Quantum Hall Effect

Talker: ***

Feb.6 2025

References

• (Lecture Notes) The Quantum Hall Effect by David Tong https://www.damtp.cam.ac.uk/user/tong/qhe/qhe.pdf

Recap: What we learned at High School

- $F_B = qvB$
- $F_E = qE$
- $F_B = F_E \rightarrow v = \frac{E}{B}$
- $\rho_{xy} = \frac{E}{j} = \frac{E}{nqv} = \frac{B}{nq} \propto B$

Deviation from classical HE at large B at 2D

• Requirement

- 2D material
- More "dirty" the material is, more prominent plateau effect shows.
- Experiment setup
 - Si MOSFET
 - Electron trapped in the inversion band of width ~30A at the interface between insulator and semi conductor
 - $n \sim 10^{11} 10^{12} cm^{-2}$

Deviation from classical HE at large B at 2D

• ρ_{xy} no longer increases linearly as we increase B. Instead, it stuck at plateaus, followed by sudden jumps to catch up B

• centers and heights at inverse integer intervals $1/\nu$

 widths are less predictable, vary w.r.t. material

 only conductive at hops between plateaus

• How to understand it?

 Hint1: How much space does an electron take?

•
$$r = \frac{mv}{eB} \rightarrow n_n \sim \frac{1}{\pi r^2} = \frac{eB}{h} = \frac{B}{\Phi_0}$$
 10 -

- Hint2: How fast does electron drift?
 - $v = \frac{E}{B}$
- Hint3: In solid state material, we saw:
 - Conduction bands 495
 - Valence bands

Conclusion

- When we tune B
- $v_{Hall} \propto 1/B$
- $n_{conduct} \propto B$
- $I_{Hall} = \text{constant} \times \nu$
- ν : fully filled conduct bands
- Plateau: fermi level @ valence band, ν unchanged
- Hops: fermi level @ conduct band, ν changes drastically
- Spikes: sudden emerge of longitudinal conductivity $\sigma_{\chi\chi}$ supports our hypothesis that certain conduct band is half-filled

But, wait...

Two assumptions we need

- 1. Does the band structure of a material in strong magnetic field resembles valence bands (localized orbits) and conductive bands (extensive orbits)?
 - Physics: Impurity localizes the Landau Level
- 2. $\frac{\partial}{\partial B}j_{\rm Hall} = \partial_B(\frac{1}{2\pi}\int_{\rm band}v_{\rm Hall}(k)dk) = 0$ was demonstrated for free electron. Does it hold true after the spectrum was drastically deformed into sets of valence and conductive bands?
 - Physics: the integral is a topological invariant, thus robust against local deformation

Impurity Localizes Landau Levels

- At strong B, $l_B = \sqrt{\frac{h}{eB}} \ll \text{potential}$ gradient
- Instant center operator

•
$$X = x - \frac{\pi_y}{m\omega_B}, Y = \cdots$$

*
$$\pi = p - qA = m\dot{x}$$
 mechanical momentum

•
$$i\hbar \dot{X} = [X, H + V] = il_B^2 \partial_{\nu} V, \dots$$

- Cyclone drifts along the left-hand wall of equipotential
 - $(\dot{X}, \dot{Y}) \propto E \times B$
- At each landau level, we expected:
 - $E > E_{avg}$: orbits localized around local maximum
 - $E < E_{avg}$: orbits localized around local minimum
 - $E \approx E_{avg}$: extensive orbits navigating saddle points

1D Example of Integral Invariant

- Landau gauge A = (0, xB), V = V(x)
 - preserves ∂_{ν} symmetry
- State with k_y localized at $x = -k_y l_B^2$

•
$$H_k = \frac{1}{2m}p_x^2 + \frac{1}{2}m\omega_B^2(x + p_y l_B^2)^2$$

•
$$\psi_{n,k_y} \sim e^{ik_y y} e^{-\frac{x^2}{2l_B^2}} H_n(x)$$

•
$$E_n \approx \hbar \omega_B \left(n + \frac{1}{2} \right) + V(-k_y l_B^2)$$

Drift velocity = Slope of local potential

•
$$v_y = \frac{E}{B} = \frac{1}{B} \partial_x V(x)$$

• The total current is a total derivative

•
$$J_y = q \int \frac{dk}{2\pi} v_y(k) = \frac{q^2}{2\pi\hbar} \int dx \frac{\partial V}{\partial x} = \frac{q^2}{2\pi\hbar} V_x$$

- The total derivative indicates Hall Current is a topological invariant, robust against perturbation of basin shape
- Each fully filled landau level contributes $\frac{e^2}{2\pi\hbar}$
- No matter how it was deformed

If we can write an observable as an integral over a total derivative (curvature term), then that observable is being topologically protected and have consistent values among different materials

Kubo Formula and Chern Number

- Overview
- **Berry Curvature**: for each state, its contribution to Hall conductivity is equivalent to the Berry Curvature inside the momentum space
- **Brillouin Zone**: atomic lattice breaks the momentum space into Brillouin Zones / Energy Bands
- Chern Number: Integrating the Berry Curvature in a certain Brillouin Zone gives an integer ${\cal C}$

$$\sigma_{xy} = -rac{e^2}{2\pi\hbar}C$$

Kubo Formula and Chern Number

Hall Conductivity is the linear response of Current Operators

$$\sigma_{xy}(\omega) = \frac{1}{\hbar\omega} \int_{-\infty}^{0} dt \ e^{-i\omega t} \langle 0| [J_x(t), J_y(0)] | 0 \rangle$$

Kubo Formular

$$\sigma_{xy}(\omega \to 0) = i\hbar \sum_{n \neq 0} \frac{\langle 0|J_y|n\rangle\langle n|J_x|0\rangle - J_x \leftrightarrow J_y}{(E_n - E_0)^2}$$

TKNN Invariant

$$\sigma_{xy} = i\hbar \sum_{a,k;b,k'} \frac{\langle u_{a,k} | \tilde{J}_y | u_{b,k'} \rangle \langle u_{b,k'} | \tilde{J}_x | u_{a,k} \rangle - J_x \leftrightarrow J_y}{(E_n - E_0)^2}$$

a, k filled states b, k' empty states

$$= \frac{iq^2}{\hbar} \int_{T^2} \frac{dk^2}{(2\pi)^2} \left\langle \partial_{k_y} u_{a,k} \middle| \partial_{k_x} u_{a,k} \right\rangle - x \leftrightarrow y$$
$$= -\frac{iq^2}{2\pi\hbar} \sum_{a} \frac{1}{2\pi} \iint F_{ij}^{(a)} dS^{ij}$$

Kubo Formula and Chern Number

Hall Conductivity is the linear response of Current Operators

$$\sigma_{xy}(\omega) = \frac{1}{\hbar\omega} \int_{-\infty}^{0} dt \ e^{-i\omega t} \langle 0 | [J_x(t), J_y(0)] | 0 \rangle$$

Kubo Formular

$$\sigma_{xy}(\omega \to 0) = i\hbar \sum_{n \neq 0} \frac{\langle 0|J_y|n\rangle\langle n|J_x|0\rangle - J_x \leftrightarrow J_y}{(E_n - E_0)^2}$$

TKNN Invariant

riant
$$\sigma_{xy} = i\hbar \sum_{a,k;b,k'} \frac{\langle u_{a,k} | \tilde{J}_y | u_{b,k'} \rangle \langle u_{b,k'} | \tilde{J}_x | u_{a,k} \rangle - x \leftrightarrow y}{(E_n - E_0)^2} \xrightarrow{b, k' \text{ empty states}} b, k' \text{ empty states}$$

$$=\frac{iq^2}{\hbar}\int_{T^2}\frac{dk^2}{(2\pi)^2}\left\langle\partial_{k_y}u_{a,k}\middle|\partial_{k_x}u_{a,k}\right\rangle-x\leftrightarrow y=-\frac{iq^2}{2\pi\hbar}\sum_{a}\frac{1}{2\pi}\iint F_{ij}^{(a)}dS^{ij}$$

Example

$$\begin{split} \bullet \ \tilde{H}(k) &= \sin k_x \sigma_1 + \sin k_y \sigma_2 + \left(m + \cos k_x + \cos k_y\right) \sigma_3 \\ &\circ \text{ 2-component Dirac fermion in 2+1d} \\ &\circ \text{ "Dirac-Chern insulator"} \\ &\circ C = \frac{1}{2\pi} \iint d^2k \langle \partial_{k_x} u_{\alpha,y} | \partial_{k_y} u_{\alpha,x} \rangle - x \leftrightarrow y \\ &\bullet C = \begin{cases} -1 & -2 < m < 0 \\ 1 & 0 < m < 2 \\ 0 & |m| > 2 \end{cases} \end{split}$$

Lattice Model with Magnetic Field

•
$$H = -t(T_x + T_x^{\dagger} + T_y + T_y^{\dagger}), T_i = \exp\left(\partial_i - i\frac{e}{\hbar}A_i\right) = \sum |x\rangle e^{-i\frac{e}{\hbar}A_i}\langle x + e_i|$$
 $\Phi_0 = h/e$

- Dirac Quantization Condition $T_y^{-1}T_x^{-1}T_yT_x|\psi\rangle \sim |\psi\rangle$ requires $BA \in 2\pi\mathbb{Z} \Phi_0$
- When $BL_xL_y=rac{p}{q}\Phi_0$, lattice translation symmetry breaks: $\mathbb{Z} o q\mathbb{Z}$ into supercells
- After Fourier transform (Harper Equation)

$$2\cos(k_1a + rac{p}{q}2\pi r) ilde{\psi}_r(k) + e^{ik_2a} ilde{\psi}_{r+1}(k) + e^{-ik_2a} ilde{\psi}_{r-1}(k) = -rac{E(k)}{t} ilde{\psi}_r(k)$$

- Finding integer solution of linear Diophatine equation: $r=qs_r+pt_r, \quad |t_r|\leq q/2$ $c_r=t_r-t_{r-1}$ $t_0=0$
- Examples:

$$\circ$$
 $\Phi=p\Phi_0\colon$ single band, σ_{xy} vanishes

$$p/q = 11/7$$
:

$$(s_r, t_r) = (-3,2), (5,-3), (2,-1), (-1,1), (-4,3), (4,-2), (1,0)$$

o the Hall Conductivity varies between negative and positive by the sequence

Fractional Quantum Hall Effect

- Stronger B
- In contrast to IQHE, sample cleaner, FQHE effect stronger

$\nu = 4/3$

What we want

- Write down a collective motion of N fermions, which
- When from a distance, looks like N/m free fermions

"choreographing the dance of 100 billion infinitesimal particles"

Methodology

- instead of writing down a model Hamiltonian and solve it
- we first write down a wavefunction ansatz,
- then construct a parent Hamiltonian that annihilates the wavefunction ansatz
- which is usually a sum of non-commuting local projectors
- finally, we argue if the physical system falls into the "universality class" of such model Hamiltoians

Laughlin Wavefunction

$$\psi^{(m)}(z_i) = \prod_{i < j} (z_i - z_j)^m \, e^{-\frac{\sum_i |z_i|^2}{4 l_B^2}} \, \stackrel{v = \frac{1}{m}: \text{ Filling rate}}{\text{m is also the relative angular momentum between any pair of particles}}$$

- It is an intuitive generalization of Landau Ground State
 - Single particle wf of Lowest Landau Level:

$$\psi \sim z^{m-1} e^{-\frac{|z|^2}{4l_B^2}}$$

Many free particles: Vandermonde determinant

$$\det(z_j^{i-1}) = \prod_{i < j} (z_i - z_j)$$

• Is the m=1 case of $\psi^{(m)}$

Parent Hamiltonian

- ullet Laughlin state have property that relative angular momentum between any pair of particles is m
- To construct the parent Hamiltonian, we simply gapped out the subspace where any pair of particles have relative angular momentum $m_{ij} < m$

$$H = \sum_{\langle i,j \rangle} \sum_{m'=0}^{m-1} P_{i,j}^{(m')} + \omega J$$

- $m_{ij} > m \Rightarrow$ particles cannot be too close
- $\omega J \Rightarrow$ find the most compact possible state

Excitations

$$\tilde{\psi}(z_i; \eta_k, \eta_l') = \left(\left(\prod_{i,k} (z_i - \eta_k) \right) \left(\prod_{i,l} (2\partial_i - \bar{\eta}_l') \right) \left(\prod_{i < j} (z_i - z_j)^m \right) \right) e^{-\frac{\sum_i |z_i|^2}{4l_B^2}}$$

- η_i , η_k' are the locations of quasi-holes and quasi-particles
 - Quasi-hole at $\eta \to a \prod_i (z_i \eta)$ prefactor
 - Quasi-particle at $\eta' \to a \prod_i (2\partial_i \bar{\eta}')$ prefactor
 - ∂_i only acts on polynomial part of ψ , not the exponential factor
- Why η , η' resembles particle-like DoF?
 - 1. m overlapped quasi-holes simulates a virtual particle, pushing away other particles
 - 2. Energy of those states replicates repulsive/attractive potential between particles/holes of charge q/m (see next slide)

Plasma Analogy

Inner product of Laughlin WF = Partition function of classical plasma

$$\langle \psi | [\cdot] | \psi \rangle = \int d^{2N} z \, [\cdot] | \psi(z) |^2 = \int d^{2N} z \, [\cdot] e^{-\beta U(z)}$$

$$U = -\sum_{i < j} \log |z_i - z_j| + \frac{1}{4m} \sum_i |z_i|^2$$

- First term = coulomb interaction between particles
- Second term = background potential ($\rho_0 = \frac{1}{2\pi l_B^2 m}$)
- At charge neutral, the plasma analogy depicts the particle distribution of ground state Laughlin function
- Quasi hole: repulsive potential from am impurity of charge -1/m

•
$$\Delta U = -\frac{1}{m} \sum_{i} \log |z_i - \eta|$$

• In plasma model with added charge -1/m particles, the screening effect

$$\partial_{\eta} U_{plasma} \approx 0$$
, $U_{plasma} = U(z, z) + U(z, \eta) + U(\eta, \eta) + U(z) + U(\eta)$

Compared to the "correct" plasma model,

$$U_{Laughlin} = U(z, z) + U(z) + U(z, \eta)$$

• The missing terms simulates the interaction of free -1/m charged particles

$$\partial_{\eta} U_{Laughlin} = -\partial_{\eta} (U(\eta, \eta) + U(\eta))$$

