10/5/09 Handouts?

880.05 Lecture 4

SHI, Note That part is due next Monday MATTIAB exercises) and part a week from Friday. -Office home Friday 3-5 pm - but also step of ant wording. · Try the problems carry to identify Issues. · Some on bonus — adjust to your maklood.

· Return to the preview" on page (12) of calculating the partition function to EPA. Let's make another pass of explaining. A' is the Homittonian dus any source term such as - MN or more Repretival ones like the , term abled For ou nobel portition friction. · We can't evaluate EPH' without solving the problem beginding oralizing Hy but we can use the exact relation ex= (exm) for mininger to rewrite Treph = Tr(e EA - EA) with MEB.

The idea with be to evalvate each EEH by inserting complete sets of states on the left and the right > we need to get the parts of H that we can solve on one side or the other.

For example: If H=TtV and T is diagonal in momentum states while V is diagonal in position states, then the claim is

 $= e^{\epsilon \hat{\tau}} e^{\epsilon \hat{V}}$ "The total error mede is lat worst) $e^{-it}M = \beta e^{-it}O$ (as long as the rist is trank." More generally we normal order $e^{-it}A$, denoted $e^{-it}A$: so that operators of one type as are all to the left of the other type, More to come;

10/3/09 Reup of make our	Estion Enel	Mw noi	Some	X.,	
15/12 = N 500	{ e 3 - 4 }	+ 1 } _	Ne The	-00 g	\$ 1 3}
and Z+0= Zo is					
Zo[5] = NS	र्रेट्टिंडि				

Sour moster formula is $\frac{2}{5} = \left[\frac{1}{5} + \left(\frac{1}{5} \right)^{\frac{1}{4}} + \left(\frac{1}{5} + \frac{1}{5} \right) \right] = 0$ at $\frac{1}{5} = 0$

... @ Am suntres woll

10/5/69
Let's compout the first two orders in $\frac{1}{1}$ for $\frac{1}{1}$ $\frac{1}$

This is be noninteracting propagators Our "Feynman rule" is to let the of's represent endpoints on a line,

Now you write out the next order $(10+1^{4})$: $\frac{1}{a} + \frac{3}{5}\frac{1}{5}(-\frac{1}{4}(\frac{1}{6})^{4})\frac{1}{3}(\frac{1}{2})\frac{1}{3}(\frac{1}{2})\frac{1}{3}(\frac{1}{3$

To be clear. The first of in 20 (1) (1) has 6 chances, the rest 5 chances, the rest 4, until the last, which has only 21 => 6.5.4.3.2.1=6! terms.

|0|5|09 |-1| = |-1|

The "disconnected" ports on cancel. This is a general result. [Again, not yet convincing because we don't know his factors.]

Q+ 0(P)

· Make sure you understand what each diagram corresponds to. For example, what is the difference between

· What do the Feynmen rules give?

· White suppose to get to— and but we get to— and.

This hoppens because of an overcounting.

· We fix it with another Feynman rule: The symmetry factor."

First we'll take a brief aside to show how disconnected diagrams do not contribute,

Replica method: The idea is to consider in identical copies of the partition function multipled to getter: $Z^n = (Z)^n$.

Now rewrite Z^n so it takes the form of a series expansion in ni

芝n=eln2= chn2= + tn(ln2)+ tn2(n2)+...

So to find In Z, we calculate Z' and Ten identify the linear form in n!

But Z' is just a product of o Z's, with viriables [4, 9,...,].

 $= (33^{2} - 95^{2} - \frac{1}{4}5^{2} + 1)^{2})(33^{2} - \frac{1}{4}5^{2} + 1)^{2}) \cdot (33^{2} - \frac{1}{4}5^{2} + 1)^{2})$

Even Trough the copies are identical, we add indices to a aid .

· Now use 35: as before to remove interaction terms from all of the interpols.

· A vertex has the same index i for all lines coming out of it is index at each end.

· we also sum over i from I to n.

It follows that a connected diagram can only have vertices of one in a time. Eg. Oso can't happen, because the 1 vertex comes from -4/87, ond each stop is only nancoon if acting on 1/2 at 1. So the lines from "1" to "2" must be "1" lines. But the same argument applied to the other vertex says bey must be "2" lines, so the diagram cannot occur.

10/5/09	ب
So it we consider first order in X:	
100 + 00 + 00 > ⇒ orcall footor & n	
So if we consider first order in): SO if we consider first order in): SOO + OO + - OO > > orcall footer of n Call diagrams have the same when I	
1000+000+	
toda of o	
+{[00×00]+[00×00]+ 100,00]} +	
toda q n	
So it we have 2 disconnected pieces, the total is αn^2 , three disconnected pieces the total is αn^3 , and so on.	
Dit terms linear in n orc precisely those that are connected But that is also in 2 Dut that is also in 2 In 2- In to is exactly given by the sum of connected diagrams, with all of the cornect factors!	
a myrains, with oil of the connect tactors.	
- The replice organist can be used to show that ? I is</td <td></td>	
any from corrected diagrams with two harging lives. Ise 15	#1
The replica organist can be used to show that ? I is only from connected diagrams with two harging lines. See B. That is, dragrams of the form - Or only contrainte.</td <td></td>	

It follows similarly but the expectation value CO? For only operator O is given by the sum of connected diagrams.

10/5/09	
 Now let's do symmetry factors	v
 The "In", from the Taylor series expansion of the exponentials almost always concels the n' mays of interchanging the vertices. Further, the factor of 4; from (8) "I" is taken into account in the Feynman rule - 7.4!	
 In the Feynman rule - ft. 9! The symmetry factor is the correction when these cancellations are incomplete.	
 There are three types of symmetry factors in our diagrams'	3
Description of by from each line that starts and ends on the same vertex: like a thing some which the ends of all fourt thing will be case for fermions later on the will write these factors as fractions, but often they are collected first as a factor S at then the diagram is multiplied by 1/5. The factor follows by comparing X to X: (\$\frac{2}{4}(-\frac{1}{4})(\frac{1}{6})^4 \frac{1}{6}(\frac{1}{3})^4 \frac{1}{6}(\frac{1}{3})^3 = -\frac{3}{3} (\$\frac{1}{6}(-\frac{1}{4})(\frac{1}{6})^4 \frac{1}{3}(\frac{1}{3})^3 = -\frac{3}{3} (\$\frac{1}{6}(-\frac{1}{4})(\frac{1}{6}(-\frac{1}{4})(\frac{1}{6}(-\frac{1}{4})(\frac{1}{6}(-\frac{1}{3})(\frac{1}{3}(\frac{1}{3})(\frac{1}{3}(\frac{1}{3}))^3 = -\frac{3}{3} (\$\frac{1}{6}(-\frac{1}{4})(\frac{1}{6}(-\frac{1}{4})(\frac{1}{6}(-\frac{1}{4})(\frac{1}{3}(\frac{1}{3})(\frac{1}{3}(\frac{1}{3}))^3 = -\frac{3}{3} (\$\frac{1}{6}(-\frac{1}{4})(\frac{1}{6}(-\frac{1}{4})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3}(-\frac{1}{3})(\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3})(\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3})(\frac{1}{3}(-\frac{1}{3})(\frac{1}{3})(\frac{1}{3})(\f	
 Defactor of the for each set of n "equivalent lines", which are lines that run between the different vertices: 31 04 Dt (if > 11)	rems i differin
 DE Factor of 1/2 for permutations P of the vortices Post leave the diagram unchanged tinduling any arrows) external points stay fixed when considering permutation	TS _

. These factors are derived simply by expanding to low order and observing he patterns.

ار ا

	(M301)
	If he lines have acrows that indicate are end is different
	from the other (like fermions) then the ones are modified;
	Donly equivalent lines of in the same direction of you on a the permutations cannot change the flow of the lines. E. a.
	of the times. E. S.
	To the reversed
	but me count OO as a under @ still.
	‡
`.	If the potential is not contracted to a point.
	of we have Q of how only 3.
·	· ta report multime he moved to brown
	diagrams), the remaining symmetry tactor
	diagrams), be remaining symmetry factor is not nost 12 and for many cases here are no symmetry factors,

the second of th

(24) = (3/8/8/9) (1-4/9) + [1+ (2) + 3/2) +

 $= (\frac{1}{5}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{4}, \frac{1}{6}) = \frac{105}{4}$ $1 - \frac{1}{4}, \frac{1}{5}, \frac{1}{4}, \frac{1}{6}$

 $= \left(\frac{3}{62} - \frac{1052}{407}\right) \left(2 + \frac{3}{4} \frac{2}{62}\right) = \frac{3}{62} - \frac{342}{64} + (12)$

What is this in the diagrammatic expansion?

You should imagine that it is represented by 4 fixed points; to which we can join "propagators" => à and vertices => \(\frac{1}{2} \].

>> <(4) = (11+1-+) + (x+10+1-++) (00+)

(1+ 00+1)

type peces come from (32) so subtract those off and look at (547-(52X2). This removes all of these pieces, leaving the totally connected diagrams like X