Листок №23 14.07.2019

Комплексная геометрия

Задача 23.1. Найдите геометрическое место точек z на комплексной плоскости, удовлетворяющих условиям: **a.** |z-1|=1; **б.** |z|=|z+1|.

- **Задача 23.2.** Докажите, что точки 0, z и $\frac{1}{z}$ лежат на одной прямой.
- **Задача 23.3.** Докажите, что уравнение $z + \bar{z} = z\bar{z}$ задаёт окружность. Найдите её центр и радиус.
- **Задача 23.4.** Нарисуйте множество точек $z \in \mathbb{C}$, таких, что $|z-3| \le 2$ и $|z+4i| \le 3$.
- Задача 23.5. Докажите, что произведение диагоналей четырёхугольника не больше суммы произведений его противополжных сторон. Когда это неравенство обращается в равенство?
- **Задача 23.6.** Докажите, что для любого числа a преобразование $z \mapsto az$ увеличивает все расстояния в одно и то же число раз. В какое?
- **Задача 23.7.** Что можно сказать про это преобразование, если число a действительно? Если |a| = 1? При каком a это преобразование будет поворотом на 30° вокруг начала координат?
- Задача 23.8. а. Числа 0 и z являются вершинами правильного треугольника. Где может находиться третья его вершина? **б.** На сторонах треугольника с вершинами в точках u, z, w построены равносторонние треугольники. Найдите формулы для их центров (через комплексные числа u, z, w). Докажите, что эти центры образуют равносторонний треугольник.
- **Задача 23.9.** При каких a и b преобразование $z \mapsto az + b$ будет поворотом? переносом? осевой симметрией?
- **Задача 23.10.** При каких a и b преобразование $z \mapsto a\bar{z} + b$ является осевой симметрией?
- **Задача 23.11.** Докажите, что треугольник с вершинами 0, 1, z подобен треугольнику с вершинами $0, 1, \frac{1}{z}$.
- **Задача 23.12.** Точки x, y, z комплексной плоскости лежат на одной прямой тогда и только тогда, когда отношение ...вещественно. Вставьте пропущенную формулу и докажите.
- **Задача 23.13.** Найдите геометрическое место точек z, для которых число $\frac{z-1}{z-2}$ чисто мнимое.
- **Задача 23.14.** Докажите, что точки $z,\,w,\,\frac{1}{z},\,\frac{1}{w}$ лежат на одной окружности.
- **Задача 23.15.** Докажите, что точка $\frac{1}{z}$ пробегает окружность, когда z движется по прямой $\operatorname{Re} z = 1$.
- **Задача 23.16.** Точки x, y, z, w комплексной плоскости лежат на одной окружности тогда и только тогда, когда отношение ...вещественно. Вставьте пропущенную формулу и докажите.
- **Задача 23.17.** Докажите, что уравнение $z\bar{z}+az+\bar{a}z+c=0$, где a комплексное число, а c действительное, задаёт пустое множество, прямую или окружность. Как по a и c определить, что именно?
- Задача 23.18 (окружность Аполлония). Найдите геометрическое место точек таких X, что $\frac{|AX|}{|BX|}=\mathrm{const.}$
- Задача 23.19 (Степень точки относительно окружности). Докажите, что степень точки w относительно окружности $Az\bar{z}+Bz-\bar{B}\bar{z}+C=0$ равна $w\bar{w}+\frac{B}{A}w-\frac{\bar{B}}{A}w+\frac{C}{A}$.

Листок №23 14.07.2019

Задача 23.20 (Радикальная ось двух окружностей). Докажите, что геометрическое место точек w, степень которых относительно двух неконцентрических окружностей S_1 и S_2 одинакова, является прямой.

Задача 23.21 (Радикальный центр трех окружностей). На плоскости даны три окружности S_1 , S_2 и S_3 . Докажите, что если две радикальных оси этих окружностей пересекаются в точке Q, то третья радикальная ось также проходит через эту точку.

Задача 23.22. Как в комплексных числах записывается образ точки z при инверсии относительно окружности единичного радиуса? Относительно произвольной окружности? Докажите основные свойства инверсии через комплексные числа.