2^0 Doble Grado de Informática y Matemáticas

II. Ejercicios (Capítulo II. Diferenciación. Regla de la cadena. Extremos absolutos y relativos de campos escalares.)

1. Calcula las derivadas direccionales en el punto (0,1,0) de la función $f:\mathbb{R}^3\longrightarrow\mathbb{R}$ dada por

$$f(x, y, z) = x^3 - 3xy + z^3$$
 $((x, y, z) \in \mathbb{R}^3).$

- 2. Calcula las derivadas parciales de primer orden de los siguientes campos escalares:
 - a) $f(x, y, z) = x^2y + z^2x + y \operatorname{sen}(xz)$
 - **b)** $f(x,y) = (x^2 + y^3)e^{-xy}$
 - c) $f(x, y, z) = xe^z + ze^y + xyz$
- 3. Prueba que en \mathbb{R}^N la norma no es diferenciable en 0.
- 4. Comprueba que la función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$f(x,y) = \frac{x^2y}{x^2 + y^4}$$
 si $(x,y) \neq (0,0), \quad f(0,0) = 0$

es continua en (0,0), tiene derivadas direccionales en (0,0) según cualquier vector $(x,y) \in \mathbb{R}^2 \setminus (0,0)$, pero no es diferenciable en (0,0).

5. Se
aZ un espacio normado y $B:\mathbb{R}^n\times\mathbb{R}^m\longrightarrow Z$ una aplicación bilineal. Prueba que existe un número real K que verifica

$$||B(x,y)|| \le K||x||_{\infty}||y||_{\infty} \le K||x||_{2}||y||_{2}, \quad \forall x \in \mathbb{R}^{n}, \quad y \in \mathbb{R}^{m}.$$

Por supuesto, por el Teorema de Hausdorff, el resultado anterior también es cierto si a la derecha de la desigualdad se usan dos normas cualesquiera en \mathbb{R}^n y en \mathbb{R}^m .

6. Prueba que toda aplicación bilineal $B: \mathbb{R}^n \times \mathbb{R}^m \longrightarrow \mathbb{R}^p$ es diferenciable en todo punto $(u, v) \in \mathbb{R}^n \times \mathbb{R}^m$ y además se verifica la igualdad

$$DB(u, v)(x, y) = B(u, y) + B(x, v),$$
 $\forall u, x \in \mathbb{R}^n, v, y \in \mathbb{R}^m.$

- 7. Calcula las derivadas parciales de primer y segundo orden de los siguientes campos escalares:
 - a) $f(x, y, z) = \tan((xy)^z)x^2y + z^2x + y\sin(xz)$
 - **b)** $f(x,y) = \operatorname{sen}\left(\cos e^{xy}\right)$
 - c) $f(x,y) = \ln\left(4 + \arctan\left(\frac{x}{y}\right)\right)$
- 8. Sea $\Omega \subset \mathbb{R}^2$ un abierto y $f:\Omega \longrightarrow \mathbb{R}$ una función con derivadas parciales y tal que $\nabla f:\Omega \longrightarrow \mathbb{R}^2$ está acotada. Prueba que f es continua.

Justifica que la función $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
 si $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\},$ $f(0,0) = 0,$

verifica las hipótesis del resultado anterior y, sin embargo, no es diferenciable en (0,0).

9. Sea I un intervalo abierto de \mathbb{R} , $\Omega \subset \mathbb{R}^N$ un abierto, $a \in I$, $f: I \longrightarrow \Omega$ un campo vectorial derivable en $a \neq g: \Omega \longrightarrow \mathbb{R}$ un campo escalar diferenciable en b = f(a). Prueba que $g \circ f$ es derivable en $a \neq a$ y además

$$(g \circ f)'(a) = (\nabla g(b)|f'(a)).$$

10. Si $p \in \mathbb{R}^*$, consideremos la funcion $f : \mathbb{R}^N \setminus \{0\} \longrightarrow \mathbb{R}$ dada por

$$f(x) = ||x||_2^p \qquad (x \in \mathbb{R}^N \setminus \{0\}).$$

Prueba que $f \in C^1(\mathbb{R}^N \setminus \{0\})$ y además

$$\nabla f(x) = p \|x\|_2^{p-2} x, \forall x \in \mathbb{R}^N \setminus \{0\}.$$

Da una función $f \in C^1(\mathbb{R}^N)$ que verifique que $\nabla f(x) = x$ para cada $x \in \mathbb{R}^N$.

11. Para cada $n \in \mathbb{N}$, estudia la continuidad, diferenciabilidad y continuidad de las derivadas parciales del campo escalar $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ dado por

$$f(x,y) = (x+y)^n \operatorname{sen} \frac{1}{\sqrt{x^2 + y^2}} \quad ((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}), \quad f(0,0) = 0.$$

12. Estudiar la continuidad, diferenciabilidad y continuidad de las derivadas parciales del campo escalar $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ dado por

$$f(x,y,z) = \frac{xyz}{\sqrt{x^2 + y^2 + z^2}} \quad ((x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\}), \quad f(0,0,0) = 0.$$

13. Calcula las ecuaciones de la rectas tangentes a las siguientes curvas en cada punto de la curva

$$\alpha(t) = (t, 1 - t), \quad \alpha(t) = (t^2, e^t, 2 \operatorname{sen} t).$$

14. Calcula el plano tangente a la gráfica de f para cada una de las siguientes funciones

a)
$$f(x,y) = x^2 + y^2$$
,

b)
$$f(x,y) = 2x + 3y - 1$$
,

c)
$$f(x,y) = e^x + \arctan(y)$$
.

15. Dado el campo escalar definido en \mathbb{R}^2 por

$$f(x,y) = \begin{cases} x^2 \arctan \frac{y}{x} - y^2 \arctan \frac{x}{y}, & \text{si } xy \neq 0, \\ 0, & \text{si } xy = 0, \end{cases}$$

estudia la continuidad y diferenciablidad de f en (0,0). Calcula, en caso de que existan, $D_{12}f(0,0)$ y $D_{21}f(0,0)$.

Nota: Por definición, se tiene que

$$D_{ij}f(0,0) = D_j(D_if)(0,0), \quad \forall i, j \in \{1,2\}.$$

16. Si $\alpha \in \mathbb{R}$ y $\alpha > 3$, estudia la diferenciabilidad y continuidad de las derivadas parciales del campo escalar $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ dado por

$$f(x,y) = \frac{|x|^{\alpha}}{x^2 + y^2}$$
 $((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}), f(0,0) = 0.$

17. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ un campo escalar diferenciable. Definimos $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ por

$$g(s,t) = f(s^2 - t^2, t^2 - s^2)$$
 $((s,t) \in \mathbb{R}^2).$

Prueba que

$$t\frac{\partial g}{\partial s} + s\frac{\partial g}{\partial t} = 0.$$

18. Sea $z = \cos(xy) + e^{y-1}\cos(x)$, donde $x = u^2 + v$, $y = u - v^2$. Calcula $\frac{\partial z}{\partial u}$ en el punto (1,1). Con un lenguaje diferente, se pide la derivada parcial respecto de la primera variable en (1,1) del campo escalar $g\circ f$, donde $f:\mathbb{R}^2\longrightarrow\mathbb{R}^2,\ g:\mathbb{R}^2\longrightarrow\mathbb{R}$ están definidas por

$$f(u,v) = (u^2 + v, u - v^2),$$
 $g(x,y) = \cos(xy) + e^{y-1}\cos(x).$

- 19. Sea z = f(x, y), donde $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ es una función diferenciable. Si $x = u^2 + v^2$, $y = \frac{u}{v}$, calcula las derivadas parciales de primer orden de z respecto de u y v en función de las derivadas parciales de z respecto de x e y.
- 20. Sea $u = x^4 + y^2 z^3 + \varphi\left(\frac{x}{y}\right)$, donde $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ es una función derivable. Supongamos que

$$x = 1 + rse^t$$
, $y = rs^2e^{-t}$, $z = r^2s \operatorname{sen} t$.

Si $\varphi'\left(\frac{3}{2}\right) = -1$, calcula $\frac{\partial u}{\partial s}$ en el punto (r, s, t) = (2, 1, 0).

21. Sea $f: \mathbb{R} \longrightarrow \mathbb{R}$ una función derivable. Definimos $F(x,y) = f\left(\frac{x}{x^2 - u^2}\right)$. Comprueba que se verifica la igualdad

$$(x^2 + y^2)\frac{\partial F}{\partial y} + 2xy\frac{\partial F}{\partial x} = 0.$$

22. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ un campo escalar diferenciable y z = f(x,y). Si $x = \rho \cos \theta$, $y = \rho \sin \theta$, calcula $\frac{\partial f}{\partial \rho}$ y $\frac{\partial f}{\partial \theta}$. Prueba que se verifica

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial \rho}\right)^2 + \frac{1}{\rho^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$$

- 23. Sea $A\subset\mathbb{R}$ un abierto, y $f,g:A\longrightarrow\mathbb{R}^N$ dos funciones diferenciables. Prueba que entonces la función $h(x) = \langle f(x), g(x) \rangle$ definida en A es derivable. Calcula su derivada.
- 24. Clasifica los puntos críticos de los siguientes campos escalares:
 - a) $f(x,y) = x^3 + 3xy^2 15x 12y$
 - **b)** $f(x,y) = \cos(x)\cos(y)$
 - c) $f(x,y) = -xy + 2x^3y xy^2 2x^3y^2$
 - d) $f(x,y) = 2x + y + x^2 + xy + y^3$

 - e) $f(x,y) = 2xy 2x^3y yx^2 + x^3y^2$. f) $f(x,y,z) = x^2 + y^2 + z^2 + 3xyz x y z$
- 25. Dados n puntos (x_i, y_i) en \mathbb{R}^2 , determina los valores de a y b que hace mínimo el real

$$\sum_{i=1}^{n} \left(y_i - ax_i - b \right)^2.$$

3

La recta con los parámetros anteriores se llama recta de mínimos cuadrados.

26. En cada uno de los siguientes casos, calcula la imagen de la función $f:A\longrightarrow \mathbb{R}$

i)
$$A = \{(x,y) : 0 \le x \le 2 - y^2\}, \quad f(x,y) = x^2 + y^2 - 2x \quad ((x,y) \in A)$$

i)
$$A = \{(x,y): 0 \le x \le 2 - y^2\}, \quad f(x,y) = x^2 + y^2 - 2x \quad ((x,y) \in A)$$

ii) $A = \{(x,y): -1 \le y \le x \le 1\}, \quad f(x,y) = x^2 + y^2 + xy - x \quad ((x,y) \in A).$

27. Prueba que el campo vectorial $f:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ dado por

$$f(x,y) = \left(\frac{1 + \text{sen}(x)}{3}, \frac{y^2 + 1}{3}\right) \quad ((x,y) \in \mathbb{R}^2)$$

tiene al menos un punto fijo.