1.

 a) Kännetecknet på att det å ena sidan är en Graykod är att kodorden för två närliggande siffror bara skiljer sig åt i en position och

kännetecknet på att det är en **Excess-3 kod** är att kodordet för siffran 0 ej är 0000 utan förskjutet tre steg så att det i Graykoden blir 0010.

b) Antalet element (heltal) i området 0 t o m 9999 är 10^4 . För att koda dem binärt krävs n_2 binära siffror där det gäller att $2^{n_2} \ge 10^4$, dvs $n_2 \cdot \log 2 \ge 4$.

Man kan genom huvudräkning bestämma n_2 på följande sätt. En digitaltekniker vet att $2^{10} = 1024$ och att $8 \cdot 1024 < 10^4 < 16 \cdot 1024$. Således krävs att

$$2^{n_2} = 16 \cdot 1024 = 2^4 \cdot {}^{10} = 2^{14}$$

 $dvs n_2 = 14$

c) Följande söks: $(1011\ 0011.1100\ 1101)_{2421} = (d_1d_0, d_{-1}d_{-2})_{10}$

2421-talet består av binärkodade decimala siffror. Avkodning sker på följande sätt

$$d_1 = 1 \cdot 2 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 5$$

$$d_0 = 0.2 + 0.4 + 1.2 + 1.1 = 3$$

$$d_{-1} = 1 \cdot 2 + 1 \cdot 4 + 0 \cdot 2 + 0 \cdot 1 = 6$$

$$d_{-2} = 1 \cdot 2 + 1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 = 7$$

Talet $\ddot{a}r (d_1d_0, d_{-1}d_{-2})_{10} = (53,67)_{10}$

d) Subtraktionen A-T med talen W och V så görs på följande sätt, se Bilaga 2:

Således är W ett negativt tal, vars belopp får genom 2-komplementering

$$W = (-00110110)_2 = -54$$

och

V ett positivt tal, vars belopp fås genom 1-komplementering av V_{1k} V = $(+00001000)_2$ = +8

2. Funktionsbeskrivning

via funktionstabell

	w	x	У	z	f
0	0	0	0	0	0
1 2	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1 1 1 1 1 1 1 0 0
15	1	1	1	1	0

Lösning/förenkling

via Karnaughdiagram

Ur Karnaughdiagrammet ställs följande uttryck upp:

$$f = w'x + w'y + wx'y' + x'yz' = w'(x+y) + w(x+y)' + y(x+z)'$$
 (1)

eller f = w'x + w'y + wx'y' + wx'z' = w'(x+y) + wx' (yz)' = w'(x+y) + (w'+x)' (yz)' = w'(x+y) + (w'+x+yz)'(2)

Realisering

- med inverterare, OCH- och ELLER-grindar realiseras nätet enklast med uttrycket (2)

- med NAND-grindar realiseras nätet enklast också med uttrycket (2)

3. 1-till-8 avkodare är ju en mintermsavkodare. f_0 och f_1 indikerar om vissa mintermer är "1". Detta kan sammanfattas i funktionstabell

term	хуг	f ₀	f_1
0	0 0 0	0	0
1	0 0 1	1	0
2	0 1 0	1	0
3	0 1 1	0	1
4	1 0 0	1	0
5	1 0 1	0	1
6	1 1 0	0	1
7	1 1 1	1	1

a) Ur figuren och tabellen erhålles $f_0 = x'y'z + x'yz' + xy'z' + xyz$

$$f_1 = x'yz + xy'z + xyz' + xyz$$

b) Funktionen ser man bäst i funktionstabellen. Där ser man att f_0 och f_1 är samma funktioner som summasiffran s och minnessiffran c_{ut} hos en heladderare där y och z är inkommande talsiffror samt x inkommande minnessiffra c_{in} .

4. a)Synkront sekvensnät

b) Tillstånds- och utsignalstabellen

Ur kopplingen kan vi teckna de Booleska uttrycken för q_1^+ , q_0^+ och u:

$$q_1^+ = x_2' x_1 x_0' q_0$$

$$q_0^+ = x_2' x_1 x_0$$

$$u = (x_2 x_1 ' x_0 ' q_1)'$$

Til	lstånd	Insign	Nästa tillst	Utsign
	q ₁ q ₀	$x_2x_1x_0$	q1 ⁺ q0 ⁺	u
το	0 0	0 1 0 0 1 1 1 0 0 övr	0 0 0 1 0 0 0 0	1 1 1
τ ₁	0 1	0 1 0 0 1 1 1 0 0 övr	1 0 0 1 0 0 0 0	1 1 1
τ_2	1 0	0 1 0 0 1 1 1 0 0 övr	0 0 0 1 0 0 0 0	1 1 0 1
τ ₃	1 1	0 1 0 0 1 1 1 0 0 övr	1 0 0 1 0 0 0 0	1 1 0 1

c) Funktionsbeskrivning i ASM-plan

5(6)

5. a)

Klock- cykel	OEA	OEB	OER	OE _{CC}	LDA	LDB	LD _T	LDR	LDCC	g ₂	9 ₁ 9 ₀	ALU- funktion	U bin	RTN-beskr
1								1				0000	00000000	$00H \rightarrow R$
2			1					1			01	1000	00000001	$R+1 \rightarrow R$
3			1					1			01	1011	00000011	$2R + 1 \rightarrow R$
4			1					1				1011	00000110	$2R\toR$
5			1				1					-	-	$R\toT$
6		1						1	1			0111	b ₇ b ₆ b ₅ b ₄ b ₃ b ₂ 'b ₁ 'b ₀	$A \oplus T \to R$ flaggor $\to CC$
7			1			1						-	-	$R \rightarrow A$

- b) Operationen innebär att bitarna nr 1 och 2 av B-registret inverteras, med motsvarande flaggsättning.
- a) Till höger ges den rätta ASM-planen. Teknologernas ASM-plan har två fel.
 - De har missat att MA i andra tillståndet pekar på den byte som innehåller adressen till operanden som skall skiftas.
 MA pekar således inte på operanden.
- De har också missat att ladda flaggregistret med de flaggvärden som inkrementeringen resulterar i.
- b) Teknologerna beskriver en instruktion som ej påverkar vare sig processorns interna tillstånd eller dataarean i minnet utan den inkrementerar ("förstör") den i instruktionen ingående adressen.

Digital- och datorteknik, lösningar till tentamen 2004-04-YY

```
7. a) LDX
               #$D2E0
                            8E D2 E0
        CMPD
               #0
                            10 83 00 00
       BEQ
               L1
                            27 06
        ADDD ,X
                            E3 84
       STD
               10,X
                            ED 0A
               #$A1C0
       LDX
                            omedelbar (immediate)
       LDD
               X,
                            register indirekt
       BEO
               L1
                            PC-relativ
       ASLB
                            inherent
       STD
               10,X
                            register-relativ
                 #$A1C0
          LDX
          LDD
                  X,
                                 *hämta 16-bitars värde w
          CMPD #0
          BEQ
                 L1
                                 *om w=0 gå till L1
          ASLB
                                 *multiplicera w med 2
          ROLA
          ASLB
                                 *multiplicera 2w med 2
          ROLA
                 X,
          ADDD
                                 *addera w till 4w, dvs bilda 5w
     L1 STD
                  10,X
                                 *lagra 5w på 10 adresser längre fram
```

dvs instruktionssekvensen hämtar ett operandvärde w och multiplicerar det med 5.

d) Man löper då risken att få "overflow" om w är för stort

8. Maskin oberoende flödesplan	Assemble	rprogram		Kommentarer	
MVCHK	MVCHK	PSHS	B,CC	*spara antal mätvärden i serien *och CC	
sätt räknare för värden > gränsvärde = 0		CLR	,-S	*räknare för värden > GRVRDE *på TOS nollställs	
sätt pekare:= MSSTART+MSANTAL					
_					
dekrementera pekaren	L0	DECB		*förbered pekaravstånd	
mätv > gränsvnej ▶ı		CMPA	в,х	*jämför gränsvärdet med mätvärde *i serien, bakifrån, stegvis	
je ,	gränsvärdet	BHS	L1	*om mätvärdet större än	
inkrementera räknarer		INC	,S	*öka räknare på TOS med 1	
pek = MSSTART nej —	L1 mätvärde	TSTB BNE	L0	*undersök pekaravståndet *om > 0, jämför med nästa	
jε ₩ Returr	marvarde	PULS PULS	A B,CC	*antal mätvärden > GRVRDE till A *återställ i B antal mätvärden i	
RTS	serien *samt återställ CC				