

Introduction to Operating Systems CS 1550

Spring 2023
Sherif Khattab
ksm73@pitt.edu

(Some slides are from Silberschatz, Galvin and Gagne ©2013)

Course Goal and Objectives

Continue to demystify a good portion of the magic about how computers work so that you can write more efficient programs

The specific objectives are:

- Modify and compile the Linux kernel to add system calls
- Write multi-process/multi-thread programs free from race conditions and deadlocks
- Simulate page-replacement algorithms for virtual memory management
- 4. Implement a user-land file system

Contact Info

- Course website: http://www.cs.pitt.edu/~skhattab/cs1550/
- Instructor: Sherif Khattab ksm73@pitt.edu

Student Support Hours: https://khattab.youcanbook.me

MW: 11:00-12:00

Th: 9:00-10:00 and 11:00-12:00

F: by appointment

- 6307 Sennott Square, Virtual Office: https://pitt.zoom.us/my/khattab
- Teaching Team:

TBD

- Recitations start next week!
- Communication

Piazza (Please expect a response within 72 hours)

Email not recommended!

Textbook

Operating System Concepts (9th Edition)

Silberschatz, Galvin, and Gagne

Grading

- 40% on four programming projects
 - System programming using C
 - posted on Canvas, distributed using Github, and submitted on Gradescope from Github
 - partially auto-graded with unlimited submission attempts
- 30% on exams: 18% on higher grade and 12% on lower
- 10% on homework assignments on Canvas
 - auto-graded with three attempts
- 10% on lab exercises and 4 quizzes on the projects; auto-graded
 - Labs use MIT's Xv6 operating system
- 10% on in-class Top Hat questions
 - participation only

Canvas Walkthrough

- Lecture PPTs posted on Tophat after class
 - Draft slides in PDF available on Github usually before class
- Lecture and recitation recordings
 - under Panopto Video
- Pre- and Post-course test
 - Pre-test must be taken to unlock the course modules
- Piazza for discussion and communication
- Gradescope and autograding policies
- Academic Integrity
- NameCoach

Expectations

- Your continuous feedback is important!
 - Anonymous Qualtrics survey (link on Syllabus page)
 - Midterm and Final OMET
- Your engagement is valued and expected with
 - classmates
 - teaching team
 - course material

Lecture structure (mostly)

Time	Description
~5 min before and after class	Informal chat
~25 min	Announcements, review of muddiest points on previous lecture, and QA on assignments/labs/homework problems
~45 min	Lecturing with Tophat questions and/or activities
~5 minutes	QA and muddiest points/reflections

Why is this class (notoriously) hard?

- Lots of concepts
 - Attend lectures and recitations (if you absolutely cannot attend in-person, watch the video recordings)
 - Study often!
 - Put effort into the weekly homework assignments
- Projects are relatively hard
 - Refresh your C programming and GDB debugging skills (CS 0449!)
 - Start early and show up to student support hours!

Announcements

- Lab 0 due next Friday (soft deadline; not graded)
- Homework 1 will be posted this Friday
- Recitations start next week
- VS Code setup tutorial on Piazza (also linked from Canvas)
- Draft Slides linked from Canvas

Agenda

- Main tasks of an operating system
- System Calls
 - What an interrupt is
 - What happens when an interrupt occurs
 - What a system call is
 - How system calls implemented
 - Effect of OS structure on system calls

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer hardware

What does an OS do?

- Manages (controls and arbitrates) resources
 - Processors, Memory, Input/output devices,
 Communication devices, Storage, Software applications
 - Conflicting goals:
 - e.g., performance vs. utilization
 - Separation of policy and mechansim
- Provides abstractions to application programs
 - Ease of use
 - Virtualization
- Protects resources

Interrupts

Hardware or software:

- Hardware interrupt by one of the devices
- Software interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - Other process problems include processes trying to modify each other's or the operating system's memory (e.g., segmentation fault)
 - Request for operating system service (i.e., system call)

Interrupt Descriptor Table

- Interrupt transfers control to the interrupt service routine (ISR)
- ISRs are segments of code that determine what action should be taken for each type of interrupt
 - part of the OS kernel
- An interrupt vector contains the address of the ISR for one interrupt
- An interrupt vector table is an array of interrupt vectors
 - also known as interrupt descriptor table (IDT)

Dual-mode Operation

- Dual-mode operation allows OS to protect itself and other system components
 - At least two modes: user mode and kernel mode
 - Mode bit(s) provided by hardware (inside CPU registers)
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - Some memory addresses designated as privileged, only accessible in kernel mode
 - Therefore, we get segmentation fault on null (i.e., 0) pointer dereference
 - Interrupts change mode to kernel
 - return from interrupt resets mode back to user
- Increasingly CPUs support multi-mode operations
 - virtual machine manager (VMM) mode for guest VMs

What happens when an interrupt occurs?

The CPU transitions from User Mode to Kernel Mode

How does an OS (roughly) work?

What happens on a hardware interrupt?

