CORRIGÉ PB DUALITÉ

PARTIE A

- 1. $A^{\circ} \neq \emptyset$ car la forme linéaire nulle appartient à A° .
 - Si $\varphi, \psi \in A^{\circ}$, et $\lambda \in \mathbb{K}$, on a : $\forall x \in A$, $(\lambda \varphi + \psi)(x) = \lambda \varphi(x) + \psi(x) = 0$ donc $\lambda \varphi + \psi \in A^{\circ}$. Ainsi, A° est un sev de E^{*} .
- **2.** Supposons $A \subset B$. Soit $\varphi \in B^{\circ}$. Alors, pour tout $x \in B$, $\varphi(x) = 0$ donc a fortiori $\varphi(x) = 0$ pour tout $x \in A$.

Ainsi, $\varphi \in A^{\circ}$, d'où : $\underline{B^{\circ} \subset A^{\circ}}$.

- **3.** $A \subset A \cup B$ et $B \subset A \cup B$ donc, d'après la question précédente, $(A \cup B)^{\circ} \subset A^{\circ}$ et $(A \cup B)^{\circ} \subset B^{\circ}$ donc $(A \cup B)^{\circ} \subset A^{\circ} \cap B^{\circ}$.
 - Soit $\varphi \in A^{\circ} \cap B^{\circ}$. $\varphi \in A^{\circ}$ donc pour tout $x \in A$, $\varphi(x) = 0$, et $\varphi \in B^{\circ}$ donc pour tout $x \in B$, $\varphi(x) = 0$. Ainsi, pour tout $x \in A \cup B$, $\varphi(x) = 0$ donc $\varphi \in (A \cup B)^{\circ}$, ce qui donne l'inclusion $A^{\circ} \cap B^{\circ} \subset (A \cup B)^{\circ}$. Finalement, on a bien l'égalité : $(A \cup B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- **4.** $A \subset \operatorname{Vect}(A)$ donc $(\operatorname{Vect}(A))^{\circ} \subset A^{\circ}$ d'après A.2.
 - Soit $\varphi \in A^{\circ}$, i.e $\forall x \in A$, $\varphi(x) = 0$. Pour tout $y \in \text{Vect}(A)$, il existe une famille de scalaires $(\lambda_i)_{i \in I}$, à support fini, et une famille $(x_i)_{i \in I}$ de vecteurs de A tels que $y = \sum_{i \in I} \lambda_i x_i$.

On a alors : $\varphi(y) = \sum_{i \in I} \lambda_i \varphi(x_i) = 0$ (car φ linéaire et $x_i \in A$). Donc $\varphi \in (\text{Vect}(A))^{\circ}$, et $A^{\circ} \subset (\text{Vect}(A))^{\circ}$.

Finalement on a bien : $A^{\circ} = (\text{Vect}(A))^{\circ}$.

- 5. Démontrons d'abord le résultat suivant :
 - Si H et H' sont deux hyperplans de E tels que $H \subset H'$, alors H = H'.

C'est facile en dimension finie, bien sûr. Dans le cas général, soient H et H' deux hyperplans de E, et supposons H strictement inclus dans H'. Alors il existe a appartenant à H' mais pas à H. D'après le cours, on sait que $E = H \oplus \mathbb{K}.a$. On devrait donc avoir $E \subset H'$, contradiction.

- Soit A un hyperplan de E. On sait d'après le cours qu'il existe une forme linéaire non nulle φ telle que $A = \operatorname{Ker} \varphi$. Donc $\varphi \in A^{\circ}$, et $\mathbb{K}.\varphi \subset A^{\circ}$.
- D'autre part, si $\psi \in A^{\circ}$, on a $A \subset \operatorname{Ker} \psi$ donc, soit $\psi = 0$, soit $\psi \neq 0$, et alors $\operatorname{Ker} \psi$ est un hyperplan, d'où $A = \operatorname{Ker} \varphi = \operatorname{Ker} \psi$ d'après le résultat préliminaire. D'après le cours, il existe alors $\lambda \in \mathbb{K}^*$ tel que $\psi = \lambda \varphi$.

Dans les deux cas, on a $\psi = \lambda \varphi$ avec $\lambda \in \mathbb{K}$, donc $\psi \in \mathbb{K}.\varphi$, et $A^{\circ} \subset \mathbb{K}.\varphi$.

Finalement, $A^{\circ} = \mathbb{K}.\varphi$ est une droite vectorielle de E^* .

- **6.** $E^{\circ} = \{0\}$. En effet : $\varphi \in E^{\circ} \iff \forall x \in E, \ \varphi(x) = 0 \iff \varphi = 0_{E^*}$.
 - Démontrons d'abord le résultat indiqué par l'énoncé :

Si A est un sous-espace vectoriel de E strictement inclus dans E, il existe un hyperplan H de E tel que $A \subset H$.

Là encore, c'est facile en dimension finie en utilisant le théorème de la base incomplète... Dans le cas général, si A est strictement inclus dans E, soit A' un supplémentaire de A. Il existe alors une forme linéaire non nulle φ' sur A' (car A' n'est pas réduit à $\{0\}$). On peut alors construire une forme linéaire φ sur E telle que la restriction de φ à A soit nulle, et que la restriction de φ à A' soit égale à φ' . Ainsi, φ est une forme linéaire non nulle; son noyau est donc un hyperplan, qui contient A par construction.

• Supposons donc $A^{\circ} = \{0\}$, et, par l'absurde, $A \subsetneq E$. D'après ce qui précède, il existe un hyperplan H tel que $A \subset H$. Alors $H^{\circ} \subset A^{\circ}$, donc A° contient une droite vectorielle : contradiction.

Finalement, on a bien l'équivalence : $A^{\circ} = \{0\} \iff A = E$.

7. • Il est clair que $\{0\}^{\circ} = E^*$, puisque, pour tout $\varphi \in E^*$, $\varphi(0) = 0$.

• Soit A un sous-espace vectoriel de E tel que $A^{\circ} = E^{*}$. Supposons, par l'absurde, $A \neq \{0\}$. Il existe alors $a \in A, \ a \neq 0$. En notant H un hyperplan supplémentaire de $\mathbb{K}.a$, on peut alors trouver $\varphi \in E^{*}$ telle que $\varphi(x) = 0$ si $x \in H$ et $\varphi(a) = 1$ (cf. cours).

Ainsi, $\varphi \in E^*$ et $\varphi \notin A^{\circ}$: contradiction.

Finalement, on a bien l'équivalence : $A^{\circ} = E^* \iff A = \{0\}$.

PARTIE B

- 1. Démonstration "duale" de celle de A.1...
- 2. Démonstration "duale" de celle de A.2...
- 3. Démonstration "duale" de celle de A.3...
- 4. Démonstration "duale" de celle de A.4...
- **5.** Si $x \in A$ alors : $\forall \varphi \in A^{\circ}$, $\varphi(x) = 0$ (par définition même de A°), donc $x \in (A^{\circ})^{\circ}$ d'où $A \subset (A^{\circ})^{\circ}$.
- **6.** Supposons, par l'absurde, $(E^*)^{\circ} \neq \{0\}$. Il existe donc $a \in (E^*)^{\circ}$ tel que $a \neq 0$. On aurait donc : $\forall \varphi \in E^*$, $\varphi(a) = 0$. Or il est facile de construire une forme linéaire φ telle que $\varphi(a) = 1$ (cf. A.7 et cours), d'où la contradiction.

Finalement, on a bien l'implication $A' = E^* \implies A'^{\circ} = \{0\}$.

• Contre-exemple pour l'inclusion réciproque :

Soit $E = \mathbb{R}[X]$. Pour tout $n \in \mathbb{N}$, notons φ_n la forme linéaire sur E qui, à tout polynôme P, associe le réel P(n), et soit $A' = \text{Vect}(\{\varphi_n, n \in \mathbb{N}\})$.

On a alors : $P \in (A')^{\circ} \iff \forall n \in \mathbb{N}, \ P(n) = 0 \iff P = 0$ (car un polynôme ayant une infinité de racines est le polynôme nul).

Donc $(A')^{\circ} = \{0\}$. Mais on n'a pas $A' = E^*$! En effet, soit $a \notin \mathbb{N}$. Alors, la forme linéaire φ_a qui à tout polynôme P associe P(a) n'appartient pas à A': sinon, il existerait $N \in \mathbb{N}$ et des réels $\lambda_0, \ldots, \lambda_N$ tels

que $\varphi_a = \sum_{i=0}^{N} \lambda_i \varphi_i$, et on aurait $P(a) = \sum_{i=0}^{N} \lambda_i P(i)$ pour tout polynôme P, ce qui est absurde comme

on le voit en considérant $P = \prod_{k=0}^{N} (X - k) \dots$

PARTIE C

- **1.** On vérifie d'abord que l'on a bien, pour toute $\varphi \in F^*$, ${}^tu(\varphi) \in E^*$! ($\varphi \circ u$ est linéaire comme composée d'applications linéaires).
 - Puis : $\forall \varphi, \psi \in F^*$, $\forall \lambda \in \mathbb{K}$, ${}^tu(\lambda \varphi + \psi) = (\lambda \varphi + \psi) \circ u = \lambda \varphi \circ u + \psi \circ u = \lambda^t u(\varphi) + {}^tu(\psi)$, donc tu est une application linéaire de F^* dans E^* .
- **2.** Soient $u, v \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{K}$. Alors, pour toute $\varphi \in F^*$:

$${}^{t}(\lambda u + v)(\varphi) = \varphi \circ (\lambda u + v) = \lambda \varphi \circ u + \varphi \circ v$$
$$= \lambda^{t} u(\varphi) + {}^{t} v(\varphi) = (\lambda^{t} u + v)(\varphi)$$

d'où $t(\lambda u + v) = \lambda^t u + tv$: la transposition est linéaire.

- **3.** Pour toute $\varphi \in G^*$, on a : ${}^t(v \circ u)(\varphi) = \varphi \circ v \circ u$ et ${}^tu \circ {}^tv(\varphi) = {}^tu(\varphi \circ v) = \varphi \circ v \circ u$ donc ${}^t(v \circ u) = {}^tu \circ {}^tv$.
- **4.** Pour toute $\varphi \in E^*$, on a : ${}^t(\mathrm{Id}_E)(\varphi) = \varphi \circ \mathrm{Id}_E = \varphi = \mathrm{Id}_{E^*}(\varphi)$ donc ${}^t(\mathrm{Id}_E) = \mathrm{Id}_{E^*}$.
- **5.** Soit A un sous-espace vectoriel de E stable par u. Soit $\varphi \in A^{\circ}$. Pour tout $x \in A$, ${}^tu(\varphi)(x) = \varphi[u(x)] = 0$ car $u(x) \in A$. Donc ${}^tu(\varphi) \in A^{\circ}$, c'est-à-dire $\underline{A^{\circ}}$ est stable par $\underline{}^tu$.
- **6.** Si $u \in \mathcal{L}(E,F)$ est bijective, alors $u^{-1} \in \mathcal{L}(F,E)$ et on a, d'après les questions précédentes : ${}^t(u \circ u^{-1}) = {}^t(\operatorname{Id}_F) = \operatorname{Id}_{F^*} \text{ donc } {}^t(u^{-1}) \circ {}^tu = \operatorname{Id}_{F^*}$

et aussi

$${}^{t}(u^{-1} \circ u) = {}^{t}(\mathrm{Id}_{E}) = \mathrm{Id}_{E^{*}} \operatorname{donc} {}^{t}u \circ {}^{t}(u^{-1}) = \mathrm{Id}_{E^{*}}$$

Ces deux relations montrent que \underline{tu} est bijective de F^* dans E^* et que $(tu)^{-1} = t(u^{-1})$.

7. a)
$$\operatorname{Ker}({}^{t}u) = \{ \varphi \in F^{*}, \ \varphi \circ u = 0 \}$$

 $= \{ \varphi \in F^{*} \ \operatorname{tq} \ \forall x \in E, \ \varphi[u(x)] = 0 \}$
 $= \{ \varphi \in F^{*} \ \operatorname{tq} \ \forall y \in \operatorname{Im} u, \ \varphi(y) = 0 \}$
 $= (\operatorname{Im} u)^{\circ}$

b) On en déduit facilement, compte tenu des questions précédentes :

8. a) • Si $\psi \in \text{Im}({}^tu)$, il existe $\varphi \in F^*$ telle que $\psi = \varphi \circ u$. Alors, pour tout $x \in \text{Ker } u$, $\psi(x) = \varphi[u(x)] = 0$ donc $\psi \in (\operatorname{Ker} u)^{\circ}$.

Ainsi, $\operatorname{Im}^{(t}u) \subset (\operatorname{Ker} u)^{\circ}$.

• Soit $\psi \in (\operatorname{Ker} u)^{\circ}$. Alors, pour tout $x \in \operatorname{Ker} u$, $\psi(x) = 0$ soit $\operatorname{Ker} u \subset \operatorname{Ker} \psi$.

Soit alors S un supplémentaire de Keru dans E. D'après un célèbre théorème du cours, la restriction $v = u|_S$ de u à S est un isomorphisme de S sur $\operatorname{Im} u$.

Soit ensuite
$$S'$$
 un supplémentaire de $\operatorname{Im} u$ dans F . On sait qu'on peut définir une application linéaire $u': F \to E$ par :
$$\begin{cases} u'(y) = v^{-1}(y) & \text{si } y \in \operatorname{Im} u \\ u'(y) = 0 & \text{si } y \in S' \end{cases}.$$

Posons alors $\varphi = \psi \circ u' : u' \in \mathcal{L}(F, E)$ et $\psi \in E^*$ donc $\varphi \in F^*$ et l'on a :

$$\forall x \in \operatorname{Ker} u : \varphi \circ u(x) = \varphi(0) = 0 = \psi(x)$$

$$\forall x \in S$$
 : $\varphi \circ u(x) = \psi \circ u'[u(x)] = \psi(x) \text{ car } u' \circ u = \text{Id}|_S$

Ainsi, $\psi = \varphi \circ u = {}^t u(\varphi)$ donc $\psi \in \operatorname{Im}({}^t u)$.

On a donc l'inclusion $(\operatorname{Ker} u)^{\circ} \subset \operatorname{Im}({}^{t}u)$, et, finalement, l'égalité.

b) On en déduit :

- 9. a) facile
 - b) facile
 - c) Ker $\psi = \{x \in E, \ \hat{x} = 0\} = \{x \in E \ \text{tq} \ \forall \varphi \in E^*, \ \varphi(x) = 0\} = (E^*)^\circ = \{0\} \ \text{d'après B.6.}$ Donc ψ est injective.

PARTIE D

- 1. Il est déjà facile de vérifier que les e_i^* sont bien des formes linéaires.
 - La propriété : $\forall (i,j) \in [1;n]^2$, $e_i^*(e_j) = \delta_{ij}$ est immédiate compte tenu de la définition de e_i^* .
 - Montrons que la famille (e_1^*, \ldots, e_n^*) est libre.

En effet, si l'on a $\sum_{i=1}^{n} \lambda_i e_i^* = 0_{E^*}$ alors, pour tout $j \in [1; n]$:

$$\sum_{i=1}^{n} \lambda_i e_i^*(e_j) = 0,$$

ce qui implique $\lambda_j = 0$.

- Puisque dim $E^* = \dim E = n$, la famille (e_1^*, \dots, e_n^*) est donc une base de E^* .
- **2.** dim $E = \dim E^* = \dim E^{**}$ (cf. cours), et $\psi : E \to E^{**}$ est injective, donc c'est un isomorphisme de E sur E^{**} .
 - Soit $(\varphi_1, \ldots, \varphi_n)$ une base de E^* . Alors $(\varphi_1^*, \ldots, \varphi_n^*)$ est une base de E^{**} (cf. cours). Notons alors $e_i = \psi^{-1}(\varphi_i^*)$ pour $1 \leq i \leq n$. ψ étant un isomorphisme, (e_1, \ldots, e_n) est une base de E et l'on a :

$$\forall i \in [1; n], \ \varphi_i^* = \psi(e_i) = \hat{e_i}$$

d'où :
$$\forall (i,j) \in [1;n]^2$$
, $\delta_{ij} = \varphi_i^*(\varphi_i) = \hat{e}_i(\varphi_i) = \varphi_i(e_i)$

ce qui prouve que $(\varphi_1, \ldots, \varphi_n)$ est la base duale de (e_1, \ldots, e_n) .

3. Soit (e_1, \ldots, e_p) une base de F, que l'on complète en une base (e_1, \ldots, e_n) de E. Soit alors (e_1^*, \ldots, e_n^*) sa base duale. Si $\varphi \in E^*$, il existe un unique n-uplet $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ tel que $\varphi = \sum_{i=1}^n \lambda_i e_i^*$. On a alors :

$$\varphi \in F^{\circ} \iff \varphi \in (\{e_1, \dots, e_p\})^{\circ} \operatorname{car} F = \operatorname{Vect}(\{e_1, \dots, e_p\})$$

$$\iff \forall j \in [1; p], \ \varphi(e_j) = 0$$

$$\iff \forall j \in [1; p], \ \sum_{i=1}^n \lambda_i e_i^*(e_j) = 0$$

$$\iff \forall j \in [1; p], \ \lambda_j = 0 \operatorname{car} e_i^*(e_j) = \delta_{ij}$$

Ainsi, $\varphi \in F^{\circ}$ si et seulement si il existe $\lambda_{p+1}, \ldots, \lambda_n$ tels que $\varphi = \sum_{i=p+1}^n \lambda_i e_i^*$; F° est donc le sous-espace vectoriel de base $(e_{p+1}^*, \ldots, e_n^*)$, et il est donc de dimension n-p.

- Cela prouve que : $\underline{\dim(F) + \dim(F^{\circ})} = \dim(E)$.
- **4.** Démonstration "duale" : on considère ici une base (e_1^*, \ldots, e_p^*) de F' que l'on complète en une base (e_1^*, \ldots, e_n^*) de E^* . Puis on considère sa base ante-duale (e_1, \ldots, e_n) ; il suffit alors d'écrire les conditions nécessaires et suffisantes portant sur les coordonnées d'un vecteur x dans cette base pour qu'il appartienne à F'° ...
- **5.** On a $F \subset (F^{\circ})^{\circ}$ d'après B.5, et dim $F = \dim(F^{\circ})^{\circ}$ d'après les deux questions précédentes. La conclusion s'impose!
- **6.** a) On a : $A \cap B \subset A$ et $A \cap B \subset B$, d'où $A^{\circ} \subset (A \cap B)^{\circ}$ et $B^{\circ} \subset (A \cap B)^{\circ}$, donc $A^{\circ} + B^{\circ} \subset (A \cap B)^{\circ}$ (1) (il s'agit de sous-espaces vectoriels...).
 - De plus : $\dim(A \cap B)^{\circ} = \dim E \dim(A \cap B)$ et :

$$\dim(A^{\circ} + B^{\circ}) = \dim A^{\circ} + \dim B^{\circ} - \dim(A^{\circ} \cap B^{\circ}) \text{ (formule de Grassmann)}$$

$$= (\dim E - \dim A) + (\dim E - \dim B) - \dim(A \cup B)^{\circ}$$

$$= (\dim E - \dim A) + (\dim E - \dim B) - \dim(\operatorname{Vect}(A \cup B))^{\circ}$$

$$= 2 \dim E - \dim A - \dim B - \dim((A + B)^{\circ})$$

$$= 2 \dim E - \dim A - \dim B - (\dim E - \dim(A + B))$$

$$= \dim E - (\dim A + \dim B - \dim(A + B)) = \dim E - \dim(A \cap B)$$

donc dim $(A^{\circ} + B^{\circ}) = \dim(A \cap B)^{\circ}$ (2).

De (1) et (2), on déduit : $(A \cap B)^{\circ} = A^{\circ} + B^{\circ}$.

b) Rem : D'après la question A.5, si φ est une forme linéaire non nulle, on a $(\operatorname{Ker} \varphi)^{\circ} = \operatorname{Vect}(\{\varphi\})$, ce résultat restant valable même si $\varphi = 0$ d'après A.6.

 $(i)\Rightarrow (ii): \mathrm{si}\, \varphi \ \mathrm{est}$ combinaison linéaire des φ_i , soit $\varphi=\sum_{i=1}^p \lambda_i \varphi_i$, alors pour tout $x\in \bigcap_{i=1}^p \mathrm{Ker}\, \varphi_i$,

on a $\varphi_i(x)=0$ pour tout i, d'où $\varphi(x)=\sum_{i=1}^p\lambda_i\varphi_i(x)=0$ et $x\in \operatorname{Ker}\varphi$.

Cela démontre l'inclusion $\bigcap_{i=1}^p \operatorname{Ker} \varphi_i \subset \operatorname{Ker} \varphi$.

• $(ii) \Rightarrow (i)$: supposons $\bigcap_{i=1}^p \operatorname{Ker} \varphi_i \subset \operatorname{Ker} \varphi$. Alors $(\operatorname{Ker} \varphi)^{\circ} \subset \left(\bigcap_{i=1}^p \operatorname{Ker} \varphi_i\right)^{\circ} = \sum_{i=1}^p (\operatorname{Ker} \varphi_i)^{\circ}$ d'après la question précédente (la propriété a été démontrée pour deux sous-espaces vectoriels, mais elle se

la question précédente (la propriété a été démontrée pour deux sous-espaces vectoriels, mais elle se généralise facilement à un nombre quelconque par récurrence).

Or, $(\operatorname{Ker} \varphi_i)^{\circ} = \operatorname{Vect}(\{\varphi_i\})$ et $(\operatorname{Ker} \varphi)^{\circ} = \operatorname{Vect}(\{\varphi\})$ d'après la remarque préliminaire, donc $\varphi \in \sum_{i=1}^{p} \mathbb{K}.\varphi_i$, c'est-à-dire que $\underline{\varphi}$ est combinaison linéaires de $\underline{\varphi}_i$.

- 7. a) $\operatorname{rg} u = \operatorname{rg}(^t u)$ découle immédiatement de : $\operatorname{Ker}(^t u) = (\operatorname{Im} u)^{\circ}$, de D.2 et du théorème du rang (je vous laisse le soin d'écrire les égalités...).
 - b) Soit $A=(a_{ij})_{1\leqslant i\leqslant p}$ la matrice de u dans les bases \mathscr{B}_E et \mathscr{B}_F , avec $\dim E=q$, $\dim F=p$, $\mathscr{B}_E=(e_1,\ldots,e_q)$ et $\mathscr{B}_F=(f_1,\ldots,f_p)$.

On a donc, par définition : $\forall k \in \llbracket 1; q \rrbracket, \ u(e_k) = \sum_{i=1}^p a_{ik} f_i, \text{ d'où } f_j^* \circ u(e_k) = a_{jk} \text{ pour tout } j \in \llbracket 1; p \rrbracket,$

soit
$${}^t u(f_j^*)(e_k) = a_{jk}$$
 donc ${}^t u(f_j^*) = \sum_{i=1}^q a_{ji} e_i^*$ (puisque $e_i^*(e_k) = \delta_{ik}$).

Le terme d'indice (i,j) (avec $1 \le i \le q$ et $1 \le j \le p$) de la matrice de tu dans les base \mathscr{B}_E^* et \mathscr{B}_F^* est donc a_{ji} , cette matrice est donc <u>la transposée de A.</u>

c) Le résultat découle immédiatement des deux questions précédentes.