Laboratorio 12. Medición de la carga del electrón

Carlos Alberto Dagua Conda, Hector Fabio Jimenez Saldarriaga, Juan Camilo Castrillón,*

Abril 2016

1. abstract

In this paper we will determine the electron charge, we know that the electron is a fundamental particle with negative charge. A atom is composed by electrons, protons and neutrons, when the electrons exceed the energy level from atom this is called free electron.

2. Introducción

Se dice que un objeto se encuentra cargado eléctricamente si sus átomos, mediante las interacciones electromagnéticas, adquieren una carga negativa o positiva. El flujo de la corriente a través de un conductor se da por medio del movimiento de los electrones libres, este flujo constante de electrones acarrea con el un efecto resistivo denominado efecto joule y este se produce básicamente por la actividad electrónica en función de un tiempo t.

3. Análisis

Nota 1: Debido a que el telescopio invierte la imagen de la gota, esta se vio subir, cuando en realidad esta estaba bajando y viceversa.

Nota 2: Debido a que los relojes trabajan con una frecuencia de 50Hz y se trabajo en el laboratorio con 60Hz se utilizo un factor de corrección de $\frac{5}{6}$.

1. Si la distancia que recorre la gota hacia arriba o abajo es de 3,0mm, calcule la velocidad de subida y bajada de cada gota (recuerde que se mueve con velocidad constante). Construya una tabla de datos de tiempos, velocidades y usando la ecuación 12,8 adicione una columna con la carga de cada gota.

• Solución:

Lo siguiente resultados corresponden a los datos de subida y bajada de las gotas de aceite observadas en el laboratorio, teniendo en cuenta que recorren una distancia de 3,00mm Con lo anterior para una velocidad constante se tiene que,

$$v = \frac{d}{t} \left[\frac{m}{s} \right] \tag{1}$$

El cálculo de la carga de electrón está dada por la expresión,

$$q = \frac{a}{V} (v_{g_1} + v_{g_2}) \sqrt{v_{g_1} + v_{g_2}}$$
 (2)

^{*}carlosdaguaco@utp.edu.co, hfjimenez@utp.edu.co, jucacastrillon@utp.edu.co

$$a = \frac{9\pi}{4} \sqrt{\frac{\eta^3 d^2}{\rho g}} \tag{3}$$

donde:

d: Distancia entre las placas del condensador= $3.0 \times 10^{-3} mm$

 η : Viscosidad del aire= 1,855 × 10⁻⁵kg

 ρ : Densidad del aceite= $851 \frac{kg}{m^3}$

g: Aceleración de la gravedad $= 9.8 \frac{m}{s^2}$

 $V \colon 100V$

(Véase tabla 2)

- 2. Identifique la carga que tenga menor valor llámela q_1 . Asuma que esta carga posee un electrón $(n_1 = 1)$.
 - Solución:

$$q_1 = 7,3535E - 20(C), \qquad n = 1$$
 (4)

- 3. Divida las demás cargas entre el valor de q_1 . Estos serán los valores de n_i para cada dato de carga.
 - Solución:

(Véase tabla 3)

- 4. Ubique los resultados en una tabla (en una columna el valor de la carga y en otra el resultado de la división entre q_1) y en orden ascendente de q. La carga q_1 va de primero en la tabla.
 - Solución:

(Véase tabla 3)

- 5. Luego asuma que la carga de menor valor posee 2 electrones $(n_1 = 2)$. Divida las demás cargas entre $\frac{q_1}{n_1}$. Ubique los resultados en otra tabla repitiendo el proceso del ítem anterior.
 - Solución:

(Véase tabla 4)

- 6. Repita el proceso anterior tomando $n_1 = 3, 4, 5, ..., 10$. Construya las respectivas tablas.
 - Solución:

(Véase tabla 5,6,7 y 8)

- 7. En cada una de las tablas obtenidas calcule la diferencia entre cada n_i y el entero mas cercano (en valor absoluto). Sume en cada tabla las diferencias de todos los n_i . Determine en cuál de las tablas esta sumatoria es la mínima.
 - Solución:

(Véase tabla 9)

8. La tabla correspondiente a esta mínima diferencia contiene la información necesaria para calcular los valores de los enteros n_i que le permiten despejar la carga del electrón utilizando la ecuación 12,10. Tenga en cuenta que para calcular los n_i debe aproximar los valores de su tabla al entero más cercano. Calcule entonces la carga del electrón para cada n_i .

• Solución:

(Véase tabla 10)

- 9. Como resultado final para la carga del electrón halle el promedio de los valores obtenidos en el punto anterior.
 - Solución:

$$Valor\ promedio\ de\ e^- = 1,2681E - 19\ C \tag{5}$$

- 10. Calcule el error en su medida de la carga del electrón para cada gota, teniendo en cuenta que el error en la medida de las distancias es de $\pm 0.1mm$, el error en la medida de los tiempos es de $\pm 0.01s$ y el error en el valor de a es de un 10 % de a. Finalmente combine en cuadratura los errores obtenidos para encontrar la incertidumbre en la carga promedio electrónica.
 - Solución:

Para el cálculo de la incertidumbre en la carga del electrón, se procede a realizar la sumatoria del error porcentual para cada gota de aceite.

$$\Delta e = 2.61\% \tag{6}$$

Para el calcular el error porcentual se procede de la siguiente forma:

$$E_{\%} = \frac{|V_{teo} - V_{exp}|}{V_{teo}} \times 100 \tag{7}$$

$$E_{\%} = \frac{|1,60217732 \times 10^{-19} - 1,26810310 \times 10^{-19}|}{1,60217732 \times 10^{-19}} \times 100$$
(8)

$$E_{\%} = 20.85\%$$
 (9)

- 11. Compare el valor por usted hallado con el valor medido, y aceptado de: $1,60217732 \times 10^{-19}$
 - Solución:

$$1,26810310 \times 10^{-19} < 1,60217732 \times 10^{-19} \tag{10}$$

4. Conclusiones

- a) Se determino la carga aproximada del electrón, con el método utilizado por Robert Millikan, teniendo como valor teórico el obtenido por Millikan cuando realizo su experimento.
- b) El error porcentual en la medida fue de un 20,85 % lo que permite un buen acercamiento al valor teórico.
- c) Se logro establecer que la carga del electrón se encuentra cuantizada.

5. Bibliografía

[1] Medición de la carga del electrón (2012), Universidad Tecnológica de Pereira. Tomado de: http://media.utp.edu.co/facultad-ciencias-basicas/archivos/contenidos-departamento-de-fisica/experimento12if.pdf

6. Apéndice

6.1. Tablas

Gota	Subida (s)	Bajada (s)
1	5.83	10.69
2	15.03	10.06
3	5.26	6.28
4	3.84	3.87
5	4.49	4.52
6	6.73	5.69
7	12.89	12.13
8	17.79	20.08
9	5.13	7.68
10	8.35	7.50
11	8.48	10.33
12	6.12	5.10
13	7.75	8.43
14	5.55	3.72
15	11.93	7.19
16	16.47	11.63
17	10.87	10.78
18	12.03	10.45
19	20.53	14.38
20	24.72	20.45
21	11.42	7.58
22	20.92	16.55
23	6.50	2.92
24	16.01	12.20
25	15.51	13.74

Tabla 1: Datos tomados en el laboratorio.

Gota	Subida (s)	Bajada (s)	$V_{subida} \left(\frac{m}{s} \right)$	$V_{bajada} \left(\frac{m}{s} \right)$	Carga (C)
1	5.83	10.69	0.00017143	9.3531E-05	4.3473E-19
2	10.06	15.03	0.00009940	6.6534E-05	1.7686E-19
3	5.26	6.28	0.00019017	1.5915E-04	3.6170E-19
4	3.84	3.87	0.00026030	2.5862E-04	1.2515E-19
5	4.49	4.52	0.00022291	2.2140E-04	1.0143E-19
6	5.69	6.73	0.00017575	1.4859E-04	3.1422E-19
7	11.30	12.89	0.00008850	7.7580E-05	1.0200E-19
8	19.46	20.08	0.00005139	4.9793E-05	2.3788E-20
9	5.13	7.68	0.00019481	1.3029E-04	4.8542E-19
10	7.50	8.35	0.00013333	1.1976E-04	1.7334E-19
11	8.48	10.33	0.00011788	9.6774E-05	1.8331E-19
12	5.10	6.12	0.00019608	1.6340E-04	3.8202E-19
13	7.75	8.43	0.00012903	1.1858E-04	1.4884E-19
14	3.72	5.55	0.00026882	1.8018E-04	7.8583E-19
15	7.19	11.93	0.00013908	8.3822E-05	3.0804E-19
16	11.63	16.47	0.00008598	6.0716E-05	1.3709E-19
17	10.78	10.87	0.00009276	9.1996E-05	3.0101E-20
18	10.45	12.03	0.00009569	8.3126E-05	1.1785E-19
19	14.38	20.53	0.00006954	4.8709E-05	1.0033E-19
20	20.45	24.72	0.00004890	4.0453E-05	4.8276E-20
21	7.58	11.42	0.00013193	8.7566E-05	2.7177E-19
22	16.55	20.92	0.00006042	4.7801E-05	7.1477E-20
23	4.92	6.50	0.00020325	1.5385E-04	4.6661E-19
24	12.20	16.01	0.00008197	6.2461E-05	1.1858E-19
25	13.74	15.51	0.00007278	6.4475E-05	7.3535E-20

Tabla 2: Cálculo de la velocidad de subida y de bajada y determinación de la carga asociada a cada gota.

N_i	q_1	$rac{q_i}{q_1}$
n_1	7.3535E-20	5.9119E+00
n_2	7.3535E-20	2.4051E+00
n_3	7.3535E-20	4.9188E+00
n_4	7.3535E-20	1.7019E+00
n_5	7.3535E-20	1.3794E+00
n_6	7.3535E-20	4.2730E+00
n_7	7.3535E-20	1.3871E+00
n_8	7.3535E-20	3.2350E-01
n ₉	7.3535E-20	6.6012E+00
n ₁₀	7.3535E-20	2.3572E+00
n ₁₁	7.3535E-20	2.4929E+00
n ₁₂	7.3535E-20	5.1951E+00
n ₁₃	7.3535E-20	2.0240E+00
n ₁₄	7.3535E-20	1.0687E+01
n ₁₅	7.3535E-20	4.1890E+00
n ₁₆	7.3535E-20	1.8643E+00
n ₁₇	7.3535E-20	4.0935E-01
n ₁₈	7.3535E-20	1.6026E+00
n ₁₉	7.3535E-20	1.3644E+00
n ₂₀	7.3535E-20	6.5650E-01
n ₂₁	7.3535E-20	3.6957E+00
n ₂₂	7.3535E-20	9.7201E-01
n ₂₃	7.3535E-20	6.3454E+00
n ₂₄	7.3535E-20	1.6126E+00
n ₂₅	7.3535E-20	1.0000E+00
n ₂₅	7. 3535E-20	1.0000E+00

Tabla 3: $n_1=1$, carga mínima cuantizada en cada gota.

N_i	$\underline{q_1}$	$\underline{q_i}$
_	2	q ₁
n_1	3.6768E-20	1.1824E+01
n_2	3.6768E-20	4.8102E+00
n_3	3.6768E-20	9.8376E+00
n_4	3.6768E-20	3.4038E+00
n_5	3.6768E-20	2.7587E+00
n_6	3.6768E-20	8.5460E+00
n_7	3.6768E-20	2.7743E+00
n_8	3.6768E-20	6.4699E-01
n_9	3.6768E-20	1.3202E+01
n ₁₀	3.6768E-20	4.7145E+00
n ₁₁	3.6768E-20	4.9858E+00
n ₁₂	3.6768E-20	1.0390E+01
n ₁₃	3.6768E-20	4.0481E+00
n ₁₄	3.6768E-20	2.1373E+01
n ₁₅	3.6768E-20	8.3780E+00
n ₁₆	3.6768E-20	3.7285E+00
n ₁₇	3.6768E-20	8.1869E-01
n ₁₈	3.6768E-20	3.2053E+00
n ₁₉	3.6768E-20	2.7289E+00
n ₂₀	3.6768E-20	1.3130E+00
n ₂₁	3.6768E-20	7.3915E+00
n ₂₂	3.6768E-20	1.9440E+00
n ₂₃	3.6768E-20	1.2691E+01
n ₂₄	3.6768E-20	3.2252E+00
n ₂₅	3.6768E-20	2.0000E+00

Tabla 4: $n_1=2$, carga mínima cuantizada en cada gota.

N_i	$\frac{q_1}{3}$	$\frac{q_i}{q_1}$	$\frac{q_1}{4}$	$\frac{q_i}{q_1}$
n_1	2.4512E-20	1.7736E+01	1.8384E-20	2.3648E+01
n_2	2.4512E-20	7.2152E+00	1.8384E-20	9.6203E+00
n_3	2.4512E-20	1.4756E+01	1.8384E-20	1.9675E+01
n_4	2.4512E-20	5.1057E+00	1.8384E-20	6.8076E+00
n_5	2.4512E-20	4.1381E+00	1.8384E-20	5.5174E+00
n_6	2.4512E-20	1.2819E+01	1.8384E-20	1.7092E+01
n_7	2.4512E-20	4.1614E+00	1.8384E-20	5.5486E+00
n_8	2.4512E-20	9.7049E-01	1.8384E-20	1.2940E+00
n ₉	2.4512E-20	1.9803E+01	1.8384E-20	2.6405E+01
n ₁₀	2.4512E-20	7.0717E+00	1.8384E-20	9.4289E+00
n ₁₁	2.4512E-20	7.4787E+00	1.8384E-20	9.9716E+00
n ₁₂	2.4512E-20	1.5585E+01	1.8384E-20	2.0780E+01
n ₁₃	2.4512E-20	6.0721E+00	1.8384E-20	8.0961E+00
n ₁₄	2.4512E-20	3.2060E+01	1.8384E-20	4.2746E+01
n ₁₅	2.4512E-20	1.2567E+01	1.8384E-20	1.6756E+01
n ₁₆	2.4512E-20	5.5928E+00	1.8384E-20	7.4570E+00
n ₁₇	2.4512E-20	1.2280E+00	1.8384E-20	1.6374E+00
n ₁₈	2.4512E-20	4.8079E+00	1.8384E-20	6.4106E+00
n ₁₉	2.4512E-20	4.0933E+00	1.8384E-20	5.4577E+00
n ₂₀	2.4512E-20	1.9695E+00	1.8384E-20	2.6260E+00
n ₂₁	2.4512E-20	1.1087E+01	1.8384E-20	1.4783E+01
n ₂₂	2.4512E-20	2.9160E+00	1.8384E-20	3.8880E+00
n ₂₃	2.4512E-20	1.9036E+01	1.8384E-20	2.5382E+01
n ₂₄	2.4512E-20	4.8378E+00	1.8384E-20	6.4504E+00
n ₂₅	2.4512E-20	3.0000E+00	1.8384E-20	4.0000E+00

Tabla 5: $n_1=3,4,$ carga mínima cuantizada en cada gota.

N_i	$\frac{q_1}{5}$	$\frac{q_i}{q_1}$	$\frac{q_1}{6}$	$\frac{q_i}{q_1}$
n_1	1.4707E-20	2.9560E+01	1.2256E-20	3.5471E+01
n_2	1.4707E-20	1.2025E+01	1.2256E-20	1.4430E+01
n_3	1.4707E-20	2.4594E+01	1.2256E-20	2.9513E+01
n_4	1.4707E-20	8.5094E+00	1.2256E-20	1.0211E+01
n_5	1.4707E-20	6.8968E+00	1.2256E-20	8.2761E+00
n_6	1.4707E-20	2.1365E+01	1.2256E-20	2.5638E+01
n_7	1.4707E-20	6.9357E+00	1.2256E-20	8.3229E+00
n_8	1.4707E-20	1.6175E+00	1.2256E-20	1.9410E+00
n ₉	1.4707E-20	3.3006E+01	1.2256E-20	3.9607E+01
n ₁₀	1.4707E-20	1.1786E+01	1.2256E-20	1.4143E+01
n ₁₁	1.4707E-20	1.2464E+01	1.2256E-20	1.4957E+01
n ₁₂	1.4707E-20	2.5976E+01	1.2256E-20	3.1171E+01
n ₁₃	1.4707E-20	1.0120E+01	1.2256E-20	1.2144E+01
n ₁₄	1.4707E-20	5.3433E+01	1.2256E-20	6.4119E+01
n ₁₅	1.4707E-20	2.0945E+01	1.2256E-20	2.5134E+01
n ₁₆	1.4707E-20	9.3213E+00	1.2256E-20	1.1186E+01
n ₁₇	1.4707E-20	2.0467E+00	1.2256E-20	2.4561E+00
n ₁₈	1.4707E-20	8.0132E+00	1.2256E-20	9.6159E+00
n ₁₉	1.4707E-20	6.8221E+00	1.2256E-20	8.1866E+00
n ₂₀	1.4707E-20	3.2825E+00	1.2256E-20	3.9390E+00
n ₂₁	1.4707E-20	1.8479E+01	1.2256E-20	2.2174E+01
n ₂₂	1.4707E-20	4.8600E+00	1.2256E-20	5.8321E+00
n ₂₃	1.4707E-20	3.1727E+01	1.2256E-20	3.8073E+01
n ₂₄	1.4707E-20	8.0630E+00	1.2256E-20	9.6755E+00
n ₂₅	1.4707E-20	5.0000E+00	1.2256E-20	6.0000E+00

Tabla 6: $n_1=5,6,$ carga mínima cuantizada en cada gota.

N_i	$\frac{q_1}{7}$	$\frac{q_i}{q_1}$	$\frac{q_1}{8}$	$\frac{q_i}{q_1}$
n_1	1.0505E-20	4.1383E+01	7.3535E-21	5.9119E+01
n_2	1.0505E-20	1.6836E+01	7.3535E-21	2.4051E+01
n_3	1.0505E-20	3.4432E+01	7.3535E-21	4.9188E+01
n_4	1.0505E-20	1.1913E+01	7.3535E-21	1.7019E+01
n_5	1.0505E-20	9.6555E+00	7.3535E-21	1.3794E+01
n_6	1.0505E-20	2.9911E+01	7.3535E-21	4.2730E+01
n_7	1.0505E-20	9.7100E+00	7.3535E-21	1.3871E+01
n ₈	1.0505E-20	2.2645E+00	7.3535E-21	3.2350E+00
n ₉	1.0505E-20	4.6208E+01	7.3535E-21	6.6012E+01
n ₁₀	1.0505E-20	1.6501E+01	7.3535E-21	2.3572E+01
n ₁₁	1.0505E-20	1.7450E+01	7.3535E-21	2.4929E+01
n ₁₂	1.0505E-20	3.6366E+01	7.3535E-21	5.1951E+01
n ₁₃	1.0505E-20	1.4168E+01	7.3535E-21	2.0240E+01
n ₁₄	1.0505E-20	7.4806E+01	7.3535E-21	1.0687E+02
n ₁₅	1.0505E-20	2.9323E+01	7.3535E-21	4.1890E+01
n ₁₆	1.0505E-20	1.3050E+01	7.3535E-21	1.8643E+01
n ₁₇	1.0505E-20	2.8654E+00	7.3535E-21	4.0935E+00
n ₁₈	1.0505E-20	1.1219E+01	7.3535E-21	1.6026E+01
n ₁₉	1.0505E-20	9.5510E+00	7.3535E-21	1.3644E+01
n ₂₀	1.0505E-20	4.5955E+00	7.3535E-21	6.5650E+00
n ₂₁	1.0505E-20	2.5870E+01	7.3535E-21	3.6957E+01
n ₂₂	1.0505E-20	6.8041E+00	7.3535E-21	9.7201E+00
n ₂₃	1.0505E-20	4.4418E+01	7.3535E-21	6.3454E+01
n ₂₄	1.0505E-20	1.1288E+01	7.3535E-21	1.6126E+01
n ₂₅	1.0505E-20	7.0000E+00	7.3535E-21	1.0000E+01

Tabla 7: $n_1=7,8,$ carga mínima cuantizada en cada gota.

N_i	$\frac{q_1}{q}$	$\frac{q_i}{q_1}$	$\frac{q_1}{10}$	$\frac{q_i}{q_1}$
n_1	8.1706E-21	5.3207E+01	9.1919E-21	4.7295E+01
n_2	8.1706E-21	2.1646E+01	9.1919E-21	1.9241E+01
n_3	8.1706E-21	4.4269E+01	9.1919E-21	3.9350E+01
n_4	8.1706E-21	1.5317E+01	9.1919E-21	1.3615E+01
n_5	8.1706E-21	1.2414E+01	9.1919E-21	1.1035E+01
n_6	8.1706E-21	3.8457E+01	9.1919E-21	3.4184E+01
n_7	8.1706E-21	1.2484E+01	9.1919E-21	1.1097E+01
n ₈	8.1706E-21	2.9115E+00	9.1919E-21	2.5880E+00
n ₉	8.1706E-21	5.9410E+01	9.1919E-21	5.2809E+01
n ₁₀	8.1706E-21	2.1215E+01	9.1919E-21	1.8858E+01
n ₁₁	8.1706E-21	2.2436E+01	9.1919E-21	1.9943E+01
n ₁₂	8.1706E-21	4.6756E+01	9.1919E-21	4.1561E+01
n ₁₃	8.1706E-21	1.8216E+01	9.1919E-21	1.6192E+01
n ₁₄	8.1706E-21	9.6179E+01	9.1919E-21	8.5492E+01
n ₁₅	8.1706E-21	3.7701E+01	9.1919E-21	3.3512E+01
n ₁₆	8.1706E-21	1.6778E+01	9.1919E-21	1.4914E+01
n ₁₇	8.1706E-21	3.6841E+00	9.1919E-21	3.2748E+00
n ₁₈	8.1706E-21	1.4424E+01	9.1919E-21	1.2821E+01
n ₁₉	8.1706E-21	1.2280E+01	9.1919E-21	1.0915E+01
n ₂₀	8.1706E-21	5.9085E+00	9.1919E-21	5.2520E+00
n ₂₁	8.1706E-21	3.3262E+01	9.1919E-21	2.9566E+01
n ₂₂	8.1706E-21	8.7481E+00	9.1919E-21	7.7761E+00
n ₂₃	8.1706E-21	5.7109E+01	9.1919E-21	5.0764E+01
n ₂₄	8.1706E-21	1.4513E+01	9.1919E-21	1.2901E+01
n ₂₅	8.1706E-21	9.0000E+00	9.1919E-21	8.0000E+00

Tabla 8: $n_1=9,10,\,\mathrm{carga}$ mínima cuantizada en cada gota.

n_i	Valor aproximado
2.7134E+00	3
1.1039E+00	1
2.2576E+00	2
7.8112E-01	1
6.3308E-01	1
1.9612E+00	2
6.3666E-01	1
1.4847E-01	1
3.0297E+00	3
1.0819E+00	1
1.1442E+00	1
2.3844E+00	2
9.2897E-01	1
4.9048E+00	5
1.9226E+00	2
8.5563E-01	1
1.8788E-01	1
7.3557E-01	1
6.2623E-01	1
3.0131E-01	1
1.6962E+00	2
4.4612E-01	1
2.9124E+00	3
7.4013E-01	1
4.5897E-01	1

Tabla 9: Diferencia entre los n_i cuantizados y valor aproximado de n_i para cada gota.

Carga e ⁻	Valor aproximado	$e = q_1/valor$
4.3473E-19	3	1.4491E-19
1.7686E-19	1	1.7686E-19
3.6170E-19	2	1.8085E-19
1.2515E-19	1	1.2515E-19
1.0143E-19	1	1.0143E-19
3.1422E-19	2	1.5711E-19
1.0200E-19	1	1.0200E-19
2.3788E-20	1	2.3788E-20
4.8542E-19	3	1.6181E-19
1.7334E-19	1	1.7334E-19
1.8331E-19	1	1.8331E-19
3.8202E-19	2	1.9101E-19
1.4884E-19	1	1.4884E-19
7.8583E-19	5	1.5717E-19
3.0804E-19	2	1.5402E-19
1.3709E-19	1	1.3709E-19
3.0101E-20	1	3.0101E-20
1.1785E-19	1	1.1785E-19
1.0033E-19	1	1.0033E-19
4.8276E-20	1	4.8276E-20
2.7177E-19	2	1.3588E-19
7.1477E-20	1	7.1477E-20
4.6661E-19	4	1.5554E-19
1.1858E-19	1	1.1858E-19
7.3535E-20	1	7.3535E-20

Tabla 10: Cálculo de la carga del electrón y el valor n_i asociado.