

Course Syllabus: Design and Analysis of Algorithms - CS 260

Division	Computer, Electrical and Mathematical Sciences & Engineering
Course Number	CS 260
Course Title	Design and Analysis of Algorithms
Academic Semester	Fall
Academic Year	2017/2018
Semester Start Date	08/20/2017
Semester End Date	12/12/2017
Class Schedule (Days & Time)	01:00 PM - 02:30 PM Sun Wed

Instructor(s)				
Name	Email	Phone	Office Location	Office Hours
Mikhail Moshkov	mikhail.moshkov@kaust.edu.s a	+966128080334		Thursday, 3:30- 5:00pm

Teaching Assistant(s)				
Name	Email			
Mohammad Azad	mohammad.azad@kaust.edu.sa			

Course Information The course covers main approaches to design and a

The course covers main approaches to design and analysis of algorithms including important algorithms and data structures, and results in complexity and computability. The main contents are: review of algorithm analysis (search in ordered array, binary insertion sort, merge sort, worst-case and average-case time complexity, minimum complexity of sorting n elements for small n, 2-3 trees, asymptotic notation); divide and conquer algorithms (master theorem, integer multiplication, matrix multiplication, fast Fourier transform); graphs (breadth-first search, connected components, topological ordering, depth-first search, way from planar graphs to Robertson-Seymour theorem); dynamic programming (chain matrix multiplication, shortest paths, edit distance, sequence alignment, extensions of dynamic programming); greedy algorithms (binary heaps, Dijkstra's algorithm, minimum spanning tree, Huffman codes, matroids); randomized algorithms (selection, quick sort, global minimum cut, hushing); P and NP (Cook's theorem, examples of NP-complete problems); approximate algorithms for NP-hard problems or polynomial algorithms for subproblems of NP-hard problems (set cover, vertex cover, maximum independent set, 2-SAT); partial recursive functions (theorem of Post, Diophantine equations); computations and undecidable problems (existence of complex problems, undecidability of halting problem, theorem of Rice, semantic and syntactical properties of programs).

Course Description from Program Guide

Description

The course covers main approaches to design and analysis of algorithms including important algorithms and data structures, and results in complexity and computability. The main contents are: review of algorithm analysis (search in ordered array, binary insertion sort, merge sort, worst-case and average-case time complexity, minimum complexity of sorting n elements for small n, 2-3 trees, asymptotic notation); divide and conquer algorithms (master theorem, integer multiplication, matrix multiplication, fast Fourier transform); graphs (breadth-first search, connected components, topological ordering, depth-first search, way from planar graphs to Robertson-Seymour theorem);dynamic programming (chain matrix multiplication, shortest paths, edit distance, sequence alignment, extensions of dynamic programming); greedy algorithms (binary heaps, Dijkstras algorithm, minimum spanning tree, Huffman codes, matroids); randomized algorithms (selection, quick sort, global minimum cut, hushing); P and NP (Cooks theorem, examples of NP-complete problems); approximate algorithms for NP- hard problems or polynomial algorithms for subproblems of NP-hard problems (set cover, vertex cover, maximum independent set, 2-SAT); partial recursive functions (theorem of Post, Diophantine equations); computations and undecidable problems (existence of complex problems, undecidability of halting problem, theorem of Rice, semantic and syntactical properties of programs).

Goals and Objectives	The main goal of this course is to study the fundamental techniques to design efficient algorithms and analyze their running time. After a brief review of prerequisite material (search, sorting, asymptotic notation), we will discuss efficient algorithms for basic graph problems and solving various problems through divide and conquer algorithms, dynamic programming and greedy algorithms. We will consider also randomized algorithms, proofs of NP-completeness, approximation algorithms, partial recursive functions, and proofs of undecidability.
Required Knowledge	Computer programming skills Knowledge of probability Understanding of basic data structures and algorithms Basic knowledge in discrete mathematics
Reference Texts	 Algorithm Design, by J. Kleinberg and E. Tardos, Addison-Wesley, 2005 (main textbook) Introduction to Algorithms (3rd Edition), by T. Cormen, C. Leiserson, R. Rivest, and C. Stein, The MIT Press, 2009 Algorithms, by S. Dasgupta, C. Papadimitriou, and U. Vazirani, McGraw-Hill, 2006 Theory of Recursive Functions and Effective Computability, by H. Rogers, McGraw-Hill, 1967 Computers and Intractability. A Guide to the Theory of NP-Completeness, by M.R. Garey and D.S. Johnson, W.H. Freeman and Company, 1979 Introduction to Algorithm Complexity, by V. Alekseev, Moscow State University, 2002 (in Russian) All required for the course information is in presentations
Method of evaluation	30.00% - Final exam 20.00% - Research Project 20.00% - Midterm exam 30.00% - Homework /Assignments
Nature of the assignments	Course work will consist of homework assignments, midterm exam, project, and final comprehensive exam. In the project, it is necessary to chose a problem, to choose two different algorithms for this problem solving, to find theoretical results about time complexity of these algorithms, to create software, to make experiments, to compare theoretical and experimental results, to prepare proposal, to make two presentations, and to write two reports. For project: proposal 4%, midterm presentation 4%, midterm report 4%, final presentation 4%, final report 4%
Course Policies	Students should work with homework assignments and with projects in groups (usually, 3-4 students in a group)
Additional Information	

	Tentative Course Schedule (Time, topic/emphasis & resources)				
Week	Lectures	Торіс			
1	Sun 08/20/2017 Wed 08/23/2017	Search and Sorting			
2	Sun 08/27/2017 Wed 08/30/2017	Search and Sorting			
3	Sun 09/03/2017 Wed 09/06/2017	Eid Al-Adha break Eid Al-Adha break			
4	Sun 09/10/2017 Wed 09/13/2017	Divide and Conquer Algorithms			
5	Sun 09/17/2017 Wed 09/20/2017	Graphs, Project Proposal			
6	Sun 09/24/2017 Wed 09/27/2017	Saudi National Day Graphs, HW1			
7	Sun 10/01/2017 Wed 10/04/2017	Dynamic Programming			
8	Sun 10/08/2017 Wed 10/11/2017	Dynamic Programming			
9	Sun 10/15/2017 Wed 10/18/2017	Greedy Algorithms, Midterm Presentation of Project			
10	Sun 10/22/2017 Wed 10/25/2017	Randomized Algorithms, Midterm Project Report, HW2			
11	Sun 10/29/2017 Wed 11/01/2017	P and NP, Midterm Exam			
12	Sun 11/05/2017 Wed 11/08/2017	Work with NP-Hard Problems			
13	Sun 11/12/2017 Wed 11/15/2017	Work with NP-Hard Problems			
14	Sun 11/19/2017 Wed 11/22/2017	Partial Recursive Functions			
15	Sun 11/26/2017 Wed 11/29/2017	Computations and Unsolvable Problems			
16	Sun 12/03/2017 Wed 12/06/2017	Computations and Unsolvable Problems, Final Presentation of Project, Final Project Report, HW3			
17	Sun 12/10/2017	Final Comprehensive Exam			
18					

Note

The instructor reserves the right to make changes to this syllabus as necessary.