

$$Y \approx f(X)$$

Dose de remédio

γ

3

Tree Depth

Trees

2

$$f(x) = 0.5$$

Y

γ

3

Tree Depth

$$f(x) = 0.5 + \epsilon \times 25$$

λ

γ

3

Tree Depth

λ

γ

3

Tree Depth

$$f(x) = 0.5 + \epsilon \times \frac{1}{2} + \epsilon \times \frac{1}{2}$$

"Learning Rate"

7

γ

3

0.3

Tree Depth

Trees

2

Hi	perparam	valor
	λ	
	γ	
	8	0.3
T	ree Depth	
	Trees	2
Efetividade O G	00	

20

10

Dose de remédio

-5

$$f(x) = 0.5$$

3

Trees 2

0.3

$$residuo_i = y_i - f(x_i)$$

$$f(x) = 0.5$$

3

Trees 2

0.3

$residuo_i = y_i - f(x_i)$

$$residuo_1 = -6 - 0.5 = -6.5$$

 $residuo_2 = 4 - 0.5 = 3.5$
 $residuo_3 = 5 - 0.5 = 4.5$
 $residuo_4 = -5 - 0.5 = -5.5$

λ

γ

ε 0.3

Tree Depth

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

λ

γ

3

0.3

Tree Depth

Trees

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

"Regularization Parameter" Ou "loss reduction"

$$f(x) = 0.5$$

-6.5, 3.5, 4.5, -5.5

0 0.3 3

Tree Depth

Trees

Similaridade =

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor
λ 0

$$f(x) = 0.5$$

$$Similaridade = 4$$

-6.5, 3.5, 4.5, -5.5

λ 0 γ ε 0.3

Tree Depth

Trees 2

Hora da primeira árvore

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

$$Similaridade_{esq} = -----=$$

$$Similaridade_{dir} = -----=$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

0.3

$$f(x) = 0.5$$

3

$$Similaridade_{esq} = \frac{(-6.5)^2}{1+0} = 42.25$$

$$Similaridade_{dir} = \frac{(3.5 + 4.5 - 5.5)^2}{3 + 0} = 2.08$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Trees 2

Gain =

Pergunta Gain	
---------------	--

Dose < 5

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalor
$$λ$$
 0 $γ$ $ε$ 0.3

$$f(x) = 0.5$$

$$Similaridade_{esq} = -----= =$$

$$Similaridade_{dir} = ------=$$

Pergunta	Gain
Dose < 5	40.33
Dose < 10	

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

Tree Depth

Trees

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5)^2}{2 + 0}$$
 = 4.5

Similaridade_{dir} =
$$\frac{(4.5 - 5.5)^2}{2 + 0} = 0.5$$

Pergunta	Gain
Dose < 5 Dose < 10	40.33

Gain =

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$
$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	
3	0.3

$$f(x) = 0.5$$

Pergunta	Gain
Dose < 5	40.33
Dose < 10	1
Dose < 15	

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

$$Similaridade_{esq} = \frac{(-6.5 + 3.5 + 4.5)^2}{3 + 0} = 0.75$$

Similaridade_{dir} =
$$\frac{(-5.5)^2}{1+0}$$
 = 30.25

$$Gain = 30.25 + 0.75 - 4 = 27$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(3.5)^2}{1+0}$$
 = 12.25

Similaridade_{dir} =
$$\frac{(4.5 - 5.5)^2}{2 + 0} = 0.5$$

Pergunta	Gain
Dose < 10	10.67
Dose < 15	

$$Gain = 12.25 + 0.5 - 2.08 = 10.67$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(+3.5 + 4.5)^2}{2 + 0}$$
 = 32

Similaridade_{dir} =
$$\frac{(-5.5)^2}{1+0}$$
 = 30.25

Pergunta	Gain
Dose < 10	10.67
Dose < 15	60.17

$$Gain = 30.25 + 32 - 2.08 = 60.17$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	
3	0.3
Tree Depth	(2)
Trees	2

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(+3.5 + 4.5)^2}{2 + 0}$$
 = 32

Similaridade_{dir} =
$$\frac{(-5.5)^2}{1+0}$$
 = 30.25

Pergunta	Gain
Dose < 10	10.67
Dose < 15	60.17

$$Gain = 30.25 + 32 - 2.08 = 60.17$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	
3	0.3
Tree Depth	2
Trees	2

Hora da poda

Hiperparam	valor
λ	0
γ	
3	0.3
Tree Depth	2
Trees	2

Hora da poda

XGBoost usa o Gain para fazer a poda das árvores.

Gain = 40.33 Dose < 5 3.5, 4.5, -5.5 Gain = 60.17**D**ose < 15 3.5, 4.5 -5.5

-6.5, 3.5, 4.5, -5.5

"gamma": nota de corte para o Gain. Se gain – γ for positivo, então não poda!

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2
A !	Ī

Se gain – γ for positivo, então não poda!

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2

OBSERVAÇÃO: o gain do primeiro nó é menor que 50, indicando para podar. Porém o ramo filho não foi podado, por isso não podamos o pai também.

Se gain – γ for positivo, então não poda!

Hiperparam	valor	f
λ	0	
γ	70	
8	0.3	
Tree Depth	2	
Trees	2	
5	l 	

Se $gain - \gamma$ for positivo, então não poda!

valor
0
50
0.3
2
2

Hora das predições

Ou "escoragem"

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2

f(x₁)

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times$$

$$predição = \frac{\sum resíduos}{\#resíduos + \lambda}$$

Hiperparamvalor
$$λ$$
0 $γ$ 50 $ε$ 0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5$$

$$predição = \frac{\sum resíduos}{\#resíduos + \lambda}$$

Hiperparam	valor
λ	0
γ	50
ε	0.3
Tree Depth	2

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

Hiperparam	valor
λ	0
γ	50
8	0.3

Tree Depth

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(x_2) = 0.5 + 0.3 \times 6.5 = -1.56$
 $f(x_3) = 0.5 + 0.3 \times 6.5 = -1.56$

Hiperparam	valor
λ	0
γ	50
8	0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(8) = 0.5 + 0.3 \times$
 $f(12) = 0.5 + 0.3 \times$

Hiperparam	valor
λ	0
γ	50
8	0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2

$$f(x) = 0.5 + 0.3 \times 0.00$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$
 $f(16) = 0.5 + 0.3 \times$

Hiperparam	valor
λ	0
γ	50
3	0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$
 $f(16) = 0.5 + 0.3 \times -5.5 = -1.15$

Hiperparam	valor
λ	0
γ	50
٤	0.3

$$f(x) = 0.5 + 0.3 \times 0.00$$

$$f(2) = 0.5 + 0.3 \times -6.5 = -1.56$$

 $f(8) = 0.5 + 0.3 \times 4 = 1.7$
 $f(12) = 0.5 + 0.3 \times 4 = 1.7$
 $f(16) = 0.5 + 0.3 \times -5.5 = -1.15$

4.44,2.3,3.3,-3.85	
	,

		ı
		·

Tree Depth 2

Trees 2

Hora da segunda árvore

(sim salamin...)

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2

$$f1(x) = 0.5$$

$$f2(x) = 0.5 + 0.3 \times 0.5$$

$$f3(x) = 0.5 + 0.3 \times 0.00 + 0.3 \times 0.00$$

Hiperparam	valor
λ	0
γ	50
3	0.3
Tree Depth	2
Trees	2
A ! !	

$$f1(x) = 0.5$$

$$f2(x) = f1(x) + 0.3 \times 0.00$$

$$f3(x) = f2(x) + 0.3 \times 0.3 \times$$

$$f(x) = 0.5$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparam valor 20 0.3 3

$$f(x) = 0.5$$

$$Similaridade_{esq} = \frac{(-6.5)^2}{3+1} = 21.125$$

$$Similaridade_{dir} = \frac{(3.5 + 4.5 - 5.5)^2}{1 + 1} = 3.125$$

$$Gain = 3.125 + 21.125 - 3.2 = 21.05$$

-6.5

Pergunta	λ=0	λ=1
Dose < 5	40.33	21.05
Dose < 10	1	
Dose < 15	27	

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

-6.5, 3.5, 4.5, -5.5

Dose < 5

3.5, 4.5, -5.5

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalorλ1γ20ε0.3

Gain = 3 + 0.33 - 3.2

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5)^2}{2 + 1} = 3$$

Similaridade_{dir} =
$$\frac{(4.5 - 5.5)^2}{2 + 1} = 0.33$$

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalorλ1γ20ε0.3

$$f(x) = 0.5$$

Similaridade_{esq} =
$$\frac{(-6.5 + 3.5 + 4.5)^2}{3 + 1}$$
 = 0.56

$$Similaridade_{dir} = \frac{(-5.5)^2}{1+1} = 15.12$$

$$1 + 1$$

$$Gain = 15.12 + 0.56 - 3.2 = 12.48$$

Efetividade	5 0 5	0	Ο Ο	d
	()	10	20
		Dose of	de ren	rédio

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$

$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Gains menores, mais fáceis de podar!

$$Gain = Sim_{esq} + Sim_{dir} - Sim_{pai}$$
$$Similaridade = \frac{(\sum resíduos)^2}{\#resíduos + \lambda}$$

Hiperparamvalorλ1γ20ε0.3

$$f(x) = 0.5 + 0.3 \times 0.5$$

Além disso, os scores também diminuíram...

Hiperparam	valor	
λ	0	
γ	20	
3	0.3	
Tree Depth	2	
Trees	2	

Regressão

$$\frac{(\sum residuos)^2}{\#residuos + \lambda}$$

$$\frac{\sum residuos}{\#residuos + \lambda}$$

$$f(x) = 0.5 + 6$$

$$\frac{(\sum residuos)^2}{\sum p(1-p) + \lambda}$$

$$\frac{\sum residuos}{\sum p(1-p) + \lambda}$$

$$\log\left(\frac{f(x)}{1-f(x)}\right) = 0.0 + \frac{1}{1-f(x)}$$

Hiperparam	valor
λ	0
γ	20
3	0.3
Tree Depth	2
Trees	2

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

No caso de classificação, vamos trocar f() por p() para relacionar com o fato de que estamos calculando probabilidades.

Hiperparam	valor
λ	0
γ	20
8	0.3
Tree Depth	2
Trees	2

$$og\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

No caso de classificação, vamos trocar f() por p() para relacionar com o fato de que estamos calculando probabilidades.

E uma rápida revisão sobre as função logística:

$$\log\left(\frac{p(x)}{1-p(x)}\right) = x$$

Logaritmo da chance, ou log-odds, ou logit

Hiperparam	valor
λ	0
γ	20
8	0.3
Tree Depth	2
Trees	2

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

No caso de classificação, vamos trocar f() por p() para relacionar com o fato de que estamos calculando probabilidades.

E uma rápida revisão sobre as função logística:

ou log-odds,

ou logit

$$\log \left(\frac{p(x)}{1 - p(x)}\right) = x$$
inversa
$$p(x) = \frac{1}{1 + e^{-x}}$$
Logaritmo da chance,

Função logística, ou sigmoide

Hiperparam	valor
λ	0
γ	20
3	0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$resíduo = y - p(x)$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\begin{array}{ccc} Hiperparam & valor \\ & \lambda & 0 \\ & \gamma & 20 \\ & \epsilon & 0.3 \\ \end{array}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparam	valor
λ	0
γ	20
8	0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$Gain =$$

Similaridade =
$$\frac{(\sum residuos)^2}{\sum p(1-p) + \lambda}$$
 p(x) =

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1 - p(2)} \right) = 0.0$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3Tree Depth2

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$p(2) = \frac{1}{1 + e^{-(-0.6)}} = 0.354$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$p(2) = \frac{1}{1 + e^{-(-0.6)}} = 0.354$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2)$$

$$\log \left(\frac{p(8)}{1 - p(8)} \right) = 0.0 + 0.3 \times 2$$

$$\log \left(\frac{p(12)}{1-p(12)}\right) = 0.0 + 0.3 \times 2$$

$$\log \left(\frac{p(16)}{1 - p(16)} \right) = 0.0 + 0.3 \times (-2)$$

$$\frac{-0.5}{0.5(1-0.5)+0} = -2$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

Hiperparamvalor
$$λ$$
0 $γ$ 20 $ε$ 0.3

$$\log\left(\frac{p(x)}{1-p(x)}\right) = 0.0$$

$$\log \left(\frac{p(2)}{1-p(2)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$\log \left(\frac{p(8)}{1-p(8)}\right) = 0.0 + 0.3 \times 2 = 0.6$$

$$\log \left(\frac{p(12)}{1-p(12)}\right) = 0.0 + 0.3 \times 2 = 0.6$$

$$\log \left(\frac{p(16)}{1-p(16)}\right) = 0.0 + 0.3 \times (-2) = -0.6$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$

$$\log \left(\frac{p(x)}{1 - p(x)} \right) = 0.0 + 0.3 \times 0.0$$

$$p(2) = \frac{1}{1 + e^{-(-0.6)}} = 0.35$$

$$p(8) = \frac{1}{1 + e^{-(0.6)}} = 0.65$$

$$p(12) = \frac{1}{1 + e^{-(0.6)}} = 0.65$$

$$p(16) = \frac{1}{1 + e^{-(-0.6)}} = 0.35$$

$$predição = \frac{\sum resíduos}{\sum p(1-p) + \lambda}$$

$$p(x) = \frac{1}{1 + e^{-x}}$$