Package 'chebInterp'

February 9, 2019

Type Package		
Title Chebyshev Polynomial Inter	rpolation	
Version 0.1.0		
Maintainer Walter Zhang <walte< th=""><th>erwzhang@chicagobooth.edu></th></walte<>	erwzhang@chicagobooth.edu>	
Description Chebyshev polynom	ial interpolation routines	
License GPL-3		
Depends R (>= 3.1.0)		
Suggests parallel, knitr, rmarkdov	wn, reshape	
VignetteBuilder knitr		
Encoding UTF-8		
RoxygenNote 6.1.1		
calculateChebyshevPoly	ficients	
	roximator	
Index	•	
calculateChebyshevCoeffic Con list	mputes the Chebyshev coefficients from a given function and cheb	

Description

Also checks to ensure the cheb\$T matrix is orthogonal The rounding down to 0 in the beginning is to account for numerical precision and is controlled by the tolerance parameter The function f only takes one argument

Usage

calculateChebyshevCoefficients(f, cheb, tolerance = 1e-12)

2 evaluateChebyshev

Arguments

f Function to be approximated (function)

cheb List of item from initalizeChebyshevApproximator (list)

tolerance Numerical Tolerance for rounding down

Value

A list of Chebyshev coefficients (matrix)

calculateChebyshevPolynomials

Computes the polynomials for a given degree and vector of values.

Description

Resultant matrix of polynomials is of size length(x) by N + 1

Usage

```
calculateChebyshevPolynomials(x, N)
```

Arguments

x Vector of values to compute the polynomials at (numeric)

N Highest Degree of the Polynomial (Integer)

Value

A matrix of the polynomials (matrix)

 $\begin{tabular}{ll} evaluate Chebyshev & Approximation for a matrix (or a vector) of \\ \end{tabular}$

points

Description

Option for parallelized evaluation for many points to evaluate

Usage

```
evaluateChebyshev(x, cheb, parallel = FALSE, numcores = 1L)
```

Arguments

x Points to evaluate with size Points by Dimensions (matrix) cheb List of item from initalizeChebyshevApproximator (list)

parallel Boolean flag for parallelization (logical)
numcores Cores for parallelization (integer)

evaluateChebyshev_T

3

Value

A vector of predictions for each point of x

evaluateChebyshev_T Evaluates the Chebyshev Approximation for a matrix (or a vector) of points and returns the underlying basis function values instead of the

interpolation values

Description

Option for parallelized evaluation for many points to evaluate

Usage

```
evaluateChebyshev_T(x, cheb, parallel = FALSE, numcores = 1L)
```

Arguments

x Points to evaluate with size Points by Dimensions (matrix)cheb List of item from initalizeChebyshevApproximator (list)

parallel Boolean flag for parallelization (logical)
numcores Cores for parallelization (integer)

Value

A matrix of the underlying basis function values

 $\verb|initializeChebyshevApproximator|\\$

Initializes the Chebyshev Approximation

Description

Initializes the Chebyshev Approximation

Usage

```
initializeChebyshevApproximator(D, N, M = N + 1, bounds = NULL,
   upper_b = NULL, lower_b = NULL)
```

A vector of lower bounds (numeric)

Arguments

lower_b

D	Dimensions of the Problem (integer)
N	Highest Degree of the Polynomial (integer)
М	Number of Interpolation Nodes in each dimension (integer)
bounds	Bounds of the rectangle on which the function is approximated (list)
upper_b	A vector of upper bounds (numeric)

Value

A list of the initialized approximation

Index

```
calculateChebyshevCoefficients, 1
calculateChebyshevPolynomials, 2
evaluateChebyshev, 2
evaluateChebyshev_T, 3
initializeChebyshevApproximator, 3
```