1. FORM A GENE-SPECIFIC SNP SET

 $\{SNP_1, SNP_2, ..., SNP_M\}$

LD matrix (\mathbf{R}_1)

LD matrix (\mathbf{R}_p)

2. ESTIMATE MARGINAL SNP EFECT SIZES

GWAS marginal models

(population k)

$$Y_k = SNP_1 \times \beta_{k1} + e_{k1}$$

$$Y_k = SNP_2 \times \beta_{k2} + e_{k2}$$

$$\vdots$$

$$Y_k = SNP_M \times \beta_{kM} + e_{kM}$$

Estimated effect sizes and SEs

$$\{\hat{\beta}_{k1}, \hat{\beta}_{k2}, ..., \hat{\beta}_{kM}\}$$

$$\{\operatorname{SE}(\hat{\beta}_{k1}), \operatorname{SE}(\hat{\beta}_{k2}), ..., \operatorname{SE}(\hat{\beta}_{kM})\}$$

SNP Z-statistics

$$Z_{kj} = \hat{\beta}_{kj} \times SE(\hat{\beta}_{kj})^{-1}$$

$$\mathbf{z}_1 = (Z_{11}, Z_{12}, ..., Z_{1M})^{\mathsf{T}}$$

$$\vdots$$

$$\mathbf{z}_n = (Z_{n1}, Z_{n2}, ..., Z_{nM})^{\mathsf{T}}$$

3. PERFORM MULTI-POPULATION GENE-BASED ASSOCIATION TEST (MuGenT)

MuGenT hypotheses

$$H_0: \cap_{j=1}^M \cap_{k=1}^p \beta_{kj} = 0, \qquad H_1: \cup_{j=1}^M \cup_{k=1}^p \beta_{kj} \neq 0$$

Test statistic T

$$\mathbf{Z} = (\mathbf{z}_1, \dots, \mathbf{z}_p), \qquad \mathbf{1} = (1, \dots, 1)^{\mathsf{T}}$$

$$T = \mathbf{1}^{\mathsf{T}} \mathbf{Z}^{\mathsf{T}} \mathbf{Z} \mathbf{1} M^{-1}$$

Null distribution

$$T \mid H_0 \sim \text{Gamma}(\alpha_0, \xi_0)$$

$$\{\operatorname{SE}(\hat{\beta}_{k1}),\operatorname{SE}(\hat{\beta}_{k2}),\ldots,\operatorname{SE}(\hat{\beta}_{kM})\} \qquad \qquad \xi_0=Mv^{-1}, \qquad \alpha_0=M\xi_0, \qquad v=\operatorname{f}\big(\mathbf{R}_1,\ldots,\mathbf{R}_p\big)$$

Test at level α

$$T > \tau^2 \rightarrow \operatorname{Reject} H_0$$
 $T \leq \tau^2 \rightarrow \operatorname{Do} \operatorname{not} \operatorname{reject} H_0$

MuGenT + MuGenT-PH Computational Overview

Input

population 1, ..., population p

GWAS summary statistics

rsID	Z	A1	CHR	POS
rs1	-1.2	Α	1	1223
rs2	1.4	G	3	985
rs3	0.6	С	8	6583
:	÷	:	÷	÷

rsID	Z	A1	CHR	POS
rs1	-0.1	Α	1	1223
rs2	0.8	G	3	985
rs3	2.6	С	8	6583
÷	:	÷	÷	:

Allele-matched LD references

;	Subject	rs1	rs2	rs3	•••
	ID1	A/A	G/T	C/A	
	ID2	A/G	G/T	C/C	
Ī	ID3	G/G	T/T	A/A	
Ī	÷	:	:	÷	٠.
Ī					

Subject	rs1	rs2	rs3	•••
IDA	A/G	T/T	A/A	•••
IDB	G/G	G/T	C/C	•••
IDC	A/A	G/G	A/A	•••
÷	÷	÷	÷	٠.

Data preparation

Computation

Gene A
Za <- cbind(Za1, Zap)
Ra <- list(Ra1, Rap)
test_a <- mugent(Za, Ra)

Gene B
Zb <- cbind(Zb1, Zbp)
Rb <- list(Rb1, Rbp)
test_b <- mugent(Zb, Rb)

Gene C
Zc <- cbind(Zc1, Zcp)
Rc <- list(Rc1, Rcp)
test_c <- mugent(Zc, Rc)</pre>

Output

MuGenT Example for gene A > str(test_a) List of 5 \$ pval : num 4.61e-47 \leftarrow P-value testing MuGenT H_0 : num 8.44 \leftarrow α_0 (null Gamma shape) : num 1.69 $\leftarrow \qquad \qquad \xi_0$ (null Gamma rate) number of tested populations \$ sigma2 h0: num 2.96 ← # MuGenT-PH Example for gene A > mugent ph(Za, Ra) %>% str() List of 5 : num 0.00788 P-value testing MuGenT-PH H₀ \$ pval : num 20.2 — null Gamma shape : num 0.0269 — null Gamma rate : int 750 ← number of tested SNPs \$ sigma2 h0: num 27856 \to null variance