Example predicates.

$$P(n): 1+2+3+...+n = \frac{m_{\bullet}(n+1)}{2}$$

Domain of predicate = Set of natural numbers. $\{1,2,3,4--\}$

n=4

$$P(N=4)$$
: 1+2+3+4 = 4. (4+1)

LHS: P(n=4) = 10

$$P(M=6)$$
: 1+2+3+4+5+6 = 6.(6H)

Yn. ρ(n) = the predicate P(n) holds for all values in its domain.

for any natural number, No the sum of
first N natural numbers is N. (N+1)
2
Generalisation of universal quantificr.
If, somehow, we are able to show that for
Some arbitrary natural number no, P(n=no) is
true. 1.e. $1+2+3++n_0 = \frac{n_0(n_0+1)}{2}$
then we can invoke Generalisation of universal quantifier.
& Say that Vn. P(n) = True & then
1+2+3++n=n(n+) can be used as
2 formula,
Sharpening exercises:
Compound proposition:
1] AND ing: [Conjunction]
Stmt 1: New Delhi is capital of India.
Stmt 1: New Delhi is capital of India. Stmt 2: India won its first cricket world cup in 1983.
Start 2: India won its first cricket world cup in 1983.
Start 2: India won its first cricket world cup in 1983.

Proposition-1	Proposition-2	Propol AND Propos.
F	F	F
F	T	F
T	F	F
T	T	T
P19,7,5, t :	Proposition	
Let p be	any proposition.	
Let 9 be	any other propositi	M.
p and q	1 p 1 q	
P 9	P 1 9	
FF	-	
FT	F	
7	- 7	
7	Τ.	
27 OR ina :	[Disjunction)	N = AHDING
	any two propositi	ions. $N = ORinq$
	-> Proposition	<i>J</i> ,
ρ	9 Py9	
<u> </u> - -	F T	
T	F T 7	

J] NOT (Negation)
Let p be any proposition.
It is not the case that po
\
Mumbai is a capital of MH.
It is not the case that Mumbai is a capital of MH Mumbai is not a capital of MM.
p not p(-p)
- T
4] Implication: Deductive Reasonly, Logic = तर्काशास्त्रः शास्त्र, Science,
> Principle of Causality
> कार्य - कार्ग भाव
र्नाण > काय - कार्ग भावः
कारण —)कांय
Reasony
cause - >effect
P = True / Falk -)
$\left\{\begin{array}{c c} P_1, P_2, P_3 \cdot P_n \end{array}\right\} \xrightarrow{\tilde{t}} \emptyset$
Truth values Reasoning = Valid

•

1) 9fp then 9	8) d it b.
2) 9f P, 9	9) 9 is necessary
3) Pimplies 9	for P.
4) When P Hen 9.	10) Sufficient condition for q is p.
S) P is a sufficient Condition for 9	11) 9 whenever P. 12) 9 unless 7p.
G) Necessary condition for P is q.	•
7) Ponly if 9	
P: ABCD is a square	
1)9f ABCD is a square tren	ABCD is a quadrilateral
e) 9f ABCD is a square, AD	(D is a quadrilateral.
3) ABCD is a square im	plies
ABCD is a quadrilat	eval.
4) When ABCD is a squ	
ABCD is a quadrita	tera.
S) ABCD is a square is	
for ABCO to be a	
6) Hecessary condition for	r ADCD to be
Square is ABCD be	a quadrilateral.

7) ADOD is square only if ADOD is a
quad.
C) ABCD is quad if ABCD is square
9) ABCD is quadr is a necessary
cond. for ABCD to be a square
10) Suff. cond for ABCD to be a quad.
is ABCD is a Square
11) ABCD is a grad. Whenever ABCD is Squar
12) ABCD is a guad. unless ABCD is not
a Squane.