NAVEENA K N

USN: 1BM20CS411

MACHINE LEARNING

Lab Programs

1) Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

```
import csv
def updatehypothesis(x,h):
if h == []:
for i in range(0, len(x)):
h.append("$")
print("Initial State : ", h)
return x
for i in range(0, len(x)):
if x[i].upper() != h[i].upper() :
h[i] = "?"
print("Most Specific Hypothesis: ", h)
return h
if __name__ == "__main__":
data = []
h = []
with open('datasheet1.csv','r') as file:
reader = csv.reader(file)
print("Data Set : ")
for row in reader:
data.append(row)
print(row)
if data:
for x in data:
if x[-1].upper() == "YES":
x.pop()
```

```
h = updatehypothesis(x,h)
print("Maximally Specific Hypothesis: ", h)
```

```
['sky', 'airtemp', 'humidity', 'wind', 'water', 'forecast', 'enjoysport']
['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes']
['sunny', 'warm', 'high', 'strong', 'warm', 'change', 'no']
['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'yes']
['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']
Initial State : ['$', '$', '$', '$', '$', '$']
Most Specific Hypothesis : ['sunny', 'warm', '?', 'strong', 'warm', 'same']
Most Specific Hypothesis : ['sunny', 'warm', '?', 'strong', '?', '?']
Maximally Specific Hypothesis : ['sunny', 'warm', '?', 'strong', '?', '?']
```

2) For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
import csv
a=[]
with open('datasheet1.csv','r') as csvfile:
for row in csv.reader(csvfile):
a.append(row)
print(a)
print("")
num_attributes = len(a[0])-1
s=['0']*num_attributes
g=[["?" for i in range(len(s))] for i in range(len(s))]
for i in range(0,len(a)):
if a[i][num_attributes]=='yes':
for j in range(0,num_attributes):
if s[j] == 0' or s[j] == a[i][j]:
s[j]=a[i][j]
else:
s[i]='?'
else:
for j in range(0,num_attributes):
if(s[j] == a[i][j] \text{ or } s[j] == '?'):
g[j][j]='?'
continue
else:
g[i][i] = s[i]
for j in range(0,num_attributes):
if s[j]!=g[j][j] or s[j]=='?':
g[j][j]='?'
```

```
indices = [i for i, val in enumerate(g) if val == ['?', '?', '?', '?', '?', '?', '?']]
for i in indices:
g.remove(['?', '?', '?', '?', '?'])
print("Specific hypothesis:",s)
print("General hypothesis:",g)
```

```
[['sky', 'airtemp', 'humidity', 'wind', 'water', 'forecast', 'enjoysport'],
['sunny', 'warm', 'normal', 'strong', 'warm', 'same', 'yes'],
['sunny', 'warm', 'high', 'strong', 'warm', 'same', 'yes'],
['rainy', 'cold', 'high', 'strong', 'warm', 'change', 'no'],
['sunny', 'warm', 'high', 'strong', 'cool', 'change', 'yes']]

Specific hypothesis: ['sunny', 'warm', '?', 'strong', '?', '?']
General hypothesis: [['sunny', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?']]
```

3) Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
import math
import csv
def load_csv(id3):
lines=csv.reader(open('../input/mlid3/id3.csv',"r"));
dataset = list(lines)
headers = dataset.pop(0)
return dataset, headers
class Node:
def __init__(self,attribute):
self.attribute=attribute
self.children=[]
self.answer=""
def subtables(data,col,delete):
dic={}
coldata=[row[col] for row in data]
attr=list(set(coldata))
counts=[0]*len(attr)
r=len(data)
c=len(data[0])
for x in range(len(attr)):
for y in range(r):
if data[y][col]==attr[x]:
counts[x]+=1
for x in range(len(attr)):
dic[attr[x]]=[[0 for i in range(c)] for j in range(counts[x])]
pos=0
for y in range(r):
if data[y][col]==attr[x]:
```

```
if delete:
del data[y][col]
dic[attr[x]][pos]=data[y]
pos+=1
return attr,dic
def entropy(S):
attr=list(set(S))
if len(attr)==1:
return 0
counts=[0,0]
for i in range(2):
counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
sums=0
for cnt in counts:
sums+=-1*cnt*math.log(cnt,2)
return sums
def compute_gain(data,col):
attr,dic = subtables(data,col,delete=False)
total_size=len(data)
entropies=[0]*len(attr)
ratio=[0]*len(attr)
total_entropy=entropy([row[-1] for row in data])
for x in range(len(attr)):
ratio[x]=len(dic[attr[x]])/(total_size*1.0)
entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
total_entropy-=ratio[x]*entropies[x]
return total_entropy
def build_tree(data,features):
lastcol=[row[-1] for row in data]
```

```
if(len(set(lastcol)))==1:
node=Node("")
node.answer=lastcol[0]
return node
n=len(data[0])-1
gains=[0]*n
for col in range(n):
gains[col]=compute_gain(data,col)
split=gains.index(max(gains))
node=Node(features[split])
fea = features[:split]+features[split+1:]
attr,dic=subtables(data,split,delete=True)
for x in range(len(attr)):
child=build_tree(dic[attr[x]],fea)
node.children.append((attr[x],child))
return node
def print_tree(node,level):
if node.answer!="":
print(" "*level,node.answer)
return
print(" "*level,node.attribute)
for value,n in node.children:
print(" "*(level+1),value)
print_tree(n,level+2)
def classify(node,x_test,features):
if node.answer!="":
print(node.answer)
return
pos=features.index(node.attribute)
for value, n in node.children:
```

```
if x_test[pos]==value:
classify(n,x_test,features)
dataset,features=load_csv("../input/mlid3/id3.csv")
node1=build_tree(dataset,features)
print("The decision tree for the dataset using ID3 algorithm is")
print_tree(node1,0)
# testdata,features=load_csv("../input/playtennis/ID3.csv")
# print(features,"\n\n",testdata)
# for xtest in testdata:
# print("The test instance:",xtest)
# print("The label for test instance:",end=" ")
# classify(node1,xtest,features)
```

Dataset:

1	Outlook	Temperature	Humidity	Wind	Answer
2	sunny	hot	high	weak	no
3	sunny	hot	high	strong	no
4	overcast	hot	high	weak	yes
5	rain	mild	high	weak	yes
6	rain	cool	normal	weak	yes
7	rain	cool	normal	strong	no
8	overcast	cool	normal	strong	yes
9	sunny	mild	high	weak	no
10	sunny	cool	normal	weak	yes
11	rain	mild	normal	weak	yes
12	sunny	mild	normal	strong	yes
13	overcast	mild	high	strong	yes
14	overcast	hot	normal	weak	yes
15	rain	mild	high	strong	no

```
The decision tree for the dataset using ID3 algorithm is
Outlook
sunny
Humidity
normal
yes
high
no
overcast
yes
rain
Wind
strong
no
weak
yes
```

4) Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.

```
import pandas as pd
data = pd.read_csv('../input/playtennisnb/PlayTennis.csv')
data.head()
y = list(data['PlayTennis'].values)
X = data.iloc[:,1:].values
print(f'Target Values: {y}')
print(f'Features: \n{X}')
y_{train} = y[:8]
y_val = y[8:]
X_{train} = X[:8]
X_{val} = X[8:]
print(f"Number of instances in training set: {len(X_train)}")
print(f"Number of instances in testing set: {len(X_val)}")
class NaiveBayesClassifier:
def __init__(self, X, y):
self.X, self.y = X, y
self.N = len(self.X)
self.dim = len(self.X[0])
self.attrs = [[] for _ in range(self.dim)]
self.output_dom = { }
self.data = []
for i in range(len(self.X)):
for j in range(self.dim):
if not self.X[i][j] in self.attrs[j]:
self.attrs[j].append(self.X[i][j])
if not self.y[i] in self.output_dom.keys():
self.output\_dom[self.y[i]] = 1
else:
self.output_dom[self.y[i]] += 1
```

```
self.data.append([self.X[i], self.y[i]]) \\
def classify(self, entry):
solve = None
max\_arg = -1
for y in self.output_dom.keys():
prob = self.output_dom[y]/self.N
for i in range(self.dim):
cases = [x \text{ for } x \text{ in self.data if } x[0][i] == \text{entry}[i] \text{ and } x[1] == y]
n = len(cases)
prob *= n/self.N
if prob > max_arg:
max\_arg = prob
solve = y
return solve
nbc = NaiveBayesClassifier(X_train, y_train)
total\_cases = len(y\_val)
good = 0
bad = 0
predictions = []
for i in range(total_cases):
predict = nbc.classify(X_val[i])
predictions.append(predict)
if y_val[i] == predict:
good += 1
else:
bad += 1
print('Predicted values:', predictions)
print('Actual values:', y_val)
print()
print('Total number of testing instances in the dataset:', total_cases)
print('Number of correct predictions:', good)
print('Number of wrong predictions:', bad)
```

print()

print('Accuracy of Bayes Classifier:', good/total_cases)

Dataset:

1	PlayTennis	Outlook	Temperature	Humidity	Wind
2	No	Sunny	Hot	High	Weak
3	No	Sunny	Hot	High	Strong
4	Yes	Overcast	Hot	High	Weak
5	Yes	Rain	Mild	High	Weak
6	Yes	Rain	Cool	Normal	Weak
7	No	Rain	Cool	Normal	Strong
8	Yes	Overcast	Cool	Normal	Strong
9	No	Sunny	Mild	High	Weak
10	Yes	Sunny	Cool	Normal	Weak
11	Yes	Rain	Mild	Normal	Weak
12	Yes	Sunny	Mild	Normal	Strong
13	Yes	Overcast	Mild	High	Strong
14	Yes	Overcast	Hot	Normal	Weak
15	No	Rain	Mild	High	Strong

```
some code at the bottom of this console and press [Enter].
  PlayTennis Outlook Temperature Humidity Wind
          No Sunny Hot High Weak
No Sunny Hot High Strong
Yes Overcast Hot High Weak
Yes Rain Mild High Weak
Yes Rain Cool Normal Weak
Target Values: ['No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No']
Features:
[['Sunny' 'Hot' 'High' 'Weak']
 ['Sunny' 'Hot' 'High' 'Strong']
['Overcast' 'Hot' 'High' 'Weak']
  ['Rain' 'Mild' 'High' 'Weak']
  ['Rain' 'Cool' 'Normal' 'Weak']
  ['Rain' 'Cool' 'Normal' 'Strong']
  ['Overcast' 'Cool' 'Normal' 'Strong']
 ['Sunny' 'Mild' 'High' 'Weak']
['Sunny' 'Cool' 'Normal' 'Weak']
  ['Rain' 'Mild' 'Normal' 'Weak']
  ['Sunny' 'Mild' 'Normal' 'Strong']
  ['Overcast' 'Mild' 'High' 'Strong']
['Overcast' 'Hot' 'Normal' 'Weak']
 ['Rain' 'Mild' 'High' 'Strong']]
Number of instances in training set: 8
Number of instances in testing set: 6
Predicted values: ['No', 'Yes', 'No', 'Yes', 'Yes', 'No']
Actual values: ['Yes', 'Yes', 'Yes', 'Yes', 'No']
Total number of testing instances in the dataset: 6
Number of correct predictions: 4
Number of wrong predictions: 2
Accuracy of Bayes Classifier: 0.666666666666666
```

5) Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('../input/salarydata/salaryData.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/3, random_state=0)
# Fitting Simple Linear Regression to the Training set
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Visualizing the Training set results
viz_train = plt
viz_train.scatter(X_train, y_train, color='green')
viz_train.plot(X_train, regressor.predict(X_train), color='black')
viz_train.title('Salary VS Experience (Training set)')
viz_train.xlabel('Year of Experience')
viz_train.ylabel('Salary')
viz train.show()
# Visualizing the Test set results
viz\_test = plt
viz_test.scatter(X_test, y_test, color='green')
viz_test.plot(X_train, regressor.predict(X_train), color='black')
viz_test.title('Salary VS Experience (Test set)')
viz_test.xlabel('Year of Experience')
viz_test.ylabel('Salary')
viz_test.show()
```

Dataset:

1	VearsExperience	Salary
	1.1	39343
	13	46205
4	15	37731
5	20	43525
6	22	39891
7	2.9	56642
8	3.0	60150
9	32	54445
10	32	64445
11	3.7	57189
12	3.9	63218
13	4.0	55794
14	4.0	56957
15	4.1	57081
16	45	61111
17	49	67938
18	5.1	66029
19	53	83088
28	5.9	81363
21	6.0	93940
22	6.8	91738
23	7.1	98273
24	7.9	101302
25	8.2	113812
26	8.7	109431
27	9.0	105582
28	9.5	116969
29	9.6	112635
38	10.3	122391
31	10.5	121872

6) Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

```
!pip install pgmpy
# Starting with defining the network structure
from pgmpy.models import BayesianModel
from pgmpy.factors.discrete import TabularCPD
from pgmpy.inference import VariableElimination
#Define a Structure with nodes and edges
cancer_model = BayesianModel([('Pollution', 'Cancer'),
                  ('Smoker', 'Cancer'),
                  ('Cancer', 'Xray'),
                  ('Cancer', 'Dyspnoea')])
print('Bayesian network nodes:')
print('\t', cancer_model.nodes())
print('Bayesian network edges:')
print('\t', cancer_model.edges())
cpd_poll = TabularCPD(variable='Pollution', variable_card=2,
             values=[[0.9], [0.1]])
cpd_smoke = TabularCPD(variable='Smoker', variable_card=2,
              values=[[0.3], [0.7]])
cpd_cancer = TabularCPD(variable='Cancer', variable_card=2,
              values=[[0.03, 0.05, 0.001, 0.02],
                   [0.97, 0.95, 0.999, 0.98]],
              evidence=['Smoker', 'Pollution'],
              evidence_card=[2, 2])
cpd_xray = TabularCPD(variable='Xray', variable_card=2,
             values=[[0.9, 0.2], [0.1, 0.8]],
             evidence=['Cancer'], evidence_card=[2])
cpd_dysp = TabularCPD(variable='Dyspnoea', variable_card=2,
             values=[[0.65, 0.3], [0.35, 0.7]],
             evidence=['Cancer'], evidence_card=[2])
```

```
# Associating the parameters with the model structure.
cancer_model.add_cpds(cpd_poll, cpd_smoke, cpd_cancer, cpd_xray, cpd_dysp)
print('Model generated bt adding conditional probability distribution(cpds)')
# Checking if the cpds are valid for the model.
print('Checking for Correctness of model:', end=")
print(cancer_model.check_model())
"'print('All local dependencies are as follows')
cancer_model.get_independencies()
print('Displaying CPDs')
print(cancer_model.get_cpds('Pollution'))
print(cancer_model.get_cpds('Smoker'))
print(cancer_model.get_cpds('Cancer'))
print(cancer_model.get_cpds('Xray'))
print(cancer_model.get_cpds('Dyspnoea'))
cancer_infer = VariableElimination(cancer_model)
print('\nInferencing with Bayesian Network')
print('\nProbability of Cancer given Smoker')
q = cancer_infer.query(variables=['Cancer'], evidence={'Smoker': 1})
print(q)
print('\nProbability of Cancer given Smoker, Pollution')
q = cancer_infer.query(variables=['Cancer'], evidence={'Smoker': 1,'Pollution': 1})
print(q)
"cells": [
  "cell_type": "code",
```

```
"execution_count": 1,
"id": "144c0515",
"metadata": { },
"outputs": [
    {
        "name": "stdout",
        "output_type": "stream",
        "text": [
```

"Requirement already satisfied: pgmpy in c:\\programdata\\anaconda3\\lib\\site-packages (0.1.18)\\n",

"Requirement already satisfied: statsmodels in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (0.12.2)\n",

"Requirement already satisfied: pandas in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (1.3.4)\n",

"Requirement already satisfied: numpy in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (1.20.3)\n",

"Requirement already satisfied: tqdm in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (4.62.3)\n",

"Requirement already satisfied: networkx in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (2.6.3)\n",

"Requirement already satisfied: pyparsing in c:\\programdata\\anaconda3\\\lib\\site-packages (from pgmpy) (3.0.4)\\n",

"Requirement already satisfied: scikit-learn in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (0.24.2)\n",

"Requirement already satisfied: joblib in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (1.1.0)\n",

"Requirement already satisfied: torch in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) (1.11.0)\n",

"Requirement already satisfied: scipy in c:\\programdata\\anaconda3\\lib\\site-packages (from pgmpy) $(1.7.1)\n$ ",

"Requirement already satisfied: python-dateutil>=2.7.3 in c:\programdata\\anaconda3\\lib\\site-packages (from pandas->pgmpy) $(2.8.2)\n$ ",

"Requirement already satisfied: pytz>=2017.3 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas->pgmpy) (2021.3)\n",

"Requirement already satisfied: six>=1.5 in c:\\programdata\\anaconda3\\\lib\\site-packages (from python-dateutil>=2.7.3->pandas->pgmpy) (1.16.0)\\n",

"Requirement already satisfied: threadpoolctl>=2.0.0 in c:\programdata\\anaconda3\\lib\\site-packages (from scikit-learn->pgmpy) (2.2.0)\n",

"Requirement already satisfied: patsy>=0.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from statsmodels->pgmpy) $(0.5.2)\n$ ",

"Requirement already satisfied: typing-extensions in c:\\programdata\\anaconda3\\lib\\site-packages (from torch->pgmpy) (3.10.0.2)\n",

"Requirement already satisfied: colorama in c:\\programdata\\anaconda3\\lib\\site-packages (from tqdm->pgmpy) $(0.4.4)\n$ "

```
1
  }
 ],
  "source": [
  "!pip install pgmpy"
 ]
 },
  "cell_type": "code",
 "execution count": 2,
  "id": "66f84fa3",
  "metadata": {},
  "outputs": [
   "name": "stdout",
   "output_type": "stream",
   "text": [
   "Bayesian network nodes:\n",
   "\t ['Pollution', 'Cancer', 'Smoker', 'Xray', 'Dyspnoea']\n",
   "Bayesian network edges:\n",
    "\t [('Pollution', 'Cancer'), ('Cancer', 'Xray'), ('Cancer', 'Dyspnoea'), ('Smoker',
'Cancer')]\n"
   ]
  },
   "name": "stderr",
```

```
"output_type": "stream",
   "text": [
   "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\pgmpy\\models\\BayesianModel.py:8:
FutureWarning: BayesianModel has been renamed to BayesianNetwork. Please use
BayesianNetwork class, BayesianModel will be removed in future.\n",
   " warnings.warn(\n"
  1
  1,
  "source": [
  "# Starting with defining the network structure\n",
  "from pgmpy.models import BayesianModel\n",
  "from pgmpy.factors.discrete import TabularCPD\n",
  "from pgmpy.inference import VariableElimination\n",
  "\n",
  "#Define a Structure with nodes and edges\n",
  "cancer_model = BayesianModel([('Pollution', 'Cancer'), \n",
                     ('Smoker', 'Cancer'),\n",
                     ('Cancer', 'Xray'),\n",
                     ('Cancer', 'Dyspnoea')])\n",
  "print('Bayesian network nodes:')\n",
  "print('\\t', cancer_model.nodes())\n",
  "print('Bayesian network edges:')\n",
  "print('\\t', cancer_model.edges())"
 },
  "cell_type": "code",
  "execution_count": 3,
  "id": "fa388cca",
  "metadata": {},
  "outputs": [],
  "source": [
```

```
"cpd_poll = TabularCPD(variable='Pollution', variable_card=2,\n",
               values=[[0.9], [0.1]]\n",
"cpd_smoke = TabularCPD(variable='Smoker', variable_card=2,\n",
               values=[[0.3], [0.7]]\n'',
"cpd_cancer = TabularCPD(variable='Cancer', variable_card=2,\n",
                values=[[0.03, 0.05, 0.001, 0.02],\n",
                     [0.97, 0.95, 0.999, 0.98]], n",
                evidence=['Smoker', 'Pollution'],\n",
                evidence_card=[2, 2])\n",
"cpd_xray = TabularCPD(variable='Xray', variable_card=2,\n",
               values=[[0.9, 0.2], [0.1, 0.8]],\n",
               evidence=['Cancer'], evidence_card=[2])\n",
"cpd_dysp = TabularCPD(variable='Dyspnoea', variable_card=2,\n",
               values=[[0.65, 0.3], [0.35, 0.7]],\n",
               evidence=['Cancer'], evidence_card=[2])"
1
"cell_type": "code",
"execution_count": 4,
"id": "93abdbbe",
"metadata": {},
"outputs": [
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Model generated bt adding conditional probability distribution(cpds)\n",
 "Checking for Correctness of model:True\n"
 ]
}
],
```

```
"source": [
"# Associating the parameters with the model structure.\n",
"cancer_model.add_cpds(cpd_poll, cpd_smoke, cpd_cancer, cpd_xray, cpd_dysp)\n",
"print('Model generated bt adding conditional probability distribution(cpds)')\n",
"\n",
"# Checking if the cpds are valid for the model.\n",
"print('Checking for Correctness of model:', end=")\n",
"print(cancer_model.check_model())"
"cell_type": "code",
"execution_count": 5,
"id": "b080e129",
"metadata": {},
"outputs": [
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Displaying CPDs\n",
 "+----+\n",
 "| Pollution(0) | 0.9 |\n",
 "+----+\n",
 "| Pollution(1) | 0.1 \mid n",
 "+----+\n",
 "+----+\n",
 "| Smoker(0) | 0.3 | n",
 "+----+\n",
 "| Smoker(1) | 0.7 | n",
 "+----+\n",
 "+-----+\n",
```

```
"| Smoker | Smoker(0) | Smoker(1) | Smoker(1) | \n",
 "+-----+\n",
 "| Pollution | Pollution(0) | Pollution(1) | Pollution(0) | Pollution(1) |\n",
 "+-----+\n",
                                     |n"
 "| Cancer(0) | 0.03 | 0.05 | 0.001 | 0.02
 "+-----+\n",
 "| Cancer(1) | 0.97 | 0.95 | 0.999
                             | 0.98
                                     |\n",
 "+-----+\n",
 "+----+\n".
 "| Cancer | Cancer(0) | Cancer(1) |\n",
 "+----+\n",
 "| Xray(0) | 0.9 | 0.2
                  |n''|
 "+-----+\n",
 "| Xray(1) | 0.1 | 0.8
                  |n''|
 "+-----+\n",
 "+----+\n",
 "| Cancer
       | \operatorname{Cancer}(0) | \operatorname{Cancer}(1) | n'',
 "+-----+\n".
 "| Dyspnoea(0) | 0.65 | 0.3
 "+-----+\n",
 "| Dyspnoea(1) | 0.35 | 0.7
 "+-----+\n"
]
],
"source": [
""'print('All local dependencies are as follows')\n",
"cancer_model.get_independencies()\n",
""\n",
"\n",
"print('Displaying CPDs')\n",
"print(cancer_model.get_cpds('Pollution'))\n",
```

```
"print(cancer_model.get_cpds('Smoker'))\n",
 "print(cancer_model.get_cpds('Cancer'))\n",
 "print(cancer_model.get_cpds('Xray'))\n",
 "print(cancer_model.get_cpds('Dyspnoea'))"
]
},
"cell_type": "code",
"execution_count": 6,
"id": "8f31415d",
"metadata": {},
"outputs": [
 "name": "stdout",
 "output_type": "stream",
 "text": [
  "\n",
  "Inferencing with Bayesian Network\n",
  "\n",
  "Probability of Cancer given Smoker\n"
 ]
 },
 "data": {
  "application/vnd.jupyter.widget-view+json": {
  "model_id": "36579805e76f4cb382138d7fc144b2e0",
   "version_major": 2,
  "version_minor": 0
  },
  "text/plain": [
  " 0%|
              | 0/1 [00:00<?, ?it/s]"
  ]
```

```
},
"metadata": {},
"output_type": "display_data"
},
"data": {
"application/vnd.jupyter.widget-view+json": {
 "model_id": "127dc5ef57d24fa2a8ec5ff86fd500b4",
 "version_major": 2,
 "version_minor": 0
 },
"text/plain": [
 " 0%| | 0/1 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
"name": "stdout",
"output_type": "stream",
"text": [
"+----+\n",
"| Cancer | phi(Cancer) |\n",
"+=====+\n",
"| Cancer(0) | 0.0029 |\n",
"+----+\n",
"| Cancer(1) | 0.9971 |\n",
"+----+\n",
"Probability of Cancer given Smoker, Pollution\n"
]
```

```
},
"data": {
 "application/vnd.jupyter.widget-view+json": {
 "model_id": "cb7a2f59cfc244c0bde73db7f9e8c1c7",
 "version_major": 2,
 "version_minor": 0
 },
 "text/plain": [
 "0it [00:00, ?it/s]"
 ]
},
"metadata": {},
"output_type": "display_data"
},
"data": {
 "application/vnd.jupyter.widget-view+json": {
 "model_id": "3482095f6cb441099263051c952a49c7",
 "version_major": 2,
 "version_minor": 0
 },
 "text/plain": [
 "0it [00:00, ?it/s]"
 ]
},
"metadata": {},
"output_type": "display_data"
},
"name": "stdout",
"output_type": "stream",
```

```
"text": [
  "+----+\n",
 "| Cancer | phi(Cancer) |\n",
 "+=====+\n",
 "| Cancer(0) | 0.0200 |\n",
  "+----+\n",
 "| Cancer(1) | 0.9800 |\n",
 "+-----\n"
 ]
],
"source": [
"cancer_infer = VariableElimination(cancer_model)\n",
"print('\\nInferencing with Bayesian Network')\n",
"\n",
"print("\nProbability of Cancer given Smoker')\n",
"q = cancer_infer.query(variables=['Cancer'], evidence={'Smoker': 1})\n",
"print(q)\n",
"\n",
"print("\\nProbability of Cancer given Smoker, Pollution')\n",
"q = cancer_infer.query(variables=['Cancer'], evidence={'Smoker': 1,'Pollution': 1})\n",
"print(q)"
]
},
"cell_type": "code",
"execution_count": null,
"id": "84bf83e4",
"metadata": {},
"outputs": [],
"source": []
}
```

```
],
"metadata": {
"kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
"language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.9.7"
},
"nbformat": 4,
"nbformat_minor": 5
```

```
7) Apply k-Means algorithm to cluster a set of data stored in a .CSV file.
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('Desktop/Mall_Customers.csv')
df.head()
df.describe()
df.isnull().sum() # to check for missing data
df.shape
sns.countplot(df['Gender'])
sns.distplot(df['Age'])
sns.distplot(df['Annual Income (k$)'])
sns.distplot(df['Spending Score (1-100)'])
# Elbow method to find the optimal number of Clusters
data=df.iloc[:,[3,4]].values
from sklearn.cluster import KMeans
wcss=[] # within cluster sum of square
for i in range(1,11):
  kmeans=KMeans(n_clusters=i, init='k-means++',random_state=0)
  kmeans.fit(data)
  wcss.append(kmeans.inertia_) #inertia_ = to find the wcss value
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
kmeans=KMeans(n_clusters=5,init='k-means++',random_state=0)
y_kmeans=kmeans.fit_predict(data)
#plotting the the clusters
fig,ax = plt.subplots(figsize=(14,6))
```

```
ax.scatter(data[y_kmeans==0,0],data[y_kmeans==0,1],s=100,c='red',label='Cluster 1')
ax.scatter(data[y_kmeans==1,0],data[y_kmeans==1,1],s=100,c='blue',label='Cluster 2')
ax.scatter(data[y_kmeans==2,0],data[y_kmeans==2,1],s=100,c='green',label='Cluster 3')
ax.scatter(data[y_kmeans==3,0],data[y_kmeans==3,1],s=100,c='cyan',label='Cluster 4')
ax.scatter(data[y_kmeans==4,0],data[y_kmeans==4,1],s=100,c='magenta',label='Cluster 5')
ax.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=400,c='yellow',label='
Centroid')
plt.title('Cluster Segmentation of Customers')
plt.xlabel('Annual Income(K$)')
plt.ylabel('Spending Score(1-100)')
plt.legend()
plt.show()
data = df.iloc[:,[2,4]].values
from sklearn.cluster import KMeans
wcss=[] # within cluster sum of square
for i in range(1,11):
  kmeans=KMeans(n_clusters=i, init='k-means++',random_state=0)
  kmeans.fit(data)
  wcss.append(kmeans.inertia_) # inertia_ = to find the wcss value
plt.plot(range(1,11),wcss)
plt.title('The Elbow Method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
kmeans=KMeans(n_clusters=4,init='k-means++',random_state=0)
y_kmeans=kmeans.fit_predict(data)
#Plotting the clusters
fig,ax = plt.subplots(figsize=(14,6))
ax.scatter(data[y_kmeans==0,0],data[y_kmeans==0,1],s=100,c='red',label='Cluster 1')
```

```
ax.scatter(data[y_kmeans==1,0],data[y_kmeans==1,1],s=100,c='blue',label='Cluster 2')
ax.scatter(data[y_kmeans==2,0],data[y_kmeans==2,1],s=100,c='green',label='Cluster 3')
ax.scatter(data[y_kmeans==3,0],data[y_kmeans==3,1],s=100,c='cyan',label='Cluster 4')
ax.scatter(kmeans.cluster_centers_[:,0],kmeans.cluster_centers_[:,1],s=400,c='yellow',label='Cluster 4')
plt.title('Cluster Segmentation of Customers')
plt.xlabel('Age')
plt.ylabel('Spending Score(1-100)')
plt.legend()
plt.show()
```

Customerl Gender	Age	Annual Inc	Spending S
1 Male	19	15	39
2 Male	21	15	81
3 Female	20	16	6
4 Female	23	16	77
5 Female	31	17	40
6 Female	22	17	76
7 Female	35	18	6
8 Female	23	18	94
9 Male	64	19	3
10 Female	30	19	72
11 Male	67	19	14
12 Female	35	19	99
13 Female	58	20	15
14 Female	24	20	77
15 Male	37	20	13
16 Male	22	20	79
17 Female	35	21	35
18 Male	20	21	66
19 Male	52	23	29
20 Female	35	23	98
21 Male	35	24	35
22 Male	25	24	73
23 Female	46	25	5
24 Male	31	25	73
25 Female	54	28	14
26 Male	29	28	82
27 Female	45	28	32
28 Male	35	28	61
29 Female	40	29	31
30 Female	23	29	87
31 Male	60	30	4
32 Female	21	30	73
33 Male	53	33	4
34 Male	18	33	92
35 Female	49	33	14
36 Female	21	33	81
37 Female	42	34	17
38 Female	30	34	73
39 Female	36	37	26
40 Female	20	37	75
41 Female	65	38	35
42 Male	24	38	92
43 Male	48	39	36
44 Female	31	39	61
45 Female	49	39	28
46 Female	24	39	65
47 Female	50	40	55
48 Female	27	40	47
49 Female	29	40	42
50 Female	31	40	42
51 Female	49	42	52
52 Male	33	42	60
53 Female	31	43	54
54 Male	59	43	60
55 Female	50	43	45
56 Male	47	43	41
57 Female	51	44	50
58 Male	69	44	46
59 Female	27	46	51
60 Male	53	46	46

8) Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np
iris = datasets.load_iris()
X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']
y = pd.DataFrame(iris.target)
y.columns = ['Targets']
model = KMeans(n_clusters=3)
model.fit(X)
plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
# Plot the Original Classifications
plt.subplot(1, 2, 1)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# Plot the Models Classifications
```

```
plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrix of K-Mean: ',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
#xs.sample(5)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(xs)
y_gmm = gmm.predict(xs)
#y_cluster_gmm
plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('GMM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM: ',sm.confusion_matrix(y, y_gmm))
OUTPUT:
```

The accuracy score of K-Mean: 0.24

The Confusion matrix of K-Mean: [[0 50 0]

[48 0 2]

[14 0 36]]

The accuracy score of EM: 0.62

The Confusion matrix of EM: [[45 0 5]

[0482]

[0500]

9) Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris=datasets.load_iris()
x = iris.data
y = iris.target
print ('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print(x)
print('class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica')
print(y)
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
#To Training the model and Nearest nighbors K=5
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(x_train, y_train)
#To make predictions on our test data
y_pred=classifier.predict(x_test)
print('Confusion Matrix')
print(confusion_matrix(y_test,y_pred))
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))
```

Output:

sepal-length sepal-width petal-length petal-width

- [[5.1 3.5 1.4 0.2]
- [4.9 3. 1.4 0.2]
- [4.7 3.2 1.3 0.2]
- [4.6 3.1 1.5 0.2]
- [5. 3.6 1.4 0.2]
- [5.4 3.9 1.7 0.4]
- [4.6 3.4 1.4 0.3]
- [5. 3.4 1.5 0.2]
- [4.4 2.9 1.4 0.2]
- [4.9 3.1 1.5 0.1]
- [5.4 3.7 1.5 0.2]
- [4.8 3.4 1.6 0.2]
- [4.8 3. 1.4 0.1]
- [4.3 3. 1.1 0.1]
- [5.8 4. 1.2 0.2]
- [5.7 4.4 1.5 0.4]
- [5.4 3.9 1.3 0.4]
- [5.1 3.5 1.4 0.3]
- [5.7 3.8 1.7 0.3]
- [5.1 3.8 1.5 0.3]
- [5.4 3.4 1.7 0.2]
- [5.1 3.7 1.5 0.4]
- [4.6 3.6 1. 0.2]
- [5.1 3.3 1.7 0.5]
- [4.8 3.4 1.9 0.2]
- [5. 3. 1.6 0.2]
- [5. 3.4 1.6 0.4]
- [5.2 3.5 1.5 0.2]
- [5.2 3.4 1.4 0.2]
- [4.7 3.2 1.6 0.2]

- [4.8 3.1 1.6 0.2]
- [5.4 3.4 1.5 0.4]
- [5.2 4.1 1.5 0.1]
- [5.5 4.2 1.4 0.2]
- [4.9 3.1 1.5 0.2]
- [5. 3.2 1.2 0.2]
- [5.5 3.5 1.3 0.2]
- [4.9 3.6 1.4 0.1]
- [4.4 3. 1.3 0.2]
- [5.1 3.4 1.5 0.2]
- [5. 3.5 1.3 0.3]
- [4.5 2.3 1.3 0.3]
- [4.4 3.2 1.3 0.2]
- [5. 3.5 1.6 0.6]
- [5.1 3.8 1.9 0.4]
- [4.8 3. 1.4 0.3]
- [5.1 3.8 1.6 0.2]
- [4.6 3.2 1.4 0.2]
- [5.3 3.7 1.5 0.2]
- [5. 3.3 1.4 0.2]
- [7. 3.2 4.7 1.4]
- [6.4 3.2 4.5 1.5]
- [6.9 3.1 4.9 1.5]
- [5.5 2.3 4. 1.3]
- [6.5 2.8 4.6 1.5]
- [5.7 2.8 4.5 1.3]
- [6.3 3.3 4.7 1.6]
- [4.9 2.4 3.3 1.]
- [6.6 2.9 4.6 1.3]
- [5.2 2.7 3.9 1.4]
- [5. 2. 3.5 1.]
- [5.9 3. 4.2 1.5]

- [6. 2.2 4. 1.]
- [6.1 2.9 4.7 1.4]
- [5.6 2.9 3.6 1.3]
- [6.7 3.1 4.4 1.4]
- [5.6 3. 4.5 1.5]
- [5.8 2.7 4.1 1.]
- [6.2 2.2 4.5 1.5]
- [5.6 2.5 3.9 1.1]
- [5.9 3.2 4.8 1.8]
- [6.1 2.8 4. 1.3]
- [6.3 2.5 4.9 1.5]
- [6.1 2.8 4.7 1.2]
- [6.4 2.9 4.3 1.3]
- [6.6 3. 4.4 1.4]
- [6.8 2.8 4.8 1.4]
- [6.7 3. 5. 1.7]
- [6. 2.9 4.5 1.5]
- [5.7 2.6 3.5 1.]
- [5.5 2.4 3.8 1.1]
- [5.5 2.4 3.7 1.]
- [5.8 2.7 3.9 1.2]
- [6. 2.7 5.1 1.6]
- [5.4 3. 4.5 1.5]
- [6. 3.4 4.5 1.6]
- [6.7 3.1 4.7 1.5]
- [6.3 2.3 4.4 1.3]
- [5.6 3. 4.1 1.3]
- [5.5 2.5 4. 1.3]
- [5.5 2.6 4.4 1.2]
- [6.1 3. 4.6 1.4]
- [5.8 2.6 4. 1.2]
- [5. 2.3 3.3 1.]

- [5.6 2.7 4.2 1.3]
- [5.7 3. 4.2 1.2]
- [5.7 2.9 4.2 1.3]
- [6.2 2.9 4.3 1.3]
- [5.1 2.5 3. 1.1]
- [5.7 2.8 4.1 1.3]
- [6.3 3.3 6. 2.5]
- [5.8 2.7 5.1 1.9]
- [7.1 3. 5.9 2.1]
- [6.3 2.9 5.6 1.8]
- [6.5 3. 5.8 2.2]
- [7.6 3. 6.6 2.1]
- [4.9 2.5 4.5 1.7]
- [7.3 2.9 6.3 1.8]
- [6.7 2.5 5.8 1.8]
- [7.2 3.6 6.1 2.5]
- [6.5 3.2 5.1 2.]
- [6.4 2.7 5.3 1.9]
- [6.8 3. 5.5 2.1]
- [5.7 2.5 5. 2.]
- [5.8 2.8 5.1 2.4]
- [6.4 3.2 5.3 2.3]
- [6.5 3. 5.5 1.8]
- [7.7 3.8 6.7 2.2]
- [7.7 2.6 6.9 2.3]
- [6. 2.2 5. 1.5]
- [6.9 3.2 5.7 2.3]
- [5.6 2.8 4.9 2.]
- [7.7 2.8 6.7 2.]
- [6.3 2.7 4.9 1.8]
- [6.7 3.3 5.7 2.1]
- [7.2 3.2 6. 1.8]

```
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2.]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2.]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
class: 0-Iris-Setosa, 1- Iris-Versicolour, 2- Iris-Virginica
2 2]
Confusion Matrix
[[16 0 0]
```

[6.2 2.8 4.8 1.8]

[0 14 2]

[0 0 13]]

Accuracy Metrics

precision recall f1-score support

0 1.00 1.00 1.00 16 1 1.00 0.88 0.93 16 2 0.87 1.00 0.93 13

 accuracy
 0.96
 45

 macro avg
 0.96
 0.96
 0.95
 45

 weighted avg
 0.96
 0.96
 0.96
 45

10) Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point, xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np.eye((m)))
  for j in range(m):
     diff = point - X[j]
     weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point, xmat, ymat, k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat, ymat, k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
     ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
# load data points
data = pd.read_csv('Desktop/dataset.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
```

```
#preparing and add 1 in bill
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T))
#set k here
ypred = localWeightRegression(X,mtip,0.5)
SortIndex = X[:,1].argsort(0)
xsort = X[SortIndex][:,0]
fig = plt.figure()
ax = fig.add\_subplot(1,1,1)
ax.scatter(bill,tip, color='green')
ax.plot(xsort[:,1],ypred[SortIndex], color = 'red', linewidth=5)
plt.xlabel('Total bill')
plt.ylabel('Tip')
plt.show();
   10
```


39.42	7.58 Male	No	Sat	Dinner	4
19.82	3.18 Male	No	Sat	Dinner	
17.81	2.34 Male	No	Sat	Dinner	4
13.37	2 Male	No	Sat	Dinner	
12.69	2 Male	No	Sat	Dinner	2
21.7	4.3 Male	No	Sat	Dinner	
19.65	3 Female	No	Sat	Dinner	2
9.55	1.45 Male	No	Sat	Dinner	2
18.35	2.5 Male	No	Sat	Dinner	4
15.06	3 Female	No	Sat	Dinner	2
20.69	2.45 Female	No	Sat	Dinner	4
17.78	3.27 Male	No	Sat	Dinner	2
24.06	3.6 Male	No	Sat	Dinner	
16.31	2 Male	No	Sat	Dinner	3
16.93	3.07 Female	No	Sat	Dinner	3
18.69	2.31 Male	No	Sat	Dinner	
31.27	5 Male	No	Sat	Dinner	3
16.04	2.24 Male	No	Sat	Dinner	3
17.46	2.54 Male	No	Sun	Dinner	
13.94	3.06 Male	No	Sun	Dinner	2
9.68	1.32 Male	No	Sun	Dinner	
30.4	5.6 Male	No	Sun	Dinner	4
18.29	3 Male	No	Sun	Dinner	2
22.23	5 Male	No	Sun	Dinner	
32.4	6 Male	No	Sun	Dinner	4
28.55	2.05 Male	No	Sun	Dinner	
18.04	3 Male	No	Sun	Dinner	2
12.54	2.5 Male	No	Sun	Dinner	2
10.29	2.6 Female	No	Sun	Dinner	
34.81 9.94	5.2 Female 1.56 Male	No No	Sun	Dinner Dinner	4 2
25.56	4.34 Male	No	Sun	Dinner	4
19.49	3.51 Male	No	Sun	Dinner	2
38.01	3 Male	Yes	Sat	Dinner	4
26.41	1.5 Female	No	Sat	Dinner	2
11.24	1.76 Male	Yes	Sat	Dinner	2
48.27	6.73 Male	No	Sat	Dinner	4
20.29	3.21 Male	Yes	Sat	Dinner	2
13.81	2 Male	Yes	Sat	Dinner	
11.02	1.98 Male	Yes	Sat	Dinner	2
18.29	3.76 Male	Yes	Sat	Dinner	4
17.59	2.64 Male	No	Sat	Dinner	
20.08	3.15 Male	No	Sat	Dinner	3 2
16.45	2.47 Female	No	Sat	Dinner	
3.07	1 Female	Yes	Sat	Dinner	1
20.23	2.01 Male	No	Sat	Dinner	2
15.01	2.09 Male	Yes	Sat	Dinner	
12.02	1.97 Male	No	Sat	Dinner	2
17.07	3 Female	No	Sat	Dinner	2
26.86	3.14 Female	Yes	Sat	Dinner	
25.28	5 Female	Yes	Sat	Dinner	2 2
14.73	2.2 Female	No	Sat	Dinner	
10.51	1.25 Male	No	Sat	Dinner	2
17.92	3.08 Male	Yes	Sat	Dinner	2
27.2	4 Male	No	Thur	Lunch	4
22.76	3 Male	No	Thur	Lunch	2
17.29	2.71 Male	No	Thur	Lunch	
19.44	3 Male	Yes	Thur	Lunch	2
16.66	3.4 Male	No	Thur	Lunch	2
10.07	1.83 Female	No	Thur	Lunch	1
32.68	5 Male	Yes	Thur	Lunch	2
15.98	2.03 Male	No	Thur	Lunch	2
34.83	5.17 Female	No	Thur	Lunch	4
13.03	2 Male	No	Thur	Lunch	2
18.28	4 Male	No	Thur	Lunch	2
24.71	5.85 Male	No	Thur	Lunch	2
21.16	3 Male	No	Thur	Lunch	2
28.97	3 Male	Yes	Fri	Dinner	
22.49	3.5 Male	No	Fri	Dinner	2
5.75	1 Female	Yes	Fri	Dinner	2
16.32	4.3 Female	Yes	Fri	Dinner	
22.75	3.25 Female	No	Fri	Dinner	2
40.17	4.73 Male	Yes	Fri	Dinner	4
27.28	4 Male	Yes	Fri	Dinner	2
12.03	1.5 Male	Yes	Fri	Dinner	2
21.01	3 Male	Yes	Fri	Dinner	
12.46	1.5 Male	No	Fri	Dinner	2
11.35	2.5 Female	Yes	Fri	Dinner	2
15.38	3 Female	Yes	Fri	Dinner	
44.3 22.42	2.5 Female	Yes Yes	Sat Sat	Dinner	3 2
20.92	3.48 Female 4.08 Female	No	Sat Sat	Dinner Dinner	2
15.36	1.64 Male	Yes	Sat	Dinner	2
20.49	4.06 Male	Yes	Sat	Dinner	
25.21	4.29 Male	Yes	Sat	Dinner	2
18.24	3.76 Male	No	Sat	Dinner	2
14.31	4 Female	Yes	Sat	Dinner	
14	3 Male	No	Sat	Dinner	2
7.25	1 Female	No	Sat	Dinner	1
38.07	4 Male	No	Sun	Dinner	3
23.95	2.55 Male	No	Sun	Dinner	2
25.71	4 Female	No	Sun	Dinner	
17.31	3.5 Female	No	Sun	Dinner	2
29.93	5.07 Male	No	Sun	Dinner	4 2
10.65	1.5 Female	No	Thur	Lunch	
12.43	1.8 Female	No	Thur	Lunch	2
24.08	2.92 Female	No	Thur		4
11.69	2.31 Male	No	Thur	Lunch Lunch	2
13.42	1.68 Female	No	Thur	Lunch	2
14.26	2.5 Male	No	Thur	Lunch	
15.95	2 Male	No	Thur	Lunch	2
12.48	2.52 Female	No	Thur	Lunch	2
29.8	4.2 Female	No	Thur	Lunch	6
8.52	1.48 Male	No	Thur	Lunch	2 2
14.52	2 Female	No	Thur	Lunch	
11.38	2 Female	No	Thur	Lunch	2
22.82	2.18 Male	No	Thur	Lunch	3
19.08	1.5 Male	No	Thur	Lunch	2
20.27	2.83 Female 1.5 Female	No No	Thur	Lunch	2
11.17 12.26	2 Female	No	Thur Thur	Lunch Lunch	2
18.26	3.25 Female	No	Thur	Lunch	2 2
8.51	1.25 Female	No	Thur	Lunch	
10.33	2 Female	No	Thur	Lunch	2
14.15	2 Female	No	Thur	Lunch	2
16	2 Male	Yes	Thur	Lunch	2
13.16	2.75 Female	No	Thur	Lunch	2
17.47	3.5 Female	No	Thur	Lunch	2
34.3	6./ Male	No	Thur	Lunch	6
41.19	5 Male	No	Thur	Lunch	5
27.05	5 Female	No	Thur	Lunch	6
16.43	2.3 Female	No	Thur	Lunch	2