Design and Analysis of Algorithms

Introduction

Algorithm

- An *algorithm* is a (finite) sequence of **unambiguous** instructions for solving a problem.
- It has been the algorithm that has made possible the modern world
 - By David Berlinski, The Advent of the Algorithm, 2000
- Algorithmics is more than a branch of computer science. It is the core of computer science, and, in all fairness, can be said to be relevant to most of science, business, and technology. [David Harel]

CS302

• Design and Analysis of Algorithms

• Pre: Data Structures

Assignments / Quizzes	15
Mid-Terms	25 (12.5 each)
Project	10
Final	50

CLOs

- 1. Design algorithms using different algorithms design techniques i.e. Brute Force, Divide and Conquer, Dynamic Programming, Greedy Algorithms
- 2. Analyse the time and space complexity of different algorithms by using standard analysis techniques for recursive and non-recursive algorithms.
- 3. Discussion on Asymptotic notations, standard complexity classes and representation of time complexities in asymptotic notations of standard complexity functions
- 4. Describe, compare, analyse, and solve general algorithmic problem types: Sorting, Searching, String Processing, Graph.
- 5. Implement the algorithms, compare the implementations empirically, and apply fundamental algorithms knowledge to solve real-world problems.
- 6. Understanding of NP-Completeness and Approximate Problems. zeshan.khan@nu.edu.pk

Contents

- Basics of Algorithms, Mathematical Foundation, Growth of Function, Asymptotic Notations.
- Divide and Conquer, Substitution Method, Recurrence-Tree Method, Master's Method.
- Sorting (Merge, Insertion, Quick, Heap, Counting, Radix), Data Structures (Stack, Queue, Linked List, Hash Table, Binary Tree).
- Dynamic Programming
- Greedy Algorithms, Graph Theory (Graph Categorization, Graph Terminology, Representation of Graphs, BFS & DFS, Strongly Connected Components, Greedy Algorithms: Kruskal's Algorithm, Prim's Algorithms, Bellman-Ford Algorithms, Dijkstra's Algorithm)
- Geometric Algorithms (Introduction, Graham Scan, Close Points). String Matching
- NP Complete Problems and Solutions using Approximation Algorithm

History of Algorithm

- GCD by the Euclid (Ancient era)
- Multiplication Arabic Numerals by Al-Khwarizmi (Muslim Golden era)
- Robert of Chester (12th Century)
- Multiplication Arabic Numerals by Fibnacci (12th Century)

zeshan.khan@nu.edu.pk

Algorithm Analysis

- What is an algorithm?
- What are we interested in an algorithm?
- How to measure an algorithm?
- How to code divide-and-conquer algorithm?
 - Recursion
- How to calculate the running time of divide-and-conquer algorithm?
 - Recurrence equation

What is an algorithm?

- "a sequence of operations" (informal)
- E.g.
 - The algorithm to walk
 - The algorithm to cook instant noodle
 - The algorithm to sort N integers

zeshan.khan@nu.edu.pk

What is an algorithm?

Algorithm: walk to a destination
while (have not arrived at the destination)
{
put the back foot in front of the front foot;
}

What is an algorithm?

- Algorithm: cook a cup of instant noodles
 - 1. Pull back lid to the dotted line.
 - 2. Fill the cup to the inside line with boiling water from a kettle or from the microwave
 - 3. Close lid and let stand for 3 minutes.
 - 4. Stir well and add a pinch of salt and pepper to taste.

What are we interested in an algorithm?

- Correctness
- Efficiency
 - Time complexity measure the execution time?
 - Space complexity

zeshan.khan@nu.edu.pk

Correct Algorithm

• An algorithm is said to be *correct* if, for every input instance, it halts with the correct

output.

How to measure an algorithm?

- The number of key operations
- The number of space units needed
- What if the input is uncertain?

zeshan.khan@nu.edu.pk

How to measure an algorithm?

- E.g. Search a book in a box of books
 - Key operation: check the title of a book
 - Space unit: the space for one book

zeshan.khan@nu.edu.pk

Why?

- Theoretical Reasons
 - To prove the requirements of a project.
- Practice Reasons
 - Analysis of human DNA 100,000 genes
 - Relevant Information from internet (google)
 - Adaptability (Facebook over Myspace)
 - News analysis by machine
 - Cryptography and digital signatures
 - Optimal resource allocation for a firm

Algorithm

- Algorithm SumOfSquares
 - INPUT: a; b; where a and b are integers
 - OUTPUT: c; where c is a sum of the squares of input numbers.
 - start;
 - c := a*a + b*b;
 - return c;
 - end;

Bubble Sort

procedure bubbleSort(A : list of sortable items)

- n := length(A)
- repeat
 - swapped := false
 - for i := 1 to n-1 inclusive do
 - if $A[i-1] \ge A[i]$ then
 - swap(A[i-1], A[i])
 - swapped := true
 - end if
 - end for
- until not swapped

end procedure zeshan.khan@nu.edu.pk 6 5 3 1 8 7 2 4

Algorithmic Problem Solving

Trivial Approach

- Analyze the algorithm
 - Design a program
 - Implement the program
 - Execute the code
 - Measure the time
- See if the solution is ok
 - End The procedure

Algorithmic Approach

- Analyze the algorithm
 - Methods of Specifying an Algorithm
 - Proving an Algorithm's Correctness
- See if the solution is ok
 - Coding an Algorithm
 - End The procedure

Multiplication of Arabic Numerals

• Among many other contributions in mathematics, astronomy, and geography, he wrote a book about how to multiply with Arabic numerals.

Multiplication

1234567890

X 4578963210

• 10*10=100 single digit multiplications

Multiplication of Arabic Numerals

Lattice multiplication

STEP 1

To multiply using the lattice method, create a grid with diagonal lines, and split the numbers to be multiplied into their place values, e.g. 255 x 25 (see right)

Multiplication of Arabic Numerals

Fibonacci introduced lattice multiplication to Europe