12.3 Data Exploration – Overview

Scatterplots

- Displays the relationship between **two quantitative** variables measured on the same individuals.
- Useful to determine if an **association** exists!
 - So is there a <u>pattern</u> where some values of one variable tend to occur with some values of the other variable.
 - Ex) Smaller carat diamonds tend to have lower prices, and as the carat increases prices tend to increase as well.

- Setup of axes
 - The explanatory (independent) variable goes on the X (horizontal) axis.
 - o The response (dependent) variable goes on the Y (vertical) axis.
 - o Ex) How large a diamond is impacts how much it costs \rightarrow Carat = X; Price = Y.
- Interpreting a scatterplot (what we are looking for in a scatterplot)
 - Form (pattern of the dots)
 - <u>Linear</u> → Points follow a general linear trend; Straight line.
 - Curved → Points show some evidence of curvature; NOT a straight line.
 - Random scatter → No pattern, points are just scattered about randomly kinda like a cloud of points.

- Direction (of the association; only applies to linear relationships)
 - Positive → Upward trend.
 - Negative → Downward trend.
 - No Association → There is no pattern or general trend (corresponds to random scatter).
- Strength (how strong the association is; how well the data fits the pattern; only applying this to linear relationships)

<u>Example</u>

	Form	Direction	Strength			
(1)	Curved	N/A (+/-)	N/A (5+10mg)			
(2)	Linear	Positive	Moderate			
(3)	Linear	Ne gative	Strong			
(4)	Roughly Linear	negative	Weah			
(5)	Random Scatter	No association	very weak			

Correlation

- The **correlation((r))** s an index that expresses the <u>direction</u> and <u>strength</u> of the relationship.
 - It combines both of these aspects into a single number measure.
 - Often referred to as the correlation coefficient (or Pearson's correlation).
- Interpreting correlation
 - Sign = Direction
 - Absolute value |r| = Strength

- **Properties of Correlation**
 - Scale goes from -1 to 1 \rightarrow $-1 \le r \le 1$
 - Only applies to LINEAR relationships.
 - o r has no units and is the same regardless of which variable is X or Y.

Does NOT imply a cause-and-effect relationship.

Ex) Ice cream sales and shark attacks have a strong positive correlation.

Using your Calculator!

Using TI-83/84 (and TI-30 XS MultiView / XIIS) to calculate correlation (and regression line).

Steps for the TI-83/84

- 1. Enter data: STAT → Edit → Enter X data in L₁ Enter Y data in L2
- 2. Calculate: STAT \rightarrow CALC \rightarrow LinReg(ax+b)
 - a) XList: L₁.
 - b) YList: L₂.
 - c) Rest leave blank.
 - d) Calculate!

Steps for the TI-30XS MultiView

Data →

Enter X data in L₁ Enter Y data in L₂

- 2. $2^{nd} \rightarrow \text{stat} \rightarrow 2\text{-Var Stats}$
 - a) xDATA: L1
 - b) yDATA: L2
 - c) CALC

Steps for the TI-30 XIIS

- 1. $2^{nd} \rightarrow STAT \rightarrow 2-VAR$ (Enter)
- 2. DATA

 $X_1 = \#$ (scroll down)

 $Y_1 = \# (scroll down)$

... (repeat for all data points)

- 3. STATVAR (scroll across)
- 4. To exit this menu: $2^{nd} \rightarrow EXIT STAT \rightarrow Y$

4:LinReg(ax+b) 5:QuadRe9 6:CubicRe9 7:QuartRe9

8:LinReg(a+bx)

Demo dataset

Inputs

Ylist:L2 FreqList: Store RegEQ: Calculate

Results

^{***} One time setup for TI-83/84: $2^{nd} \rightarrow Catalog \rightarrow DiagnosticOn \rightarrow Enter$

Regression

- Ultimately, we want to determine if we can use a straight line to model the relationship between two variables → If so, we can use that model to make predictions!
 - This process is called Linear Regression.

Step 1 → Determine if there is a significant correlation (linear relationship).

- a) Calculate correlation.
- b) Compare it to the **Table of Critical Values or the Pearson Correlation Coefficient** to see if it is <u>statistically significant</u>.
 - o Match the sample size n and the Level of significance α (Probability our claims about the data are wrong) to the specific problem.

If |r| >Critical Value (CV) $\Rightarrow r$ is statistically significant (unlikely to have occurred by chance).

Step 2 \rightarrow Once we have a significant correlation, we can find the **regression line**.

- Linear equation that fits our data best (aka 'line of best fit').
 - o It is IMPORTANT to get the X and Y variables correct!
- Our calculator gives us our equation!

	Pearson Correlation Coefficient						
n	$\alpha = 0.05$	$\alpha = 0.01$					
4	0.950	0.990					
5	0.878	0.959					
6	0.811	0.917					
7	0.754	0.875					
	1						

Demo ex)
$$n = \sqrt[4]{}$$
 , $\alpha = 0.05$

Equation

• Here is the form of our linear equation (written in slope-intercept form):

$$\hat{\mathbf{v}} = a\mathbf{x} + b$$

- x = Value of the explanatory variable
- \hat{y} = Predicted value of the response variable for the given x
- a = Slope
 - · It measures the direction and steepness of the line
- b = Y intercept
 - It is the location where the regression line crosses the Y-axis (value of Y when X = 0)

Step 3 \rightarrow Make **predictions** using the regression line.

- We can think of our regression line, and specifically \hat{y} , as <u>predicted values of Y</u> for <u>all X values</u> in the X range of our sample data!
- Calculating these is simple:
 - Just <u>plug in the new X value to our equation</u> and this will give us the predicted Y.
 - \circ Demo example) Predict Y for X = 7.

$$\hat{y} = \underbrace{1.638x + 1.103}_{\text{ax}} \longrightarrow \underbrace{\sqrt{= (.637)^7 + (.703)}}_{\text{= 12.569}}$$

Full Example

Top	Row	X		
		٧		

Hours Spent on Homework	41	20	34	43	9	20	54	52	10	21
Grade on Test	79	63	76	100	55	82	95	80	60	80

a) Calculate the correlation for the dataset above and determine if it is statistically significant at a level of significance of $\alpha = 0.05$.

b) If appropriate, determine the regression equation.

() Yes because (is significant

$$\sqrt{-4 \times +6}$$
 $\sqrt{-20.676} \times + 56.959$

c) If a student spends 35 hours on homework, make a prediction for their grade on the test.

d) If a student spends 50 hours on homework, make a prediction for their grade on the test.