Analyzing Simulation Output: Batch Means Intervals

DCS 307: Simulation Winter 2023

29 March 2023

Great Ideas in Simulation

Lehmer RNGs (linear congruential generators)

$$x_{i+1} = ax_i \mod m$$

Probability integral transformation:

$$F(X) \sim U(0,1)$$

- Algorithms for variate generation: inversion, acceptance/rejection, composition, special properties
- Mandling autocorrelation in constructing confidence intervals
- Next-event simulation: e.g., use arrival to create next arrival
- Agent-based simulation

Great Ideas in Simulation

Lehmer RNGs (linear congruential generators)

$$x_{i+1} = ax_i \mod m$$

Probability integral transformation:

$$F(X) \sim U(0,1)$$

- Algorithms for variate generation: inversion, acceptance/rejection, composition, special properties
- Mandling autocorrelation in constructing confidence intervals
- Next-event simulation: e.g., use arrival to create next arrival
- Agent-based simulation

Recap: Central Limit Theorem

- Choose any of the distributions encountered so far
- Generate a sample of n > 1 variates (mean μ , sd σ)
- Generate i > 1 *n*-point samples, compute \bar{x} for each

• For large n, histogram density approximates normal $(\mu, \sigma/\sqrt{n})$

Recap (Cont.)

• CLT: mean of iid sequence of RVs tends to normal

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \rightarrow \quad normal(\mu, \sigma/\sqrt{n})$$

- The x_i correspond to simulation estimates, i.e., samples
 - e.g., average wait, average queue length, etc.
- We want the (unknown) μ from $normal(\mu, \sigma/\sqrt{n})$ • \bar{x} is an estimate of μ
- Standardized sample means tend to *normal* (0,1)
- Using t-statistic, approximates *Student*(*n*-1)

$$t = \frac{\bar{x}_j - \mu}{s/\sqrt{n-1}}$$

Recap (Cont.)

CLT: mean of iid sequence of RVs tends to normal

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \rightarrow \quad normal(\mu, \sigma/\sqrt{n})$$

- The x_i correspond to simulation estimates, i.e., samples
 - e.g., average wait, average queue length, etc.
- We want the (unknown) μ from normal $(\mu, \sigma/\sqrt{n})$
 - \bar{x} is an estimate of μ
- Standardized sample means tend to *normal* (0,1)
- Using t-statistic, approximates Student(n-1)

$$t = \frac{\bar{x}_j - \mu}{s / \sqrt{n - 1}}$$

Recap (Cont.)

CLT: mean of iid sequence of RVs tends to normal

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \rightarrow \quad normal(\mu, \sigma/\sqrt{n})$$

- The x_i correspond to simulation estimates, i.e., samples
 - e.g., average wait, average queue length, etc.
- We want the (unknown) μ from $normal(\mu, \sigma/\sqrt{n})$
 - \bullet \bar{x} is an estimate of μ
- Standardized sample means tend to *normal* (0,1)
- Using t-statistic, approximates *Student*(*n*-1)

$$t = \frac{\bar{x}_j - \mu}{s / \sqrt{n - 1}}$$

Interval Estimation Algorithm

Algorithm

To calculate an *interval estimate* for the unknown mean μ of the *population* from which a random sample $x_1, x_2, x_3, \ldots, x_n$ was drawn:

- Pick a level of confidence $1-\alpha$
 - typically $\alpha = 0.05$ (95% confidence)
- ullet Calculate the sample mean $ar{x}$ and standard deviation s
- Calculate the critical value $t^* = qt(1 \alpha/2, n-1)$
- Calculate the interval endpoints

$$\bar{x}\pm\frac{t^*s}{\sqrt{n-1}}$$

If n is sufficiently large, then you are $(1 - \alpha) \times 100\%$ confident that the mean μ lies within the interval. The midpoint of the interval is \bar{x} .

Example

- 100 samples of size n = 9 drawn from normal (6,3) population
- For each sample, construct an exact 95% confidence interval
- 94 intervals cover $\mu = 6$
- 3 missed high (red), 3 missed low (red)

Producing Confidence Intervals in R: Discrete – Event

- Recall that ssq() service times are exponential ($\lambda = 10/9$)
- Use t.test() approach to produce 95% confidence intervals

$$\bar{x} \pm t_{\alpha/2,n-1} \frac{s}{\sqrt{n-1}}$$

```
set.seed(12345)
seeds \leftarrow sample(10^6:(10^7 - 1), size = 100, replace = FALSE)
ci_lo <- numeric(100) # vector for 100 CI low endpoints
ci_hi <- numeric(100) # vector for 100 CI high endpoints
num.Jobs < -30
for (i in 1:100) {
    output <- ssq(numJobs, seeds[i], showOutput = FALSE,
                   saveServiceTimes = TRUE)
    ci <- t.test(output$serviceTimes, conf.level = 0.95)</pre>
    ci_lo[i] <- ci$conf.int[1]</pre>
    ci_hi[i] <- ci$conf.int[2]</pre>
```

Confidence Intervals for Discrete-Event Simulation

- 92 intervals cover $\mu = 0.9$
- 8 intervals missed low (red)
- Cls are approximate when population distribution not normal

Confidence Intervals for Discrete-Event Simulation

- The distribution of wait times for ssg is unknown
- Try t.test() approach to produce 95% confidence intervals

```
ci_lo <- rep(NA, 100) # vector for 100 CI low endpoints
ci_hi <- rep(NA, 100) # vector for 100 CI high endpoints
numJobs <- 30
warmup <- 1000
for (i in 1:100) {
  output <- ssq(numJobs + warmup, seeds[i], showOutput = FALSE,
                saveWaitTimes = TRUE)
  waits <- output$waitTimes[-(1:warmup)]</pre>
  ci <- t.test(waits, conf.level = 0.95)</pre>
  ci lo[i] <- ci$conf.int[1]
  ci hi[i] <- ci$conf.int[2]
```

Confidence Intervals for Discrete-Event Simulation

- For an M/M/1 queue with arrival rate λ and service rate ν , the theoretical steady-state wait is $1/(\nu - \lambda) - 1/\nu = 8.1$
- Despite claim of 95% confidence, only 10 of 100 CIs bracket
- 28 miss high, 62 miss low

Effect of Initial Conditions: "Warm Up"

• ssq: accumulated \bar{w} printed every 100 jobs

Again, the theoretical steady-state wait is 8.1

Queueing Wait Times

- How does a long wait for the first person in line affect. . .
 - second in line? third in line? ... far back in line?

Example: Effect of Autocorrelation

(Note: different parameter values here than in other examples)

Autocorrelation of ssq Wait Times

In ssq, strong positive autocorrelation b/w wait times


```
output <- ssq(10000, 1234567, showOutput = F, saveWaitTimes = T)
waits <- output$waitTimes[-(1:1000)] # remove "warm-up"</pre>
acf(waits)
```

Autocorrelation of ssq Wait Times

Strong positive autocorrelation even for large lags


```
output <- ssq(10000, 1234567, showOutput = F, saveWaitTimes = T)
waits <- output$waitTimes[-(1:1000)] # remove "warm-up"</pre>
acf(waits, lag.max = 300)
```

Confidence Intervals in Presence of Autocorrelation

- Method of Batch Means:
 - (a) Make one long simulation run, deleting warmup
 - (b) Partition into *n* batches each of batch size *b*
 - (c) Compute a sample mean for each batch
 - (d) Construct an interval estimate using means of batches

$$\underbrace{x_1, x_2, \dots, x_b}_{\overline{X}_1}, \underbrace{x_{b+1}, x_{b+2}, \dots, x_{2b}}_{\overline{X}_2}, \dots, \underbrace{x_{(n-1)b+1}, x_{(n-1)b+2}, \dots, x_{nb}}_{\overline{X}_n}$$

- Each batch: like a "transient simulation" w/o initial state bias
- State @ beginning of each batch is state @ end of previous

Batch Means for ssq Wait Times

- 100 different 95% confidence intervals using 100 diff. seeds
- Number of batches n = 32, batch size b = 2048
- First 1024 jobs discarded to mitigate start-up bias
- Batch means reduces the impact of autocorrelated data

Batch Means for ssq Wait Times


```
numJobs <- 65536; warmup <- 1024
b <- 2048; n <- numJobs / b
output <- ssq(numJobs + warmup, 1234567, showOutput = FALSE, saveWaitTimes = TRUE)
waits <- output$waitTimes[-(1:warmup)] # remove warmup</pre>
batchMeans <- numeric(n)
for (j in 1:n) {
    batch <- waits[(1:b) + (b * (j - 1))]
   batchMeans[j] <- mean(batch)</pre>
ci <- t.test(batchMeans, conf.level = 0.95)</pre>
```

Batch Size & Confidence: ssq with b = 64, 128, 256, 512

Effect of Batch Parameters

- Consider any one confidence interval from previous figures
- Choice of (b, n) has no impact on the point estimate
- Only the width of the 95% confidence interval is affected
- Use ssq^1 to generate 65536 waits with $(\lambda, \nu) = (1, 10/9)$
- Batch means with different (b, n):

$$(b, n)$$
 $(32, 2048)$ $(128, 512)$ $(512, 128)$ $(2048, 32)$ \bar{w} 8.68 ± 0.40 8.68 ± 0.73 8.68 ± 1.14 8.68 ± 1.38

- Note that $\bar{w} = 8.68$ is independent of (b, n)
- Width of the interval estimate is not.

¹Use seed = 1234567, maxArrivals = 65536 + 1024; discard first 1024 waits.

Batch Size & Confidence: ssq with b = 64, 128, 256, 512

Choosing Batch Size

- Schmeiser (1982) suggests number of batches k between 10 and 30
- Pegden et al. (1995) recommend a batch size b that is at least $10\times$ as large as the largest lag for which autocorrelation remains significant
- Banks et al. (2005) recommend b be increased until the lag-one autocorrelaction between batch means is less than 0.2

In-class Work: Meaning of Confidence

- Create figures like above, but using craps instead of normal:
 - Fig 1: 100 Cls with each Cl via 9 samples from craps (10)
 - Fig 2: 100 Cls with each Cl via 9 samples from craps (100)
- For each sample, construct a 95% CI using t.test
- Color intervals that miss using red (true prob: 244/495)

In-class Work: Getting You Started

Create an empty plot with true theoretical value:

```
plot(NA, NA, xlim = c(1,100), ylim = c(ylo, yhi),
     bty = "n", xaxt = "n",
     xlab = "", ylab = "", las = 1)
exact <- 244/495
abline(h = exact)
```

- Use segments to draw each CI
- To create a 9-point vector of craps estimates:

```
values <- sapply(1:9,
   function(i) { craps(nreps, showProgress=FALSE) } )
```

In-Class Work

- Repeat the previous batch-means experiments using sojourn times
- ② For each of b = 64, 128, 256, 512, 1024, 2048:
 - Produce a figure of 100 different 95% confidence intervals
 - Use a different initial seed for producing each CI
 - Use red for intervals that miss, black for intervals that do not
 - In the figure, indicate the batch size and number of misses
 - Theoretical \bar{o} for default ssq is $1/(\nu \lambda) = 9.0$

(Note: each of these figures will require non-trivial execution time)