Question 1: (marks: 8+4)

a. Solve the following linear programming model graphically.

subject to
$$6x + 4y \le 24$$

$$6x + 3y \le 22.5$$

$$x + y \le 5$$

$$x + 2y \le 6$$

$$-x + y \le 1$$

$$y \le 2$$

$$x, y \ge 0$$

b. Identify the redundant constraints and show that their removal does not affect the solution space or the optimal solution.

First and third are redundant constraints.

Question 2: (marks: 3+7)

A compony produces 3 types of toys. The maximum production limit of the three types per month is 7 toys in total. Production time of a type 1, type 2 and type 3 toy is 2 hours, 5 hours and 3 hours respectively. The minimum work hours available in a month are 10 hours. The profit of a type 1, type 2 and type 3 toy is \$1, \$2 and \$3 respectively.

- i. formulate a linear programming model for the given scenario.
- ii. Use any appropriate technique to find the number of each type of toys to be produced to maximize the profit.

Solution

Objective Function:

Maximize: $Z = 1X_1 + 2X_2 + 3X_3$

Subject to:

$$1X_1 + 1X_2 + 1X_3 \le 7$$

$$2X_1 + 5X_2 + 3X_3 \ge 10$$

$$X_1,\,X_2,\,X_3\geq 0$$

Objective Function:

Maximize: $Z = 1X_1 + 2X_2 + 3X_3 + 0S_1 + 0S_2 - MA_1$

Subject to:

$$1X_1 + 1X_2 + 1X_3 + 1S_1 + 0S_2 + 0A_1 = 7$$

$$2X_1 + 5X_2 + 3X_3 + 0S_1 - 1S_2 + 1A_1 = 10$$

$$X_1,\,X_2,\,X_3,\,S_1,\,S_2,\,A_1\geq 0$$

Initial Table

Table 1	Cj	1	2	3	0	0	-M	
C _b	Base	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	R
0	S ₁	1	1	1	1	0	0	7
-M	A ₁	2	5	3	0	-1	1	10
	Z	-2M-1	-5M-2	-3M-3	0	М	0	-10M

Enter the variable $\mathbf{X_2}$ and the variable $\mathbf{A_1}$ leaves the base. The pivot element is $\mathbf{5}$

Iteration 1

Table 2	c _j	1	2	3	0	0	-M	
Сь	Base	X ₁	X ₂	X ₃	S ₁	S2	A ₁	R
0	S ₁	3/5	0	2/5	1	1/5	-1/5	5
2	X ₂	2/5	1	3/5	0	-1/5	1/5	2
	z	-1/5	0	-9/5	0	-2/5	M+2/5	4

Enter the variable $\mathbf{X_3}$ and the variable $\mathbf{X_2}$ leaves the base. The pivot element is $\mathbf{3/5}$

Iteration 2

Enter the variable ${\bf S_2}$ and the variable ${\bf S_1}$ leaves the base. The pivot element is ${\bf 1/3}$

Iteration 3

Table 4	c _j	1	2	3	0	0	-M	
Сь	Base	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	R
0	S2	1	-2	0	3	1	-1	11
3	X ₃	1	1	1	1	0	0	7
	z	2	1	0	3	0	М	21
	The o	ptima	al solu	ution	is Z =	: 21		
X ₁	= 0, X ₂ =	0, X ₃	= 7, S	1= 0,	S ₂ = 1	1, A ₁ :	= 0	

Question 3: (marks: 8)

Determine dual price (the value of objective function) and the feasibility range of the variables from the given optimal tableau:

								Solution			
Basic	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS	D_1	D_2	D_3	
z	4	0	0	1	2	0	1350	1	2	0	
x_2	$-\frac{1}{4}$	1	0	$\frac{1}{2}$	$-\frac{1}{4}$	0	100	1/2	$-\frac{1}{4}$	0	
x_3	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	0	230	0	$\frac{1}{2}$	0	
<i>x</i> ₆	2	0	0	-2	1	1	20	-2	1	1	

Solution

Dual prices: The value of the objective function can be written as

$$z = 1350 + 1D_1 + 2D_2 + 0D_3$$

Feasibility range: The current solution remains feasible if all the basic variables remain nonnegative—that is,

$$x_2 = 100 + \frac{1}{2}D_1 - \frac{1}{4}D_2 \ge 0$$

$$x_3 = 230 + \frac{1}{2}D_2 \ge 0$$

$$x_6 = 20 - 2D_1 + D_2 + D_3 \ge 0$$

The given conditions can produce the individual feasibility ranges associated with changing the resources one at a time (as defined in Section 3.6.1). For example, a change in operation 1 time only means that $D_2 = D_3 = 0$. The simultaneous conditions thus reduce to

$$\left. \begin{array}{l} x_2 = 100 + \frac{1}{2} D_1 \geq 0 \Rightarrow D_1 \geq -200 \\ x_3 = 230 > 0 \\ x_6 = 20 - 2D_1 \geq 0 \Rightarrow D_1 \leq 10 \end{array} \right\} \Rightarrow -200 \leq D_1 \leq 10$$

This means that the dual price for operation 1 is valid in the feasibility range $-200 \le D_1 \le 10$.

We can show in a similar manner that the feasibility ranges for operations 2 and 3 are $-20 \le D_2 \le 400$ and $-20 \le D_3 \le \infty$. respectively (verify!).