angian density	$\omega_{l}^{\kappa\lambda} \; \omega_{\kappa\lambda}^{\;\;\prime} + \tfrac{1}{3} t_2 \; \omega_{\kappa\lambda}^{\;\;\prime} \; \omega^{\kappa\lambda}_{\;\;\prime} + f^{\alpha\beta} \; \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \; \sigma_{\alpha\beta\chi} + 2 r_1 \partial_i \omega^{\kappa\lambda}_{\;\;\kappa} \partial^i \omega_{\lambda}^{\;\;\alpha} -$	${}^{eta}\omega^{etalpha}_{\kappa}\partial_{eta}\omega^{\kappa}_{\beta}+rac{2}{3}r_2\partial^{eta}\omega^{etalpha}_{\kappa}\partial_{eta}\omega^{\kappa}_{\beta}-rac{2}{3}r_1\partial_{eta}\omega^{\kappa}_{\beta}\partial_{\kappa}\omega^{lphaeta}_{\beta}-$	$\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} + rac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} - rac{2}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} +$
ıngiar), ^{κλ} ω	$^{eta}\omega^{etalpha}_{\kappa}$	$^{\kappa}_{ heta eta}$

 $\theta - \frac{1}{6}t_2 \partial^{\alpha} f_{\kappa\theta} \partial^{\kappa} f_{\alpha}^{\ \ \theta} + \frac{1}{6}t_2 \partial^{\alpha} f^{\lambda}_{\kappa}$ $2 r_1 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - 2 r_1 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + 2 r_1 \partial_{\alpha} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} 4 r_1 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\ \ \ \ \ \ }$ $\frac{2}{3} r_1 \partial^{\beta}$ $\frac{1}{3}$ r_2 ∂_{θ}

	$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\#_2^2}$	$f_1^{\#1}$	$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	$\omega_{1}^{\#2}{}_{\alpha}$	$f_{1^-}^{\#1} \alpha$	$f_{1}^{\#2}$
$\omega_1^{\#1} +^{lphaeta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}\vec{l}\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2} + ^{lphaeta}$	$\frac{\sqrt{2} t_2}{3}$	£ 3	<u>ikt2</u> 3	0	0	0	0
$f_1^{#1} + \alpha \beta$	$-\frac{1}{3}\vec{l}\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_1} \dagger^\alpha$	0	0	0	$-k^2 r_1$	0	0	0
$\omega_1^{\#2} \dagger^{lpha}$	0	0	0	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	0	0	0	0

- I							
$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$t_1^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} {\dagger}^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

 $\sigma_{0}^{\#1}$

 $\tau_0^{\#2}$

0

0

0

0

0

0

0

0

0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	0	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{1}{k^2 r_1}$

 $k^2 r_2 + t_2$

0

 $\sigma_{0}^{\#1} == 0$

 $\tau_{0}^{\#1} == 0$

Source constraints SO(3) irreps

 $\tau_{0}^{\#2} == 0$

J	#00.0	0#1+0	+ -		$\sigma_{0}^{*,1} \downarrow 0$		
3	ϵ	\mathcal{C}	3	3	2	2	28
$\tau_1^{\#2}{}^{\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#2}\alpha == 0$	$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#1}\alpha\beta == 0 \ 3$	$\sigma_{1+}^{\#1}\alpha\beta == \sigma_{1+}^{\#2}\alpha\beta$	$\tau_{2+}^{\#1}\alpha\beta=0$	$\sigma_{2+}^{\#1}\alpha\beta==0$	Total #:

 $\frac{2}{3}r_{1}\partial^{\beta}\omega_{\alpha}^{\ \alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime}-\frac{2}{3}r_{2}\partial^{\beta}\omega_{\alpha}^{\ \alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime}-\frac{8}{3}r_{1}\partial^{\beta}\omega_{\lambda}^{\ \lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\ \ \prime}+$

 $_{\kappa} + 2 r_{1} \partial_{\theta} \omega_{\lambda}^{\alpha} {}_{\alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\kappa}$

 $\frac{2}{3}r_2\,\partial^\beta\omega_{\lambda}^{\ \lambda\alpha}\,\partial_\lambda\omega_{\alpha\beta}^{\ \ \prime}$ - $2\,r_1\,\partial_\alpha\omega_{\lambda}^{\ \alpha}\,\partial^\lambda\omega^{\theta\kappa}_{\ \ \kappa}$

(No massless particles)

Massive partic	le
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd
	Polarisations: Square mass: Spin:

2	\vdash
٨	nit
0	taı
88	rity
t_2	СО
V	윽
0	nd
•	iti
	Ö