1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?			
	$igo a^{[3]\{8\}(7)}$			
	$\bigcirc \ a^{[8]\{7\}(3)}$			
	$\bigcirc \ a^{[8]\{3\}(7)}$			
	$\bigcirc \ a^{[3]\{7\}(8)}$			
2.	Which of these statements about mini-batch gradient descent do you agree with?			
	You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).			
	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent.			
	One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.			
3.	Why is the best mini-batch size usually not 1 and not m, but instead something in-between?			
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.			

4. Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
- Of If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

5. Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$\theta_1=10^{o}C$$

Jan 2nd:
$$heta_2 10^o C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

- $\bigcirc v_2 = 10$, $v_2^{corrected} = 10$
- $\bigcirc \ v_2=10, v_2^{\it corrected}=7.5$
- $\bigcirc \quad v_2 = 7.5, v_2^{corrected} = 7.5$
- 6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

 - $\bigcap \ lpha = rac{1}{1+2*t}lpha_0$
 - $\bigcirc \ \alpha = \frac{1}{\sqrt{t}}\alpha_0$
 - $\bigcirc \ \alpha = 0.95^t \alpha_0$

7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

- Decreasing β will shift the red line slightly to the right.
- ightharpoonup Increasing eta will shift the red line slightly to the right.
- \checkmark Decreasing β will create more oscillation within the red line.
- $\hfill \square$ Increasing β will create more oscillations within the red line.

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β). (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

9.	Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)
	Try better random initialization for the weights
	✓ Try mini-batch gradient descent
	✓ Try using Adam
	Try initializing all the weights to zero
	igspace Try tuning the learning rate $lpha$
10.	Which of the following statements about Adam is False?
	We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)
	Adam should be used with batch gradient computations, not with mini-batches.
	\bigcirc The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.
	Adam combines the advantages of RMSProp and momentum