Example

Example 8 (Radar guns revisited)

Suppose n=4 radar guns are set up along a stretch of road to catch people driving over the speed limit. Each radar gun is known to have a normal measurement error $N(0,\sigma^2)$, $\sigma=5km/h$. For a car passing at speed μ four readings are (45.71,47.41,40.95,50.65). Compute a random interval that covers the true unknown car speed μ with probability of 0.95.

Continuing with
$$P(-z_{\alpha/2} < Z < z_{\alpha/2}) = 1 - \alpha$$
:
 $\overline{X}_{\alpha} - u$

$$P(-z_{\alpha/2} < \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$

$$P(-z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \overline{X}_n - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$P(-\overline{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < -\mu < -\overline{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

$$P(\overline{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

For our values, we get $\alpha=0.05$, $z_{\alpha/2}=1.96$, $\overline{X}_n=46.18$ and the 95% confidence interval is (41.28,51.08).

General [[Konfidenzintervall]] Definition

Let X_1, X_2, \ldots, X_n be a random sample of size n from density $f(\cdot)$. A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(T_{n,1},T_{n,2})$ with $T_{n,1}=t_1(X_1,X_2,\ldots,X_n)$ and $T_{n,2}=t_2(X_1,X_2,\ldots,X_n)$ such that:

$$P(\theta \in C_n) \ge 1 - \alpha.$$

• C_n traps θ with probability $1 - \alpha$. Important: C_n is random, θ is fixed.