b. Find preorder, inorder and post order traversal.

32. a. If (L, \leq) is a lattice then for any a, b, $c \in L$, prove that (i) $a \wedge (b \vee c) \geq (a \wedge b) \vee (a \wedge c)$ (ii) $b \le c$ then $a \lor b \le a \lor c$.

- b.i. In Boolean algebra prove that $(x+y)(\overline{x}+z) = xz + \overline{x}y + yz = xz + \overline{x}y$.
- ii. Simplify the Boolean expression $x \mid y + z(\overline{xy + xz}) \mid$

Reg. No.		0	

B.Tech. DEGREE EXAMINATION, DECEMBER 2018

1st to 6th Semester

15MA302 - DISCRETE MATHEMATICS

(For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

- 1. $(p \rightarrow q) \land (r \rightarrow q)$ is equivalent to
 - (A) $(p \vee r) \rightarrow q$

(B) $(p \wedge r) \rightarrow q$

(C) Tautology

- (D) Contradiction
- 2. $p \rightarrow q$ is logically equivalent to
 - (A) $7p \rightarrow 7q$

(B) $7p \rightarrow p$

(C) $7p \wedge q$

- (D) $7p \vee q$
- 3. A premise may be introduced at any point in the derivation is called
 - (A) Rule P

(B) Rule T

(C) Rule C

(D) Rule CP

- 4. $7q, p \rightarrow q \Rightarrow$
 - (A) 7p(C) p

- (D) $p \wedge q$
- 5. A collection of all well defined objects is called
 - (A) Set

(B) Group

(C) Coset

- (D) Lattice
- 6. A digraph representing the partial order relation
 - (A) Helmut hasse

(B) Poset

(C) Graph relation

- (D) Relation
- 7. If A is a non empty set with n elements, then number of possible relations on the set A is (A) 2ⁿ
 - (C) 2^{n^2}

(B) 2^{n-1} (D) 2^{n+1}

- 8. How many possible function we get f:A \rightarrow B, if |A| = m and |B| = n
 - (A) 2^n (C) n^m

- (D) m^n
- 9. The order of recurrence relation $S(K) 4S(K-1) 11S(K-2) + 30S(K-3) = 4^K$ is
 - (A) 1

(C) 3

(D) 4

Page 4 of 4

10.	If O(G)=10 and if H is a proper subgroup of	f G, t	hen the possible order of H is			
	(A) 2	(B)				
	(C) 3	(D)	6			
11	The concreting function of coguence 1 1 1		rivon by			
11.	11. The generating function of sequence 1, 1, 1, given by (A) $\frac{1}{1+x}$ (B) $\frac{1}{1-x}$ (C) $\frac{1}{1-x}$ (D) $\frac{1}{1-x}$					
	(A) $\frac{1}{1+x}$	(D)	1 - 4			
	(C) 1	(D)	1 - x			
	(C) $\frac{1+x}{(1-x)^2}$	(D)	$\frac{1}{x}$			
	$(1-x)^{-}$					
12.	2. The order of the identity element of a group of order 3 is					
	(A) 1	(B)	0			
	(C) 3	(D)	2			
10						
13.	A vertex which is not adjacent to every other					
	(A) Isolated	. ,	Pendant			
	(C) Incident	(D)	Simple			
14	The number of edges zero in					
1	(A) Directed graph	(B)	Pseudo graph			
	(C) Null graph	• •	Undirected graph			
	(O) I tom Broken	(-)	Surp.			
15.	15. A minimum height of a 11 vertex binary tree is					
	(A) 4	(B)	5			
	(C) 3	(D)	6			
1.0			parties of the second second			
16.	Graph G is graph, if all the vertices h					
	(A) Bipartite		Complete bipartite			
	(C) Proper subgraph	(D)	Regular			
17.	A is a lattice which contains a least	elem	ent and a greatest element and which is			
	both complement and distributive.					
	(A) Boolean algebra	(B)	Algebra			
	(C) Lattice	(D)	Modular			
18.	a.b.c + a.b is equal to	(D)				
	(A) a	(B)				
	(C) a.b	(D)	a+b.c			
10	If (I <) is any lattice and if h is a complem	ant o	fa then avh-			
19.	If (L, \leq) is any lattice and if b is a complem (A) 0	(B)				
	(A) 0 (C) a	(D)				
	(C) a	(D)				
20.	20. Given $D_{42} = \{1, 2, 3, 6, 7, 14, 21, 42\}$ the complement of 14 is					
	(A) 3	(B)	1			
	(C) 7	(D)	2			
	See pro-	. ,				
$PART - B (5 \times 4 = 20 Marks)$						
	Answer ANY FIV	Έ Qι	uestions			
	- P. 101					
21.	Construct a truth table for $(p \lor q) \to (p \land q)$					

- 22. Use mathematical induction to show that $n! \ge 2^{n-1}$, for n = 1, 2, 3, ...
- 23. Prove that $(A-C) \cap (C-B) = \phi$, analytically where A, B, C are sets.
- 24. Prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 25. Solve the recurrence relation $a_n 2a_{n-1} = 3^n$, $a_1 = 5$.
- 26. Find the value of $+\uparrow 32\uparrow 23\mid 8-42$ by using the prefix expression.
- 27. Simplify the Boolean expression a'.b'.c + a.b'.c + a'.b'.c', using Boolean algebra identies.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Show, by indirect method of proof, that $\forall x (p(x) \lor q(x)) \Rightarrow (\forall x p(x)) \lor (\exists x q(x))$.

(OR)

- b. Show that the premises "one student in this class knows how to write programs in JAVA" and "everyone who known how to write programs in JAVA can get a high-paying job" imply the conclusion "someone in this class can get a high paying job".
- 29. a.i. If R is the relation on the set of positive integers such that $(a,b) \in R$ iff $a^2 + b$ is even, prove that R is an equivalence relation.
 - ii. If R is relation on the set of integers such that $(a,b) \in R$, iff 3a + 4b = 7n, for the same integer n, prove that R is an equivalence relation.

(OR)
b. Let A = {1, 2, 3, 4, 5} and R = {(1, 1), (1,3), (1,5), (2,3), (2, 4)(3, 3), (3, 5), (4, 2), (4, 4), (5, 4)}. Find the transitive closure of R.

30. a. Solve the recurrence relation $a_{n+2} - 6a_{n+1} + 9a_n = 3(2^n) + 7(3^n), n \ge 0$ given that $a_0 = 1$ and $a_1 = 4$.

(OR)

- b. State and prove Lagrange's theorem.
- 31. a. Use Kruskal's algorithm to find a minimum spanning tree for the weighted graph.

