ΑΣΚΗΣΗ 2

Τριφασικός Μετασχηματιστής – Διεκπεραίωση της εργαστηριακής άσκησης

*OMA*Δ*A* Δ1:

ΚΑΠΕΝΤΖΩΝΗΣ ΠΑΝΑΓΙΩΤΗΣ $K\Omega T\Sigma IPH\Sigma I\Omega ANNH\Sigma$ ΠΑΣΤΟΣ ΙΩΑΝΝΗΣ

ΣΑΒΒΑΣ ΡΗΓΙΝΟΣ

 $\varSigma AMI\Omega TH\Sigma\ A\Pi O\Sigma TO \varLambda O\Sigma$

ΦΑΡΔΕΛΛΑΣ ΣΤΕΦΑΝΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ

Ασκηση 2 / Τριφασικός Μετασχηματιστής – Διεκπεραίωση εργαστηριακής άσκησης

	Περιεχόμενα 2.1.1. Εργαστηριακό Σκέλος - Τριφασικός Μετασχηματιστής				
2.1.1.1.	Αρχικές Μετρήσεις	2			
2.1.1.2.	Λειτουργία εν κενώ	2			
2.1.1.4.	Προσδιορισμός ομάδας συνδεσμολογίας	5			

2.1.1. Εργαστηριακό Σκέλος - Τριφασικός Μετασχηματιστής

2.1.1.1. Αρχικές Μετρήσεις

- Α) Μετρήσαμε την ωμική αντίσταση πρωτεύοντος $R_1 = 1 \, \Omega$ και την ωμική αντίσταση $R_2 = 0.45 \, \Omega$.
- Β) Με ονομαστική τάση στο πρωτεύον, η ονομαστική τάση στο δευτερεύον είναι $U_{2N}=127~V$, σύμφωνα με τα στοιχεία που αναγράφονται πάνω στον μετασχηματιστή.

Ο λόγος μετασχηματισμού η ισούται:

$$n = \frac{w_1}{w_2} = \frac{U_{1N}}{U_{2N}} = \frac{220}{127} = 1.73$$

2.1.1.2. Λειτουργία εν κενώ

Α) Ανοιχτοκυκλώνουμε το δευτερεύον τύλιγμα και τροφοδοτούμε το πρωτεύον με τάση ενεργού τιμής U_{10} από $150\,V$ έως $430\,V$. Μετράμε τα μεγέθη U_{20} , I_0 και P_0 , οι μετρήσεις των οποίων είναι συγκεντρωμένες στον Πίνακας 1.

$U_{10}(V)$	$U_{20}(V)$	Ι ₀ ανά φάση (Α)	P ₀ ανά φάση (kW)
150	90	142	24
200	120	165	39
250	150	197	57
300	180	244	78
350	210	347	102
400	250	492	144
430	260	619	180

Πίνακας 1. Μετρήσεις λειτουργίας εν κενώ.

Β) Έχοντας ανοιχτοκυκλωμένο το δευτερεύον και έχοντας εφαρμόσει στο πρωτεύον ονομαστική τάση U_{1N} , θα υπολογίσουμε τα μεγέθη L_h και R_{Fe} .

Αρχικά υπολογίζουμε τον συντελεστή ισχύος:
$$\cos(\varphi_0) = \frac{P_0}{U_1*I_0} = \frac{180000}{430*619} = 0.676$$

$$\Rightarrow$$
 cos(φ_0) = 0.676 και sin(φ_0) = 0.324

Υπολογίζουμε το ρεύμα σιδήρου: $I_{Fe} = I_0 * \cos(\varphi_0) \Rightarrow I_{Fe} = 619 * 0.676 \Rightarrow I_{Fe} = 418.44 \, A$

Και το ρεύμα μαγνήτισης: $I_{\mu}=I_{0}*\sin(\varphi_{0})=619*0.324 \Rightarrow I_{\mu}=\mathbf{200}.\mathbf{556}\,\mathbf{A}$

Από τα οποία θα υπολογίσουμε τα μεγέθη R_{Fe} , X_h :

$$R_{Fe} = \frac{U_1}{I_{Fe}} = \frac{430}{418.44} \Rightarrow R_{Fe} = 1.03 \,\Omega$$

$$X_h = \frac{U_1}{I_u} = \frac{430}{200.556} \Rightarrow X_h = 2.15 \Omega$$

Τελικά, από την X_h υπολογίζουμε την L_h :

$$L_h = \frac{X_k}{2\pi f} = \frac{2.15}{2\pi * 50} \Rightarrow L_h = 6.84 \text{ mH}$$

Γ) Για τη σχεδίαση των γραφικών παραστάσεων $P_0 = f(U_1)$, $I_0 = f(U_1)$, $\cos(\varphi_0) = f(U_1)$ και $P_{Fe} = P_0 - 3 * R_1 I_0^2$ χρησιμοποιήσαμε το λογισμικό Matlab.

```
clear all; clc; close all;
v1 = [150 200 250 300 350 400 430];
v2 = [90 120 150 180 210 250 260];
p0 = [24000 39000 57000 78000 102000 144000 180000];
i0 = [142 165 197 244 347 492 619];
cosf0 = p0./(v1.*i0);
pfe = p0 - 3*1*i0.^2;
figure();
subplot(4,1,1);
plot(v1, p0, "-o");
title("P0 = f(U1)");
subplot(4,1,2);
plot(v1, i0, "-o");
title("I0 = f(U1)");
subplot(4,1,3);
plot(v1, cosf0, "-o");
title("cosf0 = f(U1)");
subplot(4,1,4);
plot(v1, pfe, "-o");
title("Pfe = f(U1)");
```

Στην Εικόνα 1 φαίνονται οι γραφικές παραστάσεις που ζητήθηκαν.

Εικόνα 1. Οι ζητούμενες γραφικές παραστάσεις.

2.1.1.3. Δειτουργία σε βραγυκύκλωμα

Α) Βραχυκυκλώνουμε τα τυλίγματα του δευτερεύοντος και μεταβάλλουμε το ρεύμα πρωτεύοντος κατά 1 A μέχρι να έχουμε ρεύμα βραχυκύκλωσης ίσο με $I_{1k}=11$ A. Μετράμε τα μεγέθη I_{1k} , U_{1k} , P_{1k} . Οι μετρήσεις που λάβαμε είναι συγκεντρωμένες στον Πίνακας 2.

$I_{1k}\left(A\right)$	$U_{1k}\left(V\right)$	$P_{1k}\left(W\right)$
1	5	1.5
2	5.4	3
3	6.3	3
4	6.7	4.5
5	7.8	6
6	9.3	9
7	10.5	10.5
8	11.4	15
9	12.7	18
10	14.2	22.5
11	15.5	27

Πίνακας 2. Πίνακας μετρήσεων λειτουργίας σε βραχυκύκλωμα.

B) Ισχύει ότι $I_{1k}=11~A,\,U_{1k}=15.5~V$ και $P_{1k}=27~W$. Υπολογίζουμε από τη σχέση $P_{1k}=R_{1k}I_{1k}^2$ την αντίσταση R_{1k} :

$$R_{1k} = \frac{P_{1k}}{I_{1k}^2} = \frac{27}{11^2} \Rightarrow R_{1k} = 0.223 \,\Omega$$

Υπολογίζουμε την εμπέδηση
$$Z_{1k} = \frac{u_{1k}}{I_{1k}} = \frac{15.5}{11} \Rightarrow \mathbf{Z_{1k}} = \mathbf{1.41} \ \mathbf{\Omega}$$
, άρα $X_{1k} = \sqrt{Z_{1k}^2 - R_{1k}^2} = \sqrt{1.41^2 - 0.223^2}$

$$\Rightarrow X_{1k}=1.39\,\Omega$$

$$u_R = \frac{R_{1k} * I_{1k}}{U_{1N}} = 0.016$$

$$u_X = \frac{X_{1k} * I_{1k}}{U_{1N}} = 0.098$$

$$u_k = \sqrt{u_R^2 + u_X^2} = 0.099$$

 Γ ια να σχεδιάσουμε τις γραφικές παραστάσεις $P_{1k} = f(I_{1k})$ και $U_{1k} = f(I_{1k})$ χρησιμοποιήσαμε το λογισμικό Matlab.

```
clear all; clc; close all;
i1k = [1 2 3 4 5 6 7 8 9 10 11];
u1k = [5 5.4 6.3 6.7 7.8 9.3 10.5 11.4 12.7 14 15.5];
p1k = [1.5 3 3 4.5 6 9 10.5 15 18 22.5 27];

figure();
subplot(2,1,1);
plot(i1k, u1k, "-o");
title("U1k = f(I1k)");

subplot(2,1,2);
plot(i1k, p1k, "-o");
title("P1k = f(I1k)");
```

Οι ζητούμενες γραφικές παραστάσεις φαίνονται παρακάτω στην Εικόνα 2.

Εικόνα 2. Ζητούμενες γραφικές παραστάσεις.

2.1.1.4. Προσδιορισμός ομάδας συνδεσμολογίας

Μετρήσαμε τις τάσεις που μας ζητούνται και συγκεντρώθηκαν στον παρακάτω πίνακα.

	Σχήμα 5α	Σχήμα 5β
U_{UX}	240 V	240 V
U_{UV}	400 V	410 V
U_{UW}	410 V	410 V
U_{ux}	140 V	140 V
U_{Vv}	110 V	290 V
U_{Vw}	360 V	300 V
U_{Uv}	250 V	140 V
U_{Uw}	250 V	140 V
U_{Wv}	360 V	430 V
U_{Ww}	160 V	300 V
U_{Xx}	90 V	90 V

$$U_{ux} + U_{xX} = 140 + 90 = 230 \approx 240 = U_{Ux}$$

 $U_{Uv} + U_{vV} = 250 + 110 = 360 \approx 400 = U_{UV}$
 $U_{Uw} + U_{wW} = 250 + 160 = 410 = U_{UW}$

Από τις 3 εξισώσεις συμπεραίνουμε ότι το διάγραμμα τάσεων θα λάβει την μορφή της Error! Reference source not found. Η γωνία μεταξύ U_{UV} και U_{uv} είναι μηδέν, επομένως, ο χαρακτηριστικός αριθμός είναι $\frac{0^{\circ}}{30^{\circ}} = 0$.

$$U_{UX} = U_{Uw} + U_{Xx}$$
$$U_{UX} = U_{Uv} + U_{Xx}$$

Άρα είτε το v βρίσκονται πάνω στην ευθεία UX. Αφού $U_{Ww} < U_{Wv}$, το w είναι το σημείο που βρίσκεται πάνω στην ευθεία UX. Η γωνία μεταξύ U_{UV} και U_{uv} είναι μηδέν, επομένως, ο χαρακτηριστικός αριθμός είναι $\frac{3^\circ}{30^\circ} = 11$.

Εικόνα 4. Διάγραμμα τάσεων συνδεσμολογίας σχήματος 5α.

Επομένως, για το σχήμα 5α ο μετασχηματιστής έχει το χαρακτηρισμό Yy0, δηλαδή τα τυλίγματα υψηλής και χαμηλής τάσεως είναι συνδεδεμένα σε αστέρα και ο χαρακτηριστικός αριθμός είναι 0. Αντίστοιχα, για το σχήμα 5β ο τριφασικός μετασχηματιστής έχει το χαρακτηρισμό Yd11, δηλαδή τα τυλίγματα υψηλής τάσεως είναι συνδεδεμένα σε αστέρα, τα τυλίγματα χαμηλής τάσεως είναι συνδεδεμένα σε τρίγωνο και ο χαρακτηριστικός αριθμός είναι 11.

Εικόνα 3. Διάγραμμα τάσεων συνδεσμολογίας σχήματος 5β.