Lecture 6: Public Key Encryption

Stephen Huang

UNIVERSITY of HOUSTON

1

Secret-Key Encryption sender Secret random key receiver Ε D insecure channel ciphertext plaintext attacker Sender and receiver know the secret key → can encrypt/decrypt Attacker does not know the secret key → cannot encrypt/decrypt · Exchanging or agreeing on a key - either using a secure side channel - or before communicating over the insecure channel UNIVERSITY of HOUSTON

Content

- 1. Public-Key Cryptography
- 2. RSA Encryption
- 3. ElGamal Encryption
- 4. Elliptic Curve Cryptography
- 5. Conclusion of Encryption

A **passive** attack attempts to learn or make use of information from the system but does not affect system resources.

An **active** attack attempts to alter system resources or affect their operation.

UNIVERSITY of HOUSTON

From Classical to Modern Era

- Both the RSA algorithm and the Diffie-Hellman key exchange algorithm were introduced in 1977.
- These new algorithms were revolutionary because
 - they represented the first viable cryptographic schemes where security was based on the **theory** of numbers;
 - it was the first to enable secure communication between two parties without a shared secret.

UNIVERSITY of HOUSTON

5

Public-Key Encryption sender receiver Private key Public key of the receiver insecure channel ciphertext plaintext attacker Everyone knows the public key → sender can encrypt Receiver knows the private key → receiver can decrypt Attacker does not know the private key → attacker cannot decrypt Public key can be published attacker may know the public key UNIVERSITY of HOUSTON

1. Public-Key Cryptography

- In 1976, Whitfield Diffie and Martin Hellman proposed a fundamentally different approach to cryptography
 - The first documented discovery was made by the British intelligence agency in 1970
- Public-key cryptography: instead of using a single secret key, use a pair of private and public keys
 - also called asymmetric-key cryptography
- Only the private key needs to be secret; the public key does not
- Public-key cryptography solves multiple problems
 - public-key encryption → key exchange
 - digital signatures → non-repudiation (cannot deny)

UNIVERSITY of HOUSTON

(

Public-Key Encryption Scheme

- A public-key encryption system is a triplet of algorithms (G, E, D)
 - Key generation G(): randomized algorithm, outputs (PU, PR)
 - Encryption E(PU, M): takes public key PU and plaintext M, outputs ciphertext C
 - Decryption D(PR, C): takes private key PR and ciphertext C, outputs plaintext M
- · Requirements
 - for every (PU, PR) that was output by G, D(PR, E(PU, M)) = M
 - ${f G}$ is efficiently computable, ${f E}$ is efficiently computable given PU and M, and D is efficiently computable given PR and C
 - $-\,$ given only PU and C, an attacker cannot efficiently compute ${\rm M}\,$

UNIVERSITY of HOUSTON

9

2. RSA Encryption

- Developed in 1977 by Ron Rivest, Adi Shamir, and Len Adleman
 - in 1973, Clifford Cocks, an English mathematician working for a British intelligence agency, described an equivalent system (however, this was classified until 1997)
- For their work on public-key cryptography, Rivest, Shamir, and Adleman received a Turing Award in 2002.
- One of the most widely accepted and implemented generalpurpose approach to public-key encryption.
- Idea
 - represent fixed-length plaintext P and ciphertext C as numbers
 - encryption: $C = P^e \mod n$
 - decryption: $P = C^d \mod n$, where private key **d** is such that $(P^e)^d = P$

UNIVERSITY of HOUSTON

-11

Symmetric vs. Asymmetric-Key

	Symmetric-key encryption	Asymmetric-key encryption
Typical design	series of substitutions and permutations	hard mathematical problems
Key	completely random	special structure, expensive to generate
Recommended key size	128 - 256 bits	2048 - 15360 bits
Performance	fast	slow

UNIVERSITY of HOUSTON

10

10

RSA Mathematical Background

- Prime: an integer p > 1 is a prime number if its only positive divisors are 1 and p.
- Greatest common divisor: gcd(a, b) of integers a and b is the largest positive integer c that is a divisor of both a and b.
 - -a and b are relatively prime if gcd(a, b) = 1
 - if a and m are relatively prime, then a has a multiplicative inverse $a^{\text{-}1}$ in modulo m.
- <u>Integer factorization problem</u>: decompose a non-prime number into a product of smaller integers.
 - widely believed to be a computationally hard problem (cannot be solved efficiently, i.e., in polynomial time).
 - however, this hardness has not been proven.

UNIVERSITY of HOUSTON

What is a Totient

- 1. total + quotient -> totient
- 2. For an integer $n \ge 1$, $\varphi(n)$ is the number of relative prime numbers less than n.
- 3. We consider 1 to be relative prime to all integer numbers.
- 4. $\varphi(n) = n-1$ if n is a prime.
- 5. The totient function is multiplicative: $\varphi(ab) = \varphi(a) \varphi(b)$ if qcd(a,b)=1.

+	1	2	3	4	5	6	7	8	9	10
0	1	1	2	2	4	2	6	4	6	4
10	10	4	12	6	8	8	16	6	18	8
20	12	10	22	8	20	12	18	12	28	8
30	30	16	20	16	24	12	36	18	24	16
40	40	12	42	20	24	22	46	16	42	20
50	32	24	52	18	40	24	36	28	58	16
60	60	30	36	32	48	20	66	32	44	24
70	70	24	72	36	40	36	60	24	78	32
80	54	40	82	24	64	42	56	40	88	24
90	72	44	60	46	72	32	96	42	60	40

UNIVERSITY of HOUSTON

13

13

RSA Key Generation

- 1. Select two prime numbers (P, Q)
- 2. Calculate Produce $N = P \times Q$
- 3. Calculate Totient, $\varphi(n)$ $T = (P-1)\times(Q-1)$
- 4. Select a Public Key E,
 - It must be prime
 - It must be less than the totient
 - It must NOT be a factor of the totient
- 5. Select a private key
 - The product of D and E, divided by T, must result in a remainder of 1, (D \times E) mod T = 1.

UNIVERSITY of HOUSTON

4.5

RSA Key Generation

- 1. Pick 2 large and random prime numbers, p and q_r , $p \neq q$.
- 2. Calculate $n \neq p \times q$.
- 3. Calculate Euler's totient function $\varphi(n) = (p 1) \times (q 1)$.
- 4. Pick e such that $gcd(e, \varphi(n)) = 1$ and $1 < e > \varphi(n)$.
- 5. Calculate d, so that $d \times e = 1 \mod \varphi(n)$ (d is the multiplicative inverse e^{-1} of e in mod $\varphi(n)$)
- 6. Let the public key pair be PU = (e, n)
- 7. Let the private key pair be PR = (d, n)

UNIVERSITY of HOUSTON

1

14

Example

- 1. Pick p = 7, q = 13, $n = pq = 7 \times 13 = 91$.
- 2. Compute (p-1)(q-1) = 72.
- 3. Select e = 5, for 5 and 72 are relative prime.
- 4. Select d = 29, $d \times e = 145 \mod 72 = 1$.
- 5. Public key (n, e) = (91, 5)
- 6. Private key (n, d) = (91, 29)

UNIVERSITY of HOUSTON

RSA Encryption and Decryption

- The sender represents the plaintext as a series of numbers < n. Encrypt/decrypt each number separately.
- Encryption: Given a plaintext M (M<n),

 $C = M^e \mod n$

• Decryption: Given a ciphertext C (C<n)

 $M = C^d \mod N$

- Euler's Theorem: if a and n are relative prime, then $a^{\varphi(n)} = 1 \mod n$.
- Prove that the decryption is correct.

UNIVERSITY of HOUSTON

17

Consistency Proof

 $C^d \mod n = (M^e)^d \mod n = M^{e \times d} \mod n$

Since $e \times d = 1 \mod \varphi(n)$, we have that $e \times d = 1 + \varphi(n) \times i$ where i is some integer

So, $C^d \mod n = M^{1+\varphi(n)\times i} \mod n$ $= M \times M^{\varphi(n)\times i} \mod n$ $= M \times 1^i \mod n$ $= M \mod n$

UNIVERSITY of HOUSTON

Example

- · Continue from the last one.
- Public key (n, e) = (91, 5)
- Private key (n, d) = (91, 29)
- Encryption:

$$M = 10$$
, $C = p^e \mod n = 10^5 \mod 91 = 82$

• Decryption:

$$M = C^d \mod n = 82^{29} \mod 91 = 10$$

The difficulty of determining a private key from an RSA public key is equivalent to factoring the modulus n.

UNIVERSITY of HOUSTON

1

18

Example 1

Encryption

 $C = M^e mod N$

 $=60^{29} \mod 133$

= 86

Decryption

 $M = C^d \mod N$

 $=86^{41} \mod 133$

= 60

Name	Symbol	Value	
Prime	р	7	
Prime	q	19	
Product	n	133	
Totient	φ(n)	108	
Public Key	е	29	
Private Key	d	41	
Message	М	60	
Cipher	С	86	

UNIVERSITY of HOUSTON

Example 2

Encryption

$$C = M^d \mod N$$
$$= 60^{41} \mod 133$$
$$= 72$$

Decryption

$$M = C^{e} \mod N$$
$$= 72^{29} \mod 133$$
$$= 60$$

Name	Symbol	Value
Prime	р	7
Prime	q	19
Product	n	133
Totient	φ(n)	108
Public Key	е	29
Private Key	d	41
Message	М	60
Cipher	С	86

UNIVERSITY of HOUSTON

21

How Secure is RSA?

- Security lies in the difficulty of factoring semiprime numbers (133 = 7×19).
 - Try 1909 ...
- 1991, RSA Lab released 54 semi-primes of various sizes and asked for factors,
 - As of February 2020, the largest number factored is 829 bits.
 - The 1024-bit number has never been factored.

UNIVERSITY of HOUSTON

23

Diffie-Hellman Example

• This is a <u>simplified</u> example to illustrate the concept.

22

RSA Factoring Challenge

• RSA Laboratories published a list of RSA moduli in 1991

Number of Bits	Number of Decimal Digits	Year Achieved
330	100	1991
576	174	2003
640	193	2005
768	232	2009

• According to NIST, 15360-bit RSA keys are equivalent to 256-bit symmetric keys in strength

UNIVERSITY of HOUSTON

How Secure is RSA?

1024 bit Semi-Prime number:

1350664108659952233496032162788059699388814756056670 2752448514385152651060485953383394028715057190944179 8207282164471551373680419703964191743046496589274256 2393410208643832021103729587257623585096431105640735 0150818751067659462920556368552947521350085287941637 7328533906109750544334999811150056977236890927563

- 1024 bit RSA keys was recommended standard since 2002
- 2048 bit RSA Keys is recommended standard since 2015

UNIVERSITY of HOUSTON

25

3. ElGamal Encryption

- Proposed by Taher Elgamal in 1984.
- Developed from the public-key cryptographic key exchange proposed by Diffie and Hellman in 1976.
- Security is based on the difficulty of computing discrete logarithms
 - <u>discrete logarithm problem</u>: given g, y, and p, find an x that satisfies

$$y = g^x \mod p$$

- widely believed to be a computationally hard problem
- Example: Find an integer x for $1 = 2^x \mod 5$.

UNIVERSITY of HOUSTON

27

RSA Conclusion

Security

- Best-known attack (if implemented properly): integer factorization of the modulus n
- 829-bit keys have been broken. 1024-bit keys might become breakable soon
- comparable symmetric-key security (e.g., AES)

Symmetric (e.g., AES)	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

• Efficiency: very slow → use it to encrypt a secret key and then switch to symmetric-key encryption

UNIVERSITY of HOUSTON

26

26

Primitive Root modulo n

- A number g is a primitive root modulo n if <u>every</u> <u>number coprime to n</u> is <u>congruent to a power of</u> <u>g</u> modulo n.
- The number 3 is a primitive root modulo 7.

UNIVERSITY of HOUSTON

28

ElGamal Key Generation

- 1. Pick a large prime q.
- 2. Pick an integer α such that α is a primitive root of q.
- 3. Pick a random integer X such that 1 < X < q-1.
- 4. Compute $Y = \alpha^X \mod q$.
- 5. Let the public key be PU = (q, α, Y)
- 6. Let the private key be PR = (q, α, X) or simply X.

https://www.ques10.com/p/33937/el-gamal-cryptography-algorithm/

UNIVERSITY of HOUSTON

29

29

Encryption and Decryption

- Encryption: given plaintext M (M < q),
 - 1. Pick a random integer k such that 0 < k < q 1
 - 2. Compute $K = Y^k \mod q$, using public key Y
 - 3. Let the ciphertext be (C_1, C_2) , where $C_1 = \alpha^k \mod q$ $C_2 = K \cdot M \mod q$

From key generation: $Y = \alpha^X \mod q$

 $PU = (q, \alpha, Y)$ $PR = (q, \alpha, X)$

• Decryption: given ciphertext (C₁, C₂),

- 1. compute $K = (C_1)^X \mod q$, using private key X
- 2. compute $M = C_2 \cdot K^{-1} \mod q$
- Consistency: $K = (C_1)^X = (\alpha^k)^X = (\alpha^X)^k = Y^k = K \mod q$

UNIVERSITY of HOUSTON

31

Primitive Root

• A number α is a primitive root if α , α^2 , α^3 , ..., $\alpha^{(q-1)}$ are different mod q.

```
n = 7

3^1 = 1 \times 3 = 3 \equiv 3 \pmod{7}

3^2 = 3 \times 3 = 9 \equiv 2 \pmod{7}

3^3 = 2 \times 3 = 6 \equiv 6 \pmod{7}

3^4 = 6 \times 3 = 18 \equiv 4 \pmod{7}

3^5 = 4 \times 3 = 12 \equiv 5 \pmod{7}

3^6 = 5 \times 3 = 15 \equiv 1 \pmod{7}

\alpha = 1, 2, ..., 6
```

```
n = 14, congruence class = {1, 3, 5, 9, 11, 13}

1: 1
3: 3, 9, 13, 11, 5, 1
5: 5, 11, 13, 9, 3, 1
9: 9, 11, 1
11: 11, 9, 1
13: 13, 1

α = 3 or 5
```

UNIVERSITY of HOUSTON

30

ElGamal Example

- Key generation
 - Pick prime q = 19, primitive root α = 10, and integer X = 5.
 - Compute Y = α^{X} = 10⁵ = 100000 = 3 mod 19.
- Encryption: given plaintext M = 17
 - Pick k = 6 and compute $K = Y^k = 3^6 = 729 = 7 \mod 19$.
 - Compute $C_1 = \alpha^k = 10^6 = 1000000 = 11 \mod 19$
 - Compute $C_2 = K \cdot M = 7 \cdot 17 = 119 = 5 \mod 19$
- Decryption
 - compute $K = (C_1)^X = 11^5 = 161051 = 7 \mod 19$
 - compute $K^{-1} = 7^{-1} = 11 \mod 19$
 - compute $M = C_2 \cdot K^{-1} = 5 \cdot 11 = 55 = 17 \mod 19$

UNIVERSITY of HOUSTON

ElGamal Security and Efficiency

- Computing discrete logarithms is widely believed to be a computationally hard problem.
 - recovering private key X: requires computing the logarithm of Y to base α in modulo q
 - recovering factor k: requires computing the logarithm of C_1 to base α in modulo q
- Efficiency
 - ciphertext is twice as long as the plaintext
 - encryption requires two exponentiations, while decryption requires only one
 - → decryption is faster

UNIVERSITY of HOUSTON

33

33

Elliptic Curves

• Elements: points (x, y) that satisfy

$$y^2 = x^3 + ax + b$$

where x and y are coordinates, a and b are parameters

UNIVERSITY of HOUSTON

4. Elliptic Curve Cryptography

· Problem with public-key cryptography based on modular arithmetic.

Symmetric (e.g., AES)	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

- very long keys, heavy processing load
- Idea: replace modular arithmetic with operations over elliptic curves.
- Elliptic Curve Cryptography (ECC)
 - First suggested in 1985 but had not been widely used before the mid-2000s.
 - A 160-bit ECC key is comparable in security to a 1024-bit RSA public key.
 - NIST and NSA endorsed ECC as a recommended approach, even for most classified information.

UNIVERSITY of HOUSTON

.

34

Elliptic Curve Operation

- Operation +
 - operation P + Q: draw a line through P and Q, find the third point of intersection -(P + Q), and mirror that point vertically to get P + Q
 - inverse element -P: mirror point P vertically
 - operation P + P: draw the tangent line and find the another point of intersection, ...

UNIVERSITY of HOUSTON

Elliptic Curve Operation

- Points of the elliptic curve (and a "point at infinity") with operation + form a commutative group
 - in other words, arithmetic with this operation "works as expected."

UNIVERSITY of HOUSTON

37

DLP for Elliptic Curves

- Reminder: with modular multiplication, it is difficult to find X such that Y = α^X mod q, given Y, α, and q
 - in other words, it is difficult to determine the "number of operations"
- <u>Discrete Logarithm Problem for elliptic curves</u>: find k such that

$$Q = k \cdot P,$$
 given Q and P, where $k \cdot P = P + P \dots + P$

• We can "generalize" ElGamal encryption to elliptic curves in a straightforward manner.

UNIVERSITY of HOUSTON

Comparison of Key Sizes

Symmetric-key algorithm	RSA	ECC
80	1024	160 - 223
112	2048	224 - 255
192	7680	384 - 511
256	15360	512+

• However, ECC might be more vulnerable to quantum computing attacks

UNIVERSITY of HOUSTON

38

Elliptic Curve

- · Horizontal symmetry
- Any non-vertical line will intersect the curve in at most three places.

UNIVERSITY of HOUSTON

Next Topics

- Public-Key Encryption
- Hash Functions
- Integrity

UNIVERSITY of HOUSTON