

Prova Modelo IV de Matemática

3.º Ciclo do Ensino Básico
Prova 92 2019
Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos
9.º Ano de Escolaridade Turma - K
Nome completo
Documento de identificação [CC] nº.
Assinatura do aluno
Caderno 1
• Duração: 35 minutos + 10 minutos de tolerância
ullet É permitido o uso de calculadora

A prova é constituída por dois cadernos (Caderno 1 e Caderno 2)

Utiliza apenas caneta ou esferográfica de tinta azul ou preta

Só é permitido o uso de calculadora no Caderno $1\,$

Não é permitido o uso de corretor. Risca o que pretendes que não seja classificado

Para cada resposta, identifica o item

Apresenta as tuas respostas de forma legível

Apresenta apenas uma resposta para cada item.

A prova inclui um formulário e uma tabela trigonométrica

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno

Números e Operações

Valor aproximado de π (pi): 3,14159

Geometria e Medida

Áreas

$$\begin{array}{ll} \textbf{Losango:} & \frac{Diagonal\, maior \times Diagonal\, menor}{2} \\ \textbf{Trap\'ezio:} & \frac{Base\, maior + Base\, menor}{2} \times altura \end{array}$$

Área da superfície esférica: $4\pi r^2$, sendo r o raio da esfera

Volumes

Prisma e cilindro: $\acute{A}rea\ da\ base \times Altura$

Pirâmide e cone:
$$\frac{\acute{A}rea\,da\,base \times Altura}{3}$$

Esfera:
$$\frac{4}{3} \pi r^3$$
, sendo r o raio da esfera

Trigonometria:

Fórmula fundamental: $\sin^2 x + \cos^2 x = 1$

Relação da tangente com o seno e o cosseno: $tgx = \frac{\sin x}{\cos x}$

Graus	Seno	Co-seno	Tangente	Graus	Seno	Co-seno	Tangente
1	0,0175	0,9998	0,0175	46	0,7193	0,6947	1,0355
2	0,0349	0,9994	0,0349	47	0,7314	0,6820	1,0724
3	0,0523	0,9986	0,0524	48	0,7431	0,6691	1,1106
4	0,0698	0,9976	0,0699	49	0,7547	0,6561	1,1504
5	0,0872	0,9962	0,0875	50	0,7660	0,6428	1,1918
6	0,1045	0,9945	0,1051	51	0,7771	0,6293	1,2349
7	0,1219	0,9925	0,1228	52	0,7880	0,6157	1,2799
8	0,1392	0,9903	0,1405	53	0,7986	0,6018	1,3270
9	0,1564	0,9877	0,1584	54	0,8090	0,5878	1,3764
10	0,1736	0,9848	0,1763	55	0,8192	0,5736	1,4281
11	0,1908	0,9816	0,1944	56	0,8290	0,5592	1,4826
12	0,2079	0,9781	0,2126	57	0,8387	0,5446	1,5399
13	0,2250	0,9744	0,2309	58	0,8480	0,5299	1,6003
14	0,2419	0,9703	0,2493	59	0,8572	0,5150	1,6643
15	0,2588	0,9659	0,2679	60	0,8660	0,5000	1,7321
16	0,2756	0,9613	0,2867	61	0,8746	0,4848	1,8040
17	0,2924	0,9563	0,3057	62	0,8829	0,4695	1,8807
18	0,3090	0,9511	0,3249	63	0,8910	0,4540	1,9626
19	0,3256	0,9455	0,3443	64	0,8988	0,4384	2,0503
20	0,3420	0,9397	0,3640	65	0,9063	0,4226	2,1445
21	0,3584	0,9336	0,3839	66	0,9135	0,4067	2,2460
22	0,3746	0,9272	0,4040	67	0,9205	0,3907	2,3559
23	0,3907	0,9205	0,4245	68	0,9272	0,3746	2,4751
24	0,4067	0,9135	0,4452	69	0,9336	0,3584	2,6051
25	0,4226	0,9063	0,4663	70	0,9397	0,3420	2,7475
26	0,4384	0,8988	0,4877	71	0,9455	0,3256	2,9042
27	0,4540	0,8910	0,5095	72	0,9511	0,3090	3,0777
28	0,4695	0,8829	0,5317	73	0,9563	0,2924	3,2709
29	0,4848	0,8746	0,5543	74	0,9613	0,2756	3,4874
30	0,5000	0,8660	0,5774	75	0,9659	0,2588	3,7321
31	0,5150	0,8572	0,6009	76	0,9703	0,2419	4,0108
32	0,5299	0,8480	0,6249	77	0,9744	0,2250	4,3315
33	0,5446	0,8387	0,6494	78	0,9781	0,2079	4,7046
34	0,5592	0,8290	0,6745	79	0,9816	0,1908	5,1446
35	0,5736	0,8192	0,7002	80	0,9848	0,1736	5,6713
36	0,5878	0,8090	0,7265	81	0,9877	0,1564	6,3138
37	0,6018	0,7986	0,7536	82	0,9903	0,1392	7,1154
38	0,6157	0,7880	0,7813	83	0,9925	0,1219	8,1443
39	0,6293	0,7771	0,8098	84	0,9945	0,1045	9,5144
40	0,6428	0,7660	0,8391	85	0,9962	0,0872	11,4301
41	0,6561	0,7547	0,8693	86	0,9976	0,0698	14,3007
42	0,6691	0,7431	0,9004	87	0,9986	0,0523	19,0811
43	0,6820	0,7314	0,9325	88	0,9994	0,0349	28,6363
44	0,6947	0,7193	0,9657	89	0,9998	0,0175	57,2900
45	0,7071	0,7071	1,0000				

1. Considera os conjuntos $A =]-\infty; \sqrt{13}]$ e $B =]\pi; 6[$ Escreve o conjunto $A \cap B$ na forma de um intervalo de números reais

Qual dos intervalos seguintes é igual ao conjunto $A \cap B$?

- (A) $]-\infty; 6[$
- (B) $\sqrt{13}; 6$
- (C) $]\pi;6[$
- (D) $\pi; \sqrt{13}$
- 2. Na tabele que se encontra abaixo, está a distribuição dos Eleitores residentes em Portugal nas eleições para a Presidência da República: total, votantes e abstenção, de 1976 a 2016

Como podes observar pela tabela, houve um aumento da abstenção do ano 1996 para o ano 2001

Escreve, em **notação científica**, esse aumento da abstenção

		Eleitores	
Anos	Total	Votantes	Abstenção
1976	6477484	4885624	1591860
1980	6921917	5831369	1090548
1986	7586961	5935294	1651667
1991	8222654	5097099	3125555
1996	8707886	5779227	2928659
2001	8746746	4453011	4293735
2006	8835237	5531265	3303972
2011	9428053	4479615	4948438
2016	9439914	4726408	4713506

(Fontes/Entidades: SGMAI, PORDATA)

- 3. Na escola secundária de Arribas de Cima há uma turma do ensino básico constituída por rapazes e raparigas, com idades compreendidas entre os treze e os dezasseis anos. No gráfico de barras da figura 1 está a distribuição dos alunos dessa turma por idades e por sexo
 - 3.1. No final do primeiro período entrou um novo aluno na turma Sabendo que a média de idades da turma passou a ser 14 anos, calcula a idade, em anos, desse novo aluno

Distribuição das idades dos alunos da turma

Figura 1

- 3.2. Em qual das opções está a idade mediana do grupo de rapazes da turma?
 - (A) 13 anos
 - (B) 13.5 anos
 - (C) 14 anos
 - (D) 14.5 anos

Professor Francisco Cabral Página 4 de 12 Prova Modelo IV | 9º ano

4. Na figura 2 está representado um triângulo [ABC], retângulo em A

Sabe-se que:

- [*DE*]||[*AB*]
- $\overline{AB} = \overline{AD} = 4$
- $\overline{DE} = 2$

Figura 2

Determina $C\hat{B}A$

Apresenta o valor, em graus, arredondado às unidades

Apresenta os cálculos que efetuares

Sempre que, em cálculos intermédios, procederes a arredondamentos, conserva, no mínimo, três casas decimais

5. Na figura 3 está representado um cubo [ABCDEFGH]e um prisma [IJKLMNOP], de bases quadradas [IJKL]e [MNOP]

Os vértices do prisma [IJKLMNOP], são pontos médios das arestas do cubo [ABCDEFGH]

Figura 3

- 5.1. Identifica uma reta paralela ao plano que contém a base [MNOP] do prisma, recorrendo a letras da figura
- 5.2. Considera que:
 - o volume do cubo [ABCDEFGH] é igual a 64 cm^3
 - 5.2.1. Determina \overline{IJ}

Apresenta o valor pedido em centímetros, arredondado às décimas Apresenta todos os cálculos que efetuares

5.2.2. Determina o volume prisma [IJKLMNOP]Apresenta o valor pedido em cm^3 Apresenta todos os cálculos que efetuares

FIM DO CADERNO 1

COTAÇÕES (Caderno 1)

Item	1	2	3.1	3.2	4	5.1	5.2.1.	5.2.2.	
Cotação (em pontos)	3	6	4	3	6	3	5	5	35

Prova Modelo IV de Matemática

3.º Ciclo do Ensino Básico
Prova 92 2019
Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos
9.º Ano de Escolaridade Turma - K
Nome completo
Documento de identificação [CC] n^{o} .
Assinatura do aluno

Caderno 2

- Duração: 55 minutos + 20 minutos de tolerância
- Neste Caderno não é permitida a utilização de calculadora

6. O Rodrigo e a Carolina estão a jogar um jogo de dados Em cada jogada, cada um deles lança um dado cúbico equilibrado, com as faces numeradas de 1 a 6, e observa o número da face voltada para cima

Em cada jogada, vence aquele cujo dado apresente o maior dos dois números Se, numa jogada, os dois dados apresentarem o mesmo número, é declarado empate

Figura 4

6.1. A Carolina lançou o dado e obteve o número 4 Qual é a probabilidade de o Rodrigo vencer esta jogada? Apresenta o resultado na forma de fração irredutível

6.2. O Rodrigo e a Carolina lançam novamente os dados Qual é a probabilidade de ocorrer um empate nesta nova jogada? Apresenta o resultado na forma de fração irredutível Mostra como chegaste à tua resposta Sugestão: Começa por construir uma tabela de dupla entrada ou um diagrama em árvore

7. Considera a função de proporcionalidade inversa f e a função quadrática g, representadas graficamente no referencial cartesiano da figura 5

Sabe-se que:

- $\bullet\,$ a função gé definida por $g(x)=\frac{1}{4}x^2$
- o ponto P, de abcissa 4, pertence ao gráfico da função f e ao gráfico da função g

Qual das expressões seguintes define a função f?

$$(A) f(x) = \frac{x}{16}$$

(B)
$$f(x) = \frac{16}{x}$$

(C)
$$f(x) = 16x$$

(D)
$$f(x) = x + 16$$

Figura 5

8. Na figura 6, estão representados os três primeiros termos de uma sucessão de figuras constituídas por quadrados geometricamente iguais. Cada termo da sucessão, com exceção do primeiro, tem mais três quadrados do que o termo anterior

Figura 6

Sabe-se que:

• cada termo da sucessão, com exceção do primeiro, tem mais dois quadrados cinzentos do que o termo anterior

Quantos quadrados cinzentos tem o 1000.° termo da sucessão? Mostra como chegaste à tua resposta

9. Na Figura 7, estão representados, em referencial cartesiano, o ponto A e duas retas, r e s

Sabe-se que:

- ullet o ponto O é a origem do referencial
- a reta r é definida pela equação $y = \frac{1}{2}x$
- $\bullet\,$ a reta sé paralela à reta r
- \bullet o ponto A tem coordenadas (4;6), e pertence à reta s

Seja fa função afim cujo gráfico é a reta \boldsymbol{s}

Qual das seguintes expressões define a função f?

(A)
$$f(x) = \frac{1}{2}x + 4$$

(B)
$$f(x) = \frac{1}{2}x - 4$$

(C)
$$f(x) = -\frac{1}{2}x - 4$$

(D)
$$f(x) = -\frac{1}{2}x + 4$$

10. Resolve a equação seguinte

$$6x(x-1) = -5x + 2$$

Apresenta as soluções na forma de fração irredutível Apresenta todos os cálculos que efetuares

11. Resolve a inequação seguinte

$$x - 4 > \frac{5(x - 1)}{3}$$

Apresenta o conjunto solução na forma de intervalo de números reais Apresenta todos os cálculos que efetuares

12. Escreve o número $\frac{\left(8^{-2}\right)^3 \div 4^{-6}}{4^3}$ na forma de uma potência de base $\frac{1}{2}$ Apresenta todos os cálculos que efetuares

13. Considera o par ordenado (x; y), tal que x = 2 e y = 3

Qual dos seguintes sistemas de equações tem como solução este par ordenado?

(A)
$$\begin{cases} x+y=5\\ y=-x+1 \end{cases}$$

(B)
$$\begin{cases} x - y = 1 \\ 2x - y = 1 \end{cases}$$

(C)
$$\begin{cases} 3x + y = 9 \\ -x - y = -5 \end{cases}$$

(D)
$$\begin{cases} x - 4y = 10 \\ 2x + 2y = -10 \end{cases}$$

14. Na figura 8 está representado um polígono que pode ser decomposto em dois quadrados, [ABCG] e $[CDEF]\,$

Escreve uma expressão simplificada para a área do polígono da figura 8 Apresenta todos os cálculos que efetuares

Figura 8

15. Na figura 9 está representado um paralelogramo, dividido em seis paralelogramos geometricamente iguais

Em qual das opções está o resultado de $L + \overrightarrow{IK}$

- (A) Ponto D
- (B) Ponto K
- (C) Ponto H
- (D) Ponto I

Figura 9

16. Observa a figura 10

Sabe-se que:

- ullet o centro da circunferência é o ponto O
- $\widehat{CD} = 52^{\circ}$
- $A\hat{O}B = 150^{\circ}$

A figura não está feita à escala

Figura 10

Determina \hat{AVB} Apresenta todos os cálculos que efetuares 17. Na figura 11 estão representados um triângulo [ABC] e as suas três medianas, que se intersetam no ponto G

D é o ponto médio de [BC]

Pode-se afirmar que:

(B)
$$\overline{AG} = \frac{2}{3}\overline{AD}$$

(C)
$$\overline{AG} = \frac{1}{3}\overline{AD}$$

(D)
$$\overline{AG} = \frac{2}{5}\overline{AD}$$

Figura 11

FIM DO CADERNO 2

COTAÇÕES (Caderno 2)

Item	6.1	6.2	7	8	9	10	11	12	13	14	15	16	17	
Cotação (em pontos)	5	6	3	5	6	6	7	6	3	6	3	6	3	65

PÁGINA EM BRANCO