学号	姓名
23214321	陈宁浩
23214322	陈宁浩 何昌烨
23214323	胡静静
23214324	黄项龙
23214326	刘润尧
23214329	宋珂
23214336	戴泳涛
23214338	杜冠男
23214339	段培明
23214345	黄瀚
23214346	黄樾
23214353	梁励
23214364	毛睿
23214364 23214369	钱甜奕
23214303	发
23214378 23214383	徐博研
23214383	赵海洋
23214410	陈东
23214417	陈宁宁
23214421	陈腾跃
23214426	陈煜彦
23214427	崔铮浩
23214446	何鸿荣
23214449	何芷莹
23214452	洪桂航
23214460	黄泽林
23214466	赖柔成
23214474	李宏立
23214478	李茂锦
23214491	梁恒中
23214503	刘星宇
23214509	罗经周
23214534	苏达威
23214542	王辉
23214564	熊泽华
23214565	徐浩耀
23214573	杨坤业
23214576	杨子逸杨沅旭
23214578	杨沅旭
23214590	易钰淇
23214594	曾家洋
23214600	张珊
23214601	张晓逊
23214615	钟龙广
23214624	庄梓轩
23214625	1年41
23220055	李品律
20220033	プロロー

page 160-163

Ex.1

(a) $f(z)=rac{z^2}{z-3}$ 在z=3以外的地方解析,即在简单闭曲线C及其包围的区域上解析,由Cauchy-Goursat定理得到 $\int_C f(z)dz=0$ 。

- (b) $f(z)=ze^{-z}$ 在复平面上解析,由Cauchy-Goursat定理得到 $\int_C f(z)dz=0$ 。
- (c) $f(z)=rac{1}{z^2+2z+2}$ 在 $z=-1\pm i$ 以外的地方解析,处于C包围的区域外,由Cauchy-Goursat定理有 $\int_C f(z)dz=0$ 。
- (d) $f(z)={
 m sech}z=rac{2}{e^z+e^{-z}}$ 在 $z=i\pi(rac12+n),(n=0,\pm 1,\pm 2,...)$ 以外解析,处于C包围的区域以外,由Cauchy-Goursat定理有 $\int_C f(z)dz=0$ 。
- (e) $f(z)=\tan z$ 在 $z=\pi(\frac12+n), (n=0,\pm1,\pm2,...)$ 以外解析,处于C包围的区域以外,由Cauchy-Goursat定理有 $\int_C f(z)dz=0$ 。
- (f) $f(z)=\mathrm{Log}(z+2)$ 在实轴上以z=-2分割的左半轴外的区域解析,处于C包围的区域以外,由 Cauchy-Goursat定理有 $\int_C f(z)dz=0$ 。

Ex.2

The contours C_1 and C_2 are as shown in the figure below.

In each of the cases below, the singularities of the integrand lie inside C_1 or outside of C_2 ; and so the integrand is analytic on the contours and between them. Consequently,

$$\int_C f(z)dz = \int_C f(z)dz.$$

- (a) When $f(z) = \frac{1}{3z^2 + 1}$, the singularities are the points $z = \pm \frac{1}{\sqrt{3}}i$.
- (b) When $f(z) = \frac{z+2}{\sin(z/2)}$, the singularities are at $z = 2n\pi$ $(n = 0, \pm 1, \pm 2,...)$.
- (c) When $f(z) = \frac{z}{1 e^z}$, the singularities are at $z = 2n\pi i$ $(n = 0, \pm 1, \pm 2,...)$.

Ex.3

令 C_0 为以2+i为圆心,半径0< R<1的圆,方向为逆时针。 $f(z)=(z-2-i)^{n-1}, n=0,\pm 1,\pm 2,...$ 在z=2+i以外的区域可以确定为解析的,即在C和 C_0 之间的区域解析,由推论可以得到

$$\int_C (z-2-i)^{n-1} dz = \int_{C_0} (z-2-i)^{n-1} dz = egin{cases} 0 & ext{when n} = \pm 1, \pm 2, ... \ 2\pi i & ext{when n} = 0 \end{cases}$$

Ex.7

令

$$f(z) = \bar{z} = u(x,y) + iv(x,y) = x - iy$$

由格林公式可得

$$egin{aligned} \int_C f(z)dz &= \iint_R (-v_x - u_y)dA + i \iint_R (u_x - v_y)dA \ &= 2i \iint_R dA \end{aligned}$$

故C所围区域的面积 $\iint_R dA = rac{1}{2i} \int_C ar{z} dz$ 。

page 170-172

Ex.2

Let C denote the positively oriented circle |z-i|=2, shown below.

(a) The Cauchy integral formula enables us to write

$$\int_C \frac{dz}{z^2+4} = \int_C \frac{dz}{(z-2i)(z+2i)} = \int_C \frac{1/(z+2i)}{z-2i} dz = 2\pi i \left(\frac{1}{z+2i}\right)_{z=2i} = 2\pi i \left(\frac{1}{4i}\right) = \frac{\pi}{2}.$$

(b) Applying the extended form of the Cauchy integral formula, we have

$$\int_{C} \frac{dz}{(z^{2}+4)^{2}} = \int_{C} \frac{dz}{(z-2i)^{2}(z+2i)^{2}} = \int_{C} \frac{1/(z+2i)^{2}}{(z-2i)^{1+1}} dz = \frac{2\pi i}{1!} \left[\frac{d}{dz} \frac{1}{(z+2i)^{2}} \right]_{z=2i}$$
$$= 2\pi i \left[\frac{-2}{(z+2i)^{3}} \right]_{z=2i} = \frac{-4\pi i}{(4i)^{3}} = \frac{-4\pi i}{-(16)(4)i} = \frac{\pi}{16}.$$

Ex.4

$$\diamondsuit f(s) = s^3 + 2s$$
,则

$$g(z) = \int_C rac{f(s)}{(s-z)^3} ds$$

因为f(s)在整个复平面解析,若z在C里面,根据柯西积分公式有

$$g(z) = rac{2\pi i}{2!} f^{(2)}(z) = 6\pi i z$$

若z在C外面,则根据Cauchy-Goursat定理

$$g(z)=\int_Crac{s^3+2s}{(s-z)^3}ds=0$$

Ex.5

Suppose that a function f is analytic inside and on a simple closed contour C and that z_0 is not on C. If z_0 is inside C, then

$$\int_{C} \frac{f'(z)dz}{z-z_{0}} = 2\pi i f'(z_{0}) \quad \text{and} \quad \int_{C} \frac{f(z)dz}{(z-z_{0})^{2}} = \int_{C} \frac{f(z)dz}{(z-z_{0})^{1+1}} = \frac{2\pi i}{1!} f'(z_{0}).$$

Thus

$$\int_{C} \frac{f'(z) dz}{z - z_{0}} = \int_{C} \frac{f(z) dz}{(z - z_{0})^{2}}.$$

The Cauchy-Goursat theorem tells us that this last equation is also valid when z_0 is exterior to C, each side of the equation being 0.

Ex.7

Let C be the unit circle $z = e^{i\theta}$ $(-\pi \le \theta \le \pi)$, and let a denote any real constant. The Cauchy integral formula reveals that

$$\int_C \frac{e^{az}}{z} dz = \int_C \frac{e^{az}}{z - 0} dz = 2\pi i \left[e^{az} \right]_{z = 0} = 2\pi i.$$

On the other hand, the stated parametric representation for C gives us

$$\int_{C} \frac{e^{az}}{z} dz = \int_{-\pi}^{\pi} \frac{\exp(ae^{i\theta})}{e^{i\theta}} ie^{i\theta} d\theta = i \int_{-\pi}^{\pi} \exp[a(\cos\theta + i\sin\theta)] d\theta$$

$$= i \int_{-\pi}^{\pi} e^{a\cos\theta} e^{ia\sin\theta} d\theta = i \int_{-\pi}^{\pi} e^{a\cos\theta} [\cos(a\sin\theta) + i\sin(a\sin\theta)] d\theta$$

$$= -\int_{-\pi}^{\pi} e^{a\cos\theta} \sin(a\sin\theta) d\theta + i \int_{-\pi}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta.$$

Equating these two different expressions for the integral $\int_{c} \frac{e^{az}}{z} dz$, we have $-\int_{c}^{\pi} e^{a\cos\theta} \sin(a\sin\theta) d\theta + i \int_{c}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = 2\pi i.$

Then, by equating the imaginary parts on each side of this last equation, we see that

$$\int_{-\pi}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = 2\pi;$$

and, since the integrand here is even,

$$\int_{0}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi.$$