CSE 635, Spring 2021, Homework 3 Sima Shafaei

Hello! Because I miss understood about "summary of statistics" in homework 2, I add this part to this homework. I would appreciate if you could accept it as a part of HW2

1. Entropy of X.

P(X):

2. Entropy of Y.

3. Summary of statistics and entropy of error in Eyeball model

```
Code:
mean(e1)
sd(e1)
var(e1)
median(e1)
IQR(e1)
skewness(e1)
kurtosis(e1)
min(e1)
max(e1)
range(e1)
h_e1=hist(e1)
h_e1_100=hist(e1,breaks = 100)
length(h_e1_100$counts)
sum(h_e1_100$counts)
p_e1=h_e1_100$counts/sum(h_e1_100$counts)
plot(p_e1)
q_e1=p_e1[p_e1>0]
length(q_e1) #shorter than p
entropy_e1 = sum(-q_e1*log2(q_e1))
entropy_e1
max_entropy_e1=log2(100)
max_entropy_e1
Results:
                                            Histogram of eyeball error after
 Histogram of eyeball Error:
                                            breaking to 100 bins:
```


P(eyeball_error):

Summary of statistics of eyeball error:

mean	7.797387
Standard deviation	33.80003
Variance	1142.442
Median	7.3
IQR	52.1
Skewness	-0.324083
Kurtosis	3.049029
Min	-103.74
Max	76.18
Range	-103.74 76.18
Entropy	5.510833

Skewness is near zero and kurtosis is about 3 whish shows that the shape of distribution is almost near to normal distribution. However, mean is 7.7 which is very higher than zero and entropy is 5.5 which is near maximum entropy (6.64) therefore this error contains information and the model is missing this information (the model is not good)

4. Summary of statistics and entropy of error in LM model

```
Code:
mean(e2)
sd(e2)
var(e2)
median(e2)
IQR(e2)
skewness(e2)
kurtosis(e2)
min(e2)
max(e2)
range(e2)
h_e2=hist(e2)
h e2 100=hist(e2,breaks = 100)
length(h_e2_100$counts)
sum(h_e2_100$counts)
p_e2=h_e2_100$counts/sum(h_e2_100$counts)
plot(p_e2)
q_e2=p_e2[p_e2>0]
length(q_e2) #shorter than p
entropy_e2 = sum(-q_e2*log2(q_e2))
entropy e2
max_entropy_e2=log2(100)
max_entropy_e2
```


P(LM error):

Summary of statistics of LM error:

mean	1.882125e-14
Standard deviation	31.19182
Variance	972.9294
Median	8.86447
IQR	37.73405
Skewness	-1.127785
Kurtosis	4.214179
Min	-119.1359
Max	48.29161
Range	-119.13594 48.29161
Entropy	5.304325

Mean is near zero but the skewness is negative so the distribution has longer tail in the left side and kurtosis is about 4.2>3 thus the distribution is pointier than normal distribution. These information show that the shape of distribution is not like to normal distribution. Entropy is 5.3 which is near maximum entropy (6.64) therefore this error contains information and the model is missing this information (the model is not good). However, this model is better than eyeball model

5. Summary of statistics and entropy of error in Polynomial model

Code:	
mean(e3)	
sd(e3)	
var(e3)	
median(e3)	
IQR(e3)	
skewness(e3)	
kurtosis(e3)	
min(e3)	
max(e3)	

```
range(e3)
h_e3=hist(e3)

h_e3_100=hist(e3,breaks = 100)
length(h_e3_100$counts)
sum(h_e3_100$counts)
p_e3=h_e3_100$counts/sum(h_e3_100$counts)
plot(p_e3)
q_e3=p_e3[p_e3>0]
length(q_e3) #shorter than p
entropy_e3 = sum(-q_e3*log2(q_e3))
entropy_e3
max_entropy_e3=log2(100)
max_entropy_e3
```

Results:

P(Polynomial_error):

Summary of statistics of Polynomial error:

mean	1.589654e-14
Standard deviation	29.56798
Variance	874.2652
Median	6.437755

IQR	40.85343
Skewness	-1.089931
Kurtosis	4.39418
Min	-115.1173
Max	40.15503
Range	-115.11731 40.15503
Entropy	5.284067

Mean is almost 0 but skewness is negative so the distribution has longer tail in the left side and kurtosis is about 4.39>3 thus the distribution is pointier than normal distribution. These information show that the shape of distribution is not like to normal distribution. Entropy is 5.28 which is near maximum entropy (6.64) therefore this error contains information and the model is missing this information (the model is not good).

6. Summary of statistics and entropy of error in GLM model

```
Code:
mean(e4)
sd(e4)
var(e4)
median(e4)
IQR(e4)
skewness(e4)
kurtosis(e4)
min(e4)
max(e4)
range(e4)
h e4=hist(e4)
h_e4_100 = hist(e4, breaks = 100)
length(h_e4_100$counts)
sum(h_e4_100$counts)
p_e4=h_e4_100$counts/sum(h_e4_100$counts)
plot(p_e4)
q_e4=p_e4[p_e4>0]
length(q_e4) #shorter than p
entropy_e4 = sum(-q_e4*log2(q_e4))
entropy e4
max_entropy_e4=log2(100)
max_entropy_e4
Results:
```

Histogram of GLM Error:	Histogram of GLM error after breaking
	to 100 bins:

P(GLM_error):

Summary of statistics of LM error:

mean	-6.324124e-14
Standard deviation	31.76991
Variance	1009.327
Median	9.065036
IQR	38.83755
Skewness	-1.087975
Kurtosis	4.11407
Min	-119.9123
Max	52.0042
Range	-119.9123 52.0042
Entropy	5.169246

Mean is almost 0 but skewness is negative so the distribution has longer tail in the left side and kurtosis is about 4.11>3 thus the distribution is pointier than normal distribution. These information show that the shape of distribution is not like to normal distribution. Entropy is 5.16 which is near maximum entropy (6.64) therefore this error contains information and the model is missing this information (the model is not good).