PSYCH 260

Neurochemistry I

Rick O. Gilmore 2021-09-30 15:04:13

Prelude (4:44)

https://www.youtube.com/watch?v=f8FAJXPBdOg

Today's Topics

- How neurons talk to one another
- Synaptic communication

In the beginning

- Soma receives input from dendrites
- Axon hillock sums/integrates
- If sum > threshold, AP "fires"

Illustration of summation

Steps in synaptic transmission

- Rapid change in voltage triggers neurotransmitter (NT) release
- Voltage-gated calcium Ca++ channels open
- Ca++ causes synaptic vesicles to bind with presynaptic membrane, merge,
- NTs released via exocytosis
- NTs diffuse across synaptic cleft

(Hastoy, Clark, Rorsman, & Lang, 2017)

Steps in synaptic transmission

- NTs bind with receptors on postsynaptic membrane
- Receptors respond
- NTs unbind, are inactivated

Synaptic transmission

Exocytosis

Nature Reviews | Neuroscience

(Haucke, Neher, & Sigrist, 2011)

Why do NTs move from presynaptic terminal toward postsynaptic cell?

- Electrostatic force pulls them
- Force of diffusion

Why do NTs move from presynaptic terminal toward postsynaptic cell?

- Electrostatic force pulls them
- Force of diffusion

Relative sizes

- Neural membrane ~8 nm
- Synaptic vesicles ~40-60 or ~90-120 nm
- Synaptic cleft ~20-50 nm
- Cleft small relative to vesicles

Postsynaptic receptor types

- Ionotropic (receptor + ion channel)
 - Ligand-gated
 - Open/close ion channel
 - Ions flow in/out depending on membrane voltage and ion type
 - Fast-responding (< 2 ms), but short-duration effects (< 100 ms)

Postsynaptic receptor types

- Metabotropic (receptor only, no attached ion channels)
 - Trigger G-proteins attached to receptor
 - G-proteins activate 2nd messengers
 - 2nd messengers open/close adjacent channels, change metabolism
 - Slower, but longer-lasting effects

Receptor types

<u>Ionotropic receptor</u>

Metabotropic receptor

Fig. 5a. Ionotropic receptors and their associated ion channels form one complex (top). Each iGluR is formed from the co-assembly of multiple (4-5) subunits (From Kandel et al., 1991).

Fig. 5b. Metabotropic receptors are coupled to their associated ion channels by a second messenger cascade (top). Each mGluR is composed of one polypeptide, which is coupled to a G-protein (from Kandel et al., 1991).

Receptors generate *postsynaptic potentials* (PSPs)

- Small voltage changes
- Amplitude scales with # of receptors activated

18/49

receptors activated ~ # of vesicles released

Postsynpatic potential types

- Excitatory PSPs (EPSPs)
 - Depolarize neuron (make more +)
 - Move membrane potential closer to threshold
- Inhibitory (IPSPs)
 - Hyperpolarize neuron (make more -)
 - Move membrane potential away from threshold

Mechanisms of NT inactivation

- Buffering
 - e.g., glutamate into astrocytes (Anderson & Swanson, 2000)
- Reuptake via transporters
 - molecules in membrane that move NTs inside
 - e.g., serotonin via serotonin transporter (SERT)
- · Enzymatic degradation
 - e.g., Acetylcholinesterase (AChE) degrades acetylcholine (ACh)

Questions to ponder

Why must NTs be inactivated?

Questions to ponder

- Why must NTs be inactivated?
 - Keeps messages discrete, localized in time and space

What sort of PSP would *opening* a Na+ channel produce?

- Excitatory PSP, Na+ flows in
- Excitatory PSP, Na+ flows out
- Inhibitory PSP, Na+ flows in
- Inhibitory PSP, Na+ flows out

What sort of PSP would *opening* a Na+ channel produce?

- Excitatory PSP, Na+ flows in
- Excitatory PSP, Na+ flows out
- Inhibitory PSP, Na+ flows in
- Inhibitory PSP, Na+ flows out

What sort of PSP would *opening* a Cl-channel produce?

Remember [Cl-out]>>[Cl-in]; Assume resting potential ~60 mV

- Excitatory PSP, Cl- flows in
- Excitatory PSP, Cl- flows out
- Inhibitory PSP, Cl- flows in
- Inhibitory PSP, Cl- flows out

What sort of PSP would *opening* a Cl-channel produce?

Remember [Cl-out]>>[Cl-in]; Assume resting potential ~60 mV

- Excitatory PSP, Cl- flows in
- Excitatory PSP, Cl- flows out
- Inhibitory PSP, Cl- flows in
- Inhibitory PSP, Cl- flows out

Types of synapses

Types of synapses

- Axodendritic (axon to dendrite)
- Axosomatic (axon to soma)
- Axoaxonic (axon to axon)
- Axosecretory (axon to bloodstream)

Synapses on

- dendrites
 - usually excitatory
- · cell bodies
 - usually inhibitory
- axons
 - usually modulatory (change *p*(fire))

Summary of chemical communication

Neurotransmitters

THE STRUCTURES OF NEUROTRANSN

STRUCTURE KEY:

Carbon atom
Hydrogen atom
Oxygen atom
Nitrogen atom

ADRENALINE

Fight or flight neurotransmitter

NORADRENALINE

Concentration neurotransmitter

DOPAMINE

Pleasure neurotransmitter

Feelings of pleasure, and also addiction, movement, and motivation. People repeat behaviours that lead to dopamine release.

Contribut sleep cy-Affect

Produced in stressful or exciting situations. Increases heart rate & blood flow, leading to a physical boost & heightened awareness.

GABA

Calming neurotransmitter

ACETYLCHOLINE

Affects attention & responding actions in the

brain, & involved in fight or flight response.

Contracts blood vessels, increasing blood flow.

Learning neurotransmitter

GLUTAMATE

Memory neurotransmitter

What are they?

- Chemicals produced by neurons
- Released by neurons
- Bound by neurons and other cells
- Send messages (have physiological effect on target cells)
- Inactivated after release

Neurotransmiters

Family	Neurotansmitter
Amino acids	Glutamate (Glu)
	Gamma aminobutyric acid (GABA)
	Glycine
	Aspartate

Glutamate

- Primary excitatory NT in CNS (~ 1/2 all synapses)
- Role in learning (via NMDA receptor)
- Transporters on neurons and glia (astrocytes and oligodendrocytes)
- Linked to umami (savory) taste sensation, think monosodium glutamate (MSG)
- Dysregulation in schizophrenia (McCutcheon, Krystal, & Howes, 2020), mood disorders (Małgorzata, Paweł, Iwona, Brzostek, & Andrzej, 2020)

Glutamate

Туре	Receptor	Esp Permeable to
Ionotropic	AMPA	Na+, K+
	Kainate	
	NMDA	Ca++
Metabotropic	mGlu	

γ -aminobutyric Acid (GABA)

- Primary inhibitory NT in CNS
- Excitatory in developing CNS, [Cl-] in >> [Cl-] out
- Binding sites for benzodiazepines (e.g., Valium), barbiturates, ethanol, etc.
- Synthesized from glutamate
- Inactivated by transporters

Туре	Receptor	Esp Permeable to
Ionotropic	GABA-A	CI-
Metabotropic	GABA-B	K+

GABA

"GABAA-receptor-protein-example" by Chemgirl131 at English Wikipedia - Transferred from en.wikipedia to Commons by Sreejithk2000 using CommonsHelper.. Licensed under Public Domain via Commons.

Other amino acid NTs

- Glycine
 - Spinal cord interneurons
 - Also inhibitory
- Aspartate
 - Like Glu, stimulates NMDA receptor

Acetylcholine (ACh)

- Primary NT of CNS output
- Somatic nervous system (neuromuscular junction)
- Autonomic nervous system
 - Sympathetic branch: preganglionic neuron
 - Parasympathetic branch: pre/postganglionic
- Inactivation by acetylcholinesterase (AChE)

ACh anatomy

© 2011 Pearson Education, Inc.

http://myzone.hrvfitltd.netdna-cdn.com/wp-content/uploads/2014/09/Image-1.jpg

Acetylcholine

Туре	Receptor	Esp Permeable to	Blocked by
lonotropic	Nicotinic (nAChR)	Na+, K+	e.g., Curare
Metabotropic	Muscarinic (mAChR)	K+	e.g., Atropine

Curare

http://www.general-anaesthesia.com/images/indian-curare.jpg

Atropine

· aka, nightshade or belladonna

https://aapos.org/glossary/dilating-eye-drops

How to stop your prey

Substance	Effect
Japanese pufferfish toxin	Blocks voltage-gated Na+ channels
Black widow spider venom	Accelerates presynaptic ACh release
Botulinum toxin (BoTox)	Prevents ACh vesicles from binding presynaptically
Sarin nerve gas	Impedes ACh breakdown by AChE
Pesticides	Impede AChE
Tetanus toxin	Blocks release of GABA, glycine

Next time...

More on NTs!

References

- Anderson, C. M., & Swanson, R. A. (2000). Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. *Glia*, *32*(1), 1–14. https://doi.org/10.1002/1098-1136(200010)32:1<1::AID-GLIA10>3.0.CO;2-W
- Hastoy, B., Clark, A., Rorsman, P., & Lang, J. (2017). Fusion pore in exocytosis: More than an exit gate? A β -cell perspective. *Cell Calcium*, *68*, 45–61. https://doi.org/10.1016/j.ceca.2017.10.005
- Haucke, V., Neher, E., & Sigrist, S. J. (2011). Protein scaffolds in the coupling of synaptic exocytosis and endocytosis. *Nature Reviews. Neuroscience*, *12*(3), 127–138. https://doi.org/10.1038/nrn2948
- Małgorzata, P., Paweł, K., Iwona, M. L., Brzostek, T., & Andrzej, P. (2020). Glutamatergic dysregulation in mood disorders: Opportunities for the discovery of novel drug targets. *Expert Opinion on Therapeutic Targets*, *24*(12), 1187–1209. https://doi.org/10.1080/14728222.2020.1836160
- McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. *World Psychiatry: Official Journal of the World Psychiatric Association*, 19(1), 15–33. https://doi.org/10.1002/wps.20693