Bipolar Junction Transistor

Mario Alberto García-Ramíez, PhD

MU-JTSU JI

May 30, 2017

The basics

Bipolar Junction Transistor

BJT Operation characteristics Bipolar Junction Transistor

Intro

- BJT was invented by Bardeen, Brattain and Shockley at bell labs (not quite)
- ▶ It was the first commercially successful solid state device (previously there were bulbs)
- As the active region of the BJT is below the semiconductor surface, it is less dependent to surface properties or cleanliness
- BJT is composed of a sandwich of 3-doped semiconductor regions: pnp and npn
- ▶ BJT performance is driven by minority carrier drift and diffusion transport in the central region
- ▶ As carrier mobility and diffusivity is larger for e^- than h^+ , npn transistor is inherently a higher performance device than pnp configuration

BJT structure

- ▶ BJT is a 3 alternating layers of n- & p-type semiconductor materials
- Layers are named as: base (B), emitter (E) and collector (C)
- ► Normal operation, current enters by colector terminal, passes through the base and output at the emitter terminal
- ► A rather small current also enter by the base terminal, crosses it and exits by the emmiter

BJT structure

- ▶ Key section i the BJT is the active base region (dash line) under the heavily doped (n^+) emitter
- \triangleright Carrier transport in this region drives the i-v characteristics
- Figure b, shows the complexity to fabricate a BJT as well as to isolate it from others
- It is shown that i_C and i_B enter into the pnp structure and i_E comes out
- ▶ i.e. output characteristics of the BJT plots the i_C vs v_{CE} using i_B as key parameter

BJT Transport model

- ▶ BJT appears to be 2 pn junction connected back to back, nevertheless central region is rather thin $(0.1 100 \mu m)$
- ► The close proximity of both region allow the 2 diodes coupling, it is the essence of the bipolar device
- ► The emitter (n-type) inject e⁻ into p-type base, almost all e⁻ pas the narrow base and are removed by the upper n-type collector
- ▶ i_C , i_B & i_E are the current in the BJT, v_{BE} and v_{BC} are the base emitter and base colector voltages, respectively
- Arrows identifies the emitter terminal and shows that dc current exits by the emitter of the pnp BJT

- To properly analyze the behavior of the BJT, we use the above model
- ▶ In here, an arbitrary v_{BE} is applied and the $v_{BC} = 0$
- v_{BE} allows i_E that is equal to i_{BE}, it is made of two components
- ► Largest portion comes from forward-transport current *I_F*, that enters the collector, cross the base and exits by the emitter terminal
- $i_C = i_F$, that portraits the ideal diode current $i_C = i_F = I_S \left[\exp \left(\frac{v_{BE}}{V_T} \right) 1 \right]$

- ▶ I_S is defined as the transition saturation current, ranging from: $10^{-18} \le I_S \le 10^{-9}$ A
- In addition to i_F , a quite small current is passing thru B-E junction. This current is considered as part of i_B as:

$$i_B = rac{i_F}{eta_F} = rac{I_S}{eta_F} \left[\exp\left(rac{v_{BE}}{V_T}\right) - 1
ight]$$

- ▶ β_F is known as forward common-emitter current gain, values are between: $10 \le \beta_F \le 500$
- i_E can be calculated as: $i_C + i_B = i_E$ or $i_E = \left(I_S + \frac{I_S}{\beta_F}\right) \left[\exp\left(\frac{v_{BE}}{V_T}\right) 1\right]$, it can be written as: $i_E = \frac{I_S}{\alpha_F} \left[\exp\left(\frac{v_{BE}}{V_T}\right) 1\right]$, α_F is known as forward common-base current gain and it ranges from $0.95 \leq \alpha_F < 1.0$

- ▶ α_F and β_F parameters are defined as: $\alpha_F = \frac{\beta_F}{\beta_F + 1}$ and $\beta_F = \frac{\alpha_F}{1 \alpha_F}$
- Key useful relationships are valid in forward-active region: $\frac{i_C}{i_B} = \beta_F$ or $i_C = \beta_F i_B$ and $i_E = (\beta_F + 1)i_B$
- $i_{\overline{i}} = \beta_F \text{ or } i_C = \alpha_F i_E$
- Above equations implies that the BJT amplifies its base current by a factor of β_F . As $\beta_F\gg 1$, injection of small current into the base, produces a larger current at both colector and emitter terminals, due to $i_C=i_E$ as $\alpha_F\approx 1$

BJT Reverse Characteristics

- ▶ If now we bias v_{BC} and $v_{BE} = 0V$, v_{BC} allows i_C , the larges part of i_C , the reverse-transport current i_R , enter the emitter, pass thru base and exits at collector terminal
- $m i_R$ is similar as for i_F as: $i_R = I_S \left[\exp \left(rac{v_{BC}}{V_T}
 ight) 1
 ight]$ and $i_E = -i_R$
- A fraction of i_R is supplied thru i_B as $i_B = \frac{i_R}{\beta_R} = \frac{I_S}{\beta_R} \left[\exp\left(\frac{v_{BC}}{V_T}\right) 1 \right]$
- \triangleright β_R is known as reverse common-emitter current gain

- As the impurity doping level for the emitter and colector are asymmetric, it causes the i_B for both modes, reverse and forward, are quite different
- ▶ For a typical BJT $0 < \beta_R \le 10$ and $10 \le \beta_F \le 500$
- $igsim i_C$ can be found as: $i_C = -rac{I_S}{lpha_R} \left[\exp\left(rac{v_{BC}}{V_T}
 ight) 1
 ight]$
- where α_R is defined as reverse common-base current gain: $\alpha_R = \frac{\beta_R}{\beta_R+1}$ or $\beta_R = \frac{\alpha_R}{1-\alpha_R}$, typical values are between the range of: $0 < \alpha_R \leq 0.95$

TABLE 5.1 Common-Emitter and Common-Base Current Gain Comparison	
$a_F \text{ or } a_R$ $\beta_F = \frac{a_F}{1 - a_F} \text{ or } \beta_R = \frac{a_R}{1 - a_R}$	
0.1 0.11	
0.5	
0.9 9	
0.95	
0.99 99	
0.998 499	

Transport Model Equations for npn BJT

▶ By gathering the equations for i_c , i_E & i_B , follow equations are valid for a general bias voltage situation

$$\begin{split} i_{C} &= I_{S} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) - \exp \left(\frac{v_{BC}}{V_{T}} \right) \right] - \frac{I_{S}}{\beta_{R}} \left[\exp \left(\frac{v_{BC}}{V_{T}} \right) - 1 \right] \\ i_{E} &= I_{S} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) - \exp \left(\frac{v_{BC}}{V_{T}} \right) \right] - \frac{I_{S}}{\beta_{F}} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) - 1 \right] \\ i_{B} &= \frac{I_{S}}{\beta_{F}} \left[\exp \left(\frac{v_{BE}}{V_{T}} \right) - 1 \right] + \frac{I_{S}}{\beta_{R}} \left[\exp \left(\frac{v_{BC}}{V_{T}} \right) - 1 \right] \end{split}$$

- Above equations are required to characterize an individual BJT
- ▶ An equation that defined colector and emitter symmetry is shown as: $i_T = I_S \left[\exp \left(\frac{v_{BE}}{V_T} \right) \exp \exp \left(\frac{v_{BC}}{V_T} \right) \right]$
- Above set of equations is a light version of the Gummel-Poon model widely used in SPICE

Operation regions

- ▶ BJT device shows different operating regimes. To differentiate among them, we've to look at i − v characteristics of the device
- ▶ A key characteristic to analyze the BJT is thru i_C vs v_{CE} as function of several i_B values such as $i_{B4} > i_{B3} > i_{B2} > i_{B1}$

Characteristics for each region are:

- Cutoff region: base-emitter junction is reverse biased, No current flow
- 2. Saturation region: base-emitter junction is forward biased, collector-base junction is forward biased, i_C reaches a maximum that is independent of i_B and β , there is no control, $v_{CE} < v_{BE}$
- 3. Active region: base-emitter forward biased, collector-base junction reverse biased, control, $i_C = \beta i_B$, $v_{BE} < v_{CE} < v_{CC}$
- 4. Breakdown region: i_c and v_{CE} exceed specifications, damage to the transistor

Model simplification for forward-active region

For an npn transistor $v_{BE} \ge 0$ and $v_{BC} \le 0$ $v_{BE} > 4\frac{kT}{q} = 0.1 \text{V}$ and $v_{BC} < -4\frac{kT}{q} = -0.1 \text{V}$, by considering that $(v_{BC}/V_T) \ll 1$, it yields to $i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right) + \frac{I_S}{\beta_R}$; $i_E = \frac{I_S}{\alpha_F} \exp\left(\frac{v_{BE}}{V_T}\right) + \frac{I_S}{\beta_F}$; $i_B = \frac{I_S}{\beta_F} \exp\left(\frac{v_{BE}}{V_T}\right) - \frac{I_S}{\beta_F} - \frac{I_S}{\beta_R}$ In above set of equations, exponential term are larger, ergo, forward region is defined as:

$$i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right); i_E = \frac{I_S}{\alpha_F} \exp\left(\frac{v_{BE}}{V_T}\right); i_B = \frac{I_S}{\alpha_F} \exp\left(\frac{v_{BE}}{V_T}\right)$$
 Also, these approximations are highly required: $i_C = \alpha_F i_E$ and $i_C = \beta_F i_B$, as $i_E = i_C + i_B$, $i_E = (\beta_F + 1)i_B$

Simplified model for the reverse-active region

- In here, emitter and collector terminals are reversed, base-collector diode is forward biased and base-emitter is reverse biased
- $i_C = -\frac{I_S}{\alpha_R} \exp\left(\frac{v_{BC}}{V_T}\right), i_E = -I_S \exp\left(\frac{v_{BC}}{V_T}\right);$ $i_B = -\frac{I_S}{\beta_R} \exp\left(\frac{v_{BC}}{V_T}\right)$
- ▶ ratios for those equations are: $i_E = -\beta_R i_R$ and $i_E = \alpha_R i_C$

Minority carriers at the base region

- Current at BJT is driven by minority carriers across the base terminal
- At npn BJT, transport current i_T result from the diffusion of minority carriers across the base
- The voltages applied to the base-emitter and base-collector junctions define the minority-carrier concentrations at the two ends of the base due to emitter is heavily doped in regard tothe collector, so the gradient appear

The base transit time τ_F

It the average time reuired for the carriers send by the emitter to arrive into the collector, it defined by $\tau_F = \frac{Q}{i\tau}$, where

$$Q = qAn(0)\frac{W_B}{2} = An_{bo} \exp\left(\frac{v_{BE}}{V_T}\right)\frac{W_B}{2}$$

- $ightharpoonup i_T pprox i_{En} = qAD_n rac{n_{bo}}{W_B} \exp\left(rac{v_{BE}}{V_T}
 ight)$
- $T_F = \frac{Q}{i_T} = \frac{W_B^2}{2D_n} = \frac{W_B^2}{2V_T \mu_n}$
- Above equation shows why it is key to reduce the base width W_B
- Transit time places a maximum level at the highest operating frequency f of the BJT

$$f \leq \frac{1}{\tau_F}$$

Diffusion capacitance

▶ As charge Q varies according to v_{BE} , the variation in charge with voltage can be modeled by using a capacitance C_D known as diffusion capacitance

$$\begin{split} C_D &= \frac{dQ}{dv_{BE}} \Big|_{Q-point} = \frac{1}{V_T} \frac{qAn_{bo}W_B}{2} \exp\left(\frac{v_{BE}}{V_T}\right) \\ C_D &= \frac{1}{V_T} \frac{qAn_{bo}}{\exp\left(\frac{v_{BE}}{V_T}\right)} \frac{W_B^2}{2D_n} = \frac{i_t}{V_T} \tau_F = \frac{i_C}{V_T} \tau_F \end{split}$$

Frequency dependence of C-E current gain

► The forward biased diffusion and reverse-biased *pn* junction capacitance of the BJT allows the current gain to be frequency dependent

$$\beta(f) = \frac{\beta_F}{\sqrt{1 + \left(\frac{f}{f_\beta}\right)^2}}$$

where f_{β} is the β cutoff frequency

Frequency dependence of C-E current gain

▶ The unity gain frequency f_T is the frequency at which the total magnitude of the current gain is "1"

$$1=eta(f_T)=rac{eta_F}{\sqrt{1+\left(rac{f}{f_eta}
ight)^2}}pprox rac{eta_F}{f_T/f_eta}$$

Early effect

- ▶ In a BJT, i_C does depend on v_{CE}
- When the output characteristic curves are extrapolated to the origin (point zero) at i_C
- ▶ All curves intersect at $v_{CE} = -V_A$, this is called Early effect
- lacksquare V_A is known as Early voltage, ranging from $15 \le V_A \le 150
 m{V}$

Early effect

- Early effect is the modulation of the base width of the BJT by
 VCE
- As the reverse bias across the C-B junction increases
- ► The width of the C-B SCR increases and W_B decreases

$$i_C = I_S \exp(\frac{v_{BE}}{v_T})(1 + \frac{v_{CE}}{V_A})$$

$$\beta_F = \beta_{FO} = (1 + \frac{v_{CE}}{V_A})$$

$$i_B = \frac{I_S}{\beta_{FO}} \exp(\frac{v_{BE}}{V_A})$$

 β_{FO} is the value of β_F extrapolated to $v_{CE}=0$

Transconductance

Transconductance is defined as g_m

$$\begin{split} g_m &= \frac{di_C}{dv_{BE}} \mid_{Q-point} = \frac{d}{dv_{BE}} \left\{ I_S \exp(\frac{v_{BE}}{V_T}) \right\} \mid_{Q-point} \\ &= \frac{1}{V_T} I_S \exp\left(\frac{v_{BE}}{V_T}\right) = \frac{i_C}{V_T} \\ \tau_F \text{ can be written as } \tau_F &= \left(C_D \frac{V_T}{i_C}\right) = \frac{C_D}{gm} \text{ or } C_D = g_m \tau_F \end{split}$$

A few considerations

- ▶ The key point to bias the BJT is to get the Q-point
- ▶ Q-point get the values for diffusion, capacitances, transconductance, · · ·
- ▶ We, in most cases, use the simplified transistor model
- ▶ 2 key arrays are 4-resistor and 2-resistor bias networks

Q-point of the transistor Q1

$$v_{EQ} = v_{CC} \frac{R_1}{R_1 + R_2} = 12 \frac{18}{18 + 36} = 4V; \ R_{EQ} = R_1 \mid\mid R_2 = 18 \mid\mid 36 = 12 \mid\mid k\Omega$$

Q-point of the transistor Q1

From the above figure, we can infer that:
$$\beta_F = 300/4 = 75$$
 $v_{EQ} = I_B R_{EQ} + V_{BE} + I_E R_E = I_B R_{EQ} + V_{BE} + (1 + \beta_F) I_B R_E$ $I_B = \frac{v_{EQ} - v_{BE}}{R_E Q + (1 + \beta_F) R_E} = \frac{4 - 0.7}{12 + (1 + 75)16} \approx 2.69 \times 10^{-6} \text{A}$ $I_C = \beta_F I_B = 75 \cdot 2.69 \times 10^{-3} \approx 0.202 \text{ mA}$ $I_E = (1 + \beta_F) I_B = (1 + 75) \cdot 2.69 \times 10^{-3} \approx 0.202 \text{ mA}$ $v_{CE} = v_{CC} - I_C R_C - I_E R_E = 12 - 0.202 \cdot 22 - 0.204 \cdot 16 \approx 4.29 \text{V}$ $Q - point : (I_C, v_{CE}) = 0.202 \text{ mA} @ 4.29 \text{ V}$

Q-point of the transistor Q1

Design a 4 resistor bias circuit to give a Q-point of (750 μ A@5 V), considering a 12 V source with an *npn* transistor, having a minimum current gain of 100)

$$I_B = \frac{I_C}{\beta_F} = \frac{0.75}{100} = 7.5 \times 10^{-3} \,\mathrm{mA}$$
 $V_B = \frac{1}{3} V_{CC} = \frac{1}{3} \cdot 12 = 4 V$
 $R_1 = \frac{V_B}{9I_B} = \frac{4}{9 \cdot 7.5 m} \approx 59.3 \,\mathrm{k}\Omega$
 $R_2 = \frac{V_{CC} - V_B}{10I_B} = \frac{12 - 4}{10 \cdot 7.5 m} \approx 106.7 \,\mathrm{k}\Omega$
 $R_E \approx \frac{V_B - V_{BE}}{I_C} = \frac{4 - 0 - 7}{7.5 m} = 4.4 \,\mathrm{k}\Omega$
 $R_C \approx \frac{V_{CC} - V_{CE}}{I_C} - R_E = \frac{12 - 5}{7.5 m} - 4.4 \approx 4.93 \,\mathrm{k}\Omega$
where the closest values for Rs are:

$$R_1$$
= 62k Ω , R_2 = 110 k Ω , R_E = 4.3 k Ω and R_C = 5.1k Ω

Find the Q-point

Find the Q-point for the pnp transistor in the 2 resistor bias circuit as portrait in Fig. assuming a β =50

$$9 = V_{EB} + I_B \cdot 18 + (I_C + I_B) \cdot 1 \ I_C = \beta_F I_B = 50 I_B$$
 $I_B = \frac{9 - 0.7}{69} \approx 0.12 \text{ mA}$
 $I_C = 50 \cdot 0.12 = 6 \text{ mA}$
 $9 = V_{EC} + (I_C + I_B) \cdot 1$
 $V_{EC} = 9 - (6 + 0.12) \cdot 1 = 2.88 \text{ V}$
Q-points are $(I_C, V_{CE}) = 6 \text{ mA@2.88 V}$