# Introduction to Data Science Course Project Report Document

<Abdullah Umar>

<21L-5604>

<Section 3B>

#### **Instructions: Read These Carefully Before Starting**

- 1. Due Date: Sunday 4th December 2022 11:59PM
- 2. Submission will be taken on Google Classroom
- 3. Submit only the following 2 files named like the following:
  - a. Code File (Jupyter Notebook): L210000\_Code.ipynb
  - b. Report Document (This File): L210000\_Report.pdf
- 4. Project will not be evaluated if:
  - a. You submit python (.py) files
  - b. You submit multiple .ipynb files
  - c. You submit compressed (.rar or .zip) files
  - d. You submit any files other than the required PDF and IPYNB
- 5. Upload data files directly to Google Colab do not use Google Drive or GitHub linking method
- 6. All source files needed to complete this project are uploaded with it on Google Classroom.
- 7. Do not add the data file with your submission on Google Classroom.

Not following these instructions will lead to mark deduction.

Please try to use Microsoft Word instead of Google Docs to edit this document and to export it as a PDF file for final submission.

Happy Coding 😺

TA Emails

Section A, C - Muhammad Maarij 1192347@lhr.nu.edu.pk

Section B, D - Hira Ijaz l192377@lhr.nu.edu.pk

For this project you will be applying machine learning models (both regression and classification) to the dataset which contains information about various individuals, their clothing, and its properties along with other atmospheric elements such as temperature, pressure humidity, etc. The users also provided feedback on if they feel cold or not. The feedback (through AMV and PMV) which is based on the following mapping:

The following table shows the mapping of sensations:

| Value | Value Thermal Sensation |  |  |  |
|-------|-------------------------|--|--|--|
| +3    | hot                     |  |  |  |
| +2    | warm                    |  |  |  |
| +1    | slightly warm           |  |  |  |
| 0     | neutral                 |  |  |  |
| -1    | slightly cool           |  |  |  |
| -2    | cool                    |  |  |  |
| -3    | cold                    |  |  |  |

The dataset is given in an excel file named CollectedData.xlsx, see sheet 2 of excel file. The dimension names (column headers) are not mentioned in the given file. The table below describes the columns which will be of your interest.

| Column number   | Feature Name | Feature Description              |
|-----------------|--------------|----------------------------------|
| 3               | Age          | Age                              |
| 22              | Clo          | Clothing insulation              |
| 19              | Met          | Met Rate                         |
| 26              | Dewpt        | Dewpt                            |
| 27              | PlaneRadTemp | plane radiant temperature        |
| 37              | Ta           | Average air temperature          |
| 38              | Tmrt         | Average mean radiant temperature |
| 40              | Vel          | Air Velocity                     |
| 42              | AirTurb      | Air Turbulance                   |
| 43              | Pa           | Vapor Pressure                   |
| 44              | Rh           | Humidity                         |
| 74              | TaOutdoor    | Outdoor Air Temperature          |
| 77              | RhOutdoor    | Outdoor Humidity                 |
| 8               | AMV          | Classification response variable |
| <mark>49</mark> | PMV          | Regression response variable     |

### Part A. Preprocessing

1. In this step, you are required to apply the preprocessing steps that you've covered in the course. Specifically, for each of the input dimensions, fill in the following (add rows and complete the table for all input dimensions).

| Dim Name         | Data Type | Total<br>Instances<br>(without<br>nulls) | Number of<br>Nulls | Number<br>of<br>Outliers | Min.<br>Value | Max<br>Value | Mode  | Mean  | Median | Variance | STD   |
|------------------|-----------|------------------------------------------|--------------------|--------------------------|---------------|--------------|-------|-------|--------|----------|-------|
| Age              | Float64   | 9649                                     | 2917               | 37                       | 0.0           | 99.0         | 24.0  | 31.98 | 31.0   | 133.48   | 11.55 |
| Clo              | Float64   | 12509                                    | 57                 | 356                      | 0.15          | 2.13         | 0.77  | 0.75  | 0.72   | 0.05     | 0.22  |
| Met              | Float64   | 10679                                    | 1887               | 838                      | 0.93          | 4.5          | 1.2   | 1.2   | 1.2    | 0.04     | 0.22  |
| Dewpt            | Float64   | 7665                                     | 4901               | 1                        | -1.95         | 22.9         | 17.4  | 12.01 | 12.87  | 23.42    | 4.84  |
| PlaneRadTe<br>mp | Float64   | 5544                                     | 7022               | 452                      | -7.42         | 11.7         | 0.3   | 0.21  | 0.2    | 1.08     | 1.04  |
| Та               | Float64   | 11197                                    | 1369               | 425                      | 15.96         | 31.0         | 23.2  | 23.20 | 23.13  | 2.15     | 1.46  |
| Tmrt             | Float64   | 8865                                     | 3701               | 344                      | 16.61         | 37.44        | 22.5  | 23.45 | 23.35  | 2.25     | 1.50  |
| Vel              | Float64   | 8866                                     | 3700               | 309                      | 0.0           | 1.88         | 0.1   | 0.11  | 0.1    | 0.006    | 0.079 |
| AirTurb          | Float64   | 5616                                     | 6950               | 1216                     | 0.0           | 102.45       | 0.5   | 8.15  | 0.4    | 235.65   | 15.35 |
| Pa               | Float64   | 6561                                     | 6005               | 158                      | 0.0           | 3.0          | 2.1   | 1.43  | 1.45   | 0.19     | 0.44  |
| Rh               | Float64   | 12531                                    | 35                 | 0                        | 7.4           | 79.3         | 64.0  | 46.5  | 47.88  | 209.03   | 14.45 |
| TaOutdoor        | Float64   | 12547                                    | 19                 | 147                      | -24.9         | 32.35        | 27.55 | 18.27 | 20.7   | 112.63   | 10.61 |
| RhOutdoor        | Float64   | 12547                                    | 19                 | 162                      | 24.97         | 100.35       | 81.55 | 68.48 | 69.5   | 170.13   | 13.04 |
| AMV              | Float64   | 12511                                    | 55                 | 0                        | -3.0          | 3.0          | 0.0   | -0.11 | 0.0    | 1.30     | 1.14  |
| PMV              | Float64   | 12523                                    | 43                 | 231                      | -4.17         | 2.5          | -0.01 | -0.13 | -0.12  | 0.31     | 0.5   |

2. For each of the input dimensions, plot a histogram and comment on the type of distribution the dimension exhibits. Further, visualize each dimension using a Box Plot. Specifically, for each of the input dimensions, you're required to fill the following table (duplicate it for each of the 15 dimensions).































3. Find the missing values in each of the dimensions (do this for both input and output dimensions), and fill these using an "appropriate" methodology that we've discussed in class. You may also choose to drop a certain sample based on your analysis. Mention your approach and its justification.

| Dim Name     | Number of Missing | Filled using OR   | Reason for selecting     |
|--------------|-------------------|-------------------|--------------------------|
|              | Values            | Dropped           | a certain approach       |
| Age          | •                 | Filled using mean | the percentages of       |
|              | 2917              |                   | outliers to total        |
|              |                   |                   | numbers of entries       |
|              |                   |                   | is less than 2           |
|              |                   |                   | percent, I assume        |
|              |                   |                   | the threshold 2          |
|              |                   |                   | percent                  |
| Clo          |                   | Filled using      | the percentages of       |
|              | 57                | median            | outliers to total        |
|              | •                 |                   | numbers of entries       |
|              |                   |                   | is <b>greater</b> than 2 |
|              |                   |                   | percent, I assume        |
|              |                   |                   | the threshold 2          |
|              |                   |                   | percent                  |
| Met          |                   | Filled using      | the percentages of       |
|              | 1887              | median            | outliers to total        |
|              |                   |                   | numbers of entries       |
|              |                   |                   | is <b>greater</b> than 2 |
|              |                   |                   | percent, I assume        |
|              |                   |                   | the threshold 2          |
|              |                   |                   | percent                  |
| Dewpt        |                   | Filled using mean | the percentages of       |
|              | 4901              |                   | outliers to total        |
|              |                   |                   | numbers of entries       |
|              |                   |                   | is less than 2           |
|              |                   |                   | percent, I assume        |
|              |                   |                   | the threshold 2          |
|              |                   |                   | percent                  |
| PlaneRadTemp |                   | Filled using      | the percentages of       |
|              | 7022              | median            | outliers to total        |
|              |                   |                   | numbers of entries       |
|              |                   |                   | is <b>greater</b> than 2 |
|              |                   |                   | percent, I assume        |
|              |                   |                   | the threshold 2          |
|              |                   |                   | percent                  |
| Ta           |                   | Filled using      | the percentages of       |
|              | 1369              | median            | outliers to total        |
|              |                   |                   | numbers of entries       |
|              |                   |                   | is <b>greater</b> than 2 |
|              |                   |                   | percent, I assume        |
|              |                   |                   | the threshold 2          |
|              |                   |                   | percent                  |

| m .       |      | Lem. a              |                                                                                                                        |
|-----------|------|---------------------|------------------------------------------------------------------------------------------------------------------------|
| Tmrt      | 3701 | Filled using median | the percentages of outliers to total numbers of entries                                                                |
|           |      |                     | is <b>greater</b> than 2 percent, I assume the threshold 2                                                             |
| T7.1      |      | l en :              | percent                                                                                                                |
| Vel       | 3700 | Filled using median | the percentages of outliers to total numbers of entries is <b>greater</b> than 2 percent, I assume the threshold 2     |
| AirTurb   |      | Filled using        | percent<br>the percentages of                                                                                          |
| 7 m Turb  | 6950 | median              | outliers to total<br>numbers of entries<br>is <b>greater</b> than 2<br>percent, I assume<br>the threshold 2<br>percent |
| Pa        |      | Filled using median | the percentages of                                                                                                     |
|           | 6005 | ,                   | outliers to total<br>numbers of entries<br>is <b>greater</b> than 2                                                    |
|           |      |                     | percent, I assume<br>the threshold 2<br>percent                                                                        |
| Rh        | 35   | Filled using mean   | the percentages of outliers to total numbers of entries is less than 2 percent, I assume the threshold 2 percent       |
| TaOutdoor | 19   | Filled using mean   | the percentages of outliers to total numbers of entries is less than 2 percent, I assume the threshold 2 percent       |
| RhOutdoor | 19   | Filled using mean   | the percentages of outliers to total numbers of entries is less than 2 percent, I assume the threshold 2 percent       |
| AMV       | 55   | Filled using mean   | the percentages of<br>outliers to total<br>numbers of entries                                                          |

|     |                   | is less than 2<br>percent, I assume<br>the threshold 2<br>percent |
|-----|-------------------|-------------------------------------------------------------------|
| PMV | Filled using mean | the percentages of                                                |
| 43  |                   | outliers to total<br>numbers of entries                           |
|     |                   | is less than 2 percent, I assume                                  |
|     |                   | the threshold 2 percent                                           |

## 4. For each dimension, find out the outliers (noisy data) and handle these appropriately.

| Dim Name | Number of Nulls | Smooth using/<br>Dropped | Reason for selecting a certain approach                                                                                                                |
|----------|-----------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Age      | 2917            | IQR                      | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measure of how to spread out the values    |
| Clo      | 57              | IQR                      | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| Met      | 1887            | IQR                      | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures of how                            |

|              |      |     | to oprood out the                                                                                                                                      |
|--------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |      |     | to spread out the                                                                                                                                      |
| D +          |      | IOD | values are.                                                                                                                                            |
| Dewpt        | 4901 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3                                                             |
|              |      |     | the REASON is it measures how to spread out the values are.                                                                                            |
| PlaneRadTemp | 7022 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| Ta           | 1369 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| Tmrt         | 3701 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| Vel          | 3700 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to                            |

|           |      |     | and and and the                                                                                                                                        |
|-----------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |      |     | spread out the                                                                                                                                         |
| A : 7D 1  |      | IOD | values are.                                                                                                                                            |
| AirTurb   | 6950 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3                                                             |
|           |      |     | the REASON is it measures how to spread out the values are.                                                                                            |
| Pa        | 6005 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| Rh        | 35   | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| TaOutdoor | 19   | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| RhOutdoor | 19   | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to                            |

|     |    |     | spread out the values are.                                                                                                                             |
|-----|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMV | 55 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |
| PMV | 43 | IQR | We can use the IQR method of identifying outliers to set up a "fence" outside of Q1 and Q3 the REASON is it measures how to spread out the values are. |

## 5. Using the variance that you've calculated above, for each dimension, comment whether you'll select the input dimension or no. (don't drop a dimension at this point)

| Dim Name        | Variance | Apply filter or no, reason                         |
|-----------------|----------|----------------------------------------------------|
| Age             |          | I will not apply any filter                        |
|                 | 133.48   | as the data is so much                             |
|                 |          | diverse                                            |
| Clo             |          | I will apply the filter as the                     |
|                 | 0.05     | data has no variance in it                         |
|                 |          | so this data will not help                         |
|                 |          | us in training                                     |
| Met             |          | I will apply the filter as the                     |
|                 | 0.04     | data has no variance in it                         |
|                 |          | so this data will not help                         |
| D 4             |          | us in training                                     |
| Dewpt           |          | the data us slightly variant                       |
|                 | 23.42    | so may be I well apply any filter on it            |
| PlaneRadTemp    |          | I will apply the filter as the                     |
| 1 laneitau lemp | 1.08     | data has no variance in it                         |
|                 | 1.00     | so this data will not help                         |
|                 |          | us in training                                     |
| Ta              |          | I will apply the filter as the                     |
|                 | 2.15     | data has no variance in it                         |
|                 |          | so this data will not help                         |
|                 |          | us in training                                     |
| Twrt            |          | I will apply the filter as the                     |
|                 | 2.25     | data has no variance in it                         |
|                 |          | so this data will not help                         |
| TT 1            |          | us in training                                     |
| Vel             |          | I will apply the filter as the                     |
|                 | 0.006    | data has no variance in it                         |
|                 |          | so this data will not help us in training          |
| AirTurb         |          | I will not apply any filter                        |
| THI TUID        | 235.65   | as the data is so much                             |
|                 | 255.05   | diverse                                            |
| Pa              |          | I will apply the filter as the                     |
|                 | 0.19     | data has no variance in it                         |
|                 |          | so this data will not help                         |
|                 |          | us in training                                     |
| Rh              |          | I will not apply any filter                        |
|                 | 209.03   | as the data is so much                             |
| m 0 1           |          | diverse                                            |
| TaOutdoor       |          | I will not apply any filter                        |
|                 | 112.63   | as the data is so much                             |
| D1- O+-1        |          | diverse                                            |
| RhOutdoor       | 450.10   | I will not apply any filter as the data is so much |
|                 | 170.13   | diverse                                            |
|                 |          | minerae                                            |

| AMV |      | I will apply the filter as the |
|-----|------|--------------------------------|
|     | 1.30 | data has no variance in it     |
|     |      | so this data will not help     |
|     |      | us in training                 |
| PMV |      | I will apply the filter as the |
|     | 0.31 | data has no variance in it     |
|     |      | so this data will not help     |
|     |      | us in training                 |

6A. Create a correlation matrix (Heat Map) for all the dimensions (input and output).



6B. Using the above correlation matrix, comment what are the most informative dimensions, and which are the least. Note that, be careful since we have two response variables in the dataset (i.e., PMV and AMV regression and classification respectively)

73 and 21 are the **most informativ**e dimension as their correlation is weakest 43 and 73 are the **least informative** dimension as their correlation is strongest

## 7. Apply entropy followed by information gain on the selected columns. Specify your selection criteria.

| Dim name     | Entropy               | Info Gain | Reason |
|--------------|-----------------------|-----------|--------|
| Age          | 4.90837540858065      |           |        |
| Clo          | 4.90837540858065      |           |        |
| Met          | 4.90837540858065      |           |        |
| Dewpt        | 4.90837540858065<br>5 |           |        |
| PlaneRadTemp | 4.90837540858065<br>5 |           |        |
| Ta           | 4.90837540858065      |           |        |
| Tmrt         | 4.90837540858065      |           |        |
| Vel          | 4.90837540858065      |           |        |
| AirTurb      | 4.90837540858065      |           |        |
| Pa           | 4.90837540858065      |           |        |
| Rh           | 4.90837540858065      |           |        |
| TaOutdoor    | 4.90837540858065<br>5 |           |        |
| RhOutdoor    | 4.90837540858065<br>5 |           |        |
| AMV          | 4.90837540858065      |           |        |
| PMV          | 4.90837540858065      |           |        |

#### Part B. Applying Algorithms

1. For this part, split the data randomly into 80/20 percent. Where 80% represents the training data. Also, normalize the dataset as you see fit.

2A. Apply forward selection, considering PMV as the response variable and Multilinear regression as a machine learning model. Create a table, that mentions the dimensions, and performance achieved. Which is the optimal feature set, and why.

| Feature Vector                           | Performance achieved |
|------------------------------------------|----------------------|
| 5                                        | 0.198862681406491    |
| 1, 5                                     | 0.48472248715305477  |
| 1, 2, 5                                  | 0.7351465773947905   |
| 1, 2, 5, 10                              | 0.7612276970564111   |
| 1, 2, 5, 7, 10                           | 0.7716416877563868   |
| 1, 2, 5, 6, 7, 10                        | 0.7751849899603429   |
| 0, 1, 2, 5, 6, 7, 10                     | 0.778670715414786    |
| 0, 1, 2, 5, 6, 7, 10, 11                 | 0.7811010098399922   |
| 0, 1, 2, 5, 6, 7, 10, 11, 12             | 0.781593593935969    |
| 0, 1, 2, 3, 5, 6, 7, 10, 11, 12          | 0.7817689376430383   |
| 0, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12       | 0.7817698927274701   |
| 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12    | 0.7817698927274701   |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 0.7817698927274701   |
| 12                                       |                      |

The optimal feature set is (0, 1, 2, 5, 6, 7, 10, 11) as avg score is 0.781 as more feature set may have more accuracy but they have so much baggage

2B. Apply backward selection, considering PMV as the response variable and Multilinear regression as a machine learning model. Create a table, that mentions the dimensions, and performance achieved. Which is the optimal feature set, and why.

| Feature Vector                     | Performance achieved |
|------------------------------------|----------------------|
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  | 0.7867319436599411   |
| 11, 12                             |                      |
| 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, | 0.7867319436599411   |
| 12                                 |                      |
| 0, 1, 2, 3, 5, 6, 7, 10, 11, 12    | 0.7867319436599411   |
| 0, 1, 2, 5, 6, 7, 10, 11, 12       | 0.7867319120933685   |
| 0, 1, 2, 5, 6, 7, 10, 11           | 0.7864796539290779   |
| 0, 1, 2, 5, 6, 7, 10               | 0.7860286937573029   |
| 1, 2, 5, 6, 7, 10                  | 0.783729046520725    |
| 1, 2, 5, 7, 10                     | 0.7801472917337273   |
| 1, 2, 5, 10                        | 0.7766023023627011   |
| 1, 2, 5                            | 0.7664463652135877   |
| 1, 5                               | 0.7421956337292546   |
| 5                                  | 0.4946979359140804   |
| 36                                 | 0.2041950927710311   |

The optimal feature set is (0, 1, 2, 5, 6, 7, 10) as avg score is 0.786 as more feature set may have more accuracy but they have so much baggage

3A. Apply forward selection, considering AMV as response variable and Logistic regression as machine learning model. Create a table, that mentions dimensions, and performance achieved. Which is the optimal feature set, and why.

| Feature Vector (indexes)                 | Performance achieved         |
|------------------------------------------|------------------------------|
| 6                                        | 37.8%                        |
| 0,6                                      | 39.2%                        |
| 0,6,11                                   | 39.2%                        |
| 0, 6, 9, 11                              | 39.4%                        |
| 0, 5, 6, 9, 11                           | 39.5%                        |
| 0, 5, 6, 8, 9, 11                        | 39.7%                        |
| 0, 5, 6, 8, 9, 11,12                     | 39.7%                        |
| 0, 3, 5, 6, 8, 9, 11, 12                 | 0, 3, 5, 6, 8, 9, 10, 11, 12 |
| 0, 3, 5, 6, 8, 9, 10, 11, 12             | 39.8%                        |
| 0, 1, 3, 5, 6, 8, 9, 10, 11, 12          | 39.8%                        |
| 0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 12       | 39.9%                        |
| 0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12    | 39.9%                        |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 40.0%                        |

The optimal feature set is (0, 3, 5, 6, 8, 9, 10, 11, 12) as avg score 39.7% is as more feature set may have more accuracy but they have so much baggage

3B. Apply backward selection, considering AMV as the response variable and Logistic regression as a machine learning model. Create a table, that mentions

the dimensions, and performance achieved. Which is the optimal feature set, and why.

| Feature Vector (indexes)                        | Performance achieved |
|-------------------------------------------------|----------------------|
| Index: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | 39.7%                |
| Index: 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12    | 39.8%                |
| Index: 0, 1, 2, 4, 5, 6, 7, 8, 10, 11, 12       | 39.9%                |
| Index: 0, 1, 2, 5, 6, 7, 8, 10, 11, 12          | 39.9%                |
| Index: 0, 1, 2, 5, 6, 7, 8, 11, 12              | 40.0%                |
| Index: 0, 1, 2, 5, 7, 8, 11, 12                 | 39.9%                |
| Index: 0, 1, 2, 5, 8, 11, 12                    | 40.0%                |
| Index: 0, 1, 2, 5, 11, 12                       | 0, 1, 2, 5, 11, 12   |
| Index: 0, 1, 5, 11, 12                          | 39.8%                |
| Index: 0, 5, 11, 12                             | 39.5%                |
| Index: 0, 5, 11                                 | 39.0%                |
| Index: 5,11                                     | 38.3%                |
| Index: 5                                        | 37.9%                |

The optimal feature set is ( 0, 1, 2, 5, 11, 12) as avg score 40.0% is as more feature set may have more accuracy but they have so much baggage

4. Using the optimal feature vector that you've figured out from your analysis above, apply 3-fold cross-validation for both regression and classification problems (PMV and AMV respectively). Write down the optimal parameter values for each of the models. Further, plot the confusion matrix for the classification part

```
linear regression 3 fold cross validation optimized is
```

```
1, 2, 3, 5 accuracy is
'cv_scores': array([0.75058379, 0.74754941, 0.73361997]),
  'avg_score': 0.7439177236228995,
logistic regression 3 fold cross validation optimized is
{'feature_idx': (4,),
  'cv_scores': array([0.38197553, 0.38436288, 0.38119403]),
  'avg score': 0.3825108120988611,
confusion matrix
0 ]]
           16 63
                         0
                             0]
   0
        0
          16 217
 [
                    0
                         0
                             0]
           28 565
 [
                    1
                             0]
 [
           32 894
   0
        0
                   12
                         0
                             0]
          11 449
                   17
                         0
                             0]
 [
        0
 [
   0
        0
            3 154
                    8
                         0
                             0]
            1 27
 0
        0
                    0
                         0
                             0]]
```

accuracy 0.373508353221957