

Fall 2023

Digital Engineering

Dr. Hatem Yousry

1

Agenda

- Digital Systems and Binary Numbers
- Binary Operations.
- Conversions.
- Digital Engineering (Logic).

- 1. Boolean Algebra This forms the algebraic expression showing the operation of the logic circuit for each input variable either True or False that results in a logic "1" output.
- 2. Truth Table A truth table defines the function of a logic gate by providing a concise list that shows all the output states in tabular form for each possible combination of input variable that the gate could encounter.
- 3. Logic Diagram This is a graphical representation of a logic circuit that shows the wiring and connections of each individual logic gate, represented by a specific graphical symbol, that implements the logic circuit.

Digital Systems and Binary Numbers

- Digital age and information age
- Digital computers
 - General purposes
 - Many scientific, industrial and commercial applications
- Digital systems
 - Telephone switching exchanges
 - Digital camera
 - Electronic calculators, PDA's
 - Digital TV
- Discrete information-processing systems
 - Manipulate discrete elements of information
 - For example, {1, 2, 3, ...} and {A, B, C, ...}...

Analog and Digital Signal

Analog system

• The physical quantities or signals may vary continuously over a specified range.

Digital system

- The physical quantities or signals can assume only discrete values.
- Greater accuracy

Binary Digital Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
 - Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
 - Digits 0 and 1
 - Words (symbols) False (F) and True (T)
 - Words (symbols) Low (L) and High (H)
 - And words On and Off
- Binary values are represented by values or ranges of values of physical quantities.

Binary digital signal

Decimal Number System

- Base (also called radix) = 10
 - 10 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

- Digit Position
 - Integer & fraction
- Digit Weight
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

$$d_2^*B^2+d_1^*B^1+d_0^*B^0+d_{-1}^*B^{-1}+d_{-2}^*B^{-2}$$

 $(512.74)_{10}$

Octal Number System

- Base = 8
 - 8 digits { 0, 1, 2, 3, 4, 5, 6, 7 }
- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

Binary Number System

- Base = 2
 - 2 digits { 0, 1 }, called binary digits or "bits"
- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Bit x Weight"
- Formal Notation

• Groups of bits
$$4 \text{ bits} = Nibble$$

 $8 \text{ bits} = Byte$

1011

11000101

Hexadecimal Number System

- Base = 16
 - 16 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F }
- Weights
 - Weight = $(Base)^{Position}$
- Magnitude
 - Sum of "Digit x Weight"
- Formal Notation

1 *16²+14 *16¹+5 *16⁰+7 *16⁻¹+10 *16⁻²
=
$$(485.4765625)_{10}$$

 $(1E5.7A)_{16}$

The Power of 2

n	2 ⁿ
0	20=1
1	21=2
2	$2^2 = 4$
3	$2^3 = 8$
4	24=16
5	25=32
6	$2^6 = 64$
7	27=128

n	2 ⁿ
8	28=256
9	2 ⁹ =512
10	$2^{10} = \frac{1024}{1024}$
11	211=2048
12	212=4096
20	$2^{20} = 1M$
30	$2^{30} = 1G$
40	$2^{40} = \frac{1T}{}$

Mega

Giga

Tera

Addition

Decimal Addition

Binary Addition

Column Addition

Borrow a "Base" when needed

Binary Multiplication

Bit by bit

			1	0	1	1	1
X				1	0	1	0
			0	0	0	0	0
		1	0	1	1	1	
	0	0	0	0	0		
1	0	1	1	1			
1	1	1	0	0	1	1	0

Number Base Conversions

NC

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Example: $(13)_{10}$

	Quotient	Remainder	Coefficient
13 /2 =	6	1	$a_0 = 1$
6 / 2 =	3	0	$a_1 = 0$
3 / 2 =	1	1	$a_{2}^{-} = 1$
1 / 2 =	0	1	$a_3 = 1$
Answ	er: (1	$(a_3 a_2 a_3)$	$a_1 a_0)_2 = (1101)_2$
		1	
		MSB	LSB

Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: $(0.625)_{10}$

		Integer	Fraction	Coefficient
0.625	* 2 =	1	. 25	$a_{-1} = 1$
0.25	* 2 =	0	. 5	$a_{-2} = 0$
0.5	* 2 =	1	. 0	$a_{-3} = 1$

Answer:
$$(0.625)_{10} = (0.a_{-1} a_{-2} a_{-3})_2 = (0.101)_2$$

MSB LSB

Decimal to Octal Conversion

Example: $(175)_{10}$

	Quotient	Remainder	Coefficient
175 / 8 =	21	7	$a_0 = 7$
21 /8 =	2	5	$a_1 = 5$
2 /8 =	0	2	$a_{2} = 2$

Answer: $(175)_{10} = (a_2 a_1 a_0)_8 = (257)_8$

Example: $(0.3125)_{10}$

Answer: $(0.3125)_{10} = (0.a_{-1} a_{-2} a_{-3})_8 = (0.24)_8$

Binary – Octal Conversion

- 8 = 23
- Each group of 3 bits represents an octal digit

Octal	Binary		
0	000		
1	0 0 1		
2	010		
3	0 1 1		
4	100		
5	101		
6	110		
7	111		

Works both ways (Binary to Octal & Octal to Binary)

NCT

Binary – Hexadecimal Conversion

- 16 = 24
- Each group of 4 bits represents a hexadecimal digit

Exam	nl	e:
LAMILI	יי	

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
С	1100
D	1 1 0 1
E	1110
F	1111

Works both ways (Binary to Hex & Hex to Binary)

Octal – Hexadecimal Conversion

Convert to Binary as an intermediate step

Example:

Works both ways (Octal to Hex & Hex to Octal)

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Portfolio

- Selective Lecture Slides.
- Your Private Notes from Lectures, Sections, Trips, Reports, Labs, and Recommendations.
- Complete answers Tasks and Assignments.
- Complete answers to Quizzes, Midterm.
- Final Project Paper.
- In addition to, any related Course martials.

Thank You

Dr. Hatem Yousry @nctu.edu.eg

- M. Morris R. Mano, Charles R. Kime. Logic and Computer Design Fundamentals, 4th Edition Year: 2008. ISBN-10: 013198926X.
- Arijit Saha, Nilotpal Manna. Digital Principles and Logic Design. ISBN-10: 1934015032.

