پاسخ تمرین امتیازی

پاسخ سوال اول

فرض کنید در یک تاس خاص، احتمال مشاهدهی اعداد ۱ تا ۶ متناسب با معکوس هریک از این اعداد باشد (مثلاً احتمال رخداد ۴ نصف احتمال ۲ است).

• تابع توزیع احتمال تاس را بهدست آورید.

پاسخ.

X	1	2	3	4	5	6
p(x)	0.41	0.2	0.14	0.10	0.08	0.07

• با در نظر داشتن تکنیک Inverse-transform واریته ی متناظر با اعداد تصادفی ۱/۵۵،۰/۵۵،۰/۷۵ و ۱/۰۰ و ۱/۰۰ و ۱/۰۰ مشخص کردن ضابطهها/رسم نمودار برای مقادیر بیابید .

پاسخ. به ترتیب ۱، ۲، ۴ و ۴

پاسخ سوال دوم

اگر H تابعی غیرنزولی و U متغیر تصادفی یکنواخت در بازهی $[\cdot,\cdot]$ باشد؛ به طوری که حد H(X) در ∞ برابر \bullet و در ∞ برابر صفر باشد:

برای متغیر X چیست $X = H^{-1}(U)$ برای متغیر $X = H^{-1}(U)$

پاسخ. تابع CDF متغیر X، تابع H میباشد؛ زیرا:

$$F_X(x) = P(X \le x) = P(H^{-1}(U) \le x) = P(U \le H(x)) = F_U(H(x)) = H(x)$$

دلیل تساوی آخر این است که U توزیع Uniform در بازهی 0 تا 1 دارد و توزیع تجمعی آن تابع همانی است.

 با استفاده از U چگونه می توان متغیر تصادفی exponential تولید کرد؟ با تولید چند نمونه و رسم هیستوگرام درستی راه خود را به صورت شهودی نشان دهید (مثلاً با کمک numpy.random و matplotlib.pyplot در پایتون یا توابع runif و hist در R).

پاسخ. با همین رویکرد قسمت قبل اگر تابع H را برابر با CDF توزیع نمایی بگیریم، متغیر X با استفاده از متغیر یونیفرم، متغیر با توزیع نمایی بهدست میدهد، به این شکل:

$$F_X(x) = 1 - e^{-\lambda x}, \ x = F^{-1}(u)$$

 $\Rightarrow F^{-1}(u) = \frac{-1}{\lambda} ln(1 - u)$

u = runif(1000)
x_list = as.numeric(unlist(lapply(u, function(k) -0.2*log(1-k))))
hist(x, breaks = 50)
hist(rexp(1000, rate = 5), breaks = 50)

پاسخ سوال 3

فرض \mathbf{H}_0 : اعداد داده شده از توزیع یکنواخت پیروی می کنند.

فرض \mathbf{H}_1 : اعداد داده شده از توزیع یکنواخت پیروی می کنند.

Ri	0.05	0.12	0.2	0.43	0.5	0.6	0.74	0.75	0.8	0.92
i/N	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
i/N - Ri	0.05	0.08	0.1	-0.03	0	0	-0.04	0.05	0.1	0.08
Ri-(i-1)/N	0.05	0.02	0	0.13	0.1	0.1	0.14	0.05	0	0.02

$$D = Max\{D^{+}, D^{-}\} = 0.14$$

 $\alpha = 0.05 \rightarrow D\alpha = 0.410 \rightarrow D < D\alpha$

بنابراین نتیجه می گیریم که فرض H_0 برقرار است و اعداد داده شده از توزیع یکنواخت هستند.

پاسخ سوال 4

فرض \mathbf{H}_0 : داده های داده شده از توزیع پواسون پیروی می کنند.

فرض \mathbf{H}_1 : داده های داده شده از توزیع پواسون پیروی نمی کنند.

$$\alpha_{\text{\tiny Poisson}} = \overline{X} = 4.4$$

X _i	O _i	$E_{i} = n.p(x)$	E _i (combined)	(O _i - E _i) ²	$(O_i - E_i)^2 / E_i$
0	0	0.12			
1	0	0.54	3.59	1.99	0.55
2	2	1.19			
3	3	1.74			
4	0	1.92			
5	1	1.69	3.61	6.81	1.89
6	2	1.24			
7	2	0.78	2.8	1.44	0.51
7<	0	0.78			

$$\chi_0^2 = \sum_{i=1}^3 \frac{(0i - Ei)^{**2}}{Ei} = 0.55 + 1.89 + 0.51 = 2.95$$

Degree of freedom = k - s - 1 = 3 - 1 - 1 = 1

$$\chi_{0.05, 1}$$
= 3.84 > 2.95

در نتیجه فرض صفر را نمی توان رد کرد و اعداد شده می توانند از یک توزیع پواسون باشند.