Module 9: String Matching

CS 240 - Data Structures and Data Management

Arne Storjohann

Based on lecture notes of many previous cs240 instructors

David R. Cheriton School of Computer Science, University of Waterloo

Fall 2018

Pattern Matching

- Search for a string (pattern) in a large body of text
- T[0..n-1] The **text** (or **haystack**) being searched within
- P[0..m-1] The **pattern** (or **needle**) being searched for
- Strings over alphabet Σ
- Return the first i such that

$$P[j] = T[i+j]$$
 for $0 \le j \le m-1$

- This is the first **occurrence** of *P* in *T*
- If P does not **occur** in T, return FAIL
- Applications:
 - ► Information Retrieval (text editors, search engines)
 - Bioinformatics
 - ► Data Mining

Pattern Matching

Example:

- T = "Where is he?"
- $P_1 =$ "he"
- $P_2 =$ "who"

Definitions:

- **Substring** T[i..j] $0 \le i \le j < n$: a string of length j i + 1 which consists of characters $T[i], \ldots T[j]$ in order
- A **prefix** of T: a substring T[0..i] of T for some $0 \le i < n$
- A suffix of T: a substring T[i..n-1] of T for some $0 \le i \le n-1$

General Idea of Algorithms

Pattern matching algorithms consist of guesses and checks:

- A **guess** is a position i such that P might start at T[i]. Valid guesses (initially) are $0 \le i \le n m$.
- A **check** of a guess is a single position j with $0 \le j < m$ where we compare T[i+j] to P[j]. We must perform m checks of a single **correct** guess, but may make (many) fewer checks of an **incorrect** guess.

We will diagram a single run of any pattern matching algorithm by a matrix of checks, where each row represents a single guess.

Brute-force Algorithm

Idea: Check every possible guess.

```
BruteforcePM(T[0..n-1], P[0..m-1])
T: String of length n (text), P: String of length m (pattern)
     for i \leftarrow 0 to n - m do
2. match \leftarrow true

3. j \leftarrow 0

4. while j < m and match do

5. if T[i+j] = P[j] then

6. j \leftarrow j+1
          else
8.
                           match \leftarrow false
           if match then
10.
                     return i
11.
        return FAIL
```

Example

• Example: T = abbbababbab, P = abba

a	b	b	b	a	b	a	b	b	a	b
а	b	b	a							
	a									
		a								
			a							
				а	b	b				
					a					
						а	b	b	а	

• What is the worst possible input?

$$P = a^{m-1}b, T = a^n$$

- Worst case performance $\Theta((n-m+1)m)$
- $m \le n/2 \Rightarrow \Theta(mn)$

Pattern Matching

More sophisticated algorithms

- KMP and Boyer-Moore
- Do extra preprocessing on the pattern P
- We eliminate guesses based on completed matches and mismatches.

KMP Algorithm

- Knuth-Morris-Pratt algorithm (1977)
- Compares the pattern to the text in left-to-right
- Shifts the pattern more intelligently than the brute-force algorithm
- When a mismatch occurs, what is the most we can shift the pattern (reusing knowledge from previous matches)?

• KMP Answer: the largest prefix of P[0..j] that is a suffix of P[1..j]

KMP Failure Array

- Preprocess the pattern to find matches of prefixes of the pattern with the pattern itself
- The **failure array** F of size m: F[j] is defined as the length of the largest prefix of P[0..j] that is also a suffix of P[1..j]
- F[0] = 0
- If a **mismatch** occurs at $P[j] \neq T[i]$ we set $j \leftarrow F[j-1]$
- Consider P = abacaba

j	P[1j]	Р	<i>F</i> [<i>j</i>]
0	_	abacaba	0
1	Ъ	abacaba	0
2	ba	abacaba	1
3	bac	abacaba	0
4	baca	abacaba	1
5	bacab	abacaba	2
6	bacaba	abacaba	3

KMP Algorithm

```
KMP(T,P)
T: String of length n (text), P: String of length m (pattern)
1. F \leftarrow failureArray(P)
2. i \leftarrow 0
3. j \leftarrow 0
4. while i < n do
5. if T[i] = P[j] then
                  if j = m - 1 then
7.
                       return i - j //match
8.
                  else
                       i \leftarrow i + 1
9.
                       i \leftarrow i + 1
10.
11.
            else
12.
                  if j > 0 then
                       i \leftarrow F[i-1]
13.
14.
                  else
                       i \leftarrow i + 1
15.
16.
       return -1 // no match
```

KMP: Example

P = abacaba

 $T={\tt abaxyabacabbaababacaba}$

0	1	2	3	4	5	6	7	8	9	10	11
a	b	a	X	у	a	b	a	С	a	b	b
а	b	а	С								
		(a)	b								
			а								
				а							
					а	b	а	С	а	b	a
									(a)	(b)	a

Exercise: continue with T = abaxyabacabbacaba

Computing the Failure Array

```
failureArray(P)
P: String of length m (pattern)
1. F[0] \leftarrow 0
2. i \leftarrow 1
3. i \leftarrow 0
4. while i < m \text{ do}
             if P[i] = P[j] then
5.
                F[i] \leftarrow j+1
6.
                   i \leftarrow i + 1
7.
                   i \leftarrow i + 1
8.
              else if j > 0 then
9.
                  i \leftarrow F[i-1]
10.
              else
11.
                   F[i] \leftarrow 0
12.
                   i \leftarrow i + 1
13.
```

KMP: Analysis

failureArray

- At each iteration of the while loop, either
 - ① *i* increases by one, or
 - ② the guess index i j increases by at least one (F[j-1] < j)
- There are no more than 2m iterations of the while loop
- Running time: $\Theta(m)$

KMP

- failureArray can be computed in $\Theta(m)$ time
- At each iteration of the while loop, either
 - 1 i increases by one, or
 - ② the guess index i j increases by at least one (F[j-1] < j)
- There are no more than 2n iterations of the while loop
- Running time: $\Theta(n)$

KMP: Another Example

- T =abacaabaccabacabaabb
- P =abacab

Boyer-Moore Algorithm

Based on three key ideas:

- Reverse-order searching: Compare P with a subsequence of T moving backwards
- Bad character jumps: When a mismatch occurs at T[i] = c
 - ▶ If P contains c, we can shift P to align the last occurrence of c in P with T[i]
 - ▶ Otherwise, we can shift P to align P[0] with T[i+1]
- Good suffix jumps: If we have already matched a suffix of P, then get a mismatch, we can shift P forward to align with the previous occurrence of that suffix (with a mismatch from the actual suffix). Similar to failure array in KMP.
- When a mismatch occurs, Boyer-Moore chooses whichever of bad character or good suffix shifts the pattern further to the right.
- Can skip large parts of T

Bad character examples

6 comparisons (checks)

$$P = m \ o \ o \ r \ e$$
 $T = b \ o \ y \ e \ r \ m \ o \ o \ r \ e$
 $[r] \ e$
 $[m] \ o \ o \ r \ e$

7 comparisons (checks)

Good suffix examples

• Crucial ingredient: longest suffix of P[i+1..m-1] that occurs in P.

Last-Occurrence Function

- ullet Preprocess the pattern P and the alphabet Σ
- Build the **last-occurrence function** L mapping Σ to integers
- L(c) is defined as
 - ▶ the largest index i such that P[i] = c or
 - ightharpoonup -1 if no such index exists
- Example: $\Sigma = \{a, b, c, d\}, P = abacab$

С	а	b	С	d
L(c)	4	5	3	-1

- The last-occurrence function can be computed in time $O(m+|\Sigma|)$
- In practice, L is stored in a size- $|\Sigma|$ array.

Suffix skip array

- Again, we preprocess P to build a table.
- Suffix skip array S of size m: for $0 \le i < m$, S[i] is the largest index j such that P[i+1..m-1] = P[j+1..j+m-1-i] and $P[j] \ne P[i]$.
- Note: in this calculation, any negative indices are considered to make the given condition true (these correspond to letters that we might not have checked yet).
- Similar to KMP failure array, with an extra condition.

Example: P = bonobobo

i	0	1	2	3	4	5	6	7
P[i]	b	0	n	0	b	0	b	0
<i>S</i> [<i>i</i>]	-6	-5	-4	-3	2	-1	2	6

• Computed similarly to KMP failure array in $\Theta(m)$ time.

Boyer-Moore Algorithm

```
boyer-moore(T,P)
      L \leftarrow last occurrance array computed from P
2. S \leftarrow \text{suffix skip array computed from } P
3. i \leftarrow m-1, j \leftarrow m-1
4. while i < n and j > 0 do
            if T[i] = P[j] then
5.
           i \leftarrow i - 1
6.
              i \leftarrow i - 1
7.
            else
8
                 i \leftarrow i + m - 1 - \min(L[T[i]], S[i])
9
10.
                i \leftarrow m-1
11. if i = -1 return i + 1
      else return FAIL
12.
```

Exercise: Prove that i - j always increases on lines 9–10.

Boyer-Moore algorithm conclusion

- Worst-case running time $\in O(n + |\Sigma|)$
- This complexity is difficult to prove.
- What is the worst case?
- \bullet On typical **English text** the algorithm probes approximately 25% of the characters in T
- Faster than KMP in practice on English text.

Tries of Suffixes and Suffix Trees

- What if we want to search for many patterns P within the same fixed text T?
- ullet Idea: Preprocess the text T rather than the pattern P
- Observation: P is a substring of T if and only if P is a prefix of some suffix of T.
- So want to store all suffixes of T in a trie.
- To save space:
 - ▶ Use a compressed trie.
 - ▶ Store suffixes implicitly via indices into *T*.
- This is called a suffix tree.

Trie of suffixes: Example

T =bananaban has suffixes

 $\{\texttt{bananaban}, \, \texttt{ananaban}, \, \texttt{nanaban}, \, \texttt{anaban}, \, \texttt{naban}, \, \texttt{aban}, \, \texttt{ban}, \, \texttt{an}, \, \texttt{n}, \, \Lambda\}$

Tries of suffixes

Store suffixes via indices:

$$T = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ b & a & n & a & n & a & b & a & n & \$ \end{bmatrix}$$

Suffix tree

Suffix tree: Compressed trie of suffixes

Building Suffix Trees

- Text T has n characters and n+1 suffixes
- We can build the suffix tree by inserting each suffix of T into a compressed trie.

This takes time $\Theta(n^2)$.

• There is a way to build a suffix tree of T in $\Theta(n)$ time. This is quite complicated and beyond the scope of the course.

Suffix Trees: String Matching

Assume we have a suffix tree of text T.

To search for pattern P of length m:

- We assume that *P* does not have the final \$.
- \bullet *P* is the prefix of some suffix of *T*.
- In the *uncompressed* trie, searching for *P* would be easy: *P* exists in *T* if and only search for *P* reaches a node in the trie.
- In the suffix tree, search for P until one of the follow occurs:
 - 1 If search fails due to "no such child" then P is not in T
 - ② If we reach end of P, say at node v, then jump to leaf ℓ in subtree of v. (We presume that suffix trees stores such shortcuts.)
 - 3 Else we reach a leaf $\ell = v$ while characters of P left.
- ullet Either way, left index at ℓ gives the shift that we should check.
- This takes O(|P|) time.

Pattern Matching in Suffix Tree: Example 1

Pattern Matching in Suffix Tree: Example 2

Pattern Matching in Suffix Tree: Example 3

Pattern Matching Conclusion

	Brute-Force	KMP	Boyer-Moore	Suffix trees
Preprocessing:	_	O(m)	$O(m + \Sigma)$	$O(n^2)$
Search time:	O (nm)	O(n)	O(n) (often better)	O (m)
Extra space:	_	O (m)	$O(m + \Sigma)$	O (n)