THE CLAIMS

What is claimed is:

- 1. An organosilicon precursor for vapor deposition of a low k, high strength dielectric film, wherein the precursor comprises at least one of:
 - (i) silicon-pendant oxiranyl functionality; and
 - (ii) a disilyl moiety of the formula

wherein x is an integer having a value of from 0 to 4 inclusive.

2. The organosilicon precursor of claim 1, selected from the group consisting of oxiranylsilane compounds of formula (I) and disilane compounds of formula (III):

$$R_{x}Si-[-(CH_{2})_{n}-C - C-R^{*}]_{4-x}$$
O
(I)

m is an integer having a value of 0 to 6, inclusive;

x is an integer having a value of 0 to 3, inclusive; and

each R and R* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl; and

$$R^4R^5R^6Si-(CH_2)_y-SiR^7R^8R^9$$
 (III)

wherein:

each of R^4 , R^5 , R^6 , R^7 , R^8 and R^9 can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxyl, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, C_3 - C_6 allyl, and oxiranylalkylene of formula (IV)

wherein s is 0 or 1; and

y is an integer having a value of from 0 to 4 inclusive.

- 3. The organosilicon precursor of claim 1, having the formula (I).
- 4. The organosilicon precursor of claim 1, having the formula (II):

each of R_1 , R_2 and R_3 can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl; and

n is 0 or 1;

with the proviso that if n = 1, then one of R_1 , R_2 and R_3 alternatively can be

an oxiranyl functionality.

5. The organosilicon precursor of claim 1, having the formula (V):

wherein:

each of R_1 , R_2 and R_3 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

6. The organosilicon precursor of claim 1, having the formula (VI):

each of R_1 and R_2 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

7. The organosilicon precursor of claim 1, having the formula (VII):

each of R_1 , R_2 and R_3 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

8. The organosilicon precursor of claim 1, having the formula (VIII):

$$(R_1)(R_2)Si-[-(CH_2)_n-C - C-R^*]_2$$

(VIII)

wherein:

m is an integer having a value of from 0 to 6 inclusive;

n is 0 or 1;

each R_1 , R_2 and R^* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl,

 C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

9. The organosilicon precursor of claim 1, having the formula (IX):

$$\mathbf{R}_{1}\mathbf{Si}\text{-}[-(\mathbf{CH}_{2})_{\mathbf{n}}\text{-}\mathbf{C} \xrightarrow{\mathbf{C}\mathbf{R}^{*}}]_{3}$$

(IX)

wherein:

m is an integer having a value of from 0 to 6 inclusive;

n is 0 or 1;

each of R_1 and R^* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

10. The organosilicon precursor of claim 1, selected from the group consisting of compounds of Formula (A), Formula (B) and Formula (C):

Formula (A), Me(EtO)₂SiCHCH₂O:

Formula (B), Me(MeO)₂Si CH₂CHCH₂O :

Formula (C), Me₂Si (CHCH₂O)₂:

wherein Me is methyl.

- 11. The organosilicon precursor of claim 10, having Formula (A).
- 12. The organosilicon precursor of claim 10, having Formula (B).
- 13. The organosilicon precursor of claim 10, having Formula (C).
- 14. The organosilicon precursor of claim 2, selected from the group consisting of disilane compounds of formula (III).
- 15. The organosilicon precursor of claim 14, wherein x is 0.

- 16. The organosilicon precursor of claim 14, wherein x is 1.
- 17. The organosilicon precursor of claim 14, wherein x is 2.
- 18. The organosilicon precursor of claim 1, wherein the precursor further comprises TMCTS.
- 19. An organosilicon precursor composition for vapor deposition of a low k, high strength dielectric film, wherein the composition comprises:
- (A) an organosilicon precursor comprising at least one of:
 - (iii) silicon-pendant oxiranyl functionality; and
 - (iv) a disilyl moiety of the formula

wherein x is an integer having a value of from 0 to 4 inclusive; and

(B) a porogen.

2771-665 (7486)

20. The organosilicon precursor composition of claim 19, wherein said porogen is selected from the group consisting of compounds of the formula (X):

$$R^{10} R^{11} Si R^{12} R^{13}$$
 (X)

wherein:

each of R^{10} , R^{11} , R^{12} and R^{13} can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 alkoxyl, C_6 - C_{10} cycloalkyl, and C_6 - C_{10} aryl, with the proviso that at least one of R^{10} , R^{11} , R^{12} and R^{13} is C_1 - C_8 alkoxyl.

21. The organosilicon precursor composition of claim 19, wherein said porogen is selected from the group consisting of:

^tBu₂Si(OCH₃)₂

 $^{t}Bu_{2}Si(OC_{2}H_{5})_{2}$

 $(C_6H_5)_2Si(OCH_3)_2$

 $(C_6H_5)_2Si(OC_2H_5)_2$

 $(C_6H_{11})_2Si(OCH_3)_2$

 $(C_6H_{11})_2Si(OC_2H_5)_2$

^tBuSi(OCH₃)₂H

^tBuSi(OC₂H₅)₂H

 $(C_6H_5)Si(OCH_3)_2H$

 $(C_6H_5)Si(OC_2H_5)_2H$

 $(C_6H_{11})Si(OCH_3)_2H$

 $(C_6H_{11})Si(OC_2H_5)_2H$

(^tBu)(CH₃)Si(OCH₃)₂

 $(^{t}Bu)(CH_{3})Si(OC_{2}H_{5})_{2}$

 $(C_6H_5)(CH_3)Si(OCH_3)_2$

 $(C_6H_5)(CH_3)Si(OC_2H_5)_2$

 $(C_6H_{11})(CH_3)Si(OCH_3)_2$

 $(C_6H_{11})(CH_3)Si(OC_2H_5)_2$

wherein ^tBu is tertiary butyl.

22. A method of forming an oxiranylsilane compound of formula (I):

(I)

m is an integer having a value of 0 to 6, inclusive;

n is 0 or 1;

x is an integer having a value of 0 to 3, inclusive; and

each R and R* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl,

said method comprising oxidizing a corresponding vinylsilane or allylsilane compound.

- 23. The method of claim 22, wherein the step of oxidizing comprises reaction with an oxidizing agent that is inert in relation to Si-OR fragments.
- 24. The method of claim 23, wherein said oxidizing agent comprises an agent selected from the group consisting of meta-Cl(C₆H₄)C(O)OOH, ^tBuOOH, wherein ^tBu is tertiary butyl, and Me₃OOSiMe₃, wherein Me is methyl.
- 25. The method of claim 23, wherein said oxidizing agent comprises meta-Cl(C₆H₄)C(O)OOH.

26. The method of claim 22, wherein said step of oxidizing is conducted in a nonflammable solvent medium. 27. The method of claim 26, wherein said non-flammable solvent medium comprises dichloromethane. 28. The method of claim 26, wherein said non-flammable solvent medium comprises chloroform. 29. The method of claim 22, wherein said oxiranylsilane compound is Me(EtO)₂SiCHCH₂O. 30. The method of claim 29, wherein said oxidizing step comprises Reaction (1). 31. The method of claim 22, wherein said oxiranylsilane is Me(MeO)₂SiCH₂CHCH₂O. 32. The method of claim 31, wherein said oxidizing step comprises Reaction (2).

33. The method of claim 22, wherein said oxiranylsilane is Me₂Si (CHCH₂O)₂.

- 34. The method of claim 33, wherein said oxidizing step comprises Reaction (3).
- 35. A method of synthesizing a bridged disilane compound of synthesizing a bridged disilane compound of formula (III):

$$R^4R^5R^6Si-(CH_2)_y-SiR^7R^8R^9$$
 (III)

each of R^4 , R^5 , R^6 , R^7 , R^8 and R^9 can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxyl, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, C_3 - C_6 allyl, and oxiranylalkylene of formula (IV)

wherein s is 0 or 1; and

y is an integer having a value of from 0 to 4 inclusive,

said method comprising derivatization of a corresponding bridged chlorosilane.

- 36. The method of claim 35, wherein said derivatization step comprises reacting said corresponding bridged chlorosilane with tetraalkylsodium to alkylate said corresponding bridged chlorosilane.
- 37. The method of claim 35, wherein said derivatization step comprises the reaction

 MeCl₂SiCH₂CH₂SiMeCl₂ + 4MeONa → Me(MeO)₂SiCH₂CH₂SiMe(OMe)₂ + 4NaCl.
- 38. The method of claim 35, wherein said derivatization step comprises the reaction

 Me₂ClSiCH₂CH₂SiMe₂Cl + 2MeONa → Me₂(MeO)SiCH₂CH₂SiMe₂(OMe) + 2NaCl.
- 39. The method of claim 35, wherein said derivatization step comprises the reaction

 HSiCl₂CH₂HSiCl₂ + 4MeONa + 2MeOH → (MeO)₃SiCH₂Si(OMe)₃ + 4NaCl + 2H₂.
- 40. A method of forming a low k, high strength dielectric film on a substrate, comprising vapor depositing said film on the substrate from a precursor comprising at least one of:
 - (i) silicon-pendant oxiranyl functionality; and

(ii) a disilyl moiety of the formula

wherein x is an integer having a value of from 0 to 4 inclusive.

41. The method of claim 40, wherein said precursor is selected from the group consisting of oxiranylsilane compounds of formula (I) and disilane compounds of formula (III):

$$R_{x}Si-[-(CH_{2})_{n}-C - C-R^{*}]_{4-x}$$
O
(I)

wherein:

m is an integer having a value of 0 to 6, inclusive;

x is an integer having a value of 0 to 3, inclusive; and

each R and R* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl; and

$$R^4R^5R^6Si-(CH_2)_{y}-SiR^7R^8R^9$$
 (III)

wherein:

each of R^4 , R^5 , R^6 , R^7 , R^8 and R^9 can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxyl, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, C_3 - C_6 allyl, and oxiranylalkylene of formula (IV)

wherein s is 0 or 1; and

y is an integer having a value of from 0 to 4 inclusive.

- 42. The method of claim 41, wherein the precursor comprises a compound selected from the group consisting of oxiranylsilane compounds of formula (I).
- 43. The method of claim 41, wherein the precursor comprises a compound having the formula (II):

each of R_1 , R_2 and R_3 can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl; and

n is 0 or 1;

with the proviso that if n = 1, then one of R_1 , R_2 and R_3 alternatively can be

an oxiranyl functionality.

44. The method of claim 41, wherein the precursor comprises a compound having the formula (V):

wherein:

each of R_1 , R_2 and R_3 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

45. The method of claim 41, wherein the precursor comprises a compound having the formula (VI):

wherein:

each of R_1 and R_2 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

46. The method of claim 41, wherein the precursor comprises a compound having the formula (VII):

each of R_1 , R_2 and R_3 is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

47. The method of claim 41, wherein the precursor comprises a compound having the formula (VIII):

$$(R_1)(R_2)Si$$
-[- $(CH_2)_n$ - C
 C - R^*]₂

(VIII)

wherein:

m is an integer having a value of from 0 to 6 inclusive;

n is 0 or 1;

each R_1 , R_2 and R^* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

48. The method of claim 41, wherein the precursor comprises a compound having the formula (IX):

$$R_1Si-[-(CH_2)_n-C - C-R^*]_3$$

(IX)

wherein:

m is an integer having a value of from 0 to 6 inclusive;

n is 0 or 1;

each of R_1 and R^* can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl,

 C_1 - C_8 alkoxy, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, and C_3 - C_6 allyl.

49. The method of claim 41, wherein the precursor comprises a compound selected from the group consisting of compounds of Formula (A), Formula (B) and Formula (C):

Formula (A), Me(EtO)₂SiCHCH₂O:

Formula (B), Me(MeO)₂Si CH₂CHCH₂O :

Formula (C), Me₂Si (CHCH₂O)₂:

wherein Me is methyl.

- 50. The method of claim 49, wherein the precursor comprises a compound of Formula (A).
- 51. The method of claim 49, wherein the precursor comprises a compound of Formula (B).
- 52. The method of claim 49, wherein the precursor comprises a compound of Formula (C).
- 53. The method of claim 41, wherein said precursor is selected from the group consisting of disilane compounds of formula (III):

$$R^4R^5R^6Si-(CH_2)_y-SiR^7R^8R^9$$
 (III)

each of R^4 , R^5 , R^6 , R^7 , R^8 and R^9 can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 fluoroalkyl, C_1 - C_8 alkoxyl, C_6 - C_{10} cycloalkyl, C_6 - C_{10} aryl, C_6 - C_{10} fluoroaryl, C_2 - C_6 vinyl, C_3 - C_6 allyl, and oxiranylalkylene of formula (IV)

wherein s is 0 or 1; and

y is an integer having a value of from 0 to 4 inclusive.

- 54. The method of claim 53, wherein x is 0.
- 55. The method of claim 53, wherein x is 1.
- 56. The method of claim 53, wherein x is 2.

2771-665 (7486)

57. The method of claim 40, wherein said vapor depositing step comprises use of a porogen in combination with said precursor.

58. The method of claim 57, wherein said porogen is selected from the group consisting of compounds of the formula (X):

$$R^{10} R^{11} Si R^{12} R^{13}$$
 (X)

wherein:

each of R^{10} , R^{11} , R^{12} and R^{13} can be the same as or different from one another and each is independently selected from the group consisting of H, C_1 - C_8 alkyl, C_1 - C_8 alkoxyl, C_6 - C_{10} cycloalkyl, and C_6 - C_{10} aryl, with the proviso that at least one of R^{10} , R^{11} , R^{12} and R^{13} is C_1 - C_8 alkoxyl.

59. The method of claim 57, wherein said porogen is selected from the group consisting of:

^tBu₂Si(OCH₃)₂

 $^{t}Bu_{2}Si(OC_{2}H_{5})_{2}$

 $(C_6H_5)_2Si(OCH_3)_2$

 $(C_6H_5)_2Si(OC_2H_5)_2$

 $(C_6H_{11})_2Si(OCH_3)_2$

- 62. The method of claim 40, wherein said vapor depositing step comprises flowing said precursor to a vapor deposition locus in a carrier gas.
- 63. The method of claim 62, wherein said carrier gas comprises carbon dioxide.
- 64. The method of claim 62, wherein the precursor and the carrier gas are the only potential sources of oxygen at the vapor deposition locus.
- 65. The method of claim 40, wherein the precursor is selected from the group consisting of:

Me(EtO)₂SiCHCH₂O;

Me(MeO)₂Si CH₂CHCH₂O;

Me₂Si (CHCH₂O)₂;

Me(MeO)₂SiCH₂CH₂SiMe(OMe)₂;

Me₂(MeO)SiCH₂CH₂SiMe₂(OMe); and

 $(MeO)_3SiCH_2Si(OMe)_2$.

66. The method of claim 40, wherein the precursor further comprises TMCTS.