

Exploratory Modeling to Inform Planning for COVID-19 Recovery

May 2021

WHY IS EXPLORATORY MODELING NEEDED?

- COVID-19 decreased transit ridership by 60% and profoundly disrupted overall regional transportation behaviours
- One year into the pandemic, significant demand uncertainty persists, making it challenging to forecast revenue and plan service levels
- Exploratory modeling helps manage this uncertainty by simulating future scenarios to understand the probability and distribution of outcomes

SIGNIFICANT UNCERTAINTIES

Willingness to share rides?

Strength of economy and discretional spending?

Auto ownership?

Work from home?

TRADITIONAL FORECASTING PROVIDES A SMALL NUMBER OF FORECASTS

EXPLORATORY MODELING ALLOW MULTIPLE SCENARIOS

SIMULATIONS HELPED ASSESS THE PROBABILITY AND DISTRIBUTIONS OF POTENTIAL SCENARIO OUCOMES

WHAT THE PROCESS LOOKS LIKE

KEY DEMAND FACTORS IMPACTING COVID RECOVERY

Factor:	High Point:	Low Point:
1. Working/Studying from Home	■ Full return to offices and classrooms	 Lasting changes in preferences to working/studying from home
2. Propensity to Share Rides	 Vaccine fully eliminates the need for social distancing 	 Some level of social distancing maintained indefinitely
3. Shift to Driving	 Reduction in private auto ownership in post-vaccine world 	 Lasting change in travel preferences towards private vehicles
4. Employment Levels	 Quick return to full employment and economic recovery 	 Lasting unemployment, prolonged economic impacts
5. Discretionary Trips	 Lasting increase in discretionary trips beyond pre-COVID levels 	 Decrease in discretionary trips due to proximity anxiety, lower income, on-line shopping, etc.

Modeled ridership distributions with and without vaccine

RELATIVE IMPORTANCE OF FACTORS – NO VACCINE

	Discretionary Trips	Employment	Gas Prices	Propensity for Vehicle Ownership	Propensity to Ride Share	Vehicle Capacity	Telecommuting/ Remote Learning
Daily Transit Trips	0.09	0.09	0.09	0.08	0.45	0.04	0.16
PM Speed	0.07	0.13	0.04	0.22	0.07	0.03	0.43
Sustainable Mode Share	80.0	0.08	0.10	0.21	0.41	0.04	0.07
Daily VKT	0.09	0.14	0.06	0.22	0.06	0.03	0.40
Daily Fare Revenue	0.07	0.09	0.09	0.08	0.42	0.05	0.20

RELATIVE IMPORTANCE OF FACTORS – WITH VACCINE

	Discretionary Trips	Employment	Gas Prices	Propensity for Vehicle Ownership	Propensity to Ride Share	Telecommuting/ Remote Learning
Daily Transit Trips	0.12	0.15	0.11	0.10	0.34	0.17
PM Speed	0.07	0.22	0.06	0.23	0.06	0.36
Sustainable Mode Share	0.09	0.09	0.09	0.38	0.21	0.13
Daily VKT	0.07	0.25	0.08	0.22	0.08	0.30
Daily Fare Revenue	0.11	0.17	0.10	0.11	0.31	0.21

What will be "new normal" ridership after the pandemic?

Distribution Percentile	2022 Ridership (% Pre-COVID)	Role in Recovery Scenarios
P0	60%	
P5	70%	Low scenario
P50	82%	Medium scenario
P95	91%	High scenario
P100	103%	

Key DECISIONS INFORMED BY THIS METHODOLOGY

- 2021 budgeting based on ridership and revenue projections
- Recovery expectations and updating of service levels/vehicle procurement
- Funding discussions with senior governments

Future Applications:

- Network decisions and long-term project prioritization
- Capital investment decisions
- Evaluation of major regional policy alternatives

Acknowledgement

The technical work presented here was made possible by using the TMIP-EMAT an opensource tool developed for the USA FHWA

