Aula Prática 13

ASA 2024/2025

Q1 (T2 19/20) Uma matriz de incompatibilidades é uma matriz quadrada cujas células guardam valores decimais entre 0 e 1. Intuitivamente, dada uma matriz de incompatibilidades M, $n \times n$, a célula M_{ij} guarda a incompatibilidade entre os índices i e j; $M_{ij} = 0$ se i e j são completamente compatíveis e $M_{ij} = 1$ se i e j são completamente incompatíveis.

Dado um sub-conjunto de índices $I \subseteq \{1, ..., n\}$, o nível de incompatibilidade do conjunto é dado por: $\sum_{i,j\in I} M_{ij}$. O problema das incompatibilidades define-se formalmente da seguinte maneira:

Incompat = $\{\langle M, k, v \rangle \mid M \text{ contém um sub-conjunto de índices}$ de tamanho k e incompatibilidade igual ou inferior a $v\}$

- 1. Mostre que o problema Incompat está em NP.
- 2. Mostre que o problema **Incompat** é NP-difícil por redução a partir do problema **ISet**, que é sabido tratar-se de um problema NP-completo e que se define em baixo. Não é necessário provar formalmente a equivalência entre os dois problemas; é suficiente indicar a redução e a respectiva complexidade.

Pista: Dado um grafo G indique como construir uma matriz de incompatibilidades cujos índices correspondem aos vértices de G tendo em conta o problema \mathbf{ISet} .

Problema ISet: Seja G=(V,E) um grafo não dirigido; dizemos que $V'\subseteq V$ é um conjunto de vértices independentes em G se e apenas se $\forall u,v\in V'.(u,v)\not\in E$. O problema **ISet** define-se formalmente da seguinte maneira:

 $\mathbf{ISet} = \{ \langle G, k \rangle \mid G \text{ contém um conjunto de vértices independentes de tamanho } k \}$

Solução:

- 1. O algoritmo de verificação recebe como input uma possível instância $\langle M, k, v \rangle$ e um conjunto de índices I (o certificado). O algoritmo tem de verificar que |I| = k e que $\sum_{i,j \in I} M_{ij} \leq v$. Observamos os certificados têm tamanho O(n) e que a verificação se faz em tempo $O(n^2)$, o tempo de calcular o somatório.
- 2. Dada uma possível instância $\langle G, k \rangle$ do problema **ISet**, começamos por construir uma matriz de incompatibilidades M_G cujos índices correspondem aos vértices de G. Para tal, admitimos que |V|=n e que os vértices de V estão numerados de 1 a n, sendo v_i o i-ésimo vértice. Assim sendo, definimos a matriz M_G como se segue:

$$(M_G)_{ij} = \begin{cases} 1 & \text{se } (v_i, v_j) \in E \\ 0 & \text{caso contrário} \end{cases}$$

Uma vez estabelecida a matriz M_G , a redução é definida da seguinte maneira:

$$f(\langle G, k \rangle) = \langle M_G, k, 0 \rangle$$

- Equivalência a estabelecer: $\langle G, k \rangle \in \mathbf{ISet} \iff \langle M_G, k, 0 \rangle \in \mathbf{Incompat}$
- Complexidade da redução: $O(|V|^2)$.

Q2 (R2 19/20) Seja $C = \{c_1, ..., c_n\}$ uma colecção de cromos e $\mathcal{A} = \{a_1, ..., a_m\}$ um grupo de amigos que coleccionam cromos. Cada membro do grupo detém um subconjunto de C; seja C_i o conjunto de cromos detido por a_i e $\mathcal{C} = \{C_i \mid 1 \leq i \leq m\}$ o conjunto dos conjuntos de cromos de todos os membros do grupo. Os membros do grupo pretendem determinar o mais pequeno conjunto de cromos que contém pelo menos um cromo detido por cada membro do grupo. Formalmente, este problema pode ser modelado através do seguinte problema de decisão:

SharedStickers =
$$\{\langle C, C, k \rangle \mid \exists X \subseteq C. |X| = k \land \forall_{1 \le i \le m}. C_i \cap X \ne \emptyset\}$$

- 1. Mostre que o problema **SharedStickers** está em **NP**.
- 2. Mostre que o problema **SharedStickers** é **NP**-difícil por redução a partir do problema da *Cobertura de Vértices* que foi estudado nas aulas e que recordamos em baixo.

Problema da Cobertura de Vértices: Seja G = (V, E) um grafo não dirigido; dizemos que $V' \subseteq V$ é uma cobertura de vértices se e só se: $\forall (u, v) \in E. u \in V' \lor v \in V'$. O problema da cobertura de vértices, **VCover**, define-se formalmente da seguinte maneira:

 $VCover = \{ \langle G, k \rangle \mid G \text{ contém uma cobertura de vértices de tamanho } k \}$

Solução:

- 1. O algoritmo de verificação recebe como input uma possível instância $\langle C, \mathcal{C}, k \rangle$ e um conjunto de cromos X (o certificado). O algoritmo tem de verificar que |X| = k e que $X \cap C_i \neq \emptyset$, para todo o C_i em \mathcal{C} . Observamos os certificados têm tamanho O(n) e que a verificação se faz em tempo $O(m.n^2)$, a complexidade de se calcular a intersecção de cada um dos conjuntos em \mathcal{C} com X utilizando um algoritmo naif de complexidade quadrática.
- 2. Dada uma possível instância $\langle G, k \rangle$ do problema **VCover**, começamos por construir uma colecção de cromos C e um conjunto de conjuntos C. Intuitivamente, os vértices do grafo G correspondem aos cromos da colecção e cada arco corresponde a um conjunto de dois vértices. Formalmente:

$$\langle G, k \rangle \in \mathbf{VCover} \Leftrightarrow \langle C, \mathcal{C}, k' \rangle \in \mathbf{SharedStickers}$$

onde:

- \bullet C = V;
- $C = \{\{u, v\} | (u, v) \in E\};$
- k' = k.

Complexidade da redução: O(V + E).

Q3 (T2 20/21) Um grafo diz-se um $kite^1$ de grau n se é constituído por 2.n vértices, tais que n vértices formam um clique e os restantes n vértices formam uma cauda ligada a um dos vértices do clique.

Dado um grafo G = (V, E) e um inteiro k, o problema **Kite** consiste em determinar se G contém um kite de grau k. Por exemplo, o grafo em baixo contém vários kites de grau 3, um dos quais está identificado em cinzento.

Formalmente, o problema ${f Kite}$ pode ser modelado através do seguinte problema de decisão:

$$\mathbf{Kite} = \{ \langle G, k \rangle \mid G \text{ contém um } kite \text{ de grau } k \}$$

- 1. Mostre que o problema Kite está em NP.
- 2. Mostre que o problema **Kite** é NP-difícil por redução a partir do problema **Clique** estudado nas aulas. Não é necessário provar formalmente a equivalência entre os dois problemas; é suficiente indicar a redução e a respectiva complexidade.

Solução:

- 1. O algoritmo de verificação recebe como input uma possível instância $\langle G = (V, E), k \rangle$ e um certificado na forma de um triplo $\langle V_1, V_2, u, v \rangle$ tal que:
 - Restrição 1: $V_1 \cap V_2 = \emptyset$, $|V_1| = |V_2| = k$;
 - Restrição 2: $u \in V_1$, $v \in V_2$, $(u, v) \in E$;
 - Restrição 3: $G_1 = (V_1, E_1)$, com $E_1 = \{(w, z) \mid (w, z) \in E \land w, z \in V_1\}$, forma uma linha com k elementos;
 - Restrição 4: $G_2=(V_2,E_2)$, com $E_2=\{(w,z)\mid (w,z)\in E \land w,z\in V_2\}$, forma um clique de tamanho k.

Em primeiro lugar, observamos que o certificado tem tamanho O(V). O algoritmo de verificação tem de verificar que as restrições enunciadas em cima são verificadas. Analisamos cada restrição separadamente:

- $Restrição\ 1:\ O(V);$
- *Restrição 2: O*(1);
- Restrição 3: O(V) (encontrar o vértice sem nós incidentes em V_1 e efectuar uma DFS modificada que não explora arcos em V_2);
- Restrição 4: $O(V^2)$ (verificar se cada vértice em V_2 está ligado a todos os outros vértices em V_2).

¹Em português kite diz-se papagaio.

2. Dada uma instância $\langle G=(V,E),k\rangle$ do problema **Clique** temos de construir uma instância $\langle G'=(V',E'),k\rangle$ do problema **Kite** tal que:

$$\langle G, k \rangle \in \mathbf{Clique} \iff \langle G', k \rangle \in \mathbf{Kite}$$

Intuitivamente definimos o grafo G' acrescentando a cada vértice $v \in V$ uma cauda com k vértices. Admitindo que os vértices de G se encontram numerados: $V = \{v_1, ..., v_n\}$, definimos formalmente o grafo G' = (V', E') como se segue:

- $\bullet \ \ V' = V \cup \{u_1^1,...,u_1^k\} \cup \{u_2^1,...,u_2^k\} \cup ... \cup \{u_n^1,...,u_n^k\}$
- $E' = E \cup \{(u_i^j, u_i^{j+1}) \mid 1 \le i \le n \land 1 \le j \le k-1\} \cup \{(u_i^k, v_i) \mid 1 \le i \le n\}$

Complexidade da redução: $O(V^2)$

Q4 (E1 21/22) Uma família com n membros $\{M_1, ..., M_n\}$ prepara-se para cozinhar a maior pizza de sempre. Para tal têm de escolher os ingredientes a incluir na pizza de entre k ingredientes disponíveis $\{I_1, ..., I_k\}$. Cada familiar M_i deve indicar os ingredientes que não deseja incluir na pizza e os ingredientes que deseja incluir. Assim sendo, associamos a cada familiar M_i um par com dois conjuntos de ingredientes, (C_i, C'_i) , onde C_i contém os ingredientes a incluir e C'_i os ingredientes a excluir.

Tratando-se de uma família pouco conflituosa para que um familiar se considere satisfeito basta que uma das suas escolhas seja atendida: um dos seus ingredientes preferidos seja incluído ou um dos preteridos não o seja. Por exemplo, suponha que o pai quer fiambre e queijo e não quer ananás; para que a pizza escolhida satisfaça o pai, basta que contenha fiambre ou queijo ou não contenha ananás.

O problema da escolha de ingredientes para pizza, **PizzaIngredients**, consiste em determinar se existe um conjunto de ingredientes que satisfaça todos os membros da família e é modelado formalmente através do seguinte problema de decisão:

PizzaIngredients = $\{\langle \mathcal{I} \rangle \mid \text{ existe uma escolha de ingredientes compatível com } \mathcal{I} \}$

Onde $\mathcal I$ denota o conjunto de pares que representam as escolhas da família.

- 1. Mostre que o problema **PizzaIngredients** está em **NP**.
- 2. Mostre que o problema da escolha dos ingredientes é NP-difícil por redução a partir do problema 3-CNFSAT estudado nas aulas. Não é necessário provar formalmente a equivalência entre os dois problemas; é suficiente indicar a redução e a respectiva complexidade.

Solução:

- 1. Certificado: o conjunto X de ingredientes a incluir.
 - Tamanho do Certificado: $|X| \in O(k)$
 - Algoritmo de verificação: Verificar se X é compatível com cada elemento do conjunto \mathcal{I} . Começamos por calcular o conjunto $\bar{X} = \{I_1, ..., I_k\} \setminus X$. Para cada par (C_i, C'_i) , verificamos se: $X \cap C_i \neq \emptyset$ ou $\bar{X} \cap C'_i \neq \emptyset$.
 - Complexidade do algoritmo de verificação: A intersecção de conjuntos faz-se em tempo linear, pelo que a verificação de cada par para custa: O(k). Assim, a verificação de todos os n pares faz-se em tempo O(k.n).
- 2. Há que mostrar que 3-CNFSAT \leq_P PizzaIngredients.
 - Redução: Cada cláusula corresponde a um membro da família e cada variável a um ingrediente. As variáveis negadas na cláusula correspondem aos ingredientes a excluir e as variáveis não negadas aos ingredientes a incluir. Por exemplo, a cláusula $(x_1 \vee \neg x_2 \vee x_3)$ é mapeada no par $(\{x_1, x_3\}, \{x_2\})$. A redução tem complexidade: O(n), onde n é o número de cláusulas.