

Artificial Intelligence in Automotive Technology

Maximilian Geißlinger / Fabian Netzler

Prof. Dr.-Ing. Markus Lienkamp

Lecture Overview

Lecture 16:15-17:45 Practice 17:45-18:30	
1 Introduction: Artificial Intelligence	20.10.2022 - Maximilian Geißlinger
2 Perception	27.10.2022 - Sebastian Huber
3 Supervised Learning: Regression	03.11.2022 - Fabian Netzler
4 Supervised Learning: Classification	10.11.2022 - Andreas Schimpe
5 Unsupervised Learning: Clustering	17.11.2022 - Andreas Schimpe
6 Introduction: Artificial Neural Networks	24.11.2022 - Lennart Adenaw
7 Deep Neural Networks	08.12.2022 - Domagoj Majstorovic
8 Convolutional Neural Networks	15.12.2022 - Domagoj Majstorovic
9 Knowledge Graphs	12.01.2023 – Fabian Netzler
10 Recurrent Neural Networks	19.01.2023 – Matthias Rowold
11 Reinforcement Learning	26.01.2023 – Levent Ögretmen
12 Al-Development	02.02.2023 - Maximilian Geißlinger
13 Guest Lecture	09.02.2023 - to be announced

Objectives of Lecture 10

Recurrent Neural Networks Maximilian Geißlinger / Fabian Netzler / Prof. Dr. Markus Lienkamp (Matthias Rowold, M. Sc.)

Agenda

1. Introduction

- Motivating example
- The "hidden state"
- 3. Connection to dynamical systems
- 2. Training RNNs
 - 1. Backpropagation through time
 - 2. Methods
- 3. Vanishing and exploding gradients
- 4. Advanced RNN structures
- 5. Examples of RNNs in automotive applications

Will he score?

Will he score?

He misses.

NN with a large input layer for sequences:

NN with a large input layer for sequences:

NN with a large input layer for sequences:

NN with a large input layer for sequences:

Hidden state summarizes the past sequence:

Back to our example:

 $\widehat{\mathbf{h}_4}$ Hidden state at time t=4:

Input at time t = 4: pixel values

 (\mathbf{h}_3) Hidden state at time t=3:

1. Introduction

Use cases of RNNs

- Speech recognition and generation
- Music recognition and generation
- Translation
- Image capturing
- Video capturing
- Prediction of movement of other traffic participants
- Modeling dynamics of physical systems
- ...

Input
$$u = F_{\rm in}$$

Output
$$y = s$$

Input $u = F_{\rm in}$

Output y = s

Model equations:

$$v = \dot{s}$$
$$M_{\rm car} \dot{v} = F_{\rm in}$$

Input
$$u = F_{\rm in}$$

Output
$$y = s$$

Model equations:

$$v = \dot{s}$$
$$M_{\rm car} \dot{v} = F_{\rm in}$$

Linear state-space model:

$$\begin{bmatrix} \dot{s} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M_{\text{car}}} \end{bmatrix} F_{\text{in}}$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s \\ v \end{bmatrix}$$

Non-linear state-space model:

$$\begin{bmatrix} \dot{s} \\ \ddot{s} \\ \dot{\alpha} \\ \ddot{\alpha} \end{bmatrix} = \begin{bmatrix} \dot{s} \\ f_1(\dot{s}, \alpha, \dot{\alpha}, F) \\ \dot{\alpha} \\ f_2(\dot{s}, \alpha, \dot{\alpha}, F) \end{bmatrix}$$
$$y = s$$

Model equations:

$$(M_{\text{cart}} + M_{\text{link}})\ddot{s} - M_{\text{link}}l_{\text{link}}\ddot{\alpha}\sin(\alpha) = F$$
$$l_{\text{link}}\ddot{\alpha} - g\sin(\alpha) = \ddot{s}\cos(\alpha)$$

Continuous time system

$$\dot{\boldsymbol{x}} = f(\boldsymbol{x}, \boldsymbol{u})$$

 $\mathbf{y} = g(\boldsymbol{x})$

Discretization:

- Euler's Method
- Runge-Kutta
- ...

Discrete time system

$$egin{aligned} oldsymbol{x}_{t+1} &= ilde{f}(oldsymbol{x}_t, oldsymbol{u}_t) \ oldsymbol{y}_t &= ilde{g}(oldsymbol{x}_t) \end{aligned}$$

Engineering / control theory:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$$

 $\mathbf{y}_t = g(\mathbf{x}_t)$

Engineering / control theory:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$$

 $\mathbf{y}_t = g(\mathbf{x}_t)$

Machine learning:

$$oldsymbol{h}_t = f(oldsymbol{h}_{t-1}, oldsymbol{x}_t)$$
 $oldsymbol{y}_t = g(oldsymbol{h}_t)$
 $oldsymbol{h}_3$
 $oldsymbol{h}_4$

Engineering / control theory:

$$\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$$

 $\mathbf{y}_t = g(\mathbf{x}_t)$

Machine learning:

$$egin{aligned} oldsymbol{h}_t &= f(oldsymbol{h}_{t-1}, oldsymbol{x}_t) \ oldsymbol{y}_t &= g(oldsymbol{h}_t) \end{aligned}$$

1. Introduction: Wrap Up

- Often one observation does not contain the required information to make an accurate prediction.
- The information is hidden in a sequence of data.
- Taking a whole sequence as an input for a NN requires too many parameters.
- → Share parameters and add a memory (hidden state) to capture important features of the past:

- A RNN can be interpreted as a **state-space model** with free parameters that we want to learn.

Recurrent Neural Networks Maximilian Geißlinger / Fabian Netzler / Prof. Dr. Markus Lienkamp (Matthias Rowold, M. Sc.)

Agenda

- 1. Introduction
 - Motivating example
 - The "hidden state"
 - 3. Connection to dynamical systems
- 2. Training RNNs
 - 1. Backpropagation through time
 - 2. Methods
- 3. Vanishing and exploding gradients
- 4. Advanced RNN structures
- 5. Examples of RNNs in automotive applications

$$egin{aligned} oldsymbol{h}_t &= f(oldsymbol{h}_{t-1}, oldsymbol{x}_t) \ oldsymbol{y}_t &= g(oldsymbol{h}_t) \end{aligned}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

 $\mathbf{y}_t = g(\mathbf{h}_t)$

A simple example:

$$\mathbf{h}_{t} = \text{relu}(a\mathbf{h}_{t-1} + b\mathbf{x}_{t})$$

$$y_{t} = \sum_{i} h_{t,i}$$

$$h_{i} = \text{relu}\left(a\begin{bmatrix} 0 \\ 0 \end{bmatrix} + h\begin{bmatrix} 1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$h_{i} = \text{rely}\left(a\begin{bmatrix} 1 \\ 0 \end{bmatrix} + h\begin{bmatrix} -1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

$$h_{3} = \text{rely}\left(a\begin{bmatrix} 0 \\ 0 \end{bmatrix} + h\begin{bmatrix} -1 \\ -1 \end{bmatrix}\right) = \begin{bmatrix} 6 \\ 0 \end{bmatrix}$$

$$\mathbf{x}_{1} = \begin{bmatrix} 1, -1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_{2} = \begin{bmatrix} -1, -1 \end{bmatrix}^{\top}$$

$$\mathbf{x}_{3} = \begin{bmatrix} -1, 1 \end{bmatrix}^{\top}$$

$$\mathbf{h}_{0} = \begin{bmatrix} 0, 0 \end{bmatrix}^{\top}$$

$$a = b = 1$$

$$\mathbf{y}_{1} = \mathbf{y}_{2}$$

$$\mathbf{y}_{3} = \mathbf{y}_{3}$$

$$egin{aligned} oldsymbol{h}_t &= f(oldsymbol{h}_{t-1}, oldsymbol{x}_t) \ oldsymbol{y}_t &= g(oldsymbol{h}_t) \end{aligned}$$

Evaluate/simulate RNN (Inference):

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$
$$\mathbf{y}_t = \mathbf{V}\mathbf{h}_t + \mathbf{v}$$

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$
$$\mathbf{y}_t = \mathbf{V}\mathbf{h}_t + \mathbf{v}$$

Given:

Input sequences

$$\mathbf{X}_i = egin{bmatrix} \mathbf{x}_{1,i} & \dots & \mathbf{x}_{T,i} \end{bmatrix}$$

True output sequences (labels)

$$\hat{\mathbf{Y}}_i = egin{bmatrix} \hat{\mathbf{y}}_{1,i} & \dots & \hat{\mathbf{y}}_{T,i} \end{bmatrix}$$
 Syaveld leaving

Goal:

Good parameters

such that \mathbf{Y}_i is similar to $\hat{\mathbf{Y}}_i$ for a given \mathbf{X}_i .

Loss function as a sum over time-steps:

2.1 Training RNNs: Backpropagation Through Time

$$L = \sum_t L_t(\mathbf{y}_t, \hat{\mathbf{y}}_t)$$

$$\frac{\partial L_t}{\partial \mathbf{W}} = \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{W}} + \frac{2 \mathbf{h}_t}{2 \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_t} + \frac{2 \mathbf{h}_t}{2 \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_t} + \frac{2 \mathbf{h}_t}{2 \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_t}$$

2.1 Training RNNs: Backpropagation Through Time

$$L = \sum_{t} L_{t}(\mathbf{y}_{t}, \hat{\mathbf{y}}_{t})$$

$$\frac{\partial L_{t}}{\partial \mathbf{W}} = \frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{W}} +$$

$$\frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{t-1}}{\partial \mathbf{W}} +$$

$$\frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} \frac{\partial \mathbf{h}_{t-1}}{\partial \mathbf{h}_{t-2}} \frac{\partial \mathbf{h}_{t-2}}{\partial \mathbf{W}} + \dots$$

$$\mathbf{h}_{t-2} \mathbf{W} \mathbf{h}_{t-1} \mathbf{W} \mathbf{h}_{t} \mathbf{W} \mathbf{h}_{t+1} \mathbf{W} \mathbf{h}_{t+1} \mathbf{W} \mathbf{h}_{t+2}$$

$$\mathbf{x}_{t} \mathbf{x}_{t+1}$$

$$\frac{\partial L_t}{\partial \mathbf{W}} = \sum_{k=1}^t \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

2.1 Training RNNs: Backpropagation Through Time

A RNN is similar to a very deep NN with as many layers as time steps. The weight matrix \mathbf{W} is the same for each layer!

$$\frac{\partial L_t}{\partial \mathbf{W}} = \sum_{k=1}^t \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

Recurrent Neural Networks Maximilian Geißlinger / Fabian Netzler / Prof. Dr. Markus Lienkamp (Matthias Rowold, M. Sc.)

Agenda

- 1. Introduction
 - 1. Motivating example
 - 2. The "hidden state"
 - 3. Connection to dynamical systems
- 2. Training RNNs
 - 1. Backpropagation through time
 - 2. Methods
- 3. Vanishing and exploding gradients
- 4. Advanced RNN structures
- 5. Examples of RNNs in automotive applications

Truncated backpropagation through time

Backpropagation applied on the unfolded graph of a chunk of the whole sequence.

Truncated backpropagation through time

Truncated backpropagation through time is biased! Unbiased versions e.g. in [1].

Truncated backpropagation through time

Truncated backpropagation through time is biased.

Unbiased versions e.g. in [1].

"The **summer** is ____"

"Saskia **grabbed a book**, ... she flopped on the couch and began to "

Teacher forcing

RNNs with a feedback of the output.

Teacher forcing

RNNs with a feedback of the output.

Teacher forcing

RNNs with a feedback of the output.

2.2 Learning Methods

Teacher forcing

RNNs with a feedback of the output.

We can split the computation graph by using the target values from

the data.

Teacher forcing

Problem with accumulating errors when predicting longer sequences.

Regularization using dropout

Regularization is problematic when used on recurrent weights.

Apply dropouts on non-recurrent weights only [6].

State initialization

How do we choose h_0 ?

- Initialize as zero [2]
- Noisy zero mean [3]
- Treat it as a parameter that is to be learned [4]
- Initialize using a second neural network [5]

2. Training RNNs: Wrap Up

- Backpropagation applied on the unfolded graph of a RNN is called backpropagation through time.
- Training a RNN is like training a very deep neural network.
- Training with long sequences requires much computational effort and can be problematic.
 - Sequences can be truncated to mitigate the problem of too long sequences. However, the gradients can be biased.
 - Teacher forcing decouples the time-steps for the gradient calculation but is limited to a certain structure of RNNs.
- Dropouts can be applied only on non-recurrent weights.

Recurrent Neural Networks Maximilian Geißlinger / Fabian Netzler / Prof. Dr. Markus Lienkamp (Matthias Rowold, M. Sc.)

Agenda

- 1. Introduction
 - Motivating example
 - 2. The "hidden state"
 - 3. Connection to dynamical systems
- 2. Training RNNs
 - 1. Backpropagation through time
 - 2. Methods
- 3. Vanishing and exploding gradients
- 4. Advanced RNN structures
- 5. Examples of RNNs in automotive applications

Recap of BPTT:

$$L = \sum_{t=1}^{T} L_t = \sum_{t=1}^{T} L(\mathbf{y}_t, \hat{\mathbf{y}}_t)$$

Parameter update:

$$\theta = \theta - \alpha \frac{\partial L}{\partial \theta}$$

$$\frac{\partial L_t}{\partial \mathbf{W}} = \sum_{k=1}^t \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

Suppose we have a recurrent function:

$$h_{t+1} = a \cdot h_t$$

$$h_{t+k} = a^k \cdot h_t$$

$$\frac{\partial h_{t+k}}{\partial h_t} = a^k = \prod_{i=t+1}^{t+k} \frac{\partial h_i}{\partial h_{i-1}}$$

For long sequences:

$$\mathbf{h}_{t} = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_{t} + \mathbf{b})$$

$$\mathbf{y}_{t} = \mathbf{V}\mathbf{h}_{t} + \mathbf{v}$$

$$\frac{\partial L_{t}}{\partial \mathbf{W}} = \sum_{k=1}^{t} \frac{\partial L_{t}}{\partial \mathbf{h}_{t}} \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{k}} \frac{\partial \mathbf{h}_{k}}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{k}} = \prod_{i=k+1}^{t} \frac{\partial \mathbf{h}_{i}}{\partial \mathbf{h}_{i-1}}$$

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$
$$\mathbf{y}_t = \mathbf{V}\mathbf{h}_t + \mathbf{v}$$

$$\frac{\partial L_t}{\partial \mathbf{W}} = \sum_{k=1}^t \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

$$\frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \operatorname{diag}(\mathbf{1} - \mathbf{h}_{i-1} \odot \mathbf{h}_{i-1}) \mathbf{W}$$

$$\left\| \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} \right\| \le \left\| \operatorname{diag}(\mathbf{1} - \mathbf{h}_{i-1} \odot \mathbf{h}_{i-1}) \right\| \left\| \mathbf{W} \right\|$$

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$
$$\mathbf{v}_t = \mathbf{V}\mathbf{h}_t + \mathbf{v}$$

$$\frac{\partial L_t}{\partial \mathbf{W}} = \sum_{k=1}^t \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

$$\frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \operatorname{diag}(\mathbf{1} - \mathbf{h}_{i-1} \odot \mathbf{h}_{i-1}) \mathbf{W}$$

$$\left\| \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} \right\| \le \left\| \operatorname{diag}(\mathbf{1} - \mathbf{h}_{i-1} \odot \mathbf{h}_{i-1}) \right\| \left\| \mathbf{W} \right\|$$

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$
$$\mathbf{v}_t = \mathbf{V}\mathbf{h}_t + \mathbf{v}$$

$$\frac{\partial L_t}{\partial \mathbf{W}} = \sum_{k=1}^t \frac{\partial L_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \mathbf{W}} \quad \text{with} \quad \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} = \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}}$$

$$\frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} = \operatorname{diag}(\mathbf{1} - \mathbf{h}_{i-1} \odot \mathbf{h}_{i-1}) \mathbf{W}$$

$$\left\| \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} \right\| \le \left\| \operatorname{diag}(\mathbf{1} - \mathbf{h}_{i-1} \odot \mathbf{h}_{i-1}) \right\| \left\| \mathbf{W} \right\| \le 1 \left\| \mathbf{W} \right\|$$

$$\left\| \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{k}} \right\| = \left\| \prod_{i=k+1}^{t} \frac{\partial \mathbf{h}_{i}}{\partial \mathbf{h}_{i-1}} \right\| \leq \left\| \mathbf{W} \right\|^{t-k}$$
 [7], [8]

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$

We want:
$$\left\| \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \right\| = \left\| \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} \right\| \le \left\| \mathbf{W} \right\|^{t-k} \approx 1$$

Initializing \mathbf{W} with a good distribution helps at the beginning of the training:

$$\mathbf{h}_t = \tanh(\mathbf{W}\mathbf{h}_{t-1} + \mathbf{U}\mathbf{x}_t + \mathbf{b})$$

We want:
$$\left\| \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \right\| = \left\| \prod_{i=k+1}^t \frac{\partial \mathbf{h}_i}{\partial \mathbf{h}_{i-1}} \right\| \le \left\| \mathbf{W} \right\|^{t-k} \approx 1$$

Initializing \mathbf{W} with a good distribution helps at the beginning of the training:

Xavier initialization [9]:

$$\mathbf{W} \in \mathbb{R}^{n \times n}$$
 $W_{i,j} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$

Gradient clipping

If the gradient is too large, rescale it.

→ Use the direction but not the magnitude.

$$egin{aligned} \mathbf{g} &\leftarrow rac{\partial L}{\partial heta} \ \mathbf{if} \ \|\mathbf{g}\| \geq
u \ \mathbf{then} \ \mathbf{g} &\leftarrow rac{
u}{\|\mathbf{g}\|} \mathbf{g} \ \mathbf{end} \ \mathbf{if} \end{aligned}$$

Image from [7]

Vanishing gradient: skip connections

Vanishing gradient: gated networks

Use different RNN structures with "gates"

3. Wrap Up

- Reusing the same weights can lead to very large or very small gradients that can slow down training.
- Large gradients should be diminished in some way, e.g. by rescaling.
- Small gradients can be tackled by using inputs from multiple steps in the past.
- Other RNN structures can mitigate the problem of vanishing gradients.
- A good initialization of the recurrent weights can avoid small or large gradients at the beginning of the training.

Recurrent Neural Networks Maximilian Geißlinger / Fabian Netzler / Prof. Dr. Markus Lienkamp (Matthias Rowold, M. Sc.)

Agenda

- 1. Introduction
 - Motivating example
 - The "hidden state"
 - 3. Connection to dynamical systems
- 2. Training RNNs
 - 1. Backpropagation through time
 - 2. Methods
- 3. Vanishing and exploding gradients
- 4. Advanced RNN structures
- 5. Examples of RNNs in automotive applications

Input – output relations

Many to many

E.g. Approximate the dynamics of a physical system

Many to one

E.g. classify a video

One to many

E.g. describe an image with a sentence

Multilayer RNN

Short analysis of the influence of multiple layers in [10].

Bidirectional RNN

Including future information can be helpful. E.g. handwriting recognition.

Sequence to sequence

- 1. A sequence is encoded by a RNN with parameters \mathbf{W}_1
- 2. The information is decoded by RNN with parameters W_2

E.g. translation

Long short-term memory (LSTM)

Idea: Do not update the whole hidden state each time-step.

Protect the state from being overwritten by useless information.

Be selective in:

- What to forget (forget gate)
$$\mathbf{f}_t = \sigma(\mathbf{W}_f \mathbf{h}_{t-1} + \mathbf{U}_f \mathbf{x}_t + \mathbf{b}_f)$$

- What to write (input gate)
$$\mathbf{i}_t = \sigma(\mathbf{W}_i \mathbf{h}_{t-1} + \mathbf{U}_i \mathbf{x}_t + \mathbf{b}_i)$$

- What to output (output gate)
$$\mathbf{o}_t = \sigma(\mathbf{W}_o\mathbf{h}_{t-1} + \mathbf{U}_o\mathbf{x}_t + \mathbf{b}_o)$$

Cell state
$$\mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{U}_h \mathbf{x}_t + \mathbf{b}_h)$$

 $\mathbf{h}_t = \mathbf{o}_t \odot \tanh(c_t)$

Long short-term memory (LSTM)

Long short-term memory (LSTM)

Long short-term memory (LSTM)

DIPLOMARBEIT IM FACH INFORMATIK

Untersuchungen zu dynamischen neuronalen Netzen

Josef Hochreiter Institut für Informatik Technische Universität München Arcisstr. 21, 8000 München 2, Germany hochreit@kiss.informatik.tu-muenchen.de

Aufgabensteller: Professor Dr. W. Brauer Betreuer: Dr. Jürgen Schmidhuber

15 Juni 1991

[11]

LONG SHORT-TERM MEMORY

NEURAL COMPUTATION 9(8):1735-1780, 1997

Sepp Hochreiter
Fakult ät für Informatik
Technische Universit ät München
80290 München, Germany
hochreit@informatik.tu-muenchen.de
http://www7.informatik.tu-muenchen.de/~hochreit

Jürgen Schmidhuber IDSIA Corso Elvezia 36 6900 Lugano, Switzerland juergen@idsia.ch http://www.idsia.ch/~juergen

[12]

LSTM example: image captioning [13]

LSTM example: image captioning [13]

LSTM example: image captioning [13]

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee.

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick

A little girl in a pink hat is

A red motorcycle parked on the

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

Unrelated to the image

Gated Recurrent Unit (GRU) [14]

The same idea of using gates:

$$\mathbf{r}_t = \sigma(\mathbf{W}_r \mathbf{h}_{t-1} + \mathbf{U}_r \mathbf{x}_t + \mathbf{b}_r)$$

$$\mathbf{z}_t = \sigma(\mathbf{W}_z \mathbf{h}_{t-1} + \mathbf{U}_z \mathbf{x}_t + \mathbf{b}_z)$$

$$\hat{\mathbf{h}}_t = \tanh(\mathbf{W}_h \mathbf{h}_{t-1} + \mathbf{U}_h(\mathbf{r}_t \odot \mathbf{h}_{t-1}) + \mathbf{b}_h)$$

$$\mathbf{h}_t = (\mathbf{1} - \mathbf{z}_t) \odot \mathbf{h}_{t-1} + \mathbf{z}_t \hat{\mathbf{h}}_t$$

Gated Recurrent Unit (GRU) [14]

4. Wrap Up

- Many structures and activations are possible: many to many, many to one, multilayer, bidirectional, LSTM, GRU, ...
- Hard to know a priori what will work best. Currently LSTM and GRU are used a lot.

Objectives of Lecture 10

Recurrent Neural Networks Maximilian Geißlinger / Fabian Netzler / Prof. Dr. Markus Lienkamp (Matthias Rowold, M. Sc.)

Agenda

- 1. Introduction
 - Motivating example
 - 2. The "hidden state"
 - 3. Connection to dynamical systems
- 2. Training RNNs
 - 1. Backpropagation through time
 - 2. Methods
- 3. Vanishing and exploding gradients
- 4. Advanced RNN structures
- 5. Examples of RNNs in automotive applications

Recurrent neural networks for driver activity anticipation via sensory-fusion architecture

Jain, A.; Singh, A.; Koppula, H. S.; Soh, S. & Saxena, A. 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016

[15]

Maneuver anticipation

Predict the drivers action multiple seconds ahead.

→multiple sensors and LSTMs fused

- Multiple LSTM: one for each sensor (e.g. camera, GPS, vehicle dynamics)
- Sensor fusion on hidden states with fully connected layer
- Loss function with increased loss in late predictions

	!	Lane change			Turns		
]	Method	Pr (%)	Re (%)	Time-to- maneuver (s)	Pr (%)	Re (%)	Time-to- maneuver (s)
	Chance	33.3	33.3	_	33.3	33.3	-
	SVM [27]	73.7 ± 3.4	57.8 ± 2.8	2.40	64.7 ± 6.5	47.2 ± 7.6	2.40
	Random-Forest	71.2 ± 2.4	53.4 ± 3.2	3.00	68.6 ± 3.5	44.4 ± 3.5	1.20
	IOHMM [19]	81.6 ± 1.0	79.6 ± 1.9	3.98	77.6 ± 3.3	75.9 ± 2.5	4.42
	AIO-HMM 19	83.8 ± 1.3	79.2 ± 2.9	3.80	80.8 ± 3.4	75.2 ± 2.4	4.16
	S-RNN	85.4 ± 0.7	86.0 ± 1.4	3.53	75.2 ± 1.4	75.3 ± 2.1	3.68
Our	F-RNN-UL	92.7 ± 2.1	84.4 ± 2.8	3.46	81.2 ± 3.5	78.6 ± 2.8	3.94
Methods	F-RNN-EL	88.2 ± 1.4	86.0 ± 0.7	3.42	83.8 ± 2.1	79.9 \pm 3.5	3.78

Comparison of different modifications, and other works.

[15]

Deep steering: Learning end-to-end driving model from spatial and temporal visual cues

Chi, L. & Mu, Y.

arXiv preprint, 2017

[16]

Visual Perception

Steering angle? Brake? Accelerate? Change Lane?

"Feature extraction sub-network"

"Steering-prediction sub-network"

[16]

Practical classification of different moving targets using automotive radar and deep neural networks

Angelov, A.; Robertson, A.; Murray-Smith, R. & Fioranelli, F. *IET Radar, Sonar & Navigation, IET,* **2018**

Fig. 3 Representation of the different network architectures

(a) Convolutional neural network similar to VGG type, (b) Convolutional residual network, (c) Combination of convolutional and recurrent LSTM network

Table 3 Test accuracy for two network architectures evaluated on three class problems

	evaluated on three dides problems						
Evaluation/	VGG-like	VGG-like	CNN-	CNN-			
network type	CNN (2 s	CNN (0.5 s	LSTM (2 s	LSTM (0.5			
	long	long	long	s long			
	datasets)	datasets)	datasets)	datasets)			
car-person-	79%	83%	93%	83%			
bicycle classification							
car-person-2 people classification	81%	78%	80%	84%			

Table 4 Test accuracy for three types of networks (VC	3G-
like, CNN-LSTM, and VGG-LSTM) on all considered	
problems, with regularisation and batch normalisation	

	Toblems, with regularisation and batter normalisation					
Evaluation/	VGG-like	VGG-like	CNN-	CNN-		
network type	CNN (2 s	CNN (0.5 s	LSTM (2 s	LSTM		
	long	long	long	(0.5 s long		
	datasets)	datasets)	datasets)	datasets)		
car-person-	78.6%	81.1%	50%	73.5%		
bicycle						
classification						
car-person-2	77.8%	88.6%	44.4%	78.3%		
people						
classification						
all-4-classes-				70%		
	_	_	_	70%		
classification						
(VGG LSTM)						

Convolutional Social Pooling for Vehicle Trajectory Prediction

Deo N.; Trivedi M.M.

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, **2018**

[18]

[18]

- [1] Tallec, C. & Ollivier, Y.: Unbiasing Truncated Backpropagation Through Time; arXiv preprint arXiv:1705.08209, 2017
- [2] Zhang, X.-Y.; Yin, F.; Zhang, Y.-M.; Liu, C.-L. & Bengio, Y.: Drawing and recognizing chinese characters with recurrent neural network; IEEE transactions on pattern analysis and machine intelligence, IEEE, 2018
- [3] Zimmermann, H.-G.; Tietz, C. & Grothmann, R.: Forecasting with recurrent neural networks: 12 tricks; Neural Networks: Tricks of the Trade, Springer, 2012
- [4] Geoffrey Hinton; Lecture 10, Recurrent neural networks; https://www.cs.toronto.edu/~hinton/csc2535/notes/lec10new.pdf, accessed 20.11.2018
- [5] Mohajerin, N. & Waslander, S. L.: State initialization for recurrent neural network modeling of time-series data; Neural Networks (IJCNN), 2017 International Joint Conference on, 2017
- [6] Zaremba, W. & Sutskever, I.; Vinyals, O.: Recurrent Neural Network Regularization; https://arxiv.org/abs/1409.2329, 2015

- [7] Pascanu, R.; Mikolov, T.; Bengio Y.: On the difficulty of training recurrent neural networks; Proceedings of the 30th International Conference on Machine Learning; 2013
- [8] Lillicrap, T. P.; Santoro, A.; Backpropagation through time and the brain; Current Opinion in Neurobiology; 2019
- [9] Glorot, X.; Bengio, Y.; Understanding the difficulty of training deep feedforward neural networks; Proceedings of the 13th International Conference on Artificial Intelligence and Statistics; 2010
- [10] Hermans, M.; Schrauwen, B.; Training and Analyzing Deep Recurrent Neural Networks; Advances in Neural Information Processing Systems 26; 2013
- [11] Hochreiter, J.; Untersuchungen zu dynamischen neuronalen Netzen; Diplomarbeit; 1991
- [12] Hochreiter, S.; Schmidhuber, J.; Long Short-Term Memory; Neural Computation 9(8); 1997

[13] Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D.; Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge; IEEE Transaction on Pattern Analysis and Machine Intelligence; 2016

[14] Cho, K.; Bahdanau, D.; Bougares, F; Schwenk, H.; Bengio, Y.; Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation; Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing; 2014

[15] Jain, A.; Singh, A.; Koppula, H. S.; Soh, S.; Saxena, A.; Recurrent Neural Networks for Driver Activity Anticipation via Sensory-Fusion Architecture; 2016 IEEE International Conference on Robotics and Automation; 2016

[16] Chi, L.; Mu, Y.; Deep Steering: Learning End-to-End Driving Model from Spatial and Temporal Visual Cues; Computer Science, ArXiv; 2017

[17] Angelov, A.; Robertson, A.; Murray-Smith, R.; Fioranelli, F.; Practical classification of different moving targets using automotive radar and deep neural networks; IET Radar, Sonar & Navigation 12(10); 2018

[18] Deo, N.; Trivedi M. M.; Convolutional Social Pooling for Vehicle Trajectory Prediction; 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops; 2018