CS & IT

ENGINEERING

Discrete Mathematics Graph Theory

Lecture No.12

TOPICS TO BE COVERED

01 covering set

...

02 Covering number

. . .

03 Planar Graph

. . .

04 Euler's Formula In planarity

. . .

05 Sum of Degrees in Region

Graph

planay

if we can draw a graph on a plane without intersection of it's edges

non planav:

Otherwise it is nomplanar it does not matter from we draw graph.

Planar

$$n = 2$$
 $\begin{pmatrix} 0 & 0 \end{pmatrix}$

n=3

planav

(K3, 3 - e) -> planar Graph.

K3,3 is nonplanati

obs

Pw

- -> both graphs are regular Graph.
- Removal of single edge from both the graphs will make both graphs as a planar Graph.
 - > K5 is nonplanar Graph with minno of rertices.

 K3.3 is nonplanar Graph with minno of edges.

w iv. no. n= 5 nonplanar (nomplanar (K3,3 n=6 e = 9. > min no of edges

Euler's formula.:

$$n-e+f=2$$

$$n-e+f=2$$
.
 $a-1+f=2$
 $f=1$.

$$n-e+f=2$$
.
 $3-\lambda+f=2$

$$n-e+f=2$$

 $3-3+f=2$
 $f=2$

Consider a Planar Graph with n=10 e=15 what will be no of Closed faces ?

$$n-e+f=2$$
 $10-15+f=2$
 $-5+f=2$

Closed = Total - 1. = 7 - 1 = 6

Degree of regions: no of edges involved in regions.

=
$$3 + 3 + 4 = 10 = 2.5$$

 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10 = 2.5$
 $= 3 + 3 + 4 = 10$

43

Pw

deg(R1) 7, 3 deg(R2) 7, 3 deg(R2) 7, 3.

Regions are made by atleast 3 edges

 $\frac{\text{den}(R_1) + \text{den}(R_2) + \text{den}(R_3)}{\text{Zd}(R_1)} = 3 + 3 + 3$

de 7,3f

2e73f

2ez, 6 + 3e-30.

f = 2 + e - n

f = 2 + e-n (Region are made by atleast a edges)

Thm: if Gisplanar then e \le 3n-6.

(viceversa is not time)

Thm:

if G is planar then e < 3n-6.

Contrapositive:

it 7 (e < 3n-6) then 7 (Gisplanar)

the e>3n-6 then Gisnomplanar.

viceversa is not the.

if e = 3n-6 then Gisplanay
(Jalse)

K3,3 e= 9 n= 6.

e < 3n-6.

9 < 3(6)-6

9 < 18-6

9 \leftarray

$$e(G) + e(G) = e(K11)$$
 $e(G) + e(G) = \frac{11.10}{2}$
 $e(G) + e(G) = \frac{55}{2}$
 $e(G) + e(G) = \frac{55}{2}$

deg(R1) 34

if

deg(R2) 34.

den(13) 7 4

den(k1)+den(k2)+den(k3) > 4+4+4.

2 e. 7 4. f

Thm:

(Regions are

(Regions are

if Gisplanar then esen-4: made by atleast 4.

edges)

n-e+f=2 f=2+e-nAe >4(2+e-n)

e z 2(2+e-n) e z 4.+2e-2n

2n-47,2e.

(Regions are made by atleast 5edges)

$$C \le \frac{5}{3}n - \frac{10}{3}$$
. (alleass) if G is planar then $e \le 3n-6$.
 $(al-4)$ if G is planar then $e \le 2n-4$
 $(al-5)$ if G is planar then $e \le 5/n-\frac{10}{3}$.

A planar Graph has vertices only of degree 5 and 7 if there are lovertices of degree 7. Ans: 22

\(\frac{1}{2}\) \(\frac{1}{2}\)

5. a + 10.7= 2e.

e= = (50+70)

(+ Gis planar then e≤3n-6. = (5a++0) ≤ 3(10+a)-6.

prove that atleast — vertices of degree 5.

Total vertices = 10+a

Pw

e < 3n-6.

1 (5a+70) 5 3 (10+a) - 6.

5a+70 5 6(10+a)-12

5a+70 5 60+6a-12.

70-60+12 5 6a-5a.
10+12 5 a.
22 5a.

5.a + 10.7 = 2e. $e = \frac{1}{2}(5.a + 70)$

