TTIC 31230 Fundamentals of Deep Learning, winter 2019 Backpropagation Problems

Problem 1: Consider the following softmax.

$$Z[b] = \sum_{j} \exp(s[b,j])$$

$$p[b,j] = \exp(s[b,j])/Z[b]$$

An alternative way to compute this is to initialize the tensors Z and p to zero and then execute the following loops.

$$\begin{split} &\text{for } b,j \quad Z[b] += \exp(s[b,j]) \\ &\text{for } b,j \quad p[b,j] += \exp(s[b,j])/Z[b] \end{split}$$

Each individual += operation inside the loops can be treated independently in backpropagation.

(a) Give a back-propagation loop over += updates based on the second loop for adding to s.grad using p.grad (and using the forward-computed tensors Z and s).

Solution: For b, j s.grad $[b, j] += p.\text{grad}[b, j] \exp(s[b, j])/Z[b]$

(b) Give a back-propagation loop over += updates based on the second equation for adding to Z.grad using p.grad (and using the forward-computed tensors s and Z).

Solution: For b, j $Z.\operatorname{grad}[b] = p.\operatorname{grad}[b, j] \exp(s[b, j])/Z[b]^2$

(c) Give a back-propagation loop over += updates based on the first equation for adding to s.grad using Z.grad (and using the forward-computed tensor s).

Solution: For b, j s.grad[b, j] += Z.grad $[b] \exp(s[b, j])$

Problem 2: Show that the addition to s.grad shown in problem 1 can be computed using the following more efficient updates.

for
$$b, j$$
 $e[b] = p[b, j]p.\operatorname{grad}[b, j]$
for b, j $s.\operatorname{grad}[b, j] += p[b, j](p.\operatorname{grad}[b, j] + e[b])$

Solution: The updates for problem 1 can be written as

$$\begin{array}{lcl} \text{for } b & Z. \text{grad}[b] & = & \displaystyle \sum_{j} -p. \text{grad}[b,j] \exp(s[b,j])/Z[b]^2 \\ \\ & = & \left(\displaystyle \sum_{j} -p[b,j]p. \text{grad}[b,j] \right)/Z[b] \\ \\ & = & e[b]/Z[b] \end{array}$$

$$\begin{array}{lll} \text{for } b,j & s. \text{grad}[b,j] & = & p. \text{grad}[b,j] \exp(s[b,j])/Z[b] + Z. \text{grad}[b] \exp(s[b,j]) \\ & = & p. \text{grad}[b,j] \left(\exp(s[b,j])/Z[b]\right) + e[b] \left(\exp(s[b,j])/Z[b]\right) \\ & = & p[b,j](p. \text{grad}[b,j] + e[b]) \end{array}$$

This formula shows how hand-written back-propagation methods for "layers" such as softmax can be more efficient than compiler-generated back-propagation code. While optimizing compilers can of course be written, one must keep in mind the trade-off between the abstraction level of the programming language and the efficiency of the generated code.

Problem 3. Consider the following set of += statements defining batch normalization where all computed tensors are initialized to zero.

For
$$b, j$$
 $\mu[j] += \frac{1}{B} x[b, j]$
For b, j $s[j] += \frac{1}{B-1} (x[b, j] - \mu[j])^2$
For b, j $x'[b, j] += \frac{x[b, j] - \mu[b]}{\sqrt{s[j]}}$

Give backpropagation += equations for computing $x.\operatorname{grad}[b,j]$, $\mu.\operatorname{grad}[j]$, and $s.\operatorname{grad}[j]$ from $x'.\operatorname{grad}[b,j]$.

Problem 4. The equations defining a UGRNN are given below.

$$R_{t}[b,j] = \tanh\left(\left(\sum_{i} W^{h,R}[i,j] h_{t}[b,i]\right) + \left(\sum_{k} W^{x,R}[k,j] x_{t}[b,k]\right) - B^{R}[j]\right)$$

$$G_{t}[b,j] = \sigma\left(\left(\sum_{i} W^{h,G}[i,j] h_{t}[b,i]\right) + \left(\sum_{k} W^{x,G}[k,j] x_{t}[b,k]\right) - B^{G}[j]\right)$$

$$h_{t+1}[b,j] = G_t[b,j]h_t[b,j] + (1 - G_t[b,j])R_t[b,j]$$

- (a) Rewrite this using += loops instead of summations assuming that all computed tensors are initialized to zero. You will need to define two additional tensors for the inputs to the activation functions.
- (b) Give += loops for the backward computation of tensor gradients starting from h_{t+1} .grad[B, J]. You can write the derivatives of the activation functions tanh and σ simply as \tanh' and σ' respectively.