

คณะวิศวกรรมศาสตร์

สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2566 วิชา 01046701 ENGINEERING MATHEMATICS 4 ชั้นปีที่ 2C วันสอบ วันจันทร์ที่ 25 มีนาคม 2567 เวลาสอบ 9:30 - 12:30 น.

------คำเตือน นักศึกษาซึ่งทจริตในการสอบ จะไม่ได้รับการพิจารณาผลการเรียนในภาคการศึกษาที่ นักศึกษา

คำเตือน นักศึกษาซึ่งทุจริตในการสอบ จะไม่ได้รับการพิจารณาผลการเรียนในภาคการศึกษาที่ นักศึกษา กระทำการทุจริตนั้น และพักการเรียนในภาคการศึกษาปกติถัดไปอีก 1 ภาคการศึกษา

คำสั่ง 1. อนุญาตให้ใช้เครื่องคอมพิวเตอร์ได้ทุกชนิด

- 2. ข้อสอบมีทั้งหมด 18 ข้อ ให้ใช้โปรแกรม MATLAB ตอบคำถามเท่านั้น
- 3. ให้น้ำ user-defined function ทุกข้อใส่ไว้ท้ายโปรแกรม เพื่อการตรวจสอบ
- 4. ถ้าข้อไหนดูเฉลยหรือคำแนะนำจากแหล่งเว็บไซด์ใด ให้นำลงไปในโปรแกรมด้วย
- 5. ใช้อักษร "M" และตามด้วยเลขประจำตัว และชื่อ เป็นชื่อไฟล์ในการส่งไฟล์

1. วงจร RLC ต่ออยู่กับแหล่งจ่าย V_1 ในสภาวะ steady state ก่อนที่สวิทช์จะเปลี่ยนไปที่แหล่งจ่าย V_2 ที่เวลา t=0 ดังแสดงในรูป

โดยมีค่าของอุปกรณ์ดังนี้ $V_1=5~{
m V}$, $V_2=15~{
m V}$, $R_1=30~{
m \Omega}$, $R_2=20~{
m \Omega}$, $C=10~{
m mF}$, $L=500~{
m mH}$.

จงหาค่าของกระแส i(t) โดยใช้วิธี RK-4 ที่เวลา $0 \le t \le 0.5$ โดยกำหนดค่า Δt เอง และ เปรียบเทียบคำตอบกับกราฟจากวิธี built-in function.

2. ค่าความต่างศักย์และค่ากระแสของตัวต้านทานชนิดหนึ่ง แสดงความสัมพันธ์ดังตารางต่อไปนี้

t (sec)	0	1	2	3	4	6	8	10	11	12
v(t) (V)	0	0.2	0.4	0.8	1.0	1.4	1.6	1.8	2.0	1.2
i(t) (A)	1	0.916	0.836	0.0741	0.624	0.224	0.265	0.291	0.361	0.429

- ก. จงหาค่าความต่างศักย์และค่ากระแสของตัวต้านทานนี้ที่เวลา $t=9~{
 m sec.}$ โดยใช้วิธี Newton's Divided differences.
- ข. จงหาค่ากำลังงานเฉลี่ยที่เวลา t=9 sec. โดยใช้วิธี Newton-cotes ที่ n=4 เปรียบเทียบกับ built-in function.
- 3. จากข้อมูลในตารางต่อไปนี้

x	y	x	y	x	y
13	0.9807	29	1.0051	60	1.0342
15	0.9845	30	1.0063	62	1.0357
16	0.9863	31	1.0075	64	1.0371
21	0.9944	36	1.0130	70	1.0413
22	0.9958	40	1.0171	72	1.0427
23	0.9973	42	1.0190	100	1.0592
25	1.0	55	1.0303	130	1.0737

จงใช้วิธี linear least-squares regression หาค่าสัมประสิทธิ์ของฟังก์ชัน

$$y = \left[(\sqrt{x} + b)/a \right]^{1/5}$$

และพล็อตกราฟผลลัพธ์ที่ได้เปรียบเทียบกับ built-in function และข้อมูลจากตาราง

4. แหล่งจ่ายกระแส i(t) จ่ายกระแสให้วงจรดังรูปตามตารางที่เวลาต่างๆกัน โดยกำหนดให้ค่าศักดาของ ตัวเก็บประจุที่เวลา t=0 เป็น $v_{\mathcal{C}}(0)=5$ V.

ยุทธนา คิดใจเดียว

t (sec)	0	0.75	1.5	2.25	3	3.75	4.5	5.25	6
$\boldsymbol{i}(\boldsymbol{t})$	0	0.86603	1.22474	1.5	1.7321	1.9365	2.1213	2.2913	2.4495

- ก. จงหาค่าของกระแส i(t) ที่เวลา 5 วินาที โดยวิธี Newton's Divided differences และพล็อต กราฟของกระแสที่คำนวณได้เปรียบเทียบกับข้อมูลในตาราง
- ข. จากวงจรในรูป จงหาค่าประมาณของ $v_c(t)$ ที่เวลา 5 วินาที โดยใช้วิธี Simson's 3/8 เปรียบเทียบผลลัพธ์กับวิธี Romberg integration ที่มีการปรับปรุง 5 ระดับและเปรียบเทียบค่า กับ built-in function.
- 5. จงคำนวณหาค่าของ $I=\int_0^\infty \sqrt{x}e^{-x}\sin{(x)}dx$ ด้วยวิธี Gaussian quadrature โดยใช้ n=6 เปรียบเทียบคำตอบกับ built-in function.
- 6. จงแก้สมการเมตริกซ์โดยใช้วิธี LU factorization เพื่อหาค่าของ x จากระบบสมการต่อไปนี้

$$\begin{bmatrix} -6 & 2 & 0 & 1 & -3 \\ 1 & -7 & -2 & 3 & 1 \\ 2 & 1 & 9 & -3 & 3 \\ 0 & 2 & -3 & 8 & 2 \\ -2 & 4 & 1 & -5 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 12 \\ 4 \\ 8 \\ 2 \\ -10 \end{bmatrix}$$

โดยเริ่มจากการหาเมตริกซ์ L และ U ก่อน แล้วใช้เมตริกซ์ L และ U นี้แก้สมการเมตริกซ์ต่อไป

7. จงหาค่า Eigen values และ Eigen vectors ทุกๆค่าของเมตริกซ์ต่อไปนี้ โดยใช้วิธี Power method เปรียบเทียบกับ built-in function.

$$A = \begin{bmatrix} 5 & -2 & -0.5 & 1.5 \\ -2 & 5 & 1.5 & -0.5 \\ -0.5 & 1.5 & 5 & -2 \\ 1.5 & -0.5 & -2 & 5 \end{bmatrix}$$

8. กำหนดให้วงจร RLC เป็นดังรูป

จากวงจรสามารถเขียนเป็นสมการปัญหาค่าเริ่มต้นได้ดังต่อไปนี้

ยุทธนา คิดใจเดียว สาขาวิชาอิเล็กทรอนิกส์

$$\begin{bmatrix} \frac{dv}{dt} \\ \frac{di}{dt} \\ \frac{1}{t} \end{bmatrix} = \begin{bmatrix} \frac{-1}{R_1C} & \frac{-1}{C} \\ \frac{1}{L} & \frac{-R_2}{L} \end{bmatrix} \begin{bmatrix} v \\ i \end{bmatrix}, \quad v(0) = \frac{5R_1}{R_{1+}R_2}, \quad 0 \leq t \leq 0.5$$
 โดยกำหนดค่า Δt เอง

โดยมีค่าอุปกรณ์ดังนี้ $V_S=10~{
m V}$, $R_1=10~{
m \Omega}$, $R_2=20~{
m \Omega}$, $C=250~{
m mF}$, $L=500~{
m mH}$. จงหาค่าศักดาไฟฟ้าที่ตกคร่อม R_2 ด้วยวิธี Heun และพล็อตกราฟของ $V_{R_2}(t)$ ที่ได้เปรียบเทียบกับ built-in function.

9. จงแก้ปัญหาค่าเริ่มต้นของวงจรต่อไปนี้ ด้วยวิธี Ralston's ตามเงื่อนไขดังต่อไปนี้

ค่าของอุปกรณ์มีดังนี้ $V_1=10~{\rm V}$, $V_2=20~{\rm V}$, $R_1=20~\Omega$, $R_2=100~\Omega$, $C=50~{\rm mF}$ จง หาค่าศักดา $V_C(t)$ ที่เวลา $0\leq t\leq 2$ ให้กำหนดค่า Δt เอง และพล็อตกราฟของ $V_C(t)$ ที่ได้ เปรียบเทียบกับ built-in function.

- 10. จงแก้สมการปัญหาค่าขอบเขตต่อไปนี้ ด้วยวิธี RK อันดับ 4 ตามเงื่อนไขดังต่อไปนี้ $y" + 4xy' + 4y 4x 10 = 0 \;,\; y(0) = 1,\;\; y(0.5) = 2 \;,\; 0 \leq x \leq 0.5 \;\;,\; n = 10 \quad \text{และ}$ พล็อตกราฟผลลัพธ์ที่ได้เปรียบเทียบกับ built-in function.
- 11. จงแก้สมการปัญหาค่าขอบเขตต่อไปนี้ ด้วยวิธี Finite-difference ตามเงื่อนไขดังต่อไปนี้ $y'' xy' = 2x 4y + 8 \;, \quad y(1) = 1, \quad y(1.5) = 0, \quad \Delta x = 0.1 \;, \quad 1 \leq x \leq 1.5$ และพล็อตกราฟผลลัพธ์ที่ได้เปรียบเทียบกับ built-in function byp5c().

ยทธนา คิดใจเดียว

12. จงแก้สมการความร้อนด้วยวิธี Crank-Nicolson ตามเงื่อนไขดังต่อไปนี้

$$u_{xx} = 9u_t$$
 , $0 \le x \le 2$, $0 \le t \le 1$; $u(0,t) = 0$, $u(2,t) = 10$, $0 \le t \le 1$; $u(x,0) = \begin{cases} x & 0 \le x \le 1 \\ 2-x & 1 \le x \le 2 \end{cases}$

โดยมีค่าช่วงดังนี้ $\Delta x = 0.2$, $\Delta t = 0.02$ พร้อมทั้งพล็อตกราฟผลลัพธ์ที่ได้เปรียบเทียบกับวิธีของ build-in function pdepe().

13. จงแก้สมการคลื่นด้วยวิธี explicit ตามเงื่อนไขดังต่อไปนี้

$$\begin{array}{lll} 9u_{xx} = u_{tt} & , & 0 \leq x \leq 5 \, , \; 0 \leq t \leq 0.5 \, ; \\ \\ u(0,t) = 0 & , & u(5,t) = e^{-t}, & 0 \leq t \leq 0.5 \, ; \\ \\ u_t(x,0) = e^{-x} \, (1-x) \, , & u(x,0) = \sin \left(\pi x\right) \, , \; 0 \leq x \leq 5 \end{array}$$

โดยมีค่าช่วงดังนี้ $\Delta x = 0.1$, $\Delta t = 0.01$ พร้อมทั้งพล็อตกราฟผลลัพธ์

14. จงแก้สมการลาปลาสด้วยวิธี Finite difference ตามเงื่อนไขดังต่อไปนี้

$$\begin{array}{l} u_{xx} + u_{yy} \, = \, 0 \qquad , \qquad 0 \leq x \leq 3 \, , \ 0 \leq y \leq 3 \, ; \\ \\ u(x,0) = 50 \sin^2 \left(\frac{\pi x}{9}\right) \, , \qquad u(x,1) = x(1+x) \quad , \quad 0 \leq x \leq 3 \, ; \\ \\ u(0,y) = 0 \qquad , \qquad u(1,y) = y(y+1) \quad , \quad 0 \leq y \leq 3 \, ; \end{array}$$

โดยมีค่าช่วงคือ $\Delta x = 0.1$, $\Delta t = 0.1$ พร้อมทั้งพล็อตกราฟผลลัพธ์

15. จงหาคำตอบของระบบสมการต่อไปนี้ด้วยวิธี Newton-Raphson

$$y - x^5 = 5 - e^y x$$
$$x + y = \sin(y) - 2\tan(x)$$

ให้ตรวจสอบความถูกต้องอยู่ที่ทศนิยม 10 ตำแหน่งและเปรียบเทียบคำตอบกับ built-in function.

16. จงหาคำตอบปัญหาค่าเริ่มต้นของระบบสมการด้วยวิธี Picard's และวิธี Taylor series เปรียบเทียบ กับคำตอบที่ได้จาก built-in function ode45() โดยทั้งสองวิธีนั้นให้ใช้การประมาณค่าอันดับที่ 4 ในการประมาณค่าที่ช่วง $0 \le x \le 0.2$ ตามสมการและเงื่อนไขดังต่อไปนี้

$$\frac{dy}{dx}=2z+y$$
 , $\frac{dz}{dx}=y-z^2$ โดย $y(0)=0$, $z(0)=1$, ใช้ค่า $\Delta x=0.1$

ผู้ทธนา คิดใจเดียว

17. วงจรกรองความถี่ดังรูปต่อไปนี้

มีค่าอัตราขยาย $gain=rac{v_o(\omega)}{v_s(\omega)}$ ซึ่งค่า frequency cutoff (Hz) ของวงจรคือค่าซึ่งมีอัตราขยาย $gain=0.707(passband\ gain)$ ซึ่ง ω คือค่าความถี่ของสัญญาณอินพุท = $2\pi f$ โดยวงจรมี ค่าอุปกรณ์ดังนี้ $R_1=1\ \mathrm{k}\Omega$, $R_2=4\ \mathrm{k}\Omega$, $R_3=1\ \mathrm{k}\Omega$ และ $C=100\ \mathrm{nF}$ จงหาค่าความถี่คัท ออฟนี้ โดยใช้วิธี False-Position และ Secant เปรียบเทียบคำตอบกับวิธี built-in function และ แสดงกราฟของอัตราขยายในช่วงความถี่ $1<\omega<10^6$

18. กำหนดให้วงจรรีโซแนนซ์ RLC อยู่ในสภาวะ steady state ที่เวลา $t \geq 0$ ดังรูป

วงจรมีค่าอุปกรณ์ดังนี้ $R_1=12~{
m k}\Omega$, $R_2=45~{
m k}\Omega$, $L=60~{
m mH}$ และ $C=1~{
m \mu F}$

- ก. จงหาค่าความถี่โซแนนซ์ (Hz) ที่ทำให้ส่วนจินตภาพของอัตราขยาย $gain=rac{v_o(\omega)}{v_s(\omega)}$ มีค่าเป็น ศูนย์ นั่นคือส่วนที่เป็นอิมพิแดนซ์ของตัวเก็บประจุและตัวเหนี่ยวนำจะหักล้างกันหมด ค่า อัตราขยายจึงมีแต่ส่วนค่าจริงเท่านั้น การหาคำตอบของสมการให้ใช้วิธี Fixed-point iteration ในรูปสมการ x=f(x) เปรียบเทียบคำตอบกับวิธีของ built-in function.
- ข. จงหาค่าอัตราขยายที่ความถี่เรโซแนนซ์

ยุทธนา คิดใจเดียว สาขาวิชาอิเล็กทรอนิกส์