

IIC1253 — Matemáticas Discretas — 1' 2020

PAUTA CONTROL 3

Pregunta 1

Pregunta 1.1

Para mostrar que es una relación de equivalencia se debe probar que $((R^r)^s)^t$ es refleja, transitiva y simétrica.

I) **Refleja**: Dado que R^r es refleja y por definición de clausura se tiene que

$$R^r \subseteq (R^r)^s \subseteq ((R^r)^s)^t$$

Luego, $\forall a \ (a, a) \in ((R^r)^s)^t$, es decir, $((R^r)^s)^t$ es refleja.

- II) **Transitiva**: $((R^r)^s)^t$ es transitiva porque la clausura transitiva $(.)^t$ lo es.
- III) Simétrica:

```
Sea S = (R^r)^s

PD: S^t es simétrica

Sea (a,b) \in S^t

PD: (b,a) \in S^t

Como (a,b) \in S^t y S^t = \bigcup_{i=1}^{\infty} S^i, entonces (a,b) \in S^k, para algún k

Luego por definición de S^k se puede construir un camino de largo k entre a y b.

Sea (a,c_1),(c_1,c_2),\ldots,(c_{k-1},b) \in S el camino de largo k.

Dado que S es simétrico por ser clausura simétrica, se tiene que (c_1,a),(c_2,c_1),\ldots,(b,c_{k-1}) \in S

Reordenando este camino, (b,c_{k-1}),\ldots,(c_1,a) \in S, entonces por definición de S^k se tiene que (b,a) \in S^k

Como k era genérico, en participar se cumple para t.

\therefore (b,a) \in S^t

\therefore S^t es simétrica.
```

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por demostrar correctamente la propiedad refleja usando la definición de clausura.
- (1 Punto) Por demostrar correctamente la propiedad transitiva usando la definición de clausura.
- (1 Punto) Por demostrar correctamente la propiedad simétrica:
 - (0.5 Puntos) Por encontrar un camino de largo k de a hacia b.
 - (0.5 Puntos) Por probar la simetría de dicho camino.
 - (0 Punto) Si se utilizó $((R^r)^t)^s$ puesto que le faltan caminos a esta relación para que sea simétrica.

Pregunta 1.2

Dado que A es infinito numerable, entonces 2^A es no numerable por el teorema de Cantor. Para cada $S \subseteq A$ se tiene que $E(S) = \{S, A \setminus S\}$ clase de equivalencia dada por la partición de A.

Luego, podemos construir el conjunto R(S) con la partición S de A:

 $R(S) = \{(a,b) \in A \times A | ((a,b) \in S \times S) \vee ((a,b) \in A \setminus S \times A \setminus S)\}$

Entonces, E(S) lo podemos escribir como el conjunto cociente E(S) = A/R(S).

Como $\{R(S)|S\subseteq A\}\subseteq \mathcal{C}(A)$ queda que

$$|\{R(S)|S\subseteq A\}|=|\{E(S)|S\subseteq A\}|=\frac{\left|2^A\right|}{2}$$

Puesto que $\frac{2^A}{2}$ es no numerable, se concluye que $\mathcal{C}(A)$ es no numerable. Por último, sólo faltaría probar que $\frac{2^A}{2}$ es no numerable.

PD: $\frac{2^A}{2} = \{E(S) | S \subseteq A\}$ es no numerable Por contradicción, suponga que $\{E(S) | S \subseteq A\}$ es numerable.

Luego se puede construir una secuencia E_0, E_1, \ldots de E(S).

Sea $E_i = \{S_i, A \setminus S_i\}$

Entonces, para la secuencia E_0, E_1, \ldots se va a tener $S_0, A \setminus S_0, S_1, A \setminus S_1, \ldots$

Esta última es una lista de enumeración para 2^A que es no numerable.

Aquí se llega a una contradicción pues la hipótesis era que dicho conjunto es numerable.

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por usar el teorema de Cantor en la conclusión de que 2^A es no numerable.
- (1 Punto) Por formular la partición y crear la clase de equivalencia E(S).
- (1 Punto) Por concluir la no numerabilidad de $\mathcal{C}(A)$ usando la cardinalidad de R(S), E(S) y $\frac{2^A}{2}$.

Pregunta 2

Pregunta 2.1

El mejor-caso ocurre si $(u, v) \in E$, para U = M. Si esta condición se cumple, entonces entraría en el while y retorna 1 en la fila 5 en la primera iteración que se realice.

Sea C el tiempo que demoran las líneas 1 a la 5, entonces;

$$5 \cdot C \in \Theta(1) \tag{1}$$

Por lo tanto, el mejor-caso $\in \Theta$ (1)

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por describir el mejor mejor-caso
- (1 Punto) Por encontrar la expresión correcta del mejor-caso.

Pregunta 2.2

El peor-caso ocurre si no existe un camino de u a v. Si esto ocurre entonces el algoritmo realizará n iteraciones del while. Al entrar, cada iteración ejecutará la línea 7.

Sea C_1 tal que Tiempo de $M \circ E \geq C_1 \cdot n^3$. Entonces tenemos que,

$$Tiempo_A(G) \ge C_1 \cdot n^3 \cdot n = C_1 \cdot n^4 \tag{2}$$

Sea C' el tiempo que toman las líneas constantes ($\sum_{i=1}^{11} C_i = C'$) y C_2 es tal que Tiempo línea $7 \leq C_2 \cdot n^3$

$$Tiempo_A(G) \le n \cdot C' + n \cdot n^3 \cdot C_2 \tag{3}$$

Notamos que,

$$Tiempo_A(G) \le n^4(C_2 + C_1) \tag{4}$$

Por lo tanto, $T_A(G) \in \Theta(n^4)$ y también que peor-caso $\in \Theta(n^4)$.

Dado lo anterior el puntaje asignado es el siguiente:

- (1 Punto) Por describir el peor-caso.
- (1 Punto) Por notar la cota sobre $T_A(G)$ de Tiempo de $M \circ E$.
- (1 Punto) Por incorporar el tiempo de las líneas constantes a la expresión.
- (1 Punto) Por encontrar la expresión correcta de $Tiempo_A(G)$ y del peor-caso.