DBGDTR_EL0, Debug Data Transfer Register, half-duplex

The DBGDTR EL0 characteristics are:

Purpose

Transfers 64 bits of data between the PE and an external debugger. Can transfer both ways using only a single register.

Configuration

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32 System register <u>DBGDTRRXint[31:0]</u> when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External register DBGDTRRX EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64 System register <u>DBGDTRRX_EL0[31:0]</u> when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DBGDTRTXint[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register <u>DBGDTRTX_EL0[31:0]</u> when written.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch64 System register DBGDTRTX_EL0[31:0] when written.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch32 System register <u>DBGDTRTXint[31:0]</u> when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to External register <u>DBGDTRTX_EL0[31:0]</u> when read.

AArch64 System register DBGDTR_EL0 bits [63:32] are architecturally mapped to AArch64 System register DBGDTRTX EL0[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DBGDTRRXint[31:0] when read.

AArch64 System register DBGDTR_EL0 bits [31:0] are architecturally mapped to External register DBGDTRRX_EL0[31:0] when read.

AArch64 System register DBGDTR EL0 bits [31:0] are architecturally mapped to AArch64 System register DBGDTRRX EL0[31:0] when read.

Attributes

DBGDTR EL0 is a 64-bit register.

Field descriptions

03 02 01 00 39 36 37 30 33 34 33 32 31 30 49 46 47 40 43 44 43 42 41 40 39 36 37 30 33 34 33 32
HighWord
TilgitWord
LowWord
Lowword

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HighWord, bits [63:32]

Writes to this register set DTRRX to the value in this field and do not change RXfull.

Reads of this register:

- If RXfull is set to 1, return the last value written to DTRTX.
- If RXfull is set to 0, return an unknown value.

After the read, RXfull is cleared to 0.

LowWord, bits [31:0]

Writes to this register set DTRTX to the value in this field and set TXfull to 1.

Reads of this register:

- If RXfull is set to 1, return the last value written to DTRRX.
- If RXfull is set to 0, return an unknown value.

After the read, RXfull is cleared to 0.

Accessing DBGDTR_EL0

Accesses to this register use the following encodings in the System register encoding space:

op0	op1	CRn	CRm	op2
0b10	0b011	0b0000	0b0100	0b000

```
if Halted() then
    X[t, 64] = DBGDTR\_EL0;
elsif PSTATE.EL == ELO then
    if MDSCR EL1.TDCC == '1' then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HCR_EL2.TGE == '1' |
MDCR EL2.<TDE, TDA> != '00') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = DBGDTR EL0;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE, TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = DBGDTR\_EL0;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = DBGDTR\_EL0;
elsif PSTATE.EL == EL3 then
    X[t, 64] = DBGDTR\_EL0;
```

MSR DBGDTR_EL0, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b011	0b0000	0b0100	0b000

```
else
            AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && (HCR_EL2.TGE == '1' |
MDCR EL2.<TDE, TDA> != '00') then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        DBGDTR EL0 = X[t, 64];
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.<TDE, TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        DBGDTR\_EL0 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        DBGDTR\_EL0 = X[t, 64];
elsif PSTATE.EL == EL3 then
    DBGDTR\_EL0 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.