

## INTRODUCTION

Machine Learning based algorithm to estimate

- Tree Upgrowth Change in tree width over time.
- Tree Mortality Number of trees that have died within a defined stand over a specific period
- Stand Recruitment Number of new trees in a forest stand.



# **RESOURCES**







PROGRAMMING LANGUAGE: PYHTON



IDE: VSCODE

### DATASET DEFINITION

### **Global Forest Biodiversity Data**

• GFB3 for Indiana Tree Level Data

### Number of columns: 19 | Number of rows: 122294

• PlotID, Latitude, Longitude, PA, Dmin, TreeID, Species, Status, DBH, YR, PrevDBH, PrevYR, note, Elevation\_m, POM, PLT\_CN, DSN\_GFB3, DSN\_GFB2, Orig PlotID

#### Status: status code of each tallied tree

- 0 (live)
- 1 (dead)
- 2 (new)

### DBH: diameter-at-breast-height (centimeters);

• DBH: 2.54 to 152.4

• PrevDBH: 2.4 to 123.4

### YR: Year when the current inventory was performed;

• YR: 1996 to 2022

• PrevYR: 1984 to 2014

**Distinct Plots: 4426** 

**Distinct Species: 110** 

## STEPS TO GET THERE

DATA CLEANING AND PRE-PROCESSING

SPECIES CLUSTERING AND DBH GROUPING

CREATING SEPARATE DATASETS for M(Mortality), U(Upgrowth), R(Recruitment) MODELS

DEVELOPING MACHINE LEARNING MODEL

**MODEL TRAINING AND EVALUATION** 

# DATA CLEANING AND PREPROCESSING

Clean the data by removing any missing values (NA values)

2

Filter the data

- Filter live trees with missing DBH & previous DBH information.
- Filter dead trees with missing previous DBH information.
- Filter new trees with missing previous DBH information.

3

Calculate necessary parameters

- TPH (Trees Per Hectare),
- dYR (Year Difference),
- dDBH (DBH Difference)



### SPECIES CLUSTERING

- Grouping by speciesto identify significant species
  - 29 Species
- Calculating average features, such as
  - Average Upgrowth (avgDBH cm/year)
  - Average Mortality (avgMpct /year)
- Hierarchical clustering of Species with Euclidean distance metrics.
- Number of Clusters 5

# UPGROWTH AND MORTALITY TRENDS





# SPECIES DISTRIBUTION IN CLUSTERS

### Species in Each Cluster:

#### \_\_\_\_\_

Cluster 0: Acer negundo, Carya cordiformis, Fagus grandifolia, Fraxinus americana, Fraxinus pennsylvanica, Liquidambar styraciflua,

Cluster 1: Acer rubrum, Celtis occidentalis, Juglans nigra, Quercus velutina

Cluster 2: Acer saccharinum, Liriodendron tulipifera, Pinus strobus, Platanus occidentalis, Quercus rubra

Cluster 3: Acer saccharum, Carya glabra, Carya ovata, Quercus muehlenbergii, Quercus prinus, Sassafras albidum, Ulmus rubra

Cluster 4: Juniperus virginiana, Nyssa sylvatica



# DBH GROUPING

- DBH Groups are set at intervals of 5 starting from 10 up to 60
  - o 10 Groups
- Two new columns are created
  - DGP (DBH Group)
  - PrevDGP (Prev DBH Group)
- Maximum Tress fall under range (10 to 55)
   DBH: 2.54 to 152.4 PrevDBH: 2.4 to 123.4
- Feature selection and dimensionality reduction
- Capturing important patterns and relationships in the data.

|            |             |           | ·             |
|------------|-------------|-----------|---------------|
| Group Name | Range  <br> | DBH Count | PrevDBH Count |
| 1          | (10, 15)    | 14232     | 9812          |
| 2          | (15, 20)    | 18985     | 12666         |
| 3          | (20, 25)    | 14866     |               |
| 4          | (25, 30)    | 11631     |               |
| 5          | (30, 35)    | 8990      | 4592          |
| 6          | (35, 40)    | 7760      | 3502          |
| 7          | (40, 45)    | 6128      | 2648          |
| 8          | (45, 50)    | 4427      | 1693          |
| 9          | (50, 55)    | 3146      | 1106          |
| 10         | (55, inf)   | 5924      | 1727          |
| Total      | ļ           | 96089     | 53430         |
|            | '           |           |               |

# CREATING DATASETS, ABUNDANCE MATRICES AND CROSS VALIDATION FOLDS



# Creating Separate Datasets for M, U, R Models:

mortality.csv upgrowth.csv recruitmrnt.csv



# Creating Plot Abundance Matrices T1 and T2

plotsT1.csv (species occurrence across unique
Plot IDs during time period 1)

**PlotsT2.csv** (species occurrence across unique Plot IDs during time period 2)



### Creating folds for cross-validation

Random integers (1-10) are assigned to each unique PlotID

These integers serve as fold identifiers (Group1 to Group5) for cross-validation.

### ML MODEL

#### Model

### Initialization: Three RandomForestRegressor models are initialized

- m for mortality prediction
- u for upgrowth prediction
- r for recruitment prediction
- Hyperparameters like the number of estimators, maximum features, and criterion ('squared\_error') are specified for each model

#### Cross-Validation (CV):

- Cross-validation used through the nested loop.
- The data splitting is done within a nested loop that iterates over folds (from 1 to 4) and plot groups (from 1 to 9) within each fold.
- This effectively creates multiple train-test splits.

#### **Model Training:**

- trainm, trainu, and trainr are created which contain the relevant data needed for training.
- The initialized models (m, u, r) are trained using the (trainm, trainu, trainr) by providing the predictor variables and the target variables.

#### **Model Prediction and Evaluation**

- Calculate predictions ('mort', 'up', 'rec') using the trained models (m, u, r).
- Basal Area B and Number of trees B calculation using predicted values for T1 dataset.
- Compare with true values for B and N from T2 dataset and calculate Root mean squared error (RMSE) and R-squared (R^2)

# MODEL EVALUATION





## **FUTURE STEPS**

- Improve the accuracy and performance of the model by including covariates (Climate and Topographic Variables)
- Try out other ML models such as decision trees, or support vector machines (SVM), XGBoost to compare the results.
- Resue the code to build the forest growth model for other regions globally.





