

DEUTSCHES PATENT- UND MARKENAMT

- (21) Aktenzeichen: 198 11 194.0 (22) Anmeldetag: 10. 3.98
- (3) Offenlegungstag: 16. 9.99

(51) Int. Cl.6: C 07 K 14/82

C 07 K 7/08 C 07 K 16/32 C 12 N 15/11 C 07 H 21/04 C 12 N 15/63 C 12 N 1/00 C 12 N 5/10 A 61 K 38/17 A 61 K 38/10 A 61 K 48/00

// C12N 15/70,15/79, 15/81,15/85, 1/19(C12N 1/21,C12R 1:19)G01N 33/68

- (71) Anmelder: metaGen Gesellschaft für Genomforschung mbH, 14195 Berlin, DE
- (4) Vertreter: Klose, W., Dipl.-Chem.Dr.rer.nat., Pat.-Ass., 13505 Berlin
- (72) Erfinder:

Specht, Thomas, Dipl.-Bio.-Chem. Dr., 12209 Berlin, DE; Hinzmann, Bernd, Dipl.-Chem. Dr., 13127 Berlin, DE; Schmitt, Armin, Dipl.-Phys. Dr., 14197 Berlin, DE; Pilarsky, Christian, Dipl.-Biol. Dr., 01474 Schönfeld-Weißig, DE; Dahl, Edgar, Dipl.-Biol. Dr., 14480 Potsdam, DE; Rosenthal, André, Prof. Dipl.-Chem. Dr., 10115 Berlin, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Menschliche Nukleinsäureseguenzen aus Prostatagewebe
- Es werden menschliche Nukleinsäuresequenzen mRNA, cDNA, genomische Sequenzen - aus normalem Prostatagewebe, die für Genprodukte oder Teile davon kodieren und deren Verwendung beschrieben. Es werden weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung beschrieben.

Beschreibung

Die Erfindung betrifft menschliche Nukleinsäuresequenzen-mRNA, cDNA, genomische Sequenzen- aus normalem Prostatagewebe, die für Genprodukte oder Teile davon kodieren und deren Verwendung.

Die Erfindung betrifft weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung.

Eine weit verbreitete Krebsart ist der Prostatakrebs, für dessen Bekämpfung neue Therapien notwendig sind. Bisher verwendete Therapien, die auf einer Blockierung von Hormonwirkungen beruhen, sind sehr häufig nach wenigen Jahren wirkungslos, da der Tumor hormonunabhängig wird, d. h. ohne Hormonwirkung weiterwächst und Metastasen bildet.

Das Phänomen Krebs geht häufig einher mit der Über- oder Unterexpression gewisser Gene in den entarteten Zellen, wobei noch unklar ist, ob diese veränderten Expressionsraten Ursache oder Folge der malignen Transformation sind. Die Identifikation solcher Gene wäre ein wesentlicher Schritt für die Entwicklung neuer Therapien gegen Krebs. Der spontanen Entstehung von Krebs geht häufig eine Vielzahl von Mutationen voraus. Diese können verschiedenste Auswirkungen auf das Expressionsmuster in dem betroffenen Gewebe haben, wie z. B. Unter- oder Überexpression, aber auch Expression verkürzter Gene. Mehrere solcher Veränderungen durch solche Mutationskaskaden können schließlich zu bösartigen Entartungen führen. Die Komplexität solcher Zusammenhänge erschwert die experimentelle Herangehensweise sehr

Für die Suche nach Kandidatengenen, d. h. Genen, die verglichen mit dem Tumorgewebe im normalen Gewebe stärker exprimiert werden, wird eine Datenbank verwendet, die aus sogenannten ESTs besteht.

ESTs (Expressed Sequence Tags) sind Sequenzen von cDNAs, d. h. revers transkribierten mRNAs, den Molekülen also, die die Expression von Genen widerspiegeln. Die EST-Sequenzen werden für normale und entartete Gewebe ermittelt. Solche Datenbanken werden von verschiedenen Betreibern z. T. kommerziell angeboten. Die ESTs der LifeSeq-Datenbank, die hier verwendet wird, sind in der Regel zwischen 150 und 350 Nukleotide lang. Sie repräsentieren ein für ein bestimmtes Gen unverkennbares Muster, obwohl dieses Gen normalerweise sehr viel länger ist (> 2000 Nukleotide). Durch Vergleich der Expressionsmuster von normalen und Tumorgewebe können ESTs identifiziert werden, die für die Tumorentstehung und -prolifertion wichtig sind (s. Fig. 1).

Es besteht jedoch folgendes Problem: Da durch unterschiedliche Konstruktionen der cDNA-Bibliotheken die gefundenen EST-Sequenzen zu unterschiedlichen Regionen eines unbekannten Gens gehören können, ergäbe sich in einem solchen Fall ein völlig falsches Verhältnis des Vorkommens dieser ESTs in dem jeweiligen Gewebe. Dieses würde erst bemerkt werden, wenn das vollständige Gen bekannt ist und somit die ESTs dem gleichen Gen zugeordnet werden können.

Es wurde nun gefunden, daß diese Fehlermöglichkeit verringert werden kann, wenn zuvor sämtliche ESTs aus dem jeweiligen Gewebstyp assembliert werden, bevor die Expressionsmuster miteinander verglichen werden. Es wurden also
überlappende ESTs ein und desselben Gens zu längeren Sequenzen zusammengefaßt (s. Fig. 1, Fig. 2a und Fig. 3).
Durch diese Verlängerung und damit Abdeckung eines wesentlich größeren Genbereichs in jeder der jeweiligen Banken
sollte der oben beschriebene Fehler weitgehenst vermieden werden. Da es hierzu keine bestehenden Softwareprodukte
gab, wurden Programme für das Assemblieren von genomischen Abschnitten verwendet, die abgewandelt eingesetzt und
durch eigene Programme ergänzt wurden. Ein Flowchart der Assemblierungsprozedur ist in Fig. 2b1-2b4 dargestellt.

Es konnten nun die Nukleinsäure-Sequenzen Seq. ID No 1 bis Seq. ID No. 64 gefunden werden, die als Kandidatengene bei Prostatakrebs eine Rolle spielen.

Von besonderem Interesse sind die Nukleinsäure-Sequenzen Seq. ID Nos. 3, 4, 6–8, 11, 15, 17–21, 23, 24, 26–33, 35, 36, 40–43, 45, 46, 50, 53 und 56–62.

Die Erfindung betrifft somit Nukleinsäure-Sequenzen, die ein Genprodukt oder ein Teil davon kodieren, umfassend

- a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe der Nukleinsäure-Sequenzen Seq. ID Nos. 3, 4, 6–8, 11, 15, 17–21, 23 24, 26–33, 35, 36, 40–43, 45, 46, 50, 53 und 56–62
- b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder

30

45

c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

Die Erfindung betrifft weiterhin eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq ID Nos. 3, 4, 6–8, 11, 15, 17–21, 23, 24, 26–33, 35, 36, 40–43, 45, 46, 50, 53 und 56–62 oder eine komplementäre oder allelische Variante davon und die Nukleinsäure-Sequenzen davon, die eine 90%ige bis 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweisen.

Die Erfindung betrifft auch die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 64, die im normalen Prostatagewebe erhöht exprimiert sind.

Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, umfassend einen Teil der oben genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen Seq. ID Nos. 3, 4, 6–8, 11, 15, 17–21, 23, 24, 26–33, 35, 36, 40–43, 45, 46, 50, 53 und 56–62 hybridisieren.

Die erfindungsgemäßen Nukleinsäure-Sequenzen weisen im allgemeinen eine Länge von mindestens 50 bis 2500 bp, vorzugsweise eine Länge von mindestens 150 bis 2000 bp, insbesondere eine Länge von 400 bis 1900 bp auf.

Mit den erfindungsgemäßen Teilsequenzen Seq. ID Nos. 3, 4, 6–8, 11, 15, 17–21, 23, 24, 26–33, 35, 36, 40–43, 45, 46, 50, 53 und 56–62 können gemäß gängiger Verfahrenspraxis auch Expressionskassetten konstruiert werden, wobei auf der Kassette mindestens eine der erfindungsgemäßen Nukleinsäure-Sequenzen zusammen mit mindestens einer dem Fachmann allgemein bekannten Kontroll- oder regulatorischen Sequenz, wie z. B. einem geeigneten Promotor, kombiniert wird. Die erfindungsgemäßen Sequenzen können in sense oder antisense Orientierung eingefügt sein.

In der Literatur sind ist eine große Anzahl von Expressionskassetten bzw. Vektoren und Promotoren bekannt, die verwendet werden können.

Unter Expressionskassetten bzw. Vektoren sind zu verstehen:

- 1. bakterielle, wie z. B., phagescript, pBs, \$\phi X174\$, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia),
- 2. eukaryontische, wie z. B. pWLneo, pSV2cat, pOG44, pXT1, pSG (Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia).

Unter Kontroll- oder regulatorischer Sequenz sind geeignete Promotoren zu verstehen. Hierbei sind zwei bevorzugte Vektoren der pKK232-8 und der PCM7 Vektor. Im einzelnen sind folgende Promotoren gemeint: lacI, lacZ, T3, T7, gpt, lambda P_R, trc, CMV, HSV Thymidin-Kinase, SV40, LTRs aus Retrovirus und Maus Metallothionein-I.

Die auf der Expressionskassette befindlichen DNA-Sequenzen können ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

Die Expressionskassetten sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die erfindungsgemäßen Nukleinsäure-Fragmente können zur Herstellung von Vollängen-Genen verwendet werden. Die erhältlichen Gene sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Nukleinsäure-Sequenzen, sowie die aus der Verwendung erhältlichen Gen-Fragmente.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können mit geeigneten Vektoren in Wirtszellen gebracht werden, in denen als heterologer Teil die auf den Nukleinsäure-Fragmenten enthaltene genetischen Information befindet, die exprimiert wird.

Die die Nukleinsäure-Fragmente enthaltenden Wirtszellen sind ebenfalls Gegenstand der vorliegenden Erfindung.

Geeignete Wirtszellen sind z. B. prokaryontische Zellsysteme wie E. coli oder eukaryontische Zellsysteme wie tierische oder humane Zellen oder Hefen.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können in sense oder antisense Form verwendet werden.

Die Herstellung der Polypeptide oder deren Fragment erfolgt durch Kultivierung der Wirtszellen gemäß gängiger Kultivierungsmethoden und anschließender Isolierung und Aufreinigung der Peptide bzw. Fragmente, ebenfalls mittels gängiger Verfahren. Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodieren.

Ferner betrifft die vorliegende Erfindung Polypeptid-Teilsequenzen, sogenannte ORF (open-reading-frame)-Peptide, gemäß den Sequenzprotokollen Seq. ID Nos. 67-70, 71, 73-81, 84-89, 93-109, 111-114, 116-137, 139-149, 153-164, 166-172, 181-182, 188-193 und 196-216.

Die Erfindung betrifft ferner die Polypeptid-Sequenzen, die mindestens eine 80%ige Homologie, insbesondere eine 90%ige Homologie zu den erfindungsgemäßen Polypeptid-Teilsequenzen der Seq. ID Nos. 67-70, 71, 73-81, 84-89, 93-109, 111-114, 116-137, 139-149, 153-164, 166-172, 181-182, 188-193 und 196-216 aufweisen.

Die Erfindung betrifft auch Antikörper, die gegen ein Polypeptid oder ein Fragment gerichtet sind, welche von den erfindungsgemäßen Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID 64 kodiert werden.

Unter Antikörper sind insbesondere monoklonale Antikörper zu verstehen.

Die erfindungsgemäßen Polypeptide der Sequenzen Seq. ID Nos. 65 bis Seq. ID No. 216 können auch als Tool zum Auffinden von Wirkstoffen gegen Prostatakrebs verwendet werden, was ebenfalls Gegenstand der vorliegenden Erfindung ist.

Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 64 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Prostata-Krebs verwendet werden können.

Die Erfindung betrifft auch die Verwendung der gefundenen Polypeptid-Teilsequenzen Seq. ID No. 65 bis Seq. ID No. 216 als Arzneimittel in der Gentherapie zur Behandlung des Prostata-Krebses, bzw. zur Herstellung eines Arzneimittels zur Behandlung des Prostata-Krebses.

Die Erfindung betrifft auch Arzneimittel, die mindestens eine Polypeptid-Teilsequenz Seq. ID No. 65 bis Seq. ID No. 216 enthalten.

Die gefundenen erfindungsgemäßen Nukleinsäure-Sequenzen können auch genomische oder mRNA-Sequenzen sein. Die Erfindung betrifft auch genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 64, sowie deren Verwendung zusammen mit geeigneten regulativen Elementen, wie geeigneten Promotoren und/oder Enhancern.

Mit den erfindungsgemäßen Nukleinsäuren (cDNA-Sequenzen) werden genomische BAC-, PAC- und Cosmid-Bibliotheken gescreent und über komplementäre Basenpaarung (Hybridisierung) spezifisch humane Klone isoliert. Die so isolierten BAC-, PAC- und Cosmid-Klone werden mit Hilfe der Fluoreszenz-in-situ-Hybridisation auf Metaphasenchromosomen hybridisiert und entsprechende Chromosomenabschnitte identifiziert, auf denen die entsprechenden genomischen Gene liegen. BAC-, PAC- und Cosmid-Klone werden sequenziert, um die entsprechenden genomischen Gene in ihrer vollständigen Struktur (Promotoren, Enhancer, Silencer, Exons und Introns) aufzuklären. BAC-, PAC- und Cosmid-Klone können als eigenständige Moleküle für den Gentransfer eingesetzt werden (s. Fig. 5).

Die Erfindung betrifft auch BAC-, PAC- und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 64, zur Verwendung als Vehikel zum Gentransfer.

Bedeutungen von Fachbegriffen und Abkürzungen

Nukleinsäuren = Unter Nukleinsäuren sind in der vorliegenden Erfindung zu verstehen: mRNA, partielle cDNA, vollängen cDNA und genomische Gene (Chromosomen).

ORF = Open Reading Frame, eine definierte Abfolge von Aminosäuren, die von der cDNA-Sequenz abgeleitet werden

Contig = Eine Menge von DNA-Sequenzen, die aufgrund sehr großer Ähnlichkeiten zu einer Sequenz zusammengefaßt

3

10

15

35

50

60

werden können (Consensus). Singleton = Ein Contig, der nur eine Sequenz enthält.

Erklärung zu den Alignmentparametern

minimal initial match = minimaler anfänglicher Identitätsbereich maximum pads per read = maximale Anzahl von Insertionen maximum percent mismatch = maximale Abweichung in %

10 Erklä

Erklärung der Abbildungen

Fig. 1 zeigt die systematische Gen-Suche in der Incyte LifeSeq Datenbank.

Fig. 2a zeigt das Prinzip der EST-Assemblierung

Fig. 2b1-2b4 zeigt das gesamte Prinzip der EST-Assemblierung

Fig. 3 zeigt die in silico Subtraktion der Genexpression in verschiedenen Geweben

Fig. 4a zeigt die Bestimmung der gewebsspezifischen Expression über elektronischen Northern.

Fig. 4b zeigt den elektronischen Northern

Fig. 5 zeigt die Isolierung von genomischen BAC- und PAC-Klonen.

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Nukleinsäure-Sequenzen, ohne die Erof findung auf diese Beispiele und Nukleinsäure-Sequenzen zu beschränken.

Beispiel 1

Suche nach Tumor-bezogenen Kandidatengenen

25

40

55

15

Zuerst wurden sämtliche ESTs des entsprechenden Gewebes aus der LifeSeq-Datenbank (vom Oktober 1997) extrahiert. Diese wurden dann mittels des Programms GAP4 des Staden-Pakets mit den Parametern 0% mismatch, 8 pads per read und einem minimalen match von 20 assembliert. Die nicht in die GAP4-Datenbank aufgenommenen Sequenzen (Fails) wurden erst bei 1% mismatch und dann nochmals bei 2% mismatch mit der Datenbank assembliert. Aus den Contigs der Datenbank, die aus mehr als einer Sequenz bestanden, wurden Consensussequenzen errechnet (s. Fig. 2a und 2b1-2b4).

Die Singletons der Datenbank, die nur aus einer Sequenz bestanden, wurden mit den nicht in die GAP4-Datenbank aufgenommenen Sequenzen bei 2% mismatch erneut assembliert. Wiederum wurden für die Contigs die Consensussequenzen ermittelt. Alle übrigen ESTs wurden bei 4% mismatch erneut assembliert. Die Consensussequenzen wurden abermals extrahiert und mit den vorherigen Consensussequenzen sowie den Singletons und den nicht in die Datenbank aufgenommenen Sequenzen abschließend bei 4% mismatch assembliert. Die Consensussequenzen wurden gebildet und mit den Singletons und Fails als Ausgangsbasis für die Gewebsvergleiche verwendet. Durch diese Prozedur konnte sichergestellt werden, daß unter den verwendeten Parametern sämtliche Sequenzen von einander unabhängige Genbereiche darstellten.

Fig. 2b1-2b4 veranschaulicht die Verlängerung der normal Prostata-Gewebe ESTs.

Die so assemblierten Sequenzen der jeweiligen Gewebe wurden anschließend mittels des gleichen Programms miteinander verglichen (s. Fig. 3). Hierzu wurden erst alle Sequenzen des ersten Gewebes in die Datenbank eingegeben. (Daher war es wichtig, daß diese voneinander unabhängig waren).

Dann wurden alle Sequenzen des zweiten Gewebes mit allen des ersten verglichen. Das Ergebnis waren Sequenzen, die für das erste bzw. das zweite Gewebe spezifisch waren, sowie welche, die in beiden vorkamen. Bei Letzteren wurde das Verhältnis der Häufigkeit des Vorkommens in den jeweiligen Geweben ausgewertet.

Alle Sequenzen, die mehr als viermal in jeweils einem der verglichenen Gewebe vorkamen, sowie alle, die mindestens fünfmal so häufig in einem der beiden Gewebe vorkamen wurden weiter untersucht. Diese Sequenzen wurden einem elektronischen Northern (s. Beispiel 2.1) unterzogen, wodurch die Verteilung in sämtlichen Tumor- und Normal-Geweben untersucht wurde (s. Fig. 4a und Fig. 4b). Die relevanten Kandidaten wurden dann mit Hilfe sämtlicher Incyte ESTs und allen ESTs öffentlicher Datenbanken verlängert (s. Beispiel 3). Anschließend wurden die Sequenzen und ihre Übersetzung in mögliche Proteine mit allen Nukleotid- und Proteindatenbanken verglichen, sowie auf mögliche, für Proteine kodierende Regionen untersucht.

Beispiel 2

Algorithmus zur Identifikation und Verlängerung von partiellen CDNA-Sequenzen mit verändertem Expressionsmuster

Im folgenden soll ein Algorithmus zur Auffindung über- oder unterexprimierter Gene erläutert werden. Die einzelnen Schritte sind der besseren Übersicht halber auch in einem Flußdiagramm zusammengefaßt (s. Fig. 4b).

2.1 Elektronischer Northern-Blot

Zu einer partiellen DNA-Sequenz S, z. B. einem einzelnen EST oder einem Contig von ESTs, werden mittels eines Standardprogramms zur Homolgiesuche, z. B. BLAST (Altschul, S. F., Gish W., Miller, W., Myers, E. W. und Lipman, D. J. (1990) J. Mol. 8101., 215, 403-410), BLAST2 (Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. und Lipman, D. J. (1997) Nucleic Acids Research 25, 3389-3402) oder FASTA (Pearson, W. R. und Lipman, D. J. (1988) Proc. Natl. Acad. Sci. USA 85 2444-2448), die homologen Sequenzen in verschiedenen nach Geweben ge-

ordneten (privaten oder öffentlichen) EST-Bibliotheken bestimmt. Die dadurch ermittelten (relativen oder absoluten) Gewebe-spezifischen Vorkommenshäufigkeiten dieser Partial-Sequenz S werden als elektronischer Northern-Blot bezeichnet.

2.1.1 5

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 10 gefunden, die 4× stärker im normalen Prostatagewebe als im Tumorgewebe vorkommt.

Die mögliche Funktion dieses Genbereiches betrifft humanes MVF-1.

Das Ergebnis ist wie folgt:

Elektronischer Northern-Blot für SEQ. ID. NO: 10

	NODERT	TUMOD	Verhaeltnisse		
9.000	NORMAL	TUMOR Haeufigkeit		T/N	
ande	ufigkeit .	snaedrigkere	14/ 1	-/	15
Blace	0.0000	0.0026	0.0000	undef	
	0.0040	0.0022	1.8347	0.5450	
Eierstock		0.0052	1.1686	0.8557	
Endokrines Gewebe		0.0000	undef	0.0000	
Gastrointestinal	0.0039	0.0000	undef	0.0000	20
	0.0017	0.0088	0.1935	5.1673	
Haematopoetisch		0.0000	undef	0:0000	
	0.0000	0.0000	undef	undef	
Hepatisch		0.0065	0.0000	undef	
	0.0021	0.0000	undef	0.0000	25
Hoden	0.0000	0.0000	undef	undef	
	0.0050	0.0024	2.1069	0.4746	
Magen-Speiseroehre	0.0000	0.0000	undef	undef	
Muskel-Skelett	0.0051	0.0000	undef	0.0000	
	0.0030	0.0068	0.4342	2.3033	30
Pankreas		0.0000	undef	0.0000	50
	0.0030	0.0000	undef	0.0000	
Prostata		0.0021	4.4745	0.2235	
	0.0017	0.0071	0.2321	4.3088	
Brust-Hyperplasie		******			
Duenndarm	0.0000				35
Prostata-Hyperplasie					
Samenblase	0.0000				
Sinnesorgane					
Weisse Blutkoerperchen	0.0026				
#61556_ 5246 641pe1eness	******				40
	FOETUS				
	%Haeufigkeit				
Entwicklung	0.0000				45
Gastrointenstinal	0.0000				
Gehirn					
Gehirn Haematopoetisch	0.0000	,			
Gehirn Haematopoetisch Herz-Blutgefaesse	0.0000 0.0041				
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0041 0.0111				50
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0041 0.0111 0.0124				50
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0041 0.0111 C.0124 0.0000				50
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0000 0.0041 0.0111 C.0124 0.0000				50
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0041 0.0111 C.0124 0.0000				50
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0041 0.0111 0.0124 0.0000 0.0000				
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0041 0.0111 0.0124 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN		50
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0041 0.0111 0.0124 0.0000 0.0000 NORMIERTE/SUB %Haeufigkeit	STRAHIERTE BIE	BLIOTHEKEN		
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0041 0.0111 0.0124 0.0000 0.0000 NORMIERTE/SUR %Haeufigkeit 0.0000	STRAHIERTE BIE	BLIOTHEKEN		
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN		
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUR %Haeufigkeit 0.0000 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN		
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUR %Haeufigkeit 0.0000 0.0000 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0082 0.0244 0.0114	STRAHIERTE BIE	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0082 0.0244 0.0114	STRAHIERTE BIE	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0082 0.0244 0.0114 0.0000 0.0000	STRAHIERTE BIF	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0082 0.0244 0.0114 0.0000 0.0000 0.0000	STRAHIERTE BIF	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0082 0.0244 0.0114 0.0000 0.0000 0.0000 0.0000 0.0000	BTRAHIERTE BIF	BLIOTHEKEN		55
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0041 0.0111 C.0124 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.0082 0.0244 0.0114 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	BTRAHIERTE BIF	BLIOTHEKEN		55

2.1.2

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 18 gefunden, die 6× stärker im normalen Prostatagewebe als im Tumorgewebe vorkommt.

Das Ergebnis ist wie folgt:

65

Elektronischer Northern-Blot für SEQ. ID. NO: 18

				•	
10	NORMAI %Haeuí	: figkeit	TUMOR %Haeufigkeit		eltnisse T/N
15	Brust Eierstock . Endokrines_Gewebe Gastrointestinal	0.0018 0.0116	0.0026 0.0022 0.0026 0.0000 0.0000	10.9109 1.8347 0.0000 undef undef	0.0917 0.5450 undef 0.0000 0.0000
20	Haematopoetisch Haut Hepatisch Herz	0.0000 0.0000 0.0021	0.0033 0.0000 0.0000 0.0065 0.0000	1.2902 undef undef 0.0000 undef	0.7751 0.0000 undef undef 0.0000
25	Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0034 0.0089	0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef	undef 0.0000 undef 0.0000 0.0000
	Pankreas Penis Prostata Uterus Brust-Hyperplasie	0.0060 0.0119 0.0033	0.0055 0.0000 0.0021 0.0071	0.3428 undef 5.5932 0.4642	2.9168 0.0000 0.1788 2.1544
30	Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0030 0.0000 0.0000			
35	Weisse_Blutkoerperchen	FOETUS			٠
40	Entwicklung Gastrointenstinal Gehirn	0.0000 0.0000			·
45	Haematopoetisch Herz-Blutgefaesse Lunge · Niere Prostata Sinnesorgane	0.0000 0.0000 0.0124 0.0000			
50		NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	Liotheken	
55	Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0000 0.0012 0.0000 0.0000			
60	Haut-Muskel Hoden Lunge Nerven Prostata Sinnesorgane	0.0000 . 0.0082 0.0020 0.0192			

2.1.3

normalen Prostatagewebe als im Tumorgewebe vorkommt.

Die mögliche Funktion dieses Genbereichs betrifft das Gegenstück eines unbekannten Gens Hefe Chromosom XVI. Das Ergebnis ist wie folgt:

	Elektronischer No	rthern-Blot für SE	Q. ID. NO: 24		5
	NORMAL %Haeufigkeit	TUMOR. %Haeufigkeit	Verhaeltnisse N/T	e T/N	
. Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0146 0.0233	0.0153 0.0131 0.0208 0.0191 0.0143	0.0000 0.9174 0.4382 0.7655 1.6285	undef 1.0901 2.2819 1.3064 0.6141	10
Haematopoetisch Haut Hepatisch Herz	0.0149 0.0000 0.0095	0.0077 0.0000 0.0847 0.0518 0.0275	0.4423 undef 0.1762 0.0000 0.3468	2.2607 0.0000 5.6754 undef 2.8832	15
Lunge Magen-Speiseroehre Muskel-Skelett	0.0051 0.0059	0.0234 0.0165 0.0153 0.0180 0.0000 0.0221	0.2612 0.6020 0.6300 0.2855 undef 0.1714	3.8288 1.6612 1.5874 3.5025 0.0000 5.8337	20
Penis Prostata Uterus Brust-Hyperplasie Duenndarm	0.0000 0.0214 0.0116 0.0182 0.0093	0.0267 0.0043 0.0142	0.0000	undef 0.1987 1.2311	25
Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0089 0.0000				30
	FOETUS %Haeufigkeit				35
Niere	0.0123 0.0125 0.0118 0.0082 0.0000 0.0062	·			40
Prostata Sinnesorgane					45
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN		
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0245 0.0041				50
Lunge	0.0057 0.0032 0.0000 0.0000				55
Nerven Prostata		2.1.4			60

2.1.4

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 30 gefunden, die 4× stärker im normalen Prostatagewebe als im Tumorgewebe vorkommt.

65

Die mögliche Funktion dieses Genbereichs betrifft das Gegenstück eines Gens von thaliana von Caenorhabdites elegans.

Das Ergebnis ist wie folgt:

Elektronischer Northern-Blot für SEQ. ID. NO: 30

	•	NODMAT	TIMOD.	Verhaeltniss	_
		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit		T/N
5	Blase	0.0000.	0.0051	0.0000	undef
		0.0040	0.0022	1.8347	0.5450
	Eierstock	0.0152	0.0026	5.8431	0.1711
	Endokrines Gewebe	0.0000	0.0054	0.0000	undef
	Gastrointestinal	0.0019	0.0000	undef	0.0000
10		0.0025	0.0044	0.5806	1.7224
	Haematopoetisch		0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
	Hepatisch		0.0000	undef	undef
		0.0000 0.0000	0.0000	undef	undef
15		0.0025	0.0000 0.0024	undef 1.0534	undef 0.9493
	Magen-Speiseroehre		0.0024	undef	undef
	Muskel-Skelett		0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
	Pankreas		0.0000	undef	undef
20	Penis	0.0000	0.0000	undef	undef
	Prostata		0.0021	4.4745	0.2235
		0.0017	0.0000	undef	0.0000
	Brust-Hyperplasie				
25	Duenndarm				
25	Prostata-Hyperplasie Samenblase				
	Sinnesorgane				
	Weisse_Blutkoerperchen				
		0.0003			
30					
		FOETUS	•		
		%Haeufigkeit			
	Entwicklung	0.0000			
	Gastrointenstinal				
35	Gehirn				
	Haematopoetisch	0.0039			
	Herz-Blutgefaesse				
		0.0000			
		0.0000			
40	Prostata				
	Sinnesorgane	0.0000			
		NORMIERTE/SUE	TRAHIERTE BIE	LIOTHEKEN	
45		%Haeufigkeit			
73					
		0.0068			
	Eierstock-Uterus				
	Endokrines_Gewebe				
50	Foetal		•		
	Gastrointestinal				
	Haematopoetisch Haut-Muskel				
		0.0000			
		0.0000			
55	Nerven				
	Prostata				
	Sinnesorgane	0.0000			
			•		
60			2.1.5		

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 43 gefunden, die 6× stärker im normalen Prostatagewebe als im Tumorgewebe vorkommt.

Das Ergebnis ist wie folgt:

Elektronischer Northern-Blot für SEQ. ID. NO: 43

%Haeu:	NORMAL figkeit		TUMOR gkeit		Verhaeltni N/T	sse ·T/N	
	0.0000 0.0120		0.0000 0.0044		undef 2.7521	undef 0.3634	5
Eierstock			0.0026		0.0000	undef	
Endokrines_Gewebe			0.0027		0.6698	1.4930	
Gastrointestinal			0.0048		1.2214	0.8187	10
	0.0051		.0000		undef	0.0000	10
Haematopoetisch			0.0000		undef	undef	
	0.0000		0.0000		undef	undef	
Hepatisch	0.0000		0.0000 0.0000		undef undef	undef 0.0000	
	0.0032		0.0000		under undef	0.0000	· 15
	0.0012		0.0024		0.5267	1.8986	. 15
Magen-Speiseroehre			0.0000		undef	undef	
Muskel-Skelett			.0060		0.0000	undef	
	0.0059		.0068		0.8683	1.1517	
Pankreas			.0000		undef	undef	. 20
	0.0030		.0000		undef	0.0000	20
Prostata		0	.0021		5.5932	0.1788	
Uterus	0.0050	0	.0000		undef	0.0000	
Brust-Hyperplasie							
Duenndarm							0.7
Prostata-Hyperplasie			•				25
Samenblase							
Sinnesorgane							
Weisse_Blutkoerperchen	0.0035					•	
							20
	FOETUS					٠.	30
	%Haeufi	gkeit					
Entwicklung							
Gastrointenstinal							25
Gehirn							35
Haematopoetisch Herz-Blutgefaesse							
Lunge	0.0037						
	0.0062	•					
Prostata							40
Sinnesorgane							40
					•		
			RAHIERTE	BIB	LIOTHEKEN		
	%Haeufi	gkeit					45
	0.0000						43
	0.0000						
Eierstock-Uterus							
Endokrines_Gewebe Foetal							
Gastrointestinal							50
Haematopoetisch							30
Haut-Muskel							
	0.0078						
Lunge	0.0000						
Nerven							55
Prostata							33
Sinnesorgane	0.0000						
							•
			2.1.5				60
			٠.١.٠				30

Analog der unter 2.1 beschriebenen Verfahrensweise wurde die Sequenz Seq. ID No. 59 gefunden, die 5× stärker im normalen Prostatagewebe als im Tumorgewebe vorkommt.

Das Ergebnis ist wie folgt:

Elektronischer Northern-Blot für SEQ. ID. NO: 59

NORMAI. TUMOD Worked bri

	•-	\$Unoufighoit	9.tto and i also i b	37 /m	m />r
_		*naeurigkeit	%Haeufigkeit	N/T	T/N .
5	Blase	0.0093	0.0051	1.8185	0.5499
	Brust	0.0067	0.0022	3.0579	0.3270
	Eierstock		0.0052	0.0000	undef
	Endokrines_Gewebe		0.0027	3.3489	0.2986
10	Gastrointestinal		0.0000	undef	0.0000
10	Haematopoetisch	0.0068	0.0088	0.7741	1.2918
		0.0000	0.0000	undef undef	undef
	Hepatisch		0.0000	undef	0.0000
		0.0053	0.0000	undef	0.0000
15	. Hoden	0.0183	0.0117	1.5671	0.6381
		0.0062	0.0000	undef	0.0000
	Magen-Speiseroehre		0.0000	undef	0.0000
	Muskel-Skelett	0.0000	0.0180	0.8565	1.1675
	Pankreas		0.0000 0.0166	undef 0.3428	undef 2.9168
20		0.0030	0.0000	undef	0.0000
	Prostata	0.0333	0.0064	5.2203	0.1916
		0.0132	0.0000	undef	0.0000
	Brust-Hyperplasie				
25	Duenndarm				
25	Prostata-Hyperplasie Samenblase	A. Contract of the Contract of			
	Sinnesorgane				
	Weisse_Blutkoerperchen				
				•	
30					
		FOETUS			
		%Haeufigkeit			
	Entwicklung	0.0000			
	Gastrointenstinal				•
35	Gehirn				
•	Haematopoetisch	0.0000			
	Herz-Blutgefaesse				
		0.0148			
40		0.0062			
40	Prostata Sinnesorgane				
	Simesorgane	0.0000			
		NORMIERTE/SUB	TRAHIERTE BIB	LIOTHEKEN	
45		%Haeufigkeit			
	Brust				
	Eierstock-Uterus Endokrines Gewebe				
	Foetal				
50		0.0002			
	Gastrointestinal	0.0244			
	Haematopoetisch				
	Haut-Muskel				
	Hoden				
55	Lunge Nerven				
	nerven Prostata				
	Sinnesorgane				
				_	

In analoger Verfahrensweise wurden auch folgende Northerns gefunden:

65

Elektronischer Northern-Blot für SEQ. ID No.: 1

· Brust Eierstock	0.0046 0.0067 0.0122	TUMOR %Haeufigkeit 0.0204 0.0240 0.0208 0.0000	Verhaeltnisse N/T T/N 0.2273 4.3993 0.2780 3.5972 0.5843 1.7114 undef undef		5
Hepatisch	0.0950 0.0008 0.0042 0.0249	0.0381 0.0011 0.0000 0.0000 0.0129 0.0000	2.4937 0.4010 0.7741 1.2918 undef 0.0000 undef 0.0000 0.0000 undef undef undef		10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0137 0.0000	0.0117 0.0118 0.0000 0.0000	0.0000 undef 1.1588 0.8630 undef undef undef undef undef undef	1	15
Pankreas Penis Prostata Uterus	0.0038 0.0000 0.0453 0.0033	0.0055 0.0267 0.0170 0.0000	0.6857 1.4584 0.0000 undef 2.6568 0.3764 undef 0.0000	2	2 0
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0405 0.0416 0.0000 0.0353				25
Weisse_Blutkoerperchen Entwicklung	FOETUS %Haeufigkeit 0.0000			2	30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0031 0.0000 0.0000			3	35
Prostata Sinnesorgane	0.0000			4	40
	%Haeufigkeit	BTRAHIERTE BII	BLIOTHEKEN		
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000			2	45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0000 0.0000 0.0000 0.0000				50
Prostata Sinnesorgane				•	55

65

Elektronischer Northern-Blot für SEQ. ID No.: 2

```
NORMAL
                                           TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                       Blase 0.0418
                                          0.0383
                                                        1.0911 0.9165
 5
                      Brust 0.0267
                                          0.0218
                                                        1.2232 0.8176
                  Eierstock 0.0122
                                          0.0052
                                                       2.3372 0.4279
          Endokrines_Gewebe 0.0055
                                          0.0109
                                                       0.5023 1.9907
           Gastrointestinal 0.0136
                                          0.0048
                                                       2.8499 0.3509
                     Gehirn 0.0093
                                          0.0142
                                                       0.6550 1.5267
10
            Haematopoetisch 0.0224
                                          0.0000
                                                       undef 0.0000
                       Haut 0.0099
                                          0.0847
                                                       0.1175 8.5131
                  Hepatisch 0.0000
                                          0.0129
                                                       0.0000 undef
                       Herz 0.0180
                                          0.0000
                                                       undef 0.0000
                      Hoden 0.0061
                                          0.0234
                                                       0.2612 3.8288
                      Lunge 0.0137
                                          0.0071
                                                       1.9313 0.5178
15
         Magen-Speiseroehre 0.0193
                                          0.0230
                                                       0.8399 1.1905
             Muskel-Skelett 0.0103
                                          0.0060
                                                       1.7130 0.5838
                      Niere 0.0089
                                          0.0000
                                                       undef 0.0000
                   Pankreas 0.0076
                                          0.0110
                                                       0.6857 1.4584
                      Penis 0.0269
                                          0.0000
                                                       undef 0.0000
20
                   Prostata 0.0143
                                          0.0021
                                                       6.7118 0.1490
                     Uterus 0.0463
                                          0.0356
                                                       1.2997 0.7694
          Brust-Hyperplasie 0.0109
                  Duenndarm 0.0312
      Prostata-Hyperplasie 0.0238
25
                 Samenblase 0.0267
               Sinnesorgane 0.0353
    Weisse_Blutkoerperchen 0.0174
                            FOETUS
30
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0123
                    Gehirn 0.0125
           Haematopoetisch 0.0039
35
         Herz-Blutgefaesse 0.0041
                     Lunge 0.0370
                     Niere 0.0124
                  Prostata 0.0748
              Sinnesorgane 0.0000
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                     Brust 0.1156
          Eierstock-Uterus 0.0525
45
         Endokrines_Gewebe 0.0245
                    Foetal 0.0082
          Gastrointestinal 0.0366
           Haematopoetisch 0.0000
               Haut-Muskel 0.0194
50
                     Hoden 0.0000
                     Lunge 0.0082
                    Nerven 0.0151
                  Prostata 0.0385
              Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 3

0.0000 0.0093 0.0000	0:0000 0.0022 0.0000	undef undef 4.2811 0.2336 undef undef		5
0.0039 0.0068 0.0028 0.0050 0.0099	0.0027 0.0000 0.0077 0.0000 0.0000 0.0065	undef 0.0000 0.8847 1.1303 undef 0.0000 undef 0.0000 1.5303 0.6535		10 .
0.0050 0.0000 0.0051	0.0000 0.0000 0.0000 0.0000 0.0137	undef 0.0000 undef 0.0000 undef undef undef 0.0000 0.2171 4.6066		15
0.0120 0.0095 0.0017	0.0000 0.0000 0.0043 0.0000	undef 0.0000 undef 0.0000 2.2373 0.4470 undef 0.0000		20
0.0000 0.0059 0.0000 0.0000	٠			25
FOETUS %Haeufigkeit 0.0154				30
0.0000 0.0000 0.0082 0.0000 0.0062				35
0.0000				40
%Haeufigkeit 0.0136 0.0068 0.0245	BTRÆHIERTE BII	BLIOTHEREN		45
0.0000 0.0000 0.0162 0.0156				50
0.0030 0.0192				55
	*Haeufigkeit 0.0000 0.0093 0.0000 0.0109 0.0039 0.0068 0.0050 0.0050 0.0050 0.0051 0.0050 0.0019 0.0120 0.0051 0.0036 0.0019 0.0120 0.0017 FOETUS *Haeufigkeit 0.0154 0.0000 0.0017 FOETUS *Haeufigkeit 0.0154 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	*Haeufigkeit	#Haeufigkeit #Haeufigkeit N/T T/N 0.0000 0.0000 undef undef 0.0093 0.0022 4.2811 0.2336 0.0000 0.0000 undef undef 0.0109 0.0027 4.0187 0.2488 0.0039 0.0000 undef 0.0000 0.0068 0.0077 0.8847 1.1303 0.0028 0.0000 undef 0.0000 0.0050 0.0000 undef 0.0000 0.0050 0.0000 undef 0.0000 0.0099 0.0065 1.5303 0.5535 0.0064 0.0000 undef 0.0000 0.0061 0.0000 undef 0.0000 0.0050 0.0000 undef 0.0000 0.0050 0.0000 undef 0.0000 0.0050 0.0000 undef 0.0000 0.0051 0.0000 undef 0.0000 0.0030 0.0137 0.2171 4.6066 0.0019 0.0000 undef 0.0000 0.0120 0.0000 undef 0.0000 0.0017 0.0000 undef 0.0000 0.0036 0.0037 0.2171 4.6066 0.0017 0.0000 undef 0.0000 0.0059 0.0043 2.2373 0.4470 0.0017 0.0000 0.0059 0.0000	## ## ## ## ## ## ## ## ## ## ## ## ##

13

60

Elektronischer Northern-Blot für SEQ. ID No.: 4

```
TUMOR
                                                        Verhaeltnisse
                             NORMAL
                             %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                      Blase 0.0093
                                                        1.8185 0.5499
                                          0.0051
 5
                      Brust 0.0053
                                          0.0022
                                                        2.4463 0.4088
                                                        1.1686 0.8557
                  Eierstock 0.0030
                                          0.0026
         Endokrines Gewebe 0.0055
                                          0.0000
                                                        undef 0.0000
                                                        undef 0.0000
           Gastrointestinal 0.0019
                                          0.0000
                     Gehirn 0.0008
                                                        0.1548 6.4591
                                          0.0055
                                                        undef undef undef 0.0000
10
            Haematopoetisch 0.0000
                                          0.0000
                       Haut 0.0050
                                          0.0000
                                                        0.0000 undef
                                          0.0065
                  Hepatisch 0.0000
                                          0.0000
                                                        undef 0.0000
                       Herz 0.0053
                                                        undef undef
                      Hoden 0.0000
                                          0.0000
                                          0.0000
                                                        undef 0.0000
                      Lunge 0.0050
15
                                                        undef undef undef 0.0000
                                          0.0000
        Magen-Speiseroehre 0.0000
             Muskel-Skelett 0.0051
                                          0.0000
                                                        undef 0.0000
                      Niere 0.0089
                                          0.0000
                   Pankreas 0.0038
                                          0.0055
                                                        0.6857 1.4584
                                          0.0000
                                                        undef undef
                      Penis 0.0000
20
                   Prostata 0.0048
                                          0.0021
                                                        2.2373 0.4470
                                                        undef 0.0000
                                          0.0000
                     Uterus 0.0116
         Brust-Hyperplasie 0.0000
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0178
25
                 Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0000
                             FOETUS
30
                             %Haeufigkeit
                Entwicklung 0.0000
         Gastrointenstinal 0.0000
                     Gehirn 0.0000
            Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0000
                      Niere 0.0062
                   Prostata 0.0000
               Sinnesorgane 0.0279
40
                             NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                             %Haeufigkeit
                      Brust 0.0000
          Eierstock-Uterus 0.0137
45
         Endokrines Gewebe 0.0000
                     Foetal 0.0134
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
                Haut-Muskel 0.0518
50
                      Hoden 0.0000
                      Lunge 0.0000
                     Nerven 0.0060
                   Prostata 0.0128
               Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 5

	0.0000 0.0027 0.0061	TUMCR %Haeufigkeit 0.0077 0.0065 0.0000 0.0027	Verhaeltnisse N/T T/N 0.0000 undef 0.4077 2.4527 undef 0.0000 0.6698 1.4930	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0000 0.0042 0.0056 0.0099	0.0000 0.0055 0.0000 0.0000 0.0000	undef undef 0.7741 1.2918 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000	10
Lunge Magen-Speiseroehre Muskel-Skelett		0.0117 0.0047 0.0000 0.0060 0.0000	0.0000 undef 0.5267 1.8986 undef undef 0.2855 3.5025 undef 0.0000	15
Pankreas Penis Prostata Uterus Brust-Hyperplasie	0.0030 0.0095 0.0099	0.0000 0.0000 0.0021 0.0000	undef 0.0000 undef 0.0000 4.4745 0.2235 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0093 0.0000 0.0089 0.0118			25
Entwicklung	FOETUS %Haeufigkeit 0.0000			30
	0.0188 0.0000			35
Prostata Sinnesorgane	0.0499 0.0000		A LORUCKEN	40
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0029	TRANIERTE BIE	BIOTHEREN	45
	0.0000 0.0065 0.0000 0.0082			50
Nerven Prostata Sinnesorgane	0.0128			55

60

Elektronischer Northern-Blot für SEQ. ID No.: 6

```
Verhaeltnisse
                                          TUMOR
                            NORMAL
                             %Haeufigkeit %Haeufigkeit N/T T/N
                                                       1.8185 0.5499
                      Blase 0.0046
                                          0.0026
 5
                                                       2.4463 0.4088
                      Brust 0.0053
                                          0.0022
                                                       1.1686 0.8557
                                          0.0026
                  Eierstock 0.0030
                                                       0.5023 1.9907
          Endokrines_Gewebe 0.0055
                                          0.0109
                                                       2.8499 0.3509
           Gastrointestinal 0.0136
                                          0.0048
                                                       1.0321 0.9689
                                          0.0066
                     Gehirn 0.0068
10
                                                       undef 0.0000
                                          0.0000
            Haematopoetisch 0.0098
                       Haut 0.0000
                                                       undef undef
                                          0.0000
                                                       0.3826 2.6139
                  Hepatisch 0.0050
                                          0.0129
                                          0.0000
                                                       undef 0.0000
                       Herz 0.0074
                      Hoden 0.0061
                                          0.0117
                                                       0.5224 1.9144
                                                       4.2137 0.2373
15
                      Lunge 0.0100
                                          0.0024
                                          0.0000
                                                       undef undef
        Magen-Speiseroehre 0.0000
                                                       undef 0.0000
            Muskel-Skelett 0.0051
                                          0.0000
                                          0.0068
                                                       0.8683 1.1517
                      Niere 0.0059
                                                       3,0855 0.3241
                   Pankreas 0.0170
                                          0.0055
                                                       undef 0.0000
                      Penis 0.0030
                                          0.0000
20
                                                       4.4745 0.2235
                   Prostata 0.0095
                                          0.0021
                     Uterus 0.0017
                                                       0.1160 8.6176
                                          0.0142
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0062
      Prostata-Hyperplasie 0.0000
25
                 Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse_Blutkoerperchen 0.0096
30
                             FOETUS
                             %Haeufigkeit
                Entwicklung 0.0000
          Gastrointenstinal 0.0000
                     Gehirn 0.0125
            Haematopoetisch 0.0079
35
          Herz-Blutgefaesse 0.0123
                      Lunge 0.0037
                      Niere 0.0062
                   Prostata 0.0000
               Sinnesorgane 0.0000
40
                             NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                             %Haeufigkeit
                      Brust 0.0204
45
           Eierstock-Uterus 0.0205
          Endokrines_Gewebe 0.0000
                     Foetal 0.0052
           Gastrointestinal 0.0000
           Haematopoetisch 0.0057
                Haut-Muskel 0.0130
50
                      Hoden 0.0234
                      Lunge 0.0000
                     Nerven 0.0070
                   Prostata 0.0128
               Sinnesorgane 0.0000
55
```

65

Elektronischer Northern-Blot für SEQ. ID No.: 7

Brust Eierstock	0.0093 0.0107 0.0030	TUMOR %Haeufigkeit 0.0077 0.0131 0.0078 0.0000	Verhaeltnisse N/T T/N 1.2123 0.8249 0.8154 1.2263 0.3895 2.5671 undef 0.0000	5
Hepatisch	0.0097 0.0170 0.0098 0.0298	0.0143 0.0088 0.0378 0.0000 0.0194 0.0137	0.6786 1.4737 1.9353 0.5167 0.2587 3.8650 undef 0.0000 0.0000 undef 1.1561 0.8650	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0061 0.0112. 0.0000	0.0000 0.0142 0.0153 0.0060 0.0068	undef 0.0000 0.7901 1.2657 0.0000 undef 0.8565 1.1675 2.6050 0.3839	15
Pankreas	0.0038 0.0120 0.0095 0.0099	0.0387 0.0000 0.0021 0.0000	0.0980 10.2089 undef 0.0000 4.4745 0.2235 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0125 0.0119 0.0356 0.0000			25
Entwicklung Gastrointenstinal	FOETUS %Haeufigkeit 0.0000			30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere	0.0188 0.0039 0.0000 0.0148 0.0185			35
Prostata Sinnesorgane		• .	•	40
n	NORMIERTE/SUE %Haeufigkeit	STRAHIERTE BIE	BLIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0023 0.0244			45
Lunge Nerven	0.0162 0.0078 0.0492 0.0161			50
Prostata Sinnesorgane				55

.

65

Elektronischer Northern-Blot für SEQ. ID No.: 8

```
TUMOR
                                                         Verhaeltnisse
                              NORMAL
                              %Haeufigkeit %Haeufigkeit N/T T/N
                                                         undef undef
                        Blase 0.0000
                                           0.0000
  5
                                                         1.1008 0.9084
                        Brust 0.0120
                                           0.0109
                    Eierstock 0.0061
                                           0.0052
                                                         1.1686 0.8557
                                                         1.0716 0.9331
           Endokrines Gewebe 0.0146
                                           0.0136
            Gastrointestinal 0.0155
                                                         1.0857 0.9211
                                           0.0143
                                           0.0142
                                                         0.9527 1.0496
                      Gehirn 0.0136
  10
                                                         undef 0.0000
                                           0.0000
             Haematopoetisch 0.0042
                                                         undef 0.0000
                         Haut 0.0149
                                           0.0000
                   Hepatisch 0.0050
                                           0.0065
                                                         0.7651 1.3069
                                                         undef 0.0000
                        Herz 0.0170
                                           0.0000
                                                         0.0000 undef
                                           0.0117
                        Hoden 0.0000
                       Lunge 0.0112
                                           0.0095
                                                         1.1851 0.8438
. 15
                                                         undef undef
          Magen-Speiseroehre 0.0000
                                           0.0000
              Muskel-Skelett 0.0051
                                           0.0060
                                                         0.8565 1.1675
                        Niere 0.0119
                                           0.0068
                                                         1.7366 0.5758
                    Pankreas 0.0038
                                                         undef 0.0000
                                           0.0000
                        Penis 0.0120
                                                        undef 0.0000
                                           0.0000
 20
                    Prostata 0.0143
                                           0.0064
                                                         2.2373 0.4470
                      Uterus 0.0033
                                           0.0000
                                                         undef 0.0000
           Brust-Hyperplasie 0.0036
                   Duenndarm 0.0000
        Prostata-Hyperplasie 0.0030
 25
                  Samenblase 0.0089
                Sinnesorgane 0.0000
      Weisse Blutkoerperchen 0.0113
 30
                              FOETUS
                              %Haeufigkeit
                 Entwicklung 0.0000
           Gastrointenstinal 0.0123
                      Gehirn 0.0063
             Haematopoetisch 0.0000
 35
           Herz-Blutgefaesse 0.0164
                       Lunge 0.0037
                       Niere 0.0185
                    Prostata 0.0000
                Sinnesorgane 0.0000
 40
                              NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                              %Haeufigkeit
                       Brust 0.0068
            Eierstock-Uterus 0.0046
 45
           Endokrines Gewebe 0.0000
                      Foetal 0.0070
            Gastrointestinal 0.0122
             Haematopoetisch 0.0114
                 Haut-Muskel 0.0291
 50
                       Hoden 0.0156
                       Lunge 0.0082
                      Nerven 0.0191
                    Prostata 0.0064
                Sinnesorgane 0.0155
 55
```

Elektronischer Northern-Blot für SEQ. ID No.: 9

Brust Eierstock	0.0232 0.0187 0.0122	TUMOR %Haeufigkeit 0.0026 0.0027 0.0156 0.0136	Verhaeltnisse N/T T/N 9.0924 0.1100 2.1405 0.4672 0.7791 1.2836 1.6075 0.6221	5
Hepatisch	0.0116 0.0119 0.0126 0.0199	0.0130 0.0190 0.0142 0.0000 0.0000 0.0000	0.6107 1.6375 0.8337 1.1995 undef 0.0000 undef 0.0000 undef 0:0000 1.1561 0.8650	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0122 0.0187 0.0097 0.0103	0.0351 0.0378 0.0307 0.0120	0.3482 2.8716 0.4938 2.0251 0.3150 3.1748 0.8565 1.1675	15
Pankreas Penis Prostata	0.0180 0.0214		undef 0.0000 1.3713 0.7292 0.6739 1.4840 2.5169 0.3973	. 20
Uterus Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0291 0.0156 0.0268	0.0265	0.4642 2.1544	25
Sinnesorgane Weisse_Blutkoerperchen	0.0235			
Entwicklung	FOETUS %Haeufigkeit 0.0307	·		30
	0.0063 0.0236 0.0286 0.0111			35
Niere Prostata Sinnesorgane				40
	NORMIERTE/SUE %Haeufigkeit	TRAHIERTE BIE	LIOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0068 0.0023 0.0000 0.0064			45
Gastrointestinal Haematopoetisch Haut-Muskel	0.0122 0.0057 0.0065 0.0312			50
Nerven Prostata Sinnesorgane	0.0050 0.0064			55

Elektronischer Northern-Blot für SEQ. ID No.: 11

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0000
                                          0.0000
                                                        undef undef
 5
                                                        undef 0.0000
                      Brust 0.0027
                                          0.0000
                  Eierstock 0.0030
                                          0.0000
                                                       undef 0.0000
                                                        undef undef
         Endokrines_Gewebe 0.0000
                                          0.0000
          Gastrointestinal 0.0039
                                                        0.8143 1.2281
                                          0.0048
                     Gehirn 0.0042
                                          0.0033
                                                       1.2902 0.7751
10
           Haematopoetisch 0.0000
                                          0.0000
                                                       undef undef
                                                       undef undef
                       Haut 0.0000
                                          0.0000
                                                       undef undef
                  Hepatisch 0.0000
                                          0.0000
                                                       undef 0.0000
undef 0.0000
                       Herz 0.0011
                                          0.0000
                      Hoden 0.0061
                                          0.0000
                                                       undef 0.0000
15
                      Lunge 0.0050
                                          0.0000
        Magen-Speiseroehre 0.0000
                                          0.0000
                                                       undef undef
                                                       undef undef
            Muskel-Skelett 0.0000
                                          0.0000
                      Niere 0.0059
                                          0.0000
                                                       undef 0.0000
                                                       undef undef undef
                   Pankreas 0.0000
                                          0.0000
                      Penis 0.0000
                                          0.0000
20
                   Prostata 0.0048
                                          0.0021
                                                       2.2373 0.4470
                     Uterus 0.0017
                                          0.0000
                                                       undef 0.0000
         Brust-Hyperplasie 0.0000
                  Duenndarm 0.0093
      Prostata-Hyperplasie 0.0059
25
                Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0044
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
                     Gehirn 0.0000
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0000
                      Niere 0.0000
                   Prostata 0.0000
               Sinnesorgane 0.0000
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                     Brust 0.0000
          Eierstock-Uterus 0.0000
45
         Endokrines Gewebe 0.0000
                     Foetal 0.0035
          Gastrointestinal 0.0000
           Haematopoetisch 0.0057
               Haut-Muskel 0.0162
50
                     Hoden 0.0078
                     Lunge 0.0000
                    Nerven 0.0020
                  Prostata 0.0000
              Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 12

Brust Eierstock	0.0630 0.0627 0.0630	TUMOR %Haeufigkeit 0.0000 0.0044 0.0156	undef undef 0.6116 1.6351 0.0000 undef	5
Hepatisch	0.0078 0.0034 0.0030 0.0050	0.0027 0.0000 0.0011 0.0000 0.0000 0.0000	0.6698 1.4930 undef 0.0000 3.0964 0.3230 undef undef undef 0.0000 undef 0.0000 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0112 0.0000	0.0000 0.0000 0.0000 0.0060 0.0068	undef undef undef 0.0000 undef undef 0.5710 1.7513 1.3025 0.7678	15
Pankreas Penis Prostata Uterus	0.0076 0.0090 0.0048 0.0017	0.0000 0.0000 0.0021 0.0000	undef 0.0000 undef undef 2.2373 0.4470 undef 0.0000	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0156 0.0089 0.0000 0.0000			25
Weisse_Blutkoerperchen Entwicklung	FOETUS %Haeufigkeit	·		30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0031 0.0000 0.0000 0.0000 0.0074			35
Niere Prostata Sinnesorgane				40
	NORMIERTE/SUE %Haeufigkeit	STRAHIERTE BIE	BLIOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0046 0.0000 0.0047			45
Haematopoetisch Haut-Muskel Hoden Lünge	0.0057 0.0130 0.0156 0.0000			50
Nerven Prostata Sinnesorgane	0.0064			55

21

60

Elektronischer Northern-Blot für SEQ. ID No.: 13

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                            %Haeufigkeit %Haeufigkeit N/T
                                                            T/N
                                                       0.0000 undef
                      Blase 0.0000
                                          0.0128
5
                                                       undef 0.0000
                     Brust 0.0120
                                         0.0000
                                                       undef undef
                  Eierstock 0.0000
                                         0.0000
         Endokrines Gewebe 0.0036
                                         0.0000
                                                       undef 0.0000
                                                       undef 0.0000
          Gastrointestinal 0.0039
                                         0.0000
                     Gehirn 0.0017
                                         0.0066
                                                       0.2580 3.8754
10
                                                       undef undef
            Haematopoetisch 0.0000
                                         0.0000
                                                       undef 0.0000
                      Haut 0.0050
                                         0.0000
                  Hepatisch 0.0000
                                         0.0129
                                                       0.0000 undef
                                                       undef 0.0000
                                         0.0000
                      Herz 0.0074
                      Hoden 0.0000
                                         0.0117
                                                       0.0000 undef
                     Lunge 0.0087
                                         .0.0071
                                                       1.2290 0.8137
15
                                                       undef undef
        Magen-Speiseroehre 0.0000
                                         0.0000
                                                       1.4275 0.7005
            Muskel-Skelett 0.0086
                                         0.0060
                     Niere 0.0000
                                         0.0137
                                                       0.0000 undef
                                                      undef 0.0000
                   Pankreas 0.0038
                                         0.0000
                     Penis 0.0150
                                                       undef 0.0000
                                         0.0000
20
                   Prostata 0.0048
                                         0.0021
                                                       2.2373 0.4470
                    Uterus 0.0066
                                         0.0071
                                                       0.9283 1.0772
         Brust-Hyperplasie 0.0218
                 Duenndarm 0.0062
      Prostata-Hyperplasie 0.0030
25
                Samenblase 0.0089
              Sinnesorgane 0.0353
    Weisse_Blutkoerperchen 0.0000
                            FOETUS
30
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
                    Gehirn 0.0000
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0041
                     Lunge 0.0000
                     Niere 0.0000
                  Prostata 0.0000
              Sinnesorgane 0.0000
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                     Brust 0.0000
          Eierstock-Uterus 0.0023
45
         Endokrines_Gewebe 0.0000
                    Foetal 0.0017
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
50
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0060
                  Prostata 0.0000
              Sinnesorgane 0.0000
55
```

60

Elektronischer Northern-Blot für SEQ. ID No.: 14

	NORMAL	TUMOR	Verhaeltnisse	∍ T/N	
	%Haeufigkeit	*Haeurigkeit	N/I	1/10	5
	0.0046	0.0051	0.9092	1.0998	
	0.0027	0.0000	undef undef	0.0000	
Eierstock		0.0000 0.0000	undef	0.0000	
Endokrines_Gewebe Gastrointestinal		0.0000	undef	0.0000	
Gastrointestinai		0.0022	1.1612	0.8612	10
Haematopoetisch		0.0000	undef	0.0000	
Haut	0.0050	0.0000	undef	0.0000	
Hepatisch		0.0000	undef	undef	
Herz	0.0021	0.0137	0.1541	6.4872	
	0.0000	0.0117	0.0000	undef	15
Lunge	0.0012	0.0024	0.5267	1.8986	
Magen-Speiseroehre		0.0000	undef	undef	
Muskel-Skelett		0.0000	undef	0.0000	
	0.0000	0.0000	undef	undef undef	
Pankreas		0.0000	undef undef	undef	20
Prostata	0.0000	0.0000	undef	0.0000	
Uterus		0.0000	0.2321	4.3088	
Brust-Hyperplasie		0.0011	0.12011		
Duenndarm	0.0000				0.5
Prostata-Hyperplasie					25
Samenblase	0.0000				
Sinnesorgane					
Weisse_Blutkoerperchen	0.0052	•			
					30
	FOETUS				50
	%Haeufigkeit				
Entwicklung	0.0000				
Gastrointenstinal					35
Gehirn Haematopoetisch					
Herz-Blutgefaesse	0.0000				
Lunge	0.0000				
	0.0000	•			
Prostata	0.0000				40
Sinnesorgane	0.0000				
•					
	NORMIERTE/SUE	TRAHIERTE BIE	LIOTHEKEN		
	%Haeufigkeit				45
	0.0000				
Eierstock-Uterus	0.0000				
Endokrines_Gewebe	0.0000				
Foetal Gastrointestinal					50
Haematopoetisch	0.0000				
Haut-Muskel	0.0000				
	0.0078				
Lunge	0.0000	•			
Nerven	0.0020				55
Prostata					
Sinnesorgane	0.0000				

Elektronischer Northern-Blot für SEQ. ID No.: 15

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit		ltnisse T/N
5		0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	undef undef undef undef	undef undef undef undef
10	Gastrointestinal Gehirn	0.0008		undef	undef 0.0000
	Haematopoetisch Haut	0.0050	0.0000	undef undef	undef 0.0000
	Hepatisch Herz	0.0000	0.0000	undef undef	undef undef
15	Lunge	0.0061 0.0012	0.0000	undef undef	0.0000
	Magen-Speiseroehre Muskel-Skelett	0.0000	0.0000	undef undef	undef undef
20	Pankreas		0.0000	undef undef	undef undef
20	Penis Prostata	0.0000 0.0048	0.0000	undef undef	undef 0.0000
	Uterus Brust-Hyperplasie	0.0000	0.0000	undef	undef
25	Duenndarm Prostata-Hyperplasie	0.0000			
	Samenblase Sinnesorgane	0.0000		٠.	
	Weisse_Blutkoerperchen	0.0000			
30	· .	FOETUS			
		%Haeufigkeit			
35	Entwicklung Gastrointenstinal	0.0000			
	Gehirn Haematopoetisch	0.0000			
	Herz-Blutgefaesse Lunge	0.0000 0.0037 0.0000			
40	Prostata	0.0000			
	Sinnesorgane	0.0000			
45		NORMIERTE/SUE %Haeufigkeit	STRAHIERTE BIE	BLIOTHE	KEN
	Brust Eierstock-Uterus	0.0000			
		0.0000			
50	Gastrointestinal Haematopoetisch	0.0000			
	Haut-Muskel Hoden	0.0000 0.0000			
55	Lunge Nerven	0.0000 0.0000			
	Prostata Sinnesorgane	0.0192	•		

65

Elektronischer Northern-Blot für SEQ. ID No.: 16

NORMAL		TUMOR	Verhaeltnisse	9	
	igkeit	%Haeufigkeit	N/T	T/N	
	- ,				5
Blase	0.0046	0.0000	undef	0.0000	•
	0.0120	0.0022	5.5042	0.1817	
Eierstock		0.0000	undef	undef	
Endokrines_Gewebe		0.0000	undef	undef	
Gastrointestinal		0.0048	0.4071	2.4562	10
Gehirn		0.0219	0.3871 undef	2.5836 0.0000	
Haematopoetisch	0.0014	0.0000 0.0000	undef	0.0000	
Hepatisch		0.0259	0.0000	undef	
	0.0032	0.0000	undef	0.0000	
	0.0122	0.0000	undef	0.0000	15
	0.0037	0.0000	undef	0.0000	
Magen-Speiseroehre		0.0000	undef	undef	
Muskel-Skelett		0.0000	undef	0.0000	
Niere	0.0000	0.0000	undef	undef	
Pankreas		0.0000	undef	undef	20
	0.0150	0.0000	undef	0.0000	20
Prostata		0.0000	undef	0.0000	
Uterus	0.0182	0.0000	undef	0.0000	
Brust-Hyperplasie					
Duenndarm					25
Prostata-Hyperplasie					25
Samenblase					
Sinnesorgane	0.0000				
Weisse_Blutkoerperchen	0.0000				
					20
	FOETUS				30
	%Haeufigkeit				
	•				
Entwicklung	0.0000				
Gastrointenstinal					25
	0.0000				35
Haematopoetisch	0.0000				
Herz-Blutgefaesse	0.0041				
	0.0037	•			
Prostata					40
Sinnesorgane					40
5±6502ga6					
				•	
	NORMIERTE/SUI	STRAHIERTE BI	BLIOTHEKEN		
	%Haeufigkeit				45
D	0 0070				15
	0.0272				
Eierstock-Uterus Endokrines Gewebe		•			
Foetal	0.0047				
Gastrointestinal					50
Haematopoetisch	0.0000				
Haut-Muskel	0.0000				
Hoden	0.0000				
	0.0000	•			
Nerven					55
Prostata					55
Sinnesorgane	0.0000				
•					

65

Elektronischer Northern-Blot für SEQ. ID No.: 17

	\$Haquf	NORMAL igkeit	TUMOR %Haeufigkei	Verhaeltniss	e T/N
5		-			
_		0.0093 0.0053	0.0026 0.0065	3.6370 0.8154	0.2750 1.2263
	Eierstock		0.0104	0.0000	undef
	Endokrines Gewebe		0.0000	undef	0.0000
	Gastrointestinal	0.0019	0.0048	0.4071	2.4562
10	Gehirn	0.0017	0.0022	0.7741	1.2918
	Haematopoetisch	0.0042	0.0378	0.1109	9.0183
		0.0050	0.0000	undef	0.0000 undef
	Hepatisch		0.0065 0.0000	0.0000 undef	0.0000
15		0.0106 0.0061	0.0000	undef	0.0000
13		0.0112	0.0071	1.5801	0.6329
	Magen-Speiseroehre		0.0000	undef	undef
	Muskel-Skelett		0.0060	1.4275	0.7005
		0.0059	0.0068.	0.8683	1.1517
20	Pankreas		0.0000	undef	0.0000
		0.0030	0.0000 0.0043	undef 2.2373	0.0000 0.4470
	Prostata Uterus		0.0043	0.6963	1.4363
	Brust-Hyperplasie		0.0071	0.0300	
	Duenndarm	0.0031			
25	Prostata-Hyperplasie	0.0089			
	Samenblase				
	Sinnesorgane	0.0118			
	Weisse_Blutkoerperchen	0.0044			,
30					
30		FOETUS			
		%Haeufigkeit			
	Entwicklung	0.0000			
	Gastrointenstinal				
35	Gehirn	0.0063			
	Haematopoetisch	0.0039			
	Herz-Blutgefaesse	0.0000			
		0.0062	•		
40	Prostata				
	Sinnesorgane	0.0000			
		NORMTERTE /SII	BTRAHIERTE BI	BI.TOTHEKEN	
		%Haeufigkeit		22101121121	
45					
		0.0000 .			
		0.0000 0.0000			
50	Gastrointestinal				
	Haematopoetisch				
	Haut-Muskel	0.0032			
		0.0000			
		0.0164 0.0010			
55	nerven Prostata				
	Sinnesorgane				
	, <u></u>				

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 19

NORMAL		TUMOR	Verhaeltniss	e	
%Haeuf	igkeit	%Haeufigkeit	N/T	T/N	
Place	0.0093	0.0128	0.7274	1.3748	5
	0.0093	0.0065	1.2232	0.8176	
Eierstock		0.0000	undef	0.0000	
Endokrines Gewebe		0.0000	undef	undef	
Gastrointestinal		0.0000	undef	0.0000	
Gehirn		0.0044	0.9676	1.0335	10
Haematopoetisch		0.0000	undef	0.0000	
	0.0050	0.0000	undef	0.0000	
Hepatisch	0.0000	0.0065	0.0000	undef	
Herz	0.0032	0.0137	0.2312	4.3248	
Hoden	0.0000	0.0000	undef	undef	15
Lunge	0.0037	0.0118	0.3160	3.1643	,
Magen-Speiseroehre	0.0000	0.0153	0.0000	undef	
Muskel-Skelett		0.0000	undef	0.0000	
	0.0089	0.0000	undef	0.0000	
Pankreas		0.0055	0.3428	2.9168	20
	0.0030	0.0000	undef	0.0000	20
Prostata		0.0064	1.8644	0.5364	
	0.0099	0.0000	undef	0.0000	
Brust-Hyperplasie	0.0036				1
Duenndarm					
Prostata-Hyperplasie					25
Samenblase					
Sinnesorgane					
Weisse_Blutkoerperchen	0.0044				
	FOETUS				30
	%Haeufigkeit				
Entwicklung					
Gastrointenstinal					25
Gehirn					35
Haematopoetisch					
Herz-Blutgefaesse					
	0.0037				
	0.0000				
Prostata Sinnesorgane					40
Simesorgane	0.0000				
	NORMIERTE/SU	BTRAHIERTE BIE	BLIOTHEKEN		
	%Haeufigkeit				45
					43
	0.0068				
Eierstock-Uterus					
Endokrines_Gewebe Foetal	0.0000				
roetai Gastrointestinal					
Haematopoetisch					50
Haut-Muskel		• .			
	0.0000				
	0.0000				
Nerven			•		
Prostata	0.0192			•	55
Sinnesorgane	0.0155				

65

Elektronischer Northern-Blot für SEQ. ID No.: 20

				•	
	NORMAL %Haeuf	igkeit	TUMOR %Haeufigkeit		Verhaeltnisse T/N
5		0.0000	0.0051	0.0000	undef
		0.0027	0.0065	0.4077	2.4527
	Eierstock		0.0000	undef	0.0000
	Endokrines_Gewebe	0.0018	0.0054	0.3349	2.9861
	Gastrointestinal		0.0000	undef	0.0000
10	Gehirn	0.0017	0.0000	undef	0.0000
	Haematopoetisch	0.0000	0.0000	undef	undef
		0.0199	0.0000	undef	0.0000
	Hepatisch		0.0000	undef	0.0000
		0.0042	0.0000		0.0000
				undef	
15		0.0000	0.0000	undef	undef
		0.0062	0.0118	0.5267	1.8986
	Magen-Speiseroehre		0.0077	0.0000	. undef
	Muskel-Skelett	0.0017	0.0000	undef	0.0000
	Niere	0.0089	0.0000	undef	0.0000
	Pankreas	0.0095	0.0000	undef	0.0000
20		0.0000	0.0000	undef	undef
	Prostata		0.0021	4.4745	0.2235
				undef	undef
	Uterus		0.0000	under	under
	Brust-Hyperplasie	0.0000			
	Duenndarm				
25	Prostata-Hyperplasie	0.0030			
	Samenblase				
	Sinnesorgane	0.0000			
	Weisse Blutkoerperchen				
20					
30		FOETUS			
		%Haeufigkeit			
		unacurrance			
	Entwicklung	0.000			
	_				
35	Gastrointenstinal				
33	Gehirn				
	Haematopoetisch	0.0000			
	Herz-Blutgefaesse				
		0.0074			
	Niere	0.0000			
40	Prostata				
	Sinnesorgane	0.0000			
		NORMIERTE/SUE	STRAHIERTE BIE	LIOTHER	ŒN
		%Haeufigkeit			
45		•			
	Briist	0.0000	•		
	Eierstock-Uterus				
	Endokrines Gewebe				
	_				
	Foetal				
50	Gastrointestinal	0.0122			
	Haematopoetisch	0.0000			
	Haut-Muskel				
		0.0000			
		0.0000			
	Nerven	0.0010			
55	Prostata				
	Sinnesorgane	0.0000			

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 21

	NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T	⊋ T/N	
Brust	0.0046 0.0013	0.0128 0.0087	0.3637 0.1529	2.7495	5
Eierstock Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0128 0.0078 0.0102 0.0042 0.0000	0.0104 0.0136 0.0143 0.0131 0.0000 0.0000 0.0129	0.5843 0.9377 0.5428 0.7741 undef undef 0.0000	1.7114 1.0664 - 1.8422 1.2918 0.0000 undef undef	10
Herz Hoden	0.0117 0.0000 0.0025 0.0000	0.0000 0.0000 0.0165 0.0230 0.0120	undef undef 0.1505 0.0000 0.9993	0.0000 undef 6.6450 undef 1.0007	15
Niere Pankreas	0.0178 0.0076 0.0090 0.0167	0.0068 0.0110 0.0267 0.0064 0.0214	2.6050 0.6857 0.3369	0.3839 1.4584 2.9680 0.3831 3.2316	20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0093 0.0208 0.0267 0.0000				25
Weisse_Blutkoerperchen	0.0044				
	FOETUS %Haeufigkeit				30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0247 0.0188 0.0079 0.0245				35
Lunge	0.0037 0.0247 0.0499	•			40
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN		45
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0134 0.0000				50
Haut-Muskel Hoden	0.0259 0.0000 0.0000 0.0100 0.0000				55

Elektronischer Northern-Blot für SEQ. ID No.: 22

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T	e T/N
5	Brust Eierstock Endokrines_Gewebe	0.0146	0.0026 0.0044 0.0052 0.0000	0.0000 0.3058 0.5843 undef	undef 3.2702 1.7114 0.0000
10	Hepatisch	0.0008 0.0000 0.0000 0.0000	0.0000 0.0022 0.0000 0.0000 0.0000	undef 0.3871 undef undef undef	0.0000 2.5836 undef undef undef
15	Hoden	0.0021 0.0000 0.0050 0.0097 0.0051	0.0000 0.0000 0.0024 0.0000 0.0060	undef undef 2.1069 undef 0.8565	0.0000 undef 0.4746 0.0000 1.1675
20	Pankreas	0.0000 0.0095	0.0000 0.0055 0.0000 0.0000	undef 0.3428 undef undef undef	0.0000 2.9168 undef 0.0000 0.0000
25	Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase	0.0000 0.0000 0.0089 0.0000			
	Sinnesorgane Weisse_Blutkoerperchen	0.0009			
30		FOETUS %Haeufigkeit			
35	Entwicklung Gastrointenstinal Gehirn Haematopoetisch	0.0000 0.0063 0.0000			
40		0.0000 0.0000 0.0000	·		
45		NORMIERTE/SUE %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	
50		0.0023			
55	Hoden	0.0097 0.0000 0.0000 0.0000			
	Sinnesorgane				

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 23

· · · ·	,				
	NORMAL	TUMOR	Verhaeltniss		
		%Haeufigkeit		T/N	
	onacarry next	macarrakere	147 1	2,	5
71	0.0093	0.0000		0.0000	
			undef		
	0.0013	0.0087 .	0.1529	6.5404	
Eierstock		0.0078	0.3895	2.5671	
Endokrines Gewebe	0.0036	0.0054	0.6698	1.4930	
Gastrointestinal	0.0039	0.0048	0.8143	1.2281	10
	0.0025	0.0033	0.7741	1.2918	
Haematopoetisch		0.0000	undef ·	0.0000	
Haematopoetisch	0.0026				
	0.0000	0.0000	undef	undef	
Hepatisch		0.0000	undef	undef	
	0.0021	0.0000	undef	0.0000	15
' Hoden	0.0000	0.0000	undef	undef -	
	0.0025	0.0047	0.5267	1.8986	
Magen-Speiseroehre		0.0000	undef	0.0000	
Magen-sperseroenre	0.0037		0.2855	3.5025	
Muskel-Skelett	0.0017	0.0060			
	0.0089	0.0068	1.3025	0.7678	20
Pankreas	0.0095	0.0055	1.7142	0.5834	
Penis	0.0030	0.0000	undef	0.0000	
Prostata	0.0024	0.0000	undef	0.0000	
Iltarie	0.0000	0.0000	undef	undef	
		5.000			
Brust-Hyperplasie	0.0000				25
Duenndarm					4.5
Prostata-Hyperplasie	0.0149				
Samenblase	0.0000				
Sinnesorgane	0.0000				
Weisse Blutkoerperchen	0.0017				
Weisse_Bluckoelpelenen					30
					50
•					
	FOETUS				
	%Haeufigkeit				
Entwicklung	0.0000				35
Gastrointenstinal	0.0031				33
Gebirn	0.0001				
Haematopoetisch	0.0000				
Herz-Blutgefaesse	0.0123				
Lunge	0.0000			•	
Niere	0.0000				40
Prostata	0.0000			•	
Sinnesorgane		•			
Dimesorgane	0.0000				
,					
	MODMIEDTE / CITE	STRAHIERTE BIE	T.TOTHEKEN		45
	•	TICHTONIE DIE			43
	%Haeufigkeit				
	0.0000				
Eierstock-Uterus					
Endokrines Gewebe			ā		
Foetal	0.0000		·		50
Gastrointestinal					
Haematopoetisch	0.0000				
паещагороеттясл	0.0000				
Haut-Muskel					
	0.0000				_
Lunge	0.0082				55
Nerven	0.0010				
Prostata			•		
Sinnesorgane					
Stimesorgane					
					60

6:

Elektronischer Northern-Blot für SEQ. ID No.: 25

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                                                                     T/N
                            %Haeufigkeit %Haeufigkeit N/T
                                                                     undef
                                          0.0026
                                                       0.0000
                      Blase 0.0000
                      Brust 0.0000
                                          0.0000
                                                       undef
                                                                     undef
                                                       0.0000
                                                                     undef
                  Eierstock 0.0000
                                          0.0026
         Endokrines Gewebe 0.0000
                                          0.0000
                                                       undef
                                                                     undef
                                                                     undef
10
          Gastrointestinal 0.0000
                                          0.0000
                                                       undef
                     Gehirn 0.0017
                                          0.0011
                                                                     0.6459
                                                       1.5482
           Haematopoetisch 0.0028
                                          0.0000
                                                       undef
                                                                     0.0000
                                                                     undef
                                                       undef
                       Haut 0.0000
                                          0.0000
                 Hepatisch 0.0050
                                          0.0000
                                                       undef
                                                                     0.0000
                                          0.0000
                                                       undef
                                                                     0.0000
                       Herz 0.0032
15
                                                       undef
                                                                     undef
                      Hoden 0.0000
                                          0.0000
                                                       0.5267
                                                                     1.8986
                      Lunge 0.0012
                                          0.0024
        Magen-Speiseroehre 0.0000
                                                       undef
                                                                     undef
                                          0.0000
                                                       undef
                                                                     0.0000
            Muskel-Skelett 0.0017
                                          0.0000
                                          0.0000
                                                                     0.0000
                                                       undef
                      Niere 0.0030
20
                   Pankreas 0.0000
                                          0.0000
                                                       undef
                                                                     undef
                                                       undef
                                                                     undef
                      Penis 0.0000
                                          0.0000
                   Prostata 0.0071
                                          0.0021
                                                       3.3559
                                                                     0.2980
                                                                     0.0000
                                                       undef
                    Uterus 0.0050
                                          0.0000
         Brust-Hyperplasie 0.0000
25
                 Duenndarm 0.0000
      Prostata-Hyperplasie 0.0000
                Samenblase 0.0000
               Sinnesorgane 0.0235
    Weisse_Blutkoerperchen 0.0035
30
                            FOETUS
                            %Haeufigkeit
               Entwicklung 0.0000
35
         Gastrointenstinal 0.0000
                     Gehirn 0.0000
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0000
40
                      Niere 0.0000
                   Prostata 0.0000
              Sinnesorgane 0.0000
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
45
                            %Haeufigkeit
                     Brust 0.0000
          Eierstock-Uterus 0.0137
         Endokrines_Gewebe 0.0000
50
                    Foetal 0.0012
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0000
55
                    Nerven 0.0000
                   Prostata 0.0321
              Sinnesorgane 0.0000
```

60

Elektronischer Northern-Blot für SEQ. ID No.: 26

•	NORMAL	TUMOR %Haeufigkeit	Verhaeltnisse	e T∕N	
Place	0.0000	0.0026	0.0000	undef	5
Brust	0.0027	0.0044	0.6116	1.6351	
Eierstock		0.0052	1.1686	0.8557	
Endokrines_Gewebe Gastrointestinal		0.0027	4.0187 undef	0.2488 0.0000	
	0.0068	0.0001	6.1928	0.1615	10
Haematopoetisch		0.0000	undef	0.0000	
Haut	0.0000	0.0000	undef	undef	
Hepatisch		0.0129	0.0000	undef	•
	0.0021 0.0122	0.0000	undef undef	0.0000°	15
	0.0012	0.0071	0.1756	5.6957	
Magen-Speiseroehre	0.0000	0.0077	0.0000	undef	
Muskel-Skelett	0.0017	0.0060	0.2855	3.5025	
	0.0030	0.0068	0.4342 undef	2.3033 0.0000	20
Pankreas Penis	0.0019	0.0000	undef	0.0000	20
Prostata		0.0000	undef	0.0000	
Uterus	0.0033	0.0000	undef	0.0000	
Brust-Hyperplasie	0.0000	•			
Duenndarm	0.0000				25
Prostata-Hyperplasie Samenblase	0.0000				
. Sinnesorgane	0.0000				
Weisse_Blutkoerperchen	0.0017				
_					30
	FOETUS				
	%Haeufigkeit				
Entwicklung	0.0000				35
Gastrointenstinal Gehirn	0.0062				33
Haematopoetisch					
Herz-Blutgefaesse	0.0000				
Lunge	0.0000				
Niere Prostata	0.0000				40
Sinnesorgane					
Jimesorgano	0.0000	•			
	NORMIERTE/SUB	monutrome bie	U.TOTHEKEN		
	%Haeufigkeit	TOMILLINIE DIL	e de la constante de la consta		45
	0.0068				
Eierstock-Uterus	0.0183				
Endokrines_Gewebe Foetal	0.0000				50
Gastrointestinal					
Haematopoetisch	0.0000				
Haut-Muskel	0.0032				
	0.0078			•	
Lunge	0.0000				55
Prostata	0.0064				
Sinnesorgane	0.0000				
					60

33

Elektronischer Northern-Blot für SEQ. ID No.: 27

		•			
•		NORMAL	TUMOR	Verhaeltnisse	•
		%Haeufigkeit	%Haeufigkeit	N/T	T/N
5	•				
		0.0000	0.0000	undef	undef
	Brust	0.0027	0.0022	1.2232	0.8176
	Eierstock		0.0000	undef	undef
	Endokrines_Gewebe	0.0018	0.0027	0.6698	1.4930
	Gastrointestinal	0.0019	0.0000	undef	0.0000
10	Gehirn	0.0025	0.0022	1.1612 '	0.8612
•	Haematopoetisch	0.0000	0.0000	undef	undef
	Haut	0.0000	0.0000	undef	undef
	Hepatisch		0.0000 .	undef	undef
		0.0011	0.0000	undef	0.0000
15		0.0000	0.0117	0.0000	undef
13		0.0025	0.0000	undef	0.0000
	Magen-Speiseroehre	0.0000	0.0000	undef	undef
	Muskel-Skelett	0.0000	0.0000	undef	undef
		0.0000	0.0000	undef	undef
	Pankreas		0.0000	undef	0.0000
20		0.0030	0.0000	undef	0.0000
	Prostata		0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
	Brust-Hyperplasie		0.0000	41.442	
	Duenndarm	0.0030			
25					
23	Prostata-Hyperplasie	0.0000			
	Samenblase				
	Sinnesorgane	0.0000			
	Weisse_Blutkoerperchen	0.0017			
30		DODMITC			
		FOETUS			
	•	%Haeufigkeit			
	Entwicklung	0.0000			
35	Gastrointenstinal				
-		0.0063			
	Haematopoetisch	0.0000			
	Herz-Blutgefaesse	0.0000			
		0.0037			
		0.0062			
40	Prostata				
	Sinnesorgane	0.0000			
			STRAHIERTE BI	סו דַרַייִם בייביאו	
			STRAHIERTE DI	PPIOTUEVEN	
45		%Haeufigkeit			
		0.0000			
		0.0000			
	Eierstock-Uterus	0.0046			
	Endokrines_Gewebe	0.0000			
50	Foetal	0.0029			
30	Gastrointestinal	0.0000			
	Haematopoetisch	0.0000			
	Haut-Muskel	0.0065			
		0.0000			
	Lunge	0.0000			
55	Nerven	0.0030			
	Prostata	0.0192			
	Sinnesorgane	0.0077			
	·				

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 28

	0.0000 0.0040 0.0030	TUMOR %Haeufigkeit 0.0051 0.0000 0.0052 0.0027	Verhaeltnisse N/T 0.0000 undef 0.5843 1.3396	T/N undef 0.000 1.7114 0.7465	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0058 0.0017 0.0028 0.0000	0.0048 0.0022 0.0000 0.0000 0.0129 0.0000	1.2214 0.7741 undef undef 0.0000 undef	0.8187 1.2918 0.0000 undef undef 0.0000	10
Lunge Magen-Speiseroehre Muskel-Skelett	0.0183 0.0050 0.0097 0.0034 0.0059	0.0000 0.0024 0.0077 0.0000 0.0000	undef 2.1069 1.2599 undef undef	0.0000 0.4746 0.7937 0.0000 0.0000	15
Pankreas Penis Prostata Uterus Brust-Hyperplasie	0.0030 0.0119 0.0017	0.0110 0.0000 0.0043 0.0000	0.1714 undef 2.7966 undef	5.8337 0.0000 0.3576 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0000 0.0030 0.0000 0.0000		·		25
	FOETUS %Haeufigkeit				30
	0.0031 0.0063 0.0000 0.0041 0.0000				35
Niere Prostata Sinnesorgane				,	40
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIE	BLIOTHEKEN		45 -
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0041				
Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0000 0.0000				50
Nerven Prostata Sinnesorgane	0.0000 0.0192				55

65

Elektronischer Northern-Blot für SEQ. ID No.: 29

		NORMAL	TUMOR	Verhaeltnisse	
			%Haeufigkeit	N/T	T/N
5	Brust Eierstock Endokrines_Gewebe Gastrointestinal	0.0055 0.0019	0.0051 0.0000 0.0052 0.0000 0.0000	0.0000 undef 0.0000 undef undef	undef undef undef 0.0000 0.0000
10	Hepatisch Herz	0.0028 0.0000 0.0050 0.0042	0.0022 0.0000 0.0000 0.0065 0.0000	4.2576 undef undef 0.7651 undef	0.2349 0.0000 undef 1.3069 0.0000
15	Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0017 0.0059	0.0000 0.0000 0.0077 0.0000 0.0000	undef undef 0.0000 undef undef	undef 0.0000 undef 0.0000 0.0000
20	Pankreas Penis Prostata Uterus Brust-Hyperplásie	0.0000 0.0048 0.0066	0.0055 0.0000 0.0000 0.0000	0.0000 undef undef undef	undef undef 0.0000 0.0000
25	Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0031 0.0089 0.0000 0.0000			
20	werse Procesperence	0.0000			
30		FOETUS %Haeufigkeit			
35	Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0000	٠		
40	Lunge	0.0000 0.0000 0.0000			
45		NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN \$Haeufigkeit			
50		0.0000 0.0017 0.0000			
55	Haut-Muskel Hoden	0.0000 0.0078 0.0000 0.0141 0.0256			

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 31

	NORMAL	TUMOR %Haeufigkeit	Verhaeltnisse	e T∕N	
Blase	0.0000	0.0000	undef	undef	5
	0.0000	0.0000	undef	undef	
Eierstock		0.0000	undef	undef	
Endokrines Gewebe		0.0000	undef	0.0000	
Gastrointestinal	0.0019	0.0048	0.4071	2.4562	
Gehirn	0.0000	0.0022	0.0000	undef	10
Haematopoetisch	0.0000	0.0000	undef ·	undef	
Haut	0.0000	0.0000	undef	undef	
Hepatisch	0.0000	0.0000	undef	undef	
	0.0000	0.0000	undef	undef	
	0.0000	0.0000	undef	undef	15
Lunge	0.0000	0.0024	0.0000	undef ·	
Magen-Speiseroehre	0.0000	0.0000	undef	undef	
Muskel-Skelett	0.0017	0.0000	undef	0.0000	
Niere	0.0000	0.0000	undef	undef	
Pankreas	0.0019	0.0000	undef	0.0000	20
Penis	0.0000	0.0000	undef	undef	20
Prostata	0.0095	0.0000	undef ·	0.0000	
Uterus	0.0000	0.0000	undef	undef	
Brust-Hyperplasie	0.0073				
Duenndarm	0.0000				
Prostata-Hyperplasie	0.0000			•	25
Samenblase	0.0000	·			
Sinnesorgane	0.0000				
Weisse Blutkoerperchen	0.0009				
· · · · · · · · · · · · · · · · · · ·	FOETUS %Haeufigkeit				30
Entwicklung	0.0000				
Gastrointenstinal	0.0000				
Gehirn	0.0000				35
Haematopoetisch	0.0000				
Herz-Blutgefaesse	0.0000				
Lunge	0.0037				
	0.0000				
Prostata	0.0000				40
Sinnesorgane	0.0000				
,					
			* ************************************	•	
		BTRAHIERTE BI	BLIOTHEKEN		
	%Haeufigkeit		•		45
	0.0000				
Eierstock-Uterus	0.0000				
Endokrines_Gewebe	0.0000				
Foetal					50
Gastrointestinal	0.0122				55
Haematopoetisch					
Haut-Muskel					
	0.0000				
	0.0000				
Nerven					55
Prostata					
Sinnesorgane	0.0000				
•					60

37

Elektronischer Northern-Blot für SEQ. ID No.: 32

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T	€ T/N
5	Place	0.0000	0.0026	0.0000	undef
		0.0027	0.0023	1.2232	0.8176
	Eierstock		0.0078	1.1686 .	0.8557
	Endokrines_Gewebe		0.0136	0.4019	2.4884
10	Gastrointestinal Gehirn		0.0095 0.0044	0.2036 1.7417	4.9124 0.5741
	Haematopoetisch		0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
	Hepatisch		0.0000	undef	0.0000
		0.0021	0.0000	undef	0.0000
15		0.0122 0.0012	0.0000	undef undef	0.0000 0.0000
	Magen-Speiseroehre		0.0000	undef	undef
	Muskel-Skelett		0.0180	0.0952	10.5076
		0.0030	0.0068	0.4342	2.3033
20	Pankreas		0.0000	undef	0.0000
20	Penis Prostata	0.0000	0.0000	undef undef	undef 0.0000
	Uterus		0.0142		.8.6176
	Brust-Hyperplasie				
	Duenndarm	0.0062			
25	Prostata-Hyperplasie		••		
	Samenblase Sinnesorgane				
	Weisse Blutkoerperchen	0.0007			
	- •				
30		FOETUS			
		%Haeufigkeit			
		macarigacie			
	Entwicklung				
35	Gastrointenstinal				
55	Gehirn Haematopoetisch				
	Herz-Blutgefaesse				
		0.0000			
		0.0062			
40	Prostata				
	Sinnesorgane	0.0140			
		•	TRAHIERTE BIE	LIOTHEKEN	
45		%Haeufigkeit			
	Brust	0.0000			
	Eierstock-Uterus	00046			
	Endokrines_Gewebe				
50	Foetal				
	Gastrointestinal Haematopoetisch				
	Haut-Muskel				
	Hoden	0.0468			
	Lunge				
55	Nerven Prostata				
	Sinnesorgane			•	
	22				

60

Elektronischer Northern-Blot für SEQ. ID No.: 33

	0.0046 :0.0013 0.0000	TUMOR %Haeufigkeit 0.0026 0.0022 0.0026 0.0000	Verhaeltnisse N/T T/N 1.8185 0.5499 0.6116 1.6351 0.0000 undef undef 0.0000		5
Hepatisch	0.0042 0.0000 0.0000	0.0000 0.0077 0.0000 0.0000 0.0129 0.0000	undef 0.0000 0.5529 1.8085 undef undef undef undef 0.0000 undef undef undef		10
Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0000 0.0030	0.0117 0.0047 0.0000 0.0000 0.0000	0.0000 undef 0.5267 1.8986 undef undef undef undef undef 0.0000		15
Pankreas : Penis Prostata Uterus Brust-Hyperplasie	0.0030 0.0071 0.0017 0.0000	0.0021	undef undef undef 0.0000 3.3559 0.2980 undef 0.0000		20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0119 0.0000 0.0000				25
Entwicklung Gastrointenstinal				·	30
_	0.0039 0.0041 0.0000 0.0062				35
Sinnesorgane					40
Brust	NORMIERTE/SUB %Haeufigkeit 0.0000	TRAHIERTE BIB	LIOTHEKEN		
Eierstock-Uterus Endokrines_Gewebe	0.0023 0.0000				45
Foetal Gastrointestinal Haematopoetisch	0.0244 0.0000				
	0.0000 0.0000 0.0000				50
Nerven Prostata	0.0030 0.0000				
Sinnesorgane	0.0000				55

39

Elektronischer Northern-Blot für SEQ. ID No.: 34

```
TUMOR
                                                       Verhaeltnisse
                            %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                                                       0.0000 undef
                     Blase 0.0000
                                          0.0026
5
                                          0.0087
                                                       0.1529 6.5404
                      Brust 0.0013
                                                       1.7529 0.5705
                 Eierstock 0.0091
                                          0.0052
         Endokrines Gewebe 0.0036
                                                       0.2233 4.4791
                                          0.0163
                                          0.0095
                                                       0.4071 2.4562
          Gastrointestinal 0.0039
                     Gehirn 0.0170
                                          0.0131
                                                       1.2902 0.7751
10
                                                       undef 0.0000
           Haematopoetisch 0.0070
                                          0.0000
                                                       undef 0.0000
                                          0.0000
                       Haut 0.0497
                                                        0.0000 undef
                 Hepatisch 0.0000
                                          0.0194
                                                       undef 0.0000
                       Herz 0.0106
                                          0.0000
                                          0.0000
                                                       undef 0.0000
                      Hoden 0.0061
                      Lunge 0.0075
                                                        0.7901 1.2657
                                          0.0095
15
                                                       undef 0.0000
        Magen-Speiseroehre 0.0097
                                          0.0000
                                                        0.8565 1.1675
            Muskel-Skelett 0.0051
                                          0.0060
                      Niere 0.0000
                                          0.0068
                                                       0.0000 undef
                                                        undef 0.0000
                   Pankreas 0.0019
                                          0.0000
                                                        0.4492 2.2260
                                          0.0267
                      Penis 0.0120
20
                                                       3.3559 0.2980
                   Prostata 0.0071
                                          0.0021
                                                       undef 0.0000
                                          0.0000
                     Uterus 0.0033
         Brust-Hyperplasie 0.0000
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0059
25
                 Samenblase 0.0267
               Sinnesorgane 0.0353
    Weisse_Blutkoerperchen 0.0035
                            FOETUS
30
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0247
                     Gehirn 0.0125
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0074
                      Niere 0.0062
                   Prostata 0.0249
               Sinnesorgane 0.0000
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                      Brust 0.0000
          Eierstock-Uterus 0.0046
45
         Endokrines_Gewebe 0.0000
                     Foetal 0.0052
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
               Haut-Muskel 0.0065
50
                      Hoden 0.0078
                      Lunge 0.0000
                     Nerven 0.0090
                   Prostata 0.0064
              Sinnesorgane 0.0000
55
60
```

Elektronischer Northern-Blot für SEQ. ID. NO: 35

	0.0000 0.0093 0.0091	TUMOR %Haeufigkeit 0.0026 0.0065 0.0130 0.0027	Verhaeltnisse N/T T/N 0.0000 undef 1.4270 0.7008 0.7012 1.4262 2.0093 0.4977	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0039 0.0008 0.0112 0.0000	0.0190 0.0033 0.0000 0.0000 0.0000 0.0137	0.2036 4.9124 0.2580 3.8754 undef 0:0000 undef undef undef undef 0.3854 2.5949	10
Lunge Magen-Speiseroehre Muskel-Skelett Niere	0.0037 0.0000 0.0017 0.0089	0.0000 0.0024 0.0000 0.0060 0.0137	undef undef 1.5801 0.6329 undef undef 0.2855 3.5025 0.6512 1.5355	15
Prostata Uterus Brust-Hyperplasie	0.0120 0.0095 0.0033 0.0000	0.0000 0.0000 0.0021 0.0000	undef 0.0000 undef 0.0000 4.4745 0.2235 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0030 0.0000 0.0118			25
Entwicklung Gastrointenstinal	0.0154			30
	0.0039 0.0082 0.0074 0.0000			. 35
Sinnesorgane			•	40
	%Haeufigkeit 0.0000	STRAHIERTE BIE	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0245 0.0082 0.0000			. 45
Lunge Nerven	0.0032 0.0156 0.0000 0.0080			50
Prostata Sinnesorgane				55

65

Elektronischer Northern-Blot für SEQ. ID No.: 36

```
NORMAL
                                           TUMOR
                             %Haeufigkeit %Haeufigkeit N/T T/N
                                                        0.6062 1.6497
                      Blase 0.0046
                                           0.0077
5
                                                        0.0874 11.4458
                      Brust 0.0013
                                           0.0153
                                                        3.5059 0.2852
                  Eierstock 0.0091
                                           0.0026
                                                        0.6698 1.4930
        Endokrines Gewebe 0.0036
                                           0.0054
           Gastrointestinal 0.0174
                                           0.0048
                                                        3.6642 0.2729
                                                        undef 0.0000
                     Gehirn 0.0034
                                           0.0000
                                                        undef 0.0000
undef 0.0000
undef 0.0000
10
            Haematopoetisch 0.0028
                                           0.0000
                                           0.0000
                       Haut 0.0249
                  Hepatisch 0.0248
                                           0.0000
                                                        0.2312 4.3248
                       Herz 0.0032
                                           0.0137
                                           0.0000
                                                        undef undef
                      Hoden 0.0000
                                                        2.7652 0.3616
15
                      Lunge 0.0261
                                           0.0095
        Magen-Speiseroehre 0.0000
                                           0.0000
                                                        undef undef
                                                        undef undefundef 0.0000
             Muskel-Skelett 0.0000
                                           0.0000
                                           0.0000
                      Niere 0.0297
                   Pankreas 0.0095
                                           0.0000
                                                        undef 0.0000
                      Penis 0.0000
                                                        undef undef
                                           0.0000
20
                                           0.0064
                                                        2.2373 0.4470
                   Prostata 0.0143
                                           0.0000
                                                        undef 0.0000
                     Uterus 0.0050
         Brust-Hyperplasie 0.0145
                 Duenndarm 0.0031
      Prostata-Hyperplasie 0.0149
25
                 Samenblase 0.0089
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0000
                             FOETUS
30
                             %Haeufigkeit
                Entwicklung 0.0000
         Gastrointenstinal 0.0031
                     Gehirn 0.0000
            Haematopoetisch 0.0039
35
         Herz-Blutgefaesse 0.0041
                      Lunge 0.0074
                      Niere 0.0000
                   Prostata 0.0000
               Sinnesorgane 0.0000
40
                             NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                             %Haeufigkeit
                      Brust 0.0000
           Eierstock-Uterus 0.0046
45
          Endokrines_Gewebe 0.0000
                     Foetal 0.0029
           Gastrointestinal 0.0244
            Haematopoetisch 0.0000
                Haut-Muskel 0.0032
50
                      Hoden 0.0000
                      Lunge 0.0246
                     Nerven 0.0010
                   Prostata 0.0064
               Sinnesorgane 0.0000
55
```

60

Elektronischer Northern-Blot für SEQ. ID No.: 37

Blase	NORMAL Figkeit 0.0093 0.0013 0.0000	TUMCR %Haeufigkeit 0.0000 0.0000 0.0000	Verhaeltnisse N/T T/N undef 0.0000 undef 0.000 undef undef	s
Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch	0.0018 0.0039 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef 0.0000 undef undef undef undef undef undef	10
Herz Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0011 0.0000 0.0012 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef undef undef 0.0000 undef undef undef undef undef undef	15
Pankreas Penis Prostata Uterus Brust-Hyperplasie	0.0000 0.0030 0.0095 0.0050 0.0000	0.0000 0.0000 0.0021 0.0356	undef undef undef 0.0000 4.4745 0.2235 0.1393 7.1813	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0089 0.0000	·		. 25
Entwicklung Gastrointenstinal				30
Niere	0.0000 0.0000 0.0000 0.0062			35
Prostata Sinnesorgane	0.0000 NORMIERTE/SUE	STRAHIERTE BIE	LIOTHEKEN	40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0000 0.0000			45
Haematopoetisch Haut-Muskel Hoden	0.0000 0.0000 0.0000 0.0000			50
Prostata Sinnesorgane	0.0064			55

60

Elektronischer Northern-Blot für SEQ. ID No.: 38

5	Blase Brust Eierstock Endokrines Gewebe Gastrointestinal Gehirn Haematopoetisch Haut	NORMAL %Haeufigkeit 0.0604 0.0360 0.0578 0.0018 0.0194 0.0322 0.0224 0.0099 0.2822	TUMCR %Haeufigkeit 0.0291 0.0327 0.0104 0.0082 0.0095 0.0372 0.0000 0.0000	Verhaeltnisse N/T T/N 2.1491 0.4653 1.1008 0.9084 5.5509 0.1801 0.2233 4.4791 2.0357 0.4912 0.8652 1.1558 undef 0.0000 undef 0.0000 10.9034 0.0917
15	Hepatisch Herz Hoden Lungel Magen-Speiseroehre Muskel-Skelett Niere	0.0159 0.0366 0.0560 0.0193 0.0531 0.0089	0.0137 0.0117 0.0331 0.0307 0.0240 0.0342	1.1561 0.8650 3.1341 0.3191 1.6930 0.5907 0.6300 1.5874 2.2127 0.4519 0.2605 3.8388
20	Pankreas Penis Prostata Uterus Brust-Hyperplasie	0.0151 0.0359 0.0191 0.0479 0.0145	0.0607 0.1066 0.0085 0.0142	0.2493 4.0107 0.3369 2.9680 2.2373 0.4470 3.3652 0.2972
25	Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0249 0.0119 0.0089 0.0588 0.0017		
30	Mark 1 - 1.3	FOETUS %Haeufigkeit		
35 40	Entwicklung Gastrointestinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0154 0.0000 0.0197 0.0082 0.0148 0.0185 0.0000		
		NORMIERTE/ SU	BTRAHIERTE BI	BLIOTHEKEN
45	Brust Eierstock-Uterus Endokrines Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0612 0.0137 0.0735 0.0367 0.0244		
50	Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	0.0000 0.0194 0.0000 0.0246 0.0020 0.0000	·	
55	Sinnesorgane	0.0697		

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 39

	0.0325 0.0293 0.0000	TUMOR %Haeufigkeit 0.0332 0.0196 0.0104 0.0000	Verhaeltnisse N/T T/N 0.9792 1.0213 1.4950 0.6689 0.0000 undef undef 0.0000	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch Herz	0.0252 0.0085 0.0098 0.0249 0.0000 0.0636	0.0000 0.0131 0.0000 0.0000 0.0065 0.1649	undef 0.0000 0.6451 1.5502 undef 0.0000 undef 0.0000 0.0000 undef 0.3854 2.5949	10
Lunge Magen-Speiseroehre Muskel-Skelett		0.0000 0.0165 0.0153 0.0060 0.0137	undef 0.0000 1.2792 0.7818 0.0000 undef 2.2841 0.4378 1.5196 0.6581	15
Prostata	0.0000 0.0048 0.0033	0.0166 0.0533 0.0106 0.0000	1.7142 0.5834 0.0000 undef 0.4475 2.2349 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0218 0.0119 0.0000 0.0588			25
Entwicklung Gastrointenstinal				30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0118 0.0041 0.0148 0.0000			35
Sinnesorgane				40
Print	NORMIERTE/SUE %Haeufigkeit 0.0000	TRAHIERTE BIE	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0114 0.1224 0.0122			45
Lunge Nerven	0.0291 0.0000 0.0164 0.0040			50
Prostata Sinnesorgane		·		55

65

Elektronischer Northern-Blot für SEQ. ID No.: 40

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                                                                     T/N
                      %Haeufigkeit %Haeufigkeit
                                                       N/T
                      Blase 0.0000
                                          0.0051
                                                        0.0000
                                                                     undef
5
                      Brust 0.0040
                                          0.0022.
                                                       1.8347
                                                                     0.5450
                  Eierstock 0.0030
                                          0.0000
                                                                     0.0000
                                                       undef
      ... Endokrines Gewebe 0.0036
                                          0.0000
                                                        undef
                                                                     0.0000
                                                                     0.0000
           Gastrointestinal 0.0039
                                          0.0000
                                                        undef
                     Gehirn 0.0034
                                          0.0011
                                                        3.0964
                                                                     0.3230
10
           Haematopoetisch 0.0014
                                          0.0378
                                                        0.0370
                                                                     27.0549
                       Haut 0.0000
                                          0.0000
                                                       undef
                                                                     undef
                  Hepatisch 0.0000
                                                       0.0000
                                          0.0065
                                                                     undef
                       Herz 0.0021
                                          0.0000
                                                       undef
                                                                     0.0000
                                                                     0.0000
                      Hoden 0.0061
                                          0.0000
                                                       undef
                                                       undef
                                                                     0.0000
                      Lunge 0.0012
                                          0.0000
15
        Magen-Speiseroehre 0.0000
                                          0.0000
                                                       undef
                                                                     undef
                                                       undef
                                                                     0.0000
            Muskel-Skelett 0.0017
                                          0.0000
                      Niere 0.0030
                                          0.0000
                                                       undef
                                                                     0.0000
                                                       undef
                   Pankreas 0.0000
                                          0.0000
                                                                     undef
                      Penis 0.0000
                                          0.0000
                                                       undef
                                                                     undef
20
                   Prostata 0.0048
                                          0.0021
                                                       2.2373
                                                                     0.4470
                     Uterus 0.0050
                                          0.0071
                                                       0.6963
                                                                     1.4363
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0059
25
                Samenblase 0.0178
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0026
                            FOETUS
30
                            %Haeufigkeit
               Entwicklung 0.0154
         Gastrointenstinal 0.0123
                     Gehirn 0.0063
35
           Haematopoetisch 0.0039
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0037
                      Niere 0.0062
                   Prostata 0.0000
              Sinnesorgane 0.0000
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
45
                     Brust 0.0000
          Eierstock-Uterus 0.0091
         Endokrines Gewebe 0.0000
                    Foetal 0.0029
          Gastrointestinal 0.0122
50
           Haematopoetisch 0.0057
               Haut-Muskel 0.0000
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0090
                  Prostata 0.0064
55
              Sinnesorgane 0.0000
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 41

	NORMAL	TUMOR	Verhaeltnisse	e	
		%Haeufigkeit	N/T.	T/N	
	0.0000	0.0000	undef	undef	5
	0.0000	0.0022	0.0000	undef	
Eierstock		0.0026	2.3372	0.4279	
Endokrines_Gewebe		0.0000	undef	undef	
Gastrointestinal		0.0000	undef	undef undef	
Haematopoetisch	0.0000	0.0000 0.0000	undef undef	undef	10
	0.0050	0.0000	undef	0.0000	
Hepatisch		0.0000	undef	undef	
	0.0000	0.0000	undef	undef	
	0.0000	0.0000	undef	undef	
	0.0000	0.0000	undef	undef	15
Magen-Speiseroehre	0.0000	0.0000	undef	undef	13
Muskel-Skelett		0.0000	undef	undef	
Niere	0.0000	0.0000	undef	undef	
Pankreas	0.0000	0.0000	undef	undef	
Penis	0.0030	0.0000	undef	0.0000	20
Prostata		0.0000	undef	0.0000	20
	0.0000	0.0000	undef	undef	
Brust-Hyperplasie	0.0000				
Duenndarm					
Prostata-Hyperplasie					25
Samenblase					25
Sinnesorgane			•	•	
Weisse_Blutkoerperchen	0.0009				•
	FOETUS				
	%Haeufigkeit				30
Entwicklung	0.0000				
Gastrointenstinal	0.0000				
Gehirn	0.0000				•
Haematopoetisch					
Herz-Blutgefaesse					35
-	0.0037				
	0.0000				
Prostata					
Sinnesorgane	0.0000				
					40
	NORMIERTE/SU	STRAHIERTE BIE	BLIOTHEKEN		
	%Haeufigkeit				
	-				
_	0.0000	•			
Eierstock-Uterus					45
Endokrines_Gewebe					
	0.0017				
Gastrointestinal					
Haematopoetisch Haut-Muskel					
	0.0078				50
	0.0082				
	0.0010				
Prostata					
Sinnesorgane	0.0000				
-					55

47

60

Elektronischer Northern-Blot für SEQ. ID No.: 42

		NORMAL	TUMOR	Verhaeltnisse	.
			%Haeufigkeit		T/N
5		0.0000	0.0000	undef	undef
•		0.0160	0.0044	3.6695	0.2725
	Eierstock	0.0030	0.0026	1.1686	0.8557
	Endokrines_Gewebe	0.0109	0.0082	1.3396	0.7465
	Gastrointestinal Gehirn		0.0000	undef 0.7741	0.0000 1.2918
10	Haematopoetisch		0.0055 0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
	Hepatisch		0.0000	undef	undef
		0.0042	0.0000	undef	0.0000
		0.0000	0.0000	undef	undef
15	Lunge	0.0037	0.0024	1.5801	0.6329
	Magen-Speiseroehre	0.0000	0.0000	undef	undef
	Muskel-Skelett		0.0060	0.0000	undef
		0.0059	0.0000	undef	0.0000
	Pankreas		0.0000	undef	0.0000
20		0.0090	0.0000	undef	0.0000
	Prostata Uterus		0.0000	undef undef	0.0000
	Brust-Hyperplasie		0.0000	under	0.0000
	Duenndarm				
	Prostata-Hyperplasie				
25	Samenblase				
	Sinnesorgane	0.0000			
	Weisse_Blutkoerperchen	0.0017			
		FOETUS			
30		%Haeufigkeit			
		undedrighter			
	Entwicklung	0.0000			
	Gastrointenstinal	0.0062			
	Gehirn				
35	Haematopoetisch				
	Herz-Blutgefaesse				
	_	0.0000			
	Prostata				
40	Sinnesorgane				
40					
		NORMIERTE/SUE %Haeufigkeit	TRAHIERTE BIE	SLIOTHEKEN	
		anaeurigkere			
45	Brust	0.0136			
	Eierstock-Uterus				
	Endokrines_Gewebe				
	Foetal				
	Gastrointestinal				
50	Haematopoetisch Haut-Muskel		•		
		0.0032			•
		0.0000			
	Nerven			•	
	Prostata		•		
55	Sinnesorgane	0.0000			

65

Elektronischer Northern-Blot für SEQ. ID No.: 44

Ü			NORMAL	TUMOR	Verhaeltnisse	
			*Haeufigkeit	%Haeufigkeit N/T	T/N	5
0	Blase	0.0372	0.0230	1.6164 0.6186	5	
0	Brust	0.0067	0.0000	undef	0.0000	
0	Eierstock	0.0122	0.0130	0.9349 1.0696	5	10
0	Endokrines Gewebe	•	0.0300	0.4262 2.3462	<u>.</u>	
	Gastrointestinal		0.0333	0.8143 1.2281 0.1260 7.9354		
	Gehirn Haematopoetisch		0.0471 0.0000	*	0.0000	15
	Haut	0.0099	0.0000	undef	0.0000	
	Hepatisch		0.0259	0.1913 5.2277		
		0.0201	0.0137	1.4644 0.6829		
		0.0000	0.0117 0.0189	0.0000 undef 1.4485 0.6904		• 20
	Magen-Speiseroehre		0.0000	undef	0.0000	
	Muskel-Skelett		0.0000	undef	0.0000	
		0.0089	0.0137	0.6512 1.5355		
	Pankreas		0.0166			
		0.0150	0.0000	undef	0.0000	25
	Prostata		0.0106			
	Uterus Brust-Hyperplasie		0.0000	undef	0.0000	
	Duenndarm					
	Prostata-Hyperplasie					30
	Samenblase	0.0890				30
	Sinnesorgane					
	Weisse_Blutkoerperchen	0.0052				
		FOETUS				35
		%Haeuf	igkeit			
_						
	7					
	Entwicklung	0.0000		•		40
	Gastrointenstinal	0.0031				40
	Gehirn	0.0000				
0	Haematopoetisch	0 0030	•			
0	naemacopoecisch	0.0035				45
_	Herz-Blutgefaesse	0.0041				
		0.0222				
		0.0309				
	Prostata Sinnesorgane			•		50
	Simesorgane	0.0000				30
				RTE BIBLIOTHEKEN		
		%Haeuf:	igkeit			
0						55
u	Brust	0.0000				
					·	
	Eierstock-Uterus					
	Endokrines_Gewebe					
	Foetal Gastrointestinal					60
	Haematopoetisch					
	Haut-Muskel					
	Hoden					
	Lunge					65
	Nerven Prostata					
	Sinnesorgane					
		,				

Elektronischer Northern-Blot für SEQ. ID No.: 45

```
TUMOR
                                                         Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                               T/N
                       Blase 0.0000
                                           0.0000
                                                        undef undef
                                                        undef undef undef 0.0000
                       Brust 0.0000
                                           0.0000
                  Eierstock 0.0030
                                           0.0000
          Endokrines Gewebe 0.0000
                                           0.0000
                                                        undef undef
           Gastrointestinal 0.0019
                                           0.0048
                                                        0.4071 2.4562
                      Gehirn 0.0008
                                           0.0044
                                                        0.1935 5.1673
10
            Haematopoetisch 0.0028
                                           0.0000
                                                        undef 0.0000
                        Haut 0.0050
                                                        0.0294 34.0525
                                           0.1693
                  Hepatisch 0.0000
                                           0.0000
                                                        undef undef
                       Herz 0.0021
                                           0.0000
                                                        undef 0.0000
                       Hoden 0.0000
                                           0.0000
                                                        undef undef
                       Lunge 0.0012
                                           0.0024
                                                        0.5267 1.8986
15
                                                        undef 0.0000
         Magen-Speiseroehre 0.0097
                                           0.0000
                                                        undef 0.0000
             Muskel-Skelett 0.0017
                                           0.0000
                      Niere 0.0000
                                           0.0000
                                                        undef undef
                   Pankreas 0.0019
                                                        undef 0.0000
                                           0.0000
                                                        undef 0.0000
4.4745 0.2235
                      Penis 0.0030
                                           0.0000
20
                   Prostata 0.0095
                                           0.0021
                     Uterus 0.0033
                                                        undef 0.0000
                                           0.0000
          Brust-Hyperplasie 0.0000
                  Duenndarm 0.0000
       Prostata-Hyperplasie 0.0208
                 Samenblase 0.0000
25
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0009
                             FOETUS
30
                             %Haeufigkeit
                Entwicklung 0.0000
          Gastrointenstinal 0.0031
                     Gehirn 0.0000
           Haematopoetisch 0.0157
35
          Herz-Blutgefaesse 0.0000
                      Lunge 0.0000
                      Niere 0.0000
                   Prostata 0.0000
               Sinnesorgane 0.0000
40
                             NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                             %Haeufigkeit
                      Brust 0.0000
           Eierstock-Uterus 0.0046
45
          Endokrines_Gewebe 0.0000
                     Foetal 0.0000
           Gastrointestinal 0.0000
            Haematopoetisch 0.0000
                Haut-Muskel 0.0000
                      Hoden 0.0000
50
                      Lunge 0.0000
                     Nerven 0.0030
                   Prostata 0.0064
               Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 46

	0.0000 0.0040 0.0122	TUMOR %Haeufigkeit 0.0026 0.0131 0.0234 0.0109	Verhaeltnisse N/T T/N 0.0000 undef 0.3058 3.2702 0.5194 1.9254 0.3349 2.9861		5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0116 0.0051 0.0028 0.0050	0.0095 0.0164 0.0000 0.0000 0.0000	1.2214 0.8187 0.3096 3.2295 undef 0.0000 undef 0.0000 undef 0.0000 0.6166 1.6218		10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0061 0.0075 0.0000 0.0051	0.0117 0.0095 0.0000 0.0000	0.5224 1.9144 0.7901 1.2657 undef undef undef 0.0000		15
Pankreas	0.0030 0.0119 0.0083	0.0068 0.0055 0.0000 0.0043 0.0071	0.4342 2.3033 1.3713 0.7292 undef 0.0000 2.7966 0.3576 1.1604 0.8618	•	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0093 0.0030 0.0000 0.0118				25
Entwicklung	FOETUS %Haeufigkeit				30
Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0154 0.0125 0.0157				35
Prostata Sinnesorgane	0.0000 0.0140				40
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0245 0.0117	TRAHIERTE BIE	BLIOTHEKEN		45
Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0130 0.0000 0.0164 0.0110				50
Prostata Sinnesorgane					55

51 . . .

Elektronischer Northern-Blot für SEQ. ID No.: 47

```
NORMAL
                                            TUMOR
                                                          Verhaeltnisse
                              %Haeufigkeit %Haeufigkeit N/T T/N
                        Blase 0.0093
                                            0.0077
                                                          1.2123 0.8249
 5
                        Brust 0.0093
                                            0.0283
                                                          0.3293 3.0366
                    Eierstock 0.0182
                                            0.0052
                                                          3.5059 0.2852
           Endokrines Gewebe 0.0000
                                            0.0000
                                                          undef undef
            Gastrointestinal 0.0504
                                            0.0000
                                                          undef 0.0000
                       Gehirn 0.0000
                                            0.0033
                                                          0.0000 undef
                                                          undef 0.0000
undef 0.0000
10
             Haematopoetisch 0.0042
                                            0.0000
                         Haut 0.0050
                                            0.0000
                    Hepatisch 0.0495
                                            0.0065
                                                          7.6515 0.1307
                        Herz 0.0074
                                            0.0137
                                                          0.5395 1.8535
                        Hoden 0.0000
                                            0.0000
                                                          undef undef
                       Lunge 0.0000
                                            0.0000
                                                          undef undef
15
          Magen-Speiseroehre 0.0000
                                                         undef undef
1.9985 0.5004
                                            0.0000
              Muskel-Skelett 0.0120
                                            0.0060
                        Niere 0.0238
                                                          undef 0.0000
                                            0.0000
                    Pankreas 0.0511
                                            0.0276
                                                          1.8513 0.5402
                       Penis 0.0000
                                            0.0000
                                                          undef undef
20
                    Prostata 0.0333
                                            0.0149
                                                          2.2373 0.4470
                      Uterus 0.0017
                                            0.0000
                                                         undef 0.0000
           Brust-Hyperplasie 0.0109
                   Duenndarm 0.1028
        Prostata-Hyperplasie 0.0059
25
                  Samenblase 0.0000
                Sinnesorgane 0.0000
     Weisse Blutkoerperchen 0.0183
                              FOETUS
30
                              %Haeufigkeit
                 Entwicklung 0.0000
           Gastrointenstinal 0.0462
                      Gehirn 0.0000
             Haematopoetisch 0.0197
35
          Herz-Blutgefaesse 0.0000
                       Lunge 0.0000
                       Niere 0.0062
                    Prostata 0.0249
                Sinnesorgane 0.0000
40
                              NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                              %Haeufigkeit
                       Brust 0.0000
           Eierstock-Uterus 0.0160
45
          Endokrines Gewebe 0.0000
                      Foetal 0.0122
           Gastrointestinal 0.0122
            Haematopoetisch 0.0000
                Haut-Muskel 0.0324
50
                       Hoden 0.0000
                       Lunge 0.0000
                      Nerven 0.0000
                    Prostata 0.0256
               Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 48

	0.0000 0.0000 0.0000	TUMOR %Haeufigkeit 0.0026 0.0000 0.0000	Verhaeltnisse N/T T/N 0.0000 undef undef undef undef undef undef 0.0000	5
Hepatisch	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	undef	. 10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	undef undef undef undef undef undef undef undef undef undef	15
Pankreas	0.0019 0.0000 0.0095 0.0000	0.0055 0.0000 0.0043 0.0000	0.3428 2.9168 undef undef 2.2373 0.4470 undef undef	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0000 0.0149 0.0000 0.0000		·	25
Entwicklung	FOETUS %Haeufigkeit 0.0000			30
Caetrointenetinal	0.000			
	0.0000 0.0000 0.0000 -			35
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000		•	35 40
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit	TRAHIERTE BIB	LIOTHEKEN	
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000	TRAHIERTE BIE	LIOTHEKEN	
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines Gewebe	0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0000 0.0000 0.0000 0.00057 0.0000 0.0000 0.0000 0.0000 0.0000	TRAHIERTE BIE	LIOTHEKEN	40

53

Elektronischer Northern-Blot für SEQ. ID No.: 49

```
NORMAL
                                          TUMOR
                                                       Verhaeltnisse
                            %Haeufigkeit %Haeufigkeit N/T T/N
                      Blase 0.0000
                                                       0.0000 undef
                                          0.0051
                      Brust 0.0040
                                          0.0000
                                                       undef 0.0000
                                                       undef 0.0000
                  Eierstock 0.0091
                                          0.0000
         Endokrines Gewebe 0.0055
                                          0.0000
                                                       undef 0.0000
                                                      undef 0.0000
          Gastrointestinal 0.0058
                                          0.0000
                     Gehirn 0.0025
                                                       1.1612 0.8612
                                          0.0022
10
           Haematopoetisch 0.0000
                                          0.0000
                                                       undef undef
                                                       undef 0.0000
                       Haut 0.0099
                                          0.0000
                 Hepatisch 0.0099
                                                       undef 0.0000
                                          0.0000
                       Herz 0.0042
                                          0.0000
                                                       undef 0.0000
                      Hoden 0.0061
                                          0.0000
                                                       undef 0.0000
                      Lunge 0.0137
                                          0.0024
                                                       5.7939 0.1726
15
        Magen-Speiseroehre 0.0097
                                          0.0077
                                                       1.2599 0.7937
            Muskel-Skelett 0.0000
                                                       undef undef
                                          0.0000
                      Niere 0.0030
                                          0.0000
                                                       undef 0.0000
                   Pankreas 0.0057
                                          0.0055
                                                       1.0285 0.9723
                      Penis 0.0060
                                          0.0000
                                                       undef 0.0000
20
                   Prostata 0.0095
                                          0.0043
                                                       2.2373 0.4470
                                          0.0000
                    Uterus 0.0066
                                                       undef 0.0000
         Brust-Hyperplasie 0.0000
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0000
25
                 Samenblase 0.0000
              Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0139
                            FOETUS
30
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0000
                    Gehirn 0.0000
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0000
                     Lunge 0.0074
                     Niere 0.0000
                  Prostata 0.0000
              Sinnesorgane 0.0279
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                     Brust 0.0068
         Eierstock-Uterus 0.0091
45
         Endokrines Gewebe 0.0245
                    Foetal 0.0041
          Gastrointestinal 0.0244
           Haematopoetisch 0.0057
               Haut-Muskel 0.0486
50
                     Hoden 0.0000
                     Lunge 0.0000
                    Nerven 0.0050
                  Prostata 0.0064
              Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 50

	NORMAL %Haeufigkeit 0.0000 0.0053 0.0000	TUMOR %Haeufigkeit 0.0026 0.0000 0.0026	Verhaeltnisse N/T T/N 0.0000 undef undef 0.000 0.0000 undef	5
Endokrines_Gewebe Gastrointestinal Gehirn Haematopoetisch Haut	0.0000 0.0019 0.0034 0.0000 0.0000	0.0000 0.0000 0.0022 0.0000 0.0000	undef undef undef 0.0000 1.5482 0.6459 undef undef undef	10
Hoden Lunge Magen-Speiseroehre	0.0000 0.0000 0.0000 0.0000	0.0000 0.0137 0.0000 0.0000 0.0000	undef undef 0.0000 undef undef undef undef undef	. 15
Pankreas	0.0000 0.0000 0.0000 0.0048	0.0060 0.0000 0.0000 0.0000 0.0021 0.0000	0.2855 3.5025 undef undef undef undef undef undef 2.2373 0.4470 undef undef	. 20
Brust-Hyperplasie Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane	0.0000 0.0000 0.0030 0.0000		ander mider	25
Weisse_Blutkoerperchen	0.0017 FOETUS %Haeufigkeit			30
Entwicklung Gastrointenstinal Gehirn Haematopoetisch Herz-Blutgefaesse	0.0031 0.0000 0.0039 0.0000			35
Lunge Niere Prostata Sinnesorgane	0.0000			40
	%Haeufigkeit	TRAHIERTE BIE	LIOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal	0.0160 0.0000 0.0029			45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0065 0.0000 0.0082			50
Nerven Prostata Sinnesorgane	0.0513			55

60

Elektronischer Northern-Blot für SEQ. ID No.: 51

```
TUMOR
                                                         Verhaeltnisse
                               %Haeufigkeit %Haeufigkeit N/T
                                                               T/N
                                                         0.6271 1.5947
                       Blase 0.0465
                                            0.0741
5
                       Brust 0.0386
                                            0.0501
                                                         0.7711 1.2968
                                            0.0546
                                                         0.6121 1.6336
                   Eierstock 0.0334
                                            0.0300
                                                         1.0351 0.9661
           Endokrines_Gewebe 0.0310
            Gastrointestinal 0.0252
                                            0.0190
                                                         1.3232 0.7558
                                                         0.6532 1.5310
                       Gehirn 0.0458
                                            0.0701
10
                                                         0.0986 10.1456
             Haematopoetisch 0.0112
                                            0.1135
                                                         undef 0.0000
                         Haut 0.0448
                                            0.0000
                                                         undef 0.0000
                   Hepatisch 0.0347
                                            0.0000
                         Herz 0.1123
                                                         0.8170 1.2240
                                            0.1375
                        Hoden 0.0366
                                            0.0468
                                                         0.7835 1.2763
                        Lunge 0.0535
                                            0.0449
                                                         1.1920 0.8389
15
          Magen-Speiseroehre 0.0193
                                            0.0153
                                                         1.2599 0.7937
              Muskel-Skelett 0.0685
                                            0.1860
                                                         0.3684 2.7145
                        Niere 0.0119
                                                         0.1336 7.4857
                                            0.0890
                     Pankreas 0.0151
                                            0.0828
                                                         0.1828 5.4691
                                                         1.9092 0.5238
                                            0.0533
                        Penis 0.1018
20
                     Prostata 0.0167
                                            0.0064
                                                         2.6101 0.3831
                       Uterus 0.0545
                                            0.2634
                                                         0.2070 4.8311
          Brust-Hyperplasie 0.0981
                    Duenndarm 0.0312
        Prostata-Hyperplasie 0.0386
25
                   Samenblase 0.0178
                Sinnesorgane 0.0235
      Weisse Blutkoerperchen 0.0009
                              FOETUS
30
                               %Haeufigkeit
                 Entwicklung 0.1383
           Gastrointenstinal 0.0924
                       Gehirn 0.0063
             Haematopoetisch 0.0393
35
           Herz-Blutgefaesse 0.0654
                       Lunge 0.0592
                       Niere 0.0309.
                     Prostata 0.2992
                Sinnesorgane 0.0279
40
                              NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                              %Haeufigkeit
                       Brust 0.0204
            Eierstock-Uterus 0.0068
45
           Endokrines Gewebe 0.0000
                      Foetal 0.0099
            Gastrointestinal 0.0000
             Haematopoetisch 0.0000
                 Haut-Muskel 0.0000
50
                       Hoden 0.0000
                       Lunge 0.0000
                      Nerven 0.0171
                    Prostata 0.0000
                Sinnesorgane 0.0387
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 52

	NORMAL %Haeufigkeit 0.0000 0.0013 0.0030 0.0036	TUMOR %Haeufigkeit 0.0000 0.0022 0.0000 0.0000	Verhaeltnisse N/T T/N undef undef 0.6116 1.6351 undef 0.0000 undef 0.0000	5
Gastrointestinal Gehirn Haematopoetisch Haut Hepatisch	0.0000 0.0008 0.0000 0.0000	0.0000 0.0099 0.0000 0.0000 0.0000	undef undef 0.0860 11.6263 undef undef undef undef undef undef undef undef undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0061 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	undef 0.0000 undef undef undef undef undef undef undef 0.0000	15
Prostata Uterus Brust-Hyperplasie	0.0000 0.0119 0.0083 0.0036	0.0000 0.0000 0.0021 0.0000	undef undef undef undef 5.5932 0.1788 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0030 0.0000 0.0000			25
 Entwicklung	FOETUS %Haeufigkeit 0.0000	•		30
	0.0000 0.0000 0.0000 0.0037			35
Niere Prostata Sinnesorgane	0.0000		•	40
Brust Eierstock-Uterus Endokrines_Gewebe	%Haeufigkeit 0.0136 0.0114	BTRAHIERTE BI	BLIOTHEKEN	45
Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0017 0.0122 0.0000 0.0000	·		50
Lunge Nerven Prostata Sinnesorgane	0.0000 0.0040 0.0000 0.0000			55

65

Elektronischer Northern-Blot für SEQ. ID No.: 53

```
TUMOR
                                                        Verhaeltnisse
                            %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                                          0.0051
                                                       0.0000 undef
                      Blase 0.0000
5
                                                       0.0000 undef
                      Brust 0.0000
                                          0.0044
                                                       undef 0.0000
                 Eierstock 0.0030
                                          0.0000
                                                       2.0093 0.4977
         Endokrines Gewebe 0.0055
                                          0.0027
          Gastrointestinal 0.0058
                                          0.0048
                                                       1.2214 0.8187
                                          0.0000
                                                       undef undef
                     Gehirn 0.0000
10
           Haematopoetisch 0.0000
                                                       undef undef
                                          0.0000
                                                       undef undef
                       Haut 0.0000
                                          0.0000
                                                       undef undef
                 Hepatisch 0.0000
                                          0.0000
                       Herz 0.0032
                                          0.0000
                                                       undef 0.0000
                                                       undef undef
                      Hoden 0.0000
                                          0.0000
                      Lunge 0.0000
                                                       0.0000 undef
                                          0.0024
15
                                                       0.0000 undef
        Magen-Speiseroehre 0.0000
                                          0.0153
                                                       undef 0.0000
undef undef
            Muskel-Skelett 0.0034
                                          0.0000
                                          0.0000
                     Niere 0.0000
                                                       undef undef
                   Pankreas 0.0000
                                          0.0000
                      Penis 0.0000
                                                       undef undef
                                          0.0000
20
                                                       3.3559 0.2980
                   Prostata 0.0071
                                          0.0021
                                          0.0000
                                                       undef 0.0000
                     Uterus 0.0033
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0030
25
                 Samenblase 0.0000
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0000
                            FOETUS
30
                            %Haeufigkeit
                Entwicklung 0.0000
         Gastrointenstinal 0.0000
                     Gehirn 0.0000
           Haematopoetisch 0.0000
         Herz-Blutgefaesse 0.0000
35
                      Lunge 0.0037
                      Niere 0.0062
                   Prostata 0.0000
              Sinnesorgane 0.0140
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKĖN
                            %Haeufigkeit
                     Brust 0.0000
          Eierstock-Uterus 0.0046
45
         Endokrines_Gewebe 0.0000
                     Foetal 0.0000
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
               Haut-Muskel 0.0032
                     Hoden 0.0000
50
                     Lunge 0.0000
                    Nerven 0.0030
                  Prostata 0.0128
              Sinnesorgane 0.0000
55
```

60 ·

65

Elektronischer Northern-Blot für SEQ. ID No.: 54

Blase Brust Eierstock Endokrines Gewebe	NORMAL %Haeufigkeit 0.0093 0.0200 0.0152 0.0091	TUMOR %Haeufigkeit 0.0077 0.0044 0.0104 0.0054	Verhaeltnisse N/T T/N 1.2123 0.8249 4.5868 0.2180 1.4608 0.6846 1.6745 0.5972	5
Hepatisch	0.0110 0.0056 0.0149	0.0049 0.0033 0.0000 0.0000 0.0000	0.8143 1.2281 3.3545 0.2981 undef 0.0000 undef 0.0000 undef 0.0000 undef 0.0000	10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0122 0.0062 0.0097	0.0000 0.0071 0.0000 0.0240 0.0000	undef 0.0000 0.8779 1.1391 undef 0.0000 0.2141 4.6701 undef 0.0000	15
Prostata Uterus Brust-Hyperplasie	0.0060 0.0119 0.0050 0.0000	0.0110 0.0000 0.0043 0.0214	0.1714 5.8337 undef 0.0000 2.7966 0.3576 0.2321 4.3088	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0208 0.0000 0.0000			25
Entwicklung Gastrointenstinal				30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0250 0.0275 0.0082 0.0037 0.0185			35
Sinnesorgane				40
	NORMIERTE/SUB %Haeufigkeit	TRAHIERTE BIE	LIOTHEKEN	
Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	0.0136 0.0046 0.0000 0.0023	·	·	45
Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0130 0.0000 0.0082			50
Nerven Prostata Sinnesorgane	0.0064			55

59

60

Elektronischer Northern-Blot für SEQ. ID No.: 55

```
NORMAT.
                                          TUMOR.
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                                                        0.6062 1.6497
                      Blase 0.0093
                                          0.0153
5
                      Brust 0.0053
                                          0.0065
                                                        0.8154 1.2263.
                  Eierstock 0.0000
                                          0.0052
                                                        0.0000 undef
                                                        1.0047 0.9954
          Endokrines Gewebe 0.0055
                                          0.0054
          Gastrointestinal 0.0039
                                                        0.8143 1.2281
                                          0.0048
                                                        1.2902 0.7751
                     Gehirn 0.0042
                                          0.0033
                                                        undef 0.0000
10
            Haematopoetisch 0.0028
                                          0.0000
                       Haut 0.0000
                                          0.0000
                                                        undef undef
                  Hepatisch 0.0050
                                          0.0129
                                                        0.3826 2.6139
                       Herz 0.0074
                                          0.0000
                                                        undef 0.0000
                      Hoden 0.0061
                                          0.0234
                                                        0.2612 3.8288
                      Lunge 0.0100
                                          0.0095
                                                        1.0534 0.9493
15
                                          0.0000
        Magen-Speiseroehre 0.0000
                                                        undef undef
            Muskel-Skelett 0.0034
                                          0.0000
                                                        undef 0.0000
                      Niere 0.0089
                                          0.0137
                                                        0.6512 1.5355
                                                        undef 0.0000
undef 0.0000
                   Pankreas 0.0057
                                          0.0000
                      Penis 0.0030
                                          0.0000
20
                                                        2.2373 0.4470
                   Prostata 0.0048
                                          0.0021
                     Uterus 0.0066
                                          0.0071
                                                        0.9283 1.0772
         Brust-Hyperplasie 0.0036
                  Duenndarm 0.0000
      Prostata-Hyperplasie 0.0059
                 Samenblase 0.0089
25
               Sinnesorgane 0.0118
    Weisse Blutkoerperchen 0.0026
                            FOETUS
30
                            %Haeufigkeit
                Entwicklung 0.0000
         Gastrointenstinal 0.0031
                     Gehirn 0.0000
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0000
                      Lunge 0.0000
                      Niere 0.0062
                   Prostata 0.0249
              Sinnesorgane 0.0000
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                      Brust 0.0000
          Eierstock-Uterus 0.0046
45
         Endokrines_Gewebe 0.0000
                     Foetal 0.0017
          Gastrointestinal 0.0000
           Haematopoetisch 0.0000
               Haut-Muskel 0.0000
50
                      Hoden 0.0000
                      Lunge 0.0082
                     Nerven 0.0010
                   Prostata 0.0128
              Sinnesorgane 0.0000
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 56

	NORMAL	TUMOR	Verhaeltnisse	
-1		%Haeufigkeit		
	0.0000	0.0000	undef undef	5
	0.0013	0.0022	0.6116 1.6351	
Eierstock		0.0000	undef 0.0000	
Endokrines_Gewebe		0.0109	0.3349 2.9861	
Gastrointestinal Gehirn		0.0000	undef 0.0000	
Haematopoetisch		0.0077 0.0000	0.1106 9.0427 undef undef	10
	0.0000	0.0000	under under undef undef	
Hepatisch		0.0000	undef undef	
nepaciscn	0.0000	0.0000	undef undef	
	0.0000	0.0000	undef undef	
	0.0037	0.0024	1.5801 0.6329	15
Magen-Speiseroehre		0.0000	undef undef	13
Muskel-Skelett		0.0000	undef 0.0000	
	0.0000	0.0000	undef undef	
Pankreas		0.0000	undef undef	
	0.0000	0.0000	undef undef	
Prostata		0.0021	5.5932 0.1788	20
Uterus		0.0142	0.2321 4.3088	
Brust-Hyperplasie		***************************************		
Duenndarm				
Prostata-Hyperplasie				
Samenblase				25
Sinnesorgane	0.0000	•		
Weisse Blutkoerperchen				
_				
	FOETUS	•		30
	%Haeufigkeit			
Entwicklung				
Gastrointenstinal		·		
Gehirn				
Hacmatonooticch	0 00 40			
Haematopoetisch				35
Herz-Blutgefaesse	0.0000			35
Herz-Blutgefaesse Lunge	0.0000 0.0074			35
Herz-Blutgefaesse Lunge Niere	0.0000 0.0074 0.0000			35
Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0074 0.0000 0.0000			35
Herz-Blutgefaesse Lunge Niere	0.0000 0.0074 0.0000 0.0000			
Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0074 0.0000 0.0000			35 40
Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0074 0.0000 0.0000 0.0279	STRAHIERTE RIF	AT.TOTHEKEN	
Herz-Blutgefaesse Lunge Niere Prostata	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE	STRAHIERTE BIE	BLIOTHEKEN	
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit	STRAHIERTE BIE	BLIOTHEKEN	
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183	STRAHIERTE BIE	BLIOTHEKEN	
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000 0.0000	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000 0.0000 0.0032 0.0156	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000 0.0032 0.0156 0.0000	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0041 0.0000 0.0032 0.0156 0.0000 0.0020	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000 0.0032 0.0156 0.0000 0.0020 0.0020	STRAHIERTE BIE	BLIOTHEKEN	40
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000 0.0032 0.0156 0.0000 0.0020 0.0020	STRAHIERTE BIE	BLIOTHEKEN	40 45 50
Herz-Blutgefaesse Lunge Niere Prostata Sinnesorgane Brust Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven Prostata	0.0000 0.0074 0.0000 0.0000 0.0279 NORMIERTE/SUE %Haeufigkeit 0.0000 0.0183 0.0000 0.0041 0.0000 0.0000 0.0032 0.0156 0.0000 0.0020 0.0020	STRAHIERTE BIE	BLIOTHEKEN	40

61

60

Elektronischer Northern-Blot für SEQ. ID No.: 57

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                             %Haeufigkeit %Haeufigkeit N/T
                                                              T/N
                      Blase 0.0046
                                          0.0077
                                                        0.6062 1.6497
5
                      Brust 0.0187
                                          0.0065
                                                        2.8540 0.3504
                  Eierstock 0.0030
                                                        0.1669 5.9900
                                          0.0182
          Endokrines Gewebe 0.0201
                                          0.0082
                                                        2.4559 0.4072
           Gastrointestinal 0.0000
                                          0.0048
                                                        0.0000 undef
                     Gehirn 0.0034
                                          0.0011
                                                        3.0964 0.3230
10
            Haematopoetisch 0.0126
                                          0.0378
                                                        0.3327 3.0061
                       Haut 0.0099
                                                        undef 0.0000
                                          0.0000
                  Hepatisch 0.0000
                                          0.0065
                                                        0.0000 undef
                       Herz 0.0064
                                          0.0000
                                                        undef 0.0000
                      Hoden 0.0061
                                          0.0000
                                                        undef 0.0000
                      Lunge 0.0137
                                          0.0071
                                                        1.9313 0.5178
15
        Magen-Speiseroehre 0.0000
                                                        0.0000 undef
                                          0.0077
                                                        undef 0.0000
            Muskel-Skelett 0.0069
                                          0.0000
                      Niere 0.0059
                                          0.0068
                                                        0.8683 1.1517
                   Pankreas 0.0000
                                          0.0166
                                                        0.0000 undef
                      Penis 0.0000
                                          0.0000
                                                        undef undef
20
                   Prostata 0.0095
                                          0.0021
                                                        4.4745 0.2235
                                                        undef 0.0000
                     Uterus 0.0050
                                          0.0000
         Brust-Hyperplasie 0.0109
                  Duenndarm 0.0125
      Prostata-Hyperplasie 0.0000
25
                 Samenblase 0.0000
               Sinnesorgane 0.0235
    Weisse Blutkoerperchen 0.0096
                            FOETUS
30
                            %Haeufigkeit
                Entwicklung 0.0000
         Gastrointenstinal 0.0062
                    Gehirn 0.0000
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0041
                      Lunge 0.0000
                      Niere 0.0062
                   Prostata 0.0000
               Sinnesorgane 0.0140
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                     Brust 0.0136
          Eierstock-Uterus 0.0228
45
         Endokrines_Gewebe 0.0000
                    Foetal 0.0052
          Gastrointestinal 0.0000
           Haematopoetisch 0.0057
               Haut-Muskel 0.0032
50
                     Hoden 0.0000
                     Lunge 0.0164
                    Nerven 0.0030
                  Prostata 0.0064
              Sinnesorgane 0.0000
55
60
```

65

Elektronischer Northern-Blot für SEQ. ID No.: 58

	NORMAL	TUMOR	Verhaeltnisse		
	*Haeufigkeit	%Haeufigkeit	N/T	T/N	5
	0.0093	0.0026	3.6370	0.2750	3
	0.0080	0.0022	3.6695	0.2725	
Eierstock Endokrines Gewebe		0.0078 0.0109	0.7791 0.1674	1.2836 5.9721	
Gastrointestinal		0.0103	0.5428	1.8422	
Gehirn		0.0033	1.0321	0.9689	10
Haematopoetisch	0.0084	0.0000	undef	0.0000	
	0.0895	0.0000	undef	0.0000	
Hepatisch		0.0000	undef	undef	
	0.0032 0.0183	0.0137 0.0000	0.2312 undef	4.3248 0.0000	15
	0.0037	0.0142	0.2634	3.7971	13
Magen-Speiseroehre		0.0000	undef	undef	
Muskel-Skelett	0.0051	0.0000	undef	0.0000	
	0.0000	0.0068	0.0000	undef	
Pankreas		0.0000	undef	0.0000	20
Penis Prostata	0.0090	0.0000 0.0021	undef 3.3559	0.0000 0.2980	
Uterus		0.0021	undef	undef	
Brust-Hyperplasie		0.000	unucı		
Duenndarm					
Prostata-Hyperplasie	0.0030				25
Samenblase					
Sinnesorgane					
Weisse_Blutkoerperchen	0.0026				
				•	30
	FOETUS				
	%Haeufigkeit				
Entwicklung	0.0000				
Gastrointenstinal Gehirn	0.0031				
Haematopoetisch					35
Herz-Blutgefaesse					
Lunge	0.0148				
	0.0124				
Prostata					40
Sinnesorgane	0.0000				
	· · · · · · · · · · · · · · · · · · ·	TRAHIERTE BIE	BLIOTHEKEN		
	%Haeufigkeit				
Brust Eierstock-Uterus	0.0000	•			45
Endokrines Gewebe					
Foetal					
Gastrointestinal					
	0.0057				50
Haut-Muskel					50
	0.0156				
Lunge Nerven	0.0082				
Prostata					
- Sinnesorgane					55
_					

65

Elektronischer Northern-Blot für SEQ. ID No.: 60

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T	e T∕N
5					
		0.0046 0.0040	0.0000 0.0022	undef 1.8347	0.0000 0.5450
	Eierstock		0.0026	0.0000	undef
	Endokrines Gewebe		0.0054	0.0000	undef
	Gastrointestinal		0.0000	undef	0.0000
10	Gehirn		0.0033	2.0643	0.4844
	Haematopoetisch		0.0000	undef .	undef
		0.0000	0.0000	undef	undef
	Hepatisch			undef '	0.0000
		0.0011 0.0061	0.0000	undef undef	0.0000
15		0.0050	0.0000 0.0000	undef	0.0000
	Magen-Speiseroehre	0.0000	0.0000	undef	undef
	Muskel-Skelett		0.0000	undef	undef
	Niere	0.0000	0.0000	undef	undef
20	Pankreas	0.0000	0.0000	undef	undef
20		0.0060	0.0000	undef	0.0000
	Prostata		0.0000	undef	0.0000
	Uterus Brust-Hyperplasie	0.0017	0.0000	undef	0.0000
	Duenndarm	0.0000			
25	Prostata-Hyperplasie				
	Samenblase	0.0000	•		
	Sinnesorgane	0.0235			
	Weisse_Blutkoerperchen	0.0026	•		
30	·				
30	•	FOETUS			
		%Haeufigkeit			
	Entwicklung	0.0000			
	Gastrointenstinal				
35	Gehirn				
	Haematopoetisch	0.0039			
	Herz-Blutgefaesse				
	Lunge				
40	Prostata	0.0000			
40	Sinnesorgane				
	orinicooradine.				
		NORMIERTE/SUE	TRAHIERTE BIE	LIOTHEKEN	
45		%Haeufigkeit			
	Brust	0.0000			
		0.0046			
		0.0000			
50	Foetal				
30	Gastrointestinal Haematopoetisch				
	Haut-Muskel	0.0032			•
	Hoden				
	Lunge				
55	Nerven	0.0010			
	Prostata				•
	Sinnesorgane	0.0000			

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 61

	0.0000	TUMOR %Haeufigkeit 0.0128 0.0022 0.0000	Verhaeltnisse N/T T/N 0.0000 undef 0.0000 undef undef undef	s
Haematopoetisch Haut Hepatisch	0.0078 0.0034 0.0000 0.0000	0.0109 0.0000 0.0033 0.0000 0.0000 0.0000	0.1674 5.9721 undef 0.0000 1.0321 0.9689 undef undef undef undef undef 0.0000 undef 0.0000	.10
Hoden Lunge Magen-Speiseroehre Muskel-Skelett	0.0183 0.0025 0.0000	0.0000 0.0071 0.0000 0.0000	undef 0.0000 0.3511 2.8478 undef undef undef 0.0000 undef undef	15
Pankreas	0.0019 0.0120 0.0071 0.0033	0.0110 0.0000 0.0021 0.0000	0.1714 5.8337 undef 0.0000 3.3559 0.2980 undef 0.0000	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0093 0.0030 0.0000 0.0000		:	25
Entwicklung Gastrointenstinal				30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0188 0.0000			35
Prostata Sinnesorgane				40
	%Haeufigkeit	STRAHIERTE BIE	LIOTHEKEN	
Eierstock-Uterus Endokrines_Gewebe Foetal	0.0000			45
Gastrointestinal Haematopoetisch Haut-Muskel Hoden Lunge Nerven	0.0000 0.0000 0.0000 0.0000 0.0164 0.0050			50
Prostata Sinnesorgane	*	٠		55

65

60

Elektronischer Northern-Blot für SEQ. ID No.: 62

```
NORMAL
                                          TUMOR
                                                        Verhaeltnisse
                            %Haeufigkeit %Haeufigkeit N/T
                                                             T/N
                                                        1.8185 0.5499
                      Blase 0.0046
                                          0.0026
5
                                          0.0022
                      Brust 0.0133
                                                        6.1158 0.1635
                  Eierstock 0.0061
                                          0.0052
                                                        1.1686 0.8557
         Endokrines Gewebe 0.0000
                                          0.0245
                                                        0.0000 undef
          Gastrointestinal 0.0078
                                          0.0190
                                                        0.4071 2.4562
                     Gehirn 0.0119
                                          0.0022
                                                        5.4187 0.1845
10
           Haematopoetisch 0.0070
                                                        0.0924 10.8219
                                          0.0757
                       Haut 0.0050
                                          0.0000
                                                        undef 0.0000
                                                        undef 0.0000
                  Hepatisch 0.0099
                                          0.0000
                                                        0.2698 3.7070
                       Herz 0.0074
                                          0.0275
                      Hoden 0.0000
                                          0.0234
                                                        0.0000 undef
                                                        0.4214 2.3732
                      Lunge 0.0050
                                          0.0118
15
                                                       0.6300 1.5874
        Magen-Speiseroehre 0.0097
                                          0.0153
            Muskel-Skelett 0.0034
                                          0.0000
                                                        undef 0.0000
                                                        0.5789 1.7275
                      Niere 0.0119
                                          0.0205
                                                        undef 0.0000
undef 0.0000
                   Pankreas 0.0038
                                          0.0000
                      Penis 0.0060
                                          0.0000
20
                   Prostata 0.0191
                                          0.0043
                                                        4.4745 0.2235
                    Uterus 0.0066
                                          0.0000
                                                        undef 0.0000
         Brust-Hyperplasie 0.0000
                  Duenndarm 0.0031
      Prostata-Hyperplasie 0.0059
                Samenblase 0.0000
25
               Sinnesorgane 0.0000
    Weisse Blutkoerperchen 0.0070
                            FOETUS
30
                            %Haeufigkeit
               Entwicklung 0.0000
         Gastrointenstinal 0.0031
                     Gehirn 0.0000
           Haematopoetisch 0.0000
35
         Herz-Blutgefaesse 0.0082
                      Lunge 0.0037
                      Niere 0.0309
                   Prostata 0.0000
              Sinnesorgane 0.0140
40
                            NORMIERTE/SUBTRAHIERTE BIBLIOTHEKEN
                            %Haeufigkeit
                      Brust 0.0068
          Eierstock-Uterus 0.0183
45
         Endokrines_Gewebe 0.0000
                     Foetal 0.0140
          Gastrointestinal 0.0244
           Haematopoetisch 0.0000
               Haut-Muskel 0.0194
                      Hoden 0.0000
50
                     Lunge 0.0000
                    Nerven 0.0161
                   Prostata 0.0128
              Sinnesorgane 0.0155
55
```

60

65

Elektronischer Northern-Blot für SEQ. ID No.: 63

Brust Eierstock	0.0186 0.0560 0.0395	TUMOR %Haeufigkeit 0.0844 0.0370 0.0260 0.0245	Verhaeltnisse N/T T/N 0.2204 4.5368 1.5110 0.6618 1.5192 0.6582 0.5209 1.9196	5
Hepatisch	0.0775 0.0254 0.0364 0.2188	0.0857 0.0350 0.0378 0.0000 0.0582 0.1787	0.9047 1.1053 0.7257 1.3779 0.9610 1.0406 undef 0.0000 0.3401 2.9406 0.6225 1.6064	10
Lunge Magen-Speiseroehre Muskel-Skelett	0.0183 0.1133 0.0676 0.1696 0.0684	0.0117 0.0804 0.0307 0.0300 0.0753	1.5671 0.6381 1.4097 0.7094 2.2049 0.4535 5.6530 0.1769 0.9078 1.1016	15
Prostata Uterus Brust-Hyperplasie	0.0749 0.0715 0.0611 0.0254	0.0607 0.1066 0.0106 0.0214	0.2493 4.0107 0.7019 1.4246 6.7118 0.1490 2.8624 0.3494	20
Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse_Blutkoerperchen	0.0386 0.0445 0.0941			25
Entwicklung Gastrointenstinal	FOETUS %Haeufigkeit 0.0615			30
Gehirn Haematopoetisch Herz-Blutgefaesse Lunge	0.0000 0.0079			35
Prostata Sinnesorgane	0.0499 0.0000	BTRAHIERTE BI	BLIOTHEKEN	40
Eierstock-Uterus Endokrines_Gewebe Foetal Gastrointestinal	%Haeufigkeit 0.0408 0.0114 0.0000 0.0338 0.1098	·		45
Haematopoetisch Haut-Muskel Hoden Lunge	0.0114 0.0421 0.0312 0.2786 0.0080			50
Sinnesorgane	0.0000			55

67

60

Elektronischer Northern-Blot für SEQ. ID No.: 64

		NORMAL %Haeufigkeit	TUMOR %Haeufigkeit	Verhaeltnisse N/T T/N
5		0.0201	0.0153 0.0174 0.0182 0.0109 0.0333	0.6062 1.6497 0.9174 1.0901 0.5008 1.9967 1.8419 0.5429 0.5816 1.7193
10	Gehirn Haematopoetisch Haut Hepatisch Herz	0.0076 0.0182 0.0050 0.0099 0.0148	0.0219 0.0378 0.0000 0.0323 0.0275	0.3483 2.8707 0.4805 2.0811 undef 0.0000 0.3061 3.2673 0.5395 1.8535
15	Lunge Magen-Speiseroehre Muskel-Skelett	0.0154 0.0416	0.0000 0.0118 0.0307 0.0120 0.0068 0.0110	undef 0.0000 1.4748 0.6781 0.9449 1.0583 1.2848 0.7783 6.0782 0.1645 1.5428 0.6482
20	Penis Prostata Uterus Brust-Hyperplasie	0.0120 0.0191 0.0149 0.0182	0.0267 0.0085 0.0142	0.4492 2.2260 2.2373 0.4470 1.0444 0.9575
25	Duenndarm Prostata-Hyperplasie Samenblase Sinnesorgane Weisse Blutkoerperchen	0.0059 0.0178 0.0353		
30	merade_brackoerperener			
50	Entwicklung Gastrointenstinal			
35	Niere	0.0000 0.0074 0.0124		
40	Prostata Sinnesorgane	0.0249		
•		NORMIERTE/SUI %Haeufigkeit	BTRAHIERTE BI	BLIOTHEKEN
45	Endokrines_Gewebe Foetal	0.0175		
50		0.0114 0.0291 0.0000 0.0082		
55	Prostata Sinnesorgane	0.0000		

2.2 Fisher-Test

Um zu entscheiden, ob eine Partial-Sequenz S eines Gens in einer Bibliothek für Normal-Gewebe signifikant häufiger oder seltener vorkommt als in einer Bibliothek für entartetes Gewebe, wird Fishers Exakter Test, ein statistisches Standardverfahren (Hays, W. L., (1991) Statistics, Harcourt Brace College Publishers, FortWorth), durchgeführt.

Die Null-Hypothese lautet: die beiden Bibliotheken können bezüglich der Häufigkeit zu S homologer Sequenzen nicht unterschieden werden. Falls die Null-Hypothese mit hinreichend hoher Sicherheit abgelehnt werden kann, wird das zu S gehörende Gen als interessanter Kandidat für ein Krebs-Gen akzeptiert, und es wird im nächsten Schritt versucht, eine Verlängerung seiner Sequenz zu erreichen.

Beispiel 3

Automatische Verlängerung der Partial-Sequenz

Die automatische Verlängerung der Partial-Sequenz S vollzieht sich in drei Schritten:

3

10

- 1. Ermittlung aller zu S homologen Sequenzen aus der Gesamtmenge der zur Verfügung stehenden Sequenzen mit Hilfe von BLAST.
- 2. Assemblierung dieser Sequenzen mittels des Standardprogramms GAP4 (Bonfield, J. K., Smith, K. F., und Staden R. (1995), Nucleic Acids Research 23 4992–4999) (Contig-Bildung).
- 3. Berechnung einer Konsens-Sequenz C aus den assemblierten Sequenzen.

Die Konsens-Sequenz C wird im allgemeinen länger sein als die Ausgangssequenz s. Ihr elektronischer Northern-Blot wird demzufolge von dem für S abweichen. Ein erneuter Fisher-Test entscheidet, ob die Alternativ-Hypothese der Abweichung von einer gleichmäßigen Expression in beiden Bibliotheken aufrechterhalten werden kann. Ist dies der Fall, wird versucht, C in gleicher Weise wie S zu verlängern. Diese Iteration wird mit der jeweils erhaltenen Konsensus-Sequenzen C_i (i: Index der Iteration) fortgesetzt, bis die Alternativ-Hypothese verworfen wird (if H_0 Exit; Abbruchkriterium I) oder bis keine automatische Verlängerung mehr möglich ist (while $C_i > C_{i-1}$; Abbruchkriterium II).

Im Fall des Abbruchkriteriums II bekommt man mit der nach der letzten Iteration vorliegenden Konsens-Sequenz eine komplette oder annähernd komplette Sequenz eines Gens, das mit hoher statistischer Sicherheit mit Krebs in Zusammenhang gebracht werden kann.

Analog der oben beschriebenen Beispiele konnten die in der Tabelle 1 beschriebenen Nukleinsäure-Sequenzen aus Prostatatumor-Gewebe gefunden werden.

Ferner konnten zu den einzelnen Nukleinsäure-Sequenzen die Peptidsequenzen (ORFs) bestimmt werden, die in der Tabelle II aufgelistet sind, wobei wenigen Nukleinsäure-Sequenzen kein Peptid zugeordnet werden kann und einigen Nukleinsäure-Sequenzen mehr als ein Peptid zugeordnet werden kann. Wie bereits oben erwähnt, sind sowohl die ermittelten Nukleinsäure-Sequenzen, als auch die den Nukleinsäure-Sequenzen zugeordneten Peptid-Sequenzen Gegenstand der vorliegenden Erfindung.

20

35

40

45

50

55

60

TABELLE I

Seq.	Expression	Funktion	Chromo-	EST Aus-	Länge der
ID			somen-	gangslän	Angemelde-
Nr.			Lokal.	ge	ten Sequenz
1	im normalen	humanes MAT8		222	730
	Prostatagewebe und in				•
	Brust- und				İ
	Blasentumoren erhöht				
2	im normalen	mit humanem Zyxin im		202	1436
	Prostatagewebe erhöht	3'-Bereich verwandt			
3	in gesundem Prostata-	Unbekannt		207	706
_	und Brustgewebe erhöht			24.5	12.55
4	im normalen	Unbekannt	1,	215	1263
	Prostatagewebe erhöht		D1S468-		
-	•	II.	D1S214	150	015
5	im normalen	Humaner Transkriptionsfaktor	17	179	817
	Prostatagewebe erhöht	SUPT4H. Das Hefe-Homolog ist für eine exakte Weitergabe			
		der Chromosomen während			
		der Zellteilung mit			
		verantwortlich.			
6	im normalen	Unbekannt		225	1329
U	Prostatagewebe erhöht	Onderanne		223	1329
7	im normalen	Unbekannt		231	761
•	Prostatagewebe erhöht	- Caronana		===	
8	im normalen	unbekannt	10,	248	1227
•	Prostatagewebe erhöht		D10S551-	0	
	•		D10S532		
9	im normalen Blasen-	Prä-mRNA splicing-Faktor	6	243	913
	und Prostatagewebe	Protein-Kinasen Inhibitor			
	erhöht				
10	4x stärker als im	humanes MVF-1		315	1126
	normalen				
	Prostatagewebe				
11 .	im normalen	unbekannt		261	537
	Prostatagewebe erhöht			252	
12	im normalen	Tax1 ist ein viraler		219	626
	Prostatagewebe erhöht	Transaktivator. Das Tax1-		}	
		bindende Protein verfügt sehr wahrscheinlich über eine			
		Hemmfunktion für solche			
		Transaktivatoren.		l .	
13	im normalen	Timp-3: Tissue inhibitor of		210	386
	Prostatagewebe erhöht	metalloproteinases-3			
14	ausschließlich in der	E4BP4 besitzt eine von der		217	847
	normalen Prostata	Bindungsstelle abhängige		l	
		Fähigkeit, Transkription zu			
	•	unterdrücken.			
15	ausschließlich in der	vermutlich humaner Beta-		232	813
	normalen Prostata	1-adrenerger Rezeptor,			
		humane Sequenz ist nicht			•
		publiziert			

Seq.	Expression	Funktion	Chromo-	EST Aus-	Länge der
ID	Expression	A dilktion	somen-	gangslänge	angemelde-
Nr.			Lokal.	gangsiange	ten Sequenz
16	stärker im normalen	Signaltransduktion	DOKai.	210	573
10	Brust- und	Signatu ansuuktion		210	3/3
	Prostatagewebe als im	ļ			1
	entsprechenden Tumor				
15	<u> </u>		 	244	486
17	verstärkt in der	unbekannt, geringe Homologie	Ì	244	400
	normalen Prostata,	zu einem Transkriptionsfaktor	 *		
	verglichen mit dem	von Aspergillus nidulans (quR)			
	entsprechenden			:	1
	Tumorgewebe	<u> </u>	ļ	015	((0)
18	ca. 6x stärker in der	unbekannt		215	662
	normalen Prostata,				
	verglichen mit dem	}			
	entsprechenden				
	Tumorgewebe				
19	ca. 2x stärker im	unbekannt		225	750
	normalen Prostata-				<u> </u>
	gewebe als im		Ļ		· [
	entsprechenden		ŀ		
	Tumorgewebe		ļ		
20	ca. 2x stärker im	unbekannt		214	756
	normalen Prostata-				
	gewebe als im				1
	entsprechenden				
	Tumorgewebe				
21	ca. 3x stärker im	Vermutlich humanes Homolog		229	1'001
	normalen Prostata-	des Drosophila Janus-A Gens.			1
	gewebe als im	Die Janus (JaK) Familie der			
	entsprechenden	Nichtrezeptor-Tyrosinkinasen	1		
	Tumorgewebe, ca. 7x	spielt eine wichtige Rolle in der			1. 1
	häufiger in Brust- und	Signaltransduktion von			
	Lungentumoren als in	Cytokinen			
	entsprechen-den				1
	Normalgeweben				
22	stärker im normalen	unbekannt	2,	234	896
	Prostatagewebe als im		D2S165-		
	ensprechenden		D2S146		
	Tumorgewebe				1
23	stärker im normalen	unbekannt; möglicherweise		184	580
	Prostatagewebe als im	humanes Gegenstück zu einem			
	ensprechenden	unbekannten Gen auf Hefe			
	Tumorgewebe	Chromosom IX			
24	5x stärker im normalen	vermutlich humanes		237	740
	Prostatagewebe als im	Gegenstück eines unbekannten			
	ensprechenden	Gens auf Hefe Chromosom		1	
	Tumorgewebe, stark	XVI		}	
	exprimiert in				
	Hauttumoren	1			
25	ca. 3x stärker im	unbekannt	3p21.1	256	857
20	normalen	was a special to		1	
	Prostatagewebe als im				1
	entsprechenden				1 . 1
	Tumorgewebe	}			
	Lumorgewene	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Seq. ID	Expression	Funktion	Chromo- somen-	EST Aus- gangslän	Länge der angemelde-
Nr.			Lokal.	ge	ten Sequenz
26	stärker im normalen Prostatagewebe als im ensprechenden Tumorgewebe	unbekannt, möglicherweise neues Ca2+-bindendes Protein, da beide Treffer (Sorcin, ALG- 2) solche Proteine darstellen.		219	975
27	stärker im normalen Prostatagewebe als im ensprechenden Tumorgewebe	unbekannt		259	854
28	ca. 3x stärker im normalen Prostatagewebe als im entsprechenden Tumorgewebe	möglicherweise entfernter Verwandter der Familie MARCKS-Proteine ("myristoylated alanine-rich C kinase substrate")	11, D11S4076- D11S913 (64-70cM)	288	802
29	stärker im normalen Prostatagewebe als im ensprechenden Tumorgewebe	unbekannt		224	807
30	ca. 4x stärker im normalen Prostatagewebe als im entsprechenden Tumorgewebe	unbekannt, möglicherweise humanes Gegenstück eines thaliana von Caenorhabditis elegans		276	777
31	stärker im normalen Prostatagewebe als im ensprechenden Tumorgewebe	unbekannt, humaner Klon hat Homologie zu einem hypothetischen Protein aus Cyanobakterien		238	501
32	stärker im normalen Prostatagewebe als im ensprechenden Tumorgewebe, 10x erhöht in Muskel- und Skelettumoren	unbekannt, möglicherweise humanes Gegenstück einer Glykosyl Transferase unbestimmter Spezifität aus Arabidopsis thaliana	3p21.1	284	1104
33	in normalem Prostatagewebe erhöht	Ligand der Yes-Kinase		208	809
34	in normalem Prostatagewebe und in endokrinen und Mammatumoren erhöht	Homolog zu der humanen peptidyl-prolyl Isomerase (PIN1)		217	580
35	in normalem Prostatagewebe und in gastrointestinalen Tumoren erhöht	unbekannt		223	825
36	in normalem Prostatagewebe erhöht	unbekannt		293	798

Seq.	Expression	Funktion	Chromo-	EST Aus-	Länge der
ID	•	·	somen-	gangslän	angemelde-
Nr.			Lokal.	ge	ten Sequenz
49	in normalem	humaner cyclin-dependent	6, D6S276-	232	572
	Prostatagewebe erhöht	kinase inhibitor I	D6S439	l	
50	in normalem	unbekannt		250	1185
	Prostatagewebe erhöht				
51	in normalem	humanes SPARC/ostenectin.		261	1027
	Prostatagewebe und in	Für ein homoges Protein,			<u> </u>
	haematopoe-tischen	Hevin, wurde eine verminderte			
	Tumoren erhöht	Expression im metastatischen		1	[
		Prostatakarzinom			
		nachgewiesen.			
52	in normalem	unbekannt		261	984
	Prostatagewebe und in				
	Gehirntumoren erhöht				
53	in normalem	unbekannt		246	621
	Prostatagewebe erhöht				
54	in normalem	humanes B4-2 Protein		239	1128
	Prostatagewebe und in				
2.00	Skelettumoren erhöht				
55	in normalem	humanes TRAMP Protein,		267	1121
:	Prostatagewebe und	dieses Protein ist an der			ŀ
	hepatischen Tumoren	Transiokation von			
	erhöht	neugebildeten Proteinen in das			
		endoplasmatische Reticulum			, [
		beteiligt. unbekannt	<u> </u>	160	876
56	in normalem	unbekannt		100	870
	Prostatagewebe und in Uterustumoren erhöht		ļ		
		unbekannt, möglicherweise		288	1328
57	in normalem Prostatagewebe erhöht	kodiert die vorliegende DNA-		200	1320
	Prostatagewene ernout	Sequenz für ein homologes			
		Protein aus der Familie der	[
		Methyl-CpG-bindenden		1	
		Proteine			i
58	ca. 3x stärker in	humanes Gegenstück eines	11,	310	697
20	normalem	unbekannten Hefe-Proteins	D11S1311-		
	Prostatagewebe als im		D11S923		
	entsprechenden		(97-102		
	Tumorgewebe		cM9		
59	ca. 5x stärker in	unbekannt		378	1389
	normalem				
	Prostatagewebe als im				
i	entsprechenden				
i	Tumorgewebe				

Seq. ID Nr.	Expression	Funktion	Chromo- somen- Lokal.	EST Aus- gangslän ge	Länge der angemelde- ten Sequenz	
60	stärker in normalem Prostatagewebe als im entsprechenden Tumorgewebe	unbekannt, Basen 460-530 kodieren möglicherweise für ähnliche Exons, welche in verschiedenen Genen durch alternatives Spleißen reguliert sind.		260	535	10
61	in normalem Prostatagewebe und in endokrinen Tumoren erhöht	unbekannt	16p13	216	1097	15
62	in normalem Prostata- und Brustgewebe erhöht	unbekannt		302	1860	
63	in normalem Prostata- , Blasen- und Brusttumoren erhöht	Humanes CAPL Protein	·	238	535	20

TABELLE II

DNA-Sequenz Seq. ID. No.	Peptid-Sequenz (ORF's) Seq. ID. No.	
1	65	30
2 3	66	
3	67	
	68	
	69	
4	70	35
4	71 72	
5 6 7 8	73	
7	74	
8	75	40
Ü	76	
	77	
	78	
	79	
	80 .	45
•	81	
9 10	82	
10	83 84	
11	85	50
	86	
	87	
	87 88 89	
	89	
12	90	55
14	91	
16	91 92 93 94	
17	93	
	94	60
	95 96	00
18	97	
10	98	
	99	
	99 100	65
	101	
19	101 102	
	•	

	DNA-Sequenz Seq. ID. No.	Peptid-Sequenz (ORF's) Seq. ID. No. 103
		104
5		105
	20	106
	21	107
	21	108
	22	109
10	23	110 111
	2,5	112
		113
	24	114
15	25	115
13	26	116
	27	117
		118
		119
20	28	120
		121
		122
		123
	20	124
25	29	125
		126
	•	127 128
	30	129
	30	130
30		131
	31	132
	32	133
	33	134
35		135
		136
		137
	34	138
	35	139
40		140
		141 142
		143
		144
45		145
73		146
	36	147
		148
		149
50	38	150
	20	151
	39 40	152 153
	41	154
	71	155
55		156
		157
	42	158
		159
60		160
		161
	43	162
		163
	4.4	164
65	44	165
	45	166 167
	46	168
	70	100

DNA-Sequenz	Peptid-Sequenz (ORF's)				
Seq. ID. No.	Seq. ID. No.		•		
504. 15. 110.	170				
	171			•	
	172				5
47	173				3
48	174				
48 49	175				
.,	176				
	177				10
	177 178				10
	179				
	180				
50	181				
	182				15
51	183				13
	184				
	185				
	186				
	187				20
52	188				20
	189				
	190				
	191	•			
	192				25
	193				
54	194				
54 55 56	195				
56	196				
	197				30
	198				
	199				
57	200				
58 59	201				
59	202				35
	203				
	204				
	205				
	206				
60	207				40
	208				
61	209				
61	210				
	2111				
	212 213				45
62	213				
UZ	214 215				
	216				
	210				
					50

Die erfinderischen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 64 der ermittelten Kandidatengene und die ermittelten Aminosäure-Sequenzen Seq. ID No. 65 bis Seq. ID No. 216 werden in dem nachfolgenden Sequenzprotokoll beschrieben.

Sequenzprotokoll

(1) ALLGEMEINE INFORMATION:

(i) ANMELDER:

10

15 . .

20

30

35

40

45

55

60

(A) NAME: metaGen - Gesellschaft für Genomforschung mbH

(B) STRASSE: Ihnestrasse 63

(C) STADT: Berlin

(E) LAND: Deutschland

(F) POST CODE (ZIP): D-14195

(G) TELEFON: (030)-8413 1672

(H) TELEFAX: (030)-8413 1671

(ii) TITEL DER ERFINDUNG:

Menschliche Nukleinsäure-Sequenzen aus

Prostatagewebe

²⁵ (iii) Anzahl der Sequenzen: 216

(iv) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC compatible

(C) OPERATING SYSTEM: PC-DOS/MS-DOS

(D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO)

(2) INFORMATION ÜBER SEQ ID NO: 1:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 730 Basenpaare

(B) TYP: Nukleinsäure

(C) STrang: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: EST

⁵⁰ (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN:

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 1:

CCACAACTGC GTTTGCTTAG	TGAAATTGTA CAGCAATCCT GGCGTGGCAG TCCTGCTCAG	CTTCGGATAA	AAAACACATC ACGCAGGACT	ATCTAAGGAA CCGCCTGGCA	AAGAAGTGAG GCCCGATTTC	180	5
GTGACCCTGG GAAGATAAAA TGCGCTGGGG AAGTTTGGCC TCAGCCCAAA	GCCTGCTTGT ACAGTCCTTT TTCTGTGCGC AGAAGTCCGG GCTGATGAGG TCTCTGCACA	GTTCCTGGCA CTACTATGAC CATGGGCATC TCACCATCCA ACAGACCAGC	GGCTTTCCTG TGGCACAGCC ATCATCGTCA GGGGAGACTC TGAAATTGGG	TCCTGGACGC TCCAGGTTGG TGAGTGCAAA CACCTCTCAT TGGAGGACCG	CAATGACCTA CGGGCTCATC ATGCAAATGC CACCCCAGGC TTCTCTGTCC	300 360 420 480 540	10
GGACTCCTTT	GCATGGCAGG CTAAAATGAT	GCCTCATCTC	ACCTCTCGCA	AGAGGGTCTC	TTTGTTCAAT	660	15
(2) INFORMA	TION ÜBER SE	Q ID NO: 2:					20
(A) LÄN (B) TYP: (C) STra	IZ CHARAKTE GE: 1436 Baser Nukleinsäure ng: einzel OLOGIE: linear						25
. ,	ÜLTYP: EST						30
(iii) HYPOTH	HETISCH: NEIN	ſ					
(iii) ANTI-SE	NSE: NEIN						35
(vi) HERKU (A) ORG (C) ORG	ANISMUS: ME	NSCH					
	GE HERKUNFI JOTHEK: cDN/						40
(xi) SEQUEN	NZ-BESCHREIB	BUNG: SEQ ID I	NO: 2:				45
GCCAGACACA TCCAGTCCCA CATCTCCGGC	GTCCCTTCC GTTCCATGTT GACCCAGCCT TCCAGCCCCT TCCTGGAGCC	CAGCCCCAGC GTGTCTTTGG AAGTTTTCTC	CCCAGCCCAA CTAACACCCA CAGTGACTCC	GCCTCAGGTC GCCCCGAGGG TAAGTTTACT	CAACTCCATG CCCCCAGCCT CCTGTGGCTT	60 120 180 240 300	50
AGCAGAGGGA ACCAAAACCA	TCTTTCTGCT GAAGCCCCGA GGTGCGCTCC GCTGACCCAG	GTGCAGGAGA CCTGGGGCCC	AGCAGCACCC CAGGGCCCCT	CGTGCCCCCA GACTCTGAAG	CCGGCTCAGA GAGGTGGAGG	360 420 480 540	55
CCGCGCTCTA CTCCAGGGCC	CGAACTCTGC GGGCAGCTGT AGCAGTTCTA AGAAGTGTAA	TCCACATCGC .CAGTCTGGAG	CTGCTTCACC GGGGCGCCGT	TGCCACCAGT ACTGCGAGGG	GTGCGCAGAG CTGTTACACT	600 660 720 780	60
ACGGGCAAGG GGCACCTCCT CAGTACGCCC	CCTATCACCC TCATCGTGGA CGAGGTGCTC	GCACTGCTTC CCAGGCCAAC CGTCTGCTCT	ACCTGTGTGG CGGCCCCACT GAGCCCATCA	TCTGCGCCCG GTGTCCCCGA TGCCTGAGCC	CCCCTGGAG CTACCACAAG TGGCCGAGAT	840 900 960	
GACTGCGGGA CACGTGCTCT	GAGTGGTCGC AGCCCCTGTC GTCGGAAGTG CAGTCCATGC	GATTGAGGCA CCACACTGCT	GATGACAATG AGAGCCCAGA	GCTGCTTCCC CCTGAGTGAG	CCTGGACGGT GACAGGCCCT		65

5	CTCAGTTATT GTTTTGATGT CTAG TGCCCTGACC CAGGACCCAA CATC CCTCGCCCAT CCTGCAGGGA TTGC AAGGTTTAGT GCTGCTGCTT TCAG	GGTCTAG CCCACCG	GGATGCAGGA TCTTCCAGAC	TCCCCGCCCT ACCCCACCTG	GGGGTCTGGT AGGGGGGCAC	1320
	(2) INFORMATION ÜBER SEQ ID	NO: 3:				
10	(i) SEQUENZ CHARAKTERISTI(A) LÄNGE: 706 Basenpaare(B) TYP: Nukleinsäure	K:				
15	(C) STrang: einzel (D) TOPOLOGIE: linear					
	(ii) MOLEKÜLTYP: EST					
20	(iii) HYPOTHETISCH: NEIN					
	(iii) ANTI-SENSE: NEIN					
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	Ī				
30	(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA libra	ıry				
	(xi) SEQUENZ-BESCHREIBUNG	: SEO ID ì	NO: 3:			
35	() 22 QOZ. 12 22 QOZ. 12 QOZ.					
33	TGCGGCCCGG GCCTTAAAGC GTCCTTCTCTGGAG TCTCAGAGCC GCAGAAAGACTAC ACCTTCCAGA GGCAGTGTCCTTG CGCGTGGATC CGACTCCTCATCAA GGGAAGTGTG GCTC	AGACACC CTCTGCG GCGACCA	ACGACTCCCA GCGCCGCGAC TGGTGGCCCG	GAGGACCTTG AGGAAGCGGC GGTGTGGTCG	CGTCGGGCAA GGGCGAGCCG CTGATGAGGT	180 240
40	TGGGGCCCAG CGACAAGAGC CAGCCCTCC AAAGATTTAC TTTC TGATGTCAGC TCTGTCGGTG GCC	GCAGCCC GTGTGTC CCCATCC	TACAGAAGGC AGCAGACAGG GTGACTCCTG	TGGGGAGGTG CCTGCAGATA GAATGCAGGC	GTCCCCCCG CCCCAGCTCC ATCATGACGG	360 420 480
45	AGTATGTGAA GGCGCGCACC AAGGGCAGGGCTG CCACTGACCT GAAGCCGATTGCCG GCCCAATAAA GGAGCCGATTGCCG	FAGCGAG GACTCCG	TCAGCAGGGC GACTGGGACC	CGCCTGCCCC CCACTCCGAG	GGCCAGAACG	600
50	(2) INFORMATION ÜBER SEQ ID	NO: 4:				
	(i) SEQUENZ CHARAKTERISTI (A) LÄNGE: 1263 Basenpaare		•			
55	(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear					
60	(ii) MOLEKÜLTYP: EST					
	(iii) HYPOTHETISCH: NEIN		•			
	(iii) ANTI-SENSE: NEIN					
45						

65

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH

(C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 4: 10 CACTGGGATG GGCATACACT ACTCACAGGG TGTGTGAGAT GAGAAGAACA CGTCAAGTT TTTATACTCA GATGTGGGAG CGACATCAAT GAAATCTGTA CTGTATGAAA GCTACACAAA 119 AATGGGCAGA CATTTGGTTA ATTGTGCCAG ATACCTAAAA TGTATGTTCA GAAAAGCATT 179 TTATCAACTC AGAAATATGA CTTATTTCTA GATTTCATGG CTTAATGAAT TTTTTCATTG 239 TTATATATAC CAAAGAGGCT TACGGGTTCA TTGATTGGTT TGAAAACCAG ACAGACGGCC 299 15 GTGAGCCACC ACGCCCAGCC AAGATGAACT CCTTAAGGAC AGGATTTGGT AAGTGATTGA 359 CTTCTTTTTA GTTCCATGAT CTTGAGATTA TTTTTAGCTT TATAAATTTA GCAGTGGCAG 419 GGCCCGTGGA GAATCAGGTT AATGAGGTAA AGGCTTTCTG GGTATTTGCT GCCAAGGCCA 479 CATCACCAAT TTTCTCGATT TAAAAAACTG TCAAGAGATT TATTTTTCCA TTGCAGGTTT 539 TAAAGTGGAG ATTCTGAAGT GGAAAATAGG TACTGTCAGA ACAAAGCTAC CTGGAAACAG 599 20 CATAGAGTGA AGCCTTTCGT GAGGGCTTGC AGGCCGCTGC TGAGTGGCAG TTTACAGAAG 659 AGGTCGCGGG GTGAGCCTCT TAGCAGGACA GAAAACAAGG CAGCAGCGCA CCTGCCACCC 719 CTTCACGAGC TGCTCCTTGA GCCTAAAAAG TAGGCTTTAT TCATCCCTTC TGTTCATTTA 779 CCAACCTGGG GGATTGATAC GACCGGGGAA AATGTTCCTA AACCAGGAAG CTGCGTTAGC 839 GAATCAGCTT TGGTAAGATC TCGCCAACAG CTAGCTGCTT AGGAGTACCC CCACGATACG 899 25 CACAGCACAC CACTGTCCCT TCACTGCACT TTCTTCCTGC CTTAGGTAGT TGGGCTTGCC 959 ACCCTAGTTT GCTTTTGTAG TGGTTTGGCA AGGTTAGAAG GCCTCGGCCC CCTCTGTCAT 1019 GCTGGGAAGT GCCTACTCTC TGGGCCACTG CTGCAGAGGC CGTGGCACTT GTCATGGGTT 1079 TGGAAGACCC AGCCATCTGC AGCAGAGGCA GCCTATCCCA TTGCAAGGAG AGGAACTGAA 1139 30 CGGAGTAATT ATTCTACTCT TCTTTTTACA TAAATGGTTT AATTTAAATA ATTCAAAATT 1199 TGGAATTTCC TTTCACAGAT ACTGATAATC CTTTCCAGTT CTTAAATAAA AACTGCACTT 1259 1263 GGAT 35 (2) INFORMATION ÜBER SEQ ID NO: 5: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 817 Basenpaare 40 (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: EST 45 (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 50 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 55 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library 60 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 5: CTGCGACGCG CTCCGGCCCA GGTGGCGGCC GGCCGCCCAG CCTCCCCGCC TGCTGGCGGG AGAAACCATC TCCTCTGGCG GGGGTAGGGG CGGATGGCGT CCGACCACAC CGGAAGAGG AAGTCTAAGC GCCGGAAGTG GTGGGCATTC TGGGTAACGA GCTATTTACT TCCTGCGGGT 179 65

GCACAGGCTG TGGTCGTCTA TCTCCCTGTT GTTCTTCCCA TCGGCGAAGA TGGCCCTGGA 239 GACGGTGCCG AAGGACCTGC GGCATCTGCG GGCCTGTTTG CTGTGTTCGC TGGTCAAGAC 299

5	TAACCGAGAG GAGTCCAGAG ATATGCGGTG AGGAGTGGCC AGCATCTTTG GAACTTCAAA	ATGGTATATG GACAGCTGGG TCAGTCACTG TACAAATCCA CTCTCCACCT TACTTCCTAC	ACTGCACTAG TCTCCAAGTG GTCGCCTGCC GAGACACAGC CCTGCCTCTG CCTCCAATTC	CTCTTCCTTT GCAGCGAGTC CCAAGGAATC TATAAAGACC CTTATTTCTT AGACTCAGCG	GATGGAATCA AGTAACTTTA GTGCGGGAGC TAGCAAGATG GTTCTGGAAC CGACTGTTGA	CAAGGCTGCC TAAATGAACA GAGAGCAGCA	419 479 539 599 659 719
10		TCATTTTATC GATGGAATTG			TGGGAGGGAT	TTGGGTTGG	778 817

(2) INFORMATION ÜBER SEQ ID NO: 6:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1329 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
- (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: EST
- 25 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:

. 15

20

35

65

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 6:

40							
	CTTGGAGAGG	CTGGTGGACA	TAAAGAAAGG	GAATACTCTG	CTATTGCAGC	ATCTGAAGAG	60
	GATCATCTCC	GACCTGTGTA	AACTCTATAA	CCTCCCTCAG	CATCCAGATG	TGGAGATGCT	120
	GGATCAACCC	TTGCCAGCAG	AGCAGTGCAC	ACAGGAAGAC	GTGTCTTCAG	AAGATGAAGA	180
	TGAGGAGATG	CCTGAGGACA	CAGAAGACTT	AGATCACTAT	GAAATGAAAG	AGGAAGAGCC	240
45	AGCTGAGGGC	AAGAAATCTG	AAGATGATGG	CATTGGAAAA	GAAAACTTGG	CCATCCTAGA	300
	GAAAATTAAA	AAGAACCAGA	GGCAAGATTA	CTTAAATGGT	GCAGTGTCTG	GCTCGGTGCA	360
	GGCCACTGAC	CGGCTGATGA	AGGAGCTCAG	GGATATATAC	CGATCACAGA	GTTTCAAAGG	420
	CGGAAACTAT	GCAGTCGAAC	TCGTGAATGA	CAGTCTGTAT	GATTGGAATG	TCAAACTCCT	480
	CAAAGTTGAC	CAGGACAGCG	CTTTGCACAA	CGATCTCCAG	ATCCTCAAAG	AGAAAGAAGG	540
50	AGCCGACTTC	ATTCTACTTA	ACTTTTCCTT	TAAAGATAAC	TTTCCCTTTG	ACCCACCATT	600
	TGTCAGGGTT	GTGTCTCCAG	TCCTCTCTGG	AGGGTATGTT	CTGGGCGGAG	GGGCCATCTG	660
	CATGGAACTT	CTCACCAAAC	AGGGCTGGAG	CAGTGCCTAC	TCCATAGAGT	CAGTGATCAT	720
	GCAGATCAGT	GCCACACTGG	TGAAGGGGAA	AGCACGAGTG	CAGTTTGGAG	CCAACAAATC	780
	TCAATACAGT	CTGACAAGAG	CACAGCAGTC	CTACAAGTCC	TTGGTGCAGA	TCCACGAAAA	840
55	AAACGGCTGG	TACACACCCC	CAAAAGAAGA	CGGCTAACCC	TGGAGTATCA	CCCTTCCTCC	900
-	CTCCCCAGGC	ACCACTGGAC	CAATTACCTT	TGAATGCTGT	ATTTGGATCT	CACGCTGCCT	960
	CTGTGGTTCC	CTCCCTCATT	TTTCCTGGAC	GTGATAGCTC	TGCCTATTGC	AGGACAATGA	1020
	TGGCTATTCT	AAACGCTAAG	GAAAAAAAAC	AAACACAGAA	CTGTTTCAAG	TACTCAAGAC	1080
	TGACTTACAG	ACCAACCAAC	CACCTTGCTG	GAACCCTTGC	TAGCAGGCAT	TCTTATAAAA	1140
60	GAAACTTTCG	AGCCTCCTTA	TATTGCTGGA	AACTCAGCTG	TGCTCCAGAC	TAGAGCCTCC	1200
-	TTACCTATGC	TATGGATTTT	TAATTTATTT	TCTCTTATTT	CATGTACACT	GCTTTTTTTG	1260
	CTTACAGTGT	ATGATGGATG	TGTATGAAAA	AAATGTATCT	TTGGGAAAAC	AATTACAGTT	1320
	TGTTAATTT	1110111001110					1329
	IGITUALIT						

(2) INFORMATION ÜBER SEQ ID NO: 7:

(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 761 Basenpaare (B) TYP: Nukleinsäure		_
(C) STrang: einzel (D) TOPOLOGIE: linear		5
(ii) MOLEKÜLTYP: EST		••
(iii) HYPOTHETISCH: NEIN		10
(iii) ANTI-SENSE: NEIN		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		15
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 7:		25
GCGGTCGGTA GTGCGGCGCT GTTTAAAGAT GGCGGCGGAG GAACCTCAGC AGCAGAAGCA GGAGCCGCTG GGCAGCGACT CCGAAGGTGT TAACTGTCTG GCCTATGATG AAGCCATCAT GCCTCAGCAG GACCGAATTC AGCAAGAGAT TGCTGTGCAG AACCCTCTGG TGTCAGAGCG GCTGGAGCTC TCGGTCCTAT ACAAGGAGTA TGCTGAAGAT GACAACATCT ATCAACAGAA	180	
ATCAAGGAC CTCCACAAAA AGTACTCGTA CATCCGCAAG ACCAGGCCTG ACGGCAACTG TTCTATCGG GCTTTCGGAT TCTCCCACTT GGAGGCACTG CTGGATGACA GCAAGGAGTT CAGCGGTTC AAGGCTGTGT CTGCCAAGAG CAAGGAAGAC CTGGTGTCCC AGGGCTTCAC	300 360 420	30
GAATTCACA ATTGAGGATT TCCACAACAC GTTCATGGAC CTGATTGAGC AGGTGGAGAA GCAGACCTCT GTCGCCGACC TGCTGGCCTC CTTCAATGAC CAGAGCACCT CCGACTACCT CGTGGTCTAC CTGCGGCTGC TCACCTCGGG CTACCTGCAG CGCGAGAGCA AGTTCTTCGA GCACTTCACC CAGCAGGAGG TGGAGCCCAT GCACTTCACC CAGCAGGAGG TGGAGCCCAT CACCTCGAG CACCTCACACCTCACACACACACACACACACACACACAC	540 600 660	35
TGCAAGGAG AGCGACCACA TCCACATCAT TGCGCTGGCC CAGGCCCTCA GCGTGTCCAT CCAGGTGGAG TACATGGACC GCGGCGAGGG CGGCACCACCA	76	1
2) INFORMATION ÜBER SEQ ID NO: 8:		40
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1227 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel		45
(D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: EST		50
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		60
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		
		65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 8:

```
GAAAAGTTTC TGAACATGGG TGCACCCCTG GGAGTGGGCC TGGGTCTCGT CTTTGTGTCC
   TCCATTGGGA TCTATGTTTC TTCCACCTAC CCACCCGTGG CTGGGGCCAC TCTTTACTCA 120
   GTGGCAATGT ACGGTGGATT AGTTCTTTTC AGCATGTTCC TTCTGTATGA TACCCAGAAA 180
   GTAATCAAGC GTGCAGAAGT ATCACCAATG TATGGAGTTC AAAAATATGA TCCCATTAAC 240
   TCGATGCTGA GTATCTACAT GGATACATTA AATATATTTA TGCGAGTTGC AACTATGCTG 300
   GCAACTGGAG GCAACAGAAA GAAATGAAGT GACTCAGCTT CTGGCTTCTC TGCTACATCA 360
   AATATCTTGT TTAATGGGGC AGATATGCAT TAAATAGTTT GTACAAGCAG CTTTCGTTGA 420
   AGTTTAGAAG ATAAGAAACA TGTCATCATA TTTAAATGTT CCGGTAATGT GATGCCTCAG 480
   GTCTGCCTTT TTTTCTGGAG AATAAATGCA GTAATCCTCT CCCAAATAAG CACACACTT 540
   TTCAATTCTC ATGTTTGAGT GATTTTAAAA TGTTTTGGTG AATGTGAAAA CTAAAGTTTG 600
   TGTCATGAGA ATGTAAGTCT TTTTTCTACT TTAAAATTTA GTAGGTTCAC TGAGTAACTA 660
   AAATTTAGCA AACCTGTGTT TGCATATTTT TTTGGAGTGC AGAATATTGT AATTAATGTC 720
   ATAAGTGATT TGGAGCTTTG GTAAAGGGAC CAGAGAGAAG GAGTCACCTG CAGTCTTTTG 780
   TTTTTTTAAA TACTTAGAAC TTAGCACTTG TGTTATTGAT TAGTGAGGAG CCAGTAAGAA 840
   ACATCTGGGT ATTTGGAAAC AAGTGGTCAT TGTTACATTC ATCTGCTGAA CTTAACAAAA 900
   CTGTTCATCC TGAAACAGGC ACAGGTGATG CATTCTCCTG CTGTTGCTTC TCAGTGCTCT 960
   CTTTCCAATA TAGATGTGGT CATGTTTGAC TTGTACAGAA TGTTAATCAT ACAGAGAATC 1020
   CTTGATGGAA TTATATATGT GTGTTTTACT TTTGAATGTT ACAAAAGGAA ATAACTTTAA 1080
   AACTATTCTC AAGAGAAAAT ATTCAAAGCA TGAAATATGT TGCTTTTTCC AGAATACAAA 1140
   CAGTATACTC ATGAAAAAA AATGTTTTTT TATTTTTGCA TATTTATTGA ACTGTCTAAT 1200
     TGAATACAGC TTGCTCTTGT CACCTCA
25
     1227
```

- (2) INFORMATION ÜBER SEQ ID NO: 9:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 913 Basenpaare
 - (B) TYP: Nukleinsäure
- (C) STrang: einzel

30

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: EST
- 40 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 45 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 50 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 9:

	GGCGGTGGTC	CGCCATTTCG	TGGACGCCGG	GTGAGTGAGA	GAGTTGGTTG	GTGTTGGGC	59
	CGGAGGAAAG	CGGGAAGACT	CATCGGAGCG	TGTGGATTTG	AGCCGCCGCA	TTTTTTAACC	119
60		AAATGCATCG					
		ATGGCAACAA					
	CGAAGTGTGT	GGGTTGCTAG	AAACCCACCC	GGCTTTGCTT	TTGTTGAATT	TGAAGATCCC	299
	CGAGATGCAG	CTGATGCAGT	CCGAGAGCTA	GATGGAAGAA	CACTATGTGG	CTGCCGTGTA	359
		TGTCGAATGG					
65	GGTCGTCGCC	CTCGAGATGA	TTATCGTAGG	AGGAGTCCTC	CACCTCGTCG	CAGATCTCCA	479
		GCTTCTCTCG					
		CTCGGGAGAG					
	CGATCTAGGT	CAAATGAAAG	GAAATAGAAG	ACAGTTTGCA	AGAGAAGTGG	TGTACAGGAA	659

ATTACTTCAT TTGACAGGAG TATGTACAGA AAATTCAAGCTTGGTGCAT TTTTAAGATG TTTTAGCTGT TCAAATCTGGACAAAGGTGT AATTCTCTAT GGTTTGAAAT GGATCATACCTTACTTTACT	F TTGTCTCTTG AAACAGTGAC 779 G AGGCATGTAA TACCAAGAAT 839	5
(2) INFORMATION ÜBER SEQ ID NO: 10:		10
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1126 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 		15
(ii) MOLEKÜLTYP: EST		
(iii) HYPOTHETISCH: NEIN		20
(iii) ANTI-SENSE: NEIN		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		25
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 10:		35
gaggcagcc tgacactatg ccacctgctg agctcctgc ctctcctaca atggcctggg ctctaacatc ttccgcctg tcaggccagg ctggatgtcg cctccgtgc ctgcatctg agctgacacg tgctatcgtg cgagcactg attcgtgttg accacccaag ccaggggac aaccctggg cctagccaca taataggcga tgaggagata ccagaaaa ggnatttcca cggggagccc agccagcccc accgctg	ge tagacageet gegggeeetg 120 ca gtgacetgtt ctcaccactg 180 ge ecetgetacg ggteetetet 240 tg tgecagggaa tgeagggeee 300 ct geetggagea gttggagatg 360 ge teegttetga aggeeteggg 420	40
ttctctgcag cagctgtccc tggatagtgc cacctttgctgtttttgcaa acactcaaag agtacaacct agccctgagaatctcgct gactgtcaga gcgaggtgct ctttttgcgataccttc tccttctgcc gtctgtttga gaagcgccggttgctgct atgaagggca actccacact gaagggcc	ta cagaatetga etetgeaaga 600 ca geecaattte tgeetgagat 660 te eggetgeeag ggaacegeet 720	45
ggggaatget ggcetgetgg cettggeaga tgttteet etgteagetg gacateagtt ceaactgeat caageeag geggetggag cgctggggee gtggageett tggteace ggaceaggat geagteacag ceagggaage cateegge	at gggcttctgg agttcgccaa 840 tg cgcctcttcc aaaactggct 900 gg ctccgggcta cctgccatgt 960 at tatgttagca ccatgtgatg 1020	50
gggcccgtac ctcacagtct catgctcggt accatcag ctgcccagaa ccccaaccac cagttctatc tttctctt	Ct tgcagggct gaagcatggg rees	55
(2) INFORMATION ÜBER SEQ ID NO: 11:		
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 537 Basenpaare (B) TYP: Nukleinsäure		60
(C) STrang: einzel (D) TOPOLOGIE: linear		65
(ii) MOLEKÜLTYP: EST		

(iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 5 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 10 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 11: TAGACCACTG AGGAGACCAT AGAGCGGATG CTTTCATGCA CCCTTTACTG CACTTTCTGA CCAGGAGCTA CTTTGAGTTT GGTGTTACTA GGATCAGGGT CAGTCTTTGG CTTATCAATA 120 AATTTTAATC TCTGTTAATC TTACCTGCTT TAAAAAAAAA TTCTTGTGTG TTCGTATCTT 180 -TATTTATTCC CTAGTTTGCA GAACTGTCTG AATAAAGGAT ACAAGGATTA TTTCAATGTT 240 ACTGCACTGA AAAACGTGTA TGTATTAGTG TGCTAGATTA TTTAGCAGAA TATTCACAAG 300 TTTCTGTTGA CCTTGTTGAT TGAGCATGAC TACTAAATAT TATGTAATAA AAAGCATTTG 360 TCATAACAGT CTTATGAAGT AGTTCTTCGA ATATAGAAAG TTCTATAATT TAGCCCATGA 420 AATGATAGGT TTTTAATTTT CAGAAATGGA GCTGCATGTA GAATGAGATC ACATGCTTTT 480 ATATGTGAAA TATTGGTTTT AGCAATTAAC AGAAGGCATA CTTTGCTAAT TTTATGGN (2) INFORMATION ÜBER SEQ ID NO: 12: 30 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 626 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel 35 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: EST (iii) HYPOTHETISCH: NEIN 40 (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: 45 (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: 50 (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 12: ggaagatgga gcagatggtg ctttttaccc agatgaaata caaaggccac ctgtcagagt 60 cccctcttgg ggactggaag acaatgttgt ctgcagccag cctgctcgaa actttagtcg 120 gcctgatggc ttagaggact ctgaggatag caaagaagat gagaatgtgc ctactgctcc 180 tgatecteca agteaacatt taegtgggea tgggacagge ttttgetttg attecagett 240 tgatgttcac aagaagtgtc ccctctgtga gttaatgttt cctcctaact atgatcagag 300 caaatttgaa gaacatgttg aaagtcactg gaaggtgtgc ccgatgtgca gcgagcagtt 360

ccctcctgac tatgaccage aggtgtttga aaggcatgtg cagacccatt ttgatcagaa 420 tgttctaaat tttgactagt tactttttat tatgagttaa tatagtttag cagtaaaata 480 gaccactgag gagaccatag agcggatgct ttcatgcacc ctttactgca ctttctgacc 540

aggagetact tigagitigg tigtiactagg atcaggitea gictitigget tateaataaa tittaatete tigtiaatett acetige	626	
(2) INFORMATION ÜBER SEQ ID NO: 13:	•	5
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 386 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: EST		15
(iii) HYPOTHETISCH: NEIN		
(iii) ANTI-SENSE: NEIN		20
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		25
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 13:		30
AGGGAGTGCG AATGGCCAGG ATGCCTCACA GAGAAGACAC TGATGTCCCA CTTGTGGGAG 60 GGAACTTGTG TAGGTTGGTC AGGGGCCCCA CCATGCGAGA CCTTGAGGTT AAAATAAGGA 120 CAATCCCAAA ACATCAAGTC TGGGCTCATC CCTTCAAAAC CAGTGACATG CTGGCATCAG 180 CTTCTGCTCA CACTGCCTCA CAAAGAAGGC CAAGCCTCCC ATTCTCCCCC TGCCAAATGG 240 CATGACCACA ATGGGAAAGG TACACGGTAA TGAAATTGAT CCCAAGGAAA CCCGATGCCG 300 GTACTCTCTT CCCACTCTGC GGTTCTGCCA AGCACCTTGC CTGGGCACTT GTGTGTGTGC 360		35
AAGACTCTAC AGTGTGTTGT CTGCTG 386		40
(2) INFORMATION ÜBER SEQ ID NO: 14:		
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 847 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel		45
(D) TOPOLOGIE: linear		50
(ii) MOLEKÜLTYP: EST		
(iii) HYPOTHETISCH: NEIN		55
(iii) ANTI-SENSE: NEIN		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:		60
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library		
		65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 14:

```
agacaaatct tctgcatgtc ggaggaacgg gaattattct gatgaaaaga aagatgctat 60
    qtattqqqaa aaaaqqcqqa aaaataatqa aqctqccaaa aqatctcqtq aqaaqcqtcq 120
    actgaatqac ctggttttag agaacaaact aattgcactg ggagaagaaa acgccacttt 180
    aaaagctgag ctgctttcac taaaattaaa gtttggttta attagctcca cagcatatgc 240
    tcaagagatt cagaaactca gtaattctac agctgtgtac tttcaagatt accagacttc 300
    caaatccaat gtgagttcat ttgtggacga gcacgaaccc tcgatggtgt caagtagttg 360
    tatttetgte attaaacaet etecacaaag etegetgtee gatgttteag aagtgteete 420
    agtagaacac acgcaggaga gctctgtgca gggaagctgc agaagtcctg aaaacaagtt 480
    ccaqattatc aaqcaaqaqc cgatggaatt agagaqctac acaagggagc caagagatga 540
    ccgaggetet tacacagegt ccatetatea aaactatatg gggaattett tetetgggta 600
    ctcacactct ccccactac tgcaaqtcaa ccgatcctcc agcaactccc cgagaacgtc 660
    qqaaactqat qatqqtqtqq taqqaaaqtc atctqatqqa qaaqacqaqc aacaggtccc 720
    caagggcccc atccattctc cagttgaact caagcatgtg catgcaactg tggttaaagt 780
    tccagaagtg aattcctctg ccttgccaca caagctccgg atcaaagcca aagccatgca 840
                                                                                 847
     gatcaaa
20
    (2) INFORMATION ÜBER SEQ ID NO: 15:
      (i) SEOUENZ CHARAKTERISTIK:
25
        (A) LÄNGE: 813 Basenpaare
        (B) TYP: Nukleinsäure
        (C) STrang: einzel
        (D) TOPOLOGIE: linear
30
     (ii) MOLEKÜLTYP: EST
     (iii) HYPOTHETISCH: NEIN
35
     (iii) ANTI-SENSE: NEIN
     (vi) HERKUNFT;
        (A) ORGANISMUS: MENSCH
40
        (C) ORGAN:
     (vii) SONSTIGE HERKUNFT:
        (A) BIBLIOTHEK: cDNA library
45
     (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 15:
   atcaatatta gttggaagga ccaggcgcag agcctctctc tgtgacatgt gactctgtca 60
   attqaaqaca qqacattaaa aqaqaqcqaq aqaqaqaaac aqttcagatt actqcacatg 120
   tggataaaaa caaaaacaaa aaaaaggagt ggttcaaaat gccatttttg cacagtgtta 180
   qqaattacaa aatccacaqa aqatqttact tqcacaaaaa qaaattaaat atttttaaa 240
   gggagagggg ctgggcagat cttaaataaa attcaaactc tacttctgtt gtctagtatg 300
   ttattgagct aatgattcat tgggaaaata cetttttata eteetttate atggtactgt 360
   aactgtatcc atattataaa tataattatc ttaaqqattt tttatttttt tttatgtcca 420
   agtgcccacg tgaatttgct ggtgaaagtt agcacttgtg tgtaaattct acttcctctt 480
   gtgtgtttta ccaagtattt atactctggt gcaactaact actgtgtgag gaattggtcc 540
   atgtgcaata aataccaatg aagcacaatc aagattatgt actgtgtgtc tgtaaagggt 600
```

65 (2) INFORMATION ÜBER SEQ ID NO: 16:

ctagactact tgtaggcact ttcaaggtcc cct

813

cagtgacaat gaaaaagaca gcttgttttg ttcaaaatat agactggatt tcccatagag 660 ctcttttaat aggtttccat gactcaataa catagcaaaa tgcctccaga cctaaataag 720 gtgtttacct actgagggct acagtttacc ctacattttc acagccggat tcaaggtgtt 780

 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 573 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	:
(ii) MOLEKÜLTYP: EST	
(iii) HYPOTHETISCH: NEIN	10
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	. 19
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 16:	25
ggaggetget gggggeggeg egtecagete tgggecaggg ggtecaaagt geteageeee eggggeacag caggaegttt gggggeette ttteageagg ggaeageeeg attggggaea atggegtete ttggecacat ettggtttte tgtgtgggte teeteaceat ggecaaggea gaaagtecaa aggaacaega eeegtteaet taegaetaee agteeetgea gateggagge etegteateg eegggateet etteateetg ggeateetea tegtgetgag eagaagatge eggtgeaagt teaaceagea geagaggaet ggggaaceeg atgaagagga gggaaettte	180 240 300
cgcageteca teegeegtet gteeaceege aggeggtaga aacacetgga gegatggaat eeggeeagga eteecetgge acetgacate teecacgete cacetgegeg eccacegggee ecteegeege ecetteecea geeetgeeee egeagaetee ecetgeege aagaetteea ataaaacgt gegtteete tegacaaaa aaaaaa	420 480
(2) INFORMATION ÜBER SEQ ID NO: 17:	40
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 486 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: EST	50
(iii) HYPOTHETISCH: NEIN	50
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	55
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 17:	65

```
gccgcacggc ttgctgggc tgggctcttc ctcgcggaag tggggaggag gcggttgcgg 60 ttagtggacc gggaccggta ggggtgctgt tgccatcatg gctgaccccg acccccggta 120 ccctcgctcc tcgatcgagg acgacttcaa ctatggcagc agcgtggcct ccgccaccgt 180 gcacatccga atggcctttc tgagaaaagt ctacagcatt ctttctctgc aggttctctt 240 aactacagtg acttcaacag ttttttata ctttgagtct gtacggacat ttgtacatga 300 gagtcctgcc ttaattttgc tgtttgccct cggatctctg ggtttgattt ttgcgttgac 360 tttaaacaga cataagtatc cccttaacct gtacctactt tttggattta cgctgttgga 420 agctctgact gtggcagttg ttgttacttc tatgatgtat atattatctg caagctttca 480 tactga
```

(2) INFORMATION ÜBER SEQ ID NO: 18:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 662 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

15

20

30

35

65

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: EST
- 25 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 18:

```
ctttttct ctactcette ccettcacae ccccqtqqct qqaaqqaace tcqqettcce 60
tqaaaqettq qqqqtccae ccttcttace ccacccqqqa qqaacqcca qqqcccqqqq 120
cttqtttcte ctcttqttt ccttttqqq aqtttqatca ctqatcqaqt aaqqaatqac 180
ctttaqattq tqcqactttt qtttttqtt ttttaaattt ttttaaacca aqaatqattt 240
ctcctqcttc cttctccta ccatcttccc aqacqqaqtt caaaqqccac ttctcaaqca 300
qcttttqqca ccttcaqcct caqaqtqqaa tcttttaaaq acaqqacccc tatqtccaqq 360
aaaqqqqaaa aqqaactttq ccaatqataq tqaccacaqc aaaaqcaata aaataataaa 420
qqqtccttqc ctqqattttq acacaqcaac ttcctqtaqt qaqcactttq tatqaatcqt 540
qqqcttcctq ttctcaaqqc qcaqqtattt attctqtatc tqtctaqaqc acacaccaaa 600
atccaacctt ctaataaaca tqatqqcqc qtcccaaaaa aqqaaacaqa aqaaqaaaaq 660
```

(2) INFORMATION ÜBER SEQ ID NO: 19:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 750 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: EST
- (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	5
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19:	
ctttcctggg cccagaagtt ggggggaggg agggaaagga tttttacatt ttttaaactg 12 ctatttctg aatggaacaa gctgggccaa ggggcccagg ccctgtcctc tgtccctcac 18	30
acccetttge teegtteatt catteaaaaa aacatteett gageacette tgtgeecage 24 atatgetagg cecaceaget aagtgtgtg ggggggeete taegeeaget cateagtge 29 eteettgee ateetteace ggtgeetttg ggggatetgt aggaggtggg acettetgtg 35 gggtttgggg ateteeagga aggeegacea agetgteece tteecetgtg ceaacecate 41	99 59 .9
tectacagec ecetgeetga teceetgetg getgggggea geteceagga tateetgeet 47 tecaactgtt tetgaagece etectectaa eatggegatt eeggaggtea aggeettggg 53 eteteceeag ggtetaaegg ttaaggggae eeacatacea gtgeeaaggg ggatgteaag 59 tggtgatgte gttgtgetee eeteeeeeag agegggggg eggggggtga atatggttgg 65 eetgeateag gtggeettee eatttaagtg eetteetgt gaetgagage eetagtgtga 71 tgagaactaa agagaaagee agaceeetaa a	39 99 ₂₅ 59
(2) INFORMATION ÜBER SEQ ID NO: 20:	30
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 756 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: EST	40
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	50
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 20:	55
gacttaaatc gaagttgaac ttttttatg tttttaacca aatagatagg ggaggggagg	30 ⁶⁰
tcaataattg attattatt tgcacttatt acaatgcctg aaaaagtgca ccacatggat 30 gttaagtaga aattcaagaa agtaagatgt cttcagcaac tcagtaaaac cttacgccac 36 cttttggttt gtaaaaggtt ttttatacat ttcaaacagg ttgcacaaaa gttaaaataa 42 tggggtcttt tataaatcca aagtactgtg aaaacatttt acatattttt taaatcttct 48 gactaatgct aaaacgtaat ctaattaaat ttcatacagt tactgcagta agcattagga 54 agtgaatatg atatacaaaa tagtttataa agactctata gtttctataa tttatttac 60	50 20 10 65 10

tggcaaatgt catgcaacaa taataaatta ttgtaaactt taaaaaaaaa aaaaagtgat 660 gcttggtctc aaaggaaaaa ataagatggt aaatgttgat atttacaaac ttttctaaag 720 atgtgtctct aacaataaaa gttaatttta gagtaa 5 (2) INFORMATION ÜBER SEQ ID NO: 21: (i) SEQUENZ CHARAKTERISTIK: 10 (A) LÄNGE: 1001 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 15 (ii) MOLEKÜLTYP: EST (iii) HYPOTHETISCH: NEIN 20 (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 25 (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library 30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 21: gggggagaga gggaggcctt tgggcggtgg gggccacggg gagggtqgtc ctcqqactac 35 gtgcgggaca ggaggtcagg gctggcaagt ccctcaggcc tccctcgttg ccccagcctc 120 gcgggccgcc taactgcccc gttccaaggg tgccaccgga ccccgctgga gaggaacttc 180 tecgttgget gattteatea ceacceatte eegatteeae gttteettta ageggggetg 240 gcggagcgca agggggcaag gaactggatt gcgattggtc agcacgtgcc tcggtcqqcq 300 gtacaattgg ctgaggcgct gggccttggg aagcattccc cgacgggatt ggtcgtcgct 360 ctcgcagage ccgcctcccg cagtacaage ggcccccggg tgggggggga ggaggggact 420 ccgggaggag gaacatggcg gtggcggacc tcgctctcat tcctgatgtg gacatcgact 480 ecgacggcgt etteaagtat gtgetgatee gagteeacte ggeteeeege teeggggete 540 cggctgcaga gagcaaggag atcgtgcgcg gctacaagtg ggctgagtac catgcggaca 600 tctacgacaa agtgtcgggc gacatgcaga agcaaggctg cgactgtgag tqtctgqqcq 660 45 gegggegeat eteceaceag agteaggaca agaagattea egtgtaegge tatteeatgg 720 cctatggtcc tgcccagcac gccatttcaa ctgagaaaat caaagccaag taccccgact 780 acgaggteac ctgggetaac gacggetact gagcactece agecegggge ctgctgcete 840 cagcagecae tteagagece eegeetttge etgeacteet ettgeaggge tggeeetgee 900 tgctcctgcg gcagcctctg gtgacgtgct gtccaccagg ccttggagac aggctagcct 960 50 ggccacagaa ttaaacgtgt tgccacacct gccggcttct g 1001 (2) INFORMATION ÜBER SEQ ID NO: 22: 55 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 896 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel 60 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: EST 65 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 22:	10
ccaagetgta ettgteacet egaattgage atgeacttgg aggeteetea getetteata 60 teceagettt tecaggagga ggatgtetea ttgattaegt teeteaagta tgeeacetge 120 teaecaacaa ggtgeagtae gtgatteaag ggtateacaa aagaagagag tatattgetg 180 etttteteag teaetttgge acaggtgteg tggaatatga tgeagaagge tttacaaaac 240 teaetetget getgatgtgg aaagattttt gttttettgt acacattgae etgeetetgt 300	15
tcactctgct gctgatgtgg aaagattttt gttttcttgt acacattgac ctgcctctgt 300 ttttccctcg agaccagcca actctcacat ttcagtccgt ttatcacttt accaacagtg 360 gacagcttta ctcccaggcc caaaaaaatt atccgtacag ccccagatgg gatggaaatg 420 aaatggccaa aagagcaaag gcttatttca aaacctttgt ccctcagttc caggaggcag 480 catttgccaa tggaaagctc taggaaacac cagtcttgag aggtggccag ccagactgcc 540 tgtccacatg cgtgtcagca catacagccg cttcctggaa gccgcctgga atgtcttcac 600	20
ggcagcgttt tgctcacaca gcagcttttg cacgccccag gcagccccga ctgctgaaat 660 ccaacttgag ctggctggtg gtccctggat cctagagccc ttcacttcgg gttactccct 720 ctttcttgcc tctatttctt agttggaaga aataaactca caaattatgg tgcagtaatt 780 ttccggggaa agtaaagcct caggaatgcc cacgcctttc ttccaaagcc tttgtctctg 840 agacctctt aagttctaaga ttaaatgccc ctcgctgttc ttcctctgaa aaaaaa	25
896	30
(2) INFORMATION ÜBER SEQ ID NO: 23:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 580 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: EST	40
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	50
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 23:	55
cgaaacgtgc gcaggcgccg gccgctgcgc tgcagatggc ggaaatggat ccggtagccg 60 agttccccca gcctcccggt gctgcgcgct gggctgaggc ccttctgcga tgttttacct 120 ggctgcggct gtgtcagatt tctatgttcc tgtctctgaa atgcctgaac acaagatcca 180 gtcatctggg ggcccactgc agataacaat gaagatggtg ccaaaactgc tttctccttt 240	60
ggttaaagat tgggctccca aagcatttat aattteettt aagttggaga etgaceeege 300 cattgtaatt aategagete ggaaggettt ggaaatttat eagcateaag tggtggtgge 360 taatateett gagteaegae agteetttgt gtttattgta accaaagaet eggaaaeeaa 420 gttattgeta teagaggaag aaatagaaaa aggegtagag atagaagaga agatagtgga 480 taatetteag tetegaeaca eagettttat aggtgaeaga aactgaagta aaaageeett 540	65

5 (2) INFORMATION ÜBER SEQ ID NO: 24:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 740 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: EST
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN

20

25

10

15

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 24:

	ggatgcgtgg	cggggagcgc	cgggctctcc	cggaagtctc	cctggacgga	agtggaaacg	60
		tagggagtcc					120
35		cggtccgagc					180
33		cctactgtct					240
		tctccgatac					300
		tgtgtgtggg					360
		aacacattcg					420
40		cagccttggg.					480
40		acagggagac					540
		tggccgacca					600
		atcccaagac					660
		gggatgtgaa					720
45	ttcgtgcctg						740

(2) INFORMATION ÜBER SEQ ID NO: 25:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 857 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN

65

50

55

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH

(C) ORGAN:

(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 25:	10
ccattcaccatatgaggaacggagtaggaccaagggcagtgggcagcagtcagagcgggg ctccgaccgcacccctgagcgcagcgc	10
cccaagcctctggaagagccaaaacacgagaccaaaaagctgaagaatctttcagagtac gctcagacactacagctgggttggaatgggcttctggtgttgaaaaacagctgcttcccc acgtctatgcatatcctagagggggaccagggggtgatcagcagtctcctcaaagaccac acttctgggagcaagctgacccagctgaagatcgcccagcgccttcgactggaccagccc	15
aagettgacgaggteacacgacgcatcaagcaggggageeccaacggetatgeggteete ttagecacccaggcaacccccagtgggettggcactgaggggatgeecacagtagageec ggtetgeagaggeggttetgaggaacetggteteetacttgaaacagaagcaggeegeaa gggtgatcagettgeeagtggggggteeaagggeagagaeggeacaggeatgetetacg	20
ccttcccacctgcgacttttcccagcagtacctccagtcagcactaaggacattggggc aagcttagaagaagaacacattggtgatagtcatcgtcagagacactgcctagcccaagc ctgtctttcccagcgtc	25
(2) INFORMATION ÜBER SEQ ID NO: 26:	30
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 975 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	35
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	
hergestellte partielle cDNA	40
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 26:	55
atgggctacaacctgagcccccagttcacccagcttctggtctcccgctactgcccacgc tctgccaatcctgccatgcagcttgaccgcttcatccaggtgtgcacccagctgcaggtg ctgacagaggccttccgggagaaggacacagctgtacaaggcaacatccggctcagcttc gaggacttcgtcaccatgacagcttctcggatgctatgacccaaccatctgtggagagtg	60
gagtgcaccagggacctttcctggcttcttagagtgagagaagtatgtggacatctcttc ttttcctgtcctctagaagaacattctcccttgcttgatgcaacactgttccaaaagag ggtggagagtcctgcatcatagccaccaaatagtgaggaccggggctgaggccacacaga taggggcctgatggaggagagga	65

- (2) INFORMATION ÜBER SEQ ID NO: 27:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:854 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

15

20

30

35

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 27:
- agcaaaagagaagtttatttgtgcccagccattggtcaccttgggtgatgcaccagatag 45 caggcagatgttggttcattggccttcgtcctctttcctcctaaaataatattggcttta catctttggtgttttttttaacccccagcccctcaaaaaaataaggcctccaggtatcaag gaacacacacaggtgttctgaccagctcaggcttgccacagtgagcaactctgtggct atctcatattaggattttctgtccttaatttttttgagcaaaatctggaaaatgtgaaagc atatttagattttatatactatctgaaatgtgatttgttaagattcttaaatttgggcct cttagaataatttttgaatgagatctaccgactcacttgtgagaatatttttcacagatta tctttqqqccttttcattaqaaaqctqtttqtttqtccccctqttqqtacatttqgttac ctcattttgccgtttcagattgtgaaagctcacaggggtgtttttttggaatcatttgctg ttataaatatctgtaaccaaatcatttgaaggcttgataaatttttaacaaagtttgtàc attttttatgaaagttactagtaatgctttactaagtagtgcaatgaatttttatttta atccctqtqcccaatttttqqaqttqaqaqqqttqttqqtaataaatgtatqatqtacact taaaaaaaaaaaa
 - (2) INFORMATION ÜBER SEQ ID NO: 28:
- 65
 (i) SEQUENZ CHARAKTERISTIK:
 (A) LÄNGE: 802 Basenpaare

(B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	•
(iii) HYPOTHETISCH: NEIN	10
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	15
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 28:	25
ttttttcagagtgctagggctttattacaaatggagttgactgctagagaggcccttct ccaatctttcttctgtaccttcttccctcccaaagacatccctctaggggaggtcagtag gccattaggtaggaggaaatctggagagtgaaaaggggccttgcttttgtcaaagtcctc tgaaacaaccactgagtctgaaggctggctccagttgagaatcttctagtggaagaggtt tagctctcatcttcaaggtccttcatttctacatcctgggggggcttttgtcttcttttgc cttttgagctgtggttcactagtcctggctggctttgaaggggcttccacttccatggct	30
gtcttctctttctgggcaagccggatctgctggaggagttttctgcgcttcttccctgac agtgtaatgttggcacgtgcactggacgcccgcttcttgaggtggtgccgcgtgatcagc ccttggtctatcacagcccgaccacccggtgcctcagacgccgctcccgattcaacacc cgccggcgtttgaacagcttcttcttcagctccgttcggggccggttgatctttcccccc ggagctcccatagtcgcgattccactccagttcacggtccgtacttccgctcagcgccgg atccgcgggctccgcccggccttccggggccaatcgcaactcgggggcgggtcctcgg	35
tggttttagctgtagtagccag	45
(2) INFORMATION ÜBER SEQ ID NO: 29: (i) SEQUENZ CHARAKTERISTIK:	4.
(A) LÄNGE:807 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	. 50
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	. 55
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	65
(vii) SONSTIGE HERKUNFT:	

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 29:

ccccgtccgcgcgtggtggctgctgctgtgcatgtccctgcgatgggagtcttgtgccca gcctgtcagtttcctcccagggcagagctccccttcctgcaagagtctgggaggcggtg 10 caggetgtcctggctgctctggggaagccgagggacagccataacacccccgggacagta ggtctgggcggcaccactgggaactctggacttgagtgttttgcctcttccttgggtat gaatgtgtgagttcacccagaggcctgctctcctcacacattgtgtggtttggggttaat gatggagggagacacctcctcatagacggcaggtgcccacctttcagggagtctcccagc 15 . atgggcggatgccgggcatgagctgctgtaaactatttgtggctgtgctgcttgagtgac gtctctgtcgtgtgggtgccaagtgcttgtgtagaaactgtgttctgagcccccttttct ggacaccaactgtgtcctgtgaatgtatcgctactgtgagctgttcccgcctagccaggg ccatgtcttaggtgcagctgtgccacgggtcagctgagccacagtcccagaaccaagctc 20 toggtgtctcgggccaccatccgcccacctcgggctgaccccacctcctccatggacagt gtgagccccgggccgtgcatcctgctcagtgtggcgtcagtgtcggggctgagccccttg agctgcttcagtgaatgtacagtgcccggcacgagctgaacctcatgtgttccactccca ataaaaggttgacagggaaaaaaaaa

25

30

35

5

(2) INFORMATION ÜBER SEQ ID NO: 30:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 777 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKULTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 40 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 45 (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 30:

55

 $\verb|tttggaatcttggggtggggtcatctttggggattatggctgccacccgggatttgagt|\\$

gtagggagtgtgggagcagccttggcagatggggcacccgtgccctgcaggtgttgacaa gatccgccatctgtaatgtccttggcacaataaaaccaaatgtcagtttcaaaaaaa	5
(2) INFORMATION ÜBER SEQ ID NO: 31:	
 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 501 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	10
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	15
(iii) HYPOTHETISCH: NEIN	20
(iii) ANTI-SENSE: NEIN	,
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	25
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 31:	
	35
ccggattccgcccgcccgctgcgatccggttccgctcccacaacccgctctgtggcgg ggcttccggtcggagggtccgccagctctcgcgtcctttgctgggtccagacaccggtt ccgttgcaaacatttttaaagggctggttattcttcctgaaatgagtttggtgattagaa atctgcagcgagtcatccccatcaggagagcgccacttcgcagtaagatcgagattgtaa ggaggattttaggagtgcagaaatttgacctggggatcatctgtgttgacaacaagaata ttcagcacattaatagaatctacagagatagaaatgtcccaaccgatgtgctttcttt	40 45
(2) INFORMATION ÜBER SEQ ID NO: 32:	50
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1104 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKŪLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	60
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

(C) ORGAN:

5

10

40

45

55

60

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 32:

attttqaccctaaacttttggaaggaaaagtaaagqagqatcctqaccagggggaatcca tgaaacctttaacctttgcaaggttctacttgccaattctggttcccagcgcaaagaagg ccatatacatggatgatgtaattgtgcaaggtgatattcttgccctttacaatacag cactgaagccaggacatgcagctgcattttcagaaqattgtgattcagcctctactaaaag ttgtcatccgtggagcaggaaaccagtacaattacattggctatcttgactataaaaagg aaagaattcgtaagctttccatgaaagccagcacttgctcatttaatcctggagtttttg ctctgcttatcgtattttatcaacagcactctaccatcgatcctatgtggaatgtccgcc accttggttccagtgctggaaaacgatattcacctcagtttgtaaaqgctqccaagttac tccattggaatggacatttgaagccatggggaaggactgcttcatatactgatgtttggg aaaaatggtatattccagacccaacaggcaaattcaacctaatccgaagatataccgaga gaagatagcatgcgtgggaagtaacagttgctaggcttcaatgcctatcggtagcaagcc atggaaaaagatgtgtcagctaggtaaagatgacaaactgccctgtctggcagtcagctt cccaqacaqactataqactataaatatqtctccatctqccttaccaaqtqttttcttact tacatttttcaaaaaaaaaaaaaa

35 (2) INFORMATION ÜBER SEQ ID NO: 33:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 809 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 50 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 33:

GCCATCCTTTATCATCCACAGCAATCCCATCTGGTTGGGAGCACTGCTCTGGGTCTCACA
CTGCCCCTCCTCTATCCTAGGGAGCCTGAGGCCCAGGGGTGGAAAGATCCAGTTGCGGGT
GGGGGGTAGTGAACCGTGCAGGATAATGAAAGCAACTTGCTTTGGAAATGACCTACCGCT
ACCCGTTGTCTGAGACTGAGATTATCTCAGACTGTCTTCTGGCTTCTGCCAAAACACTCC

CTTAACAGAAAGCACCGAGGGGATGGGGGTAGGGGGGTTGGGGAGAGTGAGGCTTGAGTG TGAAGGAAGTCTCATATATGCAGAGCTGAAATCTCCCTCTTTGTATGTCCACACTTTTGT CTTGTTCTCTAGACTGATTCTTGCTATTCCAAATCCTCTCCACGTTGACAGCCCTTCAG ATATTCAACACTCCTCTCAGCATCCTCCACTTCCCCATCTCTCCAAGCTGAACTTGGT TCACAGGGTGGGATTGTGTATGTGCATGCAGGAGGTGGGGTGGACAGTGCCCTGGGCTG	5
GAATCCCCCTTAGTTCTAAGTGCCTCCTTGCCCGCAGCTTCGAGAGCTGTGCCCAGGAGT GAACAACCAGCCCTACCTCTGTGAGAGTGGTCACTGCTGCGGGGAGACTGGCTGCTGCAC CTACTATGAGCTCTGGTGGTTCTGGCTGCTCTGGACTGTCCTCATCCTCTTTAGCTG CTGTTGCGCCTTCCGCCACCGACGAGCTAAACTCAGGCTGCAACAACAGCAGCGGCACGT GGAAATCAACTTGTTGGCCTATCATGGGG	10
(2) INFORMATION ÜBER SEQ ID NO: 34:	15
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:580 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	20
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	25
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	30
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	35
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 34:	
AGGCGGCGCACTGAGGCGGCAGGCGCTGCGGCAGGAGGGAAGATGGCGGACGAGGAGAA GCTGCCGCCCGGCTGGGAGAAGCGCATGAGCCGCAGCTCAGGCCGAGTGTACTACTTCAA CCACATCACTAACGCCAGCCAGTGGGAGCGGCCAGCGGCAACAGCAGCAGTGGTGGCAA	45
AAACGGGCAGGGGAGCCTGCCAGGGTCCGCTGCTCGCACCTGCTGAAGCACCCA GTCACGGCGGCCCTCGTCCTGGCGGCAGAAGATCACCCGGACCAAGGAGAGGCCCT GGAGCTGATCAACGGCTACATCCAGAAGATCAAGTCGGGAGAGGAGCTTTGAGTCTCT GGCCTCACAGTTCAGCGACTGCAGCTCAGCCAAGGCCAGGGGAGACCTGGGTGCCTTCAG CAGAGGTCAGATGCAGAAGCCATTTGAAGACGCCTCGTTTTGCGCTGCGGACGGGGAGA IGAGCGGGCCCGTGTTTCACGGATTCCGCCACTCACATCCTTCCGCACTTGAGTGAG	50
GGTGGGGAGCCCAAGCCTGGCCTCGGGGCAGGGAGGGCGG	55
2) INFORMATION ÜBER SEQ ID NO: 35:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:825 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	60
(D) TOPOLOGIE: linear	65
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	

hergestellte partielle cDNA

(iii) HYPOTHETISCH: NEIN

5

10

15

40

45

60

65

- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 35:

- 35 GTTGACTGTAGGGGAAATAAAGTTAATTCAAATTTTGAAAAAAA

(2) INFORMATION ÜBER SEQ ID NO: 36:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:798 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 55 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 36:

7	AGCTTTTGTTCACACTTTAAATAGCAGTCCCAGAATGATTTCACTACAGACTCTCTGGAA AGCCTGGGAGCTGAATTCCGGAAGATCCCCACATCGATGAAAGCAAAGCGAAGCACCAAG CCATCATCATGTCCACGTCGCTACGAGTCAGCCCATCCAT	
Z	CAGCCTCTCGTAAGAAAGCCGTGGGCAACATCTTTGAAAACACAGACCAAGAATCACTAG AAAGGCTCTTCAGAAACTCTGGAGACAAGAAACACAGAGCCAAGAATCACTAG CCATAGATCAAGAACTCTGGAGAAAACGCGTGCCCTGATGGCCTTGAAGAAGAGAGACAA AAGACAAGCTTTTCCAGTTTCTGAAACTGCGGAAATATTCCATCAAAGTTCACTGAAGAG	5
P P	AGAGGATGGATAAGGACGTTATCCAAGAATGGACATTCAAAGACCAAGTGAGTTTGTGA GATTCTAACAGATGCAGCATTTTGCTGCTACCTTACAAGCTTCTCTTCTGTCAGGACTCC AGAGGCTGGAAAGGGACCGGGACTGGAAAGGGACCAGGACTGAACAGACTGGTTACAAAG ACTCCAAACAATTTCATGCCCTGTGCTGTTACAGAGGAGAACAAAATGCTTTCAGCAAGG	10
P	NTTTGAAAACTCTTCCGTCCCTGCAGGAAAGGATTGACGCTGATAGAAGAGCCTGGACAG NTGTAATGAGAACTAAAGAAAACGATGGCTGGAGATGACATTTATCCAGGGTCACTTTGT CAGGCCCTAGGACTTAAA	15
(2) INFORMATION ÜBER SEQ ID NO: 37:	.20
	(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 456 Basenpaare (B) TYP: Nukleinsäure	25
	(C) STrang: einzel (D) TOPOLOGIE: linear	,
	(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	30
	(iii) HYPOTHETISCH: NEIN	
	(iii) ANTI-SENSE: NEIN	35
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	40
	(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:37:	45
	(xi) SEQUENZ-BESCHIEDDING. SEQ ID NO.57.	
G G A	ATTATTGCAAAAAGGGCACGGGGCAGAGGGACTATGTTGTGAGCCTGCGAAAGAAGTTT TGTGGGGACTGTGGGCAGTGAATGCGTTGGGAACAATATGGAAAACTGGGAGCTGCCTT GAATCTACAGGGCCGGGCTGAAGAAAAGAA	50
A A	CCTGTCCGAATTATGTATTGCCCCTCCCCTTTTTATTAATAACATTGAAGTGTGATGGG CAACCACTGAAGCCGTCTGTTGAAACCTGCTGGGACTTTTTAGCCATTCTCTTCAACAT AAGAATGGGTGTTTTTGGAGGGGGTGAGAGGAATGGGGGAAATGTTGT	55
(2) INFORMATION ÜBER SEQ ID NO: 38:	60
	(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:1742 Basenpaare (B) TYP: Nukleinsäure	65
	(C) STrang: einzel	

- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 10 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

20

60

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 38:

	aatttattt	tttttcatgg	tctgtcaggt	tttatttata	gagtctggtg	aacttgaact	60
25	agagaaagct	gcaaaaagtg	gtttggagag	catggcaggg	ccatggagaa	gggctaatag	120
	aagcaggtcc	cttgcccaga	ccctcaggga	gcccttttgg	tggatagcgg	acacctgagg	180
	caggaggtgg	caggggccaa	gtccaggcag	gcagcagcag	ggctgcaact	gagagctgag	240
	gctggagagg	tagcgctcgc	cctaacctga	tcctgcaggt	ctcaggccct	ggggtcatat	300
	actcgcccca	tgaagacagg	gaacttgtgc	tgctggtccc	agagcacgaa	gaggaagggc	360
30	tgctgcactt	caaagaccag	cagggtgcgg	gccacagaga	tggcggaggc	tgcagccgcc	420
	tccaccccag	tctctgtcag	ttccagcact	gtctggtgct	gcatcgcaga	aacctgaaga	480
		ctgtcagccc					540
		ttgagagcat					600
	agagtgggct	ggaacttgga	catctccagt	ttctccatga	tggccttgaa	aacagaaggg	660
35		gttccatgtc					720
	aaactcagat	tgtgggagag	ctgcagctgc	cccaccttgg	ctttcaaagt	ttggtcaatg	780
	aaatgggcca	cagggtactt	cttgctattc	atcatgggca	cttttataac	tgagtttttg	840
		gttccattct					900
	aggtagatag	cattgaggag	gacaaggcgg	gtatcggagg	gcagactgtc	tagcagccgg	960
40	ctgatcttgt	tgttggtgtt	cttggccacc	caggtgttga	tgagctccaa	agttgaatag	1020
	caagaagtac	cctgtggccc	atttcattga	ccaaactttg	aaagccaagg	tggggcagct	1080
		cacaatctga					1140
		gaacaggctc					1200
	_gatgtccaag	ttccagccca	ctctcctaac	actaccccgc	atcaaagtga	cgaccagcca	1260
45	ggatatgctc						1320
	gtgtgggctg	acagaggacc	cagatcttca	ggtttctgcg	atgcagcacc	agacagtgct	1380
		gagactgggg					1440
		tttgaagtgc					1500
	gttccctgtc						1560
50	tagggcgagc	gctacctctc	cagcctcagc	tcttcagttg	cagccctgct	gctgcctgcc	1620
	tggaattggc						1680
	gagggtctgg	ggcaagggac	cgtgcttcta	attaagccct	tcttccaatg	ggccttgcat	1740
	ggc						1743

- ⁵⁵ (2) INFORMATION ÜBER SEQ ID NO: 39:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:802 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA

(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	. 5
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 39:	15
CTTGACTCCGCCCTCTCTCCCCTCTGCCCGCTTTCAATAAGAGGCAGAGACAGCAGCAGA GGAACCGAGAGGCTGAGACTAACCCAGAAACATCCAATTCTCAAACTGAAGCTCGCACTC TCGCCTCCAGCATGAAAGTCTCTGCCGCCCTTCTGTGCCTGCTGCTCATAGCAGCCACCT TCATTCCCCAAGGGCTCGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTGTTATA	20
ACTTCACCAATAGGAAGATCTCAGTGCAGAGGCTCGCGAGCTATAGAAGAATCACCAGCA GCAAGTGTCCCAAAGAAGCTGTGATCTTCAAGACCATTGTGGCCAAGGAGATCTGTGCTG ACCCCAAGCAGAAGTGGGTTCAGGATTCCATGGACCACCTGGACAAACCCAAACTC CGAAGACTTGAACACTCACTCCACAACCCAAGAATCTGCAGCTAACTTATTTTCCCCTAG	25
CTTTCCCCAGACACCCTGTTTTATTTATTATAATGAATTTTGTTTG	30
ACCAAATAAATATTTTTGTA	35
(2) INFORMATION ÜBER SEQ ID NO: 40:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1183 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	40
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	45
(iii) HYPOTHETISCH: NEIN	50
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	55
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 40:	65

gccaatcgaatcgtcctgggaggcttttcacagggcggggccctqtccctctacacqqcc $\verb|ctcacctgccccaccctctggctggcatcgtggcgttgagctgctgctctgcac| \\$ cgggccttcccccaggcagctaatggcagtgccaaggacctggccatactccagtgccat ggggagctggaccccatggtgcccgtacggtttggggccctgacggctgagaagctccqq tctgttgtcacacctgccagggtccagttcaagacatacccgggtgtcatgcacagctcc tgtcctcaggagatggcagctgtgaaqgaatttcttgagaagctgctgcctcctgtctaa ctagtcgctggccccagtgcagtaccccagctcatqqqqqactcaqcaaqcaaqcgtqqc accatcttggatctgagccggtcgagcccctgtcccacccttcctgacctgtccttttc ccacaggcctctgggggcaggtggcaaggcctggccqqqccttccttcctqqccttaqcc acctggctctgtctgcagcaggggcaggctgctttcttatccatttccctqqaqqcqqqc cccctggcagcagtattggaggggctacaggcagctggagaaaggggcccagccgctga cccactcactcactcactaqccccqctttqqqccccctcctqtqacctcaqq gtttggcccatggggccctcccaggcccctgcccaactgattctgcccagataatcgtg teteetgeeteeacteagetgetteteagteatgaatgtqqceatqqceeqqqqteeee ttgctgctgtgggctccctgtccctgqqcaqqaqtqctgqtqaqqaqqtqqaqccttttq aggggggccttccctcagctgtttccccacactggggggctgggccctgcctccccgtta ccctccttccctgcaggcctggagcctgtagggctggactgaggttcaggtctccccca gtctcgtcttctgtctccatgtggttttttgqqtgtttttcttqttqtqtcctqqattccq

25

30

35

40

45

10

15

20

- (2) INFORMATION ÜBER SEQ ID NO:41:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:768 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:

50

55

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 41:

gttttttttttactgcagaaaattggtggtattttcacattcatagtgtttctatccaa
tttcagtacccacatttaatgaggaaaaatgttttaccaatgaaggaggaattcttaaa
ttagctgtaatgttaggttggagaaaatttggtatttagggtattttcaaggtaccatca
aatcagatttctgtttttttgttaaaaaaaatttttttaatcagtattgtttttacaagt
aatatactttgaaactcttgaactaatagtctcaaaaactctagaggacagtctgagaac
acgtatttctattgttctaaataaatacatgtttttgaatagttcaatcatgaattattg
actatgtcttcatcaaaagtgttaatccctctcagggtctctggtgaagaccttcaagag
tttggttttttccccaggaaattggaaggtagaattgtaaattcatagaacttcttta

tgaatagtgtacctcagcagctgcctttcaatttatgccaagtccttacagagtttatact tgaatagtaaatatgtcttctgagttttacagtgtcttaaactcaatgcacattttttt tcttctttttccaccccttcttgtttgtagttcattatacctgtcctattacagaactga tttccttcctggctgtacatgttggggtgctggatttttttccgtgtctttagtcttcgg atacatgttctcttctttagcttgtggtgaatacagtaatttgcattg	5
(2) INFORMATION ÜBER SEQ ID NO: 42:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1029 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	
(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	20
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 42:	35
ccctgctgtgaagtcctggcaggtgttggtaatgtgtggaaatgcagtcagcaagtttgc tggggagtttgataaaagtataaaacaaaac	40
ccagtgttttgccgttaaaaatattcctctatagtaaattatttat	45
aggagagectgectgeteagggatecaggetegtagagteaetecetgeeegteteeeag agatgetteaeeageaeetgeetetgagaeetegetetetgtteeageaaeeetggttgg ggggteagaettgataeaettteaggttgggagtggaeeeaeee	50
cggtgttaccgaggctgtgcctagagagtggagatttttgatgaaaggtgtgctcgctc	
2) INFORMATION ÜBER SEQ ID NO: 43:	60
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:736 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	65

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- ⁵ (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- 10 (vi) HERKUNFT:

20

40

45

50

55

- (A) ORGANISMUS: MENSCH
- (C) ORGAN:
- 15 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 43:

- (2) INFORMATION ÜBER SEQ ID NO: 44:
- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:1216 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- 60 (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- 65 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 44:

aactgttccattttccgtatctgcttcgggcttccacctcatttttttcgctttgcccat tctgtttcagccagtcgccaagaatcatgaaactcgccagtggaagcaccgccaccgccg 5 tgccctgctggacgagcagcaggtaaacgtgctgctctacgacatgaacggctgttactc acgcctcaaggagctggtgcccaccctgccccagaaccgcaaggtgagcaaggtgqagat tctccagcacgtcatcgactacatcagggaccttcagttggagctgaactcggaatccga agttggaaccccgggggccgagggctgccggtccgqgctccqctcaqcaccctcaacgg 10 cgagatcagcgccctgacggccgaggtgagatccagatccgaccactagatcatccttat accgacggggaaacggaggccagaggggggtgggcgcttgcaccacttccgtcccatcc ttgcgggtacctggctatgcgggggtgcctaaggagcctggaaaaagcgctcccccgtcg tgcttcctggggaagggggcgttcgctgcgctcggagcggcgtcccttccaacccgccgg 15 tctcatttcttctcgttttcacaggcggcatgcgttcctgcggacgatcgcatcttgtgt cgctgaagcgcctcccccagggaccggcggaccccaqccatccagggggcaagaggaatt acgtgctctgtgggtctcccccaacgcgcctcgccggatctgaggggagaacaagaccgat cggcqgccactgcgcccttaactgcatccagcctqgggctqaqqctgaggcactggcqa ggagagggcgctcctctctgcacacctactagtcaccagagactttagggggtggattc 20 cactcgtqtqtttctattttttgaaaagcagacattttaaaaaatggtcacgtttggtgc ttctcagatttctgaggaaattgctttgtattgtatattacaatgatcaccgactgaaaa tattgttttacaatagttctgtggggctgtttttttgttattaaacaaataatttagatg qtqaaaaaaacaaaaaa 25 (2) INFORMATION ÜBER SEQ ID NO: 45: 30 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:1158 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 35 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA 40 (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN 45 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 50 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 45: 55 GGACCGTGTGTCGGCCGTGGCCCTGCCCAAGCTGCCCATCTCGCTCACCAACACCGACCT CAAGGTGGCCAGCGACACACAGTTCTACCCTGGCCTCGGGCTGGCCCTGGCCTTCCACGA CGGCAGCGTCCACATCGTGCACCGGCTCTCACTGCAGACCATGGCCGTCTTCTACAGCTC 60 CGCGGCCCCGAGGCCTGTGGATGAGCCGGCCATGAAGCGCCCCCGCACCGCGGGCCCCGC CGTCCACTTAAAGGCTATGCAGCTATCGTGGACGTCACTGGCCCTGGTGGGGGATTGACAG CCACGGGAAGCTGAGCGTCCCCCCTCTCACCTTCCATGGGCCACCCGCTGGAGGTGGG GCTGGCGCTGCGCACCTGCTCTTCCTGCTGGAGTACTGCATGGTGACCGGCTACGACTG GTGGGACATCCTGCTGCACGTGCAGCCCAGTATGGTACAGAGCCTGGTGGAGAAGCTGCA 65 CGAGGAGTACACGCCCAGACCGCTGCCCTGCAGCAGGTCCTCTCCACCCGGATCCTGGC CATGAAGGCCTCGCTCTGCAAGCTGTCGCCCTGCACGGTGACCCGCGTGTGCGACTACCA

- 15 (2) INFORMATION ÜBER SEQ ID NO: 46:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 689 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- 25 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- 30 (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
- 35 (C) ORGAN:

20

40

45

60

65

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 46:

- (2) INFORMATION ÜBER SEQ ID NO: 47:
- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:1223 Basenpaare
 - (B) TYP: Nukleinsäure

(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	5
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	15
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(A) DIDEIOTTER. CONA Horary	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 47:	
TGAAGAACTACCTAAGAAGGTCACACCCTCTTCATTCACTTCAGAAATAATACCAACAAC TGGAGGGAGATCCCAGAAAACCTGATGGACCAGTACAGCGAGGTTAATGCCATCAGCACC GCCTGCTCCAACGGAGTTCCAGAGTGTGAGGAGATGGTCTCTGGCCTTTTCAAGCAGTGG ATGGAGAACCCCAATAATAACCCGATCCACCCCAACCTGCGGTCCACCGTCTACTGCAAC	25
GCTATCGCCCAGGGCGGGAGGAGGAGTGGGACTTCGCCTGGGAGCAGTTCCGAAATGCC ACACTGGTCAATGAGGCTGACAAGCTCCGGGCAGCCCTGGCCTGCAGCAAAGAGTTGTGG ATCCTGAACAGGTACCTGAGCTACACCCTGAACCCGGACTTAATCCGGAAGCAGGACGCC ACCTCTACCATCATCAGCATTACCAACAACGTCATTGGGCAAGGTCTGGTCTGGGACTTT	30
GTCCAGAGCAACTGGAAGAAGCTTTTTAACGATTATGGTGGTGGCTCGTTCTCCCTTCTCC AACCTCATCCAGGCAGTGACACGACGATTCTCCACCGAGTATGAGCTGCAGCAGCTGGAG CAGTTCAAGAAGGACAACGAGGAAACAGGCTTCGGCTCAGGCACCCGGGCCCTGGAGCAA GCCCTGGAGAAGACGAAAACAGCAAACATCAAGTGGGTGAAGGAGAACAAGGAGGTGGTGCTC CAGTGGTTCACAGAAAACAGCAAATAGTCCCCAGCCCTTGAAGTCACCCGGCCCCCATGC	35
AAGGTGCCACATGTGCCAAGCAAATAGTCCCCAGCCCTTGAAGTCACCCGGCCCCCATGC AAGGTGCCCACATGTGTCCATCCCAGCGGCTGGTGCAGGGCCTCCATTCCTGGAGCCCGA GGCACCAGTGTCCCCCCTCAAGGACAAAGTCTCCAGCCCACGTTCTCTCTGCCTGTGAG CCAGTCTAGTTCCTGATGACCCAGGCTGCCTGAGCACCTCCCAGCCCCTCATGC CAACCCCGCCCTAGGCCTGGCATGGCA	40
GAAGCCCAGCTCCAGGGCCAGATGAGCAGAAGCTCTCGATGGACAATGAACGGCCTTGCT GGGGGCCGCCCTGTACCCTCTTTCACCTTTCCCTAAAGACCCCTAAATCTGAGGAATCAAC AGGGCAGCAGATCTGTATATTTTTTTCTAAGAGAAAATGTAAATAAA	45
	50
(2) INFORMATION ÜBER SEQ ID NO: 48:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 958 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	60
(iii) HYPOTHETISCH: NEIN	65
(iii) ANTI-SENSE: NEIN	

- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:

5

10

35

40

50

55

60

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 48:
- GTTGTGGAGGGCCCAGATTGTGGCCACCACGGTGATGCTGGAGCGGAAGTGCCTCGCTGC 15 CTGTGGCCTCGCGGGATCTGCGGACGGGAGTGTGGCCTGGGAGACCGCTGGTTCCTG CGGGTGGAAGACAGGCAAGATCTCAACCGGCAGCGGATCCAACGCTACGCACAGGCCTTC CACACCCGGGGCTCTGAGGATTTGGACAAAGACTCAGTGGAAAAACTAGAGCTGGGCTGT CCCTTCAGCCCCCACCTGTCCCTTCCTATGCCCTCAGTGTCTCGAAGTACCTCCCGCAGC AGTGCCAATTGGGAAAGGCTTCGGCAAGGGACCCTGAGGAGACCTGCGTGGGATAATC AACAGGGGTCTGGAGGACGGGAGAGCTGGGAATATCAGATCTGACTGCTTCTCACT CCCAGAGGTCTCATCTCCCAGGCCCCAGGGGAAAAGAGAGTAGCATGAACGCCAAGGA ATGTACGTTGAGAATCACTGCTCCAGGCCTGCATTACTCCTTCAGCTCTGGGGCAGAGGA AGCCCAGCCCAAGCACGGGCTGGCAGGGCGTGAGGAACTCTCCTGTGGCCTGCTCATCA CCCTTCCGACAGGACACTGCATGTCAGAGCACTTTAAAAACAGGCCAGCCTGCTTGGGC GCTCGGTCTCCACCCCAGGGTCATAAGTGGGGAGAGAGCCCTTCCCAGGGCACCCAGGCA GGGGGTGGGAAGTGGGGCTAGGTCTTGCCAACTCCATCTTCAATAAAGTCGTTTTCGGAT

CCCTAAGCGGGAAAAAGGGTACGAGAGGTGAGTTCGAAACAGACCAGCGGGACTGGCC

- (2) INFORMATION ÜBER SEQ ID NO: 49:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:572 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- 45 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO 49:
- 65
 GCCCCTCCTCTAGCTGTGGGGTGAGGGTCCCATGTGGTGGCACAGGCCCCCTTGAGTG

(2) INFORMATION ÜBER SEQ ID NO: 50: (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1187 Basenpaare (B) TYP: Nukleinsture (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGGAAAATCTCACCATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGGGTCAGGCCCTCTGTCTACCAGGTTTCTCCTGCTTTTTCCTTTTTTTCC ACATTTGCATTTATATCTTCCTGTACTAAAAGAAACAAATTATTTAT	TGGCCCCTCAAATCGTCCAGCGACCTTCCTCATCCACCCCATCCTCCCCAGTTCATTGC ACTTTGATTAGCAGCGAACAAGGAGTCAGACATTTTAAGATGGTGGCAGTAGAGGCTAT GGACAGGGCATGCCACGTGGGCTCATATGGGGCTGGGAGTAGTTGTCTTTCCTGGCACTA ACGTTGAGCCCCTGGAGGCACTGAAGTGCTTAGTGTACTTTGGGGTCTGACCC CAAACACCTTCCAGCTCCTGTAACATACTGGCCTGGACTGTTTTCTCTCGGCTCCCCATG TGTCCTGGTTCCCGTTTCTCCACCTAGACTGTAAACCTCTCGAGGGCAGGGACCACACCC TGTACTGTTCTTGTGTCTTTTCACAGCTCCTCCCACAATGCTGAATATACAGCAGGTGCTCA	5
(i) SEQUENZ CHARAKTERISTIK: (A) LÂNGE:1185 Basenpaare (B) TYP: Nukleinsäure (C) Strang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xii) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGGATATTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGCTCAGGCCCTCTGTCTACCAGGTTTCTCCTCTTTTTTGC ACATTTTGCATTTATATCTTCCTGTACTAAAAGAAAATTATTATAATTGGGGTGACAATTAATATGGAAACCTATTTTAAAAAGTTTTAAAAAGTATTATATATTGAACTTCTCTCAGAATGCC STTGTTTCATTGTGAATCAGGGGAAAATGTTAATAAAAAAATTATTTAATTTGC AAATACTAATTTTGCATTTTAAAAAGTTTTAAAAAGAAAAATTTTTCCAGAATCCTCTGTCAGAATGCC STTGTTTCATTTGTGAATCAAGGGGAAAATGTTAATCATTTGGAGATCCC STTGTTTCATTTGTGAATCAAAGGAGAACAACTCCTCGGTTCACCTAGAATTCC AAATACTAATTTGCATTTTTAAAATCCCCCTCGGTTAAGTCCAGAATCTCTCTC	ATAAATGATTCTTAGTGACTTTAAAAAAAAA	
(A) LÄNGE: 1185 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (iv) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (Vi) BERLOTHEK: eDNA library (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: eDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATTGCATTATATTCTTCCTTGACTAAGAAAAAACAAATTATTTAT	(2) INFORMATION ÜBER SEQ ID NO: 50:	15
hergestellte partielle cDNA (iii) HYPOTHETISCH: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vi) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAARATGTGCT CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCTCTTTTTTTGC ACATTTGCATTTATATCTTCTGTACTAAAAGAAACAATTATTATAATTGGGGTGACA ATATAAAAGGAACAAAAGAATGGGGCAATAGTTGCTCTTCCTTGCTAGCTGAAGTCCATGT TACAGAAACTCACTATTTAAAAAGTTTTAAAATGTGTCTCTTGCAGAATGCC STTGTTTCATTTGTCTTTTAAAATCCCCTCGGTGTATGGATCACTTTTCTTATTACC AAATGTAACTTATTTTTTAAATCCCCTCGGTGTATTGGATCACTTTTCTTATTACC AAATGTACAATCCATAAGAAAAGAA	(A) LÄNGE:1185 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	20
(iii) ANTI-SENSE: NEIN (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (Vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGAAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGTCAGGCCTCTGTCTACCAGGTTTCTCCTCTTTCTT		25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: 35 (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library 40 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCTCTTCTTCTTTTTTTGC ACCATTAGATTAATCTTCCTGTACTAAAAGAAACAAATTATTTTAAATTGGGGTGACA ACATTAAAAGAACAAAAGGTGAACATGATTGCTCCTACCTGCAGGCTGT FACAGAAACCTACTATTTAAAAAAGATTTAAAAGAATTATTATAAATTAGGCTGAACATTATATAAAGAAATTAAAAAAATTATTTAT	(iii) HYPOTHETISCH: NEIN	
(A) ORGANISMUS: MENSCH (C) ORGAN: (Vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library 40 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCTCTTCTTCTTCTTTTTTGC CACATTTGCATTTATATCTCCTGTACTAAAGAAACAAATTATTAAATTGGGGTGACA ATTATAAAGGAACAAAAAGATGGGCAATAGTTGTCCTCTACCAGGTTAAGTCCATGT IACAGAAACTCACTATTTAAAAAGTTTTAAAAGAATTATTATAATTGGGGTGACA ATTATAAAAGAATCATTTTTAAAAAGTTTTAAAAGATTTATGAACCTTGTCCTACAAATCGC CGAAATACTTATTTGTCTTTTTAAAACTTTTAAAAGATTTATTGGAGACTGTTTTCTTATTACC AAAATGCTAATTTGTGAATCAGGGGAAAATGTTTAAACAGAATCATTTTGGAGACTGTTTTCTTATTACC AAAATTATTGTGAATCAGGGGAAAATGTTTAACACACACTGGTGGTTCACTGACAAAGATTA IAAAAATCATCACATAAAAAAAAAAAAAAAAAAAA	(iii) ANTI-SENSE: NEIN	30
(A) BIBLIOTHEK: cDNA library (Xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50: ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCCGCTTTCTGCAGAGCTG TGGACCCTGTACGTACCAAACAGGTGAACTTGGTCCATCTTTCCTTCTTCTTTTTTTGC ACATTTGCATTTATATCTTCCTGTACTAAAAGAAACAAATTATTTAAATTGGGGTGACA ATATAAAAGGAACAAAAGATGGGGCAATAGTTGCTTCCTAGCTGGAGCTGTAAGTCCATGT TACAGAAACTCACTATTTAAAAAGTTTTAAAAGATTTATAGAACCTTGTCCTACAATTCGC GTTGTTTCATTTGTCTTTTAAACTCCCCTCGGTGTATGGATCATCTTCGTCAGAATGCC GTTGTTTCATTGTGAATCAGGGGAAAATGTTAATCATTTGGAGACTGTTTCTTATTACC AAATGTACAATCCATAAGAAACGAACTGAAAGCCAACAACTGCTGGGTTCACTGACAAAGATTA TAAAAATCATCACGTTCAAAGTAGAGTTTTTAGCCAAGGTCAAGAACTAACCTGGGGCTG AGTCAGCGTCTCTACCCACTTAAATAACAGCGTAAAGATCTTTCACTAAATTCGTTATGT GGTCTGCTTGGATGAAACCAAATGTTTTTCCTTTTGAAACAGAATCATATCCTGCAGACT CTTATGCAACTCAGCATAGCTTTTAAATACTGTTTTCTTTTTAGTCCTCAAATTCTTC CTTTGCCACTCCACCCACTGATTGTTGATTCACCTCTCATCTTAATTCTTCTTACCTAACTTCCTTAA CCTTATGCGGACTGAGGAGAGAAGAGTGGTTACCCTGTTACCGTGCCCTTTCAACCCCACTGATTCTT CTTGCTGCTTTTCAACCCCACTGATTGTTGATTGACCGTTACCGTGCCCTTTCAACCCCAACAGGT CTTCAAGTTTCAACCCCACTGATTGTTGATTGACCGTTACCGTGCCCTTTCAATTTCTTCTTCTCTTAATTTTCTTTC	(A) ORGANISMUS: MENSCH (C) ORGAN:	35
ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCCGCTTTCTGCAGAGCTG IGGACCCTGTACGTACCAAACAGGTGAACTTGGTCCATCTTTCCTTCTTCTTTTTTTGC ACATTTGCATTTATATCTTCCTGTACTAAAAGAAACAAATTATTTAT		40
CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCCGCTTTCTGCAGAGCTG IGGACCCTGTACGTACCAAACAGGTGAACTTGGTCCATCTTTCTT	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50:	
ATATAAAGGAACAAAAGATGGGGCAATAGTTGCTTCCTAGCTGGAGCTGTAAGTCCATGT IACAGAAACTCACTATTTAAAAAGTTTTAAAAAGATTTATGAACCTTGTCCTACAATTCGC IGAATACTTATTTGTCTTTTAAACTCCCCTCGGTGTATGGATCATCTTCGTCAGAATGCC GTTGTTTCATTGTGAATCAGGGGAAAATGTTAATCATTTGGAGACTGTTTTCTTATTACC AAATGTACAATCCATAAGACAACTGAAAGCAACAACTGCTGGGTTCACTGACAAAGATTA IAAAAATCATCACGTTCAAAGTAGAGTTTTTAGCCAAGGTCAAGAACTAACCTGGGGCTG AGTCAGCGTCTCTACCCACTTAAATAACAGCGTAAAGATCTTTCACTAAATTCGTTATGT GGTCTGTCTGGATGTAAACCTATATATTTCCTTTTGAAACAGAATCATATCCTGCAGACT CTTGGCACTCCTGCATAGCTTTGACCGAATGTTCACTCTCATCGTAATGGAAGATTTCTA ICTATGCAGATAATACATGTTTTTAAATACTGTTTTCTGTTTAGTCCTCAATCTTCCTAA ICTATGCAGATAATACATGTTTTTAAATACTGTTTTCTGTTTAGTCCTCAATCTTCCTAA ICTCAAATTGGGGACTGAGGAGAGAGAAAGGTGGTTACCCCTGTTACCGTGCCATATTCTT CTTGCTGCTTTTCAACCCCACGTGATTGTTGATTGACCCATATTTTTTTCTCTTTAATTGAACCCAAGAGT CAAAGTTTCAGAAAACTTTCCCAATCATTTCACTTCAATCTTAATTGAACCCAAGAGT CAAAGTTATTATTTTCCCGAACGTGTTTGTGATCTTCTGTTATATTTTTGGGGCATGTTA ICTTTATGGTATATAAGCTGTAGTGCATACTCTTTTTTTTT	ACCATAGATTTATTTTAAAAGGGAAAATCTCACACATAATTAAGCAGTGGAAAATGTGCT CAATGCTATGGTGCGTCAGGCCCTCTGTCTACCAGGTTTCTCCCGCTTTCTGCAGAGCTG TGGACCCTGTACGTACCAAACAGGTGAACTTGGTCCATCTTTCCTTCC	. 45
AAATGTACAATCCATAAGACAACTGAAAGCAACAACTGCTGGGTTCACTGACAAAGATTA IAAAAATCATCACGTTCAAAGTAGAGTTTTTAGCCAAGGTCAAGAACTAACCTGGGGCTG AGTCAGCGTCTCTACCCACTTAAATAACAGCGTAAAGATCTTTCACTAAATTCGTTATGT GGTCTGTCTGGATGTAAACCTATATATTTCCTTTTGAAACAGAATCATATCCTGCAGACT CTTGGCACTCCTGCATAGCTTTGACCGAATGTTCACTCTCATCGTAATGGAAGATTTCTA ICTATGCAGATAATACATGTTTTTAAATACTGTTTTCTGTTTAGTCCTCAATCTTCCTAA CTCAAATTGGGGACTGAGGAGAGAAAGGTGGTTACCCCTGTTACCGTGCCATATTCTT CTTGCTGCTTTTCAACCCCACGTGATTGTTGATTGACGGTTCTGCTATAATGTGCGTGC	ATATAAAGGAACAAAAGATGGGGCAATAGTTGCTTCCTAGCTGGAGCTGTAAGTCCATGT IACAGAAACTCACTATTTAAAAAGTTTTAAAAGATTTATGAACCTTGTCCTACAATTCGC IGAATACTTATTTGTCTTTTAAACTCCCCTCGGTGTATGGATCATCTTCGTCAGAATGCC	50
CTTGGCACTCCTGCATAGCTTTGACCGAATGTTCACTCTCATCGTAATGGAAGATTTCTA CCTATGCAGATAATACATGTTTTTTAAATACTGTTTTCTGTTTAGTCCTCAATCTTCCTAA CTCAAATTGGGGACTGAGGAGAGAGAGGTGGTTACCCCTGTTACCGTGCCATATTCTT 60 CTTGCTGCTTTTCAACCCCACGTGATTGTTGATTGACGGTTCTGCTATAATGTGCGTGC	AAATGTACAATCCATAAGACAACTGAAAGCAACAACTGCTGGGTTCACTGACAAAGATTA TAAAAATCATCACGTTCAAAGTAGAGTTTTTAGCCAAGGTCAAGAACTAACCTGGGGCTG AGTCAGCGTCTCTACCCACTTAAATAACAGCGTAAAGATCTTTCACTAAATTCGTTATGT	55
CAAAGTTATTATTTCTCCGAACGTGTTTGTGATCTTCTGTTATATTTTTGGGGCATGTTA CCTTTATGGTATATAAGCTGTAGTGCATACTCTTTGTATTGCAAAAAACTGGTCAGTAAT	CTTGGCACTCCTGCATAGCTTTGACCGAATGTTCACTCTCATCGTAATGGAAGATTTCTA ICTATGCAGATAATACATGTTTTTAAATACTGTTTTCTGTTTAGTCCTCAATCTTCCTAA CTCAAATTGGGGACTGAGGAGAGAGAAAGGTGGTTACCCCTGTTACCGTGCCATATTCTT CTTGCTGCTTTTCAACCCCACGTGATTGTTGATTGACGGTTCTGCTATAATGTGCGTGC	60
	CAAAGTTTCAGAAAACTTTCCCAATCATTTCACTTCAATCTTAATTGAACCCAAGAGT CAAAGTTATTATTTTCTCCGAACGTGTTTGTGATCTTCTGTTATATTTTTGGGGCATGTTA CCTTTATGGTATATAAGCTGTAGTGCATACTCTTTGTATTGCAAAAAACTGGTCAGTAAT CTATGTACATGTATTCCACATTTTAGTGTGCTTGAAGTGACAATC	65

(2) INFORMATION ÜBER SEQ ID NO: 51:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1027 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

10

20

25

5

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 15 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:51:

30

60

- GGGAGATAGACCCAGCCCAGAGCTCTGAGTGGTTTCCTGTTGCCTGTCTCTAAACCCCTC GGAGGCCTTGGCAGCCCTCAGCAAGAAGCCCTGCCTGATGAGACAGAGGTGGTGGAAG AAACTGTGGCAGAGGTGACTGAGGTATCTGTGGGAGCTAATCCTGTCCAGGTGGAAGTAG AGAACCACCACTGCAAACACGGCAAGGTGTGCGAGCTGGATGAGAACAACACCCCCATGT GCGTGTGCCAGGACCCCACCAGCTGCCCAGTTGGCGAGTTTGAGAAGGTGTGCA GCAATGACAACAAGACCTTCGACTCTTCCTGCCACTTCTTTGCCACAAAGTGCACCCTGG AGGGCACCAAGAAGGGCCACAAGCTCCACCTGGACTACATCGGGCCTTGCAAATACATCC CCCCTTGCCTGGACTCTGAGCTGACCGAATTCCCCCTGCGCATGCGGGACTGGCTCAAGA AGCTGCGGGTGAAGAAGATCCATGAGAATGAGAAGCGCCTGGAGGCAGGAGACCACCCCG TGGAGCTGCTGGCCCGGGACTTCGAGAAGAACTATAACATGTACATCTTCCCTGTACACT GGCAGTTCGGCCAGCTGGACCACCCCATTGACGGGTACCTCTCCCACACCGAGCTGG CTCCACTGCGTGCTCCCCTCATCCCCATGGAGCATTGCACCACCCGGTTTTTCGAGACCG
- 55 (2) INFORMATION ÜBER SEQ ID NO: 52:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 984 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA

(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	1
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 52:	1
ATCACTCTTTCTCAGCTCGACTGGAGTTTCTGCACCTTTGCAGGGGCAAAGTAAGT	2
CCTTCCCCACGACTCAGTTGACAGAAGGATATACTTTGTTATAACTTATTATTTTGTTCT CTGTAAATACAAGATGTTTATAGGAAATATGTATTCTGAACTCTATCTGCAGAATGAGTC ACTACACCAAAATAGTTCTATTATTTAGAATGTGTTAATTTTAAAGGGACCTGATAGGTA TTTATTTACATATGCGATCCACATTTGTGTGAAAGCATGTGATCATACTAACCCAGCCTC CTGGAATGTCGCTGTACGATGATTGATGTCTTTTCTCAGTCCATAGTTACAATTGTTTA	. 2
GTATGCTAATCAGTCCAGTTCCCTGAGGTTTAAGATCAAATATAAATTACTCTGCTTTTC GACTCATTCAGGTAGCATTGTACCTGAACCTGATTGCTACTTTTCATCTTAAATATTAT ATTTCCTCATCTAATCTGCCTTCCCCTCATCCACAGACATTTGGAGAAGGAAATGGGAGG GTGTCTGTTATCCCTTTTCTCTTTGCTTTG	3
GAGAGGGAAGTGGTGGGCATTTACTGCTCTGACACTTCCACTGTCCCTGCTGGGGATGCTG GGGCCAAGGCCTGTGGGGCCTGTGAACTGCACAGCCAGGAGCAAGGAACCCACTAAATAC	3
(2) INFORMATION ÜBER SEQ ID NO: 53:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:621 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	4
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	5
(iii) ANTI-SENSE: NEIN	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	5.
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	6
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 53:	6.
ATGTTTTTCATTTTTTCATGTTATCTATCCAAGCACTGTTCCATGGTCAGCAAGTCATA	

- (2) INFORMATION ÜBER SEQ ID NO: 54:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE:1128 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN
- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:

35

40

15

20

25

30

- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 54:
- GATTTTTATCTAGAAACTATATTTACTTAAACCCCCCTCAGGAAAGAGGTTTTAAAATCA AAGATGGGAAAATCGGAGAAAATTGCCCTTCCCCATGGCCAGCTTGTTCATGGTATACAC TTGTATGAGCAACCAAAGATAAACAGACAGAAAAGCAAATATAACTTGCCACTAACCAAG ATCACCTCTGCAAAAAGAAATGAAAACAACTTTTGGCAGGATTCTGTTTCATCTGACAGA ATTCAGAAGCAGGAAAAAAAGCCTTTTAAAAAATACCGAGAACATTAAAAATTCGCATTTG AAGAAATCAGCATTTCTAACTGAAGTGAGCCAAAAGGAAAATTATGCTGGGGCAAAGTTT AGTGATCCACCTTCTCCTAGTGTTCTTCCAAAGCCTCCTAGTCACTGGATGGGAAGCACT GTTGAAAATTCCAACCAAAACAGGGAGCTGATGGCAGTACACTTAAAAACGCTCCTCAAA GTTCAAACTTAGATTTCAGATTTCAGTATGTGTGTAAAACATAATTTTTCCCATATCCCT GGACTCTTGAGAAAATTGGTACAGAAATGGAAATTTGCCTTGTTGCAACATACAATTGCA AAAGATGAGTTTAAAAAATTACATACAAACAGCTTGTATTATATTTTATATTTTGTAAAT ACTGTATACCATGTATTATGTGTATATTGTTCATACTTGAGAGGTATATTATAGTTTTGT AAATTTTAAGTGTGTGCTAAGGCACATGGAAGACCGATTTTATTTGCACAAGGTACTGAG ATTTTTTCAAGAAACAGCTGTCAAATCTCAAGGTGAAGATCTAAATGTGAACAGTTTAC CTAAATTGATTTGTAATCTGAAATTACTGAACACTCCTATTCCCATTTTTGCTAAACTC AATTTCTGGTTTTGGTATATATCCATTCCAGCTTAATGCCTCTAATTTTAATGCCAACAA

AATTGGTTGTAATCAAATTTTAAAATAATAATAATTGGGGCCCCCCCT

65

(2) INFORMATION ÜBER SEQ ID NO: 55:

 (i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1121 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear 	5
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	10
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	20
(vii) SONSTIGE HERKUNFT:	
(A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 55:	25
TCCCTTTATTACTATGGCATCAGAGATTTGGCTACTGTTTTCTTCTACATGCTAGTGGCG ATAATTATTCATGCCGTAATTCAAGAGTATATGTTGGATAAAATTAACAGGCGAATGCAC TTCTCCAAAACAAAA	30
ATCTTATGGAGGGCTTATCCCCATAACCTGATGACATTTCAAATGAAGTTTTTCTACATA TCACAGCTGGCTTACTGGCTTCATGCTTTTCCTGAACTCTACCTTCCAGAAAACCAAAAAA GAAGATATTCCTCGTCAGCTTGTCTACATTGGTCTTTACCTCTTCCACATTGCTGGAGCT TACCTTTTGAACTTGAATCATCTAGGACTTGTTCTTCTGGTGCTACATTATTTTGTTGAA TTTCTTTTCCACATTTCCCGCCTGTTTTATTTTTAGCAATGAAAAGTATCAGAAAGGATTT	35
TCTCTGTGGGCAGTTCTTTTTTTTTTGGGAAGACTTCTGACTTTAATTCTTTCAGTACTG ACTGTTGGTTTTGGCCTTGCAAGAGCAGAAAATCAGAAGCTGGATTTCAGTACTGGAAAC TTCAATGTGTTAGCTGTTAGAATCGCTGTTCTGGCATCCATTTGCGTTACTCAGGCATTT ATGATGTGGAAGTTCATTAATTTTCAGCTTCGAAGGTGGAGGGAACATTCTGCTTTTCAG	40
GCACCAGCTGTGAAGAAGAAACCAACAGTAACTAAAGGCAGATCTTCTAAAAAAAGGAACA GAAAATGGTGTGAATGGAACATTAACTTCAAATGTAGCAGACTCTCCCCGGAATAAAAAA GAGAAATCTTCATAATGAATTATAAACTAATTGATTAATGTCCCCAAAGAAATCTGCTTT CTACTATATCTTTCAGCATTAGAGATTTTTCTGTTCTTGAAAATACAGTCTGTGCTCTTT	45
GATTTTTGCTATTGTACGGTTTCATGCATTTTTTTAAAGGGCATTGAGGGGAGGATTATT GCTATGAATGAAAAAAATATTTTAGCTTAGACTAAGCTAC	50
(2) INFORMATION ÜBER SEQ ID NO: 56:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:876 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel	55
(D) TOPOLOGIE: linear	60
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	
(iii) HYPOTHETISCH: NEIN	65

- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 56:

15

10

5

35

40

- (2) INFORMATION ÜBER SEQ ID NO: 57:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1328 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear
- 45 (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
 - (iii) HYPOTHETISCH: NEIN

50

- (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
- (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library

60

55

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 57:

65

GTCGGGGAGCGCGGGCCCGGGCCCAGGGGACCCCGGGCCACGGAGAGCGGAAGAGGAT GGATTGCCCGGCCCTCCCCCCGGATGGAAGAAGGAGGAGGAGTGATCCGAAAATCTGGGCT AAGTGCTGGCAAGAGCGATGTCTACTACTTCAGTCCAAGTGGTAAGAAGTTCAGAAGCAA

TGGAAAGATGATGCCTAGTAAATTACAGAAGAACAAACAGAGACTGCGAAACGATCCTCT CAATCAAAATAAGGGTAAACCAGACTTGAATACAAACATTGCCAATTAGACAAACAGCATC CAATCAAAATAAGGGTAAACCAGACTTGAATACAACATTGCCAATTAGACAAACAGCATC AATTTTCAAACAACCGGTAACCAAAGTCACAAATCATCCTAGTAATAAAGTGAAATCAGA CCCACAACGAATGAATGAACAGCCACGTCAGCTTTTCTGGGAGAAGAGGCTACAAGGACT TAGTGCATCAGATGTAACAGAACAAATTATAAAAACCATGGAACTACCCAAAGGTCTTCA AGGAGTTGGTCCAGGTAGCAATGATGAGACCCTTTTATCTGCTGTTGCCAGTGCTTTGCA CACAAGCTCTGCGCCAATCACAGGGCAAGTCTCCGCTGCTGTGGAAAAGAACCCTGCTGT TTGGCTTAACACACTCTCAACCCCTCTGCAAAGCTTTTATTGTCACAGATGAAGACCATCAG	5
GAAACAGGAAGAGCGAGTACAGCAAGTACGCAAGAAATTGGAAGAAGCACTGATGGCAGA CATCTTGTCGCGAGCTGCTGATACAGAAGAGATGGATATTGAAATGGACAGTGGAGATGA AGCCTAAGAATATGATCAGGTAACTTTCGACCGACTTTCCCCAAGAGAAAATTCCTAGAA ATTGAACAAAAATGTTTCCACTGGCTTTTGCCTGTAAGAAAAAAATGTACCCGAGCACA TAGAGCTTTTTAATAGCACTAACCAATGCCTTTTTAGATGTATTTTTGATGTATATATCT ATTATTCAAAAAATCATGTTTTATTTTGAGTCCTAGGACTTAAAATTAGTCTTTTGTAATA TCAAGCAGGACCCTAAGATGAAGCTGAGCTTTTGATGCCAGGTGCAATCTACTGGAAATG	15
TAGCACTTACGTAAAACATTTGTTTCCCCCACAGTTTTAATAAGAACAGATCAGGAATTC TAAATAAATTTCCCAGTTAAAGATTATTGTGACTTCACTGTATATAAACATATTTTTATA CTTTATTGAAAGGGGACACCTGTACATTCTTCCATCACTGTAAAGACAAATAAAT	20
(2) INFORMATION ÜBER SEQ ID NO: 58:	25
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE:697 Basenpaare (B) TYP: Nukleinsäure (C) STrang: einzel (D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	35
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN: (vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 58:	50
gtaggcgctagtctgggcgcagaggtttctgggagccaagagtggtaatggcgtctgtat gatcttcggagcctgctgcatcggacctcggccagtcataaaagatgacaacagcagccaggccaacctttgaacctgccagaggtggaaggggaaaggagaggtgatttgagccaactttcaaagcagtattcaagcagagacctaccctctcatacaaagataaaatacagacag	55
ctactcaggatgcccctgaagaggttcgtaaccgtgacttcaggagagagttggaagaaa gagagagagagctgctagagagagaaaatagggatcgtccaacccgagaacatacaacct cctcttcagtgtcaaaaaggccacggttagaccagattcctgccgccaaccttgatgcagatgaccctctaacagatgaggaagatgaagattttgaagaagaagtgatgatg	60
gcccagggaagggaccaagggccaaaaaagctttaagggggggg	65

(2) INFORMATION ÜBER SEQ ID NO: 59:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1389 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

10

20

25

5

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 15 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 59:
- 30 aaggctgttggcatcaataggggacagaggctgatgctggagtggccagtagaggtggtg aaatgttttggttaagaaaattattttgctttcagtgtaaatcttcgcagtgttctaaac aaagttcagtcttctgctcgcccctttccctcactgatqtctgcacttggttgaggtctc ctggagcctcacaggctctgctgttctccacttctcacctgccatccacgccctgcaagc. tcatgcaaacaccctttcttcctcctgcggcagagttgttcaggttgcctgggcaggggc ttaaacagtgccagccctgccatcccaaagctattgttaagccccccaggcgtcctcca cccacgcccactagcctgccatgtccacagttccttgqqctqctqaqqqqctagtqcaqt ggtcctgacctctcttatcaagagcacacttctttgctggttgctcctttttgagcatatg cgtgtgattatttggaacagttagacttgccacgttgggtcagttttagaaattgtttct agctagagggactggtgtccttccaagtctagcatttggggtatggaaaattgttgtggt tttcctttcccttcccttctccactggccnagcttgggcctcatcctcatgtcatccttc taggaaggcqcctqcccatcttqtctqccqqcaqcatqcatccaagqccagagctcagq cctgcagactgggctggtgcctcctccqcttcagggtatgggagttggtgaaggggcttt caaaaaataataaqaaaaaaqqtaaaqtctttqqtaqcttctatccactcaqatcctq gaaggcagcaaggttttgtggatctagattcattaggaatgtcttcttqtcagccaggcc aggacccqqqcttqccaaqaqcaqaqqccctcccaqcaaccaqqataccaccactttqqq ggctttgtgtacagaggtccgggtctgagacctcataggctgcagaaatctggggcagcc accatcaagaagcccctctcaggggccagaactcctttgccagcgtggatttctcaagtc gatttgtagttgtgtgtgcagcacttcgccctgatatgtgtgtctacaataaaaccaa atctaatat
- 60 (2) INFORMATION ÜBER SEQ ID NO: 60
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 535 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel

(b) for obodie. Inteat	
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	:
(iii) HYPOTHETISCH: NEIN	
(iii) ANTI-SENSE: NEIN	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	. 1:
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:60:	
tgtattgaggtaataaattgttttactgacaatttttcctttttctacactaaaacaata tgtgatatatttcccctcttgaagaggcaattcattaaactctcaaattttctatagaat caagatagaacctttagatactccaactcaccaaaatgtaaaaaaactaacaaaaatatt	2:
tggtcttcaataatgctaaatatctacatttttagaatttatcaacatttaactagataa ttgggcatgtcttaattatgcatgtacttatccatactaataaaattgacaatgctagtg catacttattggtttagtcctattatcaggatataatcatctgtgaggaggatattttaa atactgtaaatgataacagttaatgatatacacatttagactgagttgcacactggcagg gagaccaaaaacattacttccatacttgtgtcatgattctttttttt	30
actctgtcgccaggctgggagtacagtggcatgatctcggctcactgcaacctct	3:
(2) INFORMATION ÜBER SEQ ID NO: 61:	
(i) SEQUENZ CHARAKTERISTIK: (A) LÄNGE: 1097 Basenpaare (B) TYP: Nukleinsäure	40
(C) STrang: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA	4.
(iii) HYPOTHETISCH: NEIN	50
(iii) ANTI-SENSE: NEIN	•
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (C) ORGAN:	55
(vii) SONSTIGE HERKUNFT: (A) BIBLIOTHEK: cDNA library	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:61:	~

GTGATTTGACATTTGAACAAATTAGGAAGCTGAATCCTGCAGCAAACCACAGACTCAGGA ATGATTTCCCTGATGAAAAGATCCCTACCCTAAGGGAAGCTGTTGCAGAGTGCCTAAACC ATAACCTCACAATCTTCTTTGATGTCAAAGGCCATGCACAAGGCTACTGAGGCTCTAA CAGAAGTTATCTACAAGATGAGACAAACAGATCGGGATGTAATAACAGCATTAACTCACA GACCTTGGAGCCTAAGCCATACAGGAGATGGGAAACCACGCTATGATACTTTCTGGAAAC ACCTGTGTGGAATTTCAGCTTTCCTCATGCAAAAGGATTTTGTATCCCCGGCCTACTTGA 10 AGAAGTGGTCAGCTAAAGGAATCCAGGTTGTTGGTTGGACTGTTAATACCTTTGATGAAA AGAGTTACTACGAATCCCATCTTGGTTCCAGCTATATCACTGACAGCATGGTAGAAGACT GCGAACCTCACTTCTAGACTTTCACGGTGGGACGAAACGGGTTCAGAAACTGCCAGGGGC CTCATACAGGGATATCAAAATACCCTTTGTGCTAGCCCAGGCCCTGGGGAATCAGGTGAC 15 TCACACAAATGCAATAGTTGGTCACTGCATTTTTACCTGAACCAAAGCTAAACCCGGTGT TGCCACCATGCACCATGCCAGAGTTCAACACTGTTGCTCTTGAAAATCTGGGTCT GAAAAAACGCACAAGAGCCCCTGCCCTGCCCTAGCTGAGGCACACAGGGAGACCCAGTGA GGATAAGCACAGATTGAATTGTACAATTTGCAGATGCAGATGTAAATGCATGGGACATGC 20 ATGATAACTCAGAGTTGACATTTTAAAACTTGCCACACTTATTTCAAATATTTTGTACTCA GCTATGTTAACATGTACTGTAGACATCAAACTTGTGGCCATACTAATAAAATTAATAAAA GGAGCACTAAAGGAAAA

25

30

- (2) INFORMATION ÜBER SEQ ID NO: 62:
 - (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1860 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

35

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- 40 (iii) HYPOTHETISCH: NEIN
 - (iii) ANTI-SENSE: NEIN
- (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:62:

55

50

TGTTTTTCTTAAAGCTGTCAGTGTACAAGTGGGTATTTGAATACCAGACCTTACTGTAAA	
AAATAAAAAAGGTGGTATCTAGAGCATGTAAATTGGATATAAAGTTCTGCTCTTAAAGAG	
TTGATCTAAGAGTATGGCTAAACATCTATATATGCAATCTATTAAAAGAACTTAATTCGG	
CTATTATGTCTTGATTTGATTGCAGTTTTTTCCTAATTATAACAAATTTTTCCTCATTGG	5
CCTGTTTTTAATCCTGTGCCTAGAAGGAGTACAAAATGCACACTTTACAAAATTGATATT	
TAACACTTACCCACTCCCCTTTCCCCATCTCTTCTACCGCTCTTGTTGATCGTGGTATCT	
GATCTTGACTAGATAGGCTGAAGGCACATGGTTCCCTCCAAAAACCACTATTGATACCAC	
TACAAAAACAAGCCAGCAAAAAGATACTGTAGAGAGGTTGGCTTGCTT	10
AACTGCATGTTGAAAAATAAGCCGTTATTGATCTTAAACATCGGTCAGATGAGTCATACA	10
TTGGGTTATTTTTATATACATGTATACACAAAATATTTCAAATTGAAAGCAACATCTTA	
ATGGATTCAAAACTATTACAAGCTGTTGTCTAAAACAGGTGAGAAAAAAATTTATAACTG	
TAAAAACAAATGCACATATTGATATTTAAAATGCGTAATTAAGAAAACCCATTGTTGTTG	
TGTTTTTCTTGTATACCAATAATTAAGCCACTACTGTTGGCACTGTTTGGTTTTCTATTT	15
TAACACTGAAGGAGTGAAAGTATTTCCTATATTTATGAATTTACTACTAAAATCTTGGCA	
AAAAAGAAAAATTGTCTAACGTGTGTGGGTGAAAACTGTTAATCAAGTGTTTCTACT	
CCCCCCGAAAATCCCCTGAAAGTTGGACACCAACTGTATACCCTAGGTTGCTTAAAGGG	
ATTTCACTATTATATAAAGTCAATAAAAATGAAGTAGTTGTATATATGCAACATTGTGTA	20
CAGAGGGGAAATAATGAATAGTATTAAAGAAACATTCTCGTCTTCCTTTACCTTTAATCC	
CCTAATACCTAGTCTACTTTTTAAATTTTCAGACTTCACTGCTTTTTGAATTCATAATTC	
TAATTTTCACATTATTGTTAATGGAAAATCATATCTAATAAAGGTTTTAGTTATTCCCAT	
GCACAGTATGAAAATTCTCATTTGCTGAGGTTTTGTTTCAAGAAAATGTATTGGCATGT	
GCACAGTATGAAAATTCTCATTTGCTGAGGTTTTGTTTCAAGAAAATGTATTGGCATGT	25
(2) INFORMATION ÜBER SEQ ID NO:63:	
(2) INFORMATION OBER SEQ ID NO.83.	
(i) SEQUENZ CHARAKTERISTIK:	30
(A) LÄNGE:535 Basenpaare	
(A) LANGE.333 Basenpaare (B) TYP: Nukleinsäure	
(C) STrang: einzel	35
(D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung	
hergestellte partielle cDNA	
hergestellte pattielle editA	40
(iii) HYPOTHETISCH: NEIN	40
(11) 1111 0 1111 110 0111 11111	
(iii) ANTI-SENSE: NEIN	
(,,	
(vi) HERKUNFT:	45
(A) ORGANISMUS: MENSCH	
(C) ORGAN:	
(-)	
(vii) SONSTIGE HERKUNFT:	50
(A) BIBLIOTHEK: cDNA library	
(1.1) 2.2.2.0 1.2.2.1. 0.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
·	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 63:	55
	33
CTGGGCCGTCCCCAGGCTCGAGCTCTCTACAACCCTCTCTCCTCAGCGCTTCTTCTTCT	
TGGTTTGATCCTGACTGCTGTCATGGCGTGCCCTCTGGAGAAGGCCCTGGATGTGATGGT	
GTCCACCTTCCACAAGTACTCGGGCAAAGAGGGTGACAAGTTCAAGCTCAACAAGTCAGA	
ACTAAAGGAGCTGCTGACCCGGGAGCTGCCCAGCTTCTTGGGGAAAAGGACAGATGAAGC	60
TGCTTTCCAGAAGCTGATGAGCAACTTGGACAGCAACAGGACAACGAGGTGGACTTCCA	
AGAGTACTGTCTTCCTGTCCTGCATCGCCATGATGTGTAACGAATTCTTTGAAGGCTT	
CCCAGATAAGCAGCCCAGGAAGAAATGAAAACTCCTCTGATGTGGTTGGGGGGTCTGCCA	65
GCTGGGGCCCTCCCTGTCGCCAGTGGGCACTTTTTTTTTT	0.5
ACGTGCTTGATGCTGAGCAAGTTCAATAAAGATTCTTGGAAGTTTTAAAAAAAA	
11001001101110010110011011101111101111101111	

(2) INFORMATION ÜBER SEQ ID NO:64:

- (i) SEQUENZ CHARAKTERISTIK:
 - (A) LÄNGE: 1059 Basenpaare
 - (B) TYP: Nukleinsäure
 - (C) STrang: einzel
 - (D) TOPOLOGIE: linear

10

20

25

5

- (ii) MOLEKÜLTYP: aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNA
- (iii) HYPOTHETISCH: NEIN 15
 - (iii) ANTI-SENSE: NEIN
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (C) ORGAN:
 - (vii) SONSTIGE HERKUNFT:
 - (A) BIBLIOTHEK: cDNA library
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 64:
- ggcggtcccaggcaggcccagaagctgggcagcctctgccggqttccgggaaaaqqagct cctgctgccactgctcttccggagcctgcagcatggggcccctgccgcgcaccgtggagc tcttctatgacgtgctgtccccctactcctggctgggcttcgagatcctgtgccggtatc agaatatctggaacatcaacctgcagttgcggcccagcctcataacagggatcatgaaag acagtggaaacaagcctccaggtctgcttccccgcaaaggactatacatggcaaatgact ${\tt taaaqctcctgagacaccatctccagattcccatccacttccccaaggatttcttgtctg}$ tgatgcttgaaaaaggaagtttgtctgccatgcgtttcctcaccgccgtgaacttggagc atccagagatgctggagaaagcgtcccgggagctgtggatqcqcqtctqqtcaaqqaatq aagacatcaccgagccgcagagcatcctggcggctgcagagaaggctggtatgtctgcag aacaagcccagggacttctggaaaagatcgcaacqccaaaqqtqaagaaccaqctcaaqq agaccactgaggcagcctgcagatacggagcctttgggctgcccatcaccgtggcccatg tggatggccaaacccacatgttatttggctctgaccggatggagctgctggcgcacctgc tgggagagaagtggatgggccctatacctccagccgtgaatgccagactttaagattgcc cggaggaagcaaactcttcgtataaaaaaagcaggccatctgcttaacccttggctccac cataaggcactgggactcggatttctctatctgatagaggtattttctgtgggccctggga gctgtctgtctttcccctaccccaaggatqccaggaagacgtccaccattagccatgtg gcaacctttacttctatgcctcacaagtgcctttcagagagccccaattctgctttccca

50

55

(2) INFORMATION ÜBER SEQ ID NO: 65:

- (A) LÄNGE: 87 Aminosäuren
- (B) TYP: Protein
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: ORF
- (iii) HYPOTHETISCH: ja
- (vi) HERKUNFT: 65

(A) ORGANISMUS: MENSCH

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 65	5
MQKVTLGLLV FLAGFPVLDA NDLEDKNSPF YYDWHSLQVG GLICAGVLCA MGIIIVMSAK 60	
CKCKFGQKSG HHPGETPPLI TPGSAQS 87	1
(a) DECODA ATION UTBER SEO ID NO. (C.	10
(2) INFORMATION ÜBER SEQ ID NO: 66:	
(A) LÄNGE: 205 Aminosäuren (B) TYP: Protein	15
(C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	20
(iii) HYPOTHETISCH: ja	
(m) IIII O III D III Ju	
(vi) HERKUNFT:	25
(A) ORGANISMUS: MENSCH :	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 66	30
CRTWSILRGR MWLSTNSAAD AINPWPGRSS RPRSRAAVPH RLLHLPPVCA ELQGQQFYSL 60	
EGAPYCEGCY TDTLEKCNTC GEPITDRMLR ATGKAYHPHC FTCVVCARPL EGTSFIVDQA120 NRPHCVPDYH KQYAPRCSVC SEPIMPEPGR DETVRVVALD KNFHMKCYKC EDCGKPLSIE180	
ADDNGCFPLD GHVLCRKCHT ARAQT 205	
(2) INFORMATION ÜBER SEQ ID NO: 67:	40
(A) LÄNGE: 150 Aminosäuren (B) TYP: Protein	
(C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	45
(iii) HYPOTHETISCH: ja	
	50
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 67	
AARALKRPFP SGPPLRDRSP SLESQSRKTP RLPEDLASGK KDYTFQRPLR RRDRKRRASR 60 VSLRVDPSDH GGPGVVADEV PHQGKCGWGR RLPGVRPGAA GAQRQEPGSP TEGWGGGPPR120	60
HVPVQPVRVS ADRPADTPAP SPSKDLLSHP 150	
(2) INFORMATION ÜBER SEQ ID NO: 68:	65
(A) LÄNGE: 55 Aminosäuren	

	(B) 1 YP: Protein
	(C) STRANG: einzel
	(D) TOPOLOGIE: linear
5	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
10	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH
15	:
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 68
20	LLECRHHDGD VSSVGGPLQG PRVLQGGLGV CEGAHQVASQ QGRLPRPERA GLPLT 55
	(2) INFORMATION ÜBER SEQ ID NO: 69:
25	(A) LÄNGE: 182 Aminosäuren (B) TYP: Protein (C) STRANG: einzel
	(D) TOPOLOGIE: linear
30	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
	()
35	(vi) HERKUNFT:
	(A) ORGANISMUS: MENSCH
40	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 69
45	SVHFPAALRC ETAALLWSLR AARHHDSQRT LRRARKTTPS RGLCGAATGS GGRAECPCAW 60 IRATMVARVW SLMRFLIKGS VAGGAVYLVY DQELLGPSDK SQAALQKAGE VVPPAMYQFS120 QYVCQQTGLQ IPQLPAPPKI YFPIRDSWNA GIMTVMSALS VAPSKAREYS KEGWEYVKAR180 TK
	·
	(2) INFORMATION ÜBER SEQ ID NO: 70:
50	(A) LÄNGE: 25 Aminosäuren
	(B) TYP: Protein
	(C) STRANG: einzel
	(D) TOPOLOGIE: linear
55	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
60	
	(vi) HERKUNFT:
	(A) ORGANISMUS: MENSCH
65	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 70

PEDSGLGPHS EGRPPDCRPN KGLQ	EDSGLGPHS	EGRPPDCRPN	KGLQK
----------------------------	-----------	------------	-------

(2) INFORMATION ÜBER SEQ ID NO: 71:	5
(A) LÄNGE: 56 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	10
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 71 DEKNTSFLYS DVGATSMKSV LYESYTKMGR HLVNCARYLK CMFRKAFYQL RNMTYF 56	25
(2) INFORMATION ÜBER SEQ ID NO: 72:	
(A) LÄNGE: 117 Aminosäuren (B) TYP: Protein	30
(C) STRANG: einzel (D) TOPOLOGIE: linear	35
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 72	
MALETVPKDL RHLRACLLCS LVKTIDQFEY DGCDNCDAYL QMKGNREMVY DCTSSSFDGI 60	50

IAMMSPEDSW VSKWQRVSNF KPGVYAVSVT GRLPQGIVRE LKSRGVAYKS RDTAIKT

(2) INFORMATION ÜBER SEQ ID NO: 73:

(A) LÄNGE: 291 Aminosäuren

(B) TYP: Protein

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: ORF

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT:

127

25

55

60

(A) ORGANISMUS: MENSCH

5 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 73

LERLVDIKKG NTLLLQHLKR IISDLCKLYN LPQHPDVEML DQPLPAEQCT QEDVSSEDED 60
EEMPEDTEDL DHYEMKEEEP AEGKKSEDDG IGKENLAILE KIKKNQRQDY LNGAVSGSVQ120
ATDRLMKELR DIYRSQSFKG GNYAVELVND SLYDWNVKLL KVDQDSALHN DLQILKEKEG180
ADFILLNFSF KDNFPFDPPF VRVVSPVLSG GYVLGGGAIC MELLTKQGWS SAYSIESVIM240
QISATLVKGK ARVQFGANKS QYSLTRAQQS YKSLVQIHEK NGWYTPPKED G 291

- 15 (2) INFORMATION ÜBER SEQ ID NO: 74:
 - (A) LÄNGE: 253 Aminosäuren
 - (B) TYP: Protein

20

25

50

60

- (C) STRANG: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: ORF
- (iii) HYPOTHETISCH: ja
- (vi) HERKUNFT: (A) ORGANISMUS: MENSCH
- (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 74

RSVVRRCLKM AAEEPQQQKQ EPLGSDSEGV NCLAYDEAIM AQQDRIQQEI AVQNPLVSER 60 LELSVLYKEY AEDDNIYQQK IKDLHKKYSY IRKTRPDGNC FYRAFGFSHL EALLDDSKEL120 QRFKAVSAKS KEDLVSQGFT EFTIEDFHNT FMDLIEQVEK QTSVADLLAS FNDQSTSDYL180 VVYLRLLTSG YLQRESKFFE HFIEGGRTVK EFCQQEVEPM CKESDHIHII ALAQALSVSI240 QVEYMDRGEG GTT

- (2) INFORMATION ÜBER SEQ ID NO: 75:
 - (A) LÄNGE: 108 Aminosäuren
 - (B) TYP: Protein
 - (C) STRANG: einzel
 - (D) TOPOLOGIE: linear
 - (ii) MOLEKÜLTYP: ORF
- 55 (iii) HYPOTHETISCH: ja
 - (vi) HERKUNFT:
 - (A) ORGANISMUS: MENSCH
 - (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 75
- 65 EKFLNMGAPL GVGLGLVFVS SIGIYVSSTY PPVAGATLYS VAMYGGLVLF SMFLLYDTQK 60 VIKRAEVSPM YGVQKYDPIN SMLSIYMDTL NIFMRVATML ATGGNRKK 108

(2) INFORMATION ÜBER SEQ ID NO: 76:			
(A) LÄNGE: 21 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear			5
(ii) MOLEKÜLTYP: ORF			10
(iii) HYPOTHETISCH: ja			
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 76			20
SDSASGFSAT SNILFNGADM H	21		
(2) INFORMATION ÜBER SEQ ID NO: 77:		•	25
(A) LÄNGE: 45 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear			30
(ii) MOLEKÜLTYP: ORF			
(iii) HYPOTHETISCH: ja			35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 77			
SLEDKKHVII FKCSGNVMPQ VCLFFWRINA VILSQISTHI FNSHV		45	45
(2) INFORMATION ÜBER SEQ ID NO: 78:			
(A) LÄNGE: 20 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear			50
(ii) MOLEKÜLTYP: ORF			55
(iii) HYPOTHETISCH: ja			
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH			60
:		•	65
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 78			

	SLCHENVSLF STLKFSRFTE	20
5	(2) INFORMATION ÜBER SEQ ID NO: 79:	
10	(A) LÄNGE: 28 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
15	(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	
20	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
25	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 79 LKFSKPVFAY FFGVQNIVIN VISDLELW	28
30	(2) INFORMATION ÜBER SEQ ID NO: 80:	
35	(A) LÄNGE: 78 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
40	(iii) HYPOTHETISCH: ja	
45	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 80	
50	ETSGYLETSG HCYIHLLNLT KLFILKQAQV MHSPAVASQC SLSNIDVVMF DLYRMLII(ILDGIIYVCF TFECYKRK	QR 60 78
55	(2) INFORMATION ÜBER SEQ ID NO: 81:	
50	(A) LÄNGE: 39 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
	~	

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 81	5
NMLLFPEYKQ YTHEKKMFFY FCIFIELSN 39	10
(2) INFORMATION ÜBER SEQ ID NO: 82:	15
(A) LÄNGE: 164 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	20
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 82	
MHRDSCPLDC KVYVGNLGNN GNKTELERAF GYYGPLRSVW VARNPPGFAF VEFEDPRDAA 60 DAVRELDGRT LCGCRVRVEL SNGEKRSRNR GPPPSWGRRP RDDYRRSPP PRRSPRRRS FSRSRSSLS RDRRERSLS RERNHKPSRS FSRSRSRSRS NERK 164	
(2) INFORMATION ÜBER SEQ ID NO: 83:	40
(A) LÄNGE: 138 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	50
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 83	60
EAALTLCHLL SSWVSLESLT LSYNGLGSNI FRLLDSLRAL SGQAGCRLRA LHLSDLFSPL 60 PILELTRAIV RALPLLRVLS IRVDHPSQRD NPGVPGNAGP PSHIIGDEEI PENCLEQLEM120 XISTGSPASP TAVLRSEGLG FSAAAVPG	
	65

	(2) INFORMATION OBER SEQ ID NO: 84:	
5	(A) LÄNGE: 29 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
10	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
15	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
20	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 84	
	ILISVNLTCF KKKFLCVRIF IYSLVCRTV	29
25	(2) INFORMATION ÜBER SEQ ID NO: 85:	
30	(A) LÄNGE: 38 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
35	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
40	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
45	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 85	
	GDHRADAFMH PLLHFLTRSY FEFGVTRIRV SLWLINKF	38
50	(2) INFORMATION ÜBER SEQ ID NO: 86:	
55	(A) LÄNGE: 43 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
60	(iii) HYPOTHETISCH: ja	
65	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 86		_	
IIELSIFEEL LHKTVMTNAF YYIIFSSHAQ STRSTETCEY SAK		43	
(2) INFORMATION ÜBER SEQ ID NO: 87:			•
(A) LÄNGE: 24 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear			10
(ii) MOLEKÜLTYP: ORF			1:
(iii) HYPOTHETISCH: ja			
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :			20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 87			2:
YLVVMLNQQG QQKLVNILLN NLAH	24		
(2) INFORMATION ÜBER SEQ ID NO: 88:			30
(A) LÄNGE: 26 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear			3:
(ii) MOLEKÜLTYP: ORF			
(iii) HYPOTHETISCH: ja			40
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH			45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 88			
YIHVFQCSNI EIILVSFIQT VLQTRE		26	50
(2) INFORMATION ÜBER SEQ ID NO: 89:			
(A) LÄNGE: 54 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear			55
(ii) MOLEKÜLTYP: ORF			60
(iii) HYPOTHETISCH: ja			
(vi) HERKUNFT:		•	65

(A) ORGANISMUS: MENSCH

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 89 HKISKVCLLL IAKTNISHIK ACDLILHAAP FLKIKNLSFH GLNYRTFYIR RTTS 54 10 (2) INFORMATION ÜBER SEQ ID NO: 90: (A) LÄNGE: 145 Aminosäuren (B) TYP: Protein 15 (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 20 (iii) HYPOTHETISCH: ja (vi) HERKUNFT: 25 (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 90 30 EDGADGAFYP DEIQRPPVRV PSWGLEDNVV CSQPARNFSR PDGLEDSEDS KEDENVPTAP 60 DPPSQHLRGH GTGFCFDSSF DVHKKCPLCE LMFPPNYDQS KFEEHVESHW KVCPMCSEQF120 PPDYDQQVFE RHVQTHFDQN VLNFD 35 (2) INFORMATION ÜBER SEQ ID NO: 91: 40 (A) LÄNGE: 282 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 45 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 50 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 55 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 91 DKSSACRRNG NYSDEKKDAM YWEKRRKNNE AAKRSREKRR LNDLVLENKL IALGEENATL 60 KAELLSLKLK FGLISSTAYA QEIQKLSNST AVYFQDYQTS KSNVSSFVDE HEPSMVSSSC120 ISVIKHSPQS SLSDVSEVSS VEHTQESSVQ GSCRSPENKF QIIKQEPMEL ESYTREPRDD180 RGSYTASIYQ NYMGNSFSGY SHSPPLLQVN RSSSNSPRTS ETDDGVVGKS SDGEDEQQVP240 KGPIHSPVEL KHVHATVVKV PEVNSSALPH KLRIKAKAMQ IK 282 (2) INFORMATION ÜBER SEQ ID NO: 92:

(A) LÄNGE: 92 Aminosäuren

(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	2
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 92	
MASLGHILVF CVGLLTMAKA ESPKEHDPFT YDYQSLQIGG LVIAGILFIL GILIVLSRRC 60 RCKFNQQQRT GEPDEEEGTF RSSIRRLSTR RR 92	20
(2) INFORMATION ÜBER SEQ ID NO: 93:	25
(A) LÄNGE: 140 Aminosäuren (B) TYP: Protein	
(C) STRANG: einzel (D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 93	
WTGTGRGAVA IMADPDPRYP RSSIEDDFNY GSSVASATVH IRMAFLRKVY SILSLQVLLT 60 TVTSTVFLYF ESVRTFVHES PALILLFALG SLGLIFALTL NRHKYPLNLY LLFGFTLLEA120 LTVAVVVTSM MYILSASFHT 140	45
(2) INFORMATION ÜBER SEQ ID NO: 94:	50
(A) LÄNGE: 66 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 94

5	RTACWGWALP RGSGEEAVAV SGPGPVGVLL PSWLTPTPGT LAPRSRTTST MAAAWPPPPC TSEWPF	60 66
	(2) INFORMATION ÜBER SEQ ID NO: 95:	
10	(A) LÄNGE: 88 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
15	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
20	(iii) HYPOTHETISCH: ja	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
25		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 95	
30	KLADNIYIIE VTTTATVRAS NSVNPKSRYR LRGYLCLFKV NAKIKPRDPR ANSKIKAGLS CTNVRTDSKY KKTVEVTVVK RTCRERML	60 88
35	(2) INFORMATION ÜBER SEQ ID NO: 96:	
	(A) LÄNGE: 46 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
40	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
45	(iii) HYPOTHETISCH: ja	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
50		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 96	
55	GDTYVCLKST QKSNPEIRGQ TAKLRQDSHV QMSVQTQSIK KLLKSL 40	5
	(2) INFORMATION ÜBER SEQ ID NO: 97:	
60	(A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	
	(D) TOPOLOGIE: linear	
65	(ii) MOLEKÜLTYP: ORF	•

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 97		10
FFPLLLPLHT PVAGRNLGFP ESLGVPPFLP HPGGTPRAPG LFLLLFSFWA V	51	
(2) INFORMATION ÜBER SEQ ID NO: 98:		15
(A) LÄNGE: 53 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		20
(ii) MOLEKÜLTYP: ORF		25
(iii) HYPOTHETISCH: ja		25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 98		35
FFLYSFPFTP PWLEGTSASL KAWGSHPSYP TREERPGPRA CFSSCFPFGQ FDH	53	33
(2) INFORMATION ÜBER SEQ ID NO: 99:		40
(A) LÄNGE: 52 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		45
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		50
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 99		
PLDCATFVFV FLNFFKPRMI SPASFSSPSS QTEFKGHFSS SFWHLQPQSG IF	52	60
(2) INFORMATION ÜBER SEQ ID NO: 100:		
(A) LÄNGE: 122 Aminosäuren (B) TYP: Protein	•	65

	(C) STRANG: einzel (D) TOPOLOGIE: linear
5	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 100
20	PFSSSVSFFG TAPSCLLEGW ILVCALDRYR INTCALRTGS PRFIQSAHYR KLLCQNPGKD 60 PTPGSPSSLL TSTRAVLLFF ILLFYCFCCG HYHWQSSFSP FLDIGVLSLK DSTLRLKVPK120 AA
	(2) INFORMATION ÜBER SEQ ID NO: 101:
25	(A) LÄNGE: 126 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
30	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
35	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
40	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 101
45	LFFFCFLFWD CAIMFIRRLD FGVCSRQIQN KYLRLENRKS TIHTKCSLQE VAVSKSRQGP 60 NSGQPLLPAD LNKGCAIVFY FIILLLLLWS LSLAKFLFPF PGHRGPVFKR FHSEAEGAKS120 CLRSGL
	(2) INFORMATION ÜBER SEQ ID NO: 102:
50	(A) LÄNGE: 73 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
55	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
60	
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH
65	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 102

TPLLRSFIQK NIS	50 73
(2) INFORMATION ÜBER SEQ ID NO: 103:	5
(A) LÄNGE: 144 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	. • 10
(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	15
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 103	25
ILRGRREGRV RVETPLPCPF PGPRSWGEGG KGFLHFLNCY FLNGTSWAKG PRPCPLSLTP 6 LCSVHSFKKT FLEHLLCPAY ARPTS*VCVG GLYASSSVPP CPSFTGAFGG SVGGGTFCGV12 WGSPGSPTKL SPSPVPTHLL QPPA 144	50 20 30
(2) INFORMATION ÜBER SEQ ID NO: 104: (A) LÄNGE: 116 Aminosäuren (B) TYP: Protein	35
(C) STRANG: einzel (D) TOPOLOGIE: linear	40
(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	45
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 104	
CRPTIFTPRP PALGEGSTTT SPLDIPLGTG MWVPLTVRPW GEPKALTSGI AMLGGGASET 6 VGRQDILGAA PSQQGIRQGA VGDGLAQGKG TAWSGFLEIP KPHRRSHLLQ IPQRHR 11	33
(2) INFORMATION ÜBER SEQ ID NO: 105:	
(A) LÄNGE: 22 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	60
(ii) MOLEKÜLTYP: ORF	. 65

	(m) HYPOTHETISCH: Ja	
5	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
10	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 105	
	RMGKEALMSW RRDPPHTLSW WA 22	
15	(2) INFORMATION ÜBER SEQ ID NO: 106:	
20	(A) LÄNGE: 39 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
25	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
2.5	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 106	
35	GRGGGRGRTG RENTMHKLFT EFLYLSVQNI SKPEYCLLV 39	
40	(2) INFORMATION ÜBER SEQ ID NO: 107:	
	(A) LÄNGE: 59 Aminosauren (B) TYP: Protein	
45	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
50	(iii) HYPOTHETISCH: ja	
55	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 107	
60	RKQMAGDDIY PGSLCQALGL KSKLNFFYVF NQIDRGGEEG EGGQGEKIPC INCLLNFYI 5	59
65	(2) INFORMATION ÜBER SEQ ID NO: 108:	

(A) LANGE: 103 Aminosauren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 108	
GREGGLWAVG ATGRVVLGLR AGQEVRAGKS LRPPSLPQPR GPPNCPVPRV PPDPAGEELL 60 RWLISSPPIP DSTFPLSGAG GAQGGKELDC DWSARASVGG TIG 103	20
(2) INFORMATION ÜBER SEQ ID NO: 109:	25
(A) LÄNGE: 165 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:109	
GAGPWEAFPD GIGRRSRRAR LPQYKRPPGG GGGGDSGRRN MAVADLALIP DVDIDSDGVF 60 KYVLIRVHSA PRSGAPAAES KEIVRGYKWA EYHADIYDKV SGDMQKQGCD CECLGGGRIS120 HQSQDKKIHV YGYSMAYGPA QHAISTEKIK AKYPDYEVTW ANDGY 165	45
(2) INFORMATION ÜBER SEQ ID NO: 110:	50
(A) LÄNGE: 166 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

	(xi) SEQUENZ-BESCHREIB	JNG: SEQ ID NO:	110			
5	KLYLSPRIEH ALGGSSALH FLSHFGTGVV EYDAEGFTK QLYSQAQKNY PYSPRWDGN	L TLLLMWKDFC	FLVHIDLPLF	FPRDQPTLTF	YHKRREYIA QSVYHFTNS	A 60 G120 166
10	(2) INFORMATION ÜBER SEQ	ID NO: 111:				
15	(A) LÄNGE: 33 Aminosä(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	uren				
20	(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja					
25	(vi) HERKUNFT: (A) ORGANISMUS: MEN	SCH				
30	(xi) SEQUENZ-BESCHREIBU PSSPSLPVLR AGLRPFCDVI					33
35	(2) INFORMATION ÜBER SEQ	ID NO: 112:				
40	(A) LÄNGE: 31 Aminosä(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	ren .				
	(ii) MOLEKÜLTYP: ORF					
45	(iii) HYPOTHETISCH: ja					
50	(vi) HERKUNFT: (A) ORGANISMUS: MENS:	SCH				
	(xi) SEQUENZ-BESCHREIBU	NG: SEQ ID NO: 1	12			
55	ETCAGAGRCA ADGGNGSGSF	VPPASRCCAL	G			31
	(2) INFORMATION ÜBER SEQ	ID NO: 113:				
50	(A) LÄNGE: 67 Aminosäu (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	ren			,	
	(2) 131 323 312. 111.001					

(ii) MOLEKÜLTYP: ORF

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 113		10
KRAQAPAAAL QMAEMDPVAE FPQPPGAARW AEALLRCFTW LRLCQISMFL SLKC HLGAHCR	67	1:
(2) INFORMATION ÜBER SEQ ID NO: 114:		1.
(A) LÄNGE: 246 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		20
(ii) MOLEKÜLTYP: ORF	٠.	2:
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 114	:	35
GCVAGSAGLS RKSPWTEVET ETFLGSPRYS RRVRSCYWLL GLMAVRASFE NNCE LTNTYCLVAI GGSENFYSVF EGELSDTIPV VHASIAGCRI IGRMCVGNRH GLLV QELQHIRNSL PDTVQIRRVE ERLSALGNVT TCNDYVALVH PDLDRETEEI LADV RQTVADQVLV GSYCVFSNQG GLVHPKTSIE DQDECLSFQV PCCGDVNEAL SDSW FVPETT	PNNTTD120 LKVEVF180	40
2) INFORMATION ÜBER SEQ ID NO: 115:		45
(A) LÄNGE: 180 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	:	50
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja	:	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 115	•	
ORKENHSSE GTKESSSNSL SNSRHGAFER GAADSSHGKK ARDSERNHRT TEAF		65

PKHETKKLKN LSEYAQTLQL GWNGLLVLKN SCFPTSMHIL EGDQGVISSL LKDHTSGSKL120 TQLKIAQRLR LDQPKLDEVT RRIKQGSPNG YAVLLATQAT PSGLGTEGMP TVEPGLQRRF180 5 (2) INFORMATION ÜBER SEQ ID NO: 116: (A) LÄNGE: 72 Aminosäuren (B) TYP: Protein 10 (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 15 (iii) HYPOTHETISCH: ja 20 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 116 MGYNLSPOFT OLLVSRYCPR SANPAMOLDR FIQVCTQLQV LTEAFREKDT AVQGNIRLSF 60 72 EDFVTMTASR ML 30 (2) INFORMATION ÜBER SEQ ID NO: 117: (A) LÄNGE: 35 Aminosäuren 35 (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 40 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 45 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 50 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 117 35 EHTHRCSDQL RLATVSNSVA SKREVYLCPA IGHLG 55 (2) INFORMATION ÜBER SEQ ID NO: 118: (A) LÄNGE: 40 Aminosäuren (B) TYP: Protein 60 (C) STRANG: einzel (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: ORF

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT:	
(A) ORGANISMUS: MENSCH	
	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 118	
ATLWLAKEKF ICAQPLVTLG DAPDSRQMLV HWPSSSFLLK 4	^
ATTMITATORY ICANTING DATACKNING HMESSSTITHE 4	U 10
(2) INFORMATION ÜBER SEQ ID NO:119:	
CONT. TATOR	
(A) LÄNGE: 33 Aminosäuren (B) TYP: Protein	15
(C) STRANG: einzel	
(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	20
(iii) HYPOTHETISCH: ja	
•	
(vi) HERKUNFT:	25
(A) ORGANISMUS: MENSCH	
:	
() CROVED IZ DESCRIPTIBLES CEO ID NO 110	24
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 119	30
QKRSLFVPSH WSPWVMHQIA GRCWFIGLRP LSS 3:	3
William Andrews and Andrews an	•
·	35
(2) INFORMATION ÜBER SEQ ID NO: 120:	
(A) LÄNGE: 161 Aminosäuren	
(B) TYP: Protein	
(C) STRANG: einzel	40
(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	4:
(11) 1111 01112110011. ju	
(vi) HERKUNFT:	50
(A) ORGANISMUS: MENSCH	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 120	
	5:
LSSSRSFIST SWGAFVFFCL LSCGSLVLAG FEGASTSMAV FSFWASRICW RSFLRFFPDS	
VMLARALDAR FLRWCRVISP WSITAPTTRC LRRRSRFNTR RRLNSFFFSS VRGRLIFPPG1	
APIVAIPLQF TVRTSAQRRI RGLRPGLPRA NRNSGAGPRA I	161
	60
(2) INFORMATION ÜBER SEQ ID NO: 121:	
(A) I SNOT: 40 Aminos Europ	•
(A) LÄNGE: 49 Aminosäuren (B) TYP: Protein	
(D) LILLIOUEM	6:

	(C) STRANG: einzei (D) TOPOLOGIE: linear		
5	(ii) MOLEKÜLTYP: ORF		
	(iii) HYPOTHETISCH: ja		
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 121		
	FFQSARALLQ MELTAREALL QSFFCTFFPP KDIPLGEVSR PLGRRKSGE	49	
20	(2) INFORMATION ÜBER SEQ ID NO: 122:		
25	(A) LÄNGE: 25 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		
	(ii) MOLEKÜLTYP: ORF		
30	(iii) HYPOTHETISCH: ja		
35	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		
40	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 122		
.0	KGALLLSKSS ETTTESEGWL QLRIF		25
	(2) INFORMATION ÜBER SEQ ID NO: 123:		
45	(A) LÄNGE: 25 Aminosäuren (B) TYP: Protein		
50 .	(C) STRANG: einzel (D) TOPOLOGIE: linear		
	(ii) MOLEKÜLTYP: ORF		
55	(iii) HYPOTHETISCH: ja		
	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		
60	(vi) SECULENT DESCRIBEDUNG, SECULA IN NO. 102		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 123		
65	WKRFSSHLQG PSFLHPGGLL SSFAF	25	
	(2) INFORMATION ÜBER SEQ ID NO: 124:		

(A) LANGE: 160 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	5
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 124	
WLLQLKPHLL AHHPPKGLPH RGAPLYSPRT RPRVAIGPRK AGAEPADPAL SGSTDRELEW 60 NRDYGSSGGK DQPAPNGAEE EAVQTPAGVE SGAASEAPGG RGCDRPRADH AAPPQEAGVQ120 CTCQHYTVRE EAQKTPPADP ACPEREDSHG SGSPFKASQD 160	20
(2) INFORMATION ÜBER SEQ ID NO: 125:	25
(A) LÄNGE: 126 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: ORF	35
(iii) HYPOTHETISCH: ja	5-
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 125	45
PRPRVVAAAV HVPAMGVLCP ACQFPPQGRA PLPARVWEAV QAVLAALGKP RDSHNTPGTV 60 GLGGTTGNSG LECVCLFLGY ECVSSPRGLL SSHIVWFGVN DGGRHLLIDG RCPPFRESPS120 MGGCRA	50
2) BIEGRIMATION (Then one in Mo. 104)	
2) INFORMATION ÜBER SEQ ID NO: 126: (A) LÄNGE: 59 Aminosäuren	.
(A) LANGE. 39 Anninosauren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	. 60
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 126

PVRAWWLLLC MSLRWESCAQ PVSFLPRAEL PFLQESGRRC RLSWLLWGSR GTAITPPGQ 59

- (2) INFORMATION ÜBER SEQ ID NO: 127: 10 (A) LÄNGE: 53 Aminosäuren (B) TYP: Protein (C) STRANG: einzel 15 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 20 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 127 30 PSARGGCCCA CPCDGSLVPS LSVSSPGQSS PSCKSLGGGA GCPGCSGEAE GQP 53 (2) INFORMATION ÜBER SEQ ID NO: 128: 35 (A) LÄNGE: 78 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 40 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 45 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 50 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 128 FFFPCQPFIG SGTHEVQLVP GTVHSLKQLK GLSPDTDATL SRMHGPGLTL SMEEVGSARG 60 GRMVARDTES LVLGLWLS 78
 - (2) INFORMATION ÜBER SEQ ID NO: 129:
 - (A) LÄNGE: 110 Aminosäuren
 - (B) TYP: Protein
 - (C) STRANG: einzel
- 65 (D) TOPOLOGIE: linear

60

(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	5
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 129	
CALLPPTPSR TEPSLHSTGD SGKGAEDRQE AHRDRPTGSQ AAPEERDIQ TEESLPAPHSF 6 QDEKNLPPPP DTDAREVGGR SGKFPFPVPP RTSEPSMLNF FFIKITFIL 11	15
(2) INFORMATION ÜBER SEQ ID NO: 130:	20
(A) LÄNGE: 102 Aminosäuren	
(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	25
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	30
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 130	
SLPADVPCCP PPHPAQNHPC IPQGTRARVP KIDKRHTETD QLAARQPQRR ETFRQRKVSL 6 PLIPSKMRKT CRHPPTLMPG RWEEEVGNFP SQYPQERLSL QC 10	
(2) INFORMATION ÜBER SEQ ID NO: 131:	45
(A) LÄNGE: 31 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	50
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	55
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 131	
LCQLMCPVAP HPIPHRTIPA FHRGLGQGCR R 31	65

(2) INFORMATION ÜBER SEQ ID NO: 132: (A) LÄNGE: 166 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 10 (iii) HYPOTHETISCH: ja 15 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 20 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 132 GFRPARCDPV PLPTTRSVAG LPVGRVRQLS RPLLGPDTGS VANIFKGLVI LPEMSLVIRN 60 LQRVIPIRRA PLRSKIEIVR RILGVQKFDL GIICVDNKNI QHINRIYRDR NVPTDVLSFP120 FHEHLKAGEF POPDFPDDYN LGDIFLGVEY IFHQCREDED YNDVLT (2) INFORMATION ÜBER SEQ ID NO: 133: 30 (A) LÄNGE: 244 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 35 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 40 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 45 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 133 FDPKLLEGKV KEDPDQGESM KPLTFARFYL PILVPSAKKA IYMDDDVIVQ GDILALYNTA 60 LKPGHAAAFS EDCDSASTKV VIRGAGNQYN YIGYLDYKKE RIRKLSMKAS TCSFNPGVFV120 ANLTEWKRON ITNOLEKWMK LNVEEGLYSR TLAGSITTPP LLIVFYQQHS TIDPMWNVRH180 LGSSAGKRYS PQFVKAAKLL HWNGHLKPWG RTASYTDVWE KWYIPDPTGK FNLIRRYTE1240 SNIK 55 (2) INFORMATION ÜBER SEQ ID NO: 134: (A) LÄNGE: 63 Aminosäuren 60 (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 65 (ii) MOLEKÜLTYP: ORF

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 134		10
PSFIIHSNPI WLGALLWVSH CPSSILGSLR PRGGKIQLRV GGSEPCRIMK ATCFGNDLPPVV	63 63	15
(2) INFORMATION ÜBER SEQ ID NO: 135:		
(A) LÄNGE: 69 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		20
(ii) MOLEKÜLTYP: ORF		25
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 135		35
DYLRLSSGFC QNTPLTESTE GMGVGGLGRV RLECEGSLIY AELKSPSLYV HTFVLFSRL LAIPNPLPR	I 60 69	4(
(2) INFORMATION ÜBER SEQ ID NO: 136:		
(A) LÄNGE: 47 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		45
(ii) MOLEKÜLTYP: ORF		50
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 136		60
QPFRYFNTPL SILHFPHLSK LNLVHRVGLC MCMQEVGVDS ALGWNPP	47	
2) INFORMATION LIBER SEO ID NO: 137:	•	65

	(B) TYP: Protein
	(C) STRANG: einzel
5	(D) TOPOLOGIE: linear
	(b) for obotion and
	(ii) MOLEKÜLTYP: ORF
10	(iii) HYPOTHETISCH: ja
	(vi) HERKUNFT:
	(A) ORGANISMUS: MENSCH
15	:
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 137
20	AND COLORS OF COMPANDO AND COLORS OF COMPANDO AND
20	VPPCPQLREL CPGVNNQPYL CESGHCCGET GCCTYYYELW WFWLLWTVLI LFSCCCAFRH 60 RRAKLRLQQQ QRHVEINLLA YHG 8:
	KKAKUKUQQQ QKIIVBIKIDDA IMO
25	(2) INFORMATION ÜBER SEQ ID NO: 138:
	(A) LÄNGE: 163 Aminosäuren
	(B) TYP: Protein (C) STRANG: einzel
30	(D) TOPOLOGIE: linear
	(D) 1010D001D. III.
	(ii) MOLEKÜLTYP: ORF
35	(iii) HYPOTHETISCH: ja
	(vi) HERKUNFT:
40	(A) ORGANISMUS: MENSCH
	(N and the process of the second sec
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 138
45	MADEEKT PPG WEKRMSRSSG RVYYFNHITN ASOWERPSGN SSSGGKNGOG EPARVRCSHL 6
	LVKHSQSRRP SSWRQEKITR TKEEALELIN GYIQKIKSGE EDFESLASQF SDCSSAKARG12
	DLGAFSRGQM QKPFEDASFC AADGGDERAR VSRIPASTSS FRT
	163
50	•
	(2) INFORMATION ÜBER SEQ ID NO: 139:
55	(A) LÄNGE: 88 Aminosäuren
	(B) TYP: Protein
	(C) STRANG: einzel
	(D) TOPOLOGIE: linear
60	·
	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
	(m) mirotiminocii. ja
65	
	(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 139	5
WKSWQLHRML LTRTEFWYLS TEVSTMFTCK RLRKKPLKWT GIQSSFSVTH QS PGLFSFYNSS SIHNDFVLCS IFFNPLSI	DKRLVTTL 60 88
(2) INFORMATION ÜBER SEQ ID NO: 140:	
(A) LÄNGE: 21 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	15
(ii) MOLEKÜLTYP: ORF	20
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	. 25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 140	30
CYMHFLTFVK NVTIVKKCTK M	21
(2) INFORMATION ÜBER SEQ ID NO: 141:	35
(A) LÄNGE: 58 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	40
(ii) MOLEKÜLTYP: ORF	45
(iii) HYPOTHETISCH: ja	43
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 141	
MEIEQVHFPA YRQLYTDLNI FSSCLVKVKE KGFFLPQDIT FFYITSITHH CF	WWKSAE 58
2) INFORMATION ÜBER SEQ ID NO: 142:	
(A) LÄNGE: 21 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	

	(ii) MOLEKÜLTYP: ORF	
5	(iii) HYPOTHETISCH: ja	
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 142	
15	NSFLTQMMVL QNNKMAEHFH K 21	
	(2) INFORMATION ÜBER SEQ ID NO: 143:	
20	(A) LÄNGE: 44 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
25	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
30	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 143	
40	SVTKSGFLIP CHLGDFILLC CFKIQCREVV DCRGNKVNSN FEKK 44	£
40	(2) INFORMATION ÜBER SEQ ID NO: 144:	
45	(A) LÄNGE: 67 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
50	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
55	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
60	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 144	
	NPPNDKVSEI QTSLHSICEN VQPFYCSVKE PSSGSKMNSI NQRIFYTLEK KISSNILTEY (CKLHFSS	60 67
65	(2) INFORMATION ÜBER SEO ID NO: 145:	

(A) LANGE: 65 Aminosauren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	:
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 145	
KVHTILHFST KSSGVLCLLY KKKLYPVAGK TLSLSLLLNN WRKCSSLYKV AYKLESELVQ 60 SPFTF	
(2) INFORMATION ÜBER SEQ ID NO: 146:	25
(A) LÄNGE: 55 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	30
(ii) MOLEKÜLTYP: ORF	•
(iii) HYPOTHETISCH: ja	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 146	
KIWSREQNHC EWMNCCKMKK VQAKLLQVFC HFDESQKMNF GYLSTLRVFS LIFCM 55	45
(2) INFORMATION ÜBER SEQ ID NO: 147:	50
(A) LÄNGE: 113 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	. 55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65

	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 147
5	IPEDPHIDES KAKHQAIIMS TSLRVSPSIH GYHFDTASRK KAVGNIFENT DQESLERLFR 60 NSGDKKAEER AKIIFAIDQD VEEKTRALMA LKKRTKDKLF QFLKLRKYSI KVH 113
	(2) INFORMATION ÜBER SEQ ID NO: 148:
10	(A) LÄNGE: 88 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
15	(ii) MOLEKÜLTYP: ORF
20	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH:
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 148
30	MQHFAATLQA SLLSGLQRLE RDRDWKGTRT EQTGYKDSKQ FHALCCYRGE QNAFSKDLKT 60 LPSLQERIDA DRRAWTDVMR TKENDGWR 88
35	(2) INFORMATION ÜBER SEQ ID NO: 149:
40	(A) LÄNGE: 143 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
45	(iii) HYPOTHETISCH: ja
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 149
55	VVEGPDCGHH GDAGAEVPRC LWPRSGICGR ECGLGDRWFL RVEDRQDLNR QRIQRYAQAF 60 HTRGSEDLDK DSVEKLELGC PFSPHLSLPM PSVSRSTSRS SANWERLRQG TLRRDLRGII120 NRGLEDGESW EYQI 134
50	(2) INFORMATION ÜBER SEQ ID NO: 150:
55	(A) LÄNGE: 178 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	5
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 150	
PKLNSKKYPV AHFIDQTLKA KVGQLQLSHN LSLVILVPQN LKHRLEDMEQ ALSPSVFKAI 60 MEKLEMSKFQ PTLLTLPRIK VTTSQDMLSI MEKLEFFDFS YDLNLCGLTE DPDLQVSAMQ120 HQTVLELTET GVEAAAASAI SVARTLLVFE VQQPFLFVLW DQQHKFPVFM GRVYDPRA 178	15
(2) INFORMATION ÜBER SEQ ID NO: 151:	20
(A) LÄNGE: 244 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	25
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	30
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	35
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 151	
STLELINTWV AKNTNNKISR LLDSLPSDTR LVLLNAIYLS AKWKTTFDPK KTRMEPFHFK 60 NSVIKVPMMN SKKYPVAHFI DQTLKAKVGQ LQLSHNLSLV ILVPQNLKHR LEDMEQALSP120 SVFKAIMEKL EMSKFQPTLL TLPRIKVTTS QDMLSIMEKL EFFDFSYDLN LCGLTEDPDL180	40
QVSAMQHQTV LELTETGVEA AAASAISVAR TLLVFEVQQP FLFVLWDQQH KFPVFMGRVY240 DPRA 244	45
(2) INFORMATION ÜBER SEQ ID NO: 152:	50
(A) LÄNGE: 99 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 152 MKVSAALLCL LLIAATFIPQ GLAQPDAINA PVTCCYNFTN RKISVQRLAS YRRITSSKCP 60 KEAVIFKTIV AKEICADPKQ KWVQDSMDHL DKQTQTPKT 99 (2) INFORMATION ÜBER SEQ ID NO: 153: 10 (A) LÄNGE: 119 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 15 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 20 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 153 ANRIVLGGF SQGGALSLYTA LTCPHPLAGI VALSCWLPLH RAFPQAANGS AKDLAILQCH 60 30 GELDPMVPV RFGALTAEKLR SVVTPARVQF KTYPGVMHSS CPQEMAAVKE FLEKLLPPV 119 (2) INFORMATION ÜBER SEQ ID NO: 154: 35 (A) LÄNGE: 52 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 40 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 45 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 50 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 154 52 VFFFTAENWW YFHIHSVSIQ FQYPHLMRKK CFTNEGGILK LAVMLGWRKF GI 55 (2) INFORMATION ÜBER SEQ ID NO: 155: (A) LÄNGE: 25 Aminosäuren 60 (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 65

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT:		
(A) ORGANISMUS: MENSCH		
		5 .
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 155		
FFFLLQKIGG IFTFIVFLSN FSTHI	25	10
(2) INFORMATION ÜBER SEQ ID NO: 156:		
(A) LÄNGE: 40 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		15
(ii) MOLEKÜLTYP: ORF		20
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 156		30
ISCNVRLEKI WYLGYFQGTI KSDFCFFVKK NFFNQYCFYK	40	35
(2) INFORMATION ÜBER SEQ ID NO: 157:		
(A) LÄNGE: 66 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		40
(ii) MOLEKÜLTYP: ORF		45
(iii) HYPOTHETISCH: ja	٠	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 157		55
NANYCIHHKL KKRTCIRRLK TRKKIQHPNM YSQEGNQFCN RTGIMNYKQE GVEKEEKKM IEFKTL	C 60 66	60
(2) INFORMATION ÜBER SEQ ID NO: 158:	•	
(A) LÄNGE: 23 Aminosäuren		65

	(b) 117. Flotein	
	(C) STRANG: einzel	
	(D) TOPOLOGIE: linear	
5		
	(ii) MOLEKÜLTYP: ORF	
	(iii) LUDOTHETICOL. in	
	(iii) HYPOTHETISCH: ja	
10		
	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
	:	
15		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 158	
	(M) objective bestranderio. Say is 110. 150	
	DECENT ACUE NUMBERGOOME MEN	2.2
20	PCCEVLAGVG NVWKCSQQVC WGV	23
	(2) INFORMATION ÜBER SEQ ID NO: 159:	
25	(A) LÄNGE: 67 Aminosäuren	
	(B) TYP: Protein	
	(C) STRANG: einzel	
	(D) TOPOLOGIE: linear	
30		
	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
25	·	
35		
	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
40		
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 159	
	(XI) SEQUENZ-BESCHKEIBUNG: SEQ ID NO: 139	
	PAVKSWQVLV MCGNAVSKFA GEFDKSIKQN KKSLGIILFH DFFCSFTPEG RNGLQQVVEE	60
45	EGGEQVY	67
	(2) INFORMATION ÜBER SEQ ID NO: 160:	
50	(A) LÄNGE: 108 Aminosäuren	
	(B) TYP: Protein	
	(C) STRANG: einzel	
	(D) TOPOLOGIE: linear	
	(D) TOPOLOGIE. Inteat	
55	(:) MOLEKÜLTYIN, ONE	
	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
60		
	•	
	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
	:	
65		•
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 160	
	, , ,	

EGEPACSGIQ ARRVTPCPSP RDASPAPASE TSLSVPATLV GGSDLIHFQV GSGPTPGPAE DRAARPSWLT LQLALGWGGR ELMSVASLSW GFPACPVVSC PRCYRGCA	60 L08	
(2) INFORMATION ÜBER SEQ ID NO: 161		5
(A) LÄNGE: 20 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: ORF		15
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		20
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 161		25
FCSTTSSVAL HQKEGMGYSR 20		30
(2) INFORMATION ÜBER SEQ ID NO: 162:		
(A) LÄNGE: 61 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		35
(ii) MOLEKÜLTYP: ORF		40
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 162		50
IPGLKYFVGI AYYIILADEP QDNGYRHTHT YTHTKSQLLK SGLGIRLLCP VKNSCTEVIV	60 61	55
(2) INFORMATION ÜBER SEQ ID NO: 163:		
(A) LÄNGE: 22 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		60
(ii) MOLEKÜLTYP: ORF		65
(iii) HYPOTHETISCH: ja		

	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
5	:	
,	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 163	
	LMNLRTTATD THIHTRTQNL SC	22
10		
	(2) INFORMATION ÜBER SEQ ID NO: 164:	
15	(A) LÄNGE: 37 Aminosäuren	
15	(B) TYP: Protein	
	(C) STRANG: einzel	•
	(D) TOPOLOGİE: linear	
20	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
25		
	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
	:	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 164	
	TSGQRLQTHT YIHAHKISAV EEWAWNQTSV SSKKLLH	37
35	(2) INFORMATION ÜBER SEQ ID NO: 165:	
	(A) LÄNGE: 72 Aminosäuren	
	(B) TYP: Protein	
40	(C) STRANG: einzel	
	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
45	(iii) HYPOTHETISCH: ja	
	(, 0)	
	(vi) HERKUNFT:	
50	(A) ORGANISMUS: MENSCH	
	:	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 165	
55	TVPFSVSASG FHLIFFALPI LFQPVAKNHE TRQWKHRHRR RGPSCALKAG KTASGAGEV	V 60
	RCLSEQSVAI SR	72
60	(2) INFORMATION ÜBER SEQ ID NO: 166:	
	(A) LÄNGE: 354 Aminosäuren	
65	(B) TYP: Protein (C) STRANG: einzel	
~~	10.10 LIVILIO, VIIICI	

(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	1
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 166	1
DRVSAVALPK LPISLTNTDL KVASDTQFYP GLGLALAFHD GSVHIVHRLS LQTMAVFYSS 60 AAPRPVDEPA MKRPRTAGPA VHLKAMQLSW TSLALVGIDS HGKLSVLRLS PSMGHPLEVG120 LALRHLLFLL EYCMVTGYDW WDILLHVQPS MVQSLVEKLH EEYTRQTAAL QQVLSTRILA180 MKASLCKLSP CTVTRVCDYH TKLFLIAISS TLKSLLRPHF LNTPDKSPGD RLTEICTKIT240 DVDIDKVMIN LKTEEFVLDM NTLQGAAAAL AVGGRLRAVP AGQPTQPGFP AEAGPQLSAG300 RHLAGHASGI DGGHPHLGPS EAQLPARVYG HLGYPGQHVP ALPPAHQALD LLSR 354	2
(2) INFORMATION ÜBER SEQ ID NO: 167:	2
(A) LÄNGE: 275 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	3
(ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	3
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	4
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 167	4
GSQSRLGISS WLGSRQHSST SASSGSLAGP SSRQQIQSLV SRRKSRDMLS WVSEVAVYTG 60 RQLGFRRPQM RMTTINSRSM PSEVPSRRKL WPGLSREPWL GRLASRYSTK SPTHCKSCCS120 ALQCVHVQHK FLRLEVDHDL VNVDVGDLGA DLGQPVAGAL VRRVEKVGAQ QRLQGGADGD180	5
EEELGVVVAH AGHRAGRQLA ERGLHGQDPG GEDLLQGSGL ARVLLVQLLH QALYHTGLHV240 QQDVPPVVAG HHAVLQQEEQ VPQRQPHLQR VAHGR 275	5
(2) INFORMATION ÜBER SEQ ID NO: 168:	5
(A) LÄNGE: 25 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	64
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHEȚISCH: ja	6:
(vi) HERKUNFT:	

	(A) ORGANISMOS. MENSCH		
5	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 168		
	LISTSEEVLT FSMLHRNWYN MPSVY		25
· 10	(2) INFORMATION ÜBER SEQ ID NO: 169		
15	(A) LÄNGE: 20 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		
20	(ii) MOLEKÜLTYP: ORF		
	(iii) HYPOTHETISCH: ja		
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	•	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 169		
	LKLLAWSYLH SFCVLFASCI		20
35	(2) INFORMATION ÜBER SEQ ID NO: 170:		
40	(A) LÄNGE: 32 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		
	(ii) MOLEKÜLTYP: ORF		
45	(iii) HYPOTHETISCH: ja		
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		
55	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 170		
55	LLACCTETGI TCLQYTNTHM LSFVLFWQLT RS	32	
60	(2) INFORMATION ÜBER SEQ ID NO: 171:		
65	 (A) LÄNGE: 50 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 		
	(ii) MOLEKULTYP: ORF		

(iii) HYPOTHETISCH: ja

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 171	10
IALSCCFNVV HTIASQTCYS SVICSVVTKV TGLVLFAQFL RLVCFLHLIN 50	
(2) INFORMATION ÜBER SEQ ID NO: 172:	15
(A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	20
(ii) MOLEKÜLTYP: ORF	25
(iii) HYPOTHETISCH: ja	25
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	30
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 173	35
EHYTIGFQYC THKIHTCVQK VSSSRLVIPF TWKINEGNLY ILYKNKSKFI Y 51	33
:	40
(A) LÄNGE: 239 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	45
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	50
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	55
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 173	
LFIHFRNNTN NWREIPENLM DQYSEVNAIS TACSNGVPEC EEMVSGLFKQ WMENPNNNPI 60 HPNLRSTVYC NAIAQGGEEE WDFAWEQFRN ATLVNEADKL RAALACSKEL WILNRYLSYT120 LNPDLIRKQD ATSTIISITN NVIGQGLVWD FVQSNWKKLF NDYGGGSFSF SNLIQAVTRR180 FSTEYELQQL EQFKKDNEET GFGSGTRALE QALEKTKANI KWVKENKEVV LQWFTENSK 239	60
2) INFORMATION ÜBER SEQ ID NO: 174:	65

25 (2) INFORMATION ÜBER SEQ ID NO: 175: (A) LÄNGE: 68 Aminosäuren (B) TYP: Protein 30 (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 35 (iii) HYPOTHETISCH: ja 40 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH : (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 45 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60	5	(A) LÄNGE: 106 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 174 MYVENHCSRP ALLLQLWGRG SPAQARGWGG VRNSPVACSS PFRQEHCMSE HFKNRPACLG 60 ARSPPQGHKW GESPSQGTQA GAGKCRACGK RVSEGDRNGS GGGKWG 106 (2) INFORMATION ÜBER SEQ ID NO: 175: (A) LÅNGE: 68 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH : (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICTYIFLY 66 (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:		(ii) MOLEKÜLTYP: ORF	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 174 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 174 MYVENHCSRP ALLLQLWGRG SPAQARGWQG VRNSPVACSS PFRQEHCMSE HFKNRPACLG 60 ARSPPQGHKW GESPSQGTQA GAGKCRACGK RVSEGDRNGS GGGKWG 104 (2) INFORMATION ÜBER SEQ ID NO: 175: (A) LÄNGE: 68 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	10	(iii) HYPOTHETISCH: ja	
MYVENHCSRP ALLLQLWGRG SPAQARGWQG VRNSPVACSS PFRQEHCMSE HFKNRPACLG 60 ARSPPQGHKW GESPSQGTQA GAGKCRACGK RVSEGDRNGS GGGKWG 106 25 (2) INFORMATION ÜBER SEQ ID NO: 175: (A) LÄNGE: 68 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 35 (iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY 50 (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 60 (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	15		
MYVEHICSRY ALLIQUINGRS SPAGARGINGS VINSYVACSS PERGERONSE HERRIPACTS 60 ARSPPQGHKW GESPSQGTQA GAGKCRACGK RVSEGDRINGS GGGKWG 104 25 (2) INFORMATION ÜBER SEQ ID NO: 175: (A) LÄNGE: 68 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 35 (iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH : (Xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY 66 (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (60 (iii) HYPOTHETISCH: ja (vi) HERKUNFT:		(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 174	
(A) LÄNGE: 68 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	20		60 106
(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	25	(2) INFORMATION ÜBER SEQ ID NO: 175:	
(iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (vi) HERKUNFT:	30	(B) TYP: Protein (C) STRANG: einzel	
(iii) HYPOTHETISCH: ja (vi) HERKUNFT: (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (vi) HERKUNFT:		(ii) MOLEKÜLTYP: ORF	
(A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175 HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY 68 (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja	35	(iii) HYPOTHETISCH: ja	
HRFILKGKIS HIIKQWKMCS MLWCVRPSVY QVSPAFCRAV DPVRTKQVNL VHLSFFLFLH 60 ICIYIFLY 68 (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	40		
ICIYIFLY 50 (2) INFORMATION ÜBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 60 (iii) HYPOTHETISCH: ja		(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 175	
(2) INFORMATION UBER SEQ ID NO: 176: (A) LÄNGE: 51 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	45		60 68
(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja (vi) HERKUNFT:	50	(2) INFORMATION ÜBER SEQ ID NO: 176:	٠
(iii) HYPOTHETISCH: ja (vi) HERKUNFT:	55	(B) TYP: Protein (C) STRANG: einzel	
(iii) HYPOTHETISCH: ja (vi) HERKUNFT:		(ii) MOLEKÜLTYP: ORF	
	60	(iii) HYPOTHETISCH: ja	
	65		٠

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 176		
TLSYNSLNTY LSFKLPSVYG SSSSECRCFI VNQGKMLIIW RLFSYYQMYN P	51	5
(2) INFORMATION ÜBER SEQ ID NO: 177:		
(A) LÄNGE: 27 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		10
(ii) MOLEKÜLTYP: ORF	·	15
(iii) HYPOTHETISCH: ja		•
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		20
		25
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 177		
KQQLLGSLTK IIKIITFKVE FLAKVKN	27	30
(2) INFORMATION ÜBER SEQ ID NO: 178:		
(A) LÄNGE: 29 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		35
(ii) MOLEKÜLTYP: ORF		40
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		45
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 178		50
TYIFPFETES YPADSWHSCI ALTECSLSS	29	
(2) INFORMATION ÜBER SEQ ID NO: 179		55
(A) LÄNGE: 24 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		60
(ii) MOLEKÜLTYP: ORF	•	
(iii) HYPOTHETISCH: ja		65

	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
	:	
5	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 179	
	GERKVVTPVT VPYSSCCFST PRDC 2	4
10		
	(2) INFORMATION ÜBER SEQ ID NO: 180:	
	(A) LÄNGE: 30 Aminosäuren	
15	(B) TYP: Protein	
	(C) STRANG: einzel (D) TOPOLOGIE: linear	
20	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
	(m) mirombion. ja	
25	(vi) HERKUNFT:	
	(A) ORGANISMUS: MENSCH	
30	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 1780	
	TQESKLLFSP NVFVIFCYIL GHVTFMVYKL 30	
	(2) INFORMATION ÜBER SEQ ID NO: 181:	
35		
	(A) LÄNGE: 189 Aminosäuren (B) TYP: Protein	
	(C) STRANG: einzel	
40	(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
45	(iii) HYPOTHETISCH: ja	
	(vi) HERKUNFT:	
50	(A) ORGANISMUS: MENSCH :	
	(4.5 SEOLIENZ RESCUREIRING, SEO ID NO. 181	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 181	
55	MRAWIFFLLC LAGRALAAPQ QEALPDETEV VEETVAEVTE VSVGANPVQV EVGEFDDGAE ETEEEVVAEN PCQNHHCKHG KVCELDENNT PMCVCQDPTS CPAPIGEFEK VCSNDNKTFD	
	SSCHFFATKC TLEGTKKGHK LHLDYIGPCK YIPPCLDSEL TEFPLRMRDW LKNVLVTLYE	
	RDEDNNLLT	18
50		
	(2) INFORMATION ÜBER SEQ ID NO: 182:	
	(A) LÄNGE: 85 Aminosäuren	

(B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	. 5
(iii) HYPOTHETISCH: ja	10
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 182	
KQKLRVKKIH ENEKRLEAGD HPVELLARDF EKNYNMYIFP VHWQFGQLDQ HPIDGYLSHT 60 ELAPLRAPLI PMEHCTTRFF ETVTX 85	, 20
2) INFORMATION ÜBER SEQ ID NO: 183	25
(A) LÄNGE: 109 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	-
(ii) MOLEKÜLTYP: ORF	30
(iii) HYPOTHETISCH: ja	35
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 183	
YANQSSSLRF KIKYKLLCFS THSGSIVPEP DCYFFILNII FPHLICLPLI HRHLEKEMGG 60 CLLSLSLCFV PVVRLAASVA RWAWLEPWVR QVAGGDRERL RGKWWHLLL 109	, 45
2) INFORMATION ÜBER SEQ ID NO: 184:	
(A) LÄNGE: 33 Aminosäuren (B) TYP: Protein	50
(C) STRANG: einzel (D) TOPOLOGIE: linear	55
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	65
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 184	

SLFLSSTGVS APLQGQSKSL HPEPPPIPVH FSR 33 (2) INFORMATION ÜBER SEQ ID NO: 185: (A) LÄNGE: 46 Aminosäuren (B) TYP: Protein (C) STRANG: einzel 10 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 15 (iii) HYPOTHETISCH: ja (vi) HERKUNFT: 20 (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 185 25 HSFSARLEFL HLCRGKVSPC TLNHPPFLFI SADNDGGGGV SIVLRV 46 (2) INFORMATION ÜBER SEQ ID NO: 186: 30 (A) LÄNGE: 105 Aminosäuren (B) TYP: Protein (C) STRANG: einzel 35 (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 40 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 45 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 186

VEGTCSDGVF SGFLAPGCAV HRPHRPWPQH PQQGQWKCQS SKCHHFPLSL SLSPPATCLT 60 HGSNQAHRAT DAASLTTGTK QRERDNRHPP ISFSKCLWMR GRQIR 105

₅₅ (2) INFORMATION ÜBER SEQ ID NO: 187:

- (A) LÄNGE: 73 Aminosäuren
- (B) TYP: Protein
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear
- (ii) MOLEKÜLTYP: ORF
- 65 (iii) HYPOTHETISCH: ja

60

(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 187	
RGHAVTEYLV GSLLLAVQFT GPTGLGPSIP SRDSGSVRAV NATTSLSASP CPRQPPASPT 60 ALTKPTEQLT LPV 7	
(2) INFORMATION ÜBER SEQ ID NO: 188:	1
(A) LÄNGE: 28 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	2
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	2
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH:	3
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 188 MFFIFFMLSI QALFHGQQVI FHNVDFPK 28	3
(2) INFORMATION ÜBER SEQ ID NO: 189:	
(A) LÄNGE: 65 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	4
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF	4
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	5
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 189	5
LLNTAILWLL LVFLWYVVWE CLWNYQYLKF SKEPWKSITL NESLSLYMNY VLKFDQLSLR 60 HKTVI	
(2) INFORMATION ÜBER SEQ ID NO: 190:	
(A) LÄNGE: 30 Aminosäuren (B) TYP: Protein	6

	(C) STRANG: einzel (D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 190	
	CFSFFSCYLS KHCSMVSKSY FIMWIFQNNY	30
20	(2) INFORMATION ÜBER SEQ ID NO: 191:	
25	(A) LÄNGE: 41 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
30	(ii) MOLEKÜLTYP: ORF	
	(iii) HYPOTHETISCH: ja	
35	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
,40	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 191	
	FFFFVTNVFY LFINKKCIVQ ALYPNPSTQK KINNRPWMAQ T	41
45	(2) INFORMATION ÜBER SEQ ID NO: 192	
50	(A) LÄNGE: 29 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 192	
65	YKPFIPIQVL RKRLTTDPGW HRHNLFGVI 29	

(2) INFORMATION ÜBER SEQ ID NO: 193:		
(A) LÄNGE: 33 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		:
· (ii) MOLEKÜLTYP: ORF		10
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 193		20
SSHMVTNTYD FSFRNIIRRL NLLLQQQKFN PLN	33	
(2) DIFORMATION ("DED SEO ID NO. 104.		2
(2) INFORMATION ÜBER SEQ ID NO: 194: (A) LÄNGE: 153 Aminosäuren (B) TYP: Protein (C) STRANG: einzel		30
(D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: ORF		3
(iii) HYPOTHETISCH: ja	·	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		41
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 194	•	4:
TPLRKEVLKS KMGKSEKIAL PHGQLVHGIH LYEQPKINRQ KSKYNLPLTK FWQDSVSSDR IQKQEKKPFK NTENIKNSHL KKSAFLTEVS QKENYAGAKF KPPSHWMGST VENSNQNREL MAVHLKTLLK VQT		5(
(2) INFORMATION ÜBER SEQ ID NO: 195:		
(A) LÄNGE: 304 Aminosäuren (B) TYP: Protein		5:
(C) STRANG: einzel (D) TOPOLOGIE: linear		
(ii) MOLEKÜLTYP: ORF		60
(iii) HYPOTHETISCH: ja	•	
		6

	(A) ORGANISMUS: MENSCH
5	
J	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 195
10	SLYYYGIRDL ATVFFYMLVA IIIHAVIQEY MLDKINRRMH FSKTKHSKFN ESGQLSAFYL 60 FACVWGTFIL ISENYISDPT ILWRAYPHNL MTFQMKFFYI SQLAYWLHAF PELYFQKTKK 120 EDIPRQLVYI GLYLFHIAGA YLLNLNHLGL VLLVLHYFVE FLFHISRLFY FSNEKYQKGF 180 SLWAVLFVLG RLLTLILSVL TVGFGLARAE NQKLDFSTGN FNVLAVRIAV LASICVTQAF 240
15	MMWKFINFQL RRWREHSAFQ APAVKKKPTV TKGRSSKKGT ENGVNGTLTS NVADSPRNKK 300 EKSS 304
	(2) INFORMATION ÜBER SEQ ID NO: 196:
20	(A) LÄNGE: 75 Aminosäuren (B) TYP: Protein (C) STRANG: einzel
25	(D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
30	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
35	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 196
40	LYKIIHIKYI ECTKKMSKIF DTRSGQIRKQ FFSSYLGSYW LVFEKNNKSR RYEGNSSHNS 6 HPLIHTSQRK EKQEC 75
45	(2) INFORMATION ÜBER SEQ ID NO: 197:
50	(A) LÄNGE: 46 Aminosäuren (B) TYP: Protein (C) STRANG: einzel
	(D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
55	(iii) HYPOTHETISCH: ja
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 197
65	WCI TREUD CONTROLLIN DI TOUR DEL TURCOTTE DETUTO

(2) INFORMATION OBER SEQ ID NO: 198:		
(A) LÄNGE: 23 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear	,	;
(ii) MOLEKÜLTYP: ORF		10
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		1:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 198		2
YIFPPCLCDL LFILYYCPMY FLN	23	
(2) INFORMATION ÜBER SEQ ID NO: 199:		2:
(A) LÄNGE: 46 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		31
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		3:
(iii) IIII O IIILIIOCII. ja	•	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :		41
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 199		
HKREITCSTA AKVFSFQRIF LEVSNIYFPL VSVISYLYYI IVPCTF	46	4:
(2) INFORMATION ÜBER SEQ ID NO: 200		50
(A) LÄNGE: 281 Aminosäuren (B) TYP: Protein (C) STRANG: einzel		
(D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF		55
(iii) HYPOTHETISCH: ja		
· /		60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		6:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 200		

5	SGSAGPGPRG PRATESGKRM DCPALPPGWK KEEVIRKSGL SAGKSDVYYF SPSGKKFRSK 60 PQLARYLGNT VDLSSFDFRT GKMMPSKLQK NKQRLRNDPL NQNKGKPDLN TTLPIRQTAS120 IFKQPVTKVT NHPSNKVKSD PQRMNEQPRQ LFWEKRLQGL SASDVTEQII KTMELPKGLQ180 GVGPGSNDET LLSAVASALH TSSAPITGQV SAAVEKNPAV WLNTSQPLCK AFIVTDEDIR240 KQEERVQQVR KKLEEALMAD ILSRAADTEE MDIEMDSGDE A 281
10	(2) INFORMATION ÜBER SEQ ID NO: 201:
15	(A) LÄNGE: 198 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
	(ii) MOLEKÜLTYP: ORF
20	(iii) HYPOTHETISCH: ja
25	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:201
30	KMTTAARPTF EPARGGRGKG EGDLSQLSKQ YSSRDLPSHT KIKYRQTTQD APEEVRNRDF 60 RRELEERERA AAREKNRDRP TREHTTSSSV SKKPRLDQIP AANLDADDPL TDEEDEDFEE120 ESDDDDTAAL LAELEKIKKE RAEKGQGPGK GPRAKKALRG GRVSFWENIG WAGNPFPLIL180
35	SLAHSKLKAD FEKFERRV 198
	(2) INFORMATION ÜBER SEQ ID NO: 202:
40	(A) LÄNGE: 55 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear
45	(ii) MOLEKÜLTYP: ORF
	(iii) HYPOTHETISCH: ja
50	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH
55	: (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:202
	VLIFLVFLLD GKAVGINRGQ RLMLEWPVEV VEQSSHLLSG AVSGWVYLKA TKCFG 55
60	
	(2) INFORMATION ÜBER SEQ ID NO: 203:
65	(A) LÄNGE: 66 Aminosäuren (B) TYP: Protein (C) STRANG: einzel

(D) TOPOLOGIE: linear	
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	•
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	10
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:203	1:
SPGFFLSLPF STGXAWASSS CHPSRKAPAP SCLPAACIQG QSSGLQTGLV PPPLQGMGVG 60 EGAFKK	
(2) INFORMATION ÜBER SEQ ID NO: 204:	20
(A) LÄNGE: 161 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	. 2.
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	3
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	3:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO:204	4
HLGYGKLLWC VVGFLFSFLS FFSPFSLLAF SFPFPSPLAK LGPHPHVILL GRRLPHLVCR 60 QHASKARAQA CRLGWCLLRF RVWELVKGLS KNNKKKKVKS LVASIHSDPG RQQGFVDLDS120 LGMSSCQPGQ DPGLPRAEAL PATRIPPLWG LCVQRSGSET S 161)
	4:
2) INFORMATION ÜBER SEQ ID NO: 205:	
(A) LÄNGE: 37 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	50
(ii) MOLEKÜLTYP: ORF	5:
(iii) HYPOTHETISCH: ja	
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	60
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 205	6:
LDLVFIVEH TYQGEVLHTQ LQIIFGKKAV KKIKLOLL 37	

(2) INFORMATION ÜBER SEQ ID NO: 206: (A) LÄNGE: 32 Aminosäuren 5 (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 10 (iii) HYPOTHETISCH: ja 15 (vi) HERKUNFT: (A) ORGANISMUS: MENSCH 20 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 206 ENYFAFSVNL RSVLNKVQSS ARPFPSLMSA LG 32 25 (2) INFORMATION ÜBER SEQ ID NO: 207: (A) LÄNGE: 102 Aminosäuren (B) TYP: Protein 30 (C) STRANG: einzel (D) TOPOLOGIE: linear (ii) MOLEKÜLTYP: ORF 35 (iii) HYPOTHETISCH: ja (vi) HERKUNFT: 40 (A) ORGANISMUS: MENSCH (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 207 45 CMLQINLYFF PLGFSKNTTT STPNEHGTCL FLPLLIYSRF SSVFFSNAAF SCSSGLLSGS 60 IVAKDSIRST LHSDVKHSHC LDSSSFLSSN SITDKASVLT DE 102 50 (2) INFORMATION ÜBER SEQ ID NO: 208: (A) LÄNGE: 34 Aminosäuren 55 (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear 60 (ii) MOLEKÜLTYP: ORF (iii) HYPOTHETISCH: ja 65 (vi) HERKUNFT:

(A) ORGANISMUS: MENSCH:	
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 208	:
VLFSKEYVID LQVSSRISAK ASGSACSSSK SINP	
(2) INFORMATION ÜBER SEQ ID NO: 209:	10
(A) LÄNGE: 43 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	1:
(ii) MOLEKÜLTYP: ORF	2
(iii) HYPOTHETISCH: ja	2.
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	2:
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 209	3
VAHWQGDQKH YFHTCVMILF FLRESHSVAR LGVQWHDLGS LQP 43	
(2) INFORMATION ÜBER SEQ ID NO: 210:	- 3:
(A) LÄNGE: 204 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	41
(ii) MOLEKÜLTYP: ORF	
(iii) HYPOTHETISCH: ja	4:
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	50
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 210	5:
DLTFEQIRKL NPAANHRLRN DFPDEKIPTL REAVAECLNH NLTIFFDVKG HAHKATEALK 60 KMYMEFPQLY NNSVVCSFLP EVIYKMRQTD RDVITALTHR PWSLSHTGDG KPRYDTFWKH120 FIFVMMDILL DWSMHNILWY LCGISAFLMQ KDFVSPAYLK KWSAKGIQVV GWTVNTFDEK180 SYYESHLGSS YITDSMVEDC EPHF 204	
(2) INFORMATION ÜBER SEQ ID NO: 211:	
(A) LÄNGE: 25 Aminosäuren (B) TYP: Protein (C) STRANG: einzel	6:

	(D) TOPOLOGIE: linear	
5	(ii) MOLEKÜLTYP: ORF	
3	(iii) HYPOTHETISCH: ja	
10	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
15	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 211	
	KLNPVLPPCT MACQSSTLLL LKIWV	25
20	(2) INFORMATION ÜBER SEQ ID NO: 212:	
25	(A) LÄNGE: 22 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
30	(iii) HYPOTHETISCH: ja	
35	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
40	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 212	
40	IVQFADADVN AWDMHDNSEL TF	22
45	(2) INFORMATION ÜBER SEQ ID NO: 213:	
	(A) LÄNGE: 196 Aminosäuren (B) TYP: Protein	
50	(C) STRANG: einzel (D) TOPOLOGIE: linear	
	(ii) MOLEKÜLTYP: ORF	
55	(iii) HYPOTHETISCH: ja	
60	(vi) HERKUNFT: (A) ORGANISMUS: MENSCH :	
	(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 213	
65	NVNSELSCMS HAFTSASANC TIQSVLILTG SPCVPQLGQG RGSCAFFQTQ IFKSNSVE	LW 60

DE 198 11 194 A 1

(2) INFORMATION OBER SEQ ID NO: 214:		
(A) LÄNGE: 33 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		5
(ii) MOLEKÜLTYP: ORF		10
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		15
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 214		20
SFKVTLWKSE TRGCHEGSFS FSEEKIGMGY RTI 33	3	
2) INFORMATION ÜBER SEQ ID NO: 215:		25
(A) LÄNGE: 61 Aminosäuren(B) TYP: Protein(C) STRANG: einzel(D) TOPOLOGIE: linear		30
(ii) MOLEKÜLTYP: ORF		35
(iii) HYPOTHETISCH: ja		
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH		40
(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 215		45
NSKVDVIFTP MSICPISVSS SPLGIYSLYV NKIRSSDSLI QSSSFSSLFL CRLLDIYCST	60 61	
2) INFORMATION ÜBER SEQ ID NO: 216:		50
(A) LÄNGE: 24 Aminosäuren (B) TYP: Protein (C) STRANG: einzel (D) TOPOLOGIE: linear		55
(ii) MOLEKÜLTYP: ORF		
(iii) HYPOTHETISCH: ja		60
(vi) HERKUNFT: (A) ORGANISMUS: MENSCH	,	65

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 216

PMYKIAKCLL FIKRCNGVGG RGNF

5

10

15

25

30

40

50

24

Patentansprüche

- 1. Eine Nukleinsäure-Sequenz, die ein Genprodukt oder ein Teil davon kodiert, umfassend
 - a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe Seq ID No. 3, 4, 6–8, 11, 15, 17–21, 23, 24, 26–33, 35, 36, 40–43, 45, 46, 50, 52, 53 und 56–62,
 - b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen oder
 - c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.
- 2. Eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq ID Nos. 3, 4, 6–8, 11, 15, 17–21, 23, 24, 26–33, 35, 36, 40–43, 45, 46, 50, 52, 53 und 56–62, oder eine komplementäre oder allelische Variante davon.
- 3. Nukleinsäure-Sequenz Seq. ID No. 1 bis Seq. ID No. 64, dadurch gekennzeichnet, daß sie in Prostatatnormalgewebe erhöht exprimiert sind.
- 4. BAC, PAC und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Sequenzen Seq. ID. No. 1 bis Seq. ID No. 64, zur Verwendung als Vehikel zum Gentransfer.
 - 5. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 90%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.
 - 6. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.
 - 7. Eine Nukleinsäure-Sequenz, umfassend einen Teil der in den Ansprüchen 1 bis 6 genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen gemäß den Ansprüchen 1 bis 6 hybridisieren.
 - 8. Ein Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 50 bis 2500 bp aufweist.
 - 9. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 2000 bp aufweist.
 - 10. Eine Nukleinsäure-Sequenz gemäß einem der Ansprüche 1 bis 9, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodiert.
- 11. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß einem der Ansprüche 1 bis 9, zusammen mit mindestens einer Kontroll- oder regulatorischen Sequenz.
 - 12. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß Anspruch 11, worin die Kontroll- oder regulatorische Sequenz ein geeigneter Promotor ist.
 - 13. Eine Expressionskassette gemäß einem der Ansprüche 11 und 12, dadurch gekennzeichnet, daß die auf der Kassette befindlichen DNA-Sequenzen ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.
 - 14. Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 10 zur Herstellung von Vollängen-Genen.
 - 15. Ein DNA-Fragment, umfassend ein Gen, das aus der Verwendung gemäß Anspruch 14 erhältlich ist.
- 16. Wirtszeile, enthaltend als heterologen Teil ihrer exprimierbaren genetischen Information ein Nukleinsäure-Fragment gemäß einem der Ansprüche 1 bis 10.
 - 17. Wirtszelle gemäß Anspruch 16, dadurch gekennzeichnet, daß es ein prokaryontisches oder eukaryontische Zellsystem ist.
 - 18. Wirtszelle gemäß einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, daß das prokaryontische Zellsystem E. coli und das eukaryontische Zellsystem ein tierisches, humanes oder Hefe-Zellsystem ist.
 - 19. Ein Verfahren zur Herstellung eines Polypeptids oder eines Fragments, dadurch gekennzeichnet, daß die Wirtszellen gemäß den Ansprüchen 16 bis 18 kultiviert werden.
 - 20. Ein Antikörper, der gegen ein Polypeptid oder ein Fragment gerichtet ist, welches von den Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID No. 64 kodiert wird, das gemäß Anspruch 19 erhältlich ist.
- 21. Ein Antikörper gemäß Anspruch 20, dadurch gekennzeichnet, daß er monoklonal ist.
 - 22. Polypeptid-Teilsequenzen, gemäß den Sequenzen Seq. ID Nos. 67–70, 71, 73–81, 84–89, 93–109, 111–114, 116–137, 139–149, 153–164, 166–172, 181–182, 188–193 und 196–216.
 - 23. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 80%iger Homologie zu diesen Sequenzen.
 - 24. Polypeptid-Teilsequenzen gemäß Anspruch 22, mit mindestens 90%iger Homologie zu diesen Sequenzen.
- 25. Verwendung der Polypeptid-Teilsequenzen gemäß den Sequenzen Seq. ID No. 65 bis Seq. ID No. 216, als Tools zum Auffinden von Wirkstoffen gegen Prostata-Krebs.
 - 26. Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 64 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen Prostata-Krebs verwendet werden können.
- 5 27. Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 64 in sense oder antisense Form.
 - 28. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 65 bis Seq. ID No. 216 als Arzneimittel in der Gentherapie zur Behandlung des Prostata-Krebses.
 - 29. Verwendung der Polypeptid-Teilsequenzen Seq. ID No. 65 bis Seq. ID No. 216, zur Herstellung eines Arznei-

DE 198 11 194 A 1

mittels zur Behandlung des Prostata-Krebses.

- 30. Arzneimittel, enthaltend mindestens eine Polypeptid-Teilsequenz Seq. ID No. 65 bis Seq. ID No. 216.
- 31. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine genomische Sequenz ist.
- 32. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, daß es eine mRNA-Sequenz ist.
- 33. Genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 64.
- 34. Verwendung der genomischen Gene gemäß Anspruch 33, zusammen mit geeigneten regulativen Elementen.
- 35. Verwendung gemäß Anspruch 34, dadurch gekennzeichnet, daß das regulative Element ein geeigneter Promotor und/oder Enhancer ist.
- 36. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 400 bis 1900 bp aufweist.

1	Hierzu 10 Seite(n) Zeichnungen	15
	inciza to bene(ii) zeiennangen	15

25

20

10

30

35

40

45

50

55

60

65

- Leerseite -

DE 198 11 194 A1 C 07 K 14/82 16. September 1999

Systematische Gen-Suche in der Incyte LifeSeq Datenbank

Fig. 1

DE 198 11 194 A1 C 07 K 14/82 16. September 1999

Prinzip der EST-Assemblierung

5000-6000 Contigs ~25.000 übrige Singletons

~30.000 Konsensussequenzen pro Gewebe

Fig. 2a

Fig. 2b1

Fig. 2b2

DE 198 11 194 A1 C 07 K 14/8216. September 1999

GAP4 assembly 6. Runde: minimum initial match: 20 maximum pads per read: 8 maximum percent mismatch: 4

assemblierte Datenbank eines spezifischen Gewebes (z.B.: Prostata Tumor)

Fig. 2b3

Fig. 2b4

DE 198 11 194 A1 C 07 K 14/82 16. September 1999

In silico Subtraktion der Genexpression in verschiedenen Geweben

Assemblierung bei 4% Mismatch ~30.000 Konsensussequenzen Krebsgewebe Krebsgewebe Spezifische Gene ~30,000 Konsensussequenzen Normalgewebe Spezifische Gene Normalgewebe

In beiden Geweben expremierte Gene

Fig. 3

Fig. 4a

Fig. 4b

DE 198 11 194 A1 C 07 K 14/8216. September 1999

Isolieren von genomischen BAC und PAC Klonen

Chromosomale Klon-Lokalisation über FISH

Hybridisierungssignal

Sequenzierung von Klonen, die in Regionen lokalisiert sind, die chromosomale Deletionen in Prostata- und Brustkrebs aufweisen, führt zur Identifizierung von Kandidatengenen

Bestätigung der Kandidatengene durch Screening von Mutationen und/oder Deletionen in Krebsgeweben

Fig. 5