Fungsi dielektrik dan spektrum optik

Fadjar Fathurrahman

1 Pendahuluan

TODO: definisi fungsi dielektrik Spektrum optik?

2 Fungsi dielektrik dari model padatan

Dalam bagian ini, konsep fungsi dielektrik akan dikenalkan dengan meninjau sistem yang paling sederhana, yaitu atom-atom H yang tersusun pada latis kubik yang akan disebut sebagai kristal hidrogen padat. Pembahasan akan dimulai dari penurunan polarizabilitas elektrik dari sebuah hidrogen atom, kemudian dengan menggunakan hubungan Clausius-Mosotti akan diperoleh fungsi dielektrik dari hidrogen padat.

2.1 Dinamika elektron dalam suatu medan radiasi

Tinjau sebuah atom hidrogen, dengan inti atom (proton) dijaga tetap pada suatu titik acuan. Pada waktu t < 0 sistem ini berada pada keadaan dasar, yaitu elektron menempati orbital 1s, ϕ_{1s} , dengan energi E_{1s} . Pada saat t > 0 suatu medan listrik eksternal akan dikenakan pada sistem ini dan efeknya terhadap atom hidrogen akan dipelajari. Medan listrik eksternal ini bersifat homogen dan bekerja pada arah sumbu x

$$\mathbf{E}(t) = \begin{cases} \mathcal{E}\cos(\omega t)\mathbf{u}_x & \text{untuk } t \ge 0\\ 0 & \text{jika } t < 0 \end{cases}$$
 (1)

Persamaan ini mendeskripsikan radiasi elektromagnetik monokromatik dengan frequensi ω yang dapat diperoleh, misalnya, dengan menggunakan laser. Untuk persamaan-persamaan berikutnya, akan digunakan sistem satuan SI. Menurut teori elektromagnetika klasik, energi potensial dari sebuah elektron yang terletak pada titik ${\bf r}$ di dalam medan ini adalah:

$$V(\mathbf{r},t) = e\mathbf{E}(t) \cdot \mathbf{r}. \tag{2}$$

Untuk mempelajari evolusi waktu dari fungsi gelombang, $\psi(\mathbf{r},t)$, diperlukan solusi dari persamaan Schrödinger bergantung waktu:

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \left[\hat{H} + V(\mathbf{r}, t) \right] \psi(\mathbf{r}, t) \tag{3}$$

Dalam persamaan ini, \hat{H} adalah Hamiltonian dari atom hidrogen ketika tidak ada medan eksternal

 $\hat{H} = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0 |\mathbf{r}|} \tag{4}$

dan potensial V adalah potensial eksternal, yaitu pada Persamaan (1). Kondisi awal dari evolusi fungsi gelombang ini adalah

$$\psi(\mathbf{r}, t < 0) = \phi_{1s}(\mathbf{r}) \tag{5}$$

Sebagai penyederhanaan, Hamiltonian diasumsikan H hanya menerima solusi dari ke adaan kuantum $1s, 2s, 2p_x, 2p_y,$ dan $2p_z$. Dapat diverifikasi bahwa

$$\phi_i(\mathbf{r}) \exp\left[-\frac{\mathbf{i}}{\hbar} E_i t\right] \tag{6}$$

dengan $i=1s,2s,\ldots,2p_z$ adalah solusi dari Persamaan (3) untuk t>0 ketika V=0. Kombinasi linear fari fungsi-fungsi tersebut:

$$\psi(\mathbf{r},t) = c_{1s}(t)\psi_{1s}(\mathbf{r})\exp\left[-\frac{\mathbf{i}}{\hbar}E_{1s}t\right] + \dots + c_{2p_z}(t)\psi_{2p_z}(\mathbf{r})\exp\left[-\frac{\mathbf{i}}{\hbar}E_{2p_z}t\right]$$
(7)

juga merupakan solusi dari Persamaan (3). Perhatikan bahwa koefisien $c_{1s}, c_{2s}, \ldots, c_{2p_z}$ bergantung pada waktu. Karena dalam sistem ini hanya terdapat satu elektron, syarat normalisasi

$$\int \psi^*(\mathbf{r}, t) \, \psi(\mathbf{r}, t) \, d\mathbf{r} = 1 \tag{8}$$

dapat digunakan untuk mendapatkan kondisi berikut:

$$|c_{1s}(t)|^2 + |c_{2s}(t)|^2 + |c_{2p_x}(t)|^2 + |c_{2p_y}(t)|^2 + |c_{2p_z}(t)|^2$$
 (9)

Kondisi ini berguna untuk mendapat gambaran intutif mengenai bentuk dari $\psi(\mathbf{r},t)$. Sebagai contoh, apabila kita memiliki $|c_{1s}|^2 = 0.9$ dan $|c_{2p_x}|^2 = 0.1$, maka kita dapat menebak bahwa fungsi gelombang adalah campuran dari 90% 1s dan 10% $2p_x$.

Bentuk dan energi dari orbital atom hidrogen telah umum diketahui sehingga yang harus ditentukan dari Persamaan (7) adalah koefisien-koefisien yang bergantung waktu. Mereka dapat ditentukan dengan cara sebagai berikut. Pertama substitusi Persamaan (7) ke dalam Persamaan (3). Kemudian kalikan

kedua sisi persamaan yang dihasilkan dengan $\phi_{1s}(\mathbf{r})$ dan lakukan integrasi terhadap variabel ruang. Dengan mengingat bahwa setiap orbital adalah keadaan eigen dari Hamiltonian \hat{H} dan setiap orbital yang berbeda adalah ortogonal, untuk $t \geq 0$ dapat diperoleh:

$$i\hbar \frac{\mathrm{d}c_{1s}}{\mathrm{d}t} = e \,\mathcal{E} \,x_{1s,1s}\cos(\omega t) \exp\left[\frac{i}{\hbar}(E_{1s} - E_{1s})\right] \tag{10}$$

$$+ e \mathcal{E} x_{1s,2s} \cos(\omega t) \exp\left[\frac{i}{\hbar} (E_{1s} - E_{2s})\right]$$
 (11)

$$+ e \mathcal{E} x_{1s,2p_x} \cos(\omega t) \exp\left[\frac{i}{\hbar} (E_{1s} - E_{2p_x})\right]$$
 (12)

$$+ e \mathcal{E} x_{1s,2p_y} \cos(\omega t) \exp\left[\frac{i}{\hbar} (E_{1s} - E_{2p_y})\right]$$
 (13)

$$+ e \mathcal{E} x_{1s,2p_z} \cos(\omega t) \exp\left[\frac{i}{\hbar} (E_{1s} - E_{2p_z})\right]$$
 (14)

dengan $x_{1s,1s},x_{1s,2s},\dots,x_{1s,2p_z}$ adalah matriks element dari operator posisi \hat{x} :

$$x_{i,j} = \int d\mathbf{r} \,\phi_i(\mathbf{r}) \, x \,\phi_j(\mathbf{r}), \quad i, j = 1s, 2s, \dots, 2p_x$$
 (15)