Problems for Signals and Systems

Chapter 3. Time Domain Analysis of Discrete Time System

• Solve Difference Equation

- 1. Solve difference equation $y(n) y(n-1) = n^2$, y(-1) = 0.
- (a) Use the iterative method to successively obtain numerical solution. for $n \ge 0$, induce a closed-form solution.
- (b) Use the classical method to obtain homogeneous and particular solution respectively. Determine the assumption of the functional expression of particular solution.
- 2. What are the zero-input responses, zero-state responses and complete responses of the LTI systems described by the following difference equations?

$$(1) y(n) + 3y(n-1) + 2y(n-2) = x(n)$$
$$x(n) = u(n), y(-1) = 1, y(-2) = 0;$$

(2)
$$y(n) - y(n-1) - 2y(n-2) = x(n) + 2x(n-2)$$

$$x(n) = u(n), y(-1) = 2, y(-2) = -\frac{1}{2}.$$

3. One LTI discrete time system has a certain initial state. When the excitation is x(n), the system's complete response is $y_1(n) = [1 + (\frac{1}{2})^n] \ \epsilon(n)$; keeping the same initial state, when the excitation is [-x(n)], the system's complete response is $y_2(n) = [(-\frac{1}{2})^n - 1] \ \epsilon(n)$. What is the complete response y(n) when system's initial state is doubled, and the excitation is 4x(n)?

• Convolution Operation

- 4. Compute the convolutions of the following signals:
 - (1) $2^n u(n) * 3^n u(n)$;
 - (2) $2^{-n}u(-n) * 3^{-n}u(-n)$.
- 5. Compute the convolutions of the following signals:
 - (1) $2^n u(n) * [u(n) u(n-4)];$
 - (2) $\cos \frac{n\pi}{2} * \{\sin \frac{n\pi}{2} [u(n) u(n-5)]\}.$

Properties of Systems

- 6. The following unit impulse responses belong to discrete-time LTI systems.

 Determine whether or not each of the following system is (1) causal system? (2) stable? State your reasons.
 - (a) $h(n) = (\frac{1}{2})^n u(n)$;
 - (b) $h(n) = (\frac{1}{2})^n u(-n);$
 - (c) $h(n) = 3^n u(2-n)$;
 - (d) h(n) = 3u(n).
- 7. For the compound system as shown in the Figure 3.1, it is known that $h_1(n)=u(n),\ h_2(n)=\delta(n),\ h_3(n)=\delta(n-N),$ and N is constant, what is the unit impluse response h(n) of the compound system?

Figure 3.1