Course No.	Course Name	L-T-P- Credits	Year of Introduction
CS365	OPTIMIZATION TECHNIQUES	3-0-0-3	2015

Course Objectives

- 1. To build an understanding on the basics of optimization techniques.
- 2. To introduce basics of linear programming and meta-heuristic search techniques.

Syllabus

Basics of Operations Research - Formulation of optimization problems - Linear Programming - Transportation Problem - Assignment Problem - Network flow Problem - Tabu Search - Genetic Algorithm - Simulated Annealing - Applications.

Expected Outcome

Student is able to

- 1. Formulate mathematical models for optimization problems.
- 2. Analyze the complexity of solutions to an optimization problem.
- 3. Design programs using meta-heuristic search concepts to solve optimization problems.
- 4. Develop hybrid models to solve an optimization problem.

Text Books

- 1. Rao S.S., Optimization Theory and Applications, Wiley Eastern.
- 2. Hamdy A. Taha, Operations Research An introduction, Prentice Hall India.
- 3. G. Zapfel, R. Barune and M. Bogl, Meta heuristic search concepts: A tutorial with applications to production and logistics, Springer.

References

- 1. Gass S. I., Introduction to Linear Programming, Tata McGraw Hill.
- 2. Reeves C., Modern heuristic techniques for combinatorial problems, Orient Longman.
- 3. Goldberg, Genetic algorithms in Search, optimization and Machine Learning, Addison Wesley.
- 4. K. Deb, Optimization for engineering design algorithms and examples, Prentice Hall of India.

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
I	Decision-making procedure under certainty and under uncertainty - Operations Research-Probability and decision- making- Queuing or Waiting line theory-Simulation and Monte- Carlo Technique-Nature and organization of optimization problems-Scope and hierarchy of optimization- Typical applications of optimization.	08	15%	
II	Essential features of optimization problems - Objective function- Continuous functions - Discrete functions - Unimodal functions - Convex and concave functions, Investment costs and operating costs in objective function - Optimizing profitably constraints-Internal and external constraints- Formulation of optimization problems. Continuous functions - Discrete functions - Unimodal functions - Convex and concave functions. FIRST INTERNAL EXAM	07	15%	
III	Necessary and sufficient conditions for optimum of unconstrained functions-Numerical methods for unconstrained functions - One-dimensional search - Gradient-free search with fixed step size. Linear Programming - Basic concepts of linear programming - Graphical interpretation-Simplex method - Apparent difficulties in the Simplex method.	06	15%	
IV	Transportation Problem, Loops in transportation table, Methods of finding initial basic feasible solution, Tests for optimality. Assignment Problem, Mathematical form of assignment problem, methods	06	15%	

	of solution.				
SECOND INTERNAL EXAM					
V	Network analysis by linear programming and shortest route, maximal flow problem. Introduction to Non-traditional optimization, Computational Complexity – NP-Hard, NP-Complete. Tabu Search-Basic Tabu search, Neighborhood, Candidate list, Short term and Long term memory	07	20%		
VI	Genetic Algorithms- Basic concepts, Encoding, Selection, Crossover, Mutation. Simulated Annealing - Acceptance probability, Cooling, Neighborhoods, Cost function. Application of GA and Simulated Annealing in solving sequencing and scheduling problems and Travelling salesman problem.	08	20%		
END SEMESTER EXAM					

Question Paper Pattern

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules I and II; All<u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks: 18
 - b. <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules I and II; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts.
- 4. Part C
 - a. Total marks: 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering modules III and IV; All<u>four</u> questions have to be answered.

5. Part D

- a. Total marks: 18
- <u>Three</u>questions each having <u>9</u> marks, uniformly covering modules III and IV; <u>Two</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. Six questions each carrying 10 marks, uniformly covering modules V and VI; four questions have to be answered.
- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical questions.