# Surface Integrals

Section 16.6, 16.7

#### **Outline**

- Parametric Surfaces
  - ▶ Tangent Planes
  - Surface Area
- Surface Integrals
  - Surface Integral of a Scalar Function
  - Oriented Surfaces
  - Surface Integrals of Vector Fields

## **Surface Integrals**

- lacktriangle Suppose f is a function of three variables whose domain includes a surface S .
- We will define the surface integral of f over S in such a way that, in the case where f=1, the value of the surface integral is equal to the surface area of S.
- Suppose that a surface S has a vector equation  $\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$   $(u,v) \in D$

## **Surface Integrals**

- We first assume that the parameter domain D is a rectangle and we divide it into subrectangles  $D_{ij}$  with dimensions  $\Delta u$  and  $\Delta v$ .
- Then the surface S is divided into corresponding patches  $S_{ij}$ .
- We evaluate f at a point  $P_{ij}^*$  in each patch, multiply by the area  $\Delta S_{ij}$  of the patch, and form the Riemann sum  $\sum_{i=1}^m \sum_{j=1}^n f(P_{ij}^*) \Delta S_{ij}$

## Surface Integral



## **Surface Integrals**

Then we take the limit as the number of patches increases and define the surface integral of f over the surface S as

$$\iint_{S} f(x, y, z) \ dS = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij}$$

We know that  $\Delta S_{ij} \approx |\vec{r}_u \times \vec{r}_v| \Delta u \Delta v$  Hence,

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{r}(u, v)) |\vec{r}_{u} \times \vec{r}_{v}| dA$$

## **Surface Integrals**

(X, 4) ED

- Any surface S with equation z=g(x,y) can be regarded as a parametric surface with parametric equations: x=x, y=y, z=g(x,y).
- Because  $|\vec{r}_x \times \vec{r}_y| = \sqrt{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 + 1}$  , in this case,

$$\iint_{S} f(x, y, z) dS =$$

$$\iint_D f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 + 1} \ dA$$

Ex: Compute  $\int \int y+1 \, dS$  where S is the part of the plane x+2y+3z=6 in the first octant.



Ex:  $\iint Z dS$ , where S is the upper sphere,  $x^2 + y^2 + z^2 = a^2$ , z > 0.

Sol:

Ex:  $\iint Z dS$ , where S is the boundary surface of the solid E.

Sol:  $x^{2}+y^{2}=1$   $x^{2}+y^{2}=1$ 

Ex:

Compute the surface integral

$$\iint_{S} xz \, \mathrm{d}S,$$

where S is the part of the cone  $z=\sqrt{x^2+y^2}$  inside the circular cylinder  $x^2+y^2=2x$ .

Example Example Evaluate the surface integral 
$$\iint_S \sqrt{x^2+y^2} \, \mathrm{d}S$$
, where  $S$  is the part of the surface  $z=\tan^{-1}\left(\frac{y}{x}\right)$  inside the circular cylinder  $x^2+y^2=1$  and in the first octant.

▶ To define surface integrals of vector fields, we need to rule out nonorientable surfaces such as the Möbius strip. A Möbius strip really has only one side.

From now on we consider only orientable (two-sided) surfaces.

## Möbius Strip (Nonorientable parametric surface)





$$F(u,v) = ((1+vsin\frac{u}{2})cosu, (1+vsin\frac{u}{2})sinu, vos\frac{u}{2})$$
 $0 \le u \le 2\pi i, -a \le v \le a.$ 



- We start with a surface S that has a tangent plane at every point (x,y,z) on S (except at any boundary point). There are two unit normal vectors  $\vec{n}_1$  and  $\vec{n}_2 = -\vec{n}_1$  at (x,y,z).
- Definition: If it is possible to choose a unit normal vector  $\vec{n}$  at every such point (x,y,z) so that  $\vec{n}$  varies continuously over S, then S is called an **oriented surface** and the given choice of  $\vec{n}$  provides S with an **orientation**.



For a surface z=g(x,y), a natural orientation given by the unit normal vector

$$\vec{n} = \frac{-\frac{\partial g}{\partial x}\vec{i} - \frac{\partial g}{\partial y}\vec{j} + \vec{k}}{\sqrt{1 + (\frac{\partial g}{\partial x})^2 + (\frac{\partial g}{\partial y})^2}}$$

Since the  $\vec{k}$  -component is positive, this gives the *upward* orientation of the surface.

If S is a smooth orientable surface given in parametric form by a vector function  $\vec{r}(u,v)$ , then it is automatically supplied with the orientation of the unit normal vector

$$\vec{n} = \frac{\vec{r}_u \times \vec{r}_v}{|\vec{r}_u \times \vec{r}_v|}$$

and the opposite orientation is given by  $-\vec{n}$  .

For a **closed surface**, that is, a surface that is the boundary of a solid region E, the convention is that the **positive orientation** is the one for which the normal vectors point outward from E, and inward-pointing normal vectors give the negative orientation.

#### Closed surface:



positive orientation



negative orientation

| How do we choose the "orientation" of S. |             |
|------------------------------------------|-------------|
| Surface                                  | Orientation |
| Z= 9(x,y)                                |             |
|                                          | •           |
|                                          |             |
| Si Filary)                               |             |
|                                          |             |
| S: a closed                              |             |
| surface, the                             |             |
| boundary of a                            |             |
| boundary of a solid region.              |             |

Ex: S: the sphere with radius a>0, center (0,0,0).

Find the outward  $\vec{n}(x,y,z)$ .

Sol:



Suppose that S is an oriented surface with unit normal vector  $\vec{n}$ , and imagine a fluid with density  $\rho(x,y,z)$  and velocity field  $\vec{v}(x,y,z)$  flowing through S. Then the rate of flow (mass per unit time) per unit area is  $\rho \vec{v}$ .



If we divide S into small patches  $S_{ij}$ , Then  $S_{ij}$  is nearly planar and so we can approximate the mass of fluid per unit time crossing  $S_{ij}$  in the direction of the normal  $\vec{n}$  by the quantity  $(\rho \vec{v} \cdot \vec{n}) A(S_{ij})$ .

By summing these quantities and taking the limit we get,

$$\iint_S \rho \vec{v} \cdot \vec{n} \ dS = \iint_S \rho(x,y,z) \vec{v}(x,y,z) \cdot \vec{n}(x,y,z) \ dS$$
 and this is interpreted physically as the rate of flow through  $S$  .

A surface integral of this form occurs frequently in physics, and is called the *surface integral* (or *flux integral*) of a vector field over *S*.

- Definition: If  $\vec{F}$  is a continuous vector field defined on an oriented surface S with unit normal vector  $\vec{n}$ , then the **surface integral of**  $\vec{F}$  over S is defined as  $\iint_S \vec{F} \cdot \vec{n} \ dS$  and denoted by  $\iint_S \vec{F} \cdot d\vec{S}$ .
- The integral is also called the flux of  $\vec{F}$  across S .

If S is given by a vector function  $\vec{r}(u,v)$ , we have

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{S} \vec{F} \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{|\vec{r}_{u} \times \vec{r}_{v}|} dS$$

$$= \iint_{D} \vec{F}(\vec{r}(u, v)) \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{|\vec{r}_{u} \times \vec{r}_{v}|} |\vec{r}_{u} \times \vec{r}_{v}| dA$$

$$= \iint_{D} \vec{F} \cdot (\vec{r}_{u} \times \vec{r}_{v}) dA$$

Ex: If S: Z=g(x,y), (x,y) & D, F(x,y,Z) = Pi+Qj+Rk,

then 
$$\iint \vec{F} \cdot d\vec{S} =$$

In the case of a surface S given by a graph  $z=g(x,y) \mbox{ , for } \vec{F}=P\vec{i}+Q\vec{j}+R\vec{k} \mbox{ ,}$ 

$$\iint_{S} \vec{F} \cdot d\vec{S} = \iint_{D} (-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R) \ dA$$

This formula assumes the upward orientation of S; for a downward orientation we multiply by -1.

Ex:  $\vec{F}(x,y,z) = \vec{y} \cdot \vec{j} - \vec{z} \cdot \vec{k}$ . S consists of paraboloid  $y = x^2 + z^2$ ,  $0 \le y \le 1$ , and the disc  $x^2 + z^2 \le 1$ , y = 1, with outward orientation. Compute  $\vec{j} \cdot \vec{F} \cdot d\vec{s}$ .



Ex: Compute \int \overline{F} \cdot \delta \



Ex: Find the flux of the electric field  $\vec{E}(\vec{x}) = \frac{1}{4\pi\epsilon_0} \frac{\vec{Q}\vec{x}}{|\vec{x}|^3}$  across the sphere  $S: x^2+y^2+z^2=\alpha^2$  (with outward orientation).

Sol.

Suppose 
$$\mathbf{F}$$
 is a radial force field,  $\iff$   $\mathbf{F}(\vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x}})$   $\mathbf{f}(\vec{\mathbf{x}}) = \mathbf{f}(\vec{\mathbf{x})$   $\mathbf{f}(\vec{\mathbf{x}) = \mathbf{f}(\vec{\mathbf{x})})$   $\mathbf{f}(\vec{\mathbf{x}) = \mathbf{f}(\vec{\mathbf{x})})$   $\mathbf{f}(\vec{\mathbf{x}) = \mathbf{$ 

Suppose

#### Review

- ▶ How do we parametrize a surface?
- Given a smooth parametrization of a surface, how do we compute the tangent planes and the area of the surface?
- How do we compute the surface integral of a scalar function?
- What is an oriented surface?
- How do we compute surface integrals of vector fields over an oriented surface?