

Data structures

Linear Data Structures: Stacks

Deadline: 11/10/2017.

Objective of the practice

To use a stack to do numerical coding in different bases.

Background

A stack is a linear data structure of the LIFO type (Last–In, First–Out) in which the data is added and removed by just one side. You must use a stack for integer numbers to solve the number coding problem in base r, $2 \le r \le 16$.

Number codification

In a positional coding system (PCS) a number is encoded as a sequence of symbols called digits. The sequence of digits is called a numeral. The value represented by each digit depends not only on itself but also on its position relative to other digits. A PCS is based on a positive integer radix (or base) $r \ge 2$ and the digit set $\{0,1,\cdots,r-1\}$. An unsigned integer is represented by a vector of length k where:

$$x_k x_{k-1} \cdots x_2 x_1 = \sum_{i=1}^k x_i \cdot r^{i-1}$$

The term $x_i \cdot r^{i-1}$ is the corresponding to the *i*-th position where:

- x_i is the i-th digit (from right to left).
- r^{i-1} is the positional value.
- $x_i \cdot r^{i-1}$ is the *actual value* of the *i*-th digit.

For example, let n=100111011 be a *binary* numeral (i.e., with r=2; we can also write 100111011_2 to denote it). Then:

$$n = 1 \cdot 2^8 + 0 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

= 256 + 32 + 16 + 8 + 2 + 1
= 315

Now we say that $100111011_2 = 315$. We call the leftmost digit (x_k) the most significative digit (MSD) due to its position corresponds to the greater positional value.

Number coding in radix r

Assume an integer $n \ge 0$. To encode n in radix r you must implement the algorithm of remainders, which can be stated as follows:

- 1. Calculate $x \leftarrow n \mod r$ ($n \mod r$ is the *remainder* of the euclidean division (*integer division*) of n by r, also called *the modulo* r of n). Reserve x as the MSD of your numeric encoding.
- 2. Calculate $n \leftarrow n \div r$ ($n \div r$ is the integer division of n by r).
- 3. Repeat from step 1 while n > 0.
- 4. The algorithm ends and provides as a result the sequence of reminders that was generated.

Por example, suppose you want to code 315 to the radix 2 (r = 2). Then you have the following run:

	n	\boldsymbol{x}	
Beginning →	315	1	_
	157	1	
	78	0	
	39	1	
	19	1	
	9	1	
	4	0	
	2	0	
	1	1	← The last digit is the MSD
End →	0		

Therefore, $315 = 100111011_2$.

Implementation

You must program the algorithm of remainders to code a nonnegative integer to any radix $2 \le r \le 16$. Note that the encoding algorithm generates an inverted sequence. You must reverse the sequence using stack. For example, for n=315 we have the following:

You must implement your stack *dinamically*, i.e., on a linked list. Do not limit its capacity.

Let x be a digit. Then $0 \le x < r$. E.g., if r = 2 then $0 \le x < 2$ (i.e., x = 0 or x = 1) and if r = 10, then $0 \le x < 10$. For a radix greather than 10 ($11 \le r \le 16$), we use the following additional symbols:

<u>x</u>	Symbol	_	x	Symbol
10	A		13	D
11	B		14	\boldsymbol{E}
12	С		15	F

E.g., for the hexadecimal encoding of 43006 (r=16), the algorithm of remainders generates the succession 14, 15, 7 and 10. According to the suggested symbology, this sequence is E, F, 7 and A. Then, the hexadecimal coding of 43006 is A7FE.

Operation of your program: Your program must ask for a nonnegative number n and a radix r in the range of 2 to 16. In response it must show on screen the codification of n with radix r.

Examples

1. A run of your program should look like:

Number: 2017 Radix: 7

Encoding: 5611

2. Assume n = 7791. Below is the coding to each of the possible radices:

r	Encoding	r	Encoding
		9	11616
2	1111001101111	10	7791
3	101200120	11	5943
4	1321233	12	4613
5	222131	13	3714
6	100023	14	2 <i>BA</i> 7
7	31500	15	2496
8	17157	16	1 <i>E</i> 6 <i>F</i>

Delivery

Send your code in a .zip, .rar or .7z file named <code>encoding.<name>.zip</code>, where <name> is your name. For example: <code>encoding.tyron.lannister.zip</code>. Send your file to aaguilar.itszapopan@gmail.com no later than the deadline with the subject Encoding</code>. They will not be reviewed consignments that fail to complay with any of these requirements or if they do not compile. The deadline is on Friday, November 10th.