YSO splinter summary

Ruud Visser

Mar. 1, 2012

YSO splinter session

CO rotational diagrams typically show two

components

YSO splinter session

- CO rotational diagrams typically show two components
- CO excitation independent of L_{bol} , T_{bol}
- Can be fit by one of two solutions:
 - low-n, high-T (10³–10⁴ cm⁻³, few 1000 K)
 - high-n, low-T (>10⁶ cm⁻³, few 100 K)

High-*n* component

- Physical picture: UV-heated gas along cavity wall
- CO (close to) thermalized
- Difficult to understand uniform excitation in all sources

Low-n component

- Physical picture: shocks within outflow cavity
- CO subthermally excited
- Uniform excitation is plausible

Implications for the CO ladder

van Kempen, Kristensen et al. (2010) Visser et al. (2012)

Implications for the CO ladder

UV-heated gas not important for integrated intensities, but remains key for narrow component in CO 6-5, 10-9 and 16-15