PC_English_Full

2024-11-18

Cleaning

```
library(readr)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr
           1.1.4
                       v purrr
                                    1.0.2
## v forcats 1.0.0
                                    1.5.1
                        v stringr
## v ggplot2 3.5.1
                        v tibble
                                    3.2.1
## v lubridate 1.9.3
                        v tidyr
                                    1.3.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggplot2)
library(ggsignif)
library(mlogit)
## Loading required package: dfidx
##
## Attaching package: 'dfidx'
## The following object is masked from 'package:stats':
##
##
      filter
data <- read_csv("PC_Pilot-English_Prolific_December 12, 2024_17.20.csv")
## Rows: 403 Columns: 81
## -- Column specification -----
## Delimiter: ","
## chr (81): StartDate, EndDate, Status, IPAddress, Progress, Duration (in seco...
##
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
View(data)
data_header_rm <- data[-c(1,2),] #remove qualtrics duplicate headers
```

```
data_header_rm[data_header_rm == ""] <- NA #empty string = NA
View(data_header_rm)
# Prolific, pass consent, and prescreen
data_passed <- data_header_rm %>%
 filter(
   Finished == 1,
   consent == 1,
   str_length(Prolific_ID) == 24, # Prolific IDs
#rows with fraud
data_fraud <- data_passed %>%
 filter(
   Q_BallotBoxStuffing == "True",
    Q_RecaptchaScore <= 0.5,
   Q_RelevantIDDuplicate == "True",
   Q_RelevantIDDuplicateScore >= 75,
    Q_RelevantIDFraudScore >= 30
  )
#remove unnecessary columns
data_passed1 <- data_passed %>%
  filter(!PROLIFIC_PID %in% data_fraud$PROLIFIC_PID) %>% #remove fraud
  select(-c(StartDate,
            EndDate,
            Status,
           IPAddress,
           Progress,
           Finished,
           RecordedDate,
           ResponseId,
           RecipientLastName,
           RecipientFirstName,
           RecipientEmail,
           ExternalReference,
           LocationLatitude,
           LocationLongitude,
           DistributionChannel,
           UserLanguage,
           'Duration (in seconds)',
           Q_BallotBoxStuffing,
           Q_RecaptchaScore,
           Q_RelevantIDDuplicate,
           Q_RelevantIDDuplicateScore,
           Q_RelevantIDFraudScore,
           PROLIFIC_PID,
           consent,
           not_pc_label,
           pc_label
           )) %>%
  mutate(ppt_ID = row_number())
```

```
# Separate demographics
data_demo <- data_passed1 %>%
  select(ppt_ID, Prolific_ID,
         label,
         starts_with("Demo_"),
         comment
write.csv(data demo, "demo 12102024.csv", row.names = FALSE)
# Main data
data_main <- data_passed1 %>%
  select(-c(Prolific_ID, # de-identified
            starts_with("Demo_"),
            comment)) %>%
  mutate(across(where(is.character), # Apply to character columns only
                ~ ifelse(!is.na(suppressWarnings(as.numeric(.))),
                         as.numeric(.),
                          .))) %>%
  mutate(
    experience 1 = as.numeric(experience 1),
   experience_2 = as.numeric(experience_2),
   experience_3 = as.numeric(experience_3),
    SliderOverlapValue = as.numeric(SliderOverlapValue)
  )
# Attention check
data_main <- data_main[data_main$check == 2, ]</pre>
```

Recode Data

```
# In primary and early_language, change 4=English and other to 3 = English and other.
data_main <- data_main %>%
 mutate(
   primary = if_else(primary == 4, 3, primary),
    early_language = if_else(early_language == 4, 3, early_language)
  )
# For all stigma_, 5 = the most stigmatized, 1 = the least stigmatized
## Recode stigma_resp_2, stigma_dist_2, stigma_dist_3
data_main_recode <- data_main %>%
 mutate(stigma_resp_2_mut = 6 - stigma_resp_2,
         stigma_dist_2_mut = 6 - stigma_dist_2,
         stigma_dist_3_mut = 6 - stigma_dist_3) %>%
  select(-c(stigma_resp_2, stigma_dist_2, stigma_dist_3))
# For all stertyp_, 5 = the most stereotyped (negatively)
## Reverse all values in stertyp_ columns
data_main_recode <- data_main_recode %>%
 mutate(across(
    starts_with("stertyp_"), # Select columns starting with "stertyp_"
   ~ 6 - ., # Reverse the values (assuming range is 1 to 5)
```

```
.names = "{.col}_rev" # Add "_rev" to the new column names
)) %>%
select(-starts_with("stertyp_")|ends_with("_rev"))

data_main_noFR <- data_main_recode %>%
select(-c(general_1, general_2, impression_1, impression_2, impression_3_4_TEXT, like_fr, offens_fr))
write.csv(data_main_noFR, "data_main_noFR.csv", row.names = FALSE)
```

Analysis - Simple Descriptive

Lable meaning overlap

```
# Overlap compare
data_main_recode %>%
  group_by(label) %>%
 summarise(overlap_avg = mean(SliderOverlapValue))
## # A tibble: 2 x 2
##
     label
                                               overlap_avg
##
     <chr>>
                                                     <dbl>
## 1 people who experience housing insecurity
                                                        NA
## 2 the homeless
                                                        NA
Stigma: PC vs. PIC
# average stigma
```

```
# average stigma
data_main_recode %>%
  mutate(stigma_avg_ppt = rowSums(select(., starts_with('stigma_')))/6) %>%
  group_by(label) %>%
  summarise(stigma_avg_label = mean(stigma_avg_ppt))

## # A tibble: 2 x 2
```

```
# stigma_resp
data_main_recode %>%
  mutate(stigma_resp_ppt = rowSums(select(., starts_with('stigma_resp')))/2) %>%
  group_by(label) %>%
  summarise(stigma_resp_label = mean(stigma_resp_ppt))
```

```
# stiqma_dist
data_main_recode %>%
  mutate(stigma_dist_ppt = rowSums(select(., starts_with('stigma_dist')))/3) %>%
  group by(label) %>%
  summarise(stigma_dist_label = mean(stigma_dist_ppt))
## # A tibble: 2 x 2
                                               stigma_dist_label
##
     label
##
     <chr>>
                                                           <dbl>
## 1 people who experience housing insecurity
                                                            1.98
## 2 the homeless
                                                            2.25
# stigma_danger
data_main_recode %>%
  group_by(label) %>%
  summarise(stigma_danger_label = mean(stigma_danger))
## # A tibble: 2 x 2
##
    label
                                               stigma_danger_label
     <chr>>
                                                             <dbl>
## 1 people who experience housing insecurity
                                                              2.04
## 2 the homeless
                                                              2.61
Stereotype: PC vs. PIC
# average stertyp
data_main_recode %>%
  mutate(stertyp_avg_ppt = rowSums(select(., starts_with('stertyp_')))/8) %>%
  group_by(label) %>%
  summarise(stertyp_avg_label = mean(stertyp_avg_ppt))
## # A tibble: 2 x 2
##
    label
                                               stertyp_avg_label
     <chr>>
                                                           <dbl>
## 1 people who experience housing insecurity
                                                            3.37
## 2 the homeless
                                                            3.51
# stertyp_cmptition
data_main_recode %>%
  mutate(stertyp_cmptition_ppt = rowSums(select(., starts_with('stertyp_cmptition_')))/2) %>%
  group_by(label) %>%
  summarise(stertyp_cmptition_label = mean(stertyp_cmptition_ppt))
## # A tibble: 2 x 2
##
   label
                                               stertyp_cmptition_label
##
     <chr>
                                                                 <dbl>
## 1 people who experience housing insecurity
                                                                  3.90
## 2 the homeless
                                                                  4.10
```

```
# stertyp_comp
data_main_recode %>%
  mutate(stertyp_comp_ppt = rowSums(select(., starts_with('stertyp_comp_')))/2) %>%
  group by(label) %>%
 summarise(stertyp_comp_label = mean(stertyp_comp_ppt))
## # A tibble: 2 x 2
##
    label
                                              stertyp_comp_label
##
     <chr>
                                                            <dbl>
## 1 people who experience housing insecurity
                                                             3.27
## 2 the homeless
                                                             3.33
# stertyp_warm
data_main_recode %>%
 mutate(stertyp_warm_ppt = rowSums(select(., starts_with('stertyp_warm_'))))/2) %>%
 group by(label) %>%
 summarise(stertyp_warm_label = mean(stertyp_warm_ppt))
## # A tibble: 2 x 2
##
    label
                                              stertyp_warm_label
##
    <chr>>
                                                            <dbl>
## 1 people who experience housing insecurity
                                                             2.56
## 2 the homeless
                                                             2.74
# stertyp_status
data_main_recode %>%
 mutate(stertyp_status_ppt = rowSums(select(., starts_with('stertyp_status_')))/2) %>%
 group_by(label) %>%
 summarise(stertyp_status_label = mean(stertyp_status_ppt))
## # A tibble: 2 x 2
##
    label
                                              stertyp_status_label
     <chr>
                                                              <dbl>
## 1 people who experience housing insecurity
                                                               3.74
## 2 the homeless
                                                               3.89
Supportive Behavior: PC vs. PIC
# Average donation: PC vs. PIC
data main recode %>%
  group_by(label) %>%
 summarise(donate_homeless_label = mean(donate_1), donate_homeless_sd = sd(donate_1))
## # A tibble: 2 x 3
##
    label
                                           donate_homeless_label donate_homeless_sd
##
                                                            <dbl>
                                                                               <dbl>
## 1 people who experience housing insecu~
                                                             40.3
                                                                               21.1
## 2 the homeless
                                                             42.1
                                                                                20.4
```

```
ggplot(data_main_recode, aes(x = donate_1)) +
  geom_histogram() +
  facet_wrap(~label)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.


```
ggplot(data_main_recode, aes(x = donate_2)) +
  geom_histogram() +
  facet_wrap(~label)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.


```
ggplot(data_main_recode, aes(x = donate_3)) +
  geom_histogram() +
  facet_wrap(~label)
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Concept: PC vs. PIC

```
# concept_1: access to shelter
data_main_recode %>%
  group_by(label) %>%
  summarise(concept_shelter_lable = mean(concept_1))
## # A tibble: 2 x 2
##
     label
                                               concept_shelter_lable
##
     <chr>
                                                               <dbl>
## 1 people who experience housing insecurity
                                                                3.04
## 2 the homeless
                                                                2.94
# concept_2: unemployment
data_main_recode %>%
  group_by(label) %>%
  summarise(concept_unemploy_lable = mean(concept_2))
## # A tibble: 2 x 2
                                               concept_unemploy_lable
##
     label
##
     <chr>
                                                                <dbl>
## 1 people who experience housing insecurity
                                                                 2.67
## 2 the homeless
                                                                 3.18
```

```
# concept_3: duration of homelessness
data_main_recode %>%
  group by(label) %>%
  summarise(concept_duration_lable = mean(concept_3))
## # A tibble: 2 x 2
##
    label
                                               concept_duration_lable
##
     <chr>>
                                                                <dbl>
                                                                 3.26
## 1 people who experience housing insecurity
## 2 the homeless
                                                                 3.32
Like better & Less offensive: PC vs. PIC
# Average like, offens: if distinct from 1.5
data_main_recode %>%
  summarise(like_avg_ppt = mean(like),
            offense_avg_ppt = mean(offens))
## # A tibble: 1 x 2
    like_avg_ppt offense_avg_ppt
##
           <dbl>
                           <dbl>
## 1
             1.5
                             1.77
## like, offens: if correlated with label
data_main_recode %>%
 group_by(label) %>%
  summarise(like_avg_label = mean(like),
            offense_avg_label = mean(offens))
## # A tibble: 2 x 3
##
    label
                                              like_avg_label offense_avg_label
     <chr>
                                                        <dbl>
                                                                          <dbl>
## 1 people who experience housing insecurity
                                                         1.59
                                                                           1.84
## 2 the homeless
                                                         1.41
                                                                           1.70
Impression - Which one is more politically correct
# Distribution of impression_3
data_main_recode %>%
  summarise(impression_3_avg = mean(impression_3))
## # A tibble: 1 x 1
   impression_3_avg
```

##

1

<dbl>

2.27

Distribution of Impression_3

Analysis - F Test

```
# Calculate stigma and stereotype as averages
data_main_recode <- data_main_recode %>%
 mutate(
   stigma avg = rowMeans(select(., starts with("stigma ")), na.rm = TRUE),
   stereotype_avg = rowMeans(select(., starts_with("stertyp_")), na.rm = TRUE)
# Perform F-tests for each variable
# 1. Stigma
stigma_aov <- aov(stigma_avg ~ label, data = data_main_recode)</pre>
summary(stigma_aov)
##
               Df Sum Sq Mean Sq F value Pr(>F)
## label
                1 4.32
                           4.315
                                   8.245 0.00431 **
## Residuals
              388 203.06
                            0.523
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## plot stigma by label
summary_stigma_aov <- data_main_recode %>%
  group_by(label) %>%
 summarise(
   stigma_mean = mean(stigma_avg),
   stigma_se = sd(stigma_avg)/sqrt(n())
  )
ggplot(summary_stigma_aov, aes(x = label, y = stigma_mean, fill = label)) +
 geom_bar(stat = "identity", position = "dodge") +
  geom_errorbar(aes(ymin = stigma_mean - stigma_se,
                   ymax = stigma_mean + stigma_se),
                width = 0.2) +
  geom_text(aes(label = round(stigma_mean, 2), y = stigma_mean), vjust = -0.5) +
  labs(title = "Bar Graph of Stigma Averages by Label",
   x = "Label",
   y = "Average Stigma Score") +
 ylim(0, 5) +
  theme_minimal() +
  theme(legend.position = "none")
```

Bar Graph of Stigma Averages by Label


```
# 2. Stereotype
stereotype_aov <- aov(stereotype_avg ~ label, data = data_main_recode)</pre>
summary(stereotype_aov)
##
               Df Sum Sq Mean Sq F value Pr(>F)
                                    7.433 0.00669 **
## label
                     2.05 2.0482
                1
              388 106.91 0.2755
## Residuals
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## plot stertyp by label
summary_stereotype_aov <- data_main_recode %>%
 group_by(label) %>%
  summarise(
   stereotype_mean = mean(stereotype_avg),
    stereotype_se = sd(stereotype_avg)/sqrt(n())
 )
ggplot(summary_stereotype_aov, aes(x = label, y = stereotype_mean, fill = label)) +
  geom_bar(stat = "identity", position = "dodge") +
  geom_errorbar(aes(ymin = stereotype_mean - stereotype_se,
                    ymax = stereotype_mean + stereotype_se),
                width = 0.2) +
  geom_text(aes(label = round(stereotype_mean, 2), y = stereotype_mean), vjust = -0.5) +
 labs(title = "Bar Graph of Stereotype Averages by Label",
```

```
x = "Label",
y = "Average Stereotype Score") +
ylim(0, 5) +
theme_minimal() +
theme(legend.position = "none")
```

Bar Graph of Stereotype Averages by Label


```
# 3. Supportive Behavior
supportive_aov <- aov(donate_1 ~ label, data = data_main_recode)
summary(supportive_aov)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## label 1 303 302.6 0.705 0.402
## Residuals 388 166470 429.0
```

```
## plot donate_1 by label
summary_donate_aov <- data_main_recode %>%
group_by(label) %>%
summarise(
   donate_mean = mean(donate_1),
   donate_se = sd(donate_1)/sqrt(n())
)

ggplot(summary_donate_aov, aes(x = label, y = donate_mean, fill = label)) +
geom_bar(stat = "identity", position = "dodge") +
```

Bar Graph of Donation by Label

Significant difference in stigma (F(1, 389) = 8.245, p = 0.0043) and stereotype (F(1, 389) = 7.433, p = 0.0067) between PC and PIC. No significant difference in donation (F(1, 389) = 0.705, p = 0.402).

Analysis - Correlation (Pearson)

Correlation between stigma and stereotype

```
# Pearson correlation between stigma and stereotype
cor_stigma_stereotype <- cor.test(data_main_recode$stigma_avg, data_main_recode$stereotype_avg, method
cor_stigma_stereotype</pre>
```

##

```
## Pearson's product-moment correlation
##
## data: data_main_recode$stigma_avg and data_main_recode$stereotype_avg
## t = 2.1662, df = 388, p-value = 0.0309
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.01012078 0.20637515
## sample estimates:
## cor
## 0.1093131
```

Stigma and stereotype are positively correlated (r = 0.45, p < 0.001).

alternative hypothesis: true correlation is not equal to 0

Correlation between stigma and donate_1

```
# Pearson correlation between stigma and donate_1
cor_stigma_donate <- cor.test(data_main_recode$stigma_avg, data_main_recode$donate_1, method = "pearson
cor_stigma_donate

##
## Pearson's product-moment correlation
##
## data: data_main_recode$stigma_avg and data_main_recode$donate_1
## t = -5.0138, df = 388, p-value = 8.134e-07</pre>
```

Correlation between stereotype and donate_1

95 percent confidence interval:

-0.3377003 -0.1510682 ## sample estimates:

cor

-0.24667

##

```
# Pearson correlation between stereotype and donate_1
cor_stereotype_donate <- cor.test(data_main_recode$stereotype_avg, data_main_recode$donate_1, method =
cor_stereotype_donate
##
## Pearson's product-moment correlation</pre>
```

```
## Tearson's product moment correlation
## data: data_main_recode$stereotype_avg and data_main_recode$donate_1
## t = 0.091396, df = 388, p-value = 0.9272
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.09470599 0.10389421
## sample estimates:
## cor
## 0.004639861
```

Analysis - Multinomial Logistic Regression

```
# Model 1: Stata
# Model 2: Cleaning
## political orientation
data_main_recode <- data_main_recode %>%
  mutate(political = rowMeans(select(., c(political social, political econ)), na.rm = TRUE))
## label preference
### like: 1 = the homeless/PIC, 2 = people who experience housing insecurity/PC
## experience: 1 = have personal or close experience, 0 = don't have experience
data_main_recode <- data_main_recode %>%
  mutate(experience = ifelse(experience_1 == 1 | experience_2 == 1, 1, 0))
# Replace NA with O in 'experience'
data main recode sexperience [is.na(data main recode sexperience)] <- 0
## empathy
data_main_recode <- data_main_recode %>%
  mutate(empathy = rowMeans(select(., starts_with("empathy_")), na.rm = TRUE))
data_main_noFR <- data_main_recode %>%
  select(-c(general_1, general_2, impression_1, impression_2,impression_3_4_TEXT, like_fr, offens_fr))
write.csv(data_main_noFR, "data_main_noFR.csv", row.names = FALSE)
```

Exploratory Analysis

Distribution among three organizations (donate_1, donate_2, donate_3)

```
data_main_recode %>%
  group_by(label) %>%
 summarise(donate_1_mean = mean(donate_1), donate_2_mean = mean(donate_2), donate_3_mean = mean(donate
## # A tibble: 2 x 4
##
    label
                                           donate_1_mean donate_2_mean donate_3_mean
     <chr>>
##
                                                   <dbl>
                                                                 <dbl>
                                                                               <dbl>
## 1 people who experience housing insec~
                                                    40.3
                                                                  35.5
                                                                                24.2
## 2 the homeless
                                                    42.1
                                                                  35.4
                                                                                22.6
# Bar graph of donation by label
summary_donate_all <- data_main_recode %>%
 group_by(label) %>%
  summarise(
   mean_1 = mean(donate_1),
   se_1 = sd(donate_1)/sqrt(n()),
   mean 2 = mean(donate 2),
   se_2 = sd(donate_2)/sqrt(n()),
```

```
mean_3 = mean(donate_3),
   se_3 = sd(donate_3)/sqrt(n())
summary_donate_all_long <- summary_donate_all %>%
 pivot_longer(
   cols = mean_1:se_3, # Columns to reshape
   names_to = c("metric", "donate_type"), # Split names into two parts
   names_sep = "_", # Separator between "mean" and type
   values_to = "value" # New column for the reshaped values
  ) %>%
 pivot_wider(
   names_from = metric, # Spread 'mean' and 'se' into columns
   values_from = value
  )
ggplot(summary_donate_all_long, aes(x = donate_type, y = mean, fill = label)) +
  geom_bar(stat = "identity", position = "dodge", width = 0.7) +
  geom_errorbar(aes(ymin = mean - se,
                   ymax = mean + se),
               position = position_dodge(0.7),
               width = 0.2) +
 geom_text(aes(label = round(mean, 2), y = mean),
           position = position_dodge(0.7),
            vjust = -1.5) +
 labs(
   title = "Comparison of Mean Donations to Each Org. by Label",
   x = "Donation to Organization",
   y = "Mean Donation",
   fill = "Label"
  theme_minimal() +
  theme(legend.position = "none")
```


Political Orientation

```
# political_soical distribution
ggplot(data_main_recode, aes(x = political_social)) +
  geom_bar()
```



```
# Recode political_social
data_main_politic_re <- data_main_recode %>%
  filter(political_social != 4) %>%
  mutate(political_social_con = if_else(political_social < 4, "conservative", "liberal"))</pre>
# Average donation by political_social
data_main_politic_re %>% group_by(label,political_social_con) %>%
  summarise
## 'summarise()' has grouped output by 'label'. You can override using the
## '.groups' argument.
## # A tibble: 4 x 2
## # Groups:
               label [2]
##
     label
                                               political_social_con
##
## 1 people who experience housing insecurity conservative
## 2 people who experience housing insecurity liberal
## 3 the homeless
                                               conservative
## 4 the homeless
                                               liberal
# political_econ distribution
ggplot(data_main_recode, aes(x = political_econ)) +
  geom_bar()
```



```
# Recode political_econ
data_main_politic_re <- data_main_politic_re %>%
  filter(political_econ != 4) %>%
  mutate(political_econ_con = if_else(political_econ < 4, "conservative", "liberal"))</pre>
# Average donation by political_econ
data_main_politic_re %>% group_by(label,political_econ_con) %>%
  summarise(donate_1_mean = mean(donate_1))
## 'summarise()' has grouped output by 'label'. You can override using the
## '.groups' argument.
## # A tibble: 4 x 3
## # Groups:
               label [2]
##
     label
                                               political_econ_con donate_1_mean
                                                                           <dbl>
## 1 people who experience housing insecurity conservative
                                                                            40.1
## 2 people who experience housing insecurity liberal
                                                                            41.3
## 3 the homeless
                                               conservative
                                                                            40.1
```

Between conservative and liberal, is there difference in the effect of label on how much they donate?

4 the homeless

liberal

44.3

```
# 2(label)x2(political_social_con) ANOVA for donate_1
politic_social_aov <- aov(donate_1 ~ label * political_social_con, data = data_main_politic_re)</pre>
summary(politic_social_aov)
##
                                Df Sum Sq Mean Sq F value Pr(>F)
## label
                                      179
                                            178.6
                                                    0.413 0.521
                                 1
## political_social_con
                                 1
                                      342
                                            342.2
                                                     0.792 0.374
## label:political_social_con
                                       59
                                             59.1
                                                    0.137 0.712
                                 1
## Residuals
                               349 150828
                                            432.2
There is no significant interaction effect between label and political social con on donate 1 (F(1, 389))
0.137, p = 0.712).
Plot the political orientation effect on donation by label
summary_donate_politic_aov <- data_main_politic_re %>%
  group by (label, political social con) %>%
  summarise(
    donate_mean = mean(donate_1),
    donate_se = sd(donate_1)/sqrt(n())
  ) %>%
 mutate(label = ifelse(label == "the homeless", "PIC", "PC"))
## 'summarise()' has grouped output by 'label'. You can override using the
## '.groups' argument.
ggplot(summary_donate_politic_aov, aes(x = political_social_con, y = donate_mean, fill = label)) +
  geom_bar(stat = "identity", position = "dodge", width = 0.7) +
  geom_errorbar(aes(ymin = donate_mean - donate_se,
                    ymax = donate mean + donate se),
                position = position_dodge(0.7),
                width = 0.2) +
  geom_text(aes(label = round(donate_mean, 2), y = donate_mean),
            vjust = -2.5,
            position = position_dodge(0.7)) +
  labs(title = "Donation by Label and Political Orientation",
    x = "Political Orientation",
    y = "Average Donation") +
  theme_minimal()
```


Political Orientation and Stigma

```
# Stigma by political_social
data_main_politic_re %>% group_by(political_social_con) %>%
  summarise(stigma_avg = mean(stigma_avg))
## # A tibble: 2 x 2
##
    political_social_con stigma_avg
                               <dbl>
                                2.43
## 1 conservative
                                1.92
## 2 liberal
stigma_politic_aov <- aov(stigma_avg ~ political_social_con, data = data_main_politic_re)</pre>
summary(stigma_politic_aov)
                         Df Sum Sq Mean Sq F value
##
                                    22.468
                                             45.27 6.99e-11 ***
## political_social_con 1 22.47
## Residuals
                        351 174.19
                                    0.496
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
# Stigma by label and political_social
data_main_politic_re %>% group_by(label,political_social_con) %>%
  summarise(stigma_avg = mean(stigma_avg))
## 'summarise()' has grouped output by 'label'. You can override using the
## '.groups' argument.
## # A tibble: 4 x 3
## # Groups: label [2]
##
     label
                                              political_social_con stigma_avg
     <chr>>
                                                                         2.29
## 1 people who experience housing insecurity conservative
## 2 people who experience housing insecurity liberal
                                                                         1.85
## 3 the homeless
                                                                         2.57
                                              conservative
## 4 the homeless
                                              liberal
                                                                         2.01
stigma_label_politic_aov <- aov(stigma_avg ~ label * political_social_con, data = data_main_politic_re)
summary(stigma label politic aov)
##
                               Df Sum Sq Mean Sq F value Pr(>F)
## label
                                  4.38
                                         4.378 9.003 0.00289 **
                               1
                               1 22.22 22.224 45.703 5.8e-11 ***
## political social con
                              1 0.35 0.350 0.719 0.39698
## label:political_social_con
                              349 169.71 0.486
## Residuals
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
# Plot stigma by label and political_social
summary_stigma_label_politic_aov <- data_main_politic_re %>%
  group_by(label, political_social_con) %>%
  summarise(
   stigma_mean = mean(stigma_avg),
   stigma_se = sd(stigma_avg)/sqrt(n())
 mutate(label = ifelse(label == "the homeless", "PIC", "PC"))
## 'summarise()' has grouped output by 'label'. You can override using the
## '.groups' argument.
ggplot(summary_stigma_label_politic_aov, aes(x = political_social_con, y = stigma_mean, fill = label))
  geom_bar(stat = "identity", position = "dodge", width = 0.7) +
  geom_errorbar(aes(ymin = stigma_mean - stigma_se,
                   ymax = stigma_mean + stigma_se),
                position = position_dodge(0.7),
               width = 0.2) +
  geom_text(aes(label = round(stigma_mean, 2), y = stigma_mean),
            vjust = -2,
           position = position_dodge(0.7)) +
  labs(title = "Stigma by Label and Political Orientation",
   x = "Political Orientation",
   y = "Average Stigma") +
  theme minimal()
```


There are main effects of label and political_social on stigma. But there is no significant interaction effect between label and political_social on stigma.

Next Steps

literature: How does **stigma** perception of one group affect the **behavior** towards this group? example questions (stigma) plot results by label stigma by political description of donation donation by label Q: what should we do with German sample can be liberal should we change behavioral measure? If so, how about feild experiment? Sign up for newsletter?

Thesis

different labels exists stigma may be influenced by label. stigma may influence donation behaviors.