STA286 Lecture 11

Neil Montgomery

Last edited: 2017-02-02 13:00

reminder "theorem"

$$E(g(X)) = \begin{cases} \sum_{x} g(x)p(x) & : \text{discrete} \\ \int_{-\infty}^{\infty} g(x)f(x) dx & : \text{continuous} \end{cases}$$

"constant" random variables

From last time: E(a+bX) = a+bE(X). The left had side is a bit of an odd expression.

"constant" random variables

From last time: E(a+bX) = a+bE(X). The left had side is a bit of an odd expression.

For convenience we can treat constants as random variables. Formally, we can consider a random variable X that is always, say, some real a no matter what. The pmf of X is:

$$P(X = a) = 1$$

and 0 otherwise.

"constant" random variables

From last time: E(a+bX) = a+bE(X). The left had side is a bit of an odd expression.

For convenience we can treat constants as random variables. Formally, we can consider a random variable X that is always, say, some real a no matter what. The pmf of X is:

$$P(X = a) = 1$$

and 0 otherwise.

Informally, for convenience, we dispense with the X notation and just treat the constant a as a random variable, allowing for statements like:

$$E(a) = a$$

expected values and joint distributions

Given X and Y with joint density f(x,y), and given a function $g: \mathbb{R}^2 \to \mathbb{R}$, a sophisticated application of the theorem from last time is:

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)f(x,y) dx dy$$

(discrete version is the same, with sums)

$$E(g(X,Y)) = E(X+Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) dx dy$$

$$E(g(X,Y)) = E(X+Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) dx dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) dy dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dx dy$$

$$E(g(X,Y)) = E(X+Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) \, dy \, dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x,y) \, dy \, dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f(x,y) \, dx \, dy$$

$$E(g(X,Y)) = E(X+Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) dy dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x,y) dy dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} xf_X(x) dx + \int_{-\infty}^{\infty} yf_Y(y) dy$$

$$E(g(X,Y)) = E(X+Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x+y)f(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x,y) dy dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} x \int_{-\infty}^{\infty} f(x,y) dy dx + \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} xf_X(x) dx + \int_{-\infty}^{\infty} yf_Y(y) dy$$

$$= E(X) + E(Y)$$

$$E(g(X,Y)) = E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dx dy$$

$$E(g(X,Y)) = E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f(x,y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_X(x) f_Y(y) \, dx \, dy$$

$$E(g(X,Y)) = E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f(x,y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_X(x) f_Y(y) \, dx \, dy$$
$$= \int_{-\infty}^{\infty} xf_X(x) \, dx \int_{-\infty}^{\infty} yf_Y(y) \, dy$$

$$E(g(X,Y)) = E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f(x,y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, f_X(x) f_Y(y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} xf_X(x) \, dx \int_{-\infty}^{\infty} yf_Y(y) \, dy$$

$$= E(X)E(Y)$$

notation

It is common to use μ as a shorter stand-in for E(X).

I'm not so convinced this is a good idea.

BIG MONEY versus BIG MONEY SCHNAPPS VERSION

$$E(X) = E(Y) = 0$$

Roll	1, 2	3	4, 5	6
BIG MONEY Outcome X \$	-2	0	1	2
BIG MONEY SCHNAPPS Outcome Y \$	-200	0	100	200
Probability	2/6	1/6	2/6	1/6

BIG MONEY versus BIG MONEY SCHNAPPS VERSION

$$E(X)=E(Y)=0$$

1, 2	3	4, 5	6
-2	0	1	2
-200	0	100	200
2/6	1/6	2/6	1/6
	-2 -200	-200 0	-2 0 1

But Y is clearly a riskier game. The distribution is more spread out, by a factor of 100.

BIG MONEY versus BIG MONEY SCHNAPPS VERSION

$$E(X)=E(Y)=0$$

1, 2	3	4, 5	6
-2	0	1	2
-200	0	100	200
2/6	1/6	2/6	1/6
	-2 -200	-2 0 -200 0	-2 0 1

But Y is clearly a riskier game. The distribution is more spread out, by a factor of 100.

The question is—how to measure this difference in variation?

variance

Recall the sample variance, expressed a little differently:

$$s^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n-1}$$

This is a weighted sum of squared deviations with weights $w_i = 1/(n-1)$

variance

Recall the sample variance, expressed a little differently:

$$s^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n-1}$$

This is a weighted sum of squared deviations with weights $w_i = 1/(n-1)$

The theoretical analogue is called the *variance*:

$$Var(X) = E((X - E(X))^{2}) = E((X - \mu)^{2})$$

provided the expectations all exist.

variance

Recall the sample variance, expressed a little differently:

$$s^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n-1}$$

This is a weighted sum of squared deviations with weights $w_i = 1/(n-1)$

The theoretical analogue is called the variance:

$$Var(X) = E\left((X - E(X))^2\right) = E\left((X - \mu)^2\right)$$

provided the expectations all exist.

It is also possible to view this as an application of the E(g(X)) theorem with $g(x) = (x - \mu)^2$.

examples - BIG MONEY

$$Var(X) = (-2-0)^2 \frac{2}{6} + (0-0)^2 \frac{1}{6} + (1-0)^2 \frac{2}{6} + (2-0)^2 \frac{1}{6} = \frac{14}{6}$$

examples - BIG MONEY

$$Var(X) = (-2-0)^{2} \frac{2}{6} + (0-0)^{2} \frac{1}{6} + (1-0)^{2} \frac{2}{6} + (2-0)^{2} \frac{1}{6} = \frac{14}{6}$$

Schnapps version:

$$Var(Y) = (-200 - 0)^2 \frac{2}{6} + (0 - 0)^2 \frac{1}{6} + (100 - 0)^2 \frac{2}{6} + (200 - 0)^2 \frac{1}{6} = \frac{140000}{6}$$

Using the two rules E(a + bX) = a + bE(X) and E(X + Y) = E(X) + E(Y) we can derive the better way to calculate variance:

$$\mathsf{Var}(X) = E\left((X - \mu)^2\right)$$

= $E\left(X^2 - 2X\mu + \mu^2\right)$

Using the two rules E(a + bX) = a + bE(X) and E(X + Y) = E(X) + E(Y) we can derive the better way to calculate variance:

$$Var(X) = E((X - \mu)^2)$$

$$= E(X^2 - 2X\mu + \mu^2)$$

$$= E(X^2) - 2E(X)\mu + \mu^2$$

Using the two rules E(a + bX) = a + bE(X) and E(X + Y) = E(X) + E(Y) we can derive the better way to calculate variance:

$$Var(X) = E((X - \mu)^2)$$

$$= E(X^2 - 2X\mu + \mu^2)$$

$$= E(X^2) - 2E(X)\mu + \mu^2$$

$$= E(X^2) - \mu^2$$

Using the two rules E(a + bX) = a + bE(X) and E(X + Y) = E(X) + E(Y) we can derive the better way to calculate variance:

$$Var(X) = E((X - \mu)^{2})$$

$$= E(X^{2} - 2X\mu + \mu^{2})$$

$$= E(X^{2}) - 2E(X)\mu + \mu^{2}$$

$$= E(X^{2}) - \mu^{2}$$

Or as I prefer: $Var(X) = E(X^2) - E(X)^2$

		X		
Y	1	1.5	1.75	Marginal
0.5	0.075	0.100	0.150 0.090	0.325
1	0.110	0.080	0.090	0.280
2	0.160	0.140	0.095	0.395
Marginal	0.345	0.320	0.335	1.000

		X		
Y	1	1.5	1.75	Marginal
0.5	0.075	0.100	0.150	0.325
1	0.110	0.080	0.090	0.280
2	0.160	0.140	0.095	0.395
Marginal	0.345	0.320	0.335	1.000

$$E(X) = 1 \cdot 0.345 + 1.5 \cdot 0.320 + 1.75 \cdot 0.335 = 1.41125$$

		X		
Y	1	1.5	1.75	Marginal
0.5	0.075	0.100	0.150	0.325
1	0.110	0.080	0.090	0.280
2	0.160	0.140	0.095	0.395
Marginal	0.345	0.320	0.335	1.000

$$E(X) = 1 \cdot 0.345 + 1.5 \cdot 0.320 + 1.75 \cdot 0.335 = 1.41125$$

$$E(X^2) = 1^2 \cdot 0.345 + 1.5^2 \cdot 0.320 + 1.75^2 \cdot 0.335 = 2.0909375$$

		X		
Y	1	1.5	1.75	Marginal
0.5	0.075	0.100	0.150	0.325
1	0.110	0.080	0.090	0.280
2	0.160	0.140	0.095	0.395
Marginal	0.345	0.320	0.335	1.000

$$E(X) = 1 \cdot 0.345 + 1.5 \cdot 0.320 + 1.75 \cdot 0.335 = 1.41125$$

$$E(X^2) = 1^2 \cdot 0.345 + 1.5^2 \cdot 0.320 + 1.75^2 \cdot 0.335 = 2.0909375$$

$$Var(X) = 0.0993109$$

variance non-example

Reconsider X with density $f(x) = 2x^{-3}$ for x > 1, and 0 otherwise. Last time we found E(X) = 2.

But X does not have a variance, because $E(X^2)$ does not exist.

It is common to use σ^2 as a shorter stand-in for Var(X).

It is common to use σ^2 as a shorter stand-in for Var(X).

I'm not so convinced this is a good idea.

It is common to use σ^2 as a shorter stand-in for Var(X).

I'm not so convinced this is a good idea.

Recall the "unit" problem with the sample variance s^2 ; hence the use of the sample standard deviation $s=\sqrt{s^2}$.

It is common to use σ^2 as a shorter stand-in for Var(X).

I'm not so convinced this is a good idea.

Recall the "unit" problem with the sample variance s^2 ; hence the use of the sample standard deviation $s = \sqrt{s^2}$.

The theoretical analogue is the *standard deviation*, defined as:

$$\mathsf{SD}(X) = \sqrt{\mathsf{Var}(X)}$$

It is common to use σ^2 as a shorter stand-in for Var(X).

I'm not so convinced this is a good idea.

Recall the "unit" problem with the sample variance s^2 ; hence the use of the sample standard deviation $s = \sqrt{s^2}$.

The theoretical analogue is the *standard deviation*, defined as:

$$SD(X) = \sqrt{Var(X)}$$

It is common to use σ as a shorter stand-in for SD(X).

It is common to use σ^2 as a shorter stand-in for Var(X).

I'm not so convinced this is a good idea.

Recall the "unit" problem with the sample variance s^2 ; hence the use of the sample standard deviation $s = \sqrt{s^2}$.

The theoretical analogue is the *standard deviation*, defined as:

$$SD(X) = \sqrt{Var(X)}$$

It is common to use σ as a shorter stand-in for SD(X).

I will leave to you to guess as to whether or not I am convinced this is a good idea.

variance rules

$$Var(a + bX) = b^2 Var(X)$$

variance rules

$$Var(a + bX) = b^2 Var(X)$$

What about Var(X + Y)?