CS1231S

AY20/21 sem 1

by jovyntls

01. PROOFS

sets of numbers

- \mathbb{N} : natural numbers ($\mathbb{Z}_{\geq 0}$)
- \mathbb{Z} : integers
- ① : rational numbers
- R : real numbers
- C: complex numbers

basic properties of integers

```
closure (under addition and multiplication) x+y\in\mathbb{Z}\wedge xy\in\mathbb{Z} commutativity a+b=b+a\wedge ab=ba associativity a+b+c=a+(b+c)=(a+b)+c
```

$$a + b + c = a + (b + c) = (a + b) + c$$

 $abc = a(bc) = (ab)c$

- distributivity
- a(b+c) = ab + ac
- trichotomy
- $(a < b) \lor (a > b) \lor (a = b)$
- transitive law
- $(a < b) \land (b < c) \implies (a < c)$

definitions

even/odd

- n is even $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k$ n is odd $\leftrightarrow \exists k \in \mathbb{Z} \mid n = 2k+1$
 - prime/composite
- n is prime $\leftrightarrow n>1$ and $\forall r,s\in\mathbb{Z}^+,n=rs\to(r=n)\lor(r=s)$
- n is composite $\leftrightarrow n > 1$ and $\exists r,s \in \mathbb{Z}^+ s.t.n =$
- rs and 1 < r < n and 1 < s < n
 - divisibility (d divides n)
 - $d\mid n \leftrightarrow \exists k \in \mathbb{Z} \mid n = kd$
 - rationality
- r is rational $\leftrightarrow \exists a,b \in \mathbb{Z} \mid r = \frac{a}{b}$ and $b \neq 0$ floor/ceiling
 - $\lfloor x \rfloor$: largest integer y such that $y \leq x$ $\lceil x \rceil$: smallest integer y such that $y \geq x$

rules of inference

04. METHODS OF PROOF

Proof by Exhaustion/Cases

- 1. list out possible cases
- 1.1. Case 1: n is odd OR If n = 9, ...
- 1.2. Case 2: n is even OR If $n=16,\dots$
- 2. therefore ...

Proof by Contradiction

- Suppose that ...
- 1.1. <proof>
- 1.2. ...but this contradicts ...
- 2. Therefore the assumption that \dots is false. Hence \dots

Proof by Contraposition

- 1. Contrapositive statement: $\sim q \rightarrow \sim p$
- 2. let $\sim q$
- 2.1. <proof>
- 2.2. hence $\sim p$
- 3. $\therefore p \rightarrow q$

Proof by Construction

- 1. Let x = 3, y = 4, z = 5.
- 2. Then $x, y, z \in \mathbb{Z}_{\geq 1}$ and
- $x^2 + y^2 = 3^2 + 4^2 = 9 + 16 = 25 = 5^2$. 3. Thus $\exists x, y, z \in \mathbb{Z}_{\geq 1}$ such that $x^2 + y^2 = z^2$.

Proof by Induction

- 1. For each $n \in \mathbb{Z}_{\geq 1}$, let P(n) be the proposition "..."
- 2. (base step) P(1) is true because <manual method>
- 3. (induction step)
 - 3.1. let $k \in \mathbb{Z}_{>1}$ s.t. P(k) is true
 - 3.2. Then ...
 - 3.3. proof that P(k+1) is true e.g. $P(k+1) = P(k) + term_{k+1}$
 - 3.4. So P(k + 1) is true.
- 4. Hence $\forall n \in \mathbb{Z}_{\geq 1} P(n)$ is true by MI.

Proofs for Sets

Equality of Sets (A=B)

- $1. (\Rightarrow)$
- 1.1. Take any $z \in A$.
- 1.2. ...
- 1.3. ∴ $z \in B$.
- 2. (\(\phi\))
 - 2.1. Take any $z \in B$.
 - 2.2. . . .
 - 2.3. : $z \in A$.

Element Method

- 1. $A \cap (B \setminus C) = \{x : x \in A \land x \in (B \setminus C)\}$ (by def. of \cap) 2. $= \{x : x \in A \land (x \in B \land x \notin C)\}$ (by def. of \setminus)
- 3. ...
- 4. = $(A \cap B) \setminus C$ (by def. of \)

Other Proofs

iff ($A \leftrightarrow B$)

- 1. (\Rightarrow) Suppose A.
- 1.1. ... <proof> ...
- 1.2. Hence $A \rightarrow B$
- 2. (\Leftarrow) Suppose B.
- 2.1. ... <proof> ...
- 2.2. Hence $B \to A$

02. COMPOUND STATEMENTS

operations

- $1 \sim$: negation (not)
- 2 ∧ : conjunction (and)
- 2 \vee : disjunction (or) coequal to \wedge
- $3 \rightarrow : if-then$

logical equivalence

- · identical truth values in truth table
- definitions
- · to show non-equivalence:
 - truth table method (only needs 1 row)
 - · counter-example method

conditional statements

```
hypothesis → conclusion
```

 $antecedent \rightarrow consequent$

- vacuously true : hypothesis is false
- implication law : $p \to q \equiv \sim p \lor q$
- · common if/then statements:
 - if p then q: $p \rightarrow q$
 - p if q: q o p
 - ullet p only if q: p
 ightarrow q
- p iff q: $p \leftrightarrow q$
- contrapositive : $\sim q \rightarrow \sim p$ • inverse : $\sim p \rightarrow \sim q$
 - \rightarrow $\sim p$ | converse \equiv inverse statement \equiv contra-
- $\bullet \ \text{converse} : q \to p$
- positive
- r is a **necessary** condition for s: $\sim r \rightarrow \sim s$ and $s \rightarrow r$
- r is a **sufficient** condition for s: $r \rightarrow s$
- necessary & sufficient : ↔

valid arguments

- determining validity: construct truth table
- syllogism : (argument form) 2 premises, 1 conclusion
- modus ponens : $p \rightarrow q$; p; $\therefore q$
- modus tollens : $p \rightarrow q$; $\sim q$; $\therefore \sim p$
- sound argument : is valid & all premises are true

fallacies

converse error	inverse error
p o q	p o q
q	${\sim}p$
$\therefore p$	$\therefore \sim q$

03. QUANTIFIED STATEMENTS

- truth set of $P(x) = \{x \in D \mid P(x)\}$
- $P(x) \Rightarrow Q(x) : \forall x (P(x) \rightarrow Q(x))$
- $P(x) \Leftrightarrow Q(x) : \forall x (P(x) \leftrightarrow Q(x))$ relation between $\forall \exists \land \land \lor$
- $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \dots \land Q(x_n)$ • $\exists x \in D \mid Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \dots \lor Q(x_n)$

05. SETS

notation

- set roster notation [1]: $\{x_1, x_2, \dots, x_n\}$
- set roster notation [2]: $\{x_1, x_2, x_3, \dots\}$ • set-builder notation: $\{x \in \mathbb{U} : P(x)\}$

definitions

- equal sets : $A = B \leftrightarrow \forall x (x \in A \leftrightarrow x \in B)$
 - $A = B \leftrightarrow (A \subseteq B) \land (A \supset B)$
- empty set, ∅ : ∅ ⊂ all sets
- subset : $A \subseteq B \leftrightarrow \forall x (x \in A \rightarrow x \in B)$
- proper subset : $A \subseteq B \leftrightarrow (A \subseteq B) \land (A \neq B)$
- power set of A : $\mathcal{P}(A) = \{X \mid X \subseteq A\}$
- $|\mathcal{P}(A)| = 2^{|A|}$, given that A is a finite set • **cardinality** of a set, |A|: number of distinct elements
- singleton : sets of size 1
- disjoint : $A \cap B = \emptyset$

methods of proof for sets

- direct proof
- element method
- truth table

boolean operations

- union: $A \cup B = \{x : x \in A \lor x \in B\}$
- intersection: $A \cap B = \{x : x \in A \land x \in B\}$
- complement (of B in A): $A \setminus B = \{x : x \in A \land x \notin B\}$
- complement (of B): \bar{B} or $B^c = U \backslash B$
- set difference law: $A \setminus B = A \cap \bar{B}$

ordered pairs and cartesian products

- ordered pair : (x,y)
 - $(x,y)=(x',y') \leftrightarrow x=x'$ and y=y'
- Cartesian product :
- $A \times B = \{(x, y) : x \in A \text{ and } y \in B\}$
- $|A \times B| = |A| \times |B|$ • ordered tuples : expression of the form (x_1, x_2, \dots, x_n)

06. FUNCTIONS

definitions

- function/map from A to B : assignment of each element of A
- to exactly one element of B. • $f:A \to B$: "f is a function from A to B"
- $f: x \to y$: "f maps x to y"
- domain of f = A
- codomain of f = B
- range/image of f = $\{f(x): x \in A\}$
- $= \{y \in B \mid y = f(x) \text{ for some } x \in A\}$ identity function on A, id_A : $A \to A$
 - $\mathsf{id}_\mathtt{A}:x o x$
 - range = domain = codomain = A
- well-defined function: every element in the domain is assigned to exactly one element in the codomain

equality of functions

- · same codomain and domain
- for all $x \in \operatorname{codomain}$, same output

function composition

- $(g \circ f)(x) = g(f(x))$
- for $(g\circ f)$ to be well defined, codomain of f must be equal to the domain of g
- × commutative
- ✓ associative

image & pre-image

for $f:A \to B$

• if $X \subseteq A$, image of X,

 $f(X) = \{ y \in B : y = f(x) \text{ for some } x \in X \}$

• if $Y \subseteq B$, pre-image of Y,

 $f^{-1}(Y) = \{x \in A : y = f(x) \text{ for some } y \in Y\}$

injection & surjection

- surjective (onto) : codomain = range
 - $\forall y \in B, \exists x \in A (y = f(x))$
 - surjective test: $\forall Y \subseteq B, Y \subseteq f(f^{-1}(Y))$
- injective : one-to-one
- $\forall x, x' \in A(f(x) = f(x') \Rightarrow x = x')$
- $\forall x, x \in A(f(x) = f(x)) \Rightarrow x = x$ • injective test: $\forall X \subseteq A, X \subseteq f^{-1}(f(X))$
- bijective : both surjective & injective
- has an inverse

inverse

• $\forall x \in A, \forall y \in B(f(x) = y \Leftrightarrow g(y) = x)$

07. INDUCTION

mathematical induction

to prove that $\forall n \in \mathbb{Z}_{\geq m}(P(n))$ is true,

- base step: show that P(m) is true
- induction step: show that $\forall k \in \mathbb{Z}_{\geq m}(P(k) \Rightarrow P(k+1))$ is true.
 - induction hypothesis: assumption that P(k) is true

strong MI

to prove that $\forall n \in \mathbb{Z}_{\geq 0}(P(n))$ is true,

- base step: show that P(0), P(1) are true
- · induction step: show that

 $\forall k \in \mathbb{Z}_{\geq 0}(P(0) \cdots \wedge P(k+1) \Rightarrow P(k+2))$ is true.

justification:

- $P(0) \wedge P(1)$ by base case
- $P(0) \wedge P(1) \rightarrow P(2)$ by induction with k=0
- $P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)$ by induction with k=1
- ...
- we deduce that $P(0), P(1), \ldots$ are all true by a series of **modus ponens**

well-ordering principle

- every nonempty subset of $\mathbb{Z}_{\geq 0}$ has a smallest element.
- · application: recursion has a base case

RECURSION

a sequence is **recursively defined** if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{>0}$.

recursive definitions

e.g. recursive definition for \mathbb{Z}

- 1. (base clause) $0 \in \mathbb{Z}_{\geq 0}$
- 2. (recursion clause) If $x \in \mathbb{Z}_{\geq 0}$, then $x + 1 \in \mathbb{Z}_{\geq 0}$
- (minimality clause) Membership for Z≥0 can be demonstrated by (finitely many) successive applications of the clauses above

recursion vs induction

- · recursion to define the set
- induction to show things about the set

well-formed formulas (WFF)

in propositional logic

define the set of WFF(Σ) as follows

- 1. (base clause) every element ρ of Σ is in WFF(Σ)
- 2. (recursion clause) if x,y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ)
- (minimality clause) Membership for WFF(Σ) can be demonstrated by (finitely many) successive applications of the clauses above

08. NUMBER THEORY

divisibility

• $n \mod d$ is always non-negative.

transitivity of divisibility If $a \mid b$ and $b \mid c$, then $a \mid c$.

closure lemma (non-standard name)

Let $a,b,d,m,n\in\mathbb{Z}.$ If $d\mid m$ and $d\mid n$, then $d\mid am+bn.$ division theorem

 $\forall n \in \mathbb{Z} \text{ and } d \in \mathbb{Z}^+, \ \exists !q, r \in \mathbb{Z} \text{ s.t.} \\ n = dq + r \text{ and } 0 \leq r < d \\ q = n \ div \ d = \lfloor n/d \rfloor \\ r = n \ mod \ d = n - dq$

base-b representation

of positive integer n is $(a_\ell a_{\ell-1}\dots a_0)_b$ where $\ell\in\mathbb{Z}_{\geq 0}$ and $a_0,a_1,\dots,a_\ell\in\{0,1,\dots,b-1\}$ s.t. $n=a_\ell b^\ell+a_{\ell-1}b^{\ell-1}+\dots+a_0b^0$ and $a_\ell\neq 0$

greatest common divisor

- $m \mod n$
- if $m \neq 0$ and $n \neq 0$, then gcd(m, n) exists and is positive.
- Euclidean Algorithm for finding gcd

Bezout's Lemma:

For all $m,n\in\mathbb{Z}$ with $n\neq 0$, there exist $s,t\in\mathbb{Z}$ such that $\gcd(m,n)=ms+nt.$ Euclid's Lemma:

Let $m, n \in \mathbb{Z}^+$. If p is prime and $p \mid mn$, then $p \mid m$ or $p \mid n$.

prime factorization

- Fundamental Theorem of Arithmetic: Every integer n

 2 has a unique prime factorization in which the prime factors are arranged in nondecreasing order.
 - · aka Prime Factorisation Theorem

modular arithmetic

Let $a,b,c\in\mathbb{Z}$ and $n\in\mathbb{Z}^+$. congruence $a\equiv b\ (\bmod n)\Leftrightarrow a\bmod n=b\bmod n$ Then $\exists k\in\mathbb{Z}\mid a=nk+b$ and $n\mid (a-b)$ reflexivity $a\equiv a\ (\bmod n)$ symmetry $a\equiv b\ (\bmod n)\to b\equiv a\ (\bmod n)$ transitivity $a\equiv b\ (\bmod n)\to b\equiv c\ (\bmod n)$

additive inverse

b is an additive inverse of $a \mod n \Leftrightarrow a+b \equiv 0 \pmod n$. b is an additive inverse of $a \mod n \Leftrightarrow b \equiv -a \pmod n$.

multiplicative inverse

b is a multiplicative inverse of $a \mod n \Leftrightarrow ab \equiv 1 \pmod n$.

- If b, b' are multiplicative inverses of a, then $b \equiv b' \pmod{n}$.
- exists $\Leftrightarrow \gcd(a, n) = 1$.
- a, n are coprime
- to find multiplicative inverse: Euclidean Algorithm

09. EQUIVALENCE RELATIONS

relations

Let R be a relation from A to B and $(x,y)\in A\times B$. Then: xRy for $(x,y)\in R$ and xRy for $(x,y)\notin R$

- A relation from A to B is a subset of $A \times B$.
- A (binary) relation on set A is a relation from A to A.
- subset of A^2

reflexivity, symmetry, transitivity

Let A be a set and R be a relation on A.

 $\label{eq:continuous_continuous$

- equivalence relation: a relation that is reflexive, symmetric and transitive
- equivalence class: the set of all things equivalent to x

equivalence classes

Let A be a set and R be an equivalence relation on A.

- $[x]_R$: equivalence class of x with respect to R $\forall x \in A, [x]_R = \{y \in A : xRy\}$
- A/R : The set of all equivalent classes

$$A/R = \{ [x]_R : x \in A \}$$
$$xRy \Rightarrow [x] = [y] \Rightarrow [x] \cap [y] \neq \emptyset$$

partitions

- a partition of a set A is a set $\mathscr C$ of non-empty subsets of A such that

$$\begin{array}{l} (\geq 1) \ \, \forall x \in A, \ \exists S \in \mathscr{C}(x \in S) \\ (\leq 1) \ \, \forall x \in A, \ \, \forall S, S' \in \mathscr{C}(x \in S \land x \in S' \Rightarrow S = S') \end{array}$$

- components : elements of a partition
- every partition comes from an equivalence relation

partial orders

Let A be a set and R be a relation on A.

- R is antisymmetric if $\forall x, y \in A (xRy \land yRx \rightarrow x = y)$
- includes vacuously true cases (e.g. $xRy \Leftrightarrow x < y$)
- Includes vacuously true cases (e.g. $xRy \Leftrightarrow x < y$
- x and y are comparable if $\forall x, y \in A \ (xRy \lor yRx)$
- R is a (non-strict) partial order if R is reflexive, antisymmetric and transitive.

 - $x \prec y \Leftrightarrow x \preccurlyeq y \land x \neq y$ (NOT a partial order)
 - Hasse diagram
- R is a **(non-strict) total order** if R is a partial order and x and y are comparable

min and max

Let \leq be a partial order on a set A, and $c \in A$.

- c is a minimal element if $\forall x \in A \ (x \leq c \Rightarrow c = x)$
 - · nothing is strictly below it
- c is a maximal element if $\forall x \in A \ (c \preccurlyeq x \Rightarrow c = x)$
 - · nothing is strictly above it
- c is the smallest element or minimum element if $\forall x \in a \ (c \le x)$.
- c is the largest element or maximum element if $\forall x \in a \ (x \leq c)$.

linearization

Let A be a set and \preccurlyeq be a partial order on A. Then there exists a total order \preccurlyeq^* on A such that $\forall x,y \in A \ (x \preccurlyeq y \Rightarrow x \preccurlyeq^* y)$

10A. COUNTING

permutations

$$P(n,r) = \frac{n!}{(n-r)!} \quad (also \ _n P_r, P_r^n)$$

- multiplication/product rule: An operation of k steps can be performed in $n_1 \times n_2 \times \cdots \times n_k$ ways.
- addition/sum rule: Suppose a finite set A equals the union of k distinct mutually disjoint subsets A_1,A_2,\ldots,A_k . Then
- $|A|=|A_1|+|A_2|+\cdots+|A_k|$ difference rule: if A is a finite set and $B\subset A$, then
- $|A \backslash B| = |A| = |B|$ complement: $P(\bar{A}) = 1 P(A)$
- complement: P(A) = 1 P(A)• inclusion/exclusion rule: $|A \cup B \cup C| = 1$

$|A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|$

permutations with indistinguishable objects

For n objects with n_k of type k indistinguishable from each other, the total number of distinguishable permutations $= \frac{n!}{n_1! n_2! \dots n_k!}$

pigeonhole principle

For any function f from a finite set X with n elements to a finite set Y with m elements and for any positive integer k, if $k<\frac{n}{m}$, then there is some $y\in Y$ such that y is the image of at least k+1 distinct elements of X.

A function from a finite set to a smaller finite set cannot be injective.

combinations

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} \text{ (also } C(n,r),\, {}_{n}C_{r},\, C_{n,r},\, {}^{n}C_{r})$$

$$r\text{-combinations from } n \text{ elements with } \mathbf{repetition} \\ = \binom{r+n-1}{r}$$

pascal's formula

Suppose
$$n,r\in\mathbb{Z}^+$$
 with $r\le n$. Then $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$

binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
 binomial coefficient: $\binom{n}{k}$

10B. PROBABILITY

probability

Let S be a sample space. For all events A and B in S, a probability function P satisfies the following axioms:

- 1. 0 < P(A) < 1
- 2. $P(\emptyset) = 0$ and P(S) = 1
- 3. $(A \cap B = \emptyset) \Rightarrow [P(A \cup B) = P(A) + P(B)]$
- 4. $P(\bar{A}) = 1 P(\bar{A})$
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

expected value

For possible outcomes a_1, a_2, \ldots, a_n which occur with probabilities p_1, p_2, \ldots, p_n , the **expected value** is

$$\sum_{k=1}^{n} = a_k p_k$$

- linearity of expectation
 - E[X+Y] = e[X] + E[Y]• $E\left[\sum_{i=1}^{n} c_i \cdot X_i\right] = \sum_{i=1}^{n} (c_i \cdot E[X_i])$

conditional probability

The conditional probability of
$$A$$
 given B ,
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

probability tree:

$$P(B_1) = \frac{1}{3} \quad B_1$$

$$P(B_2 \mid B_1^c) \longrightarrow B_2 \rightarrow P(B_1^c \cap B_2) = \dots$$

$$P(B_1^c) = \frac{2}{3} \quad B_1^c \longrightarrow P(B_2^c \mid B_1^c) \longrightarrow B_2^c \rightarrow P(B_1^c \cap B_2^c) = \dots$$

bayes' theorem

Suppose a sample space S is a union of mutually disjoint events B_1, B_2, \ldots, B_n and A is an event in S. For $k \in \mathbb{Z}$ and $1 \le k \le n$,

$$P(B_k \mid A) = \frac{P(A|B_k) \cdot P(B_k)}{\sum_{i} \left(P(A|B_i) \cdot P(B_i) \right)}$$

independent events

$$A$$
 and B are **independent** iff $P(A \cap B) = P(A) \cdot P(B)$

A, B and C are pairwise independent iff

- 1. $P(A \cap B) = P(A) \cdot P(B)$
- 2. $P(B \cap C) = P(B) \cdot P(C)$
- 3. $P(A \cap C) = P(A) \cdot P(C)$

A, B and C are mutually independent iff

- 1. A, B and C are pairwise independent
- **2.** $P(A \cap B \cap C) = P(A) \cdot P(B) \cdot P(C)$

11. GRAPHS

 mathematical structures used to model pairwise relations between objects

types of graphs

undirected graph

- denoted by G = (V, E), comprising
 - nonempty set of *vertices/nodes*, $V = \{v_1, v_2, \dots, v_n\}$
 - a set of edges, $E = \{e_1, e_2, \cdots, e_k\}$
- $e = \{v, w\}$ for an undirected edge E incident on vertices v and w

directed graph

- denoted by G = (V, E), comprising
 - nonempty set V of vertices
- a set *E* of *directed edges* (ordered pair of vertices)
- e = (v, w) for an directed edge E from vertex v to vertex w

simple graph

undirected graph with no loops or parallel edges

complete graph

• a complete graph on n vertices, n > 0, denoted K_n , is a simple graph with n vertices and exactly one edge connecting each pair of distinct vertices

bipartite graph

- · a simple graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V
- complete bipartite graph: Km.n.
 - bipartite graph on two disjoint sets U and V such that every vertex in U connects to every vertex in V
 - denoted $K_{m,n}$ where |U|=m, |V|=n

subgraph of a graph

H is a subgraph of $G \Leftrightarrow$

- every vertex in H is also a vertex in G
- every edge in H is also an edge in G
- every edge in H has the same endpoints as it has in G

- **degree** of v, deg(v) = number of edges incident on v
- total degree of G = sum of the degrees of all vertices of G total degree of $G = 2 \times$ (number of edges of G)
- C10.1.2 the total degree of a graph is even
- · P10.1.3 in any graph there are an even number of vertices of odd degree

trails, paths and circuits

Let G be a graph; let v and w be vertices of G.

- walk (from v to w): a finite alternating sequence of adjacent vertices and edges of G.
 - e.g. $v_0e_1v_1e_2\dots v_{n-1}e_nv_n$
 - length of walk: the number of edges. n
- ullet a **trivial walk** from v to v consists of the single vertex v
- trail (from v to w): a walk from v to w that does not contain a repeated edge
- path (from v to w): a trail that does not contain a repeated
- · closed walk: walk that starts and ends at the same vertex
- circuit/cycle: an undirected graph G(V, E) where
 - $V = \{x_1, x_2, \dots, x_n\}$
 - E =

$$\{\{x_1,x_2\},\{x_2,x_3\},\ldots,\{x_{n-1},x_n\},\{x_n,x_1\}\}$$

- $n \in \mathbb{Z}_{\geq 3}$
- aka a closed walk that does not contain a repeated edge
- simple circuit/cvcle: does not have any other repeated vertex except the first and last
- (an undirected graph is) cyclic if it contains a loop/cycle

connectedness

- vertices v and w are connected $\Leftrightarrow \exists$ a walk from v to w
- graph G is connected $\Leftrightarrow \forall$ vertices $v, w \in V, \exists$ a walk from v to w

connected component

- a connected subgraph of the largest possible size
- graph H is a connected component of graph $G \Leftrightarrow$
- 1. H is a subgraph of G
- 2. H is connected
- 3. no connected subgraph of G has H as a subgraph and contains vertices or edges that are not in H

Euler circuit

- · Euler circuit: a circuit that contains every vertex and traverses every edge of G exactly once
- Eulerian graph: graph that contains an Euler circuit

T10.2.3

Euler circuit \Leftrightarrow connected and every vertex has positive even degree

T10.2.4

Eulerian graph ⇔ every vertex has positive even degree

• Euler trail (from v to w): a sequence of adjacent edges and vertices that starts at v, ends at w, and passes through every vertex of G at least once, and traverses every edge of G exactly once.

C10.2.5

 \exists Euler trail \Leftrightarrow *G* is connected; v, w have odd degree; all other vertices of G have positive even degree

Hamiltonian circuit

- Hamiltonian circuit (for G): a simple circuit that includes every vertex of G.
 - does not need to include all the edges of G (unlike Euler circuit)
- · Hamilton(ian) graph: contains a Hamiltonian circuit
- If G is a Hamiltonian circuit, then G has subgraph H where:
 - 1. H contains every vertex of G
- 2. *H* is connected
- 3. *H* has the same number of edges as vertices
- 4. every vertex of H has degree 2

matrix representations of graphs

- equal matrices

 A and B are the same size and $a_{ij} = b_{ij}$ for all $i = 1, 2, \dots, m$ and $i = 1, 2, \dots, n$
- square matrix: equal number of rows and columns
- main diagonal: all entries $a_{11}, a_{22}, \ldots, a_{nn}$
- symmetric matrix $\Leftrightarrow \forall i, j \in \mathbb{Z}_{\leq n}^+(a_{ij} = a_{ji})$

adjacency matrix

The adjacency matrix of a directed graph G is the $n \times n$ matrix $A = (a_{ij})$ over the set of non-negative integers such that

 a_{ij} = number of **arrows** from v_i to $v_i \forall i, j = 1, 2, \dots, n$

The adjacency matrix of an undirected graph G is the $n \times n$ matrix $A = (a_{ij})$ over the set of non-negative integers such that

 $A = \begin{bmatrix} v_1 & v_2 & v_3 \\ v_1 & 1 & 0 & 0 \\ v_2 & 1 & 1 & 2 \\ v_3 & 1 & 0 & 0 \end{bmatrix}$

identity matrix

The $n \times n$ identity matrix,

$$I_n = (\delta_{ij}) = egin{cases} 1, & ext{if } i = j \ 0, & ext{if } i
eq j \end{cases} ext{ for all } i, j = 1, 2, \ldots, n$$

matrix multiplication

scalar product

$$\begin{bmatrix} a_{i1} \ a_{i2} \ \dots \ a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

matrix product

Let
$$A=(a_{ij})$$
 be an $m imes k$ matrix and $B=(b_{ij})$ be a $k imes n$ matrix with real entries.
$$AB=(c_{ij})=\sum_{r=1}^k a_{ir}b_{rj}$$

× commutative √ associative

nth power of a matrix

For any $n \times n$ matrix **A**, the powers of A are defined as follows: $A^0 = I$ where I is the $n \times n$ identity matrix $A^n = AA^{n-1} \quad \forall n \in \mathbb{Z}_{\geq 1}$

counting walks of length N

number of walks of length n from v_i to v_j = the ij-th entry of A^n

isomorphism

- graph isomorphism (≅) is an equivalence relation. Let $G = (V_G, E_G)$ and $G' = (V_{G'}, E_{G'})$ be two graphs.
 - $G \cong G' \Leftrightarrow \text{there exists a permutation } \pi: V_G \to V_{G'}$ such that $\{u,v\} \in E_G \Leftrightarrow \{\pi(u),\pi(v)\} \in E_G$

planar graph

- · a graph that can be drawn on a two-dimensional plane without edges crossing.
 - divides a plane into regions/faces (includes 'outside' the
- Euler's formula: For a connected planar simple graph G = (V, E) with e = |E| and v = |V| and f faces, f = e - v + 2

trees

tree
 ⇔ graph that is circuit-free and connected

L10.5.4

If G is a connected graph with n vertices and n-1 edges, then G is a tree.

- trivial tree: graph that comprises a single vertex
- · a group of trees
- · terminal vertex: a vertex of degree 1
- internal vertex: a vertex of degree greater than 1

rooted trees

- · rooted tree: a tree in which there is one vertex that is distinguished from the others and is called the root.
- level (of a vertex): the number of edges along the unique path between it and the root
- height (of a rooted tree): the maximum level of any vertex of the tree
- · children, parent, siblings, ancestor, decendant

binary tree

- binary tree: a rooted tree in which every parent has at most 2 children
 - at most one left child and at most one right child

- full binary tree: a binary tree in which every parent has exactly 2 children
- (left/right) **subtree**: Given any parent v in a binary tree T, the binary tree whose root is the (left/right) child of v, whose vertices consist of the left child of v and all its descendants, and whose edges consist of all those edges of T that connect the vertices of the left subtree.

T10.6.1: Full Binary Tree Theorem

If T is a full binary tree with k internal vertices, then T has a total of 2k + 1 vertices and has k + 1 terminal vertices.

binary tree traversal

Breadth-First Search (BFS)

- · starts at the root
- · visits its adjacent vertices
- · visits the next level F-B-G-A-D-I-C-E-H

Depth-First Search (DFS)

- pre-order
 - process the root (or current vertex)
 - traverse the left subtree recursively
 - · traverse the right subtree recursively
- - traverse the left subtree recursively
 - process the root (or current vertex)
- · traverse the right subtree recursively

post-order

- · traverse the left subtree recursively
- traverse the right subtree recursively
- process the root (or current vertex)

F-B-A-D-C-E-G-I-H

post-order DFS

spanning trees

- spanning tree (for a graph G): a subgraph of G that contains every vertex of G and is a tree.
 - w(e) weight of edge e
 - w(G) total weight of G
- · weighted graph: each edge has an associated positive real number weight
 - total weight: sum of the weights of all edges
- · minimum spanning tree: least possible total weight compared to all other spanning trees

Kruskal's algorithm

For a connected weighted graph G with n vertices

- 1. initialise T to have all the vertices of G and no edges.
- 2. let E be the set of all edges in G; let m=0
- 3. while (m < n 1)
- 3.1. find and remove the edge e in E of least weight
- 3.2. if adding e to the edge set of T does not produce a
 - i. add e to the edge set of T
 - ii. set m=m+1

Prim's algorithm

- 1. pick any vertex v of G and let T be the graph with this
- 2. let V be the set of all vertices of G except v
- 3. for (i = 0 to n 1)
- 3.1. find the edge e in G with the least weight of all the edges connected to T. let w be the endpoint of e.
- 3.2. add e and w to the edge and vertex sets of T
- 3.3. delete w from v

	LOGICAL EQUIVALENCES	
mmutativo lawe	$m \wedge a = a \wedge m$	

 $\sim (p \vee q) \equiv \sim p \wedge \sim q$

	LOGICAL EQUIVALEN
commutative laws	$p \wedge q \equiv q \wedge p$
associative laws	$(p \land q) \land r \equiv p \land (q \land r)$
distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
identity laws	$p \wedge true \equiv p$
idempotent laws	$p \wedge p \equiv p$
universal bound laws	$p \lor true \equiv true$
negation laws	$p \lor \sim p \equiv true$
double negation law	$\sim (\sim p) \equiv p$
absorption laws	$p \lor (p \land q) \equiv p$

_		
	$p \lor q \equiv q \lor p$	
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
	$p \lor false \equiv p$	
	$p \lor p \equiv p$	
	$p \wedge false \equiv false$	
	$p \wedge \sim p \equiv false$	
	_	
	$p \land (p \lor q) \equiv p$	
	$\sim (p \land q) \equiv \sim p \lor \sim q$	

commutative laws
associative laws
distributive laws
identity laws
idempotent laws
universal bound laws
complement laws
double complement law
absorption laws
De Morgan's Laws

	SET IDENTITIES	
	$A \cap B = B \cap A$	
,	$(A \cap B) \cap C = A \cap (B \cap C)$	
;	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	1
;	$A \cap U = A$	
;	$A \cap A = A$	
;	$A \cap \emptyset = \emptyset$	
;	$A \cap \overline{A} = \emptyset$	
,	$\overline{(\overline{A})} = A$	
;	$A \cup (A \cap B) = A$	
;	$\overline{A \cup B} = \overline{\overline{A}} \cap \overline{B}$	
	'	

	$A \cup B = B \cup A$
	$(A \cup B) \cup C = A \cup (B \cup C)$
Z)	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cup \emptyset = A$
	$A \cup A = A$
	$A \cup U = U$
	$A \cup \overline{A} = U$
	_
	$A \cap (A \cup B) = A$
	$\frac{1111(110B)}{110} = \frac{11}{110}$
	$\overrightarrow{A \cap B} = \overrightarrow{A} \cup \overline{B}$

proven:

- L1E1 the product of 2 consecutive odd numbers is always odd.
- L1E5 the difference between 2 consecutive squares is always odd

De Morgan's Laws

- L4E4 the sum of any 2 even integers is even
- · L4T4.6.1 there is no greatest integer
- L4T4.3.1 for all positive integers a and b, if a|b, then $a \leq b$.
- L1P4.6.4 for all integers n, if n^2 is even then n is even
- L4T4.2.1 all integers are rational numbers
- L4T4.2.2 the sum of any 2 rational numbers is rational
- L1E7 there exist irrational numbers p and q such that p^q is rational
- L4T4.7.1 $\sqrt{2}$ is irrational.
- L4T4.3.2 the only divisors of 1 are 1 and -1.
- L4T4.3.3 transitivity of divisibility
 - if a|b and b|c, then a|c.
- · L3T3.2.1 negation of a universal statement:
 - $\sim (\forall x \in D, P(x)) \equiv \exists x \in D \mid \sim P(x)$
- L3T3.2.2 negation of an existential statement:
 - $\sim (\exists x \in D \mid P(x)) \equiv \forall x \in D, \sim P(x)$
- L5T5.1.14 there exists a unique set with no element. It is denoted by ∅.
- L5E5.3.7 for all $A, B: (A \cap B) \cup (A \setminus B) = A$
- L5T5.3.11(1) let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$
- L5T5.3.11(2) let A_1, A_2, \ldots, A_n be pairwise disjoint finite sets. Then
- $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$
- L5T5.3.12 Inclusion-Exclusion Principle:
 - for all finite sets A and B, $|A \cup B| = |A| + |B| |A \cap B|$
- L6T6.1.26 associativity of function composition:
 - $f \circ (a \circ h) = (f \circ a) \circ h$
- · L6P2.6.16 uniqueness of inverses:
 - If q, q' are inverses of $f: A \to B$, then q = q'.
- E6.1.24 $f \circ id_A = f$ and $id_A \circ f = f$
- T6.2.18 bijective

 has an inverse
- L7.3.19 If $x \in \mathsf{WFF}^+(\Sigma)$, then assigning false to all elements of Σ makes xevaluate to false.
- T7.3.20 $\sim (\forall x \in \mathsf{WFF}(\Sigma), \exists y \in \mathsf{WFF}^+(\Sigma), y \equiv x) \equiv x$ $\exists x \in \mathsf{WFF}(\Sigma) \ \forall y \in \mathsf{WFF}^+(\Sigma) \ y \not\equiv x \text{ aka} \sim \text{(not) must be included in the}$ definition of WFF.
- L8.1.5 Let $d, n \in \mathbb{Z}$ with $d \neq 0$. Then $d \mid n \Leftrightarrow n/d \in \mathbb{Z}$
- L8.1.9 Let $d, n \in \mathbb{Z}$. If $d \mid n$, then $-d \mid n$ and $d \mid -n$ and $-d \mid -n$
- L8.1.10 Let $d, n \in \mathbb{Z}$. If $d \mid n$ and $d \neq 0$, then $|d| \leq |n|$
- L8.2.5 Prime Divisor Lemma (non-standard name):
 - Let $n \in \mathbb{Z}_{\geq 2}$. Then n has a prime divisor.
- P8.2.6 sizes of prime divisors:
 - Let n be a composite positive integer. Then n has a prime divisor $p < \sqrt{n}$.
- T8.2.8 there are infinitely many prime numbers
- T8.3.13 $\forall n \in \mathbb{Z}^+, \exists ! \ell \in \mathbb{Z}_{\geq 0}$ and $a_0, a_1, \ldots, a_\ell \in \{0, 1, \ldots, b-1\}$ such that <the definition of base-b representation> holds.

- L8.4.11 If $x, y, r \in \mathbb{Z}$ such that $x \mod y = r$, then gcd(x, y) = gcd(y, r).
- Let $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ s.t. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$.
 - P8.6.6 **addition**: Then $a + c \equiv b + d \pmod{n}$
 - P8.6.13 **multiplication**: Then $ac \equiv bd \pmod{n}$
- T9.3.4 Let R be an equivalence relation on a set A. Then A/R is a partition of A.
- T9.3.5 If \mathscr{C} is a partition of A, then there is an equivalence relation of R on A such that $A/R = \mathscr{C}$.
- L9.5.5 Consider a partial order \leq on set A.
 - · A smallest element is minimal.
 - · There is at most one smallest element.
- L10.2.1 Let G be a graph.
 - ullet L10.2.1a If G is connected, then any two distinct vertices of G can be connected by a path
 - L10.2.1b If vertices v and w are part of a circuit in G and one edge is removed from the circuit, then there still exists a trail from v to w in G.
 - L10.2.1c If G is connected and G contains a circuit, then an edge of the circuit can be removed without disconnecting G.
- L10.5.1 Any non-trivial tree has at least one vertex of degree 1.
- T10.5.2 Any tree with n vertices (n > 0) has n 1 edges.
- L10.5.3 If G is any connected graph, C is any circuit in G, and one of the edges of C is removed from G, then the graph that remains is still connected.
- L10.5.4 If G is a connected graph with n vertices and n-1 edges, then G is a
- T10.6.1 If T is a full binary tree with k internal vertices, then T has a total of 2k+1 vertices and has k+1 terminal vertices.
- T10.6.2 For non-negative integers h, if T is any binary tree with height h and tterminal vertices, then $t < 2^h$.
- P10.7.1 -
 - 1. Every connected graph has a spanning tree.
 - 2. Any two spanning trees for a graph have the same number of edges

abbreviations

- L lemma
- E example
- P proposition
- T theorem