Tags: #logbook - Denison

Links:

Logbook_09_220215

A Numeric Project

A.1 Notes

The instantaneous frequency is defined as

$$\omega_i = -rac{\mathrm{d}\phi}{\mathrm{d}t}$$

where ϕ is the complex phase of the electric field amplitude, E.

We are looking for asymmetries in the instantaneous frequency and the spectrum, since this indicates that the soliton has shifted into a different form (as we are trying to do by using the frequency shifter).

From Widjaja et al (Absence of Galilean invariance for pure-quartic solitons), we want the second row of plots where the spectrum is asymmetric.

A.2 Results

A.2.1 Initial

These have been superseded by the plots below.

Using quartic_220215_instfreq.m; Data:

03__quartic__202202151512__instfreq.mat

A.2.2 Improved Graphs

Re-running the simulations with more feedback values and improving the graphs to more easily show asymmetry.

Data: 03_quartic__202202151700__instfreq.mat

A.2.2.1 Feedback = 0.5

With a low frequency shift:

• There is no noticeable different in the spectrum, and the instantaneous frequency is mostly similar

With a larger frequency shift:

• We get a large asymmetry, as we expected

A.2.2.2 Feedback = 0.8

At a larger feedback, we get a smaller resultant shift:

A.2.2.3 Feedback = 0.7

Fourier transform of E feedback = 0.70, freq shift = 10.00 GHz ×10⁴ quartic 202202161236 instfreq Original Flipped 3.5 3 Squared modulus 1.5 1 0.5 -1000 1000 -500 0 500

Fourier transform of E feedback = 0.70, freq shift = 0.10 GHz

Field and instantaneous frequency feedback = 0.70, freq shift = 0.10 GHz

Field and instantaneous frequency feedback = 0.70, freq shift = 3.98 GHz quartic 202202161233 instfreq 8 2 1.8 6 1.6 4 1.4 Amplitude 0 X 2.0752 Y -3.43723 0.6 -4 IEI² 0.4 -6 0.2 ω_i, flipped 0 -8 -3 2 3 -2 -1 1 Time (ps)

A.2.2.4 Feedback = 0.4

• The ω_i is now the same sign, rather than flipping

A.2.2.5 Animations

A.3 Outcomes

 It seems like we have been successful in creating the asymmetric phase profiles and spectra

A.4 To Do

B Analytic Project

B.1 Notes

If my previous attempt at fitting a gaussian near the origin to supplement $u^{(0)}$ in the tails is valid, then plotting Long - $u^{(0)}$ should produce a Gaussian shape (or an upside down parabola on a log scale).

B.2 Results

Using 09_difference_220218.nb:

B.2.1 Gaussian

Using the functional from from Logbook_08_220207, we get

where $u^{(0)st}$ is the adjusted function

$$u^{(0)*} = rac{u^{(0)}}{1 + lpha e^{-x^2}}$$

B.3 Outcomes

B.4 To Do

- ightharpoonup Look at the log shapes of the ${
 m Long}-u^{(k)}$
- $lap{}{
 m Look\ at}\ u^{(1)}$ on the log scale