DIGITAL CIRCUITS

Week-13, Lecture-1 Sequential Circuits

Sneh Saurabh 6th November, 2018

Digital Circuits: Announcements/Revision

Sequential Circuits Design

Sequential Circuit Design: Excitation Table

Characteristics Table/Function:

- Given a current state and the inputs, what would be the next state
- Useful for Analysis

Excitation Table/Function:

- Given a current state and the next state, what are the required inputs
- Useful for Synthesis

Q(t)	Q(t=1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

(a) JK Flip-Flop

Q(t)	Q(t=1)	T
0	0	0
0	1	1
1	0	1
1	1	0

(b) T Flip-Flop

Sequential Circuit Design: JK Flip-Flop

Problem 1:

Design a circuit using JK flip-flops that implements the state table shown below.

	sent ate	Input	Next State		Flip-Flop Inputs			uts
Α	В	x	A	В	J _A	K _A	J _B	K _B
0	0	0	0	0				
0	0	1	0	1	_		_	
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	1	1				
1	1	0	1	1				
1	1	1	0	0				

Q(t)	Q(t=1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

(a) JK Flip-Flop

Sequential Circuit Design: JK Flip-Flop (Input Equation)

Present State		Input		Next State		Flip-Flop Inputs				
A	В	<i>x</i>	A	В	J _A	K _A	J _B	K _B		
0	0	0	0	0	0	X	0	X		
0	0	1	0	1	0	X	1	X		
0	1	0	1	0	1	X	X	1		
0	1	1	0	1	0	X	X	0		
1	0	0	1	0	X	0	0	X		
1	0	1	1	1	X	0	1	X		
1	1	0	1	1	X	0	X	0		
1	1	1	0	0	X	1	X	1		

Sequential Circuit Design: Logic Diagram

$$J_A(A,B,x) = Bx'$$

$$K_A(A, B, x) = Bx$$

$$J_B(A, B, x) = x$$

$$K_B(A, B, x) = (A \oplus x)'$$

Sequential Circuit Design: T flip-flop

Problem 2:

Design a 3-bit binary counter using T flip-flops.

- Transition happens at each clock edge.
- Input (Clock Edge) is implicit in this state diagram.

- Assume that the output of the flipflops are A_2 , A_1 and A_0
- Draw the state table using the state diagram

Pre	sent S	tate	Ne	Next State			
A ₂	<i>A</i> ₁	<i>A</i> ₀	A ₂	<i>A</i> ₁	<i>A</i> ₀		
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Sequential Circuit Design: Input Equation for T flip-flop

Present State		Next State			Flip-Flop Inputs			
A ₂	<i>A</i> ₁	<i>A</i> ₀	A ₂	<i>A</i> ₁	<i>A</i> ₀	T _{A2}	<i>T</i> _{A1}	T _{A0}
0	0	0	0	0	1			
0	0	1	0	1	0			
0	1	0	0	1	1			
0	1	1	1	0	0			
1	0	0	1	0	1			
1	0	1	1	1	0			
1	1	0	1	1	1			
1	1	1	0	0	0			

Q(t)	Q(t=1)	T
0	0	0
0	1	1
1	0	1
1	1	0

(b) T Flip-Flop

 Using the state table and the excitation table of T flip-flop, find the input values required at the T flip-flop.

Sequential Circuit Design: Simplified Input Equation

Present State		Next State			Flip-Flop Inputs			
A ₂	<i>A</i> ₁	<i>A</i> ₀	A ₂	A ₁	<i>A</i> ₀	T _{A2}	<i>T</i> _{A1}	T _{A0}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

Sequential Circuit Design: Logic Diagram

Sequential Circuit Design: Invalid states

Problem 3:

Design a 3-bit binary counter using T flip-flops that counts as: $0 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 0 \dots$

Assume that the next state from the invalid state is the 0 state.

- First draw the state diagram
- Draw the state table

Pre	resent State		Next S		lext State Flip-flop inputs			
P_A	P_B	$P_{\mathcal{C}}$	N_A	N_B	N_C	T_A	T_B	T_C
0	0	0						
0	0	1						
0	1	0						
0	1	1						
1	0	0						
1	0	1						
1	1	0						
1	1	1						

Sequential Circuit Design: Optimized Implementation

	Present State		Next State			Flip-flop inputs		
P_A	P_B	P_C	N_A	N_B	N_C	T_A	T_B	T_C
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	0	0	1
1	0	0	0	0	0	1	0	0
1	0	1	0	0	0	1	0	1
1	1	0	0	0	0	1	1	0
1	1	1	0	0	0	1	1	1

• Find T_A , T_B and T_C in terms of P_A , P_B and P_C

$$T_A = P_A + P_C' P_B$$

$$T_B = P_A P_B + P_A' P_B' P_C$$

$$T_C = P_B P_C + P_A P_C + P_A' P_B' P_C'$$

Resources used: NOT=3, AND=8, OR=4

Can it be improved?

Sequential Circuit Design: When Invalid states are don't cares

Problem 4:

Design a 3-bit binary counter using T flip-flops that counts as: $0 \rightarrow 1 \rightarrow 3 \rightarrow 2 \rightarrow 6 \rightarrow 0 \dots$

Assume that the next state from the invalid state is a don't care state. (From an invalid state, it is allowed to go to any state)

Draw the state table again with don't cares

Pre	sent S	tate	Ne	ext Sta	ite	Flip-flop in		puts
P_A	P_B	P_{C}	N_A	N_B	N_C	T_A	T_B	T_C
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	0	0	1
1	0	0	X	X	X	X	X	X
1	0	1	X	X	X	X	X	X
1	1	0	0	0	0	1	1	0
1	1	1	X	X	X	X	X	X

Sequential Circuit Design: Optimized Implementation

Present State			Next State			Flip-flop inputs		
P_A	P_B	$P_{\mathcal{C}}$	N_A	N_B	N_C	T_A	T_B	T_C
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	0	0	1
1	0	0	X	X	X	X	X	X
1	0	1	X	X	X	X	X	X
1	1	0	0	0	0	1	1	0
1	1	1	X	X	X	X	X	X

Resources used: NOT=2, AND=4, OR=2

Without don't care it was: NOT=3, AND=8, OR=4

• Find T_A , T_B and T_C in terms of P_A , P_B and P_C

$$T_A = P_C' P_B$$

$$T_B = P_A + P_B' P_C$$

$$T_C = P_B P_C + P_B' P_C'$$

Is there any problem?

Sequential Circuit Design: Optimized Implementation

With the following implementation, what would be the next state for the invalid states:

$$\succ T_A = P_C' P_B$$

$$> T_B = P_A + P_B' P_C$$

$$ightharpoonup T_C = P_B P_C + P_B' P_C'$$

First find T_A , T_B and T_C and then N_A , N_B and N_C

If the counter enters an invalid state, it remains in the invalid state for ever!

How to avoid this?

Present State			Next State			Flip-flop inputs		
P_A	P_B	$P_{\mathcal{C}}$	N_A	N_B	N_C	T_A	T_B	$T_{\mathcal{C}}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	0	1	1	0	1	0	0
0	1	1	0	1	0	0	0	1
1	0	0						
1	0	1						
1	1	0	0	0	0	1	1	0
1	1	1						

Digital Circuits: Practice Problems

Problems 5.1-5.4

from "Digital Design" – M. Morris Mano & Michael D. Ciletti, Ed-5, Pearson (Prentice-Hall).

Problems 7.1-7.9

from Fundamentals of Digital Logic with Verilog Design - S. Brown, Z. Vranesic

