Image Classification using Pyspark

Franco Bueno Mattera CS 777 O1

Project Description

- Compare Performance of Image classification algorithms on MLlib
 - Two MLlib Algorithms vs Transfer Learning

- Explore General feasibility of using Pyspark for Image Classification
 - Complexity
 - Challenges

Methodology

About the dataset:

- Arboles de Chile Dataset from Kaggle Website
- Over 6000 images of chilean trees (color images)
- 300 x 300 x 3
- 3 species selected:
 - Lithraea caustica
 - o Peumus boldus
 - Ulmus americanas

Peumus Boldus https://www.kaggle.com/code/mpwolke/rboles-en-chile/data

Methodology

Preparation of the dataset:

- Transformations:
 - Labeling images
 - Vectorization
 - Matching labels with order of images
 - Rotating Images to increase train size
 - Reducing image size to 64, 64, 3

Lithraea caustica https://www.kaggle.com/code/mpwolke/rboles-en-chile/data

Methodology

Training The model:

- Multilayer perceptron classifier
 - Available on pyspark
 - Not very customizable
 - Not scalable to multiple layers
- Naive Bayes Classifier
 - Very Fast
 - Not resource intensive
 - Easy to use API
- Transfer Learning Vg-16
 - External Library
 - Not available on MLlib

Ulmus americana https://www.kaggle.com/code/mpwolke/rboles-en-chile/data

Results

- Performance was not good
 - Same result for Pre-Trained Network

Algorithm	Precision	Recall	F1
MLP	0.313	0.3	0.305
NIB	0.120	0.133	0.125
VG-16	0.300	0.300	0.267

Discussions

- Similar Results:
 - MLP yielded better relative results
 - Surprising low performance for pre trained network
- One possible explanation for low performance is small dataset
- Another explanation is complexity of classifying complex pictures

https://www.kaggle.com/code/mpwolke/rboles-en-chile/data

Lessons Learned

- Complexity of preparing the data without the proper library API support
- Possible to perform GPU enhancement but most guides are for distributed spark
- Possibility of wrapping Transfer learning on UDF, more research is needed
 - Library was developed(sparkdl) but not maintained in years
- Highest Challenges:
 - Memory issued (Java Heap Space)
 - Computing Time
- It is better to direct efforts on integrating transfer learning into Pyspark

Thank you!