Géométrie différentielle et théorie de jauge

Solutions to exercises

03/03/2020

4. Chern class of $T\mathbb{C}P^n$. Let L be the tautological bundle, so that $L_x = x \subset \mathbb{C}^{n+1}$ and we can consider at each point x the orthogonal decomposition $\mathbb{C}^{n+1} = L_x \oplus E_x$ which defines a rank n vector bundle E on $\mathbb{C}P^n$.

Since $T\mathbb{C}P^n = \operatorname{Hom}(L, E) = L^* \otimes E$ and $L^* \otimes L = \operatorname{Hom}(L, L) = \mathbb{C}$, we have $T\mathbb{C}P^n \oplus \mathbb{C} = L^* \otimes (E \oplus L) = L^* \otimes \mathbb{C}^{n+1} = L^* \oplus \cdots \oplus L^*$. From exercise 1, we then have, since $c(T\mathbb{C}P^n \oplus \mathbb{C}) = c(T\mathbb{C}P^n)$,

$$c(T\mathbb{C}P^n) = (1 + c_1(L^*))^{n+1}.$$

In particular $c_1(T\mathbb{C}P^n) = (n+1)c_1(L^*)$. It turns out that $H^2(\mathbb{C}P^n,\mathbb{Z}) = \mathbb{Z}c_1(L^*)$, and that a complex manifold like $\mathbb{C}P^n$ is spin if and only if $c_1(T\mathbb{C}P^n)$ is even, which is the case only if n is odd.

5. \hat{A} -**genus.** It is defined by $(x = \frac{iF}{2\pi})$

$$\hat{A} = \exp\left(\frac{1}{2}\operatorname{tr}\ln\frac{x/2}{\sinh x/2}\right).$$

The right hand side is an even function of x, therefore has a development $a_0 + a_2 x^2 + a_4 x^4 + \cdots$, and we obtain the \hat{A} -genus by substituting $x = \frac{iF}{2\pi}$. Since F is a 2-form, we obtain results only in degrees multiple of 4.

If we have a direct sum $V=V_1\oplus V_2$ with a direct sum connection $\nabla=\nabla_1\oplus\nabla_2$ then denote $x_j=\frac{iF^{\nabla_j}}{2\pi}$, we then have

$$x = \begin{pmatrix} x_1 & \\ & x_2 \end{pmatrix}.$$

Therefore

$$\operatorname{tr} \ln \frac{x/2}{\sinh x/2} = \sum_{1}^{2} \operatorname{tr} \ln \frac{x_{j}/2}{\sinh x_{j}/2}$$

from which follows, taking exponentials, that $\hat{A}(\nabla_1 \oplus \nabla_2) = \hat{A}(\nabla_1) \wedge \hat{A}(\nabla_2)$.

From $\ln \frac{x/2}{\sinh x/2} = -\frac{x^2}{24} + O(x^4)$ it follows that the two first terms are

$$\hat{A} = 1 + \frac{1}{24 \cdot 8\pi^2} \operatorname{tr}(F \wedge F) = 1 - \frac{1}{24} p_1(\nabla).$$

Note the sign error in the exercise, $p_1(V) = -c_2(V \otimes \mathbb{C}) = -\frac{1}{8\pi^2} \operatorname{tr}(F \wedge F)$.

10/03/2020

2. I think that we had not calculated the action of the chirality operator $\Gamma = i^{\frac{n}{2}}e_1 \cdots e_n$ on S_{\pm} . Recall the construction as $S = \Lambda W$ where $W = \langle e_1 - ie_2, e_3 - ie_4, ... \rangle$, and $v = w + \bar{w}$ acts by $c(v) = \sqrt{2}(\epsilon(w) - \iota(\bar{w}))$. Note $w_1 = \frac{1}{\sqrt{2}}(e_1 - ie_2)$, etc. Then one has

$$\iota(\bar{w}_j)\epsilon(w_j)w_{i_1}\wedge\cdots\wedge w_{i_k} = \begin{cases} w_{i_1}\wedge\cdots\wedge w_{i_k} & j\notin\{i_1,...,i_k\}\\ 0 & j\in\{i_1,...,i_k\} \end{cases}$$

$$\epsilon(w_j)\iota(\bar{w}_j)w_{i_1}\wedge\cdots\wedge w_{i_k} = \begin{cases} w_{i_1}\wedge\cdots\wedge w_{i_k} & j\in\{i_1,...,i_k\}\\ 0 & j\notin\{i_1,...,i_k\} \end{cases}$$

Then $e_1 e_2 = \frac{1}{2} (w_1 + \bar{w}_1) i (w_1 - \bar{w}_1)$ and therefore

$$c(e_1e_2)=i(\epsilon(w_1)-\iota(\bar{w}_1))(\epsilon(w_1)+\iota(\bar{w}_1))=i(\epsilon(w_1)\iota(\bar{w}_1)-\iota(\bar{w}_1)\epsilon(w_1)).$$

We can now calculate $c(e_1 \cdots e_n) = c(e_1 e_2) \cdots c(e_{n-1} e_n)$ acting on $w_{i_1} \wedge \cdots \wedge w_{i_k} \in \Lambda^k W$: each $c(e_{2j-1} e_{2j})$ acts by $\frac{i}{2}$ if $j \in \{i_1, ..., i_k\}$, and $-\frac{i}{2}$ if $j \notin \{i_1, ..., i_k\}$; therefore the action of Γ is by

$$i^{\frac{n}{2}}i^k(-i)^{\frac{n}{2}-k} = i^n(-1)^{\frac{n}{2}-k} = (-1)^k.$$

Therefore Γ acts by 1 on $S_+ = \Lambda^{even}W$ and -1 on $S_- = \Lambda^{odd}W$.

3. Recall that if V is odd dimensional, the spinors S = S(V) are obtained as one of the two representations $S_{\pm}(V \oplus \mathbb{R})$, which are equivalent as Spin(V)-representations.

If dim V=3, the spin representation is 2-dimensional, so we get a morphism $Spin_3 \to SU_2$. The kernel of ρ would act trivially on both $S_{\pm}(V \oplus \mathbb{R})$ which is impossible (recall $C\ell(V \oplus \mathbb{R}) \otimes \mathbb{C} \simeq End(S_+ \oplus S_-)$), therefore ρ is injective.

1

This implies that the differential $\rho_*: \mathfrak{spin}_3 = \mathfrak{so}_3 \to \mathfrak{su}_2$ is injective, and therefore an isomorphism: so ρ is a local diffeomorphism. Since $Spin_3$ is compact, it follows that the image of ρ is both open and closed, and therefore is the whole SU_2 since SU_2 is connected. Therefore $\rho: Spin_3 \to SU_2$ is an isomorphism.

4. Triality. The element $-1 \in Spin_8$ acts by -1 on Δ_{\pm} but by 1 on the standard representation \mathbb{R}^8 of SO_8 , since -1 is in the kernel of the morphism $Ad: Spin_8 \to SO_8$.

We know that the chirality element $Spin_8 \ni \Gamma = e_1 \cdots e_8$ acts by ± 1 on Δ_{\pm} . On the other hand, one calculates easily that $Ad(e_1e_2)(x_1e_1+x_2e_2)=e_1e_2(x_1e_1+x_2e_2)e_2e_1=-(x_1e_2+x_2e_2)$; decomposing $\mathbb{R}^8=\langle e_1,e_2\rangle\oplus\langle e_3,e_4\rangle\oplus\cdots$, it follows that $Ad(\Gamma)=-1$.

It follows that none of the central elements 1, -1, Γ , $-\Gamma$ has the same action on the three representations \mathbb{R}^8 , Δ_+ and Δ_- . Therefore these representations are unequivalent: indeed, if two representations ρ_1 , ρ_2 are equivalent, then there exists and isomorphism ϕ such that $\rho_2(g) = \phi \circ \rho_1(g) \circ \phi^{-1}$ for all g, but our central elements go to ± 1 so the value should be the same.

5. Bochner formula. We consider the Clifford module $E = S^* \otimes S \simeq \Lambda T^*M$ and its Dirac operator $D = d + d^*$. One has the Lichnerowicz formula $D^2 = \nabla^* \nabla + \mathcal{R}$, with $\mathcal{R}s = \sum_{i < j} e_i e_j R_{e_i,e_j} s$. In the case of a 1-form α , we can make this very explicit: we write more conveniently $\mathcal{R}s = \frac{1}{2} \sum_{i,j} e_i e_j R_{e_i,e_j} s$ and identify 1-forms with vectors:

$$\begin{split} \mathcal{R}\alpha &= \frac{1}{2} \sum_{i,j} e_i e_j R_{e_i,e_j} \alpha \\ &= \frac{1}{2} \sum_{i,j} (\epsilon(e_i) - \iota(e_i)) (\epsilon(e_j) - \iota(e_j)) R_{e_i,e_j} \alpha \end{split}$$

by the algebraic Bianchi identity:

$$= -\frac{1}{2} \sum_{i,j} \epsilon(e_i) \iota(e_j) R_{e_i,e_j} \alpha + \iota(e_i) \epsilon(e_j) R_{e_i,e_j} \alpha$$

$$= -\frac{1}{2} \sum_{i,j} \langle R_{e_i,e_j} \alpha, e_j \rangle e^i - \langle R_{e_i,e_j} \alpha, e_i \rangle e^j$$

$$= -\sum_{i,j} \langle R_{e_i,e_j} \alpha, e_j \rangle e^i$$

$$= \sum_{i,j} \langle R_{e_i,e_j} e_j, \alpha \rangle e^i$$

$$= \sum_{i} \langle \text{Ric } e_i, \alpha \rangle e^i$$

$$= \text{Ric } \alpha.$$

We therefore obtain the famous Bochner formula for all $\alpha \in \Omega^1 M$: since $D^2 \alpha = (dd^* + d^*d)\alpha = \Delta \alpha$,

$$\Delta \alpha = \nabla^* \nabla \alpha + \operatorname{Ric} \alpha.$$

If M is compact, integrating against α , we obtain

$$(\Delta \alpha, \alpha) = \|\nabla \alpha\|^2 + (\operatorname{Ric} \alpha, \alpha).$$

If α is harmonic ($\Delta \alpha = 0$) and Ric ≥ 0 , then $\nabla \alpha = 0$ and Ric $\alpha = 0$.

- If Ric > 0 at some point, if follows that α vanishes at this point, and therefore everywhere since $\nabla \alpha = 0$ (indeed this in particular implies that $d|\alpha|^2 = 2\langle \alpha, \nabla \alpha \rangle = 0$ so $|\alpha|$ is constant). In particular $H^1(M) = 0$ so a geometric hypothesis (Ric positive) implies a topological conclusion $(b_1(M) = 0)$.
- If Ric = 0, then $\nabla \alpha = 0$, which implies that α is determined by its value at one point (suppose we have α' with $\nabla \alpha' = 0$ and α' and α have the same value at one point, then $\nabla(\alpha \alpha') = 0$ and $\alpha \alpha'$ is zero at some point, and therefore zero everywhere). So the space of such α 's is at most n, so $b_1(M) \leq n$. One can show that equality is achieved only for a flat torus.