

FONDAMENTI DI AUTOMATICA

Prof. F. Dercole Prova del 28/06/2017

COC	COGNOME:				OME:	***
MATRICOLA/CODICE PERSONA:						
AVVERTENZA I candidati potranno prendere visione del compito corretto e discutere dell'esito complessivo dell'esame:						
Giovedì 13/7 ore 17.00 nell'ufficio del docente (DEIB, ed. 20, secondo piano, tel. 3484)						
In base alla normativa in vigore, in assenza di rinuncia esplicita, una votazione positiva sarà registrata d'ufficio senza la firma dello studente e non sarà più modificabile dal docente.						
FIRMA: Visto del docente:						
						Voto totale:
	8	8	8	6	2	32
ATTENZIONE! - Non è consentito consultare libri, appunti, ecc.						

- Le risposte devono essere giustificate.
- Le soluzioni devono essere riportate solo sui fogli allegati.
- Sono valutati anche l'ordine e la chiarezza dell'esposizione.

1) Si consideri il sistema lineare a tempo discreto descritto da

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 0.5 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, c^T = \begin{bmatrix} 0 & 1 \end{bmatrix}$$

- a) Studiarne la stabilità, la raggiungibilità e l'osservabilità.
- b) Verificare se è possibile stabilizzarlo mediante una retroazione dinamica dell'uscita (regolatore = ricostruttore + legge di controllo).
- c) In caso affermativo, determinare un regolatore che porti il sistema regolato all'equilibrio in tempo finito.

a1) Stabilità'
$$\lambda_1 = 2, \lambda_2 = 0.5, |\lambda_1| > 1 \Rightarrow \text{instab}.$$

(a2) Raggnungimhter
$$R = \begin{bmatrix} b & Ab \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix} \det R = -1 \neq 0 \Rightarrow c.r.$$

a3) Osservabilità
$$O = \begin{bmatrix} cT \\ c+A \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0.5 \end{bmatrix} \text{ det} 0 = 1 \neq 0 \Rightarrow 0.0.$$

- 6) SI perché cir. + c.o.
- c) Imponso de gli autor. L AK = A+bKT e Ad = A+lcT siano tutti nulli

$$A_{k} = \begin{bmatrix} 2 & 0 \\ -1 & 0.5 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} k_{1} & k_{2} \end{bmatrix} = \begin{bmatrix} k_{1} + 2 & k_{2} \\ -1 & 0.5 \end{bmatrix} \begin{bmatrix} k_{1} + 2.5 = 0 \Rightarrow k_{1} = -2.5 \\ 0.5 & (-0.5) + k_{2} = 0 \end{bmatrix}$$

$$\Delta_{A_{k}}(\lambda) = \lambda^{2} - (k_{1} + 2.5)\lambda + 0.5(k_{1} + 2) + k_{2} = \lambda^{2}$$

$$\Rightarrow k_{2} = 0.25$$

$$A_{L} = \begin{bmatrix} 2 & 0 \\ -1 & 05 \end{bmatrix} + \begin{bmatrix} \ell_{1} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ \ell_{1} \end{bmatrix} = \begin{bmatrix} 2 & \ell_{1} \\ -1 & \ell_{2} + 0.5 \end{bmatrix} \qquad \begin{vmatrix} \ell_{2} + 2.5 = 0 \Rightarrow \ell_{2} = -2.5 \\ 2(-2) + \ell_{1} = 0 \\ \Rightarrow \ell_{1} = 4 \end{vmatrix}$$

$$\Delta_{A_{L}}(\lambda) = \lambda^{2} + (\ell_{2} + 2.5)\lambda + 2(\ell_{2} + 0.5) + \ell_{1} = \lambda^{2} \qquad \Rightarrow \ell_{1} = 4$$

$$\ell_{2}+2,5=0 \Rightarrow \ell_{2}=-2.5$$

 $2(-2)+\ell_{1}=0$
 $\Rightarrow \ell_{1}=4$

2) Un apparato di estrusione (Fig. 1) produce tubi in PVC a sezione quadrata.

Il tubo è prodotto in continuo per fusione a partire da materia prima in forma granulare. In uscita dalla testa di estrusione, il tubo, ancora in stato semiplastico, attraversa una camera di calibrazione nella quale diventa definitivamente solido. A valle della calibrazione è posto un sistema di traino (a velocità costante, per agevolare lo scorrimento del tubo), lungo il quale dei sensori a infrarosso misurano le caratteristiche geometriche della sezione del tubo (Fig. 2).

Mentre il perimetro esterno della sezione è determinato meccanicamente dalla camera di calibrazione, il perimetro interno è funzione della potenza elettrica P dissipata dalle resistenze della testa di estrusione e della temperatura ambiente T.

Sull'apparato sono state effettuate alcune prove a partire dalla situazione di regime nominale:

$$\overline{P} = 1000 \text{ [w]}, \qquad \overline{T} = 20 \text{ [°C]}, \qquad \overline{s}_1 = \overline{s}_2 = \overline{s}_3 = \overline{s}_4 = 10 \text{ [mm]}$$

Le prove effettuate e i risultati ottenuti (andamento nel tempo degli spessori misurati) sono i seguenti (spessori in [mm], tempo in [s]):

1) Variazione a scalino di P da 1000 [w] a 1100 [w] all'istante t = 0:

2) Variazione a scalino di T da 20 [°C] a 15 [°C] all'istante t = 0:

Formulare un modello matematico dell'apparato nel dominio delle frequenze. Specificatamente:

- 1) Individuare con chiarezza, tra quelle citate, le variabili di controllo, i disturbi, le variabili controllate.
- 2) Definire opportune variabili di scostamento dai valori nominali sopra riportati.
- 3) Identificare due funzioni di trasferimento, entrambe facenti riferimento all'uscita $s = s_1 = s_2 = s_3 = s_4$, la prima con ingresso P, la seconda con ingresso T.
- 4) Si disegni lo schema a blocchi di un sistema di controllo in anello chiuso per il processo identificato (lasciando non specificata la funzione di trasferimento del regolatore).

- 1) variabile d'eontrollo: P[W]

 disturbo: T[°C]

 variabile controllate: \$1,52,52,53,54 supposte, per

 semplicità tutte yuali a \$[m.m]
- 2) variabili di scostamento dal regime nominale variabile di controllo $u = P \overline{P}$ [W] disturbo $d = \overline{T} \overline{T}$ [°C] variabile controllata $y = S \overline{S}$ [mm]
- 3a) u = 100 sca(t) Muy = -2mm/400w = -0,02ritardo t = 50 s $Trisposta \approx 250 \text{ s} \text{ (non incluso il ritardo)}$ $T_d = Trisposta/z \approx 50 \text{ s}$ risposta esponentrale con $\hat{y}(0) > 0$ quindi busta 1 polo $G_{uy}(s) = -\frac{0,02}{1+50 \text{ s}}e^{-50 \text{ s}}$
- 36) d = -5 sca(t) Mdy = 1 mm / -5 oc = -0.2comment analoghi a Guy

4) vedi figura rel testo es. 3.

3) Con riferimento al sistema di controllo in figura

- 1) Si progetti il regolatore R(s) in modo da ottenere errore di controllo $|y^0-y|$ a regime inferiore a 0.02 a fronte di riferimento costante $y^0 = 1$ e disturbo costante d = -5.
- 2) Si commentino le prestazioni del sistema di controllo ottenuto.
- 1) o metto un integratore in R per ottenere le 1 = 0 a regime a fronte di poe d'astauti
 - metto uno tero s= 1 in R per cancellare il polo del processo in modo da poter allargare la banda fino a 0.02 rad/s senta degradate troppo ym
 - o distardo T=50s impone un limite superiore alla banda q = 1/2 = 0.02 rad/s. Con l'integratore oftengo $P(0,02) = -10^{\circ} 60^{\circ}$ (donnti al vitardo) = $-150^{\circ} \rightarrow 9m = 30^{\circ}$
 - per dimettare l'effetto del ritardo su (m), dimetto la banda imponendo $W_c = 0.01 \, \text{rad/s}$ (owero $M = -\frac{1}{2}$), ottenendo quindi $U(0.01) = -90^{\circ} 30^{\circ} = -120^{\circ} 90^{\circ} 120^{\circ} 90^{\circ} = 60^{\circ}$ Si noti che M < 0 per ottenere $M_L = M \cdot (-9.02) = +0.01 > 0$ conditione necessaria per la stabilità ad anello chui so

per rendere R(S) proprio senta ridure symificativamente Um, introduco un polo 2 decadi lopo wo

$$\Rightarrow R(s) = \frac{-1/2}{s} \frac{1+50s}{1+s}$$

- 2) o errore a regime nullo a fronte di yor d costant
 - · Pm = 60° ⇒ banda passante poco inferiore a [0, Wc]
 - =) trascurable rison on to ad a nello chiuso
 - → Ta = 100 s
 - => trasurable presenta di (lente) osullationi
 - · a causa del ritardo non estato possible ottenere una To inferiore a quella natura lo del processo (di 50s).
 - o il polo in alta freg (w=1rad/s) -p
 potrebbe generare componenti
 in altora freg della variabile di
 controlle

4) Data la seguente funzione di trasferimento

$$G(s) = -20 \frac{200s - 1}{(10 - s)(1 + 100s)^2}$$

il cui diagramma polare della risposta in frequenza è rappresentato in figura, si consideri il seguente sistema retroazionato

Per ciascuna delle seguenti affermazioni, si dica se sono vere o false (scrivendo V o F nell'apposita casella) senza dare alcuna spiegazione.

Attenzione: Risposta corretta: 1 punto; risposta non data: 0 punti; risposta errata: -0.5 punti.

- La risposta allo scalino del sistema in anello aperto diverge.
- La risposta allo scalino del sistema in anello chiuso diverge.
- 🗀 Il margine di fase è positivo.
- Il margine di guadagno (espresso in dB) è positivo.
- Le ipotesi del criterio di Bode sono soddisfatte.
- Il sistema retroazionato è a sfasamento minimo.

5) Si vuole progettare con Simulink una retroazione algebrica dello stato del sistema

$$\dot{x} = 3x + 4u$$
$$y = -x$$

in modo che l'uscita converga a 0 a partire da qualunque condizione iniziale in al più 10 secondi. Dato il seguente schema Simulink, con il blocco State-Space definito come in figura,

si definiscano nel workspace di Matlab le variabili necessarie per il funzionamento del modello.