ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: http://www.elsevier.com/locate/jalcom

High-response NO₂ resistive gas sensor based on bilayer MoS₂ grown by a new two-step chemical vapor deposition method

Tingting Xu, Yongyong Pei, Yunyun Liu, Di Wu, Zhifeng Shi, Junmin Xu*, Yongtao Tian, Xinjian Li**

Department of Physics and Engineering, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, PR China

ARTICLE INFO

Article history:
Received 14 March 2017
Received in revised form
7 June 2017
Accepted 9 June 2017
Available online 12 June 2017

Keywords: Bilayer MoS₂ Resistive gas sensor P-type Sensitivity Room temperature

ABSTRACT

MoS $_2$ atomic layers with a lateral grain size of 50–100 μm were synthesized by a new two-step chemical vapor deposition method. The product was confirmed to be bilayer MoS $_2$ by the characterization of Raman spectroscopy, atomic force microscopy and high-resolution transmission electron microscopy. The growth mechanism and the influencing factors during the growth process of the bilayer MoS $_2$ were proposed and the so-obtained large lateral grain sizes of MoS $_2$ atomic layers were attributed to the high surface mobility and enhanced surface evaporation. The resistive gas sensors based on as-prepared bilayer MoS $_2$ films showed a p-type character and achieved a superior sensitivity of 2.6% to 1 ppm NO $_2$ gas at room temperature.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The increasing concern to daily life, environmental protection, industrial and agricultural production monitoring has given rise to a keen interest in gas detection [1,2]. Because of the emissions of fossil-fuel combustion and the exhaust fumes of cars, NO₂ is one of the most common air pollutants among various gases. NO₂ exposure can result in skin damage and respiratory disorders, and a 5 min emergency exposure limit for 35 ppm NO₂ has been proposed by the American Industrial Hygiene Association. Thus, a sensitive sensor is highly needed to monitor the NO₂ concentrations timely. In the past few decades, metal oxide semiconductors have been extensively studied as gas-sensing materials due to the low cost and easy preparation [3]. However, the high working temperature of gas sensors based on metal oxides [4] and the resulting safety problem have impeded their practical applications. To this respect, searching for suitable sensing materials has been an urgent task.

Because of the unique two dimensional microstructure, graphene and the similar two-dimensional materials have attracted

E-mail addresses: xutt@zzu.edu.cn (T. Xu), JunminXu@zzu.edu.cn (J. Xu), lixj@zzu.edu.cn (X. Li).

world-wide interests [5–12]. Nevertheless, graphene's zero bandgap energy and the resulting high leakage current have limited many applications in electronics [13]. MoS₂ is a graphene-like layered semiconductor with a bandgap in the range of 1.2–1.9 eV, and its bandgap is dependent on the thickness [14,15]. When the thickness of MoS₂ decreases to monolayer, the pristine indirect bandgap transfers into a direct one. Due to the semiconducting property, it's possible for MoS₂ to form p-n junctions with other semiconducting materials [16,17]. The obtained p-n junction is a new type of sensing device and will enhance the sensing properties significantly. It was reported that the sensitivity of the MoS₂-TiO₂ heterojunction to alcohol increased almost 11 times than that of TiO₂ nanotubes [18]. What's more, due to the large surface-tovolume ratios and inherent flexibility of few-layered MoS2, gas sensors based on few-layered MoS2 are attracting more and more attentions. So far, MoS₂ has exhibited a significant response to various gases (such as NO₂, NO, NH₃, H₂) at room temperature [16,19-21], and has been considered as a promising gas-sensing

Field Effect Transistors (FET) [22] and resistive gas sensors [23–25] based on few-layered MoS₂ or MoS₂ flakes have been used for gas sensing. As the fabrication of FET is quite elaborate, resistive gas sensors based on layered MoS₂ with standard interdigitated electrodes are more suitable for practical application. However, for the fabrication of resistive gas sensors based on layered MoS₂, the

^{*} Corresponding author.

^{**} Corresponding author.

large-scale synthesis of high-quality and uniform MoS₂ atomic layers using an easy and low-cost method is still a challenge. Mechanical Exfoliation is a typical top-down approach to obtain MoS₂ atomic layers and has received considerable attention [26,27]. Nevertheless, the non-uniform thickness and small size undermine the viability of such approaches. Similar limitations exist with other top-down methods, e.g. laser thinning [28] and liquid exfoliation [29], as well as the hydrothermal reaction method [30]. More recently, atomic layer deposition (ALD) have also been introduced to synthesize large-area ultra-thin MoS₂ films [31,32], but the complicated process and expensive cost restricted its development. Chemical vapor deposition (CVD), a typical bottom-up method, is a scalable uniform and high-quality MoS₂ synthesis technique. Largearea MoS₂ atomic layers have been synthesized by direct sulfuration of pre-deposited molybdenum thin films by magnetron sputtering technique [33,34]. The size and thickness of the film can roughly be tuned by controlling the size of the substrate and the thickness of molybdenum film. However, the small lateral grain size induced the reduction of the quality of as-synthesized MoS₂. Although high-quality and large-area MoS₂ atomic layers were obtained by the sulfuration of ammonium tetrathiomolybdate films [35], the complexity in precursor preparation and expensive precursor limited its feasibility. Due to the low melting and evaporation temperatures, Molybdenum trioxide (MoO₃) and sulfur powders have been widely used as the precursors to synthesize MoS₂ by a CVD method. Traditionally, the evaporation and sulfuration of MoO₃ powder are carried out at the same time in a tube furnace, and the lateral-to-vertical ratio of growth rates is dominated by temperatures, pressures, gas flows, etc [36,37]. So far, it's still a challenge in controlling the lateral-to-vertical ratio of growth rates and thus the resultant lateral grain sizes with atomic

Herein, a new method, in which the deposition and sulfuration of MoO_3 were carried out in two separate steps, was adopted to synthesize MoS_2 atomic layer with a large lateral grain size. The resistive gas sensors based on as-prepared bilayer MoS_2 films showed a p-type character and manifested a good sensitivity and selectivity to NO_2 gas at room temperature.

2. Experimental

2.1. Synthesis and characterization of MoS₂

Here a new approach of growing ultrathin MoS₂ films was presented. The MoS₂ films were prepared on SiO₂/Si substrates in a tube furnace with multiple temperature zones by a CVD method, and the growth process can be divided into two steps: deposition of MoO₃ and sulfuration of MoO₃ (as shown in Fig. 1c). Fig. 1a and b schematically illustrate our experimental set-up and temperaturetime curve during the sulfuration of MoO₃. In the first step, High purity MoO₃ powder (99.9%, 10 mg) was placed in an alumina boat at the center of the second temperature zone and the SiO₂/Si substrates were placed at the down stream of the MoO₃ powder. After the temperature of the MoO₃ powder was kept at 750 °C for 5min, the MoO₃ powder was thermally evaporated and MoO₃ films were obtained on SiO₂/Si substrates. In the second step, the MoO₃ films were placed at the down stream of sulfur powder (99.99%, >1 g) and were reduced by sulfur vapor in gas phase at 650 °C under atmospheric pressure (as shown in Fig. 1a). Finally, ultrathin MoS₂ films formed on SiO₂/Si substrates after the full sulfuration of MoO₃ films. It is worth mentioning that the SiO₂/Si substrates used in the growth process were cleaned or treated in advance with acetone, alcohol, deionized water, and O₂ plasma for 180s successively.

The as-prepared MoS_2 films were characterized by X-ray diffraction with $Cu K\alpha$ radiation (XRD PA National X' Pert Pro), X-ray

photoelectron spectroscopy (XPS, AXIS Supra), Raman spectroscopy (HORIBA, LabRAM HR Evolution), atomic force microscopy (AFM, NT-MDT, Prima) and high-resolution transmission electron microscopy (HRTEM, JEOL, JEM-2100).

2.2. Fabrication and testing of the resistive gas sensors based on asprepared MoS_2 films

After interdigital gold electrodes were fabricated on top of asprepared MoS₂ films on the SiO₂/Si substrates by e-beam evaporation process, resistive gas sensors based on as-prepared MoS₂ films were obtained. The gas sensing properties of the as-fabricated gas sensors were measured by the CGS-1TP gas sensing measurement system (Beijing Elite Tech Co., Ltd, China). All the gas sensing measurements were carried out in an atmospheric environment and a relative humidity of 24%.

3. Results and discussion

3.1. Characterization of as-grown MoS₂ film

The optical image of as-grown MoS₂ (Fig. 2a) shows that the continuous MoS₂ film is formed by triangle flakes with a lateral grain size of $50-100 \, \mu m$. All of the XRD diffraction peaks in the XRD patterns (Fig. 2b) are ascribed to hexagonal MoS₂ (JCPDS-ICDD 06-0097), and no diffraction peaks of the impurity phase are observed, indicating a single phase MoS₂ was obtained. The prominent diffraction peak is attributed to the (002) crystal plane. XPS was used to determine the chemical composition of the as-grown MoS₂ films, and the results are demonstrated in Fig. 2c and d. The Mo 3d spectrum exhibits a clear doublet along with a small S 2s peak, and the peaks present at 232.3 eV, 229.2 eV and 226.5 eV correspond to the Mo $3d_{3/2}$, Mo $3d_{5/2}$ and S 2s orbit, respectively. Similarly, the S 2p spectrum shows a doublet, with the $2p_{1/2}$ peak at 163.2 eV and the $2p_{3/2}$ peak at 161.9 eV. The observed binding energies in this work are consistent with the values for MoS₂ reported in previous work [38]. What's more, the S: Mo ratio measured from the XPS spectra is close to 2, confirming the stoichiometry of MoS₂.

Raman and AFM were used to evaluate the thickness and quality of the as-grown MoS₂ films. Herein, Raman spectra of the bulk MoS₂ and as-grown MoS₂ films were measured by using a 432 nm laser with a power below 1 mW at room temperature. E_{2g}^1 and A_{1g} are two characteristic Raman peaks for MoS₂, which represent the in-plane and out-of-plane vibration of Mo-S bond, respectively. Here the peak frequency difference between E^1_{2g} and A_{1g} is defined as Δ . For bulk MoS₂, the value of Δ is 25 cm⁻¹. The value of Δ is found to decrease with the decrease of the number of MoS₂ layers, and can be used to determine the number of MoS₂ layers [39]. Compared to bulk MoS_2 , the E^1_{2g} peak is observed to increase, whereas the A_{1g} peak is observed to decrease in frequency (as shown in Fig. 3a). The E_{2g}^1 and A_{1g} peak of as-grown MoS₂ film are located at 385.8 cm⁻¹cm⁻¹ and 407.2 cm⁻¹, respectively, and the value of Δ is 21.4 cm⁻¹, indicating that bilayer MoS₂ was obtained. What's more, the AFM characterization confirmed that the thickness of the synthesized bilayer MoS₂ is 1.39 nm (Fig. 3b and c), and the thickness is in consistence with that reported in the previous work [39].

After as-grown MoS₂ films on the SiO₂/Si substrate were transferred on a copper grid [36], TEM was also performed to further investigate the structures of the as-grown MoS₂ bilayer films on the atomic scale. The edge of the MoS₂ films can be clearly seen in Fig. 3d, demonstrating the as-grown sample is bilayer MoS₂. What's more, the distance between the adjacent layers is about 6.5 Å (shown in Fig. 3d) [33]. The high resolution TEM image and the corresponding selected area electron diffraction (SAED) pattern

Fig. 1. (a) Schematic illustration of the MoS_2 synthesis setup by CVD; (b) temperature-time curve during the sulfuration of MoO_3 ; (c) Schematic illustration of the growth process of the MoS_2 film.

Fig. 2. Optical image (a) and XRD pattern (b) of as-prepared MoS₂ film; (c) and (d) Core binding energies determined by XPS spectra, Mo 3d peaks are present at 232.3 eV and 229.2 eV, with S 2s at 226.5 eV, S peaks are present at 163.2 eV and 161.9 eV.

of as-grown MoS_2 film are shown in Fig. 3e and f. The lattice spacings of 2.7 and 1.6 Å in Fig. 3e correspond to the (100) and (110) planes of hexagonal MoS_2 , respectively, and these two planes belong to the [001] zone axis. The diffraction spots of MoS_2 (110) and (100) planes are shown in the SAED pattern in Fig. 3f.

3.2. Growth mechanics of MoS₂ atomic layer

After the deposition of MoO_3 by a CVD method, a MoO_3 film was obtained on the SiO_2/Si substrates. During the sulfuration process of the MoO_3 film, the reaction mechanism is shown in the reaction

Fig. 3. (a) The Raman spectrum with two active modes (E_{2g}^{1} and A_{1g}) of as-grown MoS₂; (b) AFM image of as-grown MoS₂; (c) AFM height profiles along the white dash line in (b); (d) TEM image of the edge of as-grown MoS₂ film; (e) The high resolution TEM image of as-grown MoS₂ film, and the lattice spacing of 2.7 Å and 1.6 Å corresponding to the (100) and (110) plane of hexagonal MoS₂; (f) The SAED pattern of the MoS₂ film in (e).

equations (1) and (2).

$$MoO_3 + S = MoS_{3-x} + SO_2 \tag{1}$$

$$MoS_{3-x} + S = MoS_2 + SO_2$$
 (2)

First of all, the surface of MoO₃ film was reduced by sulfur vapor, and an intermediate product MoO_{3-x} was formed. Afterwards, in the continuous sulfur vapor, MoS2 was obtained after the reduction of MoO_{3-x}. The thickness and lateral grain size of the as-prepared MoS₂ are determined by the thickness of the as-deposited MoO₃ film by the CVD method, as well as the following sulfuration temperature [34]. The thickness of the MoO₃ film was affected by the weight of the MoO₃ powder, the growing temperature, the gas flow, etc. MoS₂ atomic layers with a lateral grain size of 50-100 μm were obtained in this work, while the lateral grain sizes of obtained MoS₂ synthesized by sulfurating the sputtered Mo thin films are only 100 nm [33,34]. The larger lateral grain size in this work can be attributed to the much weaker adhesion between the as-deposited MoO₃ film by a CVD method and the substrate, since a weak adhesion can result in high surface mobility and enhanced surface evaporation.

3.3. Gas sensing properties of the resistive gas sensors based on asprepared MoS₂ films

The schematic diagram for the resistive gas sensor based on assynthesized MoS_2 films is shown in Fig. 4a. The sensitivity of asfabricated gas sensors was defined as $\Delta R/R_a = (R_g - R_a)/R_a$, where R_a and R_g are the measuring resistances of the gas sensors in ambient air and the target gas, respectively. Response and recovery time are defined as the time it takes the sensor to reach 90% of the saturation value in a NO_2 atmosphere and 10% of the base value in air,

respectively. The typical transient response-recovery curve of asfabricated gas sensors to NO2 of different concentrations at room temperature is shown in Fig. 4b. It is shown that the resistance of the sensor decreased rapidly after the injection of NO₂ gas, and it can recover to the initial value after the NO₂ gas was released. No baseline shift in the response-recovery curve was discovered in the whole testing process. The responses of as-fabricated gas sensors as a function of NO₂ concentration are shown in Fig. 4c. The sensitivity increased with the increasing concentration of NO2 from 1 to 100 ppm, which is approximately 2.6%, 3.9%, 8.4%, 10.8%, 12.6%, 17.1%, 26.4% for 1, 2, 5, 10, 20, 50, 100 ppm NO₂ gas, respectively. When the as-fabricated gas sensor was exposed to 1 ppm NO₂, the sensing signal experienced low noise. Therefore, 1 ppm can be defined as the lower detection limit of the sensor to NO₂ gas based on a signal (S)-to-noise (N) ratio (S/N > 3). For 1 ppm NO₂, the response and recovery times of the gas sensor are 11.3 min and 5.3 min, respectively. The sensitivities of the gas sensor to O_2 , H_2 , CH₄ and NH₃ with the same concentration of 50 ppm at room temperature were also measured. The gas sensor showed weaker responses to the other gases than to NO2, indicating a good NO2 selectivity against O₂, H₂, CH₄ and NH₃.

It is important to note that the resistance of the as-prepared MoS₂ films decreased upon exposure to oxidative gases (NO₂, O₂) and increased upon exposure to reductive gases (H₂, CH₄ and NH₃). A widely accepted model of the gas sensing mechanism suggests that upon exposure to reductive gas, chemisorbed oxygen on the semiconductor surface will react with the reductive gas species and the electrons trapped by oxygen will be released into the semiconductor, leading to a change in resistance. For *n*-type semiconductor, the resistance decreases due to the increase of electron concentration in the semiconductor. While for *p*-type semiconductor, the resistance increases because of the combination of holes with electrons released from surface reaction. Upon exposure

Fig. 4. (a) The schematic diagram for the resistive gas sensor based on as-synthesized MoS₂ films; (b) The transient response-recovery curve of as-fabricated gas sensors to NO₂ of different concentrations at room temperature. (c) Responses of as-fabricated gas sensors as a function of NO₂ concentration. (d) Responses of as-fabricated gas sensors to 50 ppm NO₂, O₂, H₂, CH₄, NH₃ at room temperature.

to oxidative gases, the gas species act as acceptors, leading to resistance increase for *n*-type semiconductor and decrease for *p*-type semiconductor. In view of the changing resistance upon exposed to oxidative and reductive gases, it can be concluded that the as-prepared MoS₂ films showed typical characteristics of a *p*-type semiconductor. What's more, the similar *p*-type characteristics of MoS₂ have been also reported in previous work [24], and the obtained p-type MoS₂ films can be attributed to the N substitutional doping of S vacancies in the growth process [24].

The sensing mechanism of the as-synthesized p-type MoS₂ can be described as follows. When the p-type MoS₂ was initially exposed to the air, oxygen molecules was chemisorbed on the surface, took away some electrons form the valence band and oxygen species (O_2^-, O^-) was formed, leading to an increase in hole concentration and a decrease in resistance. When the p-type MoS₂ was then exposed to the oxidizing NO2 gas, NO2 molecules was chemisorbed as NO₂ ions, which further extracted electrons from the valence band and increased the hole concentration. A holeaccumulation layer was created at the surface of MoS2 by chemisorption of NO2. The generation of holes made the p-type MoS2 more conductive. When the supply of NO₂ is stopped and the ptype MoS₂ was exposed to air again, the adsorbed NO₂ species evaporated, leaving behind the captured electrons in the p-type MoS₂. The following electron-hole compensation process resulted in a decreasing hole concentration and an increase in resistance. At the end of the electron-hole compensation process, the resistance of the p-type MoS₂ returned to the original value. Inversely, when the p-type MoS₂ was exposed to the reducing H₂, CH₄ or NH₃, electrons extracted by the chemisorbed oxygen species (O_2^-, O^-) were released back to the valence band of the p-type MoS₂ and combined with the holes in the valence band, resulting in the increase of the resistance.

The reported lower detection limits, the corresponding sensitivities and the response/recovery time to NO₂ gas of resistive gas sensors based on MoS₂ nanostructures and other similar sensing

materials were listed in Table 1, and most of them were tested at room temperature. Among the resistive gas sensors, the one based on MoS₂ nanosheets decorated with SnO₂ nanocrystals possesses the minimum lower detection limit of 0.5 ppm and the shortest response/recovery time, and the corresponding sensitivity is 0.6%. The sensitivity of the MoS₂/graphene heterostructure reached 3% to 1.2 ppm NO₂ gas, but this gas sensor device required a much higher working temperature of 150 °C. The as-synthesized bilayer MoS₂ film in the present work achieved a sensitivity of 2.6% to 1 ppm NO₂ gas at room temperature. The recovery time of as-synthesized bilayer MoS₂ film is much shorter than other similar sensing material (graphene oxide, graphene, ZnO-reduced graphene oxide nanocomposites) listed in Table 1, and ranks only second to MoS₂ nanosheets decorated with SnO₂ nanocrystals. Based on this, it can be concluded that this sensing property is outstanding among MoS₂ nanostructures and other similar sensing materials. As most of the MoS₂ nanostructures reported in the previous work in Table 1 were obtained by mechanical or chemical exfoliation methods, and assynthesized MoS₂ nanostructures have the non-uniform thickness and small size. In the present work, MoS₂ atomic layer with uniform thickness was achieved in a tube furnace by a new two-step CVD method, and our production technique offers much better scope for scalability. What's more, the sensing properties demonstrated in the present work were tested in an atmospheric environment rather than a test environment, making it more attractive for practical application.

4. Conclusions

MoS₂ atomic layer was synthesized in a tube furnace by a new two-step CVD method, in which the deposition and sulfuration of MoO₃ were carried out successively. The Raman, AFM, TEM characterization displayed that the as-prepared MoS₂ is bilayer. The so-obtained bilayer MoS₂ with larger lateral grain sizes was attributed to the high surface mobility and enhanced surface evaporation. The

Table 1Comparison of the sensitivity and the response/recovery time to NO₂ gas of resistive gas sensors based on different MoS₂ nanostructures and other similar sensing materials.

Nanostructures (synthesis method)	T (°C)	NO ₂ (ppm)	Sensitivity (%)	T _{res} (min)	T _{rec} (min)	Reference
Bilayer MoS ₂ film (CVD)	RT	1	2.6	11.3	5.3	Present work
MoS ₂ nanoflakes (mechanical exfoliation)	27	5	n.q.	1	n.q.	[23]
MoS ₂ flakes (chemical exfoliation)	RT	1	0	n.q.	n.q.	[24]
MoS ₂ nanosheets decorated with SnO ₂ nanocrystals (chemical exfoliation)	RT	0.5	0.6	1.3	1.4	[40]
MoS ₂ film (sulfurizing a MoO ₃ film)	RT	1.5	1	n.q.	n.q.	[25]
$MoS_2/graphene$ heterostructure (mechanical exfoliation + CVD)	150	1.2	3	>5.6	11.2	[23]
Graphene oxide	25	5	40	40	43	[41]
Graphene (CVD)	22	1.5	3.2	>5	>20	[42]
ZnO-reduced graphene oxide nanocomposites	25	15	7.8	2.1	n.q.	[43]

Note: n.q. = not quantifiable since no equilibrium conditions were achieved. RT = room temperature. $T_{res} = response$ time, $T_{rec} = recovery$ time.

resistive gas sensors based on as-prepared bilayer MoS₂ films showed a p-type character and achieved a superior sensitivity of 2.6% to 1 ppm NO₂ gas at room temperature. This sensing property of the resistive gas sensor based on as-prepared MoS₂ films by the two-step CVD method represents an advance in the development of large-scale MoS₂ synthesis and gas sensor fabrication.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11504331), the China Postdoctoral Science Foundation (2015M582196, 2015M582193, 2015M582194), Educational Department of Henan Province (15A430048), the Outstanding Young Talent Research Fund of Zhengzhou University (1521317005, 1521317001), and the Startup Research Fund of Zhengzhou University (1411317010).

References

- C. Li, D. Yan, M. Wei, Layer-by-layer assembly of ordered organic-inorganic luminescent film toward sensoring nitrobenzene compound, Sens. Actuat. B 216 (2015) 198–203.
- [2] H. Ma, R. Gao, D. Yan, J. Zhao, M. Wei, Organic—inorganic hybrid fluorescent ultrathin films and their sensor application for nitroaromatic explosives, J. Mater. Chem. C 1 (2013) 4128–4137.
- [3] F. Gao, Y. Li, Y. Zhao, W. Wan, G. Du, X. Ren, H. Zhao, Facile synthesis of flower-like hierarchical architecture of SnO₂ nanoarrays, J. Alloys Compd. 703 (2017) 354–360.
- [4] S. Ma, J. Jia, Y. Tian, L. Cao, S. Shi, X. Li, X. Chang, Improved H₂S sensing properties of Ag/TiO₂ nanofibers, Ceram, Int. 42 (2016) 2041–2044.
- [5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiáng, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197–200.
- [6] B. Wang, Y. Wang, J. Park, H. Ahn, G. Wang, In situ synthesis of Co₃O₄/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance, J. Alloys Compd. 509 (2011) 7778–7783.
- [7] D.J. Late, B. Liu, J. Luo, A. Yan, H.S.S.R. Matte, M. Grayson, C.N.R. Rao, V.P. Dravid, GaS and GaSe ultrathin layer Transistors, Adv. Mater. 24 (2012) 3549–3554.
- [8] R.V. Kashid, D.J. Late, S.S. Chou, Y.K. Huang, M. De, D.S. Joag, M.A. More, V.P. Dravid, Enhanced field-emission behavior of layered MoS₂ sheets, Small 9 (2013) 2730–2734
- [9] M. Thripuranthaka, R.V. Kashid, C. Sekhar Rout, D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS₂ and WS₂ nanosheets, Appl. Phys. Lett. 104 (2014) (081911-1-5).
- [10] A.S. Pawbake, M.S. Pawar, S.R. Jadkar, D.J. Late, Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies, Nanoscale 8 (2016) 3008—3018
- [11] D.J. Late, Liquid exfoliation of black phosphorus nanosheets and its application as humidity sensor, Microporous Mesoporous Mater. 225 (2016) 494–503.
- [12] Z. Jia, J. Xiang, F. Wen, R. Yang, C. Hao, Z. Liu, Enhanced photoresponse of SnSenanocrystals-decorated WS₂ monolayer phototransistor, ACS Appl. Mater. Interfaces 8 (2016) 4781–4788.
- [13] M. Osada, T. Sasaki, 2D inorganic nanosheets: two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks, Adv. Mater. 24 (2012) 209–228.
- [14] B. Liu, W. Zhao, Z. Ding, I. Verzhbitskiy, L. Li, J. Lu, J. Chen, G. Eda, K.P. Loh, Engineering bandgaps of monolayer MoS₂ and WS₂ on fluoropolymer substrates by electrostatically tuned many-body effects, Adv. Mater. 28 (2016)

- 6457-6464.
- [15] P. Liu, H. Li, L. Yang, B. Zhao, M. Li, B. Xiang, Rational synthesis of bandgaptunable MS_{2(1-x)}Se_{2x} (M=Mo, W) alloys and their physical properties, J. Alloys Compd. 710 (2017) 628–634.
- [16] L. Hao, Y. Liu, W. Gao, Y. Liu, Z. Han, L. Yu, Q. Xue, J. Zhu, High hydrogen sensitivity of vertically standing layered MoS₂/Si heterojunctions, J. Alloys Compd. 682 (2016) 29–34.
- [17] Y. Liu, L. Hao, W. Gao, Q. Xue, W. Guo, Z. Wu, Y. Lin, H. Zeng, J. Zhu, W. Zhang, Electrical characterization and ammonia sensing properties of MoS₂/Si p—n junction, J. Alloys Compd. 631 (2015) 105–110.
- [18] P. Zhao, Y. Tang, J. Mao, Y. Chen, H. Song, J. Wang, Y. Song, Y. Liang, X. Zhang, One-Dimensional MoS₂-Decorated TiO₂ nanotube gas sensors for efficient alcohol sensing, J. Alloys Compd. 674 (2016) 252–258.
- [19] P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Recent developments in 2D layered inorganic nanomaterials for sensing, Nanoscale 7 (2015) 13293–13312.
- [20] D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thinlayered MoS₂ transistors, ACS Nano 7 (2013) 4879–4891.
- [21] Y. Niu, W. Jiao, R. Wang, G. Ding, Y. Huang, Hybrid nanostructures combining graphene—MoS₂ quantum dots for gas sensing, J. Mater. Chem. A 4 (2016) 8198—8203.
- [22] B.L. Liu, L. Chen, G. Liu, A.N. Abbas, M. Fathi, C.W. Zhou, High-performance chemical sensing using schottky-contacted chemical vapor deposition grown monolayer MoS₂ Transistors, ACS Nano 8 (2014) 5304–5314.
- [23] B. Cho, J. Yoon, S.K. Lim, A.R. Kim, D.H. Kim, S.G. Park, J.D. Kwon, Y.J. Lee, K.H. Lee, B.H. Lee, H.V. Ko, M.G. Hahm, Chemical sensing of 2D graphene/MoS₂ heterostructure device, ACS Appl. Mater. Interfaces 7 (2015) 16775–16780.
- [24] M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L. Ottaviano, Response to NO₂ and other gases of resistive chemically exfoliated MoS₂-based gas sensors, Sens. Actuat. B 207 (2015) 602–613.
- [25] B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.J. Lee, S.G. Park, J.D. Kwon, C.S. Kim, M. Song, Y. Jeong, K.S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, D.H. Kim, Charge-transfer-based gas sensing using atomic-layer MoS₂, Sci. Rep. 5 (2015) (8052-1-6).
- [26] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS₂, Nat. Nanotechnol. 8 (2013) 497–501.
- [27] J. Wang, M. Yan, K. Zhao, X. Liao, P. Wang, X. Pan, W. Yang, L. Mai, Field Effect enhanced hydrogen evolution reaction of MoS₂ nanosheets, Adv. Mater. 29 (2017) (1604464-1-6).
- [28] A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-thinning of MoS₂: on demand generation of a singlelayer semiconductor, Nano Lett. 12 (2012) 3187–3192.
- [29] A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L.F. Drummy, R.A. Vaia, Mechanism for liquid phase exfoliation of MoS₂, Chem. Mater. 28 (2016) 337–348.
- [30] X. Zhang, C. Shao, X. Li, F. Miao, K. Wang, N. Lu, Y. Liu, 3D MoS₂ nanosheet/TiO₂ nanofiber heterostructures with enhanced photocatalytic activity under UV irradiation, J. Alloys Compd. 686 (2016) 137–144.
- [31] S. Cadot, O. Renault, M. Frégnaux, D. Rouchon, E. Nolot, K. Szeto, C. Thieuleux, L. Veyre, H. Okuno, F. Martin, E.A. Quadrelli, A novel 2-step ALD route to ultrathin MoS₂ films on SiO₂ through a surface organometallic intermediate, Nanoscale 9 (2017) 538–546.
- [32] B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, J.C. Grossman, Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS₂ monolayers, Chem. Mater. 29 (2017) 2024–2032.
- [33] Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS₂ atomic layers on a SiO₂ substrate, Small 8 (2012) 966–971.
- [34] H.F. Liu, K.K.A. Antwi, J.F. Ying, S.J. Chua, D.Z. Chi, Towards large area and continuous MoS₂ atomic layers via vapor-phase growth: thermal vapor sulfurization, Nanotechnology 25 (2014) (405702-1-11).
- [35] K.K. Liu, W. Zhang, Y.H. Lee, Y.C. Lin, M.T. Chang, C. Su, C.S. Chang, H. Li,

- Y.M. Shi, H. Zhang, C.S. Lai, L.J. Li, Growth of large-area and highly crystalline MoS₂ thin layers on insulating substrates, Nano Lett. 12 (2012) 1538–1544.
- [36] S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, J. Lou, Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers, Nat. Mater. 12 (2013) 754–759.
 [37] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of
- [37] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS₂ films, Sci. Rep. 3 (2013) (1866-1-6).
- [38] K.M. McCreary, A.T. Hanbicki, J.T. Robinson, E. Cobas, J.C. Culbertson, A.L. Friedman, G.G. Jernigan, B.T. Jonker, Large-area synthesis of continuous and uniform MoS₂ monolayer films on graphene, Adv. Funct. Mater. 24 (2014) 6449–6454.
- [39] J. Jeon, S.K. Jang, S.M. Jeon, G. Yoo, Y.H. Jang, J.-H. Park, S. Lee, Layer-controlled CVD growth of large-area two-dimensional MoS₂ films, Nanoscale 7 (2015)

- 1688-1695.
- [40] S. Cui, Z. Wen, X. Huang, J. Chang, J. Chen, Stabilizing MoS₂ nanosheets through SnO₂ nanocrystal decoration for high-performance gas sensing in air, Small 11 (2015) 2305–2313.
- [41] S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, L. Ottaviano, Graphene oxide as a practical solution to high sensitivity gas sensing, J. Phys. Chem. C 117 (2013) 10683–10690.
- [42] F. Ricciardella, S. Vollebregt, T. Polichetti, M. Miscuglio, B. Alfano, M.L. Miglietta, E. Massera, G.D. Francia, P.M. Sarro, Effects of graphene defects on gas sensing properties towards NO₂ detection, Nanoscale 9 (2017) 6085–6093.
- [43] N. Kumar, A.K. Srivastava, H.S. Patel, B.K. Gupta, G.D. Varma, Facile synthesis of ZnO—reduced graphene oxide nanocomposites for NO₂ gas sensing applications, Eur. J. Inorg. Chem. 2015 (2015) 1912—1923.