Author: VIVEK KUMAR NIGAM

DATA SCIENCE & BUSINESS ANALYTICS @ TSF

GRIP_NOV'21 TASK_01

SUPERVISED MACHINE LEARNING USING LINEAR REGRESSION

```
In [149]:
          import pandas as pd
          import os
          import sklearn as skl
          import matplotlib.pyplot as plt
In [150]: os.getcwd()
Out[150]: 'C:\\Users\\VIVEK\\Desktop\\TSF-INTERN'
In [151]: os.chdir("C:\\Users\\VIVEK\\Desktop\\TSF-INTERN")
In [152]: | os.getcwd()
Out[152]: 'C:\\Users\\VIVEK\\Desktop\\TSF-INTERN'
In [153]: | sd = pd.read csv("student scores - student scores.csv")
In [154]: sd.shape
Out[154]: (25, 2)
In [155]: sd.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 25 entries, 0 to 24
          Data columns (total 2 columns):
               Column Non-Null Count Dtype
          ---
                       25 non-null
           0
               Hours
                                       float64
               Scores 25 non-null
                                       int64
           1
          dtypes: float64(1), int64(1)
          memory usage: 528.0 bytes
```

```
In [156]: sd.describe()
```

Out[156]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

```
In [157]: # Plotting
    sd.plot(x='Hours', y='Scores', style='o')
    plt.title('Hours vs Percentage')
    plt.xlabel('Hours Studied')
    plt.ylabel('Percentage Score')
    plt.show()
```


Plot shows linear relation

X_train, X_test, y_train, y_test = train_test_split(X, y,

```
In [158]: X = sd.iloc[:, :-1].values
y = sd.iloc[:, 1].values

In [159]: from sklearn.model_selection import train_test_split
```

test_size=0.2, random_state=0)

```
regressor = LinearRegression()
           regressor.fit(X_train, y_train)
Out[160]: LinearRegression()
In [161]: | 1 = regressor.coef_*X+regressor.intercept_
           plt.scatter(X, y)
           plt.plot(X, 1);
           plt.show()
            80
            60
            40
            20
In [175]: print(X_test)
           y_pred = regressor.predict(X_test)
           [[1.5]]
            [3.2]
            [7.4]
            [2.5]
            [5.9]]
In [163]: | df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
           df
Out[163]:
              Actual Predicted
            0
                 20 16.884145
            1
                 27 33.732261
            2
                 69 75.357018
                 30 26.794801
            3
                 62 60.491033
In [169]: hrs = [[9.25]]
           own_pred = regressor.predict(hrs)
           print("No of Hours =", hrs)
           print("Predicted Score =",own_pred[0])
           No of Hours = [[9.25]]
           Predicted Score = 93.69173248737538
```

In [160]: | from sklearn.linear_model import LinearRegression

In [165]: from sklearn import metrics
print('Mean Absolute Error:',metrics.mean_absolute_error(y_test, y_pred))

Mean Absolute Error: 4.183859899002975