In [2]:

pwd

Out[2]:

'C:\\Users\\Acer'

In [3]:

```
! pip install xgboost
```

Requirement already satisfied: xgboost in d:\python\lib\site-packages (1.5. 2)

Requirement already satisfied: numpy in d:\python\lib\site-packages (from xg boost) (1.19.5)

Requirement already satisfied: scipy in d:\python\lib\site-packages (from xg boost) (1.5.2)

In [4]:

```
! pip install dtreeviz
```

```
Requirement already satisfied: dtreeviz in d:\python\lib\site-packages (1.3.
Requirement already satisfied: matplotlib in d:\python\lib\site-packages (fr
om dtreeviz) (3.3.2)
Requirement already satisfied: graphviz>=0.9 in d:\python\lib\site-packages
(from dtreeviz) (0.19.1)
Requirement already satisfied: pytest in d:\python\lib\site-packages (from d
treeviz) (0.0.0)
Requirement already satisfied: scikit-learn in d:\python\lib\site-packages
(from dtreeviz) (0.24.2)
Requirement already satisfied: pandas in d:\python\lib\site-packages (from d
treeviz) (1.3.5)
Requirement already satisfied: numpy in d:\python\lib\site-packages (from dt
reeviz) (1.19.5)
Requirement already satisfied: colour in d:\python\lib\site-packages (from d
treeviz) (0.1.5)
Requirement already satisfied: certifi>=2020.06.20 in d:\python\lib\site-pac
kages (from matplotlib->dtreeviz) (2021.5.30)
Requirement already satisfied: python-dateutil>=2.1 in c:\users\acer\appdata
\roaming\python\python38\site-packages (from matplotlib->dtreeviz) (2.8.2)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in
d:\python\lib\site-packages (from matplotlib->dtreeviz) (2.4.7)
Requirement already satisfied: kiwisolver>=1.0.1 in d:\python\lib\site-packa
ges (from matplotlib->dtreeviz) (1.3.0)
Requirement already satisfied: pillow>=6.2.0 in d:\python\lib\site-packages
(from matplotlib->dtreeviz) (8.0.1)
Requirement already satisfied: cycler>=0.10 in d:\python\lib\site-packages
(from matplotlib->dtreeviz) (0.10.0)
Requirement already satisfied: attrs>=17.4.0 in d:\python\lib\site-packages
(from pytest->dtreeviz) (20.3.0)
Requirement already satisfied: iniconfig in d:\python\lib\site-packages (fro
m pytest->dtreeviz) (1.1.1)
Requirement already satisfied: packaging in d:\python\lib\site-packages (fro
m pytest->dtreeviz) (20.4)
Requirement already satisfied: pluggy<1.0,>=0.12 in d:\python\lib\site-packa
ges (from pytest->dtreeviz) (0.13.1)
Requirement already satisfied: py>=1.8.2 in d:\python\lib\site-packages (fro
m pytest->dtreeviz) (1.9.0)
Requirement already satisfied: toml in c:\users\acer\appdata\roaming\python
\python38\site-packages (from pytest->dtreeviz) (0.10.2)
Requirement already satisfied: atomicwrites>=1.0 in d:\python\lib\site-packa
ges (from pytest->dtreeviz) (1.4.0)
Requirement already satisfied: colorama in c:\users\acer\appdata\roaming\pyt
hon\python38\site-packages (from pytest->dtreeviz) (0.4.4)
Requirement already satisfied: threadpoolctl>=2.0.0 in d:\python\lib\site-pa
ckages (from scikit-learn->dtreeviz) (2.1.0)
Requirement already satisfied: scipy>=0.19.1 in d:\python\lib\site-packages
(from scikit-learn->dtreeviz) (1.5.2)
Requirement already satisfied: joblib>=0.11 in d:\python\lib\site-packages
(from scikit-learn->dtreeviz) (0.17.0)
Requirement already satisfied: pytz>=2017.3 in d:\python\lib\site-packages
(from pandas->dtreeviz) (2020.1)
Requirement already satisfied: six>=1.5 in c:\users\acer\appdata\roaming\pyt
hon\python38\site-packages (from python-dateutil>=2.1->matplotlib->dtreeviz)
(1.16.0)
```

In [5]:

from dtreeviz.trees import dtreeviz

In [6]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.ticker as mtick
import matplotlib.pyplot as plt
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.metrics import recall_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.tree import DecisionTreeClassifier
from imblearn.over_sampling import SMOTE
from sklearn.metrics import fbeta_score
from numpy import loadtxt
from xgboost import XGBClassifier
```

In [7]:

telco_base_data = pd.read_csv('D:/Customer_churn_analysis/WA_Fn-UseC_-Telco-Customer-Churn.

In [8]:

telco_base_data.head()

Out[8]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service
1	5575- GNVDE	Male	0	No	No	34	Yes	Nc
2	3668- QPYBK	Male	0	No	No	2	Yes	Nc
3	7795- CFOCW	Male	0	No	No	45	No	No phone service
4	9237- HQITU	Female	0	No	No	2	Yes	Nc

5 rows × 21 columns

→

In [9]:

telco_base_data.shape

Out[9]:

(7043, 21)

In [10]:

```
telco_base_data.columns.values
```

Out[10]:

describe is used for numerical data

In [11]:

telco_base_data.dtypes

Out[11]:

customerID	object			
gender	object			
SeniorCitizen	int64			
Partner	object			
Dependents	object			
tenure	object int64 object object object object			
PhoneService	object			
MultipleLines	object			
InternetService	object			
OnlineSecurity	object			
OnlineBackup	object			
DeviceProtection	object			
TechSupport	object			
StreamingTV	object			
StreamingMovies	object			
Contract	object			
PaperlessBilling	object			
PaymentMethod	object			
MonthlyCharges	float64			
TotalCharges	object			
Churn	object			
dtype: object				

In [12]:

```
telco_base_data.describe()
```

Out[12]:

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

In [13]:

```
telco_base_data['Churn'].value_counts().plot(kind='barh', figsize =(8,6))
plt.xlabel("Count",labelpad=14)
plt.ylabel("Target Variable",labelpad=14)
plt.title("Count of target variable",y=1.02)
```

Out[13]:

Text(0.5, 1.02, 'Count of target variable')

Count of target variable


```
In [14]:
```

```
telco_base_data['Churn'].value_counts()
Out[14]:
       5174
No
Yes
       1869
Name: Churn, dtype: int64
In [15]:
100*telco_base_data['Churn'].value_counts()/len(telco_base_data['Churn'])
# Basically value counts is used to return unique values. So there are only 2 unique values
Out[15]:
No
       73.463013
Yes
       26.536987
Name: Churn, dtype: float64
imbalanced dataset
In [16]:
telco_base_data.info(verbose = True)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
#
                       Non-Null Count Dtype
     Column
                        -----
 0
     customerID
                       7043 non-null
                                        object
 1
     gender
                       7043 non-null
                                        object
 2
     SeniorCitizen
                       7043 non-null
                                        int64
 3
     Partner
                       7043 non-null
                                        object
 4
     Dependents
                       7043 non-null
                                        object
 5
     tenure
                       7043 non-null
                                        int64
 6
     PhoneService
                       7043 non-null
                                        object
 7
     MultipleLines
                       7043 non-null
                                        object
 8
     InternetService
                       7043 non-null
                                        object
 9
     OnlineSecurity
                       7043 non-null
                                        object
 10
    OnlineBackup
                       7043 non-null
                                        object
 11
    DeviceProtection 7043 non-null
                                        object
    TechSupport
                       7043 non-null
                                        object
                       7043 non-null
 13
     StreamingTV
                                        object
 14
    StreamingMovies
                       7043 non-null
                                        object
 15
    Contract
                       7043 non-null
                                        object
    PaperlessBilling
                       7043 non-null
 16
                                        object
 17
     PaymentMethod
                       7043 non-null
                                        object
 18
     MonthlyCharges
                       7043 non-null
                                        float64
 19
    TotalCharges
                       7043 non-null
                                        object
 20
    Churn
                       7043 non-null
                                        object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
In [17]:
telco_data =telco_base_data.copy()
```

In [18]:

```
telco_data.TotalCharges = pd.to_numeric(telco_data.TotalCharges, errors='coerce')
telco_data.isnull().sum()
```

Out[18]:

customerID 0 gender 0 SeniorCitizen 0 Partner 0 0 Dependents tenure 0 PhoneService 0 MultipleLines 0 InternetService 0 OnlineSecurity 0 OnlineBackup 0 DeviceProtection 0 TechSupport 0 StreamingTV 0 StreamingMovies 0 Contract 0 PaperlessBilling 0 PaymentMethod 0 MonthlyCharges 0 TotalCharges 11 Churn 0

dtype: int64

localhost:8888/notebooks/Churn_Prediction_Analysis_Telco_Atharva.ipynb#

In [19]:

```
telco_data.loc[telco_data ['TotalCharges'].isnull()== True]
```

Out[19]:

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLi
488	4472-LVYGI	Female	0	Yes	Yes	0	No	No ph ser
753	3115- CZMZD	Male	0	No	Yes	0	Yes	
936	5709- LVOEQ	Female	0	Yes	Yes	0	Yes	
1082	4367- NUYAO	Male	0	Yes	Yes	0	Yes	
1340	1371- DWPAZ	Female	0	Yes	Yes	0	No	No ph ser
3331	7644- OMVMY	Male	0	Yes	Yes	0	Yes	
3826	3213- VVOLG	Male	0	Yes	Yes	0	Yes	
4380	2520- SGTTA	Female	0	Yes	Yes	0	Yes	
5218	2923- ARZLG	Male	0	Yes	Yes	0	Yes	
6670	4075- WKNIU	Female	0	Yes	Yes	0	Yes	
6754	2775- SEFEE	Male	0	No	Yes	0	Yes	
	vs × 21 colum	nns						
4								

since the nuber 11 is quite negligible as compared to 7413 we can ignore them

In [20]:

```
telco_data.dropna(how = 'any', inplace = True)
# telco_data.fillna(0)
```

In [21]:

#creating Bins

In [22]:

```
print(telco_data['tenure'].max())
```

72

In [23]:

```
labels = ["{0} - {1}".format(i,i+11) for i in range(1,72,12)]
telco_data['tenure_group'] = pd.cut(telco_data.tenure, range(1,80,12), right=False, labels=1
```

In [24]:

```
telco_data['tenure_group'].value_counts()
```

Out[24]:

1 - 12 2175 61 - 72 1407 13 - 24 1024

25 - 36 832 49 - 60 832

37 - 48 762

Name: tenure_group, dtype: int64

In [25]:

```
telco_data.drop(columns= ['customerID','tenure'], axis=1, inplace=True)
telco_data.head()
```

Out[25]:

	gender	SeniorCitizen	Partner	Dependents	s PhoneService MultipleLines		InternetService	On
0	Female	0	Yes	No	No	No phone service	DSL	
1	Male	0	No	No	Yes	No	DSL	
2	Male	0	No	No	Yes	No	DSL	
3	Male	0	No	No	No	No phone service	DSL	
4	Female	0	No	No	Yes	No	Fiber optic	
4								•

In [26]:

for i, predictor in enumerate(telco_data.drop(columns=['Churn','TotalCharges','MonthlyCharg
 plt.figure(i)
 sns.countplot(data=telco_data, x=predictor, hue='Churn')

Partner

convert The variable Churn in a binary numeric Value: Yes=1, No=0

In [27]:

telco_data['Churn']= np.where(telco_data.Churn== 'Yes',1,0)

In [28]:

telco_data.head()

Out[28]:

	gender	SeniorCitizen	Partner	Dependents	PhoneService	MultipleLines	InternetService	On
0	Female	0	Yes	No	No	No phone service	DSL	
1	Male	0	No	No	Yes	No	DSL	
2	Male	0	No	No	Yes	No	DSL	
3	Male	0	No	No	No	No phone service	DSL	
4	Female	0	No	No	Yes	No	Fiber optic	
4								•

convert all the categorical vaiables into numerical/dummy variables

In [29]:

#one hot Encoding

In [30]:

#dummy Trap can be used

In [31]:

```
telco_data_dummies = pd.get_dummies(telco_data)
telco_data_dummies.head()
```

Out[31]:

	SeniorCitizen	MonthlyCharges	TotalCharges	Churn	gender_Female	gender_Male	Partner_N
0	0	29.85	29.85	0	1	0	
1	0	56.95	1889.50	0	0	1	
2	0	53.85	108.15	1	0	1	
3	0	42.30	1840.75	0	0	1	
4	0	70.70	151.65	1	1	0	

5 rows × 51 columns

→

In [32]:

sns.lmplot(data=telco_data_dummies, x= 'MonthlyCharges', y='TotalCharges', fit_reg=False)

Out[32]:

<seaborn.axisgrid.FacetGrid at 0x17fc1c2cf40>

In [33]:

Out[33]:

Text(0.5, 1.0, 'Monthly charges by churn')

In [34]:

key Insight found As higher the monthly charge, lower the tenure, Lower the Total charge-

In [35]:

Out[35]:

Text(0.5, 1.0, 'Total charges by churn')

In []:

So from here we can Infer that that There is more churning when the total Charges are low # understanding because that is quite obvious that if you have not paid a hefty amount to s # switch.

In [36]:

```
plt.figure(figsize=(20,8))
telco_data_dummies.corr()['Churn'].sort_values(ascending = False).plot(kind = 'bar')
```

Out[36]:

<AxesSubplot:>

In [37]:

```
# key Insights:-
# High Churn Rate seen in Contract_Month_to_month, No online Security , No Tech Support, Fi
# Low Churn Rate seen in Long term Contracts, Subscriptions without net, Customer Enged for
# Gender, Availablity of phone Service,----> no impact on churn
```

In [38]:

```
plt.figure(figsize=(12,12))
sns.heatmap(telco_data_dummies.corr(), cmap="Paired")
```

Out[38]:

<AxesSubplot:>

In [39]:

```
new_df1_target0 = telco_data.loc[telco_data["Churn"]==0]
new_df1_target1 = telco_data.loc[telco_data["Churn"]==1]
```

In [40]:

```
def uniplot(df,col,title,hue = None):
    sns.set_style('whitegrid')
    sns.set_context('talk')
    plt.rcParams["axes.labelsize"]= 20
    plt.rcParams['axes.titlesize'] = 22
    plt.rcParams['axes.titlepad']= 30

temp = pd.Series(data=hue)
    fig,ax= plt.subplots()
    width = len(df[col].unique()) +7 + 4*len(temp.unique())
    fig.set_size_inches(width , 8)
    plt.xticks(rotation=45)
    plt.yscale('log')
    plt.title(title)
    ax = sns.countplot(data = df, x= col, order= df[col].value_counts().index,hue = hue, pa
    plt.show()
```

In [41]:

uniplot(new_df1_target1,col='Partner',title='Distribution of Gender for Churned Customers')

Distribution of Gender for Churned Customers

In [42]:

So from here we can see that if there is no partner and and if the selected candidate is # the Inverse.

In [43]:

uniplot(new_df1_target1,col='PaymentMethod',title= 'Distribution of PaymentMethod for Churn

Distribution of PaymentMethod for Churned Customers

In [44]:

uniplot(new_df1_target1,col='Contract',title= 'Distribution of Contract for Churned Custome

Distribution of Contract for Churned Customers

In [45]:

uniplot(new_df1_target1,col='SeniorCitizen',title= 'Distribution of SeniorCitizen for Churn

Distribution of SeniorCitizen for Churned Customers

In [46]:

uniplot(new_df1_target1,col='PaperlessBilling',title= 'Distribution of Payment Method for C

Distribution of Payment Method for Churned Customers

In [47]:

```
uniplot(new_df1_target1,col='StreamingMovies',title= 'Distribution of Intenet Service for C
```

Distribution of Intenet Service for Churned Customers

In [48]:

```
# Basic Conclusions from Uniariate and Bivariate analysis
# 1.) Montly Contract People Are most likely to Churn at higher rate
# 2.) Electronic Check Payment are the People having Higher Churning rate
# 3.) Non- Senior Citizen Citizen are High Churners
# 4.) No Online Security, No Tech Support category are higher Churners
```

In [49]:

```
telco_data_dummies.to_csv('tel_churn.csv')
```

In [50]:

```
df = pd.read_csv('tel_churn.csv')
```

In [51]:

df.head()

Out[51]:

	Unnamed: 0	SeniorCitizen	MonthlyCharges	TotalCharges	Churn	gender_Female	gender_Mal
0	0	0	29.85	29.85	0	1	(
1	1	0	56.95	1889.50	0	0	
2	2	0	53.85	108.15	1	0	
3	3	0	42.30	1840.75	0	0	
4	4	0	70.70	151.65	1	1	1

5 rows × 52 columns

In [52]:

df = df.drop('Unnamed: 0', axis=1)

In [53]:

df.head()

Out[53]:

	SeniorCitizen	MonthlyCharges	TotalCharges	Churn	gender_Female	gender_Male	Partner_N
0	0	29.85	29.85	0	1	0	
1	0	56.95	1889.50	0	0	1	
2	0	53.85	108.15	1	0	1	
3	0	42.30	1840.75	0	0	1	
4	0	70.70	151.65	1	1	0	

5 rows × 51 columns

→

In [54]:

now create variables x and y where x is independent variables and y is dependent variable

```
In [55]:
```

```
x= df.drop('Churn', axis=1)
x
```

Out[55]:

	SeniorCitizen	MonthlyCharges	TotalCharges	gender_Female	gender_Male	Partner_No	F
0	0	29.85	29.85	1	0	0	_
1	0	56.95	1889.50	0	1	1	
2	0	53.85	108.15	0	1	1	
3	0	42.30	1840.75	0	1	1	
4	0	70.70	151.65	1	0	1	
	***		•••				
7027	0	84.80	1990.50	0	1	0	
7028	0	103.20	7362.90	1	0	0	
7029	0	29.60	346.45	1	0	0	
7030	1	74.40	306.60	0	1	0	
7031	0	105.65	6844.50	0	1	1	

7032 rows × 50 columns

In [56]:

```
y = df['Churn']
y
```

Out[56]:

```
0 0
1 0
2 1
3 0
4 1
...
7027 0
7028 0
7029 0
7030 1
7031 0
```

Name: Churn, Length: 7032, dtype: int64

In [57]:

```
# Evaluation Metrics to be considered
```

In [58]:

```
# Before Moving on to the model processing we must be sure that on what basis are we going # If we observe our output column is Churn that is a categorical column so we sevral choice # Recall, F-1/F-2/F-0.5 scores.
```

In [59]:

```
# Lets try to undertand by considering the first evalution metric that is accuracy.
# Accuracy will not be a good evaluation metric the reason being the Imbalanced dataset. If
# model will be more biased towards the majority class that is not churning and it is highl
# minority class. Due to which even though we will have high accuracy but that would not ad
# won't be a deciding parameter.
```

In [60]:

```
# Let us try with the second Evaluation metric that is Precision.
# Precision means out of all the predicted positive values how many of them are actually po
# So if we try to observe the Formula of Precision :- T.P/T.P+F.P
# So we are concerned more with the term False positive :- Here False positive means we pre
# but actually he is not. So if we consider this from a business point of view then there i
# though our model is bit inaccurate.
# so we will not consider Precision in this case.
```

In [61]:

```
# Let us try with the recall:
# Recall means out of actual positive values how many of them are correctly classified.
# So if we look at the formula of Recall:- T.P/T.P+ F.N
# Here we are concerned more with the false negative term :- False negative means we predic
# but actually he is churning. So this could be a major Setback for the organization becaus
# loyal customer where as he is a churner.
# So this is a potential parameter that could be considered as evaluation metric
```

In [62]:

Now we know that Recall could be a Important evaluation metric and in our scenario its mo # So we are not neglecting the F- score because the number of False positive is not that hi # So if we are considering the F-score as F.N>F.P(Weightage) So we will be considering F-2, # balance.

In [63]:

```
# Normal train test Split (70-30)
```

In [64]:

```
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.3)
```

In []:

So as we see that recall score is quite less (less than 50%) so the amount of False negat # our models recall score is less. Due to which it becomes quite Important to emphasize on # business perspective of an organization in a wrong direction.

In [105]:

```
# Decision Tree Classifier
```

In [106]:

```
model_dt = DecisionTreeClassifier(criterion='entropy',random_state=100,max_depth=6, min_sam
```

```
In [107]:
```

```
model_dt.fit(x_train, y_train)
```

Out[107]:

In [108]:

```
y_pred = model_dt.predict(x_test)
```

In [109]:

y_pred

Out[109]:

array([0, 1, 0, ..., 0, 0, 0], dtype=int64)

In [110]:

```
model_dt.score(x_test,y_test)
```

Out[110]:

0.7895734597156399

In [111]:

```
print(classification_report(y_test, y_pred, labels = [0,1]))
```

	precision	recall	f1-score	support
0	0.83	0.90	0.86	1557
1	0.63	0.49	0.55	553
accuracy			0.79	2110
macro avg	0.73	0.69	0.71	2110
weighted avg	0.78	0.79	0.78	2110

In [115]:

```
confusion=confusion_matrix(y_test, y_pred)
print(confusion)
```

```
[[1395 162]
[ 282 271]]
```

In [117]:

```
recall = confusion[0][0] /(confusion[0][0] + confusion[1][0])
print(recall)
```

0.8318425760286225

In []:

So we obtained the Recall for the Decision Tree Model

In []:

Recall value should Ideally be high because it tells that the there are less false negati

In []:

80% recall means that our model has correctly classified 80% of actual positve data. To o # Differnt models and then can test the result.

In [118]:

#RANDOM FOREST CLASSIFIER

In [119]:

from sklearn.ensemble import RandomForestClassifier

In [120]:

```
model_rf = RandomForestClassifier(criterion='gini',random_state=100,max_depth=5, min_sample
model_rf.fit(x_train, y_train)
y_pred_rf = model_rf.predict(x_test)
```

In [121]:

```
model_rf.score(x_test,y_test)
```

Out[121]:

0.7862559241706161

In [122]:

```
print(classification_report(y_test, y_pred, labels = [0,1]))
```

	precision	recall	f1-score	support
0	0.83	0.90	0.86	1557
1	0.63	0.49	0.55	553
accuracy			0.79	2110
macro avg	0.73	0.69	0.71	2110
weighted avg	0.78	0.79	0.78	2110

In [124]:

```
conf_rf= confusion_matrix(y_test, y_pred_rf)
print(conf_rf)
```

```
[[1472 85]
[ 366 187]]
```

```
In [126]:
```

```
recall = conf_rf[0][0] /(conf_rf[0][0] + conf_rf[1][0])
print(recall)
```

0.8008705114254625

In [127]:

```
rf = RandomForestClassifier(random_state=42, n_jobs=-1)
```

In [128]:

```
params = {
    'max_depth': [2,3,5,6,7,15,20],
    'min_samples_leaf': [5,10,20,50,100,200],
    'n_estimators': [10,25,30,50,100,200]
}
```

In [129]:

```
from sklearn.model_selection import GridSearchCV
```

In [130]:

In [131]:

```
grid_search.fit(x_train, y_train)
```

Fitting 4 folds for each of 252 candidates, totalling 1008 fits

Out[131]:

In [133]:

```
rf_best = grid_search.best_estimator_
rf_best
```

Out[133]:

In [134]:

So we have obtained some of the random forest parameters that will be ideal fit according # Lets try with that and see if any change is possible.

In [138]:

```
model_rf_1 = RandomForestClassifier(criterion='entropy',random_state=42,max_depth=15, min_s
model_rf_1.fit(x_train, y_train)
y_pred_rf_1 = model_rf_1.predict(x_test)
```

In [139]:

```
conf_rf_1= confusion_matrix(y_test, y_pred_rf_1)
print(conf_rf_1)
```

```
[[1420 137]
[ 294 259]]
```

In [140]:

```
recall = conf_rf_1[0][0] /(conf_rf_1[0][0] + conf_rf_1[1][0])
print(recall)
```

0.8284714119019837

In []:

so we can see by Hyperparameter tunning(Grid_Search_CV) my Recall score Increased.

In []:

Trying with XG boost Classifier

In [141]:

```
model = XGBClassifier()
```

```
In [142]:
```

```
model.fit(x_train, y_train)
```

D:\PYTHON\lib\site-packages\xgboost\sklearn.py:1224: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1]. warnings.warn(label_encoder_deprecation_msg, UserWarning)

[13:05:28] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_ 1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

Out[142]:

In [145]:

```
y_pred = model.predict(x_test)
```

In [146]:

```
conf_XGB = confusion_matrix(y_test, y_pred)
```

In [147]:

```
print(conf_XGB)
```

```
[[1405 152]
[ 283 270]]
```

In [148]:

```
recall = conf_XGB[0][0] /(conf_XGB[0][0] + conf_XGB[1][0])
print(recall)
```

0.832345971563981

In []:

So we can observe that by using XG boost classifier we are getting quite decent Recall.

In [149]:

So similarly we can try differnt models and try to understand which model can be a perfec

In []:
