CHALMERS, GÖTEBORGS UNIVERSITET

RE-EXAM for ARTIFICIAL NEURAL NETWORKS

COURSE CODES: FFR 135, FIM 720 GU, PhD

Time: January 20, 2018, at $8^{30} - 12^{30}$

Place: SB Multisal

Teachers: Bernhard Mehlig, 073-420 0988 (mobile)

Johan Fries, 070-370 1272 (mobile), visits once at 9^{00}

Allowed material: Mathematics Handbook for Science and Engineering

Not allowed: Any other written material, calculator

Maximum score on this exam: 12 points.

Maximum score for homework problems: 12 points.

To pass the course it is necessary to score at least 5 points on this written exam.

CTH \geq 14 passed; \geq 17.5 grade 4; \geq 22 grade 5,

GU \geq 14 grade G; \geq 20 grade VG.

1. Recognition of one pattern. In the deterministic Hopfield model, the state S_i of the *i*-th neuron is updated according to the Mc-Culloch Pitts rule

$$S_i \leftarrow \operatorname{sgn}(b_i),$$
 (1)

where
$$b_i = \sum_{j=1}^{N} w_{ij} S_j$$
. (2)

Here N is the number of neurons, w_{ij} are the weights. The weights depend on p patterns $\boldsymbol{\zeta}^{(\mu)} = (\zeta_1^{(\mu)}, \dots, \zeta_N^{(\mu)})^\mathsf{T}$ stored in the network according to Hebb's rule:

$$w_{ij} = \frac{1}{N} \sum_{\mu=1}^{p} \zeta_i^{(\mu)} \zeta_j^{(\mu)} \text{ for } i, j = 1, \dots, N.$$
 (3)

Here $\zeta_i^{(\mu)}$ takes values 1 or -1.

a) Consider the patterns in Figure 1. Compute the quantity

$$\sum_{j=1}^{N} \zeta_j^{(\mu)} \zeta_j^{(\nu)} \tag{4}$$

for the following ten combinations of μ and ν :

- $\mu = 1 \text{ and } \nu = 1, \ldots, 5,$
- $\mu = 2$ and $\nu = 1, ..., 5$.

(Hint: The result can be read off from the Hamming distances between the patterns shown in Figure 1.)
(0.5 p)

- b) The patterns stored in the network are $\zeta^{(1)}$ and $\zeta^{(2)}$. Let $b_i^{(\nu)}$ denote b_i obtained by substituting S_j by $\zeta_j^{(\nu)}$ in eq. (2). Use your answer to a) to compute $b_i^{(\nu)}$ for $\nu = 1, \ldots, 5$. Express these results as linear combinations of $\zeta_i^{(1)}$ and $\zeta_i^{(2)}$. (1 p)
- c) Feed the patterns in Figure 1 to the network. Which ones are stable under synchronous updating? Show how you arrive to your results. (0.5 p)

Figure 1: The patterns studied in Question 1. Each pattern consists of 42 bits $\zeta_i^{(\mu)}$ taking values +1 or -1. A black square for bit *i* in pattern μ stands for $\zeta_i^{(\mu)} = 1$, a white square stands for $\zeta_i^{(\mu)} = -1$.

2. Linearly inseparable problem. A classification problem is specified in Figure 2, where a grey triangle in input space is shown. The aim is to map input patterns $\boldsymbol{\xi}^{(\mu)}$ to outputs $O^{(\mu)}$ as follows: if a point with coordinate

vector $\boldsymbol{\xi}^{(\mu)}$ lies inside the triangle it is mapped to $O^{(\mu)}=1$, but if $\boldsymbol{\xi}^{(\mu)}$ is outside the triangle it is mapped to $O^{(\mu)}=0$. How patterns on the boundary of the triangle are classified is not important.

- a) This problem is not linearly separable. Show this by constructing a counter-example using four input patterns. (0.5 p)
- b) The problem can be solved by a perceptron with one hidden layer with three neurons v_i for i = 1, 2, 3, where neuron i is given the value

$$v_i^{(\mu)} = H\left[-\theta_i + \sum_{j=1}^2 w_{ij}\xi_j^{(\mu)}\right]$$
 (5)

and the output is given the value

$$O^{(\mu)} = H \left[-T + \sum_{i=1}^{3} W_i v_i^{(\mu)} \right]. \tag{6}$$

Here w_{ij} and W_i are weights and θ_i and T are thresholds. In eqs. (5) and (6),

$$H(b) = \begin{cases} 0 & \text{if} \quad b \le 0\\ 1 & \text{if} \quad b > 0 \end{cases} \tag{7}$$

Find weights and thresholds that solve the classification problem. (1 p)

Figure 2: Specification of classification problem in Question 2 (see text). The input space is the (ξ_1, ξ_2) -plane.

3. Backpropagation. A multilayer perceptron has L-1 hidden layers, one input layer and one output layer. The state of a neuron $v_i^{(m,\mu)}$ in the m-th layer is given by

$$v_i^{(m,\mu)} = g\left(b_i^{(m,\mu)}\right),\tag{8}$$

where

$$b_i^{(m,\mu)} = -\theta_i^{(m)} + \sum_j w_{ij}^{(m)} v_j^{(m-1,\mu)}$$
(9)

for m > 1 and

$$b_i^{(m,\mu)} = -\theta_i^{(m)} + \sum_j w_{ij}^{(m)} \xi_j^{(\mu)}$$
(10)

for m=1. In eqs. (9) and (10) $w_{ij}^{(m)}$ are weights and $\theta_i^{(m)}$ are thresholds. g=g(b) in eq. (8) is the activation function and $\xi_j^{(\mu)}$ in eq. (10) is the input to the perceptron. An element $O_i^{(\mu)}$ in the output is given by

$$O_i^{(\mu)} = g\left(b_i^{(L,\mu)}\right),\tag{11}$$

with $b_i^{(L,\mu)}$ given by eq. (9).

- a) Draw this network. Indicate where elements $\xi_i^{(\mu)}$, $b_i^{(m,\mu)}$, $v_i^{(m,\mu)}$, $O_i^{(\mu)}$, $w_{ij}^{(m)}$ and $\theta_i^{(m)}$ belong in your illustration. How does the total number of weights and thresholds depend on the network architecture? (0.5 p)
- b) Find the recursive rule for how the derivatives

$$\frac{\partial v_i^{(m,\mu)}}{\partial w_{ar}^{(p)}} \tag{12}$$

depend on the derivatives

$$\frac{\partial v_j^{(m-1,\mu)}}{\partial w_{qr}^{(p)}} \tag{13}$$

if p < m. (1 p)

c) Evaluate the derivative in eq. (12) for p = m. (0.5 p)

d) The update rule for the weights corresponds to gradient descent of the energy function

$$H = \frac{1}{2} \sum_{\mu} \sum_{i} \left(O_i^{(\mu)} - \zeta_i^{(\mu)} \right)^2, \tag{14}$$

, where $\zeta_i^{(\mu)}$ is the target output of input pattern $\xi_i^{(\mu)}$. The update is done in batch mode using the learning rate η . Find the update rule for the weight $w_{ij}^{(L-2)}$. (1 p)

- **4. True/False questions.** Indicate whether the following statements are true or false. 13-14 correct answers give 2 points, 11-12 correct answers give 1.5 points, 9-10 correct answers gives 1 point and, 8 correct answers give 0.5 points and 0-7 correct answers give zero points. (**2** p)
 - 1. You need access to the state of all neurons in a multilayer perceptron when updating all weights through backpropagation.
 - 2. Consider the Hopfield network. If a pattern is stable it must be an eigenvector of the weight matrix.
 - 3. If you store two orthogonal patterns in a Hopfield network, they will always turn out unstable.
 - 4. Kohonens algorithm learns convex distributions better than concave ones.
 - 5. The number of N-dimensional Boolean functions is 2^N .
 - 6. The weight matrices in a perceptron are symmetric.
 - 7. Using g(b) = b as activation function and putting all thresholds to zero in a multilayer perceptron, allows you to solve some linearly inseparable problems.
 - 8. You need at least four radial basis functions for the XOR-problem to be linearly separable in the space of the radial basis functions.
 - 9. Consider p > 2 patterns uniformly distributed on a circle. None of the eigenvalues of the covariance matrix of the patterns is zero.
 - 10. Even if the weight vector in Oja's rule equals its stable steady state at one iteration, it may change in the following iterations.
 - 11. If your Kohonen network is supposed to learn the distribution $P(\boldsymbol{\xi})$, it is important to generate the patterns $\boldsymbol{\xi}^{(\mu)}$ before you start training the network.

- 12. All one-dimensional Boolean problems are linearly separable.
- 13. In Kohonen's algorithm, the neurons have fixed positions in the output space.
- 14. Some elements of the covariance matrix are variances.

5. Oja's rule.

a) The output of Oja's rule for the input pattern $\pmb{\xi}^{(\mu)}$ is

$$\zeta^{(\mu)} = \sum_{i} w_i \xi_i^{(\mu)},\tag{15}$$

and the update rule based on this pattern is $w_i \to w_i + \delta w_i^{(\mu)}$ with

$$\delta w_i^{(\mu)} = \eta \zeta^{(\mu)} \left(\xi_i^{(\mu)} - \zeta^{(\mu)} w_i \right). \tag{16}$$

Let $\langle \delta w_i \rangle$ denote the update of w_i averaged over the input patterns. Show that $\langle \delta w_i \rangle = 0$ implies

$$\sum_{i} w_i w_i = 1. \tag{17}$$

(**1** p)

b) Calculate the principal component of the patterns in Figure 3. (1 p)

Figure 3: Patterns studied in Question 5b.

- **6. General Boolean problems.** Any N dimensional Boolean problem can be solved using a perceptron with one hidden layer consisting of 2^N neurons. Here we consider N=3 and N=2.
- a) The three-dimensional parity problem is specified in Figure 4. Here input bits $\xi_i^{(\mu)}$ for $i=1\,,\,2\,,\,3$ are either +1 or -1. The problem is solved by that the output $O^{(\mu)}$ of the network is +1 if there is an odd number of positive bits in $\boldsymbol{\xi}^{(\mu)}$, and -1 if the number of positive bits are even. In one solution, a neuron $v_i^{(\mu)}$ for $i=1\,,\,\ldots\,,\,2^N$ in the hidden layer depends on the input $\boldsymbol{\xi}^{(\mu)}$ according to

$$v_i^{(\mu)} = \begin{cases} 1 & \text{if } -\theta_i + \sum_j w_{ij} \xi_j^{(\mu)} > 0\\ 0 & \text{if } -\theta_i + \sum_j w_{ij} \xi_j^{(\mu)} \le 0 \end{cases}, \tag{18}$$

where the weights and thresholds are given by

$$w_{ij} = \xi_j^{(i)} \quad \text{and} \quad \theta_i = 2. \tag{19}$$

The output is given by

$$O^{(\mu)} = \sum_{j} W_{j} v_{j}^{(\mu)}.$$
 (20)

Determine the weights W_j . (1 p)

Figure 4: The three-dimensional parity problem (see text). A white ball indicates $O^{(\mu)} = -1$, and a black ball indicates $O^{(\mu)} = +1$.

b) The problem in two dimensions analogous to the problem in a) is the XOR-problem. Draw the decision boundaries of the hidden neurons in the solution to the XOR-problem that is analogous to the solution given in a). (0.5 p)