

Cel pracy

Badanie heurystycznych metod optymalizacji nastaw PID i porównanie z metodami klasycznymi

Badanie i porównanie statycznych algorytmów pod kątem wydajności obliczeniowej i optymalizacji długości trasy

Badanie i porównanie dynamicznych algorytmów pod kątem wydajności obliczeniowej i optymalizacji długości trasy

Zakres pracy

Projekt i implementacja robota mobilnego zgodnie z procedurami ASPICE (projekt, implementacja, testy)

Implementacja algorytmu genetycznego wyznaczającego nastawy PID, porównanie otrzymanych rezultatów z metodami klasycznymi

Implementacja oprogramowania testującego nawigacyjne algorytmy statyczne i dynamiczne, porównanie wyników pod kątem wydajności obliczeniowej i długości wyznaczanej trasy

Implementacja robota mobilnego

Implementacja oprogramowania

Badanie metod heurystycznych do optymalizacji nastaw PID - stanowisko pomiarowe

Identyfikacja obiektu

- Obiekt silnik szczotkowy DC
- Sygnał sterujący PWM o wypełnieniu 50%
- Wzmocnienie (K): 6.36
- Stała czasowa (T): 0.44

Wyznaczenie nastaw metodą Zieglera-Nicholsa

Kp = 0.04, Ti = 0.695, Td = 0.166

Średni błąd względny regulacji: 7.43%

Opis eksperymentu – algorytm genetyczny

Algorytm został uruchomiony 3 razy z różnym zestawem parametrów:

- Populacja początkowa 100
- Populacja początkowa 200
- Populacja początkowa 300

Pozostałe parametry wspólne dla każdego eksperymentu:

- Maksymalna ilość generacji 25
- Prawdopodobieństwo krzyżowania 70%
- Prawdopodobieństwo mutacji 15%

Kryterium stopu:

Średni błąd regulacji najbliższy 0.

Algorytm **maksymalizuje** funkcję celu, dlatego wzór opisujący fitness danego osobnika został określony przez:

1 mean relative error

Wyniki działania algorytmu

Wyniki działania algorytmu

Kp = 6.48, Ti = 2.93, Td = 2.34 Średni błąd względny regulacji: 1.96%

Kp = 29.50, Ti = 14.54, Td = 1.57 Średni błąd względny regulacji: 6,60%

Kp = 11.98, Ti = 1.59, Td = 1.54 Średni błąd względny regulacji: 6,41%

Wyniki działania algorytmu

Kp = 29.50, Ti = 14.54, Td = 1.37

Kp = 11.98, Ti = 1.59, Td = 1.34

Porównanie algorytmu genetycznego z metodą klasyczną

- a) Metoda Zieglera-Nicholsa:
 - Czas regulacji ok 192ms
 - Niedoregulowanie, zbyt delikatny regulator
- b) Algorytm genetyczny
 - Czasy regulacji ok 600ms
 - Satysfakcjonująca regulacja

Porównanie algorytmu genetycznego z metodą klasyczną - wnioski

- Ze względu na prostotę obiektu jakim jest silnik DC, różne nastawy regulatora są w stanie usatysfakcjonować stawiane przed nim wymagania,
- Nastawy wyznaczone metodą klasyczną nie satysfakcjonują potrzeb, ponieważ występuje niedoregulowanie a ponadto jeden z silników nie reaguje na wymuszenie,
- Nastawy wyznaczone algorytmem genetycznym oferują stabilną regulację kosztem dłuższego czasu ustalania obiektu,
- Algorytm genetyczny po kilku epokach wyznacza lokalne optimum popadając w stagnację, dlatego przy bardziej złożonych obiektach warto rozważyć modyfikację parametrów algorytmu lub ponowną inicjalizację populacji jeśli najlepsze rozwiązanie jest daleko od kryterium stopu i nie zmienia się w kolejnych generacjach.

Porównanie statycznych algorytmów nawigacyjnych - opis eksperymentu

Eksperyment polegał na przetestowaniu algorytmu Dijkstry oraz A* z wybranymi metrykami (Manhattan, Euclidean, Max) na mapach i porównaniu otrzymanych wyników:

- Bez przeszkód o rozmiarach
 - 200x50
 - 200x200
 - 500x500
 - 1000x1000
 - 2000x2000
- Z losowo umieszczonymi przeszkodami na mapie o rozmiarach 200x50

Porównanie algorytmów statycznych na mapach bez przeszkód

Porównanie algorytmów statycznych na mapach bez przeszkód

Porównanie algorytmów statycznych na mapach z przeszkodami

Porównanie statycznych algorytmów nawigacyjnych - wnioski

- Algorytm Dijkstry wypadł lepiej pod względem czasu wykonania w porównaniu do algorytmu A*. Zwykle A* powinien działać szybciej, ponieważ używa heurystyki do prowadzenia wyszukiwania, co teoretycznie powinno ograniczyć liczbę odwiedzanych węzłów,
- Heurystyka Manhattan osiągała najkrótsze czasy wykonania dla większości badanych przypadków. Odległość manhattańska jest najprostszą heurystyką spośród używanych, ponieważ jest to suma różnic w poziomych i pionowych odległościach między punktami. To prowadzi do szybszych obliczeń w porównaniu z bardziej złożonymi heurystykami jak Euclidean czy Max,
- Na mapach z przeszkodami algorytmy Dijkstry oraz A* z różnymi heurystykami uzyskały takie same wyniki pod względem długości trasy, jednak wymagały więcej czasu obliczeniowego w porównaniu do Dijkstry.

Porównanie dynamicznych algorytmów nawigacyjnych - opis eksperymentu

Eksperyment polegał na przetestowaniu algorytmu D* oraz D*-Lite na rzeczywistej mapie i porównaniu wyników w celu wybrania optymalnego algorytmu dla zaimplementowanego robota. Eksperyment został przeprowadzony w 5 iteracjach. W każdej z nich:

- Wykorzystano mapę o rozmiarach 100x100 cm z wyznaczonymi punktami startu i stopu,
- Zmieniano ilość i rozmieszczenie przeszkód na mapie.

Porównanie dynamicznych algorytmów nawigacyjnych - wyniki

Iteracja	Ilość przeszkód	Czas działania dstar	Czas działania
		[ms], Pokonana od-	dstar_lite [ms],
		ległość	Pokonana odległość
1	4	53.5, 112	46.5, 112
2	4	51.7, 105	47.2, 105
3	0	48.3, 101	48.3, 101
4	3	45.8, 106	47.9, 107
5	2	49.9, 115	48.0, 115

Porównanie dynamicznych algorytmów nawigacyjnych - wnioski

- Algorytm D* Lite wykazał się minimalnie lepszym czasem działania w porównaniu do D*. Taki wynik może być spowodowany tym, że w badanych scenariuszach występowała stosunkowo mała ilość napotkanych przeszkód oraz mapa była małych rozmiarów, co ograniczało liczbę operacji wymaganych do znalezienia optymalnej ścieżki,
- Robot pokonał praktycznie tę samą odległość w każdym z pięciu przeprowadzonych scenariuszy testowych. Z uwagi na minimalnie lepszy czas działania, jaki uzyskał algorytm D* Lite, warto zdecydować się na jego wybór, szczególnie w kontekście optymalizacji czasu obliczeń w bardziej wymagających środowiskach.

Wkład własny

Za wkład własny autor uważa:

- Implementację robota mobilnego
- Implementację systemu wbudowanego robota
- Implementację skryptów,
 przeprowadzenie eksperymentów i analizę wyników