Social Network Analysis Randomi Networks 2

https://powcoder.com

Robind We Chat powcoder
DePaul University
Chicago, IL

Characterizing the degree distribution

Mean field approximation

- Another way to solve
- TukositamentistoPetiestiFuatioHelp
 - intopateontinuouseprocess
- Apply calculus!
 Apply calculus!

Mean field approximation

- We want an equation for the expected detyreenofenoelegiect Exam Help
 - write a differential equation
- We know the rate of change Add WeChat powcoder
 m/t
- We know the starting condition
 - $d_i(i) = m$
- \circ dd_i(t)/dt = m/t

• • Solution

- $od_i(t) = m + m log(t/i)$
- This ssing runde be Fraojelia r Exam Help
 - m(1+log(t/i) https://powcoder.com
- Arrive at the same answer
 - cumulative distribution of expected degree
 - $F_t(d) = 1 e^{-(d-m)/m}$
- To get a probability density
 - take the derivative
 - e-(d-m)/m

• • What does this mean?

- Compared to Poisson distribution
 - an expanential distribution is more skewed to the left
 - Also hatpa:fattemtander.com
- But the tail drops off (exponentially) at the high end
- Also called
 - log-linear distribution
 - is linear in semi-log space
 - $\log(d) = -(d-m)/m$

• • Power law network

- One more model
- Sameignowing no jetworkam Help
- But now edges are added to a node

 - in proportion to its existing degree
 higher degree end of new edges
 - preferential attachment
- In R
 - \circ game pa(50, m=3)

• • Model

- Newborn nodes form m links to existing metworkect Exam Help
 - tm links total https://powcoder.com
- total degree is 2tm
 Add WeChat powcoder
 Probability of attaching to node i
- - d_i(t)/2tm
 - the percentage of the total degree taken up by node i

Mean Field Approximation

• How do degrees change?

Assignment Project Exam Help

da_i(t) ma_i(t)

https://powcoder.com

- Initial candition at powcoder
 - \bullet $d_i(i)=m$
- Solution

$$d_i(t) = m \left(\frac{t}{i}\right)^{\frac{1}{2}}$$

Compare to growing random

• • Distribution of degree

- Expected degree for node i born at m < i < t
 - Alsoightent Project Exam Help
- Nodes with degree less than d https://powcoder.com
 m(t/i)^{1/2} < d
- Solve fordd WeChat powcoder
 - $i > t m^2/d^2$
- \circ F₊(d) = (t-tm²/d²)/t = 1-m²/d²
- Density function
 - $f(d) = 2 m^2/d^3$

• • Power law

- $f(d) = 2 m^2/d^3$
- log(f(sig))metog(2crje2)+Blog(ndl)lelp
 - Linear in log-log space https://powcoder.com
- \circ Slope = 3
 - because of the partor original equation

WWW degree distribution

Albert, Jeong, Barabasi 1999

Assignment Project Exam Help

• • Warning!

- The eye is a very bad guide to fitting in log repet Project Exam Help
 - Righttside pass many more observations hthrapoter bder
- Using a linear model on the transformed data is also wrong
 - For the same reason

• • Fit_power_law

- fit_power_law in igraph can be used to fit apower law distribution
 - and httpd://termine the goodness of fit Add WeChat powcoder

• • Skewed degree distributions

- Not found in random networks
- LogAnoringalindistribilitioject Exam Help
- Found in networks where nodes age https://powcoder.com
 Power law distribution
- - Found And at Works but preference at attachment
 - Including many social networks
- Why does this matter?
 - understanding the degree distribution
 - gives insight into possible mechanisms of formation

Social Network Analysis CligGenTests Exam Help

https://powcoder.com

Robind We Chat powcoder
DePaul University
Chicago, IL

Hypothesis testing on network data

- Network data has two big problems for statistical hypothesis testing
 - Not normally distributed
 - power law effects
 - Quantities are her independent
 - the degree of node i may not be independent of the degree of node j
 - Many other node metrics

Need non-parametric methods

- ono assumptions about the distributions being is ample project Exam Help
- generative / Monte Carlo approaches https://powcoder.com
 generate a large number of graphs
 - generate a large number of graphs randantlyWeChat powcoder
 - compare their properties to the known data
- Null hypothesis
 - known statistic arises from chance

• • Example: Krackhardt data

- assortativity of friendship network wrt teasgnment Project Exam Help
 - are people friendly with those that were hired at the same time?
- Slightly not WeChat powcoder
 - evidence of competition?
 - due to chance?

• • Example

- Approach
 - Assignment Project Exam Help Generate all possible networks with the same markets but with the links randomlyassigned wooder
 - If all of these networks have similar assortativity value
 - then we can't reject the null hypothesis

• • CUG Test

- Conditional Uniform Graph test
- The Adeaignment Project Exam Help
 - Supply some "conditioning parameters" https://powcoder.com
 n (number of nedes)

 - * m (number of edges) at powcoder
 - nam (dyad census)
 - null, assymetric, mutual
 - Generate random graphs with those characteristics
 - Test a value of each network
 - See how this compares with your data

• • igraph note

- CUG testing is not implemented in igraph
- I've Awstiten na cutitity utbjet is Einailar Hethe SNA version
- version

 https://powcoder.com

 Only supports node and density (nodes + edges)

 condition of WeChat powcoder
- mycugtest
 - Returns an object compatible with cug.test routines
- Also print.cug.test and plot.cug.test

Example

network

mycugtest (kfriend,

conditioning type

function

function args

Assignment Project Exam Help

- Look at the assorbativity of 1000 random graphs with the same number of nodes and edges
 - wrt tenure at the company

Plot

Univariate CUG Test plot.cug.test(kfriend.cug) Assignment Project Exam Help https://powcoder.com
Add WeChat powcoder -0.1 0.0 -0.20.1 **CUG Replicates**

Conditioning: edges Reps: 1000

• • | Printing

print.cug.test(kfriend)

Univa Assignment Project Exam Helpst

https://powcoder.com

Graph Type: Add WeChat powcoder Diagonal Used: FALSE

Replications: 1000

Observed Value: -0.09456003

Pr(X >= Obs): 0.676

 $Pr(X \le Obs): 0.324$

What % of the networks had a value to the left of observed? (or ==)

What % had a value to the right of observed? (or ==)

• • Conclusion

- Tenure (years at the company) is not correlated withofrien deship Hiers
- Managers do not seem to form friendships with people hired at the same time
- This is what one would expect if the ties were randomly distributed

True Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Another CUG test: Transitivity

Pr(X>=Obs): 0.036

More transitive than almost all random networks

• Pr(X<=Obs)si@n@6etht Project Exam Help

• • What about department?

- assortativity_nominal
 - Assignment enterpretation scalar interpretation https://powcoder.com
 - dept = 4 is not closer to 3 than 1
 Add WeChat powcoder

CUG test: Department

Univariate COG Test

• • • So

 Friend network is governed much massibyntha department Welere people work https://powcoder.com

Add WeChat powcoder

• • Limitations

- CUG testing is kind of weak
- Westigowethat rejectat metworks are not like random networks om
 - not surprising if our networks would be significantly different

• • Other tests

ERGM

- asksgifamonodelopetie sreatipatibe the data
- kind of like regression https://powcoder.com
 next week

• QAP Add WeChat powcoder

- asks if the properties of a network are inherent in its structure
- or in the placement of nodes in it
- Also next week

• • Example

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder