Homework 10

Introduction to Model Theory

Due 2021-12-9

Definition. Let M be a structure. If $\varphi(x_1, \ldots, x_n)$ is an L(M)-formula, then $\varphi(M^n)$ means $\{\bar{a} \in M^n : M \models \varphi(\bar{a})\}.$

A definable set is a set of the form $\varphi(M^n)$ for some L(M)-formula $\varphi(\bar{x})$. If $A \subseteq M$, an A-definable set is a set defined by an L(A)-formula, i.e., a formula with parameters from A. Note that "definable" means "M-definable."

- 1. Let M be a κ -saturated structure for some $\kappa > \aleph_0$. Let X_i be a definable subset of M^n for $i = 0, 1, 2, \ldots$ Suppose that $X_0 \subseteq \bigcup_{i=1}^{\infty} X_i$. Show that there is an n such that $X_0 \subseteq \bigcup_{i=1}^n X_i$. Hint: this is related to the thing called κ -compactness in the notes. More generally, if a definable set X is covered by a "small" family of definable sets, then there is a finite subcover, where "small" means "less than κ ."
- 2. Consider the structure $(\mathbb{C}, +, \cdot)$ (the field of complex numbers). Let \mathcal{F} be a family of definable subsets of \mathbb{C}^1 (i.e., \mathbb{C}^n with n = 1). Suppose \mathcal{F} has the finite intersection property—any finite intersection of sets in \mathcal{F} is non-empty. If $|\mathcal{F}| < |\mathbb{C}|$, show that $\bigcap \mathcal{F} \neq \emptyset$. Hint: Use the following fact: if $X \subseteq \mathbb{C}$ is definable, then X or $\mathbb{C} \setminus X$ is finite (this is part of Lemma 33 in the November 18–25 notes).
- 3. Show that \mathbb{C} is $|\mathbb{C}|$ -saturated. *Hint:* reverse the proof of Theorem 10 in the notes.
- 4. Show that \mathbb{R} is not $|\mathbb{R}|$ -saturated. *Hint:* \aleph_1 -compactness already fails.
- 5. Let $f: \mathbb{C} \to \mathbb{C}$ be the complex conjugation map

$$f(x+iy) = x - iy$$
 for $x, y \in \mathbb{R}$.

Show that the structure $(\mathbb{C}, +, \cdot, f)$ is not $|\mathbb{C}|$ -saturated. Hint: define \mathbb{R} .

6. Let M be an infinite structure. Show that M is not $|M|^+$ -saturated. Hint: use the formulas $x \neq a$ for $a \in M$.