НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ВЫСШИЙ КОЛЛЕДЖ ИНФОРМАТИКИ Кафедра информатики

Практическая	работа
TIPURTITION AND	pacere

НАЗВАНИЕ

Разработка приложения для построения графиков математических функций

Отчет

Разработал Бланк Артём Владимирович

Группа 2407з2

Преподаватель Быков Виталий Валерьевич

Оценка

Дата

Содержание отчета

- 1. Введение
- 2. Стек технологий и пакетов
 - 2.1. Avalonia UI
 - 2.2. OxyPlot
 - 2.3. AngouriMath
- 3. Паттерн проектирования МVVМ
- 4. Разметка окон
 - 4.1. Главное окно (MainWindow)
 - 4.2. Окно списка доступных функций (FunctionsWindow)
- 5. Алгоритм работы
- 6. Блок-схема алгоритма
- 7. Код логики
- 8. Работа программы
- 9. Контрольный пример
- 10. Источники

1. Введение

Передо мной стоит задача создать приложение для построения графиков математических функций. В процессе выбора технологии я рассматривал различные варианты и пришел к выводу, что наилучшим решением будет использовать язык программирования С# в сочетании с фреймворком Avalonia UI. Это позволило создать кроссплатформенное приложение с удобным графическим интерфейсом и широкими возможностями для визуализации данных.

2. Стек технологий и пакетов

2.1 Avalonia UI

Avalonia UI – это кроссплатформенный фреймворк для создания пользовательского интерфейса на С#. Он поддерживает паттерн MVVM, обладает гибкой системой разметки XAML и позволяет разрабатывать приложения для Windows, Linux и macOS.

Плюсы Avalonia UI:

- Кроссплатформенность
- Поддержка MVVM
- Гибкость и настраиваемость
- Современный рендеринг с поддержкой аппаратного ускорения

2.2 OxyPlot

OxyPlot — это легковесная библиотека для построения графиков в С#. Она проста в использовании, обладает хорошей производительностью и поддерживает широкий спектр типов диаграмм, линейных графиков. В данном проекте библиотека использовалась для визуализации математических функций.

Плюсы OxyPlot:

- Простота интеграции
- Высокая производительность
- Поддержка различных типов графиков
- Кроссплатформенность

2.3 AngouriMath

AngouriMath — это мощная математическая библиотека для работы с алгебраическими выражениями, производными, интегралами и прочими математическими операциями. Она позволяет анализировать и вычислять выражения, что делает её отличным выбором для приложений, работающих с математическими формулами.

Плюсы AngouriMath:

- Поддержка символьных вычислений
- Работа с производными, интегралами, уравнениями
- Высокая точность вычислений
- Открытый исходный код

3. Паттерн проектирования MVVM

Приложение разработано с использованием архитектурного паттерна MVVM (Model-View-ViewModel). Этот паттерн позволяет разделить бизнес-логику, представление данных и пользовательский интерфейс.

Основные компоненты:

- Model (Модель) содержит данные и бизнес-логику приложения.
- View (Представление) отвечает за отображение данных и взаимодействие с пользователем.

• ViewModel (Модель представления) — связывает Model и View, обрабатывает команды и обновляет интерфейс.

Применение MVVM позволяет упростить тестирование и поддержку кода, а также сделать интерфейс более гибким.

4. Разметка окон

В качестве разметки окна в Avalonia используется axaml(расширенный xaml). XAML — расширяемый язык разметки для приложений — основанный на XML язык разметки для декларативного программирования приложений, разработанный Microsoft. Модель приложений Vista включает объект Application. Его набор свойств, методов и событий позволяет объединить веб-документы в связанное приложение.

4.1 Главное окно (MainWindow)

Главное окно содержит:

- Поле ввода математической функции
- Поле ввода нижней границы параметра Х
- Поле ввода верхней границы параметра Х
- Поле ввода шага параметра X
- Кнопку построения графика
- Кнопку вызова окна со списком функций
- Область для отображения графика

4.2 Окно списка доступных функций (FunctionsWindow)

Это дополнительное окно, содержащее список доступных математических функций, поддерживаемых AngouriMath. Оно позволяет пользователю узнать, какие функции можно использовать при построении графика.

```
Available Math Functions
sin(x) - sine
tan(x) - tangent
cot(x) - cotangent
acos(x) - inverse cosine (arccos)
asin(x) - inverse sine (arcsin)
atan(x) - inverse tangent (arctan)
acot(x) - inverse cotangent (arccot)
asec(x) - inverse secant (arcsec)
acsc(x) - inverse cosecant (arccsc)
cosh(x) - hyperbolic cosine
sinh(x) - hyperbolic sine
tanh(x) - hyperbolic tangent
coth(x) - hyperbolic cotangent
sech(x) - hyperbolic secant
csch(x) - hyperbolic cosecant
acosh(x) - inverse hyperbolic cosine
asinh(x) - inverse hyperbolic sine
atanh(x) - inverse hyperbolic tangent
acoth(x) - inverse hyperbolic cotangent
asech(x) - inverse hyperbolic secant
acsch(x) - inverse hyperbolic cosecant
log(base, x) - logarithm with custom base
ln(x) - natural logarithm (base e)
e^x - exponential function (e^x)
sqrt(x) - square root
cbrt(x) - cube root
sign(x) - sign function sqr(x) - square
signum(x) - sign function (alternative notation)
```

5. Алгоритм работы

Алгоритм работы приложения состоит из следующих шагов:

- Пользователь вводит математическое выражение в текстовое поле.
- Программа парсит выражение с помощью AngouriMath и проверяет его корректность.
- На основе введенного выражения создается вычисляемая функция.
- Генерируются точки для построения графика в заданном диапазоне (MinX, MaxX) с определенным шагом (StepX).
- Точки передаются в ОхуРlot, который строит график.
- График отображается в главном окне приложения.
- Пользователь может изменить параметры построения и обновить график.

6. Блок-схема алгоритма

7. Код логики

```
using System;
using System.Collections.Generic;
using OxyPlot;
using OxyPlot.Series;
using OxyPlot.Axes;
using System.Text.RegularExpressions;
using AngouriMath;
using MathGraph. Views;
namespace MathGraph.ViewModels;
public partial class MainWindowViewModel : ViewModelBase
   public MainWindowViewModel()
        InitializePlotModel();
        this.FunctionText = "\cos(2*x) - \sin(x)";
        this.MaxX = 1000;
        this.StepX = 0.1;
    public string FunctionText { get; set; } //текст функции
   public PlotModel GraphModel { get; private set; } //модель графика
    public List<DataPoint> Points { get; set; } = new List<DataPoint>(); //
    public double StepX { get; set; } // шаг функции
   public string FormatedExpression { get; set; } // мат выражение
   public Func<double, double>? compiledFunction { get; set; }
    private List<DataPoint> ExamplePoints()
        return new List<DataPoint>()
            new DataPoint(0, 0),
    private void InitializePlotModel()
        this.GraphModel = new PlotModel();
        GraphModel.Title = "Graph";
        GraphModel.Subtitle = "Subtitle";
        GraphModel.Axes.Add(new LinearAxis {
            Position = AxisPosition.Bottom,
            Minimum = -100,
            MajorGridlineStyle = LineStyle.Solid,
```

```
MinorGridlineStyle = LineStyle.Dot,
        AxislineStyle = LineStyle.Solid,
        AxislineColor = OxyColors.White,
    });
    GraphModel.Axes.Add(new LinearAxis
        Position = AxisPosition.Left,
        MajorGridlineStyle = LineStyle.Solid,
        MinorGridlineStyle = LineStyle.Dot,
        TicklineColor = OxyColors.White,
        AxislineStyle = LineStyle.Solid,
        AxislineColor = OxyColors.White,
    });
    GraphModel.PlotMargins = new OxyThickness(60, 10, 30, 40);
    this.Points = ExamplePoints();
    Series1 = new LineSeries
        Color = OxyColors.White,
        ItemsSource = Points,
    Series1.MarkerType = MarkerType.Cross;
    GraphModel.Series.Add(Series1);
    GraphModel.DefaultFont = "Arial";
    GraphModel.DefaultFontSize = 14;
    GraphModel.Background = OxyColor.FromRgb(25, 25, 26);
    GraphModel.TextColor = OxyColor.FromRgb(160, 161, 163);
    GraphModel.PlotAreaBorderColor = OxyColor.FromRgb(160, 161, 163);
    GraphModel.InvalidatePlot(true);
    BuildGraph();
private void BuildGraph()
    FormatedExpression = FormatMathExpression(FunctionText);
    CompileExpression();
    if (compiledFunction == null)
        Console.WriteLine("Error: Could not compile expression.");
        GraphModel.Title = FormatedExpression;
        GraphModel.Subtitle = $"Error: Could not compile expression.";
        GraphModel.Series.Clear();
       GraphModel.InvalidatePlot(true);
```

```
GraphModel.Title = FormatedExpression;
    GraphModel.Subtitle = $"Min: {MinX} Max: {MaxX} Step: {StepX}";
    GraphModel.Series.Clear();
    Points = GetGraphValues();
    Series1 = new LineSeries()
        ItemsSource = Points,
    Series1.MarkerType = MarkerType.Cross;
    GraphModel.Series.Add(Series1);
    GraphModel.InvalidatePlot(true);
private void CompileExpression()
        Entity expr = MathS.FromString(FormatedExpression);
        compiledFunction = expr.Compile<double, double>("x");
        compiledFunction = null;
        Console.WriteLine("Ошибка компиляции: " + ex.Message);
private List<DataPoint> GetGraphValues()
    Entity expr = MathS.FromString(FormatedExpression); // Парсим
    List<DataPoint> points = new List<DataPoint>();
    for (double CurrentX = MinX; CurrentX <= MaxX; CurrentX += StepX)</pre>
        double ValueY = compiledFunction(CurrentX);
        points.Add(new DataPoint(CurrentX, ValueY));
static string FormatMathExpression(string expression)
   expression = Regex.Replace(expression, @"\s*([\+\-\*/\^\(\)])\s*",
```

8. Работа программы

- 1. Вводим математическое выражение (по необходимости Min/Max и Step)
- 2. Нажимаем кнопку "Build graph"
- 3. Получаем построенный график

9. Контрольный пример

В качестве контрольного примера возьмем основное тригонометрическое тождество.

$$\sin^2 x + \cos^2 x = 1$$

То есть, это выражение должно равняться 1 при любом значении параметра Х.

Действительно, функция возвращает 1 при любом значении параметра X, значит программа работает и верно строит график.

10. Источники

- Документация Avalonia UI https://docs.avaloniaui.net/
- Страница OxyPlot на GitHub https://github.com/oxyplot/oxyplot-avalonia
- Документация OxyPlot -

https://app.readthedocs.org/projects/oxyplot/downloads/pdf/latest/