Borel set on [a,b] is generated by π [a,b]

Ji Jiabao

March 29, 2020

Proof.

 \Leftarrow : prove $\sigma(\pi[a,b]) \subseteq \mathcal{B}[a,b]$

$$\pi[a,b] = \{A \cap [a,b] : A \in \pi(\mathbb{R})\} = \{(-\infty,x] \cap [a,b] : x \in \mathbb{R}\} = \{[a,x] : x \in [a,b]\}$$

Similar to the proof in class, we need to show that any [a,x] is a union of countable open sets. Observing that $[a,x] = \bigcap_{n \in \mathbb{N}} = (a - \frac{1}{n}, x + \frac{1}{n}), [a,x] \in \mathcal{B}[a,b]$, which leads to $\sigma(\pi[a,b]) \subseteq \mathcal{B}[a,b]$

$$\Rightarrow$$
: prove $\mathcal{B}([a,b]) \subseteq \sigma(\pi[a,b])$

Similar to the proof in class, we need to show that any open set of [a,b] is contained in $\sigma(\pi[a,b])$. Still similar to the proof, each of these open sets is a countably union of open intervals, we need to show that every $s = (x,y) \cap [a,b] \in \sigma(\pi([a,b]))$.

We can see such s is in the four classes below, we prove $s \in \sigma(\pi([a,b]))$ for each case.

1.
$$s = [a, y), \ s = \bigcap_{n > \frac{1}{b-y}, n \in \mathbb{N}} [a, y + \frac{1}{n}] \text{ and } [a, y + \frac{1}{n}] \in \pi([a, b]), \text{ so } s \in \sigma(\pi([a, b]))$$

2.
$$s = (x, b], \ s = \bigcap_{n > \frac{1}{x-a}, n \in \mathbb{N}} [x - \frac{1}{n}, b] \text{ and } [x - \frac{1}{n}, b] \in \pi([a, b]), \text{ so } s \in \sigma(\pi([a, b]))$$

3.
$$s=[a,b],\,[a,b]\in\pi([a,b])$$
 so $s\in\sigma(\pi([a,b]))$

4.
$$s = (x, y), (x, y) = (x, b] \cap [a, y) \in \sigma(\pi([a, b]))$$

Therefore,
$$\mathcal{B}([a,b]) \subseteq \sigma(\pi[a,b])$$