

Product User Manual

MSI

FUZZY 945GM2

Fuzzy 945GM2/945GME2

MS-9642 (V4.X) Mainboard

Copyright Notice

The material in this document is the intellectual property of MICRO-STAR INTERNATIONAL. We take every care in the preparation of this document, but no guarantee is given as to the correctness of its contents. Our products are under continual improvement and we reserve the right to make changes without notice.

Trademarks

All trademarks are the properties of their respective owners.

Intel® and Pentium® are registered trademarks of Intel Corporation.

AMD, Athlon™, Athlon™ XP, Thoroughbred™, and Duron™ are registered trademarks of AMD Corporation.

NVIDIA, the NVIDIA logo, DualNet, and nForce are registered trademarks or trademarks of NVIDIA Corporation in the United States and/or other countries.

PS/2 and $OS^{\$}/2$ are registered trademarks of International Business Machines Corporation.

Windows® 98/2000/NT/XP/Vista are registered trademarks of Microsoft Corporation. Netware® is a registered trademark of Novell, Inc.

Award® is a registered trademark of Phoenix Technologies Ltd.

AMI® is a registered trademark of American Megatrends Inc.

Revision History

Revision	Revision History	Date
V4.0	First release for PCB 4.X	May 2009

Technical Support

If a problem arises with your system and no solution can be obtained from the user's manual, please contact your place of purchase or local distributor. Alternatively, please try the following help resources for further guidance.

- ► Visit the MSI website for FAQ, technical guide, BIOS updates, driver updates and other information: http://www.msi.com/index.php?func=service
- ► Contact our technical staff at: http://ocss.msi.com

Safety Instructions

- 1 Always read the safety instructions carefully.
- 2 Keep this User's Manual for future reference.
- 3. Keep this equipment away from humidity.
- 4. Lay this equipment on a reliable flat surface before setting it up.
- 5. The openings on the enclosure are for air convection hence protects the equipment from overheating. DO NOT COVER THE OPENINGS.
- 6. Make sure the voltage of the power source and adjust properly 110/220V before connecting the equipment to the power inlet.
- 7. Place the power cord such a way that people can not step on it. Do not place anything over the power cord.
- Always Unplug the Power Cord before inserting any add-on card or module. 8.
- All cautions and warnings on the equipment should be noted.
- 10. Never pour any liquid into the opening that could damage or cause electrical shock.
- 11. If any of the following situations arises, get the equipment checked by service personnel:
 - ▶ The power cord or plug is damaged.
 - Liquid has penetrated into the equipment.
 - The equipment has been exposed to moisture.
 - ▶ The equipment does not work well or you can not get it work according to User's Manual
 - The equipment has dropped and damaged.
 - ► The equipment has obvious sign of breakage.
- 12. DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT UNCONDITIONED, STOR-AGE TEMPERATURE ABOVE 60°C (140°F), IT MAY DAMAGE THE EQUIPMENT.

CAUTION: Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer

此為甲類資訊技術設備,於居住環境中使用時,可能會造成射頻 擾動,在此情况下,使用者會被要求採取某些適當的對策

廢電池請回收

For better environmental protection, waste batteries should be collected separately for recycling or special disposal.

FCC-B Radio Frequency Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part

15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the measures listed below.

- ▶ Reorient or relocate the receiving antenna.
- ▶ Increase the separation between the equipment and receiver.
- ► Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- ► Consult the dealer or an experienced radio/television technician for help.

Notice 1

The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Notice 2

Shielded interface cables and A.C. power cord, if any, must be used in order to comply with the emission limits.

VOIR LA NOTICE D'INSTALLATION AVANT DE RACCORDER AU RESEAU.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation.

WEEE (Waste Electrical and Electronic Equipment) Statement

ENGLISH

To protect the global environment and as an environmentalist, MSI must remind you that...

Under the European Union ("EU") Directive on Waste Electrical and Electronic Equipment, Directive 2002/96/EC, which takes effect on August 13, 2005, products of "electrical and electronic equipment" cannot be discarded as municipal waste anymore and manufacturers of covered electronic equipment will be obligated to take buck such products at the end of their useful life. MSI will comply with the product take back requirements at the end of life of MSI-branded products that are sold into the EU. You can return these products to lead collection points.

DEUTSCH

Hinweis von MSI zur Erhaltung und Schutz unserer Umwelt

Gemäß der Richtlinie 2002/96/FG über Elektro- und Elektronik-Altgeräte dürfen Elektro- und Elektronik-Altgeräte nicht mehr als kommunale Abfälle entsorgt werden. MSI hat europaweit verschiedene Sammel- und Recyclingunternehmen beauftragt, die in die Europäische Union in Verkehr gebrachten Produkte, am Endo seines Lebenszyklus zurückzunehmen. Bitte entsorgen Sie dieses Produkt zum gegebenen Zeitpunkt aussehltesstleh an einer lokalen Altgerätesammelstelle in Ihrer Nähe.

FRANCAIS

En tant qu'écologiste et afin de protéger l'environnement. MSI tient à rappeler ceci...

Au sujet de la directive curapécane (EU) relative aux déchets des équipement électriques et électroniques, directive 2002/06/EC, prenant effet to 13 août 2005, que les produits électriques et électroniques ne pouvont être déposés dans les décharges ou tout simplement mis à la pouhelle. Les fabricants de ces équipements seront obligés de récupérer certains produits en fin de vie, MSI prendra en compte cette exigence relative au retour des produits en fin de vie au sein de la communauté curapécane. Par conséquent vous pouvez retourner localement ces matériels dans les noints de collecte.

РУССКИЙ

Компания MSI предпринимает активные действия по защите окружающей среды, поэтому напоминаем вам, что....

В соответствии с директивой Европейского Союза (ЕС) по предотвращению загрязнения окружающей среды вспользованиям электрическим и электронным оборудованием (директива WEEE 2002/96/ЕС), вступающей в силу 13 автуста 2005 года, паделия, относищиеся к электрическому и электронному оборудованию, не могут рассматриватысь как быловой мусор, поэтому производитель вышеперетисленного электронного оборудования обязаны принимать его для переработки по окончании срока службы. МЗ обизуется соблюдать требования по приему прадукции, проданной нод маркой МЗІ па территории ЕС, в переработку по окончании срока службы. Вы можете верпуть эти изаслия в специальны рованные изикты приема.

ESPAÑOL

MSI como empresa comprometida con la protección del medio ambiente, recomienda:

Bajo la directiva 2002/96/EC de la Unión Europea en materia de desceños y/o equipos electrónicos, con fecha de rigor desde el 13 de agosto de 2005, los productos clasificados como "eléctricos y equipos electrónicos" no poeden ser depositados en los contenedores habituales de sa manicipio, los fabricantes de equipos electrónicos, están obligados a hacerse cargo de dichos productos al termino de su periodo de vida. MSI estará emprometido con los términos de recegida de sus productos vendidos en la Unión Europea al final de su periodo de vida. Usted debe depositar estos productos en el punto limpio establecido por el ayuntamiento de su localidad o cartergar a una empresa autorizada para la recegida de cestos recidiono.

NEDERLANDS

Om het milieu te beschermen, wil MSI u eraan herinneren dat....

De riehtlijn van de Europese Unie (EU) met betrekking tot Vervuiling van Electrische en Electronische producten (2002/96/EC), die op 13 Augustus 2005 in zal gaan kunnen niet meer beschouwd worden als vervuiling.

Fabrikanten van dit sourt producten worden verplicht om producten retour te nemen aan het eind van han levenseyelus. MSI zal overeenkomstig de richtlijn handelen voor de producten die de merknaam MSI dragen en verkocht Zija in de EU. Deze goederen kunnen geretourneerd worden op lokale inzamelingspunten.

SRPSKI

Da bi zaštitili prirodnu sredinu, i kao preduzeće koje vodi računa o okolini i prirodnoj sredini, MSI mora da vas nodesti da

Po Direklivi Evropske unije ("EU") o odbačenoj ekektronskoj i električnoj opremi. Direkliva 2002/96/EC, koja stupa na snagu od 13. Avgusta 2005, proizvodi koji spadaju pod "elektronsku i olektričnu opremu ne mogu više biti odbačeni kau obična otpad i proizvodaći ove opreme biče prinudeni da uzmu natrzug ove proizvode na kraju njihovog uobičajenog veka trajanja. MSI će poštovati zahtev o preuzimanju ovakvih proizvoda kojima je ištekao vek trajanja, koji imaju MSI oznaku i koji su prodati u EU. Ove proizvode možete vratiti na lokalnim mestima za orizvolijanie.

POLSKI

Aby chronić nasze środowisko naturalne oraz jako firma dbająca o ekologię, MSI przypomina, że...

Zgodnie z Dyrektywą Unii Europcjskiej ("UE") dotyczącą odpadów produktów clektrycznych i elektronicznych (Dyrektywa 2002/96/EC), która wchodzi w życie 13 sierpnia 2005. tzw. "produkty oraz wyposażenie elektryczne i elektroniczne" nie mogą być traktowane jako śmieci komunalne, tak więc producenci tych produktów będą zobowiązani do odbierania ich w momencie gdy produkt jest wycofywany z użycia. MSI wypelni wymagania Uryzjunając produkty (sprzedawane na terenie Unii Europcjskiej) wycofywane z użycia. Produkty MSI będzie można zwracać w wyzaczonych punktach zbiorczych.

TÜRKÇE

Cevreci özelliğivle bilinen MSI dünyada çevreyi korumak için hatırlatır;

Avrupa Birliği (AB) Kararnamesi Ekktrik ve Elektronik Malzeme Atig. 2002/96/FC Kararnamesi alında 13 Ağustos 2005 tarihinden itibaren geçerli olmak üzere, elektrikli ve elektronik malzemeler diğer atıklar gibi çöpe atılamayacak ve bu elektronik elhazların örettelleri, elhazların kullanım süreleri bittikten sonra ürünleri geri toplamakla yükümlü olacaktır. Avrupa Birliği'ne satılan MSI markalı ürünlerin kullanım süreleri bittiğinde MSI ürünlerin geri alınması kitçil ile İşbirliği içerisinde olacaktır. Ürünlerinizi yerel toplama noktalarına brakaklilirisini.

ČESKY

Záleží nám na ochraně životního prostředí - společnost MSI upozorňuje...

Podle směrnice Evrapské unic ("EU") a likvidací elektrických a elektronických výrobká 2002/96/F.C. platné od 13. srpna 2005 je zakázáno likvidovat "elektrické a elektronické výrobky" v běžném komunálním odpadu a výrobci elektronických výrobků, na které se tata směrnice vztahuje, budou povinní odebírat takové výrobky zpět po skončení jejich životnosti. Společnosť MSI splní požadavky na odebírání výrobků značky MSI, prodávaných v zemích EU; po skončení jejich životnosti. Tyto výrobky mžete odevzdat v místních skérnách.

MAGYAR

Annak érdekében, hogy környezetünket megyédjük, illetve környezetvédőként fellépve az MSI emlékezteti Önt, hogy

Az Európai Unió ("EU") 2005. augusztus I3-án hatályba lépő, az elektromos és elektronikus berendezések hulladékairól száló 2002/96/EK irányelve szerint az elektronikus berendezések töhbő nem kezethetősek lakossági hultadékként, és az ilyen elektronikus berendezések gyárfői kötelesek válnak az ilyen termékek visszavételér azok hasznos élettartama végén. Az MSI betartja a termékvisszavétellel kapcsolatos követelményeket az MSI márkanév alatti az EU-n belül értékesített termékek esetében, azok élettartamának végén Az ilyen termékeket velkeketősekbi gyárlósbelyev ületti.

ITALIANO

Per proteggere l'ambiente, MSI, da sempre amica della natura, ti ricorda che....

In base alla Direttiva dell'Unione Europea (EU) sullo Smaltimento del Materiali Ekttrici ed Elettronici, Direttiva 2002/96/EC in vigore dal 13 Agosto 2005, prodotti appartenenti alla categoria dei Materiali Elettrici ed Elettronici non possono più essere climinati come riffuti municipali: I produttori di detti materiali saranno obbligati a ritirare agni prodotto alla fine del suo ciclo di vita. MSI vi adeguerà a tale Direttiva ritirando tutti i prodotti marchiati MSI che sono stati venduti all'interno dell'Unione Europea alla fine del loro ciclo di vita. È possibile portave i prodotti nal più vicino punto di raccolta.

CONTENTS

Copyright Notice	i
Trademarks	i
Revision History	i
Technical Support	i
Safety Instructions	iii
FCC-B Radio Frequency Interference Statement	iv
WEEE (Waste Electrical and Electronic Equipment) Statement	v
Chapter 1 Getting Started	1-1
Mainboard Specifications	1-2
Block Diagram	1-4
Mainboard Layout	1-5
Board Dimension	1-6
Back Panel & I/O Shield Drawing	1-7
Power Consumption	1-8
Safety Compliance & MTBF	1-9
Chapter 2 Hardware Setup	2-1
Quick Components Guide	2-2
CPU (Central Processing Unit)	2-3
Memory	2-6
Power Supply	2-7
Back Panel	2-8
Connectors	2-9
Jumpers	2-17
Slots	2-18
Chapter 3 BIOS Setup	3-1
Entering Setup	3-2
The Menu Bar	3-4
Main	3-5
Advanced	3-7
PCHealth	3-17
Security	3-19
System	3-20
Boot	3-21
Exit	3-22
Chapter 4 System Resources	4-1
Watch Dog Timer Setting	4-2
Award POST Code	4-4
Check Point & Beep Code List	4-10
Pocource Liet	4 17

Chapter 1 Getting Started

Thank you for choosing the Fuzzy 945GM2/945GME2 (MS-9642 v4.X) Mini ITX mainboard from MSI.

Based on the innovative Intel® 945G M/945GME & ICH7M controllers for optimal system efficiency, the Fuzzy 945GM2/945GME2 accommodates the latest Intel® Core 2 Duo/ Core Duo/ Core Solo/ Celeron M/ Celeron LV 423 BGA (with BGA Passive Cooler) processors in Socket M and supports one 240-pin 533/667MHz DDR2 DIMM slot to provide the maximum of 2GB memory capacity.

In the entry-level and mid-range market segment, the Fuzzy 945GM2/945GME2 can provide a high-performance solution for today's front-end and general purpose workstation, as well as in the future.

Mainboard Specifications

Processor

- Intel® Core 2 Duo/Core Duo/Core Solo/Celeron M/Celeron LV 423 BGA (with BGA Passive Cooler) CPU in Socket M
- Supports 3 pin CPU Fan Pin-Header with Fan Speed Control
- Supports Intel Dual Core Technology to 533/667MHz and up

• • • • • • • • • • • • • • • • • • • •
Intel® Core™ 2 Duo Processor T7400
Intel® Core™ 2 Duo Processor LV L7400
Intel® Core™ 2 Duo Processor ULV U7500
Intel® Core™ Duo Processor T2500
Intel® Core™ Duo Processor Low Voltage L2400
Intel® Core™ Duo Processor Ultra Low Voltage U2500
Intel® Celeron® M Processor Ultra Low Voltage 423

■ Chipset

- North Bridge: Intel® 945GM/ 945GME chipset
- South Bridge: Intel® ICH7M chipset

Memory

- DDR2 533/667 SDRAM (2GB Max)
- 1 DDR2 DIMM slot (240pin / 1.8V)

■ LAN

 Supports 3 PCI Express Gb Ethernet by Intel® 82573L or one Intel® 82562GZ 10/100 LAN (optional)

■ Audio

- HDA Codec by Realtek® ALC888 7.1 channel
- Compliant with Azalia 1.0 Spec.
- 6 watt amplifier (optional)

IDE

- 1 IDE port by ICH7M
- Supports Ultra DMA 66/100 mode
- Supports PIO, Bus Master operation mode

SATA

- SATA ports by ICH7M
- Supports two SATA devices
- Supports storage and data transfers at up to 150MB/s

■ Connectors

▶ Back Panel

- 3 RJ-45 LAN jacks
- 2 USB 2.0 ports
- 1 D-Sub VGA connector
- 1 serial port
- 1 PS2 keyboard/mouse port
- 1 Line-In/Line-Out/Mic-In stacked audio jack

▶ Onboard Pinheaders

- 1 USB 2.0 pinheader (2 ports)
- 1 parallel port pinheader
- 1 front audio pinheader
- 1 LVDS connector
- 1 Digital I/O pinheader (16GPIO)
- 1 RS232/422/485 header as COM2~COM5 (optional)
- 1 front panel pinheader

Slots

- 1 PCI Express x16 slot (supports MS-V004 ADD2 DVI Card)
- 1 PCI Express x 1 slot
- 1 PCI 32-bit/33MHz slot

Form Factor

- Mini ITX

■ Mounting

- 4 mounting holes

■ Environmental

► Storage Temperature

- Temperature: -10°C ~ 70°C
- Humidity: 10% RH ~ 80% RH

▶ Operation Temperature

- Temperature: 0°C ~ 60°C
- Humidity: 80% RH

Block Diagram

Fuzzy 945GM2 MS-8642

Mainboard Layout

Fuzzy945GM2/945GME2 (MS-9642 v4.X) Mini ITX Mainboard

Board Dimension

Back Panel & I/O Shield Drawing

Power Consumption

Component	Description		
Motherboard	MS-9642		
CPU	Intel Core 2 T7200		
Memory	DDR2 1GB		
HDD	HITACHI 20G 1.8"		
Operating system	Windows XP Professional SP2		

	12V	5V	3.3V	-12V	5Vsb	Power (W)
3D Maker 2006	2.17	2.77	0.71	0.054	0.066	43.211
CPU Stress	2.35	2.32	0.68	0.035	0.066	42.794
Enter DOS	1.57	1.62	0.66	0.048	0.055	29.969
Enter BIOS	1.63	1.77	0.64	0.048	0.055	31.373
Idle Mode	0.65	1.63	0.69	0.056	0.05	19.149
S1	0.92	1.11	0.47	0.05	0.056	19.021
\$3	0	0	0	0	0.33	1.65
\$4	0	0	0	0	0.18	0.9
S5	0	0	0	0	0.19	0.95

Safety Compliance & MTBF

Certification		Standard number	Title of standard		
	EN 55022:1998+A1:2000+A2:2003 Class B		Product family standard		
		EN 6100-3-2:2000 Class D	Limits for harmonic current		
	RFI	LIV 0100-3-2.2000 Class D	emission		
CE			Limitation of voltage		
		EN 6100-3-3:1995+A1:2001	fluctuation and flicker in low-		
			voltage supply system		
	Immunity	EN 55024:1998+A1:2001+A2:2003	Product family standard		
BSMI	CNS 1343	CNS 13438 乙類(1997年版)			
C-Tick	AS/NZS CISPR 22:2004				
FCC	FCC CFR	Title 47 Part 15 Subpart B: 2005 Class B			
FCC	CISPR 22: 2005				
VCCI	VCCI V-3	:2004, Class B			
VCCI	VCCI V-4	:2004, Class B			

MTBF - Reliability Prediction

Calculation Model	Operation Temperature(°C)	Operation Environment	Duty Cycle	MTBF(hr.)
Telcordia Issue 1	40	GB, GC - Ground Benign, Controlled	6,116.549285	163,491

Chapter 2 Hardware Setup

This chapter provides you with the information about hardware setup procedures. While doing the installation, be careful in holding the components and follow the installation procedures. For some components, if you install in the wrong orientation, the components will not work properly.

Use a grounded wrist strap before handling computer components. Static electricity may damage the components.

Quick Components Guide

CPU (Central Processing Unit)

The mainboard supports Intel® Core 2 Duo/ Core Duo/ Core Solo/ Celeron M/ Celeron LV 423 BGA (with BGA Passive Cooler) processors in Socket M. When you are installing the CPU, make sure the CPU has a heat sink and a cooling fan attached on the top to prevent overheating. If you do not have the heat sink and cooling fan, contact your dealer to purchase and install them before turning on the computer.

Merom 667	Intel® Core™ 2 Duo Processor T7400
Merom 667	Intel® Core™ 2 Duo Processor LV L7400
Merom 533	Intel® Core™ 2 Duo Processor ULV U7500
Yonah	Intel® Core™ Duo Processor T2500
Yonah	Intel® Core™ Duo Processor Low Voltage L2400
Yonah	Intel® Core™ Duo Processor Ultra Low Voltage U2500
Yonah	Intel⊕ Celeron⊕ M Processor Ultra Low Voltage 423

Important

- Overheating will seriously damage the CPU and system. Always make sure the cooling fan can work properly to protect the CPU from overheating.
- Make sure that you apply an even layer of heat sink paste (or thermal tape) between the CPU and the heatsink to enhance heat dissipation.
- While replacing the CPU, always turn off the power supply or unplug the power supply's power cord from the grounded outlet first to ensure the safety of CPU.

CPU & Cooler Set Installation

- Locate the CPU socket on the mainboard. On the upper end of the CPU socket is
 a socket actuator in the form of a slotted screw head. Make sure that you open
 or close the socket with a flathead screwdriver before and after installing the
 CPU.
- Turn the socket actuator counterclockwise to open the socket. Locate the golden arrow on the CPU and align it to the upper right corner of the socket. Put the CPU gently down. If the socket is completely opened, the CPU pins will securely fit into the socket.

Turn the socket actuator clockwise to close the socket.

Important

Mainboard photos shown in this section are for demonstration only and may differ from the actual look of your mainboard.

Release the metal hooks on the retention mechanism.

- Apply some thermal paste on the CPU for better heat dispersion before placing the cooler set onto it.
- Mount the cooler set (fan & heatsink bundled) on top of the CPU and fit it into the retention mechanism.

Secure the metal hooks back to the retention mechanism.

 Connect the fan power cable from the mounted fan to the 3-pin fan power connector on the mainboard.

Memory

The DIMM slots are intended for system memory modules.

Installing Memory Modules

- The memory module has only one notch on the center and will only fit in the right orientation.
- Insert the memory module vertically into the DIMM slot. Then push it in until the golden finger on the memory module is deeply inserted in the DIMM slot.

3. The plastic clip at each side of the DIMM slot will automatically close.

Power Supply

ATX 20-Pin System Power Connector: ATX1

This connector allows you to connect to an ATX power supply. To connect to the ATX power supply, make sure the plug of the power supply is inserted in the proper orientation and the pins are aligned. Then push down the power supply firmly into the connector.

ATX1 Pin Definition

PIN	SIGNAL	PIN	SIGNAL
1	3.3V	11	3.3V
2	3.3V	12	-12V
3	GND	13	GND
4	5V	14	PS_ON
5	GND	15	GND
6	5V	16	GND
7	GND	17	GND
8	PW_OK	18	-5V
9	5V_SB	19	5V
10	12V	20	5V
		1	1

Important

Power supply of **350watts** (and above) is highly recommended for system stability.

Back Panel

VGA Port Keyboard USB Ports LAN Ports

➤ Serial Port Connector

The serial port is a 16550A high speed communications port that sends/ receives 16 bytes FIFOs. You can attach a serial mouse or other serial devices directly to the connector.

▶ VGA Connector

The DB15-pin female connector is provided for VGA monitors.

► Mouse/Keyboard Connector

The standard PS/2® mouse/keyboard DIN connector is for a PS/2® mouse/keyboard.

► USB Connectors

The OHCI (Open Host Controller Interface) Universal Serial Bus root is for attaching USB devices such as keyboard, mouse, or other USB-compatible devices.

► Audio Port Connectors

These audio connectors are used for audio devices. You can differentiate the color of the audio jacks for different audio sound effects.

- Blue audio jack Line In is used for external CD player, tapeplayer or other audio devices.
- Green audio jack Line Out, is a connector for speakers or headphones.
- Pink audio jack Mic In, is a connector for microphones.

► LAN (RJ-45) Jack

The standard RJ-45 jack is for connection Activity Indicator Link Speed to single Local Area Network (LAN). You can connect a network cable to it.

LED	Color	LED State Condition	
		Off LAN link is not established.	
Left	Orange	On (steady state)	LAN link is established.
		On (brighter & pulsing)	The computer is communicating with another computer on the LAN.
	Green	Off 10 Mbit/sec data rate is selected.	
Right		On	100 Mbit/sec data rate is selected.
	Orange	On	1000 Mbit/sec data rate is selected.

Connectors

Chassis Intrusion Connector: JCI1

This connector connects to the chassis intrusion switch cable. If the chassis is opened, the chassis intrusion mechanism will be activated. The system will record this status and show a warning message on the screen. To clear the warning, you must enter the BIOS utility and clear the record.

CHASSIS 2 GND 2 JCI1

44-Pin IDE Connector: IDE1

This 44-pin IDE connector connects to an optional converter that enables connection to one 44-pin IDE device and one 40-pin IDE device, such as hard disk drives, CD-ROM and other IDE devices.

Important

If you install two IDE devices on the same cable, you must configure the drives separately to master / slave mode by setting jumpers. Refer to IDE device's documentation supplied by the vendors for jumper setting instructions.

Serial ATA Connectors: SATA1, SATA2

SATA1-SATA2 are high-speed SATA interface ports and support SATA data rates of 150MB/s. Each SATA connector can connect to 1 hard disk device and is fully compliant with Serial ATA 1.0 specifications.

Important

Please do not fold the Serial ATA cable into 90-degree angle. Otherwise, data loss may occur during transmission.

Audio Amplifier Connector: JAMP1

The JAMP1 is used to connect audio amplifiers to enhance audio performance.

JAMP1

PIN SIGNAL 1 AMP_L 2 AMP_L+ 3 AMP_R

AMP_R+

Front Audio Connector: JAUD1

The JAUD1 connects to an optional audio bracket that provides extra front panel audio IO jacks.

4

JAUD1 Pin Definition

F	PIN	SIGNAL	PIN	SIGNAL
	ı	5V_SB	2	VCC3
1 3	3	SPDF0	4	NA
	5	GND	6	SPDF1
7	7	LEF_OUT	8	SURR_OUT_R
9	9	CEN_OUT	10	SURR_OUT_L
1	11	AUD_GPIO21	12	AUDIO GND
L	13	SIDE_L	14	SIDE_R

Fan Power Connectors: CPUFAN1, SYSFAN1

The fan power connectors support system cooling fan with +12V. When connecting the wire to the connectors, always take note that the red wire is the positive and should be connected to the +12V, the black wire is Ground and should be connected to GND. If the mainboard has a System Hardware Monitor chipset on-board, you must use a specially designed fan with speed sensor to take advantage of the CPU fan control.

Important

Please refer to the recommended CPU fans at Intel® official website or consult the vendors for proper CPU cooling fan.

Front Panel Connector: JFP1

The mainboard provides one front panel connector for electrical connection to the front panel switches and LEDs. The JFP1 is compliant with Intel® Front Panel I/O Connectivity Design Guide.

JEP1 Pin Definition

PIN	SIGNAL	DESCRIPTION
1	HD_LED+	Hard disk LED pull-up
2	FPPWR/SLP	MSG LED pull-up
3	HD_LED -	Hard disk active LED
4	FPPWR/SLP	MSG LED pull-up
5	RST_SW-	Reset Switch low reference pull-down to GND
6	PWR_SW+	Power Switch high reference pull-up
7	RST_SW+	Reset Switch high reference pull-up
8	PWR_SW-	Power Switch low reference pull-down to GND
9	RSVD_DNU	Reserved. Do not use.

Serial Port Connector: J2

The J2 is a RS232/422/485 COM port pinheader that connects to serial devices.

	RS232	RS422	RS485
COM2	х	V	V
COM3	X	V	V
COM4	V	X	Х
COM5	V	×	х

V = supported X = not supported

J2 Pin Definition

Voltage Select	Serial Port	PIN	SIGNAL	PIN	SIGNAL	Serial Port	Voltage Select
	COM2	1	422RXD1#	2	422 RXD2#		
		3	422 RXD1	4	422 RXD2		
N/A		5	422TXD1	6	422TXD2	COM3	N/A
		7	422 TXD1#	8	422 TXD2#		
		9	GND	10	GND		
	COM4	11	NDCD3#	12	NDCD4#		
		13	NSIN3	14	NSIN4		
JCOMP4 (page 2-17)		15	NSOUT3	16	NSOUT4	COM5	JCOMP5
		17	NDTR3	18	NDTR4		(page 2-17)
		19	NDSR3#	20	NDSR4#		(Page 2)
		21	NRTS3	22	NRTS4		
		23	NCTS3#	24	NCTS4#		
		25	0V/5V/12V	26	0V/5V/12V		

Front USB Connector: F USB2

The mainboard provides one USB 2.0 pinheader (optional USB 2.0 bracket available) that is compliant with Intel® I/O Connectivity Design Guide. USB 2.0 technology increases data transfer rate up to a maximum throughput of 480Mbps, which is 40 times faster than USB 1.1, and is ideal for connecting high-speed USB interface peripherals such as USB HDD, digital cameras, MP3 players, printers, modems and the like.

Pin Definition

PIN	SIGNAL	PIN	SIGNAL
1	VCC	2	VCC
3	USB0-	4	USB1-
5	USB0+	6	USB1+
7	GND	8	GND
9	Key (no pin)	10	USBOC

USB 2.0 Bracket (Optional)

Important

Note that the pins of VCC and GND must be connected correctly to avoid possible damage.

Digital IO Connector: J3

The J3 connects to the General-Purpose Input/Output (GPIO) peripheral module.

J	3					
0	0	0	0	0	1 2	

oo i iii boliiiitioii						
PIN	SIGNAL	PIN	SIGNAL			
1	VCC3	2	VCC5			
3	N_GPIO10	4	N_GPIO20			
5	N_GPIO11	6	N_GPIO21			
7	N_GPIO12	8	N_GPIO22			
9	N_GPIO13	10	N_GPIO23			
11	N_GPI014	12	N_GPI024			
13	N_GPIO15	14	N_GPIO25			
15	N_GPIO16	16	N_GPIO26			
17	N_GPIO17	18	N_GPIO27			
19	GND	20	NC			

J3 Pin Definition

Parallel Port Header: JLPT1

The mainboard provides a 26-pin header for connection to an optional parallel port bracket. The parallel port is a standard printer port that supports Enhanced Parallel Port (EPP) and Extended Capabilities Parallel Port (ECP) mode.

Pin	Signal Name	Pin	Signal Name
1	RSTB#	2	AFD#
3	PRND0	4	ERR#
5	PRND1	6	PINIT#
7	PRND2	8	LPT_SLIN#
9	PRND3	10	GND
11	PRND4	12	GND
13	PRND5	14	GND
15	PRND6	16	GND
17	PRND7	18	GND
19	ACK#	20	GND
21	BUSY	22	GND
23	PE	24	GND
25	SLCT	26	GND

LVDS Flat Panel Connector: JLVDS1

The LVDS (Low Voltage Differential Signal) connector provides a digital interface typically used with flat panels. After connecting an LVDS interfaced flat panel to the JLVDS1, be sure to check the panel datasheet and set the J1 LVDS Power Selection Jumper to a proper voltage.

SIGNAL	PIN		SIGNAL
+12V	2	1	+12V
+12V	4	3	+12V
GND	6	5	+12V
GND	8	7	+3V
LCDVCC	10	9	LCDVCC
DDC DATA	12	11	DDC CLK
VDD ENABLE	14	13	BKLTCTL
GND	16	15	BKLTEN
LVDS A0+	18	17	LVDS A0-
LVDS A1+	20	19	LVDS A1-
LVDS A2+	22	21	LVDS A2-
LVDS ACLK+	24	23	LVDS ACLK-
NC	26	25	NC
GND	28	27	GND
LVDS B0+	30	29	LVDS B0-
LVDS B1+	32	31	LVDS B1-
LVDS B2+	34	33	LVDS B2-
LVDS BCLK+	36	35	LVDS BCLK-
NC	38	37	NC
GND	40	39	GND

After hardware installation is done, select the LVDS panel type and tune the LVDS backlight in the BIOS Setup Utility.

Jumpers

LVDS Power Selection Jumper: J1

Use this jumper to specify the LVDS power.

Pin	Signal Name
1	VCC3
2	LCD_SRC (default VCC3)
3	VCC5

COM Port Power Jumpers: JCOMP4, JCOMP5

These jumpers specify the operation voltage of the serial port COM4 & COM5.

Clear CMOS Jumper: CLR_CMOS1

There is a CMOS RAM onboard that has a power supply from external battery to keep the data of system configuration. With the CMOS RAM, the system can automatically boot OS every time it is turned on. If you want to clear the system configuration, set the CLR CMOS1 (Clear CMOS Jumper) to clear data.

Important

You can clear CMOS by shorting 1-2 pin while the system is off. Then return to 2-3 pin position. Avoid clearing the CMOS while the system is on; it will damage the mainboard.

PCI (Peripheral Component Interconnect) Express Slot

PCI Express architecture provides a high performance I/O infrastructure for Desktop Platforms with transfer rates starting at 2.5 Giga transfers per second over a PCI Express x1 lane for Gigabit Ethernet, TV Tuners, 1394 controllers, and general purpose I/O. Also, desktop platforms with PCI Express Architecture will be designed to deliver highest performance in video, graphics, multimedia and other sophisticated applications. Moreover, PCI Express architecture provides a high performance graphics infrastructure for Desktop Platforms doubling the capability of existing AGP 8x designs with transfer rates of 4.0 GB/s over a PCI Express x16 lane for graphics controllers, while PCI Express x15 supports transfer rate of 250 MB/s.

PCI (Peripheral Component Interconnect) Slot

The PCI slot supports LAN cards, SCSI cards, USB cards, and other add-on cards that comply with PCI specifications. At 32 bits and 33 MHz, it yields a throughput rate of 133 MBbs.

PCI Interrupt Request Routing

The IRQ, acronym of interrupt request line and pronounced I-R-Q, are hardware lines over which devices can send interrupt signals to the microprocessor. The PCI IRQ pins are tvoically connected to the PCI bus pins as follows:

	Order 1	Order 2	Order 3	Order 4
32-bit PCI1	INT A#	INTB#	INTC#	INTD#

When adding or removing expansion cards, make sure that you unplug the power supply first. Meanwhile, read the documentation for the expansion card to configure any necessary hardware or software settings for the expansion card, such as jumpers, switches or BIOS configuration.

Chapter 3 BIOS Setup

This chapter provides information on the BIOS Setup program and allows you to configure the system for optimum use.

You may need to run the Setup program when:

- An error message appears on the screen during the system booting up, and requests you to run SETUP.
- You want to change the default settings for customized features.

Entering Setup

Power on the computer and the system will start POST (Power On Self Test) process. When the message below appears on the screen, press <F1> key to enter Setup.

Press F1 to enter SETUP

If the message disappears before you respond and you still wish to enter Setup, restart the system by turning it OFF and On or pressing the RESET button. You may also restart the system by simultaneously pressing <Ctrl>, <Alt>, and <Delete> keys.

Important

- The items under each BIOS category described in this chapter are under continuous update for better system performance. Therefore, the description may be slightly different from the latest BIOS and should be held for reference only.
- Upon boot-up, the 1st line appearing after the memory count is the BIOS version. It is usually in the format:

P9642IMS V1 0 111507 where:

1st digit refers to BIOS maker as A = AMI, W = AWARD, and P = PHOENIX.

2nd - 5th digit refers to the model number.

6th digit refers to the chipset as I = Intel, N = nVidia, and V = VIA.
7th - 8th digit refers to the customer as MS = all standard customers.
V1.0 refers to the BIOS version

111507 refers to the date this BIOS was released

Control Keys

Move to the previous item
Move to the next item
Move to the item in the left hand
Move to the item in the right hand
Select the item
Jumps to the Exit menu or returns to the main menu from a
submenu
Increase the numeric value or make changes
Decrease the numeric value or make changes
Load Optimized Defaults
Load Fail-Safe Defaults
Save all the CMOS changes and exit

Getting Help

After entering the Setup menu, the first menu you will see is the Main Menu.

Main Menu

The main menu lists the setup functions you can make changes to. You can use the arrow keys ($\uparrow\downarrow$) to select the item. The on-line description of the highlighted setup function is displayed at the bottom of the screen.

Sub-Menu

If you find a right pointer symbol (as shown in the right view) ▶ TDE Channel 8 Haster appears to the left of certain fields that means a sub-menu can ▶ TDE Channel 8 Slave be launched from this field. A sub-menu contains additional options for a field parameter. You can use arrow keys (↑↓) to highlight the field and press <Enters to call up the sub-menu. Then you can use the control keys to enter values and move from field to field within a sub-menu. If you want to return to the main menu, just press the <Esc >.

General Help <F1>

The BIOS setup program provides a General Help screen. You can call up this screen from any menu by simply pressing <F1>. The Help screen lists the appropriate keys to use and the possible selections for the highlighted item. Press <Esc> to exit the Help screen.

The Menu Bar

► Main

Use this menu for basic system configurations, such as time, date etc.

Advanced

Use this menu to set up the items of special enhanced features available on your system's chipset.

► PC Health

This entry monitors your hardware health status.

➤ Security

Use this menu to set Supervisor and User Passwords.

System

This entry shows your system summary.

▶ Boot

Use this menu to specify the priority of boot devices.

Exit

This menu allows you to load the BIOS default values or factory default settings into the BIOS and exit the BIOS setup utility with or without changes.

Main

▶ Date (mm:dd:yy)

The date format is <Day>, <Month> <Date> <Year>.

► Time (hh:mm:ss)

The time format is <Hour> <Minute> <Second>.

▶ IDE Channel 0/1 Master/Slave

Press PgUp/<+> or PgDn/<-> to select [Manual], [None] or [Auto] type. Note that the specifications of your drive must match with the drive table. The hard disk will not work properly if you enter improper information for this category. If your hard disk drive type is not matched or listed, you can use [Manual] to define your own drive type manually.

If you select [Manual], related information is asked to be entered to the following items. Enter the information directly from the keyboard. This information should be provided in the documentation from your hard disk vendor or the system manufacturer.

Access Mode The settings are CHS, LBA, Large, Auto.

Capacity The formatted size of the storage device.

Cylinder Number of cylinders.
Head Number of heads.
Precomp Write precompensation.

Landing Zone Cylinder location of the landing zone.

Sector Number of sectors.

► Halt On

The setting determines whether the system will stop if an error is detected at boot. When the system stops for the errors preset, it will halt on for 15 seconds and then automatically resume its operation. Available options are:

[All Errors] The system stops when any error is detected.
[No Errors] The system doesn't stop for any detected error.
[All, But Keyboard] The system doesn't stop for a keyboard error.

► Base/Extended/Total Memory

The three items show the memory status of the system. (Read-only)

Advanced

► Advanced BIOS Features

The sub-menu is used to configure chipset features for optimal system performance.

▶ Quick Power On Self Test

Select [Enabled] to reduce the amount of time required to run the power-on self-

test (POST). A quick POST skips certain steps. We recommend that you normally disable quick POST. Better to find a problem during POST than lose data during your work.

► Boot Up NumLock Status

This setting is to set the Num Lock status when the system is powered on. Setting to [On] will turn on the Num Lock key when the system is powered on. Setting to [Off] will allow users to use the arrow keys on the numeric keypad.

► Typematic Rate Setting

This item is used to enable or disable the typematic rate setting including Typematic Rate & Typematic Delay.

► Typematic Rate (Chars/Sec)

After Typematic Rate Setting is enabled, this item allows you to set the rate (characters/second) at which the keys are accelerated.

► Typematic Delay (Msec)

This item allows you to select the delay between when the key was first pressed and when the acceleration begins.

► APIC Mode

This field is used to enable or disable the APIC (Advanced Programmable Interrupt Controller). Due to compliance with PC2001 design guide, the system is able to run in APIC mode. Enabling APIC mode will expand available IRQ resources for the system.

► MPS Version Control For OS

This field allows you to select which MPS (Multi-Processor Specification) version to be used for the operating system. You need to select the MPS version supported by your operating system. To find out which version to use, consult the vendor of your operating system.

► Advanced Chipset Features

The sub-menu is used to configure chipset features for optimal system performance.

► DRAM Timing Selectable

Selects whether DRAM timing is controlled by the SPD (Serial Presence Detect) EEPROM on the DRAM module. Setting to [By SPD] enables DRAM timing to be determined automatically by BIOS based on the configurations on the SPD. Selecting [Manual] allows users to configure the following fields manually.

► CAS Latency Time

This controls the timing delay (in clock cycles) before SDRAM starts a read command after receiving it. Smaller clocks increase system performance while bigger clocks provide more stable system performance.

► DRAM RAS# to CAS# Delay

This field allows you to set the number of cycles for a timing delay between the CAS and RAS strobe signals, used when DRAM is written to, read from or refreshed. Fast speed offers faster performance while slow speed offers more stable performance.

► DRAM RAS# Precharge

This item controls the number of cycles for Row Address Strobe (RAS) to be allowed to precharge. If insufficient time is allowed for the RAS to accumulate its charge before DRAM refresh, refresh may be incomplete and DRAM may fail to retain data. This item applies only when synchronous DRAM is installed in the system.

▶ Precharge Delay (tRAS)

The field specifies the idle cycles before precharging an idle bank.

► System Memory Frequency

Use this item to configure the clock frequency of the installed DRAMs.

VGA Setting

The following items allow you to configure the VGA settings of the system.

▶ PEG/Onchip VGA Control

This setting allows you to select whether to use the onchip graphics processor or the PCI Express card.

When set to [Onchip VGA], the motherboard boots up using the onboard graphics processor, even when a PCI Express graphics card is installed.

When set to [PEG Port], the motherboard boots up using the PCI Express graphics card, if one is installed. Otherwise, it defaults to the onboard graphics processor.

When set to [Auto], the BIOS checks to see if a PCI Express graphics card is installed. If it detects that a PCI Express graphics card is present, the motherboard boots up using that card. Otherwise, it defaults to the onboard graphics processor.

► On-Chip Frame Buffer Size

The field specifies the size of system memory allocated for video memory.

▶ Boot Display

Use the field to select the type of device you want to use as the display(s) of the system.

► LVDS Panel Type

This setting specifies the resolution of the LVDS panel.

► LVDS Backlight Control

This setting controls the brightness level of the LVDS panel backlight.

▶ Integrated Peripherals

▶ Onboard Device

▶ USB Controller

This setting is used to enable/disable the onboard USB controller.

▶ USB 2.0 Controller

This setting is used to enable/disable the onboard USB 2.0 controller.

► USB Keyboard/Mouse Support

Set to [Enabled] if your need to use a USB-interfaced keyboard/mouse in the

MS-9642 Mainboard

operating system that does not support or have any USB driver installed, such as DOS and SCO Unix.

► Azalia/AC97 Audio Select

Azalia is the codename of "High Definition Audio." This setting controls the High Definition Audio interface integrated in the Southbridge.

► Audio Amplifier Control

This setting disables/enables the audio amplifier.

► Amplifier dB

When the **Audio Amplifier Control** is set to [Enabled], users may adjust the amplifier dB range between the lowest useful output and the largest useful output level.

Onboard Ethernet #1/ #2/ #3

These settings disable/enable the onboard Ethernet controller.

► Onboard LAN1/ LAN2/ LAN3 Boot ROM

The items enable or disable the initialization of the onboard LAN Boot ROMs during bootup. Selecting [Disabled] will speed up the boot process.

► Super IO Device

► Serial Port Setting

► Onboard Serial Port 1 / 2 / 3 / 4 / 5

Select an address for Serial Port 1/2/3/4/5.

► Serial Port 1 / 2 / 3 / 4 / 5 Use IRQ

Select a corresponding interrupt for Serial Port 1/2/3/4/5.

Serial Port 2 / 3 Mode

These settings specify the transmission mode of the Serial Port 2 & 3.

RS-422 defines a Balanced (differential) interface, specifying a single, unidirectional driver with multiple receivers (up to 32). RS-422 will support Point-to-Point, Multi-Drop circuits, but not Multi-Point.

RS-485 defines a Balanced (differential) interface, specifying bidirectional, half-duplex data transmission. Up to 32 transmitters and 32 receivers may be interconnected in any combination, including one driver and multiple receivers (multi-drop), or one receiver and multiple drivers.

▶ Watch Dog

You can enable the system watch-dog timer, a hardware timer that generates either an NMI or a reset when the software that it monitors does not respond as expected each time the watch dog polls it.

► Watch Dog Timer (Minutes)

Select the watch-dog timer period.

► Onboard Parallel Port

There is a built-in parallel port on the on-board Super I/O chipset that provides Standard, ECP, and EPP features. It has the following options:

[Disabled]	
[3BC/IRQ7]	Line Printer port 0
[278/IRQ5]	Line Printer port 2
[378/IRQ7]	Line Printer port 1

▶ Parallel Port Mode

[5PP]	Standard Parallel Port
[EPP]	Enhanced Parallel Port
(ECP)	Extended Capability Port

[ECP+EPP] Extended Capability Port + Enhanced Parallel Port

To operate the onboard parallel port as Standard Parallel Port only, choose [SPP]. To operate the onboard parallel port in the EPP mode simultaneously, choose [EPP]. By choosing [ECP], the onboard parallel port will operate in ECP mode only. Choosing [ECP + EPP] will allow the onboard parallel port to support both the ECP and EPP modes simultaneously.

► EPP Mode Select

The onboard parallel port is EPP Spec. compliant, so after the user chooses the onboard parallel port with the EPP function, the following message will be displayed on the screen: "EPP Mode Select." At this time either [EPP 1.7] spec or [EPP 1.9] spec can be chosen.

► ECP Mode Use DMA

The ECP mode has to use the DMA channel, so choose the onboard parallel port with the ECP feature. After selecting it, the following message will appear: "ECP Mode Use DMA." At this time, the user can choose between DMA channel [3] or [1].

► Chassis Intrusion Detect

The field enables or disables the feature of recording the chassis intrusion status and issuing a warning message if the chassis is once opened. To clear the warning message, set the field to [Reset]. The setting of the field will automatically return to [Enabled] later.

► Power Management Setup

► ACPI Function

This item is to activate the ACPI (Advanced Configuration and Power Management Interface) Function. If your operating system is ACPI-aware, such as Windows 98SE/2000/ME. select [Enabled].

► ACPI Suspend Type

This item specifies the power saving modes for ACPI function. If your operating system supports ACPI, such as Windows 98SE, Windows ME and Windows 2000, you can choose to enter the Standby mode in S1 (POS) or S3 (STR) fashion through the setting of this field. Options are:

[S1(POS)] The S1 sleep mode is a low power state. In this state, no system context is lost (CPU or chipset) and hardware maintains all system context.

[S3(STR)] The S3 sleep mode is a lower power state where the information of system configuration and open applications/files is saved to main memory that remains powered while most other hardware components turn off to save energy. The information stored in memory will be used to restore the system when a "wake up" event occurs.

► Soft-Off by PWR-BTTN

This feature allows users to configure the power button function. Settings are:

[Instant-Off] The power button functions as a normal power-on/-off button. [Delay 4 Sec.] When you press the power button, the computer enters the suspend/sleep mode, but if the button is pressed for more

than four seconds, the computer is turned off.

► USB KB Wake-Up from S3

This setting allows you to enter "Any Key" (max. 8 numbers) to wake up the system from S3 state.

► Resume By Alarm

When [Enabled], your can set the date and time at which the RTC (real-time clock) alarm awakens the system from suspend mode.

▶ Date (of Month) Alarm

When **Resume By Alarm** is set to [Enabled], the field specifies the month for **Resume By Alarm**.

► Time (hh:mm:ss) Alarm

You can choose what hour, minute and second the system will boot up.

► PWRON After PWR-Fail

This item specifies whether your system will reboot after a power failure or interrupt occurs. Available settings are:

[Off] Leaves the computer in the power off state.

[On] Leaves the computer in the power on state. [Former-sts] Restores the system to the status before power fail-

ure or interrupt occurred.

PC Health

► Smart Fan Setting

► Smart System / CPU Fan Temp.

Select a temperature setting here, and if the temperature of the CPU/system climbs up to the selected temperature setting, the system will automatically

MS-9642 Mainboard

increase the speed of the CPU/system fan to cool down the overheated CPU/system.

► System / CPU Temp Tolerance

You can select a fan tolerance value here for the specific range for the Smart System / CPU Fan Temp. items. If the current temperatures of the fans reach the maximum threshold (the temperatures set in the Smart System / CPU Fan Temp. plus the tolerance values you set here), the fans will speed up for cooling down. On the contrary if the current temperatures reach the minimum threshold (the set temperatures minus the tolerance values), the fans will slow down to keep the temperatures stable.

► Current System Temp, Current CPU Temperature, System Fan Speed, CPU Fan Speed, CPU Voltage, 12V, 5V, DDRII, VBAT (V), 5VSB (V)

These items display the current status of all of the monitored hardware devices/components such as CPU voltage, temperatures and all fans' speeds.

Security

► Set Supervisor Password

Supervisor Password controls access to the BIOS Setup utility.

▶ Set User Password

User Password controls access to the system at boot.

► Security Option

This specifies the type of BIOS password protection that is implemented. Settings are described below:

Option	Description
[Setup]	The password prompt appears only when end users try to run Setup.
[System]	A password prompt appears every time when the computer is powered on or when end users try to run Setup.

System

► Machine Type/Model, Processor, Processor Cache Size, Processor Speed, System Memory Type, Video Controller, BIOS Date, BIOS Version These items show the hardware specifications of your system. Read only.

Boot

► Hard Disk Boot Priority

This setting allows users to set the boot priority of the specified hard disk devices. First press <Enter> to enter the sub-menu. Then you may use the arrow keys (↑↓) to select the desired device, then press <+>, <> or <PageUp>, <PageDown> key to move it up/down in the priority list.

First / Second / Third Boot Device

The items allow you to set the sequence of boot devices where BIOS attempts to load the disk operating system.

▶ Boot Other Device

Setting the option to [Enabled] allows the system to try to boot from other device if the system fails to boot from the first/second/third boot device.

Exit

► Load Fail-Safe Defaults

Use this menu to load the default values set by the BIOS vendor for stable system performance.

► Load Optimized Defaults

Use this menu to load the default values set by the mainboard manufacturer specifically for optimal performance of the mainboard.

► Save & Exit Setup

Save changes to CMOS and exit setup.

► Exit Without Saving

Abandon all changes and exit setup.

Chapter 4 System Resources

This chapter provides information on the following system resources:

- 1. Watch Dog Timer Setting (p.4-2);
- 2. Award POST Code (p.4-4);
- 3. Check Point & Beep Code List (p.4-10);
- 4. Resource List (p.4-17).

Watch Dog Timer Setting

```
ifdef Superio_Support_Watch_Dog
           extrn Watch_Dog_Item:near
           extrn WD Timer Item:near
          mov si,offset MENUITEMGROUP:Watch_Dog_Item
           call F000 GetItem Value
           test al, Watch Dog Cmos bits
           įΖ
                @F
                          ;jump if disable
           mov dx, 04Eh ;Enter config
           mov al. 087h
           out dx.al
           NEWIODELAY
           out dx.al
           NEWIODELAY
           mov al.07h
                                 ;Logical Device 8
           mov dx, 04Eh
           out
                dx.al
           NEWIODELAY
           mov ax.08h
           inc dx
           out
                dx.al
           NEWIODELAY
           mov al, 2Dh
           mov dx, 04Eh
           OUT
                dx al
           NEWIODELAY
           inc dx
           in
                al. dx
          and al, 0FEh
           out
               dx,al
           NEWIODELAY
           mov al. 0F5h
                          :For By Pass
           mov dx. 04Eh
                dx al
           NEWIODELAY
           mov al,08h
           inc dx
           out
                dx,al
```

NEWIODELAY

System Resources

```
WD reboot:
```

mov si,offset MENUITEMGROUP:WD_Timer_Item call F000_GetItem_Value

mov ah, al

mov al,0F6h ;Set time

mov dx, 04Eh out dx,al NEWIODELAY

mov al, ah ;fill time 9641_046

inc dx out dx,al NEWIODELAY

mov dx, 04Eh ;Exit config mov al, 0AAh

out dx, al NEWIODELAY

@@:

endif ;Superio_Support_Watch_Dog

Award POST Code

Award BIOS Error Message and Check Point (POST code) List (Need to be modified, TBD)

· Error/Process Message.

#	Short Name	Description	Possible FRUS
1	CMOS checksum error - Defaults loaded	Checksum of CMOS is incorrect, so the system loads the default equipment configuration. A checksum error may indicate that CMOS has become corrupt. This error may have been caused by a weak battery. Check the battery and replace if necessary.	System board
2	CPU at nnnn	Displays the running speed of the CPU.	processor
3	Press ESC to skip memory test	The user may press Esc to skip the full memory test.	System board
4	Floppy disk(s) fail	Cannot find or initialize the floppy drive controller or the drive. Make sure the controller is installed correctly. If no floppy drives are installed, be sure the Diskette Drive selection in Setup is set to NONE or AUTO.	system board
5	HARD DISK initializing Please wait a moment	Some hard drives require extra time to initialize.	System board
6	HARD DISK INSTALL FAILURE	Cannot find or initialize the hard drive controller or the drive. Make sure the controller is installed correctly. If no hard drives are installed, be sure the Hard Drive selection in Setup is set to NONE.	System board
7	Keyboard error or no keyboard present	Cannot initialize the keyboard. Make sure the keyboard is attached correctly and no keys are pressed during POST. To purposely configure the system without a keyboard, set the error halt condition in Setup to HALT ON ALL, BUT KEYBOARD. The BIOS then ignores the missing keyboard during POST.	System board
8	Memory Test:	This message displays during a full memory test, counting down the memory areas being tested.	DIMM System board

Check Point List

POST (hex)	Description
CFh	Test CMOS R/W functionality.
C0h	Early chipset initialization:
	-Disable shadow RAM
	-Disable L2 cache (socket 7 or below)
	-Program basic chipset registers
C1h	Detect memory
	 -Auto-detection of DRAM size, type and ECC.
	-Auto-detection of L2 cache (socket 7 or below)
A1h	Set Initial Conditions (Default Values) in EBP
A2h	Determine FSB frequency.
A3h	Begin Detection of installed DIMMS
A4h	Check for Column Latency
A5h	200Mhz or 266Mhz
A6h	Check for tRAS timing
A7h	Check for tRP timing
A8h	Check for tRCD timing
A9h	Check for ECC Support
AAh	Check for refresh timing
ABh	Verify that the DIMM's are in matched pairs
C3h	Expand compressed BIOS code to DRAM
C5h	Call chipset hook to copy BIOS back to E000 & F000 shadow
	RAM.
01h	Expand the Xgroup codes locating in physical address 1000:0
02h	Reserved
03h	Initial Superio Early Init switch.
04h	Reserved
05h	1. Blank out screen
	2. Clear CMOS error flag
06h	Reserved
07h	1. Clear 8042 interface
	2. Initialize 8042 self-test
08h	Test special keyboard controller for Winbond 977 series Super
	I/O chips.
	Enable keyboard interface.
09h	Reserved
0Ah	Disable PS/2 mouse interface (optional).
	2. Auto detect ports for keyboard & mouse followed by a port & interface swap
	(optional).
	Reset keyboard for Winbond 977 series Super I/O chips.
0Bh	Reserved
0Ch	Reserved
0Dh	Reserved
0Eh	Test F000h segment shadow to see whether it is R/W-able or not. If
	test fails, keep beeping the speaker.
0Fh	Reserved

10h	Auto detect flash type to load appropriate flash R/W codes into the	
	run time area in F000 for ESCD & DMI support.	
11h	Reserved	
12h	Use walking 1's algorithm to check out interface in CMOS	
	circuitry. Also set real-time clock power status, and then check for	
401	override.	
13h 14h	Reserved	
14n	Program chipset default values into chipset. Chipset default	
15h	values are MODBINable by OEM customers. Reserved	
16h	Initial Early Init Onboard Generator switch.	
17h	Reserved	
18h		
1011	Detect CPU information including brand, SMI type (Cyrix or Intel) and CPU level (586 or 686).	
19h	Reserved	
1Ah	Reserved	
1Bh	Initial interrupts vector table. If no special specified, all H/W	
IDII	interrupts are directed to SPURIOUS_INT_HDLR & S/W	
	interrupts to SPURIOUS_soft_HDLR.	
1Ch	Reserved	
1Dh	Initial EARLY_PM_INIT switch.	
1Eh	Reserved	
1Fh	Load keyboard matrix (notebook platform)	
20h	Reserved	
21h	HPM initialization (notebook platform)	
22h	Reserved	
23h	Check validity of RTC value:	
2011	e.g. a value of 5Ah is an invalid value for RTC minute.	
	Load CMOS settings into BIOS stack. If CMOS checksum fails, use default	
	value instead.	
	Prepare BIOS resource map for PCI & PnP use. If ESCD is valid, take into	
	consideration of the ESCD's legacy information.	
	Onboard clock generator initialization. Disable respective clock resource to	
	empty PCI & DIMM slots.	
	5. Early PCI initialization:	
	-Enumerate PCI bus number	
	-Assign memory & I/O resource	
	-Search for a valid VGA device & VGA BIOS, and put it	
	into C000:0.	
24h	Reserved	
25h	Reserved	
26h	Reserved	
27h	Initialize INT 09 buffer	
28h	Reserved	
29h	Program CPU internal MTRR (P6 & PII) for 0-640K memory address.	
	Initialize the APIC for Pentium class CPU.	
	Program early chipset according to CMOS setup. Example: onboard IDE	
	controller.	
	Measure CPU speed.	
1	Invoke video BIOS.	

System Resources

2Ah	Reserved
2Bh	Reserved
2Ch	Reserved
2Dh	Initialize multi-language
	Put information on screen display, including Award title, CPU type, CPU speed
2Eh	Reserved
2Fh	Reserved
30h	Reserved
31h	Reserved
32h	Reserved
33h	Reset keyboard except Winbond 977 series Super I/O chips.
34h	Reserved
35h	Reserved
36h	Reserved
37h	Reserved
38h	Reserved
39h	Reserved
3Ah	Reserved
3Bh	Reserved
3Ch	Test 8254
3Dh	Reserved
3Eh	Test 8259 interrupt mask bits for channel 1.
3Fh	Reserved
40h	Test 8259 interrupt mask bits for channel 2.
41h	Reserved
42h	Reserved
43h	Test 8259 functionality.
44h	Reserved
45h	Reserved
46h	Reserved
47h	Initialize EISA slot
48h	Reserved
49h	Calculate total memory by testing the last double word of each 64K page.
	Program write allocation for AMD K5 CPU.
4Ah	Reserved
4Bh	Reserved
4Ch	Reserved
4Dh	Reserved
4Eh	Program MTRR of M1 CPU
	2. Initialize L2 cache for P6 class CPU & program CPU with proper cacheable
	range.
	Initialize the APIC for P6 class CPU.
	On MP platform, adjust the cacheable range to smaller one in case the
	cacheable ranges between each CPU are not identical.
4Fh	Reserved

50h	Initialize USB	
51h	Reserved	
52h	Test all memory (clear all extended memory to 0)	
53h	Reserved	
54h	Reserved	
55h	Display number of processors (multi-processor platform)	
56h	Reserved	
57h	Display PnP logo	
0	Early ISA PnP initialization	
	-Assign CSN to every ISA PnP device.	
58h	Reserved	
59h	Initialize the combined Trend Anti-Virus code.	
5Ah	Reserved	
5Bh	(Optional Feature)	
JDII	Show message for entering AWDFLASH.EXE from FDD (optional)	
5Ch	Reserved	
5Dh	Initialize Init Onboard Super IO switch.	
0511	Initialize Init Onbaord AUDIO switch.	
5Fh	Reserved	
5Fh	Reserved	
60h	Okay to enter Setup utility; i.e. not until this POST stage can users	
0011	enter the CMOS setup utility.	
61h	Reserved	
62h	Reserved	
63h	Reserved	
64h	Reserved	
65h	Initialize PS/2 Mouse	
66h	Reserved	
67h	Prepare memory size information for function call:	
0711	INT 15h ax=E820h	
68h	Reserved	
69h	Turn on L2 cache	
6Ah	Reserved	
6Bh	Program chipset registers according to items described in Setup &	
ODII	Auto-configuration table.	
6Ch	Reserved	
6Dh	Assign resources to all ISA PnP devices.	
ODII	Auto assign ports to onboard COM ports if the corresponding item in Setup	
	is set to "AUTO".	
6Eh	Reserved	
6Fh	1.Initialize floppy controller	
*****	2.Set up floppy related fields in 40:hardware.	
70h	Reserved	
71h	Reserved	
72h	Reserved	
73h	(Optional Feature)	
	Enter AWDFLASH.EXE if :	
	-AWDFLASH is found in floppy drive.	
	-ALT+F2 is pressed	
74h	Reserved	
75h	Detect & install all IDE devices: HDD, LS120, ZIP, CDROM	

76h	Reserved
77h	Detect serial ports & parallel ports.
78h	Reserved
79h	Reserved
7Ah	Detect & install co-processor
7Bh	Reserved
7Ch	Reserved
7Dh	Reserved
7Eh	Reserved
7Fh	 Switch back to text mode if full screen logo is supported.
	-If errors occur, report errors & wait for keys
	-If no errors occur or F1 key is pressed to continue:
	Clear EPA or customization logo.
80h	Reserved
81h	Reserved
82h	Call chipset power management hook.
	Recover the text fond used by EPA logo (not for full screen logo)
	If password is set, ask for password.
83h	Save all data in stack back to CMOS
84h	Initialize ISA PnP boot devices
85h	USB final Initialization
	NET PC: Build SYSID structure
	Switch screen back to text mode
	Set up ACPI table at top of memory.
	Invoke ISA adapter ROMs
	Assign IRQs to PCI devices
	7. Initialize APM
	Clear noise of IRQs.
86h	Reserved
87h	Reserved
88h	Reserved
89h	Reserved
90h	Reserved
91h	Reserved
92h	Reserved
93h	Read HDD boot sector information for Trend Anti-Virus code
94h	Enable L2 cache
	Program boot up speed
	Chipset final initialization.
	Power management final initialization
	Clear screen & display summary table
	Program K6 write allocation
	Program P6 class write combining
95h	Program daylight saving
	Update keyboard LED & typematic rate
96h	Build MP table
	Build & update ESCD
	Set CMOS century to 20h or 19h
	Load CMOS time into DOS timer tick
	Build MSIRQ routing table.
FFh	Boot attempt (INT 19h)

Check Point & Beep Code List

Bootblock Initialization Code Checkpoints

Checkpoint	Description	
Before D0	D0 If boot block debugger is enabled, CPU cache-as-RAM functionality is enabled at	
	point. Stack will be enabled from this point.	
D0	Early Boot Strap Processor (BSP) initialization like microcode update, frequency and	
	other CPU critical initialization. Early chipset initialization is done.	
D1	Early super I/O initialization is done including RTC and keyboard controller. Serial port	
	is enabled at this point if needed for debugging. NMI is disabled. Perform keyboard	
	controller BAT test. Save power-on CPUID value in scratch CMOS. Go to flat mode with	
	4GB limit and GA20 enabled.	
D2	Verify the boot block checksum. System will hang here if checksum is bad.	
D3	Disable CACHE before memory detection. Execute full memory sizing module. If	
	memory sizing module not executed, start memory refresh and do memory sizing in	
	Boot block code. Do additional chipset initialization. Re-enable CACHE. Verify that flat	
	mode is enabled.	
D4	Test base 512KB memory. Adjust policies and cache first 8MB. Set stack.	
D5	Bootblock code is copied from ROM to lower system memory and control is given to it.	
	BIOS now executes out of RAM. Copies compressed boot block code to memory in	
	right segments. Copies BIOS from ROM to RAM for faster access. Performs main BIOS	
	checksum and updates recovery status accordingly.	
D6	Both key sequence and OEM specific method is checked to determine if BIOS recovery	
	is forced. If BIOS recovery is necessary, control flows to checkpoint E0. See <i>Bootblock</i>	
	Recovery Code Checkpoints section of document for more information.	
D7	Restore CPUID value back into register. The Bootblock-Runtime interface module is	
	moved to system memory and control is given to it. Determine whether to execute serial	
	flash.	
D8	The Runtime module is uncompressed into memory. CPUID information is stored in	
	memory.	
D9	Store the Uncompressed pointer for future use in PMM. Copying Main BIOS into	
	memory. Leaves all RAM below 1MB Read-Write including E000 and F000 shadow	
	areas but closing SMRAM.	
DA	Restore CPUID value back into register. Give control to BIOS POST	
	(ExecutePOSTKernel). See POST Code Checkpoints section of document for more	
	information.	
DC	System is waking from ACPI S3 state	
E1-E8	OEM memory detection/configuration error. This range is reserved for chipset vendors	
EC-EE	& system manufacturers. The error associated with this value may be different from one	
	platform to the next.	

Bootblock Recovery Code Checkpoints

Checkpoint	Description			
E0	Initialize the floppy controller in the super I/O. Some interrupt vectors are initialized.			
	DMA controller is initialized. 8259 interrupt controller is initialized. L1 cache is			
	enabled.			
E9	Set up floppy controller and data. Attempt to read from floppy.			
EA	Enable ATAPI hardware. Attempt to read from ARMD and ATAPI CDROM.			
EB	Disable ATAPI hardware. Jump back to checkpoint E9.			
EF	Read error occurred on media. Jump back to checkpoint EB.			
F0	Search for pre-defined recovery file name in root directory.			
F1	Recovery file not found.			
F2	Start reading FAT table and analyze FAT to find the clusters occupied by the recovery			
	file.			
F3	Start reading the recovery file cluster by cluster.			
F5	Disable L1 cache.			
FA	Check the validity of the recovery file configuration to the current configuration of the			
	flash part.			
FB	Make flash write enabled through chipset and OEM specific method. Detect proper			
	flash part. Verify that the found flash part size equals the recovery file size.			
F4	The recovery file size does not equal the found flash part size.			
FC	Erase the flash part.			
FD	Program the flash part.			
FF	The flash has been updated successfully. Make flash write disabled. Disable ATAPI			
	hardware. Restore CPUID value back into register. Give control to F000 ROM at			
	F000:FFF0h.			

POST Code Checkpoints

Checkpoint	Description				
03	Disable NMI, Parity, video for EGA, and DMA controllers. Initialize BIOS, POST,				
	Runtime data area. Also initialize BIOS modules on POST entry and GPNV area.				
	Initialized CMOS as mentioned in the Kernel Variable "wCMOSFlags."				
04	Check CMOS diagnostic byte to determine if battery power is OK and CMOS checksum				
	is OK. Verify CMOS checksum manually by reading storage area. If the CMOS				
	checksum is bad, update CMOS with power-on default values and clear passwords.				
	Initialize status register A.				
	Initializes data variables that are based on CMOS setup questions. Initializes both the				
	8259 compatible PICs in the system				
05	Initializes the interrupt controlling hardware (generally PIC) and interrupt vector table.				
06	Do R/W test to CH-2 count reg. Initialize CH-0 as system timer. Install the POSTINT1Ch				
	handler. Enable IRQ-0 in PIC for system timer interrupt. Traps INT1Ch vector to				
	"POSTINT1ChHandlerBlock."				
07	Fixes CPU POST interface calling pointer.				
08	Initializes the CPU. The BAT test is being done on KBC. Program the keyboard				
	controller command byte is being done after Auto detection of KB/MS using AMI KB-5.				
C0	Early CPU Init Start Disable Cache Init Local APIC				
C1	Set up boot strap processor Information				
C2	Set up boot strap processor for POST				
C5	Enumerate and set up application processors				
C6	Re-enable cache for boot strap processor				
C7	Early CPU Init Exit				
0A	Initializes the 8042 compatible Key Board Controller.				
0B	Detects the presence of PS/2 mouse.				
0C	Detects the presence of Keyboard in KBC port.				
0E	Testing and initialization of different Input Devices. Also, update the Kernel Variables.				
	Traps the INT09h vector, so that the POST INT09h handler gets control for IRQ1.				
	Uncompress all available language, BIOS logo, and Silent logo modules.				
13	Early POST initialization of chipset registers.				
20	Relocate System Management Interrupt vector for all CPU in the system.				
24	Uncompress and initialize any platform specific BIOS modules. GPNV is initialized at				
	this checkpoint.				

System Resources

2A	Initializes different devices through DIM.
	See DIM Code Checkpoints section of document for more information.
2C	Initializes different devices. Detects and initializes the video adapter installed in the
	system that has optional ROMs.
2E	Initializes all the output devices.
31	Allocate memory for ADM module and uncompress it. Give control to ADM module for
	initialization. Initialize language and font modules for ADM. Activate ADM module.
33	Initializes the silent boot module. Set the window for displaying text information.
37	Displaying sign-on message, CPU information, setup key message, and any OEM
	specific information.
38	Initializes different devices through DIM. See DIM Code Checkpoints section of
	document for more information. USB controllers are initialized at this point.
39	Initializes DMAC-1 & DMAC-2.
3A	Initialize RTC date/time.
3B	Test for total memory installed in the system. Also, Check for DEL or ESC keys to limit
	memory test. Display total memory in the system.
3C	Mid POST initialization of chipset registers.
40	Detect different devices (Parallel ports, serial ports, and coprocessor in CPU, etc.)
	successfully installed in the system and update the BDA, EBDAetc.
52	Updates CMOS memory size from memory found in memory test. Allocates memory for
	Extended BIOS Data Area from base memory. Programming the memory hole or any
	kind of implementation that needs an adjustment in system RAM size if needed.
60	Initializes NUM-LOCK status and programs the KBD typematic rate.
75	Initialize Int-13 and prepare for IPL detection.
78	Initializes IPL devices controlled by BIOS and option ROMs.
7C	Generate and write contents of ESCD in NVRam.
84	Log errors encountered during POST.
85	Display errors to the user and gets the user response for error.
87	Execute BIOS setup if needed / requested. Check boot password if installed.
8C	Late POST initialization of chipset registers.
8D	Build ACPI tables (if ACPI is supported)
8E	Program the peripheral parameters. Enable/Disable NMI as selected
	1

MS-9642 Mainboard

90	Initialization of system management interrupts by invoking all handlers. Please note this			
	checkpoint comes right after checkpoint 20h			
A1	Clean-up work needed before booting to OS.			
A2	Takes care of runtime image preparation for different BIOS modules. Fill the free area in			
	F000h segment with 0FFh. Initializes the Microsoft IRQ Routing Table. Prepares the			
	runtime language module. Disables the system configuration display if needed.			
A4	Initialize runtime language module. Display boot option popup menu.			
A7	Displays the system configuration screen if enabled. Initialize the CPU's before boot,			
	which includes the programming of the MTRR's.			
A9	Wait for user input at config display if needed.			
AA	Uninstall POST INT1Ch vector and INT09h vector.			
AB	Prepare BBS for Int 19 boot. Init MP tables.			
AC	End of POST initialization of chipset registers. De-initializes the ADM module.			
B1	Save system context for ACPI. Prepare CPU for OS boot including final MTRR values.			
00	Passes control to OS Loader (typically INT19h).			

Beep Codes

Boot Block Beep Codes

Number of Beeps	Description		
1	Insert diskette in floppy drive A:		
2	'AMIBOOT.ROM' file not found in root directory of diskette in A:		
3	Base Memory error		
4	Flash Programming successful		
5	Floppy read error		
6	Keyboard controller BAT command failed		
7	No Flash EPROM detected		
8	Floppy controller failure		
9	Boot Block BIOS checksum error		
10	Flash Erase error		
11	Flash Program error		
12	'AMIBOOT.ROM' file size error		
13	BIOS ROM image mismatch (file layout does not match image present in flash		
	device)		

POST BIOS Beep Codes

Number of Beeps	Description	
1	Memory refresh timer error.	
2	Parity error in base memory (first 64KB block)	
3	Base memory read/write test error	
4	Motherboard timer not operational	
5	Processor error	
6	8042 Gate A20 test error (cannot switch to protected mode)	
7	General exception error (processor exception interrupt error)	
8	Display memory error (system video adapter)	
9	AMIBIOS ROM checksum error	
10	CMOS shutdown register read/write error	
11	Cache memory test failed	

Troubleshooting POST BIOS Beep Codes

Number of Beeps	Troubleshooting Action			
1, 2 or 3	Reseat the memory, or replace with known good modules.			
4-7, 9-11	Fatal error indicating a serious problem with the system. Consult your system			
	manufacturer. Before declaring the motherboard beyond all hope, eliminate the			
	possibility of interference by a malfunctioning add-in card. Remove all expansion			
	cards except the video adapter.			
	· If beep codes are generated when all other expansion cards are absent, consult			
	your system manufacturer's technical support.			
	· If beep codes are not generated when all other expansion cards are absent, one			
	of the add-in cards is causing the malfunction. Insert the cards back into the			
	system one at a time until the problem happens again. This will reveal the			
	malfunctioning card.			
8	If the system video adapter is an add-in card, replace or reseat the video adapter.			
	If the video adapter is an integrated part of the system board, the board may be			
	faulty.			

Resource List

ICH7 GPI/O Definition

GPIO	Alt Func	Pin	I/0/NC	Power	ρū	SMI Tol	Default	Rickles Signal Name
GPIO[0]	BM BUSY#	AB18	н	9	z	Y 3.3	N/A	BM BUSY#
GPIO[1]	PCIREQ[5]#	ر د	I		Y	N 5	N/A	PREQ#5
GPIO[2]	PIRQE#	85	н		>	N S	N/A	PIRQ#E
GPIO[3]	PIRQF#	E7	H	VSREF	7	N 5	N/A	PIRQ#F
GPIO[4]	PIRQG#	F8	I		Y	N 5	N/A	PIRQ#G
GPIO[5]	PIRQH#	67	I	VSREF	>	N 5	N/A	PIRQ#H
GPIO[6]	nnmuxed	AC21	I	Vcc3p3	Y	Y 3.3	N/A	#LAO OIS
GPIO[7]	BIOS WP#	AC18	н		>	N.S	N/A	BIOS WP#
GPIO(8)	nnmnxed	E21	н	Vocausaba	>	Y 3.3	Н	
GPIO[9]	nnmuxed	E20	н	VccSus3p3	>	N 3.3	N/A	LAN1 EN
GPIO[10]	nnmuxed	A20	н	VccSus3p3	>	N 3.3	N/A	LAN2 EN
GPIO[11]	SMBALERT#	B23	н	VccSus3p3	>-	Υ 3.3	N/A	SMB ALERT#
GPIO[12]	nnmuxed	F19	н	VccSus3p3	>	N 3.3		LAN3 EN
GPIO[13]	unmuxed	E19	н	VeeBue3p3	>	¥ 3.3	N/A	BIO PME
GPIO[14]	NC	R4	Ι	VccSus3p3	Y	Y 3.3		NC _
GPIO[15]	NC	E22	I	VccSus3p3	z	N 3.3	1	AT/ATX SELECT
GPIO[16]	DPRSLPVR	AC22	0	Vcc3p3	z	N 3.3	Ţ	DPRSLPVR
GPIO[17]	PCIGNT[5]#	D8	0		z	N 3.3	Н	NC
GPIO[18]	STPPCI#	AC20	0		z	Ш	Н	
[61]OId9	AMP GAINO	AH18	I	Vcc3p3	a	N 3.3	1	AMP GAINO
GPIO[20]	STPCPU#	AF21	0	Vcc3p3	z	N 3.3		
GPIO[21]	AMP EN	AF19	Ι		z	N 3.3	0	AMP EN
GPIO[22]	REQ4#	A13	I	Vcc3p3	z	N 3.3	0	REQ4#
GPIO[23]	LDRQ1#	AA5	0		z	Н	Н	NC
GPIO[24]	NC	В3	0	VccSus3p3	>	m.	1	NC
GPIO[25]	NC	D20	0		z	N 3.3	Н	NC
GPIO[26]	EL RSVD	A21	0	VccSus3p3	z	N 3.3	Н	NC
GPIO[27]	EL STATO	B21	0	VccSus3p3	z	N 3.3	0	NC
GPIO[28]	EL STAT1	E23	0		z	Ш	Н	
GPIO[29]	OC#5	C3	Η	VccsUS3p3	>	N 3.3		
GPIO[30]	9#30	A2	I	VccsUS3p3	Y	N 3.3		VCC3 SB
GPIO[31]	0C#7	B3	п	VccsUS3p3	>	N 3.3		VCC3 SB
GPIO[32]	CLKRUN#	AG18	0		z	N 3.3	Н	NC _
GPIO[33]	AZ DOCK EN#	AC19	0	Vcc3p3	z	N 3.3		AUXGPIO DIR1
GPIO[34]	AZ DOCK RST#	U2	0	Vcc3p3	z	N 3.3	Н	AUXGPIO DIR2
GPIO[35]	SATACLKREQ#	AD21	0		z	N 3.3	0	NC
GPIO[36]	AMP GAINI	AH19	н		z	N 3.3	0	AMP GAINI
GPIO(37)	NC	AE19	Ι	Voc3p3	z	N 3.3	0	NC
GPIO[38]	nnmuxed	AD20	н	Vcc3p3	>	N 3.3	1	AUXGPIO OE#
GPIO[39]	nnmuxed	AE20	I		>	N 3.3	Н	NC
GPIO[48]	GNT4#	A14	0	·	z	N 3.3		NC
GPIO[49]	H PWRGD	AG24	OD	V FSB VTT	×	N 3.3	1	H PWRGD

Winbond W83627EHG SIO GPI/O Definition

GPIO	Pin	Тур	Power	Connection
GPIO10	128	10	VCC	AUXGPIO10
GPIO11	127	iO	VCC	AUXGPIO11
GPIO12	126	iO	VCC	AUXGPIO12
GPIO13	125	0	VCC	AUXGPIO13
GPIO14	124	ŏ	VCC	AUXGPIO14
GPIO15	123	io	VCC	AUXGPIO15
GPIO16	122	io	VCC	AUXGPIO16
GPIO17	121	IO	VCC	AUXGPIO17
GPIO20	120	0	VCC	AUXFAN PWM
GPIO21	119	Ĭ	VCC	AUX FAN
GPIO22	19	Ю	VCC	NC .
GPIO23	2	IO	VCC	NC
GPIO24	66	10	VSB	NC
GPIO25	65	10	VSB	NC
GPIO26	63	10	VSB	NC
GPIO27	62	10	VSB	NC
GPIO30	92	10	VSB	AUXGPIO20
GPIO31	91	10	VSB	AUXGPIO21
GPIO32	90	T.	VSB	AUXGPIO22
GPIO33	89	Ю	VSB	AUXGPIO23
GPIO34	88	Ю	VSB	AUXGPIO24
GPIO35	87	Ю	VSB	AUXGPIO25
GPIO36	69	Ю	VSB	AUXGPIO26
GPIO37	64	10	VSB	AUXGPIO27
GPIO40	85	IO	VSB	NC
GPIO41	84	Ю	VSB	NC
GPIO42	83	Ю	VSB	NC
GPIO43	82	10	VSB	NC
GPIO44	81	Ю	VSB	RS422 EN1
GPIO45	80	Ю	VSB	RS422_EN2
GPIO46	79	Ю	VSB	RS485 EN1
GPIO47	68	Ю	VSB	RS485_EN2
GPIO50	77	Ю	VSB	NC
GPIO51	75	Ю	VSB	NC
GPIO52	73	1	VSB	SLP_S3#
GPIO53	72	0	VSB	PS ON#
GPIO54	71	Ю	VSB	NC
GPIO55	70	Ю	VSB	NC
GPIO56	68	1	VSB	PWRBTIN
GPIO57	67	0	VSB	PWRBTN#
GPIO60	57	Ю	VCC	NC
GPIO61	56	Ю	VCC	NC
GPIO62	54	Ю	VCC	NC
GPIO63	53	Ю	VCC	NC
GPIO64	52	Ю	VCC	NC
GPIO65	51	Ю	VCC	NC
GPIO66	50	Ю	VCC	NC
GPIO67	49	Ю	VCC	NC

I/O Map

I/O Port	Description
0000-000F	DMA Controller 1
0020-0021	Interrupt Controller 1
0040-0043	System Timer
004E-004F	SIO Port
0060, 0064	Keyboard Controller
0070-0073	RTC and CMOS
0080-0090	DMA Controller Page Registers
0092	Port 92h
00A0-00A1	Interrupt Controller 2
00B2-00B3	APM register
00C0-00DF	DMA Controller 2
00F0-00FF	Numeric Data Processor
01F0-01F7	Primary IDE Controller
02F8-02FF	COM2
0376	Secondary IDE Controller
0378-037F	LPT1
03F6	Primary IDE Controller
03F8-03FF	COM1
0400-045F	ACPI I/O space
0500-050F	SMBus I/O Space
0CF8-0CFF	PCI configuration Port

PCI Devices

Bus	Dev	Func	Vendor ID	Device ID	Type Description
00	00	00	8086	27A0	Intel Host Bridge
88	82	88	8086	27A2	Intel VGA Controller
88	1B	99	8086	2708	Intel Unknow Device
88		99	8086	2700	Intel PCI/PCI Bridge
99	10	01	8086	27D2	Intel PCI/PCI Bridge
00	10	92	8086	2704	Intel PCI/PCI Bridge
88	10	83	8086	2706	Intel PCI/PCI Bridge
88		88	8086	2708	Intel USB UHCI
88		01	8086	2709	Intel USB UHCI
99		82	8086	27CA	Intel USB UHCI
88		83	8086	27CB	Intel USB UHCI
99	1 B	97	8086	2700	Intel USB EHCI
88	1E	99	8086	2448	Intel Decode PCI/PCI Bridge
88		99	8886	2789	Intel ISA Bridge
88			8888	27DF	Intel IDE Controller
88			8886	2704	Intel IDE Controller

SMBus Resource Allocation

SMBus Res	ource Alloca	tion
Device	Address	Description
MS-7	0101 111X	MSI ACPI Controller
DIMM Slot	1010 0000	SPD

ISA Interrupt Allocation

IRQ	Description
IRQ0	System Timer
IRQ1	Keyboard Controller
IRQ2	Second 8259A
IRQ3	COM2 / COM4
IRQ4	COM1 / COM3
IRQ5	LPT2
IRQ6	Floppy Disk Drive
IRQ7	LPT1
IRQ8	RTC
IRQ9	Redirected IRQ2
IRQ10	Reserved
IRQ11	Reserved
IRQ12	Reserved
IRQ13	Math Coprocessor
IRQ14	Fixed Disk
IRQ15	Reserved

ISA DMA Channel Allocation

DMA Channel	Description
Channel 0	Unassigned 8-bit channel
Channel 1	Unassigned 8-bit channel
Channel 2	Unassigned 8-bit channel
Channel 3	Unassigned 8-bit channel
Channel 4	Cascade channel
Channel 5	Unassigned 16-bit channel
Channel 6	Unassigned 16-bit channel
Channel 7	Unassigned 16-bit channel