

Figure 37.16: A schematic illustration of Definition 37.16.

containing a, and $f^{-1}(N)$ is a neighborhood of a. Conversely, if $f^{-1}(N)$ is a neighborhood of a whenever N is any neighborhood of f(a), it is immediate that f is continuous at a. See Figure 37.17.

Figure 37.17: A schematic illustration of the neighborhood condition.

It is easy to see that Definition 37.16 is equivalent to the following statements.

Proposition 37.9. Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be topological spaces, and let $f: E \to F$ be a function. For every $a \in E$, the function f is continuous at $a \in E$ iff for every neighborhood N of $f(a) \in F$, then $f^{-1}(N)$ is a neighborhood of a. The function f is continuous on E iff $f^{-1}(V)$ is an open set in \mathcal{O}_E for every open set $V \in \mathcal{O}_F$.

If E and F are metric spaces defined by metrics d_E and d_F , we can show easily that f is continuous at a iff

for every $\epsilon > 0$, there is some $\eta > 0$, such that, for every $x \in E$,

if
$$d_E(a, x) \le \eta$$
, then $d_F(f(a), f(x)) \le \epsilon$.

Similarly, if E and F are normed vector spaces defined by norms $\| \|_E$ and $\| \|_F$, we can show easily that f is continuous at a iff