DA5401 - Assignment 7

October 4, 2024

Name: Anirudh Rao Roll No.: BE21B004

```
[]: import numpy as np import pandas as pd import matplotlib.pyplot as plt
```

We import the training set of the IDA2016 Challenge.

```
[]: df = pd.read_csv("aps_failure_training_set.csv")
[]: len(df)
```

[]: 60000

```
[ ]: df.head()
```

```
[]:
       class
               aa_000 ab_000
                                     ac_000 ad_000 ae_000 af_000 ag_000 ag_001 ag_002
                 76698
                                 2130706438
                                                 280
                                                           0
                                                                                   0
                                                                                           0
          neg
                            na
                                                                           0
     1
                                                           0
                                                                           0
                                                                                   0
                                                                                           0
          neg
                 33058
                            na
                                                  na
     2
                 41040
                                         228
                                                 100
                                                           0
                                                                           0
                                                                                   0
                                                                                           0
          neg
                            na
     3
                    12
                             0
                                          70
                                                  66
                                                           0
                                                                  10
                                                                           0
                                                                                   0
                                                                                           0
          neg
     4
          neg
                 60874
                            na
                                        1368
                                                 458
                                                           0
                                                                   0
                                                                           0
                                                                                   0
                                                                                           0
```

```
ee_003
                         ee_004
                                                            ee_008 ee_009 ef_000
                                  ee_005
                                          ee_006
                                                   ee_007
       ee_002
      1240520
                493384
                         721044
                                  469792
                                          339156
                                                   157956
                                                             73224
0
1
       421400
                178064
                         293306
                                  245416
                                          133654
                                                    81140
                                                             97576
                                                                      1500
                                                                                 0
                159812
2
       277378
                         423992
                                  409564
                                           320746
                                                   158022
                                                             95128
                                                                       514
                                                                                 0
3
           240
                    46
                             58
                                      44
                                               10
                                                         0
                                                                         0
                                                                                 4
4
       622012
                229790
                         405298
                                          286954
                                                   311560
                                                            433954
                                                                                 0
                                 347188
                                                                      1218
```

```
eg_000
0 0
1 0
2 0
3 32
```

```
4 0
```

[5 rows x 171 columns]

We check the class imbalance of this dataset.

```
[]: df["class"].value_counts()
[]: class
```

neg 59000 pos 1000

Name: count, dtype: int64

As mentioned in the question, there is an imbalance of 59:1 for neg:pos.

We also observe that there are many "na" values in the dataset. For ease of cleaning the data, we replace them with NumPy NaN values.

```
[]: df.replace("na",np.nan,inplace=True)
```

```
[]: df.isna().sum()
```

```
[]: class
                    0
     aa_000
                    0
     ab_000
                46329
     ac_000
                 3335
     ad_000
                14861
                  671
     ee_007
     ee_008
                  671
     ee 009
                  671
     ef_000
                 2724
                 2723
     eg_000
     Length: 171, dtype: int64
```

We can see that many feature columns have NaN values. They will have to be cleaned. If the number of NaN values in a column is more than 1000, we will discard that column.

```
[]: for column in df.columns:
   if df[column].isna().sum() > 1000:
      df.drop(column, axis=1, inplace=True)
```

```
[]: df.isna().sum()
```

```
[]: class 0
    aa_000 0
    ag_000 671
    ag_001 671
    ag_002 671
```

```
ee_005 671
ee_006 671
ee_007 671
ee_008 671
ee_009 671
Length: 101, dtype: int64
```

There are still some datapoints with NaN values. We will drop all those datapoint that contain at least 1 NaN value.

```
[]: df = df.dropna(axis=0, how="any")
     df.isna().sum()
[]: class
                0
     aa_000
                0
     ag_000
                0
     ag_001
                0
     ag_002
                0
     ee_005
                0
     ee_006
                0
     ee_007
                0
     ee_008
                0
     ee_009
                0
     Length: 101, dtype: int64
```

We have effectively cleaned the dataset and freed it from NaN values.

```
[]: len(df)
[]: 58127
[]: df["class"].value_counts()
[]: class
   neg   57198
   pos   929
```

The number of datapoints has the same order of magnitude, as does the class imbalance.

1 Task 1

Name: count, dtype: int64

We divide the dataset into a training set and testing set.

```
[]: from sklearn.model_selection import train_test_split
```

```
[]: X_train, X_test, y_train, y_test = train_test_split(df.drop("class", axis=1),_u \( \text{df}["class"], test_size=0.3, random_state=5401)
```

To ensure the support vector algorithm to efficiently learn from the data, we will perform standard scaling.

```
[]: from sklearn.preprocessing import StandardScaler
```

```
[]: scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

We construct the base models for the three classification algorithms - SVC, Logistic Regression, and Decision Trees. We will perform 5-fold cross-validation to find their best hyperparameters. They will be train on the imbalanced dataset.

```
[]: from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
```

```
[]: from sklearn.model_selection import GridSearchCV
```

We run a grid search to find the best hyperparameters. This takes a while to run owing to the size of the dataset.

```
baseline_svc = svc_grid.best_estimator_
baseline_logreg = logreg_grid.best_estimator_
baseline_tree = tree_grid.best_estimator_
```

```
Fitting SVC
Fitting 5 folds for each of 12 candidates, totalling 60 fits
[CV] END ...degree=1, gamma=scale, kernel=poly; total time=
                                                               3.6s
[CV] END ...degree=1, gamma=scale, kernel=poly; total time=
                                                               3.7s
[CV] END ...degree=1, gamma=scale, kernel=poly; total time=
                                                               3.5s
[CV] END ...degree=1, gamma=scale, kernel=poly; total time=
                                                               4.3s
[CV] END ...degree=1, gamma=scale, kernel=poly; total time=
                                                               3.5s
[CV] END ...degree=1, gamma=scale, kernel=rbf; total time=
                                                              7.7s
[CV] END ...degree=1, gamma=scale, kernel=rbf; total time=
                                                              7.3s
[CV] END ...degree=1, gamma=scale, kernel=rbf; total time=
                                                              7.7s
[CV] END ...degree=1, gamma=scale, kernel=rbf; total time=
                                                              6.8s
[CV] END ...degree=1, gamma=scale, kernel=rbf; total time=
                                                              7.9s
[CV] END ...degree=1, gamma=auto, kernel=poly; total time=
                                                              3.3s
[CV] END ...degree=1, gamma=auto, kernel=poly; total time=
                                                              3.7s
[CV] END ...degree=1, gamma=auto, kernel=poly; total time=
                                                              5.4s
[CV] END ...degree=1, gamma=auto, kernel=poly; total time=
                                                              4.6s
[CV] END ...degree=1, gamma=auto, kernel=poly; total time=
                                                              4.9s
[CV] END ...degree=1, gamma=auto, kernel=rbf; total time=
                                                             9.6s
[CV] END ...degree=1, gamma=auto, kernel=rbf; total time=
                                                             9.1s
[CV] END ...degree=1, gamma=auto, kernel=rbf; total time=
                                                             7.5s
[CV] END ...degree=1, gamma=auto, kernel=rbf; total time=
                                                             8.8s
[CV] END ...degree=1, gamma=auto, kernel=rbf; total time=
                                                             6.8s
[CV] END ...degree=2, gamma=scale, kernel=poly; total time=
                                                               6.0s
[CV] END ...degree=2, gamma=scale, kernel=poly; total time=
                                                               5.1s
[CV] END ...degree=2, gamma=scale, kernel=poly; total time=
                                                               6.7s
[CV] END ...degree=2, gamma=scale, kernel=poly; total time=
                                                               6.5s
[CV] END ...degree=2, gamma=scale, kernel=poly; total time=
                                                               5.4s
[CV] END ...degree=2, gamma=scale, kernel=rbf; total time=
                                                              7.7s
[CV] END ...degree=2, gamma=scale, kernel=rbf; total time=
                                                              9.1s
[CV] END ...degree=2, gamma=scale, kernel=rbf; total time=
                                                              6.9s
[CV] END ...degree=2, gamma=scale, kernel=rbf; total time=
                                                              7.9s
[CV] END ...degree=2, gamma=scale, kernel=rbf; total time=
                                                              6.9s
[CV] END ...degree=2, gamma=auto, kernel=poly; total time=
                                                              6.0s
[CV] END ...degree=2, gamma=auto, kernel=poly; total time=
                                                              5.6s
[CV] END ...degree=2, gamma=auto, kernel=poly; total time=
                                                              5.0s
[CV] END ...degree=2, gamma=auto, kernel=poly; total time=
                                                              7.1s
[CV] END ...degree=2, gamma=auto, kernel=poly; total time=
                                                              5.5s
[CV] END ...degree=2, gamma=auto, kernel=rbf; total time=
                                                             7.6s
[CV] END ...degree=2, gamma=auto, kernel=rbf; total time=
                                                             7.3s
[CV] END ...degree=2, gamma=auto, kernel=rbf; total time=
                                                             7.7s
[CV] END ...degree=2, gamma=auto, kernel=rbf; total time=
                                                             7.9s
[CV] END ...degree=2, gamma=auto, kernel=rbf; total time=
                                                             8.0s
```

```
[CV] END ...degree=3, gamma=scale, kernel=poly; total time=
                                                              10.2s
[CV] END ...degree=3, gamma=scale, kernel=poly; total time=
                                                              11.1s
[CV] END ...degree=3, gamma=scale, kernel=poly; total time=
                                                              11.1s
[CV] END ...degree=3, gamma=scale, kernel=poly; total time=
                                                               9.9s
[CV] END ...degree=3, gamma=scale, kernel=poly; total time=
                                                              10.3s
[CV] END ...degree=3, gamma=scale, kernel=rbf; total time=
                                                              7.3s
[CV] END ...degree=3, gamma=scale, kernel=rbf; total time=
                                                              8.1s
[CV] END ...degree=3, gamma=scale, kernel=rbf; total time=
                                                              7.4s
[CV] END ...degree=3, gamma=scale, kernel=rbf; total time=
                                                              8.3s
[CV] END ...degree=3, gamma=scale, kernel=rbf; total time=
                                                              6.6s
[CV] END ...degree=3, gamma=auto, kernel=poly; total time=
                                                              9.0s
[CV] END ...degree=3, gamma=auto, kernel=poly; total time=
                                                             10.9s
[CV] END ...degree=3, gamma=auto, kernel=poly; total time=
                                                             10.1s
[CV] END ...degree=3, gamma=auto, kernel=poly; total time=
                                                             10.3s
[CV] END ...degree=3, gamma=auto, kernel=poly; total time=
                                                             10.0s
[CV] END ...degree=3, gamma=auto, kernel=rbf; total time=
                                                             7.5s
[CV] END ...degree=3, gamma=auto, kernel=rbf; total time=
                                                             7.4s
[CV] END ...degree=3, gamma=auto, kernel=rbf; total time=
                                                             7.8s
[CV] END ...degree=3, gamma=auto, kernel=rbf; total time=
                                                             7.5s
[CV] END ...degree=3, gamma=auto, kernel=rbf; total time=
                                                             8.0s
Fitting Logistic Regression
Fitting 5 folds for each of 6 candidates, totalling 30 fits
[CV] END ...C=0.01, penalty=11; total time=
                                               1.5s
[CV] END ...C=0.01, penalty=11; total time=
                                               2.0s
[CV] END ...C=0.01, penalty=11; total time=
                                               2.0s
[CV] END ...C=0.01, penalty=11; total time=
                                               1.4s
[CV] END ...C=0.01, penalty=11; total time=
                                               1.9s
[CV] END ...C=0.01, penalty=12; total time=
                                               1.6s
[CV] END ...C=0.01, penalty=12; total time=
                                               1.7s
[CV] END ...C=0.01, penalty=12; total time=
                                               1.6s
[CV] END ...C=0.01, penalty=12; total time=
                                               1.7s
[CV] END ...C=0.01, penalty=12; total time=
                                               2.0s
[CV] END ...C=0.1, penalty=11; total time=
                                             7.3s
[CV] END ...C=0.1, penalty=11; total time=
                                             5.4s
[CV] END ...C=0.1, penalty=11; total time=
                                             6.5s
[CV] END ...C=0.1, penalty=11; total time=
                                             6.0s
[CV] END ...C=0.1, penalty=11; total time=
                                            10.8s
[CV] END ...C=0.1, penalty=12; total time=
                                             3.1s
[CV] END ...C=0.1, penalty=12; total time=
                                             3.6s
[CV] END ...C=0.1, penalty=12; total time=
                                             3.4s
[CV] END ...C=0.1, penalty=12; total time=
                                             2.7s
[CV] END ...C=0.1, penalty=12; total time=
                                             3.0s
[CV] END ...C=1, penalty=11; total time=
[CV] END ...C=1, penalty=11; total time=
                                          25.7s
[CV] END ...C=1, penalty=11; total time=
                                          31.8s
[CV] END ...C=1, penalty=11; total time=
                                          32.2s
[CV] END ...C=1, penalty=11; total time=
                                          37.3s
```

```
[CV] END ...C=1, penalty=12; total time=
                                           6.6s
[CV] END ...C=1, penalty=12; total time=
                                           5.9s
[CV] END ...C=1, penalty=12; total time=
                                           5.9s
[CV] END ...C=1, penalty=12; total time=
                                           5.4s
[CV] END ...C=1, penalty=12; total time=
                                           6.7s
Fitting Decision Tree
Fitting 5 folds for each of 9 candidates, totalling 45 fits
[CV] END ...max_depth=5, min_samples_leaf=1; total time=
                                                            2.2s
[CV] END ...max_depth=5, min_samples_leaf=1; total time=
                                                            2.1s
[CV] END ...max_depth=5, min_samples_leaf=1; total time=
                                                            2.1s
[CV] END ...max_depth=5, min_samples_leaf=1; total time=
                                                            2.1s
[CV] END ...max_depth=5, min_samples_leaf=1; total time=
                                                            2.8s
[CV] END ...max_depth=5, min_samples_leaf=2; total time=
                                                            2.3s
[CV] END ...max_depth=5, min_samples_leaf=2; total time=
                                                            2.1s
[CV] END ...max_depth=5, min_samples_leaf=4; total time=
                                                            2.8s
[CV] END ...max depth=5, min samples leaf=4; total time=
                                                            2.4s
[CV] END ...max depth=5, min samples leaf=4; total time=
                                                            2.1s
[CV] END ...max depth=5, min samples leaf=4; total time=
                                                            2.1s
[CV] END ...max_depth=5, min_samples_leaf=4; total time=
                                                            2.1s
[CV] END ...max_depth=10, min_samples_leaf=1; total time=
                                                             4.6s
[CV] END ...max_depth=10, min_samples_leaf=1; total time=
                                                             4.3s
[CV] END ...max_depth=10, min_samples_leaf=1; total time=
                                                             4.0s
[CV] END ...max_depth=10, min_samples_leaf=1; total time=
                                                             4.4s
[CV] END ...max_depth=10, min_samples_leaf=1; total time=
                                                             4.6s
[CV] END ...max_depth=10, min_samples_leaf=2; total time=
                                                             4.1s
[CV] END ...max_depth=10, min_samples_leaf=2; total time=
                                                             4.1s
[CV] END ...max_depth=10, min_samples_leaf=2; total time=
                                                             4.8s
[CV] END ...max_depth=10, min_samples_leaf=2; total time=
                                                             3.9s
[CV] END ...max_depth=10, min_samples_leaf=2; total time=
                                                             4.0s
[CV] END ...max_depth=10, min_samples_leaf=4; total time=
                                                             5.8s
[CV] END ...max depth=10, min samples leaf=4; total time=
                                                             4.5s
[CV] END ...max depth=10, min samples leaf=4; total time=
                                                             4.0s
[CV] END ...max depth=10, min samples leaf=4; total time=
                                                             4.5s
[CV] END ...max_depth=10, min_samples_leaf=4; total time=
                                                             4.4s
[CV] END ...max_depth=None, min_samples_leaf=1; total time=
                                                               8.3s
[CV] END ...max_depth=None, min_samples_leaf=1; total time=
                                                               8.6s
[CV] END ...max_depth=None, min_samples_leaf=1; total time=
                                                               8.8s
[CV] END ...max_depth=None, min_samples_leaf=1; total time=
                                                               8.1s
[CV] END ...max_depth=None, min_samples_leaf=1; total time=
                                                              10.9s
[CV] END ...max_depth=None, min_samples_leaf=2; total time=
                                                               9.0s
[CV] END ...max_depth=None, min_samples_leaf=2; total time=
                                                               7.6s
[CV] END ...max_depth=None, min_samples_leaf=2; total time=
                                                               8.9s
[CV] END ...max_depth=None, min_samples_leaf=2; total time=
                                                               9.2s
[CV] END ...max_depth=None, min_samples_leaf=2; total time=
                                                              10.2s
```

```
[CV] END ...max_depth=None, min_samples_leaf=4; total time= 9.1s
[CV] END ...max_depth=None, min_samples_leaf=4; total time= 8.3s
[CV] END ...max_depth=None, min_samples_leaf=4; total time= 8.0s
[CV] END ...max_depth=None, min_samples_leaf=4; total time= 9.1s
[CV] END ...max_depth=None, min_samples_leaf=4; total time= 10.9s
```

We obtain the optimized hyperparameters and compute the baseline performance on the imbalanced dataset using macro-averaged F1-score as the metric.

```
[]: baseline_svc_params = svc_grid.best_params_
baseline_logreg_params = logreg_grid.best_params_
baseline_tree_params = tree_grid.best_params_
```

```
[]: from sklearn.metrics import f1_score
```

```
[]: baseline svc.fit(X train, y train)
     baseline_logreg.fit(X_train, y_train)
     baseline tree.fit(X train, y train)
     svc_train_score = f1_score(y_train, baseline_svc.predict(X_train),_
      →average="macro")
     logreg_train_score = f1_score(y_train, baseline_logreg.predict(X_train),_
      ⇔average="macro")
     tree_train_score = f1_score(y_train, baseline_tree.predict(X_train),_
      ⇔average="macro")
     svc_test_score = f1_score(y_test, baseline_svc.predict(X_test), average="macro")
     logreg_test_score = f1_score(y_test, baseline_logreg.predict(X_test),_
      ⇔average="macro")
     tree_test_score = f1_score(y_test, baseline_tree.predict(X_test),_
      ⇔average="macro")
     print(f"SVC train score: {svc_train_score}")
     print(f"SVC test score: {svc test score}")
     print(f"Logistic Regression train score: {logreg_train_score}")
     print(f"Logistic Regression test score: {logreg_test_score}")
     print(f"Decision Tree train score: {tree_train_score}")
     print(f"Decision Tree test score: {tree_test_score}")
```

```
SVC train score: 0.9487467078627851

SVC test score: 0.8667468233242389

Logistic Regression train score: 0.8684941626785421

Logistic Regression test score: 0.8408095081608062

Decision Tree train score: 0.9529418840132171

Decision Tree test score: 0.8495030592427718
```

The classifiers actually perform decently on the imbalanced data. We will now use some sampling strategies to overcome the imbalance and obtain better performance.

2 Task 2

To keep track of the class balance, we will use the Counter class from the collections library.

```
[]: from collections import Counter
```

```
[]: print(Counter(y_train))
```

```
Counter({'neg': 40036, 'pos': 652})
```

Undersampling the majority class

We will first undersample the majority class ('neg') to overcome the class imbalance. We can do so using the RandomUnderSampler class of the imblearn library.

```
[]: from imblearn.under_sampling import RandomUnderSampler
```

```
Counter({'neg': 652, 'pos': 652})
```

The number of datapoints in the training set has been reduced due to the undersampling. We fit the 3 hyperparameter-optimized classification algorithms with this training data.

```
Undersampling SVC train score: 0.9646872932183873
Undersampling SVC test score: 0.7290021995766903
Undersampling Logistic Regression train score: 0.9654849314198293
Undersampling Logistic Regression test score: 0.6942524457760246
Undersampling Decision Tree train score: 0.9930978307215931
Undersampling Decision Tree test score: 0.6414801858050804
```

We will compare all the sampling strategies at the end.

Oversampling the minority class

We then oversample the minority class ('pos') to overcome the class imbalance. We can do so using the RandomOverSampler class of the imblearn library.

```
[]: from imblearn.over_sampling import RandomOverSampler
```

```
[]: oversampler = RandomOverSampler(random_state=5401, sampling_strategy="minority")
    X_train_over, y_train_over = oversampler.fit_resample(X_train, y_train)
    print(Counter(y_train_over))
```

```
Counter({'neg': 40036, 'pos': 40036})
```

The number of datapoints in the training set has been increased due to the oversampling. We fit the 3 hyperparameter-optimized classification algorithms with this training data.

```
logreg_oversampling_train_score = f1_score(y_train_over, logreg_oversampling.
 →predict(X_train_over), average="macro")
tree_oversampling_train_score = f1_score(y_train_over, tree_oversampling.
 ⇒predict(X train over), average="macro")
svc_oversampling_test_score = f1_score(y_test, svc_oversampling.

¬predict(X_test), average="macro")
logreg_oversampling_test_score = f1_score(y_test, logreg_oversampling.

→predict(X_test), average="macro")
tree_oversampling test_score = f1_score(y_test, tree_oversampling.

→predict(X_test), average="macro")
print(f"Oversampling SVC train score: {svc oversampling train score}")
print(f"Oversampling SVC test score: {svc_oversampling_test_score}")
print(f"Oversampling Logistic Regression train score: __
 →{logreg_oversampling_train_score}")
print(f"Oversampling Logistic Regression test score:
 →{logreg_oversampling_test_score}")
print(f"Oversampling Decision Tree train score:
 print(f"Oversampling Decision Tree test score: {tree_oversampling test_score}")
```

```
Oversampling SVC train score: 0.9797386348597599

Oversampling SVC test score: 0.8302525916192145

Oversampling Logistic Regression train score: 0.962001942189947

Oversampling Logistic Regression test score: 0.7669832029733352

Oversampling Decision Tree train score: 0.9843755155880201

Oversampling Decision Tree test score: 0.7434434443515703
```

Using class_weight

We then use the class_weight parameter of the 3 algorithms to deal with the class imbalance. Setting it to 'balanced' allows the algorithms to better classify the minority class.

```
[]: svc_class_weight.fit(X_train, y_train)
    logreg_class_weight.fit(X_train, y_train)
    tree_class_weight.fit(X_train, y_train)

svc_class_train_score = f1_score(y_train, svc_class_weight.predict(X_train),__
average="macro")
```

```
logreg_class_train_score = f1_score(y_train, logreg_class_weight.
 →predict(X_train), average="macro")
tree_class_train_score = f1_score(y_train, tree_class_weight.predict(X_train),_
 ⇔average="macro")
svc_class_test_score = f1_score(y_test, svc_class_weight.predict(X_test),__
 ⇔average="macro")
logreg_class_test_score = f1_score(y_test, logreg_class_weight.predict(X_test),__
 ⇔average="macro")
tree_class_test_score = f1_score(y_test, tree_class_weight.predict(X_test),_u
 ⇔average="macro")
print(f"Class Weight SVC train score: {svc class train score}")
print(f"Class Weight SVC test score: {svc_class_test_score}")
print(f"Class Weight Logistic Regression train score:

√{logreg_class_train_score}")
print(f"Class Weight Logistic Regression test score: {logreg_class_test_score}")
print(f"Class Weight Decision Tree train score: {tree_class_train_score}")
print(f"Class Weight Decision Tree test score: {tree_class_test_score}")
```

```
Class Weight SVC train score: 0.9039305766072113
Class Weight SVC test score: 0.829674868674819
Class Weight Logistic Regression train score: 0.7730223776731191
Class Weight Logistic Regression test score: 0.7682367938494301
Class Weight Decision Tree train score: 0.7905370485118826
Class Weight Decision Tree test score: 0.7463994007877692
```

Using sample_weights

⇔average="macro")

The last method to deal with the imbalance is to attach more weight to the samples from the minority class. This can be done using sklearn's compute sample weight function.

```
[]: from sklearn.utils.class_weight import compute_sample_weight
[]: sample_weights = compute_sample_weight("balanced", y_train)

[]: svc_sample_weights = SVC(**baseline_svc_params)
    logreg_sample_weights = LogisticRegression(**baseline_logreg_params,usolver="liblinear")
    tree_sample_weights = DecisionTreeClassifier(**baseline_tree_params)

[]: svc_sample_weights.fit(X_train, y_train, sample_weight=sample_weights)
    logreg_sample_weights.fit(X_train, y_train, sample_weight=sample_weights)
```

tree_sample_weights.fit(X_train, y_train, sample_weight=sample_weights)

svc_sample_train_score = f1_score(y_train, svc_sample_weights.predict(X_train),_

```
logreg_sample_train_score = f1_score(y_train, logreg_sample_weights.
 →predict(X_train), average="macro")
tree_sample_train_score = f1_score(y_train, tree_sample_weights.
 ⇔predict(X train), average="macro")
svc_sample_test_score = f1_score(y_test, svc_sample_weights.predict(X_test),__
 ⇔average="macro")
logreg_sample_test_score = f1_score(y_test, logreg_sample_weights.
 →predict(X_test), average="macro")
tree_sample_test_score = f1_score(y_test, tree_sample_weights.predict(X_test),_
 ⇔average="macro")
print(f"Sample Weights SVC train score: {svc sample train score}")
print(f"Sample Weights SVC test score: {svc_sample_test_score}")
print(f"Sample Weights Logistic Regression train score: ____
 →{logreg_sample_train_score}")
print(f"Sample Weights Logistic Regression test score:
 →{logreg_sample_test_score}")
print(f"Sample Weights Decision Tree train score: {tree sample train score}")
print(f"Sample Weights Decision Tree test score: {tree_sample_test_score}")
```

```
Sample Weights SVC train score: 0.9039305766072113
Sample Weights SVC test score: 0.829674868674819
Sample Weights Logistic Regression train score: 0.7730223776731191
Sample Weights Logistic Regression test score: 0.7672956265348699
Sample Weights Decision Tree train score: 0.7906794652380246
Sample Weights Decision Tree test score: 0.7469252148215904
```

Visualising the performance

We then visualise the performance of all the sampling strategies using the training set.

plt.show()

Both undersampling and oversampling achieve better training performance for all 3 algorithms than when the imbalanced dataset is used directly.

```
[]: plt.figure(dpi=150)
plt.title("class_weight")
```


Both class weights and sample weights achieve poorer training performance for all 3 algorithms than when the imbalanced dataset is used directly.

Thus, we can conclude that oversampling or undersampling are better strategies to deal with the class imbalance of the given dataset.