Bibliographic Fields

Document Identity

(19)【発行国】 (19) [Publication Office] 日本国特許庁(JP) Japan Patent Office (JP)

(12)【公報種別】 (12) [Kind of Document]

公開特許公報(A) Unexamined Patent Publication (A)

(11) [Publication Number of Unexamined Application] 特開平7-173276
(43) [公開日] Japan Unexamined Patent Publication Hei 7- 173276
(43) [Publication Date of Unexamined Application]

平成7年(1995)7月11日 1995 (1995)July 11 day

Public Availability

83/10 LRY

(43) [Aublication Date of Unexamined Application]

平成7年(1995)7月11日 1995 (1995)July 11 day

Technical

(54)【発明の名称】 (54) [Title of Invention]

ポリカーボネート系樹脂、その製造方法及び樹 MANUFACTURING METHOD AND RESIN IB組成物 COMPOSITION OF POLYCARBONATE RESIN ,

(51) [International Patent Classification, 6th Edition]

83/10 LRY

C08G 64/18 NQA C08G 64/18 NQA

64/20 NPZ 64/20 NPZ 77/448 NUK 77/448 NUK

77/448 NUK 77/448 NUK
C08K 3/00 LRX C08K 3/00 LRX
C08L 69/00 LPQ C08L 69/00 LPQ

【請求項の数】 [Number of Claims]

t mineral transfer of the second of the seco

【出願形態】 [Form of Application]

OL OL

【全頁数】 [Number of Pages in Document]

18

Filing

【審査請求】 [Request for Examination]

未請求 Unrequested

(21)【出願番号】 (21) [Application Number]

特願平5-318403 Japan Patent Application Hei 5-31 8403

1995-7-11 JP1995173276A

(22)【出願日】

平成5年(1993)12月17日

Parties

Applicants

(71)【出願人】

【識別番号】

000183657 【氏名又は名称】

出光石油化学株式会社

【住所又は居所】

東京都千代田区丸の内3丁目1番1号

Inventors

(72)【発明者】

【氏名】

岡本 正哉

【住所又は居所】

千葉県市原市姉崎海岸1番地1 出光石油化学

株式会社内

Agents (74)【代理人】

【弁理士】

【氏名又は名称】

大谷 保

Abstract

(57)【要約】

(修正有)

【目的】

離型性,耐衝撃性,流動性及び剛性に優れたポ リカーボネート系樹脂、その製造方法及び樹脂

組成物を開発する。

【構成】

一般式(I)

(22) [Application Date]

1993 (1993)December 17*

(71) [Applicant]

[Identification Number]

000183657

[Name]

IDEMITSU PETROCHEMICAL CO. LTD. (DB

69-054-8953)

[Address]

Tokyo Chiyoda-ku Marunouchi 3-1-1

(72) [Inventor]

[Name]

Okamoto Masaya

[Address]

Chiba Prefecture Ichihara City Anesaki Kaigan 1 1 Idemitsu

Petrochemical Co. Ltd. (DB 69-054-8953) *

(74) [Attorney(s) Representing All Applicants]

[Patent Attorney]

[Name]

Ohtani Tamotsu

(57) [Abstract]

(There is an amendment.)

[Objective]

manufacturing method and resin composition of polycarbonate resin, which is superior in mold release property, impact resistance, fluidity and stiffness are

developed.

[Constitution]

General Formula (1)

で表されるポリカーボネート-ポリオルガノシロキ サンジブロック共重合体、及び一般式(III)

$$(R'), (R'), (R')$$

So polycarbonate -polyorganosiloxane diblock copolymer, and general formula which are displayed (III)

So under existing of polycarbonate resin, and bivalent phenol

-polyorganosiloxane triblock copolymer which is displayed,

and monohydric phenol whichinclude polycarbonate

polycarbonate oligomer and General Formula (IV)

で表されるポリカーボネート-ポリオルガノシロキ サントリブロック共重合体を含むポリカーボネー ト系樹脂、及び二価フェノール及び一価フェノー ルの存在下で、ポリカーボネートオリゴマーとー

$$H - A - R^{\bullet} \leftarrow \begin{bmatrix} R^{\bullet} \\ i \\ s \\ i \end{bmatrix} = 0 \xrightarrow{R^{\bullet}} \begin{bmatrix} R^{\bullet} \\ i \\ s \\ i \end{bmatrix} = R^{\bullet}$$
 . . . (19)

で表される片末端反応性ポリオルガノシロキサ ン及び一般式(V)

$$H - A - R^{\dagger} - \left(\begin{array}{c} R^{\dagger} \\ \vdots \\ S^{\dagger} \\ \vdots \\ R^{\dagger} \end{array}\right) = \left(\begin{array}{c} R^{\dagger} \\ \vdots \\ S^{\dagger} \\ \vdots \\ R^{\dagger} \end{array}\right) = R^{\dagger} - A - H \qquad \cdots \qquad (V)$$

So single end reactivity polyorganosiloxane and General Formula which are displayed (V)

〔式中の各記号は、明細書に定義した通りであ る。]で表される両末端反応性ポリオルガノシロ キサンとを反応させる該ポリカーボネート系樹 脂の製造方法、更に(A)ポリカーボネート系樹 脂,(B)ポリカーボネート樹脂及び(C)無機充填剤 を特定の割合で配合してなるポリカーボネート 系樹脂組成物である。

both ends reactivity polyorganosiloxane which is displayed with {Each symbol in Formula is, as defined in specification. } manufacturing method, of said polycarbonate resin whichreacts furthermore combining (A) polycarbonate resin, (B) polycarbonate resin and (C) inorganic filler atspecific ratio, it is a polycarbonate resin composition which becomes.

Claims

【特許請求の範囲】

【請求項1】

一般式(I)

[Claim(s)]

[Claim 1]

General Formula (I)

【化1】

-A-R
$$\left\{\begin{array}{c} R' \\ \vdots \\ S \\ R'\end{array}\right\}$$
 $\left\{\begin{array}{c} R' \\ \vdots \\ R'\end{array}\right\}$ $\left\{\begin{array}{c} R' \\ \vdots \\ R'\end{array}\right\}$ $\left\{\begin{array}{c} R' \\ \vdots \\ R'\end{array}\right\}$

[式中、 R^1 及び R^2 は、それぞれハロゲン原子, 炭素数 $1{\sim}8$ のアルキル基又は炭素数 $6{\sim}20$ のアリール基を示し、それぞれ同じであっても異なるものであってもよく、p 及び q は、 $0{\sim}4$ の整数であり、m は $1{\sim}150$ である。 R^3 はハロゲン原子,炭素数 $1{\sim}20$ のアルキル基,炭素数 $6{\sim}20$ のアリール 基又は炭素数 $7{\sim}20$ のアリールアルキル基を示し、r は $0{\sim}5$ の整数である。そして、r は $1{\sim}20$ のアルキレン基又はアルキリデン基,炭素数 $1{\sim}20$ のアルキレン基又はアルキリデン基,炭素数 $1{\sim}20$ のシクロアルキレン基又はシクロアルキリデン基, $1{\sim}20$ のシクロアルキレン基又はシクロアルキリデン基, $1{\sim}20$ のシクロアルキレン基又はシクロアルキリデン

【化2】

で表される結合を示す。

また、 $R^4 \sim R^7$ は、それぞれ炭素数 $1 \sim 8$ のアルキル基又は炭素数 $6 \sim 20$ のアリール基を示し、それぞれ同じであっても異なるものであってもよく、n は $1 \sim 500$ である。

R⁸ は脂肪族及び/又は芳香族を含む二価の有機残基を示し、また R⁹ は炭素数 1~8 のアルキル基又は炭素数 6~20 のアリール基を示す。

そして、A は単結合,-O-又は-NH-を示す。 〕で表されるポリカーボネート-ポリオルガノシロ キサンジブロック共重合体、及び一般式(III) 【化 3】 [Chemical Formula 1]

{In Formula, R¹ and R² show alkyl group of respective halogen atom ,carbon number 1~8 or aryl group of carbon number 6~20, it is same respectively and it ispossible to be something which differs, as for p and q, with the integer of 0 - 4, as for m 1 - 150 is. R³ shows aryl group of alkyl group ,carbon number 6~20 of halogen atom ,carbon number 1~20 or arylalkyl basisof carbon number 7~20, r is integer 0 - 5. And, as for Z, alkylene group of single bond ,carbon number 1~20 or cycloalkylene group or cycloalkylidene group ,-O-,-S-,-SO₂connection or General Formula of alkylidene group ,carbon number 5~20 (II) or (II')}

[Chemical Formula 2]

So connection which is displayed is shown.

In addition, R⁴~R⁷ shows alkyl group of respective carbon number 1~8 or the aryl group of carbon number 6~20, it is same respectively and it is possible tobe something which differs, n is 1 - 500.

R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic, inaddition R⁹ shows alkyl group of carbon number 1~8 or aryl group of the carbon number 6~20.

And, single bond ,-O- or -NH- it shows A.

) With polycarbonate -polyorganosiloxane diblock copolymer, and general formula which are displayed (III)

[Chemical Formula 3]

$$* - A - R = \begin{cases} R & 1 \\ 1 & 1 \\ 1 & 1 \end{cases} = 0$$

$$:: \left\{ \begin{array}{c} C - O & \bigcirc \\ C & O \end{array} \right\} = \left\{ \begin{array}{c} C - O & \bigcirc \\ C & O \end{array} \right\} = \left\{ \begin{array}{c} C - O & \bigcirc \\ C & O \end{array} \right\}$$

[式中、 R^1 及び R^2 は、それぞれハロゲン原子,炭素数 1~8 のアルキル基又は炭素数 6~20 のアリール基を示し、それぞれ同じであっても異なるものであってもよく、p 及び q は、0~4 の整数であり、m は 1~150 である。 R^3 はハロゲン原子,炭素数 1~20 のアルキル基,炭素数 6~20 のアリール 基又は炭素数 7~20 のアリールアルキル基を示し、r は 0~5 の整数である。そして、r は 2~20 のアルキレン基又はアルキリデン基,炭素数 1~20 のアルキレン基又はアルキリデン基,炭素数 1~20 のシクロアルキレン基又はシクロアルキリデン基,1~20 のシクロアルキレン基又はシクロアルキリデン基,1~20 のシクロアルキレン基又はシクロアルキリデン基,1~20 のシクロアルキレン基又はシクロアルキリデン

【化4】

で表される結合を示す。

また、 $R^4 \sim R^7$ は、それぞれ炭素数 $1 \sim 8$ のアルキル基又は炭素数 $6 \sim 20$ のアリール基を示し、それぞれ同じであっても異なるものであってもよく、n は $1 \sim 500$ である。

R⁸ は脂肪族及び/又は芳香族を含む二価の有機残基を示す。

そして、A は単結合、-O-又は-NH-を示す。

{In Formula, R¹ and R² show alkyl group of respective halogen atom, carbon number 1~8 or aryl group of carbon number 6~20, it is same respectively and it ispossible to be something which differs, as for p and q, with the integer of 0 - 4, as for m 1 - 150 is. R³ shows aryl group of alkyl group, carbon number 6~20 of halogen atom, carbon number 1~20 or arylalkyl basisof carbon number 7~20, r is integer 0 - 5. And, as for Z, alkylene group of single bond, carbon number 1~20 or cycloalkylene group or cycloalkylidene group, -O-,-S-,-SO₂connection or General Formula of alkylidene group, carbon number 5~20 (II) or (II')}

[Chemical Formula 4]

So connection which is displayed is shown.

In addition, R⁴~R⁷ shows alkyl group of respective carbon number 1~8 or the aryl group of carbon number 6~20, it is same respectively and it is possible tobe something which differs, n is 1 - 500.

R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic .

And, single bond, -O- or -NH- it shows A.

) With containing polycarbonate -polyorganosiloxane triblock

l hi h i di l d i h l b i

Page 5 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

キサントリブロック共重合体を含有してなるポリカーボネート系樹脂であって、該ポリカーボネート系樹脂の粘度平均分子量が、10,000~50,000であり、かつ該ポリカーボネート系樹脂中のポリオルガノシロキサン含有率が0.1~20重量%であることを特徴とするポリカーボネート系樹脂。

【請求項2】

二価フェノール及び一価フェノールの存在下で、 ポリカーボネートオリゴマーと、一般式(IV)

【化5】

$$H - A - R^{0} \leftarrow \begin{bmatrix} R^{4} & R^{0} \\ S & i - O \end{bmatrix} \begin{bmatrix} R^{0} \\ S & i - R^{0} \end{bmatrix}$$
 (1)

[式中、 R^4 \sim R^7 は、それぞれ炭素数 $1\sim$ 8 のアルキル基又は炭素数 $6\sim$ 20 のアリール基を示し、それぞれ同じであっても異なるものであってもく、n は $1\sim$ 500 である。 R^8 は脂肪族及び/又は芳香族を含む二価の有機残基を示し、また R^9 は炭素数 $1\sim$ 8 のアルキル基又は炭素数 $6\sim$ 20 のアリール基を示す。そして、A は単結合,O-又はP-NH-を示す。P0で表される片末端反応性ポリオルガノシロキサン及び一般式(V1)

【化6】

$$H - A - R = \left\{ \begin{array}{c} R & \bullet \\ \vdots \\ S & i - O \end{array} \right\} \left\{ \begin{array}{c} R & \bullet \\ \vdots \\ S & i - R \end{array} \right\} \left\{ \begin{array}{c} A - A - H \end{array} \right\} \left\{ \begin{array}{c} V \end{array} \right\}$$

【式中、R⁴~R⁷ は、それぞれ炭素数 1~8 のアルキル基又は炭素数 6~20 のアリール基を示し、それぞれ同じであっても異なるものであってもく、n は 1~500 である。R⁸ は脂肪族及び/又は芳香族を含む二価の有機残基を示す。そして、A は単結合,-O-又は-NH-を示す。〕で表される両末端反応性ポリオルガノシロキサンを反応させると共に、一価フェノールを一般式(IV)で表される片末端反応性ポリオルガノシロキサンに対して5倍量(モル比)以上を用い、かつポリカーボネートオリゴマー100 重量部に対して、一般式(IV)及び一般式(V)で表される片末端及び両末端反応性ポリオルガノシロキサンを合計 0.12~35 重番用いることを特徴とするポリカーボネート系樹脂の製造方法。

copolymer which is displayed, with polycarbonate resin whichbecomes, viscosity average molecular weight of said polycarbonate resin, with 10,000 - 50,000, at sametime polyorganosiloxane content in said polycarbonate resin is 0.1 - 20 weight % and polycarbonate resin, which is made feature

[Claim 2]

Under existing of bivalent phenol and monohydric phenol, polycarbonate oligomer and General Formula (IV)

[Chemical Formula 5]

single end reactivity polyorganosiloxane and General Formula which are displayed with {In Formula, R⁴~R⁷ to show alkyl group of respective carbon number 1~8 or aryl group of carbon number 6~20, being same respectively and beingsomething which differs *, n is 1 - 500. R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic, inaddition R⁹ shows alkyl group of carbon number 1~8 or aryl group of the carbon number 6~20. And, single bond, -O-or -NH- it shows A. } (V)

[Chemical Formula 6]

As both ends reactivity polyorganosiloxane which is displayed with {In Formula, R⁴~R⁷ to show alkyl group of respective carbon number 1~8 or aryl group of carbon number 6~20, being same respectively and beingsomething which differs *, n is 1 - 500. R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic. And, single bond, -O- or -NH- it shows A. } it reacts, vis-a-vis the single end reactivity polyorganosiloxane which is displayed monohydric phenol with General Formula (IV) manufacturing method, of the polycarbonate resin which General Formula (IV) and total 0.1 2~35parts by weight uses single end and both ends reactivity polyorganosiloxane which are displayed with General Formula (V) 5 -fold amount making use of above the(mole ratio), at same time vis-a-vis polycarbonate oligomer 100parts by weight, makes feature

JP1995173276A

【請求項3】

ポリカーボネート系樹脂が請求項 1 記載のポリカーボネート系樹脂であることを特徴とする請求項 2 記載のポリカーボネート系樹脂の製造方法。

【請求項4】

(A) 請求項 1 記載のポリカーボネート系樹脂 10~95 重量%、(B)ポリカーボネート樹脂 0~80 重量%及び(C)無機充填剤 5~60 重量%からなることを特徴とするポリカーボネート系樹脂組成物。

Specification

【発明の詳細な説明】

[0001]

【産業上の利用分野】

本発明はポリカーボネート系樹脂、その製造方法及び樹脂組成物に関する。

さらに詳しくは、離型性,耐衝撃性,流動性及び剛性に優れたポリカーボネート系樹脂、その製造方法及び樹脂組成物に関するものである。

[0002]

【従来の技術及び発明が解決しようとする課題】

ポリカーボネート樹脂(以下、PC と略すことがある。)は、機械的強度,電気的特性,透明性などに優れ、エンジニアリングプラスチックとして、電気・電子機器分野,自動車分野等様々な分野において幅広く利用されている。

このような特性を有するポリカーボネート樹脂は、剛性及び寸法安定性を向上させるために、無機充填剤としてガラス繊維を添加したガラス繊維強化ポリカーボネート樹脂が知られている

しかしながら、ポリカーボネート樹脂は、ガラス 繊維を添加することによって、成形時の離型性 が大幅に低下する問題がある。

従来、このガラス繊維をポリカーボネート樹脂に添加することによって低下する成形時の離型性を向上させる方法として、ポリオルガノシロキサン(シリコーンオイル)を少量添加する技術が開発されている。

しかし、この方法では、離型性の向上は認められるが、未だ十分満足の行くものではない。

そして、シリコーンオイルを多量に添加すると、

[Claim 3]

It is a polycarbonate resin which polycarbonate resin states in Claim 1 and manufacturing method. of the polycarbonate resin which is stated in Claim 2 which is made feature

[Claim 4]

polycarbonate resin composition. which consists of polycarbonate resin 10~95weight %, (B) polycarbonate resin 0~80weight % and (C) inorganic filler 5~60weight % whichare stated in (A) Claim I and makes feature

[Description of the Invention]

[0001]

[Field of Industrial Application]

this invention regards manufacturing method and resin composition of polycarbonate resin, .

Furthermore details are manufacturing method of polycarbonate resin, which is superior in mold release property, impact resistance, fluidity and stiffness and something regarding resin composition.

[0002]

[Prior Art And Problems To Be Solved By The Invention]

polycarbonate resin (Below, PC abbreviates is.) is superior in mechanical strength , electrical property , transparency , etc widely is utilized as engineering plastic , in various field such as electricity * electronic equipment field ,automobile field .

As for polycarbonate resin which possesses this kind of characteristic, stiffness and the dimensional stability glass fiber-reinforced polycarbonate resin which adds glass fiber in order to improve, as inorganic filler is known.

But, as for polycarbonate resin, mold release property when forming greatly is a problem which decreases glass fiber is added depending upon.

Until recently, this glass fiber technology which polyorganosiloxane (silicone oil) trace addition isdone is developed mold release property when forming which decreases it adds to polycarbonate resin with as method which improves.

But but, with this method, as for improvement of mold release property it isrecognized, it is not something which still fully it is satisfied.

When and, silicone oil is added to large amount, there is a bl h h k di f i b diffi l

JP1995173276A

樹脂の混練が困難となる問題がある。

また、例えば、特開平 2-173061 号公報には、ポリオルガノシロキサンとポリカーボネート樹脂との共重合体とガラス繊維をブレンドする技術が開示されており、離型性の向上がみられるが、さらに離型性を向上させた技術の開発が強く要望されている。

[0003]

【課題を解決するための手段】

そこで、本発明者は、上記の状況に鑑み、従来 法の欠点を解消し、離型性,耐衝撃性,流動性及 び剛性に優れたポリカーボネート系樹脂、その 製造方法及び樹脂組成物を開発すべく、鋭意 研究を重ねた。

その結果、ポリカーボネート(A)とポリオルガノシロキサン(B)とを共重合して得られるポリカーボネート-ポリオルガノシロキサン共重合体であるA・B型のジブロックポリマー及びA・B・A型のトリブロックポリマーを含有したポリカーボネート系樹脂を用いることによって、目的とする離型性がさらに向上することを見出した。

本発明はかかる知見に基づいて完成したものである。

[0004]

すなわち、本発明は、一般式(I)

[0005]

【化7】

 $(R^{2}), \qquad (R^{2}), \qquad (R^{2}),$

* - A - R *
$$\left\{\begin{array}{c} R^4 \\ i \\ S \\ R^6 \end{array}\right\}$$
 i - O $\left\{\begin{array}{c} R^6 \\ i \\ R^7 \end{array}\right\}$ · · · (1)

[0006]

〔式中、 R^1 及び R^2 は、それぞれハロゲン原子, 炭素数 1~8 のアルキル基又は炭素数 6~20 のア リール基を示し、それぞれ同じであっても異なる problem where the kneading of resin becomes difficult.

In addition, technology which blends has been disclosed copolymer of polyorganosiloxane and polycarbonate resin and glass fiber in for example Japan Unexamined Patent Publication Hei 2- 173061disclosure, can see theimprovement of mold release property but, furthermore mold release property development of the technology which improves is strongly demanded.

[0003]

[Means to Solve the Problems]

Then, in order that you consider this inventor, to above-mentioned condition, cancel deficiency of prior art method, you develop manufacturing method and the resin composition of polycarbonate resin, which is superior in mold release property, impact resistance, fluidity and stiffness, the diligent research was repeated.

As a result, polycarbonate (A) with copolymerizing polyorganosiloxane (B), it uses diblock polymer of A^*B type which is a polycarbonate -polyorganosiloxane copolymer which is acquired and the polycarbonate resin which contains triblock polymer of A^*B^*A type mold release property which is made objective with , furthermore improves discovered .

this invention is something which is completed on basis of this knowledge .

[0004]

As for namely, this invention, General Formula (I)

[0005]

[Chemical Formula 7]

{In Formula, R¹ and R² show alkyl group of respective halogen atom ,carbon number 1~8 or aryl group of carbon number 6~20, it is same respectively

ものであってもよく、p 及び q は、0-4 の整数であり、m は 1-150 である。 R^3 はハロゲン原子,炭素数 1-20 のアルキル基,炭素数 6-20 のアリール基又は炭素数 7-20 のアリールアルキル基を示し、r は 0-5 の整数である。そして、Z は、単結合,炭素数 1-20 のアルキレン基又はアルキリデン基,炭素数 5-20 のシクロアルキレン基又はシクロアルキリデン基,-O-, -S-, $-SO_2$ -結合もしくは一般式(Π) あるいは(Π)

[0007]

【化8】

-c- ···(II,)

[0008]

で表される結合を示す。

また、 $R^4 \sim R^7$ は、それぞれ炭素数 $1 \sim 8$ のアルキル基又は炭素数 $6 \sim 20$ のアリール基を示し、それぞれ同じであっても異なるものであってもよく、n は $1 \sim 500$ である。

R⁸ は脂肪族及び/又は芳香族を含む二価の有機残基を示し、また R⁹ は炭素数 1~8 のアルキル基又は炭素数 6~20 のアリール基を示す。

そして、A は単結合、-O-又は-NH-を示す。

〕で表されるポリカーボネート-ポリオルガノシロ キサンジブロック共重合体、及び一般式(III)

[0009]

【化9】

and it ispossible to be something which differs, as for p and q, with the integer of 0 - 4, as for m 1 - 150 is. R³ shows aryl group of alkyl group, carbon number 6~20 of halogen atom, carbon number 1~20 or arylalkyl basisof carbon number 7~20, r is integer 0 - 5. And, as for Z, alkylene group of single bond, carbon number 1~20 or cycloalkylene group or cycloalkylidene group, -O-,-S-,-SO₂connection or General Formula of alkylidene group, carbon number 5~20 (II) or (II')}

[0007]

[Chemical Formula 8]

[0008]

So connection which is displayed is shown.

In addition, R⁴-R⁷ shows alkyl group of respective carbon number 1~8 or the aryl group of carbon number 6~20, it is same respectively and it is possible tobe something which differs, n is 1 - 500.

R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic, inaddition R⁹ shows alkyl group of carbon number 1~8 or aryl group of the carbon number 6~20.

And, single bond, -O- or -NH- it shows A.

) With polycarbonate -polyorganosiloxane diblock copolymer , and general formula which are displayed (III)

[0009]

[Chemical Formula 9]

$$(R^3), \qquad (R^1), \qquad (R^2), \qquad (R^3), \qquad ($$

$$* - A - R^{ a}$$
 $\left\{\begin{array}{c} R^{ a} \\ i \\ S \\ i \\ R^{ b} \end{array}\right\} = \left\{\begin{array}{c} R^{ a} \\ i \\ S \\ i \\ R^{ 7} \end{array}\right\} = A - **$

[0010]

[式中、 R^1 及び R^2 は、それぞれハロゲン原子, 炭素数 $1{\sim}8$ のアルキル基又は炭素数 $6{\sim}20$ のアリール基を示し、それぞれ同じであっても異なるものであってもよく、p 及び q は、 $0{\sim}4$ の整数であり、m は $1{\sim}150$ である。 R^3 はハロゲン原子,炭素数 $1{\sim}20$ のアルキル基,炭素数 $6{\sim}20$ のアリール 基又は炭素数 $7{\sim}20$ のアリールアルキル基を示し、r は $0{\sim}5$ の整数である。そして、Z は、単結合, 炭素数 $1{\sim}20$ のアルキレン基又はアルキリデン基,炭素数 $5{\sim}20$ のシクロアルキレン基又はシクロアルキリデン基, $0{\sim}3$ 会社のよくは一般式($11{\sim}3$) のるいは($11{\sim}3$)

[0011]

【化 10】

-c- · · · · (II)

[0012]

で表される結合を示す。

[0010]

{In Formula, R¹ and R² show alkyl group of respective halogen atom ,carbon number 1~8 or aryl group of carbon number 6~20, it is same respectively and it ispossible to be something which differs, as for p and q, with the integer of 0 - 4, as for m 1 - 150 is. R³ shows aryl group of alkyl group ,carbon number 6~20 of halogen atom ,carbon number 1~20 or arylalkyl basis of carbon number 7~20, r is integer 0 - 5. And, as for Z, alkylene group of single bond ,carbon number 1~20 or cycloalkylene group or cycloalkylidene group ,-O-,-S-,-SO₂connection or General Formula of alkylidene group ,carbon number 5~20 (11) or (11')}

[0011]

[Chemical Formula 10]

[0012]

So connection which is displayed is shown.

In addition, R⁴-R⁷ shows alkyl f i b b l 8 h l f

Page 10 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

ル基又は炭素数 6~20 のアリール基を示し、それぞれ同じであっても異なるものであってもよく、nは 1~500 である。

R⁸ は脂肪族及び/又は芳香族を含む二価の有 機残基を示す。

そして、A は単結合,-O-又は-NH-を示す。

〕で表されるポリカーボネート-ポリオルガノシロキサントリブロック共重合体を含有してなるポリカーボネート系樹脂であって、該ポリカーボネート系樹脂の粘度平均分子量が、10,000~50,000であり、かつ該ポリカーボネート系樹脂中のポリオルガノシロキサン含有率が0.1~20重量%であることを特徴とするポリカーボネート系樹脂を提供するものである。

また、本発明は、二価フェノール及び一価フェノールの存在下で、ポリカーボネートオリゴマーと、一般式(IV)

[0013]

【化11】

$$H - A - R^{\theta} - \left\{ \begin{array}{c} R^{4} \\ \vdots \\ S \\ R^{5} \end{array} \right\} = \left\{ \begin{array}{c} R^{\theta} \\ \vdots \\ R^{7} \end{array} \right\}$$

[0014]

[式中、 $R^4 \sim R^7$ は、それぞれ炭素数 $1\sim 8$ のアルキル基又は炭素数 $6\sim 20$ のアリール基を示し、それぞれ同じであっても異なるものであってもく、n は $1\sim 500$ である。 R^8 は脂肪族及び/又は芳香族を含む二価の有機残基を示し、また R^9 は炭素数 $1\sim 8$ のアルキル基又は炭素数 $6\sim 20$ のアリール基を示す。そして、A は単結合,-O-又は-NH-を示す。-D-アは、-NH-を示す。-D-アルガノシロキサン及び一般式(-D)

[0015]

【化 12】

 $H - A - R^{8} \leftarrow \begin{bmatrix} R^{4} & R^{8} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ R^{8} & - A - H & \cdots & (V) \end{bmatrix}$

[0016]

[式中、R⁴~R⁷は、それぞれ炭素数 1~8 のアル ・・・ サー・・・・ 6 20 ー・・・・ サー・・ group of respective carbon number 1~8 or the aryl group of carbon number 6~20, it is same respectively and it is possible tobe something which differs, n is 1 - 500.

R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic.

And, single bond, -O- or -NH- it shows A.

) With containing polycarbonate -polyorganosiloxane triblock copolymer which is displayed, with polycarbonate resin whichbecomes, viscosity average molecular weight of said polycarbonate resin , with 10,000 - 50,000, at sametime polyorganosiloxane content in said polycarbonate resin is 0.1 - 20 weight % and it is somethingwhich offers polycarbonate resin which is made feature.

In addition, as for this invention, under existing of bivalent phenol and monohydric phenol, polycarbonate oligomer and General Formula (IV)

[0013]

[Chemical Formula 11]

single end reactivity polyorganosiloxane and General Formula which are displayed with {In Formula, R⁴-R⁷ to show alkyl group of respective carbon number 1~8 or aryl group of carbon number 6~20, being same respectively and beingsomething which differs *, n is 1 - 500. R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic, inaddition R⁹ shows alkyl group of carbon number 1~8 or aryl group of the carbon number 6~20. And, single bond, -O-or -NH- it shows A. } (V)

[0015]

[Chemical Formula 12]

[0016]
As both ends reactivity polyorganosiloxane which is

4 /

7

dildih{IFIR

Page 11 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

キル基又は炭素数 6~20 のアリール基を示し、 それぞれ同じであっても異なるものであっても く、n は 1~500 である。R⁸ は脂肪族及び/又は芳 香族を含む二価の有機残基を示す。そして、A は単結合、-O-又は-NH-を示す。]で衷される両 末端反応性ポリオルガノシロキサンを反応させ ると共に、一価フェノールを一般式(IV)で表され る片末端反応性ポリオルガノシロキサンに対し て5倍量(モル比)以上を用い、かつポリカーボネ ートオリゴマー100 重量部に対して、一般式(IV) 及び一般式(V)で表される片末端及び両末端反 応性ポリオルガノシロキサンを合計 0.12~35 重 **量部用いることを特徴とするポリカーボネート系** 樹脂の製造方法を提供するものである。

さらに、本発明は、(A)上記ポリカーボネート系 樹脂 10~95 重量%、(B)ポリカーボネート樹脂 0~80 重量%及び(C)無機充填剤 5~60 重量%か らなることを特徴とするポリカーボネート系樹脂 組成物を提供するものである。

[0017]

先ず、本発明のポリカーボネート系樹脂は、一 般式(I)

【化 13】

[0018]

displayed with {In Formula, R⁴~R⁷ to show alkyl group of respective carbon number 1~8 or aryl group of carbon number 6~20, being same respectively and beingsomething which differs *, n is 1 - 500. R⁸ shows organic residue of divalent which includes aliphatic and/or aromatic. And, single bond,-O- or -NH- it shows A. } it reacts, vis-a-vis the single end reactivity polyorganosiloxane which is displayed monohydric phenol with General Formula (IV) it is somethingwhich offers manufacturing method of polycarbonate resin which General Formula (IV) and total 0.1 2~35parts by weight uses single end and both ends reactivity polyorganosiloxane which are displayed with General Formula (V) 5-fold amount making use of above (mole ratio), at same time vis-a-vis the polycarbonate oligomer 100parts by weight, makes feature.

Furthermore, it is something which offers polycarbonate resin composition where this invention consists of (A) above-mentioned polycarbonate resin 10~95weight %, (B) polycarbonate resin 0~80weight % and (C) inorganic filler 5~60weight % and makes feature.

[0017]

First, as for polycarbonate resin of this invention, General Formula (1)

[8100]

[Chemical Formula 13]

$$(R^3), \qquad (R^3), \qquad ($$

$$* - A - R^{8} + \left[\begin{array}{c} R^{4} \\ S \\ R^{5} \end{array} \right] - O + \left[\begin{array}{c} R^{6} \\ S \\ R^{7} \end{array} \right] - R^{9} + \cdots + (1)$$

[0019]

で表されるポリカーボネート-ポリオルガノシロキ サンジブロック共重合体(以下、PC-PDMS 共重 合体 I と略すことがある。)、及び一般式(III)

[0020]

【化 14】

[0019]

So polycarbonate -polyorganosiloxane diblock copolymer which is displayed (Below, PC -PDMS copolymer I abbreviates is.), and general formula (III)

[0020]

[Chemical Formula 14]

$$\begin{pmatrix}
(R^3), & (R^1), & (R^2), \\
 & & & \\
0 & & & \\
\end{pmatrix} = *$$

$$* - A - R^{8} \leftarrow \begin{bmatrix} R^{4} \\ S & i - O \end{bmatrix} \begin{bmatrix} R^{8} \\ S & i - R^{8} - A - ** \\ R^{5} \end{bmatrix}$$

$$\begin{array}{c} ** \left\{ \begin{array}{c} C \\ C \end{array} \right\} = \begin{array}{c} (R^{1}), \quad (R^{2}), \\ C \end{array} = \begin{array}{c} (R^{2}), \\ C \end{array} = \begin{array}{c} (R^{3}), \\ C \end{array} = \begin{array}$$

[0021]

で表されるポリカーボネート-ポリオルガノシロキサントリブロック共重合体(以下、PC-PDMS 共重合体 II と略すことがある。)を含有することを特徴とする。

ここで、一般式(I)で表される PC-PDMS 共重合体中、 R^1 及び R^2 は、それぞれハロゲン原子(塩素原子,臭素原子,フッ素原子,ヨウ素原子)、炭素数 1~8 のアルキル基(例えば、メチル基,アミル基,プロピル基,n-ブチル基,イソブチル基,アミル基,イソアミル基,ヘキシル基など)又は炭素数6~20、好ましくは 6~18 のアリール基(例えば、フェニル基,トリル基,キシリル基,ナフチル基)を示し、それぞれ同じであっても異なるものであってもよく、p 及び q は、0~4 の整数であり、m は1~150、好ましくは 3~140、特に好ましくは 5~130 である。

そして、Z は、単結合,炭素数 1~20、好ましくは 2~18 のアルキレン基又はアルキルデン基(例えば、メチレン基,エチレン基,プロピレン基,ブチレン基,ペンテリレン基,ヘキシレン基,エチリデン基,イソプロピリデン基など)、炭素数 5~20 のシクロアルキレン基又はシクロアルキリデン基(例えば、シクロペンチレン基,シクロペキシレン基,シクロペンチリデン基など)、-O-、-S-、-SO₂ -、-CO-結合もしくは一般式(II)あるいは(II)

[0022]

【化 15】

[0021]

So polycarbonate -polyorganosiloxane triblock copolymer (Below, PC -PDMS copolymer II abbreviates is.) which is displayed is contained makes feature.

Here, in PC -PDMS copolymer which is displayed with General Formula (I), R¹ and R², respective halogen atom (chlorine atom ,bromine atom ,fluorine atom ,iodine atom), alkyl group of carbon number 1~8 (Such as for example methyl group ,ethyl group ,propyl group ,n- butyl group ,isobutyl group ,amyl group ,isoamyl group ,hexyl group) or show aryl group (for example phenyl group ,tolyl group ,xylyl group ,naphthyl group) of carbon number 6~20, preferably 6~18, it is same respectively and it ispossible to be something which differs, as for p and q , with the integer of 0 - 4, as for m 1 - 150, it is a preferably 3~140, particularly preferably 5~130.

And, as for Z, alkylene group of single bond ,carbon number 1~20, preferably 2~18 or [arukiruden] basis (Such as for example methylene group ,ethylene group ,propylene group ,butylene group ,pentylene group ,hexylene group ,ethylidene group ,isopropylidene group), cycloalkylene group or cycloalkylidene group of carbon number 5~20 (Such as for example cyclopentylene group ,cyclohexylene group ,cyclopentylidene group ,cyclohexylidene group), -O-, -S-, -SO₂-, -CO- connection or General Formula (II) or (II')

[0022]

[Chemical Formula 15]

JP1995173276A

[0023]

で表される結合を示す。

[0024]

また、 $R^4 \sim R^7$ は、それぞれ炭素数 $1 \sim 8$ のアルキル基(例えば、メチル基,エチル基,プロピル基,nブチル基,イソブチル基,アミル基,イソアミル基,へキシル基など)又は炭素数 $6 \sim 20$ 、好ましくは $6 \sim 18$ のアリール基(例えば、フェニル基,トリル基,キシリル基,ナフチル基)を示し、それぞれ同じであっても異なるものであってもい。

そして、n は 1~500、好ましくは 51~500、より好ましくは 101~500 である。

そして、 R^8 は脂肪族及び/又は芳香族を含む二価の有機残基(例えば、メチレン基,エチレン基, プロピレン基,ブチレン基,ペンテリレン基,へキシレン基,エチリデン基,イソプロピリデン基,シクロペンチレン基,シクロペキシリデン基など)や、また一般式(VI),(VI') あるいは(VI")

[0025]

【化 16】

CH, -CH, -CH, -(SI)

[0026]

「式中、(A)及び(Si)は、それぞれ一般式(I)及び 「(III) ー A ー Si [0026]

o-allyl phenol residue ,p- vinyl phenol residue ,eugenol id hi hi di l d i h {R i G

Page 14 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

[0023]

So connection which is displayed is shown.

[0024]

In addition, R⁴-R⁷ alkyl group of respective carbon number 1~8 (Such as for example methyl group ,ethyl group ,propyl group ,n- butyl group ,isobutyl group ,amyl group ,isoamyl group ,hexyl group) or shows aryl group (for example phenyl group ,tolyl group ,xylyl group ,naphthyl group) of carbon number 6~20, preferably 6~18, it is same respectively and it issomething which differs.

And, n 1 - 500, is preferably $51\sim500$, more preferably $101\sim500$.

And, as for R⁸ organic residue of divalent which includes aliphatic and/or aromatic (Such as for example methylene group ,ethylene group ,propylene group ,butylene group ,pentylene group ,hexylene group ,ethylidene group ,isopropylidene group ,cyclopentylene group ,cyclohexylene group ,cyclopentylidene group ,cyclohexylene group) and, in addition General Formula (VI), (VI') or (VI")

[0025]

[Chemical Formula 16]

一般式(III) 中の A 及び Si と結合することを示す。〕で表される o-アリルフェノール残基,p-ビニルフェノール残基,オイゲノール残基などを示す。

さらに、 R^9 は炭素数 1~8 のアルキル基(例えば、メチル基,エチル基,プロピル基,n-ブチル基,イソブチル基,アミル基,イソアミル基(へキシル基など)又は炭素数 6~20 のアリール基(例えば、フェニル基,トリル基,キシリル基,ナフチル基など)を示す。

そして、A は単結合,-O-又は-NH-を示す。

[0027]

前記一般式(I)で表される PC-PDMS 共重合体 I は、主鎖が一般式(VII)

[0028]

【化17】

[0029]

【式中、 R^1 , R^2 ,Z,p 及び q は、前記と同じである。〕で表される繰返し単位 I のポリカーボネート (PC)部(A)と、一般式(VIII)

[0030]

【化 18】

$$-A - R^{6} - \left\{ \begin{array}{c} R^{4} \\ \vdots \\ S \\ R^{5} \end{array} \right\} - O \rightarrow \left\{ \begin{array}{c} R^{6} \\ \vdots \\ R^{7} \end{array} \right\} - R$$

[0031]

〔式中、R⁴~R⁷,R⁸,R⁹,A 及び n は、前配と同じである。〕で表される構造単位 II の片末端が封止されたポリオルガノシロキサン(PDMS)部(B)とから構成される A·B 型のジブロックポリマーである。

そして、一般式(VII) で表される繰返し単位 I のPC 部の片末端は、一般式(IX)

residue etc which is displayed with {Respective General Formula (1) and it connects in Formula, (A) and (Si), with A in general formula (III) and Si it shows.}

Furthermore, R⁹ alkyl group of carbon number 1~8 (Such as for example methyl group ,ethyl group ,propyl group ,n- butyl group ,isobutyl group ,amyl group ,isoamyl group ,hexyl group) or shows aryl group (Such as for example phenyl group ,tolyl group ,xylyl group ,naphthyl group) of carbon number 6~20.

And, single bond, -O- or -NH- it shows A.

[0027]

As for PC -PDMS copolymer I which is displayed with aforementioned General Formula (I), main chain General Formula (VII)

[0028]

[Chemical Formula 17]

polycarbonate (PC) section of repeat unit I which is displayed with {In Formula, R¹,R²,Z,p and q is same as description above. } (A) with, General Formula (VIII)

[0030]

[Chemical Formula 18]

[0031]

It is a diblock polymer of A* B type which configuration is done from polyorganosiloxane (PDMS) section (B) where single end of structural unit II which is displayed with {In Formula, R⁴-R⁷,R⁸,R⁹,A and n is same as description above. } is sealed.

And, as for single end of PC section of repeat unit I which is displayed with General Formula (VII), General Formula

Page 15 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

PC 部の片末端は、一般式(IX)

[0032]

【化 19】

(R *),

[0033]

で表される一価フェノールに由来する末端基が結合して封止されている。

[0034]

一方、一般式(III) で表される PC-PDMS 共重合体 II 中、R¹~R⁸,m,n,p,q 及び r は、PC-PDMS 共重合体 I の場合と同じである。

この PC-PDMS 共重合体 II は、主鎖が PDMS 部(B)を構成する一般式(X)

[0035]

【化20】

 $-A-R^{8} \leftarrow \begin{bmatrix} R^{4} \\ I \\ S \\ I \end{bmatrix} - O \rightarrow \begin{bmatrix} R^{8} \\ I \\ S \\ I \end{bmatrix} - R^{8}$

(IX)

[0032]

[Chemical Formula 19]

[0033]

So endgroup which derives in monohydric phenol which is displayed connecting, it is sealed.

Here, R³ halogen atom (chlorine atom ,bromine atom ,fluorine atom ,iodine atom), alkyl group of carbon number 1~20 (Such as for example methyl group ,ethyl group ,propyl group ,n- butyl group ,t- butyl group ,isobutyl group ,t- amyl group ,isoamyl group ,n- hexyl group ,t- octyl group ,nonyl group), aryl group of carbon number 6~20, preferably 6~18 (Such as for example phenyl group ,tolyl group ,xylyl group ,naphthyl group) or shows arylalkyl basic (;al and;al such as -dimethyl benzyl group) of carbon number 7~20 in endgroup which is displayed with General Formula (1X), r is integer 0 - 5.

[0034]

In PC -PDMS copolymer II which on one hand, is displayed with general formula (III), the R¹-R⁸,m,n,p,q and r is same as case of PC -PDMS copolymer I.

As for this PC -PDMS copolymer II, main chain General Formula which PDMS section (B) the configuration is done (X)

[0035]

[Chemical Formula 20]

[0036]

[式中、R⁴~R⁸,A 及びnは、前配と同じである。] で表される構造単位 III と、その両端に、前配 一般式(VII)

[0037]

【化21】

[0036]

In structural unit III and both ends which are displayed with {In Formula, R⁴-R⁸,A and n is same as description above. }, theaforementioned General Formula (VII)

[0037]

[Chemical Formula 21]

JP1995173276A

[0038]

[式中、 R^1 , R^2 ,Z,p及び qは、前記と同じである。]で表される繰返し単位 I の PC部(A)が結合された $A \cdot B \cdot A$ 型のトリブロックポリマーである。

[0039]

前記 PC-PDMS 共重合体 I 及び II は、通常その 製造過程においてホモ PC(つまり繰り返し単位 I のみを主鎖とする単独重合体)が生成する。

したがって、本発明のポリカーボネート系樹脂 は、ホモ PC とのブレンドであって、PC-PDMS 共 重合体 I 及び II を含有してなるものである。

このポリカーボネート系樹脂の粘度平均分子量は、10,000~50,000、好ましくは 12,000~40,000 である。

粘度平均分子量が 10,000 未満では、機械的強 度が低下する。

また、50,000 を超えると、重合時の溶液粘度が高くなり、製造上好ましくない。

また、射出成形も困難となる。

かつ、ポリカーボネート系樹脂中のポリオルガノシロキサン含有率が 0.1~20 重量%、好ましくは 0.2~18 重量%である。

含有率が 0.1 重量%未満では、離型性の向上が 見られない。

また、20 重量%を超えると、耐熱性が低下して 好ましくない。

[0040]

このようなPC-PDMS共重合体I及びIIは、種々の手法によって製造することができる。

好ましい製造方法としては、以下の方法が挙げられる。

この好ましい方法においては、二価フェノール 及び一価フェノールの存在下で、ポリカーボネ ートオリゴマー(以下、PC オリゴマーと略すこと がある。)と、一般式(IV)

[0041]

(11V) · · ·

[0038]

It is a triblock polymer of A* B* A type where PC section (A) of repeat unit I which is displayed with {In Formula, R^I,R<sup>Z, p and q is same as description above. } is connected.

[0039]

homo PC (In other words homopolymer which designates only repeat unit I as main chain) forms aforementioned PC -PDMS copolymer I and II, usually in production process.

Therefore, as for polycarbonate resin of this invention, with blend of homo PC, containing PC-PDMS copolymer I and II, it is something which becomes.

viscosity average molecular weight of this polycarbonate resin, 10,000 - 50,000, is preferably 12,000-40,000.

viscosity average molecular weight decreases under 10,000, mechanical strength.

In addition, when it exceeds 50,000, solution viscosity when polymerizing becomes high, in regard to production is not desirable.

In addition, also injection molding becomes difficult.

At same time, polyorganosiloxane content in polycarbonate resin is 0.1 - 20 weight %, preferably 0.2~18weight %.

Under 0.1 weight %, improvement of mold release property you cannot see content.

In addition, when it exceeds 20 weight %, heat resistance decreasing, it is notdesirable.

[0040]

It can produce this kind of PC -PDMS copolymer I and II, with various technique.

As desirable manufacturing method, you can list method below.

Regarding this preferred method, under existing of bivalent phenol and monohydric phenol, the polycarbonate oligomer (Below, PC oligomer abbreviates is.) with, General Formula (IV)

[0041]

【化22】

$$H - A - R^{\theta} = \begin{bmatrix} R^{\theta} & R^{\theta} \\ S & i - O \end{bmatrix} \begin{bmatrix} R^{\theta} & \vdots \\ S & i - R^{\theta} \end{bmatrix}$$
 (1V)

[0042]

[式中、 $R^4 \sim R^7$, R^8 , R^9 , A 及び n は、前配と同じである。]で表される片末端反応性ポリオルガノシロキサン(以下、片末端反応性 PDMS と略すことがある。)及び一般式(V)

[0043]

【化23】

$$H - A - R^{8} \leftarrow \begin{bmatrix} R^{4} \\ i \\ S \\ i \end{bmatrix} = 0 \xrightarrow{R^{8}} \begin{bmatrix} R^{8} \\ i \\ R^{7} \end{bmatrix} = R^{8} - A - H \qquad \cdots (V)$$

[0044]

[式中、 $R^4 \sim R^7$, R^8 , A 及び n は、前記と同じである。]で表される両末端反応性 PDMS と略すことがある。)を反応させると共に、一価フェノールを一般式(IV)で表される片末端反応性 PDMS に対して 5 倍量(モル比)以上、好ましくは 10 倍量、より好ましくは 20 倍量以上を用い、かつ PC オリゴマー100 重量部に対して、上記片末端反応性 PDMS 及び両末端反応性 PDMS を合計 $0.12\sim35$ 重量部、好ましくは $0.2\sim33$ 重量部を用いることによって PC-PDMS 共重合体 I 及び II を製造することができる。

上記の方法によれば、前述した本発明のポリカーボネート系樹脂を効率よく製造することができ、さらに PC オリゴマー,一価フェノール及び二価フェノールを適宜選択することによって他の種類の PC-PDMS 共重合体をも製造することができる。

本発明で用いられる片末端反応性 PDMS と両末端反応性 PDMS の使用割合は、片末端反応性 PDMS1~99 重量%、好ましくは 5~99 重量% より好ましくは 10~99 重量%と、両末端反応性 PDMS99~1 重量%、好ましくは 95~1 重量%、より好ましくは 90~1 重量%の比率で用いられる。

片末端反応性 PDMS が 1 重量%未満では、離

[0042]

single end reactivity polyorganosiloxane which is displayed with {In Formula, R⁴-R⁷,R⁸,R⁹,A and n is same as description above. } (Below, single end reactive PDMS abbreviates is.) and General Formula (V)

[0043]

[Chemical Formula 23]

[Chemical Formula 22]

As both ends reactivity polyorganosiloxane (Below, both ends reactive PDMS abbreviates is.) which is displayed with {In Formula, R⁴~R⁷,R⁸,A and n is same as description above.} it reacts, vis-a-vis single end reactive PDMS which is displayed monohydric phenol with General Formula (IV) theabove-mentioned single end reactive PDMS and both ends reactive PDMS total 0.1 2~35parts by weight, preferably 0.2~33 parts by weight is used 5-fold amount makinguse of above (mole ratio) and above preferably 10-fold amount, more preferably 20 volumes, at same time vis-a-vis PC oligomer 100parts by weight, PC-PDMS copolymer I and II can be produced with.

According to above-mentioned method, produces polycarbonate resin of the this invention which is mentioned earlier efficiently to be possible, also PC-PDMS copolymer of other types can be produced furthermore the PC oligomer, monohydric phenol and bivalent phenol are selected appropriately with.

portion used of single end reactive PDMS and both ends reactive PDMS which are used with this invention, issued with ratio of single end reactive PDMS 1~99weight %, preferably 5~99weight %, more preferably 10~99weight % and both ends reactive PDMS 99~1weight %, preferably 95~1weight %, more preferably 90~1weight %.

single end reactive PDMS under 1 weight %, improved effect f ld l i d i bl li l

Page 18 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

型性の向上効果が少なく好ましくない。

[0045]

ここで、PC-PDMS 共重合体 I 及び II の製造に 供される PC オリゴマーは、一般式(VII) で表わ される繰返し単位 I を有し、溶剤法(界面重縮合 法)、すなわち塩化メチレンなどの有機溶剤中で 公知の酸受容体、一価フェノール(末端停止剤) の存在下、一般式(XI)

[0046]

【化24】

$$(R^{1}), (R^{2}),$$
 $H \circ -(XI)$

[0047]

[式中、R¹,R²,Z,p 及び q は、前記ど同じである。]で表わされる二価フェノールとホスゲンのようなカーボネート前駆体との反応、又は二価フェノールと炭酸ジエステル(例えば、ジフェニルカーボネートのようなカーボネート前駆体)とのエステル交換反応によって製造することができる。

上記一般式(XI)で表わされる二価フェノールとしては、様々なものがある。

具体的には、ビス(4-ヒドロキシフェニル)アルカ ンとして、例えば、ビス(4-ヒドロキシフェニル)メタ ン[ビスフェノール F];2,2-ビス(4-ヒドロキシフェニ ル)フェニルメタン;ビス(4-ヒドロキシフェニル)ナ フチルメタン;ビス(4-ヒドロキシフェニル)-(4-イソ プロピルフェニル)メタン;ビス(3,5-ジクロロ-4-ヒド ロキシフェニル)メタン;ビス(3,5-ジメチル-4-ヒドロ キシフェニル)メタン;1,1-ビス(4-ヒドロキシフェニ ル)エタン;1-ナフチル-1,1-ビス(4-ヒドロキシフェ ニル)エタン;1-フェニル-1,1-ビス(4-ヒドロキシフェ ニル)エタン;1,2-ビス(4-ヒドロキシフェニル)エタ ン;2,2-ビス(4-ヒドロキシフェニル)プロパン〔通 称:ビスフェノール A];2-メチル-1,1-ビス(4-ヒドロ キシフェニル)プロパン;2,2-ビス(4-ヒドロキシフェ ニル-1-メチルフェニル)プロパン;2,2-ビス(3,5-ジ メチル-4-ヒドロキシフェニル)プロパン;1-エチル -1,1-ビス(4-ヒドロキシフェニル)プロパン;2,2-ビ ス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパ ン;2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プ ロパン;2,2-ビス(3-クロロ-4-ヒドロキシフェニル) プロパン;2,2-ビス(3-メチル-4-ヒドロキシフェニ ル)プロパン;2,2-ビス(3-フルオロ-4-ヒドロキシフ ェニル)プロパン;2,2-ビス(4-ヒドロキシフェニル) ブタン:1,1-ビス(4-ヒドロキシフェニル)ブタン:2,2of mold release property is not desirablelittle.

[0045]

Here, PC oligomer which is offered to production of PC -PDMS copolymer I and II tohave repeat unit I which is displayed with General Formula (VII), solvent method (interfacial polymerization method), namely in methylene chloride or other organic solvent under existing of acid acceptor, monohydric phenol (end capping agent) of public knowledge, the General Formula (XI)

[0046]

[Chemical Formula 24]

[0047]

Reaction or bivalent phenol and carbonate diester with bivalent phenol which is displayed with {In Formula, R¹,R²,Z,p and q description above * is same. } and carbonate precursor like phosgene (carbonate precursor like for example diphenyl carbonate) with it can produce with transesterification.

There are various ones as bivalent phenol which is displayed with the above-mentioned General Formula (XI).

Concrete, as bis (4 -hydroxyphenyl) alkane, for example bis (4 -hydroxyphenyl) methane {bisphenol F}; 2 and 2 -bis (4 -hydroxyphenyl) phenyl methane; bis (4 -hydroxyphenyl) naphthyl methane; bis (4 -hydroxyphenyl) - (4 -isopropyl phenyl) methane; bis (3 and 5 -dichloro -4- hydroxyphenyl) methane; bis (3 and 5 -dimethyl -4- hydroxyphenyl) methane;1,1- bis (4 -hydroxyphenyl) ethane;1- naphthyl -1,1- bis (4 -hydroxyphenyl) ethane;1- phenyl -1,1- bis (4 -hydroxyphenyl) ethane;1,2- bis (4 -hydroxyphenyl) ethane ;2,2- bis (4 -hydroxyphenyl) propane {common name:bisphenol A \; 2 -methyl -1,1- bis (4 -hydroxyphenyl) propane; 2,2- bis (4 -hydroxyphenyl -1- methylphenyl) propane; 2,2- bis (3 and 5 -dimethyl -4- hydroxyphenyl) propane; 1- ethyl -1,1- bis (4 -hydroxyphenyl) propane; 2,2bis (3 and 5 -dichloro -4- hydroxyphenyl) propane;2,2- bis (3 and 5 -dibromo -4- hydroxyphenyl) propane;2,2- bis (3 -chloro -4- hydroxyphenyl) propane ;2,2- bis (3 -methyl -4hydroxyphenyl) propane ;2,2- bis (3 -fluoro -4hydroxyphenyl) propane; 2,2- bis (4 -hydroxyphenyl) butane;1,1-bis (4 -hydroxyphenyl) butane;2,2-bis (4 -hydroxyphenyl) butane {bisphenol B}; 1 and 4 -bis you can list (4 -hydroxyphenyl) butane ;2,2- bis (4 -hydroxyphenyl) pentane; 3,3- bis (4 -hydroxyphenyl) pentane; 4- methyl -2,2bis (4 -hydroxyphenyl) pentane; 2,2- bis (4 -hydroxyphenyl)

ビス(4-ヒドロキシフェニル)ブタン[ビスフェノールB];1,4-ビス(4-ヒドロキシフェニル)ブタン;2,2-ビス(4-ヒドロキシフェニル)ペンタン;3,3-ビス(4-ヒドロキシフェニル)ペンタン;4-メチル-2,2-ビス(4-ヒドロキシフェニル)ペンタン;2,2-ビス(4-ヒドロキシフェニル)へキサン;3,3-ビス(4-ヒドロキシフェニル)へキサン;4,4-ビス(4-ヒドロキシフェニル)ペプタン;2,2-ビス(4-ヒドロキシフェニル)プナン;1,10-ビス(4-ヒドロキシフェニル)デカン等が挙げられる。

[0048]

また、ビス(4-ヒドロキシフェニル)シクロアルカンとしては、例えば、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン;1,1-ビス(4-ヒドロキシフェニル)シクロデカンなどが挙げられる。

そして、ビス(4-ヒドロキシフェニル)スルホン;ビス (3,5-ジメチル-4-ヒドロキシフェニル)スルホン;ビ ス(3-クロロ-4-ヒドロキシフェニル)スルホンなど のジヒドロキシジアリールスルホン類、ビス(4-ヒ ドロキシフェニル)エーテル;ビス(3,5-ジメチル-4-ヒドロキシフェニル)エーテルなどのジヒドロキシ ジアリールエーテル類、4,4'-ジヒドロキシベンゾ フェノン;3,3',5,5'-テトラメチル-4,4'-ジヒドロキシ ベンゾフェノンなどのジヒドロキシジアリールケト ン類、ビス(4-ヒドロキシフェニル)スルフィド:ビス (3-メチル-4-ヒドロキシフェニル)スルフィド;ビス (3,5-ジメチル-4-ヒドロキシフェニル)スルフィドな どのジヒドロキシジアリールスルフィド類、ビス (4-ヒドロキシフェニル)スルホキシド;ビス(3-メチ ル-4-ヒドロキシフェニル)スルホキシドなどのジヒ ドロキシジアリールスルホキシド類、4,4'-ジヒド ロキシジフェニルなどのジヒドロキシジフェニル 類、9,9-ビス(4-ヒドロキシフェニル)フルオレンな どのビスフェノールフルオレン、その他チオビス フェノールなどが挙げられる。

さらに、テトラハロゲノビスフェノール 類としては、例えば、テトラブロモビスフェノール A,テトラ クロロビスフェノール A,テトラフルオロビスフェノール A,テトラブロモビスフェノール F,テトラクロロビスフェノール B 等が挙げられる。

これらの中では、特に、ビスフェノール A が好適 に用いられる。

そして、これらの二価フェノールは、それぞれ単独で用いてもよく、また2種以上を組み合わせて用いてもよい。

[0049]

hexane;3,3- bis (4 -hydroxyphenyl) hexane;4,4- bis (4 -hydroxyphenyl) heptane;2,2- bis (4 -hydroxyphenyl) octane;2,2- bis (4 -hydroxyphenyl) nonane;1,10-bis (4 -hydroxyphenyl) decane etc.

[0048]

In addition, you can list for example 1,1- bis (4 -hydroxyphenyl) cyclohexane; 1,1- bis (3 and 5 -dichloro -4-hydroxyphenyl) cyclohexane; 1,1- bis (4 -hydroxyphenyl) cyclodecane etc as bis (4 -hydroxyphenyl) cycloalkane.

And, bis (4 -hydroxyphenyl) sulfone; bis (3 and 5 -dimethyl -4- hydroxyphenyl) sulfone could be sulfone; bis (3 -chloro -4- hydroxyphenyl) sulfone or other dihydroxy diaryl sulfone, bis (4 -hydroxyphenyl) ether; bis (3 and 5 -dimethyl -4- hydroxyphenyl) ether or other dihydroxy diaryl ethers, 4,4' -dihydroxy benzophenone; 3,3' ,5,5' -tetramethyl -4,4' -dihydroxy benzophenone or other dihydroxy diaryl ketones, bis (4 -hydroxyphenyl) sulfide; bis (3 -methyl -4- hydroxyphenyl) sulfide or other dihydroxy diaryl sulfides, bis (4 -hydroxyphenyl) sulfoxide; bis (3 -methyl -4- hydroxyphenyl) sulfoxide or other dihydroxy diaryl sulfoxide, 4,4' -dihydroxy biphenyl or other dihydroxy biphenyl, 9 and 9 -bis (4 -hydroxyphenyl) fluorene or other bisphenol fluorene, inaddition you can list thio bisphenol etc.

Furthermore, you can list for example tetrabromobisphenol A ,tetrachloro bisphenol A ,tetra iodo bisphenol A ,tetra bromo bisphenol F,tetrachloro bisphenol F,tetrachloro bisphenol B etc as tetra halogeno bisphenols.

Among these, especially, it can use for ideal bisphenol $\boldsymbol{\mathsf{A}}$.

And, it is possible to use these bivalent phenol, respectively with alone, in addition combining 2 kinds or more to use it is possible.

[0049]

また、炭酸ジエステルとしては、炭酸ジアリール 化合物,炭酸ジアルキル化合物あるいは炭酸ア ルキルアリール化合物などを用いることができ る。

ここで、炭酸ジアリール化合物としては、例えば、ジフェニルカーボネート,ジトリルカーボネート,ビス(クロロフェニル)カーボネート,ジナフチルカーボネート,ビスフェノール A ビスフェニルカーボネート等が挙げられる。

また、炭酸ジアルキル化合物としては、例えば、 ジェチルカーボネート,ジメチルカーボネート,ジ ブチルカーボネート,ジシクロヘキシルカーボネート等 ート,ビスフェノール A ビスメチルカーボネート等 が挙げられる。

そして、 炭酸アルキルアリール化合物としては、 例えば、 メチルフェニルカーボネート,エチルフェニルカーボネート, エチルフェニルカーボネート, ビスフェノシール A メチルフェニルカーボネート等が挙げられる。

[0050]

PC オリゴマーを溶剤法すなわち界面重縮合法によって製造する場合、前配二価フェノールとホスゲンとを反応させて、反応系内のホスゲンを実質的にすべて反応させることによって PC オリゴマーを得ることができる。

この PC オリゴマーは、上記重縮合反応において、二価フェノールとホスゲンとの反応によって構成される一般式(IV)で表される繰返し単位 I を有する。

すなわち、PC オリゴマーは、二価フェノール 100 に対して、ホスゲン 110~150 のモル比で反応さ せる。

通常、この反応では、二価フェノールはアルカリ 水溶液で添加し、塩化メチレン,クロロベンゼン, クロロホルム,四塩化炭素などの溶剤ならびに 必要に応じてトリエチルアミンやトリメチルベンジルアンモニウムクロライドなどの触媒とを所定量 比で混合撹拌し、これにホスゲンを吹込んで1~3 時間、反応温度 30~70 deg C で界面重縮合反応を進めることによって製造することができる。

このときに反応系は発熱するので水冷もしくは 氷冷することが好ましい。

また、反応の進行に伴なって反応系は酸性側に 移行するので、pH 計で測定しながらアルカリ化 合物を添加して、pHを10以上に保持することが In addition, diaryl carbonate compound, dialkyl carbonate compound or alkyl aryl carbonate compound etc can be used as carbonate diester.

Here, you can list for example diphenyl carbonate ,ditolyl carbonate ,bis (chlorophenyl) carbonate ,dinaphthyl carbonate ,bisphenol A bis phenyl carbonate etc as diaryl carbonate compound.

In addition, you can list for example diethyl carbonate ,dimethyl carbonate ,dibutyl carbonate ,dicyclohexyl carbonate ,bisphenol A bis methyl carbonate etc as dialkyl carbonate compound .

And, as alkyl aryl carbonate compound, you can list for example methylphenyl carbonate, ethyl phenyl carbonate, butyl phenyl carbonate, butyl phenyl carbonate, bisphenol A methylphenyl carbonate etc.

[0050]

When it produces PC oligomer with solvent method namely interfacial polymerization method, theaforementioned bivalent phenol and phosgene reacting, phosgene inside the reaction system substantially it can acquire PC oligomer it reacts entirely with.

This PC oligomer has repeat unit I which is displayed with General Formula (IV) which configuration is done with reaction with bivalent phenol and phosgene in theabove-mentioned condensation polymerization.

namely, PC oligomer reacts with mole ratio of phosgene 110 ~150 vis-a-vis bivalent phenol 100.

Usually, with this reaction, it adds bivalent phenol with aqueous alkali solution, with predetermined proportion it mixes agitates methylene

chloride, chlorobenzene, chloroform, carbon tetrachloride or other solvent and according to need triethylamine and trimethyl benzyl ammonium chloride or other catalyst, blows phosgene in this and advances interfacial polymerization with 1 - 3 hours, reaction temperature 30~70 deg C it canproduce with

Because heat emission it does reaction system this time, water cooling or ice cooling it does, it is desirable.

In addition, because reaction system moves to acid side attendant upon theadvance of reaction, while measuring with pH meter, adding alkali compound, keeps pH in 10 or more is

好ましい。

このようにして得られる PC オリゴマーは、数平均分子量が2,000以下で、1~10量体のものである。

なお、上記重縮合反応の際、PC の製造に通常 用いられている末端停止剤を加えてもよい。

[0051]

ここで、有機溶媒としては、各種のものがある。

例えば、ジクロロメタン(塩化メチレン);クロロホルム;1,1-ジクロロエタン;1,2-ジクロロエタン;1,1,2-トリクロロエタン;1,1,2-トリクロロエタン;1,1,1,2-テトラクロロエタン;ペンタクロロエタン;クロロベンゼンなどの塩素化炭化水素や、アセトフェノンなどが挙げられる

これらの有機溶剤は、単独で用いてもよく、また 二種以上を組み合わせて用いてもよい。

これらの中では、特に塩化メチレンが好適である。

また、アルカリ金属の水酸化物としては、例えば、水酸化ナトリウム,水酸化カリウム,水酸化 チウム,水酸化セシウムなどが挙げられる。

これらの中では、水酸化ナトリウムと水酸化カリウムが好適である。

そして、触媒としては、各種のものを用いること ができる。

具体的には、四級アンモニウム塩,四級ホスホニウム塩あるいは三級アミンなどで、例えば、四級アンモニウム塩としては、トリメチルベンジルアンモニウムクロライド,トリブチルベンジルアンモニウムクロライド,トリオクチルメチルアンモニウムクロライド,テトラブチルアンモニウムブロマイドなどが挙げられる。

また、四級ホスホニウム塩としては、例えば、テトラブチルホスホニウムクロライド,テトラブチルホスホニウムブロマイドなどが、そして、三級アミンとしては、例えば、トリエチルアミン,トリブチルアミン,N,N-ジメチルシクロヘキシルアミン,ピリジン,ジメチルアニリンなどが挙げられる。

[0052]

そして、末端停止剤としては、各種のものを用い ることができる。 desirable.

PC oligomer which is acquired in this way, number average molecular weight being 2,000 or below ,is things such as 1 - decamer

Furthermore, case of above-mentioned condensation polymerization, including the end capping agent which is usually used for production of PC it isgood.

[0051]

Here, there are various ones as organic solvent.

for example dichloromethane (methylene chloride); you can list chloroform; 1,1- dichloroethane; 1,2- dichloroethane; 1,1,1- trichloroethane; 1,1,2- trichloroethane; 1,1,2- tetrachloroethane; 1,1,2- tetrachloroethane; penta chloroethane; chlorobenzene or other chlorinated hydrocarbon and acetophenone etc.

It is possible to use these organic solvent, with alone, in additioncombining 2 kinds or more to use it is possible.

Among these, especially methylene chloride is ideal.

In addition, you can list for example sodium hydroxide ,potassium hydroxide ,lithium hydroxide ,cesium hydroxide etc as hydroxide of alkali metal .

Among these, sodium hydroxide and potassium hydroxide are ideal.

And, as catalyst, various ones can be used.

Concretely, with quaternary ammonium salt ,quaternary phosphonium salt or tertiary amine etc, you can list trimethyl benzyl ammonium chloride ,triethyl benzyl ammonium chloride ,trioctyl methyl ammonium chloride ,tetra butyl ammonium chloride ,tetra butyl ammonium bromide etc as for example quaternary ammonium salt .

In addition, and, as tertiary amine, as quaternary phosphonium salt, for example triethylamine, tributyl amine, N,N- dimethylcyclohexylamine, pyridine, dimethyl aniline etc you canlist for example tetra butyl phosphonium chloride, tetra butyl phosphonium bromide etc.

[0052]

And, as end capping agent, various ones can be used.

通常、ポリカーボネートの重合に用いられるものであり、一価フェノールが用いられる。

例えば、フェノール,p-クレゾール,p-tert-ブチルフェノール,p-tert-アミルフェノール,p-tert-オクチルフェノール,p-ブロモフェノール,トリブロモフェノール,ノニルフェノール等が挙げられる。

なお、本発明の PC-PDMS 共重合体 I を製造するには、一般式(XII)

[0053]

【化 25】

 $(R^{i}),$

[0054]

[式中、R³ 及び r は、前配と同じである。]で表される一価フェノールが好ましく用いられる。

[0055]

次に、本発明において、PC-PDMS 共重合体 I の製造に供される一般式(IV)で表される片末端 反応性 PDMS は、片末端に反応性基を有し、他 の末端が封止されれているものである。

特に、反応性基として、フェノール性の OH 基を 有するものが好ましく用いられる。

この片末端反応性 PDMS は、種々の手法によって製造することができる。

好ましい製造方法としては、以下の方法が挙げ られる。

すなわち、初めに、アルキルリチウム試薬(例えば、n-ブチルリチウム,tert-ブチルリチウム,リチウムトリメチルシリレートなど)と環状のジメチルシロキサン(例えば、ヘキサメチルシクロトリシロキサン,オクタメチルシクロテトラシロキサンなど)とを有機溶媒中で反応させ、一端をジメチルアルキルシロキサン単位により封止し、また他端をジメチルリチウムシロキサン単位によりリビング末端とさせる。

その後、ジメチルクロロシラン、ジメチルブロモシラン等のジアルキルハロゲン化ケイ素と反応させて、片末端水素のポリジメチルシロキサンを得る。

Usually, being something which is used for polymerization of the polycarbonate, it can use monohydric phenol.

You can list for example phenol ,p- cresol ,p- tbutylphenol ,p- t- amyl phenol ,p- t- octylphenol ,p- cumyl phenol ,p- bromophenol ,tribromo phenol ,nonylphenol etc.

Furthermore, PC -PDMS copolymer I of this invention is produced, General Formula (XII)

[0053]

[Chemical Formula 25]

[0054]

It can use monohydric phenol which is displayed with {In Formula, R³ and r are same as descriptionabove. } desirably.

[0055]

Next, regarding to this invention, single end reactive PDMS which is displayed with the General Formula (IV) which is offered to production of PC -PDMS copolymer I has reactive group in single end, other end is sealed and * * it is somethingwhich is.

Especially, it can use those which possess OH group of phenolic as reactive group, desirably.

It can produce this single end reactive PDMS , with various technique .

As desirable manufacturing method, you can list method below.

In namely, beginning, alkyl lithium reagent (Such as for example n- butyl lithium, t- butyl lithium, [richiumutorimechirushirireeto]) with dimethylsiloxane (Such as for example hexamethyl cyclo tri siloxane, octamethylcyclotetrasiloxane) of cyclic reacting in organic solvent, it seals one end with dimethyl alkyl siloxane unit, in additionit designates other end as living end with dimethyl lithium siloxane unit.

After that, reacting with dimethylchlorosilane, dimethyl bromo silane or other dialkyl silicon halide, you obtain poly dimethylsiloxane of the single end hydrogen.

次いで、これに脂肪族不飽和フェノール[例えば、2-アリルフェノール、4-ヒドロキシスチレン、オイゲノール(2-メトキシ-4-アリルフェノール)など]を反応させ、片末端フェノール性 OH を有する片末端反応性 PDMS を得ることができる。

[0056]

一方,本発明において、PC-PDMS 共重合体 II の製造に供される一般式(V)で表される両末端 反応性 PDMS は、両末端に反応性基を有する ものである。

特に、反応性基として、フェノール性の OH 基を 有するものが好ましく用いられる。

この両末端反応性 PDMS は、種々の手法によって製造することができる。

好ましい製造方法としては、以下の方法が挙げられる。

すなわち、初めに、環状のジメチルシロキサン (例えば、ヘキサメチルシクロトリシロキサン,オク タメチルシクロテトラシロキサンなど)とジシロキ サンとを反応させて、末端が水素のポリジシロ キサンを製造する。

次いで、末端が水素のポリジシロキサンと脂肪 族不飽和フェノール[例えば、2-アリルフェノー ル、4-ヒドロキシスチレン、オイゲノール(2-メトキ シ-4-アリルフェノール)など]とを反応させること によって末端フェノール性 OH を有する両末端 反応性 PDMS を容易に得ることができる。

[0057]

本発明において、PC-PDMS 共重合体 I 及び II は、好ましくは、予め製造された前記 PC オリゴマー,前記片末端反応性 PDMS 及び両末端反応性 PDMS とを有機溶媒に溶解させ、二価フェノールのアルカリ金属の水酸化物の水溶液や一価フェノール(末端停止剤)を加え、各種触媒を用い、界面重縮合反応することによって製造することができる。

ここで、該二価フェノールとしては、各種のものを用いることができるが、好ましくは前記PCオリゴマーを製造する際に用いられたものと同じ二価フェノールが挙げられる。

また、一価フェノールとしては、同様に、前記 PC オリゴマーを製造する際に用いられたものと同じものでよい。

これらの一価フェノールの総量としては、反応性ポリオルガノシロキサンとのモル比(一価フェノール/反応性ポリオルガノシロキサン)で、5 以上とすることが必要であり、好ましくは 10 以上、よ

Next, aliphatic unsaturated phenol {Such as for example 2-allyl phenol, 4- hydroxystyrene, eugenol (2 -methoxy -4-allyl phenol)} reacting to this, it can acquire single end reactive PDMS whichpossesses single end phenolic OH.

[0056]

On one hand, regarding to this invention, both ends reactive PDMS which is displayed with General Formula (V) which is offered to production of PC -PDMS copolymer II issomething which possesses reactive group in both ends.

Especially, it can use those which possess OH group of phenolic as reactive group, desirably.

It can produce this both ends reactive PDMS, with various technique.

As desirable manufacturing method, you can list method below.

In namely, beginning, dimethylsiloxane of cyclic (Such as for example hexamethyl cyclo tri siloxane ,octamethylcyclotetrasiloxane) with disiloxane reacting, end produces polydisiloxane of hydrogen.

Next, end both ends reactive PDMS which possesses end phenolic OH polydisiloxane and the aliphatic unsaturated phenol {Such as for example 2- allyl phenol , 4-hydroxystyrene , eugenol (2-methoxy -4- allyl phenol) } of hydrogen it reacts with can be acquired easily.

[0057]

Regarding to this invention, melting aforementioned PC oligomer, aforementioned single end reactive PDMS and both ends reactive PDMS which preferably, beforehand are produced in organic solvent, interfacial polymerization it does PC-PDMS copolymer I and II, including the aqueous solution and monohydric phenol (end capping agent) of hydroxide of alkali metal of bivalent phenol, makinguse of various catalyst, it can produce with.

Here, various ones can be used as said bivalent phenol,, but when producing the preferably aforementioned PC oligomer, you can list same bivalent phenol as those whichare used.

In addition, when in same way, producing aforementioned PC oligomer as monohydric phenol, it is possible to be same ones as those which are used.

As total weight of these monohydric phenol, with mole ratio (monohydric phenol /reactivity polyorganosiloxane) of reactivity polyorganosiloxane, it makes or greater, being necessary, it is a preferably 10 or more, more preferably 20

り好ましくは 20 以上である。

[0058]

界面重縮合法によって本発明の PC-PDMS 共 重合体 I 及び II を含有するポリカーボネート系 樹脂を製造する方法について、その一例のフロ ーを図示すると、図 I のようになる。

すなわち、例えば、界面重縮合法による場合、 初めに、有機溶媒中で、二価フェノールとホスゲ ンとを反応させて予め PC オリゴマーを製造す る。

次いで、有機溶媒中で、該 PC オリゴマー,予め 製造された片末端反応性 PDMS,両末端反応性 PDMS,一価フェノール(末端停止剤)及び二価フェノールを反応させる。

この反応の際、片末端及び両末端反応性 PDMS は、そのまま又は塩化メチレン溶液で添加する。

また、一価フェノールは、塩化メチレン溶液又は アルカリ水溶液で添加する。

そして、二価フェノールは、アルカリ水溶液で添加する。

これらの添加順序については、特にこだわらないが、二価フェノールを最後に加えるのが望ましい。

反応時間は 30 分~2 時間、また反応温度は 20~40 deg C の範囲である。

PC-PDMS 共重合体 I 及び II は、一例として上記のようにして製造されるが、この製造過程においては、ホモ PC も生成し、反応生成物は、本質的には PC-PDMS 共重合体 I 及び II とホモPC との混合物として得られる。

本発明のポリカーボネート系樹脂は、PC-PDMS 共重合体 I 及び II を含有してなるものである。

そして、PC-PDMS 共重合体 I 及び II は、前述した通り、PC-PDMS 共重合体 I 及び PC-PDMS 共重合体をそれぞれ単独に製造してから混合してもよい。 or greater.

And, with this invention, for example phloroglucinol; trimellitic acid; 1,1,1- tris (4-hydroxyphenyl) ethane; 1- {;al-methyl-;al-(4 ' -hydroxyphenyl) ethyl} - 4- {;al'and;al'-bis (4 ' ' -hydroxyphenyl) ethyl} benzene;;al,the;al'and;al"-tris (4-hydroxyphenyl) - 1, 3 and 5-tri isopropyl benzene; isatin bis such as (o-cresol) to use the compound which 3 or more enamel is done also it is possible functional group as the according to need, branching agent.

[0058]

When flow of one example is illustrated concerning method whichproduces polycarbonate resin which contains PC -PDMS copolymer I and II of this invention with the interfacial polymerization method, it becomes like Figure 1.

With namely, for example interfacial polymerization method when, in beginning, in organic solvent, bivalent phenol and the phosgene reacting, it produces PC oligomer beforehand.

single end reactive PDMS, both ends reactive PDMS, monohydric phenol which next, in organic solvent, said PC oligomer, is produced beforehand(end capping agent) and bivalent phenol it reacts.

Case of this reaction, that way or it adds single end and the both ends reactive PDMS, with methylene chloride solution.

In addition, it adds monohydric phenol, with methylene chloride solution or aqueous alkali solution.

And, it adds bivalent phenol, with aqueous alkali solution.

Concerning these addition sequence, especially you do not adhere. It is desirable to add bivalent phenol lastly.

As for reaction time as for 30 min \sim 2 hours, and reaction temperature it is a range of 20 -40 deg C.

PC -PDMS copolymer I and II is produced as description above as one example , but it formsalso homo PC regarding this production process , reaction product essentially is acquiredas blend of PC -PDMS copolymer I and II and homo PC .

polycarbonate resin of this invention, containing PC -PDMS copolymer I and II, is something which becomes.

After and, PC -PDMS copolymer I and II, as mentioned earlier, producing PC -PDMS copolymer I and PC -PDMS copolymer respectively in alone, it is possible to mix.

[0059]

次に、本発明のポリカーボネート系樹脂組成物は、(A)前記のポリカーボネート系樹脂、(B)ポリカーボネート樹脂及び(C)無機充填剤からなり、かつ、成分(A)の10~95 重量%、成分(B)の0~80重量%及び成分(C)の5~60重量%、好ましくは10~50重量%の配合割合からなる。

ここで、本発明の樹脂組成物を構成する(B)成分のポリカーボネート樹脂(PC)は、前配 PC オリゴマーの時と同様にして、二価フェノールとホスゲン又は炭酸ジエステル化合物とを反応させることによって容易に製造することができる。

すなわち、例えば、塩化メチレンなどの溶媒中において、公知の酸受容体や分子量調節剤の存在下、二価フェノールとホスゲンのようなカーボネート前駆体との反応により、あるいは二価フェノールと炭酸ジエステル(ジフェニルカーボネートのようなカーボネート前駆体)とのエステル交換反応などによって製造される。

ここで、二価フェノールとしては、前記の一般式 (VII) で表わされる化合物と同じものでよく、また異なるものでもよい。

そして、 炭酸ジェステルとしては、 前配のジフェニルカーボネート等のジアリールカーボネートやジメチルカーボネート, ジェチルカーボネート等のジアルキルカーボネートなどが挙げられる。

勿論、市販のポリカーボネート樹脂を用いること ができる。

[0060]

そして、本発明の樹脂組成物を構成する(C)成分の無機充填剤としては、各種のものがあり、ポリカーボネート樹脂組成物の機械的強度あるいは寸法安定性の向上に、また増量を目的に用いられる。

この無機充填剤は、前記したように樹脂組成物中に 5~60 重量%、好ましくは 10~50 重量%の割合で配合される。

配合割合が 5 重量%未満では、剛性が不十分であり、寸法安定性が低下する。

また、60 重量%を超えると、混練が困難乃至不可能となり好ましくない。

ここで、無機充填剤としては、例えば、チタン酸カリウムウィスカー、鉱物繊維(例えば、ロックウール)、ガラス繊維、炭素繊維、金属繊維(例えば、ステンレス繊維)、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、ボロン繊維、テトラ

[0059]

Next, polycarbonate resin composition of this invention consists of (A) aforementioned polycarbonate resin, (B) polycarbonate resin and (C) inorganic filler, at same time, consists of 0 - 80 weight % of 10 - 95 weight %, component (B) of component (A) and proportion of 5 - 60 weight %, preferably 10~50weight % of component (C).

Can produce bivalent phenol and phosgene or dicarbonate compound easily it reacts with here, polycarbonate resin (PC) of (B) component which resin composition of this invention the configuration is done to similar to time of aforementioned PC oligomer.

Or it is produced with bivalent phenol and carbonate diester (carbonate precursor like diphenyl carbonate) with transesterification etcin in namely, for example methylene chloride or other solvent, acid acceptor of public knowledge and under existing of the molecular weight regulator, by reaction with bivalent phenol and carbonate precursor like phosgene.

Here, it is possible to be same ones as compound which is displayed with a forementioned General Formula (VII) as bivalent phenol, to be something whichin addition differs it is possible.

And, as carbonate diester, you can list aforementioned diphenyl carbonate or other diaryl carbonate and dimethyl carbonate, diethyl carbonate or other dialkyl carbonate etc.

Of course, commercial polycarbonate resin can be used.

[0060]

There are various ones and, configuration is done resin composition of this invention as inorganic filler of (C) component which, in mechanical strength of polycarbonate resin composition orimprovement of dimensional stability, in addition can use increased weight for objective.

This inorganic filler, as before inscribed, in resin composition is combined at ratio of 5 - 60 weight %, preferably 10~50 weight %.

proportion decreases under 5 weight %, stiffness being insufficient, the dimensional stability.

In addition, when it exceeds 60 weight %, kneading becomes difficult to impossible and is not desirable.

Here, for example potassium titanate whisker, mineral fiber (for example rock wool), glass fiber, carbon fiber, metal fiber (for example stainless steel fiber), you can list aluminum borate whisker, silicon nitride whisker, boron fiber, tetra pot condition zinc oxide whisker, talc, clay,

ポット状酸化亜鉛ウィスカー、タルク、クレー、マイカ、パールマイカ、アルミ箔、アルミナ、ガラスフレーク、ガラスビーズ、ガラスバルーン、カーボンブラック、黒鉛、炭酸カルシウム、硫酸カルシウム、ケイ酸カルシウム、酸化チタン、硫化亜鉛、酸化亜鉛、シリカ、アスペスト、石英粉等が挙げられる。

これらの無機充填剤は、予め表面処理を施してもよく、また無処理であっても差し支えない。

その表面処理剤としては、例えば、シランカップリング剤系,高級脂肪酸系,脂肪酸金属塩系,不飽和有機酸系,有機チタネート系,樹脂酸系,ポリエチレングリコール系等の各種処理剤での化学的または物理的表面処理を挙げることができる。

[0061]

これらの中で、繊維状フィラーであるガラス繊維 としては、含アルカリガラス,低アルカリガラス,無 アルカリガラス等を原料としたいずれをも好適に 用いることができる。

このガラス繊維の長さは、好ましくは 0.1~8mm、より好ましくは 0.3~6mm の範囲にあるものであって、繊維径は $0.1~30~\mu$ m、好ましくは $0.5~25~\mu$ m である。

そして、これらのガラス繊維の形態は、特に制限はなく、例えば、ロービング、ミルドファイバー、チョップドストランドなど、いずれの形態のものも用いることができる。

また、これらのガラス繊維は単独でも二種以上 を組み合わせて用いることができる。

さらに、これらのガラス繊維は、ポリカーボネート系樹脂との接着性をよくする目的で、表面処理制で表面処理したのち、適当な集束剤で集束処理したものを用いることが望ましい。

ここで、表面処理剤としては、例えば、アミノシラン系,エポキシシラン系,ビニルシラン系,アクリルシラン系等のシラン系、チタネート系、アルミニウム系、クロム系、ジルコニウム系、ホウ素系カップリング剤などが挙げられる。

これらの中では、シラン系カップリング剤及びチ タネート系カップリング剤、特にシラン系カップリ ング剤が好適である。

ガラス繊維を上記表面処理剤で処理する方法 については特に制限はなく、従来用いられてい る方法、例えば、水溶液法、有機溶媒法、スプレ mica, pearl mica, aluminum foil, alumina, glass flake, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, calcium silicate, titanium dioxide, zinc sulfide, zinc oxide, silica, asbestos, quartz decimeter etc as inorganic filler.

These inorganic filler may administer surface treatment beforehand, in addition even with untreated do not become inconvenient.

As surface treatment agent, for example silane coupling agent system, higher aliphatic acid system, aliphatic acid metal salt system, unsaturated organic acid system, organotitanate system and resin acid system, chemical or physical surface treatment with polyethylene glycol or other various treatment agent can be listed.

[0061]

Among these, you can use in each case designates alkali-containing glass ,low alkali glass ,nonalkaline glass etc as the starting material as glass fiber which is a fibrous filler , for ideal.

As for length of this glass fiber , being something which is range of the preferably 0.1 ~8mm , more preferably 0.3~6mm , as for fiber diameter they are 0.1 - 30;mu m , preferably 0.5~25;mu m .

And, as for form of these glass fiber, as for especially restriction it is not, can use, those of each form such as for example roving, milled fiber, chopped strand.

In addition, combining 2 kinds or more you can use these glass fiber even with the alone.

Furthermore, these glass fiber, with objective which adhesiveness of polycarbonate resin is improved, with surface treatment agent surface treatment after doing, focusing weretreated use those which with suitable bundle binder (greige goods), it is desirable.

Here, you can list for example aminosilane system, epoxysilane ,vinyl silane ,acrylic silane or other silane , titanate , aluminum , chromium system, zirconium system and the boron coupling agent etc as surface treatment agent .

Among these, silane coupling agent and titanate coupling agent, especially silane coupling agent are ideal.

Concerning method which treats glass fiber with above-mentioned surface treatment agent method where there is not especially restriction, is untilrecently used, method of

一法など任意の方法を用いることができる。

また、集束剤としては、例えば、ウレタン系、アクリル系、アクリロニトリル-スチレン系共集合体系、エポキシ系などがあり、いずれも用いることができる。

これらの集束剤を用いてガラス繊維を集束処理 する方法については、特に制限はなく、従来慣 用されている方法例えば、浸漬塗り、ローラ塗 り、吹き付け塗り、流し塗り、スプレー塗りなど任 意の方法を用いることができる。

[0062]

そして、炭素繊維としては、一般にセルロース繊維,アクリル繊維,リグニン,石油あるいは石炭系特殊ピッチ等を原料として焼成によって製造されたものであり、耐炎質,炭素質あるいは黒鉛質等の種々のタイプのものがある。

炭 素 繊 維 の 長 さ は 、通 常 ペレット 中 で $0.01 \sim 10 \text{mm}$ の範囲にあり、繊維径は $5 \sim 15 \, \mu \, \text{m}$ である。

この炭素繊維の形態は、特に制限はなく、例えば、ロービング、ミルドファイバー、チョップドストランド、ストランドなど各種のものが挙げられる。

なお、炭素繊維の表面は、上記共重合体との親 和性を高めるために、エポキシ樹脂やウレタン 樹脂等で表面処理されていてもよい。

[0063]

なお、本発明の樹脂組成物には、前配(A), (B) 及び(C)成分以外に、必要に応じて、本発明の目的を阻害しない範囲で、(D)成分として、各種の添加剤又はその他の合成樹脂,エラストマー等を配合することができる。

先ず、添加剤としては、例えば、ヒンダードフェノール系,亜リン酸エステル系,リン酸エステル系,アミン系等の酸化防止剤、例えば、ベンゾトリアゾール系,ベンゾフェノン系等の紫外線吸収剤、例えば、ヒンダードアミン系などの光安定剤、例えば、脂肪族カルボン酸エステル系,パラフィン系,シリコーンオイル,ポリエチレンワックス等の内部滑剤、離型剤、常用の難燃剤、難燃助剤、帯電防止剤、着色剤等が挙げられる。

[0064]

また、その他の 合成樹脂として [0064]
In addition, for example polyester (Such as polyethylene terephthalate,

[horibuchirenterefutareeto]), polycarbonate or other each resin other than polycarbonate

option such as for example aqueous solution method ,organic solvent method ,spray method can be used.

In addition, there is a for example urethane, acrylic, acrylonitrile-styrenic copolymeric, epoxy etc bundle binder (greige goods) as, in each case canuse.

There is not especially restriction concerning method which the glass fiber focusing is treated making use of these bundle binder (greige goods), it can use method of option such as method for example dip coating, roller painting, spraying, flow painting, spary painting which common use is doneuntil recently.

[0062]

And, as carbon fiber, generally being something which is produced withcalcining with cellulose fiber, acrylic fiber, lignin, petroleum or coal-based special pitch etc as starting material, fire resistance quality, it is things such as carbonaceous or graphitic or other various type.

As for length of carbon fiber, of usually in pellet there is arange 0.01 - 10 mm, fiber diameter is 5 - 15;mu m.

As for form of this carbon fiber, as for especially restriction it isnot, can list various ones such as for example roving, milled fiber, chopped strand, strand.

Furthermore, surface of carbon fiber may be done, in order to raise the affinity of above-mentioned copolymer, surface treatment with such as epoxy resin and urethane resin.

[0063]

Furthermore, in range which description above (A), other than the(B) and (C) component , inhibition does not do objective of according to need , this invention , to resin composition of this invention , various additive or other synthetic resin ,elastomer etc can becombined as (D) component .

First, you can list for example hindered phenol type ,phosphite ester system and phosphate ester-based ,amine type or other antioxidant , for example benzotriazole type ,benzophenone type or other ultraviolet absorber , for example hindered amine type or other photostabilizer , for example aliphatic carboxylic acid ester type ,paraffin type ,silicone oil ,polyethylene wax or other interior lubricant , mold release , usual flame retardant , flame retardant auxiliary agent , antistatic agent , colorant etc as the additive .

は、例えば、ポリ エステル(ポリエ チレンテレフタレ ート、ホリブチレン テレフタレートな ど), ポリアミド,ポ リアリレート,ポリ エチレン,ポリプロ ピレン、ポリメチル メタクリレート,ポ リスチレン,AS 樹 脂,ABS 樹脂及び 上記(A)成分であ るポリカーボネー ト以外のポリカー ボネート等の各 樹脂を挙げること ができる。

which is a

polyamide ,polyarylate ,polyethylene ,polypropylene ,polymethylmethacrylate ,polystyrene ,AS resin ,ABS resin and an above-mentioned (A) component can be listed as theother synthetic resin

そして、エラストマーとしては、例えば、イソブチレン・イソプレンゴム,スチレン・ブタジエンゴム,エチレン・プロピレンゴム,アクリル系エラストマー,ポリエステル系エラストマー,ホリアミド系エラストマー,コアシェル型のエラストマーであるMBS,MAS等が挙げられる。

[0065]

本発明の樹脂組成物は、前配の各成分(A), (B) 及び(C)と、必要に応じて(D)を配合し、混練することによって得ることができる。

そして、該配合及び混練には、通常用いられている方法、例えば、リボンブレンダー,ヘンシェルミキサー,バンバリーミキサー,ドラムタンブラー,単軸スクリュー押出機,2軸スクリュー押出機,コニーダ,多軸スクリュー押出機等を用いて行うことができる。

なお、混練に際しての加熱温度は、通常 250~300 deg C の範囲で選ばれる。

かくして得られる樹脂組成物は、既知の種々の成形方法、例えば、射出成形,中空成形,押出成形,圧縮成形,カレンダー成形,回転成形等を適用することができ、各種成形品を製造するのに供することができる。

[0066]

【実施例】

更に、本発明を製造例,実施例及び比較例により、詳しく説明する。

And, as elastomer, you can list MBS, MAS etc which is a elastomer of for example isobutylene -isoprene rubber, styrene -butadiene rubber, ethylene -propylene rubber, acrylic elastomer, polyester elastomer, [horiamido] elastomer, core Shell type.

[0065]

resin composition of this invention, aforementioned each component (A), (B) and (C) with, combines according to need (D), kneads it can acquire with.

And, in said combination and kneading, method usually of beingused. It does making use of for example ribbon blender, Henschel mixer, Banbury mixer, drum tumbler, single screw extruder, twin screw extruder, cokneader, multiple screw extruder etc it is possible.

Furthermore, heating temperature in case of kneading is chosen in range of usually 250 - 300 deg C.

Offering/accompanying it is possible in order resin composition which isacquired in this way, applies known various molding method, for example injection molding, hollow molding, extrusion molding, compression molding, calender molding, rotational molding etc be able to do, toproduce various molded article.

[0066]

[Working Example(s)]

Furthermore, this invention is explained in detail with Production Example, Working Example and Comparative Example.

製造例1

[PC オリゴマーの製造]400 リットルの 5 重量% 水酸化ナトリウム水溶液に、60kg のビスフェノール A を溶解し、ビスフェノール A の水酸化ナトリウム水溶液を調製した。

次いで、室温に保持したこのビスフェノールAの水酸化ナトリウム水溶液を 138 リットル/時間の流量で、また、塩化メチレンを69リットル/時間の流量で、内径 10mm,管長 10m の管型反応器にオリフィス板を通して導入し、これにホスゲンを並流して10.7kg/時間の流量で吹き込み、3時間連続的に反応させた。

ここで用いた管型反応器は二重管となっており、ジャケット部分には冷却水を通して反応液の排出温度を 25 deg C に保った。

また、排出液の pH は 10~11 を示すように調整した。

このようにして得られた反応液を静置することにより、水相を分離、除去し、塩化メチレン相(220 リットル)を採取し、PC オリゴマー(濃度 317g/リットル)を得た。

ここで得られた PC オリゴマーの重合度は 2~4 であり、クロロホーメイト基の濃度は 0.7N であった。

[0067]

製造例 2-1

[反応性 PDMS-A(片末端タイプ)の合成]ブチルリチウム 1.73g(0.027 モル)をテトラヒドロフラン (THF)350 ミリリットルに溶解し、0 deg C 以下に保った。

また、ヘキサメチルシクロトリシロキサン 300g(1.35モル)をTHF170ミリリットルに溶解し、 0 deg C 以下に保った。

両者を混合し、0 deg C 以下に保ち、10 時間攪拌した。

その後、ジメチルクロロシラン 2.55g(0.027 モル) 及びシクロヘキサン 320 ミリリットルを加え、さら に 10 時間攪拌した。

溶媒を蒸発除去し、オイル状の沈澱物を得た。

得られた沈澱物をろ過した後、150 deg C,3torr で真空蒸発し、低沸点物を除きオイルを得た。

次いで、2-アリルフェノール60gと塩化白金-アルコラート錯体としてのプラチナ 0.0014g との混合

Production Example 1

{Production of PC oligomer } bisphenol A of 60 kg was melted in 5 weight %sodium hydroxide water solution of 400 liter, sodium hydroxide water solution of bisphenol A was manufactured.

Next, sodium hydroxide water solution of this bisphenol A which is kept in room temperature with the flow of 138 liter/hr, in addition, with flow of 69 liter/hr, itintroduced methylene chloride into tubular reactor of inner diameter 10mm, tube length 10m through orifice plate, laminar flow did phosgene in this and reacted to recording and 3 hours continuous with flow of 10.7 kg/hr.

tubular reactor which is used here had become duplex tube, in jacketed portion maintained discharge temperature of reaction mixture at 25 deg C through cooling water.

In addition, as shown 10 - 11, you adjusted pH of discharged liquid.

By standing doing reaction mixture which it acquires in this way, itseparated, removed aqueous phase, methylene chloride phase (220 liter) recovered, acquired the PC oligomer (concentration 31 7g/liter).

As for degree of polymerization of PC oligomer which is acquired here with 2 - 4, as for concentration of chloroformate group they were 0.7 N.

[0067]

Production Example 2-1

tetrahydrofuran (THF) it melted {Synthesis of reactive PDMS -A (single end type)} butyl lithium 1.73g (0.027 mole) in 350 ml, maintained 0 deg C or less.

In addition, it melted hexamethyl cyclo tri siloxane 300g (1.35 mole) in THF 170ml, maintained 0 deg C or less.

It mixed both, maintained 0 deg C, or less 10 hours agitated.

After that, furthermore 10 hours it agitated including dimethylchlorosilane 2.55g (0.027 mole)and cyclohexane 320ml.

solvent evaporation removal was done, precipitate of oil was acquired.

After filtering precipitate which it acquires, vacuum evaporation it did with 150 deg C,3torr, it acquired oil excluding low boiling substance.

Next, in blend of platina 0.0014g 2 -allyl phenol 60g and as platinum chloride -al * Ra jp7 complex ,oil 294g which is

物に、上記で得られたオイル 294gを 90 deg C の 温度で添加した。

この混合物を 90~115 deg C の温度に保ちながら 3 時間攪拌した。

生成物を塩化メチレンで抽出し、80%の水性メタ ノールで3回洗浄し、過剰の2-アリルフェノール を除いた。

その生成物を無水硫酸ナトリウムで乾燥し、真空中で 115 deg C の温度まで溶剤を留去した。

得られた片末端フェノール PDMS は、NMR の測 定により、ジメチルシラノオキシ単位の繰り返し 数は 150 であった。

[0068]

製造例 2-2

[反応性 PDMS-B(片末端タイプ)の合成]製造例 2-1 において、ブチルリチウム 1.73g をリチウムトリメチルシリレート 3.26g(0.034 モル)に、また、ジメチルクロロシラン 2.55g を 3.21g(0.034 モル)に変えた以外は、製造例 2-1 と同様に実施した。

得られた片末端フェノール PDMS は、NMR の測 定により、ジメチルシラノオキシ単位の繰り返し 数は 120 であった。

[0069]

製造例 2-3

[反応性 PDMS-C(片末端タイプ)の合成]製造例-2-1 において、ブチルリチウム 1.73g を3.20g(0.05 モル)に、また、ジメチルクロロシラン2.55g を 4.73g(0.05 モル)に変えた以外は、製造例 2-1 と同様に実施した。

得られた片末端フェノール PDMS は、NMR の測 定により、ジメチルシラノオキシ単位の繰り返し 数は 80 であった。

[0070]

製造例 2-4

[反応性 PDMS-D(両末端タイプ)の合成]オクタメチルシクロテトラシロキサン 1,483g、1,1,3,3-テトラメチルジシロキサン 18.1g 及び 86%硫酸 35gを混合し、室温で 17 時間攪拌した。

その後、オイル相を分離し、炭酸水素ナトリウム 25g を加え、1 時間攪拌した。

ろ過した後、150 deg C,3torr で真空蒸留し、低沸 点物を除いた。 acquired at description above was added with the temperature of 90 deg C.

While maintaining this blend at temperature of 90 - 115 deg C, 3 hours it agitated.

It extracted product with methylene chloride, thrice washed with 80% aqueous methanol, excess excluded 2 -allyl phenol.

product was dried with anhydrous sodium sulfate, in vacuum solvent was removed to temperature of 115 deg C.

As for single end phenol PDMS which it acquires, as for repeat number of dimethyl silano oxy unit 150was with measurement of nmr.

[0068]

Production Example 2-2

In {Synthesis of reactive PDMS -B (single end type) } Production Example 2- 1, butyl lithium 1.73g [richiumutorimechirushirireeto] in 3.26 g (0.034 mole), in addition, otherthan changing dimethylchlorosilane 2.55g into 3.21 g (0.034 mole), it executed in sameway as Production Example 2- 1.

As for single end phenol PDMS which it acquires, as for repeat number of dimethyl silano oxy unit 120was with measurement of nmr.

[0069]

Production Example 2-3

In {Synthesis of reactive PDMS -C (single end type) } Production Example 2- 1, butyl lithium 1.73g in 3.20 g (0.05 mole), in addition, other than changing dimethylchlorosilane 2.55g into 4.73 g (0.05 mole), it executed in same way as Production Example 2- 1.

As for single end phenol PDMS which it acquires, as for repeat number of dimethyl silano oxy unit 80was with measurement of nmr.

[0070]

Production Example 2-4

It mixed {Synthesis of reactive PDMS -D (both ends type) } octamethylcyclotetrasiloxane 1,483g, 1,1,3,3- tetramethyl disiloxane 18.1g and 86% sulfuric acid 35g, 17 hours agitated with room temperature .

After that, it separated oil phase, I hour it agitated including the sodium hydrogen carbonate 25g.

After filtering, vacuum distillation it did with 150 deg C,3torr, excluded low boiling substance.

次いで、2-アリルフェノール60gと塩化白金-アルコラート錯体としてのプラチナ 0.0014g との混合物に、上記で得られたオイル294gを90 deg Cの温度で添加した。

この混合物を90~115 deg C の温度に保ちなが ら 3 時間攪拌した。

生成物を塩化メチレンで抽出し、80%の水性メタ ノールで 3 回洗浄し、過剰の 2-アリルフェノール を除いた。

その生成物を無水硫酸ナトリウムで乾燥し、真空中で 115 deg C の温度まで溶剤を留去した。

得られた両末端フェノール PDMS は、NMR の測 定により、ジメチルシラノオキシ単位の繰り返し 数は 150 であった。

[0071]

製造例 2-5

[反応性 PDMS-E(両末端タイプ)の合成]製造例 2-4 において、1,1,3,3-テトラメチルジシロキサン の両を 96g に変えた以外は、製造例 2-4 と同様に実施した。

得られた両末端フェノール PDMS は、NMR の測 定により、ジメチルシラノオキシ単位の繰り返し 数は 30 であった。

[0072]

実施例1

[ポリカーボネート系樹脂(PC-PDMS 共重合体 A と称す。)の合成]製造例 2-1 で得た反応性 PDMS-A45g(0.0040 モ ル) 及 び 反 応 性 PDMS-D45g(0.0040 モル)を塩化メチレン 2 リットルに溶解させ、製造例 1 で得た PCオリゴマー10 リットルと混合した。

そこへ、水酸化ナトリウム 56g を水 1 リットルに 溶解させたものと、トリエチルアミン 5.7cc を加 え、500rpm で室温にて 1 時間攪拌した。

その後、ビスフェノール A のアルカリ溶液(ビスフェノール A650g、水酸化ナトリウム 378g、水 4.5 リットル)に、塩化メチレン 4 リットル及び p-tert-ブチルフェノール 119g(0.793 モル)を加え、500rpmで室温にて 1 時間攪拌した。

しかる後、塩化メチレン 8 リットルを加え、さらに水 5 リットルで水洗、0.01 規定水酸化ナトリウム水溶液 5 リットルでアルカリ洗浄、0.1 規定塩酸 5 リットルで酸洗浄及び水 5 リットルで水洗(2 回)を順次行い、最後に塩化メチレンを除去し、フレーク状の PC-PDMS 共集合体 A を得た。

Next, in blend of platina 0.0014g 2 -allyl phenol 60g and as platinum chloride -al * Ra jp7 complex ,oil 294g which is acquired at description above was added with the temperature of 90 deg C.

While maintaining this blend at temperature of 90 - 115 deg C, 3 hours it agitated.

It extracted product with methylene chloride, thrice washed with 80% aqueous methanol, excess excluded 2 -allyl phenol.

product was dried with anhydrous sodium sulfate, in vacuum solvent was removed to temperature of 115 deg C.

As for both ends phenol PDMS which it acquires, as for repeat number of dimethyl silano oxy unit 150was with measurement of nmr.

[0071]

Production Example 2-5

In {Synthesis of reactive PDMS -E (both ends type)} Production Example 2-4, other than 1, 1, 3 and 3 -tetramethyl disiloxane changed both into 96 g, it executed in same way as Production Example 2-4.

As for both ends phenol PDMS which it acquires, as for repeat number of dimethyl silano oxy unit 30was with measurement of nmr.

[0072]

Working Example 1

reactive PDMS -A45g which is acquired with {Synthesis of polycarbonate resin (It names PC -PDMS copolymer A.)} Production Example 2-1 (0.0040 mole) and melting reactive PDMS -D45g (0.0040 mole) in methylene chloride 2liter, it mixed with PC oligomer 10liter which it acquires with the Production Example 1.

With 500 rpm 1 hour it agitated with room temperature to there, including thing and triethylamine 5.7cc which melt sodium hydroxide 56g in water 1 liter.

After that, to alkali solution (bisphenol A 650g, sodium hydroxide 378g, water 4.5 liter) of bisphenol A, with 500 rpm I hour itagitated with room temperature including methylene chloride 4liter and p- t- butylphenol 119g (0.793 mole).

After that, furthermore with water 5 liter with water wash, 0.01 normal sodium hydroxide water solution 5 liter with the alkali washing, 0.1 normal hydrochloric acid 5 liter water wash (twice) sequential was done with acid washing and water 5 liter including methylene chloride 8 liter, methylene chloride was removed lastly, PC -PDMS copolymer A of flake was acquired

[0073]

実施例2

[ポリカーボネート系樹脂(PC-PDMS 共重合体 B と称す。)の合成]実施例 1 において、反応性 PDMS として、反応性 PDMS-C191g(0.0228 モル)及び反応性 PDMS-D46g(0.0040モル)を用いた以外は、実施例 1 と同様に実施し、フレーク状の PC-PDMS 共重合体 B を得た。

実施例3

[ポリカーボネート系樹脂(PC-PDMS 共重合体 C と称す。)の合成]実施例 1 において、反応性 PDMS-A95g(0.0084 モル) 及び反応性 PDMS-E285g(0.115 モル)を用いた 以外は、実施例 1 と同様に実施し、フレーク状の PC-PDMS 共重合体 C を得た。

[0074]

実施例 4

[ポリカーボネート系樹脂(PC-PDMS 共重合体 D と称す。)の合成]実施例 1 において、反応性 PDMS-B370g(0.041 モル) 及び反応性 PDMS-D370g(0.022 モル)を用い、p-tert-ブチルフェノール 199g を p-クミルフェノール 103g(0.485 モル)に変えた以外は、実施例 1 と同様に実施し、フレーク状の PC-PDMS 共重合体 D を得た。

[0075]

実施例 5

[ポリカーボネート系樹脂(PC-PDMS 共重合体 E と称す。)の合成]実施例 1 において、反応性 PDMS-A37g(0.0033 モル) 及び反応性 PDMS-D148g(0.013 モル)を用いた 以外は、実施例 1 と同様に実施し、フレーク状の PC-PDMS 共重合体 E を得た。

実施例 6

[ポリカーボネート系樹脂(PC-PDMS 共重合体 F と称す。)の合成]実施例 1 において、反応性 PDMS-A6g(0.00053 モル) 及び反応性 PDMS-D17g(0.0015 モル)を用いた 以外は、実施例 1 と同様に実施し、フレーク状の PC-PDMS 共重合体 F を得た。

[0076]

比較例1

[ポリカーボネート系樹脂(PC-PDMS 共重合体 Gと称す。)の合成]実施例 1 において、反応性 flake was acquired.

[0073]

Working Example 2

In {Synthesis of polycarbonate resin (It names PC -PDMS copolymer B.) } Working Example 1, as reactive PDMS, reactive PDMS -C191g (0.0228 mole) and other than using the reactive PDMS -D46g (0.0040 mole), it executed in same way as Working Example 1, acquired PC -PDMS copolymer B of flake.

Working Example 3

In {Synthesis of polycarbonate resin (It names PC -PDMS copolymer C.) } Working Example 1, as reactive PDMS, reactive PDMS -A95g (0.0084 mole) and other than using the reactive PDMS -E285g (0.115 mole), it executed in same way as Working Example 1, acquired PC -PDMS copolymer C of flake.

[0074]

Working Example 4

In {Synthesis of polycarbonate resin (It names PC -PDMS copolymer D.) } Working Example 1, as reactive PDMS, reactive PDMS -B370g (0.041 mole) and making use of the reactive PDMS -D370g (0.022 mole), other than changing pt-butylphenol 199g into p-cumyl phenol 103 g (0.485 mole), it executed in same way as Working Example 1, acquired PC -PDMS copolymer D of flake.

[0075]

Working Example 5

In {Synthesis of polycarbonate resin (It names PC -PDMS copolymer E.) } Working Example 1, as reactive PDMS, reactive PDMS -A37g (0.0033 mole) and other than using the reactive PDMS -D148g (0.013 mole), it executed in same way as Working Example 1, acquired PC -PDMS copolymer E of flake.

Working Example 6

In {Synthesis of polycarbonate resin (It names PC -PDMS copolymer F.) } Working Example 1, as reactive PDMS , reactive PDMS -A6g (0.00053 mole) and other than using the reactive PDMS -D17g (0.0015 mole), it executed in same way as Working Example 1, acquired PC -PDMS copolymer F of flake .

[0076]

Comparative Example 1

In {Synthesis of polycarbonate resin (It names PC -PDMS copolymer G.) } Working Example 1, as reactive PDMS,

PDMS として、反応性 PDMS-D185g のみを用いた以外は、実施例 1 と同様に実施し、フレーク状の PC-PDMS 共重合体 G を得た。

実施例 1~6 及び比較例 1 で得られた PC-PDMS 共重合体 A~F 及び PC-PDMS 共重合体 G について、PDMS の含有率、粘度平均分子量及び流れ値を測定した。

その結果を第1表に示す。

[0077]

【表 1】

other than using only reactive PDMS -D185g, itexecuted in same way as Working Example 1, acquired PC -PDMS copolymer G of the flake.

content, viscosity average molecular weight and flow number of PDMS were measured concerning the PC -PDMS copolymer A~F and PC -PDMS copolymer G which are acquired with Working Example 1~6 and Comparative Example 1.

Result is shown in Table 1.

[0077]

[Table 1]

第 1 表

	PC-PDMS	PDMS含有率	粘度平均	流れ値		
	共電合体	(wt%)	分子量M v	(×10 ⁻² ml/s)		
実施例 1	A	2	1 5. 0 0 0	6 0		
実施例 2	В	4	15.000	8 8		
実施例3	С	8	15,200	7 9		
実施例 4	D	15	21.100	> 1 0 0		
実施例 5	E	4	15,100	6 8		
実施例 6	F	0. 5	15.000	4 1		
比較例1	G	4	15,000	4 0		

[0078]

なお、PDMS含有率、粘度平均分子量及び流れ 値の測定は、次に従った。

1:PDMS 含有率

¹HNMR で 1.7ppm に見られるビスフェノール A のイソプロピルのメチル基のピークと、0.2ppm に見られるジメチルシロキサンのメチル基のピークとの強度比から求めた。

2:粘度平均分子量(Mv)

ウベローデ型粘度管を用い、20 deg C における 塩化メチレン溶液の粘度を測定し、これより極 限粘度[η]を求めた後、次式にて算出した。

[0078]

Furthermore, you followed measurement of PDMS content, viscosity average molecular weight and flow number, next.

1:PDMS content

peak of methyl group of isopropyl of bisphenol A which with ¹Hnmr is seen in 1.7 ppm and peak of methyl group of dimethylsiloxane which isseen in 0.2 ppm it sought from intensity ratio.

2:viscosity average molecular weight (Mv)

Making use of Ubbelohde viscometer tube, it measured viscosity of methylene chloride solution in 20 deg C, from this after seeking intrinsic viscosity [;et], it calculated with the next formula.

JIS K-7210に準拠し	て測定し	た。
It conforms to JIS K- 7210	* It measures	It is.

[0079]

実施例 7~14 及び比較例 2~7

PC-PDMS 共重合体 A~E,G、ポリカーボネート 樹脂(PC 樹脂)[出光石油化学(株)製タフロン A1500]及び無機充填剤を第2表に示す割合で 配合し、30mm ベント付き押出機によってペレッ ト化した。

なお、無機充填剤としては、GF[旭ファイバーグラス(株)製MA-409C]及びCF[東邦レーヨン(株)製HTA-C6-CS]を用い、押出機の原料樹脂のホッパー供給位置よりも下流側から供給した。

そして、実施例 2 及び比較例 3 には、酸化防止 剤として、トリスノニルフェニルホスファイト 200ppmを加え、ペレット化した。

また、比較例 3 には、シリコーンオイル[東レ・ダウコーニング・シリコーン(株)製 SH200-350]を5,000ppm を加え、ペレット化した。

得られたペレットは、射出成形機を用いて、 280~300 deg C の成形温度で成形して試験片を 作製した。

各ペレットについては、流れ値及び離型圧を、また、試験片については、破断強度を測定した。

その結果を第3表に示す。

[0080]

【表 2】

[0079]

Working Example 7~14 and Comparative Example 2~7

PC -PDMS copolymer A~E,G, polycarbonate resin (PC resin) {Idemitsu Petrochemical Co. Ltd. (DB 69-054-8953) make Toughlon A1500 } and it combined at ratio which shows inorganic filler in Table 2 , pelletizing did with 30 mm vented extruder .

It supplied from downstream side GF {Asahi Fiber Glass Co., Ltd. make MA-409C } and making use of CF {Toho Rayon Co., Ltd. make HTA-C6-cs }, in comparison with hopper feed position of starting material resin of extruder furthermore, as inorganic filler.

And, to Working Example 2 and Comparative Example 3, pelletizing it did as antioxidant, including tris nonyl phenyl phosphite 200ppm.

In addition, silicone oil {Dow Corning Toray Silicone Co. Ltd. (DB 69-066-9486) make SH200-350} pelletizing was done in Comparative Example 3 including 5,000 ppm.

pellet which it acquires forming with molding temperature of 280 - 300 deg C making use of injection molding machine, produced test piece.

Concerning each pellet, flow number and mold release pressure, in addition, break strength was measured concerning test piece.

Result is shown in Table 3.

[0080]

[Table 2]

JP1995173276A

第 2 表

	PC-PDMS 共重合体		PC樹脂	無機充填剤		
	種類	配合割合	配合割合	種類	配合割合	
		(wt%)	(wt%)		(wt%)	
実施例 7	Ą	7 0	0	GF	3 0	
実施例8	В	3 5	3 5	GF	3 0	
実施例 9	С	9	6 1	GF	3 0	
実施例10	D	1 4	5 6	GF	3 0	
実施例11	E	3 5	3 5	GF	3 0	
実施例12	E	4.5	4 5	GF	1 0	
実施例13	E	2 5	. 2 5	GF	5 0	
比較例 2	G	3 5	3 5	GF	3 0	
比較例 3	-	0	7 0	GF	3 0	
比较例 4	-	0	70	GF	3 0	
比較例 5	-	0	9 0	GF	1 0	
比較例 6	-	0	5 0	GF	5 0	
実施例14	E	3 5	3 5	CF	3 0	
比較例 6	G	3 5	3 5	СF	3 0	
比較例7	-	0	70	CF	3 0	

[0081]	[0081]
【表 3】	[Table 3]

1995-7-11

JP1995173276A

第 3 表

	流れ値	離型圧	破断強度
	(×10 ⁻² m1/s)	(kg/cm²)	(kg/cm²)
実施例 7	1 8	1 3	1.300
実施例8	17	1 3	1.300
実施例 9	1 5	1 3	1.300
実施例10	2 0	1 2	1.300
実施例11	1 7	1 7	1.300
実施例12	3 8	1 5	1.100
実施例13	. 9	1 2	1.600
比較例 2	1 5	1 8	1.200
比較例3	1 5	2 0	1.200
比較例4	1 5	1 8	1.200
比較例 5	3 4	2 1	1.100
比較例 6	9	1 9	1.600
実施例14	1 0	1 4	2, 4 0 0
比較例6	8	1 6	2.300
比較例7	8	1 9	2,300

[0082]

なお、流れ値、離型圧及び破断強度の測定は、 次に従った。

Furthermore, you followed measurement of flow number, mold release pressure and break strength, next.

74	C > 7 C 0								
1:济	れ値								
1:flo	w number								
J IS K-7			210に準拠して測定した。						
J	ISK- 7		Conforming to 210, it measured.						
2	:離型圧								
2	:mold release pressure								
定し Fixe	d it did.								

Page 37 Paterra® InstantMT® Machine Translation (U.S. Pat. Ser. No. 6,490,548; Pat. Pending Ser. No. 10/367,296)

3:破断強度						
3:break strength						
JIS K-	7	312	準拠し	τ	測定し	た。
JIS K-	7	In 3	It conforms	*	It measures	It is.

[0083]

【発明の効果】

以上の如く、本発明のポリカーボネート系樹脂は、これに含まれる PC-PDMS 共重合体の分子量も十分で、流動性に優れ、効率よく製造することができ、樹脂組成物は、離型性,耐衝撃性,流動性及び剛性に優れたものである。

したがって、本発明のポリカーボネート系樹脂 組成物は、各種の成形品、例えば、電気・電子 機器分野、自動車分野等において幅広く使用さ れている各種の成形品の素材として有効に利 用される。

【図面の簡単な説明】

【図1】

本発明の樹脂組成物を界面重縮合法によって 製造する方法について、その一例のフローを示 す図である。

Drawings

[0083]

[Effects of the Invention]

As though it is above, polycarbonate resin of this invention, in fully, issuperior in flow property, produces also molecular weight of PC -PDMS copolymer which isincluded in this efficiently to be possible, resin composition issomething which is superior in mold release property, impact resistance, flow property and stiffness.

Therefore, as for polycarbonate resin composition of this invention, it is utilized effectively widely as material of various molded article which are used in various molded article, for example electricity * electronic equipment field, automobile field etc.

[Brief Explanation of the Drawing(s)]

[Figure 1]

It is a figure which shows flow of one example concerning method which produces resin composition of this invention with interfacial polymerization method.

[Figure 1]