Fachrichtung Mathematik • Institut für Algebra • Prof. Dr. Ulrike Baumann

Mathematische Methoden für Informatiker INF-120 Sommersemester 2019

12. Ubungsblatt für die Woche 01.07. - 07.07.2019

Funktionen zweier Veränderlicher

 $\ddot{U}67$ (a) Bestimmen und skizzieren Sie für die folgenden reellwertigen Funktionen f zweier Veränderlicher den Definitionsbereich $D(f) \subset \mathbb{R}^2$:

(i)
$$f(x,y) = \sqrt{x^2 - y^2}$$
,

(ii)
$$f(x,y) = \ln\left(\frac{1}{4}x^2 + y^2 - 9\right)$$
.

(b) Bestimmen Sie für folgende Funktionen f die Höhenlinien, und skizzieren Sie einige davon. Schließen Sie daraus auf die Gestalt der Fläche z = f(x, y).

(i)
$$f(x,y) = 10 - \sqrt{x^2 + y^2}$$

(i)
$$f(x,y) = 10 - \sqrt{x^2 + y^2}$$
, (ii) $f(x,y) = \sqrt{1 - y^2}$, $|y| \le 1$.

- Ü68 (a) Hat die Funktion $f(x,y) = \frac{\sin(xy)}{x^2 + y^2}$ im Punkt P(0;0) einen Grenzwert? Untersuchen Sie dazu das Verhalten von f, wenn sich (x,y) dem Punkt P(0;0)
 - 1. längs der Geraden y = x,
 - 2. längs der Geraden y = 2x

nähert. Geben Sie den Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ an, falls er existiert.

(b) Stellen Sie folgende Flächen z = f(x, y) in Polarkoordinaten $(x(r, \varphi), y(r, \varphi), z(r, \varphi))^T$ dar:

(i)
$$f(x,y) = 4 - x^2 - y^2$$
, (ii) $f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$, (iii) $f(x,y) = \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$.

(ii)
$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$
,

(iii)
$$f(x,y) = \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$$

Nutzen Sie diese Darstellung, um für die Funktionen aus (ii) und (iii) zu untersuchen, ob der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert. Berechnen Sie diesen Grenzwert gegebenenfalls.

Ü69 Bilden Sie alle partiellen Ableitungen 1. und 2. Ordnung der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, die durch

$$f(x,y) = y\ln(x^2 + 1) + x$$

definiert ist. Überprüfen Sie die Gültigkeit des Satzes von Schwarz für diese Funktion.

H70 **A**

(a) Bestimmen Sie für die folgenden reellwertigen Funktionen f:

(i)
$$f(x,y) = \frac{y-x+1}{y+1}$$
 (ii) $f(x,y) = \sqrt{5-x^2-y^2}$

(ii)
$$f(x,y) = \sqrt{5 - x^2 - y^2}$$

jeweils den Definitionsbereich $D(f) \subset \mathbb{R}^2$ und die Höhenlinien.

(b) Gegeben ist die reellwertige Funktion

$$f(x,y) = 2y + (x^2 + y^2)e^{-\sqrt{x^2+y^2}}.$$

Bestimmen Sie die Menge aller Paare $(x,y) \in \mathbb{R}^2$, für die $\frac{\partial f}{\partial x}(x,y) = 0$ ist, und skizzieren Sie diese Menge in der xy-Ebene.

H71 Verwenden Sie Polarkoordinaten, um zu zeigen, dass die Funktion

$$z = f(x,y) = \begin{cases} \frac{2xy(y^2 - x^2)}{x^2 + y^2}, & \text{für } (x,y) \neq (0,0) \\ 0, & \text{für } (x,y) = (0,0) \end{cases}$$

im Punkt (0,0) stetig ist.

H72 Berechnen Sie alle Werte des Parameters $a \in \mathbb{R}$, für die die Funktion $f(x,y) = ax^2y + \ln(xy)$ Lösung folgender Gleichung (Differentialgleichung) ist:

$$x f_x - y f_y = y (f_{xy})^2.$$

,

f. D(f) -> R Z=	f (x, y) , tlöhe"
$\leq \mathbb{R}^2$	<=> 1×1>14
Definitions boreich:	
	2.B in [Quadranten;
67) a)	420,860
$f(s,y) = \int_{S^2-y^2}$	M/34/6> -x24
>>>	7
3 ² > y ²	
)(f) = { (x,y) ep2 \ x > y2 \	
	Rand Kurve: 4=->
$f(x,y) = ln(\frac{1}{4}x^2+y^2-9)$	
(1) (4) (4) (4)	
DH) = {(5,y) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	9 > 0 4
1000 - L(30J) E/F (430 J	Formelsammling
1 3 + 4 > 9	9
	Ellipsengleichung ===================================
	\frac{1}{a^2} + \frac{1}{6} = 1
$\Rightarrow (\frac{2}{2})^{2} + y^{2} = 3^{2}$ $\Rightarrow \frac{3}{2} + \frac{1}{3} = 1$	79
D 7 + 3 = 1	3
	4 3

b) Höhen Linien Z= fr	(5, y) = C Konst
i) fx,y) = 10 - 524y2	
$(ii) (x, y) = 1 - y^2 = 0$	Cman = 1 Cnin = D
1) 10 - L = 5xy (10-4)2-52+42	\(\sigma^2 \) \(\sigma \le 10 \) \(\sigma \)
	Kreise mit Radius v=10-c
(=10) 2 als F	-unktion von r
Z=C=10-Y	Mantel Linie
Kveis kegel	10
(i) (tx,y) = \(\sqrt{1-y^2} = C \)	Concor = 1 Conson = 0
51-y2 = C Keine Al S Historian sind he	hingigleeit von > orizontale Geraden (Parallel zur >-Ahre)

45.41-212.01	V-> 0	V3∕)	1		
$69)$ $f(x,y)$ = $y = \frac{2}{x^2}$	= y ln (32+	1)+>			
$f_{s}(s,y)=y^{2}$	× +1				
fylx, y) = ln	(3+1)			V .	
r 1, 2, 4	341-42			1	
f 5x(x,y)=y=y=	349)2				
(x,y)= 2	4		Λ . L	10 To	1.1.
(39 (737)) - 1	+1		/-tn50	eig der Ta	(x, y) = (x, x, y)
(4y (x,y) = 0)				
			-f-54	= 34 (34	
fyx(x,y)= =	2 1				
	S.V. Schwarz r				
(xy (x, y)	S.V. Schwarz f	yz (x,y)			