Movie Recommendation System

Realised by

Matrix Brigade Medjaouri Insaf , Bouikni Lyna , Marius Roger

17/10/2023

1 / The problem

How can we effectively address the challenge of **sparse** data in recommendation systems?

User-Item rating matrix

2/ The process of the solution

- 1. Data Exploration
- 2. Build our first method as a baseline

- 3. Build the second approach
 - 4. Result comparison

2.1/ Data Exploration

Data set : ratings_train.py + ratings_test.py

Data shape : 610 (users) * 4980 (movies)

Percentage of Nan values : ~ 98 %

Zipf's law: low-rank should work better

2.2 / Matrix Factorisation With Gradient Descent

Masking is used to avoid useless computations

Deal with NaNs using "weights 0 on undefined loss values"

$$S = R - I @ U.T$$

 $S = np.where(R_m.mask, 0, S)$

Compute several **I** @ **U**.**T** in parallel → aggregate

Voting is expensive, and worse than averaging for MF ensembling

2.2.1/ Hyperparameters : First approach

- Number of latent factors (K) = 5
- Learning rate = **1.4×10**⁻⁴
- Regularization parameter $\lambda = 0.1$
- Regularization parameter $\mu = 1$
- Number of parallel models (first ensembling approach) = 20
- Number of training epochs (first ensembling approach) = 100

2.3/ SVD & Knn with cosine similarity

2.3/ SVD & Knn with cosine similarity

2.3/ Ensemble method

Flow Diagram for the Ensemble Method with Cross-Validation

3/ Result comparison

Evaluation Metrics	Baseline (MF, K=5, 3k epochs)	First Approach	Second Approach
Rmse	0.969	0.89	0.992
Time	188.15	101.37	81.65
Accuracy	24.4 %	24.89 %	27.73 %

Values of 2nd approach \in [2.5, 4.5]: too many models \rightarrow st-div of predictions is too small

3.2/ Hyperparameters : Second approach

- K (MF) = 5
- Number of parallel models (MF) = 3

(compute time & model diversity)

- Number of training epochs (MF) = 70
- K(K-NN) = 50 (40-80)
- K (SVD) = 5 (tradeoff rmse-accuracy)

4/ Reference:

Petersen, K.B. and Pedersen, M.S., 2008. The matrix cookbook. *Technical University of Denmark*, 7(15), p.510.

Thank you for your attention!