AI - Assignment 2

Patrick Nagel: patrick.nagel@h-brs.de
Amirhossein Pakdaman: amirhossein.pakdaman@smail.inf.h-brs.de

Due Date: 20.10.2019

You can get help from the pdf file: *cormen_introalgorithms* provided in LEA to solve the following assignments.

- 1. Why is a special notation needed to classify algorithms? Doesn't it suffice to merely measure the runtime in seconds? Explain.
- 2. Let $g:N\to R+$ be an arbitrary function. The set of functions $f:N\to R+$, which do not grow faster than the function g after a specific point n_0 , is denoted as O(g(n)). More specifically: $O(g(n)):=f(n)|\ \exists\ c\ \epsilon\ R\ and\ \exists\ n_0\ \epsilon\ N:0\le f(n)\le cg(n)\ \forall\ n\ge n_0$

Prove the following:

- $f(n) = 100n^2 \in O(n^2)$ • $f(n) = n^6 + 100n^5 \in O(n^6)$
- 3. What is the running time of the following python-code in O-Notation? Assume, that *ANY_CONST* is an arbitrary constant in your program, which receives a 2d array *arr* as parameter.

```
sum = 0
for i in range(0, J):
    for j in range(0, K):
        if arr[i][j] <= ANY_CONST:
        sum = sum + arr[i][j]
print(sum)</pre>
```

4. For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds. Please briefly mention how you do the calculations for items: log(n), 2^n , and n log(n).

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\lg n$							
\sqrt{n}							
n							
$n \lg n$							
$\frac{n^2}{n^3}$							
n^3							
2 ⁿ							
n!							