Introduction to Machine Learning

Machine Learning Workflow

Problem

What problem do we want to solve? What do we want to predict?

Our algorithm should be able to distinguish dogs from muffins

VS

Feature Engineering

What information in the image, and in what form, can we use to train our algorithm?

Picture

Feature engineering

Algorithm

HOG (Histogram of Oriented Gradients)

https://en.wikipedia.org/wiki/Histogram of oriented gradients

Color Histogram

J. -S. Li, I. -H. Liu, C. -J. Tsai, Z. -Y. Su, C. -F. Li and C. -G. Liu, "Secure Content-Based Image Retrieval in the Cloud With Key Confidentiality," in IEEE Access, vol. 8, 2020

Spoiler: In Deep Learning, we skip feature engineering!

Picture

Neural Net

How do we get this data into the right form for our ML model?

Each column contains a feature

Class labels

	HOG_Pixel_1	HOG_Pixel_2		Red_Bin1	Red_Bin2	
Each line	•••					•••
contains information			•••	•••		•••
about one			•••	•••	•••	•••
image			•••	•••	•••	•••

Label	
Dog	
Muffin	
Muffin	
Dog	

PREPROCESSING

Scaling / Standardization

Problem: Features are often available in a wide variety of

forms e.g. scales from 1 to 10 vs. from - ∞ to + ∞ .

However: Many algorithms require standardized feature

vectors

Featur	es
--------	----

Class Labels

	HOG_Pixel_1	HOG_Pixel_2		Red_Bin1	Red_Bin2	
Each line	-1		•••	400	389	•••
contains information	1	•••	•••	3765	3400	•••
about one	.5		•••	520	502	•••
image	3		•••	27	16	•••

Label	
Dog	
Muffin	
Muffin	
Dog	

PREPROCESSING

Dimensionality Reduction

- Often we have a lot of features
- Many features contain redundant information

		Features					Class Labels	
		HOG_Pixel_1	HOG_Pixel_2		Red_Bin1	Red_Bin2		Label
Each line contains information about one image	_	-1			45		•••	Dog
		1			.97			Muffin
		.5			47			Muffin
		3	•••		99			Dog

PREPROCESSING

Dimensionality Reduction

Principle Component Analysis

We know the group membership of our data and want the algorithm to learn this membership

Supervised Learning

→ We know the labels of our data

Classification

We know the true values of the variable to be predicted in our data and want the algorithm to learn to predict them

Unsupervised Learning

→ We don't know the labels of our data

We do not know the group membership of our data and would like the algorithm to independently find clusters in our data

And so on...

Support Vector Machines

Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, *13*, 6308-6325.

1. We initialize our SVM with a random hyperplane

How does learning work?

2. After each learning phase the algorithm adjusts the hyperplane...

3. ...until it has found the optimal hyperplane

But how does the algorithm do it? How does it find the right hyperplane?

Back to the beginning:

1. We initialize our SVM with a random hyperplane

Idea:

Algorith should learn how to distinguish right and wrong classifications!

How do we quantify good or bad predictions of the classifier?

- → True class sign
- → Distance from hyperplane

Back to the beginning:

1. We initialize our SVM with a random hyperplane

This point is on the **wrong side** and **far from** the dividing line. That is why its loss function is **large**.

We need a mathematical function with will measure our "satisfaction" with the classification of the algorithm.

→ Loss function

$$l(y) = max(0; 1 - t * y)$$

y = Prediction (distance)

t = true class sign: -1 or +1

$$l(1.2) = max(0; 1 - (-1) * 1.2)$$

$$l(1.2) = max(0; 2.2)$$

$$l(1.2) = 2.2$$

Back to the beginning:

1. We initialize our SVM with a random hyperplane

This point is on the right side and far from the dividing line. Therefore, its loss is zero, that is, minimal.

We need a mathematical function with will measure our "satisfaction" with the classification of the algorithm.

→ Loss function

$$l(y) = max(0; 1 - t * y)$$

y = Prediction (distance)

t = true class sign: -1 or +1

$$l(1.1) = max(0; 1 - (+1) * 1.1)$$

$$l(1. 1) = max(0; -0.1)$$

$$l(1.1) = 0$$

+1

Back to the beginning:

1. We initialize our SVM with a random hyperplane

This point is on the right side, but very close to the dividing line. Therefore, its loss is low, but not minimal.

We need a mathematical function with will measure our "satisfaction" with the classification of the algorithm.

→ Loss function

$$l(y) = max(0; 1 - t * y)$$

y = Prediction (distance)

t = true class sign: -1 or +1

$$l(-.2) = max(0; 1 - (-1) * -0.2)$$

$$l(-.2) = max(0; 0.8)$$

$$l(-.2)=0.8$$

Exhaustive Search

We try all possible hyperplanes and calculate loss. Then we choose the hyperplane that minimizes loss function.

Gradient Descent

Iterative optimization method, with which we search for the minimum of the loss function. After each learning epoch we choose the next step (i.e. parameter combination) which leads us "steepest" downwards (instead of testing all combinations).

Metaphor

We are standing on a mountain, and suddenly heavy fog sets in.
We would like to get back to the valley as quickly as possible, but we can only see a few meters away. Which way do we choose?

We look at our feet and always choose the direction in which the terrain slope is steepest as our next step

We quantify the goodness of classification with a:

Loss function

e.g. Hinge loss

We search for the optimal parameter combination of our algorithm (which minimizes the loss function), using a:

Optimization procedure

e.g. Gradient Descent

Each optimization step is thereby an:

Iteration (epoch)

The step size with which we change the parameters per iteration is the:

Lerning rate

Gradient Descent Algorithm

```
epochs = 1000
x = random.choice(...) #starting location
learning_rate = 0.01

for i in range(epochs):
    gradient = derivative(x)
    x = x - learning_rate×gradient #updating rule
```

https://www.i-am.ai/gradient-descent.html

Overfitting

Regularization

Problem: The more complex a model (e.g. due to more parameters), the better it can adapt to the training data and minimize the error there.

Regularization

Idea: We add a **regularization term** to our loss function, which penalizes the complexity of our model

$$L(f) + \lambda R(f)$$

 λ = Strength of regularization

e.g.

$$L1 = \cdots + \lambda \sum |\beta_j|$$

LASSO regression:

"keep number of coefficients small,,

$$L2 = \dots + \lambda \sum \beta_j^2$$

RIDGE regression:

"keep coefficients small"

Elastic net

Combination of L1 + L2

How do we assess whether our model/predictions are adequate?

How do we assess whether our model/predictions are adequate?

Classification:

Predicted

	True Positive (Hit)	False Negative (Miss)		
Actual	False Positive (False Alarm)	True Negative (Correct Rejection)		

$$Accuracy = \frac{Hit + CR}{Hit + CR + Miss + FA}$$

$$Precision = \frac{Hit}{Hit + FA}$$

$$Sensitivity = \frac{Hit}{Hit + Miss}$$

$$Specificity = \frac{CR}{CR + FA}$$

How do we assess whether our model/predictions are adequate?

Regression:

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y}_{i})^{2}}$$

$$MSE = \frac{1}{N} \sum (y_i - \hat{y}_i)^2$$

How do we assess whether our model/predictions are adequate?

100% Accuracy!

Machine Learning V Question: What if we are dissatisfied with our

model's performance?

Train / Test Set Split

e.g. Accuracy, Precision, ...

Here we optimize our classifier

Training Set

Here we test the performance of our classifier

Machine Learning V

Question:

What if we are dissatisfied with our model's performance?

- Do we need to rethink / adjust the question?
- Do we need other data / features?
- Do we need to preprocess the data differently?
- Do we need another classifier?
- Can we train the classifier in any other way?
 - → Different loss function?
 - → Regularization?

Hyperparameter

Parameters that control learning behavior of the algorithm

For Support Vector Machines, e.g.

- **Kernel-Function** (e.g. ,rbf', ,poly', ,linear')
- λ (Penalty Parameter)

Hyperparameter Tuning

Procedure to find out best combination of hyperparameters

	Kernei				
		linear	rbf	poly	
	0.1	0.1 + linear	0.1 + rbf	0.1 + poly	
λ	1	1 + linear	1 + rbf	1 + poly	
	10	10 + linear	10 + rbf	10 + poly	

Hyperparameter

Parameters that control learning behavior of the algorithm

For Support Vector Machines, e.g.

- **Kernel-Function** (e.g. ,rbf', ,poly', ,linear')
- λ (Penalty Parameter)

Hyperparameter Tuning

Procedure to find out best combination of hyperparameters

	No.					
		linear	rbf	poly		
	0.1	70%	72%	68%		
l	1	72%	57%	65%		
	10	74%	59%	67%		

Kernel

Question:

Where do we test the performance of the grid search? Test or train set?

Question:

What problems might arise with this approach?

Solution: we iterate through several different splits in training/validation/testing

EVALUATION

Problem: Imbalanced Datasets

$$Accuracy = \frac{17}{20} = 85\%$$

Balanced Accuracy =
$$\frac{\frac{4}{5} + \frac{13}{15}}{2} = 83.3\%$$

$$Accuracy = \frac{18}{20} = 90\%$$

Balanced Accuracy =
$$\frac{\frac{3}{5} + \frac{15}{15}}{2} = 80\%$$

SUMMARY

- Supervised vs Unsupervised? Regression? Classification?
- Which features are usefull? (feature selection)
- Bring features to correct form: scaling, dimensionality reduction (feature engineering)
- e.g. SVM, random frest, decision tree, ...
- Nested Cross Validation, HPO, Grid Search
- Loss function, Gradient Descent, Learning Rate, Regularization
- e.g. AUC, (Balanced) Accuracy, Sensitivity, Specificity, ...