Static-28

Title

Prestressed beam subjected to the uniformly distributed load

Description

A simply supported beam is subjected to the action of a tensile force and a uniformly distributed load.

Determine the maximum deflection, the slope at the left-hand end, and the maximum bending moment with and without the stress stiffening effect.

Structural geometry and analysis model

MODEL

Analysis Type

2-D static analysis (X-Z plane)

Unit System

in, lbf

Dimension

Length 200 in

Element

Beam element

Material

Modulus of elasticity $E = 3.0 \times 10^7 \text{ psi}$

Sectional Property

Rectangular cross-section: b = h = 2.5 in (Neglect shear deformation)

Area: 6.25 in²

Moment of inertia: 3.2552 in⁴

Boundary Condition

Node 1: Constrain D_X and D_Z

Node 11: Constrain D_Z

Load Case

Case 1: with stress stiffened effect (P-delta effect)

Tensile force, P = 21,972.6 lb

Uniformly distributed load, $\omega = 1.79253$ lb/in

Case 2: without stress stiffened effect

Uniformly distributed load, $\omega = 1.79253$ lb/in

Results

Displacements(δ_{Z}) of the structure

End slope (θ) *of the structure*

Maximum bending moments

Comparison of Results

TT		1	11 0 .
I nif:	1n	rad	lbf-in
CHIL.	111.	Tau.	11/1-111

			, ,
Results	Case	Theoretical	MIDAS/Civil
Max. deflection		-0.19945	-0.19945
End slope	With stiffened Effect	0.0032352	0.0032352
Max. bending		4580.10	4580.15
Max. deflection		-0.38241	-0.38241
End slope	Without stiffened Effect	0.0061185	0.0061185
Max. bending		8962.70	8962.65

Reference

Timoshenko, S. "*Strength of Materials, Part 1, Elementary Theory*", 3rd Edition, D. Van Nostrand Co., Inc., New York, NY.,1955.