National University of Singapore Department of Computer Science CS1231 Discrete Structures

2021/22 (Sem.1)

Tutorial 6

- 1. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$.
 - (a) For each of the following statements, give an example of a relation $f \subseteq X \times Y$ that satisfies it.
 - (i) $\exists x \in X \ \forall y \in Y \ (x, y) \in f$.
 - $(ii)^* \exists y \in Y \ \forall x \in X \ (x,y) \in f.$
 - (iii)* $\forall y \in Y \ \exists x \in X \ (x,y) \in f.$
 - (iv) $\forall x_1 \in X \ \forall x_2 \in X \ \forall y \in Y \ x_1 \neq x_2 \rightarrow ((x_1, y) \notin f \lor (x_2, y) \notin f).$
 - (b) Are your examples in (a) functions?

Solution:

- (a) There are infinitely many correct answers for each part.
 - (i) $\exists x \in X \ \forall y \in Y \ (x,y) \in f.$ $f = \{(a,1), (a,2), (a,3), (a,4), (c,4)\}.$

(ii)* $\exists y \in Y \ \forall x \in X \ (x,y) \in f.$ $f = \{(a,2), (b,2), (b,3), (c,2)\}.$

(iii)* $\forall y \in Y \ \exists x \in X \ (x,y) \in f.$ $f = \{(a,1), (b,2), (c,3), (c,4)\}.$

(iv) $\forall x_1 \in X \ \forall x_2 \in X \ \forall y \in Y \ x_1 \neq x_2 \to ((x_1, y) \notin f \lor (x_2, y) \notin f).$ $f = \{(a, 1), (c, 3), (c, 4)\}.$

(b) All the f's above are not functions.

- 2. Let A and B be nonempty subsets of C, where $C = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$. Define $R = \{(x, y) \in A \times B : y = x^2 1\}$.
 - (a) Suppose $A = \{-2, -1, 0, 1, 2\}$ and $B = \{0, 1, 2, 3\}$. Is R a function $A \to B$?
 - (b) Suppose $A = \{-2, -1, 0, 1, 2\}$. Give an example of B such that $B \subseteq C$ and R is a surjective function $A \to B$.
 - (c) Suppose $B = \{0, 1, 2, 3\}$. Give an example of A such that $A \subseteq C$ and R is an injective function $A \to B$.

Solution: $C = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}, A \subseteq C, B \subseteq C, \text{ and } R = \{(x, y) \in A \times B : y = x^2 - 1\}.$

(b) $A = \{-2, -1, 0, 1, 2\}$.

Setting $B = \{-1, 0, 3\}$ makes f a surjective function $A \rightarrow B$.

No other choice of B works.

(c) $B = \{0, 1, 2, 3\}$. Setting $A = \{1, 2\}$ makes f an injective function $A \to B$. **Alternatives:** $A = \emptyset$, $A = \{-1\}$, etc.

3. Recall that saying a function $f: X \to Y$ is injective means

"for all x_1 and x_2 in X, $x_1 = x_2$ if $f(x_1) = f(x_2)$ ".

Explain the difference (if any) between this condition and

- (a)* "for any x_1 and x_2 in X, $f(x_1) = f(x_2)$ whenever $x_1 = x_2$ ";
- (b)* "for every x_1 and x_2 in X, $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ ";
- (c) "there are no elements x_1 and x_2 in X such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$ ";
- (d) " $x_1 \neq x_2$ and $f(x_1) = f(x_2)$ for some x_1 and x_2 in X".

Solution: injective function: $\forall x_1 \in X \ \forall x_2 \in X \ f(x_1) = f(x_2) \to x_1 = x_2$

- (a)* "for any x_1 and x_2 in X, $f(x_1) = f(x_2)$ whenever $x_1 = x_2$ " $\forall x_1 \in X \ \forall x_2 \in X \ x_1 = x_2 \to f(x_1) = f(x_2)$ converse (**not** equivalent) This statement is true for all functions f: if $x_1 = x_2$, then of course $f(x_1) = f(x_2)$.
- (b)* "for every x_1 and x_2 in X, $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ " $\forall x_1 \in X \ \forall x_2 \in X \ x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$ contrapositive (equivalent)
- (c) "there are no elements x_1 and x_2 in X such that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$ " $\sim \exists x_1 \in X \ \exists x_2 \in X \ x_1 \neq x_2 \land f(x_1) = f(x_2) \equiv \forall x_1 \in X \ \forall x_2 \in X \ x_1 = x_2 \lor f(x_1) \neq f(x_2)$ $\equiv \forall x_1 \in X \ \forall x_2 \in X \ f(x_1) = f(x_2) \rightarrow x_1 = x_2$ —equivalent
- (d) " $x_1 \neq x_2$ and $f(x_1) = f(x_2)$ for some x_1 and x_2 in X" $\exists x_1 \in X \ \exists x_2 \in X \ x_1 \neq x_2 \land f(x_1) = f(x_2)$ negation (**not** equivalent)

- 4. Recall that saying a function $f: X \to Y$ is surjective means
 - "given any y in Y, there is an x in X such that y = f(x)".

Explain the difference (if any) between this condition and

- (a)* "for every x in X, there is y in Y such that y = f(x)";
- (b)* "there is x in X such that y = f(x) for any y in Y";
- (c)* "there is some y in Y such that y = f(x) for some x in X";
- (d) "there is some y in Y such that y = f(x) for any x in X";
- (e) "there is no y in Y such that $y \neq f(x)$ for any x in X".

Solution: surjective function: $\forall y \in Y \ \exists x \in X \ y = f(x)$

- (a)* "for every x in X, there is y in Y such that y = f(x)" $\forall x \in X \ \exists y \in Y \ y = f(x)$ **not** equivalent (Actually, this is F1. So it is satisfied by all function, but not all functions are surjective.)
- (b)* "there is x in X such that y = f(x) for any y in Y" $\exists x \in X \ \forall y \in Y \ y = f(x)$ **not** equivalent (For example, $\mathrm{id}_{\{1,2\}}$ is a surjective function, but it does not satisfy this condition.)
- (c)* "there is some y in Y such that y = f(x) for some x in X" $\exists y \in Y \ \exists x \in X \ y = f(x)$ **not** equivalent (For example, the function $f \colon \{1\} \to \{0,1\}$ satisfying f(1) = 1 is not surjective, but it satisfies this condition.)
- (d) "there is some y in Y such that y = f(x) for any x in X" $\exists y \in Y \ \forall x \in X \ y = f(x)$ **not** equivalent (For example, the function $f \colon \{1\} \to \{0,1\}$ satisfying f(1) = 1 is not surjective, but it satisfies this condition.)
- (e) "there is no y in Y such that $y \neq f(x)$ for any x in X" $\sim \exists y \in Y \ \forall x \in X \ y \neq f(x) \equiv \forall y \in Y \ \exists x \in X \ y = f(x)$ —equivalent
- 5.* Consider the sets Y, Z and the relation R from Tutorial 4 Problem 5. Give an example of a subset $g \subseteq R$ such that g is a function $Y \to Z$ but it is neither injective nor surjective.

Z

1

2

3

4

5

6. Consider the functions f and g from \mathbb{Z} to \mathbb{Z} defined by setting f(n) = 2n and $g(n) = \lfloor \frac{n}{2} \rfloor$ for all $n \in \mathbb{Z}$. Which of the functions f, g, $g \circ f$, $f \circ g$, $f \circ f$ are injective? Which are surjective? Determine the range of each of the two functions.

- 7. Define Boolean functions f and g from $\{T, F\}^3$ to $\{T, F\}$ so that, for all p, q and r in $\{T, F\}$,
 - $(i)^* f(p,q,r) = (p \land q) \lor r;$

- (ii) $g(p,q,r) = (p \lor q) \rightarrow \sim r$.
- (a) Draw arrow diagrams for f and g.
- (b) Using only \sim and \wedge , define Boolean functions f^* and g^* such that $f = f^*$ and $g = g^*$.
- (c) Let Q is a Boolean expression with n statement variables. Suppose the Boolean function $f: \{T, F\}^n \to \{T, F\}$ representing Q is not surjective. What can you say about Q?

Solution:

(a) (i)* $f(p, q, r) = (p \land q) \lor r$

(ii) $g(p,q,r) = (p \lor q) \to \sim r$

- (b) (i) $(p \wedge q) \vee r \equiv \sim \sim ((p \wedge q) \vee r) \equiv \sim (\sim (p \wedge q) \wedge \sim r) \stackrel{\text{def}}{==} f^*(p, q, r)$
 - (ii) $(p \lor q) \to \sim r \equiv \sim \sim ((\sim p \land \sim q) \lor \sim r) \equiv \sim (\sim (\sim p \land \sim q) \land r) \stackrel{\text{def}}{=\!\!\!=} g^*(p, q, r)$
- (c) Since f is not surjective, either $\forall \alpha \in \{T, F\}^n$ $f(\alpha) = T$ or $\forall \alpha \in \{T, F\}^n$ $f(\alpha) = F$, i.e., either Q is a tautology, or Q is a contradiction.
- 8. Let X and Y be sets and let $f: X \to Y$ and $g: Y \to X$ such that $g \circ f = \mathrm{id}_X$. Prove that if f is surjective, then g is injective.

Solution: Assume f is surjective. Suppose $y_1, y_2 \in Y$ such that $g(y_1) = g(y_2)$.

Use the surjectivity of f to find $x_1, x_2 \in X$ such that $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Then

$$x_1 = \mathrm{id}_X(x_1) = (g \circ f)(x_1) = g(f(x_1)) = g(y_1) = g(y_2) = g(f(x_2)) = (g \circ f)(x_2) = \mathrm{id}_X(x_2) = x_2.$$

So $y_1 = f(x_1) = f(x_2) = y_2$.

Since $g(y_1) = g(y_2)$ implies $y_1 = y_2$ for all $y_1, y_2 \in Y$, we know that g is injective.

9.* Let X be a nonempty set. Consider any surjective function $f: \mathbb{Z}_{\geqslant 0} \to X$. Define a function $g: X \to \mathbb{Z}_{\geqslant 0}$ such that g(x) is the smallest integer n such that f(n) = x for all $x \in X$. Show that g is well defined, i.e., show that

 $\{(x,n)\in X\times\mathbb{Z}_{\geqslant 0}: n \text{ is the smallest integer such that } f(n)=x\} \text{ is a function } X\to\mathbb{Z}_{\geqslant 0}.$

What is $f \circ g$? Is $g \circ f = \mathrm{id}_{\mathbb{Z}_{\geq 0}}$?

Solution: A surjective function $f: \mathbb{Z}_{\geq 0} \to X$,

 $g = \{(x, n) \in X \times \mathbb{Z}_{\geqslant 0} : n \text{ is the smallest integer such that } f(n) = x\}.$

Let $x \in X$. Define $N_x = \{n \in \mathbb{Z}_{\geq 0} : f(n) = x\}$.

Note that $N_x \subseteq \mathbb{Z}$. Since f is surjective, $N_x \neq \emptyset$.

Also N_x is bounded below by 0, i.e., $\forall n \in N_x \ n \ge 0$.

By the Well-Ordering Principle, N_x has a smallest element.

Let n_x be this smallest element, so that $\forall n \in N_x \ n \ge n_x$.

Then $(x, n_x) \in g$.

(F1: $\forall x \in X \ \exists n_x \in \mathbb{Z}_{\geq 0} \ (x, n_x) \in g.$)

Suppose $(x, n_x) \in g$ and $(x, n_x^*) \in g$.

Then $f(n_x) = x$ and $f(n_x^*) = x$ by the definition of g.

Also $n_x \geqslant n_x^*$ and $n_x^* \geqslant n_x$ by the definition of g. Thus $n_x = n_x^*$.

(F2: $\forall x \in X \ \forall n_x \in \mathbb{Z}_{\geq 0} \ \forall n_x^* \in \mathbb{Z}_{\geq 0} \ (x, n_x) \in g \land (x, n_x^*) \in g \rightarrow n_x = n_x^*$.)

Hence g is a function.

Moreover, for any $x \in X$, if we let $g(x) = n_x$, then $f(n_x) = x$ by the definition of g, and so $(f \circ g)(x) = f(g(x)) = f(n_x) = x = \mathrm{id}_X(x)$. Thus $f \circ g = \mathrm{id}_X$.

These demonstrate how one can construct an "inverse" g for any surjective function $f: \mathbb{Z}_{\geq 0} \to X$, in the sense that $f \circ g = \mathrm{id}_X$.

However, the following shows that this "inverse" may not satisfy $g \circ f = \mathrm{id}_{\mathbb{Z}_{>0}}$.

Consider any f that is not injective.

(For example, one can take $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ where $f(n) = \lfloor \frac{n}{2} \rfloor$ for all $n \in \mathbb{Z}_{\geq 0}$.)

Take $n, n^* \in \mathbb{Z}_{\geq 0}$ such that $n \neq n^*$ and $f(n) = f(n^*) = x$, say. If $g \circ f = \mathrm{id}_{\mathbb{Z}_{\geq 0}}$, then

$$n = \mathrm{id}_{\mathbb{Z}_{\geq 0}}(n) = (g \circ f)(n) = g(f(n)) = g(x) = g(f(n^*)) = (g \circ f)(n^*) = \mathrm{id}_{\mathbb{Z}_{\geq 0}}(n^*) = n^*,$$

contradicting $n \neq n^*$. Therefore, $g \circ f \neq \mathrm{id}_{\mathbb{Z}_{\geq 0}}$ if f is not injective.

- 10.* The concept of an inverse function is central to cryptography.
 - (a) Julius Caesar used a cipher that encrypts the message "attack today" as "dwwdfn wrgdb". Define an encryption function E and its decryption function D (i.e., E^{-1}) for this cipher.
 - (b) The Caesar cipher is easy to break. It can be strengthened with a *key*. For example, if the key is "coolcat", we drop the repeated letters to get "colat", then use it and the rest of the alphabet to construct a rectangle:

This rectangle can be used to define encryption and decryption functions so that "attack today" is encrypted as "crrchv rqncs". Define D and E for this cipher.

(The difference now is: Even if you know the encryption method, you still need to know the key to do the decryption; thus D and E here are functions $D_{\rm coolcat}$ and $E_{\rm coolcat}$ that depend on the key "coolcat".)

(c) Actually, we don't need $D=E^{-1}$; we just need D(E(x))=x for all x. Construct two functions $f\colon X\to Y$ and $g\colon Y\to X$ such that $g\circ f=\operatorname{id}_X$ but $f\circ g\neq\operatorname{id}_Y$.

Solution:

(a) The following is an arrow diagram for E:

This E is bijective. So E^{-1} is a bijection and $E \circ E^{-1} = \mathrm{id} = E^{-1} \circ E$.

(b) Define $E(\alpha) = \beta$ and $D(\beta) = \alpha$, whenever α and β are in the same position in the respective tables below.

(c) In Problem 6, $g \circ f = \mathrm{id}_X$, but $f \circ g \neq \mathrm{id}_Y$. So $g \neq f^{-1}$. (In fact, f^{-1} is not a function.)

11. We will prove that all students have the same sex.

Claim. There is only one sex among any group of n students, for any positive integer n.

Proof. By induction on n.

Basis n = 1: Since there is only 1 student, there is only 1 sex.

Induction Hypothesis: Suppose the claim is true if n = k, where $k \ge 1$.

Induction Step: Consider any set S of k+1 students. Remove one student x, so $S \setminus \{x\}$ has \overline{k} students. By the induction hypothesis, all students in $S \setminus \{x\}$ have the same sex. Now put back the student and remove another student y, so $S \setminus \{y\}$ has k students. Again, all students in $S \setminus \{y\}$ have the same sex.

Thus x and y have the same sex as students in $S \setminus \{x, y\}$, so all students in S have the same sex.

What's wrong with this "proof"?

[The point here is: You can "prove" nonsense with bad logic, even if you stick to the structure provided by a proof technique.]

Error: $S \setminus \{x, y\}$ may be empty, i.e., the argument fails when S has exactly 2 students. Indeed, the induction step is bogus when S consists of one male and one female.