ENGR 308 (Fall 2025) S. Alghunaim

4. Roots of equations: open methods

- fixed point iteration
- Newton Raphson
- secant method
- modified Newton Raphson

Open versus bracketing methods

Bracketing methods

- start with $[x_l, x_u]$ where $f(x_l) f(x_u) < 0$
- repeated halving/refinement ⇒ always convergent (moves closer to the true root)

Open methods

- use formulas with one start value or two that need not bracket the root
- may diverge (move away from the true root)
- when they converge, they typically do so faster than bracketing methods

fixed point iteration SA — ENGR308 4.2

Fixed-point iteration

rearrange f(x) = 0 into *fixed-point* form

$$x = g(x)$$

• for example

- algebraic manipulation:
$$x^2 - 2x + 3 = 0 \implies x = \frac{x^2 + 3}{2}$$

- add x to both sides: $\sin x = 0 \implies x = x + \sin x$

• given an initial guess x_0 , iterate

$$x_{i+1} = g(x_i), \quad i = 0, 1, \dots$$

called fixed point iteration (or one-point iteration or successive substitution)

• monitor the approximate relative error

$$\varepsilon_a = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100\%$$

$$f(x) = e^{-x} - x$$

true root: $x^* \approx 0.56714329$

separate directly and iterate $x_{i+1} = e^{-x_i}$ with $x_0 = 0$

i	x_i	ε_a (%)	ε_t (%)
0	0.000000		100.0
1	1.000000	100.0	76.3
2	0.367879	171.8	35.1
3	0.692201	46.9	22.1
4	0.500473	38.3	11.8
5	0.606244	17.4	6.89
6	0.545396	11.2	3.83
7	0.579612	5.90	2.20
8	0.560115	3.48	1.24
9	0.571143	1.93	0.705
10	0.564879	1.11	0.399

Two-curve graphical method

- split $f(x) = f_1(x) f_2(x) = 0$ into $y_1 = f_1(x)$ and $y_2 = f_2(x)$
- the intersections give roots

Example: for $e^{-x} - x = 0$, take $y_1 = x$, $y_2 = e^{-x}$

X	$y_1 = x$	$y_2 = e^{-x}$
0.0	0.000	1.000
0.2	0.200	0.819
0.4	0.400	0.670
0.6	0.600	0.549
0.8	0.800	0.449
1.0	1.000	0.368

intersection near $x \approx 0.57$

Convergence via two-curve method

the two-curve method can be used to illustrate convergence and divergence

- equation x = g(x) is re-expressed as a pair of equations: $y_1 = x$, $y_2 = g(x)$
- roots of f(x) = 0 correspond to the abscissa at the intersection of the two curves
- function $y_1 = x$ and $y_2 = g(x)$ are plotted

Iteration procedure

- start with initial guess x₀
- determine the corresponding point on y_2 curve: $(x_0, g(x_0))$
- move horizontally to y_1 : the point (x_1, x_1)
- this corresponds to the first fixed-point iteration: $x_1 = g(x_0)$
- repeat starting from x₁

Convergence via two-curve method

- (a) and (b): solution converges estimates move closer to the root
- (c) and (d): iterations diverge away from the root

4.7

Convergence

fixed-point iteration converges locally (in a region of interest) if

$$|g'(x)| < 1$$

meaning the slope of $y_2 = g(x)$ is less than the slope of $y_1 = x$

- $0 < g'(x^*) < 1$: monotone convergence
- $-1 < g'(x^*) < 0$: oscillatory (spiral) convergence
- $|g'(x^*)| > 1$: divergence

Proof: mean-value theorem with $x_{i+1} = g(x_i), x^* = g(x^*)$:

$$x^* - x_{i+1} = g(x^*) - g(x_i) = g'(\xi) (x^* - x_i)$$

thus for the true error $E_{t,i} = x^* - x_i$,

$$E_{t,i+1} = g'(\xi) E_{t,i} \implies |g'(\xi)| < 1 \implies |E_{t,i+1}| < |E_{t,i}|$$

if converges, error decreases proportional to each step (linear convergence)

4.8

MATLAB code of our example

```
clear, clc, format compact
g=0(x) exp(-x);
x0 = 0:
[xr,ea,iter] = fixpt(g,x0,1e-6);
X = ['The root = '.num2str(xr),' (ea = '.num2str(ea),'% in '....
num2str(iter),' iterations)'];
disp(X)
with function
function [x1,ea,iter] = fixpt(g,x0,es,maxit)
% fixpt: fixed point root locator
if nargin < 2, error('at least 2 arguments required'), end
if nargin < 3||isempty(es),es = 1e-6;end % if es is blank set to 1e-6
if nargin < 4||isempty(maxit), maxit = 50; end % if maxit is blank set to 50
iter = 0: ea = 100:
while (1)
x1 = g(x0);
iter = iter + 1:
if x1 ~= 0, ea = abs((x1 - x0)/x1)*100; end
if (ea <= es || iter >= maxit), break, end
x0 = x1:
end
end
```

Outline

- fixed point iteration
- Newton Raphson
- secant method
- modified Newton Raphson

Newton Raphson method

first-order Taylor approximation around x_i

$$f(x) \approx \hat{f}(x) = f(x_i) + f'(x_i) (x - x_i)$$

• set to zero $\hat{f}(x) = 0$:

$$0 = f(x_i) + f'(x_i) (x - x_i)$$

· solution is our next estimate:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

called Newton Raphson method or just Newton method

use the Newton-Raphson method to estimate the root of

$$f(x) = e^{-x} - x$$

starting with an initial guess of $x_0 = 0$ (true root: $x^* \approx 0.56714329$)

first derivative:

$$f'(x) = -e^{-x} - 1$$

• iterative equation:

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

first iteration:

$$x_1 = x_0 - \frac{e^{-x_0} - x_0}{-e^{-x_0} - 1} = 0 - \frac{e^{-0} - 0}{-e^{-0} - 1} = 0.5$$

repeating gives the results

i	x_i	$arepsilon_t(\%)$	E_t
0	0.000000000	100.0	0.567143290
1	0.500000000	11.8	0.067143290
2	0.566311003	0.147	0.000832287
3	0.567143165	0.0000221	0.000000125
4	0.567143290	$< 10^{-8}$	0.000000000

converges much faster than fixed-point iteration

Error analysis of Newton-Raphson

second-order Taylor approximation:

$$f(x) = f(x_i) + f'(x_i)(x - x_i) + \frac{f''(\xi)}{2!}(x - x_i)^2$$

setting $x = x^*$ and using $f(x^*) = 0$ gives

$$0 = f(x_i) + f'(x_i)(x^* - x_i) + \frac{f''(\xi)}{2!}(x^* - x_i)^2$$

subtracting from Newton update $0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$ gives

$$0 = f'(x_i)(x^* - x_{i+1}) + \frac{f''(\xi)}{2!}(x^* - x_i)^2$$

define error $E_{t,i+1} = x^* - x_{i+1}$ and assume convergence $(x_i, \xi \to x^*)$:, we get

$$E_{t,i+1} \approx -\frac{f''(x^{\star})}{2f'(x^{\star})} E_{t,i}^2$$

- error decreases quadratically
- number of correct digits roughly doubles with each iteration

examine error of Newton-Raphson for $f(x) = e^{-x} - x$, at $x^* = 0.56714329$ we have

$$f'(x^*) = -1.56714329, \quad f''(x^*) = 0.56714329$$

- \bullet error factor: $E_{t,i+1}\approx -\frac{f''(x^\star)}{2f'(x^\star)}\,E_{t,i}^2=0.18095E_{t,i}^2$
- initial error with $x_0 = 0$: $E_{t,0} = 0.56714329$
- predicted errors using $E_{t,i+1} \approx 0.18095 E_{t,i}^2$:

$$E_{t,1} \approx 0.0582$$
 (true: 0.0671)
 $E_{t,2} \approx 8.16 \times 10^{-4}$ (true: 8.32×10^{-4})
 $E_{t,3} \approx 1.25 \times 10^{-7}$
 $E_{t,4} \approx 2.84 \times 10^{-15}$

- confirms quadratic convergence: error shrinks $\propto E_{t,i}^2$

determine the positive root of $f(x) = x^{10} - 1$ using Newton-Raphson with $x_0 = 0.5$

Newton-Raphson update

$$x_{i+1} = x_i - \frac{x_i^{10} - 1}{10x_i^9}$$

Iterations

i	x_i
0	0.5
1	51.65
2	46.485
3	41.8365
4	37.65285
5	33.887565
:	:
∞	1.0000000

very slow convergence

Pitfalls of Newton-Raphson

- can be slow and may diverge
- *inflection points:* if f''(x) = 0 near a root, iterations may diverge (figure a)
- oscillations: iterations can bounce around local maxima/minima (figure b)
- near-zero slopes: lead to very large jumps, possibly to other roots (figure c)
- division by zero: if f'(x) = 0, iteration fails completely (figure d)

4.16

Convergence insights

- no universal convergence guarantee
- · success depends on:
 - nature of the function
 - quality of the initial guess
- · remedies:
 - choose initial guesses close to the root
 - use graphical insight or physical intuition
 - use small stepsize $\alpha > 0$:

$$x_{i+1} = x_i - \alpha \frac{f(x_i)}{f'(x_i)}$$

- design software to detect slow convergence or divergence

Outline

- fixed point iteration
- Newton Raphson
- secant method
- modified Newton Raphson

Secant method

- some functions have derivatives that are difficult or inconvenient to evaluate
- the derivative can be approximated by a backward finite divided difference

$$f'(x_i) \approx \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

this approximation can be substituted into to yield the secant method:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

4 18

use the secant method on $f(x) = e^{-x} - x$ with starting points $x_{-1} = 0$, $x_0 = 1.0$ true root ≈ 0.56714329

First iteration

$$x_{-1} = 0$$
 $f(x_{-1}) = 1.00000$
 $x_0 = 1$ $f(x_0) = -0.63212$

so

$$x_1 = 1 - \frac{-0.63212(0-1)}{1 - (-0.63212)} = 0.61270$$
 $\varepsilon_t = 8.0\%$

Second iteration

$$x_0 = 1$$
 $f(x_0) = -0.63212$
 $x_1 = 0.61270$ $f(x_1) = -0.07081$

note both estimates are now on the same side of the root; we have

$$x_2 = 0.61270 - \frac{-0.07081(1 - 0.61270)}{-0.63212 - (-0.07081)} = 0.56384$$
 $\varepsilon_t = 0.58\%$

Third iteration

$$x_1 = 0.61270$$
 $f(x_1) = -0.07081$
 $x_2 = 0.56384$ $f(x_2) = 0.00518$

so

$$x_3 = 0.56384 - \frac{0.00518(0.61270 - 0.56384)}{-0.07081 - (-0.00518)} = 0.56717$$
 $\varepsilon_t = 0.0048\%$

Secant method versus false-position method

false position

secant

$$x_r = x_u - \frac{f(x_u) (x_l - x_u)}{f(x_l) - f(x_u)} \qquad x_{i+1} = x_i - \frac{f(x_i) (x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

- identical first iterate if $x_u = x_0$ and $x_l = x_{-1}$
- difference
 - false-position: always brackets the root by replacing the value with same sign as $f(x_r)$
 - secant: updates sequentially $(x_{i+1} \text{ replaces } x_i \text{ and } x_i \text{ replaces } x_{i-1})$
- consequence
 - false-position: guaranteed convergence (root stays in bracket)
 - secant: may converge faster but can also diverge

use false-position and secant methods to estimate the root of $f(x) = \ln x$

initial guesses: $x_l = x_{-1} = 0.5$, $x_u = x_0 = 5.0$

False-position iterations

iteratio	$n \mid x_l$	x_u	x_r
1	0.5	5.0	1.8546
2	0.5	1.8546	1.2163
3	0.5	1.2163	1.0585

converges to true root x = 1

Secant iterations

iteration	x_{i-1}	x_i	x_{i+1}
1	0.5	5.0	1.8546
2	5.0	1.8546	-0.10438

result: divergence

- for secant both values lie on same side of the root
- false-position is robust but slower because one endpoint stays fixed
- secant usually converges faster when it works

Example: numerical comparison

comparison for $f(x) = e^{-x} - x$

Modified secant method

to avoid evaluating derivatives and two guesses

approximate derivative with perturbation δ :

$$f'(x_i) \approx \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

iterative formula

$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

- \bullet δ must be chosen carefully
 - too small → subtractive cancellation
 - too large → inefficiency or divergence
- · useful when derivatives are difficult or inconvenient

Example: modified secant

use modified secant method to solve $f(x) = e^{-x} - x$, $\delta = 0.01$, $x_0 = 1.0$

first iteration:

$$\begin{split} x_0 &= 1, \quad f(x_0) = -0.63212 \\ x_0 + \delta x_0 &= 1.01, \quad f(x_0 + \delta x_0) = -0.64578 \\ x_1 &= 1 - \frac{0.01(-0.63212)}{-0.64578 - (-0.63212)} = 0.537263, \quad |\varepsilon_t| = 5.3\% \end{split}$$

second iteration:

$$x_1 = 0.537263, \quad f(x_1) = 0.047083$$

 $x_1 + \delta x_1 = 0.542635, \quad f(x_1 + \delta x_1) = 0.038579$
 $x_2 = 0.537263 - \frac{0.005373(0.047083)}{0.038579 - 0.047083} = 0.56701, \quad |\varepsilon_t| = 0.0236\%$

third iteration:

$$x_2 = 0.56701, \quad f(x_2) = 0.000209$$

 $x_2 + \delta x_2 = 0.572680, \quad f(x_2 + \delta x_2) = -0.00867$
 $x_3 = 0.56701 - \frac{0.00567(0.000209)}{-0.00867 - 0.000209} = 0.567143, \quad |\varepsilon_t| = 2.365 \times 10^{-5}\%$

• method converges rapidly to true root 0.56714329

Summary

Method	Formulation	Graphical Interpretation	Errors and Stopping Criteria
Newton-Raphson	$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$	Tangent x_{i+1} x_i	Stopping criterion: $\begin{vmatrix} x_{i+1} - x_i \\ x_{i+1} \end{vmatrix} 100\% \le e_a$ Error: $E_{i+1} = O(E_i^2)$
Secant	$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$	f(x) h	Stopping criterion: $\left \frac{X_{i+1} - X_{i}}{X_{i+1}}\right 100\% \le e_{s}$

Outline

- fixed point iteration
- Newton Raphson
- secant method
- modified Newton Raphson

Multiple roots

a **multiple root** occurs when a function is tangent to the *x*-axis at the root

example: double root (touches the axis at x = 1 without crossing)

$$f(x) = (x-3)(x-1)(x-1) = x^3 - 5x^2 + 7x - 3$$

• example: triple root (tangent and crosses the axis at x = 1)

$$f(x) = (x-3)(x-1)^3 = x^4 - 6x^3 + 12x^2 - 10x + 3$$

• rule of thumb: even multiplicities touch but do not cross; odd multiplicities cross

Why multiple roots are tricky

- 1. **bracketing methods fail for even multiplicities:** f does not change sign, so bracketing tests may not detect the root
- 2. derivative vanishes at the root: $f'(x^*) = 0$ as well as $f(x^*) = 0$
 - Newton and secant divide by $f' \Rightarrow$ possible division by values near zero
 - practical safeguard: check $|f(x_i)|$ first and terminate when below tolerance (since f reaches 0 before f')
- 3. **slower convergence:** standard Newton and secant become *linearly* convergent for multiple roots

Modified Newton method

Modified Newton method for known multiplicity

$$x_{i+1} = x_i - m \frac{f(x_i)}{f'(x_i)}$$

- m is root multiplicity
- modify Newton to restore quadratic convergence
- requires prior knowledge of m

Modified Newton method: applies Newton to $u(x) = \frac{f(x)}{f'(x)}$

$$x_{i+1} = x_i - \frac{u(x_i)}{u'(x_i)} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$

- $u(x) = \frac{f(x)}{f'(x)}$ has same roots as f(x)
- regains fast (quadratic) convergence at multiple roots

use both the standard and modified Newton-Raphson to find the multiple root

$$f(x) = (x-3)(x-1)^2 = x^3 - 5x^2 + 7x - 3$$

- starting from $x_0 = 0$
- we have

$$f'(x) = 3x^2 - 10x + 7,$$
 $f''(x) = 6x - 10$

(standard) Newton

$$x_{i+1} = x_i - \frac{x_i^3 - 5x_i^2 + 7x_i - 3}{3x_i^2 - 10x_i + 7}$$

modified Newton

$$x_{i+1} = x_i - \frac{(x_i^3 - 5x_i^2 + 7x_i - 3)(3x_i^2 - 10x_i + 7)}{(3x_i^2 - 10x_i + 7)^2 - (x_i^3 - 5x_i^2 + 7x_i - 3)(6x_i - 10)}$$

Example: results

(standard) Newton

i	x_i	$ arepsilon_t $ (%)
0	0.0000000	100
1	0.4285714	57
2	0.6857143	31
3	0.8328654	17
4	0.9133290	8.7
5	0.9557833	4.4
6	0.9776551	2.2

behavior: steady but linear approach to

$$x^* = 1$$

modified Newton

i	x_i	$ \varepsilon_t $ (%)
0	0.000000	100
1	1.105263	11
2	1.003082	0.31
3	1.000002	2.4×10^{-4}

behavior: rapid (quadratic) approach to $x^* = 1$

to estimate root x = 3, we start at $x_0 = 4$

standard Newton

i	x_i	$ arepsilon_t $ (%)
0	4.000000	33
1	3.400000	13
2	3.100000	3.3
3	3.008696	0.29
4	3.000075	2.5×10^{-3}
5	3.000000	2×10^{-7}

modified Newton

mounied Newton			
i	x_i	$ \varepsilon_t $ (%)	
0	4.000000	33	
1	2.636364	12	
2	2.820225	6.0	
3	2.961728	1.3	
4	2.998479	0.051	
5	2.999998	7.7×10^{-5}	

- for a simple root, standard Newton is slightly more efficient
- and requires fewer computation (no f'')

Modified secant method for multiple roots

- modified version of the secant method suited for multiple roots can also be developed
- apply secant method on u(x) = f(x)/f'(x)
- the resulting formula is:

$$x_{i+1} = x_i - \frac{u(x_i)(x_{i-1} - x_i)}{u(x_{i-1}) - u(x_i)}$$

References and further readings

- S. C. Chapra and R. P. Canale. Numerical Methods for Engineers (8th edition). McGraw Hill, 2021. (Ch.6)
- S. C. Chapra. Applied Numerical Methods with MATLAB for Engineers and Scientists (5th edition).
 McGraw Hill, 2023. (Ch.6)

references SA FIGRROR 4.35