1653

RAW SEQUENCE LISTING DATE: 11/28/2001 PATENT APPLICATION: US/09/841,805A TIME: 11:32:06

Input Set : N:\Crf3\RULE60\09841805a.txt
Output Set: N:\CRF3\11282001\1841805A.raw

SEQUENCE LISTING

```
3 (1) GENERAL INFORMATION:
      5
             (i) APPLICANT: Lal, Preeti
      6
                            Shah, Purvi
      7
                            Corley, Neil C.
      9
            (ii) TITLE OF INVENTION: HUMAN MEMBRANE RECYCLING
     10
                                      PROTEINS
           (iii) NUMBER OF SEQUENCES: 5
     12
            (iv) CORRESPONDENCE ADDRESS:
     14
     15
                  (A) ADDRESSEE: Incyte Pharmaceuticals, Inc.
                                                               ENTERED
     16
                  (B) STREET: 3174 Porter Dr.
     17
                  (C) CITY: Palo Alto
                  (D) STATE: CA
     18
     19
                  (E) COUNTRY: USA
     20
                  (F) ZIP: 94304
             (V) COMPUTER READABLE FORM:
     22
     23
                  (A) MEDIUM TYPE: Diskette
     24
                  (B) COMPUTER: IBM Compatible
     25
                  (C) OPERATING SYSTEM: DOS
                  (D) SOFTWARE: FastSEQ for Windows Version 2.0
     26
            (vi) CURRENT APPLICATION DATA:
     28
                  (A) APPLICATION NUMBER: US/09/841,805A
C--> 29
C-->30
                  (B) FILING DATE: 24-Apr-2001
     31
                  (C) CLASSIFICATION:
     33
           (vii) PRIOR APPLICATION DATA:
     34
                  (A) APPLICATION NUMBER: 09/360,125
     35
                  (B) FILING DATE: 1999-07-23
          (viii) ATTORNEY/AGENT INFORMATION:
     37
                  (A) NAME: Billings, Lucy J.
     38
     39
                  (B) REGISTRATION NUMBER: 36,749
     40
                  (C) REFERENCE/DOCKET NUMBER: PF-0456 US
     42
            (ix) TELECOMMUNICATION INFORMATION:
     43
                  (A) TELEPHONE: 650-855-0555
     44
                  (B) TELEFAX: 650-845-4166
        (2) INFORMATION FOR SEQ ID NO: 1:
             (i) SEQUENCE CHARACTERISTICS:
     49
                  (A) LENGTH: 347 amino acids
     50
                  (B) TYPE: amino acid
     51
     52
                  (C) STRANDEDNESS: single
     53
                  (D) TOPOLOGY: linear
           (vii) IMMEDIATE SOURCE:
     55
     56
                  (A) LIBRARY: TONGTUT01
     57
                  (B) CLONE: 980615
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
     59
        Met Ala Gln Ser Arg Asp Gly Gly Asn Pro Phe Ala Glu Pro Ser Glu
     61
                          5
                                              10
     62
          1
```

Leu Asp Asn Pro Phe Gln Asp Pro Ala Val Ile Gln His Arg Pro Ser

64				20					25					30		
65	Arg	Gln	Tyr	Ala	Thr	Leu	Asp	Val	Tyr	Asn	Pro	Phe	Glu	Thr	Arg	Glu
66	-		35				_	40	_				45		_	
67	Pro	Pro	Pro	Ala	Tyr	Glu	Pro	Pro	Ala	Pro	Ala	Pro	Leu	Pro	Pro	Pro
68		50					55					60				
69	Ser	Ala	Pro	Ser	Leu	Gln	Pro	Ser	Arg	Lys	Leu	Ser	Pro	Thr	Glu	Pro
70	65					70					75					80
71	Lys	Asn	Tyr	Gly	Ser	Tyr	Ser	Thr	Gln	Ala	Ser	Ala	Ala	Ala	Ala	Thr
72					85					90					95	
73	Ala	Glu	Leu	Leu	Lys	Lys	Gln	Glu	Glu	Leu	Asn	Arg	Lys	Ala	Glu	Glu
74				100					105					110		
75	Leu	Asp	Arg	Arg	Glu	Arg	Glu		Gln	His	Ala	Ala		Gly	Gly	Thr
76			115				•	120					125			
77	Ala		Arg	Gln	Asn	Asn	\mathtt{Trp}	Pro	Pro	Leu	Pro		Phe	Cys	Pro	Val
78		130		_		_	135	_				140				
79		Pro	Cys	Phe	Phe		Asp	Ile	Ser	Met		Ile	Pro	Gln	Glu	
80	145	_			_	150		_	_	_	155		_	_		160
81	Gln	Lys	Thr	Val		Thr	Met	Tyr	Tyr		Trp	Met	Cys	Ser		Leu
82		_	_	_	165					170			5 1	~	175	a1
83	Ala	Leu	Leu		Asn	Phe	Leu	Ala		Leu	Ala	Ser	Phe		vaı	GIU
84	-1	.		180		a 1	D 1	01	185	a	- 1-	T		190	T	T
85	Thr	Asn		GIĀ	Ата	GIY	Phe	_	Leu	ser	ire	ьeu		vaı	ren	Leu
86	Dh.	mh	195	0	C	Dha	17 a 1	200	m	Ш	7	Dmo	205	m	T	A 3 o
87	Pne	210	PIO	Cys	Ser	Pne	Val 215	Cys	пр	TÄT	AIG	220	Met	тут	гу	Ald
88 89	Dho		Sor	Agn	Sor	Sor	Phe	Δen	Dha	Dho	Val		Dho	Dhe	Tle	Phe
90	225	AIG	Der	изр	SCI	230	rne	NSII	rne	riic	235	riic	riic	1 110	110	240
91		Val	Gln	Asn	Val		Phe	Va 1	Len	Gln		Tle	Glv	Tle	Pro	
92	1 110	, 41	01	11.01	245	шеш	1	, 44		250			017		255	0-1
93	Trp	Glv	Phe	Ser		Trp	Ile	Ser	Ala		Val	Val	Pro	Lvs		Asn
94		1		260	1				265					270		
95	Thr	Ala	Val	Ser	Val	Leu	Met	Leu	Leu	Val	Ala	Leu	Leu	Phe	Thr	Gly
96			275					280					285			_
97	Ile	Ala	Val	Leu	Gly	Ile	Val	Met	Leu	Lys	Arg	Ile	His	Ser	Leu	Tyr
98		290					295					300				
99	Arg	Arg	Thr	Gly	Ala	Ser	Phe	Gln	Lys	Ala	Gln	Gln	Glu	Phe	Ala	Ala
100	30	5				310)				31	5				320
101	Gl	y Va	l Phe	e Se	. Ası	n-Pro	o Ala	va.	l Ar	g Thi	r-Ala	a Ala	a Ala	a Ası	n Ala	a Ala
102					32					330					33	5
103	103 Ala Gly Ala Ala Glu Asn Ala Phe Arg Ala Pro															
104	104 340 345															
106	106 (2) INFORMATION FOR SEQ ID NO: 2:															
108	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \															
109	• •															
	110 (B) TYPE: nucleic acid															
	111 (C) STRANDEDNESS: single															
	112 (D) TOPOLOGY: linear															
	114 (vii) IMMEDIATE SOURCE: 115 (A) LIBRARY: TONGTUT01															
115			(2	A) L	LBRAI	KY: !	LONG	ruT0:	L							

116 (B) CLONE: 980615											
118	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:										
120	NGACGCAGGC GCAACCCACG GCTGCTGCGG GGATCCTTGT GGCCCTTCCG GTCGATGGAA	60									
121		120									
122	CCGCTACCGC CACTGCTGCG GCAGGGGCGT GGAGGGCAGA GGGCCGCAGTT	180									
123	GCAAACATGG CTCAGAGCAG AGACGGCGGA AACCCGTTCG CCGAGCCCAG CGAGCTTGAC	240									
124	AACCCCTTTC AGGACCCAGC TGTGATCCAG CACCGACCCA GCCGGCAGTA TGCCACGCTT	300									
125		360									
126		420									
127		480									
128		540									
129		600									
130		660									
131		720									
132		780									
133		840									
134		900									
135		960									
136		1020									
137		1080									
138		1140									
139		1200									
140		1260									
141		1320 1380									
142		1440									
		1500									
144		1521									
145 147		1321									
149	·										
150	, ,										
151	• •										
152											
153	· ·										
	(vii) IMMEDIATE SOURCE:										
156	·										
157	(B) CLONE: 412453										
159	· ·										
161	Met Ser Ala Phe Asp Thr Asn Pro Phe Ala Asp Pro Val Asp Val Asn										
162	1 5 10 15										
163											
164											
165											
166	-										
167											
168											
169											
170	65 70 75 80										
171	Ala Gln Ala Gly Leu Leu Arg Gln Gln Glu Glu Leu Asp Arg Lys Ala										

								•									
172					85					90					95		
173	Ala	Glu	Leu	Glu	Arg	Lys	Glu	Arg	Glu	Leu	Gln	Asn	Thr	Val	Ala	Asn	
174				100					105					110			
175	Leu	His	Val	Arg	Gln	Asn	Asn	Trp	Pro	${\tt Pro}$	Leu	Pro	Ser	\mathtt{Trp}	Cys	Pro	
176			115					120					125				
177	Val	Lys	Pro	Cys	Phe	Tyr	Gln	Asp	Phe	Ser	Thr	Glu	Ile	Pro	Ala	Asp	
178		130					135					140					
179	Tyr	Gln	Arg	Ile	Cys	Lys	Met	Leu	Tyr	Tyr	Leu	Trp	Met	Leu	His	Ser	
180	145					150					155					160	
181	Val	Thr	Leu	Phe	Leu	Asn	Leu	Leu	Ala	Cys	Leu	Ala	Trp	Phe	Ser	Gly	
182					165					170					175		
183	Asn	Ser	Ser	Lys	Gly	Val	Asp	Phe	Gly	Leu	Ser	Ile	Leu	Trp	Phe	Leu	
184				180					185					190			
185	Ile	Phe	Thr	Pro	Cys	Ala	Phe	Leu	Cys	Trp	Tyr	Arg	Pro	Ile	Tyr	Lys	
186			195		_			200					205				
187	Ala	Phe	Arg	Ser	Asp	Asn	Ser	Phe	Ser	Phe	Phe	Val	Phe	Phe	Phe	Val	
188		210	_		-		215					220					
189	Phe		Cys	Gln	Ile	Gly	Ile	Tyr	Ile	Ile	Gln	Leu	Val	Gly	Ile	Pro	
190	225		•			230		-			235			_		240	
191		Leu	Gly	Asp	Ser	Gly	Trp	Ile	Ala	Ala	Leu	Ser	Thr	Leu	Asp	Asn	
192	-		-	-	245	-	-			250	,				255		
193	His	Ser	Leu	Ala	Ile	Ser	Val	Ile	Met	Met	Val	Val	Ala	Gly	Phe	Phe	
194				260					265					270			
195	Thr	Leu	Cys	Ala	Val	Leu	Ser	Val	Phe	Leu	Leu	Gln	Arg	Val	His	Ser	
196			275					280					285				
197	Leu	Tvr	Arq	Arq	Thr	Gly	Ala		Phe	Gln	Gln	Ala	Gln	Glu	Glu	Phe	
198		290	•			•	295					300					
199	Ser	Gln	Glv	Ile	Phe	Ser		Arq	Thr	Phe	His	Arq	Ala	Ala	Ser	Ser	
200	305		•			310		_			315	-				320	
201	Ala	Ala	Gln	Gly	Ala	Phe	Gln	Gly	Asn								
202				-	325			-									
204	(2) I	NFO	RMAT	ION I	FOR S	SEQ :	D N	D: 4	:								
206	` '					ARAC											
207		` '							pairs	3							
208						nucle		_	•								
209				-		EDNES			le								
210			•			GY: :		_									
212	(v	rii)		•		OURC											
213	1 9					Y: B		OT01	-								
214						412											
216	(xi)	•	•				N: SI	EQ II	ON C	: 4:						
218												GGT	GCCC	GGA (GGCA	GCAGCG	60
219																CCCTTC	120
220																AACGCC	180
221																ACAGTT	240
222																GAACCA	300
223																CAGCAG	360
224																AACACT	420
225																CCTGTG	480

```
540
226 AAGCCCTGCT TCTATCAGGA TTTCTCCACA GAGATCCCTG CCGACTACCA GCGGATATGC
                                                                         600
227 AAGATGCTCT ACTATCTGTG GATGTTGCAT TCAGTGACTC TGTTTCTGAA CCTGCTTGCC
    TGCCTGGCCT GGTTCTCGGG CAACAGCTCC AAGGGAGTGG ACTTTGGCCT CTCCATCCTG
                                                                         660
228
    TGGTTTCTGA TCTTCACTCC CTGTGCCTTC CTTTGTTGGT ACCGACCCAT CTATAAGGCC
                                                                         720
229
230
    TTTAGGTCCG ACAACTCTTT CAGCTTCTTT GTGTTCTTCT TTGTATTTTT TTGTCAAATA
                                                                         780
231
    840
232
    GCCCTGTCTA CACTGGATAA TCATTCCCTG GCCATATCAG TCATCATGAT GGTGGTGGCT
                                                                         900
233
    GGCTTCTTCA CCCTCTGTGC CGTGCTCTCA GTCTTCCTCC TGCAGCGGGT GCACTCCCTC
                                                                         960
234
    TACCGACGGA CAGGGGCCAG CTTCCAGCAG GCCCAGGAGG AGTTTTCCCA GGGCATCTTC
235
    AGCAGCAGAA CCTTCCACAG AGCTGCTTCA TCTGCTGCCC AAGGAGCCTT CCAGGGGAAT
    TAGTCCTCCT CTCTTCTCTC CCCCTCAGCC TTTCTCTCGC CTGCCTTCTG AGCTGCACTT
                                                                        1140
236
237
    TCCGTGGGTG CCTTATGTGG TGGTGGTTGT GCCCAGCACA GACCTGGCAG GGTTCTTGCC
                                                                        1200
    GTGGCTCTTC CTCCTCCTC AGCGACCAGC TCTCCCTGGA ACGGGAGGGA CAGGGAATTT
                                                                        1260
238
239
    TTTCCCCCTC TATGTACAAA AAAAAACAAA GCTCTCTTTC CTTCTCGGT GATGGTTTGG
                                                                        1320
    TAGGATTCTT TTGTCTCTGG AAGCAGTGGG ACTGAAGTTC TCTTCGTCCT GTGCACACAC
                                                                        1380
241 AGACACCCC ACACAGTTGG GATCACAGGC TGACCTGGGC CCATCCCAGC TGGAGCTTTC
                                                                        1440
    TGCCAGGGTC CTGGGCCTTG ACTCCCCCAC CCTGCAGGCC TGGCCTGAAT CTGGCTTCTT
                                                                        1500
242
    AGACACAGCC CAGTCCTTCC TGCCTGGGCT GGGAATAAGC CTCTCACAGG TTCTGGTGGA
                                                                        1560
243
    CAGATCTGTT CCCCAGGTCA CTCCAGTGGT CTCCAGGCTT CCAGAGAAGG CTGGTTGCCT
                                                                        1620
244
245 CAAGCTCTTC TCTGCCTCAT AAACGGATCC AGAGAAGGCT GGTTGCCTTA AGCTCTTCCC
                                                                        1680
   TGCCTCGTGT TCCTGAGAAA CGGATTAATA GCCCTTTATC CCCCTGCACC CTCCTGCAGG
                                                                        1740
246
    GGATGCCACT TTGAGCCCTC TGGAGCCCTC CCCTTGCTGA GCCTTACTCT CTTCAGACTT
                                                                        1800
    TCTGAATGTA CAGTGCCGTT GGTTGGGATT TGGGGACTGG AAGGGACCAA GGACACTGAC
248
    CCCAAGCTGT CCTGCCTAGC GTCCAGCGTC TTCTAGGAGG GTGGGGTCTG CCTGTCCTGG
                                                                        1920
249
    TGTGGTTGGT TTGGCCCTGT TTGCTGTGAC TACCCCCCC CCTCCCCGAA CCGAGGGACG
                                                                        1980
250
    GCTGCCTTTG TCTCTGCCTC AGATGCCACC TGCCCCGCCC ATGCTCCCCA TCAGCAGCAT
                                                                        2040
251
    CCAGACTTTC AGGAAGGGCA GGACCAGCCA GTCCAGAACC GCATCCCTCA GCAGGGACTG
                                                                        2100
252
253 ATAAGCCATC TCTCGGAGGG CCCCCTAATA CCCAGTGGAG TCTGGTTCAC ACCCTGGGGG
                                                                        2160
    GTGTGTCACT GTGATGGGAC ACGTAGGAGT CCACCCTTAA AACCAGCACC CTGTCCCTCG
                                                                        2220
255 AGGCTGCCGA GTGGGTGTGT GGACTGGGGT GCCTTCCCAC AAAACTAGCC TCCGGCTCTG
                                                                        2280
    GGCCCGAGAC AGCCGCAGGC CCCAGCCACT GAATGATACT GGCAGCGGCT GGGGTTTTAT
                                                                        2340
256
    GAACTCCTTT CTGGTATTTT TTCCCCTCTA TGTACAAATG TATATGTTAC GTCTCAATTT
                                                                        2400
257
258 TTGTGCTTAA GTAAAAATAA AAACATTTTC AGAC
                                                                        2434
260 (2) INFORMATION FOR SEQ ID NO: 5:
262
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 338 amino acids
263
264
             (B) TYPE: amino acid
2.65
             (C) STRANDEDNESS: single
266
             (D) TOPOLOGY: linear
       (vii) IMMEDIATE SOURCE:
268
269
             (A) LIBRARY: GenBank
270
              (B) CLONE: 487057
        (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:
272
    Met Ser Asp Phe Asp Ser Asn Pro Phe Ala Asp Pro Asp Leu Asn Asn
274
275
                     5
                                        10
276
    Pro Phe Lys Asp Pro Ser Val Thr Gln Val Thr Arg Asn Val Pro Pro
277
                20
                                    25
278
    Gly Leu Asp Glu Tyr Asn Pro Phe Ser Asp Ser Arg Thr Pro Pro Pro
279
                                40
```

VERIFICATION SUMMARY

DATE: 11/28/2001 TIME: 11:32:07

PATENT APPLICATION: US/09/841,805A

Input Set : N:\Crf3\RULE60\09841805a.txt
Output Set: N:\CRF3\11282001\1841805A.raw

L:29 M:220 C: Keyword misspelled or invalid format, [(A) APPLICATION NUMBER:]

L:30 M:220 C: Keyword misspelled or invalid format, [(B) FILING DATE:]