Лабораторная работа 3.4.2

Закон Кюри-Вейсса

Выполнил: Тимонин Андрей

1 Цель работы

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

2 В работе используются:

- катушка самоиндуктивности с образцом из гадолиния;
- термостат;
- частотомер;
- цифровой вольтметр;
- LC-автогенератор;
- термопара медь-константан;

3 Ход работы

Nº	T,° C	ΔV , B	au, mkc
1	14.13 ± 0.01	-0.000010 ± 0.000001	10.065 ± 0.001
2	16.03 ± 0.01	-0.000011 ± 0.000001	9.956 ± 0.001
3	18.03 ± 0.01	-0.000012 ± 0.000001	9.711 ± 0.001
4	20.02 ± 0.01	-0.000013 ± 0.000001	9.410 ± 0.001
5	22.01 ± 0.01	-0.000018 ± 0.000001	9.046 ± 0.001
6	24.01 ± 0.01	-0.000023 ± 0.000001	8.760 ± 0.001
7	26.01 ± 0.01	-0.000012 ± 0.000001	8.602 ± 0.001
8	28.00 ± 0.01	-0.000019 ± 0.000001	8.536 ± 0.001
9	30.00 ± 0.01	-0.000018 ± 0.000001	8.487 ± 0.001
10	32.00 ± 0.01	-0.000020 ± 0.000001	8.454 ± 0.001
11	34.00 ± 0.01	-0.000019 ± 0.000001	8.428 ± 0.001
12	36.00 ± 0.01	-0.000019 ± 0.000001	8.411 ± 0.001
13	38.00 ± 0.01	-0.000019 ± 0.000001	8.395 ± 0.001
14	40.00 ± 0.01	-0.000020 ± 0.000001	8.383 ± 0.001

Таблица 1: Данные эксперимента

$$\Delta U_{\text{допустимая}} = \frac{0.5}{24} = 0.000021$$
B (1)

ЗАМЕЧАНИЕ: Необходимо учесть разность температур между водой и образцом используя показания термопары.

$$\Delta T_{\text{поправка}} = 24000 \frac{^{\circ}\text{C}}{\text{B}} \cdot \Delta V \tag{2}$$

$N_{\overline{0}}$	$\Delta T_{\text{поправка}}, ^{\circ} C$	$T_{\text{итоговая}}$, ° С
1	-0.240 ± 0.024	13.890 ± 0.034
2	-0.264 ± 0.024	15.766 ± 0.034
3	-0.288 ± 0.024	17.742 ± 0.034
4	-0.312 ± 0.024	19.708 ± 0.034
5	-0.432 ± 0.024	21.578 ± 0.034
6	-0.552 ± 0.024	23.458 ± 0.034
7	-0.288 ± 0.024	25.722 ± 0.034
8	-0.456 ± 0.024	27.544 ± 0.034
9	-0.432 ± 0.024	29.568 ± 0.034
10	-0.480 ± 0.024	31.520 ± 0.034
11	-0.456 ± 0.024	33.544 ± 0.034
12	-0.456 ± 0.024	35.544 ± 0.034
13	-0.456 ± 0.024	37.544 ± 0.034
14	-0.480 ± 0.024	39.520 ± 0.034

Таблица 2: Поправки к температурам образца и итоговые температуры

Nº	$ au^2 - au_0^2, \text{MKC}^2$
1	33.209 ± 0.037
2	31.026 ± 0.036
3	26.208 ± 0.036
4	20.453 ± 0.035
5	13.717 ± 0.035
6	8.625 ± 0.034
7	5.899 ± 0.034
8	4.768 ± 0.034
9	3.934 ± 0.033
10	3.375 ± 0.033
11	2.936 ± 0.033
12	2.649 ± 0.033
13	2.381 ± 0.033
14	2.179 ± 0.033

Таблица 3: Данные для графика 1

График 1. Зависимость $au^2 - au_0^2$ от Т

Nº	$\frac{1}{\tau^2 - \tau_0^2}$, MKC ⁻²
1	0.030 ± 0.001
2	0.032 ± 0.001
3	0.038 ± 0.001
4	0.049 ± 0.002
5	0.073 ± 0.003
6	0.116 ± 0.004
7	0.170 ± 0.006
8	0.210 ± 0.007
9	0.254 ± 0.009
10	0.296 ± 0.010
11	0.341 ± 0.011
12	0.377 ± 0.013
13	0.420 ± 0.014
14	0.459 ± 0.015

Таблица 4: Данные для графика 2

Уравнение полинома 5-ой степени:

$$y = -0.00000046574^7 + 0.00008699911^6 - 0.00678349062^5 + 0.28508966918^4 - \\ -6.94453675364^3 + 97.67512396676^2 - 734.77532661281 + 2321.79252167450$$

Точка Кюри для гадолиния лежит посередине отрезка $\theta_K = \frac{T_{\text{макс}} - T_{\text{мин}}}{2}$ Точка Кюри для гадолиния:

$$\theta_K = \frac{31.52 + 13.89}{2} = 22.705 \pm 0.048^{\circ} C(295.855 \pm 0.048K)$$
(3)

Табличное значение точки Кюри для гадолиния: $\theta_{K\, ext{reop}}=18.85^\circ\text{C}(292K)$ Погрешность экспериментального значения: $\delta\theta_K=\frac{22.705-18.85}{18.85}\cdot 100\%=20.45\%$

График 2. Зависимость
$$\frac{1}{\tau^2 - \tau_0^2}$$
 от Т

Погрешности аппроксимации для парамагнитной точки Кюри $\Delta k = 0.0002 \frac{1}{\text{мкс}^2 \cdot \circ \text{C}}, \Delta b = 0.0073 \text{мкc}^{-2}$

Парамагнитная точка Кюри из графика 2 (пересечение с осью абцисс) $\theta_p=17.90\pm0.51^{\circ}\mathrm{C}(291.05\pm0.51K)$