

Visual-Odometric Localization and Mapping for Ground Vehicles **Using SE(2)-XYZ Constraints**

Fan Zheng and Yun-Hui Liu fzheng@link.cuhk.edu.hk

Dept. of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR

VisionNav Robotics Limited, China

Objective and Motivation

 For ground vehicle SLAM, to estimate on-SE(2) ground vehicle poses without neglecting the out-of-SE(2) perturbation in real-world scenarios.

Fig 1. (a) Deterministic SE(2)-constraints are not accurate on rough terrains. (b) Stochastic SE(2)-constraints on SE(3) poses are accurate enough, but redundant. (c) SE(2)-XYZ constraints are compact and accurate

Methodology

1. GRAPH OPTIMIZATION WITH

Fig 2. The graph structure for optimization.

1) SE(2)-XYZ Constraints

Consider the perturbed SE(2) poses on SE(3):

$$\mathbf{R}_i \leftarrow \operatorname{Exp}(\underbrace{[\boldsymbol{\eta}_{\theta_{xy}}^T \ 0]^T}) \mathbf{R}_i, \quad \mathbf{p}_i \leftarrow \mathbf{p}_i + \underbrace{[0 \ 0 \ \eta_z]^T}_{\boldsymbol{\eta}_z}.$$

Then the linearized measurement model for the constraint:

$$\mathbf{u}(\boldsymbol{\nu}_i, \mathbf{l}_{\ell}) = \pi \left({^C}\mathbf{R}_B \mathbf{R}_i^T \text{Exp}(-\boldsymbol{\eta}_{\theta}) (\mathbf{l}_{\ell} - \mathbf{p}_i - \boldsymbol{\eta}_z) + {^C}\mathbf{p}_B \right)$$

$$+ \boldsymbol{\eta}_u$$

$$\approx \pi(C_i \mathbf{l}_{\ell}) + \mathbf{J}_{\boldsymbol{\eta}_{\theta}}^{\mathbf{u}} \boldsymbol{\eta}_{\theta} + \mathbf{J}_{\boldsymbol{\eta}_z}^{\mathbf{u}} \boldsymbol{\eta}_z + \boldsymbol{\eta}_u$$

2) On-SE(2) Preintegrated Odometric Constraints

Similar to preintegration for VINS, but on SE(2):

$${}^{i}\phi_{j} = \sum_{k=i}^{j-1} (\tilde{\phi}_{k} - \eta_{\phi k}) = \sum_{k=i}^{j-1} \tilde{\phi}_{k} - \sum_{k=i}^{j-1} \eta_{\phi k}$$
$${}^{i}\mathbf{r}_{j} \approx \sum_{k=i}^{j-1} \Phi({}^{i}\tilde{\phi}_{k})\tilde{\mathbf{r}}_{k} - \sum_{k=i}^{j-1} \Phi({}^{i}\tilde{\phi}_{k})(\eta_{rk} + \delta^{i}\phi_{k}^{\times}\tilde{\mathbf{r}}_{k})$$

Results

(a) AGV for experiments.

(b) Dataset Warehouse environment.

Fig 3. The AGV and one testing field, by VisionNav Robotics Ltd.

Trajectories: Dataset Warehouse

Fig 3. Estimate results in two datasets, by

- (a) odometry measurements,
- (b) ORB-SLAM2,
- (c) Stochastic SE(2)-constrained (SE2C)
- (d) Our method (SE2),
- (e) the ground truth

TABLE I ESTIMATION ERRORS STATISTICS (RMSE)

	Odom.	ORB-	SE2C	SE2
		SLAM		
DATASET ROOM				
x err. (mm)	541.24	135.33	62.44	61.106
y err. (mm)	1028.83	371.01	93.15	59.021
ϕ err. (rad)	0.24835	0.12809	0.01567	0.01181
trans. err.(mm)	1162.51	394.93	112.15	84.956
accuracy*	4.469%	1.343%	0.381%	0.288%
	•			
<u>Dataset Wareh</u>		1020 ((204.22	171 120
x err. (mm)	1615.19	1038.66	304.22	171.129
y err. (mm)	460.90	507.13	393.87	279.766
ϕ err. (rad)	0.10062	0.17149	0.03924	0.04921
trans. err.(mm)	1679.67	1155.85	497.68	327.955
accuracy	1.142%	0.787%	0.339%	0.223%

Accuracy is calculated by the translation error over the travel distance in *one loop*.

More Info

Open source!

github.com/izhengfan/se2lam

