SIVI-BG130N100

Silicon Vision

TSMC/SMIC 130nm-G (1P5M)

MAIN FEATURES

- Designed on TSMC/SMIC 130nm Generic process
- $V_{\text{supply}}: 2.5V \rightarrow 3.6V$
- Accuracy across PVT: ±1.9%
- Accuracy after trimming is less than $\pm 0.2\%$
- Low noise performance
- **Excellent supply** rejection over wide frequency range
- Low current consumption
- Capability of trimming the output voltage
- IP Silicon area < 0.02mm²
- Operational temperature from -40C° to 125C°

IP DESCRIPTION

SiVi-BG130n100 is a low noise bandgap reference cell with less than 55nV/√Hz spot noise at 100kHz. With its good accuracy and low noise performance SiVi-BG130n100 is considered the optimum solution for low noise SoC solutions

SiVi-BG130n100 is silicon verified on a Generic TSMC and SMIC 130nm process.

ELECTRICAL SPECIFICATIONS

Spec / Result		Min	Тур	Max	Unit
Supply Voltage		2.5	3.0	3.6	V
Temperature Range		-40	27	125	°C
PSRR	@10kHz		-85		dB
	@1MHz		-65		
Spot Noise @100kHz				55	nV/√Hz
Temperature	@T = -40°C	-20		4	ppm/°C
Coefficient	@T = 27°C	-5		5	
	@T = 125°C	-5		8	
Voltage Coefficient (2.0V →3.6V		0.25		0.8	%/V
Vdd)					
Startup time, CL=5pf			450		μs
Output Voltage			1.225		V
Current Consumption,				400	μΑ

