UNIVERSIDAD CATÓLICA BOLIVIANA SAN PABLO SEDE TARIJA

DEPARTAMENTO DE CIENCIAS DE LA TECNOLOGÍA E INNOVACIÓN

AVANCE DE PROYECTO N°1

ING. KALEB IRAHOLA AZAD

TARIJA - BOLIVIA 15 de septiembre de 2025

Índice

1.	Introducciones Generales			2
	1.1.	Eleme	nto de competencia	2
	1.2.	Entreg	gables esperados	2
2.	Metodología y evidencias			
	2.1.	Presen	tación del documento	3
	2.2.	Defens	a técnica (pitch de implementación)	3
	Orie	rientaciones generales		
	3.1. Normativa mínima por sector			4
	3.2.	Descripciones de los procesos		
		3.2.1.	PIL Tarija: Control térmico HTST/UHT y CIP	4
		3.2.2.	YPFB: Engarrafado de GLP con odorización y VRU	5
		3.2.3.	Aranjuez: Fermentación con control de temperatura y CO_2	5
		3.2.4.	El Puente: Preparación de áridos (trituración, clasificación y capta-	
			ción de polvo)	6

1. Introducciones Generales

Para la primera evaluación, se analizarán cuatro casos de estudio que se basan en procesos industriales locales:

- 1. PIL Tarija: control térmico en tratamiento de leche (HTST/UHT + CIP).
- 2. **YPFB**: engarrafado y distribución de GLP (odorización + VRU).
- 3. Aranjuez: fermentación de vino con control térmico y gestión de CO_2 .
- 4. El Puente: preparación de áridos (trituración, clasificación, aspiración de polvo).

Analice cada proceso de forma integral, asegurando la compatibilidad entre instrumentos y equipos y el cumplimiento del marco normativo aplicable, para garantizar la calidad y la seguridad del proceso.

1.1. Elemento de competencia

Analiza los fundamentos de la instrumentación industrial, interpretando diagramas P&ID y aplicando normas técnicas, para representar y comprender sistemas de medición.

1.2. Entregables esperados

Al finalizar, cada equipo de trabajo debe de presentar:

- Un P&ID completo del proceso, con 8 o más lazos de control, conforme a simbología ISA 5.1.
- Entre 30-40 **Fichas Técnicas** correspondientes a la selección de **sensores**, **transmisores**, **actuadores y equipos** con criterios de rango, exactitud, materiales, comunicación y *compliance* (3-A/EHEDG, IEC 60079/ATEX, NFPA 68/69/654, etc. según el sector).
- La consolidación del proyecto en el archivo 00 Reporte General.xlsx
- La Estructura documental para la gestión del proyecto.
- La Documentación del proyecto en base a la guía en LaTeX.

2. Metodología y evidencias

Cada equipo investigará el proceso asignado (operación unitaria, variables, riesgos y normativa) y desarrollará su propuesta de instrumentación y control. Todo avance se presentará con una **defensa técnica breve** que simula la oferta de implementación para un cliente industrial, destacando cumplimiento normativo, viabilidad técnica y valor para el negocio.

2.1. Presentación del documento

La Plantilla del documento se encuentra en el repositorios de GitHub de la signatura, disponible en: https://github.com/KalebAI/IMT-247.git.

El documento se debe de entregar antes de la defensa, en formato .pdf como compilación de la plantilla de LaTeX.

2.2. Defensa técnica (pitch de implementación)

La defensa simula una oferta de implementación ante un cliente:

- **Duración:** 15–20 minutos de exposición + 5 minutos de preguntas.
- Contenido: problema y objetivos del proceso; propuesta de instrumentación y control; cumplimiento normativo; riesgos y mitigaciones; estimación de costos de instrumentación y beneficios esperados (calidad, seguridad, disponibilidad); cronograma de implementación a alto nivel.
- Evidencias en vivo: P&ID navegable (tags y lazos resaltados), extractos de fichas y Causa—Efecto, coherencia con el reporte general.

3. Orientaciones generales

3.1. Normativa mínima por sector

- Transversal: ISA 5.1 (simbología), IEC 61511/ISO 13849 (seguridad), prácticas PID.
- Lácteos: 3-A/EHEDG (diseño sanitario), ISO 22000/HACCP; válvula de desvío sanitaria (HTST/UHT).
- GLP: IEC 60079/ATEX (áreas peligrosas), NFPA 58; API/ASME para recipientes y alivio; filosofía ESD.
- Áridos/cemento: NFPA 68/69/654 (polvo combustible), control de emisiones, seguridad de máquinas.
- Vitivinícola: higiene, gestión de CO₂ en espacios confinados (detector/ventilación).

3.2. Descripciones de los procesos

3.2.1. PIL Tarija: Control térmico HTST/UHT y CIP

Definición general. El tratamiento térmico HTST (alta temperatura, corto tiempo) y UHT (ultra alta temperatura) calienta la leche a perfiles definidos de T-t para inactivar microorganismos y enzimas, salvaguardando calidad sensorial y vida útil; el sistema CIP (clean-in-place) limpia y desinfecta equipos sin desmontaje mediante ciclos químicos y térmicos validados [1, 2, 3].

Etapas típicas a investigar:

- a) Recepción y pulmón de balance; homogeneización previa según producto.
- b) Intercambiador de calor (placas/tubular) con secciones de regeneración, calentamiento, retenedor y enfriamiento.
- c) Válvula de desvío sanitario y verificación de letalidad (p.ej. prueba de fosfatasa).
- d) Enfriamiento final y/o tanque aséptico; líneas de envasado (si aplica al alcance).
- e) Estación CIP: tanques (álcali/ácido/agua), bombas, válvulas, medición de conductividad y temperatura; recetas y validación.
- f) Puntos de instrumentación mínimos: T en zonas clave, F producto (tiempo de residencia), ΔP entre circuitos, conductividad CIP, presiones de servicios.

3.2.2. YPFB: Engarrafado de GLP con odorización y VRU

Definición general. El engarrafado transfiere GLP a cilindros homologados, incorpora odorizante (p.ej. etil-mercaptano) para detección de fugas y gestiona vapores mediante una *Vapor Recovery Unit* (VRU) durante carga/descarga, bajo criterios de áreas peligrosas y paro de emergencia [4, 5, 6].

Etapas típicas a investigar:

- a) Almacenamiento (tanque bullet) y trasiego: bombas, manifolds, alivios y venteos.
- b) Dosificación de odorizante: tanque, caudal, relación de dosificación controlada.
- c) Carrusel de llenado: control de peso/tara, sellado, *sniffer* o baño para prueba de fugas.
- d) VRU: compresión/condensación de vapores de GLP, manejo térmico.
- e) Seguridad: clasificación de zonas (IEC 60079), ESD, detectores de gas (%LEL), PSV y procedimientos.
- f) Instrumentación mínima: P/T/L en almacenamiento, F/P en líneas, pesaje en línea, detección de gas, variables de VRU.

3.2.3. Aranjuez: Fermentación con control de temperatura y CO₂

Definición general. La fermentación controla la cinética de levaduras mediante perfiles de temperatura y manejo de CO₂ (respiro/ventilación), impactando extracción, aromas y estabilidad. La medición de variables como "Brix y pH guía la conducción del proceso; CIP asegura higiene entre lotes [7, 8].

Etapas típicas a investigar:

- a) Recepción, despalillado-estrujado y dosificación de SO₂ según estilo.
- b) Fermentación en tanque con chaqueta o serpentín: control de T y perfiles por estilo (blanco/tinto).
- c) Gestión de CO₂: válvulas de respiro, ventilación/monitoreo ambiental.
- d) Operaciones de manejo: remontados/trasiegos, clarificación/estabilización (si aplica al alcance).
- e) Instrumentación mínima: T (PV y MV de glicol), presión de tanque, CO₂ ambiente, °Brix/pH (en línea o muestreo).

3.2.4. El Puente: Preparación de áridos (trituración, clasificación y captación de polvo)

Definición general. La preparación de áridos reduce tamaño (trituración primaria/secundaria), separa por granulometría (cribado) y controla emisiones de polvo con captación/filtrado, integrando arranques secuenciales y protección de máquinas [9, 10, 11].

Etapas típicas a investigar:

- a) Alimentación y trituración: tolva, alimentador, trituradora primaria/ secundaria, transporte por cintas.
- b) Clasificación: zarandas/cribas, retornos, apilamiento en tolvas.
- c) Captación de polvo: ductos, ventilador, filtro de mangas, limpieza por pulsos.
- d) Seguridad operativa: detección de chispa/polvo, monitoreo de vibración y desalineación de cintas.
- e) Instrumentación mínima: ΔP en mangas, velocidad de ventilador, T de gases (protección), vibración/velocidad, presostatos/compuertas.

Referencias

- [1] P. Walstra, J. T. M. Wouters, T. J. Geurts, *Dairy Science and Technology*, 2nd ed., CRC Press, 2006.
- [2] Tetra Pak, *Dairy Processing Handbook*, 2025 ed., Tetra Pak, Lund (capítulos de pasteurización, UHT y CIP).
- [3] EHEDG, Guideline Doc. 52: Basic Principles of Cleaning and Disinfection in Food Manufacturing, 2022.
- [4] NFPA, NFPA 58: Liquefied Petroleum Gas Code, 2024 ed., National Fire Protection Association.
- [5] IEC, *IEC 60079 (serie): Explosive Atmospheres* (p. ej., 60079-0 Requisitos generales, 60079-10 Clasificación de áreas), IEC/ISO, últimas eds.
- [6] U.S. EPA, Installing Vapor Recovery Units on Storage Tanks, 2015.
- [7] R. S. Jackson, Wine Science: Principles and Applications, 4th ed., Academic Press/Elsevier, 2014.
- [8] OIV, International Code of Oenological Practices, 2022, Organisation Internationale de la Vigne et du Vin.
- [9] B. A. Wills, T. Napier-Munn, Wills' Mineral Processing Technology, 8th ed., Elsevier, 2015.
- [10] P. A. Alsop, The Cement Plant Operations Handbook, 7th ed., Tradeship Publications, 2019.
- [11] A. B. Cecala et al., Dust Control Handbook for Industrial Minerals Mining and Processing, 2nd ed., NIOSH, 2019.
- [12] R. H. Perry, D. W. Green, M. Z. Southard (eds.), *Perry's Chemical Engineers' Hand-book*, 9th ed., McGraw-Hill, 2018.