

Ludwig-Maximilians-University Munich, Germany Ulrich Schreiber

Technical University Munich, Germany

... and the ROMY team

New sensing technologies → beyond conventional seismic translation measurements.

Here: rotational ground motion

Can we detect the weak **ocean-generated seismic noise**?

Can we perform ambient noise interferometry with rotational motions?

Interferometry with rotations & strain: Paitz, Sager, Fichtner; GJI 2019

Observing rotations: Ring lasers

4 meter

Observatory instruments: Ring lasers
Ring lasers offer a point measurement of rotational ground motion

- + RLAS in Wettzell, Germany:
 vertical component rotation
 most sensitive worldwide
 co-located seismometer: WET
- + ROMY near Munich, Germany: first 3-component rotation co-located seismometer: FUR

"ROMY: A Multi-Component Ring Laser for Geodesy and Geophysics", earthArxiv
"Lord of the Rings", Science, 2017

Observing rotations: Ring lasers

Observatory instruments: Ring lasers

+ RLAS in Wettzell, Germany:

vertical component rotation most sensitive worldwide co-located seismometer: WET

+ ROMY near Munich, Germany:

first 3-component rotation co-located seismometer: FUR

Here: focus on vertical component:

SH- and Love waves

Can we pick up the ocean microseism? PPSD for seismometer vs. ring laser

Can we pick up the ocean microseism? PPSD for seismometer vs. ring laser

RLAS

RLAS ring laser in Wettzell improved in 2017 Here: Primary microseism detected in January 2018 Is it *really* the primary microseism?

Combining Rotation and Translation

$$\frac{\partial u_{y}}{\partial x} = \frac{\partial u_{x}}{\partial z} = \frac{-k^{2}c^{2}A\sin(kx - kct)}{\frac{1}{2}k^{2}cA\sin(kx - kct)} = -2c$$

Ground acceleration

Seismometer

Rotation rate **Rotation sensor**

- + Rotation rate and acceleration should be in phase
- + amplitudes scaled by two times the horizontal phase velocity.

Phase velocity → using single measurement of 6C in phase → waveforms similar → can find source direction

Can we pick up the ocean microseism? PPSD for seismometer vs. ring laser

RLAS

RLAS ring laser in Wettzell improved in 2017
Here: Primary microseism detected in January 2018
Is it really the primary microseism?
Is it coming from a specific direction?

Single-point backazimuth determination

Sensitivity of ring laser sufficiently improved to detect primary microseism

Coherent wavefield coming from North:

Primary microseism detected! 0.05 – 0.1 Hz

Rotations: RLAS Laser

Instrument sensitivity limit

0.1

Secondary

Microseism

2.0 🕏

0.5

RLAS

Primary

Microseism!

(after 2018)

10 hours

Approach described: Hadziioannou et al. 2012, JoS

New sensing technologies → beyond conventional seismic translation measurements.

Here: rotational ground motion

Can we detect the weak ocean-generated seismic noise? Yes!

→ Sensitivity of ring laser sufficiently improved to detect primary microseism

Can we perform ambient noise interferometry with rotational motions?

Ambient noise interferometry

From seismic noise to useful signal: noise interferometry

Does this work for rotational motion?

Noise Receiver source

Want to know more?

"Tutorial on seismic interferometry", Wapenaar et al, Geophysics 2010

0.1 - 0.2 Hz

Secondary microseism available on both sensors

Dominant source toward NW consistent with beamforming

"Where do ocean microseisms come from?" Juretzek & Hadziioannou, JGR 2016

 \Rightarrow ± one year of noise, 01.01.2018 – 01.12.2018

Ambient noise from the **secondary microseism** available on both sensors:

→ filter between 0.1 – 0.2 Hz

Seismic noise analysis with rotational ground motion

Ocean-generated noise can be detected at two ring laser sites: beside the secondary microseism, now also the primary microseism

→ push limit towards weak motions

Proof of concept: first case of **'rotational' noise interferometry** using ocean-generated noise recorded at two ring lasers

→ towards noise interferometry of 6-component displacement data.

General:

→ ambient noise applications with rotational motion

What's next?

Slides & more: celine.hadzii.com

What does the **future** bring?

- Innovative Training network funded by EU H2020 programme Starting march 2021.
- integrate emerging ground-motion sensing technology into seismological practice
- Effect of small-scale structure and changes on the seismic wave field
- Train a new generation of researchers: 15 PhD positions across Europe

Germany University of Hamburg (Coordinator)

LMU Munich

GFZ Potsdam

Switzerland ETH Zürich **France** IPGP Paris

Université Grenoble Alpes

Ireland DIAS Dublin

UK University of Edinburgh

British Geological Service

More about SPIN: spin-itn.eu

Slides & more: celine.hadzii.com

References

In this presentation:

- Paitz, P., Sager, K., & Fichtner, A. (2019).
 Rotation and strain ambient noise interferometry.
 Geophysical Journal International, 216(3), 1938-1952. https://doi.org/10.1093/gji/ggy528
- "ROMY: A Multi-Component Ring Laser for Geodesy and Geophysics", earthArxiv https://eartharxiv.org/repository/view/1723/
- "Lord of the Rings",
 Science 21 Apr 2017: Vol. 356, Issue 6335, pp. 236-238
 DOI: 10.1126/science.356.6335.236
- Hadziioannou, C., Gaebler, P., Schreiber, U., Wassermann, J., & Igel, H. (2012).
 Examining ambient noise using colocated measurements of rotational and translational motion.
 Journal of Seismology, 16(4), 787-796. http://dx.doi.org/10.1007/s10950-012-9288-5
- Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010).
 Tutorial on seismic interferometry: Part 1—Basic principles and applications.
 Geophysics, 75(5), 75A195-75A209. https://doi.org/10.1190/1.3457445
- C. Juretzek, C. Hadziioannou, (2016).
 Where do ocean microseisms come from? A study of Love-to-Rayleigh wave ratios,
 J. Geophys. Res. Solid Earth 121, 6741-6756 http://dx.doi.org/10.1002/2016JB013017

References

Rotational seismology database

 Salvermoser, J., Hadziioannou, C., Hable, S., Krischer, L., Chow, B., Ramos, C., Wassermann, J., Schreiber, U., Gebauer, A & Igel, H. (2017). An event database for rotational seismology. Seismological Research Letters. https://rotations-database.geophysik.uni-muenchen.de/

Get started with rotational data

- seismo-live.org → rotational seismology
 - → 3 introductory notebooks to reproduce some figures from the rotational database

General Rotational seismology

- Review article: Schmelzbach, C. *et al.*, (2018). Advances in 6C seismology: Applications of combined translational and rotational motion measurements in global and exploration seismology, Geophysics, 83(3)
- Cochard, A., Igel, H., Schuberth, B., Suryanto, W., Velikoseltsev, A., Schreiber, U., Wassermann, J., Scherbaum, F. & Vollmer, D. (2006). Rotational motions in seismology: theory, observation, simulation. In Earthquake source asymmetry, structural media and rotation effects (pp. 391-411). Springer Berlin Heidelberg.

Wavefield separation

• Sollberger, David, et al. "6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications." Geophysical Journal International 213.1 (2017): 77-97.

Structure

- Wassermann, J., Wietek, A., Hadziioannou, C., & Igel, H. (2016). Toward a Single Station Approach for Microzonation: Using Vertical Rotation Rate to Estimate Love-Wave Dispersion Curves and Direction Finding. Bulletin of the Seismological Society of America.
- Stefano Maranò, Manuel Hobiger, and Donat Fäh, "Retrieval of Rayleigh Wave Ellipticity from Ambient Vibration Recordings", Geophys. J. Int. (2017), 209 (1): 334–352.
- Sollberger, D., Schmelzbach, C., Robertsson, J. O., Greenhalgh, S. A., Nakamura, Y., & Khan, A. (2016). The shallow elastic structure of the lunar crust: New insights from seismic wavefield gradient analysis. Geophysical Research Letters, 43(19).

Structure – sensitivity kernels

- Bernauer, M., Fichtner, A., & Igel, H. (2009). Inferring earth structure from combined measurements of rotational and translational ground motions. Geophysics, 74(6), WCD41-WCD47.
- Bernauer, M., Fichtner, A., & Igel, H. (2012). Measurements of translation, rotation and strain: new approaches to seismic processing and inversion. Journal of seismology, 16(4), 669-681.
- Fichtner, A., & Igel, H. (2009). Sensitivity densities for rotational ground-motion measurements. BSSA, 99(2B), 1302-1314.

Microseismic noise

- Hadziioannou, C., Gaebler, P., Schreiber, U., Wassermann, J., & Igel, H. (2012). Examining ambient noise using colocated measurements of rotational and translational motion. Journal of seismology, 16(4), 787-796.
- Tanimoto, T., Hadziioannou, C., Igel, H., Wasserman, J., Schreiber, U., & Gebauer, A. (2015). Estimate of Rayleigh - to - Love wave ratio in the secondary microseism by colocated ring laser and seismograph. Geophysical Research Letters, 42(8), 2650-2655.
- Tanimoto, T., Lin, C. J., Hadziioannou, C., Igel, H., & Vernon, F. (2016). Estimate of Rayleigh to Love wave ratio in the secondary microseism by a small array at Piñon Flat observatory, California. Geophysical Research Letters, 43(21).

Earthquake source inversions

- Bernauer, M., Fichtner, A., & Igel, H. (2014). Reducing nonuniqueness in finite source inversion using rotational ground motions. Journal of Geophysical Research: Solid Earth, 119(6), 4860-4875.
- Reinwald, M., Bernauer, M., Igel, H., & Donner, S. (2016). Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study. Solid Earth, 7(5), 1467.
- Donner, S., Bernauer, M., & Igel, H. (2016). Inversion for seismic moment tensors combining translational and rotational ground motions. Geophysical Journal International, 207(1), 562-570.
- Donner, S., Igel, H., & Hadziioannou, C. (2018). Retrieval of the seismic moment tensor from joint measurements of translational and rotational ground motions: Sparse networks and single stations. In *Moment Tensor Solutions* (pp. 263-280). Springer, Cham.

Scattering

 Gaebler, P. J., Sens-Schönfelder, C., & Korn, M. (2015). The influence of crustal scattering on translational and rotational motions in regional and teleseismic coda waves. Geophysical Journal International, 201(1), 355-371.

Toroidal/Normal modes

 Igel, H., Nader, M. F., Kurrle, D., Ferreira, A. M., Wassermann, J., & Schreiber, K. U. (2011). Observations of Earth's toroidal free oscillations with a rotation sensor: The 2011 magnitude 9.0 Tohoku - Oki earthquake. Geophysical Research Letters, 38(21).

Instrumentation

- Portable sensor (iXBlue): http://www.blueseis.com/
- "Lord of the Rings", Science 21 Apr 2017: Vol. 356, Issue 6335, pp. 236-238 DOI: 10.1126/science.356.6335.236
 http://science.sciencemag.org/content/356/6335/236
- https://www.youtube.com/watch?v=MXYV6wNdZm8
- Schreiber, K. U., & Wells, J. P. R. (2013). Invited review article: Large ring lasers for rotation sensing. Review of Scientific Instruments, 84(4), 041101.
- Lindner, F., Wassermann, J., Schmidt Aursch, M. C., Schreiber, K. U., & Igel, H. (2016). Seafloor Ground Rotation Observations: Potential for Improving Signal-to-Noise Ratio on Horizontal OBS Components. SRL
- Donner, S., Lin, C. J., Hadziioannou, C., Gebauer, A., Vernon, F., Agnew, D. C., ... & Wassermann, J. (2017).
 Comparing direct observation of strain, rotation, and displacement with array estimates at Piñon Flat Observatory, California. SRL, 88(4), 1107-1116.
- www.romy-erc.eu
- www.rotational-seismology.org (with mailing list!)