"BAG OF SONGS": EXTRACCIÓN DE CARACTERÍSTICAS EN SEÑALES DE AUDIO

Pablo Reina Jiménez María Lourdes Linares Barrera

ÍNDICE DE CONTENIDOS

01 PRESENTACIÓN

- 1) Objetivos del proyecto
- 2) Estructura del proyecto

Conjunto de datos

Extracción de características

Entrenamiento de modelos

TEMÁTICA

Estudiar las características del dominio frecuencial y

Clasificación y distinción de géneros musicales

Conjunto de datos

Extracción de características

Entrenamiento de modelos

Bag of words: tfidf (datos tabulares), modelos ML (SVC, RF...) o MLP.

Tokenizado, embeddings, modelos LSTM, transformers...

Conjunto de datos

Extracción de características Entrenamiento de modelos

- 1) "Bag of songs": extracción de características (datos tabulares), modelos ML (SVC, RF...) o MLP.
- 2) Serie temporal + modelos autoregresivos.

- 1) Espectrogramas + CNNs 2) RNNS 3)Transformers...

ESTRUCTURA DEL PROYECTO

- > img
- .gitignore
- 1-data-preparation.ipynb
- 2-features-explanation.ipynb
- 3-models-prediction.ipynb
- README.md

O2 CONJUNTO DE DATOS

-) Descripción de los datos
- 2) Carga de los datos

Conjunto de datos

Extracción de características

Entrenamiento de modelos

CONJUNTO DE DATOS: CCMUSIC

> 15GB en piezas musicales

- 1 700 piezas musicales
 - 1370 entrenamiento
 - 171 validación
 - 172 test

CONJUNTO DE DATOS: CCMUSIC

```
# Visualizamos la estructura del corpus
ccmusic_corpus = datasets.load_dataset("ccmusic-database/music_genre", name="default",trust_remote_code=True)
print(ccmusic_corpus)

DatasetDict({
    train: Dataset({
        features: ['audio', 'mel', 'fst_level_label', 'sec_level_label', 'thr_level_label'],
        num_rows: 1370
    })
    validation: Dataset({
        features: ['audio', 'mel', 'fst_level_label', 'sec_level_label', 'thr_level_label'],
        num_rows: 171
    })
    test: Dataset({
        features: ['audio', 'mel', 'fst_level_label', 'sec_level_label', 'thr_level_label'],
        num_rows: 172
    })
})
```

> 15GB en piezas musicales

- 1 700 piezas musicales
 - 1370 entrenamiento
 - 171 validación
 - 172 test

CONJUNTO DE DATOS: CCMUSIC

- Dataset orientado a clasificación.
- Maneja 3 jerarquías (fst_level_label, sec_level_label, thr_level_label).

Conjunto de datos

Extracción de características

Entrenamiento de modelos

NOTEBOOK 1 - CARGA DE LOS DATOS

ccmusic ✓ test > audios annotations.csv ∨ train > audios > images annotations.csv validation > audios annotations.csv

- 1. Carga del dataset de Hugging Face.
- 2. Creación de funciones.
 - Almacenamiento de ficheros WAV.
 - Registrar anotaciones (categoría).
 - Homogeneización (= sample rate, = mono, \neq número de muestras): recorte/padding \rightarrow Número de Muestras = Tasa de muestreo (Hz) \times Duración (s) = $22050 \times 30 = 661500$
- 3. Creación de estructura de directorios. Para cada partición:
 - Creamos el fichero de anotaciones y la subcarpeta de anotaciones.
 - Almacenamos el audio recortado.
 - Creamos una entrada fichero-clase en anotaciones.

03 EXTRACCIÓN DE CARACTERÍSTICAS

- Conceptos previos: Dominios en audio y segmentación
- Características de señales de audio
- Generación de dataset y caso práctico

Conjunto de datos Extracción de características

Entrenamiento de modelos

EXTRACCIÓN DE CARACTERÍSTICAS

Dominios en señales de audio

Características de una señal de audio

Generación de dataset de características

Conjunto de datos

Extracción de características Entrenamiento de modelos

EXTRACCIÓN DE CARACTERÍSTICAS

Dominios en señales de audio

Características de una señal de audio

Generación de dataset de características y caso práctico (análisis descriptivo)

Conjunto de datos

Extracción de características Entrenamiento de modelos

DOMINIO TEMPORAL

- Tiempo-amplitud
- Fuerza o intensidad de la serie.
- Oscilograma.

Amplitude (power)

FRECUENCIAL-TEMPORAL

- Tiempo-frecuencia-magnitud.
- Espectrograma.

- Frecuencia-magnitud.
- Contribución de cada frecuencia a la señal global.
- Transformada de Fourier.

Time domain test

Frequency domain test

Time

Conjunto de datos

Entrenamiento de modelos

Conjunto de datos

Extracción de características

Entrenamiento de modelos

EXTRACCIÓN DE CARACTERÍSTICAS

Dominios en señales de audio

Características de una señal de audio

Generación de dataset de características y caso práctico (análisis descriptivo)

Notación: sea S una señal segmentada en bloques

- s_i (i = 0, ..., N-1) \equiv señal con sample rate sr
- $F \equiv \text{tamaño de bloque (frame size)}$.
- $H \equiv \text{salto de bloque (hop)}$.
- Bloques k = 1, ..., T-1. El k-ésimo bloque: $\left[\frac{H*k}{sr}, \frac{H*k+F-1}{sr}\right]$

ENVOLVENTE

Dominio temporal. Borde o silueta de la señal. Da una intuición más interpretable de cómo varía la señal a lo largo del tiempo.

$$AE_k = max_{\{i=kH\}}^{\{kH+F-1\}}s(i)$$

ROOT MEAN SQUARE

Dominio temporal. Estima la energía de la señal a lo largo del tiempo. Sirve para detectar silencios y la dinámica de la señal.

$$RMS_k = \sqrt{rac{1}{F} \cdot \sum_{i=k \cdot F}^{(k+1) \cdot F - 1} s(i)^2}$$

ZERO CROSSING RATE

Dominio temporal. Calcula el promedio de cuántas veces la amplitud de la señal cruza el eje horizontal.

$$ZCR_k = \sum_{i=k\cdot F}^{(k+1)\cdot F-1} rac{1}{2} | ext{sgn}(s(i)) ext{-} ext{sgn}(s(i+1))|$$

BER

Dominio frecuencial. Cuánta energía acumulada hay en las frecuencias bajas frente a las frecuencias altas.

$$\mathrm{BER}_k = \frac{\mathrm{Energ\'{i}a\ banda\ baja}_k}{\mathrm{Energ\'{i}a\ banda\ alta}_k} = \frac{\sum_{n=0}^{FR-1} m_k(n)^2}{\sum_{n=FR}^N m_k(n)^2}$$

SPECTRAL CENTROID

Dominio frecuencial. Centro de gravedad, banda de frecuencias en torno a la cual se concentra la mayor parte de la energía.

$$ext{SC}_k = rac{\sum_{n=0}^N n \cdot m_k(n)}{\sum_{n=0}^N m_k(n)}$$

SPECTRAL BANDWIDTH

$${
m SBW}_k = \sqrt{rac{\sum_{n=0}^{N} (n - {
m SC}_k)^2 \cdot m_k(n)}{\sum_{n=0}^{N} m_k(n)}}$$

Dominio frecuencial. Cómo de dispersas están las frecuencias en la señal de audio.

SPECTRAL ROLLOFF

Dominio frecuencial.

Determina el límite superior de las frecuencias del audio, reflejando el punto por debajo del cual se encuentra un porcentaje determinado de la energía espectral total.

$$R(k) = \min \left(\omega : \sum_{i=0}^{\omega} |X(k,i)| \geq 0.85 imes \sum_{i=0}^{N-1} |X(k,i)|
ight)$$

CHROMA STFT

Dominio frecuencial. Representa el audio en términos de las 12 notas de la escala cromática.

$$C(k,m) = \sum_{\omega \in \mathrm{bin}(m)} |X(k,\omega)|$$

MEL FREQUENCY CEPSTRAL COEFFICIENTS

Dominio frecuencial. Capturan características de la señal basándose en la percepción auditiva humana.

Conjunto de datos

Extracción de características

Entrenamiento de modelos

EXTRACCIÓN DE CARACTERÍSTICAS

Dominios en señales de audio

Características de una señal de audio

Generación de dataset de características y caso práctico (análisis descriptivo)

GENERACIÓN DEL DATASET DE CARACTERÍSTICAS

- 1. Definir funciones para el cálculo y generar las características para cada señal de cada partición.
- 2. Aproximación "naive": para cada característica pese a ser una serie tenemos que almacenar un único valor tabular. Una aproximación muy común en la literatura es asociar la media.

Conjunto de datos

Extracción de características

Entrenamiento de modelos

ANÁLISIS DESCRIPTIVO

32 columnas de características

_										
	audio_file	label	mean_envelope	mean_rms	mean_zcr	mean_ber	mean_spec_cent	mean_spec_bw	mean_rolloff	mean_chroma_stftC
0	ccmusic2/train/audios/audio_train_0.wav	Rock	0.118342	0.043627	0.060294	4.037650	1350.649029	1758.828856	2675.950486	0.303799
1	ccmusic2/train/audios/audio_train_1.wav	Soul_or_r_and_b	0.314424	0.103811	0.138103	4.370842	2636.363229	2593.828616	5751.798553	0.449251
2	ccmusic2/train/audios/audio_train_2.wav	Symphony	0.181952	0.065241	0.090361	1.856970	1452.552736	1590.335734	2817.732962	0.370835
3	ccmusic2/train/audios/audio_train_3.wav	Dance_and_house	0.163407	0.063564	0.090101	6.817037	1675.637336	1715.368994	3338.713145	0.240659
4	ccmusic2/train/audios/audio_train_4.wav	Soul_or_r_and_b	0.348335	0.128825	0.100390	17.659496	2222.363681	2569.843206	4858.120624	0.570061

DATASET TABULAR

→ ETC

¿SERÁ SUFICIENTE PARA DISTINGUIR GÉNEROS?

COISTINGUEN LAS CARACTERÍSTICAS

MUSICALES?

ANÁLISIS DESCRIPTIVO

- Análisis descriptivo para comprobar si las características distinguen entre ambas clases.
- **Dos enfoques**: boxplots y correlaciones.

Conjunto de datos

Extracción de características

Entrenamiento de modelos

ANÁLISIS DESCRIPTIVO

CORRELACIÓN LINEAL

04

ENTRENAMIENTO DE MODELOS

- 1) Corpus tabular
- Entrenamiento e inferencia modelo características

CREACIÓN CORPUS


```
class TabularDataset(torch.utils.data.Dataset):
   def init (self, features file, scaler=None):
       df = pd.read_csv(features_file)
       self.X = df.drop(['audio file', 'label'], axis=1)
       self.y = df['label'].values.astype(np.int64)
       if scaler:
           self.X = scaler.transform(self.X)
       else:
           self.scaler = StandardScaler()
           self.X = self.scaler.fit transform(self.X)
   def get_scaler(self):
       return self.scaler
   def len (self):
       return len(self.X)
   def __getitem__(self, idx):
       if isinstance(idx, torch.Tensor):
           idx = idx.tolist()
       return torch.tensor(self.X[idx], dtype=torch.float32), torch.tensor(self.y[idx], dtype=torch.long)
```

CREACIÓN MODELO

- MLP con 3 capas (128, 64 y 1 neuronas).
- 50 épocas. Parada temprano sobre el conjunto de validación con (paciencia=5).
- Tamaño de batch de 32 y learning rate de 0.001.
- Función de activación BCEWithLogitsLoss, optimizador Adam.
- Mismo entrenamiento podría desempeñarse utilizando SVC o RF.

Conjunto de datos

Extracción de características

Entrenamiento de modelos

RESULTADOS

Época	Loss (Validation)
Epoch 1	0.0883
Epoch 10	0.0002
Epoch 25	1.7858 e-05

Métrica	Valor (Test)			
Accuracy	0.96			
F1 Score	0.97			

05 CONCLUSIONES Y CIERRE

- 1) Conclusiones
- 2) Trabajos futuros

CONCLUSIONES

Extracción previa de características que ayudan a distinguir géneros musicales.

Buenos resultados con modelos menos costosos computacionalmente

TRABAJO FUTURO

Clasificación para las CCMUSIC con jerarquías más detalladas

Entrenamiento con espectrogramas y modelos TSF. Comparativa.

Modelo híbrido/multimodal

MUCHAS GRACIAS POR SU ATENCIÓN

