Module 1

Excerpts taken from:

[1] Montgomery, Douglas, C. and George C. Runger. Applied Statistics and Probability for Engineers, Enhanced eText. Available from: WileyPLUS, (7th Edition). Wiley Global Education US, 2018.

Lecture 1

Setup

```
In[*]:= << Notation`

In[*]:= Symbolize [ _ _ ]

Symbolize [ _ _ ]

In[*]:= PopulationVariance = ResourceFunction["PopulationVariance"]

Out[*]:= SetOptions[DiscretePlot, PlotStyle → Thickness[.02], Frame → True];

SetOptions[Plot, PlotStyle → Thickness[.02], Frame → True];</pre>
```

Win / Loss Example

$$In[*]:= P_{win} = \frac{20}{100} // N$$
 $Out[*]:= 0.2$
 $In[*]:= P_{loss} = \frac{80}{100} // N$
 $Out[*]:= 0.8$
 $In[*]:= P_{win} + P_{loss} == 1$

Out[•]= True

Rolling Dice

In[*]:= RandomChoice[{"Heads", "Tails"}]

Out[*]= Heads

In[*]:= RandomInteger[{1, 6}]

Out[•]= **5**

In[*]:= RollDi := RandomInteger[{1, 6}]

In[•]:= **RollDi**

Out[*]= 4

In[@]:= RollDice[n_] := RandomInteger[{1, 6}, n]

In[*]:= rolls = RollDice[#] & /@ {100, 10000, 1000000};

$$ln[\cdot] := p = \frac{1}{6};$$

diProbabilities = Association@Table[$i \rightarrow p$, {i, 1, 6}]

Out[*]=
$$\left\langle \left| 1 \to \frac{1}{6}, 2 \to \frac{1}{6}, 3 \to \frac{1}{6}, 4 \to \frac{1}{6}, 5 \to \frac{1}{6}, 6 \to \frac{1}{6} \right| \right\rangle$$

Inf |]:= Total@Values@diProbabilities == 1

Out[•]= True

In[@]:= diNumbers = Range[6]

 $Out[\circ] = \{1, 2, 3, 4, 5, 6\}$

In[@]:= diRules = Thread[x == diNumbers]

 $Out[\circ] = \{x = 1, x = 2, x = 3, x = 4, x = 5, x = 6\}$

 $log_{[a]} = diProbabilities = ConstantArray \left[\frac{1}{6}, 6 \right]$

Out[σ]= $\left\{ \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right\}$

```
ln[\cdot]:= pw = Piecewise[{diProbabilities, diRules}^T]
   \text{Out[*]=} \left\{ \begin{array}{l} \frac{1}{6} \quad x == 1 \mid \mid x == 2 \mid \mid x == 3 \mid \mid x == 4 \mid \mid x == 5 \mid \mid x == 6 \\ 0 \quad True \end{array} \right. 
              pw /. x \rightarrow 1
  Out[\circ]= \frac{1}{6}
   ln[ \circ ] := p = pw /. x \rightarrow \# \& /@ \{1, 2, 3\}
  Out[\bullet]= \left\{ \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right\}
   In[*]:= Total[p]
Out[ • ]=
```

Lecture 2

Digital Channel (Ex 3.3)

There is a chance that a bit transmitted through a digital transmission channel is received in error. Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0, 1, 2, 3, 4\}$. Based on a model for the errors that is presented in the following section, probabilities for these values will be determined. Suppose that the probabilities are

$$P(X = 0) = 0.6561$$
 $P(X = 1) = 0.2916$
 $P(X = 2) = 0.0486$ $P(X = 3) = 0.0036$
 $P(X = 4) = 0.0001$

$$In[10]:= \mbox{ digitalChannel} = \left\{ \begin{array}{l} 0.6561 & x == 0 \\ 0.2916 & x == 1 \\ 0.0486 & x == 2; \\ 0.0036 & x == 3 \\ 0.0001 & x == 4 \end{array} \right.$$

Lecture 3

Digital Channel (Ex 3.5)

In <u>Example 3.3</u>, we might be interested in the probability that three or fewer bits are in error. This question can be expressed as $P(X \le 3)$.

The event that $\{X \le 3\}$ is the union of the events $\{X = 0\}$, $\{X = 1\}$, $\{X = 2\}$, and $\{X = 3\}$. Clearly, these three events are mutually exclusive. Therefore,

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

= 0.6561 + 0.2916 + 0.0486 + 0.0036 = 0.9999

Ways to access values from Piecewise

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

Cumulative Sum

In[*]:= Accumulate@values Out[*]= {0.6561, 0.9477, 0.9963, 0.9999, 1.}

Lecture 4

Digital Channel (Ex 3.7)

In Example 3.3, there is a chance that a bit transmitted through a digital transmission channel is received in error. Let X equal the number of bits in 3, 4}. Based on a model for the errors presented in the following section, probabilities for these values will be determined. Suppose that the probabilities are

$$P(X = 0) = 0.6561 \ P(X = 2) = 0.0486 \ P(X = 4) = 0.0001$$

 $P(X = 1) = 0.2916 \ P(X = 3) = 0.0036$

Expectation Value (several methods)

```
In[ • ]:= x [i_] := i
  ln[\circ]:= f[i] := digitalChannel /.x \rightarrow i
  ln[@] := 0f[0] + 1f[1] + 2f[2] + 3f[3] + 4f[4]
         0.4
Out[ • ]=
```

In[@]:= Range[0, 4].values

Out[•]= 0.4

The mean of a distribution gives the expectation value.

```
ln[*]:= \mu = Mean[dist]
```

0.4 Out[•]=

Standard Deviation

The variance can be computed manually using a sum.

$$ln[x] = V = \sum_{i=0}^{4} f[x[i]] (x[i] - \mu)^{2}$$

Out[*]= **0.36**

Note that this is variance of a distribution, which considers weights appropriately.

$$ln[\circ]:=$$
 Variance@dist
 $Out[\circ]:=$ 0.36
 $ln[\circ]:=$ $\sigma = \sqrt{V}$
 $Out[\circ]:=$ 0.6

In[
$$\circ$$
]:= Around $\left[\mu, \sqrt{\mathsf{V}}\right]$

Out[•]=

 $\textbf{0.4} \pm \textbf{0.6}$

NiCd Battery (3.3.6)

3.3.6 In a NiCd battery, a fully charged cell is composed of nickelic hydroxide. Nickel is an element that has multiple oxidation states. Assume the following proportions of the states:

Nickel Charge	Proportions Found
0	0.17
+2	0.35
+3	0.33
+4	0.15

$$log[*]:= battery = \begin{cases} 0.17 & x == 0 \\ 0.35 & x == 2 \\ 0.33 & x == 3 \\ 0.15 & x == 4 \end{cases}$$

Out[*]= {0.17, 0.17, 0.52, 0.85, 1.}

a. Determine the cumulative distribution function of the nickel charge.

$$\label{eq:local_$$

b. Determine the mean and variance of the nickel charge.

```
In[\bullet]:= \mu = Mean@dist
Out[ •]= 2.29
In[*]:= V = Variance@dist;
       \sigma = \sqrt{V}
Out[ ]= 1.23527
ln[*]:= charge = Around[\mu, \sigma]
```

 $\textbf{2.3} \pm \textbf{1.2}$ Out[•]=

Code Graveyard

Print Notebook

Assumes that Mathematica notebook ends with .nb extension. Make sure the .pdf file is not open on the computer.

```
ln[14]:= Export[StringDrop[NotebookFileName[], -2] <> "pdf", EvaluationNotebook[]]
```

Out[13]= C:\Users\sterg\Documents\GitHub\sparks-baird\mete-3070\mathematica\module-1.pdf