Relatório de Modulação AM

Luiz Felipe Rodrigues e Silva *Universidade de Brasília* Brasília-DF, Brasil luizrodriguesesilva@outlook.com.br

Resumo—Este trabalho aborda a modulação em amplitude (AM), uma técnica clássica de transmissão de sinais analógicos, e suas variantes: AM convencional e AM com portadora suprimida (SC). São realizados dois experimentos utilizando o GNU Radio, nos quais são implementados e analisados tanto a modulação quanto a demodulação de sinais em ambas as técnicas. O objetivo é compreender, na prática, os conceitos teóricos estudados sobre modulação AM, observando as diferenças de desempenho e características entre os métodos, bem como os desafios envolvidos no processo de demodulação.

Index Terms—modulação em amplitude, AM, portadora suprimida, SC, GNU Radio, transmissão analógica, demodulação, análise de sinais.

I. INTRODUÇÃO

A modução é um tecnica que permite a transmissão de sinais analógicos ou digitais através de um meio físico, como o ar ou cabos. Segundo [1], a modulação AM é um processo que envolve a variação da amplitude de uma portadora de alta frequência em função de um sinal modulante, que contém a informação a ser transmitida. Essa técnica é amplamente utilizada em sistemas de comunicação, como rádio e televisão, devido à sua simplicidade e eficácia na transmissão de sinais analógicos.

A. Modulação AM-DSB-SC (Double Sideband Suppressed Carrier)

A modulação AM-DSB (Double Sideband) é uma forma de modulação em que a portadora e as duas laterais (superior e inferior) são transmitidas. Esse tipo de modulação consiste em multiplicar o sinal de informação por uma portadora, como o sinal mensagem é de banda limitada, isto é, se o sinal m(t) admite transformada de fourier, então M(f)=0 para |f|>W, onde W é a largura de banda do sinal. Como a mensagem tem sua representação espectral, é possivel deslocar a mensagem para uma nova frequência utilizando a propriedade de modulação da transformada de Fourier, que nos diz que a multiplicação no domínio do tempo por uma exponencial complexa resulta em um deslocamento espectral no domínio da frequência. Multplicando o sinal de informação m(t) por uma portadora $c(t)=A_c\cos(2\pi f_c t)$, temos:

$$s(t) = m(t)c(t) = A_c m(t)\cos(2\pi f_c t) \tag{1}$$

onde A_c é a amplitude da portadora e f_c é a frequência da portadora. Podemos expandir a expressão acima utilizando a identidade trigonométrica $\cos(x) = \frac{e^{jx} + e^{-jx}}{2}$, resultando em:

$$s(t) = \frac{A_c}{2}m(t)e^{j2\pi f_c t} + \frac{A_c}{2}m(t)e^{-j2\pi f_c t}$$
 (2)

pode-se aplicar a transformada de Fourier em ambos os lados da equação, resultando em:

$$S(f) = \frac{A_c}{2} (M(f - f_c) + M(f + f_c))$$
 (3)

Por exemplo, para uma mensagem $\cos(2\pi f_m t)$ com frequência $f_m=100\,\mathrm{Hz}$, uma portadora $\cos(2\pi f_c t)$ de $f_c=1\,\mathrm{kHz}$ com amplitude $A_c=1$, realizando a modulação AM-DSB, os espectros para a mensagem, portadora e sinal modulado são mostrados nas Figuras 1, 2 e 3, respectivamente. O espectro do sinal modulado AM-DSB apresenta duas bandas laterais, uma superior e outra inferior, que contêm a mesma informação, além da portadora.

Figura 1. Espectro do sinal de mensagem. Fonte: Autor.

Figura 2. Espectro da portadora. Fonte: Autor.

O diagrama de blocos da modulação AM-DSB é apresentado na Figura 4, onde o sinal de informação m(t) é multiplicado pela portadora c(t), resultando no sinal modulado s(t). A demodulação do sinal AM-DSB pode ser realizada utilizando um detector de envoltória, que recupera o sinal de informação original a partir do sinal modulado.

Figura 3. Espectro do sinal modulado AM-DSB. Fonte: Autor.

Figura 4. Diagrama de blocos da modulação AM-DSB. Fonte: Autor.

Podemos demostrar os resultados a partir da transformada de Fourier, onde a transformada de Fourier do sinal modulado m(t) é dada por:

$$M(f) = \frac{1}{2} \left(\delta(f - 100) + \delta(f + 100) \right) \tag{4}$$

substituindo na equação (3), temos:

$$S(f) = \frac{1}{4} \left(\delta(f - 100 - 1000) + \delta(f + 100 - 1000) + \delta(f - 100 + 1000) + \delta(f + 100 + 1000) \right)$$
(5)

Conforme mostrado no espectro 3, a portadora é suprimida.

B. demodulação AM-DSB-SC (Double Sideband Suppressed Carrier)

A demodulação AM-DSB-SC é um processo que visa recuperar o sinal de informação original a partir do sinal modulado. O método mais comum para realizar essa demodulação é o uso de um multiplicador, que multiplica o sinal modulado por uma cópia da portadora. Esse processo resulta em um sinal que contém a informação original, mas também inclui uma componente de alta frequência que deve ser filtrada.

$$s(t) = m(t)c(t) = A_c m(t)\cos(2\pi f_c t) \tag{6}$$

$$y(t) = s(t)c(t)\cos(2\pi f_c t) = A_c m(t)\cos(2\pi f_c t)^2$$
 (7)

Linarizando o coseno, tempos:

$$r(t) = \frac{A_c}{2}m(t) + \frac{A_c}{2}m(t)\cos(4\pi f_c t)$$
 (8)

A transformada de Fourier do sinal demodulado r(t) é dada por:

$$Y(f) = \frac{A_c}{2}M(f) + \frac{A_c}{2}M(f - 2f_c) + \frac{A_c}{2}M(f + 2f_c)$$
 (9)

Aplicando um filtro passa-baixa com largura de banda W para eliminar a componente de alta frequência, obtemos o sinal de informação original:

$$Y_{LPF}(f) = \frac{A_c}{2}M(f) \tag{10}$$

O sinal é recuperado com uma amplitude reduzida, o que pode ser compensado por um amplificador. O diagrama de blocos da demodulação AM-DSB-SC é apresentado na Figura 5, onde o sinal modulado s(t) é multiplicado pela portadora c(t), resultando no sinal demodulado r(t). Em seguida, um filtro passa-baixa é aplicado para recuperar o sinal de informação original.

Figura 5. Diagrama de blocos da demodulação AM-DSB-SC. Fonte: Autor.

Um dos principais desafios da modulação em amplitude com portadora suprimida (DSB-SC) é a necessidade de sincronização de fase entre o sinal modulado e a portadora na demodulação. Caso haja um desvio de fase entre a portadora original e a gerada no receptor, o sinal demodulado apresentará distorções significativas. Para mitigar esse problema, uma abordagem comum é transmitir um tom piloto juntamente com o sinal modulado. Esse tom é uma pequena fração da portadora original, inserida com baixa amplitude, e pode ser isolado no receptor por meio de um filtro de banda estreita. No entanto, a presença do tom piloto implica que a portadora não está totalmente suprimida, o que descaracteriza a modulação como DSB-SC pura.

Outra alternativa mais robusta é o uso de um PLL (Phase-Locked Loop), um circuito que sincroniza automaticamente a fase da portadora local com a fase do sinal modulado recebido. O PLL ajusta continuamente a frequência e a fase do oscilador local, permitindo uma demodulação mais precisa mesmo na presença de ruídos e desvios de fase. A Figura 6 ilustra o esquema de demodulação utilizando PLL.

C. Modulação AM Convencional

Um sinal AM convencional consiste em uma componente portadora de grande amplitude, além do sinal modulado em DSB-AM. O sinal transmitido pode ser expresso matematicamente como:

Figura 6. Diagrama de blocos da demodulação AM-DSB-SC com PLL. Fonte: Autor.

$$u(t) = A_c[1 + m(t)]\cos(2\pi f_c t)$$
 (11)

onde m(t) representa o sinal mensagem, o qual deve satisfazer a condição $|m(t)| \leq 1$ para garantir que a envoltória do sinal modulado permaneça sempre positiva. A componente $A_c m(t) \cos(2\pi f_c t)$ constitui o sinal DSB-AM, enquanto $A_c \cos(2\pi f_c t)$ representa a portadora.

A Figura 7 ilustra a envoltória do sinal modulado:

Figura 7. Envoltoria do Sinal AM. Fonte: Proakis

Na prática, o sinal m(t) é escalado para garantir que sua magnitude esteja sempre dentro do intervalo desejado. Uma forma conveniente de fazer isso é expressar:

$$m(t) = am_n(t) \tag{12}$$

em que $m_n(t)$ é o sinal normalizado tal que seu valor mínimo é -1, definido por:

$$m_n(t) = \frac{m(t)}{\max|m(t)|} \tag{13}$$

Nesse caso, o fator de escala a é chamado de índice de modulação, sendo um valor constante geralmente menor que 1. Como $|m_n(t)| \leq 1$ e 0 < a < 1, tem-se que $1 + am_n(t) > 0$, evitando sobremodulação. Assim, o sinal modulado pode ser reescrito como:

$$u(t) = A_c[1 + am_n(t)]\cos(2\pi f_c t)$$
 (14)

Espectro do Sinal AM Convencional: Se m(t) possui transformada de Fourier M(f), o espectro do sinal modulado u(t) será:

$$U(f) = \mathcal{F}\{A_c a m_n(t) \cos(2\pi f_c t)\} + \mathcal{F}\{A_c \cos(2\pi f_c t)\}$$
(15)

$$U(f) = \frac{A_c a}{2} [M_n(f - f_c) + M_n(f + f_c)] + \frac{A_c}{2} [\delta(f - f_c) + \delta(f + f_c)]$$
(16)

Portanto, o espectro de um sinal AM convencional ocupa uma largura de banda que é o dobro da largura de banda do sinal mensagem. A Figura 8 apresenta o espectro M(f).

Figura 8. Sinal AM convencional no domínio do tempo e da frequência. Fonte: Proakis

A geração de um sinal AM pode ser feita utilziando um gerador de onda quadrada e um filtro passa banda

Figura 9. Sinal no dominio da frequencia. Fonte: Tutorialspoint

D. Demodulação AM

A demodulação de sinais AM convencionais pode ser realizada de forma simples utilizando um detector de envoltória, dispensando a necessidade de demodulação síncrona. O detector de envoltória é composto basicamente por um diodo e um circuito RC (filtro passa-baixa), como ilustrado na Figura 10.

Figura 10. Circuito do detector de envoltória para demodulação AM. Fonte: Autor

O funcionamento é simples: durante o semiciclo positivo do sinal de entrada, o diodo conduz e o capacitor carrega até o

valor de pico do sinal. Quando o sinal cai abaixo da tensão do capacitor, o diodo se bloqueia e o capacitor descarrega lentamente pelo resistor, acompanhando a envoltória do sinal modulado. O filtro RC elimina as componentes de alta frequência, recuperando o sinal mensagem. Para remover a componente DC basta usar um transformador.

A escolha do valor da constante de tempo RC é fundamental: se RC for muito pequeno, o capacitor descarrega rapidamente e não acompanha a envoltória; se for muito grande, a descarga é lenta e o sinal fica distorcido. O valor ideal de RC deve satisfazer:

$$\frac{1}{f_c} \ll RC \ll \frac{1}{W}$$

onde f_c é a frequência da portadora e W a largura de banda do sinal mensagem. A Figura 11 mostra o efeito de um RC inadequado, enquanto a Figura 12 ilustra o funcionamento correto.

Figura 11. Envoltória para um RC fora do intervalo ideal. Fonte: [2]

Figura 12. Envoltória para um RC dentro do intervalo ideal. Fonte: [2]

II. SINCRONISMO DE FASE EM AM-DSB-SC

A demodulação coerente do sinal AM-DSB-SC exige perfeito sincronismo entre a fase da portadora do transmissor (ϕ_c) e do oscilador local no receptor $(\hat{\phi}_c)$. O processo pode ser descrito por:

A. Modulação

O sinal modulado é gerado por:

$$s(t) = m(t) \cdot A_c \cos(2\pi f_c t + \phi_c) \tag{17}$$

onde:

• m(t): sinal da mensagem

Figura 13. Diagrama de blocos da modulação AM-DSB-SC. Fonte: Autor.

- A_c : amplitude da portadora
- f_c : frequência da portadora
- ϕ_c : fase da portadora no transmissor

B. Demodulação

O receptor multiplica pelo oscilador local:

$$\hat{c}(t) = \cos(2\pi f_c t + \hat{\phi}_c) \tag{18}$$

Resultando em:

$$y(t) = s(t) \cdot \hat{c}(t) = \frac{A_c}{2} m(t) \left[\cos(\phi_c - \hat{\phi}_c) + \cos(4\pi f_c t + \phi_c + \hat{\phi}_c) \right]$$
(19)

Após filtragem passa-baixa:

$$y_{\text{final}}(t) = \frac{A_c}{2} m(t) \cos(\Delta \phi)$$
 (20)

onde $\Delta\phi=\phi_c-\hat{\phi}_c$ é o erro de fase.

C. Efeitos do Erro de Fase

• Sincronismo perfeito ($\Delta \phi = 0^{\circ}$):

$$y_{\text{final}}(t) = \frac{A_c}{2}m(t) \tag{21}$$

• Erro de fase genérico:

$$y_{\text{final}}(t) = \frac{A_c}{2} m(t) \cos(\Delta \phi)$$
 (22)

• Caso crítico ($\Delta \phi = 90^{\circ}$):

$$y_{\text{final}}(t) = 0 \tag{23}$$

III. METODOLOGIA

A. Modulação AM-DSB-SC (Double Sideband Suppressed Carrier)

Neste experimento, utilizou-se o GNU Radio Companion (GRC) para implementar a modulação AM-DSB-SC. O sinal de mensagem foi gerado utilizando um bloco de fonte de sinal senoidal com frequência f_m de 1 kHz e amplitude de 1. A portadora foi gerada com frequência de 5 kHz e amplitude de 1. O sinal modulado foi obtido multiplicando o sinal de mensagem pela portadora.

O diagrama de blocos da modulação AM-DSB-SC no GNU Radio é apresentado na Figura 13.

Os seguintes blocos foram utilizados:

Figura 14. Diagrama de blocos da demodulação AM-DSB-SC. Fonte: Autor.

- **Signal Source**: Gera o sinal de mensagem com frequência de 1000 Hz e amplitude de 1.
- **Signal Source**: Gera a portadora com frequência variável de 0 a 20 kHz e amplitude de 1 V.
- Signal Source: Gera o oscilador local com frequência fixa de 5 kHz.
- QT GUI Range: Permite ajustar a frequência da portadora entre 0 e 20 kHz.
- Multiply: Multiplica o sinal de mensagem pela portadora, resultando no sinal modulado AM-DSB-SC.
- Virtual Sink: Armazena os sinais para uso no bloco Virtual Source.
- Virtual Source: Utiliza os sinais armazenados no bloco Virtual Sink.
- QT GUI Time Sink: Exibe o sinal modulado no domínio do tempo.
- QT GUI Frequency Sink: Exibe o espectro do sinal modulado no domínio da frequência.

Para demonstrar a perda da mensagem devido à falta de sincronismo, ajustou-se a frequência da portadora para 10 kHz e modificou-se a fase do sinal para 1,57 radianos (90°) através do QT GUI Range. Com esses valores, espera-se que na demodulação a mensagem seja completamente comprometida.

B. Demodulação AM-DSB-SC (Double Sideband Suppressed Carrier)

Implementou-se a demodulação do sinal AM-DSB-SC multiplicando o sinal modulado por um oscilador local com a mesma frequência e fase da portadora original, seguido de um filtro passa-baixas.

O diagrama de blocos da demodulação AM-DSB-SC no GNU Radio é apresentado na Figura 14.

Os blocos utilizados foram:

- Virtual Source: Recebe o sinal modulado armazenado.
- **Signal Source**: Gera o oscilador local com frequência igual à portadora (5 kHz).
- Multiply: Multiplica o sinal modulado pelo oscilador local.
- Throttle: Controla a taxa de amostragem.
- Low Pass Filter: Filtro passa-baixas com frequência de corte em 2 kHz, ganho de 2 e janela retangular.
- QT GUI Time Sink: Exibe o sinal demodulado no tempo.

Figura 15. Diagrama de blocos da modulação AM convencional. Fonte: Autor.

• QT GUI Frequency Sink: Exibe o espectro demodulado.

Para demonstrar a importância do sincronismo, utilizou-se uma portadora com frequência diferente da do oscilador local no receptor.

C. Modulação AM Convencional

Para gerar o sinal AM convencional, adicionou-se uma constante ao sinal de mensagem antes da multiplicação pela portadora. Mantiveram-se os controles de frequência para demonstrar a insensibilidade à fase na demodulação por detector de envoltória.

Os parâmetros e blocos utilizados foram:

- **Signal Source**: Gera o sinal de mensagem (1 kHz, amplitude 1).
- QT GUI Range: Ajusta a frequência da portadora (50 Hz a 20 kHz).
- Add: Soma uma constante DC de 1 ao sinal de mensagem.
- Multiply: Multiplica pelo sinal da portadora.
- **Multiply Const**: Ajusta a amplitude do sinal mensagem (500 mV).
- Virtual Sink/Source: Armazena e recupera os sinais.
- Throttle: Controla a taxa de amostragem.
- QT GUI Time/Frequency Sink: Visualização dos sinais.
- O diagrama de blocos é mostrado na Figura 15.

D. Demodulação AM Convencional

A demodulação por detector de envoltória foi implementada conforme a Figura 16, utilizando:

- Virtual Source: Recebe o sinal modulado.
- Low Pass Filter: Filtra o sinal demodulado.
- Python Block (Retificador): Implementa a retificação de meia-onda.
- DC BlockR: Remove a componente DC.
- QT GUI Time/Frequency Sink: Visualização dos resultados.

Figura 16. Diagrama de blocos da demodulação AM convencional. Fonte: Autor.

Implementação em GNU Radio: Retificador de Meia Onda: A seguir, apresenta-se uma implementação em Python de um bloco de retificação de meia onda para sinais reais, utilizando GNU Radio:

```
import numpy as np
from gnuradio import gr

class blk(gr.sync_block):
    """Retificador de meia onda (sinal real)"""

def __init__(self):
    gr.sync_block.__init__(
    self,
    name='Retificador Meia Onda',
    in_sig=[np.float32],
    out_sig=[np.float32]

def work(self, input_items, output_items):
    # zera os valores negativos
    output_items[0][:] = np.maximum(input_items
[0], 0)
    return len(output_items[0])
```

Código 1. Implementação do retificador de meia onda

E. Efeitos da Fase na Demodulação AM Convencional

Ao contrário da modulação DSB-SC, na demodulação AM convencional por detector de envoltória:

- A fase da portadora não afeta a demodulação, pois o detector extrai apenas a envoltória do sinal.
- Mesmo com variações de fase na portadora, a mensagem é recuperada sem distorção.
- O detector é insensível à frequência exata da portadora, desde que esta seja suficientemente alta em relação à largura de banda do sinal modulante.

Para demonstrar essa característica:

- Variou-se a fase da portadora através do QT GUI Range.
- Ajustou-se a frequência da portadora para valores diferentes da original.
- Observou-se que a mensagem demodulada mantém sua forma de onda independentemente desses parâmetros.

Esta insensibilidade à fase comprova a vantagem do detector de envoltória em aplicações onde o sincronismo preciso não é viável.

IV. RESULTADOS

A. Modulação AM-DSB-SC (Double Sideband Suppressed Carrier)

Na modulação AM-DSB-SC, espera-se observar o espectro da mensagem deslocado para as frequências laterais em torno da frequência da portadora, conforme ilustrado na Figura 17. Como pode ser visualizado, a mensagem original, que é uma senoide de 1 kHz, aparece como dois impulsos simétricos em torno da portadora de 5 kHz, definida pelo QT GUI Range. Isso ocorre devido à propriedade da modulação, que desloca o espectro da mensagem para as frequências $f_c + f_m$ e $f_c - f_m$, onde f_c é a frequência da portadora e f_m a frequência da mensagem.

Figura 17. Sinais no domínio da frequência. Fonte: Autor.

Figura 18. Mensagem no tempo. Fonte: Autor.

Figura 19. Mensagem modulada DSB-SC. Fonte: Autor.

B. Demodulação AM-DSB-SC (Double Sideband Suppressed Carrier)

Os resultados da demodulação também estão de acordo com o esperado. Ao utilizar um filtro passa-baixa com frequência de corte superior à largura de banda da mensagem para filtrar as componentes de alta frequência geradas pela multiplicação do oscilador local, é possível recuperar o sinal original. A Figura 20 mostra o espectro do sinal após a demodulação, evidenciando a recuperação da senoide de 1 kHz.

Figura 20. Demodulação do sinal AM-DSB-SC. Fonte: Autor.

Figura 21. Mensagem no tempo após demodulação. Fonte: Autor.

C. Falta de Sincronismo e Fase de 90 Graus

Para demonstrar que a demodulação AM-DSB-SC exige sincronismo de fase entre a portadora do transmissor e o oscilador local do receptor, a fase da portadora foi alterada para $\pi/2$, evidenciando a perda de informação no espectro. Em seguida, a frequência da portadora foi modificada para 10 kHz, mostrando a necessidade de sincronismo entre os osciladores. A Figura 22 mostra a primeira situação quando deslocamos a fase do oscilador local para $\pi/2$, a mensagem é praticamente perdida.

Figura 22. Espectro da mensagem quando não há de sincronismo de fase. Fonte: Autor.

Também temos a perda da informação quando não há o sincronismo de frequência entre a portadora e o oscilador local Figura 23.

Quando temos uma fase diferente de 90° , o sinal da mensagem fica distorcido Figura 24, mesmo que a frequência da portadora seja igual.

D. Modulação AM

A mensagem enviada corresponde a um cosseno de frequência 1 kHz. Foi colocado uma fase de 90 graus na portadora para envidenciar também que não é necessario sincronismo de fase.

Figura 23. Sinal demodulado sem sincronismo de frequência e fase. Fonte: Autor.

Figura 24. Distorção do sinal quando a frequência é igual à da portadora, mas a fase é diferente de 90 graus. Fonte: Autor.

Figura 25. Mensagem transmitida no tempo. Fonte: Autor.

O sinal modulado apresenta uma envoltória correspondente à mensagem, como esperado para modulação AM.

Figura 26. Sinal AM modulado no tempo, mostrando a envoltória. Fonte: Autor.

No domínio da frequência, observa-se um componente em f_c devido à portadora, além das bandas laterais em torno de f_c correspondentes à mensagem.

E. Demodulação AM

A demodulação é realizada inicialmente pela retificação do sinal, obtendo-se um sinal retificado de meia onda.

Figura 27. Espectro do sinal AM modulado. Fonte: Autor.

Figura 28. Sinal retificado de meia onda. Fonte: Autor.

Após a filtragem passa-baixa e remoção da componente DC, o espectro do sinal recuperado se assemelha ao da mensagem original.

Figura 29. Espectro do sinal demodulado. Fonte: Autor.

A mensagem recuperada pode ser observada no domínio do tempo.

F. Falta de Sincronismo em AM

Na demodulação AM por detecção de envoltória, não há problemas relacionados à falta de sincronismo de fase ou frequência, pois o detector de envoltória não depende de oscilador local ou sincronização. Mesmo com alterações na fase ou frequência da portadora, o sinal é recuperado normalmente, conforme mostrado nas figuras anteriores.

Figura 30. Mensagem recuperada no tempo após demodulação. Fonte: Autor.

V. DISCUSSÃO E CONCLUSÃO

A. Discussão

Os resultados obtidos nos experimentos de modulação e demodulação **AM-DSB-SC** e **AM convencional** confirmam as expectativas teóricas e destacam as diferenças críticas entre os dois métodos:

• AM-DSB-SC (Double Sideband Suppressed Carrier):

- Como demonstrado nas Figuras 17 e 19, a modulação DSB-SC desloca o espectro da mensagem para as bandas laterais em torno da portadora
- A demodulação coerente (Figuras 20 e 21) exige sincronismo preciso de fase e frequência
- Quando esse sincronismo não é atendido (Figuras 22 e 23), a mensagem é atenuada ou completamente perdida

• AM Convencional:

- Permite demodulação por detecção de envoltória
- O sinal é recuperado mesmo com variações de fase ou frequência da portadora
- Robustez à falta de sincronismo é uma vantagem em aplicações práticas

• Eficiência e Aplicações:

- O DSB-SC é mais eficiente em potência, mas requer receptores complexos
- O AM convencional é menos eficiente mas mais simples

B. Conclusão

Este trabalho demonstrou experimentalmente os princípios da modulação AM-DSB-SC e AM convencional, destacando:

- A necessidade de sincronismo na demodulação DSB-SC
- A insensibilidade à fase na demodulação AM por detecção de envoltória

As diferenças entre os métodos refletem *trade-offs* entre **eficiência energética** (DSB-SC) e **simplicidade do receptor** (AM convencional).

Recomendações para Trabalhos Futuros:

- Implementar um PLL no receptor DSB-SC
- Explorar técnicas híbridas (ex.: SSB)

Avaliar o impacto do ruído na demodulação AM convencional

Nota Final: Os resultados validam os fundamentos teóricos e reforçam a importância da escolha do método de modulação com base nas exigências do sistema. O uso do GNU Radio Companion possibilitou uma visualização clara dos efeitos práticos.

REFERÊNCIAS

- [1] NETO, Vicente S. Sistemas de Comunicação Serviços, Modulação e Meios de Transmissão. Rio de Janeiro: Érica, 2015. E-book. p.44. ISBN 9788536522098. Disponível em: https://integrada.minhabiblioteca.com.br/reader/books/9788536522098/. Acesso em: 17 mai. 2025.
- [2] Proakis, J. G., & Salehi, M. (2005). Fundamentals of Communication Systems. McGraw-Hill.

VI. ARQUIVOS DO PROJETO

Os arquivos utilizados neste projeto podem ser encontrados no seguinte repositório:

• Repositório do Projeto no GitHub