Exercise1

Question1

The IP address of gaia.cs.umass.edu is 128.119.245.12, also the port number is 80. The IP address of the client computer is 192.168.1.102, also the port number is 1161. We can also find the result from two pictures given below.

Source: 192.168.1.102 (192.168.1.102)

Destination: 128.119.245.12 (128.119.245.12)

Source Port: 1161 (1161) Destination Port: 80 (80)

Question2

We can find the keyword POST in frame 4. Therefore, we can get the **sequence number**, which is **232129013**. Here is the picture result of this question.

```
▶ Frame 4: 619 bytes on wire (4952 bits), 619 bytes captured (4952 bits)
▶ Ethernet II, Src: Actionte_8a:70:1a (00:20:e0:8a:70:1a), Dst: LinksysG_da:af:73 (00:06:25:da:af:73)
▶ Internet Protocol Version 4, Src: 192.168.1.102 (192.168.1.102), Dst: 128.119.245.12 (128.119.245.12)
▼ Transmission Control Protocol, Src Port: 1161 (1161), Dst Port: 80 (80), Seq: 232129013, Ack: 883061786, Len: 565 Source Port: 1161 (1161)
    Destination Port: 80 (80)
0030 44 70 1f bd 00 00 50 4f 53 54 20 2f 65 74 68 65 Dp....PO ST /ethe
```

Question3

Based on the formula, we can get the following table.

EstimatedRTT = (1-a)*EstimatedRTT + a*SampleRTT

Index	Sequence	Time sent	Time ACK	RTT	EstimatedRTT
	Number		received		
1	232129013	0.026477	0.053937	0.027460	0.027460
2	232129578	0.041737	0.077294	0.035557	0.028472
3	232131038	0.054026	0.124085	0.070059	0.033670
4	232132498	0.054690	0.169118	0.114428	0.043765
5	232133958	0.077405	0.217299	0.139894	0.055781
6	232135418	0.078157	0.267802	0.189645	0.072514

Question4

The length of the first TCP segment is 565. From the second segment to the sixth segment, the length of these 5 segments are the same which is 1460.

Ouestion5

The minimum amount of buffer space is 5840. No, it doesn't. This is because the window size is increasing (never decreased). Here is the picture result of question 5.

```
3 0.023265
                  192.168.1.102
                                        128.119.245.12
                                                               TCP
                                                                             54 1161→80 [ACK] Seq=232129013 Ack=8836
Frame 2: 62 bytes on wire (496 bits), 62 bytes captured (496 bits)
Ethernet II, Src: LinksysG_da:af:73 (00:06:25:da:af:73), Dst: Actionte_8a:70:1a (00:20:e0:8a:70:1a)
Internet Protocol Version 4, Src: 128.119.245.12 (128.119.245.12), Dst: 192.168.1.102 (192.168.1.102)
Transmission Control Protocol, Src Port: 80 (80), Dst Port: 1161 (1161), Seq: 883061785, Ack: 232129013, Len: 0
  Source Port: 80 (80)
  Destination Port: 1161 (1161)
  [Stream index: 0]
  [TCP Segment Len: 0]
  Sequence number: 883061785
  Acknowledgment number: 232129013
  Header Length: 28 bytes
.... 0000 0001 0010 = Flags: 0x012 (SYN, ACK)
  Window size value: 5840
```

Question6

No, there aren't. This is because the **sequence numbers are incremental**. We can also find this result in the Time/Sequence Graph printed by Wireshark. From the graph given below, the **sequence numbers are increasing** over time. Here is the picture result of this question.

Question7

The receiver typically acknowledges 1460 bytes.

Number 46, which sequence number is 232160249, didn't receive an ACK with number 232161709. We can also find this result in the first picture, which means the receiver didn't get the ACK. Furthermore, number 46 and number 47 share one single ACK which number is 232162601. Here are the pictures of the question 7.

48 0.899423	128.119.245.12	192.168.1.102	TCP	60 80→1161 [ACK]	Seq=883061786 Ack=232155869 Win=55480	Len=0
49 0.949545	128.119.245.12	192.168.1.102	TCP	60 80→1161 [ACK]	Seq=883061786 Ack=232157329 Win=58400	Len=0
50 0.994715	128.119.245.12	192.168.1.102	TCP	60 80→1161 [ACK]	Seq=883061786 Ack=232158789 Win=61320	Len=0
51 1.039820	128.119.245.12	192.168.1.102	TCP	60 80→1161 [ACK]	Seq=883061786 Ack=232160249 Win=62780	Len=0
52 1.117097	128.119.245.12	192.168.1.102	TCP	60 80→1161 [ACK]	Seq=883061786 Ack=232162601 Win=62780	Len=0
ED 1 117000	102 160 1 102	120 110 245 12	TCD	1514 FTCD commont o	of a reascombled DDIII	

```
▶ Frame 46: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits)
▶ Ethernet II, Src: Actionte_8a:70:1a (00:20:e0:8a:70:1a), Dst: Linksys6_da:af:73 (00:06:25:da:af:73)
▶ Internet Protocol Version 4, Src: 192.168.1.102 (192.168.1.102), Dst: 128.119.245.12 (128.119.245.12)
▼ Transmission Control Protocol, Src Port: 1161 (1161), Dst Port: 80 (80), Seq: 232160249, Ack: 883061786, Len: 1460
     Source Port: 1161 (1161)
     Destination Port: 80 (80)
     [Stream index: 0]
     [TCP Segment Len: 1460]
     Sequence number: 232160249
     [Next sequence number: 232161709]
     Acknowledgment number: 883061786
     Header Length: 20 bytes
   ▶ .... 0000 0001 0000 = Flags: 0x010 (ACK)
▶ Frame 47: 946 bytes on wire (7568 bits), 946 bytes captured (7568 bits)
▶ Ethernet II, Src: Actionte_8a:70:1a (00:20:e0:8a:70:1a), Dst: LinksysG_da:af:73 (00:06:25:da:af:73)
 Internet Protocol Version 4, Src: 192.168.1.102 (192.168.1.102), Dst: 128.119.245.12 (128.119.245.12)
▼ Transmission Control Protocol, Src Port: 1161 (1161), Dst Port: 80 (80), Seq: 232161709, Ack: 883061786, Len: 892
    Source Port: 1161 (1161)
    Destination Port: 80 (80)
    [Stream index: 0]
    [TCP Segment Len: 892]
    Sequence number: 232161709
    [Next sequence number: 232162601]
    Acknowledgment number: 883061786
    Header Length: 20 bytes
  ▶ .... 0000 0001 1000 = Flags: 0x018 (PSH, ACK)
```

Question8

The last sequence number is 232293103. The first sequence number is 232129013. By using these 2 sequence numbers, we can get the transferred bytes are 232293103 - 232129013 = 164090 bytes. We can also find the last ACK time is 5.455830s. Also, the first-time sending message which is 0.026477s. We can get the time which is 5.455830 - 0.026477 = 5.429353s. Therefore, we can calculate the **throughput** which is 164090 / 5.429353s = 30222.754 Bytes/s.

Exercise2

Question1

We can get the result from the SYN data packet. Therefore, the **sequence number** is **2818463618**.

205	40046004	40.00 5.475	700	500.45 . 5000 (SUR) C
295	10.9.16.201	10.99.6.175	TCP	50045 > 5000 [SYN] Seq=2818463618 win=8192 MSS=1460

Question2

The sequence number is 1247095790. The value of the Acknowledgement field is 1. When the server receives an SYN, then it returns an SYNACK to confirm the connection. To show this in the flags, it sets the Acknowledgement and SYN field as value 1. This is due to the Three-way Handshake.

	296	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [SYN, ACK] Seq=1247095790 Ack=2818463619 win=262144 MSS=1460
- 4					

Question3

The sequence number is 2818463619. The value of the Acknowledgement field is 1. Yes, it contains data. By checking the value of ACK and Sequence number, we can

find the data is $ACK_{301} - \text{Seq}_{297} = 2818463652 - 2818463619 = 33 bytes$. Therefore, it contains data, which amount is 33 bytes.

297	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [ACK] Seq=2818463619 Ack=1247095791 win=65535
301	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [ACK] Seq=1247095791 Ack=2818463652 win=262096

Question4

Both server and client did the active close. This is because after the client sent the FIN message, the server also sent the FIN message. The FIN segment is the last-sending on both the server-side and the client-side. This means both the server and the client want to close the connection. Therefore, this is a **simultaneous close**.

304	10.9.16.201	10.99.6.175	ТСР	50045 > 5000 [FIN, ACK] Seq=2818463652 Ack=1247095831 win=65535
305	10.99.6.175	10.9.16.201	ТСР	5000 > 50045 [FIN, ACK] Seq=1247095831 Ack=2818463652 win=262144

Question5

Client ----sending to ----> Server: 2818463652 - 2818463619 = 33 Bytes Server ----sending to ----> Client: 1247095831 - 1247095791 = 40 Bytes

By doing the subtraction, we can find the relationship that if we minus the initial sequence number from the final ACK, the value of the subtraction would equal the number of bytes which have been transferred in this process plus one SYN and one FIN.

Final ACK = initial Sequence number + Transferred bytes + one SYN + one FIN