Recommender Systems

Lecture 2

Today's Lecture

- Popularity-based models
- Content-based recommendations
- Baseline Predictors

Usecases for popularity-based predictions

Y Hacker News new | past | comments | ask | show | jobs | submit

- 1. A Facebook loses users for the first time (washingtonpost.com)
 1076 points by prostoalex 11 hours ago | hide | 801 comments
- 2. ▲ In second largest DeFi hack, Blockchain Bridge loses \$320M Ether (blockworks.co)
 431 points by CharlesW 10 hours ago | hide | 359 comments
- 3. A Squabble.me Multiplayer Wordle Royale (squabble.me)
 40 points by gundmc 2 hours ago | hide | 18 comments
- 4. A Optimizing GoAWK with a bytecode compiler and virtual machine (benhoyt.com)

 16 points by benhoyt 1 hour ago | hide | discuss
- 5. A Starlink adds another 100Gbps connection to the SeattleIX (seattleix.net)
 195 points by walrus01 10 hours ago | hide | 123 comments
- Settings are not a design failure (linear.app)
 419 points by tommoor 17 hours ago | hide | 292 comments
- 7. A Rustenstein 3D: Game programming like it's 1992 (nextroll.com)
 297 points by facundo_olano 15 hours ago | hide | 83 comments
- 8. Why isn't there a replication crisis in math? (jaydaigle.net) 257 points by jseliger 15 hours ago | hide | 209 comments
- 9. A Pixel's Color (freedesktop.org)
 67 points by pantalaimon 7 hours ago | hide | 4 comments
- 10. A Facebook says Apple iOS privacy change will result in \$10B revenue hit this year (cnbc.com)
 56 points by caaqil 2 hours ago | hide | 41 comments

Popularity-based scoring

Task:

- assign a popularity score based on accumulated feedback from users
- mostly based on heuristics
 - e.g., content "interestingness" ↔ consumption frequency
- typical challenges / issues
 - dynamics and trends
 - e.g., seasonal purchases
 - non-homogeneous distribution
 - e.g., experts vs non-experts
 - attacks and fraud

Examples of user feedback

- 1. Ratings
- 2. Upvotes/Downvotes
- 3. Likes (w/o dislikes)

Hacker News new | past | comments | ask | show | jobs | submit

- 1. A Seawater electrolysis by adjusting the local reaction environment of a catalyst (nature.com) 99 points by CharlesW 2 hours ago | hide | 46 comments
- 2. A Show HN: I trained an AI model on 120M+ songs from iTunes (maroofy.com) 91 points by subtech 2 hours ago | hide | 60 comments
- 3. Play Counter Strike 1.6, with full multiplayer, in the browser (play-cs.com) 951 points by philosopher1234 10 hours ago | hide | 372 comments
- 4. A I'm Now a Full-Time Professional Open Source Maintainer (filippo.io)
 191 points by chmaynard 4 hours ago | hide | 29 comments
- 5. An obituary for the man who saved North Carolina from Nuclear Disaster (ncrabbithole.com)
 75 points by joeatwork 2 hours ago | hide | 3 comments

Таблица сравнения

Grow Food	Performance Food
Официальный сайт:growfood.pro	Официальный сайт:p-food.ru
Рейтинг: 8.77	Рейтинг: 9.59
Просмотров: 127 518	Просмотров: 36 058
Отзывов: 14	Отзывов: 8

Rating-based scoring

Popularity-based recommendations

naïve estimation of item *j* popularity:

$$score_{POP}(j) = \frac{1}{|\mathcal{U}_j|} \sum_{i \in \mathcal{U}_j} 7ij$$

- *U_j* set of users who rated item *j r_{ij}* rating of item *j* provided by user *i*

Popularity-based recommendations

$$\int \int score_{POP}(j) = \frac{1}{|U_j|} \sum_{i \in U_j} r_{ij}$$

What are potential flaws?

- insufficient amount of data
 - more data means higher reliability /certainty
 - an item with 100 ratings and average score 4.95 vs item with two 5-star ratings
- different dynamics
 - trends
 - seasonality

In the early days

Image from https://www.evanmiller.org/how-not-to-sort-by-average-rating.html

Popular vs niche products

Simple adjustment of popularity

Average rating distribution on Movielens-1M

minimization problem:

Popularity vs trends in data

Bayesian averaging

combination of prior belief and observed sample average:

$$\mu_{BA} = \alpha \cdot \mu_{PB} + (1 - \alpha) \cdot \mu_{SA}, \qquad 0 \le \alpha \le 1$$

assume we're in the future and already have enough data:

 \rightarrow C – amount of prior samples

 $\rightarrow n$ – amount of newly added samples

Bayesian averaging

$$\mu_{BA} = \frac{C\bar{\mu} + \sum_{k=1}^{n} x_k}{C + n}, \quad \alpha = \frac{C}{C + n}$$

For item rating data:

uata.
$$\mu_{j} = \frac{C\overline{r_{j}} + \sum_{i \in U_{j}} r_{ij}}{C + |U_{j}|}$$

 U_j - set of users, who rated items j

- too high $C \rightarrow$ need more observations
- too low $C \rightarrow$ unreliable estimate

Other possible adjustments

current

dampening weights based on recency,

activity of users (bots/trolls or not invested users)

- side information (features, attributes)
 - typically rules-based

Scoring for binary feedback

Possible scoring strategies

Amount of positive feedback

positive feedback – # negative feedback

proportion of positive feedback

In the early days

Urban Dictionary, image credit: https://www.evanmiller.org/how-not-to-sort-by-average-rating.html

Estimating popularity on binary feedback

- lower bound of Wilson score confidence interval*
 - estimate for a Bernoulli parameter
 - estimates the bound with 95% probability given current observations

$$\left(\hat{p} + \frac{z_{\alpha/2}^2}{2n} - z_{\alpha/2} \sqrt{\left[\hat{p}(1-\hat{p}) + z_{\alpha/2}^2/4n\right]/n}\right) / \left(1 + z_{\alpha/2}^2/n\right)$$

- \hat{p} is the observed fraction of positive ratings
- $z_{\alpha/2}$ is the $1-\alpha/2$ quantile of the standard normal distribution
- *n* is the total number of ratings

Assumptions: data follows a binomial distribution with

- fixed probability of a success,
- statistically independent trials.

Laplace (add-one) smoothing

 $r_{ij} \in \{0, 1\}$ – binary feedback upvotes_j = $\{r_{ij} > 0, i \in U_j\}$

•
$$r_{ij} \in \{-1, 0, 1\}$$

•
$$r_{ij} \in \{-1, 0, 1\}$$
 $\sum_{i \in \mathbb{N}_{i}} + 1$

• $r_{ij} \in \{1, 2, 3, 4, 5\}$

Note on popularity / average ratings

Horror movies ratings are typically lower, even if a user actually likes it.

"Ghostbusters" Is A Perfect Example Of How Internet Movie Ratings Are Broken.

- IMDb average user rating: 4.1 out of 10, of 12,921 reviewers
- IMDb average user rating among men: 3.6 out of 10, of 7,547 reviewers
- IMDb average user rating among women: 7.7 out of 10, of 1,564 reviewers

Content-based Recommendations

Ratings distribution over movie genres (ML-25M)

Using content for matching

Good for gaming	+		+
Good for movies	+	+	+
Good for TV shows	+		
Blue-ray support		+	+

Gamer

Cinema fan

"Family guy"

generating recommendations require:

item features to compute items relevance

user profile information to match items

previous user actions to match items

user attributes for tailoring predictions

criteria specified by user / expert

- knowledge-based
- case-based
- constraint-based

Typical use case: "cold" items

Example of content features

Users

Average book length in 2021

More attributes:

- demographics
- location
- occupation

- ...

Items

Other features:

- price
- format/style
- language

_

Simple rating prediction

Task: find a utility function f: $f(\text{item features}) \rightarrow \text{feedback}$

gards anthor civiler soots

xx

pusher

Linear regression model:

Linear w.r.t. what?

X-design matrix

Linear Regression

$$y = Xw + \epsilon$$

$$y_k = \boldsymbol{x}_k^\mathsf{T} \boldsymbol{w} + \boldsymbol{\epsilon}_k$$

Under assumption of normally distributed noise, standard linear least squares problem:

$$\frac{\|\boldsymbol{y} - X\boldsymbol{w}\|_2^2 \to \min}{}$$

Multicollinearity problem

Multicollinearity problem

Typical ways to combat the ill-posedness:

- add regularization term
 - e.g., l2-penalty $\lambda ||w||^2$

A. Nikitin Are quantum computer practical yet

- feature selection
 - hard problem

- feature transformation
 - e.g., dimensionality reduction

Ridge regression

How to select features?

Types of features:

- Known knowns
- Known unknowns
- Unknown unknowns

Adding/omitting regressors:

- Missing important variables → bias
- Adding meaningless variables → overfitting
- No standard "silver bullet" recipe exists.
- Choose the simplest possible model, but not simpler.

Simpson Paradox

Correlation vs causation

Is watching the 1984 Ghostbusters movie killing people?

Age Distribution of UK residents Age 10-59yr watching 1984 Ghostbusters and 2021 Ghostbusters

Image from: https://tylervigen.com/spurious-correlations

Other methods used for content-based filtering

- SVM
- Decision Tree-based models
 - CatBoost
 - LightGBM
 - XGBoost
 - Automated feature selection, e.g. as in LightAutoML
- Neural Networks

Feature engineering usecase

Feature Type	Example	Feature Engineering
Categorical	User ID / Item IDBrandMain Category	 Target Encoding Count Encoding Categorify + Combining Categories
Unstructured list	KeywordsSubcategoriesColors	 Target Encoding Count Encoding Categorify
Numeric	PriceDeliver timeAvg. reviews	BinningNormalizationGauss Rank
Timestamp	 Timestamp 	 Extract month, weekday, weekend, hour
Timeseries	Events in orderTime since last event	# of events in past XDifference in time (lag)
Image	 Product image 	• Extract latent representation with deep learning
Text	 Description 	Extract latent representation with deep learning
Social graph	 Follower/Following graph 	Link analysis
Geo location	Addresses	 Distances to point of interest

- Massive experiments in parallel
- Trying, not guessing

Classification

Task: predict whether user will like an item or not.

Example:
$$y_k = \begin{cases} 1, & \text{rating above threshold,} \\ 0, & \text{otherwise.} \end{cases}$$

In linear regression: $y_k \approx \mathbf{x}_k^{\mathsf{T}} \mathbf{w}$.

How to translate $\mathbf{x}_k^{\mathsf{T}}\mathbf{w} \in \mathbb{R}$ into binary domain?

Classification – probabilistic formulation

Logistic Regression for classification task

The model:

 $p_{\mathbf{w}}(y_k = 1 \mid \mathbf{x}_k) \sim \frac{1}{1 + e^{-\mathbf{x}_k^{\mathsf{T}} \mathbf{w}}}$

Target:

$$y_k = \begin{cases} 1, & \text{if } \boldsymbol{x}_k^\mathsf{T} \mathbf{w} > 0, \\ 0, & \text{otherwise.} \end{cases}$$

- Our observations data can be viewed as a set of random trials.
- Outcome of each trial is binary (coin flip).

$$y \sim \text{Bernulli}(\mu)$$

$$E[y] = \mu, \qquad 0 \le \mu \le 1$$

A bit of probability theory

• We aim to maximize the joint probability distribution (likelihood)

$$p_{w}(y,X) = \prod_{k=1}^{n} p_{w}(y_{k}, x_{k}), \qquad p_{w}(y_{k}, x_{k}) = p_{w}(y_{k} \mid x_{k}) \cdot p_{w}(x_{k})$$

$$\operatorname{argmax}_{w} \prod_{k=1}^{n} p_{w}(y_{k}, x_{k}) = \operatorname{argmax}_{w} \log \prod_{k=1}^{n} p_{w}(y_{k}, x_{k})$$

$$= \operatorname{argmax}_{w} \left(\log \prod_{k=1}^{n} p_{w}(y_{k} \mid x_{k}) + \log \prod_{k=1}^{n} p_{w}(x_{k}) \right)$$

$$= \operatorname{argmax}_{w} \sum_{k=1}^{n} \log p_{w}(y_{k} \mid x_{k})$$

Maximum likelihood derivation

$$\mathcal{L}(w) = \sum_{k=1}^{n} \log p_{w}(y_{k} \mid x_{k})$$

• The probability of each outcome is parametrized via:

$$p_{w}(y_{k} \mid \mathbf{x}_{k}) = p_{w}(y = 1 \mid \mathbf{x}_{k})^{y_{k}} \cdot (1 - p_{w}(y = 1 \mid \mathbf{x}_{k}))^{(1 - y_{k})}$$

Logistic Regression Objective

More concise/practical form with $y_k \in \{-1, +1\}$ instead of $\{0, 1\}$:

$$\mathcal{L}(\mathbf{w}) = -\sum_{k=1}^{n} \log \left(1 + e^{-y_k \cdot x_k^{\mathsf{T}} \mathbf{w}}\right)$$

Turns into standard loss minimization:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \mathcal{Q}(\mathbf{w}), \qquad \mathcal{Q}(\mathbf{w}) = -\mathcal{L}(\mathbf{w}) + \lambda \|\mathbf{w}\|^2$$

- Can be solved with e.g.:
 - SGD
 - Newton-Raphson (Iteratively Reweighted Least Squares)

Similarity-based models

Each item as a vector in d-dimensional feature space.

Given two item feature vectors \mathbf{x}_i and \mathbf{x}_j , we can estimate their proximity in on a unit sphere:

$$\cos(\alpha) = \frac{\mathbf{x}_i^\mathsf{T} \mathbf{x}_j}{\|\mathbf{x}_i\| \cdot \|\mathbf{x}_j\|}$$

What happens if some features are missing?

How to match with a user?

$$x_k^{\mathsf{T}}$$

User profile:

$$\overline{x}_u = \sum_{j \in I_u} w_{uj} x_j$$
, I_u – set of items of user u

The simplest case:

$$w_{uj} = \frac{1}{|I_u|}$$

or
$$w_{uj} = \frac{r_{uj}}{\sum_k r_{uk}}$$

Relevance estimation:

$$r_{ui} = \frac{\overline{\boldsymbol{x}}_{u}^{\mathsf{T}} \, \boldsymbol{x}_{i}}{\left\|\overline{\boldsymbol{x}}_{u}^{\mathsf{T}}\right\| \cdot \left\|\boldsymbol{x}_{i}\right\|}$$

How to evaluate

Intuitive heuristic:

- Based on proximity to user preferences:
 - must be close to what user likes
 - must be distant from what user dislikes

- Construction of evaluation dataset:
 - select *k* pairs of likes/dislikes for each user
 - must be excluded from training data
 - rank other items (e.g., user favorites) based on their proximity to test pairs