Real Analysis Homework 5

Alexander J. Tusa

September 27, 2018

- 1. For the following sequences, i) write out the first 5 terms, ii) Use the Monotone Sequence Property to show that the sequences converges.
 - (a) Section 3.3
 - 2) Let $x_1 > 1$ and $x_{n+1} := 2 1/x_n$ for $n \in \mathbb{N}$. Show that (x_n) is bounded and monotone. Find the limit.

The first five terms of this sequence are $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \dots$

This sequence appears to be decreasing. Thus, we attempt to find the possible limits of this sequence.

$$x = 2 - \frac{1}{x}$$

$$x - 2 = -\frac{1}{x}$$

$$x^2 - 2x = -1$$

$$x^2 - 2x + 1 = 0$$

$$(x - 1)^2 = 0$$

So we have that x = 1

Proof. Let $x_1 > 1$ and $x_{n+1} := 2 - 1/x_n$ for $n \in \mathbb{N}$. We want to show that (x_n) is monotone decreasing; that is, we want to show that $x_{n+1} \le x_n$, by the definition of monotone decreasing. We prove it by method of mathematical induction.

Basis Step: Let n = 1. Then we have

$$x_{n+1} \le x_n$$

$$x_{1+1} \le x_1$$

$$x_2 \le x_1$$

$$\frac{3}{2} \le 2,$$

1

which is true. So $a_2 \leq a_1$.

Inductive Step: Assume that $x_{n+1} \leq x_n, \ \forall \ n \in \mathbb{N}$.

We now want to show that $x_{n+2} \leq x_{n+1}$. So,

$$x_{n+2} = 2 - \frac{1}{x_{n+1}} \le 2 - \frac{1}{x_n}$$
, since $x_{n+1} \le x_n$
= x_{n+1} , by the definition of the sequence.

Thus we have that $x_{n+2} \leq x_{n+1}$.

Proof. Now, we must show that x_n is bounded below; that is, we want to show that $x_n \geq 1, \ \forall \ n \in \mathbb{N}$. We prove it by method of mathematical induction.

Basis Step: Let n = 1. Then we have

$$x_1 = 2 \ge 1$$

which is true.

Inductive Step: Assume $x_n \ge 1$.

We now want to show that $x_{n+1} \ge 1$. So,

- 3) Let $x_1 > 1$ and $x_{n+1} := 1 + \sqrt{x_n 1}$ for $n \in \mathbb{N}$. Show that (x_n) is decreasing and bounded below by 2. Find the limit.
- 7) Let $x_1 := a > 0$ and $x_{n+1} := x_n + 1/x_n$ for $n \in \mathbb{N}$. Determine whether (x_n) converges or diverges.
- 8) Let (a_n) be an increasing sequence, (b_n) be a decreasing sequence, and assume that $a_n \leq b_n$ for all $n \in \mathbb{N}$. Show that $\lim_{n \to \infty} (a_n) \leq \lim_{n \to \infty} (b_n)$, and thereby deduce the Nested Intervals Property 2.5.2 from the Monotone Convergence Theorem 3.3.2.

(b)
$$a_1 = 1$$
, $a_{n+1} = \frac{a_n^2 + 5}{2a_n}$

(c)
$$a_1 = 5$$
, $a_{n+1} = \sqrt{4 + a_n}$

- **2.** (a) Show $a_n = \frac{3 \cdot 5 \cdot 7 \cdot ... (2n-1)}{2 \cdot 4 \cdot 6 ... (2n)}$ converges to A where $0 \le A < 1/2$.
 - **(b)** Show $b_n = \frac{2 \cdot 4 \cdot 6 \dots (2n)}{3 \cdot 5 \cdot 7 \dots (2n+1)}$ converges to B where $0 \le B < 2/3$.

3. Section 3.4

- 1) Give an example of an unbounded sequence that has a convergent subsequence.
- 3) Let (f_n) be the Fibonacci sequence of Example 3.1.2(d), and let $x_n := f_{n+1}/f_n$. Given that $\lim(x_n) = L$ exists, determine the value of L.
- **4a)** Show that the sequence $(1-(-1)^n+1/n)$ converges.
- 16) Give an example to show that Theorem 3.4.9 fails if the hypothesis that X is a bounded sequences is dropped.

- **18)** Show that if (x_n) is a bounded sequence, then (x_n) converges if and only if $\limsup (x_n) = \liminf (x_n)$.
- **19)** Show that if (x_n) and (y_n) are bounded sequences, then

$$\limsup (x_n + y_n) \le \limsup (x_n) + \limsup (y_n).$$

Give an example in which the two sides are not equal.

- **4.** (a) Show that $x_n = e^{\sin(5n)}$ has a convergent subsequence.
 - (b) Give an example of a bounded sequence with three subsequences converging to three different numbers.
 - (c) Give an example of a sequence x_n with $\limsup x_n = 5$ and $\limsup x_n = -3$.
 - (d) Let $\limsup x_n = 2$. True or False: if n is sufficiently large, then $x_n > 1.99$.
 - (e) Compute the infimum, supremum, limit infimum, and limit supremum for $a_n = 3 (-1)^n (-1)^n/n$.
- **5.** (a) If a_n and b_n are strictly increasing, then $a_n + b_n$ is strictly increasing.
 - (b) If a_n and b_n are strictly increasing, then $a_n \cdot b_n$ is strictly increasing.
 - (c) If a_n and b_n are monotonic, then $a_n + b_n$ is monotonic.
 - (d) If a_n and b_n are monotonic, then $a_n \cdot b_n$ is monotonic.
 - (e) If a monotone sequence is bounded, then it is convergent.
 - (f) If a bounded sequence is monotone, then it is convergent.
 - (g) If a convergent sequence is monotone, then it is bounded.
 - (h) If a convergent sequence is bounded, then it is monotone.