## 第八章 集成学习

## Castor Ye

## 1 个体与集成

集成学习 (ensemble learning) 通过构建并结合多个学习器来完成学习任务,有时也被称为多分类器系统 (multi-classfier system)、基于委员会的学习 (committee-based learning) 等。

图 1 显示出集成学习的一般结构: 先产生一组"个体学习器"(in 地 vi learner), 再用某种策略将它们结合起来。



图 1: 集成学习示意图

在集成模型中,若个体学习器都属于同一类别,例如都是决策树或神经网络,则称该集成为"同质"的(homogenneous)。同质集成中的个体学习器亦称"基学习器"(base learner),相应的学习算法称为"基学习算法"(base learning algorithm)。若个体学习器为不同类型的,则称该集成为"异质"的(heterogenous)。异质集成中的个体学习器由不同的学习算法生成,此时不再有基学习器,而称"组件学习器"(component learner)或直接称"个体学习器"。

上面我们已经提到要让集成起来的泛化性能比单个学习器好,但也存在短板效应,所以我们引入两个重要概念:准确性和多样性(diversity)。准确性指的是个体学习器不能太差,要有一定的准确度;多样性则是个体学习器之间的输出要具有差异性。

|            |       | 测试例1         | 测试例2         | 测试例3         | Ŋ     | 间试例1         | 测试例2         | 测试例3       | J     | 則试例1     | 测试例2         | 测试例3         |  |
|------------|-------|--------------|--------------|--------------|-------|--------------|--------------|------------|-------|----------|--------------|--------------|--|
|            | $h_1$ | <b>√</b>     | <b>√</b>     | ×            | $h_1$ | <b>√</b>     | <b>√</b>     | ×          | $h_1$ | <b>√</b> | ×            | ×            |  |
|            | $h_2$ | × .          | $\checkmark$ | $\checkmark$ | $h_2$ | $\checkmark$ | $\checkmark$ | ×          | $h_2$ | ×        | $\checkmark$ | ×            |  |
|            | $h_3$ | $\checkmark$ | $\times$     | $\checkmark$ | $h_3$ | $\checkmark$ | $\checkmark$ | ×          | $h_3$ | ×        | ×            | $\checkmark$ |  |
| ,          | 集成    | ₹ √          | <b>√</b>     | <b>√</b>     | 集成    | √ .          | √ V          | ×          | 集成    | ×        | ×            | ×            |  |
| (a) 集成提升性能 |       |              |              | (b) 集成不起作用   |       |              |              | (c) 集成起负作用 |       |          |              |              |  |

图 2: 集成个体应"好而不同"