Datum: 28.07.2018	
Name: Vorname:	
Matrikelnummer:	
Mobiltelefone/Smartphones sind abzuschalten! Studienausweis bzw. Personalausweis/Pass!	
Klausur zur:	
Elektrische Systeme 2	
Die Dauer für diese Klausur beträgt 90 min. nach dem von mir vorgegebenen Beginn.	
Formatierungsvorgaben und erlaubte Hilfsmittel sind:	
a) Taschenrechner (kein Laptop)!	
 b) Eine von Ihnen selbst verfasste handschriftliche Formelsammlund beliebigen Umfangs! Bei mehreren Seiten müssen diese gebund sein! (Keine losen Zettel!) b.1) ebenfalls gilt auch eine gedruckte Formelsammlung. 	_
c) Schreibutensilien (Stifte, Lineal etc.)!	
d) Sofern Sie eigenes Papier verwenden, nummerieren Sie die Seiter durchgängig und schreiben auf jede Seite Ihren Namen!	1
e) Alle numerischen Ergebnisse sind mindestens, sofern erforderlich mit dreistelliger Genauigkeit nach dem Komma und einer von Null verschiedenen Zahl vor dem Komma anzugeben!	-
f) Bei einem Betrugsversuch gilt die Klausur als nicht bestanden!	
g) Hiermit erkläre ich mich damit einverstanden, dass Herr Dr. Ernst Lenz mein Klausurergebnis unter "Moodle" im Ordner Elektrische Systeme II (SoSe2018)\Material mit Angabe der letzten vier Ziffern meiner Matrikelnummer in einem PDF-Dokument zur Verfügung stellt.	
Ich stimme zu □ Ich stimme nicht zu □ Unterschrift	

1) ca. --- 13 Punkte ---

Ein Kondensator mit der Kapazität $C = 250 \,\mu\text{F}$ besitzt eine Spannung von $U_0 = 600 \,\text{V}$. Nach einer Zeit von $\Delta t_1 = 1,0 \,\text{Sekunden}$ besitzt der Kondensator eine Spannung $U_{\Delta t1} = 577 \,\text{V}$.

- a) Wie groß ist der entsprechende elektrische Leckwiderstand $R_{\rm L}$ der Kondensatorschaltung?
- b) Der obige Kondensator sei vollständig entladen. Nun wird bei er an einer Spannungsquelle von U_0 = 660 V aufgeladen. Hierbei sei der elektrische Widerstand R gleich $R_L/10000$ (somit kann der elektrische Leckwiderstand RL beim Aufladevorgang vernachlässigt werden). Nach welcher Zeit t_1 besitzt der Kondensator eine Spannung von U = 600 V?

2) ca. --- 8 Punkte ---

Geben Sie den komplexen Widerstand Z unten angeführter Schaltungen bezüglich der Klemmen A und B an und tragen Sie für die angegebenen Keisfrequenzen ω den sich jeweils ergebenden komplexen Widerstand in eine Tabelle ein und erstellen Sie die Ortskurve in dem beiliegende Blatt (siehe Blatt "Ortskurven").

a) Der elektrische Widerstand R betrage $R = 120 \Omega$.

Für die Kreisfrequenzen ω :

$$\omega = 10 \text{ s}^{-1}, 10^2 \text{ s}^{-1}, 10^3 \text{ s}^{-1} \text{ und } 10^4 \text{ s}^{-1}$$

b) Der elektrische Widerstand R betrage R = 220 Ω . Die Kapazität C betrage C = 20 μ F.

Für die Kreisfrequenzen ω :

$$\omega = 10^3 \text{ s}^{-1}$$
, 3.10^3 s^{-1} , 6.10^3 s^{-1} und 10^4 s^{-1}

c) Der elektrische Widerstand R betrage R = 320 Ω . Die Induktivität L betrage L = 20 mH.

Für die Kreisfrequenzen ω :

$$\omega = 10^3 \text{ s}^{-1}$$
, 3.10^3 s^{-1} , 6.10^3 s^{-1} und 10^4 s^{-1}

3) ca. --- 8 Punkte ---

Geben Sie den komplexen Widerstand Z unten angeführter Schaltung an und tragen Sie für die angegebenen Keisfrequenzen ω den sich jeweils ergebenden komplexen Widerstand in eine Tabelle und die Ortskurve das beiliegende Blatt (siehe Blatt "Ortskurven") ein.

Der elektrische Widerstand R betrage R = 380 Ω . Die Kapazität C betrage C = 10 μ F.

Die Induktivität L betrage L = 10 mH.

Für die Kreisfrequenzen ω : $\omega = 10^3 \text{ s}^{-1}, 3.10^3 \text{ s}^{-1}, 6.10^3 \text{ s}^{-1} \text{ und } 10^4 \text{ s}^{-1}$

4) ca. --- 12 Punkte ---

Der Magnetische Kreis unten stehender schematischer Zeichnung habe folgende Kenngrößen:

Mittlere Eisenweglänge $I_{\rm Fe}$ = 0.65 m Permeabilität des Eisens $\mu_{\rm r}$ = 2800 Permeabilität der Luft $\mu_{\rm L}$ = 1 (konstanter) Querschnitt des Eisenkerns A = 1·10 ⁻⁴ m² Länge des Luftspalts δ = 2·10 ⁻⁴ m Windungen der Spule N =500 Strom durch die Spule I = 4 A

Permeabilität des Vakuums $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \text{VsA}^{-1} \text{m}^{-1}$

- a) Skizzieren Sie das Ersatzschaltbild des sich ergebenden magnetischen Kreises und berechnen Sie den magnetischen Gesamtwiderstand $R_{\rm m}$
- b) Berechnen Sie die magnetische Flussdichte <u>B</u> im Kern.

- 5) ca. --- 7 Punkte ---
- a)

Bestimmen Sie den Komplexen Widerstand bezüglich der Klemmen

A und B nachstehender Schaltung:

b) Ist die Schaltung resonanzfähig?

c) Was ist zur Bestimmung der Resonanzfrequenz zu tun ?

