COMS 4771-2 Fall 2018 Homework 2

Zhuangyu Ren(zr2209)

October 10, 2018

Problem 1

@inproceedingsseabold2010statsmodels, title=Statsmodels: Econometric and statistical modeling with python, author=Seabold, Skipper and Perktold, Josef, booktitle=9th Python in Science Conference, year=2010,

- (a) Test risks of the ordinary least squares estimator is 0.53978372. Test risks of the sparse linear predictor is 0.5565456.
- (b) Names of the variables with non-zero coefficients in the sparse linear predictor, along with the coefficient values are:

 $\hat{\beta}_0$: 5.82610034

volatile acidity : -0.24474264

sulphates: 0.10847122 alcohol: 0.37362602

(c) volatile acidity:

total sulfur dioxide : -0.4220072736318842

citric acid: -0.3755630209692122

sulphates:

chlorides: 0.4071152150059981

fixed acidity: 0.29686322762159284

alcohol:

density: -0.6795934959123543

residual sugar : -0.34626243022889536

Problem 2

@inproceedingsseabold2010statsmodels, title=Statsmodels: Econometric and statistical modeling with python, author=Seabold, Skipper and Perktold, Josef, booktitle=9th Python in Science Conference, year=2010,

(a) As the conclusion in handout, we know that
$$E[R(\widehat{\beta})] \leq R(\beta^*) + \frac{\bar{\sigma}^2 r}{n}$$
 so, $E\left[\frac{1}{n}\sum_{i=1}^n(x_i^T\widehat{\beta}-E(Y_i))^2\right] \leq R\left[\frac{1}{n}\sum_{i=1}^n(x_i^T\beta^*-E(Y_i))^2\right] + \frac{\bar{\sigma}^2 r}{n}$ $A^TA\widehat{\beta}^* = A^Tb$ E(Y) using the Taylor's (remainder) theorem, so only the (k+1)-th will remain. $\text{var}(Y) = 1$ rank of A is (k+1) so, $E\left[\frac{1}{n}\sum_{i=1}^n(x_i^T\widehat{\beta}-E(Y_i))^2\right] \leq \left(\frac{\pi^{k+1}}{(k+1)!}\right)^2 + \frac{k+1}{n}$

(b)

(c) The average fixed design risks for each k are shown in the table and plot as below.

k	risk	k	risk	k	risk	k	risk
1	0.496164	6	0.009518	11	0.012068	16	0.017014
2	0.497105	7	0.008000	12	0.012997	17	0.018002
3	0.096005	8	0.009021	13	0.014052	18	0.019102
4	0.097012	9	0.010011	14	0.015061	19	0.020058
5	0.008510	10	0.011038	15	0.016037	20	0.021035

Problem 3

@inproceedingsseabold2010statsmodels, title=Statsmodels: Econometric and statistical modeling with python, author=Seabold, Skipper and Perktold, Josef, booktitle=9th Python in Science Conference, year=2010,

- (a) Features remain after the screening is 73
- (b) The empirical risk of $\widehat{\beta}(\widehat{J})$ is 0.5184631137998037
- (c) The empirical risk of $\widehat{\beta}(I)$ is 0.838553272038375

the difference between two risks gets smaller.

(d) I randomly generated 10 pairs of data and labels, computed their $\widehat{\beta}(\widehat{J})$ and $\widehat{\beta}(I)$. Below are the outcomes:

```
n is 236; d is 753; random risk is 0.410838458083448; Irisk is 0.7323342590472934 n is 217; d is 447; random risk is 0.5105407622750471; Irisk is 0.8575392192518303 n is 269; d is 772; random risk is 0.4170041318711085; Irisk is 0.7552813920061883 n is 235; d is 560; random risk is 0.5092864102832999; Irisk is 0.7832188161174825 n is 217; d is 812; random risk is 0.2794990858610098; Irisk is 0.6756825703025061 n is 765; d is 903; random risk is 0.7074898586441014; Irisk is 0.9530342963972447 n is 224; d is 637; random risk is 0.45179746254645453; Irisk is 0.7863053297575778 n is 339; d is 342; random risk is 0.750291984275502; Irisk is 0.9355944079878 n is 485; d is 469; random risk is 0.6744905836310303; Irisk is 0.9382904951357046 n is 332; d is 311; random risk is 0.7060903365984399; Irisk is 0.9407575809911612 I find that when n is much larger than k, the difference between two risks will decrease, while when n is equal or smaller than k, the difference will grow larger.

This may be caused by the screening procedure. We add the relationship to x and y by counting their correlations. So the risk we compute by that way is smaller than other methods. But with the number of n grows, this relationship can be reduced, so
```

(e) I think the $\widehat{\beta}(\widehat{J})$ will become smaller but the empirical risk will be larger. Because when we choose the same $\widehat{\beta}$ on a different data-label set, the $\widehat{\beta}$ cannot fully reflect the new relationships between data and labels. So the ordinary least squares estimate $\widehat{\beta}(\widehat{J})$ will be smaller as the correlation decreases. At the same time, square loss risk will become larger because of the inaccurate parameters.