1 Formulas

- Signal to Noise Ratio: $SNR = 10log_{10} \frac{P_s}{P_n}$
- Shannon's Equation: $C = B_c log_2(1 + SNR)$
- $atennasize = \frac{1}{4} wavelength$
- Energy of Signals: $E = \int_{-\infty}^{\infty} |x(t)|^2 dt$
- Parseval's Theorem: $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$
- Coherent Demodulator: $m(t)cos(\Delta\omega t + \theta_d)$
- Modulation Index(AM): $\mu = \frac{m_{max} m_{min}}{2A + m_{max} + m_{min}}$
- Time Constant of Envelope Dector: $\frac{1}{\omega_c} < \tau < \frac{1}{2\pi B}$
- Modulation Index(Angle Modulation): $\beta = \frac{\Delta f}{B}$
- Maximum Phase Deviation: $k \frac{Max(a) Min(a)}{2}$
- Maximum Frequency Deviation: $k \frac{Max(a') Min(a')}{2}$
- Narrowband Approximation: $s(t) = A[cos(\omega_c t) ka(t)sin(\omega_c t)], |ka(t)| << 1$

2 Concepts

2.1 Bandwidth

• **SSB**: *B*

• **VSB**: *B*.. < 2*B*

• **DSB**: 2*B*

• Narrow Band($\beta < 0.2$): 2B

• Angle Modulation (Effective Bandwidth): $2(B + \Delta f) = 2B(1 + \beta)$

2.2 Demodulate

- AM: Envelope detector
- 1. Angle Modulation: Differentiator -> Envelope dector.
 - 2. Zero-Crossing Detector
 - 3. Coherent demodulator

3 Taolu