Fundamental Physical Constants — Extensive Listing				Relative std.		
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$		
	- Symmetri					
	LINII	VERSAL				
speed of light in vacuum	c, c_0	299 792 458	${ m m~s^{-1}}$	exact		
magnetic constant	μ_0	$4\pi \times 10^{-7}$	$\stackrel{ ext{N}}{ ext{N}} \stackrel{ ext{A}}{ ext{-2}}$	CAUCE		
magnetic constant	μ_0	$= 12.566370614\times10^{-7}$	NA^{-2}	exact		
electric constant $1/\mu_0 c^2$	ϵ_0	$8.854187817\times10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$	exact		
characteristic impedance of vacuum $\mu_0 c$	Z_0	376.730 313 461	Ω	exact		
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	${ m m}^3~{ m kg}^{-1}~{ m s}^{-2}$	4.7×10^{-5}		
The meaning constant of grantanton	$G/\hbar c$	$6.70861(31) \times 10^{-39}$	$(\text{GeV}/c^2)^{-2}$	4.7×10^{-5}		
Planck constant	h	$6.626070040(81)\times10^{-34}$	Js	1.2×10^{-8}		
1 miles Consum		$4.135667662(25) \times 10^{-15}$	eV s	6.1×10^{-9}		
$h/2\pi$	\hbar	$1.054571800(13) \times 10^{-34}$	Js	1.2×10^{-8}		
, =		$6.582119514(40)\times10^{-16}$	eV s	6.1×10^{-9}		
	$\hbar c$	197.326 9788(12)	MeV fm	6.1×10^{-9}		
Planck mass $(\hbar c/G)^{1/2}$	$m_{ m P}$	$2.176470(51) \times 10^{-8}$	kg	2.3×10^{-5}		
energy equivalent	$m_{\rm P}c^2$	$1.220910(29)\times10^{19}$	GeV	2.3×10^{-5}		
Planck temperature $(\hbar c^5/G)^{1/2}/k$	$T_{ m P}$	$1.416808(33) \times 10^{32}$	K	2.3×10^{-5} 2.3×10^{-5}		
Planck length $\hbar/m_{\rm P}c=(\hbar G/c^3)^{1/2}$	$l_{ m P}$	$1.616229(38) \times 10^{-35}$	m	2.3×10^{-5}		
Planck time $l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$t_{ m P}$	$5.39116(13)\times10^{-44}$	S	2.3×10^{-5}		
Transk time $iP/c = (nG/c)$,	5	2.3 \(10		
		OMAGNETIC 10	~			
elementary charge	e	$1.6021766208(98)\times10^{-19}$	C	6.1×10^{-9}		
	e/h	$2.417989262(15) \times 10^{14}$	$A J^{-1}$	6.1×10^{-9}		
magnetic flux quantum $h/2e$	Φ_0	$2.067833831(13)\times 10^{-15}$	Wb	6.1×10^{-9}		
conductance quantum $2e^2/h$	G_0	$7.7480917310(18) \times 10^{-5}$	S	2.3×10^{-10}		
inverse of conductance quantum	G_0^{-1}	12906.4037278(29)	Ω	2.3×10^{-10}		
Josephson constant $\frac{1}{2}e/h$	$K_{ m J}$	$483597.8525(30) \times 10^9$	$Hz V^{-1}$	6.1×10^{-9}		
von Klitzing constant ² $h/e^2 = \mu_0 c/2\alpha$	$R_{ m K}$	25 812.807 4555(59)	Ω	2.3×10^{-10}		
Bohr magneton $e\hbar/2m_{ m e}$	$\mu_{ m B}$	$927.4009994(57) \times 10^{-26}$	$ m JT^{-1}$	6.2×10^{-9}		
	4-	$5.7883818012(26) \times 10^{-5}$	$eV T^{-1}$	4.5×10^{-10}		
	$\mu_{ m B}/h$	$13.996245042(86)\times10^9$	$Hz T^{-1}$	6.2×10^{-9}		
	$\mu_{ m B}/hc$	46.686 448 14(29)	$m^{-1} T^{-1}$	6.2×10^{-9}		
	$\mu_{ m B}/k$	0.67171405(39)	$K T^{-1}$	5.7×10^{-7}		
nuclear magneton $e\hbar/2m_{ m p}$	$\mu_{ m N}$	$5.050783699(31) \times 10^{-27}$	$J T^{-1}$	6.2×10^{-9}		
	/•	$3.1524512550(15) \times 10^{-8}$	$eV T^{-1}$	4.6×10^{-10}		
	$\mu_{ m N}/h$	7.622 593 285(47)	MHz T^{-1}	6.2×10^{-9}		
	$\mu_{\rm N}/hc$	$2.542623432(16) \times 10^{-2}$	$m^{-1} T^{-1}$	6.2×10^{-9}		
	$\mu_{ m N}/k$	$3.6582690(21) \times 10^{-4}$	${ m K}~{ m T}^{-1}$	5.7×10^{-7}		
ATOMIC AND NUCLEAR						
General						
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$	α	$7.2973525664(17) imes 10^{-3}$		2.3×10^{-10}		
inverse fine-structure constant	α^{-1}	137.035999139(31)		2.3×10^{-10}		
Rydberg constant $\alpha^2 m_{\rm e} c/2h$	R_{∞}	10 973 731.568 508(65)	m^{-1}	5.9×10^{-12}		
	$R_{\infty}c$	$3.289841960355(19) \times 10^{15}$	Hz	5.9×10^{-12}		
	$R_{\infty}hc$	$2.179872325(27)\times 10^{-18}$	J	1.2×10^{-8}		
		13.605693009(84)	eV	6.1×10^{-9}		
Bohr radius $lpha/4\pi R_{\infty}=4\pi\epsilon_0\hbar^2/m_{\rm e}e^2$	a_0	$0.52917721067(12)\times 10^{-10}$	m	2.3×10^{-10}		
Hartree energy $e^2/4\pi\epsilon_0 a_0 = 2R_{\infty}hc = \alpha^2 m_{\rm e}c^2$	$E_{ m h}$	$4.359744650(54) \times 10^{-18}$	J	1.2×10^{-8}		
		27.21138602(17)	eV	6.1×10^{-9}		
quantum of circulation	$h/2m_{ m e}$	$3.6369475486(17) \times 10^{-4}$	$\mathrm{m}^2~\mathrm{s}^{-1}$	4.5×10^{-10}		

I diddifficital I hysical Constants — Extensive Eisting				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	$h/m_{ m e}$	$7.2738950972(33) \times 10^{-4}$	$\mathrm{m^2~s^{-1}}$	4.5×10^{-10}
		` '	III 3	4.0 \ 10
		ctroweak	0	-
Fermi coupling constant ³	$G_{\mathrm{F}}/(\hbar c)^3$	$1.1663787(6) \times 10^{-5}$	${ m GeV^{-2}}$	5.1×10^{-7}
weak mixing angle ⁴ $\theta_{\rm W}$ (on-shell scheme)	. 2 .	(- :)		
$\sin^2 \theta_{\rm W} = s_{\rm W}^2 \equiv 1 - (m_{\rm W}/m_{\rm Z})^2$	$\sin^2 \theta_{ m W}$	0.2223(21)		9.5×10^{-3}
	Elec	etron, e ⁻		
electron mass	$m_{ m e}$	$9.10938356(11) \times 10^{-31}$	kg	1.2×10^{-8}
		$5.48579909070(16) \times 10^{-4}$	u	2.9×10^{-11}
energy equivalent	$m_{ m e}c^2$	$8.18710565(10) \times 10^{-14}$	J	1.2×10^{-8}
		0.5109989461(31)	MeV	6.2×10^{-9}
electron-muon mass ratio	$m_{ m e}/m_{ m \mu}$	$4.83633170(11) \times 10^{-3}$		2.2×10^{-8}
electron-tau mass ratio	$m_{ m e}/m_{ m au}$	$2.87592(26)\times10^{-4}$		9.0×10^{-5}
electron-proton mass ratio	$m_{ m e}/m_{ m p}$	$5.44617021352(52) \times 10^{-4}$		9.5×10^{-11}
electron-neutron mass ratio	$m_{ m e}/m_{ m n}$	$5.4386734428(27) \times 10^{-4}$		4.9×10^{-10}
electron-deuteron mass ratio	$m_{ m e}/m_{ m d}$	$2.724437107484(96) \times 10^{-4}$		3.5×10^{-11}
electron-triton mass ratio	$m_{ m e}/m_{ m t}$	$1.819200062203(84)\times 10^{-4}$		4.6×10^{-11}
electron-helion mass ratio	$m_{ m e}/m_{ m h}$	$1.819543074854(88) \times 10^{-4}$		4.9×10^{-11}
electron to alpha particle mass ratio	$m_{ m e}/m_{f lpha}$	$1.370933554798(45)\times 10^{-4}$	$a_1 = 1$	3.3×10^{-11}
electron charge to mass quotient	$-e/m_{\rm e}$	$-1.758820024(11) \times 10^{11}$	$C kg^{-1}$	6.2×10^{-9}
electron molar mass $N_{\rm A}m_{\rm e}$	$M(e), M_e$	$5.48579909070(16) \times 10^{-7}$	kg mol ^{−1}	2.9×10^{-11}
Compton wavelength $h/m_e c$	$\lambda_{ m C}$	$2.4263102367(11) \times 10^{-12}$	m	$4.5 \times 10^{-10} $ 4.5×10^{-10}
$\lambda_{\rm C}/2\pi = \alpha a_0 = \alpha^2/4\pi R_{\infty}$	$\lambda_{ m C}$	$386.15926764(18) \times 10^{-15}$	m	4.5×10^{-10} 6.8×10^{-10}
classical electron radius $\alpha^2 a_0$	$r_{ m e}$	$2.8179403227(19) \times 10^{-15} 0.66524587158(91) \times 10^{-28}$	$^{ m m}$	0.8×10^{-9} 1.4×10^{-9}
Thomson cross section $(8\pi/3)r_{\rm e}^2$ electron magnetic moment	$\sigma_{ m e}$	$-928.4764620(57) \times 10^{-26}$	$ m JT^{-1}$	6.2×10^{-9}
to Bohr magneton ratio	$\mu_{ m e} \ \mu_{ m e}/\mu_{ m B}$	$-328.4764020(37) \times 10$ -1.00115965218091(26)	JI	2.6×10^{-13}
to nuclear magneton ratio	$\mu_{ m e}/\mu_{ m B} \ \mu_{ m e}/\mu_{ m N}$	-1838.28197234(17)		9.5×10^{-11}
electron magnetic moment	$\mu_{ m e}/\mu_{ m N}$	1000.201312.04(11)		3.5 × 10
anomaly $ \mu_{\rm e} /\mu_{\rm B}-1$	$a_{ m e}$	$1.15965218091(26) \times 10^{-3}$		2.3×10^{-10}
electron g-factor $-2(1+a_{\rm e})$	$g_{ m e}$	-2.00231930436182(52)		2.6×10^{-13}
electron-muon magnetic moment ratio	$\mu_{ m e}/\mu_{ m \mu}$	206.766 9880(46)		2.2×10^{-8}
electron-proton magnetic moment ratio	$\mu_{ m e}/\mu_{ m p}$	-658.2106866(20)		3.0×10^{-9}
electron to shielded proton magnetic	re/rp	(_0)		0.0 0
moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m p}'$	-658.2275971(72)		1.1×10^{-8}
electron-neutron magnetic moment ratio	$\mu_{ m e}/\mu_{ m n}$	960.920 50(23)		2.4×10^{-7}
electron-deuteron magnetic moment ratio	$\mu_{ m e}/\mu_{ m d}$	-2143.923499(12)		5.5×10^{-9}
electron to shielded helion magnetic	, ,,, ,	,		
moment ratio (gas, sphere, 25 °C)	$\mu_{ m e}/\mu_{ m h}'$	864.058 257(10)		1.2×10^{-8}
electron gyromagnetic ratio $2 \mu_{\rm e} /\hbar$	$\gamma_{ m e}$	$1.760859644(11) \times 10^{11}$	${ m s}^{-1} { m T}^{-1}$	6.2×10^{-9}
	$\gamma_{ m e}/2\pi$	28024.95164(17)	$ m MHz~T^{-1}$	6.2×10^{-9}
	Mı	ion, μ ⁻		
muon mass	m_{μ}	$1.883531594(48)\times10^{-28}$	kg	2.5×10^{-8}
	۳	0.113 428 9257(25)	u	2.2×10^{-8}
energy equivalent	$m_{\mathfrak{u}}c^2$	$1.692833774(43)\times 10^{-11}$	J	2.5×10^{-8}
	r.	105.6583745(24)	MeV	2.3×10^{-8}
muon-electron mass ratio	$m_{ m \mu}/m_{ m e}$	206.768 2826(46)		2.2×10^{-8}
muon-tau mass ratio	$m_{ m \mu}/m_{ m au}$	$5.94649(54) \times 10^{-2}$		9.0×10^{-5}
muon-proton mass ratio	$m_{ m \mu}/m_{ m p}$	0.1126095262(25)		2.2×10^{-8}
	-			

	•		8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
muon-neutron mass ratio	$m_{ m \mu}/m_{ m n}$	0.1124545167(25)		2.2×10^{-8}
muon molar mass $N_{ m A} m_{ m \mu}$	$M(\mu), M_{\mu}$	$0.1134289257(25)\times 10^{-3}$	$kg mol^{-1}$	2.2×10^{-8}
muon Compton wavelength $h/m_{\mu}c$	$\lambda_{\mathrm{C},\mu}$	$11.73444111(26)\times 10^{-15}$	m	2.2×10^{-8}
$\lambda_{\mathrm{C},\mu}/2\pi$	$\lambda_{\mathrm{C},\mu}$	$1.867594308(42)\times 10^{-15}$	m	2.2×10^{-8}
muon magnetic moment	μ_{μ}	$-4.49044826(10) \times 10^{-26}$	$ m J~T^{-1}$	2.3×10^{-8}
to Bohr magneton ratio	$\mu_{ m \mu}/\mu_{ m B}$	$-4.84197048(11) \times 10^{-3}$	-	2.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m \mu}/\mu_{ m N}$	-8.89059705(20)		2.2×10^{-8}
muon magnetic moment anomaly	$\mu_{\rm \mu}/\mu_{ m N}$	0.000 001 00(20)		2.2 / 10
$ \mu_{\mathfrak{u}} /(e\hbar/2m_{\mathfrak{u}})-1$	a_{μ}	$1.16592089(63) \times 10^{-3}$		5.4×10^{-7}
muon g -factor $-2(1+a_{\mu})$	•	-2.0023318418(13)		6.3×10^{-10}
muon-proton magnetic moment ratio	g_{μ}	-3.183345142(71)		2.2×10^{-8}
muon-proton magnetic moment ratio	$\mu_{ m \mu}/\mu_{ m p}$			2.2 × 10
E		Tau, τ^-	_	
tau mass ⁵	$m_{ au}$	$3.16747(29) \times 10^{-27}$	kg	9.0×10^{-5}
	0	1.90749(17)	u	9.0×10^{-5}
energy equivalent	$m_{ au}c^2$	$2.84678(26) \times 10^{-10}$	J	9.0×10^{-5}
		1776.82(16)	MeV	9.0×10^{-5}
tau-electron mass ratio	$m_{ au}/m_{ m e}$	3477.15(31)		9.0×10^{-5}
tau-muon mass ratio	$m_{ au}/m_{\mu}$	16.8167(15)		9.0×10^{-5}
tau-proton mass ratio	$m_{ m au}/m_{ m p}$	1.89372(17)		9.0×10^{-5}
tau-neutron mass ratio	$m_{ m au}/m_{ m n}$	1.89111(17)		9.0×10^{-5}
tau molar mass $N_{ m A} m_{ au}$	$M(au), M_{ au}$	$1.90749(17) \times 10^{-3}$	$kg mol^{-1}$	9.0×10^{-5}
tau Compton wavelength $h/m_{\tau}c$	$\lambda_{\mathrm{C}, au}$	$0.697787(63) \times 10^{-15}$	m	9.0×10^{-5}
$\lambda_{\mathrm{C}, au}/2\pi$	$\lambda_{\mathrm{C}, au}$	$0.111056(10) \times 10^{-15}$	m	9.0×10^{-5}
0,0		Proton, p		
proton mass		$1.672621898(21) \times 10^{-27}$	kg	1.2×10^{-8}
proton mass	$m_{ m p}$	$1.072021898(21) \times 10$ 1.007276466879(91)	-	9.0×10^{-11}
	2		u J	9.0×10 1.2×10^{-8}
energy equivalent	$m_{\rm p}c^2$	$1.503277593(18) \times 10^{-10}$		
	,	938.272.0813(58)	MeV	6.2×10^{-9}
proton-electron mass ratio	$m_{ m p}/m_{ m e}$	1836.152 673 89(17)		9.5×10^{-11}
proton-muon mass ratio	$m_{ m p}/m_{ m \mu}$	8.880 243 38(20)		2.2×10^{-8}
proton-tau mass ratio	$m_{ m p}/m_{ m au}$	0.528 063(48)		9.0×10^{-5}
proton-neutron mass ratio	$m_{ m p}/m_{ m n}$	0.99862347844(51)	- 1	5.1×10^{-10}
proton charge to mass quotient	$e/m_{ m p}$	$9.578833226(59)\times10^7$	$C kg^{-1}$	6.2×10^{-9}
proton molar mass $N_{ m A} m_{ m p}$	$M(p), M_p$	$1.007276466879(91)\times10^{-3}$	kg mol ^{−1}	9.0×10^{-11}
proton Compton wavelength $h/m_{\rm p}c$	$\lambda_{ ext{C,p}}$	$1.32140985396(61) \times 10^{-15}$	m	4.6×10^{-10}
$\lambda_{ m C,p}/2\pi$	$\lambda_{ m C,p}$	$0.210308910109(97)\times10^{-15}$	m	4.6×10^{-10}
proton rms charge radius	$r_{ m p}$	$0.8751(61) \times 10^{-15}$	m	7.0×10^{-3}
proton magnetic moment	$\mu_{ m p}$	$1.4106067873(97)\times10^{-26}$	$ m J~T^{-1}$	6.9×10^{-9}
to Bohr magneton ratio	$\mu_{ m p}/\mu_{ m B}$	$1.5210322053(46)\times10^{-3}$		3.0×10^{-9}
to nuclear magneton ratio	$\mu_{ m p}/\mu_{ m N}$	2.7928473508(85)		3.0×10^{-9}
proton g-factor $2\mu_{\rm p}/\mu_{\rm N}$	$g_{ m p}$	5.585694702(17)		3.0×10^{-9}
proton-neutron magnetic moment ratio	$\mu_{ m p}/\mu_{ m n}$	-1.45989805(34)		2.4×10^{-7}
shielded proton magnetic moment	μ'_{p}	$1.410570547(18)\times 10^{-26}$	$ m J~T^{-1}$	1.3×10^{-8}
$(H_2O, \text{ sphere, } 25 ^{\circ}C)$	· P	` '		
to Bohr magneton ratio	$\mu_{ m p}'/\mu_{ m B}$	$1.520993128(17) \times 10^{-3}$		1.1×10^{-8}
to nuclear magneton ratio	$\mu_{ m p}'/\mu_{ m N}$	2.792775600(30)		1.1×10^{-8}
proton magnetic shielding correction	r-p/ r-19			0
$1 - \mu'_{\rm p}/\mu_{\rm p}$ (H ₂ O, sphere, 25 °C)	$\sigma_{ m p}'$	$25.691(11) \times 10^{-6}$		4.4×10^{-4}
$\mu_{\rm p}/\mu_{\rm p}$ (1120, sphere, 23°C)	р	20.001(11) / 10		1.T /\ 1U

	·		8	Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
	•			
proton gyromagnetic ratio $2\mu_{\rm p}/\hbar$	$\gamma_{ m p}$	$2.675221900(18)\times10^8$	$s^{-1} T^{-1}$	6.9×10^{-9}
r	$\gamma_{ m p}^{ m p}/2\pi$	42.577 478 92(29)	$ m MHz~T^{-1}$	6.9×10^{-9}
shielded proton gyromagnetic ratio	/ P/	\		
$2\mu'_{\rm p}/\hbar$ (H ₂ O, sphere, 25 °C)	$\gamma_{\rm p}'$	$2.675153171(33) \times 10^{8}$	${ m s}^{-1}~{ m T}^{-1}$	1.3×10^{-8}
, p,	$rac{\gamma_{ m p}'}{\gamma_{ m p}'/2\pi}$	42.57638507(53)	$ m MHz~T^{-1}$	1.3×10^{-8}
		tron, n		
neutron mass	$m_{ m n}$	$1.674927471(21) \times 10^{-27}$	kg	1.2×10^{-8}
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.008 664 915 88(49)	u	4.9×10^{-10}
energy equivalent	$m_{ m n}c^2$	$1.505349739(19)\times10^{-10}$	J	1.2×10^{-8}
		939.565 4133(58)	MeV	6.2×10^{-9}
neutron-electron mass ratio	$m_{ m n}/m_{ m e}$	1838.683 661 58(90)		4.9×10^{-10}
neutron-muon mass ratio	$m_{ m n}/m_{ m \mu}$	8.892 484 08(20)		2.2×10^{-8}
neutron-tau mass ratio	$m_{ m n}/m_{ m au}$	0.528790(48)		9.0×10^{-5}
neutron-proton mass ratio	$m_{ m n}/m_{ m p}$	1.001 378 418 98(51)		5.1×10^{-10}
neutron-proton mass difference	$m_{\rm n} - m_{\rm p}$	$2.30557377(85) \times 10^{-30}$	kg	3.7×10^{-7}
•	I	0.00138844900(51)	u	3.7×10^{-7}
energy equivalent	$(m_{\rm n} - m_{\rm p})c^2$	$2.07214637(76)\times10^{-13}$	J	3.7×10^{-7}
	•	1.29333205(48)	MeV	3.7×10^{-7}
neutron molar mass $N_{ m A} m_{ m n}$	$M(n), M_n$	$1.00866491588(49)\times 10^{-3}$	$kg mol^{-1}$	4.9×10^{-10}
neutron Compton wavelength $h/m_{ m n}c$	$\lambda_{ m C,n}$	$1.31959090481(88)\times 10^{-15}$	m	6.7×10^{-10}
$\lambda_{ m C,n}/2\pi$	$ au_{ m C,n}$	$0.21001941536(14)\times10^{-15}$	m	6.7×10^{-10}
neutron magnetic moment	$\mu_{ m n}$	$-0.96623650(23) \times 10^{-26}$	$ m J~T^{-1}$	2.4×10^{-7}
to Bohr magneton ratio	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25)\times10^{-3}$		2.4×10^{-7}
to nuclear magneton ratio	$\mu_{ m n}/\mu_{ m N}$	-1.91304273(45)		2.4×10^{-7}
neutron g -factor $2\mu_{ m n}/\mu_{ m N}$	$g_{ m n}$	-3.82608545(90)		2.4×10^{-7}
neutron-electron magnetic moment ratio	$\mu_{ m n}/\mu_{ m e}$	$1.04066882(25) \times 10^{-3}$		2.4×10^{-7}
neutron-proton magnetic moment ratio	$\mu_{ m n}/\mu_{ m p}$	-0.68497934(16)		2.4×10^{-7}
neutron to shielded proton magnetic	/ /	0.004.000.04(1.0)		2.4. 10-7
moment ratio (H ₂ O, sphere, 25 °C)	$\mu_{ m n}/\mu_{ m p}'$	-0.68499694(16)	_1 m_1	2.4×10^{-7}
neutron gyromagnetic ratio $2 \mu_{ m n} /\hbar$	$\gamma_{ m n}$	$1.83247172(43) \times 10^{8}$	$s^{-1} T^{-1}$	2.4×10^{-7}
	$\gamma_{ m n}/2\pi$	29.1646933(69)	$ m MHz~T^{-1}$	2.4×10^{-7}
	Deut	eron, d		
deuteron mass	$m_{ m d}$	$3.343583719(41) \times 10^{-27}$	kg	1.2×10^{-8}
	9	2.013553212745(40)	u	2.0×10^{-11}
energy equivalent	$m_{ m d}c^2$	$3.005063183(37) \times 10^{-10}$	J	1.2×10^{-8}
	,	1875.612 928(12)	MeV	6.2×10^{-9}
deuteron-electron mass ratio	$m_{ m d}/m_{ m e}$	3670.482 967 85(13)		3.5×10^{-11}
deuteron-proton mass ratio	$m_{\rm d}/m_{\rm p}$	1.99900750087(19)	1 1-1	9.3×10^{-11}
deuteron molar mass $N_{\rm A} m_{\rm d}$	$M(\mathrm{d}), M_{\mathrm{d}}$	$2.013553212745(40) \times 10^{-3}$	kg mol ^{−1}	2.0×10^{-11}
deuteron rms charge radius	$r_{ m d}$	$2.1413(25) \times 10^{-15}$	$^{ m m}$ J T $^{-1}$	1.2×10^{-3} 8.3×10^{-9}
deuteron magnetic moment	$\mu_{ m d}$	$0.4330735040(36) \times 10^{-26}$	JI *	8.3×10^{-9} 5.5×10^{-9}
to Bohr magneton ratio	$\mu_{\rm d}/\mu_{\rm B}$	$0.4669754554(26) \times 10^{-3}$ 0.8574382311(48)		5.5×10^{-9} 5.5×10^{-9}
to nuclear magneton ratio deuteron g -factor $\mu_{\rm d}/\mu_{\rm N}$	$\mu_{ m d}/\mu_{ m N}$	0.857 438 2311(48)		5.5×10^{-9} 5.5×10^{-9}
deuteron-electron magnetic moment ratio	$g_{ m d}$	$-4.664345535(26) \times 10^{-4}$		5.5×10^{-9}
deuteron-proton magnetic moment ratio	$\mu_{ m d}/\mu_{ m e} \ \mu_{ m d}/\mu_{ m p}$	$-4.004345355(20) \times 10$ 0.3070122077(15)		5.0×10^{-9}
deuteron-neutron magnetic moment ratio	$ ho_{ m d}/\mu_{ m p} \ ho_{ m d}/\mu_{ m n}$	-0.44820652(11)		2.4×10^{-7}
dealeron neutron magnetic moment fatto	$\mu_{\rm d}/\mu_{\rm n}$	0.770 200 02(11)		2.4 A 10

Triton, t

•	, ~			Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
4.44		T 007 27 C CCF (C2) 10-27	1.	1.010=8
triton mass	$m_{ m t}$	$5.007356665(62) \times 10^{-27}$ 3.01550071632(11)	kg	1.2×10^{-8} 3.6×10^{-11}
anargy aguivalant	$m_{ m t}c^2$	$4.500387735(55) \times 10^{-10}$	u J	3.0×10^{-2} 1.2×10^{-8}
energy equivalent	$m_{ m t}c$	2808.921112(17)	MeV	6.2×10^{-9}
triton-electron mass ratio	$m_{ m t}/m_{ m e}$	5496.921 535 88(26)	IVIC V	4.6×10^{-11}
triton-proton mass ratio	$m_{ m t}/m_{ m p}$	2.993 717 033 48(22)		7.5×10^{-11}
triton molar mass $N_{ m A} m_{ m t}$	$M(\mathrm{t}), M_\mathrm{t}$	$3.01550071632(11)\times10^{-3}$	$kg mol^{-1}$	3.6×10^{-11}
triton magnetic moment	μ_{t}	$1.504609503(12)\times10^{-26}$	$J T^{-1}$	7.8×10^{-9}
to Bohr magneton ratio	$\mu_{ m t}/\mu_{ m B}$	$1.6223936616(76) \times 10^{-3}$	0 1	4.7×10^{-9}
to nuclear magneton ratio	$\mu_{ m t}/\mu_{ m N}$	2.978 962 460(14)		4.7×10^{-9}
triton g-factor $2\mu_{\rm t}/\mu_{\rm N}$	$g_{ m t}$	5.957 924 920(28)		4.7×10^{-9}
, , , , , , , , , , , , , , , , , , ,		ion, h		
helion mass	$m_{ m h}$	$5.006412700(62) \times 10^{-27}$	kg	1.2×10^{-8}
nenon mass	non.	3.01493224673(12)	u	3.9×10^{-11}
energy equivalent	$m_{ m h}c^2$	$4.499539341(55) \times 10^{-10}$	J	1.2×10^{-8}
energy equivalent	$m_{ m HC}$	2808.391 586(17)	MeV	6.2×10^{-9}
helion-electron mass ratio	$m_{ m h}/m_{ m e}$	5495.885 279 22(27)		4.9×10^{-11}
helion-proton mass ratio	$m_{ m h}/m_{ m p}$	2.99315267046(29)		9.6×10^{-11}
helion molar mass $N_{\rm A} m_{ m h}$	$M(\mathrm{h}), M_{\mathrm{h}}$	$3.01493224673(12)\times 10^{-3}$	$kg mol^{-1}$	3.9×10^{-11}
helion magnetic moment	$\mu_{ m h}$	$-1.074617522(14)\times10^{-26}$	$ m JT^{-1}$	1.3×10^{-8}
to Bohr magneton ratio	$\mu_{ m h}/\mu_{ m B}$	$-1.158740958(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}/\mu_{ m N}$	-2.127625308(25)		1.2×10^{-8}
helion g -factor $2\mu_{ m h}/\mu_{ m N}$	$g_{ m h}$	-4.255250616(50)		1.2×10^{-8}
shielded helion magnetic moment	$\mu_{ m h}'$	$-1.074553080(14) \times 10^{-26}$	$ m JT^{-1}$	1.3×10^{-8}
(gas, sphere, 25 °C)				
to Bohr magneton ratio	$\mu_{ m h}'/\mu_{ m B}$	$-1.158671471(14) \times 10^{-3}$		1.2×10^{-8}
to nuclear magneton ratio	$\mu_{ m h}'/\mu_{ m N}$	-2.127497720(25)		1.2×10^{-8}
shielded helion to proton magnetic				
moment ratio (gas, sphere, 25 °C)	$\mu_{ m h}'/\mu_{ m p}$	-0.7617665603(92)		1.2×10^{-8}
shielded helion to shielded proton magnetic	, , ,	2 721 722 1212 (22)		
moment ratio (gas/H ₂ O, spheres, 25 °C)	$\mu_{ m h}'/\mu_{ m p}'$	-0.7617861313(33)		4.3×10^{-9}
shielded helion gyromagnetic ratio	,	0.097.004.505(07) 108	$s^{-1} T^{-1}$	1.010-8
$2 \mu'_{\rm h} /\hbar$ (gas, sphere, 25 °C)	$\gamma'_{\rm h}$	$2.037894585(27) \times 10^{8}$		1.3×10^{-8}
	$\gamma_{ m h}''/2\pi$	32.434 099 66(43)	$ m MHz~T^{-1}$	1.3×10^{-8}
11 21		particle, α	1	1.0 10-8
alpha particle mass	$m_{oldsymbol{lpha}}$	$6.644657230(82) \times 10^{-27}$	kg	1.2×10^{-8}
anamari aquirialant	2	4.001506179127(63)	u J	1.6×10^{-11}
energy equivalent	$m_{\alpha}c^2$	$5.971920097(73) \times 10^{-10}$ 3727.379378(23)	MeV	1.2×10^{-8} 6.2×10^{-9}
alpha particle to electron mass ratio	m /m	7294.299 541 36(24)	IVIE V	3.3×10^{-11}
alpha particle to proton mass ratio	$m_{f lpha}/m_{ m e} \ m_{f lpha}/m_{ m p}$	3.97259968907(36)		9.2×10^{-11}
alpha particle molar mass $N_{\rm A} m_{lpha}$	$M(\alpha), M_{\alpha}$	$4.001506179127(63)\times10^{-3}$	$kg mol^{-1}$	1.6×10^{-11}
aipiia particle moiai mass IVAma		` '	Kg mor	1.0 × 10
Avogadro constant	$N_{\rm A}, L$	CHEMICAL $6.022140857(74) \times 10^{23}$	mol^{-1}	1.2×10^{-8}
atomic mass constant	I VA, L	0.022 140 007 (14) × 10	11101	1.2 ^ 10
$m_{\rm u} = \frac{1}{12} m(^{12}{\rm C}) = 1 \text{ u}$	$m_{ m u}$	$1.660539040(20)\times10^{-27}$	kg	1.2×10^{-8}
$m_{\rm u} = \frac{1}{12}m(-C) = 1$ u energy equivalent	$m_{ m u}c^2$	$1.492418062(18) \times 10^{-10}$	J	1.2×10^{-8} 1.2×10^{-8}
energy equivalent	uc	931.4940954(57)	MeV	6.2×10^{-9}
			-:	J /J

				Relative std.
Quantity	Symbol	Value	Unit	uncert. $u_{\rm r}$
Faraday constant 6 $N_{ m A}e$	F	96 485.332 89(59)	$C \text{ mol}^{-1}$	6.2×10^{-9}
molar Planck constant	$N_{ m A} h$	$3.9903127110(18)\times 10^{-10}$	$\rm J~s~mol^{-1}$	4.5×10^{-10}
	$N_{ m A}hc$	0.119626565582(54)	$\rm J~m~mol^{-1}$	4.5×10^{-10}
molar gas constant	R	8.314 4598(48)	$\mathrm{J}\ \mathrm{mol^{-1}}\ \mathrm{K^{-1}}$	5.7×10^{-7}
Boltzmann constant $R/N_{\rm A}$	k	$1.38064852(79) \times 10^{-23}$	$ m J~K^{-1}$	5.7×10^{-7}
		$8.6173303(50) \times 10^{-5}$	${ m eV~K^{-1}}$	5.7×10^{-7}
	k/h	$2.0836612(12) \times 10^{10}$	$\mathrm{Hz}\mathrm{K}^{-1}$	5.7×10^{-7}
	k/hc	69.503457(40)	${\rm m}^{-1}~{\rm K}^{-1}$	5.7×10^{-7}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 100 kPa	$V_{ m m}$	$22.710947(13) \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	5.7×10^{-7}
Loschmidt constant $N_{ m A}/V_{ m m}$	n_0	$2.6516467(15) \times 10^{25}$	m^{-3}	5.7×10^{-7}
molar volume of ideal gas RT/p				
T = 273.15 K, p = 101.325 kPa	$V_{ m m}$	$22.413962(13) \times 10^{-3}$	$\mathrm{m}^3~\mathrm{mol}^{-1}$	5.7×10^{-7}
Loschmidt constant $N_{\rm A}/V_{\rm m}$	n_0	$2.6867811(15) \times 10^{25}$	m^{-3}	5.7×10^{-7}
Sackur-Tetrode (absolute entropy) constant ⁷				
$\frac{5}{2} + \ln[(2\pi m_{\rm u}kT_1/h^2)^{3/2}kT_1/p_0]$				
$T_1 = 1 \text{ K}, p_0 = 100 \text{ kPa}$	S_0/R	-1.1517084(14)		1.2×10^{-6}
$T_1 = 1 \text{ K}, p_0 = 101.325 \text{ kPa}$		-1.1648714(14)		1.2×10^{-6}
Stefan-Boltzmann constant				
$(\pi^2/60)k^4/\hbar^3c^2$	σ	$5.670367(13) \times 10^{-8}$	$ m W~m^{-2}~K^{-4}$	2.3×10^{-6}
first radiation constant $2\pi hc^2$	c_1	$3.741771790(46) \times 10^{-16}$	$ m W~m^2$	1.2×10^{-8}
first radiation constant for spectral radiance $2hc^2$	$c_{1 m L}$	$1.191042953(15) \times 10^{-16}$	$\mathrm{W}~\mathrm{m}^2~\mathrm{sr}^{-1}$	1.2×10^{-8}
second radiation constant hc/k	c_2	$1.43877736(83)\times 10^{-2}$	m K	5.7×10^{-7}
Wien displacement law constants		` ,		
$b = \lambda_{\text{max}} T = c_2 / 4.965 114 231$	b	$2.8977729(17) \times 10^{-3}$	m K	5.7×10^{-7}
$b' = \nu_{\text{max}}/T = 2.821439372c/c_2$	b'	$5.8789238(34) \times 10^{10}$	$\mathrm{Hz}\ \mathrm{K}^{-1}$	5.7×10^{-7}

¹ See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.

² See the "Adopted values" table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

³ Value recommended by the Particle Data Group (Olive et al., 2014).

⁴ Based on the ratio of the masses of the W and Z bosons $m_{\rm W}/m_{\rm Z}$ recommended by the Particle Data Group (Olive *et al.*, 2014). The value for $\sin^2\theta_{\rm W}$ they recommend, which is based on a particular variant of the modified minimal subtraction ($\overline{\rm MS}$) scheme, is $\sin^2\hat{\theta}_{\rm W}(M_{\rm Z})=0.231\,26(5)$.

⁵ This and all other values involving m_{τ} are based on the value of $m_{\tau}c^2$ in MeV recommended by the Particle Data Group (Olive *et al.*, 2014).

⁶ The numerical value of F to be used in coulometric chemical measurements is $96\,485.3251(12)$ [1.2×10^{-8}] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants $K_{\rm J-90}$ and $R_{\rm K-90}$ given in the "Adopted values" table.

⁷ The entropy of an ideal monoatomic gas of relative atomic mass A_r is given by $S = S_0 + \frac{3}{2}R \ln A_r - R \ln(p/p_0) + \frac{5}{2}R \ln(T/K)$.