Analyse fonctionnelle et équations aux dérivées partielles

Devoir 5

Clément Van Camp

15 décembre 2022

Montrons que l'application

$$\varphi \colon u \in L^p((0,1), \mathrm{d}x) \mapsto \int_{(0,1)} \frac{u(x)}{x^\alpha} \mathrm{d}x$$

est dans le dual de $L^p((0,1), dx)$ où p=3 si et seulemenet si $\alpha < 2/3$.

Pour $\alpha > 2/3$, l'application n'est pas bien définie

Étant donné $\alpha > 2/3$, soit $q \in \mathbb{Q}$ tel que $1/3 > q \ge 1 - \alpha$. Posons

$$u: x \in (0,1) \mapsto 1/x^q$$
.

Ceci définit bien un élément de $L^p((0,1), dx)$. En effet, pour tout $x \in (0,1)$, $(1/x^q)^3 = 1/x^{3q}$ Puisque 1/3 > q, 3q < 1, donc u^3 est une intégrable.

En revanche, nous aurons pour tout $x \in (0,1)$ que

$$\frac{u(x)}{x^{\alpha}} = \frac{1}{x^{\alpha+q}} \ge \frac{1}{x^{\alpha+1-\alpha}} = \frac{1}{x} \ge 0,$$

d'où découle, par le théorème de comparaison d'intégrales, que $x \in (0,1) \mapsto \frac{u(x)}{x^{\alpha}}$ n'est pas intégrable, car $x \in (0,1) \mapsto \frac{1}{x}$ ne l'est pas.

Pour $\alpha = 2/3$, l'application n'est pas élément du dual

Supposons par l'absurde que pour $\alpha=2/3,\,\varphi$ soit bien définie et élément du dual. Par le théorème 14.20, il existerait alors une unique fonction $g\in L^{3/2}((0,1),\mathrm{d} x)$ telle que pour tout $u\in L^3((0,1),\mathrm{d} x),\,\varphi(u)=\int_{(0,1)}g(x)u(x)\mathrm{d} x.$

Or, pour tout $a \in (0,1)$, nous avons bien que $\chi_{(0,a)} \in L^3((0,1), dx)$ car c'est la fonction caractéristique d'un intervalle borné. La fonction g devrait alors satisfaire pour tout $a \in$

(0,1) que

$$\int_{(0,a)} g(x) \, \mathrm{d}x = \int_{(0,1)} g(x) \chi_{(0,a)}(x) \, \mathrm{d}x = \int_{(0,1)} \frac{\chi_{(0,a)}(x)}{x^{\alpha}} \, \mathrm{d}x = \int_{(0,a)} \frac{1}{x^{2/3}} \, \mathrm{d}x.$$

Dès lors, nous aurions que pour tout $a \in (0,1)$,

$$\int_{(0,a)} \left(g(x) - \frac{1}{x^{2/3}} \right) \, \mathrm{d}x = 0.$$

En d'autres termes, g serait être presque partout égale à la fonction $x \in (0,1) \mapsto 1/x^{2/3}$, et ne serait donc pas dans $L^{3/2}((0,1), dx)$, une contradiction.

Pour $\alpha < 2/3$, l'application est bien définie et est linéaire bornée.

Supposons que $\alpha < 2/3$.

Commenmons par montrer que φ est bien définie.

Par la proposition 4.27 du syllabus, pour $p,q,r\in[1,\infty]$, nous avons que si 1/p+1/q=1/r et si $f\in L^p((0,1),\mathrm{d}x)$ et $g\in L^q((0,1),\mathrm{d}x)$, alors $fg\in L^r((0,1),\mathrm{d}x)$. En particulier, nous pouvons prendre $p=3,\ q=3/2,\ r=1,\ f=u$ et $g\colon x\in(0,1)\mapsto 1/x^\alpha$. Ceci satisfait les hypothèses du théorème, car pour tout $x\in(0,1)$,

$$g(x)^q = \frac{1}{x^{3\alpha/2}},$$

donc $g \in L^{3/2}((0,1),\mathrm{d}x)$, car $3\alpha/2 < 1$. Dès lors, $fg \in L^1((0,1),\mathrm{d}x)$, c'est à-dire que l'intégrale

$$\int_{(0,1)} \frac{f(x)}{x^{\alpha}} \mathrm{d}x$$

existe.

La linéarité de φ est une conséquence directe de la linéarité de l'intégrale.

Enfin, φ est bornée. Soit $u \in L^3((0,1), dx)$ telle que

$$||u||_{L^p((0,1),dx)} = \left(\int_{(0,1)} |u|^3 dx\right)^{1/3} \le 1.$$

Remarquons que $x\in(0,1)\mapsto 1/|x|^\alpha$ est élément de $L^{3/2}((0,1),\mathrm{d}x)$ car $3\alpha/2<1$. Dès lors, par l'inégalité de Hörner,

$$|\varphi(u)| = \left| \int_{(0,1)} \frac{u(x)}{x^{\alpha}} dx \right| \le \left| \int_{(0,1)} u(x) dx \right| \left| \int_{(0,1)} \frac{1}{x^{\alpha}} dx \right| \le \left| \frac{1}{1-\alpha} \right|,$$

ce qui prouve que φ est bornée.