Classification of Bat Echolocation Calls

Matt Haberkorn
Phoenix College Bioscience Dept.
matt.haberkorn@phoenixcolleg.edu
matt.a.haberkorn@gmail.com

Problem

- Relatively little is known about bats
- Difficult to observe and handle
- Essential but poorly understood part of ecosystem
- Land manages have no idea what bats are present

Who may be interested in solutions?

- Land managers
- Researchers
- Citizen scientists
- Wildlife specialists
- City parks
- Conservation agencies

Solution and problem...

Solution: Ultrasonic recorders

- Passively record echolocation calls of bats
- No direct observation necessary
- Collect large amounts of data

Problem...

- Large amount of data is difficult to process
- Ultrasonic sound requires software to analyze

Solution to processing large amounts of data

Bat echolocation call classifying software

- Sonobat \$1000 annually
- Kaleidoscope Pro \$400 annually
- Limited accuracy of call classification

Echolocation classifiers

- Every bat species produces a unique call
- Features of call are derived from sonograms to ID species

Bat call features

Project goals

- Assess accuracy of Kaleidoscope Pro Software from Wildlife Acoustics
- Develop machine learning models for bat echolocation call classification

Project data

- Collected by author between 2018 and 2020
- Sonoran Desert of Central Arizona
- All calls truthed manually
- 5849 calls
- 17 bat species and no ID recordings
- 10 features

Project data

- Highly unbalanced data set
- Three most common species
 54% of data
 - Mexican Free-Tailed Bat
 - Yuma Myotis
 - Canyon Bat

Kaleidoscope Pro software accuracy

- Accuracy increases with match ratio
- Significant room for improvement

Kaleidoscope Pro software accuracy Accuracy varied by species

Exploratory data analysis

Non-normal distributions

Exploratory data analysis

Features varied between species

Exploratory data analysis

- Random Forest feature importance
- High multicollinearity between Fc, Fmin, Fmax, and Fk

Data and modeling

Data used

- Raw and robust scaled
- High multicollinear features retained and removed
- 3 species vs all other species and all species data

Models developed

- Random Forest
- KNN
- XGBoost
- Logistic Regression

Best performing models

Model	All Species Score	Three Species Score	Data Scaled	Multicollinear Data	Best Hyperparameters
Random Forest	0.6629	0.7613	No	Not removed	Criterion: gini Max depth:11 Max features: auto N estimators: 220
Knn	0.6426	0.7421	Yes	Removed	Distance: Manhattan Weight: distance N neighbors: 19 (all species) 16 (3 species)
XGBoost	0.6507	0.7579	No	Not removed	Learning rate: 0.05 Max features: 3 (all species) 2 (3 species) N estimators: 20
Multinomial Logistic Regression	0.5962	0.6695	Yes	Removed	C: 0.001 Penalty: Ridge reg. (all species) None (3 species)

Random Forest model vs. Kaleidoscope Pro

 RF model consistently under performed Kaleidoscope Pro overall

One vs. all Random Forest model

Single Species Random Forest Model	ROC-AUC Score	Accuracy Score	Random Forest Hyperparameters
TADBRA	0.854	0.797	Criterion: gini Max depth:11 Max features: auto N estimators: 400
MYOYUM	0.992	0.965	Criterion: gini Max depth:10 Max features: auto N estimators: 100
PARHES	0.998	0.985	Criterion: gini Max depth:6 Max features: auto N estimators: 600

One vs. all species RF F1 thresholding

One vs. all species RF thresholding

Random Forest Model	Default F1 Score	Optimized F1 Score	Optimized Threshold
TADBRA	0.591	0.629	0.37
MYOYUM	0.886	0.891	0.37
PARHES	0.918	0.922	0.46

Canyon Bat (PARHES) vs. all species

Yuma Myotis (MYOYUM) vs. all species

Mexican Free-Tailed Bat (TADBRA) vs. all species

Conclusion

- Kaleidoscope Pro overall outperformed models developed in this project
- 3 species Random Forest model performed best of models developed
- TADBRA ID from 3 species model significantly outperformed
 Kaleidoscope

Mexican Free-Tailed Bat (TADBRA) model

- Most common bat species in SW United States
- TADBRA model can be used in conjunction with other models

Future work

- Develop a more balanced dataset
- Remove NoID's from modeling data
- Threshold multispecies models
- Development of different features

