E2-212 MATRIX THEORY: ASSIGNMENT 3

Question 1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\|\cdot\|$ be a vector norm on \mathbb{R}^m . Define $\|\mathbf{x}\|_{\mathbf{A}} \triangleq \|\mathbf{A}\mathbf{x}\|$.

Prove or disprove the following: (6 points)

- (a) $\|\cdot\|_{\mathbf{A}}$ is a norm on \mathbb{R}^n when $\operatorname{rank}(\mathbf{A}) = n$.
- $(b) \parallel \cdot \parallel_{\mathbf{A}}$ is a norm on \mathbb{R}^n when $\operatorname{rank}(\mathbf{A}) = k < n$.

Question 2. Let $\mathbf{C} \in \mathbb{C}^{m \times n}$, $\mathbf{D} \in \mathbb{C}^{n \times m}$. Prove or disprove: (4 points)

- (a) $det(\mathbf{CD}) = det(\mathbf{DC})$, when m = n.
- $(b) \det(\mathbf{CD}) = \det(\mathbf{DC}), \text{ when } m > n.$