班级<u>土木一班</u> 学号 190410102 姓名 方尧 教师签字 实验日期 7.16 组号 C1 预习成绩 总成绩

实验(八)_惠斯通电桥与伏安特性_

一. 实验目的

- 1. 用伏安法绘制非线性元件(二极管)的伏安特性曲线;
- 2. 利用惠斯通电桥测试线性元件的阻值及电桥灵敏度。

二. 实验原理

线性电阻的伏安特性曲线为一条直线,其两端电压与流过它的电流之比为常量。半导体二极管为非线性元件,即电压与电流关系并不呈现线性,而是与外加电压大小及电流方向密切相关,因此其阻值并不是常量。我们将 $R_{\mathcal{Q}}=rac{V}{I}$ 称为非线性元件在工作电压 V 下的静态电阻;而将其在某个工作电压 V 附近电压的改变量与电流的改变量之比 $R_{\mathcal{D}}=rac{\Delta V}{\Delta I}$ 称为非线性元件在工作电压 V 作力的动态电阻。

伏安法测电阻时,连接电表的方法有两种,即电流表外接和电流表内接,如图 2(a) 、(b) 所示。电流表内接时, $R_x=R_{|||}-R_A$, $E=\frac{R_{|||}-R_x}{R_x}=\frac{R_A}{R_x}$,电流表外接时,

$$R_x=rac{R_VR_{\odot}}{R_V-R_{\odot}}$$
, $E=rac{R_{\odot}-R_x}{R_x}=-rac{R_x}{R_x+R_V}$,由上述公式可得,当 $R_x\gg R_A$ 时,采用电流内接

电路误差较小,而当 $R_\chi <\!\!< R_V$ 时,宜采用电流外接电路误差较小。

其中 $K = \frac{R_L}{R}$ 为负载电阻与滑线电阻的比值,知 K 值取 0.5~1 较为合适。

以 $K=\frac{R_L}{R}$ 表示负载电阻与滑线电阻的比值, $X=\frac{R_1}{R}$ 代表滑动点的位置,得到分压比 V/E 与滑动头相对位置 X 的关系为 $\frac{V}{E}=\frac{KX}{K+X-X^2}$,当 K>1时,分压比与滑动头的相对位置基本呈线性关系。

1. 电路元件的额定功率 P

电路元件的额定功率 P 和电路中允许通过的电流以及电路中不能超越的电压关系分别为: $I=\sqrt{P/R}, V=\sqrt{PR}$,这是在电路设计过程中必须要考虑的。

2. 惠斯通电桥的构造及测量原理

图 6 显示的是惠斯通电桥的构造及测量原理,注意所测电阻 R_X 有效位数是由比值 N 和比较臂 R 的有效位数所决定的。一般 N 的选取要使 R 用到最高位,保证测量结果达到 4 位以上有效数字。

3. 惠斯通电桥的灵敏度

电桥灵敏度 S 的定义为: $S=\Delta n/\frac{\Delta R}{R}$ (单位: 格), 式中, ΔR —电桥平衡后比较臂电阻 R

的微小增减量, Δn 一 相应的检流计偏转格数。S 还可写为: $S = \frac{\Delta n}{\Delta I_G} = \frac{\Delta I_G}{\Delta R} R$,该式指

出:选用灵敏度高、内阻低的检流计,在桥臂电阻额定功率容许的情况下适当提高电源电压, 桥臂电阻均衡取值等都可以提高电桥的灵敏度。

4. 惠斯通电桥的误差分析来源

箱式电桥仪器误差计算: $\Delta_{\langle \chi} = N(a\%R + \Delta R)$ 。

三. 数据处理

1、对于半导体二极管的伏安特性曲线,根据数据绘图:

二极管伏安特性曲线

2、对于线性电阻,采用 E=2V; 量程 $I=20mA(R_A=10\Omega)$; $V=2V(R_V=3M\Omega)$

(1) 内接时:
$$I_{\underline{a}} = I_{\underline{m}}$$
; $R_{\underline{a}} = \frac{U_{\underline{m}}}{I_{\underline{m}}} - R_{A}$; 则 $U_{\underline{a}} = I_{\underline{a}} \cdot R_{\underline{a}} = I_{\underline{m}} \left(\frac{U_{\underline{m}}}{I_{\underline{m}}} - R_{A} \right) = U_{\underline{m}} - I_{\underline{m}} \cdot R_{A}$

根据数据绘图得:

线性电阻伏安特性曲线(内接)

$$R_1 = \frac{1}{6} \sum_{i=1}^{6} \frac{U_{\underline{a}i}}{I_{\underline{a}i}} = 1075.9883\Omega$$

(2) 外接时:
$$U_{\underline{a}} = U_{\underline{m}}; \frac{I_{\underline{m}}}{U_{\underline{m}}} = \frac{1}{R_{\underline{a}}} + \frac{1}{R_{\underline{v}}}; 则I_{\underline{a}} = \frac{U_{\underline{a}}}{R_{\underline{a}}} = I_{\underline{m}} - \frac{U_{\underline{m}}}{R_{\underline{v}}}$$

根据数据绘图得:

线性电阻伏安特性曲线(外接)

$$R_2 = \frac{1}{6} \sum_{i=1}^{6} \frac{U_{\underline{i}i}}{I_{\underline{i}i}} = 986.0064\Omega$$

3、测惠斯通电桥的灵敏度

$$R_{xi} = N_i R_{si}$$

$$R_{x1} = 951.1\Omega; R_{x2} = 966.79\Omega; R_{x3} = 792\Omega; R_{x4} = 1000\Omega;$$

曲
$$S_i = \Delta n_i / \frac{\Delta R_i}{R_i} (i = 1, 2, 3, 4)$$
 得

$$S = \frac{1}{4} \sum_{i=1}^{4} S_i = 306 .87(\red{k})$$

四. 实验结论及现象分析

半导体二极管及线性电阻的伏安特性曲线如上;

内接测得线性电阻 $R_1 = 1075.9883\Omega$;外接测得线性电阻 $R_2 = 986.0064\Omega$

$$R_{x1} = 951.1\Omega; R_{x2} = 966.79\Omega; R_{x3} = 792\Omega; R_{x4} = 1000\Omega;$$

惠斯通电桥各个 N 下测得 $R_{x1}=951.1\Omega; R_{x2}=966.79\Omega; R_{x3}=792\Omega; R_{x4}=1000\Omega;$

惠斯通电桥的灵敏度 S = 3067.87(格)

五. 讨论问题

问题一:

因为惠斯通电桥的原理是基于 $R_1 \cdot R_S = R_x \cdot R_2$, 如果电阻小于 1Ω , 其两端的电压变化就非

常不明显, 以至于惠斯通电桥上的电流表无法显示。故无法测1Ω以下的电阻。

问题二:

电路总支路上接一个电阻,或者采用限流电路。

问题三:

若互换电源和检流计位置,互换之后还是 $R_1 \cdot R_S = R_x \cdot R_2$,故无电流,电桥仍然平衡。

实验现象观察与原始数据记录

	3 4 5 0.6693 0.6815 0.6952 5.919 7.678 10.359	0.7091 0.7183	8 0.7224	100	
内接 U(V) I(mA) 0.6553 0.6034 0.7640 0.7036 0.7702←→0.8365 0.9592 0.8832 1.3182 1.2138 1.5961 1.4698 N Rx(L) 1 951.1 a1 9667.9 10 79.2 100 10.0	U(V) 0.5949 0.7510 0.9265 1.1800 1.5265 1.7466 A Rs (D) 1 20 0.2 0.2	0.761 0.946 1.197 1.548 1.772	36 8 00 1 1 17		
方克 19041010≥ 7.16					\$P.

学生	姓名	学号	日期
签字	方尧	190410102	7. 10

教师	姓名
签字	