Large-Scale Numerical Computation Using a Data Flow Engine

Matei Zaharia

Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters » Wide use in both enterprises and web industry

Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:

- » How to split problem across nodes?
 - Must consider network & data locality
- » How to deal with failures? (inevitable at scale)
- » Even worse: stragglers (node not failed, but slow)

Rarely used in commodity datacenters

Data Flow Models

Restrict the programming interface so that the system can do more automatically

Express jobs as graphs of high-level operators

- » System picks how to split each operator into tasks and where to run each task
- » Run parts twice fault recovery

Biggest example: MapReduce

MapReduce Numerical Algorithms

Matrix-vector multiplication

Power iteration (e.g. PageRank)

Gradient descent methods

Stochastic SVD

Tall skinny QR

Many others!

Why Use a Data Flow Engine?

Ease of programming

» High-level functions instead of message passing

Wide deployment

» More common than MPI, especially "near" data

Scalability to very largest clusters

» Even HPC world is now concerned about resilience

Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Limitations of MapReduce

MapReduce is great at one-pass computation, but inefficient for *multi-pass* algorithms

No efficient primitives for data sharing

- » State between steps goes to distributed file system
- » Slow due to replication & disk storage
- » No control of data partitioning across steps

Example: Iterative Apps

Commonly spend 90% of time doing I/O

Example: PageRank

Repeatedly multiply sparse matrix and vector

Requires repeatedly hashing together page adjacency lists and rank vector

Result

While MapReduce is simple, it can require asymptotically more communication or I/O

Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Spark Computing Engine

Extends MapReduce model with primitives for efficient data sharing

» "Resilient distributed datasets"

Open source at Apache

» Most active community in big data, with 50+ companies contributing

Clean APIs in Java, Scala, Python

Resilient Distributed Datasets (RDDs)

Collections of objects stored across a cluster User-controlled partitioning & storage (memory, disk, ...) Automatically rebuilt on failure

Key Idea

Resilient Distributed Datasets (RDDs)

- » Collections of objects across a cluster with user controlled partitioning & storage (memory, disk, ...)
- » Built via parallel transformations (map, filter, ...)
- » Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

Result: full-text search of Wikipedia in 0.5 sec (vs 20 s for on-disk data)

Fault Tolerance

RDDs track *lineage* info to rebuild lost data

```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```


Fault Tolerance

RDDs track *lineage* info to rebuild lost data

```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```


Partitioning

RDDs know their partitioning functions

Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Logistic Regression

Logistic Regression Results

PageRank

Using cache(), keep neighbor lists in RAM Using partitioning, avoid repeated hashing

PageRank

Using cache(), keep neighbor lists in RAM Using partitioning, avoid repeated hashing

PageRank

Using cache(), keep neighbor lists in RAM Using partitioning, avoid repeated hashing

PageRank Code

PageRank Results

Alternating Least Squares

$$= \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B^T \\ A \end{bmatrix}$$

- 1. Start with random A₁, B₁
- 2. Solve for A_2 to minimize $||R A_2B_1^T||$
- 3. Solve for B_2 to minimize $||R A_2B_2^T||$
- 4. Repeat until convergence

ALS on Spark

Joint work with Joey Gonzales, Virginia Smith

$$= A$$

$$= A$$

Cache 2 copies of R in memory, one partitioned by rows and one by columns

Keep A & B partitioned in corresponding way

Operate on blocks to lower communication

ALS Results

Sparse Subspace Embedding

(Φ has one nonzero per column)

[Clarkson and Woodruff, STOC '13]

Benefit for Users

Same engine performs data extraction, model training and interactive queries

Separate engines

Outline

Data flow vs. traditional network programming

Limitations of MapReduce

Spark computing engine

Numerical computing on Spark

Ongoing work

Spark Community

Most active open source community in big data

200+ developers, 50+ companies contributing

Contributors in past year

Built-in ML Library: MLlib

classification: logistic regression, linear SVM, naïve Bayes, classification tree

regression: generalized linear models (GLMs), regression tree

collaborative filtering: alternating least squares (ALS), non-negative matrix factorization (NMF)

clustering: k-means||

decomposition: tall-skinny SVD, PCA

optimization: stochastic gradient descent, L-BFGS

Ongoing Work in MLlib

sparse SVD via Lanczos

multiclass decision trees

stats library (e.g. stratified sampling, ScaRSR)

ADMM

LDA

40 contributors since project started Sept '13

Research Projects

GraphX: graph computation via data flow

SparkR: R interface to Spark, and distributed matrix operations

ML pipelines: high-level machine learning APIs

Applications: neuroscience, traffic, genomics

Example: ML Pipelines

High-level API for defining pipelines of algorithmic steps

Automatically does vectorization, scan sharing across ops, data placement

```
/** Build a featurizer **/
val randomFeaturizer = new ImageNormalize()
  .andThen(new HogFeaturizer(binSize))
  .andThen(RandomSignNode.create(numHogFeatures, randomSignSource))
  .andThen(new FFTransform(numHogFeatures))
  .andThen(LinearRectifier())
  .andThen(new InterceptAdder())
  .andThen(new CachingNode())
/** Featurize data and build a Least Squares Classifier **/
val trainingFeatures = randomFeaturizer(data)
val linearMapper = LinearMapper.trainWithL2(trainingFeatures, labels, lambda)
val predicted = (linearMapper andThen TopKClassifier(1))(trainingFeatures)
/** Get predictions **/
val testPredictions = randomFeaturizer
  .andThen(linearMapper)
  .andThen(TopKClassifier(1))(testdata)
```

[Sparks, Venkataram, Milner et al.]

Spark and Research

Spark has all its roots in research, so we hope to keep incorporating new ideas!

Conclusion

Data flow engines are becoming an important platform for numerical algorithms

While early models like MapReduce were inefficient, new ones like Spark close this gap

More info: spark.apache.org

Behavior with Less RAM

Spark in Scala and Java

```
// Scala:
val lines = sc.textFile(...)
lines.filter(x => x.contains("ERROR")).count()
// Java:
JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {
  Boolean call(String s) {
    return s.contains("error");
}).count();
```