

Système intelligent de gestion des interventions avec intégration IoT et maintenance prédictive

Présenté par:

Mohamed Rida Lajghal

Sous la supervision:

M. El ARCHI Nabil

PR. LYAQINI Soufiane

Membres du jury:

KAROUM Bouchra	ENSA	Président
Salma Rafik	ENSA	Examinateur

on Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographi

Overview

- 1 Introduction
- 2 Contexte du projet
- 3 Problématique
- 4 Méthodologie proposée
 - Architecture du système
 - Workflow prédiction
 - Cadrage du Problème d'Apprentissage Automatique
 - Dataset Siemens
 - Sélection du Modèle Optimal
- 5 Interfaces de la plateforme
 - Dashboard temps réel
 - Administrateur
 - Utilisateur & Technicien
- 6 Conclusion
- Perspectives d'Évolution
- 8 Bibliographie

Introduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliograph

Introduction

Le défi industriel:

- Arrêts imprévus des machines = Coûts énormes pour l'industrie (OCP).
- Maintenance souvent réactive : on intervient après la panne.

La solution : La Maintenance Prédictive 4.0

- Anticiper les pannes grâce aux données des capteurs (loT).
- Intelligence Artificielle pour analyser ces données en temps réel.
- Digitaliser les processus de gestion des interventions.

Notre objectif: Développer une plateforme intelligente qui fait tout cela à la fois.

tion Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographi

Contexte du projet

Organisme d'accueil: Groupe OCP - Leader mondial des phosphates

- Problématique industrielle:
 - Gestion manuelle des interventions
 - Données capteurs non exploitées pour la prédiction
 - Pas de plateforme centralisée combinant gestion et prédiction
- Objectif: Développer une plateforme unifiée de maintenance prédictive
- Limites des outils existants: Utilisation de papier/Excel, peu pratique et limité

rtroduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographi

Problématique

Défis techniques:

- Intégration de flux de données temps réel hétérogènes
- Prédiction fiable des défaillances avec faible latence
- Orchestration de workflows métier complexes

Solution proposée:

- Architecture modulaire avec Kafka pour le streaming
- Modèles ML optimisés pour l'inférence temps réel
- Interface unifiée pour tous les acteurs (Admin, Technicien, Utilisateur)

troduction Contexte du projet Problématique **Méthodologie proposée** Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliograph

Architecture du Système

- ▶ Backend: Spring Boot avec intégration Kafka et ONNX Runtime
- ▶ Frontend: React avec visualisations Recharts
- ▶ ML: LightGBM optimisé converti en ONNX
- **BDD**: MySQL pour la persistance des données

Introduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographie

Workflow de Prédiction Temps Réel

September 15, 2025

Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographie

Cadrage du Problème d'Apprentissage Automatique

Problème : Classification Binaire Supervisée

- ▶ Objectif : Prédire une défaillance (failure_occurrence = 1)
- ► Entrée : 93 caractéristiques techniques et opérationnelles
- Sortie: 2 classes (0: « Normal », 1: « Défaillance imminente »)
- Approche : Apprentissage supervisé sur données historiques étiquetées

Modèles entraînés et comparés:

Algorithmes testés

- Random Forest (Base + Optimisé)
- Extra Trees (Base + Optimisé)
- XGBoost (Base + Optimisé)
- LightGBM (Base + Optimisé)
- HistGradientBoosting (Base + Optimisé)

Métriques d'Évaluation

- Précision (Precision)
- ► Rappel (**Recall**)
- ► Score F1 (**F1-Score**)
- ► AUC-ROC (**ROC AUC**)
- ► Temps d'inférence (**Latence**)
 - ► Taille mémoire · □ → · □ → · □ → · □ → · □ → · □

oduction Contexte du projet Problématique **Méthodologie proposée** Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographie

Dataset Siemens

Source : Siemens Smart Manufacturing Lab

- ▶ **Période** : Janvier 2022 Janvier 202<mark>5 (3 années complètes)</mark>
- Fréquence : 1 mesure toutes les 60 secondes
- ► **Volume** : 1.5+ millions d'enregistrements
- Origine : Capteurs industriels réels (CNC, presses hydrauliques)

Caractéristiques principales:

- ▶ Vibrations (X, Y, Z)
- Température moteur
- Pression hydraulique
- Niveau d'usure outils
- ► Taux de production

- Conditions environnementales
- Latence réseau
- État des équipements
- Historique maintenance
- Occurrence de défaillances

ntroduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographie

Sélection du Modèle Optimal

LightGBM (Optimisé) retenu:

F1-Score: 97.7% Précision: 98.5% Rappel: 97.0% ROC AUC: 0.9935 Latence: < 60 ms Taille: 7.2 MB

Interfaces de la plateforme

Interface - Dashboard Temps Réel

Visualisation des données pour tous les rôles:

Données Capteurs

- Visualisation temps réel
- État des machines
- Alertes actuelles

Prédictions ML

- Probabilités défaillance
- Historique des prédictions

Système intelligent de gestion des interventions

- Niveaux de criticité

État du Parc

- Santé des équipements
- Statistiques globales

troduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographie

Interfaces Administrateur

Gestion complète des interventions et des utilisateurs

Gestion des Utilisateurs

- Créer/modifier/supprimer des comptes
- Assigner les rôles (Technicien, Utilisateur)
- Envoyer les emails d'activation

Supervision des Interventions

- Voir toutes les interventions
- Assigner/réassigner aux techniciens
- Supprimer les interventions

ntroduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographi

Interfaces Utilisateur et Technicien

Espace Utilisateur

- Créer une nouvelle demande
- Voir le statut des demandes
- ► Consulter l'historique

Espace Technicien

- Liste des interventions assignées
- Marquer comme "Terminé"
- Historique des interventions assignées

troduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographi

Conclusion

Ce que nous avons réalisé:

- Une plateforme complète de maintenance prédictive
- Des prédictions précises (97.7%) et rapides (¡60ms)
- Une interface simple pour tous les utilisateurs
- Une intégration temps réel avec Kafka et ONNX
- Un système sécurisé avec rôles et permissions

duction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliogra

Perspectives d'Évolution

Améliorations futures:

Évolutions techniques

- ► WebSockets pour du vrai temps
- ► Application mobile pour les
- Notifications en temps réel
- Intégration avec les systèmes OCP

Évolutions IA avancées

- Prédiction du type de maintenance nécessaire (reperation, remplacement, nettoyage)
- Classification du type de défaillance
- RUL (Remaining Useful Life) par séries temporelles

September 15, 2025

roduction Contexte du projet Problématique Méthodologie proposée Interfaces de la plateforme Conclusion Perspectives d'Évolution Bibliographie

Bibliographie

- [1] Apache Kafka Documentation. https://kafka.apache.org/documentation/
- [2] Ke, G. et al. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems.
- [3] ONNX Runtime. (2023). ONNX Runtime Documentation. https://onnxruntime.ai/docs/
- [4] Spring Boot Documentation. (2023).
 https://spring.io/projects/spring-boot
- [5] Siemens Smart Manufacturing Lab. (2024). *Industrial AI Research Program Dataset*. Kaggle.

