Things to Remember

- a_{ij} is the *i*th row and *j*th column of A.
- $\pm 0.d_1d_2...d_k \times 10^n$ is the decimal floating point representation of a number.
- Chopping is cheaper than rounding.

- Error: $p \hat{p}$
- Abs. Err: $|p \hat{p}|$
- Rel. Err: $\frac{|p-\hat{p}|}{p}$ (for accuracy)

Significant Digits

An approximation \hat{p} has t significant digits if: $\frac{|p - \hat{p}|}{1 - 1} \le 5 \times 10^{-t}$

Catastrophic Cancellation (Roundoff)

When subtracting nearly equal numbers, the relative error is large, and you lose a lot of significant digits (and accuracy).

How to Reduce Errors

- Reformat the formula to avoid roundoff
- Reduce num. of ops (avoid rounding)
 - Nested Arithmetic: Rewrite polynomials to reduce operations $x^{3} - 6.1x^{2} + 3.2x \rightarrow ((x - 6.1)x + 3.2)x$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b \mp \sqrt{b^2 - 4ac}}.$$

mind the signs

form when |-b| is close to use the alt. $+\sqrt{b^2-4ac}$

Algorithms and Convergence

- Stable \rightarrow errors grow linearly
- Unstable \rightarrow errors grow exponentially

Rate of Convergence

- For sequences, if $\alpha_n \to \alpha$ and $|\alpha_n \alpha| \le$ $k\beta_n$, $\beta_n \to 0$ then α_n is $\mathcal{O}(\beta_n)$
- For functions, if $\lim_{h\to 0} f(h) = L$ and $|f(h)| \le kh^p$ then $f(h) = L + \mathcal{O}(h^p)$

Taylor Series

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

 $e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$ $\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} \quad \cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!}$ $\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \cdots$ $(1+x)^{-p} = 1 - px + \frac{p(p+1)x^{2}}{2} - \frac{p(p+1)(p+2)x^{3}}{3!}$

The Error Term is the $(n+1)^{th}$ term.

Root Finding

• Find p such that f(p) = 0.

Generic Stopping Criterion

- 1. $\frac{\left|p_n-p_{n-1}\right|}{\left|p_n\right|} \le \mathcal{E}; p_n \ne 0$: relative error
- - Ensures small $f(p_n)$
 - p_n may differ significantly from p
- 3. Have a fixed number of iterations
- 4. (bisection) $\frac{b_n-a_n}{2} \leq \mathcal{E}$ or $|p_n-p_{n-1}| < \mathcal{E}$
 - Ensures p_n is within \mathcal{E} of p
 - Does not ensure small $f(p_n)$

Bisection Method:

- Conditions: $f(x) \in C[a, b]$; f(a) and f(b) have opposite signs.
- Midpoint: $x = \frac{a+b}{2}$
- Procedure: Binary search for the root.

- Error: Guaranteed quadratic convergence
 - Error Formula: $\frac{b-a}{2n}$

Newton's Method

- Faster than bisection, quadratic. We follow the tangent line at p_{n-1} to its x-intercept.
- Requires f'(p) to exist.
- Requires f''(p) for quadratic convergence.
 - 1. Start with initial guess p_0 and p_1
- 2. $p_n = p_{n-1} \frac{f(p_{n-1})(p_{n-1} p_{n-2})}{f'(p_{n-1})f(p_{n-2})}$

Secant Method

- Does not require f'(p) to exist.
- Faster than Bisection, order $\phi \approx 1.618$ 1. Start with initial guess p_0 and p_1
 - 2. $p_n = p_{n-1} \frac{f(p_{n-1})(p_{n-1}p_{n-2})}{f(p_{n-1})f(p_{n-2})}$

Fixed Points

- 1. Start with initial guess p_0
- 2. Generate a sequence $p_n = g(p_{n-1})$
- 3. Stop when $|p_n p_{n-1}| < \mathcal{E}$
- A fixed point of f is a point p such that f(p) = p.
- Converges if:
 - $1. g: [a, b] \rightarrow [a, b]$ is continuous
 - $2. \forall x \in [a, b] : |g'(x)| \le k < 1$
 - 3. f(x) = 0 can be rewritten as g(x) = x
- Error: $\mathcal{O}(q^n)$, for some q, faster when q is

Norms

Vector Norms

- $l_1: ||x||_1 = \sum x_i$
- $l_2 : ||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}$ (Euclidean)
- $l_{\infty} : ||x||_{\infty} = \max\{|x_1|, \cdots, |x_n|\} (\infty)$

Properties

- Scalability: $\|\alpha x\| = |\alpha| \|x\|$
- Triangle Inequality: $||x + y|| \le ||x|| + ||y||$

Vector Distances

• l_{α} distance: $||x-y||_{\alpha}$

Matrix Norms

- The Natural Norm $\|\cdot\|_*$ for $A, B \in \mathbb{R}^{n \times n}$; $\alpha \in$ \mathbb{R} is defined as a function that satisfies:
 - $1. \|A\| \ge 0$

 - $2. \|A\| = 0 \iff A = 0$
 - $3. \|\alpha A\| = |\alpha| \|A\|$
 - $4. \|A + B\| \le \|A\| + \|B\|$
- Def. $||A||_* = \max_{||x||=1} ||Ax||_*$ where ||Ax|| is any vector norm.
- $l_{\infty} : ||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| \text{ (row sum)}$

Special Properties

- 1. For any natural norm $\|\cdot\|_{\alpha}: \rho(A) \leq \|A\|_{\alpha}$
- 2. For $l_2: ||A||_2 = \sqrt{\rho(A^T A)}$

Vector Sequence Convergence

• $\{x^{(k)}\}$ converges to x for any small $\mathcal{E} > 0$ eventually every $x^{(k)}$ is within \mathcal{E} of x

Eigenvalues and Eigenvectors

- **E.value** (λ): Scalar s.t. $A\vec{x} = \lambda \vec{x}$
- **E.vector** (\vec{x}): Nonzero vector only scaled by A Spectral Radius: $\rho(A) = \max\{|\lambda_i|\}$

Properties

- $1. \det(A \lambda I) = 0 \iff \lambda \text{ is an eigenvalue.}$ Solve the characteristic polynomial for λ .
- 2. $\forall \lambda [(A \lambda I)\vec{x} = 0 \iff \vec{x} \text{ is an eigenvector}]$
- 3. If $\rho A < 1$, A is <u>convergent</u> $\Longrightarrow \lim_{k \to \infty} A^k = 0$

Linear Systems - Pivoting Strategies

If the pivot is small, large errors can occur. Pivoting helps maintain numerical stability.

Partial Pivoting

Choose the largest element in the current column (below or at the pivot) to avoid dividing by a small number.

- 1. For $k = 1 \dots n 1$:
 - Find $r = \arg \max\{|a_{ik}|\}$
 - If $r \neq k$, swap rows: $E_k \leftrightarrow E_r$
 - Continue Gaussian Elimination as usual

Scaled Partial Pivoting

Handles rows with vastly different magnitudes by normalizing. 1. For each row $i = 1 \dots n$, compute the scale

- factor: $s_i = \max_j |a_{ij}|$ 2. For pivot column k, choose the row r such
- that $\frac{|a_{rk}|}{s_r}$ is maximal for $r \ge k$ 3. If $r \neq k$, swap rows: $E_k \leftrightarrow E_r$
- 4. Proceed with Gaussian Elimination

Full Pivoting

Most stable but most expensive. Swap both rows and columns. 1. At step k, find the largest element $|a_{ij}|$ in

- the submatrix $A_{k:n,k:n}$ 2. Swap row k with row i, and column k with $\operatorname{column} j$
- 3. Update row and column permutations
- 4. Continue Gaussian Elimination

Linear Algebra

- To multiply $A \cdot B$, dot-product the rows of Aby the columns of B.
- $AA^{-1} = A^{-1}A = I$
- To find A^{-1} , row reduce the aug. matrix
- A^T is A flipped over the main diagonal.

Determinant

- $\det(A) \neq 0 \implies \begin{cases} A^{-1} & \text{exists} \\ Ax = b & \text{has a unique solur} \end{cases}$
- Cofactor Expansion (Laplace Expan**sion)**: $\det(A) = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} \det(A_{ij})$

Matrix Factorization

LU Decomposition

If Gaussian elimination can be performed without row exchanges: A = LU, where L is lower triangular with unit diagonal entries and U is upper triangular.

To solve Ax = b:

- 1. Solve Ly = b via forward substitution.
- 2. Solve Ux = y via backward substitution.

Cost: $O(n^3)$ for factorization, $O(n^2)$ per solve.

Row Swaps: If row swaps are needed, introduce a permutation matrix $P: PA = LU \Rightarrow$

 $A = P^{-1}LU$, Then solve: LUx = Pb

Special Matrices

Permutation Matrices

- Formed by permuting rows of I_n , So there is exactly one entry of 1 per row and column.
- $P^{-1} = P^{\top}$
- PA permutes rows of A.

Singular

- A matrix A is singular if det(A) = 0.
- Not invertible; Ax = b has either no solution or infinitely many.

Banded Matrices

- Nonzero entries confined to a diagonal band.
- If $|i-j| > w \Rightarrow a_{ij} = 0$, bandwidth = w.
- Common in finite difference methods and sparse linear systems.

Tridiagonal Matrices

- Banded matrix with w = 1 (main ± 1 diagonals).
- Nonzero entries only on the main diagonal and the first sub/super diagonals.

Diagonally Dominant (DD / SDD)

 \bullet A is strictly diagonally dominant if:

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}| \quad \forall i$$

- A is weakly diagonally dominant of $|a_{ii}| \geq ...$
- Guarantees LU factorization without row swaps.
- Guaranteed convergence of Jacobi and G-S.

Symmetric Positive Definite (SPD)

- A is positive definite if $\forall x \neq 0 : x^T Ax > 0$
- All eigenvalues are positive.
- All leading principal minors are positive. $\forall k \det(A_{1:k,1:k}) > 0$
- Cholesky factorization: $A = LL^T$ lets us solve Ax = b in $O(n^2)$ time.
- Also: $A = LDL^T$

Iterative Methods for Linear Systems

Convergent Matrix Theorem

The following statements are equivalent:

- (i) A is convergent
- (ii) $\rho(A) < 1$ (nec + suf for Jacobi and G-S)
- (iii) $\forall x : \lim_{n \to \infty} A^n x = 0$
- (iv) $\forall \alpha : \lim_{n \to \infty} ||A^n||_{\alpha} = 0$

Jacobi Method A = D + L + U

$$x^{(k+1)} = \underbrace{D^{-1}(L+U)}_{T_J} x^{(k)} + \underbrace{D^{-1}b}_{C_J}$$

- Requires $a_{ii} \neq 0$. Always permute so a_{ii} big.
- Uses previous iteration values for all components.
- Converges if A strictly diagonally dominant or SPD.

Gauss-Seidel Method A = D + L + U

$$x^{(k+1)} = \underbrace{(D+L)^{-1}U}_{T_{GS}} x^{(k)} + \underbrace{(D+L)^{-1}Lb}_{C_{GS}}$$

- Iteration uses most recent updates:
- \bullet Often converges faster than Jacobi.
- Also converges under **strict** diagonal dominance or SPD.

Numerical Interpolation

Lagrange Interpolation

Constructs a polynomial P(x) of degree $\leq n$ through points $(x_0, y_0), \ldots, (x_n, y_n)$:

$$P(x) = \sum_{j=0}^{n} y_j L_j(x)$$

$$L_j(x) = \prod_{\substack{0 \le i \le n \\ i \ne j}} \frac{x - x_i}{x_j - x_i}$$

Error: If $f \in C^{n+1}[a,b]$, then

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

for some $\xi \in [a, b]$

Newton's Divided Differences

Efficient and updatable polynomial form:

$$P(x) = f[x_0] + f[x_0, x_1](x - x_0) + \dots + f[x_0, \dots, x_n](x - x_0) \dots (x - x_{n-1})$$

Recursive definition:

- zeroth: $f[x_0] = f(x_0)$
- first: $f[x_0, x_1] = \frac{f(x_1) f(x_0)}{x_1 x_0}$
- kth: $f[x_i, ..., x_{i+k}] = \frac{f[x_{i+1}, ..., x_{i+k}] f[x_i, ..., x_{i+k-1}]}{x_{i+k} x_i}$ Error: $O(h^2)$

Neville's Method

Recursive algorithm to evaluate P(x) at a point:

$$P_{i,j}(x) = \frac{(x - x_i)P_{i+1,j}(x) - (x - x_j)P_{i,j-1}(x)}{x_j - x_i}$$

Returns P(x) only — not the polynomial form.

Hermite Interpolation

Matches both values and derivatives: - Duplicate nodes in divided difference table. - Derivative at a node: $f[x_i, x_i] = f'(x_i)$.

Cubic Spline Interpolation

Piecewise cubic $S_i(x)$ defined on $[x_i, x_{i+1}]$:

- S(x), S'(x), and S''(x) are continuous.
- Natural spline: $S''(x_0) = S''(x_n) = 0$.
- Solve a tridiagonal linear system for coefficients.

Parametric Curves

For 2D/3D data: interpolate x(t), y(t), z(t) independently. Used in animation and CAD. Preserves geometric continuity.

Numerical Integration

Trapezoidal Rule

• Approximates f(x) with a linear polynomial over [a, b]:

$$\int_a^b f(x) dx \approx \frac{h}{2} [f(x_0) + f(x_1)]$$

• Composite version over n subintervals $(h = \frac{b-a}{n})$:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} \left[f(x_0) + 2 \sum_{j=1}^{n-1} f(x_j) + f(x_n) \right]$$

• Error: $-\frac{(b-a)^3}{12n^2}f^{(2)}(\xi)$ for some $\xi \in [a,b]$

Simpson's Rule

• Approximates f(x) with a quadratic polynomial:

$$\int_{x_0}^{x_2} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

• Composite version (even n):

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \left[f(x_0) + 2 \sum_{j=1}^{n/2 - 1} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j}) + 4 \sum_{j=1}^{n/2} f(x_{2j}) \right] dx$$

• Error: $-\frac{(b-a)^5}{180n^4}f^{(4)}(\xi)$ for some $\xi \in [a,b]$

ODE Initial Value Problems

Euler's Method

$$w_{n+1} = w_n + hf(t_n, w_n)$$

Error: $O(h)$

Modified Euler Method (Heun's)

$$w_{n+1} = w_n + \frac{h}{2}[f(t_n, w_n) + f(t_{n+1}, w_n + hf(t_{n+1}, w_n + hf(t_n +$$

Midpoint Method

Error: $O(h^4)$

$$w_{n+1} = w_n + hf\left(t_n + \frac{h}{2}, w_n + \frac{h}{2}f(t_n, w_n)\right)$$

error: $O(h^2)$

Runge-Kutta Method (RK4)

$$k_1 = hf(t_n, w_n)$$

$$k_2 = hf\left(t_n + \frac{h}{2}, w_n + \frac{k_1}{2}\right)$$

$$k_3 = hf\left(t_n + \frac{h}{2}, w_n + \frac{k_2}{2}\right)$$

$$k_4 = hf(t_n + h, w_n + k_3)$$

$$w_{n+1} = w_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$