基础算法

归并求逆序对

整数二分

高精度

离散化

数据结构

单调队列

KMP

Trie树

并查集

字符串哈希

搜索+图论

邻接表

康托展开

拓扑排序

朴素dijkstra

堆优化版dijkstra

spfa 算法(队列优化的Bellman-Ford算法)

spfa判断图中是否存在负环

floyd算法

朴素版prim算法

Kruskal算法

染色法判别二分图

匈牙利算法

网络流

最小费用流

数学知识

试除法分解质因数

线性筛法求素数

试除法求所有约数

求欧拉函数

筛法求欧拉函数

扩展欧几里得算法

高斯消元

递归法求组合数

通过预处理逆元的方式求组合数

Lucas定理

分解质因数法求组合数

卡特兰数

动态规划

背包问题

线性DP

区间DP

博弈论

NIM游戏

高级数据结构

树状数组

线段树

AC自动机

基础算法

归并求逆序对

```
int temp[maxn];
void merge_sort(int q[], int l ,int r)
    merge_sort(q, 1, mid);
   merge_sort(q, mid + 1, r);
    while (i <= mid && j <= r)
       if (q[i] <= q[j])
            temp[k++] = q[i++];
           temp[k++] = q[j++];
        temp[k++] = q[i++];
       temp[k++] = q[j++];
       q[i] = temp[j];
int main()
    scanf("%d", &n);
        scanf("%d", &a[i]);
   merge_sort(a, 0, n - 1);
```

```
81  // }
82  // freopen("F:/Overflow/in.txt","r",stdin);
83  // ios::sync_with_stdio(false);
84  return 0;
85 }
```

整数二分

高精度

```
for (int i = 0; i < A.size() || i < B.size(); i++)</pre>
        if (i < A.size()) t += A[i];</pre>
        if (i < B.size()) t += B[i];</pre>
    if (t) C.push_back(1);
    return C;
vector<int> sub(vector<int> &A, vector<int> &B)
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i++)
        if (i < B.size())</pre>
            t -= B[i];
        C.push_back((t + 10) % 10);
    while (C.size() > 1 && C.back() == 0)
        C.pop_back();
vector<int> mul(vector<int> &A, int B)
    for (int i = 0; i < A.size() || t; i++)
        if (i < A.size()) t += A[i] * B;</pre>
        C.push_back(t % 10);
vector<int> div(vector<int> &A, int b, int &r)
        C.push_back(r / b);
```

离散化

```
int find(int x)
void solve()
        add.push_back({x, c});
        alls.push_back(x);
```

数据结构

单调队列

```
int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )

{
    if (hh <= tt && i - k + 1 > q[hh]) hh ++ ;

    while (hh <= tt && a[q[tt]] >= a[i]) tt -- ;
    q[ ++ tt] = i;

if (i >= k - 1) printf("%d ", a[q[hh]]);
}
```

KMP

```
1 // s[]是长文本, p[]是模式串, n是s的长度, m是p的长度
2 求模式串的Next数组:
3 for (int i = 2, j = 0; i <= m; i ++ )
4 {
5 while (j && p[i] != p[j + 1]) j = ne[j];
6 if (p[i] == p[j + 1]) j ++ ;
```

Trie树

```
int son[N][26], cnt[N], idx;

// e号点既是根节点,又是空节点

// son[][存储以每个节点结尾的单词数量

// cnt[]存储以每个节点结尾的单词数量

// for (int i = 0; str[i]; i ++ )

for (int i = 0; str[i] - 'a';
    if (!son[p][u]) son[p][u] = ++ idx;
    p = son[p][u];

// 查询字符串出现的次数

cnt[p] ++ ;

// 查询字符串出现的次数

int query(char *str)

{

int p = 0;
    for (int i = 0; str[i]; i ++ )

{

int u = str[i] - 'a';
    if (!son[p][u]) return 0;
    p = son[p][u];

}

return cnt[p];

return cnt[p];
```

并查集

```
1 (1)朴素并查集:
2 int p[N]; //存储每个点的祖宗节点
4
```

```
int find(int x)
      if (p[x] != x) p[x] = find(p[x]);
   // 初始化, 假定节点编号是1~n
(2)维护size的并查集:
   int p[N], size[N];
   int find(int x)
      if (p[x] != x) p[x] = find(p[x]);
   // 初始化, 假定节点编号是1~n
   for (int i = 1; i <= n; i ++ )
(3)维护到祖宗节点距离的并查集:
   int p[N], d[N];
   int find(int x)
      if (p[x] != x)
          d[x] += d[p[x]];
   // 初始化,假定节点编号是1~n
```

```
      63
      p[i] = i;

      64
      d[i] = 0;

      65
      }

      66
      // 合并a和b所在的两个集合:

      68
      p[find(a)] = find(b);

      69
      d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量
```

字符串哈希

```
核心思想: 将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧: 取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;

ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值,p[k]存储 P^k mod 2^64

// 初始化

p[0] = 1;

for (int i = 1; i <= n; i ++ )

{
    h[i] = h[i - 1] * P + str[i];
    p[i] = p[i - 1] * P;

}

// 计算子串 str[l ~ r] 的哈希值

ULL get(int l, int r)

return h[r] - h[l - 1] * p[r - l + 1];

}
```

搜索+图论

邻接表

```
if (a[j] < a[i])</pre>
    smaller++;
```

拓扑排序

O(n+m)

```
1 bool topsort()

{
    int hh = 0, tt = -1;

4

5    // d[i] 存储点i的入度

6    for (int i = 1; i <= n; i ++ )
        if (!d[i])
        q[ ++ tt] = i;

9    while (hh <= tt)

11    {
        int t = q[hh ++ ];

13        for (int i = h[t]; i != -1; i = ne[i])

14        for (int i = h[t]; i != -1; i = ne[i])

15        {
             int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;

19         }

20    }

21    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;

24 }
```

朴素dijkstra

时间复杂是 $O(n^2+m)$ n表示点数, m表示边数

堆优化版dijkstra

时间复杂度O(mlogn), n表示点数, m表示边数

```
typedef pair<int, int> PII;
bool st[N];
int dijkstra()
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    while (heap.size())
       auto t = heap.top();
       heap.pop();
            if (dist[j] > distance + w[i])
               dist[j] = distance + w[i];
               heap.push({dist[j], j});
    return dist[n];
```

spfa 算法(队列优化的Bellman-Ford算法)

```
int spfa()
   queue<int> q;
   st[1] = true;
   while (q.size())
       auto t = q.front();
       q.pop();
           if (dist[j] > dist[t] + w[i])
              dist[j] = dist[t] + w[i];
              if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
                  q.push(j);
                  st[j] = true;
```

spfa判断图中是否存在负环

```
while (q.size())
   auto t = q.front();
   q.pop();
       if (dist[j] > dist[t] + w[i])
           dist[j] = dist[t] + w[i];
           cnt[j] = cnt[t] + 1;
           if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少
           if (!st[j])
              st[j] = true;
```

floyd算法

$O\left(n^3\right)$

```
1 初始化:
2 for (int i = 1; i <= n; i ++ )
3 for (int j = 1; j <= n; j ++ )
4 if (i == j) d[i][j] = 0;
5 else d[i][j] = INF;
6
7 // 算法结束后, d[a][b]表示a到b的最短距离
8 void floyd()
9 {
10 for (int k = 1; k <= n; k ++ )
11 for (int i = 1; i <= n; i ++ )
12 for (int j = 1; j <= n; j ++ )
13 d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
14 }
```

 $\mathcal{O}\left(n^2+m\right)$

Kruskal算法

O(mlogm)

染色法判别二分图

O(n+m)

```
24     memset(color, -1, sizeof color);
25     bool flag = true;
26     for (int i = 1; i <= n; i ++ )
27         if (color[i] == -1)
28         if (!dfs(i, 0))
29         {
30             flag = false;
31             break;
32         }
33         return flag;
34     }</pre>
```

匈牙利算法

O(nm)

```
int h[N], e[M], ne[M], idx; // 邻接表存储所有边, 匈牙利算法中只会用到从第一个集合指向
bool st[N]; // 表示第二个集合中的每个点是否已经被遍历过
bool find(int x)
      if (!st[j])
         st[j] = true;
         if (match[j] == 0 || find(match[j]))
             match[j] = x;
             return true;
  return false;
```

网络流

```
int iter[maxn];
void add_edge(int from, int to, ll cap) {
   G[from].push_back((edge){to, cap, G[to].size()});
   G[to].push_back((edge){from, 0, G[from].size() - 1});
void bfs(int s) {
    queue<int> que;
   que.push(s);
    while (!que.empty()) {
        int v = que.front();
        que.pop();
        for (int i = 0; i < G[v].size(); i++) {
            edge &e = G[v][i];
            if (e.cap > 0 && level[e.to] < 0) {</pre>
11 dfs(int v, int t, int f) {
    for (int &i = iter[v]; i < G[v].size(); i++) { // 当前弧优化
        edge &e = G[v][i];
        if (e.cap > 0 && level[v] < level[e.to]) {</pre>
            11 d = dfs(e.to, t, min(f * 111, e.cap));
                return d;
11 max_flow(int s, int t) {
        while ((f = dfs(s, t, INF)) > 0) {
```

```
void solve()
    while(~scanf("%d%d", &n, &m)){
        for (int i = 0; i < n * 2 + 1; i++) G[i].clear();
           scanf("%d", &fd);
           add_edge(S, i, fd);
           add_edge(i + n, T, fd);
            scanf("%d%d", &a, &b);
            add_edge(a, b + n, 1);
            add_edge(b, a + n, 1);
        if (sm & 1) {
           puts("No");
           puts("Yes");
           puts("No");
int main()
   solve();
```

最小费用流

```
int h[maxn];
                                       // 最短路中的前驱节点和对应的边
    // 加一条从from到to容量为cap费用为cost的边
    void add_edge(int from, int to, int cap, int cost) {
        G[from].push_back((edge){to, cap, cost, G[to].size()});
        G[to].push_back((edge){from, 0, -cost, G[from].size() - 1});
    11 min_cost_flow(int s, int t, ll f = INF) {
        while (f > 0) {
            priority_queue<PII, vector<PII>, greater<PII> > que;
            que.push(PII(0, s));
            while (!que.empty()) {
                PII p = que.top();
                que.pop();
                for (int i = 0; i < G[v].size(); i++) {</pre>
                    edge &e = G[v][i];
                    if (e.cap > 0 \&\& dis[e.to] > dis[v] + e.cost + h[v] - h[e.to]) {
43
            if (dis[t] == INF) {
                return ans;
            int d = f;
            res.push_back(h[t] * d);
                G[prevv[v]][preve[v]].cap -= d;
```

```
void init() {
         res.clear();
              G[i].clear();
      void solve()
          while (~scanf("%d%d", &n, &m)) {
              init();
                   scanf("%d%d%d", &a, &b, &c);
                   add_edge(a, b, 1, c);
              sort(res.begin(), res.end());
              for (int i = 1; i < res.size(); i++) {</pre>
              scanf("%d", &q);
                  scanf("%11d%11d", &u, &v);
                       puts("NaN");
                       11 \text{ ans} = \text{sum}[\text{pos}] * u;
104
                       11 gc = __gcd(ans, v);
                       printf("%lld/%lld\n", ans / gc, v / gc);
     int main()
          solve();
          return 0;
```

试除法分解质因数

```
void divide(int x)

for (int i = 2; i <= x / i; i ++ )

if (x % i == 0)

{
    int s = 0;
    while (x % i == 0) x /= i, s ++ ;
    cout << i << ' ' << s << endl;
}

if (x > 1) cout << x << ' ' << 1 << endl;
cout << endl;
cout << endl;
</pre>
```

线性筛法求素数

```
1  vector<int> get_divisors(int x)
2  {
3    vector<int> res;
4    for (int i = 1; i <= x / i; i ++ )
5        if (x % i == 0)
6        {
7            res.push_back(i);
8            if (i != x / i) res.push_back(x / i);
9        }
10        sort(res.begin(), res.end());
11        return res;
12    }</pre>
```

求欧拉函数

```
1 int phi(int x)
2 {
3    int res = x;
4    for (int i = 2; i <= x / i; i ++ )
5        if (x % i == 0)
6        {
7            res = res / i * (i - 1);
8            while (x % i == 0) x /= i;
9        }
10    if (x > 1) res = res / x * (x - 1);
11
12    return res;
13    }
```

筛法求欧拉函数

扩展欧几里得算法

高斯消元

递归法求组合数

```
1 // c[a][b] 表示从a个苹果中选b个的方案数
2 for (int i = 0; i < N; i ++ )
3 for (int j = 0; j <= i; j ++ )
4 if (!j) c[i][j] = 1;
5 else c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
```

通过预处理逆元的方式求组合数

```
int qmi(int a, int k, int p) // 快速幂模板

int qmi(int a, int k, int p) // 快速幂模板

int res = 1;
while (k)

if (k & 1) res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;

return res;
}

// 预处理阶乘的余数和阶乘逆元的余数
fact[0] = infact[0] = 1;
for (int i = 1; i < N; i ++ )
```

```
18 {
19     fact[i] = (LL)fact[i - 1] * i % mod;
20     infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
21 }
```

Lucas定理

```
若p是质数,则对于任意整数 1 <= m <= n,有:
int qmi(int a, int k) // 快速幂模板
     if (k & 1) res = (LL)res * a % p;
   if (a  return <math>C(a, b);
```

分解质因数法求组合数

```
1 当我们需要求出组合数的真实值,而非对某个数的余数时,分解质因数的方式比较好用:
2 1. 筛法求出范围内的所有质数
3 2. 通过 C(a, b) = a! / b! / (a - b)! 这个公式求出每个质因子的次数。 n! 中p的次数是 n / p + n / p^2 + n / p^3 + ...
```

```
3. 用高精度乘法将所有质因子相乘
int sum[N];  // 存储每个质数的次数
bool st[N];  // 存储每个数是否已被筛掉
void get_primes(int n) // 线性筛法求素数
       for (int j = 0; primes[j] <= n / i; j ++ )
          st[primes[j] * i] = true;
         if (i % primes[j] == 0) break;
int get(int n, int p) // 求n! 中的次数
   for (int i = 0; i < a.size(); i ++ )
      c.push_back(t % 10);
     c.push_back(t % 10);
get_primes(a); // 预处理范围内的所有质数
```

卡特兰数

1 给定n个0和n个1,它们按照某种顺序排成长度为2n的序列,满足任意前缀中0的个数都不少于1的个数的序列的数量为: Cat(n) = C(2n, n) / (n + 1)

动态规划

背包问题

01

```
for (int i = 1; i <= n; i++)

for (int j = 0; j <= V; j++)

definition of the second of the sec
```

多重

```
int con = 0;
for (int i = 1; i <= N; i++)
{</pre>
```

分组

线性DP

最长上升子序列

最长上升子序列2

```
1    scanf("%d", &n);
2    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);
3
4    int len = 0;
5    for (int i = 0; i < n; i ++ )
6    {
7        int l = 0, r = len;
8        while (l < r)
9        {
10            int mid = l + r + 1 >> 1;
}
```

```
if (q[mid] < a[i]) l = mid;
len = max(len, r + 1);
q[r + 1] = a[i];
printf("%d\n", len);</pre>
```

最长公共子序列

```
cin >> n >> m;
cin >> s1 + 1 >> s2 + 1;
for (int i = 1; i <= n; i++)

for (int j = 1; j <= m; j++)

dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
    if (s1[i] == s2[j]) dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1);
}

cout << dp[n][m] << endl;</pre>
```

最小编辑距离

```
1 void solve()
2 {
3     cin >> n >> str1 + 1;
4     cin >> m >> str2 + 1;
5
6     for (int i = 0; i <= m; i++) dp[0][i] = i;//增加
7     for (int i = 0; i <= n; i++) dp[i][0] = i;//删
8
9     for (int i = 1; i <= n; i++)
10     {
11         for (int j = 1; j <= m; j++)
12         {
13             dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
14             if (str1[i] == str2[j]) dp[i][j] = min(dp[i][j], dp[i - 1][j - 1]);
15             else dp[i][j] = min(dp[i][j], dp[i - 1][j - 1] + 1);
16         }
17     }
18     cout << dp[n][m] << endl;
19 }
```

区间DP

```
1     cin >> t;
2     for (int i = 1; i <= t; i++)
3         cin >> num[i];
4     for (int i = 1; i <= t; i++)
5         sum[i] += sum[i - 1] + num[i];</pre>
```

博弈论

NIM游戏

```
1    scanf("%d", &n);
2    int res = 0;
4    while (n -- )
5    {
6        int x;
7        scanf("%d", &x);
8        res ^= x;
9    }
10
11    if (res) puts("Yes");
12    else puts("No");
```

集合nim

给定nn堆石子以及一个由kk个不同正整数构成的数字集合SS。

现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合SS,最后无法进行操作的人视为失败。

问如果两人都采用最优策略, 先手是否必胜。

```
1  //SG函数
2  int SG(int x)
3  {
4    if (f[x] != -1) return f[x];
5    unordered_set<int> S;
7    for (int i = 0; i < m; i++)
8    {</pre>
```

高级数据结构

树状数组

```
int lowbit(int x) {
    return x & -x;
}

void add(int x, int k) {
    for (int i = x; i <= n; i += lowbit(i)) e[i] += k;
}

int sum(int x) {
    int res = 0;
    for (int i = x; i; i -= lowbit(i)) res += e[i];
    return res;
}</pre>
```

最大数

```
void pushup(int p) {
   tr[p].MAX = max(tr[p << 1].MAX, tr[p << 1 | 1].MAX);
void build(int p, int l, int r) {
   tr[p] = {1, r};
void modify(int p, int x, int k) {
   if (tr[p].l == tr[p].r) {
        tr[p].MAX = k;
    int mid = tr[p].l + tr[p].r >> 1;
       modify(p << 1, x, k);
    pushup(p);
11 query(int p, int l, int r) {
   if (1 <= tr[p].1 && tr[p].r <= r) {
        return tr[p].MAX ;
    int mid = tr[p].l + tr[p].r >> 1;
    if (r <= mid) return query(p << 1, 1, r);</pre>
    if (1 > mid) return query(p << 1 | 1, 1, r);
    return max(query(p << 1, 1, mid), query(p << 1 | 1, mid + 1, r));
```

区间修改

```
void pushup(int p) {
    tr[p].sum = tr[p << 1].sum + tr[p << 1 | 1].sum;
void pushdown(int p) {
   node &root = tr[p], &left = tr[p << 1], &right = tr[p << 1 \mid 1];
    if (root.add) {
        left.sum += (ll)(left.r - left.l + 1) * (root.add), left.add += root.add;
        right.sum += (ll)(right.r - right.l + 1) * (root.add), right.add +=
void build(int p, int l, int r) {
   tr[p] = {1, r};
        tr[p] = {1, r, a[1], 0};
    int mid = tr[p].l + tr[p].r >> 1;
    pushup(p);
void modify(int p, int 1, int r, int k) {
    if (tr[p].l == tr[p].r) {
        tr[p].sum += (ll)(tr[p].r - tr[p].l + 1) * k;
        tr[p].add += k;
    int mid = tr[p].l + tr[p].r >> 1;
    if (1 <= mid) modify(p << 1, 1, r, k);
    if (r > mid) modify(p << 1 | 1, 1, r, k);
   pushup(p);
11 query(int p, int l, int r) {
    if (1 <= tr[p].1 && tr[p].r <= r) return tr[p].sum;</pre>
    pushdown(p);
    int mid = tr[p].l + tr[p].r >> 1;
```

```
11 res = 0;
60    if (1 <= mid) res += query(p << 1, 1, r);
61    if (r > mid) res += query(p << 1 | 1, 1, r);
62    return res;
63 }</pre>
```

最大公约数

```
struct node{
11 a[MAXN];
11 gcd(l1 a, l1 b) {
    return b == 0 ? a : gcd(b, a % b);
void pushup(node &p, node &l, node &r) {
    p.d = gcd(1.d, r.d);
void pushup(int p) {
    pushup(tr[p], tr[p << 1], tr[p << 1 | 1]);</pre>
    tr[p] = {1, r};
    int mid = tr[p].l + tr[p].r >> 1;
void modify(int p, int x, ll v) {
    if (tr[p].l == x && tr[p].r == x) {
        11 b = tr[p].sum + v;
        tr[p] = \{x, x, b, b\};
    if (x \leftarrow mid) modify(p \leftarrow 1, x, v);
    else modify(p \langle\langle 1 | 1, x, v \rangle\rangle;
    pushup(p);
node query(int p, int l, int r) {
    if (tr[p].l >= 1 && tr[p].r <= r) return tr[p];</pre>
    int mid = tr[p].l + tr[p].r >> 1;
```

```
if (r <= mid) return query(p << 1, 1, r);
if (l > mid) return query(p << 1 | 1, 1, r);
else {
    node left = query(p << 1, 1, r);
    node right = query(p << 1 | 1, 1, r);
    node res;
    pushup(res, left, right);
    return res;
}</pre>
```

AC自动机

给定 n个长度不超过 5050 的由小写英文字母组成的单词,以及一篇长为 m 的文章。

请问,有多少个单词在文章中出现了。

```
char str[M];
void insert()
       if (!tr[p][t]) tr[p][t] = ++ idx;
       p = tr[p][t];
   cnt[p] ++ ;
void build()
        if (tr[0][i])
    while (hh <= tt)
            int p = tr[t][i];
```

```
ne[p] = tr[ne[t]][i];
    int main()
        scanf("%d", &T);
            scanf("%d", &n);
                scanf("%s", str);
                insert();
            build();
            scanf("%s", str);
                int t = str[i] - 'a';
                j = tr[j][t];
                    res += cnt[p];
                    cnt[p] = 0;
                    p = ne[p];
            printf("%d\n", res);
81
```