Матанализ 2 семестр ПИ, Лекции

Собрано 15 марта 2022 г. в 10:20

Содержание

1. I	Інтегральное исчисление
	1.1. Неопределенный интеграл
	1.2. Определенный интеграл Римана
	1.3. Суммы Дарбу
	1.4. Критерии интегрируемости функции
	1.5. Свойства интеграла Римана
	1.6. Интегральные теоремы о средних
	1.7. Интегральные неравенства
	1.8. Несобственные интегралы
	1.8.1. Свойства несобственного интеграла
	1.8.2. Признаки сходимости несобтсвенных интегралов

Раздел #1: Интегральное исчисление

1.1. Неопределенный интеграл

Def 1.1.1. $f: \langle A, B \rangle \to \mathbb{R}$, $F: \langle A, B \rangle \to \mathbb{R}$ называется первообразной функцией f, если F дифференцируема на $\langle A, B \rangle$, $F'(x) = f(x) \ \forall x \in \langle A, B \rangle$.

Теорема 1.1.2. Пусть $f, F, G: \langle A, B \rangle \to \mathbb{R}, F$ — первообразная f. Тогда G — первообразная $f \Leftrightarrow \exists c \in \mathbb{R}: F(x) + c = G(x)$.

Доказательство. \Rightarrow . Пусть H(x) = F(x) - G(x). Тогда

$$H'(x) = F'(x) - G'(x) = f(x) - f(x) = 0 \Leftrightarrow H'(x) = 0 \Rightarrow H(x) \equiv \text{const}$$

$$\Leftarrow$$
. $(F(x) + c)' = (G(x))' \Leftrightarrow f(x) = F'(x) = G'(x) \Rightarrow G$ – первообразная.

Def 1.1.3. $f: \langle A, B \rangle \to \mathbb{R}, F$ – первообразная f. Множество функций $\{F(x) + c, c \in \mathbb{R}\}$ называется неопределенным интегралом f.

$$\int f(x) = F(x) + c, c \in \mathbb{R}$$

Далее, $f: \langle A, B \rangle \to \mathbb{R}$.

1. Дифференцирование

$$\left(\int f(x) dx\right)' = f(x), x \in \langle A, B \rangle$$

2. Арифметические действия:

$$\int f(x) dx + \int g(x) dx = \{ F(x) + G(x) + c, c \in \mathbb{R} \}$$

$$\int f(x) dx + H(x) = \{ F(x) + H(x) + c, c \in \mathbb{R} \}$$

$$\lambda \int f(x) dx = \{ \lambda F(x) + c, c \in \mathbb{R} \}, \lambda \neq 0, \lambda \in \mathbb{R}$$

Утверждение 1.1.4. Если функция f непрерывна на $\langle A, B \rangle$, то у неё есть первообразная на $\langle A, B \rangle$.

Упражнение 1.1.5. $f(x) = \begin{cases} 1, x \ge 0 \\ -1, x < 0 \end{cases}$. Есть ли первообразная у этой функции?

Def 1.1.6. $E \subset \mathbb{R}, f : E \to \mathbb{R}$. Если F дифференцируема на E и F'(x) = f(x) на E, то F – первообразная f на множестве E.

Таблица неопределенных интегралов

1.
$$\int a dx = ax + c, a \in \mathbb{R}$$

2.
$$\int x^a dx = \frac{x^{a+1}}{a+1} + c, a \neq -1$$

3.
$$\int \frac{1}{x} dx = \ln|x| + c$$

4.
$$\int e^x dx = e^x + c$$

5.
$$\int a^x dx = \frac{a^x}{\ln a} + c, a > 0, a \neq 1$$

6.
$$\int \sin x \, dx = -\cos x + c$$

7.
$$\int \cos x \, dx = \sin x + c$$

8.
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + c$$

9.
$$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + c$$

10.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + c, a \neq 0$$

11.
$$\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + c, a > 0$$

12.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + c, a \neq 0$$

13.
$$\int \frac{dx}{\sqrt{x^2+a}} = \ln |x + \sqrt{x^2+a}| + c, a \in \mathbb{R}$$

Доказательство. Дифференцирование

Пример 1.1.7. $\int \frac{\sin x}{x} dx$ – неберущийся интеграл. Si(x) – интегральный синус (одна из первообразных, закрепленная при $x \to 0+$).

$$(\mathrm{Si}(x))' = \frac{\sin x}{x}$$

Теорема 1.1.8 (Линейность неопределенного интеграла). $f, g : \langle A, B \rangle \to \mathbb{R}$, имеют первообразные на $\langle A, B \rangle$. Тогда $\forall \alpha, \beta \in \mathbb{R} : \alpha, \beta \neq 0$

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Доказательство. Пусть F и G — первообразные f и g на $\langle A,B \rangle$. Правая часть равенства: $\{\alpha F(x) + \beta G(x) + c, c \in \mathbb{R}\}.$

$$(\alpha F(x) + \beta G(x) + c)' = \alpha F'(x) + \beta G'(x) = \alpha f(x) + \beta g(x)$$

Теорема 1.1.9 (Замена переменной). $f: \langle A, B \rangle \to \mathbb{R}, F$ – первообразная f на $\langle A, B \rangle$, $\varphi: \langle C, D \rangle \to \overline{\langle A, B \rangle}$ – дифференцируемая функция. Тогда

$$\int f(\varphi(x))\varphi'(x) dx = F(\varphi(x)) + c$$

Доказательство.

$$(F(\varphi(x)) + c)' = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$$

Замечание 1.1.10. $\varphi'(x) dx = d\varphi(x)$. Пусть $y = \varphi(x)$

$$\int f(y)dy = F(y) + c = F(\varphi(x)) + c$$

Пример 1.1.11. $\int \frac{\ln x}{x} dx = \int \ln x \cdot \frac{1}{x} dx$. Пусть $y = \ln x \Rightarrow dy = \frac{1}{x} dx$

$$\Rightarrow \int \frac{\ln x}{x} dx = \int y dy = \frac{y^2}{2} + c = \frac{\ln^2 x}{2} + c$$

Следствие 1.1.12. Пусть в условиях теоремы φ имеет обратную функцию $\psi : (A, B) \to (C, D)$. Если G(x) – первообразная функции $(f \circ \varphi(x)) \cdot \varphi'(x)$, то

$$\int f(x) dx = G(\psi(x)) + c$$

Доказательство. Пусть F – первообразная f на $\langle A,B \rangle$. $F(\varphi(x))$ – первообразная $f(\varphi(y))\varphi'(y)$ (по теореме). Рассмотрим G(x) – $F(\varphi(x))$ – постоянная (т.к. производная равна нулю). $y = \varphi(x) \Leftrightarrow x = \psi(y)$. Тогда

$$G(\psi(y)) - F(y) = \text{const} \Rightarrow \int f(y) \, dy = G(\psi(y)) + c$$

Пример 1.1.13. $\int \frac{dx}{1+\sqrt{x}}$. Пусть $t = \sqrt{x}, t > 0 \Leftrightarrow t^2 = x \Rightarrow dx = dt^2 = 2t dt$. Тогда

$$\int \frac{dx}{1+\sqrt{x}} = \int \frac{2t \, dt}{1+t} = \int \left(\frac{2t+2}{t+1} - \frac{2}{t+1}\right) dt = \int \left(2 - \frac{2}{t+1}\right) dt = 2 \int dt - 2 \int \frac{dt}{t+1} = 2t - \int \frac{d(t+1)}{t+1} = 2t - 2\ln|t+1| + c = 2\sqrt{x} - 2\ln(\sqrt{x}+1) + c$$

Пример 1.1.14. $\int \sin x \cos x \, dx = \int \sin x \, d \sin x = \frac{\sin^2 x}{2} + c$.

Иначе: $\int \sin x \cos x \, dx = -\int \cos x \, d\cos x = -\frac{\cos^2 x}{2} + c$. Иначе: $\int \sin x \cos x \, dx = \frac{1}{2} \int \sin 2x \, dx = \frac{1}{2} \cdot \frac{1}{2} \int \sin 2x \, d(2x) = \frac{-\cos 2x}{4} + c$. Мораль сей басни такова: константы разные, а не $\frac{\sin^2 x}{2} = -\frac{\cos^2 x}{2} = -\frac{\cos 2x}{4}$.

Теорема 1.1.15 (Формула интегрирования по частям). $f, g \in C^1(A, B)$. Тогда

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx$$

Доказательство. H – первообразная $g \cdot f'$. Тогда

$$(f(x)g(x) - H(x))' = f'(x)g(x) + f(x)g'(x) - H'(x) = f(x)g'(x)$$

Замечание 1.1.16. $\int u \, dv = uv - \int v \, du$

Пример 1.1.17. $\int xe^x dx$. Пусть $u = x, u' = 1, v' = e^x, v = e^x$

$$\int xe^x dx = xe^x - \int 1 \cdot e^x dx = xe^x - e^x + c$$

Пример 1.1.18. $\int \ln x \, dx$. Пусть $u = \ln x, u' = \frac{1}{x}, v' = 1, v = x$.

$$\int \ln x \, dx = x \ln x - \int \frac{1}{x} \cdot x \, dx = x \ln x - x + c$$

Упражнение 1.1.19. $\int e^x \cdot \sin x \, dx$ Пусть $f = \sin x, g = e^x$. Тогда

$$\int f \, dg = fg - \int g \, df \Leftrightarrow \int e^x \sin x = e^x \sin x - \int e^x \cos x$$

Пусть теперь $f = \cos x, g = e^x$. Тогда

$$\int f \, dg = fg - \int g \, df \Leftrightarrow \int e^x \cos x = e^x \cos x + \int e^x \sin x$$

Отсюда

$$\int e^x \sin x = e^x \sin x - e^x \cos x - \int e^x \sin x \Leftrightarrow \int e^x \sin x = \frac{e^x}{2} (\sin x - \cos x)$$

Пример 1.1.20. Пусть $a \in \mathbb{R}, a \neq 0, I_n = \int \frac{dx}{(x^2+a)^n}, n \in \mathbb{N}$. Выразим интеграл I_{n+1} через I_n для произвольного натурального n.

Обозначим $f(x) = \frac{1}{(x^2+a)^n}$ и g(x) = x. Тогда

$$df(x) = \left(\frac{1}{(x^2 + a)^n}\right)' dx = -\frac{2nx}{(x^2 + a)^{n+1}} dx, dg(x) = dx$$

По формуле интегрирования по частям:

$$I_n = \frac{x}{(x^2 + a)^n} + 2n \int \frac{x^2}{(x^2 + a)^{n+1}} dx = \frac{x}{(x^2 + a)^n} + 2n \int \frac{x^2 + a - a}{(x^2 + a)^{n+1}} dx$$
$$= \frac{x}{(x^2 + a)^n} + 2n \int \frac{dx}{(x^2 + a)^n} - 2na \int \frac{dx}{(x^2 + a)^{n+1}} = \frac{x}{(x^2 + a)^n} + 2nI_n - 2naI_{n+1}$$

Откуда

$$2naI_{n+1} = (2n-1)I_n + \frac{x}{(x^2+a)^n}$$

Утверждение 1.1.21. Любая рациональная функция имеет элементарную первообразную.

Рассмотрим простешие дроби:

1.
$$\frac{a}{(x+p)^n}$$
, $n \in \mathbb{N}$, $a, p \in \mathbb{R}$

$$2. \ \frac{ax+b}{(x^2+px+q)^n}$$

Интегралы от простейших дробей первого рода вычисляются по таблице. Для простейших дробей второго рода используется следующий алгоритм:

1. Если $p \neq 0$, то выделим полный квадрат и выполним замену $y = x + \frac{p}{2}$. Если p = 0, тогда

$$\int \frac{ax+b}{(x^2+px+q)^n} = a \int \frac{x\,dx}{(x^2+q)^n} + b \int \frac{dx}{(x^2+q)^n}$$

- 2. Интеграл $\int \frac{x \, dx}{(x^2 + q)^n}$ можно вычислить с помощью замены $y = x^2 + q$, т.к. $dy = 2x \, dx$.
- 3. Применяя к интегралу $I_n = \int \frac{dx}{(x^2+q)^n}$ формулу понижения n-1 раз сведем его к интегралу I_1 , который является табличным.

Пример 1.1.22 (12 и 13 из таблицы).

$$\int \frac{dx}{x^2 - 4} = \int \left(\frac{\frac{1}{4}}{x - 2} + \frac{-\frac{1}{4}}{x + 2}\right) dx = \frac{1}{4} \left(\ln|x - 2| - \ln|x + 2|\right) + c$$

Пример 1.1.23. $\int \frac{dx}{\sqrt{x^2+1}}$. Пусть $x = \sinh t, dx = \cot t dt$. Тогда

$$\int \frac{\operatorname{ch} t \, dt}{\sqrt{1 + \operatorname{sh}^2 t}} = \int \frac{\operatorname{ch} t}{\operatorname{ch} t} \, dt = \int dt = t + c$$

Упражнение 1.1.24. Найди формулу для $(\sinh t)^{-1}$

Неберущиеся интегралы:

- $\int \frac{\sin x}{x} dx$
- $\bullet \int \frac{\cos x}{x} \, dx$
- $\bullet \int \frac{dx}{\ln x}$
- $\int \frac{e^x}{x} dx$

- $\int \sin x^2 dx$
- $\int \cos x^2 dx$
- $\int e^{-x^2} dx$

1.2. Определенный интеграл Римана

Def 1.2.1. [a,b], a < b. Набор точек $\tau = \{x_k\}_{k=0}^n : x_0 = a < x_1 < x_2 < \dots < x_n = b$ – разбиение (дробление) отрезка $[a,b], \Delta x_k = x_{k+1} - x_k$ – длина отрезка $[x_k, x_{k+1}]$. $\lambda = \lambda_{\tau} = \max_{k \in [0,n-1]} \Delta x_k$ – ранг дробления (мелкость), $\xi = \{\xi_k\}_{k=0}^{n-1} : \xi_k \in [x_k, x_{k+1}]$ – оснащение дробления τ . Пара (τ, ξ) называется оснащенным дроблением.

Def 1.2.2. $f:[a,b] \to \mathbb{R}, \sigma_{\tau} = \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k - cymmu Pumaha (интегральные суммы).$

Def 1.2.3. $f:[a,b] \to \mathbb{R}$. Число $I \in \mathbb{R}$ называют пределом интегральных сумм при ранге $\to 0$:

$$I = \lim_{\lambda_{\tau} \to 0} \sigma_{\tau}(f, \xi) \quad (I = \lim_{\lambda \to 0} \sigma)$$

ecли $\forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta$

$$|\sigma_{\tau}(f,\xi) - I| < \varepsilon$$

Замечание 1.2.4. Последовательность оснащенных дроблений $\{(\tau^{(i)}, \xi^{(i)})\}_{i=1}^{\infty} : \lambda^{(i)} \to 0$. $\forall \{\tau^{(i)}, \xi^{(i)}\} : \lambda^{(i)} \to 0$ $\sigma_{\tau^{(i)}}(f, \xi^{(i)}) \to I$.

Def 1.2.5 (Интеграл Римана). $f:[a,b] \to \mathbb{R}$. Если $\exists \lim_{\lambda \to 0} \sigma = I$, то f называется интегрируемой по Риману на [a,b], а число I называется интегралом f по [a,b]. R[a,b] – класс функций, интегрируемых по Риману на [a,b].

$$\int_a^b f(x) \, dx$$

1.3. Суммы Дарбу

Def 1.3.1. $f:[a,b] \to \mathbb{R}, \tau = \{x_k\}_{k=0}^n - \partial poбление [a,b].$

$$M_k = \sup_{x \in [x_k, x_{k+1}]} f(x), m_k = \inf_{x \in [x_k, x_{k+1}]} f(x)$$

Суммы

$$S = S_{\tau}(f) = \sum_{k=0}^{n-1} M_k \Delta x_k, s = s_{\tau}(f) = \sum_{k=0}^{n-1} m_k \Delta x_k$$

называются верхними и нижними интегральными суммами.

3амечание 1.3.2. Если f – непрерывна на [a,b], то это две частные суммы из сумм Римана.

Замечание 1.3.3. f ограничена сверху $\Leftrightarrow S$ ограничена.

Свойства сумм Дарбу:

1.
$$S_{\tau}(f) = \sup_{\xi} \sigma_{\tau}(f, \xi), s_{\tau} = \inf_{\xi} \sigma_{\tau}(f, \xi)$$

Доказательство. $M_k \geqslant f(\xi_k), k = 0, ..., n-1$. Тогда $M_k \Delta x_k \geqslant f(\xi_k) \Delta x_k \Leftrightarrow \sum_{k=0}^{n-1} M_k \Delta x_k \geqslant \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k \Rightarrow S_{\tau}(f) \geqslant \sigma_{\tau}$, т.е. S_{τ} – верхняя граница. Докажем, что она является точной верхней границей.

Если f ограничена на [a,b]. Фиксируем $\varepsilon > 0$. На каждом кусочке разбиения $\exists \xi_k^* \in [x_k, x_{k+1}] : f(\xi_k^*) > M_k - \frac{\varepsilon}{b-a}$. Тогда $\sigma^* = \sum_{k=0}^{n-1} f(\xi_k^*) \Delta x_k > S - \frac{\varepsilon}{b-a} \sum_{k=0}^{n-1} \Delta x_k = S - \varepsilon$.

Если f не ограничена на $[a,b] \Rightarrow$ не ограничена на каком-то кусочке $[x_l,x_{l+1}].$ Фиксируем A>0 и выберем ξ_k^* при $k\neq l$ произвольно, а для ξ_l^*

$$f(\xi_l^*) > \frac{1}{\Delta x_l} \left(A - \sum_{k \neq l} f(\xi_k^*) \Delta x_k \right)$$

Тогда

$$\sigma^* = \sum_{k=0}^{n-1} f(\xi_k^*) \Delta x_k > A \Rightarrow \sup_{\xi} \sigma = +\infty = S$$

2. При добавлении новых точек дробления верхняя сумма не увеличится, а нижняя не уменьшится.

Доказательство. Докажем для верхних сумм при добавлении одной точки. $\tau:\{x_k\}_{k=0}^{n-1}$. Добавим точку c в $[x_l,x_{l+1}]-T$ — новое дробление.

$$S_{\tau} = \sum_{k=0}^{l-1} M_k \Delta x_k + M_l \Delta x_l + \sum_{k=l+1}^{n-1} M_k \Delta x_k$$

$$S_T = \sum_{k=0}^{l-1} M_k \Delta x_k + (c - x_l) \cdot M' + (x_{l+1} - c)M'' + \sum_{k=l+1}^{n-1} M_k \Delta x_k$$

где $M' = \sup_{x \in [x_l, c]} f, M'' = \sup_{x \in [c, x_{l+1}]} f.$ $M_l \geqslant M', M_l \geqslant M'',$ т.к. $[x_l, c] \subset [x_l, x_{l+1}], [c, x_{l+1}] \subset [x_l, x_{l+1}].$

Рассмотрим $S_{\tau} - S_T = M_l \Delta x_l - (c - x_l) M' - (x_{l+1} - c) M'' \geqslant M_l (x_{l+1} - x_l - c + x_l - x_{l+1} + c) = 0.$ Добавить больше точек можно по индукции.

3. Каждая нижняя сумма Дарбу не превосходит каждой верхней.

Доказательство. τ_1, τ_2 – разные дробления [a,b]. Докажем, что $s_{\tau_1} \leqslant S_{\tau_2}$. Возьмем $\tau = \tau_1 \cup \tau_2$. Тогда $s_{\tau_1} \leqslant s_{\tau} \leqslant S_{\tau} \leqslant S_{\tau_2}$ (по свойству 2).

Утверждение 1.3.4. $f \in R[a,b] \Rightarrow f$ ограничена на [a,b].

Доказательство. Пусть f не ограничена на [a,b] сверху. Тогда $\forall \tau \Rightarrow \sup_{\xi} \sigma_{\tau}(f,\xi) = +\infty$. Тогда $\forall \tau$ и числа $I \exists$ оснащение $\xi' : \sigma_{\tau}(\xi') > I + 1 \Rightarrow$ никакое число I не является пределом интегральных сумм.

Def 1.3.5. $f : [a, b] \to \mathbb{R}$. Возъмем

$$I^* = \inf_{\tau} S_{\tau} \qquad I_* = \sup_{\tau} s_{\tau}$$

где I^* – верхний интеграл Дарбу, I_* – нижний интеграл Дарбу.

Замечание 1.3.6. $I^* \geqslant I_*$.

Замечание 1.3.7. f ограничена сверху $\Leftrightarrow I^*$ ограничена.

1.4. Критерии интегрируемости функции

Теорема 1.4.1 (Критерий интегрируемости функции). Пусть $f:[a,b] \to \mathbb{R}$. Тогда $f \in R[a,b] \Leftrightarrow \overline{S_{\tau}(f) - s_{\tau}(f)} \xrightarrow{\lambda \to 0} 0$, т.е.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_{\tau} < \delta \ S_{\tau}(f) - s_{\tau}(f) < \varepsilon$$

Доказательство. \Rightarrow . Пусть $f \in R[a,b]$. Обозначим $I = \int_a^b f$. Возьмем $\varepsilon > 0$, подберем $\delta > 0$:

$$I - \frac{\varepsilon}{3} < \sigma_{\tau}(f, \xi) < I + \frac{\varepsilon}{3}$$

Переходя к супремуму и инфимуму, получим

$$I - \frac{\varepsilon}{3} \leqslant s_{\tau} \leqslant S_{\tau} \leqslant I + \frac{\varepsilon}{3}$$

откуда $S_{\tau} - s_{\tau} \leqslant I + \frac{\varepsilon}{3} - I + \frac{\varepsilon}{3} = \frac{2\varepsilon}{3} < \varepsilon$. \Leftarrow . Пусть $S_{\tau} - s_{\tau} \xrightarrow{\lambda \to 0} 0 \Rightarrow$ все суммы Дарбу конечны.

$$s_{\tau} \leqslant I_{\star} \leqslant I^{\star} \leqslant S_{\tau} \Rightarrow 0 \leqslant I^{\star} - I_{\star} \leqslant S_{\tau} - s_{\tau}$$

 $\Rightarrow I^* = I_*$ (т.к. это числа). Обозначим $I = I^* = I_*$.

$$s_{\tau} \leqslant I \leqslant S_{\tau}, s_{\tau} \leqslant \sigma_{\tau} \leqslant S_{\tau} \Rightarrow |I - \sigma_{\tau}| \leqslant S_{\tau} - s_{\tau}$$

$$\Rightarrow \forall \varepsilon > 0 \ \exists \delta > 0 : \forall \tau : \lambda_\tau < \delta \ |I - \sigma_\tau| < \varepsilon.$$

Замечание 1.4.2. Если $f \in R[a,b] \Rightarrow s_{\tau} \leqslant \int_a^b f \leqslant S_{\tau}$.

Cnedcmeue 1.4.3. $f \in R[a,b] \Rightarrow \lim_{\lambda \to 0} S_{\tau} = \lim_{\lambda \to 0} s_{\tau} = \int_a^b f$

Доказательство.
$$0 \le S_{\tau} - \int_a^b f \le S_{\tau} - s_{\tau}, \ 0 \le \int_a^b f - s_{\tau} \le S_{\tau} - s_{\tau}.$$

Замечание 1.4.4. $\lim_{\lambda \to 0} S_{\tau} = I^*, \lim_{\lambda \to 0} s_{\tau} = I_*$.

Утверждение 1.4.5 (Критерий Дарбу интегрируемости функции по Риману). $f \in R[a,b] \Leftrightarrow f$ ограничена на [a,b] и $I_* = I^*$.

Утверждение 1.4.6 (Критерий Римана интегрируемости). $f \in R[a,b] \Leftrightarrow \forall \varepsilon > 0 \; \exists \tau \; S_{\tau}(f) - s_{\tau}(f) < 0 \; \exists \tau \; S_{\tau}(f) = 0 \; \exists \tau$

Def 1.4.7. $f: D \to \mathbb{R}$. Величина

$$\omega(f)_D = \sup_{x,y \in D} (f(x) - f(y))$$

называется колебанием f на D. Из определений граней функции ясно, что

$$\omega(f)_D = \sup_{x \in D} f(x) - \inf_{y \in D} f(y)$$

Eсли задано τ отрезка [a,b], то

$$\omega_k(f) = M_k - m_k$$

Тогда теорему можно записать:

$$f \in R[a,b] \Leftrightarrow \lim_{\lambda \to 0} \sum_{k=0}^{n-1} \omega_k(f) \Delta x_k = 0$$

Теорема 1.4.8 (Интегрируемость непрерывной функции). $f:[a,b] \to \mathbb{R}, f \in C[a,b] \Rightarrow f \in C[a,b]$ R[a,b].

Доказательство. По теореме Кантора $f \in C[a,b] \Rightarrow f$ равномерна непрерывна на [a,b].

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall t', t'' \in [a, b] : |t' - t''| < \delta |f(t') - f(t'')| < \frac{\varepsilon}{b - a}$$

По теореме Вейерштрасса f достигает наибольшего и наименьшего значения на любом отрезке, содержащемся в [a,b]. Поэтому колебание f на всяком отрезке, длина которого меньше δ , будет меньше $\frac{\varepsilon}{b-a}$. Значит, $\forall \tau : \lambda_{\tau} < \delta$

$$\sum_{k=0}^{n-1} \omega_k(f) \Delta x_k < \sum_{k=0}^{n-1} \frac{\varepsilon}{b-a} \Delta x_k$$

Теорема 1.4.9 (Интегрируемость монотонной функции). f монотонна на $[a,b] \Rightarrow f \in R[a,b]$.

Доказательство. Пусть f монотонно возрастает на [a,b]. Если $f(a)=f(b)\Rightarrow f$ постоянна $f(a)=f(b)\Rightarrow f(a)=f(b)$ ностоянна f(a)=f(a) ностоянна f(a)=f(

Если f(a) < f(b). $\forall \varepsilon > 0$ возьмем $\delta = \frac{\varepsilon}{f(b) - f(a)}$. Возьмем произвольное $\tau : \lambda_{\tau} < \delta$ на $[x_k, x_{k+1}]$. В силу монотонности f верно $\omega_k(f) = f(x_{k+1}) - f(x_k)$.

$$\sum_{k=0}^{n-1} \omega_k(f) \Delta_k = \sum_{k=0}^{n-1} (f(x_{k+1}) - f(x_k)) \Delta x_k < \sum_{k=0}^{n} (f(x_{k+1}) - f(x_k)) \cdot \frac{\varepsilon}{f(b) - f(a)} = \varepsilon$$

Замечание 1.4.10. $f \in R[a,b]$. Если изменить значение f в конечном числе точек, то интегрируемость не нарушится и интеграл не изменится.

Доказательство. \widetilde{f} – отличается от f в точках $t_1, t_2, ..., t_m$. |f| ограничена на $[a, b] \Rightarrow |\widetilde{f}|$ ограничена. $|f| \leqslant A$, возьмем $\widetilde{A} = \max\{A, |\widetilde{f}(t_1)|, |\widetilde{f}(t_2)|, ..., |\widetilde{f}(t_m)|\}$. В интегральных суммах для f и \widetilde{f} отличаются не более 2m слагаемых, поэтому

$$|\sigma_{\tau}(f,\xi) - \sigma_{\tau}(\widetilde{f},\xi)| \leq 2m(A+\widetilde{A})\lambda_{\tau} \xrightarrow{\lambda_{\tau}} 0$$

Поэтому предел $\sigma_{\tau}(\widetilde{f},\xi)$ существует и равен пределу $\sigma_{\tau}(f,\xi)$.

Теорема 1.4.11 (Интегрируемость функции и её сужения). 1. $f \in R[a,b], [\alpha,\beta] \subset [a,b] \Rightarrow f \in R[\alpha,\beta]$

2. Если $a < c < b, f : [a, b] \to \mathbb{R}$ и $f \in R[a, c], f \in R[c, b]$, то $f \in R[a, b]$.

Доказательство. 1. Возьмем $\varepsilon > 0$, подберем $\delta > 0$ из критерия интегрируемости на [a,b]. τ_0 – дробление $[\alpha,\beta], \lambda_{\tau_0} < \delta$. Добавим точек до дробления [a,b]. Получим $\tau(\lambda_{\tau} < \delta)$.

$$S_{\tau_0} - S_{\tau_0} = \sum_{k=1}^{m-1} \omega_k(f) \Delta x_k \leqslant \sum_{k=0}^{m-1} \omega_k(f) \Delta x_k < \varepsilon$$

2. Пусть f не постоянна, т.е. $\omega(f)_{[a,b]} > 0$. Возьмем $\varepsilon > 0$, подберем $\delta_1, \delta_2 : \forall \tau_1 : \lambda_{\tau_1} < \delta_1, \forall \tau_2 : \lambda_{\tau_2} < \delta_2$

$$S_{\tau_1} - s_{\tau_1} < \frac{\varepsilon}{3}, S_{\tau_2} - s_{\tau_2} < \frac{\varepsilon}{3}$$

 $\delta = \min\{\delta_1, \delta_2, \frac{\varepsilon}{3\omega}\}$. Пусть τ — дробление $[a,b], \lambda_{\tau} < \delta$. Точка $c \in [x_l, x_{l+1})$. Обозначим $\tau' = \tau \cup \{c\}, \tau_1 = \tau' \cap [a,c], \tau_2 = \tau' \cap [c,b]$

$$S_{\tau} - s_{\tau} \leqslant S_{\tau_1} - s_{\tau_1} + S_{\tau_2} - s_{\tau_1} + \omega_l(f)\delta < \varepsilon$$

Def 1.4.12. Функция $f:[a,b] \to R$ называется кусочно-непрерывной на [a,b], если множество её точек разрыв пусто или конечно (и все разрывы первого рода)

 $\mathit{Следствие}\ 1.4.13.\ \mathrm{f}$ – кусочно-непрерывная на $[a,b]\Rightarrow f\in R[a,b]$

Доказательство. Возьмём точки $a_1, a_2, ..., a_m$ (может $a_1 = a$ и/или $a_m = b$). Рассмотрим отрезки $[a_k, a_{k+1}]$. f непрерывна на (a_k, a_{k+1}) и \exists конечные $\lim_{x \to a_{k+1}} f(x)$ и $\lim_{x \to a_{k+1}} f(x) \Rightarrow f \in R[a_k, a_{k+1}] \Rightarrow$ по теореме о сужении $f \in R[a, b]$

Def 1.4.14. *Множество* X называется не более, чем счетным, если оно конечно или счетно.

Def 1.4.15. $E \subset \mathbb{R}$ – имеет нулевую меру, если для $\forall \varepsilon > 0$ множество E можно заключить в не более, чем счётное объединение интервалов, суммарная длина которых $< \varepsilon$.

$$\left(\lim_{m\to\infty}\sum_{i=1}^m(b_i-a_i)\right)$$

Пример 1.4.16. Множество из одной точки.

Упражнение 1.4.17. Чему равна мера \mathbb{N} ?

Теорема 1.4.18 (Критерий Лебега интегрируемости по Риману). Пусть $f : [a, b] \to R$. $f \in R[a, b] \Leftrightarrow f$ ограничена и множество точек разрыва имеет нулевую меру.

Теорема 1.4.19 (Арифметические действия над интегрируемыми функциями). $f, g \in \mathbb{R}[a, b]$. Тогда

- 1. $f + g \in R[a, b]$
- 2. $f \cdot g \in R[a, b]$
- 3. $\alpha f \in R[a,b], \alpha \in \mathbb{R}$
- 4. $|f| \in R[a, b]$
- 5. Если $\inf_{[a,b]} |g| > 0$, то $\frac{f}{g} \in R[a,b]$

Доказательство. 1. $D \subset [a,b]$. $x,y \in D$ $|(f+g)(x)-(f+g)(y)| = |f(x)+g(y)-f(y)-g(y)| \leq |f(x)-f(y)|+|g(x)-g(y)| \leq \omega_D(f)+\omega_D(g)$

$$\omega_{D}(f+g) \leqslant \omega_{D}(f) + \omega_{D}(g)$$

$$\omega_{D}(f+g) \leqslant \omega_{D}(f) + \omega_{D}(g)$$

$$\omega_{[x_{k},x_{k+1}]}(f+g) \leqslant \omega_{[x_{k},x_{k+1}]}(f) + \omega_{[x_{k},x_{k+1}]}(g)$$

$$\omega_{k}(f+g) \leqslant \omega_{k}f + \omega_{k}g$$

$$0 \leqslant \sum_{k=0}^{n-1} \omega_k (f+g) \delta x_k \leqslant \sum_{k=0}^{n-1} \omega_k f \Delta x_k + \sum_{k=0}^{n-1} \omega_k g \Delta x_k (\to 0, \lambda \to 0)$$

$$\Rightarrow f+g \in R[a,b]$$

- 2. $|fg(x) fg(y)| \le |f(x)g(x) f(y)g(x) + f(y)g(x) f(y)g(y)| \le |g(x)||f(x) f(y)| + |f(y)||g(x) g(y)| \le A|f(x) f(y)| + B|g(x) g(y)|$ (т.к. $R[a, b] \Rightarrow$ ограничена на [a, b])
- 3. $g(x) = \alpha$
- 4. $||f(x)| |f(y)|| \le |f(x) f(y)|$ $|\omega_k|f|| \le |\omega_k f|$

5.
$$\frac{f}{g} = f \cdot \frac{1}{g}$$
. Докажем, что $\frac{1}{g} \in R[a,b]$. $0 < m = \inf_{[a,b]} |g|$

$$\left| \frac{1}{g(x)} - \frac{1}{g(y)} \right| = \left| \frac{g(x) - g(y)}{g(x)g(y)} \right| \leqslant \frac{g(x) - g(y)}{m^2} \Leftrightarrow \omega_k \left(\frac{1}{g} \right) \leqslant \frac{\omega_k(g)}{m^2}$$

Пример 1.4.20. 1. $\int_0^1 x^2 dx$ $x^2 \in C[a,b] \Rightarrow x^2 \in R[a,b].$

Рассмотрим какую-нибудь интегральную сумму: $x_k = \frac{k}{n} = \xi_k$

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} f(\xi_k) \Delta x_k = \lim_{n \to \infty} \sum_{k=0}^{n-1} \left(\frac{k}{n}\right)^2 \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^3} \sum_{k=0}^{n-1} k^2 = \lim_{n \to \infty} \frac{1}{n^3} \cdot \frac{(n-1)n(2n-1)}{6} = \frac{1}{3}$$

2. $\int_0^1 e^x dx$ – упражнение

3.
$$f(x) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases}$$
, $D \notin R[a, b], a < b$

Доказательство.

$$\sum_{k=0}^{n-1} \omega_k(D) \Delta x_k = \sum_{k=0}^{n-1} \Delta x_k = b - a \underset{\lambda \to 0}{\not\rightarrow} 0$$

4. r(x) $\begin{cases} \frac{1}{q}, x = \frac{p}{q} \in \mathbb{Q}, \text{ дробь несократима} \\ 0. x \notin \mathbb{O} \end{cases}$

r(x) непрерывна в каждой точке, разрывна в каждой рациональной.

 $r(x) \in R[0,1]$

Доказательство. Зафиксируем $\varepsilon > 0, N \in \mathbb{N} : \frac{1}{N} < \frac{\varepsilon}{2}$ Рациональные числа из [0,1] со знаменателем $\leqslant N$, конечное число = C_N , множество X. Возьмём $\delta = \frac{\varepsilon}{4C_N}$ и дробление $\tau: \lambda_\tau < \delta$

Точки X попадут в не более, чем $2C_N$ отрезков дробления. В отрезках, где нет точек из X наибольшее значение $<\frac{1}{N}$

 $s_{\tau}(r) = 0$

$$S_{\tau}(r) = \sum_{k:M_k \geqslant \frac{1}{N}} M_k \Delta x_k \sum_{k:M_k < \frac{1}{N}} M_l \Delta x_k \leqslant \underbrace{1 \cdot 2C_n}_{\underline{\varepsilon}} \cdot \delta + \underbrace{\frac{1}{N}}_{<\underline{\varepsilon}} < \varepsilon$$

$$S_{\tau}(r) - s_{\tau}(r) = S_{\tau}(r) \underset{\lambda_r \to 0}{\longrightarrow} 0 \Rightarrow r \in R[0, 1] \bowtie \int_0^1 r(x) dx = 0$$

Если $f \in R_D$ $g \in R[a,b]$, то $f(g) \in R[a,b]$? (D- множество значений g)

Ответ: нет. Пример: $f(y) = \begin{cases} 1, y \in [0, 1] \\ 0, y = 0 \end{cases}$ и g(x) = r(x) на [0, 1]

$$f(r(x)) = \begin{cases} 1, x \in \mathbb{Q} \\ 0, x \notin \mathbb{Q} \end{cases} = D(x) \notin R[0, 1]$$

Теорема 1.4.21 (Интегрируемость композиции). $\varphi : [\alpha, \beta] \to [a, b], f : [a, b] \to \mathbb{R},$ $f(\varphi) : [\alpha, \beta] \to \mathbb{R}$ $\varphi \in R[\alpha, \beta], f \in C[a, b]$. Тогда $f \circ \varphi \in R[\alpha, \beta]$

Доказательство. Например, из критерия Лебега.

1.5. Свойства интеграла Римана

$$1. \int_b^a f = -\int_a^b f$$

2.
$$\int_a^b f = 0$$
 ($\forall f$ на вырожденном отрезке $f \in R[a, a]$)

Свойства:

• Аддитивность интеграла по отрезку: $a, b, c \in \mathbb{R}, f \in R[\min\{a, b, c\}, \max\{a, b, c\}]$

$$\int_{a}^{b} f = \int_{a}^{c} + \int_{c}^{b} f$$

Доказательство. $f \in R[a,b] \Rightarrow fin\mathbb{R}[a,c], f \in R[c,b], \{\overline{\tau}^{(n)}, \overline{\xi}^{(n)}\}_{n=1}^{\infty}$ и $\{\overline{\overline{\tau}}^{(n)}, \overline{\xi}^{(n)}\}_{n=1}^{\infty}$ – последовательности оснащенных дроблений [a,c] и [c,b] (равномерных, т.е. $\widetilde{\lambda} = \frac{c-a}{n}, \overline{\lambda}$) $\tau^{(n)} = \overline{\tau}^{(n)} \cup \overline{\overline{\tau}}^{(n)}$ – дробление [a,b] $\xi^{(n)} = \overline{\xi}^{(n)} \cup \overline{\xi}^{(n)}$ – оснащение $\tau^{(n)}$ $\sigma = \overline{\sigma} + \overline{\overline{\sigma}}$ при $n \to \infty$

$$\underbrace{\int_{a}^{b} f = \int_{a}^{c} f - \int_{b}^{c} f}_{\text{по доказанному}} = \int_{a}^{c} f + \int_{c}^{b} f$$

$$\int_a^b f = \int_a^c f + \int_a^b f = \int_a^c f - \int_b^c f$$

Все остальные случаи – аналогично.

• $f \equiv \alpha$ при $x \in [a,b] \Rightarrow \int_a^b f = \alpha(b-a)$

Доказательство.

$$\sum_{k=0}^{n-1} f(\xi_k) \Delta x_k = \alpha \cdot \sum_{k=0}^{n-1} \Delta x_k = \alpha (b-a)$$

• Линейность интеграла: $\alpha, \beta \in \mathbb{R}, f, g \in R[a, b]$ $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b + \beta \int_a^b g$

Доказательство. $\alpha f + \beta g \in R[a,b]$ $\sigma_{\tau}(\alpha f + \beta g) = \sigma_{\tau}(\alpha f) + \sigma_{\tau}(\beta g)$ и переход к пределу.

• Монотонность интеграла: $a < b, \quad f, g \in R[a,b]$ и $f \leqslant g$ на $[a,b] \Rightarrow \int_a^b f \leqslant \int_a^b g$

Доказательство. $\sigma_{\tau}(f) \leqslant \sigma_{\tau}(g)$

Следствие 1.5.1. $a < b, f \in R[a,b],$ если $f \le M \in \mathbb{R}$ на [a,b], то $\int_a^b f \le M(b-a),$ если $f \ge m$ на [a,b]то $\int_a^b f \ge m(b-a)$

Следствие 1.5.2. $f \geqslant 0 \Rightarrow \int_a^b f \geqslant 0$

• $a < b, f \in R[a,b]$ и $\exists c \in [a,b] : f(c) > 0$ и f непрерывна в точке C. Тогда $\int_{a}^{b} f > 0$

Доказательство. Пусть $\varepsilon = \frac{f(c)}{2} > 0 \Rightarrow \exists \delta : \forall x \in \underbrace{\left[c - \delta; c + \delta\right] \cap \left[a, b\right]}_{[\alpha, \beta]} : |f(x) - f(c)| < \varepsilon$

$$f(x) > f(c) - \varepsilon = \frac{f(c)}{2} \Rightarrow \int_{\alpha}^{\beta} f \geqslant \frac{f(c)}{2} (\beta - \alpha)$$
$$\int_{a}^{b} f = \int_{a}^{\alpha} f + \int_{\alpha}^{\beta} f + \int_{\beta}^{b} \geqslant \int_{\alpha}^{\beta} f \geqslant \frac{f(c)}{2} (\beta - \alpha) > 0$$

Замечание 1.5.3. Таким же образом строгий знак в монотонности интеграла.

Замечание 1.5.4. $f \in R[a,b], f > 0 \Rightarrow \int_a^b f > 0$

• $a < b, f \in R[a, b]$

$$\Big| \int_{a}^{b} f \Big| \leqslant \int_{a}^{b} |f|$$

Доказательство. $-|f| \le f \le |f|$

Если не знаем, что $a\geqslant b$ или $b\geqslant a$

$$\Big| \int_{a}^{b} f \Big| \leqslant \Big| \int_{a}^{b} |f| \Big|$$

1.6. Интегральные теоремы о средних

Теорема 1.6.1. $f, g \in R[a, b], g \ge 0$ на $[a, b], m \le f \le M$. Тогда $\exists \mu \in [m, M] : \int_a^b fg = \mu \int_a^b g$

Доказательство. $mg \leqslant fg \leqslant Mg$ на [a,b]

$$m\int_{a}^{b}g \leqslant \int_{a}^{b}fg \leqslant M\int_{a}^{b}g$$

Если
$$\int_a^b g = 0$$
, то $\exists \mu \in [m, M] : 0 = \mu \cdot 0$

Если
$$\int_a^b g > 0$$
, то $m \leqslant \frac{\int_a^b fg}{\int_a^b g} \leqslant M$

Возьмём
$$\mu = \frac{\int_a^b fg}{\int_a^b g}$$

Замечание 1.6.2. Для $g \leqslant 0$ тоже верно.

Следствие 1.6.3. 1. $f \in C[a,b], g \in R[a,b], g \ge 0$ (или $g \le 0$).

Тогда
$$\exists c \in [a,b]: \int_a^b f \cdot g = f(c) \cdot \int_a^b g$$

Доказательство. По теореме Вейерштрасса: $\exists m = \min_{[a,b]} f$ и $M = \max_{[a,b]} f$

Подберём $\mu \in [m, M]$ по предыдущей теореме. Тогда по теореме Больцано-Вейерштрасса $\exists c \in [a,b]: f(c) = M$

2.
$$f \in R[a,b], m, M \in \mathbb{R} : m \le f \le M$$
 на $[a,b]$. Тогда $\exists \mu \in [m,M] : \int_a^b f = \mu(b-a)$

Доказательство. $g \equiv 1$ в теореме.

3.
$$f \in C[a,b]$$
. Тогда $\exists c \in [a,b] : \int_a^b f = f(c)(b-a)$

Доказательство. $g \equiv 1$ в следствии 1.

Замечание 1.6.4. Теорему и следствия называют ещё теоремами о средних. Почему?

Def 1.6.5. $f \in R[a, b], a < b$

$$\frac{1}{b-a}\int_a^b f$$
 – интегральное среднее f на $[a,b]$

Если возъмём равномерное разбиение [a,b], то $\sigma_n = \sum_{k=0}^{n-1} f(\xi_k) \cdot \frac{b-a}{n}$

То есть $\frac{\sigma_n}{b-a} \to \frac{1}{b-a} \int_a^b f$, где $\frac{\sigma_n}{b-a}$ – среднее арифметическое значений функции в точках ξ_k

Def 1.6.6. $E \subset \mathbb{R}$ – невырожденный промежуток (может быть и лучом), $f : E \to \mathbb{R}$, f – интегрируема на каждом отрезке, содержащемся в E. $a \in E$.

$$\Phi(x) = \int_{a}^{x} f(t) dt, x \in E$$
 – интеграл с переменным верхним пределом.

Теорема 1.6.7 (Барроу, об интеграле с переменным верхним пределом). $E \subset \mathbb{R}$ — невырожденный промежуток, $f: E \to \mathbb{R}$, интегрируема на каждом отрезке из $E, a \in E, \Phi(x) = \int_a^x f, x \in E$. Тогда

- 1. $\Phi(x) \in C(E)$
- 2. Если f непрерывна в точке $x_0 \in E$, то Φ дифференцируема в точке x_0 , $\Phi'(x_0) = f(x_0)$

Доказательство. 1. Пусть
$$x_0 \in E$$
, подберем $\delta > 0[x_0 - \delta; x_0 + \delta] \cap E = [A, B]$ $|f|$ на $[A, B]$ ограничена числом М. $\Delta x : x_0 + \Delta x \in [A, B]$ $|\Phi(x_0 + \Delta x) - \Phi(x_0)| = \left| \int_a^{x_0 + \Delta x} f - \int_a^{x_0} f \right| = \left| \int_{x_0}^{x_0 + \Delta x} f \right| \leqslant \left| \int_{x_0}^{x_0 + \Delta x} |f| \leqslant |\Delta x| \cdot M \underset{\Delta x \to 0}{\to} 0$

2. Проверим, что
$$\frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} \xrightarrow{\Delta x \to 0} f(x_0)$$
Возьмем $\varepsilon > 0$ и $\delta > 0$: $\forall t : |t - x_0| < \delta |f(t) - f(x_0)| < \varepsilon$ (по непрерывности.)
$$\left| \frac{\Phi(x_0 + \Delta x) - \Phi(x_0)}{\Delta x} - f(x_0) \right| = \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t) dt = f(x_0) \right| = \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} (f(t) - f(x_0)) dt \right| < \frac{1}{|\Delta x|} \cdot \varepsilon \cdot |\Delta x| = \varepsilon, \ k = \int_a^b k \cdot \frac{1}{b - a}$$

Пример 1.6.8.
$$\Phi(x) = \int_{1}^{x} \frac{\sin t}{t} dt, x > 1$$

$$\Phi'(x) = \frac{\sin x}{x} \Rightarrow \text{Si}'(x) = \frac{\sin x}{x}$$

Упражнение 1.6.9. $\int Si(x) dx = ?$

Следствие 1.6.10. Функция, непрерывная на промежутке имеет на нём первообразную. Ей является интеграл с переменным верхним пределом.

Def 1.6.11. $\Psi(x) = \int_{x}^{a} f$ (Условия на f u a nрежение) – интеграл c nеременным нижним nределом.

 $\Rightarrow \Psi'(x) = -f(x)$ (Если f непрерывна).

Теорема 1.6.12 (Формула Ньютона-Лейбница). $f \in R[a,b], F$ — первообразная f на [a,b]. Тогда: $\int_a^b f = F(b) - F(a)$

Доказательство. Для каждого $n \in \mathbb{N}$:

$$F(x_1) - F(x_0) + F(x_2) - F(x_1) + F(x_3) - F(x_2) + \dots + F(x_n) - F(x_{n-1}) = \sum_{k=0}^{n-1} (F(x_{k+1}) - F(x_k)) = F(b) - F(a)$$

По теореме Лагранжа $\exists \xi_{k,n} \in (x_k, x_{k+1})$

$$F(x_{k+1}) - F(x_k) = F'(\xi_{k,n})(x_{k+1} - x_k) = f(\xi_{k,n})\Delta x_k$$

$$\int_{a}^{b} f = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\xi_{k,n}) \Delta x_{k} = \lim (F(b) - F(a)) = F(b) - F(a)$$

Замечание 1.6.13.
$$\int_a^b f = F \Big|_a^b$$
 $\int_a^b f(x) \, dx = F(x) \Big|_{x=a}^b$ — двойная подстановка.

Замечание 1.6.14. G(x) = F(x) + C – тоже первообразная.

$$G(b) - G(a) = F(b) - F(a)$$

Пример 1.6.15.
$$\int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1}{3}$$

Пример 1.6.16.
$$\int_{-1}^{1} \frac{1}{x^2} dx = -\frac{1}{x} \Big|_{-1}^{1} = -2$$
 - чушь!

1.
$$\left(-\frac{1}{x}\right)' = \frac{1}{x^2}$$
 – не везде на $[-1,1]$

2. $\frac{1}{r^2}$ не интегрируема на [-1;1], т.к. не ограничена.

Замечание 1.6.17. Обобщение теоремы.

 $f \in R[a;b], F \in C[a,b], F$ — первообразная f на [a,b] за исключением некоторого конечного числа точек.

Тогда
$$\int_a^b f = F(b) - F(a)$$

Доказательство. Пусть $\alpha_0=a,\alpha_m=b,\ \alpha_1,\alpha_2,...,\alpha_{m-1}$ – все точки на $(a,b),\$ в которых $F'\neq f$

$$\int_a^b f = \sum_{k=0}^{m-1} \int_{\alpha_k}^{\alpha_{k+1}} f = \sum_{k=0}^{m-1} (F(\alpha_{k+1}) - F(\alpha_k)) = F(b) - F(a).$$

(Рассмотрим
$$\int_{\alpha_k}^{\alpha_{k+1}} f = \lim_{\varepsilon \to 0+} \int_{\alpha_k + \varepsilon}^{\alpha_{k+1} - \varepsilon} f = \lim_{\varepsilon \to 0+} (F(\alpha_{k+1} - \varepsilon) - F(\alpha_k + a)) = F(\alpha_{k+1}) - F(\alpha_k))$$

 $\it Замечание \ 1.6.18.$ Без непрерывности $\it F$ не получится: на [-1,1]

$$F(x) = \operatorname{sign} x = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}, f(x) = 0$$

$$0 = \int_{-1}^{1} f \neq F \Big|_{-1}^{1} = 2$$

Замечание 1.6.19. $\int_a^b F'(x) dx = F(b) - F(a)$.

F дифференцируема, F' интегрируема.

Замечание 1.6.20. $F' \in R[a, b]$ – существенно.

$$F(x) = \begin{cases} x^2 \cdot \sin\frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$$
$$F'(x) = \begin{cases} 2x \sin\frac{1}{x^2} - \frac{2}{x} \cdot \cos\frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$$

F' не ограничена, а значит не интегрируема.

Замечание 1.6.21. Интегрируемость $\stackrel{?}{\Leftrightarrow}$ ∃ первообразной.

sign x интегрируема на [-1. 1], но первообразной нет.

≠ Предыдущее замечание.

Теорема 1.6.22 (Интегрирование по частям в определенном интеграле.). f, g — дифференцируемы на $[a,b], f',g' \in R[a,b]$. Тогда

$$\int_{a}^{b} fg' = fg \Big|_{a}^{b} - \int_{a}^{b} f'g$$

Доказательство. f, g- дифференцируемы \Rightarrow непрерывны \Rightarrow интегрируемы.

$$(f \cdot g)' = f' \cdot g + g' \cdot f \in R[a, b]$$

$$\int_{a}^{b} (fg)' = fg \Big|_{a}^{b}$$
$$\int_{a}^{b} (fg)' = \int_{a}^{b} (f'g + g'f)$$

Замечание 1.6.23. $\int_{a}^{b} f \, dg = fg \Big|_{a}^{b} - \int_{a}^{b} g \, df$

Теорема 1.6.24 (Замена переменной в определенном интеграле). $\varphi : [\alpha, \beta] \to [A, B]$, дифференцируема на $[\alpha, \beta], \varphi' \in R[\alpha, \beta]$

 $f \in C[A; B]$. Тогда

$$\int_{\alpha}^{\beta} f(\varphi) \cdot \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta)} f$$

Доказательство. $f(\varphi) \in C[\alpha, \beta] \Rightarrow f(\varphi) \in R[a, b] \Rightarrow f(\varphi) \cdot \varphi' \in R[a, b]$ Пусть F - первообразная f на $[A, B] \Rightarrow F(\varphi)$ – первообразная $f(\varphi) \cdot \varphi'$ на $[\alpha, \beta]$

$$\int_{\alpha}^{\beta} f(\varphi) \cdot \varphi' = F(\varphi) \Big|_{\alpha}^{\beta} = F(\varphi(\beta)) - F(\varphi(\alpha))$$

$$\int_{\varphi(\alpha)}^{\varphi(\beta)} f = F \Big|_{\varphi(\alpha)}^{\varphi(\beta)} = F(\varphi(\beta)) - F(\varphi(\alpha))$$

Упражнение 1.6.25. Пусть f четная функция. Доказать, что $\int_{a}^{a} = 2 \int_{0}^{a} f$

Пусть f нечетная функция. Доказать, что $\int_{-a}^{a} f = 0$

Теорема 1.6.26 (Формула Тейлора с остатком в интегральной форме). $n \in \mathbb{N}_0$,

$$f \in C^{n+1}(A; B), a, x \in (A; B)$$
. Тогда $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt$

Доказательство. По индукции:

База: n = 0: $f(x) = f(a) + \int_a^x f'(t) dt$ (Формула Ньютона-Лейбница) Пусть верно для n - 1. Докажем для n.

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-t)^{n-1} dt.$$
 Проинтегрируем остаток по частям:

$$u = f^{(n)}(t), u' = f^{(n+1)}(t), v' = (x-t)^{n-1}, v = \frac{(x-t)^n}{n}$$

$$\sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \int_a^x f^{(n)}(t) (x-t)^{n-1} dt =$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{(n-1)!} \left(-f^{(n)}(t) \cdot \frac{(x-t)^n}{n} \Big|_{t=a}^x + \int_a^x \frac{f^{n+1}(t)(x-t)^n}{n} dt \right) =$$

$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt$$

Замечание 1.6.27. $\exists c :\in (a,x) \int_a^x f^{(n+1)}(t)(x-t)^n dt = f^{(n+1)}(c) \int_a^x (x-t)^m dt = f^{(n+1)}(c) \frac{(x-t)^{n+1}}{n+1}$ (Т.е. остаток в форме Лагранжа следует отсюда)

Последовательность $\{x_n\}: x_i \in \mathbb{Q}, x_n \to \pi$

$$\frac{\operatorname{Lm}}{\int_{0}^{\frac{\pi}{2}}} \sin^{m} x dx = \int_{0}^{\frac{\pi}{2}} \sin^{m-1} x \cdot \sin x dx = -\sin^{m-1} \cdot \cos x \Big|_{0}^{\frac{\pi}{2}} + (m-1) \int_{0}^{\frac{\pi}{2}} \sin^{m-2} x \cdot \cos^{2} x dx = \\
= (m-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^{2} x) dx \\
I_{m} = (m-1) \cdot (I_{m-2} - I_{m}) \Rightarrow I_{m} = \frac{m-1}{m} I_{m-2} \\
I_{0} = \int_{0}^{\frac{\pi}{2}} \sin^{0} x dx = \frac{\pi}{2} \\
I_{1} = \int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \Big|_{0}^{\frac{\pi}{2}} = 1 \\
I_{m} = \begin{cases} \frac{(m-1)!!}{m!!} \cdot \frac{\pi}{2}, m - \text{ четно} \\ I_{m} = \frac{(m-1)!!}{m!!} \cdot 1, m - \text{ нечётно} \end{cases}$$

Упражнение 1.6.29. $f:[-1;1] \to \mathbb{R}$ - непрерывна.

Доказать, что $\int_0^{\frac{\pi}{2}} f(\sin x) \, dx = \int_0^{\frac{\pi}{2}} f(\cos x) \, dx$

Теорема 1.6.30 (Формула Валлиса).
$$\pi = \lim_{n \to \infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$

Доказательство. $\forall x \in (0; \frac{\pi}{2})$ $\sin x(0; 1)$

$$\forall n \in \mathbb{N} \quad \sin^{2n+1} < \sin^{2n} x < \sin^{2n-1} x \Rightarrow \int_{0}^{\frac{\pi}{2}} \sin^{2n+1} x \, dx < \int_{0}^{\frac{\pi}{2}} \sin^{2n} x \, dx < \int_{0}^{\frac{\pi}{2}} \sin^{2n-1} x \, dx$$

$$\frac{(2n)!!}{(2n+1)!!} < \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!} < \frac{(2n-2)!!}{(2n-1)!!}$$

$$< \frac{\pi}{2} < \frac{(2n-2)!! \cdot (2n)!!}{((2n-1)!!)^{2}}$$

$$\frac{1}{2n+1} \cdot \left(\frac{(2n)!!}{(2n+1)!!}\right)^{2} < \frac{\pi}{2} < \frac{1}{2n} \left(\frac{(2n)!!}{(2n-1)!!}\right)^{2}$$

$$x_{n} = \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!}\right)^{2} \Rightarrow \pi < x_{n} < \frac{2n+1}{2n}\pi, \Rightarrow x_{n} \to \pi$$

Теорема 1.6.31 (Вторая теорема о среднем для интегралов, Бонне). $f \in C[a,b]$, $g \in C^1[a,b]$, g монотонна на [a,b]. Тогда $\exists c \in [a,b]$:

$$\int_a^b fg = g(a) \int_a^c f + g(b) \int_c^b f$$

Доказательство. $F(x) = \int_a^x f$, F' = f, F(a) = 0

$$\int_{a}^{b} fg = Fg\Big|_{a}^{b} - \int_{a}^{b} - \int_{a}^{b} Fg' = g(b) \int_{a}^{b} f - \int_{a}^{b} Fg' =$$

$$= g(b) \int_{a}^{b} f - \int_{a}^{c} f \cdot (g(b) - g(a)) = g(a) \int_{a}^{c} f + g(b) \int_{c}^{b} f$$

Упражнение 1.6.32. Оценить $\int_{100\pi}^{200\pi} \frac{\sin x}{x} dx$

- 1. По первой теореме о среднем.
- 2. По второй теореме о среднем.

1.7. Интегральные неравенства

Теорема 1.7.1 (Неравенство Йенсена). f – выпукла и непрерывна на $\langle A, B \rangle$, $\varphi : [a, b] \to \langle A, B \rangle$ – непрерывна, $\lambda : [a, b] \to [0, +\infty)$ – непрерывна, $\int_a^b \lambda = 1$. Тогда

$$f\left(\int_{a}^{b} \lambda \varphi\right) \leqslant \int_{a}^{b} \lambda \cdot f(\varphi)$$

Упражнение 1.7.2. Доказать.

Замечание 1.7.3. Строкое неравенство, если f строго выпукла и $\varphi \not\equiv \text{const.}$

Теорема 1.7.4 (Неравенство Гельдера). $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1, f, g \in C[a, b]$. Тогда

$$\left| \int_a^b fg \right| \leqslant \left(\int_a^b |f|^p \right)^{\frac{1}{p}} \cdot \left(\int_a^b |g|^q \right)^{\frac{1}{q}}$$

Доказательство. Пусть $x_k = \frac{k(b-a)}{n} + a, \xi_k = x_k$. Обозначим $a_k = f(x_k)(\Delta x_k)^{\frac{1}{p}}, b_k = g(x_k)(\Delta x_k)^{\frac{1}{q}} \Rightarrow a_k b_k = f(x_k)g(x_k)\Delta x_k$. Тогда

$$\left| \sum_{k=0}^{n-1} a_k b_k \right| \le \left(\sum_{k=0}^{n-1} |a_k|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{k=0}^{n-1} |b_k|^q \right)^{\frac{1}{q}}$$

$$\left| \sum_{k=0}^{n-1} f(x_k) g(x_k) \Delta x_k \right| \le \left(\sum_{k=0}^{n-1} |f(x_k)|^p \Delta x_k \right)^{\frac{1}{p}} \cdot \left(\sum_{k=0}^{n-1} |g(x_k)|^q \right)^{\frac{1}{q}}$$

Выполним предельный переход:

$$\left| \int_{a}^{b} fg \right| \leq \left(\int_{a}^{b} |f|^{p} \right) \frac{1}{p} \cdot \left(\int_{a}^{b} |g|^{q} \right) \frac{1}{q}$$

Cледствие 1.7.5 (Неравенство Коши-Буняковского). $f,g\in C[a,b]\Rightarrow \left|\int_a^b fg\right|\leqslant \sqrt{\int_a^b f^2}\cdot \sqrt{\int_a^b g^2}$

Теорема 1.7.6 (Неравенство Минковского). $f, g \in C[a, b], p \ge 1$.

$$\left(\int_{a}^{b} |f+g|^{p}\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} |f|^{p}\right)^{\frac{1}{p}} + \left(\int_{a}^{b} |g|^{q}\right)^{\frac{1}{q}}$$

Def 1.7.7. $\Pi ycmv \ f \in C[a, b]$.

1. Величина

$$\frac{1}{b-a} \int_{a}^{b} f$$

называется интегральным средним арифметическим функции f на [a,b].

2. Если f > 0, то величина

$$\exp\left(\frac{1}{b-a}\int_{a}^{b}f\right)$$

называется интегральным средним геометрическим функции f на [a,b].

3 aмечание 1.7.8. Интегральное среднее геометрическое есть пределы при $n \to \infty$ последовательности

$$\sqrt[n]{\prod_{k=0}^{n-1} f(x_k)} = \exp\left(\frac{1}{n} \sum_{k=0}^{n-1} \ln f(x_k)\right) = \exp\left(\frac{1}{b-a} \sum_{k=0}^{n-1} \ln f(x_k) \Delta x_k\right)$$

при $x_k = a + \frac{k(b-a)}{n}$.

Теорема 1.7.9 (Об интегральных средних). $f \in C[a, b], f > 0$. Тогда

$$\exp\left(\frac{1}{b-a}\int_{a}^{b}\ln f\right) \leqslant \frac{1}{b-a}\int_{a}^{b}f$$

Доказательство. Предельный переход в неравенстве для сумм, либо применить неравенство Йенсена для $\ln x$.

1.8. Несобственные интегралы

Def 1.8.1. f локально интегрируема (по Риману) на промежутке E, если она интегрируема на каждом отрезке из E.

Замечание 1.8.2. Непрерывность влечет локальную интегрируемость.

Def 1.8.3. Пусть $-\infty < a < b \le +\infty, f \in R_{loc}[a,b]$. Тогда $\int_a^{\to b} f$ – несобственный интеграл.

$$\lim_{t \to b^{-}} \int_{a}^{t} f = \int_{a}^{\to b}$$

если предел существует в $\overline{\mathbb{R}}$.

Def 1.8.4. *Несобственный интеграл называется сходящимся, если из* \mathbb{R} .

Def 1.8.5. Аналогично, для $-\infty \le a < b < +\infty, f \in R_{loc}(a, b]$

$$\int_{-a}^{b} f = \lim_{t \to a+} \int_{t}^{b} f$$

если предел существует в $\overline{\mathbb{R}}$.

Теорема 1.8.6 (Критерий Больцано-Коши сходимости интегралов). Пусть $-\infty < a < b \le +\infty, f \in \overline{R_{loc}[a,b)}$. Тогда сходимость интеграла $\int_a^b f$ равносильна условию

$$\forall \varepsilon > 0 \ \exists \Delta \in (a,b) : \forall t_1, t_2 \in (\Delta,b) \ \left| \int_{t_1}^{t_2} f \right| < \varepsilon$$

Доказательство. $\Phi(t) = \int_a^t f \cdot \int_a^b$ сходится $\Leftrightarrow \exists$ конечный $\lim_{t\to b^-} \Phi(t)$. Согласно критерию Больцано-Коши существования предела функции

$$\exists \varepsilon > 0 \ \exists \Delta \in (a,b) : \forall t_1, t_2 \in (\Delta,b) \ |\Phi(t_2) - \Phi(t_1)| < \varepsilon$$

и по аддитивности интеграла $\Phi(t_2) - \Phi(t_1) = \int_{t_1}^{t_2} f$.

Замечание 1.8.7. Расходимость $\int_a^b f \Leftrightarrow \exists \varepsilon > 0 \ \forall \Delta \in (a,b) \ \exists t_1, t_2 \in (\Delta,b) \ \left| \int_{t_1}^{t_2} f \right| \geqslant \varepsilon$ Замечание 1.8.8. Запись:

$$\int_{a}^{b} f = \lim_{t \to b^{-}} \int_{a}^{t} f = \lim_{t \to b^{-}} (F(t) - F(a)) = F(b^{-}) - F(a)$$

Пример 1.8.9. $\int_{1}^{+\infty} \frac{1}{r^{\alpha}} dx$

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} \, dx = \begin{cases} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{+\infty}, \alpha \neq 1 \\ \ln x \Big|_{1}^{+\infty}, \alpha = 1 \end{cases} = \begin{cases} \frac{1}{\alpha-1}, \alpha > 1 \\ +\infty, \alpha \leq 1 \end{cases}$$

Пример 1.8.10. $\int_0^1 \frac{1}{x^{\alpha}} dx = \begin{cases} +\infty, \alpha \ge 1 \\ \frac{1}{1-\alpha}, \alpha < 1. \end{cases}$

1.8.1. Свойства несобственного интеграла

Будем считать, что f локально интегрируема на рассматриваемых промежутках.

1. **Аддитивность по промежутку.** Если $\int_a^b f$ сходится, то $\forall c \in (a,b)$ интеграл \int_c^b тоже сходится и

$$\int_{a}^{b} = \int_{a}^{c} f + \int_{c}^{b} f$$

В обратную сторону, если при $c \in (a,b)$ интеграл $\int_c^b f$ сходится, то сходится и интеграл $\int_a^b f$.

Доказательство. $\forall t \in (a,b)$ $\int_a^t f = \int_a^c f + \int_c^t f$ — по аддитивности определенного интеграла. Переидем к пределу при $t \to b$ — предел левой части и правой части существует или не существует одновременно.

2. Если $\int_a^b f$ сходится, то $\underbrace{\int_t^b f \xrightarrow[t \to b^-]{} 0}_{\text{остаток интеграла}}$.

Доказательство.

$$\int_{t}^{b} f = \int_{a}^{b} f - \int_{a}^{t} \xrightarrow[t \to b^{-}]{} \int_{a}^{b} f - \int_{a}^{b} f = 0$$

3. **Линейность несобственного интеграла.** Если интегралы $\int_a^b f, \int_a^b g$ сходятся, $\alpha, \beta \in \mathbb{R}$, то интеграл $\int_a^b (\alpha f + \beta g)$ сходится и

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Доказательство. Для доказательства надо перейти к пределу в равенстве для частичных интегралов

$$\int_{a}^{t} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{t} g$$

Замечание 1.8.11. Если интеграл $\int_a^b f$ расходится, а интеграл $\int_a^b g$ сходится, то интеграл $\int_a^b (f+g)$ расходится. Действительно, если f+g сходится, то сходится и интеграл от f=(f+g)-f (?!).

4. Монотонность несобственного интеграла. Если интегралы $\int_a^b f, \int_a^b g$ существуют в $\overline{R}, f \le g$ на [a,b), то

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$

Доказательство. Переидем к пределу в неравенстве для частичных пределов

$$\int_{a}^{t} f \leqslant \int_{a}^{t} g$$

Замечание 1.8.12. Аналогично, с помощью предельного перехода, на несобственные интегралы переносятся неравенства Йенсена, Гельдера, Минковского.

5. Интегрирование по частям в несобственном интеграле. Пусть f,g дифференцируемы на $[a,b),f',g'\in R_{loc}[a,b)$. Тогда

$$\int_a^b fg' = fg|_a^b - \int_a^b f'g$$

Если два из этих трез пределов конечны, то третий предел также существует и конечен.

 $\ensuremath{\mathcal{A}}$ оказательство. Устремим t к b слева в равенстве

$$\int_{a}^{t} fg' = fg|_{a}^{t} - \int_{a}^{t} f'g$$

6. Замена переменной в несобственном интеграле. Пусть $\varphi : [\alpha, \beta) \to [A, B)$ – дифференцируема на $[\alpha, \beta), \varphi' \in R_{loc}[\alpha, \beta)$, существует $\varphi(\beta) \in \overline{R}, f \in C[A, B)$. Тогда

$$\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta-)} f$$

Опять же, если существует один из интегралов, то существует и другой.

Доказательство. Обозначим

$$\Phi(t) = \int_{\alpha}^{t} (f \circ \varphi) \varphi', \quad \Psi(y) = \int_{\varphi(\alpha)}^{y} f$$

По формуле замены переменной в собственном интеграле

$$\Phi(t) = \Psi(\varphi(t))$$

- 1. Пусть $\exists \int_{\varphi(\alpha)}^{\varphi(\beta)} f = I \in \overline{R}$. Докажем, что $\exists \int_{\alpha}^{\beta} f(\varphi)\varphi' = I$, т.е. $\Phi(t) \xrightarrow[t \to \beta^{-}]{} I$. Возьмем $\{t_n\}$: $t_n \to \beta, t_n < \beta$. Тогда $\varphi(t_n) \to \varphi(b-), \varphi(t_n) \in [A, B)$. Поэтому $\Phi(t_n) = \Psi(\varphi(t_n)) \to I$. В силу произвольности выбора $\{t_n\}$, $\Phi(t) \to I$ при $t \to \beta-$.
- 2. Пусть существует интеграл $\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = J \in \overline{R}$. Докажем, что интеграл $\int_{\varphi(\alpha)}^{\varphi(\beta^{-})} f$ существует, и тогда по пункту 1 будет следовать, что он равен J. Если $\varphi(\beta^{-}) \in [A, B)$, то интеграл собственный. Пусть $\varphi(\beta^{-}) = B$. Возьмем $\{y_n\}, y_n \in [A, B), y_n \to B$. Не уменьшая общности, можно считать, что $y_n \in [\varphi(\alpha), B)$. Тогда $\exists \gamma_n \in [\alpha, \beta) : \varphi(\gamma_n) = y_n$ (по теореме Больцано-Коши).

Докажем, что $\gamma_n \to \beta$. Пусть $\beta' \in [\alpha, \beta)$. Т.к. $\max_{[\alpha, \beta']} \varphi < \beta$, а $\varphi(\gamma_n) \to B$, то, начиная с некоторого номера, $\gamma_n \in (\beta', \beta)$. Поэтому $\gamma_n \to \beta$, откуда $\Psi(y_n) = \Phi(\gamma_n) \to J$.

Пример 1.8.13. $\int_0^\pi \frac{dx}{2+\cos x}$. Пусть $t=\operatorname{tg}\frac{x}{2}$. Тогда $x=2\arctan t,\cos x\frac{1-t^2}{1+t^2},dx=\frac{2}{1+t^2}dt$. Если x=0, то t=0. Если $x=\pi$, то $t=+\infty$. Тогда

$$\int_0^{\pi} \frac{dx}{2 + \cos x} = \int_0^{+\infty} \frac{1}{2 + \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} dt = \int_0^{+\infty} \frac{2dt}{(1 + t^2) \cdot 2 + 1 - t^2} = 2 \int_0^{+\infty} \frac{dt}{t^2 + 3} = 2 \cdot \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{t}{\sqrt{3}} \Big|_0^{+\infty} = \frac{2}{\sqrt{3}} \left(\frac{\pi}{2} - 0\right) = \frac{\pi}{\sqrt{3}}$$

Замечание 1.8.14. $a < b \in \mathbb{R}$. Пусть $x = b - \frac{1}{t}$.

$$\int_{a}^{b} f(x) dx = \int_{\frac{1}{b-a}}^{+\infty} f\left(b - \frac{1}{t}\right) \cdot \frac{1}{t^{2}} dt$$

Пример 1.8.15.

$$\int_{1}^{+\infty} \cos x \, dx = \sin x \Big|_{1}^{+\infty} = \lim_{x \to +\infty} \sin x - \sin 1 - \text{He существует}$$

1.8.2. Признаки сходимости несобтсвенных интегралов

<u>Lm</u> 1.8.16. $f \in R_{loc}[a,b), f \ge 0$. Тогда $\int_a^b f$ сходится $\iff F(t) = \int_a^t f$ на [a,b) ограничена сверху.

Доказательство. F(t) возрастает на [a,b) (t_1,t_2) $F(t_2)$ – $F(t_1)$ = $\int_{t_1}^{t_2} f \geqslant 0$). $\exists \lim_{t \to b^-} F(t) \in \mathbb{R} \Leftrightarrow F$ возрастает и F ограничена сверху.

Замечание 1.8.17. Если $f \geqslant 0$, то $\int_a^b f \in \overline{R}$.

Теорема 1.8.18 (Признак сравнения). $f, g \in R_{loc}[a, b), f, g \ge 0$

$$f(x) = O(g(x))$$
 при $x \to b$ –

Тогда

- 1. Если $\int_a^b g$ сходится, то $\int_a^b f$ сходится.
- 2. Если $\int_a^b f$ расходится, то $\int_a^b g$ расходится.

Доказательство. 1. По определению O-большого найдутся такие $\Delta \in (a,b)$ и K > 0, что $f(x) \le Kg(x)$ при всех $x \in [\Delta,b)$. Следовательно,

$$\int_{\Lambda}^{b} f \leqslant K \int_{\Lambda}^{b} g < +\infty$$

то есть остаток интеграла $\int_a^b f$ сходится, а тогда и сам интеграл $\int_a^b f$ сходится.

2. Если бы интеграл $\int_a^b g$ сходился, то по пункту 1 сходился бы и интеграл $\int_a^b f$.