Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Отчет по лабораторной работе № 3 «Применение многослойной нейронной сети для классификации данных»

студента Шамаева Сергея группы Ба	21-514 Дата сдачи:		
Ведущий преподаватель:	оценка:	подпись:	

Вариант № 4

Цель работы: изучение математической модели многослойной нейронной сети и решение с её помощью задачи классификации данных.

1. Исходные данные

Число признаков	Число классов	Объём выборки	Объёмы выборок для каждого класса
2	4	600	200; 100; 150; 150

Диаграмма рассеяния исходных данных:

(отметить данные разных классов разными цветами)

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Формирование обучающей, валидационной и тестовой выборок:

	Обучающая	Валидационная	Тестовая	Всего
%	60	30	10	100
Объём выборки	360	180	60	600
Объёмы выборок для 1 класса	112	61	27	200
Объёмы выборок для 2 класса	69	23	8	100
Объёмы выборок для 3 класса	84	58	8	150
Объёмы выборок для 4 класса	95	38	17	150

Предобработка данных:

1 1 1 1			
	Метод	Параметры метода	Формула расчёта
Предобработка входов	MinMaxScaler	feature range = (-1, 1)	$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$
Предобработка выходов	-		

2. Построение нейросетевого классификатора с двумя скрытыми слоями

Параметры архитектуры сети:

параметры архитектуры ести.					
Число входов	Число выходов	Число и АХ нейронов 1-го скрытого слоя	Число и АХ нейронов 2-го скрытого слоя	Функция активации выходного нейрона	
2	4	10, tanh	10, tanh	Logistic / Softmax	

Схема нейронной сети:

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети»

Параметры обучения:

1 1			
Метод обучения	Параметры метода обучения	Режим обучения	Функция потерь
Momentum	lr = 0.001 momentum = 0.8	SGD	Categorical cross- entropy

Параметры инициализации:

Критерий останова: 20000 эпох.

Зависимость средней функции потерь $E(\tau)$ (левая ось) и ошибки классификации $\varepsilon(\tau)$ (правая ось) на обучающей, валидационной и тестовой выборках от времени обучения (всего 6 графиков):

Отметить на графике начало переобучения (если наблюдается) (є = число неверно классифицированных примеров/число всех примеров)

Показатели качества обученного нейросетевого классификатора:

	Обучающая	Валидационная	Тестовая
Среднее значение функции потерь E	0.595	0.712	0.778
Ошибка классификации 8	0.241	0.266	0.3

Матрица ошибок классификации обученной сети на обучающей / тестовой выборках:

Формируемые обученной сетью области классов:

(нанести на диаграмму исходные данные, закрасить области разных классов разными цветами, отметить границы между классами)

3. Проверка устойчивости найденного решения

Провести обучение сети заново из другой случайной начальной точки w(0).

Показатели качества обученного нейросетевого классификатора:

	Обучающая	Валидационная	Тестовая
Среднее значение функции потерь E	0.573	0.711	0.828
Ошибка классификации Е	0.233	0.277	0.316

Весенний семестр 2022/2023. Лабораторный практикум по курсу «Нейронные сети» Формируемые обученной сетью области классов:

(нанести на диаграмму исходные данные, закрасить области разных классов разными цветами, отметить границы между классами)

Выводы: Данный классификатор устойчив к выбору начальных весов, можно заметить, что он достаточно точно разделяет классы. Основная ошибка связана с перемешиванием классов изначальных данных. После 10000 эпох на валидационной выборке мы видим переобучение, однако функция потери имеет лишь незначительный рост.