Graphes

5. Graphes eulériens et hamiltoniens

Solen Quiniou

solen.quiniou@univ-nantes.fr

IUT de Nantes

Année 2023-2024 – BUT 1 (Semestre 2)

[Mise à jour du 18 janvier 2024]

Plan du cours

- Graphes eulériens
 - Introduction
 - Graphes eulériens et semi-eulériens
 - Recherche de circuits et de cycles eulériens
 - Recherche de chemins et de chaînes eulériens

- @ Graphes hamiltoniens
 - Graphes hamiltoniens

2/20

Graphes eulériens : introduction

Au 18ème siècle, un casse-tête est populaire parmi les habitants de Königsberg : est-il possible de se promener dans la ville en ne passant qu'une seule fois par chacun des 7 ponts de Königsberg?

http://epik.scientifik.fr/wp-content/uploads/2010/08/koninsbergl.jpg

ightarrow C'est le célèbre mathématicien Euler qui montre le premier que ce problème n'a pas de solution, en utilisant pour la première fois la notion de graphe

Graphes eulériens : introduction

Reformulation du problème en termes de graphe : « existe-t-il un cycle qui passe exactement une fois par toutes les arêtes du graphe ci-dessous ? »

 \rightarrow La réponse est non.

Graphes eulériens

Définitions : graphes eulérien et semi-eulériens

Soit G un graphe non orienté

- Cycle eulérien de G : cycle qui passe une et une seule fois par chaque arête de G
- → Graphe eulérien ⇔ possède un cycle eulérien
 - Chaîne eulérienne de G : chaîne qui passe une et une seule fois par chaque arête de G
- → Graphe semi-eulérien ⇔ ne possède que des chaînes eulériennes

 \rightarrow Notions similaires définies pour un graphe orienté G: circuit eulérien (au lieu de cycle eulérien) et chemin eulérien (au lieu de chaîne eulérienne)

Remarque

On peut aussi dire qu'un graphe est eulérien s'il est possible de dessiner le graphe sans lever le stylo et sans passer deux fois sur la même arête

Exemples de graphes eulériens

[d, c, b, a, c, f, a, d, f, e, d] cycle eulérien donc graphe eulérien

[7, 1, 7, 5, 6, 6, 2, 3, 5, 3, 4, 4] chemin eulérien mais pas de circuit eulérien donc graphe semi-eulérien

Théorème d'Euler

Théorème d'Euler (graphe non orienté)

Un graphe G = (S, A) admet un **cycle eulérien** ssi les deux conditions suivantes sont vérifiées :

- le graphe est connexe
- tous les sommets ont un degré pair :

 $\forall x \in S, d(x) \text{ est pair }$

Théorème d'Euler (graphe orienté)

Un graphe G = (S, A) admet un **circuit eulérien** ssi les deux conditions suivantes sont vérifiées :

- le graphe est connexe
- tous les sommets ont leur degré entrant égal à leur degré sortant :

$$\forall x \in S, d^+(x) = d^-(x)$$

7/20

Exemple de graphe orienté eulérien

Sommet x	а	b	С	d	е	f	g	h	i	j
$d^-(x)$	1	2	1	1	2	1	2	2	1	1
$d^+(x)$	1	2	1	1	2	1	2	2	1	1

- Tous les sommets ont un degré entrant égal à leur degré sortant
- → Le graphe est eulérien

Données : Graphe connexe G = (S, A) vérifiant les conditions du théorème d'Euler Résultat : Ce le circuit eulérien construit // Initialisation du circuit eulérien 1 On choisit un sommet quelconque s de S : 2 On détermine un circuit simple C_1 de $s \ a \ s$; $A_1 = A \setminus E_1$; // E_1 : ensemble des arcs utilisés dans C_1 // Boucle pour créer de petits circuits et utiliser tous les arcs 4 k = 1: tant que $A_k \neq \emptyset$ faire On choisit dans $G_k = (S, A_k)$ un sommet quelconque s_k de C_k ; On détermine un circuit simple C'_k de s_k à s_k ; On insère les arcs du circuit C'_k au circuit C_k , au niveau du sommet s_k , pour former le nouveau circuit C_{k+1} ; $A_{k+1} = A_k \setminus E'_k$; $^{\prime\prime}$ E_{k}^{\prime} : ensemble des arcs utilisés dans C_{k}^{\prime} k = k + 1:

// Fin de l'algorithme et obtention du circuit eulérien $C_{
m e}$ 12 $C_e = C_k$:

8

11 fin tq

• ligne 1 : choix arbitraire du sommet s = a

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$

10/20

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$

10/20

• boucle avec k = 1

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ► I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 2

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► 1.8: $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► 1.8: $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ▶ I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ▶ I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$
 - ► I. 8 : $C_4 = [a, b, c, d, e, f, g, e, b, g, h, i, j, h, a]$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ► I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$
 - ► 1. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ▶ I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$
 - ▶ 1.8: $C_4 = [a, b, c, d, e, f, g, e, b, g, h, i, j, h, a]$
 - ▶ 1.9: $A_4 = \emptyset$

- ligne 1 : choix arbitraire du sommet s = a
- ligne 2 : choix arbitraire d'un circuit $C_1 = [a, b, g, h, a]$
- ligne 3 : $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [a, b, c, d, e, b, g, h, a]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - I. 8 : $C_3 = [a, b, c, d, e, f, g, e, b, g, h, a]$
 - ► 1. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ► I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$
 - ▶ 1.8: $C_4 = [a, b, c, d, e, f, g, e, b, g, h, i, j, h, a]$
 - I. 9 : A₄ = ∅
- I. 12 : $C_e = [a, b, c, d, e, f, g, e, b, g, h, i, j, h, a]$

Chaînes et chemins eulériens

Théorème d'Euler (graphe non orienté)

Un graphe G = (S, A) admet une **chaîne eulérienne** ssi les deux conditions suivantes sont vérifiées :

- le graphe est connexe
- 2 tous les sommets, sauf exactement deux, ont un degré pair

Théorème d'Euler (graphe orienté)

Un graphe G = (S, A) admet un **chemin eulérien** ssi les deux conditions suivantes sont vérifiées :

- le graphe est connexe

$$d^+(x_1) = d^-(x_1) + 1$$
 et $d^+(x_2) = d^-(x_2) - 1$

Exemple de graphe orienté semi-eulérien

Sommet x	а	b	С	d	е	f	g	h	i	j
d ⁻ (x)	1	2	1	1	2	1	2	1	1	1
$d^+(x)$	1	2	1	1	2	1	1	2	1	1

 Tous les sommets ont un degré entrant égal à leur degré sortant sauf les sommets g et h pour lesquels on a :

$$d^+(g) = d^-(g) - 1$$
 et $d^+(h) = d^-(h) + 1$

→ Le graphe est semi-eulérien

12 $C_e = C_k$:

Données : Graphe connexe G=(S,A) vérifiant les conditions du théorème d'Euler Résultat : C_e le chemin eulérien construit

```
// Initialisation du chemin eulérien
1 On détermine les sommets x_1 et x_2 tels que définis dans le théorème d'Euler ;
2 On détermine un chemin simple C_1 de x_1 à x_2, obligatoirement ;
A_1 = A \setminus E_1;
                             // E_1 est l'ensemble des arcs utilisés dans C_1
   // Boucle pour créer de petits circuits et utiliser tous les arcs
4 k = 1:
  tant que A_k \neq \emptyset faire
       On choisit dans G_k = (S, A_k) un sommet quelconque s_k de C_k;
       On détermine un circuit simple C'_k de s_k à s_k;
       On insère les arcs du circuit C'_k au circuit C_k, au niveau du sommet s_k, pour former
8
        le nouveau circuit C_{k+1};
     A_{k+1} = A_k \setminus E'_k;
                        ^{\prime\prime} E_{k}^{\prime} : ensemble des arcs utilisés dans C_{k}^{\prime}
      k = k + 1:
11 fin tq
   // Fin de l'algorithme et obtention du chemin eulérien C_{\rm e}
```

→ Par rapport à l'algorithme de calcul d'un circuit eulérien, seule l'initialisation de C_e change (ici, l'initialisation est un chemin au lieu d'un circuit) : la boucle reste la même

• ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$

14/20

- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ▶ I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ I. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ► 1. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ▶ I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ▶ 1.8: $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ▶ I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ▶ 1.8: $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ▶ I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b,c),(c,d),(d,e),(e,b),(e,f),(f,g),(g,e),(h,i),(i,j),(j,h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ▶ 1.8: $C_2 = [h, a, b, c, d, e, b, g]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ► I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$
 - ► I. 8 : $C_4 = [h, i, j, h, a, b, c, d, e, f, g, e, b, g]$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ▶ I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ▶ 1.8: $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ► I. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$
 - ▶ I. 8 : $C_4 = [h, i, j, h, a, b, c, d, e, f, g, e, b, g]$
 - ▶ 1. 9 : $A_4 = \emptyset$

- ligne 1 : initialisation des sommets $x_1 = h$ et $x_2 = g$
- I. 2 : choix arbitraire d'un chemin $C_1 = [h, a, b, g]$
- I. 3: $A_1 = [(b, c), (c, d), (d, e), (e, b), (e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k = 1
 - ▶ I. 6 et 7 : $s_1 = b$, $C'_1 = [b, c, d, e, b]$
 - ► I. 8 : $C_2 = [h, a, b, c, d, e, b, g]$
 - ► I. 9 : $A_2 = [(e, f), (f, g), (g, e), (h, i), (i, j), (j, h)]$
- boucle avec k=2
 - ▶ 1. 6 et 7 : $s_2 = e$, $C'_2 = [e, f, g, e]$
 - ► I. 8 : $C_3 = [h, a, b, c, d, e, f, g, e, b, g]$
 - ► I. 9 : $A_3 = [(h, i), (i, j), (j, h)]$
- boucle avec k = 3
 - ▶ 1. 6 et 7 : $s_3 = h$, $C'_3 = [h, i, j, h]$
 - ▶ 1.8: $C_4 = [h, i, j, h, a, b, c, d, e, f, g, e, b, g]$
 - I. 9 : A₄ = ∅
- I. 12 : $C_e = [h, i, j, h, a, b, c, d, e, f, g, e, b, g]$

Synthèse sur les graphes eulériens

- Commencer par appliquer le théorème d'Euler pour savoir si le graphe est eulérien, semi-eulérien ou ni l'un ni l'autre
- → Appliquer le bonne version du théorème d'Euler, selon si le graphe est orienté ou non
- ② Si le graphe est eulérien, calculer un circuit eulérien (ou un cycle, si le graphe est non orienté) en utilisant le premier algorithme
- Si le graphe est semi-eulérien, calculer un chemin eulérien (ou une chaîne, si le graphe est non orienté) en utilisant le second algorithme

Plan du cours

- Graphes eulériens
 - Introduction
 - Graphes eulériens et semi-eulériens
 - Recherche de circuits et de cycles eulériens
 - Recherche de chemins et de chaînes eulériens

- Graphes hamiltoniens
 - Graphes hamiltoniens

Graphes hamiltoniens

Définitions

Soit G un graphe non orienté

- Cycle hamiltonien de G : cycle qui passe une et une seule fois par chaque sommet de G
- → Graphe hamiltonien ⇔ possède un cycle hamiltonien
 - Chaîne hamiltonienne de G : chaîne qui passe une et une seule fois par chaque sommet de G
- → Graphe semi-hamiltonien ⇔ ne possède que des chaînes hamiltoniennes

 \rightarrow Notions similaires définies pour un graphe orienté G: circuit hamiltonien et chemin hamiltonien

Exemples de graphes hamiltoniens

[a, d, b, f, c, e, a] circuit hamiltonien donc graphe hamiltonien

[e, c, d, a, b] chaîne hamiltonienne mais pas de cycle hamiltonien donc graphe semi-hamiltonien

Conditions nécessaires et suffisantes?

Question: comment déterminer si un graphe admet des cycles (circuits) hamiltoniens?

Contrairement au cas des cycles (circuits) eulériens, pas de propriété générale (c'est-à-dire des conditions nécessaires et suffisantes) permettant de conclure si un graphe est ou non hamiltonien

→ Problème algorithmiquement difficile

Conditions suffisantes sur les graphes hamiltoniens

Théorèmes

- Graphe possédant un sommet de degré 1 ne peut pas être hamiltonien
- Si un sommet dans un graphe est de degré 2 alors les deux arêtes incidentes à ce sommet doivent faire partie du cycle hamiltonien

Théorème (Ore)

Soit *G* un graphe simple d'ordre $n \ge 3$

• Si, pour toute paire $\{x, y\}$ de sommets non adjacents, on a $d(x) + d(y) \ge n$ alors G est hamiltonien

Corollaire (Dirac)

Soit G un graphe simple d'ordre $n \ge 3$

• Si, pour tout sommet x de G, on a $d(x) \ge \frac{n}{2}$ alors G est hamiltonien