

Part A due Oct 5, 2021 20:30 IST

Practice

5A-6(a)

10/10 points (graded)

Let c be the curve parametrized by $\left(x\left(t\right),y\left(t\right)\right)=\left(\sin2t,\sin t\right)$ as t goes from 0 to π .

Compute the values of $(x\left(t
ight),y\left(t
ight))$ at $t=0,\pi/4,\pi/2,3\pi/4,\pi.$

? INPUT HELP

Solution:

$$(x(0),y(0)) = (0,0)$$

$$\left(x\left(\pi/4
ight),y\left(\pi/4
ight)
ight)=\left[\left(1,rac{1}{\sqrt{2}}
ight)
ight]$$

$$\left(x\left(\pi/2
ight) ,y\left(\pi/2
ight)
ight) =\left[\left(0,1
ight)
ight]$$

$$\left(x\left(3\pi/4
ight),y\left(3\pi/4
ight)
ight)= \left[\left(-1,rac{1}{\sqrt{2}}
ight)
ight]$$

$$\left(x\left(\pi
ight) ,y\left(\pi
ight)
ight) =\left[\left(0,0
ight)
ight] .$$

Submit

You have used 1 of 5 attempts

Answers are displayed within the problem

Answer: -1

⊞ Calculator

10/10 points (graded)

Let c be the curve parametrized by $(x\left(t
ight),y\left(t
ight))=(\sin2t,\sin t)$ as t goes from 0 to π .

Compute the velocity $\left\langle x'\left(t\right),y'\left(t\right)\right
angle$ at $t=0,\pi/4,\pi/2,3\pi/4,\pi.$

-1

? INPUT HELP

2

Answer: 2

Solution:

 π

We have $\left\langle x'\left(t\right),y'\left(t\right)\right\rangle =\left\langle 2\cos2t,\cos t\right\rangle .$

So
$$\left\langle x^{\prime}\left(0
ight),y^{\prime}\left(0
ight)
ight
angle =\left[\overline{\left\langle 2,1
ight
angle }
ight]$$

$$\left\langle x^{\prime}\left(\pi/4
ight),y^{\prime}\left(\pi/4
ight)
ight
angle =\left[\left\langle 0,rac{1}{\sqrt{2}}
ight
angle
ight]$$

$$\left\langle x'\left(\pi/2
ight),y'\left(\pi/2
ight)
ight
angle =\left[\left\langle -2,0
ight)
ight
angle _{p}$$

$$\left\langle x^{\prime}\left(3\pi/4
ight),y^{\prime}\left(3\pi/4
ight)
ight
angle =\left[\left\langle 0,-rac{1}{\sqrt{2}}
ight
angle
ight]$$

$$\left\langle x^{\prime}\left(\pi
ight),y^{\prime}\left(\pi
ight)
ight
angle =\left\lceil \left\langle 2,-1
ight
angle
ight
ceil$$

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

5A-6(c)

1/1 point (graded)

Using the information from the first two parts, sketch the parametrized curve. The sketch doesn't have to be beautiful, but it should incorporate the information from both (a) and (b) above.

- Label the points on the curve at $t=0,\pi/4,\pi/2,$ and $3\pi/4$ using the **Positions** point tool.
- Draw the velocity vectors for times $t=0,\pi/4,\pi/2,3\pi/4$ and π starting from appropriate position using the **Velocities** arrow tool. (The relative magnitude need not be correct, but the direction is a starting from appropriate position using the **Velocities** arrow tool.

Hide Notes

• Sketch the trajectory of the parametric curve using the Curve spline or freeform tool.

Answer: See solution.

Well done

Solution:

See the figure below. We also briefly indicate some important features of this sketch (this wasn't necessary to turn in, but might be helpful):

- All points are on the upper half plane.
- The lowest points on the curve are $(x(0), y(0)), (x(\pi), y(\pi)),$ which coincide (they're both at the origin). However, their corresponding tangent vectors $(x'(0), y'(0)), (x'(\pi), y'(\pi))$ don't coincide. This means that there is a sort of "corner" where the curve is supposed to close up.
- The highest point is $(x(\pi/2),y(\pi/2))$. Its tangent vector is (necessarily) horizontal and points left.
- The rightmost and leftmost points are $(x(\pi/2), y(\pi/2))$, $(x(3\pi/4), y(3\pi/4))$. They are symmetric about the y axis. Their tangent vectors are (necessarily) vertical and point up and down, respectively.

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>