Out-of-Distribution Approach

Pierre Minier, Alexandre Valade

Enseirb-Matmeca, Bordeaux-INP

17 Janvier 2023

Introduction

Figure - Disaster Al

Introduction MINIER, VALADE 17 Janvier 2023 2 / 24

Contenu de la présentation

- Introduction
- 2 Principe
- Moodcat
- 4 OODFormer
- Conclusion

Principe (1)

Problème:

Hypothèse du monde clos

Tout ce qui n'est pas dans mes données d'entraînement est faux.

Conséquence : Impossible de traiter correctement une donnée qui sort du cadre de l'entraînement. Cependant, la donnée est quand même traitée.

Risques : Détecter une maladie dans des données erronées (biomédical), erreurs de prédictions, etc.

Principe MINIER, VALADE 17 Janvier 2023

Principe (2)

Figure – Chiffre 1

Prediction

Confidence: 99.97%

Figure - Lettre m

Lien pour tester directement

Principe Minier, Valade

Principe (3)

Données dans la distribution : In-D

Données dont les propriétés statistiques sont similaires à une classe de données d'entraînement.

Données hors de la distribution : OOD

Données dont les propriétés statistiques ne correspondent à aucune classe de données d'entraînement.

Principe Minier, Valade 17 Janvier 2023 6 / 24

Principe (4)

Causes d'OOD:

- Malfonctionnement d'un capteur
- Changement de distribution des données

Objectif : Détecter les données qui sont hors de la distribution, de manière fiable.

Méthodes communes :

- Détection par génération
- Détection par classification

Principe Minier, Valade 17 Janvier 2023 7 / 24

Principe (5)

Figure – Anomalie de style

Principe MINIER, VALADE 17 Janvier 2023 8/24

Principe (5)

Figure – Anomalie de style

Figure – Anomalie sémantique

8 / 24

Principe MINIER, VALADE 17 Janvier 2023

Principe (6)

Figure – Classification avec réjection

Principe MINIER, VALADE 17 Janvier 2023 9/24

Principe (6)

Figure – Classification avec réjection

Figure - Détection d'intrus

9 / 24

Principe MINIER, VALADE 17 Janvier 2023

Principe (7)

Opportunités:

- Arrêter le traitement d'une donnée hors de la distribution
- Inclure une nouvelle classe au modèle

Cadres d'application :

- Conduite autonome
- Surveillance
- Biomédical

MoodCat: motivations

MoodCat: Masked OOD Catcher

Objectifs:

- Détection de OOD par un classificateur formé sur des In-D.
- Détection efficace sans affecter la précision du classificateur.
- Plug-and-play : peu de manipulations pour l'intégrer

Moodcat Minier, Valade 17 Janvier 2023 11 / 24

Présentation de la méthode

Figure - Pipeline de MoodCat

Moodcat Minier, Valade 17 Janvier 2023 12 / 24

Masquage aléatoire

Génération de contenu

Les images possèdent des redondances : il faut en retirer suffisamment pour ne pas reconstruire l'image d'origine.

Deux avantages :

- Meilleur compréhension de la sémantique (OOD)
- Résumer les informations depuis l'ensemble de l'image (In-D)

Moodcat Minier, Valade 17 Janvier 2023 13 / 24

Modèle génératif

Figure - VAE entrainé In-D; DKL pour régulariser la distribution latente

Utilisation du décodeur

Génération de contenu en utilisant un remplissage aléatoire de la partie masquée de l'image d'origine en entrée du décodeur.

Moodcat MINIER, VALADE 17 Janvier 2023

14 / 24

Score

Figure - Entraînement du classifieur binaire

Coût de Hinge

$$\mathcal{L}_{\mathcal{C}_b} = ReLU(1 - \mathcal{C}_b((x, x_v'), y)) + ReLU(1 + \mathcal{C}_b((x, x_{v'}'), y'))$$

Moodcat Minier, Valade 17 Janvier 2023

15 / 24

Méthodes classiques prédictives de détection d'OOD

Méthode d'OOD classique : Ajouter de l'OOD dans les données d'entrainement.

Méthodes classiques prédictives de détection d'OOD

Méthode d'OOD classique : Ajouter de l'OOD dans les données d'entrainement.

Problèmes:

- Biaise les détections
- Ne peut pas inclure toutes les sources d'OOD

OODFormer MINIER, VALADE 17 Janvier 2023 16 / 24

Méthodes classiques prédictives de détection d'OOD

Méthode d'OOD classique : Ajouter de l'OOD dans les données d'entrainement.

Problèmes:

- Biaise les détections
- Ne peut pas inclure toutes les sources d'OOD

Idée : Détecter les données OOD avec un réseau Transformer

OODFormer Minier, Valade 17 Janvier 2023

16 / 24

OODFormer

Architectures utilisées :

- ViT (Vision Transformer)
- DEIT (Data Efficient Image Transformer)

OODFormer Minier, Valade 17 Janvier 2023 17 / 24

OODFormer

Architectures utilisées :

- ViT (Vision Transformer)
- DEIT (Data Efficient Image Transformer)

Ensembles d'entrainement:

- CIFAR-10
- CIFAR-100
- ImageNet30

MINIER, VALADE

Architecture ViT

Figure - Architecture VIT

OODFormer MINIER, VALADE 17 Janvier 2023

18 / 24

Principe d'OODFormer

Critères de discrimination

- Confiance de la prédiction Softmax
- Distance à la classe la plus similaire

Principe d'OODFormer

Critères de discrimination

- Confiance de la prédiction Softmax
- Distance à la classe la plus similaire

Hypothèse : Une donnée qui n'est pas dans la distribution d'entraînement entraînera soit une confiance très faible dans la prédiction, soit une distance importante dans l'espace des features.

OODFormer Minier, Valade 17 Janvier 2023 19 / 24

Pourquoi un transformer?

Attention : Mesure la similarité entre patchs d'une même image, en fonction de sa classe

Pourquoi un transformer?

Attention : Mesure la similarité entre patchs d'une même image, en fonction de sa classe

Echantillon ID: Attention focalisée sur l'objet classifié

Pourquoi un transformer?

Attention : Mesure la similarité entre patchs d'une même image, en fonction de sa classe

Echantillon ID: Attention focalisée sur l'objet classifié

Echantillon OOD : Attention moins focalisée (décors), prédiction non fiable

OODFormer MINIER, VALADE 17 Janvier 2023 20 / 24

Pourquoi un transformer?

Figure – Attention pour un échantillon dans la distribution d'entraînement

OODFormer Minier, Valade 17 Janvier 2023 21 / 24

Pourquoi un transformer?

Figure – Attention pour un échantillon hors de la distribution d'entraînement

OODFormer Minier, Valade 17 Janvier 2023 22 / 24

Conclusion

	MoodCat	OODFormer
Méthode	génératif	prédictif
Cadre d'application	binaire	multi-classe
Technologie	VAE	Transformer
Nécessite une base OOD	Non	Non

Conclusion Minier, Valade 17 Janvier 2023 23 / 24

Bibliographie

- [1] Rajat Koner et al. OODformer: Out-Of-Distribution Detection Transformer. 2021. DOI: 10.48550/ARXIV.2107.08976. URL: https://arxiv.org/abs/2107.08976.
- [2] Jingkang YANG et al. Generalized Out-of-Distribution Detection: A Survey. 2021. DOI: 10.48550/ARXIV.2110.11334. URL: https://arxiv.org/abs/2110.11334.
- [3] Yijun YANG, Ruiyuan GAO et Qiang XU. Out-of-Distribution Detection with Semantic Mismatch under Masking. 2022.

 DOI: 10.48550/ARXIV.2208.00446. URL: https://arxiv.org/abs/2208.00446.