

- นำโมเดลมาต่อเติม ช่วยวางแผนในการรับมือกับอุกกาบาตและ ข้อมูลใหม่ๆที่เพิ่มมาในอนาคต
- เพิ่มประสิทธิภาพความสามารถในการระบุความแม่นยำในการ
 ทำนายความอันตรายของอุกกาบาต
- เพื่อลดจำนวนฟีเจอร์ในการเก็บข้อมูล ทำให้ประหยัด
 ค่าใช้จ่ายมากขึ้น

DATASET

FEATURE

NASA - Nearest Earth **Objects**

A cumulative data for Nearest Earth Objects by NASA

Code (84) Discussion (12) Suggestions (0)

About Dataset

Context

There is an infinite number of objects in the outer space. Some of them are

Sources

NASA Open API

Usability 0

Expected update frequency

• id : รหัสเฉพาะของอุกกาบาต

- name : ชื่อ หรือ หมายเลขที่กำหนดให้กับอุกกาบาต
- est_diameter_min : เส้นผ่านศูนย์กลางต่ำสุด
- est_diameter_max : เส้นผ่านศูนย์กลางสูงสุด
- relative_velocity:
 - ความเร็วสัมพัทธ์ของอุกกาบาตเมื่อเทียบกับโลก
- miss_distance:
 - ระยะห่างที่อุกกาบาตจะผ่านใกล้โลกที่สุด
- orbiting_body:
 - วัตถุที่อุกกาบาตโคจรรอบ เช่น โลก (Earth) หรือดาวเคราะห์อื่น ๆ
- sentry_object:
 - o boolean (True/False) อุกกาบาตนีรติดตามอย่างใกล้ชิดของ NASA หรือไม่ เนื่องจากมีโอกาสชนในอนาคต
- absolute_magnitude :
 - ความสว่างสัมบูรณ์ โดยไม่คำนึงถึงระยะทางจากโลก
- hazardous:
 - boolean (True/False) จัดว่าอาจเป็นอันตรายต่อโลกหรือไม่

Hyperparameter

Tuning

ใช้เทคนิคการปรับค่าพารามิเตอร์ของ
RandomForest เพื่อหาเซ็ตที่ดีที่สุด
ปรับค่า n_estimators, max_depth,
min_samples_split โดยใช้วิธี GridSearchCV
เพื่อค้นหาค่าพารามิเตอร์ที่ทำให้ผลลัพธ์ดีที่สุด

จากนั้นเราก็ใช้ features selection เพื่อลด จำนวน feature ที่ใช้

```
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.feature_selection import RFE
from sklearn.model_selection import GridSearchCV
data = pd.read_csv('neo.csv')
X = data[['absolute_magnitude','est_diameter_min','est_diameter_max','relative_velocity','miss_distance']]
y = data['hazardous']
# Feature names can be extracted from the dataframe itself
feature_names = X.columns
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split( *arrays: X, y, test_size=0.2, random_state=42)
param_grid = {
     'n_estimators': [50, 100, 25],
     'max_depth': [None, 10, 20, 30],
    'min_samples_split': [2, 3, 5]
grid_search = GridSearchCV(RandomForestClassifier(random_state=42), param_grid, cv=5)
grid_search.fit(X_train, y_train)
print(f'Best parameters: {grid_search.best_params_}')
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)
print(classification_report(y_test, y_pred_best))
Best parameters: {'max_depth': 20, 'min_samples_split': 3, 'n_estimators': 50}
                           recall f1-score support
                                                16439
                   0.71
                                       0.43
                                                 1729
                                                18168
    accuracy
                             0.65
                                       0.69
                                                18168
   macro avg
                             0.92
                                       0.91
                                                18168
weighted avg
```

RANDOMFOREST CLASSIFIER (modelin)

X = data[['absolute_magnitude', 'est_diameter_min', 'est_diameter_max',

'relative_velocity', 'miss_distance']]

	precision	recall	f1-score	support	
False	0.94	0.97	0.96	16439	
True	0.61	0.43	0.51	1729	
accuracy			0.92	18168	
macro avg	0.78	0.70	0.73	18168	
weighted avg	0.91	0.92	0.91	18168	

Selected feat	tures using	ANOVA: Ind	lex(['absol	ute_magnitude',	'est_diameter_min',	'est_diameter_max'],	dtype='object')
	precision	recall	f1-score	support			
False	0.92	0.99	0.95	16439			
True		0.22	0.32	1729			
accuracy			0.91	18168			
macro avg	0.78	0.60	0.64	18168			
weighted avg	0.90	0.91	0.89	18168			

(model?wii)

ype='object

Selected feat	tures using	RFE: Index	(['est_dia	meter_min',	'relative_velocity',	'miss_distance'],	dty
	precision	recall	f1-score	support			
False	0.93	0.98	0.96	16439			
True	0.63	0.32	0.43	1729			
accuracy			0.92	18168			
macro avg	0.78	0.65	0.69	18168			
weighted avg	0.90	0.92	0.91	18168			

(ผลลัพธ์ที่ดีที่สุด)

งอดี-งอเสีย

ของ Feature selection (ตัด feature) แตละตัวที่เลือกใช

Filter: ANOVA

ดูความสามรถของ Feature รายตัว

ข้อดี: ง่ายและรวดเร็ว ไม่ซับซ้อน เหมาะสำหรับปัญหาการ

จำแนกประเภท (Classification)

ข้อเสีย : ไม่เหมาะกับข้อมูลที่มีซับซ้อน

ไม่รองรับฟีเจอร์แบบเชิงหมวดหมู่ ไม่สามารถจัดการกับ ความสัมพันธ์ระหว่างฟีเจอร์

Wrapper: Recursive Feature Elimination (RFE) เทคนิคเลือกฟีเจอร์ที่ใช้การฝึกโมเดลแบบวนซ้ำ สังเกตพลังการทำนาย ของกลุ่ม Feature หลายๆตัว

ข้อดี: จับความสัมพันธ์ระหว่างฟีเจอร์ต่างๆ ได้ดี เหมาะกับโมเดลที่ซับซ้อน รองรับฟีเจอร์หลายประเภททั้งตัวเลขและหมวดหมู่

ข้อเสีย : ใช้เวลาประมวลผลมากกว่า ไม่เหมาะกับข้อมูลที่มีฟีเจอร์จำนวนมาก

ข้อถื-ขอเสีย ของ Hyperparameter Tuning

ข้อดี : ช่วยให้โมเดลมีความแม่นยำสูงขึ้น โดยการหาชุดพารามิเตอร์ที่เหมาะสมที่สุดสำหรับ โมเดลนั้นๆ, เพิ่มความสามารถในการทำนาย, ช่วยให้เข้าใจความสำคัญของพารามิเตอร์, ปรับโมเดลให้เข้ากับข้อมูลเฉพาะ, ช่วยให้เข้าใจความสำคัญของพารามิเตอร์

ข้อเสีย : ใช้เวลามาก, ใช้ทรัพยากรสูง(oh my PC!!) , อาจเกิด Overfitting ได้หากจูน พารามิเตอร์มากเกินไป, มีความไม่แน่นอนขึ้นอยู่กับลักษณะของข้อมูลที่ใช้

หลังจำกได้ลองใช้ selected feature
ได้ผลสรุปว่าได้ความแม่นยำในการทำนายเท่าเดิม
จึงทดลองลดจำนวนฟีเจอร์ที่ใช้ลงทำให้ความแม่นยำ
ในการทำนายลดลงเล็กน้อย แต่สามารถลด
ทรัพยากรที่ใช้งานได้

1528214

- ช่วยให้ทำนายอุกกาบาตได้แม่นยำขึ้น ทำให้วางแผนรับมือได้ดียิ่งขึ้น
- ช่วยในการคาดการณ์อุกกาบาตลูก ใหม่ๆที่พิ่งค้นพบได้
- ช่วยลดทรัพยากรที่ต้องใช้ได้

รายช่อสมาชิก

นาย กัญจน์ จรัสโรจนพร 650710213 นาย จัราวัฒน์ ศิรยศลักษณ์ 650710534 นาย วรนพ ลิมป์ปีติวรกุล 650710579 นาย วรเมธ อภิวังโสกุล 650710580