

2022-2023

Computer Networks

Adar Sönmez

Company Network Project in Cisco Packet Tracer

1. Description and Requirements

Apple Inc. has hired you to set up a LAN for their new headquarters in Krakow. The following are the requirements for the Network you will establish in the new building.

- 1. Use Cisco Packet Tracer to implement solution.
- 2. The network address that the company allocated is 192.168.1.0/20
- 3. Various departments work on each floor of the 4-storey building. Each of these departments will have different VLANs and different subnetworks.
- 4. On the third floor, there will be a wireless access point to which a maximum of 1000 devices can be connected. The details of the floors and departments are given below.
 - 1. floor:

Administration and HR: 90 devices needed Sales and marketing: 200 devices needed

2. floor:

Finance: 80 devices needed Public Relations: 100 devices needed

3. floor:

IT and Communications: 200 devices needed

Access Point: Maximum 1000 device should connect

4. floor:

Server Room: 20 devices needed

5. There should be a core router connected to the ISP, and two multilayer switches connected to this core router.

Network address between Core Router and ISP: 193.168.16.0/30
Network address between Multilayer S1 and Core Router: 192.168.19.164/30
Network address between Multilayer S2 - Core Router: 192.168.19.168/30

- 6. Devices in all departments are required to communicate with each other with the respective multilayer switch configured for inter-VLAN routing.
- 7. The multilayer switches are expected to carry out both routing and switching.
- 8. All devices in the network are expected to obtain an IP address dynamically from the DHCP server located at server room.
- 9. Devices in the server room are to be allocated IP addresses statically.
- 10. Use OSPF as the routing protocol to advertise routes between routers and multilayer switches.
- 11. Configure NAT on core router.

2. Subnetting

Base Network: 192.168.16.0/20

 $11000000.10101000.00010000.000000000 \ / \ 111111111.1111111.1111 \ 0000.000000000$

Administration and HR Department

Network: 192.168.16.0/25 Broadcast: 192.168.16.127

Devices Needed: 90

Allocated IP addresses for Hosts: 126

Finance Department

Network: 192.168.16.128/25 Broadcast: 192.168.16.255

Devices Needed: 90

Allocated IP addresses for Hosts: 126

Sales and Marketing Department

Network: 192.168.17.0/24 Broadcast: 192.168.17.255 Devices Needed: 200

Allocated IP Addresses for Hosts: 254

IT and Communications Department

Network: 192.168.18.0/24 Broadcast: 192.168.18.255 Devices Needed: 200

Allocated IP Addresses for Hosts: 254

Public Relations Department

Network: 192.168.19.0/25 Broadcast: 192.168.19.127

Devices Needed: 90

Allocated IP Addresses for Hosts: 126

Server Room

Network: 192.168.19.128/27 Broadcast: 192.168.19.159

Devices Needed: 20

Allocated IP Addresses for Hosts: 30

Wireless Network Information

Network: 192.168.20.0/22 Broadcast: 192.168.23.255 Devices Needed: 1000

Allocated IP Addresses for Hosts: 1022

3. Topology

- OSPF used as routing protocol on the routers and multi-layer switches.
- NAT configured on core router.
- Multi-layer switches configured for inter-VLAN routing.
- Ports between multi-layer switches and 2960 model switches configured as trunk ports.
- Ports between 2960 model switches and end-devices configured as access ports.
- Access Point has a password on WPA2-PSK Authentication. Since smart phone in public relations department doesn't have correct password, it's not connected to the wireless network.

4. Screenshots of Configurations

4.1. ISP Router

```
🌹 ISP
                                                                   ×
 Physical
        Config CLI Attributes
                             IOS Command Line Interface
 interface Serial0/1/0
  ip address 193.168.1.2 255.255.255.252
 interface Serial0/1/1
  no ip address
  clock rate 2000000
  shutdown
 interface Vlan1
  no ip address
  shutdown
 router ospf 10
  router-id 4.4.4.4
  log-adjacency-changes
  network 193.168.1.0 0.0.0.3 area 0
 ip classless
 ip flow-export version 9
  ı
 no cdp run
  ı
```

Figure 1: Statically typed IP addresses of Serial interfaces and OSPF configuration

4.2. Core Router

```
Core Router
                                                            - 🗆 X
 Physical Config CLI Attributes
                            IOS Command Line Interface
 interface GigabitEthernet0/0/0
  ip address 192.168.19.166 255.255.255.252
  ip nat inside
  duplex auto
  speed auto
 interface GigabitEthernet0/0/1
  ip address 192.168.19.170 255.255.255.252
  ip nat inside
  duplex auto
  speed auto
 interface Serial0/1/0
  ip address 193.168.1.1 255.255.255.252
  ip nat outside
  clock rate 64000
 interface Serial0/1/1
  no ip address
  clock rate 2000000
  shutdown
 interface Vlan1
  no ip address
  shutdown
```

Figure 2: Statically typed IP addresses

Figure 3: OSPF and NAT configuration

4.3. Multi-Layer Switches

Figure 4: Statically typed IP on Gig1/0/1 and trunk interfaces

Figure 5: inter-VLAN routing and IP DHCP helper-addresses

Figure 6: OSPF configuration

• Multi-layer S2 has similar configuration as Multilayer S1

4.4. Layer 2 Switches

Figure 7: Access and trunk ports

4.5. DHCP Server

Pool Name	Default Gateway	DNS Server	Start IP Address	Subnet Mask	Max User	TFTP Server	WLC Address
wirelesPool	192.168.19.161	192.168.19.131	192.168.20.6	255.255.252.0	1000	0.0.0.0	0.0.0.0
TandCommunicationsPool	192.168.18.1	192.168.19.131	192.168.18.6	255.255.255.0	200	0.0.0.0	0.0.0.0
publicRelationsPool	192.168.19.1	192.168.19.131	192.168.19.6	255.255.255.128	90	0.0.0.0	0.0.0.0
financePool	192.168.16.129	192.168.19.131	192.168.16.134	255.255.255.128	90	0.0.0.0	0.0.0.0
salesAndMarketingPool	192.168.17.1	192.168.19.131	192.168.17.6	255.255.255.0	200	0.0.0.0	0.0.0.0
adminAndHRPool	192.168.16.1	192.168.19.131	192.168.16.6	255.255.255.128	90	0.0.0.0	0.0.0.0
AdminPool	192.168.19.129	192.168.19.131	192.168.19.135	255.255.255.224	20	0.0.0.0	0.0.0.0

Figure 8: Pools of DHCP server

5. Testing

5.1. Testing DHCP

Figure 9: As soon as packet tracer opened all devices get IP addresses from DHCP server

5.2. Ping Testing

```
Cisco Packet Tracer PC Command Line 1.0 C:\>ping 192.168.18.6
Pinging 192.168.18.6 with 32 bytes of data:
Request timed out.
Reply from 192.168.18.6: bytes=32 time<1ms TTL=127
Reply from 192.168.18.6: bytes=32 time<1ms TTL=127
Reply from 192.168.18.6: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.18.6:
Packets: Sent = 4, Received = 3, Lost = 1 (25% loss), Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping 192.168.19.130
Pinging 192.168.19.130 with 32 bytes of data:
Reply from 192.168.19.130: bytes=32 time<1ms TTL=127
Reply from 192.168.19.130: bytes=32 time<1ms TTL=127 Reply from 192.168.19.130: bytes=32 time<1ms TTL=127
Reply from 192.168.19.130: bytes=32 time=1ms TTL=127
Ping statistics for 192.168.19.130:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>
```

Figure 10: First ping is from finance dep. to IT dept.

Second ping is from finance dept. to the DHCP server

5.3. Testing NAT

```
Router>
Router>
Router>en
Router#
Router#show ip nat translation
Pro Inside global
                                          Outside local
                                                              Outside global
                       Inside local
icmp 193.168.1.1:13
                       192.168.16.135:13
                                          193.168.1.2:13
                                                              193.168.1.2:13
icmp 193.168.1.1:14
                       192.168.16.135:14
                                          193.168.1.2:14
                                                              193.168.1.2:14
                                          193.168.1.2:15
                                                              193.168.1.2:15
icmp 193.168.1.1:15
                       192.168.16.135:15
icmp 193.168.1.1:16
                       192.168.16.135:16
                                          193.168.1.2:16
                                                              193.168.1.2:16
```

Figure 11: NAT translation in core router

5.4. Testing DNS

Figure 12: Searching www.test.com on a PC

Figure 13: Our query goes to the DNS server to get an IP address for specified domain