Федеральное агентство связи СибГУТИ

Кафедра телекоммуникационных сетей и вычислительных средств (TC и BC)

Дисциплина

Сети ЭВМ и телекоммуникации 2.0

Лабораторная работа №6 Планирование беспроводных сетей Wi-fi.

Выполнил: студент группы ИА-832

Тиванов.Д.Е

Проверил: преподаватель

Ахпашев Р.В

Задание

Лабораторная работа состоит из двух этапов:

• Расчет максимального радиуса покрытия для точки доступа Wi-fi (для

двух несущих частот: 2.4 [GHz], 5 [GHz]).

- Р Визуализация в виде "тепловой" карты по мощности сигнала.
- Оптимизация модели распространения радиосигнала на базе ваших

измерений и теоретического расчета.

Ход работы:

Теоретические допущения:

<u>Аа</u> Параметр	≡ Точка доступа	
TxPower [mWatt]	100, 200, 300, 600	100, 200
Antenna Gain [dBi]	[10 - 22]	[0]
Noise Figure [dB]	[3.5; 5]	[6.5; 8]
Bandwidth [MHz]	[5; 10; 15; 20]	[5; 10; 15; 20]
Req. SINR [dB]	[(-5) - 30]	[(-5) - 30]
Общие параметры		
Carriere Frequency [GHz]	[2.4; 5]	

6. Планирование беспроводных сетей Wi-fi.

<u>Аа</u> Параметр	≡ Точка доступа	
Building penetration [dB]	[8 - 26]	
Interference Margin [dB]	[3 - 6]	

Часть 2. Визуализация "тепловой" карты:

Значение мощности - цвет

<u>Аа</u> Значение мощности [dBm]	≡ Цвет
[<u>> -55</u>]	Красный
[<u>-56; -75]</u>	Оранжевый
[<u>-76; -98]</u>	Желтый
[<u>-99; -115]</u>	Зеленый
[< -116]	Синий

Часть 3. Оптимизация модели распространения радиосигнала

Код программы:

```
import matplotlib.pyplot as plt
import random
import math
import matplotlib.pyplot as plt

TxPower = [[20, 23.01, 24.77, 27.78], [20, 23.01]]
AP_TxPower = TxPower[0][random.randint(0, 3)]
UE_TxPower = TxPower[1][random.randint(0, 1)]
```

```
AP_NoiseFigure = random.uniform(3.5, 5)
UE_NoiseFigure = random.uniform(6.5, 8)

AP Bandwidth = random.randrange(5, 25, 5)
```

```
UE Bandwidth = random.randrange(5, 25, 5)
AP ThermNoise = -174 + 10 * math.log10(AP Bandwidth * 10 ** 6)
AP RxSens = AP ThermNoise + AP SINR + AP NoiseFigure
AP MAPL = AP TxPower + AP AntennaGain - BuildingPenetration -
InterferenceMargin - AP RxSens
pl = []
x = range(1, 200)
    pl.append(Pl(d))
    y.append(AP MAPL)
print("PL(d) = " + str(pl))
AP radius = (1 + AP dm **^2) ** (1 / 2)
    y.append(UE MAPL)
```

```
text on plot(50, 450, -p1[3], 4)
text on plot(150, 550, -pl[2], 4)
plt.text( # position text relative to data
text_on_plot(250, 550, -pl[2], 3)
text_on_plot(250, 450, -pl[1], 0)
text_on_plot(250, 350, -pl[1], 3)
text_on_plot(250, 250, -pl[1], 4)
text_on_plot(250, 150, -pl[1], 1)
text_on_plot(250, 50, -pl[4], 4)
text_on_plot(350, 550, -pl[2], 3)
text_on_plot(350, 450, -pl[1], 2)
text_on_plot(350, 350, -pl[2], 4)
text_on_plot(350, 250, -pl[2], 2)
text_on_plot(350, 150, -pl[2], 6)
```

```
text_on_plot(550, 350, -pl[4], 1)
text_on_plot(550, 250, -pl[4], 6)
text_on_plot(550, 150, -pl[4], 7)
plt.grid(True)
plt.title("Теоретическая модель")
plt.show()
ax.set(xLim=[0, 601],
yLim=[0, 601])
text on plot(50, 450, -40, 4)
text_on_plot(150, 550, -38, 3)
text_on_plot(150, 150, -44, 5)
text_on_plot(350, 550, -42, 1)
text_on_plot(350, 450, -41, 2)
text_on_plot(350, 350, -44, 4)
text_on_plot(350, 250, -46, 7)
text_on_plot(350, 150, -51, 5)
text_on_plot(350, 50, -50, 4)
```

```
text_on_plot(550, 50, -62, 1)

plt.grid(True)
plt.title("Оптимизированная модель")
plt.show()
```