

Description

Features

● 20V, 30A

 $R_{DS(ON)}$ < 11.2m Ω @ V_{GS} =4.5V $R_{DS(ON)}$ < 17.5m Ω @ V_{GS} =2.5V

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- Load Switch
- PWM Application
- Power management

100% UIS 100% ΔVds

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM30N02-T2	VSM30N02	TAPING	TO-252	13inch	2500	25000

Absolute Maximum Ratings (Tc=25°C unless otherwise specified)

Symbol	Parameter	Max.	Units	
V_{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage		±12	V
I _D	Continuous Drain Current	T _C = 25°C	30	Α
	Continuous Drain Current	T _C = 100°C	20	Α
I _{DM}	Pulsed Drain Current note1		120	Α
E _{AS}	Single Pulsed Avalanche Energy note2	23	mJ	
P _D	Power Dissipation	T _C = 25°C	20	W
R _{0JC}	Thermal Resistance, Junction to Case	7.5	°C/W	
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +175	$^{\circ}$ C	

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250μA	20	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V,	-	-	1.0	μΑ		
I _{GSS}	Gate to Body Leakage Current	V _{DS} =0V, V _{GS} =±12V	-	-	±100	nA		
On Charac	On Characteristics							
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	0.5	0.75	1.2	V		
В	Static Drain-Source on-Resistance	V _{GS} =4.5V, I _D =15A	-	8	11.2	mΩ		
$R_{DS(on)}$		V _{GS} =2.5V, I _D =10A	-	11.7	17.5			
Dynamic Characteristics								
C _{iss}	Input Capacitance	101/11/101/	-	1000	-	рF		
Coss	Output Capacitance	V _{DS} =10V, V _{GS} =0V, f=1.0MHz	-	182	-	pF		
C _{rss}	Reverse Transfer Capacitance	- I=1.0WIDZ	-	164	-	pF		
Qg	Total Gate Charge	\/ 40\/ L 45A	-	15	-	nC		
Q _{gs}	Gate-Source Charge	V _{DS} =10V, I _D =15A, V _{GS} =4.5V	-	2	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS-4.5V	-	5.2	-	nC		
Switching	Switching Characteristics							
t _{d(on)}	Turn-on Delay Time	\/ -40\/	-	9	-	ns		
t _r	Turn-on Rise Time	V_{DS} =10V, V_{DS} =15A, V_{GEN} =3 V_{DS} ,	-	25	-	ns		
t _{d(off)}	Turn-off Delay Time	$V_{GS}=4.5V$	-	37	-	ns		
t _f	Turn-off Fall Time	VGS-4.5V	-	14	-	ns		
Drain-Soul	rce Diode Characteristics and Maxim	um Ratings						
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	30	Α		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	120	Α		
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} =0V, I _S =30A	-	-	1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} EAS condition: TJ=25 $^{\circ}$ C, VDD=10V, VG=4.5V, L=0.5mH, RG=25 Ω , IAS=9.6A

^{3.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤0.5%

Typical Performance Characteristics

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Case Temperature

Test Circuit

Figure1:Gate Charge Test Circuit & Waveform

Figure 2: Resistive Switching Test Circuit & Waveforms

Figure 3:Unclamped Inductive Switching Test Circuit & Waveforms