Esercizi sul "Lavoro di una forza" - esercizi di introduzione

1) Determinare il lavoro della forza F costante lungo il percorso rettilineo Δx nei seguenti casi:

```
a) F = 25 N, \Delta x = 12 m e angolo fra forza e spostamento \alpha = 0^{\circ};
```

- b) F = 25 N, $\Delta x = 12 m$ e angolo fra forza e spostamento $\alpha = 30^{\circ}$;
- c) F = 25 N, $\Delta x = 12 m$ e angolo fra forza e spostamento $\alpha = 45^{\circ}$;
- d) F = 25 N, $\Delta x = 12 m$ e angolo fra forza e spostamento $\alpha = 90^{\circ}$;
- e) F = 25 N, $\Delta x = 12 m$ e angolo fra forza e spostamento $\alpha = 120^{\circ}$;
- f) F = 25 N, $\Delta x = 12 m$ e angolo fra forza e spostamento $\alpha = 180^{\circ}$.
- 2) La forza F costante agisce nella stessa direzione dello spostamento rettilineo Δx . Determinare il valore di F se il lavoro di F (W(F)) e lo spostamento Δx valgono rispettivamente:
 - a) W(F) = 300 J, $\Delta x = 60 m$;
 - b) W(F) = -200J, $\Delta x = 25m$;
 - c) W(F) = 0J, $\Delta x = 20m$;
 - d) W(F) = 0J, $\Delta x = 0m$.
- 3) Considerate le seguenti situazioni:
 - a) il lavoro di una forza F costante che ha agito lungo un percorso rettilineo $\Delta x = 25\,m$ vale $W(F) = 120\,J$. Calcolare:
 - i) l'intensità di F_{\shortparallel} ;
 - ii) l'intensità di F se $F_\perp = 2,0\,N\,.$
 - b) Il lavoro di una forza F costante che ha agito lungo un percorso rettilineo $\Delta x = 8,0m$ vale W(F) = -32J. Calcolare:
 - i) l'intensità di F_{\shortparallel} ;
 - ii) l'intensità di F_{\perp} se F = 5,0N.
 - c) Il lavoro di una forza $F=13,0\,N$ che ha agito lungo un percorso rettilineo $\Delta x=8,0\,m$ vale $W\!\left(F\right)=40\,J$. Calcolare le componenti F_{\parallel} e F_{\perp} del forza F .

- 4) Un corpo di massa $m=25\,kg$ viene trainato a velocità costante $v=2,5\,\frac{m}{s}$ su un piano orizzontale scabro (con attrito) con una forza costante $F=147\,N$. Determinare:
 - a) il valore di tutte le forze in gioco;
 - b) il tratto percorso in 40 s;
 - c) il lavoro di tutte le forze lungo il tratto calcolato in (b).

La forza ora viene aumentata a 197 N per la durata di 7,5 s. Durante questo intervallo di tempo calcolare:

- d) il valore di tutte le forze in gioco;
- e) il tratto percorso in questi 7,5s;
- f) il lavoro di tutte le forze e della forza risultante lungo il tratto calcolato in (e).
- 5) Un corpo di massa $m=4,0\,kg$ viene trainato a velocità costante lungo un piano orizzontale scabro per un tratto $\Delta x=25\,m$. Della forza di traino si sa che, lungo il tragitto Δx , compie un lavoro pari $W=300\,J$ e che la sua intensità vale $F=13\,N$. Determinare:
 - a) le componenti della forza F;
 - b) il lavoro della forza di attrito;
 - c) il valore della forza peso e della forza di reazione del piano d'appoggio;
 - d) il valore della forza di attrito e il relativo coefficiente.
- 6) Un corpo si trova in una posizione caratterizzata da queste coordinate:

$$\begin{pmatrix} x_0 = 2.5 m \\ y_0 = 4.0 m \\ z_0 = 1.5 m \end{pmatrix}.$$

Determinare il lavoro della forza di gravità se viene portato in un punto di coordinate (massa del corpo $m = 25 \, kg$):

$$\begin{pmatrix} x_1 = 4, 2m \\ y_1 = 6, 4m \\ z_1 = 4, 0m \end{pmatrix}; \begin{pmatrix} x_2 = 2, 5m \\ y_2 = 3, 0m \\ z_2 = 1, 5m \end{pmatrix}; \begin{pmatrix} x_3 = 4, 2m \\ y_3 = 6, 4m \\ z_3 = 0, 5m \end{pmatrix}; \begin{pmatrix} x_4 = 4, 2m \\ y_4 = 0, 4m \\ z_4 = -2, 0m \end{pmatrix}.$$

7) Determinare il lavoro della forza di una molla di costante elastica $k = 24 \frac{N}{m}$ se la posizione della sua estremità libera passa dalla posizione x_1 alla posizione x_2

(la posizione dell'estremità libera della molla vale x = 0 m quando la molla è nella sua posizione di riposo, quindi né tirata né schiacciata):

$x_1(cm)$	2,0	0,0	2,0	-3,0	-2,0
$x_2(cm)$	6,0	4,0	-6,0	3,0	6,0