Отчёт по лабораторной работе №1

Операционные системы

Козина Дарья Александровна

Содержание

Цель работы	3
`	
Выполнение лабораторной работы	
Установка операционной системы	
Установка драйверов для ВМ	
Обновления	
Повышение комфорта работы	11
Автоматическое обновление	11
Отключение SELinux	12
Установка программного обеспечения для создания документации	12
Выполнение домашнего задания	14
Выводы	15

Цель работы

Приобрести практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Задание

- 1. Установка операционной системы;
- 2. Обновления;
- 3. Повышение комфорта работы;
- 4. Автоматическое обновление;
- 5. Отключение SELinux;
- 6. Установка программного обеспечения для создания документации.

Выполнение лабораторной работы

Установка операционной системы

Установим дистрибутив Linux Fedora Sway (рис. [-@fig:001], рис. [-@fig:002], рис. [-@fig:003],рис. [-@fig:004]).

Для установки в виртуальную машину используется дистрибутив Linux Fedora (https://getfedora.org), вариант с менеджером окон sway (https://fedoraproject.org/spins/sway/).

Установка дистрибутива

Установка дистрибутива

Установка дистрибутива

Установка дистрибутива

Создадим виртуальную машину и поставим нужные настройки (рис. [-@fig:005]).

Виртуальная машина

Запустим виртуальную машину (рис. [-@fig:005]).

Виртуальная машина

Откроем терминал, командой liveinst начнем установку ОС (рис. [-@fig:007], рис. [-@fig:008], рис. [-@fig:009])

```
lease type liveinst and press Enter to start the installer
liveuser@localhost-live ~]$ liveinst
ocaluser:root being added to access control list
```

Команда liveinst

Начало установки ОС

Конец установки ОС

Перезапустим виртуальную машину (рис. [-@fig:010]).

Завершение работы

Отключим носитель информации с образом и запустим ВМ (рис. [-@fig:011], рис. [-@fig:012], рис. [-@fig:013]).

Отключение носителя

Запуск ВМ

Созданная ВМ

Установка драйверов для ВМ

Откроем терминал (рис. [-@fig:014]).

Терминал

Запустим терминальный мультиплексор tmux (рис. [-@fig:015]).

tmux

Переключимся на роль супер-пользователя и установим средства разработки (рис. [-@fig:016]).

```
dakozina@dakozina:~$ sudo -i
[sudo] пароль для dakozina:
root@dakozina:~# dnf -y group install "Development Tools"
```

Роль супер-пользователя и установка средства разработки

Установим пакет DKMS (рис. [-@fig:017]).

```
root@dakozina:~# dnf -y install dkms
```

DKMS

В меню ВМ подключим диск дополнений гостевой ОС (рис. [-@fig:018]).

Завершение работы

Подмонтируем диск и установим драйвера (рис. [-@fig:019]

```
root@dakozina:~# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
root@dakozina:~# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.1.0 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
Removing installed version 7.1.0 of VirtualBox Guest Additions...
```

Подмонтаж диска и установка драйвера

Перезагрузим ВМ (рис. [-@fig:020]).

```
root@dakozina:~# eboot
-bash: eboot: команда не най
root@dakozina:~# reboot
```

Перезагрузка

Откроем терминал. Перейдем в роль супер-пользователя (рис. [-@fig:021]).

```
[dakozina@dakozina ~]$ sudo -i
Мы полагаем, что ваш системный администратор изложил вам основы
безопасности. Как правило, всё сводится к трём следующим правилам:
№1) Уважайте частную жизнь других.
№2) Думайте, прежде чем что-то вводить.
№3) С большой властью приходит большая ответственность.
По соображениям безопасности пароль, который вы введёте, не будет виден.
[sudo] пароль для dakozina:
[root@dakozina ~]#
```

Роль супер-пользователя

Обновления

Обновим все пакеты (рис. [-@fig:022]).

```
[root@dakozina ~]# dnf -y update
Updating and loading repositories:
Fedora 41 - x86_64 - Updates 63% [========= ] | 126.4 KiB/s | 7.1 MiB | -00m32s
```

Обновление

Повышение комфорта работы

Установим программы для удобства работы в консоли (tmux и mc) (рис. [-@fig:023]).

Установка программ

Автоматическое обновление

Установим программное обеспечение (рис. [-@fig:024]).

Установка

Запустим таймер (рис. [-@fig:025]).

```
[root@dakozina ~]# systemctl enable --now dnf-automatic.timer
Created symlink '/etc/systemd/system/timers.target.wants/dnf5-automatic.timer' _ '/usr/lib/systemd/system/dnf5-a
comatic.timer'.
[root@dakozina ~]#
```

Запуск таймера

Отключение SELinux

С помощью mc перейдем в файл /etc/selinux/config и зменим значение SELINUX=enforcing на SELINUX=permissive (рис. [-@fig:026]).

```
#
SELINUX=permissive
# SELINUXTYPE= can take one c
```

Замена

Перезагрузим ВМ (рис. [-@fig:027]).

```
root@dakozina:~# eboot
-bash: eboot: команда не най
root@dakozina:~# reboot
```

Перезагрузка

Установка программного обеспечения для создания документации

Откроем терминал. Запустим терминальный мультиплексор tmux (рис. [-@fig:028]).

```
[dakozina@dakozina ~]$ tmux
```

Мультиплексор tmux

Перейдем в роль супер-пользователя (рис. [-@fig:029]).

```
dakozina@dakozina:~$ sudo -i
[sudo] пароль для dakozina:
Попробуйте ещё раз.
[sudo] пароль для dakozina:
root@dakozina:~#
```

Роль супер-пользователя

Установим pandoc (рис. [-@fig:030]).

```
[sudo] пароль для dakozina:
root@dakozina:~# dnf -y install pandoc
Обновление и загрузка репозиториев:
```

Установка

Установим pandoc-crossref. Скачаем архив через браузер и с помощью mc разархивируем его в каталог /usr/local/bin (рис. [-@fig:031], рис. [-@fig:032],).

pandoc-crossref

Разархивация в тс

Установим дистрибутив TeXlive (рис. [-@fig:033]).

```
root@dakozina:~# dnf -y install texlive-scheme-full
```

Установка

Выполнение домашнего задания

Проанализируем последовательность загрузки системы, выполнив команду dmesg (рис. [-@fig:034]).

```
root@dakozina:~# dmesg | grep -1 "Linux version"
[    0.000000] Linux version 6.12.13-200.fc41.x86_64 (mockbuild@2a6540754cfe43faad2558abff29549b) (gcc
    (GCC) 14.2.1 20250110 (Red Hat 14.2.1-7), GNU ld version 2.43.1-5.fc41) #1 SMP PREEMPT_DYNAMIC Sat Fe
    8 20:05:26 UTC 2025
root@dakozina:~# dmesg | grep -i "Detected Mhz processor"
root@dakozina:~# dmesg | grep -i "CPU0"
[    0.186050] smpboot: CPU0: Intel(R) Core(TM) i5-7300HQ CPU @ 2.50GHz (family: 0x6, model: 0x9e, ste
pping: 0x9)
root@dakozina:~# dmesg | grep -i "Memory available"
root@dakozina:~# dmesg | grep -i "Hypervisor detected"
[    0.000000] Hypervisor detected: KVM
root@dakozina:~#
```

Получение нужной информации

Выводы

В ходе лабораторной работы мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.