

Interactive Visual Analytics System for Paleoclimate Causality

Chang, Jung-Chen

Advisor: Wang, Ko-Chih, Ph.D.

Outline

- · Introduction
 - Ancient Climate
 - · Challenge
- Task and Goal
- · Method
 - · Dataset
 - · Data Preprocessing
 - · Association Rule Learning
- · Visual Design
- · Use Case
 - · Discovery of Unexpected Association Rule
 - · Spatial Diffusion of Association Rule
- · Conclusion and Future Work

Introduction

- Climate is a long-term regional weather pattern influenced by many interacting factors.
- Analyzing ancient climates is an important study.
- Some relations are directional.

Challenge

- No complete and systematic measurement of climate data for the past.
- The search space is so large that it is easy to miss opportunities to discover "surprising" relations.
- Find "asymmetric" relations between events.

Goal and Task

Goals

- G1: Evaluate the strength of relations of events in both event directions.
- G2: Observe the dynamic relation spatial pattern movement over time.
- G3: Explore valuable and special event relations in the large spatiotemporal dataset.

Tasks

- T1: An algorithm to mining relations of events in both event directions.
- T2: Explore spatial regions and time spans with similar or dissimilar association rule sets.
- T3: Compare the detailed difference between association rule sets.
- T4: Visualization to facilitate relation pattern change in the spatiotemporal domain.
- T5: Help experts formulate hypotheses and verify them in a dataset with large spatial and temporal domains.

Dataset - REACHES

REACHES (Reconstructed East Asian Climate History Encoding System)

• time range: 1368 - 1911, spatial scope: whole China

• event category : climate event & disaster event

Attributes name	Description
year_lunar_st	Start year of the subrecord/event(s) in lunar calendar
place_provin	Provinces
place_longit	Assigned longitude represented by the location of the city hall
place_latitu	Assigned latitude represented by the location of the city hall
event_code	Event attribution of the record

Event category
Drought
Famine
Flood
Rainfall
Thunder
Wind
Locust
Snow
Uncertain_crop
Crop
Grain
Pestilence
Disaster management

Data Preprocessing

- Frequent pattern mining
 - Usually use on transaction data
 - Only need frequency
 - Calculated relation results are directional
- Transform data into <u>transaction-like pattern</u>
- After discussing with experts, set distance to 100km and time to 1 year

Association Rule Learning

- Find combinations that frequently co-occur in a dataset.
- Rule is defined as an implication of the form : $A \rightarrow B$
- · Three standards we use :
 - Support: The frequency or occurrence of an itemset in the data.

Set the **minimum support** to filter.

- Confidence: How often the B-event appears in data containing the A-event.

 Set the **minimum Confidence** to filter.
- Lift: The strength of association between the A-event and B-event of an association rule.

Association Rule Learning

Record ID	Drought	Famine	Rainfall	Snow	Wind	Thunder	Pestilence
1	1	1	0	0	0	0	1
2	0	0	1	0	0	1	1
3	0	0	0	1	1	0	0
4	1	1	1	0	0	1	1
5	0	1	0	0	0	0	0

ltem	Support
Drought	2/5 = 0.4
Famine	3/5 = 0.6
Snow	1/5 = 0.2
Thunder	2/5 = 0.4
Pestilence	3/5 = 0.6

If occur A, then occur $B(A \rightarrow B)$	Support	Confidence
(Drought → Famine)	2/5 = 0.4	2/2 = 1
(Drought → Thunder)	1/5 = 0.2	1/2 = 0.5
(Famine → Pestilence)	2/5 = 0.4	2/3 = 0.66
(Pestilence → Thunder)	2/5 = 0.4	2/3 = 0.66

Visual Design – Overview

Visual Design – Map

• Easier to understand the spatial variation of association rules.

Visual Design – Line Chart

• Compare the association rule set between the base province and other provinces under different emperors.

Province similarity using Euclidean Distance

	antecedents	consequents	confidence_x	confidence_y
0	(disaster_management)	(flood)	0.555855	0.590909
1	(thunder)	(rainfall)	0.628458	0.678571
2	(wind)	(rainfall)	0.609467	0.566667
3	(crops)	(rainfall)	0.535201	0.551471

All provinces compared with Qing

Visual Design – Association Rule Graph

Visual Design – Heatmap

Association rule heatmap

Event frequency heatmap

Visual Design – Interaction

- Some provinces were different from the whole Qing dynasty.
- Check the map and find "山東" special.

Set confidence-value = 0.5, and observe arc diagram graph

清朝 Arc Diagram 山東 in 雍正's Arc Diagram famine disaster_management snow

Confidence-value = 0.65

山東 in 雍正's Arc Diagram

Confidence-value = 0.7

Use heatmap to observe **Pestilence** and **Famine**

- Find that in rule : **Pestilence** → **Famine** more than 1/3 combination's confidence value are large.
- In rule : **Famine** → **Pestilence** is opposite.

Expert repeats the steps and discovers another association rules: Pestilence → Flood

• Compare two association rule in same emperor on the map.

Pestilence → Famine

Pestilence → Flood

Use case 1 conclusion:

- 1. Experts find surprising relationships by using our system.
- 1. Experts find an association rule "Pestilence \rightarrow Famine" that is directional.

• Expert selected an association rules with diffusion phenomena.

• Experts choose similar provinces to observe and find there are other rules that exist in these two provinces.

• Expert selected an association rules with diffusion phenomena.

Use case 2 conclusion:

- 1. Experts find an association rule "Flood \rightarrow Disaster management" has a similar spatial diffusion with the association rule "Drought \rightarrow Locust".
- 1. Experts can decide which association rules they are interested to study.

Conclusion and Future Work

- An association rule learning based algorithm for exploring the unexpected relation.
- An interactive visualization system for analyzing large-scale spatiotemporal climate dataset.
- [Future] Identify more than two events' relationships and their interactions.
- [Future] Organize and consider different spatial and temporal ancient climate datasets.

Thank you for your attention

Q&A

