CS 6550 List of Project Topics

- Stereo matching
- Dynamic background subtraction
- Action recognition
- Face verification
- Facial expression recognition
- Image categorization
- Image stitching
- image segmentation
- Object tracking
- Object detection
- Deep learning related topics

CS 6550 Final Project: Image Segmentation & Boundary Finding

Segmentation and Boundary Finding

- A large dataset of natural images that have been segmented by human observers. This dataset serves as ground truth for learning grouping cues as well as a benchmark for comparing different segmentation and boundary finding algorithms.
- The normalized cut algorithm provides a mechanism for going from pairwise pixel affinities based on local cues to partitions that maximize the ratio of affinities within a group to that across groups.
- By computing oriented gradients on the eigenvectors of the normalized Laplacian, a robust signal for marking image contours can be obtained.
- The Berkeley group used Conditional Random Fields as a formalism for combing low-, mid- and high- level cues for grouping and figure-ground discrimination.

P. Arbelaez, M. Maire, C. Fowlkes and J. Malik., *Contour Detection and Hierarchical Image Segmentation.*, IEEE TPAMI, Vol. 33, No. 5, pp. 898-916, May 2011.

Contour Detection and Hierarchical Image Segmentation

gPb Segmentation Results

Resources

- The Berkeley Segmentation Dataset and Benchmark
 - http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
- Reference paper
 - L. Grady, Random Walks for Image Segmentation, IEEE
 Trans. on Pattern Analysis and Machine Intelligence, Vol. 28, No. 11, pp. 1768–1783, Nov., 2006.
 - P. Arbelaez, M. Maire, C. Fowlkes and J. Malik.,
 Contour Detection and Hierarchical Image Segmentation.,
 IEEE TPAMI, Vol. 33, No. 5, pp. 898-916, May 2011.
 [resources]
 - Xiaofeng Ren and Liefeng Bo, "Discriminatively Trained Sparse Code Gradients for Contour Detection.", NIPS 2012.

Resources for Image Segmentation

- Multiscale Combinatorial Grouping (MCG) is available.
- Resources for contour detection and image segmentation, including the Berkeley Segmentation Data Set 500 (BSDS500), are available.
- The Berkeley Segmentation Data Set 300 (BSDS300) is still available.
- The Berkeley Semantic Boundaries Dataset and Benchmark (SBD) is available.
- The Berkeley Video Segmentation Dataset (BVSD) is available.

Berkeley Segmentation Dataset

Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500)

This new dataset is an extension of the <u>BSDS300</u>, where the original 300 images are used for training / validation and 200 fresh images, together with human annotations, are added for testing. Each image was segmented by five different subjects on average. Performance is evaluated by measuring Precision / Recall on detected boundaries and three additional

region-based metrics.

Interactive Image Segmentation

Problem

- Interactive segmentation with user defined labels
- Two label interactive segmentation
- Multi-label interactive segmentation

Approaches

- Random walk
- Graph Cut

Segmentation foreground

Random walker segmentation

L. Grady, <u>Random Walks for Image Segmentation</u>, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 28, No. 11, pp. 1768–1783, Nov., 2006.

Random walk image segmentation

Graph theory

$$-G=(V,E)$$

Random walk image segmentation

• Given region x_M and unknown region x_M

$$D[\mathbf{x}] = \frac{1}{2} \mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x} \qquad L_{ij} = \begin{cases} d_{i} & \text{if } i = j, \\ -w_{ij} & \text{if } v_{i} \text{ and } v_{j} \text{ are adjacent nodes} \\ 0 & \text{otherwise,} \end{cases}$$

$$D[x_{U}] = \frac{1}{2} \begin{bmatrix} x_{M}^{T} x_{U}^{T} \end{bmatrix} \begin{bmatrix} L_{M} & D \\ B^{T} & L_{U} \end{bmatrix} \begin{bmatrix} x_{M} \\ x_{U} \end{bmatrix} = \frac{1}{2} (x_{M}^{T} L_{M} x_{M} + 2x_{U}^{T} B^{T} x_{M} + x_{U}^{T} L_{U} x_{U}) \qquad \stackrel{(0.27)}{\longrightarrow} (0.27) \xrightarrow{(0.27)} (0.27) \xrightarrow{($$

• D[u]=0 $L_U x_U = -B^T x_M$

2D and 3D

Grabcut segmentation

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.

Grabcut segmentation

Gaussian Mixture Model (typically 5-8 components)

Object Detection and Segmentation from RGBD Images

S. Gupta, R. Girshick, P. Arbelaez and J. Malik., "Learning Rich Features from RGB-D Images for Object Detection and Segmentation", ECCV 2014 https://github.com/s-gupta/rcnn-depth

Examples of Object Detection Results

CS 6550 Final Project: Guided Image Filter

Edge-Preserving Filtering

- An important topic in computer vision
 - Denoising, image smoothing/sharpening, texture decomposition, HDR, compression, image abstraction, optical flow estimation, image super-resolution, feature smoothing...
- Existing methods
 - Weighted Least Square [Lagendijk et al. 1988]
 - Anisotropic diffusion [Perona and Malik 1990]
 - Bilateral filter [Aurich and Weule 95], [Tomasi and Manduchi 98]
 - Digital TV (Total Variation) filter [Chan et al. 2001]

Bilaterial Filter

Guided Filter

Guided Filter

- Extend to the entire image
 - In all local windows ω_k , compute the linear coefficients
 - Compute the average of $a_kI_i+b_k$ in all ω_k that covers pixel q_i

$$a_k = \frac{\text{cov}_k(I, p)}{\text{var}_k(I) + \varepsilon}$$

$$b_k = \overline{p}_k - a\overline{I}_k$$

$$q_i = \frac{1}{|\omega|} \sum_{k|i \in \omega_k} (a_k I_i + b_k)$$

$$= \overline{a}_i I_i + \overline{b}_i$$

Example – detail enhancement

input (I=p)

bilateral filter σ_s =16, σ_r =0.1

guided filter r=16, $\varepsilon=0.1^2$

Example – haze removal

guide I

guided filter (<0.1s, 600x400p)

global optimization (10s)

CS 6550 Final Project: Image Stitch

Image stitching/paronoma

Problem

Image stitching/paronoma

- Data set
 - http://www.visualsize.com/mosaic3d/index.php
- References
 - Jia and C.-K. Tang, Image stitching using structure deformation, , IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2008.
 - Gao et al., Constructing Image Panoramas using Dual-Homography Warping, CVPR 2011.

— ...

Constructing Image Panoramas using Dual-Homography Warping

Work flow of our dual-homography computation. Candidate points are first clustered into groups from which two homographies are estimated using RANSAC. A per-pixel weight map ω_{ij} is computed to control the blending of the two homographies.

Input Images Of The Cul de Sac Data Set

Input Images Of The University of California, Santa Barbara Data Set

CS 6550 Final Project: Stereo Matching

Stereo Matching

- Assume that pairs of images are rectified.
- Given left and right image, compute left disparity and right disparity

Tree-Based Stereo Matching

Efficient hybrid tree-based stereo matching with applications to postcapture image refocusing, <u>Vu</u> DT, Chidester B, Yang H, Do MN, Lu J., IEEE IP. 23(8):3428-42, 2014

Stereo matching results

Evaluation & Datasets

Most popular datasets

http://vision.middlebury.edu/stereo/data/

Middlebury Stereo Datasets

<u>2001 datasets</u> - 6 datasets of piecewise planar scenes [1] (Sawtooth, Venus, Bull, Poster, Barn1, Barn2)

2003 datasets - 2 datasets with ground truth obtained using structured light [2] (Cones, Teddy)

<u>2005 datasets</u> - 9 datasets obtained using the technique of [2], published in [3, 4] (Art, Books, Dolls, Laundry, Moebius, Reindeer, Computer, Drumsticks, Dwarves)

2006 datasets - 21 datasets obtained using the technique of [2], published in [3, 4] (Aloe, Baby1-3, Bowling1-2, Cloth1-4, Flowerpots, Lampshade1-2, Midd1-2, Monopoly, Plastic, Rocks1-2, Wood1-2)

References

- Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. PAMI 2008.
- X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On building an accurate stereo matching system on graphics hardware. GPUCV 2011.
- Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative optimization. CVPR 2008.

CS 6550 Final Project: Background subtraction for dynamic scene

Background

- The detection moving objects from a video sequence is a fundamental task in many computer vision applications
- In general environment, the background consists of stationary and dynamic object
 - Traditional background subtraction algorithm (e.g. GMM) work well for stationary background. However, the performance usually increase when the background is dynamic.

Ground truth

GMM based method

Problem description & dataset

- You should develop an algorithm to extract foreground object in dynamic scenes .
- You should test some public datasets
 - Dataset1 includes fountain, water surfaces, moving escalators etc.
 (http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html)

Dataset2 includes boat, surf, ocean, rain etc.
 (http://www.svcl.ucsd.edu/projects/background_subtraction/ucsdbgs ub_dataset.htm)

Approaches

- Local spatial information based methods
 - L. Li, W. Huang, I.-Y.H. Gu, and Q. Tian, "Foreground object detection from videos containing complex background," ACM MM'03
 - A Bayes decision rule for classification of background and foreground from selected feature vectors is formulated
 - The stationary background object is described by the color feature, and the moving background object is represented by the color co-occurrence feature

(b)

(c)

(a)

 S.-P. Zhang, H.-X. Yao, and S.-H. Liu, "Dynamic background modeling and subtraction using spatiotemporal local binary patterns," ICIP'08

Extend ordinary local binary patterns from spatial domain to spatiotemporal domain

$$LBP_{P,R}^{t}(x_{t,c}, y_{t,c}) = \sum_{p=0}^{P-1} s(g_{t,p} - g_{t,c})2^{p}$$

$$LBP_{P,R}^{t-1}(x_{t,c}, y_{t,c}) = \sum_{p=0}^{P-1} s(g_{t-1,p} - g_{t,c})2^p$$

References

- L. Li, W. Huang, I.-Y.H. Gu, and Q. Tian, "Foreground object detection from videos containing complex background," ACM MM'03
- Y. Sheikh, M. Shah, "Bayesian object detection in dynamic scenes," CVPR'05
- S.-P. Zhang, H.-X. Yao, S.-H. Liu, X.-L. Chen and W. Gao, "A Covariance-based Method for Dynamic Background Subtraction," ICPR'08
- G. Dalley, J. Migdal, W.E.L. Grimson, "Background Subtraction for Temporally Irregular Dynamic Textures," WACV'08
- V. Mahadevan, N. Vasconcelos, "Spatiotemporal Saliency in Dynamic Scenes", PAMI'10

CS 6550 Final Project Action Recognition

background

- Automatically recognizing human actions is receiving increasing attention due to its wide range of applications
- Recent towards the use of Spatio-Temporal Interest Points (STIPs) for local descriptor-based recognition strategies
- Simple scenes V.S. complex scenes

Weizmann dataset (simple) – wave hand

hollywood2 dataset (complex) - Kiss

Problem description & dataset

- You should develop an algorithm to classify actions effectively from actions datasets.
- Simple datasets
 - KTH dataset: 6 different actions performed in 4 different but wellcontrolled environments by 25 different actors

http://www.nada.kth.se/cvap/actions/

 Weizmann dataset: contains 90 videos separated into 10 actions performed by 9 persons

http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html

- Complex dataset (including movie and YouTube video clips)
 - Hollywood2 dataset: it composed of video clips extracted from 69
 Hollywood movies, and contains 12 classes actions. Totally, there are
 1707 action sample videos

http://www.di.ens.fr/~laptev/actions/hollywood2/

 YouTube action dataset: 1168 complex and challenging YouTube videos of 11 human action categories. (a mix of steady and shaky cameras, cluttered background, low resolution variation in viewpoint and illumination)

http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html

Approaches

General action recognition flowchart

- In the past decade, some approaches based on variants of features descriptors have developed for recognizing actions.
 - Spatio-Temporal Interest Points
 - Space time volume
 - Shape based representation
 - pose-based representation

Reference

- P. Dollar, V. Rabaud, G. Cottrell, S. Belongie, "Behavior recognition via sparse spatio-temporal features," PETS'05
- I. Laptev, M. Marszalek, C. Schmid, B. Rozenfeld, "Learning realistic human actions from movies," CVPR'08
- J. Liu, S. Ali, M. Shah, "Recognizing human actions using multiple features", CVPR'08
- M. Marszalek, I. Laptev, C. Schmid, "Actions in context", CVPR'09
- B. Chakraborty, M. B. Holte, T. B. Moeslund, J. Gonzalez, F. S. Roca, "A selective spatio-temporal interest point detector for human action recognition in complex scenes", ICCV'11

CS 6550 Final Project Face Verification

Face Verification

- Face recognition: querying the input image from the stored database to recognize who the individual is.
- Face verification: to verify if two given face images are the same person or not.

Dataset

- CMU PIE dataset
 - 68 people, 23 illumination conditions, 4 expressions

- LFW (Labeled Face in the Wild) Dataset
 - 13233 face images of 5749 people

(a) Same person

(b) Different person

CS 6550 Final Project Visual Tracking