座號		lil. A .	1
시스리는		姓名:	- 1
T. JII L	-	XL-1 '	1

2-3 多項式方程式

我們知道:任一個實數的平方必為正數或0.因此,方程式 $x^2 = -1$ 在實數系中無解.於 是數學家們引進「虛數」,把實數系擴張成一個較大的數系-複數系,使得所有的多項式方程 式在這個數系中都有解.

i的規定

規定 $i=\sqrt{-1}$, 且i满足

(1) $i^2 = -1$ (2) $d^2 = -1$ (2) $d^2 = -1$ (3) $d^2 = -1$ (4) $d^2 = -1$ (5) $d^2 = -1$ (5) $d^2 = -1$ (7) $d^2 = -1$ (7) $d^2 = -1$ (8) $d^2 = -1$ (9) $d^2 = -1$ (10) $d^2 = -1$ (11) $d^2 = -1$ (12) $d^2 = -1$ (13) $d^2 = -1$ (14) $d^2 = -1$ (15) $d^$

例如: $\sqrt{-3} = \sqrt{3}i$, $\sqrt{-9} = \sqrt{9}i = 3i$.

複數的定義

設 a , b 為實數, 形如 a+hi 的數稱為複數, 其中 a 稱為 a+hi 的實部, b 稱為 a+hi 的虚部

實數:實數就是虛部為0的複數

虚數:虚部b≠0的複數,稱為虛數 純虚數:實部為0的虛數 $hi(h \neq 0)$

例題 1 ------

已知a, b是實數, 且滿足(a-2)+4i=1+bi, 求a, b的值.

已知 a, b是實數, 且滿足 2+(4-a)i=(b-3)+bi, 求 a, b的值.

複數的運算與性質

設a, b, c, d為實數, 我們有

(1) 加法: (a+bi)+(c+di)=(a+c)+(b+d)i.

(2) 減法: (a+bi)-(c+di)=(a-c)+(b-d)i.

(3)乘法:(a+bi)(c+di)=(ac-bd)+(ad+bc)i.

例題 2 ------

文興高中 數學(一)2-3 多項式方程式

座號: 姓名: 2

已知複數 $z_1 = 3 + 4i$, $z_2 = 5 - 3i$, 求下列各值:

(1) $z_1 + z_2$ (2) $z_1 - z_2$ (3) $z_1 \cdot z_2$

(2)
$$z_1 - z_2$$

(3)
$$z_1 \cdot z_2$$

隋 堂練習 -----

已知複數 $z_1 = 2 + \sqrt{3}i$, $z_2 = 2 - \sqrt{3}i$, 求下列各值:

(1) $z_1 + z_2$ (2) $z_1 - z_2$ (3) $z_1 \cdot z_2$

$$(2) z_1 - z_2$$

$$(3) z_1 \cdot z_2$$

重要性質

若 z_1 , z_2 , z_3 為複數,則

(1) $z_1 + z_2 = z_2 + z_1$, $z_1 \cdot z_2 = z_2 \cdot z_1$.

【交換律】

(2) $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$, $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$.

【結合律】

(3) $z_1 \cdot (z_2 + z_3) = z_1 \cdot z_2 + z_1 \cdot z_3$.

【分配律】

(4) $z_1 + 0 = z_1$, $z_1 \cdot 1 = z_1$

設z為複數,正整數n>1,規定 $z^n=z^{n-1}\cdot z$.

例題 3 ------

計算i, i^2 , ..., i^8 的值。

 $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$, $i^{4k+4} = 1$, 其中 k 為正整數或 0 .

隨堂練習 ------

求下列各式的值: $(1)i^{50}$ $(2)i+i^2+i^3+\cdots+i^{50}$

複數的除法公式

除法: $\frac{a+bi}{c+di} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i \ (c, d 不同時為 0).$

例題 4------

將下列複數表示成 a+bi 的形式, 其中 a, b是實數: $(1)\frac{1}{3+4i}$ $(2)\frac{2+i}{-3+4i}$

隨堂練習-----

文興高中	电片段红/_	-)2 2	多項式方程式	+
メニュー	數學(-	-12-3	夕坦式 万怪1	こしょ

實係數一元二次方程式 $ax^2 + bx + c = 0$ 的解為 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

例題 5-----

解下列各方程式:

 $(1) x^2 + 2x - 4 = 0 .$

 $(2) 2x^2 - 2x + 5 = 0$

隨堂練習 -----

解下列一元二次方程式:

(1) $x^2 + x + 1 = 0$.

$$(2) 2x^2 + 2x - 1 = 0$$

根的性質

設實係數一元二次方程式 $ax^2 + bx + c = 0$, 判別式 $D = b^2 - 4ac$.

- (1)當D>0時,方程式有兩相異實根.
- (2)當D=0時,方程式有兩相等實根.
- (3)當D < 0時,方程式有兩共軛虚根.

求實數 k的範圍,使方程式 $3x^2+4x-2k=0$ 的兩根均為實數

隨堂練習 ------

文興高中 數學(一)2-3 多項式方程式	文興高中	數學(-	-)2-3	多項式方程式
----------------------	------	------	-------	--------

求實數 k 的範圍,使方程式 $x^2 + 3x - k = 0$ 的兩根為共軛虛數

根與係數的關係

au α , β 為實係數一元二次方程式 $ax^2+bx+c=0$ 的兩根,則

兩根的和: $\alpha + \beta = -\frac{b}{a}$,

兩根的積: $\alpha\beta = \frac{c}{a}$.

已知 α , β 為方程式 $2x^2+4x+5=0$ 的兩根,求下列各式的值:

$$(2)\frac{1}{\alpha} + \frac{1}{\beta}$$

$$(3) \alpha^3 + \beta^3$$

已知 α , β 為方程式 $x^2-4x+7=0$ 的兩根, 求下列各式的值:

$$(1) \alpha^2 + \beta^2 .$$

$$(1) \alpha^2 + \beta^2 . \qquad (2) \frac{\beta}{\alpha} + \frac{\alpha}{\beta} . \qquad (3) \alpha^3 + \beta^3$$

$$(3) \alpha^3 + \beta$$

文興高中	數學(-	-)2-3	多項式方程式	北
义兴同十	安义 子 (1 2-3	プラスルノノバエノ	~\

當 f(x)是 n次多項式時,我們稱 f(x)=0為 n次多項式方程式,簡稱為 n次方程式。如果有一個數 α 滿足 $f(\alpha)=0$,就稱 α 是 f(x)=0的根或解.有時候為了強調這個根 α 所在的數 β ,將 α 稱為整數根,有理根,實根或複數根。

例題 8	
已知 $x = 2i$ 是三次方程式 $x^3 + x^2 + 4x + a = 0$ 的一根,	求 a 的值?

隨堂練習 -----

下列哪些是三次方程式 $x^3-2x^2+x-2=0$ 的根?

(1) $\sqrt{2}$ (2)2 (3) i (4) -i (5) 1+i

並不是所有實係數n次方程式,都一定有實根.例如:實係數二次方程式 $x^2+1=0$ 就沒有實根,但有兩個共軛虛根i與-i,如果把根的範圍由實數擴大到複數,那麼是不是所有n次方程式都一定有根?在西元1799年,<u>德國</u>數學家<u>高斯</u>在他的博士論文中成功地證明:

代數基本定理:任意一個複數係數n次方程式,只要次數 $n \ge 1$,就至少有一個複數根。 說明:

- (1) 實數也可看作是複數, 所以上面這個定理保證了實係數 n 次方程式一定有根。
- (2) 每一個實係數 n次方程式,都恰好有 n個複數根。
- (3) 虚根成對定理:設f(x)是實係數 $n(n \ge 2)$ 次多項式.若虛數a+bi 是方程式f(x)=0的一個虚根,則它的共軛複數a-bi也是f(x)=0的一個虚根 (a,b是實數且 $b \ne 0$)

文興高中 數學(一)2-3 多項式方程式	姓名:	
例題 9	 	
設實係數方程式 $x^4 - 3x^3 + 6x^2 + ax + b = 0$ 有一根為 $1-3i$.		
(1)求 a 與 b 的值. (2) 解此方程式		
隨堂練習	 	
已知 $2+i$ 為方程式 $x^4-5x^3+8x^2-x-5=0$ 的一根,求其他		

重要性質:

- (1) 實係數奇數次方程式至少有一個實根。
- (2) 每一個實係數 $n(n \ge 1)$ 次多項式都可以分解為實係數一次式或實係數二次式的乘積
- (3) 一般的五次或五次以上的方程式,公式解不存在。

例題 11-----

解方程式 $2x^4 + x^3 - 7x^2 - 9x + 6 = 0$

勘根定理

設 f(x)=0 是一個實係數多項式方程式,而 a 與 b 是兩個相異實數 . 如果 $f(a)\cdot f(b)<0$ (即f(a)與f(b)異號),那麼方程式f(x)=0在a與b之間至少有一個實根。

例題 12-----

方程式 $x^3 - 8x + 1 = 0$ 在哪些連續整數之間有實根。

隨堂練習 -----

方程式 $x^3 + x^2 - 2x - 1 = 0$ 在哪些連續整數之間有實根。

	數學(一)2-3 多項式方程式		姓名:	9
已知方程	E 式 $x^3 + x^2 - 2x - 1 = 0$ 恰有一正根,求與此正相	艮最接近的整數		
例題 14-				
已知整係	s數多項式 $f(x) = x^3 + ax^2 + bx + c$ 滿足 $f(0) <$	$0, f\left(\sqrt{2}\right) > 0,$	$f\left(\sqrt{5}\right) < 0$,	
$f(\sqrt{10})$	>0,且方程式 $f(x)=0$ 的三根均為有理根,	求整數 a, b, c	g的值。	

文興高中 數學(一)2-3 多項式方程式 		姓名:	10
已知整係數多項式 $f(x) = 2x^3 + ax^2 + bx - 3$ 滿足 $f(-1) = 0$,		$\left(\sqrt{3}\right) < 0$,	
且方程式 $f(x)=0$ 的三根均為有理根, 求整數 a , b 的值	0		
例題 15			

隨堂練習 -----

已知正整數 n 满足 $n < \sqrt[3]{100} < n+1$, 求 n 的值

2-3 習題

一、基礎題

1. 將下列複數化成a+bi(a,b為實數)的形式:

$$(1)(2-3i)+(-3+5i)$$
.

$$(2)(1+2i)(2-i)$$
.

$$(3)\frac{2-i}{1+i}$$
.

$$(4)(1+i)^2+(1+i)^4$$
.

- 2. 已知(3+2i)x+(2-2i)y=17-2i, 求實數x, y的值.
- 3. 解下列方程式:

$$(1) x^2 + 3 = 0$$
.

$$(2) 2x^2 + x + 1 = 0 .$$

(2)
$$2x^2 + x + 1 = 0$$
 (3) $x^2 - 2x + 4 = 0$

- 4. 設方程式 $x^2-4x+k=0$, 求在下列各條件下實數 k的值或範圍: (1)兩根為相異實根. (2)兩根為相等實根. (3)兩根為共軛虛根.
- 5. 設 $x^2+8x+1=0$ 之兩根為 α 、 β , 求下列各式的值:

$$(1) \alpha^2 + \beta^2 . \qquad (2) \frac{\beta}{\alpha} + \frac{\alpha}{\beta} . \qquad (3) \alpha^3 + \beta^3 .$$

$$(2)\frac{\beta}{\alpha} + \frac{\alpha}{\beta}$$

$$(3) \alpha^3 + \beta^3$$

-1

0

2

f(x)

2

1

-3

- 6. 解下列方程式: (1) $x^3 3x^2 17x 13 = 0$ (2) $2x^3 5x^2 4x + 3 = 0$ ·

7. 已知方程式 $x^4 - 3x^3 + 6x^2 + 2x - 60 = 0$ 有一根為 1 + 3i, 求其他的根.

8. 已知 -1+2i 為實係數方程式 $x^4+3x^3+ax^2+bx+10=0$ 的一根, 求 a , b 的值.

9. 已知方程式 $x^3-8x+2=0$ 有三個相異實根 α,β,γ , 且 $\alpha<\beta<\gamma$, 求 β 小數點後的第 1 位數 字.

10. 設 f(x)為四次實係數多項式,且 f(x)的一些取值如下表所示:

有關方程式 f(x)=0的 4 個根所在的數系,選出正確的選項:

- (1)4 實根
- (2)3 實根 1 虚根
- (3)2 實根 2 虚根
- (4)1 實根 3 虚根
- (5)4 虚根.

11. 求满足 $(x+yi)^2 = 8+6i$ 的實數 x與 y的值.

- 12. 已知 f(x)是滿足下列兩條件的最低次實係數多項式:
 - (1) f(x)的最高次項係數為2.
 - (2)複數 2-3i, i, -2 皆為方程式 f(x) = 0的根.

求 f(x)的常數項.

13. 已知整係數方程式 $x^3 + ax^2 + bx + 5 = 0$ 有三個相異的有理根, 求 a , b 的值.

14. 設m, n為實數, 且方程式 $x^3-17x^2+mx+n=0$ 有兩個複數根 a+i與 1+bi,其中 a, b是 非 0 的實數, 求此方程式的實根及 m, n的值.

號:	姓名:	14

- 15. 農夫利用一面舊牆並另砌三面新牆圍出一個面積為24平方公尺的矩形菜圃,並在舊牆對面的新牆正中央留著寬2公尺的出入口,如圖所示.舊牆的整修費用為每公尺1千元,新牆的造價費用為每公尺3千元,總工程費用為4萬2千元.設矩形菜圃的舊牆長度為x公尺.
 - (1)已知x滿足 $x+\frac{a}{x}=b$, 求常數a, b的值.
 - (2)求 x的值.

16. 將長6公尺、寬4公尺的矩形鐵片,四個角各截去一個面積相等的正方形,然後將各邊摺 起來,做成一個無蓋的長方體容器,如果此容器的容積為8立方公尺(鐵板厚度不計), 求截去的正方形邊長.