ЭЛЕМЕНТЫ ОБЩЕЙ АЛГЕБРЫ Циклические полугруппы и группы

rst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

В полугруппе (A,*) n-я степень элемента a есть элемент $\underbrace{a*a*\ldots*a}_{n}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, $n=2,3,\ldots$

В полугруппе (A,*) n-я степень элемента a есть элемент $\underbrace{a*a*\ldots*a}_{n}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, n раз $n=2,3,\ldots$ Если $(A,*,\mathbf{1})$ — моноид, то вводят нулевую степень $a^0=\mathbf{1}$.

В полугруппе (A,*) n-я степень элемента a есть элемент $\underbrace{a*a*\ldots*a}_{n}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, n раз $n=2,3,\ldots$

Если $(A, *, \mathbf{1})$ — моноид, то вводят нулевую степень $a^0 = \mathbf{1}$.

Если $(A,*,\mathbf{1})$ — группа, то для любого элемента a вводят отрицательную степень согласно равенству: $a^{-n}=(a^{-1})^n$, $n=1,2,\ldots$

В полугруппе (A,*) n-я степень элемента a есть элемент $\underline{a*a*\ldots*a}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, n pas $n = 2, 3, \dots$

Если $(A, *, \mathbf{1})$ — моноид, то вводят нулевую степень $a^0 = \mathbf{1}$.

Если $(A,*,\mathbf{1})$ — группа, то для любого элемента a вводят отрицательную степень согласно равенству: $a^{-n} = (a^{-1})^n$, n = 1, 2, ...(Отрицательная степень элемента a группы есть положительная степень элемента, обратного к a.)

В полугруппе (A,*) n-я степень элемента a есть элемент $\underbrace{a*a*...*a}_{n}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, n раз $n=2,3,\ldots$ Если $(A,*,\mathbf{1})$ — моноид, то вводят нулевую степень $a^0=\mathbf{1}$. Если $(A,*,\mathbf{1})$ — группа, то для любого элемента a вводят отрицательную степень согласно равенству: $a^{-n}=(a^{-1})^n$, $n=1,2,\ldots$ (Отрицательная степень элемента a группы есть положительная степень элемента, обратного к a.)

Свойства степеней

В полугруппе (A,*) n-я степень элемента a есть элемент $\underbrace{a*a*\ldots*a}_{n}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, n раз $n=2,3,\ldots$

Если $(A, *, \mathbf{1})$ — моноид, то вводят нулевую степень $a^0 = \mathbf{1}$.

Если $(A,*,\mathbf{1})$ — группа, то для любого элемента a вводят отрицательную степень согласно равенству: $a^{-n}=(a^{-1})^n$, $n=1,2,\ldots$ (Отрицательная степень элемента a группы есть положительная степень элемента, обратного к a.)

Свойства степеней

Утверждение 8.1.

1) Для любой полугруппы $a^m*a^n=a^{m+n}\; ;\; (a^m)^n=a^{mn}\;\; (m,n\in\mathbb{N})\; ;\;$

В полугруппе (A,*) n-я степень элемента a есть элемент $\underbrace{a*a*\ldots*a}_{n}$, обозначаемый a^n , причем $a^1=a$ и $a^n=a*a^{n-1}$, $n=2,3,\ldots$

Если $(A, *, \mathbf{1})$ — моноид, то вводят нулевую степень $a^0 = \mathbf{1}$.

Если $(A,*,\mathbf{1})$ — группа, то для любого элемента a вводят отрицательную степень согласно равенству: $a^{-n}=(a^{-1})^n$, $n=1,2,\ldots$ (Отрицательная степень элемента a группы есть положительная степень элемента, обратного к a.)

Свойства степеней

Утверждение 8.1.

- 1) Для любой полугруппы $a^m*a^n=a^{m+n}\; ;\; (a^m)^n=a^{mn}\;\; (m,n\in\mathbb{N})\; ;\;$
- 2) для любой группы $a^{-n}=(a^n)^{-1} \ (n\in\mathbb{N})\,, \ a^m*a^n=a^{m+n} \ (m,n\in\mathbb{Z})\,.$

Определение 8.2. Полугруппу (группу) (A,*) называют **циклической**, если существует такой элемент a, что любой элемент x полугруппы (группы) является некоторой (целой) степенью элемента a.

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

st • Prev • Next • Last • Go Back • Full Screen • Close

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1$,

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1$, $2 \cdot 1 = 1 + 1 = 2$ и т.д.

rst. • Prev. • Next. •

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1, 2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1$, $2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

б) Группа $(\mathbb{Z}_5, \odot_5, 1)$ — циклическая с образующим элементом 2.

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1$, $2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

б) Группа $(\mathbb{Z}_5, \odot_5, 1)$ — циклическая с образующим элементом 2. Действительно, для 2 имеем $2^0 = 1$,

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1, 2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

б) Группа ($\mathbb{Z}_5, \odot_5, 1$) — циклическая с образующим элементом 2. Действительно, для 2 имеем $2^0 = 1$, $2^1 = 2$,

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1$, $2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

б) Группа $(\mathbb{Z}_5, \odot_5, 1)$ — циклическая с образующим элементом 2. Действительно, для 2 имеем $2^0 = 1$, $2^1 = 2$, $2^2 = 2 \odot_5 2 = 4$,

First • Prev • Next • Last • Go Back • Full Screen • Close • Quit

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1, 2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

б) Группа $(\mathbb{Z}_5, \odot_5, 1)$ — циклическая с образующим элементом 2. Действительно, для 2 имеем $2^0=1$, $2^1=2$, $2^2=2\odot_5 2=4$, $2^3=2\odot_5 2^2=2\odot_5 4=3$,

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Замечание. При аддитивной форме записи вместо a^n пишут $n \cdot a$.

Пример 1. а) Полугруппа $(\mathbb{N}, +, 0)$ — циклическая, с образующим элементом 1.

Следуя определению 8.1, получим $0 \cdot 1 = 0$.

Далее $1 \cdot 1 = 1, 2 \cdot 1 = 1 + 1 = 2$ и т.д.

Для произвольного n имеем

$$n \cdot 1 = \underbrace{1 + \ldots + 1}_{n \text{ pa3}} = n.$$

б) Группа $(\mathbb{Z}_5, \odot_5, 1)$ — циклическая с образующим элементом 2. Действительно, для 2 имеем $2^0=1$, $2^1=2$, $2^2=2\odot_5 2=4$, $2^3=2\odot_5 2^2=2\odot_5 4=3$, $2^4=2\odot_5 3=1$.

Порядком конечной группы называют количество ее элементов. $A \partial dumu$ вычет вычетов по модулю k имеет порядок k.

Порядком конечной группы называют количество ее элементов. Addumuвная группа вычетов по модулю k имеет порядок k. Γ руппа подстановок S_n есть группа порядка n!.

 $A\partial \partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mультипликативная группа вычетов по модулю p (p — простое число!) имеет порядок p-1 .

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mульmиnлиkаmивная pуnлnа вычетов по моdулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

H есть подмножество G, замкнутое относительно операции *,

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mульmиnлиkаmивная pуnлnа вычетов по моdулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

H есть подмножество G, замкнутое относительно операции *, содержащее $e\partial u u u y 1$ группы $\mathcal G$

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mульmиnлиkаmивная pуnлnа вычетов по моdулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

и вместе с каждым элементом $x \in H$ содержащее элемент x^{-1} , обратный к x .

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mультипликативная группа вычетов по модулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

H есть подмножество G , замкнутое относительно операции * , содержащее $e\partial u u u y$ $\mathbf{1}$ группы \mathcal{G}

и вместе с каждым элементом $x \in H$ содержащее элемент x^{-1} , обратный к x .

Определение 8.4.

Подгруппу группы \mathcal{G} , заданную на множестве всех $cmeneнe\ddot{u}$ фиксированного элемента a, называют циклической подгруппой группы \mathcal{G} , порожденной элементом a.

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mультипликативная группа вычетов по модулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

H есть подмножество G , замкнутое относительно операции * , содержащее $e\partial u u u y$ $\mathbf{1}$ группы \mathcal{G}

и вместе с каждым элементом $x \in H$ содержащее элемент x^{-1} , обратный к x .

Определение 8.4.

Подгруппу группы \mathcal{G} , заданную на множестве всех $cmeneнe\ddot{u}$ фиксированного элемента a, называют циклической подгруппой группы \mathcal{G} , порожденной элементом a.

Задача 1. Найти циклическую подгруппу ${\mathcal H}$ группы Z_{11}^{\odot} с образующим элементом

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mульmиnлиkаmивная pуnлnа вычетов по моdулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

H есть подмножество G , замкнутое относительно операции * , содержащее $e\partial u u u y$ 1 группы $\mathcal G$

и вместе с каждым элементом $x \in H$ содержащее элемент x^{-1} , обратный к x .

Определение 8.4.

Подгруппу группы \mathcal{G} , заданную на множестве всех $cmeneнe\ddot{u}$ фиксированного элемента a, называют циклической подгруппой группы \mathcal{G} , порожденной элементом a.

Задача 1. Найти циклическую подгруппу ${\mathcal H}$ группы Z_{11}^{\odot} с образующим элементом

a)
$$a = 4$$
;

 $A\partial\partial umu$ вная группа вычетов по модулю k имеет порядок k .

 $\Gamma pynna\ nodcmaново\kappa\ S_n\$ есть группа порядка n! .

Mультипликативная группа вычетов по модулю p (p — простое число!) имеет порядок p-1 .

Определение 8.3.

Группу $\mathcal{H}=(H,*,{}^{-1},\mathbf{1})$ называют **подгруппой** группы $\mathcal{G}=(G,*,{}^{-1},\mathbf{1})$, если

и вместе с каждым элементом $x \in H$ содержащее элемент x^{-1} , обратный к x.

Определение 8.4.

Подгруппу группы \mathcal{G} , заданную на множестве всех $cmeneнe\ddot{u}$ фиксированного элемента a, называют циклической подгруппой группы \mathcal{G} , порожденной элементом a.

Задача 1. Найти циклическую подгруппу ${\mathcal H}$ группы Z_{11}^{\odot} с образующим элементом

- a) a = 4;
- б) a = 2.

Пусть $\mathcal{G} = (G, *, 1)$ — группа, а $\mathcal{H} = (H, *, 1)$ — ее подгруппа.

rst • Prev • Next • Last

Go Back •

Screen • Cl

• Quit

Пусть $\mathcal{G} = (G, *, 1)$ — группа, а $\mathcal{H} = (H, *, 1)$ — ее подгруппа.

Определение 8.5. Левым смежным классом подгруппы ${\cal H}$ **по элементу** $a \in G$ называют множество

$$aH = \{y \mid y = a * h, h \in H\}.$$

Пусть $\mathcal{G} = (G, *, 1)$ — epynna, a $\mathcal{H} = (H, *, 1)$ — $ee \ noderpynna$.

Определение 8.5. Левым смежным классом подгруппы ${\mathcal H}$ по элементу $a\in G$ называют множество

$$aH = \{y \mid y = a * h, h \in H\}.$$

Соответственно, правый смежный класс подгруппы \mathcal{H} по элементу $a \in G$ — это множество $Ha = \{y \mid y = h * a, h \in H\}$.

est • Prev • Next • Last • Go Back • Full Scree

Пусть $\mathcal{G} = (G, *, 1)$ — epynna, a $\mathcal{H} = (H, *, 1)$ — $ee \ noderpynna$.

Определение 8.5. Левым смежным классом подгруппы \mathcal{H} по элементу $a \in G$ называют множество

$$aH = \{y \mid y = a * h, h \in H\}.$$

Соответственно, правый смежный класс подгруппы \mathcal{H} по элементу $a \in G$ — это множество $Ha = \{y \mid y = h * a, h \in H\}$.

Задача 2. Найти левый смежный класс aH циклической подгруппы \mathcal{H} с образующим элементом b=4 мультипликативной группы Z_{11}^* по элементу a=3.

Теорема 1. (Лагранж) *Порядок конечной группы* делится на порядок любой ее подгруппы.

rst • Prev • Next • Last • Go Back • Full Screen • Close • Quit

Задача 3. Может ли некоторая погруппа мультипликативной группы Z_{97}^* содержать 23 элемента?

t ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close

Задача 3. Может ли некоторая погруппа мультипликативной группы Z_{97}^* содержать 23 элемента? 24 элемента?

st • Prev • Next • Last • Go Back • Full Screen • Close •

Задача 3. Может ли некоторая погруппа мультипликативной группы Z_{97}^* содержать 23 элемента? 24 элемента? 32 элемента?

t ullet Prev ullet Next ullet Last ullet Go Back ullet Full Screen ullet Close

ЭЛЕМЕНТЫ ОБЩЕЙ АЛГЕБРЫ Кольца. Поля. Решение СЛАУ

rst • Prev • Next • Last • Go Back •

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

st ullet Prev ullet Next ullet Last ullet Go Back ullet Full Screen ullet C

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

1) алгебра (R, +, 0) — коммутативная группа;

st • Prev • Next • Last • Go Back • Full Screen •

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид ;

First • Prev

Next

Go Bac

▶ Full Scree

Close

' Qui

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид ;
- 3) имеет место дистрибутивность операции + (сложения кольца) относительно операции · (умножения кольца):

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид ;
- 3) имеет место дистрибутивность операции + (сложения кольца) относительно операции · (умножения кольца):

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

Операцию + называют сложением кольца,

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид ;
- 3) имеет место дистрибутивность операции + (сложения кольца) относительно операции · (умножения кольца):

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

Операцию + называют **сложением кольца**, · — **умножением кольца**,

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид ;
- 3) имеет место дистрибутивность операции + (сложения кольца) относительно операции · (умножения кольца):

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

Операцию + называют **сложением кольца**, · — **умножением кольца**, элемент 0 — **нулем кольца**,

$$\mathcal{R} = (R, +, \cdot, 0, 1)$$

такая, что:

- 1) алгебра (R, +, 0) коммутативная группа;
- 2) алгебра $(R, \cdot, 1)$ моноид ;
- 3) имеет место дистрибутивность операции + (сложения кольца) относительно операции · (умножения кольца):

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$
 $(b+c) \cdot a = b \cdot a + c \cdot a.$

Операцию + называют **сложением кольца**, \cdot — **умножением кольца**, элемент 0 — **нулем кольца**, элемент 1 — **единицей кольца**.

Определение 8.7. Кольцо называют **коммутативным**, если операция умножения в нем коммутативна.

а) Алгебра $(\mathbb{Z}, +, \cdot, 0, 1)$ есть коммутативное кольцо.

st • Prev • Next • Last • Go Back • Full Screen •

- а) Алгебра $(\mathbb{Z}, +, \cdot, 0, 1)$ есть коммутативное кольцо.
- б) Алгебра $(\mathbb{N}, +, \cdot, 0, 1)$ кольцом не будет, поскольку $(\mathbb{N}, +)$ коммутативный моноид, но не группа.

- а) Алгебра $(\mathbb{Z}, +, \cdot, 0, 1)$ есть коммутативное кольцо.
- б) Алгебра $(\mathbb{N}, +, \cdot, 0, 1)$ кольцом не будет, поскольку $(\mathbb{N}, +)$ коммутативный моноид, но не группа.
- б) Алгебра

$$\mathbb{Z}_k = (\{0, 1, 2, \dots, k-1\}, \oplus_k, \odot_k, 0, 1)$$

(при $k \geq 1$), аддитивная группа которого есть $a\partial \partial umuвная$ группа вычетов по модулю k,

- а) Алгебра $(\mathbb{Z}, +, \cdot, 0, 1)$ есть коммутативное кольцо.
- б) Алгебра $(\mathbb{N}, +, \cdot, 0, 1)$ кольцом не будет, поскольку $(\mathbb{N}, +)$ коммутативный моноид, но не группа.
- б) Алгебра

$$\mathbb{Z}_k = (\{0, 1, 2, \dots, k-1\}, \oplus_k, \odot_k, 0, 1)$$

(при $k \geq 1$), аддитивная группа которого есть $a\partial dumuвная$ группа вычетов по модулю k, а операция умножения по модулю k определена аналогично сложению по модулю k, т.е. $m \odot n$ равно остатку от деления на k числа $m \cdot n$,

- а) Алгебра $(\mathbb{Z}, +, \cdot, 0, 1)$ есть коммутативное кольцо.
- б) Алгебра $(\mathbb{N}, +, \cdot, 0, 1)$ кольцом не будет, поскольку $(\mathbb{N}, +)$ коммутативный моноид, но не группа.
- б) Алгебра

$$\mathbb{Z}_k = (\{0, 1, 2, \dots, k-1\}, \oplus_k, \odot_k, 0, 1)$$

(при $k \geq 1$), аддитивная группа которого есть $a\partial dumuвная$ группа вычетов по модулю k, а операция умножения по модулю k определена аналогично сложению по модулю k, т.е. $m \odot n$ равно остатку от деления на k числа $m \cdot n$, есть коммутативное кольцо. Его называют кольцом вычетов по модулю k.

Определение 8.8. Ненулевые элементы a и b кольца $\mathcal R$ называют **делителями нуля**, если $a\cdot b=0$.

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 8.8. Ненулевые элементы a и b кольца \mathcal{R} называют **делителями нуля**, если $a \cdot b = 0$.

Задача 4. Существуют ли делители нуля в кольце вычетов по модулю $4 \ Z_4.$

rst • Prev • Next • Last • Go Back •

Определение 8.8. Ненулевые элементы a и b кольца \mathcal{R} называют **делителями нуля**, если $a \cdot b = 0$.

Задача 4. Существуют ли делители нуля в кольце вычетов по модулю $4 \ Z_4$. В кольце Z_5 ?

st • Prev • Next • Last • Go Back • Full Screen

Определение 8.8. Ненулевые элементы a и b кольца \mathcal{R} называют делителями нуля, если $a \cdot b = 0$.

Задача 4. Существуют ли делители нуля в кольце вычетов по модулю 4 Z_4 . В кольце Z_5 ? При каких n Z_n не содержит делителей нуля?

rst • Prev • Next • Last • Go Back •

Определение 8.9. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**.

t ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close

Определение 8.9. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**. Коммутативное тело называют **полем**.

Определение 8.9. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**. Коммутативное тело называют **полем**.

Группу ненулевых элементов поля по умножению называют **мульти- пликативной группой** этого **поля**.

Определение 8.9. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**.

Коммутативное тело называют полем.

Группу ненулевых элементов поля по умножению называют **мульти- пликативной группой** этого **поля**.

Пример 3.

а) Алгебра $(\mathbb{Q}, +, \cdot, 0, 1)$ есть поле, называемое **полем рациональ- ных чисел**.

Определение 8.9. Кольцо, в котором множество всех ненулевых элементов по умножению образует группу, называют **телом**.

Коммутативное тело называют полем.

Группу ненулевых элементов поля по умножению называют **мульти- пликативной группой** этого **поля**.

Пример 3.

- а) Алгебра $(\mathbb{Q}, +, \cdot, 0, 1)$ есть поле, называемое **полем рациональ- ных чисел**.
- б) Алгебра $(\mathbb{R}, +, \cdot, 0, 1)$ есть поле, называемое **полем веществен- ных чисел**.

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

(а) множество неотрицательных целых чисел;

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$?

rst • Prev • Next • Last • Go Back • Full Screen • Clo

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$? Какие из указанных колец являются полями?

st • Prev • Next • Last • Go Back • Full Screen • Close •

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$? Какие из указанных колец являются полями?
- **Задача 6.** Какие из множеств матриц образуют кольцо относительно матричных операций умножения и сложения? Какие из колец являются полями?

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$? Какие из указанных колец являются полями?

Задача 6. Какие из множеств матриц образуют кольцо относительно матричных операций умножения и сложения? Какие из колец являются полями?

(a) множество матриц вида $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $a, b, c \in \mathbb{R}$?

rst • Prev • Next • Last • Go Back • Full Screen • Close •

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$? Какие из указанных колец являются полями?

Задача 6. Какие из множеств матриц образуют кольцо относительно матричных операций умножения и сложения? Какие из колец являются полями?

(a) множество матриц вида $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $a, b, c \in \mathbb{R}$?

(б) множество матриц вида $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $a, b \in \mathbb{R}$?

- (а) множество неотрицательных целых чисел;
- (б) множество чисел вида $x + \sqrt{2}y$, $x, y \in \mathbb{Q}$? Какие из указанных колец являются полями?

Задача 6. Какие из множеств матриц образуют кольцо относительно матричных операций умножения и сложения? Какие из колец являются полями?

(a) множество матриц вида $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $a, b, c \in \mathbb{R}$?

(б) множество матриц вида $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $a, b \in \mathbb{R}$?

Задача 7. Составить таблицу Кэли для операций сложения и умножения в кольцах вычетов \mathbb{Z}_3 и \mathbb{Z}_5 . Показать, что \mathbb{Z}_3 и \mathbb{Z}_5 являются полями.

First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Теорема 2. В любом кольце выполняются следующие тождества 1) $a\cdot 0 = 0\cdot a = 0$.

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

- 1) $a \cdot 0 = 0 \cdot a = 0$. 2) $(a b) \cdot c = a \cdot c b \cdot c$,

- 1) $a \cdot 0 = 0 \cdot a = 0$.
- $2) (a-b) \cdot c = a \cdot c b \cdot c,$

 $c\cdot(a-b)=x\cdot a-c\cdot b$, где $\mathit{paзность}\ a-b$ есть по определению a-b=a+(-b) .

First

- Ne

• Las

Go Back

Full Scree

 $lue{}$ Close

• Quit

- 1) $a \cdot 0 = 0 \cdot a = 0$.
- $2) (a-b) \cdot c = a \cdot c b \cdot c$, $c \cdot (a-b) = x \cdot a c \cdot b$, где pазность a-b есть по определению a-b=a+(-b).

Следствие 8.1. В любом кольце справедливы тождества:

$$a \cdot (-b) = (-a) \cdot b = -a \cdot b$$

(в частности, $(-1) \cdot x = x \cdot (-1) = -x$).

- 1) $a \cdot 0 = 0 \cdot a = 0$.
- 2) $(a-b)\cdot c=a\cdot c-b\cdot c$, $c\cdot (a-b)=x\cdot a-c\cdot b$, где $\mathit{paзность}\ a-b$ есть по определению a-b=a+(-b) .

Следствие 8.1. В любом кольце справедливы тождества:

$$a \cdot (-b) = (-a) \cdot b = -a \cdot b$$

(в частности, $(-1) \cdot x = x \cdot (-1) = -x$).

Таким образом, производя вычисления в любом кольце (поле), можно раскрывать скобки и менять знаки так же, как в обычной школьной алгебре.

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Задача 8.

Решить в поле \mathbb{Z}_3 и в поле \mathbb{Z}_5 систему уравнений:

$$\begin{cases} x + 2y = 1, \\ y + 2z = 2, \\ 2x + z = 1. \end{cases}$$

'irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Задача 8.

Решить в поле \mathbb{Z}_3 и в поле \mathbb{Z}_5 систему уравнений:

$$\begin{cases} x + 2y = 1, \\ y + 2z = 2, \\ 2x + z = 1. \end{cases}$$

Задача 9.

Решить в поле \mathbb{Z}_5 и в поле \mathbb{Z}_7 систему уравнений:

$$\begin{cases} 2x + 3y = 1, \\ 3x - 4y = 2. \end{cases}$$

Задача 8.

Решить в поле \mathbb{Z}_3 и в поле \mathbb{Z}_5 систему уравнений:

$$\begin{cases} x + 2y = 1, \\ y + 2z = 2, \\ 2x + z = 1. \end{cases}$$

Задача 9.

Решить в поле \mathbb{Z}_5 и в поле \mathbb{Z}_7 систему уравнений:

$$\begin{cases} 2x + 3y = 1, \\ 3x - 4y = 2. \end{cases}$$

Задача 10.

Разрешима ли в кольце \mathbb{Z}_{21} система уравнений:

$$\begin{cases} 5x + 2y = 1, \\ y - 11x = 13? \end{cases}$$

Дополнительные задачи

- **8.1.** Кольцо R называется булевым, если $\forall x \in R$ $x^2 = x$. Доказать:
- (a) в любом булевом кольце $\forall x \in R \ x + x = 0$;
- (б) любое булево кольцо коммутативно;
- (в) в любом булевом кольце мощности больше 2 есть делители нуля.
- **8.2.** Доказать, что $(2^M, \triangle, \cap, \varnothing, M)$ булево кольцо. Доказать, что оно изоморфно \mathbb{Z}_2 при |M|=1.
- **8.3.** Будет ли любое кольцо \mathbb{Z}_{2^n} , $n \geq 1$, булевым?
- **8.4.** Доказать:
- (а) если элемент кольца обратим (слева, справа), то он не является делителем нуля (левым, правым);
- (б) в конечном кольце любой односторонне обратимый элемент обратим;
- (в) элемент кольца вычетов по $\mod k$ обратим тогда и только тогда, когда он взаимно прост с k .