Correction Contrôle continu numéro 2.

Exercice 1.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles indépendantes et identiquement distribuées, définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, telles que $\mathbb{E}[X_1] = m$ et $\mathbb{E}[X_1^2] = \theta^2$.

1. Que peut on dire de la convergence presque sure de la suite de variables aléatoires $\left(\frac{X_1^2+...+X_n^2}{n}\right)_{n\geq 1}$?

 $\frac{X_1^2+\ldots+X_n^2}{n}$ converge presque surement ver θ^2 d'après la loi forte des grands nombres. Les hypothèses sont clairement vérifiées car les variables $\left(X_n^2\right)_{n\geq 1}$ sont indépendantes, identiquement distribuées avec un moment d'ordre 1.

2. Que peut on dire de la convergence presque sure de la suite de variables aléatoires

$$\left(\frac{X_1X_2 + X_2X_3 + \ldots + X_{n-1}X_n}{n}\right)_{n>2}?$$

Montrons que $\frac{X_1X_2+X_2X_3+...+X_{n-1}X_n}{n}$ converge presque surement vers m^2 . On ne peut pas appliquer directement la loi des grands nombres car on ne somme pas des variables indépendantes. Sans perte de généralité, on suppose n pair dans la suite. Les variables $X_1X_2, X_3X_4, \ldots, X_{n-1}X_n$ sont des variables aléatoires indépendantes identiquement distribuées de carré intégrable. Alors, d'après la loi des grands nombres,

$$\frac{X_1X_2 + X_3X_4 + \ldots + X_{n-1}X_n}{n/2} \xrightarrow[n \to +\infty]{p.s} \mathbb{E}\left[X_1X_2\right] = \mathbb{E}\left[X_1\right] \mathbb{E}\left[X_2\right] = m^2.$$

De même,

$$\frac{X_2X_3+X_4X_5+\ldots+X_{n-2}X_{n-1}}{n/2-1}\xrightarrow[n\to+\infty]{p.s}\mathbb{E}\left[X_1X_2\right]=\mathbb{E}\left[X_1\right]\mathbb{E}\left[X_2\right]=m^2.$$

Alors,

$$\frac{X_1X_2 + X_2X_3 + \ldots + X_{n-1}X_n}{n} \left[\frac{X_1X_2 + X_3X_4 + \ldots + X_{n-1}X_n}{n/2} \times \frac{n/2}{n} + \frac{X_2X_3 + X_4X_5 + \ldots + X_{n-2}X_{n-1}}{n/2 - 1} \times \frac{n/2 - 1}{n} \right] \times \frac{p.s}{n \to +\infty} \frac{m^2}{2} + \frac{m^2}{2} = m^2.$$

Exercice 3.

Voir feuille TD7 exo 8.