In [110]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [111]:

a=pd.read_csv(r"C:\Users\user\Downloads\C2_test.gender_submission.csv")
a

Out[111]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Eml
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	
413	1305	3	Spector, Mr. Woolf	male	NaN	0	0	A.5. 3236	8.0500	NaN	
414	1306	1	Oliva y Ocana, Dona. Fermina	female	39.0	0	0	PC 17758	108.9000	C105	
415	1307	3	Saether, Mr. Simon Sivertsen	male	38.5	0	0	SOTON/O.Q. 3101262	7.2500	NaN	
416	1308	3	Ware, Mr. Frederick	male	NaN	0	0	359309	8.0500	NaN	
417	1309	3	Peter, Master. Michael J	male	NaN	1	1	2668	22.3583	NaN	

418 rows × 11 columns

In [112]:

from sklearn.linear_model import LogisticRegression

In [113]:

```
a=a.head(10)
a
```

Out[113]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S
5	897	3	Svensson, Mr. Johan Cervin	male	14.0	0	0	7538	9.2250	NaN	S
6	898	3	Connolly, Miss. Kate	female	30.0	0	0	330972	7.6292	NaN	Q
7	899	2	Caldwell, Mr. Albert Francis	male	26.0	1	1	248738	29.0000	NaN	S
8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	female	18.0	0	0	2657	7.2292	NaN	С
9	901	3	Davies, Mr. John Samuel	male	21.0	2	0	A/4 48871	24.1500	NaN	s

In [114]:

a.columns

Out[114]:

```
In [116]:
```

```
b=a[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
b
```

Out[116]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
0	892	3	34.5	0	0	7.8292
1	893	3	47.0	1	0	7.0000
2	894	2	62.0	0	0	9.6875
3	895	3	27.0	0	0	8.6625
4	896	3	22.0	1	1	12.2875
5	897	3	14.0	0	0	9.2250
6	898	3	30.0	0	0	7.6292
7	899	2	26.0	1	1	29.0000
8	900	3	18.0	0	0	7.2292
9	901	3	21.0	2	0	24.1500

In [117]:

```
c=b.iloc[:,0:11]
d=a.iloc[:,-1]
```

In [118]:

```
c.shape
```

Out[118]:

(10, 6)

In [119]:

d.shape

Out[119]:

(10,)

In [120]:

from sklearn.preprocessing import StandardScaler

In [121]:

```
fs=StandardScaler().fit_transform(c)
```

In [122]:

```
logr=LogisticRegression()
logr.fit(fs,d)
```

Out[122]:

LogisticRegression()

```
In [123]:
e=[[2,5,77,8,6,5]]
In [124]:
prediction=logr.predict(e)
prediction
Out[124]:
array(['Q'], dtype=object)
In [125]:
logr.classes_
Out[125]:
array(['C', 'Q', 'S'], dtype=object)
In [126]:
logr.predict_proba(e)[0][0]
Out[126]:
5.258911934097103e-27
In [127]:
logr.predict_proba(e)[0][1]
Out[127]:
1.0
In [128]:
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

import sklearn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

In [129]:

```
digits=load_digits()
digits
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7',
  'pixel_1_0',
  'pixel_1_1',
  'pixel_1_2',
  'pixel_1_3',
  'pixel_1_4',
  'pixel_1_5',
  'pixel_1_6',
  'pixel_1_7',
  'pixel_2_0',
  'pixel_2_1',
  'pixel_2_2',
  'pixel_2_3',
  'pixel_2_4',
  'pixel_2_5',
  'pixel_2_6',
  'nival 2 7'
```

In [130]:

```
plt.figure(figsize=(20,4))
for index,(image,label)in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title('Number:%i\n'%label,fontsize=15)
```


In [131]:

x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)

In [132]:

(1257,) (540,)

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(1257, 64)
(540, 64)
```

In [133]:

```
logre=LogisticRegression(max_iter=10000)
logre.fit(x_train,y_train)
```

Out[133]:

LogisticRegression(max_iter=10000)

In [134]:

```
logre.predict(x_test)
```

```
Out[134]:
```

```
array([7, 9, 6, 7, 7, 2, 9, 0, 5, 6, 9, 5, 3, 2, 5, 3, 7, 6, 6, 3, 8, 9,
       8, 4, 7, 3, 8, 7, 2, 8, 3, 4, 3, 6, 4, 1, 8, 2, 9, 0, 0, 0, 0, 7,
      0, 5, 4, 4, 6, 6, 9, 9, 7, 4, 1, 1, 3, 1, 4, 8, 2, 5, 2, 5, 9, 9,
      7, 7, 8, 0, 4, 9, 0, 6, 8, 1, 9, 9, 1, 5, 2, 8, 2, 3, 6, 5, 0, 2,
       6, 6, 7, 5, 7, 4, 6, 8, 2, 9, 4, 5, 3, 9, 6, 4, 9, 6, 3, 3, 1, 5,
      7, 9, 0, 9, 3, 9, 6, 5, 0, 1, 1, 2, 8, 6, 7, 8, 5, 0, 3, 2, 2, 8,
       5, 8, 1, 7, 9, 5, 3, 5, 6, 9, 4, 2, 1, 6, 5, 0, 0, 2, 8, 0, 1, 2,
      9, 4, 1, 1, 5, 9, 4, 8, 1, 3, 6, 3, 7, 9, 1, 8, 1, 4, 8, 1, 9, 4,
      5, 4, 9, 4, 6, 9, 1, 1, 2, 3, 3, 6, 7, 0, 7, 5, 8, 3, 0, 6, 3, 1,
      8, 4, 1, 2, 1, 0, 6, 5, 7, 6, 3, 1, 6, 9, 5, 1, 8, 7, 9, 6, 3, 3,
      3, 1, 1, 1, 0, 4, 9, 1, 8, 7, 6, 6, 7, 5, 5, 5, 0, 9, 3, 1, 1, 0,
      7, 0, 5, 4, 4, 2, 8, 3, 2, 1, 1, 1, 7, 8, 8, 8, 0, 8, 8, 4, 7, 9,
      0, 8, 7, 9, 0, 9, 0, 6, 0, 8, 1, 9, 0, 6, 3, 4, 0, 5, 8, 0, 4, 5,
      2, 7, 9, 5, 6, 3, 7, 2, 3, 6, 6, 5, 7, 6, 5, 6, 0, 5, 0, 2, 9, 2,
      4, 1, 7, 1, 3, 9, 5, 6, 8, 1, 6, 4, 3, 3, 1, 8, 1, 3, 5, 0, 5, 6,
      3, 4, 7, 9, 6, 2, 1, 0, 5, 2, 5, 4, 6, 5, 9, 0, 5, 6, 4, 7, 0, 9,
       3, 9, 2, 5, 8, 8, 7, 1, 8, 3, 4, 3, 9, 4, 0, 2, 7, 3, 4, 1, 2, 9,
      9, 5, 7, 7, 8, 4, 1, 7, 6, 8, 6, 8, 1, 4, 2, 9, 0, 5, 7, 9, 7, 3,
      3, 9, 1, 2, 8, 1, 5, 0, 9, 6, 8, 6, 6, 9, 2, 3, 8, 0, 8, 2, 8, 8,
      3, 8, 3, 5, 7, 3, 8, 1, 4, 9, 8, 4, 7, 3, 6, 5, 9, 0, 6, 9, 4, 8,
      3, 8, 4, 6, 4, 6, 7, 0, 6, 4, 2, 1, 1, 4, 4, 1, 2, 5, 5, 3, 2, 1,
      9, 0, 0, 9, 4, 0, 3, 7, 4, 6, 0, 2, 2, 4, 0, 0, 5, 1, 5, 5, 7, 8,
       7, 8, 1, 1, 9, 1, 2, 9, 8, 3, 6, 1, 8, 6, 4, 5, 3, 4, 6, 6, 6, 1,
      8, 1, 7, 5, 8, 3, 9, 6, 9, 7, 6, 7, 4, 8, 6, 1, 0, 7, 9, 5, 4, 6,
      4, 8, 7, 4, 3, 8, 2, 1, 5, 5, 0, 1])
```

In [135]:

```
logre.score(x_test,y_test)
```

Out[135]:

0.9592592592593

In [136]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [137]:
```

```
b=a[['PassengerId', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']]
b
```

Out[137]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare	Embarked
0	892	3	34.5	0	0	7.8292	Q
1	893	3	47.0	1	0	7.0000	S
2	894	2	62.0	0	0	9.6875	Q
3	895	3	27.0	0	0	8.6625	S
4	896	3	22.0	1	1	12.2875	S
5	897	3	14.0	0	0	9.2250	S
6	898	3	30.0	0	0	7.6292	Q
7	899	2	26.0	1	1	29.0000	S
8	900	3	18.0	0	0	7.2292	С
9	901	3	21.0	2	0	24.1500	S

In [144]:

```
b['Embarked'].value_counts()
```

Out[144]:

S 6 Q 3

Name: Embarked, dtype: int64

In [145]:

```
x=b.drop('Embarked',axis=1)
y=b['Embarked']
```

In [146]:

```
g1={"Embarked":{'Embarked':1,'b':2}}
b=b.replace(g1)
print(b)
```

	PassengerId	Pclass	Age	SibSp	Parch	Fare	Embarked
0	892	3	34.5	0	0	7.8292	Q
1	893	3	47.0	1	0	7.0000	S
2	894	2	62.0	0	0	9.6875	Q
3	895	3	27.0	0	0	8.6625	S
4	896	3	22.0	1	1	12.2875	S
5	897	3	14.0	0	0	9.2250	S
6	898	3	30.0	0	0	7.6292	Q
7	899	2	26.0	1	1	29.0000	S
8	900	3	18.0	0	0	7.2292	С
9	901	3	21.0	2	0	24.1500	S

```
In [147]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [148]:
from sklearn.ensemble import RandomForestClassifier
In [149]:
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
Out[149]:
RandomForestClassifier()
In [150]:
parameters={'max_depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n_estimators':[10,20,30,40,50]}
In [151]:
from sklearn.model_selection import GridSearchCV
In [152]:
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(x_train,y_train)
Out[152]:
GridSearchCV(cv=2, estimator=RandomForestClassifier(),
             param_grid={'max_depth': [1, 2, 3, 4, 5],
                          'min_samples_leaf': [5, 10, 15, 20, 25],
                          'n_estimators': [10, 20, 30, 40, 50]},
             scoring='accuracy')
In [153]:
grid_search.best_score_
Out[153]:
0.7083333333333333
In [154]:
rfc_best=grid_search.best_estimator_
In [155]:
from sklearn.tree import plot_tree
```

In [156]:

```
plt.figure(figsize=(80,40))
plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],filled=True
```

Out[156]:

[Text(2232.0, 1087.2, 'gini = 0.0\nsamples = 4\nvalue = [0, 7]\nclass = No')]

gini = 0.0 samples = 4 value = [0, 7] class = No

In []: