2.13

La droite d_1 s'écrit $y=5\,x-7$, de sorte que sa pente vaut $m_1=5$. La droite d_2 s'écrit $y=-\frac{3}{2}\,x$, si bien que sa pente est $m_2=-\frac{3}{2}$.

$$\tan(\varphi) = \frac{m_2 - m_1}{1 + m_1 m_2} = \frac{-\frac{3}{2} - 5}{1 + 5 \cdot (-\frac{3}{2})} = \frac{-\frac{13}{2}}{-\frac{13}{2}} = 1$$
Puisque $\arctan(1) = 45^{\circ} + k \cdot 180^{\circ} \ (k \in \mathbb{Z}), \text{ on obtient } \varphi = 45^{\circ}.$

Étant donné que la droite d_1 s'écrit y = x + 7, sa pente vaut $m_1 = 1$. Comme $\tan(45^\circ) = 1$, la droite d_1 a pour angle directeur 45° .

Vu que la droite d_2 a pour vecteur directeur $\begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$, sa pente est donnée par $m_2 = \frac{\sqrt{3}}{1} = \sqrt{3}$.

Puisque $\tan(60^{\circ}) = \sqrt{3}$, la droite d_2 a pour angle directeur 60° .

On conclut que l'angle entre les droites d_1 et d_2 vaut $60^{\circ} - 45^{\circ} = 15^{\circ}$.

Comme la droite d_1 s'écrit $y = \frac{3}{2}x + \frac{7}{2}$, sa pente vaut $m_1 = \frac{3}{2}$. Puisque la droite d_2 s'écrit $y = -\frac{2}{3}x + \frac{5}{3}$, sa pente est $m_2 = -\frac{2}{3}$. Étant donné que $m_1 \cdot m_2 = \frac{3}{2} \cdot (-\frac{2}{3}) = -1$, les droites d_1 et d_2 sont perpendiculaires, d'après l'exercice 2.2.

La droite $(d_1): \sqrt{3}x - y + 1 = 0$ a pour vecteur directeur $\vec{d_1} = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix}$.

La droite $(d_2): x-2=0$ admet pour vecteur directeur $\vec{d_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

L'angle φ entre les droites d_1 et d_2 est donné par la formule :

$$\cos(\varphi) = \frac{\vec{d_1} \cdot \vec{d_2}}{\|\vec{d_1}\| \|\vec{d_2}\|} = \frac{\begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \cdot \begin{pmatrix} 0\\1 \end{pmatrix}}{\|\begin{pmatrix} 1\\\sqrt{3} \end{pmatrix}\| \|\begin{pmatrix} 0\\1 \end{pmatrix}\|} = \frac{1 \cdot 0 + \sqrt{3} \cdot 1}{\sqrt{1^2 + (\sqrt{3})^2} \sqrt{0^2 + 1^2}} = \frac{\sqrt{3}}{2}$$

Cela implique $\varphi=\pm 30^\circ$, si bien que l'angle aigu entre les droites d_1 et d_2 vaut 30° .