

# A - Single source shortest path, non-negative weights

### Input

La entrada consta de varios casos de prueba. Cada caso de prueba comienza con una línea con cuatro números enteros no negativos,  $1 \le n \le 10000$ ,  $0 \le m \le 30000$ ,  $1 \le q \le 100$  y  $0 \le s < n$ , separados por espacios simples, donde n es el número de nodos en el gráfico, m el número de aristas, q el número de consultas y s el índice del nodo inicial. Los nodos se numeran de 0 a n-1. Luego siguen m líneas, cada línea que consta de tres números enteros (separados por espacios) u, v y w, lo que indica que hay una arista de u a v en el gráfico con un peso  $0 \le w \le 1000$ . A continuación, siga q líneas de consultas, cada una de las cuales consta de un único entero no negativo, solicitando la distancia mínima entre los nodos y el número de nodo que figura en la línea de consulta.

La entrada terminará con una línea que contenga cuatro ceros, esta línea no debe procesarse.

# Output

Para cada consulta, muestre por pantalla una sola línea que contenga la distancia mínima desde el nodo s a el nodo especificado en la consulta, o la palabra "Impossible" si no hay una ruta desde s a ese nodo. Para mayor claridad, la salida de muestra tiene una línea en blanco entre la salida para diferentes casos.

#### Ejemplo

# Input

```
1 4 3 4 0
2 0 1 2
3 1 2 2
4 3 0 2
5 0
6 1
7 2
8 3
9 2 1 1 0
10 0 1 100
11 1
12 0 0 0 0 0
```

# Output

```
1 0
2 2
3 4
4 Impossible
5 100
```



# **B** - Save Patient

"A new internet watchdog is creating a stir in Springfield. Mr. X, if that is his real name, has come up with a sensational scoop." Kent Brockman

Hay n servidores SMTP conectados por cables de red. Cada uno de los m cables conecta dos computadoras y tiene una cierta latencia medida en milisegundos requerida para enviar un mensaje de correo electrónico. ¿Cuál es el tiempo más corto necesario para enviar un mensaje del servidor S al servidor T a lo largo de una secuencia de cables? Suponga que no se produce ningún retraso en ninguno de los servidores.

# Input

La primera línea de entrada da el número de casos, N. A continuación, N casos de prueba. Cada uno comienza con una línea que contiene n ( $2 \le n \le 20000$ ), m ( $0 \le m \le 50000$ ), S ( $0 \le S < n$ ) y T ( $0 \le T < n$ ).  $S \ne T$ . Las siguientes m líneas contendrán cada una S enteros: 2 servidores diferentes (en el rango [0, n-1]) que están conectados por un cable bidireccional y la latencia, M, a lo largo de este cable ( $0 \le M \le 10000$ ).

# Output

Para cada caso de prueba, envíe la línea "Caso #x:" seguida de la cantidad de milisegundos necesarios para enviar un mensaje de S a T. Imprima "'unreachable" si no hay una ruta de S a T.

# **Ejemplo**

#### Input

```
1 3
2 2 1 0 1
3 0 1 100
4 3 3 2 0
5 0 1 100
6 0 2 200
7 1 2 50
8 2 0 0 1
```

# Output

```
1 Case #1: 100
2 Case #2: 150
3 Case #3: unreachable
```



# C - Dijkstra?

Se le proporciona un grafo con pesos no dirigido. Los vértices se enumeran de 1 a n. Su tarea es encontrar el camino más corto entre el vértice 1 y el vértice n.

# Input

La primera línea contiene dos números enteros n y m  $(2 \le n \le 105, 0 \le m \le 105)$ , donde n es el número de vértices y m es el número de aristas. Las siguientes m líneas contienen un borde cada una en forma  $a_i$ ,  $b_i$  y  $w_i$   $(1 \le a_i, b_i \le n, 1 \le w_i \le 106)$ , donde  $a_i$ ,  $b_i$  son los extremos del borde y  $w_i$  es la longitud del borde.

Es posible que el gráfico tenga bucles y múltiples aristas entre pares de vértices.

# Output

Escriba un único entero -1 en caso de que no haya ruta. Escribe el camino más corto en caso contrario. Si hay muchas soluciones, imprima cualquiera de ellas.

# **Ejemplo**

# Input

```
      1
      5
      6

      2
      1
      2
      2

      3
      2
      5
      5

      4
      2
      3
      4

      5
      1
      4
      1

      6
      4
      3
      3

      7
      3
      5
      1
```

### Output

1 4 3 5