SGA-100X多参数大气模块通讯协议 Ver: 181101

一、基本协议

- 支持485 半双工通信方式通信。 1.1,
- 通信格式为MODBUS-RTU 方式,8 位数据位,1 位停止位,无校验。波特率:9600BPS。 1.2
- 1.3 支持03 号和06 号两条MODBUS 命令。
- 通信时为从机方式。主机提出命令请求,控制器响应:接收数据后做数据分析,如果数据满 1.4 足通信规约,从机做出响应。(采样周期>1000MS,以免过于频繁响应中断影响模块采样浓 度周期)从接收完命令帧到开始应答的时间小于200MS。若从机检测数据错,或不及时响应 主机, 主机做超时处理。
- 数据帧格式: 1.5

从机地址 命令字 信息字 校验	从机地址	命令字	信息字	校验码
-----------------------	------	-----	-----	-----

从机地址: (1 个字节): 从机设备号, 主机利用从机地址来识别进行通讯的从机设备。表明由 用户设置地址的从机,将接收由主机发送来的信息。每个从机都必须有唯一的地址码,并 且只有符合地址码的从机才能响应回送。FE为广播地址,所有模块均会响应,使用广播地 址时485总线上只能连接1套模块。

命令字: (1 个字节): 主机发送的功能码,告诉从机执行什么任务。

信息字: (N 个字节):包括进行两机通讯中各种数据信息,数据长度,读写的数据等。

校验码: (2 个字节): 用于检测数据通信错误,采用循环冗余码CRC16,详见附件2。

- 1.6、通信命令, 仅支持03和06指令:
 - 1) 读输入/保持寄存器: 03,命令:

从机地址	03	寄存器地址 高位	寄存器地址 低位	寄存器数量 高位	寄存器数量 低位	校验码	校验码
		ADRH	ADRL	N_H	N_L	CRC_L	CRC_H

正确应答:

пвыш	0.2	数据字节数	数据	校验码	校验码
从机地址	03	N_L*2	N_L*2 字节数据	CRC_L	CRC_H

2) 单寄存器写: 06命令。

		寄存器地址	寄存器地址	寄存器值	寄存器值	校验码	校验码
从机地址	06	高位	低位	高位	低位	1又3业1号	1又到11月
		ADRH	ADRL	N_H	N_L	CRC_L	CRC_H

正确应答: (原数据返回)

		寄存器地址	寄存器地址	寄存器值	寄存器值	校验码	校验码
从机地址	06	高位	低位	高位	低位	1又3近11月	1又到19
		ADRH	ADRL	N_H	N_L	CRC_L	CRC_H

二、数据地址表及功能说明: (1个寄存器2字节)

功能码		变量功能	指令起始地址	数据长度 (寄存器数量)	变量功能说明
		模块地址	0X00F0	1	0X0000-0X0093
	系统参数	传感器数量	0X00F1	1	0X0000-0X000F
		上传模式	0X00F4	1	01: 主动上传模式 00: 主从模式
		1#传感器参数	0X0500	5	
		2#传感器参数	0X0500+5	5	
	传感器多	•••	•••		5 个 寄 存 器 依 次
	後 参数值 (可一次	N#传感器参数	0X0500+(N-1) *5	5	为:
	性读取这 (N+4)*5 个寄存 器)	温度值	0X0500+(N+0) *5	5	点位数、气体名
		湿度值	0X0500+(N+1) *5	5	数据格式见: 传感器参数说明
03		PM2.5测量值	0X0500+(N+2) *5	5	
功能 码		PM10测量值	0X0500+(N+3) *5	5	
		1#传感器测量值	0X0600	1	0-50000 (0X1388)
		2#传感器测量值	0X0600+1	1	0-50000 (0X1388)
	// _B HH	•••••	••••	1	
	传感器 测量值	N#传感器测量值	0X0600+(N-1)	1	0-50000 (0X1388)
	(可一次 性读取这 N+4个寄 存器)	温度测量值	0X0600+N+0	1	有符号数,16BITS 最高位为数符(1 负数,0整数) 其他位是绝对值 (默认1位小数)
	14 HH /	湿度测量值	0X0600+N+1	1	0-50000 (0X1388)
		PM2.5测量值	0X0600+N+2	1	0-50000 (0X1388)
		PM10测量值	0X0600+N+3	1	0-50000 (0X1388)

		模块地址	0X30F0	1	0X0000-0X0093
	系统参数	传感器数量	0X30F1	1	0X0000-0X000F
	N-M-D-9X	上传模式	0X30F4	1	写入01: 主动上传 写入00: 主从模式
		高限报警值	0X3100	1	0-50000 (0X1388)
		低限报警值	0X3101	1	0-50000 (0X1388)
06	1号传感器	调零基准值	0X3102	1	第1字节: 固定01; 第2字节: 基准值 (范围00-255)
功能	参数设置	标定值	0X3103	1	0-50000 (0X1388)
码		调零	0X3104	1	写入: 0X00AA
		恢复出厂值	0X3105	1	写入: 0X00AA
	2号传感 参数设置		0X3200-0x320 5	6	6个参数均与1号
	•••	•••	•••		参数一致
	N号传感 器参数设 置		0X3N00-0x3N0 5	6	N本系统最大为6 个传感器

注意: 传感器数量N指的是智能传感器数量,不包括PM2.5和温湿度传感器。用户需根据系统所带智能传感器数量适当修改寄存器的首地址。

03读取命令通讯例举:

2.1、读取1-10#传感器多参数值(开通6个智能传感器)

发送: 01 03 05 00 00 32 C4 D3

0500-0504共5个寄存器: 1#智能传感器: 正常1.03PPM一氧化碳:

0505-0509共5个寄存器: 2#智能传感器; 低限报警0.209PPM二氧化硫;

050A-050E共5个寄存器: 3#智能传感器; 正常0.076PPM二氧化氮;

050F-0513共5个寄存器: 4#智能传感器: 高限报警0.523PPM臭氧:

0514-0518共5个寄存器: 5#智能传感器; 正常0.033PPM VOC;

0519-051D共5个寄存器: 6#智能传感器: 通讯故障:

051E-0522共5个寄存器为: 温度: 正常30.0℃;

0523-0527共5个寄存器为: 湿度; 正常51.0%RH;

0528-052C共5个寄存器为: PM2.5; 正常173 μ g/m3;

052D-0531共5个寄存器为: PM10; 正常185 μ g/m3;

00 00 00 67 00 02 00 02 00 02;

0000状态:正常; <u>0067浓度: 103;</u> 0002小数位2位; <u>0002名称:一氧化碳;</u> 0002 单位: PPM。此数据代表的是正常工作1.03PPM的一氧化碳。

后面的每组数据都按这个解析。

当状态值为0004通讯故障时,此传感器其它数据均可不处理。

2.2、读取1-9#传感器多参数值(开通5个智能传感器)

发送: 01 03 05 00 00 2D 85 1B

2.3、读取9-10#传感器多参数值(开通6个智能传感器,只读PM2.5、PM10)

发送: 01 03 05 28 00 0A 45 09

返回: 01 03 14 <u>00 00 00 AD 00 00 81 00 07</u> <u>00 00 00 B9 00 00 00 82 00</u> 07 61 C3

2.4、读取10#传感器多参数值(开通6个智能传感器,只读PM10)

发送: 01 03 <u>05 2D</u> <u>00 05</u> 15 0C

返回: 01 03 0A 00 00 00 B9 00 00 00 82 00 07 ED 97

2.5、读取1-10#传感器测量值(开通6个智能传感器)

发送: 01 03 06 00 00 0A C5 45

返回: 01 03 14 <u>00 D7</u> 00 00 <u>00 00</u> 00 00 <u>00 00</u> 00 00 <u>01 2C</u> 01 FD <u>00 87</u> 00 C3 00 CD 79 80

2.6、读取1-9#传感器测量值(开通5个智能传感器)

发送: 01 03 06 00 00 09 85 44

返回: 01 03 12 <u>00 D7 00 00 00 00 00 00 00 01 2E 01 FB 00 F4 01 26</u> 37 39

2.7、读取6-7#传感器测量值(开通5个智能传感器,只读温、湿度)

发送: 01 03 06 05 00 02 D4 82

返回: 01 03 04 01 2E 01 FB DB D5

2.8、读取多参数模块地址(FE广播地址)

发送: FE 03 00 F0 00 01 90 36

返回: 01 03 02 00 01 79 84

2.9、读取多参数模块传感器数量

发送: 01 03 00 F1 00 01 D5 F9

返回: 01 03 02 00 06 38 46

2.10、读取多参数模块上传模式

发送: 01 03 00 F4 00 01 C5 F8

返回: 01 03 02 00 00 B8 44

06写寄存器命令通讯例举:

2.11、修改多参数模块地址1#(FE广播地址)

发送: FE 06 <u>30 F0</u> <u>00 01</u> 53 36

返回: FE 06 30 FO 00 01 53 36

2.12、修改多参数模块传感器数量为5

发送: 01 06 <u>30 F1 00 05</u> 17 3A

返回: 01 06 30 F1 00 05 17 3A

2.13、修改1#智能传感器高报值400

发送: 01 06 31 00 01 90 86 CA

返回: 01 06 31 00 01 90 86 CA

2.14、修改1#智能传感器低报值100

发送: 01 06 31 01 00 64 D7 1D 返回: 01 06 31 01 00 64 D7 1D

2.15、修改1#智能传感器调零基准值50(调零后,显示值才能更改为设置后的值)

发送: 01 06 32 01 <mark>01 32 56 F7</mark> 返回: 01 06 32 01 <mark>01 32 56 F7</mark>

2.16、对1#智能传感器进行校准200

发送: 01 06 <u>31 03 00 C8</u> 76 A0

返回: 01 06 31 03 00 C8 76 A0

2.17、对1#智能传感器进行调零

发送: 01 06 31 04 00 AA 46 88

返回: 01 06 31 04 00 AA 46 88

2.18、对1#智能传感器恢复出厂值

发送: 01 06 <u>31 05</u> <u>00 AA</u> 17 48

返回: 01 06 31 05 00 AA 17 48

2.19、修改多参数模块上传模式为主动上传(固定每5秒上传一组传感器测量值)

发送: 01 06 30 F4 00 01 06 F8 返回: 01 06 30 F4 00 01 06 F8

2.20、修改多参数模块上传模式为主从模式

发送: 01 06 30 F4 00 00 C7 38 返回: 01 06 30 F4 00 00 C7 38

三、传感器参数说明

3.1、传感器状态:

0X0000: 正常;

0X0004: 通讯故障: 4;

0X0006: 传感器内部故障:

0X0002: 高限报警: 2;

3.2、测量值: 0-50000 (0X0000-0XC350) ; 2 寄存器十六进制 (4 字节) 3.3、小数点位置: 0-4

0X0000: 整数;

0X0002: 2 位小数点:

0X0004: 4 位小数点;

3.4、物质名称: 0X0000-0X00FF ; 1 寄存器十六进制(2 字节)

详见附件1:物质名称列表。

3.5、单位设置:

0X0000: %LEL;

0X0002: PPM:

0X0004: 无单位(不显示):

0X0006: %RH:

0X0008: mg/m3:

OXOOOA: L/Min;

0X000C: L/h:

: 1 寄存器十六进制(2 字节)

0X0001: 低限报警:

0X0003: 未定义;

0X0005: 未定义:

: 1寄存器十六进制(2字节)

0X0001: 1 位小数点;

0X0003: 3 位小数点;

: 1 寄存器十六进制(2 字节)

0X0001: %VOL;

0X0003: PPb:

0X0005: °C;

0X0007: $\mu \text{ g/m3}$;

0X0009: MP;

OXOOOB: mL/Min;

附件1:物质名称列表

00	 无	20		40	四氯乙烯	80 PM1.0
01	可燃气体	21		41	亚硫酰氯	81 PM2.5
02	一氧化碳	22	甲醛	42	乙酸乙烯酯	82 PM10
03	氧气	23	液化石油气	43	硫醇 TBM	83 温度
04	氢气	24	碳氢	44	TVOC	84 湿度
05	甲烷	25	苯	45	环己烷	85 压力
06	丙烷	26	过氧化氢	46	三氯乙烯	85 流量
07	二氧化碳	27	VOC	47	二甲苯	
08	臭氧	28	六氟化硫	48	氟利昂	
09	硫化氢	29	甲苯	49	一氯甲烷	
0A	二氧化硫	2A	联乙烯	4A	二氯甲烷	
0B	氨气	2B	氧硫化碳	4B	三氯甲烷	
0C	氯气	2C	联氨	4C	一甲胺	
0D	环氧乙烷	2D	硒化氢	4D	正戊烷	
0E	氯化氢	2E	苯乙烯	4E	正己烷	
0F	磷化氢	2F	异丁烯	4F	正庚烷	
10	溴化氢	30	亚甲基	50	异辛烷	
11	氰化氢	31	笑气	51	乙烷	
12	三氢化砷	32	天然气	52	石油醚	
13	氟化氢	33	光气	53	丁烷	
14	溴气	34	氯乙烯	54	乙醚	
15	一氧化氮	35	甲醇			
16	二氧化氮	36	乙醇			
17	氮氧化物	37	异丙醇			
18	二氧化氯	38	丙酮			
19	硅烷	39	乙醛			
1A	二硫化碳	3A	丙烯腈			
1B	氟气	3B	二甲基硫醚			
1C	乙硼烷	3C	环氧氯丙烷			
1D	锗烷	3D	乙酸乙酯			
1E	氮气	3E	甲基乙基酮			
1F	四氢噻吩	3F	甲硫醇			

```
附件2: CRC16算法程序:
#ifndef MB CRC H
#define _MB_CRC_H
USHORT
                usMBCRC16( UCHAR * pucFrame, USHORT usLen );
#endif
static const UCHAR aucCRCHi[] = {
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x01, 0x00, 0x80, 0x41, 0x00, 0x01, 0x81, 0x40, 0x01, 0x00, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40
};
static const UCHAR aucCRCLo[] = {
    0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
    0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0xOF, 0xCF, 0xCE, 0x0E,
    0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
    0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC,
    0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
    0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
    0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
    0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
    0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
    0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
    0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
```

```
0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
    0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
    0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
    0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
    0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
    0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
    0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
    0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
    0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
    0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
    0x41, 0x81, 0x80, 0x40
};
usMBCRC16 ( UCHAR * pucFrame, USHORT usLen )
{
                    ucCRCHi = 0xFF:
    UCHAR
    UCHAR
                    ucCRCLo = 0xFF;
    int
                    iIndex;
    while( usLen-- )
        iIndex = ucCRCLo ^ *( pucFrame++ );
        ucCRCLo = ( UCHAR ) ( ucCRCHi ^ aucCRCHi[iIndex] );
        ucCRCHi = aucCRCLo[iIndex];
    return ( USHORT ) ( ucCRCHi << 8 | ucCRCLo );
}
```