Step 1

Reading the dataset
import pandas as pd
import numpy as np
clothesprice=pd.read_csv('/content/drive/MyDrive/ST1/clothes_price_prediction_data.csv', encoding='latin')
print('Shape before deleting duplicate values:', clothesprice.shape)

Removing duplicate rows if any
clothesprice=clothesprice.drop_duplicates()
print('Shape After deleting duplicate values:', clothesprice.shape) # Changed clothespricr to clothesprice
Printing sample data
Start observing the Quantitative/Categorical/Qualitative variables
clothesprice.head(10)

Shape before deleting duplicate values: (1000, 6) Shape After deleting duplicate values: (1000, 6)

	Brand	Category	Color	Size	Material	Price
0	New Balance	Dress	White	XS	Nylon	182
1	New Balance	Jeans	Black	XS	Silk	57
2	Under Armour	Dress	Red	М	Wool	127
3	Nike	Shoes	Green	М	Cotton	77
4	Adidas	Sweater	White	М	Nylon	113
5	Reebok	Jacket	Red	XL	Nylon	19
6	Puma	Jacket	Red	XXL	Polyester	31
7	Adidas	Dress	Red	XS	Denim	46
8	Reebok	Dress	Black	S	Wool	97
9	Adidas	Jeans	Yellow	L	Wool	80

step 4

#stage4
%matplotlib inline

Creating histogram as the Target variable is Continuous

This will help us to understand the distribution of the MEDV values clothesprice['Category'].hist()

Step 5

Looking at sample rows in the data clothesprice.head()

_		Brand	Category	Color	Size	Material	Price
	0	New Balance	Dress	White	XS	Nylon	182
	1	New Balance	Jeans	Black	XS	Silk	57
	2	Under Armour	Dress	Red	М	Wool	127
	3	Nike	Shoes	Green	M	Cotton	77
	4	Adidas	Sweater	White	М	Nylon	113

#stage5 clothesprice.tail()

₹		Brand	Category	Color	Size	Material	Price
	995	Puma	Jeans	Black	L	Polyester	176
	996	Puma	Jacket	Red	XXL	Silk	110
	997	Reebok	Sweater	Blue	XS	Denim	127
	998	Under Armour	Sweater	Black	XXL	Denim	69
	999	New Balance	Jacket	Yellow	XS	Wool	174

clothesprice.info()

₹				frame.Dataltries, 0 to	
	Data	columns (total	6 columns)	:
	#	Column	Non-I	Null Count	Dtype
	0	Brand	1000	non-null	object
	1	Category	1000	non-null	object
	2	Color	1000	non-null	object
	3	Size	1000	non-null	object
	4	Material	1000	non-null	object
	5	Price	1000	non-null	int64
	dtype	es: int64(1), ol	oject(5)	
	memoi	ry usage: 4	47.0+	KB	

Looking at the descriptive statistics of the data clothesprice.describe(include='all')

	Brand	Category	Color	Size	Material	Price
count	1000	1000	1000	1000	1000	1000.000000
unique	6	6	6	6	6	NaN
top	Under Armour	Jacket	Yellow	XS	Polyester	NaN
freq	179	191	173	196	175	NaN
mean	NaN	NaN	NaN	NaN	NaN	106.289000
std	NaN	NaN	NaN	NaN	NaN	53.695444
min	NaN	NaN	NaN	NaN	NaN	10.000000
25%	NaN	NaN	NaN	NaN	NaN	59.750000
50%	NaN	NaN	NaN	NaN	NaN	108.000000
75%	NaN	NaN	NaN	NaN	NaN	150.000000
max	NaN	NaN	NaN	NaN	NaN	199.000000

[#] Finging unique values for each column

[#] TO understand which column is categorical and which one is Continuous

Typically if the numer of unique values are < 20 then the variable is likely to be a category otherwise continuous clothesprice.nunique()

dtype: int64

Step 8

```
#stage8
# Plotting multiple bar charts at once for categorical variables
# Since there is no default function which can plot bar charts for multiple columns at once
# we are defining our own function for the same

def PlotBarCharts(inpData, colsToPlot):
    %matplotlib inline
    import matplotlib.pyplot as plt

# Generating multiple subplots
    fig, subPlot=plt.subplots(nrows=1, ncols=len(colsToPlot), figsize=(20,5))
    fig.suptitle('Bar charts of: '+ str(colsToPlot))

for colName, plotNumber in zip(colsToPlot, range(len(colsToPlot))):
        inpData.groupby(colName).size().plot(kind='bar',ax=subPlot[plotNumber])
```

PlotBarCharts(inpData=clothesprice, colsToPlot=['Color','Size'])

step 9

#stage9

Plotting histograms of multiple columns together
clothesprice.hist(['Brand', 'Category', 'Color', 'Size', 'Material', 'Price'], figsize=(18,10))

⇒ array([[<Axes: title={'center': 'Price'}>]], dtype=object)

Finding nearest values to 100 mark
clothesprice['Price'][clothesprice['Price']>100].sort_values(ascending=False)

→		B
_		Price
	194	199
	277	199
	223	199
	619	198
	575	198
	466	101
	473	101
	897	101
	551	101
	521	101
	545 rov	vs×1c

Step 11

clothesprice.hist(['Price'], figsize=(18,5))

step 12

Finding how many missing values are there for each column
clothesprice.isnull().sum()

step 14

- # Calculating correlation matrix
 ContinuousCols=['Price'] # Only include numerical columns
- # Creating the correlation matrix
 CorrelationData=clothesprice[ContinuousCols].corr()
 CorrelationData

Filtering only those columns where absolute correlation > 0.5 with Target Variable
reduce the 0.5 threshold if no variable is selected
CorrelationData['Price'][abs(CorrelationData['Price']) > 0.5]

```
Price 1.0
```

 \blacksquare

ContinuousCols=['Price']

```
# Plotting scatter chart for each predictor vs the target variable
for predictor in ContinuousCols:
    clothesprice.plot.scatter(x=predictor, y='Price', figsize=(10,5), title=predictor+" VS "+ 'Price')
```


step 16

```
Drico
#step 16
# Defining a function to find the statistical relationship with all the categorical variables
def FunctionAnova(inpData, TargetVariable, CategoricalPredictorList):
    from scipy.stats import f_oneway
   # Creating an empty list of final selected predictors
   SelectedPredictors=[]
   print('##### ANOVA Results ##### \n')
    for predictor in CategoricalPredictorList:
        CategoryGroupLists=inpData.groupby(predictor)[TargetVariable].apply(list)
        AnovaResults = f_oneway(*CategoryGroupLists)
        # If the ANOVA P-Value is <0.05, that means we reject H0
        if (AnovaResults[1] < 0.05):</pre>
            print(predictor, 'is correlated with', TargetVariable, '| P-Value:', AnovaResults[1])
            SelectedPredictors.append(predictor)
        else:
            print(predictor, 'is NOT correlated with', TargetVariable, '| P-Value:', AnovaResults[1])
   return(SelectedPredictors)
#Calling the function to check which categorical variables are correlated with target
CategoricalPredictorList=['Price', 'Size']
FunctionAnova(inpData=clothesprice,
              TargetVariable='Price'
              CategoricalPredictorList=CategoricalPredictorList)
→ ##### ANOVA Results #####
    Price is correlated with Price | P-Value: 0.0
    Size is NOT correlated with Price | P-Value: 0.7098835429591747
    /usr/local/lib/python3.10/dist-packages/scipy/stats/_axis_nan_policy.py:531: ConstantInputWarning: Each of the input arrays is constant;
      res = hypotest_fun_out(*samples, **kwds)
    ['Price']
```

```
SelectedColumns=['Brand', 'Category','Color', 'Size', 'Price']
```

Selecting final columns DataForML=clothesprice[SelectedColumns] DataForML.head()

→ ▼		Brand	Category	Color	Size	Price
	0	New Balance	Dress	White	XS	182
	1	New Balance	Jeans	Black	XS	57
	2	Under Armour	Dress	Red	М	127
	3	Nike	Shoes	Green	М	77
	A	Δdidae	Sweater	\//hita	NA	112

Saving this final data subset for reference during deployment DataForML.to pickle('DataForML.pkl')

Step 17

```
# Treating all the nominal variables at once using dummy variables
DataForML_Numeric = pd.get_dummies(DataForML)
```

Use the DataFrame 'DataForML' which is already defined

Adding Target Variable to the data DataForML_Numeric['Price'] = clothesprice['Price']

Printing sample rows DataForML_Numeric.head()

₹		Price	Brand_Adidas	Brand_New Balance	Brand_Nike	Brand_Puma	Brand_Reebok	Brand_Under Armour	Category_Dress	Category_Jacket	Category_Jeans .	
	0	182	False	True	False	False	False	False	True	False	False	
	1	57	False	True	False	False	False	False	False	False	True	
	2	127	False	False	False	False	False	True	True	False	False	
	3	77	False	False	True	False	False	False	False	False	False	
	4	113	True	False	False	False	False	False	False	False	False	
5	ro	ws × 25	columns									
4	4										•	

step 18

Printing all the column names for our reference DataForML_Numeric.columns

```
→ Index(['Price', 'Brand_Adidas', 'Brand_New Balance', 'Brand_Nike',
                     'Brand_Puma', 'Brand_Reebok', 'Brand_Under Armour', 'Category_Dress',
                    'Category_Jacket', 'Category_Jeans', 'Category_Shoes',
'Category_Sweater', 'Category_T-shirt', 'Color_Black', 'Color_Blue',
'Color_Green', 'Color_Red', 'Color_White', 'Color_Yellow', 'Size_L',
'Size_M', 'Size_S', 'Size_XL', 'Size_XS', 'Size_XXL'],
                  dtype='object')
```

```
Clothes Price Assignment.ipynb - Colab
SelectedColumns=['Brand', 'Category','Color', 'Size', 'Material']
# Selecting final columns
DataForML=clothesprice[SelectedColumns]
DataForML.head()
# Saving this final data subset for reference during deployment
DataForML.to_pickle('DataForML.pkl')
#Separate Target Variable and Predictor Variables
TargetVariable='Price'
Predictors=list(DataForML_Numeric.columns) # Get all column names from DataFrame
Predictors.remove(TargetVariable) # Remove the target variable from the predictor list
X=DataForML_Numeric[Predictors].values
y=DataForML_Numeric[TargetVariable].values
# Split the data into training and testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=428)
Step 19
#STFP 19
# Treating all the nominal variables at once using dummy variables
DataForML_Numeric=pd.get_dummies(DataForML)
# Adding Target Variable to the data
DataForML_Numeric['Price']=clothesprice['Price']
### Standardization of data ###
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# Choose either standardization or Normalization
# On this data Min Max Normalization produced better results
```

```
# Choose between standardization and MinMAx normalization
#PredictorScaler=StandardScaler()
PredictorScaler=MinMaxScaler()
#Separate Target Variable and Predictor Variables
TargetVariable='Price'
Predictors=list(DataForML_Numeric.columns) # Get all column names from DataFrame
Predictors.remove(TargetVariable) # Remove the target variable from the predictor list
X=DataForML_Numeric[Predictors].values # Defining X
y=DataForML_Numeric[TargetVariable].values
# Storing the fit object for later reference
PredictorScalerFit=PredictorScaler.fit(X)
# Generating the standardized values of X
X=PredictorScalerFit.transform(X)
# Split the data into training and testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Sanity check for the sampled data
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
    (700, 30)
    (700,)
    (300, 30)
    (300,)
```

step 20

```
#Step 20
#Multiple Linear Regression
from sklearn.linear_model import LinearRegression
RegModel = LinearRegression()
# Printing all the parameters of Linear regression
print(RegModel)
# Creating the model on Training Data
LREG=RegModel.fit (X_train,y_train)
prediction=LREG.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, LREG.predict(X_train)))
print('\n##### Model Validation and Accuracy Calculations #########")
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['Error'] = 100 * ((abs(
  TestingDataResults['Price']-TestingDataResults['PredictedPrice']))/TestingDataResults['Price'])
# Use the newly created 'Error' column to calculate MAPE
MAPE=np.mean(TestingDataResults['Error'])
MedianMAPE=np.median(TestingDataResults['Error'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
   return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
    LinearRegression()
    R2 Value: 0.014863520562398258
    ##### Model Validation and Accuracy Calculations #########
       Brand_Adidas Brand_New Balance Brand_Nike Brand_Puma
              0.0
                               0.0
                                         0.0
                                                    0.0
                                                                0.0
    1
              0.0
                               1.0
                                         0.0
                                                    0.0
                                                                0.0
    2
              0.0
                               0.0
                                         0.0
                                                    0.0
                                                                1.0
    3
                                         1.0
                                                                0.0
              0.0
                               1.0
                                         0.0
                                                    0.0
                                                                0.0
```

```
Brand_Under Armour Category_Dress Category_Jacket Category_Jeans \
                                 1.0
                  0.0
                                 1.0
                                                   0.0
1
2
                  0.0
                                 0.0
                                                   1.0
                                                                   0.0
3
                  0.0
                                  0.0
                                                   0.0
                                                                   0.0
4
                  0.0
                                 0.0
                                                   0.0
                                                                   0.0
   Category_Shoes ...
                       Size_XS Size_XXL Material_Cotton Material_Denim \
0
                            0.0
                                      0.0
                  . . .
             0.0 ...
                            0.0
                                                       0.0
                                                                       0.0
                                      1.0
1
             0.0 ...
2
                            0.0
                                      0.0
                                                       0.0
                                                                       0.0
3
                            0.0
                                                                       0.0
              0.0
                  ...
                                      0.0
                                                       0.0
4
             0.0 ...
                            0.0
                                      0.0
                                                      1.0
                                                                       0.0
  Material_Nylon Material_Polyester Material_Silk Material_Wool Price
                                  0.0
                                                 0.0
                                                                0.0
                                                                       164
             1.0
1
2
             0.0
                                 0.0
                                                 0.0
                                                               1.0
                                                                        58
3
              0.0
                                  0.0
                                                 0.0
                                                                1.0
                                                                        82
4
             0.0
                                 0.0
                                                 0.0
                                                                0.0
                                                                       177
   PredictedPrice
0
           140.0
1
2
            119.0
3
            95.0
4
           108.0
[5 rows x 32 columns]
Mean Accuracy on test data: -1.3676545919518759
Median Accuracy on test data: 64.140486876105
Accuracy values for 10-fold Cross Validation:
                                                       2.72574755
[ 15.02254318 -14.61235203 -15.28587943 15.23577135
 23.36559313 41.66350595 0.36452287 -7.79736327
                                                      2.430111781
Final Average Accuracy of the model: 6.31
```

Tillal Average Accuracy of the model. 0.55

Decision Trees

```
# Decision Trees (Multiple if-else statements!)
from sklearn.tree import DecisionTreeRegressor
RegModel = DecisionTreeRegressor(max_depth=5,criterion='friedman_mse')
# Good Range of Max_depth = 2 to 20
# Printing all the parameters of Decision Tree
print(RegModel)
# Creating the model on Training Data
DT=RegModel.fit(X_train,y_train)
prediction=DT.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, DT.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature_importances = pd.Series(DT.feature_importances_, index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n#### Model Validation and Accuracy Calculations #########')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
```

```
TestingDataResults['Error'] = 100 * ((abs( # Changed 'Brand' to 'Error' for clarity
  TestingDataResults['Price']-TestingDataResults['PredictedPrice']))/TestingDataResults['Price'])
MAPE = np.mean(TestingDataResults['Error']) # Changed 'Brand' to 'MAPE'
MedianMAPE = np.median(TestingDataResults['Error']) # Changed 'MedianBrand' to 'MedianMAPE'
Accuracy = 100 - MAPE # Changed 'Price' to 'Accuracy'
MedianAccuracy = 100 - MedianMAPE # Changed 'MedianPricr' to 'MedianAccuracy'
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring = make_scorer(Accuracy_Score, greater_is_better=True) # Changed 'Price_Score' to 'Accuracy_Score'
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values) # Changed 'Price values' to 'Accuracy values'
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

```
DecisionTreeRegressor(criterion='friedman_mse', max_depth=5)
R2 Value: 0.12400587905826077
```

```
##### Model Validation and Accuracy Calculations #########
   Brand_Adidas Brand_New Balance Brand_Nike Brand_Puma
            0.0
                                0.0
                                            0.0
                                                         0.0
1
            0.0
                                1.0
                                            0.0
                                                         0.0
                                                                       0.0
2
            0.0
                                0.0
                                            0.0
                                                         0.0
                                                                       1.0
3
            0.0
                                0.0
                                            1.0
                                                         0.0
                                                                       0.0
4
            0.0
                                1.0
                                            0.0
                                                         0.0
                                                                       0.0
   Brand_Under Armour
                        Category_Dress
                                        Category_Jacket
                                                          Category_Jeans \
0
                  1.0
                                   1.0
                                                     0.0
1
                  9.9
                                   1.0
                                                                     0.0
2
                  0.0
                                   0.0
                                                     1.0
                                                                     0.0
                  0.0
                                   0.0
                                                     0.0
                                                                     0.0
4
                  0.0
                                   0.0
                                                     0.0
                                                                     0.0
   Category_Shoes
                        Size_XS
                                  Size_XXL
                                           Material_Cotton
0
              0.0
                             0.0
                                       0.0
                                                         0.0
                   . . .
              0.0
                             0.0
                                                         0.0
                                                                          0.0
1
                   ...
                                       1.0
2
              0.0
                             0.0
                                       0.0
                                                         0.0
                                                                          0.0
                   . . .
3
              0.0
                             0.0
                                       0.0
                                                         0.0
                                                                          0.0
                   . . .
4
              0.0
                             0.0
                                       0.0
                                                         1.0
                                                                          0.0
   Material_Nylon
                   Material_Polyester
                                        Material_Silk
                                                        Material_Wool
                                                                       Price
0
              0.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                          101
1
              1.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                          164
2
              0.0
                                   0.0
                                                  0.0
                                                                  1.0
                                                                           58
                                                   0.0
                                                                  1.0
                                                                           82
4
              0.0
                                   0.0
                                                  0.0
                                                                  0.0
                                                                          177
   PredictedPrice
0
            111.0
            117.0
1
            117.0
3
             68.0
            122.0
[5 rows x 32 columns]
Mean Accuracy on test data: -2.511594712211334
Median Accuracy on test data: 61.77429876060013
Accuracy values for 10-fold Cross Validation:
 [ 11.0156758 -17.45120437 -16.66219667 7.97239132
                                                          2,20750313
  21.34070157 37.86298324 -3.40259221 -8.34181693
                                                         2.792068961
```

Final Average Accuracy of the model: 3.73

Plotting/Visualising the Decision Tree

Image(graph.create_png(), width=2000,height=2000)
Double click on the graph to zoom in

Random Forest

```
# Random Forest (Bagging of multiple Decision Trees)
from sklearn.ensemble import RandomForestRegressor
RegModel = RandomForestRegressor(max_depth=4, n_estimators=400,criterion='friedman_mse')
# Good range for max_depth: 2-10 and n_estimators: 100-1000

# Printing all the parameters of Random Forest
print(RegModel)

# Creating the model on Training Data
RF=RegModel.fit(X_train,y_train)
prediction=RF.predict(X_test)

from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, RF.predict(X_train)))
```

```
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
feature importances = pd.Series(RF.feature importances , index=Predictors)
feature_importances.nlargest(10).plot(kind='barh')
print('\n#### Model Validation and Accuracy Calculations #########')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
# Use the correct TargetVariable name here
TestingDataResults['APE']=100 * ((abs(
 TestingDataResults[TargetVariable]-TestingDataResults['Predicted'+TargetVariable]))/TestingDataResults[TargetVariable])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
   MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
   return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

```
RandomForestRegressor(criterion='friedman_mse', max_depth=4, n_estimators=400)
R2 Value: 0.12352160921145428
```

```
##### Model Validation and Accuracy Calculations #########
   Brand_Adidas Brand_New Balance Brand_Nike Brand_Puma
0
             0.0
                                  0.0
                                                            0.0
                                               0.0
                                                                            0.0
1
             0.0
                                  1.0
                                               0.0
                                                             0.0
                                                                            0.0
2
             0.0
                                  0.0
                                               0.0
                                                             0.0
                                                                            1.0
3
             0.0
                                  0.0
                                               1.0
                                                             0.0
                                                                            0.0
4
             0.0
                                  1.0
                                               0.0
                                                             0.0
                                                                            0.0
   Brand_Under Armour
                         Category_Dress
                                           Category_Jacket
                                                             Category_Jeans \
0
                   1.0
                                     1.0
                                                        0.0
                                                        9.9
1
                   9.9
                                     1.0
                                                                          0.0
2
                   0.0
                                     0.0
                                                        1.0
                                                                          0.0
                   0.0
                                     0.0
                                                        0.0
                                                                          0.0
                   0.0
4
                                     0.0
                                                        0.0
                                                                          0.0
   Category_Shoes
                          Size_XS
                                    Size_XXL Material_Cotton Material_Denim
                    ...
0
               0.0
                              0.0
                                          0.0
                                                             0.0
                     . . .
               0.0
                              0.0
                                                             0.0
                                                                              0.0
1
                     ...
                                          1.0
2
               0.0
                              0.0
                                          0.0
                                                             0.0
                                                                              0.0
                    . . .
3
               0.0
                              0.0
                                          0.0
                                                             0.0
                                                                              0.0
                     . . .
4
               0.0
                              0.0
                                          0.0
                                                            1.0
                                                                              0.0
                     . . .
   Material_Nylon
                     Material_Polyester
                                           Material_Silk
                                                           Material_Wool
                                                                            Price
0
               0.0
                                     0.0
                                                     0.0
                                                                      0.0
                                                                              101
                                                                              164
1
               1.0
                                     0.0
                                                      0.0
                                                                      9.9
2
               0.0
                                     0.0
                                                      0.0
                                                                      1.0
                                                                               58
                                                      0.0
                                                                      1.0
                                                                               82
4
               0.0
                                     0.0
                                                      0.0
                                                                      0.0
                                                                              177
   PredictedPrice
0
             113.0
             123.0
1
             113.0
3
              97.0
             113.0
[5 rows x 32 columns]
Mean Accuracy on test data: -1.9880156600036685
Median Accuracy on test data: 64.12123734221112
Accuracy values for 10-fold Cross Validation:
[ 15, 22335125 -14, 08562698 -19, 45736589 13, 8894993 22, 34754604 42, 72433119 -0, 25287309 -7, 18690777
                                                             3,36194617
                                                            4.836698391
```

Final Average Accuracy of the model: 6.14

K-Nearest Neighbor(KNN)

```
Size XXL -
# K-Nearest Neighbor(KNN)
from sklearn.neighbors import KNeighborsRegressor
RegModel = KNeighborsRegressor(n neighbors=3)
# Printing all the parameters of KNN
print(RegModel)
# Creating the model on Training Data
KNN=RegModel.fit(X_train,y_train)
prediction=KNN.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, KNN.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
```

The variable importance chart is not available for KNN

```
print('\n#### Model Validation and Accuracy Calculations #########')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=Predictors)
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
  TestingDataResults['Price']-TestingDataResults['PredictedPrice']))/TestingDataResults['Price'])
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE'])
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
    MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
    KNeighborsRegressor(n_neighbors=3)
    R2 Value: 0.3435829034903999
    ##### Model Validation and Accuracy Calculations #########
       Brand_Adidas Brand_New Balance Brand_Nike Brand_Puma
               0.0
                                0.0
                                           0.0
                                                      0.0
                                                                   0.0
    1
               9.9
                                1.0
                                           9.9
                                                      9.9
                                                                   0.0
    2
               0.0
                                0.0
                                           0.0
                                                      0.0
                                                                   1.0
    3
               0.0
                                0.0
                                           1.0
                                                      0.0
                                                                   0.0
    4
               0.0
                                1.0
                                           0.0
                                                      0.0
                                                                   0.0
       Brand Under Armour
                         Category_Dress
                                       Category_Jacket Category_Jeans
    0
                    1.0
                                   1.0
                                                  0.0
                    0.0
                                   1.0
                                                  0.0
                                                                 0.0
    1
                                                                 0.0
    2
                    0.0
                                   0.0
                                                  1.0
    3
                    0.0
                                   0.0
                                                  0.0
                                                                 0.0
    4
                    9.9
                                   0.0
                                                  0.0
                                                                 0.0
                          Size_XS Size_XXL Material_Cotton Material_Denim
       Category_Shoes
                     . . .
    0
                                                      0.0
                                                                    1.0
                 0.0
                     ...
                             0.0
                                       0.0
                 0.0 ...
    1
                             0.0
                                      1.0
                                                      9.9
                                                                    9.9
    2
                 0.0
                             0.0
                                       0.0
                                                      0.0
                                                                    0.0
                     . . .
    3
                 0.0
                     . . .
                             0.0
                                       0.0
                                                      0.0
                                                                    0.0
    4
                             0.0
                                       0.0
                                                                    0.0
                 0.0
                                                      1.0
       Material_Nylon Material_Polyester
                                       Material_Silk Material_Wool
                                                                   Price
    0
                 0.0
                                   0.0
                                                0.0
                                                              0.0
                                                                    101
                 1.0
                                   0.0
                                                0.0
                                                              0.0
                                                                    164
    1
    2
                 0.0
                                   0.0
                                                 0.0
                                                              1.0
                                                                     58
    3
                 0.0
                                   0.0
                                                 0.0
                                                              1.0
                                                                     82
                 0.0
                                   0.0
                                                0.0
                                                              0.0
                                                                    177
```

```
PredictedPrice
           138.0
1
           143.0
2
3
            74.0
           147.0
[5 rows x 32 columns]
Mean Accuracy on test data: -10.479903213317982
Median Accuracy on test data: 59.625943719972554
Accuracy values for 10-fold Cross Validation:
[ 14.57551381 -25.10075877 -26.97418494 10.23515941 -3.39251075
 16.38812119 33.02316696 -0.30122851 -10.93325665
                                                      0.26162594]
Final Average Accuracy of the model: 0.78
```

Support Vector Machines(SVM)

```
# Support Vector Machines(SVM)
from sklearn import svm
RegModel = svm.SVR(C=50, kernel='rbf', gamma=0.01)
# Printing all the parameters
print(RegModel)
# Creating the model on Training Data
SVM=RegModel.fit(X_train,y_train)
prediction=SVM.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, SVM.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
# The built in attribute SVM.coef_ works only for linear kernel
# %matplotlib inline # Commented out as it is not directly related to the error
#feature_importances = pd.Series(SVM.coef_[0], index=Predictors)
#feature_importances.nlargest(10).plot(kind='barh')
print('\n#### Model Validation and Accuracy Calculations #########')
# Printing some sample values of prediction
# Get the predictor names directly from X_test
TestingDataResults=pd.DataFrame(data=X_test, columns=[f"feature_{i}" for i in range(X_test.shape[1])])
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
print(TestingDataResults.head())
# Calculating the error for each row
# Use the correct TargetVariable name here and consistent column naming
TestingDataResults['APE']=100 * ((abs(
  TestingDataResults[TargetVariable]-TestingDataResults['Predicted'+TargetVariable]))/TestingDataResults[TargetVariable])
# Calculate MAPE using the 'APE' column
MAPE=np.mean(TestingDataResults['APE'])
MedianMAPE=np.median(TestingDataResults['APE']) # Use 'APE' for median as well
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
```

```
MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
→ SVR(C=50, gamma=0.01)
    R2 Value: 0.026671413627403107
    ##### Model Validation and Accuracy Calculations #########
       feature_0 feature_1 feature_2 feature_3 feature_4 feature_5 \
            0.0
                       0.0
                                 0.0
                                            0.0
                                                      0.0
                                                                 1.0
    1
            0.0
                       1.0
                                 0.0
                                            0.0
                                                      0.0
                                                                 0.0
    2
            0.0
                       0.0
                                 0.0
                                            0.0
                                                      1.0
                                                                 9.9
    3
             0.0
                       0.0
                                            0.0
                                                      0.0
                                                                 0.0
                                 1.0
                                  0.0
                                                      0.0
       feature_6 feature_7 feature_8 feature_9 ...
                                                     feature_22 feature_23
                                            0.0 ...
    0
            1.0
                       0.0
                                  0.0
                                                            0.0
                                            0.0 ...
                       0.0
                                 0.0
                                                            0.0
                                                                       1.0
             1.0
    1
    2
             0.0
                       1.0
                                 0.0
                                            0.0 ...
                                                            0.0
                                                                       0.0
    3
             0.0
                       0.0
                                 0.0
                                            0.0 ...
                                                            0.0
                                                                       0.0
                                            0.0 ...
    4
             0.0
                       0.0
                                 0.0
                                                            0.0
                                                                       0.0
       feature_24 feature_25 feature_26 feature_27 feature_28 feature_29 \
    0
                                    0.0
              0.0
                         1.0
                                                0.0
                                                           0.0
    1
              0.0
                         0.0
                                    1.0
                                                0.0
                                                           0.0
                                                                      9.9
    2
              9.9
                         0.0
                                    0.0
                                                0.0
                                                           0.0
                                                                      1.0
    3
              0.0
                         0.0
                                    0.0
                                                0.0
                                                           0.0
                                                                       1.0
              1.0
                                    0.0
                                                           0.0
                                                                       0.0
       Price PredictedPrice
    0
         101
                      100.0
         164
                      130.0
    1
                      115.0
          58
    3
          82
                      106.0
         177
                      111.0
    [5 rows x 32 columns]
    Mean Accuracy on test data: -0.9438266220202394
    Median Accuracy on test data: 63.720238095238095
    Accuracy values for 10-fold Cross Validation:
     [ 13.92874747 -15.67631295 -18.8692552 13.12078928 1.4835095
      22.86308339 42.66284181 -0.84458924 -9.55705589
```

Final Average Accuracy of the model: 5.19

Step 21

```
# Separate Target Variable and Predictor Variables
TargetVariable='Price'
# Selecting the final set of predictors for the deployment
# Based on the variable importance charts of multiple algorithms above
Predictors=['Brand', 'Category', 'Size']
# Verify that 'DataForML_Numeric' contains the specified columns
print(DataForML_Numeric.columns) # Print columns to check for typos or missing columns
# Proceed with extracting X and y if columns are present
if all(col in DataForML Numeric.columns for col in Predictors):
   X=DataForML Numeric[Predictors].values
```

```
y=DataForML_Numeric[TargetVariable].values
     ### Sandardization of data ###
     from sklearn.preprocessing import StandardScaler, MinMaxScaler
     # Choose either standardization or Normalization
     # On this data Min Max Normalization produced better results
     # Choose between standardization and MinMAx normalization
     #PredictorScaler=StandardScaler()
     PredictorScaler=MinMaxScaler()
     # Storing the fit object for later reference
     PredictorScalerFit=PredictorScaler.fit(X)
     # Generating the standardized values of X
     X=PredictorScalerFit.transform(X)
     print(X.shape)
     print(y.shape)
else:
     print("Error: One or more predictor columns not found in the DataFrame.")

→ Index(['Brand_Adidas', 'Brand_New Balance', 'Brand_Nike', 'Brand_Puma',
              Brand_Redbok', 'Brand_Under Armour', 'Category_Dress',

'Category_Jacket', 'Category_Jeans', 'Category_Shoes',

'Category_Sweater', 'Category_T-shirt', 'Color_Black', 'Color_Blue',

'Color_Green', 'Color_Red', 'Color_White', 'Color_Yellow', 'Size_L',

'Size_M', 'Size_S', 'Size_XL', 'Size_XS', 'Size_XXL', 'Material_Cotton',

'Material_Denim', 'Material_Nylon', 'Material_Polyester',
              'Material_Silk', 'Material_Wool', 'Price'],
             dtype='object')
      Error: One or more predictor columns not found in the DataFrame.
```

XGBoost Regressor

```
# Xtreme Gradient Boosting (XGBoost)
from xgboost import XGBRegressor
RegModel=XGBRegressor(max_depth=2,
                    learning_rate=0.1,
                    n_estimators=1000,
                    objective='reg:linear',
                    booster='gbtree')
# Printing all the parameters of XGBoost
print(RegModel)
# Creating the model on Training Data
XGB=RegModel.fit(X_train,y_train)
prediction=XGB.predict(X_test)
from sklearn import metrics
# Measuring Goodness of fit in Training data
print('R2 Value:',metrics.r2_score(y_train, XGB.predict(X_train)))
# Plotting the feature importance for Top 10 most important columns
%matplotlib inline
# Get the feature names from the training data
feature\_names = [f"feature\_{i}" for i in range(X_train.shape[1])] # Changed Predictors to feature names from training data
feature_importances = pd.Series(XGB.feature_importances_, index=feature_names)
feature_importances.nlargest(10).plot(kind='barh')
print('\n##### Model Validation and Accuracy Calculations #########')
# Printing some sample values of prediction
TestingDataResults=pd.DataFrame(data=X_test, columns=feature_names) # Changed Predictors to feature names
TestingDataResults[TargetVariable]=y_test
TestingDataResults[('Predicted'+TargetVariable)]=np.round(prediction)
# Printing sample prediction values
```

```
print(TestingDataResults.head())
# Calculating the error for each row
TestingDataResults['APE']=100 * ((abs(
  TestingDataResults[TargetVariable]-TestingDataResults['Predicted'+TargetVariable]))/TestingDataResults[TargetVariable]);
MAPE=np.mean(TestingDataResults['APE']) # Changed 'Size' to 'APE'
MedianMAPE=np.median(TestingDataResults['APE']) # Changed 'Size' to 'APE'
Accuracy =100 - MAPE
MedianAccuracy=100- MedianMAPE
print('Mean Accuracy on test data:', Accuracy) # Can be negative sometimes due to outlier
print('Median Accuracy on test data:', MedianAccuracy)
# Defining a custom function to calculate accuracy
# Make sure there are no zeros in the Target variable if you are using MAPE
def Accuracy_Score(orig,pred):
    MAPE = np.mean(100 * (np.abs(orig-pred)/orig))
    #print('#'*70,'Accuracy:', 100-MAPE)
    return(100-MAPE)
# Custom Scoring MAPE calculation
from sklearn.metrics import make_scorer
custom_Scoring=make_scorer(Accuracy_Score, greater_is_better=True)
# Importing cross validation function from sklearn
from sklearn.model_selection import cross_val_score
# Running 10-Fold Cross validation on a given algorithm
# Passing full data X and y because the K-fold will split the data and automatically choose train/test
Accuracy_Values=cross_val_score(RegModel, X , y, cv=10, scoring=custom_Scoring)
print('\nAccuracy values for 10-fold Cross Validation:\n',Accuracy_Values)
print('\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))
```

```
XGBRegressor(base_score=None, booster='gbtree', callbacks=None,
                                                 colsample_bylevel=None, colsample_bynode=None,
                                                 \verb|colsample_bytree=None|, | device=None|, | early_stopping_rounds=None|, |
                                                 enable_categorical=False, eval_metric=None, feature_types=None,
                                                 gamma=None, grow_policy=None, importance_type=None,
                                                 interaction_constraints=None, learning_rate=0.1, max_bin=None,
                                                 max_cat_threshold=None, max_cat_to_onehot=None,
                                                 max_delta_step=None, max_depth=2, max_leaves=None,
                                                 min_child_weight=None, missing=nan, monotone_constraints=None,
                                                 multi_strategy=None, n_estimators=1000, n_jobs=None,
                                                 num_parallel_tree=None, objective='reg:linear', ...)
            R2 Value: 0.3162134605182447
            /usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:51:33] WARNING: /workspace/src/objective/regression ob-
                 warnings.warn(smsg, UserWarning)
            ##### Model Validation and Accuracy Calculations #########
                     feature_0 feature_1 feature_2 feature_3 feature_4
                                                                                                                                                                               feature 5
            a
                                     0.0
                                                                    0.0
                                                                                                   0.0
                                                                                                                                  0.0
                                                                                                                                                                  0.0
                                                                                                                                                                                                 1.0
                                     0.0
                                                                    1.0
                                                                                                    0.0
                                                                                                                                   0.0
                                                                                                                                                                  0.0
            2
                                     0.0
                                                                    0.0
                                                                                                   0.0
                                                                                                                                   0.0
                                                                                                                                                                  1.0
                                                                                                                                                                                                 0.0
            3
                                     0.0
                                                                    0.0
                                                                                                   1.0
                                                                                                                                   0.0
                                                                                                                                                                  0.0
                                                                                                                                                                                                 0.0
            4
                                     0.0
                                                                    1.0
                                                                                                    0.0
                                                                                                                                                                  0.0
                                                                                                                                                                                                 0.0
                                                 feature_7
                                                                                feature_8 feature_9
                     feature 6
                                                                                                                                                               feature_22
                                                                                                                                                                                              feature 23 \
                                                                                                                                              . . .
                                                                                                                                  0.0 ...
            0
                                     1.0
                                                                    0.0
                                                                                                   0.0
                                                                                                                                                                                   0.0
                                     1.0
                                                                    0.0
                                                                                                    0.0
                                                                                                                                   0.0
                                                                                                                                                                                   0.0
                                                                                                                                              . . .
            2
                                                                    1.0
                                                                                                   0.0
                                                                                                                                   0.0 ...
                                                                                                                                                                                   0.0
                                     0.0
                                                                                                                                                                                                                     0.0
                                                                                                                                  0.0 ...
            3
                                     9.9
                                                                    0.0
                                                                                                   0.0
                                                                                                                                                                                  0.0
                                                                                                                                                                                                                     9.9
            4
                                     0.0
                                                                    0.0
                                                                                                    0.0
                                                                                                                                   0.0
                                                                                                                                                                                   0.0
                                                                                                                                                                                                                     0.0
                                                     feature_25
                                                                                     feature_26 feature_27 feature_28
                                                                                                                                                                                            feature_29
                     feature_24
            0
                                        0.0
                                                                          1.0
                                                                                                           0.0
                                                                                                                                              0.0
                                                                                                                                                                               0.0
                                                                                                                                                                                                                  0.0
            1
                                        0.0
                                                                          0.0
                                                                                                            1.0
                                                                                                                                              0.0
                                                                                                                                                                                0.0
            2
                                                                                                                                              0.0
                                        0.0
                                                                          0.0
                                                                                                            0.0
                                                                                                                                                                               0.0
                                                                                                                                                                                                                  1.0
            3
                                        0.0
                                                                          0.0
                                                                                                            0.0
                                                                                                                                              0.0
                                                                                                                                                                               0.0
                                                                                                                                                                                                                  1.0
            4
                                        1.0
                                                                                                            0.0
                                                                                                                                                                                                                  0.0
                     Price PredictedPrice
            0
                          101
                          164
            2
                                                                  145.0
                            58
            3
                            82
                                                                    69.0
                          177
                                                                  145.0
            [5 rows x 32 columns]
            Mean Accuracy on test data: -6.8816606996500695
            Median Accuracy on test data: 61.69192700278379
            /usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:51:34] WARNING: /workspace/src/objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objec
                 warnings.warn(smsg, UserWarning)
            /usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:51:35] WARNING: /workspace/src/objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objective/regression_objec
                 warnings.warn(smsg, UserWarning)
            Accuracy values for 10-fold Cross Validation:
              [ 18.69964401 -15.81527848 -22.3655382 11.79850295
                  18.66850336 38.96042632 2.83818335 -10.58770325
            Final Average Accuracy of the model: 4.86
```

Cross validating the final model accuracy with less predictors

wsr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:46:41] WARNING: /workspace/src/objective/regression_obj.cu warnings.warn(smsg, UserWarning)

/usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:46:43] WARNING: /workspace/src/objective/regression_obj.cu warnings.warn(smsg, UserWarning)

/usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:46:45] WARNING: /workspace/src/objective/regression_obj.cu warnings.warn(smsg, UserWarning)

/usr/local/lib/python3.10/dist-packages/xgboost/core.py:158: UserWarning: [02:46:46] WARNING: /workspace/src/objective/regression_obj.cu warnings.warn(smsg, UserWarning)

Accuracy values for 10-fold Cross Validation.