Analisi Matematica II Richiami sui numeri complessi

Virginia De Cicco, Pietro Mercuri Sapienza Univ. di Roma

Analisi complessa

Richiami sui numeri complessi

Definizioni

In questa lezione richiamiamo alcune nozioni sul campo dei numeri complessi.

Si indica con $\mathbb C$ il campo dei numeri complessi, ossia l'insieme delle coppie ordinate di $\mathbb R^2$ con le seguenti operazioni di addizione e moltiplicazione:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

$$(x_1,y_1)(x_2,y_2)=(x_1x_2-y_1y_2,x_1y_2+y_1x_2).$$

Dato $z=(x,y)\in\mathbb{C}$, x è detta la parte reale di z e y è detta la parte immaginaria di z e si scrive

$$x = \operatorname{Re}(z) e y = \operatorname{Im}(z).$$

Coniugato

Si definisce il *coniugato di z* nel seguente modo:

$$\overline{z} = (x, -y)$$
.

L'insieme dei numeri complessi del tipo (x,0) isomorfo al campo dei numeri reali \mathbb{R} . Si identifica solitamente (x,0) con $x \in \mathbb{R}$.

I numeri complessi del tipo (0, y) sono detti *numeri immaginari*.

Il numero immaginario i:=(0,1) è detto *unità immaginaria* ed definito dalla proprietà che $i^2=-1$. Usando il numero i, si ha che un qualunque numero complesso z si può scrivere come

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + iy.$$

Coordinate cartesiane

Pertanto oltre alla notazione come coppia ordinata z=(x,y), si usa spesso anche la notazione algebrica z=x+iy. Le coordinate x e y di z sono dette anche coordinate cartesiane.

Avendo identificato i numeri complessi con gli elementi di \mathbb{R}^2 , si parla spesso di \mathbb{C} come del *piano complesso*, dove i numeri reali sono i punti dell'asse delle x, mentre i numeri immaginari sono i punti dell'asse delle y.

Il campo dei numeri complessi è *algebricamente chiuso*, cioè ogni polinomio (non costante) a coefficienti in $\mathbb C$ ammette almeno uno zero complesso. Questo è il cosiddetto *teorema fondamentale dell'algebra*.

A differenza di \mathbb{R} , il campo \mathbb{C} dei numeri complessi non è ordinato, cioè non esiste una relazione d'ordine totale in \mathbb{C} che sia compatibile con le operazioni algebriche.

 \blacksquare Si calcoli la parte reale e la parte immaginaria di $\frac{1}{1+i}$

$$\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{1-(-1)} = \frac{1}{2} - \frac{1}{2}i$$

 \blacksquare Si calcoli la parte reale e la parte immaginaria di $\frac{1}{i}$

$$\frac{1}{i} = \frac{-i}{(+i)(-i)} = \frac{-i}{-(-1)} = -i$$

Si ricordi che

$$\frac{1}{i} = -i$$

i è l'unico numero che ha la proprietà che il suo reciproco coincide con il suo opposto

questa formula equivale a dire che

$$i^2 = -1$$

Si calcoli la parte reale e la parte immaginaria di $\left(\frac{1+2i}{(-2+i)^2-i}\right)$

$$\frac{1+2i}{(-2+i)^2-i} = \frac{1+2i}{4-1-4i-i} = \frac{1+2i}{3-5i} = \frac{(1+2i)(3+5i)}{(3-5i)(3+5i)} = -\frac{7}{34} + \frac{11}{34}i$$

$$\overline{\left(\frac{1+2i}{(-2+i)^2-i}\right)} = -\frac{7}{34} - \frac{11}{34}i$$

Coordinate polari

Introduciamo le coordinate polari o trigonometriche (ρ,θ) nel piano complesso. Dato $z=x+iy\in\mathbb{C}$ definiamo il modulo come

$$\rho = |z| := \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$$

Si verificano facilmente le seguenti proprietà :

$$|z| \ge 0$$
, $|z| = 0$ se e solo se $z = 0$,

$$|z_1+z_2| \leq |z_1|+|z_2|, \quad |z_1z_2|=|z_1||z_2|.$$

Inoltre per ogni $w=u+iv\in\mathbb{C}$ si ha

$$|u| \le |w|, \qquad |v| \le |w| \tag{1}$$

e

$$|w| \le |u| + |v|. \tag{2}$$

Argomento

Definiamo ora l'argomento θ di z. Dato $z=x+iy\in\mathbb{C}$, $z\neq 0$ consideriamo il numero $\frac{z}{|z|}$; si ha che

$$\left|\frac{z}{|z|}\right|=1.$$

Quindi esiste un angolo θ tale che

$$\frac{z}{|z|} = \cos\theta + i\sin\theta$$

$$z = |z|(\cos\theta + i\sin\theta).$$

Tale θ è detto *argomento* di z.

Chiaramente l'argomento è definito a meno di multipli di 2π . Si indica con

l'insieme degli argomenti di z. Un elemento di questo insieme è detto anche determinazione dell'argomento di z. Si definisce infine l'argomento principale Arg(z) come l'unico elemento di arg(z) che appartiene all'intervallo $(-\pi,\pi]$.

Esempi

Diamo alcuni esempi:

$$\operatorname{\mathsf{Arg}}(1) = 0, \qquad \operatorname{\mathsf{Arg}}(i) = \frac{\pi}{2}, \qquad \operatorname{\mathsf{Arg}}(-1) = \pi, \qquad \operatorname{\mathsf{Arg}}(-i) = -\frac{\pi}{2}.$$

I numeri reali positivi hanno argomento principale uguale a 0, mentre i numeri reali negativi hanno argomento principale uguale a π .

I numeri del semiasse immaginario positivo hanno argomento principale uguale a $\frac{\pi}{2}$, mentre i numeri del semiasse immaginario negativo hanno argomento principale uguale a $-\frac{\pi}{2}$.

$$z = |z|(\cos\theta + i\sin\theta)$$

Scrivere in forma trigonometrica i seguenti numeri complessi:

1
$$z = 1$$
;

$$\rho=|z|=1,\ \theta=0,\qquad z=1=\cos 0+i\sin 0$$

$$z = -1;$$

$$\rho = |z| = 1, \ \theta = \pi, \qquad z = -1 = \cos \pi + i \sin \pi$$

3
$$z = -\sqrt{2}$$
;

$$\rho = |z| = \sqrt{2}, \ \theta = \pi, \qquad z = -\sqrt{2} = \sqrt{2}(\cos \pi + i \sin \pi)$$

4
$$z = i$$
;

$$ho = |z| = 1, \; \theta = \frac{\pi}{2}, \qquad z = i = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$$

5
$$z = \frac{1+i}{1-i}$$
;

$$\frac{(1+i)^2}{(1-i)(1+i)} = \frac{1-1+2i}{2} = i = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$$

$$z = |z|(\cos\theta + i\sin\theta)$$

Scrivere in forma trigonometrica i seguenti numeri complessi:

1
$$z = 1 + i$$
;

$$\rho = |z| = \sqrt{2}, \ \theta = \frac{\pi}{4}, \qquad z = 1 + i = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$$

$$z = i(1+i) = -1+i;$$

$$\rho = |z| = \sqrt{2}, \ \theta = \frac{3\pi}{4}, \qquad z = -1 + i = \sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$$

$$z = \frac{1}{3+3i};$$

$$\frac{1}{3+3i} = \frac{3-3i}{(3+3i)(3-3i)} = \frac{3-3i}{18} = \frac{1}{6}(1-i)$$

$$ho = |z| = \frac{\sqrt{2}}{6}, \ \theta = \frac{7\pi}{4}, \qquad z = \frac{1}{6}(1-i) = \frac{\sqrt{2}}{6}(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4})$$

Prodotti e potenze

Nelle coordinate polari il prodotto di numeri complessi assume una forma molto semplice. Precisamente, dati

$$z_1 = |z_1|(\cos\theta_1 + i\sin\theta_1), \quad z_2 = |z_2|(\cos\theta_2 + i\sin\theta_2)$$

si ha

$$z_1 z_2 = |z_1||z_2| \Big((\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \Big) =$$

$$= |z_1||z_2| \Big(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2) \Big).$$

Se $z_1 = z_2$, si ha $z^2 = |z|^2(\cos 2\theta + i \sin 2\theta)$ e in generale si dimostra per induzione che vale la seguente formula della potenza, detta formula di De Moivre:

$$z^n = |z|^n (\cos n\theta + i \sin n\theta), \quad \forall n \in \mathbb{N}.$$

Siano $z_1 = 1 + i$ e $z_2 = \frac{1}{3+3i}$. Calcolare $z_1 \cdot z_2$, $\frac{z_1}{z_2}$, z_1^2 , z_1^6 .

$$z_1 \cdot z_2 = \frac{1+i}{3+3i} = \frac{(1+i)(3-3i)}{(3+3i)(3-3i)} = \frac{3+3}{9+9} = \frac{1}{3}$$
$$\frac{z_1}{z_2} = (1+i)(3+3i) = 3+3i+3i-3 = 6i$$

Per calcolare le potenze di z_1 conviene usare la formula

$$z^n = |z|^n (\cos n\theta + i \sin n\theta), \quad \forall n \in \mathbb{N}.$$

e bisogna calcolare

$$\rho_1 = |z_1| = \sqrt{2}, \qquad \theta_1 = \frac{\pi}{4}$$

quindi

$$z_1^2 = (\sqrt{2})^2 \left(\cos(2\frac{\pi}{4}) + i\sin(2\frac{\pi}{4})\right) = 2\left(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})\right) = 2i$$

е

$$z_1^6 = (\sqrt{2})^6 \left(\cos(6\frac{\pi}{4}) + i\sin(6\frac{\pi}{4})\right) = 8\left(\cos(3\frac{\pi}{2}) + i\sin(3\frac{\pi}{2})\right) = -8i$$

Radici

Si consideri ora il problema dell'inversione della funzione $f(z)=z^2$; usando la formula della potenza si ha che, dato $w \in \mathbb{C}$, l'equazione $z^2=w$ ammette l'unica soluzione z=0 se w=0 e altrimenti ammette le due soluzioni

$$z = \sqrt{|w|} \left[\cos \left(\frac{\theta + 2k\pi}{2} \right) + i \sin \left(\frac{\theta + 2k\pi}{2} \right) \right], \qquad k = 0, 1,$$

dove $\theta = Arg(w)$.

La soluzione per k=0 si dice radice quadrata principale. Analogamente, dato $w\in\mathbb{C}$, l'equazione $z^n=w$ ammette l'unica soluzione z=0 se w=0 e altrimenti ammette le n soluzioni

$$z = |w|^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right], \qquad k = 0, 1, \dots, n - 1.$$
 (3)

Si calcolino le radici quarte di 1,

$$z^4 - 1 = 0$$
.

Per calcolare le radici di w = 1 usiamo la formula

$$z = |w|^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right], \qquad k = 0, 1, \dots, n - 1.$$

che diventa (essendo n=4, |w|=1 e $\theta=0$)

$$z = \cos\left(\frac{2k\pi}{4}\right) + i\sin\left(\frac{2k\pi}{4}\right), \qquad k = 0, 1, \dots, 3.$$

per
$$k=0$$
 si ha $z_0=\cos 0+i\sin 0=1$ per $k=1$ si ha $z_1=\cos\left(\frac{2\pi}{4}\right)+i\sin\left(\frac{2\pi}{4}\right)=i$ per $k=2$ si ha $z_1=\cos\left(\frac{4\pi}{4}\right)+i\sin\left(\frac{4\pi}{4}\right)=-1$ per $k=3$ si ha $z_3=\cos\left(\frac{6\pi}{4}\right)+i\sin\left(\frac{6\pi}{4}\right)=-i$ Concludendo $z_0=1, z_1=i, z_2=-1, z_3=-i$

$$z_0 = 1$$
, $z_1 = i$, $z_2 = -1$, $z_3 = -i$

Osserviamo che sono i 4 vertici di un quadrato inscritto nella circonferenza unitaria con uno dei vertici nel punto 1.

Questo fatto si può generalizzare:

$$z = \cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right), \qquad k = 0, 1, \dots, n-1.$$

le radici n-esime dell'unità sono gli n vertici di un poligono di n lati inscritto nella circonferenza unitaria con uno dei vertici nel punto 1.

$$z^{n} - 1 = 0$$

Per esempio: per n = 5 è un pentagono, per n = 3 è un triangolo.

Uno dei vertici è sempre 1 perchè fra le radici n-esime di 1 c'è sempre 1, in quanto $1^n=1$.

si calcolino le radici quarte di 81,

$$z^4 - 81 = 0.$$

Per calcolare le radici di w = 81 usiamo la formula

$$z = |w|^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right], \qquad k = 0, 1, \dots, n - 1.$$

che diventa (essendo n = 4, $|w|^{\frac{1}{4}} = 3$ e $\theta = 0$)

$$z = 3\left[\cos\left(\frac{2k\pi}{4}\right) + i\sin\left(\frac{2k\pi}{4}\right)\right], \qquad k = 0, 1, \dots, 3.$$

per
$$k=0$$
 si ha $z_0=3\left[\cos 0+i\sin 0\right]=3$
per $k=1$ si ha $z_1=3\left[\cos \left(\frac{2\pi}{4}\right)+i\sin \left(\frac{2\pi}{4}\right)\right]=3i$
per $k=2$ si ha $z_1=3\left[\cos \left(\frac{4\pi}{4}\right)+i\sin \left(\frac{4\pi}{4}\right)\right]=-3$
per $k=3$ si ha $z_3=3\left[\cos \left(\frac{6\pi}{4}\right)+i\sin \left(\frac{6\pi}{4}\right)\right]=-3i$
Concludendo

$$z_0 = 3$$
, $z_1 = 3i$, $z_2 = -3$, $z_3 = -3i$

Osserviamo che sono i 4 vertici di un quadrato inscritto nella circonferenza di raggio 3 con uno dei vertici nel punto 3.

 \blacksquare Si calcolino le radici quarte di -1.

$$z^4 + 1 = 0.$$

Per calcolare le radici di w = -1 usiamo la formula

$$z = |w|^{\frac{1}{n}} \left[\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right], \qquad k = 0, 1, \dots, n - 1.$$

che diventa (essendo n=4, |w|=1 e $\theta=\pi$)

$$z = \cos\left(\frac{\pi + 2k\pi}{4}\right) + i\sin\left(\frac{\pi + 2k\pi}{4}\right), \qquad k = 0, 1, \dots, 3.$$

per
$$k=0$$
 si ha $z_0=\cos\frac{\pi}{4}+i\sin\frac{\pi+2k\pi}{4}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$ per $k=1$ si ha $z_1=\cos\left(\frac{3\pi}{4}\right)+i\sin\left(\frac{3\pi}{4}\right)=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$ per $k=2$ si ha $z_1=\cos\left(\frac{5\pi}{4}\right)+i\sin\left(\frac{5\pi}{4}\right)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$ per $k=2$ si ha $z_3=\cos\left(\frac{7\pi}{4}\right)+i\sin\left(\frac{7\pi}{4}\right)=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}i$ Concludendo abbiamo le 4 radici

$$\pm \frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2}i.$$

Testo d'esame del 22 febbraio 2011

Domanda a risposta multipla Le radici cubiche del numero complesso -8i sono

a)
$$2i, \sqrt{3} - i, -\sqrt{3} - i$$

a)
$$2i, \sqrt{3} - i, -\sqrt{3} - i$$
 b) $-2i, \sqrt{3} + i, \sqrt{3} - i$

c)
$$-2i, \frac{\sqrt{3}}{3} + \frac{1}{2}i, \frac{\sqrt{3}}{3} - \frac{1}{2}i$$
 d) $2i, \frac{\sqrt{3}}{3} + \frac{1}{2}i, \frac{\sqrt{3}}{3} - \frac{1}{2}i$.

d)
$$2i$$
, $\frac{\sqrt{3}}{3} + \frac{1}{2}i$, $\frac{\sqrt{3}}{3} - \frac{1}{2}i$

Soluzione a)

Struttura metrica in C

Lo spazio $\mathbb C$ eredita la struttura metrica di $\mathbb R^2$, cioè la distanza già nota in $\mathbb R^2$ coincide con la distanza in $\mathbb C$ così definita

$$d(z_1,z_2):=|z_1-z_2|$$

che viene detta la distanza (o metrica) tra z_1 e z_2 . Quindi, in particolare |z|=d(z,0) rappresenta la distanza di un punto $z\in\mathbb{C}$ dall'origine.

Si definisce inoltre intorno circolare (o palla) di centro z_0 e raggio r>0 l'insieme

$$B_r(z_0) := \{z \in \mathbb{C} : |z - z_0| < r\}.$$

Per esempio $B_1(0):=\{z\in\mathbb{C}:|z|<1\}$ è la palla di centro l'origine e raggio 1, mentre $B_3(1+2i):=\{z\in\mathbb{C}:|z-(1+2i)|<3\}$ è la palla di centro $z_0=1+2i$ e raggio 3.

In maniera analoga, si può definire l'insieme $\{z \in \mathbb{C} : |z - z_0| = r\}$ che rappresenta la circonferenza di centro z_0 e raggio r, cioè il bordo della palla $B_r(z_0)$.

Risolvere la seguente equazione in campo complesso:

$$|z^2| = |z|$$

$$x^{2} - y^{2} + 2ixy = \sqrt{x^{2} + y^{2}}$$
$$\begin{cases} x^{2} - y^{2} = \sqrt{x^{2} + y^{2}} \\ xy = 0 \end{cases}$$

Ci sono 2 casi:
$$x=0$$
 (asse delle y) oppure $y=0$ (asse delle x)
Primo caso: $x=0$ implica $-y^2=\sqrt{y^2}$ che implica $x=y=0$
Secondo caso: $y=0$ implica $x^2=\sqrt{x^2}$ che implica $x^4=x^2$ e quindi si ha $x^2(x^2-1)=0$
da cui si ottiene $y=0$ e $x=\pm 1$ oppure $y=x=0$ (che già avevamo)
Concludendo le soluzioni sono $z_0=(0,0)=0$, $z_1=(1,0)=1$, $z_2=(-1,0)=-1$.

Risolvere la seguente equazione in campo complesso:

$$z^2 = \bar{z}^2$$

$$(x + iy)^{2} = (x - iy)^{2}$$
$$x^{2} - y^{2} + 2ixy = x^{2} - y^{2} - 2ixy$$

da cui si ha 4ixy = 0 e quindi o x = 0 che è l'asse delle y oppure y = 0 che è l'asse delle x Si può anche scrive così

$$z = x, \ \forall x \in \mathbb{R},$$

 $z = iy, \ \forall y \in \mathbb{R}$