Algebra and Number Theory

UNIT - I - Groups

2mark

- 1. Define abelian group and give an example of an infinite non abelian group.
- 2. Prove that intersection of two subgroups is a subgroup. Justify that union of two subgroups need not be a subgroup.
- 3. Define normal subgroups and give an example.
- 4. Give an example of a finite abelian group which is not cyclic.
- 5. Prove that a group homomorphism maps an identity element to an identity element.
- 6. Define cyclic groups and give an example.
- 7. What is the order of the permutation (1, 2, 4, 6)(4, 7, 8, 9)(2, 3, 5) in S_9 ?
- 8. Find the number of distinct cycles of length 1988 in S_{2511} ?
- 9. Define group homomorphism and give an example.
- 10. Define quotient group and give an example.
- 11. Prove that the centre of a group is a normal subgroup.

6 mark

- 1. State and prove the fundamental theorem of cyclic groups.
- 2. State and prove the necessary and sufficient condition for a nonempty set to be a subspace.
- 3. Prove that the quotient group $\mathbb{Z}/5\mathbb{Z}$ is isomorphic to $(\mathbb{Z}_5, \bigoplus_5)$.
- 4. Prove that every cyclic group is abelian but not conversely justify.
- 5. What are the possible orders for the elements of S_6 and A_6 ?

10 mark

- 1. State and prove the fundamental theorem of group homomorphism.
- 2. State and prove Lagrange's theorem
- 3. State and prove Cayley's theorem

UNIT - II - Rings and Fields

2mark

- 1. Define division ring and give an example of a division ring which is not a field
- 2. Give an example of a subring which is not an ideal.
- 3. Prove that intersection of two ideals of a ring is also an ideal. Also, justify that union of two ideals of a ring is need not be an ideal.
- 4. Give an example of a finite field which has 125 elements.
- 5. Find the number of subfields of a field having 2401 elements.
- 6. Define irreducible polynomial with an example.
- 7. Define primitive polynomial with an example
- 8. State structure theorem for finite fields.

6 mark

1. State and prove Eisenstein criterion.

- 2. Prove that a finite integral domain is a field. Also give an example of an infinite integral domain which is not a field.
- 3. Prove that ring of real quaternions is a division ring.
- 4. State whether the following polynomials are reducible or irreducible?
 - a) $x^2 + 2$ over the field of rationals
 - b) $x^4 + x^2 + 1$ over \mathbb{Z}_2
 - c) $x^{2311} + 2311$ over the field of rationals
 - d) $x^3 + 1$ over \mathbb{Z}_3

10 mark

- 1. State and prove Gauss lemma.
- 2. State and prove fundamental theorem of ring homomorphism. Also give an example of a ring homomorphism from \mathbb{Z} to \mathbb{Z}_{25} whose kernel is 25 \mathbb{Z} .

UNIT - III - Number Theory

2mark

- 1. Define greatest common divisor and give an example.
- 2. Express (12,15,21) as a linear combination on 12,15 and 21
- 3. Define pairwise relatively prime integers and give an example.
- 4. Prove that d|(a, b) where d is a common divisor of a and b.
- 5. If a|bc and (a,b) = 1, then prove that a|c
- 6. Let (a, b) = d. Prove that the integers $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.

6 mark

- 1. State and prove division algorithm
- 2. Prove that the gcd of the positive integers a and b is a linear combination of a and b.
- 3. Prove that if the positive integers $a_1, a_2, a_3, \dots, a_n$ are pairwise relatively prime, then $(a_1, a_2, a_3, \dots, a_n) = 1$.
- 4. Prove that (a, b) = (a, a b).

10 mark

- 1. State and prove fundamental theorem of arithmetic
- 2. Prove that (a, b) = (b, r) where $a \ge b \ge 0$ and r is the reminder when a is divided by b. Write Euclidean algorithm also find gcd of 45 and 250 using Euclidean algorithm.
- 3. Write extended Euclidean algorithm. Also find (13,166) and write (13,166) as a linear combination of 13 and 166 using extended Euclidean algorithm.

UNIT - IV - Modular Arithmetic and congruence

2mark

- 1. Prove that \equiv is an equivalence relation.
- 2. Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Prove that $a c \equiv b d \pmod{n}$
- 3. Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Prove that $ac \equiv bd \pmod{n}$
- 4. Compute 3⁸ modulo 13.

- 5. What is $45^{-1} \mod(49)$ and $-5 \mod(45)$
- 6. State Chinese remainder theorem.
- 7. How many solutions the congruence $14 x \equiv 12 \mod(18)$ have? Justify

6 mark

- 1. Suppose $ab \equiv ac \pmod{n}$ and (a, n) = 1, then prove that $b \equiv c \pmod{n}$
- 2. Prove that $f(x) = x^5 x^2 + x 3$ has no integer roots.
- 3. Prove that 6|a(a+1)(2a+1) for every $a \in \mathbb{N}$.
- 4. Prove that the linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if d = (a, n) divides b.

10 mark

- 1. Write fast exponentiation algorithm. Also compute 240²⁶² modulo 14.
- 2. Write an algorithm for solving linear congruence and find all the solutions of $18 x \equiv 42 \pmod{50}$ using algorithm.
- 3. State and Prove Chinese reminder theorem.
- 4. Solve the system of linear congruence

$$x \equiv 2 \pmod{7}$$

$$x \equiv 7 \pmod{9}$$

$$x \equiv 3 \pmod{4}$$

using Chinese reminder theorem

UNIT - V - Primality and Factorization

2mark

- 1. State Euler's theorem.
- 2. Define Euler phi function with an example.
- 3. Define quadratic residue with an example.
- 4. Define Legendre and Jacobi symbol.
- 5. What is discrete logarithm.

6 mark

- 1. Prove that $\phi(nm) = \phi(n)\phi(m)$ where m and n are positive integers and (n,m) = 1
- 2. Find the discrete logarithm of each unit modulo 11 to the base 2
- 3. List all the properties of Legendre and Jacobi symbol.
- 4. Factorize 809009 using Fermat factorization method.

10 mark

- 1. State and prove Fermat's little theorem.
- 2. Write Miller-Rabin algorithm for primality test. Using it check whether 561 is a prime or not.
- 3. Write Pollard Rho algorithm for factorize 10403 using that algorithm.