Learning Multiagent Communication with Backpropagation (CommNet)

Contents

Abstract

Introduction

Communication Model

Related Work

Experiments

Discussion and Future Work

Abstract

- Many tasks in AI require the collaboration of multiple agents
- The communication protocol between agents is manually specified and not altered during training

We explore a simple nueral model, called *CommNet*, that uses continuous communication for fully cooperative tasks

The model consists of multiple agents and the communication between them is learned alongside their policy.

Introduction

- Communication is a fundamental aspect of intelligence, enabling agents to behave as a group, rather than a collection of individuals
 - It is vital for performing complex tasks in real-world environments where each actor has limited capabilities and/or visibility of the world
 - Ex) Elevator control, sensor network, robot soccer
- In any partially observed environment, the communication between agents is vital to coordinate the behavior of each individual
- While the model controlling each agent is typically learned via reinforcement learning, the specification and format of the communication is usually pre-determined

We propose a model where cooperating agents learn to communicate <u>amongst</u> themselves before taking actions

Advantages: Simple and versatile

- 1. A wide range of problems involving partial visibility of the environment
- 2. The model allows dynamic variation at run time in both the number and type of agents

Introduction

- Setting
 - Jagents
 - All cooperating to maximize reward R
 - Each agent receives R independent of their contribution
- In this setting, there is no difference ①between each agent having its own controller, or ②viewing them as pieces of a larger model controlling all agents

Our controller is a large feedforward neural network that maps inputs for all agents to their actions, each agent occupying a subset of units

Communication Model (CommNet)

Model = Controller = Φ

- Controller: individual controllers & communication between agents
 - $\Phi(\mathbf{s}) = \mathbf{a} \ (\mathbf{s} = \{s_1, ..., s_I\}, \mathbf{a} = \{a_1, ..., a_I\}, \text{J agents})$
 - $\Phi(\{s_1, ..., s_I\}) = \{a_1, ..., a_I\}$
- fⁱ module: two input vectors for each agent j
 - $h_i^{i+1} = f^i(h_i^i, c_i^i)$
 - $c_j^{i+1} = \frac{1}{I-1} \sum_{j' \neq j} h_{j'}^{i+1}$
 - $i \in \{0, ..., K\}$, K is the number of communication step
- A single layer
 - $\boldsymbol{h}^{i+1} = \sigma(T^i \boldsymbol{h}^i)$ $T^{i} = \begin{pmatrix} H^{i} & \bar{C}^{i} & \bar{C}^{i} & \cdots & \bar{C}^{i} \\ \bar{C}^{i} & H^{i} & \bar{C}^{i} & \cdots & \bar{C}^{i} \\ \bar{C}^{i} & \bar{C}^{i} & H^{i} & \cdots & \bar{C}^{i} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \bar{C}^{i} & \bar{C}^{i} & \bar{C}^{i} & \cdots & H^{i} \end{pmatrix}$ $\bullet \ \bar{C}^{i} = \frac{c^{i}}{c^{i}}$
- J-1
 T is dynamically sized

Communication Model (CommNet)

Model = Controller = Φ

- Local connectivity
 - Agents to communicate to others within a certain range
 - N(j): the set of agents present within communication range of agent j

•
$$c_j^{i+1} = \frac{1}{J-1} \sum_{j' \neq j} h_{j'}^{i+1} = c_j^{i+1} = \frac{1}{|N(j)|} \sum_{j' \in N(j)} h_{j'}^{i+1}$$

- Skip connections
 - $h_j^{i+1} = f^i(h_j^i, c_j^i) => h_j^{i+1} = f^i(h_j^i, c_j^i, h_j^0)$
- Temporal recurrence
 - Using the same module f^t for all t

Related Work

- Go, Atari games
 - Multi-agent domains
 - Full visibility of the environment and lack communication
- Many approaches avoid the need for communication by making strong assumptions about visibility
- Others use communication but with a pre-determined protocol
- Foerster et al. : the closest approach

Our model combines a deep network with reinforcement learning.

The communication is learned rather than being pre-determined

Multiple *continuous* communication cycles are used.

Dynamic variation in the number of agents

Experiments

- Three baselines models to compare against our model
 - Independent controller
 - Controlled independently & no communication
 - Modularity and flexibility
 - Fully-connected
 - Make Φ a fully-connected multi-layer neural network
 - Not modular, inflexible
 - Discrete communication
 - Agent communicate via discrete symbols
- A lever pulling task (simple game)
 - N = 500
 - M = 5
 - Communication step K = 2
 - Skip connections
 - Training: 50,000 batches of size 64
 - Evaluation: averaged over 500 trials

	Training method		
Model Φ	Supervised	Reinforcement	
Independent	0.59	0.59	
CommNet	0.99	0.94	

Experiments

- Two multi-agent tasks using the MazeBase environment
- Traffic Junction
 - Control cars passing through a traffic junction to maximize the flow while minimizing collisions
 - State for agent j: {n, j, r} & visual range 3*3
 - Action: gas, brake
 - Reward: collision & traffic

•
$$r(t) = C^t r_{coll} + \sum_{i=1}^{N^t} \tau_i r_{time} \ (r_{coll} = -10, \tau_i r_{time} = -0.01\tau)$$

- Results: the probability of failure
- How partial visibility within the environment effects the advantage given by communication

	Module $f()$ type		
Model Φ	MLP	RNN	LSTM
Independent	20.6 ± 14.1	19.5 ± 4.5	9.4 ± 5.6
Fully-connected	12.5 ± 4.4	34.8 ± 19.7	4.8 ± 2.4
Discrete comm.	15.8 ± 9.3	15.2 ± 2.1	8.4 ± 3.4
CommNet	2.2± 0.6	$7.6\pm$ 1.4	1.6 ± 1.0

Experiments

- Combat Task
 - Control multiple agents in combat against enemy bots
 - State for agent j: {i, t, l, h, c} & visual range 3*3
 - Action: move, attack, do nothing
 - Reward
 - -1: team loses or draws at the end of the game
 - -0.1 times the total health points of the enemy team
 - Results: the win rate

	Module $f()$ type		
Model Φ	MLP	RNN	LSTM
Independent	34.2 ± 1.3	37.3 ± 4.6	44.3 ± 0.4
Fully-connected	17.7 ± 7.1	2.9 ± 1.8	19.6 ± 4.2
Discrete comm.	29.1 ± 6.7	33.4 ± 9.4	46.4 ± 0.7
CommNet	44.5 ± 13.4	44.4± 11.9	49.5± 12.6

	Other game variations (MLP)			
Model Φ	m=3	m = 10	5×5 vision	
Independent	29.2 ± 5.9	30.5 ± 8.7	60.5 ± 2.1	
CommNet	$\textbf{51.0} \pm \textbf{14.1}$	45.4 ± 12.4	$\textbf{73.0} \pm \textbf{0.7}$	

Discussion and Future Work

- Evaluation clearly show the model outperforms models without communication, fully-connected models, and models using discrete communication
- Future Work
 - We did not fully exploit ability to handle heterogenous agent types
 - The model will scale gracefully to large number of agents

CommNet, a simple controller for MARL, that is able to learn continuous communication between a dynamically changing set of agents.

Thanks!

ANY QUESTIONS?

You can find me at tocrit@gmail.com