

Manual do Sistema de Automação para medição de viscosidade com Copo Ford

SISAUTOFORD

SISAUTOFORD								
Manual do Sistema de Automação para medição de viscosidade com Copo Ford								
CÓDIGO	D:	DOC:	REVISÃO: 00	NÚMERO:	ARQUIVO:			NÚM. PÁG.
ELABORADO:			REVISADO:			APROVAD	Ю:	
Nome: André/Laryssa/ Visto: Nome:		Nome:	ome: Visto: Nome:				Visto:	
Data:	17/11/2024		Data: Data:					
Contrat	Contrato: N/A No: /IFMA/ 2024							

REGISTRO DE REVISÕES

REVISÃO	DATA	DESCRIÇÃO	RESPONSÁVEL	VISTO
00	17/11/2024	Emissão Inicial	André Penha – 20212EE0013 Laryssa de Oliveira - 20212EE0003 Antônio Dias - 20191EE0012	

Sistema de Automação para medição de viscosidade com Cod.: Doc.: Rev.: Pag.: 2/18 Copo Ford

ÍNDICE

1	OBJETIVO DO DOCUMENTO	. 3
2	ALCANCE	. 3
3	DEFINIÇÕES	. 3
	REFERÊNCIAS	
5	INTRODUÇÃO	. 5
	Motivação	
5.2	Funções do SISAUTOFORD	5
5.3	Ambiente de Uso do Aplicativo	5
6	VISÃO GERAL DO SISTEMA	. 6
7	PROCEDIMENTO DE OPERAÇÃO	. 8

1 Objetivo do Documento

Este documento visa apresentar a operação do Sistema de Automação para medição de viscosidade com Copo Ford (SISAUTOFORD) utilizado para o cálculo da viscosidade cinemática de fluídos testados utilizando o Copo Ford.

2 Alcance

IFMA Departamento de Eletro-Eletrônica, Departamento de Mecânica

3 Definições

SISAUTOFORD Sistema de Automação para medição de viscosidade com Copo Ford

Pag.:

3/18

Doc.:

Rev.:

IFMA Instituto Federal de Educação, Ciência e Tecnologia Do Marnahão

4 Referências

[1] - FOX, Robert W.; MCDONALD, Alan T. Introdução à mecânica dos fluidos. 4. Ed. Rio de Janeiro: LTC, 1998.

Doc.:

5 Introdução

O SISAUTOFORD tem por objetivo tornar mais prático e preciso os testes de viscosidade realizado com o Copo Ford através de um sensor óptico que detecta a passagem do fluído e de um software que trata o tempo de escoamento e calcula a viscosidade cinemática exibindo para o usuário os resultados dos experimentos, além de fornecer orientação no caso de medições fora da faixa.

5.1 Motivação

A medição de viscosidade utilizando o Copo Ford é largamente utilizada na industria e nos setores farmacêuticos e alimentícios devido a sua praticidade e razoável precisão. No entanto, a medição do tempo de escoamento e os cálculos são realizados de forma manual, dessa forma a automação desses processos resulta em ganhos de produção e redução de erros.

5.2 Funções do SISAUTOFORD

São funcionalidades do SISAUTOFORD:

- Detecção automática da passagem do fluído em teste através de um sensor óptico instalado da saída do orifício de escoamento do copo ford;
- Medição do tempo de escoamento através da detecção da passagem de fluído pelo sensor óptico;
- Seleção de 5 tipos padronizados de orifício de escoamento;
- Cálculo da viscosidade cinemática em cSt (centistokes);
- Mensagem de auxílio ao usuário para a troca do orifício de escoamento mais adequado em caso de medição de tempo de escoamento fora da faixa;

5.3 Ambiente de Uso do Aplicativo

- Hardware: PC x86, teclado e mouse, duas interfaces seriais RS232;
- Sistema Operacional Windows 7/10/11 de 32 bits ou 64 bits;
- O aplicativo é composto pelo arquivo:
 - Sisautoford.exe executável da aplicação
- O usuário precisa ter privilégios de execução de aplicativos;
- O computador precisa ter os drives do conversor USB FTDI e CH340 para reconhecimento do Arduino UNO.

6 Visão Geral do Sistema

O SisautoFord é composto por:

- Sensor óptico para detecção de fluxo
- Arduino UNO de interface para conectar a leitura do sensor óptico com a aplicação que roda no computador
 - Aplicativo Windows para tratamento das medição e cálculo da viscosidade dinâmica

Figura 1 - Visão Geral do SisautoFord

Figura 2 - Sensor Òptico para detecção de fluxo

Figura 3 - Arduino UNO de interface

Figura 4 - Aplicativo Windows do SisautoFord

O sensor óptico fica instalado abaixo do orifício de escoamento do copo Ford, conforme a figura abaixo:

Figura 5 - Instalação do sensor óptico de fluxo

Assim, quando ocorrer a passagem de fluxo o sensor óptico irá sinalizar para o Arduino essa detecção e por fim o Arduino através de sua interface serial enviará essa informação para a aplicação Windows que fará o tratamento, conforme mostra a figura abaixo:

Figura 6 - Detecção de passagem de fluxo

7 Procedimento de Operação

Segue abaixo o passo-a-passo da operação do SisautoFord

- Alinhe a Base do Copo Ford na Horizontal com o medidor de nível que vem fixado na base, para isso atuar nos pés ajustáveis de sustentação do conjunto

Figura 7 - ajuste de nível do copo ford

- Colocar um recipiente embaixo da base do copo Ford e tampar com o dedo a saída do orifício de escoamento

Figura 8 - tampando o orifício de escoamento com o dedo

- preencher um pouco além da borda da base do copo ford com o fluído em teste

Figura 9 - preenchendo o copo Ford com o fluído em teste

- remover o excesso de fluído com uma lâmina para que fique bem nivelado com a borda do copo Ford

Figura 10 - nivelamento da borda

- posicionar o sensor óptico abaixo do orifício de escoamento

Figura 11 - instalação do sensor óptico

- executar o SisautoFord.exe clicar em "Configurar Serial" selecionar a COMX correspondente a porta serial detectada pelo Windows como a porta serial do arduino clicar em OK

Sistema de Automação para medição de viscosidade com Cod.: Copo Ford

Doc.:

Rev.:

Pag.: 10

10/18

Figura 12 - Configuração da conexão serial com o Arduino

- Na guia "Monitor Comunicação Serial Arduino" será mostrada a tela abaixo:

Figura 13 - Tela de monitoramento de conexão com o Arduino

O "O" que é impresso constantemente é de "open" indicando que não foi detectado fluxo. Quando o fluxo é detectado, a impressão passar a ser de um "C" de close, indicando detecção de fluxo. - Clicar em "Iniciar Nova Medição"

Figura 14 - Botão de "Iniciar Nova Medição"

- Selecionar o orifício de escoamento que foi instalado e clicar em "Avançar"

Figura 15 - Seleção do Orifício de Escoamento instalado

- O botão "Monitorar" vai ser habilitado e a indicação "Fluxo Ausente" será mostrada

Figura 16 - Habilitação do botão "Monitorar" e exibição de "Fluxo Presente"

- Clicar no botão "Monitorar"

Figura 17 - Clicando no botão "Monitorar"

- Remover o dedo do orifício de escoamento, de forma que o fluxo passe pelo sensor óptico. Com isso a impressão na guia "Monitor Comunicação Serial" passa a ser de "C" e a indicação na aplicação windows muda para "Fluxo Presente", além disso, é iniciada a contagem do tempo de escoamento.

Figura 18 - Fluxo passando pelo sensor óptico

Figura 19 - Iniciado a passagem do fluído em teste pelo sensor óptico

- Assim que o fluído tiver escorrido completamente do copo Ford o sensor óptica irá detectar a falta de fluxo e então em "Monitor Comunicação Serial Arduino" será feita a impressao de "O". Será exibido "Fluxo Ausente" e o tempo de escoamento será fixado na tela. Também será mostrado o cálculo da viscosidade cinemática na guia "Resultados". Finalizando assim a medição.

Figura 20 - Final da medição

OBS: Se o tempo de escoamento for acima ou abaixo da faixa informada pelo fabricante do Copo Ford a viscosidade cinemática não será calculada, com a exibição da informação "Fora da Faixa" e será informado ao usuário uma recomendação da troco do orifício de escoamento.

Figura 21 - Mensagem de tempo de escoamento fora da faixa

Figura 22 - Mensagem de Orientação para troca o orifício de escoamento adequado

Figura 23 - Viscosidade Cinemática não calculada devido tempo de escoamento fora da faixa

- A qualquer momento pode ser pressionado o botão "Resetar" para cancelar a medição corrente ou fazer uma nova medição.

Doc.:

Rev.:

Pag.:

16/18

Figura 24 - botão RESETAR para cancelar a medição corrente ou fazer uma nova medição

As faixas de tempo de escoamento para cada tipo de orifício são mostradas na tabela abaixo:

Copo Fordnúme ro doorifício	Faixa de viscosidade(cent istokes)	Tempodeefluxo(tempodeescoamento)(segund os)
1 (⊘orifício=1,90mm)	10to35	55-100
2 (⊘orifício=2,53mm)	25to 120	40-100
3 (⊘orifício=3,40mm)	49to 220	20-100
4 (⊘orifício=4,12mm)	70to 370	20-100
5 (⊘orifício=5,20mm)	200to1200	20-100

Tabela 01 - faixa de tempo de escoamento para cada tipo de orifício

As equações para o cálculo da viscosidade cinemática são mostrada na tabela abaixo:

Copo Fordnúme ro doorifício	Equação
1 (⊘orif(cio=1,90mm)	v = 0.49 (t - 35)
2 (⊘orifício=2,53mm)	v = 1,44 (t - 18)
3 (⊘orif(cio=3,40mm)	v = 2,31 (t - 6,58)
4 (⊘orif(cio=4,12mm)	v = 3.85 (t - 4.49)
5 (⊘orifício=5,20mm)	v = 12,1 (t – 2)

Tabela 02 -equações para o cálculo da viscosidade cinemática

O gráfico que relaciona o tempo de escoamento e a viscosidade cinemática (em cST) para cada tipo de orifício de escoamento é mostrado abaixo:

Figura 25 - gráfico de tempo de escoamento X viscosidade cinemática