

PANDO MINI 400662 AND 400663PRODUCT DESIGN SPECIFICATION

Version: 400662A, 400663A

VERSION HISTORY

Mini_main_board_400662 400663

Version #	Implemented By	Revision Date	Approved By	Approval Date	Reason
PA1	Fredrik Blomqvist	2014-11-05			Create new design
PA2	Fredrik Blomqvist	2014-12-16			Added new Alt 2. Small magnetic buzzer
PA3	Fredrik Blomqvist	2015-05-04			Design from hio to RS485
PA3- RS458	Martin Silvlund	2015-12-08			Completed the current design to RS485
A1	Jonas Bjurman	2016-07-26			New board version A. Single board on both HiO and RS485 versions

Mini_RFID_400617

Version	Implemented	Revision	Approved	Approval	Reason
#	Ву	Date	Ву	Date	
PA1	Fredrik Blomqvist	2014-10-02			Create new design
PA2	Fredrik Blomqvist	2014-11-14			
PA3	Fredrik Blomqvist	2014-12-03			
PA4	Martin Silvlund	2015-12-08			Completed the current
					design
N/A	Jonas Bjurman	2016-07-26			Board removed

TABLE OF CONTENTS

1	INTE	RODUCTION	4
	1.1	Purpose of The Product Design Specification Document	4
2	PAN	DO MINI 400662 AND 400663	4
	2.1	General Overview and Design Guidelines/Approach	4
	2.2	Architecture Design	5
		2.2.1 General signal diagram	5
	2.3	SHARED Hardware Architecture on version 400662 and 400663	7
		2.3.1 SIO	7
		2.3.2 MCU- STM32F205RET6	8
		2.3.3 RFID interface	
		2.3.4 Accelerometer - LIS2DE12	11
		2.3.5 Flash memory- M25PE16	12
		2.3.6 Buzzer	12
		2.3.7 Power	13
		2.3.8 Decupling capacitors and power protection from EMC, ESD	
		2.3.9 +5V generating's design part	
		2.3.10 +3,3V generating's design part	
	2.4		
		2.4.1 HiO-400662	
		2.4.2 RS485-400663	
	2.5	3	
		2.5.1 GND and Power - Layers	
		2.5.2 Layer stack up	20
3	LIN	K TO SCHEMATIC IN ASSA ABLOY SYSTEMS	21
	3.1	HiO_board_400662	21
	3.2	RS485_board_400663	21
4	TEC	HNICAL DETAILS	21
5	PRO	DUCT DESIGN SPECIFICATION APPROVAL	22
6	APP	ENDIX A: REFERENCES	23
7	A DDI	FNDIX R. KEV TERMS	24

1 INTRODUCTION

1.1 PURPOSE OF THE PRODUCT DESIGN SPECIFICATION DOCUMENT

The Product Design Specification document documents and tracks the necessary information required to effectively define architecture and system design in order to give the development team guidance on architecture of the system to be developed. The Product Design Specification document is created during the Planning Phase of the project. Some portions of this document such as the user interface (UI) may on occasion be shared with the client/user, and other stakeholder whose input/approval into the UI is needed.

2 PANDO MINI 400662 AND 400663

2.1 GENERAL OVERVIEW AND DESIGN GUIDELINES/APPROACH

Mini readers come in two different versions. They share most of components, housing, production flow and production tests. They differ in the connection interface to how the product communicates with other equipment.

Versions: 400662 – HiO CAN interface, 400663 – RS485 interface.

Connections: 4 wire cable.

2.2 ARCHITECTURE DESIGN

2.2.1 General signal diagram

The pictures below are a description of signal flow through the system.

2.2.1.1 HiO-Version 400662

2.2.1.2 RS485-Version 400662

2.3 SHARED HARDWARE ARCHITECTURE ON VERSION 400662 AND 400663

2.3.1 SIO

In the pic below IC300 is Secure Identity Object (SIO). The device used to identify / read accesses into the system.

2.3.2 MCU- STM32F205RET6

General picture of MCU design page.

For more specific descriptions about functionality in the design blow please see the following pictures.

2.3.2.1 MCU - STM32F205RET6

ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM, USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera For more information, commented to the link below:

 $\frac{http://www.st.com/content/ccc/resource/technical/document/datasheet/bc/21/42/43/b0/f3/4d/d3/CD00237391.pdf/files/CD00237391.pdf/jcr:content/translations/en.CD00237391.pdf$

2.3.2.2 MCU Decoupling

Each capacitor placed close to specific pin in PCB layout.

2.3.3 RFID interface

RFID part is used to read different types of RFID cards.

2.3.3.1 RFID transceiver CLRC66301HN

CLRC663's internal transmitter is able to drive a reader/writer antenna.

For more information commented to the link below:

http://www.nxp.com/documents/data_sheet/CLRC663.pdf

2.3.3.2 RFID decoupling

RFID decoupling is placed close to each transceiver pin.

2.3.3.3 RFID Antenna design

RFID antenna is an integrated loop antenna with 5 turns in PCB copper layer 7 and copper layer 8.

2.3.4 Accelerometer - LIS2DE12

LIS2DE is a digital output motion sensor with ultra-low-power high performance 3-axes "nano" accelerometer

Accelerometer used to detect movement by external forces after installation and assembly the device.

2.3.5 Flash memory- M25PE16

IC101(M25PE16) is a 16Mb (2Mb x 8-bit) serial-paged Flash memory device accessed by high-speed SPI-compatible bus.

2.3.6 Buzzer

Magnetic buzzer as user interface to indicate card reading success or failure.

2.3.7 Power

General picture of power generating schematic page,

IC200 (TPS54040) device is a 42V, 0.5A, and step down regulator with an integrated high side MOSFET

2.3.8 Decupling capacitors and power protection from EMC, ESD

D201 Used in the design to protect sensitive equipment against electrostatic discharges. D200 Rectifier diode to protect from reverse polarity protection.

C205, C206, C203, C204, L200: Called π -filters protect the design from Electromagnetic compatible (EMC/EMI) and decupling to ground from Vin.

2.3.9 +5V generating's design part

In this part of power design generates +5V to be used for the rest of the design.

2.3.10 +3,3V generating's design part

O200 is DC/DC converter and in this part generating +3,3V DC from +5V DC.

2.4 HARDWARE INTERFACE DIFFERENCE BETWEEN 400662 AND 400663

Hardware difference between HiO-400662 and RS485-400663 is only the connection interface that is CAN-bus or RS485-bus. They share the same component placement of common components.

2.4.1 HiO-400662

SN65HVD1050 is used as transceiver interface for the HiO (CAN-bus) version of readers along with protection diodes D600, D601.

2.4.2 RS485-400663

IC601 - SN65HVD72DR is as transceiver on the bus lines along with protection components D602, D603, L600, L601 filters.

2.5 PCB LAYOUT

400662 HiO Version

400663 RS485 Version

400662 - Layer 1

400663 - Layer 1

2.5.1 GND and Power - Layers

Layer 2 and Layer 6 is GND plane. Layer 3 is VDD (3.3V) plane to make signal integrity through the system more constant.

2.5.2 Layer stack up

PCB is 8 layers of copper with total thickness ~2.2mm. Stackup as below.

3 LINK TO SCHEMATIC IN ASSA ABLOY SYSTEMS

Link to the design:

3.1 HIO_BOARD_400662

\Workspace\!READERS\tekla\SCH PCB\MiniHio Vave (400662)\A

3.2 RS485_BOARD_400663

\Workspace\!READERS\tekla\SCH_PCB\Mini_RS485_vave_(400663)\A

4 TECHNICAL DETAILS

Highest frequency on board: 240MHz (internal PLL frequency in MCU)

Busses on board: SPI, I2C, Serial UART, CAN or RS485.

External Bus: RS485 or CAN Bus.

User interfaces: Red LED, Green LED, Buzzer, Accelerometer, RFID

Power input: 12-24V

5 PRODUCT DESIGN SPECIFICATION APPROVAL

The undersigned acknowledge they have reviewed the *PANDO MINI 400662 AND 400663* **Product Design Specification** document and agree with the approach it presents. Any changes to this Requirements Definition will be coordinated with and approved by the undersigned or their designated representatives.

Signature:	Date:	
Print Name:		
Title:		
Role:		
Signature:	Date:	
Print Name:		
Title:		
Role:		
Signature:	Date:	
Print Name:		
Title:		
Role:		

6 APPENDIX A: REFERENCES

The following table summarizes the documents referenced in this document.

Document Name and Version	Description	Location	
400662A	All information's about the project including Altium design schematic and PCB-layout	\Workspace\!READERS\tekla\SCH _PCB\MiniHioVave_(400662)\A	
400663A	All information's about the project including Altium design schematic and PCB-layout	\Workspace\!READERS\tekla\SCH _PCB\Mini_RS485_vave_(400663) \U00a4	

7 APPENDIX B: KEY TERMS

The following table provides definitions for terms relevant to this document.

Term	Definition
SIO	Secure Identity Object
EMC	Electromagnetic compatible
ESD	Electrostatic discharges
CMMR	Common Mode Rejection Ratio
MCU	Microcontroller Unit
USB	Universal Serial Bus
Decoupling	Attach capacitor cross VCC and Ground to keep the voltage more stable and constant.
PCB	Printed Circuit Board
NM	No Mounted