

IMD0033 - Probabilidade Aula 13 - Variáveis

Ivanovitch Silva Abril, 2018

Agenda

- Variables in statistics
- Quantitative and qualitative variables
- Scale of measurements (nominal, ordinal, interval, ratio)

Atualizar o repositório

git clone https://github.com/ivanovitchm/imd0033_2019_1.git

Ou

git pull

PREVIOUSLY ON...

ld	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
 317	 Jane Ace	\$95 000	 Female

Understand how the data is **structured** and **measured**

Visualize the patterns

Gender	Frequency
Male	147
Female	170

Organize the data in comprehensible forms to find patterns

Introduction

	Name	Team	Pos	Height	Weight	ВМІ	Birth_Place	Birthdate
39	Crystal Langhorne	SEA	F/C	188	84.0	23.766410	US	October 27, 1986
52	Érika de Souza	SAN	С	196	86.0	22.386506	BR	September 3, 1982
102	Nia Coffey	SAN	F	185	77.0	22.498174	US	May 21, 1995

The properties with varying values we call variables

Quantitative and Qualitative Variables

	Quantitative variables	Qualitative variables
Describe quantities	YES	NO
Describe qualities	NO	YES
Use numbers	YES	YES
The numbers are actual quantities	YES	NO
Use words	YES	YES
The words express a quantity	YES	NO

Height	Name
ВМІ	Team
Age	Pos
Birth_Data	Birth_Place
Weight	College

Scale of Measurements

The system of rules that define how each variable is measured is called **scale** of measurement

	Team	Height
We can tell whether two individuals are different	YES	YES
We can tell the size of the difference	NO	YES
We can tell the direction of the difference	NO	YES

- Nominal
- Ordinal
- Interval
- Ratio

Nominal Scale

	Nominal
We can tell whether two individuals are different	YES
We can tell the direction of the difference	NO
We can tell the size of the difference	NO
We can measure quantitative variables	NO
We can measure qualitative variables	YES

	Name	Team	Pos	Birth_Place	College
0	Aerial Powers	DAL	F	US	Michigan State
1	Alana Beard	LA	G/F	US	Duke
2	Alex Bentley	CON	G	US	Penn State
3	Alex Montgomery	SAN	G/F	US	Georgia Tech
4	Alexis Jones	MIN	G	US	Baylor

Ordinal Scale (ranking)

	Nominal	Ordinal
We can tell whether two individuals are different	YES	YES
We can tell the direction of the difference	NO	YES
We can tell the size of the difference	NO	NO
We can measure quantitative variables	NO	YES
We can measure qualitative variables	YES	NO

	Height	Height_labels
0	183	tall
1	185	tall
2	170	short
3	185	tall
4	175	medium

Nominal or Ordinal??

	Height_labels	College	Games Played	Experience
0	tall	Michigan State	8	2
1	tall	Duke	30	12
2	short	Penn State	26	4
3	tall	Georgia Tech	31	6
4	medium	Baylor	24	R

The interval and ratio scales

The height variable measured on an **ordinal scale**

The interval and ratio scales

The height variable measured on a scale that uses **real numbers**

We know the value of each interval, which means we can compute the size of the difference between any two points.

	Nominal	Ordinal	Interval	Ratio
We can tell whether two individuals are different	YES	YES	YES	YES
We can tell the direction of the difference	NO	YES	YES	YES
We can tell the size of the difference	NO	NO	YES	YES
We can measure quantitative variables	NO	YES	YES	YES
We can measure qualitative variables	YES	NO	NO	NO

The difference between ratio and interval scales

What sets apart ratio scales from interval scales is the nature of the zero point.

-	Name	Weight	Weight_deviation
35	Clarissa dos Santos	89.0	10.021127
3	Alex Montgomery	84.0	5.021127
111	Renee Montgomery	63.0	-15.978873
85	Layshia Clarendon	64.0	-14.978873
128	Sugar Rodgers	75.0	-3.978873

	Interval	Ratio
Well-defined intervals	YES	YES
The zero point indicates the absence of a quantity	NO	YES
Difference measured in terms of distance	YES	YES
Difference measured in terms of ratios	NO	YES

Common Examples of Interval Scales

Discrete and Continuous Variable

_	Name	Weight	PTS
77	Kayla Thornton	86.0	32
16	Asia Taylor	76.0	31
80	Kia Vaughn	90.0	134
137	Tierra Ruffin-Pratt	83.0	225
12	Amanda Zahui B.	113.0	51

ld	Name	Salary	 Gender
1	Mary Ann	\$35 000	 Female
2	Marc Downey	\$55 000	 Male
 51	 Juliet Ali	\$45 000	 Female
 317	 Jane Ace	\$95 000	 Female

Understand how the data is **structured** and **measured**

Visualize the patterns

Gender	Frequency	
Male	147	
Female	170	

Organize the data in comprehensible forms to find patterns

