Degrees of the logarithmic vector fields

for close-to-free hyperplane arrangements

Junyan CHU, PhD student

Graduate School of Mathematics, Kyushu University. Email: chu.junyan.949@s.kyushu-u.ac.jp

Scan here for the computer $program. \Rightarrow$

1. INTRODUCTION

QUESTION 1. [2]

Show that p cuts can divide a cheese into as many as $\frac{(p+1)(p^2-p+6)}{6}$ pieces.

Let planes be in a 'general position', we can maximize the number of pieces. For example, p=4planes divide \mathbb{R}^3 into at most

$$1 + p + {p \choose 2} + {p \choose 3} = \frac{(p+1)(p^2 - p + 6)}{6} = 15$$

regions. This leads us to a fundamental and intriguing question:

QUESTION 2.

How can we determine # {regions formed by a non-generic arrangement of p planes in \mathbb{R}^{ℓ} }?

2. DEFINITIONS

1. $S := \mathbb{K}[x_1, \dots, x_\ell]$: polynomial ring over a field \mathbb{K} ,

2. $\mathscr{A} := \{H_i : \sum_{j=1}^{\ell} a_{ij} x_j = 0 \mid i = 1, \dots, p\}$: hyperplane arrangement in a vector space $V = \mathbb{K}^{\ell}$,

3. $L(\mathscr{A}) := \{ \bigcap_{H \in \mathscr{B}} H \mid \mathscr{B} \subset \mathscr{A} \}$: intersection lattice,

4. $\mathscr{A}_X := \{ H \in \mathscr{A} \mid X \subset H \}$: localization of \mathscr{A} at $X \in L(\mathscr{A})$,

5. $\mathscr{A}^H := \{L \cap H \mid L \in \mathscr{A} \setminus \{H\}\}\$: restriction of \mathscr{A} onto $H \in L(\mathscr{A})$,

EXAMPLE 1.

The figure shows the projectivized form of \mathscr{A} in \mathbb{R}^3 .

• When $X = H_3 \cap H_4$, we have $\mathscr{A}_X = \{H_2, H_3, H_4\}$;

• When $X = H_3$, we have:

 $\mathscr{A}^{H_3} = \{x_1 = 0, x_2 = 0, x_1 + x_2 = 0 \mid x_3 = 0\}.$

6. $D(\mathscr{A}) := \{\theta = \sum_{i=1}^{\ell} f_i \frac{\partial}{\partial x_i} \mid f_i \in S, \theta(\alpha_H) \in \alpha_H S, H \in \mathscr{A} \}$: log derivation module of \mathscr{A} ,

EXAMPLE 2.

For any arrangement \mathscr{A} , we have $\theta_E = x_1 \frac{\partial}{\partial x_1} + \cdots + x_\ell \frac{\partial}{\partial x_\ell} \in D(\mathscr{A})$.

7. $DS(\mathscr{A}) := (1, d_2 \dots, d_t)$: degrees of the minimal homogeneous generators of $D(\mathscr{A})$, 8. $pd_SD(\mathscr{A})$: projective dimension of $D(\mathscr{A})$.

3. MOTIVATION

We say that \mathscr{A} is a free arrangement if $D(\mathscr{A})$ is a free module.

When \mathscr{A} is free, we can compute # {(bounded) regions of \mathscr{A} projected on to $H \in \mathscr{A}$ }.

THEOREM 1. [4]

If \mathscr{A} is free with $DS(\mathscr{A}) = (1, d_2, \dots, d_{\ell})$, then the number of (bounded) regions of \mathscr{A} projected on to $H \in \mathcal{A}$ are as follows:

$$\#regions = \prod_{i=2}^{\ell} (1+d_i).$$
 $\#bounded\ regions = \prod_{i=2}^{\ell} (d_1-1).$

Now, let us compute the number of (bounded) regions of \mathscr{A} in Example 1 projected on to H_3 .

EXAMPLE 3.

Arrangement \mathscr{A} is free with $DS(\mathscr{A}) = (1, 2, 2)$.

$$\#regions = (1+2)^2 = 9.$$

 $\#bounded \ regions = (2-1)^2 = 1.$

Connections

The free arrangement \mathcal{A} uncovers significant connections between topology and combinatorics [3]. In contrast, the counterparts for non-free arrangements have received limited attention.

To address this gap, our aim is to establish a theorem analogous to Theorem 1 for non-free cases. To begin, let's refine the initial question:

QUESTION 3.

Can we characterize the algebraic structure $D(\mathcal{A})$ when \mathcal{A} is "close to free"?

Absolutely! Our investigation focuses on identifying the following:

Close-to-free Arrangements:

 $\bullet \mathscr{A}_j := \mathscr{A} \setminus \{H_j\}$

We say \mathcal{A}_j is a NT-free arrangement if \mathcal{A} is free but \mathcal{A}_j is not.

• $\mathscr{A}_{i,j} := \mathscr{A} \setminus \{H_i, H_j\}$

We say $\mathcal{A}_{i,j}$ is a NT-free-2 arrangement if both \mathcal{A}_i and \mathcal{A}_j are NT-free.

Abe shows that \mathcal{A}_i is determined combinatorially.

THEOREM 2 (Theorem 1.4 in [1]).

Let \mathscr{A} be free with $DS(\mathscr{A}) = (1, d_2, \dots, d_\ell)$ and $H \in \mathscr{A}$. Then \mathscr{A}_j is free, or $DS(\mathscr{A}) = (1, d_2, \dots, d_\ell)$ $(1, d_2, \cdots, d_\ell, |\mathscr{A}_i| - |\mathscr{A}^H|)$ with $pd_S D(\mathscr{A}) = 1$.

• Purpose

4. RESULTS

THEOREM 3 (CHU).

For an NT-free-2 arrangement \mathscr{A} , $DS(\mathscr{A})$ is obtained combinatorially.

Since the theorem is complicated, we explain it with an example.

EXAMPLE 4.

Let \mathscr{A} be as follows. By computer, \mathscr{A} is free with $DS(\mathscr{A}) = (1, 5, 5)$.

 \mathscr{A}_i : free with $DS(\mathscr{A}_i) = (1, 4, 5)$;

 \mathscr{A}_j : DS(\mathscr{A}_j) = (1, 5, 5, c_j = 6);

 $DS(\mathscr{A}_k) = (1, 5, 5, c_k = 5).$

By Theorem 3, this implies the following results:

1. $|\mathscr{A}_{H_2 \cap H_{11}}| = 2$, then $DS(\mathscr{A}_{2,11}) = (1, 5, 5, 5, 5)$.

2. $|\mathscr{A}_{H_3 \cap H_5}| > 2$ and $c_3 = 6 > c_5 = 5$, then $DS(\mathscr{A}_{3,5}) = (1, 5, 5, 6 - 1, 5)$.

3. $|\mathscr{A}_{H_3 \cap H_4}| > 2$ and $c_3 = c_4 = 6 > 5$, then $DS(\mathscr{A}_{3,4}) = (1, 5, 5, 6 - 1)$.

4. $|\mathscr{A}_{H_5 \cap H_7}| > 2$ and $c_3 = c_4 = 5$, then $DS(\mathscr{A}_{5,7}) = (1, 5, 5, 5 - 1)$.

Note that $pd_S D(\mathscr{A}_{j,k}) = 1$ and $\mathscr{A}_{j,k}$ is not NT-free.

5. FORTHCOMING RESEARCH

CONJECTURE.

1. If \mathscr{A} is NT-free-2 in \mathbb{K}^{ℓ} , then $pd_sD(\mathscr{A}) \leq 2$.

2. If # {minimal generators for $D(\mathscr{A}) \leq \ell + 2$ }, then $pd_sD(\mathscr{A}) \leq 1$.

3. $\{NT\text{-}free\} \cap \{NT\text{-}free\text{-}2\} = \emptyset$.

References

- [1] Takuro Abe. Plus-one generated and next to free arrangements of hyperplanes. *International* Mathematics Research Notices, 2021(12):9233–9261, 2019.
- [2] J. L. Woodbridge. Problem E554. The American Mathematical Monthly, 50(9):564–565, 1943.
- [3] Masahiko Yoshinaga. Freeness of hyperplane arrangements and related topics. Ann. Fac. Sci. Toulouse Math. (6), 23(2):483–512, 2014.
- [4] Thomas Zaslavsky. Counting the faces of cut-up spaces. Bulletin of the American Mathematical *Society*, 81(5):916 – 918, 1975.

Acknowledgements

We would like to thank Takuro Abe, Shizuo Kaji, and Paul Muecksch for many helpful discussions.