Analysis II Summary

September 21, 2020

Chapter 1

Ordinary differential equations

1.1 Differential Equation:

An equation for a function f that relates the values of f at x, f(x) to the values of its derivatives at the same point x. We distinguish between the number of variables present in the function:

- One variable: Ordinary differential equations (ODE)
- Several Variables: Partial differential equations (PDE)

Examples:

- f'(x) = f(x)
- $\bullet \ f''(x) = -f(x)$

Notation: We write $y, y', y'', y^{(3)}, \dots$ instead of $f(x), f'(x), f''(x), f^{(3)}(x)$

Order: The largest derivative present in the equation. Examples:

- y' = 2xy order 1
- $y^{(3)} + 2xy'' + e^xy + 1 = 0$ order 3

The solution to an ODE is not unique in general. When given initial conditions then we can find unique solutions. E.g:

$$y' = x + 1$$
$$y = \frac{x^2}{2} + x + c$$

is a solution for any c. If we are also given y(0) = 1 then c = 1 is a unique solution.

1.2 Linear Differential equations

A linear ODE of order k on an interval $I \subset \mathbb{R}$ is an eqn of the form:

$$y^{(k)} + a_{k-1}(x)y^{(k-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$

where a(x) and b(x) are continuous functions from I to \mathbb{C} .

For a linear ODE the following hold:

- ullet y and all its derivatives appear in order 1
- \bullet there are no products of the function y and its derivatives
- neither the function nor its derivatives are inside another function e.g \sqrt{y} , $\sin(y)$,...

If b=0 then we say the equation is **homogeneous** otherwise **inhomogeneous**

Solving a linear ODE means finding all functions $f: I \to \mathbb{C}$ that are k times differentiable such that $\forall x \in I$ the function satisfies the differentiable equation.

<u>Initial Condition</u> A set of equations specifying the values of the derivatives at some initial point.

<u>Theorem 2.2.3</u> Let $I \subset \mathbb{R}$ and open interval $k \geq 1$ and integer. Consider the linear ODE

$$y^{(k)} + a_{k-1}(x)y^{(k-1)} + \dots + a_1(x)y' + a_0(x)y = b(x)$$

where coefs $a_i(x), b(x)$ are continous functions

- 1. Let S_0 be the set of solutions for b=0, then S_0 is a vector space of dimension k.
- 2. For any initial conditions, i.e for any choice of $x_0 \in I$ and $(y_0, ..., y_{k-1}) \in \mathbb{C}^k$ there is a unique solution $f \in S$ such that $f_{\ell}(x_0) = y_0, ..., f^{(k)}(x_0) = y_k$
- 3. For an arbitrary b the set of solutions of the linear ODE is $S_b = \{f + f_p | f \in S_0\}$ where f_p is one **particular** solution
- 4. For any initial condition there is a unique solution.

The linearity of the diff equation also simplies a **superposition** principle. Suppose we have 2 different functions $b_1(x)$, $b_2(x)$ on the RHS with solutions $f_1, f_2 : Df_1 = b_1, Df_2 = b_2$ then $f_1 + f_2$ solves $Df = b_1 + b_2$

Given a diff eqn and a possible solution we can always verify whether it is indeed a solution or not.

1.3 Linear differential equations of order 1

We consider y'+ay = b, where a,b are continous functions. 2 steps:

- Find solutions of the corresponding homogeneous equation y' + ay = 0.
- Find a particular solution $f_p:I\to\mathbb{C}$ such that $f_p+af_p=b$

If f is a solution then so is zf for any constant $z \in \mathbb{C}$

 $\begin{array}{l} \underline{\text{Homogeneous solution:}} \ y' + ay = 0 \\ \Rightarrow y' = -ay \\ \Rightarrow \frac{y'}{y} = a \\ \Rightarrow \int \frac{y'(x)}{y(x)} dx = - \int a(x) dx := A(x) \\ \Rightarrow \ln |y(x)| = -A(x) + c \\ \Rightarrow y = z \cdot e^{-A(x)} \ \text{for some constant z} \end{array}$

Solution of inhomogeneous equation y' + ay = b

There are two methods to solve this:

- Educated guess: the LHS tries to imitate the RHS i.e if b(x) is a polynomial we guess that f_p is also a polynomial or if b is a trig function then we guess f_p is also a trig function
- Variation of constants: Assume

$$f_p = z(x)e^{-A(x)}$$

for some function $z:I\to\mathbb{C}$. We then put this into the equation and see what it forces z(x) to satisfy