Chapitre 8: Ensembles et applications (début)

▶ Ensembles

- -Définition, exemples.
- -Appartenance, inclusion, égalité.
- -Parties d'un ensemble, notation $\mathcal{P}(E)$, exemples.
- -Union, intersection, propriétés : distributivité, associativité, commutativité.
- -Complémentaire, différence, propriétés : complémentaire d'une union, d'une intersection.
- -Union et intersection quelconque. Partition.
- -Produit cartésien de deux ensembles, sous-ensembles d'un produit cartésien.

▶ Applications

- -Définition, vocabulaire.
- -Graphe et image d'une fonction.
- -Composée, restriction et prolongement, exemples.

▶ Bijections, injections et surjections

- -Injections : définition, exemples, composée de deux injections.
- -Surjection : définition, exemples, composée de deux surjections.
- -Bijection : définition, exemples.
- -Notion de bijection réciproque, bijection réciproque d'une composée de bijections.

Remarques. Les notions d'image directe et d'image réciproque ne sont pas au programme cette semaine.

Questions de cours :

- Pour A, B et C trois parties de $E: A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- La composée de deux injections est une injection.
- La composée de deux surjections est une surjection.
- Soient $f: E \to F$ et $g: F \to E$, si $f \circ g = Id_F$ et $g \circ f = Id_E$ alors f est une bijection et $f^{-1} = g$.
- L'une des questions de l'exercice suivant :

Soient $f: E \to F$ et $g: F \to G$. Etablir les implications suivantes :

- a) $g \circ f$ injective $\Rightarrow f$ injective.
- b) $g \circ f$ surjective $\Rightarrow g$ surjective.
- c) $g \circ f$ injective et f surjective $\Rightarrow g$ injective.
- d) $g \circ f$ surjective et g injective $\Rightarrow f$ surjective.