Braid Groups, and their Representations

Zih-Yu Hsieh, Benjamin Schoeb, Hongxu Chen, Elijah Ecret, Mentor: Choomno Moos

University of California Santa Barbara, College of Creative Studies

Introduction

Braid Groups & Mapping Class Groups

Def: Braid group of n strands B_n is generated by n-1 elements $\{\sigma_1, ..., \sigma_{n-1}\}$, satisfying *Braid Relations*:

• $\sigma_i \sigma_j = \sigma_j \sigma_i$, if $|i - j| \ge 2$

• $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Def: Let D_n be a disk with n holes. The *Mapping Class Group* $\mathfrak{M}(D_n)$ collects classes isotopic self-homeomorphisms on D_n that fixes disk boundary ∂D , and sends punctures to punctures.

Ex: The i^{th} Half Twist is a Self-Homeomorphism of D_n , swapping the i^{th} and $(i+1)^{th}$ punctures, while fixing the remaining ones.

Figure: For n=4, Half Twist τ_2 Swapping Punctures 2 and 3

Property: Collection of *Half Twists* $\tau_1, ..., \tau_{n-1}$ generates $\mathfrak{M}(D_n)$ and satisfies *Braid Relations*; in fact, $B_n \cong \mathfrak{M}(D_n)$, by $\sigma_i \mapsto \tau_i$.

Fundamental Group of D_n & Braid Automorphism

For n-punctured disk $D-Q_n$, fixing a base point $d \in \partial D$, the fundamental group $\pi_1(D-Q_n,d)$ is generated by the n nontrivial loops, each surrounding a specific puncture, which $\pi_1(D-Q_n,d)=F_n(x_1,...,x_n)$ (the *Free Group* of n generators, each x_i is a loop around the i^{th} puncture).

Then, each self-homeomorphism in the mapping class group $\mathfrak{M}(D-Q_n)$ generates a group automorphism on the fundamental group $\pi_1(D-Q_n,d)$, called *Braid Automorphism*. Specifically, each τ_i acts on the fundamental group. Which, the corresponding Braid Automorphism is:

$$(\tau_i)_* \in \operatorname{Aut}(\pi_1(D-Q_n,d)), \quad (\tau_i)_*(x_j) = \begin{cases} x_i x_{i+1} x_i^{-1} & j=i \\ x_i & j=i+1 \\ x_i & \text{Otherwise} \end{cases}$$

The collection of $(\tau_i)_*$ again satisfies the Braid Relations, which generates a group homomorphism $B_n \to \operatorname{Aut}(\pi_1(D-Q_n,d))$ by $\sigma_i \mapsto (\tau_i)_*$; this homomorphism is in fact injective, so the braid group of n strands B_n can be viewed as a subgroup of $\operatorname{Aut}(\pi_1(D-Q_n,d))$.

Burau Representation

Definition - Reduced Burau Representation: $\psi_n^r: B_n \to \mathrm{GL}_{n-1}(\mathbb{Z}[t^{\pm}])$ satisfies:

$$\psi_n^r(\sigma_1) = \begin{pmatrix} -t & 0 & 0 \\ 1 & 1 & 0 \\ \hline 0 & 0 & I_{n-3} \end{pmatrix}, \quad \psi_n^r(\sigma_{n-1}) = \begin{pmatrix} I_{n-3} & 0 & 0 \\ \hline 0 & 1 & t \\ \hline 0 & 0 & -t \end{pmatrix}, \quad \psi_n^r(\sigma_i) = \begin{pmatrix} I_{i-2} & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & t & 0 & 0 \\ \hline 0 & 0 & -t & 0 & 0 \\ \hline 0 & 0 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 0 & I_{n-i-2} \end{pmatrix}$$

EX / Homological Perspective: A 4-punctured disk D_4 can "continuously deform" into 4 circles joining at a single point $(\bigvee_{i=1}^4 S^1)$, \Longrightarrow Same loop structures (Fundamental Group).

Figure: Deformation Retraction of D_4 to $\bigvee_{i=1}^4 S^1$

Let $S^{(4)} := \bigvee_{i=1}^4 S^i$, consider the following space $\tilde{S}^{(4)}$:

Figure: Infinite Cyclic Cover $\tilde{S}^{(4)}$

Here, t is a right shift of $\tilde{S}^{(n)}$ by degree 1:

- $t^k \cdot \tilde{d} = \text{degree } k \text{ right shift of } \tilde{d}$
- $t^k \cdot \hat{x}_i = \text{degree } k \text{ right shift of } \hat{x}_i$

There is a continuous map $p: \tilde{S}^{(4)} \to S^{(4)}$, each $p(t^k \cdot \hat{x}_i) = x_i$, and $p(t^k \cdot \tilde{d}) = d$. Define the "Base Loops" $\ell_i := \hat{x}_{i+1} \cdot \hat{x}_i^{-1}$ (counterclockwise) for $1 \le i \le 3$:

- $-\ell_i =$ counterclockise version of ℓ_i
- $t^k \cdot \ell_i = \text{degree } k \text{ right shift of } \ell_i$

Then, all "Integer Laurent Polynomial" combination of ℓ_i forms $H_1(\tilde{S}^{(4)})$ as a free $\mathbb{Z}[t^{\pm}]$ -module with basis ℓ_1, ℓ_2, ℓ_3 .

Recall: braid automorphism $(\tau_2)_*$ of $\pi_1(D_4,d)$ satisfies $(\tau_2)_*(x_2) = x_2 \cdot x_3 \cdot x_2^{-1}$, and $(\tau_2)_*(x_3) = x_2$. Which, it uniquely lifts to an transformation on the ℓ_i via p:

EX:
$$\ell_2 = \hat{x}_3 \cdot \hat{x}_2^{-1} \mapsto \hat{x}_2 \cdot \left((t \cdot \hat{x}_2) \cdot (t \cdot \hat{x}_3^{-1}) \cdot \hat{x}_2^{-1} \right) = -t \cdot \ell_2.$$

Figure: ℓ_2 (Counterclockwise) Maps to $-t \cdot \ell_2$ (Right Shift by degree 1, Clockwise)

Doing this for each ℓ_i , and write into matrix form with basis ℓ_i , we recover the Representation.

Conclusion & Future Directions

Acknowledgement & Sources

We're genuinely thankful for the parent donors, Professor Cachadina and Professor Casteels who made this program possible. We also want to thank our mentor Choomno Moos for their great guidance.

- Braids, Links, Mapping Class Groups (Joan Birman)
- Briad Groups (Christian Kassel, Vladimir Turaev)
- Category Theory in Context (Emily Riehl)
- Algebra Chapter 0 (Paolo Aluffi)