Millikanversuch

Lukas Hassel, David Schlosser und Stefan Schmidt

30. Juni 2016

Fragen aus der Vorbereitung

a)

b)

Für den Schwebefall müssen die Kraft der Gravitation und die Kraft des elektrischen Feldes gleich groß, mit gegenläufiger Wirkrichtung sein.

$$F_g = F_{el}$$

Die Erdanziehungskraft ist definiert als $F_g = m \cdot g$. Die Kraft mit der der Tropfen in Schwebe gehalten wird ist gegeben durch $F_{el} = \frac{U}{d} \cdot 2e$. Da diese Betragsmäßig gleich sein müssen gilt:

$$m \cdot g = \frac{U}{d}$$

Damit folgt für die Masse: $m = \frac{U}{d \cdot g}$.

$$m_{oel} = \frac{400V \cdot 2 \cdot 1, 6 \cdot 10^{-19}}{9,81 \frac{m}{s^2} \cdot 7, 62 \cdot 10^{-3} m} = 1,7123 \cdot 10^{-15} kg$$