UNIT-1

Q. The eigen values of the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & A \end{bmatrix}$ are

(a) 2,-2,1

(b) 3,-2,4

(c) 2,3,1

(d) none of these

Q. The characteristic equation of a matrix A of order 3 is $\lambda^3 + \lambda^2 + 2\lambda + 1 = 0$. If I denotes identity matrix, then the inverse of the matrix A will be:

(a) $A^2 + A + 2I$ (b) $A^2 + A + I$ (c) $-(A^2 + A + I)$ (d) $-(A^2 + A + 2I)$

Q. Consider the matrix $A = \begin{bmatrix} 2 & 3 \\ x & y \end{bmatrix}$. If the eigen values of A are 4 and 8, then

(a) x = 4, y = 10

(b) x = 5, y = 8 (c) x = -3, y = 9 (d) x = -4, y = 10

Q. A homogeneous system of 2 linear equations in 3-variables admits

(a) no solution

(b) a unique solution

(c) infinitely many solutions

(d) finite, but more than two solutions

Q. If the characteristic roots of $\begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ are λ_1 and λ_2 , then characteristic roots of the matrix $\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$ are:

(a) $\lambda_1 + \lambda_2$, $\lambda_1 - \lambda_2$ (b) $\frac{1}{\lambda_1}$, $\frac{1}{\lambda_2}$ (c) $2\lambda_1$, $2\lambda_2$ (d) $3\lambda_1$, $3\lambda_2$

Q. All the four entries of the matrix $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix}$ of order 2 are non-zero, and one of its eigen values is zero. Which one of the following statements is true?

(a) $P_{11}P_{22} - P_{12}P_{21} = 1$

(b) $P_{11}P_{22} - P_{12}P_{21} = -1$

(c) $P_{11}P_{22} - P_{12}P_{21} = 0$

(d) $P_{11}P_{22} + P_{12}P_{21} = 0$

Q. For what value of x will the matrix A =
$$\begin{bmatrix} 8 & x & 0 \\ 4 & 0 & 2 \\ 12 & 6 & 0 \end{bmatrix}$$
 become singular?

- (a) 4
- (b) 6
- (c) 8
- (d) 12
- Q. The inverse of a matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ is
- (a) $\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix}$

- (d) None of these

- Q. The sum of eigen values of the matrix $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ is
- (a) 5
- (b) 4
- (c) 7
- (d) 9

- Q. The rank of the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ is
- (a) 0
- (b) 1
- (c) 2
- (d)3

- Q. The wronskian of the functions x, x^2 , x^3 is
- (a) 2x

(b) $2x^2$

 $(c) 2x^3$

- (d) $2x^4$
- Q. Which of the following are true for the differential equation $x^2y'' xy' = 0$, x > 0?
- (a) $1, x^2$ are solutions

(b) $c_1 + c_2 x^2$ is also solution

(c) $1, x^2$ are L.I.

- (d) All of these
- Q. Which of the following is linear differential equation with constant coefficient?
- (a) $y'' a^2y = 0$

- (b) $y' = \frac{y}{x}$
- (c) $x^3y''' + 9x^2y'' + 18xy' + 6y = 0$
- (d) $y'' (1 + x^2)y = 0$
- Q. The solution of the differential equation $y^{\prime\prime\prime}-y^{\prime\prime}-4y^{\prime}+4y=0$ is
- (a) $y = Ae^x + Be^{-2x} + Ce^{3x}$

(b) $y = Ae^x + Be^{-2x} + Ce^{2x}$

(c) $y = Ae^x + Be^{2x} + Cxe^{2x}$

(d) $y = Ae^{-x} + Be^{-2x} + Ce^{3x}$

UNIT 3

Q. Let $y(x) = A(x)e^{-x} + B(x)e^{-2x}$ be the general solution of the differential equation $y'' + 3y' + 2y = 2e^x$

(1) Value of wronskian is

(a) e^{-2x}

(c) e^{-3x}

(d) $-e^{-3x}$

(2) Value of A(x) is

(a) $e^x + c_1$

(b) $e^{2x} + c_1$

(c) $e^{3x} + c_1$

(d) $e^{4x} + c_1$

Q. Assumed particular integral of $y'' + 9y = \cos 3x$ is

(a) $c_1 cos3x + c_2 sin3x$

(b) $c_1xcos3x + c_2sin3x$

(c) $c_1 cos3x + c_2 x sin3x$

(d) $c_1xcos3x + c_2xsin3x$

Q. Using transformation, the differential equation $2x^2y^{\prime\prime} + 3xy^{\prime} - 3y = x^3$ becomes

(a) $\frac{d^2y}{dt^2} + \frac{dy}{dt} - y = e^{3t}$

(b) $\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = e^{3t}$

(c) $2\frac{d^2y}{dt^2} + \frac{dy}{dt} - 3y = e^{3t}$

(d) None of these

Q. To transform $x^2y'' + xy' = 1$ into a linear differential equations with constant coefficient, put x=

(a)

 $\sin t$ (b) $\log t$ (c) e^t (d) none of these

Q1b. To transform $x^2y'' + 2xy' = 3$ into a linear differential equations with constant coefficient, put x=

(a) sin t

(b) $\log t$ (c) e^t (d) none of these

Q. The particular integral of $x^2y'' + xy' = x^2$, x > 0 is

(a) $\frac{x}{4}$ (b) $\frac{x^2}{4}$ (c) $\frac{e^2}{4}$ (d) $\frac{e^{2x}}{4}$

Q The particular integral of $x^2y'' + xy' = \sin(\log x)$, x > 0 is

(a)

 $\sin(\log x)$ (b) $\cos(\log x)$ (c) $-\cos(\log x)$ (d) $-\sin(\log x)$

Q. If $y(x) = A(x)y_1 + B(x)y_2$ be the assumed general solution of linear diff equation y'' + ay' + by = X(x) and w(x) be the Wronskian of $y_1(x)$ and $y_2(x)$ then by method of variation of parameter the value of A(x) is

(a)
$$\int \frac{y_1 X}{W} dx$$

(b)
$$\int \frac{y_2 X}{W} dx$$

(a)
$$\int \frac{y_1 X}{W} dx$$
 (b) $\int \frac{y_2 X}{W} dx$ (c) $-\int \frac{y_2 X}{W} dx$

(d) none of these

Q If $y(x) = A(x)y_1 + B(x)y_2$ be the assumed general solution of linear diff equation y'' + ay' + by = X(x) and w(x) be the Wronskian of $y_1(x)$ and $y_2(x)$ then by method of variation of parameter the value of B(x) is

(a)
$$\int \frac{y_1 X}{W} dx$$

(b)
$$\int \frac{y_2 X}{W} dx$$

(a)
$$\int \frac{y_1 X}{W} dx$$
 (b) $\int \frac{y_2 X}{W} dx$ (c) $-\int \frac{y_2 X}{W} dx$

(d) none of these

Q The complementary function y_c of the differential equation $(1+x)^2y'' + (1+x)y' + y = \log(1+x)$ is

(a)
$$C_1x + C_2[\log(1+x)]$$
 (b) $C_1\cos[\log(1+x)] + C_2\sin[\log(1+x)]$ (c) $(C_1(1+x) + C_2[\log(1+x)]$ (d) none of these

Q The complementary function y_c of the differential equation $(1+x)^2y'' - 4(1+x)y' + 6y = x$ is

(a)
$$(C_1(x+1)^2 + C_2(x+1)^{-3})$$

(b)
$$(C_1(x+1)^2 + C_2(x+1)^3)$$

(c)
$$(C_1(x+1)^{-2} + C_2(x+1)^3)$$

(d) none of these

Q Solving by variation of parameter $y'' + 4y = \tan 2x$, the value of Wronskian W is

- (a) 1
- (b) 2
 - (c) 3 (d) 4

Q Solving by variation of parameter $y'' + y = \sec x$, the value of Wronskian W is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Q Using transformation, the differential equation $2x^2y'' + 3xy' - 3y = x^3$, x > 0 becomes

(a)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} - y = e^{3t}$$

(b)
$$\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = e^{3t}$$

(c)
$$2\frac{d^2y}{dt^2} + \frac{dy}{dt} - 3y = e^{3t}$$

(d) None of these

Q. Using transformation, the differential equation $x^2y'' + 5xy' + 3y = \ln x$, x > 0 becomes

(a)
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = t$$

(a)
$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = t$$
 (b) $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = e^t$

(c)
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^t$$

(c)
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = e^t$$
 (d) $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 3y = t$