RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION Durée : 3h Session principale 2024 Session principale Section : Section :

N° d'inscription

Le sujet comporte 4 pages. (La page 4 sur 4 est à rendre avec la copie)

Exercice N°1:(5 points)

- 1) Résoudre dans \mathbb{C} , l'équation $z^2 2iz 4 = 0$.
- 2) a) Vérifier que pour tout nombre complexe z, on a : $z^3 8i = (z + 2i)(z^2 2iz 4)$.
 - b) Résoudre alors dans \mathbb{C} , l'équation $z^3 = 8i$.
- 3) Le plan complexe est muni d'un repère orthonormé (O,\vec{u},\vec{v}) . On considère les points A, B et D d'affixes respectives $z_A = -2i$, $z_B = \sqrt{3} + i$ et $z_D = -\sqrt{3} + i$.

Dans la **figure 1** de l'annexe ci-jointe, on a placé le point A et on a tracé le cercle (C) de centre O et passant par A.

- a) Montrer que les points B et D appartiennent au cercle (C).
- b) Construire les points B et D.
- c) Montrer que le triangle ABD est équilatéral.
- 4) La tangente T₁ à (C) en A et la tangente T₂ à (C) en B se coupent au point E.
 - a) Justifier que l'affixe du point E s'écrit comme $z_E = x 2i$, où x est un réel.
 - b) Montrer que $(z_E z_B)\overline{z_B} = x\sqrt{3} 6 i(x + 2\sqrt{3})$.
 - c) Déduire que $z_E = 2\sqrt{3} 2i$.
- 5) a) Prouver que le quadrilatère AEBD est un losange.
 - b) Montrer que l'aire du losange AEBD, en unité d'aire, est égale à $6\sqrt{3}$.

Exercice N°2:(4 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$, l'équation(E): 4x - 3y = 6.

- 1) a) Vérifier que le couple (3,2) est une solution de l'équation (E).
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
- 2) Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) , on considère les points A(3,2), B(7,-1) et M(x,y), où x et y sont deux entiers relatifs.

Montrer que \overrightarrow{AM} et \overrightarrow{AB} sont orthogonaux si et seulement si le couple (x,y) est solution de l'équation (E).

- 3) Soit le point $C(3+6\times7^{1445}, 2+8\times7^{1445})$.
 - a) Vérifier que le couple $(3+6\times7^{1445}, 2+8\times7^{1445})$ est solution de l'équation (E).
 - b) Montrer que le triangle ABC est rectangle en A.
- 4)a) Soit \mathcal{A} l'aire, en unité d'aire, du triangle ABC. Montrer que $\mathcal{A}=25\times7^{1445}$.
 - b) Vérifier que $7^4 \equiv 1[100]$ et déduire que $7^{1445} \equiv 7[100]$.
 - c) Déterminer alors le chiffre des unités et celui des dizaines de \mathcal{A} .

Exercice N°3:(5 points)

On considère les matrices
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 1 \\ 23 & 2 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} -1 & 2 & -1 \\ 20 & -22 & 2 \\ -17 & -2 & 1 \end{pmatrix}$.

- 1) a) Montrer que la matrice A est inversible. On notera A⁻¹la matrice inverse de A.
 - b) Montrer que $A \times B = -18 I_3$.
 - c) Déterminer alors la matrice A⁻¹.
- 2) On considère le système (S) : $\begin{cases} x+z=3\\ 3x+y+z=23\\ 23x+2y+z=115 \end{cases}$, où x, y et z'sont des réels.
 - a) En utilisant l'écriture matricielle du système (S), montrer que $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = A^{-1} \begin{pmatrix} 3 \\ 23 \\ 115 \end{pmatrix}$.
 - b) Résoudre alors le système (S).
- 3) Soit la suite (u_n) définie sur $\mathbb N$ par $\begin{cases} u_0 = 1 \\ u_{n+1} = au_n + bn + c, \text{ pour tout } n \in \mathbb N, \\ \text{où a, b et c sont trois réels.} \end{cases}$

On donne: $u_1 = 3$, $u_2 = 23$ et $u_3 = 115$.

- a) Montrer que le triplet (a,b,c) est la solution du système (S).
- b) Déduire que pour tout $n \in \mathbb{N}$, $u_{n+1} = 4u_n + 12n 1$.
- 4) Soit la suite (v_n) définie sur \mathbb{N} par $v_n = u_n + 4n + 1$.
 - a) Montrer que la suite (v_n) est une suite géométrique de raison 4.
 - b) Déduire que pour tout $n \in \mathbb{N}$, $u_n = 2 \times 4^n 4n 1$.

Exercice N°4:(6 points)

Soit la fonction f définie sur
$$\left[0,+\infty\right[$$
 par $\begin{cases} f(x)=x\ln x+e^{1-x}\ , & \text{si } x>0 \\ f(0)=e \end{cases}$

On désigne par (\mathscr{C}) sa courbe représentative dans un repère orthonormé $\left(\vec{O},\vec{i},\vec{j}\right)$.

- 1) Montrer que f est continue à droite en 0.
- 2) a) Justifier que f est dérivable sur]0,+∞[.
 - b) Vérifier que pour tout $x \in \left]0,+\infty\right[, \ \ln x e^{1-x}\left(\frac{e^x-1}{x}\right) = \frac{f(x)-e}{x}.$
 - c) Etudier alors la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat.
- 3) Calculer $\lim_{x \to +\infty} f(x)$ et montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement les résultats.
- 4) Dans la figure 2 de l'annexe ci-jointe, on a tracé dans le repère (O,i,j) la courbe (Γ) de la fonction dérivée f' de la fonction f.

La courbe (Γ) coupe l'axe des abscisses uniquement au point P(1,0) et passe par le point Q(α ,2), où α un réel.

En utilisant le graphique :

- a) Déterminer le signe de f'(x) pour tout $x \in (0, +\infty)$.
- b) Justifier que la tangente à (8) au point d'abscisse 1 est la seule tangente horizontale à (8).
- 5) a) Dresser le tableau de variation de f.
 - b) Tracer la courbe (8).
- 6) a) Montrer que pour tout $x \in]0,+\infty[$, $f'(x) = 1 + \ln x e^{1-x}$.
 - b) Déduire que $e^{1-\alpha} = \ln(\alpha) 1$.
 - c) Soit A l'aire, en unité d'aire, de la partie du plan limitée par la courbe (Γ), l'axe des abscisses et les droites d'équations x = 1 et $x = \alpha$.

Montrer que A =
$$(\alpha+1)\ln(\alpha)-2$$
.

d) Déterminer alors A' l'aire, en unité d'aire, de la partie du plan limitée par la courbe (Γ) et le segment [PQ].

	Section:Série:	Signatures des surveillants
	Nom et Prénom	
	Date et lieu de naissance	
%		
Épreuve: Mathématiques - Section : Sciences de l'informatique Session principale (2024)		
Annexe à rendre avec la copie		
Figure 1		
	2	
	$\begin{pmatrix} 1 \\ \vec{v} \end{pmatrix}$	\sim
		C)
	-2 -1 0 \vec{u} 1	2 3 4
	-20	
Figure	2 4.	
rigure		
	$e^{\frac{3}{4}}$	
	2 Q	
	\vec{j}	
	\mathbf{P} α	
-1	$0 \vec{i} \vec{j} \dot{3} \dot{4} \dot{5}$	
	-1	
	$_{-2}$ $/(\Gamma)$	
	-3	

Page 4 sur 4