

Capstone Project EDA on Airbnb

By - Mohd Sahil

EDA on Airbnb Dataset

- 1. Problem Statement
- 2. Data Summary
- 3. Data Cleaning
- 4. Data Wrangling
- 5. Visualization
- 6. Conclusions
- 7. Challenges

EDA Workflow

Business Need

Data Acquire

Data Wrangling

Analyse

Visualisation

Problem Statement

The data generated by users of Airbnb are in millions. Therefore to improve the business the data analysis should focus on both sides of the story, demand (Guests) and supply (Hosts).

- What can we learn about different hosts and areas?
- What can we learn from predictions? (ex: locations, prices, reviews, etc)
- Which hosts are the busiest and why?
- Is there any noticeable difference of traffic among different areas and what could be the reason for it?

The dataset contains 48895 observations and 16 columns

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 48895 entries, 0 to 48894
Data columns (total 16 columns):
    Column
                                    Non-Null Count Dtype
    id
                                    48895 non-null int64
 0
                                    48879 non-null object
    name
                                    48895 non-null int64
    host id
    host name
                                    48874 non-null object
    neighbourhood group
                                    48895 non-null object
    neighbourhood
                                   48895 non-null object
    latitude
                                    48895 non-null
                                                    float64
    longitude
                                    48895 non-null float.64
                                    48895 non-null object
    room type
    price
                                    48895 non-null
                                                    int64
                                                    int64
    minimum nights
                                    48895 non-null
    number of reviews
                                    48895 non-null int64
    last review
                                    38843 non-null object
    reviews per month
                                    38843 non-null
                                                    float64
    calculated host listings count 48895 non-null
                                                    int64
    availability 365
                                    48895 non-null
                                                    int64
dtypes: float64(3), int64(7), object(6)
memory usage: 6.0+ MB
```


/ [47] df.describe()

	host_id	latitude	longitude	price	minimum_nights	number_of_reviews	calculated_host_listings_count	availability_365
count	4.889500e+04	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000	48895.000000
mean	6.762001e+07	40.728949	-73.952170	152.720687	7.029962	23.274466	7.143982	112.781327
std	7.861097e+07	0.054530	0.046157	240.154170	20.510550	44.550582	32.952519	131.622289
min	2.438000e+03	40.499790	-74.244420	0.000000	1.000000	0.000000	1.000000	0.000000
25%	7.822033e+06	40.690100	-73.983070	69.000000	1.000000	1.000000	1.000000	0.000000
50%	3.079382e+07	40.723070	-73.955680	106.000000	3.000000	5.000000	1.000000	45.000000
75%	1.074344e+08	40.763115	-73.936275	175.000000	5.000000	24.000000	2.000000	227.000000
max	2.743213e+08	40.913060	-73.712990	10000.000000	1250.000000	629.000000	327.000000	365.000000

Columns

- id: Unique identification code for the listing
- name: Descriptive name of the listing
- host_id: Unique identification code for the host
- host_name: First name of the host
- neighbourhood_group: Neighbourhoods are grouped into NYC boroughs
- neighbourhood: The name of neighbourhood of the listing

Columns

- Latitude & Longitude: Numeric variables that represents the location of the listing
- room_type: A categorical variable including Shared Room, Private Room or Entire Room/Apt
- price: The price of the listing
- minimum_nights: The minimum number of nights the host requires to book their property

Columns

- number_of_reviews: Number of customer reviews regarding the listing
- last_review: Date of the last review
- reviews_per_month: Number of customer reviews per month
- calculated_host_listings_count: Number of listings each host has simultaneously
- availability_365: The number of days that the listing is available in a 365 days, which is pre-defined by the host

Data Cleaning

Replacing Null values

```
df.isnull().sum()
id
                                        0
                                       16
 name
host id
 host name
 neighbourhood group
 neighbourhood
 latitude
 longitude
 room type
 price
minimum nights
 number of reviews
 last review
                                    10052
 reviews per month
                                    10052
 calculated host listings_count
 availability 365
                                        0
 dtype: int64
```

```
#replacing all NaN values
df.fillna({'reviews per month':0}, inplace=True)
df.fillna({'last review':0}, inplace=True)
df.fillna({'host name':'unknown host name'}, inplace=True)
df.fillna({'name':'unknown name'}, inplace=True)
#examing changes
df.isnull().sum()
id
name
host id
host name
neighbourhood group
neighbourhood
latitude
longitude
room type
price
minimum nights
number of reviews
last review
reviews per month
calculated host listings count
availability 365
dtype: int64
```


Data Cleaning

Removing unnecessary fields

```
# Removing unnecessary data

df.drop(['id','reviews_per_month','last_review'], axis=1, inplace=True)
```

- Id: Provides unique identification for a listing, similar task can be performed using host_id
- reviews_per_month & last_review : this column has more than 1000 Null values

What can we learn about different hosts and areas?

df_nghGrp_host = df.groupby(['neighbourhood_group'])['host_id'].count()
df_nghGrp_host

	neighbourhood_group	Total Airbnb Hosts
0	Bronx	1091
1	Brooklyn	20104
2	Manhattan	21661
3	Queens	5666
4	Staten Island	373

 \Box

What can we learn from predictions? (ex: locations, prices, reviews, etc)

df_nghGrp_num_rvws = df.groupby(['neighbourhood_group'])['number_of_reviews'].sum()
df_nghGrp_num_rvws

	neighbourhood_group	Total Reviews
0	Brooklyn	486574
1	Manhattan	454569
2	Queens	156950
3	Bronx	28371
4	Staten Island	11541

What can we learn from predictions? (ex: locations, prices, reviews, etc)

What can we learn from predictions? (ex: locations, prices, reviews, etc)

Which Hosts are the busiest?

Why the top hosts are the busiest?

top	_hosts_jnd	= pd.merge(df_	_hosts_rvws, d	f[['hos	t_id','price','neighb	ourhood_group',	'room_type']], h
top	_hosts_jnd						
	host_id	host_name	mean reviews	price	neighbourhood_group	room_type	70°
0	47621202	Dona	602.500000	47	Queens	Private room	
1	47621202	Dona	602.500000	47	Queens	Private room	
2	4734398	Jj	599.333333	49	Manhattan	Private room	
3	4734398	Jj	599.333333	49	Manhattan	Private room	
4	4734398	Jj	599.333333	49	Manhattan	Private room	
5	2369681	Carol	540.000000	99	Manhattan	Private room	
6	12949460	Asa	488.000000	160	Brooklyn	Entire home/apt	
7	792159	Wanda	480.000000	60	Brooklyn	Private room	
8	37312959	Maya	454.600000	45	Queens	Private room	
9	37312959	Maya	454.600000	46	Queens	Private room	
10	37312959	Maya	454.600000	45	Queens	Private room	
11	37312959	Maya	454.600000	45	Queens	Private room	
12	37312959	Maya	454.600000	32	Queens	Private room	
13	2321321	Lloyd	454.000000	39	Queens	Shared room	
14	277379	Agnes	448.500000	60	Manhattan	Private room	
15	277379	Agnes	448.500000	85	Manhattan	Private room	
16	307962	Dennis & Naoko	441.000000	99	Queens	Entire home/apt	
17	97086824	Miss Dy	434.000000	49	Queens	Entire home/apt	

Is there noticeable difference between traffic among different Areas?

[33] df_nghGrp_num_rvws

	neighbourhood_group	Total Reviews
0	Brooklyn	486574
1	Manhattan	454569
2	Queens	156950
3	Bronx	28371
4	Staten Island	11541

Brooklyn & Manhattan share 82%(approx) of the traffic Staten Is & Bronx are the least popular among the Guests

```
rvws = df_nghGrp_num_rvws['Total Reviews']
ngh_grp = df_nghGrp_num_rvws['neighbourhood_group']

plt.figure(figsize=(10,6))
plt.pie(rvws, labels = ngh_grp, autopct='%1.1f%%')
plt.axis('equal')
plt.show()
```


Reasons for the variation in traffic among difference areas

Number of Hosts

	<pre>df_nghGrp_host = df.groupby(['neighbourhood_group'])['host_id'].count() df_nghGrp_host</pre>						
	neighbourhood_group	Total Airbnb Hosts	%				
0	Bronx	1091					
1	Brooklyn	20104					
2	Manhattan	21661					
3	Queens	5666					
4	Staten Island	373					


```
# Visualization
    plt.figure(figsize=(10,6))
    plt.bar(df_nghGrp_host['neighbourhood_group'], height = df_nghGrp_host['Total Airbnb Hosts'], width = 0.8)
    plt.show()
C→
     20000
     15000
     10000
      5000
                              Brooklyn
               Manhattan
                                             Queens
                                                           Bronx
                                                                       Staten Island
```


Reasons for the variation in traffic among difference areas

• Types of Room

		neighbourhood group	room type	count	7
[38]		neighbourhood_group	room_cype	Count	
	0	Manhattan	Entire home/apt	13199	
	1	Brooklyn	Private room	10132	
	2	Brooklyn	Entire home/apt	9559	
	3	Manhattan	Private room	7982	
	4	Queens	Private room	3372	
	5	Queens	Entire home/apt	2096	
	6	Bronx	Private room	652	
	7	Manhattan	Shared room	480	
	8	Brooklyn	Shared room	413	
	9	Bronx	Entire home/apt	379	
	10	Queens	Shared room	198	
	11	Staten Island	Private room	188	
	12	Staten Island	Entire home/apt	176	
	13	Bronx	Shared room	60	
	14	Staten Island	Shared room	9	

Relationship between price and number of reviews

	price	Avg Reviews
0	0	34.272727
1	10	14.176471
2	11	37.666667
3	12	2.000000
4	13	9.000000
		Chan
669	7703	0.000000
670	8000	1.000000
671	8500	2.000000
672	9999	2.333333
673	10000	2.333333

For the top host category, more Airbnb listings are not resulting in more reviews

	host id	host name	total listings	mean reviews
0	219517861	Sonder (NYC)	327	3.917431
1	107434423	Blueground	232	0.125000
2	30283594	Kara	121	0.537190
3	137358866	Kazuya	103	0.844660
4	16098958	Jeremy & Laura	96	1.437500
5	12243051	Sonder	96	0.447917
6	61391963	Corporate Housing	91	4.582418
7	22541573	Ken	87	0.632184
8	200380610	Pranjal	65	0.015385
9	7503643	Vida	52	4.653846

More number of Airbnb listings not resulting into more popularity among guests

Conclusion

- 1. Number of Hosts available in a location affects the traffic Areas where number of hosts are more have higher reviews
- 2. Majority of Guests prefer to pay a lesser price.
- Types of Room offered affects the traffic (shared room type is the least popular among guests, whereas Private Room is preferred by more than half of the total Guests).
- Areas where the availability of private rooms and entire home/ apartment are maximum, the traffic is more.
- 5. For the top host category, more Airbnb listings are not resulting in more reviews.

Challenges

- For better data exploration, additional features would be quite helpful, such as positive and negative numeric (0-5 stars) reviews for each listing. This can help us to determine the best-reviewed hosts for NYC along with 'number_of_review' column that is provided.
- Missing values in certain columns like reviews per month and last review, hinders in data analysis process.
- Dropping unnecessary fields without compromising on data insights.

Thank You