Solve Q3,8,10,14.

1.
$$y' + 4y = e^{-4t}$$
, $y(0) = 2$

2.
$$y' - y = 1 + te^t, y b = 0$$

1.
$$y' + 4y = e^{-4t}$$
, $y = 0$ = 2
2. $y' - y = 1 + te^{t}$, $y = 0$ = 0
3. $y' + y = f(t)$, $y = 0$ where $f(t) = \begin{cases} 0, & 0 \le t < 1 \\ 5, & t \ge 1 \end{cases}$

4.
$$y' + y = f(t)$$
, $y(0) = 0$ where $f(t) = \begin{cases} 1, & 0 \le t < 1 \\ -1, & t \ge 1 \end{cases}$

5.
$$y' + 2y = f(t)$$
, $y(0) = 0$ where $f(t) = \begin{cases} t, & 0 \le t < 1 \\ 0, & t \ge 1 \end{cases}$

6.
$$xy' + y = e^x$$
, $y(1) = 2$

7.
$$yx' - x = 2y^2$$
, $y(1) = 5$

8.
$$y' + 2y = f(x)$$
, $y(0) = 0$, where $f(x) = \begin{cases} 1, & 0 \le x \le 3 \\ 0, & x > 3 \end{cases}$

9.
$$y' + y = f(x)$$
, $y(0) = 1$, where $f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ -1, & x > 1 \end{cases}$

10.
$$y' - 3y = -12y^2$$
; $y(0) = 2$

11.
$$y' + \pi y = 2b\cos(\pi x)$$
; $y(0) = 0$

12.
$$y' + 3y = 5e^{2x} - 6$$
; $y(0) = 2$

13.
$$y' + \frac{2}{x+1}y = 3;$$
 $y(0) = 5$

14. Consider the equation from the class slides: $\tau \frac{d(q_{o1})}{dt} + q_{o1} = 0$. Show that if τ a function of q_{01} the equation does not qualify for being a linear one. Use $\tau = q_{01}$ to show this.