Approximations, Inapproximability and Tight Bounds for Queueing Systems

VARUN GUPTA
Carnegie Mellon University

1

Performance Evaluation and Design

Capacity Provisioning Questions

GOAL: Average Time in queue $< t_{max}$

Q: Minimum # open checkout counters?

Capacity Provisioning Questions

GOAL: Average Time in queue $< t_{max}$

Q: Minimum # open checkout counters? 3 slow or 2 fast?
Stochastic Modeling (Queueing Theory) formalizes the above questions

• λ = arrival rate

- λ = arrival rate
- job sizes $(S_1, S_2, ...)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda E[S]$

- λ = arrival rate
- job sizes $(S_1, S_2, ...)$ i.i.d. samples from S
- "load" $\rho \equiv \lambda E[S]$

 $GOAL : E[W^{M/G/k}]$

$$\rho \equiv \lambda E[S]$$

k=1

Case: S ~ Exponential (M/M/1)

Analyze E[W^{M/M/1}] via Markov chain (easy)

Case: $S \sim General (M/G/1)$

$$E[W^{M/G/1}] = \frac{C^2+1}{2}E[W^{M/M/1}]$$

$$C^2 = \frac{var(S)}{E[S]^2}$$

Sq. Coeff. of Variation (SCV) > 20 for computing workloads

k>1

Case: S ~ Exponential (M/M/k)

E[WM/M/k] via Markov chain

Case: S ~ General (M/G/k)

No exact analysis known

The Gold-standard approximation:

Lee, Longton (1959)

$$\mathrm{E}[W^{M/G/k}] pprox \frac{C^2+1}{2} \mathrm{E}[W^{M/M/k}]$$

Lee, Longton approximation:

$$\mathrm{E}[W^{M/G/k}] pprox rac{C^2+1}{2} \mathrm{E}[W^{M/M/k}]$$

- Simple \$\infty\$
- Exact for k=1
- \clubsuit Asymptotically tight as $\rho \rightarrow k$ (think Central Limit Thm.)

Outline

- An Inapproximability result for E[W^{M/G/k}]
- Framework for tight bounds via higher moments of S

Lee Longton approximation:

$$\mathrm{E}[W^{M/G/k}] pprox \frac{C^2+1}{2} \mathrm{E}[W^{M/M/k}]$$

GOAL: Bounds on approximation ratio

[Dai, G., Harchol-Balter, Zwart]

COR.: No approx. for $E[W^{M/G/k}]$ based on first two moments of job sizes can be accurate for all distributions when C^2 is large

PROOF: Analyze limit distributions in $D_2 \equiv$ mixture of 2 points

Approximations using higher moments?

[Dai, G., Harchol-Balter, Zwart] 15

Outline

- An Inapproximability result for E[W^{M/G/k}]
- Framework for tight bounds via higher moments of S

Exploiting higher moments

GOAL: Identify the "extremal" distributions with given moments

RELAXED GOAL: Extremal distributions in some "non-trivial" asymptotic regime

IDEA: Light-traffic asymptotics $(\lambda \rightarrow 0)$

RELAXATION: Identify the "extremal" distributions in light traffic

Light traffic theorem for *M/G/k* [Burman Smith]:

$$E[W^{M/G/k}] = \frac{1}{k!} \left(\frac{\rho}{k}\right)^k E[\min\{R_1, R_2, \dots, R_k\}] + o(\rho^k)$$

Probability of finding all servers busy

i.i.d. copies of $R \equiv equilibrium residual$ size of S

pdf of R:
$$f_R(x) = \frac{\operatorname{Prob}[S \geq x]}{\operatorname{E}[S]}$$

SUBGOAL: Extremal distributions for E[min{ $R_1,...,R_k$ }] s.t. E[S^i] = m_i for i=1,..,n

Where we are...

GOAL: Tight bounds on $E[W^{M/G/k}]$ given n moments of S **IDEA:** Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

 $E[\min\{R_1,...,R_k\}]$ s.t. $E[S^i] = m_i$ for i=1,...,n

Principal Representations, Extremal Problems, and Tchebycheff-systems

GIVEN: Moment conditions on random variable *X* with support [0,B]

$$E[f_0(X)] = m_0$$

$$E[f_1(X)] = m_1$$

$$...$$

$$E[f_n(X)] = m_n$$

Principal Representations (p.r.) on [0,B] are distributions satisfying the moment conditions, and the following constraints on the support

Principal Representations, Extremal Problems, and Tchebycheff-systems

GIVEN: Moment conditions on random variable *X* with support [0,B]

Want to bound: E[g(X)]

$$E[f_0(X)] = m_0$$

$$E[f_1(X)] = m_1$$

$$...$$

$$E[f_n(X)] = m_n$$

THEOREM [Markov-Krein]:

If $\{f_0, f_1, ..., f_n\}$ and $\{f_0, ..., f_n, g\}$ are Tchebycheff-systems on [0, B], then E[g(X)] is extremized by the unique lower and upper principal representations of the moment sequence $\{m_0, ..., m_n\}$.

Where we are...

GOAL: Tight bounds on $E[W^{M/G/k}]$ given n moments of S **IDEA:** Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

$$E[\min\{R_1,...,R_k\}]$$
 s.t. $E[S^i] = m_i$ for $i=1,...,n$

RELAXATION: Extremal distributions for E[min{ $R_1,...,R_k$ }] s.t. E[S^i] = m_i for i=1,...,n

IDEA 1: Want to use Markov-Krein Theorem to say upper/ lower p.r. of $\{m_0, ..., m_n\}$ are extremal ...

IDEA 2: Suffices to prove p.r.s extremize $E[\min\{R_1, c_2, ..., c_k\}] = E[g(S)] \text{ for all } c_2, ..., c_k > 0$

g(x) piecewise polynomial, but does not form a T-system with x^i

THEOREM [G., Osogami]: Upper and lower p.r. are extremal for $E[\min\{R_1,...,R_k\}]$ s.t. $E[S^i] = m_i$ for i=1,...,n, if n=2 or 3.

Where we are...

GOAL: Tight bounds on $E[W^{M/G/k}]$ given n moments of S **IDEA:** Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

 $E[\min\{R_1,...,R_k\}]$ s.t. $E[S^i] = m_i$ for i=1,...,n

THEOREM:

For n = 2 or 3

RELAXATION 2: Restrict to mixtures of Exponential distributions

(Dense in Completely Monotone (CM) family; CM contains Weibull, Pareto, Gamma)

THEOREM: For all *n*.

SUBGOAL: Extremal distributions for E[min{ $R_1,...,R_k$ }] s.t. E[S^i] = m_i for i=1,...,n; and S is mixture of Exponential

IDEA 1: Want to use Markov-Krein Theorem to say upper/lower p.r. of $\{m_0, ..., m_n\}$ within this class are extremal ...

Need to define upper/lower p.r. for mixtures of Exponentials

SUBGOAL: Extremal distributions for E[min{ $R_1,...,R_k$ }] s.t. E[S^i] = m_i for i=1,...,n; and S is mixture of Exponential

IDEA 1: Want to use Markov-Krein Theorem to say upper/lower p.r. of $\{m_0, ..., m_n\}$ within this class are extremal ...

IDEA 2: Suffices to prove p.r.s extremize $E[\min\{R_1, \text{Exp}(c_2), \dots, \text{Exp}(c_k)\}] = E[g(Y_S)] \text{ for all } c_2, \dots, c_k > 0$

g(y) = a+b/(cy+1), and does form a T-system with y^i

THEOREM [G., Osogami]: Upper and lower p.r. are extremal for $E[\min\{R_1,...,R_k\}]$ s.t. $E[S^i] = m_i$ for i=1,...,n; and S mixture of Exponential, $\forall n$.

Where we are...

GOAL: Tight bounds on $E[W^{M/G/k}]$ given n moments of S **IDEA:** Identify extremal distributions

RELAXATION (Light Traffic): Extremal distributions for

 $E[\min\{R_1,...,R_k\}]$ s.t. $E[S^i] = m_i$ for i=1,...,n

THEOREM:

For n = 2 or 3

RELAXATION 2: Restrict to mixtures of Exponential distributions

(Dense in Completely Monotone (CM) family; CM contains Weibull, Pareto, Gamma)

THEOREM:For all *n*.

Simulation Results (k=4, ρ =2.4,)

Approximation Schema:

Refine lower bound via an additional odd moment, Upper bound via even moment until gap is acceptable

Outline

- An inapproximability result for E[WM/G/k]
- Framework for tight bounds via higher moments of S
- Many other "hard" queuing systems fit the above framework too

Other queuing systems exhibiting Markov-Krein characterization

Example 1: M/G/1 Round-robin queue

Need analysis to find q that balance overheads/performance

THEOREM [G., Osogami]: Upper and lower p.r. extremize mean waiting time under $\lambda \rightarrow 0$, when S is mixture of Exponential.

Other queuing systems exhibiting Markov-Krein characterization

Example 2: Systems with fluctuating load

Need analysis to tune sharing parameters

THEOREM [G., Osogami]: Upper and lower p.r. extremize mean waiting time under $\alpha \rightarrow 0$, when T_H , T_I are mixtures of Exponential.

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server FCFS system S_{i+1} S_i W_{i+1} = waiting time of S_{i+1} \longleftrightarrow A_{i+1} time $W_{i+1} = \Phi(W_i, S_i, A_{i+1})$

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server FCFS system S_{i+1} S_i $W_{i+1} = \text{waiting time of } S_{i+1}$ $W_{i+1} = (W_i + S_i - A_{i+1})^+$ $W_{i+1} = (W_i + S_i - A_{i+1})^+$

Open problem: Markov-Krein characterization of Stochastic Recursive Sequences

Example: Single server FCFS system S_{i+1} S_i W_{i+1} = waiting time of S_{i+1} $W \stackrel{d}{=} (W + S - A)^+$ S_{i+1} A_{i+1} time

Stationary behavior of a = Fixed point of a stochastic queueing system = recursive sequence of the form
$$W = \Phi(W,S)$$

Q: Given moments of S, under what conditions on f, Φ , is E[f(W)] extremized by p.r.s?

Conclusions

 All existing analytical approx for performance based on 2 moments, but 2 moments inadequate

 Provide evidence for tight n-moments based bounds via asymptotics for M/G/k and other queuing systems

 A new problem in analysis: Markov-Krein characterization of stochastic fixed point equations

$$W \stackrel{\mathsf{d}}{=} \Phi(W, S)$$

THEOREM [Markov-Krein]:

If $\{f_0, f_1, ..., f_n\}$ and $\{f_0, ..., f_n, g\}$ are Tchebycheff-systems on [0,B], then E[g(X)] is extremized by the unique lower and upper principal representations of the moment sequence $\{m_0, ..., m_n\}$.

Tchebycheff-system

 $\{f_0, f_1, ..., f_n\}$ form a Tchebycheff-system on [0,B] if

$$a_0 f_0 + a_1 f_1 + ... + a_n f_n$$

has \leq n roots (counting multiplicities) in [0,B] for any $a_0, a_1, ..., a_n$

Example 1 (Power functions): $f_i(x) = x^i$

Example 2 (Cauchy kernel): $f_i(x) = 1/(c_i+x)$ for $c_i>0$