Debugging Abort Issue 10/14/18

The simulation pc-main_tb Aborts when 9th short SDRAMSIM::operator()(int clk, int cke, int cs n, int ras n, int cas n, int we n, int bs, unsigned addr, int driv, short data, short dqm) parameter is sets to m_core → i_ram_data. In the xulalx25soc the 9^{th} parameter is set m_core \rightarrow o_ram_drive_data. The following is in toplevel of xulalx25soc design. assign io_ram_data = (ram_drive_data) ? ram_data : 16'bzzzz_zzzz_zzzz_zzzz; reg [15:0] r_ram_data_ext_clk; // always @(posedge intermediate clk n) always @(posedge clk s) r_ram_data_ext_clk <= io_ram_data;</pre> always @(posedge clk_s) r_ram_data <= r_ram_data_ext_clk;</pre> When setting the 9th parameter to 21930 0x55aa the simulation does not Abort. Setting the 9th parameter to o ram drive data the simulation does not compile. @SIM.TICK= #ifdef @\$(ACCESS) m_core->i_ram_data = (*m_@\$(MEM.NAME))(1,m_core->o_ram_cke, m_core->o_ram_cs_n,m_core->o_ram_ras_n,m_core->o_ram_cas_n, m_core->o_ram_we_n,m_core->o_ram_bs,m_core->o_ram_addr, //m core->o ram drive data,m core->o ram data,m core->o ram dqm); //21930,m_core->o_ram_data,m_core->o_ram_dqm); m_core->i_ram_data,m_core->o_ram_data,m_core->o_ram_dqm); #endif // @\$(ACCESS) ./pc-wbregs 0x1000004 0x55aa 01000004 ()-> 000055aa ./pc-main_tb Listening on port 8363 Listening on port 8364 Successful settup! SDRAM switching to operational Accepted CMD connection POLL = 1RCVD: 14 bytes < A1000005W55aa R/W Op SDRAM[00000002] <= 0000 unsigned int, int, short int, short int): Assertion `driv' failed. Aborted (core dumped) From toplevel.v xulalx25soc assign io_ram_data = (ram_drive_data) ? ram_data : 16'bzzzz_zzzz_zzzz_zzzz; reg [15:0] r ram data ext clk;

// always @(posedge intermediate_clk_n)

```
always @(posedge clk_s)
            r ram data ext clk <= io ram data;
      always @(posedge clk_s)
            r ram data <= r ram data ext clk;
m_core->i_ram_data = m_sdram(1,
                 m_core->o_ram_cke, m_core->o_ram_cs_n,
                 m_core->o_ram_ras_n, m_core->o_ram_cas_n,
                 m_core->o_ram_we_n, m_core->o_ram_bs,
                 m_core->o_ram_addr, m_core->o_ram_drive_data,
                 m_core->o_ram_data, m_core->o_ram_dqm);
0x55AA 21930
@SIM.TICK=
#ifdef @$(ACCESS)
m_{core}>i_{ram_data} = (*m_@\$(MEM.NAME))(1,m_{core}>o_{ram_cke},
m_core->o_ram_cs_n,m_core->o_ram_ras_n,m_core->o_ram_cas_n,
m core->o ram we n,m core->o ram bs,m core->o ram addr,
21930,m_core->o_ram_data,m_core->o_ram_dqm);
//m_core->i_ram_data,m_core->o_ram_data,m_core->o_ram_dqm);
#endif // @$(ACCESS)
./pc-wbregs 0x1000004 0x55aa
01000004 (
              )-> 000055aa
./pc-main_tb
Listening on port 8363
Listening on port 8364
Successful settup! SDRAM switching to operational
Accepted CMD connection
POLL = 1
RCVD: 14 bytes
< A1000005W55aa
R/W Op
SDRAM[00000002] <= 0000
SDRAM[00000002] <= 0000
SDRAM[00000003] <= 55aa
> A01000005K00000000
POLL = 1
RCVD: 0 bytes
< [CLOSED]
Accepted CMD connection
POLL = 1
RCVD: 10 bytes
< A1000005R
R/W Op
SDRAM.Q[ 7] 55aa <= SDRAM[00000003]
> A01000005R00000000
POLL = 1
RCVD: 0 bytes
```

< [CLOSED]

