# Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение

### высшего образования

Национальный исследовательский университет ИТМО

Факультет Систем Управления и Робототехники

# Лабораторная работа №5 по курсу «Прикладная теория информации»

«Синтез динамических наблюдающих устройств на базе концепции подобия»

Выполнили: Московский К.А.

Алексеева Ю.В.

Группа: R34362

Проверил: Краснов А.Ю.

Санкт-Петербург 2021 г.

## 1 Цель работы

- 1. Получить векторно-матричное описание наблюдаемой ЛДДС по заданной передаточной функции.
- 2. Получить матрицы ДНУ, составив матрицу подобия и решив уравнение Сильвестра.
- 3. Осуществить моделирование синтезированного ДНУ.
- 4. Проанализировать работу синтезированного ДНУ и показать, что оно работает корректно.

#### 2 Условие

$$\Phi(d) = \frac{d^5 + d^4 + d^3 + 1}{d^8 + d^7 + d^2 + d + 1}$$

$$x(0)^T = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

# 3 Ход работы

# 3.1 Получение векторно-матричного описания наблюдаемой ЛДДС по заданной передаточной функции.

Матрицы векторно-матричного описания:

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, H = [0]$$

С целью решения поставленной задачи выберем в качестве модели ДНУ регистр сдвига восьмого порядка, матрица  $\Gamma$  векторно-матричного описания которого будет иметь вид:

$$\Gamma = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Выберем в качестве матрицы подобия T единичную матрицу T=I размерности 8х8. Тогда решение уравнения Сильвестра  $\Gamma T + TA = LC$  относительно матрицы L и последующее вычисление матрицы G дает следующий результат:

Построим структурную реализацию синтезированного ДНУ:



Рис. 1: Структурная реализация синтезированного ДНУ

Таблица 1: Функционирование ДНУ

| xi/zi      | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|------------|---|---|---|---|---|---|---|---|---|---|----|----|
| x8         | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1  | 1  |
| x7         | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0  | 1  |
| x6         | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1  | 0  |
| x5         | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1  | 1  |
| x4         | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0  | 1  |
| x3         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0  | 0  |
| x2         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1  | 0  |
| x1         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0  | 1  |
| <i>z</i> 8 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1  | 1  |
| z7         | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0  | 1  |
| <i>z</i> 6 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1  | 0  |
| z5         | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1  | 1  |
| z4         | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0  | 1  |
| z3         | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0  | 0  |
| z2         | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1  | 0  |
| z1         | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0  | 1  |

Выбранная нами матрица имеет индекс нильпотентности v=8, поэтому вектор состояния ДНУ z(k) при k>=8 будет совпадать с вектором состояния исходной ЛДДС.

# 4 Вывод

В ходе выполнения лабораторной работы было получено векторно-матричное описание наблюдаемой ЛДДС по заданной передаточной функции и решено уравнение Сильвестра для получения матрицы ДНУ. Так же мы синтезировали полученное динамическое наблюдающее устройство и построили его структурную схему в среде Matlab. Работа синтезированного ДНУ корректна, что видно из таблицы его функционирования.