Avaliação de Risco de Crédito

Fernando Tsutomu Hara

11/06/2020

%!TEX encoding = UTF-8 Unicode

Avaliação de Risco de Crédito

Este projeto visa construir um modelo preditivo que cálcule a previão de conceder ou não crédito a uma pessoa. Os dados foram extraídos do kaggle de um Banco Alemão e contêm informações sobre 20 variáveis e a classificação se um candidato é considerado um risco de crédito Bom ou Ruim e contém 1000 observações.

Dicionário das Variáveis

Abaixo contém um dicionário com cada variável e o que elas significam:

- CREDIT.RATING: Coluna indicando se o cliente em questão é um bom cliente para permitir créditos ou não.
 - 1 sim
 - 0 não
- 2. ACOUNT.BALANCE: Montante existente atualmente na conta.
 - 1 Nenhuma Conta Corrente;
 - 2 sem saldo ou débito;
 - 3 até 200;
 - 4 mais que 200.
- 3. CREDIT.DURATION.MONTHS: Significa a duração em meses do empréstimo concedido.
- 4. PREVIOUS.CREDIT.PAYMENT.STATUS: Informações descritivas sobre o histórico financeiro do cliente. Se os créditos antigos dele estão quitados, se ainda está devendo, se até agora os créditos dele estão em bom estado.
 - 0 pagamento hesitante de créditos anteriores;
 - 1 conta corrente problemática / há mais créditos em execução, mas em outros bancos;
 - 2 sem créditos anteriores / reembolsado todos os créditos anteriores;
 - 3 sem problemas com créditos atuais neste banco;
 - 4 pagou créditos anteriores neste banco.
- 5. CREDIT.PURPOSE: Propósito destinado para o crédito concedido.
 - 0 Outros:
 - 1 Novo Carro:
 - 2 Carro Usado;
 - 3 Itens mobiliários;
 - 4 Rádio / Televisão
 - 5 Electrodomésticos;
 - 6 Reparos;
 - 7 Educação;
 - 8 Férias;
 - 9 Reciclagem;
 - 10 Negócios.
- 6. CREDIT.AMOUNT: Montante de crédito requisitado ao banco.

- 7. SAVINGS: Montante disponível na conta poupança.
 - 1 não disponível / sem poupança;
 - 2 menos de 100;
 - 3 de 100 a 500;
 - 4 de 500 a 1000;
 - 5 mais de 1000.
- 8. EMPLOYMENT.DURATION: Tempo de empregado no atual emprego.
 - 1 Desempregado;
 - 2 menos que 1 ano;
 - 3 1 a 4 anos;
 - 4 4 a 7 anos:
 - 5- mais que 7 anos.
- 9. INSTALLMENT.RATE: Taxa em % da renda disponível.
 - 1 mais que 35%;
 - 2 de 25% a 35%;
 - 3 de 20% a 25%;
 - 4 menos que 20%.
- 10. MARITAL.STATUS: Estado civil e sexo do cliente.
 - 1 Homem divorciado /vivendo sozinho;
 - 2 Homem solteiro;
 - 3 Homem casado / viúvo;
 - 4 Mulher;
- 11. GUARANTORS: Tipo de associação em créditos concedidos que já participou.
 - 1 None;
 - 2 Co-Requerente;
 - 3 Fiador:
- 12. RESIDENCE.DURATION: Tempo de moradia na residência atual.
 - 1 mais que 1 ano;
 - 2 de 2 a 4 anos;
 - 3 de 4 a 7 anos;
 - 4 mais que 7 anos.
- 13. CURRENT.ASSETS: Recursos disponíveis mais valiosos
 - 1 não disponível / sem ativos;
 - 2 Carro / Outros;
 - 3 Contrato de poupança com uma sociedade de construção / Seguro de vida;
 - 4 Proprietário de casa ou terreno.
- 14. AGE: Idade
- 15. OTHERS.CREDITS: Mais créditos em execução.
 - 1 em outro banco;
 - 2 na loja de departamento ou na casa de pedidos por correio;
 - 3 sem créditos em execução;
- 16. APARTMENT.TYPE: Tipo de propriedade da residência.
 - 1 apartamento alugado;
 - 2 apartamento ocupado pelo proprietário;
 - 3 apartamento livre.
- 17. NUMBER OF EXISTING CREDITS AT THIS BANK: Número de créditos já concedidos no banco.
 - 1 1:
 - 2 2 a 3;
 - 3 4 a 5;
 - 4 6 ou mais;
- 18. OCCUPATION: Estado do trabalho atual
 - 1 desempregado / não qualificado sem residência permanente;
 - 2 não qualificado com residência permanente;
 - 3 trabalhador qualificado / empregado qualificado / funcionário público menor;

- 4 executivo / autônomo / funcionário superior;
- 19. DEPENDENTS: Total de dependentes.
 - 1 1 a 2;
 - 2 3 ou mais.
- 20. TELEPHONE: Indicativo se o cliente possui telefone ou não.
 - 1 não
 - 2 sim
- 21. FOREIGN.WORKER: Indicando se o cliente é de outra cidade ou se trabalha na mesma cidade do trabalho.
 - 1 sim
 - 2 não

Leitura do Data Frame

Aqui faremos a leitura do data frame, e verificar algumas informações iniciais sobre ele.

```
df <- read.csv("credit_dataset.csv", header = TRUE, sep = ",")</pre>
str(df)
## 'data.frame':
                    1000 obs. of 21 variables:
##
   $ credit.rating
                                    : int 1 1 1 1 1 1 1 1 1 1 ...
   $ account.balance
                                    : int
                                           1 1 2 1 1 1 1 1 3 2 ...
##
   $ credit.duration.months
                                           18 9 12 12 12 10 8 6 18 24 ...
                                   : int
   $ previous.credit.payment.status: int
                                           3 3 2 3 3 3 3 3 3 2 ...
##
##
  $ credit.purpose
                                    : int
                                           2 4 4 4 4 4 4 4 3 3 ...
##
  $ credit.amount
                                    : int
                                           1049 2799 841 2122 2171 2241 3398 1361 1098 3758 ...
## $ savings
                                           1 1 2 1 1 1 1 1 1 3 ...
                                    : int
## $ employment.duration
                                    : int
                                           1 2 3 2 2 1 3 1 1 1 ...
## $ installment.rate
                                           4 2 2 3 4 1 1 2 4 1 ...
                                    : int
## $ marital.status
                                           1 3 1 3 3 3 3 3 1 1 ...
                                    : int
## $ guarantor
                                    : int
                                           1 1 1 1 1 1 1 1 1 1 ...
##
   $ residence.duration
                                    : int
                                           4 2 4 2 4 3 4 4 4 4 ...
## $ current.assets
                                    : int
                                           2 1 1 1 2 1 1 1 3 4 ...
## $ age
                                           21 36 23 39 38 48 39 40 65 23 ...
                                    : int
## $ other.credits
                                           2 2 2 2 1 2 2 2 2 2 ...
                                    : int
## $ apartment.type
                                    : int
                                           1 1 1 1 2 1 2 2 2 1 ...
## $ bank.credits
                                    : int
                                           1 2 1 2 2 2 2 1 2 1 ...
## $ occupation
                                           3 3 2 2 2 2 2 2 1 1 ...
                                    : int
   $ dependents
                                           1 2 1 2 1 2 1 2 1 1 ...
##
                                    : int
##
   $ telephone
                                           1 1 1 1 1 1 1 1 1 1 ...
                                    : int
  $ foreign.worker
                                    : int 111222211 ...
# O data frame foi lido com todas a variáveis como numéricas, mas a maioria delas
# é categóricas, vou mudando essas variáveis ao longo da análise exploratória.
# Verificação de valores missing
df[, is.na(df) == TRUE]
```

data frame with 0 columns and 1000 rows

Exploração e limpeza dos dados.

Agora faremos a exploração dos dados inciando com a variável target, que é a que nós queremos prever. Logo após irei analiar variável por variável para ver quais são mais relevantes em nosso modelo preditivo.

Concessão de Análise de Crédito


```
table(df$credit.rating)

##
## 0 1
## 300 700

prop.table(table(df$credit.rating))

##
## 0 1
## 0.3 0.7
# Como podemos ver os dados da variável target estão bem desbalanceados, sendo 30% amostras de crédito
# Análise das variáveis para a predição.
# Acount.balance
```

```
# Tranformando a variável de numérica para fator
df$account.balance <- as.factor(df$account.balance)</pre>
# Quantidade de cada fator nessa variável
table(df$account.balance)
##
##
     1
         2
             3
## 274 269 457
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(account.balance, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2") ) +
  labs(x = "Status da Conta", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Status da Conta x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Status da Conta x Concessão de Crédito


```
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(as.factor(credit.duration.months), ...count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#00000a2")) +
  labs(x = "Duração do Empréstimo", y = "Quantidade de Crédito Concedido",
      fill = "Crédito", title = "Duração do Empréstimo x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Duração do Empréstimo x Concessão de Crédito


```
# Como podemos ver nos 2 gráficos, a decisão de concessão de crédito financeiro muda e acordo com tempo
# A partir dessa variável será criada uma nova variável que irá juntar os valores acima em grupos, que
# Criando a nova variável
df\fact.credit.duration.months<-findInterval(df\fractscredit.duration.months,
                                              c(0,6,12,18,24,30,36))
# Dando nomes as observações da variável.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
df<-df %>%
  mutate(fact.credit.duration.months=as.factor(fact.credit.duration.months))
levels(df$fact.credit.duration.months)<-c("Menos de 6", "6 a 12", "12 a 18",
                                           "18 a 24", "24 a 30", "30 a 36",
                                           "mais de 36")
# Visualizando os primeiros dados das duas colunas.
```

head(df[, c("credit.duration.months", "fact.credit.duration.months")])

```
credit.duration.months fact.credit.duration.months
##
## 1
                                                   18 a 24
## 2
                                                    6 a 12
                           9
## 3
                          12
                                                   12 a 18
## 4
                          12
                                                   12 a 18
## 5
                          12
                                                   12 a 18
## 6
                          10
                                                    6 a 12
```

```
#Análise Gráfica

ggplot(df, aes(fact.credit.duration.months, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2") ) +
  labs(x = "Duração do Empréstimo", y = "Quantidade de Crédito Concedido",
      fill = "Crédito", title = "Duração do Empréstimo x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Duração do Empréstimo x Concessão de Crédito


```
# Agora podemos visualizar melhor a conclusão dita acima.

# previous.credit.payment.status

# Tranformando a variável de numérica para fator
df$previous.credit.payment.status <- as.factor(df$previous.credit.payment.status)

# Quantidade de cada fator nessa variável
table(df$previous.credit.payment.status)</pre>
```

```
##
## 1 2 3
## 89 530 381

# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(previous.credit.payment.status, ..count..)) +
   geom_bar(aes(fill = credit.rating), position = "dodge") +
   scale_fill_manual(values = c("#9c0000", "#000002") ) +
   labs(x = "Histórico de Emprétimos", y = "Quantidade de Crédito Concedido",
        fill = "Crédito", title = "Histórico de Emprétimos x Concessão de Crédito") +
   theme(plot.title = element_text(hjust = 0.5))
```

Histórico de Emprétimos x Concessão de Crédito


```
# Como podemos ver pelo gráfico quem tem mais problemas históricos com empréstimos tende a ter menos ch

# credit.purpose

# Tranformando a variável de numérica para fator

df$credit.purpose <- as.factor(df$credit.purpose)

# Quantidade de cada fator nessa variável

table(df$credit.purpose)
```

##

1

2

103 181 364 352

3

```
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(credit.purpose, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Valor Emprestado", y = "Quantidade de Crédito Concedido",
      fill = "Crédito", title = "Valor Emprestado x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Valor Emprestado x Concessão de Crédito

Não consigo tirar uma idéia muito clara dessa variável, mas acredito que ela faz uma pequena diferenç # Para tentar visualizar melhor vou usar a mesma estratégia empregada na variável numérica anterior. Di #Criando a variável fact.credit.amount df\$fact.credit.amount<-findInterval(df\$credit.amount,</pre> c(0, 2500, 5000, 10000)) df<-df %>% mutate(fact.credit.amount=as.factor(fact.credit.amount)) levels(df\$fact.credit.amount) <- c("Menos de 2500","2500 a 5000",</pre> "5000 a 10000", "mais de 10000") # Visualizando os primeiros dados das duas colunas. head(df[, c("credit.amount", "fact.credit.amount")]) ## credit.amount fact.credit.amount ## 1 1049 Menos de 2500 ## 2 2799 2500 a 5000 Menos de 2500 ## 3 841 2122 Menos de 2500 ## 4 ## 5 2171 Menos de 2500 Menos de 2500 ## 6 2241 # Análise Gráfica

ggplot(df, aes(fact.credit.amount, ..count..)) +

geom_bar(aes(fill = credit.rating), position = "dodge") +
scale_fill_manual(values = c("#9c0000", "#0000a2")) +

labs(x = "Valor Emprestado", y = "Quantidade de Crédito Concedido",

```
fill = "Crédito", title = "Valor Emprestado x Concessão de Crédito") +
theme(plot.title = element_text(hjust = 0.5))
```

Valor Emprestado x Concessão de Crédito


```
# Agora sim podemos ter uma visão mais clara sobre essa variável. Quem solicita menos dinheiro, tem mai
# savings
# Tranformando a variável de numérica para fator
df$savings <- as.factor(df$savings)</pre>
# Quantidade de cada fator nessa variável
table(df$savings)
##
##
     1
         2
## 603 103 111 183
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(savings, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Valor na Poupança", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Valor na Poupança x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Valor na Poupança x Concessão de Crédito


```
# Como esperávamos quem tem mais dinheiro na poupança tem mais chance de ter o crédito concedido.
# employment.duration
# Tranformando a variável de numérica para fator
df$employment.duration <- as.factor(df$employment.duration)</pre>
# Quantidade de cada fator nessa variável
table(df$employment.duration)
##
##
         2
             3
     1
## 234 339 174 253
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(employment.duration, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Condição no Emprego", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Condição no Emprego x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Condição no Emprego x Concessão de Crédito


```
# Essa variável também influencia diretamente em na variável target. Quem está desempregado, ou a menos
# installment.rate
# Tranformando a variável de numérica para fator
df$installment.rate <- as.factor(df$installment.rate)</pre>
# Quantidade de cada fator nessa variável
table(df$installment.rate)
##
     1
         2
             3
## 136 231 157 476
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(installment.rate, ...count...)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
 labs(x = "Taxa de Renda Disponível", y = "Quantidade de Crédito Concedido",
       fill = "Crédito",
       title = "Taxa de Renda Disponível x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Taxa de Renda Disponível x Concessão de Crédito


```
# Esta é outra variável interessante, pois como vemos, quem tem mais renda disponível, tem tem mais cha
# marital.status
# Tranformando a variável de numérica para fator
df$marital.status <- as.factor(df$marital.status)</pre>
# Quantidade de cada fator nessa variável
table(df$marital.status)
##
##
     1
         3
## 360 548 92
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(marital.status, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
 labs(x = "Estado Civil", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Estado Civil x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Estado Civil x Concessão de Crédito


```
# guarantor
# Tranformando a variável de numérica para fator
df$guarantor <- as.factor(df$guarantor)</pre>
# Quantidade de cada fator nessa variável
table(df$guarantor)
##
##
     1
         2
## 907 93
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(guarantor, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
 labs(x = "Fiador", y = "Quantidade de Crédito Concedido", fill = "Crédito", title = "Fiador x Concess
 theme(plot.title = element_text(hjust = 0.5))
```

Podemos ver nesse gráfico que homens casados / viúvos têm mais chance de ter o crédito concedido do q


```
# Essa variável não parece fazer muita diferença para o modelo preditivo, pois além de termos poucas ob
perct.guarantor <- group_by(df, guarantor) %>%
   mutate(group_size = n()) %>%
   group_by(guarantor, credit.rating) %>%
   summarise(perc = (n()/max(group_size)*100))
perct.guarantor
## # A tibble: 4 x 3
## # Groups: guarantor [2]
## guarantor credit.rating perc
```

```
guarantor credit.rating perc
##
     <fct>
               <fct>
                              <dbl>
## 1 1
                               30.0
## 2 1
               1
                               70.0
## 3 2
               0
                               30.1
## 4 2
                               69.9
               1
```

Apenas retificar o que eu disse acima fiz essa tabela para vermos como esses dados estão distribuidos

```
# residence.duration

# Tranformando a variável de numérica para fator

df$residence.duration <- as.factor(df$residence.duration)

# Quantidade de cada fator nessa variável
table(df$residence.duration)</pre>
```

##

```
## 1 2 3 4
## 130 308 149 413
```

```
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(residence.duration, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#000002")) +
  labs(x = "Tempo de Mordia", y = "Quantidade de Crédito Concedido",
      fill = "Crédito", title = "Tempo de Mordia x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Tempo de Mordia x Concessão de Crédito


```
# Verificando o percentual das variáveis
perct.residence.duration <- group_by(df, residence.duration) %>%
  mutate(group_size = n()) %>%
  group_by(residence.duration, credit.rating) %>%
  summarise(perc = (n()/max(group_size)*100))
perct.residence.duration
```

```
## # A tibble: 8 x 3
## # Groups:
               residence.duration [4]
     residence.duration credit.rating perc
##
     <fct>
                         <fct>
                                        <dbl>
## 1 1
                         0
                                         27.7
## 2 1
                         1
                                         72.3
## 3 2
                         0
                                         31.5
## 4 2
                         1
                                         68.5
## 5 3
                         0
                                         28.9
## 6 3
                                         71.1
```

```
## 7 4
                        0
                                        30.0
## 8 4
                                       70.0
# Conforme podemos ver no gráfico e na tabela, o percentual de chance de conseguir ou não crédito é qua
# current.assets
# Quantidade de cada fator nessa variável
df$current.assets <- as.factor(df$current.assets)</pre>
# Quantidade de cada fator nessa variável
table(df$current.assets)
##
##
     1
         2
             3
## 282 232 332 154
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(current.assets, ...count...)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Recursos Disponíveis", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Recursos Disponíveis x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Recursos Disponíveis x Concessão de Crédito


```
# Verificando o percentual das variáveis
perct.current.assets <- group_by(df, current.assets) %>%
  mutate(group_size = n()) %>%
  group_by(current.assets, credit.rating) %>%
```

```
summarise(perc = (n()/max(group_size)*100))
perct.current.assets
## # A tibble: 8 x 3
## # Groups: current.assets [4]
## current.assets credit.rating perc
##
   <fct> <fct>
                                <dbl>
## 1 1
                                21.3
                  0
## 2 1
                                78.7
                  1
## 3 2
                  0
                                 30.6
## 4 2
                  1
                                 69.4
## 5 3
                  0
                                 30.7
## 6 3
                                 69.3
                   1
## 7 4
                                 43.5
                   0
## 8 4
                   1
                                 56.5
# Aparentemente quem é proprietário de uma casa tem menos chance de conseguir um empréstimo do que os o
# Age
# Histograma da idade separado por créditos igual a sim e não.
ggplot(df, aes(age, fill = credit.rating)) +
 geom_histogram(alpha = 0.5, aes(y = ..density..), position = 'identity',
                bins=10) +
 scale_fill_manual(values = c("#9c0000", "#0000a2")) +
 labs(x = "Idade", y = "Frequência", fill = "Crédito",
      title = "Histograma da Idade por Concessão de Crédito") +
 theme(plot.title = element_text(hjust = 0.5))
```



```
# Boxplot
ggplot(df, aes(x=credit.rating, y=age)) +
  geom_boxplot() +
labs(x = "Idade", y = "Frequência",
      fill = "Crédito", title = "Boxplot da Idade por Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Boxplot da Idade por Concessão de Crédito


```
# Podemos ver pelo histograma e pelo boxplot que os mais jovens normalmente têm menos chance de consegu
# Vou criar a coluna de grupo de idade também para poder analisar melhor esses dados.
# Criando a variável fact.age
summary(df$age)
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
            27.00
                     33.00
                             35.54
                                     42.00
                                             75.00
df\fact.age<-findInterval(df\fractsage, c(18, 25, 33, 38, 45, 55))
df<-df %>%
  mutate(fact.age=as.factor(fact.age))
levels(df$fact.age) <- c("Menos de 25", "25 a 33", "33 a 38", "38 a 45", "45 a 55",
                         "mais de 55")
# Visualizando os primeiros dados das duas colunas.
head(df[, c("age", "fact.age")])
##
     age
            fact.age
## 1 21 Menos de 25
## 2 36
             33 a 38
## 3 23 Menos de 25
             38 a 45
## 4 39
             38 a 45
## 5 38
             45 a 55
## 6 48
# Análise Gráfica
ggplot(df, aes(fact.age, ..count..)) +
```

```
geom_bar(aes(fill = credit.rating), position = "dodge") +
scale_fill_manual(values = c("#9c0000", "#0000a2")) +
labs(x = "Idade", y = "Quantidade de Crédito Concedido",
    fill = "Crédito", title = "Idade x Concessão de Crédito") +
theme(plot.title = element_text(hjust = 0.5))
```

Idade x Concessão de Crédito


```
# Podemos perceber a relação entre a idade e a concessão de crédito de uma forma mais clara agora.
# other.credits
# Quantidade de cada fator nessa variável
df$other.credits <- as.factor(df$other.credits)</pre>
# Quantidade de cada fator nessa variável
table(df$other.credits)
##
         2
##
     1
## 186 814
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(other.credits, ...count...)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Outros Créditos", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Outros Créditos x Concessão de Crédito") +
```

theme(plot.title = element_text(hjust = 0.5))

Outros Créditos x Concessão de Crédito


```
# Pessoas que tem créditos em outros bancos têm mais dificuldade em conseguir o crédito.
# apartment.type
# Quantidade de cada fator nessa variável
df$apartment.type <- as.factor(df$apartment.type)</pre>
# Quantidade de cada fator nessa variável
table(df$apartment.type)
##
##
         2
             3
     1
## 179 714 107
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(apartment.type, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
 scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Tipo de Moradia", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Tipo de Moradia x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```



```
# Essa variável também irá entrar em nosso modelo preditivo.
# bank.credits
# Quantidade de cada fator nessa variável
df$bank.credits <- as.factor(df$bank.credits)</pre>
# Quantidade de cada fator nessa variável
table(df$bank.credits)
##
##
     1
         2
## 633 367
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(bank.credits, ..count..)) +
 geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
 labs(x = "Quantidade de Créditos ja Concedidos", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Quantidade de Créditos ja Concedidos x Concessão de Crédito") +
```

theme(plot.title = element_text(hjust = 0.5))

Quantidade de Créditos ja Concedidos x Concessão de Crédito

Quantidade de Créditos ja Concedidos

```
# Verificando o percentual das variáveis
perct.bank.credits <- group_by(df, bank.credits) %>%
  mutate(group_size = n()) %>%
  group_by(bank.credits, credit.rating) %>%
  summarise(perc = (n()/max(group_size)*100))
perct.bank.credits
## # A tibble: 4 x 3
## # Groups:
              bank.credits [2]
##
     bank.credits credit.rating perc
##
                  <fct>
     <fct>
                                 <dbl>
                                 31.6
## 1 1
                  0
## 2 1
                  1
                                 68.4
## 3 2
                                 27.2
                  0
                  1
                                 72.8
```

```
# A diferença no número de créditos ja concedidos é tão pouca que não vale a pena considerar no modelo ;
# occupation
```

```
# Quantidade de cada fator nessa variável
df$occupation <- as.factor(df$occupation)
# Quantidade de cada fator nessa variável
table(df$occupation)</pre>
```

```
##
## 1 2 3 4
```

22 200 630 148

```
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(occupation, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#00000a2")) +
  labs(x = "Ocupação", y = "Quantidade de Crédito Concedido",
      fill = "Crédito", title = "Ocupação x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Ocupação x Concessão de Crédito


```
# Verificando o percentual das variáveis
perct.occupation <- group_by(df, occupation) %>%
  mutate(group_size = n()) %>%
  group_by(occupation, credit.rating) %>%
  summarise(perc = (n()/max(group_size)*100))
perct.occupation
```

```
## # A tibble: 8 x 3
## # Groups:
               occupation [4]
##
     occupation credit.rating perc
##
     <fct>
                <fct>
                                <dbl>
## 1 1
                0
                                 31.8
## 2 1
                                 68.2
                 1
## 3 2
                0
                                 28.
## 4 2
                1
                                 72
## 5 3
                0
                                 29.5
## 6 3
                1
                                 70.5
## 7 4
                0
                                 34.5
```

```
## 8 4
                               65.5
# A diferença percentual de cada categoria é bem pouca, acho que não compensa utilizar essa variável em
# dependents
# Quantidade de cada fator nessa variável
df$dependents <- as.factor(df$dependents)</pre>
# Quantidade de cada fator nessa variável
table(df$dependents)
##
##
     1
## 845 155
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(dependents, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Dependentes", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Dependentes x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Dependentes x Concessão de Crédito


```
# Verificando o percentual das variáveis
perct.dependents <- group_by(df, dependents) %>%
  mutate(group_size = n()) %>%
  group_by(dependents, credit.rating) %>%
  summarise(perc = (n()/max(group_size)*100))
```

```
perct.dependents
## # A tibble: 4 x 3
## # Groups: dependents [2]
    dependents credit.rating perc
##
     <fct>
               <fct>
                              <dbl>
## 1 1
                0
                               30.1
## 2 1
                1
                               69.9
## 3 2
                0
                               29.7
## 4 2
                1
                               70.3
# Essa variável também não compensa se utilizada em nosso modelo preditivo.
# telephone
# Quantidade de cada fator nessa variável
df$telephone <- as.factor(df$telephone)</pre>
# Quantidade de cada fator nessa variável
table(df$telephone)
##
##
     1
        2
## 596 404
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(telephone, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Telefone", y = "Quantidade de Crédito Concedido",
       fill = "Crédito", title = "Telefone x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```



```
# Verificando o percentual das variáveis
perct.telephone <- group_by(df, telephone) %>%
  mutate(group_size = n()) %>%
  group_by(telephone, credit.rating) %>%
  summarise(perc = (n()/max(group_size)*100))
perct.telephone
## # A tibble: 4 x 3
## # Groups:
               telephone [2]
##
     telephone credit.rating perc
##
               <fct>
                              <dbl>
## 1 1
               0
                               31.4
## 2 1
                               68.6
               1
## 3 2
               0
                               28.0
                               72.0
\# A existência de telefone também não muda muito em relação à concessão ou não de crédito.
# foreign.worker
# Quantidade de cada fator nessa variável
df$foreign.worker <- as.factor(df$foreign.worker)</pre>
# Quantidade de cada fator nessa variável
table(df$foreign.worker)
```

##

1 2

963 37

```
# Gráfico da contagem da variável por crédito financeiro concedido ou não.
ggplot(df, aes(foreign.worker, ..count..)) +
  geom_bar(aes(fill = credit.rating), position = "dodge") +
  scale_fill_manual(values = c("#9c0000", "#0000a2")) +
  labs(x = "Trabalha Fora", y = "Quantidade de Crédito Concedido",
      fill = "Crédito", title = "Trabalha Fora x Concessão de Crédito") +
  theme(plot.title = element_text(hjust = 0.5))
```

Trabalha Fora x Concessão de Crédito


```
# Verificando o percentual das variáveis
perct.foreign.worker <- group_by(df, foreign.worker) %>%
  mutate(group_size = n()) %>%
  group_by(foreign.worker, credit.rating) %>%
  summarise(perc = (n()/max(group_size)*100))
perct.foreign.worker
```

```
## # A tibble: 4 x 3
               foreign.worker [2]
## # Groups:
     foreign.worker credit.rating perc
##
     <fct>
                    <fct>
                                   <dbl>
## 1 1
                                    30.7
                    0
## 2 1
                    1
                                    69.3
## 3 2
                    0
                                    10.8
## 4 2
                                    89.2
                    1
```

Treino e Teste

require(caTools)

Agora iremos criar as variáveis de treino e teste para iniciar a predição do nosso data frame.

```
## Loading required package: caTools
#Criando uma seed
set.seed(123)
#Dividindo o data frame em treino e teste.
sample = sample.split(df, SplitRatio = 0.70)
train = subset(df, sample ==TRUE)
test = subset(df, sample==FALSE)

#Verificando o número de linhas de cada data frame
nrow(train)
## [1] 667
nrow(test)
```

Primeiros modelos preditivos

Nesta etapa iremos rodar os algoritmos de regressão logística, suport vector machine, árvore de decisão, random forest e Naive Bayes para ver qual deles se comportam melhor com as variáveis escolhidas por mim.

```
# Agora é chegou a hora de rodar os algoritmos de modelo preditivo.
# Vamos começar treinando o modelo com as variáveis que eu achei mais interessantes
# durante a fase de análise.
formula_v1 <- as.formula('credit.rating ~ account.balance +</pre>
                         fact.credit.duration.months +
                         previous.credit.payment.status + credit.purpose +
                         fact.credit.amount + savings + employment.duration +
                         installment.rate + marital.status + current.assets +
                         fact.age + other.credits + apartment.type +
                         foreign.worker')
# Treinando o modelo com o algoritmo de regressão logística
model_glm_v1 <- glm(formula = formula_v1, data = train, family = "binomial")</pre>
# Verificando alguns resultados do modelo treinado
summary(model_glm_v1)
##
## Call:
## glm(formula = formula_v1, family = "binomial", data = train)
##
## Deviance Residuals:
##
       Min
                 1Q Median
                                   3Q
                                           Max
## -2.5913 -0.6494
                     0.4095 0.7080
                                        2.0969
##
## Coefficients:
```

```
##
                                           Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                           12.42380 553.34136
                                                                 0.022 0.982087
## account.balance2
                                            0.31610
                                                       0.26265
                                                                 1.204 0.228770
## account.balance3
                                            1.56185
                                                       0.26764
                                                                 5.836 5.36e-09 ***
## fact.credit.duration.months6 a 12
                                          -12.17017
                                                     553.34116
                                                                -0.022 0.982453
## fact.credit.duration.months12 a 18
                                          -12.38685
                                                     553.34116
                                                                -0.022 0.982140
## fact.credit.duration.months18 a 24
                                          -13.01325
                                                     553.34117
                                                                -0.024 0.981237
## fact.credit.duration.months24 a 30
                                          -12.99020
                                                     553.34120
                                                                -0.023 0.981271
## fact.credit.duration.months30 a 36
                                          -13.20855
                                                     553.34138
                                                                -0.024 0.980956
## fact.credit.duration.monthsmais de 36 -13.53145
                                                     553.34126
                                                                -0.024 0.980490
## previous.credit.payment.status2
                                            1.26640
                                                       0.38521
                                                                 3.288 0.001011 **
## previous.credit.payment.status3
                                                       0.39592
                                            1.82232
                                                                 4.603 4.17e-06 ***
## credit.purpose2
                                           -1.40585
                                                       0.50225
                                                                -2.799 0.005124 **
                                           -1.54871
                                                                -3.183 0.001458 **
## credit.purpose3
                                                       0.48656
## credit.purpose4
                                                       0.47703
                                                                -3.718 0.000201 ***
                                           -1.77371
## fact.credit.amount2500 a 5000
                                            0.26942
                                                       0.28640
                                                                 0.941 0.346851
## fact.credit.amount5000 a 10000
                                           -0.18965
                                                       0.39044
                                                                -0.486 0.627162
## fact.credit.amountmais de 10000
                                           -0.49981
                                                       0.64610
                                                                -0.774 0.439181
                                                                 2.037 0.041687 *
                                                       0.36566
## savings2
                                            0.74472
## savings3
                                            0.62936
                                                       0.40994
                                                                 1.535 0.124723
## savings4
                                            0.63560
                                                       0.31590
                                                                 2.012 0.044217 *
## employment.duration2
                                                       0.26711
                                                                 0.663 0.507017
                                            0.17722
                                                       0.35242
                                                                 2.678 0.007407 **
## employment.duration3
                                            0.94378
                                                       0.30994
## employment.duration4
                                            0.29166
                                                                 0.941 0.346705
## installment.rate2
                                           -0.04057
                                                       0.38122 -0.106 0.915247
## installment.rate3
                                           -0.47854
                                                       0.40707
                                                                -1.176 0.239771
## installment.rate4
                                           -0.31940
                                                       0.36480
                                                                -0.876 0.381266
## marital.status3
                                            0.19046
                                                       0.23938
                                                                 0.796 0.426244
## marital.status4
                                            0.70821
                                                       0.42461
                                                                 1.668 0.095337 .
## current.assets2
                                           -0.50747
                                                       0.30296
                                                               -1.675 0.093932 .
## current.assets3
                                           -0.52429
                                                       0.28215
                                                                -1.858 0.063142
## current.assets4
                                           -0.96489
                                                       0.49069
                                                                -1.966 0.049253 *
## fact.age25 a 33
                                            0.04576
                                                       0.31872
                                                                 0.144 0.885825
                                                       0.39003
## fact.age33 a 38
                                            0.46731
                                                                 1.198 0.230864
## fact.age38 a 45
                                            0.27874
                                                       0.39797
                                                                 0.700 0.483669
## fact.age45 a 55
                                                                 0.188 0.850726
                                            0.08003
                                                       0.42527
## fact.agemais de 55
                                            0.12234
                                                       0.51251
                                                                 0.239 0.811329
## other.credits2
                                            0.27822
                                                       0.26942
                                                                 1.033 0.301750
## apartment.type2
                                                       0.29051
                                                                 1.240 0.214928
                                            0.36027
## apartment.type3
                                            0.72353
                                                       0.56634
                                                                 1.278 0.201412
## foreign.worker2
                                            1.04471
                                                       0.77476
                                                                 1.348 0.177517
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 816.41 on 666
                                      degrees of freedom
## Residual deviance: 605.67
                              on 627
                                       degrees of freedom
##
  AIC: 685.67
##
## Number of Fisher Scoring iterations: 14
# Realizando a predição com o modelo treinado
pred_glm_v1 <- predict(model_glm_v1, test, type="response")</pre>
```

```
# Arredondando para 0 ou 1
pred_glm_v1 <- round(pred_glm_v1)</pre>
#Confusion Matrix da predição.
library(caret)
## Loading required package: lattice
confusionMatrix(table(data = pred_glm_v1, reference = test$credit.rating),
                positive = '1')
## Confusion Matrix and Statistics
##
       reference
##
## data
         0
     0 41 30
##
##
      1 58 204
##
##
                  Accuracy : 0.7357
##
                    95% CI: (0.6849, 0.7823)
       No Information Rate: 0.7027
##
       P-Value [Acc > NIR] : 0.103103
##
##
##
                     Kappa : 0.3113
##
##
  Mcnemar's Test P-Value: 0.003999
##
##
               Sensitivity: 0.8718
##
               Specificity: 0.4141
##
            Pos Pred Value: 0.7786
            Neg Pred Value: 0.5775
##
##
                Prevalence: 0.7027
##
            Detection Rate: 0.6126
##
      Detection Prevalence: 0.7868
##
         Balanced Accuracy: 0.6430
##
          'Positive' Class: 1
##
##
# A regressão logística nos entregou um bom resultado, mas vamos verificar como esses dados se comporta
## Criando o modelo com o algoritmo Árvore de Decissão
library(C50)
modelo_tree_v1 = C5.0(formula_v1, data = train)
# Previsões nos dados de teste
pred_tree_v1 = predict(modelo_tree_v1, test, type='class')
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_tree_v1, positive = '1')
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
```

```
##
            0 45 54
            1 40 194
##
##
##
                  Accuracy : 0.7177
##
                    95% CI: (0.6661, 0.7654)
##
       No Information Rate: 0.7447
##
       P-Value [Acc > NIR] : 0.883
##
##
                     Kappa: 0.2957
##
##
   Mcnemar's Test P-Value: 0.180
##
               Sensitivity: 0.7823
##
##
               Specificity: 0.5294
##
            Pos Pred Value: 0.8291
##
            Neg Pred Value: 0.4545
##
                Prevalence: 0.7447
##
            Detection Rate: 0.5826
##
      Detection Prevalence: 0.7027
##
         Balanced Accuracy: 0.6558
##
##
          'Positive' Class : 1
##
# Este modelo teve um desempenho pouco pior do que o modelo de regessão
# logística
# Criando o modelo com o algoritmo SVM (Suport Vector Machine)
library(e1071)
modelo_svm_v1 <- svm(formula_v1, data = train,</pre>
                     type = 'C-classification', kernel = 'radial')
# Previsões nos dados de teste
pred_svm_v1 = predict(modelo_svm_v1, test)
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_svm_v1, positive = '1')
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               0
            0 12 87
##
              6 228
##
            1
##
##
                  Accuracy: 0.7207
##
                    95% CI: (0.6692, 0.7683)
##
       No Information Rate: 0.9459
##
       P-Value [Acc > NIR] : 1
##
##
                     Kappa: 0.1251
##
##
   Mcnemar's Test P-Value : <2e-16
##
```

```
##
               Sensitivity: 0.7238
##
               Specificity: 0.6667
            Pos Pred Value: 0.9744
##
            Neg Pred Value: 0.1212
##
##
                Prevalence: 0.9459
            Detection Rate: 0.6847
##
##
      Detection Prevalence: 0.7027
         Balanced Accuracy: 0.6952
##
##
##
          'Positive' Class : 1
##
# O modelo de regressão logística ainda está se saindo melhor por enquanto.
# Criando o modelo com o algoritmo Random Forest
library(rpart)
modelo_rf_v1 = rpart(formula_v1, data = train, control = rpart.control(cp = .0005))
# Previsões nos dados de teste
pred_rf_v1 = predict(modelo_rf_v1, test, type='class')
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_rf_v1, positive = '1')
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction
              0 1
            0 34 65
##
##
            1 42 192
##
##
                  Accuracy : 0.6787
##
                    95% CI: (0.6256, 0.7285)
      No Information Rate: 0.7718
##
      P-Value [Acc > NIR] : 0.99996
##
##
##
                     Kappa: 0.1757
##
   Mcnemar's Test P-Value: 0.03344
##
##
##
              Sensitivity: 0.7471
##
              Specificity: 0.4474
##
            Pos Pred Value: 0.8205
            Neg Pred Value: 0.3434
##
##
                Prevalence: 0.7718
##
            Detection Rate: 0.5766
##
      Detection Prevalence: 0.7027
##
         Balanced Accuracy: 0.5972
##
##
          'Positive' Class : 1
# Esse foi o pior resultado até o momento.
# Criando o modelo com o algoritmo Naive Bayes
```

```
model_nb_v1 = naiveBayes(formula_v1, data=train)
# Previsões nos dados de teste
pred_nb_v1 <- predict(model_nb_v1, newdata=test)</pre>
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_nb_v1, positive = '1')
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               0
            0 53 46
##
            1 38 196
##
##
##
                  Accuracy: 0.7477
                    95% CI: (0.6975, 0.7935)
##
       No Information Rate: 0.7267
##
       P-Value [Acc > NIR] : 0.213
##
##
##
                     Kappa: 0.3819
##
   Mcnemar's Test P-Value: 0.445
##
##
               Sensitivity: 0.8099
##
##
               Specificity: 0.5824
##
            Pos Pred Value: 0.8376
##
            Neg Pred Value: 0.5354
##
                Prevalence: 0.7267
            Detection Rate: 0.5886
##
##
      Detection Prevalence: 0.7027
##
         Balanced Accuracy: 0.6962
##
##
          'Positive' Class : 1
##
# Este foi o melhor resultado encontrado.
```

Feature Selection.

Como podemos ver o algoritmo de Naive Bayes foi o que obteve o melhor resultado na minha primeira tentativa. Agora vamos tentar melhorar o algoritmo utilizando feature selection com o algoritmo Random Forest.

```
#Antes temos que normalizar os dados numéricos que ainda não foram utilizados.
normaliza_dados <- function(df, var){
   for(v in var)
      df[[v]] <- scale(df[[v]], center=T, scale=T)
      return(df)
}
var <- c('credit.duration.months', 'credit.amount', 'age')
df<- normaliza_dados(df, var)

# Atualizando train e test
train = subset(df, sample ==TRUE)</pre>
```

```
test = subset(df, sample==FALSE)
# Feature Selection com o Random Forest
require(randomForest)
## Loading required package: randomForest
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
       margin
model_rf_imp_var <- randomForest(credit.rating ~ ., data = df, ntree = 100,</pre>
                               nodesize = 10, importance = TRUE)
# Plotando as variáveis por grau de importância
varImpPlot(model_rf_imp_var)
```

model_rf_imp_var

Neste gráfico podemos ver as variáveis mais relevantes na predição do modelo.

Modelos Preditivos com Feature Selection.

Agora que temos uma ideia melhor de quais variáveis importam mais para nosso agloritmo iremos fazer a predição novamente e comparar os resultados.

```
# Vamos utilizar o modelo as primeiras 10 variaveis do modelo de random forest para treinar o data fram
formula_v2 <- as.formula('credit.rating ~ account.balance +</pre>
                         previous.credit.payment.status + savings +
                         fact.credit.duration.months + credit.duration.months +
                         age + credit.amount + bank.credits + fact.credit.amount +
                         other.credits')
# Criando o modelo com o algoritmo Naive Bayes
model_nb_v2 = naiveBayes(formula_v2, data=train)
# Previsões nos dados de teste
pred_nb_v2 <- predict(model_nb_v2, newdata=test)</pre>
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_nb_v2, positive = '1')
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
               0
            0 45 54
##
##
            1 38 196
##
##
                  Accuracy: 0.7237
##
                    95% CI: (0.6723, 0.7711)
##
       No Information Rate: 0.7508
##
       P-Value [Acc > NIR] : 0.8848
##
##
                     Kappa: 0.3064
##
##
   Mcnemar's Test P-Value: 0.1179
##
##
               Sensitivity: 0.7840
##
               Specificity: 0.5422
            Pos Pred Value: 0.8376
##
##
            Neg Pred Value: 0.4545
##
                Prevalence: 0.7508
##
            Detection Rate: 0.5886
##
      Detection Prevalence: 0.7027
##
         Balanced Accuracy: 0.6631
##
##
          'Positive' Class: 1
##
# O primeiro modelo está com um melhor desempenho até o momento.
#Vamos utilizar as primeiras 15 variáveis agora.
formula_v3 <- as.formula('credit.rating ~ account.balance +</pre>
                         previous.credit.payment.status + savings +
                         fact.credit.duration.months + credit.duration.months +
                         age + credit.amount + bank.credits + fact.credit.amount +
```

```
other.credits + guarantor + employment.duration +
                         installment.rate + current.assets + residence.duration')
# Criando o modelo com o algoritmo Naive Bayes
model_nb_v3 = naiveBayes(formula_v3, data=train)
# Previsões nos dados de teste
pred_nb_v3 <- predict(model_nb_v3, newdata=test)</pre>
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_nb_v3, positive = '1')
## Confusion Matrix and Statistics
##
             Reference
##
               0
                   1
## Prediction
##
            0 46 53
##
            1 39 195
##
                  Accuracy: 0.7237
##
                    95% CI : (0.6723, 0.7711)
##
       No Information Rate: 0.7447
##
##
       P-Value [Acc > NIR] : 0.8274
##
##
                     Kappa: 0.3107
##
   Mcnemar's Test P-Value: 0.1753
##
##
##
               Sensitivity: 0.7863
##
               Specificity: 0.5412
            Pos Pred Value: 0.8333
##
            Neg Pred Value: 0.4646
##
                Prevalence: 0.7447
##
##
            Detection Rate: 0.5856
##
      Detection Prevalence: 0.7027
##
         Balanced Accuracy: 0.6637
##
##
          'Positive' Class : 1
##
# Obtivemos a mesma acuracia do primeiro modelo, vamos utilizar todas as varuáveis agora para ver como
formula_v4 <- as.formula('credit.rating ~ .')</pre>
# Criando o modelo com o algoritmo Naive Bayes
model_nb_v4 = naiveBayes(formula_v4, data=train)
# Previsões nos dados de teste
pred_nb_v4 <- predict(model_nb_v4, newdata=test)</pre>
# Confusion Matrix
confusionMatrix(test$credit.rating, pred_nb_v4, positive = '1')
## Confusion Matrix and Statistics
```

##

```
##
            0 51 48
            1 37 197
##
##
                  Accuracy: 0.7447
##
                    95% CI: (0.6944, 0.7907)
##
       No Information Rate: 0.7357
##
##
       P-Value [Acc > NIR] : 0.3814
##
##
                     Kappa: 0.3689
##
   Mcnemar's Test P-Value: 0.2781
##
##
##
               Sensitivity: 0.8041
##
               Specificity: 0.5795
##
            Pos Pred Value: 0.8419
##
            Neg Pred Value: 0.5152
##
                Prevalence: 0.7357
##
            Detection Rate: 0.5916
##
     Detection Prevalence: 0.7027
##
         Balanced Accuracy: 0.6918
##
##
          'Positive' Class: 1
##
# O modelo_v2 de Naive Bayes, com acuracia de 0,7477, foi o que se saiu melhor até o momento, portanto
```

Balanceamento do Data Frame

Reference

1

0

##

Prediction

Agora iremos balancear nosso data frame de modo que tenhamos aproximadamente 50% de variáveis 1 e 50% de variáveis não. Isso pode ajudar a melhorar o desempenho do algoritmo. Para medir a melhora iremos utilizar a curva ROC

```
# Antes de fazer o balanceamento precisamos transformar as variáveis que foram normalizadoos para o tip
train$credit.duration.months <- as.numeric(train$credit.duration.months)</pre>
train$credit.amount <- as.numeric(train$credit.amount )</pre>
train$age <- as.numeric(train$age )</pre>
test$credit.duration.months <- as.numeric(test$credit.duration.months)</pre>
test$credit.amount <- as.numeric(test$credit.amount)
test$age <- as.numeric(test$age )</pre>
library(ROSE)
## Loaded ROSE 0.0-3
# Balanceando os dados
# ROSE nos dados de treino
rose_train <- ROSE(credit.rating ~ ., data = train, seed = 1)$data</pre>
prop.table(table(rose_train$credit.rating))
##
##
           1
## 0.5172414 0.4827586
```

```
# ROSE nos dados de teste
rose_test <- ROSE(credit.rating ~ ., data = test, seed = 1)$data</pre>
prop.table(table(rose_test$credit.rating))
##
##
                     0
           1
## 0.5345345 0.4654655
# Criando o modelo com o algoritmo Naive Bayes
model_nb_v5 = naiveBayes(formula_v3, data=rose_train)
# Previsões nos dados de teste
pred_nb_v5 <- predict(model_nb_v5, newdata=rose_test)</pre>
# Confusion Matrix
confusionMatrix(rose_test$credit.rating, pred_nb_v5, positive = '1')
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 1 0
            1 122 56
##
            0 58 97
##
##
                  Accuracy: 0.6577
##
                    95% CI: (0.604, 0.7085)
##
       No Information Rate : 0.5405
##
       P-Value [Acc > NIR] : 9.423e-06
##
##
##
                     Kappa : 0.3115
##
   Mcnemar's Test P-Value : 0.9254
##
##
               Sensitivity: 0.6778
##
##
               Specificity: 0.6340
            Pos Pred Value: 0.6854
##
##
            Neg Pred Value: 0.6258
##
                Prevalence: 0.5405
            Detection Rate: 0.3664
##
##
      Detection Prevalence: 0.5345
##
         Balanced Accuracy: 0.6559
##
##
          'Positive' Class : 1
##
# Curva roc para o modelo v3 (balanceado)
roc.curve(test$credit.rating, pred_nb_v2, plotit = T, col = "red")
## Area under the curve (AUC): 0.646
# Curva roc para o modelo_v5 (desbalanceado)
roc.curve(rose_test$credit.rating, pred_nb_v5, plotit = T,
          col = "green", add.roc = T)
```

ROC curve

Area under the curve (AUC): 0.656

Conclusão

Podemo ver que curva ROC para o modelo_v5 começa melhor do que o modelo_v2, mas depois de um certo ponto ela piora ficando mais próximo da diagonal central, portanto o modelo_v2 foi o que teve o melhor desempenho nesta análise.

Fim

Fernando Tsutomu Hara