Google Cloud

Explore the Dataset

Advanced ML with TensorFlow on GCP

End-to-End Lab on Structured Data ML

Production ML Systems

Image Classification Models

Sequence Models

Recommendation Systems

Steps involved in doing ML on GCP

- **Explore the dataset**
- Create the dataset
- 3 Build the model
- 4 Operationalize the model

The most common ML models at Google are models that operate on structured data

Type of network	# of network layers	# of weights	% of deployed models	
MLP0	5	20M	61%	
MLP1	4	5M		
LSTM0	58	52M	29%	
LSTM1	56	34M		
CNN0	16	8M	5%	
CNN1	89	100M		

https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Our goal is to predict the weight of newborns so that all newborns can get the care they need

Predict the weight of newborns

Identify babies who may need special facilities

Get babies the care they need

This is what we will build

An open dataset of births is available in BigQuery

Births recorded in the 50 states of the USA from 1969 to 2008.

Table ID	bigquery-public-data:samples.natality		
Table Size	21.9 GB		
Long Term Storage Size	21.9 GB		
Number of Rows	137,826,763		

https://bigquery.cloud.google.com/table/bigquery-public-data:samples.natality

The data set includes details about the pregnancy

Date of birth

Location of birth (US state)

Baby's birth weight (lbs)

Mother's age at birth

Duration of pregnancy

Mother's weight gain (lbs)

year	INTEGER	NULLABLE	Four-digit year of the birth. Example: 1975.
month	INTEGER	NULLABLE	Month index of the date of birth, where 1=January.
day	INTEGER	NULLABLE	Day of birth, starting from 1.
wday	INTEGER	NULLABLE	Day of the week, where 1 is Sunday and 7 is Saturday.
state	STRING	NULLABLE	The two character postal code for the state. Entries after 2004 do not include this value.
weight_pounds	FLOAT	NULLABLE	Weight of the child, in pounds.
mother_age	INTEGER	NULLABLE	Reported age of the mother when giving birth.
gestation_weeks	INTEGER	NULLABLE	The number of weeks of the pregnancy.

The end-to-end machine learning set of labs

BigQuery is a serverless data warehouse

- Interactive analysis of petabyte scale databases.
- 2 Familiar, SQL 2011 query language and functions.

- Many ways to ingest, transform, load, export data to/from BigQuery.
- 1 Nested and repeated fields, user-defined functions.
- Data storage is inexpensive; queries charged on amount of data processed (or a monthly flat rate).

Run a query from BigQuery web UI

Demo: Query large datasets in seconds

```
# standardsql
 # medicare claims in 2014
 SELECT
   nppes provider state AS state,
    ROUND(SUM(total claim count) / 1e6) AS total claim count millions
 FROM
    `bigquery-public-data.medicare.part d prescriber 2014`
 GROUP BY
   state
                                                                Row state total_claim_count_millions
 ORDER BY
                                                                     CA
                                                                                          116.0
   total claim count millions DESC
                                                                     FL
                                                                                          91.0
 LIMIT 5;
                                                                 3
                                                                     NY
                                                                                          80.0
                                                                     TX
                                                                 4
                                                                                          76.0
https://bigquery.cloud.google.com/savedquery/663413318684:781a98ddf2264505af2b6a8fc398a80e
                                                                     PA
                                                                                          63.0
```


Cloud Datalab notebooks are developed in an iterative, collaborative process

Cloud Datalab notebooks are developed in an iterative, collaborative process

You can develop locally with Cloud Datalab and then scale out data processing to the cloud

Cloud Datalab notebooks let you change the underlying hardware

Starting Cloud Datalab in Cloud Shell is simple

Preprocessing data at scale with BigQuery + Cloud Datalab

BigQuery in Python to get a Pandas DF

```
query = """
SELECT
  weight_pounds,
  is_male,
  mother_age,
  plurality,
  gestation_weeks,
  ABS(FARM_FINGERPRINT(CONCAT(CAST(YEAR AS STRING), CAST(month AS STRING)))
FROM
  publicdata.samples.natality
WHERE year > 2000
"""
```

```
# Call BigQuery and examine in dataframe
import google.datalab.bigquery as bq
df = bq.Query(query + " LIMIT 100").execute().result().to_dataframe()
df.head()
```

	weight_pounds	is_male	mother_age	plurality	gestation_weeks	hashmonth
0	3.562670	True	25	1	30	1403073183891835564
1	3.999185	False	30	1	32	7146494315947640619

Pandas + BigQuery in notebook rocks!

```
# Bar plot to see gestation_weeks with avg_wt linear and num_babies logarithmic
df = get_distinct_values('gestation_weeks')
df = df.sort_values('gestation_weeks')
df.plot(x='gestation_weeks', y='num_babies', logy=True, kind='bar');
df.plot(x='gestation_weeks', y='avg_wt', kind='bar');
```


Lab

Explore a BigQuery dataset to find features to use in an ML model

In this lab, you will investigate which features have influence on what you want to predict: the baby's weight.

The end-to-end process

cloud.google.com

