MÉTODOS NÚMERICOS QUADRATURA E CUBATURA

REGRA DOS TRAPÉZIOS

Área do Trapézio =
$$\frac{h}{2} \times [Y_0 + Y_1]$$

Área Total=
$$\frac{h}{2} \times [Y_0 + Y_1] + \frac{h}{2} \times [Y_1 + Y_2] + \frac{h}{2} \times [Y_2 + Y_3] + \frac{h}{2} \times [Y_3 + Y_4]$$

Área Total=
$$\frac{h}{2} \times [Y_0 + 2 \times [Y_1 + Y_2 + Y_3] + Y_4]$$

Área (A)=
$$(\frac{\pi}{4})$$
 x [f(0)+f ($\pi/4$)]

Área (B)=
$$(\frac{\pi}{4})$$
 x [f ($\pi/4$)+f ($\pi/2$)]

Área (D)=
$$(\frac{\pi}{4})$$
 x [f (3 π /4)+f (π)]

Área (B)=
$$(\frac{\pi}{4})$$
 x [f ($\pi/4$)+f ($\pi/2$)] Área (C)= $(\frac{\pi}{4})$ x [f ($\pi/2$)+f ($3\pi/4$)]

Área Total=
$$\frac{\pi}{\frac{4}{2}} \times [f(0) + 2 \times [f(\pi/4) + f(\pi/2) + f(3\pi/4)] + f(\pi)]$$

$$\int_{x_0}^{x_n} y.dx = \frac{h}{2} \times \left| y_0 + y_n + 2 \times \sum_{\substack{i=1 \ i=i+2}}^{n-1} y_i \right|$$

REGRA DE SIMPSON

f(x)=sin(x)
h=
$$\pi/8$$

f($\pi/4$)
f($\pi/2$)
f($\pi/4$)
f($\pi/2$)
f($\pi/4$)

$$\text{Área} = \frac{h}{3} \times (Y_0 + 4 \times Y_1 + Y_2)$$

Área Total=
$$\frac{h}{3} \times [Y_0 + 4Y_1 + Y_2] + \frac{h}{3} \times [Y_2 + 4Y_3 + Y_4] + \frac{h}{3} \times [Y_4 + 4Y_5 + Y_6] + \frac{h}{3} \times [Y_6 + 4Y_7 + Y_8]$$

Área Total=
$$\frac{h}{3} \times [Y_0 + 4 \times [Y_1 + Y_3 + Y_5 + Y_7] + 2 \times [Y_2 + Y_4 + Y_6] + Y_8]$$

Área (A)=
$$(\frac{\pi}{8})$$
 x [f(0)+4xf(π /8)+f(π /4)]
Área (C)= $(\frac{\pi}{8})$ x [f(π /2)+4xf(5π /8)+f(3π /4)]

Área (B)=
$$(\frac{\pi}{3})$$
 x [f($\pi/4$)+4xf($3\pi/8$)+f($\pi/2$)]
Área (D)= $(\frac{\pi}{3})$ x [f($3\pi/4$)+4xf($7\pi/8$)+f(π)]

Área Total=
$$\frac{\frac{11}{8}}{3}$$
 × $[f(0) + 4 \times [f(\pi/8) + f(3\pi/8) + f(5\pi/8) + f(7\pi/8)] + 2 \times [f(\pi/4) + f(\pi/2) + f(3\pi/4)] + (f(\pi))$

$$\int_{x_0}^{x_{2n}} y.dx = \frac{h}{3}. \left[y_0 + y_{2n} + 4 \times \sum_{\substack{i=1\\i=i+2}}^{2n-1} y_i + 2 \times \sum_{\substack{i=2\\i=i+2}}^{2n-2} \right]$$

QUOCIENTE DE CONVERGÊNCIA

Trapézios

$$QC = \frac{S' - S}{S'' - S'} = 4$$

Simpson

$$QC = \frac{S' - S}{S'' - S'} = 16$$

S – Solução com h=h

S' – Solução com h'=h/2

S" - Solução com h"=h'/2=h/4

CUBATURA - INTEGRAIS DUPLOS

$$\int_{a}^{A} dx \int_{b}^{B} f(x, y) dy = \frac{hx \times hy}{4} \times [E_{0} + 2 \times E_{1} + 4 \times E_{2}]$$

$$\int_{a}^{A} dx \int_{b}^{B} f(x, y) dy = \frac{hx \times hy}{9} \times [E_{0} + 4 \times E_{1} + 16 \times E_{2}]$$

E₀- soma dos valores de f nos vértices

E₁- soma dos valores de f nos pontos médios do lado da malha

E₂- soma dos valores de f no centro da malha

Resolver
$$\int_0^{\pi} \sin(x) dx$$

REGRA DOS TRAPÉZIOS

 n
 4
 8
 16
 64

 h
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S
 S</td

REGRA DE SIMPSON

CALCULAR O QC PARA N=4,8,16

$$\int_0^4 (1 - e^{-2x}) \, dx$$

- Resolver o integral para n=4, 8, 16, 32, 64
- Calcular QC₁, QC₂, QC₃
- Utilizando a)trapézios e b) simpson

Soluções

- a) QC(1)=3,774; QC(2)=3,9391; QC(3)=3,9845)
- b) QC(1)=14,639; QC(2)=15,634; QC(3)=15,907

• Considera os seguintes dados:

x	-2	0	2	4	6	8	10
f(x)	35	5	-10	2	5	3	20

• Calcule o integral entre -2 e 10 recorrendo aos métodos dos trapézios e simpson

• Aplique os métodos de trápézio e simpson para resolver o seguinte integral:

$$\int_{-1}^{1} \int_{0}^{2} x^{2} - 2y^{2} + xy^{3} dxdy$$
, utilizando um retângulo dividido em 4 partes

Soluções

- a) 2
- b) 2,667