NATIONAL UNIVERSITY OF SINGAPORE

SEMESTER 1, 2021/2022

MA2002 Calculus

Solution to Tutorial 6

TUTORIAL PART I

1. (a) $f'(x) = 3 - 3x^2$. Then $f'(x) = 0 \Rightarrow x = \pm 1$.

	$(-\infty, -1)$	(-1,1)	$(1,\infty)$
f'(x)	_	+	_
f(x)		1	\

Then *f* is increasing on (-1, 1), and decreasing on $(-\infty, -1)$ and on $(1, \infty)$.

f has a local minimum 0 at -1, and a local maximum 4 at 1.

$$f''(x) = -6x$$
. Then $f''(x) = 0 \Rightarrow x = 0$.

	$(-\infty,0)$	$(0,\infty)$	
f''(x)	+	_	
f(x)	concave up	concave down	

The graph of f is concave up on $(-\infty,0)$, and concave down on $(0,\infty)$.

The point (0,2) is the inflection point of f.

(b) $g'(x) = 4 - \sec^2 x$. Then $g'(x) = 0 \Rightarrow \cos x = \pm \frac{1}{2} \Rightarrow x = \pm \frac{\pi}{3} \ (x \in (-\frac{\pi}{2}, \frac{\pi}{2}))$.

	$(-\frac{\pi}{2},-\frac{\pi}{3})$	$\left(-\frac{\pi}{3},\frac{\pi}{3}\right)$	$(\frac{\pi}{3},\frac{\pi}{2})$
f'(x)	_	+	_
f(x)	/	1	\

Then g is increasing on $(-\frac{\pi}{3}, \frac{\pi}{3})$, and decreasing on $(-\frac{\pi}{2}, -\frac{\pi}{3})$ and on $(\frac{\pi}{3}, \frac{\pi}{2})$. g has a local minimum $\sqrt{3} - \frac{4\pi}{3}$ at $-\frac{\pi}{3}$, and a local maximum $\frac{4\pi}{3} - \sqrt{3}$ at $\frac{\pi}{3}$. $g''(x) = -2\sec^2 x \tan x$. Then $g''(x) = 0 \Rightarrow \tan x = 0 \Rightarrow x = 0$.

	$(-\frac{\pi}{2},0)$	$(0,\frac{\pi}{2})$	
f''(x)	+	_	
f(x)	concave up	concave down	

The graph of *g* is concave up on $(-\frac{\pi}{2},0)$, and concave down on $(0,\frac{\pi}{2})$.

The point (0,0) is the inflection point of g.

2. Let the length of the two legs of the right triangle be *x* and *y* respectively.

Then by Pythagorean's Theorem, $x^2 + y^2 = 5^2 = 25$, i.e., $y = \sqrt{25 - x^2}$.

The area of the right triangle is thus given by

$$A(x) = \frac{1}{2}x\sqrt{25 - x^2}, \quad 0 \le x \le 5.$$

Then
$$A'(x) = \frac{25 - 2x^2}{2\sqrt{25 - x^2}}$$
. Let $A'(x) = 0$. We have $x = \frac{5}{\sqrt{2}}$.

Comparing the values of A at the end points 0, 5, and at the critical number $\frac{5}{\sqrt{2}}$:

$$A(0) = 0$$
, $A(5) = 0$, $A(\frac{5}{\sqrt{2}}) = \frac{25}{4}$,

we see that *A* attains the maximum $\frac{25}{4}$ when $x = \frac{5}{\sqrt{2}}$.

Therefore, the right triangle attains the maximum area $\frac{25}{4}$ cm² when it is the isosceles right triangle.

3. Let r be the radius of the hemisphere bubble.

Then the height of the bubble tower is given by

$$h(r) = r + \sqrt{1 - r^2} + 1, \quad 0 \le r \le 1.$$

Then
$$h'(r) = 1 - \frac{r}{\sqrt{1 - r^2}}$$
. Let $h'(r) = 0$. We have $r = \frac{1}{\sqrt{2}}$.

Comparing the values of *h* at the end points 0, 1, and at the critical number $\frac{1}{\sqrt{2}}$:

$$h(0) = 2$$
, $h(1) = 2$, $h(\frac{1}{\sqrt{2}}) = \sqrt{2} + 1 \approx 2.414$,

we see that *h* attains the maximum $\sqrt{2} + 1$ at $r = \frac{1}{\sqrt{2}}$.

Therefore, the bubble tower has the maximum height $\sqrt{2}+1$ when the radius of the hemisphere bubble is $\frac{1}{\sqrt{2}}$.

4. Let $\theta = \angle BAC$. Then $\angle BOC = 2\theta$. So the distance from A to B is $|\overline{AB}| = 4\cos\theta$, and the arc length from B to C is $|BC| = 2 \cdot 2\theta = 4\theta$. Then the time spent from A to C is given by

$$T(\theta) = \frac{|\overline{AB}|}{2} + \frac{|\widehat{BC}|}{4} = \frac{4\cos\theta}{2} + \frac{4\theta}{4} = 2\cos\theta + \theta, \quad 0 \le \theta \le \frac{\pi}{2}.$$

Then $T'(\theta) = 1 - 2\sin\theta$. Let $T'(\theta) = 0$. We have $\theta = \frac{\pi}{6}$.

Comparing the values of T at the end points $0, \frac{\pi}{2}$, and at the critical number $\frac{\pi}{6}$:

$$T(0) = 2$$
, $T(\frac{\pi}{2}) = \frac{\pi}{2} \approx 1.57$, $T(\frac{\pi}{6}) = \sqrt{3} + \frac{\pi}{6} \approx 2.26$,

we see that T attains the minimum $\frac{\pi}{2}$ at $r = \frac{\pi}{2}$.

Therefore, in order to arrive the point *C* as soon as possible, she should walk around the lake.

5. Since the cylinder is inscribed in the cone, by similar triangles, we have

$$\frac{r}{R} = \frac{H - h}{H}$$
, i.e., $r = \frac{R}{H}(H - h)$.

Then the volume of the cylinder is given by

$$V(h) = \pi r^2 h = \frac{\pi R^2}{H^2} (H - h)^2 h, \quad 0 \le h \le H.$$

$$V'(h) = \frac{\pi R^2}{H^2} (H - h)(H - 3h)$$
. Let $V'(h) = 0$. Then $h = \frac{H}{3}$.

Comparing the values of *V* at the end points 0, *H*, and at the critical number $\frac{H}{3}$:

$$V(0) = 0$$
, $V(H) = 0$, $T(\frac{H}{3}) = \frac{4\pi}{27}R^2H$,

we see that V attains the maximum $\frac{4\pi}{27}R^2H$ at $h=\frac{H}{3}$ and $r=\frac{2R}{3}$.

6. Let *x* and *y* be the length and the height of the rectangular plot respectively. Then xy = 216, i.e., $y = \frac{216}{x}$.

The length of the fence is thus given by

$$L(x) = 3x + 2y = 3x + \frac{432}{x}, \quad x > 0.$$

$$L'(x) = 3 - \frac{432}{x^2}$$
. Let $L'(x) = 0$. Then $x = 12$.

If 0 < x < 12, L'(x) < 0; if x > 12, L'(x) > 0. By Increasing/Decreasing Test,

L is decreasing on (0,12], and it is increasing on $[12,\infty)$.

So *L* attains the minimum 72 at x = 12. Moreover, if x = 12, then y = 18.

Therefore, the fence has the smallest length 72 m when the rectangle is $12 \text{ m} \times 18 \text{ m}$.

7. At the corner, the pipe has to be turned through the angles θ , where $0 < \theta < \frac{\pi}{2}$. At these angles, the length of available room for turning the pipe is given by

$$L(\theta) = \frac{9}{\sin \theta} + \frac{6}{\cos \theta}, \quad 0 < \theta < \frac{\pi}{2}.$$

Then
$$L'(\theta) = -\frac{9\cos\theta}{\sin^2\theta} + \frac{6\sin\theta}{\cos^2\theta}$$
. Let $L'(\theta) = 0$. We have $\theta = \tan^{-1}\sqrt[3]{\frac{3}{2}}$.

Note that $\sin \theta$ is increasing and $\cos \theta$ is decreasing on $(0, \frac{\pi}{2})$. So $L'(\theta)$ is a increasing on $(0, \frac{\pi}{2})$. In other words, the graph of L is concave up on $(0, \frac{\pi}{2})$.

In particular, the graph of L lies above the horizonal tangent line at $\theta = \theta_0 = \tan^{-1} \sqrt[3]{\frac{3}{2}}$. So L has the absolute minimum $L(\theta_0) \approx 21.07$ ft.

A pipe of length ℓ can be carried horizontally around the corner if and only if

$$\ell \le L(\theta)$$
 for all $\theta \in (0, \frac{\pi}{2})$.

In other words, $\ell \leq \min \{L(\theta) \mid \theta \in (0, \frac{\pi}{2})\} \approx 21$.

So the longest pipe which can be carried horizontally around the corner is 21 m.

TUTORIAL PART II

1. $f'(x) = 1 - \sin x$. Solving f'(x) = 0 on $(-2\pi, 2\pi)$, we have $x = -\frac{3\pi}{2}$ and $\frac{\pi}{2}$, which are the critical numbers of f on $(-2\pi, 2\pi)$.

	$(-2\pi, -\frac{3\pi}{2})$	$(-\frac{3\pi}{2},\frac{\pi}{2})$	$(\frac{\pi}{2},2\pi)$
f'(x)	+	+	+
f(x)	1	1	1

By Increasing/Decreasing Test, f is increasing on $[-2\pi, -\frac{3\pi}{2}]$, on $[-\frac{3\pi}{2}, \frac{\pi}{2}]$ and on $[\frac{\pi}{2}, 2\pi]$. So f is increasing on $[-2\pi, 2\pi]$, and thus it has no local maximum or local minimum on $(-2\pi, 2\pi)$.

 $f''(x) = -\cos x$. Solving f''(x) = 0 on $(-2\pi, 2\pi)$, we have $x = \pm \frac{\pi}{2}$ and $\pm \frac{3\pi}{2}$.

By Concavity Test, the graph of f(x) is concave up on $(-\frac{3\pi}{2}, -\frac{\pi}{2})$ and on $(\frac{\pi}{2}, \frac{3\pi}{2})$, and it is concave down on $(-2\pi, -\frac{3\pi}{2})$, on $(-\frac{\pi}{2}, \frac{\pi}{2})$ and on $(\frac{3\pi}{2}, 2\pi)$.

So on the interval $(-2\pi, 2\pi)$, f has four inflection points:

$$(-\frac{3\pi}{2}, -\frac{3\pi}{2}), (-\frac{\pi}{2}, -\frac{\pi}{2}), (\frac{\pi}{2}, \frac{\pi}{2}) \text{ and } (\frac{3\pi}{2}, \frac{3\pi}{2}).$$

2. The cross-section of the rain gutter is a trapezium with base 10 and $10+20\cos\theta$ and height $10\sin\theta$. We shall maximize its area

$$A(\theta) = \frac{1}{2}(10 + 10 + 20\cos\theta) \cdot 10\sin\theta = 100(1 + \cos\theta)\sin\theta, \quad 0 \le \theta \le \frac{\pi}{2}.$$

 $A'(\theta) = 100(2\cos^2\theta + \cos\theta - 1) = 100(1 + \cos\theta)(2\cos\theta - 1)$. Solving $A'(\theta) = 0$ on $(0, \frac{\pi}{2})$, we have $\theta = \frac{\pi}{3}$, which is the critical number of $A(\theta)$ on $(0, \frac{\pi}{2})$.

Comparing the values of $A(\theta)$ at end points $0, \frac{\pi}{2}$, and at the critical number $\frac{\pi}{3}$:

$$A(0) = 0$$
, $A(\frac{\pi}{2}) = 100$ and $A(\frac{\pi}{3}) = 75\sqrt{3} \approx 129.9$,

we see that $A(\theta)$ obtains the absolute maximum $75\sqrt{3}$ at $\theta = \frac{\pi}{3}$.

Therefore, the gutter could carry the maximum amount of water when $\theta = \frac{\pi}{3}$.

3. Note that $\theta = \alpha - \beta$, where $\tan \alpha = \frac{18 + 32}{h} = \frac{50}{h}$ and $\tan \beta = \frac{32}{h}$. Then

$$\tan \theta = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{\frac{50}{h} - \frac{32}{h}}{1 + \frac{50}{h} \frac{32}{h}} = \frac{18h}{h^2 + 1600}.$$

Since $\tan\theta$ is increasing on $(0,\frac{\pi}{2})$, maximizing θ is equivalent to maximizing $\tan\theta$.

Define
$$f(h) = \frac{18h}{h^2 + 1600}$$
 $(h > 0)$. Then $f'(h) = \frac{18(1600 - h^2)}{(h^2 + 1600)^2}$.

Solving f'(h) = 0 on h > 0, we have h = 40, which is the critical number of f(h).

If 0 < h < 40, then f'(h) > 0. So f is increasing on (0, 40].

If h > 40, then f'(h) < 0. So f is decreasing on $[40, \infty)$.

Therefore, f has the absolute maximum at h = 40. Equivalently, the kicker has the largest angle if he is 40 ft away from the goal post line.