Ćwiczenie nr 11: Moduł Younga

1 Wprowadzenie

1.1 Cel doświadczenia

Celem doświadczenia było wyznaczenie modułu Younga E stali za pomocą pomiaru wydłużenia stalowego drutu pod różnym obciążeniem.

1.2 Opis stanowiska

W skład stanowiska weszły: stalowy drut, przymiar milimetrowy, śruba mikrometryczna, odważniki, czujnik mikrometryczny.

2 Sposób wykonania doświadczenia

Doświadczenie rozpoczęliśmy od zapoznania się ze sprzętem wchodzącym w skład stanowiska, zmierzenia średnicy oraz długości drutu i skalibrowania czujnika mikrometrycznego. Następnie mierzyliśmy wydłużenie drutu dla różnych obciążeń – najpierw dokładając odważniki do osiągnięcia obciążenia 10 kg, następnie dołożyliśmy na chwilę obciążnik 0,5 kg, po czym zdejmowaliśmy kolejne odważniki i powtarzaliśmy pomiar wydłużenia dla tych samych obciążeń co wcześniej.

3 Wyniki pomiarów

Rodzaj materiału: stal

Długość drutu: 1 = 106,5cm, u(1) = 0,1cm (niepewność typu B) Średnica drutu (3 pomiary): 0,76mm; 0,77mm; 0,78mm Średnica średnia: d = 0,77mm, u(d) = 0,01mm (niepewność typu B)

Masa	Siła F	Wskazanie	Wskazanie	Wydłużenie	Odkształcenie
odważników	[N]	czujnika l₁↑	czujnika l₂↓	średnie Δl	względne
[kg]		[mm]	[mm]	[mm]	ΔΙ/Ι
1	9,81	0,44	0,45	0,223	0,000209
2	19,62	0,91	0,99	0,475	0,000446
3	29,43	1,28	1,31	0,648	0,000608
4	39,24	1,59	1,62	0,803	0,000754
5	49,05	1,90	1,90	0,950	0,000892
6	58,86	2,15	2,17	1,080	0,001014
7	68,67	2,41	2,43	1,210	0,001136
8	78,48	2,66	2,68	1,335	0,001254
9	88,29	2,89	2,92	1,453	0,001364
10	98,10	3,12	3,15	1,568	0,001472

Tabela 1: Wyniki pomiarów wydłużenia dla danej siły wraz z obliczonym względnym wydłużeniem

Siła F rozciągająca drut jest siłą ciężkości odważników o masie m, zatem F = mg, gdzie $g = 9.81 \text{ m/s}^2$ -przyspieszenie ziemskie.

Pręt i szalka zamocowane są w połowie odległości między osią obrotu a punktem styku z czujnikiem, dlatego wydłużenie drutu jest dwukrotnie mniejsze od wartości wskazywanej przez czujnik, więc:

$$\Delta l = \frac{l_1 + l_2}{4}$$

4 Opracowanie wyników pomiarów

4.1 Wyznaczenie wzoru roboczego na moduł Younga

Zgodnie z prawem Hooke'a:

$$\Delta l = \frac{F l}{E S}$$

Stąd:

$$F = ES \cdot \frac{\Delta l}{l}$$

Zależność $F(\frac{\Delta l}{l})$ winna być zatem linią prostą. Porównanie równania prostej $F=a\frac{\Delta l}{l}+b$ z powyższym wzorem pokazuje, że współczynnik nachylenia a tożsamy jest z czynnikiem $\textbf{\textit{ES}}$. Uwzględniając powyższe oraz podstawiając $S=\pi d^2/4$, wzór roboczy na moduł Younga przyjmuje postać:

$$E = \frac{a}{S} = \frac{4a}{\pi d^2}$$

gdzie

a – współczynnik nachylenia prostej $F(\frac{\Delta I}{I})$

d – średnica drutu

4.2 Wykres

Wykres zależności $F(\frac{\Delta l}{l})$ z najlepiej dopasowaną prostą

Brak istotnych odchyleń punktów sugeruje, że pomiary nie zawierają błędów grubych.

Korzystając z funkcji REGLIP znajdujemy a oraz u(a):

$$a = 71726,34261 N \approx 71700 N$$

 $u(a) = 2833,609669 N \approx 2900 N$

4.3 Obliczenie modułu Younga

Wstawiamy wyznaczone a do wzoru na moduł Younga:
$$E = \frac{4a}{\pi d^2} = \frac{4 \cdot 71\ 700\ N}{\pi \cdot (0,77 \cdot 10^{-3} m)^2} \approx 154,0\ GPa$$

4.4 Jednostki

$$F = a \frac{\Delta l}{l} + b$$
 \Rightarrow $[a] = [F] = N$

$$E = \frac{4a}{\pi d^2} \implies [E] = \frac{[a]}{[d]^2} = \frac{N}{m^2} = Pa$$

4.5 Niepewność u(E) i porównanie z wartością tabelaryczną

Korzystając ze wzoru roboczego $E = \frac{4a}{\pi d^2}$ oraz z prawa przenoszenia niepewności względnej:

$$\frac{u(E)}{E} = \sqrt{\left(\frac{u(a)}{a}\right)^2 + \left(\frac{-2u(d)}{d}\right)^2}$$

Stad:

$$u(E) = E\sqrt{\left(\frac{u(a)}{a}\right)^2 + \left(\frac{-2u(d)}{d}\right)^2} = 154,0 \text{ GPa}\sqrt{\left(\frac{2900 \text{ N}}{71700 \text{ N}}\right)^2 + \left(\frac{-2 \cdot 0,01 \text{ mm}}{0,77 \text{ mm}}\right)^2} \approx 7,5 \text{ GPa}$$

4.6 Niepewność rozszerzona U(E) i porównanie z wartością tabelaryczną

Niepewność rozszerzona dla k=3:

$$U(E) = 22.5 \text{ GPa}$$

Wartość tabelaryczna modułu Younga dla stali wynosi 190–210 GPa [2]

$$|154,0 \text{ GPa} - 190 \text{ GPa}| = 36 \text{ GPa} > \text{U(E)}$$

Otrzymana wartość modułu Younga dla stali nie jest zgodna z wartością tabelaryczną w zakresie rozszerzonej niepewności pomiarowej.

5 Wnioski

Otrzymana wartość modułu Younga dla stali różni się od wartości tabelarycznej i jest niezgodna z wartością tabelaryczną mimo uwzględnienia rozszerzonej niepewności pomiarowej. Powodem takiego wyniku doświadczenia było najprawdopodobniej zużycie drutu – posiadał liczne odkształcenia, które mogą świadczyć o utracie pierwotnych właściwości. Dodatkowym czynnikiem, który wpłynął na uzyskanie różniącej się wartości mogła być niedokładność wykonanych pomiarów, w tym także błąd systematyczny.

6 Źródła

[1]https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_cwiczen/11_opis.pdf, data dostępu: 22.10.2024

[2] https://poradnikinzyniera.pl/modul-younga-wszystko-co-musisz-wiedziec/, data dostępu 23.10.2024

Załącznik: wyniki pomiarów przesłane po zajęciach 22.10.2024

Rodzaj materiału			
długość drutu [cm]	106,5		
Średnica drutu [mm]	0,76	0,77	0,78
średnica średnia [mm]	0,77		
u(d)[mm]	0,01		

Masa odważników	Siła F	Wskazanie czujnika 1	Wskazanie czujnika 2	wydłużenie średnie	Δ1/1
kg	N	mm	mm	mm	
1	9,81	0,44	0,45	0,2225	0,000209
2	19,62	0,91	0,99	0,475	0,000446
3	29,43	1,28	1,31	0,6475	0,000608
4	39,24	1,59	1,62	0,8025	0,000754
5	49,05	1,9	1,9	0,95	0,000892
6	58,86	2,15	2,17	1,08	0,001014
7	68,67	2,41	2,43	1,21	0,001136
8	78,48	2,66	2,68	1,335	0,001254
9	88,29	2,89	2,92	1,4525	0,001364
10	98,1	3,12	3,15	1,5675	0,001472

0,0012

0,0014

∆l/l

0,0016

