Критерии согласия

Критерии согласия – критерии о законе распределения случайной величины на основании экспериментальных данных.

$$\chi^2$$
 критерий Пирсона

Критерий χ^2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом (или двух эмпирических распределениях).

Ограничения критерия

- 1. Объем выборки должен быть достаточно большим: $n \ge 30$.
- 2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: $f_{\tiny{meop}} > 5$.

\chi^2 критерий Пирсона

Сопоставление эмпирического распределения с теоретическим:

 H_0 : Полученное эмпирическое распределение признака не отличается от теоретического распределения.

 H_1 : Полученное эмпирическое распределение признака отличается от теоретического распределения.

 $\{X_1, X_2, ..., X_n\}$ - выборка из некоторой генеральной совокупности X .

- 1. Построим вариационный ряд и посчитаем эмпирические частоты $f_{\text{\tiny ЭМВ}}$.
- 2. Вычислим теоретические частоты f_{meop} сколько раз должно было встретиться каждое значение вариационного ряда при условии выполнения основной гипотезы.
- 3. Эмпирическое значение критерия:

$$\chi^2_{\text{\tiny 3MN}} = \sum_{i=1}^m \frac{\left(f_{\text{\tiny 3MN}} - f_{\text{meop}}\right)^2}{f_{\text{meop}}}.$$

χ^2 критерий Пирсона

Сопоставление эмпирического распределения с теоретическим:

 H_0 : Полученное эмпирическое распределение признака не отличается от теоретического распределения.

 H_1 : Полученное эмпирическое распределение признака отличается от теоретического распределения.

4. По таблицам распределения χ^2 находим критическое значение $\chi^2_{\kappa p}$ с заданным уровнем значимости.

5. Вывод: Гипотеза H_0 о согласии экспериментальных данных с распределением принимается, если $\chi^2_{_{\mathfrak{I}\!M\!m}} < \chi^2_{_{\kappa\!p}}$. Правосторонняя критическая область:

Задача 1.

Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом: Высокий - 27 чел.

Средний - 12 чел.

Низкий - 11 чел.

Проверить на уровне доверия $\gamma = 0.99$ гипотезы:

 H_0 : Количество детей с каждым уровнем самооценки примерно одинаково.

 H_1 : Количество детей с каждым уровнем самооценки существенно отличается.

, ,

 H_0 : Количество детей с каждым уровнем самооценки примерно одинаково.

 H_1 : Количество детей с каждым уровнем самооценки существенно отличается.

	Высокий	Средний	Низкий
$f_{\scriptscriptstyle \mathfrak{I}\!\!M\!n}$	27 чел.	12 чел.	11 чел.
f_{meop}	50/3	50/3	50/3
$\frac{\left(f_{\scriptscriptstyle \mathfrak{IMN}}-f_{\scriptscriptstyle meop}\right)^2}{f_{\scriptscriptstyle meop}}$	$\frac{\left(27 - \frac{50}{3}\right)^2}{\frac{50}{3}} \approx 6,41$	$\frac{\left(12 - \frac{50}{3}\right)^2}{\frac{50}{3}} \approx 1,31$	$\frac{\left(11 - \frac{50}{3}\right)^2}{\frac{50}{3}} \approx 1,93$

Выборка объема 50

$$\chi^2_{\text{эмп}} = 6,41+1,31+1,93=9,65$$
 — эмпирическое значение критерия

$$\chi_{\text{3MM}}^2 = \sum_{i=1}^m \frac{\left(f_{\text{3MM}} - f_{\text{meop}}\right)^2}{f_{\text{meop}}}$$

 H_0 : Количество детей с каждым уровнем самооценки примерно одинаково.

 H_1 : Количество детей с каждым уровнем самооценки существенно отличается.

Найдем критическую точку.

число					уровень	доверия	γ	
степеней	0,01 0,025 0,05 0,1 0,9 0,95						0,975	0,99
свободы				ур	овень знач	чимости	α	
ν	0,99	0,975	0,95	0,9	0,1	0,05	0,025	0,01
1_	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63
2	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21
3	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34
4	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28
5	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09
6	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81

Уровень значимости – ошибка первого рода

$$\alpha = 1 - \gamma$$
 , где $\gamma = 0.99$ $\alpha = 0.01$

Число степеней свободы = =число элементов вариационного ряда-1

$$\nu = 2$$

 H_0 : Количество детей с каждым уровнем самооценки примерно одинаково.

 H_1 : Количество детей с каждым уровнем самооценки существенно отличается.

$$\chi^2_{\text{эмп}} = 6,41+1,31+1,93=9,65$$
 — эмпирическое значение критерия

$$\chi^2_{\kappa p, 0,01} = 9,21$$

принимаем альтернативную гипотезу:

 H_1 : Количество детей с каждым уровнем самооценки существенно отличается.

Задача 2.

Среди младших подростков был проведён тест для выявления самооценки. Баллы теста были переведены в три уровня: высокий, средний, низкий. Частоты распределились следующим образом: Высокий - 27 чел.

Средний - 12 чел.

Низкий - 11 чел.

Проверить на уровне доверия $\gamma = 0.99$ гипотезы:

 H_0 : Количество детей с высоким уровнем самооценки примерно в два раза больше, чем со средним уровнем и низким уровнем соответственно. (Пропорции примерно 2:1:1)

 H_1 : Пропорции существенно отличаются от 2:1:1.

 H_0 : Количество детей с высоким уровнем самооценки примерно в два раза больше, чем со средним уровнем и низким уровнем соответственно. (Пропорции примерно 2:1:1) H_1 : Пропорции существенно отличаются от 2:1:1.

	Высокий	Средний	Низкий	
$f_{\scriptscriptstyle \mathfrak{IMN}}$	27 чел.	12 чел.	11 чел.	
f_{meop}	25	12,5	12,5	
$\frac{\left(f_{\scriptscriptstyle \mathfrak{IMN}}-f_{\scriptscriptstyle meop}\right)^2}{f_{\scriptscriptstyle meop}}$	$\frac{\left(27-25\right)^2}{25} = 0,16$	$\frac{\left(12-12,5\right)^2}{12,5} = 0,02$	$\frac{\left(11-12,5\right)^2}{12,5} = 0,18$	

$$\chi^2_{\text{\tiny 9MB}} = 0.16 + 0.02 + 0.18 = 0.36$$

$$\chi_{\text{3MN}}^2 = \sum_{i=1}^m \frac{\left(f_{\text{3MN}} - f_{\text{meop}}\right)^2}{f_{\text{meop}}}$$

 H_0 : Количество детей с высоким уровнем самооценки примерно в два раза больше, чем со средним уровнем и низким уровнем соответственно. (Пропорции примерно 2:1:1) H_1 : Пропорции существенно отличаются от 2:1:1.

Найдем критическую точку.

число	уровень доверия γ								
степеней	0,01	0,01 0,025 0,05 0,1 0,9 0,95							
свободы	-	уровень значимости α							
ν	0,99	0,975	0,95	0,9	0,1	0,05	0,025	0,01	
1	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63	
2	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21	
3	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34	
4	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28	
5	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09	
6	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81	

Уровень значимости – ошибка первого рода

$$\alpha = 0.01$$

Число степеней свободы = =число элементов вариационного ряда-1

$$\nu = 2$$

 H_0 : Количество детей с высоким уровнем самооценки примерно в два раза больше, чем со средним уровнем и низким уровнем соответственно. (Пропорции примерно 2:1:1) H_1 : Пропорции существенно отличаются от 2:1:1.

$$\chi^2_{_{9Mn}} = 0.16 + 0.02 + 0.18 = 0.36$$

$$\chi^2_{\kappa p, 0,01} = 9,21$$

$$\chi^2_{\text{SMM}} < \chi^2_{\kappa p}$$

принимаем основную гипотезу:

 H_0 : Количество детей с высоким уровнем самооценки примерно в два раза больше, чем со средним уровнем и низким уровнем соответственно.

χ^2 критерий Пирсона

Сопоставление двух эмпирических распределений:

Выдвинем следующие гипотезы:

 $H_{\scriptscriptstyle 0}$: Различия между двумя распределениями недостоверны.

 H_1 : Различия между двумя распределениями достоверны.

Задача 3. Каждого из 100 студентов просили назвать любимый вид спорта. Результаты представлены в таблице:

спорт	Футбол	Баскетбол	Плавание	Бег	Теннис	Всего
пол						
Мужской	21	5	9	12	13	60
Женский	9	3	1	15	12	40
Всего	30	8	10	27	25	100

Требуется проверить гипотезу о том, зависят ли предпочтения тех или иных видов спорта от пола опрашиваемых. Принять уровень доверия равным $\gamma = 0.95$.

 H_0 : Выбор вида спорта не зависит от пола (распределения существенно не отличаются)

 H_1 : Выбор вида спорта зависит от пола (распределения отличаются существенно)

спорт	Футбол	Баскетбол	Плавание	Бег	Теннис	Всего
пол						
Мужской	21	5	9	12	13	60
Женский	9	3	1	15	12	40
Всего	30	8	10	27	25	100

Теоретически мы ожидаем, что частоты распределятся пропорционально по каждому виду спорта между юношами и девушками. Вычислим теоретические частоты по формуле:

$$f_{\textit{meop}} = \frac{ \left(\begin{array}{c} \textit{сумма частот по} \\ \textit{соответствующей строкe} \end{array} \right) \cdot \left(\begin{array}{c} \textit{сумма частот по} \\ \textit{соответствующему столбцу} \end{array} \right) }{ \left(\begin{array}{c} \textit{общее количество наблюдений} \end{array} \right)}$$

спорт	Футбол	Баскетбол	Плавание	Бег	Теннис
пол					
Мужской	$\frac{30\cdot 60}{100} = 18$	$\frac{8.60}{100} = 4.8$	$\frac{10\cdot60}{100} = 6$	$\frac{27 \cdot 60}{100} = 16, 2$	$\frac{25.60}{100} = 15$
Женский					

спорт	Футбол	Баскетбол	Плавание	Бег	Теннис	Всего
пол						
Мужской	21	5	9	12	13	60
Женский	9	3	1	15	12	40
Всего	30	8	10	27	25	100

Теоретически мы ожидаем, что частоты распределятся пропорционально по каждому виду спорта между юношами и девушками. Вычислим теоретические частоты по формуле:

$$f_{\textit{meop}} = \frac{ \left(\begin{array}{c} \textit{сумма частот по} \\ \textit{соответствующей строкe} \end{array} \right) \cdot \left(\begin{array}{c} \textit{сумма частот по} \\ \textit{соответствующему столбцу} \end{array} \right) }{ \left(\textbf{общее количество наблюдений} \right)}$$

спорт	Футбол	Баскетбол	Плавание	Бег	Теннис
пол					
Мужской	$\frac{30.60}{100} = 18$	$\frac{8\cdot60}{100} = 4,8$	$\frac{10\cdot60}{100} = 6$	$\frac{27 \cdot 60}{100} = 16,2$	$\frac{25 \cdot 60}{100} = 15$
Женский	$\frac{30\cdot 40}{100} = 12$	$\frac{8\cdot 40}{100} = 3,2$	$\frac{10\cdot 40}{100} = 4$	$\frac{27 \cdot 40}{100} = 10,8$	$\frac{25 \cdot 40}{100} = 10$

Итоговая таблица для вычислений будет выглядеть так:

Пол	Вид спорта	$f_{\scriptscriptstyle \mathfrak{IM}}$	$f_{\it meop}$	$rac{\left(f_{\scriptscriptstyle \mathfrak{IMM}}-f_{\scriptscriptstyle meop} ight)^2}{f_{\scriptscriptstyle meop}}$
Мужской	Футбол	21	18	$\frac{\left(21-18\right)^2}{18} = 0,5$
	Баскетбол	5	4,8	$\frac{\left(5-4,8\right)^2}{4,8} = 0,01$
	Плавание	9	6	$\frac{(9-6)^2}{6} = 1,5$
	Бег	12	16,2	$\frac{\left(12-16,2\right)^2}{16,2} = 1,09$
	Теннис	13	15	$\frac{\left(13-15\right)^2}{15} = 0,27$

Пол	Вид спорта	$f_{\scriptscriptstyle \mathfrak{IMM}}$	$f_{\it meop}$	$rac{\left(f_{\scriptscriptstyle \mathfrak{IMM}}-f_{\scriptscriptstyle meop} ight)^2}{f_{\scriptscriptstyle meop}}$
Женский	Футбол	9	12	$\frac{\left(9-12\right)^2}{12} = 0,75$
	Баскетбол	3	3,2	$\frac{\left(3-3,2\right)^2}{3,2}=0,01$
	Плавание	1	4	$\frac{\left(1-4\right)^2}{4} = 2,25$
	Бег	15	10,8	$\frac{\left(15-10,8\right)^2}{10,8} = 1,63$
	Теннис	12	10	$\frac{\left(12-10\right)^2}{10} = 0,4$

$$\chi_{\text{\tiny 3MN}}^2 = \sum_{i=1}^m \frac{\left(f_{\text{\tiny 3MN}} - f_{\text{\tiny meop}}\right)^2}{f_{\text{\tiny meop}}}$$

$$\chi^2_{\text{\tiny 3MM}} = 0,5+0,01+1,5+1,09+0,27+0,75+0,01+2,25+1,63+0,4=8,41$$

 H_0 : Выбор вида спорта не зависит от пола (распределения существенно не отличаются)

 H_1 : Выбор вида спорта зависит от пола (распределения отличаются существенно)

Найдем критическую точку.

число		уровень доверия γ						
степеней	0,01	0,025	0,05	0,1	0,9	0,95	0,975	0,99
свободы				ур	овень зна	чимости	α	
ν	0,99	0,975	0,95	0,9	0,1	0,05	0,025	0,01
1	0,00	0,00	0,00	0,02	2,71	3,84	5,02	6,63
2	0,02	0,05	0,10	0,21	4,61	5,99	7,38	9,21
3	0,11	0,22	0,35	0,58	6,25	7,81	9,35	11,34
4	0,30	0,48	0,71	1,06	7,78	9,49	11,14	13,28
5	0,55	0,83	1,15	1,61	9,24	11,07	12,83	15,09
6	0,87	1,24	1,64	2,20	10,64	12,59	14,45	16,81

Уровень значимости – ошибка первого рода

$$\alpha = 0,05$$

Число степеней свободы:

$$v = (n-1)(c-1)$$

n - количество строк,

с - количество столбцов

$$\nu = (2-1)(5-1) = 4$$

 H_0 : Выбор вида спорта не зависит от пола (распределения существенно не отличаются)

 H_1 : Выбор вида спорта зависит от пола (распределения отличаются существенно)

$$\chi^2_{3M0} = 8,41$$

$$\chi^2_{\kappa p, 0,05} = 9,49$$

$$\chi^2_{_{\mathfrak{I}Mn}} < \chi^2_{_{KP, 0,05}}$$

принимаем основную гипотезу:

 H_0 : Выбор вида спорта не зависит от пола (распределения существенно не отличаются).