

Subjects

Communities

Manage Content

Weekly Quizzes Review Test Submission: Week 11 Quiz

Review Test Submission: Week 11 Quiz

Dong Gao
Algorithms and Complexity
Week 11 Quiz
21/05/16 11:17 PM
21/05/16 11:18 PM
27/05/16 11:59 PM
Completed
4 out of 4 points
0 minute

Instructions You should attempt the quiz after the lecture and your tutorial.

- The quiz is available for a period of 10 days.
- You may attempt the quiz multiple times (if you happen to get a question wrong, you can do it again)
- Your score on the guiz will be recorded in the grade book. The score is not used when determining your final mark in this subject
- The quiz might not display equations correctly in some browsers. If you experience problems, we recommend that you use Firefox.

Note: you must complete at least eight of the weekly quizzes to meet one of the hurdle requirements in this subject.

Results Displayed All Answers, Submitted Answers, Feedback, Incorrectly Answered Questions

Question 1 1 out of 1 points

Consider this instance of the knapsack problem. We have a total capacity W = 12 and six items, with weights and values as follows:

item	weight	value
1	3	20
2	2	15
3	3	25
4	4	30

5	5	30
6	6	50

The dynamic programming algorithm will establish that the optimal value that can be achieved for this instance is:

Selected Answer: 95

Response Feedback: Yes, that's right. Items 2, 4 and 6 will be selected.

Question 2 1 out of 1 points

A connected weighted undirected graph G has 57 nodes and 194 edges. How many edges does a minimum spanning tree for G have?

Selected Answer: 56

Yes, too easy. For a connected undirected graph < V,E>, any spanning Response

Feedback: tree has |V|-1 edges.

Question 3 1 out of 1 points

Consider the graph below. What is the cost of its minimum spanning tree, that is, the sum of its edges' weights?

Selected Answer: 12

Response Feedback: You got that right!

Question 4 1 out of 1 points

Consider the graph below. How many different minimum spanning trees does it have?

Selected Answer: 2

Response Feedback: Yes, correct.

Saturday, 4 June 2016 11:19:01 PM EST

 $\leftarrow \mathsf{OK}$