```
Оглавление
 Структура PL/SQL блока
  Разделобъявлений
  <u>Раздел выполнения</u>
  Раздел обработки исключительных ситуаций
 Анонимные блоки
 Синтаксис языка
  Идентификаторы
  Арифметические операторы:
  Операторы отношения (используются в логических
  выражениях):
  <u>Комментарии и метки</u>
  Основные типы и структуры данных
  Типы LOB
  Составные типы
  Динамические типы
  <u>Пользовательские подтипы</u>
 <u>Объявление переменных и постоянных</u>
 Функции для работы с NULL
  DECODE
  NVL
  NVL2
  COALESCE
 <u>Неявное преобразование типов</u>
 Яв<u>ное преобразование типов</u>
 Основные управляющие структуры
  <u>Выбор по условию</u>
  Циклы
  Goto (безусловный переход)
 Метки в циклах и блоках
```

Структура PL/SQL блока

Все разделы, кроме раздела выполнения, имеют право отсутствовать.

Раздел выполнения может наряду с программным кодом содержать произвольное число других (вложенных) блоков PL/SQL.

Разделобъявлений

Содержит объявления переменных, констант, курсоров, исключений, функций и процедур PL/SQL, которые будут использоваться в выполняемой секции и секции исключений

Все, что находится в секции объявлений, принадлежит блоку и может использоваться только внутри него.

Раздел выполнения

Выполняемая секция начинается с ключевого слова BEGIN и заканчивается либо ключевым словом EXCEPTION, если присутствует раздел исключений, либо ключевым словом END.

Раздел обработки исключительных ситуаций

Раздел исключений начинается с ключевого слова EXCEPTION и продолжается до конца блока. Каждому исключению соответствует оператор WHEN имя_исключения,

указывающий, что должно быть сделано при возникновении данного исключения.

Все операторы, находящиеся между оператором, вызвавшим ошибку, и секцией исключений, игнорируются.

Анонимные блоки

Анонимный блок (anonumous block) — это блок PL/SQL без секции заголовка

Синтаксис языка

Идентификаторы

К идентификаторам PL/SQL предъявляются следующие требования:

- Иметь не более 30 символов в длину и не содержать пробельных символов (собственно пробелов и знаков табуляции).
- Состоять только из букв, цифр от 0 до 9, символа подчеркивания (_), знака доллара (\$) и знака фунта (#).
- Начинаться с буквы.
- Не совпадать с зарезервированными словами PL/SQL или SQL, которые имеют специальное значение. Например, именем переменной не может быть слово BEGIN или INSERT. Все зарезервированные слова можно увидеть в представлении v\$reserved words.

:=	Присвоение
(Началосписка или
	подвыражения
\	Конецсписка или
)	подвыражения
	Отдельные элементы списка
,	(как в списке параметров)
	Оператор диапазона
	используется в операторах
	FOR-IN
	Конкатенация строк
=	Ассоциация (используется
>	в списке параметров)
;	Конецвыражения
%	Атрибут курсора или типа
/*	объекта
	Спецификация объекта
@	Индикатор удаленной базы
٣	данных
ı	Начало/конецстроки
	Символов
:	Индикатор внешней
	переменной
&	Индикатор связанной
	переменной

Арифметические операторы:

_	Сложение и
	унарный плюс
	Вычитание и
-	унарный
	минус
*	Умножение
/	Деление
*	Возведение в
*	степень

Операторы отношения (используются в логических выражениях):

	_
=	Равенство
<	Меньше
>	Больше
<	Неравно
>	
	Неравно
!=	(альтернати
	ва)
~	Неравно
=	(альтернати
_	ва)
_	Неравно
=	(альтернати
=	ва)
<	Меньше или
=	равно
>	Больше или
=	равно

Комментарии и метки

	Комментарий в
	одной строке
	Начало
/*	многострочного
	комментария
	Конец
*/	многострочного
	комментария
>	Начало метки
>	
<	Конецметки
<	

Основные типы и структуры данных

Скалярный	Переменные,
	представляющие собой
	ровно одно значение
	(числовое, дату и т.д.)
Составной	Переменные,
	представляющие
	именованную группу
	значений (запись,
	объект, массив)
Ссылка	Ссылканаобъектили
	курсор
LOB	Указание на массив
	большого размера

Null

Это специальное значение — означает отсутствие данных, констатацию того факта, что значение неизвестно. По умолчанию это значение могут принимать переменные всех типов данных, если явно не указанно ограничение NOT NULL, если ограничение указанно тогда надо определять значение по умолчанию. Основная особенность заключается в том, что Null ни равен ничему, даже другому Null.

Для сравнения существует специальное сравнение «is», с помощью которого мы можем сравнивать разные переменные.

Таким образом, Oracle оперирует не двухзначной, а трехзначной логикой

Скалярные типы

Числовые типы

Data Type	Data Description
PLS_INTEGER or BINARY_INTEGER (с 10 й	Знаковое целое диапазон
версии одно и тоже)	значений -2 147 483 648 до 2 147 483 647,
версии одно и гожеј	размещается в 32 битах
	Числа с одинарной точностью,
BINARY_FLOAT	соответствует формату IEEE 754-
BINANT_FLOAT	формат с плавающей запятой (32 бит,
	ОТ ±2 ⁻¹⁴⁹ ДО ±2 ¹²⁷ ·(2-2 ⁻²³))
	Числа двойной точности,
DINARY DOLIDLE	соответствует формату IEEE 754-
BINARY_DOUBLE	формат с плавающей запятой (64 бит,
	диапозон от ±2 ⁻¹⁰⁷⁴ до ±2 ¹⁰²³ ·(2-2 ⁻⁵²))
	Сфиксированной или плавающей
	запятой с абсолютным значением в
	диапазоне от 1E-130 до (но не включая)
NUMBER [(p [, s])]	1.0E126. Может содержать ноль.
ΝΟΙΝΙΒΕΝ [(μ [, 5])]	Precision — общее число значащих цифр
	(max – 38)
	Scale — количество цифр справа от
	запятой (от -84 до 127)

Подтипы PLS_INTEGER:

Data Type	Data Description	
NATURAL	Неотрицательное PLS_INTEGER	
NATURALN	Неотрицательное PLS_INTEGER значение с NOT	
NATURALIN	NULL ограничением	
POSITIVE	Положительное PLS_INTEGER значение (начинается с 1)	
POSITIVEN	Положительное PLS_INTEGER значение с NOT	
POSITIVEIN	NULL ограничением	
SIGNTYPE	PLS_INTEGER значние -1, 0, или 1 (полезно при	
SIGNITIE	программировании tri-state логики (три состояния))	
SIMPLE_INTEGER	PLS_INTEGER значение с NOT NULL ограничением	

Подтипы BINARY_FLOAT/DOUBLE:

Data Type	Data Description
SIMPLE FLOAT	BINARY_FLOAT значение с NOT
SIMPLE_I LOAT	NULLограничением
SIMPLE DOUBLE	BINARY_DOUBLE значение с NOT
SIMPLE_DOODLE	NULLограничением

Строковые типы

Data Type	Data Description
CHAR (cizo [DVTE CHAR])]	Строки фиксированной длины до
CHAR [(size [BYTE CHAR])]	32767 байт (в Oracle SQL предел в 2000 байт)
VARCHAR2(ciza [DVTE CHAR])	Строки переменной длины до 32767
VARCHAR2(size [BYTE CHAR])	байт (в Oracle SQL предел в 4000 байт)
	NLS-символьные типы. Позволяют
NCHAR(sizo)] M NVARCHAR2(sizo)	обрабатывать символьные данные
NCHAR[(size)] и NVARCHAR2(size)	В
	мультибайтовой кодировке Unicode
RAW(size)	Байтовая строка переменной
KAVV(Size)	длины до 32767 байт (в Oracle SQL2000 байт)
	Строки переменной длины до 32767
	байт. Тип сохранен для обратной
LONG	совместимости; в частности
	встречается в некоторых
	справочных таблицах
	Байтовая строка переменной
LONG RAW	длины до 32767 байт. Тип сохранен
LONG KAW	для обратной совместимости
	версий Oracle

Следующие типы формально можно причислить к строковым, но используются они для представления физических адресов:

Data Type	Data Description
	Двоичный массив фиксированной длины для
ROWID	хранения физического адреса данных Oracle в
	шестнадцатеричном в формате OOOOOOFFFBBBBBBRRR
UROWID [(size)]	«Универсальный» формат для ROWID:
OKOWID [(Size)]	шестнадцатеричная строка переменной длины

(до 4000 байт) с логическим значением ROWID. Используется для хранения адресов строк в индексно организованных (index organized) таблицах или в таблицах DB2 (через шлюз)

B Oracle строковая переменная равная "(пустая строка) эквивалентна null.

Типы для моментов и интервалов времени

Data Type	Data Description
DATE	Допустимый диапазон дат от 1 января 4712 г. до н.э., до 31 декабря 9999 года нашей эры. Формат по умолчанию определяется в явном виде в параметре NLS_DATE_FORMAT или неявно в NLS_TERRITORY. Размер фиксируется в 7 байт. Этот тип данных содержит поля даты (Год, месяц, день, час, минуту и секунду. Не содержит дробной части секунди часового пояса
TIMESTAMP [(fractional_seconds_precision)] [WITH TIME ZONE WITH LOCAL TIME ZONE]	Тоже что и дата+секунды имеют дробный формат. fractional_seconds_precision [0;9] — количество цифр в дробной части. По умолчанию 6. Может содержать часовой пояс или указать сразу локальный
INTERVAL YEAR [(year_precision)] TO MONTH	Хранит период времени в годах и месяцах. - year_precision - это количество цифр в YEAR. Допустимые значения от 0 до 9. По умолчанию 2.
NTERVAL DAY [(day_precision)] TO SECOND [(fractional_seconds_precision)]	Хранит период времени в днях и секундах day_precision — это количество цифр в DAY. Допустимые значения от 0 до 9. По умолчанию 2 fractional_seconds_precision — количество цифр в дробной части SECOND. Допустимые значения от 0 до 9. Значение по умолчанию 6.

Поддерживаемые значения:

Поле	Диапазоны значения для Datetime	Диапозоны для интревальных значений
YEAR	-4712 to 9999 (исключая 0)	Любое ненулевое целое
MONTH	01 до 12	0 д о 11
DAY	01 до 31 (ограничено значениями MONTH и YEAR, согласно локальным правилам календаря)	Любое ненулевое целое
HOUR	00 д о 23	0 д о 23
MINUTE	00 д о 59	0 д о 59

	00 до 59.9(n), где 9(n) это	Одо 59.9(n), где 9(n) это
SECOND	установка	установка
	fractional_seconds_precision	fractional_seconds_precision
	-12 до 14 (учитывает	Неиспользуется
TIMEZONE_HOUR	переходналетнее	
	время)	
TIMEZONE_MINUTE	00 д о 59	Неиспользуется
	Выбирается в	Неиспользуется
TIMEZONE_REGION	представлении V\$TIMEZONE	
	_NAMES	
	Выбирается в	Неиспользуется
TIMEZONE_ABBR	представлении V\$TIMEZONE	
	_NAMES	

Операции над типом и результат

Operand 1	Operator	Operand 2	Result Type
datetime	+	interval	datetime
datetime	-	interval	datetime
interval	+	datetime	datetime
datetime	-	datetime	interval
interval	+	interval	interval
interval	-	interval	interval
interval	*	numeric	interval
numeric	*	interval	interval
interval	/	numeric	interval

Булевы типы

Фактически—тип для трехзначных переменных с допустимыми значениями TRUE, FALSE и NULL.

В выражениях допустимы только булевы операнды.

Типы LOB

Large OBjects «большие неструктурированные объекты»

Data Type	Data Description						
BFILE	Указатель на файл с данными в операционной						
DFILE	системе (Не больше 4гб)						
BLOB	Указатель на большой неструктурированный						
ВЬОВ	массив в БД (до 128 терабайт)						
CLOR	Указатель на большой символьный массив в БД						
CLOB	(до 128 терабайт)						
NCLOD	Указатель на большой символьный массив в						
NCLOB	многобайтовой кодировке (до 128 терабайт)						

Составные типы

Записи являются примером данных составного типа. В PL/SQL они бывают трех видов:

- воспроизводящими структуру таблицы в БД
- воспроизводящими структуру курсора в программе

• заданными пользователем произвольно

Помимо этого к числу составных типов (допускающих структуру значения) Oracle относит типы объектов и коллекций.

Записи в PL/SQL могут объявляться в разделе объявлений блока или в разделе глобальных описаний пакета.

CREATE TYPE имя_типа IS RECORD (объявление переменных через ",");

Записи, повторяющие структуру таблицы или курсора, объявляются с помощью атрибута %ROWTYPE.

Записи, задаваемые пользователем, объявляются через предложение TYPE. Из примера видно, что записи могут быть вложенными.

Динамические типы

%TYPE	Ссылканатипполяв				
7811FL	столбце (v_id customer.id%type;)				
	Ссылканаструктуру				
%ROWTYPE	таблицы, создается				
, <u>-</u>	запись (Record)				
	(v_rec_customer%rowtype				

Пользовательские подтипы

SUBTYPE имя_подтипа IS базовый_тип [(ограничения)] [NOT NULL];

Где

- базовый_тип-любой скалярный или пользовательский PL/SQL тип данных.
- Ограничения-здесь можно указать точность, размер, масштаб и т.д

Объявление переменных и постоянных

Общий формат объявления выглядит так:

имя_переменной [CONSTANT] тип_данных [NOT NULL] [{:= | DEFAULT} выражение];

CONSTANT – переменная будет константой.

DEFAULT(:=) задает значение по умолчанию (можно ссылаться на вышеописанные переменные, с уже установленным значением по умолчанию).

Функции для работы с NULL

DECODE

Ищет первое совпадение expr и search и возвращает result в случае успеха, иначе возвращает default или null

NVL

В случае если expr1 is null тогда возвращается expr2, иначе expr1

NVL2

Вслучае если expr1 is null, тогда вернет expr2 иначе expr3

COALESCE

Возвращает первое не null значение

Неявное преобразование типов

Почему нельзя использовать:

- Операторы SQL легче понять, когда Вы используете функции явного преобразования типа данных.
- Неявное преобразование типа данных может оказать отрицательное влияние на производительность, особенно если тип данных столбца преобразуется к типу данных константы, а не наоборот.
- Неявное преобразование зависит от контекста, в котором оно происходит и, возможно, не будет работать одинаково в каждом случае. Например, неявное преобразование значения типа данных VARCHAR2 может возвратить неожиданный год в зависимости от значения параметра NLS DATE FORMAT.
- Алгоритмы для неявного преобразования подвержены изменениям при обновлении версий продуктов Oracle.
 Поведение явных преобразований более предсказуемо.

Таблица неявных преобразований в выражениях

COLUMN	NUMBE R	FLOAT	DOUBLE	DATE	TS	TS_LTZ	TS_TZ	CHAR	RAW
NUMBER	NATIVE	LEFT	LEFT	ERROR	ERROR	ERROR	ERROR	RIGHT	ERROR
FLOAT	RIGHT	NATIV E	LEFT	ERROR	ERROR	ERROR	ERROR	RIGHT	ERROR
DOUBLE	RIGHT	RIGHT	NATIVE	ERROR	ERROR	ERROR	ERROR	RIGHT	ERROR

DATE	ERROR	ERROR	ERROR	NATIVE	LEFT	LEFT	LEFT	RIGHT	ERROR
TS	ERROR	ERROR	ERROR	RIGHT	NATIVE	RIGHT	LEFT	RIGHT	ERROR
TS_LTZ	ERROR	ERROR	ERROR	RIGHT	RIGHT	NATIVE	LEFT	RIGHT	ERROR
TS_TZ	ERROR	ERROR	ERROR	RIGHT	RIGHT	RIGHT	NATIVE	RIGHT	ERROR
CHAR	LEFT	LEFT	LEFT	LEFT	LEFT	LEFT	LEFT	NATIVE	RIGHT
RAW	ERROR	ERROR	ERROR	ERROR	ERROR	ERROR	ERROR	LEFT	NATIVE

NATIVE	Не конвертируется. «Native» (тип поля = типу литерала)
RIGHT	«Light» конвертация применяется к LITERAL, к типу поля или переменной (COLUMN): COLUMN = to_column_type(LITERAL).
LEFT	«Heavy» конвертация поля или переменной (COLUMN) к типу LITERAL type: to_literal_type(COLUMN) = LITERAL.
ERROR	Неявное преобразование невозможно.

К примеру при сравнении NUMBER и CHAR неявному преобразованию подлежит правый операнд, т.е. CHAR

Явное преобразование типов

Функции явного преобразования типов

fro m	to	VARCHAR2 NVARCHAR2	NUMBER	Datetime Interval	RAW	CLOB, NCLOB, BLOB	BINARY_FLOAT BINARY_DOUBLE
VARCHAR2 NVARCHAR2		TO_CHAR (char.) TO_NCHAR (char.)	TO_NUMBE R	TO_DATE TO_TIMESTAMP TO_TIMESTAMP_TZ TO_YMINTERVAL TO_DSINTERVAL	HEXTORA W	TO_CLOB TO_NCLO B	TO_BINARY_FLOAT TO_BINARY_DOUB LE
N	UMBER	TO_CHAR (number) TO_NCHAR (number)		TO_DATE NUMTOYM- INTERVAL NUMTODS- INTERVAL			TO_BINARY_FLOAT TO_BINARY_DOUB LE
	atetime nterval	TO_CHAR (date) TO_NCHAR (datetime)	1				
	RAW	RAWTOHEX RAWTONHEX				TO_BLOB	
	CLOB,	TO_CHAR TO_NCHAR				TO_CLOB	

NCLOB,				TO_NCLO	
BLOB				В	
CLOB,	TO_CHAR		 	TO_CLOB	
NCLOB,	TO_NCHAR			TO_NCLO	
				В	
BLOB					
BINARY_FLOAT	TO_CHAR (char.)	TO_NUMBE	 		TO_BINARY_FLOAT
BINARY_DOUBLE	TO_NCHAR (char.)	R			TO_BINARY_DOUB
DINAKI_DOUBLE					LE

Основные управляющие структуры

Выбор по условию

Предложение IF-THEN

IF условное_выражение

THEN

программный код в случае TRUE

END IF;

Предложение IF-THEN-ELSE

IF условное_выражение

THEN

программный код в случае TRUE

ELSE

программный код в случае FALSE/NULL

END IF;

Простой CASE

CASE выражение

WHEN выражение_для_сравнения1THEN программный код1

[WHEN выражение_для_сравненияiTHEN программный коді]

...

[ELSE программный код]

END CASE;

CASE С ПОИСКОМ

CASE

WHEN условное_выражение1 THEN программный код1

```
[WHEN условное_выражениеiTHEN программный коді]
[ELSE программный код]
END CASE;
Циклы
[метка]LOOP
    Программный код
END LOOP [метка];
EXIT-прекращает выполнение цикла. WHEN-позволяет задать
условие выхода
CONTINUE — завершает текущую итерацию цикла. WHEN — позволяет
задать условие окончания итерации.
While
WHILE условное_выражение
LOOP
    программный код
END LOOP [слово-комментарий]
For по счетчику
FOR индекс_цикла IN [REVERSE] нижнее_значение ..
верхнее значение
LOOP
    программный код
END LOOP [ слово-комментарий ]
индекс цикла заводится в PL/SQL автоматически как
переменная типа PLS_INTEGER, и объявлять его не требуется.
указание REVERSE заставить перевернет счетчик и он будет
декрементировать от верхнее_значение до
нижнее_значение
For по курсору
FOR индексная_запись IN [имя_курсора |
явное_предложение_SELECT]
LOOP
    программный код
END LOOP [ слово-комментарий ];
```

Объявление индексной_записи в PL/SQL выполняется автоматически и с типом имя_к урсора%TYPE и самостоятельного объявления не требует.

Goto (безусловный переход)

GOTO имя_метки выражение;

Ограничения области действия GOTO:

- нельзя передавать управление внутрь предложения IF,
 LOOP и вложенного блока
- нельзя передавать управление из одного раздела предложения IF в другой
- нельзя передавать управление извне/внутрь подпрограммы
- нельзя передавать управление из раздела обработки исключительных состояний в основной раздел блока PL/SQL
- нельзя передавать управление из основного раздела блока PL/SQL в раздел обработки исключительных состояний (это можно делать только с помощью RAISE)

Но передавать управление изнутри предложения IF, LOOP и вложенного блока возможно

Метки в циклах и блоках

```
SQL> BEGIN
  2
         <<outer>>
         DECLARE
             i INTEGER := 1;
        BEGIN
  5
  6
             <<inner>>
             DECLARE
  8
                 i INTEGER := 2;
             BEGIN
                 dbms_output.put_line('i = '||i); -- 1 или 2?
 10
 11
                 dbms output.put line('outer.i = '||outer.i);
                 dbms_output.put_line('inner.i = '||inner.i);
 12
 13
             END:
 14
         END;
 15
    END;
 16
i = 2
outer.i = 1
Процедура PL/SQL успешно завершена.
```