Credit Risk Analysis

Trupti Dhabu Snehal Hawelikar Anusha Ganesan

Contents

Problem statement

Feature selection

Variable Transformation

Exploratory data analysis

Missing Value Imputation

Statistical Significance tests and Correlation

Modelling

Business Problem:

To identify the customers, who would be eligible for loan in the future based on the past data.

Analytical goal:

To build a classifier which will predict the defaulter and non defaulter on the basis of given past data more accurately

Introduction

The dataset contains complete loan data for all loans issued by XYZ Corp. through 2007-2015 such as indicator of default, payment information, credit history, etc.

There are a total of 855969 rows and 73 columns.

Contains both categorical and numeric variables.

Variable Transformation

How much loan the people are borrowing?

For which purpose most of the loan are borrowed by people?

How long the loan terms are?

What kind of interest rate are borrowers paying?

How Grades or sub-grades matters?

What is the professional experience of maximum number of non-defaulters?

What about the home ownership?

In which cities maximum loans are taken?

What about less or more inquiries?

Total accounts and the loan status

Loan status

Maximum number of records fall under the non-defaulter category.

Missing value imputation

- The missing values in revolving line utilization rate and employee length were imputed with median.
- Records with high number of missing values were dropped.

Statistical significance

KS test: For feature selection

H0: Two samples come from same distribution

H1: Two samples come different distribution

chi-square test: For feature selection

H0: there is NO association between both variables.

H1: there is evidence to suggest there is an association between the two variables.

Correlation analysis: The correlation between variables was checked so that only uncorrelated variables would be included in the model.

Correlation matrix

Data Preparation

- Creating Dummies
- Splitting The Data:

The data was divided into train and test sets using the variable 'issue_d'.

Train data = June 2007 - May 2015

Out-of-time test data = June 2015 - Dec 2015

Modelling with original data

Logistic regression

```
log_score=accuracy_score(pred_log,y_test)
log_score
```

0.9987081259655007

```
# confusion matrix
confusion_matrix=confusion_matrix(y_test,pred_log)
confusion_matrix
```

```
array([[256659, 21], [ 311, 0]], dtype=int64)
```

this is clear indication of imbalenced data our model is only learning to classify 0 and not 1

Techniques to Handle Imbalanced Data

- Under sampling
- Over sampling
- □ SMOTE

ROC of Original Data Model

Logistic Regression

Modelling with the scaled data

- Data scaling with standard scalar so as to bring all the data into the same scale
- Model building with scaled data
- Result: Behaving same as it was behaving with previous one

Modelling with scaled data

Logistic regression

```
0.9984707635675958
[256598
             82]
              0]]
     311
               precision
                             recall f1-score
                                                 support
                    1.00
                               1.00
                                         1.00
                                                  256680
                    0.00
                               0.00
                                         0.00
                                                     311
   micro avg
                    1.00
                               1.00
                                         1.00
                                                  256991
                               0.50
                                         0.50
                    0.50
                                                  256991
   macro avg
weighted avg
                               1.00
                    1.00
                                         1.00
                                                  256991
```

Modelling with oversample data

```
0.4672926289247483
[[119851 136829]
           239]]
            precision
                        recall f1-score
                                            support
                 1.00
                           0.47
                                     0.64
                                             256680
                 0.00
                           0.77
                                     0.00
                                               311
avg / total
                 1.00
                           0.47
                                     0.64
                                             256991
```

Model Building with Smote

Logistic regression result:

```
Accuracy of log model with smote: 0.6631982703930014
 confusion matrix for log model using smote:
 [[146952 74080]
    6615 11945]]
 classification report for log model with smote:
              precision recall f1-score
                                              support
                                     0.78
                  0.96
                            0.66
                                              221032
                  0.14
                            0.64
                                     0.23
                                               18560
avg / total
                                     0.74
                 0.89
                            0.66
                                              239592
```

ROC for Logistic Regression with Smote

Random forest classifier with Smote

```
Accuracy of Randomforest model with smote: 0.9042789408661391
confusion matrix for log model using smote:
 [[215360 5672]
 [ 17262 1298]]
classification report for log model with smote:
             precision recall f1-score support
                 0.93
                          0.97
                                    0.95
                                            221032
                 0.19
                                    0.10
                           0.07
                                             18560
avg / total
                 0.87
                           0.90
                                    0.88
                                            239592
```

ROC for Random Forest with Smote

XGBoost classifier with Smote

```
Accuracy of XGBoost classifier model with smote: 0.8916950482486894
 confusion matrix for log model using smote:
 211544
          9488
 [ 16461 2099]]
 classification report for log model with smote:
             precision recall f1-score support
                 0.93
                          0.96
                                    0.94
                                            221032
                 0.18
                          0.11
                                    0.14
                                             18560
avg / total
                          0.89
                 0.87
                                    0.88
                                            239592
```

ROC for XGBoost

Stochastic Gradient Descent with logistic regression

```
Accuracy of SGD model with smote: 0.6503848208621323
 confusion matrix for SGD model using smote:
 [[143758 77274]
    6491 12069]]
 classification report for SGD with smote:
               precision
                             recall f1-score
                                                 support
                   0.96
                              0.65
                                        0.77
                                                 221032
                   0.14
                              0.65
                                        0.22
                                                  18560
   micro avg
                   0.65
                              0.65
                                        0.65
                                                 239592
                                        0.50
   macro avg
                   0.55
                              0.65
                                                 239592
weighted avg
                                        0.73
                   0.89
                              0.65
                                                 239592
```

ROC for Stochastic Gradient Descent with logistic regression

Making predictions on test data

Logistic Regression:

```
0.6596262125911024
[169314
         87366]
            204]]
     107
              precision
                            recall f1-score
                                                support
                              0.66
           0
                    1.00
                                        0.79
                                                 256680
                              0.66
                   0.00
                                        0.00
                                                    311
                   0.66
                              0.66
                                        0.66
                                                 256991
   micro avg
   macro avg
                   0.50
                              0.66
                                        0.40
                                                 256991
weighted avg
                              0.66
                                        0.79
                                                 256991
                   1.00
```

Making prediction on test data

SGD classifier:

```
0.6478475899934238
[[166301 90379]
            190]]
     121
              precision
                            recall f1-score
                                                support
                   1.00
                              0.65
                                        0.79
                                                 256680
           0
                   0.00
                              0.61
                                        0.00
                                                    311
   micro avg
                   0.65
                              0.65
                                        0.65
                                                 256991
                   0.50
                                        0.40
   macro avg
                              0.63
                                                 256991
weighted avg
                   1.00
                              0.65
                                        0.79
                                                 256991
```

Looking forward

- Feature selection
- outliers treatment
- More cost sensitive algorithm techniques and the hyperparameter tuning of parameters to optimize the accuracy of model.
- Data reduction kind of techniques like LDA, QDA
- The more efficient way to handle the imbalanced data so as to build an optimized classifier

Questions?

