PROBLEMAS DE SATÉLITES

Exemplos de resolución coa folla de cálculo: «SatelitesGal.ods»

Comezo

Cando se execute a folla de cálculo, preme sobre o botón Activar macros.

Pulse a tecla Ctrl mentres preme sobre a cela <u>Enunciado</u>, situada na parte superior dereita, ou preme, sen pulsar a tecla Ctrl, sobre a lapela <u>Financiado</u> na parte inferior.

Se precisa axuda máis detallada, pulse a tecla Ctrl mentres preme sobre a cela Axuda, situada na parte superior dereita, ou preme, sen pulsar a tecla Ctrl, sobre a lapela Axuda na parte inferior.

Datos

Preme sobre o botón Borrar datos e preme sobre o botón Aceptar do cadro de diálogo que aparecerá.

Ou preme no menú: Editar \rightarrow Seleccionar \rightarrow Seleccionar as celas desprotexidas e pulsar a tecla Supr. Borraranse todos os datos e aparecerán as opcións por defecto.

Elixa as magnitudes e unidades nas celas de color salmón e bordo vermello.

Preme sobre a cela de cor salmón e bordo vermello, preme sobre a frecha cara abaixo que aparece á súa dereita, e elixa a opción correspondente.

Escriba os datos nas celas de cor branca e bordo azul.

Preme sobre a cela de cor branca e bordo azul, e escriba nela o dato.

Pode poñer un valor en notación científica dunha destas maneiras:

- Escribindo en formato científico da folla de cálculo. P. ex.: 3E8 (que se verá como 3,00E+08).
- Escribindo en formato de texto. P. ex.: 3·10⁸.
- Seleccionando o valor noutro documento, copiándoo (Ctrl+C) e pegándoo (Ctrl+Alt+ 4+V).

Por exemplo, 3,00·10⁻⁹, supoñendo que ten 3 cifras significativas.

No primeiro caso escriba: 3E-9. Na cela aparecerá: 3,00E-09.

No segundo caso escriba 3,00·10^- ^9 . Na cela aparecerá: $3,00\cdot10^{-9}$. Borre o espazo entre $^-$ e 9 e o espazo final: $3,00\cdot10^{-9}$.

Os superíndices pódense escribir, premendo á vez as teclas � e ^ antes de cada cifra ou signo, e escribindo un espazo detrás.

Para obter o punto de multiplicación «·» prema á vez as teclas ◆ e 3.

Se ese número xa estaba nun documento, pode copiar e pegar, seguindo estes pasos:

- 1. Seleccione o número, premendo ao principio do número e arrastrando o rato ata o final.
- 2. Cópieo, premendo á vez as teclas Ctrl e C, ou elixa no menú Editar \rightarrow Copiar.
- 3. Preme sobre a cela de cor branca e bordo azul.
- 4. Pégueo, premendo á vez as teclas Ctrl, Alt, ♠ e V, ou elixa no menú: Editar → Pegado especial → Pegar texto sen formato.

Resultados

Na lapela Enunciado, onde ten escrito os datos, xa aparecen os resultados. Se quere consultar as ecuacións coas que se teñen calculado, manteña pulsada a tecla Ctrl mentres fai clic co rato no tema (Período, Altura, Peso ou Enerxía) que contén a magnitude calculada, ou faga clic co rato na lapela inferior correspondente.

Período: Raio de la órbita, masa do astro, velocidade lineal e angular, período, frecuencia do satélite. Altura: Raio da órbita, altura.

<u>Peso:</u> Valor da gravidade no chan, á altura da órbita, relación entre elas, peso do satélite e momento angular.

Enerxía: Enerxía potencial, cinética e mecánica na órbita, enerxía potencial no chan, e a enerxía ou velocidade necesaria para alcanzar a altura ou poñelo en órbita, velocidade de escape no chan e na órbita.

PROBLEMAS

- Un pequeno satélite xira ao redor da Lúa orbitando nunha circunferencia de 3 veces o raio da Lúa.
 - a) Calcula o período do satélite e determina a enerxía mecánica total que posúe o satélite na súa
 - b) Deduce e calcula a velocidade de escape desde a Lúa.

DATOS: $G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$; $M(L) = 7.35 \cdot 10^{22} \text{ kg}$; R(L) = 1740 km; m(s) = 1500 kg. (A.B.A.U. ord. 23)

Rta.: a) $T = 3.38 \cdot 10^4 \text{ s} = 9 \text{ h} 24 \text{ min}$; $E = -7.0 \cdot 10^8 \text{ J}$; b) $v_e = 2.37 \text{ km/s}$ (chan) ou 969 m/s (desde a órbita).

Cálculo do período. (Lapela | 1 Período) Raio da órbita 5.22·10⁶ m $3,00 \cdot 1,74 \cdot 10^6$ $G \cdot M = 6,67 \cdot 10^{-11} \cdot 7,35 \cdot 10^{22}$ $4.91 \cdot 10^{12} \text{ m}^3/\text{s}^2$ Velocidade do satélite $v = \sqrt{\frac{G \cdot M}{r}}$ $\frac{4,91 \cdot 10^{12}}{5,22 \cdot 10^{6}}$ 969 m/s $T = \frac{2 \cdot \pi \cdot r}{2}$ Período do satélite 338·10⁴ s

Cálculo da enerxía mecánica do satélite e da súa velocidade de escape. (Lapela 🔒 Enerxía) Na órbita Ecuacións Cálculos $E_c = \frac{1}{2} m \cdot v^2$ $E_c = 1,50 \cdot 10^3 \cdot 969^2 / 2 = 7,05 \cdot 10^8 \text{ J}$ Enerxía cinética na órbita $E_p = \frac{-G \cdot M \cdot m}{r} \qquad E_p = \frac{-4.91 \cdot 10^{12} \cdot 1.50 \cdot 10^3}{5.22 \cdot 10^6} = -1.41 \cdot 10^9 \,\text{J}$ Enerxía potencial na órbita $E = E_c + E_p$ $E = -1.41 \cdot 10^9 + 7.05 \cdot 10^8 = -7.05 \cdot 10^8 \text{ J}$ Enerxía mecánica na órbita Velocidade de escape na órbita $v_e = \sqrt{\frac{G \cdot M}{r}}$ $v_e = \sqrt{\frac{4.91 \cdot 10^{12}}{5.22 \cdot 10^6}}$ 969 m/s No chan $v_e = \sqrt{\frac{E_p = \frac{-G \cdot M \cdot m}{R}}{R}} \qquad E_p = \frac{-4,91 \cdot 10^{12} \cdot 1,50 \cdot 10^3}{1,74 \cdot 10^6} = -4,23 \cdot 10^9 \text{ J}$ $v_e = \sqrt{\frac{2 G \cdot M}{R}} \qquad v_e = \sqrt{\frac{2 \cdot 4,91 \cdot 10^{12}}{1.74 \cdot 10^6}} = 2,37 \cdot 10^3 \text{ m/s}$ Enerxía potencial no chan Velocidade de escape no chan

- 2. Un satélite artificial ten unha masa de 200 kg e unha velocidade constante de 7,00 km·s⁻¹.
 - a) Calcula a altura á que orbita.
 - b) Si nese momento fornéceselle unha enerxía igual á enerxía cinética que xa ten, calcula a que distancia da Terra podería chegar.

Datos: $g = 9.81 \text{ m} \cdot \text{s}^{-2}$; $R(T) = 6.37 \cdot 10^6 \text{ m}$.

(A.B.A.U. extr. 22)

Rta.: a) h = 1750 km; b) $r = \infty$.

Introdución de datos. (Lapela financiado)

Un satélite de masa		<i>m</i> =	200	kg
xira ao redor dun astro de masa		<i>M</i> =		kg
e raio		<i>R</i> =	6,37·10 ⁶	m
no que a gravidade no chan é		$g_o =$	9,81	m/s²
O satélite xira cunha	velocidade	v =	7	km/s

Respostas. (Lapela 🔒 Enunciado)

Elixa Altura e as súas unidades.

zima <mark>ritura</mark> e as suas unida	Altura	Velocidade	clic↓	
Órbita	1,75·10 ³ km			

Cálculo do raio da órbita. (Lapela Período)

	\ <u>1</u>				
	$G \cdot M = g_o \cdot R^2$	$G \cdot M =$	$9,81 \cdot (6,37 \cdot 10^6)^2$	=	$3,98 \cdot 10^{14} \text{ m}^3/\text{s}^2$
D : 1 / 1 · ·	$\int G \cdot M$	Γ	$3,98 \cdot 10^{14}$		0.40.406
Raio da órbita	$r = \sqrt{{v^2}}$	$r = \sqrt{}$	$(7,00\cdot10^3)^2$	_ =	8,12·10 ⁶ m

Cálculo da altura. (Lapela Altura) Altura da órbita h = r - R $h = 8,12 \cdot 10^6 - 6,37 \cdot 10^6$ = 1,75 · 10⁶ m

- 3. A aceleración da gravidade na superficie dun planeta esférico de 4100 km de raio é 7,2 m·s $^{-2}$. Calcula:
 - a) A masa do planeta.
 - b) A enerxía mínima necesaria que hai que comunicar a un minisatélite de 3 kg de masa para lanzalo desde a superficie do planeta e situalo a 1000 km de altura sobre la mesma, nunha órbita circular ao redor do planeta.

Dato: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$. **Rta.**: a) $M = 1,8 \cdot 10^{24} \text{ kg}$; b) $\Delta E = 5,30 \cdot 10^7 \text{ J}$.

(A.B.A.U. extr. 20)

Introdución de datos. (Lapela 🔒 Enunciado)

Un satélite de masa m = 3 kg xira ao redor dun astro de masa M = 2 kg e raio R = 2 4100 km no que a gravidade no chan é R = 2 7,2 m/s²

altura

Respostas. (Lapela 🔒 Enunciado)

A órbita é circular de

Elixa Enerxía no chan para poñelo en órbita.

Astro			M =	1,81·10²⁴ kg
	Enerxía no chan para	poñelo en órbita		5,30·10 ⁷ J

h =

1000 km

Cálculo da masa. (Lapela 🔒 Período)

Raio da órbita
$$r = R + h$$
 $r = 4,10 \cdot 10^6 + 1,00 \cdot 10^6 = 5,10 \cdot 10^6 \,\mathrm{m}$

Masa do astro $G \cdot M = g_0 \cdot R^2$ $G \cdot M = 7,20 \cdot (4,10 \cdot 10^6)^2 = 1,21 \cdot 10^{14} \,\mathrm{m}^3/\mathrm{s}^2$
 $M = \frac{1,21 \cdot 10^{14} / 6,67 \cdot 10^{-11}}{5,10 \cdot 10^6} = 1,81 \cdot 10^{24} \,\mathrm{kg}$

Velocidade do satélite $v = \sqrt{\frac{G \cdot M}{r}}$ $v = \sqrt{\frac{1,21 \cdot 10^{14}}{5,10 \cdot 10^6}} = 4,87 \cdot 10^3 \,\mathrm{m/s}$

Cálculo das enerxías. (Lapela 🔒 Enerxía)

Na órbita	Ecuacións	Cálculos	
Enerxía cinética na órbita	$E_c = \frac{1}{2} m \cdot v^2$	$E_c = 3.00 \cdot (4.87 \cdot 10^3)^2 / 2 =$	3,56·10 ⁷ J
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-1,21 \cdot 10^{14} \cdot 3,00}{5,10 \cdot 10^6} =$	−7,12·10 ⁷ J
Enerxía mecánica na órbita	$E = E_c + E_p$	$E = -7,12 \cdot 10^7 + 3,56 \cdot 10^7 =$	-3,56·10 ⁷ J
Velocidade de escape na órbita	$v_e = \sqrt{\frac{G \cdot M}{r}}$	$-v_e = \sqrt{\frac{1,21 \cdot 10^{14}}{5,10 \cdot 10^6}} =$	4,87·10³ J
No chan			
Enerxía potencial no chan	$E_p = \frac{-G \cdot M \cdot m}{R}$	$E_p = \frac{-1,21 \cdot 10^{14} \cdot 3,00}{1,74 \cdot 10^6} =$	−7,12·10 ⁷ J
Velocidade de escape no chan	$v_e = \sqrt{\frac{2 G \cdot M}{R}}$	$v_e = \sqrt{\frac{\frac{1,74 \cdot 10^4}{2 \cdot 1,21 \cdot 10^{14}}}{4,10 \cdot 10^6}} =$	7,68·10³ m/s
Enerxía no chan para alcanzar a altura		$\Delta E_h = -7.12 \cdot 10^7 - (-7.12 \cdot 10^7) =$	
Velocidade no chan para alcanzar a altura	$v_h = \sqrt{\frac{2\Delta E_h}{m}}$	$-v_h = \sqrt{\frac{2 \cdot 1,74 \cdot 10^7}{3,00}} =$	3,40·10³ m/s
Enerxía no chan para poñelo en órbita	$\Delta E_o = E (\acute{o}rb) - E_p (c)$	$\Delta E_o = -3,56 \cdot 10^7 - (-7,12 \cdot 10^7) =$	5,30·10 ⁷ J
Velocidade no chan para poñelo en órbita	$v_o = \sqrt{\frac{2\Delta E_o}{m}}$	$- v_o = \sqrt{\frac{2 \cdot 5,30 \cdot 10^7}{3,00}} =$	5,94·10³ m/s
4 1 1	. 11 . /11) 1 1 1	. ,

A enerxía que hai que comunicarlle ao satélite na superficie del planeta é a diferenza entre a que terá en órbita e a que ten no chan:

$$\Delta E = E(\text{orbita}) - E(\text{chan}) = -3.56 \cdot 10^7 \text{ [J]} - (-8.86 \cdot 10^7 \text{ [J]}) = 5.30 \cdot 10^7 \text{ J}$$

- 4. Un satélite artificial describe órbitas circulares ao redor da Terra a unha altura de 350 km respecto á superficie terrestre. Calcula:
 - a) A velocidade orbital do satélite.
 - b) O seu período de revolución.
 - c) Compara o valor da súa aceleración centrípeta co valor da intensidade do campo gravitacional ga esa distancia da Terra. Que consecuencias pódense extraer deste resultado?

Datos: $R(T) = 6.37 \cdot 10^6 \text{ m}$; $g_0 = 9.81 \text{ m/s}^2$. (A.B.A.U. ord. 19) **Rta.:** a) v = 7.70 km/s m; b) T = 1 h 31 min.; c) $g = 8.81 \text{ m/s}^2$.

Ita.. a) V = 7,70 km/s m, b) T = 1 m/s mm.

Introdución de datos. (Lapela 🔒 Enunciado)

Un satélite de masa		<i>m</i> =		kg
xira ao redor dun astro de masa		<i>M</i> =		kg
e raio		R =	$6,37 \cdot 10^6$	km
no que a gravidade no chan é		$g_o =$	9,81	m/s^2
A órbita é circular de	altura	<i>r</i> =	350	km

Cálculo da velocidade orbital e do período. (Lapela 1 Período)

Cálculo da aceleración centrípeta. (Lapela Peso)

0 11 1 1	$G \cdot \overline{M}$	$3,98 \cdot 10^{14}$	
Gravidade na altura	$g = {r^2}$	$g = \frac{1}{(6,72 \cdot 10^6)^2} =$	8,81 m/s ²

- 5. Un satélite GPS describe órbitas circulares ao redor da Terra, dando dúas voltas á Terra cada 24 h. Calcula:
 - a) A altura da súa órbita sobre a superficie terrestre.
 - b) A enerxía mecánica.
 - c) O tempo que tardaría en dar unha volta á Terra si facémolo orbitar a unha altura dobre.

Datos: $G = 6,67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$; $M_T = 5,98 \cdot 10^{24} \text{ kg}$; $R_T = 6,37 \cdot 10^6 \text{ m}$; masa do satélite = 150 kg.

(A.B.A.U. extr. 17)

Rta.: a) $h = 2.02 \cdot 10^7$ m; b) $E = -1.12 \cdot 10^9$ J; c) $T_c = 28$ h.

Introdución de datos. (Lapela Enunciado)
Un satélite de masa

Un satélite de masa		<i>m</i> =	150	kg
xira ao redor dun astro de masa		<i>M</i> =	5,98·10 ²⁴	kg
e raio		R =	6,37·10 ⁶	m
O satélite xira cunha	frecuencia		2	día⁻¹

Respostas. (Lapela 🔒 Enunciado)

Elixa Altura e as súas unidades e Enerxía na órbita.

Altura

Cálculo da altura. (Lapela 🔒 Altura)

Raio da órbita
$$r = \frac{3\sqrt{\frac{G \cdot M = g_0 \cdot R^2}{4 \pi^2}}}{r} \qquad r = \frac{G \cdot M = \frac{6,67 \cdot 10^{-11} \cdot 5,98 \cdot 10^{24}}{3\sqrt{\frac{3,99 \cdot 10^{14} \cdot (4,32 \cdot 10^4)^2}{4 \cdot 3,14^2}}} = \frac{3,99 \cdot 10^{14} \text{ m}^3/\text{s}^2}{4 \cdot 3,14^2} = 2,66 \cdot 10^7 \text{ m}$$
Altura da órbita
$$h = r \cdot R \qquad h = 2,66 \cdot 10^7 - 6,37 \cdot 10^6 = 2,03 \cdot 10^7 \text{ m}$$

Cálculo da enerxía mecánica. (Lapela | finerxía)

Na órbita
$$v = \frac{2 \cdot \pi \cdot r}{T}$$
 $v = \frac{2 \cdot 3,14 \cdot 2,66 \cdot 10^7}{4,32 \cdot 10^4} = 3,87 \cdot 10^3 \text{ m/s}$

Enerxía cinética na órbita $E_c = \frac{1}{2} m \cdot v^2$ $E_c = 150 \cdot (3,87 \cdot 10^3)^2 / 2 = 1,12 \cdot 10^9 \text{ J}$

Enerxía potencial na órbita $E_p = \frac{-G \cdot M \cdot m}{r}$ $E_p = \frac{-3,99 \cdot 10^{14} \cdot 150}{2,66 \cdot 10^7} = \frac{1}{2,25 \cdot 10^9} \text{ J}$

Enerxía mecánica na órbita $E = E_c + E_p$ $E = -2,25 \cdot 10^9 + 1,12 \cdot 10^9 = \frac{1}{1,12 \cdot 10^9} \text{ J}$

Novos datos para o apartado c. (Lapela 🔒 Enunciado)

Borre a opción, o dato e a unidade de frecuencia e elixa altura, escriba o dato e escolla a unidade:

A órbita é circular de	altura	h =	$4,06 \cdot 10^7$	m

Respostas. (Lapela | 1 Enunciado)

Elixa Período e a unidade h (horas).

	Altura	Velocidade <mark>clic↓</mark>	Período	
Órbita	4,06·10 ⁴ km		28,1 h	

Cálculo do período. (Lapela Período)

- · · · · · · · · · · · · · · · · · · ·	1/		
Raio da órbita	r = R + h	$r = 6,37 \cdot 10^9 + 4,06 \cdot 10^7$	$= 6,41 \cdot 10^9 \text{ m}$
		$G \cdot M = 6,67 \cdot 10^{-11} \cdot 5,98 \cdot 10^{24}$	$= 3,99 \cdot 10^{14} \text{ m}^3/\text{s}^2$
W-1: 1- 1- 1:	$v = \sqrt{\frac{G \cdot M}{G \cdot M}}$	$\int_{}^{} 3,99 \cdot 10^{14}$	250 /-
Velocidade do satélite	$v = \sqrt{r}$	$v = \sqrt{\frac{6,41 \cdot 10^9}{6}}$	= 250 m/s
Período do satélite	$T = \frac{2 \cdot \pi \cdot r}{r}$	86 400	$= 1.61 \cdot 10^8 \text{ s}$
remoud do sateme	v =	250	- 1,01.10 \$

- Un astronauta está no interior dunha nave espacial que describe unha órbita circular de raio 2 R_T. Calcula:
 - a) A velocidade orbital da nave.
 - b) A aceleración da gravidade na órbita da nave.
 - c) Se nun instante dado, pasa á beira da nave espacial un obxecto de 60 kg en dirección á Terra cunha velocidade de 40 m·s⁻¹, acha a velocidade do obxecto ao chegar á superficie terrestre.

Datos: $R_T = 6370 \text{ km}$; $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.

(A.B.A.U. ord. 17)

Rta.: a) v = 5.59 km/s; b) $g_h = 2.45 \text{ m/s}^2$; c) $v_2 = 7.91 \cdot 10^3 \text{ m/s}$.

Introdución de datos. (Lapela en Enunciado)

Respostas. (Lapela | fractional Enunciado)

Elixa as unidades de Velocidade e Campo gravitacional na órbita.

Cálculo do período e de la velocidade orbital. (Lapela 🔒 Período)

Raio da órbita
$$r = R + h$$
 $r = 2,00 \cdot 6,37 \cdot 10^6 = 1,27 \cdot 10^7 \text{ m}$ $G \cdot M = 9,81 \cdot (6,37 \cdot 10^6)^2 = 3,98 \cdot 10^{14} \text{ m}^3/\text{s}^2$ Velocidade do satélite $v = \sqrt{\frac{G \cdot M}{r}}$ $v = \sqrt{\frac{3,98 \cdot 10^{14}}{1.27 \cdot 10^7}} = 5,59 \cdot 10^3 \text{ m/s}$

Cálculo da aceleración da gravidade na órbita. (Lapela 🔒 Peso)

Gravidade na altura
$$g = \frac{G \cdot M}{r^2}$$
 $g = \frac{3.98 \cdot 10^{14}}{(1.27 \cdot 10^7)^2} = 2.45 \text{ m/s}^2$

Para o apartado c) Se nun instante dado, pasa á beira da nave espacial un obxecto de 60 kg en dirección á Terra cunha velocidade de 40 m·s⁻¹, acha a velocidade do obxecto ao chegar á superficie terrestre. Se se considera desprezable a enerxía cinética do obxecto, a súa velocidade ao chegar ao chan será a mesma que a necesaria para lanzala desde o chan para polo a esa altura.

Cálculo da velocidade necesaria para alcanzar esa altura. (Lapela

Na órbita	Ecuacións	Cálculos	
Enerxía potencial na órbita	$E_p = \frac{-G \cdot M \cdot m}{r}$	$E_p = \frac{-3.98 \cdot 10^{14} \cdot 60.0}{1.27 \cdot 10^7}$	$-= -1,87 \cdot 10^9 \text{ J}$
No chan			
Enerxía potencial no chan	$E_p = \frac{-G \cdot M \cdot m}{R}$	$E_p = \frac{-3.98 \cdot 10^{14} \cdot 60.0}{6.37 \cdot 10^6}$	$-= -3,75 \cdot 10^9 \mathrm{J}$
Enerxía no chan para al- canzar la altura	$\Delta E_h = E_p \ (\acute{o}rb) - E_p \ (chan) \ \Delta E_h$	$C_h = -1,87 \cdot 10^9 - (-3,75 \cdot 10^9)$	= 1,87·10 ⁹ J
Velocidade no chan para alcanzar la altura	$v_h = \sqrt{\frac{2\Delta E_h}{m}} v_h$	$_{1} = \sqrt{\frac{2 \cdot 1,87 \cdot 10^{9}}{60,0}}$	= 7,91·10 ³ m/s

Actualizado: 06/09/23

Sumario

OBLEMAS DE SATÉLITES1
Comezo
Datos
ROBLEMAS2
1. Un pequeno satélite xira ao redor da Lúa orbitando nunha circunferencia de 3 veces o raio da Lúa2 2. Un satélite artificial ten unha masa de 200 kg e unha velocidade constante de 7,00 km·s ⁻¹
4. Un satélite artificial describe órbitas circulares ao redor da Terra a unha altura de 350 km respecto á superficie terrestre. Calcula:
5. Un satélite GPS describe órbitas circulares ao redor da Terra, dando dúas voltas á Terra cada 24 h.
6. Un astronauta está no interior dunha nave espacial que describe unha órbita circular de raio 2 RT.