Prezentacja 4

12.04.2023r.

DOPASOWANIE MODELU DO DANYCH Z LAT 2015-2019

Dane z Wrocławia z lat 2015-2019

Residua po dopasowaniu modelu ARMA(1,2)

Asymptotic one-sample Kolmogorov-Smirnov test

data: Xt\$val_no_s2

-25 X_t

D = 0.031897, p-value = 0.07166 alternative hypothesis: two-sided

Przykładowa trajektoria modelu ARMA(1,2)-GARCH(1,1)

Predykcja dla danych testowych

Linie kwantylowe dla wszystkich danych z Wrocławia

Linie kwantylowe dla wszystkich danych z Wrocławia

POGODA A SMOG

ZALEŻNOŚĆ STĘŻENIA PM10 W POWIETRZU OD PRĘDKOŚCI WIATRU

ZALEŻNOŚĆ STĘŻENIA PM10 W POWIETRZU OD WILGOTNOŚCI

ZALEŻNOŚĆ STĘŻENIA PM10 W POWIETRZU OD TEMPERATURY POWIETRZA

KORELACJA SPEARMANA

Temperatura

powietrza

-0,17

<u>-0,42</u>

WARSZAWA

WROCŁAW **GDAŃSK**

KRAKÓW

	Stężenie smogu
Stężenie smogu	1,00

Stężenie smogu

Stężenie smogu

Stężenie smogu

1,00

1,00

1,00

<u>-0,43</u>

<u>-0,35</u>

-0,36

Prędkość

wiatru

0,00 -0,15 0,16

-0,30

<u>-0,33</u>

0,20

Wilgotność

powietrza

KORELACJA PEARSONA

		Stężenie smogu	Prędkość wiatru	Temperatura powietrza	Wilgotność powietrza
WARSZAWA	Stężenie smogu	1,00	<u>-0,41</u>	-0,23	0,06
WROCŁAW	Stężenie smogu	1,00	-0,27	<u>-0,41</u>	0,19
GDAŃSK	Stężenie smogu	1,00	<u>-0,32</u>	-0,25	-
KRAKÓW	Stężenie smogu	1,00	-0,34	<u>-0,46</u>	0,25

PROGNOZOWANIE ZANIECZYSZCZENIA **POWIETRZA PRZY** UZYCIU MACHINE LEARNINGU

avs avs

NARZĘDZIA

- Amazon SageMaker do eksploracyjnej analizy danych i uczenia maszynowego
- Amazon Simple Storage Service (Amazon S3) do przygotowania danych do analizy.

ANALIZOWANE PARAMETRY

- Maksymalna temperatura
- Minimalna temperatura
- Opady
- Ciśnienie
- Prędkość wiatru
- Kierunek wiatru
- Czas nasłonecznienia

APLIKACJA WEBOWA

MODUŁY W PYTHON DO MODELOWANIA Z UŻYCIEM MACHINE LEARNING

- sklearn (scikit-learn)
- statsmodels.api
- xgboost

DZIĘKUJEMY ZA UWAGĘ!

PREZENTACJĘ PRZYGOTOWALI:

Paulina lwach

Julia Mazur

Ewa Trębacz

Małgorzata Kowalczyk

Kamil Kowalski

