Munkres Solutions

Amit Rajaraman

Last updated February 28, 2021

Contents

2	Topological Spaces and Continuous Functions	2
	2.13 Basis for a Topology	2
	2.16 The Subspace Topology	2
	2.17 Closed Sets and Limit Points	3
	2.18 Continuous Functions	4
	2.19 The Product Topology	5

§2. Topological Spaces and Continuous Functions

2.13. Basis for a Topology

Exercise 2.13.1. Let X be a topological space and $A \subseteq X$. Suppose that for each $x \in A$, there is an open set U containing x such that $U \subseteq A$. Show that A is open in X.

Solution

For each $x \in A$, denote by U_x an open subset of A that contains A. Then $A = \bigcup_{x \in A} U_x$. However, an arbitrary union of open sets is open and thus, so is A.

Exercise 2.13.5. Show that if \mathcal{A} is a basis for a topology on X, the topology generated by \mathcal{A} equals the intersection of all topologies that contain \mathcal{A} . Prove the same if \mathcal{A} is a subbasis.

Solution

Let \mathcal{T} be the topology generated by \mathcal{A} and \mathcal{T}' be a topology that contains \mathcal{A} . Let $U \in \mathcal{T}$. Then $U = \bigcup_{i \in I} B_i$ for some $(B_i)_{i \in I}$ in \mathcal{A} . However, each B_i is also in \mathcal{T}' . Since an arbitrary union of open sets is open, $U \in \mathcal{T}'$ as well. Therefore, $\mathcal{T} \subseteq \mathcal{T}'$, proving the result. The solution for the case where \mathcal{A} is a subbasis is very similar and so omitted.

2.16. The Subspace Topology

Exercise 2.16.1. Show that if Y is a subspace of X and A is a subset of Y, then the topology A inherits as a subspace of Y is the same as the topology it inherits as a subspace of X.

Solution

The topology A inherits as a subspace of X is

$$\mathcal{T} = \{ U \cap A : U \text{ open in } X \}$$
$$= \{ (U \cap Y) \cap A : U \text{ open in } X \}$$
$$= \{ V \cap A : V \text{ open in } Y \},$$

which is the topology it inherits as a subspace of Y.

Exercise 2.16.2. If \mathcal{T} and \mathcal{T}' are topologies on X and \mathcal{T}' is strictly finer than \mathcal{T} , what can you say about the corresponding subspace topologies on the subset Y of X.

Solution

It is easily seen that \mathcal{T}'_Y is finer than \mathcal{T}_Y . We further see that it need not be strictly finer by considering the example $X = \{a, b, c\}, Y = \{a, b\}, \mathcal{T} = \{\varnothing, X, \{a\}, \{b\}, \{a, b\}\}, \text{ and } \mathcal{T}'$ as the discrete topology on X.

Exercise 2.16.3. Consider Y = [-1, 1] as a subspace of \mathbb{R} . Which of the following is open in Y? Which are open in \mathbb{R} ?

$$A = \left\{ x : \frac{1}{2} < x < 1 \right\}$$

$$B = \left\{ x : \frac{1}{2} < x \le 1 \right\}$$

$$C = \left\{ x : \frac{1}{2} \le x < 1 \right\}$$

$$D = \left\{ x : \frac{1}{2} \le x \le 1 \right\}$$

$$E = \left\{ x : 0 < x < 1 \text{ and } 1/x \notin \mathbb{Z}^+ \right\}$$

Solution

A and B are open in Y and only A is open in \mathbb{R} . This is reasonably straightforward to prove.

C is not open in Y (and so not \mathbb{R} either) because there is no basis element U of the order topology such that $1/2 \in U \subseteq C$. A similar argument holds for D as well.

E is open in both \mathbb{R} and Y because it can be written as a union of basis elements

$$E = \bigcap_{n \in \mathbb{Z}^+} \left(\frac{1}{n+1}, \frac{1}{n} \right).$$

Exercise 2.16.4. A map $f: X \to Y$ is said to be an open map if for every open U of X, f(U) is open in Y. Show that $\pi_1: X \times Y \to X$ and $\pi_2: X \times Y \to Y$ are open.

Solution

We shall only show that π_1 is open, the other case is nearly identical. Let

$$U = \bigcup_{i \in I} U_i \times V_i$$

be open in $X \times Y$ for some indexing set I, where each U_i and V_i are open in X and Y respectively. Then,

$$\pi_1(U) = \pi_1 \left(\bigcup_{i \in I} U_i \times V_i = \bigcup_{i \in I} \pi_1(U_i \times V_i) = \bigcup_{i \in I} U_i \right)$$

is open in X.

2.17. Closed Sets and Limit Points

Exercise 2.17.1. Let \mathcal{C} be a collection of subsets of set X. Suppose that \emptyset and X are in \mathcal{C} and that finite unions and arbitrary intersections of elements of \mathcal{C} are in C. Show that the collection $\mathcal{T} = \{X \setminus C : C \in \mathcal{C}\}$ is a topology on X.

Solution

Let $(U_i)_{i\in I}$ be in \mathcal{T} with $U_i = X \setminus C_i$ for each i. Then

$$\bigcup_{i\in I} U_i = X \setminus \bigcap_{i\in I} C_i = X \setminus C \in \mathcal{T}$$

for some $C \in \mathcal{C}$. Closure under finite intersections is shown similarly. We trivially have $\emptyset, X \in \mathcal{T}$ because $X, \emptyset \in \mathcal{C}$.

Exercise 2.17.2. Show that if A is closed in Y and Y is closed in X, then A is closed in X.

Solution

Let U be open in X such that $Y \setminus A = U \cap Y$. Then, we can write A as $X \setminus ((X \setminus Y) \cup U)$. Since $X \setminus Y$ and U are open in X, A is closed in X.

Exercise 2.17.3. Show that if A is closed in X and B is closed in Y, $A \times B$ is closed in $X \times Y$.

Solution

Observe that

$$(X \times Y) \setminus (A \times B) = ((X \setminus A) \times (Y \setminus B)) \cup ((X \setminus A) \times Y) \cup (A \times (Y \setminus B)).$$

Since each of the sets on the right are open in $X \times Y$, $A \times B$ is closed.

Exercise 2.17.4. Show that if U is open in X and A is closed in $X, U \setminus A$ is open in X and $A \setminus U$ is closed in Y.

Solution

This is easily seen on writing $U \setminus A = U \cap (X \setminus A)$ and $A \setminus U = A \cap (X \setminus U)$.

Exercise 2.17.19. If $A \subseteq X$, define the boundary of A by

$$\operatorname{Bd} A = \overline{A} \cap \overline{X \setminus A}.$$

- (a) Show that A° and $\operatorname{Bd} A$ are disjoint, and $\overline{A} = A^{\circ} \cup \operatorname{Bd} A$.
- (b) Show that Bd $A = \emptyset$ iff A is both open and closed.
- (c) Show that U is open iff $\operatorname{Bd} U = \overline{U} \setminus U$.
- (d) If U is open, is it true that $U = \overline{U}^{\circ}$? Justify your answer.

Solution

(a) Let $x \in A \setminus A^{\circ}$. Then for any open $U \ni x$, $U \not\subseteq A$ (otherwise, $A^{\circ} \cup U \supsetneq A^{\circ}$ is open and contained in A). That is, $U \cap (X \setminus A) \neq \emptyset$. However, this implies that $x \in \overline{X \setminus A}$, that is, $A \setminus A^{\circ} \subseteq \overline{X \setminus A}$. Therefore,

$$\overline{A} \setminus A^{\circ} = (\overline{A} \setminus A) \cup (A \setminus A^{\circ}) \subseteq \overline{X \setminus A}$$

$$\overline{A} \subseteq A^{\circ} \cup \overline{X \setminus A}$$

$$= \overline{A} \cap (A^{\circ} \cup \overline{X \setminus A})$$

$$= A^{\circ} \cup (\overline{A} \cup \overline{X \setminus A}) = A^{\circ} \cup \operatorname{Bd} A.$$

- (b) If A is not closed, $\overline{A} \supsetneq A$ intersects $X \setminus A \subseteq \overline{X \setminus A}$, contradicting $\operatorname{Bd} A = \emptyset$. Similarly, $X \setminus A$ is closed as well, so A is both open and closed. The other direction is similarly straightforward.
- (c) If U is open, $X \setminus U$ is closed so $\operatorname{Bd} U = \overline{U} \cap (X \setminus U) = \overline{U} \setminus U$. On the other hand, if $\overline{U} \cap (X \setminus U) = \overline{U} \cap \overline{X} \setminus \overline{U}$, $X \setminus U$ must be closed. Indeed, otherwise, $\overline{X \setminus U} \setminus (X \setminus U) \subseteq U \subseteq \overline{U}$, contradicting the equality.
- (d) No, this is not the case. Consider the open set $U = (1,2) \cup (2,3) \subseteq \mathbb{R}$. Then $\overline{U}^{\circ} = (1,3)$.

2.18. Continuous Functions

Exercise 2.18.1. Suppose that $f: X \to Y$ is continuous. If x is a limit point of $A \subseteq X$, is f(x) necessarily a limit point of f(A)?

Solution

No. Let $f: \mathbb{R} \to \mathbb{R}$ be the zero function, $A = \{1/n : n \in \mathbb{N}\}$, and x = 0.

Exercise 2.18.8. Let Y be an ordered set in the order topology. Let $f, g: X \to Y$ be continuous.

- (a) Show that the set $\{x: f(x) \leq g(x)\}$ is closed in X.
- (b) Let $h: X \to Y$ be the function

$$h(x) = \min\{f(x), g(x)\}.$$

Show that h is continuous.

Solution

(a) It suffices to show that $V = \{x : f(x) > g(x)\}$ is open in X. Let $x \in V$. Since Y is Hausdorff, there are open sets U_1, U_2 such that $f(x) \in U_1, g(x) \in U_2$, and $U_1 \cap U_2 = \emptyset$.

We can consider a basis element $B_1 \subseteq U_1$ that contains f(x) in lieu of U_1 . That is, we may suppose wlog that U_1 and U_2 are disjoint basis elements. Further, we may assume that U_1 is of the form (a, ∞) (if it is of the form (a, c) instead, we can replace it with (a, ∞)). Due to the disjointness assumption, this means that we can consider U_1 to be of the form (a, ∞) and U_2 of the form $(-\infty, b)$ such that for any $c \in U_1, d \in U_2, c > d$

Now, let $U = f^{-1}(U_1) \cap g^{-1}(U_2) \ni x$. f and g are continuous so U is open. Further, for any $y \in U$, f(y) > g(y) (by the above assumption), that is, $U \subseteq V$.

It follows that V is open (for any $x \in V$, there is an open $V \subseteq U$ such that $x \in V$).

(b) Let $U_1 = \{x : f(x) \ge g(x)\}$ and $U_2 = \{x : f(x) \le g(x)\}$. By (a), U_1 and U_2 are both closed. Since g is continuous on U_1 , f is continuous on U_2 , and f = g on $U_1 \cap U_2$, we can use the pasting lemma to conclude that h is continuous (h(x) = g(x)) on U_1 and f(x) on U_2).

2.19. The Product Topology

Exercise 2.19.4. Show that $(X_1 \times \cdots \times X_{n-1}) \times X_n$ is homeomorphic to $X_1 \times \cdots \times X_n$.

Solution

Let the two topological spaces above be denoted by X and Y respectively. Consider the map $f: X \to Y$ with

$$f(x) = (\pi_1(\pi_1(x)), \dots, \pi_{n-1}(\pi_1(x)), \pi_2(x)).$$

We claim that f is a homomorphism.

If U_i is open in X_i for each i, then $f^{-1}(U_1 \times \cdots \times U_n) = (U_1 \times \cdots \times U_{n-1}) \times U_n$ is open in X ($U_1 \times \cdots \times U_{n-1}$ is open in $X_1 \times \cdots \times X_{n-1}$ and U_n is open in X_n). Therefore, f is continuous.

On the other hand, if U is open in $X_1 \times \cdots \times X_{n-1}$ and U_n is open in X_n , then $f(U \times U_n) = U_1 \times \cdots \times U_n$, where each U_i is open in X_i by Exercise 2.16.4.