Nonlinear Output Feedback Control of an Underactuated Flying Inverted Pendulum: Supplementary Material

Weiming Yang, Joel Reis, Gan Yu, and Carlos Silvestre

Abstract

This is a complementary document to the paper presented in [1]. Here we fully disclose all the detailed derivations and equations that are essential to implement the controller reported therein.

I. THE TRANSITION MATRIX AND THE OBSERVABILITY GRAMIAN CALCULATIONS

The most general transition matrix is given by the Peano-Baker series

$$\mathbf{\Phi}(t,t_0) := \mathbf{I} + \int_{t_0}^t \mathbf{A}(\sigma_1) d\sigma_1 + \int_{t_0}^t \mathbf{A}(\sigma_1) \int_{t_0}^{\sigma_1} \mathbf{A}(\sigma_2) d\sigma_2 d\sigma_1 + \int_{t_0}^t \mathbf{A}(\sigma_1) \int_{t_0}^{\sigma_1} \mathbf{A}(\sigma_2) \int_{t_0}^{\sigma_2} \mathbf{A}(\sigma_3) d\sigma_3 d\sigma_2 d\sigma_1 \cdots$$
(SM 1)

It is noticed that the matrix of A for the proposed LTV system as shown in (12) [1] is nilpotent of index 3, meaning $A^n = 0$ for $n \ge 3$ where n is a positive integer. Hence, the proposed LTV system's transition matrix is given by

$$\mathbf{\Phi}(t,t_0) := \mathbf{I} + \int_{t_0}^t \mathbf{A}(\sigma_1) d\sigma_1 + \int_{t_0}^t \mathbf{A}(\sigma_1) \int_{t_0}^{\sigma_1} \mathbf{A}(\sigma_2) d\sigma_2 d\sigma_1$$
 (SM 2)

where

$$\int_{t_0}^{t} \mathbf{A}(\sigma_1) d\sigma_1 = \begin{bmatrix}
0 & n_t & 0 & 0 & 0 & 0 \\
0 & 0 & n_t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & n_t & 0 \\
0 & 0 & n_q & 0 & 0 & n_t \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \text{ and}$$
(SM 3)

$$\int_{t_0}^{t} \mathbf{A}(\sigma_1) \int_{t_0}^{\sigma_1} \mathbf{A}(\sigma_2) d\sigma_2 d\sigma_1 = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \frac{1}{2} \mathbf{n_t}^2 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{n_{q2}} & \mathbf{0} & \mathbf{0} & \frac{1}{2} \mathbf{n_t}^2 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix},$$
(SM 4)

where $n_t := (t - t_0)\mathbf{I}$, $n_q := \frac{m_Q \ell}{m_T} \int_{t_0}^t \mathbf{q} \mathbf{q}^\mathsf{T} d\tau$ and $n_{q2} := \int_{t_0}^t n_q d\tau$. Based on the definition of the observability Gramian and using (SM 2) along with the nilpotent property of \mathbf{A} , it is given by

$$W(t_0, t_f) = \int_{t_0}^{t_f} \begin{bmatrix} \mathbf{I} & \mathbf{n_t} & \frac{1}{2} \mathbf{n_t}^2 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{n_t} & \mathbf{n_t}^2 & \frac{1}{2} \mathbf{n_t}^3 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{1}{2} \mathbf{n_t}^2 & \frac{1}{2} \mathbf{n_t}^3 & \frac{1}{4} \mathbf{n_t}^4 + \mathbf{n_{q2}}^\mathsf{T} \mathbf{n_{q2}} & \mathbf{n_{q2}}^\mathsf{T} & \mathbf{n_t} \mathbf{n_{q2}}^\mathsf{T} & \frac{1}{2} \mathbf{n_t}^2 \mathbf{n_{q2}}^\mathsf{T} \\ \mathbf{0} & \mathbf{0} & \mathbf{n_{q2}} & \mathbf{I} & \mathbf{n_t} & \frac{1}{2} \mathbf{n_t}^2 \\ \mathbf{0} & \mathbf{0} & \mathbf{n_t} \mathbf{n_{q2}} & \mathbf{n_t} & \mathbf{n_t}^2 & \frac{1}{2} \mathbf{n_t}^3 \\ \mathbf{0} & \mathbf{0} & \frac{1}{2} \mathbf{n_t}^2 \mathbf{n_{q2}} & \frac{1}{2} \mathbf{n_t}^2 & \frac{1}{2} \mathbf{n_t}^3 & \frac{1}{4} \mathbf{n_t}^2 \end{bmatrix} dt$$
(SM 5)

Weiming Yang and Carlos Silvestre are with the Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, China (e-mail: weiming.yang@connect.um.edu.mo, csilvestre@um.edu.mo). Joel Reis is with the Department of Ocean Science and Technology at the same institution (e-mail: joelreis@um.edu.mo).

Gan Yu is with the School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail: sjtuganyu@sjtu.edu.cn).

C. Silvestre is on leave from Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.

UPDATED LAST TIME: MARCH 18, 2024 2

Setting $t_0 = t - \delta$ and $t_f = t$, $\boldsymbol{W}(t_0, t_f)$ is obtained as follows

$$W(t - \delta, t) = \begin{bmatrix} \delta \mathbf{I} & \frac{\delta^{2}}{2} \mathbf{I} & \frac{\delta^{3}}{6} \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{\delta^{2}}{2} \mathbf{I} & \frac{\delta^{3}}{3} \mathbf{I} & \frac{\delta^{4}}{8} \mathbf{I} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \frac{\delta^{3}}{6} \mathbf{I} & \frac{\delta^{4}}{8} \mathbf{I} & \frac{\delta^{5}}{20} \mathbf{I} + \int_{t-\delta}^{t} n_{q2}^{\mathsf{T}} n_{q2} d\tau & \int_{t-\delta}^{t} n_{q2}^{\mathsf{T}} d\tau & \varphi_{1}^{\mathsf{T}} & \varphi_{2}^{\mathsf{T}} \\ \mathbf{0} & \mathbf{0} & \int_{t-\delta}^{t} n_{q2} d\tau & \delta \mathbf{I} & \frac{\delta^{2}}{2} \mathbf{I} & \frac{\delta^{3}}{6} \mathbf{I} \\ \mathbf{0} & \mathbf{0} & \varphi_{1} & \frac{\delta^{2}}{2} \mathbf{I} & \frac{\delta^{3}}{8} \mathbf{I} & \frac{\delta^{4}}{8} \mathbf{I} \\ \mathbf{0} & \mathbf{0} & \varphi_{2} & \frac{\delta^{3}}{6} \mathbf{I} & \frac{\delta^{4}}{8} \mathbf{I} & \frac{\delta^{5}}{20} \mathbf{I} \end{bmatrix}$$
(SM 6)

where $\varphi_1 := \frac{\delta^2}{2} \boldsymbol{n_{q2}} - \frac{\delta^2}{2} \int_{t-\delta}^t \boldsymbol{n_q} d\tau$ and $\varphi_2 := \frac{\delta^3}{6} \boldsymbol{n_{q2}} - \frac{\delta^3}{6} \int_{t-\delta}^t \boldsymbol{n_q} d\tau$. Since \mathbf{q} is a unit vector, each element in (SM 6) is bounded for some δ . Consequently, $\boldsymbol{W}(t-\delta,t)$ is bounded as well.

Remark 1. When q remains constant, such as when it equals $-\mathbf{e}_3$, n_q tends to zero as t approaches infinity. However, in reality, it is impossible to maintain \mathbf{q} constantly at $-\mathbf{e}_3$ throughout all FIP maneuvers, even for a constant position tracking.

II. PROOF OF THEOREM 3

Based on x(t) (10) and $\hat{x}(t)$ (19) in [1], the estimation error is defined as $\tilde{x}(t) := x(t) - \hat{x}(t)$. Using $\dot{x}(t)$ in (11) and $\hat{x}(t)$ in (18) from [1], we obtain the time derivative of the estimation error $\tilde{x}(t)$ as:

$$\dot{\widetilde{x}}(t) = (\mathbf{A}(t) - \mathcal{K}(t)\mathbf{C})\widetilde{x}(t) + \mathbf{h}(t). \tag{SM 7}$$

Considering the Lyapunov function $V_{\rm KF} := \widetilde{\boldsymbol{x}}^{\sf T} \boldsymbol{\mathcal{P}}^{-1} \widetilde{\boldsymbol{x}}$, where $\boldsymbol{\mathcal{P}}(t)$ denotes the covariance matrix of the state estimate, and Assumption made in [1], we can derive the following inequality for the time derivative of $V_{\rm KF}$:

$$\lambda_{\min}(\mathcal{P}^{-1})\|\widetilde{\boldsymbol{x}}\|^2 \le V_{\mathrm{KF}} \le \lambda_{\max}(\mathcal{P}^{-1})\|\widetilde{\boldsymbol{x}}\|^2 \tag{SM 8}$$

where $\lambda_{\max}(\boldsymbol{\mathcal{P}}^{-1}) \geq \lambda_{\min}(\boldsymbol{\mathcal{P}}^{-1}) > 0$.

Using (18), the time derivative of $V_{\rm KF}$ can be written as

$$\dot{V}_{KF} \le -\lambda_{\min}(\Upsilon(t)) \|\widetilde{\boldsymbol{x}}(t)\|^2 + 2\widetilde{\boldsymbol{x}}^{\mathsf{T}}(t) \boldsymbol{\mathcal{P}}^{-1}(t) \boldsymbol{h}(t) \tag{SM 9}$$

where $\Upsilon(t) := \mathbf{C}^{\mathsf{T}} \mathcal{R}^{-1}(t) \mathbf{C} + \mathcal{P}^{-1}(t) \mathcal{Q}(t) \mathcal{P}^{-1}(t) \in \mathbb{R}^{18 \times 18}_{\succ 0}$. Notice that $\|\partial V_{\mathrm{KF}}/\partial \widetilde{x}\| \leq 2\lambda_{\min}(\mathcal{P}^{-1})\|\widetilde{x}\|$. Based on Assumption 1, suppose the perturbation term h(t) satisfies $\|h(t)\| \leq \varepsilon < \frac{\lambda_{\min}(\Upsilon)}{2\lambda_{\min}(\mathcal{P}^{-1})} \sqrt{\frac{\lambda_{\min}(\mathcal{P}^{-1})}{\lambda_{\max}(\mathcal{P}^{-1})}} \epsilon r$, for all $t \geq 0$, for all $\widetilde{x} \in D$ where $D = \{\widetilde{x} \in \mathbb{R}^{18} | \|\widetilde{x}\| < r\}$, and for some positive constant $\epsilon < 1$.

According to Lemma 9.2 in [2], for all $\widetilde{x}(t_0) < \sqrt{\frac{\lambda_{\min}(\mathcal{P}^{-1})}{\lambda_{\max}(\mathcal{P}^{-1})}}r$, and some finite T, the solution of $\widetilde{x}(t)$ satisfies

$$\|\widetilde{\boldsymbol{x}}(t)\| \le \sqrt{\frac{\lambda_{\max}(\boldsymbol{\mathcal{P}}^{-1})}{\lambda_{\min}(\boldsymbol{\mathcal{P}}^{-1})}} \exp\left(-\frac{(1-\epsilon)\lambda_{\min}(\boldsymbol{\Upsilon})}{2\lambda_{\max}(\boldsymbol{\mathcal{P}}^{-1})}(t-t_0)\right) \|\widetilde{\boldsymbol{x}}(t_0)\|, \quad \forall t_0 \le t < t_0 + T$$
(SM 10)

and

$$\|\widetilde{\boldsymbol{x}}(t)\| \le \frac{2\lambda_{\min}(\boldsymbol{\mathcal{P}}^{-1})}{\lambda_{\min}(\boldsymbol{\Upsilon})} \sqrt{\frac{\lambda_{\max}(\boldsymbol{\mathcal{P}}^{-1})}{\lambda_{\min}(\boldsymbol{\mathcal{P}}^{-1})}} \frac{\varepsilon}{\epsilon}$$
(SM 11)

III. COMPUTATION OF AUXILIARY VARIABLES

We start by noting that (4a) may be rewritten as

$$\dot{\mathbf{v}}_{L} = \dot{\mathbf{v}}_{L}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} + \frac{1}{m_{T}} (\mathbf{f}^{\parallel} - \mathbf{f}_{d}^{\parallel}) + \widetilde{\mathbf{f}}_{v}^{\parallel} + \frac{m_{Q}\ell}{m_{T}} \widetilde{\mathbf{f}}_{q}^{\parallel}, \tag{SM 12}$$

where

$$\dot{\mathbf{v}}_L|_{\mathbf{f}=\mathbf{f}_d^{\parallel}} = g\mathbf{e}_3 - \frac{1}{m_T}\widehat{\boldsymbol{\xi}}^{\parallel}.$$
 (SM 13)

All the time derivatives that explicitly feature $\dot{\mathbf{v}}_L$ can be divided into three terms: one related to \mathbf{f}_d^{\parallel} , one related to the error $\mathbf{f}^{\parallel} - \mathbf{f}_{d}^{\parallel}$, and another related to $\widetilde{\mathbf{f}}_{v}$ and $\widetilde{\mathbf{f}}_{q}$.

Similarly, we can rearrange (8) as

$$\dot{\mathbf{z}}_{v} = \dot{\mathbf{z}}_{v}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} + \frac{1}{m_{T}} \frac{\partial \mathbf{z}_{v}}{\partial \mathbf{v}_{L}} (\mathbf{f}^{\parallel} - \mathbf{f}_{d}^{\parallel}) + \frac{1}{m_{T}} \frac{\partial \mathbf{z}_{v}}{\partial \mathbf{v}_{L}} (\widetilde{\mathbf{f}_{v}}^{\parallel} + \frac{m_{Q}\ell}{m_{T}} \widetilde{\mathbf{f}_{q}}^{\parallel}), \tag{SM 14}$$

where

$$\dot{\mathbf{z}}_v|_{\mathbf{f}=\mathbf{f}_d^{\parallel}} = \dot{\mathbf{v}}_L|_{\mathbf{f}=\mathbf{f}_d^{\parallel}} - \ddot{\mathbf{p}}_d$$
 (SM 15)

and

$$\frac{\partial \mathbf{z}_v}{\partial \mathbf{v}_t} = \mathbf{I}.\tag{SM 16}$$

Then

$$\dot{\boldsymbol{\xi}} = \dot{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} + \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L} \left(\frac{1}{m_T} (\mathbf{f}^{\parallel} - \mathbf{f}_d^{\parallel}) + \widetilde{\mathbf{f}_v}^{\parallel} + \frac{m_Q \ell}{m_T} \widetilde{\mathbf{f}_q}^{\parallel} \right), \tag{SM 17}$$

where

$$\dot{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} = m_{T} \left(\mathbf{K}_{\mathbf{p}} \mathbf{z}_{v} + \mathbf{K}_{\mathbf{v}} \hat{\mathbf{z}}_{v}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} - \ddot{\mathbf{p}}_{d} \right), \tag{SM 18}$$

its corresponding estimation

$$\widehat{\dot{\boldsymbol{\xi}}}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} = m_{T} \left(\mathbf{K}_{\mathbf{p}} \widehat{\mathbf{z}}_{v} + \mathbf{K}_{\mathbf{v}} \widehat{\mathbf{z}}_{v}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} - \ddot{\mathbf{p}}_{d} \right)$$
(SM 19)

and $\frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L} := m_{\scriptscriptstyle T} \mathbf{K}_{\mathbf{v}}.$

We start by presenting the expression for $\widehat{\omega_d}|_{\mathbf{f}=\mathbf{f}_+^{\parallel}}$, first shown in (29). We have

$$\widehat{\boldsymbol{\varpi}_{d}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} = \frac{1}{\|\widehat{\boldsymbol{\xi}}\|} \mathbf{S}(\widehat{\boldsymbol{\varpi}}) \mathbf{S}(\widehat{\mathbf{q}}_{d}) \widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} - \mathbf{S}(\mathbf{q}) \mathbf{S}(\frac{1}{\|\widehat{\boldsymbol{\xi}}\|} \widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}}) \widehat{\mathbf{q}}_{d}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} + \mathbf{S}(\mathbf{q}) \mathbf{S}(\widehat{\mathbf{q}}_{d}) \left(\frac{1}{\|\widehat{\boldsymbol{\xi}}\|} \frac{d}{dt} \left(\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} \right)_{est} - \frac{1}{\|\widehat{\boldsymbol{\xi}}\|^{3}} \widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} \widehat{\boldsymbol{\xi}}^{\mathsf{T}} \widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} \right) - \frac{k_{\mathbf{q}}}{h_{\mathbf{q}}} \left(\mathbf{S}(\widehat{\boldsymbol{\varpi}}) \mathbf{S}(\mathbf{q}) \widehat{\mathbf{q}}_{d} + \mathbf{S}(\mathbf{q}) \mathbf{S}(\widehat{\boldsymbol{\varpi}}) \widehat{\mathbf{q}}_{d} + \mathbf{S}^{2}(\mathbf{q}) \widehat{\mathbf{q}}_{d}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}} \right), \tag{SM 20}$$

where

$$\widehat{\dot{\mathbf{q}}}_d|_{\mathbf{f}=\mathbf{f}_d^{\parallel}} = \frac{1}{\|\boldsymbol{\xi}\|} \mathbf{S}^2(\widehat{\mathbf{q}}_d) \widehat{\dot{\boldsymbol{\xi}}}|_{\mathbf{f}=\mathbf{f}_d^{\parallel}}, \tag{SM 21}$$

$$\frac{d}{dt} \left(\widehat{\mathbf{z}}_{v} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right)_{\text{est}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} = -\frac{1}{m_{T}} \left[(\widehat{\boldsymbol{\varpi}} \mathbf{q}^{\mathsf{T}} + \mathbf{q} \widehat{\boldsymbol{\varpi}}^{\mathsf{T}}) \widehat{\boldsymbol{\xi}} + \mathbf{q} \mathbf{q}^{\mathsf{T}} \widehat{\boldsymbol{\xi}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right] - \ddot{\mathbf{p}}_{d}, \tag{SM 22}$$

and, finally,

$$\frac{d}{dt} \left(\hat{\boldsymbol{\xi}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} = m_T \left(\mathbf{K}_{\mathbf{p}} \hat{\mathbf{z}}_v |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} + \mathbf{K}_{\mathbf{v}} \frac{d}{dt} \left(\hat{\mathbf{z}}_v |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} - \ddot{\mathbf{p}}_d \right). \tag{SM 23}$$

The expression for $\partial \mathbf{z}_{\varpi}/\partial \mathbf{v}_{L}$, also first shown in (29), is given by

$$\frac{\partial \mathbf{z}_{\varpi}}{\partial \mathbf{v}_{L}}\Big|_{\text{est}} = -\frac{k_{q}}{h_{q}}\mathbf{S}^{2}(\mathbf{q}) \frac{\partial \mathbf{q}_{d}}{\partial \mathbf{v}_{L}}\Big|_{\text{est}} - \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{\hat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}}}{\|\hat{\boldsymbol{\xi}}\|}) \frac{\partial \mathbf{q}_{d}}{\partial \mathbf{v}_{L}}\Big|_{\text{est}} - \frac{\mathbf{S}(\mathbf{q})\mathbf{S}(\widehat{\mathbf{q}}_{d})}{\|\hat{\boldsymbol{\xi}}\|^{2}} \left(\|\hat{\boldsymbol{\xi}}\| \frac{\partial \dot{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}}}{\partial \mathbf{v}_{L}} + \frac{\hat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}}\hat{\boldsymbol{\xi}}^{\mathsf{T}}}{\|\hat{\boldsymbol{\xi}}\|} \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_{L}}\right), \quad (SM 24)$$

where

$$\frac{\partial \mathbf{q}_d}{\partial \mathbf{v}_L}\bigg|_{\text{est}} = \frac{1}{\|\widehat{\boldsymbol{\xi}}\|} \mathbf{S}^2(\widehat{\mathbf{q}}_d) \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L},\tag{SM 25}$$

with

$$\frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_{t}} = m_{T} \mathbf{K}_{\mathbf{v}} \frac{\partial \mathbf{z}_{v}}{\partial \mathbf{v}_{t}}, \tag{SM 26}$$

and where

$$\frac{\partial \dot{\mathbf{z}}_v|_{\mathbf{f} = \mathbf{f}_d^{\parallel}}}{\partial \mathbf{v}_L} = -\frac{1}{m_T} \mathbf{q} \mathbf{q}^{\mathsf{T}} \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L}, \tag{SM 27}$$

$$\frac{\partial \dot{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_d^{\parallel}}}{\partial \mathbf{v}_L} = m_T \left(\frac{1}{m_T} \mathbf{K}_{\mathbf{p}} \mathbf{I}^{\parallel} + \mathbf{K}_{\mathbf{v}} \frac{\partial \dot{\mathbf{z}}_v|_{\mathbf{f} = \mathbf{f}_d^{\parallel}}}{\partial \mathbf{v}_L} \right). \tag{SM 28}$$

We also need to compute the pseudo-estimate of $\dot{\mathbf{r}}_{3d}$, which is given by

$$\widehat{\dot{\mathbf{r}}_{3d}} = -\frac{1}{\|\mathbf{f}_d\|^2} \left(\|\mathbf{f}_d\| \widehat{\dot{\mathbf{f}}}_d - \frac{1}{\|\mathbf{f}_d\|} \mathbf{f}_d \mathbf{f}_d^{\mathsf{T}} \widehat{\dot{\mathbf{f}}}_d \right), \tag{SM 29}$$

where

$$\hat{\dot{\mathbf{f}}}_d = \hat{\mathbf{f}}_d^{\parallel} + \hat{\dot{\mathbf{f}}}_d^{\perp},$$
 (SM 30)

with

$$\widehat{\mathbf{f}}_{d}^{\parallel} = -\widehat{\boldsymbol{\varpi}}\mathbf{q}^{\mathsf{T}}\widehat{\boldsymbol{\xi}} - \mathbf{q}\widehat{\boldsymbol{\varpi}}^{\mathsf{T}}\widehat{\boldsymbol{\xi}} - \mathbf{q}\mathbf{q}^{\mathsf{T}}\widehat{\boldsymbol{\xi}}|_{\text{est}} - m_{\scriptscriptstyle{T}}\left(\widehat{\boldsymbol{\varpi}}\mathbf{q}^{\mathsf{T}}\widehat{\mathbf{f}}_{v} - \mathbf{q}\widehat{\boldsymbol{\varpi}}^{\mathsf{T}}\widehat{\mathbf{f}}_{v} - \mathbf{q}\mathbf{q}^{\mathsf{T}}\widehat{\mathbf{f}}_{v}\right) - m_{\scriptscriptstyle{Q}}\ell\left(\widehat{\boldsymbol{\varpi}}\mathbf{q}^{\mathsf{T}}\widehat{\mathbf{f}}_{q} - \mathbf{q}\widehat{\boldsymbol{\varpi}}^{\mathsf{T}}\widehat{\mathbf{f}}_{q} - \mathbf{q}\mathbf{q}^{\mathsf{T}}\widehat{\mathbf{f}}_{q}\right) \quad \text{(SM 31)}$$

and

$$\begin{split} \widehat{\mathbf{f}}_{d}^{\perp} &= m_{\mathcal{Q}} \ell \mathbf{S}(\widehat{\boldsymbol{\varpi}}) \mathbf{S}(\mathbf{q}) \left(\widehat{\boldsymbol{\varpi}_{\boldsymbol{d}}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} + \frac{h_{\mathbf{q}}}{h_{\boldsymbol{\varpi}}} \widehat{\mathbf{q}}_{d} - \frac{k_{\boldsymbol{\varpi}}}{h_{\boldsymbol{\varpi}}} \widehat{\mathbf{z}}_{\boldsymbol{\varpi}} - \widehat{\mathbf{f}}_{q} \right) + m_{\mathcal{Q}} \ell \mathbf{S}(\mathbf{q}) \mathbf{S}(\widehat{\boldsymbol{\varpi}}) \left(\widehat{\boldsymbol{\varpi}_{\boldsymbol{d}}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} + \frac{h_{\mathbf{q}}}{h_{\boldsymbol{\varpi}}} \widehat{\mathbf{q}}_{d} - \frac{k_{\boldsymbol{\varpi}}}{h_{\boldsymbol{\varpi}}} \widehat{\mathbf{z}}_{\boldsymbol{\varpi}} - \widehat{\mathbf{f}}_{q} \right) \right. \\ &+ m_{\mathcal{Q}} \ell \mathbf{S}^{2}(\mathbf{q}) \left(\frac{d}{dt} \left(\widehat{\boldsymbol{\varpi}}_{\boldsymbol{d}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right)_{\text{est}} + \frac{h_{\mathbf{q}}}{h_{\boldsymbol{\varpi}}} \frac{d}{dt} \left(\widehat{\mathbf{q}}_{d} \right)_{\text{est}} - \frac{k_{\boldsymbol{\varpi}}}{h_{\boldsymbol{\varpi}}} \frac{d}{dt} \left(\widehat{\mathbf{z}}_{\boldsymbol{\varpi}} \right)_{\text{est}} - \widehat{\mathbf{f}}_{q} \right), \end{split}$$

where,

$$\widehat{\dot{\mathbf{v}}}_{L} = \frac{1}{m_{T}} \mathbf{f}^{\parallel} + \widehat{\mathbf{f}}_{v} + \frac{m_{Q}\ell}{m_{T}} \widehat{\mathbf{f}}_{q}^{\parallel} + g\mathbf{e}_{3}, \tag{SM 32}$$

$$\hat{\dot{\mathbf{z}}}_v = \hat{\dot{\mathbf{v}}}_L - \ddot{\mathbf{p}}_d,\tag{SM 33}$$

$$\hat{\dot{\boldsymbol{\xi}}} = m_T \left(\mathbf{K}_{\mathbf{p}} \hat{\mathbf{z}}_v + \mathbf{K}_{\mathbf{v}} \hat{\mathbf{z}}_v - \ddot{\mathbf{p}}_d \right), \tag{SM 34}$$

$$\frac{d}{dt} \left(\widehat{\mathbf{q}}_d \right)_{\text{est}} = \frac{1}{\|\widehat{\boldsymbol{\xi}}\|} \mathbf{S}^2 (\widehat{\mathbf{q}}_d) \widehat{\dot{\boldsymbol{\xi}}}$$
 (SM 35)

$$\frac{d}{dt} \left(\dot{\mathbf{z}}_v |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} = -\frac{(\widehat{\boldsymbol{\varpi}} \mathbf{q}^{\mathsf{T}} + \mathbf{q} \widehat{\boldsymbol{\varpi}}^{\mathsf{T}}) \widehat{\boldsymbol{\xi}} + \mathbf{q} \mathbf{q}^{\mathsf{T}} \widehat{\boldsymbol{\xi}}}{m_T} - \ddot{\mathbf{p}}_d, \tag{SM 36}$$

$$\frac{d}{dt} \left(\dot{\boldsymbol{\xi}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} = m_T \left(\mathbf{K}_{\mathbf{p}} \widehat{\dot{\mathbf{z}}}_v + \mathbf{K}_{\mathbf{v}} \frac{d}{dt} \left(\widehat{\dot{\mathbf{z}}}_v |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} - \ddot{\mathbf{p}}_d \right), \tag{SM 37}$$

$$\frac{d}{dt} \left(\hat{\mathbf{q}}_{d} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right)_{\text{est}} = \frac{1}{\|\boldsymbol{\xi}\|^{2}} \left(\|\boldsymbol{\xi}\| \left(\mathbf{S}(\hat{\mathbf{q}}_{d}) \mathbf{S}(\mathbf{q}_{d}) + \mathbf{S}(\mathbf{q}_{d}) \mathbf{S}(\hat{\mathbf{q}}_{d}) \right) - \frac{1}{\|\boldsymbol{\xi}\|} \mathbf{S}^{2}(\mathbf{q}_{d}) \boldsymbol{\xi}^{\mathsf{T}} \hat{\boldsymbol{\xi}} \right) \hat{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} + \frac{1}{\|\boldsymbol{\xi}\|} \mathbf{S}^{2}(\mathbf{q}_{d}) \frac{d}{dt} \left(\hat{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right)_{\text{est}}, \tag{SM 38}$$

$$\frac{d}{dt} \left(\frac{d}{dt} \left(\hat{\mathbf{z}}_{v}|_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right)_{\text{est}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right)_{\text{est}} = -\frac{1}{m_{T}} \left(\hat{\boldsymbol{\varpi}} \mathbf{q}^{\mathsf{T}} \hat{\boldsymbol{\xi}} + \widehat{\boldsymbol{\varpi}} \widehat{\boldsymbol{\varpi}}^{\mathsf{T}} \hat{\boldsymbol{\xi}} + \widehat{\boldsymbol{\varpi}} \widehat{\boldsymbol{\varpi}}^{\mathsf{T}} \hat{\boldsymbol{\xi}} + \mathbf{q} \hat{\boldsymbol{\varpi}}^{\mathsf{T}} \hat{\boldsymbol{\xi}} + \mathbf{q} \hat{\boldsymbol{\varpi}}^{\mathsf{T}} \hat{\boldsymbol{\xi}} + \widehat{\boldsymbol{\varpi}} \mathbf{q}^{\mathsf{T}} \hat{\boldsymbol{\xi}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}}$$

$$+\mathbf{q}\widehat{\boldsymbol{\varpi}}^{\mathsf{T}}\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}}+\mathbf{q}\mathbf{q}^{\mathsf{T}}\frac{d}{dt}\left(\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_{d}^{\parallel}}\right)_{\mathrm{est}}-\widetilde{\mathbf{p}}_{d},$$

$$\frac{d}{dt} \left(\frac{d}{dt} \left(\hat{\boldsymbol{\xi}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} = m_T \left(\mathbf{K}_{\mathbf{p}} \frac{d}{dt} \left(\hat{\mathbf{z}}_v |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} + \mathbf{K}_{\mathbf{v}} \frac{d}{dt} \left(\frac{d}{dt} \left(\hat{\mathbf{z}}_v |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)_{\text{est}} - \mathbf{p}_d^{(5)} \right), \quad (SM 39)$$

and, finally,

$$\begin{split} &\frac{d}{dt}\left(\widehat{\varpi_d}|_{\mathbf{f}=\mathbf{f}_d^\parallel}\right)_{\mathrm{est}} = -\frac{k_{\mathbf{q}}}{h_{\mathbf{q}}}\left(\mathbf{S}(\widehat{\varpi})\mathbf{S}(\mathbf{q})\widehat{\mathbf{q}}_d + \mathbf{S}(\widehat{\varpi})\mathbf{S}(\widehat{\varpi})\widehat{\mathbf{q}}_d + \mathbf{S}(\widehat{\varpi})\mathbf{S}(\mathbf{q})\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}} + \mathbf{S}(\widehat{\varpi})\mathbf{S}(\widehat{\varpi})\widehat{\mathbf{q}}_d + \mathbf{S}(\mathbf{q})\mathbf{S}(\widehat{\varpi})\widehat{\mathbf{q}}_d \\ &+ \mathbf{S}(\mathbf{q})\mathbf{S}(\widehat{\varpi})\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}} + \mathbf{S}(\widehat{\varpi})\mathbf{S}(\mathbf{q})\widehat{\mathbf{q}}_d|_{\mathbf{f}=\mathbf{f}_d^\parallel} + \mathbf{S}(\mathbf{q})\mathbf{S}(\widehat{\varpi})\widehat{\mathbf{q}}_d|_{\mathbf{f}=\mathbf{f}_d^\parallel} + \mathbf{S}^2(\mathbf{q})\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}}\right) - \left(\frac{1}{\|\widehat{\boldsymbol{\xi}}\|}\mathbf{S}(\widehat{\varpi})\mathbf{S}(\widehat{\mathbf{q}}_d)\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_d^\parallel} \\ &- \frac{1}{\|\widehat{\boldsymbol{\xi}}\|}\mathbf{S}(\widehat{\varpi})\mathbf{S}(\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}}\right)\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_d^\parallel} - \frac{1}{\|\widehat{\boldsymbol{\xi}}\|^2}\mathbf{S}(\widehat{\varpi})\mathbf{S}(\widehat{\mathbf{q}}_d)\left(\|\widehat{\boldsymbol{\xi}}\|\frac{d}{dt}\left(\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_d^\parallel}\right)_{\mathrm{est}} - \frac{1}{\|\widehat{\boldsymbol{\xi}}\|}\widehat{\boldsymbol{\xi}}^{\mathsf{T}}\widehat{\boldsymbol{\xi}}\right) + \mathbf{S}(\widehat{\varpi})\mathbf{S}(\widehat{\mathbf{q}}_d)\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_d^\parallel} \\ &+ \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{\|\widehat{\boldsymbol{\xi}}\|\frac{d}{dt}\left(\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_d^\parallel}\right)_{\mathrm{est}} - \frac{1}{\|\widehat{\boldsymbol{\xi}}\|}\widehat{\boldsymbol{\xi}}^{\mathsf{T}}\widehat{\boldsymbol{\xi}}\right)\widehat{\mathbf{q}}_d|_{\mathbf{f}=\mathbf{f}_d^\parallel} + \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{\widehat{\boldsymbol{\xi}}|_{\mathbf{f}=\mathbf{f}_d^\parallel}}{\|\widehat{\boldsymbol{\xi}}\|}\right) \frac{d}{dt}\left(\widehat{\mathbf{q}}_d|_{\mathbf{f}=\mathbf{f}_d^\parallel}\right)_{\mathrm{est}} - \left(\mathbf{S}(\widehat{\varpi})\mathbf{S}(\widehat{\mathbf{q}}_d) + \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}}\right) - \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathbf{f}=\mathbf{f}_d^\parallel}\right) - \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathbf{f}=\mathbf{f}_d^\parallel}\right) - \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}}\right) - \mathbf{S}(\mathbf{q})\mathbf{S}(\hat{\mathbf{q}}_d) + \mathbf{S}(\mathbf{q})\mathbf{S}(\frac{d}{dt}\left(\widehat{\mathbf{q}}_d\right)_{\mathrm{est}}\right) - \mathbf{S}(\mathbf{q})\mathbf{S}(\hat{\mathbf{q}}_d) + \mathbf{S}(\mathbf{q})\mathbf{S}(\hat{$$

IV. ESTIMATION ERRORS ASSOCIATED TERM

Based on auxiliary calculation in Section III, the estimation related terms Ψ_1 in (25), Ψ_2 in (27), Ψ_3 in (28) and Ψ_4 in (34) are expressed by

$$\Psi_{1} := \frac{\partial V_{1}}{\partial \mathbf{v}_{L}} \left(\widetilde{\mathbf{f}}_{v}^{\parallel} + \frac{m_{Q} \ell}{m_{T}} \widetilde{\mathbf{f}}_{q}^{\parallel} + \frac{1}{m_{T}} \left(\frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_{L}} \right)^{\parallel} \widetilde{\mathbf{v}}_{L} \right) \in \mathbb{R}, \tag{SM 41}$$

$$\Psi_2 := \Psi_1 - \frac{h_{\mathbf{q}}}{\|\boldsymbol{\xi}\|} \mathbf{q}^\mathsf{T} \mathbf{S}^2(\mathbf{q}_d) \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L} \left(\widetilde{\mathbf{f}_v} + \frac{m_Q \ell}{m_T} \widetilde{\mathbf{f}_q} \right)^{\parallel} \in \mathbb{R}, \tag{SM 42}$$

$$\Psi_{3} := \Psi_{2} + h_{\boldsymbol{\varpi}} \mathbf{z}_{\boldsymbol{\varpi}}^{\mathsf{T}} \left(\widetilde{\mathbf{f}_{q}} - \left(\dot{\boldsymbol{\varpi}_{d}} - \widehat{\boldsymbol{\varpi}_{d}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right) - \frac{h_{\mathbf{q}}}{h_{\boldsymbol{\varpi}}} \left(\mathbf{q}_{d} - \widehat{\mathbf{q}}_{d} \right) + \frac{k_{\boldsymbol{\varpi}}}{h_{\boldsymbol{\varpi}}} \left(\mathbf{z}_{\boldsymbol{\varpi}} - \widehat{\mathbf{z}}_{\boldsymbol{\varpi}} \right) \right) \in \mathbb{R}, \text{ and}$$
 (SM 43)

$$\Psi_{4} := \Psi_{3} + h_{\mathbf{r}} \mathbf{r}_{3d}^{\mathsf{T}} \mathbf{R} \mathbf{S}(\mathbf{e}_{3}) \left(-\mathbf{R}^{\mathsf{T}} \mathbf{S}(\mathbf{r}_{3d}) (\dot{\mathbf{r}}_{3d} - \widehat{\dot{\mathbf{r}}_{3d}}) - \frac{T_{d}}{h_{\mathbf{r}} m_{T}} \mathbf{S}(\mathbf{e}_{3}) \mathbf{R}^{\mathsf{T}} (\boldsymbol{\delta}_{2}^{\mathsf{T}} - \widehat{\boldsymbol{\delta}_{2}}^{\mathsf{T}})^{\parallel} + \frac{h_{\boldsymbol{\varpi}}}{h_{\mathbf{r}}} \frac{T_{d}}{m_{Q} \ell} \mathbf{S}(\mathbf{e}_{3}) \mathbf{R}^{\mathsf{T}} (\mathbf{z}_{\boldsymbol{\varpi}} - \widehat{\mathbf{z}_{\boldsymbol{\varpi}}})^{\perp} \right)$$
(SM 44)

, respectively.

Using Young's inequality, Ψ_1 can be rewritten as

$$\Psi_{1} = \frac{\partial V_{1}}{\partial \mathbf{v}_{L}} \left(\widetilde{\mathbf{f}}_{v}^{\parallel} + \frac{m_{Q}\ell}{m_{T}} \widetilde{\mathbf{f}}_{q}^{\parallel} + \frac{1}{m_{T}} \left(\frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_{L}} \right)^{\parallel} \widetilde{\mathbf{v}}_{L} \right) \leq \frac{\gamma_{1}}{2} (\beta \mathbf{z}_{p}^{\mathsf{T}} + \mathbf{z}_{v}^{\mathsf{T}}) (\beta \mathbf{z}_{p} + \mathbf{z}_{v}) + \frac{1}{2\gamma_{1}} \delta_{\Psi_{1}}$$

$$\leq \frac{\gamma_{1}}{2} \beta^{2} \|\mathbf{z}_{p}\|^{2} + \frac{\gamma_{1}}{2} \|\mathbf{z}_{v}\|^{2} + \frac{1}{2\gamma_{1}} \delta_{\Psi_{1}}$$
(SM 45)

where $\gamma_1 > 0$ and $\delta_{\Psi_1} := \left\| \widetilde{\mathbf{f}_v}^{\parallel} + \frac{m_Q \ell}{m_T} \widetilde{\mathbf{f}_q}^{\parallel} + \frac{1}{m_T} \left(\frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L} \right)^{\parallel} \widetilde{\mathbf{v}}_L \right\|^2$. According to Section II, $\widetilde{\boldsymbol{x}}$ is bounded, hence $\widetilde{\mathbf{v}}_L$, $\widetilde{\boldsymbol{\omega}}$, $\widetilde{\mathbf{f}_v}$ and $\widetilde{\mathbf{f}_q}$ are also bounded. In this case, δ_{Ψ_1} is bounded as well.

Then using Young's inequality, Ψ_2 can be rewritten as

$$\Psi_{2} = \Psi_{1} - \frac{h_{\mathbf{q}}}{\|\boldsymbol{\xi}\|} \mathbf{q}^{\mathsf{T}} \mathbf{S}^{2}(\mathbf{q}_{d}) \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_{L}} \left(\widetilde{\mathbf{f}}_{v} + \frac{m_{Q} \ell}{m_{T}} \widetilde{\mathbf{f}}_{q} \right)^{\parallel} \leq \Psi_{1} + \frac{\gamma_{2}}{2} \frac{h_{\mathbf{q}}}{\|\boldsymbol{\xi}\|} \|\mathbf{q}^{\mathsf{T}} \mathbf{S}^{2}(\mathbf{q}_{d})\|^{2} + \frac{1}{2\gamma_{2}} \delta_{\Psi_{2}}$$
 (SM 46)

where $\gamma_2 > 0$ and $\delta_{\Psi_2} := \left\| \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{v}_L} \left(\widetilde{\mathbf{f}}_v + \frac{m_Q \ell}{m_T} \widetilde{\mathbf{f}}_q \right)^{\parallel} \right\|^2$. According to $\widetilde{\mathbf{f}}_v$ and $\widetilde{\mathbf{f}}_q$ are bounded, δ_{Ψ_2} is bounded.

Using Young's inequality for Ψ_2 , it can be formulated as

$$\Psi_{3} = \Psi_{2} + h_{\boldsymbol{\varpi}} \mathbf{z}_{\boldsymbol{\varpi}}^{\mathsf{T}} \left(\widetilde{\mathbf{f}_{q}} - \left(\dot{\boldsymbol{\varpi}_{d}} - \widehat{\boldsymbol{\varpi}_{d}} |_{\mathbf{f} = \mathbf{f}_{d}^{\parallel}} \right) - \frac{h_{\mathbf{q}}}{h_{\boldsymbol{\varpi}}} \left(\mathbf{q}_{d} - \widehat{\mathbf{q}}_{d} \right) + \frac{k_{\boldsymbol{\varpi}}}{h_{\boldsymbol{\varpi}}} \left(\mathbf{z}_{\boldsymbol{\varpi}} - \widehat{\mathbf{z}}_{\boldsymbol{\varpi}} \right) \right) \leq \Psi_{2} + \frac{\gamma_{3}}{2} \|\mathbf{z}_{\boldsymbol{\varpi}}\|^{2} + \frac{1}{2\gamma_{3}} \delta_{\Psi_{3}} \quad (SM 47)$$

where $\gamma_3 > 0$ and $\delta_{\Psi_3} := \left\| \widehat{\mathbf{f}}_q - \left(\dot{\boldsymbol{\varpi}}_d - \widehat{\boldsymbol{\varpi}}_d |_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right) - \frac{h_{\mathbf{q}}}{h_{\boldsymbol{\varpi}}} \left(\mathbf{q}_d - \widehat{\mathbf{q}}_d \right) + \frac{k_{\boldsymbol{\varpi}}}{h_{\boldsymbol{\varpi}}} \left(\mathbf{z}_{\boldsymbol{\varpi}} - \widehat{\mathbf{z}}_{\boldsymbol{\varpi}} \right) \right\|^2$. Due to $\widetilde{\mathbf{v}}_L$ is bounded, then $\boldsymbol{\xi} - \widehat{\boldsymbol{\xi}}$ and $\mathbf{q}_d - \widehat{\mathbf{q}}_d$ are bounded. Then based on the reference trajectory described in Section IV [1] are bounded by construction, $\dot{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} - \widehat{\dot{\boldsymbol{\xi}}}|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} - \widehat{\dot{\mathbf{q}}}_d|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \text{ and } \frac{d}{dt} \left(\widehat{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} - \frac{d}{dt} \left(\widehat{\boldsymbol{\xi}}|_{\mathbf{f} = \mathbf{f}_d^{\parallel}} \right)|_{\mathbf{f} = \mathbf{f}_d^{\parallel}}$ are bounded. Moreover, on account of $\widetilde{\boldsymbol{x}}$ is bounded, $\dot{\boldsymbol{\varpi}}_d - \widehat{\boldsymbol{\varpi}}_d|_{\mathbf{f} = \mathbf{f}_d^{\parallel}}$ and $\mathbf{z}_{\boldsymbol{\varpi}} - \widehat{\mathbf{z}}_{\boldsymbol{\varpi}}$ are bounded. In this case, δ_{Ψ_3} is bounded.

Similarly, $\dot{\mathbf{r}}_{3d} - \widehat{\mathbf{r}}_{3d}$ and $\boldsymbol{\delta}_2^\mathsf{T} - \widehat{\boldsymbol{\delta}_2}^\mathsf{T}$ are also bounded. Due to Rotation matrix \mathbf{R} property and, \mathbf{r}_3 and \mathbf{r}_{3d} are unit vector, $\boldsymbol{\delta}_{\Psi_4} := h_\mathbf{r} \mathbf{r}_{3d}^\mathsf{T} \mathbf{R} \mathbf{S}(\mathbf{e}_3) \left(-\mathbf{R}^\mathsf{T} \mathbf{S}(\mathbf{r}_{3d}) (\dot{\mathbf{r}}_{3d} - \widehat{\mathbf{r}}_{3d}) - \frac{T_d}{h_\mathbf{r} m_T} \mathbf{S}(\mathbf{e}_3) \mathbf{R}^\mathsf{T} (\boldsymbol{\delta}_2^\mathsf{T} - \widehat{\boldsymbol{\delta}_2}^\mathsf{T})^{\parallel} + \frac{h_\varpi}{h_\mathbf{r}} \frac{T_d}{m_Q \ell} \mathbf{S}(\mathbf{e}_3) \mathbf{R}^\mathsf{T} (\mathbf{z}_\varpi - \widehat{\mathbf{z}_\varpi})^{\perp} \right)$ is bounded as well. And all of the estimation error related term that remained in time derivative of Lyapunov function V_4 is introduced as

$$\delta_{V_4} := \delta_{\Psi_1} + \delta_{\Psi_2} + \delta_{\Psi_3} + \delta_{\Psi_4}. \tag{SM 48}$$

In turn, the boundedness of δ_{V_4} is confirmed. Then the time derivative of the fourth Lyapunov function candidate V_4 can be expressed as

$$\dot{V}_4 = -(\mathbf{P}\mathbf{z})^\mathsf{T}\mathbf{J}\overline{\mathbf{Q}}^{-1}\overline{\mathbf{Q}}(\mathbf{P}\mathbf{z}) + \Psi_4 \le -(\mathbf{P}\mathbf{z})^\mathsf{T}\mathbf{J}^\star\overline{\mathbf{Q}}^{-1}\overline{\mathbf{Q}}(\mathbf{P}\mathbf{z}) + \delta_{V_4} \le -\frac{\lambda_{\min}(\mathbf{J}^\star)}{\lambda_{\max}(\overline{\mathbf{Q}})}V_4 + \delta_{V_4}. \tag{SM 49}$$

where

$$\mathbf{J}^{\star} := \begin{bmatrix} \beta \mathbf{K_p} - \frac{\gamma_1}{2} \beta^2 \mathbf{I} & \frac{\beta}{2} \mathbf{K_v} - \frac{\gamma_1}{4} \mathbf{I} & -\frac{\beta \|\xi\|}{2m_T} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \frac{\beta}{2} \mathbf{K_v} - \frac{\gamma_1}{4} \mathbf{I} & -(\beta - \mathbf{K_v}) & -\frac{\|\xi\|}{2m_T} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ -\frac{\beta \|\xi\|}{2m_T} \mathbf{I} & -\frac{\|\xi\|}{2m_T} \mathbf{I} & (k_{\mathbf{q}} - \frac{\gamma_2}{2} \frac{h_{\mathbf{q}}}{\|\xi\|}) \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & (k_{\varpi} - \frac{\gamma_3}{2}) \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & k_{\mathbf{r}} \mathbf{I} \end{bmatrix}$$

Remark 2. γ_1 , γ_2 and γ_3 are simple analysis parameters that can always be adjusted to render J^* positive definite and they do not play any role whatsoever in the controller performance.

REFERENCES

- [1] Yang, W., Reis, J., Yu, G. and Silvestre, C. Nonlinear Output Feedback Control of an Underactuated Inverted Pendulum. *IEEE Transactions on Industrial Electronics*. pp. 1-8 (2024)
- [2] Khalil, H. K.. Pearson education, Nonlinear systems (3rd ed.). Upper Saddle River, New Jersey: Prentice Hall. (2002)