RNA-Seq analysis mini-project

Rogelio Castro

Section 1:

```
library(DESeq2)
  metaFile <- "GSE37704_metadata.csv"</pre>
  countFile <- "GSE37704_featurecounts.csv"</pre>
  colData = read.csv(metaFile, row.names = 1)
  head(colData)
              condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
               hoxa1_kd
SRR493369
SRR493370
               hoxa1_kd
SRR493371
               hoxa1_kd
  countData = read.csv(countFile, row.names=1)
  head(countData)
                 length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                    918
                                           0
                                                      0
                                                                0
                                                                           0
                   718
                                0
                                           0
                                                     0
                                                                0
                                                                           0
ENSG00000279928
                               23
                   1982
                                          28
                                                     29
                                                               29
                                                                          28
ENSG00000279457
ENSG00000278566
                   939
                                0
                                           0
                                                     0
                                                                           0
ENSG00000273547
                   939
                                0
                                                     0
                                                                           0
ENSG00000187634
                   3214
                              124
                                         123
                                                   205
                                                              207
                                                                         212
```

	SRR493371
ENSG00000186092	0
ENSG00000279928	0
ENSG00000279457	46
ENSG00000278566	0
ENSG00000273547	0
ENSG00000187634	258

Q1. Complete the code below to remove the troublesome first column from count-Data

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns). Tip: What will rowSums() of countData return and how could you use it in this context?

```
zerocounts <- rowSums(countData) == 0
head(zerocounts)</pre>
```

```
ENSG00000186092 ENSG00000279928 ENSG00000279457 ENSG00000278566 ENSG00000273547
TRUE TRUE FALSE TRUE TRUE

FALSE
```

```
newcounts <- countData[!zerocounts, ]
head(newcounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46

ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

nrow(newcounts)

[1] 15975

3. Setup and run DESeq:

Already loaded DESeq2 at the beginning of the project

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

res <- results(dds)</pre>
```

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
res
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 15975 rows and 6 columns

```
baseMean log2FoldChange
                                             lfcSE
                                                                   pvalue
                                                         stat
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                  29.9136
                               0.1792571 0.3248216
ENSG00000279457
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928
                                                     0.149237 8.81366e-01
ENSG00000273748 35.30265
                                0.674387 0.303666
                                                     2.220817 2.63633e-02
                               -0.388988 1.130394 -0.344117 7.30758e-01
ENSG00000278817
                  2.42302
ENSG00000278384
                  1.10180
                                0.332991 1.660261
                                                     0.200565 8.41039e-01
ENSG00000276345 73.64496
                               -0.356181 0.207716 -1.714752 8.63908e-02
ENSG00000271254 181.59590
                               -0.609667 0.141320 -4.314071 1.60276e-05
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
. . .
ENSG00000273748 4.79091e-02
ENSG00000278817 8.09772e-01
ENSG00000278384 8.92654e-01
ENSG00000276345 1.39762e-01
ENSG00000271254 4.53648e-05
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

out of 15975 with nonzero total read count adjusted p-value < 0.1

```
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

plot( res$log2FoldChange, -log(res$padj) )</pre>
```


4. Annotate results:

I need to add annotation to my results including gene symvols and ENTREZ IDs etc. For this I will use the **AnnotationDbi** package.

```
library(AnnotationDbi)
library("org.Hs.eg.db")
```

columns(org.Hs.eg.db)

ENSG00000187961 209.6379

47.2551

ENSG00000187583

```
[1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                   "ENSEMBLPROT"
                                                                  "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
                    "GO"
[11] "GENETYPE"
                                    "GOAT.T."
                                                   "TPT"
                                                                  "MAP"
[16] "OMIM"
                                    "ONTOLOGYALL"
                    "ONTOLOGY"
                                                   "PATH"
                                                                  "PFAM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                       keys=rownames(res),
                       keytype="ENSEMBL",
                       column="SYMBOL",
                       multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                       keys=rownames(res),
                       keytype="ENSEMBL",
                       column="ENTREZID",
                       multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 8 columns
                 baseMean log2FoldChange
                                              lfcSE
                                                          stat
                                                                    pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                 <numeric>
ENSG00000279457
                  29.9136
                               0.1792571 0.3248216
                                                      0.551863 5.81042e-01
                               0.4264571 0.1402658
                                                      3.040350 2.36304e-03
ENSG00000187634 183.2296
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
```

0.7297556 0.1318599 5.534326 3.12428e-08

0.0405765 0.2718928 0.149237 8.81366e-01

```
ENSG00000187642
                  11.9798
                                0.5428105 0.5215599
                                                       1.040744 2.97994e-01
                        padj
                                  symbol
                                               entrez
                   <numeric> <character> <character>
ENSG00000279457 6.86555e-01
                                      NA
ENSG00000187634 5.15718e-03
                                  SAMD11
                                               148398
ENSG00000188976 1.76549e-35
                                   NOC2L
                                                26155
ENSG00000187961 1.13413e-07
                                  KLHL17
                                               339451
ENSG00000187583 9.19031e-01
                                 PLEKHN1
                                                84069
ENSG00000187642 4.03379e-01
                                   PERM1
                                                84808
```

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res, file = "deseq_results.csv")
plot(res$log2FoldChange, -log(res$padj))
```


#Pathway Analysis:

```
library(pathview)
  library(gage)
  library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  foldchanges = res$log2FoldChange
  names(foldchanges) = res$entrez
  head(foldchanges)
     1266
              54855
                         1465
                                  51232
                                             2034
                                                       2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
Run gage:
  # Get the results:
  keggres = gage(foldchanges,gsets = kegg.sets.hs)
  head(keggres$less)
                                         p.geomean stat.mean
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03013 RNA transport
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                    exp1
hsa04110 Cell cycle
                                      0.001448312
                                                       121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                       36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                      144 1.375901e-03
hsa03440 Homologous recombination
                                                       28 3.066756e-03
                                      0.121861535
```

0.121861535

hsa04114 Oocyte meiosis

hsa00010 Glycolysis / Gluconeogenesis 0.212222694

102 3.784520e-03

53 8.961413e-03

Look at the first few down (less) pathway

```
pathview(gene.data = foldchanges, pathway.id = "hsa04110")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/rogeliocastro/Documents/Classes UCSD/BIMM 143/RNA-Seq_Mini-

Info: Writing image file hsa04110.pathview.png

