3

2

2

FACULTY OF ENGINEERING

B.E. 3/4 (CSE) I – Semester (Main) Examination, November 2013

Subject: Automata Languages and Computation

Time: 3 hours Max. Marks: 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)

- 1. Obtain a DFA to accept strings of 0's, is and 2's beginning with a '0' followed by odd no. of 1's and ending with a '2'.
- 2. Obtain a regular expression to accept strings of a's and b's whose length is either even or multiples of 3 or both.
- 3. If $\Sigma = \{0,1\}$, $\Gamma = \{1,2,3\}$, h(0) = 3122, h(1) = 1322 What is (0+1)* (00)*?
- 4. Consider the following grammar 3
 - S → aCa
 - C → aCalb

What is the language generated by this grammar?

- 5. Define Chomsky Normal Form (CNF).
- 6. Prove that reversal of a CFL is also an CFL. 3
- 7. What do you understand by the term LBA? 3
- 8. Define turning machine. How a TM accepts a language? 3
- 9. Define MPCP. 2
- 2 10. What is universal language?

PART – B (50 Marks)

- 11.a) Construct a DFA to accept decimal strings divisible by 3. 5 5
 - b) Convert the FA to regular expression.

- 12.a) Prove that $(00^*1)^*1 = 1 + 0(0 + 10)^*11$.
 - b) State and prove pumping lemma for CFL.

5 5 13. Obtain a TM to accept a palindrome consisting of a's and b's of any length.

14.a) Convert the following grammar into GNF.

5

$$A \rightarrow BC$$
 $B \rightarrow CA/b$ $C \rightarrow AB/a$

b) Obtain a CFG for the following PDA.

5

$$\delta(q_0, a, z) = (q_0, AZ), \qquad \delta(q_0, a, A) = (q_0, A)$$

$$\delta(q_0, b, A) = (q_1, \in) , \quad \delta(q_1, \in, z) = (q_2, \in)$$

15.a) Prove that PCP is undecidable.

5

b) State PCP and find whether given instances of PCP has solution or not.

5

	List A	List B
1	10	101
2	011	11
3	101	011

16.a) Obtain a TM to multiply two unary no's separated by the delimiter '1'.

b) Consider the CFG $S \rightarrow A_1A_2|A_2 A_3$, $A1 \rightarrow A_2A_1|0$

4

$$A_2 \to \, A_3 A_3 | 1, \;\; A_3 \to \, A_1 A_2 | 0$$

Test 10010 is a member or not using CYK algorithm

17. Minimize the following DFA:

10

	0	1
→ A	В	Α
В	Α	С
С	D	В
* D	D	Α
E	D	F
F	D	Е
G	F	G
Н	G	D

Max. Marks: 75

FACULTY OF ENGINEERING

B.E. 3/4 (CSE) I-Semester (Suppl.) Examination, July 2014

Subject : Automata Languages and Computation

Note: Answer all questions of Part - A and answer any five questions from Part-B.

PART – A (25 Marks)

Time: 3 Hours

1 2 3 1 1 5 7 3 3 9	Define δ in a TM. State pumping lemma for CFL's. Define Church's hypothesis. Define the term LBA and explain. Prove that $(O+1)^*$ 100 regular or not. State the closure properties of Regular Languages. Define PCP and MPCP. Construct a right linear grammar for $(0+1)^*$ 00(0+1)*. Convert to CNF. $S \rightarrow aB \mid bA$ $A \rightarrow a \mid aS \mid bAA$ $B \rightarrow b \mid bS \mid aBB$ What are intractable problem ? Explain.	(2) (2) (2) (3) (2) (2) (3) (3)
	PART – B (50 Marks)	
11	(a) Construct a DFA equivalent to the regular expression 10+(0+11)0*1.(b) Differentiate between NFA and DFA.	(6) (4)
12	 (a) Given CFG G = ({S, A}, {a, b}, P, S) where P consists of S → aAS a	(5) (5)
13	Design a PDA to accept equal no of a's and b's over the alphabet (a+b) ⁺ .	(10)
14	 (a) Write short notes on Universal TM . (b) Design a TM for L {WW^R W ∈ (0+1)*, R stands for Reverse}. 	(5) (5)
15	Reduce to GNF $S \rightarrow AA \mid O$ $A \rightarrow SS \mid 1$	(10)
16	(a) Define Chomsky hierarchy.(b) What are recursively enumerable languages? Give example.(c) Explain undecidability.	(3) (3) (4)
17	(a) Explain a restricted satisfiability problem.(b) Explain the classes of P, NP and explain the terms NP - complete and NP-nard.	(5) (5)
