MONOID k-FUNCTORS

1. Introduction and notation

In these notes we study algebraic structures on the category of *k*-functors with special emphasis on monoid objects.

If R is a ring, then we denote by R^{\times} its multiplicative monoid.

2. ALGEBRAIC STRUCTURES IN THE CATEGORY OF k-FUNCTORS

In the sequel we assume that the reader is familiar with notions of a monoid, group etc. in arbitrary category with finite products. For definitions and some discussion related to these notions cf. [ML98, pages 2-5].

Definition 2.1. *A monoid (group, abelian group, ring) k-functor* is a monoid (group, abelian group, ring) object in the category of *k*-functors.

Example 2.2. Let \mathfrak{X} be a k-functor such that \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ exists. Then \mathcal{M} or $_k(\mathfrak{X},\mathfrak{X})$ is a monoid k-functor with respect to composition of morphisms.

Example 2.3. Basic example of a ring k-functor is a k-functor \Re given by

$$\mathfrak{K}(A) = k$$
, $\mathfrak{K}(f) = 1_k$

for any k-algebra A and morphism f of k-algebras. It can be described as a constant k-functor ([ML98, page 67]) corresponding to k.

Definition 2.4. Let \mathfrak{R} be a ring k-functor. Then we denote by \mathfrak{R}^{\times} the k-subfunctor of \mathfrak{R} defined by

$$\mathfrak{R}^{\times}(A) = \mathfrak{R}(A)^{\times}$$

for every k-algebra A. We call \Re^{\times} the multiplicative monoid k-functor of \Re .

Definition 2.5. Let \mathfrak{A} be a commutative ring k-functor. An \mathfrak{A} -algebra is an \mathfrak{A} -algebra object in the category of k-functors.

Definition 2.6. Let \mathfrak{R} be a ring k-functor. Suppose that \mathfrak{M} is an abelian group k-functor and there exists a morphism $\mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ of k-functors that for each k-algebra A makes $\mathfrak{M}(A)$ into an $\mathfrak{R}(A)$ -module. Then we say that \mathfrak{M} is a module k-functor over \mathfrak{R} .

Definition 2.7. Let \Re be an ring k-functor and let $\mathfrak{M}_1, \mathfrak{M}_2$ be module k-functors over \Re . Suppose that $\sigma : \mathfrak{M}_1 \to \mathfrak{M}_2$ is a morphism of abelian group k-functors such that the diagram

$$\mathfrak{R} \times \mathfrak{M}_{1} \xrightarrow{1_{\mathfrak{R}} \times \sigma} \mathfrak{R} \times \mathfrak{M}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{M}_{1} \xrightarrow{\sigma} \mathfrak{M}_{2}$$

is commutative, where $\alpha_i : \Re \times \mathfrak{M}_i \to \mathfrak{M}_i$ define \Re -module structure on \mathfrak{M}_i for i = 1, 2. Then σ is a morphism of modules over \Re .

Let \mathfrak{M}_1 and \mathfrak{M}_2 be module *k*-functors over \mathfrak{R} . We denote by

$$\operatorname{Hom}_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$$

as a class of all morphisms of modules $\mathfrak{M}_1 \to \mathfrak{M}_2$ over \mathfrak{R}_A .

1

Definition 2.8. Let \mathfrak{M}_1 and \mathfrak{M}_2 be module k-functors over \mathfrak{R} . Assume that $\operatorname{Hom}_{\mathfrak{R}_A}((\mathfrak{M}_1)_A, (\mathfrak{M}_2)_A)$ is a set for every k-algebra A. Then we define a k-subfunctor $\operatorname{Hom}_{\mathfrak{R}}(\mathfrak{M}_1, \mathfrak{M}_2)$ of internal hom of \mathfrak{M}_1 and \mathfrak{M}_2 by formula

$$\mathbf{Alg}_k \ni A \mapsto \mathrm{Hom}_{\mathfrak{R}_A} ((\mathfrak{M}_1)_A, (\mathfrak{M}_2)_A) \in \mathbf{Set}$$

We call $\mathcal{H}om_{\mathfrak{R}}(\mathfrak{M}_1,\mathfrak{M}_2)$ a k-functor of module morphisms of \mathfrak{M}_1 and \mathfrak{M}_2 .

If \mathfrak{M} is a module k-functor over some ring k-functor \mathfrak{R} , then we denote (if it exists) $\mathcal{H}om_{\mathfrak{R}}(\mathfrak{M},\mathfrak{M})$ by $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$.

Example 2.9. Let \mathfrak{M} be a module over a ring k-functor \mathfrak{R} . Assume that $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ exists. Then $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ is a ring k-functor with respect to composition of morphisms of modules as the multiplication and canonically defined addition of module morphisms.

If \mathfrak{R} is a commutative ring k-functor, then $\mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ admits additional strucutre of a \mathfrak{R} -algebra k-functor induced via a unique morphism $\mathfrak{R} \to \mathcal{E}nd_{\mathfrak{R}}(\mathfrak{M})$ of ring k-functors that sends $1 \mapsto 1_{\mathfrak{M}}$.

3. Global regular functions on a k-functor

Recall the ring k-functor \mathfrak{K} from Example 2.3. Note that a \mathfrak{K} -algebra \mathfrak{A} can be viewed as a functor $\mathfrak{A}: \mathbf{Alg}_k \to \mathbf{Alg}_k$.

Definition 3.1. The \mathfrak{K} -algebra \mathfrak{O}_k represented by the identity functor on \mathbf{Alg}_k is called *the structure* \mathfrak{K} -algebra.

Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Note that |-| is the underlying k-functor of \mathfrak{K} -algebra \mathfrak{O}_k . Recall that the affine line \mathbb{A}^1_k is an affine k-scheme having k-algebra of polynomials with one variable as a k-algebra of regular functions.

Fact 3.2. Let $|-|: \mathbf{Alg}_k \to \mathbf{Set}$ be the forgetful k-functor. Then we have natural isomorphism

$$\mathfrak{P}_{\mathbb{A}^1_k}\cong |-|$$

Proof. Let *B* be a *k*-algebra. We have the following chain of identifications

$$\mathfrak{P}_{\mathbb{A}^1_k}(B) = \operatorname{Mor}_k\left(\operatorname{Spec} B, \mathbb{A}^1_k\right) = \operatorname{Mor}_k\left(\operatorname{Spec} B, \operatorname{Spec} k[x]\right) = \operatorname{Mor}_k\left(k[x], B\right) = |B|$$

natural in B.

In particular, since |-| carries the structure \mathfrak{K} -algebra \mathfrak{D}_k , we derive that $\mathfrak{P}_{\mathbb{A}^1_k}$ admits a structure of \mathfrak{K} -algebra isomorphic to \mathfrak{D}_k .

No we introduce regular functions on a *k*-functors.

Definition 3.3. Let \mathfrak{X} be a k-functor and assume that $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ is a set. Then $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ is a k-algebra with respect to the structure induced by \mathfrak{O}_k . We call this k-algebra the k-algebra of global regular functions on \mathfrak{X} . Its elements are called *global regular functions on* \mathfrak{X} .

Definition 3.4. Let \mathfrak{X} be a k-functor. Suppose that A is a k-algebra, $x \in \mathfrak{X}(A)$ and $f \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. The element $f(x) \in A$ is called *the value of f on point x*.

For given k-functor \mathfrak{X} we describe k-algebra operations on $\operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$ in terms of values of its elements on points of \mathfrak{X} . For this consider $\alpha \in k$ and $f, g \in \operatorname{Mor}_k(\mathfrak{X}, \mathfrak{O}_k)$. We have formulas

$$(f+g)(x) = f(x)+g(x), (f\cdot g)(x) = f(x)\cdot g(x), (\alpha\cdot f)(x) = \alpha\cdot f(x)$$

in which right hand side are *k*-algebra operations in *A*.

Example 3.5. Let \mathfrak{X} be a k-functor and assume that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ exists. Fix k-algebra A. Note that $\mathrm{Mor}_A(\mathfrak{X}_A, \mathfrak{O}_A)$ is an A-algebra of global regular functions on \mathfrak{X}_A . Moreover, if B is an A-algebra, then

$$\operatorname{Mor}_A(\mathfrak{X}_A, \mathfrak{O}_A) \ni f \mapsto f_B \in \operatorname{Mor}_B(\mathfrak{X}_B, \mathfrak{O}_B)$$

П

is a morphism of A-algebras. This implies that \mathcal{M} or $_k(\mathfrak{X}, \mathfrak{O}_k)$ admits a canonical structure of an \mathfrak{O}_k -algebra k-functor.

4. ACTIONS OF MONOID k-FUNCTORS

In the sequel we assume that the reader is familiar with notion of an action of a monoid object in arbitrary category with finite products. For definitions and some discussion related to these notions cf. [ML98, pages 5].

Let $\mathfrak G$ be a monoid k-functor and $\mathfrak X$ be a k-functor together with an action $\alpha:\mathfrak G\times\mathfrak X\to\mathfrak X$. Next assume that k-functor $\mathcal M$ or $_k(\mathfrak X,\mathfrak X)$ exists. By Example 2.2 it is a monoid k-functor. We define a morphism $\rho:\mathfrak G\to\mathcal M$ or $_k(\mathfrak X,\mathfrak X)$ of k-functors by formula $\rho(x)=\alpha_x$. Note that by discussion preceding [Mon19, Theorem 2.7] and by [Mon19, Corollary 2.9], we deduce that ρ is a well defined morphism of k-functors. We show now that ρ is a morphism of monoids. For this pick k-algebra k and k a

$$\rho(x \cdot y) = \alpha_{x \cdot y} = \alpha_x \cdot \alpha_y = \rho(x) \cdot \rho(y)$$

Therefore, ρ is a morphism of monoid k-functors. This shows how to construct a morphism of monoid k-functors ρ from an action α of \mathfrak{G} .

Theorem 4.1. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{X} be a k-functor such that $\mathcal{I}so_k(\mathfrak{X},\mathfrak{X})$ exists. Suppose that

$$\left\{actions\ of\ \mathfrak{G}\ on\ \mathfrak{X}\right\} \longrightarrow \left\{Morphisms\ \rho:\mathfrak{G}\to \mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{X})\ of\ monoid\ k\text{-}functors\right\}$$

is a map of classes described above. Then it is bijection.

Proof. Our goal is to construct the inverse of the map. Recall [Mon19, Theorem 2.7] and substitute in that Theorem $\mathfrak{J} = \mathcal{M}or_k(\mathfrak{X},\mathfrak{X})$. Consider maps

$$\Phi: \left\{ \text{families } \mathfrak{G} \times \mathfrak{X} \to \mathfrak{X} \text{ of morphisms} \right\} \to \operatorname{Mor}_{k} \left(\mathfrak{G}, \operatorname{\mathcal{M}or}_{k} (\mathfrak{X}, \mathfrak{X}) \right)$$

and

$$\Psi: \operatorname{Mor}_{k}(\mathfrak{G}, \mathcal{M}\operatorname{or}_{k}(\mathfrak{X}, \mathfrak{X})) \to \left\{ \operatorname{families} \mathfrak{G} \times \mathfrak{X} \to \mathfrak{X} \text{ of morphisms} \right\}$$

in that Theorem. Then the map in the statement above is the restriction of Φ to \mathfrak{G} -actions on \mathfrak{X} on the right and morphisms $\mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{X})$ of monoid k-functors on the left. Since by [Mon19, Theorem 2.7] maps Φ and Ψ are mutually inverse, it suffices to check that Ψ sends a morphism $\rho: \mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X},\mathfrak{X})$ of monoids to an action of \mathfrak{G} on \mathfrak{X} . For this denote $\Psi(\rho)$ by α . Consider k-algebra A and A-points $x,y\in \mathfrak{G}(A),z\in \mathfrak{X}(A)$. Then

$$\alpha\left(y,\alpha(x,z)\right) = \rho(y)\left(\rho(x)(z)\right) = \left(\rho(y)\cdot\rho(x)\right)(z) = \rho\left(x\cdot y\right)(z) = \alpha\left(x\cdot y,z\right)$$

Therefore, α is an action of \mathfrak{G} on \mathfrak{X} .

Proposition 4.2. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{X}_1 , \mathfrak{X}_2 be k-functors such that \mathcal{M} or $_k(\mathfrak{X}_1,\mathfrak{X}_1)$, \mathcal{M} or $_k(\mathfrak{X}_2,\mathfrak{X}_2)$ exist. Suppose that $\alpha_1: \mathfrak{G} \times \mathfrak{X}_1 \to \mathfrak{X}_1$, $\alpha_2: \mathfrak{G} \times \mathfrak{X}_2 \to \mathfrak{X}_2$ are actions of \mathfrak{G} , respectively. Suppose that $\sigma: \mathfrak{X}_1 \to \mathfrak{X}_2$ is a morphism of k-functors. Then the following assertions are equivalent.

(i) The square

$$\mathfrak{G} \times \mathfrak{X}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{X}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{X}_{1} \xrightarrow{\sigma} \mathfrak{X}_{2}$$

is commutative.

(ii) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \rho_1(x) = \rho_2(x) \cdot \sigma_A$$

where $\rho_1: \mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X}_1,\mathfrak{X}_1)$ and $\rho_2: \mathfrak{G} \to \mathcal{M}\mathrm{or}_k(\mathfrak{X}_2,\mathfrak{X}_2)$ are morphism of monoid k-functors corresponding to α_1 and α_2 , respectively.

Proof. Conditions expressed in (i) and (ii) are directly translatable to each other by virtue of the bijection in Theorem 4.1.

Definition 4.3. Let \mathfrak{G} be a monoid k-functor and let $(\mathfrak{X}_1, \alpha_1)$, $(\mathfrak{X}_2, \alpha_2)$ be k-functors with actions of \mathfrak{G} . Suppose that $\sigma : \mathfrak{X}_1 \to \mathfrak{X}_2$ is a morphism k-functors such that the square

$$\mathfrak{G} \times \mathfrak{X}_{1} \xrightarrow{1_{\mathfrak{G}} \times \sigma} \mathfrak{G} \times \mathfrak{X}_{2}$$

$$\downarrow^{\alpha_{1}} \qquad \qquad \downarrow^{\alpha_{2}}$$

$$\mathfrak{X}_{1} \xrightarrow{\sigma} \qquad \mathfrak{X}_{2}$$

is commutative. Then σ is called an \mathfrak{G} -equivariant morphism.

5. Modules over ring *k*-functor

Let $\mathfrak A$ be a commutative ring k-functor and let $\mathfrak R$ be a $\mathfrak A$ -algebra k-functor. This means that there exists a morphism $\mathfrak A \to \mathfrak R$ of ring k-functors and for every k-algebra A induced morphism $\mathfrak A(A) \to \mathfrak R(A)$ sends $\mathfrak A(A)$ to the center of a ring $\mathfrak R(A)$. Fix a module $\mathfrak M$ over $\mathfrak A$. Next assume that k-functor $\mathcal End_{\mathfrak A}(\mathfrak M)$ exists. Recall that by Example 2.9 it is a ring k-functor.

Definition 5.1. In the setting above suppose that $\alpha : \mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ is a morphism of k-functors. Suppose that α makes \mathfrak{M} into \mathfrak{R} -module and moreover, for every k-algebra A and for every point $x \in \mathfrak{R}(A)$ morphism α_x is a morphism of \mathfrak{A}_A -modules. Then α is called a \mathfrak{A} -linear \mathfrak{R} -action on \mathfrak{M} .

We continue the discussion. We assume that we are given an \mathfrak{A} -linear \mathfrak{R} -action $\alpha: \mathfrak{R} \times \mathfrak{M} \to \mathfrak{M}$ on \mathfrak{M} . We define a morphism $\rho: \mathfrak{R} \to \mathcal{E}nd_{\mathfrak{A}}(\mathfrak{M})$ of k-functors by formula $\rho(x) = \alpha_x$. As in Section 4 we can prove that ρ is a morphism of ring k-functors. Now we have the following result.

Theorem 5.2. Let \mathfrak{R} be an algebra k-functor over commutative ring \mathfrak{A} k-functor and let \mathfrak{M} be a \mathfrak{A} -module such that $\operatorname{End}_{\mathfrak{A}}(\mathfrak{M})$ exists. Suppose that

$$\left\{\mathfrak{A}\ linear\ actions\ of\ \mathfrak{R}\ on\ \mathfrak{M}\right\} \longrightarrow \left\{Morphisms\ \rho:\mathfrak{R}\to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})\ of\ ring\ k\text{-functors}\right\}$$

is a map of classes described above. Then it is bijection.

Proof. The proof is similar to the proof of Theorem 4.1.

6. MONOID ALGEBRA $\mathfrak{O}_k[\mathfrak{G}]$ AND ITS MODULES

Definition 6.1. Let \mathfrak{G} be a monoid k-functor. Then we construct an \mathfrak{O}_k -algebra $\mathfrak{O}_k[\mathfrak{G}]$ as follows. For every k-algebra A we define

$$\mathfrak{O}_k[\mathfrak{G}](A) = A[\mathfrak{G}(A)]$$

where the right hand side is monoid A-algebra for the abstract monoid $\mathfrak{G}(A)$. The structure of monoid k-functor on \mathfrak{G} and \mathfrak{K} -algebra \mathfrak{O}_k makes $\mathfrak{O}_k[\mathfrak{G}]$ into a ring k-functor. Moreover, we have a morphism $\mathfrak{O}_k \to \mathfrak{O}_k[\mathfrak{G}]$ which for every k-algebra A is given by the canonical inclusion

$$A \hookrightarrow A[\mathfrak{G}(A)]$$

Thus $\mathfrak{O}_k[\mathfrak{G}]$ is \mathfrak{O}_k -algebra. We call $\mathfrak{O}_k[\mathfrak{G}]$ a monoid \mathfrak{O}_k -algebra over \mathfrak{G} .

Fact 6.2. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{R} be an \mathfrak{O}_k -algebra k-functor. Then every morphism

$$\sigma: \mathfrak{G} \to \mathfrak{R}^{\times}$$

of monoid k-functors admits a unique extension

$$\tilde{\sigma}: \mathfrak{O}_k[\mathfrak{G}] \to \mathfrak{R}$$

to a morphism of \mathfrak{O}_k -algebras.

Proof. This follows from the analogical universal property of algebras over abstract monoids (monoid algebras in **Set**). \Box

Definition 6.3. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M} be a module over \mathfrak{O}_k . Suppose that $\alpha:\mathfrak{G}\times\mathfrak{M}\to\mathfrak{M}$ is an action of \mathfrak{G} such that for any k-algebra A and point $x\in\mathfrak{G}(A)$ morphism $\alpha_x:\mathfrak{M}_A\to\mathfrak{M}_A$ is a morphism of \mathfrak{O}_A -modules. Then α is called a *linear* \mathfrak{G} -action on \mathfrak{M} .

Suppose now that \mathfrak{G} is a monoid k-functor and \mathfrak{M} is a module \mathfrak{O}_k . Note that every linear \mathfrak{G} -action $\alpha: \mathfrak{G} \times \mathfrak{M} \to \mathfrak{M}$ extends uniquely to a \mathfrak{O}_k -linear action $\mathfrak{O}_k[\mathfrak{G}] \times \mathfrak{M} \to \mathfrak{M}$ of monoid \mathfrak{O}_k -algebra. This gives a bijection

$$\left\{\text{Linear actions of }\mathfrak{G}\text{ on }\mathfrak{M}\right\} \longrightarrow \left\{\mathfrak{O}_k\text{-linear actions }\mathfrak{O}_k[\mathfrak{G}]\times\mathfrak{M}\to\mathfrak{M}\right\}$$

Next assume that k-functor $\mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M})$ exists. By Example 2.9 it is an \mathfrak{D}_k -algebra k-functor. Next by Theorem 5.2 we have a bijection

$$\left\{ \mathfrak{O}_k\text{-linear actions of } \mathfrak{O}_k[\mathfrak{G}] \times \mathfrak{M} \to \mathfrak{M} \right\} \longrightarrow \left\{ \text{Morphisms } \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \text{ of } \mathfrak{O}_k\text{-algebras} \right\}$$

Finally Fact 6.2 implies that we have a bijection

$$\left\{ \mathsf{Morphisms} \ \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \ \mathsf{of} \ \mathfrak{O}_k\text{-algebras} \right\} \longrightarrow \left\{ \mathsf{Morphisms} \ \mathfrak{G} \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}) \ \mathsf{of} \ \mathsf{monoids} \right\}$$

This chain of bijections sends a linear action $\alpha: \mathfrak{G} \times \mathfrak{M} \to \mathfrak{M}$ of \mathfrak{G} to a morphism $\rho: \mathfrak{G} \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M})$ of monoid k-functors given by $\rho(x) = \alpha_x$ for every $x \in \mathfrak{G}(A)$ and every k-algebra A. We proved the following result.

Proposition 6.4. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M} be a \mathfrak{D}_k -module such that $\operatorname{End}_{\mathfrak{D}_k}(\mathfrak{M})$ exists. Then the following classes are in canonical bijections described above.

- (1) Linear actions of \mathfrak{G} on \mathfrak{M} .
- **(2)** \mathfrak{O}_k -linear actions $\mathfrak{O}_k[\mathfrak{G}] \times \mathfrak{M} \to \mathfrak{M}$. These are precisely $\mathfrak{O}_k[\mathfrak{G}]$ -modules.
- **(3)** Morphisms $\mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M})$ of \mathfrak{O}_k -algebras.
- **(4)** Morphisms $\mathfrak{G} \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M})$ of monoids.

Moreover, the bijection between class (1) and (2) does not require the existence of \mathcal{E} nd $\mathfrak{D}_{\iota}(\mathfrak{M})$.

Now in a similar manner we can describe morphisms.

Proposition 6.5. Let \mathfrak{G} be a monoid k-functor and let \mathfrak{M}_1 , \mathfrak{M}_2 be k-functors of \mathfrak{O}_k -modules such that $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_1)$, $\mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_2)$ exist. Suppose that $\alpha_1:\mathfrak{G}\times\mathfrak{M}_1\to\mathfrak{M}_1$, $\alpha_2:\mathfrak{G}\times\mathfrak{M}_2\to\mathfrak{M}_2$ are linear actions of \mathfrak{G} , respectively. Suppose that $\sigma:\mathfrak{M}_1\to\mathfrak{M}_2$ is a morphism of modules over \mathfrak{O}_k . Then the following assertions are equivalent.

(i) The square

is commutative.

(ii) The square

is commutative, where $\tilde{\alpha_1}$ and $\tilde{\alpha_2}$ are \mathfrak{D}_k -linear actions of $\mathfrak{D}_k[\mathfrak{G}]$ corresponding to α_1 and α_2 , respectively. This states that σ is a morphism of $\mathfrak{D}_k[\mathfrak{G}]$ -modules.

(iii) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \tilde{\rho}_1(x) = \tilde{\rho}_2(x) \cdot \sigma_A$$

where $\tilde{\rho}_1: \mathfrak{D}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\tilde{\rho}_2: \mathfrak{D}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{D}_k}(\mathfrak{M}_2)$ are morphism of \mathfrak{D}_k -algebras corresponding to $\tilde{\alpha}_1$ and $\tilde{\alpha}_2$, respectively.

(iv) For every k-algebra A and $x \in \mathfrak{G}(A)$ we have

$$\sigma_A \cdot \rho_1(x) = \rho_2(x) \cdot \sigma_A$$

where $\rho_1: \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_1)$ and $\rho_2: \mathfrak{O}_k[\mathfrak{G}] \to \mathcal{E}nd_{\mathfrak{O}_k}(\mathfrak{M}_2)$ are morphism of monoid k-functors restricting $\tilde{\rho_1}$ and $\tilde{\rho_2}$, respectively.

The equivalence of (1) and (2) does not require the existence of $\operatorname{End}_{\mathfrak{D}_k}(\mathfrak{M}_1)$ and $\operatorname{End}_{\mathfrak{D}_k}(\mathfrak{M}_2)$.

Proof. Conditions expressed in (i)-(iv) are directly translatable to each other by virtue of bijections in Proposition 6.4.

Let \mathfrak{G} be a monoid k-functor. We denote by $\mathbf{Mod}(\mathfrak{O}_k[\mathfrak{G}])$ the category of $\mathfrak{O}_k[\mathfrak{G}]$ -modules.

7. REGULAR FUNCTIONS AS A MODULE OVER MONOID k-FUNCTOR

Let $\mathfrak G$ be a monoid k-functor. In this section we discuss important example of a $\mathfrak O_k[\mathfrak G]$ -module. Fix a k-functor $\mathfrak X$ for which $\mathcal M$ or $_k(\mathfrak X, \mathcal O_k)$ exists. Let $\alpha: \mathfrak G \times \mathfrak X \to \mathfrak X$ be an action of $\mathfrak G$ on $\mathfrak X$. According to [Mon19, Corollary 2.12] we deduce that α corresponds to a unique morphism of k-functors $\rho: \mathfrak G \to \mathcal I$ so $_k(\mathfrak X)$. For every k-algebra A and $x \in \mathfrak G(A)$ we have $\rho(x) = \alpha_x$. Moreover, ρ is a morphism of k-monoids (this is a consequence of the fact that α is an action). Next we have a map of sets

$$\operatorname{Mor}_{A}(\mathfrak{X}_{A},(\mathfrak{O}_{k})_{A})\ni f\mapsto f\cdot\rho(x)\in\operatorname{Mor}_{A}(\mathfrak{X}_{A},(\mathfrak{O}_{k})_{A})$$

For every *A*-algebra *B* and every point $y \in \mathfrak{X}(B)$ we have

$$(f \cdot \rho(x))(y) = f(\rho(x)(y))$$

From this description it follows that the map $f \mapsto f \cdot \rho(x)$ is a morphism of *A*-algebras.

Lemma 7.0.1. Let Γ be a consistent set of formulas of \mathcal{L} . Then there exist a variable extension \mathcal{M} of \mathcal{L} and a set Δ of formulas of \mathcal{M} such that the following assertions hold.

(1)
$$\Gamma \subseteq \Delta$$
.

- **(2)** If $(\neg \forall x \phi) \in \Gamma$, then there exists a variable z in \mathcal{M} substitutable for x in ϕ such that $(\neg [\phi]_z^x) \in \Delta$.
- (3) Δ is consistent in \mathcal{M} .

Proof of the lemma. We define variable extension \mathcal{M} of \mathcal{L} . We enlarge $\mathbf{V}_{\mathcal{L}}$ to $\mathbf{V}_{\mathcal{M}}$ by adding for each formula of the form $(\neg \forall x \phi) in\Gamma$ a unique variable $z_{\phi,x}$. Hence

$$\mathbf{V}_{\mathcal{M}} = \mathbf{V}_{\mathcal{L}} \cup \{z_{\phi,x} \mid \text{ if } (\neg \forall x \phi) \in \Gamma \text{ for some } x \in \mathbf{V}_{\mathcal{L}} \text{ and a formula } \phi \text{ of } \mathcal{L}\}$$

We define

$$\Delta = \Gamma \cup \left\{ \left(\neg [\phi]_{z_{\phi,x}}^{x} \right) \mid \text{ if } (\neg \forall x \phi) \in \Gamma \right\}$$

Then Δ is a set of formulas of \mathcal{M} and (1) and (2) are satisfied. Suppose that Δ is inconsistent set of formulas of \mathcal{M} . By compactness of $\vdash_{\mathcal{M}}$ we derive that Δ has a finite inconsistent (with respect to $\vdash_{\mathcal{M}}$) subset. By Lemma ?? we derive that Γ is consistent set with respect to $\vdash_{\mathcal{M}}$. Thus there exists a finite subset

$$\left\{ \left(\neg [\phi_1]_{z_{\phi_1, x_1}}^{x_1} \right), ..., \left(\neg [\phi_n]_{z_{\phi_n, x_n}}^{x_n} \right), \left(\neg [\phi_{n+1}]_{z_{\phi_{n+1}, x_{n+1}}}^{x_{n+1}} \right) \right\} \subseteq \left\{ \left(\neg [\phi]_{z_{\phi, x}}^{x} \right) \mid \text{if } (\neg \forall x \phi) \in \Gamma \right\}$$

such that its union with Γ is inconsistent with respect to $\vdash_{\mathcal{M}}$ and the union

$$\Xi = \Gamma \cup \left\{ \left(\neg [\phi_1]_{z_{\phi_1, x_1}}^{x_1} \right), ..., \left(\neg [\phi_n]_{z_{\phi_n, x_n}}^{x_n} \right), \left(\neg [\phi_{n+1}]_{z_{\phi_{n+1}, x_{n+1}}}^{x_{n+1}} \right) \right\}$$

is consistent with respect to $\vdash_{\mathcal{M}}$. Write $\phi = \phi_{n+1}$ and $x = x_{n+1}$. We have that $\Xi \cup \{\left(\neg[\phi]_{z_{\phi,x}}^x\right)\}$ is inconsistent with respect to $\vdash_{\mathcal{M}}$. We denote by \bot any formula of \mathcal{M} that is a negation of a tautology of \mathcal{M} . Then

$$\Xi \cup \{\left(\neg[\phi]_{z_{\phi,x}}^{x}\right)\} \vdash_{\mathcal{M}} \bot$$

By Theorem ?? we derive that

$$\Xi \vdash_{\mathcal{M}} \left(\left(\neg [\phi]_{z_{\phi,x}}^{x} \right) \rightarrow \bot \right)$$

Since formula

$$\left(\left((\neg[\phi]_{z_{\phi,x}}^{x}\right)\rightarrow\bot\right)\rightarrow[\phi]_{z_{\phi,x}}^{x}\right)$$

is a tautology of \mathcal{M} , we deduce that $\Xi \vdash_{\mathcal{M}} [\phi]_{z_{\phi,x}}^x$. By Theorem ?? we derive that $\Xi \vdash_{\mathcal{M}} \forall z_{\phi,x} [\phi]_{z_{\phi,x}}^x$ (indeed, $z_{\phi,x}$ does not occurre as a free variable in any formula of Ξ). By Lemma ?? we have $\forall z_{\phi,x} [\phi]_{z_{\phi,x}}^x \vdash_{\mathcal{M}} \forall x\phi$ and hence by Theorem ?? we have $\vdash_{\mathcal{M}} (\forall z_{\phi,x} [\phi]_{z_{\phi,x}}^x \rightarrow \forall x\phi)$. Thus $\Xi \vdash_{\mathcal{M}} \forall x\phi$. On the other hand $(\neg \forall x\phi) \in \Gamma$ and hence this formula is an element of Ξ . Thus

$$\Xi \vdash_{\mathcal{M}} \forall x \phi, \Xi \vdash_{\mathcal{M}} (\neg \forall x \phi)$$

and therefore, Ξ is inconsistent with respect to $\vdash_{\mathcal{M}}$. This is a contradiction.

REFERENCES

[ML98] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Mon19] Monygham. Geometry of k-functors. github repository: "Monygham/Pedo-mellon-a-minno", 2019.