ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Bộ môn Toán UD

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ KIỂM TRA GIỮA HOC KỲ 162 Môn thi: Giải tích 1 - Ngày thi :10/04/2017

Thời gian làm bài: 45 phút - Giờ thi : CA 2

Đề 1004

Khai triển Maclaurint hàm $f(x) = \frac{\cos(2x)}{x+2}$ đến bậc 2 là:

$$\bigcirc$$
 2 - y - 4x² + y² + R₂

Câu 2. Cho $f(x,y,z)=x^3-3x^2+3y^2+yz-2$. Tìm tất cả các điểm M(x,y,z) sao cho $\nabla f(M)=(0,3,1)$

$$(A)$$
 $M(0,-1,-3), M(2,-1,3).$

$$(B)$$
 $M(0,-1,-3), M(2,1,3).$

C Các câu khác sai
$$M(0,1,-3), M(2,1,-3)$$
.

Câu 3. Cho D là miền giới hạn bởi $y \geq x^2, y - x \geq 2, y \leq 2 - x$ và f(x,y) là hàm liên tục trên D. Công thức nào dưới đây là đúng khi tính $I = \int \int f(x,y) \mathrm{d}x \mathrm{d}y$?

(A) $I = \int_0^1 \mathrm{d}x \int_{x^2}^{2-x} f(x,y) \mathrm{d}y + \int_1^2 \mathrm{d}x \int_{x^2}^{2+x} f(x,y) \mathrm{d}y$.

(B) $I = \int_{-2}^{-1} \mathrm{d}x \int_{x^2}^{2-x} f(x,y) \mathrm{d}y + \int_{-1}^0 \mathrm{d}x \int_{2+x}^{2-x} f(x,y) \mathrm{d}y$.

(C) $I = \int_{-2}^0 \mathrm{d}x \int_{x^2}^{2-x} f(x,y) \mathrm{d}y + \int_{-1}^0 \mathrm{d}x \int_{2-x}^{2+x} f(x,y) \mathrm{d}y$.

(D) Các câu khác sai.

Câu 4. Tìm m để điểm $M\left(\frac{1}{2},\frac{1}{2}\right)$ là điểm dừng của hàm $f(x,y) = xy^2(1-mx-y)$.

$$I = \int_{-2}^{-1} dx \int_{x^2}^{2-x} f(x,y) dy + \int_{-1}^{0} dx \int_{2+x}^{2-x} f(x,y) dy$$

C
$$I = \int_{-2}^{0} dx \int_{x^2}^{2-x} f(x, y) dy + \int_{-1}^{0} dx \int_{2-x}^{2+x} f(x, y) dy$$
.

(B)
$$m = \frac{1}{2}$$
. (C) $m = -\frac{1}{2}$.

$$m = -\frac{1}{2}$$

(D) m = -1.

(A)
$$f_{cd} = f(-1, -8)$$

B
$$f_{ct} = f(1, -8)$$
.

$$f_{cd} = f(1, -8).$$

Câu 5. Tìm cực trị của hàm f(x,y)=x+2y-2 với điều kiện $x^2+\frac{y^2}{4}=17$. (A) $f_{cd}=f(-1,-8)$. (B) $f_{ct}=f(1,-8)$. (C) $f_{cd}=f(1,-8)$. (D) $f_{ct}=f(-1,-8)$. (Câu 6. Công thức nào đưới đây là đúng khi đổi biến $x=r\cos\varphi, y=r\sin\varphi$ cho tích phân $I=\iint\limits_D \sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y$, với D là miền giới hạn bởi $x^2+y^2\leq 1, x\leq 0, y\leq x.$

$$\bigcirc \int_{-\frac{3\pi}{4}}^{-\frac{\pi}{2}} \mathrm{d}\varphi \int_{0}^{1} r \mathrm{d}r$$

Câu 7. Cho hàm số $z=f\left(u,v\right)$, với $u=e^{x+2y},v=\frac{x}{u}$. Tính z_y'

$$A z'_y = 2e^{x+2y}f'_u + \frac{xf'_v}{y^2}$$

(B)
$$z'_y = 2e^{x+2y}f'_u - \frac{xf'_v}{u^2}$$

$$\bigcirc$$
 $z'_y = e^{x+2y} f'_u - \frac{x f'_v}{y^2}$ \bigcirc Các câu khác sai

Câu 8. Công thức nào sau đây là đúng khi tính $I = \iint\limits_{\Omega} y \mathrm{d}x \mathrm{d}y$, trong đó D là nửa bên phải miền $x^2 + y^2 - 2x + 4y < 4$.

$$(A) I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} (-2 + r \sin \varphi) r dr.$$

$$B I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (-2 + r \sin \varphi) r dr.$$

$$C I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} r^{2} \sin \varphi dr.$$

Câu 9. Tìm cực trị của hàm			/ - \	
(A) $f_{ct} = f(0,0)$.	$(B) f_{cd} = f(0)$	$,0),f_{ct}=f$	$\left(-\frac{\circ}{3},0\right)$.	$f_{cd} = f(0,0).$
Câu 10. Miền xác định của hà	$\operatorname{m} \operatorname{s\acute{o}} f(x,y) = f(x,y) = f(x,y)$	$\sqrt{\frac{6-3x^2-x^2}{x^2+y^2}}$	$\overline{\frac{2y^2}{2}}$ là:	
A Phần mặt phẳng nằm t	$\frac{x^2}{2} + \frac{y}{3}$	$\frac{2}{3} = 1 \text{ trở vào}$	o trong, bỏ gốc tọa độ	
B Phần mặt phẳng nằm t	$\dot{\mathbf{r}}$ ellipse $\frac{x}{2} + \frac{y}{3}$	$\frac{1}{3} = 1$ trở vào	o trong.	
C Phần mặt phẳng nằm pD Phần mặt phẳng nằm p	ohía ngoài ellipse	$x^{2} + \frac{y^{2}}{3} = $	1	
D Phần mặt phẳng nằm p	ohía trong ellipse	$\frac{x^2}{2} + \frac{y^2}{3} =$	1 bỏ đi hai trục tọa độ.	
Câu 11. Gọi tên mặt bậc hai c	ó phương trình n	hư sau: x^2 +	$2y^2 - 2x + 4y + z + 1 = 0$	0
A Paraboloid hyperbolic.D Paraboloid elliptic.			B Elippsoid.	C Nón.
Câu 12. Tìm GTLN. GTNN c	ủa hàm $f(x, y) =$	= x - 2y trop	ng miền D giới han bởi x^2 +	$-u^2 < 5, x > 0.$
Câu 12. Tîm GTLN, GTNN c (A) $f_{min} = -5, f_{max} = 5$ (C) $f_{min} = -2\sqrt{5}, f_{max} = 5$				$=2\sqrt{5}.$
$ C f_{min} = -2\sqrt{5}, f_{max} = -2\sqrt{5}, f_{m$	= 5.			5.
Câu 13. Hệ số góc tiếp tuyến c	của giao tuyến giữ	ťa mặt phẳng	$y = -3$ và mặt cong $z = x^2$	$P^2 + y^2 x$ tại điểm $P(1, -3, 10)$
là				
	B k = 11			\bigcirc $k=2$
Câu 14. Cho hàm $z = z(x, y)$	xác định từ phư	ơng trình : ln	$\frac{x+y}{z} + xyz = 0$. Biết $z(0)$	$z_x(0,1)=1$, tính $z_x'(0,1)$
$ A z_x'(0,1) = -2 $	B $z'_x(0,1) =$	τ Ε ιι ο	$c z_x'(0,1) = 1$	$\sum z'_x(0,1) = 2$
	$\int\limits_{0}^{\infty}e^{rac{x}{y}}\mathrm{d}x\mathrm{d}y$ với D	giới hạn bởi	y = x, y = 1, x = 0.	
(A) $I = \frac{e}{2} - \frac{1}{2}$.	$ \begin{array}{c} \mathbf{B} \\ \mathbf{B} \end{array} I = e - \frac{1}{2} $		$I = \frac{e}{2} - 1.$	$ D I = \frac{1}{2} + e. $
Câu 16. Hàm số nào dưới đây	có vi phân là d f	f(x,y) = (3x)		
$ A) f(x,y) = x^3y + y^2 \cos x $	os x .		B $f(x,y) = 3x^2y + y^2$ C D $f(x,y) = 3x^2y - y^2$ S	$\cos x$.
Câu 17. Cho hàm $y = y(x)$ xa				. 0
$ A dy = \left(1 + \frac{1}{y^2}\right) dx $	$ B dy = \frac{2+}{y^2} $	$\frac{y}{d}$ dx		
Câu 18. Cho hàm số $z = y.f$	$(x^2 - y^2)$. Tính	$y.z_x' + x.z_y'$		
\bigcirc $\frac{x}{y}z$	B 0		\bigcirc z	\bigcirc $\frac{x}{y}$
Câu 19. Cho $f(x,y) = \cos(x)$	(x^2-y^2) , giá trị c	của $f_{xy}''(\sqrt{\pi},$	$-\sqrt{\pi}$) là:	
\bigcirc -4π	$\bigcirc B -2\pi$		\bigcirc $-4\sqrt{\pi}$	\bigcirc $2\sqrt{\pi}$
Câu 20. Cho hàm $z = z(x, y)$	xác định từ phư	ong trình $f(5)$	(5x - 3z, 5y - 4z) = 0. Tính	$3z_x' + 4z_y'$
(A) 3.	\bigcirc -5 .		C) 5.	\bigcirc -3

CHỦ NHIỆM BỘ MÔN

PGS. TS. Nguyễn Đình Huy

Đề 1004 ĐÁP ÁN

Câu 1. (A)	Câu 5. D	Câu 9. (A)	Câu 12. (C)	Câu 15. A	Câu 18. A
	_	Câu 10. (A)	Câu 13. B	Câu 16. (C)	Câu 19. (A)
Câu 4. (B)	_	Câu 11. (D)	Câu 14. (D)	Câu 17. (C)	Câu 20. (C)

ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Bộ môn Toán ƯD

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ KIỂM TRA GIỮA HOC KỲ 162 Môn thi: Giải tích 1 - Ngày thi :10/04/2017 Thời gian làm bài: 45 phút - Giờ thi : CA 2

Đề 1005

Câu 1. Tìm m để điểm $M\left(\frac{1}{2},\frac{1}{2}\right)$ là điểm dừng của hàm $f(x,y)=xy^2(1-mx-y)$.

(A) m = -1.

 \bigcirc B m=1.

(C) $m = \frac{1}{2}$.

Câu 2. Tìm cực trị của hàm f(x,y)=x+2y-2 với điều kiện $x^2+\frac{y^2}{4}=17$.

(A) $f_{ct} = f(-1, -8)$. (B) $f_{cd} = f(-1, -8)$. (C) $f_{ct} = f(1, -8)$.

Câu 3. Miền xác định của hàm số $f(x,y)=\sqrt{rac{6-3x^2-2y^2}{x^2+y^2}}$ là:

(A) Phần mặt phẳng nằm phía trong ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ bỏ đi hai trục tọa độ.

B) Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong, bỏ gốc tọa độ

C Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong.

D Phần mặt phẳng nằm phía ngoài ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$

Câu 4. Cho $f(x,y)=\cos\left(x^2-y^2\right)$, giá trị của $f''_{xy}(\sqrt{\pi},-\sqrt{\pi})$ là:

(A) $2\sqrt{\pi}$ (B) -4π (C) -2π (D) $-4\sqrt{\pi}$ (Câu 5. Hàm số nào dưới đây có vi phân là d $f(x,y)=(3x^2y+y^2\sin x)\mathrm{d}x+(x^3-2y\cos x)\mathrm{d}y$?

(A) $f(x,y) = 3x^2y - y^2 \sin x$ (C) $f(x,y) = 3x^2y + y^2 \cos x$. (D) $f(x,y) = x^3y + y^2 \cos x$.

Câu 6. Cho $f(x,y,z)=x^3-3x^2+3y^2+yz-2$. Tìm tất cả các điểm M(x,y,z) sao cho $\nabla f(M)=(0,3,1)$

(B) M(0,-1,-3), M(2,-1,3).

(D) Các câu khác sai

Câu 7. Hệ số góc tiếp tuyến của giao tuyến giữa mặt phẳng y=-3 và mặt cong $z=x^2+y^2x$ tại điểm P(1,-3,10)là

(A) k=2

(C) k = 11

Câu 8. Cho hàm z=z(x,y) xác định từ phương trình : $\ln\frac{x+y}{z}+xyz=0$. Biết z(0,1)=1, tính $z_x'(0,1)$ (A) $z_x'(0,1)=2$ (B) $z_x'(0,1)=-2$ (Câu 9. Tính tích phân $I=\iint\limits_D e^{\frac{x}{y}}\mathrm{d}x\mathrm{d}y$ với D giới hạn bởi y=x,y=1,x=0.

(A) $I = \frac{1}{2} + e$. (B) $I = \frac{e}{2} - \frac{1}{2}$. (C) $I = e - \frac{1}{2}$.

Câu 10. Cho hàm số $z=y.f\left(x^2-y^2\right)$. Tính $y.z_x'+x.z_y'$

 $\frac{\mathbf{B}}{\mathbf{y}} \frac{x}{z}$

Câu 11. Công thức nào đưới đây là đúng khi đổi biến $x=r\cos\varphi,y=r\sin\varphi$ cho tích phân $I=\iint\sqrt{x^2+y^2}\mathrm{d}x\mathrm{d}y,$ với D là miền giới hạn bởi $x^2 + y^2 \le 1, x \le 0, y \le x$.

 Câu 12. Cho hàm z=z(x,y) xác định từ phương trình f(5x-3z,5y-4z)=0. Tính $3z_x'+4z_y'$ **Câu 13.** Công thức nào sau đây là đúng khi tính $I=\iint y \mathrm{d}x\mathrm{d}y$, trong đó D là nửa bên phải miền $x^2 + y^2 - 2x + 4y < 4.$ $A I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{1}^{3} r^{2} \sin \varphi dr$ $\mathbf{B} I = \int_{\pi}^{\frac{7}{2}} d\varphi \int_{0}^{3} (-2 + r \sin \varphi) r dr.$ $C I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (-2 + r \sin \varphi) r dr.$ Câu 14. Cho hàm y = y(x) xác định từ phương trình $x - y + \arctan y = 0$. Tính dy theo dx (A) $dy = -\frac{1+y^2}{y^2}dx$ (B) $dy = \left(1 + \frac{1}{y^2}\right)dx$ (C) $dy = \frac{2+y}{y^2}dx$ (D) $dy = -\frac{1}{y^2}dx$ **Câu 15.** Khai triển Maclaurint hàm $f(x) = \frac{\cos(2x)}{u+2}$ đến bậc 2 là: $\frac{1}{2}\left(1-\frac{y}{2}-2x^2+\frac{y^2}{4}+R_2\right)$ (A) $1 - \frac{y}{2} - 2x^2 + \frac{y^2}{4} + R_2$ C $\frac{1}{2}\left(1+\frac{y}{2}-2x^2+\frac{y^2}{4}+R_2\right)$ D $2-y-4x^2+y^2+R_2$ Câu 16. Tìm cực trị của hàm $f(x,y)=2x^3-xy^2+5x^2+y^2, x\neq 1$.

A $f_{ct}=f\left(-\frac{5}{3},0\right)$.
B $f_{ct}=f(0,0)$.
C $f_{cd}=f(0,0), f_{ct}=f\left(-\frac{5}{3},0\right)$. $f_{cd} = f(0,0).$

Câu 17. Gọi tên mặt bậc hai có phương trình như sau: $x^2 + 2y^2 - 2x + 4y + z + 1 = 0$ A Paraboloid elliptic.
B Paraboloid hyperbolic.

Elippsoid.

(D) Nón.

- Câu 18. Tìm GTLN, GTNN của hàm f(x,y) = x 2y trong miền D giới hạn bởi $x^2 + y^2 \le 5, x \ge 0$.

Câu 19. Cho D là miền giới hạn bởi $y \geq x^2, y - x \geq 2, y \leq 2 - x$ và f(x,y) là hàm liên tục trên D. Công thức nào dưới đây là đúng khi tính $I=\iint\limits_{\Omega}f(x,y)\mathrm{d}x\mathrm{d}y$?

Câu 20. Cho hàm số $z=f\left(u,v\right)$, với $u=e^{x+2y},v=\frac{x}{y}$. Tính z_y'

- **B** $z'_y = 2e^{x+2y}f'_u + \frac{xf'_v}{y^2}$ (A) Các câu khác sai
- c $z'_y = 2e^{x+2y}f'_u \frac{xf'_v}{x^2}$

 $\sum_{y} z'_{y} = e^{x+2y} f'_{u} - \frac{x f'_{v}}{x^{2}}$

CHỦ NHIÊM BÔ MÔN

PGS. TS. Nguyễn Đình Huy

Đề 1005 ĐÁP ÁN

Câu 1. C	Câu 5. D	Câu 8. (A)	Câu 12. D	Câu 16. B	Câu 20. (C)
Câu 2. A	Câu 6. (A)	Câu 9. B	Câu 13. B	Câu 17. (A)	
Câu 3. B	Cau b. (A)	Câu 10. B	Câu 14. ①	Câu 18. D	
Câu 4. B	Câu 7. C	Câu 11. (C)	Câu 15. B	Câu 19. (C)	

ĐAI HOC BÁCH KHOA TP HCM

Khoa Khoa học ứng dụng - Bộ môn Toán UD

ĐỀ CHÍNH THỰC

(Đề thi 20 câu / 2 trang)

ĐỀ KIỂM TRA GIỮA HOC KỲ 162 Môn thi: Giải tích 1 - Ngày thi :10/04/2017

Thời gian làm bài: 45 phút - Giờ thi : CA 2

Đề 1006

Câu 1.	Tìm cực trị của hàm $f(x,y)=x+2y-2$ với điều kiện x^2	$+\frac{y^2}{4} = 17.$
--------	---	------------------------

(A)
$$f_{cd} = f(-1, -8)$$
.

B
$$f_{ct} = f(-1, -8)$$
.

(A)
$$f_{cd} = f(-1, -8)$$
. (B) $f_{ct} = f(-1, -8)$. (C) $f_{ct} = f(1, -8)$.

$$f_{cd} = f(1, -8).$$

Câu 2. Gọi tên mặt bậc hai có phương trình như sau:
$$x^2 + 2y^2 - 2x + 4y + z + 1 = 0$$

(A) Paraboloid hyperbolic.

B Paraboloid elliptic.

(D) Nón.

Câu 3. Cho hàm y = y(x) xác định từ phương trình $x - y + \arctan y = 0$. Tính dy theo dx

$$B dy = -\frac{1+y^2}{y^2} dx$$

$$\bigcirc dy = \frac{2+y}{y^2} dx$$

Câu 4. Miền xác định của hàm số
$$f(x,y)=\sqrt{\frac{6-3x^2-2y^2}{x^2+y^2}}$$
 là:

A Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong, bỏ gốc tọa độ

B Phần mặt phẳng nằm phía trong ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ bỏ đi hai trục tọa độ.

C Phần mặt phẳng nằm từ ellipse $\frac{x^2}{2} + \frac{y^2}{3} = 1$ trở vào trong.

D Phần mặt phẳng nằm phía ngoài ellipse $\frac{x^2}{2} + \frac{y^2}{2} = 1$

Câu 5. Hệ số góc tiếp tuyến của giao tuyến giữa mặt phẳng y=-3 và mặt cong $z=x^2+y^2x$ tại điểm P(1,-3,10)TAI LIỆU SƯU TAP (B) k = 2

$$(A)$$
 $k=-6$

$$\bigcirc$$
 $k=2$

$$(C) k = 11$$

Câu 6. Tìm GTLN, GTNN của hàm f(x,y) = x - 2y trong miền D giới hạn bởi $x^2 + y^2 \le 5, x \ge 0$

(A)
$$f_{min} = -5, f_{max} = 5.$$

B
$$f_{min} = 2\sqrt{5}, f_{max} = 5.$$

$$f_{min} = -2\sqrt{5}, f_{max} = 2\sqrt{5}.$$

$$\oint f_{min} = -2\sqrt{5}, f_{max} = 5.$$

Câu 7. Cho D là miền giới hạn bởi $y \geq x^2, y - x \geq 2, y \leq 2 - x$ và f(x,y) là hàm liên tục trên D. Công thức nào dưới đây là đúng khi tính $I = \iint f(x,y) \mathrm{d}x \mathrm{d}y$?

(B) Các câu khác sai.

$$(B) z'_x(0,1) = 2$$

$$c_x'(0,1) = -1$$

$$\sum z'_x(0,1) = 1$$

(A)
$$f_{ct} = f(0,0)$$
. (B) $f_{ct} = f\left(-\frac{5}{3},0\right)$. (C) $f_{cd} = f(0,0), f_{ct} = f\left(-\frac{5}{3},0\right)$.

 $f_{cd} = f(0,0).$

Câu 10. Công thức nào đưới đây là đúng khi đổi biến $x = r\cos\varphi, y = r\sin\varphi$ cho tích phân $I = \iint\limits_{\mathcal{D}} \sqrt{x^2 + y^2} \mathrm{d}x\mathrm{d}y,$ với D là miền giới hạn bởi $x^2 + y^2 \le 1, x \le 0, y \le x$.

Câu 11. Tìm m để điểm $M\left(\frac{1}{2},\frac{1}{2}\right)$ là điểm dừng của hàm $f(x,y)=xy^2(1-mx-y)$. \bigcirc M=-1. $\bigcirc m = \frac{1}{2}.$ (A) m = 1. **Câu 12.** Công thức nào sau đây là đúng khi tính $I=\iint\limits_{\Gamma}y\mathrm{d}x\mathrm{d}y$, trong đó D là nửa bên phải miền $x^2 + y^2 - 2x + 4y \le 4.$ $(A) I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} (-2 + r \sin \varphi) r dr.$ $\mathbf{B} I = \int_{\pi}^{\frac{7}{2}} d\varphi \int_{1}^{3} r^{2} \sin \varphi dr$ $(C) I = \int_{-\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (-2 + r \sin \varphi) r dr.$ $D I = \int_{\pi}^{\frac{\pi}{2}} d\varphi \int_{0}^{3} r^{2} \sin \varphi dr.$ Câu 13. Cho $f(x,y,z)=x^3-3x^2+3y^2+yz-2$. Tìm tất cả các điểm M(x,y,z) sao cho $\triangledown f(M)=(0,3,1)$ (B) M(0,1,-3), M(2,1,-3). (D) Các câu khác sai **Câu 14.** Khai triển Maclaurint hàm $f(x) = \frac{\cos(2x)}{u+2}$ đến bậc 2 là: (A) $\frac{1}{2} \left(1 - \frac{y}{2} - 2x^2 + \frac{y^2}{4} + R_2 \right)$ (B) $1 - \frac{y}{2} - 2x^2 + \frac{y^2}{4} + R_2$ (C) $\frac{1}{2} \left(1 + \frac{y}{2} - 2x^2 + \frac{y^2}{4} + R_2 \right)$ (D) $2 - y - 4x^2 + y^2 + R_2$ **Câu 15.** Tính tích phân $I = \iint\limits_D e^{\frac{x}{y}} \mathrm{d}x \mathrm{d}y$ với D giới hạn bởi y = x, y = 1, x = 0. (A) $I = \frac{e}{2} - \frac{1}{2}$. (B) $I = \frac{1}{2} + e$. $I = \frac{e}{2} - 1.$ **Câu 16.** Cho $f(x,y) = \cos\left(x^2 - y^2\right)$, giá trị của $f''_{xy}(\sqrt{\pi}, -\sqrt{\pi})$ là: BOI HCMU C NE.P **Câu 18.** Hàm số nào dưới đây có vi phân là $\mathrm{d}f(x,y)=(3x^2y+y^2\sin x)\mathrm{d}x+(x^3-2y\cos x)\mathrm{d}y?$ (A) $f(x,y) = x^3y + y^2 \cos x$. (C) $f(x,y) = 3x^2y + y^2 \cos x$. (B) $f(x,y) = 3x^2y - y^2 \sin x$ $\int f(x,y) = x^3y - y^2 \cos x.$ **Câu 19.** Cho hàm số $z=f\left(u,v\right)$, với $u=e^{x+2y},v=\frac{x}{y}$. Tính z_{y}^{\prime} (A) $z'_y = 2e^{x+2y}f'_u + \frac{xf'_v}{u^2}$ (B) Các câu khác sai c $z'_y = 2e^{x+2y}f'_u - \frac{xf'_v}{u^2}$ $\sum_{y} z'_{y} = e^{x+2y} f'_{u} - \frac{x f'_{v}}{x^{2}}$ Câu 20. Cho hàm số $z=y.f\left(x^2-y^2\right)$. Tính $y.z_x'+x.z_y'$

CHỦ NHIÊM BÔ MÔN

(D) z

PGS. TS. Nguyễn Đình Huy

 \bigcirc $\frac{x}{y}$

 $\frac{x}{u}z$

Đề 1006 ĐÁP ÁN

Câu 1. B	Câu 5. C	Câu 9. (A)	Câu 12. (A)	Câu 15. (A)	Câu 19. (C)
Câu 2. B	Câu 6. D	Câ 10 (C)	Câu 13. (B)	Câu 16. (A)	Câu 20. (A)
Câu 3. D	Câu 7. (C)	Câu 10. (C)	Cau 13. (b)	Câu 17. ①	
Câu 4. (A)	Câu 8. (B)	Câu 11. (C)	Câu 14. (A)	Câu 18. (D)	

