Student Performance — Exploratory Data Analysis

Presented by Riya Manoj

Introduction

What is EDA?

- Exploratory Data Analysis (EDA) is the process of analyzing datasets to summarize their main characteristics.
- It uses statistical techniques and visualization to uncover patterns, detect anomalies and test assumptions.

Purpose of EDA

- To understand the structure and quality of data.
- To identify relationship between variables.
- To generate insights that guide further analysis or modeling.

Problem Statement

- To study student performance in subjects like Math, Reading, and Writing.
- To analyze how demographic and social factors (gender, parental education, lunch type, test preparation) influence scores.
- To provide meaningful insights that can support future predictive modeling.

About the Dataset

- - \sim 1000 rows, 8 columns
- - Numeric: math, reading, writing scores
- - Categorical: gender, parental education, lunch, test preparation course, race

gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
female	group B	bachelor's degree	standard	none	72	72	74
female	group C	some college	standard	completed	69	90	88
female	group B	master's degree	standard	none	90	95	93
male	group A	associate's degree	free/reduced	none	47	57	44
male	group C	some college	standard	none	76	78	75

Workflow

Data Cleaning

- Verified dataset structure using info()
- Checked for missing values none found
- Verified data consistency (no duplicates)
- No major cleaning required

Distribution of Scores

- - Most scores between 60–80
- - Few extreme outliers
- - Balanced distributions

Gender and Performance

- - Females: better in reading & writing
- - Males: slightly better in math
- - Differences small

Parental Education Level

- Higher education level → higher scores
- - Clear positive correlation

Lunch Type

- - Standard lunch \rightarrow higher performance
- - Free/reduced lunch \rightarrow relatively lower scores

Test Preparation Course

- - Completed test prep → higher scores
- - Preparation has clear positive effect

Correlation Between Subjects

- - Math, Reading, Writing strongly correlated
- Doing well in one subject → likely to do well in others

Key Insights

- **Test preparation course** -> Students who completed it showed consistently higher scores
- Parental education->Higher parental education levels correlate with better student performance across all subjects.
- Lunch type->Students with a standard lunch performed better than those with free/reduced lunch, suggesting resource or nutrition impact.
- Gender trends->Females outperformed in reading & writing, while males had a slight advantage in math.
- Score relationships->Strong positive correlation among math, reading, and writing scores.

Tools Used

- Python Libraries Pandas, NumPy, Matplotlib
- Platform Google Colab
- Dataset source -Kaggle

Conclusion

- EDA provided a clear understanding of the dataset through cleaning, exploration, and visualization
- Analysis showed that gender, parental education, lunch type, and test preparation significantly affect student performance
- Strong correlations were observed among math, reading and writing scores
- EDA proved essential for extracting insights and preparing the data for further modeling

Thank You