Data Mining 2

Dr Kieran Murphy

Department of Department of Computing and Mathematics, INSTITUTION. (kmurphy@wit.ie)

Spring Semester, 2021

RESOURCE OUTLINE LABEL

- Components of a time series
- Traditional time series models
- Similar time series matching

Outline

1.1. Fundamental Concepts	6
 Models of Stationary Processes Linear Processes Autoregressive Processes — AR(p) Moving Average Processes — MA(q) Autoregressive Moving Average Process ARMA(p, q) 	12 13 14 24 28
3. Application: Sunspots3.1. Identification of Model and Model Parameters	30 33
4. Application: Shampoo4.1. De-trending using Regression4.2. Identification of Model and Model Parameters4.3. Model based on First Differences	39 41 43 47
5. Non-Stationary Models5.1. Integrated ARMA and Seasonal Integrated ARMA5.2. SARIMA — Seasonal ARIMA	58 59 60

Time Series

Definition 1 (Time Series)

A time series consists of a sequence of values or events obtained over repeated measurements of time (weekly, hourly, . . .).

- Many applications stock market analysis, economic an sales forecasting, scientific and engineering experiments, medical treatments, etc.
- Given a time series, we are interested in
 - Identify structure (trend/seasonality/lags).
 - Forecasting.
 - · Reconcile related time series.
 - Identify correlations

Time Series

Definition 1 (Time Series)

A time series consists of a sequence of values or events obtained over repeated measurements of time (weekly, hourly, . . .).

- Many applications stock market analysis, economic an sales forecasting, scientific and engineering experiments, medical treatments, etc.
- Given a time series, we are interested in
 - Identify structure (trend/seasonality/lags).
 - Forecasting.
 - Reconcile related time series.
 - Identify correlations
- The price peaks few days before release date and falls one to three months afterwards.
- The correction after the release date is between 9 and 16%
- The correction is usually zig-zag shaped.

Time Series

Definition 1 (Time Series)

A time series consists of a sequence of values or events obtained over repeated measurements of time (weekly, hourly, . . .).

- Many applications stock market analysis, economic an sales forecasting, scientific and engineering experiments, medical treatments, etc.
- Given a time series, we are interested in
 - Identify structure (trend/seasonality/lags).
 - Forecasting.
 - Reconcile related time series.
 - Identify correlations
- The price peaks few days before release date and falls one to three months afterwards.
 The correction after the release date is between 9 and 16%
- · The correction is usually zig-zag shaped.

Spurious Correlations

(www.tylervigen.com/spurious-correlations)

We always need to take care not to read too much into a high correlation statistic — this is especially true for time series data:

Spurious Correlations

(www.tylervigen.com/spurious-correlations)

We always need to take care not to read too much into a high correlation statistic — this is especially true for time series data:

Example Datasets

CO2

Concentrations in air, by month, from 1974 to 1987.

- Clear upward trend.
- Regular seasonal component.

Furniture

Sales, by month — seasonal component and no trend?

Shampoo

Sales by month — trend but no seasonal?

Sunspots

Frequency by month, over 1700–1984.

- No obvious trend or seasonal effect, but possible lag effect (low value follow low value etc.)
- May need to transform to ensure constant variance.

Assume that the series X_t runs throughout time, that is $(X_t)_{t=0,\pm 1,\pm 2,...}$, but is only observed at times t=1,...,n.

- So we only observe data points X_1, X_2, \dots, X_n .
- Theoretical properties refer to the underlying process $(X_t)_{t \in \mathbb{Z}}$.
- The notations X_t and X(t) are interchangeable, i.e., X_t corresponds to the output of the function X evaluated at point t.

The theory for time series is based on the assumption of second-order stationarity.

- Real-life data are often not stationary, e.g., they exhibit a linear trend over time, or they have a seasonal effect.
- We will discuss identifying/removing trend and seasonal effect later, but first focus on stationary processes.

Main Goals in Time Series

Given a time series, X_t

- We wish to characterise
 - mean or trend

$$\mathbf{E}(X_t) = \mu_t$$

Variance or volatility

$$\mathsf{Var}(E_t) = \sigma_t^2$$

Autocovariance

$$cov(X_t, X_{t-\tau}) = \mathbf{E}((X_t - \mu_t)(X_{t-\tau} - \mu_{t-\tau}))$$

- Determine the periodicity or cycles of the observed process.
- Decompose time series into latent process

$$X_t = T_t + S_t + v_t$$
 additive $X_t = T_t \times S_t + v_t$ multiplicitive

where T_t represents the trend, S_t represents the seasonality, and v_t represents the unexplained component.

Weakly Stationarity (Second-Order Stationary)

A process is weakly stationary if

- it has the same mean value, μ , at all time points,
- it has the same variance, γ_0 , at all time points,
- the covariance between the values at any two time points, depend only on the difference between the two times, and not on the location of the points along the time axis.

Definition 2 (weakly stationary)

The process, X_t is called weakly stationary or second-order stationary if for all integers t and τ :

$$\mathbf{E}(X_t) = \mu \tag{1}$$

$$cov(X_{t+\tau}, X_t) = \gamma_{\tau} < \infty \tag{2}$$

where μ is constant and γ_{τ} does not depend on t.

Strongly Stationary

A process is strongly stationary if every data point follows the same probability distribution:

Definition 3 (strongly stationary)

The process, X_t , is strictly stationary or strongly stationary if

$$(X_{t_1}, \dots, X_{t_k})$$
 and $(X_{t_1+\tau}, \dots, X_{t_k+\tau})$ (3)

have the same distribution for all sets of time points t_1, \dots, t_k and all integers τ .

> Technical Aside >

- Note that finite second moments (finite variance) are not assumed in the definition of strong stationarity, therefore, strong stationarity does not necessarily imply weak stationarity.
- However, if a process has a finite second moment then strongly stationary implies weakly stationary.

Autocorrelation Function (acf)

Given a weakly stationary process, X_t , then the sequence (γ_τ) is called the autocovariance function, and satisfies properties

- $Var(X_t) = \gamma_0$

(since
$$cov(X_{t+\tau}, X_t) = cov(X_t, X_{t+\tau})$$
)

Definition 4 (Autocorrelation Function (acf))

The Autocorrelation Function (acf) is defined as

$$\rho_{\tau} = \operatorname{corr}(X_{t+\tau}, X_t) = \frac{\operatorname{cov}(X_{t+\tau}, X_t)}{\operatorname{cov}(X_t, X_t)} = \frac{\gamma_{\tau}}{\gamma_0}$$
(4)

- The autocorrelation function allows us to assess how a time series relates to its past.
- A plot of the acf is called a correlogram or an autocorrelation plot.
- $-1 < \rho_{\tau} < 1$ with ρ_{τ} a measure of the dependency between observations τ units apart.

The partial autocorrelation function (pacf) is related to the acf, in that it is a measure of the relationship between an observation in a time series with observations at prior time steps. But in the case of the pacf, the relationships of intervening observations has been removed.

Definition 5 (Partial Autocorrelation Function (pacf))

- $r_{\tau}=$ The partial autocorrelation at lag, τ is the correlation that results after removing the effect of any correlations due to the terms at shorter lags.
- (Aside) the relationships of intervening observations are removed using repeated regression via Levinson-Durbin recursion.
- The derivation/formula are not important but interpreting plots of pacf (and acf) are.

Outline

1. Introduction1.1. Fundamental Concepts	2
 Models of Stationary Processes Linear Processes Autoregressive Processes — AR(p) Moving Average Processes — MA(q) Autoregressive Moving Average Process ARMA(p, q) 	12 13 14 24 28
3. Application: Sunspots3.1. Identification of Model and Model Parameters	30 33
4. Application: Shampoo4.1. De-trending using Regression4.2. Identification of Model and Model Parameters4.3. Model based on First Differences	39 41 43 47
5. Non-Stationary Models5.1. Integrated ARMA and Seasonal Integrated ARMA5.2. SARIMA — Seasonal ARIMA	58 59 60

Linear Processes

Q: Assume we have a time series without trends or seasonal effects. How might we construct a linear model for a time series with autocorrelation?

Definition 6 (Linear Processes)

The process, X_t , is called a linear process if it has a representation of the form

$$X_t = \mu + \sum_{\tau = -\infty}^{\infty} c_{\tau} \cdot \epsilon_{t - \tau} \tag{6}$$

where μ is a common mean, $\{c_{\tau}\}$ is a sequence of fixed constants, and $\{\epsilon_t\}$ are independent random variables with mean 0 and common variance.

- We assume $\sum c_{\tau}^2 < \infty$ to ensure that the variance of X_t is finite.
- If $\{\epsilon_t\}$ are identically distributed, then such a porocess is strictly stationary.
- If $c_{\tau} = 0$ for $\tau < 0$ it is said to be causal, i.e., the process at time t does not depend on the future, as yet unobserved, values of ϵ_t .

Linear Processes

Q: Assume we have a time series without trends or seasonal effects. How might we construct a linear model for a time series with autocorrelation?

Definition 6 (Linear Processes)

The process, X_t , is called a linear process if it has a representation of the form

$$X_t = \mu + \sum_{\tau = -\infty}^{\infty} c_{\tau} \cdot \epsilon_{t - \tau} \tag{6}$$

where μ is a common mean, $\{c_{\tau}\}$ is a sequence of fixed constants, and $\{\epsilon_t\}$ are independent random variables with mean 0 and common variance.

- We assume $\sum c_{\tau}^2 < \infty$ to ensure that the variance of X_t is finite.
- If $\{\epsilon_t\}$ are identically distributed, then such a porocess is strictly stationary.
- If $c_{\tau} = 0$ for $\tau < 0$ it is said to be causal, i.e., the process at time t does not depend on the future, as yet unobserved, values of ϵ_t .

Linear Processes

Q: Assume we have a time series without trends or seasonal effects. How might we construct a linear model for a time series with autocorrelation?

Definition 6 (Linear Processes)

The process, X_t , is called a linear process if it has a representation of the form

$$X_t = \mu + \sum_{\tau = -\infty}^{\infty} c_{\tau} \cdot \epsilon_{t-\tau} \tag{6}$$

where μ is a common mean, $\{c_{\tau}\}$ is a sequence of fixed constants, and $\{\epsilon_t\}$ are independent random variables with mean 0 and common variance.

- We assume $\sum c_{\tau}^2 < \infty$ to ensure that the variance of X_t is finite.
- If $\{\epsilon_t\}$ are identically distributed, then such a porocess is strictly stationary.
- If $c_{\tau} = 0$ for $\tau < 0$ it is said to be causal, i.e., the process at time t does not depend on the future, as yet unobserved, values of ϵ_t .

Autoregressive Processes (AR)

Assume that a current value of the series is linearly dependent upon its previous value, with some error. Then we could have the linear relationship

Definition 7 (Autoregressive processes (AR))

$$X_t = \alpha X_{t-1} + \epsilon_t$$

where ϵ_t is a white noise* time series

- This model is called an autoregressive (AR) model, since X is regressed on itself.
- Here the lag of the autoregression is 1.
- More generally we could have an autoregressive model of order p, an AR(p) model, defined by

$$X_t = \sum_{k=1}^{p} \alpha_k X_{t-k} + \epsilon_t$$

^{*}The ϵ_t is a sequence of uncorrelated random variables (possibly normally distributed, but not necessarily normal) with mean 0 and common variance.

AR — Python Implementation ... Setup

Python has function to simulate and model (i.e. fit parameters) for all of the standard stationary models, and functions to generate the acf and pacf. To start

- I use the warning package to suppress messages with statsmodels don't use this when working with pandas.
- We include the required modules/functions.
- The function param to string is to simplify generate of image file names.

AR — Python Implementation ... Generation

Lets start with an AR(1) with single parameter $\alpha = 0.75$, i.e.,

$$X_t = 0.75X_{t-1} + \epsilon_t$$

First create a list of the parameters values — convention for parameters is to

- Include 1 for zero order term.
- Other terms are multiplied by negative one.
- Support for moving average (more later), but set this to [1] for none.

```
ar = np.array([1, -0.75])
ma = np.array([1])
```

Generate series (using fixed seed)

```
np.random.seed(42)
y = sm.tsa.arma_generate_sample(ar, ma, nsample=250, sigma=1)
```

AR — Python Implementation ... Visualisation

Stationary.ipynb In[5]:

```
plt.plot(y)
plt.title("AR(1)_=_%s" % -ar[1:])
filename = "../pic/ar_%s.pdf" % param_to_string(ar)
plt.savefig(filename, bbox inches="tight")
plt.show()
```


Even a simple model can generate apparently complicated structure.

AR — Python Implementation ... ACF

Stationary.ipynb In[6]:

```
plot_acf(y, lags=20)
plt.xticks(range(20))

filename = "../pic/ar_%s_acf.pdf" % param_to_string(ar)
plt.savefig(filename, bbox_inches="tight")
plt.show()
```


The acf shows an exponential decaying of strength of lag terms.

Shaded area indicates 95% confidence interval of significant lags.

We would expect the ACF for the AR(k) time series to be strong to a lag of k and the inertia of that relationship would carry on to subsequent lag values, trailing off at some point as the effect was weakened.

AR — Python Implementation ... PACF

plot_pacf(y, lags=20)
plt.xticks(range(20))

filename = "../pic/ar_%s_pacf.pdf" % param_to_string(ar)
plt.savefig(filename, bbox_inches="tight")
plt.show()

The pacf shows an strong lag at 1. Lag at 5 is due to noise.

Shaded area indicates 95% confidence interval of significant lags.

The PACF only describes the direct relationship between an observation and its lag. This would suggest that there would be no correlation for lag values beyond *k*.

AR — Python Implementation . . . Identification

From the acf it looks like an AR(p), but what is the value for p?

The pacf correctly (if we ignore the lag at 5) that we have an AR(1) model.

AR — Python Implementation ... Modelling

To model we need to supply data and values for the order of the model. Here AR(1) and MA(0).

```
Stationary.ipynb In[8]:
model = sm.tsa.ARMA(y, (1, 0)).fit(trend='nc', disp=0)
model.params
                                                        array([0.71435336])
```

AR — Python Implementation . . . Modelling

To model we need to supply data and values for the order of the model. Here AR(1) and MA(0).

```
model = sm.tsa.ARMA(y, (1, 0)).fit(trend='nc', disp=0)
model.params

array([0.71435336])
```

Rerunning with 25,000 (instead of 250) points we have

array ([0.74267818])

AR(2) with parameters [0.75, -0.9]

Lets start with an AR(2) with parameters $\alpha_1 = 0.75$, $\alpha_2 = -0.9$, i.e.,

$$X_t = 0.75X_{t-1} - 0.9X_{t-2} + \epsilon_t$$

All code is as before ...

... BLAH ... BLAH ...

```
| Stationary.ipynb In[20]:
| model = sm.tsa.ARMA(y, (2, 0)).fit(trend='nc', disp=0)
| model.params
| array([ 0.77366032, -0.91287896])
```

AR(2) with parameters [0.75, -0.9]

From the acf, I see a strong lag effects, but what?

The pacf shows correct structure (if we ignore the lag at 25).

Moving Average (MA)

In a moving average model we assume that the current value of the series is a weighted sum of past white noise terms:

Definition 8 (Moving Average (MA))

$$X_t = \beta \epsilon_{t-1} + \epsilon_t$$

where ϵ_t is a white noise time series

- Here the lag of the moving average is 1.
- We can think of the white noise series as being innovations or shocks: new stochastically uncorrelated information which appears at each time step, which is combined with other innovations (or shocks) to provide the observable series X_t.
- More generally we could have a moving average model of order q, an MA(q) model, defined by

$$X_t = \sum_{k=1}^{q} \beta_k \epsilon_{t-k} + \epsilon_t$$

MA — Python Implementation . . . Visualisation

plt.plot(y)
plt.title("MA(1)_=_%s" % -ma[1:])

filename = "../pic/ma_%s.pdf" % param_to_string(ma)
plt.savefig(filename, bbox_inches="tight")
plt.show()

Again, looking at the signal is of little use.

MA — Python Implementation . . . Identification

MA — Python Implementation . . . Identification

MA — Python Implementation . . . Identification

MA — Python Implementation ... Modelling

To model we need to supply data and values for the order of the model. Here AR(0) and MA(1).

```
Stationary.ipynb In[26]:
model = sm.tsa.ARMA(y, (0, 1)).fit(trend='nc', disp=0)
model, params
                                                        array([-0.77899406]
```

AR(p) vs MA(q)

- for an MA(q) series,
 - the ACF drops rapidly beyond lag q.
 - the PACF decays slowly.
- for an AR(p) series,
 - the ACF decays slowly.
 - the PACF drops rapidly beyond lag p.

Autoregressive Moving Average Process (ARMA)

An autoregressive moving average process ARMA(p, q) is a combination of AR(p) and MA(q) models, defined by

$$X_t = \sum_{k=1}^{p} \alpha_k X_{t-k} + \sum_{k=1}^{q} \beta_k \epsilon_{t-k} + \epsilon_t$$

- The value of ARMA processes lies primarily in their ability to approximate a wide range of second-order behaviour using only a small number of parameters.
- However, identifying the order from the acf and pacf becomes more difficult due to influence of both AR and MA components.
- While often replaced by more recent techniques (LSTMs, ANNs, SVMs) the ARIMA models have advantages:
 - ARIMA models are more interpretable, which means that their forecasts can be more intuitively explained.
 - ARIMA predictions naturally produce confidence intervals because they are regressive.

$ARMA(1,2) [-0.9] \times [0.9, -0.2]$

$ARMA(1,2) [-0.9] \times [0.9, -0.2]$

From the acf it looks like an AR(p), but what is the value for p?

The pacf has slow (in abs) decay of lag strength. so we have a MA(q) model, but what is q?

Outline

 Introduction Fundamental Concepts 	6
2. Models of Stationary Processes 2.1. Linear Processes 2.2. Autoregressive Processes — AR(p) 2.3. Moving Average Processes — MA(q) 2.4. Autoregressive Moving Average Process ARMA(p, q)	12 13 14 24 28
3. Application: Sunspots3.1. Identification of Model and Model Parameters	30 33
4. Application: Shampoo4.1. De-trending using Regression4.2. Identification of Model and Model Parameters4.3. Model based on First Differences	39 41 43 47
5. Non-Stationary Models5.1. Integrated ARMA and Seasonal Integrated ARMA5.2. SARIMA — Seasonal ARIMA	58 59 60

Sunspots

Two data files:

- sunspot.dat observations by year from 1700 to 1985, used for fitting.
- sunspot2.dat observations by year from 1700 to 1989, last 4 years used for fitting.

Sunspots.ipynb In[2]:

```
data = np.loadtxt("src/sunspot.dat")
year = range(1700,1984+1)
expected = np.loadtxt("src/sunspot2.dat")[-5:]
```

Sunspots — Transformation

Data has no obvious trend and seasonal effect but to ensure constant variance we will work with the square root of the observations.

```
y = np.sqrt(data)

Sunspots.ipynb In[4]:
```

 Build model and predict using y and need to square output to compare with actual observations.

Sunspots — ACF and PACF

Superote — ACF and PACF

ACF shows a periodic effect (period 11?) and slow decay AR(P)?

There is a periodic component that we have not dealt with at all.

The pacf shows correct rapid cutoff AR(2) or AR(9).

Sunspots — Fit of AR(p)

```
from statsmodels.tsa.ar_model import AR

model = AR(y).fit()
yhat = model.predict(len(y),len(y)+len(expected)-2)
print(yhat**2)
```

 $[26.3173986 \quad 19.57096978 \quad 21.36519288 \quad 43.96334534]$

Predictions capture change in direction but not magnitude.

Note AR fits arbitrary order, p (here p = 16).

Could also do this using ARMA(16,0).

Sunspots — Fit of ARMA(0,1)

Sunspots.ipynb In[11]:

```
from statsmodels.tsa.arima_model import ARMA
model = ARMA(y, order=(0, 1)).fit(disp=False)
yhat = model.predict(len(y),len(y)+len(expected)-2)
print(yhat**2)
```

[46.8412104 40.23836885 40.23836885 40.23836885]

Model is no good here. Why would it be?
Just fitted it to show difference with AR.

Sunspots — Effect of order *p* in AR model?

Do a parameter sweep over p, using a metric (aic):

```
aic = [ARMA(y, order=(p,0)). fit (disp=0). aic for p in range (15)]
```


About p=9 seems to be optimal.

Note: Modeling and Periodicity Analysis of Sunspot Time Series 1700-2015 found AR(11) to be optimal.

DOI: 10.4172/2168-9679.1000385And need to go back and look at that periodic component also

Sunspots — Quality of ARMA(0,9) Model

Sunspots.ipynb In[17]:

```
\begin{array}{ll} model = ARMA(y\,,\;\; order = (9\,,0\,))\,.\; fit\; (\,disp\,=\!0)\\ print\, (\,model\,.\, summary\,(\,)\,) \end{array}
```

ARMA Model Results

Dep. Variable Model: Method: Date: Time: Sample:		ARMA(9, 0 css—mi t, 23 Mar 201 15:30:0) Log I le S.D. 9 AIC	Observations: Likelihood of innovations		285 -416.847 1.037 855.694 895.872 871.800
=========	coef	std err	Z	P> z	[0.025	0.975]
const	6.3296	0.534	11.844	0.000	5.282	7.377
ar.L1.y	1.2208	0.057	21.555	0.000	1.110	1.332
ar.L2.y	-0.4791	0.091	-5.259	0.000	-0.658	-0.301
ar.L3.y	-0.1371	0.095	-1.446	0.149	-0.323	0.049
ar.L4.v	0.2600	0.095	2.726	0.007	0.073	0.447
ar.L5.y	-0.2412	0.096	-2.519	0.012	-0.429	-0.053
ar.L6.v	0.0161	0.096	0.168	0.867	-0.172	0.205
ar.L7.v	0.1754	0.096	1.822	0.070	-0.013	0.364
ar.L8.v	-0.2190	0.093	-2.363	0.019	-0.401	-0.037
ar.L9.y	0.2956	0.058	5.124	0.000	0.183	0.409

Sunspots.ipynb In[17]:

```
model = ARMA(y, order=(9,0)). fit (disp=0)
print (model.summary())
```

ARMA Model Results

Dep. Variable Model: Method: Date: Time: Sample:		ARMA(9, css— t, 23 Mar 20 15:30	0) Log Li mle S.D. c 019 AIC	oservations: kelihood if innovatio		285 -416.847 1.037 855.694 895.872 871.800	small is better
	coef	std err	Z	P> z	[0.025	0.975]	
const	6.3296	0.534	11.844	0.000	5.282	7.377	most coefficients
ar.L1.y	1.2208	0.057	21.555	0.000	1.110	1.332	are significant
ar.L2.y	-0.4791	0.091	-5.259	0.000	-0.658	-0.301	i.e., prob < 0.05,
ar.L3.y	-0.1371	0.095	-1.446	0.149	-0.323	0.049	i.e., zero is not in
ar.L4.y	0.2600	0.095	2.726	0.007	0.073	0.447	
ar.L5.y	-0.2412	0.096	-2.519	0.012	-0.429	-0.053	95% confidence in-
ar.L6.y	0.0161	0.096	0.168	0.867	-0.172	0.205	terval
ar.L7.y	0.1754	0.096	1.822	0.070	-0.013	0.364	
ar.L8.y	-0.2190	0.093	-2.363	0.019	-0.401	-0.037	
ar.L9.v	0.2956	0.058	5.124	0.000	0.183	0.409	

Sunspots — Quality of ARMA(0,9) Model

Sunspots.ipynb In[18]:

residuals = pd.DataFrame(model.resid)

std 1.065830 min -4.093574 25% -0.692183 50% 0.016957 75% 0.607109 max 3.837647

Sunspots — Quality of ARMA(0,9) Model

Sunspots.ipynb In[18]:

residuals = pd.DataFrame(model.resid)

- No obvious pattern in residual plot.
- kernel density estimate plot appears near normal with only slight asymmetry.
- The 5-number summary says same story as kde plot— residuals close to normal, but slight asymmetry is present.
- ⇒ Model is good but not perfect.

print(residuals.describe())

count	285.00000
mean	0.01254
std	1.06583
min	-4.09357
25%	-0.69218
50%	0.01695
75%	0.60710
max	3.83764

Outline

1. Introduction	2
1.1. Fundamental Concepts	6
 Models of Stationary Processes Linear Processes Autoregressive Processes — AR(p) Moving Average Processes — MA(q) Autoregressive Moving Average Process ARMA(p, q) 	12 13 14 24 28
3. Application: Sunspots3.1. Identification of Model and Model Parameters	30 33
4. Application: Shampoo4.1. De-trending using Regression4.2. Identification of Model and Model Parameters4.3. Model based on First Differences	39 41 43 47
5. Non-Stationary Models5.1. Integrated ARMA and Seasonal Integrated ARMA5.2. SARIMA — Seasonal ARIMA	58 59 60
6. Application: CO2	61

Shampoo

Monthly observations over three years:

- Upwards (nonlinear?) trend but no seasonal component.
- Series is non-stationary so cannot apply stationary model (ARMA) directly.

Shampoo.ipynb In[5]:

```
t = np.array(df.index).reshape(-1, 1)
y = df.Sales.values
```

Shampoo — De-trending using Regression

We start by trying a linear regression model ...

```
from sklearn.linear_model import LinearRegression
trend_model = LinearRegression().fit(t, y)
print('model:_%.3f_t_+_%.3f' % (trend_model.coef_[0],
trend_model.intercept_))
```

residuals = y - trend_model.predict(t)

model: 12.079 t + 101.216

Shampoo — De-trending using Regression

We start by trying a linear regression model ...

Shampoo.ipynb In[6]:

- On left, trend appears to have been removed.
- X On right, we see a pattern in the residuals (high-low-high) ⇒ polynomial trend?
- Problem with residuals is not obvious on the left due to large range on vertical axis.

Shampoo — De-trending using Regression (2nd attempt)

To fit a polynomial, we create the polynomial features we want and apply linear regression as normal ... (note the poor man's scaling in dividing by max)

```
from sklearn.preprocessing import PolynomialFeatures
polynomial_features= PolynomialFeatures(degree=2)
t_poly = polynomial_features.fit_transform(t/max(t))
trend_model = LinearRegression().fit(t_poly, y)

residuals = y - trend model.predict(t poly)
```


To fit a polynomial, we create the polynomial features we want and apply linear regression as normal ... (note the poor man's scaling in dividing by max)

```
from sklearn.preprocessing import PolynomialFeatures
polynomial_features= PolynomialFeatures(degree=2)
t_poly = polynomial_features.fit_transform(t/max(t))
trend_model = LinearRegression().fit(t_poly, y)

residuals = y - trend model.predict(t poly)
```


Shampoo — ACF and PACF

Shampoo — ACF and PACF

Both ACF and PACF show rapid drop in lags so expect mixture of AR(p) and MA(p).

Expect both p and q to be small, Do a parameter search...

Checking for model ARMA(p,q) with parameters $0 \le p, q \le 4$ we get

```
Shampoo.ipvnb In[19]:
p = q = range(0, 4)
opt aic = np.finfo("float").max
opt pq = None
for pg in itertools.product(p,q):
    try:
        model = ARMA(residuals, order=pq).fit(disp=0)
        print("%s, ->, %s" % (pq, model.aic))
        if model.aic<opt aic:
            opt_aic = model.aic
            opt pq = pq
    except:
        continue
print("Optimal_model: ARMA%s, with AIC=%.1f" % (opt_pq,opt_aic))
```

Parameter Sweep of ARMA(p,q) Model

Checking for model ARMA(p,q) with parameters $0 \le p, q \le 4$ we get

```
Shampoo invnb In[19]:
p = q = range(0, 4)
                                   (0, 0) \rightarrow 401.26202245479436
                                   (0, 1) \rightarrow 385.5728256299183
opt aic = np.finfo("float").m(0, 2) \rightarrow 387.1901345734029
opt pq = None
                                   (1, 0) \rightarrow 390.08471471118935
                                   (1, 1) \rightarrow 387.0218300651624
for pg in itertools.product(p,
                                   (1, 2) \rightarrow 388.77327977255305
    try:
                                   (1, 3) \rightarrow 388.235803422335
         model = ARMA(residuals (2, 0) -> 391.8043846579636
         print("%s,_->_%s" % (pd (2, 1) -> 387.43359609620035
         if model.aic<opt_aic: (2, 2) -> 388.94227226708256
             opt aic = model al (2, 3) -> nan
             opt_pq = pq  (3, 0) \rightarrow 392.9633469147946
    except:
                                 (3, 1) -> 388.35960849425663
         continue
                                   (3, 2) \rightarrow 385.5349718046033
                                   (3, 3) \rightarrow nan
print ("Optimal_model: ARMA%s_v
                                  Optimal model: ARMA(3, 2) with AIC=385.5
```

So lets fit a ARMA(3,2) model and see its performance . . .

Shampoo.ipynb In[20]:

```
\begin{array}{ll} model = ARMA(residuals \,, \,\, order \, = \, (3 \,, 2)) \,. \,\, fit \, (\, disp \, = \, 0) \\ print \, (\, model \, . \, summary \, (\,) \,) \end{array}
```

ARMA Model Results

```
Dep. Variable:
                                        No Observations:
Model:
                           ARMA(3, 2)
                                        Loa Likelihood
                                                                       -185767
Method:
                              css-mle
                                        S.D. of innovations
                                                                         36.750
                     Sun. 24 Mar 2019
                                        AIC
                                                                        385.535
Date:
Time:
                             15:44:35
                                        BIC
                                                                        396.620
                                        HOIC
Sample:
                                    0
                                                                        389 404
                 coef
                         std err
                                          Z
                                                 P>|z|
                                                             [0.025]
                                                                         0.9751
const
               0.2518
                           0.294
                                      0.855
                                                 0.399
                                                             -0.325
                                                                          0.829
ar.L1.y
               0.8472
                           0.162
                                      5.228
                                                 0.000
                                                              0.530
                                                                         1.165
ar.L2.v
               0.1518
                           0.203
                                  0.747
                                                0.461
                                                             -0.246
                                                                          0.550
                           0.153
                                  -2.599
                                                0.014
                                                             -0.699
                                                                         -0.098
ar.L3.v
              -0.3983
ma.L1.v
              -2.0000
                           0.169
                                    -11804
                                                0.000
                                                             -2332
                                                                         -1.668
```

6.025

✓ Highest order coefficient in AR and MA are significant.

0.166

1.0000

ma.L2.v

✓ AIC of 385 is lower than what we would have got (ARMA(1,2) with AIC=409) if just used linear regression (see notebook).

0.000

0.675

1 325

Shampoo — Quality of ARMA(3,2) Model

model = ARMA(residuals, order=(3,2)). fit (disp=0) print (model.summary())

ARMA Model Results

Dep. Variable	:	**************************************	,	bservations:	=======	36	
Model:		ARMA(3,		ikelihood		-185.767	
Method:	C	CSS—r		of innovations		36.750	1
Date:	Su	n, 24 Mar 20				385.535	
Time:		15:44:	35 BIC			396.620	
Sample:			0 HQIC			389.404	
	coef	std err	Z	P> z	[0.025	0.975]	most coefficients are significant
const	0.2518	0.294	0.855	0.399	-0.325	0.829	i.e., prob < 0.05,
ar.L1.y	0.8472	0.162	5.228	0.000	0.530	1.165	i.e., zero is not in
ar.L2.y	0.1518	0.203	0.747	0.461	-0.246	0.550	
ar.L3.y	-0.3983	0.153	-2.599	0.014	-0.699	-0.098	95% confidence in-
ma.L1.y	-2.0000	0.169	-11.804	0.000	-2.332	-1.668	terval
ma.L2.y	1.0000	0.166	6.025	0.000	0.675	1.325	

- Highest order coefficient in AR and MA are significant.
- ✓ AIC of 385 is lower than what we would have got (ARMA(1,2) with AIC=409) if just used linear regression (see notebook).

Shampoo — Quality of ARMA(3,2) Model

Shampoo.ipynb In[20]:

```
model = ARMA(residuals, order=(3,2)).fit(disp=0)
```


36.000000 count -4.173472mean std 64.343005 min -155.08653625% -47.35982250% -8.55789775% 27.487184 149.022740 max

Shampoo — Quality of ARMA(3,2) Model

Shampoo.ipynb In[20]:

model = ARMA(residuals, order = (3,2)). fit(disp=0)

- No obvious pattern in residual plot.
- stupid kernel density estimate plot now has a silly ledge on the right.
- ✓ The 5-number summary shows same story as kde plot — distribution is close but is not exactly normal.
- ⇒ Model is best found but is not perfect.

count

mean std

min

25%

50%

75%

max

36.000000

-4.173472

64.343005

-155.086536

-47359822

-8.557897

27.487184 149.022740

3rd Modelling Attempt — Using Differencing

In lab we talked about removing the trend using differencing. Lets see what happens if we do this . . .

3rd Modelling Attempt — Using Differencing

In lab we talked about removing the trend using differencing. Lets see what happens if we do this ...

First Difference

The first difference of a sequence x_t is $dx_t = x_t - x_{t-1}$ dy = np. diff (y)

✓ No obvious trends in new sequence ⇒ have stationary process.

Regression vs Differencing

 Resulting de-trended series are not the same (they even don't have the same length!)

 The need for quadratic trend is obvious from the residuals, this is harder to see in the differences (but it is there).

Shampoo — ACF and PACF

Shampoo — ACF and PACF

Both ACF and PACF show rapid drop in lags so expect mixture of AR(p) and MA(p).

Expect both p and q to be small, Do a parameter search...

Parameter Sweep of ARMA(p,q) Model

Checking for model ARMA(p,q) with parameters $0 \le p, q \le 4$ we get

```
Shampoo.ipynb In[27]:
p = q = range(0, 4)
opt aic = np.finfo("float").max
opt pq = None
for pg in itertools.product(p,q):
    try:
        model = ARMA(dy, order=pq). fit(disp=0)
        print("%s, ->, %s" % (pq, model.aic))
        if model.aic<opt aic:</pre>
             opt_aic = model.aic
            opt_pq = pq
    except:
        continue
print("Optimal_model: ARMA%s, with AIC=%.1f" % (opt_pq,opt_aic))
```

Checking for model ARMA(p,q) with parameters $0 \le p, q \le 4$ we get

```
Shampoo.ipynb In[27]:
p = q = range(0, 4)
opt aic = np.finfo("float").max
opt pq = None
for pq in itertools.product(p, (0, 0) \rightarrow 430.87311187552797
    try:
                                 (0, 1) \rightarrow 409.0126622411526
        model = ARMA(dy, ordel(1, 0) \rightarrow 406.02228959235015
         print("%s_->_%s" % (pd (1, 1) -> 402.4666524179953
        if model.aic<opt_aic: (1, 2) -> 401.5247943798928
             opt aic = model.ai(1, 3) -> 403.52417287508956
             opt_pq = pq (2, 0) -> 403.6275641166603
    except:
                                 (2, 1) \rightarrow 404.28621423318384
        continue
                                 (3. 0) \rightarrow 404.6924591816878
                                 (3, 1) \rightarrow 406.1395443929549
print("Optimal_model:_ARMA%s_v Optimal model: ARMA(1, 2) with AIC=401.5
```

So lets fit a ARMA(1,2) model and see its performance . . .

Shampoo — Quality of ARMA(1,2) Model

Shampoo.ipynb In[28]:

```
model = ARMA(dy, order = (1,2)). fit (disp=0)
print(model.summary())
```

ARMA Model Results

Dep. Variable:	у	No. Observations:	35
Model:	ARMA(1, 2)	Log Likelihood	-195.762
Method:	css-mle	S.D. of innovations	59.410
Date:	Sun, 24 Mar 2019	AIC	401.525
Time:	15:44:37	BIC	409.302
Sample:	0	HQIC	404.209

	coef	std err	z	P> z	[0.025	0.975]
const	10.2822	6.239 0.207	1.648	0.109	-1.945 -0.304	22.510
ar.L1.y ma.L1.y	-1.4369	0.207	-3.013	0.026	-0.304 -2.372	-0.508
ma.L2.y	1.0000	0.653	1.532	0.136	-0.279	2.279

- Model is better (AIC=401) than that with linear regression (AIC=409).
- X Highest order coefficients in AR and MA are not significant.

Obcarvations:

0.626

0.136

-0.304

-2372

-0.279

Shampoo.ipynb In[28]:

25

0.508

-0.502

2 279

```
= ARMA(dy, order=(1,2)). fit (disp=0)
print(model.summary())
```

0.207

0.477

0.653

0.1019

-14369

1 0000

Variable .

ar.L1.y

ma. L1. v

ma. L2. v

```
ARMA Model Results
```

Model: Method: Date: Time: Sample:		ARMA(1, 2 css-mi n, 24 Mar 201 15:44:3	Log L le S.D. 9 AIC	ikelihood of innovatio	ns	-195.762 59.410 401.525 409.302 404.209	
	coef	std err	Z	P> z	[0.025	0.975]	
const	10.2822	6.239	1.648	0.109	-1.945	22.510	

0.492

-3.013

1 532

- Model is better (AIC=401) than that with linear regression (AIC=409), but not as good as the quadratic regression model (AIC=385).
- Highest order coefficients in AR and MA are not significant.

Shampoo — Quality of ARMA(1,2) Model

Shampoo.ipynb In[28]:

$$model = ARMA(dy, order = (1,2)). fit (disp=0)$$

print(residuals.describe())

36.000000 count mean -4.173472std 64.343005 -155.086536min 25% -47.35982250% -8.55789775% 27 487184 149.022740 max

Shampoo — Quality of ARMA(1,2) Model

Shampoo.ipynb In[28]:

$$model = ARMA(dy, order = (1,2)). fit(disp=0)$$

- upwards trend in residual plot.
- x kernel density estimate plot is not symmetric.
- The 5-number summary shows same story as kde plot.
- ⇒ We should have paid more attention and dealt with trend in first differences by apply differences again.

print(residuals.describe())

36.000000 count mean -4.17347264.343005 std min -155.08653625% -47.35982250% -8.55789727 487184 75% 149.022740 max

A Model with built in Differencing — ARIMA

An ARIMA model can perform the differencing step as part of the model. So for this dataset we just applied ARMA(1,2) to dy. This is exactly the same as applying

- ARIMA(1,0,2) to dy.
- ARIMA(1,1,2) to y.

We will cover ARIMA in more detail later but for now

ARIMA(p,d,q)

The ARIMA(p,d,q) is the ARMA(p,q) model applied to the dth difference of the original dataset.

- Getting difference is easy, so why yet another model?
 We can search for optimal difference as part of model optimisation.
- De-tending and model fitting can be a single step.

ARMA(1,2) ON dy VS ARIMA(1,0,2) ON dy VS ARIMA(1,1,2) ON y

-195.76 59.41 401.52 409.30 404.20
401.52 409.30 404.20
409.30 404.20
404.20
0.97
22.51
0.50
-0.50
2.27
-195.7 59.4 401.5 409.3 404.2
0.97
22.5
22.5 0.5 -0.5
)

Parameter Sweep of ARIMA(p,d,q) Model

Checking for model ARIMA(p,d,q) with parameters 0 < p, d, q < 4 we get

```
Shampoo.ipvnb In[32]:
p = d = q = range(0, 4)
opt aic = np.finfo("float").max
opt pdg = None
for pdg in itertools.product(p,d,q):
    try:
        model = ARIMA(y, order=pdq).fit(disp=0)
        #print("%s, ->, %s" % (pdq, model.aic))
        if model.aic<opt aic:
            opt aic = model.aic
            opt pdq = pdq
    except:
        continue
print ("Optimal_model:_ARIMA%s_with_AIC=%.1f" % (opt_pdq,opt_aic))
```

Parameter Sweep of ARIMA(p,d,q) Model

Checking for model ARIMA(p,d,q) with parameters 0 < p, d, q < 4 we get

```
Shampoo.ipynb In[32]:
p = d = q = range(0, 4)
opt aic = np.finfo("float").max
opt pdg = None
for pdg in itertools.product(p,d,q):
    try:
        model = ARIMA(y, order=pdq).fit(disp=0)
        #print("%s, ->, %s" % (pdq, model.aic))
        if model.aic<opt aic:
            opt aic = model.aic
            opt pdq = pdq
    except:
                            Optimal model: ARIMA(2, 2, 3) with AIC=389.7
        continue
print ("Optimal_model:_ARIMA%s_with_AIC=%.1f" % (opt_pdq,opt_aic))
```

So ARIMA spotted that we needed to get second difference. Good.

Shampoo.ipvnb Inf331:

```
model = ARIMA(y, order=(2,2,3)). fit (disp=0)
print (model.summary())
```

0.155

0 147

ARIMA Model Results

```
Dep. Variable:
                                 D2.y
                                         No Observations:
Model:
                       ARIMA(2, 2, 3)
                                         Loa Likelihood
                                                                        -187842
Method:
                              css-mle
                                         S.D. of innovations
                                                                          49.755
Date:
                     Sun. 24 Mar 2019
                                         AIC
                                                                         389.684
Time:
                             15:44:41
                                         BIC
                                                                         400.368
                                         HOIC
                                                                         393 327
Sample:
                 coef
                         std err
                                           z
                                                  P>|z|
                                                             [0.025]
                                                                          0.9751
const
               0.9216
                           0.101
                                       9.091
                                                  0.000
                                                              0.723
                                                                           1 120
ar.L1.D2.y
            -1.4817
                           0.138
                                  -10.704
                                                  0.000
                                                             -1.753
                                                                          -1.210
ar.L2.D2.y
            -0.5607
                           0.139
                                  -4.030
                                                  0.000
                                                             -0.833
                                                                          -0.288
                           0 147
                                     -6.695
                                                  0.000
                                                             -1274
                                                                          -0.697
```

-6.358

6 794

Model is nearly as good (AIC=389.7) as best model found to date

0.000

0.000

-1291

0.710

-0.683

1 287

All coefficients are significant.

-0.9857

-0.9872

0.9986

ma. L1. D2. v

ma. L2. D2. v

ma. L3. D2. v

Shampoo.ipvnb Inf331:

```
model = ARIMA(y, order=(2,2,3)). fit(disp=0)
print (model.summary())
```

0.155

0 147

ARIMA Model Results

```
Dep. Variable:
                                          No Observations:
Model:
                        ARIMA(2, 2, 3)
                                          Loa Likelihood
                                                                         -187842
Method:
                               css-mle
                                          S.D. of innovations
                                                                           49.755
                      Sun. 24 Mar 2019
                                          AIC
                                                                          389.684
Date:
Time:
                                          BIC
                                                                          400.368
                              15:44:41
                                          HOIC
                                                                          393 327
Sample:
                  coef
                          std err
                                            z
                                                   P>|z|
                                                               [0.025]
                                                                           0.9751
                                                                0.723
const
               0.9216
                            0.101
                                        9 091
                                                   0.000
                                                                            1.120
ar.L1.D2.y
            -1.4817
                            0.138
                                     -10.704
                                                   0.000
                                                              -1.753
                                                                           -1.210
ar.L2.D2.y
            -0.5607
                            0.139
                                   -4.030
                                                   0.000
                                                              -0.833
                                                                           -0.288
                            0 147
                                      -6.695
                                                   0.000
                                                               -1274
                                                                           -0.697
ma. L1. D2. v
            -0.9857
```

-6.358

6 794

Model is nearly as good (AIC=389.7) as best model found to date (quadratic regression + ARMA(3,2) with AIC=385.6).

0.000

0.000

-1291

0.710

-0.683

1.287

All coefficients are significant.

-0.9872

0.9986

ma. L2. D2. v

ma. L3. D2. v

Shampoo — Quality of ARIMA(2,2,3) Model

Shampoo.ipynb In[33]:

```
model = ARIMA(y, order=(2,2,3)). fit (disp=0)
```


print(residuals.describe())

34.000000 count mean 9.954162 std 65.408579 -133.519276min 25% -34.81126650% -3.56070675% 61.996983 156.378357 max

Shampoo — Quality of ARIMA(2,2,3) Model

Shampoo.ipynb In[33]:

$$model = ARIMA(y, order=(2,2,3)). fit (disp=0)$$

- no obvious pattern in residuals.
- kernel density estimate plot and 5-number summary is not symmetric but not as bad as in quadratic regression model.
- ⇒ Probably will go with this model. It is easier and fewer 'had smells'

print (residuals . describe ())

34.000000 count mean 9.954162 65.408579 std min -133.51927625% -34.81126650% -3.56070675% 61 996983 156.378357 max

Outline

1. Introduction1.1. Fundamental Concepts	2
 Models of Stationary Processes Linear Processes Autoregressive Processes — AR(p) Moving Average Processes — MA(q) Autoregressive Moving Average Process ARMA(p, q) 	12 13 14 24 28
Application: Sunspots Identification of Model and Model Parameters	30 33
4. Application: Shampoo4.1. De-trending using Regression4.2. Identification of Model and Model Parameters4.3. Model based on First Differences	39 41 43 47
5. Non-Stationary Models5.1. Integrated ARMA and Seasonal Integrated ARMA5.2. SARIMA — Seasonal ARIMA	58 59 60

ARIMA — Integrated ARMA

An ARIMA(p, d, q) is the application of the ARMA(p,q) model to the dth difference of the dataset

$$X_{t}^{(d)} = \underbrace{\alpha_{1}X_{t-1}^{(d)} + \dots + \alpha_{p}X_{t-p}^{(d)}}_{\mathsf{AR}(\mathsf{p})} + \underbrace{\beta_{1}\epsilon_{t-1} + \dots + \beta_{q}\epsilon_{t-q}}_{\mathsf{MA}(\mathsf{q})} + \epsilon_{t}$$

The model has three parameters/components:

p Autoregressive component, AR(p) Incorporates the effect of recent past values into the model.

(Intuition: it is likely to be warm today if it has been warm the past 3 days.)

d Integrated component, I(d).

The amount of differencing (repeated application of differencing) to apply to the time series.

(Intuition: it is likely to be same temperature tomorrow if the difference in temperature in the last three days has been very small.)

d Moving Average component, MA(q)

Set the error of our model as a linear combination of the error values observed at previous time points in the past.

SARIMA — Seasonal Integrated ARMA.

The ARIMA model can deal with trends (Shampoo dataset) but not seasonal effects. To handle seasonal effects (CO2 dataset) we extend the ARIMA into a Seasonal Autoregressive Integrated Moving Average (SARIMA).

SARIMA

The seasonal ARIMA model has parameters SARIMA(p,d,q)(P,D,Q)s

- where (p, d, q) are the AR, I and MA parameters as usual.
 - (P, D, Q) are the AR, I and MA parameters for the seasonal component with period s.
- Seasonal period, s, is obtained for ACF and PACF, other parameters can be found by grid search.

Outline

6. Application: CO2

1.1. Fundamental Concepts	6
2. Models of Stationary Processes 2.1. Linear Processes 2.2. Autoregressive Processes — AR(p) 2.3. Moving Average Processes — MA(q) 2.4. Autoregressive Moving Average Process ARMA(p, q)	12 13 14 24 28
Application: Sunspots Identification of Model and Model Parameters	30 33
4. Application: Shampoo4.1. De-trending using Regression4.2. Identification of Model and Model Parameters4.3. Model based on First Differences	39 41 43 47
5. Non-Stationary Models 5.1. Integrated ARMA and Seasonal Integrated ARMA 5.2. SARIMA — Seasonal ARIMA	58 59 60

61

CO₂ Dataset

Monthly observations over 13 years:

- Strong trend and seasonal components.
- Series is non-stationary so cannot apply stationary model (ARMA) directly.

 Monthly CO2 concentrations

CO2.ipynb In[3]:

```
df = pd.read_excel("src/Monthly_CO2_Concentrations.xlsx")
display(df.shape)
df.isna().sum()
df = df.dropna()
```

Grid Search on SARIMA

After a sloooow grid search, optimal model[†] is

SARIMA
$$(0, 1, 1) \times (2, 1, 3, 12)$$

Fitting model is via

```
model = sm.tsa.statespace.SARIMAX(df.CO2.values, order=(0,1,1), seasonal_order=(2,1,3,12), enforce_stationarity=False, enforce_invertibility=False).fit()
```

Model statistics are generated using

```
print(model.summary().tables[0])
print(model.summary().tables[1])
```

[†]see notebook

CO2 — Quality of SARMA(0,1,1)x(2,1,3,12 Model

Statespace Model Results

```
Dep. Variable:
                                                        No Observations:
                                                                                             161
Model:
                    SARIMAX(0.
                                1, 1)x(2, 1, 3, 12)
                                                        Log Likelihood
                                                                                         -23.952
Date:
                                   Mon. 25 Mar 2019
                                                        AIC
                                                                                          61.903
Time:
                                            06:54:22
                                                        BIC
                                                                                          83 473
Sample:
                                                        HOIC
                                                                                          70.662
                                               -161
Covariance Type:
                                                 opq
                                                    P>|z|
                                                                [0.025
                  coef
                           std err
                                                                             0.9751
                                             z
ma. L1
               -0.5625
                             0.082
                                       -6.827
                                                                -0.724
                                                    0.000
                                                                             -0.401
ar S I 12
               -0.7741
                             0.340
                                        -2279
                                                    0.023
                                                                -1440
                                                                             -0.108
ar S I 24
               -0.4546
                             0.245
                                        -1.854
                                                    0.064
                                                                -0.935
                                                                              0.026
ma.S.L12
               1.3098
                             0.936
                                        1.399
                                                    0.162
                                                                -0.525
                                                                              3.145
ma.S.L24
                0.8580
                            1.297
                                        0.661
                                                    0.508
                                                                -1.685
                                                                              3.401
ma S 136
                            1 338
                                        -1433
                                                    0.152
                                                                -4541
                                                                              0.705
               -19180
                             0.020
                                                                -0.025
siama2
                0.0143
                                        0.714
                                                    0.475
                                                                              0.054
```

CO2.ipynb In[15]:

```
results.plot\_diagnostics(figsize=(16,~8))\\ plt.savefig("pic/CO2\_SARIMA.pdf",~bbox\_inches="tight")\\ plt.show()
```


✓ The KDE follows closely with the standard normal, N(0,1) curve.

Theoretical Quantiles

- The qq-plot shows that the ordered distribution of residuals follows the linear trend.
- ✓ No obvious pattern in the residuals
- The autocorrelation (i.e. correlogram) shows the residuals have low correlation with lagged versions of itself.

All good indications that the residuals are normally distributed and independent.