PROBLEM 1:

a)

Die Latenz ist die Zeit, die ein Befehl in der Pipeline braucht um alle Stufen zu durchlaufen.

b)

Der Durchsatz einer Pipeline ist die Anzahl der Befehle, die eine Pipeline pro Tackt ausgibt.

c)

Bei 2-Bit Sättigung Sprungvorhersage-Automaten geht man aus dem PT Zustand bei 'not taken' in den PN Zustand und umgekehrt aus PN bei 'taken' zu PT. Bei 2-Bit Hysterese Sprungvorhersage-Automaten geht man aus PT bei 'not taken' zu PSN und aus PN bei 'taken' zu PST.

d)

Strukturelle Hazards treten auf, wenn Befehle einander blockieren, weil sie dieselben Hardware zur Ausführung benötigen.

Daten Hazards treten auf, wenn in der Operand-Fetch-Phase ein Befehl auf Informationen zugreifen will, die von einem anderen Befehl bearbeitet werden, welcher noch nicht die Write-Back-Phase abgeschlossen hat.

Steuer Hazards treten auf, wenn bedingte Sprüge auftreten, da diese nicht ausgeführt werden können, bevor der Vergleichbefehl beendet wurde.

PROBLEM 2:

a)

Fehler: OF von R1, vor WB von R1

b)

Fehler: OF von R1, immer noch vor WB von R1

c)

d)

11 Takte

e)

Programmbefehle i
Beschleunigung: i*5/(i+4) -lim i large-> 5

Man braucht also bei vielen Befehlen nur ca. ein fünftel der Zeit mit Pipelining.

PROBLEM 3:

Für 100 Sprünge ergeben sich:

a)

p(Sprung) = 5%
1: 5% daneben = 10 Fehlzyklen
2: 95% daneben = 190 Fehlzyklen
3: 10% daneben = 20 Fehlzyklen

b)

p(Sprung) = 95%
1: 95% daneben = 190 Fehlzyklen
2: 5% daneben = 10 Fehlzyklen
3: 10% daneben = 20 Fehlzyklen

c)

p(Sprung) = 70%

70% daneben = 140 Fehlzyklen
 30% daneben = 60 Fehlzyklen
 10% daneben = 20 Fehlzyklen

durchschnittlich ist also 3 am besten