Midterm Exam - Noboru Hayashi

1.

1.
$$P(a \text{ clid has blue eyes}) = \frac{1}{4}$$

a) $P(x \ge 2 \mid x \ge 1)$

$$= \frac{P(x \ge 2, x \ge 1)}{P(x \ge 1)} = \frac{P(x \ge 2)}{P(x \ge 1)}$$

$$P(x \ge 2) = P(x = 3) + P(x = 2)$$

$$= \frac{1}{3} + \frac{1}{4} + \frac{1}{$$

2 Let D be a voter is decided, ND for undead A be a voter is affiliated, NA for unaffiliated
D ND Total A 70% x 94% 20% x 1 A 65.8% 1.2% 67% NA 30% x 94% 80% 6% Total 94% 6% Total 94% 6% P(ND NA) = P(ND, NA) 4.8% 33%
= 0.1455 = 14.55%
b) $P(Decided Affiliated)$ $= P(D A) = \frac{P(D,A)}{P(A)} = \frac{65.8\%}{67\%}$ $= 0.9821$ $= 98.21\%$

3.

P(a coin is leads) = 0.5

pdf for
$$X \circ uven \times v(0,1)$$
 $f_n(x) = P(acoin is beads) \circ \frac{1}{1-0}$

= $\frac{1}{2} \cdot 1 = \frac{1}{2}$

pdf for X when $x \circ v(1,5)$
 $f_n(x) = P(a coin is tails) \cdot \frac{1}{5-1}$

= $\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$.

A $f_n(x) = \int_{-1}^{1} \frac{1}{8} \times f_n(x) \int_{-1}^{1} \frac{1}{8} \int_$

b)
$$E(X) = \int_{-\infty}^{\infty} \frac{1}{x} f_{x}(x) dx$$

$$= \int_{0}^{1} \frac{1}{2} x dx + \int_{1}^{3} \frac{1}{8} \pi dx$$

$$= \frac{\pi^{2}}{4} \Big|_{0}^{1} + \frac{\pi^{2}}{16} \Big|_{1}^{3}$$

$$= \frac{1}{4} + \frac{2\pi}{16} + \frac{1}{16} = \frac{1}{4} + \frac{2\pi}{16} = \frac{7}{4} = 1.75$$

4)
$$P$$
 (At least I of inclinated having a cancer)

= P (I - P (None of the having a cancer)

= P (a person not having a cancer)

= P (Since P (Since P (Since P (Since P)

= P (P (P)

= P

a) (lean radius =
$$E(x)$$

$$= \int_{\infty}^{\infty} x f_{n}(x) dx = \int_{0}^{1} 2x^{2} dx$$

$$= \frac{2}{3}x^{3} \Big|_{0}^{1} = \frac{2}{3}$$
We are radius $R = \frac{1}{3}$
b) (Median radius $R = \frac{1}{3}$ satisfies $F_{x}(R) = \frac{1}{2}$

$$\Rightarrow \int_{\infty}^{R} f_{x}(x) dx = 0.5$$

$$\int_{0}^{R} 2x dx = 0.5$$

$$\int_{0}^{R} 2x dx = 0.5$$

$$R^{2} = 0.5$$

$$R = \frac{7^{2}}{2}$$
Median radius is $\frac{1}{2}$

$$C) E(Area) = E(\pi X^{2})$$

$$= \int_{-\infty}^{\infty} \pi x^{2} \cdot f_{x}(x) dx = \int_{-\infty}^{\infty} 2\pi x^{3} dx$$

$$= \frac{1}{2}\pi X^{4} \Big|_{0}^{1} = \frac{1}{2}\pi$$
Mean area is $\frac{1}{2}\pi$

- 6) $f_{T}(t) = e^{-t}, t \ge 0$
- a) From the polf, each life span of each light bulb is exponetially distributed by $\lambda = 1$.

So E E(T) for each bulb is = 1.

Since each light bulb is independent,

therefor and the length of at least I working
bulb in the room is equal to both light
bulb's failure time.

thence, we expect at least one bulb working autil t=1

b) (Most likely time for room to go dark TS = T) = 1.

7.
$$\int_{x,Y} (x,y) = x+y$$
, $ocx < 1$, $e < y < 1$

$$\int_{y}^{1} (y) = \int_{0}^{1} x+y \, olx = \frac{1}{2} x^{2} + xy \Big|_{0}^{1}$$

$$= \frac{1}{2} + y$$
,
$$\int_{x|Y} (x,y) = \frac{\int_{x,Y} (x,y)}{\int_{Y} (y)} = \frac{x+y}{\frac{1}{2} + y}$$

$$\Rightarrow P(x > 0.4 | y = 0.6) = 1 - P(x \le 0.4 | y = 0.6)$$

$$= 1 - \int_{0}^{0.4} \int_{x|Y} (x,y) \, dx$$

$$= 1 - \int_{0}^{0.4} \frac{x+0.6}{0.5+0.6} dx = 1 - \int_{0}^{0.4} \frac{10}{11} x + \frac{6}{11} \, dx$$

$$= 1 - \left(\frac{5}{11} x^{2} + \frac{6}{11} x\right) \Big|_{0}^{0.4}$$

$$= 1 - \left(\frac{3}{11} \cdot \frac{4}{25} + \frac{6}{11} \cdot \frac{2}{5}\right)$$

$$= 1 - \left(\frac{4}{55} + \frac{12}{55}\right) = \frac{39}{55} = 0.709$$

8)
$$f(x,y) = x+y$$
, $0 < x < 1$, $0 < x < 1$
 $P(x > \sqrt{x}) = \int_{0}^{1} \int_{\sqrt{y}}^{1} f(x,y) dx dy$

$$= \int_{0}^{1} \int_{\sqrt{y}}^{1} x + y dx dy$$

$$= \int_{0}^{1} \int_{2}^{1} x^{2} + xy \int_{\sqrt{y}}^{1} dy = \int_{0}^{1} \int_{2}^{1} + y - \int_{2}^{1} y - y^{2} dy$$

$$= \int_{0}^{1} \int_{2}^{1} + \int_{2}^{1} y - y^{\frac{3}{2}} dy = \int_{2}^{1} y + \int_{4}^{1} y^{2} - \frac{2}{5} y^{\frac{5}{2}} \Big|_{0}^{1}$$

$$= \int_{0}^{1} \int_{2}^{1} + \int_{2}^{1} y - y^{\frac{3}{2}} dy = \int_{2}^{1} \int_{2}^{1} + \int_{2}^{1} y - y^{\frac{5}{2}} dy$$

$$= \int_{0}^{1} \int_{2}^{1} + \int_{2}^{1} y - y^{\frac{3}{2}} dy = \int_{2}^{1} \int_{2}^{1} + \int_{2}^{1} y - y^{\frac{5}{2}} dy$$

9
$$g(t) = \frac{1}{2} \int (t; \mu = -2, \sigma = 1) + \frac{1}{2} \int (t; \mu = 2, \sigma = 1)$$

Let $\int a = \int (t; \mu = -2, \sigma = 1)$, $\int_{2} = \int (t; \mu = 2, \sigma = 1)$
 $E(g(t)) = E[\frac{1}{2}\int_{1} + \frac{1}{2}\int_{2}]$

According to the linearity of expectation:

 $E[\frac{1}{2}\int_{1} + \frac{1}{2}\int_{2}] = E(\frac{1}{2}\int_{1}) + E(\frac{1}{2}\int_{2})$
 $= \frac{1}{2}E(\frac{1}{2}\int_{1}) + \frac{1}{2}E(\frac{1}{2}\int_{2})$
 $= \frac{1}{2}E(\frac{1}{2}\int_{1}) + \frac{1}{2}E(\frac{1}{2}\int_{2})$
 $= \frac{1}{2}(\frac{1}{2}\int_{1}) + \frac{1}{2}E(\frac{1}{2}\int_{2})$

Where is a coording the property of the variance

 $V[\frac{1}{2}\int_{1} + \frac{1}{2}\int_{2}] = \frac{1}{2}Var[f_{1}] + \frac{1}{2}Var[f_{2}]$
 $+2(\frac{1}{2})^{2}Cav[f_{1},f_{2}]$

Since two distribution are identical; $Cav[f_{1},f_{2}] = Var[f_{2}]$
 $\Rightarrow Var[g(t)] = (\frac{1}{2}) \cdot G_{1}^{2} + (\frac{1}{2}) \cdot G_{2}^{2} + \frac{1}{2} \cdot G_{1}^{2}$
 $= \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1$
 $\Rightarrow Standard$ Deviation is $\overline{A1} = 1$