Variational Quantum Classifier for Heart Disease Prediction

Team members

- Şofariu Adrian¹
- Şoptelea Sebastian¹
- Lung Rodica Ioana¹
- Mahu Gheorghe²
- Mihoc Tudor-Dan¹

- 1. Centre for the Study of Complexity, Babeş Bolyai University, Cluj Napoca
- 2. Centrul de Inovare şi Transfer tehnologic MAVIS, UMF laşi

Problem

Explore the implementation of a framework to predict heart disease using a Variational Quantum Classifier (VQC).

Problem

Binary classification of patient data to predict the presence of heart disease

Variational Quantum Classifier (VQC)

Evolutionary computation → Quantum Circuit Parameter Optimization

Pipeline

- Prerequisites Setup
- Defined Constants
- Data Preparation
- Quantum Circuit Preparation
- Utility Function
- Classification and Cost Evaluation
- Execution and Optimization
- Result Visualization

Database - UCI Heart Disease Dataset

Data embedding

Quantum Circuit Preparation


```
ansatz = real_amplitudes(
  num_qubits = QUBIT_COUNT, # Number of qubits = number of features
  reps = 1, # One repetition layer of rotations + entanglement
  entanglement = 'linear' # Linear entanglement between qubits
)
```

Quantum Circuit Composition → data-encoding feature map + the parameterized ansatz circuit

Quantum Circuit Utility Functions

Parameter Dictionary Creation for Quantum Circuit

Label Assignment Based on Bit String Parity

Probability Calculation from Quantum Measurement Counts

Classification and Cost Evaluation

Processing Details

- For each input feature vector:
 - Binds feature data and ansatz parameters to the quantum circuit.
 - Adds measurement operations to read out qubit states.
 - Transpiles/prepares the circuit for execution.
- Runs all circuits in batch on the quantum sampler.
- Converts measurement results into class probabilities using parity-based labeling.

Output

Returns a list of dictionaries, each containing class labels and their associated probabilities for the corresponding input feature vector.

```
def classify(x list: list, params: list, sampler: any, pm: any) -> list:
    qc list = []
    for x in x list:
       # Bind input features and ansatz parameters to the circuit
       classifier = circuit.assign parameters(get data dict(params, x))
       # Add measurement operations on all qubits
       classifier.measure all()
       # Transpile or prepare the circuit for the backend
       transpiled circuit = pm.run(classifier)
       qc list.append(transpiled circuit)
   # Execute all circuits on the simulator or quantum backend
   results = sampler.run(qc list, shots=SHOT COUNT).result()
   probs = []
   for gc in results:
      # Extract counts of measurement outcomes
      counts = qc.data.meas.get counts()
      # Convert counts to probabilities for each class label
      prob = return probabilities(counts)
      probs.append(prob)
   return probs
```

Cost Functions

Binary Cross-Entropy Cost

Calculates the *Binary Cross-Entropy* (BCE) loss for a predicted probability corresponding to the expected class label.

Cost Function for Quantum Circuit Training

Calculates the average loss over the dataset by comparing predicted probabilities against expected labels using Binary Cross-Entropy.

We will define an **Objective Function** – a cost function that evaluates how well, for a given parameter set, the training data is classified.

Quantum Circuit Parameter Optimization

- CMA-ES (Covariance Matrix Adaptation Evolution Strategy):
 - Evolutionary algorithm suitable for noisy or non-convex problems
 - Handles parameter noise using cma. Noise Handler
 - Controlled by CMA_ITER_COUNT
- COBYLA (Constrained Optimization BY Linear Approximations):
 - Gradient-free optimizer based on linear approximations
 - Ideal for small parameter spaces and quick iterations
 - Controlled by COBYLA_ITER_COUNT

Quantum Circuit Parameter Optimization

Processing Details

- 1. **Initialize Parameters** Randomly initialized in the range $[0, 2\pi]$ to match typical rotation gate requirements for angle encoding.
- Define Objective Function The cost function evaluates how well a given parameter set classifies training data.
- 3. **Run Optimization** Depending on the flag, either CMA-ES or COBYLA minimizes the cost over several iterations.

Results and Validation

accuracy in simulations without noise

Cobyla	CMA-ES	SVM non-quantum method
86%	75%	81.81%

accuracy in simulations with noise

Cobyla	CMA-ES	SVM non-quantum method
70% – 85%	74% when using a NoiseHandler, closer to ~83%	81.81%
more frequent towards 85%		

Running on QPU

- Training Iterations:
 - Completed 49 out of 70 planned iterations before the sessions were continuously marked as "Pending" on the IBM Quantum platform.
- Backends & Region:
 - Used ibm_fez in the US-East region.
 - Also attempted to use ibm_kingston (least busy at the time), but sessions were pending and did not execute.
- Runtime & Queueing:
 - Total runtime: ~7-8 hours.
 - Each iteration took approximately 2m 20s to 2m 50s of actual QPU time.
 - Additional time lost due to queue delays queues ranged from 20 to 35 users.

Running on QPU

• Training Performance:

Binary Cross Entropy (BCE) cost plateaued around 0.54 and did not drop lower during training.

Accuracy Evaluation:

- Achieved an accuracy of ~74%.
- Standard deviation = 0.0000, with a 95% confidence interval of [0.7386, 0.7386].
- The lack of variation may be due to the use of a fixed random seed (seed = 42) during testing.

Comparison with Local Simulations:

- Accuracy on local (noisy) simulators varied widely: 70%–85%, depending on the run.
- While the QPU run scored slightly below some simulated runs, it is still promising, especially given that the cost function typically stabilizes around iteration 65–70 — beyond the 49 reached here.

Challenges

Feature Selection

Parameter Selection

Data Mapping

Circuit Architecture

Cost Minimisation

Noise Handling

Set up and run on QPU

Contributions

- Adrian Şofariu data embedding and model concept
- Sebastian Şoptelea data embedding and model concept
- Rodica Ioana Lung optimization and cost minimisation
- Gheorghe Mahu testing and validation
- Tudor-Dan Mihoc testing and presentation

Thank you for your attention!