Übung

11. April 2016

Luke

Teil I

Rechnernetze

1 Einführung

timo.schick@tu-dresden.de

1.1

- a) Sterntopologie: Ein zentrales Element(Sternkoppler), jeder Rechner benötigt eine Leitung zu Sternkoppler $\to 5$
- b) Jeder mit Jedem = 4 + 3 + 2 + 1 = 10
- c) (1) l(n) = n bei Sterntopologie
 - (2) $l(n) = \sum ... = (n*(n-1))/2$ bei vollvermaschter Topologie
- d) (1) LAN

• Reichweite: 10m

• Reaktionszeit: niedrig

• Datenrate: hoch

• Topologien: Sterntopologie

(2) MAN

• Reichweite: 10km

• Reaktionszeit: mittel

• Datenrate: mittel

- Topologien: hierarchische Topologie
- (3) WAN
 - Reichweite: 100km 10.000km
 - Reaktionszeit: hochDatenrate: niedrig
 - Topologien: Vollvermaschte Topologie

1.2

- a) Dienst und Protokoll
 - siehe Musterlösung
- b) OSI Schichtenmodell
 - Schichtenmodell siehe Folie 1.8ff
 - Protokoll:
 - ist eine Sprache zur horizontalen Kommunikation zwischen Prozessen derselben Schicht auf verschiedenen Hosts
 - Dienst
 - dient der vertikalen Kommunikation zwischen zwei Schichten auf einem Host
 - Aufteilung des Bitstroms: Schicht 2 Sicherungsschicht
 - Ende-zu-Ende Kommunkation: Schicht 4 Transportschicht
 - Wegewahl: Schicht 3 Vermittlungsschicht
- c) keine inhaltliche Bearbeitung, sondern nur Informationsweiterleitung

1.3

- a) siehe Folie 1.15;
 - Initiator (Prozess A), ...
 - Responder (Prozess B), ...
- b) (1) Zustände bestimmen
 - idle
 - connected
 - prepare(Initiator)
 - prepare(Responder)
 - (2) Übergänge bestimmen (Knoten, Pfad, Knoten)

- (idle, conReq, prep(Init))
- (idle, ConInd, prep(Resp))
- (prep(Resp), conRsp, connected)
- (prep(Init), conCnf, connected)
- (connected, dataRep/dataInd, connected)
- (prep(Resp)/prep(Init)/connected, disRep/disInd, idle)
- c) (1) Ablaufdiagramm
 - c1) + zeitlicher Ablauf
 - c2) es werden n Diagramme benötigt
 - c3) -
 - (2) Zustandsdiagramm
 - c1) -
 - c2) + alle Abläufe in einem Diagramm darstellbar
 - c3) +

1.4

- a) siehe Folie 1.10
 - (1) PDU(N) = SDU(N-1)
 - (2) IDU(N) = ICI(N) + SDU(N)
- b) Seitenaufruf: http://www.heise.de/software
 - (1) httpRequest
 - i. GET/software/http/1.1
 - ii. Host: www.heise.de
 - (2) ICI
 - i. ip: 193.99.144.85 port:80
 - (3) SDU
 - i. GET/software/http/1.1
 - ii. Host: www.heise.de
 - (4) IDU
 - i. ICI
 - ii. SDU
 - (5) TCP-PDU
 - i. src:80, dest:80,...

ii. SDU

iii. Data

c)

$$b_0 = 125 \frac{\text{Mbit}}{\text{s}}$$

$$b_1 = b_0 \cdot 0, 8$$

$$b_2 = b_1 \frac{(55 + 99)0, 01}{2}$$

$$b_3 = b_2 \frac{(57 + 99)0, 01}{2}$$

$$b_4 = b_3 \frac{(23 + 99)0, 01}{2} = 36, 4 \frac{\text{Mbit}}{\text{s}}$$

$$b_4 = b_{goodput}$$

$$b_{extra} = b_2 \frac{(23 + 99)0, 01}{2} = 46, 7 \frac{\text{Mbit}}{\text{s}}$$

- THE END :) -