Niveaux: SM PC SVT | Matière: chimie

PROF: Zakaryae Chriki | Résumé N:2

la vitesse de réacation

1. Définition :

La vitesse volumique v(t) d'une réaction se déroulant dans un volume constant V est la valeur de la dérivée temporelle de l'avancement x de la

réaction , divisée par le volume
$$V: v(t) = \frac{1}{V} \cdot \frac{dx}{dt}$$

dx laccroissement de l'avancement x en mol

dt l'accroissement du temps t soit en seconde, en minute ou en heure

V le volume du mélange réactionnel en litre ou m^3

L'unité de la vitesse volumique dans le SI est : $mol/m^3/s$

On peut aussi exprimer la vitesse volumique de la réaction en fonction de la concentration effective .

2. <u>Détermination graphiq</u>ue de la vitesse :

Détermination graphique :

La vitesse est le coefficient directeur de la droite tangente à la courbe x=f(t) à un instant donné t_i .

$$V = \frac{1}{V_S} \frac{\Delta x}{\Delta t} \quad \text{avec} \quad \begin{array}{c} V : \text{Vitesse de réaction } (\text{mol.}\ell^{\text{-1}}.\text{s}^{\text{-1}}) \\ x : \text{avancement de réaction } (\text{mol.}\ell) \\ V_S : \text{Volume de la solution } (\ell) \\ \end{array}$$

On choisit deux points A et B de la tangente $A({t_A \atop x_A})$ et $B({t_B \atop x_B})$ et la vitesse $V = {1 \over v_S} {\Delta x \over \Delta t} = {1 \over v_S} . {x_B - x_A \over t_B - t_A}$

et la vitesse
$$V = \frac{1}{V_S} \frac{\Delta x}{\Delta t} = \frac{1}{V_S} \cdot \frac{x_B - x_A}{t_B - t_A}$$

La vitesse de réaction maximale au début de la transformation, diminue avec le temps et tend vers zéro en fin de réaction.

Explication:

La diminution de la vitesse est due à la diminution de la concentration des réactifs au cours de la transformation.

Le volume de la solution est V_S=200ml $\Delta x=0.675$ mmo ℓ et $\Delta t=20$ min

$$V = \frac{1}{V_S} \frac{\Delta x}{\Delta t}$$

$$V = \frac{1}{200 \ 10^{-3}} \cdot \frac{0.675 \ 10^{-3}}{20}$$

$$= 1.68 \ 10 \ \text{mol.min}^{-1} \cdot \ell^{-1}$$

3. Autres expressions de la vitesse de réaction

	Réactif		Produit
	aA	\rightarrow	bB
t=0	n_1		0
t	n ₁ -a.x		b.x
t_{f}	n ₁ -ax _f		b.x _f

On peut déterminer du tableau d'avancement la quantité de matière à l'instant t $n(A) = n_1 - a.x$ n(B) = b.x

En exploitant les expressions des quantités de matière on obtient l'expression d'une grandeur et par suite l'expression de la vitesse de réaction en fonction de cette grandeur

Exemples:

En fonction de la concentration :

Cas d'un réactif :

	Réactif A
	aA
t=0	n_1
t	n ₁ -a.x

On a
$$n(A)=n_1-a.x$$
 alors $[A] = \frac{n(A)}{V_S} = \frac{n_1-a.x}{V_S}$

d'où
$$x = \frac{n_1 - [A] \cdot V_S}{a}$$

et la vitesse : $\mathbf{V} = \frac{1}{V_S} \frac{d\mathbf{x}}{d\mathbf{t}} = -\frac{1}{a} \cdot \frac{d[A]}{d\mathbf{t}} = -\frac{1}{a} \cdot \frac{\Delta[A]}{\Delta t}$

Cas d'un produit :

	Produit B	
	bB	
t=0	0	
t	b.x	

On a n(B)=b.x alors
$$[A] = \frac{n(B)}{V_S} = \frac{b.x}{V_S}$$

d'ou x = $\frac{[B].V_S}{b}$ et la vitesse : $V = \frac{1}{V_S} \frac{dx}{dt} = \frac{1}{b} \cdot \frac{d[B]}{dt} = \frac{1}{b} \cdot \frac{\Delta[B]}{\Delta t}$

En fonction de volume du gaz formé :

$$n(G) = \frac{V(G)}{Vm}$$
i le produit B est un gaz alors r

si le produit B est un gaz alors n(B)=b.x
donc b.
$$x = \frac{V(G)}{Vm}$$
 d'où $x = \frac{1}{b} \cdot \frac{V(G)}{Vm}$

et la vitesse :
$$V = \frac{1}{V_S} \frac{dx}{dt} = \frac{1}{b.Vm.V_S}. \frac{dV(G)}{dt} = \frac{1}{b.Vm.V_S}. \frac{\Delta V(G)}{\Delta t}$$

Cas des gaz parfait

p.V=n.R.T

si le produit B est un gaz alors n(B)=b.x

En fonction du volume v :

$$v = \frac{n. R. T}{p} = \frac{b. x. R. T}{p}$$

$$d'où x = \frac{p.v}{b.R.T}$$
et la vitesse :
$$V = \frac{1}{V_S} \frac{dx}{dt} = \frac{p}{b.R.T.V_S} \cdot \frac{dv}{dt} = \frac{p}{b.R.T.V_S}$$

En fonction de la pression p :

$$d'où x = \frac{\text{n. R. T}}{\text{v}} = \frac{\text{b. x. R. T}}{\text{v}}$$

the function de la pression p. $p = \frac{n. R. T}{v} = \frac{b. x. R. T}{v}$ $d'où x = \frac{p.v}{b.R.T}$ et la vitesse : $V = \frac{1}{v_s} \frac{dx}{dt} = \frac{v}{b.R.T.v_s} \cdot \frac{dp}{dt} = \frac{v}{b.R.T.v_s} \cdot \frac{\Delta p}{\Delta t}$

En fonction pH ou la conductibilité σ ou la conductance G:

$$[H_3O^+]=10^{-pH}$$

$$\sigma = \Sigma \lambda_{ion}$$
.[ion]

$$G=k.\sigma$$

et la vitesse : $V = \frac{d}{dt} \left(\frac{x}{V_c} \right)$

4. Temps de demi réaction t_{1/2}

Le temps de demi-réaction (par rapport à un réactif donné A) est la durée au bout de laquelle l'avancement atteint la moitié de sa valeur finale.

Si
$$t=t_{1/2}$$
 alors $x=\frac{x_f}{2}$

Si la transformation est totale alors $x_f=x_m$: l'avancement maximale

NB: Le temps de demi-réaction t_{1/2}:

- Peut évaluer la durée de l'expérience
- N'est déterminer graphiquement que sur l'axe des temps

