PDS-PN:

A New Proof-Number Search Algorithm Application to Lines of Action

Mark H.M. Winands, Jos W.H.M. Uiterwijk, and Jaap van den Herik

Department of Computer Science, Universiteit Maastricht, The Netherlands {m.winands,uiterwijk,herik}@cs.unimaas.nl

Abstract. The paper introduces a new proof-number (PN) search algorithm, called PDS-PN. It is a two-level search, which performs at the first level a depth-first Proof-number and Disproof-number Search (PDS), and at the second level a best-first PN search. First, we thoroughly investigate four established algorithms in the domain of Lines of Action endgame positions: PN, PN², PDS and $\alpha\beta$ search. It turns out that PN² and PDS are best in solving hard problems when measured by the number of solutions and the solution time. However, each of those two has a practical disadvantage: PN² is restricted by the working memory, and PDS is relatively slow in searching. Then we formulate our new algorithm by selectively using the power of each one: the two-level nature and the depth-first traversal, respectively. Experiments reveal that PDS-PN is competitive with PDS in terms of speed and with PN² since it is not restricted in working memory.

1 Introduction

Most modern game-playing computer programs successfully use $\alpha\beta$ search with enhancements for online game-playing [1]. However, the enriched $\alpha\beta$ search is sometimes not sufficient to play well in the endgame. In some games, such as chess, this problem is solved by the use of endgame databases [2]. Due to memory constraints this is only feasible for endgames with a relatively small state-space complexity although nowadays the size may be considerable. An alternative approach is the use of a specialized binary (win or non-win) search method, such as proof-number (PN) search [3]. In some domains PN search outperforms $\alpha\beta$ search in proving the game-theoretic value of endgame positions. PN search or a variant thereof has been applied successfully to the endgame of Awari [3], chess [4], and shogi [5]. In this paper we investigate several PN algorithms in the domain of Lines of Action (LOA). It turns out that the algorithms are restricted by working memory or by searching speed. To remove both restrictions we introduce a new PN algorithm, called PDS-PN.

The remainder of this paper is organized as follows. Section 2 explains the rules of LOA. Section 3 describes PN, PN², PDS; and examines their solution power and solution time, in relation to that of $\alpha\beta$. In Sect. 4 we explain the

J. Schaeffer et al. (Eds.): CG 2002, LNCS 2883, pp. 61–74, 2003.

[©] Springer-Verlag Berlin Heidelberg 2003

working of PDS-PN. Subsequently, the results of the experiments with PDS-PN are given in Sect. 5. Finally, in Sect. 6 we present our conclusions and propose topics for further research.

2 Lines of Action

Lines of Action (LOA) [6] is a two-person zero-sum chess-like connection game with perfect information. It is played on an 8×8 board by two sides, Black and White. Each side has twelve pieces at its disposal. The black pieces are placed in two rows along the top and bottom of the board (see Fig. 1a), while the white pieces are placed in two files at the left and right edge of the board. The players alternately move a piece, starting with Black. A move takes place in a straight line, exactly as many squares as there are pieces of either color anywhere along the line of movement (see Fig. 1b). A player may jump over its own pieces. A player may not jump over the opponent's pieces, but can capture them by landing on them. The goal of a player is to be the first to create a configuration on the board in which all own pieces are connected in one unit (see Fig. 1c). In the case of simultaneous connection, the game is drawn. The connections within the unit may be either orthogonal or diagonal. If a player cannot move, this player has to pass. If a position with the same player to move occurs for the third time, the game is drawn.

Fig. 1. (a) The initial position of LOA. (b) An example of possible moves in a LOA game. (c) A terminal LOA position

An interesting property of the game is that most terminal positions still have more than ten pieces remaining on the board [7], which makes the game not suitable for endgame databases. Although reasonable effort has been undertaken to construct adequate evaluation functions for LOA [8], experiments suggest that these are not very good predictions in the case of forced wins. Therefore, LOA seems an appropriate test domain for PN search algorithms.

3 Three Proof-Number Search Algorithms

In this section we give a short description of PN search, PN² search and PDS. We end with a comparison between PN, PN², PDS and $\alpha\beta$.

3.1 Proof-Number Search

Proof-number (PN) search is a best-first search algorithm especially suited for finding the game-theoretical value in game trees [9]. Its aim is to prove the true value of the root of a tree. A tree can have three values: true, false or unknown. In the case of a forced win, the tree is proved and its value is true. In the case of a forced loss or draw, the tree is disproved and its value is false. Otherwise the value of the tree is unknown. In contrast to other best-first algorithms PN search does not need a domain-dependent heuristic evaluation function to determine the most-promising node to be expanded next [3]. In PN search this node is usually called the most-proving node. PN search selects the most-proving node using two criteria: (1) the shape of the search tree (the number of children of every internal node) and (2) the values of the leaves. These two criteria enable PN search to treat game trees with a non-uniform branching factor efficiently.

Fig. 2. An AND/OR tree with proof and disproof numbers

Below we explain PN search on the basis of the AND/OR tree depicted in Fig. 2, in which a square denotes an OR node, and a circle denotes an AND node. The numbers to the right of a node denote the proof number (upper) and disproof number (lower). A proof number represents the minimum number of leaf nodes which have to be proved in order to prove the node. Analogously, a disproof number represents the minimum number of leaves which have to be disproved in order to disprove the node. Because the goal of the tree is to prove a forced win, winning nodes are regarded as proved. Therefore, they have proof number 0 and disproof number ∞ (e.g., node i). Lost or drawn nodes are regarded as

disproved (e.g., nodes f and k). They have proof number ∞ and disproof number 0. Unknown leaf nodes have a proof and disproof number of unity (e.g., nodes g, h, j and l). The proof number of an internal AND node is equal to the sum of its childrens' proof numbers, since to prove an AND node all the children have to be proved. The disproof number of an AND node is equal to the minimum of its childrens' disproof numbers. The disproof number of an internal OR node is equal to the sum of its childrens' disproof numbers, since to disprove an OR node all the children have to be disproved. Its proof number is equal to the minimum of its childrens' proof numbers. The procedure of selecting the most-proving node to expand is the following. We start at the root. Then, at each OR node the child with the lowest proof number is selected as successor, and at each AND node the child with the lowest disproof number is selected as successor. Finally, when a leaf node is reached, it is expanded and its children are evaluated. This is called *immediate evaluation*. The selection of the most-proving node (j) in Fig. 2 is given by the bold path.

In the naive implementation, proof and disproof numbers are each initialized to unity in the unknown leaves. In other implementations, the proof number and disproof number are set to 1 and n for an OR node (and the reverse for an AND node), where n is the number of legal moves. In LOA this initialization leads to a speed-up by a factor of 6 in time [10].

A disadvantage of PN search is that the whole search tree has to be stored in memory. When the memory is full, the search process has to be terminated prematurely. A partial solution is to delete proved or disproved sub-trees [9]. In the next subsections we discuss two variants of PN search that handle the memory problem more adequately.

3.2 PN² Search

PN² is first described in [9], as an algorithm to reduce memory requirements in PN search. It is elaborated upon in [11]. Its implementation and testing for chess positions is extensively described in [12]. PN² consists of two levels of PN search. The first level consists of a PN search (pn_1) , which calls a PN search at the second level (pn_2) for an evaluation of the most-proving node of the pn₁-search tree. This pn₂ search is bound by a maximum number of nodes that can be stored in memory. The number is a fraction of the size of the pn₁-search tree. The fraction f(x) is given by the logistic growth function [13], x being the size of the first-level search:

$$f(x) = \frac{1}{1 + e^{\frac{a - x}{b}}} \tag{1}$$

with parameters a and b, both strictly positive. The number of nodes y in a pn₂-search tree is restricted to the minimum of this fraction function or the number of nodes which can still be stored. The formula to compute y is:

$$y = \min(x \times f(x), N - x) \tag{2}$$

with N the maximum number of nodes to be stored in memory.

The pn_2 search is stopped when the number of nodes stored in memory exceeds y or the sub-tree is (dis)proved. After completion of the pn_2 search, the children of the root of the pn_2 -search tree are preserved, but sub-trees are removed from memory. The children of the most-proving node (the root of the pn_2 -search tree) are not immediately evaluated by a second-level search, only when they are selected as most-proving node. This is called *delayed evaluation*. Note that immediate evaluation is used for pn_2 -search trees.

As we have seen in Sect. 3.1, proved or disproved sub-trees can be deleted. If we do not delete proved or disproved sub-trees in the pn_2 search the number of nodes searched is the same as y, otherwise we can continue the search longer. Preliminary results have shown that deleting proved or disproved sub-trees in the pn_2 search causes a significant reduction in the number of nodes investigated [10].

3.3 Proof-Number and Disproof-Number Search

In 1995, Seo formulated a depth-first iterative-deepening version of PN search, later called PN* [5]. Nagai [14, 15] proposed a depth-first search algorithm, called Proof-number and Disproof-number Search (PDS), which is a straight extension of PN*. Instead of using only proof numbers such as in PN*, PDS uses disproof numbers too. PDS uses a method called multiple-iterative deepening. Instead of iterating only at the root node such as in the ordinary iterative deepening, it iterates at all nodes. To keep iterative deepening effective, the method is enhanced by storing the expanded nodes in a TwoBig transposition table [16]. PDS uses two thresholds in a search, one for the proof numbers and one for the disproof numbers. Once the thresholds are assigned to a node, the sub-tree rooted at that node is continued to be searched as long as either the proof or disproof number is below the assigned thresholds. Each OR (AND) node assigns the thresholds to its children with minimum proof (disproof) number. If the threshold of the (dis)proof number is incremented in the next iteration, the search continues mainly using the (dis)proof number to find a (dis)proof. If the proof number is smaller than the disproof number, it means that it seems to have a proof solution and the threshold of the proof number is incremented. Otherwise, it seems to be a disproof solution and the threshold of the disproof number is incremented. When PDS does not (dis)prove the root given the thresholds, it increases one of the threshold values and continues searching. Finally, note that we check whether nodes are terminal when they are expanded. This is called delayed evaluation. The expanded nodes are stored in a transposition table. The proof and disproof number of a node are set to unity when not found in the transposition table.

PDS is a depth-first search algorithm but behaves like a best-first search algorithm. It is asymptotically equivalent to PN search regarding the selection of the most-proving node. In passing, note that PDS using transposition tables suffers from the graph-history-interaction (GHI) problem (cf. [17]). The GHI evaluation problem can occur in LOA too. For instance, draws can be agreed upon due to the three-fold-repetition rule. Thus, dependent on its history a node

Algorithm	# of positions solved	314 positions	
	(out of 488)	Total nodes	Total time (ms.)
$\alpha\beta$	383	1,711,578,143	22,172,320
PN	356	89,863,783	830,367
PDS	473	118,316,534	, ,
PN^2	470	139,254,823	1,117,707

Table 1. Comparing the search algorithms on 488 test positions

can be a draw or can have a different value. In the current PDS algorithm this problem is ignored.

3.4 Comparison

In this subsection we compare PN, PN², PDS and $\alpha\beta$ search with each other. All experiments have been performed in the framework of the tournament program MIA (Maastricht In Action)¹. The program has been written in Java and can easily be ported to all platforms supporting Java. MIA performs an $\alpha\beta$ depth-first iterative-deepening search, and uses a TwoDEEP transposition table [16], neural-network move ordering [18] and killer moves [19].

For the $\alpha\beta$ depth-first iterative-deepening searches nodes at depth i are counted only during the first iteration that the level is reached. This is how the comparison is done in [9]. For PN, PN² and PDS search all nodes evaluated for the termination condition during the search are counted. For PDS this node count is equal to the number of expanded nodes (function calls of the recursive PDS algorithm). For PN and PN² this node count is equal to the number of nodes generated. The maximum number of nodes searched is 50,000,000. The limit corresponds roughly to tournament conditions. The maximum number of nodes stored in memory is 1,000,000. The parameters (a,b) of the growth function used in PN² are set at (1800K, 240K) according to the suggestions in [12].

PN, PN², PDS and $\alpha\beta$ are tested on a set of 488 forced-win LOA positions². In the second column of table 1 we see that 470 positions were solved by the PN² search, 473 positions by PDS, only 356 positions by PN, and 383 positions by $\alpha\beta$. In the third and fourth column the number of nodes and the time consumed are given for the subset of 314 positions, which all four algorithms could solve. If we have a look at the third column, we see that PN search builds the smallest search trees and $\alpha\beta$ by far the largest. PDS and PN² build larger trees than PN but can solve significantly more positions. This suggests that both algorithms are better suited for harder problems. PN² investigates 1.2 times more nodes than PDS, but PN² is six times faster than PDS for this subset.

For a better insight into the relation between PN^2 and PDS we did another comparison. In Table 2 we compare PN^2 and PDS on the subset of 463 positions,

¹ MIA can be played at the website: http://www.cs.unimaas.nl/m.winands/loa/

² The test set can be found at

http://www.cs.unimaas.nl/m.winands/loa/tscg2002a.zip

Algorithm	Total nodes	Total time (ms.)
PDS	562,436,874	34,379,131
PN^2	1,462,026,073	11,387,661

Table 2. Comparing PDS and PN² on 463 test positions

which both algorithms could solve. Now, PN^2 searches 2.6 times more nodes than PDS. The reason for the decrease of performance is that for hard problems the pn_2 -search tree becomes as large as the pn_1 -search tree. Therefore, the pn_2 -search tree is causing more overhead. However, if we have a look at the CPU time we see that PN^2 is still three times faster than PDS. The reason is that PDS has a relatively large time overhead because of the delayed evaluation (see Sect. 3.3). Consequently, the number of nodes generated is higher than the number of nodes expanded. In our experiments, we observed that PDS generated nodes 7 to 8 times slower than PN. Such a figure for the overhead is in agreement with experiments performed in Othello and Tsume-shogi [20]. The difference between our LOA results and Nagai's [15] Othello results are mainly caused by domain-dependent heuristics used for the initialization of the proof and disproof numbers.

From the experiments we draw three conclusions. First, PN-search algorithms clearly outperform $\alpha\beta$ in solving endgame positions in LOA. Second, the memory problems make the plain PN search a weaker solver for the harder problems. Third, PDS and PN² are able to solve significantly more problems than PN and $\alpha\beta$. Finally, we note that PN² is restricted by its working memory, and that PDS is considerably slower than PN².

4 PDS-PN

In the previous section we have seen that an advantage of PN² over PDS is that it is faster. The advantage of PDS over PN² is that its tree is constructed as a depth-first tree, which is not restricted by the available working memory. To combine the advantages of both algorithms we propose an algorithm, called PDS-PN, which does not suffer from memory problems and has potentially the speed of PN². PDS-PN is a two-level search as is PN². At the first level a PDS search is performed. When a node has to be expanded, which is not stored in the transposition table, a PN search is started instead of the recursive call of the PDS algorithm. The pn₂ search is stopped as soon as (1) the sub-tree is (dis)proved or (2) the number of the stored nodes exceeds the number obtained by formula 2, where x equals the number of non-empty positions in the transposition table. After completion of the pn₂-search tree, only the root of the pn₂-search tree is stored in the transposition table. The PDS-PN algorithm has two advantages. First, the pn₁-search is a depth-first search, which implies that PDS-PN is not restricted by memory. Second, in PDS-PN the pn₁-search tree is growing slower in size than in PN². This implies that the focus is on fast PN. Hence, PDS-PN

a	b	# of solved positions	a	b	# of solved positions
150,000	60,000	460	750,000	240,000	463
150,000	120,000	458	750,000	300,000	460
150,000	180,000	466	/	360,000	461
150,000	240,000	466	1,050,000	60,000	421
150,000	300,000	465	1,050,000	,	
150,000	360,000	466	1,050,000	180,000	451
450,000	60,000	445	1,050,000	240,000	459
450,000	120,000	463	1,050,000	300,000	459
450,000	180,000	460	1,050,000	360,000	460
450,000	240,000	461	1,350,000	60,000	421
450,000	300,000	467	1,350,000	120,000	433
450,000	360,000	464	1,350,000	180,000	447
750,000	60,000	432	1,350,000	240,000	454
750,000	120,000	449	1,350,000	300,000	465
750,000	180,000	461	1.350,000	360,000	459

Table 3. Number of solved positions for different a and b

should in principle be faster than PDS. The pseudo-code of PDS-PN is given in the appendix.

5 Experiments

In this section we test PDS-PN with different parameters a and b for the growth function. Next, we evaluate the algorithms PDS-PN and PN² in solving problems under restricted memory conditions. Finally, we compare PDS-PN with optimized parameters against PN². Note that in PDS-PN at the first-level, the nodes are counted as in PDS and at the second-level as in PN.

5.1 Parameter Tuning

In the following series of experiments we measured the solving ability with different parameters a and b. Parameter a takes values of 150K, 450K, 750K, 1050K and 1350K, and for each value of a parameter b takes values of 60K, 120K, 180K, 240K, 300K and 360K. The results are given in Table 3. For each a holds that the number of solved positions grows with increasing b, when the parameter b is still small. If b is sufficiently large, increasing it will not enlarge the number of solved positions. In the process of parameter tuning we found that PDS-PN solves the most positions with (450K, 300K). However, the difference with parameters configurations (150K, 180K), (150K, 240K), (150K, 300K), (150K, 360K), (450K, 360K) and (1350K, 300K) is not significant. On the basis of these results we deemed that it is not necessary to perform experiments with a larger a.

5.2 Memory Results

From the experiments in Sect. 3.4 it is clear that PN^2 will not be able to solve really hard problems since it will run out of working memory. To support this statement experimentally, we tested the solving ability of PN^2 and PDS with restricted working memory. In these experiments we started with a memory capacity sufficient to store 1,000,000 nodes, subsequently we divided the memory capacity by two at each next step. The parameters a and b were also divided by two. The relation between memory and number of solved positions for both algorithms is given in Fig. 3. We see that the solving performance rapidly decreases for PN^2 . The performance of PDS-PN remains stable for a long time. Only when PDS-PN is restricted to fewer than 10,000 nodes, does it solve fewer positions. This experiment suggests that PDS-PN is preferable to PN^2 for the really hard problems, because it does not suffer from memory constraints.

Fig. 3. Results with restricted memory

5.3 Comparison with PN²

In this subsection we compare PDS-PN (450K, 300K) with PN 2 . Table 4 shows that PDS-PN was able to solve 467 positions and PN 2 470. The overlap of both sets yields a subset of 461 positions. In the third and fourth column we see that for this subset PDS-PN searches 1.4 times more nodes than PN 2 . Simple calculation shows that PDS-PN is generating nodes with the same speed as PN 2 . Because PDS is three times slower than PN 2 , we may conclude that PDS-PN outperforms PDS in speed.

Algorithm	# of positions solved	461 positions	
	(out of 488)	Total nodes	Total time (ms.)
PDS-PN	467	1,879,690,850	15,887,380
PN^2	470	1,302,157,677	11,339,920

Table 4. Comparing PDS-PN and PN² on 488 test positions

Table 5. Comparing PDS-PN and PN^2 on 286 really hard test positions

Algorithm	# of positions solved	255 positions	
	(out of 286)	Total nodes	Total time (ms.)
PDS-PN	276	16,685,733,992	84,303,478
PN^2	265	10,061,461,685	57,343,198

In Sect. 5.2 it is suggested that PDS-PN outperforms PN^2 on really hard problems. For support of this statement, PDS-PN and PN^2 are tested on a different set of 286 really hard LOA positions³. The conditions were the same as in previous experiments except that maximum number of nodes searched is set at 500,000,000. In Table 5 we see that PDS-PN solves 276 positions and PN^2 265. We therefore conclude that, for harder problems, PDS-PN is a better endgame solver than PN^2 .

6 Conclusions and Future Research

Below we offer four conclusions and one suggestion for future research. First, we have seen that PN-search algorithms outperform $\alpha\beta$ in solving endgame positions in LOA. Second, the memory problems make the plain PN search a weaker solver for the harder problems. Third, PDS and PN² are able to solve significantly more problems than PN and $\alpha\beta$. Note that PN² is still restricted by working memory, and that PDS is three times slower than PN² (Table 2) because of the delayed evaluation. Fourth, the PDS-PN algorithm is almost as fast as PN² when the parameters for its growth function are chosen properly. PDS-PN performs quite well under harsh memory conditions. Hence, we conclude that PDS-PN is an appropriate endgame solver, especially for hard problems and for environments with very limited memory such as hand-held computer platforms.

We believe that an adequate challenge is testing the PDS-PN in other games, e.g., the game of Tsume-shogi since that game is notoriously known for its difficult endgames. Recently, some of the hard problems including solutions over a few hundred ply are solved by PN* [5] and PDS [21]. It would be interesting to test PDS-PN on these problems.

The test set can be found at

http://www.cs.unimaas.nl/m.winands/loa/tscg2002b.zip.

Acknowledgments

The authors would like to thank the members of the Maastricht Search & Games Group for their useful remarks.

References

- Campbell, M., Hoane, J., Hsu, F.: DEEP BLUE. Artificial Intelligence 134 (2002) 57–83
- Nalimov, E., Haworth, G., Heinz, E.: Space-efficient indexing of chess endgame tables. International Computer Games Association Journal 23 (2000) 148–162
- 3. Allis, V., van der Meulen, M., van den Herik, J.: Proof-number search. Artificial Intelligence 66 (1994) 91–123
- Breuker, D., Allis, V., van den Herik, J.: How to mate: Applying proof-number search. In van den Herik, J., Herschberg, I., Uiterwijk, J., eds.: Advances in Computer Chess 7. University of Limburg (1994) 251–272
- Seo, M., Iida, H., Uiterwijk, J.: The PN*-search algorithm: Application to Tsume-shogi. Artificial Intelligence 129 (2001) 253–277
- 6. Sackson, S.: A Gamut of Games. Random House (1969)
- Winands, M.: Analysis and implementation of Lines of Action. Master's thesis, Department of Computer Science, Universiteit Maastricht (2000)
- 8. Winands, M., Uiterwijk, J., van den Herik, J.: The quad heuristic in Lines of Action. International Computer Games Association Journal 24 (2001) 3–15
- Allis, V.: Searching for Solutions in Games and Artificial Intelligence. PhD thesis, Department of Computer Science, University of Limburg (1994)
- 10. Winands, M., Uiterwijk, J.: PN, PN² and PN* in Lines of Action. Technical report, Department of Computer Science, Universiteit Maastricht (2001)
- 11. Breuker, D.: Memory versus Search in Games. PhD thesis, Department of Computer Science, Universiteit Maastricht (1998)
- Breuker, D., Uiterwijk, J., van den Herik, J.: The PN²-search algorithm. In van den Herik, J., Monien, B., eds.: Advances in Computer Games 9, Universiteit Maastricht (2001) 115–132
- 13. Berkey, D.: Calculus. Saunders College Publishing (1988)
- Nagai, A.: A new AND/OR tree search algorithm using proof number and disproof number. In: Proceedings of Complex Games Lab Workshop, ETL, Tsukuba, Japan (1998) 40–45
- Nagai, A.: A new depth-first-search algorithm for AND/OR trees. Master's thesis, The University of Tokyo (1999)
- Breuker, D., Uiterwijk, J., van den Herik, J.: Replacement schemes and two-level tables. International Computer Chess Association Journal 19 (1996) 175–180
- Breuker, D., van den Herik, J., Uiterwijk, J., Allis, V.: A solution to the GHI problem for best-first search. Theoretical Computer Science 252 (2001) 121–149
- 18. Kocsis, L., Uiterwijk, J., van den Herik, J.: Move ordering using neural networks. In Montosori, L., Váncza, J., Ali, M., eds.: Engineering of Intelligent Systems. Springer-Verlag (2001) 45–50 Lecture Notes in Artificial Intelligence, Vol. 2070.
- Akl, S., Newborn, M.: The principal continuation and the killer heuristic. In: 1977
 ACM Annual Conference Proceedings, ACM (1977) 466–473
- Sakuta, M., Iida, H.: The performance of PN*, PDS and PN search on 6×6 Othello and Tsume-shogi. In van den Herik, J., Monien, B., eds.: Advances in Computer Games 9. Universiteit Maastricht (2001) 203–222

21. Nagai, A.: DF-PN Algorithm for Searching AND/OR Trees and Its Applications. PhD thesis, The University of Tokyo (2002)

Appendix

The pseudo-code of PDS-PN is given below. For ease of comparison we use similar pseudo-code as given in [14] for the PDS algorithm. The proof number at an OR node and the disproof number at an AND node are equivalent. Analogously, the disproof number at an OR node and the proof number at an AND node are similar. As they are dual to each other, an algorithm similar to Negamax in the context of minimax searching can be constructed. This algorithm is called NegaPDS. In the following, proofSum(n) is a function that computes the sum of the proof numbers of all the children. The function disproofMin(n) computes the minimum of all the children. The procedures putInTT() and lookUpTT() store and retrieve information of the transposition table. isTerminal(n) checks whether a node is a win, a loss or a draw. The function generateChildren(n) generates the children of the node. By default, the proof number and disproof number of a node are set to unity. The procedure findChildrenInTT(n) checks whether the children are already stored in the transposition table. If a hit occurs for a child, its proof number and disproof number are set to the values found in the transposition table. The procedure PN() is just the plain PN search. The algorithm is described in [9] and [11]. The function computeMaxNodes() computes the number of nodes which may be stored for the PN search, according to Equation 2.

```
//iterative deepening at root r
procedure NegaPDS(r){

   r.proof = 1;
   r.disproof = 1;

while(true){
   MID(r);
   // terminate when the root is proved or disproved if(r.proof = 0 || r.disproof = 0)
        break;

if(r.proof <= r.disproof)
        r.proof++;
   else
        r.disproof++;
}</pre>
```

```
//explore node n
procedure MID(n){
  //Look up in the transposition table
  lookUpTT(n,&proof,&disproof)
  if(proof = 0 || disproof = 0 ||
      (proof >= n.proof && disproof >= n.disproof)){
    n.proof = proof; n.disproof = disproof;
    return;
  }
  //Terminal node
  if(isTerminal(n)){
    if((n.value = true && n.type = AND_NODE) ||
       (n.value = false && n.type = OR_NODE)) {
      n.proof = INFINITY; n.disproof = 0;
    }
    else{
      n.proof = 0; n.disproof = INFINITY;
    putInTT(n);
    return;
  generateChildren();
  //avoid cycles
  putInTT(n);
  //Multiple iterative deepening
  while(true){
    //Check whether the children are already stored in the TT.
    //If a hit occurs for a child, its proof number
    //and disproof number are set to the values found in the TT.
    findChildrenInTT(n):
    //Terminate searching when both proof and disproof number
    //exceed their thresholds
    if(proofSum(n) = 0 || disproofMin(n) = 0 ||
        (n.proof <= disproofMin(n) && n.disproof <= proofSum(n))){</pre>
      n.proof = disproofMin(n);
      n.disproof = proofSum(n);
      putInTT(n);
      return;
    proof = max(proof,disproofMin(n));
```

```
n_child = selectChild(n,proof);
    if(n.disproof > proofSum(n) &&
        (proof_child <= disproof_child</pre>
        || n.proof <= disproofMin(n)))</pre>
      n_child.proof++;
    else
     n_child.disproof++;
    //This is the PDS-PN part
    if(!lookUpTT(n_child)){
      PN(n_child,computeMaxNodes());
     putInTT(n_child);
    }
    else
    MID(n_child);
 }
}
//Select among children
selectChild(n,proof){
 min_proof = INFINITY;
 min_disproof = INFINITY;
  for(each child n_child){
    disproof_child = n_child.disproof;
    if(disproof_child != 0)
      disproof_child = max(disproof_child,proof);
    //Select the child with the lowest disproof_child (if there
    //are plural children among them select the child with the
    //lowest n_child.proof)
    if(disproof_child < min_disproof ||</pre>
        (disproof_child = min_disproof &&
         n_child.proof < min_proof)){</pre>
     n_best = n_child;
     min_proof = n_child.proof;
     min_disproof = disproof_child;
    }
  }
 return n_best;
```