OS Lab #2: Scheduling

Allan Gottlieb

Spring Semester: 2021-22

1 Introduction

In this lab you will simulate the scheduling of n processes $P_1, P_2, ..., P_n$ on a single CPU. You will simulate both FIFO and RR scheduling.

2 Trivial Case n=1

Process P_1 , is run alone (i.e., it is the only process). There would be four phases $(R1_1, B1_1, R2_1, \text{ and } B2_1)$ followed by a final "termination phase".

- 1. P_1 would first run for time $R1_1$ (presumably initializing its data structures, but the reason is not relevant to the lab).
- 2. P_1 would then block for time $B1_1$ (presumably reading its input).
- 3. P_1 would then run for time $R2_1$ (presumably computing its results).
- 4. P_1 would the block for time $B2_1$ (presumably outputting its results).
- 5. Finally, P_1 would run for time 1 (just to terminate).

3 Creation Time and Breaking Ties

Creation Time For simplicity all processes are created at time 0. No input is required to specify this rule

Breaking Ties Use our standard tie-breaking rule. Since all processes are created at the same time, ties are broken by favoring the alphabetically first process. No input is needed to specify this rule.

4 Input

All time units are milliseconds. Each simulation begins by reading the parameters for the current run, Specifically

- n The number of processes.
- **SA** The scheduling algorithm to use. 1 signifies FIFO; 2 signifies RR with quantum q.
- **q** The quantum for RR scheduling. q is present only if SA=2.
- $\mathbf{R1_1}, \mathbf{B1_1}, \mathbf{R2_1}, \mathbf{B2_1}, ..., \mathbf{R1_n}, \mathbf{B1_n}, \mathbf{R2_n}, \mathbf{B2_n}$ The four running and blocking times for each process. Note that all four values for P_i are given before any values for P_{i+1} . Remember that each P_i runs a third time, in order to terminate. Since that last run is always for 1 time unit, no input is needed for its specification.

5 Output

At each cycle indicate which processes (if any) are running, which are ready, and which are blocked. See the two sample runs below.

6 Breaking Ties

Use our standard tie-breaking rule. Since all processes have the same creation time, the alphabetically first process wins the tie.

7 Computer Language

All 202 labs must be in the C (or C++) language.

8 A Simple, But Not Trivial, Example

8.1 Input

n=2 There are 2 processes, P1 and P2.

SA=1 FIFO scheduling (hence, no preemption and q is not present).

Rs and Bs All Rs are 3 and all Bs are 2.

8.2 Input As Would be Specified To Your Program

2 1 3 2 3 2 3 2 3 2

Note that the order is $n, SA, R1_1, B1_1, R2_1, B2_1, R1_2, B1_2, R2_2, B2_2$.

8.3 A Cycle by Cycle Description of Execution

Your format is not required to match what follows (which was done by hand). Note that cycle n goes from time n-1ms to time nms.

\mathbf{Cycle}	P1 State	P2 State	Comment
1	Run $(1 \text{ of } 3)$	Ready	Both created; P1 wins tiebreak
2	Run $(2 \text{ of } 3)$	Ready	
3	Run $(3 \text{ of } 3)$	Ready	
4	Blocked (1 of 2)	Run $(1 \text{ of } 3)$	
5	Blocked (2 of 2)	Run $(2 \text{ of } 3)$	
6	Ready	Run $(3 \text{ of } 3)$	
7	Run $(1 \text{ of } 3)$	Blocked (1 of 2	2)
8	Run $(2 \text{ of } 3)$	Blocked (2 of 2	2)
9	Run $(3 \text{ of } 3)$	Ready	
10	Blocked (1 of 2)	Run $(1 \text{ of } 3)$	
11	Blocked (2 of 2)	Run $(2 \text{ of } 3)$	
12	Ready	Run $(3 \text{ of } 3)$	
13	Terminate	Blocked (1 of 2	2)
14		Blocked (2 of 2	2)
15		Terminate	

9 An Example With Preemption

9.1 Input

n=2 There are 2 processes, P1 and P2.

SA=2 RR scheduling.

q=2 RR quantum is 2ms.

Rs and Bs All Rs are 3 and all Bs are 2.

9.2 Input As Specified To Your Program

 $2\; 2\; 2\; 3\; 2\; 3\; 2\; 3\; 2\; 3\; 2$

Note that the order is $n, SA, q, R1_1, B1_1, R2_1, B2_1, R1_2, B1_2, R2_2, B2_2$.

9.3 A Cycle by Cycle Description of Execution

Your format is not required to match what follows (which was done by hand). Note that cycle n goes from time n-1ms to time nms.

ebreak