

- Process Controls
 - Process Variables
 - Pressure, Temperature, Level, Flow, Position, Strain, Velocity, Acceleration, Vibration
 - Analytical Variables
 - Conductivity, dissolved oxygen, chemical constituent, combustion quality, density, viscosity, pH, fluoride

- Process Controls
 - Control Types
 - On-Off discrete control element with two conditions, fully on or fully off
 - **Continuous** analog control element with infinite conditions, from fully on to fully off

- Process Controls
- Closed Loop Error Correction
 - Proportional produces an output response proportional to the error
 - **Integral** produces an output response proportional to time and the error magnitude
 - **Derivative** produces an output response proportional to the error rate of change

- Process Controls
 - Closed Loop Error Correction
 - Proportional Gain the change in output divided by the change in input

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

Process Controls

- $V_{out} = V_{in} \times \frac{R_F}{R_{IN}}$
- Closed Loop Error Correction
 - Proportional Gain the % change in output divided by the % change in input
 - **Proportional Band (%)** the % change in output that causes a 100% change in input

$$Gain = \frac{\Delta Output(\%)}{\Delta Input(\%)}$$

$$PB = \frac{1}{Gain} \times 100$$

SIERRA

MECH 10 Fundamentals of Electronics

- Process Controls
 - Closed Loop Error Correction
 - Proportional Offset the continuous difference between the set point and the process variable

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Process Controls
 - Closed Loop Error Correction
 - Proportional Offset the continuous difference between the set point and the process variable
 - Market Crash = (8,000 10,000) / 10,000 = 20%
 - Full recovery = (10,000 8,000) / 8,000 = 25%

SIERRA

MECH 10 Fundamentals of Electronics

Process Controls

- $V_{out} = V_{in} \times \frac{1}{2\pi fRC}$
- Closed Loop Error Correction
 - Integral Gain the change in output proportional to the magnitude and duration of the error
 - Reset Rate Full range corrections per minute
 - Example Reset Rate = 2 minutes
 - 20% set point change (50 to 70) → 20% output change
 - Full recovery = (50 70) / 70 = 28.6% = 8.6% offset
 - Correction time = reset rate x offset

$$t = \frac{8.6\%}{1} \times \frac{2 \, \text{min}}{100\%} = 0.172 \, \text{min}$$

SIERRA

MECH 10 Fundamentals of Electronics

Process Controls

- $V_{out} = V_{in} \times \frac{1}{2\pi fRC}$
- Closed Loop Error Correction
 - **Integral Gain** the change in output proportional to the magnitude and duration of the error
 - Reset Rate Proportional action corrections per minute

Process Controls

- $V_{out} = \frac{\Delta V_{in}}{\Delta t} \times RC$
- Closed Loop Error Correction
 - **Derivative Gain** the change in output proportional to the error rate of change
 - Derivative Time the advance in time of the output over proportional only control

SIERRA

MECH 10 Fundamentals of Electronics

- Process Controls
 - Closed Loop Error Correction
 - Derivative Gain the change in output proportional to the rate of error change
 - **Derivative Time** the advance in time of the output over proportional only control

- Process Controls
 - Closed Loop Error Correction
 - Combined Mode Function & Application

Mode Combination	Function	Application
Proportional	Provide gain	Small set point or load changes
Proportional + Integral	Eliminate offset	Large and slow set point & load changes
Proportional + Integral + Derivative	Fast response, minimize overshoot, eliminate offset	Large & sudden set point or load changes in slow response system

MECH 10 Fundamentals of Electronics

- Process Controls
- Closed Loop Tuning Methods
 - Ziegler-Nichols Continuous Cycling
 - Step 1 set integral time to max & derivative time to zero
 - Step 2 increase proportional gain until output oscillates with constant amplitude, record *ultimate gain K_U*
 - Step 3 record oscillation period as P_u

- Process Controls
 - Closed Loop Tuning Methods
 - Ziegler-Nichols Continuous Cycling
 - Step 4 Apply gain factors from table
 - Step 5 Test system response & stability

Control Type	Proportional Gain (K _p)	Integral Time (T _i)	Derivative Time (T _D)
Proportional	0.50K _u	-	-
Proportional + Integral	0.45K _u	1.2K _p / P _u	-
Proportional + Integral + Derivative	0.60K _u	2K _p / P _u	$K_p \times P_u / 8$

MECH 10 Fundamentals of Electronics

- Process Controls
 - Example
 - PID control, K_u = 0.75, P_u = 2 minutes
 - Find K_p, K_i, & K_d

$$K_p = 0.6 \times K_u = 0.45$$

$$K_i = \frac{2 \times K_u}{P_u} = 0.75$$

$$K_D = \frac{K_u \times P_u}{8} = 0.19$$

Control Type	Proportional Gain (K _p)	Integral Time (T _i)	Derivative Time (T _D)
Proportional	0.50K _u	-	-
Proportional + Integral	0.45K _u	1.2K _p / P _u	-
Proportional + Integral + Derivative	0.60K _u	2K _p / P _u	K _p x P _u / 8

- Process Controls
 - Closed Loop Tuning Methods
 - Ziegler-Nichols Continuous Cycling
 - Step 3 reduce proportional gain to 60% of ultimate gain
 - Step 4 decrease integral time until unbounded oscillation starts
 - Step 5 increase integral time just until unbounded oscillation stops
 - Step 6 increase derivative time until unbounded oscillation starts
 - Step 7 decrease derivative time just until unbounded oscillation stops.

Proportional Gain = 0.75

MECH 10 Fundamentals of Electronics

Lab 29 – Closed Loop Controls

