

Virtual LAN (VLAN)

VLAN - Virtual LAN

Objectivo

- Criação de redes locais virtuais sobre uma rede local física composta por um ou mais equipamentos activos
- Vários domínios de broadcast num (ou mais) switch (logical broadcast domain)
- Definido nas normas IEEE 802.1Q e 802.3ac (1998)

VLAN - Virtual LAN

- Implementação num só switch
 - No switch é definido em cada porta o VLAN ID (VPID) VLAN a que a porta está associada
 - Simula switches virtuais dentro do equipamento físico com as portas de uma VLAN
 - Os switches só encaminham tramas entre duas portas se elas pertencerem à mesma VLAN
 - Os switches só encaminham tramas de Broadcast para as portas pertencentes à VLAN onde ele foi originado

Rede comutada simples

- Alice e Rui trabalham com o servidor A
- Carlos trabalha com o servidor B

Usar switchs para dividir a rede

• A maneira mais simples de dividir a rede requer dois *switchs*

Usar VLAN para dividir a rede

- Funcionalidade equivalente
 - Precisa de apenas um switch
- VLAN 1 e 2 são separadas

VLAN - Virtual LAN (2)

- Implementação entre switches
 - A porta de ligação entre switches pertence a várias ou a todas VLAN
 - Retransmite as tramas de todas as VLANs
 - A porta de ligação entre switches (Tag Port) realiza o Tagging das tramas propagadas
 - Associa à trama o identificador da VLAN a que ela pertence
 - Recalcula o CRC da trama

Load Balancing

 Possibilidade de ter várias ligações, cada um para um subconjunto das VLAN

Trunk

• Uma ligação em *Trunk* transporta as várias VLAN e permite expandir a Rede / VLAN.

Trunk

- As ligações em trunk transportam várias VLAN
- Usadas normalmente para ligações entre switches
- As tramas usadas nestas ligações contêm campos adicionais para identificar a que VLAN pertencem
- É necessário apenas uma ligação para transportar as VLAN todas

VLAN - Formato da trama com Tag

- VLAN Type Ethernet type 0x8100
- Tag Control Info

PRI	CFI	VLAN ID					
VLAN ID							

- PRI (3bit) Prioridade 802.1p
- CFI (1bit) 0 na Ethernet (reservado)
- VLAN ID (12bit) Identif. da VLAN
 - 0 sem VID (só prioridade)
 - 1 ID por omissão
 - 2 até FFE a atribuir
 - FFF reservado
- O tamanho máximo da trama passa a 1522 bytes

Preâmbulo	7 bytes
SFD	1 byte
DA	2 ou 6 bytes
SA	2 ou 6 bytes
VLAN Type	2 bytes
Tag Control Info	2 bytes
Length / Type	2 bytes
Data	46 a 1500 bytes
Pad (opcional)	
FCS	4 bytes

Tipos de VLAN

- Baseadas em:
 - Identificador das portas do switch
 - Configuração Manual
 - Endereços MAC
 - Endereços IP
 - Associar uma gama de endereços IP a uma VLAN
 - Endereços Multicast IP

Atribuição de VLAN

- A atribuição de VLAN pode ser configurada por porta
- Ex:
 - Port 1 VLAN 1
 - Port 2– VLAN 1
 - Port 3 VLAN 2
 - Port 5 Trunk Link

- Workgroups, edifícios, andares, switches...
- Não existe nenhuma regra

VLAN - Topologia

VLAN - Topologia

Adicionar routing sem VLAN

Duas redes com encaminhamento conjunto

Adicionar routing com VLAN

- Duas redes com encaminhamento conjunto
 - Muito simples se existir apenas um switch. O que acontece se forem mais que um...

Routers podem estar em qualquer sitio

Combinar switch e router

• Para obter um *switch* de nível 3

Exemplo de routing entre várias VLAN

Topologia de rede

Exemplo de routing entre várias VLAN

No.	Status	Source Address	Dest Address	Summary	∫Len (¶Rel. Time	Delta Time
1	M	[30.1.1.2]	[40.1.1.2]	ICMP: Echo	146 0:00:00.000	0.000.000
2		[30.1.1.2]	[40.1.1.2]	ICMP: Echo	146 0:00:00.000	0.000.065
3		[40.1.1.2]	[30.1.1.2]	ICMP: Echo reply	146 0:00:00.003	0.003.924
4		[40.1.1.2]	[30.1.1.2]	ICMP: Echo reply	146 0:00:00.004	0.000.064

```
DLC: Ethertype=8100, size=146 bytes

8021Q: ----- 802.1Q Packet -----

8021Q: Tag Protocol Type = 8100

8021Q: Tag Control Information = 001e

8021Q: User Priority = 0

8021Q: Tunnel Type = 0 (Ethernet frame)

8021Q: VLAN ID = 30

8021Q: Ethertype = 0800 (IP)

8021Q:

1P: D=[40.1.1.2] S=[30.1.1.2] LEN=108 ID=1369

1CMP: Echo
```

ı	No.	Status	Source Address	Dest Address	Summary	Len (8	Rel. Time	Delta Time
I	1	М	[30.1.1.2]	[40.1.1.2]	ICMP: Echo	146	0:00:00.000	0.000.000
١	2		[30.1.1.2]	[40.1.1.2]	ICMP: Echo	146	0:00:00.000	0.000.065
1	3		[40.1.1.2]	[30.1.1.2]	ICMP: Echo reply	146	0:00:00.003	0.003.924
I	4		[40.1.1.2]	[30.1.1.2]	ICMP: Echo reply	146	0:00:00.004	0.000.064

Servidores

- Um servidor pode estar ligado a apenas uma VLAN
- Configuração equivalente a um PC normal

 Faz sentido se esse servidor é apenas usado por clientes ligados a essa VLAN

 Se é um servidor partilhado todo o tráfego de outras VLAN tem de ser encaminhado para esta!

Servidores com ligações em *Trunk*

 Se a interface de rede e o sistema operativo o suportarem, os servidores podem ser diretamente ligados a trunks

Assim o servidor pode estar presente em todas as VLAN necessárias

 Apesar de ter apenas uma interface física o servidor vai ter múltiplas interfaces virtuais, uma por cada VLAN

Exemplo

Spanning Tree com VLAN

Problemas se o STP não for por VLAN

802.1u – Alterações ao STP

- Bridge Priority (16 bits)
 - 4 bits para bridge priority
 - 12 bits para o identificador da VLAN

VLAN - Exercício

Rede lógica

- 5 departamentos num edifício (50 máquinas por departamento)
 - andar 1 departamento A e B
 - andar 2 departamento C e metade do D
 - andar 3 departamento E e metade do D
- cada departamento constitui um domínio de broadcast
- exista conectividade de nível 3 (IP) entre departamentos
- servidores acessíveis por todos os departamentos

Equipamentos de rede

- 250 máguinas com NICs Ethernet 10/100 Full-Duplex (FD)
- 2 servidores com NICs Gigabit Ethernet FD com VLANs

Rede Física

- Cada andar tem um bastidor central de onde parte cablagem estruturada UTP horizontal
- 4 fibras ópticas entre o bastidor do andar 1 e o do 2 e mais 4 entre o do andar 1 e o do 3
- Desenhe a topologia de interligação da rede indicando:
 - os equipamentos activos utilizados e suas características
 - a configuração das portas (vel. Tx, modo, VLAN config., etc.).

VLAN e STP - Exercício

	Port									
	1	2	3	4	5	6	7	8	9	10
Switch A	1	5	1	2	1	1	7	3	1	T 3,5,7
Switch B	T 3,5,7	5	8	1	3	4	8	3	7	7

VLAN e STP - Exercício

 Switch A MAC 00-E0-AA-01-00-nn e Switch B MAC 00-E0-BB-01-00-nn em que n é o número da porta do switch

