The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) A method of manufacturing a semiconductor device comprising steps of:

irradiating a linear laser beam to a surface of a semiconductor with a line-shaped laser beam in a gas atmosphere containing an impurity while scanning the linear laser beam;

applying an electromagnetic energy to the gas atmosphere so as to decompose the gas atmosphere containing the impurity while irradiating the surface with the linear line-shaped laser beam; [[and]]

changing a relative position of the semiconductor with respect to the line-shaped laser beam while irradiating the surface with the line-shaped laser beam; and

heating the semiconductor at a temperature not higher than a crystallization temperature of said semiconductor while applying the electromagnetic energy.

- 2. (Currently Amended) The method according to claim 1 wherein the gas atmosphere comprises a gas selected from the group consisting of AsH₃, PH₃, BF₃, BCl_3 and $B(CH)_3)_3$ $B(CH_3)_3$.
 - 3. (Canceled)

4. (Currently Amended) A method of manufacturing a semiconductor device comprising steps of:

providing disposing a substrate in a chamber, said substrate having a semiconductor film comprising silicon formed thereon over a substrate in a chamber;

transferring the substrate in a first direction;

introducing a gas containing an impurity a dopant species into the chamber;

irradiating the semiconductor film with a laser light through a window having a slit shape while transferring the substrate so that the dopant species changing a relative position of the substrate with respect to the laser light so that the impurity is introduced into the semiconductor film; and

heating the semiconductor film during a laser light irradiation.

6 5. (Original) The method of claim 4 wherein the semiconductor film is heated not lower than 200 degree C.

(Currently Amended) A method of manufacturing a semiconductor device comprising steps of:

disposing a substrate in a chamber, said substrate providing having a semiconductor film comprising silicon formed thereon over a substrate in a chamber;

transferring the substrate in a first direction;

introducing a gas containing an impurity a dopant species into the chamber;

applying an electromagnetic energy to the gas <u>in the chamber</u> in order to activate the gas; and

irradiating the semiconductor film with a laser light through a window having a slit shape while transferring the substrate so that the dopant species so that the impurity is introduced into the irradiated portion of the semiconductor film; and

changing a relative position of the substrate with respect to the laser light while irradiating the semiconductor film with the laser light.

10 7. (Currently Amended) The method according to claim 6 further comprising heating the semiconductor film during a laser light irradiation the irradiation of the laser light.

(Currently Amended) A method of manufacturing a semiconductor device comprising steps of:

holding a substrate semiconductor in a chamber;

introducing a gas containing dopant species an impurity into the chamber;

producing a plasma of said gas by applying an electromagnetic energy;

introducing said dopant species <u>impurity</u> from said plasma into an entirety of a line-shaped target portion of said substrate <u>semiconductor</u>;

changing a relative position of the substrate line-shaped target portion with respect to said semiconductor in said chamber; and

heating the semiconductor at a temperature not higher than a crystallization temperature of said semiconductor while applying the electromagnetic energy.

9.-10. (Canceled)

11. (Original) The method according to claim 8 wherein said gas is selected from the group consisting of PH_3 and B_2H_6 .

(Original) The method according to claim 8 wherein said gas is selected from the group consisting of AsH₃, PH₃, BF₃, BCI₃, and B(CH₃)₃.

(Currently Amended) A method of manufacturing a semiconductor device comprising steps of:

producing a plasma of a gas by applying an electromagnetic energy, wherein said gas contains dopant-species an impurity;

introducing said dopant species <u>impurity</u> from said plasma into an entirety of a line-shaped target portion of a semiconductor film;

changing a relative position of the line-shaped target portion [[over]] with respect to the semiconductor film; and

heating the semiconductor <u>film</u> at a temperature not higher than a crystallization temperature of said semiconductor <u>film</u> while applying the electromagnetic energy.

14.-15. (Canceled)

 $\sqrt{8}$ 16. (Original) The method according to claim 13 wherein said gas is selected from the group consisting of PH₃ and B₂H₆.

17. (Original) The method according to claim 13 wherein said gas is selected from the group consisting of AsH₃, PH₃, BF₃, BCI₃, and B(CH₃)₃.

18. (Original) The method according to claim 13 wherein said semiconductor device includes a thin film transistor.

3 19. (New) The method according to claim 1 wherein said semiconductor device includes a thin film transistor.

7 20. (New) The method according to claim 4 wherein said semiconductor device includes a thin film transistor.

(New) The method according to claim 6 wherein said semiconductor device includes a thin film transistor.

(New) The method according to claim 8 wherein said semiconductor device includes a thin film transistor.

4 23. (New) The method according to claim 1 wherein the semiconductor is moved with respect to the line-shaped laser beam.

Representation (New) The method according to claim 4 wherein the substrate is moved with respect to the laser light.

12 25. (New) The method according to claim 6 wherein the substrate is moved with respect to the laser light.