Runtime Instrumentation for Reactive Components

PLAID 2024 · L. Aceto · D. P. Attard · A. Francalanza · A. Ingólfsdóttir

Reactive systems

Runtime monitoring...Why?

Understanding system behaviour requires the system to run •

profiling

resource usage analysis

security audit trails

OR

Correctness of system is hard to analyse statically

debugging

information flow

runtime verification

Runtime monitoring...How?

Extract runtime information and report it to monitors

Roadmap

- 1. Runtime monitoring and verification for reactive systems
- 2. RIARC and how it works
- 3. Evaluating RIARC and results
- 4. Recap

Runtime monitoring requirements

Runtime monitoring requirements

 $ilde{ iny}$ Instrumentation $extbf{must}$ preserve the reactiveness of the system $ilde{ iny}$

Low overhead preserves the Responsive attribute

Independent failure preserves the Resilient attribute

Non-blocking preserves the Message-driven attribute

Grows and shrinks preserves the Elastic attribute

Runtime monitoring requirements

 $^{ ext{ iny }}$ Instrumentation **must** preserve the reactiveness of the system $_{ ext{ iny }}$

= the instrumented system **remains** Reactive

Trace soundness

- Complete: trace contains all the events exhibited by *P* so far
- Consistent: events reflect the same order P exhibits them

Trace soundness

- Complete: trace contains all the events exhibited by *P* so far
- Consistent: events reflect the same order P exhibits them

Trace soundness

- Complete: trace contains all the events exhibited by *P* so far
- Consistent: events reflect the same order P exhibits them

Centralised outline instrumentation

Not scalable due to contention and singleton monitor

Requires demultiplexing for analysing events

Inline instrumentation

Inapplicable when code modification is not possible

Slow monitors may impact latency

Decentralised outline instrumentation

Tracing uses an asynchronous tracing infrastructure

Dynamic outline instrumentation = **challenging** engineering

Criticism against decentralised outline monitoring

"Decentralised outline monitoring induces **high** overhead ••

Criticism against decentralised outline monitoring

"Decentralised outline monitoring induces **high** overhead ,

What do we **understand** by runtime overhead?

Most consider execution time as an overhead indicator

Criticism against decentralised outline monitoring

Decentralised outline monitoring induces high overhead

What do we understand by runtime overhead?

Most consider **execution time** as an overhead indicator **X**

Latency

Memory consumption

Scheduler usage

/

RHARC

"A reactive decentralised outline instrumentation algorithm ,

Core idea of RIARC

Buffers react to key trace events to reorganise monitors

Core idea of RIARC

Buffers react to key trace events to reorganise monitors

Trace events

- spawn (→), exit (★)
- · send (!), receive (?)

Control messages

- route packet (rtd)
- detach request (dtc)

Core idea of RIARC

Buffers react to key trace events to reorganise monitors

Trace events

- spawn (→), exit (★)
- send (!), receive (?)

Control messages

- route packet (rtd)
- detach request (dtc)

Tracing assumptions RIARC makes

- A1) A tracer can trace **many** processes $P_1, P_2,...$
- (A2) A child of *P* **inherits** the tracer of *P* when spawned
- $\triangle 3 \rightarrow \text{ of } P \text{ gathered before } \rightarrow, \star, !, ? \text{ of a child spawned by } P$
- \bigcirc Any P can be traced by **at most** one tracer at a time

Tracing assumptions RIARC makes

- A1) A tracer can trace **many** processes $P_1, P_2,...$
- (A2) A child of *P* **inherits** the tracer of *P* when spawned
- (A3) \rightarrow of P gathered **before** \rightarrow , \star , !, ? of a child spawned by P
- (A4) Any P can be traced by **at most** one tracer at a time

Running example

A system consisting of processes P, Q, and R

P has tracer T_P , Q tracer T_Q , and R, tracer T_R

P, Q, and R are spawned in **sequence**

Tracers react to ◆ events to **instrument** tracers

Tracers react to ★ events **terminate** tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to \star events **terminate** tracers not in use

Tracers react to ◆ events to **instrument** tracers

Tracers react to * events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to ** events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to * events terminate tracers not in use

L. Aceto · D. P. Attard · A. Francalanza · A. Ingólfsdóttir · RU · GSSI · UM · UofG

Tracers react to → events to **instrument** tracers

Tracers react to * events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to ★ events **terminate** tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to * events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to ** events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to ** events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to * events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to ** events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to \star events **terminate** tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to ★ events **terminate** tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to * events terminate tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to \star events **terminate** tracers not in use

Tracers react to → events to **instrument** tracers

Tracers react to * events terminate tracers not in use

Interleavings between system and tracers

P	
Tp	
Trace buffer	1
T _P	

Interleavings between system and tracers

Ensuring complete traces

Tracers forward events to others using **next-hop** routing

Ensuring complete traces

Tracers forward events to others using **next-hop** routing

Ensuring complete traces

Tracers forward events to others using **next-hop** routing

Tracers can still process events out of order

Evlauating RIARC

Evlauating RHARC

Implementability

To confirm that RIARC can be used in **practice**

Evlauating RHARC

Implementability

To confirm that RIARC can be used in **practice**

Correctness

To confirm that all traces RIARC reports are **sound**

Evlauating RHARC

(Implementability)

To confirm that RIARC can be used in **practice**

Correctness

To confirm that all traces RIARC reports are **sound**

Performance

To confirm that RIARC preserves the system **reactiveness**

Implementability of RIARC in Erlang

Erlang: specifically built for **soft real-time** reactive systems

RIARC tracers naturally map to Erlang actors

Trace buffers coincide with Erlang mailboxes

Erlang has a flexible tracing infrastructure meeting (A1) - (A4)

RIARC monitoring modes

- Online: actively monitors the system while it executes
- **Offline:** replays a set of pre-recorded executions
- Core RIARC logic is the same for both modes

Correctness validation

** Aim: to confirm that all traces RIARC reports are **sound** , (no missing events and events are in correct the order)

Method: systematic exploration of all interleavings

- Fit our RIARC implementation with assertion **invariants**
- Take all sound permutations of system executions
- · Replay these permutations using our offline engine
- Use monitors that assert the expected event sequence

Empirical evaluation

"Aim: to confirm that RIARC preserves the system reactiveness (system is (Responsive), (Resilient), (Message-driven), (Elastic))

Method: load test realistic system models

- · Edge-case platform: capture limited hardware
- General-case platform: capture commodity hardware
- High concurrency: benchmarks running short-lived tasks
- Moderate concurrency: benchmarks running long-lived tasks

BenchCRV for Erlang reactive systems

Emulates **real-world** operation of master-worker systems

(Latency (ms)

(Memory consumption (GB)

(Scheduler usage %)

Workload shapes

- Steady: models system under stable workload
- Pulse: models system under rising and falling workload
- Burst: models system under stress due to workload spikes

Empirical evaluation set-up

one monitor per process

 5μ s per event

(100s loading time)

Platform	Sched.	Concurrency	Workers	Requests	≈ Events
Edge case	4	High	100 k	100	40 M
General case	16	High	500 k	100	200 M
		Moderate	5 k	10 k	

Edge-case platform - 40 M events

High concurrency experiments

(short-lived, computationally-light tasks)

General-case platform - 200 M events

Moderate concurrency experiments

(long-lived, computationally-intensive tasks)

Centralised is **not practical**Inline is the **most efficient**RIARC is still **feasible**Latency of Inline *vs.* RIARC is **small**

(long-lived, computationally-intensive tasks)

Centralised is **not practical**Inline is the **most efficient**RIARC is still **feasible**Latency of Inline vs. RIARC is **small**

General-case platform - 200 M events

Moderate concurrency experiments

(long-lived, computationally-intensive tasks)

RIARC **scales** to use new schedulers Inline and RIARC latency **on par** Inline prone to **slow analysis**

(instrumentation + runtime analysis)

Resource usage (complete system runs)

Aim: study scalability and elasticity of monitoring

Aim: study scalability and elasticity of monitoring

Resource usage (complete system runs)

RIARC vs. Inline monitoring

RIARC monitoring

- · RIARC exhibits higher scheduler utilisation vs. Inline
- But ↑ scheduler utilisation and ↓ memory use = scalability
- RIARC lowers the latency without overtaxing the system
- RIARC leverages extra schedulers to maximise parallelism

Inline monitoring

- Inline lock-step execution limits potential parallelism gains
- Slow monitor analysis impacted system latency

Take away

Centralised instrumentation

Applicable X

Inline instrumentation

Low overhead ✓

May impact system 🗡

Not always applicable X

RIARC

- Leaves the system reactive
- Guarantees trace soundness
- Low overhead feasible for soft real-time applications

Backup slides

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Respons	Response time %		Memory use %		Scheduler util %	
	(200 M)	Inline	RIARC	Inline	RIARC	Inline	RIARC	
High	Steady	4	95	1	23	0	123	
(500 k)	Burst	55	97	16	56	0	123	
Moderate	Steady	246	194	1	8	3	52	
(5 k)	Burst	193	190	1	10	4	50	

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memo	Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC	
High	Steady	4	95	1	23	0	123	
(500 k)	Burst	55	97	16	56	0	123	
Moderate	Steady	246	194	1	8	3	52	
(5 k)	Burst	193	190	1	10	4	50	

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194	1	8	3	52
(5 k)	Burst	193	190	1	10	4	50

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194	1	8 15%	3	52
(5 k)	Burst	193	190	1	10	4	50

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memo	Memory use %		uler util %
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194	1	8	3	52
(5 k)	Burst	193	190	1	10 \46%	4	50

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194	1	8	3	52 171%
(5 k)	Burst	193	190	1	10	4	50, ↓73%

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194 ↑99%	1	8	3	52
(5 k)	Burst	193	190	1	10	4	50

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194	1	8	3	52
(5 k)	Burst	193	190 ↑93%	1	10	4	50

General-case platform to capture commodity hardware

High vs. moderate concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246 ↑242%	194	1	8	3	52
(5 k)	Burst	193	190	1	10	4	50

General-case platform to capture commodity hardware

High vs. **moderate** concurrency benchmarks

Concurrency	Load	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC
High	Steady	4	95	1	23	0	123
(500 k)	Burst	55	97	16	56	0	123
Moderate	Steady	246	194	1	8	3	52
(5 k)	Burst	193 ↑138%	190	1	10	4	50

General-case platform to capture commodity hardware

High vs. **moderate** concurrency benchmarks

% overhead w.r.t. baseline at maximum load

Concurrency	Load	Respons	Response time %		Memory use %		Scheduler util %	
	200 M	Inline	RIARC	Inline	RIARC	Inline	RIARC	
High	Steady	4	95	1	23	0	123	
(500 k)	Burst	55	97	16	56	0	123	
Moderate	Steady	246	194	1	8	3	52	
(5 k)	Burst	193	190	1	10	4	50	

(Response time Inline vs. RIARC: 116 ms vs. 98 ms (Steady) and 182 ms vs. 179 ms (Burst)