	History							
	Type	Author	Citation	Literature Cutoff Date				
	Full Evaluation	J. Katakura, Z. D. Wu	NDS 109, 1655 (2008)	1-Apr-2008				
$Q(\beta^-)=-8.83\times10^3$ 6; $S(1)$			2012Wa38					

Note: Current evaluation has used the following Q record.

Q-exp=8930 110 (1998Ko66).

2003Au03 $Q(\beta^{-}) = -8.83 \times 10^{3} \text{ 6}; S(n) = 11506 \text{ } 17; S(p) = 5335 \text{ } 17; Q(\alpha) = 658 \text{ } 17$

¹²⁴Ba Levels

Nomenclature for quasiparticle orbitals:

Neutrons: 1/2[411] from $s_{1/2}$, $d_{3/2}$ orbitals; 5/2[402] and 5/2[413] from $d_{5/2}$, $g_{7/2}$ orbitals; 7/2[523] and 5/2[532] from $h_{11/2}$

 $Protons: \ 3/2[422] \ and \ 1/2[420] \ from \ d_{5/2}, \ g_{7/2} \ orbitals; \ 9/2[404] \ from \ g_{9/2} \ orbital; \ 1/2[550] \ and \ 3/2[541] \ from \ h_{11/2} \ orbital.$

- A: v1/2[411], $\alpha = +1/2$.
- B: v1/2[411], $\alpha = -1/2$.
- C: v5/2[402], $\alpha = +1/2$.
- D: v5/2[402], $\alpha = -1/2$.
- α' : $\nu 5/2[413]$, $\alpha = +1/2$.
- B': v5/2[413], $\alpha = -1/2$.
- E: v7/2[523], $\alpha = -1/2$.
- F: v7/2[523], $\alpha = +1/2$. G: v5/2[532], $\alpha = -1/2$.
- H: v5/2[532], $\alpha = +1/2$.
- a: $\pi 3/2[422]$, $\alpha = +1/2$.
- b: $\pi 3/2[422]$, $\alpha = -1/2$.
- c: $\pi 1/2[420]$, $\alpha = +1/2$.
- d: $\pi 1/2[422]$, $\alpha = -1/2$.
- a': $\pi 9/2[404]$, $\alpha = +1/2$.
- b': $\pi 9/2[404]$, $\alpha = -1/2$.
- e: $\pi 1/2[550]$, $\alpha = -1/2$.
- f: $\pi 1/2[550]$, $\alpha = +1/2$. g: $\pi 3/2[541]$, $\alpha = -1/2$.
- h: $\pi 3/2[541]$, $\alpha = +1/2$.

Cross Reference (XREF) Flags

- 124 La ε decay
- $(HI,xn\gamma)$ В
- $^{125}\mathrm{Ce}~arepsilon$ p decay C
- ⁶⁴Ni(⁶⁴Ni,4nγ)

E(level) [†]	$J^{\pi l}$	T _{1/2}	XREF	Comments
0.0#	0+	11.0 min 5	ABCD	$\%\varepsilon + \%\beta^+ = 100$
				$T_{1/2}$: weighted average of 11.9 min 10 (γ (t)) (1972Dr06), 10.5 min 5 (β (t)) (1975Ra03), 12.0 min 15 (γ (t)) (1967DaZY). < $r^2 > ^{1/2} = 4.819$ fm 5 (2004An14, evaluation).
229.91# 10	2+	191 ps 8	ABCD	J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: From recoil-distance Doppler shift (RDDS) method (1998Uc01). Other: 0.297 ns 26 from $\beta \gamma$ (t) (1992Mo13). 2001Ra27 evaluation gives 191 ps 8.

¹²⁴Ba Levels (continued)

```
E(level)
                                         XREF
                                                                                                                                     Comments
  651.66<sup>#</sup> 13
                            4+
                                                         J^{\pi}: stretched E2 \gamma to 2<sup>+</sup>.
                                          ABCD
  873.20<sup>@</sup> 12
                           2+
                                                         J^{\pi}: M1 \gamma to 2<sup>+</sup>. E2 \gamma to 0<sup>+</sup>.
                                         AB D
  898.0? 10
                           0^{+}
 1071.3 10
                           0^{+}
                                                         J^{\pi}: from \gamma\gamma(\theta) in <sup>124</sup>La \varepsilon decay.
                                         Α
1162.04<sup>@</sup> 14
                                                         J^{\pi}: (3<sup>+</sup>) member of \gamma band.
                           (3^+)
                                         AB D
1228.39<sup>#</sup> 14
                           6+
                                                         J^{\pi}: E2 \gamma to 4<sup>+</sup>.
                                         ABCD
1324.78<sup>@</sup> 13
                            4+
                                                         J^{\pi}: M1(+E2) \gamma to 4<sup>+</sup>. E2 \gamma to 2<sup>+</sup>.
                                          AB D
1353.3 10
                            (2^{+})
                                                         J^{\pi}: \gamma to 0^+.
                                         Α
                            0^{+}
                                                         J^{\pi}: from \gamma\gamma(\theta) in <sup>124</sup>La \varepsilon decay.
1356.9 10
                                         Α
1672.25<sup>@</sup> 16
                                                         J^{\pi}: M1,E2 \gamma to 4<sup>+</sup>. \gamma's to (3<sup>+</sup>) and 6<sup>+</sup>.
                                         AB D
                           (5)^{+}
1722.1 8
                                           B D
                            (3^{-})
1858.14<sup>@</sup> 15
                           (6)^{+}
                                         AB D
                                                         J^{\pi}: E2 \gamma to 4<sup>+</sup>.
1912.92<sup>b</sup> 20
                            5-
                                          AB D
                                                         J^{\pi}: E1 \gamma's to 4<sup>+</sup> and 6<sup>+</sup>.
1923.25<sup>#</sup> 16
                            8+
                                         AB D
                                                         J^{\pi}: stretched E2 \gamma to 6<sup>+</sup>.
2034.2<sup>c</sup> 3
                           (4^{-})
                                         AB D
2261.79<sup>b</sup> 16
                                                         J^{\pi}: E1 \gamma to 6<sup>+</sup>. M1,E2 \gamma to 5<sup>-</sup>.
                           (7)^{-}
                                          AB D
2267.08 19
                                         AB D
                                                         J^{\pi}: E1 \gamma to 6<sup>+</sup>. E1 \gamma to 4<sup>+</sup>.
2285.31<sup>@</sup> 19
                                                         J^{\pi}: Q \gamma to (5^+). D \gamma to 6^+.
                           (7^{+})
                                           B D
2359.46<sup>c</sup> 18
                                                         J^{\pi}: E1 \gamma to 6<sup>+</sup>. M1(+E2) \gamma to 5<sup>-</sup>.
                            (6)^{-}
                                         AB D
2479.03<sup>@</sup> 18
                           (8^{+})
                                         AB D
                                                         J^{\pi}: Q \gamma to (6)<sup>+</sup>; (8)<sup>+</sup> member of \gamma band.
2497.6<sup>e</sup> 3
                            (6^{-})
                                           B D
                           (7^{-})
2647.47 24
                                         AB D
2687.50<sup>#</sup> 20
                            (10^+)
                                           B D
2690.8<sup>d</sup> 3
                            (7^{-})
                                           B D
2704.91<sup>c</sup> 18
                            (8)^{-}
                                         AB D
2721.65<sup>b</sup> 18
                            (9)^{-}
                                         AB D
                                                         J^{\pi}: E1 \gamma to 8<sup>+</sup>. Q \gamma to (7)<sup>-</sup>.
2906.5<sup>e</sup> 3
                            (8^{-})
                                           B D
2975.18<sup>@</sup> 21
                            (9^+)
                                                         J^{\pi}: (9<sup>+</sup>) member of \gamma band.
                                           B D
3095.8 4
                           (7^{-})
                                                         J^{\pi}: (E1) \gamma to 8^+. \gamma to 6^+.
                                         Α
3109.8<sup>d</sup> 3
                            (9^{-})
                                           B D
3156.76<sup>c</sup> 24
                           (10^{-})
                                           B D
3177.1<sup>@</sup> 5
                           (10^{+})
                                           B D
                                                         J^{\pi}: Q \gamma to (8<sup>+</sup>) member of \gamma band.
3286.91<sup>b</sup> 19
                           (11)^{-}
                                           B D
3335.5<sup>e</sup> 4
                           (10^{-})
                                           B D
3436.2<sup>&</sup> 3
                           (12^{+})
                                           B D
3591.6<sup>d</sup> 4
                                           B D
                           (11^{-})
3691.8<sup>a</sup> 4
                           (12^{+})
                                           B D
3694.0<sup>@</sup> 3
                           (11^{+})
                                           B D
                                                         J^{\pi}: (11<sup>+</sup>) member of \gamma band.
3772.6<sup>c</sup> 4
                           (12^{-})
                                           B D
3829.5 11
                           (11)
                                               D
3891.5<sup>e</sup> 5
                           (12^{-})
                                           B D
3968.21<sup>b</sup> 22
                           (13)^{-}
                                           B D
4125.9<sup>&</sup> 4
                           (14^{+})
                                           B D
4228.0<sup>d</sup> 5
                           (13^{-})
                                           B D
4381.8<sup>h</sup> 8
                           (11^{+})
                                               D
4407.3<sup>a</sup> 4
                           (14^{+})
                                           B D
4534.3<sup>c</sup> 6
                           (14^{-})
                                           B D
4551.5<sup>i</sup> 10
                           (12^{+})
                                               D
```

¹²⁴Ba Levels (continued)

E(level) [†]	$J^{\pi l}$	XREF	E(level) [†]	$J^{\pi l}$	XREF	E(level) [†]	$J^{\pi l}$	XREF
4603.8 e 5	(14^{-})	B D	8408.2 ^e 10	(22^{-})	D	13348.3 ^k 13	(30)	D
4761.8 ^b 3	(15^{-})	B D	8483.5 ^f 5	(23^{+})	D	13406.5 ^f 13	31+	D
4766.3 ^h 10	(13^{+})	D	8512.4 <mark>b</mark> 9	(23^{-})	B D	13491.8 <mark>h</mark> 19	(31^{+})	D
4892.5 <mark>&</mark> 6	(16^+)	B D	8794.4 <mark>&</mark> <i>10</i>	(24^{+})	B D	13517.2 ^b 13	(31^{-})	D
5009.7 ^d 5	(15^{-})	B D	8904.4 ^h 15	(23^{+})	D	13590.3 ^j 13	(31)	D
5027.3 ⁱ 10	(14^{+})	D	8910.4 ^d 12	(23^{-})	D	13880.4 <mark>&</mark> <i>13</i>	(32^{+})	B D
5215.8 ^a 6	(16^{+})	B D	9053.4 ^a 10	(24^{+})	B D	14057.6 ^a 12	(32^+)	D
5329.1 ^h 10	(15^+)	D	9176.98 7	(24^{+})	D	14184.1 ^c 15	(32^{-})	D
5392.4° 7	(16 ⁻)	B D	9380.1 ^c 9	(24-)	D	14190.5 ⁸ 14	(32^{+})	D
5446.0 ^e 6	(16^{-})	B D	9427.7 ⁱ 16	(24^{+})	D	14755.2 ^k 14	(32)	D
5638.9 ^b 5	(17^{-})	B D	9525.3 ^e 12	(24-)	D	14832.4 ^h 20	(33^{+})	D
5668.0 ⁱ 11	(16^+)	D	9561.8 ^f 8	(25^{+})	D	14881.2 ^f 15	(33^{+})	D
5725.0 ^f 7	(17^+)	B D	9613.1 ^b 10	(25^{-})	B D	14979.4 ^{<i>j</i>} 15	(33)	D
5763.2 ^{&} 7	(18^{+})	B D	9916.4 ^j 8	(25)	D	15003.7 ^b 15	(33^{-})	D
5905.8 ^d 7	(17^{-})	B D	9950.7 <mark>&</mark> 10	(26^{+})	B D	15335.4 ^{&} 13	(34^{+})	B D
6044.8 ^h 11	(17^{+})	D	9975.0 ^h 16	(25^{+})	D	15459.2 ^a 14	(34^{+})	D
6080.4 ^a 7	(18^{+})	B D	9981.2 ^d 13	(25^{-})	D	15475.0° 17	(34-)	D
6189.6 ⁸ 6	(18^{+})	D	10220.0 ^a 7	(26^+)	D	15618.0 ^g 15	(34^+)	D
6290.4° 8	(18^{-})	B D	10308.3 ⁸ 9	(26+)	D	16029.2 ^k 15	(34)	D
6383.0 ^e 7	(18 ⁻)	B D	10519.6 ⁱ 17	(26^{+})	D	16280.4 ^h 21	(35^+)	D
6452.9 ⁱ 11	(18^{+})	D	10561.3 ^c 11	(26^{-})	D	16425.4 ^f 16	(35^+)	D
6556.0 ^b 7	(19 ⁻)	B D	10703.7 ^e 13	(26 ⁻)	D	16461.2 ^j 16	(35)	D
6581.3 ^f 4	(19^+)	D	10746.6 ^f 10	(27^{+})	D	16775.3 ^{&} 13	(36^{+})	D
6704.0 7	(18)	D	10811.9 ^b 11	(27^{-})	D	16914.4 [‡] <i>13</i>	(36^+)	D
6711.1 <mark>&</mark> 8	(20^{+})	B D	11067.7 ^j 10	(27)	D	16943.5 ^a 15	(36^+)	D
6870.8 ^d 8	(19^{-})	B D	11077.4 ^{h} <i>17</i>	(27^{+})	D	17111.3 ⁸ 17	(36^+)	D
6896.9 ^h 12	(19^{+})	D	11115.4 <i>11</i>	(26)	D	17435.2 ^k 16	(36)	D
6999.4 <mark>a</mark> 8	(20^+)	B D	11182.5 <mark>&</mark> <i>11</i>	(28^{+})	B D	18040.9 ^j 17	(37)	D
7081.5 <mark>8</mark> 6	(20^+)	D	11471.8 <mark>a</mark> 9	(28^{+})	D	18045.0 <i>f</i> 17	(37^+)	D
7229.9 ^c 9	(20^{-})	B D	11522.5 ⁸ 11	(28^{+})	D	18069.7 [‡] <i>14</i>	(38^{+})	D
7362.9 ⁱ 13	(20^{+})	D	11648.9 ⁱ 18	(28^{+})	D	18143.7 [‡] <i>14</i>	(38^{+})	D
7366.0 ^e 8	(20^{-})	B D	11753.3 ^c 13	(28^{-})	D	18525.3 [‡] <i>14</i>	(38^{+})	D
7499.9 ^{<i>f</i>} 5	(21^{+})	D	12029.5 ^f 12	(29^+)	D	18649.1 ⁸ 18	(38^{+})	D
7502.6 <mark>b</mark> 8	(21^{-})	B D	12116.4 ^b <i>12</i>	(29^{-})	D	18909.2 ^k <i>17</i>	(38)	D
7716.4 <mark>&</mark> 9	(22^{+})	B D	12242.3 ^h 18	(29^+)	D	19720.6 ^j 18	(39)	D
7863.8 <mark>h</mark> 13	(21^+)	D	12288.9 ^j 12	(29)	D	20483.3 ^k 18	(40)	D
7876.4 <mark>d</mark> 10	(21^{-})	D	12491.3 <mark>&</mark> <i>12</i>	(30^+)	B D	21501.5 ^j 19	(41)	D
7983.4 <mark>a</mark> 9	(22^{+})	B D	12733.0 ^a 11	(30^+)	D	22150.1 ^k 19	(42)	D
8098.3 <mark>8</mark> 6	(22^{+})	D	12820.4 ⁸ 13	(30^+)	D	23384.7 ^j 20	(43)	D
8262.5 ^c 7	(22^{-})	D	12859.8 ⁱ 19	(30^+)	D	25371.1 ^j 21	(45)	D
8369.2 ⁱ 14	(22^{+})	D	12959.8 ^c 14	(30^{-})	D			

 $^{^{\}dagger}$ From a least-squares fit to adopted gammas. ‡ Level related to band #1 in figure 1 of 2006A115 or to band with configuration=efEF. $^{\sharp}$ Band(A): g.s. Band.

[@] Band(B): γ Band.

¹²⁴Ba Levels (continued)

- & Band(C): 0-qp to ef to efEF, α =0 Configuration=ef after first crossing at $\hbar\omega$ =0.37 MeV, and efEF above second crossing at $\hbar\omega$ =0.49 MeV.
- ^a Band(D): 0-qp to EF to EFef, α =0 Configuration=EF after first crossing at $\hbar\omega$ =0.41 MeV, and EFef above second crossing at $\hbar\omega$ =0.44 MeV.
- ^b Band(e): eb to ebEF, α =1 Configuration=ebEF after crossing at $\hbar\omega$ =0.46 MeV.
- ^c Band(E): ea to eaGH to eaGHEF, α =0 Configuration=eaGH after first crossing at $\hbar\omega$ =0.44 MeV, and eaGHEF above second crossing at $\hbar\omega$ =0.59 MeV.
- ^d Band(f): eb' to eb'EF, α =1 Configuration=eb'EF after crossing at $\hbar\omega$ =0.44 MeV.
- ^e Band(F): ea' to ea'EF, α =0 Configuration=ea'EF after crossing at $\hbar\omega$ =0.44 MeV.
- ^f Band(G): efGH, α =1.
- ^g Band(H): efFH, α =0.
- ^h Band(I): eb'EA' to eb'EA'GH, α =1 Configuration=eb'E α 'GH after crossing at $\hbar\omega$ =0.52 MeV.
- ⁱ Band(i): eb'FA' to eb'FA'GH, α =0 Configuration=eb'FA'GH after crossing at $\hbar\omega$ =0.52 MeV.
- ^j Band(J): Band based on (25), α =1. Possible configuration= $\pi h_{11/2}^2 \otimes \nu(h_{11/2}^5 i_{13/2})$; Decay to ef band suggests $\pi h_{11/2}^2 \otimes \nu h_{11/2}^6$.
- ^k Band(K): Band based on (30), α =0. Possibly a six-quasiparticle configuration.
- ¹ From DCO and angular correlation ratios in ⁶⁴Ni(⁶⁴Ni,4ny), unless otherwise noted.

$\gamma(^{124}\text{Ba})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.@	δ^a	$\alpha^{m{b}}$	Comments
229.91	2+	229.7 1	100‡	0.0	0+	E2		0.1080	B(E2)(W.u.)=113 5 α (K)=0.0854 12; α (L)=0.0179 3; α (M)=0.00380 6; α (N+)=0.000919 13 α (N)=0.000801 12; α (O)=0.0001129 16; α (P)=4.64×10 ⁻⁶
651.66	4+	421.1 <i>I</i>	100‡	229.91	2+	E2		0.01604	$\alpha(K)$ =0.01336 19; $\alpha(L)$ =0.00212 3; $\alpha(M)$ =0.000444 7; $\alpha(N+)$ =0.0001092 16 $\alpha(N)$ =9.45×10 ⁻⁵ 14; $\alpha(O)$ =1.388×10 ⁻⁵ 20; $\alpha(P)$ =7.91×10 ⁻⁷ 11
873.20	2+	643.4 6	100‡ 8	229.91	2+	M1		0.00709	$\alpha(K)$ =0.00611 9; $\alpha(L)$ =0.000779 11; $\alpha(M)$ =0.0001600 23; $\alpha(N+)$ =4.02×10 ⁻⁵ 6 $\alpha(N)$ =3.45×10 ⁻⁵ 5; $\alpha(O)$ =5.31×10 ⁻⁶ 8; $\alpha(P)$ =3.94×10 ⁻⁷ 6
		873.3 6	79 [‡] 16	0.0	0+	E2		0.00244	$\alpha(K)=0.00209 \ 3; \ \alpha(L)=0.000280 \ 4; \ \alpha(M)=5.76\times10^{-5} \ 9;$ $\alpha(N+)=1.439\times10^{-5} \ 21$ $\alpha(N)=1.238\times10^{-5} \ 18; \ \alpha(O)=1.88\times10^{-6} \ 3;$ $\alpha(P)=1.293\times10^{-7} \ 19$
898.0?	0+	668 ^c 5 898 ^c	≈100	229.91 0.0	2 ⁺ 0 ⁺	E0			See 124 La ε decay. $q_K^2(E0/E2)=1.4$ 7, $X(E0/E2)=0.09$ 5, $(2005Ki02,$ evaluation).
1071.3	0+	841.4 [‡]	#	229.91	2+				Cranation).
1162.04	(3^{+})	510.0 6	25	651.66	4+	D			I_{γ} : composite line (1990Pi11).
		932.8 6	100 [‡] 9	229.91		D			
1228.39	6+	576.5 1	100	651.66	4+	E2		0.00672	$\alpha(K)$ =0.00568 8; $\alpha(L)$ =0.000824 12; $\alpha(M)$ =0.0001711 24; $\alpha(N+)$ =4.24×10 ⁻⁵ 6 $\alpha(N)$ =3.66×10 ⁻⁵ 6; $\alpha(O)$ =5.46×10 ⁻⁶ 8; $\alpha(P)$ =3.45×10 ⁻⁷ 5 Mult.: from $\gamma(\theta)$ and linear polarization in (HI,xn γ).
1324.78	4+	451.7 6	47 [‡] 5	873.20	2+	M1,E2		0.0150 20	$\alpha(K)=0.0128 \ 19; \ \alpha(L)=0.00179 \ 10; \ \alpha(M)=0.000371 \ 17;$ $\alpha(N+)=9.2\times10^{-5} \ 6$ $\alpha(N)=8.0\times10^{-5} \ 5; \ \alpha(O)=1.20\times10^{-5} \ 9; \ \alpha(P)=8.0\times10^{-7} \ 15$
		673.1 6	100‡ 11	651.66	4+	M1(+E2)	-0.15 +25-20	0.00631 19	$\alpha(K)=0.00544$ 17; $\alpha(L)=0.000694$ 17; $\alpha(M)=0.000143$ 4; $\alpha(M+)=3.59\times10^{-5}$ 9 $\alpha(N)=3.08\times10^{-5}$ 8; $\alpha(O)=4.73\times10^{-6}$ 13; $\alpha(P)=3.51\times10^{-7}$
		1094.5 6	20 [‡] 7	229.91	2+	E2		1.49×10 ⁻³	12 $\alpha(K)=0.001284 \ 18; \ \alpha(L)=0.0001664 \ 24; \ \alpha(M)=3.42\times10^{-5}$ 5; \(\alpha(N)=.36\times10^{-6} \ 12\) $\alpha(N)=7.36\times10^{-6} \ 11; \ \alpha(O)=1.122\times10^{-6} \ 16;$ $\alpha(P)=7.97\times10^{-8} \ 12$
1353.3	(2^{+})	1353.3 [‡]	‡	0.0	0^{+}				
1356.9	0^+	1127 [‡]	‡	229.91	2+				

S

$\gamma(\frac{124}{\text{Ba}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	α^{b}	Comments
1672.25	$(5)^{+}$	444.4 6	30	1228.39 6+	D		
		510.0 6	37	1162.04 (3 ⁺)	Q		
		1020.8 6	100 12	651.66 4+	M1,E2	0.0021 4	$\alpha(K)=0.0018 \ 3; \ \alpha(L)=0.00023 \ 4; \ \alpha(M)=4.6\times10^{-5} \ 7;$
							$\alpha(N+)=1.17\times10^{-5} I7$
1500 1	(2-)	1.400 ((220.01.24	ъ		$\alpha(N)=1.00\times10^{-5}\ 15;\ \alpha(O)=1.53\times10^{-6}\ 23;\ \alpha(P)=1.12\times10^{-7}\ 20$
1722.1	(3-)	1492.6 6	+	229.91 2+	D		
1858.14	(6) ⁺	533.4 6	100 [‡] 11	1324.78 4+	E2	0.00826	$\alpha(K)$ =0.00696 10; $\alpha(L)$ =0.001031 15; $\alpha(M)$ =0.000214 3; $\alpha(N+)$ =5.30×10 ⁻⁵ 8
							$\alpha(N)=4.58\times10^{-5} \ 7; \ \alpha(O)=6.81\times10^{-6} \ 10; \ \alpha(P)=4.21\times10^{-7} \ 6$
		629.7 6	69 [‡] 11	1228.39 6+	M1+E2	0.0064 11	$\alpha(K)$ =0.0055 10; $\alpha(L)$ =0.00073 9; $\alpha(M)$ =0.000151 18; $\alpha(N+)$ =3.8×10 ⁻⁵ 5
							$\alpha(N)=3.3\times10^{-5} 4$; $\alpha(O)=4.9\times10^{-6} 7$; $\alpha(P)=3.5\times10^{-7} 7$
1912.92	5-	684.9 <i>6</i>	18 [‡] 4	1228.39 6+	E1	1.62×10^{-3}	$\alpha(K)$ =0.001404 20; $\alpha(L)$ =0.0001745 25; $\alpha(M)$ =3.57×10 ⁻⁵ 5; $\alpha(N+)$ =8.94×10 ⁻⁶ 13
							$\alpha(N)=7.68\times10^{-6}\ 11;\ \alpha(O)=1.173\times10^{-6}\ 17;\ \alpha(P)=8.49\times10^{-8}\ 12$
		1260.8 <i>3</i>	100 [‡] 5	651.66 4 ⁺	E1	5.59×10^{-4}	$\alpha(K)=0.000432\ 6;\ \alpha(L)=5.27\times10^{-5}\ 8;\ \alpha(M)=1.075\times10^{-5}\ 15;$ $\alpha(N+)=6.29\times10^{-5}\ 9$
							$\alpha(N)=2.32\times10^{-6} 4$; $\alpha(O)=3.56\times10^{-7} 5$; $\alpha(P)=2.64\times10^{-8} 4$;
							$\alpha(\text{IPF}) = 6.02 \times 10^{-5} \text{ 9}$
1923.25	8+	694.7 <i>1</i>	100	1228.39 6 ⁺	E2	0.00419	$\alpha(K)$ =0.00356 5; $\alpha(L)$ =0.000496 7; $\alpha(M)$ =0.0001026 15; $\alpha(N+)$ =2.55×10 ⁻⁵ 4
							$\alpha(N)=2.20\times10^{-5}$ 3; $\alpha(O)=3.31\times10^{-6}$ 5; $\alpha(P)=2.19\times10^{-7}$ 3
2034.2	(4^{-})	312.0 6		1722.1 (3-)	D		
		1381.9 6	100 [‡] 20	651.66 4+	D		
2261.79	$(7)^{-}$	338.4 6	3.0 15	1923.25 8+			
		348.4 6	9.0 [‡] <i>15</i>	1912.92 5	M1,E2	0.0306 24	$\alpha(K)$ =0.026 3; $\alpha(L)$ =0.00382 16; $\alpha(M)$ =0.00079 4; $\alpha(N+)$ =0.000197 8
							$\alpha(N)=0.000170 8$; $\alpha(O)=2.54\times10^{-5} 5$; $\alpha(P)=1.59\times10^{-6} 25$
		1033.7 <i>1</i>	100‡ 23	1228.39 6+	E1	7.16×10^{-4}	$\alpha(K)$ =0.000620 9; $\alpha(L)$ =7.60×10 ⁻⁵ 11; $\alpha(M)$ =1.552×10 ⁻⁵ 22; $\alpha(N+)$ =3.90×10 ⁻⁶ 6
							$\alpha(N)=3.35\times10^{-6} 5$; $\alpha(O)=5.13\times10^{-7} 8$; $\alpha(P)=3.78\times10^{-8} 6$
2267.08	5-	354.0 <i>6</i>		1912.92 5-	D		
		942.4 6	51 [‡] <i>11</i>	1324.78 4+	E1	8.53×10^{-4}	$\alpha(K)$ =0.000739 11; $\alpha(L)$ =9.08×10 ⁻⁵ 13; $\alpha(M)$ =1.85×10 ⁻⁵ 3; $\alpha(N+)$ =4.65×10 ⁻⁶ 7
							$\alpha(N)=4.00\times10^{-6} \ 6; \ \alpha(O)=6.12\times10^{-7} \ 9; \ \alpha(P)=4.50\times10^{-8} \ 7$
		1038.6 6	1.0×10^{2} ‡ 3	1228.39 6 ⁺	E1	7.09×10^{-4}	$\alpha(K)=0.000615 \ 9; \ \alpha(L)=7.53\times10^{-5} \ II; \ \alpha(M)=1.538\times10^{-5} \ 22; \ \alpha(N+)=3.86\times10^{-6} \ 6$
			±				$\alpha(N)=3.32\times10^{-6} 5$; $\alpha(O)=5.08\times10^{-7} 8$; $\alpha(P)=3.75\times10^{-8} 6$
		1615.3 6	83 [‡] <i>17</i>	651.66 4 ⁺	D		
•							

6

$\gamma(\frac{124}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ^a	$\alpha^{\mathbf{b}}$	Comments
2285.31	(7^+)	612.7 6	100	1672.25 (5)+	Q			
		1057.0 6	40	1228.39 6+	D			
2359.46	$(6)^{-}$	325.5 <i>3</i>	42 6	$2034.2 (4^{-})$	Q			
		446.3 3	71 13	1912.92 5-	M1		0.01749	$\alpha(K)$ =0.01505 22; $\alpha(L)$ =0.00194 3; $\alpha(M)$ =0.000399 6; $\alpha(N+)$ =0.0001004 15 $\alpha(N)$ =8.62×10 ⁻⁵ 13; $\alpha(O)$ =1.324×10 ⁻⁵ 19; $\alpha(P)$ =9.76×10 ⁻⁷ 14
		1130.0 2	100 22	1228.39 6+	E1		6.14×10 ⁻⁴	$\alpha(K)=0.000526 \ 8; \ \alpha(L)=6.43\times10^{-5} \ 9;$ $\alpha(M)=1.313\times10^{-5} \ 19; \ \alpha(N+)=1.013\times10^{-5} \ 15$ $\alpha(N)=2.83\times10^{-6} \ 4; \ \alpha(O)=4.34\times10^{-7} \ 6;$ $\alpha(P)=3.21\times10^{-8} \ 5; \ \alpha(IPF)=6.84\times10^{-6} \ 11$
2479.03	(8^{+})	555.7 6	2.4×10^{2}	1923.25 8 ⁺	D			I_{γ} : intensity undivided (1990Pi11).
		620.9 <i>6</i>	100 [#]	$1858.14 (6)^{+}$	O			
2497.6	(6^{-})	230.5 1	100 19	2267.08 5-				I_{ν} : composite line (1990Pi11).
		824.9 6	6 [#]	$1672.25 (5)^{+}$				
2647.47	(7^{-})	288.0 6	25 13	2359.46 (6)	D			
	()	380.4 6	63 25	2267.08 5	Q			
		385.7 <i>6</i>	88 25	2261.79 (7)	D+Q			
		789.3 <i>6</i>	100 40	1858.14 (6) ⁺	D			
2687.50	(10^{+})	764.4 <i>1</i>	100	1923.25 8 ⁺	Q			
2690.8	(7^{-})	193.0 <i>3</i>	100	2497.6 (6 ⁻)	Ď			
2704.91	(8)	345.2 3	100 <i>17</i>	2359.46 (6)	E2		0.0291	$\alpha(K)$ =0.0240 4; $\alpha(L)$ =0.00409 6; $\alpha(M)$ =0.000860 13; $\alpha(N+)$ =0.000210 3 $\alpha(N)$ =0.000183 3; $\alpha(O)$ =2.65×10 ⁻⁵ 4; $\alpha(P)$ =1.385×10 ⁻⁶ 20
		443.0 4	13 7	2261.79 (7)	M1		0.0178	$\alpha(K)$ =0.01533 22; $\alpha(L)$ =0.00198 3; $\alpha(M)$ =0.000407 6; $\alpha(N+)$ =0.0001024 15 $\alpha(N)$ =8.79×10 ⁻⁵ 13; $\alpha(O)$ =1.349×10 ⁻⁵ 20; $\alpha(P)$ =9.95×10 ⁻⁷ 15
		781.8 2	63 13	1923.25 8+				
2721.65	$(9)^{-}$	459.8 <i>3</i>	57 12	2261.79 (7)	Q			
		798.0 <i>I</i>	100 11	1923.25 8+	E1		1.18×10^{-3}	$\alpha(K)$ =0.001024 <i>15</i> ; $\alpha(L)$ =0.0001266 <i>18</i> ; $\alpha(M)$ =2.59×10 ⁻⁵ 4; $\alpha(N+)$ =6.49×10 ⁻⁶ 9 $\alpha(N)$ =5.58×10 ⁻⁶ 8; $\alpha(O)$ =8.53×10 ⁻⁷ <i>12</i> ; $\alpha(P)$ =6.22×10 ⁻⁸ 9
2906.5	(8^{-})	215.9 3	100 50	2690.8 (7-)	D(+Q)	-0.21 + 25 - 15		
	` '	408.7 6	26 17	2497.6 (6-)	Q			
2975.18	(9^+)	689.8 <i>6</i>		2285.31 (7+)	-			
		1053.0 6		1923.25 8 ⁺				
3095.8	(7-)	834.0 [‡] 4	100 [‡] 10	2261.79 (7)	M1		0.00381	$\alpha(K)$ =0.00329 5; $\alpha(L)$ =0.000416 6; $\alpha(M)$ =8.54×10 ⁻⁵ 12; $\alpha(N+)$ =2.15×10 ⁻⁵ 3

$\gamma(\frac{124}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.@	$\alpha^{\mathbf{b}}$	Comments
								$\alpha(N)=1.84\times10^{-5}$ 3; $\alpha(O)=2.83\times10^{-6}$ 4; $\alpha(P)=2.11\times10^{-7}$ 3
3095.8	(7^{-})	1173 [‡] <i>1</i>	>69 [‡]	1923.25	8+	(E1)	5.86×10^{-4}	$\alpha(K)=0.000492\ 7;\ \alpha(L)=6.00\times10^{-5}\ 9;\ \alpha(M)=1.226\times10^{-5}\ 18;$
	` /					, ,		$\alpha(N+)=2.18\times10^{-5}$ 5
								$\alpha(N)=2.64\times10^{-6}$ 4; $\alpha(O)=4.05\times10^{-7}$ 6; $\alpha(P)=3.00\times10^{-8}$ 5;
								$\alpha(IPF)=1.87\times10^{-5} 5$
		1867 [‡] <i>1</i>	98 [‡] 20	1228.39	6+			
3109.8	(9^{-})	203.2 6	, o 2 0		(8^{-})	D		
	(-)	404.9 6	40 13	2704.91		D		
		419.2 3	100 20	2690.8	(7^{-})	Q		
		462.0 <i>6</i>		2647.47	(7^{-})	Q		
3156.76	(10^{-})	434.7 6	4.9 16	2721.65	$(9)^{-}$	D		
		452.0 <i>1</i>	100 30	2704.91		Q		I_{γ} : composite line (1990Pi11).
3177.1	(10^{+})	698.7 <i>6</i>	100	2479.03		Q		
3286.91	$(11)^{-}$	564.9 <i>1</i>	100 22	2721.65	$(9)^{-}$	E2	0.00709	$\alpha(K)=0.00599 \ 9; \ \alpha(L)=0.000873 \ 13; \ \alpha(M)=0.000181 \ 3;$
								$\alpha(N+)=4.50\times10^{-5}$ 7
								$\alpha(N)=3.88\times10^{-5} 6$; $\alpha(O)=5.79\times10^{-6} 9$; $\alpha(P)=3.63\times10^{-7} 5$
		599.8 <i>6</i>	19 [#]	2687.50	(10^+)	D		
3335.5	(10^{-})	225.8 <i>3</i>	46 11	3109.8	(9^{-})	D		
		429.4 3	100 <i>21</i>	2906.5	(8^{-})	Q		
3436.2	(12^{+})	748.3 <i>1</i>	100	2687.50		Q		
3591.6	(11^{-})	256.0 <i>3</i>	33 13	3335.5	(10^{-})	D		I_{γ} : composite line (1990Pi11).
		482.2 3	100 2 <i>1</i>	3109.8	(9-)	Q		
3691.8	(12^{+})	255.6 6	38 19		(12^{+})	D		
2604.0	(11+)	1004.0 3	100 30	2687.50		Q		
3694.0	(11^{+})	718.8 6	100	2975.18		Q		
3772.6	(12^{-})	486.1 6	15#	3286.91		D		
2001.5	(10-)	615.5 1	100 30	3156.76	. ,	Q		
3891.5	(12^{-})	299.9 3	100 25		(11-)	D		
2010 -:		556.4 <i>3</i>	81 [#] 30		(10^{-})			(T) 0 000 () () () () () () () ()
3968.21	$(13)^{-}$	681.0 <i>I</i>	100	3286.91	$(11)^{-}$	E2	0.00440	$\alpha(K)$ =0.00374 6; $\alpha(L)$ =0.000523 8; $\alpha(M)$ =0.0001081 16;
								$\alpha(N+)=2.69\times10^{-5} 4$
440.50	.	1010		2604.5	(4 5 ±)			$\alpha(N)=2.32\times10^{-5} \ 4; \ \alpha(O)=3.48\times10^{-6} \ 5; \ \alpha(P)=2.29\times10^{-7} \ 4$
4125.9	(14^{+})	434.2 6	100.0	3691.8	(12^{+})	Q	0.00427	(IZ) 0.002(2.5 (I.) 0.00050(7 (A.K) 0.0001047 15
		689.4 <i>1</i>	100 8	3436.2	(12^{+})	E2	0.00427	$\alpha(K)=0.00363$ 5; $\alpha(L)=0.000506$ 7; $\alpha(M)=0.0001047$ 15;
								α (N+)=2.60×10 ⁻⁵ 4
40000	/4.a:		27.10	2004 =	(4.5-)	-		$\alpha(N)=2.24\times10^{-5} \ 4; \ \alpha(O)=3.37\times10^{-6} \ 5; \ \alpha(P)=2.23\times10^{-7} \ 4$
4228.0	(13^{-})	336.6 6	35 10		(12^{-})	D		
1201.0	(4 4 ± 5	636.3 4	100 20	3591.6	(11^{-})	Q		
4381.8	(11^{+})	689.9° 6		3691.8	(12^{+})	D		
		945.4° 6		3436.2	(12^{+})	D		
		1407.0 6		2975.18	(9.)	Q		

 ∞

$\gamma(^{124}\text{Ba})$ (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$\alpha^{\mathbf{b}}$	Comments
4407.3	$\overline{(14^+)}$	281.3 6	13 4	4125.9	(14^{+})	D		
		715.5 <i>3</i>	58 17	3691.8	(12^{+})	Q		
		971.1 <i>3</i>	100 25	3436.2	(12^{+})	Q		
4534.3	(14^{-})	566.2 6		3968.21		Ď		
	, ,	762.1 <i>3</i>	100 33	3772.6	(12^{-})	Q		
4551.5	(12^{+})	170.0 <i>6</i>		4381.8	(11^{+})	Ď		
	, ,	722.0 6		3829.5	(11)			
		858.2 ^c 6		3694.0	(11^{+})	D		
4603.8	(14^{-})	375.6 6	38 15	4228.0	(13^{-})	D		
	. ,	711.3 4	100 50	3891.5	(12^{-})	Q		
4761.8	(15^{-})	793.8 <i>1</i>	100	3968.21	$(13)^{-}$	Q		
4766.3	(13^{+})	215.0 6		4551.5	(12^{+})	Ď		
		384.2 6		4381.8	(11^{+})	Q		
		1073.2 ^c 6		3694.0	(11^{+})	Q		
4892.5	(16^{+})	766.1 <i>1</i>	100	4125.9	(14^{+})	Q		
5009.7	(15^{-})	405.6 6	15 5	4603.8	(14^{-})	-		
		780.9 <i>3</i>	100 15	4228.0	(13^{-})	Q		I_{γ} : see comment for 781.3 γ .
5027.3	(14^{+})	261.0 <i>6</i>		4766.3	(13^{+})	Ď		•
		476.0 <i>6</i>		4551.5	(12^{+})	Q		
5215.8	(16^+)	323.2 6	7 5	4892.5	(16^+)	D&		
	` ' /	808.5 <i>3</i>	100 19	4407.3	(14^{+})	Q		
		1090.0 3	26 12	4125.9	(14^{+})	Q		
5329.1	(15^{+})	302.0 6	·-	5027.3	(14^{+})	Ď		
	\ - /	562.5 6		4766.3	(13^{+})	Q		
		1203.7° 6		4125.9	(14^{+})	Ď		
5392.4	(16^{-})	630.7 6		4761.8	(15^{-})	D		
• •	\ - /	858.3 <i>3</i>	100 40	4534.3	(14^{-})	Q		
5446.0	(16^{-})	436.3 <i>4</i>	22 11	5009.7	(15^{-})	D		
	` /	842.6 6	100 22	4603.8	(14^{-})	Q		
5638.9	(17^{-})	878.0 <i>4</i>	100	4761.8	(15^{-})	Q		
5668.0	(16^{+})	339.0 6		5329.1	(15^{+})	Ď		
	. ,	640.9 <i>6</i>		5027.3	(14^{+})	Q		
5725.0	(17^+)	832.0 <i>3</i>	100	4892.5	(16^+)	(M1)	0.00383	$\alpha(K)=0.00331\ 5;\ \alpha(L)=0.000418\ 6;\ \alpha(M)=8.58\times10^{-5}\ 12;\ \alpha(N+)=2.16\times10^{-5}\ 3$
	. /				. ,	` /		$\alpha(N)=1.85\times10^{-5}$ 3; $\alpha(O)=2.85\times10^{-6}$ 4; $\alpha(P)=2.13\times10^{-7}$ 3
5763.2	(18^{+})	871.6 <i>I</i>	100	4892.5	(16^+)	Q		, 4(-)
5905.8	(17^{-})	459.8 6		5446.0	(16^{-})	D		
	` /	895.7 <i>3</i>	100 17	5009.7	(15^{-})	Q		
6044.8	(17^+)	377.0 6		5668.0	(16^{+})	Ď		
	` /	715.5 6		5329.1	(15^{+})	Q		
6080.4	(18^{+})	317.2 6		5763.2	(18^{+})	Ď		
	. /	864.7 <i>3</i>	100 24	5215.8	(16^{+})	Q		
	(401)			4892.5		Q		
6189.6	(18^{+})	1299.0 <i>6</i>		4092.3	(16^{+})	V		

9

$\gamma(^{124}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.@	Comments
6383.0	(18^{-})	477.2 6		5905.8 (17-)	D	
	. ,	938.1 6	100 22	5446.0 (16-)	Q	
6452.9	(18^{+})	408.0 6		6044.8 (17+)	Ď	
	. ,	784.9 <i>6</i>		5668.0 (16 ⁺)	Q	
6556.0	(19^{-})	917.3 <i>3</i>	100	5638.9 (17-)	Q	
6581.3	(19^{+})	819.1 6	32 9	5763.2 (18+)	Ď	
		857.7 <i>3</i>	100 40	5725.0 (17+)	Q	
6704.0	(18)	1066.0 <i>6</i>		5638.9 (17-)		
6711.1	(20^{+})	948.6 <i>1</i>	100	5763.2 (18 ⁺)	Q	
6870.8	(19^{-})	487.8 <i>6</i>		6383.0 (18-)	Ď	
		965.0 <i>6</i>	100 <i>30</i>	5905.8 (17-)	Q	
6896.9	(19^+)	444.0 6		6452.9 (18 ⁺)	D	
	. ,	852.0 <i>6</i>		6044.8 (17+)	Q	
6999.4	(20^{+})	919.4 <i>3</i>	100 24	6080.4 (18+)	Q	
		1236.2 <i>6</i>		5763.2 (18+)	Q	
7081.5	(20^{+})	891.9 <i>3</i>	100 50	6189.6 (18 ⁺)	Q	
		1319.7 6		5763.2 (18+)	Q	
7229.9	(20^{-})	940.5 <i>3</i>	100	6290.4 (18 ⁻)	Q	
7362.9	(20^{+})	910.0 6		6452.9 (18 ⁺)	Q	
7366.0	(20^{-})	495.2 6		6870.8 (19 ⁻)	Ď	
		982.6 <i>4</i>	100 50	6383.0 (18 ⁻)	Q	
7499.9	(21^{+})	791.3 6		6711.1 (20+)	D	
		918.0 <i>3</i>	100 33	6581.3 (19 ⁺)	Q	
7502.6	(21^{-})	945.3 <i>3</i>	100	6556.0 (19-)	Q	
7716.4	(22^{+})	1004.9 <i>3</i>	100	6711.1 (20 ⁺)	Q	
7863.8	(21^{+})	966.9 <i>6</i>		6896.9 (19 ⁺)	Q	
7876.4	(21^{-})	1007.4 6		6870.8 (19 ⁻)	Q	
7983.4	(22^{+})	983.7 <i>3</i>	100 22	6999.4 (20 ⁺)	Q	
		1272.3 6		6711.1 (20 ⁺)	Q	
8098.3	(22^{+})	1016.8 <i>3</i>	100 50	7081.5 (20 ⁺)	Q	
		1389.0 ^c 6		6711.1 (20 ⁺)	Q	
8262.5	(22^{-})	1034.4 <i>3</i>	100 50	7229.9 (20-)	Q	DCO=0.91
8369.2	(22^{+})	1006.3 <i>6</i>		7362.9 (20+)	Q	
8408.2	(22^{-})	1044.0 <i>6</i>		7366.0 (20 ⁻)	Q	
8483.5	(23^{+})	769.2 <i>6</i>		7716.4 (22+)	D	
		983.4 <i>3</i>	100 40	7499.9 (21 ⁺)	Q	
8512.4	(23^{-})	1009.7 <i>3</i>	100	7502.6 (21 ⁻)	Q	
8794.4	(24^{+})	1077.1 <i>3</i>	100	7716.4 (22+)	Q	
8904.4	(23^{+})	1040.6 <i>6</i>		7863.8 (21 ⁺)	Q	
8910.4	(23^{-})	1034.0 6		7876.4 (21-)	Q	
9053.4	(24^{+})	1069.2 <i>3</i>	100	7983.4 (22 ⁺)	Q	
9176.9	(24^{+})	1078.6 <i>3</i>	100 50	8098.3 (22+)	Q	
		1462.3 ^c 6		7716.4 (22 ⁺)	Q	

$\gamma(^{124}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. @	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. @
9380.1	(24^{-})	1117.6 6	100	8262.5	(22^{-})	Q	13590.3	(31)	1301.4 6		12288.9	(29)	Q
9427.7	(24^{+})	1058.5 6		8369.2		Q	13880.4	(32^{+})	1388.6 <i>6</i>	100	12491.3		Q
9525.3	(24^{-})	1117.1 6		8408.2		Q	14057.6	(32^{+})	1324.5 6	100	12733.0	(30^{+})	Q
9561.8	(25^{+})	1078.2 6	100	8483.5	(23^{+})	Q	14184.1	(32^{-})	1224.3 6		12959.8	(30^{-})	Q
9613.1	(25^{-})	1100.1 6	100	8512.4	(23^{-})	Q	14190.5	(32^{+})	1370.1 6		12820.4	(30^+)	Q
9916.4	(25)	1124.1 ^c 6		8794.4	(24^{+})		14755.2	(32)	1238.0 <i>6</i>		13517.2		
9950.7	(26^{+})	1154.5 <i>3</i>	100	8794.4	(24^{+})	Q			1406.9 <i>6</i>		13348.3	(30)	Q
9975.0	(25^{+})	1070.6 <i>6</i>		8904.4	(23^{+})	Q	14832.4	(33^{+})	1340.6 <i>6</i>		13491.8	(31^{+})	Q
9981.2	(25^{-})	1070.7 ^c 6		8910.4	(23^{-})	Q	14881.2	(33^{+})	1474.7 6		13406.5	31 ⁺	Q
10220.0	(26^+)	1168.6 <i>3</i>	100	9053.4	(24^{+})	Q	14979.4	(33)	1389.1 6		13590.3	(31)	Q
10308.3	(26^+)	1131.4 6	100	9176.9	(24^{+})	Q	15003.7	(33^{-})	1486.5 <i>6</i>		13517.2	(31^{-})	Q
		1516.9 ^c 6		8794.4	(24^{+})	Q	15335.4	(34^{+})	1454.8 6	100	13880.4	(32^{+})	Q
10519.6	(26^+)	1091.9 <i>6</i>		9427.7	(24^{+})	Q	15459.2	(34^{+})	1401.6 <i>6</i>		14057.6	(32^+)	Q
10561.3	(26^{-})	1181.2 <i>6</i>	100	9380.1	(24^{-})	Q	15475.0	(34^{-})	1290.9 ^c 6		14184.1	(32^{-})	Q
10703.7	(26^{-})	1178.4 ^c 6		9525.3		Q	15618.0	(34^{+})	1427.5 6		14190.5		Q
10746.6	(27^{+})	1184.8 <i>6</i>	100	9561.8	(25^{+})	Q	16029.2	(34)	1274.0 6		14755.2		Q
10811.9	(27^{-})	1201.5 6	100	9613.1		Q	16280.4	(35^+)	1448.0 <i>6</i>		14832.4		Q
11067.7	(27)	1151.3 6		9916.4		Q	16425.4	(35^{+})	1544.2 6		14881.2		Q
11077.4	(27^{+})	1102.4 6		9975.0	(25^+)	Q	16461.2	(35)	1481.8 <i>6</i>		14979.4	(33)	Q
11115.4	(26)	1505.0 6		9613.1	(25^{-})		16775.3	(36^+)	1444.3 <i>6</i>	100	15335.4	(34^{+})	Q
11182.5	(28^{+})	1231.2 <i>3</i>	100	9950.7	` '	Q	16914.4	(36^{+})	1583.4 6		15335.4	` /	Q
11471.8	(28^{+})	1251.8 6	100	10220.0		Q	16943.5	(36^{+})	1484.3 6		15459.2	. ,	Q
11522.5	(28^{+})	1214.2 6	100	10308.3		Q	17111.3	(36^+)	1493.3 ^c 6		15618.0	. ,	Q
11648.9	(28^{+})	1129.3 6		10519.6		Q	17435.2	(36)	1406.0 <i>6</i>		16029.2		Q
11753.3	(28^{-})	1192.0 <i>6</i>	100	10561.3		Q	18040.9	(37)	1579.7 6		16461.2		Q
12029.5	(29^+)	1282.9 <i>6</i>		10746.6	` '	Q	18045.0	(37^{+})	1619.6 <i>6</i>		16425.4	. ,	Q
12116.4	(29^{-})	1304.4 6	100	10811.9	. ,	Q	18069.7	(38^+)	1294.4 <i>6</i>		16775.3	. ,	Q
12242.3	(29^+)	1164.9 6		11077.4	. ,	Q	18143.7	(38^{+})	1368.4 6		16775.3	. ,	Q
12288.9	(29)	1221.2 6		11067.7		Q	18525.3	(38^{+})	1610.9 6		16914.4	. ,	Q
12491.3	(30^+)	1309.6 <i>3</i>	100	11182.5		Q	18649.1	(38^{+})	1537.7° 6		17111.3		Q
12733.0	(30^{+})	1261.2 <i>6</i>	100		(28^{+})	Q	18909.2	(38)	1474.0 6		17435.2		Q
12820.4	(30^{+})	1297.9 6			(28^{+})	Q	19720.6	(39)	1679.7 <i>6</i>		18040.9		Q
12859.8	(30^+)	1210.9 6		11648.9	` '	Q	20483.3	(40)	1574.0 6		18909.2	` /	Q
12959.8	(30^{-})	1206.5 6		11753.3	. ,	Q	21501.5	(41)	1780.9 <i>6</i>		19720.6	. /	Q
13348.3	(30)	1232.0 6		12116.4	. ,		22150.1	(42)	1666.8 6		20483.3	` /	Q
13406.5	31+	1377.0 6		12029.5	. ,	Q	23384.7	(43)	1883.2 6		21501.5		Q
13491.8	(31^+)	1249.5 6	100	12242.3		Q	25371.1	(45)	1986.3 <i>6</i>		23384.7	(43)	Q
13517.2	(31^{-})	1400.8 <i>6</i>	100	12116.4	(29^{-})	Q	l						

 $^{^{\}dagger}$ From $^{64}\text{Ni}(^{64}\text{Ni},4\text{n}\gamma),$ unless otherwise noted. ‡ From $^{124}\text{La }\varepsilon$ decay.

γ (124Ba) (continued)

- # From (HI,xnγ).
- [@] From $\alpha(K)$ exp in ¹²⁴La ε decay, and $\gamma(\theta)$, DCO and linear polarization in (HI,xn γ) and ⁶⁴Ni(⁶⁴Ni,4n γ).
- & $\Delta J=0$ transition.
- ^a From $\gamma(\theta)$, DCO and linear polarization in (HI,xn γ).
- ^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^c Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{124}_{56}\mathrm{Ba}_{68}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{124}_{56} \mathrm{Ba}_{68}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{124}_{56} \mathrm{Ba}_{68}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{124}_{56} Ba_{68}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

¹²⁴₅₆Ba₆₈

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{124}_{56}\mathrm{Ba}_{68}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

0.0

Band(A): g.s. Band

 (11^{+})

 (10^{+})

 (9^{+})

719

¹²⁴₅₆Ba₆₈

$$^{124}_{56} \mathrm{Ba}_{68}$$

Type Author Citation Literature Cutoff Date Full Evaluation H. Iimura, J. Katakura, S. Ohya NDS 180, 1 (2022) 1-Oct-2021

 $Q(\beta^-)$ =-7700 90; S(n)=11072 17; S(p)=5869 15; $Q(\alpha)$ =260 17 2021Wa16 Mass measurement: 1999Am05: Mass excess =-82675 14 keV.

$^{126}\mathrm{Ba}$ Levels

Cross Reference (XREF) Flags

- **A** 126 La ε decay (54 s+50 s)
- B (HI,xn γ)

E(level)#	J^{π} †	T _{1/2} ‡	XREF	Comments
0.0@	0+	100 min 2	AB	%ε+% β ⁺ =100 T _{1/2} : from 1976Pa11. Others: 96.5 min 20 (1954Ka33), 103 min 5 (1962Pr09).
256.02 [@] 6	2+	136 ps 5	AB	J^{π} : E2 γ to 0^{+} . $T_{1/2}$: weighted average of 120 ps 20 (1972Ku14), 130 ps +7-21 (1979Se03), 118 ps 9 (1989Sc06), 141 ps 14 (1992Mo13), and 141 ps 4 (1996De50); Others: 187 ps 35 (1967Cl02), 137 ps 7 (2001Ra27), 137.4 ps +67-61 (2016Pr01).
711.10 [@] 6	4+	5.99 ps 12	AB	J^{π} : from $\gamma \gamma(\theta)$ in in ε decay (54 s+50 s); E2 γ to 2 ⁺ .
873.57 & 6	2+	•	AB	J^{π} : from E2 γ to 0^+ .
983.45 9	0_{+}		A	J^{π} : from $\gamma \gamma(\theta)$ in ε decay (54 s+50 s); E2 γ to 2 ⁺ .
1236.24 ^a 7	3+		AB	J^{π} : from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay (54 s +50 s) and M1+E2 to 2 ⁺ state.
1295.99 7	$2^{(+)}$		A	J^{π} : $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay (54 s +50 s) and (E2) to 4 ⁺ state.
1332.47 [@] 8	6+	0.94 ps 4	AB	J^{π} : from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay and E2 γ to 4 ⁺ .
1345.45 & 7	4+	•	AB	J^{π} : from $\gamma \gamma(\theta)$ in ¹²⁶ La ε decay and M1+E2 γ to 4 ⁺ .
1717.61 9	2+		A	J^{π} : γ' s to 0^+ and 4^+ .
1742.57 ^{<i>f</i>} 7	3-		AB	J^{π} : from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay and E1 γ to 4 ⁺ .
1753.84 <i>14</i>	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .
1808.01 ^a 10	5+		AB	J^{π} : $\gamma(\theta)$ in (HI,xn γ) and Q γ to 3^{+} .
1810.16 <i>19</i>	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .
1876.71 9			A	
1890.20 ^{&} 9	6(+)		AB	107
1936.29 9	1,3		A	J^{π} : from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay.
1938.85 ^e 7	5 ⁻		AB	J^{π} : E1 γ to 4^+ , γ to 6^+ .
2018.30 11	$2^+,3,4^+$ $0^{(+)}$		A	J^{π} : γ' s to 2^+ and 4^+ .
2029.83 <i>12</i>			A	J^{π} : from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay (54 s+50 s), Q γ to 2 ⁺ .
2056.13 ^f 8	4-		AB	J^{π} : $\gamma(\theta)$ and M1+E2 γ to 3 ⁻ .
2089.67 [@] 11	8+	0.284 ps <i>21</i>	В	
2100.34 <i>20</i> 2103.48 <i>12</i>			A A	
2117.25 19			A A	
2179.18 9	$2^{+},3,4^{+}$		A	J^{π} : γ' s to 2^+ and 4^+ .
2247.61 10	3-,5-		A	J^{π} : from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay and E2(+M1) γ to 3 ⁻ .
2255.26^{h} 8	5		AB	
2303.43 ^e 8	7 ⁻	3.3 ps 11	AB	J^{π} : E1 γ to 6^+ , γ' s to 5^- and 8^+ .
2378.91 12	•	Po	A	, , , , , , , , , , , , , , , , , , , ,
2386.02 12			A	
2399.1 4	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .

126Ba Levels (continued)

E(level)#	$\mathrm{J}^{\pi \dagger}$	T _{1/2} ‡	XREF	Comments
2408.21 ^f 11	6 ⁽⁻⁾		AB	
2429.61 ⁸ 9	6(-)		В	
2459.17 10			A	
2484.7 ^a 3	7+		В	
2499.19 8	$3^{-},4^{+}$		A	J^{π} : γ' s to 2^+ and 5^- .
2512.32 11	4+,5,6+		A	J^{π} : γ' s to 4^+ and 6^+ .
2530.19 ^{&} 13	8(+)		В	,
2566.36 12	4 ⁽⁺⁾ ,5,6 ⁺		A	J^{π} : γ' s to 4 ⁺ and 6 ⁽⁺⁾ .
2567.0 8	,- ,-		В	, , , , , , , , , , , , , , , , , , , ,
2576.81 9	3,4		A	J^{π} : γ' s to 3 ⁻ , 3 ⁺ , 4 ⁻ and 4 ⁺ .
2605.57 9			A	
2609.37 ^h 13	7 ⁽⁻⁾		В	
2657.44 11	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .
2684.37 8	(4)		A	J^{π} : γ' s to 3 ⁻ , 3 ⁺ , 5 ⁻ and 5 ⁽⁺⁾ .
2716.27 10	$4^+,5,6^+$		A	J^{π} : γ' s to 4^+ and 6^+ .
2732.60 9	$3^{-},4,5^{+}$		A	J^{π} : γ' s to 3^+ and 5^- .
2748.60 10	$4^{(+)},5,6^{+}$		A	J^{π} : γ' s to 4^+ and $6^{(+)}$.
2772.94 ^f 15	$8^{(-)}$		В	
2786.61 ^e 11	9-	2.8 ps 4	В	J^{π} : E2 γ to 7^{-} and E1 to 8^{+} .
2813.30 ⁸ 14	8(-)		В	
2872.09 11	2,3,4		A	J^{π} : γ' s to 3 ⁻ and 3 ⁺ .
2886.5 ⁱ 8			В	
2942.07 [@] 13	10 ⁺	0.173 ps 21	В	
2953.70 8	$2^{+},3,4^{+}$		A	J^{π} : γ' s to 2^+ and 4^+ .
3096.48 ^h 16	9(-)		В	
3108.0 4	2+,3,4+		A	J^{π} : γ' s to 2^+ and 4^+ .
3185.6 <i>3</i>	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .
3236.62 ^f 13	$10^{(-)}$		В	
3243.8 ^a 15	(9^+)		В	
3261.48 & <i>16</i>	$10^{(+)}$		В	
3375.37 ^e 13	11-	1.39 ps 21	В	
3389.7 4			В	
3403.0 5	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .
3419.91 ⁸ 19	10 ⁽⁻⁾		В	
3450.5 ⁱ 5	(8)		В	
3484.8 7	2+,3,4+		A	J^{π} : γ' s to 2^+ and 4^+ .
3588.8 8			В	
3703.76 18	$2^+,3,4^+$		A	J^{π} : γ' s to 2^+ and 4^+ .
3746.84 ^h 23	11 ⁽⁻⁾		В	
3747.40 ^c 16	12+	0.38 ps +6-4	В	
3758.9 <i>3</i>			A	
3886.78 ^f 24	(12^{-})		В	
3887.86 ^b 16	12+		В	
4074.09 <mark>&</mark> 19	12 ⁽⁺⁾		В	
4078.89 ^e 16	13-	0.35 ps 14	В	
4093.3 ^a 17	(11^{+})	_	В	
4110.2 ^g 3	$12^{(-)}$		В	
4121.4 ⁱ 4	(10)		В	
4419.63 ^c 19	14+	0.69 ps 5	В	
4456.9 ^h 6	13(-)	_	В	
4670.6 ^b 4	14(+)		В	
.0,0.0			_	

126Ba Levels (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E(level)#	J^{π} †	T _{1/2} ‡	XREF
4845.78 5 14 ⁽⁻⁾ B 4851.6& 7 14 ⁽⁺⁾ 4856.3a 20 (13+) B 4896.4i 11 (12) B 4900.27e 19 15- 0.35 ps 14 B 4905.2k 7 (13) 5086.7 11 S122.2j 12 (14) S199.8d 4 15 S244.72c 21 16+ 0.32 ps 6 B 5255.8h 8 (15-) S398.2k 15 (15) S509.6b 5 16 ⁽⁺⁾ S662.5f 6 (16-) S707.7g 9 16 ⁽⁻⁾ B 5725.2j 15 (16) S806.39e 22 17- 0.28 ps 14 B 6042.5d 4 17 6098.2k 16 (17) 6182.8h 11 (17-) 6195.2c 6 18+ <0.5 ps 6415.6b 11 (18+) 6513.2j 16 (18) 6530.6& 16 (18+) 6530.6& 16 (18+) 6585.5f 12 (18-) 6700.7g 14 (18-) 6721.6e 3 19 ⁽⁻⁾ B 6721.6e 3 19 ⁽⁻⁾ B 6721.6e 3 19 ⁽⁻⁾ B 6738.6b 15 (20+) 7461.2j 19 (20) 7636.8e 4 21 ⁽⁻⁾ B 6741.2j 19 (20) 7636.8e 4 21 ⁽⁻⁾ B 8388.6b 18 (22+) B 8621.8e 11 23 ⁽⁻⁾ B 9202.2c 18 (24+) B 9700.8e 15 (25-) B 10308.2c 21 (26+) B 11475.2c 23 (28+) B 12132.8e 21 (29-) B 12132.8e 21 (29-) B 12132.8e 23 (30+) B 13469.8e 23 (31-) B B	4713.9 ^f 3	(14^{-})		В
4851.6& 7 14(+) 4856.3a 20 (13+) 4896.4i 11 (12) 4900.27e 19 15- 0.35 ps 14 B 4905.2k 7 (13) 5086.7 11 5122.2j 12 (14) 5199.8d 4 15 5244.72c 21 16+ 0.32 ps 6 B 5255.8h 8 (15-) 5398.2k 15 (15) 5509.6b 5 16(+) 5662.5f 6 (16-) 5707.78 9 16(-) 5707.78 9 16(-) 5702.2j 15 (16) 5806.39e 22 17- 0.28 ps 14 B 6042.5d 4 17 6098.2k 16 (17) 6182.8h 11 (17-) 6195.2c 6 18+ <0.5 ps 6415.6b 11 (18+) 6530.6& 16 (18+) 6530.6& 16 (18+) 6530.6& 16 (18+) 6530.6& 16 (18+) 6530.6& 16 (18+) 6530.6& 16 (18+) 6530.6 8 16 (18+) 6530.6 8 16 (18+) 6530.6 8 16 (18-) 6721.6e 3 19(-) 6968.2k 17 (19) 6995.9d 8 (19) 7183.2c 12 20(+) 7387.6b 15 (20+) 7461.2j 19 (20) 7636.8e 4 21(-) 8145.2c 15 22(+) 8388.6b 18 (22+) 8388.6b 18 (22+) 8388.6b 18 (22+) 84621.8e 11 23(-) 84900.8e 15 (25-) 8410308.2c 21 (26+) 8415.2c 23 (28+) 84123.8e 21 (29-) 8417.2c 23 (28+) 84123.8e 21 (29-) 8417.2c 23 (28+) 84132.8e 21 (29-) 8413469.8e 23 (31-) 8	4764.3 ^j 8	(12)		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4845.7 ⁸ 5			В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				В
4900.27e 19 15 0.35 ps 14 B 4905.2k 7 (13) B 5086.7 11 B 5122.2j 12 (14) B 5199.8d 4 15 5244.72c 21 16+ 0.32 ps 6 B 5255.8h 8 (15-) B 5398.2k 15 (15) B 5509.6b 5 16(+) B 5662.5f 6 (16-) B 5707.7g 9 16(-) B 5725.2j 15 (16) B 5806.39e 22 17- 0.28 ps 14 B 6042.5d 4 17 B 6098.2k 16 (17) B 6182.8h 11 (17-) B 6182.8h 11 (17-) B 6195.2c 6 18+ <0.5 ps 6415.6b 11 (18+) B 6530.6& 16 (18+) B 6530.6& 16 (18+) B 65805.5f 12 (18-) B 6700.7g 14 (18-) B 6721.6e 3 19(-) B 6968.2k 17 (19) B 6995.9d 8 (19) T 7387.6b 15 (20+) B 7461.2j 19 (20) B 7636.8e 4 21(-) B 8145.2c 15 22(+) B 8388.6b 18 (22+) B 8621.8e 11 23(-) B 9202.2c 18 (24+) B 9700.8e 15 (25-) B 10308.2c 21 (26+) B 11475.2c 23 (28+) B 12132.8e 21 (29-) B 12132.8e 23 (30-) B 13469.8e 23 (31-) B		(13^{+})		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.35 ps <i>14</i>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(13)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(1.4)		
5244.72 c 21 16 $^{+}$ 0.32 ps 6 B 5255.8 h 8 (15 $^{-}$) B 5398.2 k 15 (15) B 5509.6 b 5 16 $^{(+)}$ B 5650.6 $^{\&}$ 13 (16 $^{+}$) B 5662.5 f 6 (16 $^{-}$) B 5707.7 g 9 16 $^{(-)}$ B 5806.39 e 22 17 $^{-}$ 0.28 ps 14 B 6042.5 d 4 17 B 6098.2 k 16 (17) B 6182.8 h 11 (17 $^{-}$) B 6513.2 f 16 (18) B 6530.6 $^{\&}$ 17 (18 $^{+}$) B 6698.2 k 17 (19) B 6995.9 d 8 (19) B 7183.2 c 12 20($^{(+)}$) B 7387.6 b 15 (20 $^{(+)}$) B 7461.2 f 19 (20) B 7636.8 e 4 21($^{(-)}$ B 8388.6 b 18 (22 $^{+}$) B 8621.8 e 11 23($^{(-)}$ B 9700.8 e 15 (25 $^{(-)}$ B 10308.2 c 21 (26 $^{(+)}$ B 10372.8 e 18 (27 $^{(-)}$ B 11475.2 c 23 (28 $^{(+)}$ B 12132.8 e 21 (29 $^{(-)}$ B 11475.2 c 23 (28 $^{(+)}$ B 12132.8 e 21 (29 $^{(-)}$ B 12718 c 3 (30 $^{(+)}$ B 13469.8 e 23 (31 $^{(-)}$ B				
$5255.8^h 8$ (15 ⁻) B $5398.2^k 15$ (15) B $5599.6^b 5$ 16 ⁽⁺⁾ B $5650.6^{\&} 13$ (16 ⁺) B $5662.5^f 6$ (16 ⁻) B $5707.7^g 9$ 16 ⁽⁻⁾ B $5705.2^j 15$ (16) B $5806.39^e 22$ 17 ⁻ 0.28 ps 14 B $6042.5^d 4$ 17 B $6098.2^k 16$ (17) B $6182.8^h 11$ (17 ⁻) B $6195.2^c 6$ 18 ⁺ <0.5 ps B $6415.6^b 11$ (18 ⁺) B $6530.6^{\&} 16$ (18) B $6530.6^{\&} 16$ (18) B $6530.6^{\&} 16$ (18) B $6700.7^g 14$ (18 ⁻) B $6700.7^g 14$ (18 ⁻) B $6721.6^e 3$ 19 ⁽⁻⁾ B $6995.9^d 8$ (19) B $7183.2^c 12$ 20 ⁽⁺⁾ B $7387.6^b 15$ (20 ⁺) B $7461.2^j 19$ (20) B $7636.8^e 4$ 21 ⁽⁻⁾ B $8145.2^c 15$ 22 ⁽⁺⁾ B $8388.6^b 18$ (22 ⁺) B $8202.2^c 18$ (24 ⁺) B $9700.8^e 15$ (25 ⁻) B $10308.2^c 21$ (26 ⁺) B $10872.8^e 18$ (27 ⁻) B $11475.2^c 23$ (28 ⁺) B $12132.8^e 21$ (29 ⁻) B $12718^c 3$ (30 ⁺) B $13469.8^e 23$ (31 ⁻) B			0.22 pg 6	
5398.2^k 15 (15) B 5509.6^b 5 $16^{(+)}$ B $5650.6^{\&}$ 13 (16 ⁺) B 5662.5^f 6 (16 ⁻) B 5707.7^g 9 $16^{(-)}$ B 5705.2^j 15 (16) B 5806.39^e 22 17^- 0.28 ps 14 B 6042.5^d 4 17 B 6098.2^k 16 (17) B 6182.8^h 11 (17 ⁻) B 6195.2^c 6 18^+ <0.5 ps B 6415.6^b 11 (18 ⁺) B $6530.6^{\&}$ 16 (18) B $6530.6^{\&}$ 16 (18) B $6530.6^{\&}$ 16 (18) B 6700.7^g 14 (18 ⁻) B 6700.7^g 14 (18 ⁻) B 6721.6^e 3 $19^{(-)}$ B 6968.2^k 17 (19) B 6995.9^d 8 (19) B 7183.2^c 12 $20^{(+)}$ B 7387.6^b 15 (20^+) B 7461.2^j 19 (20) B 7636.8^e 4 $21^{(-)}$ B 8145.2^c 15 $22^{(+)}$ B 8388.6^b 18 (22^+) B 821.8^e 11 $23^{(-)}$ B 9700.8^e 15 (25 ⁻) B 10308.2^c 21 (26 ⁺) B 10872.8^e 18 (27 ⁻) B 11475.2^c 23 (28 ⁺) B 12132.8^e 21 (29 ⁻) B 12718^c 3 (30 ⁺) B 13469.8^e 23 (31 ⁻) B			0.32 ps 0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$5650.6 \stackrel{\&}{} 13 (16^+)$ $5662.5 \stackrel{f}{} 6 (16^-)$ $5707.7 \stackrel{g}{} 9 16^{(-)}$ $5707.7 \stackrel{g}{} 9 16^{(-)}$ $5725.2 \stackrel{j}{} 15 (16)$ $5806.39 \stackrel{e}{} 22 17^ 0.28 \text{ ps } 14$ $6042.5 \stackrel{d}{} 4 17$ $6098.2 \stackrel{k}{} 16 (17)$ $6182.8 \stackrel{h}{} 11 (17^-)$ $6195.2 \stackrel{c}{} 6 18^+ <0.5 \text{ ps}$ $6415.6 \stackrel{b}{} 11 (18^+)$ $6530.6 \stackrel{\&}{} 16 (18)$ $6530.6 \stackrel{\&}{} 16 (18)$ $6530.6 \stackrel{\&}{} 16 (18^+)$ $6721.6 \stackrel{e}{} 3 19^{(-)}$ $6968.2 \stackrel{k}{} 17 (19)$ $6995.9 \stackrel{d}{} 8 (19)$ $7183.2 \stackrel{c}{} 12 20^{(+)}$ $7387.6 \stackrel{b}{} 15 (20^+)$ $7461.2 \stackrel{j}{} 19 (20)$ $7636.8 \stackrel{e}{} 4 21^{(-)}$ $8145.2 \stackrel{c}{} 15 22^{(+)}$ $8388.6 \stackrel{b}{} 18 (22^+)$ $8388.6 \stackrel{b}{} 18 (22^+)$ $8621.8 \stackrel{e}{} 11 23^{(-)}$ $9202.2 \stackrel{c}{} 18 (24^+)$ $9700.8 \stackrel{e}{} 15 (25^-)$ $10308.2 \stackrel{c}{} 21 (26^+)$ $10872.8 \stackrel{e}{} 18 (27^-)$ $11475.2 \stackrel{c}{} 23 (28^+)$ $12132.8 \stackrel{e}{} 21 (29^-)$ $12718 \stackrel{c}{} 3 (30^+)$ $13469.8 \stackrel{e}{} 23 (31^-)$ 8				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$5707.7^8 \ 9 \ 16^{(-)}$ B $5725.2^j \ 15 \ (16)$ B $5806.39^e \ 22 \ 17^-$ 0.28 ps 14 B $6042.5^d \ 4 \ 17$ B $6098.2^k \ 16 \ (17)$ B $6182.8^h \ 11 \ (17^-)$ B $6195.2^c \ 6 \ 18^+ \ <0.5 \text{ ps}$ B $6415.6^b \ 11 \ (18^+)$ B $6530.6^k \ 16 \ (18)$ B $6530.6^k \ 16 \ (18^+)$ B $6585.5^f \ 12 \ (18^-)$ B $6700.7^g \ 14 \ (18^-)$ B $6721.6^e \ 3 \ 19^{(-)}$ B $6968.2^k \ 17 \ (19)$ B $6995.9^d \ 8 \ (19)$ This B $7183.2^c \ 12 \ 20^{(+)}$ B $7387.6^b \ 15 \ (20^+)$ B $7461.2^j \ 19 \ (20)$ B $7636.8^e \ 4 \ 21^{(-)}$ B $8145.2^c \ 15 \ 22^{(+)}$ B $8388.6^b \ 18 \ (22^+)$ B $8621.8^e \ 11 \ 23^{(-)}$ B $9202.2^c \ 18 \ (24^+)$ B $9700.8^e \ 15 \ (25^-)$ B $10308.2^c \ 21 \ (26^+)$ B $11475.2^c \ 23 \ (28^+)$ B $12132.8^e \ 21 \ (29^-)$ B $12718^c \ 3 \ (30^+)$ B $13469.8^e \ 23 \ (31^-)$ B				
$5725.2^{j} 15$ (16) $5806.39^{e} 22$ 17^{-} 0.28 ps 14 B $6042.5^{d} 4$ 17 B $6098.2^{k} 16$ (17) B $6182.8^{h} 11$ (17 ⁻) B $6195.2^{c} 6$ 18 ⁺ <0.5 ps B $6415.6^{h} 11$ (18 ⁺) B $6513.2^{j} 16$ (18) B $6530.6^{\&} 16$ (18) B $6530.6^{\&} 16$ (18) B $6700.7^{g} 14$ (18 ⁻) B $6700.7^{g} 14$ (18 ⁻) B $6721.6^{e} 3$ $19^{(-)}$ B $6968.2^{k} 17$ (19) B $6995.9^{d} 8$ (19) 7183.2 ^c 12 $20^{(+)}$ B $7387.6^{h} 15$ (20 ⁺) B $7461.2^{j} 19$ (20) B $7636.8^{e} 4$ $21^{(-)}$ B $8388.6^{h} 18$ (22 ⁺) B $8621.8^{e} 11$ $23^{(-)}$ B $8621.8^{e} 11$ $23^{(-)}$ B $900.2^{c} 18$ (24 ⁺) B $9700.8^{e} 15$ (25 ⁻) B $10308.2^{c} 21$ (26 ⁺) B $11475.2^{c} 23$ (28 ⁺) B $11475.2^{c} 23$ (30 ⁺) B $13469.8^{e} 23$ (31 ⁻) B				
5806.39^e 22 17^- 0.28 ps 14 B 6042.5d 4 17 B 6098.2k 16 (17) B 6182.8h 11 (17 $^-$) B 6195.2c 6 18 $^+$ <0.5 ps B 6415.6b 11 (18 $^+$) B 6530.6k 16 (18 $^+$) B 6530.6k 16 (18 $^+$) B 6585.5f 12 (18 $^-$) B 6700.7g 14 (18 $^-$) B 6721.6e 3 19 $^{(-)}$ B 6968.2k 17 (19) B 6995.9d 8 (19) 7183.2c 12 20 $^{(+)}$ B 7387.6b 15 (20 $^+$) B 7461.2j 19 (20) B 7636.8e 4 21 $^{(-)}$ B 88621.8e 11 23 $^{(-)}$ B 88621.8e 11 23 $^{(-)}$ B 89700.8e 15 (25 $^-$) B 10308.2c 21 (26 $^+$) B 10872.8e 18 (27 $^-$) B 11475.2c 23 (28 $^+$) B 12132.8e 21 (29 $^-$) B 12718c 3 (30 $^+$) B 13469.8e 23 (31 $^-$) B				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.28 ps 14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.20 ps 1.	
6182.8 ^h 11 (17 ⁻) B 6195.2 ^c 6 18 ⁺ <0.5 ps B 6415.6 ^b 11 (18 ⁺) B 6513.2 ^j 16 (18) B 6530.6 ^{&} 16 (18 ⁺) B 6585.5 ^f 12 (18 ⁻) B 6700.7 ^g 14 (18 ⁻) B 6721.6 ^e 3 19 ⁽⁻⁾ B 6968.2 ^k 17 (19) B 6995.9 ^d 8 (19) B 7183.2 ^c 12 20 ⁽⁺⁾ B 7387.6 ^b 15 (20 ⁺) B 7461.2 ^j 19 (20) B 7636.8 ^e 4 21 ⁽⁻⁾ B 8388.6 ^b 18 (22 ⁺) B 8621.8 ^e 11 23 ⁽⁻⁾ B 9202.2 ^c 18 (24 ⁺) B 9700.8 ^e 15 (25 ⁻) B 10308.2 ^c 21 (26 ⁺) B 11475.2 ^c 23 (28 ⁺) B 12132.8 ^e 21 (29 ⁻) B 12718 ^c 3 (30 ⁺) B 13469.8 ^e 23 (31 ⁻) B				
6195.2 c 6 18 $^{+}$ <0.5 ps B 6415.6 b 11 (18 $^{+}$) B 6513.2 j 16 (18) B 6530.6 $^{\&}$ 16 (18 $^{+}$) B 6585.5 f 12 (18 $^{-}$) B 6700.7 g 14 (18 $^{-}$) B 6721.6 e 3 19 $^{(-)}$ B 6968.2 k 17 (19) B 6995.9 d 8 (19) B 7183.2 c 12 20 $^{(+)}$ B 7387.6 b 15 (20 $^{+}$) B 8 8145.2 c 15 22 $^{(+)}$ B 8 828.6 b 18 (22 $^{+}$) B 8 8621.8 e 11 23 $^{(-)}$ B 8 8621.8 e 11 23 $^{(-)}$ B 9700.8 e 15 (25 $^{-}$) B 10372.8 e 18 (27 $^{-}$) B 11475.2 c 23 (28 $^{+}$) B 12132.8 e 21 (29 $^{-}$) B 12718 c 3 (30 $^{+}$) B 13469.8 e 23 (31 $^{-}$) B 13469.8 e 23 (31 $^{-}$) B 13469.8 e 23 (31 $^{-}$) B				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			<0.5 ps	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6415.6 ^b 11	(18^+)	-	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6513.2 ^j 16			В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6530.6 ^{&} 16	(18^{+})		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6585.5 ^f 12	(18^{-})		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(18^{-})		В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(19)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(20)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
8621.8^e 11 $23^{(-)}$ B 9202.2^c 18 (24^+) B 9700.8^e 15 (25^-) B 10308.2^c 21 (26^+) B 10872.8^e 18 (27^-) B 11475.2^c 23 (28^+) B 12132.8^e 21 (29^-) B 12718^c 3 (30^+) B 13469.8^e 23 (31^-) B				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
12132.8 e 21 (29 $^-$) B 12718 c 3 (30 $^+$) B 13469.8 e 23 (31 $^-$) B				
$12718^{c} \ 3 \qquad (30^{+})$ B $13469.8^{e} \ 23 \qquad (31^{-})$ B				
13469.8 ^e 23 (31 ⁻) B				
	13469.8 ^e 23			

¹²⁶Ba Levels (continued)

E(level)#	$J^{\pi \dagger}$	XREF	Comments
14878.8 ^e 25	(33 ⁻)	В	
15434 ^c 3	(34^{+})	В	
16895 ^c 3	(36^+)	В	
x+0.0 ^m	(13)	В	Additional information 1. E(level): this level possibly decays to 4074, 3888 and 3748 levels (1991Wa20).
180.0+x ^l 10	(14)	В	E(level): this level possibly decays to 4074, 3888 and 3748 levels (1991Wa20).
425.0+x ^m 13	(15)	В	
693.0+x ^l 13	(16)	В	
1012.0+x ^m 14	(17)	В	
1377.0+x ^l 15	(18)	В	
1773.0+x ^m 16	(19)	В	
2206.0+x ^l 16	(20)	В	

[†] From $\gamma(\theta)$ and linear pol. and/or RUL in (HI,xn γ), unless otherwise noted. Band structures in (HI,xn γ) are also considered.

 $^{^{\}ddagger}$ From (HI,xn γ), unless otherwise noted.

[#] From a least-squares fit to $E(\gamma's)$. Uncertainty of 1 keV is given for each $E\gamma$ without uncertainty.

[@] Band(A): ground state band.

[&]amp; Band(B): Band 1, γ -vibrational band below crossing, γ -vibrational band coupled with $\pi(h_{11/2})^2$ above crossing.

^a Band(C): Band 2, γ -vibrational band below crossing, γ -vibrational band coupled with $\pi(h_{11/2})^2$ above crossing.

^b Band(D): Band 3, ground state band below crossing, $v(h_{11/2})^2$ above crossing.

^c Band(E): Band 5, ground state band below 1st crossing, $\pi(h_{11/2})^2$ below 2nd crossing, $\pi(h_{11/2})^2 \nu(h_{11/2})^2$ below 3rd crossing, $\pi(h_{11/2})^2 \nu(h_{11/2})^2 \pi(g_{7/2})^2$ above 3rd crossing.

^d Band(F): band 6, could Be a continuation of band 1.

^e Band(G): Band 7, $\pi(h_{11/2}, g_{7/2})$ below crossing, $\pi(h_{11/2}, g_{7/2})\nu(h_{11/2})^2$ above crossing.

^f Band(H): Band 8, $\pi(h_{11/2}, g_{7/2})$ below crossing, $\pi(h_{11/2}, g_{7/2})\nu(h_{11/2})^2$ above crossing.

^g Band(I): Band 9, $\nu(h_{11/2},g_{7/2})$ below crossing, $\pi(h_{11/2},g_{9/2})$ above crossing.

^h Band(J): Band 10, $\nu(h_{11/2}, g_{7/2})$ below crossing, $\pi(h_{11/2}, g_{9/2})$ above crossing.

ⁱ Band(K): band 11, based on the 2887-keV level.

^j Band(L): Band 12, $v(h_{11/2})^2 \pi(h_{11/2}, g_{7/2})$ below crossing.

^k Band(M): Band 13, $\nu(h_{11/2})^2 \pi(h_{11/2}, g_{7/2})$ below crossing.

¹ Band(N): Band 14, $\nu(h_{11/2})^2 \pi(h_{11/2}, d_{5/2})$ below crossing.

^m Band(O): Band 15, $\nu(h_{11/2})^2 \pi(h_{11/2}, d_{5/2})$ below crossing.

$\gamma(^{126}\text{Ba})$

Adopted Levels, Gammas (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α&	Comments
256.02	2+	256.04 8	100	0.0 0+	E2		0.0758	B(E2)(W.u.)=94 4
711.10	4+	455.05 6	100	256.02 2+	E2		0.0128	B(E2)(W.u.)=127 3
873.57	2+	617.45 7	100.0 14	256.02 2+	M1+E2	+5 + 2 - 1		δ : from $\gamma(\theta)$ in (HI,xn γ), other: 18 +10-5 (2002Ko02).
		873.50 7	63.3 <i>13</i>	$0.0 0^{+}$	E2			
983.45	0_{+}	727.4 1	100	$256.02 \ 2^{+}$	E2			
1236.24	3+	362.71 9	15.2 5	873.57 2+	E2(+M1)		0.028 <i>3</i>	
		525.2 1	12.0 3	711.10 4+	M1+E2	$-1.7\ 2$		
		980.2 9	100.0 <i>14</i>	256.02 2+	M1+E2	+5.5 +11-9		<i>δ</i> : from 2002Ko02.
1295.99	$2^{(+)}$	312.5 <i>1</i>	38 <i>6</i>	983.45 0 ⁺				
		422.4 5	20 5	873.57 2+				
		584.9 2	24 <i>6</i>	$711.10 4^+$	(E2)			
		1040.0 <i>1</i>	100 4	256.02 2+	(M1+E2)	+1.9 +11-9		<i>δ</i> : from 2002Ko02.
		1296.0 <i>I</i>	57.4 11	$0.0 0^{+}$				
1332.47	6+	621.35 6	100	711.10 4+	E2			B(E2)(W.u.)=173 8
1345.45	4+	471.85 7	81.2 <i>21</i>	873.57 2+	E2		0.0116	
		634.30 7	100.0 15	711.10 4+	M1+E2	+1.4 +80-3		δ: from 2002Ko02.
1515 (1	2+	1089.52 9	41.8 16	256.02 2 ⁺	Q			
1717.61	2+	1006.6 <i>I</i>	34.4 14	711.10 4+				
		1461.5 <i>I</i>	100.0 24	256.02 2+				
1740.57	2-	1717.4 5	55 3	$0.0 0^{+}$				
1742.57	3-	397.0 5	<0.24 60.3 <i>10</i>	1345.45 4 ⁺ 711.10 4 ⁺	E1			E_{γ} : not observed in (HI,xn γ).
		1031.40 <i>9</i> 1486.60 <i>9</i>	100.0 17	256.02 2 ⁺	D			
1753.84	2+,3,4+	408.4 5	15 7	1345.45 4 ⁺	D			
1733.04	2 ,3,4	408.4 <i>3</i> 457.8 <i>3</i>	41 9	1295.99 2 ⁽⁺⁾				
		517.6 2	21 6	1236.24 3 ⁺				
		880.3 <i>5</i>	100 12	873.57 2 ⁺				
		1042.8 3	25.5 9	711.10 4+				
1808.01	5+	462.5 3	8.4 14	1345.45 4+				
1000.01	5	475.4 <i>4</i>	8.3 10	1332.47 6+				
		571.78 9	100 8	1236.24 3+	Q			
		1096.6 <i>3</i>	61 16	711.10 4+	Ď			
1810.16	$2^+, 3, 4^+$	573.7 5	100 14	1236.24 3+				
	, ,	936.6 <i>5</i>	15 <i>3</i>	873.57 2+				
		1099.1 2	73 49	711.10 4+				
1876.71		640.5 <i>1</i>	40.2 15	1236.24 3 ⁺				
		1003.1 <i>I</i>	63.2 17	873.57 2+				
		1620.8 2	100 5	256.02 2+				
1890.20	6 ⁽⁺⁾	544.75 7	100.0 11	1345.45 4+	Q			
		557.89 19	21 3	1332.47 6 ⁺	(M1+E2)	+2.8 +24-9		
		1178.0 <i>5</i>	12.0 22	711.10 4+				E_{γ} : not observed in $^{126}La\ \varepsilon$ decay.
1936.29	1,3	700.0 <i>3</i>	60 18	1236.24 3+				
		557.89 <i>19</i> 1178.0 <i>5</i>	21 <i>3</i> 12.0 22	1332.47 6 ⁺ 711.10 4 ⁺		+2.8 +24-9		E_{γ} : not observed in $^{126}La\ \varepsilon$ decay.

S

$\gamma(\frac{126}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f J	\int_{f}^{π} Mult. \ddagger	δ^{\ddagger}	α <mark>&</mark>	Comments
1936.29	1,3	1062.6 1	45 13	873.57 2+		_		
		1680.4 <i>I</i>	100 6	256.02 2+				
1938.85	5-	606.40 10	20.5 4	1332.47 6+	E1			
2010.20	a+ a ++	1227.78 9	100 8	711.10 4+	E1			
2018.30	$2^+,3,4^+$	672.8 3	7.6 12	1345.45 4+				
		1144.6 <i>3</i> 1307.1 <i>5</i>	4.8 18	873.57 2 ⁺ 711.10 4 ⁺				
		1762.3 <i>1</i>	26 <i>5</i> 100 <i>4</i>	256.02 2 ⁺				
2029.83	$0^{(+)}$	1702.3 1	100 4	256.02 2 ⁺	Q			Mult.: from $\gamma\gamma(\theta)$ in ¹²⁶ La ε decay (54 s+50 s).
2029.83	4-	117.0 5	4.1 8	1938.85 5	Q			E _{γ} : not observed in (HI,xn γ).
2030.13	7	313.45 <i>15</i>	76 <i>6</i>	1742.57 3	M1+E2	-2.0 + 9 - 13	0.0403 11	Ly. not observed in (111,xiiy).
		820.0 2	6.3 3	1236.24 3+	WITTE	2.0 17 13	0.0103 11	E_{γ} : not observed in (HI,xn γ).
		1345.00 9	100.0 17	711.10 4+	D			by. not observed in (III, iii).
2089.67	8+	757.2 1	100	1332.47 6+	E2			B(E2)(W.u.)=213 16
2100.34		346.5 5	<22	1753.84 2+,	3,4+			
		1844.3 2	100 4	256.02 2+				
2103.48		757.9 5	66 15	1345.45 4+				
		1392.4 <i>I</i>	100 <i>3</i>	711.10 4+				
2117.25		771.8 2	66.7 21	1345.45 4+				
		880.8 5	100 14	1236.24 3+				
2170 10	2+ 2 4+	1406.3 5	45.1 <i>18</i>	711.10 4+				
2179.18	2+,3,4+	1305.5 5	31 5	873.57 2 ⁺				
		1468.1 <i>I</i> 1923.1 <i>I</i>	33.2 <i>25</i> 100 <i>4</i>	711.10 4 ⁺ 256.02 2 ⁺				
2247.61	3-,5-	505.1 2	62 10	1742.57 3 ⁻	E2(+M	1)	0.0114 17	
2247.01	5 ,5	902.1 2	8.6 7	1345.45 4+	L2(TWI	1)	0.0114 17	
		1536.5 <i>I</i>	100 3	711.10 4+				
2255.26	5	316.49 9	13.0 11	1938.85 5				
		909.75 7	100 6	1345.45 4+	D			
		922.8 5	6.1 17	1332.47 6+				E_{γ} : not observed in (HI,xn γ).
		1545 <i>1</i>	5.1 11	711.10 4+				E_{γ} : not observed in ¹²⁶ La ε decay.
2303.43	7-	213.6 5	2.4 6	2089.67 8+				E_{γ} : not observed in ¹²⁶ La ε decay.
		364.4 <i>3</i>	5.9 18	1938.85 5				E_{γ} : not observed in ¹²⁶ La ε decay.
		970.97 <i>1</i>	100 11	1332.47 6+	E1			B(E1)(W.u.)=8.E-5 3
2378.91		1667.8 <i>1</i>	100	711.10 4+				
2386.02		1674.9 <i>1</i>	100	$711.10 4^+$				
2399.1	$2^+,3,4^+$	1687.9 5	60 11	711.10 4+				
	.()	2143.1 5	100 56	256.02 2+				
2408.21	$6^{(-)}$	352.06 9	93 4	2056.13 4	Q			
		469.2 <i>4</i>	100 [@] 30	1938.85 5				
		1076.1 <i>3</i>	54 13	1332.47 6+	D			E_{γ} : not observed in 126 La ε decay.
2429.61	$6^{(-)}$	174.4 <i>1</i>	81 8	2255.26 5	D(+Q)	+0.03 5		
		373.4 1	100 11	2056.13 4	Q			

6

$\gamma(\frac{126}{\text{Ba}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α &
2429.61	6(-)	490.8 <i>1</i>	78 <i>14</i>	1938.85 5-	(M1+E2)	-1.2 4	0.0118 7
		1097.1 2	94 11	1332.47 6 ⁺	,		
2459.17		520.3 2	100 19	1938.85 5-			
		1126.5 2	9.8 5	1332.47 6 ⁺			
		1748.1 <i>I</i>	81 <i>3</i>	711.10 4+			
2484.7	7+	676.7 <i>3</i>	100 9	1808.01 5 ⁺	Q		
		1153	30 9	1332.47 6 ⁺			
2499.19	$3^{-},4^{+}$	560.2 <i>3</i>	10 5	1938.85 5-			
		756.6 <i>3</i>	99 20	1742.57 3-			
		1203.2 <i>I</i>	72 5	1295.99 2 ⁽⁺⁾			
		1262.9 <i>1</i>	100 <i>15</i>	1236.24 3+			
		1625.6 <i>3</i>	19.8 <i>13</i>	873.57 2+			
		1788.1 <i>I</i>	37.2 20	711.10 4+			
2512.32	$4^+,5,6^+$	573.5 <i>5</i>	26 <i>4</i>	1938.85 5			
		1166.9 2	12.7 5	$1345.45 4^+$			
		1179.8 <i>3</i>	5.6 19	1332.47 6+			
		1801.2 <i>I</i>	100 <i>3</i>	$711.10 4^+$			
2530.19	8(+)	440	6.3 21	2089.67 8+			
		640.0 <i>1</i>	100 <i>16</i>	1890.20 6 ⁽⁺⁾	Q		
2566.36	$4^{(+)},5,6^{+}$	627.7 5	60 <i>13</i>	1938.85 5			
		676.3 <i>5</i>	43 10	1890.20 6 ⁽⁺⁾			
		1220.9 <i>I</i>	100.0 <i>21</i>	1345.45 4+			
2567.0		137	100	2429.61 6 ⁽⁻⁾			
2576.81	3,4	520.7 <i>3</i>	16 <i>3</i>	2056.13 4-			
		834.2 <i>1</i>	30.2 13	1742.57 3-			
		1231.3 5	15.1 25	1345.45 4+			
		1340.6 <i>1</i>	100 <i>13</i>	1236.24 3+			
		1865.9 <i>3</i>	20.4 13	$711.10 4^+$			
2605.57		1894.4 <i>I</i>	78 <i>3</i>	711.10 4+			
		2349.6 <i>1</i>	100 <i>3</i>	256.02 2+			
2609.37	7 ⁽⁻⁾	179.8 <i>1</i>	100	2429.61 6 ⁽⁻⁾	D+Q	-0.135	
2657.44	$2^+,3,4^+$	1946.3 <i>3</i>	16.7 9	711.10 4+			
		2401.4 <i>I</i>	100 5	$256.02 \ 2^{+}$			
2684.37	(4)	628.2 <i>1</i>	100 17	2056.13 4			
		745.5 1	14 3	1938.85 5			
		876.3 5	11.7 22	1808.01 5+			
		941.8 2	12.4 5	1742.57 3-			
		1448.1 <i>I</i>	52.4 9	1236.24 3+			
2716 27	4+ 5 6+	1973.3 1	48.9 17	711.10 4+			
2716.27	4+,5,6+	1383.7 1	23.1 6	1332.47 6+			
2732.60	3-,4,5+	2005.2 <i>1</i> 676.4 <i>5</i>	100 <i>3</i> 86 <i>16</i>	711.10 4 ⁺ 2056.13 4 ⁻			
2132.00	J , 1 ,J	070.4 3	00 10	2030.13 4			

$\gamma(^{126}\text{Ba})$ (continued)

	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
	3450.5	(8)	564	23 15	2886.5		Q		
	3484.8	2+,3,4+	1360.8 <i>6</i> 2773.5 <i>10</i>	100 <i>15</i> 100 <i>7</i>	2089.67 8 711.10 4				
	2.00	- ,5,.	3228.9 10	23 4	256.02 2	+			
	3588.8		327	100	3261.48 1				
		2+2++	1059	@	2530.19 8				
	3703.76	2+,3,4+	2992.6 <i>3</i> 3447.7 2	44 <i>13</i> 100 <i>3</i>	711.10 4 256.02 2	. ⁺ ·+			
	3746.84	11(-)	326.7 3	28 8	3419.91 1		D+Q	-0.5 1	
	37 10.01	11	650.5 2	100 14	3096.48 9		Q	0.5 1	
	3747.40	12 ⁺	486	1.6 6	3261.48 1	$0^{(+)}$			
			805.3 1	100 3	2942.07 1		E2		B(E2)(W.u.)=116 15
	3758.9	(12=)	1702.7 3	100	2056.13 4				
	3886.78	(12^{-})	511 650.2 2	15 <i>4</i> 100 <i>15</i>	3375.37 1 3236.62 1				
	3887.86	12 ⁺	945.8 <i>1</i>	100 13	2942.07 1		E2		
	4074.09	$12^{(+)}$	812.6 <i>1</i>	100 14	3261.48 1		Q		
			1132	21 3	2942.07 1	0^{+}			
`	4078.89	13-	703.5 1	100	3375.37 1		E2		$B(E2)(W.u.)=2.5\times10^2 +16-8$
	4093.3	(11^{+})	849.5 8	100 [@]		9+)			
	4110.2	$12^{(-)}$	363.6 5	16 8	3746.84 1				
	4121.4	(10)	690.3 <i>2</i> 671	100 <i>12</i> 19 <i>10</i>	3419.91 1 3450.5 (8	8)	Q		
	4121.4	(10)	860	26 10	3261.48 1		Q		
			1179.4 <i>4</i>	100 14	2942.07 1		V		
	4419.63	14+	532	4.2 9	3887.86 1		E2		B(E2)(W.u.)=21 5
	44760	12(-)	672.2 1	100 8	3747.40 1		E2		B(E2)(W.u.)=153 12
	4456.9	13 ⁽⁻⁾	347	24 8	4110.2 1		0		
	4670.6	14 ⁽⁺⁾	710 783.0 <i>4</i>	100 <i>12</i> 100 <i>15</i>	3746.84 1 3887.86 1		Q Q		
	1 0/0.0	17	922.9 4	42 6	3747.40 1		V		
	4713.9	(14^{-})	827.1 2	100	3886.78 (Q		
	4764.3	(12)	1017 ^b	100 ^{b#}	3747.40 1				
	4845.7	$14^{(-)}$	389	45 18		3(-)			
	40.5	4.(1)	735.4 4	100 18		2(-)	Q		
	4851.6	14 ⁽⁺⁾	777.7 9 1104	100 <i>20</i> 70 <i>7</i>	4074.09 1 3747.40 1		Q		
	4856.3	(13^{+})	763	100			Q		
	4896.4	(12)	775	100		10)	~		
	4900.27	15-	821.4 <i>I</i>	100	4078.89 1	3-	E2		$B(E2)(W.u.)=1.2\times10^2 +8-4$
١	4905.2	(13)	141	100 29	4764.3 (12)	D		

9

$\gamma(^{126}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^π	Mult.‡	Comments
4905.2	(13)	784	36 14	4121.4 (10)		
	(-)	1017 <mark>b</mark>	43 <i>b</i> #	3887.86 12+		
5086.7		241	100	4845.7 14 ⁽⁻⁾)	
5122.2	(14)	217	100	4905.2 (13)	D	
5199.8	15	780.2 <i>3</i>	100	4419.63 14+	D	
5244.72	16 ⁺	825.1 <i>I</i>	100	4419.63 14+	E2	B(E2)(W.u.)=123 +29-20
5255.8	(15^{-})	410	35 12	4845.7 14 ⁽⁻		
	` /	799	100 24	4456.9 13 ⁽⁻)	
5398.2	(15)	276	100	5122.2 (14)		
5509.6	16(+)	839.0 <i>3</i>	100	4670.6 14 ⁽⁺		
5650.6	(16^{+})	799	100	4851.6 14 ⁽⁺⁾		
5662.5	(16^{-})	948.6 <i>5</i>	100	4713.9 (14		
5707.7	16(-)	452	38 15	5255.8 (15		
		862	100 15	4845.7 14 ⁽⁻		
5725.2	(16)	327	100 29	5398.2 (15)	Ď	
	. ,	603	57 29	5122.2 (14)		
5806.39	17^{-}	906.1 <i>1</i>	100	4900.27 15-	E2	B(E2)(W.u.)=9.E+1+9-3
6042.5	17	797.5 <i>4</i>	50 20	5244.72 16 ⁺		
		842.9 <i>4</i>	100 20	5199.8 15	Q	
6098.2	(17)	373	100 50	5725.2 (16)		
		700	75 25	5398.2 (15)		
6182.8	(17^{-})	475	62 18	5707.7 16 ⁽⁻		
(105.2	10+	927	100 50	5255.8 (15		D/F3\/W_\; 20
6195.2	18+	950.8 5	100	5244.72 16 ⁺	E2	B(E2)(W.u.)>39
6415.6	(18^{+})	906	100	5509.6 16 ⁽⁺		
6513.2	(18)	415 788	83 <i>17</i> 100 <i>33</i>	6098.2 (17) 5725.2 (16)		
6530.6	(18^{+})	880	100 33	5650.6 (16 ⁺		
6585.5	(18^{-})	923	100	5662.5 (16		
6700.7	(18 ⁻)	993	100	5707.7 16 ⁽⁻⁾		
6721.6	19(-)	915.2 ^a 2	100 ^a	5806.39 17	Q	
6968.2	(19)	455	@	6513.2 (18)	V	
0908.2	(19)	870	100 50	6098.2 (17)		
6995.9	(19)	802	100 30	6195.2 18+		
0,7,5.7	(1))	952	$1.2 \times 10^2 \ 20$	6042.5 17		I_{γ} : ΔI_{γ} =200.
7183.2	20(+)	988	1.2×10 20	6195.2 18 ⁺	Q	ry
7387.6	(20^{+})	972	100	6415.6 (18 ⁺)	
7461.2	(20)	948	100	6513.2 (18)		
7636.8	$21^{(-)}$	915.2 ^a 2	100 ^a	6721.6 19 ⁽⁻⁾		
8145.2	22(+)	962	100	7183.2 20 ⁽⁺⁾		
8388.6	(22^{+})	1001	100	7387.6 (20 ⁺		
8621.8	23(-)	985	100	7636.8 21 ⁽⁻⁾		
0021.0		, 00	-00	. 00 0.0 21	~	

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡
9202.2	(24^{+})	1057	100	8145.2 22 ⁽⁺⁾	180.0+x	(14)	180	100	x+0.0 (13)	
9700.8	(25^{-})	1079	100	8621.8 23 ⁽⁻⁾	425.0+x	(15)	245	100	180.0+x (14)	
10308.2	(26^+)	1106	100	9202.2 (24+)	693.0+x	(16)	268	100 33	425.0+x (15)	D
10872.8	(27^{-})	1172	100	9700.8 (25 ⁻)			513	50 17	180.0+x (14)	
11475.2	(28^{+})	1167	100	$10308.2 (26^+)$	1012.0+x	(17)	319	100 23	693.0+x (16)	D
12132.8	(29^{-})	1260	100	10872.8 (27-)			587	38 <i>23</i>	425.0+x (15)	
12718	(30^+)	1243	100	11475.2 (28+)	1377.0+x	(18)	365	100 50	1012.0+x (17)	
13469.8	(31^{-})	1337	100	12132.8 (29-)			684	50 13	693.0+x (16)	
14041	(32^+)	1323	100	$12718 (30^+)$	1773.0+x	(19)	396	100 40	1377.0+x (18)	
14878.8	(33^{-})	1409	100	13469.8 (31-)			761	80 40	1012.0+x (17)	
15434	(34^{+})	1393	100	$14041 (32^+)$	2206.0+x	(20)	433	100 50	1773.0+x (19)	
16895	(36^+)	1461	100	$15434 (34^+)$			829	50 25	1377.0+x (18)	

 $^{^{\}dagger}$ From av of $^{126}\text{La}\ \varepsilon$ decay and (HI,xn γ) when both data are available. ‡ From $\gamma(\theta)$ and linear polariation in (HI,xn γ) and $\gamma\gamma(\theta)$ and $\alpha(K)$ exp in $^{126}\text{La}\ \varepsilon$ decay. $^{\#}$ Uncertainty of intensity was not given in (HI,xn γ).

[@] Intensity was not given in (HI, $xn\gamma$).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^a Multiply placed with undivided intensity.

^b Multiply placed with intensity suitably divided.

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $^{126}_{56}{
m Ba}_{70}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Band(B): Band 1, γ-vibrational band

below crossing,

 γ -vibrational band

coupled with $\pi(\mathbf{h}_{11/2})^2$

above crossing

6530.6

5650.6

4851.6

4074.09

3261.48

2530.19

1890.20

1345.45

873.57

 (13^{+})

 (11^{+})

 (9^{+})

7+

5+

3+

763

759

677

 (18^{+})

 (16^{+})

<u>14</u>(+)

 $12^{(+)}$

 $10^{(+)}$

 $8^{(+)}$

6(+)

731

472

Band(A): Ground state

band

852

757

621

455

 10^+

8+

2942.07

2089.67

1332.47

711.10

256.02 0.0

Band(G): Band 7, $\pi(h_{11/2}, g_{7/2})$ below crossing, $\pi(h_{11/2}, g_{7/2})v(h_{11/2})^2$ above crossing

 $^{126}_{56} \mathrm{Ba}_{70}$

313

1742.57

Band(N): Band 14, $v(\mathbf{h}_{11/2})^2 \ \pi(\mathbf{h}_{11/2}, \mathbf{d}_{5/2})$ below crossing

Band(M): Band 13, $v(\mathbf{h}_{11/2})^2 \pi(\mathbf{h}_{11/2}, \mathbf{g}_{7/2})$ below crossing

(13) 4905.2

	Histo	ory	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Zoltan Elekes and Janos Timar	NDS 129, 191 (2015)	28-Feb-2015

 $Q(\beta^{-})=-6750\ 50;\ S(n)=10632\ 13;\ S(p)=6428\ 8;\ Q(\alpha)=-143\ 6$ 2012Wa38 S(2n)=18852 14, S(2p)=10811 6 (2012Wa38). α : Additional information 1.

¹²⁸Ba Levels

Cross Reference (XREF) Flags

- $^{128} La~\varepsilon$ decay (<1.4 min) $^{128} La~\varepsilon$ decay (5.18 min) В
- C
- $(HI,xn\gamma)$ $^{130}Ba(p,t)$

E(level) [†]	Jπ‡	T _{1/2} @	XREF	Comments
0.0^{d}	0+	2.43 d 5	ABCD	%ε=100 J ^π : L=0 in (p,t). T _{1/2} : from γ (t) (1963Ya05). Other: 2.4 d I (1950Fi11).
284.00 ^d 8	2+	105 ps 9	ABCD	J^{π} : E2 γ to 0 ⁺ ; L=2 in (p,t).
763.32 ^d 11	4+	5.34 ps <i>24</i>	ABCD	J^{π} : L=4 in (p,t); consistent with E2 γ to 2 ⁺ .
884.50 ^a 12	2+	3.4 ps 4	ABCD	J^{π} : E2 γ to 0^+ ; L=2 in (p,t).
942.1 5	0_{+}		AB D	J^{π} : L=0 in (p,t); E2 γ to 2 ⁺ .
1321.0 4	2+		AB D	J^{π} : L=2 in (p,t); γ' s to 0 ⁺ and 4 ⁺ .
1324.37 & <i>14</i>	3+		BC	J^{π} : M1+E2 γ 's to 2 ⁺ and 4 ⁺ .
1372.33 ^a 13	4+	3.3 ps <i>3</i>	BCD	J^{π} : L=4 in (p,t); E2 γ to 2 ⁺ , M1+E2 γ to 4 ⁺ .
1406.88 ^d 17	6+	1.33 ps <i>12</i>	BC	J^{π} : in-band E2 γ to 4 ⁺ .
1710.0 <i>10</i>	0+		AB D	J^{π} : L=0 in (p,t);consistent with $\gamma\gamma(\theta)$.
1799.56 <i>16</i>	4+		В	J^{π} : From $\gamma\gamma(\theta)$ of 2002Wo10, γ to 2^+ , β^- feeding from (5^+) .
1833.75 18	4 ⁺		B D	J^{π} : From $\gamma \gamma(\theta)$ of 2002Wo10, γ to 2^+ , β^- feeding from (5 ⁺); contradiction with L=3 in (p,t).
1907.5 4	4+		B D	J^{π} : L=4 in (p,t).
1931.34 <mark>&</mark> 22	5 ⁺		BC	J^{π} : E2 γ to 3 ⁺ ; M1 γ to 4 ⁺ .
1939.34 ^a 18	6+	1.86 ps 22	BC	J^{π} : E2 γ to 4 ⁺ in band, γ to 6 ⁺ .
1953.9 <i>5</i>			D	
2008.9 5	(4.± 4.±)		В	77 / 04 .04
2039.35 21	$(1^+ \text{ to } 4^+)$		В	J^{π} : γ' s to 2^+ and 3^+ .
2039.49 ^f 19	5-	1.12 ps <i>17</i>	BC	J^{π} : E2 γ from 7^- in band.
2054.6 7	2+		D	J^{π} : L=2 in (p,t).
2175.6 3	(4 to 6)		В	J^{π} : log $ft=6.81$ from (5 ⁺).
2188.51 ^d 19	8+	0.53 ps 7	C	J^{π} : E2 γ to 6 ⁺ in band.
2192.5 <i>6</i> 2197.7 <i>3</i>	(4^+)		B D	J^{π} : from log $ft=7.37$ from (5 ⁺) and γ to 2 ⁺ .
2203.4 3	$3^{-},4^{+}$ $(3^{-},4^{+})$		В В	J^{π} : L=4 in (p,t). J^{π} : γ' s to 2 ⁺ , β^- feeding from (5 ⁺).
2218.8 5	0+		AB D	J^{π} : L=0 in (p,t); $\gamma \gamma(\theta)$.
2246.7 5	$(4 \text{ to } 6^+)$		В	J^{π} : log $ft=7.07$ from (5^+) and γ' s to 4^+ and 5^+ .
2250.6 9	4+		D	J^{π} : L=4 in (p,t).
2347.2 5	2+		A D	J^{π} : L=2 in (p,t).
2395.81 ^h 23	(7)	6.1 ns 2	ВС	J^{π} : E1 γ to 6^+ , no γ to $(3,4^+)$.
	- *			$T_{1/2}$: from beam- γ (t) (1992Pe06).
2412.87 ^f 18	7-	3.6 ps <i>3</i>	BC	J^{π} : E1 γ' s to 6^+ and 8^+ .

¹²⁸Ba Levels (continued)

E(level) [†]	$\mathrm{J}^\pi \ddagger$	$T_{1/2}^{@}$	XREF	Comments
2425.45 15	$(4^-,5^+)$		В	J^{π} : $\gamma \gamma(\theta)$ suggests J=4,5; γ to 3 ⁺ , no γ to 2 ⁺ .
2444.5 2 2451.4 <i>3</i>	0^+ (3 ⁻ to 6 ⁺)		D B	J^{π} : L=0 in (p,t). J^{π} : γ 's to 4 ⁺ and 5 ⁻ .
2474.0 <i>10</i>	$(2^+ \text{ to } 6^+)$		В	J^{π} : γ to 4^+ .
2486.2 10	,		D	'
2511.2 <i>7</i> 2531.5 <i>4</i>	(4 ⁺ to 7 ⁻)		D B	J^{π} : γ' s to 5 ⁻ and 6 ⁺ .
2551.5 7	(4 to 7) 4 ⁺		D	J^{π} : L=4 in (p,t).
2571.4 4	$(4^+ \text{ to } 7^-)$		В	J^{π} : γ' s to 5 ⁻ and 6 ⁺ .
2589.7 <i>7</i> 2600.27 ^{<i>a</i>} <i>19</i>	2 ⁺ 8 ⁺	0.8 ps <i>3</i>	D C	J^{π} : L=2 in (p,t). J^{π} : E2 γ to 6 ⁺ in band.
2612.83^{h} 25	(8)-	0.8 ps 5 119 ps 5	C	J^{π} : M1+E2 γ to (7) ⁻ in band.
2627.0 3	(0)	117 ps 5	В	This level is split up into two levels in 1997Ha30. However, evaluators do not see any published experimental fact that would contradict a one-level assumption.
2629.0 10	0^{+}		A D	J^{π} : L=0 in (p,t); $\gamma \gamma(\theta)$.
2631.3 ^{&} 5	7+		C	J^{π} : Q γ to 5 ⁺ in band.
2659 <i>I</i> 2669.5 <i>5</i>	(3 ⁻)		D B	J^{π} : L=(3) in (p,t).
2710 <i>I</i>	(2^{+})		D	J^{π} : L=(2) in (p,t).
2721.1 <i>3</i> 2746.2 <i>7</i>	$(5,6^+)$		B B	J^{π} : γ' s to 4 ⁺ and 6 ⁺ ; no γ to 2 ⁺ .
2749 <i>1</i> 2770 <i>1</i>	0+		D D	J^{π} : L=0 in (p,t).
2804 <i>1</i>			D	
2840 <i>I</i> 2848.6 <i>4</i>	0^{+}		D B	J^{π} : L=0 in (p,t).
2860.78 ⁸ 20	(8-)	25 ps <i>3</i>	С	J^{π} : D(+Q) γ to 7 ⁻ , no γ to 5 ⁻ ; parity from configuration.
2870 <i>I</i> 2878.41 <i>24</i>	(5-6+)		D B	J^{π} : E2,D γ to 4 ⁺ , γ to (7) ⁻ .
2906.29^{f} 19	(5 ⁻ ,6 ⁺) 9 ⁻	3.8 ps <i>3</i>	С	J^{π} : E2 γ to 7^{-} in band, E1 γ to 8^{+} .
2923 1	0+	3.6 ps 3	D	J^{π} : L=0 in (p,t).
2927.0 ^h 3	(9)-	11.8 ps 8	C	J^{π} : M1+E2 γ to (8) ⁻ , E2 γ to (7) ⁻ .
2929.9 <i>5</i> 2950 <i>I</i>			B D	
2975.3 6			В	
2977.89 <i>25</i> 3039 <i>1</i>	(4,5)		B D	J^{π} : $\gamma\gamma(\theta)$ for the 1605 γ 488 γ suggests J=4,5.
3082.31^{d} 21	10 ⁺	0.40 ps 6	C	J^{π} : E2 γ to 8^+ in band.
3086 1	(3-)	01.10 ps 0	D	J^{π} : L=(3) in (p,t).
3116.9 5			В	
3127 <i>I</i> 3204 <i>I</i>			D D	
3246 <i>1</i>			D	
3292.5 ^h 3	$(10)^{-}$	2.6 ps 6	C	J^{π} : M1+E2 γ to (9) ⁻ , cross-over γ to (8) ⁻ in band.
3334.39 ⁸ 20 3341 3	(10^{-})	3.4 ps <i>3</i>	C D	J^{π} : D(+Q) γ to 9 ⁻ , E2 γ to (8 ⁻) in band. J^{π} : L=(4) in (p,t).
3345.78 ^a 21	(4 ⁺) 10 ⁺	0.63 ps 19	C D	J^{π} : E2 γ to 8^+ in band.
3387.2 ^{&} 7	(9 ⁺)	r	C	J^{π} : γ to 7^+ in E2 band.
3474 3	(3-)		D	J^{π} : L=(3) in (p,t).
		2.4. 3	C	
3521.71° 24 3536 3	10.	2.4 ps 3	D	$J^{"}: \gamma$ to 10° , E2 γ to 8° .
3611 3	(3 ⁻)		D	J^{π} : L=(3) in (p,t).
3506.7 ^f 4 3521.71 ^c 24	(3 ⁻) 11 ⁻ 10 ⁺	2.4 ps <i>3</i>	C C	J^{π} : L=(3) in (p,t). J^{π} : γ to 9 ⁻ in E2 band. J^{π} : γ to 10 ⁺ , E2 γ to 8 ⁺ .
3611 <i>3</i>	(3 ⁻)		D	J^{π} : L=(3) in (p,t).

¹²⁸Ba Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\bigcirc}$	XREF	Comments
3683.2 ^h 4	(11-)	1.1 ps 4	С	J^{π} : γ' s to $(10)^-$ and $(9)^-$ in band.
3985.29 ⁸ 23	(12^{-})	1.1 ps 7	c	J^{π} : Q γ to (10 ⁻) in band and γ to 11 ⁻ .
3988.19 ^e 22	12+	0.58 ps 19	Č	J^{π} : E2 γ to 10^{+} ; no γ to lower-spin states.
4017.74 ^c 24	12 ⁺	0.70 ps <i>12</i>	C	J^{π} : E2 γ to 10^+ in band.
4112.2 ^d 3	12 ⁺		C	J^{π} : Q γ to 10^{+} in band.
4116.1 <mark>h</mark> 4	$(12)^{-}$	0.7 ps 3	C	J^{π} : E2 γ to $(10)^{-}$, γ to (11^{-}) .
4194.8 ^a 3	12 ⁺		C	J^{π} : Q γ to 10^{+} in band.
4218.2^{f} 4	13-		C	J^{π} : Q γ to (11 ⁻) in band.
4556.8 ^h 5	(13-)		C	J^{π} : Q γ to (11 ⁻), γ to (12) ⁻ in band.
4645.92 ^e 24	14+	0.89 ps <i>18</i>	С	J^{π} : E2 γ to 12 ⁺ in band.
4650.7 ^b 6	12 ⁺	0.44	C	J^{π} : M1+E2 γ from 13 ⁺ , γ from 14 ⁺ in band.
4720.37 ^c 24	14+	0.44 ps 9	C	J^{π} : γ to 12^+ in E2 band.
4815.7 ⁸ 4 4901.6? 3	$(14^{-})^{\#}$ (13^{+})	0.23 ps <i>3</i>	C C	J^{π} : γ to 12^+ , γ from 14^+ .
4956.07 ^b 25	13+	1.00 ps 9	С	J^{π} : $\gamma \gamma(\theta)$ suggests 13-12 spin sequence for the 843 γ and 968 γ . Parity from
4930.07 23	13	1.00 ps 9	C	M1+E2 γ to 12 ⁺ .
5036.1 <i>a</i> 3	14+		C	J^{π} : γ to 12^{+} in E2 band.
5040.0 ^h 5	(14^{-})		C	J^{π} : γ' s to (12 ⁻), (13 ⁻) in band.
5052.2 ^f 6	15-		C	J^{π} : Q γ to 13 ⁻ in band.
5233.4 ^b 3	14 ⁺	1.6 ps <i>3</i>	С	J^{π} : $\gamma\gamma(\theta)$ suggests 14-13 spin sequence for the 277 γ and M1+E2 γ to 13 ⁺ .
5384.0 ⁱ 8	(15^{+})		C	J^{π} : γ to 14 ⁺ , no γ to lower-spin states.
5495.9 ^e 4	16+	0.46 ps 4	C	J^{π} : γ to 14 ⁺ in E2 band.
5499.5 ^h 8	$(15^{-})^{\#}$		C	
5529.7 ^b 3	15 ⁺	1.06 ps <i>15</i>	C	J^{π} : M1+E2 γ to 14 ⁺ , γ to 13 ⁺ in band.
5551.0 ^c 4	(16^+)		C	J^{π} : γ to 14 ⁺ in E2 band.
5753.78 5	(16-)	0.27 ps <i>3</i>	C	J^{π} : γ to (14 ⁻) in band, γ to 15 ⁻ .
5853.0 ^b 3	16 ⁺	0.68 ps 23	С	J^{π} : M1+E2 γ to 15 ⁺ , γ to 14 ⁺ in band.
5997.8 ^f 8	17-		С	J^{π} : Q γ to 15 ⁻ in band.
6011.0 ^h 11	(16 ⁻) [#]		С	
6214.8 ^b 3	17+	0.49 ps 6	С	J^{π} : M1+E2 γ to 16 ⁺ , γ to 15 ⁺ in band.
6240.0 ⁱ 8 6436.3 ^e 5	(17 ⁺) 18 ⁺	0.10 mg 4	C	J^{π} : γ to 16^+ , γ to (15^+) in band.
6493.0° 11	(18 ⁺) [#]	0.19 ps 4	C	J^{π} : γ to 16^+ in E2 band.
6608.4 ^b 3	18+	0.24 = 5	C	M_1 , M_1 , E_2 , A_2 , A_3 , A_4 , A_4 , A_5 , A_4 , A_5 ,
6732.7 ⁸ 11	(18 ⁻)#	0.34 ps 5	C	J^{π} : M1+E2 γ to 17 ⁺ , γ to 16 ⁺ .
6/32./8 11 6993.8 ^f 13	$(18)^{"}$ $(19^{-})^{\#}$		C	
7036.1 ^b 3		0.21 2	C	III M1. F2 (10+ (17+ 1 1 1
7036.1^{b} 3 7178.2^{i} 8	19 ⁺	0.21 ps <i>3</i>	C	J^{π} : M1+E2 γ to 18 ⁺ , γ to 17 ⁺ in band.
	(19 ⁺) 20 ^{+#}	0.16	C	J^{π} : γ to 18^+ , γ to (17^+) in band.
7443.2 ^e 10 7493.9 ^b 3		0.16 ps 4	C	J^{π} : γ to 18 ⁺ in E2 band.
	20 ⁺		C	J^{π} : M1+E2 γ to 19 ⁺ , γ to 18 ⁺ in band.
7530.0° 15	$(20^+)^{\#}$		C	
7928.8^{f} 16	(21 ⁻)#		C	IT. M1 (F2) 42 20+42 10+ in hand
7980.8 ^b 3	21+		C	J^{π} : M1+E2 γ to 20 ⁺ , γ to 19 ⁺ in band.
8163.4 ⁱ 10	(21 ⁺)		C	J^{π} : γ to 20^+ , γ to (19^+) in band.
8484.9 ^e 12	22 ^{+#}		C	J^{π} : γ to 20^+ in E2 band.
8497.2 ^b 4	22 ⁺		C	J^{π} : γ to 20^+ and γ to 21^+ in band.
8659.0 ^c 18	$(22^+)^{\#}$		С	

¹²⁸Ba Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
8934.8 ^f 19	(23 ⁻)#	С	
9032.3 ^b 4	23 ⁺	С	J^{π} : γ' s to 21 ⁺ and 22 ⁺ in band.
9167.6 ⁱ 13	(23^+)	C	J^{π} : γ to 22^+ , γ to (21^+) in band.
9563.9 ^e 16	$(24^+)^{\#}$	C	
9601.1 <mark>b</mark> 7	24+	C	J^{π} : γ' s to 22 ⁺ and 23 ⁺ in band.
9814.0 ^c 20	$(24^+)^{\#}$	C	
10023.8 ^f 21	$(25^{-})^{\#}$	C	
10167.7 <mark>b</mark> 9	25 ⁺	C	J^{π} : γ' s to 23 ⁺ and 24 ⁺ in band.
10237.6 ⁱ 16	$(25^+)^{\#}$	C	
10649.9 <mark>e</mark> 19	$(26^+)^{\#}$	C	
10785.1 ^b 12	(26^+)	C	J^{π} : γ to 24 ⁺ in band.
11055.0 ^c 23	$(26^+)^{\#}$	C	
11195.8 ^f 24	$(27^{-})^{#}$	C	
11386.6 ⁱ 19	$(27^+)^{\#}$	C	
11775.9 ^e 21	$(28^+)^{\#}$	C	
12442 ^{<i>f</i>} 3	$(29^{-})^{#}$	C	
12590.7 ⁱ 21	$(29^+)^{\#}$	C	
12981.9 ^e 24	$(30^+)^{\#}$	C	
$13737^{f} 3$	$(31^{-})^{\#}$	C	
14238 ^e 3	$(32^+)^{\#}$	C	
15062 ^f 3	$(33^{-})^{#}$	C	
15500 ^e 3	$(34^+)^{\#}$	C	
16288 ^{<i>f</i>} 3	$(35^{-})^{#}$	C	
16780 ^e 3	$(36^+)^{\#}$	C	
17653 ^{<i>f</i>} 3	(37 ⁻)#	C	
18217 ^e 3	$(38^+)^{\#}$	С	

[†] E(levels) are from a least-squares fit to adopted E γ 's, except for those excited in (p,t) alone.

 $^{^{\}ddagger}$ J^{π '}s of band members are based on the J^{π} of the band head or other band member and on multipolarities of in-band transitions, unless otherwise noted. # γ to J=(I-2) in band.

[®] From recoil-distance Doppler-shift (2000Pe20,2000Pe19) or DSA (1998Pe17) in (HI,xnγ), except as noted.

[&]amp; Band(A): γ -vibrational band, odd spin.

^a Band(B): γ -vibrational band, even spin.

^b Band(C): magnetic-dipole band. Configuration= $\pi(h_{11/2}d_{5/2})\nu(h_{11/2}g_{7/2})$.

^c Band(D): g.s. S band-1. Configuration= $\pi(h_{11/2})^2$.

^d Band(E): g.s. band.

^e Band(F): g.s. S band-2. Configuration= $\pi(h_{11/2})^2 \nu(h_{11/2})^4$.

^f Band(G): 2-quasiproton band α =0. Configuration= π (h_{11/2}d_{5/2}) ν (h_{11/2})⁴.

^g Band(H): 2-quasiproton band $\alpha=1$. Configuration= $\pi(h_{11/2}d_{5/2})\nu(h_{11/2})^4$.

^h Band(I): 2-quasineutron band. Configuration= $\nu(h_{11/2}g_{7/2})$.

ⁱ Band(J): Possibly γ - S band.

$\gamma(^{128}\text{Ba})$

Adopted Levels, Gammas (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	δ@&	α	Comments
	284.00	2+	284.10 8	100	0.0 0+	E2		0.0539	B(E2)(W.u.)=72 7 Mult.: from $\gamma(\theta)$ and RUL.
	763.32	4+	479.31 <i>10</i>	100	284.00 2 ⁺	E2		0.01108	B(E2)(W.u.)=108 5 Mult.: from $\gamma(\theta)$, $\gamma\gamma(\theta)$ and $\alpha(K)$ exp.
	884.50	2+	600.5 2	100.0 9	284.00 2+	M1+E2	+13 +16-4	0.00606	B(E2)(W.u.)=32 4; B(M1)(W.u.)=0.00010 +25-10 Mult.: from $\gamma\gamma(\theta)$ and $\alpha(K)$ exp.
			884.5 2	74 <i>7</i>	0.0 0+	E2		0.00237	B(E2)(W.u.)=3.4 6 I_{γ} : other: 64 2 in (HI,xn γ). Mult.: from $\gamma(\theta)$ and RUL.
	942.1	0_{+}	658.0 <i>6</i>	100	284.00 2+	E2		0.00479	Mult.: from $\gamma(\theta)$ and linear polarization.
	1321.0	2+	378.5	100	942.1 0+				
			436.7	< 0.74	884.50 2+				
			557.4	0.26 22	$763.32 4^+$				
			1037.1	<3.24	284.00 2+				
			1321.6	0.9 3	$0.0 0^{+}$				
	1324.37	3+	439.9 3	21.1 4	884.50 2+	[M1+E2]		0.0181	Mult.: D+Q from $\gamma\gamma(\theta)$.
			561.0 3	9.6 3	763.32 4+	M1+E2	+3.7 +25-12	0.00740 22	Mult., δ : D+Q from $\gamma\gamma(\theta)$, M1+E2 from large δ .
			1040.4 2	100.0 10	284.00 2+	M1+E2	+4 +2-1	0.001704	α =0.001704 Mult., δ : D+Q from $\gamma\gamma(\theta)$, M1+E2 from large δ .
ι	1372.33	4+	487.9 2	100.0 10	884.50 2+	E2		0.01055	B(E2)(W.u.)=62 6
			609.0 3	79.0 6	763.32 4+	M1+E2	-14 +8-16	0.00584 10	B(E2)(W.u.)=16.1 15; B(M1)(W.u.)=5.E-5 +6-5 Mult., δ : D+Q from $\gamma\gamma(\theta)$, M1+E2 from large δ . I _{γ} : other: 129 3 in (HI, x n γ).
			1088.2 2	80.3 8	284.00 2+	E2		1.51×10^{-3}	B(E2)(W.u.)=0.90 9 Mult.: from $\gamma\gamma(\theta)$ and RUL. I _y : other: 91 3 in (HI,xny).
	1406.88	6+	643.65 [#] 5	100	763.32 4 ⁺	E2		0.00506	B(E2)(W.u.)=100 9 Mult.: from $\gamma(\theta)$ and $\alpha(K)$ exp.
	1710.0	0^{+}	1426 <i>I</i>	100	284.00 2+	[E2]		9.26×10^{-4}	Mult.: Q from $\gamma\gamma(\theta)$.
	1799.56	4+	427.4 3	25.5 13	1372.33 4+	[12]		7.20/10	110m / 110m / /(v).
	1,,,,,,,	•	475.4 5	34.4 16	1324.37 3+	M1+E2	+2.0 +10-5	0.0121 5	Mult., δ : D+Q from $\gamma\gamma(\theta)$, M1+E2 from large δ .
			479	8 3	1321.0 2+				7/(=), Imge 0.
			915.0 <i>3</i>	100.0 16	884.50 2 ⁺				
			1036.3 <i>3</i>	53.8 16	763.32 4+	D			Mult.: from $\gamma \gamma(\theta)$.
			1515.3 7	21.7 13	284.00 2+				
J	1833.75	4+	1070.4 2	100.0 15	763.32 4+	M1+E2	+0.65 10	0.00197	Mult., δ : D+Q from $\gamma\gamma(\theta)$, M1+E2 from large δ .
			1549.7 <i>4</i>	32.9 8	284.00 2+				- ,,
	1907.5	4+	1144.2 <i>4</i>	100	763.32 4+				
J	1931.34	5+	606.9 <i>4</i>	100.0 18	1324.37 3+	E2		0.00588	Mult.: Q from $\gamma(\theta)$ in band.
			1168.0 <i>3</i>	73.3 23	763.32 4+	D			Mult.: from $\gamma(\theta)$.
- 1	1939.34	6+	531.3 5	<11.0	1406.88 6+				
ı			567.0 2	100.0 <i>15</i>	1372.33 4+	E2		0.00702	B(E2)(W.u.)=99 13

 \mathcal{S}

$\gamma(\frac{128}{\text{Ba}})$ (continued)

					<u> </u>		
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f \mathbb{J}_f^π	Mult.	α	Comments
1939.34	6 ⁺	1176.5 10	30.0 10	763.32 4+	E2	$1.29 \times 10^{-3} 2$	B(E2)(W.u.)=0.78 10 Mult.: from $\gamma(\theta)$ and RUL.
2008.9		1724.9 5	100	284.00 2+			
2039.35	$(1^+ \text{ to } 4^+)$	715.2 5	45 <i>4</i>	1324.37 3 ⁺			
	, , , ,	1154.3 5	36 <i>4</i>	884.50 2+			
		1755.5 <i>4</i>	100 4	284.00 2+			
2039.49	5-	632.5 2	100.0 10	1406.88 6+	[E1]	0.00192	B(E1)(W.u.)=0.00053 9 Mult.: D from $\gamma(\theta)$.
		1276.1 5	76.4 11	763.32 4+	[E1]	5.56×10^{-4}	B(E1)(W.u.)= $4.9 \times 10^{-5} \ 8$ Mult.: D from $\gamma(\theta)$.
2175.6	(4 to 6)	1412.3 <i>3</i>	100	763.32 4+			
2188.51	8+	781.6 [#] <i>I</i>	100	1406.88 6+	E2	0.00316	B(E2)(W.u.)=95 13 Mult.: from $\gamma(\theta)$ and RUL.
2192.5	(4^{+})	1908.5 6	100	284.00 2+			
2203.4	$(3^-,4^+)$	1318.9 6	44 3	884.50 2+			
		1440.0 5	100 <i>3</i>	763.32 4+			
		1919.6 <i>4</i>	73 <i>3</i>	284.00 2+			
2218.8	0^{+}	1934.8 5	100	284.00 2+	[E2]	7.52×10^{-4}	Q from $\gamma\gamma(\theta)$.
2246.7	$(4 \text{ to } 6^+)$	315.8 6	100 19	1931.34 5 ⁺			
		1482.8 7	90 8	763.32 4+			
2347.2	2+	2063.2 5	100	284.00 2+			
2395.81	(7)-	356.2 [#] 3	15 <i>3</i>	2039.49 5-	[E2]	0.0264	B(E2)(W.u.)=0.055 $I2$ Mult.: Q from $\gamma(\theta)$.
		989.1 [#] 2	100.0 18	1406.88 6+	E1	7.78×10^{-4}	B(E1)(W.u.)= 3.91×10^{-8} 19 Mult.: from $\gamma(\theta)$ and $\alpha(K)$ exp.
2412.87	7-	224.3 [#] <i>I</i>	14.3 12	2188.51 8+	[E1]	0.0246	B(E1)(W.u.)=0.00062 8 Mult.: D from $\gamma(\theta)$.
		373.4 [#] <i>1</i>	34.5 12	2039.49 5-	[E2]	0.0229	B(E2)(W.u.)=130 12 Mult.: Q from $\gamma(\theta)$.
		1006.0 [#] <i>I</i>	100.0 24	1406.88 6+	E1	7.53×10^{-4}	B(E1)(W.u.)= 4.8×10^{-5} 5 Mult.: from $\gamma(\theta)$ and $\alpha(K)$ exp.
2425.45	(4 ⁻ ,5 ⁺)	249.8 5 386.0 3 493.9 4 591.7 4 626.0 2 1053.15 20 1100.9 3	3.8 4 18.1 4 12.4 3 10.0 4 38.6 4 100.0 10 47.6 7	2175.6 (4 to 6) 2039.35 (1 ⁺ to 4 ⁺) 1931.34 5 ⁺ 1833.75 4 ⁺ 1799.56 4 ⁺ 1372.33 4 ⁺ 1324.37 3 ⁺	D+Q		Mult.: from $\gamma\gamma(\theta)$.
2451.4	(3 ⁻ to 6 ⁺)	1662.3 5 412.0 5 1079.0 3 1688.2 [‡] 10	9.8 5 59.6 22 100 3 29.0 20	763.32 4 ⁺ 2039.49 5 ⁻ 1372.33 4 ⁺ 763.32 4 ⁺			

6

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.@	δ@&	α	Comments
2474.0	$(2^+ \text{ to } 6^+)$	1710.7 <i>10</i>	100	763.32 4+				
2531.5	$(4^+ \text{ to } 7^-)$	491.7 5	49 3	2039.49 5-				
		1124.9 5	100 5	1406.88 6 ⁺				
2571.4	$(4^+ \text{ to } 7^-)$	531.7 <i>4</i>	53 7	2039.49 5-				
		1164.9 5	100 5	1406.88 6 ⁺				
2600.27	8+	660.9 [#] 1	100.0 24	1939.34 6+	E2		0.00474	B(E2)(W.u.)= $1.3\times10^2 5$ Mult.: from $\gamma(\theta)$ and RUL.
		1193.5# 2	15.5 12	1406.88 6 ⁺	E2		1.25×10^{-3}	B(E2)(W.u.)=1.0 4 Mult.: from $\gamma(\theta)$ and RUL.
2612.83	(8)	217.0 [#] <i>1</i>	100	2395.81 (7)	M1+E2	0.19 +5-6	0.1152	B(E2)(W.u.)=8 5; B(M1)(W.u.)=0.0157 8 Mult.: D+Q from $\gamma(\theta)$, M1+E2 from large δ .
2627.0		451.6 7	16 <i>3</i>	2175.6 (4 to 6)				large 0.
2021.0		587.3 5	48 3	2039.49 5				
		793.5 7	100 8	1833.75 4 ⁺				
		1302.6 6	73.8 22	1324.37 3+				
2629.0	0^{+}	2345 1	100	284.00 2+	[E2]		8.05×10^{-4}	Mult.: Q from $\gamma \gamma(\theta)$.
2631.3	7+	700.0# 4	100	1931.34 5 ⁺	E2		0.00411	Mult.: Q from $\gamma(\theta)$.
2669.5	,	1906.2 5	100	763.32 4 ⁺	152		0.00411	with Q from $\gamma(0)$.
2721.1	$(5,6^+)$	681.9 4	91 7	2039.35 (1 ⁺ to 4 ⁺)				
2/21.1	(5,0')	781.8 [‡] 5	57 18	1939.34 6 ⁺				
		1348.4 [‡] 6	$1.0 \times 10^2 \ 3$	1372.33 4+				
2746.2		1957.7 8	88 15	763.32 4 ⁺				
2746.2		570.6 6	100	2175.6 (4 to 6)				
2848.6		673.0 4	100 11	2175.6 (4 to 6)				
		1049.1 [‡] 7	54 23	1799.56 4+				
2860.78	(8-)	447.9 [#] 1	100	2412.87 7-	[M1(+E2)]	$-4 \times 10^{-3} + 20 - 12$	0.01733	B(E2)(W.u.)=(0.0005 +52-5); B(M1)(W.u.)=(0.0096 12) Mult.: D(+Q) from $\gamma(\theta)$.
2878.41	$(5^-,6^+)$	483.1 <i>4</i>	21.0 8	2395.81 (7)				
		838.9 <i>4</i>	28.9 16	2039.49 5-				
		938.9 <i>3</i>	72.5 14	1939.34 6 ⁺				
		1505.9 <i>4</i>	100.0 <i>19</i>	1372.33 4+	E2,D			
2906.29	9-	493.4 [#] 1	100.0 20	2412.87 7-	E2		0.01022	B(E2)(W.u.)=104 9 Mult.: from $\gamma(\theta)$ and RUL.
		717.8 [#] <i>1</i>	26.8 7	2188.51 8+	[E1]		1.47×10^{-3}	B(E1)(W.u.)= $4.0 \times 10^{-5} \ 4$ Mult.: D from $\gamma(\theta)$.
2927.0	(9)-	314.2 [#] <i>1</i>	100 6	2612.83 (8)	M1+E2	0.26 +7-8	0.0427 7	B(E2)(W.u.)=17 9; B(M1)(W.u.)=0.036 4 Mult.: from $\gamma(\theta)$ and large δ .

$\gamma(\frac{128}{\text{Ba}})$ (continued)

$B(M1)(W.u.)=0.072 22$ δ .
5);
3

 ∞

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ@&	α	Comments
4116.1	(12)	823.5 [#] 3	100	3292.5	(10)	E2		0.00279	B(E2)(W.u.)=56 24 Mult.: from $\gamma(\theta)$ and RUL.
4194.8	12+	849.0 [#] <i>3</i>	100	3345.78	10 ⁺	[E2]		0.00261	Mult.: Q from $\gamma(\theta)$.
4218.2	13-	711.5 [#] <i>1</i>	100	3506.7	11-	[E2]		0.00395	Mult.: Q from $\gamma(\theta)$.
4556.8	(13^{-})	441 [#]		4116.1	$(12)^{-}$				
		873.7 [#] <i>4</i>	100 5	3683.2	(11^{-})	[E2]		0.00244	Mult.: Q from $\gamma(\theta)$.
4645.92	14 ⁺	628.3 [#] 2	67 3	4017.74	12+	E2		0.00538	B(E2)(W.u.)=68 15
									Mult.: from $\gamma(\theta)$ and RUL.
		657.7 [#] 1	100 3	3988.19	12+	E2		0.00479	B(E2)(W.u.)=80 17 Mult.: from $\gamma(\theta)$ and RUL.
4720.37	14 ⁺	702.3 [#] 4	100 6	4017.74	12+	[E2]		0.00408	$B(E2)(W.u.)=1.2\times10^2 \ 3$
		732.2 [#] <i>1</i>	61 6	3988.19	12+	[E2]		0.00369	B(E2)(W.u.)=60 14
4815.7	(14^{-})	597.6 [#]		4218.2	13-				
		830.4 [#] 4		3985.29	(12^{-})				
4901.6?	(13^{+})	790 [#] a		4112.2	12+				
		884 [#] a		4017.74	12+				
4956.07	13 ⁺	305 [#]		4650.7	12 ⁺	M1+E2	-0.19 9	0.0463	Mult.: from $\gamma\gamma(\theta)$ and large δ .
		843.3 [#] 2	75 6	4112.2	12+	M1+E2	-1.5 +7-30	0.0030 4	B(E2)(W.u.)=10 4; B(M1)(W.u.)=0.005 4 Mult.: from $\gamma\gamma(\theta)$ and large δ .
		938 <mark>#</mark>		4017.74	12+				
		968.4 [#] 2	100 7	3988.19	12 ⁺	M1+E2	-0.6 +6-14	0.0025 4	B(E2)(W.u.)=3 +4-3; B(M1)(W.u.)=0.010 6 Mult.: from $\gamma\gamma(\theta)$ and large δ .
5036.1	14+	840.9 [#] <i>3</i>	100	4194.8	12+	[E2]		0.00266	
5040.0	(14^{-})	484 [#]		4556.8	(13^{-})				
		923.8 [#] 4	100	4116.1	$(12)^{-}$				
5052.2	15-	834.0 [#] 5	100	4218.2	13-	[E2]		0.00271	Mult.: Q from $\gamma(\theta)$.
5233.4	14+	277.3 [#] 2	100	4956.07	13 ⁺	M1+E2	-0.14 4	0.0596	B(E2)(W.u.)=5.E+1 3; B(M1)(W.u.)=0.29 6 Mult.: from $\gamma\gamma(\theta)$ and large δ .
		331.8 [#] 2	56 4	4901.6?	(13^{+})	(M1)		0.0373	B(M1)(W.u.)=0.096 20
		582 [#]		4650.7	12+				
		1038.8 [#] 2	56 <i>3</i>	4194.8	12+				
5384.0	(15^{+})	738 [#]	100	4645.92	14 ⁺				
5495.9	16 ⁺	850.0 [#] <i>3</i>	100	4645.92	14+	[E2]		0.00260	B(E2)(W.u.)=72 7
5499.5	(15^{-})	942.7 [#] 6	100	4556.8					
5529.7	15+	296.6 [#] 2	100	5233.4	14+	M1+E2	-0.18 3	0.0499	B(E2)(W.u.)=1.5×10 ² θ ; B(M1)(W.u.)=0.59 θ Mult.: from $\gamma\gamma(\theta)$ and large δ .
		573.6 [#] 2	25 10	4956.07	13+	[E2]		0.00681	B(E2)(W.u.)=43 7

 γ (128Ba) (continued)

9

56	7
t	L
3	٥
12	
	١.
-	-

$\gamma(^{128}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	\mathbb{E}_f	\mathtt{J}^π_f	Mult.	δ@&	α	Comments
5529.7	15 ⁺	884 [#] a		4645.92	14 ⁺				E_{γ} : estimated by evaluators.
5551.0	(16^+)	830.6 [#] <i>3</i>	100	4720.37	14+				,
5753.7	(16^{-})	701.3 [#]		5052.2	15-				
		938.0 [#] <i>3</i>		4815.7	(14^{-})				
5853.0	16 ⁺	323.6 [#] 2	100	5529.7	15 ⁺	M1+E2	-0.18 <i>3</i>	0.0397	B(E2)(W.u.)= 1.3×10^2 6; B(M1)(W.u.)= 0.60 21 Mult.: from $\gamma\gamma(\theta)$ and large δ .
		619.4 [#] 2	30.0 20	5233.4	14+	E2		0.00558	B(E2)(W.u.)=47 17
		816.7 [#] 2	19.0 <i>10</i>	5036.1	14 ⁺				
		1207 [#] <i>a</i>		4645.92	14 ⁺				
5997.8	17-	945.6 [#] 5	100	5052.2	15-	[E2]		0.00205	Mult.: Q from $\gamma(\theta)$.
6011.0	(16^{-})	971 [#]	100	5040.0	(14^{-})				
6214.8	17+	361.7 [#] 2	100	5853.0	16 ⁺	M1+E2	-0.20 3	0.0297	B(E2)(W.u.)=9.E+1 3; B(M1)(W.u.)=0.45 6 Mult.: from $\gamma\gamma(\theta)$ and large δ .
		685.2 [#] 2	100	5529.7	15 ⁺	[E2]		0.00433	B(E2)(W.u.)=98 12
6240.0	(17^{+})	744 <mark>#</mark>		5495.9	16 ⁺				
		856 [#]		5384.0	(15^{+})				
6436.3	18+	940.4 [#] 4	100	5495.9	16 ⁺	[E2]		0.00207	B(E2)(W.u.)=105 23
6493.0	(18^{+})	942 [#]	100	5551.0	(16^{+})				
6608.4	18+	393.6 [#] 2	100	6214.8	17+	M1+E2	-0.24 3	0.0238	B(E2)(W.u.)=1.2×10 ² 4; B(M1)(W.u.)=0.50 8 Mult.: from $\gamma\gamma(\theta)$ and large δ .
		755.5 [#] 2	45.3	5853.0	16 ⁺	[E2]		0.00342	B(E2)(W.u.)=87 13
6732.7	(18^{-})	979 <mark>#</mark>	100	5753.7	(16^{-})				
6993.8	(19^{-})	996 [#]	100	5997.8	17-				
7036.1	19+	427.6 [#] 2	100	6608.4	18 ⁺	M1+E2	-0.22 5	0.0193	B(E2)(W.u.)=1.4×10 ² 7; B(M1)(W.u.)=0.77 12 Mult.: from $\gamma\gamma(\theta)$ and large δ.
		821.2 [#] 2	64.0 20	6214.8	17+	[E2]		0.00281	B(E2)(W.u.)=73 11
7178.2	(19^+)	742 <mark>#</mark>		6436.3	18 ⁺				
		938 <mark>#</mark>		6240.0	(17^{+})				
7443.2	20 ⁺	1007 [#]	100	6436.3	18 ⁺				
7493.9	20 ⁺	457.6 [#] 2	100	7036.1	19 ⁺	M1+E2	-0.20 4	0.01628 24	Mult.: from $\gamma\gamma(\theta)$ and large δ .
		885.7 [#] 2	95 9	6608.4	18 ⁺	[E2]		0.00237	
7530.0	(20^+)	1037 [#]	100	6493.0	(18^{+})				
7928.8	(21^{-})	935 [#]	100	6993.8	(19 ⁻)				
7980.8	21+	487.2 [#] 2		7493.9	20+	M1+E2	-0.18 7	0.01393 22	Mult.: from $\gamma\gamma(\theta)$ and large δ .
		944.6 <mark>#</mark> 2		7036.1	19 ⁺	[E2]		0.00205	
8163.4	(21^+)	720 [#]		7443.2	20 ⁺	_			
	` /								

10

${\bf Adopted\ Levels,\ Gammas\ (continued)}$

$\gamma(\frac{128}{\text{Ba}})$ (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.@	α
8163.4	(21^+)	985 [#]		7178.2	(19^+)		
8484.9	22+	1042 [#]	100	7443.2	20+		
8497.2	22 ⁺	516.5 [#] 2	80	7980.8	21+	[M1(+E2)]	0.01211 18
		1003.2 [#] 2	100 5	7493.9	20+	[E2]	0.00180
8659.0	(22^{+})	1129 [#]	100	7530.0	(20^+)		
8934.8	(23^{-})	1006 [#]	100	7928.8	(21^{-})		
9032.3	23+	535.0# 2	61	8497.2	22+	[M1(+E2)]	0.01110
		1051.5 [#] 2	100 6	7980.8	21+	[E2]	1.63×10^{-3}
9167.6	(23^{+})	683 [#]		8484.9	22+		
		1004#		8163.4			
9563.9	(24^{+})	1079 [#]	100	8484.9	22+		
9601.1	24+	568 [#]		9032.3	23 ⁺	[M1(+E2)]	0.00958
		1104 [#]		8497.2	22+	[E2]	1.47×10^{-3}
9814.0	(24^{+})	1155 [#]	100	8659.0	(22^{+})		
10023.8	(25^{-})	1089 [#]	100	8934.8	(23^{-})		
10167.7	25 ⁺	566 [#]		9601.1	24+	[M1(+E2)]	0.00966
		1136 [#]		9032.3	23 ⁺	[E2]	1.38×10^{-3}
10237.6	(25^+)	1070 [#]	100	9167.6	(23^{+})		
10649.9	(26^+)	1086 [#]	100	9563.9	. ,		
10785.1	(26^+)	1184 [#]	100	9601.1	24 ⁺		
11055.0	(26^{+})	1241 [#]	100	9814.0	(24^{+})		
11195.8	(27^{-})	1172 <mark>#</mark>	100	10023.8	(25^{-})		
11386.6	(27^{+})	1149 <mark>#</mark>	100	10237.6	(25^+)		
11775.9	(28^{+})	1126 <mark>#</mark>	100	10649.9	(26^{+})		
12442	(29^{-})	1246 [#]	100	11195.8	(27^{-})		
12590.7	(29^+)	1204 [#]	100	11386.6	` ′		
12981.9	(30^+)	1206 [#]	100	11775.9	(28^+)		
13737	(31^{-})	1295 [#]	100	12442	(29^{-})		
14238	(32^+)	1256 [#]	100	12981.9	(30^+)		
15062	(33^{-})	1325 [#]	100	13737	(31^{-})		
15500	(34^{+})	1262 [#]	100	14238	(32^+)		
16288	(35 ⁻)	1226#	100	15062	(33 ⁻)		
16780	(36^+)	1280#	100	15500	(34^{+})		
17653	(37-)	1365#	100	16288	(35^{-})		
18217	(38^+)	1437 [#]	100	16780	(36^+)		

γ (128Ba) (continued)

- † From $^{128} La~\varepsilon$ decay (5.18 min), unless otherwise noted. ‡ Tentatively assigned to $^{128} La~\varepsilon$ decay (1977Zo02).

- # From (HI,xny).

 @ From 128 La ε decay and (HI,xny).

 & If No value given it was assumed δ =0.10 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.
- ^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{128}_{56} \mathrm{Ba}_{72}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

→ Y Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

¹²⁸₅₆Ba₇₂

 14^{+}

12⁺

 10^{+}

Band(A): γ -vibrational

band, odd spin

3387.2

2631.3

1931.34

1324.37

 (9^{+})

841

567

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 93,33 (2001)	11-May-2001

 $Q(\beta^{-})=-5.63\times10^{3} \text{ 3}; S(n)=10270 \text{ 11}; S(p)=7051 \text{ 6}; Q(\alpha)=-541 \text{ 5}$ 2012Wa38

Note: Current evaluation has used the following Q record -5666 70 10273 11 7059 8 -523 9 1995Au04.

 130 Cs β^{-} decay (29.21 min)

 $Q(\beta^-)$: from $\beta \gamma$ coin (1998Ko66). Systematics value=5698 205 (1995Au04).

Α

¹³⁰Ba(n,n) E=0.0005-132 eV: 1985Ko23.

Isotope shift, hyperfine structure measurements: 1988Ya13, 1988Va11, 1987Va16, 1987Al25, 1985Si24, 1984We15, 1982Gr14, 1981Wa19, 1980Si14, 1977No04.

Additional information 1.

¹³⁰Ba Levels

Band assignments are from 1985Su03 and 2000St07.

Cross Reference (XREF) Flags

 120 Sn(13 C,3n γ), 116 Cd(18 O,4n γ)

```
<sup>130</sup>Ba IT decay (9.4 ms)
                                                                                                            ^{130}Ba(\alpha,\alpha')
                                              В
                                                                                                   Ē
                                                       ^{130}La \varepsilon decay (8.7 min)
                                                                                                   F
                                                                                                           Coulomb excitation
                                    T_{1/2}^{\dagger}
                                                     XREF
                                                                                                                         Comments
   E(level)
                                                                   T_{1/2}(^{130}\text{Ba}~2\beta,\text{neutrinoless decay}) limit measured: 1998Be68. \Delta < r^2 > (^{130}\text{Ba} - ^{138}\text{Ba}) = 0.091~\text{fm}^2~16~(1982\text{Gr}14),~0.086~\text{fm}^2~33
     0.0^{\ddagger}
                                                    ABCDEF
                                 stable
                                                                       (1979Be25,1977No04).
 357.38‡ 8
                      2+
                                41.8 ps 12
                                                      BCDEF
                                                                   \mu=+0.70 6 (1989Ra17,1980Br01)
                                                                   B(E2)↑=1.163 11
                                                                    g=0.35 3 (1980Br01)
                                                                    Q=-1.02 16; Q=-0.09 16 (1989Bu07)
                                                                    B(E2)\uparrow: from Coulomb excitation.
                                                                    \mu: transient-field integral PAC (1980Br01).
                                                                    Q: reorientation method. -1.02 16 (constructive), -0.09 16 (destructive)
                                                                       (1989Bu07) assuming that \gamma from second 2<sup>+</sup> to first 2<sup>+</sup> is predominantly E2.
                                                                       Others: -0.33 24 (1974Ne15), +0.37 18 (destructive) (1973ToXW), -1.10 34
                                                                    T_{1/2}: weighted average of 43.2 ps 5 (RDDS in (^{18}O,4n\gamma)) and 40.7 ps 4 (from
                                                                       B(E2)=1.163 \ 11 \text{ in Coul. ex.}
                                                                    J^{\pi}: \Delta J=2, E2 \gamma to 0^+.
 888.89 22
                                                         D
 901.85<sup>‡</sup> 10
                     4+
                                  3.83 ps 6
                                                                   J^{\pi}: \Delta J=2, E2 \gamma to 2^{+}.
                                                      BCD
 908.02<sup>b</sup> 8
                      2^{+}
                                                                   J^{\pi}: \Delta J=2 \gamma to 0^+.
                                                      BCD
1179.5 2
                      0^{+}
                                                                   J^{\pi}: \gamma \gamma(\theta); \gamma to 2^{+}.
                                                       C
1361.06<sup>b</sup> 9
                      3(+)
                                                      BCD
                                                                   J^{\pi}: \Delta J=1, D+Q \gamma's to 2^+ and 4^+.
1477.53<sup>b</sup> 9
                                                                   J^{\pi}: \Delta J=2 \gamma to 2^+; \gamma to 4^+.
                                                        CD
1544.4 3
                                                         D
1557.55 10
                      2+
                                                        C
                                                                   J^{\pi}: \gamma\gamma(\theta); \gamma's to 4^+ and 0^+.
1592.84<sup>‡</sup> 16
                                  0.98 ps 6
                                                                   J^{\pi}: \Delta J=2, E2 \gamma to 4<sup>+</sup>.
                     6+
                                                      BCD
1844.65 11
                      4+
                                                                   J^{\pi}: \gamma \gamma(\theta); \gamma to 2^+.
                                                        C
                     2+
1882.97 10
                                                        C
                                                                   J^{\pi}: \gamma\gamma(\theta); \gamma's to 0^+ and 4^+.
                                                        C
                                                                   J^{\pi}: \gamma\gamma(\theta).
1918.6 2
                      3
                                                                   J^{\pi}: systematic trend of 3<sup>-</sup> states in <sup>132</sup>Ba (at 2070), <sup>134</sup>Ba( at 2251), <sup>136</sup>Ba (at
1948 5
                                                           Ē
                      (3^{-})
                                                                       2529) and <sup>138</sup>Ba (at 2879).
```

130Ba Levels (continued)

E(level)	\mathbf{J}^{π}	$T_{1/2}^{\dagger}$	XREF	Comments
2012.57 ^b 15	5+		В D	J^{π} : E3 γ from 8^- , γ to 4^+ .
2053.7 3	$(3,4^+)$		C	J^{π} : $\gamma \gamma(\theta)$; γ' s to 2^+ and 4^+ .
2079.18 9	3(+)		С	J^{π} : $\gamma\gamma(\theta)$; log $ft=5.9$ from $3^{(+)}$.
2101.16 ^b 15	(6^+)		D	J^{π} : $\Delta J=2 \gamma$ to 4^+ .
2168.39 <mark>&</mark> <i>17</i>	(5^{-})		CD	J^{π} : $\Delta J=1 \gamma$ to 4^+ ; γ to 6^+ .
2182.9 3			D	
2229.9 4	(2.4±)		D	J^{π} : γ to 6^{+} .
2248.17 <i>14</i> 2269.2 2	$(3,4^+)$		C C	J^{π} : $\gamma \gamma(\theta)$; γ' s to 2^+ and 4^+ . J^{π} : γ to 2^+ .
2279.5 2			C	J^{π} : γ to 4^{+} .
2317.99 18	$(3,4^+)$		Č	J^{π} : $\gamma\gamma(\theta)$; γ' s to 2^+ and 4^+ .
2346.87 10	3(+)		C	J^{π} : $\gamma \gamma(\theta)$; log $ft=5.9$ from $3^{(+)}$.
2395.05 [‡] 18	8+	0.49 ps <i>14</i>	B D	J^{π} : $\Delta J=2$, E2 γ to 6^+ .
2407.8 <i>4</i>			C	J^{π} : γ to 4^{+} .
2433.8 <i>4</i>	0-		C	J^{π} : γ to 4^+ .
2475.12 <i>18</i>	8-	9.4 ms 4	B D	%IT=100
				J^{π} : M2+E3 γ to 6 ⁺ , E1 γ to 8 ⁺ . T _{1/2} : weighted average of 9.54 ms <i>14</i> (1999DeZZ), 13.5 ms <i>10</i> (1969WaZX)
				and 8.8 ms 2 (1966Br14).
				Additional information 2.
2557.1 <i>3</i>			C	J^{π} : γ to 2^+ .
2568.17 ^{&} <i>17</i>	(7^{-})	4.16 ps <i>14</i>	D	J^{π} : $\Delta J=1$, E1 γ to 6 ⁺ ; $\Delta J=2$, E2 γ to (5 ⁻).
2602.1 3			C	J^{π} : γ to 2^+ .
2645.76 16	3(+)		C	J^{π} : $\gamma\gamma(\theta)$; log ft =6.0 from $3^{(+)}$.
2733.7 4	$(1,2^+)$		C	J^{π} : γ to 0^+ .
2784.0 2	$(3,4^+)$		С	J^{π} : $\gamma\gamma(\theta)$; γ to 2^{+} .
2799.79 ^b 22 2891.2 2	(8 ⁺) (1 to 4)		D C	J^{π} : $\Delta J = (2) \gamma$ to (6^+) . J^{π} : γ' s to 3^+ and 2^+ .
2928.1 <i>4</i>	(1 to 4)		D	3. y 8 to 3 and 2.
2928.86 ^a 23	(8-)		D	J^{π} : $\Delta J=1 \gamma$ to (7^{-}) .
2935.4 4			C	J^{π} : γ to 4^{+} .
3066.92 ^{&} 21	(9-)	5.27 ps <i>14</i>	D	J^{π} : $\Delta J=2$, E2 γ to (7 ⁻); $\Delta J=1$ γ to 8 ⁺ .
3259.85 [‡] 24	10 ⁺	0.55 ps 7	D	J^{π} : $\Delta J=2$, E2 γ to 8^+ .
3265.26? 24			C	J^{π} : γ to 4^+ .
3289.9 4			D	
3422.85 [#] 24 3434.94 ^a 24	(10^{+})		D	J^{π} : $\Delta J = (2) \gamma$ to 8^+ ; possible γ to 10^+ .
3602.52^{b} 23	(10^{-}) (10^{+})		D D	J^{π} : $\Delta J = 2 \gamma$ to (8 ⁻); $\Delta J = 1 \gamma$ to (9 ⁻). J^{π} : $\Delta J = (2) \gamma$ to 8 ⁺ .
3658.9 ^{&} 3		2.10 mg 0		
3658.9° 3 3660.02 <i>23</i>	(11^{-}) $(2^{+},3,4^{+})$	2.10 ps 9	D C	J^{π} : $\Delta J = 2$, $E2 \ \gamma \ \text{to} \ (9^{-})$. J^{π} : γ' s to 2^{+} and 4^{+} .
3676.2 <i>4</i>	(2 ,5,1)		Č	J^{π} : γ to $(3^+, 4^+)$.
3704.7 <i>4</i>	$(2^+,3,4^+)$		С	J^{π} : γ' s to 2^+ and 4^+ .
3712.0 4			C	J^{π} : γ to 4^{+} .
3789.7 [@] 3	(10^{+})		D	J^{π} : $\Delta J=(0) \gamma$ to 10^+ .
3798.7 <i>3</i>			C	J^{π} : γ to 3^+ .
3962.6 <i>4</i>	(10)	2.15	D	J^{π} : γ to 10^+ .
3989.6 [#] <i>3</i> 4006.8 <i>4</i>	$(12)^{+}$	2.15 ps <i>21</i>	D	J^{π} : $\Delta J=2$, E2 γ to 10^{+} . J^{π} : γ to (3,4).
4006.8 <i>4</i> 4077.9 ^{<i>a</i>} <i>3</i>	(12^{-})		C D	$J^{"}$: γ to (3,4). J^{π} : ΔJ=(2) γ to (10 ⁻); γ to (11 ⁻).
4222.3‡ 4	(12^{+})		D	J^{π} : $\Delta J=2 \gamma$ to 10^{+} .
4256.1 [@] 3	(12^{+}) (12^{+})	1.52 ps <i>14</i>	D D	J^{π} : $\Delta J = (2) \gamma$ to 10^{+} .
4230.1 3	(12)	1.52 ps 14	ע	$J \cdot \Delta J - (2) \gamma \cup 10$.

¹³⁰Ba Levels (continued)

E(level)	${ m J}^{\pi}$	$T_{1/2}^{\dagger}$	XREF	Comments
4354.0 ^{&} 4	(13 ⁻)		D	J^{π} : $\Delta J=(2) \gamma$ to (11^-) .
4404.1 <i>4</i>	, ,		D	J^{π} : γ to 10^{+} .
4783.3 [#] 4	(14^{+})	0.41 ps 4	D	J^{π} : $\Delta J=(2) \gamma$ to $(12)^{+}$. $T_{1/2}$: effective half-life.
4879.3 <mark>a</mark> 4	(14^{-})		D	J^{π} : $\Delta J=(2) \gamma$ to (12^-) .
4885.3 [@] 4	(14^{+})	3.4 ps 6	D	J^{π} : $\Delta J=2$, E2 γ to (12 ⁺).
				$T_{1/2}$: effective half-life.
5155.4 <mark>&</mark> 4	(15^{-})		D	J^{π} : $\Delta J = (2) \gamma$ to (13^{-}) .
5679.5 [@] 4	(16^{+})		D	J^{π} : γ to (14 ⁺).
5730.1 [#] 4	(16^{+})		D	J^{π} : $\Delta J=(2) \gamma$ to (14^+) .
5766.6 ^a 4	(16^{-})		D	J^{π} : γ to (14 ⁻).
6037.2 & 5	(17^{-})		D	J^{π} : γ to (15 ⁻).
6757.4 [#] 5	(18^{+})		D	J^{π} : γ to (16 ⁺).
6972.8 <mark>&</mark> 6			D	J^{π} : γ to (17 ⁻).
8022.8 <mark>&</mark> 6			D	

 $^{^{\}dagger}$ From recoil-distance Doppler shift in ($^{18}\text{O,4n}\gamma$) (2000St07).

$\gamma(^{130}\text{Ba})$

 $\delta(Q/D)$ given in comments are from $\gamma\gamma(\theta)$ data.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	$\alpha^{\#}$	Comments
357.38	2+	357.4 <i>1</i>	100	0.0 0+	E2	0.0262	$\alpha(K)=0.02163; \ \alpha(L)=0.00365; \ \alpha(M)=0.00076;$
							$\alpha(N+)=0.00020$
							B(E2)(W.u.)=57.9 17
888.89		531.5 2	100	$357.38 \ 2^{+}$			
901.85	4+	544.5 <i>1</i>	100	$357.38 \ 2^{+}$	E2		B(E2)(W.u.)=78.9 <i>13</i>
908.02	2+	550.7 <i>1</i>	100 6	$357.38 \ 2^{+}$			$\delta(Q/D) = -0.296 \ 7 \text{ or } -40 \ 13.$
		908.0 <i>1</i>	66 <i>3</i>	$0.0 0^{+}$			
1179.5	0_{+}	271.4 <i>3</i>		$908.02 \ 2^{+}$			
		822.0 <i>3</i>		$357.38 \ 2^{+}$			
1361.06	$3^{(+)}$	453.2 <i>1</i>	49 2	$908.02 \ 2^{+}$	D+Q		$\delta(Q/D) = +0.31 \ 2 \text{ or } +13 \ 3.$
		459.4 <i>4</i>	9.3 2	901.85 4+			$\delta(Q/D) = -0.20 \ 7 \text{ or } -2.5 \ 5.$
		1003.6 <i>I</i>	100 <i>3</i>	$357.38 \ 2^{+}$	D+Q		$\delta(Q/D) = -0.001 \ 9 \text{ or } -4.6 \ 2.$
1477.53	(4^{+})	569.4 <i>1</i>	100 11	$908.02 \ 2^{+}$			
		575.5 2	71 9	$901.85 4^+$			$\delta(Q/D) = -0.43 \ 8 \text{ or } +2.4 \ 5.$
		1120.2 <i>I</i>	66 <i>6</i>	357.38 2 ⁺			
1544.4		655.5 2	100	888.89			
1557.55	2+	196.2	6.9 11	1361.06 3 ⁽⁺⁾			
		377.7 <i>3</i>		$1179.5 0^+$			
		649.6 <i>1</i>	53 6	908.02 2+			$\delta(Q/D) = -0.01 \ 3 \text{ or } +3.2 \ 4.$

[‡] Band(A): g.s. band. [#] Band(B): first S (super) band.

[@] Band(C): second S (super) band.

Band(C): second 3 (sup & Band(D): $\pi = -, \alpha = 1$. ^a Band(E): $\pi = -, \alpha = 0$. ^b Band(F): quasi γ -band.

γ ⁽¹³⁰Ba) (continued)</sup>

1587.55	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.‡	Comments
1557.1 3	1557.55	2+	655.6	7.2 11	901.85 4+		
1892.84 6 691.1 2 100							$\delta(Q/D) = -0.31 \ 2 \text{ or } -23 \ 9.$
1844.65 4* 367.1 3 42 17 1477.53 (4*) 6(Q/D)=-1.0 8 or +213 167. 483.7 8 31 7 908.02 2* 942.8 7 100 8 901.85 4* 6(Q/D)=+0.16 /3 or +0.8 2. 1882.97 2* 325.5 3 10 1361.06 3(*) 7974.9 7 48 3 908.02 2* 981.0 3 991.0 3 908.02 2* 981.0 3 1525.7 1 100 8 357.38 2* 1918.6 3 1010.5 3 908.02 2* 1561.2 3 908.02 2* 1561.2 3 908.02 2* 1561.2 3 1016.7 3 157.3 2* 2012.57 5* 420.3 5 ≈70 1592.34 6* 651.5 2 100 17 1361.06 3(*) 110.4 2 94 /17 1361.06 3(*) 110.4 2 94 /17 1361.06 3(*) 1151.8 3 100 /2 901.85 4* 1151.8 3 100 /2 901.85 4* 1151.8 3 100 /2 901.85 4* 1151.8 3 100 /2 901.85 4* 1151.8 3 100 /2 901.85 4* 1151.8 3 100 /2 901.85 4* 1171.4 1 100 4 908.02 2* 2079.18 171.1 1 1 100 4 908.02 2* 1171.1 1 1 100 6 901.85 4* 1171.1 1 1 100 6 901.85 4* 1171.1 1 1 100 6 901.85 4* 1171.1 1 100 6 901.85 4* 1171.1 1 1 1 100 6 901.85 4* 1171.1 1 1 1 100 6 901.85 4* 1171.1 1 1 1 100 6 901.85 4* 1171.1 1 1 1 100 6 901.85 4* 1171.1 1 1 1 1 1 1 1 1 1 1 1 1	1500.04	c +				Ea	D/F2)/W) 04 (
1882.97						E2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1844.03	4					$\delta(Q/D) = -1.0 \delta \text{ or } +213 \text{ To} /.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\delta(O/D) = +0.16.13$ or $+0.8.2$.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0(0)2) 10:10 10 01 10:00 2.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1882.97	2+					
974.9 1 48 3 908.02 2† 6(Q/D)=-0.25 3 or +45 6. 981.0 3 901.85 4† 1525.7 1 100 8 357.38 2† 1882.5 7 1010.5 3 908.02 2† 11016.7 3 901.85 4† 6(Q/D)=-0.4 2 or -1.6 7. 1561.2 3 357.38 2† 6(Q/D)=+0.029 12 or +2.8 2. 12012.57 5† 420.3 5 ≈ 70 1592.84 6† 651.5 2 100 11 1361.06 3†+ 1110.4 2 94 11 901.85 4† 2053.7 (3,4*) 496.3 3 1557.55 2† 560.2 8 70 1477.53 (4*) 692.8 7 91 12 1361.06 3†+ 1151.8 3 100 12 901.85 4† 1695.8 3 121 19 357.38 2† 2079.18 3(*) 1961.3 1882.97 2* 234.5 3 3.0 9 1844.65 4† 521.8 5 ≈11 1557.55 2† 6(Q/D)=-0.8 4. 661.5 4 9 4 1477.53 (4*) 661.5 4 9 4 1477.53 (4*) 718.2 1 74 4 1361.06 3(*) 1171.1 1 100 4 908.02 2† 1177.4 7 59 2 901.85 4* 661.5 4 9 4 1477.53 (4*) 718.2 1 74 4 1361.06 3(*) 1171.4 7 59 2 901.85 4* 661.5 4 9 5 901.85 4* 661.5 4 9 5 901.85 4* 661.5 4 9 5 901.85 4* 661.5 4 9 6 1477.53 (4*) 718.2 1 74 4 1361.06 3(*) 1171.4 1 59 2 901.85 4* 6(Q/D)=-0.8 4. 6(Q/D)=-0.8 5 or -4.8 6. 6(Q/D)=-0.8 4. 6(Q/D)=-0.8 4. 6(Q/D)=-0.8 4. 6(Q/D)=-0.8 4. 6(Q/D)=-0.8 5 or -4.8 6. 6(Q/D)=-0.8 6. 6(Q/D)=-0.			521.8 5	≈10	1361.06 3 ⁽⁺⁾		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				48 <i>3</i>			$\delta(Q/D) = -0.25 \ 3 \text{ or } +45 \ 6.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100.0			C(O/D) 0.000 10 0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100 8			$\delta(Q/D) = +0.029 \ 12 \text{ or } +2.8 \ 2.$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1019.6	2					
2012.57 5 ⁺ 420.3 5 ≈ 70 1592.84 6 ⁺ 651.5 2 100 11 1361.06 3(+) 1110.4 2 94 11 901.85 4 ⁺ 756.2 5 ≈ 70 1477.53 (4 ⁺) 901.85 4 ⁺ 1695.8 3 121 19 357.38 2 ⁺ 1695.8 3 121 19 357.38 2 ⁺ 1695.8 3 121 19 357.38 2 ⁺ 2101.16 (6 ⁺) 718.2 1 74 4 1361.06 3(+) 1171.1 1 100 4 908.02 2 ⁺ 601.1 1171.1 1 100 4 908.02 2 ⁺ $\delta(Q/D)$ =-0.8 4. 6 $\delta(Q/D)$ =-0.8 4. 6 $\delta(Q/D)$ =-0.8 4. 1711.1 1 100 4 908.02 2 ⁺ $\delta(Q/D)$ =-0.34 7 or -1.8 3. 1721.7 1 50 4 357.38 2 ⁺ $\delta(Q/D)$ =-0.34 7 or -1.8 3. 1721.7 1 50 4 357.38 2 ⁺ $\delta(Q/D)$ =-0.10 2 or -8.4 14. 1801.16 (6 ⁺) 623.8 2 100 5 1477.53 (4 ⁺) 1199.3 2 43 5 901.85 4 ⁺ $\delta(Q/D)$ =-0.10 2 or -8.4 14. 1802.9 590.1 2 100 1592.84 6 ⁺ 1266.9 1361.3 1361.3 1363.3 1918.6 3 1377.3 1361.3 1363.3 1918.6 3 1377.3	1916.0	3					$\delta(O/D) = -0.4.2 \text{ or } -1.6.7$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2012.57	5+		≈70			((0)2)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2053.7	$(3,4^+)$	496.3 <i>3</i>		1557.55 2+		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2070 10	2(+)		121 19			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2079.18	3(1)		200			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\delta(O/D) = -0.8 A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0(Q D) = 0.0 f.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							$\delta(Q/D) = +0.008 \ 25 \text{ or } -4.8 \ 6.$
2101.16 (6 ⁺) 623.8 2 100 5 1477.53 (4 ⁺) 1199.3 2 43 5 901.85 4 ⁺ 2168.39 (5 ⁻) 575.5 2 32 11 1592.84 6 ⁺ 1266.6 2 100 6 901.85 4 ⁺ 2182.9 590.1 2 100 1592.84 6 ⁺ 2229.9 685.5 2 100 1544.4 2248.17 (3,4 ⁺) 1340.2 3 908.02 2 ⁺ 1890.5 3 357.38 2 ⁺ 2269.2 1361.1 3 908.02 2 ⁺ 1911.6 3 357.38 2 ⁺ 2279.5 360.8 3 1918.6 3 1377.7 3 901.85 4 ⁺ 2317.99 (3,4 ⁺) 264.1 3 2053.7 (3,4 ⁺) 473.4 3 1844.65 4 ⁺ 840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3(+) 1410.7 4 100 20 908.02 2 ⁺							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$\delta(Q/D) = +0.10 \ 2 \text{ or } -8.4 \ 14.$
2168.39 (5 ⁻) 575.5 2 32 11 1592.84 6 ⁺ 2182.9 590.1 2 100 1592.84 6 ⁺ 2229.9 685.5 2 100 1544.4 2248.17 (3,4 ⁺) 1340.2 3 908.02 2 ⁺ 1890.5 3 357.38 2 ⁺ 2269.2 1361.1 3 908.02 2 ⁺ 1911.6 3 357.38 2 ⁺ 2279.5 360.8 3 1918.6 3 1377.7 3 901.85 4 ⁺ 2317.99 (3,4 ⁺) 264.1 3 2053.7 (3,4 ⁺) 473.4 3 1844.65 4 ⁺ 840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3 ⁽⁺⁾ 1410.7 4 100 20 908.02 2 ⁺	2101.16	(6^{+})					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2169.20	(F=)					
2182.9 590.1 2 100 1592.84 6 ⁺ 2229.9 685.5 2 100 1544.4 2248.17 (3,4 ⁺) 1340.2 3 908.02 2 ⁺ 1890.5 3 357.38 2 ⁺ 2269.2 1361.1 3 908.02 2 ⁺ 1911.6 3 357.38 2 ⁺ 2279.5 360.8 3 1918.6 3 1377.7 3 901.85 4 ⁺ 2317.99 (3,4 ⁺) 264.1 3 2053.7 (3,4 ⁺) 473.4 3 1844.65 4 ⁺ 840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3 ⁽⁺⁾ 1410.7 4 100 20 908.02 2 ⁺	2108.39	(3)					
2229.9 685.5 2 100 1544.4 2248.17 (3,4 ⁺) 1340.2 3 908.02 2 ⁺ 1890.5 3 357.38 2 ⁺ 2269.2 1361.1 3 908.02 2 ⁺ 1911.6 3 357.38 2 ⁺ 2279.5 360.8 3 1918.6 3 1377.7 3 901.85 4 ⁺ 2317.99 (3,4 ⁺) 264.1 3 2053.7 473.4 3 1844.65 4 ⁺ 840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3 ⁽⁺⁾ 1410.7 4 100 20 908.02 2 ⁺	2182.0						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$(3,4^+)$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1346.3 <i>1</i>		901.85 4+		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
2279.5 360.8 3 1377.7 3 901.85 4 ⁺ 2317.99 (3,4 ⁺) 264.1 3 2053.7 (3,4 ⁺) 473.4 3 1844.65 4 ⁺ 840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3 ⁽⁺⁾ 1410.7 4 100 20 908.02 2 ⁺	2269.2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2270 5						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2219.5						
473.4 3 1844.65 4 ⁺ 840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3 ⁽⁺⁾ 1410.7 4 100 20 908.02 2 ⁺	2317 99	(3.4^{+})				1	
840.1 3 58 10 1477.53 (4 ⁺) 957.0 3 100 20 1361.06 3 ⁽⁺⁾ 1410.7 4 100 20 908.02 2 ⁺	2011.77	(5,1)					
957.0 3 100 20 1361.06 $3^{(+)}$ 1410.7 4 100 20 908.02 2^{+}				58 10			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1361.06 3 ⁽⁺⁾		
1415.9 [@] 22 <i>10</i> 901.85 4 ⁺			1410.7 <i>4</i>				
			1415.9 [@]	22 10	901.85 4+		

$\gamma(^{130}\text{Ba})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ	α#	Comments
2346.87	3 ⁽⁺⁾	267.7 <i>1</i> 427.9 <i>3</i> 464.2 2 502.2 5	21 <i>7</i> 36 <i>11</i> 8.9 <i>18</i>	2079.18 3 ⁽⁺⁾ 1918.6 3 1882.97 2 ⁺ 1844.65 4 ⁺				
		789.2 <i>3</i> 869.3 <i>1</i>	15 2 71 <i>4</i>	1557.55 2 ⁺ 1477.53 (4 ⁺)				$\delta(Q/D) = +0.47 \ 11 \text{ or } +3.8 \ 14.$
		986.4 <i>10</i> 1438.8 <i>1</i>	11 <i>4</i> 100 <i>7</i>	1361.06 3 ⁽⁺⁾ 908.02 2 ⁺				$\delta(Q/D) = +0.63 \ 7 \text{ or } +3.0 \ 5.$
2395.05	8+	1445.0 2 802.3 2	39 <i>4</i> 100	901.85 4 ⁺ 1592.84 6 ⁺	E2			$\delta(Q/D)=+1.1 \ 17.$ B(E2)(W.u.)=9.E+1 3
2407.8 2433.8		930.3 <i>3</i> 589.2 <i>3</i>		1477.53 (4 ⁺) 1844.65 4 ⁺				
2475.12	8-	80.3 2	10 <i>I</i>	2395.05 8+	E1		0.419	$\alpha(K)$ = 0.357; $\alpha(L)$ = 0.0495; $\alpha(M)$ =0.01009; $\alpha(N+)$ =0.00259 B(E1)(W.u.)=4.0×10 ⁻¹² 5
		462.3 2	20 2	2012.57 5+	E3		0.0363	$\alpha(K)$ = 0.0283; $\alpha(L)$ =0.00630; $\alpha(M)$ =0.00135; $\alpha(N+)$ =0.00036 B(E3)(W.u.)=0.0042 6
		882.3 2	100 7	1592.84 6 ⁺	M2+E3	1.1 6		B(M2)(W.u.)=8.E-8 5; B(E3)(W.u.)=0.00013 7 δ: from α(K)exp in ¹³⁰ Ba IT decay.
2557.1		1649.1 <i>3</i>	100	908.02 2+				docay.
2568.17	(7^{-})	399.8 2	50 2	2168.39 (5-)	E2			B(E2)(W.u.)=110 7
		467.1 2	5 3	$2101.16 (6^+)$	[E1]			$B(E1)(W.u.)=2.0\times10^{-5}$ 12
		975.3 2	100 2	1592.84 6+	E1			$B(E1)(W.u.)=4.41\times10^{-5} 21$
2602.1	2(+)	1694.1 3		908.02 2+				
2645.76	3 ⁽⁺⁾	298.7 <i>3</i> 327.9 <i>3</i>	≈70	2346.87 3 ⁽⁺⁾ 2317.99 (3,4 ⁺)				
		376.2 <i>3</i> 397.6 <i>6</i>	60 30	2269.2 2248.17 (3,4 ⁺)				
		566.4 3	00 30	2079.18 3 ⁽⁺⁾				
		592.1 <i>4</i>	50 10	2053.7 (3,4+)				
		726.9 <i>3</i>		1918.6 3				
		801.2 2	100 30	1844.65 4 ⁺				$\delta(Q/D) = -0.2 \ 2 \text{ or } -2.4 \ 13.$
		1088.0 <i>3</i>		1557.55 2 ⁺				
		1167.8 <i>3</i>	60.10	1477.53 (4+)				((O/D) 0.05 5 4.0 H
		1744.0 3	60 10	901.85 4+				$\delta(Q/D) = +0.37 \text{ f or } +4.2 11.$
2733.7	$(1,2^+)$	2287.9 <i>3</i> 1554.2 <i>3</i>	70 10	357.38 2 ⁺ 1179.5 0 ⁺				$\delta(Q/D) = +0.07 5 \text{ or } -6.9 23.$
2784.0	$(3,4^+)$	437.2 3		2346.87 3 ⁽⁺⁾				
2704.0	(3,4)	1306.3 3		1477.53 (4 ⁺)				
		1882.0 <i>3</i>		901.85 4+				
		2426.9 <i>3</i>		357.38 2+				
2799.79	(8^{+})	698.7 2	100	$2101.16 (6^+)$				
2891.2	(1 to 4)	1333.7 <i>3</i>		1557.55 2+				
		1530.2 <i>3</i>		1361.06 3 ⁽⁺⁾				
2928.1	(0=)	745.2 2	100	2182.9				
2928.86	(8-)	360.7 2	100	2568.17 (7 ⁻)				
2935.4	(0=)	1090.8 3	100 77	1844.65 4+	EO			D/E2)/W \ 01 12
3066.92	(9-)	498.8 2	100 <i>11</i> 9.7 <i>11</i>	2568.17 (7 ⁻)	E2			B(E2)(W.u.)=81 <i>13</i>
3259.85	10 ⁺	671.8 2 864.8 2	9.7 11 100	2395.05 8 ⁺ 2395.05 8 ⁺	E2			B(E2)(W.u.)=54 7
3265.26?	10	1017.0 3	100 30	2393.03 8 2248.17 (3,4 ⁺)				D(D2)(W.u.)-JT /
3203.201		1787.8 3	71 14	1477.53 (4 ⁺)				

γ (130Ba) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	Comments
3289.9		1107.0 2	100	2182.9		
3422.85	(10^+)	163.0 2	<5	3259.85 10 ⁺		
	,	1027.8 2	100 12	2395.05 8+		
3434.94	(10^{-})	368.0 2	53 7	3066.92 (9-)		
		506.1 2	100 5	2928.86 (8-)		
3602.52	(10^+)	802.8 2	100 30	2799.79 (8+)		
		1207.4 2	73 7	2395.05 8+		
3658.9	(11^{-})	592.0 2	100	3066.92 (9-)	E2	B(E2)(W.u.)=95 4
3660.02	$(2^+,3,4^+)$	2182.5 5	25 8	$1477.53 (4^+)$		
		2752.1 <i>3</i>	100 8	908.02 2+		
		2757.9 <i>4</i>	50 8	901.85 4+		
3676.2		1622.6 <i>3</i>		$2053.7 (3,4^+)$		
3704.7	$(2^+,3,4^+)$	2796.7 <i>4</i>	100 <i>13</i>	908.02 2+		
		2802.8 12	19 6	901.85 4+		
3712.0		2810.1 <i>3</i>	100	901.85 4+		
3789.7	(10^{+})	529.8 2	100	$3259.85 10^{+}$		
3798.7		1529.5 <i>3</i>		2269.2		
		2437.8 <i>3</i>		1361.06 3 ⁽⁺⁾		
3962.6		539.7 2	100	$3422.85 (10^+)$		
3989.6	$(12)^{+}$	566.7 2	26 8	$3422.85 (10^+)$	[E2]	B(E2)(W.u.)=24 8
		729.7 2	100 5	3259.85 10 ⁺	E2	B(E2)(W.u.)=26 4
4006.8		1222.8 <i>3</i>		$2784.0 (3,4^+)$		
4077.9	(12^{-})	419.0 2	26 9	3658.9 (11 ⁻)		
		643.0 2	100 4	3434.94 (10 ⁻)		
4222.3	(12^{+})	962.4 2	100	3259.85 10 ⁺	Q	2
4256.1	(12^{+})	466.4 2	45 20	3789.7 (10 ⁺)	[E2]	$B(E2)(W.u.)=1.3\times10^2 7$
		996.2 2	100 5	3259.85 10 ⁺	[E2]	B(E2)(W.u.)=6.7 12
4354.0	(13^{-})	695.1 2	100	3658.9 (11 ⁻)	(Q)	
4404.1		981.2 2	100	$3422.85 (10^+)$		
4783.3	(14^{+})	793.7 2	100	3989.6 (12)+	[E2]	B(E2)(W.u.)=112 11
4879.3	(14^{-})	801.4 2	100	4077.9 (12 ⁻)		D (T2) (T1) 10 0
4885.3	(14^{+})	629.2 2	100	4256.1 (12+)	E2	B(E2)(W.u.)=43 8
5155.4	(15^{-})	801.4 2	100	4354.0 (13 ⁻)	(Q)	
5679.5	(16^+)	794.2 2	100	4885.3 (14+)		
5730.1	(16^+)	946.8 2	100	4783.3 (14 ⁺)		
5766.6	(16^{-})	887.3 2	100	4879.3 (14 ⁻)		
6037.2	(17^{-})	881.8 2	100	5155.4 (15 ⁻)		
6757.4	(18^{+})	1027.3 2	100	5730.1 (16 ⁺)		
6972.8		936.0 2		6037.2 (17 ⁻)		
8022.8		1050.0 2		6972.8		

 $^{^{\}dagger}$ For levels populated in $^{130}La~\varepsilon$ decay, $^{130}Ba~IT$ decay and in $^{120}Sn(^{13}C,3n\gamma)$, the values are generally taken from $^{130}La~\varepsilon$ decay.

[‡] From ce and $\gamma(\theta)$ data in $^{120}\mathrm{Sn}(^{13}\mathrm{C}, 3\mathrm{n}\gamma), ^{116}\mathrm{Cd}(^{18}\mathrm{O}, 4\mathrm{n}\gamma)$, except for the 8^- isomer at 2475, for which the assignments are from ce data in $^{130}\mathrm{Ba}$ IT decay.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[®] Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{130}_{56}{\rm Ba}_{74}$

Level Scheme (continued)

Level Scheme (continued)

¹³²Ba₇₆-1

Adopted Levels, Gammas

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. A. Rodionov and S. Sakharov, Balraj Singh	NDS 104,497 (2005)	10-Feb-2005

 $Q(\beta^{-})=-4.71\times10^{3} \text{ 4}; S(n)=9822 \text{ 3}; S(p)=7665 \text{ 5}; Q(\alpha)=-999.6 \text{ 15}$ 2012Wa38

Note: Current evaluation has used the following Q record -4690 40 9822.4 30 7664 5 -999.7 18 2003Au03.

Measured mass: 1966Be10, 1968De17, 1986Au02.

Measured isotope shifts, charge radii, moments by atomic spectroscopy methods: 1974Fi06, 1976Ho13, 1980Si14, 1981Wa19, 1982ReZV, 1983Mu12, 1984We15, 1985Si24, 1987Al25, 1987Va16, 1988Va11, 1988Ya13.

Measured double β -decay rates: 1996Ba24, 2001Me22.

Measured isomeric ratios in (γ,n) reaction in the Giant-Dipole Resonance region: 1995ToZW, 1996Be30.

 173 Yb(24 Mg,X) E=134.5 MeV; 176 Yb(23 Na,X) E=129 MeV: 2003Fo04: measured yield of 132 Ba by gating at 464-864 cascade; the following γ rays in 132 Ba were assigned: 316, 377, 663, 799, 811, 868, 890 and 935; but no level scheme was proposed. The decay of 132 La is in need of further study from the point-of-view of separating inventory and intensities of γ rays from the two activities: 4.8 h and 24.3 min.

Additional 40 or so levels are reported as populated in (p,t) (1996Ca32), but data for these levels are not available.

¹³²Ba Levels

Bands: as proposed by 1995Ju09 and 1989Pa17. Others: 1995LuZZ, 1996LuZZ.

Cross Reference (XREF) Flags

Α	132 Cs β^{-} decay (6.479 d)	E	122 Sn(13 C, 3 n γ)		Coulomb excitation
В	¹³² La ε decay (4.8 h)	F	124 Sn(12 C, 4 n γ)		133 Cs(p,2n γ)
C	¹³² La ε decay (24.3 min)	G	124 Sn(13 C,5n γ)	K	¹³⁴ Ba(p,t)
D	¹³² La ε decay (4.8 h+24.3 min)	H	132 Ba (α,α')		

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	0+	$>3.0\times10^{21} \text{ y}$	ABCDEFGHIJK	%2β+=?
464.500# 12	2+			$T_{1/2}$: from possible $2\beta^+$ decay (1996Ba24).
464.508 [#] 12	2+	15.1 ps <i>11</i>	ABCDEFGHIJK	B(E2) \uparrow =0.86 6 μ =+0.68 6 (1980Br01,1989Ra17)
				μ : transient-field integral PAC (1980Br01).
				J^{π} : E2 γ to 0^+ .
1031.672 [@] 10	2+	1.00 10	ADCDEEC TAK	T _{1/2} : from B(E2) in Coul. ex.
1031.072 10	2.	1.08 ps <i>10</i>	ABCDEFG IJK	B(E2) \uparrow =0.073 3 J ^{π} : E2 γ to 0 ⁺ .
				$T_{1/2}$: from B(E2) in Coul. ex.
1127.615 [#] <i>18</i>	4+		ABCDEFG JK	J^{π} : $\Delta J=2$, E2 γ to 2^{+} .
1503.63 5	0_{+}		B D F K	$J^{\pi}: L(p,t)=0.$
1511.088 & 22	3+		BCDEFG J	J^{π} : M1+E2 γ' s to 2 ⁺ and 4 ⁺ .
1660.30 4	0+		BCD K	J^{π} : L(p,t)=0.
1685.753 19	2+		BCD K	J^{π} : M1+E2 γ' s to 2 ⁺ ; γ to 0 ⁺ ; $\gamma\gamma(\theta)$ in ¹³² La ε .
1729.343 [@] 20	4+		BCDEFG J	J^{π} : $\Delta J=2$, E2 γ to 2^+ .
1931.91 [#] 6	6+		BCDEFG J	J^{π} : $\Delta J = 2 \gamma$ to 4 ⁺ ; yrast band member.
1944.29 <i>3</i> 1998.179 22	(4 ⁺) 2 ⁺		BCD G JK B D	J^{π} : L=(4) in (p,t). J^{π} : γ to 0 ⁺ ; (M1+E2) γ to 2 ⁺ ; $\gamma\gamma(\theta)$.
2026.9438 23	4 ⁻		BCDEFG J	J^{π} : E1 γ to 3 ⁺ ; ΔJ =0, (E1+M2) γ to 4 ⁺ .
2046.23 4	(2^{+})		B D	J^{π} : γ to 2^+ ; $\gamma\gamma(\theta)$.
	. ,			E(level): it should Be noted that two levels of almost the same energy are proposed by 1996Ku01 and 2002Ga01, one with

132Ba Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2046.48 <i>6</i> 2068.553 <i>21</i>	(4 ⁺) 3 ⁻		BCD B D HI K	J^{π} =2 ⁺ and the other with J^{π} =4 ⁺ . The reason for introducing two levels near this energy is not clear to the evaluators, and it is possible that these two levels are the same. J^{π} : γ' s to 2 ⁺ and 4 ⁺ ; $\gamma\gamma(\theta)$ supports 4 ⁺ . B(E3)↑=0.176 22
			во нік	$J^{\pi} \colon L(p,t)=3.$
2119.59 ^d 4	5-	0.40 ns +20-10	BCDEFG JK	J^{π} : L(p,t)=5. T _{1/2} : $\gamma \gamma$ (t) in (¹³ C,3n γ) (1996Ko16).
2220.07 4	(3-)		B D	J^{π} : γ' s to 2^+ and 4^+ ; $\gamma\gamma(\theta)$.
2225.82 <mark>&</mark> 9	(5^+)		CD G	J^{π} : γ' s to 2^+ and 4^+ ; possible band member.
2240.69 [@] 7	6(+)		DEFG J	J^{π} : $\Delta J=2 \gamma$ to 4^{+} ; γ to 6^{+} ; $\gamma\gamma(\theta)$ in ¹³² La ε .
2271 8	0^{+}		K	J^{π} : $L(p,t)=0$.
2287.98 7	$(2^+,3,4^+)$		B D	J^{π} : γ' s to 2^+ and 4^+ .
2312.49^{f} 6	5 ⁽⁻⁾		BCDE G	J^{π} : $\Delta J=1 \ \gamma$ to 4^- ; γ' s 3^+ and 6^+ .
2357.62 ^e 5	(6-)		CDEFG J	J^{π} : $\Delta J = 1$ γ to 5 ⁻ ; γ to 4 ⁻ .
2374.422 20	3-		B D K	XREF: K(2384). J^{π} : E1(+M2) γ to 2 ⁺ , γ to 4 ⁺ ; $\gamma\gamma(\theta)$.
2406 8	0+		K	J^{π} : $L(p,t)=0$.
2422.73 ⁸ 6	6 ⁽⁻⁾		DEFG J	J^{π} : $\Delta J = 2 \gamma$ to 4^- ; $\Delta J = 1 \gamma$ to 5^- .
2438.93 11	$(2^+ \text{ to } 6^+)$		D G	J^{π} : γ to 4^+ .
2452.87 5	(1-)		B D	J^{π} : (E1) γ to 0^+ .
2483.06 ^d 6	(7-)	<0.2 ns	DEFG JK	J^{π} : L(p,t)=7. T _{1/2} : γγ(t) in (¹³ C,3nγ).
2492.35 8	(4 ⁺)		B D	J^{π} : γ to 4 ⁺ ; $\gamma\gamma(\theta)$ in ¹³² La ε ; large mixing ratio for 1364.6 γ favors M1+E2 over E1+M2.
2505.34 5	(2)		B D	J^{π} : γ to 2^+ ; $\gamma\gamma(\theta)$.
2567.331 20	(3)-		B D	J^{π} : E1 γ to 2^+ , M1+E2 γ to 3^- ; γ to 4^+ .
2609.60 9	(5 ⁻)		D	J^{π} : γ' s to 5 ⁻ and 6 ⁻ ; $\gamma\gamma(\theta)$.
2660 10	(4^+)			J^{π} : L=(4) in (p,t).
2693.27 <i>13</i>	$(4,5^{-})$		D	J^{π} : γ' s to 3 ⁻ and 5 ⁻ ; $\gamma\gamma(\theta)$.
2718.17 ^f 6 2736 8	7 ⁽⁻⁾ 0 ⁺		DEFG J	J^{π} : $\Delta J = 2 \gamma$ to 5 ⁻ ; $\Delta J = 1 \gamma$ to 6 ⁻ .
2772.40 <i>13</i>	(4 ⁻ ,6 ⁻)		D K	J^{π} : L(p,t)=0. XREF: K(2768).
2791.50 9	(5-)		D	J^{π} : γ' s to 5 ⁻ and 6 ⁻ ; $\gamma\gamma(\theta)$. J^{π} : γ' s to 4 ⁻ and 6 ⁻ ; $\gamma\gamma(\theta)$.
2800.15 [#] 7	8+		EFG J	J^{π} : $\Delta J = 2 \gamma$ to 6 ⁺ ; yrast band member.
2855.84 5	(2)		B D	J^{π} : E1 γ to 2^+ ; $\gamma\gamma(\theta)$.
2867.02 [@] 8	(8 ⁺)		EFG J	J^{π} : $\Delta J=2$, E2 γ to 6^{+} .
2876.47 5	(1^+)		B D	J^{π} : γ' s to 0^+ and 2^+ ; $\gamma\gamma(\theta)$.
2886 8	0_{+}		K	J^{π} : $L(p,t)=0$.
2900.57 ^e 7	(8-)		FG	J^{π} : $\Delta J=2 \gamma$ to $6^{(-)}$; $\Delta J=1 \gamma$ to (7^{-}) .
2901.69 ^t 9 2927.846 23	(7 ⁻) (3 ⁻)		FG B D	J^{π} : $\Delta J=1 \ \gamma$ to 6^+ ; possible band member. J^{π} : (E1) γ to 2^+ ; γ to 5^- ; $\gamma \gamma(\theta)$.
2934.92 <mark>&</mark> <i>14</i>	(7^+)		G	J^{π} : γ to (5^+) ; possible band member.
2946.33 <i>13</i>	(5-)		D	J^{π} : γ' s to 6^- and (4^+) ; $\gamma\gamma(\theta)$.
2961.02 <i>12</i>	(8-)		G	J^{π} : $\Delta J=2 \gamma$ to (6 ⁻).
2980.97 13	$(1,2^+)$		D	J^{π} : γ to 0^+ .
2981.73 20 3018.59 <i>14</i>	(6-)		D D	J^{π} : γ to 2^+ . J^{π} : γ' s to (6^-) and (7^-) ; $\gamma\gamma(\theta)$.
3018.39 <i>14</i> 3021.35 <i>15</i>	$(1,2^+,3)$		D D	J^{π} : γ to 2^{+} ; $\gamma\gamma(\theta)$.
3068.79 12	(1,2,3) $(1^+,2^+,3,4^+)$		D	J^{π} : γ' s to 2^+ and (3^-) ; $\gamma\gamma(\theta)$.
3082.94 20			D	J^{π} : γ to 2^+ .
3094.69 ⁸ 7	(8-)		E G	J^{π} : $\Delta J=2 \gamma$ to $6^{(-)}$; $\Delta J=1 \gamma$ to (7^{-}) .

132Ba Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		Comments
3104.86 ^j 6	(8-)		G		J^{π} : $\Delta J=2 \gamma$ to $6^{(-)}$; $\Delta J=1 \gamma$ to (7^{-}) .
3116.14 [#] 9	10+	8.94 ns <i>14</i>	EFG		μ =-1.59 5 (1996Da02)
3110.11	10	0.51 115 17	210		μ: TDPAD method (1996Da02). Other: -1.56 11 (IPAD,1995Ha26).
					$T_{1/2}$: $\gamma \gamma(t)$ (1996Da02). Other: 8.7 ns 2.
					J^{π} : $\Delta J=2$, E2 γ to 8^+ ; yrast band member.
3122.21 12	(8^{+})		E G		J^{π} : $\Delta J=2 \gamma$ to 6^{+} .
3158.01 6	$(1)^{-}$		B D		J^{π} : E1 γ to 2^+ ; γ to 0^+ .
3188.31 ^d 8	(9 ⁻)		EFG		J^{π} : $\Delta J=2 \gamma$ to (7^{-}) ; $\Delta J=1 \gamma$ to (8^{-}) .
3196.44 20			D		J^{π} : γ to 2^{+} .
3217.10 <i>21</i>			D		J^{π} : γ to (4^+) .
3219.28 4	(2+)		B D	k	J^{π} : γ' s to 2^+ and 3^- ; $\gamma\gamma(\theta)$.
3229.44 <i>13</i>	(6^+)		D	k	J^{π} : γ' s to (4^+) and (7^-) ; $\gamma\gamma(\theta)$.
3327.06 <i>13</i> 3336.32 <i>15</i>	$(4,5^{-})$ $(3^{-},5^{-})$		D D		J^{π} : γ' s to (4^+) and 5^- ; $\gamma\gamma(\theta)$. J^{π} : γ to 4^- ; $\gamma\gamma(\theta)$.
3340.17^{i} 6					
3340.17 6 3356.27 <i>10</i>	(9 ⁻) (9 ⁻)		E G FG		J^{π} : $\Delta J=2 \ \gamma$ to (7 ⁻); $\Delta J=1 \ \gamma'$ s to 8 ⁺ and (8 ⁻). J^{π} : $\Delta J=1 \ \gamma$ to (8 ⁻).
3363.55 21	$(1,2^+)$		D		J^{π} : γ to 0^+ .
3381.45 <i>15</i>	(1,2)		D		J^{π} : γ to 0^+ .
3412 8	0^{+}			K	J^{π} : L(p,t)=0.
3423.85 4	(3)-		B D		J^{π} : E1(+M2) γ to 2 ⁺ ; γ' s to 4 ⁺ and 4 ⁻ .
3434.36 <i>13</i>	,		D		J^{π} : γ' s 2^+ and 3^- .
3445 8	0_{+}			K	J^{π} : $L(p,t)=0$.
3461.06 <i>15</i>	$(1,2^+)$		D		J^{π} : γ to 0^+ .
3482.23 ^f 9	(9-)		G		J^{π} : $\Delta J=2 \gamma$ to (7^{-}) ; γ to (8^{-}) .
3494.95 6	$(3,4^+)$		B D		J^{π} : γ' s to 2^+ , 4^+ and 4^- .
3505.21 <i>16</i>	(9^+)		_ G		J^{π} : $\Delta J = 1$ γ to (8^+) .
3526.65 20	(0)		D		J^{π} : γ to 2^+ .
3545.55 <i>13</i> 3561.74 <i>6</i>	(9)		G		J^{π} : $\Delta J = 1 \gamma$ to (8^+) .
3562.41 7	$(1,2^+)$		B D B D		J^{π} : γ' s to 3^- and (1). J^{π} : γ to 0^+ .
3563.03 6	$(1,2^+)$		B D		J^{π} : γ to 0^+ .
3591.27 <i>15</i>	(1,2)		D		J^{π} : γ' s to (1^-) and 3^- .
3598.69 ^b 9	(10^+)		E G		J^{π} : $\Delta J=2 \gamma' s$ to 8^+ .
3607.46 9	$(1,2^+)$		D		J^{π} : γ to 0^{+} .
3608.15 20	,		D		J^{π} : γ to 2^+ .
3617.35 20			D		J^{π} : γ to 2^{+} .
3635.17 7	1-		B D		J^{π} : E1 γ to 0^+ .
3659.20 ^e 9	(10^{-})		G		W. E
3663.44 5	$(1^-,2^-,3^-)$		B D		J^{π} : E1 γ to 2^{+} . $J^{\pi}=1^{+}$ in 2002Ga01 from $\gamma\gamma(\theta)$ and deduced
3672.16 <i>15</i>			n		$\delta(Q/D) = -0.56$ for 2631.6 γ is in disagreement. J^{π} : γ' s to 2 ⁺ and 3 ⁻ .
3677.87 [@] 10	(10+)		D		
	(10)		E G	17	J^{π} : $\Delta J=2 \gamma$ to 8^+ .
3697 <i>10</i> 3716.53 <i>9</i>			D	K	J^{π} : γ' s to 2^+ and 3^- .
3717.48 <i>15</i>			D		J^{π} : γ to 2^+ and 3^- :
3721.31 ^j 8	(10^{-})		G		· , to 2 .
3734.13 <i>12</i>	$(2^+,3,4^+)$		D		J^{π} : γ' s to 2^+ and 4^+ .
3735.45 20	(2 ,5,1)		D		J^{π} : γ to 2^+ .
3751 8	0^{+}		_	K	J^{π} : L(p,t)=0.
3753.42 10	$(2,3^{-})$		D		J^{π} : γ' s to (1^{-}) , 2^{+} , 3^{-} and 3^{+} .
3768.19 <i>6</i>	(2,3)		B D		J^{π} : γ' s to 2^{-} , 2^{+} , 3^{-} and 3^{+} .
3769.15 20	(4. a. l.:		D		J^{π} : γ to 2^+ .
3773.31 <i>12</i>	$(1,2^+)$		D		J^{π} : γ to 0^+ .
3775.58 6	(2^{+})		B D		J^{π} : γ' s to 0^+ , 3^+ and 3^- .

132Ba Levels (continued)

E(level) [†]	Jπ‡	XREF		Comments
3787.75 20		D		J^{π} : γ to 2^+ .
3805.29 10	(10^+)	G		'
3812 8	0+		K	J^{π} : L(p,t)=0.
3820.18 <i>12</i>		D		J^{π} : γ' s to 2^+ and 3^- .
3821.05 20		D		J^{π} : γ to 2^{+} .
3834.78 12	$(1,2^+)$	D		J^{π} : γ to 0^+ .
3849.50 <i>6</i>		D		J^{π} : γ' s to 2^+ and 3^- .
3863.44 <i>13</i>		D		J^{π} : γ' s to 2^+ and 3^- .
3878.75 <i>21</i>	$(1,2^+)$	D		J^{π} : γ to 0^+ .
3882 8	0+		K	J^{π} : $L(p,t)=0$.
3887.30 11	$(3,4^+)$	D		J^{π} : γ' s to 2^+ , 4^- and (4^+) .
3903.17 8	$(2^+,3,4^+)$	D	K	XREF: K(3904). J^{π} : γ' s to 2 ⁺ and 4 ⁺ .
3906.08 11	(11^{+})	E G		•
3907.46 8	. ,	D		J^{π} : γ' s to 2^+ and 3^- .
3915.78 [#] 9	(12^+)	EFG		
3917.91 <i>15</i>	$(2^+,3,4^+)$	D		J^{π} : γ' s to 2^+ and 4^+ .
3943.27 9	(10^{+})	G		·
3943.30 20	$(0^+ \text{ to } 4^+)$	D		J^{π} : γ to 2^{+} .
3950.18 ⁱ 8	(11^{-})	E G		
3965.2? 10	. ,	E		
3967.52 12	$(2^+,3,4^+)$	DE		J^{π} : γ' s to 2^+ and 4^+ .
3974.38 12	$(3,4^+)$	D		J^{π} : γ' s to 2^{+} , 4^{+} and 4^{-} .
3975.10 20		D		J^{π} : γ to 2^{+} .
4010.08 20		D		J^{π} : γ to 2^+ .
4027.74 11	$(2^+,3,4^+)$	D		J^{π} : γ' s to 2^+ and 4^+ .
4061.49 ^d 10	(11^{-})	EFG		
4090.15 20		D	K	XREF: K(4083).
4107.0.2	(10+)	_		J^{π} : γ to 4^+ .
4107.8 3	(10^+)	E		
4229.2 6	(11+)	G		
4311.56 23	(11^+)	E		7T 17 2 40±
4361.77 [@] 11	(12^+)	E G		J^{π} : $\Delta J=2 \gamma$ to 10^+ .
4365.14 ^f 14	(11^{-})	G		
4440.34 ^j 9	(12^{-})	G		
4547.24 12	(12^{+})	E G		J^{π} : $\Delta J=2 \gamma$ to (10^+) .
4556.34 ^e 10	(12^{-})	G		
4564.54 ^b 12	(12^+)	G		
4689.23 <i>14</i>	(12^{+})	G		
4704.33 <i>14</i>	(12^{+})	G		
4711.21 ⁱ 11	(13^{-})	E G		
4805.27 [#] <i>12</i>	(14^{+})	E G		
4811.18 ^c 11	(11^{+})	G		
4819.94 ^d 10	(13-)	FG		
4863.26 24	(11-)	E		
4882.25 23	(13+)	E		
4984.48 ^a 14	(13^{+})	G		
4996.52 ^c 9	(12^{+})	G		
5032.99 13	(12^{-})	E G		J^{π} : $\Delta J=1 \gamma$ to (11^{-}) .
5085.08 12		E G		
5104.16 <i>14</i>	(13^{-})	G		
5200.42 ^c 11	(13^+)	_ G		
5248.59 24	(13^{-})	E		

¹³²Ba Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
5282.35 ^d 14	(15^{-})	E G	5835.90 [#] <i>14</i>	(16^{+})	E G	6414.09 ^h 14	(17^{-})	G
5306.7 <i>3</i>	(14^{+})	E	5870.34 <i>14</i>	(15^{-})	G	6484.54 ⁱ 14	(17^{-})	E G
5320.79 ^e 11	(14^{-})	G	5871.97 <i>16</i>	(15^{+})	G	6664.8 ^c 6	(17^+)	G
5335.98 ^j 11	(14^{-})	G	5890.60 ^h 12	(15^{-})	G	6690.99 [#] <i>16</i>	18 ⁺	G
5375.68 15	(14^{+})	G	5963.5 11	(15^{-})	E	6820.99 ^h 17	18-	G
5436.28 ^c 12	(14^{+})	G	5990.65 ^e 18	(16^{-})	G	6954.70 <i>17</i>	(18^{+})	E G
5475.76 12	(14^{+})	G	6106.39 ^h 13	(16^{-})	G	7143.8 ^c 8	(18^{+})	G
5539.65 ^a 14	(15^{+})	E G	6133.57 <i>16</i>	(15)	G	7238.4 ^d 3	(19^{-})	E G
5556.5 4	(14^{-})	E	6195.82 ^c 17	(16^{+})	G	7287.0 ^h 4	(19^{-})	G
5573.88 ⁱ 13	(15^{-})	E G	6267.68 <i>18</i>	(16^{+})	G	7396.79 ^a 18	(19^+)	G
5630.4 ^b 4	(14^{+})	G	6274.28 ^j 15	(16^{-})	G	7623.70 [#] 19	(20^+)	G
5720.64 ^h 11	(14^{-})	G	6294.36 ^d 25	(17^{-})	E G	7751.0 ^h 6	(20^{-})	G
5771.22 ^c 13	(15^{+})	G	6374.08 ^a 15	(17^+)	E G	8310.4 ^d 6	(21^{-})	G

[†] From least-squares fit to Ey's, assuming $\Delta(E\gamma)=0.2$ keV when not stated and when quoted to nearest tenth of a keV.

[‡] For high-spin (J>7) states, the assignments are essentially from (13 C,5n γ) (1995Ju09) based on authors' $\gamma\gamma(\theta)$ (DCO) data and band associations. The parentheses have been added by the evaluators since strong arguments are generally lacking for levels of spin higher than ≈8.

[#] Band(A): yrast band.

[@] Band(B): γ band, α =0.

[&]amp; Band(b): γ band, $\alpha=1$.

^a Band(C): band based on 13⁺.

^b Band(D): band based on 10⁺.

^c Band(E): ΔJ=1 band based on 11⁺. Possibly a dipole magnetic-rotational structure.

^d Band(F): band based on 5⁻.

^e Band(G): band based on 6⁻.

^f Band(H): band based on 5⁻.

^g Band(h): Band based on 4⁻.

^h Band(I): $\Delta J=1$ band based on 14⁻. Possibly a dipole magnetic-rotational structure.

ⁱ Band(J): band based on 7⁻.

^j Band(K): band based on 8⁻.

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\rm I_{\gamma}}^{\dagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α#	Comments
464.508	2+	464.52 3	100	0.0 0+	E2		0.0121	B(E2)(W.u.)=43 4 α (K)=0.0101 3; α (L)=0.00156 5; α (M)=0.00032 1
1031.672	2+	567.16 <i>1</i>	100	464.508 2+	M1+E2	+14 +3-2	0.00710 <i>I</i>	$\alpha(K)$ =0.00595 1; $\alpha(L)$ =0.00087 B(M1)(W.u.)=0.0010 10; B(E2)(W.u.)=144 14 Mult., δ : from $\gamma\gamma(\theta)$ in ¹³² La ε decay (2002Ga01). Other:
		1031.66 <i>1</i>	52 2	0.0 0+	E2		0.00170	$+8.5 + 49 - 22 (\gamma(\theta) \text{ in } (p,2n\gamma)).$ $\alpha(K)=0.00145 5; \alpha(L)=0.00019 I$ B(E2)(W.u.)=3.9 4
1127.615	4+	663.11 2	100	464.508 2+	E2		0.00474	$\alpha(K)=0.00400 \ 12; \ \alpha(L)=0.00056 \ 2$
1503.63	0^{+}	472.05 6	100	1031.672 2+				, , , , , , , , , , , , , , , , , , , ,
		1039.0	10	464.508 2 ⁺				
		1503		$0.0 0^{+}$	E0			
1511.088	3 ⁺	383.28 11	6 2	1127.615 4+	(M1+E2)	+6 1	0.0236	$\alpha(K)$ =0.0200 24; $\alpha(L)$ =0.00289 1; $\alpha(M)$ =0.00060 1; $\alpha(N+)$ =0.00016
		479.47 <i>3</i>	61 2	1031.672 2 ⁺	M1+E2	+4.0 12	0.0113	$\alpha(K)=0.0095 \ 2; \ \alpha(L)=0.00143 \ I; \ \alpha(M)=0.00030$
		1046.56 <i>3</i>	100	464.508 2 ⁺	M1+E2	+2.19 8	0.00174 11	$\alpha(K)=0.00149 \ I0; \ \alpha(L)=0.00019 \ I$
1660.30	0_{+}	628.56 <i>6</i>	34 <i>3</i>	1031.672 2+				
		1195.82 <i>4</i>	100 7	464.508 2 ⁺				
1685.753	2+	654.03 <i>4</i>	12 <i>I</i>	1031.672 2+	(M1+E2)	+0.28 8	0.00679 9	$\alpha(K)=0.00581 \ 8; \ \alpha(L)=0.00074 \ I$
		1221.23 <i>3</i>	100	464.508 2 ⁺	M1+E2	-0.25 2	0.00159	$\alpha(K)=0.00136; \ \alpha(L)=0.00017$
		1685.5 2	1.7 3	$0.0 0^{+}$				
1729.343	4+	218.2	0.15 3	1511.088 3 ⁺				
		601.75 <i>3</i>	41 2	1127.615 4+	(M1+E2)	$-2.6\ 2$	0.00638 5	$\alpha(K)=0.00538\ 5;\ \alpha(L)=0.00076$
		697.68 <i>3</i>	100	1031.672 2+	E2		0.00418	$\alpha(K)=0.00353 \ 11; \ \alpha(L)=0.00049 \ 2$
		1264.77 <i>4</i>	34 <i>1</i>	464.508 2+	E2		0.00112	$\alpha(K)=0.00095 \ 3; \ \alpha(L)=0.00012$
1931.91	6+	804.5 2	100	1127.615 4+	Q			
1944.29	(4^{+})	816.6	100	1127.615 4+	(M1(+E2))	+0.03 6		
		912.50 14	7 1	1031.672 2+				
1000 150	2+	1479.7	4 1	464.508 2+				
1998.179	2+	312.4	1.8 5	1685.753 2 ⁺				
		487.1	0.8 3	1511.088 3+				
		494.4	1.0 5	1503.63 0 ⁺	(M1 + E2)	.0.11.6	0.00275 1	· (IV) 0.00225 1 (I) 0.00020
		966.45 <i>3</i> 1533.66 <i>4</i>	28 <i>5</i> 100	1031.672 2 ⁺ 464.508 2 ⁺	(M1+E2)	+0.11 6	0.00275 <i>1</i> 0.00083	$\alpha(K)=0.00235 \ 1; \ \alpha(L)=0.00030$ $\alpha(K)=0.00083 \ 3$
		1998.38 <i>6</i>	31 2	0.0 0+	(M1(+E2))	+0.02 2	0.00083	$\alpha(K)$ =0.00083 3 E _{γ} : level-energy difference=1998.16.
2026.943	4-	82.6	0.06 2	1944.29 (4 ⁺)				E_{γ} : level-energy difference=1998.10.
2020.943	4	82.6 297.6 5	33 2	1729.343 4 ⁺				
		515.78 9	95 5	1729.343 4 1511.088 3 ⁺	E1		0.00306	$\alpha(K)=0.00262 \ 8; \ \alpha(L)=0.00033 \ 1$
		899.32 <i>3</i>	100	1127.615 4+	(E1(+M2))	-0.02 3	0.00300	$\alpha(K)=0.00202$ 8, $\alpha(L)=0.00033$ 1 $\alpha(K)=0.00081$ 3; $\alpha(L)=9.9\times10^{-5}$ 3
		899.32 3 1562.3 <i>1</i>	0.6 3	464.508 2 ⁺	(E1(+W12))	-0.02 3	0.00094	$u(\mathbf{K}) = 0.00001 \ \mathcal{I}, \ u(\mathbf{L}) = 9.9 \times 10^{-5} \ \mathcal{I}$
2046-23	(2 ⁺)				(M1(±F2))	_0.02.2		
2046.23	(2+)	1581.75 <i>4</i>	100	464.508 2+	(M1(+E2))	-0.02 2		

$\gamma(^{132}Ba)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α#	Comments
2046.48	(4+)	102.3	2.3 4		(4 ⁺)				
		317.1	81 8	1729.343					
		360.66 12	5.7 8	1685.753					
		386.0	0.50 8	1660.30					
		535.5	73 8	1511.088					
		918.8	100 12	1127.615					
		1014.7	23 8	1031.672					Additional information 1.
	_	1581.9	12.7 15	464.508					Additional information 2.
2068.553	3-	382.8	3.0 2	1685.753		(714 (3.50))	0.00 /		
		940.87 5	7.3 3	1127.615		(E1(+M2))	-0.03 4		
		1036.9 9	8.6 3	1031.672		(E1(+M2))	-0.04 16		
		1604.03 <i>3</i> 2068.6	100 0.15 7	464.508 0.0	0 ⁺	(E1(+M2))	+0.02 2		Additional information 3.
2119.59	5-	73.1	0.13 /		(4 ⁺)				Additional information 3.
2119.39	3	92.7	0.5 1	2026.943					
		175.3 <i>1</i>	3.3 2		(4 ⁺)	(E1(+M2))	+0.01 3		$B(E1)(W.u.)=2.2\times10^{-6}$ 14
		173.3 <i>1</i> 187.7 <i>1</i>	5.3 3		(4) 6 ⁺	(E1(+M2)) (E1(+M2))	+0.01 3	0.0399	$\alpha(K) = 0.0343; \ \alpha(L) = 0.00447; \ \alpha(M) = 0.00091;$
		107.7 1	5.5 5	1931.91	U	(L1(+W12))	TO.01 2	0.0377	$\alpha(N+)=0.00024$
									$B(E1)(W.u.)=2.9\times10^{-6}$ 12
		390.3 <i>1</i>	100	1729.343	4 +	(E1)		0.00588	$\alpha(K)=0.00507$ 16; $\alpha(L)=0.00064$ 2; $\alpha(M)=0.00013$
		390.3 1	100	1729.545	7	(LI)		0.00366	$B(E1)(W.u.)=6.1\times10^{-6}+16-31$
		992.1 <i>1</i>	68 <i>1</i>	1127.615	4 +	(E1+M2)	+0.03 1	0.004 3	$\alpha(K)=0.0031 \ 24; \ \alpha(L)=0.0004 \ 4$
		1087.9	0.06 3	1031.672		[E3]	T0.03 1	0.004 3	B(E3)(W.u.)=0.5 +3-4
		1655.0	0.8 2	464.508		[E3]			B(E3)(W.u.)=0.39 +14-22
2220.07	(3^{-})	275.9	5 1	1944.29		[23]			D(E3)(****a.) 0.37 117 22
,	(5)	534.4	7 1	1685.753					
		709.1	16 <i>I</i>	1511.088					
		1092.56 10	26 <i>3</i>	1127.615					
		1188.35 <i>5</i>	100	1031.672		(E1(+M2))	-0.11 8		
		1755.5	23 5	464.508	2+				
2225.82	(5^+)	496.4	7.3 8	1729.343					
		714.7	100	1511.088	3+				
		1098.1	22 1	1127.615					
2240.69	6 ⁽⁺⁾	308.6	5 1	1931.91	6+	(M1(+E2))	-0.2 + 3 - 4	0.0454	$\alpha(K)$ =0.0389 12; $\alpha(L)$ =0.00514 16; $\alpha(M)$ =0.00105 4; $\alpha(N+)$ =0.00029 1
		511.3 <i>1</i>	78 <i>3</i>	1729.343	4 +				α(1 1 τ) – 0.000 Δ7 1
		1113.2 2	100	1127.615					
2287.98	$(2^+,3,4^+)$	602.2	23 6	1685.753					
	(= ,5,.)	776.9	28 7	1511.088					
		1160.08 18	43 20	1127.615					

$\gamma(^{132}Ba)$ (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}{}^{\dagger}$	\mathbf{E}_f \mathbf{J}^{r}	f Mul	t. [‡] δ	i [‡] α#	Comments
2287.98	$(2^+,3,4^+)$	1823.5	100	464.508 2+	-			
2312.49	5(-)	192.8	2.8 5	2119.59 5				
		265.9	1.3 2	2046.48 (4	+)			
		285.6 <i>1</i>	100	2026.943 4				
		368.2	0.7 1	1944.29 (4	+)			
		380.4	0.04 1	1931.91 6+				
		583.1	8.3 2	1729.343 4+				
		801.5	0.13 2	1511.088 3+				
2357.62	(6-)	45.1 <i>I</i>		2312.49 5 ⁽⁻⁾				
		131.7	1.8 4	2225.82 (5				
		238.1 <i>I</i>	100	2119.59 5	`	E2) ≈-0.	2 0.091	$\alpha(K)$ =0.0777; $\alpha(L)$ = 0.0104; $\alpha(M)$ = 0.00214; $\alpha(N+)$ = 0.00058
		330.7 <i>1</i>	14 2	2026.943 4				
2374.422	3-	154.3	0.03 1	2220.07 (3				
		305.8	7.0 1	2068.553 3	(M1+	E2)	0.0456	$\alpha(K)$ =0.0387 17; $\alpha(L)$ =0.0055 4; $\alpha(M)$ =0.00113 8; $\alpha(N+)$ =0.00031 2
								δ : -0.04 to -1.13.
		376.0	0.13 <i>3</i>	1998.179 2+				
		430.13 6	2.3 1	1944.29 (4				
		645.05 4	3.5 3	1729.343 4+		M2)) +0.	06 5 0.00192 <i>I</i>	6 $\alpha(K)=0.00165 \ 14; \ \alpha(L)=0.00021 \ 2$
		688.66 3	3.0 1	1685.753 2 ⁺				
		1246.81 3	4.1 <i>I</i>	1127.615 4+		M2))	15 14 0 00050 1	4 - (V) 0.00042 12
		1342.81 <i>7</i> 1909.91 <i>4</i>	4.1 <i>2</i> 100	1031.672 2 ⁺ 464.508 2 ⁺			15 <i>14</i> 0.00050 <i>I</i> 02 <i>I</i>	4 $\alpha(K)=0.00043 \ 12$
2422.73	6 ⁽⁻⁾	1909.91 4				-0.	02 1	
2422.73	0, ,	303.2 <i>1</i>	1.0 100	2225.82 (5° 2119.59 5				
		305.2 <i>1</i> 395.7 <i>1</i>	71 4	2026.943 4				
2438.93	$(2^+ \text{ to } 6^+)$	709.5	10	1729.343 4 ⁺				
2130.73	(2 10 0)	1311.3	100	1127.615 4+				
2452.87	(1^{-})	767.4	3 1	1685.753 2 ⁺				
	(- /	792.8	4 1	1660.30 0 ⁺				
		949.1	10 <i>I</i>	1503.63 0+				
		2452.74 6	100	$0.0 0^{+}$				
2483.06	(7^{-})	125.5 <i>I</i>	20 2	2357.62 (6		≈ - 0.	2	
	,	242.4 1	29 2	2240.69 6				I_{γ} : value of 50 5 from ¹³² La ε decay not used in averaging.
		363.5 2	100.0 13	2119.59 5	E2		0.0249	$\alpha(K)$ =0.0206 7; $\alpha(L)$ =0.00344 11; $\alpha(M)$ =0.00072 2; $\alpha(N+)$ =0.00019 1
		551.3 <i>I</i>	7 2	1931.91 6 ⁺	-			
2492.35	(4^{+})	179.9	18 2	2312.49 5 ⁽⁻	-)			

 ∞

$\gamma(^{132}Ba)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	$lpha^{\#}$	Comments
2492.35	(4 ⁺)	1364.6	100	1127.615 4+	(M1+E2)	+0.40 5	0.00122 <i>I</i>	$\alpha(K)=0.00104 \ I; \ \alpha(L)=0.00013$
2505.34	(2)	819.7	3.9	1685.753 2 ⁺	, ,			
		2040.79 5	100	464.508 2 ⁺	D+Q	-0.11 3		
2567.331	(3)-	192.9 2	15 2	2374.422 3-	M1,E2		0.178 <i>19</i>	$\alpha(K)$ =0.144 8; $\alpha(L)$ =0.027 9; $\alpha(M)$ =0.0056 19; $\alpha(N+)$ =0.0015 5
		254.8	0.5 2	2312.49 5 ⁽⁻⁾				
		279.3	1.0 2	$2287.98 (2^+,3,4^+)$				
		347.1	0.8 2	2220.07 (3 ⁻)) ## E0		0.0117.10	(II) 0.0000 IC (I) 0.00127 II (II) 0.00020 2
		498.79 3	6.9 6	2068.553 3	M1+E2		0.0117 <i>18</i>	$\alpha(K)$ =0.0099 <i>16</i> ; $\alpha(L)$ =0.00137 <i>11</i> ; $\alpha(M)$ =0.00028 <i>2</i> δ : -0.08 to -1.03.
		520.7	0.4 1	2046.48 (4 ⁺)	161 50		0.0006.15	(II) 0.0001 14 (I) 0.00110 11
		540.363 23	100	2026.943 4	M1,E2	0.06.4	0.0096 15	$\alpha(K) = 0.0081 \ 14; \ \alpha(L) = 0.00110 \ 11$
		569.1	10 2	1998.179 2 ⁺	(E1+M2)	-0.06 4	0.00254 18	$\alpha(K) = 0.00218 \ 15; \ \alpha(L) = 0.00027 \ 2$
		623.03 <i>3</i> 837.9	3.4 3	1944.29 (4 ⁺) 1729.343 4 ⁺	(E1+M2)	+0.06 3	0.00208 10	$\alpha(K)=0.00178 \ 8; \ \alpha(L)=0.00022 \ I$
		881.57 <i>3</i>	1.1 <i>4</i> 12.2 <i>8</i>	1685.753 2 ⁺	E1		0.00098	$\alpha(K)=0.00084$ 3; $\alpha(L)=0.00010$
		1439.80 5	3.2 3	1127.615 4 ⁺	LI		0.00098	u(K)=0.00004 5, $u(L)$ =0.00010
		2102.84 5	73 5	464.508 2+	(E1+M2)	-0.02 1		
2609.60	(5^{-})	117.2	1.1 3	2492.35 (4 ⁺)	(E11112)	0.02 1		
	(-)	126.6	3.6 4	2483.06 (7 ⁻)				
		252.0	24 2	2357.62 (6-)				
		297.1	96 <i>3</i>	2312.49 5(-)				
		383.7	3 1	$2225.82 (5^+)$				
		490.0	100	2119.59 5-				
2693.27	$(4,5^{-})$	318.8		2374.422 3-				
		573.7		2119.59 5				
2718.17	7 ⁽⁻⁾	295.3 2	35 13	$2422.73 6^{(-)}$				
		360.5 1	15.9 10	2357.62 (6-)	_			
		598.6 1	100 5	2119.59 5	Q			
2772.40	$(4^-,6^-)$	349.7		2422.73 6 ⁽⁻⁾				
2701 50	(F=)	652.8		2119.59 5-				
2791.50	(5^{-})	98.2		2693.27 $(4,5^{-})$				
		368.8 671.8		2422.73 6 ⁽⁻⁾ 2119.59 5 ⁻				
		764.4		2026.943 4 ⁻				
		1664.1		1127.615 4+				
2800.15	8+	559.5 <i>1</i>	5.4 <i>3</i>	2240.69 6 ⁽⁺⁾				
2000.13	U	868.3 <i>1</i>	100 2	1931.91 6 ⁺	Q			
2855.84	$(2)^{-}$	350.4	≤2	2505.34 (2)	V			
2000.01	(-)	403.1	7 2	2452.87 (1 ⁻)				
		787.4 <i>3</i>	3 1	2068.553 3				
		787.4 3	3 1	2068.553 3-				

9

$\gamma(^{132}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbb{E}_f	$\underline{\hspace{1cm}}_{f}^{\pi}$	Mult.‡	δ^{\ddagger}		Comments	
2855.84	(2)-	1169.83 19	6.3 12	1685.753	2+			•		
		1824.1	60 4	1031.672						
		2391.35 6	100	464.508		E1				
2867.02	(8^{+})	626.2 1	19 <i>3</i>	2240.69	6(+)					
	, ,	935.1 <i>1</i>	100 5	1931.91	6+					
2876.47	(1^+)	423.6	13 <i>3</i>	2452.87	(1^{-})					
		1190.6	≤10	1685.753	2+					
		1372.7	13 <i>3</i>		0^{+}					
		1844.83 9	27 4	1031.672		D(+Q)	+0.02 13			
		2411.92 7	100	464.508	2+	D+Q	$-0.05\ 2$			
		2877.0	10 <i>3</i>	0.0	0_{+}					
2900.57	(8-)	417.5 <i>1</i>	100 5	2483.06	(7^{-})	D+Q				
		477.8 <i>1</i>	28 3	2422.73	$6^{(-)}$					
		542.8 <i>1</i>	7.5 12	2357.62	(6^{-})					
2901.69	(7^{-})	969.7 <i>1</i>	100	1931.91	6+					
2927.846	(3^{-})	360.4	<74	2567.331	$(3)^{-}$					
		474.65 <i>13</i>	34 6		(1^{-})					
		553.43 <i>4</i>	77 6	2374.422						
		808.2	41 4		5-					
		859.31 <i>4</i>	100 9	2068.553		(M1+E2)		δ : +0.3 to -1.84.		
		929.68 5	74 <i>6</i>	1998.179						
		1198.67 <i>10</i>	43 6	1729.343						
		1242.06 5	76 5	1685.753						
		1416.92 <i>15</i>	19 <i>4</i>	1511.088						
		1800.34 7	100 8	1127.615						
		2463.22 [@] 5	<330	464.508		(E1)				
2934.92	(7^{+})	709.1 <i>1</i>	100	2225.82	(5^+)					
2946.33	(5^{-})	453.9		2492.35	(4^{+})					
		523.7		2422.73	$6^{(-)}$					
		588.7		2357.62	(6^{-})					
2961.02	(8^{-})	603.4 <i>1</i>	100	2357.62	(6^{-})					
2980.97	$(1,2^+)$	542.0		2438.93	$(2^+ \text{ to } 6^+)$					
		1295.3		1685.753						
		1477.3			0_{+}					
2981.73		2517.2	100	464.508						
3018.59	(6-)	246.2		2772.40	$(4^-,6^-)$					
		408.9		2609.60	(5^{-})					
		535.6		2483.06	(7^{-})					
3021.35	$(1,2^+,3)$	1335.5		1685.753						
		2556.9		464.508						
3068.79	$(1^+,2^+,3,4^+)$	848.7		2220.07	(3^{-})					

$\gamma(^{132}\text{Ba})$ (continued)

$E_i(level)$	$\underline{\hspace{1cm}J_i^{\pi}}$	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.‡	α#	Comments
3068.79	$(1^+,2^+,3,4^+)$	1382.9 2604.4		1685.753 464.508				
3082.94		2618.4		464.508				
3094.69	(8-)	376.5 <i>1</i>	80 8		7 ⁽⁻⁾	D+Q		I_{γ} : other: 145 22 in $^{122}Sn(^{13}C,3n\gamma)$.
		672.0 <i>1</i>	100 7		$6^{(-)}$	Q		,
		737.2 1	50 6		(6-)			
3104.86	(8-)	386.6 <i>1</i>	47 <i>4</i>		$7^{(-)}$			
		621.8 <i>I</i>	87 <i>7</i>		(7^{-})			
		682.1 <i>1</i>	100 <i>13</i>		$6^{(-)}$			
		747.3 <i>1</i>	67 7		(6-)			
3116.14	10+	249.1 <i>1</i>	4.5 3	2867.02	(8+)	E2	0.0830	$\alpha(K)$ =0.0663 20; $\alpha(L)$ =0.0132 4; $\alpha(M)$ =0.00278 9; $\alpha(N+)$ =0.00073 2 B(E2)(W.u.)=0.073 7
		316.0 <i>I</i>	100.0 10	2800.15	8+	E2	0.0385	$\alpha(K)$ =0.0315 10; $\alpha(L)$ =0.00558 17; $\alpha(M)$ =0.00117 4; $\alpha(N+)$ =0.00031 1 B(E2)(W.u.)=0.462 10
3122.21	(8^{+})	1190.3 <i>I</i>	100	1931.91	6+			
3158.01	$(1)^{-}$	1472.5		1685.753	2+			
		1498.0			0+			
		2693.36 7	100 8	464.508		E1		
		3158.28 <i>19</i>	23 3		0_{+}			
3188.31	(9-)	287.7 1	10 2		(8-)	_		
240644		705.2 2	100 4		(7^{-})	Q		
3196.44		2731.9		464.508				
3217.10	(0±)	1272.8			(4^+)			
3219.28	(2^{+})	342.7			(1^+)			
		766.3		2068.553	(1-)			
		1150.7 1173.12 8	7.5 9		(2^+)			
		1533.7	1.5 9	1685.753				I_{γ} : expected to Be small from ¹³² La ε decay work of 1996Ku01.
		2187.55 <i>10</i>	9.5 14	1083.733				1_{γ} . expected to be small from $-$ La ε decay work of 1990Ku01.
		2754.73 5	100 6	464.508				
3229.44	(6 ⁺)	437.9	100 0		(5^{-})			
3227.11	(0)	737.0			(4^+)			
		746.5			(7^{-})			
3327.06	$(4,5^{-})$	834.6			(4^{+})			
2327.00	(., - /	888.0			$(2^+ \text{ to } 6^+)$			
		1207.7			5-			
3336.32	$(3^-,5^-)$	1289.8			(4 ⁺)			
	. , ,	1309.4		2026.943				

1

ı						/(24) (
	$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f J_f^π	Mult.‡	δ^{\ddagger}	Comments
	3340.17	(9^{-})	235.2 1	56 9	3104.86 (8-)			
			245.5 1	26 2	3094.69 (8 ⁻)			
			438.4 1	65 9	2901.69 (7-)	ъ		
			540.0 <i>I</i>	94 5	2800.15 8 ⁺	D		
ı			622.1 <i>I</i> 857.3 <i>I</i>	100 <i>9</i> 76 <i>5</i>	2718.17 7 ⁽⁻⁾ 2483.06 (7 ⁻)	(Q)		
ı	3356.27	(9-)	455.5 <i>1</i>	100	2900.57 (8-)	(Q)		
	3363.55	$(1,2^+)$	1859.9	100	1503.63 0 ⁺			
ı		(-,-)	3363.58 ^{&} 14		$0.0 0^{+}$			
ı	3381.45		1695.5		1685.753 2 ⁺			
ı			2917.1		464.508 2 ⁺			
ı	3423.85	$(3)^{-}$	856.41 8	10.5 <i>16</i>	2567.331 (3)-			
ı			918.3		2505.34 (2)			
			931.7	0.5.12	2492.35 (4 ⁺)			
			1355.04 <i>10</i> 1396.99 <i>6</i>	9.5 <i>13</i> 19.4 <i>16</i>	2068.553 3 ⁻ 2026.943 4 ⁻			
			1737.99 16	7.6 15	1685.753 2 ⁺			
ı			2296.18 10	13.5 14	1127.615 4+			
ı			2959.49 9	100 7	464.508 2 ⁺	E1(+M2)	-0.02~3	
ı	3434.36		995.5		$2438.93 (2^+ \text{ to } 6^+)$			
ı			1365.8		2068.553 3-			
ı	2461.06	(1.2+)	1436.1		1998.179 2 ⁺			
ı	3461.06	$(1,2^+)$	1775.2 1957.5		1685.753 2 ⁺ 1503.63 0 ⁺			
			3461.5 ^{&} 5		$0.0 0^{+}$			
	3482.23	(9-)	387.6 <i>1</i>	22 3	3094.69 (8 ⁻)			
ı	3 102.23	()	764.0 <i>1</i>	100 13	$2718.17 7^{(-)}$			
	3494.95	$(3,4^+)$	1467.93 24	21 7	2026.943 4			
		(-)	1809.4		1685.753 2+			
			1984.0 <i>3</i>	17 5	1511.088 3 ⁺			
			2367.08 7	100 7	1127.615 4+			E_{γ} : level-energy difference=2367.34.
			2463.22 [@] 5	<400	1031.672 2+			
	2505.21	(0±)	3030.81 10	71 6	464.508 2 ⁺			E_{γ} : level-energy difference=3030.40.
I	3505.21	(9^{+})	383.0 <i>I</i>	100	3122.21 (8 ⁺)			
I	3526.65		3062.1		464.508 2+			
	3545.55	(9)	3527.8 ^{&} 5 745.4 <i>1</i>	100	0.0 0 ⁺ 2800.15 8 ⁺			
	3545.55 3561.74	(9)	685.3	100	2876.47 (1 ⁺)			
	3301.74		994.40 <i>6</i>		2567.331 (3)			
			1187.4		2374.422 3			
П								

$\gamma(^{132}\text{Ba})$ (continued)

E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
3562.41	$(1,2^+)$	1109.2		2452.87	(1^{-})			
	(, ,	1188.35 <mark>&</mark> 5	120 10	2374.422				
		1493.7	120 10	2068.553				
		1516.6 3	16 6	2046.23				
		1564.3		1998.179				
		1876.67 9	100 10	1685.753	2+			
		2058.9 <i>3</i>	11 4		0^{+}			
3563.03	$(1,2^+)$	1902.9		1660.30				
		3098.45 <i>6</i>	100 6	464.508				
		3563.12 23	7.2 9		0+			
3591.27		1138.5			(1^{-})			
2500.60	(10+)	1522.6	26.2	2068.553		(0)		
3598.69	(10^{+})	731.7 <i>I</i>	26 3		(8 ⁺)	(Q)		
2607.46	(1.2+)	798.6 <i>I</i>	100 9		8 ⁺	(Q)		
3607.46	$(1,2^+)$	731.0 1102.0			(1^+) (2)			
		1921.7		1685.753				
		1947.1		1660.30				
		2103.8			0+			
		2575.9		1031.672				
3608.15		3143.6		464.508				
		3608.02 ^{&} 17			0+			
3617.35		3152.8		464.508				
3635.17	1-	1949.5		1685.753				
		1974.5		1660.30				
		2131.2			0^{+}			
		3170.63 9	82 7	464.508	2+	E1(+M2)	-0.01 4	
		3635.60 19	100 9		0^{+}	E1		
3659.20	(10^{-})	470.8 <i>1</i>	18.8 <i>13</i>		(9^{-})			
		758.7 <i>1</i>	100 6		(8^{-})			
3663.44	$(1^-,2^-,3^-)$	1096.15 24	4.5 15	2567.331 (
		1210.7			(1^{-})			
		1617.06 <i>21</i>	7.1 16		(2^{+})			
		1977.31 19	11.6 12	1685.753				M 1 C (M1. F2) 'd C 0.5(0.(f 1.1) f (0) 1 (1) '
		2631.63 7	34.0 <i>21</i>	1031.672	2'			Mult., δ : (M1+E2) with δ =-0.56 8 (for J=1) from $\gamma\gamma(\theta)$ data is in
		3199.04 7	100 6	464.508	2+	E1		contradiction with E1 for 3199γ .
		3665.5 ^{&} 5		0.0		LI		
3672.16		3665.5° 3 1603.5	1.8 4	2068.553				
30/2.10		3207.7		464.508 2				
3677.87	(10^+)	810.9 <i>I</i>	100 12	2867.02		Q		
3077.07	(10)	010.7 1	100 12	2007.02 ((0)	~		

$\gamma(^{132}\text{Ba})$ (continued)

					
$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
3677.87 3716.53	(10 ⁺)	879& 1 840.2 1149.2 1211.2 1428.5 1647.9	<59	2800.15 8 ⁺ 2876.47 (1 ⁺) 2567.331 (3) ⁻ 2505.34 (2) 2287.98 (2 ⁺ ,3,4 ⁺) 2068.553 3 ⁻	
3717.48		2030.7 2685.7 3253.0		1685.753 2 ⁺ 1031.672 2 ⁺ 464.508 2 ⁺	
3721.31	(10-)	3718.7 ^{&} 4 381.1 <i>I</i> 616.5 <i>I</i> 626.7 <i>I</i>	32 <i>3</i> 100 <i>5</i> 63 <i>5</i>	0.0 0 ⁺ 3340.17 (9 ⁻) 3104.86 (8 ⁻) 3094.69 (8 ⁻)	
3734.13	(2+,3,4+)	1665.4 2048.4 2606.6	03 3	2068.553 3 ⁻ 1685.753 2 ⁺ 1127.615 4 ⁺	
3735.45 3753.42	(2,3-)	3270.9 877.1 1300.6		464.508 2 ⁺ 2876.47 (1 ⁺) 2452.87 (1 ⁻)	
27(0.10	(2.2)	1684.6 1755.2 2242.4	40.0	2068.553 3 ⁻ 1998.179 2 ⁺ 1511.088 3 ⁺	
3768.19	(2,3)	912.50 <i>14</i> 1699.47 <i>10</i> 2082.45 9 2257.2	49 9 44 9 100 <i>11</i> 15 7	2855.84 (2) ⁻ 2068.553 3 ⁻ 1685.753 2 ⁺ 1511.088 3 ⁺	
2=40.45		3303.49 ^{&} 16		464.508 2+	
3769.15 3773.31	$(1,2^+)$	3304.6 2087.0 2112.9 2270.3		464.508 2 ⁺ 1685.753 2 ⁺ 1660.30 0 ⁺	En lavel energy difference 2260.7
3775.58	(2+)	919.7 1208.3 1487.6 1555.59 <i>15</i>	<152 52 <i>10</i>	1503.63 0 ⁺ 2855.84 (2) ⁻ 2567.331 (3) ⁻ 2287.98 (2 ⁺ ,3,4 ⁺) 2220.07 (3 ⁻)	E_{γ} : level-energy difference=2269.7.
		1706.47 <i>18</i> 2265.0 2743.83 <i>10</i> 3311.1	58 8 19 5 100 9	2068.553 3 ⁻ 1511.088 3 ⁺ 1031.672 2 ⁺ 464.508 2 ⁺	E_{γ} : level-energy difference=1707.0.
3787.75		3775.6 <i>3</i> 3323.2	32 3	$0.0 0^{+} $ $464.508 2^{+}$	

14

E_i (level)	$_{ m I}\pi$	$E_{\gamma}{}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	F. D	T Comments
	\mathbf{J}_i^{π}			\mathbf{E}_f \mathbf{J}'	
3805.29	(10^{+})	938.1 <i>I</i>	100 13	2867.02 (8+	
2020 10		1005.3 <i>I</i>	33 7	2800.15 8 ⁺	
3820.18		1751.9		2068.553 3	
		1773.6 2134.2		2046.48 (4 ⁺ 1685.753 2 ⁺)
3821.05		3356.5		464.508 2 ⁺	
3834.78	$(1,2^+)$	2148.7		1685.753 2 ⁺	
3031.70	(1,2)	2174.5		1660.30 0 ⁺	
		2331.4		1503.63 0 ⁺	
3849.50		973.1		2876.47 (1+	
		1282.17 7	100 10	2567.331 (3)	
		1780.9		2068.553 3-	
		2817.54 20	55 8	1031.672 2+	
		3385.08 <i>18</i>	43 5	464.508 2 ⁺	E_{γ} : level-energy difference=3385.2.
3863.44		1794.9		2068.553 3	
2070 75	(1.0+)	2831.72 16		1031.672 2+	
3878.75	$(1,2^+)$	2375.1		1503.63 0+	
3887.30	$(3,4^+)$	1818.9 1860.4		2068.553 3 ⁻ 2026.943 4 ⁻	
		1942.9		1944.29 (4 ⁺	
		2201.4		1685.753 2 ⁺)
3903.17	$(2^+,3,4^+)$	1835.22 <i>21</i>	32 7	2068.553 3	
	(= ,=,:)	2217.6		1685.753 2 ⁺	
		2775.35 20	26 5	1127.615 4+	
		2871.35 9	100 7	1031.672 2+	
3906.08	(11^{+})	789.9 <i>1</i>	100	3116.14 10	+
3907.46		1838.9 <i>3</i>	21 7	2068.553 3	
		1861.6		2046.23 (2+	
2015 70	(12+)	2875.67 9	100 7	1031.672 2+	
3915.78	(12^{+})	799.6 <i>I</i>	100	3116.14 10	
3917.91	$(2^+,3,4^+)$	2231.9 2790.5		1685.753 2 ⁺ 1127.615 4 ⁺	
3943.27	(10^{+})	1076.2 <i>1</i>	100 10	2867.02 (8 ⁺	
3943.21	(10)	1143.0 <i>I</i>	100 10	2800.15 8 ⁺)
3943.30	$(0^+ \text{ to } 4^+)$	2911.6	100 17	1031.672 2+	
3950.18	(11^{-})	229.0 <i>1</i>	7.0 5	3721.31 (10)_)
	` '	593.7 1	3.4 6	3356.27 (9	
		610.2 <i>I</i>	100 5	3340.17 (9	
3965.2?		843 <mark>&</mark> 1	100	3122.21 (8+	
3967.52	$(2^+,3,4^+)$	1400.39 <i>16</i>	95 20	2567.331 (3)	
	,	2281.35 26	53 15	1685.753 2 ⁺	

$\gamma(^{132}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡	Comments
3967.52	$(2^+,3,4^+)$	2839.77 20	100 24	1127.615	4+		
3974.38	$(3,4^+)$	1947.3		2026.943	4-		
		2029.9	<74	1944.29	(4^{+})		
		2288.93 <i>21</i>	100 <i>19</i>	1685.753	2+		
3975.10		2943.4		1031.672	2+		
4010.08		2324.3		1685.753	2+		
4027.74	$(2^+,3,4^+)$	1959.4	34 11	2068.553			
		2342.4	48 12	1685.753			
		2899.67 <i>16</i>	100 15	1127.615	4+		E_{γ} : level-energy difference=2900.1.
4061.49	(11^{-})	402.1 <i>I</i>	6.6 10	3659.20	(10^{-})		
		873.1 2	100 5	3188.31	(9^{-})	Q	
4090.15		2962.5		1127.615	4+		
4107.8	(10^+)	992 <mark>&</mark> 1	100	3116.14	10 ⁺		
4229.2		724.0 5	100	3505.21	(9^+)		
4311.56	(11^{+})	203.8 2	100	4107.8	(10^{+})		
4361.77	(12^{+})	683.8 <i>1</i>	55 7	3677.87	(10^{+})	Q	
		763.5 2	100 10	3598.69	(10^{+})	Q	
4365.14	(11^{-})	882.9 <i>1</i>	100	3482.23	(9^{-})		
4440.34	(12^{-})	490.2 <i>1</i>	20.7 21	3950.18	(11^{-})		
		719.0 <i>I</i>	100 7	3721.31	(10^{-})		
4547.24	(12^{+})	235.7 2	56 17	4311.56	(11^{+})		
		630.9 <mark>&</mark> 1	35 <i>5</i>	3915.78	(12^{+})		
		948.6 <i>1</i>	100 12	3598.69	(10^{+})		
4556.34	(12^{-})	494.6 <i>1</i>	<9	4061.49	(11^{-})		
		897.3 <i>1</i>	100 9	3659.20	(10^{-})		
4564.54	(12^{+})	965.8 <i>1</i>	100	3598.69	(10^{+})		
4689.23	(12^{+})	783.1 <i>I</i>	100	3906.08	(11^{+})		
4704.33	(12^{+})	798.3 1	100	3906.08	(11^{+})		
4711.21	(13^{-})	761.1 <i>I</i>	100	3950.18	(11^{-})		
4805.27	(14^{+})	889.6 <i>1</i>	100	3915.78	(12^{+})		
4811.18	(11^+)	1695.1 <i>I</i>	100	3116.14	10+		
4819.94	(13^{-})	758.4 1	100 6	4061.49	(11^{-})		
		904.0 1	10.5 8	3915.78	(12^{+})		
4863.26	(11^{-})	801 ^{&} 1	100	4061.49	(11^{-})		
4882.25	(13^{+})	335.0 2	100	4547.24	(12^+)		
4984.48	(13^{+})	1068.7 <i>I</i>	100	3915.78	(12^+)		
4996.52	(12^{+})	185.4 1	89 11	4811.18	(11^+)		
		1053.1 1	100 18	3943.27	(10^{+})		
		1080.7 1	44 11	3915.78	(12^+)		
		1090.4 <i>I</i> 1318.8 <i>I</i>	67 7	3906.08 3677.87	(11^+) (10^+)		
		1310.0 1		30/1.8/	(10.)		
1							

$\gamma(^{132}Ba)$ (continued)

$E_i(le)$	vel) J	π i	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Comments
5032		2-)	169.7 2	23 5	4863.26 (11-)	
3032	.,, (12	_ ,	971.7 2	100 5	4061.49 (11 ⁻)	
5085	08		723.3 1	22 2	4361.77 (12 ⁺)	
3003	.00		1169.3 <i>I</i>	100 8	3915.78 (12 ⁺)	
5104	16 (13	3-)	547.0 5	37 13	4556.34 (12 ⁻)	
3101	.10 (1.	,	1042.7 <i>I</i>	100 13	4061.49 (11 ⁻)	
5200	42 (13	3 ⁺)	203.9 1	100 13	4996.52 (12 ⁺)	
5248		3 ⁻)	215.6 2	100	5032.99 (12 ⁻)	
5282		5 ⁻)	462.4 1	100	4819.94 (13 ⁻)	
5306		4 ⁺)	424.5 2	100	4882.25 (13 ⁺)	
5320		4 ⁻)	764.4 <i>1</i>	100 10	4556.34 (12 ⁻)	
3320	.// (1-	T)	880.5 1	51 6	4440.34 (12 ⁻)	
5335	98 (14	4 ⁻)	624.8 1	25 3	4711.21 (13 ⁻)	
	.70 (1-	. ,	895.6 <i>1</i>	100 7	4440.34 (12 ⁻)	
5375	68 (14	4 ⁺)	671.4 <i>I</i>	100 /	4704.33 (12 ⁺)	
] 3313	.55 (1-	. ,	686.4 <i>1</i>	54 15	4689.23 (12 ⁺)	
5436	28 (14	4 ⁺)	235.9 1	100 9	5200.42 (13+)	
3430	.20 (1-	T)	871.7 <i>I</i>	35 9	4564.54 (12 ⁺)	
			889.1 <i>I</i>	57 13	4547.24 (12 ⁺)	
5475	76 (14	4 ⁺)	275.3 1	100 10	5200.42 (13 ⁺)	
3173	.70 (1	' /	911.2 <i>I</i>	33 8	4564.54 (12 ⁺)	
			928.5 <i>1</i>	63 13	4547.24 (12 ⁺)	
5539	65 (15	5 ⁺)	455.0 5	23.5 21	5085.08	I_{γ} : other: 112 12 in ¹²² Sn(¹³ C,3n γ).
	.05 (1.	,	734.6 1	100 7	4805.27 (14 ⁺)	17. Otto: 112 12 III OII(C,5117).
5556	.5 (14	4 ⁻)	307.9 2	100 /	5248.59 (13-)	
5573			862.7 1	100	4711.21 (13 ⁻)	
5630		4 ⁺)	1066.0 5	100 18	4564.54 (12 ⁺)	
	(1	. ,	1083.0 5	79 21	4547.24 (12 ⁺)	
5720	.64 (14	4 ⁻)	900.5 1	68 7	4819.94 (13 ⁻)	
] 3,20	(1	. /	915.5 <i>I</i>	100 14	4805.27 (14 ⁺)	
5771	.22 (14	5 ⁺)	295.4 <i>1</i>	39 3	5475.76 (14 ⁺)	
]	(10	,	335.0 <i>1</i>	100 9	5436.28 (14 ⁺)	
5835	.90 (16	6 ⁺)	296.0 <i>I</i>	10 3	5539.65 (15+)	
	. (2)	,	1030.4 <i>I</i>	100 8	4805.27 (14 ⁺)	
5870	.34 (15	5-)	837.4 <i>1</i>	100	5032.99 (12 ⁻)	
5871			1066.7 <i>1</i>	100	4805.27 (14 ⁺)	
5890		5 ⁻)	169.9 <i>I</i>	100 7	5720.64 (14 ⁻)	
	. (,	608.0 5	11 4	5282.35 (15 ⁻)	
			857.6 <i>1</i>	59 4	5032.99 (12 ⁻)	
5963	.5 (15	5-)	407 1	100	5556.5 (14 ⁻)	
5990		6 ⁻)	708.3 1	100	5282.35 (15 ⁻)	
6106		6 ⁻)	215.7 <i>1</i>	100 6	5890.60 (15-)	

17

$\gamma(^{132}Ba)$ (continued)

$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
6106.39	(16^{-})	236.1 <i>I</i>	14 4	5870.34	(15^{-})	
6133.57	(15)	1328.3 <i>1</i>	100	4805.27	(14^{+})	
6195.82	(16^{+})	424.6 <i>1</i>	100	5771.22	(15^{+})	
6267.68	(16^{+})	892.0 <i>1</i>	100	5375.68	(14^{+})	
6274.28	(16^{-})	938.3 <i>1</i>	100	5335.98	(14^{-})	
6294.36	(17^{-})	1012.0 2	100	5282.35	(15^{-})	
6374.08	(17^{+})	537.8 1	100 7	5835.90	(16^{+})	E_{γ} : level-energy difference=538.2.
		834.9 <i>1</i>	60 5	5539.65	(15^{+})	E_{γ} : level-energy difference=834.4.
6414.09	(17^{-})	307.7 <i>1</i>	100 6	6106.39	(16^{-})	
		840.2 <i>1</i>	29 6	5573.88	(15^{-})	
6484.54	(17^{-})	378.1 <i>1</i>	47 <i>4</i>	6106.39	(16^{-})	
		910.7 <i>1</i>	100 6	5573.88	(15^{-})	
6664.8	(17^{+})	469.0 5	100	6195.82	(16^{+})	
6690.99	18 ⁺	317.0 <i>1</i>	50 10	6374.08	(17^{+})	
		855.0 <i>1</i>	100 20	5835.90	(16^{+})	
6820.99	18-	406.9 <i>1</i>	100	6414.09	(17^{-})	
6954.70	(18^{+})	1118.8 <i>1</i>	100	5835.90	(16^{+})	
7143.8	(18^{+})	479.0 <i>5</i>	100	6664.8	(17^{+})	
7238.4	(19^{-})	944.0 <i>1</i>	100	6294.36	(17^{-})	
7287.0	(19^{-})	466.0 5		6820.99	18-	
		873.0 <mark>&</mark> <i>5</i>		6414.09	(17^{-})	
7396.79	(19^+)	1022.7 <i>1</i>	100	6374.08	,	
7623.70	(20^{+})	932.7 1	100	6690.99		
7751.0	(20^{-})	930.0 ^{&} 5		6820.99		
8310.4	(20°) (21^{-})	1072.0 5			(19^{-})	
0510.4	(21)	10/2.03		7230.4	(1)	

[†] For levels below 2500, most values are from 132 La ε decay; above this energy separate levels are populated in ε decay and in in-beam γ -ray studies. Most extensive in-beam γ -ray data are from (13 C, 3 n γ) (1989 Pa17) and (13 C, 5 n γ) (1995 Ju09). In 132 La ε decay, averaged values from 1996Ku01 and 1975WiZJ were adopted, assuming 0.2 keV uncertainty for Ey's from 1996Ku01. Intensities are relative photon branchings from each level.

[‡] Mainly from ce and $\gamma\gamma(\theta)$ in ¹³²La ε decay; mult=D or D+Q are from $\gamma\gamma(\theta)$ and $\gamma(\theta)$ data in in-beam γ -ray studies.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[®] Multiply placed.

[&]amp; Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{132}_{56} \mathrm{Ba}_{76}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{132}_{56} \mathrm{Ba}_{76}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

γ Decay (Uncertain) 3617.35 3608.15 3607.46 3598.69 3591.27 $\frac{(1,2^+)}{(10^+)}$ (1^{+}) 2876.47 2867.02 2800.15 (8+) $\frac{(2)}{(1^-)}$ 2505.34 2452.87 2068.553 1685.753 1660.30 0^+ 1503.63 2+ 1031.672 1.08 ps 10 464.508 15.1 ps 11 0.0 >3.0×10²¹ y

 $^{132}_{56}\mathrm{Ba}_{76}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(F): Band based on 5^-

Band(I): $\Delta J=1$ band based on 14

$$^{132}_{56} \mathrm{Ba}_{76}$$

Band(K): Band based on 8^-

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 103,1 (2004)	31-Jul-2004

 $Q(\beta^{-})=-3731\ 20$; $S(n)=9467.8\ 11$; $S(p)=8168.1\ 3$; $Q(\alpha)=-1494.5\ 3$ 2012Wa38

Note: Current evaluation has used the following Q record -3731 209467.7 118167.9 4 -1493.1 9 2003Au03.

$^{134}\mathrm{Ba}$ Levels

Cross Reference (XREF) Flags

E(level)	\mathbf{J}^{π}	T _{1/2} [†]	XREF	Comments
0.0 ^a	0+	stable	ABCDEFGHI	
604.7223 ^a 19	2+	5.12 ps 9	ABCDEFGH	μ =+0.84 <i>10</i> (1989Ra17)
				Q=-0.26 8 or +0.15 8 (1989Ra17).
				J^{π} : $L(p,t)=2$.
				$T_{1/2}$: from B(E2)=0.679 11 (Coul. ex.).
	- 1			μ , Q: from Coul. ex.
1167.968 <i>3</i>	2+	2.7 ps 8	A CD FGH	J^{π} : $L(p,t)=2$.
1 400 5000 4	4.4	0.02		$T_{1/2}$: from B(E2) in Coul. ex.
1400.590 ^a 4	4+	0.83 ps 9	ABCD FGH	J^{π} : L(p,t)=4.
1 < 12 22 < 1	a.t			$T_{1/2}$: from B(E2) in Coul. ex., $T_{1/2}$ =8.7 ps 17 from ¹³⁴ Cs β^- decay.
1643.336 <i>4</i>	3+	78 ps <i>21</i>	A CD H	J^{π} : M1+E2 γ to 2 ⁺ ; $\gamma\gamma(\theta)$.
1=10 === 00	0.1			$T_{1/2}$: from $\beta \gamma(t)$ (134Cs β^- decay).
1760.555 22	0+		CD G	J^{π} : E0 transition to g.s.
1969.921 <i>4</i>	4 ⁺	50 (A DE H	J^{π} : M1+E2 γ to 4 ⁺ ; $\gamma\gamma(\theta)$.
1986.35 <i>21</i>	5-	52 ns 6	D GH	J^{π} : L(p,t)=5.
2020 242 10	2+	0.150 16	CD	$T_{1/2}$: from (HI,xn γ).
2029.242 18	2 ⁺ 2 ⁺	0.159 ps 16	CD F	J^{π} : E2 γ to 0^+ g.s.
2088.288 17	_	0.059 ps 5	CD F	J^{π} : E2 γ to 0 ⁺ g.s.
2118.195 <i>9</i> 2159.683 <i>21</i>	(4^+) $(0)^+$	0.104 ps +28-21	D CD G	J^{π} : γ' s to $4^+,2^+$ levels; no γ' s to $0^+,3^+$ levels. J^{π} : L(p,t)=0, E2 γ to 2^+ .
2164.620 12	(4^+)	0.104 ps +20-21	D G	J^{π} : $\gamma(\theta)$ and excitation function in $(n,n'\gamma)$.
2211.3 ^a 3	(6^+)		B D H	J^{π} : excitation function in $(n,n'\gamma)$.
2244.99 5	(0)		D п	J . Excitation function in (ii,ii γ).
2254.95 <i>14</i>	3-		CDEF	J^{π} : $\sigma(\theta)$ in Coul. ex., (α, α') data.
2271.57 24	7-		D GH	J^{π} : L(p,t)=7.
2279.87 3	(2,3)		D GII	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$; decay pattern.
2285.34 4	$(5)^{+}$		D	J^{π} : E2 γ to 3 ⁺ .
2299.7 3	(6^{+})		D H	J^{π} : γ to 4 ⁺ ; excitation function in $(n,n'\gamma)$.
2311	(1) [@]		I	(-,,,
2334.76 6	1,2+	0.21 ps + 10-6	CD	J^{π} : γ to 0^+ .
2336.82 3	0^{+}	0.097 ps + 28 - 21	CD G	J^{π} : E0 transition to g.s.
2371.02 7	2+	0.46 ps +21-12	D	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$; RUL.
2377.1 4	(6)	0.10 ps 121 12	D H	J^{π} : $\gamma(\theta)$ and excitation function in $(n,n'\gamma)$.
2379.112 18	0+		CD G	J^{π} : E0 transition to g.s.
2464.28 6	(2^{+})		D	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$.
2469.58 6	$(5)^{+}$		D	J^{π} : E2 γ to 3^+ .
2479 10	4+		G	J^{π} : L(p,t)=4.

¹³⁴Ba Levels (continued)

E(level)	\mathbf{J}^{π}	${T_{1/2}}^{\dagger}$	XREF	_	Comments
2480.34 <i>5</i> 2488.434 <i>21</i> 2506.26 <i>4</i>	(2,3) ^{&} 0 ⁺ (4 ⁺)	0.13 ps +9-4 0.15 ps +23-7	D CD G D	•	J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$. J^{π} : E0 transition to g.s. J^{π} : $\gamma(\theta)$, excitation function in $(n,n'\gamma)$.
2531.31 22 2536.91 <i>5</i>	(5 ⁻ to 7 ⁻) 0 to 2	0.15 ps +19-6	D CD		J^{π} : γ' s to 7^- and 5^- levels. J^{π} : log ft =7.5 from 1 ⁺ parent.
2564.712 <i>19</i> 2570.87 <i>3</i>	1 ⁺ ,2 ⁺ [‡] 1 ⁽⁺⁾ @	0.06 ps + 12-4	CD CD	I	
2574.31 <i>10</i> 2599.88 <i>4</i>	(2 ⁺) 2 ⁺		D CD		J^{π} : $\gamma(\theta)$ in $(n,n'\gamma)$. J^{π} : M1+E2 γ to 2 ⁺ ; $\gamma(\theta)$ in $(n,n'\gamma)$.
2656.23 8 2661.88 5 2677.76 8	(2 ⁺) 3 to 5 3,4		CD D D		J^{π} : γ to 0^+ g.s., possible γ to 4^+ . γ to 3^+ . J^{π} : γ' s to 2^+ levels.
2696.58 <i>5</i> 2729.23 <i>4</i>	1,2 1,2 ⁺		CD CD G		J^{π} : γ' s to 0^+ and 2^+ levels. J^{π} : γ' s to 0^+ , 2^+ levels.
2747.965 <i>24</i> 2758.9? <i>3</i> 2760.74 <i>12</i>	2 ⁺ 1,2 ⁺ 1,2 ^{&}		CD G C CD		J^{π} : γ' s to 0^+ , 4^+ . M1+E2 γ to π =+. J^{π} : γ' s to 0^+ , 2^+ levels.
2773.73 <i>10</i> 2779.9 <i>10</i>	3,4		D	Н	J^{π} : γ to 2^+ , 4^+ levels.
2806 2823.72 <i>11</i>	(1) [@] 1- [@]		D G	I	
2828.50 <i>4</i> 2835.9 ^{<i>a</i>} <i>4</i>	1 ⁺ ,2 ⁺ [‡] (8 ⁺)			H	J^{π} : M1,E2 γ to 2^+ , γ to 0^+ .
2851.26 <i>6</i> 2874 <i>8</i>	2 ⁺ 0 ^{+#}		CD G		J^{π} : E2 γ to 0^+ g.s. J^{π} : γ to 3^+ .
2876.89 <i>10</i> 2887.04 <i>4</i> 2913.1 <i>4</i>	3 to 5 1,2		D C	Н	J^{π} : γ' s to 2^+ , 3^+ levels, log ft =6.8 from decay of 1^+ level.
2917.61 <i>6</i> 2925.99 <i>15</i>	2 3 to 5		CD D		J^{π} : γ' s to 4 ⁺ , 2 ⁺ levels, log ft =7.3 in decay of 1 ⁺ level. J^{π} : γ to 3 ⁺ .
2938.93 20 2943.90 14 2950.56 24	1 ⁺ [@] 2 to 4 3,4		CD D D	Ι	J^{π} : γ to 2^+ . J^{π} : γ' s to 2^+ and 3^+ levels.
2957.2 5	(10^+)	2.63 μs 14		H	%IT = 100 $\mu = -2.0 I$
					J ^{π} : (E2) γ to (8 ⁺); systematics, configuration=(ν h _{11/2}) ⁻² . T _{1/2} : from (HI,xn γ). μ : DPAD (1989Ra17).
2996 <i>8</i> 3004.41 <i>15</i>	(0) ^{+#} 1,2 ⁺		G C	i	J^{π} : γ' s to 0^+ , 2^+ levels.
3011 3011.7 <i>11</i>	(1) [@]			I H	
3027.38 <i>6</i> 3061.29 <i>6</i> 3068.85? <i>13</i>	(1 ⁺) [@] 2 ⁽⁺⁾ 1,2 ⁺		CD CD C	Ι	J^{π} : γ' s to 0^+ , 2^+ and 4^+ . J^{π} : γ' s tp 0^+ , 2^+ levels.
3074.72? <i>13</i> 3079 <i>10</i>	(2) 4 ⁺		C G		J^{π} : γ' s to 3^+ , 4^+ levels, log $ft=7.4$ from decay of 1^+ level. J^{π} : $L(p,t)=4$.
3086.65 <i>10</i> 3160.07 <i>19</i> 3181 <i>8</i>	1 ⁺ ,2 ⁺ 1,2 ⁺ (0) ^{+#}		CD CD G		J^{π} : γ' s to 0^+ , 2^+ and 3^+ . J^{π} : γ' s to 0^+ , 2^+ .
3216.3? <i>6</i> 3240.5 <i>4</i>	1,2 ⁺ (9 ⁻)		C	Н	J^{π} : γ' s to 0^+ , 2^+ levels. J^{π} : stretched (E2) γ to 7^- .

¹³⁴Ba Levels (continued)

E(level)	J^π	XREF	Comments
3242.3 8		GH	
3245.88 19	$(1^+)^{\textcircled{@}}$	CD G	
3262.0 <i>3</i>	2 to 4	D	J^{π} : γ to 2^+ .
3272.10 5	$1^{-},2^{-}$	C	J^{π} : γ' s to 2 ⁺ , 3 ⁻ levels, log ft =6.8 from decay of 1 ⁺ level.
3311.3 8		H	
3314.56 <i>18</i>	2,3	D	J^{π} : γ' s to 2^{+} , 4^{+} .
3327.25 13	$(1^+)^{\textcircled{a}}$	CD	I
3328.3 11		H	
3343	(1) [@]		I
3368.97 <i>6</i>	1,2	CD	J^{π} : γ' s to 0^+ , 2^+ and 3^- levels.
3371.79 20	2 to 4	D	J^{π} : γ to 2^{+} .
3408.72 17	1,2	CD G	J^{π} : γ' s to 0^+ , 2^+ and 3^+ levels.
3432.15? 10	1,2+	C	J^{π} : γ' s to 0^+ , 2^+ .
3443.39 20	2 to 4	D	J^{π} : γ to 2^+ .
3450.27 8	$(1^+)^{@}$		Ι Ι ^π /
3451.0 <i>4</i> 3459.3 <i>12</i>	1,2+	D H	J^{π} : γ' s to 0^+ , 2^+ .
3471.1? <i>3</i>	2+	C	J^{π} : γ' s to 0^+ , 2^+ .
3499.68 <i>14</i>	(1,2)	Č	J^{π} : γ' s to 2^+ , $\log ft = 7.3$ from decay of 1^+ level.
3501 8	(0) ^{+#}	G	0 · , 0 · 0 = , 0 · 6 J. · · · · · · · · · · · · · · · · · ·
3504.2 11	(0)	H	
3548.5 <i>4</i>	$1,2^{+}$	С	J^{π} : γ to 0^{+} , 2^{+} .
3560	1 @		I
3589	1 @		I
3599.3 <i>13</i>	•	H	
3617	(1) [@]		I
3618 8	$(0)^{+\#}$	G	
3635.9 11		H	
3652.1? <i>5</i>	$1,2^{+}$	C	J^{π} : γ' s to 0^+ , 2^+ .
3684.2 <i>4</i>	2+	D	J^{π} : E2 γ to 0^+ .
3705	1@		I
3754 10	Ø	G	
3783	(1) [@]		I
3836	1@		I
3853.8 4	2+	D	J^{π} : E2 γ to 0^+ .
3899.1 11		H	
3954.3 12	@	H	
3980	(1) [@]		I
3992	(1) [@]		I
4001.4 5		F	
4019 <i>10</i> 4083.5 <i>11</i>		G	
4083.5 <i>11</i> 4517.4 <i>12</i>		H H	
4517.4 <i>12</i> 4549.9 <i>15</i>		r H	
4635.2 15		H	
5001.4 15		H	
5015.4 <i>15</i>		F	
5230.9 18		H	

[†] From $(n,n'\gamma)$, except as noted.

¹³⁴Ba <u>Levels (continued)</u>

 \dot{z} γ to 0⁺ g.s., transition multipolarities. # L=0 in 136 Ba(p,t). @ From (γ,γ') . & $\gamma(\theta)$ in $(n,n'\gamma)$. a Band(A): g.s. band.

$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	E_f J	$\frac{\pi}{f}$ M	ult. δ	α‡	Comments
604.7223	2+	604.721 2	100	0.0 0			0.00599	$\alpha(K)=0.00503 \ 16; \ \alpha(L)=0.00072 \ 2; \ B(E2)(W.u.)=33.6 \ 6$
1167.968	2+	563.246 5	100.00 17	604.7223 2	+ M1-	+E2 -7.4	9 0.00727 2	
		1167.968 <i>5</i>	21.47 6	0.0	+ E2		0.00131	$\alpha(K)=0.00112$ 4; $\alpha(L)=0.00014$ 1; B(E2)(W.u.)=0.42 13
1400.590	4 ⁺	232.6 [@]	< 0.0013	1167.968 2	+ [E2]		0.104	$\alpha(K)$ =0.0825 25; $\alpha(L)$ =0.0171 6; $\alpha(M)$ =0.00361 11; B(E2)(W.u.)=0.16 16
		795.864 <i>4</i>	100	604.7223 2	+ E2		0.00305	$\alpha(K)=0.00258 \ 8; \ \alpha(L)=0.00035 \ I; \ B(E2)(W.u.)=52 \ 6$
1643.336	3 ⁺	242.738 8	1.88 16	1400.590 4	+ (M1	+E2)	0.088 2	$\alpha(K)=0.0728 9$; $\alpha(L)=0.0121 25$; $\alpha(M)=0.0025 6$
		475.365 2	100.0 3	1167.968 2	+ M1-	+E2 −10 <i>3</i>	0.0114	$\alpha(K)=0.0096$; $\alpha(L)=0.00146$; $\alpha(M)=0.00030$; B(E2)(W.u.)=4.3 12; B(M1)(W.u.)=1.5×10 ⁻⁵ 10
		1038.610 7	66.98 <i>19</i>	604.7223 2	+ M1-	+E2 +0.8	3 11 0.00207 5	
1760.555	0^{+}	592.58 <i>3</i>	94 6	1167.968 2	+			B(111)(11.ul.) 3.5/110 17
		1155.83 <i>3</i> 1759.9 <i>7</i>	100 5	604.7223 2			0.00134	$\alpha(K)$ =0.00115 4; $\alpha(L)$ =0.00015 1
1969.921	4+	326.589 <i>13</i>	0.105 7	1643.336 3		+E2]	0.037 2	$\alpha(K)=0.031$ 3; $\alpha(L)=0.0047$ 3; $\alpha(M)=0.00097$ 8
1,0,1,21	•	569.331 3	100.00 11	1400.590 4				$\alpha(K) = 0.00816 \ I; \ \alpha(L) = 0.00105$
		801.953 <i>4</i>	56.5 <i>1</i>	1167.968 2			0.00300	$\alpha(K) = 0.00254 \text{ 8}; \ \alpha(L) = 0.00034 \ I$
		1365.185 7	19.63 5	604.7223 2			0.00096	$\alpha(K) = 0.00082 \ 3; \ \alpha(L) = 0.00010$
1986.35	5-	16	-,	1969.921 4				w() ******* - ; w(=) *******
-, -, -, -, -, -, -, -, -, -, -, -, -, -	-	585.5 <i>3</i>	100 12	1400.590 4	+ E1		0.00230	$\alpha(K)=0.00197$ 6; $\alpha(L)=0.00024$ 1; B(E1)(W.u.)=2.2×10 ⁻⁸ 5
		1382.0 3	12 4	604.7223 2		l	0.00175	$\alpha(K) = 0.00148 \text{ 5}; \ \alpha(L) = 0.00020 \ I; \ B(E3)(W.u.) = 0.24 \ 9$
2029.242	2+	861.29 5	1.8 5	1167.968 2		l	0.00173	a(II) 0.00110 5, a(E) 0.00020 1, B(E5)(11.a.) 0.21)
	-	1424.511 24	100.0 16	604.7223 2		+E2 −0.3	1 <i>5</i> 0.00112 <i>1</i>	$\alpha(K)$ =0.00096 1; $\alpha(L)$ =0.00012; B(E2)(W.u.)=1.1 4; B(M1)(W.u.)=0.036 4
		2029.19 4	20.9 4	0.0	+ E2			B(E2)(W.u.)=0.43 5
2088.288	2+	920.352 23	13.1 4	1167.968 2		+E2	0.0026 5	$\alpha(K) = 0.0023 \ 4; \ \alpha(L) = 0.00029 \ 5$
								δ : +0.01 12 or +2.2 +12-7.
								B(M1)(W.u.)=0.041 4, B(E2)(W.u.)<0.08 if δ =+0.01 12; B(M1)(W.u.)=0.007 7, B(E2)(W.u.)=25 6 if δ =+2.2 +12-7.
		1483.52 <i>3</i>	100.0 <i>21</i>	604.7223 2	+ M1-	+E2 +0.0	2 5 0.00105	$\alpha(K)$ =0.00090; $\alpha(L)$ =0.00011; B(E2)(W.u.)=0.01 +5-10; B(M1)(W.u.)=0.075 7
		2088.26 4	39.9 10	0.0	+ E2			B(E2)(W.u.)=1.55 14
2118.195	(4^{+})	717.604 8	100.0 7	1400.590 4				
	` /	950.21 <i>3</i>	19.6 7	1167.968 2				
2159.683	$(0)^{+}$	991.73 4	1.8 4	1167.968 2	+ [E2]		0.00186	$\alpha(K)=0.00158\ 5;\ \alpha(L)=0.00021\ I;\ B(E2)(W.u.)=2.5\ +8-9$
	` /	1554.946 <i>24</i>	100.0 18	604.7223 2		•		B(E2)(W.u.)= $14 + 3 - 14$
		2159.5 ^{#@} 5	≤0.11	0.0 0				
2164.620	(4^{+})	764.02 3	≤0.11 57.7 <i>14</i>	1400.590 4				
2104.020	(+)	996.649 12	100.0 14	1167.968 2				
		990.049 12	100.0 14	1107.908 2				

S

$\gamma(^{134}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments
2211.3	(6 ⁺)	810.7 3	100	1400.590	4+	(E2)		0.00292	$\alpha(K)=0.00248 \ 8; \ \alpha(L)=0.00033 \ I$
2244.99		601.65 5	100	1643.336	3 ⁺	, ,			
2254.95	3-	854.1 [@] 3	<48		4 ⁺				
223 1.75	5	1087.8 3	19.5 8		2+	E1(+M2)	-0.087	0.00068 7	$\alpha(K)=0.00059 \ 6$
		1649.97 23	100.0 6	604.7223		E1(+M2)	-0.01 3		W(-2) ************************************
2271.57	7-	285.1 3	100		5 ⁻	[E2]		0.0534	$\alpha(K)=0.0433$ 13; $\alpha(L)=0.00805$ 25; $\alpha(M)=0.00169$ 5
2279.87	(2,3)	879.30 <i>3</i>	59.1 <i>16</i>		4 ⁺				
	. , ,	1111.70 <i>10</i>	39.3 16	1167.968	2+				
		1675.10 <i>12</i>	100.0 <i>16</i>	604.7223					
2285.34	$(5)^{+}$	315.54 12	18.0 <i>18</i>	1969.921	4 ⁺				
		642.01 5	100 4		3+	E2		0.00514	$\alpha(K)=0.00433 \ 13; \ \alpha(L)=0.00061 \ 2$
		884.72 <i>6</i>	39.8 20		4+				
2299.7	(6^{+})	899.1 <i>3</i>	100		4+				
2311	(1)	2311			0^{+}				
2334.76	$1,2^{+}$	1730.05 7	100 7	604.7223					
		2334.71 9	12.5 14		0^{+}				
2336.82	0_{+}	1168.63 8	8.4 11		2+	E2		0.00131	$\alpha(K)=0.00112 \ 4; \ \alpha(L)=0.00014 \ I; \ B(E2)(W.u.)=5.1 \ +13-17$
		1732.12 <i>3</i>	100 2	604.7223		E2			B(E2)(W.u.)=8.5 +19-25
		2335 3	- 0 -		0+	E0			
2371.02	2+	728.2 5	7.8 6		3 ⁺) (1 F2			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
		1766.28 7	100.0 11	604.7223	2'	M1+E2			δ: -0.80 +10-16 or -5.5 +9-14.
									B(M1)(W.u.)=0.0044 21, B(E2)(W.u.)=0.6 3 if δ =-0.80
									$+10-16$; B(M1)(W.u.)=0.00023 13, B(E2)(W.u.)=1.4 4 if $\delta = -5.5 + 9 - 14$.
		2371.0 5	12.9 9	0.0	0+	E2			0=-3.5 +9-14. B(E2)(W.u.)=0.043 +12-20
2377.1	(6)	390.7 3	100		5 ⁻	EZ			B(E2)(W.u.)=0.043 + 12-20
2379.112	0+	1211.154 22	100 2		2 ⁺	E2		0.00122	$\alpha(K)=0.00104 \ 4; \ \alpha(L)=0.00013$
2319.112	U	1774.35 <i>3</i>	40.5 13	604.7223	_	E2 E2		0.00122	$u(\mathbf{K}) = 0.00104 \ 7, \ u(\mathbf{L}) = 0.00013$
		2379.6 15	40.5 15		0^{+}	E0			
2464.28	(2^{+})	1859.58 6	100.2 9	604.7223		(M1+E2)			δ : +0.18 +11-7 or +1.5 3.
2101.20	(2)	2464.15 10	16.2 9		0+	(E2)			0. 10.10 111 7 01 11.5 5.
2469.58	$(5)^{+}$	826.28 6	100.5		3+	E2		0.00279	$\alpha(K)=0.00237 \ 8; \ \alpha(L)=0.00032 \ I$
0,.00	(0)	1068.76 <i>16</i>	33.8 23		4 ⁺	- -		2.002,7	-()
2480.34	(2,3)	1875.60 5	100	604.7223	-				
2488.434	0^{+}	843.91 5	100 10		3 ⁺				E_{γ} : seen only in $(n,n'\gamma)$.
	-	1320.707 23	69 3		2+	E2		0.00102	$\alpha(K)=0.00087 \ 3; \ \alpha(L)=0.00011; \ B(E2)(W.u.)=11 \ +4-11$
		1883.74 <i>12</i>	2.8 2	604.7223					
		2487.0 15			0^{+}	E0			
2506.26	(4^{+})	1105.68 4	100 <i>3</i>	1400.590	4+	(M1+E2)		0.0017 3	$\alpha(K)=0.00149 \ 24; \ \alpha(L)=0.00019 \ 3$
									δ : -0.21 11 or +1.5 5.
		1901.2 2	54 <i>3</i>	604.7223	2+				

$\gamma(^{134}Ba)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	${ m I}_{\gamma}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	$lpha^{\ddagger}$	Comments
2531.31	(5 ⁻ to 7 ⁻)	259.70 12	48 7	2271.57	7-				
		544.97 7	100 5	1986.35	5-				
2536.91	0 to 2	1368.96 7	79 6	1167.968	2 ⁺				
2564.712	1+,2+	1932.16 6	100 8	604.7223		M1 E2		0.00105.14	· (V) 0.00000 12: - (I) 0.00011 2
2564.712	1,2	1396.730 22 1959.95 <i>4</i>	37.4 <i>11</i> 100 2	1167.968 604.7223	2 ⁺	M1,E2 M1,E2		0.00105 14	$\alpha(K)$ =0.00090 12; $\alpha(L)$ =0.00011 2
		2564.84 7	5.6 4	0.0	0^{+}	WII,EZ			
2570.87	1 ⁽⁺⁾	1402.89 4	58.2 23	1167.968	2 ⁺				
2370.87	1 ` ′	1966.09 <i>11</i>	20 3	604.7223					
		2570.85 5	100 3	0.0	0^{+}				
2574.31	(2^{+})	544.7 3	49 6	2029.242	2+				
2374.31	(2)	1406.4 5	67 6	1167.968	2+				
		1969.65 11	85 <i>6</i>	604.7223					
		2573.7 5	100 9	0.0	0^{+}	(E2)			
2599.88	2+	1431.35 ^{#@} <i>13</i>	2.5 5	1167.968	2+	,			
2377.00	2	1995.14 4	100 2	604.7223		M1+E2			δ : -0.17 +9-7 or +4.1 +16-10.
		2599.84 6	3.4 5	0.0	0^{+}	1411 1 122			0. 0.17 17 7 61 11.11 110 10.
2656.23	(2^{+})	1255.1 [@] 3	23 3	1400.590	4+				
2030.23	(2)	1488.3 3	60 15	1167.968	2+				
		2051.51 9	100 9	604.7223		(M1+E2)	-0.4 3		
		2656.11 18	7.4 10	0.0	0+	()			
2661.88	3 to 5	1018.54 5	100	1643.336	3 ⁺				
2677.76	3,4	648.4 <i>3</i>	12 2	2029.242	2+				
		2073.02 8	100 2	604.7223					
2696.58	1,2	1528.54 7	26.9 <i>21</i>	1167.968	2+				
		2091.98 9	100 4	604.7223					
		2696.52 7	31.1 16	0.0	0+				
2729.23	1,2+	1561.4 <i>4</i>	4.1 5	1167.968	2+				
		2124.49 4	100 2	604.7223					
		2729 [@]	<10	0.0	0+				
2747.965	2+	659.85 9	16.2 16	2088.288	2+				
		718.71 3	76 5	2029.242	2+				
		1104.5 5	17 4	1643.336	3+				
		1347.34 5	31.8 20	1400.590	4 ⁺				
		1579.92 <i>15</i> 2143.24 <i>5</i>	38 <i>4</i> 100 <i>3</i>	1167.968 604.7223	2 ⁺	M1+E2			δ : +0.4 +14-2 or +1.1 +5-9.
		2748.1 <i>5</i>	0.105 22	0.0	0+	W11+E2			0. +0.4 +14-2 01 +1.1 +J-9.
2750.00	1.0+	1591.1 [@] 11							
2758.9?	1,2+		100 30	1167.968	2+				
2760.74	1.2	2758.9 3	46 3	0.0	0+				
2760.74	1,2	2156.00 <i>12</i>	100	604.7223	2				

$\gamma(^{134}\text{Ba})$ (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
2773.73	3,4	744.73 15	61 5	2029.242 2+			
		1373.2 <i>10</i> 2168.99 <i>10</i>	20 <i>5</i> 100	1400.590 4 ⁺ 604.7223 2 ⁺			
2779.9		810	100	1969.921 4+			
2806	(1)	2806		$0.0 0^{+}$			
2823.72	1-	2823.69 11		$0.0 0^{+}$	E1		
2828.50	$1^+, 2^+$	1184.92 12	9.8 12	1643.336 3 ⁺			
		1660.57 [#] 7	16.2 14	1167.968 2+			
		2223.77 4	100 3	604.7223 2+	M1,E2		
2835.9	(8 ⁺)	2828.1 <i>3</i> 536	0.20 6	$0.0 0^+ $ $2299.7 (6^+)$			
2033.9	(0)	565		2271.57 7			
		624.5 3		2211.3 (6+)	(E2)	0.00552	$\alpha(K)=0.00464 \ 14; \ \alpha(L)=0.00066 \ 2$
2851.26	2+	1683.33 7	100 7	1167.968 2 ⁺			
		2246.7 <i>4</i>	18 4	604.7223 2+			E_{γ} : Not seen in $(n,n'\gamma)$.
2076 90	2 4- 5	2851.05 <i>12</i> 1233.55 <i>10</i>	35.5 17	$0.0 0^{+}$	E2		
2876.89	3 to 5	1243.84 [#] 21	100	1643.336 3 ⁺			
2887.04	1,2	1243.84" <i>21</i> 1719.05 <i>6</i>	26 <i>5</i> 77 <i>5</i>	1643.336 3 ⁺ 1167.968 2 ⁺			
		2282.30 5	100 4	604.7223 2+			
2913.1		641.5 3	100	2271.57 7			
2917.61	2	1517.09 <i>15</i>	79 22	1400.590 4+			
		1749.41 <i>13</i>	64 8	1167.968 2+			
2025.00	2 4- 5	2312.91 7	100 6	604.7223 2 ⁺			
2925.99	3 to 5	1282.65 <i>15</i>	100 33 [†] 7	1643.336 3 ⁺			
2938.93	1+	1771		1167.968 2+			
		2334.7 [@] 4	26 [†] 5	604.7223 2+			E_{γ} : Seen only in ε decay.
20.42.00	2 . 4	2938.9 2	100 [†]	$0.0 0^{+}$	M1		
2943.90 2950.56	2 to 4 3,4	2339.16 <i>14</i> 1307.6 <i>4</i>	100 52 8	604.7223 2 ⁺ 1643.336 3 ⁺			
2930.30	3,4	2345.6 3	100 8	604.7223 2 ⁺			
2957.2	(10^+)	121.3 3	100	2835.9 (8 ⁺)	E2	0.98	$\alpha(K)=0.673\ 21;\ \alpha(L)=0.243\ 8;\ \alpha(M)=0.0524\ 16;\ B(E2)(W.u.)=0.102\ 6$
3004.41	1,2+	1243.84 ^{#@} 21	<130	1760.555 0 ⁺			
	,	1836.43 <i>15</i>	100	1167.968 2 ⁺			
3011	(1)	3011		$0.0 0^{+}$			
3011.7		712	100	$2299.7 (6^+)$			
3027.38	(1^{+})	1859.43 [@] 6	12.2	1167.968 2+			E_{γ} : γ not observed in (γ, γ') experiment.
		2422.4 <i>6</i> 3027.11 <i>18</i>	46 6	604.7223 2 ⁺ 0.0 0 ⁺			
2061.20	2(+)	3027.11 <i>18</i> 1660.57 ^{#@} <i>7</i>	100 7				
3061.29	2(1)	1000.5/" 🧸 /	<120	1400.590 4+			

 ∞

$\gamma(^{134}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
3061.29	2 ⁽⁺⁾	1893.35 9	100 7	1167.968	2+			
	_	2456.2 5	6.2 21	604.7223				
		3061.23 8	22.7 21	0.0	0+			
3068.85?	$1,2^{+}$	1307.0 7	100 <i>50</i>	1760.555	0_{+}			
		2464.15 <i>13</i>	83 15	604.7223	2+			
3074.72?	(2)	1431.35 [#] <i>13</i>	100 20	1643.336	3 ⁺			
		1674.6 5	27 11	1400.590	4+			
3086.65	$1^+, 2^+$	1443.1 2	100 8	1643.336	3 ⁺			
		1917.8 <i>4</i>	86 10	1167.968	2+			
		2482.24 17	62 19	604.7223				
		3086.59 <i>15</i>	36 <i>6</i>	0.0	0+			
3160.07	1,2+	1992.1 2	100 8	1167.968	2+			
	4.01	3159.9 6	34 5	0.0	0+			
3216.3?	1,2+	2612.3 9	13 6	604.7223				
		3215.7 8	100 40	0.0	0_{+}			
3240.5	(9-)	328 [@]		2913.1				
		968.9 <i>3</i>	100	2271.57	7-	(E2)	0.00195	$\alpha(K)=0.00166\ 5;\ \alpha(L)=0.00022\ I$
3242.3		865		2377.1	(6)			
		971		2271.57	7-			
3245.88	(1^+)	3245.84 19	100	0.0	0+			
3262.0	2 to 4	2657.2 3	100	604.7223				
3272.10	1-,2-	1017.3 2	17 8	2254.95	3-			
		2104.09 6	100 7	1167.968	2 ⁺			
2211.2		2667.37 <i>9</i> 934	34.9 23	604.7223 2377.1				
3311.3		1040		2377.1 2271.57	(6) 7 ⁻			
3314.56	2,3	1913.8 2		1400.590	4 ⁺			
3314.30	2,3	2710.4 <i>4</i>	100	604.7223				
2227.25	(1^+)	2159.5 [#] 5	≤90	1167.968	2 ⁺			
3327.25	(1)	2139.5° 3 2722.5 <i>3</i>	≤90 77 9	604.7223				
		3327.18 <i>15</i>	100 20	0.0	0+			
3328.3		1117	100 20	2211.3	(6^+)			
3343	(1)	3343	100	0.0	0+			
3368.97	1,2	1114.3 6	100 23	2254.95	3-			
2200.71	-,-	2764.22 6	60.0 25	604.7223				
		3368.8 6	1.5 5	0.0	0+			
3371.79	2 to 4	2203.8 2	100	1167.968	2+			
3408.72	1,2	1765.71 22	100 17	1643.336	3 ⁺			
	,	2240.4 6	24 8	1167.968	2+			
		2803.5 3	12.9 15	604.7223				
		3408.1 8	14 <i>7</i>	0.0	0^{+}			

$\gamma(^{134}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult.	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.
3432.15?	1,2+	2827.4 1	100 25	604.7223	2+		3652.1?	1,2+	3652.0 <i>10</i>	13 10	0.0	0+	
	,	3432.1 7	10.0 25	0.0	0^{+}		3684.2	2+	3684.1 <i>4</i>	100	0.0		E2
3443.39	2 to 4	2275.4 2	100	1167.968	2+		3705	1	3705		0.0	0_{+}	D
3450.27	(1^{+})	2845.6 5	19 <i>10</i>	604.7223	2+		3783	(1)	3783		0.0	0_{+}	
		3450.22 8	100 15	0.0	0_{+}		3836	1	3836		0.0	0_{+}	D
3451.0	$1,2^{+}$	2283.0 4	100 10	1167.968	2+		3853.8	2+	3853.7 4	100	0.0	0_{+}	E2
		3451.4 <i>11</i>	52 10	0.0	0_{+}		3899.1		986	100	2913.1		
3459.3		217	100	3242.3			3954.3		495		3459.3		
3471.1?	2+	2866.4 <i>3</i>	100 14	604.7223	2+				712		3242.3		
		3471.0 5	4.4 23	0.0	0_{+}		3980	(1)	3980		0.0	0_{+}	
3499.68	(1,2)	2894.92 <i>14</i>	100	604.7223	2+		3992	(1)	3992		0.0	0_{+}	
3504.2		547	100	2957.2	(10^{+})		4001.4		760.9 <i>3</i>	100	3240.5	(9^{-})	
3548.5	$1,2^{+}$	2943.3 8	100 22	604.7223	2+		4083.5		843	100	3240.5	(9^{-})	
		3548.5 <i>4</i>	43 8	0.0	0_{+}		4517.4		516	100	4001.4		
3560	1	3560		0.0	0_{+}	D	4549.9		914	100	3635.9		
3589	1	3589		0.0	0_{+}	D	4635.2		1131	100	3504.2		
3599.3		357	100	3242.3			5001.4		484	100	4517.4		
3617	(1)	3617		0.0	0_{+}		5015.4		498	100	4517.4		
3635.9		800	100	2835.9	(8^{+})		5230.9		681	100	4549.9		
3652.1?	$1,2^{+}$	3047.4 5	100 <i>50</i>	604.7223	2+								

[†] From 134 Ba(γ, γ').

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Multiply placed.

@ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Type not specified

Level Scheme (continued) Adopted Levels, Gammas Legend

Intensities: Type not specified

Band(A): g.s. band

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018

 $Q(\beta^-)=-2.85\times 10^3$ 5; S(n)=9107.74 4; S(p)=8594.3 10; $Q(\alpha)=-2032.9$ 3 2017Wa10 S(2n)=16079.70 11, S(2p)=15339.0 3 (2017Wa10). α : Additional information 1.

¹³⁶Ba Levels

Cross Reference (XREF) Flags

		A 136 Cs $β^-$ decay B 136 La $ε$ decay (C 136 Ba IT decay D 135 Ba(n, $γ$) E=tl E 135 Ba(n, $γ$) E=2 F 135 Ba(n, $γ$) E=2	9.87 min) H I nermal J 4.4-463.4 eV res K	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
E(level) [†]	J^{π}	$T_{1/2}^{\ddagger}$	XREF	Comments
0.0	0+	stable	ABCDEFGHIJKLM OP	$\Delta < r^2 > (^{138}Ba, ^{136}Ba) = -0.039 \ 7 \ (1988We07), \text{ other: } -0.034 \ 4 \ (1999GaZX).$
818.522 ^{&} 10	2+	1.89 ps <i>3</i>	ABCDEFGHI JKLMNOP	 μ=0.68 10 (1980Br01); B(E2)↑=0.407 7 J^π: E2 818γ to 0⁺. T_{1/2}: deduced by evaluator from B(E2) value and Adopted Gamma properties. B(E2)↑: from Coulomb Excitation. μ: from dynamic field technique (1980Br01). Q: -0.19 6 (+0.07 7) (1986BaZJ,1986Ro15), +0.01 5 (+0.25 5) (1984Be20), or -0.19 17 (+0.02 18) (1972Ke16). Values outside parentheses correspond to constructive interference from 2nd 2⁺ while those in parentheses correspond to destructive interference.
1550.987 <i>13</i>	2+	0.89 ps 29	ABCDEFGHIJK N	B(E2)↑=0.016 4 (1985Bu01) T _{1/2} : weighted average of 1.08 ps 29 from B(E2) in Coulomb Excitation 0.88 ps 39 from resonance fluorescence in (γ,γ'), 0.77 ps +24-19 from DSAM in ¹³⁶ Ba(n,n'γ). J ^π : E2 1551γ to 0 ⁺ . B(E2)↑: from Coulomb Excitation.
1578.969 22	0_{+}	>735 fs	B DEFGH N	J^{π} : E0 transition to 0^+ .
1866.611 ^{&} 18 2030.535 18	4 ⁺ 7 ⁻	0.3084 s <i>19</i>	A CD FGH KLM P A CD G KLM P	J ^π : E2 1048γ to 2+; band assignment. %IT=100 J ^π : E3 164γ to 4+; L(p,t)=7. T _{1/2} : from γ (t) in ¹³⁵ Ba(n,γ), E=thermal. Other: 0.37 s 5 (γ (t) in 1965Ru05).
2053.892 <i>18</i> 2080.13 <i>3</i>	4 ⁺ 2 ⁺	0.87 ps +84-29 1.0 ps +11-4	A D GH LM B DEFG J N	J^{π} : E2 1235 γ to 2 ⁺ , M1+E2 187 γ to 4 ⁺ . J^{π} : E2 2080 γ to 0 ⁺ .
2128.869 14	2+	50 fs 4	B DEFGHIJ N	$T_{1/2}$: other: >0.6 ps in (γ, γ') . J^{π} : E2 2129 γ to 0 ⁺ . $T_{1/2}$: weighted average of 48.5 fs 69 from DSAM in 136 Ba $(n, n'\gamma)$ and 51 fs 4 from (γ, γ') .
2140.237 18	5-	1.6 ns <i>I</i>	A D G KLM	μ =-1.9 2 (1979Oh03); Configuration=((ν s _{1/2}) ⁻¹ (ν h _{11/2}) ⁻¹) (1987Dr13) J ^π : L(p,t)=5. T _{1/2} : from $\gamma\gamma$ (t) in ¹³⁶ Cs β ⁻ decay.

E(level) [†]	${\rm J}^{\pi}$	T _{1/2} ‡	XREF	Comments
2141.38 3	0+	0.26 ps +13-7	B D FGh	μ : from IPAC method (1979Oh03). J^{π} : E2 1322.85 γ to 2 ⁺ ; J=0 from isotropic $\gamma(\theta)$ in (n,n' γ).
2153.55 8	$(1,2^+)$		D h	J^{π} : 2153.5 γ to 0 ⁺ .
2207.147 ^{&} 18	6+	3.1 ns <i>I</i>	A D G LMN	XREF: N(2182). J^{π} : E1+M2 177 γ to 7 ⁻ , E2 340.5 γ to 4 ⁺ .
2222.709 <i>19</i> 2298.69 <i>4</i>	(2,1) ⁺ (6 ⁻)	0.63 ps +44-19	DEFG J N D G	$T_{1/2}$: from $\beta \gamma$ (t) in ¹³⁶ Cs β^- decay. J^{π} : M1+E2 1404 γ to 2 ⁺ , tentative 2223 γ to 0 ⁺ . J^{π} : D+Q 158 γ to 5 ⁻ , 268 γ to 7 ⁻ .
2315.26 7 2349.5? 5	0+	>0.85 ps	B D FGH E	J^{π} : $\gamma(\theta)$ is isotropic for 1497 γ in ¹³⁶ Ba(n,n' γ).
2356.497 22 2373.761 <i>18</i>	4 ⁺ 5 ⁺	0.51 ps +52-18	A D G A D FG	J^{π} : M1(+E2) 302 γ to 4 ⁺ , E2 1538 γ to 2 ⁺ . J^{π} : M1(+E2) 167 γ to 6 ⁺ , M1+E2 320 γ to 4 ⁺ .
2390.817 22 2392.1 <i>6</i>	3 ⁻ (1 ⁺ ,2 ⁺)	0.21 ps +8-5	D G F n	J^{π} : E1(+M2) 337 γ to 4 ⁺ , E1+M2 1572 γ to 2 ⁺ . J^{π} : from analysis of average resonance capture data.
2399.94 3	(1)+	118 fs +28–21	DEFG n	J^{π} : (1 ⁺ ,2 ⁺) from analysis of average resonance capture data, excitation function in ¹³⁶ Ba(n,n' γ) favors J=1, M1+E2 1581 γ to 2 ⁺ gives π =+.
2430.936 22	3+	0.20 ps +7-4	D FG	J^{π} : average resonance capture data gives J=0 or 3; M1+E2 1612 γ to 2 ⁺ .
2485.13 5	2+	146 fs +35-28	B D FG J	J^{π} : E2 2485 γ to 0 ⁺ . $T_{1/2}$: other: >18 fs in (γ, γ') .
2532.653 23	3-	76 fs 7	B DEFGHI	B(E2)↑=0.155 18 J ^π : 0 ⁻ ,3 ⁻ from average resonance capture, E1+M2 1714γ to 2 ⁺ . B(E2)↑: from Coulomb Excitation.
2544.481 <i>24</i> 2562? <i>10</i>	4+	0.44 ps +56-17	G K	J^{π} : E2 993 γ to 2 ⁺ .
2587.08 <i>3</i>	(5) ⁺	>0.83 ps	G	J^{π} : M1+E2 720 γ to 4 ⁺ , J=5 is favored from excitation function in ¹³⁶ Ba(n,n' γ).
2640.80 <i>4</i>	(1 ⁺)	55 fs 7	B DEFG K	XREF: E(?). J^{π} : D+Q 1822 γ to 2 ⁺ , analysis of average resonance capture gives (1 ⁺ ,2 ⁺), excitation function in 136 Ba(n,n' γ) suggests J^{π} =1 ⁺ .
2659.65 5	$(3,4,5)^+$		G n	J^{π} : M1+E2 793 γ to 4 ⁺ .
2661.48 5	1,2+	73 fs <i>14</i>	DEFG n	J^{π} : D+Q 1843 γ to 2 ⁺ , 2662 γ to 0 ⁺ .
2693.89 5	1	120 ps 20	DEFG J	J ^{π} : D 2694 γ to 0 ⁺ . T _{1/2} : weighted average of 104 fs +35–28 from DSAM in ¹³⁶ Ba(n,n' γ) and 127 ps 20 from (γ , γ').
2694.43? <i>4</i>	5+		D G	J^{π} : M1+E2 641 γ to 4 ⁺ , D+Q 487 γ to 6 ⁺ .
2773.66 4	2+	180 fs +60-40	B DEFG J	J^{π} : E2 2774 γ to 0 ⁺ .
2779.99 <i>5</i>	2+	0.28 ps +37-11	FG J	J^{π} : E2 2779.5 γ to 0 ⁺ .
2784.44? 13	0+	42 fs +21-14	E Gh	J ^{π} : isotropic $\gamma(\theta)$ for 1966 γ in ¹³⁶ Ba(n,n' γ) gives J=0, π =+ from RUL of 1966 γ .
2812.02 7	(3+)	0.15 ps +22-7	DEFGh	XREF: E(?). J^{π} : D+Q 1993 γ to 2 ⁺ , $\gamma(\theta)$ in 136 Ba(n,n' γ).
2820.18 10	$(2,3,4^+)$		G	J^{π} : 287.4 γ to 3 ⁻ , 389.5 γ to 3 ⁺ , 740.1 γ to 2 ⁺ .
2840.74 <i>10</i> 2905.0? <i>5</i>	(4^{+})		G K EF	J^{π} : (M1+E2) 974 γ to 4 ⁺ , Q 2022 γ to 2 ⁺ .
2935.1? 9	$(1,2^+)$		E G	J^{π} : 2935 γ to 0 ⁺ .
2946.0? 5	$0^{(+)},1,2,3^{+}$		E	
2977.67 18		0.11 ps +16-6	EFG J	
2985.01 6	$(2^+,3^+,4^+)$	0.11 ps +19-6	G	J^{π} : 1118 γ to 4 ⁺ , 2166 γ to 2 ⁺ .
2994.19 ^{&} 14 2995.34 5	8(+)		LM DE	J^{π} : Q 787 γ to 6 ⁺ , band assignment.

E(level) [†]	J^π	T _{1/2} ‡	XREF	Comments
3022.10 8	(1,2+)	0.14 ps +6-4	DEFG K	XREF: F(3014). J^{π} : 3022 γ to 0 ⁺ , L(p,t)=4 is discrepant.
3044.54 5	1(-)@	20 fs 3	DEFG J	J ^{π} : J=1 from $\gamma(126^{\circ})/\gamma(90^{\circ})$ in (γ, γ') . Linear polarization in (pol γ, γ') slightly favors $\pi=-$.
3077.35 7	3 ⁺	0.11 ps +8-4	G	J^{π} : M1+E2 2259 γ to 2 ⁺ , D+Q 1211 γ to 4 ⁺ .
3109.59 <i>9</i> 3116.08 <i>6</i>	2 ⁺ 2 ⁺	0.27 ps +13-7 101 fs 22	FGH J DE G J	J^{π} : E2 3109 γ to 0 ⁺ . J^{π} : E2 3116 γ to 0 ⁺ .
				$T_{1/2}$: weighted average of 83 fs +21-14 from DSAM in ¹³⁶ Ba(n,n' γ) and 122 fs 22 from (γ , γ ').
3178.9 <i>7</i> 3212.0? <i>5</i>	$0^{(+)},1,2,3^{(+)}$ $0^{(+)},1,2,3^{+}$		E E	
3241.89 <i>17</i>	0 7,1,2,3	42 fs +21-14	G K	XREF: K(3262).
3335.6 <i>3</i> 3347.6 <i>7</i>	$0^{(+)},1,2,3^{+C}$		G E	
3354.5 <i>3</i>	0` ^,1,2,3		G	
3357.19 ^{&} 25	10 ⁽⁺⁾	91 ns 2	LM	$T_{1/2}$: weighted average of 94 ns 10 from $\gamma\gamma$ (t) in $^{139}\text{La}(^{82}\text{Se},X\gamma)$ and 91 ns 2 from $\gamma\gamma$ (t) in $^{198}\text{Pt}(^{136}\text{Xe},X\gamma)$.
3370.07 21	1	18 fs <i>4</i>	DE G J	J ^{π} : E2 363 γ to 8 ⁽⁺⁾ ; band assignment. XREF: E(3366.5).
2270.07 21	-	10 10 7	22 0 0	J^{π} : D 3370 γ to 0 ⁺ .
3378.0? 5			E	$T_{1/2}$: deduced by evaluator from $\Gamma_{\gamma 0}^2/\Gamma$ in (γ, γ') assuming $\Gamma_{\gamma 0}=1$.
3435.0 <i>I</i>	1-	6.0 fs <i>13</i>	DE G J	J^{π} : E1 3435 γ to 0 ⁺ .
				$T_{1/2}$: deduced by evaluator from $\Gamma_{\gamma 0}^2/\Gamma$ in (γ, γ') assuming $\Gamma_{\gamma 0}=1$.
3505.5 <i>9</i> 3508.7 <i>3</i>	$0^{(+)},1,2,3^{+}$ (4^{+})		DE h Gh K	J^{π} : L(p,t)=(4).
3526.7 4	2+		G J	J^{π} : Q 3526 γ to 0 ⁺ , population in (γ, γ') suggests positive parity.
3542.5 7	$(0^+),1,2,3,4^{(+)}$		E	
3550.70? <i>20</i> 3559.0? <i>5</i>	$0^{(+)}, 1, 2, 3^{(+)}$		G E	
3579.5 7	$0^+, 1, 2, 3, 4^{+}$		E	
3650.0 <i>5</i> 3691.92 <i>13</i>	$(0^+),1,2,3,4^{(+)}$ <i>c</i> 1 to 3		E H DE	J^{π} : 2873 γ to 2 ⁺ , primary γ from 1 ⁽⁺⁾ .
3698.5 <i>7</i>	$(0^+),1,2,3,4^{(+)}$		E	J . 2873y to 2 , primary y from 187.
3706.1 6	$(1,2^+)$		G K	J^{π} : 3706 γ to 0 ⁺ .
3706.4 <i>3</i> 3760.3? <i>11</i>			LM F	
3768.9 <i>3</i>	$1^{(-)},2,3^+$		DE	J^{π} : 1235 γ to 3 ⁻ ; primary γ from 1 ⁺ res.
3795.34 <i>15</i> 3848.5 <i>5</i>	$(1,2^+)$ $0^{(+)},1,2,3^{+C}$		DE G E	J^{π} : 3795 γ to 0 ⁺ .
3850.4?	0, 1,2,3		M	
3852.7? 6	$(1,2^+)$		fG	J^{π} : 3853 γ to 0 ⁺ .
3863.47 <i>23</i> 3881.17? <i>10</i>	$(1,2^+)$ $(1,2^+)$		DEf G J	J^{π} : 3863 γ to 0 ⁺ . J^{π} : 3881 γ to 0 ⁺ .
3925.6 <i>3</i>			DE	,
3962.9 <i>8</i> 3965.51 <i>6</i>	$(1,2^+)$		G DE	J^{π} : 3965.5 γ to 0 ⁺ .
3979.76 20	(1)	21 fs 4	DE G J	$T_{1/2}$: deduced by evaluator from $\Gamma_{\gamma 0}^2/\Gamma$ in (γ, γ') assuming $\Gamma_{\gamma 0}=1$.
3992.56 19	$0^{(+)},1,2,3^{+c}$		DE	C /*

E(level) [†]	${ m J}^{\pi}$	XRE	F		Comments	
4008.6 3	1,2+	DE		J^{π} : 2429.6γ to 0 ⁺ .		
4075? 10	,-		K			
4137.07 10	1	D	J	J^{π} : D 4137 γ to 0 ⁺ .		
4214.9	#		LM			
4231.17 20	1#		J			
4366.78 20	1#		J			
4413.28 <i>10</i>	(1)#		J			
4475.18 <i>10</i>	(1) [#]		J			
4536.4 <i>3</i>	1#		J			
4601.08 <i>20</i>	(1)#		J			
4623.7 <i>3</i>	1-@		J			
4639.7 10	1-@		J			
4697.79 <i>10</i>	1-@		J			
4767.69 10	1-@		J			
4814.09 <i>10</i>	1#		J			
4833.3 5			J			
4897.8 <i>16</i>	1#		J			
4985.0 6	1-@		J			
5040 <i>3</i>	1-@		J			
5060.80 <i>20</i>	1-@		J			
5065	@		M			
5076.9 8	1-@		J			
5094.5 7	1-@		J			
5135.2 <i>3</i>	1-@		J			
5216.31 20	(1)#		J			
5268.4 7	(1)##		J			
5294.31 <i>10</i>	1#		J			
5337.81 20	1#		J			
5380			M			
5393	a>#		M			
5396.5 7	(1)#		J -			
5418.4 5	(1)#		J			
5431.5 10	1#		J			
5444.42 10	(1)#		J			
5497.6 7	1-@		J			
5561.1 <i>3</i>	1-@		J			
5585.6 7	1-@		J			
5601.22 <i>10</i>	1-@		J			
5610.0 <i>6</i>	1-@		J			
5647.9 <i>13</i>	1-@		J			
5652.2 10	1-@		J			
5718 <i>3</i>	(1) #		J			
5735.0 7	.#		J			
5768.0 4	1#		J			
5781.7 9	1#		J			
5805.13 <i>10</i>	1#		J			
5924.2 6	1#		J			

E(level) [†]	${ m J}^{\pi}$	XREF	E(level) [†]	${ m J}^{\pi}$	XREF
5965.8 4	1-@	J	6952.0 11	1-@	J
5979.24 20	1 ^{-@}	J	6982.29 20	1-@	J
6005.04 10	1-@	J	6998.5 7	1-@	J
6035.74 10	1-@	J	7006.6 14	1-@	J
6052.94 20	1-@	J	7018.89 <i>10</i>	1-@	J
6061.44 10	1-@	J	7150.60 10	(1)#	J
6082.55 10	1-@	J	7251.1 <i>3</i>	1-@	J
6113.35 20	1-@	J	7271.6 5	1-@	J
6161.25 20	1-@	J	7281.5 <i>15</i>	1-@	J
6182.35 20	1-@	J	7298.81 10	1-@	J
6192.8 8	(1)#	J	7314.81 20	1-@	J
6215.7 5	(1)#	J	7350.2 14	1-@	J
6231.6 <i>4</i>	(1)#	J	7364.1 <i>3</i>	1-@	J
6244.2 8	(1)#	J	7382.1 4	1-@	J
6264.75 20	(1)#	J	7394.4 9	1-@	J
6289.2 7	(1)#	J	7402.5 3	1-@	J
6331.9 4	1-@	J	7414.9 <i>13</i>	1-@	J
6344.4 7	1-@	J	7444.4 3	1-@	J
6358.2 7	1-@	J	7472.52 10	1-@	J
6373.6 8	1-@	J	7487.5 <i>4</i>	1-@	J
6391.3 <i>16</i>	1-@	J	7502.8 <i>3</i>	1-@	J
6409.9 19	1-@	J	7519.2 10	1-@	J
6430.6 11	1-@	J	7541.0 6	1-@	J
6449.46 20	1-@	J	7558.1 7	1-@	J
6478.17 <i>10</i>	1-@	J	7572.13 10	1-@	J
6488.67 10	1-@	J	7583.5 8	1-@	J
6528.8 11	1-@	J	7594.8 <i>5</i>	1-@	J
6554.3 8	1-@	J	7604.2 8	1#	J
6591.8 <i>3</i>	1-@	J	7625.7 4	1#	J
6625.27 10	1-@	J	7662.33 20	1 [#]	J
6677.3 <i>3</i>	1#	J	7675.63 20	1#	J
6693.38 10	1#	J	7699.0 <i>3</i>	1#	J
6716.8 <i>3</i>	1#	J	7747.6 5	1#	J
6741.9 <i>3</i>	1-@	J	7769.84 10	1#	J
6756.58 20	1-@	J	7788.1 5	(1) #	J
6767.78 10	1-@	J	7819.8 8	1-@	J
6776.78 10	1-@	J	7848.9 <i>3</i>	1-@	J
6788.38 20	1-@	J	7857.9 12	1-@	J
6830.8 7	1-@	J	7875.0 <i>11</i>	1-@	J
6840.3 8	1-@	J	7895.25 20	1-@	J
6847.5 11	1-@	J	7911.3 <i>4</i>	1-@	J
6859.2 8	1-@	J	7972.4 10	1-@	J
6870.4 10	1 ^{-@}	J	8006.6 <i>5</i>	1-@	J
6880.5 5	1-@	J	8083.5 <i>3</i>	1-@	J
6895.79 20	1-@	J	8124.66 20	1-@	J

¹³⁶Ba Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
8144.3 7	1-@	J	
8171.2 10	1-@	J	
8184.3 <i>3</i>	1-@	J	
8227.9 5	1-@	J	
8250.8 7	1-@	J	
8280.4 10	1-@	J	
8315.4 9	1-@	J	
8339.2 14	1-@	J	
8359.5 <i>5</i>	1-@	J	
8389.7 7	1-@	J	
8404.1 <i>13</i>	1-@	J	
8611.1 <i>21</i>	1-@	J	
8825.1 <i>10</i>	1-@	J	
9049.5 7	1-@	J	
9077.8 <i>7</i>	1-@	J	
9107.12 80	1+ b	E	
9107.18 <i>80</i>	$2^{(+)} \frac{b}{b}$	E	
9107.20 80	1 ⁽⁺⁾ ,2	E	J ^{π} : J from evaluation of 1981MuZQ. π from assumption that strong primary γ' s to the 0 ⁺ levels are M1.
9107.32 80	$2^{(+)}$ b	E	
9107.38 80	$2^{(+)}$ b	E	
9107.42 80	$2^{(+)}$ b	E	
9107.48 80	1 ⁽⁺⁾ <i>a</i>	E	
9107.51 80	$2^{(+)} \frac{b}{b}$	E	
9107.56 80	2 b	DE	
9107.89 <i>80</i>	$2^{(+)}^{b}$	E	

 $^{^{\}dagger}$ From a least-squares fit to Ey, by evaluator. ‡ From DSAM in $^{136}Ba(n,n'y),$ except where noted.

[#] From $\gamma(\theta)$ in (γ, γ') .

[@] From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (γ, γ') .

[&]amp; Band(A): g.s. band.

^a J from evaluation of 1981MuZQ. π from assumption that strong primary γ' s to the 0⁺ levels are M1.

^b J from evaluation of 1981MuZQ. π from assumption that γ to 2532, 3⁻, is E1.

^c From γ decay of resonance above neutron separation energy with J=1 to 2.

$\gamma(^{136}\text{Ba})$

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult.‡	δ^{\ddagger}	α	$I_{(\gamma+ce)}$	Comments
818.522	2+	818.514# 12	100	0.0	0+	E2 [@]		0.00283		$\alpha(K)=0.00242 \ 4; \ \alpha(L)=0.000327 \ 5; \\ \alpha(M)=6.75\times10^{-5} \ 10; \ \alpha(N)=1.449\times10^{-5} \ 21; \\ \alpha(O)=2.19\times10^{-6} \ 3 \\ \alpha(P)=1.495\times10^{-7} \ 21 \\ B(E2)(W.u.)=19.6 \ 4$
1550.987	2+	732.41 2	92 5	818.522	2+	M1+E2	-1.00 4	0.00444		$\alpha(K)=0.00381 \ 6; \ \alpha(L)=0.000500 \ 8;$ $\alpha(M)=0.0001030 \ 16; \ \alpha(N)=2.22\times10^{-5} \ 4;$ $\alpha(O)=3.38\times10^{-6} \ 6$ $\alpha(P)=2.41\times10^{-7} \ 4$ $\alpha(E)=0.015 \ 5$
		1550.99 2	100 5	0.0	0+	E2		8.37×10 ⁻⁴		$\alpha(K)=0.000640 \ 9; \ \alpha(L)=8.03\times10^{-5} \ 12;$ $\alpha(M)=1.645\times10^{-5} \ 23; \ \alpha(N)=3.55\times10^{-6} \ 5;$ $\alpha(O)=5.43\times10^{-7} \ 8$ $\alpha(P)=3.98\times10^{-8} \ 6$
1578.969	0+	760.45 2	100	818.522	2+	E2		0.00337		B(E2)(W.u.)=0.89 25 α (K)=0.00287 4; α (L)=0.000393 6; α (M)=8.12×10 ⁻⁵ 12; α (N)=1.742×10 ⁻⁵ 25; α (O)=2.63×10 ⁻⁶ 4 α (P)=1.769×10 ⁻⁷ 25 B(E2)(W.u.)<73
		1579.819 ^e		0.0	0+	E0			0.0028 <i>CA</i>	Mult.: Q from $\gamma(\theta)$ in 136 Ba(n,n' γ); $\Delta\pi$ =no from level scheme. ce(K)/(γ +ce)=0.89; ce(L)/(γ +ce)=0.11 $I_{(\gamma+ce)}$: from 135 Ba(n, γ), E=thermal. Mult.: from 135 Ba(n, γ), E=thermal; ce(K)
		,	,,							observed but not γ. B(E0)/B(E2 to 2 ⁺ , 818 level)=0.173 <i>15</i> (1987PaZS). B(E2 to 2 ⁺ , 1551 level)/B(E2 to 2 ⁺ , 818 level)≈0 (1987PaZS).
1866.611	4+	315.5 ^{#g} 5	0.025# 23	1550.987	2+	[E2]		0.0385		$\alpha(K)$ =0.0315 5; $\alpha(L)$ =0.00559 9; $\alpha(M)$ =0.001177 18; $\alpha(N)$ =0.000249 4; $\alpha(O)$ =3.60×10 ⁻⁵ 6 $\alpha(P)$ =1.80×10 ⁻⁶ 3 B(E2)(W.u.)=1.4 +6-5
		1048.073# 20	100# 4	818.522	2+	E2		1.64×10^{-3}		$\alpha(K)=0.001406 \ 20; \ \alpha(L)=0.000183 \ 3;$ $\alpha(M)=3.77\times10^{-5} \ 6; \ \alpha(N)=8.11\times10^{-6} \ 12$ $\alpha(O)=1.234\times10^{-6} \ 18; \ \alpha(P)=8.73\times10^{-8} \ 13$ $\alpha(D)=1.234\times10^{-6} \ 18; \ \alpha(P)=8.73\times10^{-8} \ 13$
2030.535	7-	163.920 [#] 2	100	1866.611	4+	E3 [@]		2.23		$\alpha(K)$ =1.104 <i>16</i> ; $\alpha(L)$ =0.881 <i>13</i> ; $\alpha(M)$ =0.198

					<u>2</u>	v(¹³⁶ Ba) (con	tinued)		90
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α	Comments	
2053.892	4+	187.285 [#] 6	2.7 [#] 3	1866.611 4+	M1+E2 [@]	0.8 [@] 4	0.188 12	3; $\alpha(N)=0.0411$ 6; $\alpha(O)=0.00537$ 8 $\alpha(P)=5.35\times10^{-5}$ 8 B(E3)(W.u.)=0.349 4 $\alpha(K)=0.154$ 6; $\alpha(L)=0.027$ 6; $\alpha(M)=0.0058$ 12; $\alpha(N)=0.00122$ 24; $\alpha(O)=0.00018$ 3 $\alpha(P)=9.2\times10^{-6}$ 3	
		1235.362# 23	100# 3	818.522 2+	E2 [@]		1.17×10 ⁻³	B(E2)(W.u.)=7.E+2 +5-7; B(M1)(W.u.)=0.06 5 δ: other: 0.8 6 from $\gamma(\theta)$ in 136 Ba(n,n' γ). B(E2) value of 700 W.u. exceeds RUL. $\alpha(K)$ =0.001001 14; $\alpha(L)$ =0.0001281 18; $\alpha(M)$ =2.63×10 ⁻⁵ 4; $\alpha(N)$ =5.66×10 ⁻⁶ 8 $\alpha(O)$ =8.65×10 ⁻⁷ 13; $\alpha(P)$ =6.22×10 ⁻⁸ 9	
2080.13	2+	528.96 8	10.6 6	1550.987 2+	M1+E2 ^c		0.0099 15	B(E2)(W.u.)=5 3 α (K)=0.0085 14; α (L)=0.00116 11; α (M)=0.000240 21; α (N)=5.2×10 ⁻⁵ 5; α (O)=7.8×10 ⁻⁶ 9	
		1261.65 4	100 4	818.522 2+	M1+E2	-1.00 5	1.31×10 ⁻³ 2	$\alpha(P)=5.3\times10^{-7} 11$ $\alpha(K)=0.001115 18; \alpha(L)=0.0001406 22;$ $\alpha(M)=2.88\times10^{-5} 5; \alpha(N)=6.22\times10^{-6} 10$ $\alpha(O)=9.54\times10^{-7} 15; \alpha(P)=7.04\times10^{-8} 12$	
		2080.11 7	60.6 21	0.0 0+	E2		7.61×10 ⁻⁴	B(E2)(W.u.)=1.2 +5-12; B(M1)(W.u.)=0.0032 +13-32 α (K)=0.000370 6 ; α (L)=4.56×10 ⁻⁵ 7 ; α (M)=9.33×10 ⁻⁶ 13 ; α (N)=2.01×10 ⁻⁶ 3 ; α (O)=3.09×10 ⁻⁷ 5 α (P)=2.30×10 ⁻⁸ 4 B(E2)(W.u.)=0.12 +8-6 Mult.: Q from $\gamma(\theta)$ in 136 Ba(n,n' γ), M2 excluded by	,
2128.869	2+	1310.34 <i>I</i>	100 4	818.522 2+	M1(+E2)	+0.005 9	1.37×10 ⁻³	comparison to RUL. $\alpha(K)=0.001167\ 17;\ \alpha(L)=0.0001456\ 21;$ $\alpha(M)=2.98\times10^{-5}\ 5;\ \alpha(N)=6.44\times10^{-6}\ 9$ $\alpha(O)=9.92\times10^{-7}\ 14;\ \alpha(P)=7.44\times10^{-8}\ 11$	
		2128.88 5	50.0 16	0.0 0+	E2		7.67×10 ⁻⁴	B(E2)(W.u.)=0.00117 II ; B(M1)(W.u.)=0.130 $I2$ $\alpha(K)$ =0.000355 5 ; $\alpha(L)$ =4.37×10 ⁻⁵ 7 ; $\alpha(M)$ =8.94×10 ⁻⁶ $I3$; $\alpha(N)$ =1.93×10 ⁻⁶ 3 ; $\alpha(O)$ =2.96×10 ⁻⁷ 5 $\alpha(P)$ =2.21×10 ⁻⁸ 3 B(E2)(W.u.)=2.07 $I9$ Mult.: Q from $\gamma(\theta)$ in 136 Ba(n,n' γ), M2 excluded by comparison to RUL.	
2140.237	5-	86.36 [#] 3	46 [#] 6	2053.892 4+	E1 [@]		0.341	$\alpha(K)$ =0.291 4; $\alpha(L)$ =0.0401 6; $\alpha(M)$ =0.00823 12; $\alpha(N)$ =0.001743 25; $\alpha(O)$ =0.000254 4 $\alpha(P)$ =1.482×10 ⁻⁵ 21 B(E1)(W.u.)=6.7×10 ⁻⁵ 11	8
		109.681# 7	3.23 [#] 16	2030.535 7-	E2@		1.388	$\alpha(K)=0.914 \ 13; \ \alpha(L)=0.373 \ 6; \ \alpha(M)=0.0814 \ 12;$ $\alpha(N)=0.01691 \ 24; \ \alpha(O)=0.00225 \ 4$ $\alpha(P)=4.29\times10^{-5} \ 6$	90

γ (136Ba) (continued)

					/	., (_	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α	Comments
2140.237	5-	273.646 [#] 8	100# 2	1866.611 4+	E1+M2 [@]	0.07 [@] 5	0.016 3	B(E2)(W.u.)=10.1 10 δ: δ(M3/E2)<0.05 from β ⁻ decay; however, from RUL one expects δ≤9×10 ⁻⁵ . α (K)=0.0136 21; α (L)=0.0018 4; α (M)=0.00037 α (R)=7.8×10 ⁻⁵ 16; α (O)=1.18×10 ⁻⁵ 24 α (P)=8.1×10 ⁻⁷ 16
		1321.6 ^{#g} 4	0.39# 16	818.522 2+	[E3]		0.00198	B(E1)(W.u.)= $4.5 \times 10^{-6} 4$ δ : other: 0.00 2 from $\gamma(\theta)$ in 136 Ba(n,n' γ). α (K)=0.001679 24; α (L)=0.000230 4; α (M)= $4.76 \times 10^{-5} 7$; α (N)= $1.023 \times 10^{-5} 15$
2141.38	0+	1322.85 3	100	818.522 2+	E2		1.04×10^{-3}	$\alpha(O)=1.552\times10^{-6} \ 22; \ \alpha(P)=1.072\times10^{-7} \ 15$ B(E3)(W.u.)=0.22 10 $\alpha(K)=0.000872 \ 13; \ \alpha(L)=0.0001109 \ 16;$
		2141.5		0.0 0+	[E0]			$\alpha(M)=2.28\times10^{-5} 4$; $\alpha(N)=4.90\times10^{-6} 7$ $\alpha(O)=7.49\times10^{-7} 11$; $\alpha(P)=5.43\times10^{-8} 8$ B(E2)(W.u.)=13 +5-4 E_{γ} : from 136 La ε decay only. $B(E0)/B(E2$ to 2^+ , 818 level)=0.125 15
2153.55	$(1,2^+)$	2153.53 8	100	0.0 0+				(1987PaZS). B(E2 to 2 ⁺ , 1551 level)/B(E2 to 2 ⁺ , 818 level)≈0 (1987PaZS).
2207.147	6+	66.881# 17	10.2# 4	2140.237 5	E1(+M2) [@]	≤0.008	0.689	$\alpha(K)$ =0.584 9; $\alpha(L)$ =0.0836 12; $\alpha(M)$ =0.01715 25; $\alpha(N)$ =0.00362 6; $\alpha(O)$ =0.000521 8 $\alpha(P)$ =2.88×10 ⁻⁵ 5 B(E1)(W.u.)=1.05×10 ⁻⁵ 5 δ : from comparison to RUL.
		153.246# 4	16.4 [#] 11	2053.892 4+	E2 [@]		0.430	δ: other: 0.09 3 from α(L)exp in β ⁻ decay. α(K)=0.316 5; α(L)=0.0896 13; α(M)=0.0193 3; α(N)=0.00404 6; α(O)=0.000552 8 α(P)=1.589×10 ⁻⁵ 23
		176.602 [#] 4	29.2 [#] 6	2030.535 7-	E1+M2 [@]	0.07 [@] 5	0.053 12	B(E2)(W.u.)=4.9 4 α (K)=0.045 10; α (L)=0.0062 17; α (M)=0.00127 36; α (N)=2.71×10 ⁻⁴ 77; α (O)=4.1×10 ⁻⁵ 12 α (P)=2.65×10 ⁻⁶ 77
		340.547# 8	100# 1	1866.611 4+	E2		0.0304	B(E1)(W.u.)=2.5×10 ⁻⁶ 11 δ: other: -0.01 2 from $\gamma(\theta)$ in 136 Ba(n,n' γ). α (K)=0.0250 4; α (L)=0.00429 6; α (M)=0.00090

γ (136Ba) (continued)

						/(Bu) (c.	ontinaca)	
$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α	Comments
2222.709	(2,1)+	671.65 3	100 5	1550.987 2+	M1(+E2)	+0.001 14	0.00639	13; $\alpha(N)=0.000191$ 3; $\alpha(O)=2.77\times10^{-5}$ 4 $\alpha(P)=1.441\times10^{-6}$ 21 B(E2)(W.u.)=0.550 20 $\alpha(K)=0.00551$ 8; $\alpha(L)=0.000701$ 10; $\alpha(M)=0.0001440$ 21; $\alpha(N)=3.11\times10^{-5}$ 5; $\alpha(O)=4.78\times10^{-6}$ 7 $\alpha(P)=3.55\times10^{-7}$ 5
		1404.21 2	99 4	818.522 2+	M1+E2	+1.92 10	1.00×10 ⁻³ 2	B(M1)(W.u.)=0.055 20 α (K)=0.000823 13; α (L)=0.0001037 16; α (M)=2.13×10 ⁻⁵ 4; α (N)=4.58×10 ⁻⁶ 7 α (O)=7.03×10 ⁻⁷ 11; α (P)=5.16×10 ⁻⁸ 8 B(E2)(W.u.)=1.5 +11-6
2298.69	(6-)	2223 ⁸ 158.45 4 268.3 3	≈9 100 5	0.0 0 ⁺ 2140.237 5 ⁻ 2030.535 7 ⁻	D+Q	+0.11 2		
2315.26	0+	208.3 3 1496.73 7	1.7 <i>6</i> 100	818.522 2 ⁺	E2		8.71×10 ⁻⁴	$\alpha(K)$ =0.000685 10; $\alpha(L)$ =8.62×10 ⁻⁵ 12; $\alpha(M)$ =1.766×10 ⁻⁵ 25; $\alpha(N)$ =3.81×10 ⁻⁶ 6; $\alpha(O)$ =5.83×10 ⁻⁷ 9 $\alpha(P)$ =4.26×10 ⁻⁸ 6 B(E2)(W.u.)<2.1
2356.497	4+	302.37 8	31.8 16	2053.892 4+	M1(+E2)	+0.3 +5-3	0.0472 13	Mult.: Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ). $\alpha(K)$ =0.0404 16; $\alpha(L)$ =0.0054 4; $\alpha(M)$ =0.00112 9; $\alpha(N)$ =0.000241 17; $\alpha(O)$ =3.68×10 ⁻⁵ 18 $\alpha(P)$ =2.61×10 ⁻⁶ 20
		489.93 <i>5</i>	59 <i>3</i>	1866.611 4+	M1+E2 ^c		0.0121 18	B(M1)(W.u.)=0.18 +18-7 α (K)=0.0103 16; α (L)=0.00143 11; α (M)=0.000296 20; α (N)=6.4×10 ⁻⁵ 5; α (O)=9.6×10 ⁻⁶ 9 α (P)=6.5×10 ⁻⁷ 13
		805.54 3	45 3	1550.987 2+	E2		0.00294	$\alpha(K)=0.03510$ 13 $\alpha(K)=0.00251$ 4; $\alpha(L)=0.000340$ 5; $\alpha(M)=7.02\times10^{-5}$ 10; $\alpha(N)=1.508\times10^{-5}$ 22; $\alpha(O)=2.28\times10^{-6}$ 4 $\alpha(P)=1.550\times10^{-7}$ 22 $\alpha(P)=1.550\times10^{-7}$ 22 $\alpha(P)=1.550\times10^{$
		1537.95 3	100 5	818.522 2+	E2		8.45×10 ⁻⁴	comparison to RUL. $\alpha(K)=0.000650 \ 10; \ \alpha(L)=8.17\times10^{-5} \ 12;$ $\alpha(M)=1.673\times10^{-5} \ 24; \ \alpha(N)=3.61\times10^{-6} \ 5;$ $\alpha(O)=5.52\times10^{-7} \ 8$ $\alpha(P)=4.05\times10^{-8} \ 6$ $B(E2)(W.u.)=1.3 \ 7$

$\gamma(\frac{136}{\text{Ba}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	δ^{\ddagger}	α	Comments
2373.761	5+	166.576# 6	63 [#] 3	2207.147 6+	M1(+E2) [@]	0.3 [@] 3	0.243 16	$\alpha(K)$ =0.205 8; $\alpha(L)$ =0.030 7; $\alpha(M)$ =0.0062 15; $\alpha(N)$ =0.0013 3; $\alpha(O)$ =0.00020 4 $\alpha(P)$ =1.32×10 ⁻⁵ 3
		233.5# 4	8 [#] 1	2140.237 5	[E1]		0.0221	$\alpha(K)$ =0.0190 3; $\alpha(L)$ =0.00245 4; $\alpha(M)$ =0.000503 8; $\alpha(N)$ =0.0001076 16; $\alpha(O)$ =1.618×10 ⁻⁵ 24 $\alpha(P)$ =1.085×10 ⁻⁶ 16 E _{γ} : other: 234.1 3 in (n,n' γ).
		319.911# 8	50 [#] 7	2053.892 4+	M1+E2	0.30 <i>I</i>	0.0407	$\alpha(K)$ =0.0348 5; $\alpha(L)$ =0.00466 7; $\alpha(M)$ =0.000961 14; $\alpha(N)$ =0.000207 3; $\alpha(O)$ =3.16×10 ⁻⁵ 5 $\alpha(P)$ =2.25×10 ⁻⁶ 4
		507.188# 10	100# 3	1866.611 4+	M1+E2 ^c	0.70 1	0.01164	$\alpha(K)=0.00996\ 14;\ \alpha(L)=0.001337\ 19;$ $\alpha(M)=0.000276\ 4;\ \alpha(N)=5.93\times10^{-5}\ 9;$ $\alpha(O)=9.02\times10^{-6}\ 13$ $\alpha(P)=6.33\times10^{-7}\ 9$ E _y : other: 506.91 3 in (n,n'y).
2390.817	3-	336.75 12	18.2 11	2053.892 4+	E1(+M2)	+0.01 5	0.0085 5	$\alpha(K)$ =0.0073 5; $\alpha(L)$ =0.00093 7; $\alpha(M)$ =0.000191 14 ; $\alpha(N)$ =4.1×10 ⁻⁵ 3; $\alpha(O)$ =6.2×10 ⁻⁶ 5 $\alpha(P)$ =4.3×10 ⁻⁷ 3 B(E1)(W.u.)=0.0047 19
		839.82 <i>11</i> 1572.29 <i>2</i>	4.5 <i>5</i> 100 <i>4</i>	1550.987 2 ⁺ 818.522 2 ⁺	E1+M2	-0.050 10	6.19×10 ⁻⁴	$\alpha(K)$ =0.000300 5; $\alpha(L)$ =3.63×10 ⁻⁵ 6; $\alpha(M)$ =7.41×10 ⁻⁶ 12; $\alpha(N)$ =1.599×10 ⁻⁶ 24; $\alpha(O)$ =2.46×10 ⁻⁷ 4 $\alpha(P)$ =1.83×10 ⁻⁸ 3
2399.94	(1)+	1581.41 <i>3</i>	100	818.522 2+	M1+E2		0.00091 9	B(E1)(W.u.)=0.00025 10 α (K)=0.00069 8; α (L)=8.6×10 ⁻⁵ 10; α (M)=1.77×10 ⁻⁵ 19; α (N)=3.8×10 ⁻⁶ 5; α (O)=5.9×10 ⁻⁷ 7 α (P)=4.4×10 ⁻⁸ 6
2430.936	3+	879.94 2	100 6	1550.987 2+	M1+E2	-1.9 4	0.00261 10	$\alpha(K)$ =0.00224 9; $\alpha(L)$ =0.000294 10; $\alpha(M)$ =6.06×10 ⁻⁵ 19; $\alpha(N)$ =1.30×10 ⁻⁵ 5; $\alpha(O)$ =1.98×10 ⁻⁶ 7 $\alpha(P)$ =1.40×10 ⁻⁷ 6
		1612.46 5	85 5	818.522 2+	M1+E2	-4.0 4	8.18×10 ⁻⁴	B(E2)(W.u.)=55 21 α (K)=0.000603 9; α (L)=7.54×10 ⁻⁵ 11; α (M)=1.543×10 ⁻⁵ 22; α (N)=3.33×10 ⁻⁶ 5; α (O)=5.10×10 ⁻⁷ 8 α (P)=3.76×10 ⁻⁸ 6 B(E2)(W.u.)=2.7 10
2485.13	2+	906.8 ^{fg} 2	$\leq 11^{f}$	1578.969 0 ⁺	[E2]		0.00224	$\alpha(K)=0.00192 \ 3; \ \alpha(L)=0.000256 \ 4;$

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

$\gamma(^{136}\text{Ba})$ (continued)

						γ ⁽¹³⁰ Ba) (con	tinued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α	Comments
								$\alpha(M)=5.27\times10^{-5} 8$; $\alpha(N)=1.132\times10^{-5} 16$; $\alpha(O)=1.717\times10^{-6} 24$ $\alpha(P)=1.191\times10^{-7} 17$ B(E2)(W.u.)=9.8 +23-19
2485.13	2+	935 <i>f</i> 1	18 ^f 16	1550.987 2+				
		1666.57 5	100 5	818.522 2+	M1+E2	+0.24 4	9.30×10 ⁻⁴ <i>14</i>	$\alpha(K)=0.000680 \ 10; \ \alpha(L)=8.44\times10^{-5} \ 13;$ $\alpha(M)=1.727\times10^{-5} \ 25; \ \alpha(N)=3.73\times10^{-6} \ 6;$ $\alpha(O)=5.75\times10^{-7} \ 9$ $\alpha(P)=4.32\times10^{-8} \ 7$ B(E2)(W.u.)=0.24 \ 10; B(M1)(W.u.)=0.019 \ 5
		2485.02 <i>14</i>	42 3	0.0 0+	E2		8.38×10 ⁻⁴	$\alpha(K)=0.000269 \ 4; \ \alpha(L)=3.29\times10^{-5} \ 5;$ $\alpha(M)=6.73\times10^{-6} \ 10; \ \alpha(N)=1.453\times10^{-6} \ 21;$ $\alpha(O)=2.24\times10^{-7} \ 4$ $\alpha(P)=1.674\times10^{-8} \ 24$
2532.653	3-	981.65 2	64 3	1550.987 2+	E1+M2	+0.11 2	0.00086 3	$\alpha(K)$ =0.00074 3; $\alpha(L)$ =9.2×10 ⁻⁵ 4; $\alpha(M)$ =1.88×10 ⁻⁵ 7; $\alpha(N)$ =4.04×10 ⁻⁶ 15; $\alpha(O)$ =6.20×10 ⁻⁷ 23 $\alpha(P)$ =4.56×10 ⁻⁸ 17 B(E1)(W.u.)=0.0014 2
		1714.20 6	100 6	818.522 2+	E1+M2	+0.010 8	6.77×10 ⁻⁴	$\alpha(K)=0.000257 \ 4; \ \alpha(L)=3.11\times10^{-5} \ 5;$ $\alpha(M)=6.34\times10^{-6} \ 9; \ \alpha(N)=1.367\times10^{-6} \ 20;$ $\alpha(O)=2.10\times10^{-7} \ 3$ $\alpha(P)=1.572\times10^{-8} \ 22$ $B(E1)(W.u.)=4.0\times10^{-4} \ 5; \ B(M2)(W.u.)=0.064 \ 7$
2544.481	4+	993.49 2	100	1550.987 2+	E2		0.00184	B(E1)(W.u.)=4.0×10 ⁻¹ 3; B(M2)(W.u.)=0.004 ⁻⁷ α (K)=0.001576 22; α (L)=0.000207 3; α (M)=4.26×10 ⁻⁵ 6; α (N)=9.15×10 ⁻⁶ 13 α (O)=1.391×10 ⁻⁶ 20; α (P)=9.77×10 ⁻⁸ 14 B(E2)(W.u.)=32 +20-18 Mult.: Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ), M2 excluded by comparison to RUL.
2587.08	(5)+	720.47 2	100	1866.611 4+	M1+E2	-0.14 2	0.00537	$\alpha(K)$ =0.00463 7; $\alpha(L)$ =0.000589 9; $\alpha(M)$ =0.0001208 17; $\alpha(N)$ =2.61×10 ⁻⁵ 4; $\alpha(O)$ =4.01×10 ⁻⁶ 6 $\alpha(P)$ =2.98×10 ⁻⁷ 5 B(E2)(W.u.)<2; B(M1)(W.u.)<0.07
2640.80 2659.65	(1^+) $(3,4,5)^+$	1822.26 <i>4</i> 793.04 <i>5</i>	100 100	818.522 2 ⁺ 1866.611 4 ⁺	D+Q M1+E2	0.1 +50-1 -0.08 2	0.00429	$\alpha(K)$ =0.00370 6; $\alpha(L)$ =0.000469 7; $\alpha(M)$ =9.61×10 ⁻⁵ 14; $\alpha(N)$ =2.08×10 ⁻⁵ 3; $\alpha(O)$ =3.19×10 ⁻⁶ 5 $\alpha(P)$ =2.38×10 ⁻⁷ 4
2661.48	1,2+	1110.50 5		1550.987 2+				

$\gamma(\frac{136}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α	Comments
2661.48	1,2+	1842.89 <i>10</i> 2661.7 <i>6</i>	100 <i>5</i> 5.1 <i>8</i>	818.522 2 ⁺ 0.0 0 ⁺	D+Q	+0.7 3		
2693.89	1	1875.29 <i>7</i> 2693.92 <i>7</i>	18 8 100 8	818.522 2 ⁺ 0.0 0 ⁺	D+Q D	-0.8 +34-7		
2694.43? 2773.66	5 ⁺	487.17 8	72 5	2207.147 6 ⁺	M1+E2 ^c		0.0123 18	$\alpha(K)$ =0.0105 16; $\alpha(L)$ =0.00145 11; $\alpha(M)$ =0.000300 20; $\alpha(N)$ =6.5×10 ⁻⁵ 5; $\alpha(O)$ =9.7×10 ⁻⁶ 9 $\alpha(P)$ =6.6×10 ⁻⁷ 13 I_{γ} : from relative photon branchings for transitions from
		640.57 4	100 5	2053.892 4+	M1+E2	-0.33 2	0.00696	the 2694.4 level in $(n,n'\gamma)$ from 2008Mu19. $\alpha(K)=0.00599$ 9; $\alpha(L)=0.000771$ 11; $\alpha(M)=0.0001583$ 23; $\alpha(N)=3.42\times10^{-5}$ 5; $\alpha(O)=5.24\times10^{-6}$ 8 $\alpha(P)=3.85\times10^{-7}$ 6
	2+	1222.2 6	28 3	1550.987 2 ⁺				
		1955.03 8	100 5	818.522 2+	M1+E2 ^c	+0.65 25	8.17×10 ⁻⁴ 19	$\alpha(K)=0.000466\ 14;\ \alpha(L)=5.76\times10^{-5}\ 17;$ $\alpha(M)=1.18\times10^{-5}\ 4;\ \alpha(N)=2.54\times10^{-6}\ 8;$ $\alpha(O)=3.92\times10^{-7}\ 12$ $\alpha(P)=2.94\times10^{-8}\ 10$ $\alpha(E_2)(W.u.)=0.5\ 3;\ \beta(M1)(W.u.)=0.0066\ +22-28$
		2773.66 4	45 3	0.0 0+	E2		9.16×10 ⁻⁴	$\alpha(K)$ =0.000222 4; $\alpha(L)$ =2.71×10 ⁻⁵ 4; $\alpha(M)$ =5.53×10 ⁻⁶ 8; $\alpha(N)$ =1.194×10 ⁻⁶ 17; $\alpha(O)$ =1.84×10 ⁻⁷ 3 $\alpha(P)$ =1.381×10 ⁻⁸ 20 B(E2)(W.u.)=0.12 +3-3 Mult.: Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ); M2 excluded by comparison to RUL. I γ : from 1994A117 in (n,n' γ). In 2008Mu19, also (n,n' γ) the branching ratio I γ (2773 γ):I γ (1955 γ) is given as 78 10: 22 10, and no observation of 1222 γ is reported.
2779.99	2+	1229.14 10	59 4	1550.987 2+	M1+E2 ^c		0.00138 20	$\alpha(K)$ =0.00118 17; $\alpha(L)$ =0.000149 20; $\alpha(M)$ =3.1×10 ⁻⁵ 4; $\alpha(N)$ =6.6×10 ⁻⁶ 9; $\alpha(O)$ =1.01×10 ⁻⁶ 14 $\alpha(P)$ =7.4×10 ⁻⁸ 12
		1961.40 <i>6</i>	100 4	818.522 2+	M1+E2 ^c		0.00080 5	$\alpha(K)$ =0.00045 4; $\alpha(L)$ =5.5×10 ⁻⁵ 5; $\alpha(M)$ =1.13×10 ⁻⁵ 10; $\alpha(N)$ =2.45×10 ⁻⁶ 20; $\alpha(O)$ =3.8×10 ⁻⁷ 4 $\alpha(P)$ =2.8×10 ⁻⁸ 3
		2779.5 7	21 3	0.0 0+	E2		9.18×10 ⁻⁴	$\alpha(K)$ =0.000221 4; $\alpha(L)$ =2.70×10 ⁻⁵ 4; $\alpha(M)$ =5.51×10 ⁻⁶ 8; $\alpha(N)$ =1.189×10 ⁻⁶ 17; $\alpha(O)$ =1.83×10 ⁻⁷ 3 $\alpha(P)$ =1.376×10 ⁻⁸ 20 B(E2)(W.u.)=0.034 +22-19 Mult.: Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ); M2 excluded by comparison to RUL.
2784.44?	0+	1965.88 <i>6</i>	100	818.522 2+	E2		7.53×10 ⁻⁴	$\alpha(K) = 0.000410 \ 6; \ \alpha(L) = 5.07 \times 10^{-5} \ 8; \ \alpha(M) = 1.038 \times 10^{-5}$ $15; \ \alpha(N) = 2.24 \times 10^{-6} \ 4; \ \alpha(O) = 3.44 \times 10^{-7} \ 5$

$\gamma(^{136}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f = \mathbf{J}_j^{r}$. Mult.‡	α	Comments
							$\alpha(P)=2.55\times10^{-8}$ 4 B(E2)(W.u.)=11 +6-4 Mult.: Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ); M2 excluded by comparison to RUL.
2812.02	(3+)	1993.48 7	100	818.522 2	(M1+E2)	0.00080 5	$\alpha(K)=0.00043\ 4;\ \alpha(L)=5.4\times10^{-5}\ 5;\ \alpha(M)=1.10\times10^{-5}\ 9;\ \alpha(N)=2.37\times10^{-6}\ 19;\ \alpha(O)=3.6\times10^{-7}\ 3$ $\alpha(P)=2.73\times10^{-8}\ 25$ Mult.: D+Q from $\gamma(\theta)$ in 136 Ba(n,n' γ); nonzero value of δ excludes E1+M2. δ : $-2.0\ 2$ or $-0.26\ 4$ (1994A117); 2 I or $0.3\ I$ (2008Mu19), both
2020.10	(2.2.4±)	207.42.12	100 6	2522 (52 25	_		from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ).
2820.18	$(2,3,4^+)$	287.42 <i>12</i> 389.5 <i>2</i>	100 <i>6</i> 25 <i>4</i>	2532.653 3 ⁻² 2430.936 3 ⁻³			
		740.1 3	19 3	2080.13 2			
2840.74	(4+)	974.10 <i>15</i>	69 5	1866.611 4 ⁻		0.0023 4	$\alpha(K)$ =0.0020 4; $\alpha(L)$ =0.00025 4; $\alpha(M)$ =5.2×10 ⁻⁵ 8; $\alpha(N)$ =1.12×10 ⁻⁵ 16; $\alpha(O)$ =1.7×10 ⁻⁶ 3 $\alpha(P)$ =1.24×10 ⁻⁷ 23
		2022.22 14	100 5	818.522 2	(E2)	7.56×10 ⁻⁴	I _γ : from branching ratio measurements in (n,n'γ) (2008Mu19). $\alpha(K)$ =0.000390 6 ; $\alpha(L)$ =4.81×10 ⁻⁵ 7 ; $\alpha(M)$ =9.84×10 ⁻⁶ 14 ; $\alpha(N)$ =2.12×10 ⁻⁶ 3 ; $\alpha(O)$ =3.26×10 ⁻⁷ 5 $\alpha(P)$ =2.42×10 ⁻⁸ 4 Mult.: Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n'γ); $\Delta\pi$ =no from level scheme.
2935.1?	$(1,2^+)$	2935.1 ⁸ 9	100	$0.0 - 0^{-1}$			
2977.67		2159.13 <i>18</i>		818.522 2			
2007.01	(2+ 2+ 4+)	2976.7 6	100 4	0.0			E_{γ} : from (γ, γ') , (pol γ, γ').
2985.01	$(2^+,3^+,4^+)$	1118.40 6	100 4	1866.611 4			
2004.10	8(+)	2166.3 <i>3</i> 787.1 ^{&} 2	62 5 100 & 4	818.522 2 ⁻² 2207.147 6 ⁻³			
2994.19	8(1)		24 ^{&} 3				130- (82
2022 10	(1.2±)	963.6 <mark>&</mark> 2 1441.9 ^e 10	100 ^e 6	2030.535 7 ⁻¹ 1578.969 0 ⁻¹			I_{γ} : other: 9.4 12 in ¹³⁹ La(⁸² Se,X γ).
3022.10	$(1,2^+)$	1441.9° 10 1469.0° 10	100 0	1578.969 0 1550.987 2			
		2203.60 8	100 6	818.522 2			E_{γ} : other: 2201.4 4 in (n,γ) E=thermal.
		3021.9 9	10 2	0.0 0			Dy. other. 2201.17 in (ii,y) E thermal.
3044.54	1 ⁽⁻⁾	1494.1 6	29 4	1550.987 2	+		
		2224.8 ^{eg} 20		818.522 2			E_{γ} : tentative placement as transition only observed in 135 Ba(n, γ), E=thermal.
		3044.48 5	100 6	0.0	D^a		
3077.35	3+	948.62 <i>14</i>	31 6	2128.869 2	M1+E2 ^c	0.0024 4	$\alpha(K)=0.0021$ 4; $\alpha(L)=0.00027$ 4; $\alpha(M)=5.5\times10^{-5}$ 8; $\alpha(N)=1.19\times10^{-5}$ 17; $\alpha(O)=1.8\times10^{-6}$ 3 $\alpha(P)=1.32\times10^{-7}$ 25 I_{γ} : from branching ratio measurements in $(n,n'\gamma)$ (2008Mu19). δ : 0.3 +5-3 or 6.9 +10-50 from $\gamma(\theta)$ in 136 Ba $(n,n'\gamma)$.

γ (136Ba) (continued)

						, , , , ,	-	
$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	α	Comments
3077.35	3+	1210.70 6	77 8	1866.611 4+	M1+E2 ^c		0.00142 21	$\alpha(K)=0.00122\ 18;\ \alpha(L)=0.000154\ 21;\ \alpha(M)=3.2\times10^{-5}$ 5; $\alpha(N)=6.8\times10^{-6}\ 9;\ \alpha(O)=1.04\times10^{-6}\ 15$ $\alpha(P)=7.7\times10^{-8}\ 13$ I_{γ} : from branching ratio measurements in $(n,n'\gamma)$ (2008Mu19).
		2258.76 9	100 11	818.522 2+	M1+E2	-4.5 +16-10	7.91×10 ⁻⁴ <i>12</i>	δ: 0.2 2 or 12 +1-8 from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ). $\alpha(K)$ =0.000321 θ ; $\alpha(L)$ =3.94×10 ⁻⁵ 7; $\alpha(M)$ =8.06×10 ⁻⁶ 13 ; $\alpha(N)$ =1.74×10 ⁻⁶ 3 ; $\alpha(O)$ =2.68×10 ⁻⁷ 5 $\alpha(P)$ =2.00×10 ⁻⁸ 4 B(E2)(W.u.)=1.0 5 I_{γ} : from branching ratio measurements in (n,n' γ) (2008Mu19). Mult.: D+Q from $\gamma(\theta)$ in ¹³⁶ Ba(n,n' γ), large, non-zero
3109.59	2+	2291.13 <i>12</i>	22 6	818.522 2+	M1+E2 ^c		0.00082 4	value of delta and RUL exclude E1+M2. $\alpha(K)$ =0.000330 20; $\alpha(L)$ =4.06×10 ⁻⁵ 25; $\alpha(M)$ =8.3×10 ⁻⁶ 5; $\alpha(N)$ =1.79×10 ⁻⁶ 11; $\alpha(O)$ =2.76×10 ⁻⁷ 18 $\alpha(P)$ =2.07×10 ⁻⁸ 15 I _{γ} : from branching ratio measurements in (n,n' γ) (2008Mu19).
		3109.43 14	100 16	0.0 0+	E2		1.02×10^{-3}	δ: +4 +4-1 or -0.13 14 (1994Al17); 3 +6-1 or 0.04 +25-20 (2008Mu19), both from $\gamma(\theta)$ in 136 Ba(n,n' γ). $\alpha(K)$ =0.000183 3; $\alpha(L)$ =2.22×10 ⁻⁵ 4; $\alpha(M)$ =4.52×10 ⁻⁶ 7; $\alpha(N)$ =9.77×10 ⁻⁷ 14; $\alpha(O)$ =1.505×10 ⁻⁷ 21 $\alpha(P)$ =1.134×10 ⁻⁸ 16 B(E2)(W.u.)=0.14 +5-5 I _γ : from branching ratio measurements in (n,n' γ) (2008Mu19). Mult.: Q from $\gamma(\theta)$ in 136 Ba(n,n' γ); M2 excluded by
3116.08	2+	2297.4 <i>4</i> 3116.04 <i>6</i>	2.0 <i>16</i> 100 <i>7</i>	818.522 2 ⁺ 0.0 0 ⁺	E2		1.02×10 ⁻³	comparison to RUL. $\alpha(K) = 0.000182 \ 3; \ \alpha(L) = 2.21 \times 10^{-5} \ 3; \ \alpha(M) = 4.51 \times 10^{-6} $ 7; $\alpha(N) = 9.73 \times 10^{-7} \ 14; \ \alpha(O) = 1.499 \times 10^{-7} \ 21$ $\alpha(P) = 1.130 \times 10^{-8} \ 16$ B(E2)(W.u.) = 0.45 \ 11 Mult.: Q from $\gamma(\theta)$ in 136 Ba(n,n' γ); M2 excluded by
3241.89 3335.6 3354.5		1690.6 ^g 3 2423.34 13 2517.1 3 2536.0 3	69 5 100 8 100 100	1550.987 2 ⁺ 818.522 2 ⁺ 818.522 2 ⁺ 818.522 2 ⁺				comparison to RUL.

$\gamma(\frac{136}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	α	Comments
3357.19	10 ⁽⁺⁾	363.0 ^{&} 2	100	2994.19	8(+)	E2	0.0250	$\alpha(K)$ =0.0206 3; $\alpha(L)$ =0.00345 5; $\alpha(M)$ =0.000724 11; $\alpha(N)$ =0.0001539 22; $\alpha(O)$ =2.24×10 ⁻⁵ 4 $\alpha(P)$ =1.199×10 ⁻⁶ 17 B(E2)(W.u.)=0.0232 6 Mult.: Q from R(DCO) in 139 La(82 Se,X γ), M2 excluded by comparison to RUL.
3370.07	1	3370.03 21	100	0.0	0^{+}	D <mark>a</mark>		tompulson to 10021
3435.0	1-	3435.0 1	100	0.0	0+	E1 ^a	1.52×10 ⁻³	$\alpha(K)=9.00\times10^{-5}$ 13; $\alpha(L)=1.073\times10^{-5}$ 15; $\alpha(M)=2.19\times10^{-6}$ 3; $\alpha(N)=4.72\times10^{-7}$ 7; $\alpha(O)=7.27\times10^{-8}$ 11 $\alpha(P)=5.50\times10^{-9}$ 8 B(E1)(W.u.)=0.00105 20 E _{γ} : from (γ,γ') ,(pol γ,γ').
3505.5 3508.7	$0^{(+)},1,2,3^+$ (4^+)	1955.19 <i>17</i> 1428.7 <i>4</i> 2690.1 <i>4</i>	100 64 <i>10</i> 100 <i>9</i>	1550.987 2080.13 818.522	2+			E _y : from 135 Ba(n, γ) E=thermal.
3526.7	2+	2709.0 8	68 10	818.522				
		3526.4 <i>4</i>	100 11	0.0	0^{+}	Q		
3550.70?		1999.7 ⁸ 2	100	1550.987	2+			E_{γ} : multiply placed in $^{136}Ba(n,n'\gamma)$ as from the 3551-keV level or a 3866-keV level.
3691.92	1 to 3	2873.36 ^e 13	100	818.522				
3706.1	$(1,2^+)$	3706.0 <i>6</i>	100	0.0	0+			440
3706.4		349.2 2	100	3357.19	$10^{(+)}$			E_{γ} : from ¹³⁹ La(⁸² Se,X γ).
3768.9	$1^{(-)},2,3^+$	747.3 ^e 3	85 ^e 30	3022.10	$(1,2^+)$			
		1234.9 ^e	≤100 <i>e</i>	2532.653				
3795.34	$(1,2^+)$	2244.8 <i>4</i>	25 8	1550.987				
		2976.5 4	100 <i>11</i> 3 ^e 1	818.522				E (1 1: 136p (/)
2050 40		3795.24 ^e 18 144 ^{&} 8		0.0	0^+			E_{γ} : not observed in 136 Ba(n,n' γ).
3850.4?	(1.2+)		100&	3706.4	0+			
3852.7? 3863.47	$(1,2^+)$	3852.6 ^g 6 3863.41 ^e 23	100 100	0.0	0 ⁺			
3881.17?	$(1,2^+)$ $(1,2^+)$	3064.3 <i>4</i>	100	818.522				
3001.17.	(1,2)	3881.0 ^d 1		0.0	0 ⁺			
3925.6		157.8 ^{eg} 5	100 ^e 19	3768.9	$1^{(-)},2,3^+$			
3923.0		880.3 ^e 3	22 ^e 8	3044.54	1(-)			
		1798.4 ^e 7	44 ^e 19	2128.869				
3962.9		3144.3 8	100	818.522				
3965.51	$(1,2^+)$	3965.28 ^e 6	100	0.0	0+			
3979.76	(1)	3979.7 ^d 2	100	0.0	0+	(D) <i>a</i>		
3992.56	$0^{(+)},1,2,3^{+}$	2441.55 ^e 19	100	1550.987		(D)		
4008.6	1,2+	2429.6 ^e 3	100	1578.969				
4137.07	1,2	4137.0^{d} 1	100	0.0	0+	D^a		
1137.07	1	1157.0 1	100	0.0	9	D		

$\gamma(\frac{136}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	α	Comments
4214.9		508.9 1	100	3706.4				E_{γ} : from ¹³⁹ La(⁸² Se,X γ).
4231.17	1	4231.1 ^d 2	100	0.0	0_{+}	D^a		
4366.78	1	4366.7 ^d 2	100	0.0	0_{+}	D^a		
4413.28	(1)	4413.2 ^d 1	100	0.0	0_{+}	(D) <mark>a</mark>		
4475.18	(1)	4475.1 ^d 1	100	0.0	0_{+}	(D) <mark>a</mark>		
4536.4	1	4536.3 ^d 3	100	0.0	0_{+}	D^a		
4601.08	(1)	4601.0 ^d 2	100	0.0	0_{+}	(D) ^{<i>a</i>}		
4623.7	1-	4623.6 ^d 3	100	0.0	0+	E1 ^a	0.00195	$\alpha(K)=6.00\times10^{-5}$ 9; $\alpha(L)=7.13\times10^{-6}$ 10; $\alpha(M)=1.451\times10^{-6}$ 21; $\alpha(N)=3.13\times10^{-7}$ 5; $\alpha(O)=4.83\times10^{-8}$ 7 $\alpha(P)=3.66\times10^{-9}$ 6
4639.7	1-	4639.6 ^d 10	100	0.0	0+	E1 ^a	0.00196	$\alpha(K)=5.97\times10^{-5}$ 9; $\alpha(L)=7.10\times10^{-6}$ 10; $\alpha(M)=1.445\times10^{-6}$ 21; $\alpha(N)=3.12\times10^{-7}$ 5; $\alpha(O)=4.81\times10^{-8}$ 7 $\alpha(P)=3.64\times10^{-9}$ 6
4697.79	1-	4697.7 ^d 1	100	0.0	0+	E1 ^a	0.00198	$\alpha(K)=5.87\times10^{-5} 9$; $\alpha(L)=6.98\times10^{-6} 10$; $\alpha(M)=1.421\times10^{-6} 20$; $\alpha(N)=3.07\times10^{-7} 5$; $\alpha(O)=4.73\times10^{-8} 7$ $\alpha(P)=3.58\times10^{-9} 5$
4767.69	1-	4767.6 ^d 1	100	0.0	0+	E1 ^a	0.00200	$\alpha(K)=5.76\times10^{-5} \ 8; \ \alpha(L)=6.84\times10^{-6} \ 10; \ \alpha(M)=1.393\times10^{-6} \ 20; \ \alpha(N)=3.01\times10^{-7} \ 5; \ \alpha(O)=4.64\times10^{-8} \ 7 \ \alpha(P)=3.51\times10^{-9} \ 5$
4814.09	1	4814.0 ^d 1	100	0.0	0^{+}	D^a		
4833.3		4833.2 ^d 5	100	0.0	0^{+}			
4897.8	1	4897.7 ^d 16	100	0.0	0_{+}	D^a		
4985.0	1-	4984.9 ^d 6	100	0.0	0+	E1 ^a	0.00206	$\alpha(K)=5.43\times10^{-5} 8$; $\alpha(L)=6.45\times10^{-6} 9$; $\alpha(M)=1.313\times10^{-6} 19$; $\alpha(N)=2.83\times10^{-7} 4$; $\alpha(O)=4.37\times10^{-8} 7$ $\alpha(P)=3.31\times10^{-9} 5$
5040	1-	5039.5 ^d 29	100	0.0	0+	E1 ^a	0.00208	$\alpha(K)=5.35\times10^{-5} 8$; $\alpha(L)=6.36\times10^{-6} 9$; $\alpha(M)=1.294\times10^{-6} 19$; $\alpha(N)=2.79\times10^{-7} 4$; $\alpha(O)=4.31\times10^{-8} 6$ $\alpha(P)=3.27\times10^{-9} 5$
5060.80	1-	5060.7 ^d 2	100	0.0	0+	E1 ^a	0.00208	$\alpha(K)=5.32\times10^{-5} 8$; $\alpha(L)=6.32\times10^{-6} 9$; $\alpha(M)=1.287\times10^{-6} 18$; $\alpha(N)=2.78\times10^{-7} 4$; $\alpha(O)=4.28\times10^{-8} 6$ $\alpha(P)=3.25\times10^{-9} 5$
5065		849 <mark>&</mark> 1215 &	100 ^{&} 5 75 ^{&} 7	4214.9 3850.4?				
5076.9	1-	5076.8 ^d 8	100	0.0	0+	E1 ^a	0.00209	$\alpha(K)=5.30\times10^{-5} 8$; $\alpha(L)=6.30\times10^{-6} 9$; $\alpha(M)=1.282\times10^{-6} 18$; $\alpha(N)=2.77\times10^{-7} 4$; $\alpha(O)=4.27\times10^{-8} 6$ $\alpha(P)=3.23\times10^{-9} 5$
5094.5	1-	5094.4 ^d 7	100	0.0	0+	E1 ^a	0.00209	$\alpha(K) = 5.28 \times 10^{-5} 8$; $\alpha(L) = 6.27 \times 10^{-6} 9$; $\alpha(M) = 1.276 \times 10^{-6} 18$; $\alpha(N) = 2.75 \times 10^{-7} 4$;
>	-	/	-00	0.0	~		3.00-07	2, 3(2) 3, 3(2) 12, 3, 3 (2) 1, 3 (2) 2, 3 (2) 2, 3 (2) 3,

$\gamma(\frac{136}{\text{Ba}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	α	Comments
							$\alpha(O)=4.25\times10^{-8} \ 6$ $\alpha(P)=3.22\times10^{-9} \ 5$
5135.2	1-	5135.1 ^d 3	100	0.0 0+	E1 ^a	0.00211	$\alpha(K)=5.22\times10^{-5}$ 8; $\alpha(L)=6.20\times10^{-6}$ 9; $\alpha(M)=1.262\times10^{-6}$ 18; $\alpha(N)=2.73\times10^{-7}$ 4; $\alpha(O)=4.20\times10^{-8}$ 6 $\alpha(P)=3.19\times10^{-9}$ 5
5216.31	(1)	5216.2 ^d 2	100	$0.0 0^{+}$	(D) <mark>a</mark>		
5268.4	(1)	5268.3 ^d 7	100	$0.0 0^{+}$	(D) ^a		
5294.31	1	5294.2 ^d 1	100	$0.0 0^{+}$	\mathbf{D}^{a}		
5337.81	1	5337.7 ^d 2	100	$0.0 0^{+}$	D^a		
5380		1164 <mark>&</mark>	100 <mark>&</mark>	4214.9			
5393		328 <mark>&</mark>	100 <mark>&</mark>	5065			
5396.5	(1)	5396.4 ^d 7	100	$0.0 \ 0^{+}$	(D) <mark>a</mark>		
5418.4	(1)	5418.3 ^d 5	100	$0.0 \ 0^{+}$	(D) <mark>a</mark>		
5431.5	1	5431.4 ^d 10	100	$0.0 0^{+}$	D^a		
5444.42	(1)	5444.3 ^d 1	100	$0.0 0^{+}$	(D) ^{<i>a</i>}		
5497.6	1-	5497.5 ^d 7	100	0.0 0+	E1 ^a	0.00221	$\alpha(K)=4.78\times10^{-5}$ 7; $\alpha(L)=5.67\times10^{-6}$ 8; $\alpha(M)=1.155\times10^{-6}$ 17; $\alpha(N)=2.49\times10^{-7}$ 4; $\alpha(O)=3.84\times10^{-8}$ 6 $\alpha(P)=2.92\times10^{-9}$ 4
5561.1	1-	5561.0 ^d 3	100	0.0 0+	E1 ^a	0.00223	$\alpha(K) = 4.71 \times 10^{-5} \ 7$; $\alpha(L) = 5.59 \times 10^{-6} \ 8$; $\alpha(M) = 1.138 \times 10^{-6} \ 16$; $\alpha(N) = 2.46 \times 10^{-7} \ 4$; $\alpha(O) = 3.79 \times 10^{-8} \ 6$ $\alpha(P) = 2.87 \times 10^{-9} \ 4$
5585.6	1-	5585.5 ^d 7	100	0.0 0+	E1 ^a	0.00224	$\alpha(K)=4.68\times10^{-5} \ 7; \ \alpha(L)=5.56\times10^{-6} \ 8; \ \alpha(M)=1.131\times10^{-6} \ 16; \ \alpha(N)=2.44\times10^{-7} \ 4; \ \alpha(O)=3.76\times10^{-8} \ 6 \ \alpha(P)=2.86\times10^{-9} \ 4$
5601.22	1-	5601.1 ^d I	100	0.0 0+	E1 ^a	0.00224	$\alpha(K)=4.67\times10^{-5} \ 7; \ \alpha(L)=5.54\times10^{-6} \ 8; \ \alpha(M)=1.127\times10^{-6} \ 16; \ \alpha(N)=2.43\times10^{-7} \ 4; \ \alpha(O)=3.75\times10^{-8} \ 6 \ \alpha(P)=2.85\times10^{-9} \ 4$
5610.0	1-	5609.9 ^d 6	100	0.0 0+	E1 ^a	0.00224	$\alpha(K)$ =4.66×10 ⁻⁵ 7; $\alpha(L)$ =5.53×10 ⁻⁶ 8; $\alpha(M)$ =1.125×10 ⁻⁶ 16; $\alpha(N)$ =2.43×10 ⁻⁷ 4; $\alpha(O)$ =3.74×10 ⁻⁸ 6 $\alpha(P)$ =2.84×10 ⁻⁹ 4
5647.9	1-	5647.8 ^d 13	100	0.0 0+	E1 ^a	0.00225	$\alpha(K)$ =4.62×10 ⁻⁵ 7; $\alpha(L)$ =5.48×10 ⁻⁶ 8; $\alpha(M)$ =1.115×10 ⁻⁶ 16; $\alpha(N)$ =2.41×10 ⁻⁷ 4; $\alpha(O)$ =3.71×10 ⁻⁸ 6 $\alpha(P)$ =2.82×10 ⁻⁹ 4
5652.2	1-	5652.1 ^d 10	100	0.0 0+	E1 ^a	0.00225	$\alpha(K)=4.61\times10^{-5}$ 7; $\alpha(L)=5.47\times10^{-6}$ 8; $\alpha(M)=1.114\times10^{-6}$ 16; $\alpha(N)=2.40\times10^{-7}$ 4; $\alpha(O)=3.71\times10^{-8}$ 6 $\alpha(P)=2.81\times10^{-9}$ 4
5718	(1)	5718 d 3	100	0.0 0+	(D) <mark>a</mark>		

$\gamma(\frac{136}{\text{Ba}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	α	Comments
5735.0		5734.9 ^d 7	100	$0.0 0^{+}$			
5768.0	1	5767.9 ^d 4	100	$0.0 \ 0^{+}$			
5781.7	1	5781.6 ^d 9	100	$0.0 0^{+}$	D^a		
5805.13	1	5805.0 ^d 1	100	$0.0 0^{+}$	D^a		
5924.2	1	5924.1 ^d 6	100	$0.0 0^{+}$	D^a		
5965.8	1-	5965.7 ^d 4	100	0.0 0+	E1 ^a	0.00234	$\alpha(K)=4.31\times10^{-5}$ 6; $\alpha(L)=5.10\times10^{-6}$ 8; $\alpha(M)=1.039\times10^{-6}$ 15; $\alpha(N)=2.24\times10^{-7}$ 4; $\alpha(O)=3.46\times10^{-8}$ 5 $\alpha(P)=2.62\times10^{-9}$ 4
5979.24	1-	5979.1 ^d 2	100	0.0 0+	E1 ^a	0.00234	$\alpha(K) = 4.29 \times 10^{-5} 6$; $\alpha(L) = 5.09 \times 10^{-6} 8$; $\alpha(M) = 1.036 \times 10^{-6} 15$; $\alpha(N) = 2.24 \times 10^{-7} 4$; $\alpha(O) = 3.45 \times 10^{-8} 5$ $\alpha(P) = 2.62 \times 10^{-9} 4$
6005.04	1-	6004.9 ^d 1	100	$0.0 0^{+}$	E1 ^a		
6035.74	1-	6035.6 ^d 1	100	$0.0 0^{+}$	E1 ^a		
6052.94	1-	6052.8 ^d 2	100	$0.0 0^{+}$	E1 <i>a</i>		
6061.44	1-	6061.3 ^d 1	100	$0.0 0^{+}$	E1 ^a		
6082.55	1-	6082.4 ^d 1	100	$0.0 0^{+}$	E1 ^a		
6113.35	1-	6113.2 ^d 2	100	$0.0 0^{+}$	E1 ^a		
6161.25	1-	6161.1 ^d 2	100	$0.0 0^{+}$	E1 ^a		
6182.35	1-	6182.2 ^d 2	100	$0.0 \ 0^{+}$	E1 a		
6192.8	(1)	6192.6 ^d 8	100	$0.0 0^{+}$	(D) ^{<i>a</i>}		
6215.7	(1)	$6215.5\frac{d}{5}$	100	$0.0 0^{+}$	(D) ^{<i>a</i>}		
6231.6	(1)	6231.4 ^d 4	100	$0.0 0^{+}$	(D) ^a		
6244.2	(1)	6244.0 ^d 8	100	0.0 0+	(D) ^a		
6264.75	(1)	6264.6 ^d 2	100	0.0 0+	$(D)^a$		
6289.2	(1)	6289.0^{d} 7	100	$0.0 \ 0^{+}$	(D) ^a		
6331.9	1-	6331.7 ^d 4	100	$0.0 \ 0^{+}$	E1 ^a		
6344.4	1-	6344.2 ^d 7 6358.0 ^d 7	100	$0.0 \ 0^{+}$	E1 ^a		
6358.2	1 ⁻ 1 ⁻	6358.0 ^d / 6373.4 ^d 8	100	$0.0 \ 0^{+}$	E1 ^a E1 ^a		
6373.6	_	63/3.4 ^d 8 6391.1 ^d 16	100	$0.0 0^{+} \\ 0.0 0^{+}$	El ^a		
6391.3 6409.9	1 ⁻ 1 ⁻	6391.1 ^d 16 6409.7 ^d 19	100 100	$0.0 \ 0^{+}$ $0.0 \ 0^{+}$	E1 ^a		
6409.9	1 1-	6409.7 ^d 19 6430.4 ^d 11	100	$0.0 \ 0^{+}$	E1 ^a		
6449.46	1 1-	6449.3 ^d 2	100	0.0 0+	E1 ^a		
6478.17	1-	6478.0 ^d 1	100	0.0 0+	E1 ^a		
6488.67	1 1-	6488.5 ^d 1	100	0.0 0 $0.0 0^+$	E1 ^a		
0400.07	1	0400.3	100	0.0	Ľ1		

$\gamma(^{136}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡
6528.8	1-	6528.6 ^d 11	100	$0.0 0^{+}$	E1 ^a	7414.9	1-	7414.7 ^d 13	100	$0.0 0^{+}$	E1 <i>a</i>
6554.3	1-	6554.1 ^d 8	100	$0.0 0^{+}$	E1 ^a	7444.4	1-	7444.2 ^d 3	100	$0.0 0^{+}$	E1 ^a
6591.8	1-	6591.6 ^d 3	100	$0.0 0^{+}$	E1 ^a	7472.52	1-	7472.3 ^d 1	100	$0.0 0^{+}$	E1 ^a
6625.27	1-	6625.1 ^d 1	100	$0.0 0^{+}$	E1 ^a	7487.5	1-	7487.3 ^d 4	100	$0.0 0^{+}$	E1 ^a
6677.3	1	6677.1 ^d 3	100	$0.0 0^{+}$	D^a	7502.8	1-	7502.6 ^d 3	100	$0.0 0^{+}$	E1 ^a
6693.38	1	6693.2 ^d 1	100	$0.0 0^{+}$	D^a	7519.2	1-	7519.0 ^d 10	100	$0.0 0^{+}$	E1 ^a
6716.8	1	6716.6 ^d 3	100	$0.0 0^{+}$	D^a	7541.0	1-	7540.8 ^d 6	100	$0.0 0^{+}$	E1 ^a
6741.9	1-	6741.7 d 3	100	$0.0 0^{+}$	E1 ^a	7558.1	1-	7557.9 <mark>d</mark> 7	100	$0.0 0^{+}$	E1 <i>a</i>
6756.58	1-	6756.4 ^d 2	100	$0.0 0^{+}$	E1 ^a	7572.13	1-	7571.9 ^d 1	100	$0.0 0^{+}$	E1 <i>a</i>
6767.78	1-	6767.6 ^d 1	100	$0.0 0^{+}$	E1 ^a	7583.5	1-	7583.3 ^d 8	100	$0.0 0^{+}$	E1 ^a
6776.78	1-	6776.6 ^d 1	100	$0.0 0^{+}$	E1 ^a	7594.8	1-	7594.6 ^d 5	100	$0.0 0^{+}$	E1 ^a
6788.38	1-	6788.2 ^d 2	100	$0.0 0^{+}$	E1 ^a	7604.2	1	7604.0 <mark>d</mark> 8	100	$0.0 0^{+}$	D^a
6830.8	1-	6830.6 ^d 7	100	$0.0 0^{+}$	E1 ^a	7625.7	1	7625.5 ^d 4	100	$0.0 0^{+}$	D^a
6840.3	1-	6840.1 ^d 8	100	$0.0 0^{+}$	E1 ^a	7662.33	1	7662.1 ^d 2	100	$0.0 0^{+}$	D^a
6847.5	1-	6847.3 ^d 11	100	$0.0 0^{+}$	E1 ^a	7675.63	1	7675.4 <mark>d</mark> 2	100	$0.0 0^{+}$	D^a
6859.2	1-	6859.0 ^d 8	100	$0.0 0^{+}$	E1 ^a	7699.0	1	7698.8 <mark>d</mark> 3	100	$0.0 0^{+}$	D^a
6870.4	1-	6870.2 ^d 10	100	$0.0 0^{+}$	E1 ^a	7747.6	1	7747.4 <mark>d</mark> 5	100	$0.0 0^{+}$	D^a
6880.5	1-	6880.3 ^d 5	100	$0.0 0^{+}$	E1 ^a	7769.84	1	7769.6 <mark>d</mark> 1	100	$0.0 0^{+}$	D^a
6895.79	1-	6895.6 ^d 2	100	$0.0 0^{+}$	E1 ^a	7788.1	(1)	7787.9 ^d 5	100	$0.0 0^{+}$	(D) <mark>a</mark>
6952.0	1-	6951.8 ^d 11	100	$0.0 0^{+}$	E1 ^a	7819.8	1-	7819.6 <mark>d</mark> 8	100	$0.0 0^{+}$	E1 ^a
6982.29	1-	6982.1 ^d 2	100	$0.0 0^{+}$	E1 ^a	7848.9	1-	7848.7 ^d 3	100	$0.0 0^{+}$	E1 ^a
6998.5	1-	6998.3 ^d 7	100	$0.0 0^{+}$	E1 ^a	7857.9	1-	7857.7 <mark>d</mark> 12	100	$0.0 0^{+}$	E1 <i>a</i>
7006.6	1-	7006.4 ^d 14	100	$0.0 0^{+}$	E1 ^a	7875.0	1-	7874.8 ^d 11	100	$0.0 0^{+}$	E1 ^a
7018.89	1-	7018.7 ^d 1	100	$0.0 0^{+}$	E1 ^a	7895.25	1-	7895.0 ^d 2	100	$0.0 0^{+}$	E1 ^a
7150.60	(1)	7150.4 ^d 1	100	$0.0 0^{+}$	(D) ^{<i>a</i>}	7911.3	1-	7911.1 ^d 4	100	$0.0 0^{+}$	E1 ^a
7251.1	1-	7250.9 ^d 3	100	$0.0 0^{+}$	E1 ^a	7972.4	1-	7972.1 ^d 10	100	$0.0 0^{+}$	E1 ^a
7271.6	1-	7271.4 ^d 5	100	$0.0 \ 0^{+}$	E1 ^a	8006.6	1-	8006.3 ^d 5	100	$0.0 \ 0^{+}$	E1 a
7281.5	1-	7281.3 ^d 15	100	$0.0 \ 0^{+}$	E1 ^a	8083.5	1-	8083.2 ^d 3	100	$0.0 \ 0^{+}$	E1 a
7298.81	1-	7298.6 ^d 1	100	$0.0 0^{+}$	E1 ^a	8124.66	1-	8124.4 ^d 2	100	$0.0 0^{+}$	E1 ^a
7314.81	1-	7314.6 ^d 2	100	$0.0 0^{+}$	E1 ^a	8144.3	1-	8144.0 ^d 7	100	$0.0 0^{+}$	E1 ^a
7350.2	1-	7350.0 ^d 14	100	$0.0 0^{+}$	E1 ^a	8171.2	1-	8170.9 ^d 10	100	$0.0 0^{+}$	E1 ^a
7364.1	1-	7363.9 ^d 3	100	$0.0 \ 0^{+}$	E1 ^a	8184.3	1-	8184.0 ^d 3	100	$0.0 \ 0^{+}$	E1 a
7382.1	1-	7381.9 ^d 4	100	$0.0 0^{+}$	E1 ^a	8227.9	1-	8227.6 ^d 5	100	$0.0 0^{+}$	E1 ^a
7394.4	1-	7394.2 ^d 9	100	$0.0 0^{+}$	E1 ^a	8250.8	1-	8250.5 ^d 7	100	$0.0 0^{+}$	E1 ^a
7402.5	1-	7402.3 ^d 3	100	$0.0 0^{+}$	E1 ^a	8280.4	1-	8280.1 ^d 10	100	$0.0 \ 0^{+}$	E1 ^a

γ (136Ba) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡
8315.4	1-	8315.1 ^d 9	100	$0.0 0^{+}$	E1 ^a	8611.1	1-	8610.8 ^d 21	100	$0.0 0^{+}$	E1 ^a
		8338.9 ^d 14						8824.8 ^d 10			
		8359.2 ^d 5						9049.2 ^d 7			
8389.7	1-	8389.4 ^d 7	100	$0.0 0^{+}$	E1 ^a	9077.8	1-	9077.5 ^d 7	100	$0.0 \ 0^{+}$	E1 ^a
8404.1	1-	8403.8 ^d 13	100	$0.0 \ 0^{+}$	E1 <mark>a</mark>						

[†] From 136 Ba(n,n' γ), except where noted.

[‡] From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in $(n,n'\gamma)$, except as noted. [#] From ¹³⁶Cs β^- decay (13.16 d).

[@] From α (K)exp and K/L ratios in ¹³⁶Cs β ⁻ decay (13.16 d). & From ¹⁹⁸Pt(¹³⁶Xe,X γ).

^a From $\gamma(\theta)$ and $\gamma(\text{lin pol})$ in (γ, γ') . ^b From R(DCO) in ¹³⁹La(⁸²Se,X γ).

^c D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; $\Delta \pi$ =no from level scheme.

^d From (γ, γ') .

^e From ¹³⁵Ba(n, γ), E=thermal. ^f From ¹³⁶La ε decay (9.87 min).

^g Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

- Coincidence
- o Coincidence (Uncertain)

 $^{136}_{56} \mathrm{Ba}_{80}$

Legend

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

→ γ Decay (Uncertain)

Coincidence

o Coincidence (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

____ → γ Decay (Uncertain)

Legend

36.75 El(*M2) 18.2 - 307 319,188 M1,452 100 166,376 11,452 100 16 M1(452) 63 Intensities: Relative photon branching from each level Level Scheme (continued) γ Decay (Uncertain) 2390.817 0.21 ps +8-5

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

 $Q(\beta^{-})=-1742 \ 3$; $S(n)=8611.72 \ 4$; $S(p)=9005.00 \ 18$; $Q(\alpha)=-2560.7 \ 3$

S(2n)=15517.35 8, S(2p)=16410.4 3 (2017Wa10).

First identification of ¹³⁸Ba nuclide by F. W. Aston in 1925: Philos Mag 49, 1191 (1925). See 2010Sh20.

Nuclear Structure Theory: 2011To17, 2001An05, 2001Sh06, 2001Ty03, 2000Vr04, 2000Yo08, 1997Ho05.

Other measurements: 2015Wa30: 198 Pt(136 Xe,X γ) E=7.98 MeV/nucleon. Measured σ . 2004Va03: 198 Pt(136 Xe,X γ) E=850 MeV. Measured $T_{1/2}$.

Double giant-dipole resonance: 1990Au01, 1991Au04, 1992Ba02.

Giant quadrupole resonance: 1991BeZT. Giant dipole resonance: 1996Be30.

Isotope shift, $\Delta < r^2 >$ measurements: 2000Ga58, 1995Va36, 1995Zh57. Neutron induced reactions on ¹³⁷Ba and ¹³⁸Ba: 2000ZhZV, 1999ZhZR, 1998Ko07.

¹³⁸Ba Levels

Cross Reference (XREF) Flags

	A B C D E F		1)	H 1	137 Ba(n, γ) E=thermal 137 Ba(d,p) 138 Ba(γ , γ'),(pol γ , γ') 138 Ba(e,e') 138 Ba(n,n' γ) 138 Ba(p,p')	M N O P Q	138 Ba($\alpha, \alpha' \gamma$) 138 Ba(α, α') 139 La(d, 3 He) 238 U(12 C,F γ), 208 Pb(18 O,F γ) Coulomb excitation
E(level) [†]	J^{π}	$T_{1/2}^{@}$	XREI	F			Comments
0.0	0+	stable	ABCDEFGHIJI	KLMNOPQ	Evaluated nuclear cl	harge r	radius $\langle r^2 \rangle^{1/2} = 4.838$ fm 5 (2013An02).
1435.805 ^{&} 10	2+	0.199 ps 6	ABCDE GHIJI	KL NOPQ	μ=+1.44 22 (1987B Q=-0.14 7 (1989Bt B(E2)↑=0.231 9 J ^π : 1435.795γ E2 to L(p,p')=L(α,α')= T _{1/2} : weighted aver excitation, 0.186 from measured w by DSAM. μ: from g-factor=0.' Q: -0.14 7 is for co +0.08 7 for destruction.	a65,20 a07,20 o 0+ g. 2. age of ps 10 fidth in 72 11 (onstructive)	014StZZ)
1898.588 ^{&} 11	4+	2.160 ns 11	AB E G I	KL NOP	$T_{1/2}$: from $\beta \gamma \gamma(t)$ ir of 2.164 ns 11 (1963Cu04). Other	=4; L(e n ¹³⁸ Cs 995Ma er: 2.3	Be04) d, 3 He)=4 from $7/2^{+}$; 462.796 γ E2 to 2^{+} . s β^{-} decay (32.5 m), weighted average (75), 2.13 ns 3 (2011Ro42) and 2.17 ns 8 ns I from γ (t) in (α ,2n γ). (1985Be04) in 138 Cs β^{-} decay (32.5 m).
2090.536 ^{&} 21	6+	0.85 μs 10	AB E G I	KL NOP	μ =+5.88 <i>12</i> (1976Ik XREF: N(2120).	(04)	

E(level) [†]	J^π	T _{1/2} @	XREF	Comments
				$J^{\pi}: L(p,p')=6.$
				T _{1/2} : weighted average of 0.8 μ s I from $\beta \gamma$ (t) in ¹³⁸ Cs β ⁻ decay (2.91 m), 0.8 μ s 2 from γ (t) in (α ,2n γ) and 1.25 μ s 25 from γ (t) 2004Va03 via ¹⁹⁸ Pt(¹³⁶ Xe,X γ) reaction. μ : from g-factor=0.98 2 (1976Ik04, TDPAD) in (α ,2n γ).
2189.861 22	(1,2+)	≥0.8 ps	G K	Additional information 1. J^{π} : possible 2189.2 γ to 0 ⁺ ; strong primary feeding from 2 ⁺ in (n,γ) E=thermal. J^{π} =0 ⁺ from $(n,n'\gamma)$ based on 754.12 γ isotropic is inconsistent.
2203.05 3	6+	55 ps <i>17</i>	AB E G KL oP	$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. J^{π} : 112.52 γ M1+E2 to 6^+ and 980.6 γ stretched E2 from 8^+ .
2217.874 <i>18</i>	2+	0.130 ps <i>10</i>	A EGIKL No Q	$T_{1/2}$: from $\beta \gamma \gamma(t)$ in ¹³⁸ Cs β^- decay (32.5 m). J^{π} : 2217.86 γ E2 to 0 ⁺ ; L(p,p')=2.
2217.074 10	2	0.130 ps <i>10</i>	A EGIKL No Q	T _{1/2} : weighted average of 0.135 ps $+2I-16$ from B(E2) \uparrow in Coulomb excitation, 0.114 ps $+14-12$ from width in (γ, γ') , and 0.137 ps 10 in $(n, n'\gamma)$ using DSAM.
2307.515 17	4+	7 ps 3	AB E G KL N P	XREF: N(2270).
				J^{π} : L(p,p')=4; L(d, ³ He)=4+2 from 7/2+; 871.68γ E2 to 2+, 408.97γ M1+E2 to 4+.
				$T_{1/2}$: from $βγγ(t)$ in ¹³⁸ Cs $β$ ⁻ decay (32.5 m). Other: ≤0.07 ns in $(α,2ηγ)$ using DSAM.
2340	0+		D	J^{π} : L(³ He,n)=0+(2).
2415.337 19	5 ⁺	16 ps 8	AB E G KL OP	XREF: O(2440). J^{π} : 516.70 γ M1+E2 to 4 ⁺ , 324.84 γ M1+E2 to 6 ⁺ .
				T _{1/2} : from βγγ(t) in ¹³⁸ Cs β ⁻ decay (32.5 m). Other: ≤0.07
				ns from $\gamma(t)$ in $(\alpha,2n\gamma)$.
2445.550 <i>15</i>	3 ⁺	5 ps 4	A E G KL O	XREF: O(2470).
				J ^π : 1009.70γ M1+E2 to 2 ⁺ , 546.975γ M1+E2 to 4 ⁺ . T _{1/2} : from $\beta\gamma\gamma$ (t) in ¹³⁸ Cs β ⁻ decay (32.5 m). Other: ≥0.7
				ps in $(n,n'\gamma)$ using DSAM.
2582.18 <i>23</i>	4+		L	J^{π} : L=4 in (p,p').
2582.99 3	1+	0.13 ps +4-3	A E G KL	J^{π} : 1147.17γ M1+E2 to 2 ⁺ , 2583.03γ D to 0 ⁺ . T _{1/2} : from (n,n'γ) using DSAM. Other: ≤7 ps from βγγ(t) in
				138 Cs β^- decay (32.5 m).
2639.39 4	2+	0.32 ps +10-5	A EGIKLN	XREF: N(2650).
				J^{π} : L(p,p')=2; 2639.35 γ E2 to 0 ⁺ .
				$T_{1/2}$: weighted average of 0.26 ps $+10-5$ from width in (γ, γ') and 0.42 ps $+12-8$ using DSAM in $(n,n'\gamma)$.
2779.31 <i>3</i>	4+	≤6 ps	A E G KL	J^{π} : L(p,p')=4.
				$T_{1/2}$: from $\beta \gamma \gamma(t)$ in ¹³⁸ Cs β^- decay (32.5 m).
2795.2? 3	(1,2+)		G	E(level): This level is proposed in (n, γ) E=thermal (1995Bo05) based on the observation of the 2794-5817 coincidence, which, however, could also assume a level at 5817 instead of at 2794. A level at 5815 is proposed by 2006Vo11 in (γ, γ') from the observed 5817 γ and the 2794 γ is not observed in $(n, n'\gamma)$, which makes this 2794 level questionable.
2851.444 22	4+	≤11 ps	A EG K	J^{π} : possible 2794.9 γ to 0 ⁺ . J^{π} : 1415.71 γ stretched E2 to 2 ⁺ , 952.86 γ M1+E2 to 4 ⁺ .
2031.777 22	•	=11 Po	L G K	T _{1/2} : from $\beta \gamma \gamma$ (t) in ¹³⁸ Cs β ⁻ decay (32.5 m), T _{1/2} \ge 1.5 ps
	_			from $(n,n'\gamma)$ using DSAM.
2880.66 8	3-	0.055 ps 6	A DE GH JKL N Q	B(E3)↑=0.133 <i>13</i> (1985Bu01) XREF: D(2850).
				J ^{π} : L(α,α')=L(p,p')=3; L(d,p)=3 from 3/2 ⁺ .
				$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. Other: ≤ 11 ps from $\beta\gamma\gamma(t)$
				in ${}^{138}\text{Cs }\beta^-$ decay (32.5 m).

E(level) [†]	${ m J}^{\pi}$	T _{1/2} @		XR	EF			Comments
~2000				11				B(E3)↑: from 1985Bu01 in Coulomb excitation. Other: 0.195 <i>12</i> from 1972LeYB in (e,e').
≈2900 2916.61? <i>18</i>	(1,2+)			H G				E(level): This level is proposed in (n,γ) E=thermal (1995Bo05) based on the observation of the 2917-5695 coincidence, which, however, could also assume a level at 5695 instead of at 2794. A level at 5695 is proposed by 2006Vo11 in (γ,γ') from the observed 5695 γ and the 2717 γ is not observed in $(n,n'\gamma)$, which makes this 2917 level questionable.
2931.40 4	2+	0.19 ps +5-4	A	E G	KL			J^{π} : possible 2916.98 γ to 0 ⁺ . J^{π} : 2931.3 γ E2 to 0 ⁺ .
2991.07 4	3+	≤11 ps	A	G	KL			$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. J^{π} : 773.20 γ and 1555.25 γ M1+E2 to 2 ⁺ , 683.70 γ D+Q to 4 ⁺ .
3049.91 3	2+	0.33 ps +14-8	A	E G	KL			$T_{1/2}$: from $\beta \gamma \gamma$ (t) in ¹³⁸ Cs β^- decay (32.5 m). J^{π} : 1614.08 γ M1+E2 to 2 ⁺ , 3049.6 γ to 0 ⁺ , 1151.26 γ to 4 ⁺ .
3154.71 6	4+			E G	KL			$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. J^{π} : $L(p,p')=4$; 1256.23 γ D+Q to 4 ⁺ , 1064.14 γ to 6 ⁺ , 739.31 γ to 3 ⁺ .
3163.27 7	(2)+	0.28 ps +55–12	A	E G	K			J ^π : 1727.3 γ M1(+E2) to 2 ⁺ , 1264.70 γ (Q) to 4 ⁺ , strong primary γ from 2 ⁺ in (n, γ) E=thermal. T _{1/2} : from (n,n' γ) using DSAM.
3183.60 ^{&} 22	8+	20 ps +20-14		E	K		P	J^{π} : 1093.0 γ stretched E2 to 6 ⁺ ; band structure.
3243.06 8	3		Α	G	K			$T_{1/2}$: from $(\alpha, 2n\gamma)$ using DSAM. J^{π} : 935.85 γ D+Q to 4 ⁺ , 1806.81 γ D+Q to 2 ⁺ .
3257.24 7	3		Α	E G	KL			J^{π} : 1358.80 γ D+Q to 4 ⁺ , 1821.33 γ to 2 ⁺ .
3309.4 3	(5,6,7)	21 5- 0		E	K	NT		J^{π} : 1106.3 γ D,Q to 6 ⁺ .
3338.72 6	2+	31 fs 9	A	GHI	KL	N		J^{π} : L(p,p')=2; 3338.68 γ E2 to 0 ⁺ . $T_{1/2}$: weighted average of 31 fs 9 from width in (γ,γ') and 31 fs +9-8 from $(n,n'\gamma)$ using DSAM.
3352.6 <i>3</i>	$(1,2^+)$		A					J^{π} : 3352.6 γ to 0 ⁺ .
3359.7 <i>3</i>	7+	25 ps 10		E	K		P	J^{π} : 944.2 γ E2 to 5 ⁺ .
3366.71 7	2+	31 fs +10-8	A	G I	KL			$T_{1/2}$: from $(\alpha, 2n\gamma)$ using DSAM. J^{π} : L(p,p')=2; 3366.72 γ E2 to 0 ⁺ .
								$T_{1/2}$: weighted average of 29 fs +21-13 from width in
3376.63 8	3			G	K			(γ, γ') and 31 fs $+10-8$ from $(n, n'\gamma)$ using DSAM. J ^{π} : 1940.74 γ D+Q to 2 ⁺ , 1478.28 γ D+Q to 4 ⁺ .
3437.5 6	$(1,2^+)$		Α	_				J^{π} : 3437.5 γ to 0 ⁺ .
3442.18 <i>12</i>	$2^{(+)}$		Α	G	K			J^{π} : 3442.25 γ Q to 0 ⁺ .
3485.98 5					K			J^{π} : 1587.6 γ to 4 ⁺ , 1040.42 γ to 3 ⁺ .
≈3500 2504.28 10	(4^+)	>0.2		CII	17	N		J^{π} : $L(\alpha, \alpha') = (4)$.
3504.28 <i>10</i>	2-	≥0.2 ps		GH	K			J^{π} : L(d,p)=3; 3504.91 γ Q to 0 ⁺ . $T_{1/2}$: from (n,n' γ) using DSAM.
3534	-			Н				J^{π} : L(d,p)=3 from 3/2 ⁺ .
3562.25 8	(4)-				KL			J ^{π} : L(d,p)=3 from 3/2+; 1116.71 γ D+Q to 3+, 1663.2 γ to 4+; (4) ⁻ from analysis of p-decay of IAR in ¹³⁸ Ba+p and in ¹³⁷ Ba(d,p) (1967Mo15).
3600.73 10	1	≥0.09 ps		G	K			J^{π} : 3600.56 γ D to 0 ⁺ , 2164.96 γ to 2 ⁺ .
3610.1 <i>3</i>				E	K			$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. J^{π} : 1407.0 γ D,Q to 6 $^+$.
3617.8 <i>4</i>	0^{+}			F	K			J^{π} : L(t,p)=0.
3622.1 3	10 ⁺	0.51 ns 7		E	K			J^{π} : 438.5 γ E2 γ to 8 ⁺ .
								$T_{1/2}$: from $\gamma(t)$ in $(\alpha,2n\gamma)$.

E(level) [†]	${ m J}^{\pi}$	T _{1/2} @		XR	EF		Comments
3632.8 ^e 4	9-	31 ps <i>18</i>		E	K	P	J^{π} : 449.2 γ E1 to 8 ⁺ ; band structure.
3643.08 11	2+	19 fs +16-11	Α	GI	K1		$T_{1/2}$: from $(\alpha, 2n\gamma)$ using DSAM. J^{π} : 3643.10 γ E2 to 0^{+} .
3646.71 <i>13</i>	(3)-		A	GH	K1		$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. Other: ≤ 15 fs from (γ,γ') . J^{π} : $L(d,p)=3$ from $3/2^+$; 766.03γ D+Q to 3^- ; $(3)^-$ from analysis of p-decay of IAR in 138 Ba+p and in 137 Ba(d,p)
3652.6 <i>8</i> 3678.2 <i>5</i>	(1,2 ⁺) 8 ⁻	≤0.07 ns	A	E			(1967Mo15). J^{π} : 3652.5 γ to 0 ⁺ . J^{π} : 318.5 γ E1 7 ⁺ .
3684.7 <i>3</i> 3693.92 <i>12</i>	1		A	G	K K		$T_{1/2}$: from γ (t) in $(\alpha, 2n\gamma)$. J^{π} : 3684.6 γ D to 0 ⁺ .
3734.4 3	2+	0.08 ps +13-4	Л	ď	K		J^{π} : 3734.3 γ E2 to 0 ⁺ .
3800.06 24	2+	0.09 ps +21-6			K		$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. J^{π} : 3800.1 γ E2 to 0 ⁺ .
3837.50 <i>10</i> 3859.5 <i>3</i>	(2 ⁺) (5) ⁻			G H	KL		$T_{1/2}$: from $(n,n'\gamma)$ using DSAM. J^{π} : 3837 γ to 0 ⁺ , 957.6 γ to 3 ⁻ . J^{π} : L(d,p)=3 from 3/2 ⁺ ; 1960.9 γ (D) to 4 ⁺ .
3910.5 ^{&} 4	10+	≤14 ps		E	KL	P	J^{π} : 726.9 γ E2 to 8 ⁺ , 288.4 γ D+Q to 10 ⁺ , band structure.
3922.13 6	(3)-	· ·	A	GH	KL		$T_{1/2}$: from $(\alpha, 2n\gamma)$. J^{π} : $L(d,p)=1$ from $3/2^+$; 2486.51 γ to 2^+ , 2023.62 γ (D) to
3931.18 24					K		4+.
3934.87 11	2+		A	G	K		J ^{π} : 3935.2 γ to 0 ⁺ , 2499.4 γ to 2 ⁺ , 1054.36 γ to 3 ⁻ , primary transition from 2 ⁺ in (n, γ) E=thermal, log ft =7.8 from 3 ⁻
4001.47 <i>11</i> 4011.9? <i>3</i> 4013.7 <i>3</i> 4026.00 <i>11</i>	2 ⁽⁺⁾ (2 ⁺ ,3,4 ⁺) (1,2 ⁺) 1 ⁻	2.11 fs + <i>17</i> - <i>15</i>	A	G G GHI	K KL		parent. J ^π : 4001.40γ Q to 0 ⁺ . J ^π : 2114.3γ to 4 ⁺ , 745.5γ to 3, 368.7γ to 2 ⁺ . J ^π : 4012.7γ to 0 ⁺ . J ^π : 4025.80γ E1 to 0 ⁺ . Interpreted as 2 ⁺ ⊗3 ⁻ two-phonon state (1994KnZZ,1995He25,1996Zi02).
4043 4079.88 <i>23</i> 4083.4 <i>4</i> 4114.8 <i>5</i>	2 ⁺ (1) ⁻ (1,2 ⁺)		A	F GH G E	L		T _{1/2} : from width in (γ, γ') . Other: ≤ 35 fs from $(n, n'\gamma)$ using DSAM. J ^{π} : L(t,p)=2. J ^{π} : L(d,p)=1 from 3/2 ⁺ ; 4080.1 γ to 0 ⁺ . J ^{π} : 4083.3 γ to 0 ⁺ .
4115.42 8 4130.55 20	$(1,2^+)$			G D G			J^{π} : 4114.5 γ to 0 ⁺ .
4143.3 3	(1)-			GH			J^{π} : L(d,p)=1 from 3/2 ⁺ ; 4143.2 γ to 0 ⁺ ; fed by primary transition from 2 ⁺ in (n, γ) E=thermal.
4157.5 <i>5</i> 4165.1 <i>3</i>	(4)-			E H	KL	N	XREF: N(?). J^{π} : L(d,p)=3, 1284.4 γ to 3 ⁻ ; (4) ⁻ from analysis of p-decay of IAR in ¹³⁸ Ba+p and in ¹³⁷ Ba(d,p) (1967Mo15).
4197.15 <i>10</i> 4242.11 <i>18</i>	(1,2,3) $(1,2^+)$		A	G GH	KL		J^{π} : fed by primary transition from 2^+ in (n,γ) E=thermal. J^{π} : fed by primary transition from 2^+ in (n,γ) E=thermal;
4280.24 8	(1,2)			GH	L		4242 γ to 0 ⁺ . J ^{\pi} : L(d,p)=1 from 3/2; 1398.46 γ to 3 ⁻ , 1695.9 γ to 1 ⁺ , 4280.31 γ to 0 ⁺ . 2 ⁻ is not excluded since 1995Bo05 in (n, γ) E=thermal observed that the 4280.31 γ in the 4332-4280 cascade is very weak and Mult(4280 γ)=M2 is
4323.56 <i>7</i> 4332.27 <i>6</i>	1 ⁻ (1,2 ⁺)	3.6 fs +19-12		GHI G	L		possible. J^{π} : 4323.50 γ D to 0 ⁺ ; L(d,p)=1 from 3/2 ⁺ . J^{π} : 4332.23 γ to 0 ⁺ .

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$ @	XR	EF		Comments
4359.47 10	$(1^+,2,3)$		G			J^{π} : 1913.9 γ to 3 ⁺ ; fed by primary transition from 2 ⁺ in (n, γ) E=thermal.
4445.48 7	1-	10.4 fs +20-14	GH1	I L		J^{π} : L(d,p)=1; strong 4445.40 γ to 0 ⁺ ; fed by primary
4508.09 <i>15</i>	$(2^+,3)$		A G			transition from 2^+ in (n,γ) E=thermal. J^{π} : 2609.54 γ to 4^+ , 3073.4 γ to 2^+ ; fed by primary transition
4535.99 8	1-	2.5 fs +5-4	GH]	E M		from 2^+ in (n,γ) E=thermal. J^{π} : L(d,p)=1; 4535.93 γ to 0^+ ; J=1 from intensity ratio in
4564.45 9	(2,3)		GH			(γ, γ') . J^{π} : L(d,p)=1 from 3/2 ⁺ ; 1981.55 γ to 1 ⁺ , 2257.31 γ to 4 ⁺ , 3129.5 γ to 2 ⁺ . 1995Bo05 in (n, γ) thermal assign J^{π} =(3) ⁻ but state that it is not conclusive.
4580.19 <i>16</i> 4584.2 <i>5</i>	(1,2,3)		G E			J^{π} : fed by primary transition from 2^+ .
4586.3 <i>4</i> 4615.46 <i>15</i>	(1)-		GH	L K		J^{π} : L(d,p)=1 from 3/2+; 3150.6 γ to 2+, 4585.6 γ to 0+.
4629.73 <i>13</i> 4645.72 <i>10</i> 4665.14 <i>18</i>	$(1,2,3)^-$ $(1^-,2^+)$		A GH G	K L		J ^{π} : L(d,p)=1 from 3/2+; fed by primary transition from 2+. J ^{π} : 4664.12 γ to 0+, 2082.95 γ to 1+, 1784.7 γ to 3
4689.0 ^{&} 4	12+	≤14 ps	E		P	J^{π} : 778.5 γ E2 to 10 ⁺ , band structure. T _{1/2} : from (α ,2n γ) using DSAM.
4704.2 ^e 4 4707.41 9	(11 ⁻) 1 ⁻	7.5 fs +22–14	GH]	I L	P	J^{π} : 1071.3 γ to 9 ⁻ , 1082.1 γ to 10 ⁺ , band structure. J^{π} : L(d,p)=1 from 3/2 ⁺ ; J=1 from scattering asymmetries in (γ,γ') ; 4707.21 γ to 0 ⁺ .
4743.44 12	(2,3)		GH	L		J^{π} : L(d,p)=1 from 3/2+; 3306.40 γ , 2525.9 γ and 2104.08 γ to 2+, 1501.0 γ to 2525.9 γ to J=3; fed by primary transition from 2+; no g.s. transition to 0+.
4795.78 19	(2,3)		GH	L		J^{π} : L(d,p)=1+3 from 3/2+; fed by primary transition from 2+; no g.s. transition to 0+.
4855.52 <i>12</i> 4860	1 ⁽⁻⁾ ‡	0.28 fs +39–16	G 1 D	M I		J^{π} : L=0+(2) in (³ He,n).
4863.9 5	(2.2)		E			
4871.74 <i>15</i> 5027.67 <i>17</i>	$(2,3)^-$ $(2^-,3)$		GH G	L		J^{π} : L(d,p)=1+3 from 3/2 ⁺ , primary transition, no γ to 0 ⁺ g.s. J^{π} : fed by primary transition from 2 ⁺ in (n, γ) E=thermal, no γ to g.s.
5128.4 5	.1.				P	
5145.5 <i>6</i> 5186.0 ^e <i>5</i>	1 [‡] (13 ⁻)	0.85 fs +17-12]	E M	P	J^{π} : 481.8 γ to (11 ⁻), band structure.
5284.0 <i>7</i> 5358.3 <i>5</i>	1‡	1.6 fs +4-3	1	Ι	P	
5390.8 6	1(-)‡	0.69 fs +16-11	1	г м	r	
5394.2 ^d 5	(13^{-})	0.07 15 170 17	_		P	J^{π} : proposed in ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
5475.8 <i>6</i>	1‡	1.43 fs +27-19]	М		
5511.6 7	1-‡	0.23 fs +5-3		М		
5582.2 7	1-‡	1.38 fs +31-21]	[
5644.8 5	1-‡	0.29 fs +6-4		М		
5655.4 7	1-‡	0.85 fs +22-14		E M		
5694.6 7	1-#	1.30 fs +27-19				
5740	0+	1.00 10 12/ 17	D			J^{π} : L=0 in (³ He,n).
5741.8 ^b 6	(11^{+})				P	J^{π} : band structure.
5743.0 6	1-‡	0.88 fs +19-14	1	[
5752.5 8	1#	2.1 fs +5-3		[
5766.4 6	1-‡	0.79 fs +15-11		[
5700.10		0.77 15 115 11	-	-		

E(level) [†]	\mathbf{J}^{π}	T _{1/2} @		XRE	F		Comments
5815.1 7	1-‡	1.09 fs +22-16		I	M		
5873.7 6	1-#	0.44 fs +8-6		I	M		
5921.6 ^c 6	(14^{-})			_		P	J^{π} : band structure.
5925.5 ^b 4	(12^{+})					P	J^{π} : band structure.
5963.6 <i>6</i>	$1^{-\ddagger}$	0.56 fs +11-8		I	M		
6102.3 7	1-‡	0.42 fs +50-15		I			
6114.6 9	1-‡	0.72 fs +31-17		I			
6193.0 5	1-‡	0.25 fs +5-4		I			
6198.4 <mark>d</mark> 6	(15^{-})					P	J^{π} : band structure.
6210.9 ^b 5	(13^{+})					P	J^{π} : band structure.
6244.8 8	$1^{-\ddagger}$	0.82 fs +16-11		I			
6280	0+		D				J^{π} : L=0 in (³ He,n).
6348.0 7	1-‡	0.42 fs + 24 - 25		I			
6361.8 <i>6</i>	1-#	0.35 fs +6-5		I			
6410.3 <i>6</i>	1-#	0.19 fs +4-3		I			
6434.5 6	1-#	0.20 fs +4-3		I			
6466.0 7	1#	0.76 fs + 15 - 11		I			
6486.5 9	1#	1.8 fs +5-3		I			
6552.8 8	1#	0.75 fs + 17 - 12		I			
6575.5 8	1#	0.66 fs + 14 - 10		I			
6612.9 <i>6</i>	1#	0.16 fs +3-2		I	M		
6635.3 8	1 [#]	0.95 fs +22-15		I			
6657.6 ^b 5	(14^{+})					P	J^{π} : band structure.
6663.9 7	1 [#]	0.63 fs + 12 - 9		I			
6678.8 <i>5</i>	1 [#]	0.18 fs +3-2		I			
6693.6 <i>5</i>	1 [#]	0.17 fs +3-2		I			
6703.7 6	1#	0.43 fs +8-6		I			
6759.4 ^c 7	(16 ⁻)					P	J^{π} : band structure.
6802.1 8	1#	0.74 fs <i>13</i>		Ι			
6813.6 <i>6</i>	1 [#]	0.21 fs +5-3		Ι			
6821.8 11	1#	0.99 fs +28-18	_	Ι			TT 1 0 ' 3T1)
6830	0 ⁺	0.67.5 . 14.10	D	_			J^{π} : L=0 in (³ He,n).
6839.3 8	1 [#]	0.65 fs + 14 - 10		I			
6848.5 7	1 [#]	0.33 fs + 7 - 5		I			
6862.2 6	1 [#]	0.25 fs + 5 - 4		I	M		
6870.6 7	1 [#]	0.40 fs +8-6		I			
6895.0 <i>6</i>	1 [#]	0.16 fs + 3 - 2		I			
6922.3 8	1 [#]	0.42 fs +8-6		I			
6957.0 12	1 [#]	0.63 fs +16-11		I			
6981.1 <i>8</i> 6988.8 <i>a 5</i>	1 [#] (14 ⁺)	0.74 fs +16-11		Ι		P	J^{π} : band structure.
7040.3 9	1#	0.80 fs +19-13		I		•	o . oana structure.
7040.3 <i>9</i> 7106.1 <i>15</i>	1#	0.80 fs + 19 - 13 0.76 fs + 17 - 12		I			
7100.1 13	1 1 [#]	0.76 fs + 17 - 12 0.97 fs + 26 - 17		I			
7144.0 9 7155.8 ^d 8	(17-)	0.97 15 TZU=17		1		P	J^{π} : band structure.
1133.0 0	(17)					T.	J. Jana Structure.

¹³⁸Ba Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{@}$	XREF	Comments
7211.8 8	1#	0.27 fs +6-4	I	
7227.7 ^a 5	(15^+)		P	J^{π} : band structure.
7276.0 10	1#	0.18 fs +4-3	I	
7334.3 10	1#	0.51 fs +11-8	I	
7376.8 9	1#	0.44 fs +9-7	I	
7403.6 8			P	
7533.8 <mark>a</mark> 6	(16^{+})		P	J^{π} : band structure.
7546.9 22	1#	0.75 fs +22-14	I	
7705.8 12	1#	0.38 fs +8-6	I	
7774.2 <i>7</i>	1#	0.20 fs +4-3	I	
7805.5 8	1#	0.33 fs +7-5	I	
7819.9 8	1#	0.30 fs +8-5	I	
7871.3 10	1#	0.33 fs +9-6	I	
7980.5 <mark>a</mark> 8	(17^{+})		P	J^{π} : band structure.
8012.7 9			P	
8075.9 8	1#	0.15 fs +3-2	I	
8281.9 ^a 9	(18^{+})		P	J^{π} : band structure.
8433.5 14	1-#	0.52 fs +19-11	I	
8938.3 ^a 10	(19^+)		P	J^{π} : band structure.
9334.4 ^a 12	(20^+)		P	J^{π} : band structure.

[†] From a least-squares fit to γ -ray energies. [‡] From γ scattering asymmetry in (γ, γ') . [#] From γ intensity ratio in (γ, γ') .

[@] From $(n,n'\gamma)$ using DSAM for levels up to 4026 and from widths in (γ,γ') for levels above that, unless otherwise noted.

[&]amp; Band(A): g.s. band.

^a Band(B): Band based on (14⁺).

^b Band(C): Band based on (11⁺).

^c Band(D): Band based on (14⁻).

^d Band(d): Band based on (13⁻).

^e Band(E): Band based on 9⁻.

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ extcoloredge}$	I_{γ} #	E_f J	\int_{f}^{π} Mult.	@ δ [‡]	$lpha^\dagger$	Comments
1435.805	2+	1435.795 10	100	0.0)+ E2		9.17×10 ⁻⁴	$\alpha(K)$ =0.000743 11; $\alpha(L)$ =9.37×10 ⁻⁵ 14; $\alpha(M)$ =1.92×10 ⁻⁵
								$\alpha(N)=4.14\times10^{-6} 6$; $\alpha(O)=6.34\times10^{-7} 9$; $\alpha(P)=4.62\times10^{-8}$ 7; $\alpha(IPF)=5.72\times10^{-5} 8$
								B(E2)(W.u.)=11.0 4
								E_{γ} : from ¹³⁸ La ε decay.
								Mult.: from ce data in ¹³⁸ La ε decay, $\gamma(\theta)$ and $\gamma(\text{pol})$ in
1000 500	4.1	160 505 5	100	1425.005.0	+ 52		0.01222	$(n,n'\gamma)$, and $\gamma(\theta)$ in $(\alpha,2n\gamma)$.
1898.588	4+	462.785 5	100	1435.805 2	2+ E2		0.01223	$\alpha(K)$ =0.01024 15; $\alpha(L)$ =0.001578 22; $\alpha(M)$ =0.000329 5 $\alpha(N)$ =7.02×10 ⁻⁵ 10; $\alpha(O)$ =1.037×10 ⁻⁵ 15;
								$\alpha(N) = 7.02 \times 10^{-7} 10$, $\alpha(O) = 1.037 \times 10^{-7} 15$; $\alpha(P) = 6.12 \times 10^{-7} 9$
								B(E2)(W.u.)=0.2878 15
								E_{γ} : from ¹³⁸ Cs β ⁻ decay (32.5 m).
								Mult.: from ce data in 138 Cs β^- decay (32.5 m), $\gamma(\theta)$ and
2000 526	<i>c</i> ±	101.05.2	100	1000 700	+ 5500		0.100	γ (pol) in (n,n' γ), and γ (θ) in (α ,2n γ).
2090.536	6+	191.95 2	100	1898.588 4	+ [E2]		0.198	$\alpha(K)$ =0.1525 22; $\alpha(L)$ =0.0359 5; $\alpha(M)$ =0.00769 11 $\alpha(N)$ =0.001615 23; $\alpha(O)$ =0.000224 4; $\alpha(P)$ =8.02×10 ⁻⁶ 12
								B(E2)(W.u.)=0.053 +8-6
								E_{γ} : from $(n,n'\gamma)$. Others: 191.96 6 from ¹³⁸ Cs β^- decay
								(32.5 m), 191.94 9 from (n,γ) E=thermal.
2189.861	$(1,2^+)$	754.05 2	100 6	1435.805 2				E _{γ} : from (n,n' γ). Other: 754.12 8 from (n, γ) E=thermal.
		2189.2 <i>4</i>	4.4 11	0.0)'			$E_{\gamma}I_{\gamma}$: observed only in singles spectrum by 1995Bo05 in (n,γ) E=thermal, not observed by 2003Go02 in $(n,n'\gamma)$.
2203.05	6 ⁺	112.52 <i>3</i>	100 7	2090.536	6 ⁺ M1+E	$-0.25\ 2$	0.739 12	$\alpha(K)=0.618$ 9; $\alpha(L)=0.096$ 3; $\alpha(M)=0.0200$ 6
								α (N)=0.00428 12; α (O)=0.000637 16; α (P)=3.98×10 ⁻⁵ 6
								$B(M1)(W.u.)=0.15 +7-4$; $B(E2)(W.u.)=4.5\times10^2 +31-16$
								E_{γ} : weighted average of 112.50 <i>10</i> from ¹³⁸ Cs β ⁻ decay
								(32.5 m), 112.5 3 from ¹³⁸ Cs β^- decay (2.91 m), 112.6
								3 from $(\alpha, 2n\gamma)$, 112.84 <i>17</i> from (n, γ) E=thermal, 112.51 3 from $(n, n'\gamma)$, and 112.1 5 from
								$^{238}\text{U}(^{12}\text{C},\text{F}\gamma),^{208}\text{Pb}(^{18}\text{O},\text{F}\gamma).$
								I_{γ} : from $(n,n'\gamma)$.
								Mult.: from ce data in β^- decay (32.5 m) and $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and $(n, n'\gamma)$.
		204.0.2	200	1000 500	_			δ : from $\gamma(\theta)$ in (α,2n γ). Other: $-0.27 + 12 - 10$ from (n,n' γ).
2217 274	2+	304.0 2	2.0 3	1898.588 4		E2) 0.02.0	0.00444	E_{γ},I_{γ} : from $(n,n'\gamma)$ only.
2217.874	2+	782.09 9	2.6 3	1435.805 2	C ⁺ M1(+)	E2) -0.02 8	0.00444	$\alpha(K)=0.00383 \ 6; \ \alpha(L)=0.000485 \ 7; \ \alpha(M)=9.95\times10^{-5} \ 15$ $\alpha(N)=2.15\times10^{-5} \ 3; \ \alpha(O)=3.31\times10^{-6} \ 5; \ \alpha(P)=2.46\times10^{-7} \ 4$
								$u(N)=2.13\times10^{-3}$, $u(N)=3.31\times10^{-3}$, $u(Y)=2.40\times10^{-4}$ B(M1)(W.u.)=0.0090 +21-18
								E _{γ} : weighted average of 782.08 9 from ¹³⁸ Cs β ⁻ decay

 ∞

$\gamma(^{138}\text{Ba})$ (continued)

							γ (**Ba	(continued)	
$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	${\rm I_{\gamma}}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	δ^{\ddagger}	$lpha^\dagger$	Comments
2217.874	2+	2217.86 2	100.0 20	0.0	0+	E2		7.80×10 ⁻⁴	(32.5 m), 782.8 4 from (n, γ) E=thermal, and 782.06 10 from (n,n' γ). I $_{\gamma}$: unweighted average of 2.16 20 from ¹³⁸ Cs β ⁻ decay (32.5 m), 2.57 14 from (n, γ) E=thermal, and 3.07 23 from (n,n' γ). δ : or +2.5 +7-4 (2003Go02) in (n,n' γ). Mult., δ : from $\gamma(\theta)$ and γ (pol) in (n,n' γ). α (K)=0.000330 5; α (L)=4.05×10 ⁻⁵ 6; α (M)=8.29×10 ⁻⁶ 12 α (N)=1.79×10 ⁻⁶ 3; α (O)=2.75×10 ⁻⁷ 4; α (P)=2.05×10 ⁻⁸ 3; α (IPF)=0.000400 6 B(E2)(W.u.)=1.86 +17-14
2307.515	4+	408.97 2	90 2	1898.588	4+	M1+E2	-0.23 +5-7	0.0216 4	E _γ : from (n,n'γ). Others: 2218.00 <i>10</i> from ¹³⁸ Cs β^- decay (32.5 m), 2217.76 7 from (n,γ) E=thermal, 2218.0 <i>10</i> from (γ,γ'), and 2217.86 2 from (n,n'γ). I _γ : from ¹³⁸ Cs β^- decay (32.5 m). Mult.: from (n,n'γ) based on $\gamma(\theta)$ and RUL. $\alpha(K)=0.0185$ 3; $\alpha(L)=0.00242$ 4; $\alpha(M)=0.000499$ 7 $\alpha(N)=0.0001076$ 16; $\alpha(O)=1.648\times10^{-5}$ 24; $\alpha(P)=1.201\times10^{-6}$ 21 B(M1)(W.u.)=0.020 +19-7; B(E2)(W.u.)=4 +7-3 E _γ : weighted average of 408.98 6 from ¹³⁸ Cs β^- decay (32.5 m), 408.8 2 from ¹³⁸ Cs β^- decay (2.91 m), 408.9 3 from (α ,2nγ), 409.02 6 from (n,γ) E=thermal, and 408.96 2 from
		871.68 2	100 3	1435.805	2+	E2		0.00245	(n,n'γ). I _γ : weighted average of 91.2 18 from ¹³⁸ Cs β^- decay (32.5 m) and 86 4 from (n,n'γ). Others: 76.9 4 from (n,γ) E=thermal, 52 3 from (α ,2nγ). Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m), $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n'γ), $\gamma(\theta)$ in (α ,2nγ). δ: from (n,n'γ). Others: -0.23 7 in (α ,2nγ). α(K)=0.00210 3; α (L)=0.000281 4; α (M)=5.79×10 ⁻⁵ 9 α (N)=1.244×10 ⁻⁵ 18; α (O)=1.88×10 ⁻⁶ 3; α (P)=1.299×10 ⁻⁷ 19 B(E2)(W.u.)=2.0 +17-7 E _γ : weighted average of 871.74 9 from (n,γ) E=thermal, 871.68 2 from (n,n'γ), 871.72 7 from ¹³⁸ Cs β^- decay (32.5 m).
2415.337	5+	107.7 <i>I</i> 212.28 <i>3</i>	7.8 <i>12</i> 38 <i>3</i>	2307.515 2203.05	4 ⁺ 6 ⁺	M1+E2	-0.07 2	0.1217	In). I _{\gamma} : from \$^{138}\$Cs \$\beta^-\$ decay (32.5 m). Mult.: from ce data in \$^{138}\$Cs \$\beta^-\$ decay (32.5 m), \$\gamma(\theta)\$ and \$\gamma(\text{pol})\$ in \$(n,n'\gamma)\$. E _{\gamma} : from \$(n,n'\gamma)\$. Others: \$107.5 3\$ from \$^{138}\$Cs \$\beta^-\$ decay (2.91 m), \$107.3 3 \$(\alpha,2n\gamma)\$. I _{\gamma} : weighted average of 16 8 from \$^{138}\$Cs \$\beta^-\$ decay, 7.1 24 from \$^{136}\$Xe(\alpha,2n\gamma)\$, and 7.8 \$12\$ from \$^{138}\$Ba(n,n'\gamma)\$. \$\alpha(K)=0.1043 \$15\$; \$\alpha(L)=0.01384 \$20\$; \$\alpha(M)=0.00285 \$4\$

Auopicu	Levels,	Gaiiiiias	(continued)	

γ (138Ba) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E_{\gamma}}^{\#}$	I_{γ} #	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult. @	δ^{\ddagger}	$lpha^\dagger$	Comments
2415.337	5+	324.84 11	54 7	2090.536 6+	M1+E2	-0.10 2	0.0394	α (N)=0.000616 9; α (O)=9.42×10 ⁻⁵ 14; α (P)=6.84×10 ⁻⁶ 10 B(M1)(W.u.)=0.026 +34–11; B(E2)(W.u.)=1.7 +48–13 E _γ : from (n,n'γ). Others: 212.34 8 from ¹³⁸ Cs β ⁻ decay (32.5 m), 212.0 3 from ¹³⁸ Cs β ⁻ decay (2.91 m), 212.3 3 from (α ,2nγ), 212.20 19 from (n,γ) E=thermal, I _γ : weighted average of 41 3 from ¹³⁸ Cs β ⁻ decay (32.5 m), 45 8 from ¹³⁸ Cs β ⁻ decay (2.91 m), and 34.9 28 from (n,n'γ). Others: 16.7 24 from (α ,2nγ), 16.7 9 (n,γ) E=thermal. Mult.,δ: D+Q from γ(θ) in (n,n'γ), polarity from no level-parity change determined from other experimental evidence. α (K)=0.0338 5; α (L)=0.00442 7; α (M)=0.000911 13 α (N)=0.000197 3; α (O)=3.01×10 ⁻⁵ 5; α (P)=2.20×10 ⁻⁶ 3 B(M1)(W.u.)=0.010 +14–5; B(E2)(W.u.)=0.6 +14–4 E _γ : unweighted average of 325.16 8 from (n,γ) E=thermal, 324.83 2 from (n,n'γ), 324.90 8 from ¹³⁸ Cs β ⁻ decay (32.5 m), 324.5 3 from ¹³⁸ Cs β ⁻ decay (2.91 m), 324.8 3 from (α ,2nγ). I _γ : unweighted average of 44 3 from (n,γ) E=thermal, 64 4 from (n,n'γ), 68 4 from ¹³⁸ Cs β ⁻ decay (32.5 m), 40.5 24 from
		516.70 2	100 5	1898.588 4+	M1+E2	-0.11 4	0.01209 18	$(\alpha,2n\gamma)$. Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m), $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n' γ). δ : or -7.8 +16-18 in (n,n' γ). Others: -0.08 3 or -7.5 15 in (α ,2n γ). $\alpha(K)$ =0.01041 15; $\alpha(L)$ =0.001339 19; $\alpha(M)$ =0.000275 4 $\alpha(N)$ =5.94×10 ⁻⁵ 9; $\alpha(O)$ =9.12×10 ⁻⁶ 13; $\alpha(P)$ =6.74×10 ⁻⁷ 10 B(M1)(W.u.)=0.0047 +57-19; B(E2)(W.u.)=0.13 +39-10 E $_{\gamma}$: from (n,n' γ). Others: 516.71 12 from (n, γ) E=thermal, 516.74 12 from ¹³⁸ Cs β^- decay (32.5 m), 516.7 4 from ²³⁸ U(¹² C,F γ), 516.2 5 from ¹³⁸ Cs β^- decay (2.91 m), 516.6 3 from (α ,2n γ).
2445.550	3 ⁺	138.10 6	7.5 25	2307.515 4+	M1,E2		0.51 11	I _γ : from $(\alpha, 2n\gamma)$. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n, n'\gamma)$ and $(\alpha, 2n\gamma)$. δ: from $(\alpha, 2n\gamma)$. Other: +0.059 7 from $(n, n'\gamma)$. $\alpha(K)=0.39$ 6; $\alpha(L)=0.09$ 5; $\alpha(M)=0.020$ 11 $\alpha(N)=0.0041$ 22; $\alpha(O)=0.0006$ 3; $\alpha(P)=2.20\times10^{-5}$ 5 E _γ : weighted average of 138.08 6 from ¹³⁸ Cs β^- decay (32.5 m), and 138.13 7 from $(n, n'\gamma)$.
		227.73 6	5.08 22	2217.874 2+	M1(+E2)	+0.01 8	0.1007 15	E _γ : unweighted average of 5.0 <i>3</i> from ¹³⁸ Cs β^- decay (32.5 m), and 10 <i>I</i> from (n,n'γ). Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m). $\alpha(K)$ =0.0863 <i>13</i> ; $\alpha(L)$ =0.01140 <i>17</i> ; $\alpha(M)$ =0.00235 <i>4</i> $\alpha(N)$ =0.000507 <i>8</i> ; $\alpha(O)$ =7.76×10 ⁻⁵ <i>12</i> ; $\alpha(P)$ =5.66×10 ⁻⁶ 8 B(M1)(W.u.)=0.012 +56–7

γ (138Ba) (continued)

						γ ⁽¹³⁸ Ba)	(continued)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	δ^{\ddagger}	$lpha^\dagger$	Comments
2445.550	3+	546.975 16	35.7 13	1898.588 4+	M1+E2	-0.13 2	0.01049	E _γ : weighted average of 227.76 <i>6</i> from ¹³⁸ Cs β^- decay (32.5 m), 227.7 <i>3</i> from (α ,2n γ), 227.7 <i>3</i> from (n, γ) E=thermal, and 227.71 <i>6</i> from (n,n' γ). I _γ : weighted average of 5.06 <i>13</i> from ¹³⁸ Cs β^- decay (32.5 m), 4 <i>4</i> from (α ,2n γ), 4.4 <i>4</i> from (n, γ) E=thermal, and 6.4 <i>5</i> from (n,n' γ). Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m) and γ (θ) in (n,n' γ). δ: or -5.6 +18-46 from (n,n' γ). α(K)=0.00903 13; α(L)=0.001160 17; α(M)=0.000238 4 α(N)=5.15×10 ⁻⁵ 8; α(O)=7.90×10 ⁻⁶ 11; α(P)=5.84×10 ⁻⁷ 9 B(M1)(W.u.)=0.006 +27-3; B(E2)(W.u.)=0.21 +129-14 E _γ : weighted average of 546.990 15 from ¹³⁸ Cs β^- decay (32.5 m), 546.9 3 from (α ,2n γ), 546.89 8 from (n, γ) E=thermal, and 546.93 3 from (n,n' γ).
		1009.70 2	100.0 21	1435.805 2+	M1+E2	-2.90 <i>15</i>	0.00184	 I_γ: weighted average of 36.1 8 from ¹³⁸Cs β⁻ decay (32.5 m), 24 4 from (α,2nγ), 35.1 18 from (n,γ) E=thermal, and 39 3 from (n,n'γ). Mult.: from ce data and γ(θ) in ¹³⁸Cs β⁻ decay (32.5 m), γ(θ) and γ(pol) in (n,n'γ). δ: from (n,n'γ). α(K)=0.001585 23; α(L)=0.000206 3; α(M)=4.24×10⁻⁵ 7 α(N)=9.13×10⁻⁶ 14; α(O)=1.391×10⁻⁶ 20; α(P)=9.87×10⁻⁸ 15 B(M1)(W.u.)=0.00030 +179-15; B(E2)(W.u.)=1.5 +81-7 E_γ: from (n,n'γ). Others: 1009.78 7 from ¹³⁸Cs β⁻ decay (32.5 m), 1009.80 8 from (n,γ) E=thermal, 1009.7 3 from (α,2nγ). I_γ: from ¹³⁸Cs β⁻ decay (32.5 m).
2582.99	1+	365.18 11	14.4 12	2217.874 2+	M1(+E2)	-0.1 6	0.0291 16	Mult.: from ce data in ${}^{\bar{1}38}$ Cs β^- decay (32.5 m), $\gamma(\theta)$ in $(\alpha,2n\gamma)$, $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. δ : or -0.14 3 from $(\alpha,2n\gamma)$. Others: -2.9 1 (1984Di03) and $+0.018$ 7 (2003Go02) in $(n,n'\gamma)$. $\alpha(K)=0.0250$ 16; $\alpha(L)=0.00326$ 7; $\alpha(M)=0.000670$ 16 $\alpha(N)=0.000145$ 3; $\alpha(O)=2.22\times10^{-5}$ 4; $\alpha(P)=1.63\times10^{-6}$ 15 B(M1)(W.u.)=0.37 +18-20 E _{γ} : weighted average of 365.29 13 from 138 Cs β^- decay (32.5 m),
								and 365.10 11 from $(n,n'\gamma)$. Other: 364.65 7 from (n,γ) E=thermal. I _{γ} : weighted average of 15.3 19 from ¹³⁸ Cs β^- decay (32.5 m), and 14.0 12 from $(n,n'\gamma)$. Other: 26.5 14 from (n,γ) E=thermal for doublet (also placed from 2779 level). Mult.: D(+Q) from $\gamma(\theta)$ in $(n,n'\gamma)$, polarity from no level-parity change determined from other experimental evidence. δ : or $\delta = -2.6 + 18 - \infty$ in $(n,n'\gamma)$.

$\gamma(^{138}\text{Ba})$ (continued)

						γ (136B	a) (continued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\#}$	${\rm I_{\gamma}}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.@	δ^{\ddagger}	$lpha^\dagger$	Comments
2582.99	1+	1147.17 3	100 5	1435.805 2+	M1+E2	-0.19 11	0.00181 4	$\alpha(K)=0.00156\ 3;\ \alpha(L)=0.000196\ 4;\ \alpha(M)=4.01\times10^{-5}\ 8$ $\alpha(N)=8.66\times10^{-6}\ 16;\ \alpha(O)=1.332\times10^{-6}\ 25;\ \alpha(P)=9.97\times10^{-8}$ $20;\ \alpha(IPF)=1.78\times10^{-6}\ 3$ $B(M1)(W.u.)=0.080\ +31-24;\ B(E2)(W.u.)=1.3\ +29-12$ E_{γ} : weighted average of 1147.22 9 from $^{138}Cs\ \beta^-$ decay (32.5 m), 1147.1 3 from $(\alpha,2n\gamma)$, 1147.20 13 from (n,γ) E=thermal, and 1147.16 3 from $(n,n'\gamma)$. I_{γ} : from (n,γ) E=thermal.
		2583.03 10	20.3 12	0.0 0+	M1		9.16×10 ⁻⁴	Mult.,δ: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\text{n,n'}\gamma)$. $\alpha(\text{K})=0.000273$ 4; $\alpha(\text{L})=3.35\times10^{-5}$ 5; $\alpha(\text{M})=6.85\times10^{-6}$ 10 $\alpha(\text{N})=1.480\times10^{-6}$ 21; $\alpha(\text{O})=2.28\times10^{-7}$ 4; $\alpha(\text{P})=1.726\times10^{-8}$ 25; $\alpha(\text{IPF})=0.000600$ 9 B(M1)(W.u.)=0.0015 +7-5 E _γ : weighted average of 2583.15 13 from ^{138}Cs β ⁻ decay (32.5 m), 2583.02 16 from $(\text{n,}\gamma)$ E=thermal, and 2582.96
2639.39	2+	193.89 8	4.5 3	2445.550 3+	[M1,E2]		0.173 18	10 from (n,n'γ). I _γ : weighted average of 19.2 12 from ¹³⁸ Cs β^- decay (32.5 m), 25 5 from (n,γ) E=thermal, and 22.2 19 from (n,n'γ). Mult.: D from $\gamma(\theta)$ in (n,n'γ), polarity from no level-parity change determined from other experimental evidence. $\alpha(K)$ =0.140 8; $\alpha(L)$ =0.026 9; $\alpha(M)$ =0.0055 19 $\alpha(N)$ =0.0012 4; $\alpha(O)$ =0.00017 5; $\alpha(P)$ =8.3×10 ⁻⁶ 5
								E _γ : from ¹³⁸ Cs $β^-$ decay (32.5 m). Other: 193.9 2 from (n,n'γ). I _γ : weighted average of 4.3 3 from ¹³⁸ Cs $β^-$ decay (32.5 m) and 4.9 4 from ¹³⁸ Ba(n,n'γ).
		421.62 <i>14</i>	6.5 11	2217.874 2+	M1(+E2)	-0.08 12	0.0202 4	$\alpha(K)$ =0.0173 3; $\alpha(L)$ =0.00225 4; $\alpha(M)$ =0.000462 7 $\alpha(N)$ =9.97×10 ⁻⁵ 14; $\alpha(O)$ =1.530×10 ⁻⁵ 22; $\alpha(P)$ =1.126×10 ⁻⁶ 20 B(M1)(W.u.)=0.051 +22-21 E _{γ} : unweighted average of 421.59 7 from ¹³⁸ Cs β ⁻ decay (32.5 m), 421.87 13 from (n, γ) E=thermal, and 421.41 11 from (n,n' γ).
								I _{γ} : unweighted average of 5.6 3 from ¹³⁸ Cs β^- decay (32.5 m), 5.1 6 from (n, γ) E=thermal, and 8.7 7 from (n,n' γ). Mult.: D(+Q) from $\gamma(\theta)$ in (n,n' γ), polarity from no level-parity change determined from other experimental evidence.
		1203.82 <i>15</i>	5.2 5	1435.805 2+				δ: or $+2.9 + 18 - 9$ in $(n,n'\gamma)$. E_{γ} : weighted average of 1203.69 13 from ¹³⁸ Cs β^- decay (32.5 m), 1204.4 3 from $(\alpha,2n\gamma)$, 1203.1 20 from (n,γ) E=thermal, 1204.0 4 from $(n,n'\gamma)$.

γ (138Ba) (continued)

$E_i(level)$	J_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	δ^{\ddagger}	α^{\dagger}	Comments
2639.39	2+	2639.35 4	100 3	0.0 0+	E2		8.78×10 ⁻⁴	I _γ : weighted average of 5.2 5 from ¹³⁸ Cs $β$ ⁻ decay (32.5 m), 5.1 17 from (n,n'γ). α(K)=0.000242 4; $α(L)$ =2.96×10 ⁻⁵ 5; $α(M)$ =6.04×10 ⁻⁶ 9 α(N)=1.304×10 ⁻⁶ 19; $α(O)$ =2.01×10 ⁻⁷ 3; $α(P)$ =1.506×10 ⁻⁸ 21; $α(PF)$ =0.000599 9
								B(E2)(W.u.)=0.28 +6-7 E _γ : weighted average of 2639.59 13 from ¹³⁸ Cs β ⁻ decay (32.5 m), 2639.26 4 from (n,γ) E=thermal, 2639.7 10 from (γ,γ'), and 2639.38 3 from (n,n'γ). I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m).
2779.31	4+	333.79 10	9.3 8	2445.550 3+				Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 ruled out by RUL. E_{γ} : weighted average of 333.86 16 from 138 Cs β^- decay (32.5 m), 334.01 12 from (n,γ) E=thermal, and 333.68 8 from $(n,n'\gamma)$. I_{γ} : weighted average of 7.8 13 from 138 Cs β^- decay (32.5 m), 13 7
		363.91 4	22.2 10	2415.337 5+	M1+E2	-0.11 <i>3</i>	0.0293	from (n,γ) E=thermal, and 9.8 8 from $(n,n'\gamma)$. $\alpha(K)=0.0252$ 4; $\alpha(L)=0.00329$ 5; $\alpha(M)=0.000676$ 10 $\alpha(N)=0.0001459$ 21; $\alpha(O)=2.24\times10^{-5}$ 4; $\alpha(P)=1.639\times10^{-6}$ 24 B(M1)(W.u.)>0.012; B(E2)(W.u.)>0.35
								E _γ : weighted average of 363.93 8 from 138 Cs β^- decay (32.5 m), 363.9 3 from (α ,2n γ), and 363.90 4 from (n,n' γ). Other: 364.65 7 from (n, γ) E=thermal.
								I _{γ} : weighted average of 21.3 20 from ¹³⁸ Cs β^- decay (32.5 m), and 26 4 from (n,n' γ). Other: 48 3 from (n, γ) E=thermal for doublet (also placed from 2583 level), 10 3 from (α ,2n γ). Mult.: D+Q from $\gamma(\theta)$ in (n,n' γ), polarity from no level-parity change determined from other experimental evidence.
		880.75 10	10.4 15	1898.588 4+				δ: or $-4.7 + 6-9$ in $(n,n'\gamma)$. E_{γ} : weighted average of 880.8 3 from ¹³⁸ Cs β^- decay (32.5 m), 880.62 23 from (n,γ) E=thermal, and 880.77 10 from $(n,n'\gamma)$. I_{γ} : weighted average of 10 3 from ¹³⁸ Cs β^- decay (32.5 m), 9.3 17
		1343.54 3	100 5	1435.805 2+	(E2)		1.01×10^{-3}	from (n,γ) E=thermal, and 11.3 15 from $(n,n'\gamma)$. $\alpha(K)=0.000846$ 12; $\alpha(L)=0.0001074$ 15; $\alpha(M)=2.20\times10^{-5}$ 3 $\alpha(N)=4.75\times10^{-6}$ 7; $\alpha(O)=7.26\times10^{-7}$ 11; $\alpha(P)=5.26\times10^{-8}$ 8; $\alpha(IPF)=3.11\times10^{-5}$ 5
								B(E2)(W.u.)>0.36 E _{γ} : weighted average of 1343.59 9 from ¹³⁸ Cs β^- decay (32.5 m), 1343.4 β from (α ,2n γ), 1343.43 β from (n, γ) E=thermal, and 1343.54 β from (n,n' γ). This peak could be an unresolved doublet with the second line associated with the de-excitation of the 3242 level, but that placement is uncertain. I _{γ} : from ¹³⁸ Cs β^- decay (32.5 m). Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n' γ).

γ (138Ba) (continued)

Comments
aced only in (n,γ) E=thermal. See also 1359 γ n 3258 level.
served only in (n,γ) E=thermal.
from $(n,n'\gamma)$ only.
0.00194 <i>14</i> ; α (L)=0.000251 <i>15</i> ; α (M)=5.2×10 ⁻⁵
1.11×10 ⁻⁵ 7; α (O)=1.70×10 ⁻⁶ 11;)=1.22×10 ⁻⁷ 10
$(W.u.) > 5.8 \times 10^{-5}$; B(E2)(W.u.)>0.097
eighted average of 953.0 3 from 138 Cs β^- decay 5 m), 952.7 3 from $(\alpha,2n\gamma)$, 952.87 17 from
E=thermal, and 952.85 11 from $(n,n'\gamma)$. ighted average of 14 4 from 138 Cs β^- decay 5 m), 17 4 from $(\alpha,2n\gamma)$, 15.1 12 from (n,γ)
hermal, and 14.2 12 from $(n,n'\gamma)$.
from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$.
$-5 + 2 - 9$ in $(n,n'\gamma)$. 0.000763 11; $\alpha(L) = 9.65 \times 10^{-5}$ 14;
$I)=1.98\times10^{-5} \ 3$
4.26×10 ⁻⁶ 6; α (O)=6.52×10 ⁻⁷ 10;)=4.75×10 ⁻⁸ 7; α (IPF)=5.10×10 ⁻⁵ 8
(W.u.)>0.18
eighted average of 1415.68 <i>13</i> from ¹³⁸ Cs β ⁻ ay (32.5 m), 1415.7 <i>3</i> from (α ,2n γ), 1415.66 <i>11</i>
n (n,γ) E=thermal, and 1415.71 3 from $(n,n'\gamma)$.
om (n,γ) E=thermal. from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$.
from (n,γ) E=thermal only.
0.000344 6; α (L)=4.17×10 ⁻⁵ 8; I)=8.52×10 ⁻⁶ 16
$1.84 \times 10^{-6} \ 4; \ \alpha(O) = 2.82 \times 10^{-7} \ 5;$
$)=2.10\times10^{-8}$ 4; $\alpha(IPF)=0.000179$ 3
(W.u.)=0.00150 +20-16
eighted average of 1445.04 25 from 138 Cs β^- ay (32.5 m), 1444.8 3 from (α ,2n γ), 1444.97 6
(n, γ) E=thermal, and 1444.86 2 from $(n, n'\gamma)$. om (n, γ) E=thermal.
from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. ers: $-0.14\ 6$ or $-3.0\ 4$ from 1984Di03 in $(n,n'\gamma)$.
from (n,γ) E=thermal only.
from (n, γ) E=thermal only.
n s (1)) (e 5) i 5 h

$\gamma(^{138}\text{Ba})$ (continued)

							., (<u>′</u>
$E_i(level)$	J_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.@	δ^{\ddagger}	α^{\dagger}	Comments
2931.40	2+	1495.59 3	100 7	1435.805 2+	M1+E2	-0.75 4	1.01×10 ⁻³ 2	$\alpha(K)=0.000804\ 13;\ \alpha(L)=0.0001003\ 15;\ \alpha(M)=2.05\times10^{-5}\ 3$ $\alpha(N)=4.44\times10^{-6}\ 7;\ \alpha(O)=6.82\times10^{-7}\ 11;\ \alpha(P)=5.08\times10^{-8}\ 8;$ $\alpha(IPF)=7.64\times10^{-5}\ 11$ $B(M1)(W.u.)=0.020\ +7-6;\ B(E2)(W.u.)=3.1\ +12-9$
		2931.3 3	10.1 <i>16</i>	0.0 0+	E2		9.63×10 ⁻⁴	E _γ : weighted average of 1495.63 23 from 138 Cs β^- decay (32.5 m), 1495.5 3 from (α ,2n γ), 1495.69 11 from (n, γ) E=thermal, and 1495.58 3 from (n,n' γ). I _γ : from (n,n' γ). Mult., δ : from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n' γ). $\alpha(K)$ =0.000202 3; $\alpha(L)$ =2.46×10 ⁻⁵ 4; $\alpha(M)$ =5.02×10 ⁻⁶ 7 $\alpha(M)$ =1.083×10 ⁻⁶ 16; $\alpha(O)$ =1.668×10 ⁻⁷ 24; $\alpha(P)$ =1.255×10 ⁻⁸
								18; $\alpha(\text{IPF})=0.000730$ 11 B(E2)(W.u.)=0.030 +17-11 E _{\gamma} : weighted average of 2931.4 4 from ¹³⁸ Cs β^- decay (32.5 m), 2930.9 8 from (n, γ) E=thermal, and 2931.3 3 from (n, $\gamma'\gamma$).
	2+		7.5.00					I _{γ} : unweighted average of 10.8 21 from ¹³⁸ Cs β^- decay (32.5 m), 12.4 18 from (n, γ) E=thermal, and 7.2 11 from (n,n' γ). Mult.: Q from $\gamma(\theta)$ in (n,n' γ), M2 ruled out by RUL.
2991.07	3+	575.7 4	5.6 23	2415.337 5+				$E_{\gamma}I_{\gamma}$: from ¹³⁸ Cs β^- decay (32.5 m). Other: E_{γ} =575.7 20, I_{γ} =38 from (n,γ) E=thermal.
		683.70 <i>13</i>	32 9	2307.515 4+	M1+E2	-2.5 5	0.00460 13	$\alpha(K)$ =0.00392 12; $\alpha(L)$ =0.000538 13; $\alpha(M)$ =0.0001113 25 $\alpha(N)$ =2.39×10 ⁻⁵ 6; $\alpha(O)$ =3.60×10 ⁻⁶ 9; $\alpha(P)$ =2.43×10 ⁻⁷ 8 B(M1)(W.u.)>0.00010; B(E2)(W.u.)>1.1 E _{γ} : weighted average of 683.59 15 from ¹³⁸ Cs β ⁻ decay (32.5 m), 683.69 15 from (n, γ) E=thermal, and 683.78 13 from
								 (n,n'γ). I_γ: unweighted average of 30 4 from ¹³⁸Cs β⁻ decay (32.5 m), 18.3 17 from (n,γ) E=thermal, and 48 3 from (n,n'γ). Mult.: D+Q from γ(θ) in (n,n'γ), polarity from no level-parity change determined from other experimental evidence in (n,n'γ). δ: or -0.27 6 in (n,n'γ).
		773.20 7	56 3	2217.874 2+	M1+E2	-2.5 3	0.00342 7	$\alpha(K)$ =0.00292 6; $\alpha(L)$ =0.000394 7; $\alpha(M)$ =8.12×10 ⁻⁵ 14 $\alpha(N)$ =1.74×10 ⁻⁵ 3; $\alpha(O)$ =2.64×10 ⁻⁶ 5; $\alpha(P)$ =1.82×10 ⁻⁷ 4 B(M1)(W.u.)>0.00014; B(E2)(W.u.)>1.1 E _y : weighted average of 773.31 10 from ¹³⁸ Cs β ⁻ decay (32.5 m), 773.42 15 from (n, γ) E=thermal, and 773.15 5 from (n,n' γ). I _y : weighted average of 64 5 from ¹³⁸ Cs β ⁻ decay (32.5 m), 53 3 from (n, γ) E=thermal, and 58 5 from (n,n' γ).

γ (138Ba) (continued)

							γ (***Ba) (coi	itiliueu)	
$E_i(level)$	J_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	δ^{\ddagger}	$lpha^\dagger$	Comments
2991.07	3+	1555.25 4	100 5	1435.805	2+	M1+E2	+9.8 +21-14	8.37×10 ⁻⁴	Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\text{n,n'}\gamma)$. δ : or -0.18 4 (2003Go02) in $(\text{n,n'}\gamma)$. Other: -2.0 +4-6 (1984Di03) in $(\text{n,n'}\gamma)$. $\alpha(K)=0.000638$ 9; $\alpha(L)=8.01\times10^{-5}$ 12; $\alpha(M)=1.640\times10^{-5}$ 23 $\alpha(N)=3.54\times10^{-6}$ 5; $\alpha(O)=5.42\times10^{-7}$ 8; $\alpha(P)=3.97\times10^{-8}$ 6; $\alpha(\text{IPF})=9.83\times10^{-5}$ 14
									B(M1)(W.u.)>1.9×10 ⁻⁶ ; B(E2)(W.u.)>0.068 E _γ : weighted average of 1555.31 <i>10</i> from ¹³⁸ Cs $β$ ⁻ decay (32.5 m), 1555.54 <i>18</i> from (n,γ) E=thermal, and 1555.24 <i>3</i> from (n,n'γ). I _γ : from (n,γ) E=thermal. Mult.: from $γ(θ)$ and $γ(pol)$ in (n,n'γ). δ: from (n,n'γ) (2003Go02). Other: or 0.21 +4-3 (1984Di03) in
3049.91	2+	862.3 20	22	2189.861	(1.2^{+})				$(n,n'\gamma)$. E_{γ},I_{γ} : from (n,γ) E=thermal only.
	_	1151.26 <i>18</i>	13.2 11	1898.588					E_{γ}, I_{γ} : from $(n, n'\gamma)$. Also observed in (n, γ) E=thermal.
		1614.08 3	100 5	1435.805	2+	M1+E2	+0.16 2	9.69×10 ⁻⁴	$\alpha(K)=0.000733\ 11;\ \alpha(L)=9.10\times10^{-5}\ 13;\ \alpha(M)=1.86\times10^{-5}\ 3$ $\alpha(N)=4.02\times10^{-6}\ 6;\ \alpha(O)=6.20\times10^{-7}\ 9;\ \alpha(P)=4.66\times10^{-8}\ 7;$ $\alpha(IPF)=0.0001217\ 17$ $B(M1)(W.u.)=0.010\ 4;\ B(E2)(W.u.)=0.06\ +5-3$
									E _γ : weighted average of 1614.09 20 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1614.0 3 from (α ,2n γ), 1614.26 12 from (n, γ) E=thermal, and 1614.07 3 from (n,n' γ). This γ is also placed from 3911 level in (n, γ) E=thermal, but that placement is not confirmed in other γ studies. I _γ : from (n, γ) E=thermal. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n' γ).
									δ: from 2003Go02 in $(n,n'\gamma)$. Other: -008 5 or $3.1 + 6 - 5$ from from 1984Di03 in $(n,n'\gamma)$.
		3049.6 <i>3</i>	26.2 11	0.0	0+				E _{γ} : unweighted average of 3049.9 3 from ¹³⁸ Cs β ⁻ decay (32.5 m) and 3049.27 5 from (n, γ) E=thermal. I _{γ} : weighted average of 23 3 from ¹³⁸ Cs β ⁻ decay (32.5 m) and
									26.5 10 from (n,γ) E=thermal.
3154.71	4+	375.6 <i>2</i> 708.74 <i>18</i>	21 <i>3</i> 31 2	2779.31 2445.550					$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only. $E_{\gamma}I_{\gamma}$: from (n,γ) E=thermal only, I_{γ} normalized to
		739.31 20	44 10	2415.337	5+				$I\gamma(1256\gamma)=100$. E _γ : weighted average of 739.0 3 from (n,γ) E=thermal and 739.44 19 from (n,n'γ).
		1064.14 <i>10</i>	67 9	2090.536	6 ⁺				 I_γ: unweighted average of 34 8 from (n,γ) E=thermal and 54 5 from (n,n'γ). E_γ: weighted average of 1064.0 3 from (α,2nγ), 1064.5 3 from (n,γ) E=thermal, and 1064.11 10 from (n,n'γ). I_γ: unweighted average of 63 5 from (n,γ) E=thermal and 87 12

γ (138Ba) (continued)

							/		
	$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.@	δ^{\ddagger}	α^{\dagger}	Comments
	3154.71	4+	1256.23 10	100 9	1898.588 4+	M1+E2	-1.0 +2-3	0.00132 5	from (n,n' γ). 1995Bo05 in (n, γ) E=thermal also place this transition from the 4707 and 4115 levels but those placements are not confirmed in other γ studies. $\alpha(K)$ =0.00112 5; $\alpha(L)$ =0.000142 5; $\alpha(M)$ =2.91×10 ⁻⁵ 11 $\alpha(N)$ =6.28×10 ⁻⁶ 23; $\alpha(O)$ =9.6×10 ⁻⁷ 4; $\alpha(P)$ =7.1×10 ⁻⁸ 3; $\alpha(P)$ =1.385×10 ⁻⁵ 21
									 E_γ: weighted average of 1256.3 <i>3</i> from (n,γ) E=thermal and 1256.22 <i>10</i> from (n,n'γ). I_γ: from (n,n'γ), 100 <i>8</i> from (n,γ) E=thermal. Mult.,δ: D+Q from γ(θ) in (n,n'γ), polarity from no level-parity change determined from other experimental evidence.
1			1719.2 <mark>b</mark> 3	161 <i>13</i>	1435.805 2 ⁺				E_{γ},I_{γ} : observed in (n,γ) E=thermal only.
	3163.27	(2)+	717.61 <i>13</i>	16.5 13	2445.550 3+				E_{γ} : weighted average of 717.7 3 from ¹³⁸ Cs β^- decay (32.5 m), 717.56 13 from (n, γ) E=thermal, and 717.67 17 from (n,n' γ).
1									I_{γ} : weighted average of 16.9 13 from (n,γ) E=thermal, and 15.8 17 from $(n,n'\gamma)$.
j			855.7 <i>3</i>	9.7 8	2307.515 4+				E _{γ} : weighted average of 855.6 5 from ¹³⁸ Cs β ⁻ decay (32.5 m), 855.6 4 from (n, γ) E=thermal, and 855.7 3 from (n,n' γ).
									I_{γ} : weighted average of 9.2 8 from (n,γ) E=thermal, and
1			945.5 <i>3</i>	12.6 7	2217.874 2+				11.1 14 from $(n,n'\gamma)$. E_{γ} : weighted average of 946.0 5 from ¹³⁸ Cs β^- decay
			743.3 3	12.0 7	2217.074 2				(32.5 m) and 945.3 3 from (n,γ) E=thermal. Not observed in $(n,n'\gamma)$. I_{γ} : from (n,γ) E=thermal.
			1264.70 <i>10</i>	60 6	1898.588 4+	(Q)			E _γ : weighted average of 1264.94 <i>16</i> from ¹³⁸ Cs β^- decay (32.5 m), 1264.7 <i>3</i> from (α ,2n γ), 1264.29 <i>25</i> from (n, γ) E=thermal, and 1264.67 <i>10</i> from (n,n' γ).
									I _{γ} : weighted average of 64 4 from (n, γ) E=thermal, and 51 6 from (n,n' γ). This transition is observed as the strongest one in ¹³⁸ Cs β^- decay (32.5 m), with I(1264.7 γ)/I(1727.3 γ)=123 15/100 12.
			1727.3 2	100 7	1435.805 2+	M1(+E2)	+0.05 5	9.06×10^{-4}	Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. $\alpha(K)=0.000636$ 9; $\alpha(L)=7.87\times10^{-5}$ 11; $\alpha(M)=1.612\times10^{-5}$
			1141,34	100 /	1733.003 2	W11(⊤E2)	FU.UJ J	9.00A10	a(R)=0.000030 9, $a(L)$ =7.87×10 17, $a(M)$ =1.012×10 23 $a(N)$ =3.48×10 ⁻⁶ 5; $a(O)$ =5.36×10 ⁻⁷ 8; $a(P)$ =4.04×10 ⁻⁸
									6; α (IPF)=0.0001711 24
									B(M1)(W.u.)=0.008 +7-6
									E_{γ} : unweighted average of 1727.68 18 from ¹³⁸ Cs β^- decay (32.5 m), 1727.2 2 from (n, γ) E=thermal, and 1727.02 6 from (n,n' γ).

γ (138Ba) (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	$\mathbf{J}^\pi_{_f}$	Mult.@	δ^{\ddagger}	$lpha^\dagger$	Comments
3183.60	8 ⁺	980.6 <i>3</i>	32.4 20	2203.05	<i>f</i> 6 ⁺	E2		0.00189	I _γ : from (n,γ) E=thermal. Others: 100 9 from (n,n'γ). Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n'γ). δ: or 2.0 +5-3 in (n,n'γ). $\alpha(K)=0.001621\ 23;\ \alpha(L)=0.000213\ 3;\ \alpha(M)=4.39\times10^{-5}\ 7$ $\alpha(N)=9.43\times10^{-6}\ 14;\ \alpha(O)=1.433\times10^{-6}\ 20;\ \alpha(P)=1.005\times10^{-7}\ 14$ B(E2)(W.u.)=0.18 +47-10 E _γ : weighted average of 980.7 3 from (α,2nγ), 980.7 3 from
		1093.0 <i>3</i>	100 4	2090.536	6 ⁺	E2		1.50×10 ⁻³	$(n,n'\gamma)$, and 980.3 3 from $^{238}U(^{12}C,F\gamma),^{208}Pb(^{18}O,F\gamma)$. I_{γ} : weighted average of 31.7 20 from $(\alpha,2n\gamma)$, 42 7 from $(n,n'\gamma)$, and 32 7 from $^{238}U(^{12}C,F\gamma),^{208}Pb(^{18}O,F\gamma)$. Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and M2 ruled out by RUL. $\alpha(K)=0.001287$ 18; $\alpha(L)=0.0001669$ 24; $\alpha(M)=3.43\times10^{-5}$ 5 $\alpha(N)=7.38\times10^{-6}$ 11; $\alpha(O)=1.125\times10^{-6}$ 16; $\alpha(P)=7.99\times10^{-8}$ 12 B(E2)(W.u.)=0.32 +79–17 E_{γ} : weighted average of 1093.3 3 from $(\alpha,2n\gamma)$, 1093.1 3 from
3243.06	3	362 796.7 <i>3</i> 935.85 <i>9</i>	20 <i>3</i> 100 8	2880.66 2445.550 2307.515	3 ⁺	D+Q	+0.25 7		$(n,n'\gamma)$, and $1092.7\ 3$ from $^{238}U(^{12}C,F\gamma),^{208}Pb(^{18}O,F\gamma)$. I $_{\gamma}$: from $(\alpha,2n\gamma)$. Mult.: Q from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha,2n\gamma)$, M2 ruled out by RUL. E $_{\gamma}$: observed in (n,γ) E=thermal only. E $_{\gamma}$,I $_{\gamma}$: from $(n,n'\gamma)$ only. E $_{\gamma}$: weighted average of 935.03 12 from $^{138}Cs\ \beta^-$ decay (32.5 m), 934.81 12 from (n,γ) E=thermal, and 934.78 9 from $(n,n'\gamma)$. I $_{\gamma}$: from $(n,n'\gamma)$. Others: 100 6 from (n,γ) E=thermal, 100 9 from $^{138}Cs\ \beta^-$ decay (32.5 m).
		1343 ^b		1898.588	4+				Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. δ : or +8 +6-3 in $(n,n'\gamma)$. E_{γ} : observed in the coincidence spectrum (1995Bo05) in (n,γ) E=thermal, could be unresolved with the 1343.54 γ from 2779 level; placed by 1995Bo05 in (n,γ) E=thermal and 2003Go02 in $(n,n'\gamma)$ but it is uncertain.
		1806.81 <i>18</i>	65 14	1435.805	2+	D+Q	+0.17 5		E _{\gamma} : weighted average of 1806.65 18 from 138 Cs β^- decay (32.5 m), 1807.1 2 from (n,\gamma) E=thermal, and 1806.77 18 from (n,n'\gamma). I _{\gamma} : unweighted average of 51 6 from 138 Cs β^- decay (32.5 m), 79 6 from (n,n'\gamma). Other: 106 10 from (n,n'\gamma) E=thermal. Mult.: from $\gamma(\theta)$ in (n,n'\gamma). δ : or $-28 + 6 - \infty$ in (n,n'\gamma).
3257.24	3	1358.80 <i>11</i>	58 5	1898.588	4+	D+Q	+0.11 6		E _{γ} : weighted average of 1359.1 5 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1358.6 3 from $(\alpha, 2n\gamma)$, 1359.4 3 from (n, γ) E=thermal, and 1358.75 9 from $(n, n'\gamma)$. 1995Bo05 in (n, γ) E=thermal also place this transition from a level at 4872 level, but it is not confirmed in other γ studies. I _{γ} : weighted average of 62 25 from $(\alpha, 2n\gamma)$, 50 4 from (n, γ)

γ (138Ba) (continued)

								γ ⁽¹³⁸ Ba) (continued)		
	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E_{\gamma}}^{\#}$	${\rm I}_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	δ^{\ddagger}	$lpha^\dagger$	Comments
	3257.24	3	1821.33 8	100 8	1435.805	2+	D+Q	+0.46 4		E=thermal, and 65 4 from $(n,n'\gamma)$. Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. δ : or $-50 + 40 - 600$ in $(n,n'\gamma)$. E _{γ} : weighted average of 1821.7 3 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1821.2 3 from $(\alpha,2n\gamma)$, 1821.4 2 from (n,γ) E=thermal, and 1821.30 8 from $(n,n'\gamma)$. 1995Bo05 in (n,γ) E=thermal also place this transition from a level at 2794
	3309.4 3338.72	(5,6,7) 2 ⁺	1106.3 <i>3</i> 893.3 ^a <i>3</i> 1120.7 1902.8 2	100 <4.4 ^a 4.3 7 13.0 18	2203.05 2445.550 2217.874 1435.805	3 ⁺ 2 ⁺	D,Q			level, but it is not confirmed in other γ studies. I_{γ} : from $(n,n'\gamma)$. Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. δ : or $+4.2 +7-6$ in $(n,n'\gamma)$. Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. $E_{\gamma}I_{\gamma}$: from (n,γ) E=thermal only. $E_{\gamma}I_{\gamma}$: from (n,γ) E=thermal only. $E_{\gamma}I_{\gamma}$: from (n,γ) E=thermal only. E_{γ} : weighted average of 1903.2 4 from 138 Cs β^- decay (32.5 m) , 1902.6 2 from (n,γ) E=thermal, and 1903.0 4
10			3338.68 <i>6</i>	100 6	0.0	0+	E2		1.09×10 ⁻³	from $(n,n'\gamma)$. I_{γ} : weighted average of 30 9 from 138 Cs β^- decay (32.5 m), 14.3 $I4$ from (n,γ) E=thermal, and 11.0 $I5$ from $(n,n'\gamma)$. $\alpha(K)=0.0001618$ 23; $\alpha(L)=1.96\times10^{-5}$ 3; $\alpha(M)=4.00\times10^{-6}$ 6 $\alpha(N)=8.64\times10^{-7}$ $I2$; $\alpha(O)=1.331\times10^{-7}$ $I9$; $\alpha(P)=1.004\times10^{-8}$ $I4$; $\alpha(IPF)=0.000902$ $I3$ B(E2)(W.u.)=0.87 +45-22 E_{γ} : weighted average of 3339.01 25 from 138 Cs β^- decay
	3352.6 3359.7	(1,2 ⁺) 7 ⁺	3352.6 <i>3</i> 944.4 <i>3</i>	100 100	0.0 2415.337	0 ⁺ 5 ⁺	E2		0.00205	(32.5 m), 3338.62 5 from (n, γ) E=thermal, 3338.4 15 from (γ , γ'),(pol γ , γ'), and 3338.81 8 from (n,n' γ). I γ : from ¹³⁸ Cs β ⁻ decay (32.5 m). Mult.: Q from $\gamma(\theta)$ in (n,n' γ), M2 ruled out by RUL. E γ : from ¹³⁸ Cs β ⁻ decay (32.5 m) only. α (K)=0.001759 25; α (L)=0.000232 4; α (M)=4.79×10 ⁻⁵ 7 α (N)=1.029×10 ⁻⁵ 15; α (O)=1.562×10 ⁻⁶ 22; α (P)=1.090×10 ⁻⁷ 16 B(E2)(W.u.)=0.71 +48–21
	3366.71	2+	921.43 ^a 22 1931.2 3366.72 7	<29 ^a 7.1 <i>I</i> 2 100 2 <i>I</i>	2445.550 1435.805 0.0		E2		1.10×10 ⁻³	E _γ : weighted average of 944.2 3 from $(\alpha,2n\gamma)$, 944.7 3 from $(n,n'\gamma)$ and 944.0 5 from ${}^{238}\text{U}(^{12}\text{C},\text{F}\gamma), {}^{208}\text{Pb}(^{18}\text{O},\text{F}\gamma).$ Mult.: Q from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ and $(n,n'\gamma)$, M2 ruled out by RUL. E _γ ,I _γ : from (n,γ) E=thermal only. E _γ ,I _γ : from (n,γ) E=thermal only. $\alpha(K)$ =0.0001595 23; $\alpha(L)$ =1.93×10 ⁻⁵ 3; $\alpha(M)$ =3.94×10 ⁻⁶ 6 $\alpha(N)$ =8.52×10 ⁻⁷ 12; $\alpha(O)$ =1.312×10 ⁻⁷ 19; $\alpha(P)$ =9.90×10 ⁻⁹ 14; $\alpha(IPF)$ =0.000913 13

$\gamma(^{138}\text{Ba})$ (continued)

							γ (136Ba) (conti	inuea)	
E_i (level	J_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathtt{J}_f^π	Mult.@	δ^{\ddagger}	α^{\dagger}	Comments
3376.63	3	1069.1 <i>4</i> 1158.7 <i>5</i>	32 <i>3</i> 32 <i>3</i>	2307.515 2217.874	2+				B(E2)(W.u.)=0.8 +5-3 E _{\gamma} : weighted average of 3366.98 25 from ¹³⁸ Cs β^- decay (32.5 m), 3366.67 10 from (n, γ) E=thermal, 3365.4 15 from (γ , γ'),(pol γ , γ'), and 3366.73 7 from (n, η' γ). I _{γ} : from (n, γ) E=thermal. Mult.: Q from $\gamma(\theta)$ in (n, η' γ) and M2 ruled out by RUL. E _{γ} I _{γ} : from (n, γ) E=thermal only. E _{γ} I _{γ} : from (n, γ) E=thermal only.
		1478.28 <i>17</i>	37 3	1898.588	4+	D+Q	-0.13 12		E_{γ}, I_{γ} : from $(n, n'\gamma)$ only. Mult.: from $\gamma(\theta)$ in $(n, n'\gamma)$.
		1940.74 9	100 11	1435.805	2+	D+Q	+0.9 +4-3		δ : or $-4 + l - 6$ in $(n, n'\gamma)$. E_{γ} : weighted average of 1940.67 <i>19</i> from (n, γ) E=thermal and 1940.76 <i>9</i> from $(n, n'\gamma)$. It is also placed from the 4131 level in (n, γ) E=thermal, but not confirmed in $(n, n'\gamma)$. I_{γ} : from $(n, n'\gamma)$. Mult.,δ: from $\gamma(\theta)$ in $(n, n'\gamma)$.
3437.5	$(1,2^+)$	3437.5 6	100	0.0	0+				with $y(0)$ in (ii,ii y).
3442.18		1251.7 3	46 8	2189.861					E_{γ} , I_{γ} : from $(n, n'\gamma)$ only.
3772.10	2	3442.25 <i>13</i>	100 9	0.0	0+	Q			E _{γ} : weighted average of 3442.6 <i>6</i> from ¹³⁸ Cs β^- decay (32.5 m), 3442.30 <i>13</i> from (n, γ) E=thermal, and 3442.12 <i>18</i> from (n,n' γ). I _{γ} : from (n,n' γ).
3485.98		1040.42 <i>4</i> 1587.6 <i>4</i>	100 8 7.5 14	2445.550 1898.588					Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. E_{γ},I_{γ} : from $(n,n'\gamma)$ only.
3504.28	2-	1605.4 2 2068.15 <i>15</i>	54 5 <52	1898.588 1435.805	4+				$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only. $E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only. E_{γ} : weighted average of 2068.16 <i>15</i> from (n,γ) E=thermal and 2068.1 <i>4</i> from $(n,n'\gamma)$. Also placed from 4707 level. I_{γ} : from 39 <i>13</i> , unweighted average of 26 <i>4</i> from (n,γ) E=thermal and 52 <i>6</i> from $(n,n'\gamma)$.
		3504.91 <i>18</i>	100 8	0.0	0+	Q			E-thermal and 32 θ from $(n,n'\gamma)$. E_{γ} : weighted average of 3504.5 25 from (n,γ) E=thermal and 3504.1 2 from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$. Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$.
3562.25	(4)-	1116.71 8	100 9	2445.550	3+	E1+M2	+0.07 4	0.00194	α (K)=0.001672 24; α (L)=0.000210 3; α (M)=4.30×10 ⁻⁵ 6 α (N)=9.28×10 ⁻⁶ 13; α (O)=1.428×10 ⁻⁶ 21; α (P)=1.069×10 ⁻⁷ 16; α (IPF)=6.83×10 ⁻⁷ 10 E_{γ} , I_{γ} : from (n,n' γ) only.
3600.73	1	1663.2 <i>5</i> 2164.96 <i>12</i>	16 <i>3</i> 100 <i>10</i>	1898.588 1435.805					E _{γ} , I _{γ} : from (n,n' γ) only. Mult., δ : D+Q from $\gamma(\theta)$ in (n,n' γ), polarity from level-parity change determined by L(d,p)=3. E _{γ} ,I _{γ} : from (n,n' γ) only. E _{γ} : weighted average of 2164.99 <i>12</i> from (n, γ) E=thermal and 2164.8 <i>3</i> from (n,n' γ). I _{γ} : from (n,n' γ). Other: I(2164.96 γ)/I(3600.56 γ)=56 <i>10</i> /100 <i>12</i> from (n, γ) E=thermal.

							<u>y(</u>	i) (continued)	
$E_i(level)$	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\it \#}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ^{\ddagger}	$lpha^\dagger$	Comments
3600.73	1	3600.56 17	86 9	0.0	0+	D			E _{γ} : weighted average of 3600.52 17 from (n, γ) E=thermal and 3600.7 3 from (n,n' γ). I _{γ} : from (n,n' γ).
3610.1		1407.0 3	100	2203.05	6+	D,Q		0.00104 14	Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. α =0.00104 14; $\alpha(K)$ =0.00089 12; $\alpha(L)$ =0.00011 2 E _{γ} : weighted average of 1406.9 3 from $(\alpha,2n\gamma)$ and 1407.1 4 from $(n,n'\gamma)$.
3617.8 3622.1	0 ⁺ 10 ⁺	2182.0 <i>4</i> 438.5 <i>3</i>	100 100	1435.805 3183.60	2 ⁺ 8 ⁺	E2		0.01426	Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. E _{γ} : from $(n,n'\gamma)$ only. $\alpha(K)=0.01191$ 17; $\alpha(L)=0.00187$ 3; $\alpha(M)=0.000390$ 6 $\alpha(N)=8.31\times10^{-5}$ 12; $\alpha(O)=1.223\times10^{-5}$ 18; $\alpha(P)=7.08\times10^{-7}$ 10
3632.8	9-	449.2 3	100	3183.60	8+	E1		0.00418	B(E2)(W.u.)=1.59 +26-20 E _γ : weighted average of 438.6 <i>3</i> from $(\alpha,2n\gamma)$ and 438.3 <i>3</i> from $(n,n'\gamma)$. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha,2n\gamma)$. $\alpha(K)=0.00361$ 5; $\alpha(L)=0.000456$ 7; $\alpha(M)=9.33\times10^{-5}$ 14 $\alpha(N)=2.01\times10^{-5}$ 3; $\alpha(O)=3.05\times10^{-6}$ 5; $\alpha(P)=2.15\times10^{-7}$ 3 B(E1)(W.u.)=9.E-5 +13-4 E _γ : weighted average of 449.2 <i>3</i> from $(\alpha,2n\gamma)$, 449.2 <i>3</i> from $(n,n'\gamma)$, and 449.1 <i>3</i> from $(^{12}C,F\gamma)$, $(^{18}O,F\gamma)$.
3643.08	2+	1004.3 <i>5</i> 1744.6 2	44 <i>5</i> 100 <i>6</i>	2639.39 1898.588					Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2n\gamma)$. E_{γ}, I_{γ} : from (n, γ) E=thermal only. E_{γ} : weighted average of 1744.6 2 from (n, γ) E=thermal and 1743.95 18 from $(n, n'\gamma)$. I_{γ} : from (n, γ) E=thermal.
		2207	<126	1435.805	2+				E_{γ} : from (n, γ) E=thermal only. I_{γ} : from I_{γ} in (n, γ) E=thermal only for unresolved 2207+2212 doublet.
		3643.10 22	≤119	0.0	0+	E2		1.18×10 ⁻³	$\alpha(K)$ =0.0001398 20; $\alpha(L)$ =1.690×10 ⁻⁵ 24; $\alpha(M)$ =3.45×10 ⁻⁶ 5 $\alpha(N)$ =7.44×10 ⁻⁷ 11; $\alpha(O)$ =1.147×10 ⁻⁷ 16; $\alpha(P)$ =8.67×10 ⁻⁹ 13; $\alpha(IPF)$ =0.001022 15 B(E2)(W.u.)=0.24 +99-24 E _y : unweighted average of 3643.3 4 from ¹³⁸ Cs β ⁻ decay
3646.71	(3)-	766.03 12	100 9	2880.66	3-	M1(+E2)	-0.07 10	0.00466 8	(32.5 m), 3643.61 β from (n, γ) E=thermal, 3642.7 β from (γ , γ'),(pol γ , γ'), and 3642.8 β from (n,n' γ). I _{γ} : from (n, γ) E=thermal, possible contribution due to strong 3641 γ in ¹³⁹ Ba. Mult.: Q from $\gamma(\theta)$ in (n,n' γ), M2 ruled out by RUL. α (K)=0.00402 β ; α (L)=0.000509 β ; α (M)=0.0001045 β 0 α (N)=2.26×10 ⁻⁵ β 1; α (O)=3.47×10 ⁻⁶ β 5; α (P)=2.58×10 ⁻⁷ β 7 E γ 5: weighted average of 766.10 β 12 from ¹³⁸ Cs β 7 decay

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
					_			(32.5 m), 766.09 21 from (n,γ) E=thermal, and 765.90 14 from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$. Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$, polarity from level-parity change determined by L(d,p)=3.
3646.71	(3)-	1748.7 <i>5</i>	47 21	1898.588	4+			δ : or +1.5 5 in (n,n'γ). $E_{\gamma}I_{\gamma}$: from ¹³⁸ Cs β^- decay (32.5 m), not observed in (n,n'γ). Iγ is normalized to $I_{\gamma}(766.03\gamma)=100$.
		2210.8 <i>3</i>	53 5	1435.805	2+			E _{γ} : weighted average of 2210.7 4 from ¹³⁸ Cs β ⁻ decay (32.5 m), and 2210.9 3 from (n,n' γ).
2652.6	(1.2±)	2652.5.0	100	0.0	0+			I_{γ} : from $(n,n'\gamma)$.
3652.6 3678.2	(1,2 ⁺) 8 ⁻	3652.5 <i>8</i> 318.5 <i>3</i>	100 100	0.0 3359.7	0 ⁺ 7 ⁺	E1	0.00978	E _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m). $\alpha(K)$ =0.00842 12; $\alpha(L)$ =0.001077 16; $\alpha(M)$ =0.000221 4
3070.2	Ü	310.3 3	100	3337.1	,	Li	0.00770	$\alpha(N) = 4.73 \times 10^{-5} \ 7; \ \alpha(O) = 7.15 \times 10^{-6} \ II; \ \alpha(P) = 4.93 \times 10^{-7} \ 7$
								B(E1)(W.u.)>0.00011
								E_{γ} : from $(\alpha, 2n\gamma)$ only.
26947	1	26946.2	100	0.0	0+	D		Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2n\gamma)$.
3684.7 3693.92	1	3684.6 <i>3</i> 702.92 <i>17</i>	100 100 <i>16</i>	0.0 2991.07	3+	D		E_{γ} ,Mult.: from $(n,n'\gamma)$. E_{γ} : from ¹³⁸ Cs β^- decay (32.5 m) only.
3093.92		813.1 3	72 21	2880.66	3-			E_{γ} : weighted average of 813.0 3 from ¹³⁸ Cs β^- decay (32.5 m), 813.2 4 from (n, γ) E=thermal, and 813.0 4 from (n,n' γ).
								I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m).
		842.34 25	97 <i>14</i>	2851.444	4+			E_{γ} : weighted average of 842.21 <i>16</i> from ¹³⁸ Cs β^- decay (32.5 m) and 842.8 <i>3</i> from (n, γ) E=thermal.
		1006 7 0	00.74					I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m).
		1386.5 <i>3</i>	90 14	2307.515	4 ⁺			E _y : weighted average of 1386.39 21 from ¹³⁸ Cs β^- decay (32.5 m) and 1387.0 4 from (n,n'y).
3734.4	2+	3734.3 <i>3</i>	100	0.0	0+	E2	1.21×10^{-3}	I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m). α (K)=0.0001341 <i>19</i> ; α (L)=1.621×10 ⁻⁵ 23; α (M)=3.31×10 ⁻⁶ 5
3/34.4	۷	3734.3 3	100	0.0	U	E2	1.21×10	$\alpha(N)=7.14\times10^{-7}\ 10;\ \alpha(O)=1.101\times10^{-7}\ 16;\ \alpha(P)=8.32\times10^{-9}\ 12;$ $\alpha(IPF)=0.001060\ 15$
								B(E2)(W.u.)=0.23 +23-15
								E_{γ} : from $(n,n'\gamma)$. Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 ruled out by RUL.
3800.06	2+	1582.0 <i>4</i>	26 5	2217.874	2+			Figure 2. From $(n,n'\gamma)$. If $(n,n'\gamma)$, will fused out by KOL.
		3800.1 <i>3</i>	100 9	0.0	0+	E2	1.24×10^{-3}	$\alpha(K) = 0.0001303 \ 19; \ \alpha(L) = 1.574 \times 10^{-5} \ 22; \ \alpha(M) = 3.21 \times 10^{-6} \ 5$
								$\alpha(N)=6.93\times10^{-7}\ 10;\ \alpha(O)=1.069\times10^{-7}\ 15;\ \alpha(P)=8.08\times10^{-9}\ 12;\ \alpha(PF)=0.001086\ 16$
								B(E2)(W.u.)=0.15 +33-11 E_{γ} , I_{γ} : from $(n, n'\gamma)$.
								Mult.: Q from $\gamma(\theta)$ in $(n,n'\gamma)$, M2 ruled out by RUL.
3837.50	(2^{+})	957.6 <mark>a</mark> 4	<31 ^a	2880.66	3-			E_{γ},I_{γ} : from (n,γ) E=thermal only.
		1620.10 23	100 7	2217.874				E_{γ}, I_{γ} : from (n, γ) E=thermal only.
		2401.46 <i>11</i>	93 11	1435.805	2+			E_{γ}, I_{γ} : from (n, γ) E=thermal only.

$E_i(level)$	J_i^π	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^π	Mult.@	δ^{\ddagger}	$lpha^\dagger$	Comments
3837.50 3859.5	(2 ⁺) (5) ⁻	3837 1960.9 <i>3</i>	100		0 ⁺ 4 ⁺	(D)	0.20.10	0.0540.2	E_{γ} : from (n,γ) E=thermal only. E_{γ} ,Mult.: from $(n,n'\gamma)$.
3910.5	10+	288.4 3	14 7	3622.1	10 ⁺	M1+E2	-0.38 10	0.0540 2	$\alpha(K)$ =0.0460 3; $\alpha(L)$ =0.00630 10; $\alpha(M)$ =0.00129 2; $\alpha(N+)$ =0.00035 1 B(M1)(W.u.)>0.0065; B(E2)(W.u.)>4.2 E _{γ} : weighted average of 288.5 3 from (α ,2n γ) and 288.2 3 from (12 C,F γ),(18 O,F γ). I _{γ} : unweighted average of 12 4 from (α ,2n γ) and 34 12 from (12 C,F γ),(18 O,F γ).
		726.0.3	100 4	2102.60	0+	F2		0.00275	Mult., δ : from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, polarity from level-parity change determined fro other experimental evidence.
		726.9 3	100 4	3183.60	8+	E2		0.00375	$\alpha(K)=0.00320\ 5;\ \alpha(L)=0.000441\ 7;\ \alpha(M)=9.11\times10^{-5}\ 13$ $\alpha(N)=1.96\times10^{-5}\ 3;\ \alpha(O)=2.94\times10^{-6}\ 5;\ \alpha(P)=1.96\times10^{-7}\ 3$ B(E2)(W.u.)>4.1 E_{γ} : weighted average of 727.1 3 from $(\alpha,2n\gamma)$ and 726.7 3 from $(^{12}C,F\gamma),(^{18}O,F\gamma)$. I_{γ} : from $(\alpha,2n\gamma)$.
3922.13	(3)-	1041.50 11	37 2	2880.66	3-				Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2n\gamma)$. E_{γ} : weighted average of 1041.4 3 from ¹³⁸ Cs β^- decay (32.5 m) and 1041.51 11 from (n,γ) E=thermal. I_{γ} : weighted average of 54 14 from ¹³⁸ Cs β^- decay (32.5 m) and 37 2 from (n,γ) E=thermal.
		1614.26 <i>12</i>	133 7	2307.515	4+				$E_{\gamma}I_{\gamma}$: from (n,γ) E=thermal only.
		2023.62 8	100 9	1898.588		(E1)		8.38×10 ⁻⁴	$\alpha(K) = 0.000453 \ 7; \ \alpha(L) = 5.59 \times 10^{-5} \ 8; \ \alpha(M) = 1.144 \times 10^{-5} \ 16$ $\alpha(N) = 2.47 \times 10^{-6} \ 4; \ \alpha(O) = 3.81 \times 10^{-7} \ 6; \ \alpha(P) = 2.87 \times 10^{-8} \ 4;$ $\alpha(IPF) = 0.000315 \ 5$
									E _{\gamma} : weighted average of 2023.93 20 from 138 Cs β^- decay (32.5 m), 2023.59 7 from (n,\gamma) E=thermal, and 2023.5 3 from (n,n'\gamma). I _{\gamma} : from (n,n'\gamma) E=thermal. Mult.: (D) from $\gamma(\theta)$ in (n,n'\gamma), polarity from level-parity
		2486.51 <i>17</i>	17 2	1435.805	2+				change determined by L(d,p)=1. E_{γ} : weighted average of 2487.1 6 from ¹³⁸ Cs β^- decay (32.5 m), 2486.48 17 from (n, γ) E=thermal, and 2486.1 8 from (n,n' γ). I_{γ} : weighted average of 19 7 from ¹³⁸ Cs β^- decay (32.5 m),
3931.18		1515.8 4	30 7	2415.337					17 2 from (n,γ) E=thermal, and 16 5 from $(n,n'\gamma)$. $E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only.
2024.97	2+	2032.6 3	100 10	1898.588					E_{γ}, I_{γ} : from $(n, n'\gamma)$ only.
3934.87	2+	596.2 <i>4</i> 1054.36 <i>16</i>	16 <i>6</i> 100 <i>12</i>	3338.72 2880.66	2 ⁺ 3 ⁻				$E_{\gamma}J_{\gamma}$: from ¹³⁸ Cs β^{-} decay (32.5 m) only. E_{γ} : weighted average of 1054.32 <i>15</i> from ¹³⁸ Cs β^{-} decay (32.5 m), 1054.9 <i>3</i> from (n, γ) E=thermal, and 1054.2 <i>2</i> from (n,n' γ).

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f J_f^π	Mult.@	α^{\dagger}	Comments
3934.87	2+	1627.8 <i>4</i>	78 10	2307.515 4+			E_{γ}, I_{γ} : from $(n, n'\gamma)$ only.
		1717.1 <i>3</i>	67 15	2217.874 2+			$E_{\gamma}I_{\gamma}$: from ¹³⁸ Cs β^- decay (32.5 m) only.
		2499.4 3	77 9	1435.805 2 ⁺			E _y : weighted average of 2499.4 3 from ¹³⁸ Cs β ⁻ decay (32.5 m),
		2477.4 3	11 9	1433.003 2			2499.8 5 from (n,γ) E=thermal, and 2499.3 3 from $(n,n'\gamma)$.
							I_{γ} : from $(n,n'\gamma)$.
		3935.2 5	11.2	$0.0 0^{+}$			E_{γ} . From (138Cs β^- decay (32.5 m) only.
4001 47	2(+)		11 2				
4001.47	2(.)	2566	23 17	1435.805 2+	0		E_{γ},I_{γ} : from $(n,n'\gamma)$ only.
		4001.40 11	100 12	$0.0 0^{+}$	Q		E _{γ} : weighted average of 4001.41 11 from (n,γ) E=thermal and 4001.2
							4 from $(n,n'\gamma)$.
1011 00	(a+ a ++)	240 = 4		2512.00 24			I_{γ} : from $(n,n'\gamma)$.
4011.9?	$(2^+,3,4^+)$	368.7 <i>4</i>	64 25	3643.08 2 ⁺			$\dot{E}_{\gamma}, I_{\gamma}$: from ¹³⁸ Cs β^- decay (32.5 m) only. $\dot{E}_{\gamma}, I_{\gamma}$: from ¹³⁸ Cs β^- decay (32.5 m) only.
		754.5 <i>4</i>	$1.0 \times 10^2 \ 4$	3257.24 3			E_{γ}, I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m) only.
		2114.3 7	60 27	1898.588 4 ⁺			E_{γ} , I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m) only.
4013.7	$(1,2^+)$	2578.1 ^a 3	<182 ^a	1435.805 2+			E_{γ}, I_{γ} : from (n, γ) E=thermal only.
		4012.7 6	100 <i>15</i>	$0.0 0^{+}$			E'_{γ}, I'_{γ} : from (n, γ) E=thermal only.
4026.00	1-	2590.71 24	≈23	1435.805 2+			E_{γ}, I_{γ} : from (n, γ) E=thermal. Other: $I_{\gamma} < 5$ from 1995He25 in (γ, γ') .
		4025.80 12	<100	$0.0 0^{+}$	E1	1.75×10^{-3}	$\alpha(K) = 7.23 \times 10^{-5} \ 11; \ \alpha(L) = 8.60 \times 10^{-6} \ 12; \ \alpha(M) = 1.752 \times 10^{-6} \ 25$
							$\alpha(N)=3.78\times10^{-7}$ 6; $\alpha(O)=5.83\times10^{-8}$ 9; $\alpha(P)=4.41\times10^{-9}$ 7;
							$\alpha(\text{IPF})=0.001665\ 24$
							B(E1)(W.u.)<0.002
							E_{γ}, I_{γ} : from (n, γ) E=thermal, also placed as primary transition.
							Mult.: from $\gamma(\text{lin pol})$ in (pol γ, γ') and $\gamma(\theta)$ in $(n, n'\gamma)$.
4079.88	$(1)^{-}$	1199.15 24	100 18	2880.66 3-			$E_{\gamma}I_{\gamma}$: unplaced γ in ¹³⁸ Cs β^- decay (32.5 m). Seen and placed in
1077.00	(1)	11//.15 27	100 10	2000.00			(n,γ) E=thermal.
		4080.1 5	10.5 14	$0.0 0^{+}$			$E_{\gamma}I_{\gamma}$: from ¹³⁸ Cs β^- decay (32.5 m).
4083.4	$(1,2^+)$	4083.3 <i>4</i>	100.5 14	$0.0 0^{+}$			$L_{\gamma,1\gamma}$. Holii $Cs p$ decay (32.3 iii).
4114.8	(1,2)	482.0 3	100	3632.8 9	D,Q		E_{γ} , Mult.: from $(\alpha, 2n\gamma)$.
4115.42	$(1,2^+)$	749.38 <i>24</i>	27 6	3366.71 2 ⁺	بر,		L_{γ} , where $(\alpha, 2\pi_{\gamma})$.
1113.74	(1,2)	1064.5 3	<33	3049.91 2 ⁺			E_{γ} : placed only in (n,γ) E=thermal. See 1064.14 γ from 3155 level.
		2679.65 8	30 4	1435.805 2 ⁺			Ly. placed only in (n, y) L-dictilial. See 1004.14y Holli 3133 level.
		4114.5 3	100 8	$0.0 0^{+}$			
4130.55		1940.67 <i>19</i>	100 8	2189.861 (1,2 ⁺)			E_{γ} : see also 1940.7 γ from 3377 level.
4143.3	$(1)^{-}$	4143.2 3	100	$0.0 0^+$			Ly. see also 1770.17 Holli 3311 level.
4157.5	(1)	247.0 3	100	3910.5 10 ⁺	D,Q		E_{γ} , Mult.: from $(\alpha, 2n\gamma)$.
4165.1	$(4)^{-}$	1284.4 3	100	2880.66 3	٠,٧		E_{γ} , which is then $(\alpha, 2\pi\gamma)$. E_{γ} : from $(n, n'\gamma)$.
4197.15	(1,2,3)	2761.32 10	100	1435.805 2 ⁺			Σγ. ποιπ (π,π /).
4242.11	(1,2,3) $(1,2^+)$	2806.28 18	100 10	1435.805 2 ⁺			E_{γ} : unweighted average of 2806.57 17 from ¹³⁸ Cs β^- decay (32.5 m).
7242.11	(1,2)	2000.20 10	100 10	1733.003 4			2805.97 10 from (n,γ) E=thermal, and 2806.3 11 from $(n,n'\gamma)$.
							I_{γ} : from (n, γ) E=thermal.
		4242	20	$0.0 0^{+}$			E_{γ} : seen only in (n,γ) E=thermal.
1200.27	(1.2)-						Ey. Seen only in (n,y) E-merman.
4280.24	$(1,2)^{-}$	1398.46 22	73 8	2880.66 3-			
		1695.9 <mark>&</mark> 2	100 6	2582.99 1+			
		2061.5 4	<97	2217.874 2+			E_{γ}, I_{γ} : also placed from 4508 level.

$\gamma(^{138}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	\mathbb{E}_f	J_f^π	Mult.@	Comments
4280.24	$(1,2)^{-}$	2845 <i>3</i>	54	1435.805	2+		
		4280.31 8	<27	0.0	0_{+}		E_{γ} : also placed as a primary transition in (n,γ) E=thermal.
4323.56	1-	957.6 <mark>a</mark> 4	<13 ^a	3366.71	2+		
		1158.7 5	10.3 9	3163.27	$(2)^{+}$		
		4323.50 7	100 6	0.0	0+	D	E _{γ} : weighted average of 4323.37 7 from (n, γ) E=thermal, 4323.0 7 from (γ , γ') and 4323.2 4 from (n,n' γ).
1222 27	(1.0±)	2005 (28 0		1 425 005	2+		Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$.
4332.27	$(1,2^+)$	2895.62 ^{&} 9		1435.805			
1250 17	(1+ 2.2)	4332.23 6	06.0	0.0	0+		E_{γ} : also placed as a primary transition in (n,γ) E=thermal.
4359.47	$(1^+,2,3)$	1116.4 <i>3</i> 1913.9 <i>1</i>	96 8 92 8	3243.06 2445.550	3		
		2923.7 3	92 8 100 <i>19</i>	1435.805			
4445.48	1-	4445.40 <i>7</i>	100 19	0.0	0 ⁺		
4508.09	$(2^+,3)$	2061.9 4	100 10	2445.550			E_{γ} : unweighted average of 2062.34 17 from ¹³⁸ Cs β^- decay (32.5 m) and 2061.5 4
4306.09	(2 ,3)	2001.9 4	100 10	2445.550	3		from (n,γ) E=thermal. Also placed from 4280 level in (n,γ) E=thermal. I_{γ} : from 138 Cs β^- decay (32.5 m).
		2600 54 16	30 5	1898.588	4+		E_{γ} : weighted average of 2609.3 3 from ¹³⁸ Cs β ⁻ decay (32.5 m) and 2609.61 16 from
		2609.54 <i>16</i>	30 3	1090.300	4		(n,γ) E=thermal.
							I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m).
		3073.4 9	17 <i>4</i>	1435.805	2+		\dot{E}_{γ} : unweighted average of 3072.5 4 from ¹³⁸ Cs β^- decay (32.5 m) and 3074.25 11 from (n, γ) E=thermal.
							I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m).
4535.99	1-	893.3 ^a 3	<16 ^a	3643.08			
		2345.86 ^a 18	<51 ^a	2189.861	$(1,2^+)$		
		3096.6 ^b 6	110 <i>16</i>	1435.805	2+		E_{γ} : placed only in (n,γ) E=thermal. Poor fit, inconsistent with level-energy difference=3100. The evaluator has considered this placement questionable.
		4535.93 9	100 5	0.0	0+		E_{γ} : weighted average of 4535.94 6 from (n,γ) E=thermal and 4535.1 6 from (γ,γ') ,(pol γ,γ').
4564.45	$(2,3)^{-}$	921.43 ^a 22	<64 ^a	3643.08	2+		and the second of the second o
	,	1981.55 <i>15</i>	73 9	2582.99	1+		
		2257.31 18	60 7	2307.515	4+		
		2345.86 ^a 18	<91 <mark>a</mark>	2217.874	2+		
		3129.5 5	100 14	1435.805	2+		
4580.19	(1,2,3)	1337.65 24	71 8	3243.06	3		
		3143.98 20	100 33	1435.805			
4584.2		962.1 <i>3</i>	100	3622.1	10+		E_{γ} : from $(\alpha, 2n\gamma)$.
4586.3	$(1)^{-}$	3150.6 4	100 12	1435.805			
		4585.6 7	<86	0.0	0+		E_{γ} : also placed as a primary transition in (n,γ) E=thermal.
4615.46		3179.62 <i>15</i>	100	1435.805			E_{γ} : from $(n, n'\gamma)$.
4629.73		1778.25 23	100 17	2851.444			E_{γ},I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m).
		2731.12 <i>15</i> 1766.2 <i>3</i>	87 <i>6</i>	1898.588			E_{γ} , I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m).
4645.72			36 <i>4</i>	2880.66			

E_i (level)	J_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. @	α^{\dagger}	Comments
4645.72	$(1,2,3)^-$	1850.1 ^b 2	100 7	2795.2?	$(1,2^+)$			
	(-,-,-)	3209.75 10	75 14	1435.805				
4665.14	$(1^-,2^+)$	1784.7 <i>3</i>	85 10	2880.66	3-			
		2082.95 14	100 15	2582.99	1+			
		3230.01 <mark>&</mark> 9	35 20	1435.805	2+			
		4664.12 ^{&} 11	31 4	0.0	0+			
4689.0	12 ⁺	778.5 3	100	3910.5	10 ⁺	E2	0.00318	$\alpha(K)$ =0.00272 4; $\alpha(L)$ =0.000370 6; $\alpha(M)$ =7.65×10 ⁻⁵ 11 $\alpha(N)$ =1.642×10 ⁻⁵ 23; $\alpha(O)$ =2.48×10 ⁻⁶ 4; $\alpha(P)$ =1.676×10 ⁻⁷ 24
								B(E2)(W.u.)>3.3 E _{γ} : weighted average of 778.6 3 from (α ,2n γ) and 778.4 3 from
								$(^{12}\text{C},\text{F}\gamma),(^{18}\text{O},\text{F}\gamma).$
4704.3	(11-)	1071 2 3	100.30	2622.0	0-			Mult.: Q from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, M2 ruled out by RUL.
4704.2	(11^{-})	1071.3 3	100 30	3632.8	9-			E_{γ}, I_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
4707 41	1-	1082.1 3	100 30	3622.1	10 ⁺			E_{γ}, I_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
4707.41	1-	1064.5 <i>3</i> 2068.16 <i>15</i>	<93 <134	3643.08 2639.39	2 ⁺ 2 ⁺			E_{γ} : placed only in (n,γ) E=thermal. See 1064.14 γ from 3155 level. E_{γ} , I_{γ} : also placed from 3504 level in (n,γ) E=thermal.
		4707.21 <i>11</i>	100 7	2039.39	0+			E_{γ} , I_{γ} : also placed from 3304 level in (n, γ) E=thermal. E_{γ} : other: 4705.6 9 from (γ, γ') .
4743.44	$(2,3)^{-}$	1501.0 3	55 5	3243.06	3			Ly. onler. $\pm 700.0 \times 110 \text{III} (\gamma, \gamma)$.
7/75,77	(2,3)	2104.08 16	100 14	2639.39	2+			
		2525.9 <i>3</i>	48 6	2217.874				
		3306.4 <i>3</i>	100 14	1435.805				
4795.78	$(2,3)^{-}$	957.6 <mark>a</mark> 4	48 ^a 4	3837.50	(2^{+})			
		2578.1 ^a 3	100 ^a 11	2217.874	2+			
		3360.1 <i>3</i>	41 6	1435.805	2+			
4855.52	1(-)	921.43 ^a 22	<87 ^a	3934.87	2+			
		2272.6 <i>6</i>	36 5	2582.99	1+			
10.50		4855.11 <i>14</i>	100 19	0.0	0+			
4863.9	(2.2)=	1241.8 3	100	3622.1	10+			E_{γ} : from $(\alpha, 2n\gamma)$.
4871.74	(2,3)	1821.4 2	<107	3049.91	2+			E_{γ} , I_{γ} : placed only by 1995Bo05 in (n,γ) E=thermal, not confirmed in other γ studies. See also 1821 γ from 3258 level.
		3436.40 22	<100	1435.805				E_{γ} , I_{γ} : placed only by 1995Bo05 in (n,γ) E=thermal, not confirmed in other γ studies. See also 3436 γ from 3436 level.
5027.67	$(2^{-},3)$	3591.81 <i>17</i>	100	1435.805				220 12 200 10
5128.4		1506.3 5	100	3622.1	10 ⁺			E_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
5145.5	1	5145.4 6		0.0	0+			220 12 200 . 10 .
5186.0	(13^{-})	481.8 <i>3</i>	100	4704.2	(11^{-})			E_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
5284.0	1	5283.9 7	100	0.0	0+			22877/12 G = 20877/18 G = 3
5358.3	.()	1736.4 5	100	3622.1	10+			E_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
5390.8	1(-)	5390.7 6		0.0	0+			220 12 200 10
5394.2	(13^{-})	705.2 3	100	4689.0	12+			E_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
5475.8	1	5475.7 6		0.0	0+			
5511.6	1-	4076		1435.805	2+			

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult. @	α^{\dagger}	Comments
5511.6	1-	5511.3 10		0.0	0+	E1	0.00221	$\alpha(K)=4.77\times10^{-5}$ 7; $\alpha(L)=5.65\times10^{-6}$ 8; $\alpha(M)=1.151\times10^{-6}$ 17 $\alpha(N)=2.48\times10^{-7}$ 4; $\alpha(O)=3.83\times10^{-8}$ 6; $\alpha(P)=2.91\times10^{-9}$ 4; $\alpha(IPF)=0.00216$ 3
5582.2	1-	5582.1 7		0.0	0+	E1	0.00223	$\alpha(K) = 2.46 \times 10^{-5} \ 7$; $\alpha(L) = 5.56 \times 10^{-6} \ 8$; $\alpha(M) = 1.132 \times 10^{-6} \ 16$ $\alpha(N) = 2.44 \times 10^{-7} \ 4$; $\alpha(O) = 3.77 \times 10^{-8} \ 6$; $\alpha(P) = 2.86 \times 10^{-9} \ 4$; $\alpha(IPF) = 0.00218 \ 3$ $\alpha(E) = 0.00105 \ 19 - 20$
5644.8	1-	4209		1435.805	2+			D(D1)(\(\text{1.4.1}\) 0.00102 \(\text{1.7}\) 20
		5644.6 5		0.0	0+	E1	0.00225	$\alpha(K)=4.62\times10^{-5}$ 7; $\alpha(L)=5.48\times10^{-6}$ 8; $\alpha(M)=1.116\times10^{-6}$ 16 $\alpha(N)=2.41\times10^{-7}$ 4; $\alpha(O)=3.71\times10^{-8}$ 6; $\alpha(P)=2.82\times10^{-9}$ 4; $\alpha(IPF)=0.00220$ 3
5655.4	1-	5655.3 7		0.0	0+	E1	0.00225	$\alpha(K)$ =4.61×10 ⁻⁵ 7; $\alpha(L)$ =5.47×10 ⁻⁶ 8; $\alpha(M)$ =1.113×10 ⁻⁶ 16 $\alpha(N)$ =2.40×10 ⁻⁷ 4; $\alpha(O)$ =3.70×10 ⁻⁸ 6; $\alpha(P)$ =2.81×10 ⁻⁹ 4; $\alpha(IPF)$ =0.00220 3 B(E1)(W.u.)=0.0016 4
5694.6	1-	5694.5 7		0.0	0_{+}	E1	0.00226	$\alpha(K)=4.57\times10^{-5}$ 7; $\alpha(L)=5.42\times10^{-6}$ 8; $\alpha(M)=1.103\times10^{-6}$ 16
								$\alpha(N)=2.38\times10^{-7}$ 4; $\alpha(O)=3.67\times10^{-8}$ 6; $\alpha(P)=2.79\times10^{-9}$ 4; $\alpha(IPF)=0.00221$ 3 B(E1)(W.u.)=0.00105 +18-19
5741.8 5743.0	(11^+) 1^-	2119.8 <i>8</i> 4307	100 10	3622.1 1435.805	10 ⁺			I_{γ} : from $I_{\gamma}(4307)/I_{\gamma}(5742.9)=0.10 \ I$ in (γ, γ') .
3743.0	1	5742.9 <i>7</i>	100	0.0	0+	E1	0.00228	$\alpha(K) = 4.52 \times 10^{-5} \ 7; \ \alpha(L) = 5.36 \times 10^{-6} \ 8; \ \alpha(M) = 1.091 \times 10^{-6} \ 16$
		3142.7	100	0.0	O	Li	0.00220	$\alpha(N)=2.36\times10^{-7}$ 4; $\alpha(O)=3.63\times10^{-8}$ 5; $\alpha(P)=2.76\times10^{-9}$ 4; $\alpha(IPF)=0.00223$ 4 B(E1)(W.u.)=0.00138 +27-25
5752.5	1	5752.4 8		0.0	0_{+}			
5766.4	1-	5766.3 6		0.0	0+	E1	0.00228	$\alpha(K)$ =4.50×10 ⁻⁵ 7; $\alpha(L)$ =5.33×10 ⁻⁶ 8; $\alpha(M)$ =1.085×10 ⁻⁶ 16 $\alpha(N)$ =2.34×10 ⁻⁷ 4; $\alpha(O)$ =3.61×10 ⁻⁸ 5; $\alpha(P)$ =2.74×10 ⁻⁹ 4; $\alpha(IPF)$ =0.00223 4 B(E1)(W.u.)=0.0017 3
5815.1	1-	5815.0 7		0.0	0+	E1	0.00230	$\alpha(K)=4.45\times10^{-5} \ 7; \ \alpha(L)=5.28\times10^{-6} \ 8; \ \alpha(M)=1.074\times10^{-6} \ 15$ $\alpha(N)=2.32\times10^{-7} \ 4; \ \alpha(O)=3.57\times10^{-8} \ 5; \ \alpha(P)=2.71\times10^{-9} \ 4; \ \alpha(IPF)=0.00225 \ 4$ $\alpha(N)=0.00118 \ +2I-20$
5873.7	1-	5873.6 6		0.0	0^{+}	E1	0.00231	$\alpha(K) = 4.39 \times 10^{-5} \ 7; \ \alpha(L) = 5.21 \times 10^{-6} \ 8; \ \alpha(M) = 1.060 \times 10^{-6} \ 15$
								$\alpha(N)=2.29\times10^{-7}$ 4; $\alpha(O)=3.53\times10^{-8}$ 5; $\alpha(P)=2.68\times10^{-9}$ 4; $\alpha(IPF)=0.00226$ 4 B(E1)(W.u.)=0.0028 5
5921.6	(14^{-})	527.4 <i>4</i>	100	5394.2	(13^{-})			
5925.5	(12^{+})	183.7 5	54 21	5741.8	(11^{+})			
		567.3 <i>3</i> 797.1 <i>4</i>	100 <i>30</i> 49 <i>25</i>	5358.3 5128.4				
		1221.2 5	44 21	4704.2	(11^{-})			
		1236.4 4	98 30	4689.0	12+			
		2303.6 8	23 12	3622.1	10 ⁺			
5963.6	1-	5963.5 6		0.0	0+	E1	0.00234	$\alpha(K)$ =4.31×10 ⁻⁵ 6; $\alpha(L)$ =5.11×10 ⁻⁶ 8; $\alpha(M)$ =1.039×10 ⁻⁶ 15 $\alpha(N)$ =2.24×10 ⁻⁷ 4; $\alpha(O)$ =3.46×10 ⁻⁸ 5; $\alpha(P)$ =2.63×10 ⁻⁹ 4; $\alpha(IPF)$ =0.00229 4 B(E1)(W.u.)=0.0021 4
6102.3	1-	6102.2 7		0.0	0^{+}	E1		B(E1)(W.u.)=0.0021 4 B(E1)(W.u.)=0.0027 15
6114.6	1-	6114.5 9		0.0	0+	E1		B(E1)(W.u.)=0.0015 5
6193.0	1-	6192.9 5		0.0	0_{+}	E1		B(E1)(W.u.)=0.0043 +9-8
6198.4	(15^{-})	804.2 <i>3</i>	100	5394.2	(13^{-})			

$\gamma(^{138}\text{Ba})$ (continued)

$E_i(level)$	J_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	\mathbb{E}_f	J^π_f	Mult.	Comments
6210.9	(13^{+})	285.4 3	100 33	5925.5	(12^{+})		
		1521.9 5	35 <i>13</i>	4689.0	12+		
6244.8	1-	6244.6 8		0.0	0_{+}	E1	B(E1)(W.u.)=0.00127 +20-21
6348.0	1-	4912	16	1435.805			I_{γ} : from $I_{\gamma}(4912)/I_{\gamma}(6348)=0.16 +54-15$ in (γ, γ') .
		6347.9 8	100	0.0	0+	E1	B(E1)(W.u.) = 0.0020 + 30 - 8
6361.8	1-	6361.6 6		0.0	0+	E1	B(E1)(W.u.)=0.0028 5
6410.3	1-	6410.1 6		0.0	0+	E1	B(E1)(W.u.)=0.0051 + 10-9
6434.5	1-	6434.3 6		0.0	0+	E1	B(E1)(W.u.)=0.0048 + 9-8
6466.0	1	6465.8 7		0.0	0+		
6486.5	1	6486.3 9		0.0	0+		
6552.8	1	6552.6 8		0.0	0 ⁺		
6575.5	1	6575.3 8		0.0			
6612.9 6635.3	1	6612.7 <i>6</i> 6635.1 8		0.0 0.0	0 ⁺		
6657.6	$\frac{1}{(14^+)}$	446.7 3	100	6210.9	(13^+)		
6663.9	1	6663.7 7	100	0.0	0+		
6678.8	1	6678.6 5		0.0	0+		
6693.6	1	6693.4 5		0.0	0+		
6703.7	1	6703.5 6		0.0	0+		
6759.4	(16 ⁻)	837.8 4	100	5921.6	(14^{-})		
6802.1	1	6801.9 8	100	0.0	0+		
6813.6	1	6813.4 <i>6</i>		0.0	0^{+}		
6821.8	1	6821.6 <i>11</i>		0.0	0^{+}		
6839.3	1	6839.1 8		0.0	0^{+}		
6848.5	1	6848.3 <i>7</i>		0.0	0_{+}		
6862.2	1	6862.0 <i>6</i>		0.0	0_{+}		
6870.6	1	6870.4 <i>7</i>		0.0	0_{+}		
6895.0	1	6894.8 <i>6</i>		0.0	0_{+}		
6922.3	1	6922.1 8		0.0	0_{+}		
6957.0	1	6956.8 12		0.0	0+		
6981.1	1	6980.9 8		0.0	0+		
6988.8	(14^{+})	778.0 4	100 35	6210.9	(13^{+})		
		1067.1 5	65 28	5921.6	(14 ⁻)		
7040.2	1	1802.6 6	54 26	5186.0	(13-)		
7040.3	1	7040.1 9		0.0	0_{+}		
7106.1	1	7105.9 15		0.0			
7144.0	1	7143.8 9	100	0.0	0^{+}		
7155.8 7211.8	(17 ⁻)	957.4 <i>5</i> 7211.6 <i>8</i>	100	6198.4 0.0	(15 ⁻) 0 ⁺		
7211.8	(15^{+})	239.0 4	31 <i>14</i>	6988.8	(14^{+})		
1221.1	(15)	570.1 3	100 30	6657.6	(14^{+}) (14^{+})		
7276.0	1	7275.8 10	100 30	0.0	0+		
7334.3	1	7334.1 10		0.0	0+		
1337.3	1	1337.1 10		0.0	U		

$\gamma(^{138}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
7376.8	1	7376.6 9		0.0	0+	7871.3	1	7871.1 <i>10</i>	·	$0.0 \ 0^{+}$
7403.6		1205.2 5	100	6198.4	(15^{-})	7980.5	(17^+)	446.7 5	100	7533.8 (16 ⁺)
7533.8	(16^{+})	306.1 <i>3</i>	100	7227.7	(15^{+})	8012.7		856.9 <i>5</i>	100	7155.8 (17-)
7546.9	1	7546.7 22		0.0	0_{+}	8075.9	1	8075.6 8		$0.0 0^{+}$
7705.8	1	7705.6 12		0.0	0_{+}	8281.9	(18^{+})	301.4 4	100	7980.5 (17+)
7774.2	1	7774.0 <i>7</i>		0.0	0_{+}	8433.5	1-	8433.2 <i>14</i>		$0.0 0^{+}$
7805.5	1	7805.3 8		0.0	0_{+}	8938.3	(19^+)	656.4 5	100	8281.9 (18+)
7819.9	1	7819.7 8		0.0	0_{+}	9334.4	(20^+)	396.1 5	100 48	8938.3 (19+)

[†] Additional information 2.

Additional information 2. ‡ If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. $^{\sharp}$ From (n, γ) E=thermal up to 5028 level and from (γ , γ') above that, unless otherwise noted. $^{\textcircled{@}}$ From γ scattering asymmetry in (γ , γ') for transitions from levels above 4026, unless otherwise noted. $^{\textcircled{@}}$ Poor fit. For fitting purpose only, uncertainties were increased to 0.3 keV to reduce the χ^2 /dof to 2.9 from 12.9. a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

----- γ Decay (Uncertain)

36

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

12⁺

10⁺

727

1093

1436

 0^+

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 154, 1 (2018)	20-Nov-2018

 $Q(\beta^{-})=1047 \ 8; \ S(n)=6427 \ 8; \ S(p)=9857 \ 9; \ Q(\alpha)=735 \ 8$ 2017Wa10 2002Xu06, 2002Tr09, 2002Ad12: measured production cross-sections. 1999GaZX: measured charge radii.

¹⁴⁰Ba Levels

Cross Reference (XREF) Flags

		A B C D	¹⁴⁰ Cs β ⁻ de ²⁴⁸ Cm SF de ²⁵² Cf SF de ¹³⁸ Ba(t,p) E ¹² C(¹³⁶ Xe, ¹	decay G $^{208}Pb(^{18}O,X\gamma)$ decay H $^{235}U(n,F\gamma)$ $E=17$ MeV I Coulomb excitation
E(level) ^{†‡}	Jπ#	T _{1/2}	XREF	Comments
0.0 ^b	0+	12.751 d 4	ABCDEFGHI	$%β$ ⁻ =100 $T_{1/2}$: weighted average of 12.753 d 12 (2014Un01, superseding 12.7527 d 23 of 2002Un02 and 12.753 d 2 of (1982HoZJ)), and 12.751 d 4 (1983Wa26); other value (outlier not included in the average): 12.789 d 6 (1971Ba28).
602.37 ^b 3	2+	7.2 ps +15-6	ABCDEFGHI	Q=-0.52 34 (2012Ba40) B(E2) \uparrow =0.484 +38-101 (2012Ba40) T _{1/2} : from DSAM (2012Ba40), systematic uncertainty is included. Others: 9.7 41 ps from ¹⁴⁰ Cs β ⁻ decay (1989Ma38); 7.3 +19-5 ps (from B(E2) \uparrow in Coul. Ex., 2012Ba40). J ^{π} : L=2 in (¹⁴ C, ¹² C). Q: from reorientation analysis of Coul. ex. yields. Diagonal E2 matrix element=-0.69 45 (2012Ba40) from Coul. ex. yields. RMS charge radius <r<sup>2>^{1/2}=4.8684 fm 59 (2013An02).</r<sup>
1130.60 ^b 6	4+		ABCDEFGH	J^{π} : L=4 in (14 C, 12 C).
1510.68 6	2 ⁺ @		A DEF	
1660.3 ^b 3	6+		BC E GH	J^{π} : 2,6 from $\Delta J=2$ Q to 4 ⁺ ; member of g.s. band.
1802.90 ^c 7	3-@		ABCDEF	J^{π} : observed in (t,p) with significant σ (natural spin-parity level).
1823.80 9	0+@		A D	TT
1951.61 25	3 ⁺ 2 ⁺ @		A DE	J^{π} : γ to 4 ⁺ is M1+E2, γ from 2 ⁻ .
1993.66 9 2061.2	2.		A DE A	J^{π} : γ to 2^+ is M1+E2, and γ to 0^+ ;
2138.24 11	3 ⁽⁺⁾ @		A E	J^{π} : γ to 2^+ is D+Q and γ to 4^+ is (M1+E2).
2152.1 ^c 4	$(5^{-})^{\&}$		BC G	
2204.21 10	2+,3@		A E	
2237.24 7	2+@		A E	
2309.52 14	2+,1@		A	J^{π} : 1, 2, 3 from D+Q to 2 ⁺ ; significant branch to 0 ⁺ g.s. eliminates 2 ⁻ and 3. If 1, the quadrupole mixing of 8.5% allows no π assignment; for 2 ⁺ the E2 is only 4%.
2320.51 <i>15</i>	(3-)		A	J^{π} : $(2^+,3^-)$ from γ' s from 1^- and 4^+ ; 2^+ less likely from no β - feeding from 1^- parent.
2429.52 8	1,2+@		A	J^{π} : 1,2,3 from D+Q γ to 2 ⁺ ; decay modes and log ft suggests 1 or 2 ⁺ .
2468.3 ^b 4	(8 ⁺)		BC E G	J^{π} : syst. for N=84 even-even nuclei.

140Ba Levels (continued)

E(level)†‡	$J^{\pi \#}$	XR	EF	Comments
2521.81 <i>10</i>	1,2 ⁽⁺⁾	A		J^{π} : (1,2 ⁺) from γ' s to 0 ⁺ , 2 ⁺ , and 2 ⁻ ; 0,1,2 from log ft =7.2 via 1 ⁻ parent.
2620.3?	-,-			v (1,2) from y v to v , 2 , and 2 , v,1,2 from toggi 112 factor
2663.8 <i>3</i>		A		
2692.0 <i>4</i>	2	Α		J^{π} : (2,3 ⁻) from γ from 1 ⁻ and γ 's to 3 ⁺ and 3 ⁻ ; 0,1,2,3 ⁺ from log ft =8.4 via 1 ⁻ parent.
2704.04 9	1-@	A		J^{π} : E1+M2 γ to 2 ⁺ and γ to 0 ⁺ .
2722.9 ^c 4	$(7^{-})^{\&}$	ВС	G	
2782.08 21	2(+),3+	Α		J^{π} : (2 ⁺ ,3) from γ' s to 2 ⁺ , 4 ⁺ and from 2 ⁻ ; 0,1,2,3 ⁺ from log $ft=8.4$ from 1 ⁻ parent.
2787.55 17	$1^{(-)}, 2^{(+)}$	A		J^{π} : $(1^{-},2^{+})$ from γ' s to 0^{+} and 3^{-} ; $0,1,2,3^{+}$ from $\log ft=8.1$ via 1^{-} parent.
2800.3 10	- ,-		G	J^{π} : (8 ⁺) postulated by 2007Ve14 (²⁰⁸ Pb(¹⁸ O,x γ) dataset).
2870.80 19	2 ⁺ @	Α		J^{π} : M1+E2 γ to 2 ⁺ .
2873.84 <i>17</i>	$1^{(+)}, 2^{(+)}$	A		J^{π} : $(1^+, 2^+)$ from γ' s to 0^+ , 2^+ , and 2^- ; $0, 1, 2, 3^+$ from log $ft = 8.1$ via 1^- parent.
2932.63 7	2-@	A		5 . (1 ,2) Hom y 5 to 0 , 2 , and 2 , 0,1,2,5 Hom log y=0.1 via 1 parent.
2973.63 20	2	A		
3098.47 <i>14</i>	$1^{(+)}, 2^{(+)}$	A		J^{π} : $(1^+, 2^+)$ from γ' s to 0^+ and 3^+ ; $0, 1, 2, 3^+$ from log $ft = 8.0$ via 1^- parent.
3296.8° 5	(9 ⁻)&		_	$J: (1,2)$ from $y > 0$ and $J: (0,1,2,3)$ from $\log \mu = 0.0$ via 1 parent.
		BC	G	
3383.8 ^b 6	$(10^+)^{\&}$	BC	G	
3451.48 <i>10</i>	$1^{(-)}, 2^{(+)}$	A		J^{π} : $(1^-, 2^+)$ from γ' s to 0^+ , 2^+ and 3^- ; 0,1,2 from log $ft = 7.2$ via 1^- parent.
3520.6 <i>5</i>	1 ⁽⁺⁾ ,2	A		J^{π} : (1 ⁺ ,2) from γ' s to 2 ⁺ , 2 ⁻ and 3 ⁺ ; 0,1,2 from log ft =7.1 via 1 ⁻ parent.
3526.6 <i>4</i>	$(1^+,2^+)^{@}$	Α		
3601.7 <i>5</i>	$1^{(-)}, 2^{(+)}$	A		J^{π} : $(1^-,2^+)$ from γ' s to 0^+ and 3^- ; $0,1,2$ from log $ft=7.1$ via 1^- parent.
3656.08 <i>10</i>	2	Α		J^{π} : (2,3 ⁻) from γ' s to 1 ⁻ , 3 ⁺ and 3 ⁻ ; 0,1,2 from log ft =6.3 via 1 ⁻ parent.
3769.5 ^c 6	(11 ⁻)&	BC	G	
3845.3 <i>6</i>		Α		
3851.05 9	1@	A		
3943.79 <i>6</i>	1@	A		
3973.20 10	2	Α		J^{π} : (2,3) from γ' s to 1, 3 ⁺ and 3 ⁻ ; 0,1,2 from log ft =6.3 via 1 ⁻ parent.
4032.56? 25	1,2	A		J^{π} : (1,2) from γ' s to $2^{+},2^{-}$ and from 1^{-} ; 0,1,2 from log $ft=7.3$ via 1^{-} parent.
4037.25 15	2	A		J^{π} : (2,3 ⁺) from γ' s to 1 ⁺ , 2 ⁺ , 3 ⁺ , 3 ⁻ and from 2 ⁻ ; 0,1,2 from log ft =6.6 via 1 ⁻ parent.
4079.96 <i>13</i>	$1^{(-)},2$	A		J^{π} : $(1^{-},2,3^{+})$ from γ' s to 1^{+} , 2^{+} , 3^{-} respectively; 0,1,2 from log $ft=6.5$ via 1^{-} parent.
4102.8 ^b 8	$(12^+)^{\&}$	C		
4275.13 <i>24</i>	1,2	A		J^{π} : (1,2,3) from γ' s to 2 ⁺ and 2 ⁻ ; 0,1,2 from log ft =6.8 via 1 ⁻ parent.
4358.44 17	2 @	Α		
4388.06 <i>21</i>	$1^{(-)},2$	A		J^{π} : (1 ⁻ ,2,3 ⁺) from γ 's to 1 ⁺ and 3 ⁻ ; 0,1,2 from log ft =6.9 via 1 ⁻ parent.
4395.7 <i>4</i>		A		
4416.1 <i>3</i>	$1,2^{(+)}$	A		J^{π} : (1,2 ⁺) from γ' s to 0 ⁺ , 2 ⁺ , and 2 ⁻ ; 0,1,2 from log ft =6.9 via 1 ⁻ parent.
4499.81 <i>11</i>	$1^{(+)}, 2^{(+)}$	A		J^{π} : $(1^+,2^+)$ from γ' s to 0^+ and 3^+ respectively; 0,1,2 from log $ft=6.6$ via 1^- parent.
4531.2 ^d 8	(13 ⁻) ^a	С	G	Level placed in 252 Cf SF decay dataset in the octupole band was replaced in 208 Pb(18 O,X γ) dataset (2007Ve14) as the bandhead of the Δ J=1 band based on (13 ⁻), which was adopted here.
4659.2 ^c 11	$(13^{-})^{a}$		G	
4801.19? <i>21</i>	2	A		J^{π} : (2,3) from γ' s to 1, 3 ⁺ , and 3 ⁻ ; 0,1,2 from log ft =6.2 via 1 ⁻ parent.
4858.3 ^d 12	$(14^{-})^{a}$		G	
4981.9? 5	$0^{(+)}, 1, 2^{(+)}$	Α		J^{π} : $(0^+,1,2^+)$ from γ' s to 0^+ and 2^+ ; 0,1,2 from log $ft=6.2$ via 1^- parent.
5076.5 ^d 13	$(15^{-})^{a}$		G	
5109.98? <i>18</i>	1-,2-	A		J^{π} : (1,2,3 ⁺) from γ' s to 1 ⁺ , 2 ⁺ , and 2 ⁻ ; 0 ⁻ ,1 ⁻ ,2 ⁻ from log ft =5.7 via 1 ⁻ parent.
5173.69? <i>18</i>	$1^{-},2^{-}$	A		J^{π} : (1,2,3 ⁻) from γ 's to 1 ⁻ and 3; 0 ⁻ ,1 ⁻ ,2 ⁻ from log ft =5.5 via 1 ⁻ parent.
5183.14? <i>15</i>	2-	A		J^{π} : $(1^+,2,3^-)$ from γ' s to 1^- and 3^+ ; $0^-,1^-,2^-$ from log $ft=5.5$ via 1^- parent.
5310.43? 24	1-,2-	A		J^{π} : (1 ⁻ ,2,3 ⁺) from γ' s to 1 ⁺ and 3 ⁻ ; 0 ⁻ ,1 ⁻ ,2 ⁻ from log ft =5.5 via 1 ⁻ parent.
5388.89? 12	1-	A		J^{π} : $(1^-,2^+)$ from γ' s to 0^+ and 3^- ; $0^-,1^-,2^-$ from $\log ft=5.5$ via 1^- parent.
5426.5 ^d 13	$(16^{-})^{a}$		G	

¹⁴⁰Ba Levels (continued)

E(level) ^{†‡}	$J^{\pi \#}$	XREF	Comments
5588.30? 23	2-	A	J^{π} : (2,3) from γ' s to 2^+ , 2^- , 3^+ and 3^- ; 0^- , 1^- , 2^- from log $ft = 5.5$ via 1^- parent.
5611.1? <i>4</i>	$1^{-},2^{-}$	Α	J^{π} : (1,2,3 ⁺) from γ' s to 1 ⁺ and 3; 0 ⁻ ,1 ⁻ ,2 ⁻ from log ft =5.5 via 1 ⁻ parent.
5651.1? <i>3</i>	2-	A	J^{π} : (1 ⁺ ,2,3 ⁻) from γ' s to 1 ⁻ and 3 ⁺ ; 0 ⁻ ,1 ⁻ ,2 ⁻ from log ft =5.5 via 1 ⁻ parent.
5765.3? <i>4</i>	2-	Α	J^{π} : $(1^+,2,3^+)$ from γ' s to 1^+ and 3^+ ; $0^-,1^-,2^-$ from $\log ft=5.5$ via 1^- parent.

[†] From a least-squares fit to Ey data (normalized χ^2 =1.53> critical χ^2 =1.25).

[‡] Additional information 1.

^{*} Additional information 1.

Spin assignments (tentative) based on decay modes and $\log ft$ values from 1986Ro16, except where noted.

@ From $\gamma\gamma(\theta)$ for cascades with 2⁺ to 0⁺ E2 602 γ . From ¹⁴⁰Cs β^- (1986Ro16).

& Spin assignments (tentative) from ²⁵²Cf SF and ²⁴⁸Cm SF based on assignments of transitions to g.s. and octupole bands (syst).

^a Based on band membership.

^b Band(A): g.s. band.

^c Band(B): octupole band.

Band(C): ΔJ=1 band based on (13⁻). Possible configuration= $(\pi g_{7/2}^{-1})(\pi h_{11/2}^1)\otimes (vf_{7/2}^2)$ or $(\pi g_{7/2}^{-1})(\pi h_{11/2}^1)\otimes (vf_{7/2}^1)$ $(\nu h_{9/2}^1)$.

$\gamma(^{140}\text{Ba})$

						/(-		
E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{@a}$	α &	Comments
602.37	2+	602.25 5	100	0.0 0+	E2		0.00600	$\alpha(N)=3.24\times10^{-5} 5$; $\alpha(O)=4.84\times10^{-6} 7$; $\alpha(P)=3.09\times10^{-7} 5$ B(E2)(W.u.)=22.8 +21-40 $\alpha(K)=0.00508 8$; $\alpha(L)=0.000729 11$; $\alpha(M)=0.0001513$
1130.60	4+	528.25 5	100	602.37 2+	E2		0.00848	$\alpha(K)$ =0.00715 10; $\alpha(L)$ =0.001060 15; $\alpha(M)$ =0.000220 3 $\alpha(N)$ =4.71×10 ⁻⁵ 7; $\alpha(O)$ =7.00×10 ⁻⁶ 10; $\alpha(P)$ =4.32×10 ⁻⁷ 6
1510.68	2+	908.25 5	100	602.37 2+	E2+M1	-0.60 +18-17	0.00289 11	$\alpha(K)=0.00249 \ 10; \ \alpha(L)=0.000317 \ 11;$ $\alpha(M)=6.51\times10^{-5} \ 22$ $\alpha(N)=1.41\times10^{-5} \ 5; \ \alpha(O)=2.16\times10^{-6} \ 8;$ $\alpha(P)=1.59\times10^{-7} \ 7$
1660.3 1802.90	6 ⁺ 3 ⁻	529.7 <i>3</i> 672.1 <i>4</i>	100 24.1 <i>11</i>	1130.60 4 ⁺ 1130.60 4 ⁺	Q (E1+M2)	+0.13 +7-6	0.0020 4	Mult.: from ²⁴⁸ Cm SF by DCO. α (K)=0.0017 3; α (L)=0.00021 5; α (M)=4.4×10 ⁻⁵ 9 α (N)=9.5×10 ⁻⁶ 20; α (O)=1.4×10 ⁻⁶ 3; α (P)=1.05×10 ⁻⁷ 22 δ : 0.00 5.
		1200.3 1	100.0 7	602.37 2+	(E1)		5.74×10 ⁻⁴	$\alpha(N)=2.53\times10^{-6} 4$; $\alpha(O)=3.89\times10^{-7} 6$; $\alpha(P)=2.88\times10^{-8} 4$; $\alpha(IPF)=3.02\times10^{-5} 5$ $\alpha(K)=0.000472 7$; $\alpha(L)=5.76\times10^{-5} 8$; $\alpha(M)=1.175\times10^{-5} 17$ δ : $-0.01 2$.
1823.80	0+	1221.4 <i>I</i>	100 5	602.37 2+	E2		1.20×10 ⁻³	$\alpha(N)=5.80\times10^{-6} 9$; $\alpha(O)=8.86\times10^{-7} 13$; $\alpha(P)=6.37\times10^{-8} 9$; $\alpha(IPF)=9.00\times10^{-6} 13$ $\alpha(K)=0.001024 15$; $\alpha(L)=0.0001312 19$; $\alpha(M)=2.69\times10^{-5} 4$
1951.61	3+	820.9 4	100	1130.60 4+	M1+E2		0.0034 6	$\alpha(K)=0.0029 \ 5; \ \alpha(L)=0.00038 \ 6; \ \alpha(M)=7.8\times10^{-5} \ 11$ $\alpha(N)=1.68\times10^{-5} \ 24; \ \alpha(O)=2.6\times10^{-6} \ 4;$ $\alpha(P)=1.8\times10^{-7} \ 4$ δ : $-0.51 \ \text{to} \ -2.4$.
1993.66	2+	1391.25 10	100 2	602.37 2+	M1+E2	+0.18 +5-6	1.22×10 ⁻³ 2	$\alpha(K)=0.001014 \ 15; \ \alpha(L)=0.0001263 \ 19;$ $\alpha(M)=2.59\times10^{-5} \ 4$ $\alpha(N)=5.59\times10^{-6} \ 9; \ \alpha(O)=8.60\times10^{-7} \ 13;$ $\alpha(P)=6.46\times10^{-8} \ 10; \ \alpha(IPF)=4.30\times10^{-5} \ 6$
2138.24	3(+)	1993.5 <i>3</i> 627.5 <i>3</i>	28.2 <i>11</i> 18.6 <i>19</i>	$0.0 0^{+}$ $1510.68 2^{+}$, , , , , , , , , , , , , , , , , , ,
2100.21	J	1008.1 2	100 3	1130.60 4+	(M1+E2)	-4.5 +14-26	0.00181 4	$\alpha(K)$ =0.00156 4; $\alpha(L)$ =0.000203 5; $\alpha(M)$ =4.18×10 ⁻⁵ 9 $\alpha(N)$ =8.99×10 ⁻⁶ 19; $\alpha(O)$ =1.37×10 ⁻⁶ 3; $\alpha(P)$ =9.67×10 ⁻⁸ 24
		1536.15 20	77 3	602.37 2+	D+Q			δ : +0.04 +13-12 or +3.6 +3.7-1.3,

S

 $\gamma(^{140}\text{Ba})$ (continued)

 $\delta^{@a}$

-0.198

Mult.#

M1+E2

M1+E2 +1.7 2

+0.41 +53-29

D+Q

D+Q

D

 E_{γ}^{\dagger}

2180.3 8

984.5 9

1276.6 5

2185.2 2

2788.2 6

1068.0 10

2268.4 2

881.1 5

1363.3 5

2873.6 2

411.7 8

695.5 5

728.9 6

794.6 6

939.0 5

1129.65 5

1422.0 5

2330.50 10

735.9 *3*

862.3 14

893.4 5

1146.9 4

2496.6 2

3098.6 *3*

573.9 4

828.6 4

87<mark>b</mark>

915.4 4

1627.2 10

1648.5 10

1940.2 8

1381.8 9

1526.8 8 2009.9 3

3451.45 10

1140.2

 $E_i(level)$

2782.08

2787.55

2800.3

2870.80

2873.84

2932.63

2973.63

3098.47

3296.8

3383.8

3451.48

3520.6

6

 $2^{(+)},3^{+}$

2+

2-

 $1^{(-)}, 2^{(+)}$

 $1^{(+)}, 2^{(+)}$

 $1^{(+)}, 2^{(+)}$

 (9^{-})

 (10^{+})

 $1^{(-)}, 2^{(+)}$

 $1^{(+)},2$

 I_{γ}^{\ddagger}

32 19

29 10

40 10

36.5 58

6.2 22

13.6 37

2.3 9

7.7 14

2.4 7

2.3 6

0.6 4

19.7 14

100 I

15 9

13 7

100 5

27.3 36

47.3 55

51 *15*

100 25

18 8

100 4

100 4

14.3 *41*

19.4 51

7.5 21

100

100

≈33

60 4

100 4

100 6

100

100 2

 E_f

602.37 2+

1802.90 3-

1510.68 2+

602.37 2+

1660.3 6+

1802.90 3

602.37 2+

1993.66 2+

1510.68 2+ $0.0 0^{+}$

2237.24 2+

1993.66 2+ 1802.90 3-

1510.68 2+

602.37 2+

2237.24 2+

2237.24 2+

1951.61 3⁺

2722.9

2468.3

3296.8

2468.3

1823.80 0⁺

1802.90 3-

1510.68 2⁺

2138.24 3⁽⁺⁾

1510.68 2+

8.2 27 1993.66 2+

 $0.0 0^{+}$

602.37 2+ 0_{+} 0.0

 (7^{-})

 (8^{+})

 (9^{-})

 (8^{+})

2204.21 2+,3

 $2204.21 \ 2^{+},3$ 2138.24 3(+)

2521.81 1.2⁽⁺⁾

 $0.0 0^{+}$

 $\alpha^{\&}$

 8.50×10^{-4}

0.00152 4

Comments

 $\alpha(K)=0.000356$ 6; $\alpha(L)=4.37\times10^{-5}$ 7;

 $\alpha(N)=1.93\times10^{-6} \ 3; \ \alpha(O)=2.98\times10^{-7} \ 5;$ $\alpha(P)=2.25\times10^{-8}$ 4; $\alpha(IPF)=0.000440$ 7

 $\alpha(K)=0.00131$ 3; $\alpha(L)=0.000168$ 4;

 δ : +0.41 +53-29 or δ <-3.2 or >+2.9.

Mult.: from ²⁴⁸Cm SF by DCO.

 $\alpha(N)=7.43\times10^{-6}\ 16;\ \alpha(O)=1.136\times10^{-6}\ 24;$ $\alpha(P)=8.23\times10^{-8}\ 19;\ \alpha(IPF)=1.088\times10^{-6}\ 16$

 $\alpha(M)=3.45\times10^{-5}$ 7

 $\alpha(M) = 8.94 \times 10^{-6} 13$

$\gamma(\frac{140}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{@a}$
3526.6	$(1^+,2^+)$	862.3 14	32 20	2663.8		
		1288.5 8	88 24	2237.24 2+		
		1323.4 7	52 12	$2204.21 \ 2^{+},3$		
		1701.8 <i>15</i>	100 40	1823.80 0 ⁺		
		3526.6 <i>5</i>	64 12	$0.0 0^{+}$		
3601.7	$1^{(-)}, 2^{(+)}$	1171.6 20	98	$2429.52 1,2^+$		
		1281.1 <i>10</i>	23 9	2320.51 (3-)		
		1291.9 <i>10</i>	53 11	$2309.52 \ 2^{+},1$		
		1396.4 <i>15</i>	23 15	2204.21 2+,3		
		1799.3 8	53 19	1802.90 3		
		3601.8 9	100 11	$0.0 0^{+}$		
3656.08	2	873.2 6	2.0 8	2782.08 2 ⁽⁺⁾ ,3	+	
		1418.5 7	10.7 <i>15</i>	2237.24 2+		
		1517.0 <i>5</i>	5.8 6	2138.24 3 ⁽⁺⁾		
		1853.35 <i>10</i>	100 5	1802.90 3	D+Q	-0.24 11
2=40=		3053.3 2	32.6 8	602.37 2+	D+(Q)	-0.04 11
3769.5	(11^{-})	385.6 5	100 33	$3383.8 (10^+)$		
		472.8 ^b 5	75 <i>37</i>	3296.8 (9 ⁻)		
3845.3		3845.2 <i>6</i>	100	$0.0 0^{+}$		
3851.05	1	980.7 <i>10</i>	10.1 <i>36</i>	2870.80 2+		
		1064.0 7	17.3 22	$2787.55 1^{(-)}, 2^{(-)}$	(+)	
		1146.9 <i>4</i>	10.8 <i>14</i>	2704.04 1		
		1422.0 5	7.2 36	$2429.52 1,2^+$		
		1613.9 <i>1</i>	100 2	$2237.24 \ 2^{+}$		
		1857.9 6	68 14	1993.66 2+		
		2048.1 3	38.9 22	1802.90 3	D 0	0.67.33
		2340.00 15	33.1 43	1510.68 2+	D+Q	-0.67 32
		3248.5 10	24 7	602.37 2+		
2042.70	1	3851.1 10	2.9 22	$0.0 0^{+}$ 2973.63		
3943.79	1	969.4 7	5.6 <i>33</i> 28.9 <i>56</i>	2429.52 1,2 ⁺		
		1513.8 <i>5</i> 1949.9 <i>7</i>	28.9 30 100 9	1993.66 2 ⁺	D+Q	-0.34 20
		2120.0 4	18.9 33	1823.80 0 ⁺	D∓Q	-0.54 20
		3341.2 5	89 <i>4</i>	602.37 2+		
		3944.1 <i>3</i>	71 <i>14</i>	$0.0 0^{+}$		
3973.20	2	1000.7 5	14.8 39	2973.63		
3773.20	_	1040.50 <i>15</i>	35.2 23	2932.63 2		
		1101.6 10	11.7 39	2870.80 2+		
		1663.85 20	27.3 23	2309.52 2+,1		
		1735.8 <i>10</i>	80 16	2237.24 2+		
		1835.0 <i>4</i>	27.3 23	2138.24 3 ⁽⁺⁾		
		2022.6 9	16 6	1951.61 3 ⁺		
		2170.0 2	100 3	1802.90 3-		

$\gamma(^{140}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{@a}$	Comments
3973.20	2	2462.9 5	55 8	1510.68		D+Q	+0.31 +63-39	
		3371.00 25	75.8 <i>31</i>	602.37		D+Q		
4032.56?	1,2	934.9 ^b 3	32 16		$1^{(+)}, 2^{(+)}$			
		1057.2 ^b 5	48 16	2973.63				E_{γ} : differs by 3σ from ΔE_{levels} .
		1098.6 ^b 10	100 20	2932.63	2-			
		1158.5 <mark>b</mark> 8	12 8	2873.84	$1^{(+)}, 2^{(+)}$			
		1795.0 ^b 10	60 40	2237.24				
4037.25	2	939.0 5	4.7 35	3098.47	$1^{(+)}, 2^{(+)}$			
		1064.0 7	28.2 35	2973.63				
		1104.8 <i>10</i>	14 6	2932.63				
		1164.4 20	7 5		$1^{(+)}, 2^{(+)}$			
		1607.7 4	42 7	2429.52				
		1799.3 8	33 12	2237.24				
		1899.6 <i>9</i> 2236.0 <i>15</i>	24.7 <i>47</i> 35 <i>12</i>	2138.24 1802.90				
		3435.0 2	100 5	602.37				
4079.96	$1^{(-)},2$	980.7 10	11.3 40		1 ⁽⁺⁾ ,2 ⁽⁺⁾			
+077.70 1 ,2	1291.9 <i>10</i>	23 5		$1^{(-)}, 2^{(+)}$				
	1375.9 4	16.1 24	2704.04					
		1651.1 5	22.6 40	2429.52				
		1770.2 6	8.9 24	2309.52				
		2086.8 10	14.5 40	1993.66				
		2277.00 15	100 5	1802.90				
4100.0	(10+)	3477.6 3	27.4 24	602.37				
4102.8 4275.13	(12 ⁺) 1,2	719.0 <i>5</i> 1299.2 <i>15</i>	100 100 7	3383.8	(10)			
4273.13	1,2	1339.2 15	42 14	2973.63 2932.63	2-			
		1492.3 5	42 12	2782.08				
		2038.5 5	42 7	2237.24				
		2764.8 <i>4</i>	44 7	1510.68				
4358.44	2	1928.2 7	15.4 26	2429.52				
		2038.5 5	15.4 26	2320.51				
	()	2848.2 2	100 4	1510.68		D+Q		
4388.06	$1^{(-)},2$	862.3 14	13 8	3526.6				
		1454.7 4	48 6	2932.63				
1205 7		2067.7 3	100 5	2320.51				
4395.7 4416.1	1,2(+)	3793.3 <i>4</i> 760.3 <i>10</i>	100 26 <i>15</i>	602.37 3656.08				
4410.1	1,4	1319.7 20	20 <i>13</i> 15 <i>11</i>		1 ⁽⁺⁾ ,2 ⁽⁺⁾			
		1319.7 20	100 11	2973.63	1 , , , , ,			
		1542.3 6	52 15		1(+),2(+)			

 ∞

$\gamma(\frac{140}{\text{Ba}})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Comments
4416.1	1,2 ⁽⁺⁾	4416.5 6	44 11	0.0	0+	
4499.81	$1^{(+)}, 2^{(+)}$	555.5 2	66.7 <i>48</i>	3943.79	1	
		1795.0 <i>10</i>	36 24	2704.04	1-	
		1807.9 5	14 10	2692.0	2 3 ⁽⁺⁾	
		2362.00 <i>15</i> 2674.6 <i>5</i>	100 <i>14</i> 33.3 <i>48</i>	2138.24 1823.80	0+	E_{γ} : differs by 3σ from ΔE_{levels} .
4531.2	(13^{-})	761.7 5	100	3769.5	(11^{-})	
4659.2	(13-)	889.2	100	3769.5	(11^{-})	
4801.19?	2	949.4 <mark>b</mark> 7	25 8	3851.05	1	
		2280.3 ^b 7	58 17	2521.81	$1,2^{(+)}$	
		2371.5 ^b 4	53 11	2429.52	1,2+	
		2564.1 ^b 7	31 8	2237.24	2+	
		2663.7 ^b 10	14 8	2138.24	3 ⁽⁺⁾	
		2998.2 ^b 3	100 6	1802.90	3-	
4858.3	(14 ⁻)	328.4	100	4531.2	(13^{-})	
4981.9?	$0^{(+)}, 1, 2^{(+)}$	944.3 ^b 10	35 15	4037.25	2	
		949.4 <mark>b</mark> 7	45 15	4032.56?		
		2459.5 ^b 10	100 50	2521.81	$1,2^{(+)}$	
		4982.4 ^b 8	35 15	0.0	0+	
5076.5	(15 ⁻)	218.2	100	4858.3	(14 ⁻)	
5109.98?	1-,2-	1137.5 ^b 4	42 5	3973.20	2	
		1454.7 ^b 4	70 9	3656.08	2	
		2236.0 ^b 15	70 23	2873.84	1(+),2(+)	
		3115.9^{b} 2	100 9	1993.66	2+	
5173.69?	1-,2-	758.5 ^b 10	9 5	4416.1	$1,2^{(+)}$	
		1137.5 ^b 4	22.0 24	4037.25	2	
		1517.0^{b} 5	46 5	3656.08	2	
		2387.1 ^b 10	10 5	2787.55	$1^{(-)}, 2^{(+)}$	
		2969.2 ^b 2	100 4	2204.21	2+,3	
		4572.1 ^b 10	5.0 24	602.37	2+	
5183.14?	2-	794.6 ^b 6	37 9	4388.06	$1^{(-)},2$	
		826.9 ^b 15	12 7	4358.44	2	
		1526.8 ^b 8	28 9	3656.08	2	
		2250.9 ^b 3	67 9	2932.63	2^{-}	
		2312.4 ^b 8	37 23	2870.80	2+	
		2401.1 ^b 6	28 5	2782.08	$2^{(+)},3^+$	

9

${\bf Adopted\ Levels,\ Gammas\ (continued)}$

γ (140Ba) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
5183.14?	2-	2477.5 ^b 8	21 7	2704.04	1-	
		2660.8 ^b 10	12 7	2521.81		
		3189.5 ^b 2	100 9	1993.66		
		3671.7 ^b 5	40 7	1510.68	2+	
		4053.2 ^b 10	12 7	1130.60	4+	Mult.: could be M2 from $J^{\pi'}$ s.
5310.43?	$1^{-},2^{-}$	1459.25 ^b 35	100 14	3851.05	1	
		1784.0 ^b 15	28 10	3526.6	$(1^+,2^+)$	
		2646.8 ^b 5	52 14	2663.8		
		3318.7 ^b 9	52 14	1993.66		
		3507.1 ^b 4	59 10	1802.90		
5388.89?	1-	889.1 ^b 8	18 <i>10</i>	4499.81		
		1000.7 ^b 5	48 13	4388.06		
		1031.5 ^b 3	63 8	4358.44		E_{γ} : differs by 3σ from ΔE_{levels} .
		1113.6 ^b 10	15 10	4275.13		
		2456.4 ^b 10	38 25	2932.63		
		2513.3 ^b 15	100 50	2873.84		
		3067.8^{b} 3	73 8	2320.51		
		3394.4 ^b 4	55 8	1993.66		
		$3565.00^{b} 25$	73 8	1823.80		
5426.5	(16 ⁻)	4786.3 ^b 10 568.2	10 <i>5</i> 100	602.37 4858.3		
5588.30?	2-	1171.6 ^b 20	8 7	4416.1		
3300.301	2	$1771.0 20$ 1737.5^{b} 10	100 33	3851.05		
		2656.7^{b} 10	5 3	2932.63		
		3066.8^{b} 3	48 5	2521.81		
		3159.8 ^b 10	7 3	2429.52		
		3267.6^{b} 7	34 7	2320.51		
		3383.0 ^b 5	18 7	2204.21		
		3635.4 ^b 9	36 5	1951.61		
5611.1?	1-,2-	2089.7 ^b 10	22.5 75	3520.6		
	,	2513.3 ^b 15	100 50	3098.47		
		2737.2 ^b 13	23 8	2873.84		
		3088.7 ^b 5	45 8	2521.81		
		3303.7 ^b 9	33 10	2309.52		
		3407.1 ^b 10	13 8	2204.21		

10

$\gamma(^{140}\text{Ba})$ (continued)

$E_i(level)$	J_i^{π}	E_{γ}^{\dagger}	${ m I}_{\gamma}^{\ddagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	
5651.1?	2-	1262.9 ^b 6	18 5	4388.06 1 ⁽⁻⁾ ,2	5651.1?	2-	3698.9 ^b 7	9 4	1951.61 3 ⁺	
		1375.9 <mark>b</mark> 4	25 4	4275.13 1,2	5765.3?	2-	2109.2 ^b 4	54 <i>1</i>	3656.08 2	
		2553.6 ^b 6	10 5	3098.47 1 ⁽⁺⁾ ,2 ⁽⁺⁾)		2666.7 ^b 10	11 6	3098.47 1 ⁽⁺⁾ ,2 ⁽	(+)
		3341 ^b 5	100 5	2309.52 2+,1			3242.8 ^b 10	100 19	2521.81 1,2 ⁽⁺⁾	
		3412.8 ^b 10	6 4	2237.24 2+			3627.9 ^b 9	29 6	2138.24 3 ⁽⁺⁾	
		3657.7 ^b 10	5.0 25	1993.66 2 ⁺						

[†] From 140 Cs β^- . γ' s from band levels from 252 Cf SF and 248 Cm SF. [‡] From 140 Cs β^- . [#] From 140 Cs β^- by $\gamma\gamma(\theta)$ (1986Ro16). It was assumed that M2 cannot compete with E1; therefore, D+Q are M1+E2 and Q γ' s are E2. [@] From 140 Cs β^- by $\gamma\gamma(\theta)$ (1986Ro16). [&] Additional information 2.

^a If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{140}_{56} \mathrm{Ba}_{84}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{140}_{56}{\rm Ba}_{84}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{140}_{56} Ba_{84} \\$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

16

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	T. D. Johnson, D. Symochko(a), M. Fadil(b), and J. K. Tuli	NDS 112,1949 (2011)	1-Jun-2010

 $Q(\beta^{-})=2181 \ 9; \ S(n)=6181 \ 8; \ S(p)=10655 \ 11; \ Q(\alpha)=-295 \ 7$ 2012Wa38

Note: Current evaluation has used the following Q record 2177 96183 810654 12-295 7 2011AuZZ.

 $Q(\beta^{-}n)=-2982 \ 8, \ Q(\varepsilon p)=-16937 \ 7 \ 2011AuZZ.$

Values in 2003Au03: $Q(\beta^-)=2212$ 5, S(n)=6169 10, S(p)=10635 12, $Q(\alpha)=-100$ 4, $Q(\beta^-n)=-2956$ 7, $Q(\varepsilon p)=-16790$ 9.

Optical isotope shift: 1997Co26 (with respect to ¹⁴⁰Ba, ¹⁴⁴Ba).

Nuclear structure, calculations, theory: 2007Ji05, 1997Sa16, 1995Hi10, 1995Ba45 (also 1992Eg01,1991Eg01,1990Eg01), 1992Wo11, 1992Na07.

¹⁴²Ba Levels

Cross Reference (XREF) Flags

- A 142 Cs β^- decay
- B ²⁴⁸Cm SF decay

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	0+	10.6 min 2	AB	$\%\beta^{-}=100$
				T _{1/2} : weighted average: 10.65 min <i>12</i> (1969Ca03), 10.80 min <i>16</i> (1972Eh02), 10.3 min <i>1</i> (1974Gr29). HFS, isomer shift (1988We07,1985Ne09,1983Mu12,1981Ne06), mass (1986Au02).
359.596 [@] 14	2+	65 [#] ps 2	AB	μ =+0.852 <i>10</i> (2005St24,1988Wo03,1986Gi14) T _{1/2} : from 1990Ma25. Other values: 82 ps 8 (2005Bi02), 79 ps 6 (1980ChZM), 0.07 ns 4 (1974JaYY), 58 ps 6 (1983MaYT), 64 ps 7 (1988MaZH). See also: 1989Ma38, 1989Mo06. J ^π : γ to 0 ⁺ is E2 (β decay).
834.81@9	4+	12.5 ps 8	AB	$T_{1/2}$: weighted average: 11.9 ps 9 (1990Ma25) and 17.3 ps 25 (2005Bi02). J^{π} : from DCO ratio, polarization and band placement.
1292.20 <mark>&</mark> <i>14</i>	(3^{-})		AB	J^{π} : based on systematics.
1326.48 5	1-	10 [#] ps 5	A	J^{π} : 1 or 3 from $\gamma \gamma(\theta)$ in β decay of 142 Cs; γ to 0^{+} excludes 3. Allowed β^{-} from 0^{-} .
1424.06 6	2+	<9 [#] ps	A	J^{π} : $\gamma\gamma(\theta)$ in β decay of ¹⁴² Cs, γ to 2 ⁺ is E2 (δ >10).
1465.98 [@] 24	6+	7.2 ps <i>13</i>	В	J^{π} : from DCO ratio, polarization and band placement. $T_{1/2}$: from 252 Cf SF decay (1983MaYT).
1535.53 7	0^{+}	9 [#] ps 7	Α	J^{π} : $\gamma \gamma(\theta)$ in β decay of ¹⁴² Cs, γ to 2 ⁺ .
1541.57 <mark>&</mark> 23	5-	•	В	J^{π} : from DCO ratio and polarization.
1639.60 <i>10</i>	0^{+}	<16 [#] ps	A	J^{π} : $\gamma \gamma(\theta)$ in β decay of ¹⁴² Cs, syst for even-even nuclei.
1693.0? <i>3</i>	2+		A	J^{π} : $\gamma\gamma(\theta)$ in β decay of ¹⁴² Cs, γ to 2 ⁺ is M1+E2.
1747.40 ^b 23	5(+)		В	J^{π} : from DCO ratio and polarization.
1781.50 <i>10</i>			A	
1848.41 ^a 21	6+		В	J^{π} : from DCO ratio and polarization.
1952.7 <mark>&</mark> 4	7-		В	J^{π} : from DCO ratio and polarization.
2070.1 ^b 3	7 ⁽⁺⁾		В	J^{π} : from DCO ratio and band placement.
2127.9 3	0_{+}		A	J^{π} : $\gamma\gamma(\theta)$ in β decay of ¹⁴² Cs, γ to 2 ⁺ .
2159.4 [@] 4	8+		В	J^{π} : from DCO ratios and polarization.
2229.3 ^a 3	8(+)		В	J^{π} : from DCO ratio.
2341.77 10	1		A	J^{π} : J=3 or 1 from $\gamma \gamma(\theta)$, γ to 0 ⁺ excludes 3.
2513.8 ^{&} 4	9-		В	J^{π} : from DCO ratio and polarization.
2569.78 11			Α	

¹⁴²Ba Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
2680.1 ^b 4	(9 ⁺)	В	
2814.9 ^a 4	(10^{+})	В	
2882.57 16	$(1,2^+)$	A	J^{π} : γ to 0^+ .
2925.9 [@] 4	(10^+)	В	J^{π} : from band assignment.
3144.38 <i>23</i>	(1)	Α	J^{π} : γ to $0^+, 2^+$; β from 0^- .
3153.9 <mark>&</mark> 5	(11^{-})	В	
3261.7 <i>4</i>	(1)	Α	J^{π} : γ to $0^+, 2^+$; β from 0^- .
3283.29 19	(1)	A	J^{π} : γ to $0^+, 2^+$; β from 0^- .
3343.0 <mark>b</mark> 5		В	
3507.3 ^a 5		В	
3573.08 24	(1)	A	J^{π} : γ to 0^+ ; β from 0^- .
3794.9 [@] 5		В	
3932.9 <mark>&</mark> 6		В	
4369.3 <i>4</i>	(1)	A	J^{π} : γ to 0^+ , β from 0^- .
4517.4? [@] 6		В	
5280.4 4		Α	

[†] Least-squares fit to data from 142 Ce β^- decay and 248 Cm SF decay. Some levels from 252 Cf resulting in γ placement not consistent with 248 Cm SF decay were not adopted.

[‡] From angular correlation and polarization measurements in ²⁴⁸Cm SF decay, except where noted.

[#] From $\beta \gamma \gamma$ (t) (1990Ma25).

[®] Band(A): g.s. band. Levels 3795 and 4517 have been assigned to octupole band by 1995Zh34.

[&]amp; Band(B): octupole band.

^a Band(C): possible rotational band-1.

^b Band(D): possible rotational band-2.

$\gamma(^{142}\text{Ba})$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ \ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	J_f^{π} Mult.	δ	$lpha^\dagger$	Comments
359.596	2+	359.598 14	100	0.0) ⁺ E2		0.0257	B(E2)(W.u.)=32.1 10 α (K)=0.0212 3; α (L)=0.00356 5; α (M)=0.000748 11; α (N+)=0.000183 3 α (N)=0.0001589 23; α (O)=2.31×10 ⁻⁵ 4; α (P)=1.232×10 ⁻⁶
								18
834.81	4+	475.17 9	100	359.596 2	2+ E2		0.01135	B(E2)(W.u.)=45 4 α (K)=0.00952 14; α (L)=0.001455 21; α (M)=0.000303 5; α (N+)=7.49×10 ⁻⁵ 11 α (N)=6.48×10 ⁻⁵ 9; α (O)=9.57×10 ⁻⁶ 14; α (P)=5.70×10 ⁻⁷ 8
1292.20	(3-)	457.26 15	20 2	834.81 4	1+			Mult.: compatible with $\gamma\gamma(\theta)$.
1292.20	(3)	932.82 20	100 15	359.596 2				
1326.48	1-	966.89 7	69 6	359.596 2		-0.013 8		
1320.10	1	1326.46 7	100.0 15	0.0		0.015 0		
1424.06	2+	1064.54 7	87 18	359.596 2		1) >10	0.001586 23	B(E2)(W.u.)>0.48 α (K)=0.001363 20; α (L)=0.0001773 25; α (M)=3.64×10 ⁻⁵ 6
								$\alpha(N+)=9.12\times10^{-6}$ $\alpha(N)=7.84\times10^{-6}\ II;\ \alpha(O)=1.194\times10^{-6}\ I7;\ \alpha(P)=8.46\times10^{-8}$ I2
		1423.9 <i>1</i>	100 5	0.0)+ ()			Mult.: from $\gamma\gamma(\theta)$.
1465.98	6+	631.1 3	100 3	834.81 4	•		0.00532 8	B(E2)(W.u.)=18 4 α (K)=0.00451 7; α (L)=0.000641 9; α (M)=0.0001329 19; α (N+)=3.30×10 ⁻⁵ 5 α (N)=2.85×10 ⁻⁵ 4; α (O)=4.26×10 ⁻⁶ 6; α (P)=2.76×10 ⁻⁷ 4
1535.53	0^{+}	209.1 5	3.3 <i>3</i>	1326.48 1				
		1175.93 6	100 2	359.596 2				
1541.57	5-	249.2		1292.20 (
		706.8 3	100	834.81 4	l ⁺ E1		0.001519 22	$\alpha(K)$ =0.001314 19; $\alpha(L)$ =0.0001632 23; $\alpha(M)$ =3.34×10 ⁻⁵ 5 $\alpha(N+)$ =8.36×10 ⁻⁶ $\alpha(N)$ =7.18×10 ⁻⁶ 10; $\alpha(O)$ =1.097×10 ⁻⁶ 16; $\alpha(P)$ =7.96×10 ⁻¹ 12
1639.60	0^{+}	1280.0 <i>I</i>	100	359.596 2	2+ Q			
1693.0?	2+	1333.4 <i>3</i>	100	359.596 2		-0.94 29		
1747.40	5 ⁽⁺⁾	205.8 3	37 9	1541.57 5				
		912.6 <i>3</i>	100 14	834.81 4				
1781.50		1421.9 <i>1</i>	100	359.596 2				
1848.41	6+	101.0 3	38 13		$S^{(+)}$ [D+Q]			
		306.9 <i>3</i>	100 10	1541.57 5	5- [E1]			
		382.4 <i>3</i>	25 13	1465.98	(+			I_{ν} : 88 in 252 Cf SF decay.

$\gamma(^{142}Ba)$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	Comments
1848.41	6+	1013.6 3	73 10	834.81 4+	E2		I_{γ} : 48 in ²⁵² Cf SF decay.
1952.7	7-	411.8 2	13 2	1541.57 5	[E2]		<i>γ</i>
		487.0 <i>3</i>	100 11	1465.98 6 ⁺	E1		
2070.1	7 ⁽⁺⁾	222.0 2	37 8	1848.41 6 ⁺	[D+Q]		
		323.2 2	25 5	1747.40 5 ⁽⁺⁾	[E2]		
		603.8 3	100 17	1465.98 6+	(M1)		
2127.9	0^{+}	1768.3 <i>3</i>	100	359.596 2 ⁺	Q ´		
2159.4	8+	206.6 2	2.3 8	1952.7 7	[E1]		
		693.4 <i>3</i>	100	1465.98 6 ⁺	E2		
2229.3	8(+)	159.0 <i>3</i>	46 9	2070.1 7 ⁽⁺⁾	[D+Q]		
	Ü	276.8 3	35 5	1952.7 7	[E1]		
		380.9 <i>3</i>	100 12	1848.41 6 ⁺	(E2)		
		763.4 <i>3</i>	69 8	1465.98 6+	(E2)		
2341.77	1	1015.3 <i>I</i>	15.9 11	1326.48 1	()		
		1982.1 2	100 7	359.596 2 ⁺	D+(Q)	+0.09 5	
		2341.7 5	15.9 25	$0.0 0^{+}$			
2513.8	9-	284 <i>1</i>	14 6	2229.3 8 ⁽⁺⁾	[D+Q]		
		354.3 <i>3</i>	100 8	2159.4 8+	E1		
		560.9 2	88 8	1952.7 7-	(E2)		
2569.78		1243.3 <i>1</i>	100	1326.48 1	()		
2680.1	(9^+)	451.0 <i>3</i>	100 11	2229.3 8 ⁽⁺⁾	[D+Q]		
	(-)	609.8 <i>3</i>	84 18	2070.1 7 ⁽⁺⁾	[E2]		
2814.9	(10^{+})	301.1 3	22 6	2513.8 9	[D]		
201	(10)	585.7 <i>3</i>	100 9	2229.3 8 ⁽⁺⁾	[E2]		
		655.4 3	24 6	2159.4 8+	[Q]		
2882.57	$(1,2^+)$	1101.1 2	74 22	1781.50	[4]		
2002.07	(1,2)	2522.9 4	66 10	359.596 2 ⁺			
		2882.5 3	100 9	$0.0 0^{+}$			
2925.9	(10^+)	412.1 3	43 9	2513.8 9-	[D]		
	()	766.5 3	100 13	2159.4 8+	[E2]		
3144.38	(1)	1818.0 <i>3</i>	100 11	1326.48 1	[]		
	()	2784.6 5	39 9	359.596 2+			
		3144.2 5	46 10	$0.0 0^{+}$			
3153.9	(11^{-})	228.0 <i>3</i>	42 8	2925.9 (10 ⁺)	[D]		
	. /	640.1 3	100 20	2513.8 9-	[E2]		
3261.7	(1)	1935.2 <i>4</i>	100 11	1326.48 1			
	` '	3261.6 <i>5</i>	49 8	$0.0 0^{+}$			
3283.29	(1)	1956.8 <i>4</i>	45 8	1326.48 1			
		2923.5 <i>3</i>	83 8	359.596 2 ⁺			
		3283.4 <i>3</i>	100 10	$0.0 0^{+}$			
3343.0		662.9 <i>3</i>	100	$2680.1 (9^+)$			

$\gamma(^{142}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
3507.3		692.4 <i>3</i>	100	2814.9	(10^+)	4369.3	(1)	4009.3 7	25 7	359.596	2+
3573.08	(1)	2246.1 <i>4</i>	60 7	1326.48	1-			4369.3 <i>4</i>	100 9	0.0	0^{+}
		3573.3 <i>3</i>	100 7	0.0	0_{+}	4517.4?		722.5 <i>3</i>	100	3794.9	
3794.9		641.0 <i>3</i>	100 50	3153.9	(11^{-})	5280.4		2397.8 <i>4</i>	100 9	2882.57	$(1,2^+)$
		869 <i>1</i>	25 15	2925.9	(10^{+})			2938.6 5	17 <i>4</i>	2341.77	1
3932.9		779.0 <i>3</i>	100	3153.9	(11^{-})						

S

 $^{^{\}dagger}$ Additional information 1. ‡ Taken from $^{142}\rm{Cs}~\beta^-$ decay, if present. Otherwise, from $^{248}\rm{Cm}~SF$ decay.

Legend

Adopted Levels, Gammas $\begin{array}{l} I_{\gamma} < 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Level Scheme (continued) Intensities: Type not specified . Coincidence Coincidence (Uncertain) 0 \$\frac{\partial}{2}\text{\$\frace{\partial}{2}\text{\$\frac{\partial}{2}\text{\$\frac{\partial}{2}\ $\frac{1}{1 + \frac{o_{3,4}}{2b_{6}}}$ 2341.77 8(+) 2229.3 2159.4 2127.9 7(+) 2070.1 - 19.3 - 19.3 - 19.0 - + 142) 040 | 040 | 040 | 1952.7 - 9-13-6-1 - 13-5-6-1 - 13-5-5-1-100 | 1848.41 6+ 1781.50 5(+) 1747.40 _1693.0 0^{+} 1639.60 <16 ps 1541.57 0+ 9 ps 7 1535.53 1465.98 7.2 ps *13* <9 ps 1424.06 1326.48 1292.20 10 ps 5 $\frac{1^{-}}{(3^{-})}$ + 43:17 E2 100 834.81 12.5 ps 8 359.596 65 ps 2 0+0.0 10.6 min 2 $^{142}_{56} \mathrm{Ba}_{86}$

 $^{142}_{56} \mathrm{Ba}_{86}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 93,599 (2001)	1-Dec-2000

 $Q(\beta^{-})=3083 \ 15$; $S(n)=5901 \ 10$; $S(p)=11382 \ 23$; $Q(\alpha)=-1206 \ 8$ 2012Wa38

Note: Current evaluation has used the following Q record 3119 565907 1811378 25 -1210 62 1995Au04.

Isotope shift, $\Delta < r^2 >$: 1988We07, 1985Ne09, 1983Mu12, 1997Co26.

Theory, calculations, systematics: 1998Ga15, 1997Sa61, 1997Ga27, 1995Jo11, 1995Hi10, 1995Go14, 1995De13, 1995Ba45,

 $1994 Za 01,\ 1994 Se 15,\ 1994 Li 43,\ 1993 Li 32,\ 1992 Wo 11,\ 1992 Na 07,\ 1992 Eg 01,\ 1992 De 46,\ 1991 Sk 01,\ 1991 Eg 01,\ 1990 Eg 01,\ 199$

1989Ku17, 1989De11, 1988So08, 1988Sh40.

Fission yields: 1987GuZX, 1986Ha18, 1985Ch40, 1984Ch39, 1982Go17, 1981Di02, 1981Di01.

¹⁴⁴Ba Levels

Cross Reference (XREF) Flags

- A 144 Cs β^- decay
- B ²⁵²Cf SF decay
- C 248Cm SF decay

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
0.0‡	0+	11.5 s 2	ABC	%β ⁻ =100 T _{1/2} : from 1982Ch22. Others: 12.0 s 4 (1979En02), 12.3 s 4 (1978Wo09), 11.9 s
				6 (1976AmZW), 11.1 s 5 (1974Gr29), 12.1 s 10 (1973Ta13), 12.3 s 2 (1969WiZX), 11.9 s 3 (1969Ru14), 11.4 s 25 (1967Am01).
199.326 [‡] 6	2+	0.71 ns 2	ABC	μ =0.68 10 (1983Wo05) J $^{\pi}$: 199 γ is E2.
				T _{1/2} : weighted average of 0.70 ns 3 (1974JaZN) and 0.71 ns 3 (1990Ma25). Others: 0.67 ns 11 (1983MaYT), 0.85 ns 15 (1976MoZB), 1.0 ns 2 (1970Wa05), 0.70 ns 7 (1980ChZM).
530.19 [‡] 7	4+	34 ps 5	ABC	$T_{1/2}$: from 1990Ma25. J^{π} : stretched E2 to 2^+ , g.s. band member.
758.94 [#] 4	1 ⁽⁻⁾	<24 ps	AB	$T_{1/2}$: from 1990Ma25. J^{π} : 559γ-199γ(θ) gives J=1,3 but J=3 ruled out by strong 759γ to 0 ⁺ . Member of π =– band.
838.37 [#] 5	3 ⁽⁻⁾	<10 ps	ABC	$T_{1/2}$: from 1990Ma25. J^{π} : $\gamma\gamma(\theta)$ consistent only with J=3. Member of π =– band.
961.53 [‡] <i>11</i>	6+		BC	J^{π} : stretched E2 to 4^{+} , g.s. band member.
1020.03 7	0_{+}		A	J^{π} : $(820\gamma)(199\gamma)(\theta)$ consistent only with $O(Q)2(Q)0$.
1038.83 [#] <i>11</i>	5(-)		BC	J^{π} : stretched D to 4 ⁺ . Member π =– band.
1315.64 8	(2)		Α	J^{π} : 1116 γ -199 $\gamma(\theta)$ is closest to that for J=2 in β^{-} decay.
1355.24 [#] <i>13</i>	$7^{(-)}$		BC	J^{π} : stretched E2 to 5 ⁻ , π =- band member.
1470.84 [‡] <i>14</i>	8+		BC	J^{π} : stretched E2 to 6^{+} , g.s. band member.
1772.95 [#] <i>14</i>	9(-)		BC	J^{π} : stretched E2 to 7^{+} , $\pi = -$ band member.
1837.58 <i>21</i>			Α	
1848.16 9	2 ⁽⁺⁾		A	J^{π} : γ' s to 1 ⁻ and 3 ⁻ . D+Q to 2 ⁺ . $\gamma\gamma(\theta)$ consistent with J=2 with large $\delta(1649\gamma)$.
1864.25 8	2+		A	J^{π} : level decays to 0^+ , 4^+ levels. $\gamma\gamma(\theta)$ confirms 2.
1880.98 <mark>&</mark> <i>24</i>	(5^{+})		C	
1991.46 [@] <i>18</i>	(6^{-})		BC	
2044.32 [‡] <i>16</i>	10^{+}		BC	J^{π} : stretched E2 to 8^{+} , g.s. band member.
2159.26 <mark>&</mark> <i>18</i>	(7^{+})		BC	
2212.42 8	(2+)		A	J^{π} : 348 γ to 2 ⁺ is M1,E2. Decays to 1 ⁻ and 4 ⁺ levels. J=3 unlikely from

Continued on next page (footnotes at end of table)

¹⁴⁴Ba Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
			$1374\gamma-239\gamma-199\gamma(\theta)$.
2279.07 [#] <i>16</i>	$11^{(-)}$	BC	J^{π} : stretched E2 to 9^{-} , g.s. band member.
2362.94 [@] 21	(8^{-})	BC	
2375.39 25	$(1^+, 2^+)$	A	J^{π} : 2176 γ -199 $\gamma(\theta)$ is consistent with 1 and possibly 2. 2176 γ is D+23% Q for J=1. γ to 0 ⁺ makes J^{π} =2 ⁻ unlikely.
2664.0 ^{&} 3		BC	
2667.07 [‡] 19	12+	BC	J^{π} : stretched E2 to 10^{+} , g.s. band member.
2863.68 [#] 18	$13^{(-)}$	BC	J^{π} : stretched E2 to 11 ⁻ , π =- band member.
2903.66 [@] 23		C	
3320.72 [‡] 22	(14^{+})	BC	J^{π} : member of g.s. rotational band.
3519.00 [#] 24	(15^{-})	BC	J^{π} : stretched E2 to 13 ⁻ , π =- band member.
3991.5 [‡] <i>3</i>	(16^{+})	BC	J^{π} : member of g.s. rotational band.
4242.1 [#] 4	(17^{-})	BC	
5027.6 [#] 11	(19^{-})	В	

 $^{^{\}dagger}$ From a least-squares fit to Ey data. ‡ Band(A): g.s. band.

[#] Band(B): octupole band.

[@] Band(C): rotational band 1. [&] Band(D): rotational band 2.

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ#	α@	Comments
199.326	2+	199.326 <i>6</i>	100	0.0 0+	E2		0.175	B(E2)(W.u.)=48.1 14 α (K)=0.136 4; α (L)=0.0311 10; α (M)=0.00660 20;
								$\alpha(N+)=0.00172 \ 6$
530.19	4+	330.88 9	100	199.326 2+	E2		0.0333	B(E2)(W.u.)=91 14
								$\alpha(K)$ =0.0273 9; $\alpha(L)$ =0.00475 15; $\alpha(M)$ =0.00099 3; $\alpha(N+)$ =0.00026 1
758.94	1(-)	559.57 5	98.1 25	199.326 2+	D(+Q)	-0.005 10		α(N+)=0.00020 1
		758.96 <i>5</i>	100 3	0.0 0+	- (.)			
838.37	$3^{(-)}$	308.23 9	14.6 7	530.19 4+	D(+Q)	+0.06 5		Seen only in β -decay studies.
		638.99 5	100.0 <i>19</i>	199.326 2+	D(+Q)	$-0.09\ 2$		
961.53	6+	431.3 <i>I</i>	100	530.19 4+	E2		0.0150	$\alpha(K)$ =0.0125 4; $\alpha(L)$ =0.00197 6; $\alpha(M)$ =0.00041 1; $\alpha(N+)$ =0.00011
1020.03	0_{+}	261.0 3	13.2 25	758.94 1 ⁽⁻⁾				
	()	820.71 7	100 11	199.326 2+	Q			
1038.83	5 ⁽⁻⁾	199.1	100	838.37 3 ⁽⁻⁾				Not seen by 1997Ur01.
1315.64	(2)	508.7 <i>1</i> 477.21 <i>11</i>	100 31 <i>4</i>	530.19 4 ⁺ 838.37 3 ⁽⁻⁾	D+Q	+0.23 15		
1313.04	(2)	556.4 3	29 6	758.94 1 ⁽⁻⁾	D+Q	+0.23 13		
		785.1 <i>5</i>	11 3	530.19 4+				
		1116.42 10	100 12	199.326 2 ⁺	D+Q	+7 +19-3		
1355.24	7(-)	316.5 2	22 3	1038.83 5 ⁽⁻⁾	E2	17 117 5	0.0383	$\alpha(K)=0.0313 \ 10; \ \alpha(L)=0.00555 \ 17; \ \alpha(M)=0.00116 \ 4;$
1000.2	,	210.0 2	0	1000.00			0.0000	$\alpha(N+)=0.00031 I$
		393.7 1	100 8	961.53 6 ⁺	E1		0.00575	$\alpha(K)$ =0.00496 15; $\alpha(L)$ =0.00063 2; $\alpha(M)$ =0.00013
1470.84	8+	115.6 2	6.0 7	1355.24 7 ⁽⁻⁾	E1		0.153	$\alpha(K)$ =0.131 4; $\alpha(L)$ =0.0175 6; $\alpha(M)$ =0.00356 11; $\alpha(N+)$ =0.00093 3
		509.3 1	100 11	961.53 6 ⁺	E2		0.0095	$\alpha(K)$ =0.00789 24; $\alpha(L)$ =0.00118 4
1772.95	9(-)	302.1 <i>I</i>	100 9	1470.84 8+	E1		0.0112	$\alpha(K)$ =0.0097 3; $\alpha(L)$ =0.00123 4; $\alpha(M)$ =0.00025 1
		417.7 <i>1</i>	61 4	1355.24 7 ⁽⁻⁾	E2		0.0164	$\alpha(K)$ =0.0137 5; $\alpha(L)$ =0.00218 7; $\alpha(M)$ =0.00045 1; $\alpha(N+)$ =0.00012
1837.58		1078.63 20	100	758.94 1 ⁽⁻⁾				
1848.16	$2^{(+)}$	1009.73 <i>13</i>	62 7	838.37 3 ⁽⁻⁾				
		1089.08 <i>15</i>	100 12	758.94 1 ⁽⁻⁾				
		1649.07 <i>17</i>	65 9	199.326 2+	Q+D	-3.2 + 18 - 69		
1864.25	2+	1025.73 <i>11</i>	100 11	838.37 3 ⁽⁻⁾				
		1105.3 4	50 11	758.94 1 ⁽⁻⁾				
		1333.9 6	7.1 21	530.19 4+	0.5	20.11.21		
		1664.98 <i>16</i> 1864.24 <i>24</i>	100 <i>11</i> 43 <i>4</i>	199.326 2 ⁺ 0.0 0 ⁺	Q+D	-2.8 + 11 - 31		
1880.98	(5 ⁺)	1864.24 <i>24</i> 1350.8 <i>2</i>	43 <i>4</i> 100	$0.0 0^+ $ $530.19 4^+ $				
1991.46	(6 ⁻)	952.8 3	100 25	1038.83 5 ⁽⁻⁾				
1771.70	(0)	152.0 5	100 23	1030.03				

$\gamma(^{144}Ba)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	δ#	$\alpha^{@}$	Comments
1991.46	(6-)	1029.8 3	100 25	961.53	6+				
2044.32	10+	271.4 2	35 4	1772.95	9(-)	E1		0.0149	$\alpha(K)=0.0128 \ 4; \ \alpha(L)=0.00163 \ 5; \ \alpha(M)=0.00033 \ I$
		573.5 <i>1</i>	100 8	1470.84	8+	E2		0.00688	$\alpha(K)=0.00577 \ 18; \ \alpha(L)=0.00084 \ 3$
2159.26	(7^{+})	167.8 2	69 19	1991.46	(6^{-})				
		278.3 <i>3</i>	56 <i>13</i>	1880.98	(5^{+})				Seen by 1997Ur01 only.
		1197.7 2	100 <i>19</i>	961.53	6+				
2212.42	(2^{+})	348.06 <i>11</i>	100 8	1864.25	2+	M1,E2		0.031 <i>3</i>	$\alpha(K)$ =0.026 3; $\alpha(L)$ =0.00386 14; $\alpha(M)$ =0.00080 4; $\alpha(N+)$ =0.00021 1
		897.1 <i>4</i>	15 <i>3</i>	1315.64	(2)				
		1374.12 <i>12</i>	83 10	838.37	$3^{(-)}$	D+Q	+1.03 8		
		1453.46 <i>24</i>	60 10	758.94	1(-)				
		1682.10 22	38 5	530.19	4+				
		2013.34 22	98 <i>4</i>	199.326	2+	D(+Q)	+0.04 13		
2279.07	11 ⁽⁻⁾	234.8 2	37 5	2044.32	10 ⁺	E1		0.0218	$\alpha(K)$ =0.0188 6; $\alpha(L)$ =0.00241 8; $\alpha(M)$ =0.00049 2; $\alpha(N+)$ =0.00013
		506.1 <i>1</i>	100 11	1772.95	9(-)	E2		0.0096	$\alpha(K)=0.00802\ 24;\ \alpha(L)=0.00120\ 4$
2362.94	(8^{-})	203.3 ^{&} 3	≤33	2159.26	(7^{+})				Seen by 1997Ur01 only.
	(0)	371.5 <i>3</i>	67 22	1991.46	(6^{-})				
		892.0 <i>3</i>	100 22	1470.84	8+				
		1007.8 <i>3</i>	44 22	1355.24	7 ⁽⁻⁾				
2375.39	$(1^+,2^+)$	1355.3 6	5.1 15	1020.03	0+				
	, , ,	1616.7 <i>6</i>	15 <i>6</i>	758.94	1(-)				
		2176.0 <i>3</i>	100 13	199.326		D+Q			δ : $-0.72 + 17 - 33$ if J(2375)=1.
2664.0		301.1 <i>3</i>	86 29	2362.94	(8^{-})				
		504.7 <i>3</i>	100 43	2159.26	(7^{+})				
2667.07	12+	388.0 2	70 <i>13</i>	2279.07	11 ⁽⁻⁾	E1		0.00596	$\alpha(K)=0.00514$ 16; $\alpha(L)=0.00065$ 2; $\alpha(M)=0.00013$
		622.8 2	100 17	2044.32	10^{+}	E2		0.00556	$\alpha(K)=0.00467 \ 14; \ \alpha(L)=0.00067 \ 2$
2863.68	13 ⁽⁻⁾	196.6 2	16 4	2667.07	12+	E1		0.0352	$\alpha(K)$ =0.0303 9; $\alpha(L)$ =0.00393 12; $\alpha(M)$ =0.00080 2; $\alpha(N+)$ =0.00021 1
		584.6 <i>1</i>	100 10	2279.07	$11^{(-)}$	E2		0.00654	$\alpha(K)=0.00549 \ 17; \ \alpha(L)=0.00079 \ 2$
2903.66		541.0 ^{&} 3	≤8	2362.94	(8^{-})				
2703.00		624.6 2	100 17	2279.07	11 ⁽⁻⁾				
		859.3 <i>3</i>	21 8	2044.32	10 ⁺				
3320.72	(14^{+})	457.0 2	57 14	2863.68	13 ⁽⁻⁾				
3340.14	(17)	653.7 2	100 19	2667.07	12 ⁺				
3519.00	(15^{-})	198.3 3	100 13	3320.72	(14^{+})				
5517.00	(10)	655.3 2	100 16	2863.68	13 ⁽⁻⁾			0.00488	$\alpha(K)=0.00411 \ 13; \ \alpha(L)=0.00058 \ 2$
3991.5	(16^+)	472.5 3	67 22	3519.00	(15^{-})			0.00+00	u(1x)=0.00711 13, u(L)=0.00030 2
5771.5	(10)	670.8 3	100 22	3320.72	(14^{+})				
4242.1	(17^{-})	250.4 ^{&} 3	≤25	3991.5	(16^{+})				Seen only by 1997Ur01.
→ ∠ → ∠.1	(1/)	230.4 3	≥ <i>∠</i> J	3771.3	(10)				Seen only by 1777 0101.

γ (144Ba) (continued)

- [†] From weighted average of ²⁴⁸Cm SF decay (1997Ur01) and ¹⁴⁴Cs β^- decay (1980Sc16) values. [‡] From SF decay or $\gamma\gamma(\theta)$ and $\alpha(K)$ exp in β^- decay.
- # From $\gamma\gamma(\theta)$ in β^- decay.
- [®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- & Placement of transition in the level scheme is uncertain.

Adopted Levels, GammasLegendLevel Scheme $I_{\gamma} < 2\% \times I_{\gamma}^{max}$ Intensities: Type not specified $I_{\gamma} < 10\% \times I_{\gamma}^{max}$

γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Type not specified

 $^{144}_{56}{
m Ba}_{88}$

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov, A. Rodionov and G. Shulyak	NDS 136, 163 (2016)	14-Jul-2016

 $Q(\beta^-)$ =4110 30; S(n)=5495 22; S(p)=12173 23; $Q(\alpha)$ =-2136 21 2012Wa38 Produced and identified by 1970Wi16 (1970WiZN,1969WiZX) in the products of the ²⁵²Cf SF. ¹⁴⁶Ba β^- n decay measured by 1983Re10: % β^- n<0.02.

¹⁴⁶Ba Levels

Assignment spins and parities to levels of the bands with bandheads of the 1974, 2029 and 2097 keV based on the observed branching ratios and decay pattern in 1997Ur01. Evaluators found these level structures as having not enough strong arguments for the construction of bands.

Cross Reference (XREF) Flags

- A 146 Cs β^- decay
- B ²⁴⁸Cm SF decay
- c ²⁵²Cf SF decay
- D 235 U(n,F γ) E=th

				$D = E \cup (n, F\gamma) E = tn$
E(level)#	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0@	0+	2.21 s 6	ABCD	% β^- =100 $T_{1/2}$: weighted average from γ (t) of 2.22 s 7 (1985Ch16), 2.2 s 3 (1979En02), 2.18 s II (1978Wo09), 2.14 s 37 (1976AmZW). Other: 1.70 s 9 (1969WiZX).
181.04 [@] 5	2+	0.859 ns 26	ABCD	J ^π : 181.1γ E2 to g.s., 0 ⁺ . μ: +0.52 <i>10</i> : weighted average of +0.56 <i>14</i> (IPAC 1983Wo05), +0.54 <i>18</i> (IPAC 2009Go09) and +0.40 <i>20</i> (IMPAC 1999Sm05). Systematics and theory give a good indication on positive sign of μ. $T_{1/2}$: weighted average of 0.859 ns 29 (β ⁻ γγ(t) 1990Ma25), 0.86 ns 6, (γγ(t) 1974JaYY, 1974JaZN); other: 0.92 ns <i>12</i> (γγ(t) 1980ChZM).
513.66 [@] 8	4+	18 ps <i>15</i>	ABCD	J^{π} : stretched 332.4 γ E2 to 2 ⁺ and band assignment. $T_{1/2}$: from $\beta^{-}\gamma\gamma(t)$ 1990Ma25.
738.82 ^{&} 9	1-	160 ps <i>10</i>	A C	J^{π} : 557.7 γ E1+M2 from $\gamma\gamma(\theta)$ to 2 ⁺ , 82.2 γ E2 from 3 ⁻ ; syst. T _{1/2} : from $\beta^-\gamma\gamma(t)$ 1990Ma25.
821.10 ^{&} 8	3-	237 ps 8	ABCD	J^{π} : 307.4γ E1+M2 from $\gamma\gamma(\theta)$ to 4 ⁺ , 640.1γ E1+M2 from $\gamma\gamma(\theta)$ to 2 ⁺ . $T_{1/2}$: from $\beta^{-}\gamma\gamma(t)$ 1990Ma25.
958.37 [@] 11 1024.53 ^{&} 10	6 ⁺ 5 ⁻		BCD BCD	J^{π} : stretched 444.7 γ E2 to 4 ⁺ , band assignment.
1052.37 17	0+	<26 ps	A	J ^π : from $\gamma \gamma(\theta)$ of 871.5 γ (E2)–181.1 γ (E2) cascade. T _{1/2} : from $\beta^- \gamma \gamma$ (t) 1990Ma25.
1115.21 <i>9</i> 1157.68? <i>17</i>	$(1,2)^+$		A A	J^{π} : 934.1 γ to 2^{+} , 1115.2 γ to 0^{+} ; no transitions to the negative parity states. Introduced by 1980MoZA, supported by 1980Sc16 coin with 181 γ , not supported in 2016Mi02. Evaluators treat this level as doubtful.
1256.25 <i>9</i> 1309.25 <i>13</i>	$(1,2)^+$ 3^+		A A	J^{π} : 1075.3 γ to 2 ⁺ , 1256.2 γ to 0 ⁺ ; no transitions to the negative parity states. J^{π} : 795.55 γ to 4 ⁺ , 1128.58 γ to 2 ⁺ ; no observed direct feeding to 0 ⁺ , no
1341.97 11	(0 ⁺)		Α	transitions to the negative parity states. J^{π} : the only 1160.9 γ to the 2 ⁺ state, transitions to other states were not observed but should be if not 0 ⁺ .
1349.06 ^{&} 11 1398.65 19 1410.62 20	7 ⁻ 2 ⁺		BCD A A	J^{π} : octupole band assignment (1997Ur01). J^{π} : 1217.8 γ to 2 ⁺ , 1397.8 γ to 0 ⁺ ; no transitions to the negative parity states.

146Ba Levels (continued)

E(level)#	J^π^{\dag}	XREF	Comments
1482.63 [@] 11	8+	BCD	J^{π} : stretched 524.3 γ E2 to 6 ⁺ , band assignment.
1511.06 <i>12</i>	1-	A	J^{π} : strong decay to other low-spin (J=0,1,2) levels both positive and negative parity; main branch to the $J^{\pi}=1^-$ level.
1527.70 <i>13</i>	(3)	A	J^{π} : decay to 1 ⁻ and 2 ⁺ levels, no decay to g.s.; main branch to the $J^{\pi}=2^+$ level favors J=3.
1566.41 <i>12</i>	(2^{+})	A	J^{π} : strong β -feeding; 1566.8 γ to 0 ⁺ , 1052.6 γ to 4 ⁺ .
1632.3 3		A	
1637.63 24	(1.2±)	A	J^{π} : 917.5 γ to 1 ⁻ , 1656.5 γ to 0 ⁺ .
1656.37 <i>24</i> 1668.87? <i>20</i>	$(1,2^+)$	A A	J : 917.3γ to 1 , 1030.3γ to 0 .
1682.86 16		A	
1715.29 9	$(1,2^+)$	A	J^{π} : 1533.8 γ to 2 ⁺ , 1715.8 γ to 0 ⁺ .
1777.60 <mark>&</mark> 11	9-	BCD	J^{π} : octupole band assignment (1997Ur01).
1780.0 <i>3</i>		A	
1874.72 ^b 14	6-	ВС	J^{π} : 916.3 γ E1 (J=0) to 6 ⁺ ; band assignment.
1932.9 <i>4</i>		A	
1944.77 ^a 15	7-	BC	
1968.51 <i>16</i>	$(1,2^+)$	A	J^{π} : 1787.3 γ to 2 ⁺ , 1968.5 γ to 0 ⁺ .
1974.4 ^c		В	
1979.9 4 1996.25 <i>23</i>	$(1,2^+)$	A A	J^{π} : 1813.5 γ to 2 ⁺ , 1995.6 γ to 0 ⁺ .
2029.37 ^e 21	$(8^+)^{\ddagger}$	В	3 . 1013.57 to 2 , 1775.07 to 0 .
2029.37 21	(0).	A	
2052.01 [@] 11	10 ⁺	BC	J^{π} : stretched 569.4 γ E2 to 8 ⁺ , band assignment.
2060.1 4	10	A	J. Stietened 309.47 E2 to 8, band assignment.
2090.46 ^b 14	8-	ВС	
2096.89^{d} 22	$(7^{-})^{\ddagger}$	В	
2134.9 4	(,)	A	
2162.1 5		A	
2171.4 5		A	
2191.24 ^a 14	9-	BC	
2209.0 4	4	A	
2213.04 ^c 22	$(8,9^{-})^{\ddagger}$	В	
2292.59 ^{&} 17	11-	BC	J^{π} : octupole band assignment (1997Ur01).
2343.9 5	$(1,2^+)$	A	J^{π} : 2162.8 γ to 2 ⁺ , 2344 γ to 0 ⁺ .
2349.91 ^d 19	(9 ⁻) [‡]	В	TT 400 A 0- A00 T 0-
2389.27 ^b 17	(10 ⁻)	BC	J^{π} : 198.2 γ to 9 ⁻ , 298.7 γ to 8 ⁻ .
2442.96 ^e 19 2516.05 ^a 14	$(10^+)^{\ddagger}$	В	IT 2240 4 0- 7205 4 0- 1 1 1 1 4 (1007H 01)
	11-	BC	J^{π} : 324.8 γ to 9 ⁻ , 738.5 γ to 9 ⁻ , band assignment (1997Ur01).
2530.0 ^c 3	$(10,11^{-})^{\ddagger}$	В	
2632.31 [@] 18	12+	BC	J^{π} : stretched 580.3 γ E2 to 10 ⁺ , band assignment.
2710.2^{d} 3		В	
2790.83 ^b 22	(12^{-})	BC	
2876.44 ^{&} 20	13-	ВС	J^{π} : 583.7 γ to 11 ⁻ , octupole band assignment (1997Ur01).
2938.74 ^a 18	13-	BC	J^{π} : 422.8 γ to 11 ⁻ , 646.1 γ to 11 ⁻ , band assignment (1997Ur01).
2953.5 ^c 4 3192.66 [@] 23	1.44	В	17 1 1 5 CO 4 FO . 10 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	14+	BC	J^{π} : stretched 560.4 γ E2 to 12 ⁺ , band assignment.
3297.7 ^b 3 3452.39 ^a 21	(14 ⁻)	BC	IA. 512 0 to 12 575 0 to 12 hand assignment (1007H-01)
3452.39° 21 3523.94 25	(15^{-})	BC BC	J^{π} : 513.8 γ to 13 ⁻ , 575.8 γ to 13 ⁻ , band assignment (1997Ur01).
3323.77 23		DC	

¹⁴⁶Ba Levels (continued)

E(level)# $J^{\pi^{\dagger}}$ XREF Comments

3737.2@ 3 (16+) BC J^{π} : stretched 544.6 γ (E2) to 14+, band assignment.

4071.9^a 4 (17⁻) B

 $^{^{\}dagger}$ Based on deduced γ -ray transition multipolarities using triple- γ angular correlation, direction-polarization correlation measurements and band structure in 248 Cm (1997Ur01) and 252 Cf (2001Ha14) SF decay, unless indicated otherwise.

[‡] Assignment of spins and parities to levels of the side bands of 3, 4, 5 is based on the observed branching ratios and decay pattern in 1997Ur01.

[#] From a least-squares fit to E γ , normalized χ^2 =0.92.

[@] Band(A): g.s. band.

[&]amp; Band(B): octupole band.

^a Band(C): side band 1.

^b Band(D): side band 2.

^c Band(E): side band 3 based on 1974 level.

^d Band(F): side band 4 based on 2097 (7⁻) level.

^e Band(G): side band 5 based on 2029 (8⁺) level.

$\gamma(^{146}\text{Ba})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&	δ^a	α^{b}	Comments
181.04	2+	181.04 [‡] 5	100	0.0 0+	E2		0.242	B(E2)(W.u.)=59.7 19 E _{γ} : 180.894 6, 1979Bo26, curved cryst.
513.66	4+	332.44 [‡] <i>13</i>	100	181.04 2+	E2		0.0327	B(E2)(W.u.)=1.6×10 ² 14
738.82	1-	557.70 [#] <i>17</i>	100.0 [#] <i>15</i>	181.04 2+	E1+M2	-0.024 <i>21</i>	0.00256 6	$B(E1)(W.u.)=6.6\times10^{-6} 5$; $B(M2)(W.u.)=0.06 +10-6$
		738.86 [#] <i>12</i>	32.9 [#] 8	$0.0 0^{+}$				
821.10	3-	82.2 [#] 2	2.2 [#] 8	738.82 1	E2		3.89 7	$B(E2)(W.u.)=1.5\times10^2 6$
		307.42 [‡] 6	94.1 [#] 22	513.66 4+	E1+M2	+0.12 6	0.013 4	$B(E1)(W.u.)=1.59\times10^{-5} 9$; $B(M2)(W.u.)=11 11$
		640.10 [‡] 7	100 [#] 3	181.04 2+	E1+M2	+0.19 13	0.0025 11	$B(E1)(W.u.)=1.84\times10^{-6} \ 13; \ B(M2)(W.u.)=0.7 +10-7$
		821.1 [#] 2	24	$0.0 0^{+}$				
958.37	6+	444.70 [‡] 1	100.0	513.66 4+	E2		0.01370	
1024.53	5-	203.41 [‡] <i>10</i>	100 10	821.10 3-				
		510.90 [‡] 7	90 5	513.66 4+	E1		0.00310	
1052.37	0_{+}	871.49 [#] <i>17</i>	100 [#]	181.04 2+	E2		0.00245	B(E2)(W.u.)>0.94
1115.21	$(1,2)^{+}$	934.07 [#] <i>16</i>	100 [#] 5	181.04 2+				
		1115.24 [#] <i>10</i>	77 [#] 6	$0.0 0^{+}$				
1157.68?		976.63 [#] 16	100 [#]	181.04 2+				possible placement of this γ : from 1714.9 keV level (2016Mi02).
1256.25	$(1,2)^+$	1075.31 [#] <i>13</i>	58 # 7	181.04 2+				
		1256.17 [#] <i>11</i>	100 [#] 10	$0.0 0^{+}$				
1309.25	3 ⁺	795.55 [#] <i>14</i>	74 [#] <i>30</i>	513.66 4+				
		1128.58 [#] 24	100 [#]	181.04 2+				
		1310 [#] <i>I</i>	<7 #	$0.0 0^{+}$				
1341.97	(0^+)	1160.9 [#] <i>1</i>	100 [#]	181.04 2+				
		1342# 2	<16 [#]	$0.0 0^{+}$				
1349.06	7-	324.60 [‡] 9	100 8	1024.53 5-				
		390.48 [‡] <i>11</i>	7.7 15	958.37 6 ⁺	D			
1398.65	2+	1217.8 [#] 2	55 [#] 50	181.04 2+				
		1397.8 [#] 4	100#	$0.0 0^{+}$				
1410.62		1229.5 [#] 2	100#	181.04 2+				
		1412 [#] <i>I</i>	<40#	$0.0 0^{+}$				
1482.63	8+	133.5 2	<0.36	1349.06 7-				
		524.29 [‡] 5	100 [@]	958.37 6 ⁺	E2		0.00866	
1511.06	1-	772.14 [#] <i>12</i>	100#	738.82 1				
		1330.4# 2	31 [#] 12	181.04 2+				
		1510 <i>I</i>	17 9	$0.0 0^{+}$				

γ (146Ba) (continued)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	α^{b}	Comments
1527.70	(3)	788.9 [#] 1	31 [#] <i>13</i>	738.82 1			
		1348.9 [#] 3	100 [#]				E_{γ} : level energy difference gives 1346.64 keV; this γ was not used for least-square fitting.
		1529 [#] 1	<13 [#]	$0.0 0^{+}$			
1566.41	(2^{+})	745.30 [#] <i>17</i>	36 # 4	821.10 3-			
		827.80 [#] 26	57 [#] 5	738.82 1			
		1052.6 [#] 2	29 [#]	513.66 4+			
		1385.32 [#] 21	86 [#] 6	181.04 2+			
		1566.8# 5	100#	$0.0 0^{+}$			
1632.3		893.41 [#] <i>31</i>	100#	738.82 1			
		1451.6 [#] 25	33 [#] 5	181.04 2+			
		1633 [#] 1	<10 [#]	$0.0 0^{+}$			
1637.63		816.78 [#] 19	86 <mark>#</mark> 40	821.10 3-			
		1456.58# 23	100#	181.04 2+			
		1638 [#] 1	<16#	$0.0 0^{+}$			
1656.37	$(1,2^+)$	917.51# 26	63 [#]	738.82 1			
		1656.5 [#] 5	100#	$0.0 0^{+}$			
1668.87?		1487.8# 2	100#	181.04 2+			
4.500.05		1669 [#] 1	<12#	$0.0 0^{+}$			
1682.86		943.6# 2	48 [#] 6	738.82 1			
		1502.31 [#] 22 1684 [#] 1	100 [#] <10 [#]	181.04 2+			
1715.00	(1.0±)	894.1 [#] <i>I</i>	<10" 8 [#] 3	0.0 0+			
1715.29	$(1,2^+)$	894.1" <i>1</i> 976.7 [#] <i>1</i>	8" 3 96 [#] 40	821.10 3 ⁻ 738.82 1 ⁻			
		976.7" <i>1</i> 1533.8 [#] <i>6</i>	96" 40 37 [#] 15	181.04 2 ⁺			
		1555.8 [#] 5	100 [#]	$0.0 0^{+}$			
1777.60	9-	295.24 [‡] <i>17</i>	2.1 11	1482.63 8 ⁺			
1777.00	7	428.54 [‡] 5	100 6	1349.06 7			
1780.0		1598.9 [#] 3	100 6	181.04 2 ⁺			
1780.0		1780.2 [#] 8	40 [#] 30	$0.0 0^{+}$			
1874.72	6-	850.1 2	54 12	1024.53 5			
		916.30 [‡] <i>14</i>	100 20	958.37 6 ⁺	E1	9.00×10^{-4}	
1932.9		1751.7 [#] 4	100 #	181.04 2+			
		1934 [#] <i>1</i>	<35 [#]	$0.0 0^{+}$			
1944.77	7-	986.40 [‡] <i>14</i>	100	958.37 6 ⁺	E1	7.82×10^{-4}	

S

$\gamma(\frac{146}{\text{Ba}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f .	J_f^{π} Mult. &	α^b	Comments
1968.51	$(1,2^+)$	1787.3 [#] 5	28.6 [#]	181.04	2+		
	, ,	1968.56 [#] <i>16</i>	100 [#]	0.0			
1974.4		1016.0 <i>3</i>	100	958.37			
1979.9		1798.3 [#] 4	100 #	181.04	2+		
		1980.8 [#] 5	<35 [#]	0.0	O+		Part of I γ may belong to the transition from 2162.1 keV level.
1996.25	$(1,2^+)$	944.1 <mark>#</mark> 2	100 [#]	1052.37	0+		
		1813.5 [#] 7	97 # <i>30</i>	181.04	2+		
		1995.6 [#] 5	34 [#]	0.0			
2029.37	(8^{+})	680.3 <i>3</i>	100 40	1349.06	7- E1	1.65×10^{-3}	
		1071.2 3	86 <i>30</i>	958.37			
2037.6		1299 [#] <i>I</i>	53 [#] 30	738.82			
		1856.6 [#] 4	100#	181.04			
		2037 [#] 1	<20 [#]	0.0) +		
2052.01	10+	274.42 [‡] 2	1.4 7	1777.60	9-		
		569.36 [‡] 4	100 7	1482.63		0.00694	
2060.1		1878.9 [#] 4	100 [#]	181.04	2+		
		2061 [#] <i>I</i>	<30 [#]	0.0			
2090.46	8-	145.6 3	20 7	1944.77 ´			
		215.65 [‡] <i>14</i>	100 <i>30</i>	1874.72			
		607.90 [‡] <i>14</i>	100 17	1482.63		0.00210	
		741.30 [‡] <i>17</i>	13 7	1349.06			
2096.89	(7^{-})	1072.0 4	$8.0 \times 10^{1} 4$	1024.53			
		1138.6 3	$1.0 \times 10^2 4$	958.37			
2134.9		1953.7 [#] 4	100#	181.04			
		2136 [#] <i>1</i>	<28 [#]	0.0			
2162.1		1981.0 [#] 5	100#	181.04			Part of I γ may belong to the transition from 1979.9 keV level.
		2162 [#] <i>1</i>	<15#	0.0			
2171.4		1990.2 [#] 5	100# 2	181.04			
		2172 [#] 1	<32 [#]	0.0			
2191.24	9-	246.50 [‡] <i>14</i>	42 8	1944.77 <i>′</i>			
		708.70 [‡] <i>14</i>	100 17	1482.63		1.51×10^{-3}	
		842.00 [‡] 21	12 4	1349.06			
2209.0		2027.8 [#] 4	100#	181.04			
		2210 [#] <i>I</i>	<25 [#]	0.0			
2213.04	$(8,9^{-})$	730.0 <i>3</i>	$1.0 \times 10^2 \ 4$	1482.63			
		864.1 <i>3</i>	100 25	1349.06	7-		

6

$\gamma(^{146}\text{Ba})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.&	α^{b}
2292.59	11-	514.85 [‡] <i>15</i>	100	1777.60 9-		
2343.9	$(1,2^+)$	2162.8 [#] 5	38 [#]	181.04 2+		
	. , ,	2344 [#] 5	100 #	$0.0 0^{+}$		
2349.91	(9^{-})	252.9 <i>3</i>	≤23	2096.89 (7-)		
		867.4 2	$1.0 \times 10^2 \ 3$	1482.63 8 ⁺		
		1000.7 3	23 8	1349.06 7		
2389.27	(10^{-})	198.20 <i>17</i>	10 5	2191.24 9-		
2442.06	(10+)	298.70 <i>14</i>	100 17	2090.46 8		
2442.96	(10^+)	413.8 3	44 17	2029.37 (8+)		
		665.2 2 960.5 <i>3</i>	100 22 28 <i>11</i>	1777.60 9 ⁻ 1482.63 8 ⁺		
2516.05	11-	324.75 [‡] 14				
2516.05	11		100 30	2191.24 9		
		464.20 [‡] <i>14</i>	20 5	2052.01 10+		
		738.50 [‡] <i>17</i>	13 5	1777.60 9		
2530.0	$(10,11^{-})$	316.7 3	$1.0 \times 10^2 5$	2213.04 (8,9 ⁻)		
		752.7 3	88 40	1777.60 9-		
2632.31	12+	580.30 [‡] <i>14</i>	100	$2052.01 10^{+}$	E2	0.00660
2710.2		360.3 2	100	2349.91 (9 ⁻)		
2790.83	(12^{-})	401.55 [‡] <i>14</i>	100	2389.27 (10 ⁻)		
2876.44	13-	583.75 [‡] <i>14</i>	100	2292.59 11-		
2938.74	13-	422.87 [‡] <i>17</i>	100 23	2516.05 11-		
		646.10 [‡] <i>17</i>	73 18	2292.59 11-		
2953.5		423.5 <i>3</i>	100	2530.0 (10,11	-)	
3192.66	14 ⁺	560.35 [‡] 14	100	2632.31 12 ⁺	E2	0.00724
3297.7	(14^{-})	506.89 [‡] <i>17</i>	100	2790.83 (12 ⁻)		
3452.39	(15^{-})	513.75 [‡] <i>14</i>	100 <i>30</i>	2938.74 13-		
	,	575.80 [‡] 17	33 20	2876.44 13-		
3523.94		647.50 [‡] 14	100	2876.44 13 ⁻		
3737.2	(16^{+})	544.58 <i>14</i>	100	3192.66 14 ⁺	(E2)	0.00781
4071.9	(17^{-})	619.5 3	100	3452.39 (15 ⁻)	(112)	0.00701
.0,1,	(**)	227.00	100	2.32.67 (10)		

[†] From ²⁴⁸Cm SF, except as noted. [‡] Weighted average from ¹⁴⁶Cs β^- , ²⁴⁸Cm SF decays data, ²⁵²Cf SF decay data when available. [#] From ¹⁴⁶Cs β^- decay. [@] From ²⁵²Cf SF decay. [&] From $\alpha(\exp)$, $\gamma\gamma(\theta)$, polarization and decay pattern.

 γ (146Ba) (continued)

^a From $\gamma\gamma(\theta)$ in ¹⁴⁶Cs β^- decay (1980Sc16). ^b Additional information 1.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Coincidence

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(G): Side band 5 based on 2029 (8⁺) level

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 117, 1 (2014)	1-Oct-2013

 $Q(\beta^{-})=5110\ 60;\ S(n)=5400\ 70;\ S(p)=12860\ 80;\ Q(\alpha)=-3150\ 60$ 2012Wa38 $Q(\beta^- n) = 1010 60 (2012Wa38).$

$^{148}\mathrm{Ba}$ Levels

Cross Reference (XREF) Flags

- $^{148}\mathrm{Cs}~\beta^-$ decay $^{248}\mathrm{Cm}~\mathrm{SF}$ decay
- В
- ²⁵²Cf SF decay
- ²⁵⁴Cf SF decay

E(level)	J^{π}	$T_{1/2}$	XREF	Comments
0.0‡	0+	0.612 s <i>17</i>	ABCD	% β^- =100; % β^- n=0.4 3 T _{1/2} : unweighted average of 0.607 s 25 (1984Ch02), 0.620 s 5 (1986Wa17), 0.63 s 5 (1982Ga24), 0.55 s 5 (1993Ru01), and 0.653 s 2 (1986ReZR). Others:≈0.7 s (1981ChZX), 0.47 s 3 (1981En05), 0.47 s 20 (1979En02). % β^- n: recommended value of 1993Ru01 based on the following data: 23.9 21 (1981En05),≤0.01 (1982Ga24),≤0.03 (1983Re10), 0.057 20 (1986ReZR), and 0.72 20 (1993Ru01). <r2>>1/2=4.9773 fm 168 (2004An14).</r2>
141.8 [‡] <i>1</i>	2+		ABCD	
423.10 [‡] <i>15</i>	4+		ABC	
687.2 [#] 7	1-		Α	
775.00 [#] 23	(3^{-})		AB	
807.90 [‡] <i>18</i>	6+		BC	
963.20 [#] 25	(5^{-})		BC	
1049.2	2+		Α	
1255.70 [#] 20	7-		BC	
1264.70 [‡] 20	8+		BC	
1644.92 [#] 21	9-		BC	
1767.78 [‡] 22	10 ⁺		BC	
2117.30 [#] 25	(11^{-})		BC	
2303.5 [‡] 3	(12^{+})		BC	
2659.3? [#] 4			В	
2867.0? [‡] 4			В	

[†] From DCO ratios, linear polarization, and $\gamma\gamma\gamma(\theta)$ from ²⁴⁸Cm SF decay data which are in agreement with the $\gamma\gamma(\theta)$, $\gamma\gamma\gamma(\theta)$ from ²⁵²Cf SF decay data, and systematics for even-even nuclei with A \approx 150. [‡] Band(A): g.s. band.

[#] Band(B): octupole band.

$\gamma(^{148}\text{Ba})$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	α^{\ddagger}	Comments
141.8 423.10 687.2	2 ⁺ 4 ⁺ 1 ⁻	141.8 <i>I</i> 281.3 <i>I</i> 545.5 687.2	100 100 87 100	0.0 0 ⁺ 141.8 2 ⁺ 141.8 2 ⁺ 0.0 0 ⁺	E2		
775.00	(3-)	351.9 633.2 2	21 100	423.10 4 ⁺ 141.8 2 ⁺			
807.90	6+	384.8 1	100	423.10 4+	E2	0.0209	$\alpha(K)$ =0.01735 25; $\alpha(L)$ =0.00284 4; $\alpha(M)$ =0.000596 9 $\alpha(N)$ =0.0001267 18; $\alpha(O)$ =1.85×10 ⁻⁵ 3; $\alpha(P)$ =1.017×10 ⁻⁶ 15
963.20 1049.2	(5 ⁻) 2 ⁺	540.1 2 626.1 907.5 1049.1	100 21 86 100	423.10 4 ⁺ 423.10 4 ⁺ 141.8 2 ⁺ 0.0 0 ⁺	D		
1255.70	7-	293.0 [#] 3 447.8 <i>I</i>	<6 100 <i>13</i>	963.20 (5 ⁻) 807.90 6 ⁺	E1	0.00421	$\alpha(K)=0.00364 \ 5; \ \alpha(L)=0.000459 \ 7;$ $\alpha(M)=9.40\times10^{-5} \ 14$ $\alpha(N)=2.02\times10^{-5} \ 3; \ \alpha(O)=3.07\times10^{-6} \ 5;$ $\alpha(P)=2.17\times10^{-7} \ 3$
1264.70	8+	456.8 1	100	807.90 6+	E2	0.01269	$\alpha(K)=2.17 \times 10^{-5}$ $\alpha(K)=0.01062$ 15; $\alpha(L)=0.001643$ 23; $\alpha(M)=0.000343$ 5 $\alpha(N)=7.31 \times 10^{-5}$ 11; $\alpha(O)=1.079 \times 10^{-5}$ 16; $\alpha(P)=6.34 \times 10^{-7}$ 9
1644.92	9-	380.2 1	100 14	1264.70 8+	E1	0.00626	$\alpha(K)=0.00540 \ 8; \ \alpha(L)=0.000686 \ I0;$ $\alpha(M)=0.0001405 \ 20$ $\alpha(N)=3.02\times10^{-5} \ 5; \ \alpha(O)=4.58\times10^{-6} \ 7;$ $\alpha(P)=3.20\times10^{-7} \ 5$
1767.78	10 ⁺	389.2 2 503.1 <i>1</i>	43 <i>14</i> 100	1255.70 7 ⁻ 1264.70 8 ⁺	E2	0.00969	$\alpha(K)=0.00814 \ 12; \ \alpha(L)=0.001225 \ 18;$ $\alpha(M)=0.000255 \ 4$ $\alpha(N)=5.45\times10^{-5} \ 8; \ \alpha(O)=8.08\times10^{-6} \ 12;$ $\alpha(P)=4.90\times10^{-7} \ 7$
2117.30	(11-)	349.5 2 472.4 2	75 25 100 25	1767.78 10 ⁺ 1644.92 9 ⁻	D		
2303.5 2659.3? 2867.0?	(12+)	535.7 2 542.0 2 563.5 2	100 100 100	1767.78 10 ⁺ 2117.30 (11 ⁻) 2303.5 (12 ⁺)			

[†] From ²⁴⁸Cm SF decay dataset based on DCO and linear polarization measurements. [‡] Additional information 1. [#] Placement of transition in the level scheme is uncertain.

$$^{148}_{56}{\rm Ba}_{92}$$