EPFL - Automne 2020	Prof. Z. Patakfalvi
Structures Algébriques	Exercices
Série 9	13 Novembre 2020

Exercice 1.

Soit G un groupe. Montrez que G est cyclique si et seulement s'il est isomorphe à \mathbb{Z} ou à $\mathbb{Z}/n\mathbb{Z}$.

Exercice 2.

Quels sont les ordres des éléments de D_{2n} ?

Exercice 3.

Soit G_1, \ldots, G_n des groupes.

1. Montrez qu'il existe un homomorphisme injectif

$$\prod_{i=1}^n \operatorname{Aut}(G_i) \hookrightarrow \operatorname{Aut}\left(\prod_{i=1}^n G_i\right).$$

2. Supposons que les G_i soient des groupes finis, et que leurs ordres $|G_i|$ soient deux-à-deux premiers entre eux. Montrez que l'application injective du premier point est un isomorphisme.

Indication : étant donné $\xi \in Aut(\prod_{i=1}^n G_i)$, considérez les images des compositions

$$G_r \xrightarrow{\iota_r} \prod_i G_i \xrightarrow{\xi} \prod_i G_i \xrightarrow{\operatorname{pr}_s} G_s.$$

3. Donnez un exemple où l'application du premier point n'est pas surjective.

Exercice 4.

Faites la liste des homomorphismes $\mathbb{Z}/27\mathbb{Z} \to S_5$.

Exercice 5.

Trouvez les isomorphismes du graphe suivant :

Exercice 6.

Fixons un entier $n \geq 1$. Rappelons que le groupe D_{2n} est engendrés par deux éléments particuliers σ et τ , définis dans la Définition 3.6.6.

- 1. Prouvez les relations suivantes :
 - (a) $\tau \sigma^i \tau = \sigma^{-i}$ pour tout $i \in \mathbb{Z}$;
 - (b) $(\tau \sigma^j)^{-1} \sigma^i (\tau \sigma^j) = \sigma^{-i}$ pour tout $i, j \in \mathbb{Z}$;
 - (c) $(\tau \sigma^j)^{-1} \tau \sigma^i (\tau \sigma^j) = \tau \sigma^{2j-i}$ pour tout $i, j \in \mathbb{Z}$.
 - (d) $(\sigma^j)^{-1}\tau\sigma^i(\sigma^j) = \tau\sigma^{2j+i}$ pour tout $i, j \in \mathbb{Z}$.
- 2. Déterminez les classes de conjugaison de D_{2n} . Indication : elles seront différentes suivant la parité de n.
- 3. Déterminez le centre de $Z(D_{2n})$.

Exercice 7.

Montrez que $(\mathbb{Z}/16\mathbb{Z})^{\times} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

Exercice 8.

Soit G un groupe abélien.

- 1. Si |G| = 4 et G n'est pas cyclique, montrez que $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- 2. Supposons que |G| = 8 et que G n'est pas cyclique.
 - (a) Si tous les éléments de G sont 2-torsion, montrez que $G \cong (\mathbb{Z}/2\mathbb{Z})^{\oplus 3}$.
 - (b) Supposons qu'il existe $g, h \in G$ tels que o(g) = 4, o(h) = 2 et $h \notin \langle g \rangle$. Montrez alors que $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

(c) Montrez que si G possède un élément g d'ordre 4, alors il existe toujours un $h \in G$ tel que o(h) = 2 et $h \notin \langle g \rangle$. Indication : procédez par l'absurde.

Exercice 9.

Soit G un groupe.

1. Montrez que la diagonale

$$\Delta := \{(g,g) \in G \times G \mid g \in G\} \subset G \times G$$

est un sous-groupe.

2. Quels sont les sous-groupes de $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$? Indication : à ce stade, vous connaissez tous les groupes abéliens d'ordre 2, 4, 8 à isomorphisme près.