МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа № 6 дисциплина: Информатика

тема: «Обнаружение и исправление однократной ошибки в сообщении»

Выполнил: ст. группы ПВ-211 Чувилко Илья Романович

Проверил: Бондаренко Татьяна Владимировна

Цель работы: изучить основные принципы помехоустойчивого кодирования; изучить способ определение позиции и значения корректирующих бит кода Хемминга; получить практические навыки построения кода Хемминга, корректирующего однократные ошибки; изучить способ построения линейно-группового кода и возможность коррекции однократной ошибки с помощью линейно-группового кода.

Часть 1. Обнаружение и коррекция однократной ошибки в сообщении с помощью кода Хемминга

Задания к работе

- 1. Выполнить кодирование текстового сообщения М1 по буквам, используя русский или латинский алфавит, размер сообщения не менее 4 букв. Определить размер n в битах закодированного сообщения М.
- 2. Определить количество k контрольных разрядов кода Хемминга, необходимых для кодирования сообщения M размер n бит.
- 3. Определить позиции и значения k контрольных разрядов кода Хемминга: двумя способами:
- подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
- использование двоичного представления номеров разрядов сообщения.
- 4. Записать полученное сообщение размера (n +k) в коде Хемминга.
- 5. Смоделировать коррекцию ошибки: внести однократную, двукратную и k-кратную ошибки в произвольные биты сообщения и найти эти ошибки с помощью кода Хемминга, используя:
- подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
- двоичное представление номеров разрядов сообщения.

Часть 2. Обнаружение и коррекция однократной ошибки в сообщении с помощью линейно-группового кода

Задание к работе:

- 1. Выполнить построение порождающей матрицы G линейно-группового кода, необходимой для кодирования сообщения M1 по буквам. Определить необходимое число информационных и проверочных столбцов матрицы G. Вычислить значение проверочных столбцов и доказать соответствие полученной порождающей матрицы G требованиям.
- 2. Выполнить кодирование сообщения М1 по буквам с помощью порождающей матрицы G.
- 3. Смоделировать коррекцию ошибки: внести в линейно-групповой код одной из букв сообщения M1 однократную ошибку, выполнить проверку сообщения на наличие ошибки и найти бит с ошибкой в сообщении.

Провести аналогичную проверку для двукратной ошибки.

Часть 1. Обнаружение и коррекция однократной ошибки в сообщении с помощью кода Хемминга

1. Выполнил кодирование текстового сообщения **M1** по буквам, используя русский алфавит, размер сообщения — 4 буквы. Определил размер в **n** битах закодированного сообщения **M**.

$$M = (ИЛЬЯ) = 001010.001101.011110.100001$$

 $n = 4 * 6 = 24$

2. Определил количество k контрольных разрядов кода Хемминга, необходимых для кодирования сообщения M рамера n бит.

$$2^{k} \ge M + k + 1$$
$$2^{k} \ge 25 + k$$
$$k = 5$$

- 3. Определил позиции и значения к контрольных разрядов кода Хемминга двумя способами:
 - подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
 - использование двоичного представления номеров разрядов сообщения.

$$N = 24 + 5 = 29$$

1 способ:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	0	1	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	6	0
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			6	0
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	6	0
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

Код Хемминга: 00101000.11010111.11010100.00100

2 способ:

00011
01010
01100
01101
01110
01111
10010
10100
10101
11001
11011
11000

Код Хемминга: 00101000.11010111.11010100.00100

4. Записал полученное сообщение размера (n + k) в коде Хемминга: Код Хемминга: 00101000.11010111.11010100.00100

- **5.** Смоделировал коррекцию ошибки: внести однократную, двукратную и k-кратную ошибки в произвольные биты сообщения и найти эти ошибки с помощью кода Хемминга, используя:
- подсчёт количества единиц в контролируемых контрольным битом разрядах сообщения;
- двоичное представление номеров разрядов сообщения.

Однократная ошибка:

00101000.11010111.11010101.00100

Первый способ:

	1																														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	1	1	1	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	6	0
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			7	1
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	7	1
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

Различное значение принимают 2 и 4 биты, следовательно ошибка в 6 бите.

Второй способ:

3	00011
6	00110
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11110

Различное значение принимают 2 и 4 биты, следовательно ошибка в 6 бите.

Двукратная ошибка: 00101000.11010111.11010100.00111

Первый способ:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	0	1	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	6	0
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			6	0
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	6	0
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

Обнаружены 2 ошибки

2 способ:

2 CHUC	00.
3	00011
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11000

Обнаружены 2 ошибки

Трехкратная ошибка: 00101000.11010111.11010100.00011

Первый способ:

	PD.				•																										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	к1	б
	0	0	0	0	0	0	0	1	0	1	0	1	1	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0		
к1	X		X		X		X		X		X		X		X		X		X		X		X		X		X		X	5	1
к2		X	X			X	X			X	X			X	X			X	X			X	X			X	X			5	1
к3				X	X	X	X					X	X	X	X					X	X	X	X					X	X	6	0
к4								X	X	X	X	X	X	X	X									X	X	X	X	X	X	7	1
к5																X	X	X	X	X	X	X	X	X	X	X	X	X	X	5	1

Обнаружены ошибки

2 способ:

2 CHUC	001
10	01010
12	01100
13	01101
14	01110
15	01111
18	10010
20	10100
21	10101
25	11001
27	11011
XOR	11011

Обнаружены ошибки