1. Valoarea determinantului
$$\begin{vmatrix} 2 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{vmatrix}$$
 este: (5 pct.)

- a) 2; b) 4; c) 0; d) 5; e) -2; f) -6.
- 2. Soluția ecuației $2^{x+1} = 16$ este: (5 pct.)
 - a) 1; b) 0; c) -1; d) 2; e) -2; f) 3.
- 3. Să se rezolve inecuația x + 2 < 4 x. (5 pct.)
 - a) $x \in (-\infty, 1)$; b) $x \in (-1, 1)$; c) $x \in (1, \infty)$; d) $x \in (0, 1) \cup (1, \infty)$; e) \emptyset ; f) $x \in (0, \infty)$.
- 4. Să se determine valoarea parametrului real m pentru care x=2 este soluție a ecuației $x^3+mx^2-2=0$. (5 pct.)
 - a) 3; b) $\frac{1}{2}$; c) $-\frac{3}{2}$; d) $\frac{5}{2}$; e) 1; f) $\frac{3}{4}$.
- 5. Să se calculeze $(1+i)^2$. (5 pct.)
 - a) 1; b) 2i; c) 4i; d) -2 + i; e) 0; f) i.
- 6. Fie ecuația $x^2 mx + 1 = 0$, $m \in \mathbb{R}$. Să se determine valorile lui m pentru care ecuația are două soluții reale și distincte. (5 pct.)
 - a) \mathbb{R} ; b) $(-\infty, -2) \cup (2, \infty)$; c) $(0, \infty)$; d) $(-\infty, 0)$; e) $(-\infty, -1) \cup (2, \infty)$; f) \emptyset .
- 7. Soluția ecuației $\sqrt[3]{x-1} = -1$ este: (5 pct.)
 - a) -3; b) Ecuația nu are soluții; c) 0; d) 1; e) -1; f) 3.
- 8. Fie funcția $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{x-1}{x}$. Să se calculeze f'(2). (5 pct.)
 - a) $\frac{1}{4}$; b) $\frac{2}{3}$; c) $-\frac{1}{2}$; d) $\frac{1}{8}$; e) 0; f) 2.
- 9. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f(x) = \begin{cases} x + 2m, & x \le 0 \\ m^2x + 4, & x > 0 \end{cases}$ să fie continuă pe \mathbb{R} . (5 pct.)
 - a) m = -3; b) m = 2; c) m = 0; d) m = 1; e) $m \in \mathbb{R}$; f) m = -2
- 10. Multimea soluțiilor ecuației $x^2 5x + 4 = 0$ este: (5 pct.)
 - a) $\{-1, 4\}$; b) $\{-1, 1\}$; c) $\{0, 3\}$; d) $\{1, 4\}$; e) \emptyset ; f) $\{0, -3\}$.
- 11. Valoarea integralei $\int_{0}^{1} (6x^2 + 2x) dx$ este: (5 pct.)
 - a) -2; b) 0; c) 3; d) $\frac{1}{3}$; e) 4; f) $\frac{1}{2}$.
- 12. Să se determine funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax + b$ astfel încât f(0) = 1, f(1) = 0. (5 pct.)
 - a) $x^2 1$; b) $x^2 + 1$; c) $x^2 3x$; d) $x^2 + 4x + 5$; e) $x^2 2x + 1$; f) $x^2 + x + 1$.
- 13. Să se calculeze $\sqrt{\pi}$ cu o zecimală exactă. (5 pct.)
 - a) 1,6; b) 1,9; c) 2,2; d) 1,5; e) 2,1; f) 1,7.
- 14. Fie şirul cu termenul general $a_n = \sum_{k=1}^n kC_n^k$, $n \ge 1$. Să se calculeze a_{2009} . (5 pct.)
 - a) $2007 \cdot 2^{2009}$; b) 2009! + 1; c) 2008!; d) $2009 \cdot 2^{2008}$; e) $2008 \cdot 2^{2009}$; f) $\frac{1}{2009}$.
- 15. Să se calculeze aria mulțimii plane mărginite de graficul funcției $f:(0,\infty)\to\mathbb{R}, f(x)=x\ln x$, axa Ox și dreptele verticale x=1, x=e. (5 pct.)
 - a) 1; b) e + 2; c) e; d) $\frac{e-1}{4}$; e) 0; f) $\frac{e^2+1}{4}$.

- 16. Fie funcția $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{\sqrt{x^2+1}}{x-1}$. Asimptotele funcției f sunt: **(5 pct.)** a) x = 1, y = x; b) x = 0, y = -1; c) y = x + 1; d) x = -1, y = 2x + 3; e) x = 1, y = 1, y = -1; f) x = 1, y = 1.
- 17. Ştiind că polinomul $aX^4 + bX^3 + cX^2 + (a-1)X 1$ are rădăcina triplă 1, să se calculeze a + b + c. (5 pct.)
 - a) 0; b) -2; c) 1; d) -1; e) $\frac{1}{2}$; f) 2.
- 18. Pe \mathbb{Z} se definește legea de compoziție x * y = xy 2x 2y + 6. Să se determine elementul neutru. (5 pct.) a) 7; b) -3; c) 1; d) 3; e) Nu există; f) -1.