1.0

11 12

13

1415

16

17

CLAIMS

We claim:

1	1. A memory system having a reduced refresh rate in a
2	sleep mode, comprising:
3	a dynamic memory;
4	an error correction code (ECC) memory allocation
5	circuit for identifying non-critical bit addresses in
5	said dynamic memory and allocating said addresses as
7	ECC addresses when entering from an active mode to
3	sleep mode;
Э	an ECC encoder for encoding critical bits with

an ECC encoder for encoding critical bits with error correction codes, said error correction codes being stored in said ECC addresses;

a refresh execution circuit for reducing said refresh rate in said sleep mode and increasing said refresh rate in said active mode; and

a ECC decoder for decoding said critical bits encoded with said error correction codes when reentering said active mode.

- 1 2. A memory system as recited in claim 1 further
- comprising a storage device for storing sleep mode
- 3 refresh rate data.
- 3. A memory system as recited in claim 2 wherein said
- 2 storage device comprises a fusible link.
- 4. A memory system as recited in claim 1 further
- 2 comprising:
- a storage device for storing a plurality of sleep

- 4 mode refresh rate data; and
- 5 a temperature sensor, wherein said refresh
- 6 execution circuit selects one of said sleep mode
- 7 refresh rate data according to operating temperature.
- 5. A memory system as recited in claim 4 wherein said
- 2 storage device comprises a fusible link.
- 1 6. A memory system as recited in claim 4 wherein said
- 2 refresh rate is reduced by a 2X factor for each decade
- 3 Celsius reduction in operating temperature.
- 7. A memory system as recited in claim 1 wherein said
- 2 error correction codes comprises one of Reed-Solomon
- 3 code and Bose-Chaudhuri-Hocquenghem code.
- 8. A memory system as recited in claim 1 wherein said
- 2 ECC memory allocation circuit stores perallocated
- 3 addresses in said dynamic memory.
- 9. A memory system as recited in claim 1 wherein said
- 2 ECC memory allocation assigns ECC addresses dynamically
- 3 to the last byte of each word address.
- 1 10. A method for reducing the refresh rate of a memory
- in sleep mode, comprising the steps of:
- 3 switching from an active mode to a sleep mode;
- 4 identifying non-critical bit addresses;
- 5 encoding critical bits with an error correction
- 6 code (ECC):
- 7 storing ECC codes at said non-critical bit
- 8 addresses;

9	reducing a refresh rate for said memory;
10	performing error correction on said critical bits
11	using said ECC codes when reentering active mode; and
12	discarding said ECC bits.
1	11. A method for reducing the refresh rate of a memory
2	in sleep mode as recited in claim 10 further comprising
3	the step of:
4	determining an operating temperature for said
5	memory; and
6	selecting one of a plurality of refresh rates
7	based on said operating temperature of said memory.
1	12. A method for reducing the refresh rate of a memory
2	in sleep mode as recited in claim 11 further comprising
3	the step of:
4	reducing said operating temperature by a 2X factor
5	for each decade Celsius reduction in operating
6	temperature.
1	13. A method for reducing the refresh rate of a memory
2	in sleep mode as recited in claim 10 further comprising
3	the step of:
4	preallocating addresses in memory to store non-
5	critical bits.
1	14. A method for reducing the refresh rate of a memory
2	in sleep mode as recited in claim 10 further comprising
3	the step of:
4	storing said ECC codes for a word at a last byte
5	address for said word.

- 1 15. A computer readable medium embodying instructions 2 for causing a computer to take steps to reduce the refresh rate of a memory in sleep mode, the steps 3 4 comprising: 5 switching from an active mode to a sleep mode; 6 identifying non-critical bit addresses; 7 encoding critical bits with an error correction 8 code (ECC); 9 storing ECC codes in said non-critical bit 10 addresses: reducing a refresh rate for said memory; 11 12 performing error correction on said critical bits using said ECC codes when reentering active mode; and 13 14 discarding said ECC bits.
- 1 16. A computer readable medium embodying instructions 2 for causing a computer to take steps to reduce the 3 refresh rate of a memory in sleep mode as recited in 4 claim 15, the steps further comprising: 5 reducing said operating temperature by a 2X factor
- for each decade Celsius reduction in operating temperature.
- 1 17. A computer readable medium embodying instructions
- 2 for causing a computer to take steps to reduce the
- 3 refresh rate of a memory in sleep mode as recited in
- d claim 15, the steps further comprising:
- 5 preallocating addresses in memory to store non-6 critical bits.
- 1 18. A computer readable medium embodying instructions
- 2 for causing a computer to take steps to reduce the

- 3 refresh rate of a memory in sleep mode as recited in
- 4 claim 15, the steps further comprising:
- 5 storing said ECC codes for a word in a last byte
- 6 byte address for said word.
- 1 19. A computer readable medium embodying instructions
- 2 for causing a computer to take steps to reduce the
- 3 refresh rate of a memory in sleep mode as recited in
- 4 claim 15 wherein said error correction codes comprise
- 5 Reed-Solomon code.
- 1 20. A computer readable medium embodying instructions
- 2 for causing a computer to take steps to reduce the
- 3 refresh rate of a memory in sleep mode as recited in
- 4 claim 15 wherein said error correction codes comprise
- 5 Bose-Chaudhuri-Hocquenghem code.