Eigen Value And Eigen Vector

Eigen Value and Eigen Vector : The vector v which do not change its direction on applying the transformation T is called the eigen vector of that transformation T. On applying the transformation the eigen vector only changes its size by λ which is either scaled or squeeze .This condition can be written as :

$$T(v) = \lambda v$$

 λ can be positive , negative ,zero or complex number depending on the transformation applied .

In this figure the shear transformation is applied and as we can see in the figure the blue vector is not changing the direction and the size is also constant (λ =1) which means it is the eigen vector of this shear transformation and eigen value is 1.

Fig : 3

Eigen value and Eigen vector of matrix:

From above definition of eigen value and eigen vector we know that the eigen vector never change its direction but scale (in +ve or -ve direction)only .

Consider the following example of vector:

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad y = \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} \qquad \text{In this case } \lambda = 2.$$

These vectors are said to be scalar multiples or parallel or collinear, if there is a scalar λ such that $x\lambda = y$.

Lets take a matrix A having n*n dimenstion and linear transformation is performed on it

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$

$$\mathsf{AV} = \mathsf{W}$$

If it occurs than v and w are scalar multiples of each other, that is if

$$W = \lambda v$$

than we can write as

$$Av = \lambda v$$

$$(A - \lambda I)v = 0$$
_____(1)

Where I is the n*n Identity matrix and 0 represents the zero vector

Calculating the eigen value and eigen vector of 2D matrix

Consider the following 2D matrix

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

Now placing the value of A in the eigen equation (1) we get

$$|A - \lambda I| = Det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 0$$

$$(2 - \lambda) (2 - \lambda) - 1 = 0$$

 $3 - 4\lambda + \lambda^2 = 0$

The roots of the above equation are $\lambda = 1$ and $\lambda = 3$, which are the two eigenvalues of A.

In this example, the eigenvectors are any nonzero scalar multiples of

$$\mathbf{v}_{\lambda=1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \qquad \mathbf{v}_{\lambda=3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

If the elements of the matrix *A* are all real numbers, then the coefficients of the of the equations will also be real numbers, but the eigenvalues formed by them may still imaginary parts.

Calculating the eigen value and eigen vector of 3D matrix

Consider the following 3D matrix:

$$A = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{array} \right]$$

Now placing the value of A in the eigen equation (1) we get

$$|A - \lambda I| = \begin{pmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 4 \\ 0 & 4 & 9 - \lambda \end{pmatrix} = 0$$
$$(2 - \lambda)((3 - \lambda)(9 - \lambda) - 16) = 0$$

$$-\lambda^3 + 14\lambda^2 - 35\lambda + 22 = 0$$

The roots of above equation are 2, 1 and 11 which are the eigen value of A and their corresponding eigen vector are [1, 0, 0], [0, -2, 1] and [0, 1, 2] respectively.

Refrence

- Fig 1: https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#/media/File:Eigenvectors.gif
- Fig 2: https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#/media/File:Eigenvectors.gif
- Fig 3:

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors#/media/File:Mona_Lisa_eigenvector_g rid.png