1. Prove that A^T is the adjoint operator of $A \in \mathbb{R}^{m \times n}$. Hint: Show $\langle Ax, y \rangle = \langle x, A^Ty \rangle$ for all $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.

Answer: By definition of adjoint, we have $\langle Ax, y \rangle = \langle x, A^*y \rangle \implies y^TAx = y^T(A^*)^Tx$; to satisfy this, we must have $A = (A^*)^T$, therefore $A^* = A^T$ and A^T is the adjoint operator of $A \in \mathbb{R}^{m \times n}$.

2. (a) Find the gradient and hessian of the function $f(x) = \frac{1}{2} ||Ax - b||_2^2$ where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^n$.

Answer: We have $df(x) = d(\frac{1}{2}||Ax - b||_2^2) = \frac{1}{2}(Ax - b)^T d(Ax - b) + \frac{1}{2}[d(Ax - b)]^T (Ax - b) = \frac{1}{2}(Ax - b)^T A dx + \frac{1}{2}[Adx]^T (Ax - b) = \frac{1}{2}(Ax - b)^T A dx + \frac{1}{2}(Ax - b)^T A dx = (Ax - b)^T A dx.$ Therefore $\nabla f(x) = [(Ax - b)^T A]^T = A^T (Ax - b)$ and $\nabla^2 f(x) = D(\nabla f(x)) = D(A^T Ax - A^T b) = D(A^T Ax) = A^T A$.

(b) If rank(A) = n in the above problem, find critical point of f(x).

Answer: We have $\nabla f(x) = A^T(Ax - b) = 0 \implies A^TAx - A^Tb = 0 \implies A^TAx = A^Tb$. Since rank(A) = n, A^TA is invertible, i.e. $(A^TA)^{-1}$ exists. Then $(A^TA)^{-1}A^TAx = (A^TA)^{-1}A^Tb \implies x = (A^TA)^{-1}A^Tb$.

3. Show that for any matrix $A \in \mathbb{R}^{m \times n}$, the set $\{x \in \mathbb{R}^n : Ax = 0\}$ is convex.

Answer: Take $x, y \in \Omega$ and $\alpha \in [0, 1]$, we have Ax = 0 and Ay = 0 for any matrix $A \in \mathbb{R}^{m \times n}$. Then $\alpha Ax = 0, (1 - \alpha)Ay = 0 \implies \alpha Ax + (1 - \alpha)Ay = 0 \implies A(\alpha x + (1 - \alpha)y) = 0$, therefore $\alpha x + (1 - \alpha)y \in \Omega$ and Ω is a convex set. 4. Find all the critical points of $f(x_1, x_2) = (x_1^2 - 4)^2 + x_2^2$. Which has positive definite hessian matrix? **Answer**: We have

$$\nabla f(x) = \begin{bmatrix} \frac{\delta f}{\delta x_1} \\ \frac{\delta f}{\delta x_2} \end{bmatrix} = \begin{bmatrix} 4x_1^3 - 16x_1 \\ 2x_2 \end{bmatrix}$$

$$\nabla^2 f(x) = \begin{bmatrix} \frac{\delta^2 f}{\delta x_1^2} & \frac{\delta^2 f}{\delta x_1 \delta x_2} \\ \frac{\delta^2 f}{\delta x_2 \delta x_1} & \frac{\delta^2 f}{\delta x_2^2} \end{bmatrix} = \begin{bmatrix} 12x_1^2 - 16 & 0 \\ 0 & 2 \end{bmatrix}.$$

Solving $\nabla f(x) = 0$ gives us $4x_1^3 - 16x_1 = 0 \implies x_1 = 0, \pm 2$ and $2x_2 = 0 \implies x_2 = 0$, so the critical points are $[-2,0]^T$, $[0,0]^T$ and $[2,0]^T$. The eigenvalues of $\nabla^2 f([\pm 2,0]^T)$ are $(32 - \lambda)(2 - \lambda) = 0 \implies \lambda = 2,32$. Similarly, the eigenvalues of $\nabla^2 f([0,0]^T)$ are $(-16 - \lambda)(2 - \lambda) \implies \lambda = -16,2$. Therefore the critical points $[-2,0]^T$ and $[2,0]^T$ have positive definite hessian matrix.

5. Given $x_1, \dots, x_n \in \mathbb{R}^d$, find the global minimizer of

$$\min_{x \in \mathbb{R}^d} f(x) := \sum_{k=1}^n ||x - x_k||_2^2.$$

Hint: Show f(x) is convex function. So any critical is a global minimizer.

Answer: We will first show that f(x) is convex: take $x,y\in\mathbb{R}^d$ and $\alpha\in[0,1]$, then $\alpha x+(1-\alpha)y$ is a linear combination of x,y and is therefore also in \mathbb{R}^d , so $\mathrm{dom}(f)$ is convex. In addition, we have $\nabla f(x) = \nabla \sum_{k=1}^n |x-x_k||_2^2 = \nabla \sum_{k=1}^n (x-x_k)^2 = 2\sum_{k=1}^n (x-x_k)$ by chain rule. We also have $\nabla^2 f(x) = D(\nabla f(x)) = 2n \geq 0$, so the Hessian is positive semidefinite and therefore f(x) is a convex function. Then we can set $\nabla f(x^*) = 0$ to find our critical point x^* , which will be a global minimizer since f(x) is a convex function. We have $\nabla f(x^*) = 0 \implies 2\sum_{k=1}^n (x-x_k) = 0 \implies 2nx^* = 2\sum_{k=1}^n x_k \implies x^* = \frac{1}{n}\sum_{k=1}^n x_k$, therefore $\frac{1}{n}\sum_{k=1}^n x_k$ is the global minimizer.