

»Лекционен курс »Интелигентни системи

Агенти със знания

Увод

» Агентите със знания могат да:

- > Правят комплексни представяния (знания) на света
- > Извличат нови представяния (знания) посредством процес на извод
- > Основавайки се на тези нови представяния (знания) да правят заключения за това, какво трябва да се прави

База знания

- » Основен компонент на тези агенти е База знания (БЗ)
 - > Състои се от множество от съждения
 - > Всяко съждение е представено в някакъв език за представяне на знания
 - > Използват се също "аксиоми"
 - + Съжденията, приети като дадени, без да са изведени от други съждения

База знания

- » Трябва да има възможност за:
 - > Добавяне на нови съждения (Tell)
 - > Правене на запитвания (заявки) (Ask)
- » Двете действия могат да съставляват правене на изводи (inference)
 - > Т.е. извод на нови съждения от стари съждения
- » Един извод трябва да удовлетворява следното изискване:
 - > Когато се пита една БЗ (Ask), отговорът трябва да следва от това, което е въведено преди това (Tell)

Генетичен агент със знания

```
function KB-Agent (percept) returns едно действие persistent: КВ, база знания t, брояч, който дава времето, първоначално 0

Tell(КВ, Make-Percept-Sentence(percept, t)); action ← Ask(КВ, Make-Action-Query(t)); Tell(КВ, Make-Action-Sentence(action, t)); t ← t + 1; return action
```

Коментар

- » Както всички агенти:
 - > Като вход получава възприятията на агента
 - > Като изход връща едно действие
- » Поддържа Б3, която може да съдържа някакви предварителни фонови знания
- » Програмата прави следните неща:
 - > Записва (Tell) в БЗ какво възприема
 - > Пита (Ask) БЗ кое действие да извърши
 - + При това може да се наложи правене на изводи върху актуалното състояние на света
 - > Споделя (Tell) на БЗ избраното действие и оценява това действие

Опериране на генетичен АЗ

```
function KB-Agent (percept) returns едно действие persistent: КВ, база знания t, брояч, който дава времето, първоначално 0

Tell(КВ, Make-Percept-Sentence(percept, t)); action ← Ask(КВ, Make-Action-Query(t)); Tell(КВ, Make-Action-Sentence(action, t)); t ← t + 1; return action
```

Език за представяне

- » Детайлите на езика за представяне са скрити в три функции, които реализират:
 - > Интерфейсът между сензорите и ефекторите от една страна и
 - > Базовото представяне и системата за заключения от друга

Функции

» Make-Percept-Sentence

> Конструира съждение, приемайки че агентът е приел даденото възприятие в определеното време

» Make-Action-Query

> Конструира съждение, което пита кое действие трябва да изпълни в актуалното време

» Make-Action-Sentence

> Конструира съждение, което осигурява избраното действие да бъде изпълнено

» Детайлите на машината за извод са скрити в Tell и Ask

Обобщение

- » Един А3 е аналогичен на агент с вътрешни състояния
 - > Основавайки се на Tell и Ask не е произволна програма за изчисляване на действия
- » Той е сравним с едно описание на ниво знания, където, за да определим неговото поведение трябва да специфицираме:
 - > Какво знае агентът и
 - > Какви цели има

- » Автоматизирано такси
 - > Има за цел един студент да бъде закаран от нова сграда до ректората на ПУ
 - > 3нае, че се намира в Пловдив и мостовете на Марица са единствената връзка между двете локации
- » Извод: Можем да очакваме, че таксито ще премине през някои от тези мостове, понеже трябва да постигне целта си

- » Забележете, че този анализ е независим от това как оперира таксито на имплементационно ниво
- » Няма значение:
 - > Как са представени географските данни като списък от символи или пиксели
 - > Прави изводите като манипулира символи или по друг начин
 - > Предава шумовите сигнали в невронна мрежа ...

Декларативен и процедурен подход

- Изводът беше направен като използвахме един декларативен подход
 - > Противно на процедурния подход, който кодира желаното поведение директно като програмен код
- » През 70-те и 80-те години на миналия век горещи спорове между поддръжниците на двата подхода
 - > Днес, разбираме, че един успешен агент трябва да може да комбинира двата подхода
 - > Също, декларативните знания в много случаи могат да бъдат компилирани в ефективен процедурен код
- » Един АЗ може да бъде снабден също с механизъм за учене
 - > Такъв АЗ може да бъде напълно автономен

Ще разгледаме една среда, позната като Wumpus (W.), в която АЗ може да демонстрира възможностите си

PEAS (Performance, Environment, Actuators, Sensors):

Performance:

- +1000 излиза от пещерата със златото
- -1000 пада в дупка или изяден от чудовището
- -1 всяко предприето действие
- -10 за използване на единствената стрела

Environment: 4 X 4 матрица

- Започва пътя винаги в полето [1,1], като гледа надясно
- W. и златото местоположението, определено на основата на случайно равномерно разпределение, но не в началното поле
- Всяко поле (без началното) съдържа дупка с вероятност 0.2

Effectors:

- Може да се движи (Forward, Turnleft, Turnright)
- Движение напред няма ефект, когато стои пред стена
- При среща с W. или падане в дупка ужасна смърт
- Действие Grab взема предмет, който се намира в същото поле
- Действие Shoot изстрелва стрелата в посоката, в която е агентът. Стрелата лети, докато срещне W. или стена. Има само една стрела, т.е. само първият Shoot има ефект
- Действие Climb излиза от пещерата, само от полето [1,1]

Sensors: снабден с 5 сензора, които доставят различна информация

- Stench във всяко поле, където се намира W., и съседните (не по диагонал) се носи зловоние
- Breeze течение в полетата, съседни на дупка (не по диагонал)
- Glitter полето със златото
- Витр агентът се удря в стена
- Scream рев, когато W. е улучен, чува се във всички полета

Възприятия: списък с 5 символа, напр. [Stench, Breeze, None, None, None]

- Дискретна, статична среда (W. неподвижен)
- Частично наблюдаема: някои аспекти на състоянието не могат да бъдат наблюдавани:
 - Позиция агент
 - Здравно състояние на W.
 - Наличие на стрела
- Позициите на ями и W. приемаме ги като ненаблюдаеми елементи на състоянието
- Моделът на преход за средата е напълно познат
- АЗ работи последователно, т.е. наградата след като се извършат поредица от действия
- Моделът на преход за агента е непознат: не знае кое действие е фатално
 - Знанията на агента за модела на преход се попълват чрез разкриване на полетата с ями и W.

- АЗ работи последователно, т.е. наградата след като се извършат поредица от действия
- Моделът на преход за агента е непознат: не знае кое действие е фатално
 - Знанията на агента за модела на преход се попълват чрез разкриване на полетата с ями и W.

- Най-голямата трудност за АЗ е неговото начално незнание за конфигурацията на средата
- За преодоляване на това незнание ще бъдат необходими логически заключения
- За повечето инстанции на W. света, АЗ може да намери златото без наранявания
- В други случаи агентът трябва да решава, дали да остане с празни ръце или да намери златото с риск от смърт
- Около 21% средите са напълно
 некоректни златото се намира над
 яма или е заградено от ями
- Ще разгледаме как един АЗ разучава средата използваме език за представяне на знания като растер, върху който се задават символи

Възприятия: начално състояние [None, None, None, None, None]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
1,1 A	2,1	3,1	4,1
ОК	ОК		

A	Агент
В	Полъх (Breeze)
G	Блести, злато (Glitter, Gold)
ОК	Сигурно поле
Р	Яма (Pit)
S	Зловоние (Stench)
V	Посетен (Visited)
W	Wumpus

БЗ на агента съдържа първоначално правилата на средата, както бяха представени

Освен това знае, че се намира в поле [1,1] и полето е сигурно

На основата на възприятието агентът заключава, че съседните полета [1,2] и [2,1] могат да бъдат безопасно посетени

пример

Възприятия: след първия ход [None, Breeze, None, None, None]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2 P?	3,2	4,2
OK	24	2.1	4.1
1,1 V	2,1 B	3,1 P?	4,1
OK	OK	X[1][1][1]	

A	Агент
В	Полъх (Breeze)
G	Блести, злато (Glitter, Gold)
ОК	Сигурно поле
P	Яма (Pit)
S	Зловоние (Stench)
V	Посетен (Visited)
W	Wumpus

Един внимателен агент посещава едно поле само ако знае, че е ОК

Приемаме, че агентът решава да посети полето [2,1]

В това поле възприема "полъх" – означава, че в някои от съседните полета има яма

В [1,1] няма, тогава трябва да бъде в [2,2] или [3,1]

Възприятия: след първия ход [None, Breeze, None, None, None]

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 A	2,2 P?	3,2	4,2
1,1 V	2,1 A	3,1 P?	4,1
ОК	ОК		M

В този момент агентът знае, че само едно поле е сигурно – агентът се обръща и се връща в [1,1] и продължава в [1,2]

Възприятия: след третия ход [Stench, None, None, None, None]

1,4	2,4	3,4	4,4
1,3 W!	2,3	3,3	4,3
1,2 A	2,2 P!	3,2	4,2
OK	OK		
1,1 V	2,1 B V	3,1 P!	4,1
ОК	ОК		

Това е сравнително трудно заключение, понеже комбинира знания, които са получени в различни времена, на различни места

A Агент
В Полъх (Breeze)
G Блести, злато (Glitter, Gold)
ОК Сигурно поле
Р Яма (Pit)
S Зловоние (Stench)
V Посетен (Visited)
W Wumpus

В [1,2] агентът възприема зловоние

Това означава, че някъде наоколо се намира W. – не е в [1,1] и [2,2] (иначе, в [2,1] "S") Така агентът заключава, че W. се намира в [3,1]

Понеже преди това е заключено, че в [2,2] или [3,1] трябва да има яма, тук можем да актуализираме знанието на агента, че тя е в [3,1]

Възприятия: след петия ход [Stench, Breeze, Glitter, None, None]

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 A B G	3,3 P?	4,3
1,2 S V	2,2 A	3,2	4,2
OK 1,1 V	2,1 B	3,1 P!	4,1
OK	OK	, Pi	

Агентът се е убедил, че в [2,2] няма нито яма, нито W., т.е. то е ОК и може да го посети

От тук лесно намира златото

Възприятия: след петия ход [Stench, Breeze, Glitter, None, None]

1,4	2,4 P?	3,4	4,4
1,3 W!	2,3 A S B G	3,3 P?	4,3
1,2 S V	2,2 A	3,2	4,2
OK	OK		<u> </u>
1,1 V	2,1 B V	3,1 P!	4,1
OK	OK		X

Обобщение: когато агентът прави заключения от наличната информация, тези заключения са гарантирано коректни, когато наличната информация е коректна — това е основополагащо свойство на логическите заключения

