

Chapter 1

Description of the goals of the study and the structure of research

1.1 Stationary distribution of the system states at an arbitrary time

Having computed the stationary distribution π_i , $i \geq 0$, of the embedded MC, we can compute the vectors \mathbf{p}_i , $i \geq 0$, defining the stationary distribution of the states of the MAP/D/1 system at an arbitrary time: \mathbf{p}_i is the row vector composed from the stationary probabilities

$$p(i,\nu) = \lim_{t \to \infty} P\{i_t = i, \nu_t = \nu\}, \ i \ge 0, \ \nu = \overline{0, W},$$

of the process $\{i_t, \nu_t\}, t \geq 0.$

Theorem 2.1 The vectors \mathbf{p}_i , $i \geq 0$, of the stationary probabilities of the states of the MAP/D/1 system at an arbitrary time are computed as follows:

$$\mathbf{p}_0 = \lambda \pi_0 (-D_0)^{-1},\tag{1.1}$$

$$\mathbf{p}_{i} = \lambda \left(\boldsymbol{\pi}_{0} (-D_{0})^{-1} \sum_{k=1}^{i} D_{k} \hat{\Omega}_{i-k} + \sum_{k=1}^{i} \boldsymbol{\pi}_{k} \hat{\Omega}_{i-k} \right), \ i > 0,$$
 (1.2)

where

$$\hat{\Omega}_m = \int_0^\infty P(m, u)(1 - B(u))du = \int_0^{b_1} P(m, u)du, \ m \ge 0.$$
 (1.3)

The matrices $\hat{\Omega}_m$ can be easily calculated recursively through the matrices Ω_m computed as

$$\Omega_m = \int_{0}^{\infty} P(m, t) dB(t) = P(m, b_1), \ m \ge 0.$$
 (1.4)

by formulas:

$$\hat{\Omega}_0 = (\Omega_0 - I)D_0^{-1},\tag{1.5}$$

$$\hat{\Omega}_m = (\Omega_m - \hat{\Omega}_{m-1} D_1) D_0^{-1}, \ m \ge 1.$$
(1.6)

In the case of the stationary Poisson arrival process, the vectors $\boldsymbol{\pi}_i$ and \mathbf{p}_i become scalars and $\boldsymbol{\pi}_i = \mathbf{p}_i, \ i \geq 0$.

1.2 Stationary distribution of the waiting times in the system

Having computed the stationary distribution \mathbf{p}_i , $i \geq 0$, of the states of the MAP/D/1 system at an arbitrary time, we can compute the stationary distribution of the waiting times in the system.

Let w_t be the virtual waiting time at the moment t, $t \ge 0$. This is the time, which a customer has to wait for beginning the service, if it would arrive to the system at the moment t.

Let $\mathbf{W}(x)$ be the row vector whose ν th entry denotes the stationary probability that the MAP underlying process is in state ν , $\nu = \overline{0, W}$ at an arbitrary time and the virtual waiting time does not exceed x:

$$\mathbf{W}(x) = \lim_{t \to \infty} (P\{w_t < x, \nu_t = 0\}, \dots, P\{w_t < x, \nu_t = W\}).$$

Denote by $\mathbf{w}(s) = \int_{0}^{\infty} e^{-sx} d\mathbf{W}(x)$ the row vector consisting of the Laplace-Stieltjes transforms (*LST*s) of the entries of the vector $\mathbf{W}(x)$.

Theorem 2.2 The vector LST $\mathbf{w}(s)$ is defined as follows:

$$\mathbf{w}(s)(sI + D(\beta(s))) = s\mathbf{p}(0), Re\ s > 0,$$
 (1.7)

where

$$D(\beta(s)) = D_0 + D_1\beta(s), \tag{1.8}$$

$$\beta(s) = \int_{0}^{\infty} e^{-st} dB(t) = e^{-sb_1}.$$

Let us denote by \mathbf{w}_r , the rth initial moment of the vector distribution of the virtual waiting time, $r \geq 0$. In particular, the value $\mathbf{w}_1\mathbf{e}$ defines the mean value of the virtual waiting time and the value $\mathbf{w}_2\mathbf{e} - (\mathbf{w}_1\mathbf{e})^2$ defines the variance of the virtual waiting time.

1.3 Moments of the virtual waiting time in the BMAP/G/1 queue

We will use the following notation:

- \mathbf{w}_r is the (W+1)-size vector of rth initial moments of virtual waiting time, $r=\overline{0,3}$;
- $\hat{e} = (1, 0, \dots, 0);$
- \tilde{I} is a diagonal matrix with the diagonal entries $(0,1,\ldots,1)$;
- $A_0 = D(1);$
- $A_1 = -D'(1)b_1;$
- $A_2 = \frac{1}{2}[D''(1)b_1^2 + D'(1)b_2];$
- $A_3 = -\frac{1}{6}[D^{(3)}(1)b_1^3 + 3D''(1)b_1b_2 + D'(1)b_3];$
- $A_4 = \frac{1}{24} [D^{(4)}(1)b_1^4 + 6D^{(3)}(1)b_1^2b_2 + 4D''(1)b_1b_3 + 3D''(1)b_2^2 + D'(1)b_4];$
- $A = A_0 \tilde{I} + (I + A_1) \hat{\mathbf{ee}}$.

The vectors \mathbf{w}_r , $r = \overline{0,3}$, are calculated using the following recursive formulas.

$$\mathbf{w}_{0} = \boldsymbol{\theta},$$

$$\mathbf{w}_{1} = \left\{ \left[\mathbf{w}_{0}(I + A_{1}) - \mathbf{p}_{0} \right] \tilde{I} + \mathbf{w}_{0} A_{2} \mathbf{e} \hat{\mathbf{e}} \right\} A^{-1},$$

$$\mathbf{w}_{2} = -2 \left\{ \left[\mathbf{w}_{0} A_{2} - \mathbf{w}_{1}(I + A_{1}) \right] \tilde{I} + \left(\mathbf{w}_{0} A_{3} + \mathbf{w}_{1} A_{2} \right) \mathbf{e} \hat{\mathbf{e}} \right\} A^{-1},$$

$$\mathbf{w}_{3} = 3 \left\{ \left[2 \mathbf{w}_{0} A_{3} - 2 \mathbf{w}_{1} A_{2} + \mathbf{w}_{2}(I + A_{1}) \right] \tilde{I} + \left(2 \mathbf{w}_{0} A_{4} - 2 \mathbf{w}_{1} A_{3} + \mathbf{w}_{2} A_{2} \right) \mathbf{e} \hat{\mathbf{e}} \right\} A^{-1}.$$

1.4 Moments of the actual waiting time in the BMAP/G/1 queue

We will additionally use the following notation:

• v_r is the rth initial moment of actual waiting time, $r = \overline{0,3}$;

We will calculate values v_r using the above expressions for the vectors \mathbf{w}_r and the following recursive formulas.

$$v_0 = 1,$$

$$v_1 = \rho^{-1} [(\mathbf{w}_0 A_2 - \mathbf{w}_1 A_1) \mathbf{e} - \frac{\lambda b_2}{2}],$$

$$v_2 = \rho^{-1} [(-2\mathbf{w}_0 A_3 + 2\mathbf{w}_1 A_2 - \mathbf{w}_2 A_1) \mathbf{e} - v_0 \frac{\lambda b_3}{3} - v_1 \lambda b_2],$$

$$v_3 = \rho^{-1} [(6\mathbf{w}_0 A_4 - 6\mathbf{w}_1 A_3 + 3\mathbf{w}_2 A_2 - \mathbf{w}_3 A_1) \mathbf{e} - \lambda (v_0 \frac{b_4}{4} + v_1 b_3 + \frac{3}{2} v_2 b_2)].$$

Remark. In the case of degenerate distribution of the service time with parameter T

$$b_k = T^k, k \ge 1.$$