Renormalization of Symmetry Improved 3PIEA gap equations at 2 loops

Supplement to "Symmetry improvement of 3PI effective actions for O(N) scalar field theory" by Michael J. Brown and Ian B. Whittingham.

Mathematica notebook to compute couter-terms for two loop truncations of the effective action as described in Section IV of the paper.

Hartree-Fock

 $[n]_{28} = \text{ClearAll}[\text{geom, neom, intrules, msbarrules, mg2soln, cteq, cts, } \delta m, \delta \lambda];$

Hartree-Fock gap equations with counterterms

Goldstone equation of motion. Quantities in reference to the paper are:

p is the four-momentum flowing through the propagators Δ_{G}^{-1} and $\Delta_{\text{N}}^{-1},$

mg2 is the Goldstone mass squared $m_{\rm G}^2$,

Z and $Z\Delta$ are the wavefunction a propagator renormalization constants,

 m^2 is the (renormalized) Lagrangian mass parameter, δm_1^2 is its counter-term,

 λ is the (renormalized) four point coupling,

 $\delta\lambda_{1a}$, $\delta\lambda_{2a}$, $\delta\lambda_{2b}$ are the independent coupling counter-terms,

v is the scalar field vacuum expectation value,

ħ is the reduced Planck constant,

 \boldsymbol{n} is the number of fields in the $O(\boldsymbol{n})$ symmetry group,

t∞g, t∞n are the divergent tadpole integrals for the Goldstone, Higgs resp.,

tfing, tfinn are the finite parts of the tadpoles for the Goldstone, Higgs resp.

$$\begin{array}{ll} & \text{prop} = \text{peom} = \text{p}^2 - \text{mg2} = \text{Z} \; \text{Z}\Delta \; \text{p}^2 - \text{m}^2 - \delta \text{m}_1{}^2 - \text{Z}\Delta \; \frac{\lambda + \delta \lambda_{1\,a}}{6} \; \text{v}^2 - \frac{\hbar}{6} \; \left(\left(\text{n} + 1 \right) \; \lambda + \left(\text{n} - 1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wg} + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wn} + \text{tfinn} \right) \\ & = \frac{\hbar}{6} \; \left(\left(\text{n} + 1 \right) \; \lambda + \left(\text{n} - 1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wg} + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wn} + \text{tfinn} \right) \\ & = \frac{\hbar}{6} \; \left(\text{m} + 1 \right) \; \lambda + \left(\text{m} - 1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wg} + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wn} + \text{tfinn} \right) \\ & = \frac{\hbar}{6} \; \left(\text{m} + 1 \right) \; \lambda + \left(\text{m} - 1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wg} + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wn} + \text{tfinn} \right) \\ & = \frac{\hbar}{6} \; \left(\text{m} + 1 \right) \; \lambda + \left(\text{m} - 1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wg} + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\lambda + \delta \lambda_{2\,a} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wn} + \text{tfinn} \right) \\ & = \frac{\hbar}{6} \; \left(\text{m} + 1 \right) \; \lambda + \left(\text{m} - 1 \right) \; \delta \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{t} \text{wg} + \text{tfing} \right) - \frac{\hbar}{6} \; \left(\text{m} + 1 \right) \; \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{m} + 1 \right) \; \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \right) \; \text{Z}\Delta^2 \; \left(\text{m} + 1 \right) \; \lambda_{2\,a} + 2 \; \delta \lambda_{2\,b} \; \lambda_{2\,b} + 2 \; \delta \lambda_{2\,b} \; \lambda_{2\,b} \right) \; \lambda_{2\,b} \; \lambda_{2\,b}$$

Higgs equation of motion

$$ln[30] = neom = p^2 - mn2 = \frac{-\lambda v^2}{3} Z\Delta + p^2 - mg2$$

Infinite parts of tadpoles in MSbar

MSbar rules for 4 - 2 € dimensions

Sub in tadpole expressions, eliminate mn2 and solve for mg2

Gather divergences proportional v, tfing and tfinn and set independently to zero

First we subtract the finite equation of motion, then gather coefficients of the remainder into a list and set each to zero (after some trimming and simplifying).

In[33]:= cteq = $\left(\left[\text{CoefficientList}\left[\text{mg2soln} + \left(-\text{m}^2 - \frac{\lambda}{6}\,\text{v}^2 - \frac{\hbar}{6}\,\left(\left(\text{n} + 1\right)\,\lambda\right)\,\left(\text{tfing}\right) - \frac{\hbar}{6}\,\left(\lambda\right)\,\left(\text{tfinn}\right)\right),\,\left\{\text{p, v, model}\right\}\right)\right)$ tfing, tfinn}] // Flatten // DeleteDuplicates // Simplify // FullSimplify == 0 // Thread

Solve for counterterms

```
ln[34] = cts = \left\{\delta m_1^2, \, \delta \lambda_{1\,a}, \, \delta \lambda_{2\,a}, \, \delta \lambda_{2\,b}, \, Z, \, Z\Delta\right\} /. \, \, Solve[cteq, \, \left\{\delta m_1, \, \delta \lambda_{1\,a}, \, \delta \lambda_{2\,a}, \, \delta \lambda_{2\,b}, \, Z, \, Z_\Delta\right\}] \, // \, \, decomposition (2.5)
                  FullSimplify // DeleteDuplicates
```

 $Z\Delta$ is redundant in this truncation, can remove it :

```
In [35]:= cts /. Z\Delta \rightarrow 1 // FullSimplify
```

FullSimplify // DeleteDuplicates

Sunset

NOTE: this uses some of the same variable names as the Hartree-Fock code! Be careful not to clobber what you need to keep.

In[10]: ClearAll[geom, neom, intrules, msbarrules, mg2soln, cteq, δ m, $\delta\lambda$, $\delta\lambda$, $\delta\lambda$, $\delta\lambda$, $\delta\lambda$];

Equations of motion

Additional variables relative to the Hartree-Fock case:

Ing is the sunset integral $I_{NG}(p)$

Ifingp is the finite sunset integral $I_{NG}^{fin}(p)$,

Ifing 0 is $I_{NG}^{fin}(m_G)$, Ifingn is $I_{NG}^{fin}(m_N)$,

 $\delta\lambda$ is the sunset graph coupling counter-term,

 $I\mu$, $t\mu$ and $c\mu$ are the auxiliary integrals I_{μ} , T_{μ} and c_{μ} respectively.

$$\begin{split} & \text{In} [\text{11}] \text{:= } geom = p^2 - mg2 + i \, \hbar \, \left(\frac{(\lambda) \, v}{3} \right)^2 \, \left(\text{Ifingp-Ifing0} \right) \text{ := } \\ & Z \, Z \Delta \, p^2 - m^2 - \delta m_1^2 - Z \Delta \, \frac{\lambda + \delta \lambda_{1\,a}}{6} \, v^2 - \frac{\hbar}{6} \, \left(\left(n+1 \right) \, \lambda + \left(n-1 \right) \, \delta \lambda_{2\,a} + 2 \, \delta \lambda_{2\,b} \right) \, Z \Delta^2 \, \left(\text{tg} \right) - \frac{\hbar}{6} \, \left(\lambda + \delta \lambda_{2\,a} \right) \, Z \Delta^2 \, \left(\text{tn} \right) + i \, \hbar \, \left(\frac{(\lambda + \delta \lambda) \, v}{3} \right)^2 \, Z \Delta^3 \, \text{Ing} \\ & \text{In} [12] \text{:= } neom = p^2 - mn2 + i \, \hbar \, \left(\frac{(\lambda) \, v}{3} \right)^2 \, \left(\text{Ifingp-Ifingn} \right) \text{ := } \\ & \frac{-Z \Delta \, \left(\lambda + \delta \lambda \right) \, v^2}{3} + p^2 - mg2 + i \, \hbar \, \left(\frac{(\lambda) \, v}{3} \right)^2 \, \left(\text{Ifingp-Ifing0} \right) \end{split}$$

Divergent parts subtracted with auxiliary integrals and MSbar

$$\begin{split} & & \text{In[13]:= intrules = } \left\{ \text{Ing} \rightarrow \text{I}\mu + \text{Ifingp} + \text{Ifing0} \,, \right. \\ & & \quad \text{tg} \rightarrow \text{t}\mu - \text{i} \, \left(\text{mg2} - \mu^2 \right) \, \text{I}\mu + \, \hbar \, \left(\frac{\left(\lambda + \, \delta \lambda \right) \, \text{v}}{3} \right)^2 \, \text{c}\mu + \text{tfing} \,, \\ & \quad \text{tn} \rightarrow \text{t}\mu - \text{i} \, \left(\text{mn2} - \mu^2 \right) \, \text{I}\mu + \, \hbar \, \left(\frac{\left(\lambda + \, \delta \lambda \right) \, \text{v}}{3} \right)^2 \, \text{c}\mu + \text{tfinn} \right\} \\ & \quad \text{In[14]:= msbarrules = } \left\{ \text{I}\mu \rightarrow \text{c2} \, \text{Log} \left[\frac{\Lambda^2}{\mu^2} \right] \,, \, \text{t}\mu \rightarrow \text{c0} \, \Lambda^2 + \text{c1} \, \mu^2 \, \text{Log} \left[\frac{\Lambda^2}{\mu^2} \right] \,, \, \text{c}\mu \rightarrow \text{a0} \, \text{Log} \left[\frac{\Lambda^2}{\mu^2} \right]^2 + \text{a1} \, \text{Log} \left[\frac{\Lambda^2}{\mu^2} \right] \right\} \end{split}$$

Sub everything in, eliminate mn2 and solve for mg2

```
In[15]:= mg2soln =
((geom /. intrules(*/.msbarrules*) /. Solve[neom, mn2][[1]]) // Solve[#, mg2] &)[[
 1]]
```

Gather kinematically distinct divergences for Goldstone EOM

Solve for counter-terms from Goldstone EOM

Note there are two solutions differing by a sign for $\delta\lambda$.

```
In[17]:= cts =
       Solve[cteq, \{\delta m_1, \delta \lambda_{1a}, \delta \lambda_{2a}, \delta \lambda_{2b}, \delta \lambda, Z, Z\Delta\}] // FullSimplify // DeleteDuplicates;
```

Gather kinematically distinct divergences for Higgs EOM

Solve for counter-terms from Higgs EOM

```
ln[20]:= cts2 = Solve[cteq2[[2]], {Z}\Delta}
```

Both equations should have the same solution:

$$ln[21] = (Z\Delta /. Solve[cteq2[[3]], {Z\Delta}][[1]]) - (Z\Delta /. cts2[[1]]) == 0$$

Final Counterterms

$$\label{eq:local_local_local} \begin{split} & \text{ln[23]:= counterterms = Thread} \left[\left\{ \delta \mathbf{m_1}^2 \,, \, \delta \lambda_{1\,\, \text{a}} \,, \, \delta \lambda_{2\,\, \text{a}} \,, \, \delta \lambda_{2\,\, \text{b}} \,, \, \delta \lambda \,, \, \, \mathbf{Z} \,, \, \, \mathbf{Z} \Delta \right\} \, \rightarrow \, \% \left[\, \left[\, 1 \, \right] \, \right] \, \right] \end{split}$$

The should be momentum independent: