

Universidade Federal de Pernambuco Departamento de Física

Eletrodinâmica Clássica I, Segundo Semestre de 2019

Professor: José W Tabosa Sala: B-312, Ramal-7616

<u>7^a Lista de Exercí</u>cios

- 1) Problemas do Jackson (3a. Edição):
 - Resolva o problema 7.4
- 2) Uma onda eletromagnética plana, com comprimento de onda λ , incide normalmente sobre uma placa de vidro de faces paralelas, índice de refração n e espessura d, conforme indicado na figura abaixo. Considere que a placa está colocada no ar $(n_{ar} = 1)$.
- a) A partir das condições de contorno para os campos, determine os coeficientes de reflexão e transmissão nas interfaces ar vidro e vidro ar.
- b) Sendo E_0 a amplitude do campo elétrico incidente, calcule a intensidade total transmitida através da placa e mostre que ela é máxima para $2nd = m\lambda$ (m = 1, 2, 3, ...).

3) Use as relações de Kramers-Kroning para calcular a parte real de $\epsilon(\omega)$, dado que a parte imaginária de $\epsilon(\omega)$ para ω positivo vale

i)
$$Im \epsilon(\omega) = \lambda [\theta(\omega - \omega_1) - \theta(\omega - \omega_2)], \omega_2 > \omega_1,$$

ii) $Im \epsilon(\omega) = \frac{\lambda \gamma}{(\omega - \omega_0)^2 + \gamma^2},$

onde $\theta(\omega)$ é a função degrau. Em cada caso, esboce o gráfico de $Re\epsilon(\omega)$ e $Im\epsilon(\omega)$.

4) Obtenha a Eq.7.109 do Jackson (3a. Edição).