- 1. Please remove noise form Figure 1.
 - (a) Use the average filter and the median filter, and compare their results.
 - (b) Use the median filter to remove noise.
 - (c) Please compare the results of (a) and (b) in view of performance.

Answer:

a) average filter

原圖 (左)、3*3 average filter (中)、5*5 average filter (右)

b) median filter

c) 原圖 (左)、3*3 median filter (中)、5*5 median filter (右)

c)

在計算方面,average filter 是基於局部平均值的平滑 filter,而 median filter 則是基於局部中值的非線性 filter。

結果的部分, average filter 它對於移除均勻雜訊表現良好,但對於保留邊緣細節效果較差;而 median filter 它在移除椒鹽雜訊方面非常有效,並能很好地保留邊緣細節。

2. Please sharp the Figure 2.

- (a) Use the Sobel mask to sharp this Figure 2.
- (b) Use the Fourier transform to sharp this Figure 2.
- (c) Compare the results of (a) and (b) in view of performance.

Answer:

a) Sobel mask

b) Fourier transform

c)

根據結果可見, sobel mask 的表現較好, 輪廓較清楚且完整, sobel 在平滑區域的處理保持不變,沒有過多的細節改變;相反地, fourier transform 在平滑區域的處理上, 高頻增強會對整體圖像的所有區域產生影響包括背景, 可能導致背景部分產生額外的紋理, 或帶來一些不必要的細節, 有些過渡區域出現小波紋效應。根據以上輸出圖片的差異, 我認為如果需要突顯邊緣細節且保留背景自然感, 會選擇 Sobel。

3. Please design a Gaussian filter of 3*3 mask and use this mask to low-pass filter of Figure 1.

Answer:

我設計一個 3×3 的 Gaussian mask, 其權重來自 2D Gaussian 分佈:

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

取標準差 $\sigma=1$,且中心在 (0,0) 的值,計算如下:

х,у	-1,-1	-1,0	-1,1	0,-1	0,0	0,1	1,-1	1,0	1,1
G(x,y)	0.0585	0.0965	0.0585	0.0965	0.1592	0.0965	0.0585	0.0965	0.0585

為簡化並取近似值,我們將其權重標準化為整數,並除以總和 16:

$$Gaussian\ mask = \frac{1}{16} \begin{bmatrix} 1 & 2 & 1\\ 2 & 4 & 2\\ 1 & 2 & 1 \end{bmatrix}$$

4. Please design a lower-pass Fourier filter corresponding designed one by the 3rd to smooth the Figure 1.

Answer:

當進行傅立葉變換後,遮罩大小等於頻域圖像的大小。我設計半徑為50的低通 濾波器,會以頻譜中心為圓心,畫一個半徑為50的圓。根據實驗結果,較大的 設計半徑會允許更多頻率通過,影像平滑程度較低,細節保留較多,而較小的 設計半徑會允許較少頻率通過,影像平滑程度較高,細節和雜訊都會被大幅濾 除。如設計半徑為30,產生的圖片會更有顆粒感。

1	0	7	
5	1	8	
4	0	9	

Figure 3. Mask

5. Please compute the corresponding phase angle and Fourier spectrum of Figure 3.

Answer:

Step 1: 進行傅立葉變換 (Fourier Transform)

```
\begin{aligned} &= (+ \frac{1}{4} + 10 \times (-\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} \times 1) \left[ \cos \frac{3\pi}{2} - \frac{1}{2} + \cos \frac{3\pi}{2} \right] + \frac{1}{4} \times 1 \right] \left[ \cos \frac{3\pi}{2} - \frac{1}{2} + \cos \frac{3\pi}{2} \right] \\ &= (+ \frac{1}{4} + 10 \times (-\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} \times 1) \left[ \cos \frac{3\pi}{2} - \frac{1}{2} + \cos \frac{3\pi}{2} \right] + \frac{1}{4} \times 1 \right] \left[ \cos \frac{3\pi}{2} - \frac{1}{2} + \cos \frac{3\pi}{2} \right] \\ &= (+ \frac{1}{4} + 1 + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times 1 \right] \\ &= (+ \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times 1 \right] \\ &= (+ \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} \times 1 \right] \\ &= (+ \frac{1}{4} + \frac{1}{4} \times 1 +
```

$$f(0,1) = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} f(x,y_j) \left[e^{-\frac{\pi}{2}xT} \left[\frac{\sigma x}{2} + \frac{1-y}{3} \right] \right] = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f(x,y_j) \left[\cos \frac{\pi x}{3} - 7 \sin \frac{\pi x}{3} \right] + \int_{0}^{\infty} f($$

$$f(0,1) = \frac{2}{2} \frac{2}{2} f(x,y) \left[e^{-\frac{1}{2}x_1} \left(\frac{e^{xy}}{3} + \frac{s^{1}y}{3} \right) \right] = \frac{2}{2} \frac{2}{2} f(x,y) \left[\cos \frac{y_1}{3} + -i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\sin \frac{y_1}{3} + \frac{1}{2} \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right] + \frac{1}{2} \left[\cos \frac{y_1}{3} - i \sin \frac{y_1}{3} \right$$

35	$-2.5 + \frac{23\sqrt{3}}{2}i$	$-2.5 - \frac{23\sqrt{3}}{2}i$		
$-5.5 - \frac{\sqrt{3}}{2}i$	$-4-\sqrt{3}i$	-1		
$-5.5 + \frac{\sqrt{3}}{2}i$	-1	$-4+\sqrt{3}i$		

Step 2: 計算傅立葉頻譜 (Fourier Spectrum)

Fourier Spectrum =
$$|F(u, v)| = \sqrt{\operatorname{Re}^2 + \operatorname{Im}^2}$$

35	20.0748599	20.0748599		
5.56776436	4.35889894	1		
5.56776436	1	4.35889894		

Step 3: 計算相位角 (Phase Angle)

arctan (0)	$\arctan\left(\frac{23\sqrt{3}}{-5}\right)$	$\arctan\left(\frac{23\sqrt{3}}{5}\right)$
$\arctan\left(\frac{\sqrt{3}/2}{5.5}\right)$	$\arctan\left(\frac{\sqrt{3}}{4}\right)$	arctan (0)
$\arctan\left(\frac{\sqrt{3}/2}{-5.5}\right)$	arctan (0)	$\arctan\left(\frac{\sqrt{3}}{-4}\right)$

換算成角度(大約/約等於)

0°	-82.85°	82.85°
8.95°	23.41°	0°
-8.95°	0°	-23.41°

Figure 2