On the Realizability of the Critical Points of a Realizable Multiset

Sarah Hoover, Daniel McCormick, Amber Thrall

Mentored by Dr. Pietro Paparella

REU 2017

Nonnegative Inverse Eigenvalue Problem

What is the NIEP?

- Broadly: characterize the spectra of entrywise nonnegative matrices.
- Specifically: given a multiset (herein *list*) $\Lambda = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{C}$, find necessary and sufficient conditions on Λ such that there is a nonnegative A with spectrum Λ .
- If such a matrix exists, Λ is called **realizable**, and A is called a **realizing matrix** for Λ .

Example Case

Example ([Pap16])

Are any of the following lists realizable?

A.
$$\{15, -1, -2, -3, -4\}$$

B.
$$\{17, -3, -4, -5, -6\}$$

- C. A and B
- D. None of the above.

Example Case

Example ([Pap16])

Are any of the following lists realizable?

A.
$$\{15, -1, -2, -3, -4\}$$

B.
$$\{17, -3, -4, -5, -6\}$$

- C. A and B
- D. None of the above.

Answer: A,

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \\ 4 & 2 & 3 & 1 & 5 \\ 5 & 2 & 3 & 4 & 1 \end{bmatrix}.$$

•
$$s_k(\Lambda) := \sum_{i=1}^n \lambda_i^k \ge 0$$
 for all $k \in \mathbb{N}$

•
$$s_k(\Lambda) := \sum_{i=1}^n \lambda_i^k \ge 0$$
 for all $k \in \mathbb{N}$
• $\Lambda = \bar{\Lambda}$, i.e. $z \in \Lambda \implies \bar{z} \in \Lambda$

•
$$s_k(\Lambda) := \sum_{i=1}^n \lambda_i^k \ge 0$$
 for all $k \in \mathbb{N}$

- $\blacksquare \Lambda = \overline{\Lambda}$, i.e. $z \in \Lambda \implies \overline{z} \in \Lambda$

•
$$s_k(\Lambda) := \sum_{i=1}^n \lambda_i^k \ge 0$$
 for all $k \in \mathbb{N}$

- $\blacksquare \Lambda = \overline{\Lambda}$, i.e. $z \in \Lambda \implies \overline{z} \in \Lambda$
- J-LL condition: $s_k(\Lambda)^m \le n^{m-1} s_{km}(\Lambda)$ for all $k, m \in \mathbb{N}$
- Holtz condition [Hol04]

If Λ is realizable, then the following conditions are known:

$$lacksquare$$
 $s_k(\Lambda) := \sum_{i=1}^n \lambda_i^k \geq 0$ for all $k \in \mathbb{N}$

- \blacksquare $\Lambda = \overline{\Lambda}$, i.e. $z \in \Lambda \implies \overline{z} \in \Lambda$
- J-LL condition: $s_k(\Lambda)^m \le n^{m-1} s_{km}(\Lambda)$ for all $k, m \in \mathbb{N}$
- Holtz condition [Hol04]

There are many known sufficient conditions, but some can be quite complicated and hence don't provide much insight.

Suleĭmanova Spectra

Suleĭmanova presented a specific class of spectra which are always realizable [Pap16]. A **Suleĭmanova spectrum** Λ has the following characteristics:

•
$$s_1(\Lambda) = \sum_{i=1}^n \lambda_i \ge 0$$
; and

■ Λ has exactly one positive element.

Suleĭmanova Spectra

Suleĭmanova presented a specific class of spectra which are always realizable [Pap16]. A **Suleĭmanova spectrum** Λ has the following characteristics:

•
$$s_1(\Lambda) = \sum_{i=1}^n \lambda_i \ge 0$$
; and

■ Λ has exactly one positive element.

It has been shown that for any Suleımanova spectrum, only the leading coefficeent of the characteristic polynomial p is positive. Furthermore, the critical points of p form a Suleımanova spectrum.

Critical Conjectures

Conjecture (Monov [Mon08])

Let $\Lambda = \{\lambda_1, ..., \lambda_n\}$ be realizable, and $p(t) = \prod_{i=1}^n (t - \lambda_i)$. Let $M = \{\mu_1, ..., \mu_{n-1}\}$ be the critical points of p. Then $s_k(M) \ge 0$ for all $k \in \mathbb{N}$.

Conjecture (C. Johnson)

If Λ is realizable, and $p(t) = \prod_{i=1}^{n} (t - \lambda_i)$, then the roots of p' are realizable.

Critical Conjectures

Conjecture (Monov [Mon08])

Let $\Lambda = \{\lambda_1, ..., \lambda_n\}$ be realizable, and $p(t) = \prod_{i=1}^n (t - \lambda_i)$. Let $M = \{\mu_1, ..., \mu_{n-1}\}$ be the critical points of p. Then $s_k(M) \ge 0$ for all $k \in \mathbb{N}$.

Conjecture (C. Johnson)

If Λ is realizable, and $p(t) = \prod_{i=1}^{n} (t - \lambda_i)$, then the roots of p' are realizable.

This conjecture has been proven when $n \le 4$ (or $n \le 6$ when $s_1(\Lambda) = 0$) by Cronin and Laffey [CL14].

Conjecture

If Johnson's conjecture is true, then it provides us with a new necessary condition that follows from Schmeisser's majorization result.

Conjecture

If Johnson's conjecture is true, then it provides us with a new necessary condition that follows from Schmeisser's majorization result.

Conjecture

Let $\Lambda = \{\lambda_1, \dots, \lambda_n\}$ be realizable, where $\lambda_1 \ge \dots \ge |\lambda_n|$. There exists a realizable multiset $M = \{\mu_1, \dots, \mu_{n-1}, 0\}$ where $|\mu_1| \ge \dots \ge |\mu_{n-1}|$ such that

$$\sum_{i=1}^k |\mu_i| \le \sum_{i=1}^k |\lambda_i|,$$

for all $k \in \langle n \rangle$. In other words, Λ weakly majorizes M.

Verified Necessary Conditions

It can be shown that

$$s_1(M) = \frac{n-1}{n} s_1(\Lambda).$$

where Λ is a list and M are its critical points. Thus if Λ is realizable, $s_1(M) \geq 0$.

- M also satisfies the self-conjugacy condition, since the coefficients of p'_{Λ} are real.
- We've also shown that $s_2(M) = \frac{n-2}{n} s_2(\Lambda) + \frac{1}{n^2} s_1^2(\Lambda) \ge 0$.
- Higher moments can be found with a formula provided by Monov [Mon08].

Definition ([CN06])

Let $\{\lambda_1,...,\lambda_n\}$ be the roots of some polynomial p counting multiplicity. Then the matrix

$$A = D\left(I - \frac{1}{n}J\right) + \frac{\lambda_1}{n}J \in M_{n-1}(\mathbb{C})$$

is called the **d-companion matrix**, where $D = \text{diag}(\lambda_2, ..., \lambda_n)$, and I and J are the identity and all-ones matrix respectively. The eigenvalues of A are the critical points of p.

Straightforward computation gives the following formula:

$$a_{ij} = \frac{1}{n} \begin{cases} (n-1)\lambda_{i+1} + \lambda_1 & i = j \\ \lambda_1 - \lambda_{i+1} & i \neq j. \end{cases}$$

Straightforward computation gives the following formula:

$$a_{ij} = \frac{1}{n} \begin{cases} (n-1)\lambda_{i+1} + \lambda_1 & i = j \\ \lambda_1 - \lambda_{i+1} & i \neq j. \end{cases}$$

If $\Lambda \subset \mathbb{R}$ and $\lambda_1 = \rho(A)$, the matrix A is a **Metzler** matrix, i.e., there is a nonnegative matrix B such that A = B - sI.

Theorem (Ciarlet[Cia68])

Let $\Lambda = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}$ be a list in descending order. If $n\lambda_n + \lambda_1 \geq 0$, then Λ is realizable.

Theorem (Ciarlet[Cia68])

Let $\Lambda = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}$ be a list in descending order. If $n\lambda_n + \lambda_1 \geq 0$, then Λ is realizable.

Theorem

Let $\Lambda = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}$ be a realizable list in descending order, and let M be its critical points. If $(n-1)\lambda_n + \lambda_1 \geq 0$, then M is realizable.

Theorem (Ciarlet[Cia68])

Let $\Lambda = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}$ be a list in descending order. If $n\lambda_n + \lambda_1 \geq 0$, then Λ is realizable.

Theorem

Let $\Lambda = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}$ be a realizable list in descending order, and let M be its critical points. If $(n-1)\lambda_n + \lambda_1 \geq 0$, then M is realizable.

Note that a Ciarlet spectrum also satisfies the above critical points theorem.

Normal and Unitary Matrices

Definition

A square matrix A is called **normal** if $AA^* = A^*A$, where $A^* := \overline{A^T}$, the conjugate transpose of A.

Normal and Unitary Matrices

Definition

A square matrix A is called **normal** if $AA^* = A^*A$, where $A^* := \overline{A^T}$, the conjugate transpose of A.

Definition |

A square matrix U is called **unitary** if $U^{-1} = U^*$.

Note: All unitary matrices are normal.

Remark

A matrix is normal if and only if it is unitarily diagonalizable.

Hadamard Matrices

Definition

A square matrix H is called **Hadamard** if $H_{ij} \in \pm 1$ and $HH^T = nI_n$.

Note that the rows of H are mutually orthogonal. Further note that $\frac{1}{\sqrt{n}}H$ is unitary.

Hadamard Matrices

Definition

A square matrix H is called **Hadamard** if $H_{ij} \in \pm 1$ and $HH^T = nI_n$.

Note that the rows of H are mutually orthogonal. Further note that $\frac{1}{\sqrt{n}}H$ is unitary.

Example

The Great Pyramid of Hadamard

Visualization of n = 4 Spectrum [JP16]

For each point $(x_1, x_2, x_3) \in \mathbb{R}^3$ in the shaded region, the list $\Lambda = \{1, x_1, x_2, x_3\}$ is realizable by $H \operatorname{diag}(\Lambda)H^{-1}$.

Discrete Fourier Transform Matrix

Definition (DFT)

The **discrete Fourier transformation (DFT)** matrix is given by:

$$F := \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)^2} \end{bmatrix},$$

where $\omega = e^{-2\pi i/n}$.

Note that the DFT matrix is a complex Hadamard matrix, i.e. $FF^* = nI$.

Differentiators and Trace Vectors [Per03]

Definition (Differentiator)

Let $A \in M_n(\mathbb{C})$ and let $P \in M_n(\mathbb{C})$ be a orthogonal projection from \mathbb{C}^n onto \mathbb{C}^{n-1} . Set $B = PAP|_{\mathcal{R}(P)}$. Then P is a differentiator of A if

$$p_B(x) = \frac{1}{n} p_A'(x)$$

where p_A and p_B are the characteristic polynomials of A and B respectively.

Differentiators and Trace Vectors [Per03]

Definition (Trace vector)

Let $A \in M_n(\mathbb{C})$ and $z \in \mathbb{C}$. Then z is a trace vector if $z^*A^kz = \frac{1}{n}\operatorname{tr}(A^k)$ for all $k \in \mathbb{N}$.

Theorem (Pereira)

Every matrix in $M_n\mathbb{C}$ has a trace vector.

Theorem (Pereira)

Let $A \in M_n(\mathbb{C})$. Then the projection P is a differentiator of A if and only if P is a projection onto z^{\perp} for some trace vector z of A, i.e., $P = I - zz^*$.

Differentiators and Trace Vectors

Example

Let

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

and $z = e_3$ so that

$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Then $p_A(t) = t^3 - 1$ and $p_B(t) = t^2$, thus

$$p_B = \frac{1}{n} p_A'$$

Critical Points and Submatrices

Theorem

Let $\Lambda \subset \mathbb{C}$, and M be its critical points, and let $U \in M_n(\mathbb{C})$ be a unitary matrix such that for some $i \in \langle n \rangle$, $|u_{ij}| = \frac{1}{\sqrt{n}}$ for all $j \in \langle n \rangle$. If $A = UDU^*$, where $D = \operatorname{diag}(\Lambda)$, then $\sigma(A_i) = M$, where A_i denotes the i th principal submatrix

Critical Points and Submatrices

Theorem

Let $\Lambda \subset \mathbb{C}$, and M be its critical points, and let $U \in M_n(\mathbb{C})$ be a unitary matrix such that for some $i \in \langle n \rangle$, $|u_{ij}| = \frac{1}{\sqrt{n}}$ for all $j \in \langle n \rangle$. If $A = UDU^*$, where $D = \operatorname{diag}(\Lambda)$, then $\sigma(A_i) = M$, where A_i denotes the i th principal submatrix

Corollary

Let Λ be realizable by a matrix of the form $A = U \operatorname{diag}(\Lambda) U^*$ with U as in the above theorem, and let M be its critical points. Then M is realizable and its realizing matrix is $A_{(i)}$.

Result on Hadamard/DFT similarities

Theorem

Let Λ be realizable by $A = H \operatorname{diag}(\Lambda)H^{-1}$ or by $A = F \operatorname{diag}(\Lambda)F^{-1}$ and let M be the critical points of Λ . Then M is realizable. Furthermore, M is realized by any principal submatrix of A.

This result lends itself to a new proof of a classical result on polynomials.

Theorem

Let p be a polynomial with real roots $\Lambda = \{\lambda_1, \dots, \lambda_n\}$ and critical points $M = \{\mu_1, \dots, \mu_{n-1}\}$, each listed in descending order. Then Λ and M interlace, that is

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \cdots \geq \mu_{n-1} \geq \lambda_n$$
.

Open Questions

■ For $A \ge 0$, does there exist $0 \le B \in M_{n-1}(\mathbb{R})$ such that

$$p_B = \frac{1}{n} p_A'$$
?

- Is $\rho(M) = \max\{|\mu| : \mu \in M\} \in M$?
- Does *M* satisfy the J-LL condition?
- What can be said about the zeros of the anti-derivative?
- Where is the best coffee in Seattle?

Open Questions

■ For $A \ge 0$, does there exist $0 \le B \in M_{n-1}(\mathbb{R})$ such that

$$p_B = \frac{1}{n} p_A'$$
?

- Is $\rho(M) = \max\{|\mu| : \mu \in M\} \in M$?
- Does *M* satisfy the J-LL condition?
- What can be said about the zeros of the anti-derivative?
- Where is the best coffee in Seattle? QED Coffee.

References

P. G. Ciarlet.

Some results in the theory of nonnegative matrices.

Linear Algebra and Appl., 1(1):139-152, 1968.

Anthony G. Cronin and Thomas J. Laffey.

Perturbations on constructible lists preserving realizability in the NIEP and questions of Monov. Linear Algebra Appl., 445:206–222, 2014.

Wai Shun Cheung and Tuen Wai Ng.

A companion matrix approach to the study of zeros and critical points of a polynomial.

J. Math. Anal. Appl., 319(2):690-707, 2006.

Olga Holtz.

M-matrices satisfy newton's inequalities.

Proc. Amer. Math. Soc., 133(3):711-717, 2004.

Charles R. Johnson and Pietro Paparella.

Perron spectratopes and the real nonnegative inverse eigenvalue problem.

Linear Algebra Appl., 493:281–300, 2016.

Vladimir V. Monov.

A family of symmetric polynomials of the eigenvalues of a matrix.

Linear Algebra Appl., 429(8-9):2199-2208, 2008.

Pietro Paparella.

Realizing Suleimanova spectra via permutative matrices.

Electron. J. Linear Algebra, 31:306-312, 2016.

Raiesh Pereira.

Differentiators and the geometry of polynomials.

J. Math. Anal. Appl., 285(1):336-348, 2003.