8.29 i := i + 1; $R_i :=$ any candidate key for $R_i :=$ Any candidate key for $R_i :=$ Any contained in another schema $R_k :=$ Any chema $R_j :=$ Any contained in another schema $R_k :=$ Any conta

Figure 8.12 Dependency-preserving, lossless decomposition into 3NF.

of functional dependencies on the relation

 $A \to BCD$ $BC \to DE$ $B \to D$ $D \to A$

d. Give a 3NF decomposition of r based on the canonical cover.

We've calculated canonical cover:

OA→BC QB→DE 3D→A

Therefore, using

TI (A, B, C). TZ(B, D, E). T3(D.A)

Since F is not dependent on any attribute, and none of the attribute could determine F: $\Upsilon 4(A \cdot F)$ or $\Upsilon 4(D \cdot F)$

- 2. Consider a relation schema R(A,B,C,D,E) and its functional dependencies, F={ A \rightarrow C, C \rightarrow A,B \rightarrow AC, D \rightarrow AC }, complete the following questions:
- a) Compute (AD)+
- b) Compute the candidate keys for R.
- c) Compute the canonical cover Fc.
- d) Is R in 3NF? If it is, justify your answer. If not, produce a decomposition of R into 3NF.(Ref. Figure 8.12)

let F_c be a canonical cover for F; i:=0; for each functional dependency $\alpha \to \beta$ in F_c i:=i+1; $R_i:=\alpha\beta$; if none of the schemas R_j , $j=1,2,\ldots,i$ contains a candidate key for R then i:=i+1; $R_i:=$ any candidate key for R; $R_i:=$ any candidate key for R; $R_i:=$ any candidate key for R; $R_i:=$ any schema R_j is contained in another schema R_k then $R_i:=$ $R_i:=$ R

Figure 8.12 Dependency-preserving, lossless decomposition into 3NF.

a) $(AD)^{\dagger} = \{AD\}$ $0A \Rightarrow c \quad (AD)^{\dagger} = \{ADC\} \cdot (2C \Rightarrow A \quad (AD)^{\dagger} = \{ADC\} \cdot (2D)^{\dagger} = \{ADC\} \cdot (2D)^{\dagger}$

E is dependent from ABCD.

B and D couldn't be concluded from each other.

Since A and C couldn't conclude B or D

Therefore, candidate key of R is BDE

■ 3. Suppose that we have a schema *R(A, B, C, D, E)*. You are given the following dependencies:

$$A \rightarrow B$$

$$BC \rightarrow E$$

$$ED \rightarrow A$$

- a) List all candidate keys for R.
- b) Is *R* in 3NF? If it is, justify your answer. If not, produce a decomposition of *R* into 3NF. (Ref. Figure 8.12)

a)
$$OA \rightarrow B$$
 $A^{\dagger} = (AB)$. A couldn't conclude all the attributes.

Therefore: condidate keys are: ACD. CDE

b) Since: ACD > BCD BCD > ED ED > A Therefore, R is not 3NF. Decomposition TI (A.B.C.E). T2 (E.D.A)

4. Which normal form do the schemas you obtained in Chapter 7 Exercise belong to? Is it possible to transform them into 3NF? And how?

2NF

It's possible to transform.

Here are the steps:

- 1 Identify Functional Dependencies.
- 2 Check Transitive Dependencies
- 3 Remove Transitive Dependencies
- 4 Update Relationship til there exists no transitive Dependencies