# Trig Final (Practice v3)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

#### Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The arc length is 18 meters. The angle measure is 4.6 radians. How long is the radius in meters?



## Question 2

Consider angles  $\frac{13\pi}{4}$  and  $\frac{-8\pi}{3}$ . For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for  $\cos\left(\frac{13\pi}{4}\right)$  and  $\sin\left(\frac{-8\pi}{3}\right)$  by using a unit circle (provided separately).



Find  $cos(13\pi/4)$ 



Find  $sin(-8\pi/3)$ 

#### Question 3

If  $\sin(\theta) = \frac{60}{61}$ , and  $\theta$  is in quadrant II, determine an exact value for  $\tan(\theta)$ .

## Question 4

A mass-spring system oscillates vertically with a frequency of 3.66 Hz, a midline at y = -7.54 meters, and an amplitude of 2.65 meters. At t = 0, the mass is at the midline and moving up. Write an equation to model the height (y in meters) as a function of time (t in seconds).