Select statement

1. Write a query to display the names (first_name, last_name) using alias name "First Name", "Last Name"

SELECT FIRST_NAME AS "FIRST NAME", LAST_NAME AS "LAST NAME" FROM employees;

2. Write a query to get unique department ID from employee table.

SELECT DISTINCT DEPARTMENT ID FROM employees;

3. Write a query to get all employee details from the employee table order by first name, descending.

<u>SELECT</u> * FROM 'employees' ORDER BY FIRST_NAME DESC;

← T→	▽	EMPLOYEE_ID	FIRST_NAME =	1 LAST_NAME	EMAIL	PHONE_NUMBER	HIRE_DATE	JOB_ID	SALARY	COMMISSION_PCT	MANAGER_ID	DEPARTMENT_ID
☐ 🖉 Edit	₹ Copy	180	Winston	Taylor	WTAYLOR	650.507.9876	1987-09-05	SH_CLERK	3200.00	0.00	120	50
□ Ø Edit	≩ Copy ⊜ Delete	206	William	Gietz	WGIETZ	515.123.8181	1987-10-01	AC_ACCOUNT	8300.00	0.00	205	110
□ <i>⊘</i> Edit	≩ Copy ⊜ Delete	171	William	Smith	WSMITH	011.44.1343.629268	1987-08-27	SA_REP	7400.00	0.15	148	80
☐ Ø Edit	≩ Copy ⊚ Delete	195	Vance	Jones	VJONES	650.501.4876	1987-09-20	SH_CLERK	2800.00	0.00	123	50
☐ Ø Edit	≩ Copy ⊜ Delete	106	Valli	Pataballa	VPATABAL	590.423.4560	1987-06-23	IT_PROG	4800.00	0.00	103	60
□ Ø Edit	3 Copy ⊜ Delete	141	I Trenna	Rajs	TRAJS	650.121.8009	1987-07-28	ST CLERK	3500.00	0.00	124	50

4) Write a query to get the names (first_name, last_name), salary, PF of all the employees (PF is calculated as 15% of salary).

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY, ((SALARY * 15) / 100) AS PF FROM employees;

Or

SELECT FIRST_NAME, LAST_NAME, SALARY, SALARY * 0.15 AS PF FROM employees;

5) Write a query to get the employee ID, names (first_name, last_name), salary in ascending order of salary.

SELECT EMPLOYEE ID, FIRST NAME, LAST NAME, SALARY FROM employees ORDER BY SALARY DESC;

6. Write a query to get the total salaries payable to employees.

SELECT SUM(SALARY) AS TOTAL_SALARY FROM employees;

TOTAL_SALARY 691400.00

7. Write a query to get the maximum and minimum salary from employees table.

SELECT MIN(SALARY) AS MIN_SALARY, MAX(SALARY) AS MAX_SALARY FROM employees;

MIN_SALARY	MAX_SALARY
2100.00	24000.00

8. Write a query to get the average salary and number of employees in the employees table.

<u>SELECT AVG</u>(SALARY) AS AVG_SALARY, <u>COUNT</u>(EMPLOYEE_ID) AS TOTAL_EMPLOYEES FROM employees;

```
AVG_SALARY TOTAL_EMPLOYEES
6461.682243 107
```

9. Write a query to get the number of employees working with the company.

<u>SELECT COUNT</u>(EMPLOYEE_ID) AS TOTAL_EMPLOYEES FROM employees;

```
TOTAL_EMPLOYEES
107
```

10. Write a query to get the number of jobs available in the employees table.

<u>SELECT COUNT</u>(DISTINCT JOB_ID) AS TOTAL_EMPLOYEES FROM employees;

11. Write a query get all first name from employees table in upper case.

SELECT UPPER(FIRST_NAME) AS FIRST_NAME FROM employees;

12. Write a query to get the first 3 characters of first name from employees table.

<u>SELECT</u> SUBSTRING(FIRST_NAME, 1,3) AS FIRST_NAME_3_CHARACTERS FROM employees;

13. Write a query to calculate 171*214+625.

<u>SELECT</u> 171*214+625 RESULT;

RESULT 37219

14. Write a query to get the names (for example Ellen Abel, Sundar Ande etc.) of all the employees from employees table.

SELECT CONCAT(FIRST_NAME, " ", LAST_NAME) EMPLOYEE FROM employees;

15. Write a query to get first name from employees table after removing white spaces from both side.

SELECT TRIM(FIRST_NAME) FIRST_NAME FROM employees;

16. Write a query to get the length of the employee names (first_name, last_name) from employees table.

<u>SELECT</u> LENGTH(FIRST_NAME) + LENGTH(LAST_NAME) TOTAL_LENGTH FROM employees;

17. Write a query to check if the first_name fields of the employees table contains numbers.

SELECT * FROM employees WHERE FIRST_NAME REGEXP '[0-9]';

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL PHONE_NUMBER HIRE_DATE JOB_ID SALARY COMMISSION_PCT MANAGER_ID DEPARTMENT_ID

18. Write a query to select first 10 records from a table.

SELECT * FROM employees LIMIT 10;

19. Write a query to get monthly salary (round 2 decimal places) of each and every employee Note: Assume the salary field provides the 'annual salary' information.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY, ROUND(SALARY / 12, 2) MONTHLY_SALARY FROM employees ;

Restructuring and sorting data

1. Write a query to display the name (first_name, last_name) and salary for all employees whose salary is not in the range \$10,000 through \$15,000.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY <u>NOT</u> BETWEEN 10000 <u>AND</u> 15000;

2. Write a query to display the name (first_name, last_name) and department ID of all employees in departments 30 or 100 in ascending order.

<u>SELECT</u> FIRST_NAME, LAST_NAME, DEPARTMENT_ID FROM employees WHERE DEPARTMENT_ID <u>IN</u>(30,1 00) ORDER BY DEPARTMENT_ID ASC;

3. Write a query to display the name (first_name, last_name) and salary for all employees whose salary is not in the range \$10,000 through \$15,000 and are in department 30 or 100.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY, DEPARTMENT_ID FROM employees WHERE SALARY <u>NOT</u> BET WEEN 10000 AND 15000 AND DEPARTMENT ID IN(30,100);

4. Write a query to display the name (first_name, last_name) and hire date for all employees who were hired in 1987.

<u>SELECT</u> FIRST_NAME, LAST_NAME, HIRE_DATE FROM employees WHERE HIRE_DATE BETWEEN '1987-01-01' AND '1987-12-31';

5. Write a query to display the first name of all employees who have both "b" and "c" in their first name.

SELECT FIRST_NAME FROM employees WHERE FIRST_NAME LIKE '%b%' AND FIRST_NAME LIKE '%c%';

6. Write a query to display the last name, job, and salary for all employees whose job is that of a Programmer or a Shipping Clerk, and whose salary is not equal to \$4,500, \$10,000, or \$15,000.

<u>SELECT</u> LAST_NAME, JOB_ID, SALARY FROM employees WHERE JOB_ID <u>IN</u>('IT_PROG', 'SH_CLERK ') <u>AND</u> SALARY <u>NOT IN</u> (4500,10000,15000);

7. Write a query to display the last name of employees whose names have exactly 6 characters.

<u>SELECT</u> LAST_NAME FROM employees WHERE LENGTH(LAST_NAME) = 6;

8. Write a query to display the last name of employees having 'e' as the third character.

SELECT LAST_NAME FROM employees WHERE LAST_NAME LIKE '__E%';

9. Write a query to display the jobs/designations available in the employees table.

SELECT DISTINCT JOB_ID FROM employees;

10. Write a query to display the name (first_name, last_name), salary and PF (15% of salary) of all employees.

SELECT FIRST NAME, LAST NAME, SALARY, SALARY * 0.15 AS PF FROM employees;

11. Write a query to select all record from employees where last name in 'BLAKE', 'SCOTT', 'KING' and 'FORD'.

<u>SELECT</u> LAST_NAME FROM employees WHERE LAST_NAME <u>IN</u> ('BLAKE', 'SCOTT', 'KING', 'FORD');

Aggregate functions

1. Write a query to list the number of jobs available in the employees table.

SELECT COUNT (DISTINCT JOB_ID) AS JOB FROM employees;

2. Write a query to get the total salaries payable to employees.

SELECT SUM(SALARY) AS TOTAL FROM employees;

3. Write a query to get the minimum salary from employees table.

SELECT MIN(SALARY) AS LOW_SALARY FROM employees;

4. Write a query to get the maximum salary of an employee working as a Programmer.

SELECT MAX(SALARY) AS MAX_SALARY FROM employees WHERE JOB_ID = 'IT_PROG';

5. Write a query to get the average salary and number of employees working the department 90.

<u>SELECT AVG</u>(SALARY) AS AVG_SALARY, <u>COUNT</u>(*) AS <u>COUNT</u> FROM employees WHERE DEPARTMENT_ID = 90;

6. Write a query to get the highest, lowest, sum, and average salary of all employees.

<u>SELECT MIN(SALARY) AS MIN_SALARY, MAX(SALARY) AS MAX_SALARY, SUM(SALARY) AS TOTAL, AVG(SALARY) AS AVG_SALARY FROM employees;</u>

MIN_SALARY	MAX_SALARY	TOTAL	AVG_SALARY
2100.00	24000.00	691400.00	6461.682243

7. Write a query to get the number of employees with the same job.

<u>SELECT</u> JOB_ID, <u>COUNT</u>(*) AS <u>COUNT</u> FROM employees GROUP BY JOB_ID;

8. Write a query to get the difference between the highest and lowest salaries.

<u>SELECT MAX(SALARY)-MIN(SALARY)</u> AS DIFFERENCE FROM employees;

9. Write a query to find the manager ID and the salary of the lowest-paid employee for that manager.

SELECT MANAGER_ID, MIN(SALARY) AS MIN_SALARY FROM employees GROUP BY MANAGER_ID;

10. Write a query to get the department ID and the total salary payable in each department.

<u>SELECT</u> DEPARTMENT_ID, <u>SUM</u>(SALARY) AS TOTAL_SALARY FROM employees GROUP BY DEPARTMENT_ID;

11. Write a query to get the average salary for each job ID excluding programmer.

<u>SELECT</u> JOB_ID, <u>AVG</u>(SALARY) AS AVG_SALARY FROM employees WHERE JOB_ID != 'IT_PROG' GROUP BY JOB_ID;

12. Write a query to get the total salary, maximum, minimum, average salary of employees (job ID wise), for department ID 90 only.

<u>SELECT</u> FIRST_NAME, <u>MIN</u>(SALARY) MIN_SALARY, <u>MAX</u>(SALARY) MAX_SALARY, <u>AVG</u>(SALARY) AVG_SALARY, <u>SUM</u>(SALARY) TOTAL FROM employees WHERE DEPARTMENT_ID = 90 GROUP BY JOB_ID;

13. Write a query to get the job ID and maximum salary of the employees where maximum salary is greater than or equal to \$4000.

<u>SELECT</u> JOB_ID, <u>MAX</u>(SALARY) TOTAL FROM employees WHERE SALARY > 4000 GROUP BY JOB_ID;

14. Write a query to get the average salary for all departments employing more than 10 employees.

<u>SELECT</u> JOB_ID, <u>AVG</u>(SALARY), <u>COUNT</u>(*) AVARAGE FROM employees GROUP BY DEPARTMENT_ID HAVIN G <u>COUNT</u>(*) > 10;

Subquery

1. Write a MySQL query to find the name (first_name, last_name) and the salary of the employees who have a higher salary than the employee whose last_name='Bull'.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY > (<u>SELECT</u> SALARY FROM e mployees WHERE LAST_NAME = 'Bull');

2. Write a MySQL query to find the name (first_name, last_name) of all employees who works in the IT department.

<u>SELECT</u> FIRST_NAME, LAST_NAME FROM employees WHERE DEPARTMENT_ID = (<u>SELECT</u> DEPARTMENT_I D FROM departments WHERE DEPARTMENT_NAME = 'IT');

3. Write a <u>MySQL</u> query to find the name (first_name, last_name) of the employees who have a manager and worked in a USA based department.

SELECT FIRST_NAME, LAST_NAME FROM employees WHERE MANAGER_ID IS NOT NULL AND DEPARTMENT_ID IN (SELECT DEPARTMENT_ID FROM departments WHERE LOCATION_ID IN (SELECT LOCATION_ID FROM locations WHERE COUNTRY_ID = 'US'));

4. Write a MySQL query to find the name (first_name, last_name) of the employees who are managers.

<u>SELECT</u> FIRST_NAME, LAST_NAME FROM employees WHERE EMPLOYEE_ID <u>IN</u> (<u>SELECT</u> MANAGER_ID FR OM employees);

5. Write a <u>MySQL</u> query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY > (<u>SELECT AVG</u>(SALARY) FR OM employees);

6. Write a <u>MySQL</u> query to find the name (first_name, last_name), and salary of the employees whose salary is equal to the minimum salary for their job grade.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees AS E WHERE SALARY <u>IN</u> (<u>SELECT</u> J.MIN_SAL ARY FROM jobs AS J WHERE J.JOB ID = E.JOB ID);

7. Write a <u>MySQL</u> query to find the name (first_name, last_name), and salary of the employees who earns more than the average salary and works in any of the IT departments.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY > (<u>SELECT AVG</u>(SALARY) FR OM employeeS) <u>AND</u> DEPARTMENT_ID <u>IN</u> (<u>SELECT DEPARTMENT_ID FROM departments WHERE DEPART MENT NAME = 'IT');</u>

8. Write a <u>MySQL</u> query to find the name (first_name, last_name), and salary of the employees who earns more than the earning of Mr. Bell.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY > ALL(<u>SELECT</u> SALARY FRO M employees WHERE LAST_NAME = 'Bell') ORDER BY FIRST_NAME;

←	T→		\triangledown	FIRST_NAME A 1	LAST_NAME	SALARY
) 🥜 Edit	≩	Delete	Adam	Fripp	8200.00
) 🔗 Edit	≩ Copy	Delete	Alberto	Errazuriz	12000.00
) 🥜 Edit	≩ Copy	Delete	Alexander	Hunold	9000.00
) 🔗 Edit	≩ Copy	Delete	Alexis	Bull	4100.00
) 🥜 Edit	≩ € Copy	Delete	Allan	McEwen	9000.00
) 🔗 Edit	≩ Copy	Delete	Alyssa	Hutton	8800.00

9. Write a MySQL query to find the name (first_name, last_name), and salary of the employees who earn the same salary as the minimum salary for all departments.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY FROM employees WHERE SALARY > (<u>SELECT</u> SALARY FROM e mployeeS WHERE LAST_NAME = 'Bell') ORDER BY FIRST_NAME;

10. Write a MySQL query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary of each department.

<u>SELECT</u> SALARY FROM employees WHERE SALARY > ALL(<u>SELECT AVG</u>(SALARY) FROM employees GROUP BY DEPARTMENT ID);

11. Write a <u>MySQL</u> query to find the name (first_name, last_name) and salary of the employees who earn a salary that is higher than the salary of all the Shipping Clerk (JOB_ID = 'SH_CLERK'). Sort the results of the salary of the lowest to highest.

<u>SELECT</u> FIRST_NAME, LAST_NAME, SALARY, JOB_ID FROM employees WHERE SALARY > ALL(<u>SELECT</u> SALA RY FROM employees WHERE JOB_ID = 'SH_CLERK') ORDER BY SALARY;

12. Write a MySQL query to find the name (first_name, last_name) of the employees who are not supervisors.

<u>SELECT</u> FIRST_NAME,LAST_NAME FROM employees WHERE EMPLOYEE_ID <u>NOT IN</u> (<u>SELECT</u> MANAGER_I D FROM employees);

13. Write a MySQL query to display the employee ID, first name, last name, and department names of all employees.

<u>SELECT</u> FIRST_NAME, LAST_NAME, (<u>SELECT</u> D.DEPARTMENT_NAME FROM departments AS D WHERE D.D EPARTMENT ID = E.DEPARTMENT ID) AS JOBS FROM employees AS E;

14. Write a MySQL query to display the employee ID, first name, last name, salary of all employees whose salary is above average for their departments.

<u>SELECT</u> EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY FROM employees AS E WHERE SALARY > (<u>SEL</u> <u>ECT AVG</u>(SALARY) FROM employees WHERE DEPARTMENT_ID = E.DEPARTMENT_ID);

15. Write a MySQL query to fetch even numbered records from employees table.

SELECT * FROM (SELECT ROW_NUMBER() OVER(ORDER BY E.EMPLOYEE_ID) AS SR_NO, E.* FROM employees AS E) AS RECORDS WHERE MOD(SR_NO, 2);

16. Write a MySQL guery to find the 5th maximum salary in the employees table.

SELECT DISTINCT SALARY FROM employees ORDER BY SALARY DESC LIMIT 1 OFFSET 4;

17. Write a MySQL query to find the 4th minimum salary in the employees table.

SELECT DISTINCT SALARY FROM employees ORDER BY SALARY LIMIT 1 OFFSET 3;

18. Write a MySQL query to select last 10 records from a table.

<u>SELECT</u> * FROM (<u>SELECT</u> * FROM employees ORDER BY EMPLOYEE_ID DESC LIMIT 10) SUB ORDER BY EMPLOYEE_ID;

19. Write a MySQL query to list the department ID and name of all the departments where no employee is working.

<u>SELECT</u> DEPARTMENT_ID, DEPARTMENT_NAME FROM departments WHERE DEPARTMENT_ID <u>NOT IN</u> (<u>SELECT</u> DEPARTMENT_ID FROM employees);

20. Write a MySQL query to get 3 maximum salaries.

SELECT DISTINCT SALARY FROM employees ORDER BY SALARY DESC LIMIT 3;

21. Write a MySQL query to get 3 minimum salaries.

SELECT DISTINCT SALARY FROM employees ORDER BY SALARY LIMIT 3;

22. Write a MySQL query to get nth maximum salaries of employees.

SELECT DISTINCT salary FROM employees ORDER BY salary DESC LIMIT 1 OFFSET n-1;

NOTE: OUTPUT SHOULD DEPEND UPON Nth VALUE.

Joins

1. Write a <u>MySQL</u> query to find the addresses (location_id, street_address, city, state_province, country_name) of all the departments.

Hint: Use NATURAL JOIN.

<u>SELECT</u> LOCATION_ID, STREET_ADDRESS,CITY,STATE_PROVINCE,COUNTRY_NAME FROM locations NATUR AL JOIN countries;

LOCATION_ID	STREET_ADDRESS	CITY	STATE_PROVINCE	COUNTRY_NAME
1000	1297 Via Cola di Rie	Roma		Italy
1100	93091 Calle della Testa	Venice		Italy
1200	2017 Shinjuku-ku	Tokyo	Tokyo Prefecture	Japan
1300	9450 Kamiya-cho	Hiroshima		Japan

2. Write a MySQL query to find the name (first_name, last name), department ID and name of all the employees.

<u>SELECT</u> FIRST_NAME, LAST_NAME, DEPARTMENT_ID, DEPARTMENT_NAME FROM employees NATURAL J OIN departments;

FIRST_NAME	LAST_NAME	DEPARTMENT_ID	DEPARTMENT_NAME
Neena	Kochhar	90	Executive
Lex	De Haan	90	Executive
Bruce	Ernst	60	IT
David	Austin	60	IT:
Valli	Pataballa	60	IT
Diana	Lorentz	60	IT

3. Write a MySQL query to find the name (first_name, last_name), job, department ID and name of the employees who works in London.

<u>SELECT</u> E.FIRST_NAME, E.LAST_NAME, E.JOB_ID, E.DEPARTMENT_ID, D.DEPARTMENT_NAME FROM emp loyees AS E INNER JOIN departments AS D ON D.DEPARTMENT_ID = E.DEPARTMENT_ID INNER JOIN locat ions AS L ON D.LOCATION_ID = L.LOCATION_ID WHERE CITY= 'London';

FIRST_NAME	LAST_NAME	JOB_ID	DEPARTMENT_ID	DEPARTMENT_NAME
Susan	Mavris	HR_REP	40	Human Resources

4. Write a <u>MySQL</u> query to find the employee id, name (last_name) along with their manager_id and name (last_name).

<u>SELECT</u> E.EMPLOYEE_ID, E.LAST_NAME AS EMPLOYEE_NAME, E.MANAGER_ID, M.LAST_NAME AS MANA GER_NAME FROM employees AS E <u>LEFT</u> JOIN employees AS M ON E.MANAGER_ID = M.EMPLOYEE_ID O RDER BY E.EMPLOYEE_ID;

EMPLOYEE_ID 1	EMPLOYEE_NAME	MANAGER_ID	MANAGER_NAME
100	King	0	NULL
101	Kochhar	100	King
102	De Haan	100	King
103	Hunold	102	De Haan
104	Ernst	103	Hunold
105	Austin	103	Hunold

5. Write a MySQL query to find the name (first_name, last_name) and hire date of the employees who was hired after 'Jones'.

<u>SELECT</u> E.FIRST_NAME, E.LAST_NAME, E.HIRE_DATE FROM employees AS E INNER JOIN employees AS J ON E.HIRE_DATE > J.HIRE_DATE WHERE J.LAST_NAME= 'Jones';

FIRST_NAME	LAST_NAME	HIRE_DATE
Alana	Walsh	1987-09-21
Kevin	Feeney	1987-09-22
Donald	OConnell	1987-09-23
Douglas	Grant	1987-09-24
Jennifer	Whalen	1987-09-25
Michael	Hartstein	1987-09-26
Pat	Fay	1987-09-27

6. Write a MySQL query to get the department name and number of employees in the department.

<u>SELECT COUNT</u>(E.EMPLOYEE_ID) AS EMPLOYEE_COUNT, E.DEPARTMENT_ID, D.DEPARTMENT_NAME FRO M employees AS E <u>LEFT</u> JOIN departments AS D ON E.DEPARTMENT_ID = D.DEPARTMENT_ID GROUP BY D.DEPARTMENT_ID, D.DEPARTMENT_NAME;

EMPLOYEE_COUNT	DEPARTMENT_ID	DEPARTMENT_NAME
1	0	NULL
1	10	Administration
2	20	Marketing
6	30	Purchasing
1	40	Human Resources
45	50	Shipping
5	60	IT

7. Write a MySQL query to find the employee ID, job title, number of days between ending date and starting date for all jobs in department 90.

<u>SELECT</u> EMPLOYEE_ID, JOB_TITLE, END_DATE - START_DATE AS DAYS FROM job_history NATURAL JOIN jo bs WHERE DEPARTMENT_ID = 90;

EMPLOYEE_ID	JOB_TITLE	DAYS
200	Administration Assistant	59700
200	Public Accountant	40530

8. Write a MySQL query to display the department ID and name and first name of manager.

<u>SELECT</u> D.DEPARTMENT_ID, D.DEPARTMENT_NAME, D.MANAGER_ID, E.FIRST_NAME FROM employees A S E JOIN departments AS D ON E.DEPARTMENT_ID = D.DEPARTMENT_ID ORDER BY DEPARTMENT_ID;

DEPARTMENT_ID 🔺 1	DEPARTMENT_NAME	MANAGER_ID	FIRST_NAME
10	Administration	200	Jennifer
20	Marketing	201	Pat
20	Marketing	201	Michael
30	Purchasing	114	Karen
30	Purchasing	114	Guy
30	Purchasing	114	Sigal
30	Purchasing	114	Alexander
30	Purchasing	114	Den

9. Write a MySQL query to display the department name, manager name, and city.

<u>SELECT</u> D.DEPARTMENT_NAME, E.FIRST_NAME, L.CITY FROM employees AS E JOIN departments AS D ON E.DEPARTMENT_ID = D.DEPARTMENT_ID JOIN locations AS L ON D.LOCATION_ID = L.LOCATION_ID ORDE R BY DEPARTMENT_NAME;

DEPARTMENT_NAME 1	MANAGER_NAME	CITY
Accounting	Shelley	Seattle
Accounting	William	Seattle
Administration	Jennifer	Seattle
Executive	Steven	Seattle
Executive	Neena	Seattle
Executive	Lex	Seattle
Finance	Nancy	Seattle

10. Write a MySQL query to display the job title and average salary of employees.

<u>SELECT</u> J.JOB_TITLE, <u>AVG</u>(E.SALARY) AS AVG_SALARY FROM employees AS E NATURAL JOIN jobs AS J GRO UP BY J.JOB_TITLE;

JOB_TITLE	AVG_SALARY
Accountant	7920.000000
Accounting Manager	12000.000000
Administration Assistant	4400.000000
Administration Vice President	17000.000000
Finance Manager	12000.000000
Human Resources Representative	6500.000000

11. Write a MySQL query to display job title, employee name, and the difference between salary of the employee and minimum salary for the job.

SELECT J.JOB_TITLE, E.FIRST_NAME, E.SALARY - J.MIN_SALARY FROM employees AS E JOIN jobs AS J ON E.JOB_ID = J.JOB_ID;

ı	JOB_TITLE	FIRST_NAME	E.SALARY - J.MIN_	SALARY
ı	President	Steven		4000.00
ı	Administration Vice President	Neena		2000.00
ı	Administration Vice President	Lex		2000.00
ı	Programmer	Alexander		5000.00
ı	Programmer	Bruce		2000.00
	Programmer	David		800.00

12. Write a MySQL query to display the job history that were done by any employee who is currently drawing more than 10000 of salary.

<u>SELECT</u> JH.* FROM employees AS E JOIN job_history AS JH ON E.EMPLOYEE_ID = JH.EMPLOYEE_ID WHER E E.SALARY > 10000;

EMPLOYEE_ID	START_DATE	END_DATE	JOB_ID	DEPARTMENT_ID
102	1993-01-13	1998-07-24	IT_PROG	60
101	1989-09-21	1993-10-27	AC_ACCOUNT	110
101	1993-10-28	1997-03-15	AC_MGR	110
201	1996-02-17	1999-12-19	MK_REP	20
114	1998-03-24	1999-12-31	ST_CLERK	50

13. Write a MySQL query to display department name, name (first_name, last_name), hire date, salary of the manager for all managers whose experience is more than 15 years.

<u>SELECT</u> D.DEPARTMENT_NAME, E.FIRST_NAME, E.LAST_NAME, E.HIRE_DATE, (DATEDIFF(NOW(), E.HIRE _DATE)) / 365 AS DAYS FROM employees AS E JOIN departments AS D ON E.DEPARTMENT_ID = D.DEPART MENT_ID WHERE DATEDIFF(NOW(), E.HIRE_DATE) > 15;

DEPARTMENT_NAME	FIRST_NAME	LAST_NAME	HIRE_DATE	DAYS
Executive	Steven	King	1987-06-17	37.3836
Executive	Neena	Kochhar	1987-06-18	37.3808
Executive	Lex	De Haan	1987-06-19	37.3781
IT	Alexander	Hunold	1987-06-20	37.3753
IT	Bruce	Ernst	1987-06-21	37.3726
IT	David	Austin	1987-06-22	37.3699

Date and time functions

1. Write a query to display the first day of the month (in datetime format) three months before the current month.

Sample current date: 2014-09-03 Expected result: 2014-06-01

<u>SELECT</u> DATE_FORMAT(NOW(), '%d-%m-%Y') AS CURR_DATE, DATE_FORMAT(SUBDATE(NOW(), <u>INTE</u> RVAL 3 MONTH), '01-%m-%Y') AS DATE_3_MONTHS_AGO;

2. Write a query to display the last day of the month (in datetime format) three months before the current month.

<u>SELECT</u> DATE_FORMAT(NOW(), '%d-%m-%Y') AS CURR_DATE, LAST_DAY(SUBDATE(NOW(), <u>INTERVAL</u> 3 MONTH)) AS LAST_DAY_3_MONTHS__AGO;

3. Write a query to get the distinct Mondays from hire_date in employees tables.

<u>SELECT</u> HIRE_DATE, DAYNAME(HIRE_DATE) AS DAY_NAME FROM employees WHERE DAYNAME(HIRE _DATE) = 'Monday';

4. Write a query to get the first day of the current year.

SELECT DATE_FORMAT(NOW(), '01-01-%Y') AS FIRST_DAY_OF_YEAR;

FIRST_DAY_OF_YEAR 01-01-2024 **5.** Write a query to get the last day of the current year.

SELECT DATE_FORMAT(NOW(), '31-12-%Y') AS LAST_DAY_OF_YEAR;

LAST_DAY_OF_YEAR 31-12-2024

6. Write a query to calculate the age in year.

<u>SELECT</u> DATEDIFF(NOW(), '2004-01-01') / 365 AS AGE;

AGE 20.8301

7. Write a query to get the current date in the following format.

Sample date: 2014-09-04 Output: September 4, 2014

<u>SELECT</u> DATE_FORMAT(NOW(), '%Y-%m-%d') AS CURR_DATE, DATE_FORMAT(NOW(), '%M %e, %Y') AS SAMPLE FORMAT;

 CURR_DATE
 SAMPLE_FORMAT

 2024-10-25
 October 25, 2024

8. Write a query to get the current date in Thursday September 2014 format. Thursday September 2014

SELECT DATE_FORMAT(NOW(), '%W %M, %Y') AS SAMPLE_FORMAT;

SAMPLE_FORMAT Friday October, 2024

9. Write a query to extract the year from the current date.

SELECT YEAR(NOW()) AS CURR_YEAR;

CURR_YEAR 2024 10. Write a query to get the DATE value from a given day (number in N).

Sample days: 730677 Output : 2000-07-11

SELECT FROM_DAYS(730677) AS DAYS_TO_YEAR;

DAYS_TO_YEAR 2000-07-11

11. Write a query to get the first name and hire date from employees table where hire date between '1987-06-01' and '1987-07-30'

<u>SELECT</u> FIRST_NAME,HIRE_DATE FROM employees WHERE HIRE_DATE BETWEEN '1987-06-01' AND '1987-07-30';

12. Write a query to display the current date in the following format. Sample output: Thursday 4th September 2014 00:00:00

SELECT DATE_FORMAT(NOW(), '%W %D, %Y %T') AS SAMPLE_FORMAT;

SAMPLE_FORMAT Friday 25th, 2024 22:46:35

13. Write a query to display the current date in the following format. Sample output: 05/09/2014

SELECT DATE_FORMAT(NOW(), '%d/%m/%Y') AS SAMPLE_FORMAT;

SAMPLE_FORMAT 25/10/2024

14. Write a query to display the current date in the following format.

Sample output: 12:00 AM Sep 5, 2014

SELECT DATE_FORMAT(NOW(), '%h:%i %p %a %e, %Y') AS SAMPLE_FORMAT;

SAMPLE_FORMAT 22:52 PM Fri 25, 2024

15. Write a query to get the firstname, lastname who joined in the month of June.

SELECT FIRST NAME, LAST NAME, HIRE DATE FROM employees WHERE MONTH(HIRE DATE) = 6;

16. Write a query to get the years in which more than 10 employees joined.

<u>SELECT</u> YEAR(HIRE_DATE) AS HIRE_YEAR, <u>COUNT</u>(*) AS EMPLOYEE_COUNT FROM employees GROUP BY HIRE_YEAR HAVING EMPLOYEE_COUNT > 10;

17. Write a query to get first name of employees who joined in 1987.

<u>SELECT</u> FIRST_NAME,YEAR(HIRE_DATE) AS HIRE_YEAR FROM employees WHERE YEAR(HIRE_DATE) = 1987;

18. Write a query to get department name, manager name, and salary of the manager for all managers whose experience is more than 5 years.

<u>SELECT</u> D.DEPARTMENT_NAME, E.FIRST_NAME, E.SALARY, E.HIRE_DATE, (DATEDIFF(JH.END_DATE, JH .START_DATE))/365 AS EXP FROM employees AS E JOIN departments AS D ON E.DEPARTMENT_ID = D .DEPARTMENT_ID JOIN job_history AS JH ON E.EMPLOYEE_ID = JH.EMPLOYEE_ID HAVING EXP > 5;

DEPARTMENT_NAME	FIRST_NAME	SALARY	HIRE_DATE	EXP
Executive	Lex	17000.00	1987-06-19	5.5288
Administration	Jennifer	4400.00	1987-09-25	5.7534

19. Write a query to get employee ID, last name, and date of first salary of the employees.

<u>SELECT</u> EMPLOYEE_ID, LAST_NAME,HIRE_DATE, LAST_DAY(HIRE_DATE) AS FIRST_SALARY_DATE FRO M employees;

20. Write a query to get first name, hire date and experience of the employees.

SELECT FIRST_NAME, HIRE_DATE, (DATEDIFF(NOW(), HIRE_DATE)) / 365 AS EXP FROM employees;

21. Write a query to get the department ID, year, and number of employees joined.

<u>SELECT</u> DEPARTMENT_ID, YEAR(HIRE_DATE) AS HIRE_DATE, <u>COUNT</u>(*) AS EMPLOYEES FROM employe es GROUP BY DEPARTMENT_ID;

DEPARTMENT_ID	HIRE_DATE	EMPLOYEES
0	1987	1
10	1987	1
20	1987	2
30	1987	6
40	1987	1
50	1987	45
60	1987	5
70	1987	1
80	1987	34
90	1987	3
100	1987	6
110	1987	2

String functions

1. Write a MySQL query to get the job_id and related employee's id.

<u>SELECT</u> JOB_ID, <u>GROUP_CONCAT</u>(EMPLOYEE_ID, ") AS EMPLOYEE_ID FROM employees GROUP BY JOB_ID;

2. Write a MySQL query to update the portion of the phone_number in the employees table, within the phone number the substring '124' will be replaced by '999'.

SELECT REPLACE(PHONE NUMBER, 124, 999) AS PHONE NUMBER FROM employees;

PHONE_NUMBER
515.123.4567
515.123.4568
515.123.4569
590.423.4567
590.423.4568
590.423.4569
590.423.4560
590.423.5567
515.999.4569
515.999.4169
515.999.4269
515.999.4369
515.999.4469
515.999.4567

3. Write a MySQL query to get the details of the employees where the length of the first name greater than or equal to 8.

SELECT FIRST_NAME FROM employees WHERE LENGTH(FIRST_NAME) >= 8;

4. Write a MySQL query to display leading zeros before maximum and minimum salary.

SELECT LPAD(MIN SALARY,6,0) MIN SALARY,LPAD(MAX SALARY,6,0) MAX SALARY FROM jobs;

MIN_SALARY	MAX_SALARY
020000	040000
015000	030000
003000	006000
008200	016000
004200	009000

5. Write a MySQL query to append '@example.com' to email field.

SELECT CONCAT(EMAIL, '@example.com') FROM employees;

6. Write a MySQL query to get the employee id, first name and hire month.

<u>SELECT</u> EMPLOYEE_ID, FIRST_NAME, LPAD(MONTH(HIRE_DATE),2,0) HIRE_MONTH FROM employees;

7. Write a MySQL query to get the employee id, email id (discard the last three characters).

<u>SELECT</u> EMPLOYEE_ID, REVERSE(SUBSTR(REVERSE(EMAIL),4)) FROM employees;

8. Write a MySQL query to find all employees where first names are in upper case.

SELECT * FROM employees WHERE BINARY FIRST_NAME = UPPER(FIRST_NAME);

9. Write a MySQL query to extract the last 4 character of phone numbers.

<u>SELECT</u> REVERSE(SUBSTR(REVERSE(PHONE_NUMBER),1,4)) AS PHONE_NUMBER FROM employees;

OR

SELECT RIGHT(PHONE NUMBER,4) AS PHONE NUMBER FROM employees;

10. Write a MySQL query to get the last word of the street address.

SELECT SUBSTRING_INDEX(TRIM(STREET_ADDRESS), '', -1) AS last_word FROM locations;

11. Write a MySQL query to get the locations that have minimum street length.

<u>SELECT</u> STREET_ADDRESS FROM locations WHERE LENGTH(TRIM(STREET_ADDRESS)) = (<u>SELECT MIN(LEN GTH(TRIM(STREET_ADDRESS))</u>) FROM locations);

12. Write a MySQL query to display the first word from those job titles which contains more than one words.

SELECT JOB_TITLE, SUBSTRING_INDEX(JOB_TITLE, '
', 1) AS FIRST_WORD FROM jobs WHERE JOB_TITLE LIKE '% %';

13. Write a MySQL query to display the first name and last name for employees where first occurrence of last name contain character 'c' after 2nd position.

SELECT FIRST_NAME, LAST_NAME FROM employees WHERE LOCATE('c', LAST_NAME) > 2;

14. Write a MySQL query that displays the first name and the length of the first name for all employees whose name starts with the letters 'A', 'J' or 'M'. Give each column an appropriate label. Sort the results by the employees' first names.

<u>SELECT</u> FIRST_NAME, LENGTH(FIRST_NAME) LENGTH FROM employees WHERE FIRST_NAME <u>LIKE</u> 'A%' <u>O</u> <u>R</u> FIRST_NAME <u>LIKE</u> 'J%' <u>OR</u> FIRST_NAME <u>LIKE</u> 'M%' ORDER BY FIRST_NAME;

15. Write a MySQL query to display the first name and salary for all employees. Format the salary to be 10 characters long, left-padded with the \$ symbol. Label the column SALARY.

<u>SELECT</u> FIRST_NAME, LPAD(SALARY,10,'\$') SALARY FROM employees;

16. Write a MySQL query to display the first eight characters of the employees' first names and indicates the amounts of their salaries with '\$' sign. Each '\$' sign signifies a thousand dollars. Sort the data in descending order of salary.

SELECT LPAD("", FLOOR(SALARY / 1000), '\$') AS SALARY FROM employees;

OR

<u>SELECT LEFT(FIRST_NAME, 8) FIRST_NAME, REPEAT('\$', FLOOR(SALARY/1000)) 'SALARY(\$)', SALARY FROM employees;</u>

←Ţ	− →		\triangledown	FIRST_NAME	SALARY(\$)	SALARY
	Edit	≩- Сору	Delete	Steven	\$	24000.00
		≩- Сору	Delete	Neena	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	17000.00
	Edit	≩ і Сору	Delete	Lex	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	17000.00
		≩- Сору	Delete	Alexande	\$\$\$\$\$\$\$\$\$	9000.00
	Edit	<u> Copy</u>	Delete	Bruce	\$\$\$\$\$\$	6000.00
	Edit	≩ сору	Delete	David	\$\$\$\$	4800.00
	<i></i>	≩ Copy	Delete	Valli	\$\$\$\$	4800.00
	Edit	≩ сору	Delete	Diana	\$\$\$\$	4200.00
	<i></i>	≩ Copy	Delete	Nancy	\$\$\$\$\$\$\$\$\$\$\$\$\$	12000.00
		≩ сору	Delete	Daniel	\$\$\$\$\$\$\$\$\$	9000.00

17. Write a MySQL query to display the employees with their code, first name, last name and hire date who hired either on seventh day of any month or seventh month in any year.

<u>SELECT</u> EMPLOYEE_ID, FIRST_NAME, LAST_NAME,HIRE_DATE FROM employees WHERE DAY(hire_date) = 7 <u>OR</u> MONTH(hire_date) = 7;

←Τ	_→		\triangledown	EMPLOYEE_ID	FIRST_NAME	LAST_NAME	HIRE_DATE
		≩- Сору	Delete	114	Den	Raphaely	1987-07-01
		≩ di Copy	Delete	115	Alexander	Khoo	1987-07-02
	🧷 Edit	≩- Сору	Delete	116	Shelli	Baida	1987-07-03
		≩ Copy	Delete	117	Sigal	Tobias	1987-07-04
	🧷 Edit	≩	Delete	118	Guy	Himuro	1987-07-05
		≩ сору	Delete	119	Karen	Colmenares	1987-07-06
	<i></i>	≩ сору	Delete	120	Matthew	Weiss	1987-07-07
		≩- Сору	Delete	121	Adam	Fripp	1987-07-08