Das Austauschverfahren

Gegeben sei folgendes System von m
 linearen Funktionen mit den unabhängigen Variablen x_1 , x_2 ,..., x_n und den abhängigen Variablen y_1 , y_2 ,..., y_m :

$$y_1 = a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n + a_{10}$$
...
$$y_m = a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n + a_{m0}$$

$$\text{Matrix-Form: } \mathbf{y} = \underline{\mathbf{A}} \ \underline{\mathbf{x}} + \underline{\mathbf{a}} \ \text{mit} \ \underline{\mathbf{A}} = (\mathbf{a_{ij}}) \ , \ \underline{\mathbf{a}} = (\mathbf{a_{i0}}) \ , \ \underline{\mathbf{x}} = (\mathbf{x_j}) \ , \mathbf{y} = (\mathbf{y_i}) \ (\mathbf{i} = 1, \dots, m \ ; \ \mathbf{j} = 1, \dots, n)$$

Austauschschritt $y_r \leftrightarrow x_s$ (Voraussetzung $a_{rs} \neq 0$)

bedeutet r - te Zeile $y_r = a_{r1}x_1 + a_{r2}x_2 + ... + a_{rs}x_s + ... + a_{rn}x_n + a_{r0}$ auflösen nach x_s :

$$x_S = -\frac{a_{r1}}{a_{rs}} x_1 - \frac{a_{r2}}{a_{rs}} x_2 \dots + \frac{1}{a_{rs}} y_r - \dots - \frac{a_{rn}}{a_{rs}} x_n - \frac{a_{r0}}{a_{rs}} \text{ und einsetzen in } \text{ die } i \text{ - te Zeile } (i \neq r) \text{ :}$$

$$y_i = a_{i1}x_1 + a_{i2}x_2 + ... + a_{is}x_s + ... + a_{in}x_n + a_{i0}$$

$$= a_{i1}x_1 + a_{i2}x_2 + ... + a_{is} \left(-\frac{a_{r1}}{a_{rs}}x_1 - \frac{a_{r2}}{a_{rs}}x_2 ... + \frac{1}{a_{rs}}y_r - ... - \frac{a_{rn}}{a_{rs}}x_n - \frac{a_{r0}}{a_{rs}} \right) + ... + a_{in}x_n + a_{i0}$$

$$= (a_{i1} - a_{is} \frac{a_{r1}}{a_{rs}})x_1 + (a_{i2} - a_{is} \frac{a_{r2}}{a_{rs}})x_2 + ... + \frac{a_{is}}{a_{rs}}y_r ... + (a_{in} - a_{is} \frac{a_{rn}}{a_{rs}})x_n + a_{i0} - a_{is} \frac{a_{r0}}{a_{rs}}$$

Damit ergibt sich eine neue Tabelle (T2), deren Koeffizienten zur Abkürzung mit a $_{ij}$ * bezeichnet sind. Die Austauschregeln zur Berechnung der a $_{ij}$ * ergeben sich aus den obigen Gleichungen für x_s (\rightarrow AR1, AR2) und y_i (\rightarrow AR3, AR4)

Austauschregeln (zur Abkürzung $p := a_{rs}$... Pivot)

AR1) Pivot
$$a_{rs} *= 1/p$$
 AR2) Pivotzeile $a_{rj} *= a_{rj} / (-p)$ $(j \neq s)$

AR3) Pivotspalte $a_{is} *= a_{is} / p$ $(i \neq r)$ AR4) $a_{ij} *= a_{ij} + a_{is} \cdot a_{rj} *$ $(i \neq r, j \neq s)$ (Rechteckregel)

Zur Beachtung: Bei der Anwendung der Rechteckregel wird die neue Pivotzeile (ohne Pivot) unter der alten Tabelle als Kellerzeile notiert (siehe auch das Beispiel auf Seite 2).

Lösung linearer Gleichungssysteme

Gegeben sei das lineare Gleichungssystem

$$a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1$$

... (1)
 $a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m$

Matrix-Form: $\underline{A} \underline{x} = \underline{b}$ (1') mit $\underline{A} = (a_{ij})$, $\underline{x} = (x_i)$, $\underline{b} = (b_i)$ (i = 1, ..., m; j = 1, ..., n)

Äquivalente Form:
$$\underline{y} = \underline{A} \underline{x} - \underline{b}$$
 mit $\underline{y} = \underline{o}$, Tabellenform: $\underline{\underline{x}^T} \quad \underline{1}$ $\underline{y} = \underline{o} \quad \underline{A} \quad -\underline{b}$ (1")

Lösungsprinzip: Austauschverfahren mit Spaltentilgung (AVS)

Fall 1: Alle y_i austauschbar \Rightarrow (1) ist lösbar, Lösung aus letzter Tabelle (TE) ablesbar, die nicht ausgetauschten x_j (Nichtbasisvariable NBV) sind frei wählbar, die ausgetauschten x_j (Basisvariable BV) lassen sich durch die NBV ausdrücken

Fall 2: Wenigstens ein y_i ist gegen kein x_j austauschbar, in der 1-Spalte der entsprechenden Zeile stehe die Zahl α , dann

Fall 2a: $\alpha = 0 \Rightarrow$ Zeile (0 = 0) kann gestrichen werden Fall 2b: $\alpha \neq 0 \Rightarrow$ Gleichungssystem (1) ist nicht lösbar

Beispiel:
$$5 x_1 -3 x_2 + x_3 = 18$$
 Pivot , Beispielrechnung für Rechteckregel: $x_1 +4 x_2 +2x_3 = -3$ Pivot , Beispielrechnung für Rechteckregel: $-5 \cdot 2 + 1 = -9$

							x ₁				T3	x ₁	1	P
0	5	-3	1	-18	15	 х3	-5	3	18	-15	х3	-2,3	6,3	-3
0	Λ	4	2	3	-10	0	<u>-9</u>	10	39	-40	x ₂	0,9	-3,9	4
K	(-5)	3	*	18	-15	 K	0,9	*	-3,9	4				

T3 ist Endtabelle, Lösung: $x_1 = t$, $x_2 = 0.9 t - 3.9$, $x_3 = -2.3 t + 6.3 (t \in R)$

Probe (optional), s. Seite 3

Bemerkungen:

- 1. Anstelle AVS kann auch AVSZ durchgeführt werden, dabei Kellerzeilen nicht mit K markieren, sondern mit den ausgetauschten x_j , am Ende Rückrechnung mit den Kellerzeilen in umgekehrter Reihenfolge durchführen (= GAUSS-Algorithmus)
- 2. Bei einem homogenen System ($\underline{b} = \underline{o}$) kann die 1-Spalte (lauter Nullen!) $\rightarrow \underline{\underline{x}^T}$ entfallen. Sie muss am Ende natürlich berücksichtigt werden! $\underline{\underline{y}} \underline{\underline{A}}$

- 2 -

Probe beim Austauschverfahren (optional)

Zusatzspalte in T1 so eintragen, dass alle Zeilensummen gleich 1 sind, außer in den Zeilen, die den sogenannten Hilfsvariablen $y_i = 0$ beim Austauschverfahren mit Spaltentilgung entsprechen. Diese Zeilensummen müssen gleich 0 sein. Nach dem Austausch müssen die Zeilensummen = 1 sein, mit Ausnahme der oben genannten y-Zeilen beim AVS und AVSZ (dort Zeilensummen = 0). Beim AVSZ ist auch die Kellerzeile zu überprüfen (Zeilensumme = 1).

Weitere Anwendungen des Austauschverfahrens

(jeweils mit der Starttabelle
$$\frac{\underline{x}^T}{\underline{y} \ \underline{A}}$$
)

- Inverse einer (n,n)-Matrix, vollständiges AV, Fall 1: Alle y i austauschbar ⇒
 <u>A</u> ist regulär, nach Ordnen von Zeilen und Spalten ist <u>A</u> ⁻¹ aus TE ablesbar,

 Fall 2: Nicht alle y i austauschbar ⇒ <u>A</u> ist singulär
- Rang einer Matrix, AVSZ, rang($\underline{\mathbf{A}}$) = Anzahl der ausführbaren Austauschschritte
- Lineare Unabhängigkeit von Vektoren $\underline{a}_1, \dots, \underline{a}_n$ überprüfen, Ansatz $x_1\underline{a}_1 + \dots + x_n\underline{a}_n = \underline{o} \Leftrightarrow \underline{A} \ \underline{x} = \underline{o}$, dabei \underline{A} Matrix mit den Spaltenvektoren $\underline{a}_1, \dots, \underline{a}_n$, AVS, die zu den ausgetauschten x_j (BV) gehörenden \underline{a}_j sind unabhängig, sie bilden eine Basis von $L(\underline{a}_1, \dots, \underline{a}_n)$
- Determinante einer (n,n)-Matrix: AVSZ , $\det \underline{A} = 0 \text{ , falls rang } (\underline{A}) < n \text{, anderenfalls gilt} \\ \det \underline{A} = (-1)^{i_1 + j_1} p_1 \cdot (-1)^{i_2 + j_2} p_2 \cdot ... \cdot (-1)^{i_n + j_n} p_n \text{,} \\ \text{dabei p }_k ... \text{ Pivot im k-ten Austauschschritt, i }_k \text{ bzw. j }_k ... \text{ Zeilen-bzw.} \\ \text{Spaltennummer des Pivots in der jeweiligen Tabelle Tk.}$