Decodifica mediante sindrome per i codici a blocco

Si definisce sindrome di y, il vettore s ottenuto dal prodotto di y con la matrice di controllo di parità

$$\mathbf{s} = \mathbf{y}\mathbf{H}^T = (\mathbf{x} + \mathbf{e})\mathbf{H}^T = \mathbf{x}\mathbf{H}^T + \mathbf{e}\mathbf{H}^T = \mathbf{e}\mathbf{H}^T$$
 (10)

- Tutti i membri di uno stesso coset hanno la stessa sindrome;
- La sindrome **s** è composta da n k cifre binarie;
- ▶ Le 2^{n-k} sindromi sono associate ai 2^{n-k} diversi coset del codice C(k, n);
- ► Ciascuna sindrome è associata ai 2^k pattern di errore appartenenti allo stesso coset.

Decodifica mediante sindrome per i codici a blocco

- Il decodificatore a sindrome compie quindi le seguenti operazioni:
 - 1. Calcola la sindrome $\mathbf{s} = \mathbf{y} \mathbf{H}^T$;
 - 2. Associa la sindrome al coset leader corrispondente $\mathbf{s} \to \mathbf{e}_{CL}(\mathbf{s})$;
 - 3. Corregge l'errore sommando il coset leader alla *n*-upla **y**

$$\hat{\mathbf{x}} = \mathbf{y} + \mathbf{e}_{CL}(\mathbf{s}). \tag{11}$$

La parola $\hat{\mathbf{x}}$ è una parola di codice:

$$\hat{\mathbf{x}}\mathbf{H}^{T} = (\mathbf{y} + \mathbf{e}_{CL}(\mathbf{s}))\mathbf{H}^{T} = \mathbf{s} + \mathbf{s} = 0$$
 (12)

Per costruzione, la parola di codice $\hat{\mathbf{x}}$ minimizza la distanza di Hamming da \mathbf{y} !

Decodifica a sindrome per il codice di Hamming m = 3

Il codice ha $d_{min} = 3$ ed è in grado di correggere *esattamente* un errore.

➤ Si sceglie la matrice **H** in maniera che la *tabella di decodifica* associ alla sindrome il pattern di errore a peso 1 in cui il bit messo a 1 sia nella posizione corrispondente alla conversione della sindrome in decimale.

Cod	ice non	sisten	natico
Syndrome		Coset	leader
[000]		[0000000]	
[10	00]	[100	[0000
[0:	10]	[010	0000]
[1:	10]	[001	0000]
[00	01]	[000]	1000]
[10	01]	[000	0100]
[0:	11]	[000	0010]
[111]		[0000001]	

Codice non sistematico			
Syndrome	Coset leader		
[000]	[0000000]		
[100]	[0000100]		
[010]	[0000010]		
[110]	[1000000]		
[001]	[0000001]		
[101]	[0100000]		
[011]	[0010000]		
[111]	[0001000]		

Esercizio

Un codice lineare a blocchi ha la seguente matrice di controllo di parità:

$$\mathbf{H} = \left[\begin{array}{ccccccc} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

- 1. Determinare la matrice generatrice del codice;
- 2. Decodificare mediante decodifica a sindrome la parola $\mathbf{y} = [110110]$ ed identificare la parola di codice trasmessa.

Prestazioni sistemi codificati

Calcolo della probabilità di errore sulle parole di codice

Un codice a blocco C(k, n) con $d_{min} = 2t + 1$ è in grado di correggere fino a t errori.

- ▶ Una parola ricevuta $\mathbf{y} = \mathbf{x} + \mathbf{e}$ è errata quando il canale introduce un numero di errori maggiore di t.
- La probabilità di errore $P_w(e) = \Pr\{w(\mathbf{e}) > t\}$ si calcola

$$P_w(e) = \sum_{j=t+1}^n \binom{n}{j} p^j (1-p)^{n-j}$$

 $P_w(e)$ può essere lower-bounded dalla probabilità dell'evento più probabile: aver commesso t+1 errori

$$P_w(e) \approx \binom{n}{t+1} p^{t+1} (1-p)^{n-(t+1)}$$

Bound per il calcolo della probabilità di errore sul bit

Mentre la $P_w(e)$ si riesce a calcolare con precisione, nel caso del calcolo della probabilità di errore su bit codificato si deve per forza ricorrere ad approssimazioni.

- ► Il numero di bit errati in x dopo la decodifica dipende dal vettore di errore e e da come agisce la decodifica a sindrome, che, in presenza di un numero di errori maggiore di t, aggiunge altri errori a quelli introdotti dal canale.
- ► La decodifica a sindrome restituisce sempre una parola di codice, quindi ogni volta che al ricevitore c'è un errore nella decodifica i bit errati sono almeno d_{min} degli n trasmessi.
- ▶ In questo caso la $P_b(e)$ si approssima

$$P_b(e)pprox rac{d_{min}}{n}P_w(e)pprox rac{d_{min}}{n}inom{n}{t+1}p^{t+1}(1-p)^{n-(t+1)}. \endaligned$$