

Institut für Fahrzeugsystemtechnik Teilinstitut Mobile Arbeitsmaschinen

Prof. Dr.-Ing. Marcus Geimer

Bachelor-/Masterarbeit

Auslegung einer neuartigen hydrostatischen Entlastung am Kolbentrommel-Steuerspiegelkontakt einer Schrägscheiben Axialkolbeneinheit

Zur Leistungsübertragung in mobilen Arbeitsmaschinen werden häufig hydrostatische Verdrängereinheiten verwendet. Speziell bei variabel verstellbaren Systemen kommt hier die Axialkolbenpumpe nach dem Schrägscheibenprinzip zum Einsatz. Um Betriebskosten zu senken und Ressourcen zu schonen, bedarf es einer immer weitreichenderen Optimierung dieser Einheiten.

Aufgrund von wachsenden Ansprüchen an das System, spielt eine stetige Weiterentwicklung bezüglich erweitertem Leistungsbereich, Wirkungsgrad sowie Zuverlässigkeit eine essentielle Rolle. Diese Anforderungen sollen durch eine neuartige hydrostatische Entlastung am Kolbentrommel-Steuerspiegelkontakt umgesetzt werden.

Aufbauend auf einer Vorarbeit sollen hydraulisch/mechanischen Ansätze konstruiert, in einen Prototyp integriert und am Prüfstand validiert werden. Fokus und wissenschaftlicher Anspruch liegen in der Bewertung der Ansätze auf Basis der Messergebnisse.

Aufgrund der Kooperation mit der Bosch Rexroth AG, kann die Arbeit auch wahlweise beim Projektpartner durchgeführt werden.

Rexroth Bosch Group

Aufgabenpakete:

- Einarbeitung in vorherige Arbeiten und Simulationsprogramme
- Erarbeitung und Weiterentwicklung der Simulation
- Validierung des Simulationsmodells am Prüfstand

Art der Arbeit:

- Theoretische und praktische Teilaspekte
- Simulation
- Konstruktion
- Validierung am Prüfstand

Voraussetzungen:

- Interesse an mobilen Arbeitsmaschinen & Hydraulik
- Eigenständiges, selbstverantwortliches, motiviertes und zuverlässiges Arbeiten
- Grundkenntnisse in Hydraulik
- Erfahrungen in Creo, Matlab/ Simulink und Amesim bzw. DSHplus von Vorteil

Beginn und Dauer:

Beginn: ab März 2018

Dauer: Gemäß Studien- und Prüfungsordnung

Ansprechpartner:

Ausgabedatum: 21.11.2017