РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Кафедра инфокоммуникаций «Построение 3D графиков. Работа с mplot3d Toolkit»

Отчет по лабораторной работе № 3.6 по дисциплине «Программирование на Python»

Выполнил студент группы ИВТ-б-о-2	21-1	
<u> Шайдеров Дмитрий Викторович</u> .		
«11» <u>мая</u> 20 <u>23</u> г.		
Подпись студента		
Работа защищена « »	_20	_г.
Проверил Воронкин Р.А		

Цель работы: исследовать базовые возможности визуализации данных в трехмерном пространстве средствами библиотеки matplotlib языка программирования Python.

Порядок выполнения работы:

1. Создал общедоступный репозиторий на GitHub, в котором использована лицензия МІТ и язык программирования Python.

Рисунок 1 - Создание репозитория

2. Выполните клонирование созданного репозитория.

```
C:\Users\Asus\Desktop\Yчeбa\4 семестр\Анализ данных>git clone https://github.com/dshayderov/lw_3.6.git Cloning into 'lw_3.6'...
remote: Enumerating objects: 11, done.
remote: Counting objects: 100% (11/11), done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 11 (delta 2), reused 0 (delta 0), pack-reused 0
Receiving objects: 100% (11/11), 4.11 KiB | 526.00 KiB/s, done.
Resolving deltas: 100% (2/2), done.
```

Рисунок 2 - Клонирование репозитория

3. Организуйте свой репозиторий в соответствие с моделью ветвления git-flow.

```
C:\Users\Asus\Desktop\Учеба\4 семестр\Анализ данных\lw_3.6>git checkout -b develop
Switched to a new branch 'develop'
C:\Users\Asus\Desktop\Учеба\4 семестр\Анализ данных\lw_3.6>
```

Рисунок 3 - Ветвление по модели git-flow

4. Проработать примеры лабораторной работы.

Пример 1.

Линейный график

```
In [3]: import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Для построения линейного графика используется функция plot().

In [4]: x = np.linspace(-np.pi, np.pi, 50)
y = x
z = np.cos(x)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z, label='parametric curve')

Out[4]: [<mpl_toolkits.mplot3d.art3d.Line3D at 0x2323e2139d0>]
```


Рисунок 4 - Результат выполнения примера 1

Пример 2.

Рисунок 5 - Результат выполнения примера 2

Пример 3.

Пример 3

Каркасная поверхность

```
In [1]: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D

Для построения каркасной поверхности используется функция plot_wireframe().

In [4]: u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j] x = np.cos(u)*np.sin(v) y = np.sin(u)*np.sin(v) z = np.cos(v)

fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_wireframe(x, y, z) ax.legend()
```

Out[4]: <matplotlib.legend.Legend at 0x2e35a6d4d30>

No handles with labels found to put in legend.

Рисунок 6 - Результат выполнения примера 3

Пример 4.

Поверхность

```
In [1]: import numpy as np
  import matplotlib.pyplot as plt
  from mpl_toolkits.mplot3d import Axes3D
```

Для построения поверхности используйте функцию plot_surface().

```
In [2]:
u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
z = np.cos(v)

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, cmap='inferno')
ax.legend()

No handles with labels found to put in legend.
```

Out[2]: <matplotlib.legend.Legend at 0x1b75ca7ebb0>

Рисунок 7 - Результат выполнения примера 4

5. Создать ноутбук, в котором выполнить решение вычислительной задачи (например, задачи из области физики, экономики, математики, статистики и т. д.) требующей построения трехмерного графика.

В двух областях есть по 50 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,1 кг никеля. Во второй области для добычи х кг алюминия в день требуется x^2 человекочасов труда, а для добычи у кг никеля в день требуется y^2 человекочасов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 2 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?

Индивидуальное задание

Создать ноутбук, в котором выполнить решение вычислительной задачи (например, задачи из области физики, экономики, математики, статистики и т. д.) требующей построения трехмерного графика.

В двух областях есть по 50 рабочих, каждый из которых готов трудиться по 10 часов в сутки на добыче алюминия или никеля. В первой области один рабочий за час добывает 0,2 кг алюминия или 0,1 кг никеля. Во второй области для добычи х кг алюминия в день требуется x^2 человеко-часов труда, а для добычи у кг никеля в день требуется y^2 человеко-часов труда.

Обе области поставляют добытый металл на завод, где для нужд промышленности производится сплав алюминия и никеля, в котором на 1 кг алюминия приходится 2 кг никеля. При этом области договариваются между собой вести добычу металлов так, чтобы завод мог произвести наибольшее количество сплава. Сколько килограммов сплава при таких условиях ежедневно сможет произвести завод?

```
In [2]: r_1 = r_2 = 10
n_1 = n_2 = 50
p_1_Al = 0.2
p_1_Ni = 0.1
```

Рисунок 8 - Результат выполнения индивидуального задания

Контрольные вопросы:

1. Как выполнить построение линейного 3D-графика с помощью matplotlib?

Для построения линейного графика используется функция plot(). Axes3D.plot(self, xs, ys, *args, zdir='z', **kwargs)

```
x = np.linspace(-np.pi, np.pi, 50)
y = x
z = np.cos(x)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(x, y, z, label='parametric curve')
```

2. Как выполнить построение точечного 3D-графика с помощью matplotlib?

Для построения точечного графика используется функция scatter().

Axes3D.scatter(self, xs, ys, zs=0, zdir='z', s=20, c=None, depthshade=True, *args, **kwargs)

```
np.random.seed(123)
x = \text{np.random.randint}(-5, 5, 40)
y = \text{np.random.randint}(0, 10, 40)
z = \text{np.random.randint}(-5, 5, 40)
s = \text{np.random.randint}(10, 100, 20)
fig = \text{plt.figure}()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x, y, z, s=s)
```

3. Как выполнить построение каркасной поверхности с помощью matplotlib?

Для построения каркасной поверхности используется функция plot_wireframe().

plot_wireframe(self, X, Y, Z, *args, **kwargs)

```
u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
z = np.cos(v)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(x, y, z)
ax.legend()
```

4. Как выполнить построение трехмерной поверхности с помощью matplotlib?

Для построения поверхности используйте функцию plot_surface(). plot_surface(self, X, Y, Z, *args, norm=None, vmin=None, vmax=None, lightsource=None, **kwargs)

```
u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j]
x = np.cos(u)*np.sin(v)
y = np.sin(u)*np.sin(v)
z = np.cos(v)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x, y, z, cmap='inferno')
ax.legend()
```

Вывод: были исследованы базовые возможности визуализации данных в трехмерном пространстве средствами библиотеки matplotlib языка программирования Python.