

Final datasheet

EasyDUAL module with CoolSiC™ Trench MOSFET and PressFIT / NTC

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 200 \text{ A} / I_{DRM} = 400 \text{ A}$
 - Low inductive design
 - Low switching losses
 - High current density
 - Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder
- Mechanical features
 - Improved ceramic substrate
 - Integrated NTC temperature sensor
 - PressFIT contact technology
 - Rugged mounting due to integrated mounting clamps

Potential applications

- UPS systems
- Solar applications
- DC/DC converter
- High-frequency switching application

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyDUAL module

Table of contents

	Description	. 1
	Features	. 1
	Potential applications	. 1
	Product validation	. 1
	Table of contents	2
1	Package	. 3
2	MOSFET	. 3
3	Body diode (MOSFET)	. 5
4	NTC-Thermistor	.6
5	Characteristics diagrams	. 7
6	Circuit diagram	14
7	Package outlines	15
8	Module label code	16
	Revision history	17
	Disclaimer	

EasyDUAL module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Isolation test voltage NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz, t = 1 min	3.0	kV
Internal isolation		basic insulation (class 1, IEC 61140)	AlN	
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition		Values	Unit	
			Min.	Тур.	Max.	
Stray inductance module	L _{sCE}			8		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch		1.4		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting force per clamp	F		40		80	N
Weight	G			39		g

Note: The current under continuous operation is limited to 25 A rms per connector pin.

2 MOSFET

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V _{DSS}		T _{vj} = 25 °C	1200	V
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 85 °C	200	А
Repetitive peak drain current	I _{DRM}	verified by design, t _p lim	ited by T _{vjmax}	400	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V

EasyDUAL module

2 MOSFET

Table 4 (continued) Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 200 A	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		4	6	mΩ
		$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		6.5			
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 175 ^{\circ}\text{C}$		8.7		
			$V_{\rm GS} = 15 \text{ V},$ $T_{\rm vj} = 25 ^{\circ}\text{C}$		4.9		
Gate threshold voltage	V _{GS(th)}	$I_D = 80 \text{ mA}, V_{DS} = V_{GS}, T_{vj} = 1 \text{ms pulse at } V_{GS} = +20 \text{ V})$	= 25 °C, (tested after	3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DD}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		0.594		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			1		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		17.6		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.84		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.056		nF
C _{OSS} stored energy	E _{OSS}	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		344		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.12	660	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 200 \text{ A}, R_{\rm Gon} = 2.4 \Omega,$	T _{vj} = 25 °C		33		ns
(inductive load)		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ V}_{GS}$	T _{vj} = 125 °C		33		
		to 0.1 I _D	T _{vj} = 175 °C		33		
Rise time (inductive load)	t _r	$I_{\rm D}$ = 200 A, $R_{\rm Gon}$ = 2.4 Ω ,	T _{vj} = 25 °C		47		ns
	$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}, 0.1 \text{ I}_{D} \text{ to}$	T _{vj} = 125 °C		46		
		0.9 I _D	T _{vj} = 175 °C		46		
Turn-off delay time	t _{d off}	$I_{\rm D}$ = 200 A, $R_{\rm Goff}$ = 0.22 Ω ,			47		ns
(inductive load)		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ 0.9 V_{GS} to 0.9 I_{D}	T _{vj} = 125 °C		51		1
		0.5 (65 (0 0.5 1)	T _{vi} = 175 °C		52		

(table continues...)

EasyDUAL module

3 Body diode (MOSFET)

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Fall time (inductive load)	$t_{\rm f}$ $I_{\rm D} = 200 \text{A}, R_{\rm Goff} = 0.22 \Omega,$	T _{vj} = 25 °C		11		ns	
		$0.9 I_D$ to $0.1 I_D$	T _{vj} = 125 °C		11		
			T _{vj} = 175 °C		11		
Turn-on energy loss per	E _{on}	$I_{\rm D}$ = 200 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		3.09		mJ
pulse		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 2.4 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		3.65		
		14 kA/ μ s (T _{vj} = 175 °C), t_{dead} = 1000 ns	T _{vj} = 175 °C		4.08		
Turn-on energy loss per	E _{on,o}		T _{vj} = 25 °C		2.25		mJ
pulse, optimized		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon,o} = 1.5 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		2.26		
		$17.1 \text{ kA/µs} (T_{\text{vj}} = 175 \text{ °C}),$ $t_{\text{dead}} = 100 \text{ ns}$	T _{vj} = 175 °C		2.37		
Turn-off energy loss per	E _{off}	$I_{\rm D}$ = 200 A, $V_{\rm DD}$ = 600 V,	T _{vj} = 25 °C		0.67		mJ
pulse		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 0.22 \Omega, \text{ dv/dt} =$	T _{vj} = 125 °C		0.67		1
		$44.5 \text{ kV/}\mu\text{s} (T_{\text{vj}} = 175 \text{ °C})$	T _{vj} = 175 °C		0.69		
SC data	I _{SC}	$V_{GS} = -5/15 \text{ V}, V_{DD} = 800 \text{ V},$ $V_{DSmax} = V_{DSS} - L_{sDS} * \text{di/dt},$	$t_{\rm P}$ = 2 µs, $T_{\rm vj}$ = 25 °C		1680		А
		$R_{G} = 10 \ \Omega$	$t_{\rm P} = 2 \mu {\rm s},$ $T_{\rm vj} = 150 {\rm ^{\circ}C}$		1640		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, $\lambda_{\text{grease}} = 1 \text{ W}$	/(m·K)		0.192		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

Tvj,op > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

3 Body diode (MOSFET)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition	Values	Unit	
DC body diode forward current	I _{SD}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = -3 V	T _H = 85 °C	110	A

EasyDUAL module

4 NTC-Thermistor

Table 7 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V _{SD}	$I_{SD} = 200 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.2	5.35	V
			T _{vj} = 125 °C		3.9		
			T _{vj} = 175 °C		3.8		
Peak reverse recovery	I _{rrm}	$I_{SD} = 200 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		115		Α
current		14 kA/ μ s, V_{DD} = 600 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		180		
		ν _{GS} – -5 ν, ι _{dead} – 1000 113	T _{vj} = 175 °C		219		
Recovered charge	Q _{rr}	$I_{SD} = 200 \text{ A}, di_s/dt =$	T _{vj} = 25 °C		1.9		μC
		14 kA/ μ s, V_{DD} = 600 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		3.4		
		VGS5 V, t _{dead} - 1000 HS	T _{vj} = 175 °C		4.5		
Reverse recovery energy	E _{rec}	$I_{SD} = 200 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		0.53		mJ
		14 kA/ μ s (T _{vj} = 175 °C), V_{DD} = 600 V, V_{GS} = -3 V,	T _{vj} = 125 °C		0.92		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		1.24		
Reverse recovery energy,	E _{rec,o}	$I_{SD} = 200 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		0.38		mJ
optimized		17.1 kA/ μ s (T _{vj} = 175 °C),	T _{vj} = 125 °C		0.51		
		$V_{\rm DD}$ = 600 V, $V_{\rm GS}$ = -3 V, $t_{\rm dead}$ = 100 ns	T _{vj} = 175 °C		0.64		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4

EasyDUAL module

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field(typical), MOSFET

 $I_D = f(V_{DS})$

 $T_{vj} = 175$ °C

Output characteristic (typical), MOSFET

 $I_D = f(V_{DS})$

V_{GS} = 18 V

Drain source on-resistance (typical), MOSFET

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

EasyDUAL module

Drain source on-resistance (typical), MOSFET

$$R_{DS(on)} = f(T_{vj})$$

$$I_D = 200 A$$

Transfer characteristic (typical), MOSFET

$$I_D = f(V_{GS})$$

$$V_{DS} = 20 V$$

Gate-source threshold voltage (typical), MOSFET

25

75

100 125

150 175

50

 T_{vj} (°C)

$$V_{GS(th)} = f(T_{vj})$$

3

-50

-25

0

$$V_{GS} = V_{DS}$$

Gate charge characteristic (typical), MOSFET

$$V_{GS} = f(Q_G)$$

$$I_D = 200 A$$
, $T_{vi} = 25 °C$

EasyDUAL module

5 Characteristics diagrams

Capacity characteristic (typical), MOSFET

 $C = f(V_{DS})$

 $f = 100 \text{ kHz}, T_{vi} = 25 \,^{\circ}\text{C}, V_{GS} = 0 \,^{\circ}\text{V}$

Switching times (typical), MOSFET

 $t = f(I_D)$

 V_{DD} = 600 V, R_{Gon} = 2.4 $\Omega,\,R_{Gon,o}$ = 1.5 $\Omega,\,T_{vj}$ = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET

 $t = f(I_D)$

 $R_{Goff} = 0.22 \Omega$, $V_{DD} = 600 V$, $T_{vj} = 175 \,^{\circ}$ C, $V_{GS} = -3/18 V$

Switching times (typical), MOSFET

 $t = f(R_c)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 200 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

EasyDUAL module

5 Characteristics diagrams

Current slope (typical), MOSFET

 $di/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, t_{dead} = 1000 \text{ ns}, I_{D} = 200 \text{ A}, V_{GS} = -3/18 \text{ V}$

Voltage slope (typical), MOSFET

 $dv/dt = f(R_G)$

 V_{DD} = 600 V, I_{D} = 200 A, V_{GS} = -3/18 V

Switching losses (typical), MOSFET

 $E_{on} = f(I_D)$

 $V_{DD} = 600 \text{ V}, R_{Gon} = 2.4 \Omega, R_{Gon,o} = 1.5 \Omega, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET

 $E_{off} = f(I_D)$

 $R_{Goff} = 0.22 \Omega$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

EasyDUAL module

5 Characteristics diagrams

Switching losses (typical), MOSFET

 $E = f(R_G)$

 $V_{DD} = 600 \text{ V}, t_{dead} = 1000 \text{ ns}, I_D = 200 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET

 $E_{on} = f(V_{GS(off)})$

 R_{Goff} = 0.22 $\Omega,$ V_{DD} = 600 V, R_{Gon} = 2.4 $\Omega,$ $V_{GS(on)}$ = 18 V, I_{D} = 200 A, $R_{Gon,o}$ = 1.5 $\Omega,$ T_{vj} = 175 $^{\circ}C$

Switching losses (typical), MOSFET

 $E_{on} = f(t_{dead})$

 R_{Gon} = 2.4 Ω , I_D = 200 A, V_{DD} = 600 V, V_{GS} = -3/18 V

Reverse bias safe operating area (RBSOA), MOSFET

 $I_D = f(V_{DS})$

 $R_{Goff} = 0.22 \Omega$, $T_{vj} = 175 \, ^{\circ}C$, $V_{GS} = -3/18 \, V$

EasyDUAL module

5 Characteristics diagrams

Transient thermal impedance, MOSFET

$$Z_{th} = f(t)$$

Forward characteristic body diode (typical), MOSFET

$$I_{SD} = f(V_{SD})$$

$$T_{vj} = 25 \, ^{\circ}C$$

Forward voltage of body diode (typical), MOSFET

$$V_{SD} = f(T_{vj})$$

$$I_{SD} = 200 A$$

Switching losses body diode (typical), MOSFET

$$E_{rec} = f(I_{SD})$$

$$R_{Gon} = 2.4 \Omega$$
, $R_{Gon,o} = 1.5 \Omega$, $V_{DD} = 600 V$

EasyDUAL module

5 Characteristics diagrams

Switching losses body diode (typical), MOSFET

$$E_{rec} = f(R_G)$$

$$t_{dead}$$
 = 1000 ns, I_{SD} = 200 A, V_{DD} = 600 V

Switching losses body diode (typical), MOSFET

 $E_{rec} = f(V_{GS(off)})$

 $R_{Goff} = 0.22 \,\Omega$, $R_{Gon} = 2.4 \,\Omega$, $V_{GS(on)} = 18 \,V$, $I_{SD} = 200 \,A$,

 $R_{Gon,o} = 1.5 \Omega, V_{DD} = 600 V, T_{vj} = 175 ^{\circ}C$

Switching losses body diode (typical), MOSFET

$$E_{rec} = f(t_{dead})$$

$$R_{Gon} = 2.4 \Omega$$
, $I_D = 200 A$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

Temperature characteristic (typical), NTC-Thermistor

 $R = f(T_{NTC})$

6 Circuit diagram

Circuit diagram 6

Figure 1

7 Package outlines

7 Package outlines

Figure 2

EasyDUAL module

8 Module label code

8 Module label code

Code format	Data Matrix		Barcode (Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			#6550549911530

Figure 3

EasyDUAL module

Revision history

Revision history

Document version	Date of release	Description of changes
0.10	2022-12-02	Initial version
0.20	2023-05-04	Preliminary datasheet
1.00	2025-04-11	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-04-11 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABE463-003

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.