Parametric Distributions and Simulations

Elad Guttman

Outline

- 1. Normal distribution
- 2. Log-normal distribution
- 3. Chi-square distribution
- **4.** Student's t-distribution
- 5. F-distribution

Normal distribution

- Support: $(-\infty, \infty)$
- Parameters:
 - $\circ \mu$ a location parameter
 - $\circ \sigma$ a scale parameter

• PDF =
$$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- There is no closed form expression for the CDF
- When $\mu=0$ and $\sigma=1$, it is called the **standard normal**

- Some useful properties:
 - 1. If $X \sim \mathcal{N}(0,1)$ then:

$$\mu + \sigma X \sim \mathcal{N}(\mu, \sigma^2)$$

2. If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ are independent, then:

$$X_1+X_2\sim \mathcal{N}(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$$

3. If X and Y normally distributed, then:

$$Y|X=x\sim \mathcal{N}(\mu_y+
horac{\sigma_y}{\sigma_x}(x-\mu_x),\sigma_y{}^2(1-
ho^2))$$

ullet Practically, we always look at $rac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$

Exploring the location parameter

How the normal distribution is changed as a function of μ ?

Let's simulate some data and explore!

```
library(tidyverse)
N = 1000
mu = c(0, 3, 6)
df = data.frame(matrix(ncol = 3, nrow = N))
set.seed(2020)
for(i in 1:3){
  df[[i]] = rnorm(N, mean = mu[i], sd = 1)
}
head(df, 3)
```

```
## X1 X2 X3
## 1 0.3769721 3.004650 4.933519
## 2 0.3015484 1.771250 5.858883
## 3 -1.0980232 2.859402 6.290712
```

Exploring the location parameter

```
df = df \%
   pivot_longer(cols = everything(), names_to = "variable", values_to = "value")
head(df, 3)
## # A tibble: 3 x 2
## variable value
## <chr>
             <dbl>
## 1 X1
             0.377
## 2 X2
        3.00
## 3 X3
        4.93
 p = ggplot(df, mapping = aes(x = value, color = variable)) +
   geom_density() +
   scale_color_manual(name = "mu =", labels = as.character(mu),
                     values = c("blue", "red", "forestgreen")) +
   scale_x_continuous(breaks = seq(-3, 9, 2), name = "x", limits = c(-3, 9)) +
   theme(text = element text(size=20))
```

Exploring the location parameter

print(p)

Exploring the scale parameter

But just before that, let's define our own plotting function:

Exploring the scale parameter

```
N = 10000
sigma = c(1, 2, 3)
df = data.frame(matrix(ncol = 3, nrow = N))
for(i in 1:3){
   df[[i]] = sigma[i] * rnorm(N, mean = 0, sd = 1)
}

p = make_plot(df, legend.title = "sigma = ", legend.labels =as.character(sigma),
limits = c(-6, 6), breaks = seq(-6, 6, 1))
```

Exploring the scale parameter

print(p)

Log-normal distribution

• The distribution is widely used in economics, particularly because evidence shows that income is log-normally distributed

• Definition:

A random variable X is log-normally distributed, i.e. $X \sim Lognormal(\mu, \sigma^2)$, if $\ln(X) \sim \mathcal{N}(\mu, \sigma^2)$

- So basically all the properties of the log-normal distribution are derived from the normal distribution
 - for example: deriving the PDF of the log-normal distribution from the normal distribution
- Note that μ and σ have now lost their meaning as location and scale parameters

print(p)

Chi-square distribution

• The distribution is widely used in statistics, particularly because in some statistical hypothesis tests, the test statistic follows a chi-square distribution under the null hypothesis. (see: Chi-squared test)

• Definition:

If Z_1,\ldots,Z_k are independent, standard normal random variables, then the sum of their squares $X=\sum_{i=1}^k {Z_i}^2$ follows the chi-squared distribution with k 'degrees of freedom', i.e. $X\sim {\chi_k}^2$

- Some properties arising from the definition:
 - \circ Support: $(0, \infty)$
 - \circ Parameter: $k \in \mathbb{N}$ (a.k.a 'degrees of freedom')

- Other useful properties:
 - 1. If Z_1, \ldots, Z_k are independent, standard normal random variables, then:

$$\sum_{i=1}^k (Z_i - ar{Z})^2 \sim \chi_{k-1}^2$$

2. If $X_1 \sim \chi^2_{k_1}$ and $X_2 \sim \chi^2_{k_2}$ are independent, then:

$$X_1 + X_2 \sim \chi^2_{k_1 + k_2}$$

3. If $X \sim \chi_k^2$ then:

$$E(X) = k, Var(X) = 2k$$

4. By the CLT, as $k o \infty$, $\chi^2_k o \mathcal{N}(k,\sqrt{2k})$

print(p)

Student's t-distribution

• The distribution is widely used in statistics, particularly because in many statistical hypothesis tests, the test statistic follows a student's t-distribution under the null hypothesis. (see: Student's t-test)

• Definition:

If
$$Z \sim \mathcal{N}(0,1)$$
 and $X \sim \chi_k^2$ are independent, then: $rac{Z}{\sqrt{X/k}} \sim t_k$

- Some properties arising from the definition:
 - \circ Support: $(-\infty, \infty)$
 - \circ Parameter: $k \in \mathbb{N}$ (a.k.a 'degrees of freedom')
- Another important property: as $k o \infty$, $t_k o \mathcal{N}(0,1)$

print(p)

F-distribution

• The distribution is widely used in statistics, particularly because in some statistical hypothesis tests, the test statistic follows an F distribution under the null hypothesis. (see: F-test)

• Definition:

If X_1 and X_2 are two independent chi-squared variables with degrees of freedom parameters d_1 and d_2 , respectively, then:

$$rac{X_1/d_1}{X_2/d_2} \sim F_{d_1,d_2}$$

- Some properties arising from the definition:
 - \circ Support: $(0,\infty)$
 - \circ Parameters: $d_1 \in \mathbb{N}$ and $d_2 \in \mathbb{N}$
- ullet Note that when $d_1=1$, $\sqrt{rac{X_1}{X_2/d_2}}\sim t_{d_2}$