

# Бази от данни

Релационен модел на данни. Нормализация.

# Дизайн на БД. Аномалии

- Когато създаваме релационен модел на БД, може да се получат следните аномалии:
  - Излишества когато се повтаря информацията без да е необходимо
  - Аномалии при обновяване когато направим промени в един кортеж, а забравим да направим същите промени в свързаните с него кортежи
  - Аномалии при изтриване когато изтрием даден ред и това доведе до загуба на информация
  - Например ако имаме актьор, който участва във филм и ние искаме да изтрием актьора, а като ефект да получим и изтрита информация за филма, в който е участвал актьора.

StarMovies(title, year, length, filtype, studioName, starName)

# Декомпозиране на релации

- Начин да избегнем излишества е чрез декомпозиране на релации.
- Декомпозирането на една релация R означава разделяне на атрибутите на релацията R в две нови релации
- ▶ Например: Нека ни е дадена релацията R(AI,A2, ..,An), можем да декомпозираме релацията R до две релации S(BI, B2,..., Bm) и T(CI, C2, .., Ck), такива че:
  - ► {AI,A2, ...,An}={BI, B2, .., Bm} U {CI, C2, .., Ck}
  - Кортежите в релацията S са проекция по атрибутите В I, В2,
    ..., Вт на релацията R, а тези на релацията Т по атрибутите С I, С2, ..., Ск на релацията R

# Нормална форма на Бойс-Код

- Целта на декомпозицията е да замени релацията с други, които да не позволяват аномалии. Има просто правило, което гарантира, че ако една релация е подчинена на него то в съответната релация не може да възникнат аномалии.
- ▶ Казваме, че една релация се намира в Нормална форма на Бойс-Код (НФБК), тогава и само тогава когато ако А1,А2, ..An->В е нетривиална Ф3, която е в сила за R, то {A1,A2, ..An} е суперключ за R
- Или казано по друг начин лявата страна на всяка нетривиална
  Ф3, която е в сила за R трябва да съдържа ключ на релацията R
- Ако се случи, че има Ф3, които са в сила за релацията но не отговарят на посоченото по-горе правило (НФБК), тогава трябва да декомпозираме за да приведем релацията до НФБК

# Нормална форма на Бойс-Код

- Пример: Релацията
  StarMovies(title, year, length, filtype, studioName, starName)
- Не е в НФБК
- За да проверим това, нека първо да определим кой е ключът на релацията
  - Ключът e {title, year, starname}
  - Тогава всяко множество от атрибути, което съдържа тези три атрибута е супер-ключ
  - За релацията е в сила Ф3:
    - title, year > length, filmtype, studioName
    - ▶ Също така знаем че title, year не определя функционално starname
    - Ако релацията беше в НФБК, то в лявата част на ФЗ щеше да бъде сперключ
    - В случая това не е така

# Нормална форма на Бойс-Код

- Пример2: Релацията
  Movies1(title, year, length, filtype, studioName)
- Тя е в НФБК
- За нея е в сила ФЗ

title, year - > length, filmtype, studioName

 Лявата част съдържа ключа, следователно релацията е в НФБК

#### Твърдение

- Всяка релация, която има само два атрибута се намира в НФБК
- Доказателство:
- Нека R(A,B)
  - Ако нямаме нетривиални Ф3, т.е. всички Ф3 които се в сила за релацията са тривиални, тогава релацията се намира в НФБК, тъй като само не тривиалните Ф3 могат да нарушат правилото на НФБК. Единственият ключ за релацията ще бъде {A,B}
  - В случай че А->В, но не е в сила че В->А, тогава А е единственият ключ за релацията и всички нетривиални ФЗ, които са в сила за релацията го съдържат в лявата си част, т.е. релацията е в НФБК
  - Аналогично ако B->A, но не е в сила че A->B
  - В случай че A->В и В->А, тогава и атрибута А и атрибута В могат да бъдат ключ за релацията. Всички Ф3 съдържат ключ в лявата си част на правилото, следователно релацията е в НФБК

### Алгоритъм за свеждане към НФБК

- Първо се търсят нетривиални Ф3: AI,A2, ..,An->BI, B2,..,Вm такива че да нарушават НФБК, т.е. лявата част да не съдържа ключа
- По правилото за комбиниране добавяме в дясната част всички атрибути, който са функционално определени от AI,A2, ..,An
- Правим декомпозиция на релацията на две релации.
  - Първата релация съдържа атрибутите от лявата част на функционалната зависимост и тези атрибути, които не са функционално определени от тях
  - Втората релация съдържа атрибутите от лявата част на ФЗ и атрибутите от дясната част

#### Алгоритъм за свеждане към НФБК - Пример

StarMovies(title, year, length, filtype, studioName, starName)

Ф3, която нарушава правилото е

title, year - > length, filmtype, studioName

- По горе-споменатият алгоритъм разделяме релацията на две релации
  - Movies1(title, year, length, filtype, studioName)
  - StarMovies(title, year, starname)

#### Нормализация

- **Нормализация** наричаме процеса на декомпозиране на релация на няколко релации с цел отстраняване на аномалии и повторения.
- **Ф3:** Нека R(A, B, C) е релация. Функционална зависимост (Ф3) за релацията R, наричаме твърдение от вида A, B -> C

### Нормални форми

- ▶ Първа нормална форма (1НФ) изисква всеки компонент в кортежите на релацията да има атомарна стройност.
- ▶ **Втора нормална форма (2НФ)** изисква релацията да е в 1НФ и всеки атрибут да е функционално зависим от атрибутите, съставляващи първичния ключ, но не и от негово подмножество.
- ▶ Трета нормална форма (3НФ) изисква релацията да е в 2НФ и ако АІ, А2, ..Ап->В е нетривиална ФЗ която е в сила за R, то или {АІ,А2, ..Ап} да е супер-ключ за R или В да е част от ключ.
- ▶ Нормална форма на Бойс-Код (НФБК) изисква релацията да е в ЗНФ и само ако AI,A2, ..An->В е нетривиална ФЗ, която е в сила за R, то {AI, A2, ..An} да е супер-ключ за R.

- ▶ Да се направи дизайн на БД, съдържаща информация за поръчки. Известно ни е, че в БД ще се пази информация за дата на поръчката, номер на продукт – уникален за всеки продукт, име на продукт, цена на продукт, ДДС за съответния продукт, номер на клиент – уникален за всеки клиент, име на клиент, количество, което клиентът е поръчал от продукта в съответната поръчка, сума на поръчката без ДДС, сума на поръчката с ДДС.
- В сила са следните предположения:
  - Стойността на ДДС за продукта може да варира за различните продукти.
  - Поръчките на клиентите, направени в един и същ ден (на една и съща дата) се обединяват, т.е. има само една поръчка за клиент за дадена дата.
  - сума на поръчката с ДДС = сума на поръчката без ДДС + ДДС
- 1. Направете модел на БД
- 2. Определете ключовете за релациите (релацията).

#### Решение

**Подход 2:** Поставяме всички атрибути (характеристики) на данните в една табица. Намираме всички ФЗ за тази релация. Нормализираме.

1. Поставяме всичко в една релация

Orders(pld, pName, pPrice, Amount, cld, cName, oDate, VAT, nTotal, gTotal)

- 2. Намираме всички Ф3 за релацията Order (от дадената ни информация)
  - ▶ pId -> pName, pPrice, VAT (Ф3-1)
  - $\triangleright$  cId  $\rightarrow$  cName ( $\Phi$ 3-2)
  - $\triangleright$  pId, cId, oDate -> Amount ( $\Phi$ 3-3)
  - pPrice, Amount -> nTotal
  - ▶ nTotal, VAT-> gTotal
- 3. Намираме ключа за Order: {pld, cld, oDate}

### Решение – Подход 2 (Нормализация)

#### 4. Декомпозираме до НФБК:

- Намираме Ф3, която нарушава НФБК (Ф3-1, Ф3-2)
- Декомпозираме до две релации Orders I и Orders2 (по алгоритъма за привеждане до НФБК)
- 3. За Orders2 повтаряме стъпка 1 и 2, докато стигнем до нормализиран модел.

#### Решение:

- Orders(pld, pName, pPrice, Amount, cld, cName, oDate, VAT, nTotal, gTotal) и
  Ф3-1, следва:
  - Orders I (<u>pld</u>, pName, pPrice, VAT) = Products(<u>pld</u>, pName, pPrice, VAT)
  - Orders2(<u>cID</u>, cName, <u>pID</u>, <u>oDate</u>, Amount, nTotal, gTotal)

# Решение – Подход 2 (Нормализация)

- Products(pld, pName, pPrice, VAT)
- Orders2(clD, cName, plD, oDate, Amount, nTotal, gTotal) и Ф3-2 =>
  - Orders3(<u>cID</u>, cName) = Customers(<u>cID</u>, cName)
  - Orders4(pID, cID, oDate, Amount, nTotal, gTotal)

#### • Получаваме:

- ▶ Products(<u>pld</u>, pName, pPrice, VAT) НФБК
- ► Customers(<u>cID</u>, cName) НФБК
- Orders(<u>pID</u>, <u>cID</u>, <u>oDate</u>, Amount, nTotal, gTotal) НФБК



Книга: Database systems. A practical approach to design, implementation and management, Автори: Thomas Connolly, Carolyn Begg

# Ненормализиран модел

#### ClientRental

| clientNo | cName            | propertyNo | pAddress                  | rentStart | rentFinish | rent | ownerNo | oName       |
|----------|------------------|------------|---------------------------|-----------|------------|------|---------|-------------|
| CR76     | John<br>Kay      | PG4        | 6 Lawrence St,<br>Glasgow | 1-Jul-12  | 31-Aug-13  | 350  | CO40    | Tina Murphy |
|          |                  | PG16       | 5 Novar Dr,<br>Glasgow    | 1-Sep-13  | 1-Sep-14   | 50   | CO93    | Tony Shaw   |
| CR56     | Aline<br>Stewart | PG4        | 6 Lawrence St,<br>Glasgow | 1-Sep-11  | 10-June-12 | 350  | CO40    | Tina Murphy |
|          |                  | PG36       | 2 Manor Rd,<br>Glasgow    | 10-Oct-12 | 1-Dec-13   | 375  | CO93    | Tony Shaw   |
|          |                  | PG16       | 5 Novar Dr,<br>Glasgow    | 1-Nov-14  | 10-Aug-15  | 450  | CO93    | Tony Shaw   |

Figure 14.10 ClientRental unnormalized table.

#### 1НФ

**Първа нормална форма (1НФ)** – изисква всеки компонент в кортежите да е атомарна стройност.

#### ClientRental

| clientNo | propertyNo | cName            | pAddress                  | rentStart | rentFinish | rent | ownerNo | oName       |
|----------|------------|------------------|---------------------------|-----------|------------|------|---------|-------------|
| CR76     | PG4        | John<br>Kay      | 6 Lawrence St,<br>Glasgow | 1-Jul-12  | 31-Aug-13  | 350  | CO40    | Tina Murphy |
| CR76     | PG16       | John<br>Kay      | 5 Novar Dr,<br>Glasgow    | 1-Sep-13  | 1-Sep-14   | 450  | CO93    | Tony Shaw   |
| CR56     | PG4        | Aline<br>Stewart | 6 Lawrence St,<br>Glasgow | 1-Sep-11  | 10-Jun-12  | 350  | CO40    | Tina Murphy |
| CR56     | PG36       | Aline<br>Stewart | 2 Manor Rd,<br>Glasgow    | 10-Oct-12 | 1-Dec-13   | 375  | CO93    | Tony Shaw   |
| CR56     | PG16       | Aline<br>Stewart | 5 Novar Dr,<br>Glasgow    | 1-Nov-14  | 10-Aug-15  | 450  | CO93    | Tony Shaw   |

Figure 14.11 First Normal Form ClientRental relation.

# ФЗ за релацията ClientRental

#### ClientRental clientNo propertyNo cName pAddress rentStart rentFinish ownerNo oName rent fd1 (Primary key) (Partial dependency) fd2 (Partial fd3 dependency) (Transitive fd4 dependency) fd5 (Candidate key) fd6 (Candidate key)

Figure 14.12 Functional dependencies of the ClientRental relation.

# ФЗ за релацията ClientRental

```
 fd1 clientNo, propertyNo → rentStart, rentFinish
 fd2 clientNo → cName
 fd3 propertyNo → pAddress, rent, ownerNo, oName
 fd4 ownerNo → oName
 fd5 clientNo, rentStart → propertyNo, pAddress, rentFinish, rent, ownerNo, oName
 fd6 propertyNo, rentStart → clientNo, cName, rentFinish
```

# Ключ за релацията ClientRental

- Има три възможности за първичен ключ на релацията:
  - ▶ 1. (clientNo, propertyNo) PK
  - ▶ 2. (clientNo, rentStart) кандидат ключ
  - ▶ 3. (propertyNo, rentStart) кандидат ключ

#### Доказателство:

 Намираме покритието за трите двойки и се уверяваме, че това е така

### Нормализираме до НФБК

```
 fd1 clientNo, propertyNo → rentStart, rentFinish
 fd2 clientNo → cName
 fd3 propertyNo → pAddress, rent, ownerNo, oName
 fd4 ownerNo → oName
 fd5 clientNo, rentStart → propertyNo, pAddress, rentFinish, rent, ownerNo, oName
 fd6 propertyNo, rentStart → clientNo, cName, rentFinish
```

Функционалните зависимости fd2 нарушава правилото от НФБК. Декомпозираме по алгоритъма ClientRental и получаваме:

- Clients(clientNo, cName) ΗΦΕΚ
- ClientRental2(clientNo, propertyNo, pAddress, rent, ownerNo, oName, rentStart, rentFinish)

### Нормализираме до НФБК

```
 fd1 clientNo, propertyNo → rentStart, rentFinish
 fd2 clientNo → cName
 fd3 propertyNo → pAddress, rent, ownerNo, oName
 fd4 ownerNo → oName
 fd5 clientNo, rentStart → propertyNo, pAddress, rentFinish, rent, ownerNo, oName
 fd6 propertyNo, rentStart → clientNo, cName, rentFinish
```

Функционалните зависимости fd3 нарушава правилото от НФБК. Декомпозираме по алгоритъма ClientRental2 и получаваме:

- Properties(propertyNo, pAddress, rent, ownerNo, oName)
- ClientRental3(clientNo, propertyNo, rentStart, rentFinish) -НФБК

### Нормализираме до НФБК

```
 fd1 clientNo, propertyNo → rentStart, rentFinish
 fd2 clientNo → cName
 fd3 propertyNo → pAddress, rent, ownerNo, oName
 fd4 ownerNo → oName
 fd5 clientNo, rentStart → propertyNo, pAddress, rentFinish, rent, ownerNo, oName
 fd6 propertyNo, rentStart → clientNo, cName, rentFinish
```

Функционалните зависимости fd4 нарушава правилото от НФБК. Декомпозираме по алгоритъма Properties и получаваме:

- Properties(propertyNo, pAddress, rent, ownerNo) ΗΦΕΚ
- Owners(ownerNo, oName) ΗΦΕΚ

#### НФБК

#### Client

| clientNo | cName         |
|----------|---------------|
| CR76     | John Kay      |
| CR56     | Aline Stewart |

#### Rental

| clientNo | propertyNo | rentStart | rentFinish |
|----------|------------|-----------|------------|
| CR76     | PG4        | 1-Jul-12  | 31-Aug-13  |
| CR76     | PG16       | 1-Sep-13  | 1-Sep-14   |
| CR56     | PG4        | 1-Sep-11  | 10-Jun-12  |
| CR56     | PG36       | 10-Oct-12 | 1-Dec-13   |
| CR56     | PG16       | 1-Nov-14  | 10-Aug-15  |

#### PropertyForRent

| propertyNo | pAddress               | rent | ownerNo |
|------------|------------------------|------|---------|
| PG4        | 6 Lawrence St, Glasgow | 350  | CO40    |
| PG16       | 5 Novar Dr, Glasgow    | 450  | CO93    |
| PG36       | 2 Manor Rd, Glasgow    | 375  | CO93    |

#### Owner

| ownerNo | oName       |
|---------|-------------|
| CO40    | Tina Murphy |
| CO93    | Tony Shaw   |

| JobID | JobDate Time   | driverID | driver Name | taxiID | clientID | clientName | jobPickUpAddress        |
|-------|----------------|----------|-------------|--------|----------|------------|-------------------------|
| 1     | 25/07/14 10.00 | D1       | Joe Bull    | T1     | C1       | Anne Woo   | 1 Storrie Rd, Paisley   |
| 2     | 29/07/14 10.00 | D1       | Joe Bull    | T1     | C1       | Anne Woo   | 1 Storrie Rd, Paisley   |
| 3     | 30/07/14 11.00 | D2       | Tom Win     | T2     | C1       | Anne Woo   | 3 High Street, Paisley  |
| 4     | 2/08/14 13.00  | D3       | Jim Jones   | T3     | C2       | Mark Tin   | 1A Lady Lane, Paisley   |
| 5     | 2/08/14 13.00  | D4       | Steven Win  | T1     | C3       | John Seal  | 22 Red Road, Paisley    |
| 6     | 25/08/14 10.00 | D2       | Tom Win     | T2     | C4       | Karen Bow  | 17 High Street, Paisley |

- Нормализирайте до НФБК
- Решение:
  - ФЗ в сила за релацията са:
    - i. jobID->jobDateTime, jobPickUpAddress
    - 2. driverID -> driverName, taxiID
    - clientID -> clientName
  - ► Ключът на релацията е {jobID, driverID, clientID}
  - Всички Ф3, нарушават правилото на НФБК => декомпозираме

#### Нормализация

TaxiJob(jobID, jobDateTime, jobPickUpAddress, driverID, driverName, taxiID, clientID, clientName)

- Ф3-1, нарушава правилото за НФБК за ТахіЈоь, декомпозираме:
  - I. Jobs(jobID, jobDateTime, jobPickUpAddress) НФБК
  - 2. TaxiJob1(jobID, driverID, driverName, taxiID, clientID, clientName)
- Ф3-2, нарушава правилото на НФБК за ТахіJоb1, декомпозираме:
  - I. Drivers(<u>driverID</u>, driverName, taxiID) НФБК
  - 2. TaxiJob2(jobID, driverID, clientID, clientName)
- Ф3-3, нарушава правилото на НФБК за ТахіJob2, декомпозираме:
  - L Clients(<u>clientID</u>, clientName) НФБК
  - 2. TaxiJob3(<u>jobID</u>, <u>driverID</u>, <u>clientID</u>) НФБК

# Как да решаваме задачи за нормализация?

• Задача: Дадена е релацията R и описание към нея. Намерете всички Ф3, в сила за релацията. Нормализирайте до НФБК.

#### Алгоритъм:

- 1. Намирате всички Ф3, които са в сила за релацията. Извличате ги или от условието на задачата или от факти от действителността. Например ЕГН-то еднозначно определя всеки живущ в България.
- 2. Определяте кандидат ключовете за релацията R
- 3. Търсите Ф3, която нарушава правилото на БК (Ф3, която в лявата си част не съдържа ключа). Например FD I
- Декомпозирате R до две релации RI и R2, така че всички атрибути от FDI са в RI, а лявата част на FDI и всички останали атрибути са в R2.
- 5. Повтаряме стъпка 3) и 4) за релацията R2

| Student_Id | Student_Address  | Lecture                            | Teaching_Assisant |
|------------|------------------|------------------------------------|-------------------|
| 1234       | Rämistrasse 72   | Data Modelling and Databases       | Bob               |
| 1280       | Rennweg 19       | Concepts of Concurrent Computation | Scott             |
| 1234       | Rämistrasse 72   | Visual Computing                   | Sarah             |
| 1299       | Börsenstrasse 42 | Concepts of Concurrent Computation | Benjamin          |
| 1356       | Klusplatz 45     | Concepts of Concurrent Computation | Benjamin          |

#### Известно е че:

- ▶ Един курс (Lecture) се води само от един Teaching\_Assistant
- Намерете всички ФЗ за така зададената релация
- Нормализирайте до НФБК
- Отговор:
  - Students(<u>Student\_Id</u>, Student\_Address)
  - Lectures(<u>Lecture</u>, Teaching\_Assistant)
  - Student\_Lectures(<u>Student\_Id</u>, <u>Lecture</u>)

| leaseNo | bannerID | placeNo | fName  | IName | startDate  | finishDate | flatNo | flatAddress               |
|---------|----------|---------|--------|-------|------------|------------|--------|---------------------------|
| 10003   | B017706  | 78      | Jane   | Watt  | 01/09/2010 | 30/06/2011 | F56    | 34 High Street, Paisley   |
| 10259   | B017706  | 88      | Jane   | Watt  | 01/09/2011 | 30/06/2012 | F78    | 111 Storrie Road, Paisley |
| 10364   | B013399  | 89      | Tom    | Jones | 01/09/2011 | 30/06/2012 | F78    | 111 Storrie Road, Paisley |
| 10566   | B012124  | 102     | Karen  | Black | 01/09/2011 | 30/06/2012 | F79    | 120 Lady Lane, Paisley    |
| 11067   | B034511  | 88      | Steven | Smith | 01/09/2012 | 30/06/2013 | F78    | 111 Storrie Road, Paisley |
| 11169   | B013399  | 78      | Tom    | Jones | 01/09/2012 | 30/06/2013 | F56    | 34 High Street, Paisley   |

- Известно е че в релацията се съхранява информация за студенти (fName, IName) и в коя квартира са настанени в общежитието (flatNo, flatAddress) и на кое място (placeNo). Всеки студент еднозначно се определя от (bannerID)
- Нормализирайте до НФБК

#### Задача 2 - Решение

- StudFlat(leaseNo, bannerID, placeNo, fName, IName, startDate, finishDate, flatNo, flatAddress)
- ▶ FD-I: bannerID -> fName, IName
- FD-2: flatNo -> flatAddress
- FD-3: placeNo -> flatNo
- ► FD-4: leaseNo, bannerID, placeNo -> startDate, finishDate
- {leaseNo, bannerID, placeNo}+
- ► I)X={leaseNo, bannerID, placeNo}
- 2)X={leaseNo, bannerID, placeNo, startDate, finishDate, fName, IName, flatNo, flatAddress}
- PK:{leaseNo, bannerID, placeNo}
- BCNF:
- Students(bannerID, fName, IName)
- Flats(flatNo, flatAddress)
- Places(placeNo, flatNo)
- Leases(leaseNo, bannerID, placeNo, startDate, finishDate)

 Дадена е релацията. Намерете всички Ф3, в сила за релацията. Нормализирайте до НФБК

| staffNo | dentistName   | patientNo | patientName   | appointment      | surgeryNo |
|---------|---------------|-----------|---------------|------------------|-----------|
|         |               |           |               | date time        |           |
| S1011   | Tony Smith    | P100      | Gillian White | 12-Aug-03 10.00  | S10       |
| S1011   | Tony Smith    | P105      | Jill Bell     | 13-Aug-03 12.00  | S15       |
| S1024   | Helen Pearson | P108      | Ian MacKay    | 12-Sept-03 10.00 | S10       |
| S1024   | Helen Pearson | P108      | Ian MacKay    | 14-Sept-03 10.00 | S10       |
| S1032   | Robin Plevin  | P105      | Jill Bell     | 14-Oct-03 16.30  | S15       |
| S1032   | Robin Plevin  | P110      | John Walker   | 15-Oct-03 18.00  | S13       |

# Задача 3 - ФЗ



### Задача 3 - НФБК

staffNo dentistName

Dentist(<u>staffNo</u>, dentistName)

FK

staffNo apptDate surgeryNo

Surgery(staffNo, apptDate, surgeryNo)

patientNo patientName

Patient(patientNo, patientName)

FK

staffNo apptDate apptTime patientNo

Appointment(staffNo, apptDate, apptTime, patientNo)

 Дадена е релацията. Намерете всички Ф3, в сила за релацията. Нормализирайте до НФБК

| NIN      | contractNo | hoursPerWeek | eName        | hotelNo | hotelLocation |
|----------|------------|--------------|--------------|---------|---------------|
| 113567WD | C1024      | 16           | John Smith   | H25     | Edinburgh     |
| 234111XA | C1024      | 24           | Diane Hocine | H25     | Edinburgh     |
| 712670YD | C1025      | 28           | Sarah White  | H4      | Glasgow       |
| 113567WD | C1025      | 16           | John Smith   | H4      | Glasgow       |

### Задача 4 - ФЗ

- ► FDI: NIN, contractNo -> hours
- ▶ FD2: NIN -> eName
- ▶ FD3: contractNo -> hotelNo, hotelLocation
- FD4: hotelNo -> hotelLocation

### Задача 4 - НФБК

- Staff(NIN, eName)
- ▶ Hotel(<u>hotelNo</u>, hotelLocation)
- Contract(<u>contractNo</u>, hotelNo)
- WorkHours(NIN, contractNo, hours)

 Дадена е релацията. Намерете всички Ф3, в сила за релацията. Нормализирайте до НФБК

| StdSSN | StdCity | StdClass | OfferNo | OffTerm | OffYear | EnrGrade | CourseNo | CrsDesc |
|--------|---------|----------|---------|---------|---------|----------|----------|---------|
| S1     | SEATTLE | JUN      | 01      | FALL    | 2006    | 3.5      | C1       | DB      |
| S1     | SEATTLE | JUN      | O2      | FALL    | 2006    | 3.3      | C2       | VB      |
| S2     | BOTHELL | JUN      | O3      | SPRING  | 2007    | 3.1      | C3       | 00      |
| S2     | BOTHELL | JUN      | O2      | FALL    | 2006    | 3.4      | C2       | VB      |

#### Задача 5 - Решение

- StdClass(StdSSN, OfferNo, StdCity, StdClass, OffTerm, OffYear, CourseNo, CrsDesc, EnrGrade)
- FD-1: StdSSN -> StdCity, StdClass
- ▶ FD-2: OfferNo -> OffTerm, OffYear, CourseNo, CrsDesc
- FD-3: CourseNo -> CrsDesc
- FD-4: StdSSN, OfferNo -> EnrGrade
- {StdSSN, OfferNo}+ =
- {StdSSN, OfferNo, StdCity, StdClass, OffTerm, OffYear, CourseNo, CrsDesc, EnrGrade}
- PK: {StdSSN, OfferNo}
- BCNF:
- Students(StdSSN, StdCity, StdClass)
- Courses(CourseNo, CrsDesc)
- Offers(OfferNo, OffTerm, OffYear, CourseNo)
- Grades(StdSSN, OfferNo, EnrGrade)