### **Introduction to Mobile Robotics**

**Compact Course on Linear Algebra** 



### **Vectors**

- Arrays of numbers
- Vectors represent a point in an n-dimensional space

$$(a_1) \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$



### **Vectors: Scalar Product**

- Scalar-Vector Product ka
- Changes the length of the vector, but not its direction



### **Vectors: Sum**

Sum of vectors (is commutative)

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

Can be visualized as "chaining" the vectors.



#### **Vectors: Dot Product**

- Inner product of vectors (is a scalar)  $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_i a_i b_i$
- If one of the two vectors, e.g., a, has ||a|| = 1, the inner product  $a \cdot b$  returns the length of the projection of b along the direction of a



#### **Vectors: Dot Product**

- Inner product of vectors (is a scalar)  $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a} = \sum_i a_i b_i$
- If one of the two vectors, e.g., a, has ||a|| = 1, the inner product  $a \cdot b$  returns the length of the projection of b along the direction of a



If  $a \cdot b = 0$ , the two vectors are **orthogonal** 

# Vectors: Linear (In)Dependence

- A vector  $\mathbf{b}$  is linearly dependent from  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  if  $\mathbf{b} = \sum k_i \mathbf{a}_i$
- lacksquare In other words, if  $lackbox{b}$  can be obtained by summing up the  $lackbox{a}_i$  properly scaled
- If there exists no  $\{k_i\}$  such that  $\mathbf{b} = \sum_i k_i \mathbf{a}_i$  then  $\mathbf{b}$  is independent from  $\{\mathbf{a}_i\}$



# Vectors: Linear (In)Dependence

- A vector  $\mathbf{b}$  is linearly dependent from  $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$  if  $\mathbf{b} = \sum k_i \mathbf{a}_i$
- ullet In other words, if  ${f b}$  can be obtained by summing up the  ${f a}_i$  properly scaled
- If there exists no  $\{k_i\}$  such that  $\mathbf{b} = \sum_i k_i \mathbf{a}_i$  then  $\mathbf{b}$  is independent from  $\{\mathbf{a}_i\}$



### **Matrices**

A matrix is written as a table of values

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & \uparrow \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \qquad A : n \times m$$
rows columns

- 1st index refers to the row
- 2<sup>nd</sup> index refers to the column
- Note: a d-dimensional vector is equivalent to a dx1 matrix

#### **Matrices as Collections of Vectors**

Column vectors

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{*1} & \mathbf{a}_{*2} & \cdots & \mathbf{a}_{*m} \\ \uparrow & \uparrow & \uparrow \\ a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & & & & a_{nm} \end{pmatrix}$$

#### **Matrices as Collections of Vectors**

Row vectors



# **Important Matrix Operations**

- Multiplication by a scalar
- Sum (commutative, associative)
- Multiplication by a vector
- Product (not commutative)
- Inversion (square, full rank)
- Transposition

# **Scalar Multiplication & Sum**

- In the scalar multiplication, every element of the vector or matrix is multiplied with the scalar
- The sum of two vectors is a vector consisting of the pairwise sums of the individual entries
- The sum of two matrices is a matrix consisting of the pairwise sums of the individual entries

#### **Matrix Vector Product**

- The  $i^{th}$  component of  $\mathbf{A}\mathbf{b}$  is the dot product  $\mathbf{a}_{i*}^T \cdot \mathbf{b}$
- The vector  $\mathbf{A}\mathbf{b}$  is linearly dependent from the column vectors  $\{\mathbf{a}_{*i}\}$  with coefficients  $\{b_i\}$

$$\mathbf{A}\mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^{T} \\ \mathbf{a}_{2*}^{T} \\ \vdots \\ \mathbf{a}_{n*}^{T} \end{pmatrix} \cdot \mathbf{b} = \begin{pmatrix} \mathbf{a}_{1*}^{T} \cdot \mathbf{b} \\ \mathbf{a}_{2*}^{T} \cdot \mathbf{b} \\ \vdots \\ \mathbf{a}_{n*}^{T} \cdot \mathbf{b} \end{pmatrix} = \sum_{k} \mathbf{a}_{*k} b_{k}$$
row vectors
column vectors

### **Matrix Vector Product**

• If the column vectors of  ${\bf A}$  represent a reference system, the product  ${\bf A}{\bf b}$  computes the global transformation of the vector  ${\bf b}$  according to  $\{{\bf a}_{*i}\}$ 



### **Matrix Matrix Product**

- Can be defined through
  - the dot product of row and column vectors
  - the linear combination of the columns of A scaled by the coefficients of the columns of B

$$\mathbf{C} = \mathbf{A}\mathbf{B}$$

$$= \begin{pmatrix} \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{1*}^{T} \cdot \mathbf{b}_{*m} \\ \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{2*}^{T} \cdot \mathbf{b}_{*m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*1} & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*2} & \cdots & \mathbf{a}_{n*}^{T} \cdot \mathbf{b}_{*m} \end{pmatrix}$$

$$= \begin{pmatrix} \mathbf{A}\mathbf{b}_{*1} & \mathbf{A}\mathbf{b}_{*2} & \cdots & \mathbf{A}\mathbf{b}_{*m} \end{pmatrix}$$

### **Matrix Matrix Product**

- If we consider the second interpretation,
   we see that the columns of *C* are the
   "transformations" of the columns of *B* through *A*
- All the interpretations made for the matrix vector product hold

$$\mathbf{C} = \mathbf{AB}$$

$$= \begin{pmatrix} \mathbf{Ab}_{*1} & \mathbf{Ab}_{*2} & \dots \mathbf{Ab}_{*m} \end{pmatrix}$$

$$\mathbf{c}_{*i} = \mathbf{Ab}_{*i}$$
 $\mathbf{c}_{*i}$ 
column vectors

### Rank

- Maximum number of linearly independent rows (columns)
- Dimension of the **image** of the transformation  $f(\mathbf{x}) = A\mathbf{x}$
- When A is  $m \times n$  we have
  - $rank(A) \ge 0$  and the equality holds iff A is the null matrix
  - $\operatorname{rank}(A) \le \min(m, n)$
- Computation of the rank is done by
  - Gaussian elimination on the matrix and then
  - Counting the number of non-zero rows

#### **Inverse**

$$AB = I$$

- If A is a square matrix of full rank, then there is a unique matrix B=A<sup>-1</sup> such that AB=BA=I holds
- The  $i^{th}$  row of **A** is and the  $j^{th}$  column of **A**<sup>-1</sup> are:
  - orthogonal (if  $i \neq j$ )
  - or their dot product is 1 (if i = j)

### **Matrix Inversion**

$$AB = I$$

• The i<sup>th</sup> column of A<sup>-1</sup> can be found by solving the following linear system:

$$\mathbf{A}\mathbf{a}^{-1}{}_{*i}=\mathbf{i}_{*i}$$
 — This is the  $i^{th}$  column of the identity matrix

# **Determinant (det)**

- Only defined for square matrices
- The inverse of **A** exists if and only if  $det(\mathbf{A}) \neq 0$
- For  $2 \times 2$  matrices:

Let 
$$\mathbf{A} = [a_{ij}]$$
 and  $|\mathbf{A}| = det(\mathbf{A})$ , then

$$\left| \begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right| = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

• For  $3 \times 3$  matrices the Sarrus rule holds:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$

#### **Determinant**

For general n × n matrices?

Let  $A_{ij}$  be the submatrix obtained from A by deleting the *i-th* row and the *j-th* column

$$\begin{bmatrix} 1 & 2 & 5 & 0 \\ 2 & 3 & 4 & -1 \\ -5 & 8 & 0 & 0 \\ 0 & 4 & -2 & 0 \end{bmatrix} \longrightarrow \mathbf{A}_{32} = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$$

Rewrite determinant for  $3 \times 3$  matrices:

$$det(\mathbf{A}^{3\times 3}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{11}$$
$$= a_{11} \cdot det(\mathbf{A}_{11}) - a_{12} \cdot det(\mathbf{A}_{12}) + a_{13} \cdot det(\mathbf{A}_{13})$$

#### **Determinant**

• For **general**  $n \times n$  matrices?

$$det(\mathbf{A}) = a_{11}det(\mathbf{A}_{11}) - a_{12}det(\mathbf{A}_{12}) + \dots + (-1)^{1+n}a_{1n}det(\mathbf{A}_{1n})$$
$$= \sum_{j=1}^{n} (-1)^{1+j}a_{1j}det(\mathbf{A}_{1j})$$

Let  $C_{ij} = (-1)^{i+j} det(A_{ij})$  be the (i,j)-cofactor, then

$$det(\mathbf{A}) = a_{11}\mathbf{C}_{11} + a_{12}\mathbf{C}_{12} + \dots + a_{1n}\mathbf{C}_{1n}$$
$$= \sum_{j=1}^{n} a_{1j}\mathbf{C}_{1j}$$

This is called the **cofactor expansion** across the first row

#### **Determinant**

- **Problem:** Take a 25 x 25 matrix (which is considered small). The cofactor expansion method requires n! multiplications. For n = 25, this is 1.5 x 10^25 multiplications for which a modern supercomputer would take **a year**.
- There are much faster methods, namely using Gauss elimination to bring the matrix into triangular form.

$$\mathbf{A} = \begin{bmatrix} d_1 & * & * & * \\ 0 & d_2 & * & * \\ 0 & 0 & d_3 & * \\ 0 & 0 & 0 & d_4 \end{bmatrix} \qquad det(\mathbf{A}) = \prod_{i=1}^n d_i$$

Because for triangular matrices, the determinant is the product of the diagonal elements

# **Determinant: Properties**

- Row operations (A is still a  $n \times n$  square matrix)
  - If  ${f B}$  results from  ${f A}$  by swapping two rows, then  $det({f B})=-det({f A})$
  - If  ${f B}$  results from  ${f A}$  by multiplying one row with a number c , then  $det({f B})=c\cdot det({f A})$
  - If  ${f B}$  results from  ${f A}$  by adding a multiple of one row to another row, then  $det({f B})=det({f A})$
- Transpose:  $det(\mathbf{A}^T) = det(\mathbf{A})$
- Multiplication:  $det(\mathbf{A} \cdot \mathbf{B}) = det(\mathbf{A}) \cdot det(\mathbf{B})$
- Does **not** apply to addition!  $det(\mathbf{A} + \mathbf{B}) \neq det(\mathbf{A}) + det(\mathbf{B})$

# **Determinant: Applications**

- Compute **Eigenvalues:** Solve the characteristic polynomial  $det(\mathbf{A} - \lambda \cdot \mathbf{I}) = 0$
- Area and Volume: area = |det(A)|

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$(r_i \text{ is } i\text{-}th \text{ row})$$

$$\mathbf{A} = egin{bmatrix} a & b & c \ d & e & f \ g & h & i \end{bmatrix}$$
 ( $r_i$  is  $i ext{-}th$  row)



# **Orthogonal Matrix**

A matrix Q is orthogonal iff its column (row) vectors represent an orthonormal basis

$$q_{*i}^T \cdot q_{*j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}, \forall i, j$$

- As linear transformation, it is norm preserving
- Some properties of orthogonal matrices:
  - The transpose is the inverse  $QQ^T = Q^TQ = I$
  - Determinant has unity norm (±1)

$$1 = det(I) = det(Q^T Q) = det(Q)det(Q^T) = det(Q)^2$$

### **Rotation Matrix**

- A Rotation matrix is an orthonormal matrix with det =+1
  - 2D Rotations  $R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$
  - 3D Rotations along the main axes

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix} \quad R_y(\theta) = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ 0 & 1 & 0 \\ \sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

IMPORTANT: Rotations are not commutative

$$R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & 0 & -0.707 \\ -0.5 & 0.707 & -0.5 \\ 0.5 & 0.707 & 0.5 \end{bmatrix}, R_x(\frac{\pi}{4}) \cdot R_y(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.414 \\ 0.586 \\ 3.414 \end{bmatrix}$$

$$R_y(\frac{\pi}{4}) \cdot R_x(\frac{\pi}{4}) = \begin{bmatrix} 0.707 & -0.5 & -0.5 \\ 0 & 0.707 & -0.707 \\ 0.707 & 0.5 & 0.5 \end{bmatrix}, R_y(\frac{\pi}{4}) \cdot R_x(\frac{\pi}{4}) \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1.793 \\ 0.707 \\ 3.207 \end{bmatrix}$$

# **Matrices to Represent Affine Transformations**

 A general and easy way to describe a 3D transformation is via matrices



- Takes naturally into account the non-commutativity of the transformations
- Homogeneous coordinates

### **Combining Transformations**

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
  - Matrix A represents the pose of a robot in the space
  - Matrix **B** represents the position of a sensor on the robot
  - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
  - Where is the object in the global frame?



# **Combining Transformations**

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
  - Matrix A represents the pose of a robot in the space
  - Matrix **B** represents the position of a sensor on the robot
  - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
  - Where is the object in the global frame?



**Bp** gives the pose of the object wrt the robot

# **Combining Transformations**

- A simple interpretation: chaining of transformations (represented as homogeneous matrices)
  - Matrix A represents the pose of a robot in the space
  - Matrix **B** represents the position of a sensor on the robot
  - The sensor perceives an object at a given location p, in its own frame [the sensor has no clue on where it is in the world]
  - Where is the object in the global frame?



**Bp** gives the pose of the object wrt the robot

**ABp** gives the pose of the object wrt the world

### **Positive Definite Matrix**

The analogous of positive number

• Definition M > 0 iff  $z^T M z > 0 \forall z \neq 0$ 

• Example  $M_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\begin{bmatrix} z_1 & z_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = z_1^2 + z_2^2 > 0$ 

### **Positive Definite Matrix**

- Properties
  - Invertible, with positive definite inverse
  - All real eigenvalues > 0
  - **Trace** is > 0
  - Cholesky decomposition  $A = LL^T$

# **Linear Systems (1)**

$$Ax = b$$

#### **Interpretations:**

- A set of linear equations
- A way to find the coordinates x in the reference system of A such that b is the result of the transformation of Ax
- Solvable by Gaussian elimination

### **Gaussian Elimination**

A method to solve systems of linear equations.

Example for three variables:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$
  
 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$   
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$ 

We want to transform this to

$$\tilde{a}_{11}x_1 + \tilde{a}_{12}x_2 + \tilde{a}_{13}x_3 = \tilde{b}_1 
\tilde{a}_{22}x_2 + \tilde{a}_{23}x_3 = \tilde{b}_2 
\tilde{a}_{33}x_3 = \tilde{b}_3.$$

#### **Gaussian Elimination**

Written as an extended coefficient matrix:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{pmatrix} \rightarrow \begin{pmatrix} \tilde{a}_{11} & \tilde{a}_{12} & \tilde{a}_{13} & \tilde{b}_1 \\ 0 & \tilde{a}_{22} & \tilde{a}_{23} & \tilde{b}_2 \\ 0 & 0 & \tilde{a}_{33} & \tilde{b}_3 \end{pmatrix}$$

To reach this form, we only need two elementary row operations:

- Add to one row a scalar multiple of another.
- Swap the positions of two rows.

Another commonly used term for Gaussian Elimination is *row reduction*.

# Linear Systems (2)

$$Ax = b$$

#### **Notes:**

- Many efficient solvers exist, e.g., conjugate gradients, sparse Cholesky decomposition
- One can obtain a reduced system (A', b') by considering the matrix (A, b) and suppressing all the rows which are linearly dependent
- Let  $\mathbf{A}'\mathbf{x} = \mathbf{b}'$  the reduced system with  $\mathbf{A}': n' \times m$  and  $\mathbf{b}': n' \times 1$  and rank  $\mathbf{A}' = min(n', m)$  rows columns
- The system might be either over-constrained (n'>m) or under-constrained (n'< m)

# **Over-Constrained Systems**

- "More (independent) equations than variables"
- An over-constrained system does not admit an exact solution
- However, if rank A' = cols(A) one often computes a minimum norm solution

$$x = \underset{x}{\operatorname{argmin}} ||A'x - b'||$$

Note: rank = Maximum number of linearly independent rows/columns

# **Under-Constrained Systems**

- "More variables than (independent) equations"
- The system is under-constrained if the number of linearly independent rows of A' is smaller than the dimension of b'
- An under-constrained system admits infinitely many solutions
- The degree of these solutions is cols(A') rows(A')

### **Jacobian Matrix**

- It is a **non-square matrix**  $n \times m$  in general
- Given a vector-valued function,

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

The Jacobian matrix is defined as

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

#### **Jacobian Matrix**

 It is the orientation of the tangent plane to the vectorvalued function at a given point



Generalizes the gradient of a scalar valued function

# **Further Reading**

A "quick and dirty" guide to matrices is the Matrix Cookbook.

Just use your favorite search engine and search for "matrix cookbook" to find it.