Theory of Computing

Computing unit:

State of this machine is its memory configuration memory configuration possible Fixed internal mem = states of the machine

we need some designation as to the states of whether they accept/not accept the input.

Also a designation to 1 state as to whether it is the "start" state.

A Deterministic Finite Automaton is a -tupe (Q, E, 8, 90, F)

 $Q = finite set of "stetes" <math>\frac{\left(\frac{|st|}{\xi_{1}} = \frac{z}{2} \circ \frac{z}{3}\right)}{\xi_{1}^{2} = \frac{z}{2} \circ , 13}$ Zi = finite alphabet (set) S is the "transition function" 90 EQ is the "start state"
FCQ is the set of "final states" $\Rightarrow S: Q \times Z \rightarrow Q$

is a total function

let & be an appalet. Call Et is the set of all strings over E. . If $\xi_i = \xi_0, 13$, ξ_i^{\dagger} is the set of all 6inary strings. · If $\xi = \emptyset$, $\xi^{+} = \xi \xi \xi^{-}$ (1010) computation of a DFA M=(Q, E, S, 90, F) and a string we E* where |w| = n is a sequence of n+1 states w=w_1w_2...wn (ro, r, rz, ..., rn) and each wies where: (1) $c_0 = q_0$ (2) $c_1 = \delta(c_1, w_1)$ for all

12 is $c_1 = \delta(c_1, w_2)$ $c_2 = \delta(c_1, w_2)$ $c_3 = \delta(c_1, w_3)$ An accepting computation of M on w is a computation (ro, ..., rn) and ra EF. The language accepted/recognized by a DFA

M=(Q, E, S, 90, F), L(M), is

Z W ∈ Zi*: M has an accepting computation on ω 3.

It of computations always is 1.
but # of accepting computations can be either 1 or 0.
Lenguage (in general) is a set of strings.

A language L is called regular if it is accepted by some DFA.

- · Z*\ { { E} } is regular
- · Ext -> 62 (out of thing
- · \$ ->0° 11
- · 203 see above