Lojik Tasarım

Ders 12

Kaynak:

M.M. Mano, M.D. Ciletti, "Digital Design with An Introduction to Verilog HDL"

- Senkron sistemlerde tek bir sinyalle tüm flip-floplar tetiklenir
- Tasarım yöntemi
 - 1. Sayılması istenen binary sayılar yazılır
 - 2. Flip-flopun türüne göre olması gereken girişler tespit edilir
 - 3. Her giriş için çıkışlara göre karnough haritaları oluşturulur
 - 4. Elde edilen denklemlere göre lojik devre çizilir

JK tipi flip-floplar kullanarak 0-3 senkron sayıcıyı tasarlayınız

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	\boldsymbol{X}
1	0	X	1
1	1	X	0

Q _A	Q _B	J _A	K _A	J _B	K _B
0	0	0	X	1	X
0	1	1	X	X	1
1	0	X	0	1	X
1	1	X	1	Χ	1

Q _A	Q _B	J _A	K _A	J _B	K _B
0	0	0	Χ	1	Χ
0	1	1	Χ	Χ	1
1	0	Χ	0	1	Χ
1	1	Χ	1	Χ	1

$$J_A = Q_B$$

$$K_A = Q_B$$

$$J_B = 1$$

$$K_B = 1$$

JK tipi flip-floplar kullanarak 0-9 sayan senkron sayıcıyı tasarlayınız

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Q_A	Q_B	Q _C	Q_{D}	JA	K _A	J _B	K _B	J _C	K _C	J _D	K _D
0	0	0	0	0	Χ	0	X	0	X	1	X
0	0	0	1	0	X	0	X	1	Χ	X	1
0	0	1	0	0	X	0	X	X	0	1	X
0	0	1	1	0	X	1	X	X	1	X	1
0	1	0	0	0	X	X	0	0	X	1	X
0	1	0	1	0	X	Χ	0	1	Χ	Χ	1
0	1	1	0	0	X	X	0	X	0	1	X
0	1	1	1	1	Χ	X	1	X	1	X	1
1	0	0	0	X	0	0	X	0	X	1	X
1	0	0	1	Χ	1	0	Χ	0	Χ	Χ	1

$$JA = QB. QC. QD$$

$$KA = QD$$

KB

$$JB = QC.QD$$

$$KB = QC.QD$$

$$JC = QA'.QD$$

$$KC = QD$$

$$JD = 1$$

$$KD = 1$$

Devresini siz çiziniz ve çalışmasını gözleyiniz

$$JA = QB.QC.QD$$

$$KA = QD$$

$$JB = QC. QD$$

$$KB = QC.QD$$

$$JC = QA'.QD$$

$$KC = QD$$

$$JD = 1$$

$$KD = 1$$

0'dan 7'ye doğru sayan senkron sayıcıyı T tipi flip-floplar kullanarak tasarlayınız

Q(t)	Q(t + 1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Şin	ndiki d	urum	Sonraki durum		Flip-flop girişleri			
A_2	A_1	A_0	A_2	A_1	A_0	TA_2	TA_2	TA_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	1	1
1	1	1	0	0	0	1	1	1

3 bitlik ikili sayıcıya ilişkin diyagramlar

ŞEKİL 6-33

3 bitlik ikili sayıcıya ilişkin diyagramlar

3 bitlik ikili sayıcının lojik devresi

7'den aşağı doğru çift sayıları sayan senkron sayıcıyı T tipi flip-floplar kullanarak tasarlayınız

Q(t + 1)	T
0	0
1	1
0	1
1	0
	0

Q _A	Q_B	Q _C	T _A	T _B	T _C
1	1	0	0	1	0
1	0	0	1	1	0
0	1	0	0	1	0
0	0	0	1	1	0

7'den aşağı doğru çift sayıları sayan senkron sayıcıyı T tipi flip-floplar kullanarak tasarlayınız

Q_A	Q_B	Q_{C}	T _A	T _B	T _C
1	1	0	0	1	0
1	0	0	1	1	0
0	1	0	0	1	0
0	0	0	1	1	0

TB QA, QB				
QC	00	01	11	10
o	1	1	1	1
1	X	X	X	X

TB = 1

$$TC = 0$$

16'dan 0' kadar olan tek sayıları sayan senkron sayıcıyı D tipi flip-floplar kullanarak tasarlayınız

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Q_0	Q_1	Q_2	Q_3	D ₀	D ₁	D ₂	D ₃
1	1	1	1	1	1	0	1
1	1	0	1	1	0	1	1
1	0	1	1	1	0	0	1
1	0	0	1	0	1	1	1
0	1	1	1	0	1	0	1
0	1	0	1	0	0	1	1
0	0	1	1	0	0	0	1
0	0	0	1	1	1	1	1

Q	0	Q_1	Q_2	Q_3	D ₀	D ₁	D ₂	D_3	
1		1	1	1	1	1	0	1	
1		1	0	1	1	0	1	1	
1		0	1	1	1	0	0	1	
1		0	0	1	0	1	1	1	
0)	1	1	1	0	1	0	1	
0)	1	0	1	0	0	1	1	
0)	0	1	1	0	0	0	1	
0)	0	0	1	1	1	1	1	

Q0,Q1 Q2,Q3				
	00	01	11	10
00	Х	х	х	х
01	1	0	1	0
11	0	0	1	1
10	Х	х	х	х

D0

$$D0 = Q0'. Q1'. Q2' + Q0. Q1 + Q0. Q2$$

 $D2$

$$D2 = Q2'$$

Q0,Q1 Q2,Q3				
	00	01	11	10
00	Х	Х	Х	х
01	1	0	0	1
11	0	1	1	0
10	Х	х	х	Х

D1

$$D1 = Q1. Q2 + Q1'. Q2'$$

 $D3$

$$D3 = 1$$

Durum tablosu verilen devreyi JK tipi flip-floplar kullanarak tasarlayınız.

Şimdiki Durum		Son Dur X:	υm	Sonraki Durum X=1		
Α	В	Α	В	Α	В	
0	0	0	0	0	1	
0	1	1	0	0	1	
1	0	1	0	1	1	
1	1	1	1	0	0	

	Şimdiki Durum		Sonraki Durum X=0		Sonraki Durum X=1		
Α	В	Α	В	Α	В		
0	0	0	0	0	1		
0	1	1	0	0	1		
1	0	1	0	1	1		
1	1	1	1	0	0		

State Table and JK Flip-Flop Inputs

Present State		Input	Next State		Flip-Flop Inputs			
Α	В	x	A	В	J _A	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Siz yapınız

 Girişine 0 uygulandığında 0-7, 1 uygulandığında ise 7-0 sayacak sayıcıyı JK tipi flip-floplar kullanarak tasarlayınız.