신입생 Deep Learning 기초 교육

5회: Transformer

Multimodal Language Cognition Lab, Kyungpook National University

2023.02.13

Recurrent Neural Networks(RNN)

$$h_t = f_W(h_{t-1}, x_t) \ dots \ h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t = W_{hy}h_t$$

- W_{xh} = Weights connecting the input layer and hidden layer
- W_{hh} = Weights connecting the hidden layer and hidden layer
- W_{hy} = Weights connecting the hidden layer and output layer
- Weight sharing
 - The amount of parameters in the model is reduced
 - Independent of the length of the feature vector T

Sequence-to-sequence

Problems with Seq2Seq?

Sequence-to-sequence with attention

- Attention provides a solution to the bottleneck problem
- Core idea

On each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence

Background

Sequence to Sequence with attention

RNN problems

- Long term dependency
- Fixed context vector
- Vanishing gradient
- Sequential processing

Transformer

Only Attention

Background

Image Classification

Rank	Model	Percentage correct	PARAMS	Extra Training Data	Paper	Code	Result	Year	Tags Z
1	VIT-H/14	99.5	632M	✓·	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	0	Ð	2020	Transformer
2	ViT-L/16	99.42	307M	~	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale	0	Ð	2020	Transformer
3	CaiT-M-36 U 224	99.4		✓	Going deeper with Image Transformers	0	Ð	2021	Transformer
4	CvT-W24	99.39		~	CvT: Introducing Convolutions to Vision Transformers	0	Ð	2021	Transformer

Sentiment Analysis

Rank	Model	Accuracy 1	Accuracy↑ Paper			Year	Tags 🗹
1	SMART-RoBERTa Large	97.5	SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization		Ð	2019	Transformer
2	T5-3B	97.4	Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer	0	Ð	2019	Transformer

Transformer

- The encoder maps an input sequence of symbol representations $(x_1, ..., x_n)$ to a sequence of continuous representations $z = (z_1, ..., z_n)$
- Given z, the decoder then generates an output sequence $(y_1, ..., y_m)$ of symbols one element at a time

Transformer Encoder

- The encoder is composed of a stack of N = 6
 identical layers
- Each layer has two sub-layer, multi-head
 attention and feed-forward network
- The output of each sub-layer is
 LayerNorm(x + Sublayer(x))
- All sub-layers in the model, as well as the embedding layers, produce outputs of dimension $d_{model} = 512$

Transformer Encoder

- The encoder is composed of a stack of N = 6
 identical layers
- Each layer has two sub-layer, masked multihead attention, multi-head attention and feed-forward network
- The output of each sub-layer is
 LayerNorm(x + Sublayer(x))
- All sub-layers in the model, as well as the embedding layers, produce outputs of dimension $d_{model} = 512$

Transformer Positional Encoding

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$
 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$

- Transformer receives all sequences as input at once
- It does not take into account the positional information of words

Transformer Positional Encoding

pos = 1	This		
pos = 2	is		
pos = 3	song		
pos = 4	of		
pos = 5	BTS		
pos = 6	it		
pos = 7	is		
pos = 8	fantastic		

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d_{model}})$$
 $PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d_{model}})$

- Transformer receives all sequences as input at once
- It does not take into account the positional information of words

Scaled Dot-Product Attention

Scaled Dot-Product Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.

- Q=Current token, K =Target token, V=Target token
- Attention(Q, K, V) = $softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$
- $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^o$ $where\ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$
- In this work we employ h=8 parallel attention layers, or heads
- For each of these we use ${
 m d_{model}}=512$, $d_k=d_v=d_{model}/h=64$

Encoder Multi-Head Attention ?

Q=K=V= encoder input sentence vector

Decoder Masked Multi-Head Attention

Q=K=V=decoder input sentence vector

Decoder Multi-Head Attention

Q=Decoder vector , K=V=Encoder vector

Multi-Head Attention

- On each of these projected versions of queries, keys and values we then perform the attention function in parallel
- Multi-head attention allows the model to jointly attend to information from different representation subspaces at different positions

Self-Attention

Transformer Feed Forward

$$ext{FFN}(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

https://colab.research.google.com/drive/19sECAn3d0993MxckIVmngCXwE0AjbmRk?usp=share_link

