

Data Operations and Parallel Mapping

Parallel Programming in Scala

Viktor Kuncak

Parallelism and collections

Parallel processing of collections is important

one the main applications of parallelism today

We examine conditions when this can be done

- properties of collections: ability to split, combine
- properties of operations: associativity, independence

Functional programming and collections

Operations on collections are key to functional programming map: apply function to each element

List(1,3,8).map($x \Rightarrow x*x$) == List(1, 9, 64)

Functional programming and collections

Operations on collections are key to functional programming map: apply function to each element

List(1,3,8).map(x =>
$$x*x$$
) == List(1, 9, 64)

fold: combine elements with a given operation

$$\blacktriangleright$$
 List(1,3,8).fold(100)((s,x) => s + x) == 112

Functional programming and collections

Operations on collections are key to functional programming map: apply function to each element

List(1,3,8).map(x =>
$$x*x$$
) == List(1, 9, 64)

fold: combine elements with a given operation

$$\blacktriangleright$$
 List(1,3,8).fold(100)((s,x) => s + x) == 112

scan: combine folds of all list prefixes

$$\blacktriangleright$$
 List(1,3,8).scan(100)((s,x) => s + x) == List(100, 101, 104, 112)

These operations are even more important for parallel than sequential collections: they encapsulate more complex algorithms

Choice of data structures

We use **List** to specify the results of operations

Lists are not good for parallel implementations because we cannot efficiently

- split them in half (need to search for the middle)
- combine them (concatenation needs linear time)

Choice of data structures

We use **List** to specify the results of operations

Lists are not good for parallel implementations because we cannot efficiently

- split them in half (need to search for the middle)
- combine them (concatenation needs linear time)

We use for now these alternatives

- arrays: imperative (recall array sum)
- trees: can be implemented functionally

Subsequent lectures examine Scala's parallel collection libraries

includes many more data structures, implemented efficiently

Map: meaning and properties

Map applies a given function to each list element

$$List(1,3,8).map(x => x*x) == List(1, 9, 64)$$

$$List(a_1, a_2, ..., a_n).map(f) == List(f(a_1), f(a_2), ..., f(a_n))$$

Properties to keep in mind:

- ightharpoonup list.map(x => x) == list
- list.map(f.compose(g)) == list.map(g).map(f)

Recall that (f.compose(g))(x) = f(g(x))

Map as function on lists

Sequential definition:

```
def mapSeq[A,B](lst: List[A], f : A => B): List[B] = lst match {
  case Nil => Nil
  case h :: t => f(h) :: mapSeq(t,f)
}
```

We would like a version that parallelizes

- computations of f(h) for different elements h
- finding the elements themselves (list is not a good choice)

Sequential map of an array producing an array

```
def mapASegSeq[A,B](inp: Array[A], left: Int, right: Int, f : A => B.
                     out: Array[B]) = {
  // Writes to out(i) for left <= i <= right-1</pre>
  var i= left
                                                                         inp
  while (i < right) {</pre>
                                                    f
                                                 fŤ
                                                        f† f†
    out(i)= f(inp(i))
    i = i + 1
                                                                         Out
} }
val in= Array(2,3,4,5,6)
val out= Array(0,0,0,0,0)
val f= (x:Int) \Rightarrow x*x
mapASegSeg(in, 1, 3, f, out)
out
res1: Array[Int] = Array(0. 9. 16. 0. 0)
```

Parallel map of an array producing an array

```
def mapASegPar[A,B](inp: Array[A], left: Int, right: Int, f : A => B,
                    out: Array[Β]): Unit = {
  // Writes to out(i) for left <= i <= right-1
  if (right - left < threshold)</pre>
    mapASegSeg(inp. left. right. f. out)
  else {
    val mid = left + (right - left)/2
    parallel(mapASegPar(inp, left, mid, f, out),
             mapASegPar(inp, mid, right, f, out))
                                                                           ani
Note:
                                                                           out
```

- writes need to be disjoint (otherwise: non-deterministic behavior)
- ▶ threshold needs to be large enough (otherwise we lose efficiency)

Example of using mapASegPar: pointwise exponent

Raise each array element to power *p*:

$$Array(a_1, a_2, \ldots, a_n) \longrightarrow Array(|a_1|^p, |a_2|^p, \ldots, |a_n|^p)$$

We can use previously defined higher-order functions:

```
val p: Double = 1.5
def f(x: Int): Double = power(x, p)
mapASegSeq(inp, 0, inp.length, f, out)  // sequential
mapASegPar(inp, 0, inp.length, f, out)  // parallel
```

Example of using mapASegPar: pointwise exponent

Raise each array element to power p:

$$Array(a_1, a_2, \ldots, a_n) \longrightarrow Array(|a_1|^p, |a_2|^p, \ldots, |a_n|^p)$$

We can use previously defined higher-order functions:

```
val p: Double = 1.5
def f(x: Int): Double = power(x, p)
mapASegSeq(inp, 0, inp.length, f, out)  // sequential
mapASegPar(inp, 0, inp.length, f, out)  // parallel
```

Questions on performance:

- ▶ are there performance gains from parallel execution
- performance of re-using higher-order functions vs re-implementing

Sequential pointwise exponent written from scratch

Parallel pointwise exponent written from scratch

```
def normsOfPar(inp: Array[Int], p: Double,
                left: Int, right: Int,
               out: Array[Double]): Unit = {
  if (right - left < threshold) {</pre>
    var i= left
    while (i < right) {</pre>
      out(i)= power(inp(i),p)
      i = i + 1
  } else {
     val mid = left + (right - left)/2
     parallel(normsOfPar(inp, p, left, mid, out),
              normsOfPar(inp, p, mid, right, out))
```

Measured performance using scalameter

- ▶ inp.length = 2000000
- ightharpoonup threshold = 10000
- Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz (4-core, 8 HW threads), 16GB RAM

expression	time(ms)
mapASegSeq(inp, 0, inp.length, f, out)	174.17
mapASegPar(inp, 0, inp.length, f, out)	28.93
normsOfSeq(inp, p, 0, inp.length, out)	166.84
${\it normsOfPar(inp,p,0,inp.length,out)}$	28.17

Measured performance using scalameter

- ► inp.length = 2000000
- ightharpoonup threshold = 10000
- ► Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz (4-core, 8 HW threads), 16GB RAM

expression	time(ms)
mapASegSeq(inp, 0, inp.length, f, out)	174.17
mapASegPar(inp, 0, inp.length, f, out)	28.93
normsOfSeq(inp, p, 0, inp.length, out)	166.84
normsOfPar(inp, p, 0, inp.length, out)	28.17

Parallelization pays off

Manually removing higher-order functions does not pay off

Parallel map on immutable trees

Consider trees where

- leaves store array segments
- non-leaf node stores two subtrees

```
sealed abstract class Tree[A] { val size: Int }
case class Leaf[A](a: Array[A]) extends Tree[A] {
  override val size = a.size
}
case class Node[A](1: Tree[A], r: Tree[A]) extends Tree[A] {
  override val size = l.size + r.size
}
```

Assume that our trees are balanced: we can explore branches in parallel

Parallel map on immutable trees

```
def mapTreePar[A:Manifest,B:Manifest](t: Tree[A], f: A => B) : Tree[B] =
t match {
  case Leaf(a) => {
    val len = a.length; val b = new Array[B](len)
    var i= 0
    while (i < len) \{ b(i) = f(a(i)); i = i + 1 \}
    Leaf(b) }
  case Node(1,r) \Rightarrow \{
    val (lb,rb) = parallel(mapTreePar(1,f), mapTreePar(r,f))
    Node(lb, rb) }
```

Speedup and performance similar as for the array

Give depth bound of mapTreePar

Give a correct but as tight as possible asymptotic parallel computation depth bound for mapTreePar applied to complete trees with height h and 2^h nodes, assuming the passed first-class function f executes in constant time.

- 1. 2^h
- 2. h
- 3. log *h*
- 4. *h* log *h*
- 5. $h2^h$

Give depth bound of mapTreePar

Give a correct but as tight as possible asymptotic parallel computation depth bound for mapTreePar applied to complete trees with height h and 2^h nodes, assuming the passed first-class function f executes in constant time.

- 1. 2^h
- 2. h
- 3. log *h*
- 4. *h* log *h*
- 5. $h2^h$

Answer: *h*. The computation depth equals the height of the tree.

Comparison of arrays and immutable trees

Arrays:

- ▶ (+) random access to elements, on shared memory can share array
- ▶ (+) good memory locality
- ▶ (-) imperative: must ensure parallel tasks write to disjoint parts
- ▶ (-) expensive to concatenate

Immutable trees:

- ▶ (+) purely functional, produce new trees, keep old ones
- ▶ (+) no need to worry about disjointness of writes by parallel tasks
- ▶ (+) efficient to combine two trees
- ▶ (-) high memory allocation overhead
- ▶ (-) bad locality

End of Slide Deck