CS 486 - Introduction to Artificial Intelligence

Summer 2018

Lecture 2: May 8th, 2018

Lecturer: Alice Gao Notes By: Harsh Mistry

2.1 What is Artificial Intelligence?

Artificial intelligence is

- Systems that think like humans
- Systems that think rationally
- Systems that act like humans
- Systems that act rationally

2.1.1 Thinking humanly or The Cognitive Modelling Approach

Definition 2.1 Thinking humanly is referred to as The Cognitive Modelling Approach

Definition 2.2 Cognitive science is a field which combines computer science and psychology to develop a tested model of the human brain

2.1.2 Acting Humanly or The Turing Test Approach

Definition 2.3 The Turing test is a test that determines if a system is able to act humanly

The Turing Test and the Total Turing Test has given rise to 6 area of AI

- Understand natural language
- Store knowledge
- Able to reason
- Able to learn and adapt

2.1.3 Thinking Rationally or The Laws of Thought Approach

Definition 2.4 Rationality is an abstract "idea" of intelligence, rather than "whatever humans do"

The law of thought approach:

- Convert everything to logic and derive conclusions from logic
- Difficult to take day to day ideas and translate into logic
- There will be way to many logical statements which would overcomplicate the system and reduce efficiency

2.1.4 Acting Rationally or The Rational Agent Approach

- System acts to achieve the best expected outcome
- A rational agent acts to achieve the best (expected) outcome learn from experience

2.1.5 Definition for 486

- System is intelligent if and only if it acts rationally
- Rationality is well defined, thus easier to scientifically study

2.2 Sensors, Actuators, and Rational Agents

2.2.1 Agents

- Agents are entitles that:
 - Interact with the environment.
 - Perceive the environment using sensors.
 - Act on the environment using actuators.

Definition 2.5 Rational Agent: For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the evidence provided by the percept sequence and whatever prior knowledge the agent has.

2.2.2 Properties of Task Environments *

- Problems are Task Environments
- Solutions are Rational Agents
- Properties of the task environment
 - Fully observable vs. partially observable
 - Deterministic vs. stochastic
 - Static vs. dynamic
 - Episodic vs. sequential
 - Known vs. unknown
 - Single agent vs. multi-agent

2.2.2.1 Uncertainty

- Fully Observable- The agent knows the state of the world
- Partial Observable Many states are possible given an observation

2.2.2.2 Uncertain dynamics

- Deterministic: the next state is completely determined given the current state and the action
- Stochastic: the current state and an action can lead to multiple possible next states

2.2.2.3 Changing environment

- Static: the environment does not change
- Dynamic: the environment changes while the agent interacts with it Ex. autonomous cars, medical diagnosis

2.2.2.4 Long-term consequences of actions

- Episodic: current action does not affect future actions
- Sequential: current action could affect all future actions

2.2.2.5 Learning the rules of the environment

- Known: the agent knows all the rules of the environment
- Unknown: the agent does not know all the rules of the environment
- Known/Unknown are different from Fully/Partially observables

2.2.2.6 Number of agents

- \bullet Single agent: the agent assumes that any other agents are part of the environment
- Multi-agent: the agent explicitly models other agents and reasons strategically about the other agents