15/11/2017 HackerRank

Find the Path

em Submissions Leaderboard Discussions Editorial 🔒
--

You are given a table, a_i with n rows and m columns. The top-left corner of the table has coordinates (0,0), and the bottom-right corner has coordinates (n-1,m-1). The i^{th} cell contains integer $a_{i,j}$.

A path in the table is a sequence of cells $(r_1, c_1), (r_2, c_2), \ldots, (r_k, c_k)$ such that for each $i \in \{1, \ldots, k-1\}$, cell (r_i, c_i) and cell (r_{i+1}, c_{i+1}) share a side.

The weight of the path $(r_1,c_1),(r_2,c_2),\ldots,(r_k,c_k)$ is defined by $\sum_{i=1}^k a_{r_i,c_i}$ where a_{r_i,c_i} is the weight of the cell (r_i,c_i) .

You must answer q queries. In each query, you are given the coordinates of two cells, (r_1, c_1) and (r_2, c_2) . You must find and print the minimum possible weight of a path connecting them.

Note: A cell can share sides with at most **4** other cells. A cell with coordinates (r, c) shares sides with (r - 1, c), (r + 1, c), (r, c - 1) and (r, c + 1).

Input Format

The first line contains 2 space-separated integers, n (the number of rows in a) and m (the number of columns in a), respectively. Each of n subsequent lines contains m space-separated integers. The j^{th} integer in the i^{th} line denotes the value of $a_{i,j}$. The next line contains a single integer, q, denoting the number of queries.

Each of the q subsequent lines describes a query in the form of 4 space-separated integers: r_1 , c_1 , r_2 , and c_2 , respectively.

Constraints

- $1 \le n \le 7$
- $1 \le m \le 5 \times 10^3$
- $0 \le a_{i,j} \le 3 \times 10^3$
- $1 \le q \le 3 \times 10^4$

For each query:

- $0 \leq r_1, r_2 < n$
- $0 \le c_1, c_2 < m$

Output Format

On a new line for each query, print a single integer denoting the minimum possible weight of a path between (r_1,c_1) and (r_2,c_2) .

Sample Input

15/11/2017 HackerRank

Sample Output

1 1 18

Explanation

The input table looks like this:

(0,0)				
0	0	0	0	0
1	9	9	9	1
0	0	0	0	0
	(2,4)			

The first two queries are explained below:

1. In the first query, we have to find the minimum possible weight of a path connecting (0,0) and (2,4). Here is one possible path:

The total weight of the path is 0+1+0+0+0+0+0=1.

2. In the second query, we have to find the minimum possible weight of a path connecting (0,3) and (2,3). Here is one possible path:

(0,0)	(0,3)				
0	0	0	0	0	
1	9	9	9	1	
0	0	0	0	0	
			(2,3)	(2,4)	

The total weight of the path is 0 + 0 + 1 + 0 + 0 = 1.

f in Submissions:215
Max Score:75
Difficulty: Hard
Rate This Challenge:
☆☆☆☆☆
More

IVIOIC

Java 7

1 v import java.io.*;

- 2 import java.util.*;
- import java.text.*;
- 4 import java.math.*;
- 5 import java.util.regex.*;

Current Buffer (saved locally, editable) & 49

15/11/2017 HackerRank

```
public class Solution {

public static void main(String[] args) {

/* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */

}

Line: 1 Col: 1

Line: 1 Code

Submit Code
```

Join us on IRC at #hackerrank on freenode for hugs or bugs.

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature