SQL Level 2

Part 1

CAST

Changing Data Types

noble desktop SQL Level 2: Part 1

el 2: Part 1 Copyright © Noble Desktop

Data Types

- Each column is assigned a data type so the information is stored in the correct format. (Determined by the person creating the database.)
- Examples: numbers, text (strings), date, datetime, etc.
- When the data is not be stored in the format our query needs, we use CAST() to convert it into the format we need.

Exercise

Open the file "1.0 CAST.sql" (in SQL Level 2 folder)

noble desktop SQL Level 2: Part 1

Aggregate Functions

Performing Calculations

Aggregate Functions

Aggregate functions perform common statistical operations (calculations) on the values in a specified column, returning a single summary value.

They boil down the resulting data.

SUM()

MAX()

MIN()

AVG()

COUNT()

Aggregate Functions: Examples

values	
5	
4	
6	
3	
2	
4	
2	
7	
9	

Aggregate Functions:	Result
COUNT(values)	9
SUM(values)	42
MAX(values)	9
MIN(values)	2
AVG(values)	4.6

Aggregate Functions: Examples

- How many orders were shipped to Florida?
- What was the most any user spent?

Maximum

SELECT MAX(price) FROM products;

Minimum

SELECT MIN(price) FROM products;

Count

SELECT COUNT(ship_state)
FROM orders
WHERE ship_state = 'FL';

Count ALL the rows! (not just distinct values)

Addition

SELECT SUM(price) FROM line_items;

Average

SELECT AVG(price) FROM line_items;

Exercise

Open the file "1.1 Aggregate Functions and ROUND.sql" (in SQL Level 2 folder)

noble desktop

Date Functions

Working with Dates (Year, Month, Day, etc.)

Date Functions

Date functions perform calculations on columns that contain a date or time value (like YYYY-MM-DD HH:MI:SS)

Name	Description
DATE	date (no time of day)
TIME	time of day (no date)
TIMESTAMP	both date and time (with or without time zone)

Common Date Functions

Function	Description
PostgreSQL: SELECT CURRENT_DATE; SQL Server: SELECT CAST(GETDATE() AS DATE);	Returns the current date
PostgreSQL: SELECT CURRENT_TIME; SQL Server: SELECT CAST(GETDATE() AS TIME);	Returns the current time
PostgreSQL: DATE_PART('datepart', source) SQL Server: DATEPART(datepart, source)	Get part of a date: year, month, day, etc.
PostgreSQL: SELECT NOW(); SQL Server: SELECT GETDATE();	Returns the current date and time from the database server's time zone

Get Part of a Date: Retrieve the Hour

```
In PostgreSQL:
SELECT DATE_PART('hour', created_at)
FROM products;
```

In SQL Server:

SELECT DATEPART(hour, created_at)
FROM products;

Get Part of a Date: Day of the Week

```
In PostgreSQL:
SELECT DATE_PART('dow', created_at)
FROM products;
This returns 0–6: Sunday (0) to Saturday (6)
In SQL Server:
SELECT DATEPART(dow, created_at)
FROM products;
This returns 1–7: Sunday (1) to Saturday (7)
```


Exercise

Open the file "1.2 Date Functions.sql" (in SQL Level 2 folder)