F7: Digital signature

tkkwon@snu.ac.kr

outline

- Intro
- RSA signature
- Blind signature
- ElGamal signature
- cyclic group vs cyclic subgroup
- Schnorr signature
- DSA signature
- Subliminal signature

Digital signature

- A digital signature is a number (or numbers) dependent on
 - (i) some secret known only to the signer
 - (ii) the signed message
- Digital signatures are implemented using public-key cryptography
 - the signer has a private key used for creating signatures
 - Anybody can know a public key used for signature verification

source: https://ko.wikipedia.org/wiki/디지털_서명

Digital Signatures

- data integrity, non-repudiation, authentication
- Basic idea
 - use private key on the message to generate a piece of information that can be generated only by yourself
 - because you are the only one who knows your private key
 - public key can be used to verify the signature
 - so everybody can verify
- Generally signatures are created and verified over the hash of the message
 - Not over the original message. Why?

Attack types

Key-Only Attack

the attacker is only given the public verification key.

Known-Message Attack

the attacker is given valid signatures for a variety of messages known by the attacker but not chosen by the attacker.

Chosen-Message Attack

the attacker first learns signatures on arbitrary messages of the attacker's choice (usually by tricking a signer). Then the attack forges a signature of a new message he chooses.

^{*} Message usually means plaintext, but could be ciphertext

Forgery types

- Digital signature should be resistant to forgery
 - So called unforgeability

Existential Forgery

Existential forgery is the creation (by an adversary) of any message/signature pair (m,σ) , where σ was not produced by the legitimate signer.

Selective Forgery

Selective forgery is the creation (by an adversary) of a message/signature pair (m,σ) where m has been *chosen* by the adversary prior to the attack.

Two categories

- Digital signatures with appendix
 - require the original message (or its hash) as input to the verification algorithm;
 - use hash functions
 - Examples: ElGamal, DSA, Schnorr
- Digital signatures with message recovery
 - do not require the original message as input to the verification algorithm;
 - the original message (or its hash) is recovered from the signature itself;
 - Examples: RSA, Rabin,...

Digital Signature – message recovery

M: message to be signed H: Hash function

E: RSA Private Key Operation KR_a: Sender's Private Key

D: RSA Public Key Operation KU_a: Sender's Public Key

E_{KRa}[H(M)] Signature of sender a over hash of M

RSA Signatures

- Bob has a document m that Alice agrees to sign. Alice does the following.
- Alice chooses two primes: p, q and n=pq, makes (e,n) public with gcd(e,(p-1)(q-1))=1
- de≡1 (mod φ(n)), she keeps p,q,d secret
- 。Alice's signature is y≡m^d (mod n)
 - m or H(m)
- Alice then makes the pair (y,m) public

How does Bob verify Alice's Signature

- Download Alice's (e,n)
- Compute z≡y^e (mod n)
- If z=m, then Bob accepts the signature as valid;
 - otherwise the signature is not valid

Chosen ciphertext attack in RSA

- Trent is a computer notary public. When Alice wants a document notarized, she sends it to Trent who signs it with an RSA digital signature.
- Mallory wants Trent to sign a bad message he otherwise wouldn't, call it b
- Mallory chooses arbitrary x and computes $y = x^e \mod n$ (where e, n are Trent's public key).
- Then he computes m=yb mod n and sends m to Trent to sign.
- Trent returns $m^d \mod n = (yb)^d \mod n = xb^d \mod n$.
- Mallory calculates $(xb^d \mod n) (x^{-1} \mod n) = b^d \mod n$, which is the signature of b.
- Lesson: don't sign message with unknown content

Blind Signatures (1/2)

- Alice chooses n=pq, finds e, and solves d as required in the RSA scheme, i.e., ed≡1 (mod (p-1)(q-1))
- Bob chooses a random k with gcd(k,n)=1, computes t≡k^em (mod n) for message m, and sends t to Alice
 - Bob keeps k secret
 - Alice cannot read m; Alice trusts that Bob will not send bad messages
- Alice signs t by computing s≡t^d (mod n). She returns s to Bob
- Bob computes sk⁻¹ (mod n) to get the signed message m^d

Blind Signatures (2/2)

- $sk^{-1} \equiv t^d k^{-1} \equiv (k^e m)^d k^{-1} \equiv m^d (k^{ed}) k^{-1} \equiv m^d$
- Alice has never seen the message m
- $t \equiv k^e m$ and $s \equiv t^d$, then $sk^{-1} \equiv m^d \pmod{n}$
- The choice of k is random, therefore, t≡k^em (mod n) gives essentially no information about m. In this way, Alice knows nothing about the message m she is signing.

Before **DLP-based** signatures with appendix

- Signer has her private key x, its public key y
 - $y = g^{x} \mod p$

(mod p) is omitted below

- How an appendix is generated only from who holds x?
 - Only the signer can make (Eve can't); Verifier can verify the signature
 - Signature should be dependent on message
 - msg or its hash is known to everyone
- Message is m = H(M), hash of original message M
- How about my or mx?
- How about g^{m+x} or g^{mx}?
- Pick random r, then how about g^{m+rx} or g^{mr+x}?
 - Everyone receives r as well
- Signer picks a random secret k, $g^{k} * \frac{k-1(m+rx)}{k} = (g^k)^{k-1(m+rx)}$
 - Everyone receives r, g^k, s=k⁻¹(m+rx)
 - More efficiently, $r=g^k$, $s=k^{-1}(m+rx)$

ElGamal Digital Signatures

- signature variant of ElGamal
 - so uses exponentiation in a finite (Galois) field
 - with security based on the difficulty of computing discrete logarithm problem (DLP)
- A signer uses private key for encryption (signing)
- A verifier uses public key for decryption (verification)
- A signer (say, Alice) generates her key
 - chooses a private key 1 < x < p-1
 - Computes her public key: $y = a^x \mod p$

ElGamal Digital Signature

- Alice signs a message M to Bob by computing
 - the hash m = H(M), $0 \le m \le (p-1)$
 - choose random secret k s.t. $1 \le k < (p-1)$ and gcd(k, p-1) = 1
 - k should not be reused
 - compute temporary key: $r = a^k \mod p$
 - compute $k^{-1} \mod (p-1)$: the inverse of k
 - compute the value: $s = k^{-1} (m-xr) \mod (p-1)$
 - signature is: (r,s)
- Bob (i.e., verifier) can verify the signature as:
 - $-V_1 = a^m \mod p$
 - $-V_2 = y^r r^s \mod p$
 - signature is valid if $V_1 = V_2$

What if $s = k^{-1} (m-x)$ in ElGamal?

- An attacker can forge a signature for msg m
- Pick arbitrary s in Z_p*
- Let's choose r s.t. $a^{m} = yr^{s} \mod p$ - $r = (a^{m} y^{-1})^{s-1}$
- signature is: (r,s)
- Bob (i.e., verifier) deems the signature valid:
 - V₁ = a^m mod p
 V₂ = y r^s mod p
 - signature is valid if $V_1 = V_2$

Revisit Group Theory (mod p case)

- group: a set of elements with a binary operation
 - the operation should satisfy four properties below
- The group of positive integers modulo a prime p

```
Z_p = \{0,1, 2, 3, ..., p-1\}

Z_p^* = \{1, 2, 3, ..., p-1\} = \langle g \rangle = \{g^1, g^2, g^3, ..., g^{p-1}\} (g is a generator)

*_p = multiplication modulo p

Denoted as: (Z_p^*, *_p^*)
```

Required properties

- 1. Closure. Yes.
- 2. Associativity. Yes.
- 3. Identity. 1.
- 4. Inverse. Yes.
- **Example:** $Z_7^* = \{1,2,3,4,5,6\}$ $1^{-1} = 1, 2^{-1} = 4, 3^{-1} = 5, 6^{-1} = 6$

Background for finite cyclic groups

Order

- order of a set S: |S|, # of elements in S
- Order of an element x: ord(x), the least n ≥ 1 s.t. $x^n \equiv 1 \pmod{p}$

Cyclic group G

- A group that can be generated by exponentiating a single element g (generator or primitive element)
 - G = <g>
- Group order |G| = n, s.t. $g^n \equiv 1 \pmod{p}$
- Subgroup (≠ subset) of a cyclic group G
 - Every subgroup of G is cyclic, and satisfies all the properties of group
 - if order of G is |G|, each subgroup S has the form < g^d > , where d is a positive divisor of |G|
 - each subgroup has size |S| that divides the size of the group |G|
 - $|S|^*k=|G|$, $k \in N$

A cyclic group (from modular exponentiation)

• mod 7 case, $Z_7^* = \{1,2,3,4,5,6\}$

Look at rows this time!

$$1^{1} \equiv 1 \qquad 1^{2} \equiv 1 \qquad 1^{3} \equiv 1 \qquad 1^{4} \equiv 1 \qquad 1^{5} \equiv 1 \qquad 1^{6} \equiv 1
2^{1} \equiv 2 \qquad 2^{2} \equiv 4 \qquad 2^{3} \equiv 1 \qquad 2^{4} \equiv 2 \qquad 2^{5} \equiv 4 \qquad 2^{6} \equiv 1
3^{1} \equiv 3 \qquad 3^{2} \equiv 2 \qquad 3^{3} \equiv 6 \qquad 3^{4} \equiv 4 \qquad 3^{5} \equiv 5 \qquad 3^{6} \equiv 1
4^{1} \equiv 4 \qquad 4^{2} \equiv 2 \qquad 4^{3} \equiv 1 \qquad 4^{4} \equiv 4 \qquad 4^{5} \equiv 2 \qquad 4^{6} \equiv 1
5^{1} \equiv 5 \qquad 5^{2} \equiv 4 \qquad 5^{3} \equiv 6 \qquad 5^{4} \equiv 2 \qquad 5^{5} \equiv 3 \qquad 5^{6} \equiv 1
6^{1} \equiv 6 \qquad 6^{2} \equiv 1 \qquad 6^{3} \equiv 6 \qquad 6^{4} \equiv 1 \qquad 6^{5} \equiv 6 \qquad 6^{6} \equiv 1$$

Group Z_7^* or G has two generators: $G = \langle 3 \rangle = \langle 5 \rangle$ |G| = 6, its unique divisors are $\{1,2,3,6\}$, for each unique divisor d, $\langle g^d \rangle$ generates a subgroup $\langle 3^1 \rangle = \{1,2,3,4,5,6\} = G$ $|G| = \langle 3^2 \rangle = \langle 2 \rangle = \{1,2,4\}$

$$< 3^{3} > = <2 > = {1,2,4}$$

 $< 3^{3} > = <6 > = {1,6}$
 $< 3^{6} > = <1 > = {1}$

Zoom in to a subgroup

- $<2> = <2> = {1,2,4} = S$
- 2 is the generator g of a subgroup S; S is cyclic
- the order of g is the size of the subgroup <g> = S,
 2^{|S|} ≡ 1 (mod p)
- |S| = 3 = q
- For $\forall x \in S, x^q \equiv 1 \pmod{p}$
 - Then x is the q-th root of 1 (mod p)
 - How many roots for $x^q = 1 \pmod{p}$?
 - q
 - S consists of the q-th roots of 1 (mod p)

Schnorr group

- Pick a very large prime p, and a large prime q
 - non-zero elements form a group of order p-1 under multiplication
 - $-(Z_p^*, *_p)$ is a group of size p-1
 - p-1 is composite, and factored into qr where q is prime, p=qr+1
- Pick any h s.t. h^r ≠ 1 (mod p)
- $g = h^r$ is the generator of Schnorr group (subgroup of Z_p^*)
 - q is the order of Schnorr group
- $g^q \equiv h^{qr} \equiv h^{p-1} \equiv 1 \pmod{p}$
- $\langle g \rangle = \{1, g^1, g^2, g^3, ..., g^{q-1} \}$ is Schnorr group
- Order of <g> is q

Schnorr Signatures

- Patented until 2008
- Uses exponentiation in a finite (Galois) field
 - Security based on discrete logarithms
- Minimizes message dependent computation
- Main work can be done in idle time
- Picks a prime modulus p
 - -p-1 has a prime factor q of appropriate size
 - Typically p 1024-bit and q 160-bit numbers
 - p is chosen to be large enough to resist Index calculus algorithm
 - q is large enough to resist the general algorithm for DLP

Schnorr Key Setup

- Choose suitable primes p, q
 - -p = qr+1
- Choose a such that $a^q \equiv 1 \pmod{p}$
 - $a = h^r$ is the generator of Schnorr group
- (a,p,q) are global parameters for all
- A signer generates a private key s
 - Chooses a private key: 0 < s < q
 - Compute a public key: $v = a^{-s} \mod q$

Schnorr Signature

- User signs message by
 - Chooses random k with 0<k<q and computes x=a^k mod p
 - Keeps k secret, does not reuse k
 - Concatenate msg with x, which is hashed as: e=H (M | | x)
 - Computes: $y = (k+se) \mod q$
 - Signature is pair (e, y)
- Any other user can verify the signature as follows:
 - Computing: $x' = a^y v^e \mod p$
 - Verifying that: e=H (M | | x')

Note that message dependent part is small!

Properties of Schnorr Signature

- Working in the order-q subgroup of Z_p^{*}
- The signature size is much shorter than that of a signature in ElGamal
 - Schnorr: 2|q|
 - ElGamal: 2|p|
- Fewer operations in signature generation and verification
- Patented until 2008

Digital Signature Algorithm (DSA)

- US Gov't approved signature scheme
- designed by NIST & NSA in early 90's
 - Patent-free
- To avoid the patent of Schnorr signature
- DSS is the digital signature standard
- DSA is its algorithm
- creates a 320 bit signature
- a digital signature scheme only
- security depends on difficulty of computing DLP
- □ variant of ElGamal & Schnorr schemes

RSA vs DSA Signatures (recovery vs appendix)

(a) RSA Approach

Source: William Stallings

DSA Key Generation

- Need global public key values (p, q, g):
 - chooses 160-bit prime number q
 - chooses a large prime p with 2^{L-1}
 - where L= 512 to 1024 bits and is a multiple of 64
 - such that q is a 160 bit prime divisor of (p-1)
 - p = qr+1
 - chooses $q = h^{(p-1)/q} = h^r$
 - where 1 < h < p-1 and $h^{(p-1)/q} \mod p > 1$
- signer chooses private key & computes public key:
 - chooses random private key: 0 < x < q
 - computes public key: $y = g^x \mod p$

DSA Signature Creation

- \square to sign a message M, the signer:
 - generates a random signature key k, 0<k<q
 - k must be random, be destroyed after use, and never be reused
- ☐ then computes signature pair:

```
r = (g^k \mod p) \mod q

s = [k^{-1} (H(M) + xr)] \mod q
```

- \square sends signature (r,s) with message M
- ☐ r is a "masked" k
- \square s is a "clue" to help the verifier to cancel out \Bbbk at exponent; it also hides x

DSA Signature Verification

- having received M and signature (r,s)
- to verify a signature, the verifier computes:

```
w = s^{-1} \mod q
u1 = [H(M)w] \mod q
u2 = (rw) \mod q
v = [(g^{u1} y^{u2}) \mod p] \mod q
```

- if (v = r) then signature is verified
- $r = (g^k \mod p) \mod q$ = $(g^{H(M)s-1+ \times rs-1} \mod p) \mod q$ = $(g^{H(M)s-1} g^{\times rs-1} \mod p) \mod q$ = $(g^{H(M)s-1} y^{rs-1} \mod p) \mod q$ • $v = [(g^{u1} y^{u2}) \mod p] \mod q$

mod q can be other modulus.
mod q is needed to
counteract sub-exponential
DLP algorithm

Subliminal channel

- One of covert channels
- A subliminal channel is a way of embedding information in public communications in an undetectable way.
- Some sort of shared secret (a key, knowledge of what to look for) is needed to reconstruct the subliminal information.

terminology

- Covert channel: Intentionally used to communicate
 - An attack that creates a capability to transfer information objects between processes that are not supposed to be allowed
- Side channel: Unintentionally reveals information
 - An attack based on information gained from the physical implementation of a computer system, rather than weaknesses in the implemented algorithm itself
- Steganography: Techniques for hiding the very presence of communication
 - the practice of concealing a file, message, image, or video within another file, message, image, or video
- Subliminal channel: Covert channel with mathematically proven steganographic properties

Subliminal channel

- Two prisoner problem
 - Two prisoners want to escape jail.
 - They are in separate cells and need to communicate.
 - All messages between the prisoners must go through the warden.
 - What should they do?

Toy example of a subliminal channel

- Two prisoners may do the following:
 - They communicate their plans to each other in code.
 - Each word with an even number of letters represents a 1.
 - Each word with an odd number of letters represents a 0.
 - The actual message is the reassembled binary string.

DSA: subliminal channel

- Two prisoners share $x \text{ in } y = g^x \text{ mod } p$
- Use k as the subliminal message
- Sender sends any message M with DSA signature

$$r = (g^k \mod p) \mod q$$

$$s = [k^{-1}(H(M) + xr)] \mod q$$

Receiver gets k as follows

$$k = s^{-1}(H(M) + xr) \mod q$$