Кодирующие КС-языки

Теория формальных языков $2021 \ z$.

Кодировка путей праволинейной грам-

Рассмотрим путь вывода произвольного слова $a_1 \dots a_n$ в праволинейной грамматике. Он имеет вид $S \to a_1 A_1$; $A_1 \to a_2 A_2$; . . . $A_n \to a_n$. Применим к нему обратный гомоморфизм $h(A_i; A_i \rightarrow) = \varepsilon$ и сотрём префикс $S \rightarrow$, получим искомое слово.

Алфавит: $\Sigma \cup \mathbb{N} \cup \{$; , → $\}$. Описание языка: ${S \rightarrow \alpha_i(A_i; A_i \rightarrow \alpha_i)^*}.$

Кодировка путей праволинейной грам-

Рассмотрим путь вывода произвольного слова $a_1 \dots a_n$ в праволинейной грамматике. Он имеет вид $S \to a_1 A_1$; $A_1 \to a_2 A_2$; . . . $A_n \to a_n$. Применим к нему обратный гомоморфизм $h(A_i; A_i \rightarrow) = \varepsilon$ и сотрём префикс $S \rightarrow$, получим искомое слово.

Алфавит: $\Sigma \cup \mathbb{N} \cup \{;, →\}$. Описание языка: $\{S \rightarrow a_i(A_i; A_i \rightarrow a_i)^*\}.$

Описание языка привязано к множеству нетерминалов в рассматриваемой RLG.

Теорема Хомского-Шутценбергера

Пусть $PAREN_n$ — язык из 4*n элементов $\{[1,]_1, \ldots, [n,]_n, (1,)_1, \ldots, (n,)_n\}.$

Теорема

Любой CF-язык получается гомоморфизмом из языка $L' = PAREN_n \cap R$, где R — регулярный.

Пусть G — грамматика L в нормальной форме Хомского. Пронумеруем правила G и поставим им в соответствие следующие.

Теорема Хомского-Шутценбергера

Пусть $PAREN_n$ — язык из 4*n элементов $\{[1,]_1, \ldots, [n,]_n, (1,)_1, \ldots, (n,)_n\}.$

Теорема

Любой CF-язык получается гомоморфизмом из языка $L' = PAREN_n \cap R$, где R — регулярный.

Пусть G — грамматика L в нормальной форме Хомского. Пронумеруем правила G и поставим им в соответствие следующие.

- **1** Если правило п имеет вид $A \to BC$, тогда порождаем правило $A \to [{}_{n}B]_{n}({}_{n}C)_{n}$.
- **2** Если правило п имеет вид $A \to a$, тогда порождаем правило $A \to [n]_n (n)_n$.

Свойства языка L(G')

• Все $]_n$ строго предшествуют (n).

Свойства языка L(G')

- Все $]_n$ строго предшествуют (n).
- Ни одна)_п не предшествует непосредственно левой скобке.

Свойства языка L(G')

- Все]_п строго предшествуют (п.
- Ни одна) п не предшествует непосредственно левой скобке.
- Если правило n это $A \to BC$, тогда [n непосредственно предшествует некоторой [р, так же как и (п.

Язык R

 $R = \{x \in \{[j,]_j, (j,)_j\}^* \mid x$ начинается с [n] для некоторого правила $n: A \to \cdots \&$ все [n] предшествуют [n].

Язык Р

 $R = \{x \in \{[j,]_j,(j,)_j\}^* \mid x$ начинается с [n] для некоторого правила $n:A \to \cdots \&$ все [n] предшествуют [n].

Можно убедиться, что $L' = R \cap PAREN_n$.

Язык Р

 $R = \{x \in \{[j,]_j, (j,)_j\}^* \mid x$ начинается с [n] для некоторого правила $n: A \to \cdots \&$ все [n] предшествуют [n].

Можно убедиться, что $L' = R \cap PAREN_n$.

Осталось определить h. Если n — нефинальное правило, то $h([_n)=h(]_n)=h((_n)=h()_n)=\epsilon$. Иначе $h([_n)=\alpha$, для остальных скобок так же.

Значение теоремы Х.-Ш.

Возможно разделить парсинг любого КС-языка на две стадии: лексический анализ (проверка условия R) и разбор правильных скобочных структур.

Замечание: поскольку гомоморфизм h не обязан быть инъективным, разбор ПСП не всегда можно определить однозначно. Пример: $\{a^nb^n\}\cup\{a^nb^{2n}\}$ (полностью неоднозначность устранить нельзя, т.к. этот язык не является детерминированным). Однако Т.Х.Ш. даёт подсказку, как строить КС-грамматики: надо найти в языке все скрытые «скобочные структуры».

Построение грамматики по Х.-Ш.

Построить КС-грамматику для языка $\{a^nb^mc^k | n = 2*m-k\}.$

Ищем возможную скобочную структуру. Для этого сначала избавимся от вычитания: n + k = 2 * m. Значит, буквы а должны балансироваться буквами в справа (т.е. буквы в являются «закрывающими скобками» для а), а буквы с — буквами b слева (т.е. буквы b являются «открывающими» для с). Возможны два случая: п и к оба чётны либо оба нечётны. Построим соответствующие им разбиения: $\{a^{2*n'}b^{n'}b^{k'}c^{2*k'}\}$ и $\{aa^{2*n'}b^{n'}bb^{k'}c^{2*k'}c\}$. Дальнейшее построение грамматики уже очевидно. Заметим, что гомоморфизм подразумевает минимум четыре вида скобок: пара (2a, b), пара (b, b), внешняя пара [a, b](для нечётного варианта) и $[b_1]_{\epsilon}$ для него же, чтобы породить внутреннюю букву b.

7/10

Построение грамматики по Х.-Ш.

Построить КС-грамматику для языка $\{a^nb^mc^k \mid n=2*m-k\}.$

Как итог, получаем язык, гомоморфно порождаемый языком Дика над $\{(2a,)_b, (b,)_{2c}, [b,]_{\epsilon}, [a,]_c\}$ со следующим лексером:

- **1** До ($_{2\alpha}$ может идти лишь единственная [$_{\alpha}$.
- После)_b распознаётся одна [_b, если распозналась [_a.
- **3** После $)_b$ или $]_{\varepsilon}$ не может идти ничего другого, кроме $(_b$ или $]_{\mathbf{c}}$ (последняя только после $]_{\varepsilon}$).
- После $)_{2c}$ не может быть ничего, кроме $)_{2c}$ или $]_{c}$. Дополнительное условие на существование $[_{a}$ уже не требуется оно следует из сбалансированности ПСП.

Конструкция выше отличается от используемой в доказательстве теоремы — в целях экономии, в ней почти нет скобок, гомоморфно отображаемых в пустое слово.

Дополнительный пример

Построить КС-грамматику для $L_{\neq} = \{w_1 c w_2 \, | \, w_i \in \{\mathfrak{a}, \mathfrak{b}\}^+ \, \& \, w_1 \neq w_2\}.$

Классический пример грамматики с не-КС дополнением. Чтобы расшифровать неравенство, раскроем его в дизъюнкцию: «слово w_1 короче, чем w_2 ; либо w_2 короче, чем w_1 ; либо существует такое i, что w_1 и w_2 различаются в і-й позиции». Здесь условия не взаимоисключающие: достаточно одного из них, чтобы слово принадлежало L_{\neq} , но могут выполняться и два сразу. Перепишем первое условие: $w_1 c w_1' w_2$, где $|w_2| > 0$ и $|w_1| = |w_1'|$. Очевидно, что «открывающими скобками» будут буквы из w_1 , «закрывающими» — из w_1' , а «скобки» для w_2 замкнуты на самом w_2 . Чтобы обеспечить четыре вида соответствий букв по счёту, придётся ввести четыре пары скобок для w_1 и w'_1 : {(a,)a, (b,)b, [a,]b, [b,]a}. И две пары скобок для w_2 : $\{\{a_i, \}_{i,j}, \}_{i,j}'\}$ и пара скобок для порождения с: $(_{c} \text{ и })_{\varepsilon}$ (в нижних индексах — гомоморфные образы скобок).

Дополнительный пример

Построить КС-грамматику для $L_{\neq} = \{w_1 c w_2 \, | \, w_i \in \{\mathfrak{a},\mathfrak{b}\}^+ \ \& \ w_1 \neq w_2\}.$

Осталось построить регулярные условия. Для языка $w_1cw_1'w_2$, где $|w_2|>0$ и $|w_1|=|w_1'|$, их можно описать следующим образом:

- После ($_{a}$, ($_{b}$, [$_{a}$, [$_{b}$ всегда идёт либо опять одна из таких скобок, либо ($_{c}$. Скобка ($_{c}$ единственна.
- **②** После $)_{\varepsilon}$, а также скобок $)_{\alpha}$, $)_{b}$, $]_{b}$, $]_{\alpha}$, могут идти либо $)_{\alpha}$, $)_{b}$, $]_{b}$, $]_{\alpha}$, либо фигурные скобки.
- В каждом слове есть хотя бы одна фигурная скобка. После открывающей фигурной скобки обязательно сразу идёт закрывающая, и после первой встреченной фигурной скобки все остальные скобки — тоже фигурные.

Представление Хомского–Шутценбергера для языка $w_1w_2cw_1'$, где $|w_2|>0$ и $|w_1|=|w_1'|$, строится симметрично.

Дополнительный пример

Построить КС-грамматику для $L_{\neq} = \{w_1 c w_2 \, | \, w_i \in \{\mathfrak{a},\mathfrak{b}\}^+ \ \& \ w_1 \neq w_2\}.$

Осталось разобрать $\{w_1t_1w_2cw_3t_2w_4\ |\ |w_1|=|w_3|\ \&\ t_1\neq t_2\}$. Очевидно, что в нём «открывающими» будут элементы w_1 , закрывающими — элементы w_3 , t_1 и t_2 — уникальные скобки, отображающиеся в разные элементы алфавита, а w_2 и w_4 закрываются сами собой (как w_2 в предыдущем языке). Для t_1+t_2 -скобок назначим пары $\begin{bmatrix} t \\ a \end{bmatrix}, \begin{bmatrix} t \\ b \end{bmatrix}$ и $\begin{bmatrix} t \\ b \end{bmatrix}, \begin{bmatrix} t \\ a \end{bmatrix}$, остальные обозначения сохраним те же. Лексер языка:

- **①** После $(_a, (_b, [_a, [_b$ идёт либо опять одна из таких скобок, либо $[_c^t$ -скобка. $[_a^t$ единственна, за ней следует либо $\{_a$, либо $\{_b^t$, либо $\{_c^t\}$
- За открывающей фигурной скобкой следует закрывающая, и после первой встреченной фигурной скобки все остальные скобки тоже фигурные, до конца строки либо до чтения единственной (с.
- **③** После $)_{\epsilon}$, а также скобок $)_{\alpha}$, $)_{b}$, $]_{b}$, $]_{\alpha}$, могут идти либо $)_{\alpha}$, $)_{b}$, $]_{b}$, $]_{\alpha}$, либо скобка $]^{t}$. За $]^{t}$ следует ЕОL или $\{_{\alpha}$ или $\{_{b}'$.

Чтобы получить прообраз языка L_{\neq} , объединим все три лексера.

Язык Грейбах

Здесь ε-free вариант. D — язык сбалансированных скобочных структур над $\{(,),[,]\}$.

```
L_0 = \{x_1 c y_1 c z_1 d \dots d x_n c y_n c z_n d \mid y_1 \dots y_n \in eD \&
z_{\mathfrak{i}}, x_{\mathfrak{i}} не содержат e \& y_{1} \in e\{(,),[,]\}^{*} \& y_{\mathfrak{i}+1} \in \{(,),[,]\}^{*}\}
```


Язык Грейбах

Здесь ε -free вариант. D — язык сбалансированных скобочных структур над $\{(,),[,]\}$.

$$L_0 = \{x_1 c y_1 c z_1 d \dots d x_n c y_n c z_n d \, | \, y_1 \dots y_n \in eD \, \& z_i, x_i$$
 не содержат е & $y_1 \in e\{(,),[,]\}^*$ & $y_{i+1} \in \{(,),[,]\}^*$

Утверждение

Если L — CFL, тогда существует $h \in \mathsf{Hom}$ такой, что $h^{-1}(L_0) = L.$

Гомоморфизм Грейбах

Пусть G — GNF грамматика для L. Пронумеруем нетерминалы G так, чтобы стартовый был первым. Построим вспомогательную функцию ξ:

- ullet для правил $A_{\mathfrak{i}} o \mathfrak{a}$ положим $\xi(\mathfrak{i}) =)]^{\mathfrak{i}})$
- для правил $A_i \to a A_{j1} \dots A_{jn}$ положим $\xi(i)=)]^i)([^{jm}(\dots([^{j1}($
- если $\mathfrak{i}=1$, тогда дополнительно припишем префикс $e(\lceil(.$

Пусть терминалом α начинаются левые части правил k_1, \ldots, k_m). Тогда $h(\alpha) = c\xi(k_1)c\ldots c\xi(k_m)d$.