Convolutional Neural Networks for Computer Vision

Lesson 9 – Section 3

PROFESSIONAL & CONTINUING EDUCATION

Image Classification with CNNs

Task of taking an input image and outputting a class Probability of classes that best describes the image

For humans, effortless task

What we see

What a computer sees

PROFESSIONAL & CONTINUING EDUCATION

ONIVERSITI by WASHINGTON

Input Image

An image is an array of pixel values A JPG color image with size 480 x 480:

-The representative array will be 480 x 480 x 3. Each number is given a value from 0 to 255 which is the pixel intensity

Grayscale image contains a single sample (intensity value) for each pixel

Image Classification: Given an array of numbers, produce probabilities of the image being a certain class

PROFESSIONAL & CONTINUING EDUCATION

Why Not Use a Standard Neural Network?

- FF/BP Neural networks are fully connected
- With an image size of 480x480x3 this is a massive input vector → 691,200 input vector
- Even with 32x32x3 it's a vector size of 3072

CNN Network Layers

- Convolutional Layers
- Pooling Layers
- Fully Connected Layers

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

MNIST – Database of Handwritten Numbers

PROFESSIONAL & CONTINUING EDUCATION

INIVERSITY of WASHINGTON

What features might you expect a good DNN to learn when trained with data like

this?

What features might you expect a good DNN to learn when trained with data like

this?

What features might you expect a good DNN to learn when trained with data like

this?

Convolutional Layers: Feature Detectors

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Conv Layers: Self-organized Feature Detectors

Convolutional Layers: Feature Detectors

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTO

What is Padding?

Padding is a concept of where you might add a zero weight pixel to the outside of an image

$$\frac{W - F + 2P}{S + 1}$$

Where:

W = width of the input

F = filter size

P = zero padding

S = stride

$$\frac{7-3+2}{2+1}$$

PROFESSIONAL & CONTINUING EDUCATION

What are Shared Weights

When your stride is less than your filter depth, some of the weights across these filtered sections share weights

Successive Layers Learn Higher Level Features

Summarizing Feature/Activation Mapping

- Map from the input layer to the hidden layer
- Each mapping reflects a particular feature you want to identify; e.g., edges, curves, etc.
- The filter (AKA kernel) is also known as a "convolution"—which is a shared set of weights across the input space
- Weights are updated via backpropagation

PROFESSIONAL & CONTINUING EDUCATION

UNIVERSITY of WASHINGTON

Pooling Layers

Done periodically between convolution layers to:

- Reduce the spatial size of the image representation
- Reduce the number of parameters (and thus computation) in the network
- Control overfitting

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

How to MAX Pool

- Takes the volume W1xH1xD1
- Requires 2 hyperparameters (F and S)
- Produces a volume of size W2xH2xD2 where:

•
$$W2 = \frac{(W1-F)}{S+1}$$

•
$$H2 = \frac{(H1-F)}{S+1}$$

• D2 = D1 (depth is always unchanged)

PROFESSIONAL & CONTINUING EDUCATION

MAX Pooling

Single depth slice

max pool with 2x2 filters and stride 2

W

Other 'Good to Knows" about Pooling

- Can be used for averaging instead of reduction
- Proposed to be replaceable by larger strides in CONV layers—works better for generative models

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Activation Functions

Logistic (Sigmoid):

 S-shaped curve that ranges from 0 to 1 – good for mapping probability functions

tanH:

-Also S-shaped; but has a wider range from -1 to 1;

ReLU: Rectified Linear Units – AKA Ramp Activation

 Zero for negative values and linear for x values greater than 0; has an unlimited positive range (most popular for Deep NNs)

PROFESSIONAL & CONTINUING EDUCATION

Fully Connected Layers

- Same as in ANNs all neurons in the layer are fully connected to every neuron in the previous layer.
- Unlike CONV layers that are connected to a local region in the input volume with shared parameters
- Both use dot products across their weights and can easily be converted from one to the other

PROFESSIONAL & CONTINUING EDUCATION
UNIVERSITY of WASHINGTON

Combining CONV and Pooling Layers

- As you train you get smaller, more manageable representations
- These activation map operations occur independently

But what about position invariance?

Our detectors were tied to specific parts of the image.

Translation Invariance

Ability for the neural network to classify an object by its defining characteristics regardless of where and at what angle they appear

CATION

Machine Learning Studio DNN for MNIST

Summary: CNNs for Computer Vision

Many layers are interspersed between convolution layers:

Input – Conv→ReLU – Conv→ReLU – Pool→ReLU – Conv→ReLU – FC→ReLU – Dropout→ReLU – Conv→ReLU ...

- Better nonlinear predictivity
- Improves the robustness of the network and controls overfitting

