MA 528 Exercise Set 1

Dane Johnson

September 3, 2021

Chapter 2 Axioms of Probability

Exercise 2.1

Let Ω be a finite set. Show that the set of all subsets of Ω , 2^{Ω} , is also finite and that it is a σ -algebra.

Answer:

Claim: If $|\Omega| = n$ for some nonnegative integer n, $|2^{\Omega}| = 2^{|\Omega|}$.

Proof (Induction): If $\Omega = \emptyset$, \emptyset is the only subset of Ω and $|2^{\Omega}| = 1 = 2^0 = 2^{|\Omega|}$. Assume the claim holds for a set of cardinality $n, n \geq 0$, and consider the case of $|\Omega| = n + 1$. Select on element $\omega \in \Omega$ and consider all $A \subset \Omega$ such that $\omega \notin A$. By the inductive hypothesis there are 2^n such subsets of Ω . For each of these subsets, we build a new subset of Ω by including ω . In this way we find another 2^n subsets of Ω . Since for any subset A of Ω , either $\omega \in A$ or $\omega \notin A$, conclude that $|2^{\Omega}| = 2 \cdot 2^n = 2^{n+1} = 2^{|\Omega|}$.

By the claim above, if Ω is a finite set then $|2^{\Omega}| = 2^{|\Omega|} < +\infty$.

To show that 2^{Ω} is a σ -algebra, check that 2^{Ω} satisfies axioms (1), (2), and (4) from Definition 2.1.

- 1. Since $\emptyset \subseteq \Omega$ and $\Omega \subseteq \Omega$, \emptyset , $\Omega \in 2^{\Omega}$.
- 2. Suppose $A \in 2^{\Omega}$. Then $A \subseteq \Omega$ and $A^c = \{\omega \in \Omega : \omega \notin A\} \subseteq \Omega$. Therefore $A^c \in 2^{\Omega}$ as well.
- 4. Suppose A_1, A_2, \ldots is a countable sequence of events in 2^{Ω} . Since each A_k is a subset of Ω ,

$$\bigcup_{k=1}^{\infty} A_k = \{\omega \in \Omega : \omega \in A_k \text{ for some } k\} \subseteq \Omega \implies \bigcup_{k=1}^{\infty} A_k \in 2^{\Omega},$$

$$\bigcap_{k=1}^{\infty} A_k = \{ \omega \in \Omega : \omega \in A_k \text{ for all } k \} \subseteq \Omega \implies \bigcap_{k=1}^{\infty} A_k \in 2^{\Omega}.$$

Exercise 2.2

Let $(G_{\alpha})_{\alpha \in A}$ be an arbitrary family of σ -algebras defined on an abstract space Ω . Show that $H = \bigcap_{\alpha \in A} G_{\alpha}$ is also a σ -algebra.

Answer:

- 1. Since each G_{α} is a σ -algebra, $\emptyset, \Omega \in G_{\alpha}$ for each $\alpha \in A$. Thus $\emptyset, \Omega \in H$.
- 2. Suppose $A \in H$. Then $A \in G_{\alpha}$ for each α so that $A^c \in G_{\alpha}$ for each α . Thus $A^c \in H$.

4. Suppose A_1, A_2, \ldots is a countable sequence of events in H. For each $\alpha \in A, A_1, A_2, \ldots$ is a countable sequence of events in G_{α} . This means

$$\bigcup_{k=1}^{\infty} A_k, \bigcap_{k=1}^{\infty} A_k \in G_{\alpha} \text{ for each } \alpha \in A \implies \bigcup_{k=1}^{\infty} A_k, \bigcap_{k=1}^{\infty} A_k \in H.$$

Exercise 2.4

Let \mathcal{A} be a σ -algebra and $(A_n)_{n\geq 1}$ a sequence of events in \mathcal{A} . Show that

$$\liminf_{n\to\infty}A_n\in\mathcal{A};\quad \limsup_{n\to\infty}A_n\in\mathcal{A};\quad \text{and}\quad \liminf_{n\to\infty}A_n\subseteq \limsup_{n\to\infty}A_n.$$

Answer: Recall the definitions

$$\liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \cap_{m \ge n} A_m,$$

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \cup_{m \ge n} A_m.$$

For each positive integer n, $(A_m)_{m\geq n}$ is a countable sequence of events in \mathcal{A} . By the definition of a σ -algebra, this means both $\cap_{m\geq n}A_m$ and $\cup_{m\geq n}A_m$ belong to \mathcal{A} as \mathcal{A} is closed under countable intersections and unions. But then $(\cap_{m\geq n}A_m)_{n\geq 1}$ and $(\cup_{m\geq n}A_m)_{n\geq 1}$ are each countable sequences of events in \mathcal{A} so that again by the definition of a σ -algebra

$$\liminf_{n\to\infty}A_n=\cup_{n=1}^\infty\cap_{m\geq n}A_m\in\mathcal{A}\quad\text{and}\quad\limsup_{n\to\infty}A_n=\cap_{n=1}^\infty\cup_{m\geq n}A_m.$$

Suppose $a \in \liminf_{n \to \infty} A_n$. Then there exists a positive integer n such that $a \in \cap_{m \geq n} A_m$. Since $a \in A_m$ for every $m \geq n$, $a \in \bigcup_{i \geq k}^{\infty} A_i$ for each k (no matter how large we choose k, there is an $m \geq n$ such that $m \geq k$ so that $a \in A_m \subseteq \bigcup_{i \geq k} A_i$). Thus $a \in \bigcap_{i=1}^{\infty} \bigcup_{k \geq i} A_k = \limsup_{n \to \infty} A_n$, which establishes $\limsup_{n \to \infty} A_n \subseteq \limsup_{n \to \infty} A_n$.

Exercise 2.5

Let $(A_n)_{n\geq 1}$ be a sequence of sets. Show that

$$\limsup_{n\to\infty} 1_{A_n} - \liminf_{n\to\infty} 1_{A_n} = 1_{\limsup_n A_n \setminus \liminf_n A_n}.$$

Answer: Assume that whenever we index in what follows, n comes from the set of positive integers.

Lemma: For all $\omega \in \Omega$,

$$\liminf_{n\to\infty} 1_{A_n}(\omega) = 1_{\liminf_n A_n},$$

$$\limsup_{n\to\infty} 1_{A_n}(\omega) = 1_{\limsup_n A_n}.$$

Proof: Note that $1_{\cap_n B_n} = \inf_n 1_{B_n}$ and $1_{\cup_n B_n} = \sup_n 1_{B_n}$. This follows from,

$$\begin{split} \mathbf{1}_{\cap_n B_n}(\omega) &= 1 \iff \omega \in \cap_n B_n \\ &\iff \forall n, \omega \in B_n \\ &\iff \forall n, \mathbf{1}_{B_n}(\omega) = 1 \\ &\iff \inf_n \mathbf{1}_{B_n}(\omega) = 1. \end{split}$$

$$1_{\cup_n B_n}(\omega) = 1 \iff \omega \in \cup_n B_n$$

$$\iff \exists n, \omega \in B_n$$

$$\iff \exists n, 1_{B_n}(\omega) = 1$$

$$\iff \sup_n 1_{B_n}(\omega) = 1.$$

With only minor changes to the above, we see that $1_{\bigcap_{m\geq n}B_m}=\inf_{m\geq n}1_{B_m}$ and $1_{\bigcup_{m\geq n}B_m}=\sup_{m\geq n}1_{B_m}$ as well. Therefore,

$$\begin{split} \mathbf{1}_{\lim\inf_{n}A_{n}} &= \mathbf{1}_{\cup_{n}\cap_{m\geq n}A_{m}} = \sup_{n}\mathbf{1}_{\cap_{m\geq n}A_{m}} = \sup_{n}\inf_{m\geq n}\mathbf{1}_{A_{m}} = \liminf_{n\to\infty}A_{n}, \\ \mathbf{1}_{\lim\sup_{n}A_{n}} &= \mathbf{1}_{\cap_{n}\cup_{m\geq n}A_{m}} = \inf_{n}\mathbf{1}_{\cup_{m\geq n}A_{m}} = \inf_{n}\sup_{m\geq n}\mathbf{1}_{A_{m}} = \limsup_{n\to\infty}A_{n}. \end{split}$$

Lemma: For $A, B \subset \Omega$, $1_{A \setminus B} = 1_A - 1_{A \cap B}$.

Proof: For any $\omega \in \Omega$,

$$1_{A \setminus B}(\omega) = 1 \iff \omega \in A, \omega \notin B$$
$$\iff 1_A(\omega) = 1 \text{ and } 1_{A \cap B}(\omega) = 0$$
$$\iff 1_A(\omega) - 1_{A \cap B}(\omega) = 1.$$

Using the two lemmas and the result $\liminf_{n\to\infty}A_n\subseteq \limsup_{n\to\infty}A_n$ from Exercise 2.4,

$$\begin{split} \limsup_{n \to \infty} \mathbf{1}_{A_n} - \liminf_{n \to \infty} \mathbf{1}_{A_n} &= \mathbf{1}_{\limsup_n A_n} - \mathbf{1}_{\liminf_n A_n} \\ &= \mathbf{1}_{\limsup_n A_n} - \mathbf{1}_{\liminf_n A_n \cap \limsup_n A_n} \\ &= \mathbf{1}_{\limsup_n A_n} \backslash \liminf_n A_n \end{split}$$

Exercise 2.6

Let \mathcal{A} be a σ -algebra of subsets of Ω and let $B \in \mathcal{A}$. Show that $\mathcal{F} = \{A \cap B : A \in \mathcal{A}\}$ is a σ -algebra of subsets of B. Is it still true when B is a subset of Ω that does not belong to \mathcal{A} ?

Answer: To prove that $\mathcal{F} \subseteq 2^B$ is a σ -algebra of subsets of B, verify axioms (1), (2), and (4) of Definition 2.1.

- 1. To prove that \mathcal{F} is a σ -algebra of subsets of B, check that $\emptyset, B \in \mathcal{F}$ (no need to check $\Omega \in \mathcal{F}$). Since $\emptyset, B \in A, \emptyset = \emptyset \cap B \in \mathcal{F}$ and $B = B \cap B \in \mathcal{F}$.
- 2. Let $F \in \mathcal{F}$ with $F = A \cap B$ for some $A \in \mathcal{A}$. Since $A, B \in \mathcal{A}$, $F \in \mathcal{A}$ and so $B \setminus F = B \cap F^c \in \mathcal{A}$ as well. Since $F \subseteq B$, the complement of F relative to B is $F^c = B \setminus F = (B \setminus F) \cap B \in \mathcal{F}$.
- 4. Let $(F_n)_{n\geq 1}$ be a sequence of sets in \mathcal{F} with $F_n=A_n\cap B$ for $A_n\in\mathcal{A}$. Because \mathcal{A} is closed under countable unions and intersections,

$$\bigcup_{k=1}^{\infty} F_k = \bigcup_{k=1}^{\infty} (A_n \cap B) = \left(\bigcup_{k=1}^{\infty} A_n\right) \cap B \in \mathcal{F},$$

$$\bigcap_{k=1}^{\infty} F_k = \bigcap_{k=1}^{\infty} (A_n \cap B) = \left(\bigcap_{k=1}^{\infty} A_n\right) \cap B \in \mathcal{F}.$$

Exercise 2.7

Let f be a function mapping Ω to another space E with a σ -algebra \mathcal{E} . Let $\mathcal{A} = \{A \subset \Omega : \exists B \in \mathcal{E}, A = f^{-1}(B)\}$. Show that \mathcal{A} is a σ -algebra on Ω .

- 1. $\emptyset \in \mathcal{E}$ since \mathcal{E} is a σ -algebra. To see that $f^{-1}(\emptyset) = \emptyset$ suppose instead $f^{-1}(\emptyset) = A \neq \emptyset$. This would mean there is $a \in A \subseteq \Omega$ such that $f(a) \in \emptyset$, contradicting the definition of \emptyset . Thus $\emptyset \in \mathcal{A}$. Also $\Omega = \emptyset^c = \Omega \setminus \emptyset \in \mathcal{A}$ by (2), which is proved below.
- 2. Suppose $A \in \mathcal{A}$ with $A = f^{-1}(B)$. Then $A^c = (f^{-1}(B))^c = f^{-1}(B^c) \in \mathcal{A}$ since $B^c \in \mathcal{E}$ and

$$x \in (f^{-1}(B))^c \iff x \notin f^{-1}(B) \iff f(x) \notin B \iff f(x) \in B^c \iff x \in f^{-1}(B^c).$$

4. Let $(A_n)_{n\geq 1}$ be a sequence of sets in \mathcal{A} with $A_n=f^{-1}(B_n)$.

$$\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} f^{-1}(B_k) = f^{-1}\left(\bigcup_{k=1}^{\infty} B_k\right) \in \mathcal{A}$$

as $\bigcup_{k=1}^{\infty} B_k \in \mathcal{E}$ and

$$x \in f^{-1}\left(\bigcup_{k=1}^{\infty} B_k\right) \iff f(x) \in \bigcup_{k=1}^{\infty} B_k \iff \exists k, f(x) \in B_k \iff \exists k, x \in f^{-1}(B_k) \iff x \in \bigcup_{k=1}^{\infty} f^{-1}(B_k).$$

Using this result and the fact that \mathcal{A} is closed under complement by (2), $\bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$ as well.

Exercise 2.8

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and let $\mathcal{A} = \{A \subseteq \mathbb{R} : \exists B \in \mathfrak{B}, A = f^{-1}(B)\}$ where \mathfrak{B} are the Borel subsets of the range space \mathbb{R} . Show that $\mathcal{A} \subset \mathcal{B}$, the Borel subsets of the domain space \mathbb{R} .

Answer:

Exercise 2.15

Let \mathcal{A} be a σ -algebra on the space Ω and P a probability defined on (Ω, \mathcal{A}) . Let $A_i \in \mathcal{A}$ be a sequence of events. Show that

$$P\left(\bigcup_{i=1}^{n} A_i\right) \le \sum_{i=1}^{n} P(A_i) \quad \forall n,$$

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} P(A_i).$$

Answer:

Prove the first inequality (the finite case) by induction. For only one set $A \in \mathcal{A}$ equality holds and thus also inequality. Assume that the inequality holds and consider a sequence A_1, \ldots, A_{n+1} . Let $A'_{n+1} = A_{n+1} \setminus (A_1 \cup \cdots \cup A_n)$ for some $n \geq 1$. Then $A'_{n+1} \cap (A_1 \cup \cdots \cup A_n) = \emptyset$ and $A'_{n+1} \subseteq A_{n+1}$.

$$P\left(\bigcup_{i=1}^{n+1} A_i\right) = P\left(\left(\bigcup_{i=1}^n A_n\right) \cup A'_{n+1}\right)$$
$$= \sum_{i=1}^n P(A_i) + P(A'_{n+1})$$
$$\leq \sum_{i=1}^n P(A_i) + P(A_{n+1})$$
$$= \sum_{i=1}^{n+1} P(A_i)$$

To prove countable subadditiviy, let

$$E_{1} := A_{1}$$

$$E_{2} := A_{2} \setminus E_{1}$$

$$E_{3} := A_{3} \setminus (E_{1} \cup E_{2})$$

$$E_{4} := A_{4} \setminus (E_{1} \cup E_{2} \cup E_{3})$$

$$\vdots$$

$$E_{n} := A_{n} \setminus \left(\bigcup_{i=1}^{n-1} E_{i}\right)$$

The E_i are disjoint with $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} A_i$. To see that these unions are equal, first note that $E_i \subseteq A_i$ for each i so $\bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} A_i$. If $x \in \bigcup_{i=1}^{\infty} A_i$ we may choose by the Well-Ordering Principle the least index i such that $x \in A_i$. Then $x \in A_i$ and $x \notin A_j$ for j < i. Thus $x \in E_i \subseteq \bigcup_{i=1}^{\infty} E_i$. Since $E_i \subset A_i$ for each i, $P(E_i) \leq P(A_i)$ for each i and

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = P\left(\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i) \le \sum_{i=1}^{\infty} P(A_i).$$

Exercise 2.17

Suppose that Ω is an infinite set (countable or not), and let \mathcal{A} be the family of all subsets which are either finite or have a finite complement. Show that \mathcal{A} is an algebra, but not a σ - algebra.

- 1. Both $\emptyset \in \mathcal{A}$ and $\Omega \in \mathcal{A}$ as $\Omega^c = \emptyset$ is finite.
- 2. Suppose $A \in \mathcal{A}$. If A is finite, then $A^c \in \mathcal{A}$ since $(A^c)^c = A$. If A is infinite, then A^c must be finite so $A^c \in \mathcal{A}$.
- 3. Suppose $A_1, \ldots, A_n \in \mathcal{A}$. If all of the A_i are finite, then the finite union of finite sets $\bigcup_{i=1}^n A_i$ is finite. If there is a set A_k , $1 \leq k \leq n$ such that A_k is infinite then $\bigcup_{i=1}^n A_i$ is not finite. However, A_k^c must be finite and $(\bigcup_{i=1}^n A_i)^c = \bigcap_{i=1}^n A_i^c \subset A_k^c$. This shows that $(\bigcup_{i=1}^n A_i)^c$ is finite so $\bigcup_{i=1}^n A_i \in \mathcal{A}$. Since \mathcal{A} is closed under complement and finite union, $\bigcap_{i=1}^n A_i \in \mathcal{A}$ as well.

Since \mathcal{A} satisfies axioms (1),(2), and (3), \mathcal{A} is an algebra. However \mathcal{A} is not a σ -algebra since it fails axiom (4):

4. \mathcal{A} is not necessarily closed under countable union. Either Ω is countably infinite or uncountable.

- If Ω is countably infinite, we can list the elements of $\Omega = \{\omega_1, \omega_2, \dots\}$. Let $A_i = x_{2i}$ for each positive integer i. Then both $\bigcup_{i=1}^{\infty} A_i = \{x_2, x_4, \dots\}$ is infinite and $(\bigcup_{i=1}^{\infty} A_i)^c = \{x_1, x_3, \dots\}$ is infinite so $\bigcup_{i=1}^{\infty} A_i \notin \mathcal{A}$.
- If Ω is uncountable, let $(A_i)_{n\geq 1}$ be a sequence of pairwise disjoint singleton sets. Then $\bigcup_{i=1}^{\infty} A_i$ has countably infinitely many elements and $(\bigcup_{i=1}^{\infty} A_i)^c$ must be uncountable (since Ω is uncountable). Since neither of $\bigcup_{i=1}^{\infty} A_i$, $(\bigcup_{i=1}^{\infty} A_i)^c$ is finite, $\bigcup_{i=1}^{\infty} A_i \notin \mathcal{A}$

Chapter 3 Conditional Probability and Independence

Exercise 3.1

Show that if $A \cap B = \emptyset$, then A and B cannot be independent unless P(A) = 0 or P(B) = 0.

Answer: Unless one or both of P(A), P(B) is zero, $P(A)P(B) \neq 0 = P(A \cap B)/P(B) = P(A|B)$, meaning that A and B are not independent.

Exercise 3.2

Let P(C) > 0. Show that $P(A \cup B|C) = P(A|C) + P(B|C) - P(A \cap B|C)$.

Answer:

$$\begin{split} P(A \cup B|C) &= \frac{P((A \cup B) \cap C)}{P(C)} \\ &= \frac{P((A \cap C) \cup (B \cap C)}{P(C)} \\ &= \frac{P(A \cap C) + P(B \cap C) - P((A \cap C) \cap (B \cap C)}{P(C)} \\ &= \frac{P(A \cap C)}{P(C)} + \frac{P(B \cap C)}{P(C)} - \frac{P((A \cap B) \cap C)}{P(C)} \\ &= P(A|B) + P(B|C) - P(A \cap B|C). \end{split}$$

Exercise 3.6

Donated blood is screened for AIDS. Suppose the test has 99% accuracy, and that one in ten thousand people in your age group are HIV positive. The test has a 5% false positive rating, as well. Suppose the test screens you as positive. What is the probability you have AIDS?

Answer: Let A be the event that you have AIDS and B the event that you test HIV Positive. The events A, A^c are a finite partition of the probability space. By Baye's Theorem, the probability that you have AIDS given that you have tested positive is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)P(A^c)} = \frac{(.99)(.0001)}{(.99)(.0001) + (0.05)(.9999)} \approx 0.001976.$$

Exercise 3.7

Let $(A_n)_{n\geq 1}$, $(B_n)_{n\geq 1}$ with $A_n, B_n \in \mathcal{A}$ for each $n, A_n \to A, B_n \to B, P(B) > 0$, and $P(B_n) > 0$ for each n.

- 1. $\lim_{n\to\infty} P(A_n|B) = P(A|B),$
- 2. $\lim_{n\to\infty} P(A|B_n) = P(A|B),$
- 3. $\lim_{n\to\infty} P(A_n|B_n) = P(A|B)$.

Answer:

1. Since $A_n \to A$, $A_n \cap B \to A \cap B$. By Theorem 2.4, $\lim_{n \to \infty} P(A_n \cap B) = P(A \cap B)$.

$$\lim_{n \to \infty} P(A_n | B) = \lim_{n \to \infty} \frac{P(A_n \cap B)}{P(B)} = \frac{P(A \cap B)}{P(B)}.$$

2. Since $B_n \to B$, $A \cap B_n \to A \cap B$. By Theorem 2.4, $\lim_{n \to \infty} P(A \cap B_n) = P(A \cap B)$.

$$\lim_{n \to \infty} P(A|B_n) = \lim_{n \to \infty} \frac{P(A \cap B_n)}{P(B_n)} = \frac{P(A \cap B)}{P(B)}.$$

3. Since $A_n \to A, B_n \to B, A_n \cap B_n \to A \cap B$. By Theorem 2.4, $\lim_{n \to \infty} P(A_n \cap B_n) = P(A \cap B)$.

$$\lim_{n\to\infty} P(A_n|B_n) = \lim_{n\to\infty} \frac{P(A_n\cap B_n)}{P(B_n)} = \frac{P(A\cap B)}{P(B)}.$$

Exercise 3.11

(Polya's Urn) An urn contains r red balls and b blue balls. A ball is chosen at random from the urn, its color is noted, and it is returned together with d more balls of the same color. This is repeated indefinitely. What is the probability that

- 1. The second ball drawn is blue?
- 2. The first ball drawn is blue given that the second ball drawn is blue?

Answer: Let B_n be the event that the nth ball drawn is blue and R_n the event that the nth ball drawn is red.

1.
$$P(B_2) = P(B_2|B_1)P(B_1) + P(B_2|R_1)P(R_1) = \frac{b+d}{b+r+d}\frac{b}{b+r} + \frac{b}{b+r+d}\frac{r}{b+r} = \frac{b}{b+r}\left(\frac{b+d+r}{b+r+d}\right) = \frac{b}{b+r}$$
.

2.
$$P(B_1|B_2) = \frac{P(B_1 \cap B_2)}{P(B_2)} = \frac{P(B_2|B_1)P(B_1)}{P(B_2)} = \frac{b+d}{b+r+d} \frac{b}{b+r} \frac{b+r}{b} = \frac{b+d}{b+r+d}$$

Exercise 3.12

Consider the framework of Exercise 3.11. Let B_n denote the event that the *n*th ball drawn is blue. Show that $P(B_n) = P(B_1)$ for all $n \ge 1$.

Answer: Prove $P(B_n) = P(B_1)$ for all $n \ge 1$ by induction. Exercise 3.11 showed $P(B_2) = P(B_1) = b/(b+r)$. Assume that $P(B_n) = P(B_1)$ for some $n \ge 1$. Let b_n, r_n stand respectively for the number of blue and red balls in the urn during the *n*th draw.

$$\begin{split} P(B_{n+1}) &= P(B_{n+1}|B_n)P(B_n) + P(B_{n+1}|R_n)P(R_n) \\ &= \frac{b_n + d}{b_n + r_n + d} \frac{b_n}{b_n + r_n} + \frac{b_n}{b_n + r_n + d} \frac{r_n}{b_n + r_n} \\ &= \frac{b_n}{b_n + r_n} \left(\frac{b_n + d}{b_n + r_n + d} + \frac{r_n}{b_n + r_n + d} \right) \\ &= \frac{b_n}{b_n + r_n} \\ &= P(B_n) \\ &= P(B_1). \end{split}$$

Exercise 3.13

Consider the framework of Exercise 3.11. Find the probability that the first ball is blue given that the n subsequent drawn balls are all blue. Find the limit of this probability as $n \to \infty$. Answer:

$$P(B_{1}|B_{2}\cap\cdots\cap B_{n+1}) = \frac{P(B_{2}\cap\cdots\cap B_{n+1}|B_{1})P(B_{1})}{P(B_{2}\cap\cdots\cap B_{n+1})}$$

$$= \frac{P(B_{2}\cap\cdots\cap B_{n+1}|B_{1})P(B_{1})}{P(B_{2}\cap\cdots\cap B_{n+1}|B_{1})P(B_{1})} + P(B_{2}\cap\cdots\cap B_{n+1}|R_{1})P(R_{1})$$

$$= \frac{\frac{b+d}{b+r+d}\frac{b+2d}{b+r+d}\cdots\frac{b+2d}{b+r+d}\frac{b+2d}{b+r+d}\cdots\frac{b+nd}{b+r}}{\frac{b+d}{b+r+d}\frac{b+2d}{b+r+d}\cdots\frac{b+d}{b+r+d}\frac{b+d}{b+r}\cdots\frac{b+(n-1)d}{b+r}}$$

$$= \frac{(b+d)(b+2d)\dots(b+nd)b}{[(b+d)(b+2d)\dots(b+nd)b] + [b(b+d)(b+2d)\dots(b+(n-1)d)r]}$$

$$= \frac{b+nd}{b+nd+r}$$

$$= \frac{b+nd}{b+nd}$$

$$= \frac{b+nd}{b+r+nd}.$$

$$\lim_{n\to\infty} P(B_{1}|B_{2}\cap\cdots\cap B_{n+1}) = \lim_{n\to\infty} \frac{b+nd}{b+r+nd} = \lim_{n\to\infty} \frac{b/n+d}{b/n+r/n+d} = 1.$$