《基础物理实验》实验报告

实验名称 RLC 电路的谐振与暂态过程 指导教师 袁跃峰 姓 名 桂庭辉 学号 2019K8009929019 专 业 计算机科学与技术 班级 03 座号 6 实验日期 2020 年 12 月 30 日 实验地点 教学楼 709 调课/补课 □是 成绩评定

1 实验目的

- 1. 通过观察示波器中的波形研究 RLC 电路的谐振现象。
- 2. 了解 RLC 电路的相频特性与振幅特性。
- 3. 通过示波器中的波形观察 RLC 串联电路的暂态过程。

2 实验仪器与用具

标准电感、标准电容,100Ω标准电阻,电阻箱,电感箱,函数发生器,示波器,数字多用表,导线等。

3 实验原理

3.1 RLC 串联谐振电路

图 1: RLC 串联谐振电路

RLC 串联谐振电路如上图所示,利用复数法 $^{\circ}$ 分析电路可求得电容 C、电感 L、电阻 R 的复阻抗分别为

$$\tilde{Z}_C = \frac{1}{j\omega C}, \quad \tilde{Z}_L = j\omega L, \quad \tilde{Z}_R = R$$

 $^{^{\}circ}$ 本实验报告中复数法记法约定 \tilde{x} 表示复变量,x 表示其模长,虚单位为 $j=\sqrt{-1}$ 。

进而可求得电路的总复阻抗与总阻抗:

$$\tilde{Z} = R + j \left(\omega L - \frac{1}{\omega C} \right) \implies Z = \left| \tilde{Z} \right| = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2}$$

电流 i 的大小为

$$i = \frac{u}{Z} = \frac{1}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

路端电压 u 与电流 i 的相位差为

$$\varphi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}$$

以上诸式中 $\omega = 2\pi f$ 为交变电压 u 的角频率,f 为其频率。可见 Z, φ , i 均为 f 的函数,即 当电路中其他元件参量确定的情况下,电路特性将完全取决于频率的大小。

图 2: RLC 串联电路的频率特性

1. 当 $\operatorname{Im} \tilde{Z} = 0$,即 $\omega L - \frac{1}{\omega C} = 0$ 时,总阻抗呈电阻性,且总阻抗达到最小值 $Z_0 = R$,电压与电路的相位差 $\varphi = 0$,电流达到最大值 $i_{\max} = \frac{u}{R}$,这种状态称为串联谐振。此时的角频率 ω_0 称为谐振角频率,相应地此时频率 f_0 称为谐振频率,其具体大小为

$$\omega_0 = \frac{1}{\sqrt{LC}}, \quad f_0 = \frac{1}{2\pi\sqrt{LC}}$$

谐振时,有

$$u_L = i_{\text{max}} Z_L = \frac{\omega_0 L}{R} u, \quad \frac{u_L}{u} = \frac{\omega_0 L}{R} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

而

$$u_C = i_{\text{max}} Z_C = \frac{u}{R\omega_0 C}, \quad \frac{u_C}{u} = \frac{1}{R\omega_0 C} = \frac{1}{R} \sqrt{\frac{L}{C}}$$

令

$$Q = \frac{u_L}{u} = \frac{u_C}{u} = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C}$$

Q 称为谐振电路的品质因数,是标志和衡量谐振电路性能优劣的重要参量。Q 可衡量的电路

性能有:

- (1) 储耗能特性: Q 值越大,相对的储能耗能越小,储能效率越高;
- (2) 电压分配特性: 谐振时 $u_L = u_C = Qu$, 电感、电容上的电压均为总电压的 Q 倍,因此有时称串联谐振为电压谐振。利用电压谐振,可在某些传感器、信息接收中显著提高灵敏度或效率,但在某些应用场合,它对系统和人员却具有一定不安全性,故而在设计与操作中应予以注意。
- (3) 频率选择性: 设 f_1 , f_2 为谢振峰两侧 $i=\frac{i_{\max}}{\sqrt{2}}$ 处对应频率,则 $\Delta f=f_2-f_1$ 称为通频带宽度,简称带宽。不难证明有

$$Q = \frac{f_0}{\Delta f}$$

当 Q 值越大时, 带宽越窄, 峰越尖锐, 频率选择性越好。

- 2. 当 $\operatorname{Im} \tilde{Z} > 0$,即 $\omega L \frac{1}{\omega C} > 0$ 时,总阻抗呈电感性,此时电压与电流相位差 $\varphi > 0$,交变电压频率 $f > f_0$,并且随着 f 的增大, φ 趋近于 $\frac{\pi}{2}$,阻抗越大,电流越小。
- 3. 当 $\operatorname{Im} \tilde{Z} < 0$,即 $\omega L \frac{1}{\omega C} < 0$ 时,总阻抗呈电感性,此时电压与电流相位差 $\varphi < 0$,交变电压频率 $f < f_0$,并且随着 f 的减小, φ 趋近于 $-\frac{\pi}{2}$,阻抗越大,电流越小。

3.2 RLC 并联谐振电路

图 3: RLC 并联谐振电路

利用复数法分析上图电路, 电容 C、电感 L、电阻 R 的复阻抗分别为

$$\tilde{Z}_C = \frac{1}{j\omega C}, \quad \tilde{Z}_L = j\omega L, \quad \tilde{Z}_R = R$$

那么电路并联部分的总复阻抗为

$$\tilde{Z}_p = \frac{1}{j\omega C + \frac{1}{R + j\omega L}} = \frac{R + j\omega L}{(1 - \omega^2 LC) + j\omega CR}$$

从而可求得电路并联部分总电阻为

$$Z_p = \left| \tilde{Z}_p \right| = \sqrt{\frac{R^2 + (\omega R)^2}{(1 - \omega^2 LC)^2 + (\omega CR)^2}}$$

并联部分电压 u 与干路电流 i 的相位差为

$$\varphi = \arctan \frac{\omega L - \omega C [R^2 + (\omega L)^2]}{R}$$

并联部分电压 u 大小为

$$u = iZ_p = \frac{u_{R'}}{R'}Z_p$$

图 4: RLC 并联电路的频率特性

1. 当 $\operatorname{Im} \tilde{Z}_p = 0$,即 $\varphi = 0$ 时,总阻抗呈纯电阻性,可求得其并联谐振的角频率 ω_p 与频率 f_p 为

$$\omega_p = \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2} = \omega_0 \sqrt{1 - \frac{1}{Q^2}}, \quad f_p = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \left(\frac{R}{L}\right)^2}$$

即并联谐振频率 f_p 与串联谐振频率 f_0 稍有不同,当 $Q\gg 1$ 时, $\omega_p\approx\omega_0$, $f_p\approx f_0$ 。

- 2. 当 $f < f_p$ 时, $\varphi > 0$, 电流相位落后于电压,整个电路呈电感性。
- 3. 当 $f > f_p$ 时, $\varphi < 0$,电流相位超前于电压,整个电路呈电容性。

在谐振频率两侧区域,并联电路的电抗特性与串联电路相反。在 $f=f_p'^{@}$ 处总阻抗达到极大值,总电流达到极小值。而在 f_p' 两侧,随 f 偏离 f_p' 越远,阻抗越小,电流越大。

与串联谐振类似, 可用品质因数

$$Q_1 = \frac{\omega_0 L}{R} = \frac{1}{R\omega_0 C}, \quad Q_2 = \frac{i_C}{i} \approx \frac{i_L}{i}, \quad Q_3 = \frac{f_0}{\Delta f}$$

来标志并联谐振电路的性能优劣,有时也称并联谐振为电流谐振。

 $^{{}^{2}}f'_{p}$ 与 f_{p} 稍有不同。

3.3 RLC 电路的暂态过程

图 5: RLC 串联振荡电路

在 RLC 串联振荡电路中,开关拨向不同的端口,电路呈现为两种状态: 当开关 S 拨向 1 时,电源 E 接入电路,为电容 C 进行充电; 当开关 S 拨向 2 时,电容在 RLC 串联电路中放电。在放电过程中,根据实际电路可列出常微分方程

$$L\frac{\mathrm{d}i}{\mathrm{d}t} + Ri + u_C = 0$$

电容存储的电荷量 $q = Cu_C$,那么电路中的电流为

$$i = \frac{\mathrm{d}q}{\mathrm{d}t} = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$$

将其代入电路常微分方程即得到关于 ис 的二阶齐次常微分方程

$$LC\frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0$$

考虑初始条件即可得到方程组:

$$\begin{cases} LC \frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = 0\\ u_C = E & (t = 0)\\ C \frac{\mathrm{d}u_C}{\mathrm{d}t} = 0 & (t = 0) \end{cases}$$

引入阻尼系数 $\zeta = \frac{R}{2} \sqrt{\frac{C}{L}}$,则可将方程组的解分为三种情况:

1. 当 $\zeta < 1$,即 $R^2 < \frac{4L}{C}$ 时,阻尼不足,上述方程组的解为

$$u_C = \sqrt{\frac{4L}{4L - R^2C}} E e^{-t/\tau} \cos(\omega t + \varphi)$$

其中时间常量 $\tau=\frac{2L}{R}$,衰减振动的角频率为 $\omega=\frac{1}{\sqrt{LC}}\sqrt{1-\frac{R^2C}{4L}}$ 。 τ 的大小决定了振幅衰减的快慢, τ 越小,振幅衰减越迅速。

若 $R^2 \ll \frac{4L}{C}$, 振幅的衰减很缓慢, 此时

$$\omega \approx \frac{1}{\sqrt{LC}} = \omega_0$$

近似为 LC 电路自由振动, ω_0 为 R=0 时 LC 回路的固有频率。衰减振动的周期为

$$T = \frac{2\pi}{\omega} \approx 2\pi\sqrt{LC}$$

图 6: RLC 暂态过程中的三种阻尼曲线

2. 当 $\zeta > 1$, 即 $R^2 > \frac{4L}{C}$ 时,对应过阻尼状态,方程组的解为

$$u_C = \sqrt{\frac{4L}{R^2C - 4L}} E e^{-\alpha t} \sinh(\beta t + \varphi)$$

其中 $\alpha=\frac{R}{2L},\ \beta=\frac{1}{\sqrt{LC}}\sqrt{\frac{R^2C}{4L}-1}$ 。此时振幅将缓慢地衰减为 0。若固定 $L,\ C$ 。

3. 当 $\zeta = 1$,即 $R^2 = \frac{4L}{C}$ 时,对应临界阻尼状态,方程组的解为

$$u_C = E\left(1 + \frac{t}{\tau}\right) e^{-t/\tau}$$

其中 $\tau = \frac{2L}{R}$, 其为从过阻尼到阻尼振动过渡的分界点。

对于充电过程,考虑初始条件,电路方程组变为

$$\begin{cases} LC \frac{\mathrm{d}^2 u_C}{\mathrm{d}t^2} + RC \frac{\mathrm{d}u_C}{\mathrm{d}t} + u_C = E\\ u_C = 0 & (t = 0)\\ \frac{\mathrm{d}u_C}{\mathrm{d}t} = 0 & (t = 0) \end{cases}$$

当 $R^2 < \frac{4L}{C}$ 时,方程组的解为

$$u_C = E \left[1 - \sqrt{\frac{4L}{4L - R^C}} e^{-t/\tau} \cos(\omega t + \varphi) \right]$$

当 $R^2 > \frac{4L}{C}$ 时,方程组的解为

$$u_C = E \left[1 - \sqrt{\frac{4L}{R^2C - 4L}} e^{-\alpha t} \sinh(\beta t + \varphi) \right]$$

当 $R^2 = \frac{4L}{C}$ 时,方程组的解为

$$u_C = E \left[1 - \left(1 + \frac{t}{\tau} \right) e^{-t/\tau} \right]$$

可以看出,充电过程与放电过程十分类似,只是最后趋向的平衡位置不同。

4 实验内容

4.1 测 RLC 串联电路的相频特性曲线和幅频特性曲线

取 $u_{pp}=2.0\,\mathrm{V},\ L=0.1\,\mathrm{H},\ C=0.05\,\mu\mathrm{F},\ R=100\,\Omega$ 时,用示波器 CH1、CH2 通道分别 观测 RLC 串联电路的总电压 u 和电阻两端电压 u_R 。注意限制总电压峰值不超过 $3.0\,\mathrm{V}$ (或有效值不超过 $0.1\,\mathrm{V}$),防止串联谐振时产生有危险的高电压。

- 1. 调谐振,改变函数发生器的输出频率,通过 CH1 与 CH2 相位差为 0, CH2 幅度最大来判断谐振与否,记录谐振时的频率 f_0 .
- 2. 用万用表记录谐振时的电感、电容两端的电压 u_L , u_C , 和电源路端电压 u 并计算 Q 值。
- 3. 保持 CH1 的幅度为 2V 不变,按照建议的频率点测量 CH1 与 CH2 的相位差、CH2 的幅度值,并绘制相频曲线和幅频曲线,即 $\varphi-f$ 图象、i-f 图象。

4.2 测 RLC 并联电路的相频特性和幅频特性曲线

取 $u + u_{R'} = 2.0 \,\mathrm{V}$, $L = 0.1 \,\mathrm{H}$, $C = 0.05 \,\mu\mathrm{F}$, $R' = 5 \,\mathrm{k}\Omega$ 。为观测电感与电容并联部分的电压和相位,用 CH1 测量总电压,用 CH2 测量 R' 两端电压,两通道测量电压值相减即为并联部分的电压 u,可通过示波器面板上的"MATH"键实现两通道波形相减。

- 1. 调节函数发生器频率,通过观察 CH1-CH2 与 CH2 相位差为 0, CH2 的幅度最小来判断谐振点,记录此时的频率。
 - 2. 保持 CH1 总电压幅度值 2V 不变 (不同频率点需要调节函数发生器), 按照建议的频

率点测量 CH1-CH2 与 CH2 的相位差,与 CH1-CH2、CH2 的幅度值,绘制相频曲线与幅频曲线,即 $\varphi - f$ 图象、i - f 图象、u - f 图象。

4.3 观测 RLC 串联电路的暂态过程

由函数发生器产生方波,为便于观察,需将方波的低电平调整至与示波器的扫描基线一致。由低电平到高电平相当于充电,由高电平到低电平相当于放电。函数发生器各参数可设置为: 频率 $50\,\mathrm{Hz}$,电压峰峰值 $u_{pp}=2.0\,\mathrm{V}$,偏移 $1\,\mathrm{V}$ 。示波器 CH1 通道用于测量总电压,CH2 用来测量电容两端电压 u_C ,注意两个通道必须共地。实验中 $L=0.1\,\mathrm{H}$, $C=0.2\,\mu\mathrm{F}$.

- 1. 当 $R = 0\Omega$ 时,测量 u_C 波形;
- 2. 调节 R 测得临界电阻 R_C , 并与理论值比较;
- 3. 记录 $R=2\,\mathrm{k}\Omega,\ 20\,\mathrm{k}\Omega$ 的 u_C 波形。函数发生器频率可设置为 250 Hz($R=2\,\mathrm{k}\Omega$)和 20 Hz($R=20\,\mathrm{k}\Omega$).

5 实验结果与数据处理

5.1 测 RLC 串联电路的相频特性曲线和幅频特性曲线

根据实验电路的参数可计算得到 Q 的理论标准值

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 14.142$$

(1) 调节函数发生器输出频率,当 $f = 2.259 \, \mathrm{kHz}$ 时,路端电压与电阻 R 两端电压相位差 趋近为 0,即达到谐振状态,此时用数字多用表测得

$$u = 0.444 \,\mathrm{V}, \quad u_C = 6.84 \,\mathrm{V}, \quad u_L = 6.90 \,\mathrm{V}$$

故而可计算得到电路的品质因数为

$$Q_1 = \frac{u_C}{u} = 15.405, \quad Q_2 = \frac{u_L}{u} = 15.541$$

(2) 在实验讲义给出的参考频率下,保证路端电压 $u_{pp} = 2.0 \,\mathrm{V}$ 不变的情况下测得电压、电流相位差,以及相应的 u_R 值记录如下页。

根据数据记录可作出 $\varphi - f$, i - f 图象如下页。

由 i-f 图象可读得谐振频率为 $f_0=2.241\,\mathrm{kHz}$,通频带宽为 $\Delta f=0.232\,\mathrm{kHz}$,故而可算得品质因子

$$Q' = \frac{f_0}{\Delta f} = 9.659 \,\mathrm{kHz}$$

表 1: RLC 串联谐振电路实验数据记录

函数发生器 <i>f</i> (kHz)	1.88	2.00	2.08	2.15	2.19
电压电流相位差 φ	-0.451π	-0.424π	-0.366π	-0.266π	-0.193π
电阻电压 $U_R (\mathrm{mV})$	145	207	301	408	575
函数发生器 f (kHz)	2.22	2.24	2.25	2.26	2.275
电压电流相位差 φ	-0.116π	-0.051π	-0.035π	0.006π	0.067π
电阻电压 $U_R (\mathrm{mV})$	567	579	582	578	553
函数发生器 f (kHz)	2.30	2.38	2.43	2.62	3.18
电压电流相位差 φ	0.127π	0.240π	0.302π	0.368π	0.445π
电阻电压 $U_R (\mathrm{mV})$	530	413	301	154	62

图 7: RLC 串联谐振电路相频曲线

图 8: RLC 串联谐振电路幅频曲线

可见 Q_1 , Q_2 , Q' 与 Q 差距均较大,可能的误差原因除读数时的数据跳变外,还有电感、电容的内阻使得实际实验电路与分析时的理想电路并不相同。

5.2 测 RLC 并联电路的相频特性和幅频特性曲线

(1) 调节函数发生器输出频率至并联部分电压 u 与总电流相位相同,即达到谐振,此时可得谐振频率为

$$f_p = 2.249 \, \text{kHz}$$

(2) 在参考频率下测得实验数据如下3:

表 2: RLC 并联谐振电路实验数据记录

f (kHz)	2.05	2.15	2.20	2.231	2.24	2.247	2.25
$\Delta t \; (\mu s)$	120	104	80	60	36	12	-2
φ	0.492π	0.447π	0.352π	0.268π	0.161π	0.053π	-0.009π
u (mV)	680	740	790	840	880	920	935
$U_{R'}$ (mV)	684	401	193	103.8	94.4	81.92	79.36
f(kHz)	2.253	2.2565	2.265	2.275	2.32	2.40	2.60
$\Delta t \; (\mu s)$	-12	-22	-48	-60	-82	-94	-96
φ	-0.054π	-0.099π	-0.217π	-0.273π	-0.380π	-0.451π	-0.499π
u (mV)	935	925	895	845	755	680	550
$U_{R'}$ (mV)	81.92	84.48	92.16	112.6	238	435	710

根据上表数据可作出如下图象:

图 9: RLC 并联电路相频曲线

 $^{^{\}circ}$ 原始数据中 Δt 部分数据符号与此表相反,原因在于实验时读得的是电流 (CH2) 与并联部分的电压 u(CH1-CH2) 的相位差,此处应进行取反。示波器光标功能仅能读取相同相位点间的时间间隔,根据 Δt 计算相位差 φ 的公式为

 $[\]varphi = 2\pi f \Delta t$.

图 10: RLC 并联电路 u-f 曲线

图 11: RLC 并联电路 i-f 曲线

5.3 观测 RLC 串联电路的暂态过程

(1) 调节 $R = 0\Omega$, 得到如下 u_C 波形:

图 12: 阻尼振动状态波形

(2) 自小到大调节 R 的大小, 当 $R = 1300 \, \Omega$ 时,波形振动部分消失,即可近似看作临界

阻尼状态,波形如下:

图 13: 临界阻尼状态波形

根据实验所用电路元件参数可计算得到临界电阻理论值 R_C 为

$$R_C = \sqrt{\frac{4L}{C}} \approx 1414\,\Omega$$

实际测得的结果较小,除因临界阻值附近波形不明显影响选取的精度外,还有电路中电感、电容内阻带来的影响。

(3) 调节 R 至过阻尼状态 ($2k\Omega$, $20k\Omega$), 在相应频率下记录 u_C 波形:

图 14: 过阻尼状态下波形

6 实验总结

本次实验的实验过程较为顺利,但对示波器的了解不足、实验原理的理解不够深入导致实验过程中还是屡有失误,譬如 5.2 节原始数据中 Δt 的符号问题等。