Factor Graph Neural Network Meets Max-Sum:

A Real-Time Route Planning Algorithm for Massive-Scale Trips

Yixuan Li¹, Wanyuan Wang¹*, Weiyi Xu¹, Yanchen Deng², Weiwei Wu¹

¹ School of Computer Science and Engineering, Southeast University, Nanjing, China ² School of Computer Science and Engineering, Nanyang Technological University, Singapore

Speaker: Yixuan Li

Supervisor: Wanyuan Wang

8 May 2024, Auckland, New Zealand

Backgrounds

Individual Route Planning

- Individual route planning only considers the **current** traffic condition, ignoring other queries.
- Individual planning will result in four paths going through the same road and causing congestion.

- Global route planning considers the potential vehicles generated by other user queries.
- Global route planning can effectively avoid potential congestion
- In large-scale scenarios, there may be hundreds of user queries arriving at the same time every second.
- The goal of Global Route Planning is to minimise the total travel time for all the user queries.

Global Route Planning

Problem Definition:

• The travelling time t(e) on each road e:

$$t(e) = t_{min}(e) \times (1 + \alpha \times f_e)$$

 $t_{min}(e)$ is the travel time without vehicles f_e is the number of vehicles on this road.

The goal of individual route planning is to minimise the travel time for one user π :

$$T(\pi) = \sum_{e(v_i, v_j) \in \pi} f(e(v_i, v_j))$$

 The goal of Global Route Planning is to minimise the travel time for all the users Π:

$$GT(\Pi) = \sum_{i=1}^{|\Pi|} T(\pi_i)$$

Existing Methods:

- Exact algorithm bears exponential time complexity and could not be applied to real-world scenarios.
- Heuristics Methods: greedy algorithms [1],[2], Monte Carlo tree search [3] etc.

Drawbacks: however, current methods often fail to balance **efficiency** and **accuracy**

Our Methods:

- Fast: returning high-quality approximate solutions in a controllable time
- **Distributed:** decomposing global problems into parts
- Faster: solving in milliseconds with neural networks
- [1] Ke Li et al. Towards Alleviating Traffic Congestion: Optimal Route Planning for Massive-Scale Trips. IJCAI'20.
- [2] Ke Li et al. Traffic Congestion Alleviation over Dynamic Road Networks: Continuous Optimal Route Combination for Trip Query Streams. IJCAI'21.
- [3] Guiyang Luo et al. AlphaRoute: Large-Scale Coordinated Route Planning via Monte Carlo Tree Search. AAAI'23.

Contribution 1: Problem Formulation

Objective function: the sum of the user travel times in all candidate roads

$$F = f_1, \dots, f_8$$

$$f(e) = t_{min}(e) \times (1 + \alpha \times f_e)$$

Distributed Constrained Optimization Problem (DCOP)

Motivation: From the whole to the parts: Decompose the total travel time by **road**.

 $A \rightarrow D, A \rightarrow C \rightarrow D$ Top-k $A \rightarrow B, A \rightarrow C \rightarrow B$ $A \rightarrow C, A \rightarrow B \rightarrow C$ k=2 $B \rightarrow E, B \rightarrow C \rightarrow D \rightarrow E$

Decision variable: candidate routes To simplify the problem, the candidate routes are the **shortest** k ones

queries
$$Q = \{q_1, \dots, q_n\}$$

Variables $X = \{x_1, \dots, x_n\}$
Domains $D = \{D_1, \dots, D_n\}$

Route-query Factor Graph

Nodes

Decision

Max-Sum Algorithm

Route-query Factor Graph

Solving by message passing algorithm: Max-Sum [1]Adapted from the belief propagation algorithm: Max-Product

Advantages:

Parallel computation: each node as a computational unit **Distributed** computing to rapidly solve and protect privacy **Controllable:** can stop after any iteration and return results

[1] Liel Cohen et al. Governing convergence of Max-sum on DCOPs through damping and splitting. Artificial Intelligence 279, 103212, 2020.

Max-Sum Algorithm

Based on the inference and message passing

The Process of Max-Sum:

- Query: variable nodes send messages to the function nodes (telling which road to take)
- 2. Response: function nodes send response messages to the variable nodes (calculating the maximum possible cost caused by query nodes)
- 3. Decision: The variable nodes use the information to make decision (choosing their value that minimises their travel time)

Contribution 2: Threshold-based Pruning for Max-Sum

Process of Max-Sum

1. Query Message:

$$Q_{x_i \to f}^k(x_i) = \sum_{f' \in N(x_i) \setminus f} R_{f' \to x_i}^{k-1}(x_i) + \alpha_i$$

2. Response Message:

$$R_{f \to x_i}^k(x_i) = \min_{N(f) \setminus x_i} (\sigma(N(f)) + \sum_{x_i' \in N(f) \setminus x_i} Q_{x_i \to f}^{k}(x_i'))$$

3. Decision:

$$\widetilde{d}_i = \underset{x_i \in D_i}{\operatorname{argmin}} \sum_{f' \in N(x_i)} R_{f' \to x_i}^k(x_i)$$

Exponential complexity:

The response message need to consider all the possible combinations of neighbours, if the number of query nodes adjacent to the road node is N, and there are K candidates for each query, then the computational complexity is $O(K^N)$

Classification Pruning: The query can be divided into two categories: passing through the road or not Finding the optimal value from the two types respectively. Computational complexity: $O(2^N)$ without loss of accuracy

Traversal pruning: greedy method, complexity of O(KN)

Experiments

Experimental Settings

Datasets:

TG: Real-world San Joaquin County Road Network¹, with scale reduction to 2000 vertices and 4958 edges.

SG: Synthetic road network with 2000 vertices and 3771 edges.

Metrics:

Global travel time: $GT(\Pi) = \sum_{i=1}^{|\Pi|} T(\pi_i)$

Worst-case travel time: $GT_{worst}(\Pi)$ as an auxiliary metric.

Removes uncertainty in arrival times and represents the upper bound of the total travel time for all vehicles caused by queries.

Baselines:

IND: Individual-based search algorithm. [1]

SBP: Self-aware batch process, the state-of-the-art method. [2]

Consists of an initial greedy-based search with refining steps.

Experiment 1:

How does the Max-sum algorithm **perform** with different numbers of users?

Experiment 1 TG 4.000 □ □ IND □ □ SBP □ □ Max-sum

The performance of the Max-sum after 20 iterations and the baselines under different numbers of queries.

¹https://users.cs.utah.edu/lifeifei/SpatialDataset.htm

^[1] Jiajie Xu et al. Traffic aware route planning in dynamic road networks. DASFAA'12

^[2] Ke Li et al. Traffic Congestion Alleviation over Dynamic Road Networks: Continuous Optimal Route Combination for Trip Query Streams. IJCAI'21

Experiments

Experimental Settings

Experiment 2:

How **efficient** is the max-sum algorithm compared to the baseline approach?

Experiment 3:

How does the max-sum algorithm perform with different **hyperparameters** K and different numbers of users?

Experiment 2

The Performance of Max-sum after each iteration when query count is 6000. (without parallel or distributed computing)

Experiment 3

The performance of Max-sum under different numbers of candidate routes and queries after 20 iterations.

Even Faster? Neural Networks!

Motivation

Historical Information: many closed-related GRP instances must be solved repeatedly.

Similar Patterns: the same road network and the set of candidate paths for each query is invariant.

Computation Process: the computation process of Max-Sum is similar to graph neural networks [1].

The idea of learning the input-output mapping of the CO problem is promising for both optimality and scalability.

Message	Max-sum	RQ-FGNN	
$V \to F$	$\sum_{Neg(x)} R_{f \to x} + \alpha$	$\max_{Neg(f)} \varphi_{V \to F}(\delta(e), \delta(x), \delta(f))$	
$F \rightarrow V$	$\max f(Neg(f)) + \sum_{Neg(f)} Q_{x \to f}$	$\sum_{Neg(x)} \varphi_{F \to V}(\delta(e), \delta(x), \delta(f))$	
Assignment \widetilde{V}	$\operatorname{argmin} \sum_{Neg(f)} Q_{x \to f}$	$\operatorname{softmax}(\varphi(\delta(x)))$	

Max-sum

Massage Passing

[1] Zhen Zhang, Fan Wu, and Wee Sun Lee. Factor Graph Neural Networks. NeurIPS'20.

Contribution 3: Route-Query Factor Graph Neural Network

Experiments

Experiment 4

Table 1: Effect of training set size

Maps	Methods	Number of samples				
		200	400	600	800	1000
SG	GNN	61.35%	73.20%	80.56%	79.29%	82.70%
	RQ-FGNN	64.19%	77.25%	85.47%	85.72%	88.76%
TG	GNN	63.74%	74.39%	84.45%	85.13%	85.78%
	RQ-FGNN	67.02%	78.91%	89.02%	90.20%	92.53%
Average Gain		3.06%	4.29%	4.74%	5.75%	6.41%

Experiment 5

Table 2: Performance of models under different K

Maps	Methods	Value of K				
		2	3	4	5	6
SG	GNN	85.24%	82.70%	79.71%	77.34%	71.39%
	RQ-FGNN	89.32%	88.76%	85.12%	82.41%	77.82%
TG	GNN	87.05%	85.78%	80.43%	76.58%	73.31%
	RQ-FGNN	92.11%	92.53%	87.62%	83.36%	78.14%
Average Gain		4.57%	6.41%	6.30%	5.93%	5.63%

Experiment 6

Performance and the computational overhead of methods corresponding to different numbers of queries

Conclusion and Future Work

Conclusion

Proposed a graph model named the **route-query factor graph** for the GRP problem.

Applied a damped Max-sum method and design a **hybrid pruning** approach based on the characteristics of the GRP problem, which can return high-quality solutions.

Further devised an **end to end** message-passing route-query factor graph neural network to **parameterize** the Max-sum.

Future Work

Explore the **theoretical guarantee** of RQ-FGNN.

Migration application: accelerate integer programming (IP).

Extending Top-k candidates: variable network structure.

Distributed neural networks for faster online inference.

Contact Information

I am Yixuan, a second-year graduate student at Department of Computer Science and Engineering, Southeast University, advisored by Prof. Wanyuan Wang.

My research interest lies in Reinforcement Learning, Operation Research and Multi-Agent Systems.

Please feel free to contact me if interested in my work.

My email: Yixuanli@seu.edu.cn

THANKS!

Questions&Comments?