A next-generation trapped ion quantum computing system

<u>Yichao Yu,</u>¹ Liudmila Zhukas,¹ Lei Feng,^{2,1} Marko Cetina,^{2,1} Crystal Noel,^{2,1} Debopriyo Biswas,^{2,1} Andrew Risinger,² Alexander Kozhanov,¹ and Christopher Monroe^{2,1,3}

 $^{1}DQC/Duke\ ECE$ $^{2}JQI/QuICS/UMD\ Physics$ $^{3}IonQ$

The first generation of a universal trapped ion integrated quantum processor, constructed in a collaboration between universities and industrial partners, was used to perform quantum algorithms with high-fidelity on 12 qubits, and high-fidelity quantum gates with up to 23 qubits. We present progress on the second-generation system, which has several design improvements, such as a capacity of 32 qubits, parallel addressing capability using an RF-System-On-Chip, a next-generation microfabricated surface ion trap from Sandia National Laboratories, and the integration with the upgraded Raman and CW laser systems built by L3Harris.