Examen Final de Théorie des Graphes

Durée 1h30'

Exercice 1.

Le tableau suivant donne les durées et les contraintes de précédence dans un projet.

Tâche	1	2	3	4	5	6	7	8
Durée (Journées)	4	1	3	7	2	10	6	1
Contraintes	_	_	Après la fin de 1 et 2	_	Après la fin de 1 et 3.	Après la fin de 2 et 3.	Après la fin de 3 et 5.	Après la fin de 1, 3, 4 et 5.

- 1. Donner le graphe potentiel-tâches associé à ce projet.
- 2. Déterminer les dates de début au plus tôt de chaque tâche et la durée minimale du projet.
- 3. Déterminer les dates de début au plus tard et la marge totale de chaque tâche.
- 4. Quelle est la suite de tâches auxquelles il faut accorder une attention particulière (début, retard, délais, ...) afin que la durée optimale du projet ne soit pas affectée. Justifier.

Exercice 2.

Soit le graphe non orienté ${\it G}$ donné par le dessin cicontre :

- 1. Appliquer l'algorithme de Welsh et Powell pour déterminer une k-coloration des sommets sur le graphe G.
- 2. Donner un encadrement du nombre chromatique.
- 3. Trouver son nombre chromatique. Justifier votre résultat.

Exercice 3.

On appelle graphe de Petersen le graphe P=(X, E) dont l'ensemble des sommets est des paires non ordonnées $\{x, y\}$ où x et $y \in \{1, 2, 3, 4, 5\}$ et tel que deux sommets $\{x_1, y_1\}$ et $\{x_2, y_2\} \in X$ sont voisins si et seulement si leur intersection est vide ($\{x_1, y_1\} \cap \{x_2, y_2\} = \emptyset$).

- 1. Montrer que le graphe ci-contre est une représentation du graphe de Peterson:
- 2. Montrer que pour tout sommet x du graphe de Petersen P, $P \setminus \{x\}$ est Hamiltonien.

NB : Il est exigé de remettre une copie bien présentée avec des argumentations claires.