Esame di Elementi di Automatica Ingegneria Meccanica 21 luglio 2016 (A)

Cognome:	Nome	Matricola:	E-mail:

Dato il sistema di controllo raffigurato, con 1.

$$C(s) = K_c; P_1(s) = \frac{1}{(s+1)s}; P_2(s) = \frac{2}{s+5}; H(s) = 0.2$$

determinare:

- Per quali valori di Kc il sistema risulta a. stabile a ciclo chiuso
- b. Il tipo di sistema di controllo
- Astatismo rispetto al disturbo costante z
- L'uscita permanente yp(t) con $u(t) = 3 \delta_{-2}(t) e z(t) = 0$
- L'uscita permanente yz(t) con $u(t)=0 e z(t) = 2 \delta_{-2}(t)$

2. Sia dato un processo P(s) descrivibile mediante la funzione di trasferimento

$$P(s) = \frac{2(s/20+1)^2}{(s^2/3^2 + 0.8s/3 + 1)(s/300 + 1)}$$
 Sintetizzare il sistema di controllo in figura determinando

- h
- K_c

con Kd uguale a 2 in modo tale che l'errore per ingresso a rampa $u(t)=20\delta_{-2}(t)$ sia minore o uguale a 0.04.

Scelto il valore minimo di Kc compatibile con le specifiche, tracciare i diagrammi di

- **BODE**
- **NYQUIST**

della funzione a ciclo aperto, e determinare su questi la

- pulsazione di attraversamento ω_t
- e, in caso di sistema stabile a ciclo chiuso, i
 - margini di stabilità (**m**, e **m**_q)

3. Dato il diagramma di **BODE** della funzione di trasferimento a ciclo aperto F(s) sotto riportata (non ci sono poli a parte reale positiva) determinare la rete compensatrice R(s) tale da assicurare $\omega_t <= 2$ rad/sec, $m_s >= 60^\circ$ e il rispetto della finestra proibita indicata in figura. Tracciare quindi il diagramma di **NICHOLS** della funzione compensata F'(s) = F(s)R(s) e determinare su di esso il modulo alla risonanza **Mr** e la banda passante a -3 Decibel ω_{-3} .

