Probability Inequalities

Thm 1 (Gaussian Tail Inequality): Let $X \sim \mathcal{N}(0,1)$. Then

$$\mathbb{P}(|X| > \epsilon) \le \frac{2}{\epsilon} e^{-\epsilon^2/2} \tag{1}$$

Additionally:

$$\mathbb{P}(|\overline{X}_n| > \epsilon) \le \frac{1}{\sqrt{n\epsilon}} e^{-n\epsilon^2/2} \tag{2}$$

Thm 2 (Markov Inequality): Let X be a non-negative random variable s.t. $\mathbb{E}(X)$ exists. Then $\forall t > 0$

$$\mathbb{P}(X > t) \le \frac{\mathbb{E}(X)}{t} \tag{3}$$

Thm 3 (Chebyshev's Inequality): Let $\mu = \mathbb{E}(X)$ and $\sigma^2 = \text{Var}(X)$. Then

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \tag{4}$$

$$\mathbb{P}(|(X - \mu)/\sigma| \ge t) \le \frac{1}{t^2} \tag{5}$$

Lemma 4: Let $\mathbb{E}(X) = 0$ and $a \le X \le b$. Then

$$\mathbb{E}(e^{tX}) \le e^{t^2(b-a)^2/8} \tag{6}$$

Lemma 5: Let X be any random variable. Then

$$\mathbb{P}(X > \epsilon) \le \inf_{t > 0} e^{-t\epsilon} \mathbb{E}(e^{tX}) \tag{7}$$

Thm 6 (Hoeffding's Inequality): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu$, $a \le X_i \le b$. Then $\forall \epsilon > 0$

$$\mathbb{P}(|\overline{X} - \mu| \ge \epsilon) \le 2e^{-2n\epsilon^2/(b-a)^2} \tag{8}$$

Thm 9 (McDiarmid):

Thm 12 (Cauchy-Schwartz inequality):

Thm 13 (Jensen's inequality):

Ex 15 (Kullback Leibler distance):

Thm 18?:

 O_p and o_p :

Shattering

Note: remember uniform bounds and union bound.

 \mathcal{A} picks out $G \subset F$.

 $S(\mathcal{A}, F)$.

F shattered by \mathcal{A} if $S(\mathcal{A}, F) = 2^{|F|}$ (ie if \mathcal{A} picks out all $G \subset F$). The shatter coefficient $s_n(\mathcal{A}) = \sup_{F \in \mathcal{F}_n} s(\mathcal{A}, F)$. Note n = |F| and $s_n(\mathcal{A}) \leq 2^n$.

Thm 5:

The VC dimension $d(A) = \text{largest } n \text{ s.t. } s_n(A) = 2^n$.

Random Samples

For $X_1, \ldots, X_n \sim F$ a **statistic** is any $T = g(X_1, \ldots, X_n)$. E.g. \overline{X}_n , $S_n = \sum_i (X_i - \overline{X}_n)^2 / (n-1)$, $(X_{(1)}, \ldots, X_{(n)})^2$

Note: $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_i)$, $\operatorname{Var}(\overline{X}_n) = \operatorname{Var}(X_i)/n$, $\mathbb{E}(S_n)^2 = \operatorname{Var}(X_i)$. Note: sum of bernouilli is binomial(n,p), sum of exp(beta) is gamma(n,beta), sum of standard normal is chi-squared(n-dof).

Thm. 1: $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2) \implies \overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n)$.

Convergence

 X, X_1, X_2, \dots random variables.

(1) X_n converges almost surely $X_n \xrightarrow{a.s.} X$ if $\forall \epsilon > 0$

$$\mathbb{P}\left(\lim_{n\to\infty} |X_n - X| < \epsilon\right) = 1 \tag{9}$$

(2) X_n converges in probability $X_n \stackrel{p}{\to} X$ if $\forall \epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0 \tag{10}$$

(3) X_n converges in quadratic mean $X_n \xrightarrow{qm} X$ if

$$\lim_{n \to \infty} \mathbb{E}[(X_n - X)^2] = 0 \tag{11}$$

(4) X_n converges in distribution $X_n \rightsquigarrow X$ if

$$\lim_{n \to \infty} F_{X_n}(t) = F_X(t) \tag{12}$$

 $\forall t$ on which F_X is continuous.

Thm 7: Conv. a.s. and in q.m. imply conv. in prob. All three imply conv. in distribution. Conv. in distribution to a point-mass also implies conv. in prob.

Ex from class: Showed conv. in prob \Longrightarrow conv. a.s.. Showed conv. in prob \Longrightarrow conv. in q.m.. Showed conv. in distro \Longrightarrow conv. in prob.

Thm 10a: X, X_n, Y, Y_n random variables. Then

(a)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n + Y_n \xrightarrow{p} X + Y$$
 (13)

(b)
$$X_n \xrightarrow{p} X, Y_n \xrightarrow{p} Y \Longrightarrow X_n Y_n \xrightarrow{p} XY$$
 (14)

(c)
$$X_n \xrightarrow{qm} X, Y_n \xrightarrow{qm} Y \Longrightarrow X_n + Y_n \xrightarrow{qm} X + Y$$
 (15)

Thm 10b (Slutzky's Thm): X, X_n, Y_n random variables. Then

(a)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \Longrightarrow X_n + Y_n \rightsquigarrow X + c$$
 (16)

(b)
$$X_n \rightsquigarrow X, Y_n \rightsquigarrow c \implies X_n Y_n \rightsquigarrow cX$$
 (17)

Thm 12 (Law of Large Numbers): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu \Longrightarrow \overline{X}_n \xrightarrow{\mathrm{qm}} \mu$.

Thm 14 (CLT): X_1, \ldots, X_n iid, $\mathbb{E}(X_i) = \mu \operatorname{Var}(X_i) = \sigma^2$

$$\implies \sqrt{n}(\overline{X}_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1)$$

$$\Longrightarrow \overline{X}_n \rightsquigarrow \mathcal{N}(\mu, \sigma^2/n)$$

$$\implies \sqrt{n}(\overline{X}_n - \mu)/S_n \rightsquigarrow \mathcal{N}(0,1)$$

Thm 18 (delta method): If $\sqrt{n}(Y_n - \mu)/\sigma \rightsquigarrow \mathcal{N}(0,1), g'(\mu) \neq 0$ $\Longrightarrow \sqrt{n}(g(Y_n) - g(\mu))/|g'(\mu)|\sigma \rightsquigarrow \mathcal{N}(0,1)$

ie $Y_n \approx \mathcal{N}(\mu, \sigma^2/n) \Longrightarrow g(Y_n) \approx \mathcal{N}(g(\mu), g'(\mu)^2 \sigma^2/n)$

Thm 18b (2nd order delta method):?? Should I include this?

Sufficiency

If $X_1, ..., X_n \sim p(x; \theta)$, T sufficient for θ if $p(x^n|t; \theta) = p(x^n|t)$. Thm 9 (factorization): for $X^n \sim p(x; \theta)$, $T(X^n)$ sufficient for θ if the joint probability can be factorized as.

$$p(x^n;\theta) = h(x^n) \times g(t;\theta) \tag{18}$$

T is a **minimal sufficient statistic (MSS)** if T is sufficient and T = g(U) for all other sufficient states U.

Thm 15: T is a MSS if:

$$\frac{p(y^n; \theta)}{p(x^n; \theta)} \text{ constant in } \theta \iff T(y^n) = T(x^n)$$
 (19)

Parametric Point Estimation

make sure i've defined: $\mathbb{E}_{\theta}(\hat{\theta})$, bias, sampling distro, standard error, $\hat{\theta}_n$ consistent.

Method of Moments: Define equations

- (a) $(\sum_i X_i)/n = \mathbb{E}_{\hat{\theta}}(X_i)$
- (b) $(\sum_i X_i^2)/n = \mathbb{E}_{\hat{\theta}}(X_i^2)$
- (c) ...

And solve for $\hat{\theta}$.

Maximum Likelihood (MLE): The MLE is

$$\hat{\theta} = \arg\min_{\theta} L(\theta) = \arg\min_{\theta} l(\theta) \tag{20}$$

Often suffices to solve for θ in $\frac{\partial l(\theta)}{\partial \theta} = 0$. The MLE is **equivariant** \implies if $\eta = q(\theta)$ then $\hat{\eta} = q(\theta)$.

Bayes Estimation: For prior $\pi(\theta)$, choose

$$\hat{\theta} = \mathbb{E}(\theta|x^n) = \int \theta \pi(\theta|x^n) d\pi \tag{21}$$

Mean Squared Error (MSE): The MSE is

$$MSE = \mathbb{E}(\hat{\theta} - \theta)^2 = \int (\hat{\theta} - \theta)^2 p(x^n; \theta) dx^n = bias(\hat{\theta})^2 + Var(\hat{\theta})$$
(22)

Notes: $\mathbf{bias}(\hat{\theta}) = \mathbb{E}(\hat{\theta}) - \theta$. We say $\hat{\theta}$ is **consistent** if $\hat{\theta} = \hat{\theta}_n \xrightarrow{p} \theta$. The **standard error** of $\hat{\theta}$, $\mathbf{se}(\hat{\theta})$, is the standard deviation of $\hat{\theta}$. Ex (in class): MSE for normal.

Risks and Estimators

 $L(\theta, \hat{\theta})$ is the **loss** of an estimator $\hat{\theta} = \hat{\theta}(x^n)$ for $x^n \sim p(x^n; \theta)$. The **risk** of $\hat{\theta}$ is

$$R(\theta, \hat{\theta}) = \mathbb{E}[L(\theta, \hat{\theta})] = \int L(\theta, \hat{\theta}) p(x^n; \theta) dx^n$$
 (23)

When $L(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$, the risk is the MSE.

The **max risk** of $\hat{\theta}$ over a set $\theta \in \Theta$ is

$$\overline{R}(\hat{\theta}) = \sup_{\theta \in \Theta} R(\theta, \hat{\theta}) \tag{24}$$

The minimax estimator is

$$\hat{\theta} = \arg\inf_{\hat{\Omega}} \overline{R}(\hat{\theta}) \tag{25}$$

The **Bayes risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

$$B_{\pi}(\hat{\theta}) = \int R(\theta, \hat{\theta}) \pi(\theta) d\theta \tag{26}$$

The **posterior risk** of $\hat{\theta}$ given a prior $\pi(\theta)$ is

$$r(\hat{\theta}|x^n) = \int L(\theta, \hat{\theta})\pi(\theta|x_1, \dots, x_n)d\theta$$
 (27)

where $\pi(\theta|x^n) = \frac{\mathbb{P}(x^n;\theta)\pi(\theta)}{m(x^n)}$ is the posterior over θ .

The **Bayes estimator** is

$$\hat{\theta} = \arg\inf_{\hat{\theta}} B_{\pi}(\hat{\theta}) = \arg\inf_{\hat{\theta}} r(\hat{\theta}|x^n)$$
 (28)

which equals $\mathbb{E}(\theta|x^n)$ when $L(\theta,\hat{\theta}) = (\theta - \hat{\theta})^2$.

Thm 10: If $\hat{\theta}$ is a Bayes estimator for some prior π and $R(\theta, \hat{\theta})$ is constant, then $\hat{\theta}$ is a minimax estimator.

Note: The MLE is approximately minimax (as n increases, if dimension of the parameter is fixed).