WM-811k Wafermap Defect Classification

Group Member:
Jih-Chin Chen
Ruifeng Luo

Motivation

Project Goal: To identify different types of wafer map defect pattern automatically using cutting-edged deep learning technique instead of manual work, so that the semiconductor fabrication can improve on the yield of wafers manufacturing process.

EDA (Exploratory Data Analysis)

Data & Label Distribution

Data with label & pattern only takes only 3.1% of total data and the distribution of label for different failure is imbalance

Resize Input Image with 3 channel

Resize different size image with same dimension and use (R, G, B) channel represent different area.

Data Augmentation

AutoEncoder to Oversampling
Train a AutoEncoder model to oversampling
minority class adding Gaussian noise.

Input / Output: Images Loss Function: MSE

Layer (type) Output Shape Conv2d-1 [16, 16, 54, 54] ReLU-2 [16, 16, 54, 54] MaxPool2d-3 [16, 16, 27, 27] Conv2d-4 [16, 32, 27, 27] ReLU-5 [16, 32, 27, 27] MaxPool2d-6 [16, 32, 13, 13] ConvTranspose2d-7 [16, 16, 26, 26] 2,064 ReLU-8 [16, 16, 26, 26] ConvTranspose2d-9 [16, 3, 52, 52] 195 Sigmoid-10 [16, 3, 52, 52] Total params: 7,347 Trainable params: 7,347 Non-trainable params: 0 Input size (MB): 0.53 Forward/backward pass size (MB): 23.79 Params size (MB): 0.03 Estimated Total Size (MB): 24.35

Random Undersampling Random select majority class to undersampling.

Convolution Network Model

1. Feature Learning Layers

Convolution + RELU + MaxPool

2. Classifier (Fully Connected Layers)

Linear Layers + RELU + SoftMax

3. Loss Function

Cross Entropy Loss

Layer (type)	Output Shape	Param #
Conv2d-1	[16, 32, 56, 56]	896
ReLU-2	[16, 32, 56, 56]	0
MaxPool2d-3	[16, 32, 28, 28]	0
Conv2d-4	[16, 64, 28, 28]	18,496
ReLU-5	[16, 64, 28, 28]	0
MaxPool2d-6	[16, 64, 14, 14]	0
Conv2d-7	[16, 128, 14, 14]	73,856
ReLU-8	[16, 128, 14, 14]	0
MaxPool2d-9	[16, 128, 8, 8]	0
Linear-10	[16, 1250]	10,241,250
Linear-11	[16, 1250]	10,241,250
ReLU-12	[16, 1250]	0
Linear-13	[16, 9]	11,259

Total params: 20,587,007 Trainable params: 20,587,007 Non-trainable params: 0

Table dia (MD): 0.57

Input size (MB): 0.57

Forward/backward pass size (MB): 48.93

Params size (MB): 78.53

Estimated Total Size (MB): 128.04

Result

What went well?

Accuracy: 99.61%

Test Loss: 0.002 (CEL)

What didn't went well?

But, cost 6 hours for 10 Kfold training process

Relevant Paper

- [1] Tsai, Tsung-Han, and Yu-Chen Lee. "A light-weight neural network for wafer map classification based on data augmentation." IEEE Transactions on Semiconductor Manufacturing 33.4 (2020): 663-672.
- [2] Hu, Hanbin, Chen He, and Peng Li. "Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning." 2021 IEEE International Test Conference (ITC). IEEE, 2021.
- [3] C. -Y. Wang and T. -H. Tsai, "Defect Detection on Wafer Map Using Efficient Convolutional Neural Network," 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2021, pp. 1-2, doi: 10.1109/ICCE-TW52618.2021.9603145.