模块三 椭圆与方程

第1节 椭圆的定义、标准方程及简单几何性质(★★)

内容提要

- 1. 椭圆定义: 设 F_1 , F_2 是平面上的两个定点,若平面内的点P 满足 $|PF_1| + |PF_2| = 2a(2a > |F_1F_2|)$,则点P的轨迹是以 F_1 , F_2 为焦点的椭圆.
- 2. 椭圆的简单几何性质:

标准方程	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$
焦点坐标	$F_1(-c,0)$, $F_2(c,0)$	$F_1(0,c)$, $F_2(0,-c)$
焦距	$ F_1F_2 = 2c$, $\exists c^2 = a^2 - b^2$	
图形	$ \begin{array}{c c} B_1 \\ \hline A_1 \\ \hline F_1 O \\ B_2 \end{array} $	$ \begin{array}{c c} A_1 & y \\ \hline F_1 & O \\ \hline F_2 & A_2 \end{array} $
范围	$-a \le x \le a$, $-b \le y \le b$	$-b \le x \le b$, $-a \le y \le a$
对称性	—————————————————————————————————————	
顶点坐标	左、右项点: $A_1(-a,0)$, $A_2(a,0)$ 上、下项点: $B_1(0,b)$, $B_2(0,-b)$	左、右项点: $B_1(-b,0)$, $B_2(b,0)$ 上、下项点: $A_1(0,a)$, $A_2(0,-a)$
长轴长	$ A_1A_2 =2a$,其中 a 叫做长半轴长	
短轴长	$\left B_{1}B_{2}\right =2b$,其中 b 叫做短半轴长	
离心率	$e = \frac{c}{a}(0 < e < 1)$	

3. 通径:经过椭圆焦点且垂直于长轴的弦叫做通径(如图中两条蓝色的线段),其长度为 $\frac{2b^2}{a}$.

典型例题

类型 I: 椭圆定义的运用

【例 1】椭圆 $\frac{x^2}{9} + \frac{y^2}{2} = 1$ 的焦点为 F_1 , F_2 ,点P 在椭圆上,若 $|PF_1| = 4$,则 $|PF_2| = _____$; $\angle F_1PF_2$ 的大小为

_____; ΔPF_1F_2 的周长为_____; 若延长 PO 交椭圆于 Q,则 $|PF_1|+|F_1Q|=____.$

解析: 椭圆中给出 $|PF_1|$,可由定义求 $|PF_2|$,由题意,a=3, $b=\sqrt{2}$, $c=\sqrt{a^2-b^2}=\sqrt{7}$,

因为 $|PF_1|+|PF_2|=2a=6$,且 $|PF_1|=4$,所以 $|PF_2|=6-|PF_1|=2$;

要求 $\angle F_1PF_2$,可先求 $|F_1F_2|$,在 ΔPF_1F_2 中由余弦定理推论求 $\cos \angle F_1PF_2$,

如图,
$$|F_1F_2| = 2c = 2\sqrt{7}$$
,所以 $\cos \angle F_1PF_2 = \frac{|PF_1|^2 + |PF_2|^2 - |F_1F_2|^2}{2|PF_1| \cdot |PF_2|} = \frac{16 + 4 - 28}{2 \times 4 \times 2} = -\frac{1}{2}$,故 $\angle F_1PF_2 = 120^\circ$;

 ΔPF_1F_2 的周长为 $|PF_1|+|PF_2|+|F_1F_2|=2a+2c=6+2\sqrt{7}$;

由椭圆的对称性,O是PQ中点,而O也是 F_1F_2 的中点,所以四边形 PF_1QF_2 为平行四边形,

从而 $|QF_1|=|PF_2|=2$,故 $|PF_1|+|QF_1|=4+2=6$.

答案: 2; 120° ; $6+2\sqrt{7}$; 6

【变式 1】(2021 • 新高考 I 卷) 已知 F_1 、 F_2 是椭圆 $C: \frac{x^2}{9} + \frac{y^2}{4} = 1$ 的两个焦点,点 M 在 C 上,则 $|MF_1| \cdot |MF_2|$ 的最大值为(

解析:由椭圆定义, $|MF_1|$ 与 $|MF_2|$ 的和为定值,故可用不等式 $mn \le (\frac{m+n}{2})^2$ 来求积的最大值,

由题意,
$$a=3$$
 ,所以 $\left| MF_1 \right| + \left| MF_2 \right| = 2a=6$,故 $\left| MF_1 \right| \cdot \left| MF_2 \right| \le \left(\frac{\left| MF_1 \right| + \left| MF_2 \right|}{2} \right)^2 = 9$,

当且仅当 $|MF_1| = |MF_2| = 3$ 时取等号,所以 $|MF_1| \cdot |MF_2|$ 的最大值为 9.

答案: C

【反思】涉及椭圆上的点到两焦点距离的问题,可优先往椭圆定义上思考.

【变式 2】已知椭圆 $C: \frac{x^2}{4} + \frac{y^2}{3} = 1$ 的左、右焦点分别为 F_1 、 F_2 , A(1,2),P 为椭圆 C 上的动点,则 $|PA| - |PF_1|$ 的最小值为_____.

解析:如图,A 在椭圆外,不易直接分析 $|PA|-|PF_1|$ 的最小值,可考虑用椭圆定义将 $|PF_1|$ 换成 $|PF_2|$ 来看,由题意, $|PF_1|+|PF_2|=4$,所以 $|PF_1|=4-|PF_2|$,故 $|PA|-|PF_1|=|PA|-(4-|PF_2|)=|PA|+|PF_2|-4$ ①,由三角形两边之和大于第三边知 $|PA|+|PF_2|\geq |AF_2|$,结合①得: $|PA|-|PF_1|=|PA|+|PF_2|-4\geq |AF_2|-4$ ②,当且仅当点 P 位于图中 P_0 处时取等号,椭圆的半焦距 $c=\sqrt{a^2-b^2}=\sqrt{4-3}=1$,所以 $P_2(1,0)$,又 $P_2(1,0)$,所以 $P_2(1,0)$,所以 $P_2(1,0)$,所以 $P_2(1,0)$,所以 $P_2(1,0)$,所以 $P_2(1,0)$,所以 $P_2(1,0)$,

答案: -2

【**反思**】涉及椭圆上的点到一个焦点的距离的最值问题,若不易直接求解,则可考虑用椭圆定义,转化到另一个焦点去分析.

类型 II: 椭圆的标准方程与简单几何性质

【例 2】椭圆的中心在原点,焦点在x轴上,离心率 $e = \frac{1}{2}$,且过点 $(2\sqrt{2},\sqrt{3})$,则椭圆的方程为_____.

解析: 由题意,可设椭圆的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$,

已知离心率,可找到a、b、c的比例关系,将变量归一化,

由题意,
$$e = \frac{c}{a} = \frac{1}{2}$$
,所以 $a = 2c$, $b = \sqrt{a^2 - c^2} = \sqrt{3}c$,故椭圆的方程为 $\frac{x^2}{4c^2} + \frac{y^2}{3c^2} = 1$,

最后求 c,将已知的点代入即可,椭圆过点 $(2\sqrt{2},\sqrt{3}) \Rightarrow \frac{8}{4c^2} + \frac{3}{3c^2} = 1$,解得: $c = \sqrt{3}$,

答案:
$$\frac{x^2}{12} + \frac{y^2}{9} = 1$$

【变式 1】若方程 $x^2 + ky^2 = 2$ 表示焦点在 y 轴上的椭圆,则实数 k 的取值范围为_____.

解析: 先将椭圆化为标准方程,再比较分母, $x^2 + ky^2 = 2 \Rightarrow \frac{y^2}{2} + \frac{x^2}{2} = 1$,

因为椭圆焦点在y轴上,所以 $\frac{2}{k} > 2$,解得: 0 < k < 1.

答案: (0,1)

【反思】对于椭圆,若焦点在x轴,则在其标准方程中, x^2 的分母大;若焦点在y轴,则 y^2 的分母大.

【变式 2】(2022•全国甲卷) 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{1}{3}$, A_1 、 A_2 分别为C的左、右顶点,B为C的上顶点,若 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -1$,则C的方程为(

(A)
$$\frac{x^2}{18} + \frac{y^2}{16} = 1$$
 (B) $\frac{x^2}{9} + \frac{y^2}{8} = 1$ (C) $\frac{x^2}{3} + \frac{y^2}{2} = 1$ (D) $\frac{x^2}{2} + y^2 = 1$

解析:已知离心率,可找到a、b、c的比例关系,将变量归一化,

曲题意,离心率 $e = \frac{c}{a} = \frac{1}{3}$,所以a = 3c, $b = \sqrt{a^2 - c^2} = 2\sqrt{2}c$,如图, $A_1(-3c,0)$, $A_2(3c,0)$, $B(0,2\sqrt{2}c)$,

所以 $\overrightarrow{BA_1} = (-3c, -2\sqrt{2}c)$, $\overrightarrow{BA_2} = (3c, -2\sqrt{2}c)$, 从而 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -3c \cdot 3c + (-2\sqrt{2}c)^2 = -c^2$,

因为 $\overrightarrow{BA_1} \cdot \overrightarrow{BA_2} = -1$,所以 $-c^2 = -1$,从而 $c^2 = 1$,故 $a^2 = 9c^2 = 9$, $b^2 = 8c^2 = 8$,所以C的方程为 $\frac{x^2}{9} + \frac{y^2}{9} = 1$.

答案: B

1. (★★) 椭圆 $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1(a > b > 0)$ 的右顶点为 A(1,0),过其焦点且垂直于长轴的弦长为 1,则椭圆的方程 为____.

- 2. (★★) 对称轴为坐标轴的椭圆经过 $P(-2\sqrt{3},1)$ 、 $Q(\sqrt{3},-2)$ 两点,则椭圆的方程为____.
- 3. (2023 •新高考 I 卷 •★★)设椭圆 C_1 : $\frac{x^2}{a^2} + y^2 = 1(a > 1)$, C_2 : $\frac{x^2}{a} + y^2 = 1$ 的离心率分别为 e_1 , e_2 , 若 $e_2 = \sqrt{3}e_1$, 则 a = () (A) $\frac{2\sqrt{3}}{2}$ (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) $\sqrt{6}$

4. (2022 • 衡水中学六调 • ★★) 阿基米德(公元前 287 年至公元前 212 年) 不仅是著名的物理学家,也 是著名的数学家,他利用"逼近法"得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积. 若 椭圆 C 的对称轴为坐标轴,焦点在y 轴上,离心率为 $\frac{\sqrt{7}}{4}$,面积为 12π ,则椭圆 C 的方程为()

(A)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 (B) $\frac{x^2}{3} + \frac{y^2}{4} = 1$ (C) $\frac{x^2}{18} + \frac{y^2}{32} = 1$ (D) $\frac{x^2}{4} + \frac{y^2}{36} = 1$

(B)
$$\frac{x^2}{3} + \frac{y^2}{4} = 1$$

(C)
$$\frac{x^2}{18} + \frac{y^2}{32} = 1$$

(D)
$$\frac{x^2}{4} + \frac{y^2}{36} = 1$$

- 5. (★★) 已知 $\triangle ABC$ 的周长是 8,且 B(-1,0), C(1,0),则顶点 A 的轨迹方程是()
- (A) $\frac{x^2}{9} + \frac{y^2}{8} = 1(x \neq \pm 3)$ (B) $\frac{x^2}{9} + \frac{y^2}{8} = 1(x \neq 0)$ (C) $\frac{x^2}{4} + \frac{y^2}{3} = 1(y \neq 0)$ (D) $\frac{y^2}{4} + \frac{x^2}{3} = 1(y \neq 0)$

6. (★★)已知 F_1 、 F_2 是椭圆 $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 的左、右焦点,P为椭圆上一点,M为 F_1P 中点,|OM| = 3,则 $|PF_1| = 1$

- 7. $(\bigstar \bigstar)$ 已知 F_1 , F_2 为椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的两个焦点,过 F_1 的直线交椭圆于 A, B 两点,若 $|AF_2| + |BF_2| = 12$, 则|AB|=_____.
- 的最大值为____.