Instituto Superior de Engenharia de Coimbra DEPARTAMENTO DE FÍSICA E MATEMÁTICA

Análise Matemática I - Engenharia Informática 2019/2020

1. Curvas de referência, transformações gráficas, domínios, função inversa e resolução de equações

1. Represente graficamente as seguintes curvas:

a)
$$y = x - 1$$
;

b)
$$y = 2x - 1$$
;

c)
$$y = 2x + 2$$
;

d)
$$y = x^2 - 1$$
;

e)
$$y = (x-1)^2$$
;

f)
$$x = y^2$$
;

g)
$$x = y^2 + 1$$
:

h)
$$x^2 + y^2 = 1$$

h)
$$x^2 + y^2 = 1$$
; i) $(x+1)^2 + (y-1)^2 = 4$;

j)
$$y = \sin(x)$$
;

$$k) \ y = \cos(x);$$

1)
$$y = \cos(x) - 1$$
;

m)
$$y = \cos\left(x - \frac{\pi}{2}\right);$$
 n) $y = 2\cos(x);$

$$n) y = 2\cos(x)$$

o)
$$y = -\cos(x)$$
;

p)
$$y = e^x$$
;

q)
$$y = e^x - 1$$
;

r)
$$y = e^{x-1}$$
.

2. Determine o domínio das seguintes funções:

a)
$$f(x) = x - 1$$
;

b)
$$f(x) = e^x$$
;

c)
$$f(x) = \sin(x)$$
;

d)
$$f(x) = \frac{1}{x-1}$$
;

e)
$$f(x) = \frac{1}{x^2 - 5x + 6}$$
;

d)
$$f(x) = \frac{1}{x-1}$$
; e) $f(x) = \frac{1}{x^2 - 5x + 6}$; f) $f(x) = \frac{1}{x-2} + \frac{1}{x-3}$;

g)
$$f(x) = \sqrt{x-1}$$
;

h)
$$f(x) = \sqrt[3]{x-1}$$
;

i)
$$f(x) = \sqrt{x^2 - 1}$$
.

3. Determine a função inversa de cada uma das seguintes funções, numa restrição conveniente.

a)
$$f(x) = x - 1$$
;

b)
$$f(x) = \sqrt{x}$$
; c) $f(x) = x^2$;

c)
$$f(x) = x^2$$

d)
$$f(x) = \sin(x)$$
:

e)
$$f(x) = \cos(2x) + 1$$

d)
$$f(x) = \sin(x)$$
; e) $f(x) = \cos(2x) + 1$; f) $f(x) = \arcsin(x - 1) + \pi$;

g)
$$f(x) = e^x$$
;

h)
$$f(x) = e^{2x} - 1$$
;

i)
$$f(x) = \ln(-x) + 1$$
.

4. Determine os domínios das seguintes funções:

a)
$$f(x) = \ln(x+1)$$

a)
$$f(x) = \ln(x+1)$$
; b) $f(x) = \frac{1}{\ln(x)}$; c) $f(x) = \frac{1}{e^x - 1}$.

c)
$$f(x) = \frac{1}{e^x - 1}$$

d)
$$f(x) = \sin(2x)$$
;

e)
$$f(x) = \arcsin(2x)$$
;

f)
$$f(x) = \operatorname{tg}(x)$$
.

5. Calcule o valor das seguintes expressões numéricas:

a)
$$\sqrt{3^2+4^2}$$
;

b)
$$\sqrt{e^6}$$
;

c)
$$\sqrt[3]{8^2}$$
;

d)
$$\log(100)$$
;

e)
$$\ln(e^4)$$
;

f)
$$e^{2\ln(4)}$$
:

g)
$$\sin\left(\frac{\pi}{3}\right)$$
;

h)
$$\sin\left(\frac{5\pi}{3}\right)$$
;

i)
$$\sin\left(\frac{13\pi}{3}\right)$$
;

j)
$$\cos\left(-\frac{\pi}{6}\right)$$
;

k)
$$\operatorname{tg}\left(\frac{\pi}{3}\right)$$
;

l)
$$\cot\left(\frac{10\pi}{3}\right)$$
;

m)
$$\arcsin(-1)$$
;

n)
$$arccos(-1)$$
;

o)
$$\cos(\arcsin(0))$$
;

p)
$$\arccos(\sin(\pi))$$
:

p)
$$\operatorname{arccos}\left(\sin(\pi)\right)$$
; q) $\operatorname{arccos}\left(\cos(\frac{\pi}{5})\right)$;

r)
$$arccos(e^0)$$
;

6. Simplifique a seguinte expressão:

$$\cos\left(x-\frac{\pi}{2}\right)+\sin(x-\pi)+\operatorname{tg}\left(x+\frac{3\pi}{2}\right).$$

- 7. Considere a função $f(x) = 3\sin(2x)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Faça um esboço do gráfico da função f(x) e confirme a resposta da alínea (a).
 - (c) Determine o valor de $f\left(\frac{\pi}{6}\right)$.
 - (d) Resolva a equação f(x) = -3.
 - (e) Interprete graficamente a alínea (d) e confirme a solução recorrendo o Geogebra.
 - (f) Defina uma restrição de injectividade de f e caracterize a função inversa, nessa restrição.
- 8. Considere a função $f(x) = 2 + \sec(3x)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Resolva a equação f(x) = 4.
 - (c) Defina uma restrição de injectividade de f e caracterize a função inversa, nessa restrição.
- 9. Considere a função $f(x) = -\frac{\pi}{3} + \arccos(3x 1)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Determine os zeros da função f(x).
 - (c) Calcule $f\left(\frac{1}{6}\right)$.
 - (d) Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 10. Considere a função $f(x) = 3 + 2\ln(x 1)$.
 - (a) Determine o domínio e o contradomínio de f(x).
 - (b) Calcule f(2).
 - (c) Caracterize a função inversa de f(x), indicando domínio, contradomínio e expressão analítica.
- 11. Resolva, caso seja possível, as seguintes equações:

a)
$$x^2 - 2x + 1 = 0$$

b)
$$x^3 - 2x^2 + x = 0$$
;

c)
$$x^3 - 3x^2 + 3x - 1 = 0$$

d)
$$e^x - 1 = 0$$

e)
$$e^{2x} - e^x = 0$$

f)
$$e^{2x} - 3e^x + 2 = 0$$

g)
$$-3 + \log(x) = 0$$
;

h)
$$\ln(x+1) = 0$$
;

i)
$$\ln(x^2) - 4 = 0$$
;

$$j) \sin(3x - \pi) = \frac{1}{2}$$

$$k) \sin(3x - \pi) = \sin(x);$$

1)
$$1 - 2\cos(2x) = 2$$

Resolva, caso seja possível, as seguintes equações:
a)
$$x^2-2x+1=0$$
; b) $x^3-2x^2+x=0$; c) $x^3-3x^2+3x-1=0$.
d) $e^x-1=0$; e) $e^{2x}-e^x=0$; f) $e^{2x}-3e^x+2=0$;
g) $-3+\log(x)=0$; h) $\ln(x+1)=0$; i) $\ln(x^2)-4=0$;
j) $\sin(3x-\pi)=\frac{1}{2}$; k) $\sin(3x-\pi)=\sin(x)$; l) $1-2\cos(2x)=2$; m) $\arcsin(3x)=\frac{\pi}{4}$; n) $\arcsin(3x)=\pi$; o) $\arccos(3x)=\pi$.

n)
$$\arcsin(3x) = \pi$$

o)
$$\arccos(3x) = \pi$$

12. Verifique que as seguintes equações têm uma única solução e aproxime-a, com uma casa decimal correcta.

a)
$$x + e^x = 0$$
;

b)
$$x + \ln(x) = 0$$
;

b)
$$x + \ln(x) = 0$$
; c) $\sin(x) - x + 2 = 0$.