Confidence intervals

Last time: Wald confidence intervals

Example: Titanic data

$$egin{split} \logigg(rac{p_i}{1-p_i}igg) &= eta_0 + eta_1 Sex_i + eta_2 Age_i + eta_3 SecondClass_i + \ eta_4 FirstClass_i + eta_5 Sex_i \cdot Age_i \end{split}$$

```
## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.408232 0.330916 1.234 0.217337

## Sexmale -1.163444 0.437622 -2.659 0.007848 **

## Age -0.007186 0.011684 -0.615 0.538522

## Pclass2 1.191858 0.243233 4.900 9.58e-07 ***

## Pclass1 2.697561 0.295822 9.119 < 2e-16 ***

## Sexmale:Age -0.049851 0.014782 -3.373 0.000745 ***
```

Confidence intervals for linear combinations

Class activity

https://sta712-f22.github.io/class_activities/ca_lecture_16.html

Inverting the likelihood ratio test

Types of research questions

So far, we have learned how to answer the following questions:

- What is the relationship between the explanatory variable(s) and the response?
- What is a "reasonable range" for a parameter in this relationship?
- Do we have strong evidence for a relationship between these variables?

What other kinds of research questions might we ask?

Making predictions

- + For each passenger, we calculate \hat{p}_i (estimated probability of survival)
- But, we want to predict which passengers actually survive

How do we turn \hat{p}_i into a binary prediction of survival / no survival?

Confusion matrix

		Actual	
		Y = 0	Y = 1
Predicted	$\widehat{Y} = 0$	344	70
	$\widehat{Y}=1$	80	220

Did we do a good job predicting survival?