Convolutional Neural Networks with Alternately Updated Clique

Yibo Yang;

Zhisheng Zhong;

Tiancheng Shen;

Zhouchen Lin

Deeper and deeper	2012	2014	2014	2015	2016
<u> </u>					_
	AlexNet	VGGNet	GoogLeNet	HighwayNet	ResNet
	7 layers	16/19 layers	22 layers	100+ layers	152 layers

Skip Connections

DenseNet, 2017

Propagation

ResNet: $x_l = H_l(x_{l-1}) + x_{l-1}$

DenseNet: $x_l = H_l([x_0, x_1, ..., x_{l-1}])$

- Bottleneck: BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3)
- Compression: Reduce the number of feature maps in transition layers.
- Performance: State-of-the-art on CIFAR, SVHN datasets; parameter-efficient than ResNets.

How to further maximize information flow?

- How to further maximize information flow?
- Does feedback connection help?

Attention mechanism

- Formulating an optimization problem (Cao et al. 2015)
- Weighting the activations spatially or channel-wisely (Chen et al. 2017, Hu et al. 2017)
- Feedback connections (Stollenga et al. 2014, Wang et al. 2014, Zamir et al. 2017)

Attention mechanism

- Formulating an optimization problem (Cao et al. 2015)
- Weighting the activations spatially or channel-wisely (Chen et al. 2017, Hu et al. 2017)
- Feedback connections (Stollenga et al. 2014, Wang et al. 2014, Zamir et al. 2017)

Dense connections & Feedback connections

- Bi-directionally connected -> Enable feature refinement at each update
- Densely connected -> Information flow further maximized

Basic block

- Any two layers have both forward and backward connections, and are both input and output of each other
- More densely connected than DenseNets

Propagation

- First stage:

Initialize layers using feedforward dense connections

Bottom Layers	Weights	Top Layers	Feature
X_0	W_{01}	$X_1^{(1)}$	
$\{X_0, X_1^{(1)}\}$	$\{W_{02},W_{12}\}$	$X_2^{(1)}$	
$\{X_0, X_1^{(1)}, X_2^{(1)}\}$	$\{W_{03},W_{13},W_{23}\}$	$X_3^{(1)}$	Stage-I
$\{X_0, X_1^{(1)}, X_2^{(1)}, X_3^{(1)}\}$	$\{W_{04},W_{14},W_{24},W_{34}\}$	$X_4^{(1)}$	
$\{X_0, X_1^{(1)}, X_2^{(1)}, X_3^{(1)}, X_4^{(1)}\}$	$\{W_{05},W_{15},W_{25},W_{35},W_{45}\}$	$X_5^{(1)}$	
$\{X_2^{(1)}, X_3^{(1)}, X_4^{(1)}, X_5^{(1)}\}$	$\{W_{21}, W_{31}, W_{41}, W_{51}\}$	$X_1^{(2)}$	
$\{X_3^{(1)}, X_4^{(1)}, X_5^{(1)}, X_1^{(2)}\}$	$\{W_{32}, W_{42}, W_{52}, W_{12}\}$	$X_2^{(2)}$]
$\{X_4^{(1)}, X_5^{(1)}, X_1^{(2)}, X_2^{(2)}\}$	$\{W_{43},W_{53},W_{13},W_{23}\}$	$X_3^{(2)}$	Stage-II
$\{X_5^{(1)}, X_1^{(2)}, X_2^{(2)}, X_3^{(2)}\}$	$\{W_{54}, W_{14}, W_{24}, W_{34}\}$	$X_4^{(2)}$	
$\{X_1^{(2)}, X_2^{(2)}, X_3^{(2)}, X_4^{(2)}\}$	$\{W_{15},W_{25},W_{35},W_{45}\}$	$X_5^{(2)}$	

Propagation

- First stage:

Initialize layers using feedforward dense connections

- Second stage:

Alternate updating rule

$$X_i^{(k)} = g\left(\sum_{l < i} W_{li} * X_l^{(k)} + \sum_{m > i} W_{mi} * X_m^{(k)}\right)$$

 $(i \ge 1, k \ge 2, g:$ non-linear activation)

Bottom Layers	Weights	Top Layers	Feature
X_0	W_{01}	$X_1^{(1)}$	
$\{X_0, X_1^{(1)}\}$	$\{W_{02}, W_{12}\}$	$X_2^{(1)}$	
$\{X_0, X_1^{(1)}, X_2^{(1)}\}$	$\{W_{03},W_{13},W_{23}\}$	$X_3^{(1)}$	Stage-I
$\{X_0, X_1^{(1)}, X_2^{(1)}, X_3^{(1)}\}$	$\{W_{04},W_{14},W_{24},W_{34}\}$	$X_4^{(1)}$	
$\{X_0, X_1^{(1)}, X_2^{(1)}, X_3^{(1)}, X_4^{(1)}\}$	$\{W_{05},W_{15},W_{25},W_{35},W_{45}\}$	$X_5^{(1)}$	
$\{X_2^{(1)}, X_3^{(1)}, X_4^{(1)}, X_5^{(1)}\}$	$\{W_{21}, W_{31}, W_{41}, W_{51}\}$	$X_1^{(2)}$	
$\{X_3^{(1)}, X_4^{(1)}, X_5^{(1)}, X_1^{(2)}\}$	$\{W_{32},W_{42},W_{52},W_{12}\}$	$X_2^{(2)}$	
$\{X_4^{(1)}, X_5^{(1)}, X_1^{(2)}, X_2^{(2)}\}$	$\{W_{43},W_{53},W_{13},W_{23}\}$	$X_3^{(2)}$	Stage-II
$\{X_5^{(1)}, X_1^{(2)}, X_2^{(2)}, X_3^{(2)}\}$	$\{W_{54}, W_{14}, W_{24}, W_{34}\}$	$X_4^{(2)}$	
$\{X_1^{(2)}, X_2^{(2)}, X_3^{(2)}, X_4^{(2)}\}$	$\{W_{15},W_{25},W_{35},W_{45}\}$	$X_5^{(2)}$	

$$X_i^{(k)} = g\left(\sum_{l < i} W_{li} * X_l^{(k)} + \sum_{m > i} W_{mi} * X_m^{(k)}\right)$$

$$X_1^{(2)} = g(W_{21} * X_2^{(1)} + W_{31} * X_3^{(1)} + W_{41} * X_4^{(1)} + W_{51} * X_5^{(1)})$$

$$X_i^{(k)} = g\left(\sum_{l \le i} W_{li} * X_l^{(k)} + \sum_{m \ge i} W_{mi} * X_m^{(k)}\right)$$

$$X_1^{(2)} = g(W_{21} * X_2^{(1)} + W_{31} * X_3^{(1)} + W_{41} * X_4^{(1)} + W_{51} * X_5^{(1)})$$

$$X_2^{(2)} = g(W_{12} * X_1^{(2)} + W_{32} * X_3^{(1)} + W_{42} * X_4^{(1)} + W_{52} * X_5^{(1)})$$

$$X_i^{(k)} = g\left(\sum_{l \le i} W_{li} * X_l^{(k)} + \sum_{m \ge i} W_{mi} * X_m^{(k)}\right)$$

$$X_{1}^{(2)} = g(W_{21} * X_{2}^{(1)} + W_{31} * X_{3}^{(1)} + W_{41} * X_{4}^{(1)} + W_{51} * X_{5}^{(1)})$$

$$X_{2}^{(2)} = g(W_{12} * X_{1}^{(2)} + W_{32} * X_{3}^{(1)} + W_{42} * X_{4}^{(1)} + W_{52} * X_{5}^{(1)})$$

$$X_3^{(2)} = g(W_{13} * X_1^{(2)} + W_{23} * X_2^{(2)} + W_{43} * X_4^{(1)} + W_{53} * X_5^{(1)})$$

$$X_i^{(k)} = g\left(\sum_{l \le i} W_{li} * X_l^{(k)} + \sum_{m \ge i} W_{mi} * X_m^{(k)}\right)$$

$$X_{1}^{(2)} = g(W_{21} * X_{2}^{(1)} + W_{31} * X_{3}^{(1)} + W_{41} * X_{4}^{(1)} + W_{51} * X_{5}^{(1)})$$

$$X_{2}^{(2)} = g(W_{12} * X_{1}^{(2)} + W_{32} * X_{3}^{(1)} + W_{42} * X_{4}^{(1)} + W_{52} * X_{5}^{(1)})$$

$$X_{3}^{(2)} = g(W_{13} * X_{1}^{(2)} + W_{23} * X_{2}^{(2)} + W_{43} * X_{4}^{(1)} + W_{53} * X_{5}^{(1)})$$

$$X_{4}^{(2)} = g(W_{14} * X_{1}^{(2)} + W_{24} * X_{2}^{(2)} + W_{34} * X_{3}^{(2)} + W_{54} * X_{5}^{(1)})$$

$$X_i^{(k)} = g\left(\sum_{l \le i} W_{li} * X_l^{(k)} + \sum_{m \ge i} W_{mi} * X_m^{(k)}\right)$$

$$X_{1}^{(2)} = g(W_{21} * X_{2}^{(1)} + W_{31} * X_{3}^{(1)} + W_{41} * X_{4}^{(1)} + W_{51} * X_{5}^{(1)})$$

$$X_{2}^{(2)} = g(W_{12} * X_{1}^{(2)} + W_{32} * X_{3}^{(1)} + W_{42} * X_{4}^{(1)} + W_{52} * X_{5}^{(1)})$$

$$X_{3}^{(2)} = g(W_{13} * X_{1}^{(2)} + W_{23} * X_{2}^{(2)} + W_{43} * X_{4}^{(1)} + W_{53} * X_{5}^{(1)})$$

$$X_{4}^{(2)} = g(W_{14} * X_{1}^{(2)} + W_{24} * X_{2}^{(2)} + W_{34} * X_{3}^{(2)} + W_{54} * X_{5}^{(1)})$$

$$X_{5}^{(2)} = g(W_{15} * X_{1}^{(2)} + W_{25} * X_{2}^{(2)} + W_{35} * X_{3}^{(2)} + W_{45} * X_{4}^{(2)})$$

- Enable top down refinement brought by each propagation in Stage II
- Parameters keep re-used in different stages during propagation
- We can have Stage III and even Stage IV feature without any parameter overhead.

Whole structure

- A multi-scale way to compose the final representation.
- Only transit Stage-II feature into the next block to avoid progressive increment of parameters and computation.
- Multi-scale representation is more adopted in object detection or segmentation. Our multi-scale classification network is able to achieve stage-of-the-art image classification performance.

Ablation experiments

CliqueNet (I+I):

Only consider Stage-I feature

CliqueNet (I+II):

Use Stage-I feature to compose the final representation; transit Stage-II feature into the next block.

CliqueNet (II+II):

Use Stage-II feature to compose the final representation; also transit Stage-II feature into the next block.

Ablation experiments

CliqueNet (I+I):

Only consider Stage-I feature

CliqueNet (I+II):

Use Stage-I feature to compose the final representation; transit Stage-II feature into the next block.

CliqueNet (II+II):

Use Stage-II feature to compose the final representation; also transit Stage-II feature into the next block.

Model	Block feature	Transit	CIFAR-10
CliqueNet (I+I)	X_0 , Stage-I	Stage-I	6.64
CliqueNet (I+II)	X_0 , Stage-I	Stage-II	6.1
CliqueNet (II+II)	X_0 , Stage-II	Stage-II	5.76

(There are 36 filters in each layer, 5 layers in each block.)

Ablation experiments

CliqueNet-X

Use Stage-II feature, but only finish the first X steps in the stage II.
When X=0, it reduces to CliqueNet (I+I)
When X=5, it reduces to CliqueNet (II+II)

Model	CIFAR-10	CIFAR-100
CliqueNet (X=0)	5.83	24.79
CliqueNet (X=1)	5.63	24.65
CliqueNet (X=2)	5.54	24.37
CliqueNet (X=3)	5.41	23.75
CliqueNet (X=4)	5.20	24.04
CliqueNet (X=5)	5.12	23.73

(There are 64 filters in each layer, 5 layers in each block.)

Experiments on CIFAR and SVHN

Additional techniques

Bottleneck

Compression

Attentional transition (SE module)

J. Hu, et al. Squeeze-and-excitation networks. In CVPR, 2018.

Experiments on CIFAR and SVHN

Additional techniques

Bottleneck

Compression

Attentional transition (SE module)

Experiments on CIFAR and SVHN

Additional techniques

Bottleneck

Compression

Attentional transition (SE module)

- Implementation details

300 epochs on CIFAR and 40 epochs on SVHN

0.1 leaning rate initially, divided by 10 at 50%

and 75% of the training procedure

Batchsize of 64 on CIFAR and SVHN

Experiments on CIFAR and SVHN

Model	Α	В	С	FLOPs	Params	CIFAR-10	CIFAR-100	SVHN
Recurrent CNN [26]	-	-	-	-	1.86M	8.69	31.75	1.80
Stochastic Depth ResNet [18]	-	-	-	-	1.7M	11.66	37.8	1.75
dasNet [35]	-	-	-	-	-	9.22	33.78	-
FractalNet [25]	-	-	-	-	38.6M	7.33	28.2	1.87
DenseNet $(k = 12, T = 36)$ [17]	-	-	-	0.53G	1.0M	7.00	27.55	1.79
DenseNet $(k = 12, T = 96)$ [17]	-	-	-	3.54G	7.0M	5.77	23.79	1.67
DenseNet $(k = 24, T = 96)$ [17]	-	-	-	13.78G	27.2M	5.83	23.42	1.59
CliqueNet ($k = 36, T = 12$)	-	-	-	0.91G	0.94M	5.93	27.32	1.77
CliqueNet $(k = 64, T = 15)$	-	-	-	4.21G	4.49M	5.12	23.98	1.62
CliqueNet $(k = 80, T = 15)$	-	-	-	6.45G	6.94M	5.10	23.32	1.56
CliqueNet $(k = 80, T = 18)$	-	-	-	9.45G	10.14M	5.06	23.14	1.51
DenseNet $(k = 12, T = 96)$ [17]	-	√	√	0.58G	0.8M	5.92	24.15	1.76
DenseNet $(k = 24, T = 246)$ [17]	-	✓	\checkmark	10.84G	15.3M	5.19	19.64	1.74
CliqueNet ($k = 36, T = 12$)	✓	-	-	0.91G	0.98M	5.8	26.41	-
CliqueNet $(k = 36, T = 12)$	-	-	\checkmark	0.98G	1.04M	5.69	26.45	-
CliqueNet $(k = 36, T = 12)$	✓	-	\checkmark	0.98G	1.08M	5.61	25.55	1.69
CliqueNet ($k = 80, T = 15$)	✓	-	\checkmark	6.88G	8M	5.17	22.78	1.53
CliqueNet $(k = 150, T = 30)$	✓	✓	✓	8.49G	10.02M	5.06	21.83	1.64

(Error rates on CIFAR and SVHN without any data augmentation. A, B, and C represents attentional transition, bottleneck, and compression, respectively. k is the number of filters per layer, and T is the total number of layers in three blocks.)

Experiments on CIFAR and SVHN

Model	Α	В	С	FLOPs	Params	CIFAR-10	CIFAR-100	SVHN
Recurrent CNN [26]	-	-	-	-	1.86M	8.69	31.75	1.80
Stochastic Depth ResNet [18]	-	-	-	-	1.7M	11.66	37.8	1.75
dasNet [35]	-	-	-	-	-	9.22	33.78	-
FractalNet [25]	-	-	-	-	38.6M	7.33	28.2	1.87
DenseNet $(k = 12, T = 36)$ [17]	-	-	-	0.53G	1.0M	7.00	27.55	1.79
DenseNet $(k = 12, T = 96)$ [17]	-	-	-	3.54G	7.0M	5.77	23.79	1.67
DenseNet $(k = 24, T = 96)$ [17]	-	-	-	13.78G	27.2M	5.83	23.42	1.59
CliqueNet ($k = 36, T = 12$)	-	-	-	0.91G	0.94M	5.93	27.32	1.77
CliqueNet ($k = 64, T = 15$)	-	-	-	4.21G	4.49M	5.12	23.98	1.62
CliqueNet ($k = 80, T = 15$)	-	-	-	6.45G	6.94M	5.10	23.32	1.56
CliqueNet ($k = 80, T = 18$)	-	-	-	9.45G	10.14M	5.06	23.14	1.51
DenseNet $(k = 12, T = 96)$ [17]	-	√	✓	0.58G	0.8M	5.92	24.15	1.76
DenseNet $(k = 24, T = 246)$ [17]	-	\checkmark	\checkmark	10.84G	15.3M	5.19	19.64	1.74
CliqueNet ($k = 36, T = 12$)	✓	-	-	0.91G	0.98M	5.8	26.41	-
CliqueNet ($k = 36, T = 12$)	-	-	\checkmark	0.98G	1.04M	5.69	26.45	-
CliqueNet ($k = 36, T = 12$)	✓	-	\checkmark	0.98G	1.08M	5.61	25.55	1.69
CliqueNet ($k = 80, T = 15$)	✓	-	\checkmark	6.88G	8M	5.17	22.78	1.53
CliqueNet $(k = 150, T = 30)$	✓	✓	✓	8.49G	10.02M	5.06	21.83	1.64

(Error rates on CIFAR and SVHN without any data augmentation. A, B, and C represents attentional transition, bottleneck, and compression, respectively. k is the number of filters per layer, and T is the total number of layers in three blocks.)

Experiments on ImageNet

Model	Params	Top-1	Top-5
ResNet-18	11.7M	30.43	10.76
CliqueNet-S0	5.7M	27.52	8.98
ResNet-34	21.8M	26.73	8.74
CliqueNet-S1	7.96M	26.21	8.3
DenseNet-121	7.98M	25.02	7.71
CliqueNet-S2	11M	24.82	7.51
ResNet-50	25.6M	24.01	7.02
CliqueNet-S3	14.38M	24.01	7.15

Layer	S0	S1	S2	S3				
Convolution	50 51 52 55							
	conv (7×7) , 64, stride 2							
(112×112)								
Pooling	, n	ov pool (2	× 3), stride	2				
(56×56)	11	iax poor (5	× 5), strice	2				
Block 1	36×5	36×5	36×5	40×6				
(56×56)	30 × 3	30 × 3	30 × 3	40 × 0				
Transi	tion: conv (1×1), avg	pool (2×2))				
Block 2	64×6	80 × 6	80×5	80×6				
(28×28)	04 × 0	00 × 0	80 X 3	00 × 0				
Transi	tion: conv (1×1), avg	$pool(2 \times 2)$)				
Block 3	100 × 6	120 × 6	150 × 6	160 ~ 6				
(14×14)	100 × 6	120 × 6	150 × 6	160×6				
Transition: conv (1×1) , avg pool (2×2)								
Block 4	80 × 6	100 × 6	120×6	160 × 6				
(7×7)	00 X 0	100 × 0	120 × 0	100 × 0				

(The first number in each block is the number of filters per layer, and the second denotes the number of layers in this block)

Discussions

Parameter efficiency

- The strong weights in DenseNets are along the diagonal.
- The strong weights in CliqueNets are distributed more evenly.
- Multi-scale structure enables our parameter efficiency.

(Our visualization)

(Visualization in DenseNet paper)

Discussions

Parameter efficiency

- The strong weights in DenseNets are along the diagonal.
- The strong weights in CliqueNets are distributed more evenly.
- Multi-scale structure enables our parameter efficiency.

Feature refinement

- Spatial attention is achieved to focus the activations into the target region.
- Feedback connections and alternate updating enable feature refinement.

- The strong weights in Clare Thanks for your attention!

