14.1. Soit $I =]0, \infty[$ et $f : I \to \mathbf{R}$ définie par $f(x) = x \sin(\frac{1}{x})$. Démontrer que f est uniformément continue sur I.

 $\underline{\text{Indication:}}$ on utilisera le fait que la fonction sin est continue sur $\mathbf R$ avec la propriété:

$$|\sin(x)| \le 1, \forall x \in \mathbf{R}$$

14.2. (i) Soit $a \in \mathbf{R}$ et $f:]a, \infty[\to \mathbf{R}$ une fonction continue. On suppose que

$$\lim_{\substack{x \to a \\ >}} f(x) = \ell_1 \quad \text{et} \quad \lim_{x \to \infty} f(x) = \ell_2.$$

Montrer que f est uniformément continue.

- (ii) Donner un exemple qui montre que la conclusion n'est pas valide sans l'hypothèse sur l'existence de la limite à droite en a.
- (iii) Donner un exemple qui montre que la conclusion n'est pas valide sans l'hypothèse sur l'existence de la limite à gauche en ∞ .