Example 1 Expand
$$\left(x^2 + \frac{3}{x}\right)^4$$
, $x \neq 0$

Solution By using binomial theorem, we have

$$x^{2} + \frac{3}{x} = {}^{4}C_{0}(x^{2})^{4} + {}^{4}C_{1}(x^{2})^{3} \left(\frac{3}{x}\right) + {}^{4}C_{2}(x^{2})^{2} \left(\frac{3}{x}\right)^{2} + {}^{4}C_{3}(x^{2}) \left(\frac{3}{x}\right)^{3} + {}^{4}C_{4} \left(\frac{3}{x}\right)^{4}$$

$$= x^{8} + 4.x^{6} \cdot \frac{3}{x} + 6.x^{4} \cdot \frac{9}{x^{2}} + 4.x^{2} \cdot \frac{27}{x^{3}} + \frac{81}{x^{4}}$$

$$= x^{8} + 12x^{5} + 54x^{2} + \frac{108}{x} + \frac{81}{x^{4}}.$$

Example 2 Compute (98)⁵.

Solution We express 98 as the sum or difference of two numbers whose powers are easier to calculate, and then use Binomial Theorem.

Write
$$98 = 100 - 2$$

Therefore,
$$(98)^5 = (100 - 2)^5$$

= ${}^5C_0 (100)^5 - {}^5C_1 (100)^4.2 + {}^5C_2 (100)^32^2$
- ${}^5C_3 (100)^2 (2)^3 + {}^5C_4 (100) (2)^4 - {}^5C_5 (2)^5$
= $10000000000 - 5 \times 100000000 \times 2 + 10 \times 1000000 \times 4 - 10 \times 10000$
 $\times 8 + 5 \times 100 \times 16 - 32$
= $10040008000 - 1000800032 = 9039207968$.

Example 3 Which is larger (1.01)¹⁰⁰⁰⁰⁰⁰ or 10,000?

Solution Splitting 1.01 and using binomial theorem to write the first few terms we have

$$(1.01)^{1000000} = (1 + 0.01)^{1000000}$$

$$= {}^{1000000}C_0 + {}^{1000000}C_1(0.01) + \text{ other positive terms}$$

$$= 1 + 1000000 \times 0.01 + \text{ other positive terms}$$

$$= 1 + 10000 + \text{ other positive terms}$$

$$> 10000$$
Hence
$$(1.01)^{1000000} > 10000$$

Example 4 Using binomial theorem, prove that 6^n –5n always leaves remainder 1 when divided by 25.

Solution For two numbers a and b if we can find numbers q and r such that a = bq + r, then we say that b divides a with q as quotient and r as remainder. Thus, in order to show that $6^n - 5n$ leaves remainder 1 when divided by 25, we prove that $6^n - 5n = 25k + 1$, where k is some natural number.

We have

$$(1+a)^n = {^nC_0} + {^nC_1}a + {^nC_2}a^2 + \dots + {^nC_n}a^n$$

For a = 5, we get

$$(1+5)^n = {^nC_0} + {^nC_1}5 + {^nC_2}5^2 + \dots + {^nC_n}5^n$$

i.e.
$$(6)^n = 1 + 5n + 5^2 \cdot {^nC_2} + 5^3 \cdot {^nC_3} + \dots + 5^n$$

i.e.
$$6^n - 5n = 1 + 5^2 ({}^nC_2 + {}^nC_3 + ... + 5^{n-2})$$

or
$$6^n - 5n = 1 + 25 ({}^{n}C_{2} + 5 .{}^{n}C_{3} + ... + 5^{n-2})$$

or
$$6^n - 5n = 25k + 1$$
 where $k = {}^{n}C_2 + 5 \cdot {}^{n}C_3 + \dots + 5^{n-2}$.

This shows that when divided by 25, $6^n - 5n$ leaves remainder 1.