Universidad Nacional de Río Negro Física III B - 2019

Unidad 02

Clase U02 C06

Fecha 16 Abr 2019

Cont Máquinas térmicas, 3

Cátedra Asorey

Web http://gitlab.com/asoreyh/unrn-f3b

Contenidos: Termodinámica, alias F3B, alias F4A

Macquinas térmicas

- Máquina térmica: dispositivo cíclico que absorbe calor de una fuente caliente, realiza un trabajo mecánico y entrega la energía remanente en forma de calor a una fuente fría
 - Este calor no es aprovechable por la misma máquina térmica

El pistón de doble acción

6/28

Abr 16, 2019 H. Asorey - F3B 2019

Indicador de evolución de Richard ¡diagrama PV real!

Un ciclo que funciona

EL inicio de la revolución industrial

Admisión:

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión 8/28

Un ciclo que funciona El inicio de la revolución industrial

Admisión:

el vapor de alta presión ingresa (ingreso de energía desde la fuente caliente)

Expansión:

comienza la expansión del vapor desplazando al pistón y produciendo trabajo mecánico

• Escape:

Rápida salida de vapor de baja presión hacia la fuente fría

Compresión:

La admisión de vapor del otro lado del cilindro comprime el remanente y ecualiza las presiones para la nueva admisión

Ciclo Otto

Abr 16, 2019 H. Asorey - F3B 2019 10/28

FASES DE UN MOTOR DE 4 TIEMPOS

ADMISIÓN

Pistón baja y entra combustible por la válvula de admisión

El cigueñal da 1/2 revolución

COMPRESIÓN

Pistón sube y el combustible y el aire se comprimen. Las válvulas están cerradas El cigueñal da ½ revolución

EXPLOSIÓN

La mezcla del combustibley de aire explota. Como las válvulas están cerradas el pistón baja. Potencia El cigueñal da ½ revolución

ESCAPE

Pistón sube y expulsa los gases quemados por la válvula de escape El cigueñal da ½ revolución

EN UN MOTOR DE 4 T SE PRODUCE UNA EXPLOSIÓN (FASE POTENTE) CADA 2 REVOLUCIONES

Ciclo Otto, combustión isócora

H. Asorey - F3B 2019

12/28

El ciclo Otto - realista

Abr 16, 2019

H. Asorey - F3B 2019

Ciclo Otto, el motor

Ciclo Diesel

Ciclo Diésel

© 2007 Encyclopædia Britannica, Inc.

Ciclo Diésel o ciclo de combustión isóbara

Ciclo Diésel o ciclo de combustión isóbara

Abr 16, 2019 H. Asorey - F3B 2019

Ciclo Diesel

Abr 16, 2019

H. Asorey - F3B 2019

Ciclo diesel, más realista

Motor transparente

Máquinas térmicas

 Máquina térmica: obtengo trabajo mecánico a partir de la transferencia de calor de la fuente caliente a la fuente fría...

Ciclo combinado

Mejora de la eficiencia global

- Fuente caliente: cede calor, se enfría
- Fuente fría: absorbe calor, se calienta
- La máquina térmica "aprovecha" ese flujo para liberar energía en forma de trabajo mecánico "útil"
- Cuando T_c = T_f → no hay flujo de calor → muerte térmica

Ciclo inverso → Máquina frigorífica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera:

Ciclo inverso → Máquina frigorífica

- Si entrego trabajo, es posible transferir calor de la fuente fría a la caliente
- Heladera: es una "bomba de calor" que extrae calor de una fuente fría para cederlo a otro a una temperatura mayor, impulsada por un motor externo, usualmente

Funcionamiento: refrigeración por compresión:

Líquido refrigerante: bajo punto de vaporización (típicamente -40°C)

- 1) Compresor: el gas se comprime (W_{NETO}) en forma adiabática y, en principio, reversible. Alta Presión (AP)
- 2) Condensador: se licúa e intercambia calor con la fuente caliente (Aire, Q_{ENT}).
 Cambio de estado: calor latente, proceso isotérmico (AP)
- 3) Válvula de expansión: descompresión adiabática → enfriamiento del líquido a baja presión (BP)
- 4) Evaporador: el líquido frío absorbe calor de la fuente fría (heladera, Q_{ABS}) y se vaporiza: calor latente, proceso isotérmico (BP)
- Se reinicia el ciclo en el compresor

Máquina reversible e irreversible

Si la máquina térmica no es reversible, Q_c < Q