ANalysis Of VAriance II

Dr Tom Ilvento

Department of Food and Resource Economics

Overview

- Let's continue our journey through the ANOVA approach to data
 - Focus on Single Factor Models
 - Terms for the ANOVA Table
 - R-square
 - More single factor models
 - Strategies for Multiple Comparisons, including Fisher's LSD

2

What are the Sum of Squares called?

Terms Explained	Excel	JMP	SAS	
SST - Sum of Squares Treatment	Between	Variable Name	Model	
SSE - Sum of Squares Error	Within	Error	Error	
SS _{Total} - Total Sum of Squares	Total	Total	Corrected Total	
Factor Levels	Groups	Factors	Class	

3

R-square

- R-square (R2) is a measure of association
- Measures of Association reflect the relationship between two or more variables
- R² is a member of the class of measures of association called PRE measures – Proportion in the Reduction in Error
- It is based on fitting a model to the data, based on information from an independent variable (or set of variables) and comparing our model to a baseline model

R-square

 The baseline model is the Grand Mean

$$SS_{Total} = \sum_{i=1}^{n} (y_i - \overline{Y})^2$$

 Our model is one that is based on knowledge of the Factors/treatments

$$SST = \sum_{i=1}^{k} n_i (\overline{y}_i - \overline{Y})^2$$

 R2 is a measure of the percent of the SS_{Total} that is due to the treatment

$$R^2 = SST/SS_{Total}$$

5

7

R-square

- With R² we ask, "how much better do I understand the Response variable (dependent) by knowing something about the Factors/Treatments (independent variables)
- R² varies from 0 to 1
 - 0 means we explain nothing of the dependent variable
 - 1 means we explain it perfectly
- R² is a linear measure of association
- R² =
 - SST/SS_{Total}, or
 - 1 SSE/SSTotal

6

Another Problem

- An experiment is conducted to determine the differences in mean increases in plant growth from 5 different inoculums
- Inoculums are substances injected into a plant to fight disease.
- The experiment involved 20 cuttings of a shrub (all of equal weight), with 4 cuttings assigned to the five different inoculums
- The data represent the increase in weight in grams
- We will use $\alpha = .05$

Incoculum Data

•	Here is the way Excel
	would prefer the data

•	We can add the means
	and variances

•	And	а	box	plot	
---	-----	---	-----	------	--

I1	I2	13	I4	15
15	21	22	10	6
18	13	19	14	11
9	20	24	21	15
16	17	21	13	8

Excel results

- The results show that F* is 5.285 which has a pvalue of .007
- Excel does not give us Rsquare, but it is easy to calculate:
- R² = 292.80/500.55 = . 58496
- 58.5% of the variability in GROWTH is due to the type of inoculum
- I can also solve R² as
 1- 207.75/500.55
 58496

Anova: Single Factor

SUMMART				
Groups	Count	Sum	Average	Variance
11	4	58.00	14.50	15.00
12	4	71.00	17.75	12.92
13	4	86.00	21.50	4.33
14	4	58.00	14.50	21.67
15	4	40.00	10.00	15.33

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	292.80	4	73.200	5.285	0.007	3.05
Within Groups	207.75	15	13.850			
Total	500.55	19				

9

П

ANOVA Hypothesis Test for Incoculm Data

• Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

• Ha: Ha: At least two means are different

Assumptions
 Equal variances, normal distribution

• Test Statistic F* = 5.285 p =.007

Rejection Region F.05, 4, 15 = 3.056

• Conclusion: F* > F.05, 4, 15

or p = .007

Reject Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$

10

12

Look at Output from JMP

- JMP shows
- R-square
- Adj R-square
- Root Mean Square Error
- Mean of Response (Grand Mean)
- Number of observations
- The ANOVA Table
- Means and C.I.

Oneway Anova
Summary of Fit

Sullillary of Fit	
Rsquare	0.5850
Adj Rsquare	0.4743
Root Mean Square Error	3.7216
Mean of Response	15.6500
Observations (or Sum Wats)	20 0000

Analysis of Variance

		Sum of			
Source	DF	Squares	Mean Square	F Ratio	Prob > F
TREATMENT	4	292.80000	73.2000	5.2852	0.0074*
Error	15	207.75000	13.8500		
C. Total	19	500.55000			

Means for Oneway Anova

Level	Number	Mean	Std Error	Lower 95%	Upper 95%
INC1	4	14.5000	1.8608	10.534	18.466
INC2	4	17.7500	1.8608	13.784	21.716
INC3	4	21.5000	1.8608	17.534	25.466
INC4	4	14.5000	1.8608	10.534	18.466
INC5	4	10.0000	1.8608	6.034	13.966

Std Error uses a pooled estimate of error variance

What's Next? Compare which means are different

- ANOVA just tests that at least two of the means are different
- ANOVA does not tell us which means are different
- The next logical step is to ask which means are different from each other
- We have five levels of the factor.
- Resulting in 10 different comparisons of treatment means

• 1 to 2; 1 to 3; 1 to 4; 1 to 5;

• 2 to 3; 2 to 4; 2 to 5;

• 3 to 4: 3 to 5:

• 4 to 5

Difference of Means with **Multiple Comparisons**

- When we conduct a hypotheses test from a single experiment or sample, we set a level of Type I error for a comparison of two means.
- However, when we make many comparisons across treatments, the level of alpha increases in response to the number of comparisons.
- This is referred to as **Experiment-**Wise Error Rate (aka, family-wise error rate).
 - $\alpha_e = 1 (1 \alpha)^c$
 - where e is the experiment-wise error rate and c is the number of independent comparisons.

	Probability of a Type I Error on an Individual Test							
Number of	0.10 0.05 0.01							
Contrasts								
1	0.100	0.050	0.010					
2	0.190	0.098	0.020					
3	0.271	0.143	0.030					
4	0.344	0.185	0.039					
5	0.410	0.226	0.049					
6	0.469	0.265	0.059					
7	0.522	0.302	0.068					
8	0.570	0.337	0.077					
9	0.613	0.370	0.086					
10	0.651	0.401	0.096					
11	0.686	0.431	0.105					
12	0.718	0.460	0.114					

Fisher's Least Significant **Difference (LSD)**

- Fisher developed a strategy to deal with this issue using the concept of the Least Significant Difference (LSD).
- In this approach, an alpha rate is fixed and a least significant difference is calculated.
- Fisher's strategy was to develop a difference from which each comparison can be compared.
- The difference between two means would need to be at least the size of the LSDii to be considered statistically significant.
- The difference would take into account the experiment-wise error rate so that the researcher could be assured that for any comparison of two means, the overall level of alpha would be fixed at the desired level.

$$LSD_{ij} = t_{\alpha/2} \sqrt{s_w^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

$$LSD_{ij} = LSD = t_{\alpha/2} \sqrt{\frac{2s_w^2}{n}}$$

14

17.75 21.50

Fisher's LSD

$$LSD_{ij} = t_{\alpha/2} \sqrt{s_w^2 \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

- α, the desired level of Type I error for each comparison. This level of is fixed by the LSD approach
- t_{\alpha/2} a t-value associated with degrees of freedom error in the ANOVA table (set for a two tailed test in this example)
- s_w² the estimate of the pooled variance (MSE) from the ANOVA Table
- ni the sample size for group i
- n_i the sample size for group j
- In the case where the sample size is the same for each group, we calculate a single LSD using

 $\alpha = .05$

- $t\alpha/2$, 15 d.f. = 2.131
- MSE = 13.85
- The n for all groups = 4

$$LSD_{ij} = LSD = t_{\alpha/2} \sqrt{\frac{2s_w^2}{n}}$$

Fisher's LSD for Inoculum Data

10.0

For any difference of means test of inoculums (INC1 to INC5), the difference must be at least 5.6078 to be significant at the .05 level.

$$LSD = 2.131\sqrt{\frac{2*13.85}{4}} = 5.6078$$

INC5 INC1 INC4 INC2 INC3

Order means from lowest to highest:

Compare the mean differences

INC5 to INC3 21.50 - 10.0 = 11.50 > LSD

INC5 to INC2 17.75 - 10.0 = 7.75 > LSD

INC5 to INC4 14.5 - 10.0 = 4.5 < LSD

INC1 to INC3 21.50 - 14.50 = 7.00 > LSD INC4 to INC3 21.50 - 14.50 = 7.00 > LSD

INC1 to INC2 17.75 - 14.5 = 3.25 < LSD INC2 to INC3 21.50 - 17.75 = 3.75 < LSD

14.5 INC3 has the highest mean at 21.50.

14.5

INC3 is significantly different from INC5, INC1, and INC4.

INC2 is significantly different from

No other means were significantly different from each other.

All comparisons were significant at α =.05 controlling for multiple comparisons using Fisher's LSD.

Look at how JMP does this test

- The first matrix shows the difference minus the LSD
- Values that are positive show a difference that is significant
- The second table is also a popular way to show the same results
- Move down the columns to find significant differences

Example for you to run and work on -**ANOVA Golf.xls or ANOVA Golf.jmp**

- The USGA wants to compare the mean distances of several brands of golf balls struck by a driver.
- They set up an experiment where a 10 balls are randomly picked from an allotment of four different brands of golf balls.
- To hold constant the effect of the golfer, they use a mechanical robotic golfer using the same driver.
- The distance the ball traveled is recorded as the response variable.
- Use an alpha level of .01.

Experimental Design

I Factor: Golfball Brand

4 Treatments

10 replications per treatment

Experimental Unit: Golfball

Measurement Unit: Golfball

Total Sample Size: 40

Experiment-Wise Error Rate

- There are many other methods of comparison
 - Scheffe
 - Tukey
 - **Bonferoni**
 - Tukey-Kramer
- Most of the multiple comparison strategies use the following approach
- 1. Fix alpha at some level
- 2. Adjust the comparisons to reflect an overall alpha
- 3. Compare the selected means (or all of them) using a difference of means test using a pooled variance
- 4. Many show the result in terms of a confidence interval
- 5. If the Confidence Interval overlaps with zero there isn't a difference

18

Ball D

251.6

248.6

249.4

242.0

28.83

Results from Excel

Mean

Variance

- This is the way Excel prefers the
- Looking at the means, I see Ball C went the furthest on average, and Ball D the shortest
- The Variances are similar no ratio greater than 2.2
- I used TOOLS, DATA ANALYSIS, ANOVA Single Factor to run the **ANOVA**

260.5	264.3	270.5	246.5
250.0	257.0	265.5	251.3
253.9	262.8	270.7	261.8
244.6	264.4	272.9	249.0
254.6	260.6	275.6	247.1
248.8	255.9	266.5	245.9
251.00	261.63	270.33	249.70

13.12

Ball B

263.2

262.9

265.0

254.5

Ball A

251.2

245.1

248.0

251.1

24.68

Ball C

269.7

263.2

277.5

267.4

21.14

- $F^* = 43.989, p < .001$
- $R^2 = 2794.39/3556.69 = .7857$
- 78.6% of the variability in driving distance is due to the ball type

20

ANOVA Hypothesis Test for Golfball Data

• Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

Ha: Ha: At least two means are different

Assumptions Equal variances, normal distribution

• Test Statistic F* = 43.989 p < .001

Rejection Region
 F_{.01, 3, 36} = 4.377

• Conclusion: F* > F.01, 3, 36

or p < .001

Reject Ho: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

21

23

Next: Which Golfballs are different from each other?

- We will use Fisher's LSD
 - There are 6 contrasts
 - \bullet $\alpha = .01$
 - MSE = 21.18
 - n = 10
 - $t_{.01/2, 36 \text{ d.f.}} = 2.719$
- Comparisons
- D to C 270.33 249.70 = 20.63 > LSD
- D to B 261.63 249.70 = 11.93 > LSD
- D to A 251.00 249.70 = 1.30 < LSD
- A to C 270.33 251.00 = 19.33 > LSD
- A to B 261.63 251,00 = 10.63 > LSD
- B to A 270.33 261.63 = 8.70 > LSD

LSD = 2.719	2 * 21.18	= 5.59612	
	10	= 3.39012	

Ball D	Ball A	Ball B	Ball C
249.70	251.00	261.63	270.33

Ball C has the highest mean distance at 270.33.

Ball C is significantly different from Ball D, Ball A, and Ball B.

Ball B is significantly different from Ball A and Ball D

No other means were significantly different from each other.

All comparisons were significant at α =.01 controlling for multiple comparisons using Fisher's LSD.

22

Results from JMP

- JMP (any advanced software) gives a complete analysis
 - R-square
 - ANOVA and F*
 - Mean Comparisons
- Software like JMP would also
 - Test the assumption about equal variances
 - Different Mean comparisons

Summary

- We looked at some more single-factor problems and the way to look at the results
- We introduced R² as a measure of association, which shows us how much of the variability in the response variable is explained by the factor levels.
- After we establish some of the treatment means differ from each other, we want to know which means are different.
- To do this we use a of "Experiment or Family-wise error rate" to make multiple comparisons of differences of means.
- We introduced Fisher's LSD as a simple way to make multiple comparisons and control the overall "Experiment-Wise Error Rate."