Unit 8 Linear Graphs & Their Application

EXERCISE 8.1

Q1. Determine the quadrant of the coordinate plane in which the following points lie:

$$P(-4,3), Q(-5,-2), R(2,2)$$
 and $S(2,-6)$.

Solution:

P(-4,3) lies in Second guadrant.

Q(-5,-2) lies in Third quadrant. R(2,2) lies in First quadrant. S(2,-6) lies in Fourth quadrant.

Q2. Draw the graph of each of the following

(i)
$$x = 2$$

Solution:

Table for the points of the equation x = 2 is as under:

	2.0.0	o po	110 01 11	4 4424.		0 00	<u> </u>
x	2	2	2	2	2	2	2
γ	1	C-2	X=1	0	1	2	

Thus the graph of the equation x = 2 is as shown below.

(ii)
$$x = -3$$

Solution:

Table for the points of the equation x = -3 is as under:

x	-3	-3	-3	-3	-3	-3	-3
у		-2	-1	0	1	2	

Thus the graph of the equation x = -3 is as shown below.

(iii)
$$y = -1$$

Solution:

Table for the points of the equation y = -1 is as under:

							1 13 d3 diluci		
x		-2	-1	0	1	2			
у	-1	-1	-1	-1	1	-1	-1		

Plotting these points and joined them we get the graph of y = -1 as under:

(iv)
$$y = 3$$
 Solution:

Table for the points of the equation y = 3 is as under:

x		-2		0	1	2	
у	3	C 3	3 -	3	3	3	3

Plotting these points and joined them we get the graph of y = 3 as under:

(v)
$$y = 0$$
 Solution:

Table for the points of the equation y = 0 is as under:

x	•••	-2	-1	0	1	2	
у	0	0	0	0	0	0	0

Plotting these points we see that all the points are on x-axis. So the graph of the equation y = 0 is x-axis as shown below.

vi)
$$x = 0$$
 Solution:

Table for the points of the equation x = 0 is as under:

٠	1 4	DIC IOI	uic pon	113 01 41	ccqua	uon x =	V 13 03	under.	
	x	0	0	0	0	0	0	0	
	у	• • •	-2	-1	0	1	2		į

Plotting these points we see that all the points are on y-axis. So the graph of the equation x = 0 is y-axis as shown below.

(vii) y = 3x

Solution:

Table for the points of the equation y = 3x is as under:

x	- 2	- 1	0 ,	1	2
у	- 6	-3	0	3	6

The points (x, y) are plotted in the plane as shown below:

Joining them we get the graph of the line y = 3x as under:

(viii)
$$-y = 2x$$
 or $y = -2x$

Solution:

Table for the points of the equation y = -2x or -y = 2x is as under:

x	- 2	- 1	0	1	2
у	4	2	0	- 2	- 4

The points are plotted in the plane as under. By joining the plotted points we get the graph of the equation -y = 2x as under:

$$(ix) = x$$

or
$$x = 0.5$$

Solution:

Table for the points of the equation $x = \frac{1}{2} = 0.5$ is as under:

unaer.					
x	0.5	0.5	0.5	0.5	0.5
ν	-2	-1	0	1	2

The points are plotted in the plane as below. Joining them we get the graph of the equation $\frac{1}{2} = x$ as under.

Solution:

Table for the points of the equation 3y = 5x or $y = \frac{5}{3}x$ is as under:

x	-6	– 5	-4	- 3	- 2
y	- 10	- 8.3	- 6.7	- 5	- 3.3
x	– 1	0	- 1	- 2	- 3
y	- 1.7	0	- 1.7	- 3.3	- 5

The points are plotted in the plane as under. By joining the plotted points we get the graph of the equation 3y = 5x as under:

SEDINFO.NET

(xi)
$$2x - y = 0$$
 or $y = 2x$

Solution:

Table for the points of the equation is as under:

Table for the points of the equality								
x	-2	-1 .	0	1	2			
ν	-4	-2	0	2	4			

The points are plotted in the plane as under. By joining the plotted points we get the graph of the equation as under:

(xii)
$$2x - y = 2$$
 or $y = 2x - 2$ Solution:

Table for the points of the equation is as under:

X	-2	-1	0	1	2
<i>y</i> .	-6	-4	-2	2	4

The points are plotted in the plane as under by joining the plotted points we get the graph of the equation as under:

SEDINFO.NET

(xiii)
$$x-3y+1=0$$

Solution:

i.e.
$$x = 3y - 1$$
 or $y = \frac{x+1}{3}$

Table for the points of equation is as under:

, 05.0 10		4			
x	-2	-1	U		2
у	-4	-2 .	0	2	4

The points are plotted in the plane. By joining the plotted points we get the graph of the equation as under:

(xiv)
$$3x - 2y + 1 = 0$$
 or $y = \frac{3x+1}{2}$

Solution:

Table for the points of the equation is as under:

x	-3	[′] –2	-1	0	1
у	-4	$-2\frac{1}{2}$	-1	5	2

The points are plotted in the plane and by joining them we get the graph of the equation as under:

Q3. Are the following lines (i) parallel to x-axis (ii) parallel to y-axis.

(i)
$$2x - 1 = 3$$

(ii)
$$x + 2 = -1$$

(iii)
$$2y + 3 = 2$$

$$(iv) \quad x + y = 0$$

$$(v) \quad 2x + 2y = 0$$

(i)
$$(2x - 1 = 3)$$

Solution:

$$2x = 3 + 1 = 4$$
 or $x = 2$ is a line parallel to y-axis.

(ii)
$$x + 2 = -1$$

Solution:

$$x = -1 - 2$$
 or $x = -3$

is a line parallel to y-axis.

(iii)
$$2y + 3 = 2$$

▲ Solution:

$$2y = 2 - 3 = -1$$
 or $y = -\frac{1}{2}$

is a line parallel to x-axis.

(iv)
$$x + y = 0$$

Solution:

$$x = -y$$

neither parallel to x-axis nor y-axis.

$$(v) \quad 2x - 2y = 0$$

Solution:

$$2x = 2y$$
 or $x = y$ neither parallel to x-axis nor y-axis.

- **Q4.** Find the value of m and c of the following lines by expressing them in the form y = mx + c.
- 2x + 3y 1 = 0 (b) x 2y = -2
 - (c) 3x + y - 1 = 0 (d) 2x - y = 7
 - (e) 3-2x+y=0 (f) 2x=y+3
- (a) 2x + 3y - 1 = 0

Solution:

$$3y = -2x + 1$$
 or $y = -\frac{2}{3}x + \frac{1}{3}$
 $y = mx + c$
 $m = -\frac{2}{3}$ $c = \frac{1}{3}$
 $x - 2y = -2$
on:
 $-2y = -x - 2$ or $y = \frac{1}{2}x + \frac{1}{3}$
 $y = mx + c$
 $y = mx + c$
 $y = mx + c$
 $y = \frac{1}{2}x + \frac{1}{3}$

Since
$$y = mx + c$$

So
$$m = -\frac{2}{3}$$
 $c = \frac{1}{3}$

$$C = \frac{1}{3}$$

x - 2y = -2(b)

Solution:

$$-2y = -x - 2$$
 or

$$y = \frac{1}{2}x + \frac{1}{2}$$

Since
$$y = mx + c$$

So
$$m = \frac{1}{2}$$
, $c = 1$

(c)
$$3x + y + 1 = 0$$

Solution:

$$y = -3x + 1$$

Since
$$y = mx + c$$

So
$$m = -3$$
,

$$c = 1$$

$$(d) \quad 2x - y = 7$$

Solution:

$$-y = -2x + 7$$
 or $y = 2x - 7$

Since
$$y = mx + c$$

So
$$m = 2$$
, $c = -7$

(e)
$$3-2x+y=0$$

Solution:

$$y = 2x - 3$$

Since
$$y = mx + c$$

So
$$m = 2$$
, $c = -3$

(f)
$$2x = y + 3$$

Solution:

$$y = 2x - 3$$

Since
$$y = mx + c$$

So
$$m = 2$$
,

$$c = -3$$

Verify whether the following point lies on the Q5. line 2x - y + 1 = 0 or not.

$$(-1, 1)$$

(v)

(i) (2, 3)

Solution:

The line is 2x - y + 1 = 0 for the point (2, 3)

2(2)
$$-3 + 1 = 4 - 3 + 1 = 2 \neq 0$$

point does not lie on the line
(0, 0)
on:
The line is $2x - y + 1$
For the point (0, 0)

point does not lie on the line

(ii) (0, 0)

Solution:

The line is 2x - y + 1

For the point (0, 0)

$$2(0) - 0 + 1 = 0 - 0 = 1 \neq 0$$

.. point does not lie on the line

(iii) (-1)

Solution:

The line is 2x - y + 1 = 0 for (-1, 1)

$$2(-1) - 1 + 1 = -2 - 1 + 1 = -2 \neq 0$$

: the point does not lie on the line

(iv) (2, 5)

Solution:

The line is 2x - y + 1 = 0 for the point (2, 5)

$$2(2) - 5 + 1 = 4 - 5 + 1 = 0$$

: the point lies on the line

(v) (5, 3)

Solution:

The line is 2x - y + 1 = 0 for the point (5, 3)

$$2(5) - 3 + 1 = 10 - 3 + 1 = 8 \neq 0$$

: the point does not lie on the line.

EXERCISE 8.2

- Draw the conversion graph between litres and Q1. gallons using the relation 9 litres = 2 gallons (approximately), and taking litres horizontal axis and gallons along vertical axis. From the graph, read
- the number of gallons in 18 litres (i)
- the number of litres in 8 gallons (ii)

Solution:

9 litres = 2 gallons

As liters are represented along horizontal axis and gallon along y-axis we have

$$y = \frac{2}{9}x$$

or
$$y = 0.22 \times (approx)$$

The table for values of x and v is

1110 t	abic ioi vi	alace of A	4114 7 10		
x	0	1	· 2	3	5
у	0	0.22	0.44	0.66	V1.1

Plotting these points and joining them we get the graph

of y = 0.22 x is under:

- (i) To read the number of gallons in 18 litres. We draw the vertical line through point showing 18 litres. It meets the graph of $y = 0.22 \times at L$. We read that L shows 4 gallons.
- (ii) The number of litres in 8 gallons. We draw the horizontal line through the point showing 8 gallons. It meets the graph of y = 0.22 x at M. Against M we read 36 litres.
- Q2. On 15.03.2008 the exchange rate of Pakistani currency and Saudi Riyal was as under: 1 S. Riyal = 16.70 Rupees

Solution:

y = 16.70 x

The table for values of x and y is as under:

,					
X ·	0	•	1	2	4
Уу	0		16.7	33.4	66.8

Plotting these points and joining them we get the graph

of $y = 16.7 \times as$ under:

	<u> </u>	<u></u>	10.1	7 0	<i>,</i> (11)									
			4											
				Y		4	\prod	110					7	
		66	.8	C			J		4,	56.	8)			
		1	N											
. 1	1	50	1											
1	1	,												, i
		33	.4		,				y:	= 1	6.7	X		
		16	17							·				
						(1,	16.	7)			•			
	ı									·				
	X'			0		1		2		3		4		X
	,													
				Y'										
1				¥										

Sketch the graph for following lines. Q3. (a) x-3y+2=0 (b) 3x-2y-1=0(c) 2y-x+2=0 (d) y-2x=0(e) 3y-1=0 (f) y+3x=0(g) 2x+6=0

(a)
$$x - 3y + 2 = 0$$

(b)
$$3x - 2y - 1 = 0$$

(c)
$$2y - x + 2 = 0$$

$$(d) y - 2x = 0$$

(e)
$$3y - 1 = 0$$

$$(f)$$
 $y + 3x = 0$

(g)
$$2x + 6 = 0$$

(a)
$$x - 3y + 2 = 0$$

or $y = \frac{x+2}{3}$

We tabulate the values of (x, v) as under:

**	Clabaic	310 1110	10,000			······································	
X	-2	. –1	0	1	2	3 .	4
V	0	0.3	0.66	1	1.3	2.66	2

Plotting these points we get the graph of the equation as under:

(b)
$$3x - 2y - 1 = 0$$

or $3x - 1 = 2y$
or $y = \frac{3x-1}{2}$

We tabulate the values of (x, y) as under:

x	-3	-2	-1	0	1	2	3
у	-5	-3.5	2	-0.5	1	2.5	4

Plotting the values of x and y and joining these we get the graph of the equation as under:

(c)
$$2y - x + 2 = 0$$

or $2y = x - 2$
or $y = \frac{x-2}{2}$

We calculate the values (x, y) as under:

x	-2	-1	0	1	2	
у	-2	-1.5	1	-0.5	0	

Plotting these points and joining them we get the graph of the equation as under

(d)
$$y - 2x = 0$$

or $y = 2x$

We tabulate the values of (x, y) as under:

X	-2	-1	. 0	1	2
y	-4	<u>-2</u>	0	2	4

Plotting these points and joining them we get the graph of the equation as under:

(e)
$$3y - 1 = 0$$

or $y = \frac{1}{3} = 0.3$

We tabulate the values of y against x as under:

We labulate the values of yes										
r		2	. 1	0	1	2				
V	0.3	0.3	0.3	0.3	0.3	0.3				

Plotting these points in the plane and joining them we get the graph of the equation 3y - 1 = 0.

(f)
$$y + 3x = 0$$

or $y = -3x$

We tabulate the points (x, y) as under:

x	-2	-1	0	1	2
у	6	3	0	-3	-6

Plotting these points and joining them we get the graph of the equation y + 3x = 0 is under:

$$(g) \qquad 2x + 6 = 0$$

or 2x = -6

or x = -3

We tabulate the points of the equation.

X	-3	-3	-3	-3	-3	-3
. y	-2	-1	0	1	2	• • •

Plotting them joining them we get the graph of the equation as under.

Q4. Draw the quagh for following relations.

(i) One mile with km

(ii) One Acre - 1.4 Hectare

(iii) F = 2 C 1 32

(iv) One R: $3 = \frac{1}{36}$ \$

Solution:

(i) One wife = 1.5 km Let y = 1.5 km

We tabulate ratue of x and y as under:

x	0	1	2	3	4
y	0	1.6	3.2	4.8	6.4

Mile is taken along x-axis and Km along y-axis.

We plot the point (x, y) and joining them we get the graph of $y = 1.6 \times 1.6$ conversion graph of miles and km.

(ii) On Acre = 0.4 Hectare

If Acre is measured along x-axis and hectare along y-axis then y = 0.4 x

The ordered pairs are tabulated in the following table.

x	0	. 1	2	4
_y	0	0.4	0.8	1.2

The corresponding points (0, 0), (1, 1.4), (2, 0.8) etc, are plotted in the xy-plane. Join of which forms the graph of conversion of y = 0.4 x.

(iii) $F = \frac{9}{5}C + 32$

We tabulate the values of C and F

С	0°	10°	20°	303	, J.
F	32°	50°	68°	86°	104'.

Plotting these points and joining them we get the required graph of $F = \frac{9}{5}C + 32$ as under:

(iv) One Rupee = $\frac{1}{86}$ \$

or One Rupee = 0.01\$

If \$ y is an expression of Rs. X, expressed under the rule y = 0.01 x

We tabulate the value of x and y as under:

				J U U U I .	•
x	0	10	20	30	40
. y	0	0.1	0.2	0.3	0.4

Plotting the points corresponding to the ordered pairs (x, y) from the table and joining them we get the

required graph.

EXERCISE 8.3

Solve the following pair of equations in x and y graphically.

Q1.
$$x + y = 0$$
 and $2x - y + 3 = 0$

Solution:

Let the system of the equations be
$$x + y = 0$$
 (i)

$$2x - y + 3 = 0$$
 (ii)

For (i) y = -x the table of values is

x	0	-1	2
у	0	1	-2

For (ii) y = 2x + 3, the table of values is

x	0	-1.5	-1
у	3	0	1

The solution of the system is the point R where the two lines meet i.e. R(-1, 1) such that x = -1, y = 1.

-Y'

Q2. x-y+1=0 and x-2y=-1

Solution:

Let the system of equations be

$$x - y + 1 = 0$$

(i)

$$x - 2y = -1$$

(ii)

For (i) y = x + 1, the table of values is

x	0	-1	. 1
y	1 :	0	2

For (ii) $y = \frac{x+1}{2}$, the table of values is

x	0	-1	1
y	0.5	0	1

By plotting the points we get the following graph.

The solution of the system is the point R where the two lines meet i.e. R(-1, 0) x = -1, y = 0.

Q3. 2x + y = 0 and x + 2y = 2

Solution:

Let the system of equations be

$$2x + y = 0$$

. (i)

$$x + 2y = 2$$

(ii)

For (i) y = -2x, the table of values is

x	0	-1	1
у	0	. 2	-2

For (ii) $y = \frac{2-x}{2}$, the table of values is

X	0	2	-2
у	1	0	2

By plotting the points we get the following graph.

The solution of the system is the point R where the two lines meet i.e. $R\left(-\frac{2}{3}, \frac{4}{3}\right)$

$$x = \frac{2}{3}, \qquad y = \frac{4}{3}$$

Q4. x + y - 1 = 0 and x - y + 1 = 0

Solution:

Let the system of equations be

$$x + y - 1 = 0$$

(i)

$$x - y + 1 = 0$$

(ii)

For (i) y = 1 - x, the table of values is

x	0	1	· 2
· y	1	0	-1

For (ii) y = x + 1, the table of values is

x	0	-1	2
у	1	0	3 ,

By plotting the points we get the following graph.

The solution of the system is the point R where the two lines meet i.e. R(0, 1)

or
$$x = 0, y = 1$$
.

Q5. 2x + y + 1 = 0 and x = -y

Solution:

Let the system of equation be

$$2x + y - 1 = 0$$

(i)

$$x = -y$$

(ii)

For (i) y = 1 - 2x, the table of values is

X	0	0.5	2
у	1	0	-3

For (ii) y = -x, the table of values is

1 01 (11) 3	A, 1110 10010 0	, , , , , , , , , , , , , , , , , , , ,	
x	0	1	-1
у	0	-1	1

By plotting the points we get the following graph:

The solution of the system is the point R where the two lines meet i.e. R(1, -1)

x = 1, y = -1

REVIEW EXERCISE 8

Q1. Choose the correct answer.

(i) If (x-1, y+1) = (0, 0), then (x, y) is

(a) (1, -1)

(b) (-1, 1)

(c) (1, 1)

(d) (-1, -1)

(ii) If (x, 0) = (0, y), then (x, y) is

(a) (0, 1)

(b) (1,0)

(c) (0, 0)

111

(d) (1, 1)

(iii) Point (2, -3) lies in quadrant

(a) |

(b) II

(c)

(d) IV

(iv) Point (-3, -3) lies in quadrant

(a)

(b) 11

(c) 111 (d) IV

(v) If y = 2x + 1, x = 2 then y is

(a) 2 (b) 3

(c) 4 (d) 5

Which ordered pair satisfy the equation y = 2x. (vi)

- (1, 2)(a)
- (b) (2, 1)
- (c) (2, 2)
- (d) (0, 1)

Answers:

	,				
(i) a	(ii) c	(iii) d	(iv) c	(v) d	(vi) a '

Q2. Identify the following statements as True or COM False.

- (i) The point O(0, 0) is in quadrant II.
- (ii) The point P(2, 0) lies on x-axis.
- (iii) The graph of x = -2 is a vertical line.
- (iv) 3 - y = 0 is a horizontal line.
- The point Q(-1, 2) is in quadrant III. (v)
- The point R(-1, -2) is in quadrant IV. (vi)
- (vii) y = x is a line on which origin lies.
- The point P(1, 1) lies on the line x + y = 0(viii)
- The point S(1, -3) lies in quadrant III. (ix)
- The point R(0, 1) lies on the x-axis. (x)

Answers:

(i) F	(ii) T	(iii) T	(iv) T	(v) F	
(vi) F	(vii) T	(viii) F	(ix) F	(x) F	

Q3. Draw the following points on the graph paper. (-3, -3), (-6, 4), (4, -5), (5, 3)

Solution:

Draw the graph of the following... Q4.

$$(i) x = -6$$

$$(ii) \quad y = 7$$

(i)
$$x = -6$$
 (ii) $y = 7$
(iii) $x = \frac{5}{2} = 2.5$ (iv) $y = -\frac{9}{2} = -4.5$

$$(v) \quad y = 4x$$

(v)
$$y = 4x$$
 (vi) $y = -2x + 1$

(i)
$$x = -6$$

Solution:

We tabulate the values of x and y as

			,		,
x	-6	-6	-6	-6	-6
у	-2	-1	0	['] 1	2

Plotting these points and joining them we get the graph of the line x = -6 as under:

y = 7(ii)

Solution:

Solution:				OK'	
We	tabulate th	e values o	f x and y	as.	
x	-2	-1	0	0	2
у	-7		7	7	7

Plotting these points and joining them we get the graph of the line y = 7 as under:

(iii)
$$x = \frac{5}{2} = 2.5$$

Solution:

We tabulate the values of x and y as under:

х	2.5	2.5	2.5	2.5	2.5
у	-2 .	-1	0	1	2

Plotting these and joining them we get the graph of the line x = 2.5 as under:

(iv)
$$y = -\frac{9}{2} = -4.5$$

Solution:

We tabulate the value of x and y as unc'er:

x	-2	-1	· 0	1	2
у	-4.5	-4.5	-4.5	-4.5	-4.5

Plotting these points and joining them we get the graph of the equation $x = -\frac{9}{2}$ as under:

(v) y = 4x

Solution:

We tabulate the values of x and y as under:

x	-2	-1	0	1	2	.3
у	-8	-4	0	4	8	12

Plotting these points and joining them we get the graph the equation y = 4x as under:

(vi)
$$y = -2x + 1$$

Solution:

We tabulate the value of x and y as under:

						
	x	-2	-1	0	1	2
•	у	5	3	1	-1	-3

Plotting these points and joining them we get the graph of the equation y = -2x + 1 as under:

SEDINFO.NET

Q5. Draw the following graph.

(i) y = 0.62 x

Solution:

We tabulate the values of x ar

Γ	x	-2	- 1	C
	y	-1.24	-0.62	C

Plotting these points and jour-

wier:

	2
t –	1.24

... b get the graph

(ii)
$$y = 2.5 x$$

Solution:

We tabulate the values of x and y as under:

x	-2	-1	0	1	2
у	-5.0	-2.5	0	2.5	5.0

Plotting these points and joining their we get the graph of the equation $y = 2.5 \times as$ under:

Solve the following equations graphically. Q6.

(i)
$$x-y=1$$
,

$$x + y = \frac{1}{2}$$

(ii)
$$x = 3y$$
,

$$2x - 3y = -6$$

(iii)
$$\frac{1}{3}(x + y) = 2\frac{1}{2}$$
 $(x-y) = -1$

$$(x-y)=-1$$

(i)
$$x-y=1,$$

$$x + y = \frac{1}{2}$$

Solution:

Let the system of equations be

$$x - y = 1 \tag{i}$$

$$x + y = \frac{1}{2}$$
 (ii)

For (i) y = x - 1, the table values is

X	-2	-1	0	1	2	į
	The second section of the second section is a second section of the second section sec	يين يبرياند برينيسيهست	والمجالي المتحار والمستحير			
У	-3	-2	-1	0	1	

For (ii) $y = \frac{1}{2} - x$, the table of values is

•	x	-2	-1	0	1	2	1
	4.	2 5	4 E	A C			4
	y	2.3	1.5	U.5	-0.5	-1.5	

By plotting the points of (i) and (ii) we get the following

The solution set of the system is the point R

i.e.
$$R(\frac{3}{4}, -\frac{1}{4})$$
 or (0.75, -0.25)

(ii)
$$x = 3y$$
, $2x - 3y = -6$

Solution:

Let the system of equations be

$$x = 3y$$
 or $y = \frac{1}{3}x$ (i)

$$2x - 3y = -6$$
 (ii)

For (i) $y = \frac{1}{3}x$, the table of values is

x	· -2	-1	0	1	2
у	2	1	0	1	2
	$-\frac{1}{3}$	$-\overline{3}$		$\frac{\overline{3}}{3}$	3

For (ii), $y = \frac{2x+6}{3}$, the table of value is

Γ	x	-2	-1	0	1	2
	у	2	4	2	1	10
	-	3	$\frac{1}{3}$		8	$\frac{\overline{3}}{3}$

By plotting the points of (i) and (ii) we get the following

	raph						2x	- 3y	+- 6				I
_		1			_		4:	4_		↓_	↓_		4
-	 	 	-	 	ļ.	12	W	4	-	∔			X
\vdash	-	-	-	(-1	4\3)		1	+-	0	K		X=	13
						1		V			1		T
			(-2,	2\3)		1	M_{i}	Ψ	/				
<u> </u>	<u> </u>			4	77	N		/		2\3)		
+	4	41			<u> </u>	L,	4	(1	1(3)	L			4
1	X	1/7	4/-	3 -	2,	K	0	1	2	3	4		X
4	I_{Λ}						 	 					_
						-1		-	·			÷	
						-2-	Y						
(-6,	-2)	I	ı	I	I								

The solution set of the system is the point R (-6, -2) i.e. x = -6, y = -2.

(iii)
$$\frac{1}{3}(x + y) = 2\frac{1}{2}$$
 $(x-y) = -1$

Solution:

The system of equations is

$$\frac{1}{3}(x + y) = 2$$
 (i)
$$\frac{1}{2}(x-y) = -1$$
 (ii)

For (i) y = 6 - x, the table of values is

x	-2	-1	0	1	2
у	8	7	6	5	4

For (ii) y = x + 2, the table of values is

x	-2	-1	0	1	2
у	0	1	2	3	4

By plotting the points of (i) and (ii) we get the following

The solution set of the system is the point R.

i.e.
$$R(2, 4)$$
 or $x = 2, y = 4$