• Approximate Ncut for k = 2:

$$\min_{A} Ncut(A, \overline{A})$$

• Given a subset  $A \subseteq V$ , define  $x = (x_1, \dots, x_n)$ 

$$x_{i} = \begin{cases} \sqrt{vol(\overline{A}) / vol(A)} & \text{if } v_{i} \in A \\ -\sqrt{vol(A) / vol(\overline{A})} & \text{if } v_{i} \in \overline{A} \end{cases}$$

• Then one can prove that

$$x^{T}Lx = vol(V) \cdot Ncut(A, \overline{A})$$

$$\sum_{i=1}^{n} d_{i}x_{i} = 0 i.e. (Dx)^{T}1 = 0$$

$$x^{T}Dx = vol(V)$$

The min problem becomes:

$$\min_{A} x^{T} L x$$

subject to  $x_i$  as defined above,  $Dx \perp \mathbf{1}$ , and  $x^TDx = vol(V)$ .

Relaxed min problem:

$$\min_{x \in R^n} x^T L x$$

subject to  $Dx \perp 1$ , and  $x^TDx = vol(V)$ .

• Define  $y = D^{1/2} x$ . The relaxed problem becomes:

$$\min_{x \in R^n} y^T D^{1/2} L D^{1/2} y = \min_{x \in R^n} y^T \hat{L} y$$

subject to  $y \perp D^{1/2} \mathbf{1}$ , and  $||y||^2 = vol(V)$ .

• Solution of the relaxed min problem: the eigenvector corresponding to the second smallest eigenvalue of L^.

# K-means clustering

 Clustering for k = 2. From the solution vector x (or y), we need to find a partition. For example,

$$\begin{cases} v_i \in A & \text{if } x_i \ge 0 \text{ (or } y_i \ge 0) \\ v_i \in \overline{A} & \text{if } x_i < 0 \text{ (or } y_i < 0) \end{cases}$$

- It does not work for k > 2.
- K-mean clustering: Given a set of n data points  $\{p_j\}$ , find partitions  $A_1, A_2, \ldots, A_k$  which solve the min problem

$$\min_{\{A_i\}} \sum_{i=1}^k \sum_{p \in A_i} ||p - \mu_i||_2^2$$

- 1. Start with an initial guess for the k means  $\{\mu_i\}$ .
- 2. Assign p to  $A_i$  if p is closest to  $\mu_i$ .
- 3. Update  $\{\mu_i\}$  using the new partitions  $\{A_i\}$ .
- 4. Repeat (1)-(3).
- For the case k = 2. Consider  $\{x_i\}$  as n points in R. Apply the k-means algorithm to cluster the points into 2 groups.

# Unnormalized spectral clustering

- Construct the weighted adjacency matrix W.
- Compute the unnormalized L.
- Compute the first k eigenvectors  $q_1, \ldots, q_k$  of L.
- Consider  $Q_k = [q_1, ..., q_k]$ . Let  $p_i \in R^k$  be the vector of row(i) of  $Q_k$ .
- For the n points  $\{p_i\}$  in  $R^k$ , apply the k-means algorithm to cluster them into k groups:  $\{A_1,\ldots,A_k\}$ .

# Normalized spectral clustering

- Change L to L^.
- Change p<sub>i</sub>:

$$\overline{p}_i = \frac{p_i}{\|p_i\|}$$

# How to define W?

- It is problem dependent.
- For image segmentation, W has a similar nonzero structure as the 2D Laplacian, if we only consider 4 neighbours.
- If we also include the 4 neighbours at the corners, there will be 8 neighbours. Then W has (at most) 8 nonzeros per row.
- In general, more neighbours ⇒ more nonzeros in W.
- In practice, only consider a small number of neighbours. E.g. neighbours that are within graph distance 1 or 2.
- w<sub>ii</sub> measures the similarity between pixel i and pixel j:
  - distance between pixel i and pixel j.
  - intensity difference between pixel i and pixel j.
- For example

$$w_{ij} = e^{-\frac{\|x_i - x_j\|^2}{\sigma_{dist}^2}} e^{-\frac{\|I_i - I_j\|^2}{\sigma_{int}^2}}$$

where pixel i is located at  $x_i$  with intensity  $I_i$  and pixel j is located at  $x_j$  with intensity  $I_i$ . Here  $x_i = (r, c)$ , if pixel i is at row r and column c.

#### **Singular Value Decomposition**

#### A geometric observation

The image of the unit circle sphere under any m×n matrix is a hyperellipse.

e.g.



Let S be the unit sphere in R<sup>n</sup>. The image AS is an ellipse in R<sup>m</sup>.

- The n singular values of A are the lengths of the n principal semiaxes of AS:  $\sigma_1, \sigma_2, \ldots, \sigma_n$ . Convention:  $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n \ge 0$ .
- The n left singular vectors of A are the unit vectors  $\{u_1, \ldots, u_n\}$  in the direction of the principal semiaxes.
- The n right singular vectors of A are the unit vectors  $\{v_1, \ldots, v_n\} \subseteq S$  such that A  $v_i = \sigma_i u_i$ .

#### Reduced SVD

$$A v_i = \sigma_i u_i \qquad j = 1, 2, \dots, n$$

i.e.

$$\begin{bmatrix} A \\ \end{bmatrix}_{m \times n} \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}_{n \times n} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix}_{m \times n} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \end{bmatrix}_{n \times n}$$

$$V \qquad \qquad \hat{U} \qquad \qquad \hat{\Sigma}$$

$$AV = \hat{U}\hat{\Sigma}$$

where  $\hat{\Sigma}$  = diag,  $\hat{U}$  and V have orthonormal columns.

Equivalently,

$$A = U\Sigma V^{T}$$

$$A = \hat{U} \hat{\Sigma} V^{T}$$

reduced SVD

# **Full SVD**

- Extend  $\hat{U} \rightarrow U = \text{orthorgonal}$
- Accordingly,  $\hat{\Sigma} \to \Sigma = \begin{bmatrix} \hat{\Sigma} & \\ 0 & \\ \end{bmatrix} n n n$ Then

$$A = U \sum V^{T}$$

$$A \ = \ U \ \Sigma \ V^T \qquad \qquad \Sigma \ = \ diag, \ \ U, \ V \ = \ orthogonal$$

$$A = U \sum_{\Sigma} V^{\mathsf{T}}$$

<u>Theorem</u>: Every matrix  $A \subseteq R^{mxn}$  has a singular value decomposition. The singular values are unique. If A is square and  $\sigma_j$  are distinct, then the left and right singular vectors are unique (modulo sign).

# **SVD vs Eigendecomposition**

- They both diagonalize a matrix A. SVD uses 2 bases (left and right singular vectors). Eigendecomposition uses 1 base (eigenvectors).
- SVD uses orthonormal vectors. Eigenvectors are not orthonormal in general.
- Not all matrices have an eigendecomposition. All matrices have a singular value decomposition.

# Matrix properties of SVD

Let  $A \subseteq R^{mxn}$ , p = min(m,n), r = number of nonzero singular values of A.

<u>Theorem</u>: rank(A) = r

Pf: The rank of a diag matrix = number of nonzero diag entries. Since

$$A = U \Sigma V^T$$

U, V orth.  $\Rightarrow$  rank(A) = rank( $\Sigma$ ).