Abgabe - Übungsblatt [7] Angewandte Mathematik: Numerik

[Felix Lehmann]

[Markus Menke]

7. Januar 2021

Aufgabe 1

a)

$\exp(x)$

$$\begin{split} K_{abs} &= |exp(x)| \\ K_{rel} &= |\frac{exp(x)*x}{exp(x)}| = |x| \\ \text{Schlecht konditioniert für } x \gg 1. \end{split}$$

ln(x)

$$\begin{split} K_{abs} &= |\frac{1}{x}| \\ K_{rel} &= |\frac{\frac{1}{x}*x}{ln(x)}| = |\frac{1}{ln(x)}| \\ \text{Schlecht konditioniert für } x \text{ nahe } 0. \end{split}$$

b)

Absolute Konditionszahl

Aufgrund der Kettenregel gilt:

$$K_{abs}(f(g(x))) = |f'(g(x)) * g'(x)| = |f'(g(x))| * |g'(x)| = K_{abs}(f) * K_{abs}(g)$$

Relative Konditionszahl

Wir berechnen beide Konditionszahlen.

$$K_{rel}(f) = \left| \frac{f'(g(x)) * g(x)}{f(g(x))} \right|$$

$$K_{rel}(g) = \left| \frac{g'(x) * x}{g(x)} \right|$$

$$K_{rel}(g) = \left| \frac{g'(x) * x}{g(x)} \right|$$

$$K_{rel}(g) * K_{rel}(f) = \left| \frac{f'(g(x)) * g'(x) * x}{f(g(x))} \right|$$

 $K_{rel}(g) * K_{rel}(f) = |\frac{f'(g(x))*g'(x)*x}{f(g(x))}|$ Hier lässt sich die Kettenregel rückwärts anwenden. $= K_{rel}(f(g))$

Aufgabe 2

a)

Es gibt $2^{53-24}-1=2^{29}-1=536870911$ Zahlen z
 mit doppelter Genauigkeit ziwschen zwei aufeinanderfolgenden Zahlen x
 und y einfacher Genauigkeit.

b)

Die kleinste Natürliche Zahl die sich mit einefacher Genauigkeit nicht ohne Rundungsfehler darstellen lässt ist $2^{24}+1=16777217$ da nur 24 Mantissen Bits zur Verfügung stehen.

Aufgabe 3