СОДЕРЖАНИЕ

ВВЕДЕНИЕ								
1	Ана	литич	еская часть	6				
	1.1	Явлен	ие морфинга	6				
	1.2	2 Формализация объектов сцен						
	1.3	.3 Выбор модели описания объекта						
		1.3.1	Аналитическая модель	7				
		1.3.2	Полигональная модель	7				
		1.3.3	Воксельная модель	7				
		1.3.4	Сравнение моделей описания объектов	8				
	1.4	Основ	вные этапы морфинга	8				
		1.4.1	Установление соответствия между объектами	8				
		1.4.2	Параметризация	8				
		1.4.3	Наложение сеток	10				
		1.4.4	Создание общего представления	10				
		1.4.5	Интерполяция геометрии	10				
	1.5	5 Анализ алгоритмов удаления невидимых линий и поверхностей.						
		1.5.1	Алгоритм Робертса	11				
		1.5.2	Алгоритм, использующий z-буфер	12				
		1.5.3	Алгоритм художника	12				
		1.5.4	Сравнение алгоритмов	13				
	1.6	Модел	ль освещения	14				
	1.7	Анали	из алгоритмов закраски	14				
		1.7.1	Однотонная закраска	15				
		1.7.2	Закраска методом Гуро	15				
		1.7.3	Закраска методом Фонга	15				

	1.7.4 Сравнение алгоритмов закраски	15
2	Конструкторская часть	18
3	Технологическая часть	19
4	Исследовательская часть	20
	4.1 Вывод	20
3 A	АКЛЮЧЕНИЕ	21

введение

TODO: inro.

1 Аналитическая часть

1.1 Явление морфинга

Слово «морфинг» происходит от слова «метаморфоза», которое, согласно Согласно Оксфордскому словарю [?], имеет следующее значение: "Процесс, в ходе которого кто-то/что-то полностью превращается во что-то другое".

Таким образом, в случае трехмерных объектов термин «морфинг» можно интерпретировать как построение последовательности кадров, соответствующей постепенному переходу между двумя различными объектами, так называемыми исходными (начальными) и целевыми (конечными) моделями. На рисунке 1.1 представлен пример морфинга трехмерных объектов.

Цель морфинга заключается в вычислении преобразования, обеспечивающего визуально приятный переход между исходной и целевой формами [?]. ТООО: возможно здесь добавить про монотонность, сохранение точек интереса и тд (в зависимости от того, как будет работать feature preservation)

Рисунок 1.1 — Пример последовательности кадров морфинга

1.2 Формализация объектов сцен

На сцене выбора начальных и конечных объектов могут присутствовать 2 фрукта: начальный и конечный. Фрукт (объект) задатся моделью описания объектов, данными для этой модели, оптическими характеристиками поверхности.

На сцене просмотра морфинга находится результат морфинга (задается исходным и целевым объектами, стадией морфинга).

На обеих сценах могут присутствовать следующие типы объектов:

- источник света (задается положением в пространстве, цветом и интенсивностью света);
- наблюдатель (задается положением в пространстве, точкой в пространстве, на которую направлен взгляд, направлением верха обзора TODO);

1.3 Выбор модели описания объекта

Наиболее распространенные модели описания трехмерных объектов в компьютерной графике: *аналитичкская*, *полигональная модель*, *воксельная модель* [?].

1.3.1 Аналитическая модель

Аналитическая модель представляет собой описание поверхности математическими формулами [?]. Обычно поверхность задается уравнением вида z = f(x,y) или F(x,y,z) = 0.

Отличительные черты [?]:

- легкая процедура рассчета координат точек, нормалей;
- небольшой объем информации для описания форм;
- сложные формулы, которые медленно вычисляются компьютером;
- задание объекта набором поверхностей, если невозможно описать его аналитически;
- отсутствие погрешности при задании сферического объекта;

1.3.2 Полигональная модель

В полигональной модели информация об объекте сосотоит из следущих компонентов [?]:

- вершина точка ((x, y, z) в декартовой системе координат);
- отрезок прямой задается двумя вершинами;
- полилиня задается несколькими отрезками прямой;
- полигон описывает плоскую грань объемного объекта в виде замкнутой линии;

Несколько граней (полигонов) составляют объемный объект в виде полигональной поверхности, также назваемой «полигональной сеткой».

1.3.3 Воксельная модель

TODO

1.3.4 Сравнение моделей описания объектов

ТООО: а надо ли мне вообще выбирать, если у меня в ТЗ написанно НИЗ-КОПОЛИГОНАЛЬНЫЕ ОБЪЕКТЫ???? ТООО: можно сравнить по критериям: сложность вычисления нормали, изображение любых объектов, сохранение качества при увеличении

Среди всех моделей наиболее подходящей является полигональная модель, т. к. с помощью нее можно описать объекты любой сложности, и сохраняет качестве при увеличении, что необходимо в задаче интерактивной визуализации морфинга, поэтому использованная будет именно она.

1.4 Основные этапы морфинга

1.4.1 Установление соответствия между объектами

3D-сетки часто различаются по топологии (число вершин/граней и связность), поэтому прямое сопоставление поверхностей затруднено. Соответствие получают косвенно через *параметризацию* — биективное отображение поверхности сетки в общую параметрическую область D, обычно единичный диск для незамкнутых сеток (*плоская парамеризация*) или единичная сфера для замкнутых (*сферическая параметризация*) [?].

Сферическая параметризация примяется к замкнутым поверхностям нулевого рода [?], или не имеющим отверстий, коими являются фрукты в рамках данной работы.

1.4.2 Параметризация

Выделяют 3 основных подхода к параметризации сеток: плоская, сферическая, разбиение на участи с плоской параметризацией [?,?].

Плоская праметризация применима для незамкнутых сеток [?,?], поэтому она непригодна для морфинга замкнутных объектов, таких, как фрукты.

Если исходный и целевой объекты имеют существенно различающиеся формы или представляют собой поверхности разного рода, т. е. имеют разное число отверстий, применяют предварительное разбиение на плоские участки [?]. Пользователь вручную разбивает исходную и целевую сетки на участки и задаёт их соответствие; затем для каждого участка выполняется плоская

параметризация. Данный метод требует значительного участия пользователя, от которого зависит качество результата, поэтому в настоящей работе он не рассматривается.

Для сферической параметризации произвольных поверхностей нулевого рода, применяется метод релаксации, основаный на итеративном уточнении положений вершин [?]. Процесс релаксации сетки представлен на рисунке 1.2.

В качестве начального состояния строят грубую проекцию сетки на единичную сферу: выбирают любую внутреннюю точку модели в качестве центра сферы и проецируют все вершины на её поверхность (нормализуют радиус-векторы). Полученная начальная конфигурация обычно содержит значительные искажения и грани с неправильной ориентацией. Процесс релаксации продолжают до тех пор, пока все грани не приобретут корректную ориентацию — внешняя сторона каждой грани должна быть обращённой наружу сферы [?].

На каждом раунде релаксации вершины сдвигаются к центру масс своих соседей:

$$v_i^{k+1} = \frac{\sum_{j \in N(i)} v_j^k}{\|\sum_{j \in N(i)} v_j^k\|},$$
(1.1)

где

- v_i^{k+1} положение i-ой вершины после k-го раунда релаксации;
- v_i^k положение i-ой вершины на момент k-го раунда релаксации;
- N(i) множество вершин, смежных с i-ой.

Для предотвращения коллапса всех вершин в одну точку после каждой итерации выполняется ре-центрирование всей сетки относительно начала координат [?]:

$$v_i' = v_i - \frac{\sum_{j=0}^n v_j}{n},\tag{1.2}$$

гле

- v_i' новое положение i-ой вершины;
- *n* количество вершин.

Рисунок 1.2 — Процесс релаксации сетки, красными отмечены грани с непрвильной ориентацией

1.4.3 Наложение сеток

TODO

1.4.4 Создание общего представления

После того как установлено соответствие, необходимо создать единую структуру, которая будет использоваться для всех промежуточных форм. Обычно для этого сроят *суперсетку* — сетку, содержащую вершины исходной и целевой сетки, а также их точки пересечения [?,?] (пример на рисунке 1.3).

На параметрической сфере сетки накладываются друг на друга; в местах пересечения ребер создаются новые вершины, что формирует объединенную сетку, которая может принимать форму, как исходной так и целевой модели; поскольку полученная сетка обычно не является треугольной, выполняют её треангуляцию.

Рисунок 1.3 — Создание суперсетки

1.4.5 Интерполяция геометрии

Заключительный этап — вычисление траекторий движения вершин общего представления из их начальных положений до конечных. Для каждой вершины суперсетки необходимо определить ее координаты на исходной и целевой

моделях. Процесс генерации промежуточных кадров сводится к интерполяции этих координат.

Положение вершины на каждой из моделей определяется с помощью барицентрических координат в параметрическом пространстве [?, ?]. Алгоритм сводится к следующим шагам:

Процесс вычисления состоит из следующих шагов:

- 1) Поиск содержащего треугольника: Для каждой определяется треугольник исходной (или целевой) сетки, в который она попадает в общем параметрическом пространстве (на сфере).
- 2) Вычисление барицентрических координат данной вершины относительно вершин найденного треугольника.
- 3) Барицентрические координаты применяются к вершинам соответствующего треугольника в мировых координатах.

После получения начальных и конечных положений P0 и P1 для каждой вершины траектории генерируют посредством линейной интерполяции [?,?]. Положение вершины в момент времени $t \in [0,1]$ вычисляется по формуле (??).

$$P(t) = (1 - t) \cdot P_0 + t \cdot P_1 \tag{1.3}$$

TODO: добавить про интерполяцию материала и нормалей

1.5 Анализ алгоритмов удаления невидимых линий и поверхностей

Алгоритмы удаления невидимых линий и поверхностей служат для удаления ребер, поверхностей или объемов, которые видимы или невидимы для наблюдателя, находящегося в заданной точке пространства [?].

Рассмотрим следующие алгоритмы: *алгоритм Робертса*, *алгоритм*, *ис- пользоующий z-буфер*, *алгоритм трассировки лучей*.

1.5.1 Алгоритм Робертса

Данный алгоритм применим только к выпуклым телам. Если обрабатываемое тало невыпуклое — его необходимо предварительно разбить на выпуклые [?].

Алгоритм состоит из следующих этапов [?]:

- 1) Удаление граней, экранируемых самим телом.
- 2) Удаление граней, экранируемых другими телами.
- 3) Удаление линий пересечения тел, экранируемых самими телами.

Ассимптотическая оценка трудоемкости: $O(N^2)$, где N — количество граней. TODO: проверить

1.5.2 Алгоритм, использующий z-буфер

Идея z-буфера является обобщением идеи буфера кадра. Буфер кадра используется для запоминания аттрибутов (интенсивности) каждого пикселя в пространстве изображения. z-буфер — это отдельны буфер глубины, используемый для запоминания координаты z каждого видимого пикселя в пространстве изображения [?].

Этапы работы алгоритма [?]:

- 1) Заполнить буфер кадра фоновым значением.
- 2) Заполнить z-буфер минимальным значением глубины.
- 3) Выполнить переход в пространство наблюдаетля.
- 4) Для каждого пикселя (x, y), пренадлежащего телу вычислить его глубину z(x, y).
- 5) Если глубина z(x,y) > z-буфер(x,y), то записать атрибут текущего тела в буфер-кадра(x,y), записать глубину z(x,y) в z-буфер(x,y).

Асимптотическая оценка трудоекости: O(N), где N — количество граней. TODO: проверить

1.5.3 Алгоритм художника

Идея алгоритма состоит в том, чтобы подобно художнику отрисовывать объекты по мере их приближения к наблюдателю.

Основные этапы алгорима [?]:

- 1) Отсортировать грани по минимальному или максимальному значению глубины.
- 2) Отрисовать грани в отсортированном порядке.

Простая сортировка не всегда дает корректный список приоритетов, тогда приходится использовать дополнительные методы разрешения конфликтов [?].

Алгоитм не справляется со случаями циклического перекрытия и пересечения многоугольников.

Ассиптотическая оценка трудоемкости: O(N), где N — количество граней, однако стоит дополнительно учитывать трудоемкость предварительной сортировки.

Алгоритм трассировки лучей

Ассимптотическая оценка трудоемкости: O(WHN), где W — ширина экрана в пикселях, H — высота экрана в пикселях, N — количество граней.

1.5.4 Сравнение алгоритмов

В таблице 1.1 представленные результаты сравнения алгоритмов и использованы следующией обозначения:

- Р алгоритм Робертса;
- ZБ алгоритм, использующий *z*-буфер;
- X алгоритм Художника;
- ТЛ алгоритм трассировки лучей.

Таблица 1.1 — Сравнение алгоритмов удаления невидимых линий и поверхностей

	P	ΖБ	X	ТЛ
Совместимость с любыми телами	-	+	+	+
Возможность использования без сортировки	+	+	-	+
Возможность учета прозрачности	-	+	+	+
Асиптотическая оценка трудоемкости	$O(N^2)$	O(N)	O(N)	O(WHN)

Среди всех расмотренных алгоритмов, алгоритм, использующий *z*-буфер подходит больше остальных, т. к. он имеет лучшую асимптотическую оценку трудоемкости и применим к любым телам, что необходимо при решении задачи визуализации морфинга.

1.6 Модель освещения

В компьютерной графике наиболее распространненными являются две модели освещения: локальная и глобальная [?].

Локальная модель учитывает только свет, падающий от источника (источников), и ориентацию поверхности [?].

Глобальная модель освещения учитывает также свет, отраженный от других объектов сцены или пропущенный через них [?].

Поскольку на сцене будет находиться только один объект, то будет использована локальная модель освещения.

$$I = k_a I_a + \frac{I_l}{d+K} [k_d(\hat{\mathbf{n}} \cdot \hat{\mathbf{L}}) + k_s (\hat{\mathbf{R}} \cdot \hat{\mathbf{S}})^{\alpha}], \tag{1.4}$$

где

 k_a — коэффициент

 I_a — интенсивность фонового освещения;

 I_l — интенсивность источника света;

d — расстояние от источника света до точки P;

K — добавка уменьшения интенсивности света с расстоянием (выбирается из эстетических предпочтений);

 k_d — коэффициент диффузного отражения поверхности;

 ${\bf n}$ — вектор нормали к поверхности в точке P;

L — вектор, обратный вектору падения луча;

 k_s — коэффициент зеркального отражения поверхности;

 ${f R}$ — вектор, отраженного луча;

S — вектор, направленный на наблюдателя из точки P;

 α — степень, аппроксимирующая пространственное распределение зеркально отраженного света.

1.7 Анализ алгоритмов закраски

Основными алгоритмами закраски в комьютерной графике являются: *однотонная закраска*, *закраска методом Гуро*, *закраска методом Фонга* [?].

1.7.1 Однотонная закраска

При однотонной закраске для каждой грани (многоугольника) полигональной поверхности вычисляется один уровень интенсивности, с которым закрашивается вся гранть. В результате такой закраски изображенный состоит из отдельных иногоугольников и объект выглядит, как многогранник [?].

1.7.2 Закраска методом Гуро

Этот метод предназначен для создания иллюзии гладкой криволинейной поверхности, описанной в виде многогранников или полигональной сетки с плоскиими гранями [?,?,?]

Метод Гуро основан на интерполяции интенсивности каждого пикселя при закраске. Закрашивание граней по методу гуро осуществляется в четыре этапа [?]:

- 1) Определение нормали к каждой грани.
- 2) Определение нормалей в вершинах путем усреднения нормалей прилежащих граней.
- 3) На основе нормалей в вершинах вычисляются значения интенсивностей в вершинах согласно выбранной модели освещения.
- 4) Закрашиваются полигоны граней цветом, соответствующим интерполяции значений интенсивности в вершинах.

1.7.3 Закраска методом Фонга

Аналогичен методу Гуро, но при использовании метода Фонга для определения цвета в каждой точке интерполируются не интенсивности отраженного света, а векторы нормалей. При этом значение интенсивность вычисляется в каждом внутреннем пикселе грани [?,?].

1.7.4 Сравнение алгоритмов закраски

Визуальное сравнение алгоитмов представленно на рисунке 1.4.

Рисунок 1.4 — Визуальное сравнение методов закрски

Поскольку объекты сцены (фрукты) представлены низкополигональными объектами, предпочтительной является однотонная закраски, обеспечивающая дискретность освещения между смежными гранями. В результате мофринга часто возникает множество полигонов, составляющих одну грань, из-за чего при однотонной закраске возникают световые артефакты, как на рисунке 1.5, а.

Для устранения этой проблемы будет использована модифицированная версия закраски Гуро: значение интенсивности вершин в пределах одной грани вычисляется с помощью нормали к этой грани, а не нормалей в вершинах. Это обеспечивает равномерное распределение интенсивности по грани и предотвращает сглаживание рёбер, что продемонстрированно на рисунке 1.5, б.

Рисунок 1.5 — Результат морфинга с использованием различных алгоритмов закраски: а) однотонная закраска; б) закраска модифицированным методом Гуро

Вывод

2 Конструкторская часть

Вывод

3 Технологическая часть

Вывод

- 4 Исследовательская часть
- **4.1** Вывод

ЗАКЛЮЧЕНИЕ