Module 1 – Section 3

Sampling Distribution for a Sample Proportion

Outline

- Population Proportion p and Sample Proportion \hat{p}
- Sampling Distribution of \hat{p}
- Connection to the Binomial Distribution

Population Proportion p

- p = proportion of population belonging to a particular category (category of interest or success)
 - Ex. Proportion of U.S. adults who believe the coronavirus situation is getting a little or a lot worse in the U.S. today.
- Value of p is generally unknown, but of interest to researchers.

Estimating p

- Take simple random sample of size n from population
- Assume simple random sample taken from large population
 - n < 10% of population size
 - We can treat outcome from simple random sample of size n the same as outcome of n independent and identical trials.

Estimating *p*

- Denote Y = number of successes in the sample of size n
- Estimate p with $\hat{p} = \frac{Y}{n}$
- \hat{p} = sample proportion of observations in category of interest

Summary of Sample

General Relative Frequency Table

Outcome	Proportion
Success	$\boldsymbol{\hat{p}}$
Failure	$1-\hat{p}$
Total	1

Ex. Summary of Sample

Gallup Poll: Out of 3,104 randomly selected adults in the U.S., 1,956 responded they believe the coronavirus situation is getting a little or a lot worse in the U.S. today.

$$\hat{p} = \frac{1956}{3104} = 0.63$$

Understanding behavior of \hat{p}

- Random variable Y varies from sample to sample
- Random variable $\hat{p} = \frac{Y}{n}$ varies from sample to sample
- Description of this variability = sampling distribution of \hat{p}

- Three components
 - Mean
 - Variance
 - Shape

Mean

$$E(\hat{p}) = p$$

- On average, the sample proportion is equal to p.
- \hat{p} is an unbiased estimator for p.

Variance

$$V(\hat{p}) = \frac{p(1-p)}{n}$$

- Variability of sample proportion \hat{p} around p.
- Variability of \hat{p} decreases as sample size increases.
- More variability when p is near 0.5; less variability when p is near 0 or 1.

Standard Deviation

$$SE(\hat{p}) = \sqrt{V(\hat{p})} = \sqrt{\frac{p(1-p)}{n}}$$

Shape

- lacktriangle Depends on values of n and p.
- If $np \ge 10$ and $n(1-p) \ge 10$ then sampling distribution of \hat{p} is close to normal distribution.

Ex. Sampling Distribution

- Suppose that 10% of all people are left-handed
 - p = 0.1
- Collect information from each person in sample of size n=250 about dominant hand
 - Y = number of people in sample who are left-handed
 - $\hat{p} = \frac{Y}{250}$ = proportion of left-handed people in sample

-

Ex. Sampling Distribution

Mean

- $E(\hat{p}) = 0.1$
- On average, the sample proportion of left-handed people will be 0.1, the same as the population proportion.

Ex. Sampling Distribution

Standard Deviation

$$SE(\hat{p}) = \sqrt{\frac{0.1(0.9)}{250}} = 0.0190$$

• The sample proportion will vary from p=0.1 by around 0.0190

Ex. Sampling Distribution

Shape

- 250(0.1) = 25
- 250(0.9) = 225
- Approximately Normal Distribution

Probabilities from Sampling Distribution

- Determine probabilities about sample proportions using Normal sampling distribution
- Appropriate if $np \ge 10$ and $n(1-p) \ge 10$

Ex. Probabilities

• Probability less than 8% (0.08) of a sample of n=250 people will be left-handed.

Ex. Probabilities

• Probability more than 13% (0.13) of a sample of n=250 people will be left-handed.

Comparison

Binomial Distribution

- Random Variable
 - Y = number of successes in n independent and identical trials
- Values
 - n + 1 possible values from 0 to n (0, 1, 2, ..., n)

Sampling Distribution of \hat{p}

- Random Variable
 - $\hat{p} = \frac{Y}{n} = \text{proportion of successes in}$ sample of size n
- Values
 - n+1 possible values from 0 to 1 $\left(0,\frac{1}{n},\frac{2}{n},...,1\right)$

Comparison

- Sampling Distribution of \hat{p} and Binomial Distribution
 - Same distribution both based on Y
 - Different scale (0 to 1 vs. 0 to n)

Implications

- Sampling Distribution of \hat{p}
 - Discrete Distribution
 - Values only possible at j/n where j is an integer from 0 to n.
 - Approximated using continuous Normal Distribution
 - Shape
 - Discrete nature of values of \hat{p}

Add

- Want to show how we can use result to get probabilities of outcomes.
- Add this information to the Class Activities page.
- Will need to introduce pnorm in the Tech Guide.