

Description

The VSM83N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- V_{DS} =150V, I_{D} =83A $R_{DS(ON)}$ < 18.5m Ω @ V_{GS} =10V (Typ:15.7m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM83N15-T7	VSM83N15	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	150	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	83	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	58	Α	
Pulsed Drain Current	I _{DM}	330	А	
Maximum Power Dissipation	P _D	320	W	
Derating factor		2.13	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	500	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Electrical Characteristics (TA=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						•
Orain-Source Breakdown Voltage BV _{DSS} V _{GS} =0		V _{GS} =0V I _D =250μA	150	160	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)				'		
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2	3.1	4	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	15.7	18.5	mΩ
Forward Transconductance	g FS	V _{DS} =15V,I _D =40A	120	-	-	S
Dynamic Characteristics (Note4)				'		
Input Capacitance	C _{lss}	\/ OF\/\/ O\/	-	11000	-	PF
Output Capacitance	Coss	$V_{DS}=25V, V_{GS}=0V,$	-	463	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	352	-	PF
Switching Characteristics (Note 4)				'		
Turn-on Delay Time	t _{d(on)}		-	40	-	nS
Turn-on Rise Time	t _r	VDD=30V,ID=2A,RL=15Ω,	-	38	-	nS
Turn-Off Delay Time	t _{d(off)}	RG=2.5Ω,VGS=10V	-	140	-	nS
Turn-Off Fall Time	t _f		-	60	-	nS
Total Gate Charge	Qg		-	250	-	nC
Gate-Source Charge	Q _{gs}	ID=30A,VDD=30V,VGS=10V	-	48	-	nC
Gate-Drain Charge	Q _{gd}		-	98	-	nC
Drain-Source Diode Characteristics	-			'		
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	83	Α
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 75A	-	48	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	78	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** E_{AS} condition : $Tj=25^{\circ}C$, $V_{DD}=50V$, $V_{G}=10V$,L=0.5mH, $Rg=25\Omega$

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 V_{GS(th)} vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance