

normal operation

S_d	R_{d}	CLK	J	K	Q_{n+1}
0	1	Χ	Χ	Χ	0
1	0	Х	Χ	Χ	1
1	1	Х	Χ	Χ	invalid
0	0	1	0	0	Qn
0	0	1	0	1	0
0	0	1	1	0	1
0	0	1	1	1	$\overline{Q_n}$

* Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d , (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).

S_d	R_{d}	CLK	J	K	Q_{n+1}
0	1	Χ	Χ	Χ	0
1	0	Х	Χ	Χ	1
1	1	Х	Χ	Χ	invalid
0	0	1	0	0	Qn
0	0	1	0	1	0
0	0	1	1	0	1
0	0	1	1	1	$\overline{Q_n}$

normal operation

- * Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d , (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).
- * The S_d and R_d inputs may be active low; in that case, they are denoted by $\overline{S_d}$ and $\overline{R_d}$.

S_{d}	R_d	CLK	J	K	Q_{n+1}
0	1	Χ	Χ	Χ	0
1	0	Х	Χ	Χ	1
1	1	Х	Χ	Χ	invalid
0	0	1	0	0	Qn
0	0	1	0	1	0
0	0	1	1	0	1
0	0	1	1	1	$\overline{Q_n}$

normal operation

- * Clocked flip-flops are also provided with asynchronous or direct Set and Reset inputs, S_d and R_d , (also called Preset and Clear, respectively) which override all other inputs (J, K, CLK).
- * The S_d and R_d inputs may be active low; in that case, they are denoted by $\overline{S_d}$ and $\overline{R_d}$.
- * The asynchronous inputs are convenient for starting up a circuit in a known state.

* The D flip-flop can be used to delay the Data (D) signal by one clock period.

- * The D flip-flop can be used to *delay* the Data (D) signal by one clock period.
- * With J=D, $K=\overline{D}$, we have either J=0, K=1 or J=1, K=0; the next Q is 0 in the first case, 1 in the second case.

- * The D flip-flop can be used to delay the Data (D) signal by one clock period.
- * With J=D, $K=\overline{D}$, we have either J=0, K=1 or J=1, K=0; the next Q is 0 in the first case, 1 in the second case.
- * Instead of a JK flip-flop, an RS flip-flop can also be used to make a D flip-flop, with $S=D,\ R=\overline{D}.$

SEQUEL file: ee101_shift_reg_1.sqproj

* After the active clock edge, the contents of the A register $(A_3A_2A_1A_0)$ are copied to the B register.

* When the mode input (M) is 1, we have $D_0 = D_R$, $D_1 = Q_0$, $D_2 = Q_1$, $D_3 = Q_2$.

- * When the mode input (M) is 1, we have $D_0 = D_R$, $D_1 = Q_0$, $D_2 = Q_1$, $D_3 = Q_2$.
- * When the mode input (M) is 0, we have $D_0=Q_1$, $D_1=Q_2$, $D_2=Q_3$, $D_3=D_L$.

- * When the mode input (M) is 1, we have $D_0 = D_R$, $D_1 = Q_0$, $D_2 = Q_1$, $D_3 = Q_2$.
- * When the mode input (M) is 0, we have $D_0 = Q_1$, $D_1 = Q_2$, $D_2 = Q_3$, $D_3 = D_L$.
- * $M = 1 \rightarrow \text{shift right operation}$. $M = 0 \rightarrow \text{shift left operation}$.

Shift left operation

Shift left operation

Shift left operation

$\label{eq:Multiplication using shift and add} \\$

				1	0	1	1	$A_3A_2A_1A_0$ (decimal 11)
			×	1	1	0	1	$B_3B_2B_1B_0 \pmod{13}$
+			0					since $B_0 = 1$ since $B_1 = 0$
+		1						$\begin{array}{l} \text{addition} \\ \text{since } B_2 = 1 \end{array}$
+	1	1 0	1 1	0 1	1 Z	1 Z	1 Z	$\begin{array}{l} \text{addition} \\ \text{since } B_3 = 1 \end{array}$
1	0	0	0	1	1	1	1	addition (decimal 143)

Note that $\mathsf{Z}=\mathsf{0}.$ We use Z to denote 0s which are independent of the numbers being multiplied.

initialize

load 1011

since $B_0 = 1$

initialize

load 1011

add

shift

since $B_0 = 1$

initialize

load 1011

add

shift

shift

add

shift

load 1011

since $B_2 = 1$

load 0000

 $\begin{array}{l} \text{since } B_1 = 0 \\ \\ \text{add} \end{array}$

since $B_0 = 1$

M. B. Patil, IIT Bombay

* All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

- * All flip-flops are cleared in the beginning (with $R_d = \text{Clear} = 1$, $S_d = 0$).
- * When Load = 1, $S_d = A_i$, $R_d = 0 \rightarrow A_i$ gets loaded into the i^{th} flip-flop.
- * Subsequently, with every clock pulse, the data shifts right and appears serially at the output Q_0 . \rightarrow parallel in-serial out data movement

* A counter with k states is called a modulo-k (mod-k) counter.

- * A counter with k states is called a modulo-k (mod-k) counter.
- * A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).

- * A counter with k states is called a modulo-k (mod-k) counter.
- * A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
- * If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have Q=0 or Q=1). It is possible to exclude some of these states.
 - \rightarrow N flip-flops can be used to make a mod-k counter with $k \leq 2^N$.

- * A counter with k states is called a modulo-k (mod-k) counter.
- * A counter can be made with flip-flops, each flip-flop serving as a memory element with two states (0 or 1).
- * If there are N flip-flops in a counter, there are 2^N possible states (since each flip-flop can have Q=0 or Q=1). It is possible to exclude some of these states.
 - \rightarrow N flip-flops can be used to make a mod-k counter with $k \le 2^N$.
- * Typically, a reset facility is also provided, which can be used to force a certain state to initialize the counter.

X is 1 for state 3; else, it is 0.

* The counter outputs (i.e., the flip-flop outputs, Q_0 , Q_1 , \cdots Q_{N-1}) can be decoded using appropriate logic.

- * The counter outputs (i.e., the flip-flop outputs, Q_0, Q_1, \dots, Q_{N-1}) can be decoded using appropriate logic.
- * In particular, it is possible to have a decoder output (say, X) which is 1 only for state i, and 0 otherwise.
 → For k clock pulses, we get a single pulse at X, i.e., the clock frequency has been divided by k. For this reason, a mod-k counter is also called a divide-by-k counter.

* J=K=1 for all flip-flops. Let $Q_0=Q_1=Q_2=0$ initially.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.

- * J = K = 1 for all flip-flops. Let $Q_0 = Q_1 = Q_2 = 0$ initially.
- * Since J = K = 1, each flip-flop will toggle when an active (in this case, negative) clock edge arrives.
- * For FF1 and FF2, Q_0 and Q_1 , respectively, provide the clock.
- * Note that the direct inputs S_d and R_d (not shown) are assumed to be $S_d = R_d = 0$ for all flip-flops, allowing normal flip-flip operation.

 M.B. Patil, IIT Bombay

* The counter has 8 states, $Q_2 Q_1 Q_0 = 000$, 001, 010, 011, 100, 101, 110, 111. \rightarrow it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).

- * The counter has 8 states, $Q_2 Q_1 Q_0 = 000$, 001, 010, 011, 100, 101, 110, 111. \rightarrow it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).
- * If the clock frequency is f_c , the frequency at the Q_0 , Q_1 , Q_2 outputs is $f_c/2$, $f_c/4$, $f_c/8$, respectively. For this counter, therefore, div-by-2, div-by-8 outputs are already available, without requiring decoding logic.

A binary ripple counter

- * The counter has 8 states, $Q_2 Q_1 Q_0 = 000$, 001, 010, 011, 100, 101, 110, 111. \rightarrow it is a mod-8 counter. In particular, it is a binary, mod-8, up counter (since it counts up from 000 to 111).
- * If the clock frequency is f_c, the frequency at the Q₀, Q₁, Q₂ outputs is f_c/2, f_c/4, f_c/8, respectively. For this counter, therefore, div-by-2, div-by-4, div-by-8 outputs are already available, without requiring decoding logic.
- * This type of counter is called a "ripple" counter since the clock transitions *ripple* through the flip-flops.

A binary ripple counter

* If positive edge-triggered flip-flops are used, we get a binary down counter (counting down from 111 to 000).

* Home work: Sketch the waveforms (CLK, Q_0 , Q_1 , Q_2), and tabulate the counter states in each case.

Up-down binary ripple counters

Up-down binary ripple counters

* When Mode (M) = 1, the counter counts up; else, it counts down. (SEQUEL file: ee101_counter_3.sqproj)

st Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.

- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.

- st Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles after every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

- st Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles after every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

- st Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles after every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

- st Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles after every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles after every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)

- * Since all flip-flops are driven by the same clock, the counter is called a "synchronous" counter.
- * $J_0 = K_0 = 1$, $J_1 = K_1 = Q_0$, $J_2 = K_2 = Q_1 Q_0$, $J_3 = K_3 = Q_2 Q_1 Q_0$.
- * FF0 toggles after every active edge. FF1 toggles if $Q_0 = 1$ (just before the active clock edge); else, it retains its previous state. (Similarly, for FF2 and FF3)
- * From the waveforms, we see that it is a binary up counter.

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}_{n}}$
	0 0 1	0 0 0 1 1 0

CLK	Q_{n}	Q_{n+1}	J	K

* Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?

J	K	Q_{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	$\overline{Q_n}$
	0 0 1	0 0 0 1 1 0

CLK	Q_n	Q_{n+1}	J	K

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0.

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).

CLK	J	K	Q_{n+1}
1	0	0	Q_n
↑	0	1	0
1	1	0	1
1	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
1	0	1	0
1	1	0	1
1	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1		

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
1	0	0	Q_n
1	0	1	0
1	1	0	1
1	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. A = 0, A = 0,
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0		

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. A = 0, A = 0,
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
↑	0	0	Qn
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. $\rightarrow J = 0$, K = X (i.e., K can be 0 or 1).
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1		

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. A = 0, A = 0,
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
↑	0	0	Q_n
↑	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. A = 0, A = 0,
- * Similarly, work out the other entries in the table.

CLK	J	K	Q_{n+1}
1	0	0	Q_n
1	0	1	0
↑	1	0	1
↑	1	1	$\overline{Q_n}$

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

- * Consider the reverse problem: We are given Q_n and the next desired state (Q_{n+1}) . What should J and K be in order to make that happen?
- * $Q_n = 0$, $Q_{n+1} = 0$: We can either force $Q_{n+1} = 0$ with J = 0, K = 1, or let $Q_{n+1} = Q_n$ by making J = 0, K = 0. A = 0, A = 0,
- * Similarly, work out the other entries in the table.
- * The table for a negative edge-triggered flip-flop would be identical except for the active edge.

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

Design a synchronous mod-5 counter with the given state transition table.

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

* State $1 \rightarrow$ State 2 means $Q_2 \colon 0 \rightarrow 0$, $Q_1 \colon 0 \rightarrow 0$, $Q_0 \colon 0 \rightarrow 1$.

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

- * State $1 \rightarrow$ State 2 means $Q_2 \colon 0 \rightarrow 0$, $Q_1 \colon 0 \rightarrow 0$, $Q_0 \colon 0 \rightarrow 1$.
- * Refer to the right table. For Q_2 : $0 \to 0$, we must have $J_2 = 0$, $K_2 = X$, and so on.

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

- * State $1 \rightarrow$ State 2 means $Q_2 \colon 0 \rightarrow 0$, $Q_1 \colon 0 \rightarrow 0$, $Q_0 \colon 0 \rightarrow 1$.
- * Refer to the right table. For Q_2 : $0 \to 0$, we must have $J_2 = 0$, $K_2 = X$, and so on.
- * When we cover all transitions in the left table, we have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 .

CLK	Qn	Q_{n+1}	J	K
1	0	0	0	X
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

Design a synchronous mod-5 counter with the given state transition table.

Outline of method:

- * State 1 \rightarrow State 2 means
 - Q_2 : $0 \rightarrow 0$,
 - $Q_1: 0 \rightarrow 0,$
 - $Q_0: 0 \rightarrow 1.$
- * Refer to the right table. For Q_2 : $0 \to 0$, we must have $J_2 = 0$, $K_2 = X$, and so on.
- * When we cover all transitions in the left table, we have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 .
- * The last step is to come up with suitable functions for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 . This can be done with K-maps. (If the number of flip-flops is more than 4, other techniques can be employed.)

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0						
2	0	0	1						
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
↑	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
_1	0	0	0						
2	0	0	1						
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ				
2	0	0	1						
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

Q_{n}	Q_{n+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0
	0 0 1	0 0 0 1 1 0	0 0 0 0 1 1 1 0 X

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ		
2	0	0	1						
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
↑	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1						
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

Q_{n}	Q_{n+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0
	0	0 0 0 1	0 0 0 0 1 1 1 0 X

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1						
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X				
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

Q_{n}	Q_{n+1}	J	K
0	0	0	Χ
0	1	1	Χ
1	0	Χ	1
1	1	Χ	0
	0	0 0 0 1 1 0	0 0 0 0 1 1 1 0 X

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X		
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
↑	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	_1	0	X	1	X	Χ	1
3	0	1	0						
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_n	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
↑	1	0	Χ	1
1	1	1	Χ	0

_	0	^		17	-	17		17
Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	κ_0
0	0	0	0	Χ	0	Χ	1	Χ
0	0	1	0	X	1	X	Χ	1
0	1	0						
0	1	1						
1	0	0						
0	0	0						
	0 0 0 0	0 0 0 0 0 1 0 1 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0	0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0	0 0 0 0 X 0 0 1 0 X 0 1 0 0 1 1 1 0 0	0 0 0 0 X 0 0 0 1 0 X 1 0 1 0 0 1 1 1 0 0	0 0 0 0 X 0 X 0 0 1 0 X 1 X 0 1 0 0 1 1 1 0 0	0 0 1 0 X 1 X X 0 1 0 0 1 1 1 0 0

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	X	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3	0	1	0	0	X				
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Qn	Q_{n+1}	J	K
1	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3	0	_1	0	0	X	X	0		
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3	0	1	0	0	X	Χ	0	1	Χ
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3	0	1	0	0	X	Χ	0	1	X
4	0	1	1						
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3					X	Χ	0	1	Χ
4	0	1	1	1	X				
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3	0	1	0	0	X	Χ	0	1	Χ
4	0	_1	1	1	X	Χ	1		
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	X	0	Χ	1	Χ
2									
					Χ				
			_1	1	Χ	X	1	Χ	1
5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
↑	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	Χ	X	1
3	0	1	0	0	X	X	0	1	Χ
4	0	1	1	1	X	X	1	X	1
_5	1	0	0						
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0				Χ				
2	0	0	1	0	X	1	Χ	Χ	1
3	0	1	0	0	X	X	0	1	Χ
4	0	1	1	1	X	Χ	1	Χ	1
5	_1	0	0	Χ	1				
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
↑	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0				Χ				
2	0	0	1	0	X	1	Χ	Χ	1
3	0	1	0	0	X	Χ	0	1	Χ
4	0	1	1	1	X	X	1	X	1
5	1	0	0	Χ	1	0	Χ		
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
↑	0	0	0	Χ
↑	0	1	1	Χ
↑	1	0	Χ	1
↑	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0				Χ				
2	0				Χ				
3	0	1	0	0	X	X	0	1	X
4	0	1			X				
5	1	0	0	Χ	1	0	X	0	X
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0				Χ				
2	0	0	1	0	X	1	Χ	Χ	1
3	0	1	0	0	X	Χ	0	1	X
4	0	1	1	1	X	X	1	X	1
5	1	0	0	Χ	1	0	Χ	0	X
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

* We now have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 . The next step is to find logical functions for each of them.

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	X	0	Χ	1	Χ
2	0	0	1	0	X	1	Χ	Χ	1
3	0	1	0	0	Χ	Χ	0	1	Χ
4	0	1			X				
5	1	0	0	Χ	1	0	Χ	0	Χ
1	0	0	0						

CLK	Q_{n}	Q_{n+1}	J	K
1	0	0	0	Χ
1	0	1	1	Χ
1	1	0	Χ	1
1	1	1	Χ	0

- * We now have the truth tables for J_0 , K_0 , J_1 , K_1 , J_2 , K_2 in terms of Q_0 , Q_1 , Q_2 . The next step is to find logical functions for each of them.
- * Note that we have not tabulated the J and K values for those combinations of Q_0 , Q_1 , Q_2 which do not occur in the state transition table (such as $Q_2Q_1Q_0=110$). We treat these as don't care conditions.

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	Χ	1
3	0	1	0	0	X	X	0	1	Χ
4	0	1	1	1	X	X	1	X	1
5	1	0	0	Χ	1	0	X	0	Χ
1	0	0	0						

J_2	$\begin{array}{c c} Q_2Q_1 \\ Q_0 & 00 \\ \hline 0 & 0 \\ \hline 1 & 0 \\ \end{array}$	01 0	11 X	10 X X	K_2	$Q_{2}Q_{1}$ Q_{0} 00 0 X 1 X	01 X X	11 X X	10 1 X
J_1	Q_2Q_1 Q_0 00 0 1 1	01 X	11 X	10 0 X	K_1	$Q_{2}Q_{1}$ Q_{0} 00 0 X 1 X	01 0	11 X	10 X
J_0	$Q_{2}Q_{1}$ Q_{0} 00 0 1 1 X	01 1 X	11 X X	10 0 X	K_0	$Q_{2}Q_{1}$ Q_{0}	01 X 1	11 X X	10 X X

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	X	1
3	0	1	0	0	X	Χ	0	1	X
4	0	1	1	1	X	X	1	X	1
5	1	0	0	Х	1	0	X	0	Χ
1	0	0	0						

* We treat the unused states ($Q_2Q_1Q_0 = 101$, 110, 111) as (additional) don't care conditions. Since these are different from the don't care conditions arising from the state transition table, we mark them with a different colour.

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0	0	0	0	Χ	0	Χ	1	Χ
2	0	0	1	0	X	1	X	X	1
3	0	1	0	0	X	Χ	0	1	Χ
4	0	1	1	1	X	X	1	X	1
5	1	0	0	Χ	1	0	X	0	X
1	0	0	0						

- * We treat the unused states ($Q_2Q_1Q_0 = 101$, 110, 111) as (additional) don't care conditions. Since these are different from the don't care conditions arising from the state transition table, we mark them with a different colour.
- * We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, $Q_2Q_1Q_0 = 000$).

state	Q_2	Q_1	Q_0	J_2	K_2	J_1	K_1	J_0	K_0
1	0						Χ		
2							X		
3							0		
4	0	1					1		
5	1	0	0	Χ	1	0	X	0	Χ
1	0	0	0						

- * We treat the unused states ($Q_2Q_1Q_0 = 101$, 110, 111) as (additional) don't care conditions. Since these are different from the don't care conditions arising from the state transition table, we mark them with a different colour.
- * We will assume that a suitable initialization facility is provided to ensure that the counter starts up in one of the five allowed states (say, $Q_2Q_1Q_0 = 000$).
- * From the K-maps, $J_2 = Q_1 Q_0$, $K_2 = 1$, $J_1 = Q_0$, $K_1 = Q_0$, $J_0 = \overline{Q_2}$, $K_0 = 1$.

Design of synchronous counters: verification

SEQUEL file: ee101_counter_6.sqproj

Design of synchronous counters: verification

SEQUEL file: ee101_counter_6.sqproj

Design of synchronous counters: verification

SEQUEL file: ee101_counter_6.sqproj

$$\begin{array}{ll} * & J_2 = Q_1 \, Q_0, \\ & \mathcal{K}_2 = 1, \\ & J_1 = Q_0, \\ & \mathcal{K}_1 = Q_0, \\ & J_0 = \overline{Q_2}, \\ & \mathcal{K}_0 = 1. \end{array}$$

* Note that the design is independent of whether positive or negative edge-triggered flip-flops are used.

Combination of counters: example

Combination of counters: example

Combination of counters: example (same as before)

Combination of counters: example

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common applications.

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common applications.

555 timer IC

The 555 timer is useful in timer, pulse generation, and oscillator applications. We will look at two common applications.

* Monostable multivibrator

555 timer

555 timer

555 timer

Threshold	2 V _{CC} 3	R	Q	Out
Trigger	V _{CC} 3	s	Q	Discharge
			<u> </u>	

R	S	Q	Q
1	0	0	1
0	1	1	0
0	0	previous	

--- to V_{CC}

M. B. Patil, IIT Bombay

$$\begin{split} & \rightarrow \frac{2\,V_{CC}}{3} = V_{CC} \left(1 - e^{-T/\tau}\right) \\ & \rightarrow e^{-T/\tau} = \frac{1}{3} \rightarrow \boxed{T = \tau\,\log 3 \approx 1.1\,\tau} \end{split}$$

SEQUEL file: ic555_mono_1.sqproj

Charging:
$$V_C(0) = \frac{V_{CC}}{3}, \ V_C(\infty) = V_{CC}.$$

Charging:
$$V_C(0) = \frac{V_{CC}}{3}, \ V_C(\infty) = V_{CC}.$$

Let
$$V_C(t) = A e^{-t/\tau_1} + E$$

Let
$$V_C(t) = A e^{-t/\tau_1} + B$$

 $\to B = V_{CC}, \ A = -\frac{2 V_{CC}}{3}$

Charging:
$$V_C(0) = \frac{V_{CC}}{3}, \ V_C(\infty) = V_{CC}.$$

Let
$$V_C(t) = A e^{-t/\tau_1} + B$$

 $\rightarrow B = V_{CC}, \ A = -\frac{2 V_{CC}}{3}$

$$\frac{2 V_{CC}}{3} = -\frac{2 V_{CC}}{3} e^{-T_H/\tau_1} + V_{CC}$$

Charging:
$$V_C(0) = \frac{V_{CC}}{3}, \ V_C(\infty) = V_{CC}.$$

Let
$$V_C(t) = A e^{-t/\tau_1} + B$$

 $\rightarrow B = V_{CC}, \ A = -\frac{2 V_{CC}}{3}$

$$\frac{2V_{CC}}{3} = -\frac{2V_{CC}}{3} e^{-T_H/\tau_1} + V_{CC}$$

3 3
$$\rightarrow T_H = \tau_1 \log 2$$
, with $\tau_1 = (R_a + R_b) C$.

Discharging:
$$V_C(0) = \frac{2 V_{CC}}{3}, \ V_C(\infty) = 0.$$

$$\rightarrow V_C(t) = \frac{2 V_{CC}}{3} e^{-t/\tau_2}$$

$$\frac{V_{CC}}{3} = \frac{2 V_{CC}}{3} e^{-T_L/\tau_2}$$

$$\rightarrow T_L = \tau_2 \log 2$$
, with $\tau_2 = R_b C$.

Discharging:
$$V_C(0) = \frac{2 V_{CC}}{3}, V_C(\infty) = 0.$$

$$\rightarrow V_C(t) = \frac{2 V_{CC}}{3} e^{-t/\tau_2}$$

$$\frac{V_{CC}}{3} = \frac{2 V_{CC}}{3} e^{-T_L/\tau_2}$$

$$\rightarrow T_L = \tau_2 \log 2$$
, with $\tau_2 = R_b C$.

SEQUEL file: ic555_astable_1.sqproj

