Sprawozdanie 11

Aproksymacja sygnału okresowego przy użyciu FFT

1. Wstęp teoretyczny

Szybka transformacja Fouriera (Fast Fourier Transform, FFT) – algorytm wyznaczania dyskretnej transformaty Fouriera oraz transformaty do niej odwrotnej.

Najpopularniejszą wersją algorytmu FFT jest FFT o podstawie 2. Jest on bardzo efektywny pod względem czasu realizacji, jednak wektor próbek wejściowych (spróbkowany sygnał) musi mieć długość $N=2^k$ gdzie k to pewna liczba naturalna. Wynik otrzymuje się na drodze schematycznych przekształceń.

Najprostszy algorytm FFT to radix-2 (Cooley-Tukey). Algorytm polega na znalezieniu współczynników transformaty Fouriera (DFT) c_k , ale wykonując jak najmniej obliczeń.

Zakładamy, że całkowita liczba węzłów jest potęgą 2:

$$x_j = \frac{2\pi}{N}j, \ j = 0,1,2,...,N-1, \ N = 2^r, r \in \mathbf{N}$$
 (1)

Zatem:

$$c_k = \sum_{j=0}^{N} f_j exp(-I\frac{2\pi}{N}jk) \quad (2)$$

Osobno grupujemy składniki:

Parzyste j = 2m:

$$c_k = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} exp(-I\frac{2\pi}{N}(2m)k) + \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp(-I\frac{2\pi}{N}(2m+1)k)$$
 (3)

Niparzyste j = 2m + 1:

$$c_{k} = \sum_{m=0}^{\frac{N}{2}-1} f_{2m} exp(-l\frac{2\pi}{\frac{N}{2}}mk) + \exp(-l\frac{2\pi}{N}k) \sum_{m=0}^{\frac{N}{2}-1} f_{2m+1} exp(-l\frac{2\pi}{\frac{N}{2}}mk)$$
(4)

Korzystając z okresowości powyższych wyrazów nie musimy wyznaczać wszystkich współczynników – tylko połowę.

2. Problem

Naszym zadaniem było zastosowanie FFT do odszumienia sygnału periodycznego. Sygnał zaszumiony generowaliśmy zgodnie z poniższym wzorem:

$$y(i) = \sin(\omega \cdot i) + \sin(2\omega \cdot i) + \sin(3\omega \cdot i) + \Delta$$
 (5)

gdzie:
$$i=0,1,2,...,N-1$$
 – numer próbki sygnału,
$$\omega=2\frac{2\pi}{N},\quad N=2^k-\mathrm{ilość} \ \mathrm{wygenerpwanych} \ \mathrm{próbek},$$

$$\Delta=2\cdot\frac{rand()}{RAND_{MAX}+1.0}-1$$

Najpierw wygenerowaliśmy zaszumiony sygnał, zgodnie ze wzorem(5), i zapisaliśmy go do wektora typu *double*. Długość wektora wynosiła 2N, $N = 2^k$, kolejno dla k = 8, 10, 12. Następnie wyznaczyliśmy transformatę sygnału korzystając z funkcji biblioteki **GSL**:

gsl_fft_complex_radix2_forward (gsl_complex_packed_array y, size_t sride, size_t N),

gdzie: y – tablica z sygnałem(typ gsl_complex_packed_array odpowiada naszej jednowymiarowej tablicy), stride – parametr równy 1(krok pomiędzy elementami w tablicy), $N-2^k$

Dalej przeprowadziliśmy dyskryminację sygnału na poziomie $\max(\frac{|c_k|}{2})$, to znaczy że trzeba było znaleźć element o maksymalnym module, i wyzerować wszystkie elementy których moduł był mniejszy od $\frac{1}{2}c_{kmax}$. Ostatnie co zrobiliśmy to wyznaczyliśmy transformatę odwrotną korzystając z funkcji biblioteki **GSL**:

gsl_fft_complex_radix2_backward (gsl_complex_packed_array y, size_t sride, size_t N),

która przyjmuje argumenty analogiczne do funkcji gsl_fft_complex_radix2_forward.

3. Wyniki

Aproksymację przeprowadzono kolejno dla k = 8, 10, 12. Dodatkowo dla k=8 przedstawiono wykres części rzeczywistej i urojonej transformaty oraz moduł liczby zespolonej w zależności od numeru iteracji.

Wykres(2). wartości modułów współczynników transformaty(k=8)

Wykres(4). Wykres sygnału zaburzonego, niezaburzonego oraz sygnału po odszumieniu dla k=10

Wykres(5). Wykres sygnału zaburzonego, niezaburzonego oraz sygnału po odszumieniu dla k=10

4. Wnioski

Dla każdej ilości próbek zaburzony sygnał został odszumiony. Z rysunków 3-5 można zauważyć że zwiększając liczbę próbek odszumienie bardziej się pokrywa z niezaburzonym sygnałem. Częstotliwość próbkowania ma zatem wpływ na dokładność procesu odszumiania.