PSALTer results panel $\mathcal{S} = \iiint (\mathcal{A}^{\alpha\beta\chi} \ \sigma_{\alpha\beta\chi} + f^{\alpha\beta} \ \tau (\Delta + \mathcal{K})_{\alpha\beta} - 2 \frac{1}{3} (\partial_{\beta}\mathcal{A}_{i\ \theta}^{\ \theta} \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} + \partial_{i}\mathcal{A}_{\beta\ \theta}^{\ \theta} \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} + \partial_{\alpha}\mathcal{A}_{\beta\ \theta}^{\alpha\beta} \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{\beta\ i}^{\ \theta} - 2 \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} - 2 \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} + 2 \partial_{\beta}\mathcal{A}_{i\ \theta\alpha}^{\alpha\beta} \partial^{\theta}\mathcal{A}_{\alpha}^{\alpha\beta}) + 2 \partial_{\beta}\mathcal{A}_{i\ \theta\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} - 2 \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} - 2 \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} + 2 \partial_{\beta}\mathcal{A}_{i\ \theta\alpha}^{\alpha\beta} \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta}) + 2 \partial_{\beta}\mathcal{A}_{i\ \theta\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} - 2 \partial^{i}\mathcal{A}_{\alpha}^{\alpha\beta} \partial_{\theta}\mathcal{A}_{i\ \beta}^{\ \theta} - 2 \partial^{i}\mathcal{A}_{$ $\frac{2}{3}r_{1}\left(3\,\partial_{\beta}\mathcal{R}_{,\,\,\theta}^{\,\,\theta}\,\partial^{\prime}\mathcal{R}_{\,\,\alpha}^{\alpha\beta}+3\,\partial_{\prime}\mathcal{R}_{\,\,\beta}^{\,\,\theta}\,\partial^{\prime}\mathcal{R}_{\,\,\alpha}^{\alpha\beta}+3\,\partial_{\alpha}\mathcal{R}_{\,\,\beta}^{\,\,\theta},-6\,\partial^{\prime}\mathcal{R}_{\,\,\alpha}^{\,\,\alpha\beta}\,\partial_{\theta}\mathcal{R}_{\,\,\beta}^{\,\,\theta},+3\,\partial_{\alpha}\mathcal{R}_{\,\,\alpha}^{\,\,\beta\beta}\,\partial_{\theta}\mathcal{R}_{\,\,\beta}^{\,\,\theta},-6\,\partial^{\prime}\mathcal{R}_{\,\,\alpha}^{\,\,\alpha\beta}\,\partial_{\theta}\mathcal{R}_{\,\,\beta}^{\,\,\theta},-2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R}_{\,\,\alpha\theta}^{\,\,\alpha\beta\prime}+2\,\partial_{\beta}\mathcal{R$ $\partial_{i}\mathcal{R}_{\alpha\beta\theta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\prime}\,+\,\partial_{\theta}\mathcal{R}_{\alpha\beta\prime}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\prime}\,+\,\partial_{\theta}\mathcal{R}_{\alpha\beta}\,\partial^{\theta}\mathcal{R}^{\alpha\beta\prime})\,+\,\frac{1}{6}\,t_{1}\,(2\,\,\mathcal{R}^{\alpha\prime}_{\alpha}\,\,\mathcal{R}_{,\theta}^{\theta}\,-\,4\,\,\mathcal{R}_{\alpha\theta}^{\theta}\,\partial_{i}f^{\alpha}\,+\,4\,\,\mathcal{R}_{,\theta}^{\theta}\,\partial^{i}f^{\alpha}_{\alpha}\,-\,2\,\partial_{i}f^{\theta}_{\theta}\,\partial_{i}f^{\alpha}\,+\,4\,\partial^{i}f^{\alpha}_{\alpha}\,\partial_{\theta}f^{\theta}_{\theta}\,-\,6\,\partial_{\alpha}f_{\theta}\,\partial^{\theta}f^{\alpha\prime}\,-\,3\,\partial_{\alpha}f_{\theta}\,\partial^{\theta}f^{\alpha\prime}\,+\,4\,\partial_{i}f^{\alpha}_{\alpha}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,+\,4\,\partial^{i}f^{\alpha}_{\alpha}\,\partial_{\theta}f^{\alpha\prime}\,-\,3\,\partial_{\alpha}f_{\theta}\,\partial^{\theta}f^{\alpha\prime}\,+\,4\,\partial_{i}f^{\alpha}_{\alpha}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}f^{\alpha\prime}\,-\,2\,\partial_{i}f^{\alpha\prime}\,\partial_{\theta}$ $3\,\partial_{\scriptscriptstyle i} f_{\alpha\theta}\,\partial^{\theta} f^{\alpha \imath} + 3\,\partial_{\theta} f_{\alpha \imath}\,\partial^{\theta} f^{\alpha \imath} + 3\,\partial_{\theta} f_{{}_{\prime}\alpha}\,\partial^{\theta} f^{\alpha \imath} + 6\,\,\mathcal{R}_{\alpha\theta\imath}\,(\,\mathcal{R}^{\alpha \imath\theta} + 2\,\partial^{\theta} f^{\alpha \imath})) + r_{\scriptstyle 5}\,(\partial_{\scriptscriptstyle i}\mathcal{R}_{\theta\ \kappa}^{\ \kappa}\,\partial^{\theta}\mathcal{R}^{\alpha \imath}_{\ \alpha} - \partial_{\theta}\mathcal{R}_{{}_{\prime}\kappa}^{\ \kappa}\,\partial^{\theta}\mathcal{R}^{\alpha \imath}_{\ \alpha} - (\partial_{\alpha}\mathcal{R}^{\alpha \imath\theta} - 2\,\partial^{\theta}\mathcal{R}^{\alpha \imath}_{\ \alpha})\,(\partial_{\kappa}\mathcal{R}_{{}_{\prime}\theta}^{\ \kappa} - \partial_{\kappa}\mathcal{R}_{\theta\ \imath}^{\ \kappa})))[t,\,x,\,y,\,z]\,dz\,dy\,dx\,dt$

Wave operator

 $0^+f^\parallel \ 0^+f^\perp \quad 0 \ \mathcal{F}^\parallel$

				. ,											
^{0,+} <i>Я</i> [∥] †	$6k^2(-r_1+r_1)$;) o)	0	0										
0.+ f †	0	0)	0	0										
0.+ <i>f</i> +	0	0)	0	0										
^{0.} Æ∥†	0	0)	0	-t. 1	$\overset{1^{+}}{\cdot}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}^{\scriptscriptstyle \perp}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathscr{A}^{\parallel}{}_{\alpha}$	$^{1}\mathscr{H}^{^{\perp}}{}_{\alpha}$	$^{1}f^{\parallel}_{\alpha}$	$1 \cdot f^{\perp}_{\alpha}$			
					$\overset{1^{+}}{\cdot}\mathcal{A}^{\parallel}\dagger^{\alpha\beta}$	$k^2 (2r. + r.) - 3 + 5$	$\frac{t}{\frac{1}{2}} - \frac{t}{\sqrt{2}}$	$-\frac{i k t}{\sqrt{2}}$	0	0	0	0			
					$^{1^{+}}\mathcal{H}^{\scriptscriptstyle{\perp}}\dagger^{^{lphaeta}}$	γZ	0	0	0	0	0	0			
					$^{1\overset{+}{\cdot}}f^{\parallel}\dagger^{lphaeta}$	$\frac{ikt.}{\sqrt{2}}$	0	0	0	0	0	0			
					$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$k^{2} \left(-r_{1} + 2r_{3} + r_{5} \right) + \frac{t_{1}}{6}$	$\frac{\frac{t_1}{1}}{3\sqrt{2}}$	0	$\frac{i k t}{3}$			
					^{1.} A [⊥] † ^α	0	0	0	$\frac{\frac{t_1}{1}}{3\sqrt{2}}$	$\frac{t_1}{3}$	0	$\frac{1}{3}i\sqrt{2}kt.$			
					$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
					$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$	$-\frac{1}{3}\bar{l}\sqrt{2}kt.$. 0	$\frac{2 k^2 t}{3}$	2 ⁺ <i>Α</i> _{αβ}	$^{2^{+}}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
												$^{2^{+}}\mathcal{A}^{\parallel}$ † lphaeta	2	$-\frac{i k t}{\sqrt{2}}$	0
												$2^+ f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$.	0
												$2^{-}\mathcal{A}^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

Saturated propagator

Source constraints

Spin-parity form	Covariant form	Multiplicities	
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1	
$0^+\tau^{\parallel}==0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1	
$2 i k 1 \sigma^{\perp \alpha} + 1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3	
$\frac{1}{1} r^{\parallel^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3	
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3	
$-2 i k \stackrel{2^{+}}{\circ} \sigma^{\parallel}{}^{\alpha\beta} + \stackrel{2^{+}}{\circ} \tau^{\parallel}{}^{\alpha\beta} = 0 -i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}{}^{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \beta} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \partial^$			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\epsilon}_{\delta}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$		
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$		
Total expected gauge generators: 16			

Massive spectrum

Massive particle

Pole residue:	$\left \frac{1}{r_{i}}>0\right $
Square mass:	$-\frac{\frac{t_{\cdot}}{1}}{2r_{\cdot}} > 0$
Spin:	2
Parity:	Odd

Massless spectrum

Massless particle

Pole residue:	$\frac{7}{r2rr.}_{1\ 3\ 5}$ +	$\frac{-2t \cdot p^2 + 4(r \cdot -2r \cdot -r \cdot)p^4}{t \cdot \frac{1}{1}} > 0$
Polarisations:	2	

Unitarity conditions

 $r. \in \mathbb{R} \&\&r. < -2r. \&\&2r. + r. < r. < 0 \&\&t. > 0$