CS37300: Data Mining and Machine Learning

Nov 15, 2023

Density-based Clustering

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as densityconnected points
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

Density Concepts

- Core object (CO): an object with at least 'M' objects within a radius 'E-neighborhood'
- Directly density reachable (DDR): x is CO, y is in x's 'ε-neighborhood'
- Density reachable—there exists a chain of DDR objects from x to y
- Density based cluster: density connected objects w.r.t. reachability

Density-Based Clustering: Background

- Two parameters:
 - ε: Maximum radius of the neighborhood
 - *MinPts*: Minimum number of points in an ε-neighborhood of that point
- $N_{\varepsilon}(p)$: {q belongs to D | dist(p,q) <= ε }
- Directly density-reachable: A point p is directly density-reachable from a point q wrt. ϵ , MinPts if
 - 1) p belongs to $N_{\varepsilon}(q)$
 - 2) core point condition:

$$|N_{\varepsilon}(q)| >= MinPts$$

Density-Based Clustering: Background

• Density-reachable:

• A point p is density-reachable from a point q wrt. ε , MinPts if there is a chain of points $p_1, \ldots, p_n, p_1 = q, p_n = p$ such that p_{i+1} is directly density-reachable from p_i

Density-connected

 A point p is density-connected to a point q wrt. ε, MinPts if there is a point o such that both, p and q are density-reachable from o.

DBSCAN: Density Based Spatial Clustering of Applications with Noise

- Relies on a *density-based* notion of cluster: A *cluster* is defined as a maximal set of density-connected points
- Discovers clusters of arbitrary shape in spatial databases with noise

DBSCAN: The Algorithm

- Arbitrary select a point p
- Retrieve all points directly density-reachable from p wrt ϵ and MinPts.
- If **p** is a core point, a cluster is formed.
- If **p** is a border point, no points are density-reachable from **p** and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.

Reachability distance (RD) and density(D)

- K-distance(A) = distance from A to its k-th closest neighbor
- RD of A from B:

$$RD_k(A, B) = \max\{kdistance(A), distance(A, B)\}$$

Local Outlier Factor (LOF)

- Challenge in DBScan: Setting ε
 - What is the right neighborhood size?
 - Is it even constant across the data?
- LOF compares the ratio of the average of the reachability densities of its neighbors to its own reachability density
- Typically used for anomaly detection, but same idea can be used for clustering

OPTICS: A Cluster-Ordering Method (1999)

- OPTICS: Ordering Points To Identify the Clustering Structure
 - Ankerst, Breunig, Kriegel, and Sander (SIGMOD'99)
 - Does not produce an explicit single clustering of data
 - Produces a special order of the database wrt its density-based clustering structure
 - This cluster-ordering contains info equivalent to the density-based clusterings corresponding to a broad range of parameter settings
 - Good for both automatic and interactive cluster analysis, including finding intrinsic clustering structure
 - Can be represented graphically or using visualization techniques

OPTICS: Extension from DBSCAN

- Index-based:
 - d = number of dimensions
 - N = number of data points
 - Complexity: $O(dN^2)$
- Core or k-Distance
- Reachability Distance

Max (k-distance (o), d (o, p))

$$r(p1, o) = 2.8cm. r(p2,o) = 4cm$$

DENCLUE: Using density functions

- DENsity-based CLUstEring by Hinneburg & Keim (KDD'98)
- Major features
 - Solid mathematical foundation
 - Good for data sets with large amounts of noise
 - Allows a compact mathematical description of arbitrarily shaped clusters in high-dimensional data sets
 - Significant faster than existing algorithm (faster than DBSCAN by a factor of up to 45)
 - But needs a large number of parameters

Denclue: Technical Essence

- Uses grid cells but only keeps information about grid cells that do actually contain data points and manages these cells in a tree-based access structure.
- Influence function: describes the impact of a data point within its neighborhood.
- Overall density of the data space can be calculated as the sum of the influence function of all data points.
- Clusters can be determined mathematically by identifying density attractors.
- Density attractors are local maximal of the overall density function.

Gradient: The steepness of a slope

Example

$$f_{Gaussian}(x,y) = e^{-\frac{d(x,y)^{2}}{2\sigma^{2}}}$$

$$f_{Gaussian}^{D}(x) = \sum_{i=1}^{N} e^{-\frac{d(x,x_{i})^{2}}{2\sigma^{2}}}$$

$$\nabla f_{Gaussian}^{D}(x,x_{i}) = \sum_{i=1}^{N} (x_{i}-x) \cdot e^{-\frac{d(x,x_{i})^{2}}{2\sigma^{2}}}$$

Density Attractor

Center-Defined and Arbitrary

Figure 4: Example of Arbitray-Shape Clusters for different ξ