#	Goals	Methodology	Results	Advantages	Disadvantages
1	Oil tank detection using remote sensing imagery [16]	Modification of the model Training EffDet	Higher accuracy and less inference time (100 mAP)	Suitable for IoT based Obj Detection	Suitable for remote sensing, not marine vision
2	Compare OD models for crop circle detection in desert [17]	Annotated dataset to train YOLO and Efficient Det	EfficientDet achieves higher accuracy than other models (91 mAP)	Useful comparison based on feature extraction layers of different OD models	Overfitting, Complexity, Memory requirements, difficult to fine tune for specific task.
3	Defect detection in ultrasonic images [18]	Using bi-level CNN and vanilla NN for task	Beats SOTA with high accuracy (89.65 mAP)	Cheap localization, simple regression loss	Not uses any standard object detection baseline
4	Detecting military ships in high- resolution optical remote sensing images [19]	Using pretrained backbone, FPN layer for feature extraction (at different scales) and regular NN for class loss for annotated dataset.	EfficientDet achieves higher accuracy in remote sensing imagery (97.05 mAP)	The technique and application has potential to extend to underwater marine vision	The model still uses old FPN layer which is prone to catastrophic forgetting, and label dispersion
5	Defect detection and landmark for Clothing Dataset [20]	Using SSOD for annotated clothing dataset	Finds fashion landmark (apparel factor) in the clothing (68.60 mAP)	Uses curriculum learning, along with SSOD, better generalization	Take 4 times more time to train and could lead to large parameter size ~B