Методы прогноза временных рядов с учётом априорной информации

Смирнов Сергей Игоревич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., проф. Ермаков С.М. Рецензент: ст. пр. Солнцев В.Н.

Санкт-Петербург 2009г.

Введение

Цели:

- 1. Построение алгоритма моделирования процесса, имеющего структуру, схожую с финансовыми индексами.
- 2. Построения алгоритма прогноза, учитывающего априорную информацию на основе регрессионной модели, нелинейно зависящей от параметров.
- 3. Исследование метода последовательных уточнений прогноза.
- 4. Изучение чувствительности прогноза к ошибкам в задании априорной информации.

Модель Хестона (Heston model)

$$dX(t) = X(t)\sqrt{V(t)}dW_X(t)$$
(1)

$$dV(t) = k(\theta - V(t)) dt + \varepsilon \sqrt{V(t)} dW_V(t)$$
 (2)

Считаем, что $dW_V \cdot dW_X = \rho dt$.

Прикладной смысл в том, что мы считаем процесс (1) процессом эволюции цены некоего финансового актива, а процесс (2) — волатильностью этого актива.

Применим к (1)-(2) Лемму Ито:

$$dln\left(X\left(t\right)\right) = \sqrt{V\left(t\right)}dW_{X} - \frac{V\left(t\right)}{2}dt. \tag{3}$$

$$dV(t) = k(\theta - V(t)) dt + \varepsilon \sqrt{V(t)} dW_V(t)$$
(4)

Схема Эйлера

Моделируем (3)-(4) с помощью адаптированной схемы Эйлера с момента времени t=0 до момента времени t=T.

 $\Delta = T/N$ — шаг по времени.

Заведём массивы S и V, $V_{0}=\theta,\,S_{0}=\ln X\left(0\right)$

Алгоритм для одной траектории.

- 1. $S_i = 0, V_i = 0, i = 1$
- 2. Если $V_{i-1} < 0$, то $S_i = S_{i-1}, \; V_i = k heta \Delta$

Иначе,

$$S_i = S_{i-1} + \sqrt{V_{i-1}} \cdot \sqrt{\Delta} \cdot \left(\rho y + \sqrt{1 - \rho^2} x \right) - 0.5 \cdot V_{i-1} \cdot \Delta$$
 $V_i = V_{i-1} + k \cdot \Delta \cdot (\theta - V_{i-1}) + \varepsilon \cdot \sqrt{V_{i-1}} \cdot \sqrt{\Delta} \cdot y$ x и y — пара независимых, нормально распределённых случайных величин с единичной дисперсией и нулевым

- средним. 3. i = i + 1.
- 4. Если i > N, то выход, иначе возврат к пункту 2.

Учёт априорной информации

Что понимаем под априорной информацией:

- 1. Некие заранее известные числовые значения.
- 2. Известные свойства распределений прогнозируемых величин.
- 3. Экспертные оценки.
- 4. Некие ограничения на значения прогнозируемых величин.

Мы рассматриваем только априорную информацию в виде известных числовых значений.

Регрессия с линейным вхождением параметров

Есть ряд вида $y_i = f(i) + \varepsilon_i$,

где ε_i — нормальный белый шум со стандартным отклонением σ_i .

Заданы некие w_k — априори известные числовые значения. Приближаем y линейной комбинацией функций $\{\varphi\}$. Пишем функционал

$$\sum_{i=1}^{N} \left(y_i - \sum_{j=1}^{r} c_j \varphi_j(i) \right)^2 + \sum_{k=1}^{n} \left(w_k - \sum_{j=1}^{r} c_j \varphi_j(k+N) \right)^2.$$
 (5)

Дифференцируем (5) по c_j . Получаем СЛУ

$$(A^T \cdot A + B^T \cdot B) \cdot C = (A^T \cdot Y_1 + B^T \cdot Y_2), \qquad (6)$$

где

$$A(i, j) = \varphi_j(i), i = 1 : N, j = 1 : r,$$
 $B(k, j) = \varphi_j(k + N), k = 1 : n, j = 1 : r.$

Продолжение исследования регрессии с линейным вхождением параметров

Из (6) находим оценку для C. Вектор $C\in N\left(\mu,\Sigma\right)$, где $\mu=G^{-1}\cdot\left(B^T\cdot Y_2+A^TM\right)$, $\Sigma=G^{-1}\cdot D\cdot G^{-1}$.

Заметим, что в данной модели значения априорной информации влияют лишь на вектор средних, но не на ковариационную матрицу.

Пусть есть N реализаций y. Ошибка — квадрат евклидовой нормы разности истинного значения и прогноза. W — выборочная дисперсия ошибки. Возмущения априорной информации задаём в виде нормального белого шума со стандартным отклонением σ .

Чувствительность – $\frac{\Delta W}{\Delta \sigma}$.

Нелинейная регрессия

Рассмотрим нелинейную регрессию вида:

$$y_{i} = \sum_{j=1}^{r_{1}} \exp(\lambda_{j} \cdot i) \cdot (c_{j,1} \cos(\omega_{j} \cdot i) + c_{j,2} \sin(\omega_{j} \cdot i)) + \sum_{k=1}^{r_{2}} c_{k} \exp(\lambda_{k} \cdot i) + \varepsilon_{i},$$

где $r=2\cdot r_1+r_2$, а $\lambda_j,\ \omega_j,\ c_{j,1},\ c_{j,2},\ \lambda_k,\ c_k$ - параметры регрессии. Параметры входят нелинейно — напрямую через минимизацию (5) действовать нельзя. Строим метод последовательных уточнений.

Введём обозначения:

$$Y_1(i) = y_i, i = 1:N,$$

$$Y_2(k) = w_k, k = 1:n.$$

Алгоритм G_1

- 1. $X(i,j) = y_{i+j-1}, i = 1:d, j = 1:N-d+1.$
- 2. $Q = X \cdot X^T$
- 3. Пусть D матрица ортонормированных собственных векоров Q, упорядоченных по возрастанию собственных чисел.

$$R = D\left(d, d - r + 1 : d\right)$$

$$4.R_1 = D(1:d-1,d-r+1:d) \cdot R$$

5.
$$q = \frac{1}{1 - [R_1, R_1]}$$

6.
$$RT(i) = q \cdot R_1(r - i + 1), i = 1 : r$$

- 7. RI = (1, -RT)
- 8. Решим полиномиальное уравнение, вектор коэффициентов которого совпадает с RI. Пусть U вектор корней этого уравнения.
- 9. Находим из U функции $\{\varphi\}$.

Метод последовательных уточнений

- Шаг 0. Применяем алгоритм G_1 к исходному ряду. Получаем систему функций $\{\varphi\}$ и вектор U.
- Шаг 1. Решаем систему (6). Пересчитываем $Y_2 = B \cdot C$.
- Шаг 2. Применяем G_1 к (Y_1,Y_2) .
- Шаг 3. Если новый вектор U не сильно отличается от предыдущего, то Y_2 называем результатом прогноза, иначе возвращаемся к Шагу 1.

Пример применения метода

Возьмём, например, ряд $y\left(i\right)=0.5^{i}\cdot\left(2\cos\left(\frac{\pi i}{4}\right)-5\sin\left(\frac{\pi i}{4}\right)\right)+\\ +0.7^{i}\cdot\left(3\cos\left(\frac{\pi i}{3}\right)-2\sin\left(\frac{\pi i}{3}\right)\right)+\left(7\cos\left(\frac{\pi i}{6}\right)-6\sin\left(\frac{\pi i}{6}\right)\right)+\varepsilon\left(i\right),$ где $\varepsilon\left(i\right)$ – нормальный белый шум со стандартным отклонением $s,\ i=1:30.$

Прогнозируем по первым 20 значениям следующие 10. Смотрим, как меняется ошибка прогноза при изменении величины s. За p обозначим ту часть траекторий, на которых наш алгоритм лучше сочетания МНК и G_1 , i — число итераций. Будем моделировать 100 траекторий и усреднять результаты по ним. В качестве априорной информации берём средние y_i .

Сводная таблица результатов.						
S	G_1 +LS	наш	р	i		
0	$5.3273 \cdot 10^{-17}$	$2.1045 \cdot 10^{-17}$	1	1		
0.005	0.3245	0.0762	0.87	10.72		
0.01	0.3173	0.1146	0.84	6.17		
0.05	1.2748	0.4441	0.93	13.58		
0.1	3.2342	1.2175	0.92	3.31		
0.2	25.0843	4.6356	0.91	23.67		
0.3	61.8636	6.411	0.91	3.1		
0.4	97.5010	9.3926	0.88	13.93		
0.5	153.2611	14.4915	0.87	14.50		
1	234.3499	34.3499	0.94	14.02		
2	423.91	114.6955	0.89	34.86		
5	$1.2548 \cdot 10^3$	527.2607	0.92	34.54		
10	$5.467 \cdot 10^3$	$1.5653 \cdot 10^3$	0.93	43.89		

Влияние изменений априорной информации на качество прогноза

Возьмём тот же ряд, но в качестве априорной информации возьмём $w_k=(y_k)+a_k,\ k=1:n$, где a_k есть нормальный белый шум со стандартным отклонением σ . Изучаем зависимость W от изменения σ .

s = 0.1							
σ	σ 0 0.5 1 2 5						
W	70.7655	65.8328	66.5300	96.6492	977.9681		

s = 0.2						
σ	σ 0 0.5 1 3 5					
W	282.4039	242.4116	179.4283	317.6997	486.2107	

s = 0.3						
σ	σ 0 0.1 0.5 1 3					
\overline{W}	171.0478	224.8992	226.6409	236.9226	311.8372	

Изучение влияния изменения априорной информации на качество прогноза

s = 0.5					
σ	0	0.5	1	5	
W	346.2825	353.2514	344.9835	$1.5770 \cdot 10^3$	

s = 0.8						
σ	σ 0 0.5 1 2 5					
W	343.0365	319.8154	303.5768	596.6792	$3.9555 \cdot 10^3$	

s = 1					
σ	σ 0 0.5 1 5				
W	428.8767	444.0020	427.7701	$2.2178 \cdot 10^3$	

Применение нашего алгоритма к траекториям (3)-(4)

Пример 2

Влияние возмущений

Результаты прогноза траекторий (3)-(4)

Промоделировали 100 траекторий процесса.

Средняя ошибка нашего алгоритма — 2.2706.

Средняя ошибка непосредственного сочетания МНК и G_1 – 122.3576.

Число траекторий, на которых наш алгоритм лучше — 92 из 100. Среднее число итераций — 88.58.

Заключение

- 1. Была написана программа, моделирующая траектории процесса (3)-(4).
- 2. Построено и реализовано несколько алгоритмов прогноза для данного процесса.
- 3. Проведено сравнение алгоритмов с учётом априорной информации и без неё.
- 4. Проведено исследование качества прогноза в зависимости от априорной информации.
- 5. В промоделированных примерах метод последовательных уточнений сходился. Новизна работы заключается в сочетании метода последовательных уточнений и учёта априорной информации.