$$a + aq + aq^{2} + \dots + aq^{n-1} = \begin{cases} \frac{a(1-q^{n})}{1-q}, & q \neq 1, \\ an, & q = 1. \end{cases}$$

基础过关 1-4

1.
$$\lim_{n\to\infty} (1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}) = \underline{\hspace{1cm}}$$

- (A) $\frac{3}{2}$. (B) 2. (C) 4.
- (D) ∞

$$\frac{1}{\sqrt{2}} = \lim_{n \to \infty} \frac{(1 - \frac{1}{2}^n)}{1 - \frac{1}{2}} = 2(1 - \frac{1}{2}^n)$$

$$= 2$$

- (A) $\frac{1}{2}$. (B) 1. (C) 0.
- (D) ∝

- (A) $\frac{1}{5}$. (B) $\frac{2}{5}$. (C) $\frac{3}{5}$.

$$\frac{\sqrt{\frac{n+1}{5}}}{5n^{\frac{3}{5}}} \leq \sqrt{\frac{2}{5}} = \frac{(n+3)^{3}}{5n^{\frac{3}{5}}}$$

4.
$$\lim_{n\to\infty} 2^n \sin \frac{x}{2^n}$$
, x 为不等于零的常数.

- (A) $\frac{x}{2}$. (B) x.
- (C) $\sin x$.

$$4. \sqrt[3]{i} = \lim_{n \to \infty} 2^n \sin \frac{x}{2^n}$$

$$= \lim_{n \to \infty} \frac{\sin \frac{x}{2^n}}{\frac{1}{2^n}} = \frac{x}{2^n} = x$$

$$\int_{n\to\infty} 1 \sin(\sqrt{n+3\sqrt{n}} - \sqrt{n-2\sqrt{n}}) = \underline{\qquad}.$$

(A)
$$\frac{1}{2}$$
. (B) x . (C) $\sin x$. (D) $\sin \frac{\pi}{2}$.

(D) $\sin \frac{\pi}{2}$.

(E) $\sin x$. (D) $\sin \frac{\pi}{2}$.

(E) $\sin x$. (D) $\sin \frac{\pi}{2}$.

(E) $\sin x$. (D) $\sin x$. (E) $\sin x$. (E) $\sin x$. (E) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$. (E) $\sin x$. (E) $\sin x$. (E) $\sin x$. (D) $\sin x$. (E) $\sin x$. (E) $\sin x$. (E) $\sin x$. (E) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$. (D) $\sin x$. (E) $\sin x$. (D) $\sin x$

$$\int 6. \quad \lim_{n\to\infty} \frac{nx^2}{2} \tan\frac{2\pi}{n} = \underline{\qquad}.$$

5.
$$\lim_{n \to \infty} \frac{nx^2}{2} \tan \frac{2\pi}{n} = \underline{\qquad}$$
(A) ∞ . (B) x^2 . (C) $\frac{x^2}{2}$. (D) $x^2\pi$.
$$= \lim_{n \to \infty} \frac{2\pi}{n} = 2\pi$$

7. 求极限 $\lim_{n\to\infty} \left(\sqrt{n^2+2n}-n\right)$

$$7 - \sqrt{3} = \lim_{n \to \infty} \frac{n^2 + 2n - n^2}{\sqrt{n^2 + 2n} + n} = \frac{2n}{\sqrt{n^2 + 2n} + n} = \frac{2}{\sqrt{1 + \frac{2}{n} + 1}} = 1$$

(A)
$$\infty$$
.

- (A) ∞ . (B) 0. (C) 1. (D) $\sqrt{2}$.

- 8. $\Re \lim_{n\to\infty} n \left(\frac{1}{n^2 + \pi} + \frac{1}{n^2 + 2\pi} + \dots + \frac{1}{n^2 + n\pi} \right)$

- (A) ∞ . (B) 0. (C) 1. (D) $\frac{1}{\pi}$.

8.
$$\frac{n^{2}}{n^{2}+n^{2}} \leq \sqrt{8} \cdot \vec{n} \leq \frac{n^{2}}{n^{2}+5}$$

- 9. 求极限 $\lim_{n\to\infty} \left(1-\frac{1}{2^2}\right) \left(1-\frac{1}{3^2}\right) \cdots \left(1-\frac{1}{n^2}\right)$.

9.
$$\sqrt{1-\frac{1}{n^2}} = \frac{n-1}{n} \cdot \frac{n+1}{n}$$

9. 求极限 $\lim_{n\to\infty} \left(1-\frac{1}{2^2}\right) \left(1-\frac{1}{3^2}\right) \cdots \left(1-\frac{1}{n^2}\right)$.

(A) $\frac{1}{2}$. (B) 1. (C) 2. (D) 0. $\sqrt{\frac{1}{2}} = \frac{n-1}{n^2} = \frac{n-1}{n} \cdot \frac{n+1}{n}$

10. (02-2) 设 $0 < x_1 < 3, x_{n+1} = \sqrt{x_n(3-x_n)}(n=1,2,\cdots)$,证明数列 $\{x_n\}$ 的极限存在,并

- (A) 会证明, 且 $\lim_{n\to\infty} x_n = \frac{3}{2}$
- (B) 不会证明单调性.
- 四萬湖地:

×n+1 シノシャー1 >1

Xn+1=√xn13-xn) ≤ ->

11. (00-3) 设对任意的 x , 总有 $\varphi(x) \le f(x) \le g(x)$, 且 $\lim_{x \to \infty} \left[g(x) - \varphi(x) \right] = 0$, 则 $\lim_{x \to \infty} f(x)$

- (A) 存在且等于零.
- (B) 存在但不一定等于零.

(C) 一定不存在.

(D) 不一定存在.

- 1. $\lim_{n \to \infty} \left(\frac{n+1}{n^2 + n + 1} + \frac{n+2}{n^2 + n + 2} + L + \frac{n+n}{n^2 + n + n} \right) =$ ____

 - (A) $\frac{3}{2}$. (B) $\frac{1}{2}$. (C) ∞ .

小岛的 $\begin{cases} g(x) = X \cdot f(x) = X + \frac{1}{X} \\ g(x) = X + \frac{1}{X} \end{cases}$ 1im [g(x)-4(x)]20 世义大文不太

$$(A) \frac{1}{2}.$$

$$(A) \frac{1}{2}$$

$$\frac{n^2 + \frac{n(n+1)}{2}}{n^2 + n + n} \leq \frac{n^2}{2} \leq \frac{n^2 + \frac{n(n+1)}{2}}{n^2 + n + 1}$$

1. 有一个结论: => D

【例 39】 $\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_m^n}$,其中 $a_i > 0 (i = 1, 2, \dots, m)$.

引中出一个主理: 冷果为丁里教大的一次

- [1, 0 < x < 1](A) 2. (B) x. (C) $\{2,1 \le x < 2\}$. $x, x \ge 2$
- (D) $\begin{cases} 2, 0 < x < 2 \\ x, x \ge 2 \end{cases}$

- (A) x.
- (B) $\sin x$. (C) $\tan x$.
 - (D) ∞.

- (A) a^2 . (B) $-a^2$. (C) $-b^2$. (D) b^2 .

- (A) x. (B) e^{x-1} . (C) $\begin{cases} 1, 0 < x < 1 \\ x, x \ge 1 \end{cases}$.

- 6.设 $x_1 > 0, x_{n+1} = \frac{1}{3}(2x_n + \frac{1}{x^2}), n = 1, 2, K$, 证明 $\lim_{n \to \infty} x_n$ 存在 并求极限 $\lim_{n \to \infty} x_n$.
 - (A) 会证明, 且 $\lim_{n\to\infty} x_n = 1$
- (B) 不会证明单调性.
- (C) 不会证明有界性.
- (D) 单调性和有界性都不会证明.

b. の有計で
$$x_{n+1} = \frac{1}{3}(x_n + x_n + \frac{1}{x_n}) = \sqrt{1 - 1}$$

 $\frac{a+b+c}{3} = \sqrt[3]{abc}$
日 単洲 は $x_{n+1} - x_n = \frac{1}{3}x_n + \frac{1}{3x_n} - x_n = -\frac{1}{3}x_n + \frac{1}{3x_n}$
 $= \frac{(-x_n)}{3x_n^2} \le 0$
(国 退 $\lim_{n \to \infty} x_n = a$ $x_n = \frac{1}{3}(2a + \frac{1}{a^2}) = a = 1$