	Date
Expt. No. 03	Page No. 95
Task-	3
Design and Generation of Freque	ency modulation
Aim: To construct the freque observe it's waveform.	ny modulated circuit and
Components required:	
→ TC → Resistor → (apacitor	
-> Broad-board -> Function generator	· · · · · · · · · · · · · · · · · · ·
Procedure	
D) Make the following connections of	with respect to LM561 IC
2) Provide the frequency modulated 3) In the output with varying frequency the further modes.	ency at the closer nodes and
4) (alculate the charge in the frequent	<u>y</u> .
Inference	
→FM is non-linear when compared → Spectrum bardwidth will not be unlike AM.	equal to twice the bandwidth

Teacher's Signature : _____

Circuit design.

Tabulation

Signal	Frequency	Amplitude
message signal	100HZ	14.3V
carrier signal	Toff= 18.445; Ton= 16.645	12V
modulated signal	Ton = 6.445: Toff = 12.245 Toff = 7.445: Ton = 10.645	11-87

Date
Expt. No
Theory:
In frequency modulation, the instantaneous frequency of carrier wave is varied from the center frequency by an amount proportional to the instantaneous complished of
modulating signal
Main advantages of FM are improved signal to noise ratio and less radiation power
The fly signal is expressed as:
$\xi(t) = A_{c}(os(2\pi fc + \beta sin(2\pi fm t))$
B = modulation index of fM wave.
Result: The frequency modulated wave was detected at the orbest.
Teacher's Signature :

```
clc
clear all
close all
t = 0:0.001:1; %upto 1000 samples
vm = input('Enter Amplitude (Message) = ');
vc = input('Enter Amplitude (Carrier) = ');
fM = input('Enter Message frequency = ');
fc = input('Enter Carrier frequency = ');
m = input('Enter Modulation Index = ');
msg = vm*sin(2*pi*fM*t);
subplot(3,1,1); %plotting message signal
plot(t,msg);
xlabel('Time');
ylabel('Amplitude');
title('Message');
carrier = vc*sin(2*pi*fc*t);
subplot(3,1,2); %plotting carrier signal
plot(t,carrier);
xlabel('Time');
ylabel('Amplitude');
title('Carrier Signal');
y = vc*sin(2*pi*fc*t+m.*cos(2*pi*fM*t));
subplot(3,1,3);%plotting
                                       (Frequency
                              FΜ
Modulated) signal
plot(t,y);
vlahel('Time').
                                     Scanned by CamScanner
```

```
fM = input('Enter Message frequency = ');
fc = input('Enter Carrier frequency = ');
m = input('Enter Modulation Index = ');
msg = vm*sin(2*pi*fM*t);
subplot(3,1,1); %plotting message signal
plot(t,msg);
xlabel('Time');
ylabel('Amplitude');
title('Message ');
carrier = vc*sin(2*pi*fc*t);
subplot(3,1,2); %plotting carrier signal
plot(t,carrier);
xlabel('Time');
ylabel('Amplitude');
title('Carrier Signal');
y = vc*sin(2*pi*fc*t+m.*cos(2*pi*fM*t));
subplot(3,1,3);%plotting
                                       (Frequency
                              FΜ
Modulated) signal
plot(t,y);
xlabel('Time');
ylabel('Amplitude');
title('FM Signal');
```


