	Biomassa N P K 281 478 56 225 134 161 27 81 155 141 19 121 48 67 4 43 43 58 7 48 64 110 7 36 121 162 5 108 137 287 41 151	Biomassa N P K Ca 281 478 56 225 23 134 161 27 81 - 155 141 19 121 272 48 67 4 43 129 43 58 7 48 130 64 110 7 36 410 121 162 5 108 442 137 287 41 151 388	Biomassa N P K Ca Biomassa 281 478 56 225 23 318 134 161 27 81 - 165 155 141 19 121 272 232 48 67 4 43 129 111 43 58 7 48 130 178 64 110 7 36 410 175 121 162 5 108 442 158 137 287 41 151 388 147	Biomassa N P K Ca Biomassa N 281 478 56 225 23 318 728 134 161 27 81 - 165 325 155 141 19 121 272 232 410 48 67 4 43 129 111 242 43 58 7 48 130 178 277 64 110 7 36 410 175 323 121 162 5 108 442 158 273 137 287 41 151 388 147 347	Biomassa N P K Ca Biomassa N P 281 478 56 225 23 318 728 96 134 161 27 81 - 165 325 56 155 141 19 121 272 232 410 59 48 67 4 43 129 111 242 19 43 58 7 48 130 178 277 41 64 110 7 36 410 175 323 23 121 162 5 108 442 158 273 19 137 287 41 151 388 147 347 47	Biomassa N P K Ca Biomassa N P K 281 478 56 225 23 318 728 96 326 134 161 27 81 - 165 325 56 140 155 141 19 121 272 232 410 59 245 48 67 4 43 129 111 242 19 128 43 58 7 48 130 178 277 41 216 64 110 7 36 410 175 323 23 123 121 162 5 108 442 158 273 19 162 137 287 41 151 388 147 347 47 174

- Aangepast bosbeheer
 - plaggen en strooiselroof
 plaggen = verwijderen bovenste bodemlaag (< 5 cm) & vegetatie
 - was zeer algemeen gebruik op de heide
 - nu: zeer snel zeer nutriëntenrijke bodems verarmen om nutriëntenarme vegetatietypes te bevorderen:
 - vb. bebossing landbouwgrond:
 - rijk aan P, zelfs na 100 j (vs. N spoelt uit)
 - negatief verband rijkdom plantensoorten en P-beschikbaarheid
 - P sterke belemmering voor ontwikkeling soortenrijke

bosplantengemeenschappen

- Aangepast bosbeheer
 - plaggen en strooiselroof
 - strooiselroof = verzamelen onverteerd bladstrooisel
 - tot halverwege 20e E potstal: mengstof voor diermest -> bemesting akkers
 - sterke bodemverarming: verlies N, C, basische kationen = f(duur, frequentie, boomsoort, bodemtype)
 - in N-verzadigde bossen:
 - → N-voorraad in bodem & NO₃-uitspoeling maar ook:
 - → basische kationen -> verzuring
 - → koolstofgehalte
 - \downarrow boniteit
 - vb. naaldbos op arme zandgrond:
 - » 2400 kg N ha⁻¹
 - » 40 kg K, 200 kg, Ca, 30 kg Mg, 50 kg P ha⁻¹