21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

14- Friday September 30, 2011.

Remark 14.1: $G = S_5$ has only one subgroup of order 60, which is A_5 : if there was $H \leq G$ with $H \neq A_5$, one would choose $a \in A_5 \setminus H$, so that $G = H \cup (aH)$ (because |H| = 60 and $a \notin H$) and taking the intersection with A_5 , the union of $H \cap A_5$ and $(aH) \cap A_5$ would be A_5 , but $(aH) \cap A_5 = a(H \cap A_5)$ since $a \in A_5$, so that $K = H \cap A_5$ would be a subgroup of A_5 and aK would have the same number of elements as K, which would imply that K has size 30, a contradiction since A_5 is simple hence has no proper subgroup of index ≤ 4 (because $4! < |A_5|$).

Remark 14.2: 5-cycles belong to A_5 , and (by putting 1 as the first element of a cycle) there are 4! of them, which makes 24 elements of order 5. 4-cycles are odd permutations, which do not belong to A_5 . 3-cycles belong to A_5 , and there are $\binom{5}{3} = 10$ subsets of 3 elements, and each subset $\{a, b, c\}$ corresponds to two 3-cycles ((abc)) and its square (acb), which makes 20 elements of order 3. A permutation having one 3-cycle and one 2-cycle is an odd permutation, as well as a 2-cycle, so that they do not belong to A_5 . A permutation with two disjoint 2-cycles belongs to A_5 , and for those fixing one element in $\{1, 2, 3, 4, 5\}$ there are 3, which makes 15 elements of order 2.

Remark 14.3: Each 5-cycle $\sigma \in A_5$ generates a cyclic subgroup H of order 5, $\{e, \sigma, \sigma^2, \sigma^3, \sigma^4\}$, so that there are 6 such Sylow 5-subgroups. Interpreting a cycle like $(1\,2\,3\,4\,5)$ as a rotation of $\frac{2\pi}{5}$ of a regular pentagon with vertices named 1, 2, 3, 4, 5 (in this order), one can then interpret the five mirror symmetries as $(2\,5)\,(3\,4)$, $(1\,3)\,(4\,5)$, $(1\,5)\,(2\,4)$, $(1\,2)\,(3\,4)$, and $(1\,4)\,(2\,3)$, which with H form a subgroup K isomorphic to D_5 . Since each of these six isomorphic copies of D_5 use up five elements of order 2 and there are only 15 of them, one expects that each element of order 2 is associated with two unrelated 5-cycles (i.e. generating different cyclic subgroups): for example $(2\,5)\,(3\,4)$ is associated with $\sigma = (1\,2\,3\,4\,5)$ (and its powers $\sigma^2 = (1\,3\,5\,2\,4)$, $\sigma^3 = (1\,4\,2\,5\,3)$, and $\sigma^4 = (1\,5\,4\,3\,2)$) but also with $\pi = (1\,2\,4\,3\,5)$ (and its powers $\pi^2 = (1\,4\,5\,2\,3)$, $\pi^3 = (1\,3\,2\,5\,4)$, and $\pi^4 = (1\,5\,3\,4\,2)$).

Each K is the normalizer of the cyclic subgroup H since H is a normal subgroup of K and the only subgroup containing K is A_5 (because A_5 has no subgroups of order 20 or 30), but A_5 has no normal proper non-trivial subgroup.

Actually, any subgroup L of G of order 10 should contain a subgroup of order 5, i.e. one of the H_j , and since H_j is automatically a normal subgroup of L, L must be equal to $K_j = N_G(H_j)$.

Remark 14.4: Each 3-cycle $\sigma \in A_5$ generates a cyclic subgroup H of order 3, $\{e, \sigma, \sigma^2\}$, so that there are 10 such Sylow 3-subgroups. Considering a cycle like (123), one can add to H the three elements (of order 2) τ (45) where τ is a transposition on $\{1, 2, 3\}$, and obtain a subgroup K isomorphic to S_3 . Since each of these ten isomorphic copies of S_3 use up three elements of order 2 and there are only 15 of them, one expects that each element of order 2 is associated with two unrelated 3-cycles (i.e. generating different cyclic subgroups): for example (12) (34) is associated with $\sigma = (125)$ (and its square $\sigma^2 = (152)$) but also with $\pi = (345)$ (and its square $\pi^2 = (354)$).

Each H is a normal subgroup of the corresponding K, but since A_5 has subgroups of order 12, it is simpler to invoke Sylow's theorem for being sure that K is the normalizer of H (since the orbit of H by conjugation has size 10, hence the normalizer $N_G(H)$ has order 6), and then since H is a Sylow 3-subgroup and $K = N_G(H)$, one has $N_G(K) = K$, so that if $K \le L \le G$ with $K \ne L$, one must have L = G, since Lagrange's theorem implies that the order of L is a strict multiple of 6 and a divisor of 60, so that it could only be 12 or 30 or 60, but there is no subgroup of A_5 of order 30, and the subgroups of order 12 cannot contain K, since K would automatically be a normal subgroup of such a subgroup of order 12.

Actually, any subgroup M of G of order 6 should contain a subgroup of order 3, i.e. one of the H_j , and since H_j is automatically a normal subgroup of M, M must be equal to $K_j = N_G(H_j)$. However,

¹ If $ah = b \in A_5$ with $h \in H$, then $h = a^{-1}b$ belongs to A_5 , so that $h \in H \cap A_5$, hence $b = ah \in a(H \cap A_5)$.

² If $h \in H = \{e, (123), (132)\}$, then $h(\tau(45)) = (h\tau)(45)$, and $h\tau$ is a transposition on $\{1, 2, 3\}$, while the product of $\tau_1(45)$ by $\tau_2(45)$ is $\tau_1\tau_2$, which belongs to H.

there are (at least) two subgroups of G of order 12 containing H, since there are two distinct elements $a, b \in \{1, 2, 3, 4, 5\}$ left invariant by the 3-cycles σ and σ^2 of H_j , so that H_j is included in the isomorphic copy of A_4 leaving a fixed, and in the isomorphic copy of A_4 leaving b fixed, and the intersection of these two subgroups of order 12 leave a and b fixed, so that it is H.

Remark 14.5: Let K_1, K_2, K_3, K_4, K_5 be the five subgroups of A_5 of order 12 and isomorphic to A_4 , where K_j are the permutations in A_5 which leave j fixed. K_j has a normal subgroup N_j isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, containing 3 elements of order 2, which are not repeated since for $j \neq i$ the intersection $K_i \cap K_j$ are the permutations in A_5 which leave both i and j fixed, which is one of the Sylow 3-subgroup (containing no element of order 2), so that the five Sylow 2-subgroups of A_5 are the N_j , and one has $N_G(N_j) = K_j$, since it contains K_j but cannot be larger (because a subgroup containing strictly a subgroup of order 12 must have order 60).

Remark 14.6: All the subgroups of order 3, 4, or 5 of A_5 have been accounted for, since they are the Sylow p-subgroups (10 subgroups of order 3, 5 subgroups of order 4, 6 subgroups of order 5), and their normalizers have been identified (10 subgroups of order 6 isomorphic to S_3 , 5 subgroups of order 12 isomorphic to A_4 , 6 subgroups of order 10 isomorphic to D_5).

Any subgroup K of order 6 contains a subgroup H of order 3, which is automatically normal in K, so that K is $N_G(H)$ for a Sylow 3-subgroup H, hence it is isomorphic to S_3 , and there are 10 of them.

Any subgroup K of order 10 contains a subgroup H of order 5, which is automatically normal in K, so that K is $N_G(H)$ for a Sylow 5-subgroup H, hence it is isomorphic to D_5 , and there are 6 of them.

Let K be a subgroup of order 12, which contains a 3-cycle (xyz) and an element (ab)(cd) of order 2. If the element $\in \{1,2,3,4,5\}$ fixed by (ab)(cd) is also fixed by (xyz), they belong to one K_j isomorphic to A_4 , and the subgroup generated by (xyz) and (ab)(cd) must be K_j , or it would be a subgroup of order 6, automatically normal in K, but any subgroup of order 6 has been identified to be $N_G(H)$ for a Sylow 3-subgroup H, hence is its own normalizer. If the element $\in \{1,2,3,4,5\}$ fixed by (ab)(cd) belongs to $\{x,y,z\}$, say it is x, one arrives at a contradiction: either the element of order 2 sends y onto z, and both elements belong to the normalizer $N_G(H)$ of the Sylow 3-subgroup generated by (xyz), which is its own normalizer and cannot belong to a subgroup of order 12, or the element of order 2 sends y onto an element different from x and z, and the situation is like having (123) and (24)(35), but the product (123)(24)(35) is (12435), which has order 5. The subgroups of order 12 are then the 5 subgroups isomorphic to A_4 .

There are 15 subgroups of order 2, of the form $\{e, \sigma\}$ for an element $\sigma = (a\,b)\,(c\,d)$ of order 2, but what is the normalizer K of $\{e, \sigma\}$? It is the centralizer of σ , i.e. the subgroup of elements of A_5 which commute with σ , and it contains the Sylow 2-subgroup H containing σ , since H is Abelian, isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, so that its order is a multiple of 4 which divides 60, i.e. it is 4 or 12, or 60, but it must then be 4, so that K = H, since if it was 12 or 60 K would contain an isomorphic copy of A_4 containing σ , but in A_4 an element of order 2 does not commute with an element of order 3.3

Lemma 14.7: Let G be any simple group of order 60, and for p = 2, 3, 5, let n_p be the number of Sylow p-subgroups of G. Then, one has $n_2 = 5$, $n_3 = 10$, and $n_5 = 6$. Each Sylow-2 subgroup H_i is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, and two distinct Sylow 2-subgroups only intersect at $\{e\}$, so that the five Sylow 2-subgroups make 15 elements of order 2. Each Sylow-3 subgroup K_j is isomorphic to \mathbb{Z}_3 , its normalizer $N_G(K_j)$ has order 6 and is isomorphic to S_3 , and the ten Sylow 3-subgroups make 20 elements of order 3. Each Sylow-5 subgroup L_k is isomorphic to \mathbb{Z}_5 , its normalizer $N_G(L_k)$ has order 10 and is isomorphic to D_5 , and the six Sylow 5-subgroups make 24 elements of order 5.

Proof: Since G is simple with 4! = 24 < |G| < 5! = 120, each n_p is ≥ 5 . By the Sylow's theorem, $n_2 = 1 \pmod{2}$ and divides 15, so that $n_2 \in \{5, 15\}$, $n_3 = 1 \pmod{3}$ and divides 20, so that $n_3 = 10$, and $n_5 = 1 \pmod{5}$ and divides 12, so that $n_5 = 6$. The ten Sylow 3-subgroups contain 20 elements of order 3, and the six Sylow 5-subgroups contain 24 elements of order 5, so that at most 15 elements can have order $\notin \{1, 3, 5\}$, and the last element is e. One wants to show that $n_2 = 5$ and that two distinct Sylow 2-subgroups only intersect at $\{e\}$, so that the five Sylow 2-subgroups use up the 15 elements. If it was not true, either $n_2 = 5$ and two distinct Sylow 2-subgroups H and H' would contain $g \neq e$, or $n_2 = 15$, and by the pigeon-hole

³ Without loss of generality, one may take the element of order 3 to be $(1\,2\,3)$ and the element of order 2 to be $(1\,2\,3)$, and $(1\,2\,3)$ $(1\,2)$ $(3\,4)$ = $(1\,3\,4)$, while $(1\,2)$ $(3\,4)$ $(1\,2\,3)$ = $(2\,4\,3)$.

principle there would exist two distinct Sylow 2-subgroups intersecting at more than $\{e\}$ (or there would be 45 elements of order 2 or 4), and one shows that it leads to a contradiction.

Since g must have order 2 (because $H \neq H'$), let $L = N_G(\langle g \rangle)$ be the normalizer of the subgroup $\langle g \rangle = \{e,g\}$ generated by g; since H and H' are Abelian (isomorphic to \mathbb{Z}_4 or to $\mathbb{Z}_2 \times \mathbb{Z}_2$), H and H' are subgroups of L, hence by Lagrange's theorem the order of L is a multiple of 4 which divides 60, so that the only possibilities are 4, 12, 20, or 60: 4 is excluded because it implies H = H', 20 is excluded because the index of a subgroup must be ≥ 5 , 60 is excluded because it implies that $\langle z \rangle$ is a normal subgroup of G, hence |L| = 12. Since L has index 5, there is an injective homomorphism from G into S_5 , so that G is isomorphic to a subgroup of S_5 of order 60, hence $L = A_5$, but in A_5 two distinct Sylow 2-subgroups only intersect at $\{e\}$.

If H is a Sylow-3 subgroup, its orbit by conjugation has size 10, which is the index of its normalizer $N_G(H)$ so that $N_G(H)$ has order 6, and a group of order 6 is either isomorphic to \mathbb{Z}_6 or to S_3 , but \mathbb{Z}_6 is excluded since G contains no element of order 6. If H is a Sylow-5 subgroup, its orbit by conjugation has size 6, which is the index of its normalizer $N_G(H)$ so that $N_G(H)$ has order 10, and a group of order 10 is either isomorphic to \mathbb{Z}_{10} or to D_5 , but \mathbb{Z}_{10} is excluded since G contains no element of order 10.

If the Sylow 2-subgroup H_j is isomorphic to \mathbb{Z}_4 , then it contains exactly one subgroup K_j of order 2, with $K_j = \{e, a_j\}$ where a_j is the only element of order 2 in H_j , so that the (two) automorphisms of H_j maps a_j onto itself, i.e. K_j is a characteristic subgroup of H_j , and since H_j is a normal subgroup of its normalizer $N_G(H_j)$, one deduces that K_j is a normal subgroup of $N_G(H_j)$, and $N_G(H_j)$ is a subgroup of G of order 12 (since the orbit of H_j under conjugation by G has size 5). Since $N_G(H_j)/K_j$ has order 6, it is either isomorphic to \mathbb{Z}_6 or to S_3 ; if π is the projection of $N_G(H_j)$ onto $N_G(H_j)/K_j$ and L is a subgroup of order 2 of $N_G(H_j)/K_j$, then $\pi^{-1}(L)$ is a subgroup of order 4 of $N_G(H_j)$, i.e. a Sylow 2-subgroup of $N_G(H_j)$, and H_j is the only one since it is a normal subgroup of $N_G(H_j)$, and because $L = \pi(\pi^{-1}(L))$, there is only one subgroup of order 2 of $N_G(H_j)/K_j$, which is then $\cong \mathbb{Z}_6$ (since S_3 has three subgroups of order 2). There is then an element $b \in N_G(H_j)$ such that $\pi(b)$ has order 6 in $N_G(H_j)/K_j$, and this means that $b, b^2, b^3 \notin K_j$ but $b^6 \in K_j$, hence b must have order 6 or 12 in G, and there is no such element, hence $H_j \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, so that it has three elements of order 2, hence G has fifteen elements of order 2.

Remark 14.8: If H is a Sylow 2-subgroup, its normalizer $N_G(H)$ is isomorphic to a semi-direct product $(\mathbb{Z}_2 \times \mathbb{Z}_2) \times_{\psi} \mathbb{Z}_3$: one knows that H is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ and that its normalizer $N_G(H)$ has order 12, and contains eight elements of order 3 besides e and the three elements of order 2 in H (since H is the only Sylow 2-subgroup of $N_G(H)$), so that $N_G(H)$ has four Sylow-3 subgroups, hence it is not Abelian, and it is then a semi-direct product $H \times_{\psi} K$ where K is a Sylow-3 subgroup.