Basics of Computer Networks & Internet

Bheemarjuna Reddy Tamma Dept. of CSE, IIT Hyderabad

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Outline

- What is a computer network?
- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Network Performance: loss, delay, throughput, etc.
- Protocol layers, architecture, service models

Computer Networks

- •What is a computer network?
- Other types of networks?
- How is a computer network different from other types of networks?

LOCAL AREA NETWORK: ETHERNET

WIRELESS LAN (WLAN): WI-FI

PERSONAL AREA NETWORK (PAN): BLUETOOTH

THE INTERNET©

The Internet: a "nuts and bolts" view

Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

collection of devices, routers, links: managed by an organization

"Fun" Internet-connected devices

Amazon Echo

Internet refrigerator

Security Camera

IP picture frame

control cable TV

Pacemaker & Monitor

Tweet-a-watt: monitor energy use

scooters

sensorized, bed mattress

Internet phones

Gaming devices

Others?

The Internet: a "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols are everywhere
 - control sending, receiving of messages
 - e.g., HTTP (Web), Streaming video, Skype, TCP, IP, WiFi, 4/5G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task Force

The Internet: a "services" view

- Infrastructure that provides services to applications:
 - Web, streaming video, multimedia teleconferencing, email, games, ecommerce, social media, interconnected appliances, ...
- provides programming interface to distributed applications:
 - "hooks" allowing sending/receiving apps to "connect" to, use Internet transport service
 - provides service options, analogous to postal service

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Rules for:

- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

A human protocol and a computer network protocol:

Q: other human protocols?

Network Communication Protocols

- TCP (transmission control protocol)
- UDP (user data protocol)
- IP (internet protocol)
- HTTP (hypertext transfer protocol)
- SMTP (simple mail transfer protocol)
- FTP (file transfer protocol)
- 802.3 (Ethernet) Protocol
- 802.11 (Wi-Fi) Protocol

Outline

- What is a computer network?
- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Network Performance: loss, delay, throughput, etc
- Protocol layers, service models

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Host: sends packets of data

host sending function:

- takes application message
- breaks into smaller chunks,
 known as packets, of length L bits
- transmits packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

packet time needed to transmission = transmit
$$L$$
-bit = $\frac{L}{R}$ (bits/sec)

Links: physical media

- bits: propagate between transmitter/receiver pairs using electromagnetic waves or light pulses
- physical link/media: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio channels

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Links: physical media

Coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple frequency channels on cable
 - 100's Mbps per channel

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (10's-100's Gbps)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Links: physical media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 4G/5G cellular)
 - 10's Mbps (4G) over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to < 100 Mbps (Starlink) downlink
 - 270 msec end-end delay (geostationary)

THE ELECTROMAGNETIC SPECTRUM

Radio waves

- One type of EM waves
- 30 Hz to 300 GHz
- 1-30 GHz also called as Microwaves
- 30-300 GHz also called as Millimeter waves
 - Unused, abundant, main candidate spectrum for 5G operations

Band	Frequency range	Wavelength range
Extremely Low Frequency (ELF)	<3 kHz	>100 km
Very Low Frequency (VLF)	3 to 30 kHz	10 to 100 km
Low Frequency (LF)	30 to 300 kHz	1 m to 10 km
Medium Frequency (MF)	300 kHz to 3 MHz	100 m to 1 km
High Frequency (HF)	3 to 30 MHz	10 to 100 m
Very High Frequency (VHF)	30 to 300 MHz	1 to 10 m
Ultra High Frequency (UHF)	300 MHz to 3 GHz	10 cm to 1 m
Super High Frequency (SHF)	3 to 30 GHz	1 to 10 cm
Extremely High Frequency (EHF)	30 to 300 GHz	1 mm to 1 cm

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access networks
- enterprise access networks (school, company)
- wireless access networks (WiFi, 4G/5G)

Access networks: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate
- 3.5-16 Mbps dedicated upstream transmission rate

Access networks: cable-based access

frequency division multiplexing (FDM): different TV channels & data transmitted in different frequency bands on the shared coaxial cable

Access networks: cable-based access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable headend

Access networks in homes: Wi-Fi/Ethernet

Access networks in homes: FTTH

FTTH: Fibre To The Home OLT: Optical Line Terminal

ONU (ONT): Optical Network Unit/Terminal

Access networks in enterprises

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps

Wireless access networks

Shared wireless access network connects end system to router

via base station aka "access point"

Wireless local area networks (WLANs)

- typically within or around building (~100 ft)
- 802.11b/g/n (WiFi): 11, 54, 450Mbps transmission rate

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's Mbps
- 4G/5G cellular networks

Access networks in data centers

 high-bandwidth links (10s to 100s
 Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)

Next Lecture: Outline

- What is a computer network?
- What is the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Network Performance: loss, delay, throughput, etc.
- Protocol layers, service models

Readings

- Chapter 1.1 & 1.2 of Computer Networking: A Top-Down Approach by James F. Kurose and Keith W. Ross, 8th Edition, 2020, Addison Wesley (Pearson Education)
 - https://gaia.cs.umass.edu/kurose ross/videos/1/
- https://cse.iith.ac.in/academics/plagiarism-policy.html

The network core

- mesh of interconnected routers
- packet-switching: hosts break application-layer messages into packets
 - network forwards packets from one router to the next, across links on path from source to destination

Two key network-core functions

Forwarding:

- aka "switching"
- local action: move arriving packets from router's input link to appropriate router output link

Routing:

- global action: determine sourcedestination paths taken by packets
- routing algorithms

Packet-switching: store-and-forward

- packet transmission delay: L/R seconds
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- propagation delay: Distance/Speed of light

Total one-hop delay?
Total two-hop delay?

One-hop numerical example:

- *L* = 10 Kbits, D = 300 m
- $R = 100 \text{ Mbps}, S=3*10^8 \text{ m/s}$
- one-hop transmission delay= 100 micro-sec
- One-hop propagation delay= 1 micro-sec

Homework (Q1): delay comparison in packet-switching

- Packet Size: L bits
- Transmission Rate of links: R bps
- Link length: D meters
- Speed of light: S meters/second
- Total delay incurred in transmitting P packets back-to-back from the source to the destination over N links in case of
 - Store-and-forward switching?
 - Pass-through switching?

Homework (Q2)

- Suppose two hosts, Earth ground station and NASA's Mars Pathfinder, are separated by 250 Million KM and are connected by a direct point-to-point microwave link of capacity, **R** = **1** Mbps. Suppose the propagation speed of light over the link is 2.5 * 108 m/s. Consider sending a packet of 1MB from Pathfinder to Earth.
 - How long does it take to receive the packet on Earth's ground station?

Packet-switching: queueing

Queueing occurs when work arrives faster than it can be serviced:

Packet-switching: queueing

Packet queuing and loss: if arrival rate (in bps) to link exceeds transmission rate (bps) of link for some period of time:

- packets will queue, waiting to be transmitted on output link
- packets can be dropped (lost) if memory (buffer) in router fills up

Alternative to packet switching: circuit switching

end-end resources allocated to, reserved for "call" between source and destination

- in diagram, each link has four circuits.
 - call gets 2nd circuit in top link and 1st circuit in right link.
- dedicated resources: no sharing
 - circuit-like (guaranteed) performance
- circuit segment idle if not used by call (no sharing)
- commonly used in traditional telephone networks

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive

Homework

- Task-1: Go through Chapter 1.3 of Computer Networking: A Top-Down Approach by James F. Kurose and Keith W. Ross, 8th Edition, 2020, Addison Wesley (Pearson Education)
 - https://gaia.cs.umass.edu/kurose ross/videos/1/
- Task-2: Do the interactive exercises on circuit-switching at https://gaia.cs.umass.edu/kurose ross/interactive/circuit switching.php
- Task-3: Solve Homework problems(Q1 & Q2) in slides 41-42 and post your solutions in Google classroom
- Task-4: Solve Chapter-1 of Kurose and Ross textbook's exercise problems P4, P6 and P7 and post your solutions in Google classroom