Imię i nazwisko:
Logika dla informatyków
Egzamin poprawkowy (część licencjacka) 17 lutego 2010
Aby zdać tę część egzaminu (być dopuszczonym do części zasadniczej) trzeba uzyskać co najmniej 10 punktów. Egzamin trwa 75 minut.
Zadanie 1 (1 punkt). Jeśli istnieje takie podstawienie $[p/\varphi_1, \ q/\varphi_2, \ r/\varphi_3]$, dla którego formuła $((p\vee q)\wedge \neg r)[p/\varphi_1, \ q/\varphi_2, \ r/\varphi_3]$ jest sprzeczna, to w prostokąt poniżej wpisz dowolne takie podstawienie. W przeciwnym razie wpisz słowo "NIE".
Zadanie 2 (1 punkt). Jeśli istnieje formuła równoważna formule $p \Leftrightarrow q$ i zbudowana tylko ze zmiennych p,q oraz spójników logicznych \vee,\neg i nawiasów, to w prostokąt poniżej wpisz dowolną taką formułę. W przeciwnym razie wpisz słowo "NIE".
Zadanie 3 (1 punkt). Jeśli formuły $p \wedge (q \Rightarrow r)$ oraz $(p \wedge q) \Rightarrow (p \wedge r)$ są równoważne to w prostokąt poniżej wpisz słowo "RÓWNOWAŻNE". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 4 (1 punkt). Rozważmy relacje $R \subseteq A \times B$ i $S \subseteq B \times A$. W prostokąt poniżej wpisz formułę która mówi, że relacja RS nie jest zwrotna. Formuła ta nie może zawierać negacji (ale może zawierać symbol $\not\in$) i nie może zawierać symbolu RS (ale może zawierac symbole R oraz S).
Zadanie 5 (1 punkt). Jeśli dla wszystkich formuł φ i wszystkich formuł ψ logiki pierwszego rzędu formuła $(\forall x (\varphi \Rightarrow \psi)) \Leftrightarrow ((\forall x \varphi) \Rightarrow (\forall x \psi))$ jest tautologią to w prostokąt poniżej wpisz słowo "TAUTOLOGIA". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

dowolnych zb	1 punkt). Jeśli inkluz piorów $A, B, i C,$ to w iedni kontrprzykład.					
wanych rodzi	1 punkt). Jeśli inkluz n zbiorów $\{A_t\}_{t\in T}$ i $\{I_t\}_{t\in T}$ i $\{I_t\}_{t\in T}$ i sodpowiedni kontrp	$B_t\}_{t\in T}^{t\in T}$, to w prost	$\bigcup_{t \in T} A_t \setminus \bigcup_{t \in \text{okat ponize}} A_t$	$\int_{ET} B_t \text{ zachoon}$ ej wpisz słow	dzi dla dow	volnych indekso- W przeciwnym
	(1 punkt). Dla $s, t \in$ ristych. W prostokąt p		_			do t w zbiorze $[s,t]$, tzn. wpisz
wyrażenie oz	naczające ten sam zbió	r i nie zawierające	symboli ∩	$0, \cup, \wedge, \vee, \exists, $	$s \in [0,1] \ t \in [2,3]$	
	(1 punkt). Niech $R =$ jest przechodnim domk		. W prost	okąt poniże	j wpisz tak	zą formułę φ , że
Zadanie 10	(1 punkt). Wpisz w	puste pola poniższ	zej tabelki 1	moce odpov	viednich zb	iorów.
$\mathcal{P}(\mathbb{N}^{\{0,1\}})$	$\mathcal{P}(\{a,b\} \times \{3,4,5\})$	$\mathbb{Q}^{\mathbb{N}}$ $\mathcal{P}(\mathbb{N} \times \mathbb{Q})$	{2010} ^ℝ	$(\mathbb{Q} \setminus \mathbb{N})^{\mathbb{Q}}$	$(\mathbb{R}\setminus\mathbb{N})^{\mathbb{N}}$	$\{0,1\}^{\{a,b,c\}}$
						<u>. </u>

Imię i nazwisko:	
	a $f: \mathcal{P}(\mathbb{Z} \times [0,2)) \to \mathcal{P}(\mathbb{R})$, to w prostokąt poniżej wpisz zym razie wpisz słowo "NIE". Zbiór $[0,2)$ to oczywiście zbiorze liczb rzeczywistych.
Zadanie 12 (1 punkt). W prostokąt poniżej liczb naturalnych N, która ma dokładnie czter	wpisz dowolny przykład relacji równoważności na zbiorze y klasy abstrakcji.
	$\mathbb{N}(X) \to \mathcal{P}(X)$ zadana wzorem $f(X) = X \cup \{2x+1 \mid x \in X\}$ poniżej wpisz wyliczoną wartość tego punktu stałego.
wzorem $X \leq Y \iff X = Y \vee \min(X - Y)$ $\min(A)$ jest najmniejszą w sensie naturalnego	prostokąt poniżej wpisz wyliczoną wartość kresu górnego
	ądkowane $\langle \mathbb{N}, \leq \rangle$ i $\langle \mathbb{N}, \geq \rangle$ są izomorficzne, to w prostorządków. W przeciwnym przypadku wpisz uzasadnienie,

Zadanie 16 (1 punkt). Jeśli zbiory uporządkowane $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ i $\langle \mathcal{P}(\mathbb{N}), \supseteq \rangle$ są izomorficzne, to w prostokąt poniżej wpisz dowolny izomorfizm tych porządków. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taki izomorfizm nie istnieje.
diaczego taki izomornzm me istmeje.
Zadanie 17 (1 punkt). Jeśli zbiór klauzul $\{\neg q \lor p, \neg r \lor \neg s, q \lor s, r \lor q, \neg q \lor \neg p\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.
Zadanie 18 (1 punkt). Jeśli zbiór uporządkowany $\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ jest dobrze ufundowany (czyli regularny), to w prostokąt poniżej wpisz słowo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.
Zadanie 19 (1 punkt). Jeśli termy $f(x, g(y), u)$ i $f(f(y, z), z, g(x))$ są unifikowalne, to w prostokąt poniżej wpisz dowolny unifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".
Zadanie 20 (1 punkt). W prostokąt poniżej wpisz sformułowanie (dowolnej wersji) zasady indukcji.

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin poprawkowy (część zasadnicza)

17 lutego 2009

Za każde z poniższych zadań można otrzymać od -2 do 20 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 21. Niech $R \subseteq A \times A$ oraz $S \subseteq A/_R \times A/_R$ będą relacjami równoważności. Zdefiniujmy relację $T \subseteq A \times A$ wzorem

$$T = \{ \langle x, y \rangle \in A \times A \mid \langle [x]_R, [y]_R \rangle \in S \}.$$

Udowodnij, że T jest relacją równoważności oraz że podział zbioru A na klasy abstrakcji relacji R jest drobniejszy od podziału zbioru A na klasy abstrakcji relacji T.

Zadanie 22. Konstruując odpowiednią bijekcję udowodnij, że zbiory $\mathcal{P}(\mathbb{N})$ i $\{a,b\}^{\mathbb{N}\times\{0,1\}}$ są równoliczne.

Zadanie 23. Rozważmy następujący porządek \leq w rodzinie $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych. Dla zbiorów $X,Y\in\mathcal{P}(\mathbb{N})$ zachodzi $X\leq Y$ wtedy i tylko wtedy, gdy

$$X = Y$$
 lub $\min(X - Y) \in Y$,

gdzie – oznacza różnicę symetryczną zbiorów, a $\min(A)$ jest najmniejszą w sensie naturalnego porządku liczbą w zbiorze A. Niech $A_i = \{i\}$ dla wszystkich $i \in \mathbb{N}$.

- (a) Czy rodzina zbiorów $\{A_i \mid i \geq 2010\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres górny? Uzasadnij odpowiedź.
- (b) Czy rodzina zbiorów $\{A_i \mid i \geq 2010\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres dolny? Uzasadnij odpowiedź.

Zadanie 24. Udowodnij, że formuła

$$\exists x \exists y (R(x) \Rightarrow S(x)) \Rightarrow (R(y) \Rightarrow S(f(x,y)))$$

jest tautologią logiki I rzędu.

Student name:	
Logic for (Computer Science
-	exam (bachelor part) ruary 17, 2010
This part lasts 75 minutes. To pass it one	needs at least 10 points.
	stitution $[p/\varphi_1, q/\varphi_2, r/\varphi_3]$ such that the formula diction, then in the box below write any such substitu-
, – ,	equivalent to $p \Leftrightarrow q$ and built only from variables p,q and the box below write any such formula. Otherwise write
Task 3 (1 point). If the formulas $p \land (q \Rightarrow below write the word "EQUIVALENT". Other$	r) and $(p \land q) \Rightarrow (p \land r)$ are equivalent then in the box rwise write a corresponding counter-example.
first-order logic that says that the relation RS	\times B and $S \subseteq B \times A$. In the box below write a formula of is not reflexive. The formula must not contain negation ust not contain the composition symbol RS (but it may
	ψ)) \Leftrightarrow (($\forall x \varphi$) \Rightarrow ($\forall x \psi$)) is a tautology for all formulas below write the word "TAUTOLOGY". Otherwise write

all		pint). If the inclusion and C , then in the bole.							
Та	sk 7 (1 pc	int). If the inclusion				S_t is true for	all indexed	l families of se	ets
	$\{t_t\}_{t\in T}$ and $\{t_t\}_{t\in T}$ and $\{t_t\}_{t\in T}$	$\{B_t\}_{t\in T}$, then in the b	t∈T ox be	elow write th	$f t \in T$ e word "Y	ES". Other	wise write	a correspondii	ng
the	e box below	sint). For $s, t \in \mathbb{R}$ let write the value of the contains no symbols \cap	e set	$\bigcup_{s \in [0,1]} \bigcap_{t \in [2,3]} [s$				real numbers. hat denotes the	
		int). Let $R = \{\langle 2n, n \rangle$ we closure of the relati		\mathbb{N} . In the b	ox below w	vrite a formi	ıla φ such t	hat $\{\langle n,m\rangle \mid \varphi\}$	0}
Ta	sk 10 (1 p	oint). Write in the en	npty f	fields of the t	able below	the cardina	lities of the	e respective set	ts.
	$\mathcal{P}(\mathbb{N}^{\{0,1\}})$	$\mathcal{P}(\{a,b\} \times \{3,4,5\})$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{N} \times \mathbb{Q})$	$\{2010\}^{\mathbb{R}}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{Q}}$	$(\mathbb{R}\setminus\mathbb{N})^{\mathbb{N}}$	$\{0,1\}^{\{a,b,c\}}$	
									ı

Student name:	
	In $f: \mathcal{P}(\mathbb{Z} \times [0,2)) \to \mathcal{P}(\mathbb{R})$, then in the box below write erwise write the word "NO". Here $[0,2)$ is the left-closed.
Task 12 (1 point). In the box below write an numbers \mathbb{N} with exactly four equivalence classes	y example of an equivalence relation on the set of natural es.
	$\rightarrow \mathcal{P}(\mathbb{N})$ defined by $f(X) = \{2x+1 \mid x \in X\}$ has the least ralue of this least fixed point. Otherwise write the word
numbers defined by $X \preceq Y \iff X = Y \lor m$ sets and $\min(A)$ is the least number in the set	on the family $\mathcal{P}(\mathbb{N})$ of all subsets of the set of natural $\operatorname{in}(X \dot{-} Y) \in Y$, where $\dot{-}$ is the symmetric difference of A .Let $A_i = \{i\}$ and $X = \{A_i \mid i \in \mathbb{N}\}$. In the box below e set X , or the word "NO" if this bound does not exist.
	and $\langle \mathbb{N}, \geq \rangle$ are isomorphic, then in the box below write write a justification why such an isomorphism does not

Task 17 (1 point). If the set of clauses $\{\neg q \lor p, \neg r \lor \neg s, q \lor s, r \lor q, \neg q \lor \neg p\}$ is inconsistent then in the box below write a resolution proof of inconsistency of this set. Otherwise write a valuation satisfying this set.
the box below write a resolution proof of inconsistency of this set. Otherwise write a valuation satisfying
Task 18 (1 point). If the ordered set $\langle \mathbb{N} \times \mathbb{N}, \leq_{lex} \rangle$ is well-founded, then in the box below write the
word "YES". Otherwise write a corresponding counter-example.
Task 19 (1 point). If the terms $f(x, g(y), u)$ and $f(f(y, z), z, g(x))$ are unifiable, then in the box below write any unifier of these terms. Otherwise write the word "NO".
Task 20 (1 point). In the box below write a formulation of (any version of) the induction principle.

Student name:	
Solutions returned:	

Logic for Computer Science

Make-up exam (main part)

February 17, 2010

Each of the task below is scored from -2 to 20 points. Empty solutions are scored with 0 points.

Task 21. Let $R \subseteq A \times A$ and $S \subseteq A/_R \times A/_R$ be equivalence relations. We define relation $T \subseteq A \times A$ by

$$T = \{ \langle x, y \rangle \in A \times A \mid \langle [x]_R, [y]_R \rangle \in S \}.$$

Prove that T is an equivalence relation and that the partition of the set A into equivalence classes of the relation R is finer than the partition of the set A into equivalence classes of the relation T.

Task 22. By constructing an appropriate bijection prove that the sets $\mathcal{P}(\mathbb{N})$ and $\{a,b\}^{\mathbb{N}\times\{0,1\}}$ are equinumerous.

Task 23. Consider the order \leq on the family $\mathcal{P}(\mathbb{N})$ of all subsets of the set of natural numbers defined by $X \leq Y \iff X = Y \vee \min(X \doteq Y) \in Y$, where $\dot{}$ is the symmetric difference of sets and $\min(A)$ is the least number in the set A. Let $A_i = \{i\}$ for all $i \in \mathbb{N}$.

- (a) Does the family $\{A_i \mid i \geq 2010\}$ have a least upper bound in the ordered set $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$? Justify your answer.
- (b) Does the family $\{A_i \mid i \geq 2010\}$ have a greatest lower bound in the ordered set $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$? Justify your answer.

Task 24. Prove that the formula

$$\exists x \exists y (R(x) \Rightarrow S(x)) \Rightarrow (R(y) \Rightarrow S(f(x,y)))$$

is a tautology of the first-order logic.