

ANNEE UNIVERSITAIRE 2018- 2019 SESSION 1

Examen « Econométrie »

Durée 3h

Indiquez:

NOM : à remplir PRENOM : à remplir

Consignes:

Vous utilisez ce document pour donner vos réponses. Vous l'enregistrez et vous le déposez sous la forme d'un <u>Document PDF</u>. <u>Vous présentez tous les programmes (SAS ou R) ainsi</u> que les tableaux des résultats des estimations en annexe.

Dans le fichier des données « data_exam » on dispose des variables suivantes (4165 observations et 12 variables).

Fichier: data_exam

Les variables sont les suivantes :

- LWAGE=le logarithme népérien du salaire
- ED =nombre d'années d'éducation
- EXP =nombre d'années d'expérience
- WKS =nombre de semaines travaillées
- UNION =1 si le salarié est syndiqué
- IND =1 si l'individu travaille dans l'industrie manufacturière
- SMSA =1 si l'individu réside dans une ville
- OCC =1 si le salarié est ouvrier
- MS =1 si le salarié est marié
- SOUTH =1 si le salarié habite dans le sud
- FEM =1 si le salarié est une femme
- BLK =1 si le salarié est noir

1)	On considère l	'estimation	de la	fonction	de	gains	suivante	: :
----	----------------	-------------	-------	----------	----	-------	----------	-----

$$LWAGE_i = \alpha_1 + \beta_1 ED_i + \beta_2 EXP_i + \beta_3 UNION_i + \beta_4 MS_i + \varepsilon_{1i}$$
 (1)

- a) Estimez le modèle (1) par la méthode des MCO.
- **b)** Interprétez la valeur estimée du terme constant α_1 . (4 lignes au max).

Réponse :

2) A partir du fichier des données créez les deux variables suivantes : $UNIONC_i = 1 - UNION_i$ et $MSC_i = 1 - MS_i$. On considère le modèle (2) suivant :

$$LWAGE_i = \alpha_2 + \delta_1 ED_i + \delta_2 EXP_i + \delta_3 UNIONC_i + \delta_4 MSC_i + \varepsilon_{2i}$$
 (2)

- a) Estimez le modèle (2) par la méthode des MCO.
- **b)** Interprétez la valeur estimée du terme constant α_2 . (<u>4 lignes au max</u>). Réponse :

c) Comparez les estimations des deux coefficients α_1 et α_2 . Commentez (<u>8 lignes au max</u>). Réponse :

d) Exprimez α_1 en fonction des paramètres du modèle (2). **Réponse** :

		Comparez les estimations des deux coefficients β_1 et β_2 avec δ_1 et δ_2 respectivement. Commentez. Que peut-on conclure ? (10 lignes au max) éponse :
3)	Sup	posons maintenant que :
		$LWAGE_{i} = \alpha + \lambda_{1}ED_{i} + \lambda_{2}WKS_{i} + \lambda_{3}EXP_{i} + \lambda_{4}EXP_{i}^{2} + \lambda_{5}UNION_{i} + \lambda_{6}MS_{i} + \lambda_{7}SMSA_{i} + \lambda_{8}OCC_{i} + \varepsilon_{i} $ (3)
	a)	Estimez cette fonction de gains par la méthode des MCO. Commentez les résultats de cette estimation. (<u>12 lignes au max</u>). Réponse :
	b)	Quelle est l'interprétation du signe négatif de λ_4 ?(4 lignes au max). Réponse :
	c)	Testez l'hypothèse : $\lambda_7 + \lambda_8 = 0$. Commentez. (<u>4 lignes au max</u>). Réponse :

4) Dans l'estimation des différents paramètres du modèle (3) par la méthode des MCO, nous avons supposé que toutes les variables sont exogènes.

$$LWAGE_{i} = \alpha + \lambda_{1}ED_{i} + \lambda_{2}WKS_{i} + \lambda_{3}EXP_{i} + \lambda_{4}EXP_{i}^{2} + \lambda_{5}UNION_{i} + \lambda_{6}MS_{i} + \lambda_{7}SMSA_{i} + \lambda_{8}OCC_{i} + \varepsilon_{i}$$
 (4)

Traitez la notion d'exogénéité de la variable ${\it ED}_i$ dans le modèle (4).

ANNEXE : Insérez vos tableaux des résultats ci-dessous.

ANNEXE : Insérez vos programmes SAS ou R ci-dessous.