[3] [30 points]

A sequential system is described with the state table shown.

# X		=1 Output	ш	0 A	F 0	В 1	0 9	0)	0 н	D 1	
	Input	=x 0=x	_ 						0	H	*

Design a synchronous state machine that implements the sequential system using Enabled T Flip-Flops. Rename the states using a three-bit binary code, so that **A** becomes 000, **B** becomes 001, etc.

Bonus [10 points]

Implement the next-state logic (NSL) of the synchronous state machine using ROMs. Show the ROMs' logic diagrams and the tables of their addresses (inputs) and contents (data outputs).

0

= × (0,000); = × (0,000);

EN2 = X (POBP2)

型 0000	0000
五 0000	0000
图10-00-0	-0-00-0-
800000-	0000
\$ 0000	0000
\$n 0-0-0-0-	-0-0-0-0
* AMOUNDAI	三人下のららばり
On 0000	0-0-0-0-
X	-
N AUNDMITTER	M W U U U U U U U U U U U U U U U U U U