Emmanuel Filiot
Nicolas Mazzocchi
Jean-François Raskin

Université libre de Bruxelles DLT 2018 - Tokyo A Pattern Logic for Automata with Outputs

Automata with outputs in $(D, \oplus, 0)$

Automata with outputs in $(D, \oplus, 0)$

Example

- ▶ Sum-automata over $(\mathbb{Z}, +, 0)$
- Transducers over $(\Gamma^*, \cdot, \varepsilon)$

Automata with outputs in (D, \oplus, \mathbb{O})

$$\llbracket A \rrbracket \subseteq \Sigma^* \times D$$

Classical problems

- Equivalence [A] = [B]
- ▶ Inclusion $\llbracket A \rrbracket \subseteq \llbracket B \rrbracket$

Example

- ▶ Sum-automata over $(\mathbb{Z}, +, 0)$
- Transducers over $(\Gamma^*, \cdot, \varepsilon)$

Subclasses of automata

Why?

- ▶ Recover decidability
- Improve complexity

Subclasses of automata

Why?

- Recover decidability
- Improve complexity

Class membership problem

- 1. (challenging) structural characterisation of the subclass
- 2. (ad-hoc) decision procedure for the subclass (Model-Checking)

Subclasses of automata

Why?

- Recover decidability
- Improve complexity

Class membership problem

- 1. (challenging) structural characterisation of the subclass
- 2. (ad-hoc) decision procedure for the subclass (Model-Checking)

Examples

- Sequentiality, input determinism
- Ambiguity, bound on the number of accepting runs for any input
- Valuedness, bound on the number of output values for any input

Structural properties in literature

Exp.-ambiguity

Non k-valuedness

Co-terminal circuits

Fork property

Branching Twinning property of order k

$$\bigwedge_{i=1}^{k} \bigwedge_{i'=1}^{l} \bigwedge_{j'=1}^{l} \begin{cases}
u_{i',j} = u_{i',j'} \\
u'_{i',j} = u'_{i',j'} \\
\delta(v_{1,j}...v_{i,j}, v_{1,j}...v_{i,j}, v'_{i,j}) \\
\neq \\
\delta(v_{1,j'}...v_{i,j'}, v_{1,j'}...v_{i,j'}, v'_{i,j'})
\end{cases}$$

Non-Finite ambiguity

Dumbbell computation

W computation

Contributions

1 Parametric Logic

Sufficient conditions for decidability of the MC problem

2 Some instantiations

Logic \Setting	General	Fixed Formula
PL_{nfa}	PSPACE-C	NLogSpace-C
PL_{trans}	PSPACE-C	NLogSpace-C
PL_{sum}	PSPACE-C	NP-C binary
		NLogSpace-C unary
PL^{\neq}_{sum}	PSPACE-C	PTIME \ NLOGSPACE-H

Pattern Logic

A pattern formula over a set of output predicates $\mathcal O$

$$\varphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \dots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), C$$

$$C ::= \neg C \mid C \lor C \mid C \land C \mid P$$

```
Inputu \sqsubseteq u' \mid u \in L \mid |u| \leq |u'|Path\pi = \pi' \mid q = q' \mid \mathsf{init}(q) \mid \mathsf{final}(q)Outputp(t_1, \ldots, t_n)
```

- ightharpoonup L regular language represented as an NFA
- $t_i \in Terms(\{v_1, \ldots, v_n\}, \oplus, \mathbb{O})$

A pattern formula over a set of output predicates $\mathcal O$

$$arphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \dots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), \mathcal{C}$$

$$\mathcal{C} ::= \neg \mathcal{C} \mid \mathcal{C} \lor \mathcal{C} \mid \mathcal{C} \land \mathcal{C} \mid P$$

Input
$$u \sqsubseteq u' \mid u \in L \mid |u| \leq |u'|$$
Path $\pi = \pi' \mid q = q' \mid \mathsf{init}(q) \mid \mathsf{final}(q)$ Output $p(t_1, \ldots, t_n)$

- ► *L* regular language represented as an NFA
- $t_i \in Terms(\{v_1, \ldots, v_n\}, \oplus, \mathbb{O})$

Example: Exponential Ambiguity

$$\left(\begin{array}{c} \exists \pi_0 = q_0 \longrightarrow q \\ \exists \pi_1 = q \longrightarrow q_1 \\ \exists \pi = q \xrightarrow{u_1} q \quad \exists \pi' = q \xrightarrow{u_2} q \end{array} \right) \bigwedge \left\{ \begin{array}{c} \mathsf{init}(q_0) \\ \mathsf{final}(q_1) \\ \pi \neq \pi' \wedge u_1 = u_2 \end{array} \right. \overset{u}{\longrightarrow} \left. \begin{array}{c} \mathsf{init}(q_0) \\ \mathsf{final}(q_1) \\ \mathsf{init}(q_0) \\ \mathsf{init}(q_0$$

A pattern formula over a set of output predicates $\mathcal O$

$$arphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \dots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), \mathcal{C}$$

$$\mathcal{C} ::= \neg \mathcal{C} \mid \mathcal{C} \lor \mathcal{C} \mid \mathcal{C} \land \mathcal{C} \mid \mathcal{P}$$

$$\begin{array}{ll} \textbf{Input} & u \sqsubseteq u' \mid u \in L \mid |u| \leq |u'| \\ \textbf{Path} & \pi = \pi' \mid q = q' \mid \mathsf{init}(q) \mid \mathsf{final}(q) \\ \textbf{Output} & \rho(t_1, \ldots, t_n) \\ \end{array}$$

- ▶ L regular language represented as an NFA
- $t_i \in Terms(\{v_1, \ldots, v_n\}, \oplus, \mathbb{O})$

Example: Dumbbell computation

$$\begin{pmatrix} \exists \pi_1' = q_1' \rightarrow q_1 & \exists \pi = q_1 \xrightarrow{u \mid v_1} q_2 & \exists \pi_2' = q_2 \rightarrow q_2' \\ \exists \pi_1 = q_1 \xrightarrow{u_1 \mid v_1} q_1 & \exists \pi_2 = q_2 \xrightarrow{u_2 \mid v_2} q_2 \end{pmatrix} \qquad \begin{matrix} u \mid v_1 & u \mid v_2 \\ \vdots & \vdots & \vdots \\ \vdots & u \mid v \\ \vdots & \vdots \\ v \mid v \neq v \\ v_1 v \neq v v_2 \end{matrix}$$
 init $(q_1') \land \text{final}(q_2') \land u_1 = u \land u = u_2 \land v_1 \oplus v \neq v \oplus v_2$
$$v_1 v \neq v v_2$$

A pattern formula over a set of output predicates $\mathcal O$

$$arphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \dots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), \mathcal{C}$$

$$\mathcal{C} ::= \neg \mathcal{C} \mid \mathcal{C} \lor \mathcal{C} \mid \mathcal{C} \land \mathcal{C} \mid \mathcal{P}$$

$$\begin{array}{ll} \textbf{Input} & u \sqsubseteq u' \mid u \in L \mid |u| \leq |u'| \\ \textbf{Path} & \pi = \pi' \mid q = q' \mid \mathsf{init}(q) \mid \mathsf{final}(q) \\ \textbf{Output} & p(t_1, \ldots, t_n) \\ \end{array}$$

- ► L regular language represented as an NFA
- $t_i \in Terms(\{v_1, \ldots, v_n\}, \oplus, \mathbb{O})$

Example: Dumbbell computation in $PL^+[\neq]$

$$\begin{pmatrix} \exists \pi_1' = q_1' \rightarrow q_1 & \exists \pi = q_1 \xrightarrow{u \mid v_1} q_2 & \exists \pi_2' = q_2 \rightarrow q_2' \\ \exists \pi_1 = q_1 \xrightarrow{u_1 \mid v_1} q_1 & \exists \pi_2 = q_2 \xrightarrow{u_2 \mid v_2} q_2 \end{pmatrix} \qquad \begin{matrix} u \mid v_1 & u \mid v_2 \\ \vdots & u \mid v & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ v_1 v \neq v v_2 \end{matrix}$$
 init $(q_1') \land \mathsf{final}(q_2') \land u_1 = u \land u = u_2 \land v_1 \oplus v \neq v \oplus v_2$
$$v_1 v \neq v v_2$$

$$igg\{egin{aligned} \mathsf{A} \end{matrix}igg] igg[(\exists \pi_1 = \mathit{p}_1 \xrightarrow{\mathit{u}_1 \mid \mathit{v}_1} \mathit{q}_1), \ldots, (\exists \pi_n = \mathit{p}_n \xrightarrow{\mathit{u}_n \mid \mathit{v}_n} \mathit{q}_n), \mathcal{C} \end{matrix} \}$$

Sufficient conditions for decidability

- generalise NFA
 - recognise each predicate (and negation)
- decide emptiness
- Losed under ∩ and ∪

Logic for NFA: PL_{nfa}

PL_{nfa} defined as $PL[\varnothing]$ over the trivial monoid

$$arphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \dots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), \mathcal{C}$$

$$\mathcal{C} ::= \neg \mathcal{C} \mid \mathcal{C} \lor \mathcal{C} \mid \mathcal{C} \land \mathcal{C} \mid P$$

Input
$$u \sqsubseteq u' \mid u \in L \mid |u| \le |u'|$$

Path $\pi = \pi' \mid q = q' \mid \text{init}(q) \mid \text{final}(q)$

L regular language represented as an NFA

Complexity

- ▶ general: PSPACE-C
- ▶ fixed formula: NLogSpace-C

Logics for Sum-Automata: PL_{sum} , PL_{sum}^{\neq}

PL_{sum} defined as $PL[\leq, \in S]$ over $(\mathbb{Z}, +, 0)$

$$arphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \dots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), \mathcal{C}$$

$$\mathcal{C} ::= \neg \mathcal{C} \mid \mathcal{C} \lor \mathcal{C} \mid \mathcal{C} \land \mathcal{C} \mid P$$

$$\begin{array}{ll} \textbf{Input} & u \sqsubseteq u' \mid u \in L \mid |u| \leq |u'| \\ \textbf{State} & \pi = \pi' \mid q = q' \mid \mathsf{init}(q) \mid \mathsf{final}(q) \\ \textbf{Output} & t \leq t' \mid t \in \mathcal{S} \end{array}$$

- ▶ L regular language represented as an NFA
- ▶ S semi-linear set represented as an $\exists FO[\leq, +, 0, 1]$ formula
- ▶ $t, t' \in Terms(\{v_1, ..., v_n\}, +, 0)$

We also consider PL_{sum}^{\neq} define as $PL^{+}[\neq]$ over $(\mathbb{Z},+,0)$

Complexity

- ▶ general: PSPACE-C
- ▶ fixed formula: NP-C \ PTIME

Logic for Transducers : PL_{trans}

PL_{trans} defined as $PL^{+}[\not\sqsubseteq, <_{len}, \leq_{len}, \in N, \not\in N]$ over $(\Gamma^{*}, \cdot, \varepsilon)$

$$arphi ::= (\exists \pi_1 = p_1 \xrightarrow{u_1 \mid v_1} q_1), \ldots, (\exists \pi_n = p_n \xrightarrow{u_n \mid v_n} q_n), \mathcal{C} \ \mathcal{C} ::= \neg \mathcal{C} \mid \mathcal{C} \lor \mathcal{C} \mid \mathcal{C} \land \mathcal{C} \mid P$$

```
Input u \sqsubseteq u' \mid u \in L \mid |u| \leq |u'|

Path \pi = \pi' \mid q = q' \mid \operatorname{init}(q) \mid \operatorname{final}(q)

Output t \not\sqsubseteq t' \mid |t| <_{len} |t'| \mid |t \leq_{len} |t'| \mid t \in N \mid t \not\in N
```

- ▶ L, N regular language represented as an NFA
- $t, t' \in Terms(\{v_1, \ldots, v_n\}, \cdot, \varepsilon)$

Complexity

- ▶ general: PSPACE-C
- ▶ fixed formula: NLogSpace-C

Acceptor of paths

Parikh Automata

Syntax. P is a tuple (A, S) where

- A automaton with outputs in $(\mathbb{N}^d, +_d, 0_d)$
- $S \subseteq \mathbb{N}^d$ semilinear set

Alternative Semantics.

$$[\![P]\!] = \{(u,v) \mid (u,v) \in [\![A]\!] \land v \in S\}$$

Acceptor of paths

Parikh Automata

Syntax. P is a tuple (A, S) where

- A automaton with outputs in $(\mathbb{N}^d, +_d, 0_d)$
- $S \subseteq \mathbb{N}^d$ semilinear set

Alternative Semantics.

$$[\![P]\!] = \{(u,v) \mid (u,v) \in [\![A]\!] \land v \in S\}$$

Theorem $\llbracket P \rrbracket = \varnothing$ [Figueira & Libkin 2015]

The emptiness problem of a Parikh Automata is $\mathrm{NP\text{-}C}$ and $\mathrm{NLogSpace}_{\mathrm{C}}$ if the dimension is fixed and weights are in $\{0,1\}.$

Conclusion

Logic \Setting	General	Fixed Formula
PL_{nfa}	PSPACE-C	NLogSpace-C
PL _{trans}	PSPACE-C	NLogSpace-C
PL _{sum}	PSPACE-C	NP-C binary
		NLOGSPACE-C unary
PL≠sum	PSPACE-C	PTIME \ NLOGSPACE-H

Future works

- Universal quantifications
- Better algorithmic complexities
- ► Extensions (trees, infinite words)

Conclusion

Logic \Setting	General	Fixed Formula
PL_{nfa}	PSPACE-C	NLogSpace-C
PL _{trans}	PSPACE-C	NLogSpace-C
PL _{sum}	PSPACE-C	NP-C binary
		NLOGSPACE-C unary
$\mathrm{PL}^{ eq}_{sum}$	PSPACE-C	PTIME \ NLOGSPACE-H

Une caracterisation des fonctions sequentielles et des fonctions sous-sequentielles en tant que relations rationnelles.

Theor. Comput. Sci., 5(3), 1977.

D. Figueira and L. Libkin.
Path logics for querying graphs:
Combining expressiveness and efficiency.
In LICS, pages 329–340, 2015.

E. Filiot, R. Gentilini, and J.-F. Raskin.
Finite-valued weighted automata.
In FSTTCS, pages 133–145, 2014.

I. Jecker and E. Filiot. Multi-sequential word relations. IJFCS, 29(2), 2018.

J. Sakarovitch and R. de Souza. On the decidability of bounded valuedness for transducers. In MFCS, pages 588–600, 2008.

> A. Weber and H. Seidl. On the degree of ambiguity of finite automata. *Theor. Comput. Sci.*, 325–349, 1991.