Introduction Tensors

- Tensors, generalisation of vectors to more dimensions
- Use when properties depend on direction in more than one way.
- A physical quantity that is independent of coordinate system used
- Derives from the word tension (= stress)
- Stress tensor as example
- Not just a multidimensional array

Tensors

Used in Stress, strain, moment tensors Electrostatics, electrodynamics, rotation, crystal properties

Tensors describe properties that depend on direction

Tensor rank 0 - scalar - independent of direction

Tensor rank 1 - vector - depends on direction in 1 way

Tensor rank 2 - tensor - depends on direction in 2 ways

Notation

- Tensors as T
- for second order: T or \underline{T}
- Index notation T_{ij} , i,j=x,y,z or i,j=1,2,3
- For higher order T_{ijkl}

An example tensor

Gradient of velocity $\nabla v = \frac{\partial v_j}{\partial x_i} = \begin{bmatrix} \frac{\partial v_1}{\partial x_1} & \frac{\partial v_2}{\partial x_1} & \frac{\partial v_3}{\partial x_1} \\ \frac{\partial v_1}{\partial x_2} & \frac{\partial v_2}{\partial x_2} & \frac{\partial v_3}{\partial x_2} \\ \frac{\partial v_1}{\partial x_3} & \frac{\partial v_2}{\partial x_3} & \frac{\partial v_3}{\partial x_3} \end{bmatrix}$ Spatial variation in this direction Component of velocity depends on direction in two ways

This tensor gradient definition common in fluid dynamics

An example tensor

Gradient of velocity depends on direction in two ways

The two
$$\nabla \mathbf{v} = \frac{\partial v_1}{\partial x_1} = \begin{bmatrix} \frac{\partial v_1}{\partial x_1} & \frac{\partial v_1}{\partial x_2} & \frac{\partial v_1}{\partial x_3} \\ \frac{\partial v_2}{\partial x_1} & \frac{\partial v_2}{\partial x_2} & \frac{\partial v_2}{\partial x_3} \\ \frac{\partial v_3}{\partial x_1} & \frac{\partial v_3}{\partial x_2} & \frac{\partial v_3}{\partial x_3} \end{bmatrix}$$

NOTE: some texts (including Lai et al., Reddy) use this *transposed* definition

Another example: Stress

- ➤ Body forces depend on volume, e.g., gravity
- > Surface forces depend on surface area, e.g., friction

forces introduce a state of stress in a body

• $\Delta \mathbf{f}$ necessary to maintain equilibrium depends on orientation of the plane, $\hat{\mathbf{n}}_1$

traction
$$\mathbf{t_1} = \mathbf{t}(\hat{\mathbf{n}}_1) = \lim_{\Delta A \to 0} \Delta \mathbf{f}/\Delta A_1$$

$$\mathbf{t_1} = (\sigma_{11}, \sigma_{12}, \sigma_{13})$$

$$\sigma_{11} = \lim_{\Delta A_1 \to 0} \Delta \mathbf{f}_1 / \Delta A_1$$

$$\sigma_{12} = \lim_{\Delta A_1 \to 0} \Delta \mathbf{f}_2 / \Delta A_1$$

$$\sigma_{13} = \lim_{\Delta A_1 \to 0} \Delta \mathbf{f}_3 / \Delta A_1$$

Need nine components to fully describe the stress

$$\sigma_{11}$$
, σ_{12} , σ_{13} for ΔA_1
 σ_{22} , σ_{21} , σ_{23} for ΔA_2
 σ_{33} , σ_{31} , σ_{32} for ΔA_3

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

first index = orientation of plane second index = orientation of force

Difference between a tensor and its matrix

Tensor – physical quantity that is independent of coordinate system used

Matrix of a tensor – contains components of that tensor in a particular coordinate frame

Could test that indeed tensor addition and multiplication satisfy transformation laws

Summation (Einstein) convention

When an index in a single term is a duplicate, dummy index, summation implied without writing summation symbol

$$a_1 v_1 + a_2 v_2 + a_3 v_3 = \sum_{i=1}^{3} a_i v_i = a_i v_i$$

$$\sum_{i=1}^{3} \sum_{j=1}^{3} a_{ij} x_i y_j = a_{ij} x_i y_j = a_{11} x_1 y_1 + a_{12} x_1 y_2 + a_{13} x_1 y_3 + a_{21} x_2 y_1 + a_{22} x_2 y_2 + a_{23} x_2 y_3 + a_{31} x_3 y_1 + a_{32} x_3 y_2 + a_{33} x_3 y_3$$

Invalid, indices repeated more than twice

$$\sum_{i=1}^{3} a_i b_i v_i \neq a_i b_i v_i$$

Notation conventions

index notation $\alpha_{ij}x_iy_j =$

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{y} = \begin{pmatrix} x_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix}$$

other versions index notation

$$\alpha_{ij} x_i y_j = x_i \alpha_{ij} y_j = \alpha_{ij} y_j x_i$$

Dummy vs free index

$$a_1v_1 + a_2v_2 + a_3v_3 = \sum_{i=1}^3 a_iv_i = \sum_{k=1}^3 a_kv_k$$

• i,k – dummy index – appears in duplicates and can be substituted without changing equation

$$F_{j} = A_{j} \sum_{i=1}^{3} B_{i} C_{i} \implies F_{1} = A_{1} (B_{1} C_{1} + B_{2} C_{2} + B_{3} C_{3})$$

$$F_{2} = A_{2} (B_{1} C_{1} + B_{2} C_{2} + B_{3} C_{3})$$

$$F_{3} = A_{3} (B_{1} C_{1} + B_{2} C_{2} + B_{3} C_{3})$$

• j – free index, appears once in each term of the equation

Exercise 7

- 1. $g_k = h_k(2-3a_ib_i) p_jq_jf_k$ Which dummy, which free indices, how many equations, how many terms in each?
- 2. Are these valid expressions?
 - a) $a_m b_s = c_m (d_r f_r)$
 - b) $x_i x_i = r^2$
 - c) $a_i b_j c_j = 3$

Addition and subtraction of tensors

 $\mathbf{W} = a\mathbf{T} + b\mathbf{S}$ add each component: $W_{ijkl} = aT_{ijkl} + bS_{ijkl}$

T and S must have same rank, dimension and units W has same rank, dimension and units as T and S

T and S are tensors => W is a tensor commutative, associative

This is the same as how vectors and matrices are added.

Multiplication of tensors

Inner product = dot product

$$W = T \cdot S$$

involves contraction over one index: $W_{ik} = T_{ij}S_{jk}$ As normal matrix and matrix-vector multiplication

T and S can have different rank, but same dimension rankW = rankT + rankS - 2, dimension as T and S, units as product of units T and S

T and S are tensors \Rightarrow W is a tensor

Examples:
$$|\mathbf{v}|^2 = \mathbf{v} \cdot \mathbf{v}$$

 $\boldsymbol{\sigma} = \mathbf{C} \cdot \boldsymbol{\varepsilon}$ or $\sigma_{ij} = C_{ijkl} \, \varepsilon_{kl}$ (Hooke's law)

Multiplication of tensors

 $\underline{Tensor\ product = outer\ product} = \underline{dyadic\ product}$ $\underline{\neq\ cross\ product}$

 $\mathbf{W} = \mathbf{TS}$ often written as $\mathbf{W} = \mathbf{T} \otimes \mathbf{S}$ no contraction: $W_{ijkl} = T_{ij}S_{kl}$

T and S can have different rank, but same dimension rank W = rankT + rankS, dimension as T and S, units as product of units T and S

T and S are tensors => W is a tensor

Examples: $\nabla \mathbf{v}$ (gradient of a vector) $\neq \nabla \cdot \mathbf{v}$ (divergence)

remember gradient is a vector
$$\nabla = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3}\right)$$

Multiplication of tensors

For both multiplications

Distributive: A(B+C)=AB+AC

Associative: A(BC)=(AB)C

Not commutative: $TS \neq ST$, $T \cdot S \neq S \cdot T$

but: $T \cdot S = S^T \cdot T^T$

and: $ab=(ba)^T$ but only for rank 2

Remember transpose: $\mathbf{a} \cdot \mathbf{T} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{T}^{T} \cdot \mathbf{a} => T_{ji} = T^{T}_{ij}$

Special tensor: Kronecker delta δ_{ii}

$$\delta_{ij} = \hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_j$$

$$\delta_{ij} = 1 \text{ for } i=j, \delta_{ij} = 0 \text{ for } i \neq j$$

In 3-D:
$$\delta = \mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Isotropic tensors, invariant upon coordinate transformation

- scalars
- $\mathbf{0}$ vector δ_{ij}

**T·
$$\delta$$
=T·I=T** or $T_{ij}\delta_{jk} = T_{ik}$

 δ is isotropic: $\delta_{ij} = \delta'_{ij}$ upon coordinate transformation can be used to write dot product: $T_{ij}S_{il} = T_{ij}S_{kl}\delta_{ik}$ can be used to write trace: $A_{ii} = A_{ij}\delta_{ij}$ orthonormal transformation: $\alpha_{ij}\alpha^{T}_{ik} = \delta_{ik}$

Special tensor: Permutation symbol ϵ_{iik}

$$\varepsilon_{ijk} = (\hat{\mathbf{e}}_i \times \hat{\mathbf{e}}_j) \cdot \hat{\mathbf{e}}_k$$

 $\varepsilon_{iik} = 1$ if i,j,k an even permutation of 1,2,3

 ε_{iik} = -1 if i,j,k an odd permutation of 1,2,3

 $\varepsilon_{ijk} = 0$ for all other i,j,k

$$\varepsilon_{123} = \varepsilon_{231} = \varepsilon_{312} = 1$$
 $\varepsilon_{213} = \varepsilon_{321} = \varepsilon_{132} = -1$
 $\varepsilon_{111} = \varepsilon_{112} = \varepsilon_{222} = \dots = 0$

Note that $\varepsilon_{ijk}a_ib_j\hat{e}_k$ where \hat{e}_k is the unit vector in k direction is index notation for cross product $\mathbf{a} \times \mathbf{b}$

Exercise: useful identity ε_{ijm} $\varepsilon_{klm} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}$

Vector derivatives - curl

Curl of a vector:
$$\nabla \times \mathbf{v} = \varepsilon_{ijk} \frac{\partial}{\partial x_i} v_j \hat{\mathbf{e}}_k = \begin{bmatrix} \frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3} \\ \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1} \\ \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2} \end{bmatrix}$$

In index notation, using special tensor

Some tensor calculus

Some tensor calculus

Gradient of a vector is a tensor:
$$\nabla \mathbf{v} = \frac{\partial v_j}{\partial x_i} = \begin{bmatrix} \frac{\partial v_1}{\partial x_1} & \frac{\partial v_2}{\partial x_1} & \frac{\partial v_3}{\partial x_1} \\ \frac{\partial v_1}{\partial x_2} & \frac{\partial v_2}{\partial x_2} & \frac{\partial v_3}{\partial x_2} \\ \frac{\partial v_1}{\partial x_3} & \frac{\partial v_j}{\partial x_3} & \frac{\partial v_3}{\partial x_3} \end{bmatrix}$$

Such that the change $\mathbf{d}\mathbf{v}$ in

Such that the change **dv** in field v in direction dx is: $dv = dx \cdot \nabla v$

Divergence of a vector:
$$\nabla \cdot \mathbf{v} = \frac{\partial v_i}{\partial x_i} = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}$$

$$\nabla \cdot \mathbf{v} = tr(\nabla \mathbf{v})$$

Trace of a tensor is the sum of diagonal elements

Some tensor calculus

Divergence of a tensor:

tensor:
$$\mathbf{\nabla \cdot T} = \frac{\partial T_{ij}}{\partial x_i} = \begin{bmatrix} \frac{\partial T_{i1}}{\partial x_i} \\ \frac{\partial T_{i2}}{\partial x_i} \\ \frac{\partial T_{i3}}{\partial x_i} \end{bmatrix} = \begin{bmatrix} \frac{\partial T_{11}}{\partial x_1} + \frac{\partial T_{21}}{\partial x_2} + \frac{\partial T_{31}}{\partial x_3} \\ \frac{\partial T_{12}}{\partial x_1} + \frac{\partial T_{22}}{\partial x_2} + \frac{\partial T_{32}}{\partial x_3} \\ \frac{\partial T_{13}}{\partial x_1} + \frac{\partial T_{23}}{\partial x_2} + \frac{\partial T_{33}}{\partial x_3} \end{bmatrix}$$
vector

Laplacian = div(grad f), where f is a scalar function

$$\nabla \cdot \nabla f = \nabla^2 f = \Delta f = \frac{\partial^2}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \frac{\partial^2 f}{\partial x_3^2}$$

Learning Objectives

- Be able to perform vector/tensor operations (addition, multiplication) on Cartesian orthonormal bases
- Be able to do basic vector/tensor calculus (time and space derivatives, divergence, curl of a vector field) on these bases.
- Perform transformation of a vector from one to another Cartesian basis.
- Understand differences/commonalities tensor and vector
- Use index notation and Einstein convention

Summary

Vectors

- Addition, linear independence
- Orthonormal Cartesian bases, transformation
- Multiplication
- Derivatives, del, div, curl

Tensors

- Tensors, rank, stress tensor
- Index notation, summation convention
- Addition, multiplication
- Special tensors, δ_{ij} and ϵ_{ijk}
- Tensor calculus: gradient, divergence, curl, ...

Further reading/studying e.g: **Reddy** (2013) 2.2.1-2.2.3, 2.2.5, 2.2.6, 2.4.1, 2.4.4, 2.4.5, 2.4.6, 2.4.8 (not co/contravariant), **Lai, Rubin, Kremple** (2010): 2.1-2.13, 2.16, 2.17, 2.27-2.32, 4.1-4.3, **Khan Academy** – linear algebra, multivariate calculus

Try yourself

• For this part of the lecture, try Exercise 7 and optional advanced Exercise 8

• Try to finish in the afternoon workshop: Exercise 2, 3, 5, 6, 7, 9

- Additional practise: Exercise 1, 4
- Advanced practise: Exercise 8, 10