Applications

QCOP APP.1

Soient E, F et G trois ensembles.

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

- **1.** Définir « *f* est injective ».
- **2.** Montrer que, si f et g sont injectives, alors $g \circ f$ est injective.
- **3.** On suppose que $g \circ f$ est injective.
 - a) Montrer que f est injective.
 - **b)** À l'aide d'un contre exemple, montrer que *g* n'est pas nécessairement injective.

QCOP APP.2

Soient E, F et G trois ensembles.

Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux applications.

- **1.** Définir « *g* est surjective ».
- **2.** Montrer que, si f et g sont surjectives, alors $g \circ f$ est surjective.
- **3.** On suppose que $g \circ f$ est surjective.
 - a) Montrer que g est surjective.
 - **b)** À l'aide d'un contre exemple, montrer que *f* n'est pas nécessairement surjective.

QCOP APP.3

Soient E, F deux ensembles. Soient $f: E \longrightarrow F$ et $g: F \longrightarrow E$ deux applications.

- 1. On suppose que f et g sont bijectives.
 - a) On admet que $g \circ f$ est bijective. Que vaut dans ce cas $(g \circ f)^{-1}$?
 - **b)** Le démontrer
- **2.** On suppose que f est bijective. Montrer que f^{-1} est bijective et que $(f^{-1})^{-1} = f$.

QCOP APP.4 ★

1. On suppose que f et g sont bijectives. Compléter :

Alors
$$g \circ f$$
 est ... et $(g \circ f)^{-1} = \dots$

2. Montrer les implications suivantes :

$$\left. egin{array}{c} g \circ f & \text{bijective} \\ f & \text{bijective} \end{array} \right\} \implies g & \text{bijective} \qquad \text{et} \qquad \left. egin{array}{c} g \circ f & \text{bijective} \\ g & \text{bijective} \end{array} \right\} \implies f & \text{bijective}.$$

3. Donner deux applications f et g telles que $g \circ f$ est bijective mais f ou g n'est pas bijective.