MIPS Guia de Referência

CONJUNTO BÁSICO DE INSTRUÇÕES

			•		
					OPCODE/
270277 207727		FOR-			FUNÇÃO
NOME, MNEMĆ		MATO	, ,		(Hexa)
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm		8_{hex}
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9_{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	$C_{ m hexa}$
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	$4_{ m hexa}$
Branch On Not Equal	bne	I	if(R[rs]!=R[rt])	. ,	
•			PC=PC+4+BranchAddr	(4)	$5_{ m hexa}$
Jump	j	J	PC=JumpAddr	(5)	2_{hexa}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hexa}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hexa}
Load Byte Unsigned	1 bu	I	$R[rt]=\{24'b0,M[R[rs]$		$24_{ m hexa}$
			+SignExtImm](7:0)}	(2)	nexa
Load Halfword	1 hu	I	$R[rt]=\{16'b0,M[R[rs]$		25_{hexa}
Unsigned	1.1		+SignExtImm] (15:0)}	(2)	— e nexa
Load Linked	11	I	R[rt] = M[R[rs]]	(0.5)	
Load Unner Imm	Lusi	т	+SignExtImm]	(2,7)	30 _{hexa}
Load Upper Imm. Load Word	lui lw	I	$R[rt] = \{imm, 16'b0\}$		f_{hexa}
Load Word	I W	1	R[rt] = M[R[rs]]	(2)	22
Nor	nor	R	$+SignExtImm]$ $R[rd] = \sim (R[rs] R[rt])$	(2)	23 _{hexa}
Or	or	R	$R[rd] = \sim (R[rs] \mid R[rt])$ $R[rd] = R[rs] \mid R[rt]$		0 / 27 _{hexa}
Or Immediate	ori	I	R[rt] = R[rs] R[rt] R[rt] = R[rs] ZeroExtImm	(2)	0 / 25 _{hexa}
Set Less Than	s1t	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(3)	d _{hexa} 0 / 2a _{hexa}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)	(2)	
oct Bess Than Imm.	3161	1	? 1:0	(2,6)	a _{hexa} b _{hexa}
Set Less Than Imm.	sltiu	I	R[rt] = (R[rs] < SignExtImm)	(2,0)	Ohexa
Unsigned		-	?1:0		
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hexa}
Shift Left Logical	s11	R	$R[rd] = R[rt] \ll shamt$	(0)	0/00 _{hexa}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0/02 _{hexa}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0)		- r nexa
			= R[rt](7:0)	(2)	28_{hexa}
Store Conditional	s c	I	M[R[rs]+SignExtImm] =		20
Store Conditional	30	1	R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hexa}
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) =		29 _{hexa}
			R[rt](15:0)	(2)	
Store Word	SW	Ι	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hexa}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	$0/22_{hexa}$
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hexa}$
			xceção de overflow		
			= { 16{imediato[15]}, imediato	}	
			= { 16{lb'0}, imediato }	-11 -	
			= { 14{imediato[15]}, imediato,		ł
			PC+4[31:28], endereço, 2'b0		
	-		onsiderados números sem sinal	l	
			emento de 2) l testar&definir R[rt] = 1 se pa	البيزين	rio(rral
		aivisive. ão indiv		111111	v 151VC1,
	0 36 11	ao muiv	151 7 C1		

FORMATOS BÁSICOS DE INSTRUÇÃO

R	opco	ode	rs	rt	rd	shamt	função		
	31	26 2	5 21	20 16	15 11 10 6		5 15 11 10		5 0
I	opco	ode	rs	rt		imediato			
	31	26 2	5 21	20 16	5 15		0		
J	opco	ode			endereço				
	31	26 2	5				0		

CONJUNTO BÁSICO DE INS	TRUÇÕES ARITMÉTICAS ②	OPCODE/
		FMT/FT/
FOR		FUNÇÃO
NOME, MNEMÔNICO MAT Branch On FP True bc1t FI	O OPERAÇÃO if(FPcond)PC = PC + 4 + Branch- (4)	(Hexa) 11/8/1/
Branch On FP False bclf FI	Addr if(! FPcond)PC = PC + 4 + Bran- (4)	11/8/0/
Divide div R Divide Unsigned divu R FP Add Single add.s FR FP Add Double add.d FR	chAddr Lo = R[rs]/R[rt]; Hi = R[rs]%R[rt] Lo = R[rs]/R[rt]; Hi = R[rs]%R[rt] (6) F[fd] = F[fs] + F[ft] {F[fd],F[fd + 1]} = {F[fs],F[fs + 1]} +	0///1a 0///1b 11/10//0 11/11//0
FP Compare Single C.x.s* FR FP Compare Double C.x.d* FR	$\{F[ft], F[ft+1]\}\$ FPcond = (F[fs] op F[ft])? 1: 0 $FPcond = (\{F[fs], F[fs+1]\} op$	11/10// <i>y</i> 11/11// <i>y</i>
* (x é eq, lt ou le) (op pe ==, < ou FP Divide Single div.s FR FP Divide Double div.d FR	$\{F[ft],F[ft+1]\}\} ? 1:0$ $1 < = \} (y \in 32, 3c \text{ ou } 3e)$ F[fd] = F[fs] / F[ft] $\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}/$	11/10//3 11/11//3
FP Multiply Single mul.s FR FP Multiply Double mul.d FR é	{F[ft],F[ft+1]} F[fd] = F[fs] * F[ft] {F[fd],F[fd+1]} = {F[fs],F[fs+1]} *	11/10//2 11/11//2
FP Subtract Single sub.s FR FP Subtract Double sub.d FR	${F[ft],F[ft+1]}$ F[fd] = F[fs] - F[ft] ${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/10//1 11/11//1
Load FP Single WC1 I Load FP Double Idc1 I	$ \begin{aligned} & \{F[ft], F[ft+1]\} \\ & F[rt] = M[R[rs] + SignExtImm] \end{aligned} $	31// 35//
Move From Hi mfhi R Move From Lo mflo R Move From Control mfc0 R Multiply mult R Multiply Unsigned Shift Right Arith. sra R Store FP Single Swc1 I Store FP Double Sdc1 I	Imm + 4] R[rd] = Hi R[rd] = Lo R[rd] = CR[rs] {Hi,Lo} = R[rs] * R[rt] {Hi,Lo} = R[rs] * R[rt] (6) R[rd] = R[rt] >> shamt M[R[rs] + SignExtImm] = F[rt] (2) M[R[rs] + SignExtImm] = F[rt]; (2)	0///10 0///12 10/0//0 0///18 0///19 0///3 39///-

FORMATOS DE INSTRUÇÃO DE PONTO FLUTUANTE

FR	opcode	fı	mt	ft			fs	fd	T	função	
	31	6 25	21	20	16	15	11	10	6 5		0
FI	opcode	fr	mt	ft				imediate)		
	31	6 25	21	20	16	15					0

F[rt + 1]

CONJUNTO DE PSEUDOINSTRUÇÕES

NOME	MNEMÔNICO	OPERAÇÃO
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs] > R[rt]) PC = Label
Branch Less Than or Equal	ble	if(R[rs] < = R[rt]) PC = Label
Branch Greater Than or Equal	bge	if(R[rs] > = R[rt]) PC = Label
Load Immediate	li	R[rd] = imediato
Move	move	R[rd] = R[rs]

NOME DE REGISTRADOR, NÚMERO, USO, CONVENÇÃO DE CHAMADA

NOME	NÚMERO	USO	PRESERVADO EM
			UMA CHAMADA?
\$zero	0	O valor constante 0	N.A.
\$at	1	Temporário do assembler	Não
\$v0-\$v1	2-3	Valores para resultados de função e avaliação de expressão	Não
\$a0-\$a3	4-7	Argumentos	Não
\$t0-\$t7	8-15	Temporários	Não
\$s0-\$s7	16-23	Temporários salvos	Sim
\$t8-\$t9	24-25	Temporários	Não
\$k0-\$kl	26-27	Reservado para o kernel do sistema	Não
\$gp	28	Ponteiro global	Sim
\$sp	29	Ponteiro de pilha	Sim
\$fp	30	Ponteiro de frame	Sim
\$ra	31	Endereço de retorno	Sim

OPCODES, CONVERSÃO DE BASE, SÍMBOLOS ASCII

OPCO	DES, C	ONVERSÃ	O DE B	ASE,	SÍM	BOLOS	SASC	II	3
Op-	(1)	(2) Função	Binário	Deci-	Hexa	- Ca-	Deci-	Неха-	Carac-
code	,	MIPS (5:0)		mal	deci-	rac-	mal	deci-	tere
MIPS					mal	tere		mal	ASCII
(31:26						ASCII			
(1)	s11	add.f	00 0000	0	0	NUL	64	40	@
	a n 1	sub.f	00 0001	1	1	SOH	65	41	A
j jal	srl sra	mul. <i>f</i> div. <i>f</i>	00 0010	2	2	STX ETX	66 67	42 43	B C
beg	sllv	sqrt.f	00 0011	4	4	EOT	68	45	
bne	5111	abs.f	00 0100	5	5	ENQ	69	45	E
blez	srlv	mov.f	00 0110	6	6	ACK	70	46	F
bgtz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	j r		00 1000	8	8	BS	72	48	Η
addiu siti	jair movz		00 1001	9	9	HT	73	49	I
sltiu			00 1010	10 11	a b	LF VT	74 75	4a 4b	J
andi		round.w.f	00 1011	12					K
ori	break	trunc.w.f	00 1100	13	c d	FF CR	76 77	4c 4d	L M
xori	J. 541	ceil.w.f	00 1110	14	e	SO	78	4u 4e	N
lui	sync	floor.w.f	00 1111	15	f	SI	79	4f	O
	mfhi		01 0000	16	10	DLE	80	50	P
(2)	mthi		01 0001	17	11	DC1	81	51	Q
	mflo mtlo	movz.f	01 0010	18	12	DC2	82	52	R
	mtlo	movn.f	01 0011	19	13	DC3	83	53	S
			01 0100 01 0101	20 21	14 15	DC4 NAK	84 85	54 55	T U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010	26	la	SUB	90	5a	Z
	divu		01 1011	27	lb_	ESC	91	5b	[
			01 1100 01 1101	28 29	lc 1d	FS GS	92 93	5c 5d	\]
			01 1110	30	le	RS	94	5e	٧
			01 1111	31	1f	US	95	5f	_
1 b	add	cvt.s.f	10 0000	32	20	Space	96	60	,
1h		cvt.d.f	10 0001	33	21	!	97	61	a
lwl lw	sub subu		10 0010	34	22	" "	98	62	b
1bu		cvt.w.f	100011	35	23	\$	99	63	c d
1hu	or	cvc.w.j	10 0100	37	25	%	100	65	e
lwr	xor		10 0110	38	26	&	102	66	f
	nor		10 0111	39	27	,	103	67	g
sb			10 1000	40	28	(104	68	h
sh sul	c 1 +		10 1001	41	29)	105	69	i
sw1 sw	slt sltu		10 1010 10 1011	42 43	2a 2b	+	106 107	6a 6b	j k
	3.00		10 1100	43	2c	,	107	6c	1 1
			10 1100	45	2d	-	109	6d	m
swr			10 1110	46	2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	0
11		c.f. <i>f</i>	11 0000	48		0	112	70	p
lwcl lwc2		c.un.f c.eq.f	11 0001 11 0010	49 50	31 32	1 2	113	71 72	q
pref		c.ueq.f	11 0010	51		3	114 115	72 73	r s
		c.olt.f	11 0100	52		4	116	74	t
idc1		c.ult.f	11 0101	53		5	117	75	u
1dc2		-	11 0110	54		6	118	76	v
			11 0111	55		7	119	77	w
S C			11 1000	56		8	120	78	х
swc1 swc2			11 1001	57		9	121	79 7a	У
JWCZ			11 1010 11 1011	58 59		;	122 123	7a 7b	z {
			11 1100	60	3c	<	124	7c	
sdcl			11 1101	61		=	125	7d	}
sdc2	(c.le.f	11 1110	62		>	126	7e	~
	(c.ngt.f	11 1111	63	3f	?	127	7f	DEL

(1) opcode(31:26) == 0

PADRÃO DE PONTO FLUTUANTE **IEEE 754**

 $(-1)^s \times (1 + Fração) \times 2^{(Expoente - Bias)}$ onde Bias de Precisão Simples = 127, Bias de Precisão Dupla = 1023

31	IIIDOIOS IEEE	734						
Expoente	Fração	Objeto						
0	0	± 0						
0	≠ 0	± Desnorm						
l até MÁX - l	qualquer coisa	± Núm. Pt. Flut.						
MÁX	0	± ∞						
MÁX ≠0 NaN								
S.P. MAX = 255, D.P. MAX = 2047								

Formatos IEEE de Precisão Simples e Dupla:

S	Ť	Expoente	Fração	
31	30	23	22	0
S		Expoente	Fração	75
63	62		52 51	0

ALINHAMENTO DE DADOS

	Dupla Word							
Word Word								
Hali	word	Half	word	Halfword Halfwo			word	
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
0	1	2	3	4	5	6	7	

Valor dos três bits menos significativos do endereço de byte (Big Endian)

REGISTRADORES DE CONTROLE DE EXCEÇÃO: CAUSA E STATUS

B D		Máscara de Interrupção			Código de Exceção			
31	15		8	6		2		
		Interrupção Pendente			U		Е	I
		Pendente	-		M		L	Е
	15		8		4	-	1	0

 ${\rm BD} = {\rm Branch\ Delay\ (desvio),\ UM = User\ Mode\ (modo\ usu\'{a}rio),\ EL = Exception\ Level}$ (nível de exceção), IE =Interrupt Enable (interrupção habilitada)

CÓDIGOS DE EXCEÇÃO

Número	Nome	Causa da Exceção	Número	Nome	Causa da Exceção
0	Int	Interrupção (hardware)	9	Вр	Exceção de Ponto de Interrupção
4	AdEL	Exceção de Erro de Endereço (load ou busca de instrução)	10	RI	Exceção de Instrução Revertida
5	AdES	Exceção de Erro de Endereço (store)	11	CpU	Co-processor Não Implementado
6	IBE	Erro de Barramento ou Busca de Instrução	12	Ov	Exceção de Overflow Aritmético
7	DBE	Erro de Barramento no Load ou Store	13	Tr	Trap
8	Sys	Exceção de Syscall	15	FPE	Exceção de Ponto Flutuante

PREFIXOS DE TAMANHO

	PREFI-			PREFI-		TAMA-	PREFI-	SÍM-	TAMA-	PRE-	SÍM-
	XO	BOLO	NHO	XO	BOLO	NHO	XO	BOLO	NHO	FIXO	BOLO
10^3	Kilo-	K	210	Kibi-	Ki	10^{15}	Peta-	P	250	Pebi-	Pi
10 ⁶	Mega-	M	2^{20}	Mebi-	Mi	10^{18}	Exa-	Е	2 ⁶⁰	Exbi-	Ei
109	Giga-	G	2 ³⁰	Gibi-	Gi	1021	Zetta-	Z	270	Zebi-	Zi
1012	Tera-	Т	2^{40}	Tebi-	Ti	10^{24}	Yotta-	Y	280	Yobi-	Yi

⁽²⁾ opcode(31:26) == 17_{dec} (11_{hexa}); se fmt(25:21) == 16_{dec} (10_{hexa}) f = s (simples); se fmt(25:21) ==17_{dec} (11_{hexa}) f = d (dupla)