

Excited State Calculations with TDDFT

- Optical properties (UV/Vis)
- Pre- and near-edge X-ray absorption (XANES)
- TDDFT Gradients/Optimization

UV/Vis & X-ray Spectroscopy

Basic UV/Vis Input


```
geometry
0
      0.0000000
                     0.0000000
      0.75933475
                     0.0000000
H
                     0.0000000
     -0.75933475
H
end
basis
   O library 6-31G**
   H library 6-31G**
end
dft
  xc b3lyp
end
tddft
nroots 10
end
task tddft energy
```


0.12982363

-0.46621158

-0.46621158

Sample UV/Vis Output

Root 1 singlet b2	0.294221368 a.u.	8.0062 eV	
Transition Monorph	V 0.00000 V 0.27800	7 0 00000	
	X -0.00000 Y 0.26890		
	XX -0.00000 XY 0.0000		
Transition Moments YY -0.00000 YZ -0.08066 ZZ -0.00000			
Dipole Oscillator Strength 0.0141833591 Electric Quadrupole 0.0000000009			
Electric Quadrupole 0.0000000009			
Magnetic Dipole 0.0000001219 Total Oscillator Strength 0.0141834819			
Total Oscillator Stren	gth 0.01418	34819	
Occ. 5 b2 Virl	. 6 a1 1.00002 X		
Root 2 singlet a2	0.369097480 a.u.	10.0437 eV	
Transition Moments	X -0.00000 Y 0.00000	Z -0.00000	
Transition Moments XX -0.00000 XY 0.24936 XZ 0.00000			
Transition Moments YY 0.00000 YZ -0.00000 ZZ -0.00000			
Flectric Quadrupole 0.000000000		00144	
Dipole Oscillator Strength 0.00000000000000000000000000000000000		33 1 8	
Total Oscillator Stron	gth 0.00000	00 4 0 02 <i>5</i> 1 <i>5</i>	
Total Oscillator Silen	9111 0.00000	00010	
Occ. 5 b2 Virl	. 7 b1 -0.99936 X		
Root 3 singlet a1	0.387064731 a.u.	10.5326 eV	
Transition Moments	X -0.00000 Y -0.00000	7 0.60463	
Transition Moments	XX -0.62351 XY 0.0000	00 XZ 0.00000	

UV/Vis Spectrum (different broadenings)

Energy (eV)

Basic XANES Input


```
geometry units angstrom noautosym nocenter
 0 0
 C 0
           0.00
                     1.15
end
basis
  * library aug-cc-pvtz
end
dft.
  xc b3lyp
end
task dft optimize
dft
  xc beckehandh
end
tddft
  cis
  ecut -15
  nroots 30
  notriplet
  thresh 1e-04
end
task tddft
```

Defines the initial state(s)
All (core) states below energy of 15 au are taken as initial states.
No restriction on final states

Alternate input for XANES


```
geometry units angstrom noautosym nocenter
 0 0
 C 0
           0.00
                     1.15
end
basis
  * library aug-cc-pvtz
end
dft.
  xc b3lyp
end
task dft optimize
dft
  xc beckehandh
end
tddft
  cis
  ewin -20.0 -10.0
  nroots 30
  notriplet
  thresh 1e-04
end
task tddft
```

Defines the initial state(s) with energy windows

Sample XANES Output

Root 1 singlet a	19.467775490 a.u.	529.7454 eV	
Transition Moments X -0.05038 Y 0.00001 Z 0.00000 Transition Moments XX 0.00000 XY -0.00000 XZ 0.00222 Transition Moments YY 0.00000 YZ -0.00000 ZZ 0.00000 Dipole Oscillator Strength 0.0329382748 0.0000001929 Magnetic Dipole 0.0000000133 Total Oscillator Strength 0.0329384810			
Occ. 1 a Virt. Occ. 1 a Virt.			
Root 2 singlet a	19.467775490 a.u.	529.7454 eV	
Transition Moments X -0.00001 Y -0.05038 Z -0.00000 Transition Moments XX -0.00000 XY -0.00000 XZ 0.00000 Transition Moments YY -0.00000 YZ 0.00222 ZZ 0.00000 Dipole Oscillator Strength 0.0329382748 0.0000001929 Magnetic Dipole 0.0000000133 Total Oscillator Strength 0.0329384810			
Occ. 1 a Virt. Occ. 1 a Virt.			
Root 3 singlet a	19.835495901 a.u.	539.7515 eV	

Pre- & Near-Edge X-ray Spectrum

Energy (eV)

Other Examples: O K-edge in Water and O, C K-edges in CO

Carbon monoxide C K-edge gas phase x-ray absorption

Energy [eV]

Pacific Northwest

Details: JCTC, 8, 3284 (2012)

Excited-State Optimization

Optimization on the excited state

Analytic TDDFT Gradients/Opt in NWChem

Available functionals for TDDFT gradients/optimization/dynamics

Table 1. Definitions of the XC Functionals^a

functional	definition
LDA	Slater + VWN 5
BP86	Becke 88 + Perdew 86
PBE	PBEx + PBEc
BLYP	Becke 88 + LYP
B3LYP	Slater (80%) + Becke 88 (nonlocal, 72%) + HF Exchange (20%) + LYP (81%) + VWN 1 RPA (19%)
PBE0	PBEx (75%) + HF Exchange (25%) + PBEc
BHLYP	Slater (50%) + Becke 88 (nonlocal, 50%) + HF Exchange (50%) + LYP
CAM- B3LYP	CAM-Becke 88 (α = 0.19, β = 0.46, ω = 0.33) + LYP
LC-PBE	CAM-PBE ($\alpha = 0.00$, $\beta = 1.00$, $\omega = 0.30$) + PBEc
LC-PBE0	CAM-PBE ($\alpha = 0.25$, $\beta = 0.75$, $\omega = 0.30$) + PBEc
BNL	Baer–Neuhauser–Livshits (α = 0.00, β = 1.00, ω = 0.33) + LYP
LC- ωPBE	LC- ω PBE (α = 0.00, β = 1.00, ω = 0.30) + PBEc
LC- ωPBEh	LC- ω PBE (α = 0.20, β = 0.80, ω = 0.20) + PBEc
LC-BLYP	CAM-Becke 88 ($\alpha = 0.00$, $\beta = 1.00$, $\omega = 0.33$) + LYP

Basic TDDFT Optimization Input


```
geometry units angstrom noautosym nocenter
 0 0
 C 0
            0.00
                     1.15
end
basis
  * library 6-31G*
end
dft.
  xc pbe0
end
task dft optimize
tddft
  nroots 2
  notriplet
  civecs
  grad
    root 1
  end
end
```

task tddft optimize

Defines root on which the excited state gradient/optimization is performed

Linear-Response Time-Dependent DFT

Casida Formulation

Perturbed density → first-order correction

Linear response approach → frequency domain

Cannot be used to describe excitations in intense fields

- Working equations have N_{occ}*N_{virt} solutions
- Dimension \rightarrow tetradic (N²*N²)
- Every root → cost of a HF or hybrid DFT calculation
- Note that the vectors are normalized but differently so than your usual wavefunction
- The orbital energy difference is a main term in the excitation energy
- In the case of pure DFT with large molecules most of the integrals involving F_{xc} vanish as this is a local kernel

$$\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

$$1 = \left(X \mid X \right) - \left(Y \mid Y \right)$$

$$A_{ia,jb} = \delta_{ij}\delta_{ab}\left(\varepsilon_a - \varepsilon_i\right) + \left(ia\left|F_H + F_{xc}\right|jb\right)$$

$$B_{ia,jb} = (ia | F_H + F_{xc} | jb)$$

$$F_{xc}(r_1, r_2) = \frac{\partial^2 f}{\partial \rho(r_1) \partial \rho(r_2)}$$

Real-Time TDDFT

Frequency domain data

Response beyond perturbation limit, anharmonic effects

Resonant excitation

- Depends only on the XC potential
- Real-time, real-space > full dynamical information
- Insight into ultrafast and nonlinear processes North

Ultrafast Electron Dynamics

