	700 GeV, 100 cm, region 2017			
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{ m sim},{ m MLM}$	$\mid \epsilon_i^{ m sim}, { m MLM}, { m no pileup} \mid$	
total	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.9^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.9^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.8^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$9.8^{+0.09}_{-0.09} \times 10^{-2}$	$9.8^{+0.09}_{-0.09} \times 10^{-2}$	
==0 pairs of jets with $\Delta \phi_{\rm jet,\ jet} > 2.5$	$1.2^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
$ \Delta\phi({ m leading jet}, \bar{p}_{ m T}^{ m miss}) > 0.5$	$1.2^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$9.2^{+0.14}_{-0.14} \times 10^{-2}$		$8.2^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$6.7^{+0.12}_{-0.12} \times 10^{-2}$	$7.0^{+0.07}_{-0.07} \times 10^{-2}$	$6.9^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$4.8^{+0.10}_{-0.10} \times 10^{-2}$	$4.8^{+0.06}_{-0.06} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$4.8^{+0.10}_{-0.10} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.7^{-0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$4.5^{+0.10}_{-0.10} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$3.7^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$3.4^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$3.4^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{-0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$3.4^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$3.3^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 3 missing outer hits	$\begin{array}{c} -0.09 \\ 2.1_{-0.07}^{+0.07} \times 10^{-2} \\ -0.07 \times 10^{-2} \end{array}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{-0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with 4 layers	$\parallel 5.0^{+0.33}_{-0.33} \times 10^{-3}$	$3.4^{+0.17}_{-0.17} \times 10^{-3}$	$3.9^{+0.18}_{-0.18} \times 10^{-3}$	
≥ 1 track with 5 layers	$4.0^{+0.29}_{-0.29} \times 10^{-3}$	$3.2^{+0.17}_{-0.17} \times 10^{-3}$	$3.4^{+0.17}_{-0.17} \times 10^{-3}$	
≥ 1 track with ≥ 6 layers	$1.3^{+0.05}_{-0.05} \times 10^{-2}$	$1.2^{+0.03}_{-0.03} \times 10^{-2}$	$1.1^{+0.03}_{-0.03} \times 10^{-2}$	

Table 1: Cutflow comparison for 700 GeV, 100 cm, region 2017

	700 GeV, 100 cm, region 2018A			
Cut	$\epsilon_i^{ ext{CMS}}$	$\epsilon_i^{ m sim},{ m MLM}$	$\mid \epsilon_i^{\mathrm{sim}}, \mathrm{MLM}, \mathrm{no} \mathrm{pileup} \mid$	
total	$1.0^{+0.01}_{-0.01}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{ m T} > 110{ m GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$9.8^{+0.09}_{-0.09} \times 10^{-2}$	$9.8^{+0.09}_{-0.09} \times 10^{-2}$	
==0 pairs of jets with $\Delta \phi_{\rm jet,\ jet} > 2.5$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
$ \Delta\phi({ m leading\ jet}, ar{p}_{ m T}^{ m miss}) > 0.5$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$8.7^{+0.17}_{-0.17} \times 10^{-2}$		$8.2^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$6.1^{+0.17}_{-0.17} \times 10^{-2}$	$7.0^{+0.07}_{-0.07} \times 10^{-2}$	$6.9^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$3.9^{+0.14}_{-0.14} \times 10^{-2}$	$4.8^{+0.06}_{-0.06} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$3.9^{+0.14}_{-0.14} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$3.6^{+0.14}_{-0.14} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$2.8^{+0.11}_{-0.11} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{electron}) > 0.15$	$2.6^{+0.10}_{-0.10} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \text{muon}) > 0.15$	$2.6^{+0.10}_{-0.10} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{-0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$2.6^{+0.10}_{-0.10} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$2.5^{+0.10}_{-0.10} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 3 missing outer hits	$1.7^{+0.08}_{-0.08} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{-0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with 4 layers	$\parallel 3.8^{+0.37}_{-0.37} \times 10^{-3}$	$3.4^{+0.17}_{-0.17} \times 10^{-3}$	$3.9^{+0.16}_{-0.18} \times 10^{-3}$	
≥ 1 track with 5 layers	$2.8^{+0.34}_{-0.34} \times 10^{-3}$	$3.2^{+0.17}_{-0.17} \times 10^{-3}$	$3.5^{+0.17}_{-0.17} \times 10^{-3}$	
≥ 1 track with ≥ 6 layers	$1.1^{+0.06}_{-0.06} \times 10^{-2}$	$1.2^{+0.03}_{-0.03} \times 10^{-2}$	$1.1^{+0.03}_{-0.03} \times 10^{-2}$	

Table 2: Cutflow comparison for 700 GeV, 100 cm, region 2018A

	700 CoV 100 om region 2019D			
C 4	700 GeV, 100 cm, region 2018B			
Cut	$\epsilon_i^{ m CMS}$	$\epsilon_i^{\rm sim},{ m MLM}$	ϵ_i^{sim} , MLM, no pileup	
total	$1.0^{+0.01}_{-0.01}$	$1.0^{+0.00}_{-0.00}$	$1.0^{+0.00}_{-0.00}$	
trigger	$ \begin{vmatrix} 1.5^{+0.02}_{-0.02} \times 10^{-1} \\ 1.5^{+0.02}_{-0.02} \times 10^{-1} \\ 1.5^{+0.02}_{-0.02} \times 10^{-1} \\ 1.5^{+0.02}_{-0.02} \times 10^{-1} \end{vmatrix} $	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
passes $p_{\mathrm{T}}^{\mathrm{miss}}$ filters	$1.5^{+0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
$p_{\mathrm{T}}^{\mathrm{miss}} > 120\mathrm{GeV}$	$1.5^{+0.02}_{-0.02} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	$1.4^{+0.01}_{-0.01} \times 10^{-1}$	
≥ 1 jet with $p_{\rm T} > 110{ m GeV}$ and $ \eta < 2.4$	$1.3^{+0.02}_{-0.02} \times 10^{-1}$	$9.8^{+0.09}_{-0.09} \times 10^{-2}$	$9.8^{+0.09}_{-0.09} \times 10^{-2}$	
==0 pairs of jets with $\Delta\phi_{\rm jet,\ jet} > 2.5$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
$ \Delta\phi({ m leading\ jet}, ar{p}_{ m T}^{ m miss}) > 0.5$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track with $ \eta < 2.1$	$1.1^{+0.02}_{-0.02} \times 10^{-1}$	$8.8^{+0.08}_{-0.08} \times 10^{-2}$	$8.7^{+0.08}_{-0.08} \times 10^{-2}$	
$\geq 1 \text{ track with } p_{\mathrm{T}} > 55 \mathrm{GeV}$	$8.7^{+0.19}_{-0.19} \times 10^{-2}$	$8.3^{+0.08}_{-0.08} \times 10^{-2}$	$8.2^{+0.08}_{-0.08} \times 10^{-2}$	
≥ 1 track passing fiducial selections	$6.1^{+0.15}_{-0.15} \times 10^{-2}$	$7.0^{+0.07}_{-0.07} \times 10^{-2}$	$6.9^{+0.07}_{-0.07} \times 10^{-2}$	
≥ 1 track with ≥ 4 pixel hits	$3.9^{+0.13}_{-0.13} \times 10^{-2}$	$4.8^{+0.06}_{-0.06} \times 10^{-2}$	$4.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing inner hits	$3.9^{+0.13}_{-0.13} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with no missing middle hits	$3.6^{+0.11}_{-0.11} \times 10^{-2}$	$3.8^{+0.06}_{-0.06} \times 10^{-2}$	$3.7^{+0.06}_{-0.06} \times 10^{-2}$	
≥ 1 track with relative track isolation $< 5\%$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_{xy} < 0.02 \text{cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } d_z < 0.5 \text{ cm}$	$2.9^{+0.11}_{-0.11} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	$2.8^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with $\Delta R(\text{track}, \text{jet}) > 0.5$	$2.8^{+0.11}_{-0.11} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.03}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track, electron}) > 0.15$	$2.7^{+0.11}_{-0.11} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track, muon}) > 0.15$	$2.6^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } \Delta R(\text{track}, \tau_{\text{h}}) > 0.15$	$2.6^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
$\geq 1 \text{ track with } E_{\text{calo}} < 10 \text{GeV}$	$2.5^{+0.09}_{-0.09} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	$2.7^{+0.05}_{-0.05} \times 10^{-2}$	
≥ 1 track with ≥ 3 missing outer hits	$1.7^{+0.08}_{-0.08} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$	$1.9^{+0.04}_{-0.04} \times 10^{-2}$	
$\phi(p_{ m T}^{ m miss}) < -1.6 \ { m or} \ \phi(p_{ m T}^{ m miss}) > -0.6$	$1.5^{+0.08}_{-0.08} \times 10^{-2}$	$1.6^{+0.04}_{-0.04} \times 10^{-2}$	$1.6^{+0.04}_{-0.04} \times 10^{-2}$	
≥ 1 track with 4 layers	$3.1^{+0.35}_{-0.35} \times 10^{-3}$	$2.7^{+0.15}_{-0.15} \times 10^{-3}$	$3.3^{+0.17}_{-0.17} \times 10^{-3}$	
≥ 1 track with 5 layers	$2.3^{+0.30}_{-0.30} \times 10^{-3}$	$2.8^{+0.15}_{-0.15} \times 10^{-3}$	$3.0^{+0.16}_{-0.16} \times 10^{-3}$	
≥ 1 track with ≥ 6 layers	$9.4^{+0.61}_{-0.61} \times 10^{-3}$	$9.9^{+0.29}_{-0.29} \times 10^{-3}$	$9.6^{+0.29}_{-0.29} \times 10^{-3}$	

Table 3: Cutflow comparison for 700 GeV, 100 cm, region 2018B