

UNIVERSIDAD NACIONAL DE MISIONES - UNAM

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemática

Profesorado en Física

ANÁLISIS MATEMÁTICO I

TRABAJO PRÁCTICO № 8 APLICACIONES DE LA DERIVADA DE UNA FUNCIÓN

- 1. Dadas las funciones: I) $y = \frac{x+3}{1-x}$ II) $y = \sqrt[3]{(x+1)^2}$ III) $y = \ln(x^2+1)$
 - a) Determinar su dominio
 - b) Estudiar su monotonía (crecimiento y decrecimiento).
 - c) Analizar la existencia de máximos y mínimos relativos.
 - d) Examinar si posee ceros y ordenada al origen.
 - e) Analizar la existencia de asíntotas.
 - f) Utilizar la información encontrada para representar gráficamente a la función.
- 2. Utilizar la derivada primera para analizar puntos críticos, intervalos de crecimiento y decrecimiento y extremos relativos de $f(x)=(x-1)^3+2$
- 3. Determinar las coordenadas de los extremos absolutos y relativos de las siguientes funciones, si los hubiere:

$$y = \begin{cases} x+1 & x < 1 \\ x^2 - 6x + 7 & x \ge 1 \end{cases}$$
 en $[-5;4]$

4. Analizar la existencia de extremos locales, puntos de inflexión e intervalos de concavidad por medio de la derivada segunda.

a)
$$y = x^4 + 4x^3 - 2x^2 - 12x$$
 b) $y = \begin{cases} 4 - x^2 & x \le 1 \\ 2 + x^2 & x > 1 \end{cases}$ c) $y = x^{1/3}$ d) $y = x^3 - 6x^2 + 9x + 1$

b)
$$y = \begin{cases} 4 - x^2 & x \le 1 \\ 2 + x^2 & x > 1 \end{cases}$$

c)
$$y = x^{1/3}$$

d)
$$y = x^3 - 6x^2 + 9x + 1$$

- 5. Elabore la gráfica aproximada de una función que tenga las siguientes condiciones:
 - La gráfica tiene discontinuidades en x = -1 y en x = 3.
 - f'(x) > 0 para x<1, x\neq -1
 - f'(x) < 0 para x>1, $x \ne 3$.
 - f''(x) > 0 para x < -1, x > 3, f''(x) < 0, para -1 < x < 3
 - f(0) = 0 = f(2), f(1) = 3
- 6. Realizar el estudio completo de las funciones dadas, para ello considerar: Dominio. Ordenada al origen. Ceros. Asíntotas verticales y horizontales, si existen. Intervalos de crecimiento y decrecimiento. Extremos relativos y absolutos, si los hubiese. Intervalos de concavidad y convexidad. Puntos de inflexión. Un gráfico aproximado de la función.

a)
$$y = \sqrt{x^2 - 1}$$

b)
$$v = x \cdot 3^{(x+1)}$$

a)
$$y = \sqrt{x^2 - 1}$$
 b) $y = x \cdot 3^{(x+1)}$ c) $y = e^x (2x^2 + x - 8)$ d) $y = \sin(2x)$

d)
$$v = \sin(2x)$$

- 7. Realizar el estudio de la función $f(x) = x^3 2x^2 3x 2$, luego representar gráficamente a las funciones f, f', f'' y f''' (una debajo de otra).
- 8. Supongamos que el rendimiento r en % de un alumno en un examen de una hora viene dado por la función r(t)= 300t (1-t).
 - a) ¿En qué momentos aumenta o disminuye el rendimiento?
 - b) ¿En qué momentos el rendimiento es nulo?
 - c) ¿Cuándo se obtiene el mayor rendimiento y cuál es?
- 9. Resolver las siguientes situaciones:
 - a) Un fabricante de cajas de estaño desea emplear piezas de 8x15pulgadas, cortando cuadrados iguales en las cuatro esquinas y doblando los lados. Calcular la longitud del lado del cuadrado si se desea obtener de cada pieza de estaño una caja sin tapa del máximo volumen posible.
 - b) Encontrar un par de números cuya suma sea 100, de manera que su producto sea máximo.
 - c) Sea desea cercar un sector de un campo de forma rectangular posee un área de $36dm^2$, que dimensiones debe tener dicho sector para emplear la menor cantidad de vallas.
 - d) Encontrar la velocidad del aumento del área superficial de un globo que se está inflando, con respecto al radio, sabiendo que el área superficial está dado por $a(r) = 4\pi r^2$.

UNIVERSIDAD NACIONAL DE MISIONES - UNAM

Facultad de Ciencias Exactas, Químicas y Naturales

Profesorado en Matemática

Profesorado en Física

ANÁLISIS MATEMÁTICO I

Ejercicios Complementarios

- 1. Utilizar la derivada primera para analizar puntos críticos, intervalos de crecimiento y decrecimiento y extremos b) $f(x) = \begin{cases} 2x - 1 & x \le 3 \\ 8 - x & 3 < x \end{cases}$ c) $f(x) = x^{3/5}$ relativos de f. a) $f(x)=(x-1)^3+2$
- 2. Determinar las coordenadas de los extremos absolutos y relativos si los hubiere para la función $y = x^3 2x^2$ en el intervalo [-1;1].
- 3. Utilizar la derivada primera para analizar puntos críticos, intervalos de crecimiento y decrecimiento y extremos relativos de: a) $f(x) = \begin{cases} 2x-1 & x \le 3 \\ 8-x & 3 < x \end{cases}$ b) $f(x) = x^{3/5}$
- 4. Determinar las coordenadas de los extremos absolutos y relativos de las siguientes funciones, si los hubiere: $y = x^3 - 2x^2$ en [-1;1]
- 5. Halle, aplicando el criterio de la derivada segunda, puntos críticos, extremos relativos, puntos de inflexión, intervalos de concavidad y grafique la función: $y = x^4 - 4x^3 + 10$ con: a) Df = R b) Df = [-2, 1].
- 6. Considere las siguientes funciones: a) y = Senh x = $\frac{e^x e^{-x}}{2}$ b) y = $\frac{1}{x+1}$ si x ≥ 0
- 7. Realice el estudio completo de cada una de ellas. Es decir, para cada una de las funciones anteriores obtenga: i) Dominio. ii) Puntos de corte con los ejes coordenados. iii) Asíntotas verticales, horizontales y oblicuas, si existen. iv) Los intervalos de crecimiento y decrecimiento. v) Máximos y mínimos relativos y absolutos, si hubieren. vi) Los intervalos de concavidad y convexidad. vii) los puntos de inflexión. viii) Un gráfico aproximado de la función.
- 8. Si $f(x) = 3x^2 + x \cdot |x|$ demuestre que f"(x) no existe, sin embargo, la gráfica de f es cóncava hacia arriba en todo su dominio. Realice el grafico de la función.
- 9. Realizar el estudio de la función $f(x) = x^4 x^3 3x^2 + 2x + 1$, luego representar gráficamente a las funciones f, f', f" y f" (una debajo de otra).
- 10. Elabore la gráfica aproximada de una función que reuna las siguientes condiciones:

- 11. Se presenta el gráfico de una función f: $R \rightarrow R$, determine:
 - c) Conjunto de positividad d) Conjunto de negatividad b) Ordenada al origen e) Intervalos de crecimiento, Intervalos de decrecimiento
 - f) Intervalos de concavidad hacia arriba y de concavidad hacia abajo.

 - g) Puntos donde hay máximos y mínimos (relativos y absolutos)
 - h) Puntos de inflexión.
 - i) Realice los gráficos aproximados de f', f" y f", uno debajo del otro.

