

Aufgaben Tag 2

9 Konvergenz von Folgen

Untersuchen Sie die Folgen auf Konvergenz und beweisen Sie, dass die Folgen konvergieren bzw. divergieren.

a)
$$((-1)^{n+1})_{n\in\mathbb{N}} = (+1, -1, +1, -1, \dots)$$

Lösung:

Eine Folge $(a_n)_{n\in\mathbb{B}}$ ist genau dann konvergent, wenn Sie eine Cauchy-Folge ist, das heißt, wenn zu jedem $\epsilon > 0$ ein $N_{\epsilon} \in \mathbb{N}$ existiert, so dass

$$|a_n - a_k| < \epsilon, \ \forall n, k \ge N_{\epsilon}$$

erfüllt ist. Angenommen $(a_n)_{n\in\mathbb{N}}=((-1)^{n+1})$ wäre konvergent, dann existiert zu jedem $\epsilon<2$ ein $N_{\epsilon}\in\mathbb{N}$ mit $|a_n-a_k|<\epsilon=2,\ \forall n,k\geq N_{\epsilon}$ Insbesondere würde dies für k=n+1 gelten, also auch

$$|a_n - a_{n+1}| = |1 - (-1)| = 2 < 2$$

Dies ist ein Widerspruch! Also divergiert die Folge.

b)
$$(n^{-\alpha})_{n\in\mathbb{N}}$$
 für $\alpha\in\mathbb{Q},\ \alpha>0$

Lösung:

Da $\alpha \in \mathbb{Q}$, kann es also als Quotient zweier ganzer Zahlen geschrieben werden, $\alpha = \frac{p}{q}$. Da $\alpha > 0$ können wir ohne Einschränkung p, q > 0 annehmen. Wir vermuten, dass der Grenzwert der Folge $n^{-\alpha}$ gleich 0 ist. Sei $\epsilon > 0$. Wegen der Archimedischen Eigenschaft von \mathbb{R} existiert ein $N_{\epsilon} \in \mathbb{N} \subset \mathbb{Q}$ mit

$$\epsilon^{-1/\alpha} = \epsilon^{-q/p} < N_{\epsilon}$$

Hieraus folgt aber $N_{\epsilon}^{-p/q} < \epsilon$, woraus folgt:

$$0 \le n^{-\alpha} \le N_{\epsilon}^{-\alpha} < \epsilon, \ \forall n \ge N_{\epsilon}$$

Daher gilt:

$$|n^{-\alpha} - 0| = n^{-\alpha} \le N_{\epsilon}^{-\alpha} < \epsilon$$

und damit konvergiert $n^{-\alpha}$ gegen 0.

c)
$$\left(\frac{1}{\sqrt{n+1}}\right)_{n\in\mathbb{N}}$$

Lösung:

Wegen der Ungleichung

$$0 \le \frac{1}{\sqrt{n} + 1} \le \frac{1}{\sqrt{n}}$$

können wir das Einschlie Ağungskriterium anwenden: die konstante Folge 0 ist eine untere Schranke. Aus der vorigen Teilaufgabe wissen wir, dass die obere Schranke $\frac{1}{\sqrt{n}} = n^{-1/2}$ ebenfalls eine Nullfolge ist. Daher muss auch $\left(\frac{1}{\sqrt{n}+1}\right)_{n\in\mathbb{N}}$ eine Nullfolge sein, d.h.

$$\lim_{n \to \infty} \frac{1}{\sqrt{n} + 1} = 0$$

$$\overline{\mathbf{d}} \quad \left(\frac{\sqrt{n}}{\sqrt{n}+1}\right)_{n \in \mathbb{N}}$$

Wir vermuten, dass der Grenzwert 1 ist. Aus

$$0 \le \frac{\sqrt{n}}{\sqrt{n}+1} \le \frac{\sqrt{n}}{\sqrt{n}} = 1$$

folgt dann:

$$\left| \frac{\sqrt{n}}{\sqrt{n}+1} - 1 \right| = 1 - \frac{\sqrt{n}}{\sqrt{n}+1} = \frac{\sqrt{n}+1 - \sqrt{n}}{\sqrt{n}+1}$$
$$= \frac{1}{\sqrt{n}+1} \xrightarrow{n \to \infty} 0$$

Die rechte Seite ist, wie wir aus der vorhergehenden Aufgabe wissen, eine Nullfolge. Somit haben wir gezeigt:

$$\lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} + 1} = 1$$

10 Folgen

Untersuchen Sie folgende Folgen auf Beschränktheit, Konvergenz, uneigentliche Konvergenz gegen $\pm \infty$ bzw. Divergenz. Geben Sie gegebenenfalls den Grenzwert an.

a)
$$a_n := \frac{1-2n^3}{n^2-n}$$

Lösung:

Merke: Jede konvergente Folge ist beschränkt.

Die Folge divergiert bestimmt gegen $-\infty$ und ist daher auch nicht beschränkt, denn mit $-2n + n^{-2}$ haben wir eine bestimmt divergente Minorante gefunden,

$$\frac{1-2n^3}{n^2+n} > -\frac{2n^3}{n^2+n} > -2n \xrightarrow{n \to \infty} -\infty$$

daraus folgt:

$$\lim_{n \to \infty} a_n = -\infty$$

b)
$$a_n := \sqrt{n+1} - \sqrt{n}$$

Lösung:

Die Folge konvergiert gegen 0 und ist somit beschränkt, denn aus der strengen Monotonie der Wurzel und der Abschätzung

$$0 \le \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
$$\le \frac{1}{\sqrt{n}} \xrightarrow{n \to \infty} 0$$

folgt wiederum, dass wir das Einschließungskriterium anwenden können, woraus folgt

$$\lim_{n \to \infty} a_n = 0$$

$$a_n := \frac{(n+1)(3n^2+n)}{2+5n^3}$$

Die Folge konvergiert gegen $\frac{3}{5}$, dem Verhältnis der Vorfaktoren der n^3 -Terme in Zähler und Nenner, und ist somit beschränkt:

$$\lim_{n \in \infty} \frac{(n+1)(3n^2+n)}{2+5n^3} = \lim_{n \to \infty} \frac{3n^34n^2+n}{5n^3+2} = \lim_{n \to \infty} \frac{3+4n^{-1}+n^{-2}}{5+2n^{-3}} = \frac{3+0+0}{5+0}$$
$$= \frac{3}{5}$$

d)
$$a_n := \sqrt{n^2 + n} - n$$

Lösung:

Wir können die Differenz der Wurzeln als Bruch umschreiben und erhalten:

$$\lim_{n \to \inf} (\sqrt{n^2 + n} - n) = \lim_{n \to \inf} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim_{n \to \inf} \frac{1}{\sqrt{1 + n^{-1}} + 1}$$

$$= \frac{1}{2}$$

Die Folge konvergiert gegen $\frac{1}{2}$ und ist daher auch beschränkt.

e)
$$a_n := \frac{(-1)^n n^2 + 3}{2n^2 + n}$$

Lösung:

Die Folge divergiert, sie hat aber zwei Häufungspunkte, nämlich $\pm \frac{1}{2}$. Die geraden Elemente der Folge konvergieren gegen $+\frac{1}{2}$, wärend die Teilfolge (a_{2n+1}) mit den ungeraden Elementen gegen $-\frac{1}{2}$ konvergiert.

$$\lim_{n \to \inf} a_{2n} = \lim_{n \to \inf} \frac{(-1)^{2n} (2n)^2 + 3}{2(2n)^2 + (2n)} = \lim_{n \to \inf} \frac{1 + 3(2n)^{-2}}{2 + (2n)^{-1}}$$
$$= +\frac{1}{2}$$

Trotzdem ist (a_n) beschränkt, da

$$\left|\frac{(-1)^n n^2 + 3}{2n^2 + n}\right| \le \frac{n^2 + 3}{2n^2 + n} = \frac{1 + 3n^{-2}}{2 + n^{-1}} \le \frac{1 + 3 \cdot 1}{2} = \frac{4}{2} = 2$$

$$f) \quad a_n \coloneqq \left(1 - \frac{1}{n^2}\right)^n$$

Lösung:

Die Folge konvergiert gegen 1 und ist somit beschränkt. Das folgert man wieder aus dem Einschließungskriterium, da $-n^{-2} > -1$ für $n \ge 2$ ist (wir sind an dem Verhalten für gro \tilde{A} §e n interessiert!), können wir die Bernoulli-Ungleichung anwenden und erhalten so

$$1 - \frac{1}{n} = 1 - n \frac{1}{n^2} \le (1 - n^{-2})^n \le 1$$

Die linke Seite konvergiert gegen 1, die rechte Seite ist die konstante Folge 1. Daher muss auch

$$\lim_{n \to \infty} a_n = 1$$

gelten.

Übersetzen Sie Folgendes in die jeweils â Ä Ÿandere Spracheâ Ă Ź
 und erläutern Sie die Konzepte. Bezeichne $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} .

a)
$$\lim_{n \to \infty} a_n = a$$

Lösung:

$$\forall \epsilon > 0 \; \exists N_{\epsilon} \in \mathbb{N} : |a_n - a| < \epsilon \; \forall n > N_{\epsilon}$$

b) (a_n) ist beschränkt

Lösung:

$$\exists M > 0: |a_n| \leq M \ \forall n \in \mathbb{N}$$

c) (a_n) ist monoton fallend

Lösung:

$$a_{n+1} \le a_n \ \forall n \in \mathbb{N}$$

d) Es existiert ein größtes $b \in \mathbb{N}$ derart, dass $b \leq a_n \ \forall n \in \mathbb{N}$

Lösung:

$$b = \inf\{a_n\}_{n \in \mathbb{N}}$$

(Wichtig ist, dass für die Existenz des Infimums die Vollständigkeit von \mathbb{R} wesentlich ist.)

12 Konvergenz von Reihen

Untersuchen Sie, ob folgende Reihen (absolut) konvergieren.

a)
$$\sum_{n=0}^{\infty} (-1)^n \frac{2^n}{n!}$$

Lösung:

Nach dem Quotientenkriterium konvergiert die Reihe:

$$\frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} = \frac{2}{n+1} \xrightarrow{n \to \infty} 0$$

b)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

Lösung

Nach dem Quotientenkriterium konvergiert die Reihe nicht:

$$\frac{\frac{n^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \frac{(n+1)^{n+1}}{(n+1)n^n} = \left(1 + \frac{1}{n}\right)^n \xrightarrow{n \to \infty} e > 1$$

c)
$$\sum_{n=0}^{\infty} \frac{n^9}{2^n}$$

Lösung:

Die Reihe konvergiert nach dem Wurzelkriterium:

$$\left(\frac{n^9}{2^n}\right)^{1/n} = \frac{\left(\sqrt[n]{n}\right)^9}{2} \xrightarrow{n \to \infty} \frac{1}{2} < 1$$

d)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

Die Reihe divergiert nach dem Minorantenkriterium, da für alle $n \ge 1$ die Ungleichung $\sqrt{n} \le n$ gilt, können wir die Reihe durch die harmonische Reihe abschätzen,

$$\sum_{n=1}^{N} \frac{1}{\sqrt{n}} \ge \sum_{n=1}^{N} \frac{1}{n} \xrightarrow{N \to \infty} +\infty$$

13 Konvergenz von Potenzreihen

Geben Sie die Konvergenzradien von folgenden Reihen in Abhängigkeit von $a \in \mathbb{R}$ an:

a)
$$\sum_{n=2}^{\infty} \prod_{k=2}^{n} \left(1 - \frac{a}{k}\right)^{k} z^{n}$$

Lösung:

Aus dem Quotientenkriterium folgt:

$$\frac{\prod_{k=2}^{n+1} \left(1 - \frac{a}{k}\right)^k}{\prod_{k=2}^{n} \left(1 - \frac{a}{k}\right)^k} = \left(1 - \frac{a}{n+1}\right)^{n+1} \xrightarrow{n \to \infty} e^{-a} = R^{-1}$$

Der Konvergenzradius ist somit $R = e^a$.

b)
$$\sum_{n=1}^{\infty} \left(1 + \frac{(-1)^n a}{n}\right)^{n^2} z^n$$

Lösung:

Aus dem Wurzelkriterium folgt:

$$\left[\left(1 + \frac{(-1)^n a}{n} \right)^{n^2} \right]^{1/n} = \left(1 + \frac{(-1)^n a}{n} \right)^n$$

besitzt zwei Häufungspunkte, e^a , e^{-a} , d.h.

$$R = \min\{e^{-a}(=1/e^a), e^a(=1/e^{-a})\}\$$

c)
$$\sum_{n=1}^{\infty} {a \choose n} z^n$$
, $a \in \mathbb{N}$

Lösung:

Die Reihe bricht nach endlich vielen Termen ab, da $\binom{a}{n} = 0$, $\forall n > a$. Somit ist der Konvergenzradius unendlich, $R = \infty$.

14 Teleskopsummen

Berechnen Sie folgende Reihenwerte:

Hinweis: Machen Sie eine Partialbruchzerlegung und schreiben Sie die Summe als Teleskopsumme um.

$$\overline{\mathbf{a}) \quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)}}$$

Man kann die Summanden in folgende Teile zerlegen:

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

Eingesetzt in die Partialsummen folgt:

$$s_N := \sum_{n=1}^{N} \frac{1}{n(n+1)} = \sum_{n=1}^{N} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{n+1} = 1 - \frac{1}{N+1}$$

Die Partialsummen konvergieren also gegen 1:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{N \to \infty} s_N = \lim_{N \to \infty} \left(1 - \frac{1}{N+1} \right) = 1$$

b)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

Lösung:

Man kann die Summanden in folgende Teile zerlegen:

$$\frac{1}{n^2 - 1} = \frac{1}{(n+1)(n-1)} = \frac{1}{2} \frac{1}{n-1} - \frac{1}{2} \frac{1}{n+1}$$

Eingesetzt in die Partialsummen folgt:

$$s_N := \sum_{n=2}^N \frac{1}{n^2 - 1} = \frac{1}{2} \sum_{n=2}^N \frac{1}{n - 1} - \frac{1}{2} \sum_{n=2}^N \frac{1}{n + 1} = \frac{1}{2} \sum_{n=1}^{N-1} \frac{1}{n} - \frac{1}{2} \sum_{n=3}^{N+1} \frac{1}{n}$$
$$= \frac{1}{2} \left(1 \frac{1}{2} - \frac{1}{N} - \frac{1}{N+1} \right) = \frac{3}{4} - \frac{1}{2N} - \frac{1}{2(N+1)}$$

Die Partialsummen konvergieren also gegen $\frac{3}{4}$

$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1} = \lim_{N \to \infty} s_N = \lim_{N \to \infty} \left(\frac{3}{4} - \frac{1}{2N} - \frac{1}{2(N+1)} \right) = \frac{3}{4}$$

15 Freitag vor zwei Wochen

Fritz vergeht sich an einer vollen Literflasche Whisky seines Vaters folgendermaßen: Er trinkt immer wieder einen minimalen Bruchteil λ des Inhalts und füllt mit Wasser nach, bis schliesslich die Whiskykonzentration in der Flasche auf $\leq \frac{1}{2}$ gesunken ist. Wieviel Liter Whisky und wieviel Liter Wasser hat Fritz dabei im Ganzen getrunken? Berechen Sie die Grenzwerte für $\lambda \to 0$.

Lösung:

Es bleibt nach jedem Schluck $(1-\lambda)$ mal der vorherigen Menge Whisky in der Flasche zurück. Also gilt nach n Schlucken:

$$(1 - \lambda)^n$$
Whisky in der Flasche $1 - (1 - \lambda)^n$ Whisky in der Fritz

Insgesamt trinkt Fritz $n \cdot \lambda$ Liter Flüssigkeit, also $n \cdot \lambda - [1 - (1 - \lambda)^n]$ Liter Wasser. Bestimme nun die Anzahl der Schlucke, die nötig sind, um die Hälfte des Whisky zu trinken:

$$(1 - \lambda)^n \le \frac{1}{2}$$
$$n \ge \frac{\log 0.5}{\log(1 - \lambda)}$$

Fritz trinkt für $\lambda \to 0$ also einen halben Liter Whisky und

$$n\lambda - [1 - (1 - \lambda)^n] \ge \frac{-\log 2}{\log(1 - \lambda)} \cdot \lambda - \left[1 - e^{\left(\frac{-\lambda \log 2}{\log(1 - \lambda)} \cdot \log(1 - \lambda)\right)}\right]$$
$$= \frac{-\lambda \log 2}{\log(1 - \lambda)} - \frac{1}{2}$$

Liter Wasser. Im Grenzwert $\lambda \to 0$ gilt unter Verwendung von Bernoulli und der Regel von l'Hopital:

$$\lim_{\lambda \to 0} \left(\frac{-\lambda \log 2}{\log (1-\lambda)} - \frac{1}{2} \right) = \log 2 \lim_{\lambda \to 0} \log (1-\lambda) - \frac{1}{2} = \log 2 - \frac{1}{2}$$

16 Stetigkeit

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig in $x_0 \in \mathbb{R}$. Beweisen Sie, dass f in einer Umgebung von x_0 beschränkt ist.

Lösung:

Aus der Definition von Stetigkeit gilt für f:

$$\forall \epsilon > 0 \ \exists \delta : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Es gilt also:

$$|f(x)| = |f(x) - f(x_0) + f(x_0)| \le |f(x) - f(x_0)| + |f(x_0)|$$

Daraus folgt:

$$|x - x_0| > \delta \Rightarrow |f(x)| \le |f(x) - f(x_0)| + |f(x_0)| < \underbrace{\epsilon + |f(x_0)|}_{=:C}$$

Somit erfüllen

$$U(x_0) := \{ x \in \mathbb{R} \mid |x - x_0| < \delta \}$$
$$C := \epsilon + |f(x_0)|$$

für ein $\epsilon > 0$ die verlangte Bedingung.

17 Ableiten

Betrachten Sie die folgenden Funktionen als Funktionen auf geeigneten Teilmengen von \mathbb{R} . Berechnen Sie für $a, b > 0, \alpha\beta \neq 0$ und $s \neq 0$ die folgenden Grenzwerte:

a)
$$\lim_{t\to 0} \frac{\sin(t)}{t}$$

Lösung:

l'Hospital:
$$\lim_{t\to 0} \frac{\sin(t)}{t} = 1$$

18 Differenzierbarkeit und mehr

Sei

$$f(t) \coloneqq \begin{cases} t + 2t^2 \sin\left(\frac{1}{t}\right), \ t \in \mathbb{R} \setminus \{0\} \\ 0, \ t = 0 \end{cases}$$

Verifizieren Sie die folgenden Aussagen:

a) f ist differenzierbar

Lösung:

$$f'(t) = 1 + 4t\sin(1/t) - 2\cos(1/t), \ t \neq 0$$
$$f(0) = \lim_{t \to 0} (1 + 2t\sin(1/t)) = 1$$

b) f' ist auf (-1,1) beschränkt

Lösung:

$$f'(t) = 1 + 4t\sin(1/t) - 2\cos(1/t), \ t \neq 0$$

$$f(0) = \lim_{t \to 0} (1 + 2t\sin(1/t)) = 1$$

c)
$$f'(0) = 1$$

Lösung:

$$f'(t) = 1 + 4t\sin(1/t) - 2\cos(1/t), \ t \neq 0$$

$$f(0) = \lim_{t \to 0} (1 + 2t\sin(1/t)) = 1$$

d) f ist auf keinem Intervall $(-\epsilon, \epsilon)$, $\epsilon > 0$ monoton wachsend

Lösung:

In jedem Intervall $(-\epsilon, \epsilon)$ kann ein \tilde{t} gefunden werden mit

$$\frac{1}{\tilde{t}} \in (2\mathbb{Z}+1) \cdot \pi$$

Dann gilt $f'(\tilde{t}) = -1$