Document Number: MMG3014NT1

Rev. 1, 9/2008

√RoHS

Heterojunction Bipolar Transistor Technology (InGaP HBT)

Broadband High Linearity Amplifier

The MMG3014NT1 is a General Purpose Amplifier that is internally input matched and internally output prematched. It is designed for a broad range of Class A, small-signal, high linearity, general purpose applications. It is suitable for applications with frequencies from 40 to 4000 MHz such as Cellular, PCS, BWA, WLL, PHS, CATV, VHF, UHF, UMTS and general small-signal RF.

Features

- Frequency: 40-4000 MHzP1dB: 25 dBm @ 900 MHz
- Small-Signal Gain: 19.5 dB @ 900 MHz
- Third Order Output Intercept Point: 40.5 dBm @ 900 MHz
- Single 5 Volt Supply
- Active Bias
- Low Cost SOT-89 Surface Mount Package
- RoHS Compliant
- In Tape and Reel. T1 Suffix = 1,000 Units per 12 mm, 7 inch Reel.

MMG3014NT1

40-4000 MHz, 19.5 dB 25 dBm InGaP HBT

CASE 1514-02, STYLE 1 SOT-89 PLASTIC

Table 1. Typical Performance (1)

Characteristic	Symbol	900 MHz	2140 MHz	3500 MHz	Unit
Small-Signal Gain (S21)	G _p	19.5	15	10	dB
Input Return Loss (S11)	IRL	-25	-12	-8	dB
Output Return Loss (S22)	ORL	-11	-13	-19	dB
Power Output @1dB Compression	P1db	25	25.8	25	dBm
Third Order Output Intercept Point	IP3	40.5	40.5	40	dBm

^{1.} V_{CC} = 5 Vdc, T_{C} = 25°C, 50 ohm system, in Freescale Application Circuits.

Table 2. Maximum Ratings

3						
Rating	Symbol	Value	Unit			
Supply Voltage	V _{CC}	6	V			
Supply Current	I _{CC}	300	mA			
RF Input Power	Pin	15	dBm			
Storage Temperature Range	T _{stg}	-65 to +150	°C			
Junction Temperature (2)	TJ	150	°C			

For reliable operation, the junction temperature should not exceed 150°C.

Table 3. Thermal Characteristics ($V_{CC} = 5 \text{ Vdc}$, $I_{CC} = 135 \text{ mA}$, $T_C = 25^{\circ}\text{C}$)

Characteristic	Symbol	Value (3)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	27.4	°C/W

^{3.} Refer to AN1955, *Thermal Measurement Methodology of RF Power Amplifiers*. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955.

 $\textbf{Table 4. Electrical Characteristics} \ (V_{CC} = 5 \ \text{Vdc}, \ 900 \ \text{MHz}, \ T_{C} = 25 \ ^{\circ}\text{C}, \ 50 \ \text{ohm system, in Freescale Application Circuit)}$

Characteristic	Symbol	Min	Тур	Max	Unit
Small-Signal Gain (S21)	Gp	18.5	19.5	_	dB
Input Return Loss (S11)	IRL	_	-25	_	dB
Output Return Loss (S22)	ORL	_	-11	_	dB
Power Output @ 1dB Compression	P1dB	_	25	_	dBm
Third Order Output Intercept Point	IP3	_	40.5	_	dBm
Noise Figure	NF	_	5.7	_	dB
Supply Current (1)	I _{CC}	110	135	160	mA
Supply Voltage (1)	V _{CC}	_	5		V

^{1.} For reliable operation, the junction temperature should not exceed 150 $^{\circ}\text{C}.$

Table 5. Functional Pin Description

Pin Number	Pin Function
1	RF _{in}
2	Ground
3	RF _{out} /DC Supply

Table 6. ESD Protection Characteristics

Test Conditions/Test Methodology	Class
Human Body Model (per JESD 22-A114)	1C (Minimum)
Machine Model (per EIA/JESD 22-A115)	A (Minimum)
Charge Device Model (per JESD 22-C101)	IV (Minimum)

Table 7. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD 22-A113, IPC/JEDEC J-STD-020	1	260	°C

Figure 2. Small-Signal Gain (S21) versus Frequency

Figure 3. Input/Output Return Loss versus Frequency

Figure 4. Small-Signal Gain versus Output Power

Figure 5. P1dB versus Frequency

Figure 6. Collector Current versus Collector Voltage

Figure 7. Third Order Output Intercept Point versus Frequency

Figure 8. Third Order Output Intercept Point versus Collector Voltage

Figure 9. Third Order Output Intercept Point versus Case Temperature

Figure 10. Third Order Intermodulation versus
Output Power

NOTE: The MTTF is calculated with V_{CC} = 5 Vdc, I_{CC} = 135 mA

Figure 11. MTTF versus Junction Temperature

Figure 12. Noise Figure versus Frequency

Figure 13. Single-Carrier W-CDMA Adjacent Channel Power Ratio versus Output Power

MMG3014NT1

50 OHM APPLICATION CIRCUIT: 800-1000 MHz

Figure 14. 50 Ohm Test Circuit Schematic

0 0

Figure 15. S21, S11 and S22 versus Frequency

Figure 16. 50 Ohm Test Circuit Component Layout

Table 8. 50 Ohm Test Circuit Component Designations and Values

table 6. 66 Chill feet en call component Beelghatiene and values							
Part	Description	Part Number	Manufacturer				
C1, C2	220 pF Chip Capacitors	C0805C221J5GAC	Kemet				
C3	0.1 μF Chip Capacitor	C0603C104J5RAC	Kemet				
C4	2.2 μF Chip Capacitor	C0805C225J4RAC	Kemet				
C5	0.2 pF Chip Capacitor	12065J0R2BS	AVX				
C6	4.7 pF Chip Capacitor	C0603C479J5GAC	Kemet				
C7	1.8 pF Chip Capacitor	C0603C189J5GAC	Kemet				
L1	10 nH Chip Inductor	HK160810NJ-T	Taiyo Yuden				
R1	0 Ω Chip Resistor	ERJ3GEY0R00V	Panasonic				

50 OHM APPLICATION CIRCUIT: 1800-2200 MHz

Figure 17. 50 Ohm Test Circuit Schematic

Figure 18. S21, S11 and S22 versus Frequency

Figure 19. 50 Ohm Test Circuit Component Layout

Table 9. 50 Ohm Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer	
C1, C2	22 pF Chip Capacitors C0805C220J5GAC		Kemet	
C3	0.1 μF Chip Capacitor	C0603C104J5RAC Kemet		
C4	2.2 μF Chip Capacitor C0805C225J4RAC		Kemet	
C5	1.5 pF Chip Capacitor	C0603C159J5RAC	Kemet	
C6	1.1 pF Chip Capacitor	C0603C119J5GAC	Kemet	
L1	15 nH Chip Inductor	HK160815NJ-T	Taiyo Yuden	
R1	0 Ω Chip Resistor	ERJ3GEY0R00V	Panasonic	

50 OHM APPLICATION CIRCUIT: 2300-2700 MHz

Figure 20. 50 Ohm Test Circuit Schematic

Figure 21. S21, S11 and S22 versus Frequency

Figure 22. 50 Ohm Test Circuit Component Layout

Table 10. 50 Ohm Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C2	22 pF Chip Capacitors C0805C220J5GAC		Kemet
C3	0.1 μF Chip Capacitor C0603C104J5RAC		Kemet
C4	2.2 μF Chip Capacitor	C0805C225J4RAC	Kemet
C5, C6	1.1 pF Chip Capacitors	C0603C119J5GAC	Kemet
L1	15 nH Chip Inductor	HK160815NJ-T	Taiyo Yuden
R1	0 Ω Chip Resistor	ERJ3GEY0R00V	Panasonic

50 OHM APPLICATION CIRCUIT: 3400-3600 MHz

Figure 23. 50 Ohm Test Circuit Schematic

Figure 24. S21, S11 and S22 versus Frequency

Figure 25. 50 Ohm Test Circuit Component Layout

Table 11. 50 Ohm Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	3.3 pF Chip Capacitor	pF Chip Capacitor C0805C339J5GAC	
C2	2.0 pF Chip Capacitor	C0805C209J5GAC	Kemet
C3	0.1 μF Chip Capacitor	0.1 μF Chip Capacitor C0603C104J5RAC	
C4	2.2 μF Chip Capacitor	C0805C225J4RAC	Kemet
C5	0.6 pF Chip Capacitor	06035J0R6BS	AVX
C6	0.9 pF Chip Capacitor	06035J0R9BS	AVX
C7	0.8 pF Chip Capacitor	06035J0R8BS	AVX
L1	56 nH Chip Inductor	HK160856NJ-T	Taiyo Yuden
R1	0 Ω Chip Resistor	ERJ3GEY0R00V	Panasonic

0

0

C2

C7

Table 12. Common Emitter S-Parameters (V_{CC} = 5 Vdc, I_{CC} = 135 mA, T_{C} = 25°C, 50 Ohm System)

f	S	11	S	21	S	12	S	22
MHz	S ₁₁	∠ φ	S ₂₁	∠ φ	S ₁₂	∠ ф	S ₂₂	∠ ф
250	0.622	174.6	10.280	153.8	0.0336	0.6	0.448	-171.6
300	0.618	174.0	10.107	148.3	0.0336	0.3	0.457	-171.9
350	0.616	173.4	9.933	143.1	0.0337	-0.1	0.465	-172.5
400	0.613	173.0	9.760	138.3	0.0337	-0.4	0.475	-173.3
450	0.611	172.5	9.586	133.8	0.0338	-0.6	0.483	-174.0
500	0.611	172.0	9.300	129.8	0.0338	-0.8	0.490	-174.9
550	0.610	171.4	9.009	126.0	0.0339	-1.0	0.497	-175.8
600	0.610	170.9	8.716	122.4	0.0339	-1.2	0.503	-176.8
650	0.610	170.4	8.363	119.2	0.0340	-1.4	0.508	-177.9
700	0.611	169.9	8.064	116.2	0.0340	-1.6	0.512	-178.9
750	0.615	169.5	7.734	113.3	0.0341	-1.7	0.517	176.5
800	0.618	171.8	7.403	110.9	0.0342	-1.8	0.526	175.5
850	0.621	171.4	7.073	108.4	0.0342	-1.9	0.533	174.5
900	0.625	170.9	6.838	106.0	0.0343	-2.0	0.536	173.5
950	0.624	170.2	6.629	103.7	0.0343	-2.2	0.536	172.6
1000	0.624	169.6	6.422	101.5	0.0344	-2.3	0.537	171.8
1050	0.624	168.9	6.227	99.4	0.0344	-2.5	0.537	170.9
1100	0.625	168.3	6.044	97.3	0.0346	-2.7	0.538	169.9
1150	0.626	167.6	5.866	95.4	0.0347	-2.8	0.538	169.1
1200	0.628	166.9	5.700	93.5	0.0349	-3.0	0.539	168.2
1250	0.629	166.1	5.545	91.7	0.0351	-3.2	0.540	167.3
1300	0.632	165.4	5.393	89.9	0.0352	-3.4	0.540	166.5
1350	0.634	164.6	5.257	88.2	0.0354	-3.6	0.541	165.6
1400	0.636	163.8	5.117	86.5	0.0355	-3.8	0.543	164.9
1450	0.640	163.0	4.988	84.8	0.0356	-4.0	0.544	164.1
1500	0.643	162.2	4.864	83.2	0.0357	-4.2	0.545	163.3
1550	0.646	161.3	4.742	81.7	0.0359	-4.4	0.547	162.6
1600	0.649	160.5	4.630	80.1	0.0360	-4.5	0.549	161.8
1650	0.653	159.7	4.517	78.6	0.0361	-4.8	0.550	161.1
1700	0.657	158.9	4.414	77.1	0.0362	-5.0	0.552	160.3
1750	0.661	158.0	4.312	75.6	0.0363	-5.2	0.554	159.6
1800	0.665	157.2	4.215	74.2	0.0364	-5.5	0.556	158.9
1850	0.669	156.4	4.123	72.7	0.0364	-5.7	0.557	158.2
1900	0.673	155.5	4.033	71.3	0.0365	-6.0	0.559	157.4
1950	0.677	154.7	3.947	69.8	0.0366	-6.3	0.560	156.7
2000	0.681	153.8	3.864	68.4	0.0367	-6.6	0.562	156.0
2050	0.685	153.0	3.783	67.0	0.0367	-6.9	0.563	155.2
2100	0.689	152.2	3.707	65.5	0.0368	-7.2	0.564	154.4
2150	0.693	151.3	3.633	64.1	0.0369	-7.6	0.564	153.6
2200	0.697	150.5	3.562	62.7	0.0369	-7.9	0.565	152.8
2250	0.701	149.6	3.494	61.3	0.0370	-8.3	0.565	152.0
2300	0.705	148.7	3.426	59.8	0.0371	-8.7	0.565	151.2
2350	0.709	147.8	3.363	58.4	0.0371	-9.1	0.564	150.3

(continued)

 $\textbf{Table 12. Common Emitter S-Parameters (V_{CC} = 5 Vdc, I_{CC} = 135 mA, T_{C} = 25°C, 50 Ohm System) ($\textbf{continued}$)}$

f	f S ₁₁		S ₂₁		S ₁₂		S ₂₂	
MHz	S ₁₁	∠ φ	S ₂₁	∠ φ	S ₁₂	∠ ¢	S ₂₂	∠ φ
2400	0.712	146.9	3.299	57.0	0.0372	-9.5	0.564	149.5
2450	0.715	146.0	3.240	55.6	0.0373	-9.9	0.563	148.6
2500	0.719	145.0	3.181	54.1	0.0373	-10.3	0.562	147.7
2550	0.722	144.1	3.124	52.7	0.0374	-10.8	0.562	146.8
2600	0.724	143.1	3.071	51.3	0.0374	-11.2	0.561	145.9
2650	0.728	142.2	3.017	49.9	0.0375	-11.6	0.560	145.0
2700	0.730	141.2	2.968	48.5	0.0376	-12.0	0.559	144.0
2750	0.733	140.2	2.920	47.1	0.0377	-12.4	0.559	143.1
2800	0.736	139.2	2.872	45.8	0.0378	-12.9	0.558	142.1
2850	0.738	138.2	2.828	44.4	0.0380	-13.4	0.557	141.1
2900	0.740	137.2	2.784	43.0	0.0381	-13.8	0.557	140.1
2950	0.742	136.2	2.743	41.7	0.0382	-14.4	0.557	139.1
3000	0.745	135.2	2.703	40.3	0.0384	-14.9	0.557	138.1
3050	0.747	134.2	2.664	39.0	0.0385	-15.4	0.557	137.1
3100	0.749	133.1	2.627	37.6	0.0386	-15.9	0.557	136.1
3150	0.751	132.1	2.590	36.3	0.0388	-16.4	0.557	135.1
3200	0.753	131.1	2.555	35.0	0.0389	-17.0	0.558	134.1
3250	0.756	130.1	2.521	33.7	0.0390	-17.5	0.558	133.2
3300	0.758	129.1	2.487	32.4	0.0391	-18.0	0.559	132.2
3350	0.760	128.1	2.455	31.1	0.0393	-18.5	0.560	131.3
3400	0.762	127.1	2.422	29.8	0.0394	-19.0	0.560	130.5
3450	0.764	126.1	2.392	28.6	0.0395	-19.5	0.561	129.6
3500	0.766	125.1	2.361	27.3	0.0396	-20.0	0.562	128.9
3550	0.768	124.2	2.331	26.1	0.0397	-20.5	0.563	128.1
3600	0.770	123.2	2.302	24.9	0.0398	-21.0	0.564	127.4
3650	0.772	122.3	2.273	23.7	0.0399	-21.4	0.565	126.7
3700	0.774	121.3	2.246	22.6	0.0400	-21.8	0.566	126.1
3750	0.775	120.4	2.218	21.5	0.0401	-22.2	0.567	125.6
3800	0.777	119.5	2.192	20.4	0.0403	-22.6	0.568	125.1
3850	0.778	118.6	2.167	19.2	0.0404	-23.0	0.569	124.6
3900	0.780	117.6	2.142	18.1	0.0405	-23.4	0.570	124.2
3950	0.781	116.7	2.118	17.1	0.0406	-23.9	0.571	123.7
4000	0.783	115.8	2.091	16.0	0.0407	-24.2	0.572	123.5

Recommended Solder Stencil

- NOTES:

 1. THERMAL AND RF GROUNDING CONSIDERATIONS SHOULD BE USED IN PCB LAYOUT DESIGN.

 2. DEPENDING ON PCB DESIGN RULES, AS MANY VIAS AS POSSIBLE SHOULD BE PLACED ON THE LANDING PATTERN.

 3. IF VIAS CANNOT BE PLACED ON THE LANDING PATTERN, THEN AS MANY VIAS AS POSSIBLE SHOULD BE PLACED AS CLOSE TO THE LANDING PATTERN AS POSSIBLE FOR OPTIMAL THERMAL AND RF PERFORMANCE.

 4. RECOMMENDED VIA PATTERN SHOWN HAS 0.381 x 0.762 MM PITCH.

Figure 26. Recommended Mounting Configuration

0.305 diameter

2.49

2.54

PACKAGE DIMENSIONS

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO	e: 98ASA10586D	REV: D
SOT-89, 4 LEAD, 4.5 X 2.	2.5 PKG,	CASE NUMBER	2: 1514–02	27 JUN 2007
1.5 MM PITCH		STANDARD: NO	N-JEDEC	

MMG3014NT1

BOTTOM VIEW

CASE STYLE:

STYLE 1: STYLE 2: PIN 1. RF INPUT PIN 1. GATE PIN 2. GROUND PIN 2. SOURCE PIN 3. RF OUTPUT PIN 3. DRAIN

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO	: 98ASA10586D	REV: D
SOT-89, 4 LEAD, 4.5 X 2	2.5 PKG,	CASE NUMBER	2: 1514–02	27 JUN 2007
1.5 MM PITCH	STANDARD: NON-JEDEC			

NOTES:

- 1 DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- 2 ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS.

 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.5mm PER END.

 DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH

 OR PROTRUSION SHALL NOT EXCEED 0.5 mm PER SIDE.
- DIMENSION ARE DETERMINED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO	e: 98ASA10586D	REV: D
SOT-89, 4 LEAD, 4.5 X	2.5 PKG,	CASE NUMBER	R: 1514–02	27 JUN 2007
1.5 MM PITCH		STANDARD: NO	N-JEDEC	

PRODUCT DOCUMENTATION

Refer to the following documents to aid your design process.

Application Notes

- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN3100: General Purpose Amplifier Biasing

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Apr. 2008	Initial Release of Data Sheet
1	Sept. 2008	 Updated Fig. 15, "S21, S11 and S22 versus Frequency", to correct S11 and S22 curve label transposition error, p. 6 Updated data in Table 12, "Common Emitter S-Parameters", for better simulation response, p. 10 and 11

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved.

Document Number: MMG3014NT1

Rev. 1, 9/2008