

ОБЩЕЕ РУКОВОДСТВО по визуальному представлению информационных моделей

ПРАВИТЕЛЬСТВО СВЕРДЛОВСКОЙ ОБЛАСТИ

Государственное автономное учреждение Свердловской области

«УПРАВЛЕНИЕ ГОСУДАРСТВЕННОЙ ЭКСПЕРТИЗЫ»

(ГАУ СО «Управление государственной экспертизы»)

Малышева ул., д. 101, оф. 297, г. Екатеринбург, 620004 тел. (343) 371-29-05, факс 374-09-12 e-mail: info@expert-so.org ИНН 6661000635, КПП 667001001 ОГРН 1026605240133

Общее руководство по визуальному представлению информационных моделей

УГЭСО-ТИМ-04-2019

предварительная редакция № 0.1 от 15.07.2019

Редакция предназначена для обсуждения и комментирования в рабочей группе по информационному моделированию Управления с привлечением представителей строительных и проектных организаций, разработчиков специализированного программного обеспечения

ОГЛАВЛЕНИЕ

1.	Введение		4
2.	Термины, определ	ения и понятия.	4
3.	Общие положения		4
4.	Библиография		6
5.	ПРИЛОЖЕНИЕ А.	Цветовая маркировка инженерных систем	7
6.	ПРИЛОЖЕНИЕ Б.	Цветовая маркировка объектов местности и рельефа	9
7.	ПРИЛОЖЕНИЕ В.	Цветовая маркировка литологических свойств	10
8.	ПРИЛОЖЕНИЕ Г.	Цветовая маркировка возраста скальных пород	12

1. Введение

- 1.1 Данное руководство является стандартом организации ГАУ СО "Управление государственной экспертизы" (далее Управление).
- 1.2 Данное руководство является одним из документов комплекта руководств и методических пособий, разработанных в соответствии с положениями ГОСТ 57310-2016 "Моделирование информационное в строительстве. Руководство по доставке информации. Методология и формат".
- 1.3 Комплект состоит из документов двух типов общие руководства и технические руководства.
- 1.4 Общие руководства содержат требования, изложенные для специалистов по организации проектных и изыскательских работ, выполнения инженерных изысканий, архитектурно-строительных проектов и проектов линейных объектов проектированию архитекторов, инженеров и т.п. Положения общих руководства излагаются с использованием понятий и технических терминов из области строительства.
- 1.5 Общие руководства разрабатываются в соответствии с положениями пунктов 4.4 и 5.6 ГОСТ Р 57310-2016
- 1.6 Технические руководства содержат требования, изложенные для специалистов по информационным технологиям и информационному моделированию. Проектных и строительных организаций управляющих моделированием, координаторов моделирования (ВІМ-менеджеров, ВІМ-координаторов) и т.п., а также для специалистов организаций, разрабатывающих программное обеспечение для информационного моделирования. Положения технических руководств излагаются с использованием понятий и технических терминов из области программирования, и информационных технологий.
- 1.7 Данное руководство, УГЭСО-ТИМ-04, является общим руководством, и содержит основные требования и рекомендации к оформлению файлов проектной документации, представляемых для проведения экспертизы проектной документации, для обеспечения эффективного использования технологии информационного моделирования в Управлении и формирования информационных моделей на этапе осуществления экспертизы проектной документации.
- 1.8 Руководство содержит требования к представлению информации при визуализации информационных моделей и типовые цветовые шкалы для основных величин и понятий.

2. Термины, определения и понятия.

2.1 Термины и определения приведены в документе УГЭСО-ТИМ-01

3. Общие положения

- 3.1 Представление информации с помощью цвета отдельных элементов модели при работе с цифровыми информационными моделями может осуществляться следующими способами:
 - 3.1.1 Непосредственное цветовое представление цвет, соответствующий какому-либо свойству элемента модели, задан в цифровой информационной модели как геометрическое свойство этого элемента. Данный цвет отображается одинаково всеми специализированными программами для работы с цифровыми информационными моделями.
 - 3.1.2 Опосредованное цветовое представление цвет, соответствующий какому-либо свойству элемента модели, отображается в зависимости от величины этого свойства с использованием какой-либо цветовой шкалы, задающей соответствие диапазона значений величин диапазону значений цвета. В разных программах просмотра информационных моделей цвет будет отображаться одинаково только при использовании одинаковых цветовых шкал для просматриваемого свойства.
- 3.2 При создании цифровых информационных моделей с непосредственным цветовым представлением свойств объектов модели следует использовать типовые (унифицированные) цветовые шкалы для этих свойств (при наличии таких типовых шкал).

- 3.3 При опосредованном цветовым представлении свойств объектов модели в специализированном программном обеспечении следует как правило использовать типовые (унифицированные) цветовые шкалы для этих свойств (при наличии таких типовых шкал).
- 3.4 В данном руководстве приведены типовые шкалы для некоторых свойств цифровых информационных моделей зданий и сооружений и цифровых моделей местности

4. Библиография

- 4.1 УГЭСО-ТИМ-01-2019 Общее руководство по подготовке информационных моделей для экспертизы проектной документации и результатов инженерных изысканий.
- 4.2 УГЭСО-ТИМ-02-2019 Общее руководство по уровням геометрической проработки цифровых информационных моделей.
- 4.3 УГЭСО-ТИМ-03-2019 Общее руководство по содержанию цифровых информационных моделей.
- 4.4 УГЭСО-ТИМ-21-2019 Техническое руководство по подготовке документации в электронной форме в формате PDF для экспертизы проектной документации
- 4.5 УГЭСО-ТИМ-22-2019 Техническое руководство к составу файлов цифровых информационных моделей в формате IFC для экспертизы проектной документации

5. ПРИЛОЖЕНИЕ А. Цветовая маркировка инженерных систем зданий

- 5.1 В данном приложении приведены рекомендованная цветовая шкала для отображения типов и видов назначения отдельных инженерных системами или их частей.
- 5.2 Данная цветовая маркировка разработана в США в 2009 году для информационного моделирования объектов Федерального агентства США по управлению административными зданиями. В настоящее время данная цветовая маркировка является распространенной в северной Америке и Европейских странах.

5.3 Трубопроводные системы

Система	RGB
Сжатый воздух	0,0,255
Ливневая канализация	128,0,255
Канализационный слив	219183255
Подача холодной воды (ХВС)	0,63,255
Возврат горячей воды	255-170-170
Подача горячей воды (ГВС)	255,60,60
Природный газ	255,255,0
Санитарно-техническая система	255,127,0
Санитарная вентиляция	255,191,0
Неизвестный трубопровод	76,38,38

5.4 Классификация "Неизвестный трубопровод" должна использоваться только в случаях крайней необходимости, когда нужно показать существующий трубу, и неизвестно, что она проводит.

5.5 Системы вентиляции и кондиционирования (ОВиК)

Система	RGB		
Нагрев горячей воды	255,0,127		
Отопление	255,0,63		
ОВиК- Вытяжка	103,165,82		
ОВиК- Приток	0,191,255		
ОВиК- Возврат	0,255,127		
ОВиК- Снабжение	0,127,255		
Самотечный возврат конденсата в	127,255,0		
котёл			
Насос конденсата	0,104,78		

5.6 Системы автоматического пожаротушения

Система	RGB
Водяные системы	255,0,0
CO ₂	255,0,191
халон	255,170,234
инертный газ	189,0,141

5.7 Паропроводы

Система	RGB
Пар - Высокое давление	0,94,189
Пар - Среднее давление	126,157,189
Пар - Низкое давление	170,212,255

5.8 Системы отопления и кондиционирования

Система	RGB
Возвращение охлажденной воды	191,0,255
Охлажденная вода	234,170,255
Возврат градирни	141,0,189
Градирня водоснабжения	173,126,189

5.9 Электрические и Телекомммуникационные системы

Система	RGB
Телекоммуникации	189,189,126
Распределение мощности	189,189,0
Осветительные приборы	255,255,170
Безопасность	255,255,0

5.10 Особые/ Специализированные системы

Система	RGB
Деионизированная вода	165,165,82
Двухтемпературный возврат	0,63,255
Двухтемпературное снабжение	191,0,255
Восстановление энергии	82,165,165
Топливный газ	255,127,127
Жидкое топливо	82,82,165
Топливный клапан	165,165,82
Лабораторный газ	165,124,82
Медицинский газ	165,82,165
Азот	0,0,255
Непитьевая вода	165,0,0
Питьевая вода	0,255,63
Пропан	0,0,255
Жидкий хладагент	0,255,255
Всасывание хладагента	0,0,255
Обратноосмотическая вода	165,0,0
Вакуум	82,165,165

6. ПРИЛОЖЕНИЕ Б. Цветовая маркировка объектов местности и рельефа

6.1 Цифровая маркировка объектов местности и рельефа в электронных документах и цифровых моделях местности должна быть выполнена в соответствии с .руководством "Условные знаки для топографических планов масштабов 1:5000 1:2000 1:1000 1:500" утвержденного ГУГК при Совете Министров СССР 25 ноября 1986 г.

7. ПРИЛОЖЕНИЕ В. Цветовая маркировка литологических свойств грунтов

- 7.1 В данном приложении приведены рекомендованная цветовая шкала для отображения литологических свойств грунтов и других инженерно-геологических элементов.
- 7.2 Данная цветовая шкала принята в соответствии с разделом 11.3.1 руководства "Техническое руководство D.2.II.4 по представлению геологических данных" европейского проекта INSPIRE по разработке унифицированных геоинформационных систем.

Ka			Rhyolitoid 191, 140, 242	Rhyolite 199, 153, 242 Alkali feldspar rhyolite 204, 166, 242	
			Trachytoid	Trachytic rock 161, 122, 237	Trachyte 161, 122, 237
		Fine grained igneous rock 166, 102, 242	153, 102, 230	Latitic rock 173, 140, 242	Latite 173, 140, 242
			Andesite 145, 69, 235	Boninite 158, 82, 235	
			Basalt 102, 0, 255	Alkali olivi 115, 51	
				Tholeitic basalt 128, 77, 237	
ria			Phonolitoid 89, 38, 242	Phon 89, 77,	
mate, 217	s rock	one of the original of the ori	Tephritoid 115, 89, 242	Tephrite 115, 115, 242	
53, 0	153, 0, 217 Igneous rock 179, 0, 204			Basanite 128, 128, 242	
igne 1			Foiditoid 128, 77, 230	Foldite 128, 77, 230	
				Peridotite 217, 13, 153	
			fic igneous rock 04, 0, 140	Pyroxenite 230, 38, 166	
				Komatiitic rock 240, 69, 171	
				Carbonatite 0, 255, 255	
		ig	c composition neous rock 178, 0, 217	Kalsilitic and melilitic rocks 230, 178, 0	
				Exotic alka 179, 0	
				orphyry i3, 25, 178	
				leritic rock 8, 25, 204	

ated I	Building rubble 179, 179, 170	
Anthropogenic unconsolidated material 173, 166, 153	Slag 173, 166, 153	
inthropoge nconsolida material 173, 166, 14	Mine dump material 173, 166, 153	
Ant unc 17	Soil improver 173, 166, 153	
	Concrete 199, 199, 190	
Anthropogenic consolidated material 199, 199, 190	Bitumen 199, 199, 190	
opogolida olida ateria 199,	Waste 199, 199, 190	
Anthropogenic consolidated material 199, 199, 190	Sludge 199, 199, 190	
4	Sewage Sludge	

7.3

	Sediment 255, 255, 128			Diamicton 242, 242, 191	
		Clastic sediment 255, 255, 153		Gravel 255, 255, 204	
				Sand 255, 255, 178	
		Clasti 255	Mud	Cla 250, 242	
			255, 242, 178	Sil 242, 230	
			nate sediment 3, 179, 201	Impure carbon 51, 199	
		ŧ	Organic rich	Pea 230, 217	
		Biogenic sediment 217, 204, 128	sediment 222, 212, 140	Sapro 235, 222	pel 2, 158
		genic sedim 217, 204, 128	Ooze	Carbonat 230, 230	
		Bio	230, 217, 166	Siliceour 237, 224	
				Diamictite 204, 191, 140	
	Sedimentary rock 230, 204, 102	_		Conglomerate 204, 191, 166	
		30, 204, 102 Organic rich Sedimentary rock sedimentary rock 179, 179, 153	Sandstone 242, 217, 115	Aren 242, 224	
60				Was 242, 230	
255, 242, 153			Mudstone 178, 140, 89	Cleyst 191, 153	
5, 24				Siltste 204, 166	
25				Sha 209, 170	
			Coal 179, 191	Lign 191, 175	
				Bitumino 204, 184	
				Anthra 191, 191	
2		ock	rock 12	Dolomitic or magnesian sedimentary rock	Dolomite 115, 166, 24
		ntany ro	Pure carbonate sedimentary rock 89, 140, 242	102, 153, 242 Limestone	Chalk 115, 191, 242
		Carbonate sedimentary roci	Pure sedin	102, 178, 242	Travertine 128, 204, 24
			Impure carbonate	Impure lin 89, 191	
			sedimentary rock	Impure de 102, 204	
			siliceous sedimentary 179, 204, 102	Biogenic silica se 191, 217	
				sedimentary rock 1, 204, 102	
		-	ric mudstone 17, 178, 127	Organic bearin 217, 186	
	material 4, 230	orite 4, 230	() ()	Rock salt 170, 218, 242	
	Chemical section nentary materi 153, 204, 230	Evaporite 53, 204, 23	(Sypsum or anhydrite 178, 230, 242	

			Foliated metamorphic rock 77, 217, 402	Gneiss 97, 224, 122	Orthogneiss 115, 230, 140
					Paragneiss 133, 240, 158
				Phyllite 115, 242, 140	
			Mated r	Slate 128, 242, 153	
			Fe	Schiet 51, 186, 102	Mica schist 77, 191, 128
			Chlorite actin	olite epidote metan 38, 153, 77	norphic rock
Composite genesis material 166, 217, 204 Composite genesis rock 255, 234, 211			Glaucophane lav	wsonite epidote me 115, 179, 128	tamorphic rock
		rock 81		Serpentinite 140, 191, 128	
	1000	amorphic rocl 61, 138, 61	Quartzite 230, 242, 89		
	s rock	Metan	Amphibolite 64, 217, 115		
	genesi 34, 211		Marble 51, 179, 230		
	osite 255, 2		Granulite 102, 204, 128		
	Comp			Eclogite 51, 264, 89	
			Migmatite 25, 191, 102		
			Granofels 128, 178, 128	Horn 140, 19	nfels 91, 140
			Metasomatic rock	Skarn 153, 230, 89	
			128, 230, 77	Spi 166, 23	lite 10, 102
		Ma	terial formed	Bauxite 191, 230, 217	
		е	n surficial nvironment	Duricrust 179, 230, 217	
		16	56, 217, 204	Residual material 204, 242, 230	
			related material 230, 230, 0		tic rock 230, 0
				merated material 179, 102	

Breccia 248, 103, 64

> Tuffite 128, 51, 178

Compound material 255, 235, 227

8. ПРИЛОЖЕНИЕ Г. Цветовая маркировка возраста скальных пород

- 8.1 В данном приложении приведена цветовая шкала для отображения возраста горных пород в соответствии с Геологической шкалой времени, утвержденной международной геологической комиссией по стратиграфии в 2008 году.
- 8.2 Данная цветовая шкала приведена по схеме из раздела 11.3.2 руководства "Техническое руководство D.2.II.4 по представлению геологических данных" европейского проекта INSPIRE по разработке унифицированных геоинформационных систем.

		Quartemary	Holocene 34.20,334	Holocene 24,342.29
			Peistocene 26,196,114	Upper Pleistocene 36580.21
	Cenozoic M24823			lonian 2652d.198
				Calabrian 205,240,166
				Gelesian 205,208,204
		Neogene	Pliocene 36,281,103	Piacenzian 205,208,191
				Zanclean 26,285,179
			Modene 35535.0	Mossinian 205,203,115
				Tortonian 255,265,110
				Serravalian 25,25,8
				Langhian 25,25,77
				Burdigalian 200,200,00
				Aquitanian 28,29531
			Oligocene 251,110,122	Chattian 24.23(.17)
				Rupelan asarusi
o			Eccène 261.181.09	Prisbonian 38.200.191
Phanerozoic 154,217,221		Paleogene 88.96.82		Bartonian 250 192,149
hane 194,2				Lutetian 202 100,130
۵.				Ypresian 302:107.115
			Paleocene 251,167,85	Thanetian 200,191,191
				Selandian 26, 191, 191
				Damian 253,780,88
	Mesozoic 160,197,202	Chalapsous	Upper 196,216,34	Meastrichtien 942,000,140
				Campanian 200,244,127
				Santonian 217,008,718
				Conlacian 204,000,194
				Turonian HLZITAD
				Cenomanian m.zz.o
			Lower 146,205,87	Albian 24,234,31
				Aptian tri 231,19
				Barremian 1920.127
				Hauterivian Manutr
				Valenginian 190.217,198
				Berriasian 143,206.96

		Aureasió sz. or za			Tithonian 201201307
	Mesozoic 10.1913/202		Upper 178,227,238	Kimmeridgian 2012/01/01	
			A 10		Oxfordian 91.221.81
					Callovian 191221,229
			Middle tis,av.218	Bathonian 176206,227	
				Bajocian 1902/204	
				Asienian 1942/0,335	
			Lower 60,114,288		Toarcian essesse
					Pliensbachlan
					Sinemurian 93.98,216
					Hettangian 18,0529
		Triassic	Upper 189,140,195		Rhaetian 27.165,219
					Norian 24-00,21
					Camian 201.195.200
			E STATULE.	Ladinian artistin	
			Middle 117,104,577		Anislan 186 YV, 188
7,221			Lower 19267,163		Olenekian Tis.st.199
Phanerozoic 194,217,221					Induan NATATIO
•		Permian avidero	Lopingian 261,167,148		Changheingian 86:16,116
					Wuchiapingian 2021/0.102
			Guadalupian 25U 1612		Capitanian 201154,133
	Paleozolic 150,192,141				Worden 20.94.118
					Roadian 201120,106
			Cisuratan 39676.99		Kungurian 200 (08.118
					Artirokian 2011/20, NA
					Sakmarian 337,19,82
					Asselian 277-26.40
		Carboniferous	Pennsykanan Isparin	Upper 191,200,100	Gzhelian 24.2°2, 100
					Kasimovian 19128, 197
				Middle 196,199,183	Moscovian 17020, 88
				Lower 140,190,188	Bashkirian 183 (M. M
			Mississippian toare.ve	Upper 176190,108	Serpukhovian
				Middle 152,160,108	Visean 196,199,109
			Mis	Lower 128,171,108	Tournal sian

8.4

		Upper	Famennian sezerteer
		341,225,157	Frasnian 94220.09
	_	Middle 341,280,184	Givefian 341,231,133
	Devonian		Eifelian artzonii
	0"	Lower 225/72.77	Emsian 20200.017
			Pragian 22/19/194
			Lochkovian 220/85/00
		Pridoli 250,245,225	Prido ii 230,245,225
		Ludlow 191,200,287	Ludfordian 217,246,223
			Gorstian 304234.221
	Silurian	Wenlock 179,295,194	Homerian 201223289
	Silur		Sheinwoodian 161,210,180
		Llandovery 153,215,179	Telychian 167.206.207
			Aeronian 179.2% 194
			Rhuddanian 191231.181
Phanerozoic 194.217.221 Paleozoic		Upper 127:282,147	Himantian 188219371
hanerozoi 194.217.221 Paleozoic			Katian 632H/S9
۵.			Sandbian 90,200,946
	dovicia	Middle 17,180,08	Darriwilian 19.19.19
	8		Dapingian 102/103/66
		Lower M. 197, 119	Rolen et 1761 to
			Tremadocian streetse
		Furongian 178294,189	Stage 10 380,241,291
			Stage 9 217,240,887
			Paibian 204236.074
		Series 3 196297,134	Guzhangian aouzza.no
	xian xas		Drumian 86.2(1)87
	Cambrian 127/2030		Stage 5 092/1/46
		Series 2 153,162,136	Stage 4 179.255.142
			Stage 3 90.51.51
		Terreneuvian 140,30,186	Stage 2 96.7 M . 708
			Fortunian stantum

			Ediacaran 294,217,106	Ediaceran 34.2/7.06			
		Neoproterazoia 24,179,08	Cryogenian 254,204,90	Cryogenian 54/34 se			
			Tonian 254.00178	Tonian2 200,204,89			
				Tonian1 34.91.9			
		Mesoproterozoic zs.rase	Stenian 294,217,154	Stenian2 26 24 178			
				Stenian1 24.207.64			
			Ectasian 255.704,136	Ectasian4 20 28 64			
				Ectasian3			
				Ectasian2 skt/lik No			
				Ectasian1 342/74/50			
			Calymenian 8318.52	Calymmian4 212 283 363			
				Calymmian3 streene			
				Calymmian2 2512th 108			
	ozoic (9)			Calymmian1			
	Proterozoic 247,53,99		Statherian seath, 85	Statherian4			
22				Staffrenan3 265.06.201			
briar 112		Paleoproterozoic 34,57,10		Statherian2			
Precambrian 201,67,412				Statherian 1 26/4/76			
ď			Orosinan aktiokisa	Orosirian7 200,181,200			
				Orceirlan5 280,175,225			
				Orosirian5 skt/0.28			
				Orosinian4 activates			
				Orosirian3 341.48.28			
				Orosirian2 345.182.201			
				Orosirian1 345.722.198			
			Rhyadan selat.192	Rhyacian strator			
			Siderian	Siderian2 283419			
			241,79,124	Siderian 1 285,71,178			
	Archean		Neoarchean	Necarchean2 %1.28.25			
		248,155,193		Necerchan1 34(18)30			
			Mesoarchean air.104,169	Mesoarchean setration			
		1	Paleoarchean 34.68,189	Paleoarchean secret still			
				Ecerchican 2022-141			
		Hadean (rytorma) 1742-178					

8.5