## MIT 6.S191: Mohit\_Talwar\_RNNMusic

This document summarizes results from Lab 1, Part 2 (Music Generation with RNNs).

#### Design

We choose the Sequential model suggested in the lab, with the following 3 layers:

- Layer 0: tf.keras.layers.Embedding(vocab\_size, embedding\_dim),
- Layer 1: LSTM(rnn\_units),
- Layer 2: tf.keras.layers.Dense(vocab\_size)

#### Hyperparameters

Here are **hyperparameters** for the model with the lowest loss (see Appendix)::

• num\_training\_iterations: 5000

batch\_size: 32
rnn\_units: 2048
embedding\_dim: 128
learning\_rate: 0.001
seq\_length: 100

The **intuition** behind this choice of these values follows:

- num\_training\_iterations & batch\_size were increased to consider more data in training
- rnn\_units was increased to allow the hidden state to store more context
- embedding\_dim was decreased to nudge semantically similar tokens to have closer embeddings

### **Experiments and Observations**

The various experiments performed were:

- training\_iterations: increased to train longer
  - Larger values reduced training loss
- batch\_size: increased to provide more training data
  - Larger values reduced training loss
- rnn\_units: increased to store more context
  - Larger values reduced training loss
- embedding\_dim: reduced to constraint number of dimensions
  - o Smaller values reduced training loss, up to a certain degree
- start\_string: increased to nudge generation of valid songs
  - Larger strings helped only for models trained for fewer iterations

#### **Future Work**

Here are some obvious areas of future study:

- **Evaluation**: Models were compared using loss and samples of generated music. Need more rigor.
- **Tokenization**: The tokenization algorithm is quite naive. Compare alternatives.
- **Dataset**: The dataset (817 songs) is rather small. Enrich using additional sources of target music.
- Architecture: Explore addition of hidden layers.

# **Appendix**

