Chapter 9: Traversable functors and contrafunctors

Sergei Winitzki

Academy by the Bay

2018-08-08

Motivation for the traverse operation

- Consider data of type List^A and processing $f: A \Rightarrow \mathsf{Future}^B$
- Typically, we want to wait until the entire data set is processed
- What we need is $List^A \Rightarrow (A \Rightarrow Future^B) \Rightarrow Future^{List^B}$
- Generalize: $L^A \Rightarrow (A \Rightarrow F^B) \Rightarrow F^{L^B}$ for some type constructors F, L
- This operation is called traverse
 - ▶ How to implement it: for example, a 3-element list is $A \times A \times A$
 - ▶ Consider $L^A \equiv A \times A \times A$, apply map f and get $F^B \times F^B \times F^B$
 - ▶ We will get $F^{L^B} \equiv F^{B \times B \times B}$ if we can apply zip as $F^B \times F^B \Rightarrow F^{B \times B}$
- So we need to assume that F is applicative
- ullet In Scala, we have Future.traverse() that assumes L to be a sequence
 - This is the iconic example that fixes the requirements
- Questions:
 - ▶ Which functors *L* can have this operation?
 - ► Can we express traverse through a simpler operation?
 - What are the required laws for traverse?
 - What about contrafunctors or profunctors?

Deriving the sequence operation

- The type signature of traverse is a complicated "lifting"
- A "lifting" is always equivalent to a simpler natural transformation
- To derive it, ask: what is missing from map to do the job of traverse?

fmap:
$$(A \Rightarrow F^B) \Rightarrow L^A \Rightarrow L^{F^B}$$

- We need F^{L^B} but the traverse operation gives us L^{F^B} instead
- ullet What's missing is a natural transformation sequence : $L^{F^B} \Rightarrow F^{L^B}$
- The functions traverse and sequence are computationally equivalent:

$$\operatorname{trav} f^{\underline{A} \Rightarrow F^B} = \operatorname{fmap} f \circ \operatorname{seq}$$

Here F is an arbitrary applicative functor

Deriving the Categorical overview of "regular" functor classes

The "liftings" show the types of category's morphisms

• The functions fmap2 and ap are computationally equivalent:

$$\operatorname{fmap}_2 f^{A \Rightarrow B \Rightarrow Z} = \operatorname{fmap} f \circ \operatorname{ap}$$

▶ Note the pattern: a natural transformation is equivalent to a lifting

The "liftings" show the types of category's morphisms

The "liftings" show the types of category's morphisms

Categorical overview of "regular" functor classes

The "liftings" show the types of category's morphisms

class name	lifting's name and type signature	category's morphism
functor	$fmap : (A \Rightarrow B) \Rightarrow F^A \Rightarrow F^B$	$A \Rightarrow B$
filterable	$fmapOpt : (A \Rightarrow 1 + B) \Rightarrow F^A \Rightarrow F^B$	$A \Rightarrow 1 + B$
monad	$flm: \left(A \Rightarrow F^{B} \right) \Rightarrow F^{A} \Rightarrow F^{B}$	$A \Rightarrow F^B$
applicative	$ap: F^{A\Rightarrow B} \Rightarrow F^A \Rightarrow F^B$	F ^{A⇒B}
contrafunctor	contrafmap : $(B\Rightarrow A)\Rightarrow F^A\Rightarrow F^B$	$B \Rightarrow A$
profunctor	$xmap: (A \Rightarrow B) \times (B \Rightarrow A) \Rightarrow F^A \Rightarrow F^B$	$(A \Rightarrow B) \times (B \Rightarrow A)$
contra-filterable	$contrafmapOpt : (B \Rightarrow 1 + A) \Rightarrow F^A \Rightarrow F^B$	$B \Rightarrow 1 + A$
Not yet considered:		
comonad	$cofIm: \left(F^A \Rightarrow B \right) \Rightarrow F^A \Rightarrow F^B$	$F^A \Rightarrow B$

Need to define each category's composition and identity morphism Then impose the category laws, the naturality laws, and the functor laws

- Obtained a systematic picture of the "regular" type classes
- Some classes (e.g. contra-applicative) aren't covered by this scheme
- Some of the possibilities (e.g. "contramonad") don't actually work out

Exercises

- Show that pure will be automatically a natural transformation when it is defined using wu as shown in the slides.
- ② Use naturality of pure to show that pure $f \odot \text{pure } g = \text{pure } (f \circ g)$
- 3 Show that $F^A \equiv (A \Rightarrow Z) \Rightarrow (1 + A)$ is a functor but not applicative.
- **3** Show that P^S is a monoid if S is a monoid and P is any applicative functor, contrafunctor, or profunctor.
- **5** Implement an applicative instance for $F^A = 1 + \text{Int} \times A + A \times A \times A$.
- **1** Using applicative constructions, show without lengthy proofs that $F^A = G^A + H^{G^A}$ is applicative if G and H are applicative functors.
- Explicitly implement contrafunctor construction 2 and prove the laws.
- **3** For any contrafunctor H^A , construction 5 says that $F^A \equiv H^A \Rightarrow A$ is applicative. Implement the code of zip(fa, fb) for this construction.
- 9 Show that the recursive functor $F^A \equiv 1 + G^{A \times F^A}$ is applicative if G^A is applicative and wu_F is defined recursively as $0 + pure_G (1 \times wu_F)$.
- Explicitly implement profunctor construction 5 and prove the laws.
- Prove rigorously that all exponential-polynomial type constructors are profunctors.
- Implement profunctor and applicative instances for $P^A \equiv A + Z \times G^A$ where G^A is a given applicative profunctor and Z is a monoid.
- § Show that, for any profunctor P^A , one can implement a function of type $A \Rightarrow P^B \Rightarrow P^{A \times B}$ but not of type $A \Rightarrow P^B \Rightarrow P^A$.