lmię i nazwisko	Nr indeksu	Kierunek	Wydział (skrót)	Data	Wersja sprawozdania		
Dawid Królak Michał Matuszak	145383 145403	Informatyka	WIIT	15.11.2020	1.0		
Nr ćwiczenia	Tytuł ćwiczenia						
01	Wprowadzenie do kinematyki manipulatora						

0. Opis ćwiczenia.

Celem ćwiczenia jest wykorzystanie środowiska OCTAVE do napisania funkcji wyznaczających macierze rotacji w parametryzacji ZY'Z" i kątów Eulera, które następnie zostaną wykorzystane do rozwiązania zadania kinematyki prostej manipulatora antropomorficznego z nadgarstkiem sferycznym.

1.1. Funkcja wyznaczająca macierz rotacji R w parametryzacji ZY'Z'' kątami Eulera (α, β, γ) .

Zrzut Ekranu 1: Funkcja wyznaczająca macierz rotacji.

1.2. Funkcja wyznaczająca kąty (α, β, γ) na podstawie podanej macierzy rotacji R w parametryzacji kątami Eulera ZY'Z".

```
function [a,b,c] = WyznaczKaty(M)
b=atan2(sqrt(pow2(M(1,3))+pow2(M(2,3))),M(3,3));
if (b>0)

a=atan2(M(2,3),M(1,3));
b=atan2(sqrt(pow2(M(1,3))+pow2(M(2,3))),M(3,3));
c=atan2(M(3,2), -M(3,1));

else

a=atan2(-M(2,3),-M(1,3));
b=atan2(-sqrt(pow2(M(1,3))+pow2(M(2,3))),M(3,3));
c=atan2(-M(3,2), M(3,1));

endif
endfunction
Zrzut Ekranu 2: Funkcja wyznaczająca kąty na podstawie
```

macierzy rotacji.

1.3. Funkcje obliczające macierze T_i^{i-1} na podstawie parametrów ogniw manipulatora wymaganych dla notacji DH oraz ZDH.

Zrzut Ekranu 3: Funkcja wyznaczająca macierz T w notacji DH.

Zrzut Ekranu 4: Funkcja wyznaczająca macierz T w notacji ZDH.

2.(1,2,3) Schemat kinematyczny manipulatora antropomorficznego z nadgarstkiem sferycznym w notacji ZDH.

Rysunek 1: Schemat kinematyczny manipulatora z osiami oznaczonymi w notacji ZDH.

Nr ogniwa	x1-1	a:-1	di	Oi
1	0	0	4	01
2	90	0	0	θ2
3	0	Lz	0	03
4	90	0	L4	04
5	-90	0	0	05
6	90	0	46	96

Rysunek 2: Tabela parametrów kinematycznych.

L_i to odległość między środkami układów O_{i-1} i O_i wzdłuż osi x lub z.

2.4 Program rozwiązujący zadanie kinematyki prostej manipulatora antropomorficznego z nadgarstkiem sferycznym.

```
#wszystkie katy theta przyjeto jako 30 stopni (pi/6)
#za d_i oraz a_i, tam gdzie to potrzebne, podstawiono 0,4m
theta = pi/6;
d = 0.4;
q1 = [ 0, 0, d, theta];
q2 = [ pi/2, 0, 0, theta];
q3 = [ 0, d, 0, theta];
q4 = [pi/2, 0, d, theta];
q5 = [-pi/2, 0, 0, theta];
q6 = [pi/2, 0, d, theta];
T01 = macierzT_ZDH(q1);
T12 = macierzT_ZDH(q2);
T23 = macierzT_ZDH(q3);
T34 = macierzT_ZDH(q4);
T45 = macierzT_ZDH(q5);
T56 = macierzT_ZDH(q6);
T06 = T01*T12*T23*T34*T45*T56
```

Zrzut Ekranu 4: Rozwiązanie zadania kinematyki prostej manipulatora.

```
T06 =

0.22324 -0.19139 0.31250 0.55179
-0.73714 0.38950 -0.10825 0.60311
-0.58478 0.27512 -0.02901 0.98840
0.00000 0.00000 0.00000 1.00000
```

Zrzut Ekranu 5: Ostateczny wynik działania programu.