ГУАП

КАФЕДРА № 6

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

доцент, канд. техн. наук

должность, уч. степень, звание

July 10.23

подпись, дата

Т. П. Мишура инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ № 2

ИССЛЕДОВАНИЕ СИСТЕМ ОСВЕЩЕНИЯ И ИХ СВЕТОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК

по курсу: БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ гр. №

4326

100110-23

Г. С. Томчук

инициалы, фамилия

Протокол лабораторной работы №2

«ИССЛЕДОВАНИЕ СИСТЕМ ОСВЕЩЕНИЯ И ИХ СВЕТОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК»

Группа: 4326 Студенты: Mongaryk J. Bornan E., Teoprob O., Longpantok D., Kpomob D., Якупов D.	(ПОДПИСЬ ПРЕПОДАВАТЕЛЯ)
Вариант № 2 Разряд и подразряд зрительных работ по варианту $\underline{\text{II}}^{\text{a}}$	19.09.23
заполняется при проведении измерений.заполняется при оформлении отчета.	

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ

Результат измерения $E_{\text{нар}} = \underline{160}$, лк (при $E_{\text{нар}} < 5000$ лк табл. 1 не заполняется).

Таблица 1

Параметры	Per	-	ты изм расчето		Нормы при боковом освещении (КЕО на расстоянии 1 м от стены), %			
Расстояние R от светового проема, м					1 м от стены	естественное	совмещенное	
Евнутр, лк					ME		1	
КЕО=(Е _{внутр} / Е _{нар})×100, %								

ИССЛЕДОВАНИЕ СИСТЕМ ОСВЕЩЕНИЯ

Таблица 2

	Измеренное значение	Нормы на освещенность, лк						
Система	освещенности, создаваемой люминесцентными	Комбиниро	Общая					
	лампами, лк	Bcero	В т. ч. общая	система				
Общая	180							
Комбинированная	1400	4000	400	_				
Местная	1220							

ИССЛЕДОВАНИЕ ОТНОСИТЕЛЬНОЙ СВЕТООТРАЖАЮЩЕЙ СПОСОБНОСТИ ФОНА

Таблица 3

	Гип ильника	Цвет отражающей поверхности										
		Б	K	0	Ж	3	Γ	C	Ч			
"Универ-	E_{omp} , лк	85	65	70	75	65	62	60	60			
саль"	ρ_{omh}	1	0,764	0,823	0,882	0,764	0,729	0,705	0,705			
"ОД"	E_{omp} , лк	85	63	70	75	64	62	60	59			
	ρ_{omh}	1	0,741	0,823	0,882	0,752	0,729	0,705	0,694			

ИССЛЕДОВАНИЕ КРИВОЙ СИЛЫ СВЕТА СВЕТИЛЬНИКА "УНИВЕРСАЛЬ"

Таблица 4

				LUOJIEL	ци						
Угол наклона фотоэлемента	θ, гра д	0	10	20	30	40	50	60	70	80	90
Результат измерения освещенности	Е _θ ,	360	355	340	330	300	290	280	235	220	215
Расчет силы света (при R =0,6м)	I _θ ,	129,6	127,8	122,4	118,8	108	104,4	100,8	84,6	79,2	77,4

Зависимость $I_{\theta} = f(\theta)$ строится в полярной системе координат.

ИССЛЕДОВАНИЕ ОСВЕЩЕННОСТИ НА НАКЛОННОЙ ПЛОСКОСТИ ДЛЯ СВЕТИЛЬНИКА «УНИВЕРСАЛЬ»

Таблица 5

			1					2 1 1 2 2 2 2 2		CCOSILI	Lie C
Угол наклона плоскости	α, град	0	10	20	30	40	50	60	70	80	90
Результат измерения освещенности	Е _{а эксп} ,	540	580	600	610	610	580	560	530	500	465
Результат расчета освещенности	Е _{α расч} , лк	540	571,2	563,8	528,3	467,3	372,8	280	181,3	86,8	0

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНЫХ ХАРАКТЕРИСТИК ИСТОЧНИКОВ СВЕТА

Таблица 6

Длина	1	Деление на		Исследуемый источник света								
волны		барабане	Лампа на	каливания	Лампа люминесцентная							
λ, мкм	g(\lambda)	g(λ) Барабане монохроматора Лампа Показание вольтметр (иλ), В 0,9 14,00 1,5 0,95 16,00 1,8 1,0 17,35 2,2 0,9 21,00 5,9 0,7 22,34 8,6 0,6 23,00 10,3	Показание вольтметра U(λ), В	Расчетное значение φ(λ)	Показание вольтметра U(λ), В	Расчетное значение φ(λ)						
0,45	0,9	14,00	1,5	1.6	0,2	0.2						
0,48	0,95	16,00	1,8	1.8	7,2	7.5						
0,5	1,0	17,35	2,2	2.2	0,2	0.2						
0,56	0,9	21,00	5,9	6.5	5,3	5.8						
0,60	0,7	22,34	8,6	12.2	0,5	0.7						
0,62	0,6	23,00	10,3	17.1	0,3	0.5						
0,65	0,4	24,40	12,7	31.1	21,6	54						

1. Цель работы:

Ознакомление c основными светотехническими характеристиками, определяющими условия работы В производственных помещениях, видами c И системами производственного освещения, требованиями санитарных норм на производственное освещение, методами и приборами для исследования светотехнических характеристик источников света, светильников и систем освещения.

2. Расчетные формулы:

Сила света может быть определена по формуле

$$I = \frac{d\Phi}{d\omega} = R^2 E,\tag{1}$$

где $d\omega$ — значение элементарного телесного угла, определяемое отношением площади dS, вырезаемой им из сферы произвольного радиуса R, к квадрату этого радиуса $d\omega = dS/R^2$; E — освещенность.

Освещенность элемента поверхности может быть определена по формуле

$$E = \frac{d\Phi}{dS} = \frac{I\cos\beta}{R^2},\tag{2}$$

где I — сила света в направлении элемента поверхности, кд; β — угол между нормалью к элементу поверхности и направлением силы света; R — расстояние между источником и освещаемым элементом поверхности, м.

Для наклонной поверхности освещенность от точечного источника света при условии $\alpha \leq \frac{\pi}{2}$ может быть определена через горизонтальную освещенность E_{Γ} по формуле

$$E_{\rm H} = E_{\rm \Gamma} \cdot \cos \alpha \,, \tag{3}$$

где α — угол наклона расчетной плоскости по отношению к горизонтальной плоскости; $E_{\Gamma} = E_{\alpha \text{ эксп.}}$ при $\alpha = 0$.

Коэффициент отражения ρ – отношение отраженного

поверхностью светового потока $\Phi_{\text{отр}}$ к световому потоку $\Phi_{\text{пад}}$, падающему на нее,

$$\rho = \frac{\Phi_{\text{отр}}}{\Phi_{\text{пад}}} \tag{4}$$

Естественное освещение помещения оценивают по коэффициенту естественной освещенности (КЕО), равному выраженному в процентах отношению естественной освещенности $E_{\rm внутр.}$, создаваемой в некоторой точке заданной плоскости внутри помещения светом небосвода (непосредственно или после отражений), к одновременному значению наружной горизонтальной освещенности $E_{\rm нар.}$, создаваемой светом полностью открытого небосвода

$$KEO = \frac{E_{\text{внутр.}}}{E_{\text{нар.}}} 100\%.$$
 (5)

Спектральную плотность лучистого потока источника можно определить через $U(\lambda)$ по формуле

$$\varphi(\lambda) = \frac{U(\lambda)}{g(\lambda)}.\tag{6}$$

$$E_{M} = E_{KOM6} - E_{OGIII}$$
 (7)

$$\rho_{\text{отн}} = \frac{E_{\text{отр}}}{E_{\text{отр,бел}}} \tag{8}$$

3. Результаты исследования естественного освещения:

Результат измерения $E_{\text{нар}} = 160$ лк (при $E_{\text{нар}} < 5000$ лк табл. 1 не заполняется).

Таблица 1

Параметры	Pes	•	аты и расче	измер етов	ений		Нормы при освещении расстоянии 1 м	і (КЕО на
Расстояние R					естественное	совмещенное		
						1 м от	ССТССТВСИНОС	совмещенное
от светового проема, м						стены		
Евнутр, лк								
$KEO=(E_{BHYTp}/E_{Hap})\times100, \%$								

4. Результаты исследования горизонтальной освещенности в зависимости от системы освещения (по формуле (7)):

Таблица 2

	Измеренное значение	Нормы на освещенность, лк					
Система	освещенности, создаваемой люминесцентными	Комбиниров	анная система	Общая			
	лампами, лк	Всего	В т. ч. общая	система			
Общая	180						
Комбинированная	1400	4000	400	_			
Местная	1220						

5. Результаты исследования относительной светоотражающей способности в зависимости от цвета отражающей поверхности и типа источника света (по формуле (8)):

Таблица 3

	Тип ильника	Цвет отражающей поверхности									
		Б	К	О	Ж	3	Γ	С	Ч		
"Универ-	E_{omp} , лк	85	65	70	75	65	62	60	60		
саль"	$ ho_{om extit{ iny m}}$	1	0,764	0,823	0,882	0,764	0,729	0,705	0,705		
"ОП"	E_{omp} , лк	85	63	70	75	64	62	60	59		
"ОД"	$ ho_{om extit{ iny m}}$	1	0,741	0,823	0,882	0,752	0,729	0,705	0,694		

6. Результаты исследования распределения силы света светильника «Универсаль» (по формуле (1)):

Таблица 4

Угол наклона фотоэлемента	θ, град	0	10	20	30	40	50	60	70	80	90
Результат измерения освещенности	Еθ, лк	360	355	340	330	300	290	280	235	220	215
Расчет силы света (при R =0,6м)	Іθ, кд	129,6	127,8	122,4	118,8	108	104,4	100,8	84,6	79,2	77,4

Зависимость $I_{\theta} = f(\theta)$

График 1

7. Результаты исследования освещенности рабочей поверхности в зависимости от угла ее наклона (по формуле (3)):

Таблица 5

Угол наклона плоскости	α, град	0	10	20	30	40	50	60	70	80	90
Результат измерения освещенности	Е _{α эксп} ,	540	580	600	610	610	580	560	530	500	465
Результат расчета освещенности	Е _{α расч} , лк	540	571,2	563,8	528,3	467,3	372,8	280	181,3	86,8	0

График 2

8. Результаты исследования спектральных характеристик (по формуле (6)):

Таблица 6

	$g(\lambda)$	Деление на барабане монохро-матора	Исследуемый источник света			
Длина			Лампа накаливания		Лампа люминесцентная	
волны λ , мкм			Показание вольтметра $U(\lambda), B$	Расчетное значение $\phi(\lambda)$	Показание вольтметра $U(\lambda)$, В	Расчетное значение $\phi(\lambda)$
0,45	0,9	14,00	1,5	1.6	0,2	0.2
0,48	0,95	16,00	1,8	1.8	7,2	7.5
0,5	1,0	17,35	2,2	2.2	0,2	0.2
0,56	0,9	21,00	5,9	6.5	5,3	5.8
0,60	0,7	22,34	8,6	12.2	0,5	0.7
0,62	0,6	23,00	10,3	17.1	0,3	0.5
0,65	0,4	24,40	12,7	31.1	21,6	54

График 3

- 9. Выводы по результатам исследований и рекомендации по улучшению условий зрительной работы:
 - Результат измерения $E_{\text{нар}}$ составляет 160 лк. При $E_{\text{нар}} < 5000$ лк табл. 1 не заполняется, т.к. естественного освещения недостаточно и искусственное освещение необходимо.
 - Для светильников «Универсаль» и «ОД» светоотражающая способность фона желтого цвета наиболее приближена к светоотражающей способности фона белого цвета.

- Исходя из исследования кривой силы света светильника
 «Универсаль», можно сделать вывод, что максимальна сила света наблюдается при 0°.
- На углах 50°-90° появляются существенные различия между измеренной и рассчитанной освещенностью из-за дополнительных источников света при измерении.
- В результате исследования спектральных характеристик источников света видно, что спектральная плотность лучистого потока лампы накаливания с увеличением длинны волны растёт прямо пропорционально. В то время как спектральная плотность лучистого потока люминесцентной лампы возрастает и убывает в независимости от длинны волны.
- Согласно нормам, при зрительной работе разряда II^а не рекомендуется использовать исключительно общую систему освещения. При комбинированном освещении измеренное значение (1400 лк всего, в т.ч. 180 лк общая) слишком мало (4000 лк согл. норме) следовательно, необходимо увеличить освещенность рабочего места как местной системой, так и общей (400 лк согл. норме).