Der Morse-Komplex und die Morse-Homologie

Eine Bachelorarbeit Betreuerin Prof. Ursula Ludwig

Jakob Dimigen

Contents

1	Einführung	4
2	Morse-Funktionen und Pseudo-Gradienten	5
3	B Der Morse-Komplex	6
4	Morse-Homologie und zelluläre Homologie	7
	4.1 Zellulärer Kettenkomplex	. 8
	4.2 Morse-Funktionen	. 8
	4.3 Der Morse Kompley	8

1 Einführung

Anschauliche Beispiele, vielleicht die zu den Deformations-Lemmata? Dann müsste ich aber auch noch die Deformations-Lemmata machen.

2 Morse-Funktionen und Pseudo-Gradienten

Das Ziel dieses Kapitels ist es, Morse-Funktionen und Pseudo-Gradienten zu definieren und ihre allgegenwertigkeit zu zeigen. Ein weiteres wichtiges Ergebnis ist das Morse-Lemma.

allgegenwertigkeit ist nicht so ein schönes Wort

3 Der Morse-Komplex

In diesem Kapitel wird der Morse Komplex definiert und gezeigt, dass der Morse-Komplex ein Kettenkomplex ist.

4 Morse-Homologie und zelluläre Homologie

In diesem Kapitel wird aus einem Morse-Smale Paar auf einer Mannigfaltigkeit eine zelluläre Struktur dieser Mannigfaltigkeit konstruiert. Dann werden wir sehen, dass der Kettenkomplex, der von dieser Struktur induziert wird schon mit dem Morse-Komplex übereinstimmt. Somit stimmt die Morse-Homologie mit der zellulären Homologie überein, also auch mit der singulären Homologie.

4.1 Zellulärer Kettenkomplex

Definition 4.1.1 (CW-Komplex).

Definition 4.1.2 (Zellulärer Kettenkomplex, Zelluläre Homologie).

4.2 Morse-Funktionen

Definition 4.2.1 (kritischer Punkt).

Definition 4.2.2 (Index, nicht degeneriertheit).

Lemma 4.2.3 (Unabhängigkeit von Karte).

Theorem 4.2.4 (Morse Lemma).

Theorem 4.2.5 (Existenz von Morse-Funktionen). Sei $M \subseteq \mathbb{R}^n$ eine Untermannigfaltigkeit. Dann ist für fast alle $p \in \mathbb{R}^n$ die Funktion

$$f: M \to \mathbb{R}$$

$$x \mapsto \|x - p\|^2$$

eine Morse-Funktion.

4.3 Der Morse Komplex

Definition 4.3.1 (Pseudo-Gradient).

Definition 4.3.2 (Aufsteigende und Absteigende Mannigfaltigkeit).

Definition 4.3.3 (Morse-Komplex und Morse-Homologie).

Lemma 4.3.4 (Unabhängigkeit von g und f). Die Morse Homologie einer Mannigfaltigkeit M hängt nicht von dem gewählten Pseudo-Gradienten g und der Morse-Funktion f ab.

Theorem 4.3.5. Die Morse-Homologie einer Mannigfaltigkeit entspricht der Zellulären Homologie.