

- Naiwny klasyfikator Bayesa jest klasyfikatorem statystycznym - oparty na twierdzeniu Bayesa
- Niech X oznacza przykład, którego klasa nie jest znana. Każdy przykład jest reprezentowany w postaci n-wymiarowego wektora, X=(x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>)
- P(C|X) prawdopodobieństwo a-posteriori (prawdopodobieństwo obliczane na podstawie wyników doświadczenia, czyli częstości), że przykład X należy do klasy C

Uniwersytet Przyrodniczy we Wrocławiu

## Reguła Bayesa

Przykład X klasyfikujemy jako pochodzący z tej klasy  $C_i$ , dla której wartość  $P(C_i \mid X)$ , i = 1, 2, ..., m, jest największa.

Uniwersytet Przyrodniczy we Wrocławiu

| Maisson  | ld acvifi. | /ator | Bavesa - | Drzyk | ,, , |
|----------|------------|-------|----------|-------|------|
| ivalwilv | KIASVII    | Kalul | Davesa - | PI/VK | 45   |

 Przykład: Dany zbiór przykładów opisujących wnioski kredytowe klientów banku:

P(Ryzyko=niskie | Wiek=38, Status=rozwodnik, Dochód=niski, Dzieci=2)

 oznacza prawdopodobieństwo a-posteriori, że klient, X=(38, rozwodnik, niski, 2), składający wniosek kredytowy jest klientem o niskim ryzyku kredytowym (klient wiarygodny)

Uniwersytet Przyrodniczy we Wroczawii

## Twierdzenie Bayesa

 W jaki sposób oszacować prawdopodobieństwo aposteriori P(C|X)?

$$P(C|X) = (P(X|C) * P(C))/P(X),$$

- P(C) oznacza prawdopodobieństwo a-priori wystąpienia klasy C (tj. prawdopodobieństwo, że dowolny przykład należy do klasy C),
- P(X|C) oznacza prawdopodobieństwo a-posteriori, że X należy do klasy C,
- P(X) oznacza prawdopodobieństwo a-priori wystąpienia przykładu X

Uniwersytet Przyrodniczy we Wrocławii

## Naiwny klasyfikator Bayesa (1)

- Dany jest zbiór treningowy D składający się z n przykładów
- Załóżmy, że atrybut decyzyjny przyjmuje m różnych wartości definiując m różnych klas C<sub>i</sub>, i = 1, ..., m
- Niech si oznacza liczbę przykładów z D należących do klasy C<sub>i</sub>
- Klasyfikator Bayesa przypisuje nieznany przykład X do tej klasy C<sub>i</sub>, dla której wartość P(C<sub>i</sub>|X) jest największa

Uniwersytet Przyrodniczy we Wrocławi

## Naiwny klasyfikator Bayesa (2)

- Prawdopodobieństwo P(X) jest stałe dla wszystkich klas - klasa C<sub>i</sub>, dla której wartość P(C<sub>i</sub> | X) jest największa, to klasa C<sub>i</sub>, dla której wartość P(X | C<sub>i</sub>) \* P(C<sub>i</sub>) jest największa
- Wartości P(C<sub>i</sub>) zastępujemy estymatorami s<sub>i</sub>/n (względną częstością klasy C<sub>i</sub>), lub zakładamy, że wszystkie klasy mają to samo prawdopodobieństwo P(C<sub>1</sub>) = P(C<sub>2</sub>) = ... = P(C<sub>m</sub>)

Uniwersytet Przyrodniczy we Wrocławii

## Naiwny klasyfikator Bayesa (3)

- W jaki sposób obliczyć P(X | C<sub>i</sub> )?
- Dla dużych zbiorów danych, o dużej liczbie deskryptorów, obliczenie P(X | C<sub>i</sub> ) będzie bardzo kosztowne
- Wymaga ono oszacowania ogromnej liczby prawdopodobieństw i jest rzędu k<sup>p</sup>, gdzie p oznacza zmienne, natomiast k oznacza liczbę wartości tych zmiennych np. dla p=30 -> 2<sup>30</sup> czyli około 10<sup>9</sup>
- Przyjmując założenie o niezależności atrybutów, możemy przyjąć, że wszystkie zmienne są warunkowo niezależne przy danych klasach. Wówczas możemy zastąpić prawdopodobieństwo warunkowe P(X|Ci) iloczynem prawdopodobieństw

$$P(X \mid C_i) = \prod_{j=1}^n P(x_j \mid C_i)$$

Uniwersytet Przyrodniczy we Wrocławi

# Naiwny klasyfikator Bayesa (4)

• Prawdopodobieństwa P(x $_1$ |C $_i$ ), P(x $_2$ |C $_i$ ), ..., P(x $_n$ |C $_i$ ) można estymować w oparciu o zbiór treningowy następująco:

jeżeli j-ty atrybut jest atrybutem kategorycznym, to  $P(x_j \mid C_i)$  estymujemy względną częstością występowania przykładów z klasy  $C_i$  posiadających wartość  $x_i$  dla j-tego atrybutu,  $(s_{ij}/s_i)$ 

jeżeli j-ty atrybut jest atrybutem ciągłym, to  $P(x_j \mid C_i)$  estymujemy funkcją gęstości Gaussa

$$f(x) \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}}$$
c rozkład normalny wartości

(zakładając rozkład normalny wartości atrybutów)

Uniwersytet Przyrodniczy we Wrocław

#### Przykład (1)

· Rozważmy Przykład:

Chcemy dokonać predykcji klasy, do której należy nowy przypadek

- C1 (kupi\_ komputer ='tak')
- C2 (kupi \_ komputer ='nie')
- · Nowy przypadek:
  - X = (wiek='<=30', dochód='średni', student = 'tak', status='kawaler')
  - Maksymalizujemy wartość P(X/C<sub>i</sub>)\*P(C<sub>i</sub>), dla i=1,2

Uniwersytet Przyrodniczy we Wrocławiu

# Przykład (2)

| ID | wiek | dochód | student | status  | kupi_komputer |
|----|------|--------|---------|---------|---------------|
| 1  | <=30 | wysoki | nie     | kawaler | nie           |
| 2  | <=30 | wysoki | nie     | żonaty  | nie           |
|    | 3140 | wysoki | nie     | kawaler | tak           |
| 4  | >40  | średni | nie     | kawaler | tak           |
| 5  | >40  | niski  | tak     | kawaler | tak           |
| 6  | >40  | niski  | tak     | żonaty  | nie           |
|    | 3140 | niski  | tak     | żonaty  | tak           |
| 8  | <=30 | średni | nie     | kawaler | nie           |
| 9  | <=30 | niski  | tak     | kawaler | tak           |
| 10 | >40  | średni | tak     | kawaler | tak           |
| 11 | <=30 | średni | tak     | żonaty  | tak           |
| 12 | 3140 | średni | nie     | żonaty  | tak           |
| 13 | 3140 | wysoki | tak     | kawaler | tak           |
| 14 | >40  | średni | nie     | żonaty  | nie           |

Uniwersytet Przyrodniczy we Wrocławi

## Przykład (3)

 $P(kupi\_komputer = 'tak') = P(C1) = 9/14 = 0.643$  $P(kupi\_komputer = 'nie') = P(C2) = 5/14 = 0.357$ 

P(wiek <= '30' | kupi\_ komputer = 'tak') = 2/9 = 0.222P(wiek <= '30' | kupi\_komputer = 'nie') = 3/5 = 0.6 P(dochód = 'średni' | kupi\_ komputer = 'tak') = 4/9 = 0.444 P(dochód = 'średni' | kupi\_ komputer = 'nie') = 2/5 = 0.4P(student = 'tak' | kupi\_komputer = 'tak') = 6/9 = 0.667 P(student = 'tak' | kupi\_komputer = 'nie') = 1/5 = 0.2P(status = 'kawaler' | kupi komputer = 'tak') = 6/9 = 0.667P(status = 'kawaler' | kupi\_ komputer = 'nie') = 2/9 = 0.4

Uniwersytet Przyrodniczy we Wrocławiu

| Przykład (4)                                                         |
|----------------------------------------------------------------------|
| Korzystając z obliczonych prawdopodobieństw, otrzymujemy:            |
| P(X  kupi_komputer='tak') = 0.222 * 0.444 * 0.667 * 0.667 = 0.044    |
| P(X  kupi_komputer='nie') = 0.600 * 0.400 * 0.200 * 0.400 = 0.019    |
| Stąd:                                                                |
| P(X  kupi_ komputer='tak') * P(kupi_ komputer='tak') = 0.044 * 0.643 |
| <u>= 0.028</u>                                                       |
| P(X  kupi_ komputer='nie') * P(kupi_ komputer='nie') = 0.019 * 0.357 |
| = 0.007                                                              |
| Naiwny klasyfikator Bayesa zaklasyfikuje nowy przypadek X do klasy:  |
| kupi komputer = 'tak'                                                |

Uniwersytet Przyrodniczy we Wrocławiu

### Problem "częstości zero"

A co jeżeli dana wartość atrybutu nie występuje dla wszystkich klas?

Przykładowo: wiek='31..40' dla klasy "nie'

- Prawdopodobieństwo wynosi 0, tj.
- P(wiek='31..40'|kupi\_komputer='nie') = 0
- A-posteriori prawdopodobieństwo również wynosi 0 Rozwiązanie:

dodać 1 do licznika wystąpień każdej pary <wartość atrybutu - klasa> (estymator Laplace'a)

## Podsumowanie - Naiwny klasyfikator Bayesa

- Założenie o niezależności atrybutów znacznie redukuje koszt obliczeń
- Jeżeli założenie jest spełnione, naiwny klasyfikator Bayes'a jest optymalny, tzn. zapewnia najlepszą dokładność klasyfikacji w porównaniu z innymi klasyfikatorami
- Założenie rzadko spełnione w praktyce jednakże naiwny klasyfikator Bayes'a jest zadziwiająco dokładny

Uniwersytet Przyrodniczy we Wrocławiu