Výrokovologické spojky

2. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Jozef Šiška Letný semester 2019/2020

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 2. prednášky

Výrokovologické spojky

Boolovské spojky

Implikácia

Ekvivalencia

Syntax výrokovologických formúl

Sémantika výrokovologických formúl

Správnosť a vernosť formalizácie

Rekapitulácia

Minulý týždeň sme sa naučili:

- Čo sú symboly jazyka logiky prvého rádu.
- Čo sú atomické formuly.
- Čo sú štruktúry.
 - Konštanty označujú objekty.
 - Predikáty označujú vzťahy a vlastnosti.
- Kedy sú atomické formuly pravdivé.
- Jazyk atomických formúl je oproti slovenčine veľmi slabý.
 - Môžu byť pravdivé vo veľmi čudných štruktúrach.
 - Veľa sme vyjadrovali približne.

Výrokovologické spojky

Výrokovologické spojky

Atomické formuly logiky prvého rádu môžeme spájať do zložitejších tvrdení výrokovologickými spojkami.

- Zodpovedajú spojkám v slovenčine, ktorými vytvárame súvetia.
- Významom spojky je vždy boolovská funkcia, teda funkcia na pravdivostných hodnotách spájaných výrokov.
 Pravdivostná hodnota zloženého výroku závisí iba od pravdivostných hodnôt podvýrokov.

Príklad 2.1

Negácia, konjunkcia, disjunkcia, implikácia, ekvivalencia, ...

Nevýrokovologické spojky

Negatívny príklad

Spojka pretože nie je výrokovologická.

Dôkaz.

Uvažujme o výroku Karol je doma, pretože Jarka je v škole.

Je pravdivý v situácii: Je 18:00 a Karol je doma, aby nakŕmil psa Bobíka, ktorý by inak bol hladný až do 19:30, keď sa Jarka vráti zo školy, kde má cvičenia od 17:20 do 18:50.

Nie je pravdivý v situácii: Jarka išla ráno do školy, ale Karol ostal doma, lebo je chorý. S Jarkinou prítomnosťou v škole to nesúvisí.

V oboch situáciách sú výroky *Karol je doma* aj *Jarka je v škole* pravdivé, ale pravdivostná hodnota zloženého výroku je rôzna. Nezávisí iba od pravdivostných hodnôt podvýrokov (ale od existencie vzťahu príčina-následok medzi nimi).

Spojka pretože teda nie je funkciou na pravdivostných hodnotách.

Výrokovologické spojky

Boolovské spojky

Negácia

Negácia ¬ je <mark>unárna</mark> spojka — má jeden argument, formulu.

Zodpovedá výrazom nie, nie je pravda, že ..., predpone ne-.

Ľubovoľne vnárateľná.

Formula vytvorená negáciou sa nezátvorkuje.

Okolo argumentu negácie nepridávame zátvorky, ale môže ich mať on sám, ak to jeho štruktúra vyžaduje.

Príklad 2.2

¬doma(Karol) Karol nie je doma.

¬Jarka ≐ Karol Jarka nie je Karol.

¬¬¬poslúcha(Cilka) Nie je pravda, že nie je pravda,

že Cilka neposlúcha.

Konjunkcia

Konjunkcia ∧ je binárna spojka.

Zodpovedá spojkám a, aj, i, tiež, ale, avšak, no, hoci, ani, ba (aj/ani), ...

Formalizujeme ňou zlučovacie, stupňovacie a odporovacie súvetia:

- Jarka je doma aj Karol je doma. (doma(Jarka) ∧ doma(Karol))
- Jarka je v škole, no Karol je doma.
 (v_škole(Jarka) ∧ doma(Karol))
- Ani Jarka nie je doma, ani Karol tam nie je.
 (¬doma(Jarka) ∧ ¬doma(Karol))
- Nielen Jarka je chorá, ale aj Karol je chorý.
 (chorý(Jarka) ∧ chorý(Karol))

Zloženú formulu vždy zátvorkujeme.

Formalizácia viacnásobných vetných členov konjunkciou

Zlučovacie viacnásobné vetné členy tiež formalizujeme ako konjunkcie:

- Jarka aj Karol sú doma.
 (doma(Jarka) ∧ doma(Karol))
- Karol sa potkol a spadol.
 (potkol_sa(Karol) ∧ spadol(Karol))
- Jarka dostala Bobíka od mamy a otca.
 (dostal(Jarka, Bobík, mama)∧dostal(Jarka, Bobík, otec))

Podobne (viacnásobné zlučovacie) prívlastky vlastností:

- Eismann je ruský špión.
 (Rus(Eismann) ∧ špión(Eismann))
- Bobík je malý čierny psík.
 ((malý(Bobík) ∧ čierny(Bobík)) ∧ pes(Bobík))

Stratené v preklade

Zlučovacie súvetia niekedy vyjadrujú časovú následnosť, ktorá sa pri priamočiarom preklade do logiky prvého rádu stráca:

Jarka a Karol sa stretli a išli do kina.
 (stretli_sa(Jarka, Karol) ∧
 (do_kina(Jarka) ∧ do_kina(Karol)))

Jarka a Karol išli do kina a stretli sa.
 ((do_kina(Jarka) ∧ do_kina(Karol)) ∧
 stretli_sa(Jarka, Karol))

Disjunkcia

Disjunkcia ∨ je binárna spojka, ktorá zodpovedá spojkám *alebo*, *či*, *buď*..., *alebo* ... v inkluzívnom význame (môžu nastať aj obe možnosti).

Disjunkciou formalizujeme vylučovacie súvetia:

- Jarka je doma alebo Karol je doma. (doma(Jarka) v doma(Karol))
- Buď je Karol doma, alebo je Jarka v škole.
 (doma(Karol) ∨ v_škole(Jarka))

Zloženú formulu vždy zátvorkujeme.

Formalizácia viacnásobných vetných členov disjunkciou

Viacnásobné vetné členy s vylučovacou spojkou tiež prekladáme ako disjunkcie:

- Doma je Jarka alebo Karol.
 (doma(Jarka) ∨ doma(Karol))
- Jarka je doma alebo v škole.
 (doma(Jarka) ∨ v_škole(Jarka))
- Jarka dostala Bobíka od mamy alebo otca.
 (dostal(Jarka, Bobík, mama)∨dostal(Jarka, Bobík, otec))
- Bobík je čierny či tmavohnedý psík.
 ((čierny(Bobík) ∨ tmavohnedý(Bobík)) ∧ pes(Bobík))

Exkluzívna disjunkcia

Konštrukcia *buď*..., *alebo* ... **neznamená** nutne exkluzívnu disjunkciu.

Bobík a Cilka sa pobili.
 Buď Bobík pohrýzol Cilku, alebo Cilka poškrabala Bobíka.
 (Mohlo sa stať jedno aj druhé.)

Niekedy samotné alebo znamená exkluzívnu disjunkciu.

Jarka je doma alebo v škole.
 (Nemôže byť súčasne na dvoch miestach.)

Jednoznačnosť rozkladu

Formuly s binárnymi spojkami sú vždy uzátvorkované. Dajú sa jednoznačne rozložiť na podformuly a interpretovať.

Slovenské tvrdenia so spojkami nie sú vždy jednoznačné:

- Karol je doma a Jarka je doma alebo je Bobík šťastný.
 - ((doma(Karol) ∧ doma(Jarka)) ∨ šťastný(Bobík))
 - ② (doma(Karol) ∧ (doma(Jarka) ∨ šťastný(Bobík)))
- Karol je doma alebo Jarka je doma a Bobík je šťastný.
 - ② ((doma(Karol) ∨ doma(Jarka)) ∧ šťastný(Bobík))
 - $(\text{doma}(\text{Karol}) \lor \frac{(\text{doma}(\text{Jarka}) \land \text{s\'astn\'y}(\text{Bob\'ik}))}{(\text{doma}(\text{Jarka}) \land \text{s\'astn\'y}(\text{Bob\'ik}))}$

Jednoznačnosť rozkladu v slovenčine

Slovenčina má prostriedky podobné zátvorkám:

- Karol aj Jarka sú (obaja) doma alebo je Bobík šťastný.
 ((doma(Karol) ∧ doma(Jarka)) ∨ šťastný(Bobík))
- Karol je doma a buď je doma Jarka, alebo je Bobík šťastný.
 Aj Karol je doma, aj Jarka je doma alebo je Bobík šťastný.
 (doma(Karol) ∧ (doma(Jarka) ∨ šťastný(Bobík)))
- Doma je Karol alebo Jarka a Bobík je šťastný.
 Niekto z dvojice Karol a Jarka je doma a Bobík je šťastný.
 ((doma(Karol) ∨ doma(Jarka)) ∧ šťastný(Bobík))
- Buď je doma Karol, alebo je doma Jarka a Bobík je šťastný.
 (doma(Karol) ∨ (doma(Jarka) ∧ šťastný(Bobík)))

Príslušnosť výrokov k spojkám vyjadrujú viacnásobný vetný člen (+obaja, niekto z) a kombinácie spojok buď ..., alebo ...; aj ..., aj ...; ani ...; atď.

Oblasť platnosti negácie

Výskyt negácie sa vzťahuje na najkratšiu nasledujúcu formulu — oblasť platnosti tohto výskytu.

- $((\neg doma(Karol) \land doma(Jarka)) \lor šťastný(Bobík))$
- $(\neg (doma(Karol) \land doma(Jarka)) \lor šťastný(Bobík))$

Argument negácie je <mark>uzátvorkovaný práve vtedy,</mark> keď je **priamo** vytvorený binárnou spojkou:

- ¬¬(doma(Karol) ∧ doma(Jarka))
- $\bigcirc \neg (\neg (doma(Karol) \land doma(Jarka)))$

Negácia rovnostného atómu

Rovnosť nie je spojka, preto:

Zátvorky sú zbytočné, lebo čítanie

"«Nie je pravda, že Jarka» sa rovná Karol" je nezmyselné:

- Syntakticky: Negácia sa vzťahuje na formulu.
 Konštanta nie je formula, rovnosť s oboma argumentmi je.
- Sémanticky: Negácia je funkcia na pravdivostných hodnotách. Konštanty označujú objekty domény. Objekty nie sú pravdivé ani nepravdivé.

Dohoda 2.3

Formulu $\neg \tau \doteq \sigma$ budeme skrátene zapisovať $\tau \neq \sigma$.

Výrokovologické spojky

Implikácia

Implikácia

Implikácia \rightarrow je binárna spojka približne zodpovedajúca podmienkovému podraďovaciemu súvetiu $ak \dots tak \dots$

Vo formule $(A \rightarrow B)$ hovoríme podformule A antecedent, a podformule B konzekvent,

Formula vytvorená implikáciou je nepravdivá v jedinom prípade: antecedent je pravdivý a konzekvent nepravdivý.

Tomuto významu nezodpovedajú všetky súvetia *ak* ..., *tak* Napr. výrok *ak* by *Sarah prišla*, *Jim* by *prišiel tiež* je nepravdivý, keď si myslíme, že išli

rovnakým autobusom, ale Jim išiel iným a zmeškal ho.

Ked'..., potom... má často význam časovej následnosti, ktorý implikácia nepostihuje.

Nutná a postačujúca podmienka

Implikáciu vyjadrujú aj súvetia:

Jim príde, <mark>ak</mark> príde Kim.

Jim príde, iba ak príde Kim.

Vedľajšie vety (príde Kim) sú podmienkami hlavnej vety (Jim príde).

Ale je medzi nimi podstatný rozdiel:

Jim príde, ak príde Kim. postačujúca podmienka Jim príde, <mark>iba ak</mark> príde Kim. nutná podmienka

Postačujúca podmienka

Jim príde, ak príde Kim.

- Na to, aby prišiel Jim, stačí, aby prišla Kim.
- Teda, ak príde Kim, tak príde aj Jim.
- Nepravdivé, keď Kim príde, ale Jim nepríde.
- Zodpovedá teda (príde(Kim) → príde(Jim)).

Vo všeobecnosti:

$$A$$
, ak B . \rightsquigarrow $(B \to A)$

Iné vyjadrenia:

• Jim príde, pokiaľ príde Kim.

Nutná podmienka

Jim príde, iba ak príde Kim.

- Na to, aby prišiel Jim, je nevyhnutné, aby prišla Kim, ale nemusí to stačiť.
- Teda, ak Jim príde, tak príde aj Kim.
- Nepravdivé, keď Jim príde, ale Kim nepríde.
- Zodpovedá teda (príde(Jim) → príde(Kim)).

Vo všeobecnosti:

$$A$$
, iba ak B . \rightsquigarrow $(A \rightarrow B)$

Iné vyjadrenia:

- Jim príde, iba pokiaľ s Kim.
- Jim príde iba spolu s Kim.
- Jim nepríde bez Kim.

Nutná a postačujúca podmienka rukolapne

Určite by sa vám páčilo, keby z pravidiel predmetu vyplývalo: Logikou prejdete, ak odovzdáte všetky domáce úlohy.

Stačilo by odovzdať úlohy a nebolo by nutné urobiť nič iné.

Žiaľ, z našich pravidiel vyplýva: Logikou prejdete, <mark>iba ak</mark> odovzdáte všetky domáce úlohy.

Odovzdať úlohy je nutné, ale na prejdenie to nestačí.

Súvetia formalizované implikáciou

 $(A \to B)$ formalizuje (okrem iných) zložené výroky:

- Ak A, tak B.
- Ak *A*, tak aj *B*.
- Ak *A*, *B*.
- Pokiaľ *A*, [tak (aj)] *B*.
- *A*, iba ak *B*.
- *A*, len ak *B*.
- A nastane iba spolu s B.
- *A* nenastane bez *B*.
- *B*, ak *A*.
- *B*, pokiaľ *A*.

Výrokovologické spojky

Ekvivalencia

Ekvivalencia

Ekvivalencia \leftrightarrow vyjadruje, že ňou spojené výroky majú rovnakú pravdivostnú hodnotu.

Zodpovedá slovenským výrazom ak a iba ak; vtedy a len vtedy, keď; práve vtedy, keď; rovnaký ... ako ...; taký ... ako

- Jim príde, ak a iba ak príde Kim.
 (príde(Jim) ↔ príde(Kim))
- Číslo n je párne práve vtedy, keď n² je párne.
 (párne(n) ↔ párne(n²))
- Müller je taký Nemec, ako je Stirlitz Rus.
 (Nemec(Müller) ↔ Rus(Stirlitz))

Ekvivalencia

Ekvivalencia $(A \leftrightarrow B)$ zodpovedá tvrdeniu, že A je nutnou aj postačujúcou podmienkou B.

Budeme ju preto považovať za skratku za formulu

$$((A \to B) \land (B \to A)).$$

Ďalšie spojky a vetné konštrukcie

V slovenčine a iných prirodzených aj umelých jazykoch sa dajú tvoriť aj oveľa komplikovanejšie podmienené tvrdenia:

- Karol je doma, ak je Jarka v škole, inak má Jarka obavy.
- Karol je doma, ak je Jarka v škole, inak má Jarka obavy, okrem prípadov, keď je Bobík s ním.

Výrokovologické spojky sa dajú vytvoriť aj pre takéto konštrukcie, ale väčšinou sa to nerobí.

Výrokovologické spojky

Syntax výrokovologických formúl

Syntax a sémantika formúl s výrokovologickými spojkami

Podobne ako pri atomických formulách, aj pri formulách s výrokovologickými spojkami potrebujem zadefinovať — presne a záväzne — ich syntax (skladbu) a sémantiku (význam).

Niektoré definície preberieme, iné rozšírime alebo modifikujeme, ďalšie pridáme.

Syntax výrokovologických formúl logiky prvého rádu špecifikuje:

- z čoho sa skladajú,
- čím sú a akú majú štruktúru.

Symboly výrokovologickej časti logiky prvého rádu

Definícia 2.4

Symbolmi jazyka $\mathcal L$ výrokovologickej časti logiky prvého rádu sú:

mimologické symboly, ktorými sú

- ullet indivíduové konštanty z nejakej spočítateľnej množiny $\mathcal{C}_{\mathcal{L}}$
- a predikátové symboly z nejakej spočítateľnej množiny $\mathcal{P}_{\mathcal{L}}$;

logické symboly, ktorými sú

- výrokovologické spojky ¬, ∧, ∨, → (nazývané, v uvedenom poradí, symbol negácie, symbol konjunkcie, symbol disjunkcie, symbol implikácie);
- a symbol rovnosti ≐;

pomocné symboly (,) a , (ľavá zátvorka, pravá zátvorka a čiarka).

Množiny $\mathcal{C}_{\mathcal{L}}$ a $\mathcal{P}_{\mathcal{L}}$ sú disjunktné. Pomocné ani logické symboly sa nevyskytujú v symboloch z $\mathcal{C}_{\mathcal{L}}$ ani $\mathcal{P}_{\mathcal{L}}$. Každému symbolu $P \in \mathcal{P}_{\mathcal{L}}$ je priradená arita $\operatorname{ar}_{\mathcal{L}}(P) \in \mathbb{N}^+$.

Atomické formuly

Definícia atomických formúl je takmer rovnaká ako doteraz:

Definícia 2.5

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Rovnostný atóm jazyka $\mathcal L$ je každá postupnosť symbolov $c_1 \doteq c_2$, kde c_1 a c_2 sú indivíduové konštanty z $\mathcal C_{\mathcal L}$.

Predikátový atóm jazyka $\mathcal L$ je každá postupnosť symbolov $P(c_1,\ldots,c_n)$, kde P je predikátový symbol s aritou n a c_1,\ldots,c_n sú indivíduové konštanty z $\mathcal C_{\mathcal L}$.

Atomickými formulami (skrátene atómami) jazyka \mathcal{L} súhrnne nazývame všetky rovnostné a predikátové atómy jazyka \mathcal{L} .

Množinu všetkých atómov jazyka $\mathcal L$ označujeme $\mathcal A_{\mathcal L}.$

Čo sú výrokovologické formuly?

 $\mathsf{Majme}\:\mathsf{jazyk}\:\mathcal{L},\,\mathsf{kde}\:\mathcal{C}_{\mathcal{L}}=\{\mathsf{Kim},\,\mathsf{Jim},\,\mathsf{Sarah}\}\:\mathsf{a}\:\mathcal{P}_{\mathcal{L}}=\{\mathsf{pride}^1\}.$

Čo sú formuly tohto jazyka?

- Samotné atómy, napr. príde(Sarah).
- Negácie atómov, napr. ¬príde(Sarah).
- Premenné alebo aj ich negácie spojené spojkou, napr.
 (¬príde(Kim) ∨ príde(Sarah)).
- Ale negovať a spájať spojkami môžeme aj zložitejšie formuly, napr. (¬(príde(Kim) ∧ príde(Sarah)) → (¬príde(Kim) ∨ ¬príde(Sarah))).

Ako to presne a úplne popíšeme?

Čo sú výrokovologické formuly?

Ako presne a úplne popíšeme, čo je formula?

Induktívnou definíciou:

- Povieme, čo sú základné formuly, ktoré sa nedajú rozdeliť na menšie formuly.
 - ▶ Podobne ako 0 pri matematickej indukcii.
- 2. Opíšeme, ako sa z jednoduchších formúl skladajú zložitejšie.
 - Podobne ako indukčný krok pri matematickej indukcii.
- 3. Zabezpečíme, že nič iné nie je formulou.

Formuly jazyka výrokovologickej časti logiky prvého rádu

Definícia 2.6

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. *Množina* $\mathcal{E}_{\mathcal{L}}$ *formúl jazyka* \mathcal{L} je (3.) najmenšia množina postupností symbolov, ktorá spĺňa všetky nasledujúce podmienky:

- 1. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ je formulou z $\mathcal{E}_{\mathcal{L}}$.
- 2.1. Ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$ a nazývame ju negácia formuly A.
- 2.2. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ patria do $\mathcal{E}_{\mathcal{L}}$ a nazývame ich postupne konjunkcia, disjunkcia a implikácia formúl A a B.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame formulou jazyka $\mathcal{L}.$

Dohody · Vytvorenie formuly

Dohoda 2.7

Formuly označujeme meta premennými A, B, C, X, Y, Z, podľa potreby aj s dolnými indexmi.

Dohoda 2.8

Pre každú dvojicu formúl $A, B \in \mathcal{E}_{\mathcal{L}}$ je zápis $(A \leftrightarrow B)$ skratka za formulu $((A \to B) \land (B \to A))$.

Príklad 2.9

Ako by sme podľa definície 2.6 mohli dokázať, že (¬príde(Kim) → (príde(Jim) ∨ príde(Sarah))) je formula? Teda, ako by sme ju podľa definície 2.6 mohli vytvoriť?

Indukcia na konštrukciu formuly

Veta 2.10 (Princíp indukcie na konštrukciu formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}_{\mathcal{L}}$). Ak platí súčasne

- 1. každý atóm z $\mathcal{A}_{\mathcal{L}}$ má vlastnosť P,
- 2.1. ak formula A má vlastnosť P, tak aj $\neg A$ má vlastnosť P,
- 2.2. ak formuly A a B majú vlastnosť P, tak aj každá z formúl $(A \land B)$, $(A \lor B)$ a $(A \to B)$ má vlastnosť P,

tak všetky formuly majú vlastnosť $P(P = \mathcal{E}_{\mathcal{L}})$.

Vytvárajúca postupnosť

Definícia 2.11

extstyle ext

- je atóm z $\mathcal{A}_{\mathcal{L}}$, alebo
- má tvar ¬A, pričom A je niektorý predchádzajúci člen postupnosti, alebo
- má jeden z tvarov $(A \land B)$, $(A \lor B)$, $(A \to B)$, kde A a B sú niektoré predchádzajúce členy postupnosti.

Formula a existencia vytvárajúcej postupnosti

Tvrdenie 2.12

Postupnosť symbolov A je formulou vtedy a len vtedy, keď existuje vytvárajúca postupnosť pre A.

Osnova dôkazu.

(⇒) Indukciou na konštrukciu formuly

(⇐) Indukciou na dĺžku vytvárajúcej postupnosti

(Ne)jednoznačnosť rozkladu formúl výrokovej logiky

Čo keby sme zadefinovali "formuly" takto?

Definícia "formúl"

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu.

Množina $\mathcal{E}_{\mathcal{L}}$ "formúl" jazyka \mathcal{L} je (3.) najmenšia množina postupností symbolov, ktorá spĺňa všetky nasledujúce podmienky:

- 1. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ je "formulou" z $\mathcal{E}_{\mathcal{L}}$.
- **2.1**. Ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$.
- 2.2. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $A \wedge B$, $A \vee B$ a $A \to B$ patria do $\mathcal{E}_{\mathcal{L}}$.
- **2.3**. ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov (A) je v $\mathcal{E}_{\mathcal{L}}$.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame "formulou" jazyka $\mathcal{L}.$

Čo znamená "formula" (príde(Jim) → príde(Kim) → ¬príde(Sarah))?

Jednoznačnosť rozkladu formúl výrokovej logiky

Pre našu definíciu formúl platí:

Tvrdenie 2.13 (o jednoznačnosti rozkladu)

Pre každú formulu $X \in \mathcal{E}_{\mathcal{L}}$ v jazyku \mathcal{L} platí práve jedna z nasledujúcich možností:

- X je atóm z $\mathcal{A}_{\mathcal{L}}$.
- Existuje práve jedna formula $A \in \mathcal{E}_{\mathcal{L}}$ taká, že $X = \neg A$.
- Existujú práve jedna dvojica formúl $A, B \in \mathcal{E}_{\mathcal{L}}$ a jedna spojka $b \in \{\land, \lor, \to\}$ také, že $X = (A \ b \ B)$.

Problémy s vytvárajúcou postupnosťou

Vytvárajúca postupnosť popisuje konštrukciu formuly podľa definície formúl:

```
\begin{split} & \texttt{pride}(\texttt{Jim}), \texttt{pride}(\texttt{Sarah}), \neg \texttt{pride}(\texttt{Jim}), \texttt{pride}(\texttt{Kim}), \neg \texttt{pride}(\texttt{Sarah}), \\ & \texttt{pride}(\texttt{Kim})), ((\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})) \rightarrow \neg \texttt{pride}(\texttt{Sarah})) \end{split}
```

ale

- môže obsahovať "zbytočné" prvky;
- nie je jasné ktoré z predchádzajúcich formúl sa bezprostredne použijú na vytvorenie nasledujúcej formuly.

Akou "dátovou štruktúrou" vieme vyjadriť konštrukciu formuly bez týchto problémov?

Vytvárajúci strom

Konštrukciu si ale vieme predstaviť ako strom:

$$((\neg pride(Jim) \land pride(Kim)) \rightarrow \neg pride(Sarah))$$

$$(\neg pride(Jim) \land pride(Kim)) \quad \neg pride(Sarah)$$

$$\neg pride(Jim) \quad pride(Kim) \quad pride(Sarah)$$

$$pride(Jim)$$

Takéto stromy voláme vytvárajúce.

Ako ich *presne* a *všeobecne* popíšeme — zadefinujeme?

Vytvárajúci strom formuly

Definícia 2.14

 ${\it Vytv\'araj\'uci strom}\ T$ pre formulu X je binárny strom obsahujúci v každom vrchole formulu, pričom platí:

- v koreni T je formula X,
- ak vrchol obsahuje formulu ¬A, tak má práve jedno dieťa, ktoré obsahuje formulu A,
- ak vrchol obsahuje formulu (A b B), kde b je jedna z binárnych spojok, tak má dve deti, pričom ľavé dieťa obsahuje formulu A a pravé formulu B,
- vrcholy obsahujúce atómy sú listami.

Syntaktické vzťahy formúl

Uvažujme formulu:

$$((\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})) \rightarrow \neg \texttt{pride}(\texttt{Sarah}))$$

Ako nazveme formuly, z ktorých vznikla?

```
\texttt{pride}(\texttt{Sarah}), \neg \texttt{pride}(\texttt{Jim}), (\neg \texttt{pride}(\texttt{Jim}) \land \texttt{pride}(\texttt{Kim})), ...
```

Ako nazveme formuly, z ktorých bezprostredne/priamo vznikla?

```
(\neg pride(Jim) \land pride(Kim)) a \neg pride(Sarah)
```

Ako tieto pojmy presne zadefinujeme?

Priame podformuly

Definícia 2.15 (Priama podformula)

Pre všetky formuly A a B:

- Priamou podformulou $\neg A$ je formula A.
- Priamymi podformulami $(A \land B)$, $(A \lor B)$ a $(A \to B)$ sú formuly A (*l'avá* priama podformula) a B (*pravá* priama podformula).

Podformuly

Definícia 2.16 (Podformula)

Vzťah byť podformulou je najmenšia relácia na formulách spĺňajúca pre všetky formuly X, Y a Z:

- X je podformulou X.
- Ak X je priamou podformulou Y, tak X je podformulou Y.
- Ak X je podformulou Y a Y je podformulou Z, tak X je podformulou Z.

Formula X je vlastnou podformulou formuly Y práve vtedy, keď X je podformulou Y a $X \neq Y$.

Meranie syntaktickej zložitosti formúl

Miera zložitosti/veľkosti formuly:

- Jednoduchá: dĺžka, teda počet symbolov
 - Počíta aj pomocné symboly.
 - Nič nemá mieru 0, ani atómy.
- Lepšia: počet netriviálnych krokov pri konštrukcii formuly
 - pridanie negácie,
 - spojenie formúl spojkou.

Túto lepšiu mieru nazývame stupeň formuly.

Príklad 2.17

Aký je stupeň formuly $((pride(Jim) \lor \neg pride(Kim)) \land \neg (pride(Sarah) \rightarrow pride(Jim)))$?

Meranie syntaktickej zložitosti formúl

Ako stupeň zadefinujeme?

Podobne ako sme zadefinovali formuly — induktívne:

- 1. určíme hodnotu stupňa pre atomické formuly,
- určíme, ako zo stupňa priamych podformúl vypočítame stupeň z nich zloženej formuly.

Stupeň formuly

Definícia 2.18 (Stupeň formuly)

Pre všetky formuly A a B a všetky n, n_1 , $n_2 \in \mathbb{N}$:

- Atomická formula je stupňa 0.
- Ak A je formula stupňa n, tak $\neg A$ je stupňa n + 1.
- Ak A je formula stupňa n_1 a B je formula stupňa n_2 , tak $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ sú stupňa $n_1 + n_2 + 1$.

Definícia 2.18 (Stupeň formuly presnejšie a symbolicky)

Stupeň $\deg(X)$ formuly $X \in \mathcal{E}_{\mathcal{L}}$ definujeme pre všetky formuly A, $B \in \mathcal{E}_{\mathcal{L}}$ nasledovne:

- $\bullet \ \deg(A) = 0, \text{ ak } A \in \mathcal{A}_{\mathcal{L}},$
- $\deg(\neg A) = \deg(A) + 1$,
- $\deg((A \land B)) = \deg((A \lor B)) = \deg((A \to B)) = \deg(A) + \deg(B) + 1.$

Indukcia na stupeň formuly

Veta 2.19 (Princíp indukcie na stupeň formuly)

Nech P je ľubovoľná vlastnosť formúl ($P \subseteq \mathcal{E}_{\mathcal{L}}$). Ak platí súčasne

- 1. báza indukcie: každá formula stupňa 0 má vlastnosť P,
- 2. indukčný krok: pre každú formulu X z predpokladu, že všetky formuly menšieho stupňa ako $\deg(X)$ majú vlastnosť P, vyplýva, že aj X má vlastnosť P,

tak všetky formuly majú vlastnosť P ($P = \mathcal{E}_{\mathcal{L}}$).

Výrokovologické spojky

Sémantika výrokovologických formúl

Význam formúl výrokovologickej časti logiky prvého rádu popíšeme podobne ako význam atomických formúl pomocou **štruktúr**.

Štruktúra pre jazyk

Definícia štruktúry takmer nemení:

Definícia 2.20

Nech $\mathcal L$ je jazyk výrokovologickej časti logiky prvého rádu. **Štruktúrou** pre jazyk $\mathcal L$ nazývame dvojicu $\mathcal M=(D,i)$, kde D je ľubovoľná **neprázdna** množina nazývaná **doména** štruktúry $\mathcal M$; i je zobrazenie, nazývané **interpretačná funkcia** štruktúry $\mathcal M$, ktoré

- každému symbolu konštanty c jazyka \mathcal{L} priraďuje prvok $i(c) \in D$;
- každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P)\subseteq D^n$.

Splnenie formuly v štruktúre

Definícia 2.21

Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk \mathcal{L} výrokovologickej časti logiky prvého rádu. Reláciu *formula A je pravdivá* v *štruktúre* \mathcal{M} ($\mathcal{M} \models A$) definujeme **induktívne** pre všetky arity n>0, všetky predikátové symboly P s aritou n všetky konštanty c_1, c_2, \ldots, c_n , a všetky formuly A, B jazyka \mathcal{L} nasledovne:

- $\mathcal{M} \models c_1 \doteq c_2 \text{ vtt } i(c_1) = i(c_2),$
- $\mathcal{M} \models P(c_1, \dots, c_n) \text{ vtt } (i(c_1), \dots, i(c_n)) \in i(P),$
- $\mathcal{M} \models \neg A \text{ vtt } \mathcal{M} \not\models A$,
- $\mathcal{M} \models (A \land B)$ vtt $\mathcal{M} \models A$ a zároveň $\mathcal{M} \models B$,
- $\mathcal{M} \models (A \lor B) \mathsf{vtt} \, \mathcal{M} \models A \mathsf{ alebo} \, \mathcal{M} \models B$,
- $\mathcal{M} \models (A \rightarrow B)$ vtt $\mathcal{M} \not\models A$ alebo $\mathcal{M} \models B$,

kde vtt skracuje vtedy a len vtedy a $\mathcal{M} \models A$ skracuje A nie je pravdivá v \mathcal{M} .

Vyhodnotenie formuly

```
Príklad 2.22 (Vyhodnotenie formuly v štruktúre)
Majme štruktúru \mathcal{M} = (D, i) pre jazyk o party, kde D = \{A, K, J, S\},
i(Kim) = K, i(Jim) = J, i(Sarah) = S, i(pride) = \{K, S\}.
Formuly vyhodnocujeme podľa definície postupom zdola nahor
(od atómov cez zložitejšie podformuly k cieľovej formule):
         \mathcal{M} \not\models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \rightarrow \neg \text{pride}(\text{Sarah}))
  \mathcal{M} \models \neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \quad \mathcal{M} \not\models \neg \text{pride}(\text{Sarah})
   \mathcal{M} \not\models (pride(Jim) \lor \neg pride(Kim)) \mathcal{M} \models pride(Sarah)
 \mathcal{M} \not\models \mathsf{pride}(\mathsf{Jim}) \quad \mathcal{M} \not\models \neg \mathsf{pride}(\mathsf{Kim})
                                                                   S \in i(pride)
    J \notin i(pride) \mathcal{M} \models pride(Kim)
                                   K \in i(pride)
```

Hľadanie štruktúry

Príklad 2.23 (Nájdenie štruktúry, v ktorej je formula pravdivá) V akej štruktúre $\mathcal{M} = (D, i)$ je pravdivá formula $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \rightarrow \neg \text{pride}(\text{Sarah}))?$ Na zodpovedanie je dobré postupovať podľa defínície pravdivosti zhora nadol (od cieľovej formuly cez podformuly k atómom): $\mathcal{M} \models (\neg(\text{pride}(\text{Jim}) \lor \neg \text{pride}(\text{Kim})) \rightarrow \neg \text{pride}(\text{Sarah}))$ vtt $\mathcal{M} \not\models \neg(\text{pride}(\text{Jim}) \lor \neg\text{pride}(\text{Kim}))$ alebo $\mathcal{M} \models \neg pride(Sarah)$ vtt $\mathcal{M} \models (pride(Jim) \lor \neg pride(Kim))$ alebo $\mathcal{M} \not\models pride(Sarah)$ vtt $\mathcal{M} \models pride(Jim)$ alebo $\mathcal{M} \models \neg pride(Kim)$ alebo M ⊭ príde(Sarah) vtt $\mathcal{M} \models pride(Jim)$ alebo $\mathcal{M} \not\models pride(Kim)$ alebo

i(Sarah) ∉ i(príde).Stačí teda zabezpečiť, aby i(Sarah) ∉ i(príde).

Správnosť a vernosť formalizácie

Výrokovologické spojky

Skúška správnosti formalizácie

Správnou formalizáciou výroku je taká formula, ktorá je pravdivá za tých istých okolností ako formalizovaný výrok.

Formuly dokážeme vyhodnocovať iba v štruktúrach.

Preto za tých istých okolností znamená v tých istých štruktúrach.

Vernosť formalizácie

Výrok Nie je pravda, že Jarka a Karol sú doma sa dá správne formalizovať ako

$$\neg(doma(Jarka) \land doma(Karol)),$$

ale rovnako správna je aj formalizácia

$$(\neg doma(Jarka) \lor \neg doma(Karol)),$$

lebo je pravdivá v rovnakých štruktúrach.

Pri formalizácii sa snažíme o správnosť, ale zároveň uprednostňujeme formalizácie, ktoré vernejšie zachytávajú štruktúru výroku.

Zvyšuje to pravdepodobnosť, že sme neurobili chybu, a uľahčuje hľadanie chýb.

Prvá formalizácia je vernejšia ako druhá, a preto ju uprednostníme.

Znalosti na pozadí

Na praktických cvičeniach ste sa stretli so znalosťami na pozadí (background knowledge).

Uprednostňujeme ich vyjadrovanie samostatnými formulami.

Rovnaké dôvody ako pre vernosť.

Logické dôsledky a konverzačné implikatúry

Niektoré tvrdenia vyznievajú silnejšie, ako naozaj sú:

- Prílohou sú buď zemiaky alebo šalát.
 Znie ako exkluzívna disjunkcia.
- Prejdete, ak všetky úlohy vyriešite na 100 %.
 Znie mnohým ako ekvivalencia.

Skutočný logický dôsledok tvrdenia nemôžeme poprieť dodatkami bez sporu s pôvodným tvrdením.

 Keď k tvrdeniu Karol a Jarka sú doma dodáme Ale Karol nie je doma, dostaneme sa do sporu. Takže Karol je doma je skutočným dôsledkom pôvodného výroku.

Logické dôsledky a konverzačné implikatúry

Dôsledok tvrdenia, ktorý <mark>môžeme poprieť</mark> dodatkami bez sporu s pôvodným tvrdením, sa nazýva *konverzačná implikatúra* (H. P. Grice). Nie je skutočným logickým dôsledkom pôvodného tvrdenia.

- Prílohou sú buď zemiaky alebo šalát.
 Ale môžete si dať aj oboje.
 Dodatok popiera exkluzívnosť, ale nie je v spore s tvrdením.
- Prejdete, ak všetky úlohy vyriešite na 100 %.
 Ale nemusíte mať všetko na 100 %, aby ste prešli.
 Dodatok popiera opačnú implikáciu, ale nie je v spore s tvrdením.