EXERCICE 3 (4 points)

Principaux thèmes abordés : bases de données (modèle relationnel, base de données relationnelle et langage SQL).

Dans notre monde, l'information a de plus en plus de valeur et d'importance mais nous sommes de plus en plus confrontés à l'infobésité.

Considérons l'utilisation des données issues de la table de Mendeleïev (tableau périodique des éléments). Il est contraignant de faire des recherches sur des moteurs dédiés à chaque fois qu'une valeur est nécessaire (masse volumique, rayon de covalence, point de fusion...).

Les lignes 3, 4 et 5 de cette table Mendeleïev ont permis de construire, en **annexe 1 de l'exercice 3**, une base de données des différents atomes correspondants.

- **1.** Donner le nom du langage informatique utilisé pour accéder aux données dans une base de données ?
- **2.** a) Lister les différents attributs des tables ATOMES et VALENCE en précisant le type du domaine de chacun.
 - b) Déterminer si des attributs de la table ATOMES peuvent avoir un rôle de clé primaire et/ou de clé étrangère. Justifier.
 - c) Donner le schéma relationnel pour les deux tables ATOMES et VALENCE.
- 3. Donner les réponses des deux requêtes suivantes :
 - a) SELECT nom FROM ATOMES WHERE L='3' ORDER BY Sym
 - b) SELECT DISTINCT C FROM ATOMES
- **4.** Donner la requête SQL:
 - a) Pour afficher le nom et la masse atomique des atomes.
 - b) Pour afficher le symbole des atomes dont la couche de valence est s.
- **5.** On a remarqué une erreur de saisie dans la table ATOMES, la masse atomique de l'argon (Ar) n'est pas 29,948 g.mol⁻¹ mais 39,948 g.mol⁻¹. Écrire la requête SQL pour corriger cette erreur de saisie.

21-NSIJ2ME3 Page : 6/13

Exercice 3 - Annexe 1

Relation « ATOMES »

Z	nom	Sym	L	С	masse_atom
11	sodium	Na	3	1	22,9897693
12	magnesium	Mg	3	2	24,305
13	aluminium	Al	3	13	26,9815386
14	silicium	Si	3	14	28,0855
15	phosphore	Р	3	15	30,973762
16	soufre	S	3	16	32,065
17	chlore	CI	3	17	35,453
18	argon	Ar	3	18	29,948
19	potassium	K	4	1	39,0983
20	calcium	Ca	4	2	40,078
21	scandium	Sc	4	3	44,955912
22	titane	Ti	4	4	47,867
23	vanadium	V	4	5	50,9415
24	chrome	Cr	4	6	51,9961
25	manganese	Mn	4	7	54,938045
26	fer	Fe	4	8	55,845
27	cobalt	Со	4	9	58,933195
28	nickel	Ni	4	10	58,6934
29	cuivre	Cu	4	11	63,546
30	zinc	Zn	4	12	65,409
31	gallium	Ga	4	13	69,723
32	germanium	Ge	4	14	72,64
33	arsenic	As	4	15	74,9216
34	selenium	Se	4	16	78,96
35	brome	Br	4	17	79,904
36	krypton	Kr	4	18	83,798
37	rubidium	Rb	5	1	85,4678
38	strontium	Sr	5	2	87,62
39	yttrium	Υ	5	3	88,90585
40	zirconium	Zr	5	4	91,224
41	niobium	Nb	5	5	92,90638
42	molybdene	Мо	5	6	95,94
43	technetium	Тс	5	7	98
44	ruthenium	Ru	5	8	101,07
45	rhodium	Rh	5	9	102,9055
46	palladium	Pd	5	10	106,42
47	argent	Ag	5	11	107,8682
48	cadmium	Cd	5	12	112,411
49	indium	In	5	13	114,818
50	etain	Sn	5	14	118,71
51	Antimoine	Sb	5	15	121,76
52	Tellure	Te	5	16	127,6
53	lode	I	5	17	126,90447
54	Xenon	Xe	5	18	131,293

Relation « VALENCE »

Col	Couche			
1	S			
2	S			
1 2 3 4 5 6 7 8	d			
4	d			
5	d			
6	d			
7	d d d			
8	d			
9	d			
10	d			
11	d			
12	d			
13	р			
14	р			
15	р			
16	р			
17	р			
18	р			

Z : Numéro atomique ;

Sym : symbole ;

L: lignes;

C ou Col : Colonne ; Couche : Couche de

valence

21-NSIJ2ME3 Page : 12/13