Microprocessors & Interfacing

Number Conversion

Lecturer: Annie Guo

Number Representation

Any number can be represented in the form of

$$(a_n a_{n-1} ... a_1 a_0 .a_{-1} ... a_{-m})_r$$
= $a_n \times r^n + a_{n-1} \times r^{n-1} + ... + a_1 \times r + a_0 + a_{-1} \times r^{-1} + ... + a_{-m} \times r^{-m}$
 $r : radix, base$
 $0 \le a_i < r$

Decimal

$$(3597)_{10} = 3 \times 10^3 + 5 \times 10^2 + 9 \times 10 + 7$$

- The place values, from right to left, are 1, 10, 100, 1000
- The base or radix is 10
- All digits must be less than the base, namely, 0~9

Binary

$$(1011)_{2}$$

= $1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2 + 1$

- The place values, from right to left, are 1, 2, 4, 8
- The base or radix is 2
- All digits must be less than the base, namely, 0~1

Hexadecimal

$$(F24B)_{16}$$

= $F \times 16^3 + 2 \times 16^2 + 4 \times 16 + B$
= $15 \times 16^3 + 2 \times 16^2 + 4 \times 16 + 11$

- The place values, from right to left, are 1, 16, 16²,
 16³
- The base or radix is 16
- All digits must be less than the base, namely, 0~9,A,B,C,D,E,F

- From base r to base 10
 - Using

$$(a_{n}a_{n-1}...a_{l}a_{0}.a_{-1}...a_{m})_{r}$$

= $a_{n} \times r^{n} + a_{n-1} \times r^{n-1} + ... + a_{1} \times r + a_{0} + a_{-1} \times r^{-1} + ... + a_{-m} \times r^{-m}$

Examples (next slide)

From base 2

$$(1011.1)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2 + 1 + 1 \times 2^{-1} = 11.5$$

From base 16

(10A)
$$_{16} = 1 \times 16^2 + 0 \times 16 + 10 = 266$$

From base 10 to base r

Based on Formula

$$(a_n a_{n-1}...a_1 a_0.a_{-1}...a_{-m})_r$$

= $a_n \times r^n + a_{n-1} \times r^{n-1} + ... + a_1 \times r + a_0 + a_{-1} \times r^{-1} + ... + a_{-m} \times r^{-m}$

For whole number

• **Divide** the number/quotient repeatedly by **r** until the quotient is zero and the remainders are the digits of base r number, in reverse order

For fraction

• **Multiply** the number/fraction repeatedly by **r**, the whole numbers of the products are the digits of the base r fraction number

- To base 2
 - To convert $(11.25)_{10}$ to binary
 - For whole number $(11)_{10}$ repeated division (by 2)

For fraction (0.25)₁₀ – repeated multiplication (by 2)

$$(11.25)_{10} = (1011.01)_2$$

- To base 16
 - To convert (99.25)₁₀ to hexadecimal
 - For whole number (99)₁₀ division (by 16)

For fraction (0.25)₁₀ – multiplication (by 16)

$$(99.25)_{10} = (63.4)_{\text{hex}}$$

- Between binary and octal
 - Direct mapping based on the observation:

(abcdefgh. jklmn)
$$_{2}$$

= $(a \cdot 2 + b) \cdot 2^{6} + (c \cdot 2^{2} + d \cdot 2 + e) \cdot 2^{3} + (f \cdot 2^{2} + g \cdot 2 + h) + (j \cdot 2^{2} + k \cdot 2 + l) \cdot 2^{-3} + (m \cdot 2^{2} + n \cdot 2 + 0) \cdot 2^{-6}$
= $(0ab_{2}) \cdot 8^{2} + (cde_{2}) \cdot 8^{1} + (fgh_{2}) \cdot 8^{0} + (jkl_{2}) \cdot 8^{-1} + (mn0_{2}) \cdot 8^{-2}$

 The expressions in parentheses, being less than 8, are the octal digits.

- Between binary and octal (cont.)
 - Binary to octal
 - The binary digits ("bits") are grouped from the radix point, three digits a group. Each group corresponds to an octal digit.
 - Octal to binary
 - Each of octal digits is expanded to three binary digits

Binary to octal

- Convert $(10101100011010001000.10001)_2$ to octal: $010\ 101\ 100\ 011\ 010\ 001\ 000\ .\ 100\ 010_2$ = 2 5 4 3 2 1 0 . 4 2₈ = 2543210.42₈.

Note:

- Whole number parts are grouped from right to left. The leading 0 is optional
- Fractional parts are grouped from left to right and padded with 0s

- Octal to binary
 - Convert 37425.62 8 to binary :

```
3 7 4 2 5 . 6 2_8
= 011 111 100 010 101 . 110 010 _2
= 11111100010101.11001 _2
```

- Note:
 - For whole number parts, the leading 0s can be omitted.
 - For fractional parts, the trailing 0s can be omitted.

- Between binary and hexadecimal
 - Binary to hexadecimal
 - The binary digits ("bits") are grouped from the radix point, **four** binary digits a group. Each group corresponds to a hexadecimal digit.
 - Hexadecimal to binary
 - Each of hexadecimal digits is expanded to four binary digits

- Binary to hexadecimal
 - Convert 10101100011010001000.10001₂ to hexadecimal:

```
1010\ 1100\ 0110\ 1000\ 1000\ .\ 1000\ 1000\ _{2}
= A C 6 8 8 . 8 8 _{16}
= AC688.88_{16} .
```

Note:

- Whole number parts are grouped from right to left. The leading 0 is optional
- Fractional parts are grouped from left to right and padded with 0s

- Hexadecimal to binary
 - Convert 2F6A.78 ₁₆ to binary :

```
2 F 6 A . 7 8<sub>16</sub>
= 0010 1111 0110 1010 . 0111 1000<sub>2</sub>
= 10111101101010.01111<sub>2</sub>
```

- Note:
 - For whole number parts, the leading 0s can be omitted.
 - For fractional parts, the trailing 0s can be omitted.

Conversion to binary via octal

The direct conversion of 2001₁₀ to binary looks like this ...

... and gives 11111010001.

It may be quicker to convert to octal first ...

```
2001
250
31
2
3
7
0
3
```

... yielding 3721₈, which can be instantly converted to 11 111 010 001₂.