CS430 HW8 Junelo Zhang A2025438P

Problem I.

- (1) recurrence solution.

 Coinchange (V', i, W) = Coinchange (V-di, Di+1, W-wi) if use coinchange (V', i, W) =
- 3) Using memory to store posser the state of (U', i.W') assume & SCV', i, u') for all v', i, u' that are null at initial state

Coincharg (v), i, w) if s(v', i, w') + null, return S(U', i, w')

ele if (di = V' & & wawi < w')

@ & s (v), i, u') = true.

return S(v', i, u')

else if (2 >0 || v'<0 || w' <0) 5(0',i,u') = false reture s(v,i,w)

else return change coinchage (v'-di, i+1, u'-wi) (coinchange (v', i+1, bourd)

CS430 HW8 Junzle Zhong A2025438P

Problem 2. Assume that we have two strings SI. SL. with length n. m. respectively.

The last character of the coolengest common substring at S_1 is \hat{L} . At S_2 is \hat{j} . $L[i][j] = \begin{cases} L[i-1][j-1] + 1 & \text{if } S_2[i] = S_2[j] \end{cases}$ otherwise

For i from I to M. $\longrightarrow O(M)$ for j from 1 to M: $\longrightarrow O(M)$ if $SLCi) == S_2C_j$ if i = 1 $\forall j = 1$ LCi]Cj] = 1.

else LCi]Cj] = LCi-JCj-IJ+I.

else [[i][j] = 0

Problem 3.

$$(a)$$
 $w(i,j) = max \{ w(i+1,j) + w(i,j+1) \} + ((w(i,j)) \}$

(b) Using Memorize method to solve this problem.

Set
$$W(n,n) = C(w(n,n))$$

for i from
$$n-1$$
 to 1
 $W(i,n) = W(i+1,n) \perp C(w(i,n))$

for
$$j$$
 from $n-1$ to 1.
 $W(n,j) = W(n,j+1) + C(w(n,j))$

for j from 0-1 to 1

$$W(i,j) = \max \{W(i+1,j) + W(i,j+1)\} + C(w(i,j))$$