Nuclear Fuel Performance

NE-533

Spring 2025

Exam 2

- Grading catchup:
 - Exam 2 avg: 86.4; Curve of 5 pts.
- MOOSE grading:
 - sent out today
- Paper grading:
 - sent out today
- Let me know of any comments or questions on any of this

MOOSE Project Notes

- Two ways of doing the meshes, both work
 - Single mesh, divide into subdomains
 - Three separate meshes, stitch meshes together, define subdomains
- First way, need to be careful in subdividing, as you can specify multiple blocks at same point
- Second way can give you more mesh flexibility and defines points on the block transitions; may help with convergence
 - can try, but not needed
- Can try adaptive timestepping; can check for steady-state with transient
- Overall, everyone did very good on the MOOSE project

Last Time

- Grain growth, grain boundaries, densification
- Started on fuel chemistry

FUEL CHEMISTRY CONT.

Oxygen potential

- The oxygen potential changes during irradiation, indicating change in the O/M ratio
- Oxygen potential changes during irradiation due to
 - Liberation of oxygen by fission; Generation of fission products; Conversion of uranium to plutonium; Reaction of oxygen with U, Pu, fission products, and cladding
- Oxygen potential across pellet radius observed to be constant at the approximate value of Mo/MoO₂ reaction (from calculations)
- Mo serves as a buffer to the O potential, or a means of inferring what the oxygen potential may have been in the fuel from PIE
- Oxygen potential is low near the cladding, because the oxygen enters the cladding

Fuel Stoichiometry/Properties

- The stoichiometry of the fuel directly impacts the fuel performance
- Stoichiometry impacts
 - Melting temperature
 - Thermal conductivity
 - Processes dependent on diffusion
 - Grain growth
 - Fission gas release
 - Creep
 - Chemical state and behavior of fission products
 - Chemical reactions at inner cladding surface
- Thermal conductivity is highest for stoichiometric UO2

Fuel Stoichiometry/Properties

 The lattice constant of the material decreases with increasing stoichiometry

 The vacancy formation energy also changes with stoichiometry

Fuel Stoichiometry/Properties

- The solution energy of Xe, Cs, and Sr in UO₂ depends on stoichiometry as well
- The coefficient defining Xe diffusion also changes with stoichiometry
- Though stoichiometry matters, most fuel performance codes ignore it

Fission product	UO _{1.97}	UO ₂	UO _{2.03}
Xe	3.88 eV	3.88 ev	2.61 eV
Cs	1.7 eV	-0.04 eV	-3.29 eV
Sr	-3.71 eV	-6.03 eV	-9.55 eV

Fuel Chemistry Summary

- UO₂ has a cubic fluorite structure that is very stable
- The charges are balanced with a U⁴⁺ valence state
- However, the ratio of oxygen to uranium can change. We call this the stoichiometry and abbreviate it as O/M ratio
- The O/M ratio changes during reactor operation, but it is complicated
- The O/M ratio impacts many properties of the fuel

FISSION PRODUCTS

Fission Product Generation

- Fission releases around 200 MeV
 - The fission fragments have 169 MeV of kinetic energy
 - 2 to 3 neutrons with an average energy of 2
 MeV
 - 7 MeV of prompt gamma ray photons
 - The remaining energy is released by beta decay
- Every fission product that is produced is now in the crystal lattice of the fuel, changing the chemistry/microstructure

There are various types of fission products that form

Soluble oxides (Y, La and the rare earths)

Dissolved in the cation sublattice

Insoluble oxides (Zr, Ba and Sr)

Form insoluble oxides in the fluorite lattice

Metals (Mo, Ru, Pd, and Tc)

Form metallic precipitates

Volatiles (Br, Rb, Te, I and Cs)

- Exist as gases at high temperatures of the pellet interior
- Also exist as solids at the cooler pellet exterior

Noble gases (Xe, Kr)

- Essentially insoluble in the fuel matrix
- Form either intragranular (within grain) voids or bubbles or intergranular (grain boundary) bubbles

All fission products impact the behavior of the fuel

Soluble oxides (Y, La and the rare earths)

Cause swelling, decrease thermal conductivity

Insoluble oxides (Zr, Ba and Sr)

Can cause swelling

Metals (Mo, Ru, Pd, and Tc)

Slightly raise thermal conductivity,

Volatiles (Br, Rb, Te, I and Cs)

- Cause swelling, decrease thermal conductivity
- Escape from fuel, corrode the cladding

Noble gases (Xe, Kr)

- Cause swelling
- Decrease thermal conductivity
- After release, raise gap pressure and lower thermal conductivity

Fission Product Evolution

- Not only are the absolute proportion of fission products accumulating with time, but the relative proportions are changing with respect to one another
- There are continuous transitions between the groups as the critical concentration conditions for new phase development are surpassed because of increased burnup
- Since fission releases two oxygen but only one metal atom, and not all metal atoms will react to bond the oxygen, the O/M ratio of the fuel slowly increases during burnup

Oxide Formation

- With burnup, the liberated oxygen will associate with U, Pu, and La but may not be in sufficient supply to combine with Pd and other less oxidizing elements
- If the Gibbs energy of formation of the given fission product lies below the fuel oxygen potential, the element will be capable of forming an oxide (Ce, Sr, Ba)
- If the reaction line is above the oxygen potential in the fuel, the fission product will exist as an element in the fuel (in a separate metallic phase) (Ru, Pd, Tc)

Soluble/Insoluble Fission Products

- When a 4+ valence fission product (e.g.,Zr4+) enters the lattice, there is no change in the electrical neutrality
- If the charge of the fissionproduct cation is lower than U+4, the site occupancy of the lattice is altered to achieve electrical neutrality
- The alkaline earth cations Ba+ and Sr2+ have large ionic radii and form a separate oxide phase
- Fission products that have limited solubility in UO2 will segregate to the grain boundaries and voids

Chemical group	up Physical state	
Zr and Nb	Oxide in fuel matrix; some Zr in alkaline earth oxide phase	4+
Rare earths	Oxide in fuel matrix	3+
Ba and Sr	Alkaline earth oxide phase	2+
Mo	Oxide in fuel matrix or element in metallic inclusion	4+ or 0
Ru, Tc, Rh, and Pd	Elements in metallic inclusion	0+
Cs and Rb	Elemental vapor or separate oxide phase in cool regions of fuel	1+ or 0
I and Te	Elemental vapor; I may be combined with Cs and CsI	0 or 1 —
Xe and Kr	Elemental gas	0

Fission Product Segregation/Precipitation

- Fission products can be segregated because of their migration to specific locations such as intragranular segregations, grain boundaries, or pellet surfaces
- Metallic inclusions are commonly observed in ceramographs from irradiated samples
- They are formed by isotopes of Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, and Te
- These inclusions are found at the surface of the grain boundaries and are associated, in general, with grain boundaries and intragranular bubbles

- Some of the components of these precipitates can be oxidized or reduced forming other compounds that can be released from the fuel matrix
- Cs, Ru, Te, and Ba have been consistently found at the cracks in the pellet and on the clad inner surface
- The white inclusions are metallic precipitates, which are composed of Mo, Tc, Rh, Ru, and Pd, form a quinary alloy in an hcp structure
- A "gray oxide phase" perovskite structure containing different combinations of Ba, Cs, Zr, Mo, and U can also form

Volatile/Gaseous Fission Products

- Xe release occurs at the central region of the pellet where the highest temperatures were achieved during irradiation
- Volatile FPs are released from the fuel matrix similar to that of the noble gases
- Volatile fission products in the gap can react among themselves, resulting in a changing chemical speciation
- The kinetics of formation/decomposition of CsI and Zr iodides are possible factors in the mechanism of SCC

FP Interaction with Zr Cladding

- Fission fragments will deposit on the inner surface of the cladding
- Some of these species can diffuse into the cladding, while others can attack the cladding thereby initiating cracks that can later progress with the formation of through-wall cracks
- Oxygen will diffuse into the cladding and contribute to its oxidation state
- Measurements have shown deposits of Sr, Cs, Pu, and Am

- The corrosion behavior of zirconium by Te has been reported
- The chemical reaction between some corrosive fission products and the cladding can lead to PCI
- Fission products such as Cs, Cd, or I can attack the cladding inducing crack initiation, which then progress through the cladding by intragranular and transgranular cracking modes

FISSION GAS RELEASE

Fission Gas Release

- Fission gases (Xe, Kr) are released in a process composed of three stages in UO2
- Stage 1: Gas atoms are produced throughout the fuel due to fission and diffuse towards grain boundaries
- Small intragranular bubbles form within the grains, but never get larger than a few nm radius due to resolution from energized particles
- Gas atoms that don't get trapped within the intragranular bubbles migrate to grain boundaries

Fission Gas Release

Stage 2: Gas bubbles nucleate on grain boundaries, growing and interconnecting

Stage 3: Gas travels through interconnected bubbles to a free surface

Fission Gas Release

- Fission gas release also occurs due to mechanisms that don't depend on diffusion
- Release can occur to particle recoil and knockout at low temperature
- It can occur due to fracture during rapid transients

