Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

14 de diciembre de 2020

Transformaciones Lineales

En general tenemos, sea $v \in V$ cualquiera, entonces podemos escribir en función de las bases Γ y Ω como sigue

$$v = \sum_{j=1}^{n} x_{j} v^{j},$$
 $y \quad v = \sum_{j=1}^{n} x_{j} w^{j}$

que determinan los vectores

$$x_{\nu}=(x_1,\cdots,x_n)^t, \quad \text{y} \quad y_{\nu}=(y_1,\cdots,y_n)^t.$$

Con las notaciones anteriores, se tiene

- 1. PQ = I.
- 2. $Px_v = y_v$ y $Qy_v = x_v$.

Prueba:

1. Note que

$$\mathbf{v}^{j} = \sum_{i=1}^{n} \alpha_{ij} \mathbf{w}^{i} = \sum_{i=1}^{n} \alpha_{ij} \left(\sum_{t=1}^{n} \beta_{ti} \mathbf{v}^{t} \right) = \sum_{t=1}^{n} \sum_{i=1}^{n} \left(\alpha_{ij} \beta_{ti} \right) \mathbf{v}^{t}.$$

Como los vectores v^j son linealmente independiente, entonces se tiene

$$\sum_{i=1}^{n} \alpha_{ij} \beta_{ti} = \delta_{tj},$$

donde δ_{ti} es el delta de Kronecker.

Además tenemos,

$$(QP)_{tj} = \sum_{i=1}^{n} \alpha_{ij} \beta_{ti}.$$

Por tanto se tiene QP = I.

2. Se tiene que $v = \sum_{j=1}^{n} y_j w^j$, y

$$v = \sum_{i=1}^n x_i v^i = \sum_{i=1}^n x_i \left(\sum_{j=1}^n \alpha_{ji} w^j \right) = \sum_{j=1}^n \left(\sum_{i=1}^n \alpha_{ji} x_i \right) w^j.$$

De las dos últimas relaciones tenemos

$$y_j = \sum_{i=1}^n \alpha_{ji} x_i = (Px_v)_j,$$
 para $j = 1, 2, \cdots, n.$

Luego $y_v = Px_v$ y por el item (1) se obtiene que $Qy_v = x_v$.

Consideremos V y W espacios vectoriales, y las bases $\{v^1, v^2, \cdots, v^n\}$ $y \{e^1, e^2, \dots, e^n\}$ para $V, y \{w^1, w^2, \dots, w^m\}$ $y \{f^1, f^2, \dots, f^m\}$ para W. Entonces

$$v^{j} = \sum_{t=1}^{n} \alpha_{tj} e^{t}, \quad w^{t} = \sum_{k=1}^{m} \beta_{kt} f^{k},$$

para $j=1,2,\cdots,n$ y $t=1,2,\cdots,m$, entonces estas expresiones determinan las matrices de cambio de base

$$P = [\alpha_{tj}] \in \mathbb{K}(n, n), \quad Q = [\beta_{kt}] \in \mathbb{K}(m, m).$$

Además, dadas la transformación lineal $T: V \longrightarrow V$, se tiene

$$T(v^j) = \sum_{i=1}^m a_{ij}w^i, \quad j=1,2,\cdots,n,$$

$$T(e^t) = \sum_{k=1}^m b_{kt} f^k, \quad t = 1, 2, \cdots, n,$$

determinan las matrices asociadas a T, $A_T = [a_{ij}]$, $B_T = [b_{kt}]$.

Con las notaciones dadas se tiene

$$A_T = Q^{-1}B_T P$$

. Prueba:

Notamos

$$T(v^{j}) = \sum_{i=1}^{m} a_{ij} w^{i} = \sum_{i=1}^{m} a_{ij} \left(\sum_{k=1}^{m} \beta_{ki} f^{k} \right) = \sum_{k=1}^{m} \left(\sum_{i=1}^{m} \beta_{ki} a_{ij} \right) f^{k}$$

$$T(v^{j}) = \sum_{t=1}^{n} \alpha_{tj} T(e^{t}) = \sum_{t=1}^{n} \alpha_{tj} \left(\sum_{k=1}^{m} b_{kt} f^{k} \right) = \sum_{k=1}^{m} \left(\sum_{t=1}^{n} b_{kt} \alpha_{tj} \right) f^{k}.$$

Como $\{f^1, f^2, \dots, f^m\}$ es una base, y de la igualdad anterior tenemos

$$\sum_{i=1}^{n} \beta_{ki} a_{ij} = \sum_{t=1}^{n} b_{kt} \alpha_{tj}, \quad k = 1, 2, \cdots, m, \quad j = 1, 2, \cdots, n.$$

Por tanto, $(QA_T)_{kj} = (B_T P)_{kj}$, $k = 1, 2, \dots, m$, $j = 1, 2, \dots, n$.

Entonces $QA_T = B_T P$.

Observación

La proposición anterior no indica que dos matrices asociadas a una transformación lineal son equivalentes, luego podemos escribir

$$A_T = Q^{-1}B_TP.$$

Para un caso particular W=V se tiene, para dos bases $\{v^1, \dots, v^n\}$ y $\{w^1, \dots, w^n\}$ de V, obtenemos

$$\mathbf{v}^j = \sum_{t=1}^j \alpha_{tj} \mathbf{w}^t, \quad j = 1, 2, \cdots, n.$$

Si $P = [\alpha_{ij}]$ y $T : V \longrightarrow V$ una transformación lineal, entonces tenemos

$$T(v^j) = \sum_{i=1}^n a_{ij}v^i, \quad j = 1, 2, \cdots, n$$
 $T(w^t) = \sum_{k=1}^n b_{kt}w^k, \quad t = 1, 2, \cdots, n,$

estas relaciones nos proporciona las matrices $A_T = [a_{ij}], B_T = [b_{kt}]$ asociadas a T.

Por tanto las notaciones anteriores nos conduce a la siguiente

Proposición

$$A_T = P^{-1}B_TP.$$

Prueba: Ejercicio.

Esta proposición nos indica que dos matrices asociadas a una transformación lineal $T: V \longrightarrow V$ son semejantes.

Recordemos que dada una matriz $A \in \mathbb{K}(m, n)$, denotamos por $\mathcal{F}(A)$, $\mathscr{C}(A)$ los espacios generado por los vectores fila y columna de A respectivamente, también $r_f(A) = dim(\mathcal{F}(A))$ y $r_c(A) = dim(\mathscr{C}(A))$ el rango de A por filas y por columnas de A respectivamente.

Teorema (Teorema del Rango)

Sea una matriz $A \in \mathbb{K}(m, n)$, entonces

$$r_f(A) = r_c(A).$$

Denotemos por $r(A) = r_c(A) = r_c(A)$, el **rango** de A.

Dada una matriz $A \in \mathbb{K}(m, n)$ y

$$\mathcal{N}(A) = \{x \in \mathbb{K}(n,1)/Ax = \mathbf{0}\}.$$

Entonces

$$n = dim(\mathcal{N}(A)) + r_c(A).$$

Prueba:

Sea la transformación lineal $L_A:\mathbb{K}(n,1)\longrightarrow\mathbb{K}(m,1)$ definida por

$$L_A(x) = Ax$$

consideremos $A = [a^1 a^2 \cdots a^n]$ (vectores columnas de A), entonces

$$L_A(x) = Ax = \sum_{j=1}^n x_j a^j,$$

entonces tenemos

$$Im(L_A) = \mathscr{L}(\{a^1, a^2, \cdots, a^n\}),$$

y por tanto

$$r_c(A) = dim(Im(L_A)).$$

Luego tenemos

$$n = dim(\mathcal{N}(L_A)) + dim(Im(L_A)) = dim(\mathcal{N}(L_A)) + r_c(A).$$

Ahora veamos una de las demostraciones del teorema del rango **Prueba**:

Consideremos

$$\mathcal{N}(A) = \{x \in \mathbb{K}(n,1)/Ax = 0\}$$

$$= \{x \in \mathbb{K}(n,1) / \sum_{j=1}^{n} a_{ij}x_{j} = 0, \ i = 1, 2, \cdots, m\}$$

$$= \{x \in \mathbb{K}(n,1) / \langle a^{i}, x \rangle = 0, \ i = 1, 2, \cdots, m\}, \ a^{i} \text{ vectores filas}$$

$$= \{x \in \mathbb{K}(n,1) / \langle y, x \rangle = 0, \text{ para todo } y \in \mathcal{F}(A)\}$$

$$= \left[\mathcal{F}(A)\right]^{\perp}.$$

Por tanto

$$n = dim(\mathcal{F}(A)) + dim\left(\left[\mathcal{F}(A)\right]^{\perp}\right) = r_f(A) + dim(\mathcal{N}(A)).$$

Por la proposición anterior tenemos que $r_f(A) = r_c(A)$.

Dadas $A, B \in \mathbb{K}(m, n)$, entonces los siguientes enunciados son equivalentes:

- 1. A y B son equivalentes.
- 2. A y B son asociados a una misma transformación lineal.
- 3. r(A) = r(B).

Prueba: Ejercicio.

Empezaremos el estudio con las formas bilineales y luego lo generalizaremos

Definición

Sea V,W espacios vectoriales, una **forma bilineal** $b:V\times W\longrightarrow \mathbb{R}$ es una aplicación que es lineal en cada una de sus componentes, es decir, para todo $v,v'\in V$, $w,w'\in W$, $\alpha\in\mathbb{R}$

- 1. $b(v + v', w) = b(v, w) + b(v', w); b(\alpha v, w) = \alpha b(v, w).$
- 2. $b(v, w + w') = b(v, w) + b(v, w'); b(v, \alpha w) = \alpha b(v, w).$

Definamos el connjunto

$$\mathcal{B}(V \times W) = \{b : V \times W \longrightarrow \mathbb{R}/b \text{ es bilineal}\}$$

con las operaciones dadas antes este conjunto es un espacio vectorial.

Consideremos $\mathcal{V}=\{v^1,v^2,\cdots,v^m\}$, $\mathcal{W}=\{w^1,w^2,\cdots,w^n\}$ bases de V y W respectivamente, entonces sea $b_{ij}=b(v^i,w^j)$ define una matriz $B=[b_{ij}]\in\mathbb{R}(m,n)$, la cual es llamada **matriz de la forma bilineal** b relativamente a las bases \mathcal{V} y \mathcal{W} .

Si tenemos las base de $\mathcal{V} = \{v^1, v^2, \cdots, v^m\}$, $\mathcal{W} = \{w^1, w^2, \cdots, w^n\}$ V y W respectivamente, entonces podemos definir la matriz $B = [b_{ij}]$ de la siguiente forma

$$b_{ij}=b(v^i,w^j),$$

entonces una forma bilineal $b: V \times W \longrightarrow \mathbb{R}$ queda determinada, esto es posible, dado que $v = \sum_{i=1}^m x_i v^i \in V$ y $w = \sum_{j=1}^n y_j w^j \in W$, entonces

$$b(v, w) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j b(v^i, w^j) = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j b_{ij}.$$

