科目代码:925 科目名称:数据结构	共7页,第1页	
注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分!		
一、填空题(本大题共15小题,每小题2分,共30分)	#	
1. 与静态查找表相比,动态查找表还可以进行和操作。		
2. 线性结构中前驱和后继元素的关系是一对一,树形结构中前驱和后继元素	的关系是。	
3. 二维数组 M[i][j]中每个元素的长度是 3 个字节, 行下标 i 从 0~7, 列下表 j	从 0~9,从首地址 IN	
开始连续存放在存储器中。若按行优先方式存放,元素 M[7][6]的起始地划	为•	
4. 若串 S1= 'ABCDEFG',S2= '1223',S3= '###',执行 Sub string(S1,Strlength(S2	3),Index(S2,2))的结果	
是。		
5. 对于有 12 个记录的序列,采用冒泡排序最少的关键字比较次数是	₹•	
6. 广义表(((a, b), d, (e, g)), ((e, f), k))的表尾的表头是。		
7. 在 n 个顶点的无向连通图中至少有条边。		
8. 在结点个数为 n(n>1)的二叉树中,深度最小的树有层。		
9. 深度优先遍历图和广度优先遍历图分别采用栈和来暂存结点。		
10. 一棵 m 阶 B_树的根结点若不是叶子结点,则至少有个关键字。		
11. 已知一棵完全二叉树中共有 768 个结点,则该树中共有个叶子结点	0	
12排序不需要进行记录关键字的比较。		
13. 对有 15 个关键字的有序表进行折半查找。在等概率的情况下查找成功	时的平均查找长度为	
14. 快速排序的平均时间性能为。		
15. 有向完全图中有 n 个顶点。那么它的逆邻接表中有个弧结点。	•	
二、单选题(本大题共 15 小题,每小题 2 分,共 30 分)		
1. 设有一顺序栈 S, 元素 s1、s2、s3、s4、s5、s6 依次进栈, 如果 6 个元素出	栈的顺序是 s2、s5、	
s4、s6、s3、s1,则栈的容量至少应该是()。		
A. 2 B. 3 C. 4 D. 5		
2. 一个具有 513 个结点的二叉树的高度为 ()。		
A. 10 B. 9 C. 10 到 513 之间 D. 9 到 513 之间		
3. 引入线索二叉树的目的不正确的是()。		
A. 为了能方便地找到结点的前驱 B. 为了能方便地找到结点的后继		
C. 不使用递归就可进行遍历 D. 使二叉树的遍历结果唯一		

科目代码:925 科目名称:数据结构 共7页, 第2页
4. 若记录的存储地址与其关键字之间存在某种映射关系,则称这种存储结构为()。 A.顺序存储结构 B.链式存储结构 C.索引存储结构 D.散列存储结构
5. 设与森林 F 对应的二叉树为 B, B 有 m 个结点, B 的根为 p, p 的左子树结点个数为 n, 森林 F 中
第一棵树的结点个数是()。
A. m-n B. m-n-1 C. n D. n+1
6. 设数组 A[m]作为循环队列 sq 的存储空间,front 为队头指针,rear 为队尾指针,则执行入队操作
时修改指针的语句是 ()。
A. sq.front=(sq.front+1)%m B. sq.front=(sq.front+1)%(m+1)
C. sq.rear=(sq.rear+1)%m D. sq.rear=(sq.rear+1)%(m+1)
7. 下列 4 种排序方法中,要求内存容量最大的是 ()。
A. 插入排序 B. 选择排序 C. 快速排序 D. 归并排序
8. 具有拓扑有序序列的图一定是()。
A. 有向无环图 B. 有向完全图 C. 强连通图 D. 有环图
9. 已知模式串 T='abababcabc',则 next 函数值及 nextval 函数值为 ()。
A. 0102345123 和 0111015013 B. 0112345123 和 0101015013
C. 0101234123 和 0101115113 D. 0112344123 和 01000 15013
10. 设n为网中顶点数,e为网中边数,构造最小生成树的 prim 算法和 kruskal 算法的区别在于()。
A. $prim$ 算法的时间复杂度为 $O(n^2)$, 适用于求边稠密的网的最小生成树,
kruskal 算法的时间复杂度为 O(eloge),适用于求边稀疏的网的最小生成树。
B. prim 算法的时间复杂度为 O(eloge),适用于求边稀疏的网的最小生成树,
kruskal 算法的时间复杂度为 O(n²),适用于求边稠密的网的最小生成树。
C. prim 算法的时间复杂度为 O(n²), 适用于求边稀疏的网的最小生成树,
kruskal 算法的时间复杂度为 O(eloge),适用于求边稠密的网的最小生成树。
D. 以上都不对
11. 能说明快速排序是不稳定的排序方法的一组关键字序列是()。
A. (10, 20, 30, 40, 50) B. (50, 40, 30, 20, 10)
C. (20, 20, 30, 10, 40) D. (20, 40, 30, 30, 10)
12. AVL 树中任一结点的(
A.左、右子树的高度均相同 B.左、右子树高度差的绝对值不超过 1

科目代码:925 科目名称:数据结构	共7页,第3页
注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分!	
C.左子树的高度均大于右子树的高度 D.左子树的高度均小于右子树的高	度
13. 关键路径是 AOE 网络中 ()。	
A. 从源点到汇点的最短路径 B. 从源点到汇点的最长路径	
C. 最长的回路 D. 最短的回路	
14. 栈和队列的共同点是 ()。	14
A. 都是先进后出 B. 都是后进先出	
C. 只允许在端点处插入和删除元素 D. 都是先进先出	lù .
15. 在一棵二叉树中,假设度为 2 的结点有 5 个,度为 1 的结点有 6 个,则叶	子结点数有 ()
1.	
15. 在一棵二义树中,假设度为 2 的结点有 5 个, 度为 1 的结点有 6 个,则叶子个。 A.5 B.6 D.8	
三、判断对错题(本大题共15小题,每小题1分,共15分)	
1. 平衡二叉树一定是二叉排序树。()	
2. 对 AOV 网进行拓扑排序得到的拓扑有序序列不一定是唯一的。()	
3. 希尔排序是一种不稳定的排序方法。()	
4. F=(a,F) 是一个递归的广义表,它的深度是 1,长度是 2x()	
5. 给定 K 值,在开放定址哈希表中进行查找,根据哈希函数求得哈希地址,表	与此位置上有记录 ,
且关键字和 K 值不等, 但最终仍有可能查找成功。()	
6. 二叉排序树上结点的关键字的值有可能相同。()	
7. 若事先无法预估队列的最大长度,则宜采用链队列来解决问题。()	
8. 顺序存储方式只能用于存储线性结构。 ()	
9. 具有 n 个项点和 e 条边的无向图用邻接表存储表示时, 需要 n 个头结点和 e ~	个边结点。()
10. 一棵 8 阶的 B_树,除根之外的所有非终端结点中最多有 7 个关键字,最少有	14个关键字。()
11. 若一棵非空二叉树的先序遍历和后序遍历具有相同的结点访问顺序,则它-	一定是一棵只有根结
点的二叉树。()	
12. 含有 12 个结点的平衡二叉树的最大深度是 5。()	
13. 在一棵哈夫曼树中没有度为1的结点。()	
14. 在有向图中,弧是从弧尾指向弧头的。()	
15. 在用堆排序算法排序时,如果要进行增序排序,则需要建立"大顶堆"。(>

科目代码: __925___ 科目名称: __数据结构__

共7页、第4页

注意事项: 答案一律写在答题纸上, 写在试卷上的不予装订和评分!

四、综合题(本大题共7小题,每小题5分,共35分)

1. 画出如图 4-1 所示有向图的逆邻接表,并写出入度最大的顶点和出度最大的顶点。

2. 对图 4-2 所示的连通网,写出广度优先搜索遍历序列(从 A 开始。ascii 码值小的邻接点优先),使用克鲁斯卡尔算法构造其最小生成树并求出最小代价。

图 4-2 连通网

- 3. 用于通信的电文由字符集 $\{a, b, c, d, e, f, g, h\}$ 中的字符构成,这 8 个字母在电文中出现的概率分别为 $\{0.07, 0.19, 0.02, 0.06, 0.32, 0.03, 0.21, 0.10\}$,为这 8 个字母设计哈夫曼编码。
- 4. 按顺序输入一组关键字序列(50,60,70,30,20,45), 画出其构成的平衡二叉树,给出过程。
- 5. 己知一组关键字序列为(12, 51, 8, 22, 26, 80, 11, 16, 54, 41), 其散列地址空间为[0,...,12], 若 Hash 函数定义为: H(key) = key MOD 13, 采用线性探测法处理冲突, 请画出它们对应的哈希表, 并求出等概率情况下查找成功时的平均查找长度。
- 6. 已知一棵二叉树的中序遍历序列为 BEFCAHDG, 后序遍历序列为 FECHDGAB, 画出这棵二叉树, 并给出先序遍历序列。
- 7. 已知广义表 A= (a, ((b, c),d)), 按头尾链表存储表示法画出它的存储结构并求其深度和广度。

共7页,第5页 科目名称: 数据结构 科目代码: 925 注意事项:答案一律写在答题纸上,写在试卷上的不予装订和评分! 五、算法题(本大题共4小题,每小题10分,共40分) 1. 下列算法实现双向链表的插入操作,请补齐空白处。(每空2分) //线性表的双向链表存储结构 typedef struct DuLNode { ElemType data: Struct DuLNode *prior; Struct DuLNode *next: } DuLNode * DuLinkList; Status ListInsert DuL (DuLinkList &L, int i, ElemType e) {/* 在带头结点的双向链表 L 中 的第 i 个位置之后插入元素 e */ if (! (p=GetElem DuL(L,i)) return ERROR; /* 在L中找到第 i 个元素的位置指针 p*/ if (! (s = (DuLinkList) malloc (sizeof (DuLNode)))) return ERROR; s->data= (1) s->next = (2) p->next->prior = s->prior = (4) p->next = (5) return OK; }// ListInsert Dul 2. 下列算法实现堆排序,HeapSort 是主函数,请补齐空白处。(每空 2 分) #define MAXSIZE 1000 // 待排顺序表最大长度 Typedef int KeyType; //关键字类型为整型 typedef struct { // 关键字项 KeyType key; // 其它数据项 InfoType otherinfo; // 记录类型 } RedType; typedef struct { // r[0]闲置 RedType r[MAXSIZE+1]; // 顺序表长度 length; int // 顺序表类型 } SqList; typedef SqList HeapType; //堆采用顺序表存储表示 void HeapAdjust (HeapType &H, int s, int m) { // 已知 H.r[s..m]中记录的关键字除 H.r[s].key 之外均满足堆的特征 //本函数自上而下调整 H.r[s] 的关键字,使 H.r[s..m] 也成为一个大顶堆 // 暂存 r[s] rc =H.r(s): for $(j=2*s; j \le m; ____(1)$ $\{if(j \le m \&\& __(2)\}$ if (rc.key >=H.r[j].key) break; H.r[s] = H.r[j];s = j;

```
void HeapSort(HeapType &H) //对顺序表 H 进行堆排序
        { for (i=H.length/2; i>0; -i)
              HeapAdjust((4));
           for (i=H.length; i>1; --i)
            \{ H.r[1] \leftarrow \rightarrow H.r[i];
              HeapAdjust((5));
3.请说明下列算法中的 Unknown 和 order 的功能,整个程序将建立一个什么样的结构?最后的输出是
什么?
#include<stdio.h>
#include<malloc.h>
#define n 8
#define MaxSize 100
typedef struct Node
    char data;
    struct Node *Lc, *Rc;
}Node,*BiNode;
void unknown(BiNode &t, int i, char *a)
    t=(Node*)malloc(sizeof(Node));
    t->data=a[i];
    if(2*i \le n)unknown(t \ge Lc, 2*i, a);
    else t->Lc=NULL;
    if(2*i+1 \le n) unknown(t->Rc, 2*i+1, a);
    else t->Rc=NULL;
}
void Order(BiNode b)
    BiNode p;
    BiNode qu[MaxSize];
    int front, rear;
    front-rear-1;
    rear++;
    qu[rear]=b;
    while(front!=rear)
    {
        front=(front+1)%MaxSize;
        p=qu[frcnt];
```

科目代码: __925__ 科目名称: __数据结构__

共7页,第7页

注意事项: 答案一律写在答题纸上, 写在试卷上的不予装订和评分!

```
printf("%c ",p->data);// 输出
             if(p->Lc!=NULL)
                                           计算机/软件工程专业
      {
         rear=(rear+1)%MaxSize;
                                                每个学校的
         qu[rear]=p->Lc;
                                       考研真题/复试资料/考研经验
      if(p->Rc!=NULL)
                                         考研资讯/报录比/分数线
         rear=(rear+1)%MaxSize
         qu[rear]=p->Rc;
                                                 免费分享
   }
}
                                                      微信 扫一扫
void main()
                                                     关注微信公众号
   BiNode p;
                                                   计算机与软件考研
                            int j=1;
   char a[9];
   a[1]='c';
   a[2]='b'; a[3]='d';
   a[4]='a'; a[5]='e';
   a[6]='f'; a[7]='g';
   a[8]='h';
   unknown(p,j,a);
   printf("结果为: ");
   Order(p);
   printf("\n");
}
4.编写算法实现快速排序,需要进行数据结构定义。
```