知识点1【计算机网络概述】 (了解)
知识点2【分组交换】(了解)
1、分组概述
2、交换方式: 存储转发
知识点3【TCP/IP协议的简介】(了解)
1、分层结构
七层模型(OSI/RM开放互联模型)(理论上的标准)
四层模型(TCP/IP模型)(事实上的标准)
知识点4【协议的简介】(了解)
1、IP协议:网际协议
2、TCP协议:传输控制协议
3、UDP协议:用户数据报文协议
知识点5【地址的简介】 (了解)
1、mac地址(网卡地址):物理地址
2、IP地址: (逻辑地址)
3、网段地址、广播地址
4、IP地址分类(方式一)
5、IP地址分类(方式二)
6、本地回环地址
7、修改ubuntu的IP地址
8、子网掩码
知识点6【端口】 (重要)

1、端口的概述	
2、端口号	
3、端口号的分类	
知识点7【网络数据的封包、解包】(重要)	
1、mac头部	
2、IP、TCP、UDP头部	
知识点8【开发流程】	
C/S的开发流程:	
面向连接: TCP	
面向无连接:UDP	

知识点1【计算机网络概述】(了解)

网络节点:路由器、交换机

路由: 网络通信路径。

知识点2【分组交换】(了解)

1、分组概述

同一个分组系统中 每个组是定长。

每个分组都有一个首部: 地址信息、分组的位置信息

2、交换方式:存储转发

分组的数据重组 发生在目的主机上。

知识点3【TCP/IP协议的简介】(了解)

TCP/IP协议族:是众多协议的统称

1、分层结构

网络分为7层模型、4层模型:

七层模型 (OSI/RM开放互联模型) (理论上的标准)

应用层: 具体的网络应用程序

表示层: 将计算机识别的二进制数据 翻译成人能识别的数据(文字、图片、音视频

会话层:保证数据正常尽量到达主机,提供通信服务、通信状态

传输层: 进程--->进程间的通信, port端口

网络层: 主机--->主机之间的通信, IP报文的封装, 解封装

数据链路层:进行帧数据的收发,网络设备的物理地址(MAC),设备--->设备

帧数据:可以独立在网络上传输的最小数据。

物理层: 物理设备(网卡、双绞线)的接口类型、电流强弱标准

四层模型 (TCP/IP模型) (事实上的标准)

应用层: 具体的网络应用程序

等)

传输层: 进程--->进程间的通信, port端口

网络层: 主机--->主机之间的通信, IP报文的封装, 解封装

链路层:进行帧数据的收发,网络设备的物理地址(MAC),设备--->设备

帧数据:可以独立在网络上传输的最小数据。

OSI/RM(理论上的标准)	TCP/IP(事实上的标准)
应用层	
表示层	应用层
会话层	
传输层	传输层
网络层	网络层
数据链路层	链路层
物理层	

FTP:文件传输协议、telnet远程登录协议、TFTP简单文件传送协议、NFS网络文件系统协议

TCP:传输控制协议、UDP用户数据报文协议

ICMP: 网络控制报文协议、IP网际协议、IGMP网络组管理协议

ARP: 地址解析协议、RARP逆地址解析协议

知识点4【协议的简介】(了解)

1、IP协议: 网际协议

不可靠: 为网络数据通信提供必要功能, 保证数据尽可能到达目的主机。

无连接:每个IP数据包是独立传输的。

2、TCP协议:传输控制协议

TCP 是一种面向连接的,可靠的传输层通信协议

功能:

提供不同主机上的进程间通信

特点

- 1、建立链接->使用链接->释放链接(虚电路)
- 2、TCP 数据包中包含序号和确认序号
- 3、对包进行排序并检错,而损坏的包可以被重传

服务对象

需要高度可靠性且面向连接的服务 如 HTTP、FTP、SMTP 等

总结: tcp面向连接的传输层协议、序号、确认序号、排序、检错、失败重传

3、UDP协议:用户数据报文协议

UDP 是一种面向无连接的传输层通信协议

功能:

提供不同主机上的进程间通信

特点

- 1、发送数据之前不需要建立链接
- 2、不对数据包的顺序进行检查
- 3、没有错误检测和重传机制

服务对象

主要用于"查询—应答"的服务如: NFS、NTP、DNS

总结: UDP面向无连接的传输层协议、不排序、不检错、不重传 (快)

知识点5【地址的简介】(了解)

1、mac地址 (网卡地址): 物理地址

理论上全球唯一

组成: 以太网内的 MAC 地址是一个 48b

2、IP地址: (逻辑地址)

IP地址是对网络中每一台主机的抽象的地址。

IP地址必须和子网掩码 配合使用

使用 32bit,由{网络 ID, 主机 ID}两部分组成

网络ID:表示IP在哪个网段 主机ID:表示IP在某个网段的具体位置

网络 ID:IP 地址中由子网掩码中 1 覆盖的连续位。

主机 ID:IP 地址中由子网掩码中 0 覆盖的连续位。

1010110	00.0	001010	0. 1	101111	1.0	1001011
172		20		223		75
255	<u>:</u>	255	:_	255	<u></u>	0
172		20		223		75
		$\overline{}$				$\overline{}$
	=	子网ID				主机ID

案例1:10.9.21.201/255.255.255.0

网络ID:10.9.21 主机ID:201

案例2:10.9.21.201/255.0.0.0

网络ID:10 主机ID:9.21.201

案例2:10.9.21.201/24==255.255.255.0

网络ID:10.9.21 主机ID:201

3、网段地址、广播地址

10.9.21.201/255.255.255.0

网段地址: 主机ID全为0的IP地址 为该网段的网段地址 (不能作为主机的IP地址)

10.9.21.0

广播地址: 主机ID全为1的IP地址 为该网段的广播地址 (不能作为主机的IP地址)

10.9.21.255

案例1: 192.168.1.1/255.0.0.0

网段地址: 192.0.0.0 广播地址: 192.255.255.255

案例2: 192.168.1.1/255.255.0.0

网段地址: 192.168.0.0 广播地址: 192.168.255.255

4、IP地址分类 (方式一)

A 类地址: 默认 8bit 子网 ID,第一位为 0 广域网(国家~国家之间)

子网掩码: 255.0.0.0

0xxx xxxx.0000 0000.0000 0000.0000 0000~0xxx xxxx.1111 1111.1111 1111.1111

1111

B 类地址: 默认 16bit 子网 ID,前两位为 10 城域网 (城市~城市之间)

子网掩码: 255.255.0.0

10xx xxxx xxxx xxxx.0000 0000.0000 0000~10xx xxxx xxxx xxxx 1111 1111.1111 1111

C 类地址: 默认 24bit 子网 ID,前三位为 110 局域网

子网掩码: 255.255.255.0

110x xxxx.xxxx xxxx.xxxx xxxx.0000 0000~110x xxxx.xxxx xxxx.xxxx xxxx.1111 1111

D 类地址: 前四位为 1110,多播地址

E 类地址: 前五位为 11110,保留为今后使用 A,B,C 三类地址是最常用

5、IP地址分类(方式二)

公有IP:可以直接上外网的IP

私有IP:不可以直接上外网的IP

6、本地回环地址

127.0.0.1~127.255.255.254 中的任何地址都是回环地址。

测试本机的网络配置

7、修改ubuntu的IP地址

1 sudo ifconfig eth0 10.9.21.201 netmask 255.255.255.0

获取IP:

1 sudo dhclient

linux:

sudo pppoeconf sudo pon dsl-provider //拨号 ADSL sudo poff //断开 ADSL

8、子网掩码

子网掩码和IP地址配合使用。

子网掩码 (subnet mask) 又叫网络掩码、地址掩码是一个 32bit 由 1 和 0 组成的数值,并且 1 和 0 分别连续

作用

指明 IP 地址中哪些位标识的是主机所在的子网以及哪些位标识的是主机号 特点

必须结合 IP 地址一起使用,不能单独存在 IP 地址中由子网掩码中 1 覆盖的连续位为子网 ID,其余位主号

子网掩码的表现形式

- 1 192.168.220.0/255.255.255.0
- 2 192.168.220.0/24

知识点6【端口】(重要)

1、端口的概述

网络程序是通过"端口"来标示进程。

211	A宾馆 A系统		
房间 进程 201	房间 进程 202	房间 进程 203	房间 进程 204
201	202	203	204

B宾馆 B系统					
房间进程	房间进程	房间进程	房间进程		
201	202	203	204		

对于同一个端口,在不同系统中对应着不同的进程 对于同一个系统,一个端口只能被一个进程拥有

一个进程 可以拥有多个端口

如果进程结束 释放端口 这个端口就可以被其他进程拥有

2、端口号

- 1、端口号是无符号短整型的类型 unsigned short
- 2、每个端口都拥有一个端口号
- 3、TCP、UDP维护各自独立的端口号
- 4、网络应用程序,至少要占用一个端口号,也可以占有多个端口号

3、端口号的分类

知名端口: (1~1023) 由互联网数字分配机构(IANA)根据用户需要进行统一分配

FTP-21, HTTP-80

动态端口: 1024~65535

应用程序通常使用的范围

知识点7【网络数据的封包、解包】(重要)

发送数据 是组包的过程

接收数据 是解包的过程

1、mac头部

2、IP、TCP、UDP头部

知识点8【开发流程】

C/S:client(客户端)-----server(服务器): QQ、LOL

B/S:browser(浏览器)-----server(服务器): Web_QQ

C/S的开发流程:

面向连接: TCP

电话系统服务模式的抽象

server 工作过程:

打开一通信通道并告知本地主机,它愿意在一特定端口(如 80)上接收客户请求等待客户请求到达该端口,接收客户请求,并发送应答信号,激活一新的线程处理这个客户请求服务完成后,关闭新线程与客户的通信链路。

client 工作过程:

打开一通信通道并连接到服务器特定端口 向服务器发出服务请求,等待并接收应答 根据需要继续提出请求 请求结束后关闭通信通道并终止。

面向无连接: UDP

邮件系统服务模式的抽象.

每个分组都携带完整的目的地址

