МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 4.5.2

Интерференция лазерного излучения

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

Цель работы

Исследовать зависимость видности интерференционной картины от разности хода интерферирующих лучей и от их поляризации

В работе используются

- Не-Nе лазер
- интерферометр Майкельсона
- с подвижным зеркалом
- фотодиод с усилителем
- осциллограф С1-76
- поляроид
- линейка

Теоретические сведения

Для описания чёткости интерференционной картины в некоторой точке Майкельсон ввёл параметр видности γ :

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} - I_{min}} \tag{1}$$

где I_{max} и I_{min} - максимальная и минимальная интенсивности света интерфереционной картины вблизи выбранной точки. Параметр γ меняется в пределах от 0 (полное исчезновение интерфереционной картины) до 1(наиболее четкая картина). Человеческий глах может уверенно различать чередование светлых и темных интерфереционных полос,если $\gamma > 0,1$

Пусть в плоскости наблюдения интерферируют по д небольшим углом две волны с амплитудами A_m и B_m . Если в точке наблюдения разность фаз между волнами равна $k_m l$, где $k_m = 2\pi/\lambda_m$, l - разность хода, тогда интенсивность света в данной точке:

$$I_m = A_m^2 + B_m^2 + 2A_m B_m \cos(k_m l) (2)$$

При этом интенсивность свет а в максимуме интерференционной картины $I_{max} = (A_m + B_m)^2$, а в минимуме $I_{min} = (A_m - B_m)^2$ видность

$$\gamma_1 = \frac{2\sqrt{\delta}}{1+\delta} \tag{3}$$

где параметр

$$\delta = \frac{B_m^2}{A_m^2} \tag{4}$$

выражает отношение интенсивностей интерферирующих волн.

Учитывая спектральный состав света, видность интерфереционной картины:

$$\gamma = \gamma_1 \gamma_2(l) \tag{5}$$

где

$$\gamma_2 = \frac{\sum_n A_n^2 \cos\left(\frac{2\pi\delta\nu nl}{c}\right)}{\sum_n A_n^2} \approx e^{-(\pi\Delta Fl/c)^2}$$
(6)

Таким образом

$$l_{1/2} = \frac{0,26c}{\Delta F} \tag{7}$$

Рис. 1: Схема экспериментальной установки

Осциллограф используетс я для регистрации следующих сигналов: фоновой засветки (линия 0 — перекрыты оба луча 1 и 2); интенсивности свет а одного из пучков (линии 1 или 2 — перекрыт луч 2 или 1); максимума и минимума интенсивности интерференционной картины (открыты оба луча). При этом параметр δ определяется отношением:

$$\delta = \frac{h_1}{h_2} \tag{8}$$

Видность интерференционной картины рассчитывается я по формуле:

$$\gamma = \frac{h_4 - h_3}{h_4 + h_3} \tag{9}$$

При $\alpha = 0(\gamma_3 = 1)$:

$$\gamma_2(l) = \frac{\gamma}{\gamma_1} \tag{10}$$

При $l = 0 \ (\gamma_2 = 1)$:

$$\gamma_3 = \frac{\gamma}{\gamma_1} \tag{11}$$

Экспериментальная установка

Рис. 2: Осциллограмма сигналов фотодиода

Луч 1 проходит поляроид Π_1 , отражается под небольшим углом от зеркала 3_1 , снова проходит поляроид Π и, частично отражаясь от диагональной плоскости делительной призмы, выходит из интерферометра. Зеркало 3_1 наклеено на пьезокерамику Π К, которая может осуществлять малые колебания зеркала вдоль падающего луча. Поляроид и зеркало с пьезокерамикой собраны в единый блок B_1 , который крепится к вертикально стоящей плите. В блоке B_1 имеются юстировочные винты B, которые позволяют регулировать угол наклона зеркала 3_1 B установке предусмотрена возможность вращения поляроида Π_1 вокруг луча 1. Угол поворота отсчитывается по шкале, нанесённой на оправу поляроида.

Луч 2 проходит линзу Л, поляроид Π_2 , отражается от зеркала 3_2 , снова проходит поляроид Π_2 , линзу Л и частично выводится делительной призмой из интерферометра. Зеркало 3_2 установлено в фокальной плоскости линзы Л. Это сделано для того, чтобы падающий и выходящий из системы лучи всегда были параллельны друг другу. Линза Л, поляроид Π_2 и зеркало 3_2 собраны в единый блок B_2 . Этот блок может перемещаться вдоль луча 2 по штанге Ш, жёстко связанной с плитой интерферометра. Длина штанги 90 см. В установке предусмотрена возможность небольшого перемещения блока B_2 перпендикулярно лучу, что позволяет регулировать расстояние между падающим и выходящим из блока лучами. При измерениях блок B_2 крепится к штанге при помощи двух винтов. Вдоль штанги нанесены деления через один сантиметр. При перемещении блока B_2 вдоль штанги на величину l_1 геометрическая разность хода между лучами 1 и 2 изменяется на величину $l=2l_1$.

Лучи 1 и 2 накладываются друг на друга и интерферируют вблизи задней грани делительной призмы ПД. Сферическое зеркало \Im_3 с небольшим фокусным расстоянием увеличивает картину интерференционных полос и проецирует её на экран \Im .

Ход работы

Измерение коэффициента видности

90

Исследуем зависимость видности интерфереционной картины от угла поворота поляроида α . Для этого будем измерять величины h_1, h_2, h_3, h_4 . Полученные данные занесем в Таблицу 1

Таблица 1 $\overline{\mathrm{h2}}$, дел $\overline{\mathrm{h}3}$, дел α ,° h4, дел h1, дел 10 4 4 12 20 3,5 3,5 3 11,5 30 4 3,5 3 11 5 40 6 3 13 5 50 2,5 4,5 10.5 60 6,52 6 11 70 5 2 5 8,5 2 5 80 4,5 7

1,5

5

6

Рассчитаем коэффициент γ_3 , используя формулы (3), (8), (9), (11) Оценим погрешности рассчитанных величин, учтя что $\sigma_h = 0.5$ дел:

4

$$\sigma_{\delta} = \delta \sqrt{\left(\frac{\sigma_h}{h_1}\right)^2 + \left(\frac{\sigma_h}{h_2}\right)^2}$$

$$\sigma_{\gamma_1} = \left(\frac{1}{\sqrt{\delta}(\delta+1)} + \frac{\sqrt{\delta}}{(\delta+1)^2}\right) \sigma_{\delta}$$

$$\sigma_{\gamma} = \gamma \sqrt{\left(\frac{\sqrt{2}\sigma_h}{h_3 + h_4}\right)^2 + \left(\frac{\sqrt{2}\sigma_h}{h_3 - h_4}\right)^2}$$

$$\sigma_{\gamma_3} = \gamma_3 \sqrt{\left(\frac{\sigma_{\gamma_1}}{\gamma_1}\right)^2 + \left(\frac{\sigma_{\gamma_2}}{\gamma_2}\right)^2}$$

Полученные данные занесем в Таблицу??

Таблица 2

$\cos(\alpha)$	$cos(\alpha)^2$	δ	σ_{δ}	γ_1	σ_{γ_1}	γ_3	σ_{γ_3}	γ	σ_{γ}
0,985	0,970	1,000	0,177	1,000	0,133	0,600	0,156	0,600	0,146
0,940	0,883	1,000	0,202	1,000	0,152	0,586	0,156	0,586	0,143
0,866	0,750	1,143	0,217	0,998	0,145	0,573	0,152	0,571	0,140
0,766	0,587	2,000	$0,\!373$	0,943	0,146	0,471	0,083	0,444	0,067
0,643	$0,\!413$	2,000	0,447	0,943	$0,\!176$	0,424	0,087	0,400	0,068
0,500	$0,\!250$	3,250	0,850	0,848	0,196	0,347	0,065	0,294	0,039
0,342	0,117	2,500	0,673	0,904	0,209	0,287	0,062	0,259	0,043
0,174	0,030	2,250	0,616	0,923	0,214	0,181	0,041	0,167	0,029
0,000	0,000	2,667	0,949	0,891	0,274	0,102	0,028	0,091	0,017

Построим график зависимости $\gamma_3(\cos^2(\alpha))$ по данным Таблицы ??

Рис. 3: График зависимости $\gamma_3(\cos^2(\alpha))$

Исследуем зависимость видности от разности хода между лучами. Снимем зависимость величин h_1,h_2,h_3,h_4 от координаты х блока. Данные занесем в Таблицу

Таблица 3

X	h_1	h_2	h_3	h_4	δ	σ_{δ}	γ	σγ	γ_1	σ_{γ_1}	γ_2	σ_{γ_2}
10	10	8	17	20	0,800	0,064	0,096	0,005	0,994	0,057	0,096	0,008
12	10	10	18	23	1,000	0,071	0,122	0,006	1,000	0,053	0,122	0,009
14	10	10	18	22	1,000	0,071	0,103	0,005	1,000	0,053	0,103	0,008
16	10	13	20	25	1,250	0,080	0,111	0,005	0,994	0,049	0,112	0,008
18	10	20	26	32	2,000	0,112	0,103	0,004	0,943	0,044	0,110	0,006
20	10	3	12	19	0,300	0,052	0,226	0,016	0,843	0,090	0,268	0,034
22	10	51	33	49	5,100	0,260	0,195	0,005	0,740	0,035	0,264	0,014
24	10	10	18	21	1,000	0,071	0,077	0,004	1,000	0,053	0,077	0,006
26	10	15	24	26	1,500	0,090	0,040	0,002	0,980	0,047	0,041	0,003
28	10	20	30	33	2,000	0,112	0,048	0,002	0,943	0,044	0,051	0,003
30	10	20	30	31	2,000	0,112	0,016	0,001	0,943	0,044	0,017	0,001
32	11	17	23	24	1,545	0,084	0,021	0,001	0,977	0,042	0,022	0,001
72	7	1	8	10	0,143	0,072	0,111	0,013	0,661	0,188	0,168	0,051
74	7	1	7	9	0,071	0,072	0,125	0,016	0,499	0,267	0,251	0,138
78	7	2	8	11	0,214	0,073	0,135	0,015	0,762	0,153	0,177	0,041
80	7	1	7	8	0,071	0,072	0,067	0,009	0,499	0,267	0,134	0,074
82	7	1	7	8	0,071	0,072	0,067	0,009	0,499	0,267	0,134	0,074

По данным Таблицы ?? построим график зависимости $\gamma_2(x)$

Рис. 4: График зависимости $\gamma_2(x)$

Из графика видно, что для двух последовательных максимумов: $x_1=20\pm 2$ см $x_2=74\pm 2$ см. Определим расстояние L между зеркалами оптического резонатора лазера и межмодовое расстояние $\Delta \nu$

$$L = \frac{1}{2}(x_2 - x_1) = 27 \pm 3$$
cm

$$\Delta \nu = \frac{c}{2L} \approx = (5, 6 \pm 0, 6) \times 10^8 \ \Gamma$$
ц

Из графика: $l_{1/2}=5$ см. Определим диапазон частот ΔF и оценим число генерируемых мод:

$$\Delta F = \frac{0,26c}{l_{1/2}} \approx 1,6 \times 10^9$$
 Гц
$$N = 1 + \frac{2\Delta F}{\Delta \nu} \approx 6$$

Выводы

1.Из Рис 3 следует, что в пределах погрешности выполняется приближение $\gamma_3 = \cos^2(\alpha)$. Следовательно, поляризация хаотически меняется в пределах от 0 до π

2.Было получено значение расстояния между зеркалами резонатора лазера $L=27\pm3$ см, которое более чем в 2 раза отличается от теоретического L=65см. Это может быть вызвано неточным исследованием зависимости $\gamma_2(x)$