

Article Title

First Author¹, Co-Author², Co-Author^{1,3*}

- ¹ Department X, Institution X, City X, State XX, Country X
- ² Department X, Institution X, City X, State XX, Country X
- ³ Department X, Institution X, City X, State XX, Country X

Correspondence*:

Co-Author

email@uni.edu

2 ABSTRACT

- 3 Abstract length and content varies depending on article type. Refer to http://
- 4 www.frontiersin.org/about/AuthorGuidelines for abstract requirement and length
- 5 according to article type.

1 INTRODUCTION

7 Hello, how are we doing?

2 METHODS

8 **2.1 Clean up**

- 9 All functional annotation sets were cleaned up the following way (using definitions from the Gene
- 10 Ontology version 2019-07-01):
- 1. Any annotations where the GO accession was marked as obsolete were removed.
- 12 2. Some terms in the GO have 'alternative ids'. When naively removing duplicates, two entries will not
- be recognized as duplicates if they have different accessions pointing to the same GO term. Therefore,
- all GO accessions were changed to their respecitve 'main id' and the dataset was again scanned for
- duplicates.
- Table 1 provides information on the number of annotations that were removed this way from each dataset.
- 17 All further analyses were performed on the cleaned datasets since we assume the user will only be interested
- 18 in still valid and non-redundant functional annotations.

3 RESULTS

19 ... a quantitative comparison of the datasets in Table.

LASTNAME et al. **Short Title**

Table 1. Number of removed annotations during cleanup.

Genome	Dataset	Obsolete Annotations	Duplicates
Glycine max	GOMAP	203	0
Hordeum vulgarum	GOMAP	101	0
Medicago truncatula A17	GOMAP	0	0
Medicago truncatula R108	GOMAP	0	0
Oryza sativa	GOMAP GoldStandard	111 38	2 556
Phaseolus vulgaris	GOMAP	0	0
Triticum aestivum	GOMAP	285	0
Vigna unguiculata	GOMAP	0	0
Zea mays B73.v4	GOMAP	752	83
Zea mays Mo17	GOMAP	726	77
Zea mays PH207	GOMAP	798	76
Zea mays W22	GOMAP	754	82
Arachis hypogaea	GOMAP	0	0
	GOMAP	1107	70
Zea mays B73.v3	GoldStandard	1	0
	Gramene49	94	2
	Phytozome	54	0
Oryza sativa	Gramene61-IEA	10	14
	Gramene61-all	48	9565

Table 2. Quantitative metrics of the cleaned functional annotation sets. CC, BF, MP, and A refer to the aspects of the GO: Cellular Component, Biological Function, Molecular Process, and Any/All.

1		1	,	\mathcal{C}		,			,		,			
				Anno	tations ^a		Α	nnotated	l Genes [%	6] ^b	Med	lian A	nn. pe	r G.c
Genome	Genes	Dataset	CC	BF	MP	A	CC	BF	MP	A	CC	BF	MP	A
Arachis hypogaea		GOMAP	153433	132944	493799	780176	57667	56855	67123	67124	2	2	6	10
Glycine max		GOMAP	129215	113827	417555	660597	46020	47034	52871	52872	2	2	6	11
Hordeum vulgarum		GOMAP	88130	80282	272823	441235	35237	36470	39733	39734	2	2	5	10
Medicago truncatula A17		GOMAP	107362	99719	364065	571146	42325	43736	50443	50444	2	2	6	10
Medicago truncatula R108		GOMAP	112343	108031	382322	602696	40332	50220	55706	55706	1	2	5	9
Ü		GOMAP	72780	64685	248700	386165	28619	29853	35824	35825	2	2	6	9
0		GoldStandard	7730	11060	19378	38176	5725	7383	9031	11387	1	1	1	3
Oryza sativa		Gramene61-IEA	14633	32787	39105	86529	10771	15537	16705	21446	1	1	1	3
		Gramene61-all	20622	40674	54402	115710	13272	16962	18513	22272	1	1	2	4
Phaseolus vulgaris	100	GOMAP	72005	64583	229630	366218	25934	25539	27432	27433	2	2	6	11
Triticum aestivum	100	GOMAP	267741	218623	785960	1272324	95604	98187	107890	107891	2	2	6	10
Vigna unguiculata		GOMAP	75867	68313	243278	387458	27173	27124	29772	29773	2	2	6	11
		GOMAP	135211	87420	291251	513882	34866	38073	39468	39469	3	2	6	11
7		GoldStandard	1565	65	299	1929	1548	60	151	1634	1	0	0	1
Zea mays B73.v3		Gramene49	20072	31056	30089	81217	11834	17991	15800	21926	1	1	1	3
		Phytozome	4787	19044	13100	36931	4524	13728	11365	16132	0	1	1	2
Zea mays B73.v4		GÓMAP	88827	82251	278719	449797	36717	37337	39323	39324	2	2	6	10
Zea mays Mo17		GOMAP	87567	79214	277787	444568	33618	35105	38619	38620	2	2	6	10
Zea mays PH207		GOMAP	90617	85500	288677	464794	35170	36762	40556	40557	2	2	6	10
Zea mays W22		GOMAP	95390	85039	289780	470209	36987	37685	40689	40690	2	2	6	10

 $^{^{}a}$ How many annotations in the CC, BF, and MP aspect does this dataset contain? A = How many in total? A = CC + BF + MP

how finally afflotations in the CC, BF, and MF aspect does this dataset contain: A = 10w finally in total: A = CC + BF + MF b How many genes in the genome have at least one GO term from the CC, BF, MP aspect annotated to them? A = How many at least one from any aspect? $(A = CC \cup BF \cup MF)$ ^c Take a typical gene that is present in the annotation set. How many annotations does it have in each aspect? A = How many in total? Ask your favorite statistician why $A \neq CC + BF + MF$

LASTNAME et al. Short Title

Table 3. Quality evaluation of the used GO annotation sets.

Genome	Dataset	SimGIC2 score
	GOMAP	0.248394
Oryza sativa	GoldStandard	0.999974
	Gramene61-IEA	0.319345
	Gramene61-all	0.732175
	GOMAP	0.024565
Zea mays B73.v3	GoldStandard	0.996264
	Gramene49	0.043521
	Phytozome	0.021982

Frontiers 3