TMT4110 KJEMI

ØVING NR. 8, VÅR 2015

Veiledning: Mandag 02.03.2015 kl. 16-18

Innleveringsfrist: Onsdag 04.03.2015 kl. 1215

Løsningsforslag legges ut på it's learning

OPPGAVE 1

i) Hvilket av følgende utsagn er ikke en av termodynamikkens lover? a) Den totale energien i universet er konstant	
ii) Hvilken av følgende beskriver en likevektssituasjon? a) $\Delta H^o = T\Delta S^o$. b) $\Delta G^o = 0$. c) $\Delta C_p = 0$. d) $\Delta G = 0$.	
 iii) Den eksoterme reaksjonen ½ O₂ + H₂ → H₂O foregår i en lukket beholder med konstant volum. Energiutvekslingen med omgivelsene fører til at a) den indre energi til beholderen er uendret b) den indre energi til beholderen avtar c) den indre energi til beholderen øker d) Energi fra omgivelsene tilføres beholderen 	
iv) En lukket gassbeholder ekspanderer mot et konstant ytre trykk. Arbeidet som utføres på omgivelsene tilsvarer a) $P\Delta V$ b) – $P\Delta V$ c) – $V\Delta P$ d) $V\Delta P$	

v) Hvilke av følgende prosesser trenger energitilførsel?	
a) Jern ruster	
b) Oppløsning av salt i vann	
c) En satellitt faller tilbake på jorden	. \Box
d) Oppløsning av saft i vann	
vi) Standard molar entalpi for diamant (karbon) er	
a) 0 J/mol	
b) 2 J/mol	
c) -2000 J/mol	
d) 2000 J/mol	

OPPGAVE 2 (Eksamensoppgave des. 96) (Kap. 9 og 10)

Hydrogenklorid kan fremstilles fra natriumklorid ved reaksjon med konsentrert svovelsyre:

$$2 \text{ NaCl (s)} + \text{H}_2\text{SO}_4 (1) = \text{Na}_2\text{SO}_4 (s) + 2 \text{ HCl (g)}$$

- a) Benytt SI til å bestemme ΔH° , ΔS° og ΔG° for denne reaksjonen ved 25 °C. Beregn også likevektskonstanten ved samme temperatur. Vil reaksjonen gå frivillig?
- b) Kommenter fortegnet for den beregnede ΔS° for reaksjonen.
- c) Anta at ΔH° og ΔS° for reaksjonen er uavhengig av temperaturen, og bestem den temperatur der likevektstrykket av hydrogenkloridgassen er 5,0 atm.

OPPGAVE 3 (Kap. 9 og Kap. 10)

- a) Finn fra SI entropien for O₂ (g), H₂O (l), H₂O (s), C (s), HCl (g), HCl (aq) og Fe (s).
- b) Hvorfor måtte du her slå opp alle tallene?
- c) Hva er ΔS° for reaksjonen H₂O (s) \rightarrow H₂O (l)?
- d) Hva er ΔS° for reaksjonen H₂O (1) \rightarrow H₂O (g)?
- e) S er et mål for graden av uorden i systemet. Jo større S, jo høyere uorden. Kommenter ut fra dette svarene i c) og d).

OPPGAVE 4 (**Kap. 10**)

- a) Ved vannets normale kokepunkt (100 °C) er den molare fordampningsentalpien $\Delta H_{\rm v}^{\rm o} = 40.7$ kJ/mol. Beregn den molare fordampningsentropien $\Delta S_{\rm vap}^{\rm o}$ når fordampningen av vann skjer reversibelt ved 100 °C.
- b) Beregn også den molare fordampningsentropien for følgende væsker:

	ΔH_{vap} (kJ mol ⁻¹)	Kokepunkt (K)
Cl ₂ (l)	20,4	238,5
$C_6H_6(1)$	30,8	353
CHCl ₃ (l)	29,4	334
$PbCl_{2}(1)$	104,0	1145

Ifølge den såkalte "Troutons regel" er den molare fordampningsentropien for de fleste normale væsker ca. 88 J/mol K. Kommenter hvorvidt denne regelen gjelder for væskene omtalt i denne oppgaven. Hva kommer eventuelle avvik av?

OPPGAVE 5 (Kap. 10)

- a) 3 mol Xe (g) varmes opp fra 300 til 500 K ved 1 atm. Beregn ΔS. (Hvilke(n) antakelse(r) vil du gjøre?)
- b) Hva vil ΔS bli dersom Xe (g) varmes opp fra 300 til 500 K ved konstant volum?
- c) Anta at Xe (s) varmes opp fra T_1 til T_2 . (Xe er fremdeles i fast form ved T_2 .) Vil du forvente noen forskjell mellom ΔS beregnet ved henholdsvis konstant trykk og volum?

OPPGAVE 6 (Kap. 10)

- a) Formuler termodynamikkens 2. lov.
- b) Hvilke av følgende hendelser øker universets entropi?: i) Varme går fra en varm til en kald flate. ii) Vann renner oppover en bakke. iii) En stein ruller oppover en bakke og blir kald. iv) NaCl løses i vann.
- c) Hva betyr de enkelte leddene i uttrykket $\Delta G = \Delta H T\Delta S$?
- d) Hva er forskjellen mellom ΔG og ΔG° ?
- e) Hva betyr det at $\Delta G = \Delta G^{\circ}$ for reaksjonen H₂O (l) = H₂O (g)?
- f) Hvorfor er $\Delta G = \Delta G^{\circ}$ for denne reaksjonen ved 100 °C?
- g) Hva er ΔG ved likevekt? Hvilken verdi har ΔG° for H₂O (l) = H₂O (g) ved 100 °C?
- h) Bruk ligningen $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$ til å beregne kokepunktet for vann.
- i) For hvilke temperaturer vil koking av vann øke universets entropi dersom P = 1 atm?

OPPGAVE 7 (Kap. 10)

- a) Utled van't Hoffs ligning: $\ln K = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$
- b) Bruk denne ligningen til å vise at: $\ln \left(\frac{K_1}{K_2} \right) = \frac{\Delta H^{\circ}}{R} \left(\frac{1}{T_2} \frac{1}{T_1} \right)$ $K_1 = K \text{ ved } T = T_1$.
- c) Likevektskonstanten for en gitt reaksjon er 1.2×10^{-3} ved 25 °C. Hva er likevektskonstanten ved 100 °C hvis $\Delta H^{\circ} = -81$ kJ?

- d) Hva er likevektskonstanten for samme reaksjon ved 100 °C hvis $\Delta H^{\circ} = 81 \text{ kJ}$?
- e) Hva er likevektsreaksjonen for fordampning av vann?
- f) Skriv opp uttrykket for likevektskonstanten for reaksjonen i e).
- g) Hva er likevektskonstanten for fordampning av vann ved 100 °C?
- h) Vis at ligningen i b) kan omformes til $\ln \frac{P_1}{P_2} = \left(\frac{\Delta H_{\text{vap}}}{R}\right) \left(\frac{1}{T_2} \frac{1}{T_1}\right)$ hvor P_{T_1} er damptrykket ved $T = T_1$, og ΔH_{vap} er fordampningsvarmen.

OPPGAVE 8 (Kap. 9 og 10)

a) Beregn ΔH° og ΔG° ved 25 °C for reaksjonen:

$$2 \text{ Ag(s)} + \frac{1}{2} \text{ O}_2(g) = \text{Ag}_2\text{O}(s)$$

b) Til hvilken temperatur må vi varme opp sølvoksidet for at det skal spaltes til elementene, Ag (s) og O₂ (g), i luft? Vi regner med at lufttrykket er 1,00 atm og at O₂-innholdet i luften er 21 vol%.

Vi antar også at ΔH° og ΔS° for reaksjonen ovenfor er uavhengig av temperaturen.

Fasit:

- 2a) K = 2.24
- 2c) 331 K
- 3c) 29 J K⁻¹ mol⁻¹
- 3d) 119 J K⁻¹ mol⁻¹
- 4a) 109 J/K
- 5a) 32 J/K
- 5b) 19 J/K
- 6h) 94,8°C
- 7c) 1.7×10^{-6}
- 7d) 0,86
- 8a) $\Delta H^{\circ} = -31 \text{ kJ}, \Delta G^{\circ} = -11 \text{ kJ}$
- 8b) 421 K