UNIVERSIDAD PERUANA CAYETANO HEREDIA FACULTAD DE CIENCIAS E INGENIERÍA -INGENIERÍA BIOMÉDICA

FUNDAMENTOS DE BIODISEÑO

Entregable 8 - Caso Loayza

AUTORES:

Villarreal Mamani, Rosa Isabel
Santa Maria La Rosa Sanchez, Alejandro Sebastian
Santivañez Portella, Gael Franz
Torres Castañeda, Ricardo Percy
Valdivia Pari, Valeria Ivannia
Vásquez Cruz, Gustavo Alonso

DOCENTES:

Juan Manuel Zuñiga

Grupo 15

Lima, 9 de octubre del 2025

1) Diagrama o Esquema Electrónico del concepto de solución EASY EDA

ESP32 DevKitV1-30D

Descripción:

Es un microcontrolador que tiene integrado Wifi y Bluetooth que permite controlar y comunicar sensores, actuadores y servomotores. Tiene 30 pines, buena capacidad de procesamiento y bajo consumo energético.

Leds

Descripción:

Son diodos emisores de luz que se usan como indicadores visuales (en nuestro caso mostrar el modo en el que se encuentra). Son componentes de bajo consumo y alta durabilidad.

Sensores capacitivos

Descripción:

Los TTP223B son sensores táctiles capacitivos que detectan el toque de un dedo sobre una superficie conductora. Ofrecen una respuesta rápida, silenciosa y sin desgaste físico. Al ser

activados, envían una señal digital al ESP32, permitiendo controlar funciones del dispositivo de forma moderna y sensible al tacto.

Servomotores

Descripción:

El SG-5010 es un servomotor estándar de rotación limitada (0° a 180°), diseñado para ofrecer movimientos precisos y controlados. Funciona mediante una señal PWM enviada por el ESP32, que determina el ángulo de giro. Es ideal para ajustar posiciones mecánicas o realizar movimientos articulados, proporcionando buena potencia, estabilidad y respuesta rápida en dispositivos electrónicos o robóticos

Batería

Descripción:

Es el componente encargado de suministrar energía eléctrica al dispositivo, permitiendo su funcionamiento sin necesidad de estar conectado a una fuente fija. Almacena energía química que se transforma en energía eléctrica, proporcionando la potencia necesaria para alimentar los módulos electrónicos, sensores y actuadores del sistema. Además, permite que el dispositivo sea portátil y autónomo durante un determinado tiempo de uso.

2) MODELADO 3D

https://cad.onshape.com/documents/0b1d5438d726e127cd05e259/w/ddd671ad9b5f6d4f7845e88d/e/c42ba3e918f2ee18a2743b3b?renderMode=0&uiState=68fb17fae6e04d504fea3869

Soporte de Brazo:

* Rótula superior

* Rótula antebrazo

* Rótula mitad antebrazo

Soporte Brazo

❖ Soporte antebrazo

❖ Soporte servomotor

Férula:

Pulsera:

Servomotor Mg945

❖ Parte Inferior

❖ Parte Superior

❖ Tapa Parte Superior

• Control:

❖ Tapa superior:

* Tapa inferior:

• Componentes electrónicos:

Sensor Capacitivo TTP-223:

LED:

❖ ESP32 DevKitV1

***** DC-DC

***** TP4056:

❖ BMS 3S:

A Batería 11.1V:

