1/1 ページ

PAGE 21/52

Searching PAJ

# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

10-304869

(43)Date of publication of application: 17.11.1998

(51)Int.Cl.

C12N 1/06 CO7H 21/00

C12N 15/09

(21)Application number: 09-117161

(71)Applicant : SANKO JUNYAKU KK

(22)Date of filing:

07.05.1997

(72)Inventor: USUI MITSUGI

HAKII CHIKAKO

KANEJIMA TOSHIHITO ASAI YOSHIYUKI

# (54) CYTOLYSIS OF ACID-FAST BACTERIA AND EXTRACTION OF NUCLEIC ACID

## (57)Abstract:

PROBLEM TO BE SOLVED: To decompose a lipid existing in the cell wall of acid-fast bacteria and lyse the cell by treating acid-fast bacteria with an enzymatic agent having lipid-cleaving activity and protein-decomposition activity.

SOLUTION: An acid-fast bacterium is treated with an enzymatic agent having lipid-cleaving activity and protein-decomposition activity. Preferably, the acid-fast bacterium is preparatorily treated with an enzymatic agent having protein-decomposition activity and then with an enzymatic agent having lipid- cleaving activity. The enzymatic agent having lipid-cleaving activity is preferably a lipase and the enzymatic agent having protein-decomposition activity is preferably one or more agents selected from trypsin, pronase, chymotrypsin, plasmin and subtilisin.

# **LEGAL STATUS**

[Date of request for examination]

10.03.1998

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

3093164 [Patent number] 28.07.2000 [Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

# (19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開發号

特開平10-304869

(43)公開日 平成10年(1998)11月17日

| (51) Int.Cl. <sup>4</sup> C 1 2 N 1/08 C 0 7 H 21/00 C 1 2 N 15/09 | 識別記号                | FI<br>C12N 1/06<br>C07H 21/00<br>C12N 15/00 A                                      |  |
|--------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------|--|
|                                                                    |                     | 審査請求 有 請求項の数5 〇L (全 7 頁)                                                           |  |
| (21)出願番号                                                           | <b>铃鹏平</b> 9-117161 | (71) 出國人 000175892<br>三光純美株式会社                                                     |  |
| (22) 出顧日                                                           | 平成9年(1997)5月7日      | 東京都千代田区岩本町 1 - 10 - 6<br>(72)発明者 寿井 貢<br>千葉県我孫子市安2 - 9 - 20 ライオンズ<br>マンション我孫子寿206号 |  |
|                                                                    |                     | (72)発明者 波木井 千雅子<br>神奈川県横浜市保土ヶ谷区法県 2-28-<br>23-111                                  |  |
|                                                                    |                     | (72)発明者 金島 才仁<br>茨城県取手市取手2-18-30 ルックハイ<br>ツ取手第2307号                                |  |
|                                                                    |                     | (74)代理人 弁理士 石原 昭二<br>最終頁に続く                                                        |  |

# (54)【発明の名称】 抗酸菌の細胞溶解方法及び核酸の抽出方法

### (57)【要約】

【目的】 有機溶剤処理や超音波処理による細胞破砕を 行わずに、脂質分解酵素を用いることにより抗酸菌の細 胞壁に存在する脂質を可溶化させて細胞を容易に溶解す ることができる抗酸菌の細胞溶解方法並びにこの方法を 用いて高い回収率で、しかも簡便、迅速、安全に核酸を 抽出することができる核酸の抽出方法を提供する。

【構成】 抗酸菌に脂質分解活性及び蛋白質分解活性を 含む酵素剤を作用させることにより、抗酸菌の細胞度に 存在する脂質を分解させ、細胞を溶解することを特徴と する抗酸菌の細胞溶解方法。

特勝平10-304869

(2)

# 【特許請求の範囲】

【請求項1】 抗酸菌に脂質分解活性及び蛋白質分解活性を含む酵素剤を作用させることにより、抗酸菌の細胞型に存在する脂質を分解させ、細胞を溶解することを特徴とする抗酸菌の細胞溶解方法。

【請求項2】 抗酸菌を予め蛋白質分解活性を含む酵素 剤で処理した後、脂質分解活性を含む酵素剤を作用させ ることにより抗酸菌の細胞壁に存在する脂質を分解さ せ、細胞を溶解することを特徴とする抗酸菌の細胞溶解 方法。

【請求項3】 脂質分解活性を含む酵素剤として、リパーゼを用いることを特徴とする請求項1又は2記載の抗酸腺の細胞溶解方法。

【請求項4】 蛋白質分解活性を含む酵素剤として、トリプシン、プロナーゼ、キモトリプシン、プラスミン及びズブチリシンからなる群から選ばれた1又は2以上の酵素剤を用いることを特徴とする請求項1~3のいずれか1項記載の抗酸歯の細胞溶解方法。

【請求項5】 請求項1~4のいずれか1項配載の抗酸 歯の細胞溶解方法を用いて核酸を抽出することを特徴と する核酸の抽出方法。

# 【発明の詳細な説明】

# [0001]

【発明の属する技術分野】本発明は培養した抗酸菌や血液、尿、髄液、痰、特液、細胞、組織、生検標本に存在する抗酸菌の細胞を簡単にかつ効率よく溶解する細胞溶解方法並びに当該細胞溶解方法を用いて抗酸菌から核酸を効率よく抽出する核酸の抽出方法に関するものである。

# [0002]

【従来の技術】近年、核酸プローブや遺伝子増幅法を用いた抗酸歯の研究や診断が急速に進歩し、抗酸歯からの核酸抽出がますます重要になってきた。しかし、抗酸歯が他の微生物に比べて細胞に脂質を多く含むことから、従来の核酸抽出方法では細胞を十分に溶解することができないため、高い回収率で核酸を抽出することが出来なかった。

【0003】核酸の抽出を行なうには通常基本的に4つの操作を行う必要がある。すなわち、① 細胞の溶解、② 除蛋白と脱炭水化物、②分離濃縮、④洗浄精製の4つの操作である。① 細胞の溶解にはリゾチーム、アクロモペアチダーゼなどの細胞壁溶解酵素やプロテインナーゼ K 等の蛋白分解酵素を用いたり、アルカリやSDS等の界面活性剤を用いて細胞を破壊する。

【0004】また結核菌やぶどう球菌等強固な細胞壁を持つ酸生物の場合、ビーズや超音波を用いて物理的に破壊させたりする。場合によってはこれに併用して細胞壁溶解酵素や蛋白分解酵素を作用させたり、アルカリや界面活性剤添加を組合わせて行う。

【0005】のの除蛋白と脱炭水化物については従来よ

りフェノール・クロロホルム法による抽出が最も多く使用されている。しかしこのフェノール・クロロホルム法は毒性が強いうえ時間と手間がかかるため大変扱いにくいという問題があった。そこで、本願出願人は生物材料から核酸を溶出するための前処理を行ったのち、この前処理した生物材料にチキソトロピック増粘剤を含む非親水性の高比重有機液体と水性液体を加えて混合し、遠心分離後、上層と下層の境界面に非流動性の凝集層を形成し、上層の核酸を分離抽出するようにした核酸の抽出方法、即ち相分配抽出法を提案し、特許を得ている(特許第2548494号)。

【0006】のの後に③分離濃縮操作においては、核酸を含む水性液体から100%のイソプロピルアルコール又は100%のエタノール等で核酸(DNA またはRNA)を沈設させて分離濃縮するが、従来の分離濃縮操作では、核酸を含む水性液体の塩濃度が高いため、この段階でイソプロピルアルコール(終濃度が50%)又はエタノール(終濃度が70%)等を加えても、核酸の沈設物が無色透明であるため確認できず、この段階で核酸沈設物を捨ててしまうことがあり、十分に核酸を回収することができなかった。

【0007】核酸の抽出効率と抽出の正確度は、第一に、この分離機構操作時の核酸と共沈剤をいかにもれなく回収するかに起因する。そこで、本願出願人は、イソプロピルアルコールやエタノール等によるでルコール沈殿による核酸を含む水性液体からの核酸の分離機縮操作の過程において、核酸と親和性を有し、逆転写反応と競合せず、PCR 反応を阻害しないで、テクニカルエラーを最小限に抑えるべく、白い沈殿物または青い沈殿物として目視を可能にすると同時に核酸の回収率を確実にする共沈剤及びその共沈剤を用いた核酸の抽出方法についても既に提案した(国際公開番号第W097/07207号)。

【0008】**の**洗浄精製においては、通常70%エタノールを用いて、分離濃縮された核酸から不純物を取り除き精製する。

【0009】特に、抗酸菌から核酸を抽出するためには、その細胞壁の溶解を目的に軽質石油などの有機溶剤処理による脂質除去やリゾチーム等の細胞溶解酵素を用いた方法、又は煮沸処理等があるが、いずれの方法でも抗酸菌の細胞を完全に溶解することができないため、時間がかかり、核酸の回収率も低かった。また、超音波発生機を用いた超音波処理による細胞破砕では、抽出した核酸の分解と実施者への飛沫感染等の問題があった。

#### [0010]

【発明が解決しようとする課題】本発明は、上記した従来の抗酸菌の細胞溶解処理における問題点に鑑みて発明されたもので、有機溶剤処理や超音波処理による細胞破砕を行わずに、脂質分解酵素を用いることにより抗酸菌の細胞壁に存在する脂質を可溶化させて細胞を容易に溶

特開平10-304869

(3)

解することができる抗酸菌の細胞溶解方法並びにこの方 法を用いて高い回収率で、しかも簡便、迅速、安全に核 酸を抽出することができる核酸の抽出方法を提供するこ とを目的とするものである。

#### [0011]

【課題を解決するための手段】上記の課題を解決するために、本発明の抗酸菌の細胞溶解方法の第1の態様は、抗酸菌に脂質分解活性及び蛋白質分解活性を含む酵素剤を作用させることにより、抗酸菌の細胞盤に存在する脂質を分解させ、細胞を溶解することを特徴とする。

【0012】本発明の抗酸菌の細胞溶解方法の第2の態機は、抗酸菌を予め蛋白質分解活性を含む酵素剤で処理した後、脂質分解活性を含む酵素剤を作用させることにより抗酸钠の細胞壁に存在する脂質を分解させ、細胞を溶解することを特徴とする。

【0013】本発明の構成をさらに具体的にいえば、脂質分解活性を含む酵素剤としてはリパーゼを使用して抗酸菌の細胞壁に存在する脂質を可溶化し、細胞を溶解する方法である。この方法によれば、抗酸菌の細胞を効率よく溶解することができ、したがって抗酸菌からの核酸抽出を容易に行なうことが可能となる。

【0014】本発明の最も好適な態機は、リバーゼの作用を増強させるために、抗酸菌を予めトリプシンやプロナーゼ等の蛋白分解活性を含む酵素剤で処理し、抗酸菌自身が保有するリバーゼの作用を阻害するリバーゼインヒビターの活性を阻害または失活させたのち、リバーゼを使用して抗酸菌の細胞壁に存在する脂質を可溶化し、細胞を溶解する方法である。この方法によれば、抗酸菌の細胞をさらに効率よく溶解することができ、したがって、抗酸菌からの核酸抽出を容易に行なうことが可能となる。

【0015】本発明の抗酸菌の細胞溶解方法は、好ましくは、抗酸菌からの核酸の抽出操作の前の段階、すなわち抗酸菌の細胞を溶解する操作において、脂質分解活性及び蛋白質分解活性を含む酵素剤、もしくは予め蛋白質分解活性を含む酵素剤で処理した後、脂質分解活性を含む酵素剤を、培養した抗酸菌や抗酸菌が存在する血液、尿、癥液、痰、精液、細胞、組織、生検療本等の生物材料に添加することによって行なわれる。

【0016】本発明において使用する脂質分解活性及び 蛋白質分解活性を含む酵素剤としては、リパーゼA〔天 野製薬(株)〕、リパーゼM〔天野製薬(株)〕、リパーゼF〔天野製薬(株)〕、リパーゼAY〔天野製薬 (株)〕、リパーゼPS〔天野製薬(株)〕、リパーゼ ドーAP15〔天野製薬(株)〕を使用することができ る・培養した抗酸菌や抗酸菌が存在する生物材料を予め 0.1%~10.0%(W/V)の範囲の濃度の除イオ ン性界面活性剤、又は非イオン性界面活性剤等を含む緩 衝液(pH5~9)中で前処理したのち、上記した酵素 剤を1単位/ml~1000000単位/ml、好ましくは 100単位/ml~10000単位/mlの濃度で使用するのが好適である。

【0017】脂質分解活性を含む酵素剤を用いる場合は、培養した抗酸酶や抗酸菌が存在する生物材料を予め0.1%~10.0%(W/V)の範囲の濃度の陰イオン性界面活性剤、又は非イオン性界面活性剤等を含む緩衝液(pH5~9)中で前処理したのち、1単位/ml~10000単位/ml、好ましくは100単位/ml~10000単位/mlの濃度の脂質分解酵素で処理するのが好適である。

【0018】最も好適には、上記した脳質分解活性を含む酵素剤を加える前に、培養した抗酸菌や抗酸菌が存在する生物材料に0.1 ms/ml~1000ms/mlの濃度の蛋白質分解活性を含む酵素剤の1又は2以上で処理したのち、1単位/ml~100000単位/ml、好ましくは100単位/ml~10000単位/mlの濃度の脂質分解活性を含む酵素剤で処理する。

【0019】本発明の核酸の抽出方法は、上記した抗酸菌の細胞溶解方法を細胞の溶解操作に適用するものである。この細胞溶解方法により抗酸菌の細胞壁に存在する脂質を可溶化したのち、抗酸菌から核酸を抽出するためには、キレート剤を含む緩衝液(pH5~9)中で前処理したのち、細胞膜または細胞壁等を破壊するために通常は約0.1%~20.0%(W/V)の範囲の濃度の陰イオン界面活性剤や非イオン性界面活性剤等の膜溶解剤と約1M~5Mの塩酸グアニジン等の蛋白変性剤で処理する。場合によっては、細胞膜や細胞壁等を破壊するための酵素によって処理してもよい。

【0020】上記した細胞膜や細胞壁等を破壊するための酵素として好適に用いられるものは、約1mm/mlから50mg/mlの濃度のリゾチーム、アクロモベプチダーゼ、リゾスタフィン、リチカーセ、ムタノリシン等の膜溶解剤、もしくは約10μg/mlから20mg/mlの濃度の蛋白変性剤、たとえばプロテアーゼk、プロナーゼ、ペプシン、パパイン等がある。

【0021】上記したような前処理を行うと、抗酸倒や抗酸菌が存在する生物材料は上記したキレート剤、膜溶解剤、蛋白変性卵等を含む水溶液に溶解し、この水溶液中には核酸と各種の生物物質が可溶化する。次に、抗酸歯の核酸と各種の生物物質が可溶化しているこの水溶液から、核酸を抽出するためには、フェノール/クロホルム抽出やチキソトロピック増粘剤を用いる相分配抽出法(特計第2548494号)、又はガラス等のシリカ表面上への固相吸着等の方法を適用することができる。また、分離機構操作時において前記した共沈剤を用いる方法(国際公開審号第W097/07207号)を適用することもできる。

【0022】本発明でいう抗酸酶としては、マイコバク テリウム・アフリカ、マイコバクテリウム・アビウム、

特開平10-304869

(4)

マイコバクテリウム・アビウム亜種アビウム、マイコバ クテリウム・アビウム亜種パラツベルクロシス、マイコ バクテリウム・アビウム亜種シルバティカム、マイコバ クテリウム・ボビス, マイコバクテリウム・ケローネ。 マイコバクテリウム・クキイイ,マイコバクテリウム・ フラベッセンス、マイコバクテリウム・フォーチェイタ ム、マイコバクテリウム・フォーチュイタム亜種アセタ ミドリチカム, マイコバクテリウム・ガストリ, マイコ バクテリウム・ゴルドネ、マイコバクテリウム・ヘモフ ィルム、マイコバクテリウム・イントラセルラー、マイ コバクテリウム・カンサシイ、マイコバクテリウム・レ プレ (痴菌), マイコバクテリウム・レプレムリウム (鼠瘌歯),マイコバクテリウム・マルモエンセ,マイ コバクテリウム・マリナム,マイコバクテリウム・ミク ロティ、マイコバクテリウム・モリオカエンセ、マイコ バクテリウム・ノンクロモジェニカム,マイコバクテリ ウム・フレイ (チモテ菌), マイコバクテリウム・ポリ フェレ, マイコバクテリウム・スクロフラセウム, マイ コバクテリウム・シミエ、マイコバクテリウム・スメグ マチス (スメグマ菌) 、マイコバクテリウム・シュルガ イ、マイコバクテリウム・テラエ、マイコバクテリウム トリビアーレ、マイコバクテリウム・ツベルクローシ ス (結核菌), マイコバクテリウム・ウルセランス, マ イコバクテリウム・バッカエ、マイコバクテリウム・ゼ ノピから選ばれる。

【0023】本発明で用いられる脂質分解活性を含む酵素剤としては、グリセロールエステルを加水分解し、脂肪酸を遊離する酵素、膵リパーゼ、リボプロテインリバーゼ、ヘパティックリパーゼ、ホルモンセンシティブリパーゼ、モノグリセリドリパーゼ、トリアシルグリセロールリパーゼ等のリバーゼやリパーゼ活性を持つエステラーゼ等を指す。

【0024】本発明で用いられる蛋白分解活性を含む酵 素剤としては、プロテアーゼ、プロナーゼ、トリプシン、キモトリプシン、プラスミン、ズブチリシン、ナガーゼ等がある。

【0025】脂質分解活性を含む酵素剤と蛋白分解活性を含む酵素剤を溶解する適当な水溶液には、0.1%~10.0%(W/V)の範囲の濃度の除イオン性界面活性剤、又は非イオン性界面活性剤等を含む蒸留水、または、T・Ebuffer(一般的には50mMのトリスレドロキシメチルアミノエタンー塩酸緩衝液pH8.0・20mMのEDTA)等の緩衝液や塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、酢酸ナトリウム、塩化アンモニウム、酢酸アンモニウム、硫酸アンモニウム等の無機塩およびその混合物があり、通常、約0.1M~10.0Mの範囲の濃度で使用する。

【0026】上記した陰イオン界面活性剤には、ラウリル錠酸ナトリウム、N-ラウロイルサルコシンナトリウ

ム, リン酸ラウリル, カプリレート塩, コレート塩, スルフォン酸デカン塩, デオキシコレート塩, グリココレート塩, グリコデオキシコレート塩, タウロコレート塩, タウロデオキシコレート塩等がある。

【0027】上記した適切な非イオン性界面活性剤には、Span20、Span40、Span60、Span60、Span65、Span85等のdーソルビトールの脂肪酸エステル類、Tween20、Tween21、Tween40、Tween60、Tween65、Tween80、Tween81、Tween85年のポリオキシエチレングリコールソルビタンアルキルエステル類、TritonX-100等のポリオキシエチレングリコールアーナーオクチルフェニルエーテル類等がある。

[0028]

【実施例】以下に、本発明の実施例を挙げて説明するが、本発明がこれらの実施例に限定されるものでないことは勿論である。

### 【0029】実施例1

小川培地にて2週間培養したマイコバクテリウム・アビウムを4.0mlのTE概価液(10mMのEDTA、25mMのトリスー塩酸:pH8.0)に懸濁し、クレット吸収試験管に1.0×10° cells /mlとなるように調製して被験協液とした。この被験協液に0.2%のTritonX-100を含む同緩衝液で調製した10mg/mlのリバーゼM(天野製薬(株)製)を0.5ml加え、50℃、60分間反応させた後、0.5mlの5Mのグアニジンチオシネート、5%のラウロイル・サルコシン・ナトリウム、25mMのクエン酸ナトリウムの溶液を加えて60℃、60分間の処理を行い、クレット光電光度計(富士工業株式会社製)を使って濁度を測定し、表1に示した。

【0030】対照には、リバーゼM〔天野製薬(株) 製〕を含まない同級債液を用いて同様の方法で実験した。結果は、リバーゼM〔天野製薬(株)製〕を作用させた実施例1の方が対照に比べて濁度が低かった。細胞が溶解することによって溶液の透明度が増し、濁度は低下する。即ち、濁度が低い程細胞溶解が進んでいることを示す、実施例1の濁度の数値は細胞溶解が充分に行われたことを示している。

# 【0031】比較例1

上記実施例1と比較するために、リバーゼM〔天野製薬 (株)〕の代わりにブタ膵リバーゼを用いて同様の方法で実験した。また、対照には、リバーゼM〔天野製薬 (株)〕を含まない同緩衝液を用いて同様の方法で実験した。結果を表1に示した。比較例1の場合、対照に比較して濁度が多少低下しているが、実施例1に比較すればはるかに高い濁度であり、細胞溶解が多少あったにしても充分に行われたとはいえない。

[0032]

(5)

特開平10-304869

【我1】

# 抗酸菌の細胞溶解

|      | 濁度(クレット単位) |     |  |
|------|------------|-----|--|
|      | 響素級加       | 対照  |  |
| 実施例1 | 5 1        | 9 0 |  |
| 比較例1 | 83         | 9 0 |  |

## 【0033】実施例2

小川培地にて2週間培養したマイコバクテリウム・イントラセルラーを滅菌生理食塩水等で1.2×10° cells/mlに調製し被酸菌液とした。この被酸菌液1mlをマイクロチューブ(1.5ml~2.0ml)に移し、1200回転、5分間の遠心分離で上清を除去して、菌体を500μ1の50mMのグルコース、10mMのEDTA(pH8.0)、25mMのトリスー塩酸(pH8.0)の緩衝液に懸濁し、5分間室温に放置した。放置後、50mg/mlの濃度のプロテアーゼで37℃、60分間の処理を行ったのち、12000回転、5分間の遠心分離で上清を除去した。

【0034】統いて、400μ1の0.2%のTritonX-100を含む上記の緩衝液で再懸濁し、50μ1の1000単位/mlのリポプロテインリパーゼと50μ1の1mg/mlの濃度のリゾチームを加え、37℃、60分間の処理を行い細胞壁を溶解した。

【0035】次に、細胞膜と蛋白質を変性させるために 5Mのグアニジンチオシネート、5%のラウロイル・サルコシン・ナトリウム、25mMのクエン酸ナトリウム の溶液を100μ1加えて60℃、60分間の処理を行ったのち、フェノール・クロロホルム・イソアミルアルコール(25:24:1, V/V)600μ1加え激しく振とうした後、12000回転で15分間遠心分離する。

【0036】核酸は水性液体層(上層)に、変性蛋白質は水性液体層と有機液体層(下層)との中間層に綿状の白い層をつくるので、その白い層を吸い込まないようにDNA層を注意深く口の広いピペットを用いて静かに吸い取り、新しいマイクロチューブに移した。600μ1の冷イソプロピルアルコールを加えよく混合した後、12000回転で15分間遠心して核酸を沈殿させ上清を除去した後、ペレットに1mlの70%のエタノールを加え12000回転で5分間遠心して上清を除去した。

【0037】この70%のエタノールによる核酸の沈殿操作を2回行ったのち、沈殿を乾燥させ、0.1×SSCを加えて核酸を溶解した。このときに抽出・精製した核酸の回収率と純度は分光光度計(HITACHIV-3200 Spectrophotometer)を使って、波長260nmの吸光度を測

定してDNA量を計算(OD $_{260}$  1.0のとき、 $50\mu$ g/ $_{10}$ のDNA量に相当する)して回収率を求めた。

【0038】また純度試験として波長280 nmと波長234 nmの吸光度を測定し、OD260 /OD260 の比率が1.65~1.85の範囲にあれば蛋白質等の混在はほとんどないものと判定し、OD220 /OD260 の比率が0.9以下であれば多糖類等の混在は少ないものと判定した。この時抽出・精製した核酸の回収率と純度の測定結果を表2に示した。表2から明らかなように、実施例2の回収率は比較例2の軽度石油を用いた方法に比べて約3倍となり極めて優れており、また純度においてもほぼ同等といえるものであった。

#### 【0039】比較例2

上記実施例2と比較するために、以下に配した従来公知 の軽質石油を用いた方法で実験した。

【0040】小川培地にて2週間培養したマイコバクテリウム・イントラセルラーを滅菌生理食塩水等で1.2×10° cells /mlに調製し被験菌液とした。この被験菌液1mlをマイクロチューブ(1.5ml~2.0ml)に移し、12000回転、5分間の遠心分離で上清を除去したのち、菌体を500μlの軽質石油:クロロホルム: 緩衝液(3:1:1)に懸濁し、ボルテックスミキサーを用いて15分間懸濁した。懸濁後、1mlの緩衝液を加えよく混和させたのち、12000回転、5分間の遠心分離で上清を除去した。

【0041】次いで、10mg/mlのナガーゼを加えて3 7℃、4時間の処理を行ったのち、50mg/mlのリゾチ ームを加えて50℃、4時間の処理を行った。

【0042】次に、1%のラウリル硫酸ナトリウムと3 W/mlのプロナーゼを加えて37℃、12時間の処理を行ったのち、フェノール・クロロホルム・イソアミルアルコール(25:24:1, V/V)600μ1加え激しく振とうした後、12000回転で15分間遠心分離する。核酸は水性液体層(上層)に、変性蛋白質は水性液体層と有機液体層(下層)との中間層に綿状の白い層をつくるので、その白い層を吸い込まないようにDNA層を注意深く口の広いピペットを用いて静かに吸い取り、新しいマイクロチューブに移した。

【0043】600以1の冷イソプロピルアルコールを

(6)

特願平10-304869

加えよく混合した後、12000回転で15分間違心して核酸を沈殿させ上清を除去した後、ペレットに1mlの70%のエタノールを加え12000回転で5分間違心して上清を除去した。この70%のエタノールによる核酸の沈殿操作を2回行ったのち、沈殿を乾燥させ、0.

1×SSCを加えて核酸を溶解した。この時抽出・精製した核酸の回収率と純度を実施例2と同様に測定し、表2に示した。

[0044]

【表2】

## 抗酸菌からの核酸抽出

|       | 回収率(μg) | 純定(Azza/260) | 純度(A <sub>200/200</sub> ) |
|-------|---------|--------------|---------------------------|
| 実施例 2 | 3 2     | 0. 64        | 2. 03                     |
| 比較例2  | 11      | 0. 97        | 1. 61                     |

# 【0045】実施例3

小川培地にて2週間培養したマイコバクテリウム・アビウムを減働生理食塩水等で6.4×10<sup>®</sup> cells /mlに調製し被験菌液とした。この被験菌液1mlをマイクロチューブ(1.5ml~2.0ml)に移し、12000回転、5分間の遠心分離で上滑を除去して、菌体を500μ1の100mMのEDTA(pH8.0)、50mMのトリスー塩酸(pH8.0)の緩衝液に懸濁し、5分間空温に放置した。放置後、50mg/mlの濃度のトリプシンで37℃、60分間の処理を行ったのち、12000回転、5分間の遠心分離で上滑を除去した。

[0046] 続いて、400µ1の0、2%のTween-20を含む上記の緩衝液で再懸濁し、50µ1の1 0000単位/mlのリパーゼと50µ1の1ms/mlの濃度のリゾチームを加え、45℃、30分間の処理を行い、細胞壁を溶解した。

【0047】次に、細胞膜と蛋白質を変性させるために 5Mのグアニジンチオシネート、10%のラウロイル・ サルコシン・ナトリウム、25mMのクエン酸ナトリウ ムの溶液を100μ1加えて60℃、60分間の処理を 行ったのち、2.7%(W/V)のBENTONE S D-3を含むクロロホルム:イソアミルアルコール(2 4:1,V/V)600μ1を加え激しく振とうした 後、12000回転で15分間違心分離した。

【0048】遠心分離後、上層(水性液体層)と下層 (高比重有機液体層)の境界面に非流動凝集層が形成されるので、マイクロチューブを傾斜(デカンテーション)させて上層のDNAを含む水性液体層を新しいマイクロチューブに移した。

【0049】水性液体層の1/10量に相当する量の3 Mの酢酸ナトリウムを加え、さらに同量のイソプロピル アルコールを加え軽く撹拌した後、12000回転で1 5分間遠心して核酸を沈殿させ、デカンテーションで静 かに上清を除去した後、ペレットに70%のエタノール 1 mlを静かに加え120.00回転で5分間遠心してデカ ンテーションで静かに上清を除去し、乾燥させた後、 O. 1×SSCを加えて核酸を溶解した。

【0050】この時抽出・精製した核酸の回収率と純度を実施例2と同様に測定し、表3に示した。この時抽出・精製した核酸の回収率と純度は、表3から明らかなように比較例3の煮沸・超音波法を用いた方法と同等の成績であった。

# 【0051】比較例3

上記実施例3と比較するために、以下に記した従来公知 の煮沸・超音波法を用いた方法で実験した。

【0052】小川培地にて2週間培養したマイコバクテリウム・アビウムを滅菌生理食塩水等で6.4×10<sup>8</sup> cells /mlに調製し被験菌液とした。この核験菌液1mlをマイクロチューブ(1.5ml~2.0ml)に移し、100℃で10分間煮沸したのち、40μgのプロテイネースKと0.5%のTween 20、及びガラスビーズを加え、37℃、30分間の処理を行った。

【0053】続いて、60℃で20分間の超音波処理を行ったのち、フェノール・クロロホルム・イソアミルアルコール(25:24:1, V/V)600μ1を加え激しく振とうした後、12000回転で15分間遠心分離する。核酸は水性液体層(上層)に、変性蛋白質は水性液体層と有機液体層(下層)との中間圏に綿状の白い層をつくるので、その白い層を吸い込まないようにDNA層を注意深く口の広いピペットを用いて静かに吸い取り、新しいマイクロチューブに移した。

【0054】600×1の冷イソプロピルアルコールを加えよく混合した後、12000回転で15分間遠心して核酸を沈殿させ上清を除去した後、ペレットに1㎡の70%のエタノールを加え12000回転で5分間遠心して上清を除去した。この70%のエタノールによる核酸の沈殿操作を2回行ったのち、沈殿を乾燥させ、0.1×SSCを加えて核酸を溶解した。この時抽出、精製した核酸の回収率と純度を実施例2と同様に測定し、表3に示した。

[0055]

【表3】

(7)

特開平10-304869

# 抗酸菌からの核酸抽出

|      | 回収率(μg) | 純度(Az 34/260) | 純度(A:10/210) |
|------|---------|---------------|--------------|
| 実施例3 | 2 1     | 0.64          | 2. 01        |
| 比較例3 | 2 1     | 0.97          | 1. 89        |

[0056]

【発明の効果】以上述べたように、本発明によれば、回 収率の低い有機溶剤処理を用いた方法や実験者への感染 の恐れがある超音波処理による細胞破砕を行わずに、脂 質分解酵素を有効に用いることにより抗酸菌の細胞壁に 存在する脂質を可溶化させて細胞を容易に溶解し、高い 回収率で、しかも簡便・迅速・安全に核酸を抽出すると いう大きな効果が達成される。

フロントページの続き

(72)発明者 浅井 藝征 埼玉県与野市上落合神明494-4