This notebook is an exercise in the <u>Data Visualization</u> course. You can reference the tutorial at <u>this link</u>.

In this exercise, you will use your new knowledge to propose a solution to a real-world scenario. To succeed, you will need to import data into Python, answer questions using the data, and generate **histograms** and **density plots** to understand patterns in the data.

Scenario

You'll work with a real-world dataset containing information collected from microscopic images of breast cancer tumors, similar to the image below.

Each tumor has been labeled as either <u>benign</u> (noncancerous) or **malignant** (cancerous).

To learn more about how this kind of data is used to create intelligent algorithms to classify tumors in medical settings, watch the short video at this link!

Setup

Run the next cell to import and configure the Python libraries that you need to complete the exercise.

```
In [ ]: import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print("Setup Complete")
```

The questions below will give you feedback on your work. Run the following cell to set up our feedback system.

```
In []: # Set up code checking
    import os
    if not os.path.exists("../input/cancer_b.csv"):
        os.symlink("../input/data-for-datavis/cancer_b.csv", "../input/cancer_b.csv")
        os.symlink("../input/data-for-datavis/cancer_m.csv", "../input/cancer_m.csv")
    from learntools.core import binder
    binder.bind(globals())
    from learntools.data_viz_to_coder.ex5 import *
    print("Setup Complete")
```

Step 1: Load the data

In this step, you will load two data files.

- Load the data file corresponding to **benign** tumors into a DataFrame called cancer_b_data. The corresponding filepath is cancer_b_filepath. Use the "Id" column to label the rows.
- Load the data file corresponding to malignant tumors into a DataFrame called cancer_m_data. The corresponding filepath is cancer_m_filepath. Use the "Id" column to label the rows.

Step 2: Review the data

Use a Python command to print the first 5 rows of the data for benign tumors.

```
In [ ]: # Print the first five rows of the (benign) data
____ # Your code here
cancer_b_data.head()
```

Use a Python command to print the first 5 rows of the data for malignant tumors.

```
In [ ]: # Print the first five rows of the (malignant) data
____ # Your code here
cancer_m_data.head()
```

In the datasets, each row corresponds to a different image. Each dataset has 31 different columns, corresponding to:

- 1 column ('Diagnosis') that classifies tumors as either benign (which appears in the dataset as **B**) or malignant (**M**), and
- 30 columns containing different measurements collected from the images.

Use the first 5 rows of the data (for benign and malignant tumors) to answer the questions below.

```
In [ ]: # Fill in the line below: In the first five rows of the data for benign
    tumors, what is the

# largest value for 'Perimeter (mean)'?
    max_perim = 87.46

# Fill in the line below: What is the value for 'Radius (mean)' for the
    tumor with Id 842517?
    mean_radius = 20.57

# Check your answers
    step_2.check()
In [ ]: # Lines below will give you a bint or solution code
```

Step 3: Investigating differences

Part A

Use the code cell below to create two histograms that show the distribution in values for 'Area (mean)' for both benign and malignant tumors. (*To permit easy comparison, create a single figure containing both histograms in the code cell below.*)

Part B

A researcher approaches you for help with identifying how the 'Area (mean)' column can be used to understand the difference between benign and malignant tumors. Based on the histograms above,

- Do malignant tumors have higher or lower values for 'Area (mean)' (relative to benign tumors), on average?
- Which tumor type seems to have a larger range of potential values?

```
In [ ]: #step_3.b.hint()
In [ ]: # Check your answer (Run this code cell to receive credit!)
step_3.b.solution()
```

Step 4: A very useful column

Part A

Use the code cell below to create two KDE plots that show the distribution in values for 'Radius (worst)' for both benign and malignant tumors. (*To permit easy comparison*,

create a single figure containing both KDE plots in the code cell below.)

Part B

A hospital has recently started using an algorithm that can diagnose tumors with high accuracy. Given a tumor with a value for 'Radius (worst)' of 25, do you think the algorithm is more likely to classify the tumor as benign or malignant?

```
In [ ]: #step_4.b.hint()
In [ ]: # Check your answer (Run this code cell to receive credit!)
step_4.b.solution()
```

Keep going

Review all that you've learned and explore how to further customize your plots in the <u>next</u> tutorial!

Have questions or comments? Visit the <u>Learn Discussion forum</u> to chat with other Learners.