1 Supplementary Material

1.1 Methods

- 3 We used a phylogenetic generalized least-squares regression model (PGLS) to test the relationship
- 4 between day of budburst and each trait. This analysis allowed us to test for phylogenetic non-
- 5 independence in the phenology-trait relationship ¹. We obtained a rooted phylogenetic tree by pruning
- the tree developed by ² and performed the PGLS analysis using the mean trait values and mean poste-
- 7 rior estimates of the cue responses from our joint model. The PGLS was run using the "Caper" package
- 8 in \mathbb{R}^3 .

9

References

- 11 [1] R. P. Freckleton, P. H. Harvey, M. Pagel, American Naturalist 160, 712 (2002).
- ¹² [2] S. A. Smith, J. W. Brown, American Journal of Botany **105**, 302 (2018).
- 13 D. Orme, The caper package: comparative analysis of phylogenetics and evolution in R. (2013).

Figure 1: A projection of tree traits across the first and second principle component axis. Arrows represent the direction of vectors for six functional traits. Points represent the 26 species for which complete trait data was available

Figure 2: Comparisons of estimated model fits and raw data from joint models of trait effects on budburst phenological cues for 37 species of woody deciduous plants. Four functional traits – a. height, b. SLA, c. seed mass, and d. LNC – were modeled individually, with the calculated trait value being used to jointly model species responses to standardized chilling, forcing, and photoperiod cues. Model posteriors are shown in black, with the thicker line depicting the 66% interval and the thinner black line the 97% interval. Overall species level model posterior distributions were well aligned with the raw data, shown in red, and the species level means from the raw data, denoted as a purple stars.

Figure 3: Functional traits may contribute to the species responses to forcing, chilling, or photoperiod cues in several ways. a) If traits are contribute negatively to the timing of phenological events, we expect the phenological response to be stronger and budburst earlier with increasing cue values. b) But if traits have no effects on the timing of budburst then cue responses will be zero and equivalent to the cue only trends. c) Lastly, traits that have a positive contribution to the timing of phenological events produce weaker responses with later budburst dates. The effect of height on phenological cue responses was weaker in response to forcing cues, but stronger in response to both chilling and photoperiod. In contrast, seed mass has a negligible effect on forcing and photoperiod cue responses, but a greater response with chilling. Band represent the 50% uncertainty intervals of the model estimates.

Table 1: Bibliographic information for trait data sources from both BIEN and Try trait databases.

traitname	unitname	no.obs	no.spp	database	datasetid	reference
Height	m	26	8	bien	10_bien	doi:10.5061/dryad.j25t0
Height	m	2	2	bien	12_bien	doi:10.5061/dryad.m88g7
Height	m	27	19	bien	14_bien	doi:10.5061/dryad.r3n45
Height	m	18	16	bien	18_bien	
Height	m	90	19	bien	20_bien	LEDA traitbase
Height	m	10	10	bien	21_bien	
Height	m	21	14	bien	22_bien	Moles, Angela
Height	m	47036	19	bien	24_bien	Reams, Greg
Height	m	5	5	bien	25_{bien}	Grime, Hodgson, & Hunt
Height	m	8	5	bien	26_bien	
Height	m	18	1	bien	$3_{\rm bien}$	doi:10.5061/dryad.1cn19
Height	m	120	1	bien	$5_{\rm bien}$	doi:10.5061/dryad.4q78p
Height	m	20	1	bien	$7_{\rm bien}$	doi:10.5061/dryad.6nc8c
Height	m	2	1	try	$156_{-}\mathrm{try}$	Bond-Lamberty et al. (2002)
Height	m	275	3	try	$186_{-}\mathrm{try}$	unpub.
Height	m	28	19	try	20_{-} try	Wright et al. (2004)
Height	m	2	2	try	236_{try}	Prentice et al. (2011)
Height	m	21	21	try	$251_{-}\mathrm{try}$	Schweingruber & Landolt (2005)
Height	\mathbf{m}	35	2	try	$275_{-}\mathrm{try}$	unpub.
Height	m	5	5	try	$28_{-}\mathrm{try}$	Moles et al. (2004)
Height	m	1	1	try	54 _try	Cavender-Bares et al. (2006)
Height	m	11	10	try	$86_{ ext{try}}$	Diaz et al. (2004)
LNC	mg/g	287	12	try	$130_{-}\mathrm{try}$	Craine et al. (2009)
LNC	mg/g	44	2	try	$154_{ ext{try}}$	Wilson et al. (2000)
LNC	mg/g	7	4	try	180_{try}	Wenxuan et al. (2012)
LNC	mg/g	7	3	try	181_{try}	Yahan et al. (2011)
LNC	mg/g	65	32	try	$20_{-}\mathrm{try}$	Wright et al. (2004)
LNC	mg/g	3	2	try	236_{try}	Prentice et al. (2011)
LNC	mg/g	120	20	try	240 _try	Vergutz et al. 2012
LNC	mg/g	24	8	try	286_try	Atkin et al. (2015)
LNC	mg/g	72	22	try	342 _try	Maire et al. (2015)
LNC	mg/g	2	1	try	37_try	Cornelissen et al. (2003)
LNC	mg/g	3216	37	try	412_try	unpub.
LNC	mg/g	6	2	try	443_try	Wang et al. 2017
Seed mass	mg	3	3	bien	12 _bien	doi:10.5061/dryad.m88g7
Seed mass	$_{ m mg}$	4	2	bien	17_bien	http://ucjeps.berkeley.edu/EFT.htm
Seed mass	$_{ m mg}$	250	37	bien	19_bien	KEW database
Seed mass	$_{ m mg}$	12	12	bien	2_bien	doi:10.5061/dryad.12b0h
Seed mass	mg	12	7	bien	9_bien	doi:10.5061/dryad.h9083
SLA	mm2 mg-1	44	2	try	154_try	Wilson et al. (2000)
SLA	mm2 mg-1	204	3	try	186_try	unpub.
SLA	mm2 mg-1	93	33	try	20_try	Wright et al. (2004)
SLA	mm2 mg-1	2	2	try	236_try	Prentice et al. (2011)
SLA	mm2 mg-1	102	18	try	25_try	Kleyer et al. (2008)
SLA	mm2 mg-1	83	2	try	275_try	unpub.
SLA	mm2 mg-1	40	11	try	286_try	Atkin et al. (2015)
SLA	mm2 mg-1	86	23	try	342_try	Maire et al. (2015)
SLA	mm2 mg-1	615	14	try	37_try	Cornelissen et al. (2003)
SLA	mm2 mg-1	6307	37	try	412_try	unpub.
SLA	mm2 mg-1	6	$\frac{37}{2}$	try	443_try	Wang et al. 2017
	mm2 mg-1	20	$\frac{2}{2}$	try 5	50_try	Shipley et al. (2002)
ST.A		40		$or \lambda = 0$		
		49	9	tra	5/1 tru	Cayonder-Bares et al. (2006)
SLA SLA SLA	mm2 mg-1 mm2 mg-1	42 1	2 1	try try	54_try 65_try	Cavender-Bares et al. (2006) unpub.

Table 2: Summary of model estimates using measurements of tree height for our 37 focal species (n=42781)

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	12.71	1.96	8.73	12.75	16.46	1.00
muPhenoSp	32.07	2.63	26.97	32.05	37.30	1.00
$\operatorname{muForceSp}$	-10.74	2.86	-16.63	-10.66	-5.38	1.01
muChillSp	-4.08	4.13	-12.46	-4.02	3.99	1.01
muPhotoSp	1.11	2.18	-3.37	1.14	5.27	1.01
betaTraitxForce	0.16	0.19	-0.21	0.16	0.55	1.01
betaTraitxChill	-0.54	0.28	-1.07	-0.54	0.02	1.01
betaTraitxPhoto	-0.25	0.15	-0.54	-0.25	0.08	1.00
$sigma_sp$	5.91	0.76	4.63	5.84	7.57	1.00
$sigma_study$	7.53	1.22	5.52	7.40	10.28	1.00
$sigma_traity$	5.39	0.02	5.36	5.39	5.43	1.00
sigmaPhenoSp	15.11	2.05	11.20	15.06	19.36	1.00
$\operatorname{sigmaForceSp}$	4.96	1.16	3.01	4.85	7.55	1.00
sigmaChillSp	8.53	2.10	5.21	8.26	13.38	1.00
sigmaPhotoSp	3.25	0.86	1.79	3.17	5.15	1.00
$sigmapheno_y$	14.18	0.26	13.69	14.18	14.70	1.00

Table 3: Summary of model estimates using measurements of specific leaf area for our 37 focal species (n=7656).

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	16.85	1.47	14.03	16.85	19.71	1.01
muPhenoSp	31.33	2.55	26.45	31.30	36.39	1.00
$\operatorname{muForceSp}$	-11.40	2.71	-17.29	-11.33	-6.42	1.01
$\operatorname{muChillSp}$	-16.66	4.70	-26.35	-16.61	-7.84	1.00
muPhotoSp	1.85	2.47	-3.13	1.98	6.47	1.00
betaTraitxForce	0.17	0.15	-0.11	0.17	0.47	1.01
betaTraitxChill	0.34	0.25	-0.13	0.34	0.83	1.00
betaTraitxPhoto	-0.23	0.14	-0.50	-0.24	0.05	1.00
$sigma_sp$	7.78	0.93	6.21	7.70	9.77	1.00
$sigma_study$	3.28	0.97	1.87	3.13	5.57	1.00
$sigma_traity$	6.17	0.05	6.07	6.16	6.27	1.00
sigmaPhenoSp	13.92	2.11	10.10	13.79	18.34	1.00
sigmaForceSp	4.97	1.12	3.07	4.87	7.49	1.00
sigmaChillSp	10.57	2.30	6.79	10.33	15.56	1.00
sigmaPhotoSp	3.48	0.81	2.14	3.40	5.36	1.00
$sigmapheno_y$	14.17	0.26	13.66	14.17	14.68	1.00

Table 4: Summary of model estimates using measurements of seed mass data for our 37 focal species (n = 281).

/						
	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	1.87	0.50	0.89	1.88	2.84	1.00
muPhenoSp	31.35	2.64	26.32	31.27	36.76	1.00
$\operatorname{muForceSp}$	-8.17	1.60	-11.35	-8.16	-5.07	1.00
muChillSp	-9.41	2.82	-15.21	-9.43	-3.92	1.00
muPhotoSp	-1.26	1.25	-3.72	-1.27	1.19	1.00
${\bf beta Traitx Force}$	-0.30	0.69	-1.61	-0.31	1.06	1.00
betaTraitxChill	-1.09	1.09	-3.28	-1.08	1.01	1.00
beta Traitx Photo	-0.56	0.58	-1.68	-0.56	0.62	1.00
$sigma_sp$	1.62	0.19	1.30	1.61	2.05	1.00
sigma_study	0.97	0.10	0.77	0.97	1.17	1.00
sigma_traity	0.25	0.01	0.23	0.25	0.27	1.00
sigmaPhenoSp	14.84	2.25	10.58	14.79	19.42	1.00
sigmaForceSp	4.92	0.98	3.22	4.85	7.03	1.00
sigmaChillSp	10.67	2.57	6.55	10.33	16.65	1.00
sigmaPhotoSp	3.58	0.86	2.13	3.49	5.52	1.00
sigmapheno_y	14.12	0.25	13.66	14.12	14.61	1.00

Table 5: Summary of model estimates using measurements of leaf nitrogen content for our 37 focal species (n=3853.)

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	22.61	1.37	19.91	22.60	25.32	1.01
muPhenoSp	31.14	2.52	26.33	31.09	36.29	1.00
$\operatorname{muForceSp}$	-19.33	5.37	-30.02	-19.45	-8.62	1.02
muChillSp	-27.10	7.04	-40.56	-27.27	-12.84	1.01
muPhotoSp	-9.40	4.67	-18.09	-9.41	-0.37	1.02
${\bf betaTraitxForce}$	0.47	0.23	0.01	0.47	0.93	1.02
betaTraitxChill	0.72	0.30	0.12	0.72	1.29	1.01
betaTraitxPhoto	0.31	0.19	-0.06	0.31	0.68	1.02
$sigma_sp$	5.12	0.61	4.09	5.06	6.48	1.00
$sigma_study$	3.55	0.98	2.03	3.44	5.83	1.00
$sigma_traity$	5.13	0.06	5.02	5.13	5.25	1.00
sigmaPhenoSp	14.05	1.97	10.30	13.97	18.23	1.00
sigmaForceSp	4.59	1.09	2.80	4.47	7.05	1.00
sigmaChillSp	8.92	1.97	5.74	8.71	13.44	1.00
sigmaPhotoSp	3.59	0.81	2.25	3.52	5.41	1.00
$sigmapheno_y$	14.17	0.26	13.67	14.17	14.67	1.00