Formelsammlung HSR

Thomas Küng tkueng@hsr.ch

Urs Winiger uwiniger@hsr.ch

Adrian Freihofer afreihof@hsr.ch

Version 1.01 28. April 2003

Vorwort

Die vorliegende Formelsammlung wurde während dem Studium für Elektrotechnik an der Fachhochschule in Rapperswil geschrieben. Ziel war es, den Inhalt an den Prüffungsstoff anzupassen, aber auch ein Werk zu schreiben, das wir später im Berufsleben verwenden können. Obwohl wir den Inhalt sorgfälltig zusammengestellt haben, sind Fehler nicht ausschliessbar. Für jegliche Korrektur- oder Verbesserungsvorschläge haben wir immer ein offenes Ohr!

In der Formelsammlung sind die folgenden Fächer enthalten:

- Physik
- Elektrizitätslehre
- Energie und Antriebstechnik
- Elektronik
- Digitale Signalverarbeitung
- Mathematik

Vo	rwor	t		iii
Ι	Ph	ysik		1
1	Geo	metriso	che Optik	2
	1.1	Sichtb	ares Licht	2
	1.2	Reflex	ionsgesetz	2
	1.3	Brech	ung	2
	1.4	Totalr	eflexion	3
		1.4.1	Prisma	3
		1.4.2	Lichtwellenleiter	3
	1.5	Abbilo	dungen	4
		1.5.1	Allgemein	4
		1.5.2	Spiegel	4
		1.5.3	Abbildungen durch Spiegel	5
		1.5.4	Linsen	6
		1.5.5	Abbildungen durch Linsen	6
		1.5.6	Optische Geräte	7
•	CL-1	! 1.		11
2	Stat		Visco and an Chairba and the	11
	2.1		Körper im Gleichgewicht	11
		2.1.1	Gleichgewichtsbedingung starrer Körper	11
		2.1.2	Haftreibung	11
		2.1.3	Reaktionsprinzip	12
		2.1.4	Drehmoment	12
	2.2		erpunkt	13
	2.3		mierung	13
		2.3.1	Spannung	13
		2.3.2	Dehnung	13
		2.3.3	Querkontraktion	14
		2.3.4	Kompression	14
		2.3.5	Schubbeanspruchung	14
		2.3.6	Schraubenfeder	14
		2.3.7	Biegung eines Balkens	15
	2.4	Vorge	hen beim Lösen von Statikaufgaben	15
3	Kin	ematik		16

	3.1	Gleichfö	rmige Bewegung
	3.2		rmig beschleunigte Bewegung
	3.3		vegung
		3.3.1 C	Gleichförmige Kreisbewegung
			Gleichförmig beschleunigte Kreisbewegung
			Zentripetalbeschleunigung
	3.4		men
		3.4.1 F	reier Fall
		3.4.2 S	enkrechter Wurf
		3.4.3 H	Iorizontaler Wurf
		3.4.4 S	chiefer Wurf
	Б	••	
4	•	amik	20
	4.1		sche Gesetze
			rstes Newtonsches Gesetz (Trägheitsgesetz)
			weites Newtonsches Gesetz (Aktionsgesetz)
			Orittes Newtonsches Gesetz (Actio = Reactio)
			allgemeines Vorgehen beim lösen von Bewegungsproblemen 20
	4.2		nd Gewicht
			pezielle Kräfte, Masse, Dichte und Reibung
	4.3		nd Energie, Energieerhaltung
			Iubarbeit, Potentielle Energie
			pannarbeit, Spannenergie
		4.3.3 B	eschleunigungsarbeit, Kinetische Energie
		4.3.4 R	otationsenergie
		4.3.5 R	eibungsarbeit
		4.3.6 V	Yerformungsarbeit
		4.3.7 E	instein, Kernbindungsenergie
	4.4	Leistung	;
	4.5	Wirkung	gsgrad
	4.6	Impuls,	Impulserhaltung
		4.6.1 D	Orehimpuls
		4.6.2 R	aketenantrieb
		4.6.3 In	nelastischer Stoss
		4.6.4 E	lastischer Stoss
	4.7	Analogie	e Translation und Rotation
	4.8		ion und Masse
		4.8.1 K	Teplersche Gesetze ($ ightarrow$ Bewegung der Planeten)
			Newtonsches Gravitationsgesetz
			otentielle Energie im Gravitationsfeld einer Zentralmasse
			luchtgeschwindigkeit
			Geostationäre Bahn
	4.9		und Massenträgheitsmoment
			Aassenträgheitsmoment bei Getriebe
			Aassenträgheitsmomente oft verwendeter Körper
5			formierbarer Körper 31
	5.1	Druck .	

		5.1.1 Absoluter Druck Überdruck
	5.2	Kompression
	5.3	Hydrostatik
		5.3.1 Schweredruck
		5.3.2 Statischer Auftrieb
		5.3.3 Druckwandler
		5.3.4 Kraftwandler
		5.3.5 Druckmessung
		5.3.6 Grenzflächeneffekte
	5.4	Hydrodynamik
	0.1	5.4.1 Kontinuitätsgleichung
		5.4.2 Bernoulli Gleichung (Energieerhaltung)
	5.5	Reale Strömung
	0.0	5.5.1 Zirkulation
		5.5.2 Vortizität
		5.5.3 Newtonsches Reibungsgesetz
	5.6	Strömungsformen
	5.0	5.6.1 Raynolds-Zahl
		5.6.2 Laminare Strömung (Re < 2320)
		5.6.3 Volumenstrom
		5.6.4 Turbulente Strömung (Re > 2320)
	5.7	Dynamischer Auftrieb
	5.7	
		5.7.1 Tragflügel
6	Wär	nelehre 4
Ŭ	6.1	Temperatur
	6.2	Ausdehnung von Materialien
	6.3	Ideale Gase
	6.4	Gemische idealer Gase
	6.5	Reale Gase
	6.6	Wärme
	0.0	6.6.1 Molare Wärme kristalliner Festkörper
		6.6.2 Austausch von Wärmemengen
	6.7	Phasen und Phasenübergänge
	0.7	6.7.1 Schmelz- und Verdampfungsenergien
	6.8	Luftfeuchtigkeit
	6.9	Kinetische Gastheorie
	0.9	6.9.1 Mittlere freie Weglänge, Wärmeleitung, Diffusion und Viskosität 4
	6 10	0
	6.10	
	(11	U U
		Wärmetransport
	0.12	Zustandänderungen
		5.12.1 Isobare Zustandsänderung
		5.12.2 Isochore Zustandsänderungen
		5.12.3 Isotherme Zustandsänderungen
		5.12.4 Adiabatische Zustandsänderungen
		6.12.5 Expansion und Kompression

		6.12.6 Enthalpie
	6.13	Kreisprozesse
		6.13.1 Carnotprozess
	6.14	Entropie
7		vingungen 5
	7.1	Freie Schwingungen
		7.1.1 Ungedämpfte, harmonische Schwingung 5
		7.1.2 Ungedämpfte, periodische Schwingung 5
		7.1.3 Ungedämpfte, nicht periodische Schwingung 5
		7.1.4 Federpendel
		7.1.5 Drehpendel
		7.1.6 Mathematisches Pendel
		7.1.7 Physikalisches Pendel
		7.1.8 Gedämpfte Schwingung mit konstanter Reibung 6
		7.1.9 Schwingung mit geschwindigkeitsproportionaler Dämpfung ($D < 1$) 6
		7.1.10 Aperiodeische Lösung $(D > 1) \dots $
		7.1.11 Elektrischer Schwingkreis
		7.1.11 Elektrischer senwingkreis
8	Well	lenlehre 6
	8.1	Wellengeschwindigkeiten
	0.1	8.1.1 Zusammenhänge der verschiedenen Wellen
	8.2	Wellengleichung
	8.3	Intensität
	8.4	Harmonische Wellen
	8.5	Räumliche Ausbreitung von Wellen
	8.6	
	0.0	
		8.6.1 Akustischer Doppler-Effekt
		8.6.2 Optischer Doppler-Effekt
	0.7	8.6.3 Machscher Kegel
	8.7	Überlagerung von Wellen gleicher Frequenz
	8.8	Optische Länge
	8.9	Stehende Wellen
	8.10	Eigenschwingungen
		8.10.1 Saite
		8.10.2 Pfeife
		8.10.3 Rechteckige Membrane
	8.11	Beugung
		8.11.1 Beugung am Spalt
		8.11.2 Beugung an Kreisförmiger Öffnung 6
		8.11.3 Beugung am Gitter
II	Ele	ektrizitätslehre 7
9	Gru	ndlagen 7
	9.1	Grundgrössen
	9.2	Netzwerke bei Gleichstrom

		9.2.1	Kirchoffsche Gesetzte			 			. 74
	9.3	Reale (Quellen			 			. 74
		9.3.1	Reale Spannungsquelle						
		9.3.2	Reale Stromquelle						
	9.4	Netzw	verkanalyse						
		9.4.1	Netzwerkumwandlung						
		9.4.2	Wirkungsgrad und Leistungsanpassung						
		9.4.3	Systematische Analyse linearer Netzwerke						
		9.4.4	Quellenverschiebung						
		9.4.5	Netzwerke mit gesteuerten Quellen			 	•		. 79
10	Dag	alaktria	ische Strömungsfeld						80
10			mein						
	10.2		elle Felder						
		10.2.1	Räumliches Zentralfeld (Kugelanordnung)	• •	•	 	•	•	. 80
			Zylindrisches Zentralfeld						
		10.2.3	Leistung und räumliche Leistungsdichte	• •	•	 • •	•	•	. 81
11		trostati							82
			oulobsche Gesetz						
			lektrostatsiche Feld (Allgemein)						
	11.3		elle Felder						
			Räumliches Zentralfeld (Kugelanordnung)						
			Zylindrisches Zentralfeld						
		11.3.3	Homogenes Feld (Plattenkondesator)			 			. 84
		11.3.4	Paralleldrahtleitung			 			. 85
	11.4	Energi	ie im elektrischen Feld			 			. 85
	11.5	Kräfte	e im elektrischen Feld			 			. 85
		11.5.1	Allgemein			 			. 85
			Verschiebung						
			Anziehung						
12	Mag	netism	านร						87
	v	Feldstä							
			eabilität						
			etische Flussdichte						
			e im Magnetischen Feld						
	14.1		Kräfte auf Ladungen						
		12.4.1	Kraft auf Leiter im <i>B</i> -Feld	• •	•	 	•	•	
			Kräfte auf paralle Leiter						
			Kräfte auf Randflächen eines Feldes						
	12 5								
			offutung						
			etischer Fluss						
			ches Gesetz des magnetischen Kreises						
			nfluss						
			itivität din dulutiva Vannlung						
			ninduktivität und induktive Kopplung						
	12.1	ı brechu	ung magnetischer Feldlinien			 			. 92

	12.12	2Räuml	liche Energiedichte					 . 93
	12.13	3 Energi	e im magnetischen Feld					 . 93
			tionsgesetz					
	12.15	Selbsti	nduktion					 . 94
			und Parallelschaltung von Induktivitäten					
			leichungen					
			inearität					
	1_,1		$\exists B(H)$ -Kurve in $\Phi(\Theta)$ -Kurve umrechnen					
			2 Luftspaltkennwert α					
	12 10		lle Anordnungen					
	14.17		Langer gerader Leiter $l\gg d$					
			2 Kurzer, gerader Leiter					
		12.17.2	3 Kreisförmige Drahtschleife	• •	• •		•	
			Voller Leiter					
			Koaxialkabel					
			S Paralleldrahtleitung					
			Zylinderspule					
		12.19.8	Ringspule (Toroid)	• •	• •		•	 101
		12.19.9	Kreisrahmenspule				•	 . 101
12	Mod	haalatra	omlehre					102
13			· und Kennwerte					
	13.1		Linearer Mittelwert					
			Betragsmittelwert					
			Halbwellenmittelwert					
			Quadratischer Mittelwert (Effektivwert, RMS)					
			Scheitelfaktor (Crestfaktor)					
			Formfaktor					
	400		Effektivwert eines zusammengesetzten, mehrfreque		-	-		
	13.2		ng					
		13.2.1	Leistung und Leistungsanpassung bei Quellen				•	 . 104
		13.2.2	Effektivwert und Leistung					 . 104
			e					
			lexe Darstellung sinusförmiger Vorgänge					
			lexe Darstellung von Impedanz und Admittanz					
	13.6	Klemn	ngrössen von Schaltelementen				•	 . 106
			Allgemein					
		13.6.2	Ohm'sche Widerstände					 . 107
		13.6.3	Kapazitäten					 107
			Induktivitäten					
	13.7	Zeiger	darstellung Komplexer Klemmgrössen					 . 109
			Impedanztransformation					
			Transformation von Z-Ebene zu Y-Ebene					
	13.8		verkanalyse					
		13.8.1	Maschenmethode / Kreisstrommethode					 111
			Trennbündelmethode / Knotenspannungsmethode					
	13.9		ellungsformen					
	20.7		Beispiel: Nyquistdiagramm, Ortskurve					
				- •			•	

	13.11	13.9.2 Bodediagramm	
II	En En	ergie und Antriebstechnik	119
14	Drei	phasensysteme	120
		Sternschaltung	120
	14.2	Dreieckschaltung	121
		14.2.1 Leistungen bei Stern- und Dreieckschaltung	121
15	Elek	tromotoren und Generatoren	122
	15.1	Allgemein	122
	15.2	Gleichstrommaschine	123
		15.2.1 Fremderregte Gleichstrommaschine (GNSM)	123
		15.2.2 Nutzbremsung mit fremderregter Gleichstrommaschine	124
		Gleichstrom Nebenschlussmaschine (GNSM)	124
	15.4	Gleichstrom Reihenschlussmaschine (GRSM)	125
		Drehstrom Synchrongenerator (DSG)	126
		DSG im Inselbetrieb	126
		Belastung des DSG am starren Netz	127
	15.8	Drehmoment und Stabilität des DSG am starren Netz	127
ΙV	Ele	ektronik	128
16	Dioc	de	129
	16.1	Ideale Diode	129
	16.2	Konstantspannungsmodel	129
			129
		Kennlinie	130
		16.4.1 Differentieller Widerstand	130
	16.5	DC- und AC-Analyse von Diodenschaltungen	131
		16.5.1 Vorgehen	131
		16.5.2 Kleinsignalanalyse	131
		16.5.3 Grosssignalanalyse	131
	16.6	Z-Dioden	132
		16.6.1 Z-Dioden zur Spannungsstabilisierung	132
17	Bipo	olar Transistor	133
	17.1	NPN- und PNP-Transistor	133
	17.2	Der ideale Transistor bei Gleichspannung	134
		17.2.1 DC-Ersatzschaltung	134
	17.3	Verstärkerschaltungen	134
		17.3.1 Dynamische Innenwiderstände des Transistors	134

		17.3.2	Emitterschaltug	135
		17.3.3	Basisschaltung	136
			Kollektorschaltung (Emitterfolger)	
18	Feld	effekt '	Transistor	137
			niedene Typen	
			eale MOSFET (Handrechnung)	
			ale MOSFET	
			ignal Ersatzschaltbild für tiefe Frequenzen	
			erechnung mit idealen MOSFET Gleichungen	
			ET als Schalter	
			ET als AC-Verstärker	
	10.7		Sourceschaltung	
			Gateschaltung	
	100		Drainschaltung	
		-	nische Innenwiderstände des MOS-Transistors	
			ET als Spannungsgesteuerter Widerstand	
			Diode	
	18.11		quellen	
			l Einfache Stromquelle	
			2 Stromquelle mit Kaskode-Schaltung	
			3 Stromquelle mit geregelter Kaskode-Schaltung	
	18.12	2Stroms	spiegel	148
		18.12.1	l Widlar Stromspiegel	148
19	Ope	rations	verstärker	149
19	_			
19	19.1	Verstä	v <mark>erstärker</mark> rkung	149
19	19.1	Verstä: Ideale	rkung	149 149
19	19.1	Verstär Idealer 19.2.1	rkung	149 149 150
19	19.1	Verstär Idealer 19.2.1 19.2.2	rkung	149 149 150 150
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer	149 149 150 150 150
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer	149 149 150 150 150 151
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer	149 149 150 150 150 151
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker	149 149 150 150 151 151 151
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle	149 149 150 150 151 151 151 151
19	19.1	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel	149 149 150 150 151 151 151 152
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler	149 149 150 150 150 151 151 151 152 152
19	19.1	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9 19.2.10	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler	149 149 150 150 150 151 151 151 152 153 153
19	19.1	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9 19.2.10	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler Schmitt-Trigger I Wien-Robinson Oszillator	149 149 150 150 151 151 151 152 153 153 154
19	19.1 19.2	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9 19.2.11 19.2.11	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler O Schmitt-Trigger Wien-Robinson Oszillator D Beschaltung des OPs mit Zweitoren	149 149 150 150 150 151 151 151 152 153 153 154 155
19	19.1 19.2	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9 19.2.10 19.2.11 Realer	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler OSchmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker	149 149 150 150 150 151 151 151 152 153 153 154 155
19	19.1 19.2	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9 19.2.11 19.2.12 Realer 19.3.1	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler OSchmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker Ein- und Ausgangsspannungsbereich	149 149 150 150 150 151 151 151 152 152 153 154 155 156 156
19	19.1 19.2	Verstät Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.10 19.2.11 19.2.12 Realer 19.3.1 19.3.2	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler Dischmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker Ein- und Ausgangsspannungsbereich Übertragungskennlinie	149 149 150 150 150 151 151 151 152 153 153 154 155 156 156
19	19.1 19.2	Verstä: Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.9 19.2.11 19.2.12 Realer 19.3.1 19.3.2 19.3.3	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler OSchmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker Ein- und Ausgangsspannungsbereich Übertragungskennlinie Gleichtaktfehler (Common Mode Error)	149 149 150 150 150 151 151 151 152 152 153 154 155 156 156 156
19	19.1 19.2	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.10 19.2.11 19.2.12 Realer 19.3.1 19.3.2 19.3.3 19.3.4	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler OSchmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker Ein- und Ausgangsspannungsbereich Übertragungskennlinie Gleichtaktfehler (Common Mode Error) Effektive, geschlossene Verstärkung	149 149 150 150 150 151 151 151 152 153 153 154 155 156 156 156 157
19	19.1 19.2	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.10 19.2.11 19.2.12 Realer 19.3.1 19.3.2 19.3.3 19.3.4 19.3.5	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler OSchmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker Ein- und Ausgangsspannungsbereich Übertragungskennlinie Gleichtaktfehler (Common Mode Error) Effektive, geschlossene Verstärkung Offsetfehler	149 149 150 150 150 151 151 151 152 153 153 154 155 156 156 156 157
19	19.1 19.2	Verstär Idealer 19.2.1 19.2.2 19.2.3 19.2.4 19.2.5 19.2.6 19.2.7 19.2.8 19.2.10 19.2.11 19.2.12 Realer 19.3.1 19.3.2 19.3.3 19.3.4 19.3.5	rkung r OP Invertierender Verstärker Nichtinvertierender Verstärker Addierer Subtrahierer Mehrfach Addierer und Subtrahierer Instrumentationsverstärker Stromquelle Stromspiegel Differentieller UI-Wandler OSchmitt-Trigger Wien-Robinson Oszillator Beschaltung des OPs mit Zweitoren Operationsverstärker Ein- und Ausgangsspannungsbereich Übertragungskennlinie Gleichtaktfehler (Common Mode Error) Effektive, geschlossene Verstärkung	149 149 150 150 150 151 151 151 152 153 153 154 155 156 156 156 157

		9.3.8 Kombination der statischen Fehler	
		9.3.9 Dynamischer Eingangswiderstand	
		9.3.10 Frequenzgang	159
20	Geg	0 11	160
	20.1	0 11 0	160
		.0.1.1 Gegenkopplung beim OP	160
	20.2		161
		0.2.1 Bestimmung der Gegenkopplungsart	162
		0.2.2 Eingangsschaltungen	162
			162
	20.3		163
			163
			163
V	Di	itale Signalverarbeitung 1	64
21	Stoc	astische Signale	165
	21.1	0	165
22	Abta	funo 1	166
		8	166
			166
			167
			167 167
			L67
	22.0		168
	22.6	1	168
V]	I Ma	hematik 1	69
23	Grui	dlagen 1	170
			170
			170
			170
		0 0	171
			171
			171
	23.2		l71
	20.2		L71 L71
			172
			172 172
	23.3	1	172 172
	20.0	O	172 172
			173
		Dicare fubricalization of the contraction of the co	-1 U

	23.4	Trigonometrie
		23.4.1 Komplementwinkel
		23.4.2 Sinussatz
		23.4.3 Cosinussatz
	23.5	Goniometerie
		23.5.1 Serien (Lösungsmengen)
		23.5.2 Potenzen
		23.5.3 Additionstheoreme
		23.5.4 Doppelwinkel
		23.5.5 Dreifachwinkel
		23.5.6 Halbwinkel
		23.5.7 Summen und Produkte
		23.5.8 Genaue Funktionswerte
	23.6	Logarithmen
		Komplexe Zahlen
	20.7	23.7.1 Allgemeines
		23.7.2 Rechenregeln
		23.7.3 Euler
	22.8	Ableiten
	25.0	
	23.9	8
	23.9	0
		0
		23.9.4 Integration rationaler Funktionen
		23.9.5 Rationalisierungsformeln
		23.9.6 Spezielle Integrale
24	Four	rierreihen 18
41		Bezeichungen
		Skalarprodukt
	Z T. Z	24.2.1 Eigenschaften
		24.2.2 Definitionen in \mathbb{P} und \mathbb{E}
		24.2.3 Für orthonormierte Basis
	24.2	Norm in \mathbb{P} und \mathbb{E}
	24.6	Fourierreihe reell
		24.6.1 Fourierkoeffizienten
	24.7	24.6.2 Fourierreihe der Funktion $f \in \mathbb{P}$
	24.7	Fourierreihe komplex
		24.7.1 Fourierkoeffizienten
		24.7.2 Fourierreihe der Funktion $f \in \mathbb{E}$
		Parsevalsches Theorem
		Durchgang durch LTI-System
	24.10	Fourierkoeffizienten wichtiger periodischer Signale
25	E	igertransformation 18
		TRANSPORTED AT THE STATE OF THE

	25.1	Fouriertransformation
	25.2	Fourier-Cosinustransformation
	25.3	Fourier-Sinustransformation
	25.4	Faltung
		25.4.1 Fallunterscheidung bei Definitionsbereichen
	25.5	Eigenschaften
		Fouriertransformationen mit Diracdelta
	25.7	Fouriertransformationen wichtiger Impulse
26	Lapl	ace 192
	26.1	Laplacetransformation
		Rechenregeln
		Spezielle Laplacetransformationen
	26.4	Faltung
	26.5	Periodische Funktionen
27	Diff	erentialgleichungen 195
	27.1	1. Ordnung
		27.1.1 Homogene
		27.1.2 Partikuläre
		27.1.3 Lösung
	27.2	Höhere Ordnung
		27.2.1 Homogen, linear mit konstanten Koeffizienten
		27.2.2 Partikuläre
	27.3	Laplace
		27.3.1 Lineare Übertragung
		27.3.2 Nichtlineare Übertragung
	27.4	Übersicht Laplace und Fourier
28	Funl	ktionsdiskussion 200
	28.1	Funktionen mit einer Variablen
		28.1.1 Zu beantwortende Fragen
		28.1.2 Gerade (2-Punkte-Form)
		28.1.3 Abstand eines Punktes von einer Geraden
	28.2	Funktionen mit mehreren Variablen
		28.2.1 Bezeichnungen
	28.3	Kegelschnitte
		28.3.1 Kreis
		28.3.2 Ellipse
		28.3.3 Hyperbel
		28.3.4 Parabel

Teil I Physik

1 Geometrische Optik

1.1 Sichtbares Licht

Wellenbereich λ/nm	Farbe
380 - 435	violett
435 - 465	blau
465 - 485	blaugrün
485 - 565	grün
565 - 590	gelb
590 - 630	orange
630 - 780	rot

1.2 Reflexionsgesetz

1.3 Brechung

1.4 Totalreflexion

1.4.1 Prisma

1.4.2 Lichtwellenleiter

1.5 Abbildungen

1.5.1 Allgemein

Vorzeichen:

- Für sammelde optische Bauelemente ist f > 0.
- Für zerstreuende optische Bauelemente f < 0.
- Für virtuelle Bilder ist b < 0 und B < 0.
- Für vortuelle Gegenstände ist *g* < 0 und *G* < 0.

$$g = \overline{H_1G}$$

$$b = \overline{H_2B}$$

$$f = \overline{H_1 F_1}$$

$$f = \overline{H_2F_2}$$

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

$$\frac{B}{G} = \frac{b}{g}$$

$$\beta = \frac{B}{G}$$

g Gegenstands- [m] weite

b Bildweite [m]

f Brennweite [m] H_1 vorderer

Hauptpunkt

*H*₂ hinterer Hauptpunkt

F₁ vorderer Brennpunkt

F₂ hinterer Brennpunkt

G Gegenstands- [m] grösse

B Bildgrösse [m]

 β Abbildungs- [1] verhältnis

1.5.2 Spiegel

Parabolspiegel

Bei Parabolspiegeln treffen sich alle paralell einfallenden Strahlen in einem Punkt (Brennpunkt) auf der optische Achse.

Elliptische Spiegel

Alle Strahlen die vom einen Brennpunkt ausgesendet werden, treffen auf den zweiten Brennpunkt. (Ellipse ist der geometrische Ort aller Punkte einer Ebene, für die die Summe ihrer Abstände von zwei festen Punkten F_1 und F_2 konstant ist.)

Hyperbolische Spiegel

Alle Strahlen, die von einem Brennpunkt ausgesendet werden, verlaufen nach der Reflexion so, als wären sie vom anderen der beiden Brennpunkte ausgesendet worden. (Hyperbel ist der geometrische Ort aller Punkte einer Ebene, für die die Differenz ihrer Abstände von zwei festen Punkten F_1 und F_2 konstant ist.)

Sphärische Spiegel

Die Spiegelnde Fläche ist ein Teil einer Kugel. Wenn nur ein kleiner Ausschnit der Kugelfläche verwendet wird, gehen parallel einfallende Strahlen näherungsweise durch einen Brennpunkt: f = r/2.

1.5.3 Abbildungen durch Spiegel

Konkavspiegel

Konvexspiegel

Planspiegel

1.5.4 Linsen

Linsentypen

$$q = \frac{d}{f}$$

$$D = \frac{1}{f}$$

Linsenschleifergleichung:

$$D = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

Falls das Linsenmaterial optisch dichter ist als das umgebende Medium, zeigt die obere Abbildung eine Sammel- und die untere eine Streulinse.

q	Öffnungsver-	[m]

hältnis
$$d$$
 effektiver $[m]$ Durchm.

$$f$$
 Brennweite $[m]$

$$D$$
 Brechkraft $[dpt]$ n_1 n-Umgebung $[1]$

$$n_1$$
 in-Onigebung [1] n_2 n-Linse [1]

$$r_{1,2}$$
 Linsenradien $[m]$

Linsensysteme

Zwei Linsen mit Brennweiten f_1 , f_2 auf einer Achse ergeben eine Linse mit Brennweite f, falls ihr Abstand d kleiner f_1 ist.

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

$$D = D_1 + D_2 - dD_1D_2$$

 $f_{1,2}$ Brennweiten [m] D Brechkraft [dpt]

d Linsenabstand [m]

1.5.5 Abbildungen durch Linsen

Sammellinse

Der Gegenstand ist innerhalb der Brennweite \Rightarrow reelles Bild.

Der Gegenstand ist ausserhalb der Brennweite ⇒ virtuelles Bild.

G Gegenstand [m] B Bild [m] F Brennpunkt $f_{1,2}$ Brennweiten [m]

Zerstreuungslinse

Bei Zerstreungslinsen haben reelle Gegenstände stets virtuelle Bilder, unabhängig von ihrer Position. G Gegenstand [m] B Bild [m]

F Brennpunkt

 $f_{1,2}$ Brennweiten [m]

1.5.6 Optische Geräte

Film

Fotoapparat

Verschluss

$$B = \frac{f}{g - f}G$$

$$I \approx d^2$$

$$H \approx \frac{1}{B^2} \approx \frac{d^2}{f^2}$$

$$E = Ht$$

$$q = \frac{d}{f} \qquad Z = \frac{1}{q}$$

$$E \approx q^2 t$$

$$\frac{u}{d} = \frac{b - b_0}{b}$$

$$\frac{1}{g} = \frac{1}{g_0} \pm \frac{u}{qf^2}$$

$$g > g_0 \Rightarrow - \quad g < g_0 \Rightarrow +$$

- G Gegenstand [m]
- g Gegenstands- [m] weite
- g_0 Schärfentie- [m] fenbereich
- B Bildweite [m]
- b Bild [m]
- f Brennweite [m]
- I Lichtstrom [W]
- d Durchm. Ein- [m]
- trittspupille H Helligkeit $\left[\frac{W}{m^2}\right]$
- q Öffnungsver- [1] hältnis
- Z Brendenein- [1]
- stellung

 E Belichtung [1]
- t Belichtungs- [s] zeit
- *u* Durchm. Un- [*m*] schärfenkreis

Projektor

Das Dia wird im Objektiv abgebidet $\Rightarrow g_2 = b_1$ Das Bild der Lampe muss im Objektiv sein.

 g_2 g-Objektiv [m] b_1 b-Kondensa- [m] tor

Lupe

Sammellinse zur Vergrösserung des Sehwinkels (Bild im Unendlichen)

Gegenstand in Brennweite \Rightarrow Sehwinkel ϵ ist unabhängig von der Augenposition

$$V = \frac{\tan \epsilon}{\tan \epsilon_0}$$

$$V = \frac{s}{g} > V_{normal}$$

$$\tan \epsilon' = \frac{G}{f}$$

$$\tan \epsilon_0 = \frac{G}{s}$$

$$V = \frac{s}{f}$$

G Gegenstand [m]

g Gegenstands- [m] weite

B Bildweite [m]

b Bild [m]

f Brennweite [m]

 ϵ Sehwinkel [rad] durch Lupe

 ϵ_0 Sehwinkel [rad] ohne Lupe

s deutliche Seh- [m] weite

V Vergrösserung [1] (max. ca. 25)

Mikroprojektor

Das reelle Bild einer Sammellinse wird verwendet und auf einer Mattscheibe abgebildet Bild aus deutlicher Sehweite betrachtet:

$$V = \frac{B}{G} = \frac{b}{g}$$

Stahlengang siehe Projektor

G Gegenstand [m]

g Gegenstands- [m] weite

B Bildweite [m]

b Bild [m]

V Vergrösserung [1]

Mikroskop

Das Objektiv verhält sich wie ein Mikroprojektor. Sein Bild wird durch das Okular, welches sich wie eine Lupe verhält, betrachtet.

$$V = V_1 V_2$$

$$V = \frac{\tan \epsilon}{\tan \epsilon_0}$$

$$V = \frac{B}{G} \frac{f}{f_2}$$

$$V = \frac{\Delta}{f_1} \frac{s}{f_2}$$

$$V_1 = \frac{\Delta}{f_1}$$

$$V_2 = \frac{s}{f_2}$$

$$\Delta = b_1 - f_1$$

G Gegenstand	[m]
--------------	-----

 g_1 Gegenstands- [m] weite

B Bild [m]

 b_1 Bildweite [m]

*F*₁ Brennpunkt Objektiv

F₂ Brennpunkt Okular

 f_1 Brennweite [m] Objektiv

 f_2 Brennweite [m] Okular

 Δ Tubuslänge [m]

 ϵ Sehwinkel [rad] s deutliche Seh- [m]

weite

V Vergrösserung [1]

total

 V_1 V-Objektiv [1]

 V_2 V-Okular [1]

1 Geometrische Optik

Fernrohre

Ein Fernglas mit den Daten 10×50 hat eine Vergrösserung von 10 und einen Objektivdurchmesser von 50 mm.

$$V = \frac{\tan \epsilon}{\tan \epsilon_0}$$

$$\epsilon = V\epsilon'$$

$$V = \frac{f_1}{f_2}$$

$$\frac{1}{f_1 + f_2} + \frac{1}{a} = \frac{1}{f_2}$$

$$\frac{D}{d} = \frac{f_1 + f_2}{a} = V$$

$$a = \frac{l}{V} \qquad d = \frac{D}{V}$$

$$L = d^2$$

$$L = \left(\frac{D}{V}\right)^2$$

$$l = f_1 + f_2$$

B Bildweite

[m]e [m]

f₁ Brennweite Objektiv

 f_2

Brennweite [*m*] Okular

l Fernrohrlänge [*m*]

 ϵ Ausfallswinkel [rad]

 ϵ' Einfallswinkel [rad] s deutliche Seh- [m]

 $\begin{array}{c} \text{weite} \\ V \qquad \text{Vergr\"{o}sserung} \ [1] \\ \text{total} \end{array}$

L Lichtstärke [1]

D Durchm. Ob- [m] jektiv

d Durchm. Aus- [mm] trittspupille

a Abstand Oku- [m] lar Astrittspupille

2 Statik

2.1 Starre Körper im Gleichgewicht

2.1.1 Gleichgewichtsbedingung starrer Körper

Ein Körper ist dann im Gleichgewicht, wenn keine resultierende Kraft auf ihn wirkt, d.h. die Summe der ihn angreifenden Kräfte ist null. Allgemein:

$$\sum_{i=1}^{n} \vec{F}_i = 0 \qquad \sum_{i=1}^{n} \vec{M}_i = 0$$

In Komponenten:

$$\sum_{i=1}^{n} \vec{F_{ix}} = 0 \qquad \sum_{i=1}^{n} \vec{M_{ix}} = 0$$

$$\sum_{i=1}^{n} \vec{F}_{iy} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{iy} = 0$$

$$\sum_{i=1}^{n} \vec{F}_{iz} = 0 \qquad \sum_{i=1}^{n} \vec{M}_{iz} = 0$$

F Kraft [N] M Drahmoment [Nm]

2.1.2 Haftreibung

$$\vec{F_N} = \vec{F_G}$$
 $\vec{F_R} = \vec{F}$

$$\vec{F_R} \leq \vec{F_{Rmax}} \leq \mu_H F_N$$

F	Kraft	[N]
F_G	Gewichtskraft	[N]
F_N	Normalkraft	[N]
F_R	Reibkraft	[N]
μ_H	Haftreibungs-	[1]
	koeffizient	

2.1.3 Reaktionsprinzip

Das Reaktionsprinzip gilt, wenn zwei Kör-	$ec{F_{BA}} = -ec{F_{AB}}$	F_{AB}	Kraft von $[N]$ Körper A
per Kräfte auf einander ausüben.		F_{BA}	Kraft von $[N]$ Körper B

2.1.4 Drehmoment

Drehmoment eines Kräftepaars

Drehmoment einer Einzelkraft

2.2 Schwerpunkt

$$x_s = \frac{\sum_i x_i m_i}{\sum_i m_i}$$

$$y_s = \frac{\sum_i y_i m_i}{\sum_i m_i}$$

$$z_s = \frac{\sum_i z_i m_i}{\sum_i m_i}$$

Schwerpunkt eines Halbkreises:

$$x = 0 y = \frac{4r}{3\pi}$$

 x_s , Koordinaten [m]

 y_s, z_s des Gesamtschwerpunk-

tes
Schwer- [m]

 x_i , Schwer- y_i , z_i punktsko-

ordinaten Teilkörper i

Radius [m]

2.3 Deformierung

2.3.1 Spannung

$$\sigma = \frac{F_{\perp}}{A}$$

$$au = rac{F_{\parallel}}{A}$$

$$p = -\sigma$$

 σ Zugspannung [τ Schubspan- [τ

nung

p Druck

A Fläche

A Flache F Kraft $\lfloor \overline{m^2} \rfloor$ $\lfloor m^2 \rfloor$ $\lfloor N \rfloor$

2.3.2 Dehnung

$$\epsilon = \frac{\Delta l}{l}$$

$$\Delta l \sim \frac{lF}{A}$$

$$\epsilon = \frac{1}{E}\sigma = \frac{1}{E}\frac{F}{A}$$

$$\epsilon$$
 Dehnung [1]

A Querschnitts-
$$[m^2]$$

fläche

$$F$$
 Kraft $[N]$

E Elastizitäts-
$$\left[\frac{N}{m^2}\right]$$

modul

$$\sigma$$
 Zugspannung $\left[\frac{N}{m^2}\right]$

2.3.3 Querkontraktion

Die Querkontrakti- on entspricht dem	$\epsilon_q = rac{\Delta d}{d} = rac{-\mu \Delta l}{l}$	ϵ_q	Querkontrak- [1] tion
nes Materials bei	$\epsilon_q = -\mu \epsilon$	μ d	Poissonzahl [1] Dicke Materi- [<i>m</i>]
Dehnung		1	al Länge [<i>m</i>]

2.3.4 Kompression

Wird ein Körper einem Druck ausge- setzt, spricht man von Kompression	$\frac{\Delta V}{V} = -\kappa \Delta p$ $\kappa = \frac{3(1 - 2\mu)}{E}$	V р к ц Е	Volumen Druck Kompressibi- lität Poissonzahl E-Modul	$\begin{bmatrix} m^3 \\ \frac{N}{m^2} \end{bmatrix}$ $\begin{bmatrix} \frac{m}{m^2} \\ \frac{m^2}{N} \end{bmatrix}$ $\begin{bmatrix} 1 \\ \frac{N}{m^2} \end{bmatrix}$
--	--	-----------------------	---	--

2.3.5 Schubbeanspruchung

2.3.6 Schraubenfeder

2.3.7 Biegung eines Balkens

2.4 Vorgehen beim Lösen von Statikaufgaben

- 1. Skizze mit allen Kräften aufzeichnen
- 2. Koordinatensystem einführen
- 3. Falls notwendig einen Drehpunkt einführen
- 4. Gleichgewichtsbedingungs Gleichungssystem aufstellen
- 5. Gleichungssystem auflösen

3 Kinematik

3.1 Gleichförmige Bewegung

3.2 Gleichförmig beschleunigte Bewegung

3.3 Drehbewegung

3.3.1 Gleichförmige Kreisbewegung

\vec{v}	$\alpha = 0$	α	Winkel-	$\left[\frac{rad}{s^2}\right]$
$r \varphi s$	$s = r\varphi$		Beschleuni- gung	
	$v = r\omega$	w	Winkel- Geschw.	$\left[\frac{rad}{s}\right]$
	$\omega = \dot{\varphi} = \frac{v}{r}$	φ	Winkel	[rad]
Analogie:	r	r	Radius	[<i>m</i>]
$egin{array}{c} s ightarrow arphi \ v ightarrow \omega \end{array}$	$\varphi = \omega t$	$\begin{array}{c c} T \\ f \end{array}$	Periode Frequenz	$\begin{bmatrix} s \end{bmatrix}$ $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$
$a \to \alpha$	_ 1	S	Strecke	[m]
	$f = \frac{T}{T}$	v	Geschw.	$\left[\frac{m}{s}\right]$
	$\omega - 2\pi f$	t	Zeit	$\begin{bmatrix} s \end{bmatrix}$
	$f = \frac{1}{T}$ $\omega = 2\pi f$	s_0	Anfangs Stre- cke	[m]
	$ec{v} = ec{\omega} imes ec{r}$	v	Geschw. tang.	$\left[\frac{m}{a}\right]$

3.3.2 Gleichförmig beschleunigte Kreisbewegung

3.3.3 Zentripetalbeschleunigung

3.4 Wurfbahnen

3.4.1 Freier Fall

3.4.2 Senkrechter Wurf

3.4.3 Horizontaler Wurf

$$a_x = 0 \to v_x = v_0$$

$$s_x = v_0 t$$

$$s_x = \sqrt{\frac{2v_0^2y}{g}}$$

$$a_y = -g \to v_y = -gt$$

$$s_y = -\frac{g}{2}t^2$$

$$s_y = -\frac{g}{2}t^2$$

$$s_y = -\frac{g}{2v_0^2} s_x^2$$

s Strecke
$$[m]$$

$$egin{array}{ccccc} v & {\sf Geschw.} & \left[rac{m}{s}
ight] \ v_0 & {\sf Start-Geschw.} & \left[rac{m}{s}
ight] \ t & {\sf Zeit} & \left[s
ight] \ \end{array}$$

$$v_0$$
 Start-Geschw. [

$$t$$
 Zeit $\begin{bmatrix} s \end{bmatrix}$

g Erdbeschl. =
$$\left[\frac{m}{s^2}\right]$$
 9.81

3.4.4 Schiefer Wurf

$$a_y = -g$$
 $a_x = 0$

$$d = \frac{v_0^2}{g}\sin(2\varphi)$$

$$h = \frac{v_0^2}{2g}\sin^2(\varphi)$$

$$t = \frac{2v_0\sin(\varphi)}{g}$$

$$\Delta y = v_0 \sin(\varphi) t - \frac{gt^2}{2}$$

$$\Delta x = v_0 \cos(\varphi) t$$

Parabelgleichung:

$$y = \tan(\varphi)s_x - \frac{gs_x^2}{2v_0^2\cos^2(\varphi)}$$

а	Beschl.	$\left[\frac{m}{s^2}\right]$
d	Wurfdistanz	[m]
S	Strecke	[m]

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$ v_0 Start-Geschw. $\left[\frac{m}{s}\right]$ t Zeit $\left[s\right]$

$$egin{array}{ll} t & {
m Zeit} & [s] \\ \phi & {
m Abschuss-} & [rad] \\ & {
m winkel} \end{array}$$

g Erdbeschl. =
$$\left[\frac{m}{s^2}\right]$$
 9.81

4 Dynamik

4.1 Newtonsche Gesetze

4.1.1 Erstes Newtonsches Gesetz (Trägheitsgesetz)

Ein Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, wenn er nicht durch einwirkende Kräfte gezwungen wird, seinen Zustand zu ändern. Die Gesamtsumme der Kräfte in einem abgeschlossenen System ist unveränderlich:

$$F = \sum_{i} F_i = 0$$

4.1.2 Zweites Newtonsches Gesetz (Aktionsgesetz)

Die Beschleunigung eines Körpers ist umgekehrt proportional zu seiner Masse und direkt proportional zur Kraft, die auf ihn wirkt.

$$\vec{F} = m\vec{a}$$

4.1.3 Drittes Newtonsches Gesetz (Actio = Reactio)

Wirkt ein Körper A auf einen Körper B mit der Kraft $\vec{F_{AB}}$, so wirkt der Körper B mit der entgegengesetzt gerichteten, gleich grossen Kraft $\vec{F_{BA}}$.

$$\sum_{i=1}^{n} F_{ix} = ma_x \vec{a} \qquad \sum_{i=1}^{n} F_{iy} = ma_y \vec{a} \qquad \sum_{i=1}^{n} F_{iz} = ma_z \vec{a}$$

4.1.4 Allgemeines Vorgehen beim lösen von Bewegungsproblemen

- 1. Zeichnung anfertigen
- 2. Für jeden Körper, der untersucht werden soll, wird ein Kräftediagramm eingezeichnet
- 3. Ein geeignetes Koordinatensystem einführen
- 4. Das entstandene Gleichungssystem auflösen
- 5. Ergebnisse mit gesundem Menschenverstand auflösen

4.2 Masse und Gewicht

4.2.1 Spezielle Kräfte, Masse, Dichte und Reibung

4.3 Arbeit und Energie, Energieerhaltung

Energie ist die Fähig- keit Arbeit zu leisten. Arbeit = überwinden eines Widerstandes	$dW = \vec{F} \cdot \vec{ds}$ $W = Pt$ Energieerhaltung im abgeschlossenen System: $\sum_{i} E_{i} = const.$	W E F s	Arbeit Energie Kraft Weg Zeit	[J] [J] [N] [m] [s]
--	--	------------------	---	---------------------------------

4.3.1 Hubarbeit, Potentielle Energie

$h_{\widehat{\boldsymbol{m}}}E_{pot2}$	$E_{pot} = mgh$	E_{pot}	potentielle Energie	[<i>J</i>]
mE _{pot1}	$W_H ec{F} \cdot ec{h}$ $E_{pot} = W_H$	W _H m	Energie Hubarbeit Masse Fallbeschleu-	$\begin{bmatrix} J \\ [kg] \\ \left[\frac{m}{s^2}\right] \end{bmatrix}$
		h	nigung Höhe	[m]

4.3.2 Spannarbeit, Spannenergie

4.3.3 Beschleunigungsarbeit, Kinetische Energie

4.3.4 Rotationsenergie

4.3.5 Reibungsarbeit

	$W_R = F_R s$	W_R	Reibarbeit	[<i>J</i>]
F_R		F_R	Reibkraft Strecke	[N] $[m]$
777777777777777777777777777777777777777				

4.3.6 Verformungsarbeit

4.3.7 Einstein, Kernbindungsenergie

$E = mc^2$	E m c	Energie Masse v _{Licht} = 299'792'458	$\begin{bmatrix} J \\ [kg] \\ \left[\frac{m}{s} \right] \end{bmatrix}$
		(Vakuum)	

4.4 Leistung

$P = \frac{dW}{dt}$ $P = \frac{Fds}{dt} = \vec{F}\vec{s}$	P W t F	Leistung Energie Zeit Kraft Strecke	[W] [J] [s] [N] [m]
At $P = M\omega$	s M	Drehmoment	[Nm]
	w	Winkelge- schwindig- keit	$\left[\frac{rad}{s}\right]$

4.5 Wirkungsgrad

|--|

4.6 Impuls, Impulserhaltung

Impulserhaltungssatz: Im abgeschlossenen System bleibt der Impuls konstant	·	p m v F ∆t	Impuls Masse Geschw. Kraft Wirkungs- dauer	$\left[rac{kgm}{s} ight] \left[kg ight] \left[rac{m}{s} ight] \left[N ight] \left[s ight]$
---	---	------------------------	---	--

4.6.1 Drehimpuls

4.6.2 Raketenantrieb

4.6.3 Inelastischer Stoss

$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$	v'	Geschw. nach [Stoss	$\left[\frac{m}{s}\right]$
	,	v vor Stoss [Massen [$\left[\frac{m}{s}\right]$ $\left[kg\right]$

4.6.4 Elastischer Stoss

$v_1 - v_2 = -(v_1' - v_2')$ $v_1' = rac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$	$v'_{1,2}$ $v_{1,2}$ $m_{1,2}$	Geschw. nach Stoss v vor Stoss Massen	$\left[\frac{m}{s}\right]$ $\left[\frac{m}{s}\right]$ $\left[kg\right]$
$v_2' = \frac{(m_2 - m_1)v_2 + 2m_1v_2}{m_1 + m_2}$ $m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$			

4 Dynamik

4.7 Analogie Translation und Rotation

	Translation		Rotation				
Symb	Grösse	Beziehung	Symb	Grösse	Beziehung		
S	Weg		φ	Winkel			
v	Geschwindigkeit	$v = \frac{ds}{dt}$	ω	Winkelgeschwin- digkeit	$\omega = \frac{d\varphi}{dt}$		
а	Beschleunigung	$a = \frac{dv}{dt}$	α	Winkelbeschleuni- gung	$\alpha = \frac{d\omega}{dt}$		
m	Masse		J	Trägheitsmoment	$J = \int r^2 dm$		
р	Impuls	p = mv	L	Drehimpuls	$L = J\omega$		
F	Kraft	$F = \frac{dp}{dt}$	M	Drehmoment	$M = \frac{dL}{dt}$		
dW	Arbeit	$dW = \vec{F} \vec{ds}$	dW	Arbeit	$dW = Md\varphi$		
P	Leistung	$P = \vec{F}\vec{v}$	P	Leistung	$P = M\omega$		
E _{trans}	Translationsener- gie	$E_{trans} = \frac{mv^2}{2}$	E_{rot}	Rotationsenergie	$E_{rot} = J\omega^2 2$		

4.8 Gravitation und Masse

4.8.1 Keplersche Gesetze (→ Bewegung der Planeten)

	<u> </u>			
1. Keplergesetz	Die Planeten bewegen sich auf Elypsen, in deren einem Brenn- punkt die Sonne steht. (Bahn ist eben)	$v_{P,A} \ r_{P,A} \ T$	Bahngeschw. Elypsen- Radien Umlaufdauer	$\left[\frac{m}{s}\right]$ $[m]$
2. Keplergesetz Planet Plane	Der Fahrstrahl des Planeten überstreicht in gleichen Zeiten gleiche Flächen. $v_P r_P = v_A r_A$ $A_P = A_A$	C r v_K	Planet Konstante mitlerer Abstand Kreisbahnge- schwindig- keit Cravitations-	$\begin{bmatrix} 1 \\ m \end{bmatrix}$ $\begin{bmatrix} \frac{m}{s} \end{bmatrix}$
3. Keplergesetz	Das Quadrat der Umlaufdauer eines Planeten ist proportional zur dritten Potenz seiner mittleren Entfernung zur Sonne. $T^2 = Cr^3$ $t = \frac{4\pi}{GM_{Sonne}}r^3$ Planetengeschwindigkeit: $v_K = \frac{2\pi r}{T}$ $v_K = \sqrt{\frac{gM_{Sonne}}{r}}$	G	Gravitations- konstante = $6.673 \cdot 10^{-11}$	$\left[\frac{m^3}{kgs^2}\right]$

4.8.2 Newtonsches Gravitationsgesetz

4.8.3 Potentielle Energie im Gravitationsfeld einer Zentralmasse

$E_{pot} = -G \frac{m_Z m}{r}$	m_Z	m- Zentralmasse	[<i>kg</i>]
$\varphi = -\frac{Gm_Z}{r}$	m $arphi$	Körpermasse Gravitations- potential	$\begin{bmatrix} kg \\ \frac{m^2}{s^2} \end{bmatrix}$
	G	Gravitations- konstante = $6.673 \cdot 10^{-11}$	$\left[\frac{m^3}{kgs^2}\right]$

4.8.4 Fluchtgeschwindigkeit

Die Bahn ist eine Para- bel	$v_F = \sqrt{2 \frac{Gm_Z}{r_0}}$	$egin{array}{c} v_F \ v_K \end{array}$	Fluchtgeschw. Kreisbahnge- schwindig-	$\left[\frac{m}{s^2}\right]$ $\left[\frac{m}{s^2}\right]$
	$v_F = \sqrt{2} v_K$	m_Z r_0 G	keit m- Zentralmasse Abstand Gravitations- konstante = $6.673 \cdot 10^{-11}$	$[kg]$ $[m]$ $[\frac{m^3}{kgs^2}]$

4.8.5 Geostationäre Bahn

Ein geostationärer Satellit scheint von der Erde aus gesehen still zu stehen.	$r = \sqrt[3]{\frac{3mpt}{4\pi^2}}$	r m _P t G	Bahnradius m-Planet Umlaufzeit Gravitations- konstante = $6.673 \cdot 10^{-11}$	$[m]$ $[kg]$ $[s]$ $[\frac{m^3}{kgs^2}]$
---	-------------------------------------	-------------------------------	---	--

4.9 Rotation und Massenträgheitsmoment

4.9.1 Massenträgheitsmoment bei Getriebe

$ \begin{array}{c c} I_1 & \hline $	$J_1 = \frac{J_2}{\eta_G} \left(\frac{\omega_2}{\omega_1}\right)^2 = \frac{J_2}{\eta_G} \left(\frac{n_2}{n_1}\right)^2$ $J_1 = \frac{J_2}{\eta_G i^2}$	J Massenträgheit $[kgm^2]$ ω Winkelgeschw. $[\frac{rad}{s}]$ n Drehzahl $[1]$ i Übersetzung $[1]$
---	--	--

4.9.2 Massenträgheitsmomente oft verwendeter Körper

	Allgemein: $J=\int r^2 dm$	J m r	heitsmoment m Masse	
Achse	Vollzylinder: $J = \frac{mr^2}{2}$	a, b l	Seite Länge	[<i>m</i>] [<i>m</i>] [<i>m</i>]
r_i Achse	Hohlzylinder: $J = \frac{m(r_a^2 + r_i^2)}{2}$			
	Kugel: $J = \frac{2}{5}mr^2$			
Achse Achse	Quader: Stange: $J = \frac{m(a^2 + b^2)}{12} \qquad J = \frac{ml^2}{12}$			
Achse	Kreisscheibe: $J = \frac{mr^2}{4} = \frac{md^2}{16}$			

5 Mechanik deformierbarer Körper

5.1 Druck

$$p = \frac{F}{A}$$

$$\tau = \frac{F}{A}$$

Druck

[Pa]

p F Kraft

[N]

Fläche ASchubspanτ

 $[m^2]$ [Pa]

nung

5.1.1 Absoluter Druck Überdruck

$$\Delta p = p - p_0$$

$$F = F_i - F_a$$

$$F = pA - p_0A$$

Druck p

Α

[Pa]

Aussendruck p_0

 $= 1,013 \cdot 10^5$

 F_i , F_a Kraft innen, [N]

aussen Fläche

 $[m^2]$

5.2 Kompression

Ideale Fluide sind inkompressibel und reibungsfrei, Gase können zusammengedrückt werden.

$$\kappa = \frac{-1}{V} \frac{\Delta V}{\Delta p}$$

$$K = \frac{1}{\kappa}$$

ideales Gas:

$$pV = konst.$$

$$p_1V_1 = p_2V_2$$

Kompressibi-K

K Kompressions-[*Pa*]

modul

Druck

[Pa] $[m^3]$

Volumen Dichte ρ

V

5.3 Hydrostatik

5.3.1 Schweredruck

$$dp = -
ho \cdot g \cdot dh$$
 (h positiv nach oben)

Bei Flüssigkeiten:

$$p=
ho gh+p_0$$
 (h positiv nach unten)

$$\frac{p_0}{\rho_0} = \frac{p(h)}{\rho(h)}$$

Bei Gasen:

$$p = p_0 e^{-\frac{\rho_0}{p_0}gh}$$

$$p$$
 Druck $[Pa]$ p_0 Druck bei $h = [Pa]$

0

$$\rho$$
 Dichte $\left[\frac{kg}{m^3}\right]$

$$\rho_0 \qquad \text{Dichte bei } h = \begin{bmatrix} \frac{kg}{m^3} \end{bmatrix}$$

Höhe h

 $\left[\frac{m}{s^2}\right]$ Erdbeschleug

nigung

= 9.81

5.3.2 Statischer Auftrieb

$$F_A = \rho_{Fl} V_K g - \rho_K V_K g$$

$$F_A = m_{Fl}g - m_Kg$$

$$F_A = A \rho_{Fl} g \Delta h$$

Auftriebskraft [N] F_A

Dichte Fluid ho_{Fl} Dichte Körper

 ρ_K Masse Fluid m_{Fl} [kg]Masse Körper [kg] m_K

Fläche Körper $[m^2]$ Α Erdbeschleug

nigung = 9.81

5.3.3 Druckwandler

$$\frac{p_1}{p_2} = \frac{A_2}{A_1}$$

5.3.4 Kraftwandler

$$\frac{F_1}{F_2} = \frac{A_1}{A_2}$$

$$[N]$$
 $[m^2]$

5.3.5 Druckmessung

Manometer

Absoluter Druck

Statischer Druck (Druck auf Rohrwand)

Dynamischer Druck

Gesamtdruck

$$p_{dyn} = \rho g \Delta h$$

Strömgeschwindigkeit:

$$v = \sqrt{\frac{2p_{dyn}}{
ho}}$$

$$p$$
 Druck $[Pa]$ h Höhe $[m]$

$$\rho$$
 Dichte $\left[\frac{kg}{m^3}\right]$

g Erdbeschl. =
$$\begin{bmatrix} \frac{m}{s^2} \end{bmatrix}$$
 9.81

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

Druckdifferenzen

$$\Delta p = p_1 - p_2$$

$$\Delta p = \rho g \Delta h$$

Strömgeschwindigkeit:

$$v_1 = \sqrt{\frac{2\Delta p}{\left[\left(rac{A_1}{A_2}
ight)^2 - 1
ight]
ho}}$$

$$h$$
 Höhe $[m]$

A Fläche
$$[m^2]$$

 ρ Dichte $[\frac{kg}{m^3}]$

g Erdbeschl. =
$$\begin{bmatrix} \frac{m}{m^3} \end{bmatrix}$$

9.81
$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

5.3.6 Grenzflächeneffekte

Oberflächenspannung

$$\sigma = \frac{F}{l}$$

$$\sigma = \frac{\Delta W}{\Delta A}$$

Kraft um Draht zu heben:

$$F = 2\sigma l + m_{Drath}g$$

$$\sigma$$
 Oberflächen- $\left[\frac{N}{m}\right]$

$$F$$
 Kraft $[N]$

$$l$$
 Länge $[m]$ A Kontaktfläche $[m^2]$

$$W$$
 Arbeit $[J]$

g Erdbeschl. =
$$\left[\frac{m}{s^2}\right]$$
 9.81

Grenzflächenspannung

Flüssigkeit auf Festkörper Benetzung:

nicht Benetzung:

Flüssigkeit auf Flüssigkeit

Benetzung: $\varphi < 90^{\circ}$

Nicht Benetzung: $\varphi > 90^\circ$ Flüssigkeit auf Festkörper

$$\cos(\varphi) = \frac{\sigma_{sg} - \sigma_{sl}}{\sigma_{lg}}$$

Flüssigkeit auf Flüssigkeit

$$\cos(arphi) = rac{\sigma_{2g}^2 - \sigma_{lg}^2 - \sigma_{-2}}{2\sigma_{lg}\sigma_{l2}}$$

Kontaktwinkel [rad] φ

Zugspannung σ

 σ fest, flüssig σ_{sl} σ fest, Gas σ

 σ flüssig, Gas σ

Kapillarität

Nicht Benetzung: Benetzung:

Röhrchen:

Zugspannung σ Höhe h [m]**Radius** [m]r Dichte ρ Erdbeschl. g

9.81

5.4 Hydrodynamik

5.4.1 Kontinuitätsgleichung

5.4.2 Bernoulli Gleichung (Energieerhaltung)

5.5 Reale Strömung

5.5.1 Zirkulation

$\Gamma = \oint ec{v} dec{s}$	Γ υ s	Zirkulation Geschw. Strecke	$\begin{bmatrix} \frac{m^2}{s} \end{bmatrix} \\ \begin{bmatrix} \frac{m}{s} \end{bmatrix} \\ [m] \end{bmatrix}$
-------------------------------	-------------	-----------------------------------	---

5.5.2 Vortizität

$ec{\omega}=rotec{v}$	w	Vortizität Geschw.	$\begin{bmatrix} \frac{1}{s} \\ \frac{m}{s} \end{bmatrix}$
Rotation der Geschwindigkeit			. 5 1

5.5.3 Newtonsches Reibungsgesetz

5.6 Strömungsformen

5.6.1 Raynolds-Zahl

Re	$e = rac{ ho v L}{\eta} = rac{v L}{ ho}$	Re	Raynolds- Zahl	[1]
Im	Rohr:	ρ v	Dichte Geschw.	$\left[\frac{kg}{m^3}\right]$ $\left[\frac{m}{s}\right]$
Re	$e = \frac{\rho v d}{\eta} = \frac{v d}{\gamma}$	L d	Linearabm. Rohr-∅	$\begin{bmatrix} m \end{bmatrix}$
Re	$e_{kritisch} = 2320$	η	Dyn.Visk. Kin. Visk.	$ \begin{bmatrix} Pas \\ \left[\frac{m^2}{s} \right] \end{bmatrix} $

5.6.2 Laminare Strömung (Re < 2320)

Die Strömung ist laminar, wenn die Raynolds-Zahl Re < 2320 ist.

Umströmte Kugel:

$$F_R = 6\pi\eta Rv$$

Kugelgeschwindigkeit:

$$v_{Kugel} = rac{2R^2g(
ho_K -
ho_{Fl})}{9\eta}$$

Fluidzylinder in Fluid:

$$v_{Zylinder} = \frac{p_1 - p_2}{4l\eta}(R^2 - r^2)$$

Durchflussmenge:

$$\dot{V} = \frac{\pi \Delta p R^4}{8\eta l}$$

$$\Delta p = p_1 - p_2$$

Volumenfluss:

$$V = \frac{\pi \Delta p R^4}{8\eta l} t$$

Druckabfall im glatten Rohr:

$$\Delta p = \lambda_l \frac{l}{d} \frac{\rho v^2}{2}, \qquad \lambda_l = \frac{64}{Re}$$

Reibungskraft auf Rohr:

$$F_R = \Delta p R^2 \pi = 8\pi \eta l v$$

$$F_R$$
 Reibungskraft $[N]$

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

R Radius Kugel, [m]

Rohr

 η Dynamische [Pas] Viskosität

 ρ Dichte $\left[\frac{kg}{m^3}\right]$

Re Raynolds- [1]

 ρ Dichte $\left[\frac{kg}{m^3}\right]$

l Rohrlänge [m]

V Volumen $[m^3]$ d Rohr- \emptyset [m]

 λ Widerstands- [1] zahl

p Druck [Pa]

g Erdbeschl. = $\left[\frac{m}{s^2}\right]$ 9.81

5.6.3 Volumenstrom

$$A_1 \gg A_2$$

$$v_1 \approx 0$$

$$v_2 = \sqrt{2gh}$$

Volumenstrom:

$$\dot{V} = a_2 v_2$$

$$h$$
 Höhe $[m]$

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$
 V Volumen $\left[m^3\right]$

$$A$$
 Fläche $[m^2]$ t Zeit $[s]$

g Erdbeschl. =
$$\begin{bmatrix} s \\ s^2 \end{bmatrix}$$

5.6.4 Turbulente Strömung (Re > 2320)

Die Strömung ist turbulent, wenn die Raynolds-Zahl Re > 2320 ist.

Druckwiderstand:

$$F_D = \frac{c_W \rho v^2}{2} A$$

Druckabfall im glatten Rohr:

$$\Delta p = \lambda_t \frac{l}{d} \frac{\rho v^2}{2}, \qquad \lambda_t = \frac{0.316}{\sqrt[4]{Re}}$$

г	D 1 11 ([3.7]
F_D	Druckwiderst.	$\lfloor IV \rfloor$
v	Geschw.	$\left[\frac{m}{s}\right]$
A	Angriffsfläche	$[m^2]$
c_W	Widerstands-	[1]
	koeffizient	
ρ	Dichte	$\left[\frac{kg}{m^3}\right]$
Re	Raynolds-	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	Zaĥl	
ρ	Dichte	$\left[\frac{kg}{m^3}\right]$
1	Rohrlänge	[m]
d	Rohr-∅	[m]
λ	Widerstands-	[1]
	zahl	- -
р	Druck	[Pa]
g	Erdbeschl. =	$\left[\frac{m}{s^2}\right]$
		0

5.7 Dynamischer Auftrieb

Bei Zylinderform:

$$F_A = \rho l v \Gamma$$

$$\Gamma = 4\pi^2 r^2 f$$

F_A	Auftriebskraft	[N]
1	Zylinderlänge	[m]
r	Radius	[m]
v	Fluidgeschw.	$\left[\frac{m}{c}\right]$

9.81

f Drehfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ Zylinder ρ Dichte $\begin{bmatrix} \frac{kg}{s} \end{bmatrix}$

 ρ Dichte $\lfloor \frac{\kappa_8}{m^3} \rfloor$ Zirkulaion $\lfloor \frac{m^2}{s} \rfloor$

5.7.1 Tragflügel

Auftrieb:

$$F_A = c_A \frac{\rho v^2}{2} A_T$$

Induzierter Widerstand:

$$F_W = c_W \frac{\rho v^2}{2} A_T$$

$$F_R = F_{GH} = F_G \sin(\alpha)$$

$$F_A = F_{GN} = F_G \cos(\alpha)$$

$$\frac{c_W}{c_A} = \frac{H\ddot{o}henverlust}{MeterFlug}$$

 F_A Auftriebskaft [*N*]

 F_W Widerstands-[N]kraft

Auftriebskoef- [1] c_A fizient

Widerstands- [1] c_W koeffizient

Geschw. v

 $aus \left[\frac{m}{s}\right]$ A_T Fläche Anströmrichtung gesehen

Dichte Fluid ρ

Gleitwinkel [rad] α

6 Wärmelehre

6.1 Temperatur

Absolute Temperatur: $T = \frac{2}{3k}\bar{E}_{kin}$	T k	Temperatur Bolzmann-konst. $1.381E^{-23}$	$\begin{bmatrix} K \\ [\frac{J}{K}] \end{bmatrix}$
$\bar{E}_{kin} = \frac{1}{2}m\bar{v^2}$ Umrechnungen: $T(K) = T(C) + 273.15$ $T(F) = \frac{9}{5}T(C) + 32$ $T(C) = \frac{5}{9}(T(F) - 32)$	m E_{kin} v	Masse kinetische Energie der Gasatome Geschwindig- keit Kelvin Celcius Farenheit	$ \begin{bmatrix} kg \\ J \end{bmatrix} \\ \begin{bmatrix} \frac{m}{s} \end{bmatrix} \\ \begin{bmatrix} K \\ [^{\circ}C] \\ [F] \end{bmatrix} $

6.2 Ausdehnung von Materialien

6.3 Ideale Gase

			- N -
	$pV = konst.$ $\frac{V}{T} = konst.$	p	Druck $\left[\frac{N}{m^2}\right]$
p T	17	V	Volumen $[m^3]$
	$\frac{V}{-} = konst.$	T	Temperatur $[K]$
V	T	N	Anz. Molekü-
	nI/		le
	$\frac{pV}{T} = konst.$	l n	Anz. Mol
	T	m	Gasmasse $[kg]$
	nV - NkT		Molmasse $[kg]$
	$pV = NkT$ $N = nN_A$		Dialeta $\begin{bmatrix} kg \end{bmatrix}$
	N = nN	ρ	Dichte $\begin{bmatrix} \frac{kg}{m^3} \end{bmatrix}$ Anz. Atome $\frac{1}{mol}$
	$N = mN_A$	N_A	Anz. Atome $\frac{1}{mol}$
	D N 1.		pro 12g C
	$R = N_A k$		$= 6,022 \cdot 10^{23}$
	IDT	k	Bolzmann- $\left[\frac{J}{\kappa}\right]$
	pV = nRT		konst.=
	3.6		$1,381\cdot 10^{-23}$
	m = nM	R	Univers $\left[\frac{J}{mal V}\right]$
	m nM		Gaskonst. $[molK]$
	$\rho = \frac{m}{V} = \frac{pM}{RT}$		= 8,314
	V K1		- 0, J1 4

Volumen eines idealen Gases: $22.4 \cdot 10^{-3} \frac{m^3}{mol}$ bei

p = 10133Pa und T = 273.15 K

6.4 Gemische idealer Gase

6.5 Reale Gase

6.6 Wärme

¹Isochore Proszesse sind Zustandsänderungen bei konstantem Volumen

²Isobare Prozesse sind Zustandsänderungen bei konstantem Druck

6.6.1 Molare Wärme kristalliner Festkörper

 $\begin{array}{c} \text{falls } T > \Theta_D: \\ C_{mv} = 3R \\ \text{falls } T << \Theta_D: \\ C_{mv} = \frac{12\pi^4}{5} R \left(\frac{T}{\Theta_D}\right)^3 \end{array} \qquad \begin{array}{c} C_{mv} \quad C_m \text{, isochor} \quad \left[\frac{J}{molK}\right] \\ C_{mv} \quad C_m \text{, isochor} \quad \left[\frac{J}{molK}\right] \\ C_m \quad Debye\text{-Temp.} \quad \left[K\right] \\ R \quad Univers.- \quad \left[\frac{J}{molK}\right] \\ Gaskonst. \end{array}$

6.6.2 Austausch von Wärmemengen

6.7 Phasen und Phasenübergänge

6.7.1 Schmelz- und Verdampfungsenergien

Substanz	$T_{schmelz}[K]$	$Q_s[\frac{kJ}{kg}]$	$T_{verdampf}[K]$	$Q_v[\frac{kJ}{kg}]$
Blei	600	24,7	2023	858
Brom	266	67,4	332	369
Ethanol	159	109	351	879
Gold	1336	62,8	3081	1701
Helium	_	_	4,2	21
Kohlendioxid	_	_	194.6	573
Kupfer	1356	205	2839	4726
Quecksilber	234	11,3	630	296
Sauerstoff	54,4	13,8	90,2	213
Schwefel	388	38,5	717,75	287
Silber	1234	105	2436	2323
Stickstoff	63	25,7	77,35	199
Wasser	273,15	333,5	373,15	2257
Zink	692	102	1184	1768

6.8 Luftfeuchtigkeit

$_{\star}$ m_{W}	C	T((C1-1)
$f = \frac{m_W}{V}$	Ĵ	Luftfeuchtig- $\left[\frac{kg}{m^3}\right]$ keit absolut
$f = m_W - p_D (1009/)$	f_r	Luftfeuchtig- [1]
$f_r=rac{m_W}{m_s}=rac{p_D}{p_s}(\cdot 100\%)$		keit relativ
7.50	m_W	Wasser- $[kg]$
$p_s = p_{s0} 10^{rac{7.5 artheta}{artheta + 237}}$, $artheta \geq 0^\circ C$	444	dampfmasse
$p_s=p_{s0}10^{rac{9.5artheta}{artheta+265.5}}$, $artheta\leq 0^\circ C$	m_s	Dampf- $\left[\frac{kg}{m^3}\right]$ masse im
$p_s = p_{s0} 10^{\vartheta+265,5}$, $\vartheta \leq 0^{\circ} C$		Sättigungszu-
$p_D = p_s(artheta_d)$		stand
	V	Volumen $[m^3]$
$\vartheta = rac{237 \log rac{p_s}{6,107}}{7,5 - \log rac{p_s}{6,107}}, p_s \ge 610,7Pa$	p_D	Partialdruck [Pa]
$0 = 7.5 - \log \frac{p_s}{6.107}, p_s \ge 0.10, 71.0$		Wasserdampf
265 51 %	p_s	Sättigungs- [<i>Pa</i>] druck Was-
$\vartheta = \frac{265,5\log\frac{p_s}{6,107}}{9,5-\log\frac{p_s}{6,107}}, p_s \le 610,7Pa$		serdampf
$9, 5 - \log \frac{P^s}{6,107}$	ϑ	Temperatur $[{}^{\circ}C]$
	p_{s0}	$61070 \qquad \qquad [Pa]$

6.9 Kinetische Gastheorie

Molekül

Einatomige Moleküle haben keine Rotationsenergie, deshalb ist in diesem Fall: $E_{kin} = E_{trans}$

Translationsenergie:

$$\bar{E}_{kin} = N \frac{m\bar{v}^2}{2} = \frac{3}{2}NkT = \frac{3}{2}nRT$$

$$U = N_A \bar{E} = N_A \frac{f}{2} kT = \frac{f}{2} RT$$

$$U = E_{kin} + E_{pot}$$

$$pV = \frac{2}{3}N_A \frac{mv^2}{2}$$

Mittlere Energie pro Molekül:

$$\bar{E} = \frac{f}{2}kT$$

$$\bar{E}_{kin} pprox T_{abs}$$

$$C_{mv} = \frac{f}{2}R$$

f=3 bei einatomigen Molekülen f=5 bei zweiatomigen Molekülen f=6 bei mehratomigen Molekülen Volumen eines idealen Gases: $22.4\cdot 10^{-3}\frac{m^3}{mol}$ bei p=10133Pa und T = 273.15 K

1)	Druck	[Pa]
Í	o V	Volumen	$[m^3]$
	N	Anz. Molekü-	[1]
		le	LJ
1	1	Anz. Mol	[1]
7	,	Molekül	$\left[\frac{m}{s}\right]$
		Geschwindig-	- 3 -
		keit	
1	Ξ_{kin}	Kinetische	[J]
		Energie der	[,]
		Moleküle	
1	Ξ_{pot}	Potentielle	[J]
	7	Energie	[7]
l	J	Innere Ener-	[J]
		gie	2, 3
-	T_{abs}	Temperatur	[K]
		absolut	
-	Γ	Temperatur	[K]
j	f	Freiheitsgrad	[1]
1	n	Masse	[kg]
(c_{mv}	Molare Wär-	$\left[\frac{J}{mol K}\right]$
		mekapazität	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1	N_A	Anz. Atome	$\frac{1}{mol}$
		pro 12g C	
		$=6,022\cdot 10^{23}$	
1	C	Bolzmann-	$\left[\frac{J}{K}\right]$
		konst. =	
		$1,381\cdot 10^{-23}$	
			T

R

Univers.-Gk.= 8.314

6.9.1 Mittlere freie Weglänge, Wärmeleitung, Diffusion und Viskosität

$$\bar{\lambda} = \frac{1}{\sqrt{2}n\pi d^2}$$

$$N=N_0e^{-x/\bar{\lambda}}$$

Wahrscheinlichkeit f(x)dx, dass ein Molekül einen freien Weg auf der Strecke dx hat:

$$f(x)dx = n\sigma e^{-x/\bar{\lambda}}dx$$

$$\sigma = \pi d^2$$

$$\lambda_Q = \frac{1}{6} n \bar{v} \bar{\lambda} f k$$

$$D = \frac{1}{3}\bar{v}\bar{\lambda}$$

$$\eta = \frac{1}{3}\bar{v}\bar{\lambda}\rho$$

- $\bar{\lambda}$ Mittlere freie [m] Weglänge
 - zwischen Molekülzusammenstoss
- n Anz. Molekü- [1] le (\neq Anz. Mole)
- *d* \emptyset Molekül [m]
- N Anz. Mole- [1] küle durch Schicht dx
- σ Querschnitt $[m^2]$
- $\bar{\lambda_Q}$ Wärmelei- $\left[\frac{W}{m^2K}\right]$ tungskoeff.
- v v Moleküle [m/s]
- f Freiheitsgrad [1]
- k Bolzmann- $\left[\frac{1}{K}\right]$ konst. =
- 1,381 · 10^{-23} D Diffusions-
- D Diffusions- $\left[\frac{m^2}{s}\right]$ konst.
- η Viskosität $\left[\frac{kg}{ms}\right]$
- ρ Dichte $\left[\frac{kg}{m^3}\right]$

6.9.2 Maxwellsche Geschwindigkeitsverteilung

Wahrscheinlichkeit, dass ein Molekül eine Geschwindigkeit zwischen v und v + dv aufweist:

$$f(v)dv = \sqrt{\frac{2m^3}{\pi k^3 T^3}} v^2 e^{-\frac{mv^2}{2kT}} dv$$

$$v_0 = \sqrt{\frac{2kT}{m}}$$

$$u = \sqrt{\frac{3kT}{m}} = \sqrt{\bar{v}^2}$$

$$\bar{v} = \sqrt{\frac{8kT}{\pi m}} = 2\sqrt{\frac{2RT}{\pi M}}$$

f(v) Dichtefunktion

m Molekülmasse [kg] v - Moleküle [m/s]

T freie Weglän- [m]

ge

k Bolzmann- $\left[\frac{I}{K}\right]$ konst. =

 $v_0 \quad v_0 \quad v_0$

scheinlichst u spez. \bar{v} $\left[\frac{m}{c}\right]$

6.10 Temperaturstrahlung, Strahlungsgesetze

$$\Omega = \frac{A}{R^2} \qquad \qquad I = \frac{\Phi}{\Omega}$$

$$E = \frac{\Phi}{A}$$

$$A_{\lambda} = rac{arPhi_{\lambda a}}{arPhi_{\lambda e}}$$

$$K = \int_{HR} L(\vartheta, \varphi) \cos(\vartheta) d\Omega$$

Diffuse Strahlung:

$$K = L \int_{HR} L \cos(\vartheta) d\Omega = L\pi$$

HR = Halbraum : z > 0

$$\frac{K_{\lambda}(\lambda,T)}{A_{\lambda}(\lambda,T)} = f(\lambda,T)$$

$$K_{\lambda} = \epsilon_{\lambda}(\lambda, T) K_{\lambda s}(\lambda, T)$$

$$\epsilon_{\lambda}(\lambda, T) \equiv A_{\lambda}(\lambda, T)$$

Körper schwarz: $K_s = \sigma T^4$

Körper grau: $K = \epsilon \sigma T^4$, $A = \epsilon$

$$P_e = \epsilon_{\lambda} \sigma A T^4$$

$$P_{eNetto} = \epsilon_{\lambda} \sigma A (T^4 - T_0^4)$$

$$K_{\nu s}(\nu,T)d\nu = \frac{2\pi h \nu^3}{c^2(e^{\frac{h\nu}{kT}}-1)}d\nu$$

$$K_{\lambda s}(\lambda, T)d\lambda = \frac{2\pi hc^2}{\lambda^5 (e^{\frac{hc}{\lambda kT}} - 1)}d\lambda$$

$$\lambda_{max}T = b$$

$$\nu = c/2$$

$$E_{Str} = \frac{1.05 \cdot 10^{-34} c_0}{\lambda}$$

$$\Omega$$
 Raumwinkel $[sr]$

A Fläche, Flä-
$$[m^2]$$
 chenaus-

schnitt

R Kugelradius [m]

I Strahlstärke [W]

 Φ Strahlungs- [W] strom

E Bestrahlungs- $\left[\frac{W}{m^2}\right]$ stärke

K Emmisionsver- $\left[\frac{W}{m^2}\right]$ mögen

L Strahldichte $\left[\frac{W}{m^2sr}\right]$

 A_{λ} Absorbations- [1] zahl (Schwarzer Körper $\Rightarrow A_{\lambda} = 1$)

 ϵ_{λ} Emissionsver- [1] hältn.

 λ Wellenlänge [m]

 ν Frequenz [Hz]

T Temp. Körper [K]

 T_0 Umgebungs- [K] temp.

 P_e Strahlungslei- [W] stung

 E_{Str} Strahlungs [J] Energie

k Bolzmann- $\begin{bmatrix} \frac{1}{K} \end{bmatrix}$ konst. = 1,381 · 10⁻²³

σ Bolzmann- $\left[\frac{W}{mK}\right]$ konst. = 5,671 · 10⁻⁸

h Planksche [Js] Konst. =

 $6,626 \cdot 10^{-34}$

b Konst. [mK]= 2,898 · 10⁻³

 c_0 Lichtgeschw. $\left[\frac{m}{s}\right]$ = 299'792'458 (Vakuum)

6.10.1 Strahlungsaustausch

6.11 Wärmetransport

Wärmeübergang	α
Wandflächen	
innen	8
aussen	20
Boden, Decke	
nach oben	8
nach unten	6

$$\frac{\partial T}{\partial t} = \frac{\lambda}{\rho c} \frac{\partial^2 T}{\partial x^2} = \frac{\lambda}{\rho c} \Delta T$$

$$I = \dot{Q} = \lambda A \frac{dT}{dx} = jA$$

$$\Delta T = IR$$

$$R = \frac{\Delta x}{\lambda A}$$

$$R = R_1 + R_2 + ... + R_n$$

Wandschicht:

$$j = -\lambda \frac{dT}{dx} = \lambda \frac{T_{wi} - T_{wa}}{d}$$

Übergangsschicht innen:

$$j = \alpha_i (T_i - T_{wi})$$

Übergangsschicht aussen:

$$j = \alpha_a (T_{wa} - T_a)$$

$$j = k(T_i - T_a)$$

$$j = k(T_i - T_a)$$

 $\dot{Q}_w = Aj = Ak\Delta T$

$$k = \frac{1}{\frac{1}{\alpha_i} + \sum_s \frac{d_s}{\lambda_s} + \frac{1}{\alpha_a}} = \frac{j}{\Delta T}$$

Für zylinderförmige Wand:

$$\dot{Q} = 2\pi r lj = 2\pi r_a lk_a \Delta T$$

$$k_a = \frac{1}{r_a} \frac{1}{\frac{1}{r_i \alpha_i} + \sum_s \frac{1}{\lambda_s} ln \frac{r_{sa}}{r_{si}} + \frac{1}{r_a \alpha_a}}$$

Wärmebedarf eines Gebäudes:

$$Q = (\sum_{w} A_{w} k_{w} + \rho c_{p} \dot{V}) G$$

$$G = \int_{Heizsaison} \Delta T dt$$

- Wärmestrom Ι
- Wärmewider-R stand
- Wärmestrom- $\left[\frac{W}{m^2}\right]$ j
- dichte λ Wärmelei-
- tungskoeff. T_L Luft-[K]
- **Temperatur** T_W Wand-[K]
- **Temperatur**
- $T_{i,a}$ Innen-/ [K]Aussen-**Temperatur**
- Zeit t
- Dichte ρ
- Wandduchm. |m|d Wärmeüber- α
- gang
- k-Wert, Wär- $\left[\frac{W}{m^2K}\right]$ k medurchgangszahl
- Q Wärmebedarf |J|
- $[m^2]$ Α Wandfläche
- Luftaustausch $\left[\frac{m^3}{2}\right]$ \dot{V}
- GHeiztage [Kd]
- Zylinderradius [*m*] r
- Zylinderlänge [m]

6.12 Zustandänderungen

6.12.1 Isobare Zustandsänderung

$$Q = nC_{mp}(T_2 - T_1)$$

$$W = p(V_2 - V_1) = nR(T_2 - T_1)$$

$$W = p_0 \int_{V_1}^{V_2} dV$$

 $egin{array}{lll} Q & \mbox{Wärme} & & [J] \\ p & \mbox{Druck} & & [Pa] \\ V & \mbox{Volumen} & & [m^3] \\ \end{array}$

 C_{mp} Molare Wär- $\left[\frac{J}{molK}\right]$ mekapazität

T Temperatur [K] n Anz. Mol Gas [1] W Arbeit [J]

R Univers.-Gaskonst.

 $\begin{bmatrix} J \\ mol K \end{bmatrix}$

6.12.2 Isochore Zustandsänderungen

Isochor: V = konstant

 $Q = nC_{mv}(T_2 - T_1)$

W = 0

Q Wärme [J] C_{mv} Molare Wär- $[\frac{J}{molK}]$ mekapazität T Temperatur [K]

n Anz. Mol Gas
W Arbeit

as [1] [J]

6.12.3 Isotherme Zustandsänderungen

Expansion:

$$Q_{ab} = nRT \ln \left(\frac{V_2}{V_1}\right) = W_{ab}$$

Kompression:

$$Q_{zu} = nRT \ln \left(\frac{V_1}{V_2}\right) = W_{zu}$$

$$\frac{V_1}{V_2} = \frac{p_2}{p_1}$$

$$\mid W_{zu}\mid = \mid Q_{ab}\mid$$

 $egin{array}{lll} Q & ext{Wärme} & & [J] \ V & ext{Volumen} & & [m^3] \end{array}$

T Temperatur [K] n Anz. Mol Gas [1]

n Anz. Mol Gas [1]
W Arbeit [J]

p Druck [Pa] R Univers.- $[\frac{J}{molK}]$ Gaskonst.

6.12.4 Adiabatische Zustandsänderungen

Adiabatisch:

Q = konst. (kein
Wärmeaustausch)

$$dU = \delta Q - \delta W$$

 $pV^{\kappa} = konst.$

$$\to p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\kappa}$$

 $TV^{\kappa-1} = konst.$

$$\to T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\kappa - 1}$$

 $T^{\kappa}p^{1-\kappa}$ und $Tp^{\frac{1}{\kappa}-1} = konst.$

$$\to T_2 = T_1 \left(\frac{p_1}{p_2}\right)^{\frac{1-\kappa}{\kappa}}$$

$$\kappa = \frac{C_{mp}}{C_{mp}}$$

$$\kappa = \frac{f+2}{f} \qquad C_{mv} = \frac{f}{2}R$$

$$W = nC_{mv}(T_1 - T_2)$$

$$\Delta W = \frac{p_2 V_2 - p_1 V_1}{\kappa - 1}$$

$$\Delta W = C_{mv}(p_1V_1 - p_2V_2)$$

U Innere Ener- [J]

gie

 $\begin{array}{ccc} p & \bar{\mathrm{Druck}} & [Pa] \\ V & \mathrm{Volumen} & [m^3] \end{array}$

V Volumen [m] κ Adiabatenex- [1]

ponent

 C_{mv} Molare Wär- $\left[\frac{J}{molK}\right]$ mekapazität isochor

 C_{mp} Molare Wär- $\left[\frac{J}{molK}\right]$ mekapazität

 $\begin{array}{ccc} & \text{isobar} \\ T & & \text{Temperatur} & [K] \end{array}$

f Freiheitsgrad [1]n Anz. Mol [1]

W Arbeit [J]

6.12.5 Expansion und Kompression

Expansion:

$$W = \int_{V_1}^{V_2} p dV = A_1$$

Kompression:

$$W = \int_{V_2}^{V_1} p dV = -A_2$$

W Arbeit [J] p Druck [Pa]V Volumen $[m^3]$

6.12.6 Enthalpie

6.13 Kreisprozesse

6.13.1 Carnotprozess

Beispiel Motor:

 $T_1 = T_{Zylinder}$ $T_2 = T_{Abgas}$ I: Isotherme Expansion:

$$W_{ab} = RT_1 \ln \frac{V_2}{V_1} = Q_{zu}$$

U = konst.

II: Adiabatische Expansion:

$$W_{ab} = C_{mv}(T_1 - T_2)$$

$$Q_{zu}=0$$

III: Isotherme Kompression:

$$W_{zu} = RT_2 \ln \frac{V_3}{V_4} = Q_{ab}$$

U = konst.

IV: Adiabatische Kompression:

$$W_{zu} = C_{mv}(T_1 - T_2)$$

$$Q_{zu}=0$$

$$\eta_C = \frac{T_1 - T_2}{T_1}$$

Carnot-Wärmepumpe:

$$\epsilon_C = rac{T_1}{T_1 - T_2}$$

Carnot-Kältemaschine:

$$\epsilon_{C} = rac{T_{2}}{T_{1} - T_{2}}$$

W Arbeit [J] Q Wärme [J] U Innere Ener- [J]gie V Volumen $[m^3]$ C_{mv} Molare Wär- $[\frac{J}{molK}]$ mekapazität

isochor R Univers.- $\left[\frac{J}{molK}\right]$ Gaskonst.

 η_{C} Cornot- [1] Wirkungsgrad (bei Wärmekraftmaschine)

 ϵ_C Carnot- [1] Leistungszahl (bei Wärmepunpe)

6.14 Entropie

Im abgeschlossenen System gilt:

- S kann niemals abnehmen.
- Bei allen Vorgängen nimmt
 S zu oder bleibt gleich.
- Der Zustand wo S maximal ist, ist der stabile Zustand.

$$S = S_0 + \int_0^P \frac{\delta Q_r}{T}$$

$$dS = \frac{\delta Q_r}{T}$$

$$\Delta S = S_2 - S_1 = \int_1^2 \frac{\delta Q_r}{T}$$

$$S = k \cdot \ln(W)$$

T Temperatur K Wahrschein- K lichkeit

7 Schwingungen

7.1 Freie Schwingungen

7.1.1 Ungedämpfte, harmonische Schwingung

Zeigerbild:

Phasenkurve:

Funktion:

$$y = A\sin(\omega t + \varphi)$$

$$T = \frac{2\pi}{\omega}$$

$$f = \frac{1}{T}$$

$$\omega = 2\pi f$$

$$\ddot{y} + \omega^2 y = 0$$

Bei einer harmonischen Schwingung ist die Beschleunigung proportional zur Auslenkung:

$$a(t) = \ddot{y} = -A\omega_0^2 \sin(\omega_0 t)$$

$$v(t) = \dot{y} = A\omega_0 \cos(\omega_0 t)$$

Energie bleibt konstant:

$$E_{ges} = \frac{1}{2}cA^2 = E_{pot} + E_{kin}$$

$$E_{pot} = \frac{1}{2}cA^2\cos^2(\omega t + \varphi)$$

$$E_{kin} = \frac{1}{2}cA^2\sin^2(\omega t + \varphi)$$

y	schwingende	$[m]^{1}$

	Grösse	
4	Amplitude	[1]

$$\omega$$
 Kreisfrequenz $\left[\frac{1}{s}\right]$ φ Nullphasen- $[rad]$

$$\begin{array}{cc} & \text{winkel} \\ t & \text{Zeit} & [s] \end{array}$$

$$T$$
 Periode $\begin{bmatrix} s \end{bmatrix}$ f Frequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$

a Beschleuni-
$$\begin{bmatrix} \frac{m}{s^2} \end{bmatrix}$$
 gung

$$v$$
 Geschw. $\left[\frac{m}{s}\right]$

$$E$$
 Energie $\begin{bmatrix} J \end{bmatrix}$

Konstante $\left[\frac{N}{m}\right]$

 $^{^{1}}$ m gilt nur bei mechanischen Schwingungen

7.1.2 Ungedämpfte, periodische Schwingung

7.1.3 Ungedämpfte, nicht periodische Schwingung

Fourierreihe: $y = \int_{\infty}^{\infty} A(\omega) e^{j\omega t} d\omega$	y A w t	schwingende $[m]$ Grösse Amplitude $[1]$ Kreisfrequenz $[\frac{1}{s}]$ Zeit $[s]$	
--	---------	---	--

7.1.4 Federpendel

	Federmasse vernachlässigt:	y	schwingende Grösse	[<i>m</i>]
	$m\ddot{y} + cy = 0$	A	Amplitude	[1]
0 y	$y = A\sin(\omega_0 t + \varphi)$	w	Kreisfrequenz	$\left[\frac{1}{s}\right]$
		φ	Nullphasen- winkel	[rad]
	$\omega_0 = \sqrt{\frac{c}{m}}$	t	Zeit	[s]
	γ πι	T	Periode	[s]
	$T=2\pi\sqrt{rac{m}{c}}$	f	Frequenz	$\left[\frac{1}{s}\right]$
	$I \equiv 2\pi \sqrt{\frac{c}{c}}$	m	· ·	[kg]
	$a(t) = -\left(\frac{c}{m}\right)y(t)$	m_F	se Masse der Fe- der	[<i>kg</i>]
	Energiesatz:	С	Federkon- stante (siehe	$\left[\frac{N}{m}\right]$
	$\frac{1}{2}cA^{2} = \frac{1}{2}cy^{2}(t) + \frac{1}{2}mv^{2}(t)$	а	S. 14) Beschleuni- gung	$\left[\frac{m}{s^2}\right]$
c ₁ c ₂	Mit Federmasse:			
	$T=2\pi\sqrt{rac{m+rac{m_F}{3}}{c}}$			

7.1.5 Drehpendel

7.1.6 Mathematisches Pendel

7.1.7 Physikalisches Pendel

7.1.8 Gedämpfte Schwingung mit konstanter Reibung

$$\Delta A = 4\frac{F_R}{c}$$

$$m\ddot{y} + cy + F_R = 0$$

 ΔA Δ Amplitude [m]

pro Periode

 F_R Reibkraft [c Federkon-

stante

7.1.9 Schwingung mit geschwindigkeitsproportionaler Dämpfung (D < 1)

$$m\ddot{y} + b\dot{y} + cy = 0$$

$$y = Ae^{-\delta t}\sin(\omega_d t + \phi_0)$$

$$\delta = \frac{b}{2m} \qquad F_R = -b\dot{y}$$

$$\omega_d = \sqrt{\omega_0^2 - \delta^2}$$

$$\omega_0 = \sqrt{\frac{c}{m}}$$

$$D = \frac{\delta}{\omega_0}$$

$$D = \frac{\frac{\Lambda}{2\pi}}{\sqrt{1 + \left(\frac{\Lambda}{2\pi}\right)^2}}$$

$$\omega_d = \omega_0 \sqrt{1 - D^2}$$

$$\Lambda = \frac{2\pi D}{\sqrt{1 - D^2}}$$

$$\Lambda = \delta T$$

$$\Lambda = \ln \frac{A_n}{A_{n+1}}$$
 $\frac{A_n}{A_{n+1}} = e^{\delta T}$

$$\frac{E_1}{E_2} = \frac{A_1^2}{A_2^2}$$

Grösse

 ω Kreisfrequenz $\left[\frac{1}{s}\right]$

 φ Winkel [rad]

T Periode [s] δ Abkling- [1]

5 Abkling- [1] konst.

b Dämpfungs- $\left[\frac{kg}{s}\right]$ konst.

m Masse [kg]

c Federkonst. $\left[\frac{N}{m}\right]$ D Dämpfungs- $\left[1\right]$

D Dämpfungs- [1]

 Λ log. Dekre- [1] ment

A Amplitude [1]

E Energie [J]

7.1.10 Aperiodeische Lösung (D > 1)

$$y = b_1 e^{\lambda_1 t} + b_2 e^{\lambda_2 t}$$

$$\lambda_1 = -\omega_0(D + \sqrt{D^2 - 1})$$

$$\lambda_2 = -\omega_0(D - \sqrt{D^2 - 1})$$

Grenzfall D = 1

$$\frac{c}{m} = \frac{b^2}{4m^2}$$

$$y = (b_1 + b_2 t)e^{-\delta t}$$

schwingende [m] y

Grösse

 ω

Kreisfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ Abkling- $\begin{bmatrix} 1 \end{bmatrix}$ δ

konst.

b Dämpfungs-

konst.

Dämpfungs-[1] D

grad

Masse [kg]m

Federkonstante $\left[\frac{N}{m}\right]$ С

7.1.11 Elektrischer Schwingkreis

$$I = I_0 e^{-\delta t} \sin(\omega_d t + \phi_0)$$

$$\delta = \frac{R}{2L}$$

$$\omega_d = \omega_0 \sqrt{1 - D^2}$$

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

$$D = \frac{R}{2} \sqrt{\frac{C}{L}}$$

$$\omega_d = rac{1}{\sqrt{LC}}\sqrt{1-rac{R^2C}{4L}}$$

Ι Strom [A]

R Widerstand $[\Omega]$ [H]L Induktivität

Kreisfrequenz $\left[\frac{1}{s}\right]$ ω

δ Abkling-[1] konst.

Zeit t [s]

Dämpfungs-[1] D grad

8 Wellenlehre

8.1 Wellengeschwindigkeiten

Elastische Longitudi-	E	и	Wellengeschw. $\left[\frac{m}{s}\right]$
nalwellen	$u_L = \sqrt{\frac{E}{ ho}}$	A	Fläche $[m^2]$
	V P	E	Elastizitäts- $\left[\frac{N}{m^2}\right]$
			modul
Elastische Transver-	\overline{C}	F	Spannkraft $[N]$
salwellen	$u_T = \sqrt{\frac{G}{\rho}}$	G	Schubmodul $\left[\frac{N}{m^2}\right]$
	$\bigvee \rho$	h	Wassertiefe $[m]$
		M	Molmasse $\left[\frac{kg}{mol}\right]$
Transversalwellen auf		p	Druck $[Pa]$
einem Seil oder einer	$u_T = \sqrt{\frac{F}{\rho A}}$	T	abs. Temp. $[K]$
Saite	$V \rho A$	κ	Kompressibi- $\left[\frac{m^2}{N}\right]$
			lität
Schwerewellen in tie-		20	Adiabatenex- [1]
fem Wasser	$u_S = \sqrt{\frac{g\lambda}{2\pi}}$		ponent
Terri Viasser	$\sqrt{2\pi}$	λ	Wellenlänge [<i>m</i>]
		ρ	
Schwerewellen in fla-	$u_S = \sqrt{gh}$	σ	Dichte $\left[\frac{kg}{m^3}\right]$ Oberflächen- $\left[\frac{N}{m}\right]$
chem Wasser	, v		spannung
17 11 11		σ	Erdbeschl. = $\left[\frac{m}{s^2}\right]$
Kapillarwellen	$u_K = \sqrt{rac{2\pi\sigma}{ ho\lambda}}$	8	9.81
	$u_K = \sqrt{\frac{\rho\lambda}{\rho\lambda}}$	R	T
	,	I A	univers. $\left[\frac{1}{Kmol}\right]$ Gas-Konst.
			= 8.3145
Schallwellen in Flui-	/ 1		= 0.3143
den	$u = \sqrt{\frac{1}{\rho\kappa}}$		
	V P.		
Schallwellen in Gasen	$u_{\rm G} = \sqrt{\frac{\varkappa p}{\rho}}$		
	$\bigvee \rho$		
	$u_G = \sqrt{\frac{\varkappa RT}{M}}$		
	V M		

8.1.1 Zusammenhänge der verschiedenen Wellen

Gilt nur bei einem Stab

$$u_T = \sqrt{rac{1}{2(1+\mu)}} u_L$$

Wellengeschw. $\left[\frac{m}{s}\right]$ и longitudi- $\left[\frac{m}{c^2}\right]$ u_T

nal

u transversal u_L

μ Poissonzahl

8.2 Wellengleichung

Bei Wellengleichungen (lineare Dgl) gilt das Superpositionsprinzip, d.h. die Summe zweier Lösungen ist wieder eine Lösung.

Eindimensional:

$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

Zweidimensional:

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

Dreidimesnional:

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} + \frac{\partial^2 \xi}{\partial z^2} = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

$$oder: \Delta \xi = \frac{1}{u^2} \frac{\partial^2 \xi}{\partial t^2}$$

wobei :
$$\Delta \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Wellengeschw. $\left[\frac{m}{s}\right]$

Störung ξ

Zeit t

Δ Laplace-OP

8.3 Intensität

$I = \frac{1}{2}\rho u\omega^2 \xi_0^2$	u We ξ Stö ρ Dic	ensität $\left[\frac{W}{m^2}\right]$ llengeschw. $\left[\frac{m}{s}\right]$ rung $\left[\ldots\right]$ chte $\left[\frac{kg}{m^3}\right]$ nkelgeschw. $\left[\frac{1}{s}\right]$
---	------------------------	--

8.4 Harmonische Wellen

$$\xi = f(x - ut) \rightarrow$$
Ausbreitungpos. $x - Koord$.
 $\xi = f(x + ut) \rightarrow$
Ausbreitungneg. $x - Koord$.
Bei EM - Wellen:
 $u = c = 299'792'458\frac{m}{s}$

$$\omega = 2\pi f = \frac{2\pi}{T} = ku$$

$$k = \frac{\omega}{u} = \frac{2\pi}{\lambda}$$

$$\xi(x,t) = \xi_0 \sin(kx - \omega t + \varphi)$$

$$\xi(x,t) = \xi_0 \sin(\omega t - kx)$$

$$T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{u}{\lambda}$$

$$\lambda = \frac{2\pi}{k} = \frac{u}{f}$$

$$u = \frac{\omega}{k} = \lambda f$$

- Wellengeschw. $\left[\frac{m}{s}\right]$ и Störung ξ
- t Zeit Kreisfrequenz w
- $\left[\frac{1}{s}\right]$ $\left[s\right]$ TPeriode
- λ Wellenlänge [m]
- Phase [rad] φ $\left[\frac{1}{m}\right]$ k Wellenzahl
- Frequenz [Hz]

8.5 Räumliche Ausbreitung von Wellen

Ebene Welle:

$$\xi(x,y,z,t) = \xi_0 e^{i(\omega t - \vec{k}\vec{r})}$$

$$\vec{k}\vec{r} = konst.$$

Kugel Welle:

$$\xi(r,t) = \frac{A}{r}e^{i(\omega t - kr)}$$

- ξ Störung $[\dots]$
- Zeit t Kreisfrequenz ω
- Wellenzahl k
- Radius r [m]A

8.6 Doppler-Effekt

8.6.1 Akustischer Doppler-Effekt

ruhende und bewegte Punktquelle

bewegte Punktquelle

bewegter Beobachter und bewegte Punktquelle bewegte Quelle, ruhender Beobachter:

$$f'=rac{1}{1\mprac{v_{\mathbb{Q}}}{u}}f$$
 — auf Hörer zu

$$f' = \frac{1}{1 - \frac{v_Q}{u} \cos(\theta_Q)} f$$

ruhende Quelle, bewegter Beobachter:

$$f' = (1 \pm rac{v_B}{u})f$$
 + auf Quelle zu

$$f' = (1 + \frac{v_B}{u}\cos(\theta_B)f$$

Allgemein:

$$f_B = \frac{u + v_B \cos(\theta_B)}{u - v_Q \cos(\theta_Q)} f_Q$$

u Wellengeschw. $\left[\frac{m}{s}\right]$ *f* Frequenz [Hz]

f' gehörte Fre- [Hz]

 v_Q Geschw.

Quelle v_B Geschw. $\left[\frac{m}{a}\right]$

 v_B Geschw. $\left\lfloor \frac{m}{s} \right\rfloor$

 ϑ Winkel [rad]

8.6.2 Optischer Doppler-Effekt

bewegter Beobachter und bewegte Punktquelle

$$f' = \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos(\vartheta)} f$$

$$\beta = \frac{v}{c}$$

falls $f \gg c$:

$$\frac{f - f'}{f} = \frac{\Delta f}{f} = \frac{v}{c}$$

falls $\theta = 0^{\circ}$ oder $\theta = 180^{\circ}$:

$$\frac{\Delta\lambda}{\lambda} = -\frac{v}{c}$$

f Frequenz [Hz] f' gesehene Fre- [Hz] quenz

v Geschw. $\left[\frac{m}{s}\right]$ relativ Beobachter

Quelle ϑ Winkel [1

 ϑ Winkel [rad] c Lichtge- $\left[\frac{m}{s}\right]$ schwindigkeit = 299'792'458

8.6.3 Machscher Kegel

Falls v>u entsteht ein Machscher Kegel

$$\sin(\vartheta) = \frac{u}{v}$$

$$M = \frac{v}{u}$$

- *u* Wellengeschw. $\left[\frac{m}{s}\right]$
- v Geschw. Flug- $\left[\frac{m}{s}\right]$ zeug
- ϑ Winkel des [rad] Kegels
- M Machzahl [1]

8.7 Überlagerung von Wellen gleicher Frequenz

l = nr

In 1s geht Energie S durch $1m^2$:

$$S = \frac{\delta \xi^2 \omega^2}{2} u$$

Prinzip von Huygens:

Jedes Flächenelement auf einer Welle kann als Zentrum einer Kugelwelle betrachtet weden. Die Wellenfläche zu einem späteren Zeitpunkt ist die Einhüllende all dieser Elementarwellen.

Bei der Reflexion an einem optisch dichteren Medium findet ein Phasensprung von π statt.

Beispiel: Falls Medium 1 dichter Me-

sprung in P und Q.

$$\Rightarrow +\frac{\lambda}{2}$$

 \rightarrow Auslöschung bei $m\frac{\lambda}{2}$, $m=\{1,3,5,...\}$

dium 2 dichter Medium 3: Phasen-

- *u* Wellengeschw. $\left[\frac{m}{s}\right]$ *l* Optische [m]
 - Optische Weglänge
- n Brechungsin- [1] dex
- *S* Energie $\left[\frac{J}{m^2s}\right]$ Störung $\left[\dots\right]$
- ω Kreisfrequenz $\left[\frac{1}{s}\right]$

8.8 Optische Länge

Durchqueren Wellen Me-	$s \rightarrow ns$	n	Brech-Index	[1]
dien muss mit optischen Längen gerechnet werden	$\lambda o rac{\lambda}{n}$	$\begin{array}{c c} s \\ \lambda \end{array}$	Strecke Wellenlänge	[m] [m]

8.9 Stehende Wellen

Einfallende Welle wird von Grenzfläche reflektiert 1. Fall: Phasensprung π bei Reflexion

$$\xi_0 \sin(k_x - \omega t) + \xi_0 \sin(k_x + \omega t) =$$

 $2\xi \sin(k_x)\cos(\omega t)$

Knoten bei $k_x = 0$, π , 2π ... Bäuche bei: $k_x = \frac{1}{2}\pi$, $\frac{3}{2}\pi$...

2. Fall: Kein Phasensprung

$$\xi_0 \sin(k_x - \omega t) - \xi_0 \sin(k_x + \omega t) =$$

 $-2\xi\cos(k_x)\sin(\omega t)$

Knoten bei $k_x = \frac{1}{2}\pi, \frac{3}{2}\pi$... Bäuche bei: $k_x = 0, \pi, 2\pi$... ξ Störung [...] ω Kreisfrequenz $\left[\frac{1}{s}\right]$ t Zeit $\left[s\right]$ k Wellenzahl $\left[\frac{1}{m}\right]$

8.10 Eigenschwingungen

8.10.1 Saite

 $---\lambda=1$

Die Saite ist zweiseitig fixiert

$$\lambda_n = \frac{2l}{n}$$

$$f_n = \frac{u}{\lambda_n} = \frac{u}{2l}n = nf_1$$

$$f_1 = \frac{1}{2l} \sqrt{\frac{F}{\rho A}}$$

$$u = \sqrt{\frac{F}{\rho A}}$$

$$F = \frac{4l^2}{n^2} \rho A f^2$$

Bei Temperatur Änderung:

$$\Delta f = \left(\frac{E_{Sa}(\alpha_{Trag} - \alpha_{Sa})}{8\rho_{Sa}l^2f^2} - \alpha_{Trag}\right)\Delta T f$$

u Wellengeschw.
$$\left[\frac{m}{s}\right]$$

$$A$$
 Fläche $\begin{bmatrix} m^2 \end{bmatrix}$ F Spannkraft $[N]$

$$\lambda$$
 Wellenlänge $[m]$

$$\rho$$
 Dichte Saite $\left[\frac{kg}{m^3}\right]$

$$\xi$$
 Störung [...] ω Kreisfrequenz $\left[\frac{1}{\varepsilon}\right]$

$$f$$
 Frequenz $\begin{bmatrix} Hz \end{bmatrix}$

$$f_1$$
 Grundfrequenz[Hz]

$$l$$
 Saitenlänge $[m]$ n n-te Harmo- $[1]$

$$\alpha$$
 Längenausd. $\left[\frac{1}{K}\right]$ koef.

$$ho$$
 Dichte $\left[\frac{kg}{m^3}\right]$ E Elastizitäts- $\left[\frac{N}{m^2}\right]$ modul

8.10.2 Pfeife

offene Pfeife:

$$f_1 = \frac{1}{2l} \sqrt{\frac{\varkappa RT}{M}} = \frac{u}{2l}$$

$$f_n = nf_1$$

$$\lambda_n = \frac{4l}{n} \quad n = 1, 3, 5, \dots$$

gedackte Pfeife:

$$f_1 = \frac{1}{4l} \sqrt{\frac{\varkappa RT}{M}} = \frac{u}{4l}$$

$$f_n = nf_1$$

$$\lambda_n = \frac{4l}{n} \quad n = 2, 4, 6, \dots$$

f Frequenz [Hz]

 f_1 Grundfrequenz[Hz] M Molmasse $\left[\frac{kg}{mol}\right]$ T abs. Temp. $\left[K\right]$

 κ Adiabatenex- [1]

ponent R univers. $\left[\frac{J}{Kmol}\right]$

Gas-Konst. = 8.3145

l Saitenlänge [*m*]

 λ Wellenlänge [m]

8.10.3 Rechteckige Membrane

$$f(x,y) = \xi_0 \sin(k_x x + \varphi_x) \sin(k_y y + \varphi_y)$$

$$k_x a = m\pi$$
 $k_y b = n\pi$

$$f_{mn} = rac{1}{2} \sqrt{rac{F}{\mu}} \sqrt{rac{m^2}{a^2} + rac{n^2}{b^2}}$$

$$f_{mn}$$
 Eigenfrequenz $[Hz]$ F Spannkraft $[N]$

$$\mu$$
 Masse pro $\left[\frac{kg}{m^2}\right]$

Fläche
$$\xi$$
 Störung [...]

$$x, y$$
 Richtung x, y [...

a Länge
$$[m]$$

b Breite
$$[m]$$

$$m, n$$
 Anz. Ober- [1]

wellen

8.11 Beugung

8.11.1 Beugung am Spalt

$$\xi = \frac{A}{r}A_s\cos(\omega t - kr_s)$$

$$A_s = rac{\sin\left(rac{ks\sin(arphi)}{2}
ight)}{rac{ks\sin(arphi)}{2}}$$

$$I_s \sim \xi^2$$

Nullstelle n-ter Ordnung:

$$\sin(\varphi_n) = n\frac{\lambda}{s}$$

A	Amplitude	[]

$$A_s$$
 Formfaktor [1] s Spaltbreite $[m]$

$$r$$
 Abstand $[m]$

$$\xi$$
 Störung [...]

$$k$$
 Wellenzahl $\left[\frac{1}{m}\right]$

$$\varphi$$
 Betrachtungs- [rad] winkel

$$I_s$$
 Intensität $\left[\frac{W}{m^2}\right]$

$$\lambda$$
 Wellenlänge $[m]$

$$n$$
 Ordnung $[1]$

8.11.2 Beugung an Kreisförmiger Öffnung

$$\sin(\varphi_1) = 1.22 \frac{\lambda}{D}$$
$$a = 1.22 f \frac{\lambda}{D}$$

$$a = 1.22 f \frac{\lambda}{D}$$

$$\varphi$$
 Betrachtungs- [rad] winkel

$$\lambda$$
 Wellenlänge $[m]$

[m]

8.11.3 Beugung am Gitter

$$I_g \sim \frac{A^2}{r^2} A_s^2 B^2$$

$$B = \frac{\sin\left(\frac{kd\sin(\varphi)}{2}Z\right)}{\sin\left(\frac{kd\sin(\varphi)}{2}\right)}$$

Hauptmaximum n-ter Ordnung:

$$\sin(\varphi_n) = n\frac{\lambda}{d}$$
$$\frac{\lambda}{\Delta\lambda} = nZ$$

$$\frac{\lambda}{\Delta\lambda} = nZ$$

Amplitude [...] \boldsymbol{A}

 A_s Formfaktor [1] Spaltbreite [m]S

Abstand [m]r

Zeit [s]t ξ Störung $[\dots]$

Gitterkonst. d [m]

Betrachtungsφ [rad]

winkel

 I_s Intensität

 $\begin{bmatrix} \frac{W}{m^2} \\ m \end{bmatrix}$ Wellenlänge λ

Zahl Gitter- [1] Z öffnungen

Teil II Elektrizitätslehre

9 Grundlagen

9.1 Grundgrössen

Ladung Q	$\Delta Q = I(t) \cdot \Delta t = \int I(t)$	Q	Ladung	[<i>C</i>], [<i>As</i>]
	$\Delta Q = \frac{\Delta W(t)}{\Delta U(t)}$	I J E v	Strom Stromdichte el. Feldstärke DriftGe- schwindig-	$\begin{bmatrix} A \\ A \end{bmatrix}$ $\begin{bmatrix} \frac{A}{m^2} \\ \frac{V}{m} \end{bmatrix}$ $\begin{bmatrix} \frac{m}{s} \end{bmatrix}$
Strom I	$I = \frac{\Delta Q}{\Delta t}$ $I = \frac{U}{R} = \frac{P}{U}$	U W P R	keit Spannung Arbeit Leistung Widerstand	$egin{array}{c} [V] \ [Ws], \ [J] \ [W] \ [\Omega] \ [\Omega] \end{array}$
Driftgeschwindigkeit v	$v = \frac{I}{neA}$	ρ G κ t	Spez. Widerstand Leitwert spez. Leitwert Zeit	[S]
Spannung U	$U = RI$ $U(t) = \frac{\Delta W(t)}{\Delta Q}$ $U = \frac{P}{I} = \sqrt{PR}$ $\Delta U = E\Delta x$	A F m 8 l \alpha \theta	Fläche Kraft Masse Erdberschleunigung Länge Temp. Koeff. Temperatur Elekronendichte	$\begin{bmatrix} m^2 \\ N \end{bmatrix}$ $\begin{bmatrix} N \\ kg \end{bmatrix}$ $\begin{bmatrix} \frac{m}{s^2} \end{bmatrix}$ $\begin{bmatrix} m \\ \frac{1}{\circ C} \end{bmatrix}$ $\begin{bmatrix} \circ C \\ \frac{1}{m^3} \end{bmatrix}$
Energie W	W = Fh = mgh $\Delta W(t) = U(t)I(t)\Delta t$	е	Elementarla- dung 1.602 · 10 ¹⁹ C	[C]

		<u> </u>		
Leistung <i>P</i>	$P(t) = \frac{\Delta W(t)}{\Delta t}$	Q	Ladung	[<i>C</i>], [<i>As</i>]
	P(t) = U(t)I(t)	I	Strom	[A]
	$\Gamma(l) = G(l)I(l)$	J	Stromdichte	$\begin{bmatrix} \frac{A}{m^2} \\ \frac{V}{m} \end{bmatrix} \begin{bmatrix} \frac{w}{m} \end{bmatrix}$
	$1I^2(t)$	E	el. Feldstärke	$\left\lfloor \frac{v}{m} \right\rfloor$
	$P(t) = I^2(t)R = \frac{U^2(t)}{R}$	v	DriftGe-	$\left\lfloor \frac{m}{s} \right\rfloor$
	K		schwindig-	
			keit	
		U	Spannung	[V]
Widerstand R	$R = \frac{U}{R} = \frac{U^2}{P} = \frac{P}{I^2}$	W	Arbeit	[Ws],
	$K \equiv \frac{1}{R} \equiv \frac{1}{P} \equiv \frac{1}{I^2}$			[J]
		P	Leistung	[W]
	$R = \frac{\rho l}{A} = \frac{l}{\kappa A}$	R	Widerstand	$[\Omega]$
	$A = A = \kappa A$	ρ	Spez. Wider-	
			stand	
		G	Leitwert	[S]
Spez. Widerstand ρ	1	K		
'	$\rho = \frac{1}{\kappa A}$	t	spez. Leitwert Zeit	[t]
		A	Fläche	$[m^2]$
	$ ho = ho_{20}(1+lpha_{20}) \Delta artheta$	F	Kraft	[N]
		m	Masse	[kg]
		g	Erdberschleu-	
Leitwert G	κ <i>A</i> 1	8	nigung	$\lfloor s^2 \rfloor$
Leitweit	$G = \frac{\kappa A}{l} = \frac{1}{R}$	1	Länge	[m]
	l K	α	Temp. Koeff.	$\begin{bmatrix} \frac{1}{\circ C} \end{bmatrix}$
		ϑ	Temperatur	$[{}^{\circ}C]$
		$\frac{1}{n}$	Elekronen-	$\left[\frac{1}{m^3}\right]$
Spez. Leitwert κ	$\kappa = \frac{1}{\rho}$	11	dichte	$\lfloor \overline{m^3} \rfloor$
	$\kappa = \rho$	e	Elementarla-	[<i>C</i>]
		E		
		=	dung 1.602 · 10 ¹⁹ C	
Stromdichte <i>J</i>	$J(t) = \frac{I(t)}{A} = \frac{\Delta I(x, y)}{\Delta A}$ $\vec{J} = \kappa \vec{E}$		1.002 · 10 C	
Stromaterite)	$J(t) = \frac{I(t)}{\Lambda} = \frac{\Delta I(x, y)}{\Lambda \Lambda}$			
	$A \qquad \Delta A$			
	$\vec{l} = \kappa \vec{E}$			
	,			
E-14-(2.4 F	All			
Feldstärke <i>E</i>	$E(x) = \frac{\Delta u}{\Delta}$			
	Δx			
	_ F			
	$E = \overline{O}$			
	~			
	$E(x) = \frac{\Delta U}{\Delta x}$ $E = \frac{F}{Q}$ $\vec{E} = \rho \vec{J}$			

9.2 Netzwerke bei Gleichstrom

9.2.1 Kirchoffsche Gesetzte

Stromgesetz

Spannungsgesetz

9.3 Reale Quellen

9.3.1 Reale Spannungsquelle

9.3.2 Reale Stromquelle

9.4 Netzwerkanalyse

9.4.1 Netzwerkumwandlung

Widerstandsschaltungen

Mehrere Quellen

Quellenumwandlung

U-Quelle \rightarrow I-Quelle:

$$R_i = R_i$$
 $I_C = \frac{U_0}{R_i}$

 $I\text{-}Quelle \rightarrow U\text{-}Quelle:$

$$R_i = R_i$$
 $U_0 = I_C R_i$

[V]U Spannung Ι Strom [I]Widerstand R $[\Omega]$

Stern - Dreieck Umwandlung

Dreieck \rightarrow Stern:

$$R_a = \frac{R_1 R_2}{R_0}$$

$$R_b = \frac{R_2 R_3}{R_0}$$

$$R_c = \frac{R_1 R_3}{R_0}$$

$$R_0 = R_1 + R_2 + R_3$$

Stern \rightarrow Dreieck:

$$R_1 = R_a R_b B_0 \qquad G_1 = \frac{G_a G_b}{G_0}$$

$$R_1 = R_a R_b B_0 \qquad G_1 = \frac{G_a G_b}{G_0}$$

$$R_2 = R_b R_c B_0 \qquad G_1 = \frac{G_b G_c}{G_0}$$

$$R_3 = R_a R_c B_0 \qquad G_1 = \frac{G_a G_c}{G_0}$$

$$G_0 = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

U	Spannung	[V]
I	Strom	[I]

$$R$$
 Widerstand $[\Omega]$

$$G$$
 Leitwert $[S]$

Überlagerungsprinzip (Superposition)

Die Wirkungen der entsprechenden Ursachen werden einzeln betrachtet. In einer Schaltung mit mehreren Quellen wird jede Quelle einzeln betrachtet. Die übrigen Spannungsquellen werden durch einen Kurzschluss und die restlichen Stromquellen durch einen Unterbruch ersetzt. Sie Summen der einzelnen Teilwirkungen ergibt die gesamte Wirkung.

(Voraussetzung: lineares System)

Nichtlinearer Verbraucher an linearer Schaltung (Thévenin)

Die gesammte Schaltung muss in eine Ersatzquelle umgeformt werden. Das Ersatzschema gilt für U und I. (Achtung: z.B. $P_{Quellen} \neq U_0 I$)

9.4.2 Wirkungsgrad und Leistungsanpassung

9.4.3 Systematische Analyse linearer Netzwerke

Kreisströme als Variablen (Kreisstrom-Methode)

 α = Anzahl Knoten β = Anzahl Zweige

 $\beta - \alpha + 1$ unabhängige Gleichungen

$$j_1(R_1 + R_2 + R_4) + j_2R_4 = U_1 j_1R_4 + j_2(R_3 + R_4) = U_2$$

$$\left[\begin{array}{cc} R_1 + R_2 + R_4 & R_4 \\ R_4 & R_3 + R_4 \end{array}\right] \left[\begin{array}{c} j_1 \\ j_2 \end{array}\right] = \left[\begin{array}{c} U_1 \\ U_2 \end{array}\right]$$

Trennspannungen als Variable (Knotenspannungsmethode)

 α = Anzahl Knoten

 $\alpha - 1$ unabhängige Gleichungen

$$e_A(G_1 + G_3 + G_4) - e_BG_1 = -I_1 - I_2$$

 $e_AG_1 + e_B(G_1 + G_2) = I_1$

$$\begin{bmatrix} G_1 + G_3 + G_4 & -G_1 \\ G_1 & G_1 + G_2 \end{bmatrix} \begin{bmatrix} e_A \\ e_B \end{bmatrix} = \begin{bmatrix} -I_1 - I_2 \\ I_1 \end{bmatrix}$$

9.4.4 Quellenverschiebung

Es werden gleiche Quellen so in die Schaltung eingefügt, dass die Wirkung der ursprünglichen Quelle aufgehoben wird.

9.4.5 Netzwerke mit gesteuerten Quellen

R_1 R_2 U_1 $V_U U_1$	Spannungsgesteuerte Spannungsquelle $U_{02} = V_U U_1$	I U R G V	Strom Spannung Widerstand Leitwert Verstärkung	$egin{array}{c} [A] \ [V] \ [\Omega] \ [S] \ [1] \end{array}$
$\begin{bmatrix} I_1 & R_2 \\ R_1 & I_1 \\ R_{21}I_1 \end{bmatrix}$	Stromgesteuerte Spannungsquelle $U_{02}=R_{12}U_1$			
R_1 R_2 U_1 U_1	Spannungsgesteuerte Stromquelle $I_{C2} = G_{12}U_1$			
R_1 V_iI_1 U_1	Stromgesteuerte Stromquelle $I_{C2}=V_iU_1$			

10 Das elektrische Strömungsfeld

10.1 Allgemein

10.2 Spezielle Felder

10.2.1 Räumliches Zentralfeld (Kugelanordnung)

10.2.2 Zylindrisches Zentralfeld

$$J(r) = \frac{I}{A_{\text{Kugel}}} = \frac{I}{4\pi r^2}$$

$$J(r) = \frac{I}{2\pi rl}$$

$$J(r) = \kappa E(r)$$
 $E(r) = \rho E(r)$

$$E(r) = \frac{I}{2\pi\kappa rl}$$

$$U_{12} = \frac{I}{2\pi\kappa l} \ln \frac{r_2}{r_1}$$

$$U = \frac{I}{2\pi\kappa l} \ln \frac{R_2}{R_1}$$

$$V(r) = \frac{I}{2\pi\kappa l} \ln \frac{R_2}{r}$$

$$G = \frac{2\pi\kappa l}{\ln\frac{R_2}{R_1}}$$

I Strom [A]

J Stromdichte
$$\left[\frac{A}{m^2}\right]$$

E el. Feldstärke $\left[\frac{V}{m}\right]$

$$V$$
 Potential $[V]$ $ρ$ Spez. Wider- $[\frac{\Omega mm^2}{m}]$

stand
$$\kappa$$
 spez. Leitwert $\left[\frac{S}{m}\right]$

$$G$$
 Leitwert $\begin{bmatrix} S \end{bmatrix}$ R, r Radius $[m]$

A Fläche
$$[m^2]$$

10.2.3 Leistung und räumliche Leistungsdichte

$$p(x, y, z) = \frac{\Delta P}{\Delta I}$$

$$p(x,y,z) = E(x,y,z)J(x,y,z)$$

$$= \kappa(x,y,z)E^{2}(x,y,z)$$

$$= \rho(x,y,z)J^{2}(x,y,z)$$

Gesammtleistung *P* aus *p*:

$$P = \sum \Delta p = \sum_{n} P_{n} \Delta V$$

$$U$$
 Spannung $[V]$
 $ρ$ Spez. Wider- $[\frac{Ωmm^2}{m}]$
stand

$$\kappa$$
 spez. Leitwert $\left[\frac{S}{m}\right]$ G Leitwert $\left[S\right]$ R, r Radius $\left[m\right]$ A Fläche $\left[m^2\right]$

11 Elektrostatik

11.1 Das Coulobsche Gesetz

11.2 Das elektrostatsiche Feld (Allgemein)

Q = CU

konstante

11.3 Spezielle Felder

11.3.1 Räumliches Zentralfeld (Kugelanordnung)

$$\sigma = \frac{Q}{4\pi R^2} = const$$

für $R_1 < r < R_2$ gilt:

$$E(r) = \frac{Q}{4\pi\epsilon r^2} = \frac{1}{\epsilon}D(r)$$

$$D(r) = \frac{Q}{4\pi r^2} = \frac{QR^2}{4\pi r^2} = \frac{\sigma R^2}{r^2}$$

$$V(r) = \frac{Q}{4\pi\epsilon} \left(\frac{1}{r} - \frac{1}{R_2} \right)$$

Hülle bei *r*:

$$\psi_{el} = D(r)4\pi r^2 = Q$$

Kugelkondensator:

$$U = \frac{Q}{4\pi\epsilon} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$C=rac{Q}{U}=rac{\psi_{el}}{U}=4\pi\epsilonrac{R_1R_2}{R_2-R_1}$$

Q Ladung [C]R, rRadius [m]Kapazität C

Ε el. Feldstärke

U Spannung Potential [V]V

La- $\left[\frac{\Omega mm^2}{m}\right]$ Oberfl. dungsdichte

Fläche $[m^2]$ Α

el. Fluss ψ_{el} Dielektrizität

rel. Dielektri- ϵ_r

zität

Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ ϵ_0 konstante

11.3.2 Zylindrisches Zentralfeld

$$\sigma = \frac{Q}{2\pi R_1 l} = const$$

für $R_1 < r < R_2$ gilt:

$$E(r) = \frac{Q}{2\pi\epsilon rl} = \frac{1}{\epsilon}D(r)$$

$$D(r) = \frac{Q}{2\pi rl} = \frac{\sigma R}{r}$$

$$V(r) = \frac{Q}{2\pi\epsilon l} \ln \frac{R_2}{r}$$

Hülle bei *r*:

$$\psi_{el} = D(r)2\pi rl = Q$$

Kondensator:

$$U = \frac{Q}{2\pi\epsilon l} \ln \frac{R_1}{R_2}$$

$$C = \frac{Q}{U} = \frac{\psi_{el}}{U} = \frac{2\pi\epsilon l}{\ln\frac{R_1}{R_1}}$$

Q Ladung

[C][m]

R, rRadius CKapazität

[F]Ε el. Feldstärke

U Spannung VPotential

[V] $\left[\frac{\Omega mm^2}{m}\right]$ La-

Oberfl. σ dungsdichte

 $[m^2]$ Fläche Α

 ψ_{el} el. Fluss Dielektrizität ϵ

rel. Dielektri- ϵ_r zität

Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ ϵ_0 konstante

11.3.3 Homogenes Feld (Plattenkondesator)

$$\sigma = D = \frac{Q}{A}$$

$$E = \frac{\sigma}{\epsilon} = \frac{Q}{A\epsilon}$$

Kondensator:

$$U = \frac{\sigma}{\epsilon}d = \frac{Q}{A\epsilon}d$$

$$C = \frac{Q}{U} = \frac{\epsilon A}{d}$$

Ladung Q d

Abstand [m]CKapazität [F]

[C]

Ε el. Feldstärke

U Spannung VVPotential [V]

La- $\left[\frac{\Omega mm^2}{m}\right]$ Oberfl. σ dungsdichte

Fläche $[m^2]$ Α

el. Fluss ψ_{el}

Dielektrizität ϵ

rel. Dielektri- ϵ_r zität

Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ ϵ_0 konstante

11.3.4 Paralleldrahtleitung

Es gilt das Superpositionsprinzip:

$$E_{tot} = E_{Leiter_1} + E_{Leiter_2}$$

Kondensator:

$$C = \frac{Q}{U} = \frac{\pi \epsilon l}{\ln \frac{a - R}{R}}$$

$$C' = \frac{Q}{U} = \frac{\pi \epsilon}{\ln \frac{a - R}{R}}$$

Q Ladung [C] d Abstand [m]

C Kapazität [F]E el. Feldstärke $[\frac{V}{m}]$

U Spannung V Potential V

 σ Oberfl. La- $\left[\frac{\Omega mm^2}{m}\right]$ dungsdichte

A Fläche $[m^2]$

 ψ_{el} el. Fluss [C]

 ϵ Dielektrizität $\left[\frac{C}{Nm}\right]$

 ϵ_r rel. Dielektrizität

 ϵ_0 Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ konstante

11.4 Energie im elektrischen Feld

$$W = \frac{CU^2}{2}$$

$$w = \frac{W}{V}$$

Allgemein:

$$w(x, y, z) = \frac{d W(x, y, z)}{d V}$$

W Energie [J] w Energiedichte $[J/m^3]$

U Spannung V C Kapazität V

 \mathbb{C} Kapazität [F]Volumen $[m^3]$

11.5 Kräfte im elektrischen Feld

11.5.1 Allgemein

$$\Delta W = F \Delta x \quad \Leftrightarrow \quad F = \frac{\Delta W}{\Delta x} \quad \Leftrightarrow \quad F(x) = \frac{dW(x)}{dx}$$

Prinzip der virtuellen Verschiebung

Man denkt sich den Leiter, auf den die Kraft berchnet werden soll, um Δx in diejenige Richtung verschoben, in welche die Kraft berechnet werden soll: \rightarrow Energiedifferenz ΔW

11.5.2 Verschiebung

Mit eingeschalteter Quelle:

$$W(x) = \frac{CU^2}{2} = \frac{\epsilon AU^2}{2d} = \frac{\epsilon axU^2}{2d}$$

$$F(x) = \frac{dW(x)}{dx} = \frac{\epsilon a U^2}{2d}$$

Mit ausgeschalteter Quelle:

$$W(x) = \frac{\epsilon A U^2}{2d} = \frac{\epsilon a x_0^2 U^2}{2xd}$$

$$F(x) = \frac{dW(x)}{dx} = \frac{\epsilon a x_0^2 U^2}{2x^2 d}$$

Q Ladung [C]

d Abstand [m]Überlappung \boldsymbol{x} [m]

CKapazität Ε el. Feldstärke

 $\begin{bmatrix} F \end{bmatrix}$ $\begin{bmatrix} \frac{V}{m} \end{bmatrix}$ $\begin{bmatrix} V \end{bmatrix}$ U Spannung [V]VPotential

La- $\left[\frac{\Omega mm^2}{m}\right]$ Oberfl. σ dungsdichte

 $[m^2]$ Fläche Α

 ψ_{el} el. Fluss

Dielektrizität ϵ

rel. Dielektri- ϵ_r

Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ ϵ_0 konstante

11.5.3 Anziehung

$$W(x) = \frac{CU^2}{2} = \frac{\epsilon AU^2}{2x}$$

$$W(x) = \frac{CU^2}{2} = \frac{\epsilon AU^2}{2x}$$
$$F(x) = \frac{dW(x)}{dx} = \frac{\epsilon AU^2}{2x^2}$$

Q Ladung [C]

Abstand [m] $\boldsymbol{\chi}$ CKapazität [F]

Ε el. Feldstärke

U Spannung [V]VPotential [V]

σ Oberfl. Ladungsdichte

 $[m^2]$ Fläche Α

el. Fluss ψ_{el} Dielektrizität ϵ

rel. Dielektri- ϵ_r

Dielektrizitäts- $\left[\frac{C}{Nm}\right]$ ϵ_0 konstante

12 Magnetismus

12.1 Feldstärke

siehe spezielle Anordnungen ab S. 97. **Biot-Savart**

$$\vec{H} = \frac{Q}{4\pi r^3} (\vec{v} \times \vec{r})$$

$$H = \frac{Qv}{4\pi r^2} \sin \alpha$$

Leiterbezogen

$$d\vec{H} = \frac{I}{4\pi r^3} (d\vec{s} \times \vec{r})$$

$$dH = \frac{I\,ds}{4\pi r^2}\sin\alpha$$

$$H = \int d\vec{H} = \int \frac{I}{4\pi r^2} \sin \alpha \, ds$$

H Feldstärke

I Strom $\begin{bmatrix} A \end{bmatrix}$ As infinitdesi- $\begin{bmatrix} B \end{bmatrix}$

malkleines

Leiterstück r Radius [m]

v Geschwindig- $\left[\frac{m}{s}\right]$ keit $\left[m\right]$

 α Winkel [rad]

12.2 Permeabilität

$$\mu = \mu_0 \mu_r$$

$$\mu_r \qquad \text{Permeabilität} \quad \left[\frac{H}{m}\right]$$

$$\mu_r \qquad \text{Permeabili-} \quad \left[1\right]$$

$$\text{tätszahl}$$

$$\mu_0 = \frac{4\pi}{10} \cdot 10^{-6} \frac{Vs}{Am} = 1.257 \cdot 10^{-6} \frac{H}{m}$$

$$\mu_0 \qquad \text{Permeabilität} \quad \left[\frac{H}{m}\right]$$

$$\text{des Vakuums}$$

12.3 Magnetische Flussdichte

siehe spezielle Anordnungen ab S. 97. $ec{B}=\muec{H}$	Η μ Β	Feldstärke Permeabilität Flussdichte, Induktion	$\left[rac{A}{m} ight] \left[rac{H}{m} ight] \left[T ight], \left[rac{Vs}{m^2} ight]$
--	-------------	--	--

12.4 Kräfte im Magnetischen Feld

12.4.1 Kräfte auf Ladungen

 $\vec{v}, \vec{H}, \vec{F}$ bilden ein Rechtssystem

Für parallele Bahnen

$$F_A = \frac{\mu_0 Q_1 Q_2 v_1 v_2}{4\pi r^2}$$

Allgemein

$$F = Q_2 \vec{v_2} \times \left(\frac{\mu}{4\pi} \frac{Q_1 \vec{v_1} \times \frac{\vec{r}}{r}}{r^2} \right)$$

$$F = Q(\vec{v} \times \vec{B})$$

$$F = Q(\vec{v} \times \mu \vec{H})$$

$$F = Qv\mu H \sin \alpha$$

Н	Feldstärke	$\left[\frac{A}{m}\right]$
F	Kraft auf La-	[N]
	dung Q_1	

[*C*] Lanung $Q_{1,2}$ Geschwindig $v_{1,2}$ keit [m]

Radius r Permeabilität μ В

Flussdichte, Induktion

12.4.2 Kraft auf Leiter im B-Feld

$$d\vec{F} = \frac{dQ}{dt}(\vec{ds} \times \vec{B}) = I(d\vec{s} \times \vec{B})$$

$$dF = IBds \sin \alpha$$

für geraden Leiter:

$$F = IBl \sin \alpha$$

В	Flussdichte,	[T],
	Induktion	$\left[\frac{Vs}{m^2}\right]$

F Kraft auf Lei-
$$\begin{bmatrix} m^2 \end{bmatrix}$$

ter

Q Lanung [C]

I Strom [A]

 α Winkel [rad] ds infinitdesi- [m]

malkleines Leiterstück

l Länge [*m*]

12.4.3 Kräfte auf paralle Leiter

$$F = \frac{\mu l I_1 I_2}{2\pi a}$$

$$ec{I}_1 \uparrow \downarrow ec{I}_2 \Rightarrow ext{Abstossung} \ ec{I}_1 \uparrow \uparrow ec{I}_2 \Rightarrow ext{Anziehung}$$

 F_A Kraft zwisch- [N] en den Lei-

tern

 $L_{1,2}$ Leiter [C]

 $I_{1,2}$ Strom [A]

a Abstand [m]

 μ Permeabilität $\left[\frac{H}{m}\right]$

12.4.4 Kräfte auf Randflächen eines Feldes

Energie W siehe S. 93

$$F = \frac{dW(s)}{ds}$$

Prinzip der virtuellen Verschiebung: Fläche um *ds* verschoben (*s*-Richtung = Kraftrichtung)

$$F = \frac{1}{2}BHA$$

Bei Drehbewegung:

$$M_{rot} = \frac{dW(\alpha)}{d\alpha}$$

F Kraft [N]

s Weg [m]
W Energie [J]
B Flussdichte, [T]

Н

Flussdichte, [T], Induktion $\begin{bmatrix} \frac{Vs}{m^2} \end{bmatrix}$ Feldstärke $\begin{bmatrix} \frac{A}{m} \end{bmatrix}$

A Fläche $\begin{bmatrix} m^2 \\ m^2 \end{bmatrix}$ M_{rot} Drehmoment [Nm]

 α Winkel [rad]

89

12.5 Durchflutung

I_1 I_2 J_1 J_2 I_k J_k	$\Theta = \oint_{S} \vec{H} ds = I$ $\Theta = \sum_{k=1}^{n} I_{k} + \iint_{A_{s}} \vec{J} dA$	Θ I s H U_{mg}	Durchflutung Stromdichte Strom Geschlossene Kurve Feldstärke Magnetische Spannung Länge	$\begin{bmatrix} A \\ \left[\frac{A}{m^2} \right] \\ \left[A \right] \\ \left[m \right] \\ \left[\frac{A}{m} \right] \\ \left[A \right] \\ \left[M \right] \\ \left[m \right] \\ \\ \left[m \right] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Nicht geschlossenser Weg $A \rightarrow B$	$U_{mgAB}=\int\limits_{}^{B}ec{H}dec{s}$			
	z.B Luftspalt: $U_{mgAB} = Hl$			
Feld um Leiter	$\Theta = \oint\limits_{S} \vec{H} ds = I$			
Spule	$\Theta = NI$			

12.6 Magnetischer Fluss

siehe spezielle Anordnungen ab S. 97.	$\Phi = \iint\limits_A \vec{B} dA$	Φ A	Magnetischer Fluss Fläche	$[Vs],$ $[Wb]$ $[m^2]$
	$\Phi = \Lambda\Theta = \frac{\Theta}{R_m}$ Homogenes Feld: $\Phi = BA$	Β Θ Λ	Flussdichte, Induktion Durchflutung Magnetischer Leitwert	$\begin{bmatrix} T \end{bmatrix}$, $\begin{bmatrix} \frac{Vs}{m^2} \end{bmatrix}$ $\begin{bmatrix} A \end{bmatrix}$ $\begin{bmatrix} \frac{Vs}{A} \end{bmatrix}$, $\begin{bmatrix} \Omega s \end{bmatrix}$

12.7 Ohmsches Gesetz des magnetischen Kreises

$$R_m = \frac{\Theta}{\Phi}$$

$$\Lambda = \frac{1}{R_m}$$

für homogenes Feld:

$$R_{m_n} = \frac{l_n}{\mu_n A_n}$$

$$R_m$$
 Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand

$$\Phi$$
 Magnetischer $[Vs]$, Fluss $[Wb]$

$$\Theta$$
 Durchflutung $[A]$

$$\Lambda$$
 Magnetischer $\left[\frac{Vs}{A}\right]$,
Leitwert $\left[\Omega s\right]$
 l Länge $\left[m\right]$

$$l$$
 Länge $[m]$
 A Querschnitt $[m^2]$
 μ Permeabilität $[\frac{H}{m}]$

12.8 Spulenfluss

Flüsse durch alle Einzelwindungsflächen aufsummiert (verketteter Fluss)

$$\Psi = N\Phi = \Lambda N^2 I$$

$$\Psi = LI$$

Ψ	Spulenfluss	[Vs]
Φ	Magnetischer	V_s

$$\Psi$$
 Magnetischer $[Vs]$,

Fluss Einzelw. $[Wb]$

Induktivität $[Vs]$

L Induktivität
$$\left[\frac{Vs}{A}\right]$$
 N Windungszahl [1]

$$I$$
 Vindungszani [1] I Strom $[A]$

$$\Lambda$$
 Magnetischer $[\frac{Vs}{A}]$, Leitwert $[\Omega s]$

12.9 Induktivität

$$L = \frac{N\Phi}{I} = \frac{\Psi}{I}$$

$$L = N^2 \Lambda = \frac{N^2}{R_m}$$

$$L = \frac{2W}{I^2}$$

$$W$$
 Energie des $[Ws]$, Feldes $[I]$

$$L$$
 Induktivität $[H]$

$$\Phi$$
 Magnetischer $[Vs]$, Fluss Einzelw. $[Wb]$

I Strom
$$[A]$$
 Λ Magnetischer $\begin{bmatrix} \frac{Vs}{A} \end{bmatrix}$

Leitwert
$$[\Omega s]$$
 R_m Magnetischer $[\frac{A}{Vs}]$

$$\Psi$$
 Widerstand Ψ Spulenfluss $[Wb]$

12.10 Gegeninduktivität und induktive Kopplung

$$M_{21} = \frac{\Psi_{21}}{I_1} = \frac{N_2 \Phi_{21}}{I_1}$$

$$M_{12} = \frac{\Psi_{12}}{I_2} = \frac{N_1 \Phi_{12}}{I_2}$$

$$M = \sqrt{L_1 L_2}$$
 ohne Streufluss

$$M = k\sqrt{L_1L_2}$$
 mit Streufluss

$$k_{12} = \frac{\Phi_{12}}{\Phi_{22}} \qquad k_{21} = \frac{\Phi_{21}}{\Phi_{11}}$$

$$\sigma = 1 - \frac{M^2}{L_1 L_2} = 1 - k^2$$

$$\Psi$$
 Spulenfluss $[Vs]$

$$\Phi$$
 Magnetischer $[Vs]$, Fluss durch $[Wb]$ Windung

$$\Phi$$
 Magnetischer $[Vs]$, Streuluss $[Wb]$

L Induktivität
$$\left[\frac{V_s}{A}\right]$$

$$N$$
 Windungszahl [1] I Strom $[A]$

$$k$$
 Kopplungsfak. [1]

$$\sigma$$
 Streukoef. [1]

$$M$$
 Gegeninduk- $\left[\frac{V_S}{A}\right]$ tivität

12.11 Brechung magnetischer Feldlinien

$$B_{n1}=B_{n2}$$

$$\frac{H_{n1}}{H_{n2}} = \frac{\mu_{r2}}{\mu_{r1}}$$

$$H_{t1}=H_{t2}$$

$$\frac{B_{t1}}{B_{t2}} = \frac{\mu_{r1}}{\mu_{r2}}$$

$$\frac{\tan \alpha_1}{\tan \alpha_2} = \frac{\mu_{r1}}{\mu_{r2}}$$

B Flussdichte,
$$\begin{bmatrix} T \\ Induktion \end{bmatrix}$$

nduktion
$$\lfloor \frac{r \cdot 3}{m^2} \rfloor$$

 α Winkel $\lfloor rad \rfloor$
 μ Permeabilität $\lfloor \frac{H}{m} \rfloor$

12.12 Räumliche Energiedichte

Inhomogenes Feld:	W	Energiedichte $\left[\frac{Ws}{m^3}\right]$
$W_{mg_{(x,y,z)}} = rac{1}{2}B_{(x,y,z)}H_{(x,y,z)}$ Homogenes Feld: $W_{mg_{(x,y,z)}} = rac{\mu}{2}H_{(x,y,z)}^2$	Η B μ	Feldstärke $\left[\frac{J}{m^3}\right]$ Flussdichte, $\left[T\right]$, Induktion $\left[\frac{Vs}{m^2}\right]$ Permeabilität $\left[\frac{H}{m}\right]$

12.13 Energie im magnetischen Feld

U = 0 I(t) $U = T$ $L = U$ $U(t)$	$f \ddot{u} r t \ge T:$ $W = \frac{U^2 T^2}{2L}$ $W = \frac{\Psi^2}{2L}$ $W = \frac{LI^2}{2}$ $W = \frac{I\Psi}{2}$ $W = \frac{\Phi^2 R_m}{2}$ $W = \frac{\Theta^2 \Lambda}{2}$	W μ Ψ Φ L I R _m U t T Θ Λ	Enegie Permeabilität Spulenfluss Magnetischer Fluss Induktivität Strom Magnetischer Widerstand Spannung Zeit Zeitpunkt Durchflutung Magnetischer Leitwert	$ \begin{bmatrix} Ws \\ [\frac{H}{m}] \\ [Vs] \\ [Vs], \\ [Wb] \\ [\frac{Vs}{A}] \\ [A] \\ [\frac{A}{Vs}] \\ \end{bmatrix} $
	$W = \frac{\Theta^2 \Lambda}{2}$			

12.14 Induktionsgesetz

$$u_i = \frac{d\Psi}{dt}$$

$$\oint \vec{E} \, d\vec{s} = -\frac{d\Phi}{dt} = -u_i$$

 \vec{E} bildet mit $d\vec{B}$ eine Linksschraube

Ψ	Spulenfluss	[Vs]
t	Zeit	[s]

E Elekrtostati-
$$\left[\frac{V}{m}\right]$$
 sches Feld

$$u_i$$
 Induktions- $[V]$

$$\Phi$$
 spannung Magnetischer $[Vs]$, Fluss $[Wh]$

$$\begin{array}{ccc} & \text{Fluss} & [Wb] \\ \textit{ds} & \text{infinitdesi-} & [m] \\ & \text{malkleines} \end{array}$$

Leiterstück B Flussdichte,
$$[T]$$
, Induktion $[\frac{Vs}{m^2}]$

12.15 Selbstinduktion

Für Schleife:

$$u_i = \frac{d\Phi}{dt} = L\frac{di}{dt}$$

Für Spule:

$$u_i = \frac{d\Psi}{dt} = L\frac{di}{dt}$$

 Ψ Spulenfluss [Vs]

 $egin{array}{lll} t & {
m Zeit} & [s] \ E & {
m Elekrtostati-sches Feld} \ \end{array}$

 u_i Induktions- [V] spannung

 Φ Magnetischer [Vs], Fluss [Wb]

Fluss [Wb] L Induktivität $\left[\frac{Vs}{A}\right]^{i}$ i Strom [A] B Flussdichte, T

Induktion

12.16 Serie- und Parallelschaltung von Induktivitäten

Serieschaltung L Induktivität $[\frac{Vs}{A}]$ $L_{Ers.} = L_1 + L_2 + \ldots + L_n$ Parallelschaltung $L_{Ers.} = \frac{1}{\frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_n}}$

12.17 Trafogleichungen

12.18 Nichtlinearität

12.18.1 B(H)-Kurve in $\Phi(\Theta)$ -Kurve umrechnen

Leerlauf

$$B_k(0) = B_c = \frac{\mu_0 A_L \Theta_0}{l_L A_{Fe}}$$

Kurzschluss

$$H_0 = \frac{\Theta_0}{l_{Fe}}$$

Umrechung:

$$\Phi_{Fe} = A_{Fe}B_{Fe}$$

$$\Theta_{F_{\ell'}} = l_{F_{\ell'}} H_{F_{\ell'}}$$

$$\Theta_{Fe} = l_{Fe}H_{Fe}$$
 $B_L = rac{A_{Fe}}{A_L}B_{Fe}$

В	Flussdichte,	[T],
	Induktion	$\left[\frac{V_s}{m^2}\right]$

$$H$$
 Feldstärke $\begin{bmatrix} \frac{n}{n} \end{bmatrix}$ Permeabilität $\begin{bmatrix} \frac{H}{m} \end{bmatrix}$

$$\Theta$$
 Durchflutung $\begin{bmatrix} A \end{bmatrix}$

$$l$$
 Länge $[m]$ A Querschnitt $[m^2]$

$$\Phi$$
 Magnetischer $[Vs]$, Fluss $[Wb]$

12.18.2 Luftspaltkennwert α

$lpha = rac{A_L l_{Fe}}{A_{Fe} l_L}$ $rac{1}{\mu_{reff}} = rac{1}{\mu_{rFe}} + rac{1}{lpha}$ $\mu_{reff} = rac{\mu_{rFe} lpha}{\mu_{rFe} + lpha}$	α μ l Α	Luftspalt- kenngrösse Permeabilität Länge Querschnitt	$\begin{bmatrix} 1 \\ \frac{H}{m} \end{bmatrix} \begin{bmatrix} m \\ m^2 \end{bmatrix}$
---	------------------	---	---

12.19 Spezielle Anordnungen

12.19.1 Langer gerader Leiter $l \gg d$

Bezugspunkt ausserhalb des Leiters im Abstand r

$$H = \frac{I}{2\pi r}$$

$$ec{H}=rac{I}{2\pi |ec{r}|^2}(ec{e}_1 imesec{r})$$

H Feldstärke $\left[\frac{A}{m}\right]$ r Abstand vom $\left[m\right]$

Leiter I Strom [A]

12.19.2 Kurzer, gerader Leiter

$$H = \frac{I}{4\pi r} \int_{\alpha_2}^{\alpha_1} \cos \varphi \, d\varphi$$

$$H = \frac{I}{4\pi r}(\sin\alpha_1 - \sin\alpha_2)$$

H Feldstärke $\left[\frac{A}{m}\right]$ r Abstand vom [m]

Leiter

I Strom [A] α Winkel [rad]

12.19.3 Kreisförmige Drahtschleife

Bezugspunkt: *M* Teilkreis:

$$H = \frac{I}{4\pi r} \int\limits_{0}^{\alpha} d\varphi$$

Vollkreis:

$$H = \frac{I}{2r}$$

Feld auf der Achse:

$$H = \frac{|I|r^2}{2(x^2 + r^2)^{\frac{3}{2}}}$$

$$\Phi = \frac{\mu D}{2} \ln \frac{D}{d} \Theta$$

$$\Lambda = \mu \frac{D}{2} \ln \frac{D}{d}$$

$$R_m = \frac{2}{\mu D \ln \frac{D}{d}}$$

$$L = \mu \frac{D}{2} \ln \frac{D}{d}$$

$$H$$
 Feldstärke $\left[\frac{A}{m}\right]$

$$I$$
 Strom $[A]$ r Radius $[m]$

$$\mu$$
 Permeabilität $\left[\frac{H}{m}\right]$

$$d$$
 Draht Durch- $\begin{bmatrix} m \\ m \end{bmatrix}$ messer

$$\begin{array}{ccc} & \text{Durchmesser} \\ \Lambda & \text{Magnetischer} & \left[\frac{Vs}{A}\right] \\ \text{Leitwert} & \left[\Omega s\right] \end{array}$$

$$R_m$$
 Magnetischer $\left[\frac{A}{Vs}\right]$

Widerstand L Induktivität
$$\left[\frac{Vs}{A}\right]$$

$$\Phi$$
 Magnetischer $[Vs]$, Fluss $[Wb]$

$$\Theta$$
 Durchflutung $[A]$

M

12.19.4 Voller Leiter

$$H = \frac{Ix}{2\pi r^2}$$

gilt nur für $x \le r$

H Feldstärke
$$\left[\frac{A}{m}\right]$$

r Abstand von [m] der Leiterach-

se

$$I$$
 Strom $[A]$

x Abstand von [m] der Achse

12.19.5 Koaxialkabel

$$H = \frac{I}{2\pi R_1^2} r \quad \text{für } 0 \le r < R_1$$

$$H = rac{I}{2\pi r}$$
 für $R_1 \le r \le R_2$

$$H = \frac{I}{2\pi r} \left(1 - \frac{r - R_2}{d} \right)$$

$$f \ddot{u} r R_2 < r \le R_2 + d$$

$$\Phi = \frac{\mu l}{2\pi} \ln \frac{R_2}{R_1} \Theta$$

$$\Lambda = \mu \frac{l}{2\pi} \ln \frac{R_2}{R_1}$$

$$R_m = \frac{2\pi}{\mu l \ln \frac{R_2}{R_1}}$$

$$L = \mu \frac{l}{2\pi} \ln \frac{R_2}{R_1}$$

$$L' = \frac{\mu}{2\pi} \ln \frac{R_2}{R_1}$$

Н	Feldstärke	$\left[\frac{A}{m}\right]$
r	Abstand von	[m]
	der Leiterach-	

se I Strom [A]

R Radius [m] d Manteldicke [m]

 μ Permeabilität $\left[\frac{H}{m}\right]$

 $egin{array}{lll} I & {
m L\"{a}nge} & [m] \\ {
m Λ} & {
m Magnetischer} & [rac{Vs}{A}], \\ {
m L\'{e}itwert} & [{
m Ω}s] \end{array}$

 R_m Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand

L' Induktivitäts- $\left[\frac{Vs}{Am}\right]$

L Induktivität $\left[\frac{Vs}{A}\right]$ Φ Magnetischer $\left[Vs\right]$, Fluss $\left[Wb\right]$

 Θ Durchflutung [A]

12.19.6 Paralleldrahtleitung

$$\Lambda = \mu \frac{l}{\pi} \ln \frac{a - R}{R}$$

$$R_m = \frac{\pi}{\mu l \ln \frac{a-R}{R}}$$

$$L = \mu \frac{l}{\pi} \ln \frac{a - R}{R}$$

$$L' = \frac{\mu}{2\pi} \ln \frac{a - R}{R}$$

$$\mu$$
 Permeabilität $\left[\frac{H}{m}\right]$ l Länge $[m]$ a Abstand $[m]$ R Radius $[m]$

 Λ Magnetischer $\left[\frac{Vs}{A}\right]$, Leitwert $\left[\Omega s\right]$

 R_m Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand

L' Induktivitäts- $\left[\frac{Vs}{Am}\right]$

L Induktivität $\left[\frac{Vs}{A}\right]$

12.19.7 Zylinderspule

Bezugspunkt: Mittelpunkt der Achse im Innern

$$H = \frac{IN}{\sqrt{l^2 + d^2}}$$

Bezugspunkt: Mittelpunkt der Stirnflächen

$$H = \frac{IN}{2\sqrt{l^2 + d^2}}$$

Sehr lange Zylinderspule $(l \gg d)$ und Ringspule (mittlerer Umfang l)

Bezugspunkt für *H*-Feld: im Inneren der Spule

$$H = \frac{IN}{l}$$

$$\Phi = \frac{\mu A}{l}\Theta = \mu \frac{\pi d^2}{4l}\Theta$$

$$\Lambda = \mu \frac{A}{l} = \mu \frac{\pi d^2}{4l}$$

$$R_m = \frac{l}{\mu A} = \frac{4l}{\mu \pi d^2}$$

$$L = \mu N^2 \frac{A}{l} = \mu N^2 \frac{\pi d^2}{4l}$$

Н	Feldstärke	$\left[\frac{A}{m}\right]$
1	Länge bzw.	[m]
	mittl. Umfang	
	der Spule	
d	Durchmesser	[m]
I	Strom	[A]
A	Stirnfläche	$[m^2]$
μ	Permeabilität	$\left[\frac{H}{m}\right]$
N	Windungszahl	[1]
Λ	Magnetischer	$\left[\frac{Vs}{A}\right]$,
	Leitwert	$[\Omega s]$
R_m	Magnetischer	$\left[\frac{A}{Vs}\right]$
	Widerstand	
L	Induktivität	$\left[\frac{Vs}{A}\right]$
Φ	Magnetischer	[Vs],
	Fluss	[Wb]
Θ	Durchflutung	[A]

12.19.8 Ringspule (Toroid)

$$\Lambda = \mu \frac{a}{2\pi} \ln \frac{R+a}{R}$$

$$R_m = \frac{2\pi}{\mu a \ln \frac{R+a}{R}}$$

$$L = \mu N^2 \frac{a}{2\pi} \ln \frac{R+a}{R}$$

$$\Phi = \frac{\mu a}{2\pi} \ln \frac{R_1 + a}{R_1} \Theta$$

$$H = \frac{NI}{R + \frac{a}{2}n}$$

für $a \ll R$:

$$L = \frac{\mu N^2 A}{2R\pi}$$

$$\Phipproxrac{\mu A}{l_{mittl.}}\Theta$$

a Spulen Breite, [m]

Höhe

R Innerradius [m]

 μ Permeabilität $\left[\frac{H}{m}\right]$

N Windungszahl [1] Λ Magnetischer $\left[\frac{V_s}{A}\right]$,

Leitwert $[\Omega s]$ R_m Magnetischer $[\frac{A}{Vs}]$

 R_m Magnetischer [- Widerstand

L Induktivität $\left[\frac{Vs}{A}\right]$

 Φ Magnetischer [Vs], Fluss [Wb]

 Θ Durchflutung [A]

A Fläche $[m^2]$

12.19.9 Kreisrahmenspule

$$\Lambda = \mu \frac{D}{2} \ln \frac{D}{d}$$

$$R_m = \frac{2}{\mu D \ln \frac{D}{d}}$$

$$L = \mu N^2 \frac{D}{2} \ln \frac{D}{d}$$

- a Spulen Breite, [m]
 - Höhe
- μ Permeabilität $\left[\frac{H}{m}\right]$
- d Draht Durch- [m]
 - messer
- D Schleifen [m]
 - Durchmesser
- N Windungszahl [1]
- Λ Magnetischer $\left[\frac{Vs}{A}\right]$, Leitwert $\left[\Omega s\right]$
- R_m Magnetischer $\left[\frac{A}{Vs}\right]$ Widerstand
- *L* Induktivität $\left[\frac{Vs}{A}\right]$

13 Wechselstromlehre

13.1 Mittel- und Kennwerte

13.1.1 Linearer Mittelwert

$$A_{\rm m} = \frac{1}{T} \int\limits_{t_1}^{t_1+T} a(t) \, dt \qquad \qquad \begin{cases} A & \text{Amplitude} \quad [\ldots] \\ a(t) & \text{Signalfunktion} \ [\ldots] \\ T & \text{Periodendauer} \ [s] \\ t & \text{Zeit} & \ [s] \end{cases}$$

13.1.2 Betragsmittelwert

$$A_{|\mathbf{m}|} = \frac{1}{T} \int_{t_1}^{t_1+T} |a(t)| dt$$

$$A \quad \text{Amplitude} \quad [\dots]$$

$$a(t) \quad \text{Signal funktion} \quad [\dots]$$

$$T \quad \text{Periodendauer} \quad [s]$$

$$t \quad \text{Zeit} \quad \quad [s]$$

13.1.3 Halbwellenmittelwert

$$A_{2\mathrm{m}} = \frac{2}{T} \int\limits_{t_1}^{t_1+T} a(t) \, dt$$

$$f \ddot{\mathrm{u}} r \, a(t) > 0$$

$$A_{2\mathrm{m}} \quad \text{Halbwellen-} \quad [\ldots] \quad \text{mittelwert} \quad a(t) \quad \text{Signalfunktion} \quad [\ldots] \quad T \quad \text{Periodendauer} \quad [s] \quad t \quad \text{Zeit} \quad \quad [s]$$

13.1.4 Quadratischer Mittelwert (Effektivwert, RMS)

 $A_{\rm eff} = \sqrt{\frac{1}{T} \int_{t_1}^{t_1+T} a^2(t) \, dt}$

für sinunsförmige Signale:

$$A_{
m eff} = rac{A}{\sqrt{2}}$$

A Amplitude [...] a(t) Signalfunktion [...]

T Periodendauer [s] t Zeit [s]

13.1.5 Scheitelfaktor (Crestfaktor)

 $k_{\rm s} = \frac{a_{\rm max}}{A_{\rm eff}}$

 A_{eff} Effektivwert a_{max} Spitzenwert

 $k_{\rm s}$ Crestfaktor

 $[\ldots]$

[1]

13.1.6 Formfaktor

 $k_{
m f} = rac{A_{
m eff}}{A_{
m |m|}}$

 A_{eff} Effektivwert [...] $A_{|\mathbf{m}|}$ Betragsmittel- [...]

wert

 $k_{\rm f}$ Formfaktor [1]

13.1.7 Effektivwert eines zusammengesetzten, mehrfrequenten Signals

 $A_{ ext{eff}} = \sqrt{\sum_{n=0}^{N} A_{ ext{eff}_n}^2}$

 A_{eff} Effektivwert [...]

13.2 Leistung

Beispiel mit Induktiver Last

$$\underline{S} = \underline{U}\underline{I}^* = \frac{\underline{U}^2}{\underline{Z}^*}$$

$$\underline{S} = P + jQ$$

$$P = UI\cos(\varphi) = Re(S)$$

$$Q = UI\sin(\varphi) = Im(S)$$

$$\cos(\varphi) = \frac{P}{S} \quad \sin(\varphi) = \frac{Q}{S}$$

- S Scheinleistung [VA]
- P Wirkleistung [W]Q Blindleistung [Var]
- I Strom [A]
- U Spannung $\begin{bmatrix} V \end{bmatrix}$
- φ Phase [rad] Z Impedanz $[\Omega]$

13.2.1 Leistung und Leistungsanpassung bei Quellen

$U_0 \bigcirc U \bigcirc Z_a$	$\underline{S} = U_0^2 \frac{Z_a}{ Z_i + Z_a ^2}$ $P = U_0^2 \frac{R_a}{(R_a + R_i)^2 + (X_a + X_i)^2}$ Bei Leistungsanpassung: $X_a = -X_i$ bzw. $R_a = R_i$ $\underline{Z}_a = \underline{Z}_i^{\star}$ $P_{max} = \frac{U_0^2}{4R_i}$
$\underline{I}_{C} \underbrace{\uparrow} \underbrace{\downarrow} \underline{U} \underbrace{\downarrow} \underline{Y}_{a}$	$\underline{Y}_a = \underline{Y}_i^{\star}$ $P_{max} = \frac{I_C^2}{4G_i}$

S Scheinleistung [VA] PWirkleistung WΙ Strom [A][V]U Spannung ZImpedanz $[\Omega]$ Admittanz Υ [S]X Reaktanz $[\Omega]$ R Widerstand $[\Omega]$ GLeitwert [*S*]

13.2.2 Effektivwert und Leistung

$P=rac{U_{ m eff}^2}{R}=I_{eff}^2R$	P R U	Leistung Widerstand Spannung	$egin{array}{c} [W] \ [\Omega] \ [V] \end{array}$
--------------------------------------	-------------	------------------------------------	---

13.3 Energie

$W(t) = \int_0^t P(au)$	$\frac{W}{P}$	Energie Leistung Zeit	[<i>J</i>] [<i>W</i>] [<i>s</i>]
--------------------------	---------------	-----------------------------	--

13.4 Komplexe Darstellung sinusförmiger Vorgänge

Hintransformation:

$$a(t) = A\cos(\omega t + \phi)$$

$$\underline{a}(t) = A\cos(\omega t + \phi) + jA\sin(\omega t + \phi)$$

$$\underline{a}(t) = Ae^{j(\omega t + \phi)} = Ae^{j\phi}e^{j\omega t} = \underline{A}e^{j\omega t}$$

$$\underline{A} = Ae^{j\phi}$$

Rücktransformation:

$$\underline{B} = Be^{j\beta}$$

$$\underline{b}(t) = \underline{B}e^{j\omega t} = Be^{j\beta}e^{j\omega t} = \underline{A}e^{j\omega t}$$

$$\underline{b}(t) = B\cos(\omega t + \beta) + jB\sin(\omega t + \beta)$$

$$b(t) = \text{Re}\{\underline{b}(t)\} = B\cos(\omega t + \beta)$$

A, B Amplitude [V] a, b Signal [V] ϕ, β Phase [rad] ω Winkelge- $[\frac{1}{s}]$ schwin-

 $\begin{array}{cc} \text{digkeit} \\ t & \text{Zeit} \end{array} \hspace{0.2in} [s]$

13.5 Komplexe Darstellung von Impedanz und Admittanz

Impedanz-Ebene:

$$jX$$
 RL-Glied Z R RC-Glied

Admittanz-Ebene:

$$jB$$
 RC-Glied \underline{Y} G RL-Glied

 $\underline{Z} = \frac{\underline{u}(t)}{\underline{i}(t)} = \frac{\underline{U}}{\underline{I}} = \frac{\underline{U}_{\text{eff}}}{\underline{I}_{\text{eff}}} = R + jX$

$$\underline{Y} = \frac{1}{Z} = G + jB$$

$$\underline{U} = \underline{Z}\underline{I}$$
 bzw. $\underline{I} = \underline{Y}\underline{U}$

$$\underline{Y} = \frac{1}{\underline{Z}} = G + jB$$
 $\underline{U} = \underline{Z}\underline{I}$ bzw. $\underline{I} = \underline{Y}\underline{U}$
 $\sum_{\text{Kreis}} \underline{U}_i = 0$ $\sum_{\text{Trennbündel}} \underline{I}_i = 0$

Serieschaltung: $\underline{Z}_s = \sum_{i=1}^{N} \underline{Z}_i$

Parallelschaltung: $\underline{Y}_p = \sum_{i=1}^{N} \underline{Y}_i$

U, u Spannung [V]Strom [I]

Widerstand R $[\Omega]$

GLeitwert [S]

Z Y**Impedanz** Ω Admitanz [S]

XReaktanz $[\Omega]$

Suszeptanz [S]

13.6 Klemmgrössen von Schaltelementen

13.6.1 Allgemein

 $q(t) = \int_{t_a}^{t} i(\tau) d\tau$ $i(t) = \frac{dq(t)}{dt}$ $p(t) = \frac{dW}{dt}$

$$i(t) = \frac{dq(t)}{dt}$$

$$p(t) = \frac{dW}{dt}$$

$$P_{at} = \frac{1}{t - t_a} \int_{t_a}^t p(\tau) d\tau$$

$$w_{at} = \int_{t_a}^t p(\tau) \, d\tau$$

Strom [A]i [V]Spannung [C]Ladung q Leistung [W]p

Gespeicherte [J]Energie

 t, τ Zeit [s]

13.6.2 Ohm'sche Widerstände

$u(t) = Ri(t)$ $i(t) = Gu(t)$ $p(t) = u(t)i(t)$ $\underline{Z}_R = R$ $Y = \frac{1}{2} - G$	i u R G p Z	Strom Spannung Widerstand Leitwert Leistung Impedanz Zeit	$egin{array}{c} [A] \ [V] \ [\Omega] \ [S] \ [W] \ [\Omega] \ [s] \end{array}$
$\underline{Y}_R = \frac{1}{R} = G$			

13.6.3 Kapazitäten

13.6.4 Induktivitäten

$$R_V$$
 L

Zeitbereich:

$$\Psi(t) = Li(t)$$

$$u(t) = L\frac{di(t)}{dt}$$

$$i(t) = \frac{1}{L} \int_{t_a}^t u(\tau) d\tau + i(t_a)$$

$$p(t) = u(t)i(t)$$

$$w(t) = \frac{1}{2}Li^2(t)$$

Frequenzbereich:

$$\underline{Z}_L = j\omega L = sL$$

$$\underline{Y}_{L} = \frac{1}{j\omega L} = \frac{1}{sL} = -j\frac{1}{\omega L}$$

Gegeninduktion:

$$u_{12}(t) = \pm M \frac{di_2(t)}{dt}$$

$$\underline{Z}_M = j\omega M$$

$$\underline{Y}_{M} = \frac{1}{j\omega M} = -j\frac{1}{\omega M}$$

induktive Kopplung:

$$u_1(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt}$$

i	Strom	[A]
и	Spannung	[V]
q	Ladung	[C]
Z	Impedanz	$[\Omega]$
Υ	Admitanz	[S]
ω	Kreisfrequenz	$\left[\frac{1}{s}\right]$
\mathcal{S}	Laplaceope-	[1]
	rator	
M	Gegeninduk-	$\left[\frac{Vs}{A}\right]$
	tivität	

L	Induktivität	$\left[\frac{Vs}{A}\right]$
Ψ	Spulenfluss	[Vs]
p	Leistung	[W]
w	Gespeicherte	[J]

Energie
$$t, \tau$$
 Zeit $[s]$

13.7 Zeigerdarstellung Komplexer Klemmgrössen

Alle Spannungen und Ströme am folgenden Netzwerk sind graphisch mittels Zeigerdiagramm darzustellen.

- 1. Impedanzen \underline{Z} aller Elemente berechen.
- 2. Strom \underline{I}_{RC} auf reeller Achse Re' wählen.

- 3. Spannungen an \underline{R} und \underline{C} aus \underline{I}_{RC} und \underline{Z} berechnen und einzeichnen.
- 4. Spannung \underline{U}_L entspricht der Summe von \underline{U}_R und \underline{U}_C .

Korrekturfaktor:
$$k = \frac{\underline{U}_{Nenn}}{\underline{U}_{gemessen}}$$

- 5. Strom \underline{I}_L aus \underline{U}_L und \underline{Z}_L berechnen und einzeichnen.
- 6. Strom \underline{I} entspricht der Summe von \underline{I}_{RC} und \underline{I}_{L} .
- 7. Achsen neu bestimmen: Re in Richtung \underline{U}_L .

13.7.1 Impedanztransformation

R seriel zu \vec{Z}_{ist} : $ Z_{ist} \longrightarrow Z_{soll} $ $ R $	$ec{Z}_{soll}$ bewegt sich auf einer Geraden parallel zur R-Achse nach rechts.	Z_{ist}	Impedanz, die transfor- miert werden soll Impedanz,	$[\Omega]$
L seriel zu \vec{Z}_{ist} : $ \underbrace{Z_{ist}}_{L} \underbrace{Z_{sol}}_{X_{L}} \underbrace{Z_{sol}}_{R} $	$ec{Z}_{soll}$ bewegt sich auf einer Geraden parallel zur X-Achse nach oben.	X R L	nach Transformation Blindwiderstand Widerstand Induktivität	$egin{array}{c} [\Omega] \ [\Omega] \ [H] \ \end{array}$
C seriel zu \overline{Z}_{ist} : $ \begin{array}{c c} Z_{ist} & Z_{ist} \\ \overline{Z}_{soll} & \overline{Z}_{soll} \end{array} $	\vec{Z}_{soll} bewegt sich auf einer Geraden parallel zur X-Achse nach unten.	C	Kapazität	[F]
R parallel zu \vec{Z}_{ist} : $ \begin{array}{ccc} & jX & \underline{Z}_{ist} \\ & & /R \\ & & R \end{array} $	\vec{Z}_{soll} bewegt sich auf einem Halbkreis, welcher auf der X-Achse beginnt, durch den Endpunkt des \vec{Z}_{ist} -Vektors geht um im Nullpunkt endet. Falls $R=0 \to \vec{Z}_{soll}=\vec{0}$. Falls $R=\infty \to \vec{Z}_{soll}=\vec{Z}_{ist}$.			
L parallel zu \vec{Z}_{ist} : $ \underbrace{Z_{ist}}_{L} \underbrace{X_{L}}_{M \ R} $	$ec{Z}_{soll}$ bewegt sich auf einem Kreis mit Mittelpunkt M, welcher durch den Nullpunkt sowie durch den Endpunkt des $ec{Z}_{ist}$ - Vektors geht. Für $L \longrightarrow 0 \rightarrow ec{Z}_{soll} \longrightarrow 0$			
C parallel zu \vec{Z}_{ist} : $jX \qquad \qquad X_{C}$ $Z_{ist} \qquad Z_{soll}$ $M \qquad R$	$ec{Z}_{soll}$ bewegt sich auf einem Kreis mit Mittelpunkt M, welcher durch den Nullpunkt und den Endpunkt des $ec{Z}_{ist}$ - Vektors geht. Für $C \longrightarrow \infty \to ec{Z}_{soll} \longrightarrow 0$			

13.7.2 Transformation von Z-Ebene zu Y-Ebene

Im Bild ist zu sehen wie gewisse Punktmengen von der Z-Ebene auf die Y-Ebene abgebildet werden.

13.8 Netzwerkanalyse

13.8.1 Maschenmethode / Kreisstrommethode

Es dürfen nur Spannungsquellen vorkommen, vorhandene Stromquellen sind zuerst umzuwandeln.

13.8.2 Trennbündelmethode / Knotenspannungsmethode

Es dürfen nur Stromquellen vorkommen, vorhandene Spannungsquellen sind zuerst umzuwandeln.

13.9 Darstellungsformen

13.9.1 Beispiel: Nyquistdiagramm, Ortskurve

$$C = \frac{U_{out}}{U_{in}}$$

$$C = \frac{1}{Verstärkung}$$

$$W = \frac{1}{Verstärkung}$$

$$U = \frac{1}{Verstärkung}$$

$$Verstärkung}$$

$$U = \frac{1}{Verstärkung}$$

$$U = \frac{1}{Verstärkung}$$

$$V = \frac{1}{Verstärku$$

13.9.2 Bodediagramm

Vorgehen beim Erstellen eines Bodediagramms:

Netzwerkfunktion aufstellen
$$F(\omega) = \frac{a_0 + a_1 j\omega + a_2 (j\omega)^2 + \ldots + a_n (j\omega)^n}{b_0 + b_1 j\omega + b_2 (j\omega)^2 + \ldots + b_n (j\omega)^n}$$

In Produktform
$$F(\omega) = K_1 \prod_{i=1}^r \text{Standard terme}, K_1 = \frac{a_0}{b_0}$$

Standardterme
$$\begin{cases} (j\omega T)^n \\ (1+j\omega T)^n \\ [1+2\xi j\omega T+(j\omega)^2 T^2]^n \end{cases} n\pm 1,\pm 2...$$

$$1 + 2\xi j\omega T + (j\omega)^2 T^2 = \begin{cases} (1 + j\omega T_1)(1 + j\omega T_2) & \text{für } \xi > 1\\ (1 + j\omega T)^2 & \text{für } \xi = 1\\ \text{nicht aufspaltbar} & \text{für } \xi < 1 \end{cases}$$

Normierung

• Frequenz: Bezugsfrequenz $\omega_0 = \frac{1}{T_0} \Longrightarrow$ normierte Frequenz $\Omega = \frac{\omega}{\omega_0} = \omega T_0$ Beispiele: $\omega_0 = \frac{1}{T} \Longrightarrow \Omega = \omega T$ oder $\omega_0 = 1\frac{1}{s} \Longrightarrow \Omega = \omega 1s$

• Wert: Betzugswert
$$K_0 \Longrightarrow$$
 normierte Konstante $K = \frac{K_1}{K_0}$
Beispiel: $K_0 = K_1 \Longrightarrow K = 1$

Normierte Netzwerkfunktion $F(\omega) \Longrightarrow F_n(\Omega) = F_n(\omega T_0) = F_n(\frac{\omega}{\omega_0})$ Normierte Standardterme

$$(j\omega T)^{n} \implies (j\Omega \frac{T}{T_{0}})^{n}$$

$$(1+j\omega T)^{n} \implies (1+j\Omega \frac{T}{T_{0}})^{n}$$

$$[1+2\xi j\omega T+(j\omega)^{2}T^{2}]^{n} \implies \left[1+2\xi j\Omega \frac{T}{T_{0}}+(j\Omega)^{2}\left(\frac{T}{T_{0}}\right)^{2}\right]^{n}$$

Bodediagramm

- Betrag, Amplitudengang: $|G|/dB = \sum_{i=1}^r 20 \log_{10}\{|norm.Standardterme|\} + 20 \log_{10} K$ Argument, Phasengang: $\varphi = \sum_{i=1}^r arg\{norm.Standardterme\}$

P-Glied: Standardterm *K*

Form:

K

Steigung: $0 \frac{dB}{DK}$

 $|G| = 20\log_{10}(K)$

 $\varphi = const_0$

K Konstante G Verstärkung

Phase φ

[dB]

|1|

I-Glied: Standardterm $(j\omega T)^n$

Siehe auch S.163

Form:

 $(j\omega T)^n$

Normalisiert:

 $(j\omega \frac{T}{T_0})^n$

Amplitude: $|G| = \omega^n T^n$

 $|G| \Rightarrow Gerade$

Steigung: $n \cdot 20 \frac{dB}{DK}$

Falls $\Omega = \frac{T_0}{T} \Rightarrow |G| = 0$

Phase φ :

 $\varphi = n \cdot 90^{\circ}$

 $\frac{G_a}{G_b} = \frac{\omega_a^n}{\omega_b^n}, \qquad n = \pm 1$

K Konstante [1] G Verstärkung [dB]

Phase φ

Exponent [1]n TPeriode [s]

Periode [s] T_0

Kreisfrequenz ω [1]Ω

Normierte Frequenz

113

PT₁-Glied: Standardterm $(1 + j\omega T)^n$

Form:

$$(1+j\omega T)^n$$

Normalisiert:

$$\left(1+j\Omega\frac{T}{T_0}\right)^n$$

Amplitude: $|G| = \sqrt{1 + \omega^2 T^2}$ Für $\Omega \ll \frac{T_0}{T} : |G| \approx 0 \frac{dB}{DK}$ Für $\Omega \gg \frac{T_0}{T} : |G| \approx n \cdot 20 \frac{dB}{DK}$

Knick:

Bei
$$\Omega = \frac{T_0}{T} : |G| = n \cdot 3dB$$

Phase: $\varphi = \arctan(\omega T)$

Für $\Omega \ll \frac{T_0}{T}$: $\varphi \approx 0^\circ$

Für $\Omega \gg \frac{\dot{T}_0}{T} : \varphi \approx n \cdot 90^\circ$

Für $\Omega = \frac{T_0}{T} : \varphi = n \cdot 45^\circ$

K Konstante

[1] GVerstärkung [dB]

Phase φ

TPeriode [s][s] T_0 Periode

Kreisfrequenz ω

 $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ [1] Ω Normierte Frequenz

PT₂-Glied: Standardterm $\frac{1}{1+2\xi j\omega T+(j\omega T)^2}$

Je kleiner ξ ist, desto schneller springt die Phase Form:

$$\frac{1}{1+2\xi j\omega T+(j\omega)^2 T^2}$$

Normalisiert:

$$\frac{1}{1+2\xi j\Omega \frac{T}{T_0}+(j\Omega)^2\left(\frac{T}{T_0}\right)^2}$$

Amplitude:

$$|G| = \sqrt{(1 - \omega^2 T^2)^2 + (\omega 2\xi T)^2}$$
 Für $\Omega \ll \frac{T_0}{T} : |G| \approx 0 \frac{dB}{DK}$ Für $\Omega \gg \frac{T_0}{T} : |G| \approx -40 \frac{dB}{DK}$ Überschwingen, Knick:
$$\Omega = \frac{T_0}{T} : |G| = -20 \log_{10}(2\xi)$$

Phase: $\varphi = \arctan(\frac{\omega^2 \xi T}{1 - \omega^2 T^2})$ Für $\Omega \ll \frac{T_0}{T} : \varphi \approx 0^{\circ}$ Für $\Omega\gg rac{\dot{T}_0}{T}:arphipprox-180^\circ$

Für $\Omega = \frac{T_0}{T} : \varphi = -90^\circ$

K Konstante [1]

G[dB]Verstärkung φ Phase TPeriode [s]

Resonanzfrequenz

 T_0 Periode [s]

[1] ξ Dämpfung Kreisfrequenz ω

Normierte [1]Ω Frequenz

Totzeitglied: Standardterm $e^{-j\omega T_t}$

Irregulärer Aufwärtsknick 1. Ordnung: Standardterm $(1 - j\omega T)^n$

Irregulärer Aufwärtsknick 2. Ordnung: Standardterm $1 - 2\xi j\omega T + (j\omega T)^2$

Je kleiner ξ ist, desto schneller springt die Phase Form:

$$1 - 2\xi j\omega T + (j\omega)^2 T^2$$

Normalisiert:

$$1 - 2\xi j\Omega \frac{T}{T_0} + (j\Omega)^2 \left(\frac{T}{T_0}\right)^2$$

Amplitude

Für
$$\Omega \ll \frac{T_0}{T}: |G| \approx 0 \frac{dB}{DK}$$

Für $\Omega \gg \frac{T_0}{T}: |G| \approx 0 \frac{dB}{DK}$
Für $\Omega \gg \frac{T_0}{T}: |G| \approx +40 \frac{dB}{DK}$
Überschwingen, Knick:

$$\Omega = \frac{T_0}{T} : |G| = -20 \log_{10}(2\xi)$$

Phase:
$$\varphi = -\arctan(\frac{\omega 2\xi T}{1-\omega^2 T^2})$$

Für
$$\Omega \ll \frac{T_0}{T}$$
: $\varphi \approx 0^\circ$
Für $\Omega \gg \frac{T_0}{T}$: $\varphi \approx -180^\circ$
Für $\Omega = \frac{T_0}{T}$: $\varphi = -90^\circ$

Für
$$\Omega = \frac{T_0}{T} : \varphi = -90^\circ$$

- K Konstante
- GVerstärkung [dB]Phase φ

[1]

- T[s]Periode
- $\frac{1}{T}$ $\left[\frac{1}{\varsigma}\right]$ Resonanzfrequenz
- T_0 Periode [s]
- [1]ξ Dämpfung $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ Kreisfrequenz ω
- Ω Normierte Frequenz

13.9.3 Pol-Nullstellendiagramm

Ausser K ist die gesamte Netzwerkfuntion aus dem Pol- Nullstellendiagramm ersichtlich. $s = \sigma + jw$ (Frequenzgang: σ =0)

Netzwerkfunktion:

$$F(s) = K \frac{(s - p_1)(s - p_2) \dots (s - p_n)}{(s - q_1)(s - q_2) \dots (s - q_n)}$$

 $Null stellen \Rightarrow \times \text{ in Diagramm}$ Polstellen $\Rightarrow \bigcirc$ in Diagramm

Pol nahe an $j\omega$ -Achse \Rightarrow Überhöhung im Amplitudengang

- K Konstante [1] [1]
- Skomplexe Frequenz (Laplace)
- [1] Re(s) σ $\left[\frac{1}{s}\right]$ Kreisfrequenz ω
- von Polynom [1]p von Polynom [1]

13.10 Eigenschaften des PT₁-Glied

Beispielschaltung

Sprungantwort:

$$G = \frac{1}{1 + j\omega T}$$

Beispiel:

$$T = RC$$

Sprungantwort:

$$u_o = k \left[1 - e^{-\frac{t}{T}} \right]$$

$$T\dot{u}_o + u_o = ku_{in}$$

G Verstärkung [dB]TPeriode [s]

Kreisfrequenz ω

Widerstand R $[\Omega]$ CKapazität

[F][V]u-Ausgang u_o [V]u-Eingang u_{in}

Zeit [s]t [1] k

Faktor

13.11 Eigenschaften des PT₂-Glied

Beispielschaltung

Sprungantwort:

$$R = 100\Omega$$

$$R = 30\Omega$$

$$R = 0\Omega$$

$$G = \frac{1}{1 + 2\xi j\omega T + (j\omega)^2 T^2}$$

Beispiel:

$$\xi = \frac{R}{2}\sqrt{\frac{C}{L}}$$
 $T = \sqrt{LC}$

Je kleiner ξ desto mehr schwingt die Schaltung. Bei aktiven Schaltungen kann $\xi < 0$ werden.

$$\omega_e = \omega_0 \sqrt{1 - D^2}, \quad 0 < D < 1$$

$$\omega_0 = \frac{1}{T}$$

$$\omega_r = \omega_0 \sqrt{1 - 2D^2}, \quad D < 0.707$$

Sprungantwort:

$$u_0 = k \left[1 - \frac{1}{\sqrt{1 - \xi^2}} e^{-\xi \omega_0 t} x \right]$$

$$x = \sin\left\{\sqrt{1 - \xi^2}\omega_0 t + \arccos(\xi)\right\}$$

$$T^2\ddot{u}_o + 2\xi T\dot{u}_o + u_o = ku_{in}$$

G Verstärkung [dB]

Phase rad φ Periode T[s]

ξ Dämpfung [1] $\lceil \frac{1}{2} \rceil$

Kreisfrequenz ω Eigenfrequenz $\begin{bmatrix} \frac{1}{6} \end{bmatrix}$ ω_e

Knickfrequenz $\begin{bmatrix} \frac{1}{s} \end{bmatrix}$ ω_0 Resonanzfre- ω_r

> quenz Widerstand $[\Omega]$

R Inuktivität [H]L

CKapazität [F]u-Ausgang [V] u_o

[V]u-Eingang u_{in} Zeit t [s]

k Faktor [1]

13.12 Verküpfung von Blockdiagrammen

$\rightarrow G_1 \rightarrow G_2 \rightarrow C \rightarrow G \rightarrow$	$G = G_1 \cdot G_2$	G	G	Übertra- [1] gungsfunkti-
$ \begin{array}{c c} G_1 & \pm \\ G_2 & \pm \\ \end{array} $	$G = G_1 \pm G_2$		on	
$ \begin{array}{ccc} + & & & \downarrow \\ & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ & & & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow \\ & \downarrow $	$G = \frac{G_V}{1 + G_V G_R}$			
G_V G_R G_R	$G = \frac{1}{G_R} \frac{G_V G_R}{1 + G_V G_R}$			

Teil III Energie und Antriebstechnik

14 Dreiphasensysteme

Maschensatz:

$$\underline{U}_1 + \underline{U}_2 + \underline{U}_3 = 0$$

$$\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = 0$$

 \underline{U} Spannung [V] (komplex)

 \underline{I} Strom (kom- [A] plex)

14.1 Sternschaltung

Strang-Sternspannungen:

$$\underline{U}_{Str1} = \underline{U}_1 = \underline{U}_1 - \underline{U}_2
\underline{U}_{Str2} = \underline{U}_2 = \underline{V}_1 - \underline{V}_2
\underline{U}_{Str3} = \underline{U}_3 = \underline{W}_1 - \underline{W}_2$$

Aussenleiterspannungen:

$$\begin{array}{l} \underline{U}_{12} = \underline{U}_1 - \underline{U}_2 \quad \angle(\underline{U}_1, \underline{U}_2) = 120^{\circ} \\ \underline{U}_{23} = \underline{U}_2 - \underline{U}_3 \\ \underline{U}_{31} = \underline{U}_3 - \underline{U}_1 \end{array}$$

$$U = U_{Str}\sqrt{3}$$

$$I = I_{Str}$$

 \underline{U} Spannung [V] U_{Str} Strangspan- [V] nung

 \underline{I} Strom [A]

[V]

[A]

14.2 Dreieckschaltung

14.2.1 Leistungen bei Stern- und Dreieckschaltung

15 Elektromotoren und Generatoren

15.1 Allgemein

15.2 Gleichstrommaschine

Ersatzschaltbild Ankerkreis Falls $U > U_i \rightarrow \text{Motorbetrieb}$, sonst Genratorbetrieb

$$U_i = k_1 \Phi n$$

$$U = U_i + R_A I L_a \frac{dI}{dt}$$

$$I = \frac{U - U_i}{R_A} (\text{stationär})$$

$$n_0 = \frac{U}{k_1 \Phi}$$

$$P_{el} = U_i I \pm_{Gen}^{Mot} (I^2 R_A)$$

$$M = \frac{k_1}{2\pi} \Phi I = \frac{P_{mech}}{2\pi n}$$

$$M = k_2 \Phi I$$

$$n = \underbrace{\frac{U}{k_1 \Phi}}_{l \text{ order}} - \underbrace{\frac{R_A M}{k_1 k_2 \Phi^2}}_{l \text{ order}}$$

$$M_A = \frac{k_2 \Phi U}{R_A}$$

 U_i Ankerspan- [V] nung indu-

ziert

U Ankerspan- [V]

nung

I Strom [A] n Drehzahl [1]

n Drehzahl n_0 n-Leerlauf

 n_0 n-Leerlauf [1] P Leistung [W]

 R_A R-Anker $[\Omega]$

 L_a L-Anker $[\Omega]$

 Φ magn. Fluss [Wb] M Drehmoment [Nm]

 M_A M-Anlauf [Nm] k_1 Maschinen- [1]

1 Maschinenkonst.

 k_2 Maschinen- [1] konst.

15.2.1 Fremderregte Gleichstrommaschine (GNSM)

 $M = \frac{k_2 \Phi U}{R_A} - \frac{k_1 k_2 \Phi^2 n}{R_A}$

Drehzahlsteuerung:

1. Änderung des Erregerfeldes

2. Änderung der Ankerspannung

3. Vergrösserung des Ankerwiderstandes U Ankerspan- [V] nung

 R_A R-Anker $[\Omega]$ M Drehmoment [Nm]

 Φ magn. Fluss [Wb] k_1 Maschinen- [1]

 k_2 Maschinen- [1] konst.

konst.

15.2.2 Nutzbremsung mit fremderregter Gleichstrommaschine

$ \begin{array}{c c} L+o & F_1 \\ L-o & F_2 \end{array} \qquad \begin{array}{c} A_1 \\ A_2 \end{array} \qquad \begin{array}{c} R_{Br} $	$n = \frac{(R_A + R_{Br})M_{Br}}{k_1k_2\Phi^2}$ $M = \frac{k_1k_2\Phi^2n}{R_A + R_{Br}}$	n R_A R_{Br} M Φ k_1	Drehzahl R-Anker R-Brems Drehmoment magn. Fluss Maschinen- konst. Maschinen- konst.	$ \begin{bmatrix} 1 \\ \Omega \end{bmatrix} \\ \begin{bmatrix} \Omega \\ \end{bmatrix} \\ \begin{bmatrix} Nm \end{bmatrix} \\ \begin{bmatrix} Wb \\ \end{bmatrix} \\ \begin{bmatrix} 1 \end{bmatrix} $
---	--	-------------------------------------	---	--

15.3 Gleichstrom Nebenschlussmaschine (GNSM)

15.4 Gleichstrom Reihenschlussmaschine (GRSM)

$$\sum R_A = R_A + R_B + R_D$$

$$U_i = k_1 c * In = k_3 In$$

$$M = I^2 \frac{k_3}{2\pi} = I^2 k_4$$

$$n = \frac{U}{\sqrt{2\pi k_3 M}} - \frac{\sum R_A}{k_3}$$

$$M = \frac{k_3}{2\pi} \left(\frac{U}{k_3 n + \sum R_A} \right)^2$$

$$M_A = \frac{k_3}{2\pi} \left(\frac{U}{\sum R_A}\right)^2$$

Die änderung der Drehzahl ist wie bei GNSM

n Drehzahl [1]

 $egin{array}{ll} R_A & ext{R-Anker} & [\Omega] \ R_B & ext{R-Wendepol-} & [\Omega] \ & ext{wicklung} \end{array}$

 R_D R-Reihen- $[\Omega]$ schlusswick-

 $\begin{array}{ccc} & \text{lung} \\ U_i & \text{Ankerspan-} & [V] \\ & \text{nung} & \text{indu-} \end{array}$

M Drehmoment [Nm] M_A M-Anlauf [Nm] k Maschinen- [1] konst.

15.5 Drehstrom Synchrongenerator (DSG)

$$+j \ \underline{I} \xrightarrow{\uparrow} \underline{I} \qquad \underline{I} \qquad IV$$

I, IV: Motorbetrieb

II,III: Generatorbetrieb

I,II: Abgabe induktive Blindleis $tung = \ddot{U}bererregt$

III, IV: Aufnahme kapazitive Blindleistung = Untererregt

$$n_{syn} = \frac{60f}{p}$$

$$U_i = z \frac{d\Phi}{dt}$$

$$|U_i| = Blv_R z$$

$$I_w = I\cos(\varphi)$$
 $I_b = I\sin(\varphi)$ $I^2 = I_w^2 + I_b^2$

$$I^2 = I_w^2 + I_b^2$$

$$\underline{I} = I_w + jI_b = \frac{j}{X_d}(\underline{U}_p - \underline{U}_{Kl})$$

$$\underline{U}_{Kl} = \underline{U}_p + jX_d\underline{I}$$

$$X_d = X_H + X_\sigma$$

Leerlauf:

$$\frac{I_E}{I_{E0N}} = \frac{U_p \sqrt{3}}{U_N}$$

Kurzsschluss:

$$X_d = \frac{U_p}{I_{K0}}$$

$$x_d = X_d \frac{I_N \sqrt{3}}{U_N} = X_d \frac{I_N}{U_{Kl}} = \frac{1}{k_0}$$

Drehzahl (Netz-) Fre- [Hz]quenz

Polpaarzahl U, Span. indu- [V]ziert

 U_{KI} Span. Klem- [V]men

1 Leiterlänge [m]Anz. Windun- [1] \boldsymbol{z}

gen Luftspaltgesch $\left[\frac{m}{5}\right]$ v_R

В Induktion

Φ magn. Fluss [Wb] I_w Wirkstrom [A]

[A] I_b Blindstrom

 X_d synch.Reakt $[\Omega]$ relative $|\Omega|$ x_d

synch.Reakt

 I_E Erregerstrom [A]**U-Nenn** U_N [V]

verkettet

Leerlauf-[1] k_0 Kurzschluss Verhältnis

15.6 DSG im Inselbetrieb

$\underline{U}_p = \underline{U}_{Kl} - jX_d\underline{I}$	U_p U_{Kl}	Span. Polrad Span. Klem- men	$egin{array}{c} [V] \ [V] \end{array}$
	X_d	synch.Reakt	$[\Omega]$

15.7 Belastung des DSG am starren Netz

$$U_p = \sqrt{\frac{U_{Netz}^2}{3} + X_d^2 I^2 + 2\frac{U_{Netz}}{\sqrt{3}} X_d I \sin(\varphi)}$$

$$falls \ U_N = U_{Netz}:$$

$$\frac{U_p \sqrt{3}}{U_N} = \sqrt{1 + x_d^2 \left(\frac{I}{I_N}\right)^2 + 2x_d \frac{I}{I_N} \sin(\varphi)}$$

$$U_N \quad U-Nenn \quad [V]$$

$$verkettet$$

$$X_d \quad synch.Reakt \quad [\Omega]$$

$$x_d \quad rel. \quad [\Omega]$$

$$synch.Reakt$$

$$I \quad Laststrom \quad [A]$$

$$\varphi \quad Phase \quad [rad]$$

15.8 Drehmoment und Stabilität des DSG am starren Netz

Teil IV Elektronik

16 Diode

16.1 Ideale Diode

16.2 Konstantspannungsmodel

16.3 Arbeitspunktberechnung

16.4 Kennlinie

$$i_D = I_S(e^{\frac{u_D}{U_T}} - 1)$$

$$i_D = I_S(e^{\frac{u_D - r_b i_D}{mU_T}} - 1)$$

$$U_T = \frac{kT}{e} = 8.6 \cdot 10^{-5} \cdot T$$

 $U_T(300K) = 26mV$, $U_T(348K) = 30mV$, $U_T(393K) = 34mV$

Für normale Si-Diode gilt: $I_S = 10^{-12} A$, $r_b = 0.1 \Omega$, m = 1

Die vier Bereiche der Kennlinie:

 $-0.1V < u_D < 0.1V$ ⇒ Diodengleichung exakt verwenden

II: $u_D > 0.1V$

 \Rightarrow Diodengleichung wird: $i_D = |I_S|e^{\frac{it}{U_T}}$ Verhältnis zweier Spannungen:

 $\frac{I_{D2}}{I_{D1}} = e^{\frac{\tilde{U}_{D2} - U_{D1}}{U_T}}$ $\to U_{D2} - U_{D1} = U_T \ln \frac{I_{D2}}{I_{D1}}$

 $i_D = -I_S$ oder $i_D = |I_S|$

III: $u_D^{-1} < -0.1V$ IV: Siehe Zehner-Diode

Strom durch [A] i_D

Diode

Spannung [V] u_D über Diode

 U_T [V]Temperaturspannung

TTemperatur [K]

 $I_{\mathcal{S}}$ Sättigungs-[A]strom

Sperrstrom [A] I_R

Bahnwider- $|\Omega|$ r_h stand

m Korrekturfakt. [1]

k Bolzmannkonst.

 $=1.38 \cdot 10^{-23}$

Elementar-[As]е ladung $1.602 \cdot 10^{-19}$

16.4.1 Differentieller Widerstand

Für kleine Signale wird die Kennlinie der Diode durch eine Tangente (= r_d) approximiert.

$$r_d = \frac{du_D}{di_D} = \frac{1}{g_d} \approx \frac{U_T}{I_{D0}}$$

Falls m = 1 und $r_b = 0$ gilt:

$$g_d = \frac{di_D}{du_D} = I_S e^{\frac{u_D}{U_T}} \frac{1}{U_T} = \frac{i_D}{U_T}$$

Differentieller $[\Omega]$ r_d Widerstand

Differentieller [S] d_d Leitwert

Strom durch [A] i_D Diode

Spannung [V] u_D über Diode

 U_T Temperatur-[V]spannung

Korrekturfakt. [1] m

DC-Strom im [A] I_{D0} Arbeitspunkt

16.5 DC- und AC-Analyse von Diodenschaltungen

16.5.1 Vorgehen

- 1. Schaltung aufteilen in AC- und DC-Ersatzschltbild
- 2. In DC-Ersatzschaltung den Arbeitspunkt bestimmen (Konstantspannungsmodell)
- 3. Berechnen der dynamischen Widerstände im Arbeitspunkt (approximieren der Diodenkennlinie)
- 4. Kleinsignalanalyse (Lineare Netzwerktheorie)
- 5. Gesamtlösung setzt sich aus Arbeitspunkt und Wechselstromlösung zusammen

16.5.2 Kleinsignalanalyse

Arbeitspunktbestimmung

DC-Ersatzschaltung: Konstantspannungsmodell (siehe S. 129)

AC-Ersatzschaltung: Differentieller Widerstand (siehe S. 130)

Resultierendes Gleichungssystem:

$$\left|egin{array}{l} i_D = rac{U_{
m QO} - u_D}{R_V} \ i_D = I_{
m S} e rac{u_D}{U_T} \end{array}
ight|$$

$$i_D = 0$$
 $u_D <= U_E$
 $i_D = \frac{1}{r_D(u_D - U_E)}$ $u_D => U_E$

$$U_E = U_{D0} - I_{D0}rd$$

 U_F Flussspan. [V]

 R_V Vorwiderstand $[\Omega]$ U_{O0} Quellspan. [V]

 I_{D0} Arbeitsstrom [A]

 U_{D0} Arbeitspan. V

 U_T Temperatur- [V]

 $\begin{array}{ccc} & \text{spannung} \\ u_D & \text{Spannung} & [V] \end{array}$

über Diode i_D Strom durch [A]

Diode I_S Sättigungs- [A]

Sättigungs- [A] strom

 U_E Gleichspan. [V]

16.5.3 Grosssignalanalyse

Für Grosssignalanalyse wird die Kennlinie durch eine Gerade durch die Punkte $0.1i_{Dmax}$ und $0.9i_{Dmax}$ approximiert.

$$U_E = u_D(0.1I_{Dmax}) - 0.1I_{Dmax}r_F$$

$$r_F = \frac{\Delta u_D}{0.8 I_{Dmax}}$$

 u_D Spannung [V] über Diode

 i_D Strom durch [A] Diode

 r_F Diodenwider- $[\Omega]$ stand

16.6 Z-Dioden

$$r_Z = \frac{du_Z}{di_Z}$$

Teperaturkoeffizient:

$$\alpha = \frac{\frac{dU_Z}{dT}}{U_Z}$$

 $\alpha < 0$ bei $U_Z < 5.6V$

 $\alpha \approx 0$ bei $U_Z \approx 5.6 V$

 $\alpha > 0$ bei $U_Z > 5.6V$

Temperaturkompensation durch Serieschaltung: $\alpha_1 U_{Z1} = -\alpha_2 U_{Z2}$

 r_Z Z-Widerstand $[\Omega]$

 r_d Differentieller $[\Omega]$ Widerstand

 U_Z Zehnersp. [V]

 U_F Flusssp. V_F Flusssp. V_F Temperatur V_F

16.6.1 Z-Dioden zur Spannungsstabilisierung

$$I_{totmin} = \frac{U_{Smin} - U_{outmin}}{R}$$

$$I_{totmax} = \frac{U_{Smax} - U_{outmin}}{R}$$

$$I_{outmin} = I_{totmin} - I_{Lmax}$$

$$I_{outmax} = I_{totmax} - I_{Lmin}$$

$$P_{Zmax} = U_{outnom}I_{outmax}$$

Rippelunterdrückung:

$$u_{out} = u_S \frac{r_Z || R_L}{R + (r_Z || R_L)}$$

 I_{tot} I-Eingang [A]

 U_S Speisesp. [V] I_L Laststrom [A]

 U_{out} Ausgangssp. [V]

R Vorwiderstand $[\Omega]$

 R_L Lastwiderstand[Ω] P_Z P-Verslust [W]

 r_{Z} Differentieller $\left[\Omega\right]$ Widerstand

 u_S Rippel am [V] Eingang

 u_{out} Rippel am [V]Ausgang

17 Bipolar Transistor

17.1 NPN- und PNP-Transistor

PNP:

$$i_E = i_C + i_B$$

$$i_C = Ai_I$$

$$i_{C} = Ai_{E}$$

$$B = \frac{A}{1 - A} = \frac{i_{C}}{i_{B}}$$

DC-Ersatzschaltung:

$$i_B = I_{SB}e^{\frac{u_{BE}}{U_T}}$$

$$i_C = BI_{SB}e^{\frac{u_{BE}}{U_T}}$$

Α Stromver-[1] stärkung in

B-Schaltung = 0.9...0.998

В Stromverstär- [1] kung

Basisstrom [A] i_B Kollektorstrom [A]

 i_C Emitterstrom i_E

Span. $B \rightarrow E$ u_{BE} [V]

Temp.-Span. u_T $Diode\ B \,\to\, E$

 ≈ 0.026

Stromquelle [A] i_{SB} $zw. \ C \to B$

17.2 Der ideale Transistor bei Gleichspannung

17.2.1 DC-Ersatzschaltung

17.3 Verstärkerschaltungen

17.3.1 Dynamische Innenwiderstände des Transistors

17.3.2 Emitterschaltug

$$A = \frac{u_{out}}{u_{in}} = -\frac{R_C}{R_E + r_E' + \frac{R_C}{\mu}}$$

$$A \approx -\frac{R_C}{R_E + r_E'}$$

Falls
$$R_E = 0$$
: $A = \frac{R_C \| r_{CE}}{r_E'}$

$$\mu = rac{r_{CE}}{r_E'} pprox rac{U_{Early}}{U_{temp}}$$

$$r_E = rac{U_{temp}}{I_E} = rac{r_{B'E}}{eta+1}$$

$$r_E' = r_E + \frac{r_{BB'} + R_B}{\beta + 1}$$

$$r_{CE} = rac{U_{Early} + U_{CE}}{I_C} pprox rac{U_{Early}}{I_C}$$

$$r_{0C} \approx R_C$$
 $r_{0E} = r_{iE} || R_E$ $r_{0B} = r_{iB} || R_1 || R_2$

$$\mu$$
 max. theore- [1] tisch A

$$\beta$$
 AC-Stromver- [1] stärkung

$$R_C$$
 R-Kollektor $[\Omega]$

$$R_E$$
 R-Emitter Ω

$$R_B$$
 R-Basis $[\Omega]$

$$r_{BB'}$$
 Basisbahnwi- $[\Omega]$

$$r_E$$
 innerer r- $[\Omega]$

$$I_C$$
 I-Kollektor $[A]$

$$I_E$$
 Emitterstrom $[A]$

$$U_{Early}$$
 Early-Span. = $[V]$ 20...400, typ .100

$$U_{temp}$$
 Temp-Span. [V] ≈ 0.026

Arbeitspunktberechnung

$$U_{0_{Ersatz-Quelle}}=U_0=rac{U^+}{R_1+R_2}R_2$$

$$R_{i_{Ersatz-Quelle}} = R_1 || R_2$$

$$U_{R_E} = \frac{(U_0 - U_{BE})(\beta + 1)R_E}{(R_1||R_2) + (\beta + 1)R_E}$$

Falls
$$I_B = 0$$
: $U_{RE} = U_0 - U_{BE}$

$$I_B = \frac{(U_0 - U_{BE} - U_{R_E})}{R_1 \| R_2}$$

$$I_C = I_E - I_B$$

$$U_{R_E} = I_C R_C \rightarrow U_C$$

$$\beta$$
 AC-Stromver- [1] stärkung

$$R_C$$
 R-Kollektor $[\Omega]$

$$R_E$$
 R-Emitter $[\Omega]$

$$I_C$$
 I-Kollektor $[A]$

$$I_E$$
 Emitterstrom $[A]$ U^+ Speise-Span. $[V]$

$$U_{BE}$$
 B-E-Span. $[V]$

$$U_{BE}$$
 B-E-Span. $[V]$ ≈ 0.6

$$U_0$$
 Span.der $[V]$ gedachten Quelle des Basisspan-

$$R_i$$
 R-Innen $[\Omega]$

17.3.3 Basisschaltung

$$A = \frac{u_{out}}{u_{in}} = \frac{R_C}{R_E + r_E' + \frac{R_C}{u}}$$

$$A \approx \frac{R_C}{R_E + r_E'}$$

$$A = \frac{R_C \| r_{CE}}{r_E'}$$

$$\mu = rac{r_{CE}}{r_E'} pprox rac{U_{Early}}{U_{temp}}$$

$$r_E = rac{U_{temp}}{I_E} = rac{r_{B'E}}{eta+1}$$

$$r_E' = r_E + \frac{r_{BB'} + R_B}{\beta + 1}$$

$$r_{CE} = rac{U_{Early} + U_{CE}}{I_C} pprox rac{U_{Early}}{I_C}$$

$$r_{0C} \approx R_C$$
 $r_{0E} = r_{iE} || R_E$ $r_{0B} = r_{iB} || R_1 || R_2$

$$\mu$$
 max. theore- [1] tisch A

$$\beta$$
 AC-Stromver- [1] stärkung

$$R_C$$
 R-Kollektor $[\Omega]$

$$R_E$$
 R-Emitter $[\Omega]$

$$R_B$$
 R-Basis Ω

$$r_{BB'}$$
 Basisbahnwi- $[\Omega]$ derstand

$$r_E$$
 innerer r- $[\Omega]$ Emitter

$$I_C$$
 I-Kollektor $[A]$

$$I_E$$
 Emitterstrom $[A]$

$$U_{Early}$$
 Early-Span. = $[V]$ 20...400, typ .100

$$U_{temp}$$
 Temp-Span. [V] ≈ 0.026

17.3.4 Kollektorschaltung (Emitterfolger)

$$A = \frac{u_{out}}{u_{in}} = \frac{R_E}{R_E + r_E'}$$

Falls
$$R_F \gg r_E'$$
 gilt :

$$A \approx 1$$

$$r_E' = r_E + rac{r_{BB'} + R_B}{eta + 1}$$

$$R_E$$
 R-Emitter $[\Omega]$

$$R_B$$
 R-Basis $[\Omega]$ r_E innerer r- $[\Omega]$

$$r_{BB'}$$
 Basisbahnwi- $[\Omega]$ derstand

$$\beta$$
 AC-Stromver- [1] stärkung

18 Feldeffekt Transistor

18.1 Verschiedene Typen

selbst-

JFET: Die Isoltion zwischen Kanal und Gate besteht aus einer pn-Sperrschicht (Diode).

MOSFET: Die Isoltion zwischen Kanal und Gate besteht aus einer SiO_2 -Schicht.

Der selbstsperrende MOSFET sowie der JFET werden mit der Gatespannung gesperrt.

Bulk ist meistens mit Source verbunden.

- G Gate
- D Drain
- B Bulk oder Substrat
- S Source

18.2 Der ideale MOSFET (Handrechnung)

Im gesättigten Bereich verhält sich ein FET annähernd wie eine Stromquelle, im ungesättigten Bereich stellt er einen Widerstand dar. Die Steuergrösse ist u_{GS} .

- Drainstrom fliesst nur falls $|u_{GS}| > |U_T|$.
- Gatestrom ist 0.

$$U_{DSsat} = U_{GS} - U_{T}$$

$$I_{Dsat} = K \frac{U_{DS}^2}{2}$$

$$I_D = I_D' \frac{W}{L}$$

$$K = \frac{2I_{DSS}^*}{U_T^2}$$

$$K = K' \frac{W}{L} \qquad K' = \mu C_{ox}$$

$$k' pprox K'$$
 $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$

$$U_A \approx aL$$

Im ohmschen Bereich gilt:

$$U_{DS} < U_{DSsat}$$

$$I_D = K \left[(U_{GS} - U_T) U_{DS} - \frac{U_{DS}^2}{2} \right]$$

$$r_{DS} = \frac{dV_{DS}}{dI_D} = \frac{|U_A| + U_{DS}}{I_D}$$

Im gesättigten Bereich gilt:

$$U_{DS} > U_{DSsat}$$

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2$$

Nur bei n-Kanal:

$$U_T > 0$$

$$U_{GS} > U_T \Rightarrow I_D > 0$$

Nur bei p-Kanal:

$$U_T < 0$$

$$U_{GS} < U_T \Rightarrow I_D > 0$$

$$U_T$$
 Schwellspan- $[V]$ nung (0.6...8)

[A]

$$K$$
 Transkonduk- $\left[\frac{A}{V^2}\right]$ tanzparame-

$$k'$$
 spez. k $(k'_N \approx \left[\frac{A}{V^2}\right]$
 $44 \cdot 10^{-6}, k'_P \approx$
 $17 \cdot 10^{-6})$

$$k$$
 wie K jedoch $\left[\frac{A}{V^2}\right]$ gesättigt

$$U_{DS}$$
 DS-Spannung $[V]$

$$U_{GS}$$
 GS-Spannung $[V]$

$$I_{DSS}^*$$
 ev. anstel- $[A]$ le von K gegeben

L Kanallänge
$$[m]$$
 C_{ox} spez. Kapa- $\left[\frac{F}{m^2}\right]$

$$z_{ox}$$
 spez. Kapa- $\lfloor \frac{1}{m} \rfloor$
zität Kanal-
Gate

$$\epsilon_{ox}$$
 Dielektrizi- $\left[\frac{F}{m}\right]$ tätskonst. $(SiO_2 = 3.9 \cdot$

$$t_{ox}$$
 8.86 · 10⁻³)
 t_{ox} Dicke Isola- [m]
tion Kanal-
Gate

$$\mu$$
 Beweglichkeit $\left[\frac{cm^2}{sV}\right]$ Ladungs-
träger im Kanal (Für Si :

$$\mu_p = 580 ,$$
 $\mu_n = 230)$

$$r_{DS}$$
 dyn. Drain- $[\Omega]$
Source Wider-
stand

$$U_A$$
 Earlyspan- $[V]$ nung

L Gatelänge
$$[m]$$

a Early Faktor $\left[\frac{V}{um}\right]$

$$\approx 6$$

18.3 Der reale MOSFET

Im Exp-Bereich, bei schwacher Inversion:

 $0 < U_{GS} < (U_T - 60mV)$ Im Quad-Bereich, bei starker Inversion:

 $U_{GS} > (U_T - 60mV)$

Dazwischen: Moderate Inversion

Im Leckstrombereich, im Schwellenbereich und im linearen Bereich existieren keine handlichen Formeln.

Im EXP-Bereich gilt:

 $U_{DSsat} \approx 5U_{temp} \approx 130mV$

ungesättigt: $U_{DS} \leq U_{DSsat}$

$$I_D = I_M e^{\frac{\underline{U}_{GS} - \underline{U}_M}{nU_{temp}}} \left(1 - e^{\frac{-\underline{U}_{DS}}{U_{temp}}}\right) (1 + \lambda U_{DS})$$

gesättigt: $U_{DS} \ge U_{DSsat}$

$$I_D = I_M e^{\frac{U_{GS} - U_M}{nU_{temp}}} (1 + \lambda U_{DS})$$

Im Quadratischen Bereich gilt:

$$U_{DSsat} = U_{GS} - U_T = \sqrt{2 \frac{I_D}{k}}$$

ungesättigt: $U_{DS} \leq U_{DSsat}$

$$I_D = K \left[(U_{GS} - U_T)U_{DS} - \frac{U_{DS}^2}{2} \right] (1 + \lambda_{U_{DS}})$$

gesättigt: $U_{DS} \ge U_{DSsat}$

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2(1 + \lambda_{U_{DS}})$$

$$\lambda = \frac{1}{U_A}$$

$$U_T = T_{T0} \pm \Delta U_T \qquad N \to +$$

$$\Delta U_T = \gamma (\sqrt{U_{SB} \pm \Phi_0} \sqrt{\Phi_0})$$

$$U_{temp} = \frac{kT}{e} = 86 \frac{\mu U}{K} T$$

$$I_M = I_M' \frac{W}{L}$$

$$n = 1 + \frac{\gamma}{2\sqrt{U_{SB} + \Phi_0}}$$

$$K = K' \frac{W}{L} = \mu C_{oc} \frac{W}{L}$$

$$k = k' \frac{W}{L} = \mu C_{ox} \frac{W}{L}, \qquad \alpha = \frac{K'}{k'}$$

$$I_D$$
 Drainstrom $[A]$ I_M Drainstrom- $[A]$

grenze

 U_{GS} Ü Gate Source [V]

 U_{DS} Drain-Source [V]

 U_T Schwellsp. [V]

 U_{T0} $U_{T0N} \approx 0.6 \ [V]$ $U_{T0P} \approx 0.65$

 U_{SB} U Source Bulk [V]

 U_{temp} U-Temp. [V] $\approx 26 \cdot 10^{-3}$

 U_A Early-Span. [V]

 Φ_0 Fermi-Pot.= V $2\Phi_F = 0.6$

k Transkond. $\left[\frac{A}{V^2}\right]$ K k ungesättigt $\left[\frac{A}{V^2}\right]$

K k ungesättigt $\left[\frac{A}{V^2}\right]$ *K'*, *k'* bei quadrati- $\left[\frac{A}{V^2}\right]$

schem Kanal typisch: $k_N = 44 \cdot 10^{-6}, k_P = 17 \cdot 10^{-6}$

 α Transkond. [1] Verhältnis

 ≈ 1

n Subthreshold [1] Slope Faktor ≈ 1.5

 $\gamma \qquad \gamma \approx 0.6 \qquad \left[\sqrt{V}\right]$ $\lambda \qquad \text{Mod-fakt.} \qquad \left[\frac{1}{V}\right]$

λ Mod-fakt. (0.01...0.05)

W Kanal-Länge [m]

L Kanal-Breite [m]

T Temperatur [K]

 μ Beweglichkeit $\left[\frac{cm^2}{sV}\right]$ Ladungs-

träger im Kanal (Für *Si*:

 $\mu_p = 580 ,$ $\mu_n = 230)$

18.4 Kleinsignal Ersatzschaltbild für tiefe Frequenzen

π -Ersatzschaltbild:

T-Ersatzschaltbild:

Kleinsignal-Ersatzschaltbilder gelten für nund p-Kanal FETs

Steilheit im Stromquellenbetrieb bei starker Inversion:

$$g_m = \frac{dI_D}{dU_{GS}} \approx K(U_{GS} - U_T)$$

$$g_m = K(U_{GS} - U_T)(1 + \lambda U_{DS})$$

$$g_m = \sqrt{2kI_D(1+\lambda U_{DS})}$$

$$g_m \approx \sqrt{2kI_L}$$

$$\frac{g_{m1}}{g_{m2}} = \sqrt{\frac{I_{D1}}{I_{D2}}}$$

$$r_S = \frac{1}{g_m}$$

Ausgangswiderstand:

$$r_{DS} = rac{U_A + |U_{DS}|}{|I_D|} pprox rac{|U_A|}{|I_D|}$$

Steilheit im Stromquellenbetrieb bei schwacher Inversion:

$$g_m = \frac{dI_D}{dU_{GS}} = \frac{I_D}{nU_{temp}}$$

$$r_S = \frac{1}{g_m} = \frac{nU_{temp}}{I_D}$$

Body Steilheit im Stromquellenbetrieb bei starker Inversion:

$$g_{mB} = \frac{dI_D}{dU_{SB}}$$

$$g_{mB} = -g_m \frac{\gamma}{2\sqrt{U_{SB} + \Phi_0}}$$

$$g_{mB} = -g_{mB}(n-1)$$

⇒ Back-Gate hat die halbe Wirkung des Gate bei $U_{SB} = 0$

- Steilheit [1] g_m Übertragungskennlinie
- Body Steil- [1] g_{mB} heit
- int. r_S Source $[\Omega]$ Widerstand
- Drainstrom I_D [A]
- U_T Schwellspan-[V]nung (0.6...8)
- U_A Early-Span. [V] U_{temp} U-Temp. $\approx 26 \cdot 10^{-3}$
- U_{DS} Drain-Source- [V]Spannung
- Gate-Source-[V] U_{GS} Spannung
- Source-Gate- U_{SG} |V|Spannung
- U_{SB} Source-Bulk-[V]Spannung
- K Transkonduk- $\left[\frac{A}{V^2}\right]$ tanzparameter
- Subthreshold [1] nSlope Faktor ≈ 1.5
- $\left[\frac{1}{V}\right]$ λ Mod-fakt. (0.01...0.05)
- Φ_0 Fermi-Pot.= $2\Phi_F = 0.6$
- $\gamma \approx 0.6$ γ

18.5 DC-Berechnung mit idealen MOSFET Gleichungen

	Bei Verstärkern muss der Arbeitspunkt im Sättigungsbereich liegen! \Rightarrow prüfen ob $u_{DS} > u_{GS} - U_T$	$i_D \ U^+$	Drainstrom Speisespan- nung	[A] [V]
n-Kanal:	$i_D = \frac{k}{2}(u_{GS} - U_T)^2$	U_T	Schwellspannung (0.68)	[V]
U^{+} R_{D}	$I: U_G - i_D R_S - u_{GS} = 0$	U_G	Gate- Spannung	[V]
$R_G i_G U_{DS}$		u_{DS}	Drain-Source- Spannung	[V]
$U_{G} \downarrow \bigoplus_{s} U_{G} \downarrow U_{s}$	$u_{GS} = \left(U_T - \frac{1}{kR_S}\right) +$	u_{GS}	Gate-Source- Spannung	[V]
	$\sqrt{\frac{2}{kR_S}(U_G - U_T) + \frac{1}{(kR_S)^2}}$	u_{SG}	Source-Gate- Spannung	[V]
	V KITS (KITS)	R_G R_D	R-Gate R-Drain	$egin{array}{c} [\Omega] \ [\Omega] \end{array}$
p-Kanal:	$i_D = \frac{k}{2}(u_{GS} - U_T)^2$	R_S	R-Source	$[\Omega]$
$U^+ - U_G \downarrow \bigoplus_{U \in \mathcal{M}} \bigcup_{S \in \mathcal{M}} U^+$		k	Transkonduk- tanzparame- ter	$\left[\frac{A}{V^2}\right]$
$U_{G} \stackrel{?}{\downarrow} \stackrel{?}{\downarrow} \stackrel{?}{\downarrow} U_{DS} $	$I: U_G - i_D R_S - u_{GS} = 0$ $u_{SG} = \left(U_T - \frac{1}{kR_S} \right) +$			
	$\sqrt{\frac{2}{kR_S}(U_{GP} - U_T) + \frac{1}{(kR_S)^2}}$			
	$U_{GP} = U^+ - U_G$			
Arbeitspunkt:	$u_{DS} = U^+ - i_D(R_S + R_D)$			

18.6 Der FET als Schalter

meistens: $R_S = 0$

Der Fet muss im ohmschen Bereich betrieben werden Schalter offen wenn $|u_{GS}| < |U_T|$ Schalter geschlossen wenn $|u_{GS}| \gg |U_T|$

Aus I und II:

$$\left| \begin{array}{lll} u_{G} - i_{D}R_{S} - u_{GS} & = & 0 \\ U^{+} - i_{D}(R_{S} + R_{D}) - u_{DS} & = & 0 \end{array} \right|$$

$$\frac{di_D}{du_{DS}} = \frac{1}{r_{DS}}$$

$$\frac{di_D}{du_{DS}} = K(u_{GS} - U_T) - Ku_{DS}$$

$$r_{DS0} = \frac{1}{K(u_{GS} - U_T)}$$

eingeschaltet und $R_S = 0$:

$$i_D = \frac{U^+}{R_D + r_{DS0}}$$

eingeschaltet und $R_S \neq 0$:

$$u_G - \frac{R_S U^+}{R_S + R_D + r_{DS0}} - u_{GS} = 0$$

 $r_{DS0} = \frac{1}{K(U_{GS} - U_T)} = 0$

 U^+ Speisespan- [V] nung R_S R an Source $[\Omega]$ R_D R an Drain $[\Omega]$

 u_{GS} Gate-Source- [V] Spannung

 u_{DS} Drain-Source- [V] Spannung

 u_G Gate-Span. [V] r_{DS} dyn.Source $[\Omega]$ Widerstand

 r_{DS0} Einschalt- $[\Omega]$ widerstand $u_{DS} = 0$

 i_D Drainstrom [A] U_T Schwellspan- [V] nung (0.6...8)

K Transkond. $\left[\frac{A}{V^2}\right]$

18.7 Des FET als AC-Verstärker

18.7.1 Sourceschaltung

- invertierend
- Für tiefe bis mittlere Frequenzen
- r_{in} gross
- r_{out} gross

$$A = \frac{u_{out}}{u_{in}}$$

$$A = -\frac{R_D}{R_S + r_S + \frac{R_S + R_D}{\mu}}$$

$$\mu = \frac{r_{DS}}{r_S} = A_{max}$$

Für grosses μ :

$$A \approx -\frac{R_D}{R_S + r_S}$$

Bei $R_S = 0$ gilt:

$$A = -\frac{R_D \| r_{DS}}{r_S}$$

Bei $R_S = 0$ und $R_D = \infty$ gilt:

$$|A| = \left| \frac{r_{DS}}{r_S} \right| = \mu$$

$$r_S = \frac{1}{g_m}$$

$$r_{DS} = \frac{U_{Early} + U_{DS}}{I_D} pprox \frac{U_{Early}}{I_D}$$

$$U^+$$
 Speisespan- $[V]$ nung

 u_{in} Eingangssp. [V] u_{out} Ausgangssp. [V]

A Verstärkung [1]

 R_G R-Gate $[\Omega]$ R_D R-Drain $[\Omega]$

 R_S R-Source $[\Omega]$

 r_S dyn.Source $[\Omega]$ Widerstand

 μ Max A bei [1] Sourceschaltung

 g_m Steilheit [1] Kennlinie

 U_{Early} Early 5...100 [V] U_{DS} Drain-Source- [V] Spannnung

 I_D Drainstrom [A]

18.7.2 Gateschaltung

- nicht invertierend
- Für hohe Frequenzen
- r_{in} klein
- rout gross

$A = \frac{u_{out}}{u_{in}}$	U^+	Speisespan- nung	[V]
(1)	u_{in}	Eingangssp.	[V]
$A = \frac{R_D \left(1 + \frac{1}{\mu} \right)}{r_S + R_S + \frac{R_D + R_S}{\mu}} = \frac{R_D}{R_S + r_S}$	u_{out}	Ausgangssp.	[V]
$A = \frac{r_c + R_c + \frac{R_D + R_S}{R_S + r_S}}{R_S + r_S}$	A	Verstärkung	[1]
μ	R_D	R-Drain	$[\Omega]$
1	R_S	R-Source	$[\Omega]$
$r_S = \frac{1}{\alpha}$	r_S	dyn.Source	$[\Omega]$
8 m		Widerstand	
$U_{\text{Farly}} + U_{\text{DS}} = U_{\text{Farly}}$	g_m	Steilheit	[1]
$r_{DS} = rac{U_{Early} + U_{DS}}{I_D} pprox rac{U_{Early}}{I_D}$		Kennlinie	
1D 1D	U_{Earl}	, Early 5100	[V]
	U_{DS}	Drain-Source	[V]
	I_D	Drainstrom	[A]
	μ	Max A bei	[1]

18.7.3 Drainschaltung

- nicht invertierend
- Spannungsfolger
 (A = 1), Impedanzwandler,
 Leistungstreiber
- r_{in} gross
- rout klein

u_{1n}	
$A = -\frac{R_S}{R_S + r_S \left(1 + \frac{R_S}{r_{ds}}\right)}$	
$r_S = \frac{1}{g_m}$	
$r_{DS} = \frac{U_{Early} + U_{DS}}{I_D} \approx \frac{U_{Early}}{I_D}$	

Sourceschal-

tung

18.8 Dynamische Innenwiderstände des MOS-Transistors

18.9 Der FET als Spannungsgesteuerter Widerstand

18.10 MOS-Diode

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2$$

$$r_{MD} = r_S || r_{DS}$$

$$r_{MD} = \frac{u_{DS}}{i_D}$$

$$r_{DS} = \frac{U_A + U_{DS}}{I_D}$$

$$r_S = \frac{1}{g_m} = \frac{1}{\sqrt{2I_Dk}}$$

$$U_{GS} = U_T + \sqrt{\frac{2I_D}{k(1 + \lambda U_{DS})}}$$

$$U_{GS} pprox U_T + \sqrt{rac{2I_D}{k}}$$

Wichtig, alle Substrate auf gleichem Potential!

Spannung steiler

$$\frac{U_{GS1} - U_{T1}}{U_{GS2} - U_{T2}} = \sqrt{\frac{\frac{W_2}{L_2}}{\frac{W_1}{L_1}}}$$

 I_D Drainstrom [A] U_T Schwellspan- [V] nung (0.6...8)

k Transkonduk- $\left[\frac{A}{V^2}\right]$ tanzparameter

 U_{GS} Gate-Source- [V] Spannung

 U_{DS} Drain-Source- [V] Spannung

 r_{MD} Dynamischer $[\Omega]$ Widerstand

 g_m Steilheit [1] Übertragungskennlinie

 r_S int. Source $[\Omega]$ Widerstand

 U_A Early-Span. [V] W Gate-Breite [m] L Gate-Länge [m]

[A]

18.11 Stromquellen

18.11.1 Einfache Stromquelle

Die Schaltung ist für extrem kleine Betriebssungeeignet, pannungen da über R_S eine Spannung abfallen muss. Für diesen Einsatzbereich eignet sich Kaskodeschaltung, bei der R_S durch einen Transistor ersetzt wird.

Der Fet muss im gesättigten Bereich (siehe Kapitel 18.3) betrieben werden.

Für $R_S = 0$:

$$I_D = \frac{k}{2}(U_{GS} - U_T)^2(1 + \lambda U_{DS})$$

$$r_{iD} = r_{DS} = \frac{U_A + U_{DS}}{I_D} \approx \frac{U_A}{I_D}$$

$$U_o \geq U_{DSsat}$$

Für $R_S \neq 0$:

$$I_D = \frac{U_G - U_{GS} - U_{SS}}{R_S}$$

$$r_{iD} = r_{DS} \left(1 + \frac{R_S}{r_S} + \frac{R_S}{r_{DS}} \right)$$

$$r_S = rac{1}{\mathcal{Q}_m} = rac{1}{\sqrt{2I_Dk}}, \; r_{DS} pprox rac{U_A}{I_D}$$

$$U_o > R_S I_D + U_{DSsat}$$

 R_S dient als Gegenkopplung

$$I_D$$
 Drainstrom

Innenwider- $[\Omega]$ r_{iD} stand

 U_o [V]Ausgangsspannung

 U_A Early-Span.

 U_{DS} U-Drain-[V]Source

 U_{SS} Negative [V]Speisespannung

 U_T Schwellspan-[V]nung (0.6...8)

R Widerstand $[\Omega]$ k Transkond.

Mod-fakt. λ

18.11.2 Stromquelle mit Kaskode-Schaltung

$$r_{o2} = r_{DS2} \left(1 + \frac{r_{DS1}}{r_{S2}} + \frac{r_{DS1}}{r_{DS2}} \right)$$

$$r_{o2} \approx \frac{r_{DS}^2}{r_{D2}} = \mu r_{DS}$$

$$U_o \ge U_{G2} - U_{GS2} + U_{DSsat2}$$

$$r_{iD}$$
 Innenwider- $[\Omega]$

stand U_o [V]Ausgangsspannung

R Widerstand $[\Omega]$

Max Verstär- [1] μ kung Source Schlautng

18.11.3 Stromquelle mit geregelter Kaskode-Schaltung

Die Schaltung kann auch als Supertransistor interpretiert werden.

$$r_o = r_{DS1} r_{DS2} g_{m1} g_{m3} (r_{DS3} || r_{iQ})$$

Strom kann wie in vorhergehender Schaltung berechnet werden.

stand U_o Ausgangs-[V]spannung

 U_{DS} U-Drain-[V]Source

R Widerstand $[\Omega]$

Gate-Steilheit [1] g

18.12 Stromspiegel

18.12.1 Widlar Stromspiegel

Ein Stromspiegel kann auch mehrere Ausgänge haben.

Der Eingangstransistor ist als MOS-Diode geschaltet.

Die Genauigkeit der Schaltung hängt sehr von den Exemplaren der Transistoren ab.

$$U_{omin} = U_{DSsat} = U_{GS2} - U_{T2}$$

$$U_{omin} = \sqrt{rac{2I_{D2}}{k}}$$
 $n = rac{I_o}{I_i} pprox i_o i_i$

$$n=rac{I_o}{I_i}pprox i_o i_o$$

$$n = \frac{\frac{W_2}{L_2}}{\frac{W_1}{L_1}} \cdot \frac{1 + \lambda_2 U_{DS2}}{1 + \lambda U_{DS1}}$$

$$r_o = r_{DS2} = \frac{U_{A2} + U_{DS2}}{I_{D2}}$$

$$r_o pprox rac{U_{A1}}{I_D} = rac{1}{\lambda I_D}$$

$$r_i = r_{S1} \| r_{DS1} \approx r_{S1} = \frac{1}{g_{m1}}$$

$$r_i = \frac{1}{\sqrt{2I_Dk}}$$

$$U_i = U_{GS1} = \sqrt{\frac{2I_D}{k}} + U_{T1}$$

$$r_o$$
 Innenwider- $[\Omega]$

stand Ausgangswi-

 $[\Omega]$ γ_i derstand

r-Source $[\Omega]$ r_{DS}

r-Drain- $[\Omega]$ r_S Source

 U_o Ausgangs-[V]spannung

 U_{DS} U-Drain-[V]Source

 U_{GS} U-Gate-[V]Source

 U_T Schwellspan-[V]nung (0.6...8)

 U_A [V]Early-Span.

 I_D Drain-Strom [A]

R Widerstand $[\Omega]$

Gate-Steilheit [1] g

k Transkond. λ Mod-fakt.

W Gate-Breite |m|

L Gate-Länge |m|

19 Operationsverstärker

19.1 Verstärkung

19.2 Idealer OP

19.2.1 Invertierender Verstärker

19.2.2 Nichtinvertierender Verstärker

19.2.3 Addierer

19.2.4 Subtrahierer

19.2.5 Mehrfach Addierer und Subtrahierer

19.2.6 Instrumentationsverstärker

19.2.7 Stromquelle

R_L u_{ref} u_{ref} R_L i_L i_L i_L i_L i_L i_L i_L i_L	Variante 1 und 2: $i_L = \frac{u_{ref}}{R_1}$	u_{ref} i_L R_L	Referenz- $[V]$ spannung Strom durch $[A]$ R_L Lastwider- $[\Omega]$ stand Widerstand $[\Omega]$
$i_{b} \xrightarrow{R_{1}} i_{I}$ u_{ref} R_{2} $i_{I} + i_{L}$ R_{3}	Variante 3: $i_L = -\frac{u_{ref}}{R_1} \cdot \frac{R_2 + R_3}{R_3}$		
$i_{b} \xrightarrow{R_{1}} \xrightarrow{R_{2a}} \xrightarrow{i_{1}} i_{L} \xrightarrow{i_{1}} i_{L} \xrightarrow{i_{1}} x_{L}$ $u_{ref} \xrightarrow{i_{2}} \xrightarrow{R_{2d}} i_{L}$	Variante 4: falls $R_{2a}=R_{2b}=R_{2c}=R_{2d}$: $i_L=\frac{u_{ref}}{R_1}$		

19.2.8 Stromspiegel

19.2.9 Differentieller UI-Wandler

19.2.10 Schmitt-Trigger

Invertierend:

Nicht invertierend:

$$u_T^+ = u_{ref} + \frac{R_1}{R_F}(u_{ref} - u_{outmin})$$
 $u_T^- = u_{ref} - \frac{R_1}{R_F}(u_{outmax} - u_{ref})$
 $u_H = u_T^+ - u_T^ u_H = (u_{outmax} - u_{outmin})\frac{R_1}{R_F}$

Invertierend:

$$u_{T}^{+} = u_{ref} + \frac{R_{1}(u_{outmax} - u_{ref})}{R_{1} + R_{F}}$$
 $u_{T}^{-} = u_{ref} - \frac{R_{1}(u_{ref} - u_{outmin})}{R_{1} + R_{F}}$
 $u_{H} = \frac{R_{1}(u_{outmax} - u_{outmin})}{R_{1} + R_{F}}$

 u_T^+ Sprungspan-[V]nung / Sprungspan-[V]nung \ Hysterese-[V] u_H spannung Referenz-[V] u_{ref} spannung $u_{outmax} \rightarrow + Speisung$ [V] $u_{outmin} \rightarrow$ -Speisung [V]Rückkopp- $[\Omega]$ lungs-Widerstand R_1 Widerstand $[\Omega]$

19.2.11 Wien-Robinson Oszillator

19.2.12 Beschaltung des OPs mit Zweitoren

Gilt nur für invertierenden Verstärker, da sonst kein virtueller Kurzschluss am Ausgang der Zweitore ist!

$$A(s) = \frac{u_{in}}{u_{out}} = -\frac{Z_F(s)}{Z_1(s)}$$

$$Z(s) = \frac{u_{in}(s)}{i_{ok}(s)}$$

 \boldsymbol{A} Verstärkung [1] Eingang [V] u_{in} Ausgang [V] u_{out} Impedanz $[\Omega]$ ZKurzschluss i_{ok} [A]strom

s Laplace Ope- [1] rator

Häufig verwendete Zweitore

R	$\frac{R}{1 + sRC}$	R C Z	Kapazität $[F]$ Widerstand $[\Omega]$ Impedanz $[\Omega]$
R C	$\frac{1}{sC}(1+sRC)$	S	Laplace Ope- [1] rator
R R C	$(R_1 + R_2) \frac{1 + s \frac{R_1 R_2 C}{R_1 + R_2}}{1 + s R_2 C}$		
$ \begin{array}{cccc} R & R \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} $	R(2+sRC)		
$ \begin{array}{c c} C & C \\ C & R \end{array} $	$\frac{1}{sC} \frac{1 + s2RC}{sRC}$		
R_2 C_1 R_1	$R_2 \frac{1 + s2R_1C_1}{1 + s2R_1C_1 + s^2R_1R_2C_1^2}$		
$ \begin{array}{c c} C_2 \\ R_2 \\ C_1 \\ R_1 \end{array} $	$\frac{R_2(1+s2R_1C_1)}{1+s(2R_1C_2+R_2C_2)+s^2R_1R_2C_1(C_1+2C_2)}$		

19.3 Realer Operationsverstärker

19.3.1 Ein- und Ausgangsspannungsbereich

- 1: Eingangsspannungsbereich
- 2: Ausgangsspannungsbereich

input rail to rail (IRR):

 U_{rand1} , $U_{rand2} = 0$

output rail to rail (ORR):

 U_{rand3} , $U_{rand4} = 0$

 U_{rand} Randspannung[V] Positive Spei- [V]

sespannung

Uneg Negative [V]

Speisespan-

nung

19.3.2 Übertragungskennlinie

$$U_O = A_O U_{Diff}$$

$$A_{\rm O} = \frac{dU_{\rm O}}{dU_{\rm D}}$$

 $U_{\rm O}$ Ausgangs-[V]

spannung U_{Diff} Differenz-

[V]

spannung

 A_{O} Open Loop [1]

Verstärkung

19.3.3 Gleichtaktfehler (Common Mode Error)

$$U_m = \frac{U_{pos} + U_{neg}}{2}$$

$$U_B = \frac{U_P + U_N}{2}$$

$$U_{CM} = U_B - U_m$$

$$U_{OS} = \frac{|U_{CM}|}{CMRR}$$

$$U_{OE} = |U_{OS}| A_{pos}$$

$$U_{OE} = A_O \left(U_{Diff} + \frac{U_{CM}}{CMRR} + \frac{U_m}{A_O} \right)$$

$$CMRR_{max} = \frac{U_{Diff}}{U_{CM}} = \frac{U_{Diff} + 1}{4\epsilon}$$

[V] U_m Mittenspan.

 U_{B} Biasspan. [V]Common Mo- [V] U_{CM} de Spannung

 U_{OS} Offsetspan-[V]nung

[V] U_{pos} Speisespan-

nung

 U_P Spannung am [V]pos. Eingang

 U_N Spannung am [V]neg. Eingang

 A_{O} Open Loop [1] Verstärkung

CMRR Gleichtaktun- [1] terdrückung

Widerstands- [1] tolleranz

19.3.4 Effektive, geschlossene Verstärkung

Nicht invertierend:

$$\frac{1}{|A_{Clreal}|} = \frac{1}{|A_{Clid}|} + \frac{1}{|A_0|}$$

Invertierend:

$$\frac{1}{|A_{Clreal}|} = \frac{1}{|A_{Clid}|} + \frac{1}{|\eta A_0|}$$

$$\eta = \frac{R_F}{R_F + R_1}$$

 A_{Clreal} Effektive Ver- [1] stärkung real

 A_{Clid} Closed Loop [1] Verstärkung ideal

 A_O Open Loop [1] Verstärkung

R Widerstand $[\Omega]$

19.3.5 Offsetfehler

$$U_{OE} = U_{OS} A_{pos}$$

$$U_{OE} = U_{OS} \left(1 + \frac{R_F}{R_1} \right)$$

 U_{OE} Offset-Fehler- [V]

Spannung

 U_{OS} Offsetspan- [V] nung

 A_{pos} pos. Verstär- [1] kung (DC)

 R_F , R_1 siehe Seite 150 [Ω]

19.3.6 Versorgungsspannungsfehler (Power supply error)

$$U_{OS} = \frac{\Delta U_S}{PSRR}$$

$$U_{OE} = |U_{OS}|A_{pos}$$

 U_S Speisung V_{OE} Offset-Fehler- V_{OE}

Spannung

 U_{OS} Offsetspan- [V] nung

 A_{pos} pos. Verstär- [1] kung

PSRR Unter- [1]
drückung
der Speisespannungseinflüsse

19.3.7 Eingangsströme (Bias- und Offsetstrom)

Unterdrückungsmassnahmen

$$I_{OS} = |I_P - I_N|$$

$$I_B = \frac{I_P + I_N}{2}$$

$$U_{OE} = |-I_P R_2 A_{pos} + I_N R_F|$$

Bester Fall (Einfluss $I_B = 0$):

$$R_2 = R_F || R_1$$

$$U_{OE} = |-I_{OS}R_F|$$

$$I_{OS}$$
 Offsetstrom $[A]$

 $I_{P,N}$ Strom am pos, [A]neg Eingang

Biasstrom I_B [A]

Offset-Fehler- [V] U_{OE} Spannung

pos. Verstär- [1] A_{pos} kung

 $R_{1,2}$ Widerstand $[\Omega]$ nach GND

19.3.8 Kombination der statischen Fehler

$$U_{OE} = A_{pos}(| \text{Offsetfehler} | + | \text{Versorgungs-spannungsfehler} | + | \text{Gleichtaktfehler} |) + \text{Eingangsstromfehler}$$

$$U_{OE} = A_{pos} \left[\left| U_{OS} \right| + \left| \frac{\Delta U_{S}}{PSRR} \right| + \left| \frac{\Delta U_{CM}}{CMRR} \right| \right] + *$$

Worst-Case:

$$* = \left(I_N R_F - I_P R_2 \frac{R_F + R_1}{R_1}\right)$$

Bei unterdrücktem Biasstrom - Fehler:

 $* = |I_{OS}|R_F$

Offsetstrom [A] I_{OS} $I_{P,N}$ Strom am pos, [A]

neg Eingang

Biasstrom I_B [A]Offset-Fehler-[V] U_{OE}

Spannung Verstär- [1] pos.

kung

19.3.9 Dynamischer Eingangswiderstand

Messung bei verbundenen Eingän-

$$r_{cm} = 2r_{cm} ||2r_{cm}||$$

Dynamischer $[\Omega]$ r_d Widerstand

Common Mo- $[\Omega]$ r_{cm} de Resistance

19.3.10 Frequenzgang

Knick:

$$f_0: A_{OL} = A_{DC} - 3dB$$

(ca. 100 Hz in Grafik)

$$f_T: A_{OL} = 0dB = 1$$

(ca. 10^7 Hz in Grafik)

$$f_0 = \frac{f_T}{A_0}$$

Der Verstärkungsabfall beträgt - 20 $\frac{dB}{Dec}$

$$A_{CLreal}(s) = rac{A_{CLDC}}{1 + sT_{neu}}$$

$$A_{CLDC} = \frac{A_{OLDC}}{1 + k(s)A_{OLDC}}$$

$$T_{neu} = \frac{T_0}{1 + k(s)A_{OLDC}}$$

$$\omega_{neu} = \omega_0 [1 + k(s) A_{OLDC}]$$

Nichtinvertierneder Verstärker:

$$k(s) = \frac{R_1 + R_F}{R_1}$$

$$f_{neu} = f_0(1 + kA_{OLDC})$$

$$f_{neu}A_{CL}^+ = GBP(=f_T)$$

$$f_{neu} = f_0 A_{OLDC}$$

Invertierneden Verstärker:

$$f_{neu} = k \cdot BGP = \frac{GBP}{A_{CL}^{-} + 1}$$

$$f_{neu}(A_{CL}^- + 1) = GBP(=f_T)$$

$$f_{neu} = \frac{1}{2} f_0 A_{OLDC}$$

 f_0 Kleinsignal [Hz] Bandbreite

 f_T Transitfrequnz, [Hz] Verstärkungs-Bandbreiten-Produkt

 A_{OL} Open Loop [1] Gain

 A_{CL} Closed Loop [1] Gain

 A_{CL}^{+} A_{CL} nichtin- [1] vertiereder Verstärker

s Laplace Ope- [1] rator

 T_{neu} Closed Loop [s] Zeitkonst.

k Faktor des [1] Spannungsteilers

 ω Knickfrequenz [Hz] f_{neu} Knickfrequenz [Hz]

GBP Verstärkungs [1] Bandbreitenprodukt

20 Gegengekoppelte Verstärker

20.1 Mit- und Gegenkopplung

Gegenkopplung:

$$A_{CL} = \frac{U_{out}}{U_{in}} = \frac{A_o}{1 + kA_o}$$

Mitkopplung:

$$A_{CL} = \frac{U_{out}}{U_{in}} = \frac{A_o}{1 - kA_o}$$

Closed Loop [1] Verstärkung

Loop [1] A_o Open Verstärkung

Spannung U [V]

Faktor [1]

20.1.1 Gegenkopplung beim OP

Bodeplot:

Ideal:

$$A_{CL} = \frac{nA_o}{1 + kA_o}$$

Nicht invertierend:

$$n - 1$$

$$|A_{CLideal}| = \frac{R_F + R_1}{R_1} = \frac{1}{k}$$

Inveriterend:

$$n = \frac{R_F}{R_1 + R_F}$$
 $k = \frac{R_1}{R_1 + R_F}$

$$|A_{CLideal}| = \frac{R_F}{R_1}$$

Real:

$$A_{CLreal} = nA_o ||A_{CLideal}|$$

Closed Loop [1] Verstärkung

Open Loop [1] A_o Verstärkung

GK-Faktor k [1]

Faktor [1] n

R Widerstand $[\Omega]$

20.2 Gegenkopplungsarten

Serie-Parallel $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Eingang: Seriell Ausgang: Parallel $r_{iCL} ightarrow \infty \qquad r_{oCL} ightarrow 0 \ r_{iCL} = r_i (1 + k A_o) \ r_{oCL} = \frac{u_{out}}{i_{out}} = \frac{r_o}{1 + k A_o}$	$egin{array}{c} A_o & & & & & & & & & & & & & & & & & & &$	Eingang Open Loop r- $[\Omega]$ Ausgang]
Parallel-Parallel $r_{icL} \longrightarrow r_{ocL}$ $R_{S} \longrightarrow r_{ocL}$ u_{out} R_{L}	Eingang: Parallel Ausgang: Parallel $r_{iCL} o 0 r_{oCL} o 0$ $r_{iCL} = rac{r_i}{1+kA_o}$ $r_{oCL} = rac{u_{out}}{i_{out}} = rac{r_o}{1+kA_o}$	r _{oCL} u _{out} i _{out} R _S	Closed Loop [Ω r-Ausgang u-Ausgang [V] i-Ausgang [A] Quell- [Ω Widerst. Last-Widerst. [Ω]
Parallel-Serie $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Eingang: Parallel Ausgang: Seriell $r_{iCL} ightarrow 0 \qquad r_{oCL} ightarrow \infty \ r_{iCL} = rac{r_i}{1+kA_o} \ r_{oCL} = rac{u_{out}}{i_{out}} = r_o(1+kA_o)$			
Serie-Serie $R_{S} \xrightarrow{r_{iCL}} A_{o} \xrightarrow{r_{oCL}} R_{L}$ $u_{in} \xrightarrow{l} k \xrightarrow{l_{out}} R_{L}$	Eingang: Seriell Ausgang: Seriell $r_{iCL} ightarrow \infty \qquad r_{oCL} ightarrow \infty$ $r_{iCL} = r_i (1 + kA_o)$ $r_{oCL} = \frac{u_{out}}{i_{out}} = r_o (1 + kA_o)$			

20.2.1 Bestimmung der Gegenkopplungsart

- 1. Forwärtspfad, Rückwärtspfad und Gegenkopplugsschleife einzeichnen.
- 2. Anzahl Inversionen im Vorwärtspfad (⇒ Invertierend oder nicht invertierend) bzw. in der Schleife bestimmen (⇒ Gegenkopplung bei ungerade Anzahl bzw. Mittkopplung bei gerader Anzahl).
- 3. Knoten (out, in+ und in−) der Äquivalenten OP-Schaltung bestimmen.
- 4. Äquivalenten OP-Schaltung zeichnen.

20.2.2 Eingangsschaltungen

Eingangsschaltungen bei Serieschaltung (Spannungsaddition)

Eingangsschaltungen bei Parallelschaltung von Verstärkereingnag und Ausgang (Stromaddition)

20.2.3 Ausgangsschaltungen

Ausgangsschaltungen bei Parallelschaltung von Last und Eingang (Spannungsabnahme am Ausgang)

Ausgangsschaltungen bei Serieschaltung von Last und Eingang (Stromabnahme am Ausgang)

20.3 Schleifenverstärkung

$$A_L = kA_o = \frac{u_{xout}}{u_{xin}}$$

Gegenkopplungsgrad:

$$1 + A_L = 1 + kA_L$$

 U_{Bias} legt den Arbeitspunkt fest. Es soll eine Trennstelle gewählt werden bei der $r_{loopout} \gg r_{loopin}$ gilt ⇒ Belastung des Schleifenausganges kann vernachlässigt werden.

$$A_L$$
 Schliefen- [1] Verstärkung

$$A_o$$
 Open Loop [1] Verstärkung

$$U$$
 Spannung V V Faktor V V

R Widerstand
$$[\Omega]$$

20.4 Wirkung der GK auf die Sensivität der Verstärkung

Die Sensitivität S_x^N ist ein Mass für die Empfindlichkeit einer Schaltungseigenschaft N gegenüber Schwankungen eines Parameters x.

$$S_x^N = \frac{\frac{dN}{N}}{\frac{dx}{x}}$$

$$S_{A_o}^{A_{CL}} = \frac{\frac{dA_{CL}}{A_{CL}}}{\frac{dA_o}{A_o}} = \frac{A_o}{A_{CL}} \frac{dA_{CL}}{dA_o}$$

$$S_{A_o}^{A_{CL}} = \frac{1}{1 + kA_o}$$

Sensitivität [1]

Schliefen-[1] Verstärkung

Loop [1] A_o Open Verstärkung

k Faktor [1]

veränderter [...] Parameter

N Beeinflusste |...| Grösse

20.5 Das Verstärkungs-Bandbreiten-Produkt

Für alle Punkte die auf einer Amplitudengeraden mit einer Neignung von $\pm 20 \frac{dB}{Dek}$ liegen gilt das Gesetz vom konstanten Verstärkungs-Bandbreiten-Produkt. Siehe auch S. 113

$$Af = f_T = GBP$$

$$A_1f_1=A_2f_2$$

$$A_{oDC} = f_o = GBP$$

Transitfrequenz $\left[\frac{1}{c}\right]$ f_T = Amplitude \cap 0*dB*-Achse

Frequenz [1]Verstärkung [1]

 A_{oDC} Open-Loop DC-Gain

Teil V Digitale Signalverarbeitung

21 Stochastische Signale

21.1 Allgemein

|--|

22 Abtastung

22.1 Ideale Abtastung

Zeitbereich:
$$s_n(t)$$
 $s_n(t)$ $s_n(t)$ t t t

Frequenzbereich:

 $S(\omega)$ $S_p(\omega)$

$$s_a(t) = s(t)T\delta_p(t)$$

$$s_a(t) = Ts(t) \sum_{m=-\infty}^{\infty} \delta(t - mT)$$

$$s_a(t) = T \sum_{m=-\infty}^{\infty} s(mT)\delta(t-mT)$$

$$S_a(\omega) = S(\omega) * \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_c)$$

$$S_a(\omega) = \sum_{k=-\infty}^{\infty} S(\omega - k\omega_c)$$

$$\omega_c = \frac{2\pi}{T}$$

- S Signal [...]
- s_a s abgetastet [...]
- S Spektrum von [...]
 - \mathbf{s}
- t Zeit [s]
- T Periode [s]
- *m* m-te Periode [1] ω Kreisfrequenz $\left[\frac{1}{s}\right]$
- ω_c Abtastfrequenz $\left[\frac{1}{s}\right]$

22.2 Flat Top Sampling

Signal wird verzerrt durch $G_{\tau}(\omega)$

$$s_a(t) = \sum_{m=-\infty}^{\infty} s(mT)r_{\tau}(t - mT)$$

$$S_a(\omega) = G_{ au}(\omega) \sum_{k=-\infty}^{\infty} S(\omega - k\omega_c)$$

$$G_{ au}(\omega) = rac{1}{T}R_{ au}(\omega) = rac{ au}{T}rac{\sin\left(rac{ au}{2}\omega
ight)}{rac{ au}{2}\omega}$$

Je kürzer die Abtast-Pulse desto breiter die $\frac{\sin(x)}{x}$ Kurve.

- s Signal [...]
- s_a s abgetastet [...] S Spektrum von [...]
 - S
- t Zeit [s]
- T Periode [s
- τ Rechteckbreite [s]
- *m* m-te Periode [1]
- ω Kreisfrequenz $\begin{bmatrix} \frac{1}{6} \end{bmatrix}$

22.3 Sample and Hold

Entspricht Flat Top Sampling (S. 166) bei $\tau = T$ Die $\frac{\sin(x)}{x}$ Kurve hat die Nulldurgänge bei $k^{2\pi}_T$, $k = \{1, 2, ...\}$

T Periode [s] τ Rechteckbreite [s]

22.4 Abtasttheorem

⇒ Rekonstruktion ist nicht möglich.

$$\omega_c > 2\omega_{max}$$

⇒ Praktisch muss immer ein analoger Tiefpass vorgeschaltet werden. ω_c Abtastfrequenz $\left[\frac{1}{s}\right]$ ω_{max} max Frequenz $\left[\frac{1}{s}\right]$ in s(t)

22.5 Rekonstruktion

Ist das Abtasttheorem erfüllt, so ist das ursprüngliche Signal exakt reproduzierbar.

$$\begin{array}{c|c} H_{\tau} & S_a \\ \hline & & & \\ \hline -2\omega_{\overline{c}} & \omega_c & 0 & \omega_c & 2\omega_c \end{array} \omega$$

$$s_r(t) = T \sum_{m=-\infty}^{\infty} s(mT)h_r(t - mT)$$

$$s_r(t) = T \sum_{m=-\infty}^{\infty} s(mT)\delta(t - mT) * h_r(t)$$

$$h_r(t) = \frac{\omega_c}{2\pi} \frac{\sin\left(\frac{\omega_c}{2}t\right)}{\frac{\omega_c}{2}t}$$

 s_r Signal re- [...] konst.

 h_r

Stossantw. [...]
Rekonstruktions-

Rekonstruktions-Tiefpass Zeit [s]

t Zeit [s] T Periode [s]

m m-te Periode [1]

22.5.1 Interpolation

$$s_i(t)$$

$$s_{i}(t)$$
 0
 T
 $2T$

$$s_i(t) = \sum_{m=-\infty}^{\infty} s(mT)h_i(t - mT)$$

$$S_i(\omega) = rac{1}{T} \sum_{k=-\infty}^{\infty} S(\omega - k\omega_c) H_i(\omega)$$

Halteglied nullter Ordnung

$$h_i(t) = \text{Rechteck}, h = 1, \tau = T$$

$$H_i(\omega) = T \frac{\sin\left(\frac{T}{2}\omega\right)}{\frac{T}{2}\omega} e^{-j\frac{T}{2}\omega}$$

Lineare Interpolation

$$h_i(t) = \text{Dreieck}, h = 1, \tau = 2T$$

$$H_i(\omega) = T \left(\frac{\sin\left(\frac{T}{2}\omega\right)}{\frac{T}{2}\omega} \right)^2 e^{-jT\omega}$$

- s_i Signal inter- [...] poliert
- h_i Interpolatios- [1] funktion
- t Zeit [s]
- T Periode [s] τ Pulsbreite [s]
- m, k m,k-te Peri- $\begin{bmatrix} 1 \end{bmatrix}$
- ω Kreisfrequenz $\left[\frac{1}{s}\right]$
- ω_c Abtastfrequenz $\left[\frac{1}{s}\right]$

22.6 Energie und Leistung bandbegrenzter Signale

Falls das Abtasttheorem, $T < \frac{1}{2}f_{max}$ eingehalten wird, hat das abgetastete Signal die selbe Energie bzw. Leistung wie das Original. Siehe Parsevalsches Theorem S. 186

$$W = \int_{-\infty}^{\infty} s^2(t) dt$$

$$W = T \sum_{m=-\infty}^{\infty} s^2(mT)$$

$$P = \frac{1}{T_{ner}} \int_0^{T_{per}} s^2(t) dt$$

$$P = \frac{1}{N} \sum_{m=0}^{N-1} s^2(mT)$$

$$N = \frac{T_{per}}{T}$$

$$t$$
 Zeit $[s]$

$$T$$
 Periode $[s]$

$$T_{per}$$
 Periodenin- $[s]$ tervall

$$w_c$$
 Abtastfrequenz $\left[\frac{1}{s}\right]$

Teil VI Mathematik

23 Grundlagen

23.1 Allgemeines

23.1.1 Binome

23.1.2 Faktorzerlegungen

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$
für n gerade:
$$a^{n} - b^{n} = (a + b)(a^{n-1} - a^{n-2}b + \dots + ab^{n-2} - b^{n-1})$$
für n ungerade:
$$a^{n} + b^{n} = (a + b)(a^{n-1} - a^{n-2}b + \dots - ab^{n-2} + b^{n-1})$$

$$s^{2} + 1 = (s - i)(s + i)$$

23.1.3 Quadratische Gleichung

$$ax^2 + bx + c = 0$$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

23.1.4 Arithmetische Folge

$$a_{n+1} - a_n = d$$
, d const.
 $a_n = a_1 + (n-1)d$
 $s_n = n\frac{a_1 + a_n}{2} = a_1 n + \frac{n(n-1)}{2}d$

23.1.5 Geometrische Folge

$$a_{n+1}/a_n = q$$
, q const.
 $a_n = a_1 q^{n-1}$
 $s_n = a_1 \frac{1 - q^n}{1 - q}$
 $s = \lim_{n \to \infty} s_n = \frac{a_1}{1 - q}$, falls $|q| < 1$

23.1.6 Partialbruchzerlegung

$$r(z) = \frac{r_1(z)}{(z-a)(z-b)^3 ((z-c)^2 + d^2)^3}$$

$$r(z) = \frac{\alpha}{z-a} + \frac{\beta_1}{z-b} + \frac{\beta_2}{(z-b)^2} + \frac{\beta_3}{(z-b)^3} + \frac{\gamma_1 z + \delta_1}{(z-c)^2 + d^2} + \frac{\gamma_2 z + \delta_2}{((z-c)^2 + d^2)^2} + \frac{\gamma_3 z + \delta_3}{((z-c)^2 + d^2)^3}$$

23.2 Matrizen und Determinanten

23.2.1 2×2 Matrizen

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\ a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \end{bmatrix}$$
Achtung: $AB \neq BA$!

Inverse: (falls
$$a_{11}a_{22} - a_{12}a_{21} \neq 0$$
)

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

23.2.2 3×3 Matrizen

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} =$$

$$= a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

23.2.3 Transponierte einer Matrix

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} A^{T} = \begin{bmatrix} a_{11} & a_{21} & a_{31} & a_{41} \\ a_{21} & a_{22} & a_{32} & a_{42} \end{bmatrix}$$
$$(A \cdot B)^{T} = B^{T} \cdot A^{T}$$

$$(A \cdot B \cdot C)^T = C^T \cdot B^T \cdot A^T$$
$$(A^T)^{-1} = (A^{-1})^T$$

23.3 Vektorrechnung

23.3.1 Grundlagen

Skalar produkt

$$\vec{x} \cdot \vec{y} = xy \cos \alpha$$
$$\vec{x} \perp \vec{y} \Leftrightarrow \vec{x} \cdot \vec{y} = 0$$

Skalare Projektion von \vec{b} auf \vec{a}

$$b_a = \vec{b}\,\vec{e}_a$$

Vektorielle Projektion von \vec{b} auf \vec{a}

$$\vec{b}_a = b_a \vec{e}_a = (\vec{b} \vec{e}_a) \vec{e}_a$$

Vektorprodukt

$$|\vec{a} \times \vec{b}| = a b \sin \alpha$$

$$\vec{a} \times \vec{b} = [a_1, a_2, a_3] \times [b_1, b_2, b_3] = \begin{bmatrix} det \begin{bmatrix} a_2 & a_3 \\ b_2 & b_3 \end{bmatrix}, -det \begin{bmatrix} a_3 & a_1 \\ b_3 & b_1 \end{bmatrix}, det \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \end{bmatrix}$$

$$\vec{a} = \lambda \cdot \vec{b} \Leftrightarrow \vec{a} \times \vec{b} = 0$$

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

Steigung eines Vektors

$$\vec{x} = (x_1, x_2, x_3)$$

$$\tan \alpha = \frac{x_3}{\sqrt{x_1^2 + x_2^2}}$$

23.3.2 Lineare Abbildungen

Drehung der XY-Ebene um den Ursprung mit Drehwinkel φ

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Spiegelung der XY-Ebene an der Geraden g
 durch den Ursprung mit den Steigungswinkel φ

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \end{bmatrix} = \begin{bmatrix} \cos 2\varphi & \sin 2\varphi \\ \sin 2\varphi & -\cos 2\varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Drehung des Raumes um die X-Achse

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Drehung des Raumes um die Y-Achse

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & 0 & \sin \varphi \\ 0 & 1 & 0 \\ -\sin \varphi & 0 & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Drehung des Raumes um die Z-Achse

$$\begin{bmatrix} \tilde{x} \\ \tilde{y} \\ \tilde{z} \end{bmatrix} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

23.4 Trigonometrie

23.4.1 Komplementwinkel

$$\sin \alpha = \cos(\frac{\pi}{2} - \alpha)$$
 $\cos \alpha = \sin(\frac{\pi}{2} - \alpha)$

$$\tan \alpha = \cot(\frac{\pi}{2} - \alpha)$$
 $\cot \alpha = \tan(\frac{\pi}{2} - \alpha)$

23.4.2 Sinussatz

$$\sin \alpha = \sin(\pi - \alpha)$$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$$

wobei r = Umkreisradius

23.4.3 Cosinussatz

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

23.5 Goniometerie

23.5.1 Serien (Lösungsmengen)

$$\alpha_1 = \arcsin x$$
, $\alpha_2 = \pi - \alpha_1$

$$\alpha_{1n}=\alpha_1+n2\pi$$
, $\alpha_{2n}=\alpha_2+n2\pi$

$$\pm \alpha = \arccos x$$
, $\alpha_n = \pm \alpha + n2\pi$

$$\alpha_0 = \arctan x$$
, $\alpha_n = \alpha_0 + n\pi$, $n \in \mathbb{Z}$

23.5.2 Potenzen

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$$

$$\sin^2\alpha + \cos^2\alpha = 1$$

$$\sin^3 \alpha = \frac{1}{4} \left(3\sin \alpha - \sin 3\alpha \right)$$

$$\cos^3 \alpha = \frac{1}{4} \left(3\cos \alpha + \cos 3\alpha \right)$$

$$\sin^4\alpha = \frac{1}{8}\left(\cos 4\alpha - 4\cos 2\alpha + 3\right)$$

$$\cos^4 \alpha = \frac{1}{8} \left(\cos 4\alpha + 4 \cos 2\alpha + 3 \right)$$

23.5.3 Additionstheoreme

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta$$
$$\cos(a \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta}$$

23.5.4 Doppelwinkel

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2(\alpha) - 1 = 1 - \sin^2(\alpha)$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

23.5.5 Dreifachwinkel

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos 3\alpha = 4\cos^3 \alpha + 3\cos \alpha$$

$$\tan 3\alpha = \frac{3\tan \alpha - \tan^3 \alpha}{1 - 3\tan^2 \alpha}$$

23.5.6 Halbwinkel

$$\sin^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$
$$\cos^2 \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$
$$\tan^2 \frac{\alpha}{2} = \frac{1 - \cos \alpha}{1 + \cos \alpha}$$

23.5.7 Summen und Produkte

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$

23.5.8 Genaue Funktionswerte

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

23.6 Logarithmen

$$\log\left(u\cdot v\right) = \log u + \log v$$

$$\log\left(\frac{u}{v}\right) = \log u - \log v$$

$$\log\left(u^{k}\right) = k\log u$$

$$\log \sqrt[k]{u} = \frac{1}{k} \log u$$

$$\log_b r = \frac{\log_a r}{\log_a b}$$

23.7 Komplexe Zahlen

23.7.1 Allgemeines

$$j^2 = -1$$
, $\frac{1}{j} = -j$, $(-1)^j = (e^{j\pi})^j = e^{-\pi}$

 $\underline{z} \in \mathbb{C}$, $\overline{\underline{z}}$: konjugiertkomplex

 $karthesisch: \underline{z} = a + jb, \quad \overline{\underline{z}} = a - jb$

polar :
$$z = r \cdot e^{j\varphi}$$
, $\overline{z} = r \cdot e^{-j\varphi}$

$$\underline{z} = r(\cos \varphi + j \sin \varphi) = r \cdot e^{j\varphi} = a + jb$$

$$a = r\cos\varphi, \quad b = r\sin\varphi$$

$$r=|\underline{z}|=\sqrt{a^2+b^2}, \;\; \varphi=\left\{egin{array}{ll} I. & {
m Quadrant } & {
m arctan}\,rac{b}{a}\ II. & {
m Quadrant } & {
m arctan}\,rac{b}{a}+\pi\ III. & {
m Quadrant } & {
m arctan}\,rac{b}{a}+\pi\ IV. & {
m Quadrant } & {
m arctan}\,rac{b}{a}+2\pi\ \end{array}
ight.$$

23.7.2 Rechenregeln

$$(a_1 + jb_1) \pm (a_2 + jb_2) = a_1 \pm a_2 + j(b_1 \pm b_2)$$

$$(a_1 + jb_1)(a_2 + jb_2) = (a_1a_2 - b_1b_2) + j(a_1b_2 + b_1a_2)$$

$$z_1 \cdot z_2 = r_1 r_2 \cdot e^{j(\varphi_1 + \varphi_2)}$$

$$\frac{(a_1 + jb_1)}{(a_2 + jb_2)} = \frac{(a_1 + jb_1)(a_2 - jb_2)}{(a_2^2 + b_2^2)}$$

$$\frac{\underline{z}_1}{z_2} = \frac{r_1}{r_2} \cdot e^{j(\varphi_1 - \varphi_2)}$$

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi}{n} + j \sin \frac{\varphi}{n} \right)$$

 $\sqrt[n]{\underline{z}} = e^{\frac{1}{n}\ln\underline{z}} + (n-1)$ weitere Lösungen gleichmässig verteilt auf einem Kreis mit Radius $\sqrt[n]{r}$

23.7.3 Euler

$$e^{\pm jkt} = \cos kt \pm j\sin kt$$

$$e^{\pm jk\pi} = (-1)^k$$
, $e^{t+j2\pi} = e^t$

$$\cos kt = \frac{1}{2} \left(e^{jkt} + e^{-jkt} \right)$$

$$\sin kt = \frac{1}{2j} \left(e^{jkt} - e^{-jkt} \right)$$

$$\cosh kt = \frac{1}{2} \left(e^{kt} + e^{-kt} \right)$$

$$\sinh kt = \frac{1}{2} \left(e^{kt} - e^{-kt} \right)$$

23.8 Ableiten

23.8.1 Rechenregeln

$$(\lambda f)' = \lambda f'$$

$$(f \pm g)' = f' \pm g'$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$\left(\frac{f}{g}\right)' = \frac{g \cdot f' - f \cdot g'}{g^2}$$

$$f'^{-1} = \frac{1}{f' \circ f^{-1}}$$

$$(f \circ g)' = (f' \circ g) \cdot g'$$

Elementare Funktionen

$$pot'_k x = k pot_{k-1} x$$

$$\sin' kx = k \cos kx$$

$$\cos' kx = -k\sin kx$$

$$\exp' kx = k \exp kx$$

$$\log' x = \frac{1}{x}$$

$$\ln'|f| = \frac{f'}{f}$$

$$\left(a^{kx}\right)' = \left(k \ln a\right) a^{kx}$$

$$\tan' x = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

$$\cot' x = -\frac{1}{\sin^2 x} = -1 - \cot^2 x$$

$$\sqrt{x}' = \frac{1}{2\sqrt{x}}$$

$$\arcsin' x = \frac{1}{\sqrt{1 - x^2}}$$

$$\arccos' x = -\frac{1}{\sqrt{1 - x^2}}$$

$$\arctan' x = \frac{1}{1 + x^2}$$

$$\operatorname{arccot}' x = -\frac{1}{1+x^2}$$

$$\cosh' x = \sinh x = \frac{e^z - e^{-z}}{2}$$

$$\sinh' x = \cosh x = \frac{e^z + e^{-z}}{2}$$

$$\operatorname{arcosh}' x = \frac{1}{\sqrt{1+x^2}}$$

$$arsinh' x = \frac{1}{\sqrt{x^2 - 1}}$$

Satz von Bernoulli und de l'Hospital

$$\lim_{t \to t_0} \frac{f(x)}{g(x)} = \lim_{t \to t_0} \frac{f'(x)}{g'(x)}$$

Beispiel:

$$\lim_{t\to\infty}\frac{t}{e^t}=\lim_{t\to\infty}\frac{1}{e^t}=0$$

23.9 Integrieren

23.9.1 Rechenregeln

$$\int \lambda f = \lambda \int f$$

$$\int (f \pm g) = \int f \pm \int g$$

$$\int f \cdot g' = f \cdot g - \int f' \cdot g$$

23.9.2 Substitution

$$\int f(x)\,dx$$

Aufstellen der Substitutionsgleichung:

$$u = g(x), \ \frac{du}{dx} = g'(x), \ dx = \frac{du}{g'(x)}$$
 bzw. $x = h(u), \ \frac{dx}{du} = h'(u), \ dx = \frac{h'(u)}{du}$

(u = g(x) bzw. x = h(u) müssen monotone Funktionen sein)

Substitution:

$$\int f(x) \, dx = \int \varphi(d) \, du$$

Integration:

$$\int \varphi(u) \, du = \Phi(u)$$

Rücksubstitutuion:

$$\int f(x) dx = \int \varphi(u) du = \Phi(u) = \Phi(g(x)) = F(x)$$

Beispiel:

$$\int_0^2 x\sqrt{3x^2+4}\,dx$$

Subst:
$$u = 3x^2 + 4 \Leftrightarrow u' = \frac{du}{dx} = 6x$$

23 Grundlagen

Die neuen Grenzen erhalten wir durch Einsetzten der ursprünglichen Grenzen in die Substitutionsgleichung, die Rücksubstition entfällt:

$$\begin{array}{ccc} 2 & \mapsto & 16 \\ 0 & \mapsto & 4 \end{array}$$

$$\Rightarrow \int_4^{16} \sqrt{u} \, du$$

23.9.3 Sätze

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

$$\int_{a}^{b} f(t) dt = -\int_{-a}^{-b} f(-t) dt$$

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

$$\int_{a}^{b} f(t) = \int_{a+c}^{b+c} f(t-c)$$

$$f \text{ stetig} \Rightarrow \int_{a}^{b} f = \int f(b) - \int f(a) = F(b) - F(a)$$

$$f$$
 stetig in $[a,b] \Rightarrow \exists \ \xi \in [a,b] \ \text{mit} \ \int_{a}^{b} f = (b-a) f(\xi)$

23.9.4 Integration rationaler Funktionen

Rationale Funktionen können integriert werden, indem man Division der Polynome durchführt

Beispiel: $\int \frac{x^2}{x^2+1}$

$$x^2: (x^2+1) = 1 + \frac{1}{x^2+1}$$

$$\int 1 + \frac{1}{x^2 + 1} \, dx = x + \arctan x$$

23.9.5 Rationalisierungsformeln

Für Rationale Funktionen von $\sin x$ und $\cos x$

Beispiel

$$\int \frac{1+\cos x}{\sin x} \, dx$$

Substitution

$$u = \tan x/2$$

$$\Rightarrow dx = \frac{2}{1+u^2} du \quad \sin x = \frac{2u}{1+u^2} \quad \cos x \frac{1-u^2}{1+u^2}$$

Weitere Rationalisierungsformeln siehe Papula Seite 148

23.9.6 Spezielle Integrale

$$\int \operatorname{pot}_{k} = \frac{1}{k+1} \operatorname{pot}_{k+1}$$

$$\int \exp kx \, dx = \frac{1}{k} \exp kx$$

$$\int a^{cx} \, dx = \frac{1}{c \ln a} a^{cx}$$

$$\int \frac{1}{x} \, dx = \ln x$$

$$\int \ln |x| \, dx = x \left(\ln |x| - 1 \right)$$

$$\int \frac{1}{x \ln x} \, dx = \ln |\ln |x||$$

$$\int \log_{a} |x| \, dx = x \left(\log_{a} |x| - \log_{a} e \right)$$

$$\int x^{k} \ln x \, dx = \frac{x^{k+1}}{k+1} \left(\ln x - \frac{1}{k+1} \right), \quad k \neq -1, \quad x > 0$$

$$\int \frac{\ln x}{x} \, dx = \frac{1}{2} (\ln x)^{2}$$

$$\int \sin (ax + b) \, dx = -\frac{1}{a} \cos (ax + b)$$

$$\int \cos (ax + b) \, dx = \frac{1}{a} \sin (ax + b)$$

23 Grundlagen

$$\int \tan x \, dx = -\ln|\cos x|$$

$$\int \cot x \, dx = \ln|\sin x|$$

$$\int \frac{1}{\sin x} \, dx = \ln|\tan \frac{x}{2}|$$

$$\int \frac{1}{\cos x} \, dx = \ln|\tan(\frac{x}{2} + \frac{\pi}{4})|$$

$$\int \sin^2 x \, dx = \frac{1}{2} (x - \sin x \cos x)$$

$$\int \cos^2 x \, dx = \frac{1}{2} (x + \sin x \cos x)$$

$$\int \tan^2 x \, dx = \tan x - x$$

$$\int \cot^2 x \, dx = -\cot x - x$$

$$\int \frac{1}{x^2} \sin \frac{1}{x} \, dx = \cos \frac{1}{x}$$

$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2}$$

$$\int \arcsin x \, dx = x \arccos x - \sqrt{1 - x^2}$$

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln(1 + x^2)$$

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln(1 + x^2)$$

$$\int (ax + b)^k \, dx = \frac{(ax + b)^{k+1}}{a(k+1)}, \quad k \neq 1$$

$$\int (ax^p + b)^k x^{p-1} \, dx = \frac{(ax^p + b)^{k+1}}{ap(k+1)}, \quad k \neq 1, \quad ap \neq 0$$

$$\int \frac{1}{ax + b} \, dx = \frac{1}{a} \ln|ax + b|$$

$$\int \frac{ax + b}{cx + d} \, dx = \frac{ax + b}{c} - \frac{ad - bc}{c^2} \ln|cx + d|$$

$$\int \frac{x^{p-1}}{ax^p + b} \, dx = \frac{1}{ap} \ln|ax^p + b|, \quad ap \neq 0$$

$$\int \frac{ax + b}{cx + d} dx = \frac{ax + b}{c} - \frac{ad - bc}{c^2} \ln |cx + d|$$

$$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a}$$

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|$$

$$\int \frac{x^2}{x^2 + a^2} dx = x - a \arctan \frac{x}{a}$$

$$\int \frac{2x}{1 - x^2} dx = -\ln |1 - x^2|$$

$$\int \sqrt{x^2 \pm a^2} dx = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln \left(x + \sqrt{x^2 \pm a^2} \right)$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln \left(x + \sqrt{x^2 \pm a^2} \right)$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{|a|}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{|a|}$$

$$\int e^{cx} \sin (ax + b) dx = \frac{e^{cx}}{a^2 + c^2} (c \sin (ax + b) - a \cos (ax + b))$$

$$\int e^{cx} \cos (ax + b) dx = \frac{e^{cx}}{a^2 + c^2} (c \cos (ax + b) + a \sin (ax + b))$$

$$\int \exp_k \sin_l dx = \frac{\exp_k}{l^2 - k^2} (jk \sin_l - l \cos_l)$$

$$\int \exp_k \cos_l dx = \frac{\exp_k}{l^2 - k^2} (jk \cos_l - l \sin_l)$$

$$\int x^n \sin kx dx = -\frac{x^n}{k} \cos kx + \frac{n}{k} \int x^{n-1} \cos kx dx \quad n \in \mathbb{N}$$

$$\int x^n \cos kx dx = +\frac{x^n}{k} \sin kx - \frac{n}{k} \int x^{n-1} \sin kx dx \quad n \in \mathbb{N}$$

24 Fourierreihen

24.1 Bezeichungen

Vektorraum der trigonometrischen Polynome: $\mathbb{P} \subset \mathbb{V}$

$$\mathbb{P} = \{a_0 \cos_0 + \sum_{k=1}^n a_k \cos_k + b_k \sin_k | n \in N^* \}$$

Vektorraum der Exponentialpolynome: $\mathbb{E} \subset \mathbb{V}$

$$\mathbb{E} = \{ \sum_{k=-n}^{m} c_k \exp_k | c_k \in \mathbb{C} \}$$

 $\sin_k = \sin kt$

 $\cos_k = \cos kt$

 $\exp_k = e^{jkt}$

24.2 Skalarprodukt

24.2.1 Eigenschaften

$$[a,b] = [b,a]$$

$$[a+b,c] = [a,c] + [b,c]$$

$$[\lambda a, b] = \lambda [a, b]$$

$$[a,a] \ge 0$$
 $[a,a] = 0 \Leftrightarrow a = 0$

24.2.2 Definitionen in \mathbb{P} und \mathbb{E}

$$[f,g] = \frac{1}{\pi} \int_{-\pi}^{\pi} f \cdot g$$
 $f,g \in \mathbb{P}$ und STF

$$[f,g] = \frac{1}{2\pi} \int_{0}^{2\pi} f \cdot \overline{g} \qquad f,g \in \mathbb{E}$$

$$[f,g] = \overline{[g,f]}$$
 $f,g \in \mathbb{E}$

24.2.3 Für orthonormierte Basis

$$[\cos_k, \sin_l] = 0$$
 $k \in \mathbb{N}_0, l \in \mathbb{N}$
 $[\cos_k, \cos_l] = \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases}$ $k, l \in \mathbb{N}_0$
 $[\sin_k, \sin_l] = \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases}$ $k, l \in \mathbb{N}$
 $[\exp_k, \exp_l] = \begin{cases} 1 & k = l \\ 0 & k \neq l \end{cases}$ $k, l \in \mathbb{Z}$

24.3 Norm in \mathbb{P} und \mathbb{E}

$$||p|| = \sqrt{[p,p]}$$
 $p \in \mathbb{P} \text{ und STF}$
 $||p||^2 = [p,p] = a_0^2 + \sum_{k=1}^n a_k^2 + b_k^2$
 $||e|| = \sqrt{[e,e]}$ $e \in \mathbb{E}$
 $||e||^2 = [e,e] = \sum_{k=-n}^n |c_k|^2$

24.4 Cauchy-Schwarzsche Ungleichung

$$[f,g]^2 \le [f,f] \cdot [g,g]$$

24.5 Abstand

$$d(f,g) = \|f - g\|$$

24.6 Fourierreihe reell

24.6.1 Fourierkoeffizienten

$$a_k = [f, \cos_k] = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, dt \quad f \in STF$$

$$b_k = [f, \sin_k] = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt \quad b_0 = 0$$

gerade Funktion:

$$g(-t) = g(t) \Rightarrow b_k = 0$$

ungerade Funktion:
 $u(-t) = -u(t) \Rightarrow a_k = 0$

24.6.2 Fourierreihe der Funktion $f \in \mathbb{P}$

$$f = \sum_{k=0}^{\infty} (a_k \cos_k + b_k \sin_k)$$

$$\cos_0 = \frac{1}{\sqrt{2}} \qquad a_0 = [f, \cos_0] \qquad b_0 = 0$$

24.7 Fourierreihe komplex

24.7.1 Fourierkoeffizienten

$$c_{0} = \frac{a_{0}}{\sqrt{2}} \qquad c_{-k} = \overline{c_{k}}$$

$$c_{k} = \frac{1}{2} (a_{k} - jb_{k}) \qquad a_{k} = 2 \operatorname{Re} (c_{k}) = c_{k} + c_{-k}$$

$$c_{-k} = \frac{1}{2} (a_{k} + jb_{k}) \qquad b_{k} = -2 \operatorname{Im} (c_{k}) = j (c_{k} - c_{-k})$$

$$c_{k} = [f, \exp_{k}] = \frac{1}{2\pi} \int_{-\pi}^{\pi} f \exp_{-k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) e^{-jkt} dt$$

24.7.2 Fourierreihe der Funktion $f \in \mathbb{E}$

$$f = \sum_{k=-\infty}^{\infty} c_k \exp_k = c_0 + \sum_{k=1}^{\infty} (c_k \exp_k + c_{-k} \exp_{-k})$$

24.8 Parsevalsches Theorem

$$\left\| f - \sum_{k=0}^{n} \left(a_k \cos_k + b_k \sin_k \right) \right\|^2 = \|f\|^2 - \sum_{k=0}^{n} \left(a_k^2 + b_k^2 \right) = \|f\|^2 - \sum_{k=-n}^{n} |c_k|^2$$

Leistung periodischer Signale:

$$\frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2$$

24.9 Durchgang durch LTI-System

gegeben:
$$f(t) = c_k e^{jkt} + c_{-k} e^{-jkt} = a_k \cos_k + b_k \sin_k$$
; $H(\omega)$ gesucht: $T(f(t)) = \tilde{f}$

$$\tilde{f} = \sum_{-\infty}^{\infty} c_k e^{jkt} H(k)$$

$$\tilde{a}_k = \text{Re}(H(k)(a_k - jb_k))$$

$$\tilde{b}_k = -\text{Im}(H(k)(a_k - jb_k))$$

$$\tilde{f} = \tilde{a}_k \cos_k + \tilde{b}_k \sin_k$$

24.10 Fourierkoeffizienten wichtiger periodischer Signale

Periodische Rechteckfolge

$$c_n = a_n = \frac{\tau}{T} \frac{\sin\left(\frac{n\pi\tau}{T}\right)}{\frac{n\pi\tau}{T}}$$

$$b_n = 0$$

Doppelweggleichgerichtete cos-Schwingung

$$c_n = a_n = \frac{2}{\pi} (-1)^{n+1} \frac{1}{4n^2 - 1}$$

$$b_n = 0$$

Einweggleichgerichtete cos-Schwingung

$$c_n = a_n = \frac{1}{\pi} \frac{\cos\left(\frac{n\pi}{2}\right)}{1 - n^2}$$

$$b_n = 0$$

Folge von Raised-Cosine-Impulsen

$$c_n = a_n = \frac{\tau}{2T} \frac{\sin\left(\frac{n\pi\tau}{T}\right)}{\frac{n\pi\tau}{T}} \frac{1}{1 - \left(\frac{n\tau}{T}\right)^2}$$

$$b_n = 0$$

Dreieckschwingung DC-frei

$$c_n = a_n = \frac{2[1 - (-1)^n]}{(n\pi)^2}, \qquad c_0 = 0$$

$$b_n = 0$$

Sägezahnschwingung DC-frei

$$c_n=-jb_n, \qquad c_0=0$$

$$a_n=0, \qquad b_n=\frac{(-1)^{n+1}}{n\pi}$$

25 Fouriertransformation

25.1 Fouriertransformation

$$\mathcal{F}(f(t)) = F(\omega), \qquad \mathcal{F}^{-1}(F(\omega)) = f(t)$$

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

Wichtig: Sonderfälle beachten! (Division durch 0 in der Lösung separat behandeln)

25.2 Fourier-Cosinustransformation

Für gerade Funktionen

$$\mathcal{F}_c(f(t)) = F_c(\omega), \qquad \mathcal{F}_c^{-1}(F_c(\omega)) = f(t)$$

$$F_c(\omega) = \int_0^\infty f(t) \cos \omega t \, dt$$

$$f(t) = \frac{1}{\pi} \int_{0}^{\infty} F_{c}(\omega) \cos \omega t \, d\omega$$

$$F = 2F_c$$

25.3 Fourier-Sinustransformation

Für ungerade Funktionen

$$\mathcal{F}_s(f(t)) = F_s(\omega), \qquad \mathcal{F}_s^{-1}(F_s(\omega)) = f(t)$$

$$F_s(\omega) = \int_0^\infty f(t) \sin \omega t \, dt$$

$$f(t) = \frac{j}{\pi} \int_{0}^{\infty} F_{s}(\omega) \sin \omega t \, d\omega$$

$$F = -2iF_s$$

25.4 Faltung

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau$$

$$f * g = g * f \qquad (f * g) * k = f * (g * k)$$

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g) = F \cdot G$$

25.4.1 Fallunterscheidung bei Definitionsbereichen

$$p(t) = (f * g)$$

$$D(g(t)) = [a|b]$$

$$D(f(t)) = [c|d]$$

1. Fall:
$$c + b < a + d$$

I	t < a + c:	p(t) = 0
II	$a+c \le t \le b+c$:	$p(t) = \int_{a}^{t-c} f(\tau) \cdot g(t-\tau) d\tau$
III	$b+c \le t \le a+d$:	$p(t) = \int_a^b f(\tau) \cdot g(t - \tau) d\tau$
IV	$a+d \le t \le b+d$:	$p(t) = \int_{t-d}^{b} f(\tau) \cdot g(t-\tau) d\tau$
		p(t) = 0

2. Fall: c + b > a + d

I	t < a + c:	p(t) = 0
II	$a+c \le t \le a+d$:	$p(t) = \int_a^{t-c} f(\tau) \cdot g(t-\tau) d\tau$
III	$a+d \le t \le b+c$:	$p(t) = \int_{t-d}^{t-c} f(\tau) \cdot g(t-\tau) d\tau$
IV	$b+c \le t \le b+d$:	$p(t) = \int_{t-d}^{b} f(\tau) \cdot g(t-\tau) d\tau$
V	b+d < t:	p(t) = 0

3. Fall:
$$c + b = a + d$$

III
$$| a + d = t = b + c$$
: $p(t) = p(a + d)$

25.5 Eigenschaften

$t \mapsto f(t)$	$\omega \mapsto \overline{F(-\omega)}$
$t \mapsto f(-t)$	$\omega \mapsto F(-\omega)$
$t \mapsto f(at)$	$\omega \mapsto \frac{1}{ a }F(\frac{\omega}{a})$
$t \mapsto f(t-t_0)$	$\omega \mapsto F(\omega)e^{-jwt_0}$
$t\mapsto e^{j\omega_0t}f(t)$	$\omega \mapsto F(\omega - \omega_0)$
$t \mapsto F(t)$	$\omega \mapsto 2\pi f(-\omega)$
$t\mapsto f^{(n)}(t)$	$\omega \mapsto (j\omega)^n F(\omega)$
$t \mapsto (-jt)^n f(t)$	$\omega \mapsto F^{(n)}(\omega)$
$t\mapsto \int\limits_{-\infty}^t f(\tau)d\tau$	$\omega \mapsto \frac{1}{j\omega}F(\omega)$

25.6 Fouriertransformationen mit Diracdelta

Funktion	Fourier – Transformierte
$t \mapsto \delta(t)$	$\omega \mapsto 1$
$t\mapsto 1$	$\omega\mapsto 2\pi\delta(\omega)$
$t \mapsto \delta(t-t_0)$	$\omega \mapsto e^{-j\omega t_0}$
$t\mapsto e^{j\omega_0t}$	$\omega\mapsto 2\pi\delta(\omega-\omega_0)$
$t\mapsto \sin(\omega_0 t)$	$\omega \mapsto j\pi(\delta(\omega+\omega_0)-\delta(\omega-\omega_0))$
$t\mapsto\cos(\omega_0t)$	$\omega \mapsto \pi(\delta(\omega+\omega_0)+\delta(\omega-\omega_0))$
$t\mapsto \delta^{(n)}(t)$	$\omega \mapsto (j\omega)^n$
$t \mapsto sign(t)$	$\omega\mapsto \frac{2}{i\omega}$
$t \mapsto \frac{1}{\pi t}$	$\omega \mapsto -j\pi sign(\omega)$
us	$\omega \mapsto \frac{1}{j\omega} + \pi \delta(\omega)$

Faltung mit Dirac:

$$(f(t) * \delta(t_0)) = \int_{-\infty}^{\infty} f(t)\delta(t_0 - t)dt = f(t_0)$$

25.7 Fouriertransformationen wichtiger Impulse

Rechteckimpuls

$$S(\omega) = hT \frac{\sin\left(\frac{T\omega}{2}\right)}{\left(\frac{T\omega}{2}\right)}$$

Dreieckimpuls

$$S(\omega) = \frac{hT}{2} \left[\frac{\sin\left(\frac{T\omega}{4}\right)}{\frac{T\omega}{4}} \right]^2$$

Cosinusimpuls

$$S(\omega) = \frac{2hT}{\pi} \frac{\cos\left(\frac{T\omega}{2}\right)}{1 - \left(\frac{T\omega}{\pi}\right)^2}$$

Raised-Cosine-Impuls

$$S(\omega) = \frac{hT}{2} \frac{\sin\left(\frac{T\omega}{2}\right)}{\frac{T\omega}{2} \left[1 - \left(\frac{T\omega}{2\pi}\right)^{2}\right]}$$

Gauss-Impuls

 $0^{\frac{4\pi}{T}\frac{6\pi}{T}}\omega$

$$S(\omega) = h\tau\sqrt{\pi}e^{\frac{-\omega^2\tau^2}{4}}$$

26 Laplace

$$\begin{array}{ccc}
f & \longrightarrow \tilde{f} = f * g \\
\mathcal{L} & \downarrow & \downarrow \\
F & \longrightarrow \tilde{F} = F \cdot G
\end{array}$$

26.1 Laplacetransformation

$$\mathcal{L}\left(f(t)\right) = F(s), \qquad \mathcal{L}^{-1}\left(F(s)\right) = f(t), \qquad s \in \mathbb{C}$$

$$F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$$

$$f(t) = rac{1}{2\pi j} \int\limits_{x-i\infty}^{x+j\infty} F(s) \, e^{st} \, ds$$
, falls $t \geq 0$

$$f(t) = 0$$
, falls $t < 0$

26.2 Rechenregeln

$$\begin{array}{lll} t\mapsto f(at) & s\mapsto \frac{1}{a}F\left(\frac{s}{a}\right) & a>0 \\ t\mapsto \frac{1}{a}f\left(\frac{t}{a}\right) & (s\mapsto F(as)) \\ t\mapsto u(t-a)\cdot f(t-a) & s\mapsto e^{-as}F(s) & a>0 \\ t\mapsto f(t+a)) & s\mapsto e^{as}\left(F(s)-\int\limits_0^a f(t)\,e^{-st}\,dt\right) & a>0 \\ t\mapsto e^{-bt}f(t) & s\mapsto F(s+b) & c\in\mathbb{C} \\ t\mapsto f'(t) & s\mapsto sF(s)-f(0) \\ t\mapsto f^{(2)}(t) & s\mapsto s^2F(s)-sf(0)-f'(0) \\ t\mapsto f^{(3)}(t) & s\mapsto s^3F(s)-s^2f(0)-sf'(0)-f^{(2)}(0) \\ t\mapsto f^{(n)}(t) & s\mapsto s^nF(s)-\sum\limits_{k=0}^{n-1}s^{n-1-k}f^{(k)}(0) \\ t\mapsto -tf(t) & s\mapsto F'(s) \\ t\mapsto -t^3f(t) & s\mapsto F^{(3)}(s) \\ t\mapsto (-1)^nt^nf(t) & s\mapsto f^n(s) \\ t\mapsto \int\limits_0^t f(\tau)\,d\tau & s\mapsto \frac{1}{s}F(s) \end{array}$$

26.3 Spezielle Laplacetransformationen

$$\mathcal{L}\left(\delta(t)\right) = 1$$

$$\mathcal{L}(u(t)) = \frac{1}{s} \operatorname{Re}(s) > 0$$

$$\mathcal{L}\left(e^{at}\right) = \frac{1}{s-a} \quad \operatorname{Re}\left(s\right) > \operatorname{Re}\left(a\right)$$

$$\mathcal{L}\left(t^{n}\right) = \frac{n!}{s^{n+1}}$$

$$\mathcal{L}\left(t^{n}e^{at}\right) = \frac{n!}{\left(s-a\right)^{n+1}}$$

$$\mathcal{L}(\sin at) = \frac{a}{s^2 + a^2}$$

$$\mathcal{L}(\cos at) = \frac{s}{s^2 + a^2}$$

$$\mathcal{L}\left(\frac{1}{d}e^{ct}\sin ct\right) = \frac{1}{\left(s-c\right)^2 + d^2}$$

$$\mathcal{L}\left(e^{ct}\left(\frac{c}{d}\sin dt + \cos dt\right)\right) = \frac{s}{\left(s-c\right)^2 + d^2}$$

26.4 Faltung

$$(f * g)(t) = \int_{0}^{t} f(\tau) \cdot g(t - \tau) d\tau$$

$$f * g = g * f$$
 $f(t) = g(t) = 0$ falls $t < 0$

$$\mathcal{L}(f * g) = \mathcal{L}(f) \cdot \mathcal{L}(g) = F \cdot G$$

Die Fallunterscheidung bei eingeschränkten Definitionsbereichen der Funktionen ist die selbe wie bei der Fourier-Theorie in Abschnitt 25.4.1 auf S. 189

Beispiel:

Geg:
$$g(t) = u(t) - u(t-5)$$
 und $f(t) = u(t-2) - u(t-6)$

Ges:
$$\tilde{f} = (f * g)(t)$$

$$\tilde{f} = \int_{0}^{t} f(\tau) \cdot g(t - \tau) \, d\tau$$

$$g(t-\tau) = 1$$
 falls $0 \le t - \tau \le 5$ \Leftrightarrow $\tau \le t \le 5 + \tau$

26.5 Periodische Funktionen

f auf einer Periode T vorgeben.

$$F(s) = \int_{0}^{T} f(t) e^{-st} dt$$

Periodische Fortsetzung:

$$F_{per}(s) = F(s) \frac{1}{1 - e^{-sT}}$$

27 Differentialgleichungen

27.1 1. Ordnung

27.1.1 Homogene

Separierbar

Praktisches Vorgehen beim Lösen der separierbaren Differentialgleichungen:

$$y' = \frac{g(x)}{h(y)} \quad \Leftrightarrow \quad \frac{dy}{dx} = \frac{g(x)}{h(y)}$$

$$\Leftrightarrow$$
 $h(y) dy = g(x) dx \Leftrightarrow $\int h(y) dy = \int g(x) dx$$

$$\Leftrightarrow$$
 $H(y) = G(x) + c$

Wenn durch ein Ausdruck, der die unbekannte Funktion enthält zu dividieren ist, so ist zu prüfen ob sein Verschwinden eine Lösung der DGL ergibt.

Substitution

Gegeben:

$$y'(x) = (x + y(x))^2$$

Substitution:

$$z = x + y(x) \Rightarrow z' = 1 + y'(x) \quad \Leftrightarrow \quad y'(x) = z' - 1$$

Einsetzten:

$$z' - 1 = z^2 \quad \Leftrightarrow \quad \frac{dz}{dx} - 1 = z^2$$

$$\Leftrightarrow \frac{1}{1-z^2} dz = dx \Rightarrow \text{separierbar}$$

27.1.2 Partikuläre

DGL:
$$y' + y = q$$

Ansatz

Ansatz für partikuläre Lösung: «Ähnlich» wie die Störfunktion (q), jedoch nicht in der homogenen Lösung enthalten.

Störfunktion	Ansatz
$\sin t$, $\cos t$	$a\sin t + b\cos t$
e^{-t}	$a e^{-t}$
$t e^{-t}$	$a e^{-t} + bt e^{-t}$
t	at + b

Ansatz in DGL einsetzten und Koeffizientenvergleich durchführen.

Variation der Konstanten

Homogene Lsg: $y_h = c p(x)$ Ansatz: $y_p = g(x) p(x)$ (c wird durch g(x) ersetzt) Ansatz in DGL einsetzten und nach g(x) auflösen

27.1.3 **Lösung**

Gesamtlösungsmenge: $y = y_h + y_p$

27.2 Höhere Ordnung

27.2.1 Homogen, linear mit konstanten Koeffizienten

DGL:
$$y^{(4)} + 6y^{(3)} + 22y'' + 30y' + 13y = 0$$

 \Rightarrow charakteristisches Polynom: $p(t) = t^4 + 6t^3 + 22t^2 + 30t + 13$
 $\Leftrightarrow p(t) = (t+1)^2(t+2-3j)(t+2+3j)$
 $\mathbb{N}(p) = \{-1; -1; -2+3j; -2-3j\}$

Aus den Nullstellen des charakteristischen Polynoms ergeben sich die Lösungen. Ordnung DGL = Anzahl Lösungen

$$y_1(t) = e^{-t}$$
 $y_2(t) = t e^{-t}$ $y_3(t) = e^{t(-2+3j)}$ $y_4 = e^{t(-2-3j)}$

Linearkombinationen aus Lösungen komplexer Nullstellen ergibt reelle Lösungen:

$$\frac{1}{2}(y_3(t) + y_4(t)) = e^{-2t}\cos 3t$$

$$\frac{1}{2j}(y_3(t) - y_4(t)) = e^{-2t}\sin 3t$$

27.2.2 Partikuläre

Ansatz

 \Rightarrow Siehe 27.1.1 Homogene S. 195

Variation der Konstanten

Störfunktion: q(x)

Homogene Lsg: $y_1(t)$ $y_2(t)$

Ansatz: $y_p = g_1(t) y_1(t) + g_2(t) y_2(t)$

Gleichungssystem:

$$g'_1(t) y_1(t) + g'_2(t) y_2(t) = 0$$

 $g'_1(t) y'_1(t) + g'_2(t) y'_2(t) = q(x)$

Dieses Gleichungsystem liefert $g_1(t)$ und $g_2(t)$

27.3 Laplace

27.3.1 Lineare Übertragung

Uebertragungsfunktion: $G(s) = \frac{1}{cp(s)}$

Stossantwort: $g(t) = \mathcal{L}^{-1}(G(s)) = \tilde{u}'$

wobei cp = Charakteristisches Polynom und \tilde{u} = Sprungantwort

$$y(0) = 0$$
, $y'(0) = 0$, $y^{(2)}(0) = 0$, ..., $y^{(n)}(0) = 0$

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_1 y' + a_0 y = q$$

 $\Downarrow \mathcal{L}$

$$Y(s) \cdot \operatorname{cp}(s) = F(s) \quad \Leftrightarrow \quad Y(s) = \frac{F(s)}{\operatorname{cp}(s)} = F(s) \cdot G(s)$$

$$\Downarrow \mathcal{L}^{-1}$$

$$y(t) = (f * g)(t)$$

Beispiel:

$$y^{(2)} + 5y' + 6y = u$$
, $y(0) = 0$, $y'(0) = 0$

 $\Downarrow \mathcal{L}$

$$Y(s) \cdot (s^2 + 5s + 6) = Y(s) \cdot (s+2) (s+3) = \frac{1}{s}$$

$$Y(s) = \frac{1}{s(s+2)(s+3)} = \frac{\alpha}{s} + \frac{\beta}{s+2} + \frac{\gamma}{s+3}$$

$$1 = \alpha (s+2) (s+3) + \beta (s+3) s + \gamma (s+2) s$$

$$\begin{array}{lll} s=0: & 1=6\alpha & \Rightarrow & \alpha=\frac{1}{6} \\ s=-2: & 1=-2\beta & \Rightarrow & \beta=-\frac{1}{2} \\ s=-3: & 1=3\gamma & \Rightarrow & \gamma=\frac{1}{3} \end{array}$$

$$s = -3: 1 = 3\gamma$$
 \Rightarrow $\gamma = \frac{1}{3}$

27 Differentialgleichungen

$$Y(s) = \frac{1}{6} \frac{1}{s} - \frac{1}{2} \frac{1}{s+2} + \frac{1}{3} \frac{1}{s+3}$$

$$\Downarrow \mathcal{L}^{-1}$$

$$y(t) = \frac{1}{6}u(t) - \frac{1}{2}e^{-2t}u(t) + \frac{1}{3}e^{-3t}u(t)$$

$$y(t) = \left(\frac{1}{6} - \frac{1}{2}e^{-2t} + \frac{1}{3}e^{-3t}\right)u(t)$$

27.3.2 Nichtlineare Übertragung

Beispiel: Geg: $g(t) = 1 - \cos t$

Ges: \tilde{v} auf $v = \sin t$

mit
$$\tilde{v}''(0) = 1$$
, $\tilde{v}'(0) = 0$, $\tilde{v}(0) = 0$

$$g(t) = 1 - \cos t$$

$$\Downarrow \mathcal{L}$$

$$G(s) = \frac{1}{s} - \frac{s}{s^2 + 1} = \frac{1}{s^3 + s} = \frac{1}{cp(s)}$$

$$\Rightarrow$$
 DGL: $y^{(3)} + y' = \sin t$

$$\Downarrow \mathcal{L}$$

$$s^{3}Y(s) - 1 + sY(s) = \frac{1}{s^{2} + 1} \Leftrightarrow Y(s)(s^{3} + s) = \frac{1}{s^{2} + 1} + 1$$

$$\Leftrightarrow Y(s) = \frac{1}{s^3 + s} \frac{1}{s^2 + 1} + \frac{1}{s^3 + 1}$$

$$\Downarrow \mathcal{L}^{-1}$$

$$y(t) = (g * \sin)(t) + g(t)$$

27.4 Übersicht Laplace und Fourier

28 Funktionsdiskussion

28.1 Funktionen mit einer Variablen

28.1.1 Zu beantwortende Fragen

- 1. Definitiondbereich D(f)
- 2. Bild von f
- 3. Hat der Graph von f, G(f) Symmetrien? Gerade f(-x) = f(x) oder Ungerade f(-x) = -f(x)
- 4. Gibt es Polstellen?
- 5. Gibt es Gebiete der Koordinatenebene wo der Graph keine Punkte hat? (Achtung beim kürzen)
- 6. Gibt es Schranken für die Funktionswerte?
- 7. Welches sind die Nullstellen von *f*?
- 8. Welches sind die Nullstellen der Ableitungen von *f*?
- 9. Wo steigt f , wo fällt f?
- 10. Gibt es Grenzwerte für Argumente gegen $\pm \infty$?
- 11. Gibt es Asymptoten?

$$m = \lim_{|x| \to \infty} \left(\frac{f(x)}{x} \right)$$
 $q = \lim_{|x| \to \infty} (f(x) - mx)$

Asymptote: mx + q

Bei Brüchen mit Polynomen ergibt eine Division mit Rest die Asymptote: Beispiel:

$$(x^3 - 4x^2 - 17x + 60) \div (x^2 - 4) = \underbrace{x - 4}_{Assymptote} + \underbrace{\frac{44 - 13x}{x^2 - 4}}_{Rest}$$

Die Nullstellen des Zählerpolynoms im Rest ergeben die Schnittpunkte zwischen der Asymptote und der Funktion.

12. Gibt es absolute Maximal- oder Minimalstellen?

28.1.2 Gerade (2-Punkte-Form)

$$y = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) + y_1$$

28.1.3 Abstand eines Punktes von einer Geraden

Gegeben: Gerade Ax + By + C = 0, Punkt $P = (p_1, p_2)$

$$d = \left| \frac{Ap_1 + Bp_2 + C}{\sqrt{A^2 + B^2}} \right| \quad (A^2 + B^2 \neq 0)$$

28.2 Funktionen mit mehreren Variablen

28.2.1 Bezeichnungen

$$f_1(x,y) = \frac{\partial f}{\partial x}$$

$$f_2(x,y) = \frac{\partial f}{\partial y}$$

Richtungsvektoren an die Parameterlinien

Richtungsvektor an die Abszissenlinie: $(1, 0, f_1(x, y))$ Richtungsvektor an die Ordinatenlinie: $(0, 1, f_2(x, y))$

Tangentialebene

$$\varepsilon: \quad \vec{p} = (p_1, p_2, p_3) = (x, y, f(x, y)) + \alpha(1, 0, f_1(x, y)) + \beta(0, 1, f_2(x, y))$$

$$\vec{n}_{\varepsilon} = (f_1(x,y), f_2(x,y), -1)$$

Gradient

Wir betrachten die Funktion $f:(x_1,x_2)\mapsto f(x_1,x_2)$. Sie ist in einer gewissen Umgebung U von (x_0,y_0) definiert.

Die Richtung des stärksten Anstiegs von f in (x_0, y_0) ist

$$\operatorname{grad} f(x_0, y_0) = (f_1(x_0, y_0), f_2(x_0, y_0)) = \vec{v}$$

(⇒ Richtung der Fallgeraden in der Grundrissebene) Richtungsvektor der Fallgerade der Tangentialebene:

$$(f_1(x_0, y_0), f_2(x_0, y_0), f_1(x_0, y_0)^2 + f_2(x_0, y_0)^2)$$

Richtungsableitung

$$D_{\vec{v}}f(x_0,y_0) = \operatorname{grad} f(x_0,y_0) \cdot \vec{e_v}$$

wobei $\vec{e_v}$ der Einheitsvektor in Richtung \vec{v} ist

Totales Differential

$$df = h \cdot f_1(x, y) + k \cdot f_2(x, y)$$

wobei h und k die Inkremente sind

Kettenregel

Vollständig differenzierbare Funktionen:

$$f:(x_1,x_2)\mapsto f(x_1,x_2)$$

$$u: (y_1, y_2) \mapsto u(y_1, y_2)$$

$$v:(y_1,y_2)\mapsto v(y_1,y_2)$$

$$\tilde{f}:(y_1,y_2)\mapsto f(u(y_1,y_2),v(y_1,y_2))$$

Dann sind

$$\tilde{f}_1(y_1, y_2) = f_1(u(y_1, y_2), v(y_1, y_2)) \cdot u_1(y_1, y_2) + f_2(u(y_1, y_2), v(y_1, y_2)) \cdot v_1(y_1, y_2)$$

$$\tilde{f}_2(y_1, y_2) = f_1(u(y_1, y_2), v(y_1, y_2)) \cdot u_2(y_1, y_2) + f_2(u(y_1, y_2), v(y_1, y_2)) \cdot v_2(y_1, y_2)$$

28.3 Kegelschnitte

28.3.1 Kreis

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

$$M=(x_0,y_0)$$

28.3.2 Ellipse

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

$$M=(x_0,y_0)$$

28.3.3 Hyperbel

$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$$

$$M=(x_0,y_0)$$

28.3.4 Parabel

$$(y - y_0)^2 = 2p(x - x_0)$$

$$S = (x_0, y_0)$$

Überdruck, 31 Überlagerungsprinzip, 76	Aufleiten, 179 Rechenregeln, 179
2×2 Matrizen	Sätze, 180
Matrizen und Determinanten, 171	Spezielle Integrale, 181
3×3 Matrizen	Auftrieb, 32
Matrizen und Determinanten, 172	Ausdehnung
1/14/11_011	Längen-, 41
Abbildungen, 4	Volumen-, 41
Ableiten, 177	Austausch von Wärmemengen, 44
Bernoulli, de l'Hospital, 179	Austrittsgeschwindikkeit, 38
Elementare Funktionen, 178	<u> </u>
Rechenregeln, 177	Basisschaltug, 136
Absoluter Druck, 31	Bernoulli, 179
Abtasttheorem, 167	Beschleunigte Bewegung, 16
Abtastung, 166	Beugung, 69
Abtasttheorem, 167	Am Gitter, 70
Energie, 168	Am Spalt, 69
Flat Top Sampling, 166	kreisförmige Öffnung, 69
Ideale, 166	Bewegung der Planeten, 27
Interpolation, 168	Biasstrom, 158
Leistung, 168	Biegung
Real, 166, 167	Balken, 15
Rechteckpuls, 166, 167	Binom, 170
Rekonstruktion, 167	Biot-Savart, 87
Sample and Hold, 167	Bipolar Tansistor, 136
AC-Verstärker, 143	Blindleistung, 104
Addierer, 150, 151	Bodediagramm, 112
Additionstheoreme, 175	Brechung, 2
adiabatisch, 52	Carnotprozess, 54
Admittanz, 106, 110	Cauchy-Schwarzsche, 185
Antriebstechnik, 120	Common Mode Error, 156
Aperiodische Schwingung, 61	Cosinuswerte, 176
Arbeit, 21	Crestfaktor, 103
Beschleunigungs-, 22	Crestianion, 100
Expansions-, 52	Dämpfung, 117
Hub-, 22	Dampfdruck, 44
Kompressions-, 52	Debye-Temperetur, 44
Reibungs-, 23	Deformierbare Körper, 31
Spann-, 22	Deformierung, 13
Verformungs-, 23	Dehnung, 13

Dezibel, 149	Dreiphasensysteme, 120
Dichte, 21	DriftGeschwindigkeit, 72
Differential Gleichungen, 195	Druck, 31
1.Ordnung, 195	Absoluter, 33
Hohere Ordnung, 196	Dampfdruck, 44
Homogen, linear, konst, 196	Differenzen, 34
Homogene, 195	Dynamischer, 33
Partikulare, 195, 196	Gesamt, 34
Differentieller UI-Wandler, 153	Schmelzdruck, 44
Differenzieren, 177	Statischer, 33
Bernoulli, de l'Hospital, 179	Druck auf Rohrwand, 33
Elementare Funktionen, 178	Druckmessung, 33
Rechenregeln, 177	Druckwandler, 32
Digital	DSG, 127
Abtastung, 166	Stabilität, 127
Sampling, 166	Durchflutung, 90
Digitale Signalverarbeitung, 165	Dynamik, 20
Diode, 132, 146	-
übergangsbereich, 130	Effektivwert, 104
AC-Analyse, 131	Eigenschingungen, 68
Arbeitspunktberechnung, 129	Einstein, 23
DC-Analyse, 131	Einzelkraft, 12
Differentieller Widerstand, 130	El. Arbeit, 72
Durchbruchbereich, 130	El. Leistung, 72
Durchlassbereich, 130	Elastischer Stoss, 25
Grosssignalanalyse, 131	Elekronendichte, 72
ideale, 129	Elektrischer Schwingkreis, 61
Kennlinie, 130	Elektrizitätslehre
Kleinsignalanalyse, 131	Überlagerungsprinzip, 76
Konstantspannungsmodell, 129	Arbeit, 72
Spannungsstabilisierung, 132	DriftGeschwindigkeit, 72
Sperrbereich, 130	Elekronendichte, 72
Temperaturkoeffizient, 132	Elementarladung, 72
Z-Diode, 132	Feldstärke, 72
Diracdelta, 190	Gleichstrom, 74
Doppelwinkel, 175	Kirchoff, 74
Doppler-Effekt, 65	Knotensatz, 74
Akustischer, 65	Knotenspannungsmethode, 77
Optischer, 65	Kreisströme, 77
1	Kreisstrom-Methode, 77
Drehbewegung, 17	Ladung, 72
Drehmond 12, 127	Leistung, 72
Drehmoment, 12, 127	Leistungsanpassung, 77
Drehstrom, 120	Leitwert, 72
Synchrongenerator, 127	Maschensatz, 74
Dreieckschaltung, 121	Netzwerkanalyse, 75
Dreifachwinkel, 175	Netzwerkumwandlung, 75
Dreiphasen, 120	Nichtlinear, 77

Quellen, 74	Energietechnik, 120
gesteuerte, 79	Enthalpie, 53
Mehrere, 75	Entropie, 55
Quellenumwandlung, 76	Euler, 177
Quellenverschiebung, 78	Expansion, 52
Spannung, 72	F.1. 1 450
Spannungsgesetz, 74	Faktorzerlegungen, 170
Spannungsquelle, 74	Feder, 14, 22
spez. Leitwert, 72	Feldeffekt Transistor, 148
Spez. Widerstand, 72	Feldstärke, 72
Stern – Dreieck, 76	Fernrohre, 10
Strom, 72	Fet
Stromdichte, 72	AC-Verstärker, 143
Stromgesetz, 74	DC-Berechnung, 141
Stromquelle, 75	Diode, 146
Superposition, 76	Drainschaltung, 144
Thévenin, 77	Fet-Typen, 137
Trennspannungen, 77	Gateschaltung, 144
Widerstand, 72	Gleichstrom, 141
Wirkungsgrad, 77	Innenwiderstände, 145
Elektromotor, 122	Kleinsignal Ersatz, 140
Elektronik, 129	MOS-Diode, 146
Elektrostatik, 82	MOSFET
Allgemein, 82	ideal, 138
Das Coulobsche Gesetz, 82	real, 139
Energie, 85	Schalter, 142
Homogenes Feld, 84	Sourceschaltung, 143
Kräfte, 85	Stromquelle, 147
Anziehung, 86	Geregelte Kaskode, 148 Kaskode, 147
Verschiebung, 86	Kaskode geregelt, 148
Paralleldrahtleitung, 85	Stromspiegel
Räumliches Zentralfeld, 83	Widlar, 148
Zylindrisches Zentralfeld, 84	VCR, 145
Elementarladung, 72	Widerstand, 145
Elliptische Spiegel, 4	Fet-Typen, 137
Emitterfolger, 136	Flüssigkeiten, 31
Emitterschaltug, 135	Fluchtgeschwindigkeit, 28
Energie, 21, 105, 168	Fluide, 31, 34
Expansions-, 52	Überdruck, 31
Kernbindungs-, 23	Absoluter Druck, 31
Kinetische-, 22	Auftrieb, 32
Kompressions-, 52	Druck, 31
Potentielle-, 22	Absoluter, 33
Reibungs-, 23	Differenzen, 34
Rotations-, 22	Dynamischer, 33
Spann-, 22	Gesamt, 34
Strahlung, 48	Statischer, 33
σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	

Druckmessung, 33	Norm in $\mathbb P$ und $\mathbb E$, 185
Druckwandler, 32	Orthonormierte Basis, 185
Grenzflächeneffekte, 34	Rechteck-Impuls, 191
Grenzflächenspannung, 35	Rechtecksignal, 187
Hydrodynamik, 36	Reihe komplex, 186
Hydrostatik, 32	Reihe reel, 185
Kapillarität, 35	Reihen, 184
Kompression, 31	Sägezahn Signal, 187
Kontinuitätsgleichung, 36	Skalarprodukt, 184
Kraftwandler, 32	Tranformation, 188
Manometer, 33	trig. Polynome, 184
Schweredruck, 32	Fourierreihe, 184
Strömung	Freier Fall, 18
Dynamischer Auftrieb, 39	Funktionsdiskussion, 200
Formen, 37	Bezeichnungen, 201
Laminare, 38	Funktionen mit einer Variablen, 200
Newtonsches Reibungsgesetz, 37	Funktionen mit mehreren Variablen, 201
Raynolds-Zahl, 37	
Reale, 37	Gase
Tragflügel, 40	Gemische, 42
Turbulent, 39	Ideal, 42
Volumenstrom, 38	Kinetische Gastheorie, 46
Vortizität, 37	Mittlere freie Weglänge, 47
Zirkulation, 37	Reale, 43
	Wärmeleitung, 47
Folge	GBP, 159, 163
Aritmetische, 171 Geometrische, 171	Gedämpfte Schwingung, 60
	Gegeninduktivität, 92
Fotoapparat, 7 Fourier	Gegenkopplung, 160
	Gegenkopplungsarten, 161
Bezeichnungen, 184	Gemische idealer Gase, 42
Cauchy-Schwarzsche, 185	Generator, 122, 126
Cosine Folge, 187	Inselbetrieb, 126
Cosine-Impuls, 191	Synchron, 127
Cosinus-Impuls, 191	Generator am starren Netz, 127
Cosinustransformation, 188	Generatoren, 122
Diracdelta, 190	Geometrische Optik, 2
Doppelweg Gleichgerichtet, 187	Geostationär, 28
Dreieck Folge, 187	Geregelte Kaskode, 148
Dreieck-Impuls, 191	Getriebe, 29
Einweg Gleichgerichtet, 187	Gewichtskraft, 21
Exp. Polynome, 184	Gleichförmige Bewegung, 16
Faltung, 189	Gleichgewichtsbedingung, 11
Funktion $f \in \mathbb{E}$, 186	Gleichstrom, 74
Funktion $f \in \mathbb{P}$, 186	Gleichstrommaschine, 123
Impulse, 191	Fremderregt, 123
Koeffizienten, 185	Nebenschluss, 124, 125
Koeffizienten komplex, 186	Nutzbremsung, 124

Gleichtaktfehler, 156	Instabilität, 117
Goniometrie, 174	Instrumentationsverstärker, 151
Additionstheoreme, 175	Integrieren, 179
Doppelwinkel, 175	Integration rationaler Funktionen, 180
Dreifachwinkel, 175	Rechenregeln, 179
Genaue Funktionswerte, 176	Sätze, 180
Halbwinkel, 175	Spezielle Integrale, 181
Logarithmen, 176	Substitution, 179
Potenzen, 174	Intensität, 63
Summe und Produkte, 175	Interferenz, 66
Gravitation, 27	Isobar, 43
Gravitationsfeld, 28	isobar, 51
Gravitationsgesetz, 27	Isochor, 43
Grenzflächeneffekte, 34	isochor, 51
Grenzflächenspannung, 35	isotherm, 51
Grundlagen	
Grundgrössen, 72, 79	k-Wert, 50
Vektorrechnung, 172	Kapazitäten, 107
C ^r	Kapillarität, 35
Haftreibung, 11	Kaskode, 147
Halbwinkel, 175	Kaskode geregelt, 148
Harmonische Welle, 64	Kepler-Gesetze, 27
Horizontaler Wurf, 19	Kinematik, 16
Hospital, 179	Beschleunigte Bewegung, 16
Hydrodynamik, 36	Drehbewegung, 17
Hydrostatik, 32	Freier Fall, 18
Hyperbolische Spiegel, 4	Horizontaler Wurf, 19
T Cl. 1 440	Kreisbewegung, 17
I-Glied, 113	Schiefer Wurf, 19
ideale Diode, 129	Senkrechter Wurf, 18
Ideale Gase, 42	Winkelbeschleunigung, 17
Idealer OP, 149	Winkelgeschwindigkeit, 17
Impedanz, 106, 110	Wurfbahnen, 18
Impedanztransformation, 110	Zentripetalbeschleunigung, 18
Impuls, 24	Kinetische Gastheorie, 46
Impulse, 191	Mittlere freie Weglänge, 47
Induktionsgesetz, 94	Kirchoff, 74
induktive Kopplung, 92	Knotensatz, 74
Induktivität, 91	Knotenspannungsmethode, 77
Drahtschleife, 98	Kollektorschaltug, 136
Kreisrahmenspule, 101	Komparator, 153
Paralleldrahtleitung, 99	Komplexe Zahlen, 176, 177
Ringspule, Toroid, 101	Euler, 177
Induktivitäten, 108	Kompression, 14, 31
Parallelschaltung, 95	Komression, 52
Serieschaltung, 95	Konkavspiegel, 5
inelastischer Stoss, 25	Kontinuitätsgleichung, 36
Inselbetrieb, 126	Konvexspiegel, 5

Kräfte im Magnetfeld, 88	Flussdichte, 88
Kräftepaar, 12	Gegeninduktivität, 92
Kraftwandler, 32	Induktionsgesetz, 94
Kreisbewegung, 17	induktive Kopplung, 92
Kreisprozess, 53	Induktivität, 91
Kreisströme, 77	Kräfte, 88
Kreisstrom-Methode, 77	Nichtlinerarität, 96
Kreisstrommethode, 111	Ohmsches Gesetz, 91
Kurvendiskussion, 200	Permeabilität, 87
	Selbstinduktion, 94
Ladung, 72	Spulenfluss, 91
Laplace, 192	Trafogleichungen, 95
Lineare Übertragung, 197	Widerstand, 91
Nichtlineare Übertragung, 198	Manometer, 33
Laplacetransformation	Maschenmethode, 111
Faltung, 194	Maschensatz, 74
Periodische Funktionen, 194	Masse, 27
Rechenregeln, 193	Massenträgheit, 29
Spezielle, 193	Massenträgheit (tabelle), 30
Leistung, 23, 104, 168	Mathematik, 170
Leistung bei Sternschaltung, 121	Matrix
Leistungsanpassung, 77, 104	Transponierte, 172
Leitwert, 72	Matrizen und Determinanten, 171
Lichtwellenleiter, 3	Maxwellsche Geschwindigkeitsverteilung,
Lineare Abbildungen	47
Vektorrechnung, 173	Membrane, 69
Linsen, 6	Mikroprojektor, 8
Linsensysteme, 6	Mikroskop, 9
Linsentypen, 6	Mischtemperatur, 44
Luftfeuchtigkeit, 45	Mitkopplung, 160
Lupe, 8	Mittel- und Kennwerte, 102
	MOS-Diode, 146
Machscher Kegel, 66	Motor, 122
Magetismus	Motoren, 122, 165
Energiedichte, 93	Gleichstrom, 123
Magn. Widerstand, 91	
Magnetismus, 72	Nebenschlussmaschine, 124, 125
Brechung, 92	Netzwerkanalyse, 75
Durchflutung, 90	Netzwerkumwandlung, 75
Energie, 93	Newtonsches Reibungsgesetz, 37
Feldstärke, 87	Nichtlinear, 77
Koaxialkabel, 99	Nichtlinerarität, 96
Kreisförmiger Leiter, 98	Norm in \mathbb{P} und \mathbb{E} , 185
Kurzer, gerader Leiter, 97	Nullstelle, 116
Langer gerader Leiter, 97	Nyquistdiagramm, 112
Voller Leiter, 98	, ,
Zylinderspule, 100	Offsetfehler, 157
Fluss, 90	Ohm, 107

Operationsverstärker, 150, 159 Linsen, 6 Übertragungskennlinie, 156 Linsensysteme, 6 Addierer, 150, 151 Linsentypen, 6 Lupe, 8 Ausgangsspannungsbereich, 156 Mikroprojektor, 8 Bandbreite, 159 Mikroskop, 9 Beschaltung mit Zweitor, 155 Parabolspiegel, 4 Biasstrom, 158 Planspiegel, 5 Common Mode Error, 156 Prisma, 3 Differentieller UI-Wandler, 153 Projektor, 7 Differenzverstärker, 151 Reflexionsgesetz, 2 Dynamischer Eingakgswiderstand, 158 Sammellinse, 6 Eingangsströme, 158 Sphärische Spiegel, 5 Fehler, 156 Spiegel, 4 Frequenzgang, 159 Totalreflexion, 3 GBP, 159 Zerstreuungslinse, 7 Geschlossene Verstärkung, 157 Optische Weglänge, 67 Gleichtaktfehler, 156 Orthonormierte Basis, 185 Idealer-, 149 Ortskurve, 112 Invertierender Verstärker, 155 Oszillator, 154 Komparator, 153 Offsetfehler, 157 P-Glied, 113 Oszillator, 154 Parabolspiegel, 4 Power supply error, 157 Parsevalsches Theorem, 186 Realer, 156 Partialbruchzerlegung, 171 Schmitt-Trigger, 153 Pascal Dreieck, 170 Spannungsfolger, 150 Pendel Statische Fehler, 158 Drehpendel, 58 Stromquelle, 152 Federpendel, 58 Stromspiegel, 152 Mathematisches Pendel, 59 Subtrahierer, 151 Physikalisches Pendel, 59 Transitfrequenz, 159 Permeabilität, 87 Versorgungsspannunngsfehler, 157 Pfeife, 68 Verstärker Phasenübergänge, 44 Invertierend, 150 Physik, 2 Nicht Invertierend, 150 Planeten-Bewegung, 27 Verstärkungsbandbreitenprodukt, 159 Planspiegel, 5 Wien-Robinson Oszillator, 154 Pol-Nullstellendiagramm, 116 Optik, 2 Polstelle, 116 Abbildungen, 4 Potentielle Energie, 28 Brechung, 2 Prisma, 3 Elliptische Spiegel, 4 Projektor, 7 Fernrohre, 10 Proportionalglied, 113 Fotoapparat, 7 PT₁-Glied, 114, 117 Hyperbolische Spiegel, 4 PT₂-Glied, 114, 117 Konkavspiegel, 5 Konvexspiegel, 5 Quadratische Gleichung, 171 Lichtwellenleiter, 3 Quellen, 74

gesteuerte, 79	Physikalisches Pendel, 59
Mehrere, 75	Ungedämpfte Schwingung, 56
Quellenumwandlung, 76	Selbstinduktion, 94
Quellenverschiebung, 78	Senkrechter Wurf, 18
Querkontraktion, 14	Sensivität, 163
~ '	Sinuswerte, 176
Rückkopplung, 160	Skalare Projektion
Raketenantrieb, 25	Vektorrechnung, 172
Rationalisierungsformeln, 181	Skalarprodukt
Raynolds-Zahl, 37	Vektorrechnung, 172
Reaktionsprinzip, 12	Spannung, 13, 72
Realer OP, 156	an Grenzflächen, 35
Reflexionsgesetz, 2	Spannungsfolger, 150
Reibungsarbeit, 23	Spannungsgesetz, 74
Reibungskraft, 21	1 00
Reihen	Spannungsquelle, 74
Fourier, 184	Spannungsstabilisierung, 132
Ringing, 117	spez. Leitwert, 72
RMS, 103	Spez. Widerstand, 72
RMS-Wert, 104	Sphärische Spiegel, 5
Rotation, 26	Spiegel, 4
,	Spulenfluss, siehe Magnetismus
Saite, 68	Standardterm, 113
Sammellinse, 6	Aufwartsknick, 115
Sample and Hold, 167	Dämpfung, 117
Sampling, 166	I-Glied, 113
Scheinleistung, 104	Instabilität, 117
Schiefer Wurf, 19	P-Glied, 113
Schleifenverstärkung, 163	PT ₁ -Glied, 114, 117
Schmelzdruck, 44	PT ₂ -Glied, 114, 117
Schmitt-Trigger, 153	Quadratisch, 114, 116
Schraubenfeder, 14	Ringing, 117
Schubbeanspruchung, 14	Schwingen, 117
Schweredruck, 32	Totzeitglied, 115
Schwerpunkt, 13	Starre Körper im Gleichgewicht, 11
Schwingen, 117	Statik, 11
Schwingung	Statischer Auftrieb, 32
Aperiodische Schwingung, 61	Stehende Welle, 67
Gedämpfte Schwingung, 60	Stern – Dreieck, 76
Schwingungen, 56	Sternschaltung, 120
aperiodische Schwingung, 57	Stochastische Signale, 165
Drehpendel, 58	Stoss
Elektrischer Schwingkreis, 61	elastisch, 25
Federpendel, 58	inelastisch, 25
freie Schwingung, 56	Strömung
Harmonische Schwingung, 56	Austrittsgeschwindikkeit, 38
Mathematisches Pendel, 59	Dynamischer Auftrieb, 39
periodische Schwingung, 57	Formen, 37
r 51104106116 561111111164116/5/5/	1 01111011, 01

Laminare, 38	Tragflügel, 40
Newtonsches Reibungsgesetz, 37	Transistor
Raynolds-Zahl, 37	Basisschaltug, 136
Reale, 37	DC-Ersatzschaltung, 134
Tragflügel, 40	Dynamische Innenwiderstände, 134
Turbulent, 39	Emitterfolger, 136
Volumenstrom, 38	Emitterschaltug, 135
Vortizität, 37	Arbeitspunkt, 135
Zirkulation, 37	Feldeffekt, 148
Strömungsfeld	Funktionsweise, 133
Allgemein, 80	Idealer, 134
Leistung, 81	Kollektorschaltug, 136
Leistungsdichte, 81	NPN, 133
Räumliches Zentralfeld, 80	PNP, 133
Zylindrisches Zentralfeld, 81	Unipolar, 148
Strömungsformen, 37	Verstärkerschaltungen, 134
Strahlung	Transitfrequenz, 163
Gesetze-, 48	Translation, 26
Temperatur-, 48	Transponierte, 172
Wärme, 49	Trennbündelmethode, 111
Strahlungsenergie, 48	Trennspannungen, 77
Strom, 72	Trigonometrie, 173
Stromdichte, 72	Cosinussatz, 174
Stromgesetz, 74	Komplementwinkel, 173
Stromquelle, 75, 147, 152	Sinussatz, 174
Geregelte Kaskode, 148	
Kaskode, 147	VCR, 145
Kaskode geregelt, 148	Vektorielle Projektion
Stromspiegel, 152	Vektorrechnung, 172
Widlar, 148	Vektorprodukt
Subtrahierer, 151	Vektorrechnung, 172
Superposition, 76	Vektorrechnung, 172
Symetrischer Eingang, 151	Versorgungsspannungsfehler, 157
Synchrongenerator, 126, 127	Verstärker, 160, 163
	Ausgangschaltungen, 162
Tangenswerte, 176	Eingangschaltungen, 162
Tansistor	GBP, 163
Bipolar, 136	Gegenkopplung, 160
Temperatur, 41	Invertierend, 150
Celcius, 41	Mitkopplung, 160
Debeye-, 44	Nicht Invertierend, 150
Farenheit, 41	Rückkopplung, 160
Kelvin, 41	Schleifenverstärkung, 163
Temperaturstrahlung, 48, 49	Transitfrequenz, 163
Thévenin, 77	Verstärkung, 149
Totalreflexion, 3	Verstärkungs Bandbreiten Produkt, 163
Totzeitglied, 115	Verstärkungsbandbreitenprodukt, 159
Trafogleichungen, 95	Vierpole, 155

Vortizität, 37	Welle
Vorwort, i	Überlagerung, 66
717	Beugung, 69
Wärme, 43	Am Gitter, 70
Austausch-, 44	Am Spalt, 69
Energie, 43	kreisförmige Öffnung, 69
Molare-, 44	Doppler-Effekt
Wärmeaustausch, 49	Akustischer, 65
Wärmebedarf eines Gebäudes, 50	Optischer, 65
Wärmelehre, 41	Eigenschwingung, 68
Wärmeleitung in Gasen, 47	Harmonische, 64
Wärmetransport, 50	Intensität, 63
Wechelstrom	Interferenz, 66
Betragsmittelwert, 102	Kapillarwelle, 62
Formfaktor, 103	Longitudinalwelle, 62
Halbwellenmittelwert, 102	Machscher Kegel, 66
Linearer Mittelwert, 102	Membrane, 69
Mittel- und Kennwerte, 102	Optische Weglänge, 67
Quadratischer Effektivwert, 103	Phasensprung, 66
zusammeng. Sign., 103	Räumliche Ausbreitung, 64
Quadratischer Mittelwert, 103	Schallwelle, 62
Quadratischer RMS, 103	Schwerewelle, 62
RMS, 103	Seilwelle, 62
Scheitelfaktor, 103	Stehende, 67
Wechselstrom	Transversalwelle, 62
Admittanz, 106	Wellengleichung, 63
Blindleistung, 104	Wellengeschwindigkeiten, 62
Bodediagramm, 112	Wellengleinchung, 63
Standardterm, 113	Wellenlehre, 62
Darstellungsformen, 112	Widerstand, 72, 107
Energie, 105	Widlar, 148
Impedanz, 106	Wien-Robinson Oszillator, 154
Impedanztransformation, 110	Winkelbeschleunigung, 17
Induktivitäten, 108	Winkelgeschwindigkeit, 17
Kapazitäten, 107	Wirkungsgrad, 24, 77
Kreisstrommethode, 111	Carnot, 54
Leistung, 104	Wurfbahnen, 18
Leistungsanpassung, 104	,
Maschenmethode, 111	Z-Diode, 132
Nyquistdiagramm, 112	Zeigerdarstellung, 109
Ortskurve, 112	Zentralmasse, 28
Scheinleistung, 104	Zentripetalbeschleunigung, 18
Transformation ZY, 110	Zerstreuungslinse, 7
Trennbündelmethode, 111	zurückgeführte Energie, 55
Widerstand, 107	Zustandsänderungen, 51
Z und Y-Ebene, 110	adiabatisch, 52
Wechslelstrom	isobar, 51
RMS, 103	isochor, 51

isotherm, 51 Zweitore, 155