Curs 6

λ-calcul

- În 1929-1932 Church a propus λ-calculul ca sistem formal pentru logica matematică. În 1935 a argumentat că orice funcție calculabilă peste numere naturale poate fi calculată in λ-calcul.
- □ În 1935, independent de Church, Turing a dezvoltat mecanismul de calcul numit astăzi Maşina Turing. În 1936 și el a argumentat câ orice funcție calculabilă peste numere naturale poate fi calculată de o maşină Turing. De asemenea, a arătat echivalența celor două modele de calcul. Această echivalență a constituit o indicație puternică asupra "universalității" celor două modele, conducând la ceea ce numim astăzi "Teza Church-Turing".

Referințe

- □ Benjamin C. Pierce, Types and Programming Languages, The MIT Press 2002
- □ J.R. Hindley, J.P. Seldin, Lambda-Calculus and Combinators, an Introduction, Cambridge University Press, 2008
- R. Nederpelt, H. Geuvers, Type Theory and Formal Proof, an Introduction, Cambridge University Press 2014

λ -calcul: sintaxa

Lambda Calcul - sintaxă

$$t = x$$
 (variabilă)
| $\lambda x. t$ (abstractizare)
| $t t$ (aplicare)

λ-calcul: sintaxa

Lambda Calcul - sintaxă

$$t = x$$
 (variabilă)
| $\lambda x. t$ (abstractizare)
| $t t$ (aplicare)

λ -termeni

Fie $Var = \{x, y, z, ...\}$ o mulțime infinită de variabile. Mulțimea λ -termenilor ΛT este definită inductiv astfel:

```
[Variabilă] Var \subseteq \Lambda T
[Aplicare] dacă t_1, t_2 \in \Lambda T atunci (t_1t_2) \in \Lambda T
[Abstractizare] dacă x \in Var și t \in \Lambda T atunci (\lambda x.t) \in \Lambda T
```

Lambda termeni

λ -termeni: exemple

- \square X, y, z
- \Box (xy), (yx), (x(yx))
- $\square (\lambda x.x), (\lambda x.(xy)), (\lambda z.(xy)), (\lambda x.(\lambda z.(xy)))$
- $\square ((\lambda x.x)y), ((\lambda x.(xz))y), ((\lambda x.x)(\lambda y.y))$

Lambda termeni

λ -termeni: exemple

- \square X, y, z
- \square (xy), (yx), (x(yx))
- \square $(\lambda x.x), (\lambda x.(xy)), (\lambda z.(xy)), (\lambda x.(\lambda z.(xy)))$
- $\square ((\lambda x.x)y), ((\lambda x.(xz))y), ((\lambda x.x)(\lambda y.y))$

Conventii:

- se elimină parantezele exterioare
- aplicarea este asociativă la stînga: t₁ t₂ t₃ este (t₁ t₂)t₃
- orpul abstractizării este extins la dreapta: $\lambda x.t_1t_2$ este $\lambda x.(t_1t_2)$ (nu $(\lambda x.t_1)t_2$)
- \square scriem $\lambda xyz.t$ în loc de $\lambda x.\lambda y.\lambda z.t$

Lambda termeni / Functii anonime

λ-termeni: exemple

- \square X, y, z
- \square (xy), (yx), (x(yx))
- $\square (\lambda x.x), (\lambda x.(xy)), (\lambda z.(xy)), (\lambda x.(\lambda z.(xy)))$
- $\square ((\lambda x.x)y), ((\lambda x.(xz))y), ((\lambda x.x)(\lambda y.y))$

În Haskell, \ e folosit în locul simbolului λ și -> în locul punctului.

$$\lambda x.x * x \text{ este } \x \rightarrow x * x$$

$$\lambda x.x > 0$$
 este $\x -> x > 0$

Variabile libere și legate

Apariții libere și legate

Pentru un termen $\lambda x.t$ spunem că:

- □ aparițiile variabilei *x* în *t* sunt legate (*bound*)
- \square λx este legătura (*binder*), iar t este domeniul (*scope*) legării
- o apariție a unei variabile este liberă (free) dacă apare într-o poziție în care nu e legată.

Un termen fără variable libere se numește închis (closed).

- \square $\lambda x.x$ este un termen închis
- \square $\lambda x.xy$ nu este termen închis, x este legată, y este liberă
- \Box în termenul $x(\lambda x.xy)$ prima apariție a lui x este liberă, a doua este legată.

Variabile libere

Multimea variabilelor libere FV(t)

Pentru un λ -termen t multimea variabilelor libere este definită astfel:

[Variabilă]
$$FV(x) = x$$

[Aplicare] $FV(t_1t_2) = FV(t_1) \cup FV(t_2)$
[Abstractizare] $FV(\lambda x.t) = FV(t) \setminus \{x\}$

$$FV(\lambda x.xy) = FV(xy) \setminus \{x\}$$

$$(FV(x) \cup FV(y)) \setminus \{x\}$$

$$(\{x\} \cup \{y\}) \setminus \{x\}$$

$$\{y\}$$

Variabile libere

Multimea variabilelor libere FV(t)

Pentru un λ -termen t multimea variabilelor libere este definită astfel:

[Variabilă]
$$FV(x) = x$$

[Aplicare] $FV(t_1t_2) = FV(t_1) \cup FV(t_2)$
[Abstractizare] $FV(\lambda x.t) = FV(t) \setminus \{x\}$

$$FV(\lambda x.xy) = FV(xy) \setminus \{x\}$$

$$(FV(x) \cup FV(y)) \setminus \{x\}$$

$$(\{x\} \cup \{y\}) \setminus \{x\}$$

$$\{y\}$$

$$FV(x\lambda x.xy) =$$

Variabile libere

Multimea variabilelor libere FV(t)

Pentru un λ -termen t multimea variabilelor libere este definită astfel:

[Variabilă]
$$FV(x) = x$$

[Aplicare] $FV(t_1t_2) = FV(t_1) \cup FV(t_2)$
[Abstractizare] $FV(\lambda x.t) = FV(t) \setminus \{x\}$

$$FV(\lambda x.xy) = FV(xy) \setminus \{x\}$$

$$(FV(x) \cup FV(y)) \setminus \{x\}$$

$$(\{x\} \cup \{y\}) \setminus \{x\}$$

$$\{y\}$$

$$FV(x\lambda x.xy) = \{x, y\}$$

Fie t un λ -termen $x \in Var$.

Definitie intuitivă

Pentru un λ -termen u vom nota prin [u/x]t rezultatul înlocuirii tuturor aparițiilor libere ale lui x cu u în t.

Exemple: Dacă x, y, z sunt variabile distincte atunci

- \square $[y/x]\lambda z.x = \lambda z.y$
- $\Box [(\lambda z.zw)/x](\lambda y.x) = \lambda y.\lambda z.zw$

Definirea substitutiei

Rezultatul substituirii lui x cu u în t este definit astfel:

```
[Variabilă] [u/x]x = u

[Variabilă] [u/x]y = y dacă x \neq y

[Aplicare] [u/x](t_1t_2) = [u/x]t_1[u/x]t_2

[Abstractizare] [u/x]\lambda y.t = \lambda y.[u/x]t unde y \neq x și y \notin FV(u)
```

Exemple: Dacă x, y, z sunt variabile distincte atunci

- $\square [y/x]\lambda z.x = \lambda z.y$
- □ Cine este $[y/x]\lambda y.x$?

Exemple: Dacă x, y, z sunt variabile distincte atunci

- \square $[y/x]\lambda z.x = \lambda z.y$
- □ Cine este $[y/x]\lambda y.x$? Dacă folosim definiția intuitivă obținem $[y/x]\lambda y.x = \lambda y.y$ ceea ce este greșit!

Exemple: Dacă x, y, z sunt variabile distincte atunci

- $\square [y/x]\lambda z.x = \lambda z.y$
- □ Cine este $[y/x]\lambda y.x$? Dacă folosim definiția intuitivă obținem $[y/x]\lambda y.x = \lambda y.y$ ceea ce este greșit!

Cum procedăm pentru a repara greșeala? Observăm că $\lambda y.x$ desemneaza o funcție constantă, aceeași funcție putând fi reprezentată prin $\lambda z.x$. Aplicarea corectă a substituției este:

$$[y/x]\lambda y.x = [y/x]\lambda z.x = \lambda z.y$$

Exemple: Dacă x, y, z sunt variabile distincte atunci

- $\square [y/x]\lambda z.x = \lambda z.y$
- □ Cine este $[y/x]\lambda y.x$? Dacă folosim definiția intuitivă obținem $[y/x]\lambda y.x = \lambda y.y$ ceea ce este greșit!

Cum procedăm pentru a repara greșeala? Observăm că $\lambda y.x$ desemneaza o funcție constantă, aceeași funcție putând fi reprezentată prin $\lambda z.x$. Aplicarea corectă a substituției este:

$$[y/x]\lambda y.x = [y/x]\lambda z.x = \lambda z.y$$

Avem libertatea de a redenumi variabilele legate!

α -conversia $=_{\alpha}$

```
[Reflexivitate] t =_{\alpha} t

[Simetrie] t_1 =_{\alpha} t_2 implică t_2 =_{\alpha} t_1

[Tranzitivitate] t_1 =_{\alpha} t_2 și t_2 =_{\alpha} t_3 implică t_1 =_{\alpha} t_3

[Redenumire] \lambda x.t =_{\alpha} \lambda y.[y/x]t dacă y \notin FV(t)

[Compatibilitate] t_1 =_{\alpha} t_2 implică tt_1 =_{\alpha} tt_2, t_1t =_{\alpha} tt_2 si \lambda x.t_1 =_{\alpha} \lambda x.t_2
```

α -conversia $=_{\alpha}$

```
[Reflexivitate] t =_{\alpha} t

[Simetrie] t_1 =_{\alpha} t_2 implică t_2 =_{\alpha} t_1

[Tranzitivitate] t_1 =_{\alpha} t_2 și t_2 =_{\alpha} t_3 implică t_1 =_{\alpha} t_3

[Redenumire] \lambda x.t =_{\alpha} \lambda y.[y/x]t dacă y \notin FV(t)

[Compatibilitate] t_1 =_{\alpha} t_2 implică

tt_1 =_{\alpha} tt_2, t_1t =_{\alpha} t_2t și \lambda x.t_1 =_{\alpha} \lambda x.t_2
```

Compatibilitatea cu substituția

$$t_1 =_{\alpha} t_2$$
 și $u_1 =_{\alpha} u_2$ implică $[u_1/x]t_1 =_{\alpha} [u_2/x]t_2$

α -conversia $=_{\alpha}$

[Reflexivitate]
$$t =_{\alpha} t$$

[Simetrie] $t_1 =_{\alpha} t_2$ implică $t_2 =_{\alpha} t_1$
[Tranzitivitate] $t_1 =_{\alpha} t_2$ și $t_2 =_{\alpha} t_3$ implică $t_1 =_{\alpha} t_3$
[Redenumire] $\lambda x.t =_{\alpha} \lambda y.[y/x]t$ dacă $y \notin FV(t)$
[Compatibilitate] $t_1 =_{\alpha} t_2$ implică $tt_1 =_{\alpha} tt_2$, $t_1 t =_{\alpha} t_2 t$ și $\lambda x.t_1 =_{\alpha} \lambda x.t_2$ $t_1 =_{\alpha} t_2$ și $u_1 =_{\alpha} u_2$ implică $[u_1/x]t_1 =_{\alpha} [u_2/x]t_2$

$$[xy/x](\lambda y.yx) =_{\alpha} [xy/x](\lambda z.zx) =_{\alpha} \lambda z.z(xy)$$

α -conversia $=_{\alpha}$

[Reflexivitate]
$$t =_{\alpha} t$$

[Simetrie] $t_1 =_{\alpha} t_2$ implică $t_2 =_{\alpha} t_1$
[Tranzitivitate] $t_1 =_{\alpha} t_2$ și $t_2 =_{\alpha} t_3$ implică $t_1 =_{\alpha} t_3$
[Redenumire] $\lambda x.t =_{\alpha} \lambda y.[y/x]t$ dacă $y \notin FV(t)$
[Compatibilitate] $t_1 =_{\alpha} t_2$ implică $tt_1 =_{\alpha} tt_2$, $t_1 t =_{\alpha} t_2 t$ și $\lambda x.t_1 =_{\alpha} \lambda x.t_2$ $t_1 =_{\alpha} t_2$ și $u_1 =_{\alpha} u_2$ implică $[u_1/x]t_1 =_{\alpha} [u_2/x]t_2$

Exemplu:

$$[xy/x](\lambda y.yx) =_{\alpha} [xy/x](\lambda z.zx) =_{\alpha} \lambda z.z(xy)$$

Vom lucra modulo α -conversie, doi termeni α -echivalenți vor fi considerați "egali".

Exemplu:

Exemplu:

β -reductie

 β -reducția este o relație pe mulțimea α -termenilor.

$$\beta$$
-reducția \rightarrow_{β} , $\stackrel{*}{\rightarrow}_{\beta}$

 \square un singur pas $\rightarrow_{\beta} \subseteq \Lambda T \times \Lambda T$

[Aplicarea]
$$(\lambda x.t)u \rightarrow_{\beta} [u/x]t$$

[Compatibilitatea] $t_1 \rightarrow_{\beta} t_2$ implică

$$tt_1 \rightarrow_{\beta} tt_2, t_1 t \rightarrow_{\beta} t_2 t \text{ si } \lambda x.t_1 \rightarrow_{\beta} \lambda x.t_2$$

 \square zero sau mai mulți pași $\stackrel{*}{\to}_{\beta} \subseteq \Lambda T \times \Lambda T$

$$t_1 \stackrel{*}{\rightarrow}_{\beta} t_2$$
 dacă există $n \ge 0$ și u_0, \dots, u_n astfel încât

$$t_1 =_{\alpha} u_0 \rightarrow_{\beta} u_1 \rightarrow_{\beta} \cdots \rightarrow_{\beta} u_n =_{\alpha} t_2$$

β -reductie

Să considerăm termenul $(\lambda x.(\lambda y.yx)z)v$

$$\square (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$$

β -reductie

Să considerăm termenul $(\lambda x.(\lambda y.yx)z)v$

$$\square (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$$

$$\square (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v \rightarrow_{\beta} zv$$

β -reducție

Să considerăm termenul $(\lambda x.(\lambda y.yx)z)v$

$$\Box (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda y.yv)z \rightarrow_{\beta} zv$$

$$\square (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v \rightarrow_{\beta} zv$$

Observăm că un termen poate fi β -redus în mai multe moduri.

Proprietatea de confluență ne asigură că vom ajunge întotdeauna la același rezultat.

Confluența β -reducției

Teorema Church-Rosser

Dacă $t \stackrel{*}{\rightarrow}_{\beta} t_1$ și $t \stackrel{*}{\rightarrow}_{\beta} t_2$

Confluența β -reducției

Teorema Church-Rosser

Dacă $t \stackrel{*}{\rightarrow}_{\beta} t_1$ și $t \stackrel{*}{\rightarrow}_{\beta} t_2$

atunci există u astfel încât $t_1 \stackrel{*}{\rightarrow}_{\beta} u$ și $t_2 \stackrel{*}{\rightarrow}_{\beta} u$.

β -forma normală

Intuitiv, o formă normală este un termen care nu mai poate fi redus (sau punctul final al unui calcul).

Formă normal ă

- □ un λ -termen căruia nu i se mai poate aplica reducerea într-un pas \rightarrow_{β} se numește β -formă normală
- □ dacă $t \xrightarrow{*}_{\beta} u_1$, $t \xrightarrow{*}_{\beta} u_2$ și u_1 , u_2 sunt η -forme normale atunci, datorită confluenței, $u_1 =_{\alpha} u_2$
- \Box un λ -termen poate avea cel mult o β -formă normală (modulo α -echivalență)

β -forma normală

Formă normal ă

- □ un λ -termen căruia nu i se mai poate aplica reducerea într-un pas \rightarrow_{β} se numește β -formă normală
- □ dacă $t \xrightarrow{*}_{\beta} u_1$, $t \xrightarrow{*}_{\beta} u_2$ și u_1 , u_2 sunt η -forme normale atunci, datorită confluenței, $u_1 =_{\alpha} u_2$
- un λ -termen poate avea cel mult o β -formă normală (modulo α -echivalență)

- □ zv este β-formă normală pentru (λx.(λy.yx)z)v $(λx.(λy.yx)z)v →_β (λy.yv)z →_β zv$
- \square există termeni care **nu** pot fi reduși la o *β*-formă normală, de exemplu $(\lambda x.xx)(\lambda x.xx)$

Intuitiv, β -conversia extinde β -reducția în ambele direcții.

$$\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$$

Intuitiv, β -conversia extinde β -reducția în ambele direcții.

- $\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$
- $\square (\lambda y.yv)z \leftarrow_{\beta} (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v$

Intuitiv, β -conversia extinde β -reducția în ambele direcții.

- $\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$
- $\square (\lambda y.yv)z \leftarrow_{\beta} (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v$

β -conversia $=_{\beta}$

Intuitiv, β -conversia extinde β -reducția în ambele direcții.

- $\square (\lambda y.yv)z \rightarrow_{\beta} zv \leftarrow_{\beta} (\lambda x.zx)v$
- $\square (\lambda y.yv)z \leftarrow_{\beta} (\lambda x.(\lambda y.yx)z)v \rightarrow_{\beta} (\lambda x.zx)v$

β -conversia $=_{\beta}$

 $=_{\beta} \subseteq \Lambda T \times \Lambda T$ $t_1 =_{\beta} t_2 \text{ dacă există } n \geq 0 \text{ și } u_0, \dots, u_n \text{ astfel încât}$ $t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ și, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i$

Exemplu: $(\lambda y.yv)z =_{\beta} (\lambda x.zx)v$

β -conversia $=_{\beta}$

 $\Box =_{\beta} \subseteq \Lambda T \times \Lambda T$ $t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ și } u_0, \dots, u_n \text{ astfel încât}$ $t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ și, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i$

β -conversia $=_{\beta}$

Observatii

 $\square =_{\beta}$ este o relație de echivalență

β -conversia $=_{\beta}$

 $\Box =_{\beta} \subseteq \Lambda T \times \Lambda T$ $t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ și } u_0, \dots, u_n \text{ astfel încât}$ $t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ și, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i$

Observatii

- $\square =_{\beta}$ este o relație de echivalență
- □ pentru t_1 , t_2 λ -termeni și u_1 , u_2 β -forme normale dacă $t_1 \stackrel{*}{\rightarrow}_{\beta} u_1$, $t_2 \stackrel{*}{\rightarrow}_{\beta} u_2$ și $u_1 =_{\alpha} u_2$ atunci $t_1 =_{\beta} t_2$

β -conversia $=_{\beta}$

- $\Box =_{\beta} \subseteq \Lambda T \times \Lambda T$ $t_1 =_{\beta} t_2 \text{ dacă există } n \ge 0 \text{ și } u_0, \dots, u_n \text{ astfel încât}$ $t_1 =_{\alpha} u_0, u_n =_{\alpha} t_2 \text{ și, pentru orice } i, u_i \to_{\beta} u_{i+1} \text{ sau } u_{i+1} \to_{\beta} u_i$
- $\Box =_{\beta}$ este o relație de echivalență

β -conversia $=_{\beta}$

- $\square =_{\beta}$ este o relație de echivalență
- □ pentru t_1 , t_2 λ -termeni și u_1 , u_2 β -forme normale dacă $t_1 \stackrel{*}{\rightarrow}_{\beta} u_1$, $t_2 \stackrel{*}{\rightarrow}_{\beta} u_2$ și $u_1 =_{\alpha} u_2$ atunci $t_1 =_{\beta} t_2$

 β -conversia reprezintă "egalitatea prin calcul", iar β -reducția (modulo α -conversie) oferă o procedură de (semi)decizie pentru aceasta.

Pe săptămâna viitoare!