Factorización de matrices

Métodos Numéricos

Prof. Juan Alfredo Gómez

Conferencia 13

Conferencia 13

- Recordatorio
- Matrices de permutaciones y factorización PLU
- 3 Matrices con diagonal estrictamente dominante
- Matrices definidas positivas
- Matrices tridiagonales

Triangular inferior

Una matriz $L \in \mathbb{R}^{n \times n}$ es triangular inferior si: $I_{ij} = 0, \forall i < j$.

Triangular superior

Una matriz $U \in \mathbb{R}^{n \times n}$ es triangular superior si $u_{ii} = 0, \forall i > j$.

Ejemplos

$$L = \begin{bmatrix} 0 & 0 & 0 & 0 \\ -2 & 7 & 0 & 0 \\ 4 & 3 & 1 & 0 \\ -1 & 5 & 0 & -4 \end{bmatrix}; U = \begin{bmatrix} 1 & -2 & 0 & 3 \\ 0 & 0 & -1 & 9 \\ 0 & 0 & 8 & 5 \\ 0 & 0 & 0 & -5 \end{bmatrix}$$

- El resultado de la Eliminación es triangular superior.
- Las matriz correspondiente a la operación elemental $(E_i + \lambda E_i) \rightarrow (E_i)$ es triangular inferior.

Factorización LU

Menos operaciones

Si una matriz se factoriza como A = LU, donde L es triangular inferior y U es triangular superior, entonces el sistema

$$Ax = b$$

puede resolverse haciendo una sustitución hacia adelante

$$Ly = b$$

y luego una hacia atrás:

$$Ux = y$$

utilizando en total $O(n^2)$ operaciones.

Método de Doolittle

Teorema

Si el algoritmo de Eliminación aplicado a Ax = b culmina sin intercambio de filas, entonces A puede factorizarse A = LU, donde U es triangular superior y L es triangular inferior y:

$$L = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ m_{21} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ m_{n-1,1} & m_{n-1,2} & \cdots & 1 & 0 \\ m_{n,1} & m_{n,2} & \cdots & m_{n,n-1} & 1 \end{bmatrix}$$

Aspectos básicos

Definición

Una matriz de permutaciones se obtiene permutando las filas de una matriz identidad. Ejemplo:

$$P = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right]$$

Sea P una matriz de permutaciones:

- Cada fila y columna de P está formada por un uno y el resto ceros.
- El producto PA realiza sobre la matriz A las mismas permutaciones de filas que definen a P.
- P^{-1} siempre existe y $P^{-1} = P^{T}$.

Factorización PLU

Observación

- Si la matriz A es inversible, el algoritmo de eliminación aplicado a Ax = b termina, eventualmente cambiando filas.
- Si todos los intercambios de filas necesarios se resumen en la matriz de permutaciones P^T, entonces P^TA posee una factorización LU, o sea: P^TA = LU

Proposición 5

Toda matriz regular posee una factorización de la forma

$$A = PLU$$

donde P es una matriz de permutaciones, L es triangular inferior y U es triangular superior.

Ejemplo de Factorización PLU

$(E_2) \leftrightarrow (E_1)$

$$A = \begin{bmatrix} 0 & 1 & -1 & 1 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 1 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ -1 & -1 & 1 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix}$$

$$(E_3 - (-1)E_1) \rightarrow (E_3); (E_4 - E_1) \rightarrow (E_4)$$

$$\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ -1 & -1 & 1 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$(E_4) \leftrightarrow (E_3); \ (E_3 - E_2) \rightarrow (E_3)$$

$$\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

Ejemplo de Factorización PLU

Matriz de Permutaciones: $(E_2) \leftrightarrow (E_1)$; $(E_4) \leftrightarrow (E_3)$

$$P^{T} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \Rightarrow P^{T}A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 1 & 2 & 0 & 2 \\ -1 & -1 & 1 & 0 \end{bmatrix}$$

Factorización LU: $(E_3 - E_1) \rightarrow (E_3)$; $(E_4 - (-1)E_1) \rightarrow (E_4)$; $(E_3 - E_2) \rightarrow (E_3)$

$$P^{\mathsf{T}}A = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cccc} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2 \end{array} \right]$$

Factorización PLU de A

$$A = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array} \right] \cdot \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cccc} 1 & 1 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 2 \end{array} \right]$$

Factorización LU con picoteo parcial

Ejemplo $E_1 \leftrightarrow E_2$

$$A = \left[\begin{array}{cccc} 1 & -2 & 3 & 0 \\ 3 & -6 & 9 & 3 \\ 2 & 1 & 4 & 1 \\ 1 & -2 & 2 & -2 \end{array} \right] \rightsquigarrow \left[\begin{array}{ccccc} 3 & -6 & 9 & 3 \\ 1 & -2 & 3 & 0 \\ 2 & 1 & 4 & 1 \\ 1 & -2 & 2 & -2 \end{array} \right]$$

$$(E_2-(1/3)E_1) \to (E_2); (E_3-(2/3)E_1) \to (E_3); (E_4-(1/3)E_1) \to (E_4)$$

$$\begin{bmatrix} 3 & -6 & 9 & 3 \\ 1 & -2 & 3 & 0 \\ 2 & 1 & 4 & 1 \\ 1 & -2 & 2 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 3 & -6 & 9 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 5 & -2 & -1 \\ 0 & 0 & -1 & -3 \end{bmatrix}$$

$$(E_3) \leftrightarrow (E_2); \ (E_3) \leftrightarrow (E_4)$$

$$\begin{bmatrix} 3 & -6 & 9 & 3 \\ 0 & 0 & 0 & -1 \\ 0 & 5 & -2 & -1 \\ 0 & 0 & -1 & -3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & -6 & 9 & 3 \\ 0 & 5 & -2 & -1 \\ 0 & 0 & 0 & -1 & -3 \\ 0 & 0 & -1 & -3 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 3 & -6 & 9 & 3 \\ 0 & 5 & -2 & -1 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Ejemplo de Factorización PLU con pivoteo

Matriz de Permutaciones: $(E_2) \leftrightarrow (E_1)$; $(E_2) \leftrightarrow (E_3)$; $(E_3) \leftrightarrow (E_4)$

$$P^{T} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \Rightarrow P^{T}A = \begin{bmatrix} 3 & -6 & 9 & 3 \\ 2 & 1 & 4 & 1 \\ 1 & -2 & 2 & -2 \\ 1 & -2 & 3 & 0 \end{bmatrix}$$

Factorización LU: $(E_3 - E_1) \rightarrow \overline{(E_3)}$; $(E_4 - (-1)E_1) \rightarrow (E_4)$; $(E_3 - E_2) \rightarrow (E_3)$

$$P^{\mathsf{T}}A = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2/3 & 1 & 0 & 0 \\ 1/3 & 0 & 1 & 0 \\ 1/3 & 0 & 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cccc} 3 & -6 & 9 & 3 \\ 0 & 5 & -2 & -1 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & -1 \end{array} \right]$$

Factorización PLU de A

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right] \cdot \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2/3 & 1 & 0 & 0 \\ 1/3 & 0 & 1 & 0 \\ 1/3 & 0 & 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cccc} 3 & -6 & 9 & 3 \\ 0 & 5 & -2 & -1 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & -1 \end{array} \right]$$

Aspectos básicos

Definición

Una matriz $A \in \mathbb{R}^{n \times n}$ se dice que tiene una diagonal estrictamente dominante si para cada $i = 1 \dots n$ se cumple que:

$$|a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}|$$

Teorema

Si la matriz *A* posee una diagonal estrictamente dominante, entonces *A* tiene también las siguientes propiedades:

- Es regular
- El algoritmo de Eliminación de Gauss puede realizarse sin intercambio de filas para cualquier sistema Ax = b
- Posee una factorización LU.

Ejemplos

$$A = \left[\begin{array}{ccc} 3 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 3 & -6 \end{array} \right]; \quad B = \left[\begin{array}{ccc} 6 & 4 & -3 \\ 4 & -2 & 0 \\ -3 & 0 & 1 \end{array} \right]$$

A posee una diagonal estrictamente dominante, pero B no.

$$A = \left[\begin{array}{ccc} 3 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & 3 & -6 \end{array} \right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right] \cdot \left[\begin{array}{ccc} 3 & 2 & 0 \\ 0 & 3 & -1 \\ 0 & 0 & -5 \end{array} \right]$$

Observación

Tener una diagonal estrictamente dominante es **solo** una condición **suficiente** para la existencia de una factorización LU.

$$A = \left[\begin{array}{cccc} 1 & 1 & 0 & 3 \\ 2 & 1 & -1 & 1 \\ 3 & -1 & -1 & 2 \\ -1 & 2 & 3 & -1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 4 & 1 & 0 \\ -1 & -3 & 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cccc} 1 & 1 & 0 & 3 \\ 0 & -1 & -1 & -5 \\ 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & -13 \end{array} \right]$$

Aspectos básicos

Definición

Una matriz $A \in \mathbb{R}^{n \times n}$ es definida positiva si es simétrica y cumple que

$$d^T A d > 0, \forall d \in \mathbb{R}^n, d \neq 0,$$

Ejemplo

$$A = \left[\begin{array}{rrrr} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{array} \right]$$

$$d^{T}Ad = 2d_{1}^{2} - 2d_{1}d_{2} + 2d_{2}^{2} - 2d_{2}d_{3} + 2d_{3}^{2}$$
$$= d_{1}^{2} + (d_{1} - d_{2})^{2} + (d_{2} - d_{3})^{2} + d_{3}^{2} > 0$$

Conclusión: A es definida positiva.

Propiedades de las matrices definida positiva

Proposición (Condiciones necesarias)

Si una matriz $A \in \mathbb{R}^{n \times n}$ es definida positiva, entonces se cumplen las siguientes condiciones:

- A posee una inversa.
- $a_{ii} > 0$ para todo $i = 1, \ldots, n$
- $a_{ii}^2 < a_{ii} a_{ji}$, para cada $i \neq j$.

Proposición (Caracterización mediante valores propios)

Una matriz simétrica es definida positiva si y solo si todos sus valores propios son estrictamente positivos.

Propiedades de las matrices definida positiva

Definición (Menores principales)

El menor principal de orden k de una $n \times n$ —matriz A se define como el determinante de la submatriz de A que se forma de la intersección de las primeras k filas y columnas.

Los n menores principales de la $n \times n$ -matriz A se denotan por:

$$A_k = det([A]_{i,j=1,2,...,k}), \quad k = 1,2,...,n$$

Proposición (Criterio basado en los menores principales)

Una matriz $A \in \mathbb{R}^{n \times n}$ es definida positiva si y solo si todos sus menores principales son positivos.

Ejemplo

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}; \quad M_1 = 2; \ M_2 = 3; \ M_3 = 4$$

Teorema

Una matriz simétrica A es definida positiva si y solo si el algoritmo de eliminación de Gauss puede realizarse sobre un sistema Ax = b sin necesidad de intercambiar filas y con todos los pivotes estrictamente positivos.

Ejemplo (pivote 2 > 0)

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Ejemplo (pivote $\frac{3}{2} > 0$)

$$\left[\begin{array}{ccc} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{array}\right] \rightsquigarrow \left[\begin{array}{ccc} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{array}\right]$$

Resultados principales

Consecuencia 1 (Factorización LDLT)

Una matriz A es definida positiva si y solo si puede ser factorizada como $A = LDL^T$, donde L es triangular inferior con valor uno en la diagonal y D es una matriz diagonal con valores positivos en la diagonal.

Ejemplo (Factorización LU)

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{bmatrix}$$

Ejemplo (Factorización LDL^{T})

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{2} & 1 \end{array} \right] \cdot \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{2} \end{array} \right] \cdot \left[\begin{array}{ccc} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{array} \right]$$

Resultados principales

Consecuencia 2 (Factorización LL^{T})

Una matriz A es definida positiva si y solo si puede ser factorizada como $A = LL^T$, donde L es triangular inferior con valores estrictamente positivos en la diagonal.

Ejemplo (Factorización LDL^{T})

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{2} & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & -\frac{2}{3} \\ 0 & 0 & 1 \end{bmatrix}$$

Ejemplo (Factorización LL^{T})

$$A = \begin{bmatrix} \sqrt{2} & 0 & 0 \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{\sqrt{2}} & 0 \\ 0 & -\frac{\sqrt{2}}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{bmatrix} \cdot \begin{bmatrix} \sqrt{2} & -\frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{3}}{\sqrt{2}} & -\frac{\sqrt{2}}{\sqrt{3}} \\ 0 & 0 & \frac{2}{\sqrt{3}} \end{bmatrix}$$

Factorización *LDL*^T

Pseudocódigo

DATOS:
$$A = [a_{ij}], 1 \le i, j \le n$$
: Matriz
RESULT: $l_{ii}, 1 \le j \le i \le n, d_i, 1 \le i \le n$

PASO 1: Para
$$i = 1 : n$$
 hacer los pasos 2-4

PASO 2: Para
$$j = 1 : i - 1$$
, tomar $v_i = l_{ij}d_j$

PASO 3: Definir
$$d_i = a_{ii} - \sum_{j=1}^{i-1} l_{ij} v_j$$

PASO 4: Para
$$j = i + 1 : n$$
, tomar $l_{jj} = [a_{jj} - \sum_{k=1}^{i-1} l_{jk} v_k]/d_i$

PASO 5: STOP(
$$l_{ii}$$
, $1 \le i < i \ge n$, d_i , $1 \le i \le n$)

Algoritmo de Cholesky (Factorización LLT)

Pseudocódigo

DATOS: $A = [a_{ii}], 1 < i, j < n$: Matriz

RESULT: I_{ii} , 1 < i < n

PASO 1: Tomar $I_{11} = \sqrt{a_{11}}$

PASO 2: Para j = 2 : n, tomar $I_{j1} = a_{j1}/I_{11}$

Para i = 2 : n - 1 hacer los pasos 4 y 5 PASO 3:

PASO 4: Tomar $I_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} I_{ik}^2\right)^{\frac{1}{2}}$

PASO 5: Para i = i + 1 : n, tomar $I_{ii} = [a_{ii} - \sum_{k=1}^{i-1} I_{ik} I_{ik}] / I_{ii}$

PASO 6: Tomar
$$I_{nn} = \left(a_{nn} - \sum_{k=1}^{n-1} I_{nk}^2\right)^{\frac{1}{2}}$$

 $STOP(I_{ii}, 1 \leq i \leq n)$ PASO 7:

Aspectos básicos

Definición

Una matriz $A \in \mathbb{R}^{n \times n}$ es tridiagonal si cumple que:

$$a_{ii} = 0, \ \forall 1 + i < j \lor i > j + 1$$

Ejemplos

$$\begin{bmatrix} 3 & 2 & 0 \\ 3 & 5 & -1 \\ 0 & -3 & -6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

Motivación

Aprovechar la estructura para disminuir el monto de operaciones al factorizar o resolver sistemas.

Factorización de Crout para matrices tridiagonales

Hipótesis

puede descomponerse como el producto A = LU con:

Calculos necesarios: (3n-2) ecuaciones e incógnitas

$$\begin{array}{rcl} a_{11} & = & l_{11} \\ a_{i,i-1} & = & l_{i,i-1}; \ \forall i=2\dots n \\ a_{i,i} & = & l_{i,i-1}u_{i-1,i} + l_{ii}; \ \forall i=2\dots n \\ a_{i,i+1} & = & l_{i,i}u_{i,i+1}; \ \forall i=1\dots n-1 \end{array}$$

Ejercicio

• Usando la descomposición PLU con estrategia de pivoteo parcial resuelva el sistema Ax = b, donde

$$A = \left(\begin{array}{cccc} -1 & 1 & 0 & -3 \\ 1 & 0 & 3 & 1 \\ 0 & 1 & -1 & -1 \\ 3 & 0 & 1 & 2 \end{array}\right), \qquad b = \left(\begin{array}{c} 4 \\ 0 \\ 3 \\ 1 \end{array}\right)$$

Considere el sistema de ecuaciones

$$A = \left(\begin{array}{ccc} 3/2 & \alpha & -1 \\ \alpha & 2 & 1 \\ -1 & 1 & 1 \end{array} \right).$$

- Determine para cuáles valores del parámetro $\alpha \in \mathbb{R}$, la matriz A siguiente es definida positiva:
- Para α = -1, compruebe que A es definida positiva y calcule la descomposición LDL^T de la matriz A.
- Si b^T = (4, -5, -3) resuelva el sistema Ax = b, usando la descomposición LDL^T de A obtenida en el inciso anterior.