Statistical Physics (2nd tierce exam)

Name:

ID:

1.	(a)	(b)	(c)	(d)
2.	(a)	(b)	(c)	(d)
3.	(a)	(b)	(c)	(d)
4.	(a)	(b)	(c)	(d)
5.	(a)	(b)	(c)	(d)
6.	(a)	(b)	(c)	(d)
7.	(a)	(b)	(c)	(d)
8.	(a)	(b)	(c)	(d)
9.	(a)	(b)	(c)	(d)
10.	(a)	(b)	(c)	(d)
11.	(a)	(b)	(c)	(d)
12.	(a)	(b)	(c)	(d)
13.	(a)	(b)	(c)	(d)
14.	(a)	(b)	(c)	(d)
15.	(a)	(b)	(c)	(d)

- 1. Non-interacting gas follow $PV = NK_BT$ and $U = \frac{3}{2}NK_BT$, when particle in the gas follow energy (ϵ) and momentum (p) relation:
 - (a) $\epsilon = pc$
 - (b) $\epsilon = p^2/(2m)$
 - (c) $\epsilon = pv_F$ ($v_F = \text{constant}$, called Fermi velocity)
 - (d) none of the above
- 2. A (one dimensional) classical harmonic oscillator (CHO) with mass m and spring constant k can oscillate with angular frequency $\omega = \sqrt{\frac{k}{m}}$. Its total energy $\epsilon = \frac{p^2}{2m} + \frac{kx^2}{2}$ is constant and so, its phase-space diagram shows an elliptical trajectory, which can be a circle for

 - (a) $k = b \times m^2$ (b = 1 with dimension M^2T^{-2}) (b) $k = b \times m$ (b = 1 with dimension M^2T^{-2})
 - (c) k = b/m (b = 1 with dimension M^2T^{-2})
 - (d) none of the above
- 3. For above question, radius R of circle in phase-space diagram will be
 - (a) $R = 2m\epsilon$
 - (b) $R = \sqrt{2m\epsilon}$
 - (c) $R = \sqrt{4m\epsilon/k}$
 - (d) none of the above
- 4. Assuming a canonical ensemble (CE) of N no of one dimensional CHO (as demonstrated in earlier questions), partition function $Z = \left[\int \frac{dxdp}{h} e^{(\epsilon/K_BT)} \right]^N$ (K_B is Boltzmann constant) can be obtained as

 - (a) $Z = \left[\frac{mKT}{\hbar\sqrt{b}}\right]^N$ (b) $Z = \left[\frac{mKT}{\hbar b}\right]^N$ (c) $Z = \left[\frac{KT}{\hbar\sqrt{b}m}\right]^N$
- 5. Helmholtz free energy A can be expressed in terms of partition function Z as $A(T, N, V) = -K_B T \ln Z(T, N, V)$. If partition function of a gas, having three dimensional CHO with angular frequency ω is $Z = \left(\frac{KT}{\hbar\omega}\right)^{3N}$, then A(T, N, V) can be expressed as
 - (a) $A = NK_BT \ln\left(\frac{\hbar\omega}{K_BT}\right)$
 - (b) $A = 2NK_BT \ln\left(\frac{\hbar\omega}{K_BT}\right)$ (c) $A = 3NK_BT \ln\left(\frac{\hbar\omega}{K_BT}\right)$ (d) none of the above
- 6. Thermal distribution function of any particle with energy ϵ in a gas with temperature T and chemical potential μ can be written in a general form $f(\epsilon, T, \mu) = 1/[exp\{(\epsilon - \mu)/K_BT\} + \eta]$, which will be Fermi-Dirac (FD), Bose-Einstein (BE), and Maxwell-Boltzmann (MB) distribution for
 - $(a) \eta = +1, -1, 0$
 - (b) $\eta = -1, +1, 0$
 - (c) $\eta = 0, -1, +1$
 - (d) none of the above.

- 7. In Large Hadron Collider (LHC) experiments, apart from neutron n and proton p with spin $\hbar/2$, many other particles like pion π , Kaon K with spin 0; ρ , K^* mesons with spin \hbar ; Δ with spin $\frac{3\hbar}{2}$ are produced. In the context of statistical mechanics, we can classify them as
 - (a) Bosons: π , K, n, p and Fermions: ρ , $K^* \Delta$
 - (b) Bosons: π , K, ρ , K^* and Fermions: n, p, Δ
 - (c) Bosons: π , K, ρ , K^* , Δ and Fermions: n, p,
 - (d) none of the above.
- 8. No of photons N, emitting from black body at temperature T (and chemical potential $\mu = 0$) can be expressed

$$N = 2 \int_0^\infty \frac{d^3 x d^3 p}{h^3} \frac{1}{e^{\beta \epsilon} - 1}$$
 (1)

with photon's energy $\epsilon = pc$. Using the Riemann zeta function

$$\zeta(n) = \frac{1}{\Gamma(n)} \int_0^\infty \frac{x^{n-1}}{e^x - 1} \tag{2}$$

with Gamma function $\Gamma(n)=(n-1)!$ (when n is integer), we get number density as (a) $\frac{N}{V}=8\pi\left(\frac{K_BT}{hc}\right)^3\zeta(1)\Gamma(1)$ (b) $\frac{N}{V}=8\pi\left(\frac{K_BT}{hc}\right)^3\zeta(2)\Gamma(2)$ (c) $\frac{N}{V}=8\pi\left(\frac{K_BT}{hc}\right)^3\zeta(3)\Gamma(3)$ (d) none of the above

- 9. Total energy (internal energy) of photon gas at temperature T (and chemical potential $\mu = 0$) can be expressed

$$U = 2 \int_0^\infty \frac{d^3x d^3p}{h^3} \frac{\epsilon}{e^{\beta\epsilon} - 1} \tag{3}$$

with photon's energy $\epsilon = pc$. Using the Riemann zeta function (given in earlier question), we get energy density

- (a) $\frac{U}{V} = 8\pi K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(2) \Gamma(2)$ (b) $\frac{U}{V} = 8\pi K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(3) \Gamma(3)$
- (c) $\frac{U}{V} = 8\pi K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(4)\Gamma(4)$
- (d) none of the above
- 10. Energy density U/V and intensity I of photon gas is connected through relation $I = \frac{c}{4} \frac{U}{V}$, which can reproduce the famous empirical law - Stefan-Boltzmann law $I = \sigma T^4$, where
 - (a) $\sigma = 8\pi \left(\frac{K_B^4}{h^3 c^2}\right) \zeta(2) \Gamma(2)$
 - (b) $\sigma = 8\pi \left(\frac{K_B^4}{h^3c^2}\right) \zeta(3)\Gamma(3)$
 - (c) $\sigma = 8\pi \left(\frac{K_B^4}{h^3 c^2}\right) \zeta(4) \Gamma(4)$ (d) none of the above
- 11. If we see the integrand of energy density or intensity of photon gas, then it provide us the black body spectrum by using the quantum relation $\epsilon = pc = h\nu = hc/\lambda$. Which observation can not be connected with the integrand or which observation is wrong?

- (a) energy density first increases the decreases along ν or λ axis
- (b) Peak value spectrum depends on T
- (c) Peak value spectrum does not depend on T (d) none of the above
- 12. In the Eq. (3), replacing BE distribution by MB, we can get

$$U = 2 \int_0^\infty \frac{d^3 x d^3 p}{h^3} \frac{\epsilon}{e^{\beta \epsilon}} \tag{4}$$

with photon's energy $\epsilon = pc$. Using the Gamma function $\Gamma(n) = \int_0^\infty x^{n-1} e^{-x} dx$, we get energy density as

- 13. Pressure (P) of photon gas at temperature T (and chemical potential $\mu = 0$) can be expressed as

$$\frac{PV}{K_BT} = 2\int_0^\infty \frac{d^3x d^3p}{h^3} \frac{pc/3}{e^{\beta\epsilon} - 1}$$
 (5)

with photon's energy $\epsilon = pc$. Using the Riemann zeta function (given in earlier question), we get
(a) $P = \frac{8\pi}{3} K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(2) \Gamma(2)$ (b) $P = \frac{8\pi}{3} K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(3) \Gamma(3)$ (c) $P = \frac{8\pi}{3} K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(4) \Gamma(4)$

(a)
$$P = \frac{8\pi}{3} K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(2) \Gamma(2)$$

(b)
$$P = \frac{8\pi}{3} K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(3) \Gamma(3)$$

(c)
$$P = \frac{8\pi}{3} K_B T \left(\frac{K_B T}{hc}\right)^3 \zeta(4) \Gamma(4)$$

- (d) none of the above
- 14. Photons are
 - (a) Fermions and follow FD distribution
 - (b) Bosons and follow BE distribution
 - (c) classical particles and follow MB distribution
 - (d) none of the above
- 15. For any particle with spin $s\hbar$ has spin-degeneracy factor 2s+1. e.g. electron's spin is $\hbar/2$ and spin-degeneracy factor 2. In this regards, photon has an interesting properties:
 - (a) photon has spin \hbar but its spin-degeneracy factor is 2
 - (b) photon has spin $\hbar/2$ but its spin-degeneracy factor is 3
 - (c) photon has spin \hbar but its spin-degeneracy factor is 1
 - (d) none of the above