Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Systèmes Linéaires Continus Invariants

SLCI2 - Linéarisation

Résumé

Programme PSI/MP 2022 (<u>LIEN</u>)		
Id	Compétence développée	Connaissances associées
	Préciser les limites de validité	Point de fonctionnement.
B3-02	d'un modèle.	Non-linéarités (courbure, hystérésis, saturation,
		seuil) et retard pur.
		Linéarisation d'un modèle autour d'un point de
B2-08	2-08 Simplifier un modèle.	fonctionnement.
5111pillier un mod	Simpliner dir modele.	Pôles dominants et réduction de l'ordre du modèle :
		principe; – justification; – limites.

Dernière mise à jour	SLC12	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Contexte des systèmes non linéaires

Relations entre variables avec des fonctions mathématiques

Linéarisation autour d'un point de fonctionnement

$$s(t) = u(t)\sqrt{v(t)}$$

$$\begin{cases} s(t) = s_f + ds(t) \\ u(t) = u_f + du(t) \\ v(t) = v_f + dv(t) \end{cases} \begin{cases} ds(0) = 0 \\ du(0) = 0 \text{ Conditions de heavyside } \varnothing \\ dv(0) = 0 \end{cases}$$

Relation vérifiée au point de fonctionnement

$$s_f = u_f \sqrt{v_f}$$

Trouver A et B tels que ds(t) = Bdu(t) + Adv(t)

Valable tant que les évolutions sont « faibles » A la fin, on étudie $s(t)=s_f+ds(t)$ pour conclure sur les performances

Pour trouver A et B		
Dérivées partielles	Remplacement dans l'équation initiale	
$A = \left(\frac{\partial s(t)}{\partial v}\right)_{u=v}$	$s(t) = u(t)\sqrt{v(t)}$	
$\int u_f v_f$	$s_f + ds(t) = \left(u_f + du(t)\right) \sqrt{v_f + dv(t)}$	
$B = \left(\frac{\partial s(t)}{\partial u}\right)_{u=u}$	Utiliser les développements limités	
$\int \partial u \int_{u_f,v_f}$	Se limiter à l'ordre 1	
$\left(\begin{array}{cc} u_f \end{array} \right)$	Identifier le point de fonctionnement qui disparaît à	
$\int A = \frac{1}{2\sqrt{v_f}}$	gauche et à droite	
$B = \sqrt{v_f}$	$\frac{s_f}{s_f} + ds(t) = \frac{u_f \sqrt{v_f}}{2\sqrt{v_f}} + \frac{u_f}{2\sqrt{v_f}} dv(t) + \sqrt{v_f} du(t) + \frac{dv(t)du(t)}{2\sqrt{v_f}}$	

Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Linéarisation des autres blocs

Hypothèses : Le système est stabilité au point de fonctionnement au départ

ses : Le système est stabilité au point de fonctionnement a
$$\forall t \leq 0, de(t) = ds(t) = 0, \begin{cases} e(t) = e_0 \\ s(t) = s_0 \end{cases} \Rightarrow \begin{cases} \frac{d^n e(t)}{dt^n} = 0 \\ \frac{d^n s(t)}{dt^n} = 0 \end{cases}$$

Démonstrations dans le cours – En particulier, p et 1/p nécessitent la condition

ations dans le cours – En particulier,
$$p$$
 et $1/p$ nécessitent la $\forall t \leq 0, de(t) = ds(t) = 0, \begin{cases} e(t) = e_0 \\ s(t) = s_0 \end{cases} \Rightarrow \begin{cases} \frac{d^n e(t)}{dt^n} = 0 \\ \frac{d^n s(t)}{dt^n} = 0 \end{cases}$

Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Page 4 sur 5

Dernière mise à jour	SLCI2	Denis DEFAUCHY
05/10/2022	Linéarisation – Réduction	Résumé

Cas des problèmes à conditions initiales non nulles

Problème ?
$$\mathcal{L}(f'(t)) = pF(p) - f(0^+)$$

Si prendre en compte $f(0^+)$ est possible, il est préférable de se ramener à un système variant autour de la position de départ par changement de variables :

Imaginons par exemple :
$$s(t) = ae(t)$$
 avec $\begin{cases} e(0) = E_0 \\ s(0) = S_0 \end{cases}$

On pose :
$$\begin{cases} e(t) = E_0 + de(t) \\ s(t) = S_0 + ds(t) \end{cases}$$

On étudie alors le système « linéarisé » aux conditions initiales nulles à l'équilibre au départ :

Exemples d'applications : problèmes de thermique où les températures ne sont jamais le 0 absolu, et/ou sont exprimées en °C