TEMPORAL SPEECH ENHANCEMENT FOR LANGUAGE IDENTIFICATION IN NOISY ENVIRONMENTS

SSP

P10

Arshini Govindu 2020102009 Sankeerthana Venugopal 2020102008 Shruti Kolachana 2020102053

TABLE OF CONTENTS

ABOUT

INTRODUCTION

The basis for this approach is that human beings perceive speech by capturing features present from the high signal-to-noise ratio (SNR) regions and then extrapolating the features in the low SNR regions

Accordingly, the approach for speech enhancement is to identify the high SNR regions in the noisy speech and enhance them relative to the low SNR regions without causing significant distortion in the enhanced speech.

> GROSS LEVEL PROCESSING

FINE LEVEL PROCESSING

GROSS WEIGHT FUNCTION

FRAMING

SUM OF
PEAKS-DFT
SPECTRUM

10 largest peaks

HILBERT

ENVELOPE

FILTER PEAKS

Distance between subsequent peaks

FILTER PEAKS

NORMALIZE

Separately for each peak

NORMALIZE

NORMALIZED SUM NONLINEAR MAPPING

Sigmoid function

RESIDUAL

LP

GROSS LEVEL FEATURES

SIGNAL

SUM OF DFT PEAKS

HILBERT ENVELOPE OF LP RESIDUAL

IDENTIFYING HIGH SNR REGIONS

PEAKS

FIRST ORDER DIFFERENCE

FILTERED PEAKS

NORMALIZED SIGNAL

GROSS WEIGHT FUNCTION

SUM OF PEAKS OF DFT

HILBERT ENVELOPE OF LP RESIDUAL

NORMALIZED DFT

NORMALIZED HILBERT

NORMALIZED SUM

NONLINEARLY MAPPED VALUES

FINE WEIGHT FUNCTION

LP RESIDUAL HILBERT ENVELOPE CONVOLVE
WITH NEG
FOGD

First order Gaussian differentiator

ZERO CROSSINGS

FILTER ZERO CROSSINGS

Keep ZCs with negative to positive transition

FINE WEIGHT FUNCTION

HILBERT ENVELOPE OF LP RESIDUAL

SMOOTHED HILBERT

CONVOLVED WITH NEG FOGD

ZCS WITH NEG-POS TRANSITION

FINAL WEIGHT FUNCTION

RESULT

The final weight function is multiplied with the LP residual of the noisy signal.

The LP coefficients of the initial signal are used to perform LP synthesis, to get the final output.

CLEAN SIGNAL

NOISY SIGNAL

OUTPUT SIGNAL

LID RESULTS

Accuracy: 85%

Accuracy for Noisy Speech: 41.67%

Accuracy for Temporally Processed Speech: 29.16%

Increase in language score:

- Babble noise: in 66.7% cases
- Factory noise: in 66.7% cases
- Pink noise: in 33.3% cases
- White noise: in 50% cases

