8 INTEGRALI GENERALIZZATI

In molte situazioni concrete (calcolo delle probabilità e statistica ne sono esempi) si presentano integrali di funzioni illimitate e integrali estesi a intervalli illimitati. Ci occuperemo ora di queste situazioni, mostrando come la teoria precedente si possa estendere in maniera naturale per tenere conto anche di questi casi.

8.1 Integrazione di funzioni non limitate

Consideriamo il caso tipico illustrato in figura 6.15, in cui $f:[a,b)\to\mathbb{R}$ è continua e

$$\lim_{x \to b^-} f(x) = +\infty$$

(Del tutto analogo è il caso: $\lim_{x\to b^-} f(x) = -\infty$).

Figura 6.15. $\lim_{x \to b^{-}} f(x) = +\infty$.

Per definire l'integrale di f in [a, b], l'idea è molto semplice: si integra tra a e $b - \varepsilon$ $(\varepsilon > 0)$ e poi si passa al limite per $\varepsilon \to 0^+$. In simboli, si pone

(8.1)
$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a}^{b-\varepsilon} f(x)dx$$

Definizione 6.3 Se il limite in (8.1) esiste finito allora f si dice integrabile in [a,b] oppure che l'integrale $\int_a^b f(x)dx$ è convergente.

Se il limite in (8.1) è $+\infty$ oppure $-\infty$, l'integrale si dirà divergente.

Se il limite non esiste allora l'integrale non esiste.

Analoghe definizioni si hanno se $f:(a,b]\longrightarrow \mathbb{R}$, con f continua e

$$\lim_{x \to a^+} f(x) = \pm \infty$$

Si pone:

(8.2)
$$\int_{a}^{b} f(x)dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f(x)dx$$

Esempio importante

Calcolo dell'integrale

$$\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} \qquad (\alpha > 0)$$

Caso $\alpha = 1$. Si ha:

$$\int_{a}^{b-\varepsilon} \frac{dx}{(b-x)} = \left[-\log(b-x) \right]_{a}^{b-\varepsilon} = -\log\varepsilon + \log(b-a)$$

Dunque

$$\int_{a}^{b} \frac{dx}{(b-x)} = \lim_{\varepsilon \to 0^{+}} \left[-\log \varepsilon + \log(b-a) \right] = +\infty$$

Quindi l'integrale è divergente.

Caso $\alpha \neq 1$. Si ha:

$$\int_{a}^{b-\varepsilon} \frac{dx}{(b-x)^{\alpha}} = \frac{1}{1-\alpha} \left[-(b-x)^{1-\alpha} \right]_{a}^{b-\varepsilon} = \frac{1}{1-\alpha} \left[-\varepsilon^{1-\alpha} + (b-a)^{1-\alpha} \right]$$

Dunque

$$\int_a^b \frac{dx}{(b-x)^{\alpha}} = \lim_{\varepsilon \to 0^+} \frac{1}{1-\alpha} \left[-\varepsilon^{1-\alpha} + (b-a)^{1-\alpha} \right] = \begin{cases} +\infty & \text{se } \alpha > 1 \\ \frac{(b-a)^{1-\alpha}}{1-\alpha} & \text{se } \alpha < 1 \end{cases}$$

Riassumendo abbiamo:

(8.3)
$$\int_{a}^{b} \frac{dx}{(b-x)^{\alpha}} \quad \dot{\mathbf{e}} \quad \begin{cases} \text{divergente a } +\infty & \text{se } \alpha \geq 1 \\ \text{convergente } = \frac{(b-a)^{1-\alpha}}{1-\alpha} & \text{se } \alpha < 1 \end{cases}$$

Un risultato perfettamente analogo vale per l'integrale

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}}$$

8.2 Criteri di integrabilità al finito

Siano $f, g: [a, b) \longrightarrow \mathbb{R}$, continue, con

$$\lim_{x \to b^-} f(x) = \lim_{x \to b^-} g(x) = +\infty$$

I seguenti criteri permettono di decidere se un integrale è convergente o divergente, senza calcolarlo:

Confronto

Se $0 \le f(x) \le g(x)$ in [a, b), allora

Infatti, per la proprietà di monotonia dell'integrale, si ha:

$$0 \le \int_a^{b-\varepsilon} f(x)dx \le \int_a^{b-\varepsilon} g(x)dx$$

e, passando al limite per $\varepsilon \to 0^+$, si prova la tesi.

Confronto asintotico

Se $f>0,\,g>0$ e $f\sim g$ per $x\to b^-$ allora

$$f$$
 integrabile \iff g integrabile

Analoghi criteri valgono se $f, g \to +\infty$ per $x \to a^+$, o se $f, g \to -\infty$.

In quest'ultimo caso, le disuguaglianze del criterio del confronto devono valere tra i moduli di $f \in g$.

Esembio

8.2 Consideriamo gli integrali

$$I_1 = \int_0^1 \frac{dx}{\sqrt[3]{1-x^2}}, \qquad I_2 = \int_1^3 \frac{dx}{x^2 - 5x + 4}$$

 I_1 : La funzione $f(x) = \frac{1}{\sqrt[3]{(1-x^2)}} = \frac{1}{(1-x)^{1/3}(1+x)^{1/3}}$ è continua e positiva in [0,1] e tende a $+\infty$ per $x \to 1^-$. Inoltre $f(x) \sim \frac{1}{\sqrt[3]{2}} \frac{1}{(1-x)^{1/3}}$ per $x \to 1^-$. D'altra parte la funzione $g(x) = \frac{1}{\sqrt[3]{2}(1-x)^{1/3}}$ è positiva e integrabile (dalla (8.3) con $\alpha = 1/3$) e quindi anche f risulta integrabile, in base al confronto asintotico.

L'integrale I_1 è perciò convergente.

 I_2 : La funzione $f(x) = \frac{1}{x^2 - 5x + 4} = \frac{1}{(x - 1)(x - 4)}$ è continua e negativa in [1, 3] e tende a $-\infty$ per $x \to 1^+$. Il segno non costituisce un problema in quanto possiamo riferirci a -f(x) che è positiva.

Osserviamo che $-f(x) \sim \frac{1}{3(x-1)}$ e che $g(x) = \frac{1}{3(x-1)}$ è (positiva) e non integrabile (sempre dalla (8.3) con $\alpha = 1$). Ne segue che anche -f ed f non sono integrabili.

L'integrale I_2 è perciò divergente a $-\infty$.

Analogamente a quanto accade con i criteri di convergenza per le serie numeriche (v. cap. 5), quando la convergenza di un integrale viene stabilita mediante confronto o confronto asintotico tra due funzioni, il valore numerico dei due integrali sarà in generale diverso.

Una funzione f(x) potrebbe essere illimitata per $x \to a^+$ senza avere segno definitivamente costante. Ad esempio,

$$f(x) = \frac{1}{\sqrt{x}} \sin \frac{1}{x}$$

è illimitata per $x \to 0^+$, ma non tende a $\pm \infty$, e il suo segno è variabile in ogni intorno destro di 0. Per funzioni di questo tipo i criteri del confronto e del confronto asintotico non sono applicabili. Vale invece l'implicazione seguente:

TEOREMA 6.8

$$\int_a^b |f(x)| dx$$
 convergente $\Longrightarrow \int_a^b f(x) dx$ convergente

Se |f| è integrabile in $[a, +\infty)$ si dice che f è assolutamente integrabile in $[a, +\infty)$. Perciò il teorema afferma che una funzione assolutamente integrabile è anche integrabile.

DIMOSTRAZIONE. La dimostrazione è simile a quella dell'analoga proprietà delle serie numeriche (si veda il Teorema 5.3 cap. 5). Per definizione,

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) dx.$$

Separiamo ora la funzione f nella sua parte positiva e negativa:

$$f\left(x\right) =f^{+}\left(x\right) -f^{-}\left(x\right) ,$$

dove, per definizione:

$$f^{+}(x) = \begin{cases} f(x) & \text{se } f(x) \ge 0 \\ 0 & \text{se } f(x) < 0 \end{cases} \qquad f^{-}(x) = \begin{cases} -f(x) & \text{se } f(x) \le 0 \\ 0 & \text{se } f(x) > 0 \end{cases}$$

Le funzioni f^+, f^- sono ≥ 0 e soddisfano le disuguaglianze:

$$\int_{a+\varepsilon}^{b} f^{+}(x) dx \le \int_{a+\varepsilon}^{b} |f(x)| dx;$$
$$\int_{a+\varepsilon}^{b} f^{-}(x) dx \le \int_{a+\varepsilon}^{b} |f(x)| dx.$$

Poiché per ipotesi esiste finito $\lim_{\varepsilon\to 0} \int_{a+\varepsilon}^b |f(x)| dx$ (in quanto $\int_a^b |f(x)| dx$ è convergente), ne segue che le funzioni

$$\varepsilon \longmapsto \int_{a+\varepsilon}^{b} f^{+}(x) dx; \quad \varepsilon \longmapsto \int_{a+\varepsilon}^{b} f^{-}(x) dx$$

sono limitate. Inoltre, queste funzioni sono anche monotone decrescenti, perché

$$\varepsilon_1 < \varepsilon_2 \Longrightarrow (a + \varepsilon_1, b) \supset (a + \varepsilon_2, b) \Longrightarrow \int_{a + \varepsilon_1}^b f^+(x) dx \ge \int_{a + \varepsilon_2}^b f^+(x) dx$$

perché $f^+ \ge 0$ (e lo stesso vale per f^-). Ricordiamo ora che per il Teorema 3.31 (cap. 3), una funzione limitata e monotona ammette limite finito, perciò esistono finiti

$$\lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f^{+}\left(x\right) dx, \quad \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f^{-}\left(x\right) dx$$

e quindi anche

$$\lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) dx = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f^{+}(x) dx - \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b} f^{-}(x) dx.$$

Di conseguenza f è integrabile.

Esempio

L'integrale

$$\int_0^1 \frac{1}{\sqrt{x}} \sin \frac{1}{x} dx$$

converge, perché

$$\left| \frac{1}{\sqrt{x}} \sin \frac{1}{x} \right| \le \frac{1}{\sqrt{x}}$$

che ha integrale convergente.

8.3 Integrazione su intervalli illimitati

Sia $f:[a,+\infty)\longrightarrow \mathbb{R}$, continua. Poniamo

(8.4)
$$\int_{a}^{+\infty} f(x)dx = \lim_{\omega \to +\infty} \int_{a}^{\omega} f(x)dx$$

$$y = f(x)$$

$$Q = \lim_{\omega \to +\infty} \int_{a}^{\omega} f(x)dx$$

Figura 6.16. L'integrale su $[a,+\infty)$ è definito come $\lim_{\omega \to +\infty} \int_a^\omega f(x) dz$.

DEFINIZIONE 6.4 Se il limite in (8.4) esiste finito allora f si dice integrabile in $[a, +\infty)$ oppure che l'integrale $\int_a^{+\infty} f(x) dx$ è convergente. Se il limite in (8.4) è $+\infty$ oppure $-\infty$, l'integrale si dirà divergente. Se infine il limite non esiste allora l'integrale non esiste.

Analogamente se $f:(-\infty,b]\longrightarrow \mathbb{R}$ è continua, si pone

$$\int_{-\infty}^{b} f(x)dx = \lim_{\omega \to -\infty} \int_{\omega}^{b} f(x)dx$$

ed infine, se $f:(-\infty,+\infty)\longrightarrow\mathbb{R}$ è continua, si pone

$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{+\infty} f(x)dx$$

dove c è un punto qualunque.

Nel seguito, per semplicità, ci riferiremo all'intervallo $[a, +\infty)$.

Calcolo dell'integrale

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \qquad \alpha > 0$$

Caso
$$\alpha = 1$$
. Si ha

$$\int_{1}^{\omega} \frac{1}{x} dx = [\log x]_{1}^{\omega} = \log \omega$$

Poiché $\lim_{\omega \to +\infty} \log \omega = +\infty$, l'integrale è divergente.

Caso $\alpha \neq 1$. Si ha:

$$\int_{1}^{\omega} \frac{1}{x^{\alpha}} dx = \frac{1}{1 - \alpha} [x^{1 - \alpha}]_{1}^{\omega} = \frac{1}{1 - \alpha} (\omega^{1 - \alpha} - 1)$$

Dunque

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \lim_{\omega \to +\infty} \frac{1}{1 - \alpha} (\omega^{1 - \alpha} - 1) = \begin{cases} +\infty & \text{se } \alpha < 1 \\ \frac{1}{\alpha - 1} & \text{se } \alpha > 1 \end{cases}$$

Riassumendo,

(8.5)
$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \quad e \quad \begin{cases} \text{divergente a} & +\infty & \text{se } \alpha \leq 1 \\ \text{convergente} & = \frac{1}{\alpha - 1} & \text{se } \alpha > 1 \end{cases}$$

Divergenza della serie armonica

Nel capitolo 5, par. 1.1 abbiamo affermato che la serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

è divergente. L'uso degli integrali generalizzati permette una rapida giustificazione dell'affermazione.

Figura 6.17. L'area ombreggiata è uguale a $\int_1^6 \frac{1}{x} dx$ mentre la somma delle aree dei rettangoli è uguale a $\sum_{n=1}^5 \frac{1}{n}$.

Dalla figura 6.17 è facile convincersi che fissato N, intero, vale sempre la disugua-glianza

(8.6)
$$\int_{1}^{N} \frac{1}{x} dx < \sum_{n=1}^{N-1} \frac{1}{n}$$

Poiché $\int_1^N \frac{1}{x} dx = \log N \to +\infty$ se $N \to +\infty$, anche $\sum_{n=1}^N \frac{1}{n} \to +\infty$ se $N \to +\infty$, che dimostra la divergenza della serie armonica.

Convergenza della serie armonica generalizzata per lpha>1

Abbiamo visto (cap. 5, par. 1.2) che la serie

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

converge per $\alpha > 1$ (e diverge per $\alpha \le 1$). L'affermazione è stata dimostrata per $\alpha \ge 2$ (confronto con la serie di Mengoli). Siamo ora in grado di dimostrarla per qualunque $\alpha > 1$. Il ragionamento è analogo a quello sulla serie armonica, con le disuguaglianze in senso inverso. Dalla figura 6.18 si vede che per ogni intero N vale la disuguaglianza

$$\sum_{n=2}^{N} \frac{1}{n^{\alpha}} \le \int_{1}^{N} \frac{dx}{x^{\alpha}}$$

Poiché per $\alpha > 1$ e $N \to \infty$ l'integrale converge (per quanto già visto), anche la serie converge (la successione delle somme parziali è crescente e superiormente limitata).

Figura 6.18.

Criteri di integrabilità all'infinito

Siano $f, g : [a, +\infty) \longrightarrow \mathbb{R}$, continue.

Per decidere se un integrale è convergente o meno, valgono criteri analoghi a quelli per l'integrale di funzioni illimitate.

Confronto

Se $0 \le f(x) \le g(x)$ in $[a, +\infty)$ allora

$$g$$
 integrabile \Longrightarrow f integrabile f non integrabile \Longrightarrow g non integrabile

Confronto asintotico

Se f > 0, g > 0 e $f \sim g$ per $x \to +\infty$, allora

$$f$$
 integrabile \iff g integrabile

L'integrale

$$\int_0^{+\infty} e^{-x^2} dx$$

è convergente.

Infatti, si può scrivere

$$\int_0^{+\infty} e^{-x^2} dx = \int_0^1 e^{-x^2} dx + \int_1^{+\infty} e^{-x^2} dx$$

Osserviamo ora che per x > 1 si ha $x^2 > x$ e quindi $e^{-x^2} < e^{-x}$.

D'altra parte

$$\int_{1}^{+\infty} e^{-x} dx = \lim_{\omega \to +\infty} \int_{1}^{\omega} e^{-x} dx = \lim_{\omega \to +\infty} \left[-e^{-\omega} + \frac{1}{e} \right] = \frac{1}{e}$$

Per confronto si deduce che anche $\int_1^{+\infty} e^{-x^2} dx$ è convergente.

$$I_1 = \int_0^{+\infty} \frac{x^2 + 1}{x^4 + x + 1} dx, \qquad I_2 = \int_0^{+\infty} \frac{1}{\sqrt{x^2 + 1}} dx$$

 I_1 : $f(x) \sim \frac{1}{x^2}$ per $x \to +\infty$ e quindi è integrabile ((8.5), con $\alpha = 2$). L'integrale I_1 è pertanto convergente.

 I_2 : $f(x) \sim \frac{1}{x}$ per $x \to +\infty$ e quindi non è integrabile ((8.5) con $\alpha = 1$).

L'integrale I_2 è pertanto divergente a $+\infty$.

Per funzioni di segno qualunque si ha ancora il:

TEOREMA 6.9

$$\int_{a}^{+\infty} |f(x)| dx \quad convergente \quad \Longrightarrow \int_{a}^{+\infty} f(x) dx \quad convergente$$

In altre parole, se f è assolutamente integrabile in $[a, +\infty)$, è anche integrabile. La dimostrazione è molto simile a quella fatta nel caso degli integrali generalizzati su intervalli limitati.

Esercizi

Stabilire quali dei seguenti integrali esistono (eventualmente in senso generalizzato). In caso affermativo, calcolarlo quando è possibile.

 $\int_{0}^{+\infty} \frac{1}{\sqrt{x}} e^{-\sqrt{x}} dx$

$$\int_0^1 x \log x \, dx$$

$$\int_{0}^{1} \frac{\sin x}{x^{2}} dx \qquad \int_{0}^{+\infty} e^{-2x} \sin(e^{-x}) dx$$

$$\int_{2}^{4} \arctan\left(\frac{x}{x-3}\right) dx \qquad \qquad \int_{2}^{+\infty} \frac{1}{x \log x} dx$$

$$\int_0^1 \frac{1 - e^{-x}}{x^{3/2}} dx \qquad \qquad \int_2^{+\infty} \frac{1}{x(\log x)^2} dx$$

$$\int_0^{1/2} \frac{1}{x \log x} dx$$

$$\int_0^{1/2} \frac{1}{x (\log x)^2} dx \qquad \qquad \int_0^{+\infty} \sin(x^2) dx$$

L'ultimo integrale è detto integrale di Fresnel, ed interviene in ottica.

Suggerimento: su [0,1] la funzione $\sin(x^2)$ è integrabile. Per studiare l'integrale su $[1,+\infty]$, valutare l'integrale su [1,a] eseguendo prima la sostituzione $x^2=t$ e poi un'integrazione per parti. Cosa succede per $a\to +\infty$?