EUE331 030718

HW07

① 4.3-1: "Show that the solution of T(n)=T(n-1)+n is $O(n^2)$.

Proof by Induction. Assume $T(m) \leq cm^2$, prove $T(n) \leq cn^2$ $T(n) = T(n-1) + n \leq c(n-1)^2 + n \leq cn^2$ $c(n-1)^2 + n = c(n-1)(n-1) + n$ $= c(n^2 - 2n+1) + n = cn^2 - 2cn + c + n$ $= cn^2 - 2cn + n + c \leq cn^2$ $\Rightarrow -2cn + n + c \leq 0$ $\Rightarrow n \leq 2cn - c$ $\Rightarrow n \leq c(2n-1)$ c > n 2n-1If c = 1, for any n, $T(n) \leq cn^2 \sqrt{n}$ (2) $\frac{4.3-7}{1.5}$: $T(n) = 4T(\frac{n}{3}) + n$ is $\Theta(n^{10934})$ Assume $T(m) \leq cm^{10934} - dm$ and prove $T(n) \leq cn^{10934} - dn$.

*To show that $T(m) \leq cm^{10934}$ does fail, we try $T(n) \leq cn^{10934}$ $T(n) \leq cn^{10934} + n = \frac{cn^{10934}}{4}$ Therefore, we try "-dn" b/c $n \leq n^{10934}$ $T(\frac{n}{3}) \leq c(\frac{n}{3})^{10934} - d(\frac{n}{3}) = c(\frac{n^{10934}}{3^{10934}}) - d(\frac{n}{3})$ $T(n) = 4\left[\frac{cn^{10934}}{4} - d(\frac{n}{3})\right] + n = cn^{10934} - \frac{4}{3} + n \leq cn^{10934} - dn$

$$-\frac{4dn}{3} + n \leq -dn \Rightarrow -\frac{4dn}{3} + dn + n \leq 0$$

$$\kappa(-\frac{4d}{3} + d + 1) \leq 0 \Rightarrow -\frac{d}{3} + 1 \leq 0$$

$$-\frac{d}{3} \leq -1 : [d \geq 3]$$