CS3062 Theory of Computing Assignment 2

P.Thineshan 160633A

- **1.** L is the language over {a, b} such that, for every string in L, if it starts with a then it ends with b and if it starts with b then it ends with a.
- (a) Give a regular expression that represents the language L.

$$a(a+b)*b + b(a+b)*a$$

(b) Construct NFA-Λ for the above expression using thompson's construction.

(c) Provide DFA corresponding to this language.

(d) Minimize the states of above DFA.

- 2. $S \rightarrow Ab \mid aaB, A \rightarrow a \mid Aa, B \rightarrow b$
- (a) $S \rightarrow Ab$

 $S \rightarrow aaB$

 $S \rightarrow Aab$

 $S \rightarrow aab$

 $S \rightarrow aab$

string 's' that has at least two leftmost derivations = aab

(b) Two derivation trees for the string 's'

(c) Equivalent unambiguous context free grammar

$$S \rightarrow aS \mid ab$$

(d) $S \rightarrow aS$

$$S \rightarrow aab$$

- **3.** Construct a PDA (non-determinism is allowed) for each of the following languages.
- (a)

$$L = \{a^{i}b^{j}c^{k} | i,j,k \geq 0 \text{ and } i+j=k \}$$

$$\begin{cases} (q_{0}, a, \xi_{0}) = (q_{0}, a\xi_{0}) \\ 8(q_{0}, a, a) = (q_{0}, aa) \end{cases}$$

$$\begin{cases} (q_{0}, b, a) = (q_{1}, aa) \\ 8(q_{1}, b, a) = (q_{1}, aa) \end{cases}$$

$$\begin{cases} (q_{1}, b, a) = (q_{2}, \lambda) \\ 8(q_{2}, c, a) = (q_{2}, \lambda) \end{cases}$$

$$\begin{cases} (q_{2}, c, a) = (q_{2}, \lambda) \\ 8(q_{2}, \lambda, \xi_{0}) = (q_{3}, \xi_{0}) \end{cases}$$

(b)

$$L = \{a^{2n}b^{3n} \mid n7,0\}$$

$$\delta(q_0, a, \tau_0) = (q_1, \tau_0)$$

$$\delta(q_1, a, \tau_0) = (q_2, aaa\tau_0)$$

$$\delta(q_2, a, a) = (q_1, a)$$

$$\delta(q_2, a, a) = (q_2, aaaa)$$

$$\delta(q_1, a, a) = (q_2, aaaa)$$

$$\delta(q_2, b, a) = (q_3, aaaa)$$

$$\delta(q_2, b, a) = (q_3, aaaa)$$

$$\delta(q_3, b, a) = (q_3, aaaa)$$

$$\delta(q_3, a, a) = (q_3, aaaaa)$$

4. Design a Turing Machine that decides the language $L := \{1^n 0^n \mid n \ge 1\}$.

Assumption: We will replace 1 by X and 0 by Y **Approach used:**

First replace a 1 from front by X, then keep moving right till you find a 0 and replace this 0 by Y and move left. Now keep moving left till you find a X. When you find it, move a right, then follow the same procedure as above.

A condition comes when you find a X immediately followed by a Y. At this point we keep moving right and keep on checking that all 0's have been converted to Y. If not then string is not accepted. If we reach Δ then string is accepted.

• Step-1:

Replace 1 by X and move right, Go to state B.

• Step-2:

Replace 1 by 1 and move right, remain on same state Replace Y by Y and move right, remain on same state Replace 0 by Y and move right, go to state C.

• Step-3:

Replace 1 by 1 and move left, remain on same state Replace Y by Y and move left, remain on same state Replace X by X and move right, go to state A.

• Step-4:

If symbol is Y replace it by Y and move right and Go to state D Else go to step 1

• Step-5:

Replace Y by Y and move right, remain on same state If symbol is Δ replace it by Δ and move left, STRING IS ACCEPTED, GO TO FINAL STATE Q

For each part identify whether the given language L is context-free or non-context-free language. Prove your answer.

a. L =
$$\{a^n b^j \mid n \le j^2 \text{ and } n, j \in Z\}$$

b. L = $\{a^n \mid n \text{ is prime}\}$
c. L = $\{a^n b^j c^k \mid k = j * n \text{ and } n, j, k \in Z\}$
(a) L = $\{a^n b^j \mid n \le j^2 \text{ and } n, j \in Z\}$

This is not context-free

Assume for contradiction that L is a context-free language. We apply the pumping lemma. Let m be the parameter of the pumping lemma. We choose to pump the string $a^{m^2}b^m \epsilon L$. We have that $a^{m^2}b^m = uvxyz$, with $|vxy| \le m$ and $|vy| \ge 1$.

We examine all the possible cases for the position of string vxy. First we note that the string v cannot span simultaneously both a^{m^2} and b^m , since if we pump up v (repeat v), the resulting string is not in the language (a's are mixed with b's). Therefore, it must be that v is either within a^{m^2} or within b^m . The same holds for y. Below are the rest of the cases. Notice that in all cases we obtain a contradiction, and therefore the language **L** is not context-free.

(i) v is within a^{m^2} and y is within b^m . We have that $v = a^k$ and $y = b^l$, with 1 <= k + l <= m (since |vxy| <= m and |vy| >= 1). Consider the case where l >= 1. From the pumping lemma we have that $uv^0xy^0z \in L$. Therefore, $a^{m^2-k}b^{m-l} \in L$, and thus, it must be that $m^2-k <= (m-l)^2$. However, this is impossible since:

$$(m-l)^2 \le (m-l)^2 \text{ (since } l>=1)$$

= $m^2 + 2m + 1$
< m^2 -k (since k <= m)

Consider now the case where I=0. It must be that k>=1 (since k+I>=1). From the pumping lemma we have that $uv^2xy^2z \in L$. Therefore, $a^{m^2+k}b^m \in L$, which is impossible since $m^2+k>m^2$

- (ii) v and y are within a^{m^2} . If we pump up v and y(repeat them) we obtain a string of the form , $a^{m^2+k}b^m$, with k>=1, which obviously is not in the language
- (iii) v and y are within b^m . If we pump down v and y (remove them) we obtain a string of the form $a^{m^2}b^{m-k}$, with $k \ge 1$, which obviously is not in the language.

(b) $L = \{a^n \mid n \text{ is prime}\}$

This is not context-free

Assume L is a context-free language. We apply the pumping lemma. Let m be the parameter of the pumping lemma. Let p be a prime such that $p \ge m$.

We choose to pump the string $a^p \in L$. Since $a^p = uvxyz$, we have that $v = a^k$ and $y = a^l$, with k+l >= 1 (since |vy| >= 1). From the pumping lemma we have that $uv^{1+p}xy^{1+p}z \in L$, and therefore $a^{p+kp+lp} \in L$. Subsequently, $a^{p(1+k+l)} \in L$., which is impossible since p(1+k+l) is not a prime. Thus, we have a contradiction and the language L is not context-free.

(c)
$$L = \{a^n b^j c^k \mid k=j^* n \text{ and } n, j, k \in Z\}$$

This is not context-free

Assume L is a context-free language. We apply the pumping lemma. Let m be the parameter of the pumping lemma. We choose to pump the string $a^mb^m c^{m^2} \in L$. We have that $a^mb^m c^{m^2} = uvxyz$, with $|vxy| \le m$ and $|vy| \ge 1$.

We examine all the possible cases for the position of string vxy. First we note that the string v cannot span simultaneously both a^m and b^m , since if we pump up v (repeat v), the resulting string is not in the language (a's are mixed with b's). Similarly, v cannot span both b^m and c^{m^2} . Therefore, it must be that v is either within a^m or b^m or c^{m^2} . The same holds for y. Below are the rest of the cases. Notice that in all cases we obtain a contradiction, and therefore the language L is not context-free.

(i) v is within b^m and y is within c^{m^2} . We have that $v = b^k$ and $y = c^l$, with 1 <= k + l <= m (since |vxy| <= m and |vy| >= 1).

Consider the case where k >=1. It must be that l<m (since k+l<=m). From the pumping lemma we have that $uv^0xy^0z \in L$. Therefore, $a^mb^{m-k}c^{m^2-l} \in L$, and thus, it must be that m.(m-k) = m^2 - l . However, this is impossible since:

m.(m-k) =
$$m^2$$
 -mk
<= m^2 -m (since k>=1)
< m^2 -I (since I < m)

Consider now the case where k = 0. It must be that I >= 1 (since k + I >= 1). From the pumping lemma we have that $uv^0xy^0z \in L$. Therefore, $a^mb^mc^{m^2-l} \in L$, which is impossible since m.m not equal m^2 -I

(ii) v and y are within b^m .

If we pump down v and y (remove them) we obtain a string of the form $a^m b^{m-k} c^{m^2}$, with $k \ge 1$, which obviously is not in the language.

- (iii) v and y are within c^{m^2} . If we pump up v and y(repeat them) we obtain a string of the form , $a^mb^{m-k}c^{m^2-k}$, with k>=1, which obviously is not in the language
- (iv) v and y are somewhere within a^mb^m Similar to cases (ii) and (iii)