哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见:网学天地(www.e-studysky.com);咨询QQ:2696670126


```
数据结构与算法
                第7章内部分类
                                   Slide. 7 - 2
              7.0 术语和约定
 一、分类及其目的
    分类(Sorting)也叫排序(Ordering),是将一组数据按照规
 定顺序进行排列,其目的是为了方便查询和处理。
 二、分类的种类
 ■按分类时分类对象存放的设备,分成内部分类(internal sorting)
  和外部分类(external sorting)。
 ■分类过程中数据对象金部在内存中的分类,叫内部分类。
 ■分类过程数据对象并非完全在内存中的分类,叫外部分类。
      素表的存储结构 struct records {
                     keytype key;
                     fields other;
                 typedef records LIST[maxsize];
              哈尔滨工业大学 计算机科学与技术学院 张岩
```

```
数据结构与算法
                           第7章内部分类
                                                           Slide, 7 - 4
                7.1 简单的分类算法
  7.1.1 气泡分类
void BubbleSort (int n, LIST &A) 时间复杂性:
\{ \text{ int } x, y : 
   for (i=1; i \le n-1; i++)
                                      =1/2\cdot C_{2}n^{2}+(C_{2}-1/2\cdot C_{2})\cdot n
     for (j = n; j >= i+1; j--)
                                     \leq (C\sqrt{2}+C_3)n^2 当n^2 \geq 1时
       if (A[j].key < A[j-1])
                                      =Cn^2
           swap (A[j], A[j-1])
                                 T(n) = O(f(n)) = O(C \cdot n^2) = O(n^2)
void swap(x, y)
records &x, records &v
{ records w;
   \mathbf{w} = \mathbf{x};
    x = y;
    y = w;
                       哈尔滨工业大学 计算机科学与技术学院 张岩
```

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com); 咨询QQ: 2696670126

第7章内部分类 7.2 快速分类—划分交换排序

是C.R.A.Hoare 1962年提出的一种划分交换排序。采用的是分治策略(一般与递归技术结合使用),以减少分类过程之中的比较次数。

- 一、分治法的基本思想
- ■分解: 将原问题分解为若干个与原问题相似的子问题,又称划分;
- ■求解: 递归地求解子问题,若子问题的规模足够小,则直接求解
- ■组合: 将每个子问题的解组合成原问题的解。

哈尔滨工业大学 计算机科学与技术学院 张岩

数据结构与算法 第7章内部分类 Slide, 7 - 8 7.2 快速分类—划分交换排序 二、快速分类的基本思想(利用分治法) 设被分类的无序区为A[i],....,A[j] 1)选择表(文件,数据集合)中的一个记录(数据元素)的关键字v作 为基准元素(控制关键字);(怎么选择?) 2)通过基准元素v 把表(文件,数据集合)划分成左、右两部分, 使得 左边的各记录的关键字都小于v; 右边的各记录的关键字都大于 等于v: (如何划分?) 3)重复(1)~(2),分别对左边和右边部分递归的进行快速分类; 4)组合: 左、右两部分均有序,整个表有序。 因此, 快速分类的关键问题是: ■基准元素的选取; 3 | 1 | 4 | 1 | 5 | 9 | 2 | 6 | 5 | 3 ■表的划分: 1.扫描 2.测试 3.交换 哈尔滨工业大学 计算机科学与技术学院 张岩

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见:网学天地(www.e-studysky.com),咨询QQ:2696670126

数据结构与算法 第7章 内部分类	Slide. 7 - 9
7.2 快速分类—划分交换排序 三、基准元素选取	
■基准元素的选取是任意的,但不同的选取方法对算法 很大;	法性能影响
■一般原则:是每次都能将表划分为规模相等的两部分况)。此时,划分次数为log ₂ n,全部比较次数nlog ₂ t数(n/6)log ₂ n。	
■ 设 FindPivot(i , j),是求A[i].key,,A[j].key的基准元。 返回其下标k。	素v=A[k],
v=(A[i].key,A[(i+j)/2].key,A[j].key的中值)	
v = 从A[i].key到A[j].key 最先找到的两个不同关键字中	的最大
者。 (若 A[i].key,A[j].key 之中至少有两个关键 同)	建字不相
优点:若无两个关键字不同,则A[i]到A[j]已有序, 束。	11 1 1 1 1
哈尔滨工业大学 计算机科学与技术学	院 张岩

```
数据结构与算法
                   第7章内部分类
                                         Slide. 7 - 10
          7.2 快速分类—划分交换排序
  /* 设A是外部数组 */
  int FindPivot(int i, int j)
  /*若A[i],...A[j]的关键字全部相同,则返回0;
    否则, 左边两个不同关键字中的较大者的下标.
  { keytype firstkey ; /* 第1个关键字的值A[i].key */
                  /* 从左到右查找不同的关键字 */
    int k
    firstkey = A[i].key
    for (k=i+1; k<=i; k++)/* 扫描不同的关键字 */
      if (A[k].key firstkey) /* 选择较大的关键字 */
          return k;
       else if (A[k].key < firstkey)
    return 0;
                哈尔滨工业大学 计算机科学与技术学院 张岩
```

```
数据结构与算法
                 第7章内部分类
                                    Slide, 7-11
        7.2 快速分类—划分交换排序
四、表的划分(分割)
1)扫描:
 令游标 1 从左端(初始时 1= i)开始向右扫描,越过关键字小于v
 的所有记录,直到遇到A[l].key≥v;
 又令游标 r 从右端(初始时 r=i)开始向左扫描, 越过关键字大
 于等于v 的所有记录,直到遇到A[r].kev<v:
2)测试 l 和 r: 若l < r,则转(3), 否则(l > r,即 l = r+1)转(4);
3)交换: 交换A[I]和A[r],转(1); (目的是使 I 和 r 都至少向其前
 进方向前进一步)
4)此时A[i],...A[j]被划分成为满足条件的两部分A[i],...A[l-1]和
 A[l],...,A[j]
              3 1 4 1 5 9 2 6 5 3
              哈尔滨工业大学 计算机科学与技术学院 张岩
```

```
数据结构与算法
                     第7章内部分类
                                             Slide, 7 - 12
           7.2 快速分类—划分交换排序
四、表的划分(分割)
int Partition (int i, int j, keytype pivot) P217
/*划分A[i],...,A[j], 是关键字 < pivot 的在左子序列,
  关键字≥pivot 的在右子序列,返回有子序列的起始下标*/
{ intl,r;
                                   分割:
 do{
     for( l=i; A[l].key < pivot; l++);
                                    [i, ..., j]
     for(r=j; A[l].key >= pivot; r--);
     if(1 < r)
                                [i, ... k-1, k, k+1, ... j]
           swap(A[l],A[r]);
 \} while( l \le r );
 return 1;
                                   9 2
                   3 1
                         4 1
                               5
                  哈尔滨工业大学 计算机科学与技术学院 张岩
```

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com);咨询QQ: 2696670126

数据结构与算法

第7章内部分类

Slide. 7 - 15

7.3 归并分类—二路归并分类

- ■归并技术:将若干个已排序的数据集合(子序列文件)合并成一个有序的数据集合(有序文件)//。
- ■归并分类(排序): 就是利用:归并:技术来进行分类。
- ■基本思想: 自顶向下和自底向上

7.3.1 合并两个分类序列(基础)

设A[1],...,A[m]是一个按关键字有序的序列,而 A[m+1],...,A[n]是另一个按同一关键字的有序序列。现将它们 合并在一起,形成一个分类序列B[1],...,B[n],(类似玩扑 克,两堆各自有序扑克牌,合并为一堆且有序)。实现函数 Merge如下:

```
数据结构与算法
                     第7章内部分类
                                             Slide, 7 - 16
          7.3 归并分类—二路归并分类
 void Merge (int 1, int m, int n, LIST A, LIST B) //P219
 /*将已分类序列A[1],...,A[m]和A[m+1],...,A[n]合并为一个分类序列
  B[1],...,B[n]*/
 { int i = l; j = m+1, k = l;//置初值
     /* 两个序列非空时,取小者输出到B[k]上*/
   while ( i \le m \&\& j \le n )
      B[k++] = (A[i].key \le A[i].key) ? A[i+1] : A[i++];
    /* 若第一个子序列非空(未处理完),则复制剩余部分到B*/
    while ( i \le m ) B[k++] = A[i++];
    /* 若第二个子序列非空(未处理完),则复制剩余部分到B*/
    while (i \le n) B[k++] = A[i++];
 时间复杂性: O(n-l+1); 空间复杂性: O(n-l+1)
                  哈尔滨工业大学 计算机科学与技术学院 张岩
```

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com),咨询QQ: 2696670126

数据结构与算法		7 章 内部	『分类			Slide. 7 - 17
7	.3.2 归并分			_)		
算法要点:	, ,,,,,					
1) 首先把每个记录	是丢出具一	A 右 戻 F	支 五山	# n A	を ウィ	油無武
合并成「n/2]			予列长	没月2	(ヨn天	可奴
时,最后一个月	. , , , , , , , ,					
2)对「n/2] 个分	类序列,再	两两归	并在一	起;		
3)如此进行,直到	到归并成一	个长度さ	为n 的分	分类序列	列为止	0
{26} {5} {77}	_{1} {61	<u>{11}</u>	{59}	{15}	{48}	{19}
(7 26) (1	Y	Y	· · · ·	50	(10	40.) //
$\{5 \ 26\} \{1$	77} {11	61 }	{ 15	59_}	{ 19	48 } #
{1 5 26	77 } { 11	15	59	61 }	{ 19	48 } #
	,,,				(,
{1 5 11	15 20	6 59	61	77 }	{ 19	48.} *
		~				
{1 5 11	15 19	9 26	48	59	61	77 }
	哈尔滨	工业大学	计算机	科学与技	支术学院	张岩

数据结构与算法	第7章	内部分类		Slide. 7 - 18
7.3.2	2 归并分类	(自底向上	_)	
■第1遍归并的子序列		· · · · · · · · · · · · · · · · · · ·		•
所以由 2 ⁱ⁻¹ >= n 知, log ₂ n次。	刈n个记录	的数据集1	台,	归廾
			中的记录数,	所以
每遍归并正比于n, O(nlog ₂ n)。	对于log ₂ n迤	1归开,尽	时间复杂性为	
{26} {5} {77}	[1] [861] {	11} {59}	<u>{</u> 15} { <u>48}</u>	<u>{</u> 19}
5 26 } {1 7	{11 6	1} {15	59 } {19	48 } #
1 5 26007	7} {11	15 59	61} { 19	48 } #
1 5 G Y 1	5 26	59 61	77 } { 19	48} *
{1 5 11 1	5 19	26 48	59 61	77 }
	哈尔滨工业	大学 计算机	科学与技术学院	张岩

数据结构与算符		第 7	章 内部	分类			Slide. 7	11
	7.3.2 归	并分	类(自	底向」	_)			0
假设第i遍归并的	的长度 2 i-	1=] ,	则		末	1	也	
■当子序列的个 1,此时应注意						度可能	能小于	١
■当子序列的个章 序列归并(即轴							其它子	
■总之,每遍归							及最后	7/
一个子序列长度 { 26 } { 5 } { 7	[可能小· /} 【!}	于 1 两	种特殊	大情况 ;	共行特殊	朱处理	°{ <u>1</u> 9}	5
{5 26} {1	77}	{11	61 }	{ 15	59 }	{ 19	48}	#
{1 5 26	77 }	{11	15	59	61}	{ 19	48 } ;	#
{1 5 11	15	26	59	61	77 }	{ 19	48 }	*
{1 5 11	15	19	26	48	59	61	77 }	
	哈	尔滨工	业大学	计算机	科学与お	支术学院	: 张岩	

```
数据结构与算法
                     第7章内部分类
                                              Slide. 7 - 20
             7.3.2 归并分类(自底向上)
执行一遍归并的算法 Mpass
/*把A中长度为 l 的相邻序列归并成长度为 2l 的序列的函数 220页*/
void Mpass (int n, int l, LIST A, LIST B)
/* 把\mathbf{A}中长度均为 l 的相邻两个分类子序列归并入\mathbf{B}, n 为\mathbf{A}的记录总数 */
{ int i, t;
for ( i=1; i+2*l-1<= n; i+=2*l)
  Merge (i, i+l-1, i+2*l-1, A, B);/* 归并长度为 l 的两个分类子序列 */
if (i+l-1<n) /* 尚有两个子序列,其中最后一个长度小于 1 */
  Merge(i,i+l-1,n,A,B); /* 归并最后两个子序列 */
else /* 若i<= n且i+l-1>= n 时,则剩余一个子序列轮空,直接复制 */
  for ( t= i ; t<= n ; t++ )
  B[t] = A[t];
} /* Mpass */
                  哈尔滨工业大学 计算机科学与技术学院 张岩
```

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见:网学天地(www.e-studysky.com),咨询QQ:2696670126

```
数据结构与算法
                    第7章内部分类
             7.3.2 归并分类(自底向上)
 归并分类算法: (用Mpass写)
 void MergeSort ( int n , LIST A )
 { /* 二路归并分类 */
   int l = 1;/* 当前归并子序列的长度,初始为1*/
   LIST B;
   while (l < n)
      Mpass (n, l, A, B);
      1 = 2*1:
      Mpass (n, l, B, A); /* A、B互换位置 */
      1 = 2*1;
              ■自底向上的归并算法效率较高,但可读性
 }/* MergeSort */ 差。
               · 若 格界魚 泊克季 日 學 和 科 學 第 5 未 学 侥 环 碧
```

```
第7章内部分类 Stide. 7-23
7.3.3 归并分类的分治算法(自顶向归并分类的旁治递归算法
void MergeSort (LIST A, LIST B, int low, int high)
/* 用分治法对A[low], ..., A[high]进行二路归并 */
{ int mid = (low+high)/2;
 if (low<high){ /* 区间长度大于 1, high-low>0 */
    MergeSort (A, B, low, mid);
    MergeSort (A, B, mid+1, high);
    Merge (low, mid, hight, A, B);
}

/* MergeSort */

注: 归并分类是稳定分类。
```

\$\frac{\pi \text{\pi} \text

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com): 咨询QQ: 2696670126

数据结构与算法

第7章内部分类

Slide, 7 - 28

7.4 堆 (Heap) 分类

四、整理堆算法: PushDown(first, last)

该操作的功能是把以A[first]为根,以A[last]为最右边叶的完全二元树整理成堆。根据堆的定义,它要完成的功能是,把完全二元树中的关键字最小的元素放到堆顶,而把原堆顶元素下推到适当的位置,使(A[first],...,A[last])成为堆。

那么,怎样把关键字最小的元素放到堆顶,把堆顶元素下推到适当位置呢?

具体操作(要点)如下:

把完全二元树的根或者子树的根与其左、右儿子比较,如果它比其左/右儿子大,则与其中较小者交换(若左、右儿子相等,则与其左儿子交换)。重复上述过程,直到以 $\mathbf{A}[\mathbf{first}]$ 为根的完全二元树是堆为止。

算法如下:

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见:网学天地(www.e-studysky.com);咨询QQ:2696670126

7.4 堆(Heap)分类 五、时间复杂性 PutDown函数中,执行一次while 循环的时间是一个常数。因为r 每次至少为原来的两倍,假设while循环执行次数为 i,则当r 从first 变为first*2ⁱ 时循环结束。此时r=first*2ⁱ>last/2,即i>log(last/first)-1)。所以while循环体最多执行log 2 (last/first)次,即PushDown时间复杂性O(log(last/first))=O(log 2 n)。 ∴ HeapSort时间复杂性O(n log 2 n) 六、稳定性 不稳定的,举出反例

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com): 咨询QQ: 2696670126

纖編編构与算粒 第 7 章 内部分类 Slide. 7-33 7.5 基数分类——多关键字分类

理论上可以证明,对于基于关键字之间比较的分类,无论用什么方法都至少需要进行log,n!次比较。

由**Stirling**公式可知, $log_2n! \approx nlog_2n-1.44n+O(log_2n)$ 。所以基于关键字比较的分类时间的下界是 $O(nlog_2n)$ 。因此不存在时间复杂性低于此下界的基于关键字比较的分类!

只有不通过关键字比较的分类方法,才有可能突破此下界.一、基数分类(时间复杂性可达到线性级**O(n))**

不比较关键字的大小,而根据构成关键字的每个分量的值,排列记录顺序的方法,称为分配法分类(基数分类)。

而把关键字各个分量所有可能的取值范围的最大值称为基数或 桶或箱,因此基数分类又称为桶分类。

显然,要求关键字分量的取值范围必须是有限的,否则可能要无限的箱。(基数分类的适用范围)


```
数据结构与算法
                         第7章内部分类
                                                      Slide, 7 - 36
void RadixSort (int figure, QUEUE &A)
{ QUEUE Q[10];
                                   / *求整数 k 的第 p 位*/
  records data;
                                   int Radix (int k, int p)
                                   {int power, i;
  int pass, r, i;
                                   power = 1;
  for ( pass=1 : pass <= figure : pass+ ) {
                                   for ( i=1; i<=p-1; i++)
   for (i=0:i<=9:i++) /*置空队列*/
                                        power = power * 10;
       MAKENULL( O[i] );
                                   return (( k%(power*10))/power);
   while (!EMPTY(A)){/* 分配 */
     data = FRONT(A);
     DEQUEUE (A);
     r = Radix (data. key, pass);
     ENQUEUE( data, Q[r]);}
   for ( i=0; i <=9; i++ ) /* 收集 */
      while ( !EMPTY( Q[i] ) ) {
                                   for (i=0;i<=9;i++) {
        data = FRONT(Q[i]);
                                     Concatenate(Q[1], Q[i]);
        DEQUEUE(O[i]);
                                      A=O[0];
                                   }/*大大缩短收集操作的时间*/
         ENQUEUE(data, A);}
                     哈尔滨工业大学 计算机科学与技术学院 张岩
```

哈工大计算机考研全套视频和资料,真题、考点、典型题、命题规律独家视频讲解! 详见: 网学天地(www.e-studysky.com),咨询QQ: 2696670126

数据结构与算法 第7章 内部分类	Slide, 7 - 38
7.5 基数分类——多关键字分类	
五、推广和应用	
■ 若被分类的数据关键字由若干域组成,可以把每个均	战看成一
个分量按照每个域进行基数分类。	
■ 若关键字各分量不是整数,则把各分量所有可以取值	与一组
自然数对应。	
六、时间复杂性	
主要花在分配操作 (3) O(d•n),是线性的。	
其中d 是关键字分量位数	
七、稳定性、湿的	
16、标准生产的	
2013	
哈尔滨工业大学 计算机科学与技术学	院 张岩

数据结构与	算准	第7章内部分类		Slide. 7 - 39			
小结——各种分类的比较							
分类方法	平均时间	最坏情况	辅助空间	稳定性			
简单分类	O(n ²)	O(n ²)	_M , O(1)	选择NO			
快速分类	O(n·logn)	O(n ²)	O(logn)	NO			
堆分类	O(n·logn)	O(n·logn)	0(1)	NO			
归并分类	O(n·logn)	O(n·logn)	O(n)	YES			
基数分类	O(d· (n+r·d))	O(d· (n+r·d))	O(r·d)	YES			
(1) 平均	(1) 平均时间性能						
(2) 当序列;基本有序;时,简单分类中的插入分类最佳							
(3) 基数分类适用于n值很大而关键字较小的序列							
(4) 稳定性以基数分类为最佳							
(5) 大多数分类算法的策略是局部有序逐步达到全局有序							
哈尔滨工业大学 计算机科学与技术学院 张岩 📧							