Ziel Strömungen mit schall auf verschiedene Eig. zu untersuchen
Theorie 1111 1111 1111 1111 1111 1111 1111 1
> Frequenzbereich Ultraschall: 20 kHz bis 16Hz (über hörbaren Schall)
> Doppler-Effekt:
· Frequenzänderung durch Relativgeschwindigket zwischen Sender und Emptängr
• bewegende Schallquelle: $\frac{V_0}{\sqrt{T_0}}$ bewegender Beobachier: $\frac{V_0}{\sqrt{T_0}}$
• Mit Abbildung rechts: (d: Winkel 2w. Wellenvelder der Strömungswelle & einbufender/auslaufender Schallwelle)
$\Delta V = V_0 \frac{V_{\text{str}}}{C} \cos(a)$
weil Impuls - Echo - Verfahren (sender = Emplânger) = 22 = 226 c cos(a)
mehr Theorie US2]
WEIT FEORE GOOT
Urchführung
> aneinander gereihte Acrylglasrohre (7,10,16 mm) gebüllt mit Hischung aus Wasser, Glycein & Glaskugeln
> in jedem Abschnitt Doppler-Prisma für Winkel 15°, 30° und 45° zur Normalien dur Rohre
>Pumpe
> 2 MHz-Sorde - auslesen mit "Flow-View" - Programm
> Strömungsgeschu.:
- drei Wintel bei 7mm a 16 mm Rohrdurchmesser, Durchflussrale Zwischen 3 ¹ /min a 6 ¹ /min
> Strömungsprofil:
-7 mm and 10 mm Rohr, bei Durchflussrate 34/min and 64/min
- DV in Abhangigheit der Tielle
Schally. Doppler 61.
> Strömmungsgeschw: Vstr = 27. cosw , wobei d = 90° - arcsin (sin (6) Cp) schally Prismen
- Vstr + cosia) geplottet
-b alle auf einer Geraden, so wohl von 7 mm k 16 mm für jede 7(usstate
>Stromungsprohil:
- Parabelformieger Anstieg
Diskussion
> geschw: Hesswerte streven für höhere geschw. wegen Ablesedehter
> Profil: besserer Effekt bei höherer rumpleisteng