二次根式 200 题(含解析)

- 1. 计算: $\sqrt{12} + \frac{1}{2 \sqrt{3}} (2 + \sqrt{3})^2$
- 2. 先分解因式,再求值: b²-2b+1-a²,其中a=-3,b=√3+4.
- 3.已知x-1=√3,求代数式(x+1)2-4(x+1)+4的值.
- 4.先化简,再求值: $\frac{x}{y(x+y)} \frac{y}{x(x+y)}$,其中 $x=\sqrt{2}+1$, $y=\sqrt{2}-1$.
- 5.(1)计算: $|\sqrt{3}-4|-2^2+\sqrt{12}$;
 - (2) 化简, 求值: $\frac{x-1}{x^2-2x+1} \div \frac{1}{x^2-1}$, 其中 $x=\sqrt{2}-1$.
- 6. 先化简、再求值: $\frac{x^2+y^2}{x-y} + \frac{2xy}{y-x}$, 其中 $x = 3+\sqrt{2}$, $y = 3-\sqrt{2}$.
- 7. 计算:(1)(-2)²+3×(-2)-(¹/₄)⁻²;
 - (2)已知 x=√2 1,求 x²+3x 1 的值 .
- 8. 先化简, 再求值: $(x-2-\frac{12}{x+2})\div\frac{4-x}{x+2}$, 其中 $x=-4+\sqrt{3}$.
- 9. 已知 $a=2+\sqrt{3}$, $b=2-\sqrt{3}$, 试求 $\frac{a}{b}-\frac{b}{a}$ 的值.
- 10 . 先化简,再求值: $(\frac{1}{a-b} + \frac{1}{b+a}) \div \frac{ab}{a+b}$,其中 $a = \sqrt{2} + 1$, $b = \sqrt{2}$.
- 11 .先化简 ,再求值: $(\frac{1}{x-y} \frac{1}{x+y}) \div \frac{2y}{x^2 + 2xy + y^2}$,其中 $x = \sqrt{3} + \sqrt{2}$, $y = \sqrt{3} \sqrt{2}$.
- 12. 先化简,再求值: $\left(\frac{1}{a-2} \frac{1}{a+2}\right) \div \frac{2}{2-a}$,其中 $a = \sqrt{3} 1$.
- 13 . 先化简 , 再求值 :(x+1) ² 2x+1 , 其中 x=√2 .

14. 化简
$$(x-1-\frac{8}{x+1})\div\frac{x+3}{x+1}$$
, 将 $x=3-\sqrt{2}$ 代入求值.

- 15. 已知: x=√3+1, y=√3-1, 求下列各式的值.
- $(1) x^2+2xy+y^2;$
- $(2) x^2 y^2$.
- 16. 先化简,再求值: $(\frac{x^2-6x}{x+2}+2) \div \frac{x^2-4}{x^2+4x+4}$,其中 $x=2+\sqrt{3}$.
- 17. 先化简,再求值: $(a-\sqrt{3})$ $(a+\sqrt{3})$ -a (a-6) ,其中 $a=\sqrt{5}+\frac{1}{2}$.
- 18. 求代数式的值: $\frac{x^2-2x}{x^2-4}$ + $(x-2-\frac{2x-4}{x+2})$, 其中 $x=2+\sqrt{2}$.
- 19. 已知 a 为实数,求代数式 $\sqrt{a+2}$ $\sqrt{8-4a}$ + $\sqrt{-a^2}$ 的值.
- 20. 已知: $a=\sqrt{2}-1$,求 $\frac{a^3-4a}{a-1}$ ÷ $(2-\frac{a}{a-1})$ 的值.
- 21. 已知 $x=1+\sqrt{2}$, 求代数式 $\frac{x^2+2x+1}{x^2-1}-\frac{x}{x-1}$ 的值.
- 22 .先化简,再求值: $(\frac{1}{x-y} \frac{1}{x+y}) \div \frac{2y}{x^2 2xy + y^2}$,其中 $x=1+\sqrt{2}$, $y=1-\sqrt{2}$.
- 23 . 有这样一道题:计算 $\frac{x+\sqrt{x^2-4}}{x-\sqrt{x^2-4}} + \frac{x-\sqrt{x^2-4}}{x+\sqrt{x^2-4}} x^2 (x>2)$ 的值,其中 x=1

005,某同学把 "x=1005" 错抄成 "x=1050",但他的计算结果是正确的,请回答这是怎么回事?试说明理由.

24.已知:x=√3,y= - 1,求 x²+2y² - xy 的值.

- 26.我国古代数学家秦九韶在《数书九章》中记述了"三斜求积术",即已知三角形的三边长,求它的面积.用现代式子表示即为:

$$s=\sqrt{\frac{1}{4}[a^2\times b^2-(\frac{a^2+b^2-c^2}{2})^2]}...①(其中 a、b、c 为三角形的三边长,s)$$
为面积).

而另一个文明古国古希腊也有求三角形面积的海伦公式:

$$S=\sqrt{p(p-a)(p-b)(p-c)}$$
...② (其中 $p=\frac{a+b+c}{2}$.)

- (1)若已知三角形的三边长分别为 5,7,8,试分别运用公式①和公式②,计 算该三角形的面积 s;
- (2)你能否由公式①推导出公式②?请试试.

27.(1)计算
$$\sqrt{18} - \frac{2}{\sqrt{2}} - \frac{\sqrt{8}}{2} + (\sqrt{5} - 1)^{-0}$$

29. 已知
$$a=\sqrt{5}+2$$
, $b=\sqrt{5}-2$, 则 $\sqrt{a^2+b^2+7}$ 的值为(

30.已知
$$a=2$$
,则代数式 $2\sqrt{a} - \frac{a+\sqrt{a}}{a-\sqrt{a}}$ 的值等于 ()

31. 已知
$$x=\sqrt{2}$$
,则代数式 $\frac{x}{x-1}$ 的值为()

32. 已知
$$x = \frac{1}{\sqrt{2} - 1}$$
, 则 $\frac{\sqrt{x} - 1}{\sqrt{x}} \cdot (1 + \frac{1}{\sqrt{x}})$ 的值是 ()

33 . 若
$$a=\frac{1}{\sqrt{2}-1}$$
, $b=\frac{1}{\sqrt{2}+1}$, 则 \sqrt{ab} ($\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}$) 的值为 ()

34. 已知
$$a=\frac{1}{\sqrt{5}-2}$$
, $b=\frac{1}{\sqrt{5}+2}$, 则 $\sqrt{a^2+b^2+7}$ 的值为()

35 如果最简二次根式 $\sqrt{3a-8}$ 与 $\sqrt{17-2a}$ 是同类二次根式 则 a=______.

- 36 . 若最简根式 a+√3a 与√a+2b 是同类二次根式 , 则 ab=_____ .
- 37. 计算: ①√8×√2=_____; ②√8 ⁻√2=____.
- 38. 化简√8 √18=____.
- 39. 化简√8 √2的结果是_____.
- **40**. 计算:√18 ⁻√32 +√2=_____.
- 41. 计算: √12+√3= .
- 42. 化筒: √48 √3=____.
- 43 . 化简: √27 √12+√4=______.
- 44. 计算: $\sqrt{8} \sqrt{\frac{1}{2}} =$ ______.
- 45 . 先化简 $\sqrt{\frac{2}{3}}$ $(\frac{1}{6}\sqrt{24} \frac{3}{2}\sqrt{12})$, 再求得它的近似值为______ (精确到 0.01 , $\sqrt{2}$ \approx 1.414 , $\sqrt{3}$ \approx 1.732) .
- 46. 化简: 3√8 5√32的结果为____.
- **47**. 计算:√12 ⁻√27=_____.
- 48. 化简: 3√2+2√2=____.
- 49. 化简: √3+ (5 √3) =____.
- 50. 计算: $\sqrt{40}$ $10\sqrt{\frac{1}{10}}$ + $\sqrt{10}$ =_____.
- 51. 计算: 5√2 -√8=____.

53 . 若
$$x = \frac{1}{2} \left(\sqrt{a} + \sqrt{b} \right)$$
 , $y = \frac{1}{2} \left(\sqrt{a} - \sqrt{b} \right)$, 则 $x + y$ 的值为______ .

59. 实数 a 在数轴上的位置如图所示,则化简 $|a-2|+\sqrt{(a-1)^2}$ 的结果为______.

62. 计算:
$$\sqrt{12}+|\sqrt{3}-2|+(2-\pi)^0$$

63. 计算:
$$\sqrt{8}+(-\frac{1}{3})^{-1}-|\sqrt{2}-1|$$
.

64.计算:
$$\sqrt{12}$$
 - (- 2009) 0 +($\frac{1}{2}$) $^{-1}$ + $|\sqrt{3}$ - 1|.

65. 计算:
$$(\pi - 2009)^{-0} + \sqrt{12} + |\sqrt{3} - 2|$$

66 . 计算:(
$$\pi$$
 - 1) 0 + $_{1}(\frac{1}{2})_{max}^{-1}$ + $|5-\sqrt{27}|$ - $2\sqrt{3}$.

68. 计算:
$$-3^2-(-\frac{1}{2})^{-3}-|1-\sqrt{3}|+\sqrt{27}$$
.

69 . 计算:
$$\frac{\sqrt{32} - \sqrt{8}}{\sqrt{2}} + 2^{-1}$$

70. 计算:
$$(\sqrt{2} - \sqrt{3})^{-0} - (\frac{1}{2})^{-1} + \sqrt{4}$$
.

71. 不使用计算器 , 计算:
$$\left(-\frac{1}{2}\right)^{0} + \left(\frac{1}{3}\right)^{-1} + \frac{2}{\sqrt{3}-1} + |\sqrt{3}-1|$$
 .

72. 计算:
$$(-3)^{-2} + \sqrt{8} - |1 - 2\sqrt{2}| - (\sqrt{6} - 3)^{-0}$$

73. 计算:
$$(-\pi)^0 + \frac{1}{\sqrt{2}+1} - \frac{1}{2}\sqrt{8}$$
.

74. 计算:8
$$(1-\sqrt{2})^{-0}-\sqrt{12}+\frac{6}{\sqrt{3}}$$
.

75. 计算:
$$\frac{2}{\sqrt{2}-1}$$
 $-\sqrt{8}$ $-(\sqrt{2}+1)^{0}$.

76. 计算:
$$\frac{2}{\sqrt{2}+1}$$
 - $\sqrt{8}$ + $(\frac{1}{3})$ -1

77 . 不使用计算器 , 计算 :
$$\sqrt{18}$$
 $-\frac{1}{2}$ ÷ 2^{-1} + $\frac{1}{\sqrt{2}+1}$ $(\sqrt{2}$ $1)$

79. 计算:
$$(\sqrt{2}-1)^{-1}-\sqrt{8}-(2-tan50^\circ)^0$$
.

80. 计算:
$$\sqrt{2}(1+\sqrt{2})$$
 - $(\frac{1}{\sqrt{2}-1})^{0}$.

81.计算:
$$|-5|+(\frac{1}{2})^{-2}+\sqrt[3]{-27}-\sqrt{(-2)^{-2}}-(\sqrt{7}-1)^{-0}$$
.

- 82.(1)计算: $\sqrt{8}$ + $(2010 \sqrt{3})^{-0}$ $(\frac{1}{2})^{-1}$;
 - (2) 先化简, 再求值:(a+b)(a-b)+a(2b-a), 其中a=1.5, b=2.
- 83.(1) 计算: $\sqrt{2} \times (\sqrt{2} + \frac{1}{\sqrt{2}}) \frac{\sqrt{18} \sqrt{8}}{\sqrt{2}}$; (2) 化简: $(\frac{2x}{x-3} - \frac{x}{x+3}) \cdot \frac{x^2-9}{x}$.
- 84. 计算: $|-\sqrt{18}|+(-2)^2+(3.14-\pi)^0$
- 85. 计算: √18+√2=____.
- 86. 化简二次根式:√8+√9=____.
- 87. 若 $a = \frac{1}{2+\sqrt{3}}$, $b = \sqrt{3} 2$, 则 $a + b = \underline{\hspace{1cm}}$.
- 88 . 化简:√2 a <u>a</u> = _____.
- 89. 计算: √2+√8-√18=______.
- 90. 计算 2 (1) = _____ , $\sqrt{3}$ $\frac{1}{\sqrt{3}}$ = _____ , (a 1)(a + 1) = _____
- 91. 计算: √2+√8=_____.
- 92. 计算: 3√8 √2= .
- 93. 如图是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的 折线从 A→B→C 所走的路程为 m.

94.计算:
$$\sqrt{27} + \frac{1}{2+\sqrt{3}}$$
 - (cos30°) ⁰

95. 计算:
$$\sqrt{27}$$
 - $15\sqrt{\frac{1}{3}} + \frac{1}{4}\sqrt{48}$.

96. 计算:
$$3\sqrt{18} + \frac{1}{5}\sqrt{50} - 4\sqrt{\frac{1}{2}}$$
.

97 . 计算:
$$\frac{\sqrt{5}-1}{2}$$
 - $\frac{2}{\sqrt{5}-1}$

99 . 若
$$a = \frac{1}{2+\sqrt{3}}$$
 , $b = \sqrt{3} - 2$, 则 $a + b =$ _____

102. 计算 2 - (- 1) = _____ ,
$$\sqrt{3}$$
 - $\frac{1}{\sqrt{3}}$ = _____ , (a - 1)(a + 1) = _____

106. 计算:
$$\sqrt{8} - \frac{4}{\sqrt{2}} + (\frac{1}{2})^{-1} = _____$$
.

107 . 计算: (
$$\sqrt{48} + \frac{1}{4}\sqrt{12}$$
) ÷ $\sqrt{27} = ______$.

110. 化简:
$$\frac{1}{2-\sqrt{3}}$$
 - $(2\sqrt{3}+2)$ = _____.

112 . 已知
$$x = \frac{1}{\sqrt{5} - 2}$$
 , 则 $x = \frac{1}{x}$ 的值等于______ .

113.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是_____.(结果保留根号)

114. 计算:
$$\sqrt{27} + \frac{1}{2+\sqrt{3}}$$
 - (cos30°) 0

116 先化简 再求值
$$\frac{a^2-b^2}{a^2b-ab^2}$$
÷ $(1+\frac{a^2+b^2}{2ab})$ 其中 $a=\sqrt{3}-\sqrt{11}$, $b=\sqrt{3}+\sqrt{11}$.

117. 计算:
$$\sqrt{27} - 15\sqrt{\frac{1}{3}} + \frac{1}{4}\sqrt{48}$$
.

118. 计算:
$$3\sqrt{18} + \frac{1}{5}\sqrt{50} - 4\sqrt{\frac{1}{2}}$$
.

119. 计算:
$$\frac{\sqrt{5}-1}{2} - \frac{2}{\sqrt{5}-1}$$

120 . 计算:
$$\frac{1}{\sqrt{2}-1}-\sqrt{8}$$
 .

121. 计算:
$$27^{\frac{1}{3}}$$
+ $(\sqrt{3}-1)^{-2}$ - $(\frac{1}{2})^{-1}$ + $\frac{4}{\sqrt{3}+1}$.

122. 计算:(2 -
$$\sqrt{3}$$
)(2+ $\sqrt{3}$) + (- 1) 2010 ($\sqrt{2}$ - π) 0 - ($\frac{1}{2}$) $^{-1}$.

123. 化简:
$$\frac{1}{x-\sqrt{2}}$$
+ $(2-\frac{1}{x-\sqrt{2}})$.

124. 化简或解方程组:

$$\begin{array}{lll} \text{(1)} & (\sqrt{3}+\sqrt{2}) & \bullet & (\sqrt{3}-\sqrt{2}) & \bullet \sqrt{2}+ & (\sqrt{8}) & ^{-1} \\ \text{(2)} & \begin{cases} x+2y=4 \textcircled{1} \\ x+y=1 \textcircled{2} \end{cases} \end{array}.$$

$$(2)$$
 $\begin{cases} x+2y=4 \\ x+y=1 \end{cases}$

125.(1)计算(
$$3\sqrt{18}+\frac{1}{5}\sqrt{50}-4\sqrt{\frac{1}{2}}$$
)÷ $\sqrt{32}$;

126. 化简:(1)
$$\frac{6}{\sqrt{2}}$$
 $-\sqrt{18}$ $-(\frac{1}{2})^{0}$;

127. 计算:
$$\sqrt{12} + \frac{1}{2 - \sqrt{3}} - (2 + \sqrt{3})^2$$

129 . 先化简,再求值:
$$\frac{x^2+4}{x^2-4} - \frac{2}{x-2}$$
,其中 $x=\sqrt{2}-2$.

130 . 先化简,再求值:
$$\frac{x^2-1}{x^2+2x+1} \div \frac{x-1}{x+1} - \frac{x}{x+1}$$
 , 其中 $x=\sqrt{2}-1$.

131 . 先化简,再求值:
$$\frac{x^2-2x+1}{x^2-x}+\frac{3}{x}$$
,其中 $x=\sqrt{2}$.

132.先化简,再求值:
$$(\frac{1}{a+1} - \frac{a-2}{a^2-1}) \div \frac{1}{a+1}$$
,其中 $a=\sqrt{3}+1$

133 . 化简求值:
$$\frac{2x}{x^2-y^2} - \frac{1}{x-y}$$
 , 其中 $x=3\sqrt{5}-1$, $y=-2\sqrt{5}+1$.

134 . 已知
$$m = \frac{1}{\sqrt{5+2}}$$
 , 先化简再求值 : $\frac{m^2}{m-2} + \frac{8+4m}{4-m^2}$.

135 . 先化简 , 再求值:
$$(1+\frac{1}{x}) \div \frac{x^2-1}{x}$$
 , 其中 $x=\sqrt{2}$.

136. 已知
$$a=\sqrt{2}$$
,求代数式($\frac{1}{a-1}-\frac{1}{a+1}$)• $\frac{a^2-1}{a}$ 的值.

137.化简求值:
$$\frac{a^2+3a}{a^2+3a+2}$$
÷ $\frac{a+3}{a+1}$ - $\frac{2}{a+2}$,其中 $a=\sqrt{3}$.

138 . 已知 x=2 , y=
$$\sqrt{3}$$
 , 求 $(\frac{1}{x} + \frac{1}{y})$ • $\frac{2}{x+y}$ 的值 .

139 . 先化简,再求值:
$$\frac{x-2}{x^2-9} \div \frac{x-2}{x-3}$$
,其中 $x=\sqrt{2}-2$.

141 . 先化简 , 再求值 :
$$\frac{a^2 - ab}{a^2 - b^2}$$
 , 其中 $a = \sqrt{2}b$.

142. 化简求值:
$$\frac{a^2-2a+1}{a^2-1} - \frac{a}{a+1}$$
, 其中 $a=\sqrt{2}$.

143 .先化简 ,再求值 :
$$\frac{b}{a-b} - \frac{b^3}{a^3 - 2a^2b + ab^2} \div \frac{ab + b^2}{a^2 - b^2}$$
 ,其中 $a = \sqrt{12}$, $b = \sqrt{3}$.

144.先化简,再求值:
$$\frac{1}{a+2} - \frac{4}{4-a^2}$$
,其中 $a=4+\sqrt{3}$.

145. 先化简,再求值
$$\frac{1}{x+1} - \frac{x+3}{x^2-1} \div \frac{x^2+4x+3}{x^2-2x+1}$$
,其中 $x=\sqrt{2}$.

146. 先化简,再求值(
$$\frac{3}{x-1} - \frac{1}{x+1}$$
)• $\frac{x^2-1}{x}$,其中 $x=\sqrt{2}$.

147. 化简求值:
$$\frac{1}{x+2} - \frac{x^2+2x+1}{x+2} \div \frac{x^2-1}{x-1}$$
, 其中 $x=\sqrt{2}-2$.

148 . 先化简 , 再求值:
$$(\frac{1}{1-x}-1)$$
 $(\frac{1}{x^2}-1)$, 其中 $x=\sqrt{2}-1$.

149.先化简,再求值:
$$\frac{x^2-1}{x^2-2x+1} - \frac{x^2-2x}{x^2-3x+2} \div x$$
,其中 $x = \frac{1}{\sqrt{2}-1}$.

150 . 先化简后求值:
$$\frac{3-x}{x-2}$$
÷ $(x+2-\frac{5}{x-2})$, 其中 $x=2\sqrt{2}$.

151. 化简并求值:
$$\frac{x^2+2x+1}{x^2-1} - \frac{x}{x-1}$$
, 其中 $x=\sqrt{2}+1$.

152 . 已知
$$x=\sqrt{3}-1$$
 , 求 $\frac{x-1}{x}$ ÷ $(x-\frac{1}{x})$ 的值 .

153 . 先化简 , 然后给 x 赋一个你喜欢的无理数 , 再求化简后代数式的值 $\frac{x+3}{x+1}$ ÷ $(x-1-\frac{8}{x+1})$.

154. 计算:
$$(\sqrt{3}-1)(\sqrt{3}+1)$$
 - $(\sin 35^{\circ} - \frac{1}{2})^{0}$ + $(-1)^{2008}$ - $(-2)^{-2}$

156.阅读下列材料,然后回答问题.

在进行二次根式的化简与运算时,我们有时会碰上如 $\frac{3}{\sqrt{5}}$, $\sqrt{\frac{2}{3}}$, $\frac{2}{\sqrt{3}+1}$ 一样的式子,

其实我们还可以将其进一步化简:

$$\frac{3}{\sqrt{5}} = \frac{3 \times \sqrt{5}}{\sqrt{5} \times \sqrt{5}} = \frac{3\sqrt{5}}{5}; (-)$$

$$\sqrt{\frac{2}{3}} = \sqrt{\frac{2 \times 3}{3 \times 3}} = \frac{\sqrt{6}}{3} (-)$$

$$\frac{2}{\sqrt{3}+1} = \frac{2 \times (\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{2(\sqrt{3}-1)}{(\sqrt{3})^2 - 1^2} = \sqrt{3}-1 (-)$$

以上这种化简的步骤叫做分母有理化.

 $\frac{2}{\sqrt{3}+1}$ 还可以用以下方法化简:

$$\frac{2}{\sqrt{3}+1} = \frac{3-1}{\sqrt{3}+1} = \frac{(\sqrt{3})^{-2}-1^{-2}}{\sqrt{3}+1} = \frac{(\sqrt{3}+1)^{-}(\sqrt{3}-1)}{\sqrt{3}+1} = \sqrt{3}-1 \text{ (} \square \text{)}$$

(1)请用不同的方法化简 $\frac{2}{\sqrt{5}+\sqrt{3}}$.

①参照(三)式得
$$\frac{2}{\sqrt{5}+\sqrt{3}}$$
=();

②参照(四)式得
$$\frac{2}{\sqrt{5}+\sqrt{3}}$$
=()

(2)化简:
$$\frac{1}{\sqrt{3}+1}$$
+ $\frac{1}{\sqrt{5}+\sqrt{3}}$ + $\frac{1}{\sqrt{7}+\sqrt{5}}$ + \cdots + $\frac{1}{\sqrt{2n+1}}$ + $\frac{1}{\sqrt{2n-1}}$.

158 . 实数 a , b 在数轴上的位置如图所示 , 化简 $|a+b|+\sqrt{\frac{(b-a)^{-2}}{2}}$

159 . 实数 a , b 在数轴上的位置如图所示 , 化简 a - b + $\sqrt{(a+b)^2}$

164 . 实数 a 在数轴上的位置如图所示 , 则化简 $|a-2|+\sqrt{(a-1)}|^2$ 的结果

168. 计算:
$$\sqrt{8} + a(-\frac{1}{3})^{-1} - |\sqrt{2} - 1|$$
.

169 . 计算:
$$\sqrt{12}$$
 - (- 2009) 0 +($\frac{1}{2}$) $^{-1}$ + $|\sqrt{3}$ - 1 $|$.

170 . 计算:「
$$(\pi - 2009)$$
 $^{0}+\sqrt{12}+|\sqrt{3}-2|$

171 . 计算:(
$$\pi$$
 - 1) 0 + $(\frac{1}{2})^{-1}$ + $|5-\sqrt{27}|$ - $2\sqrt{3}$.

173. 计算:
$$-3^2-(-\frac{1}{2})^{-3}-|1-\sqrt{3}|+\sqrt{27}$$
.

174. 计算:
$$\frac{\sqrt{32} - \sqrt{8}}{\sqrt{2}} + 2^{-1}$$

175. 计算:
$$(\sqrt{2} - \sqrt{3})^{-0} - (\frac{1}{2})^{-1} + \sqrt{4}$$
.

176. 计算:
$$(-\frac{1}{2})^{0} + (\frac{1}{3})^{-1} + \frac{2}{\sqrt{3}-1} + |\sqrt{3}-1|$$
.

177. 计算:
$$(-3)^{-2} + \sqrt{8} - |1 - 2\sqrt{2}| - (\sqrt{6} - 3)^{-0}$$

178. 计算:
$$(-\pi)^0 + \frac{1}{\sqrt{2}+1} - \frac{1}{2}\sqrt{8}$$
.

179. 计算:8(1-
$$\sqrt{2}$$
) 0 - $\sqrt{12}$ + $\frac{6}{\sqrt{3}}$.

180 . 计算:
$$\frac{2}{\sqrt{2}-1}$$
 $-\sqrt{8}$ $-(\sqrt{2}+1)^{-0}$.

181. 计算:
$$\frac{2}{\sqrt{2}+1}$$
 $-\sqrt{8}+(\frac{1}{3})^{-1}$

182. 计算:
$$\sqrt{18} - \frac{1}{2} \div 2^{-1} + \frac{1}{\sqrt{2}+1} - (\sqrt{2}-1)$$

184. 计算:
$$(\sqrt{2}-1)^{-1}-\sqrt{8}-(2-\tan 50^\circ)^0$$
.

185. 计算:
$$\sqrt{2}(1+\sqrt{2})$$
 - $(\frac{1}{\sqrt{2}-1})^{0}$.

186. 计算:
$$|-5|+(\frac{1}{2})^{-2}+\sqrt[3]{-27}-\sqrt{(-2)^{-2}}-(\sqrt{7}-1)^{-0}$$
.

187. 计算:
$$(\sqrt{5} - 3)^2 + (\sqrt{11} + 3) (\sqrt{11} - 3)$$

- 189. 已知: x=√3+1, y=√3-1, 求下列各式的值.
- $(1) x^2+2xy+y^2;$
- $(2) x^2 y^2$.

191 . 已知
$$x=1+\sqrt{2}$$
 , 求代数式 $\frac{x^2+2x+1}{x^2-1} - \frac{x}{x-1}$ 的值 .

192.先化简,再求值:
$$(\frac{1}{x-y} - \frac{1}{x+y}) \div \frac{2y}{x^2 - 2xy + y^2}$$
,其中 $x=1+\sqrt{2}$, $y=1$ $-\sqrt{2}$.

193. 对于题目 "化简并求值:
$$\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2}$$
 , 其中 $a = \frac{1}{5}$ " ,甲、乙两人的解答不同 .

甲的解答: $\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2} = \frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2} = \frac{1}{a}$

乙的解答: $\frac{1}{a} + \sqrt{\frac{1}{a^2} + a^2 - 2} = \frac{1}{a} + \sqrt{(a - \frac{1}{a})^2} = \frac{1}{a} + a - \frac{1}{a} = a = \frac{1}{5}$.

请你判断谁的答案是错误的,为什么?

- 194.化简求值:已知 $x = \frac{1}{2+\sqrt{3}}$, $y = \frac{1}{2-\sqrt{3}}$,求 $x^2 y^2$ 的值.
- 195 . 先化简再求值: x+3 / x²-9 / x+√x²+6x+9 , 其中 x=√3 .
- 196. 已知: $x=\frac{1}{2}(\sqrt{7}+\sqrt{5})$, $y=\frac{1}{2}(\sqrt{7}-\sqrt{5})$, 求代数式 x^2-xy+y^2 值.
- 197 .先化简 ,再求值: $(6x\sqrt{\frac{y}{x}}+\frac{3}{y}\sqrt{xy^3})$ $(4y\sqrt{\frac{x}{y}}+\sqrt{36xy})$,其中 $x=\frac{3}{2}$, y=27 .
- 198. 先化简,后求值: $\frac{x^2-4x+4}{x^2-4}$,其中 $x=\sqrt{2}-2$.
- 199. $\frac{a+1}{a-1} \cdot \frac{a^2-1}{a+1} 1$.

200 .某公路规定行驶汽车的速度每小时不得超过 70 干米 ,当发生交通事故时 , 交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度 ,所用的经验公式 是 v=16√df , 其中 v 表示车速 (单位:干米/小时), d 表示刹车后车轮滑过的 距离 (单位:米), f 表示摩擦系数 . 经测量 , d=20 米 , f=1.25 ,请你帮助判断一下 ,肇事汽车当时的速度是否超出了规定的速度?

解析:

1.解:原式=
$$2\sqrt{3}+(2+\sqrt{3})-(7+4\sqrt{3})=-\sqrt{3}-5$$
.

3.解:原式=
$$(x+1-2)^2 = (x-1)^2$$
,
当 $x^{-1} = \sqrt{3}$ 时,原式= $(\sqrt{3})^{-2} = 3$.

4.解:原式=
$$\frac{x^2}{xy(x+y)}$$
- $\frac{y^2}{xy(x+y)}$ = $\frac{x^2-y^2}{xy(x+y)}$ = $\frac{(x-y)(x+y)}{xy(x+y)}$ = $\frac{x-y}{xy(x+y)}$.
当 $\frac{x-y}{xy}$ = $\frac{(\sqrt{2}+1)-(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$ = $\frac{2}{1}$ =2.

5.解:(1)原式=4 -
$$\sqrt{3}$$
 - 4+2 $\sqrt{3}$ = $\sqrt{3}$;
(2)原式= $\frac{x-1}{x^2-2x+1}$ - $\frac{x^2-1}{1}$ = $\frac{x-1}{(x-1)^2}$ (x-1) (x+1) =x+1,

当
$$x=\sqrt{2}-1$$
 时,原式= $\sqrt{2}$.

6.解:原式=
$$\frac{x^2+y^2}{x-y}$$
- $\frac{2xy}{x-y}$ = $\frac{x^2+y^2-2xy}{x-y}$ = $\frac{(x-y)^2}{x-y}$ =x-y,
当 x= 3+ $\sqrt{2}$, y= $3-\sqrt{2}$ 时,
原式= $(3+\sqrt{2})$ - $(3-\sqrt{2})$ =3+ $\sqrt{2}$ - $3+\sqrt{2}$ =2 $\sqrt{2}$.

(2)方法一:

当
$$x=\sqrt{2}-1$$
 时,

$$x^2+3x-1=(\sqrt{2}-1)^2+3(\sqrt{2}-1)-1=2-2\sqrt{2}+1+3\sqrt{2}-3-1=\sqrt{2}-1$$
;

方法二:

因为
$$x=\sqrt{2}-1$$
,所以 $x+1=\sqrt{2}$,所以 $(x+1)^2=(\sqrt{2})^2$

所以
$$x^2+3x-1=x^2+2x+x-1=1+x-1=\sqrt{2}-1$$
.

8.解:原式=
$$\frac{(x-2)(x+2)-12}{x+2}$$
÷ $\frac{4-x}{x+2}$ = $\frac{x^2-16}{x+2}$ × $\frac{x+2}{4-x}$ = $\frac{(x+4)(x-4)}{x+2}$ × $(-\frac{x+2}{x-4})$ =- $x-4$,
当 $x=-4+\sqrt{3}$ 时,
原式= $-(-4+\sqrt{3})-4=4-\sqrt{3}-4=-\sqrt{3}$.

10. 原式=
$$\frac{(b+a) + (a-b)}{(a-b)(b+a)}$$
 $\frac{a+b}{ab} = \frac{2}{(a-b)(b)}$ $\therefore a=\sqrt{2}+1$, $b=\sqrt{2}$. 原式= $\frac{2}{(\sqrt{2}+1-\sqrt{2})\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$.

11.解:
$$(\frac{1}{x-y} - \frac{1}{x+y}) \div \frac{2y}{x^2 + 2xy + y^2} = \frac{(x+y) - (x-y)}{(x-y)(x+y)} \cdot \frac{(x+y)^2}{2y}$$

$$= \frac{2y}{(x-y)(x+y)} \cdot \frac{(x+y)^2}{2y} = \frac{x+y}{x-y},$$
把 $x = \sqrt{3} + \sqrt{2}$, $y = \sqrt{3} - \sqrt{2} + \sqrt{2}$ 上式,得
$$\mathbb{R} \stackrel{(\sqrt{3} + \sqrt{2}) + (\sqrt{3} - \sqrt{2})}{(\sqrt{3} + \sqrt{2}) - (\sqrt{3} - \sqrt{2})} = \frac{2\sqrt{3}}{2\sqrt{2}} = \frac{\sqrt{6}}{2}.$$

当 $x=\sqrt{2}$ 时,原式= $(\sqrt{2})^2+2=4$ ·

14.解:原式=
$$\frac{x^2-1-8}{x+1}$$
• $\frac{x+1}{x+3}$ = $x-3$;
当 $x=3-\sqrt{2}$,原式= $3-\sqrt{2}$ - $3=-\sqrt{2}$.

15.解:(1)当
$$x=\sqrt{3}+1$$
, $y=\sqrt{3}-1$ 时, 原式=($x+y$) $^2=(\sqrt{3}+1+\sqrt{3}-1)^2=12$; (2)当 $x=\sqrt{3}+1$, $y=\sqrt{3}-1$ 时,

原式= $(x+y)(x-y) = (\sqrt{3}+1+\sqrt{3}-1)(\sqrt{3}+1-\sqrt{3}+1) = 4\sqrt{3}$.

17.解:原式=
$$a^2$$
 - 3 - a^2 +6 a =6 a - 3 ,
当 $a = \sqrt{5} + \frac{1}{2}$ 时,原式= $6\sqrt{5}$ +3 - 3= $6\sqrt{5}$.

18.解:原式=
$$\frac{x^2-2x}{x^2-4}+\frac{x^2-4-2x+4}{x+2}=\frac{x}{x+2}+\frac{x^2-2x}{x+2}=\frac{x^2-x}{x+2}$$
;
当 $x=2+\sqrt{2}$ 时,
原式= $\frac{(2+\sqrt{2})^{-2}-(2+\sqrt{2})}{2+\sqrt{2}+2}=\frac{4\sqrt{2}+5}{7}$.

20.解:原式=
$$\frac{a(a^2-4)}{a-1}$$
÷ $\frac{a-2}{a-1}$ = $\frac{a(a+2)(a-2)}{a-1}$ • $\frac{a-1}{a-2}$ = a^2+2a ,
当 $a=\sqrt{2}-1$ 时,原式= $(\sqrt{2}-1)^2+2(\sqrt{2}-1)$ = $3-2\sqrt{2}+2\sqrt{2}-2=1$.

21.解:原式=
$$\frac{(x+1)^{-2}}{(x+1)^{-}(x-1)}$$
 - $\frac{x}{x-1}$ = $\frac{x+1-x}{x-1}$ = $\frac{1}{x-1}$, 当 $x=1+\sqrt{2}$ 时,原式= $\frac{\sqrt{2}}{2}$.

22.解:原式=
$$\left[\frac{x+y}{(x+y)(x-y)} - \frac{x-y}{(x+y)(x-y)}\right] \div \frac{2y}{(x-y)^2}$$

$$= \frac{2y}{(x+y)(x-y)} \times \frac{(x-y)^2}{2y} = \frac{x-y}{x+y};$$
当 $x=1+\sqrt{2}$, $y=1-\sqrt{2}$ 时,原式= $\frac{1+\sqrt{2}-(1-\sqrt{2})}{1+\sqrt{2}+1-\sqrt{2}} = \sqrt{2}$.

23.解:原式=

$$\frac{\left(x+\sqrt{x^{2}-4}\right)^{2}}{\left(x-\sqrt{x^{2}-4}\right)^{2}+\frac{\left(x-\sqrt{x^{2}-4}\right)^{2}}{\left(x-\sqrt{x^{2}-4}\right)^{2}}-x^{2}}{=\frac{x^{2}+x^{2}-4+2\sqrt{x^{2}-4}}{x^{2}-x^{2}+4}+\frac{x^{2}+x^{2}-4-2\sqrt{x^{2}-4}}{x^{2}-x^{2}+4}-x^{2}}{=\frac{4x^{2}-8}{4}-x^{2}=-2.$$

∵化简结果与 x 的值无关 , ∴该同学虽然抄错了 x 的值 , 计算结果却是正确的 .

24.解: 当
$$x=\sqrt{3}$$
, $y=-1$ 时, $x^2+2y^2-xy=3+2+\sqrt{3}=5+\sqrt{3}$.

解得 x=3, y=5, a=4,∴可以组成三角形,且为直角三角形,面积为6.

26.
$$\Re: (1) S = \sqrt{\frac{1}{4}} [5^2 \times 7^2 - (\frac{5^2 + 7^2 - 8^2}{2})^2]$$
, $= \frac{1}{2} \sqrt{5^2 (7^2 - 1^1)} = \frac{5}{2} \sqrt{48} = 10\sqrt{3}$; $P = \frac{1}{2} (5 + 7 + 8) = 10$, $\Re S = \sqrt{10 (10 - 5) (10 - 7) (10 - 8)} = \sqrt{10 \times 5 \times 3 \times 2} = 10\sqrt{3}$; $(2) \frac{1}{4} [a^2 b^2 - (\frac{a^2 + b^2 - c^2}{2})^2] = \frac{1}{4} (\frac{4a^2 b^2}{4} - \frac{(a^2 + b^2)^2 - 2(a^2 + b^2) \cdot c^2 + (c^2)^2}{4})$ $= \frac{1}{16} [c^2 - (a - b)^2] [(a + b)^2 - c^2]$, $= \frac{1}{16} (c + a - b) (c - a + b) (a + b + c) (a + b - c)$,

$$=\frac{1}{16}$$
 (2p - 2a)(2p - 2b) •2p• (2p - 2c),

$$= p (p-a)(p-b)(p-c), \\ \cdot \sqrt{\frac{1}{4} [a^2b^2 - (\frac{a^2+b^2-c^2}{2})]} = \sqrt{p (p-a) (p-b) (p-c)}.$$

(说明:若在整个推导过程中,始终带根号运算当然也正确)

27.解:27.(1)原式=3
$$\sqrt{2}$$
 - $\frac{2\sqrt{2}}{2}$ - $\sqrt{2}$ +1=3 $\sqrt{2}$ - $\sqrt{2}$ - $\sqrt{2}$ +1= $\sqrt{2}$ +1;

28. (2)
$$\begin{cases} \frac{x+1}{5} > \frac{3-x}{5} & \text{(1)} \\ 4 & (x+4) < 3 & (x+6) & \text{(2)} \end{cases}$$

由①得 x+1>3-x,即 x>1;

由②得 4x+16 < 3x+18,即 x < 2;

不等式组的解集为1<x<2.

29.解:原式=
$$\sqrt{(\sqrt{5}+2)^2 + (\sqrt{5}-2)^2 + 7}$$

= $\sqrt{5+4\sqrt{5}+4+5-4\sqrt{5}+4+7}$ = $\sqrt{5+4+5+4+7}$ = $\sqrt{25}$ =5.

$$2\sqrt{a} - \frac{a+\sqrt{a}}{a-\sqrt{a}} = 2\sqrt{2} - \frac{2+\sqrt{2}}{2-\sqrt{2}} = 2\sqrt{2} - \frac{(2+\sqrt{2})^{-2}}{2} = 2\sqrt{2} - 3 - 2\sqrt{2} = -3$$
.

31.
$$\mathbf{m}: \frac{\mathbf{x}}{\mathbf{x}-1} = \frac{\sqrt{2}}{\sqrt{2}-1} = \sqrt{2} (\sqrt{2}+1) = \sqrt{2}+2$$
.

32. 当
$$x = \frac{1}{\sqrt{2} - 1}$$
时, $\frac{1}{x} = \sqrt{2} - 1$,∴原式=1 - ($\sqrt{2} - 1$) = 2 - $\sqrt{2}$.

33.解:原式=
$$\sqrt{ab}$$
 ($\sqrt{\frac{a}{b}} - \sqrt{\frac{b}{a}}$) = $\sqrt{ab} \cdot \sqrt{\frac{a}{b}} - \sqrt{ab} \cdot \sqrt{\frac{b}{a}} = a - b$,

34.解:
$$a = \frac{1}{\sqrt{5} - 2} = \sqrt{5} + 2$$
, $b = \frac{1}{\sqrt{5} + 2} = \sqrt{5} - 2$,

35.解::最简二次根式√3a-8与√17-2a是同类二次根式,

36.解:∵最简根式 a+√3a 与√a+2b 是同类二次根式,

∴
$$\begin{cases} a+b=2 \\ 3a=a+2b \end{cases}$$
, 解得: $\begin{cases} a=1 \\ b=1 \end{cases}$, ∴ $ab=1$.

37 . 解: ①
$$\sqrt{8} \times \sqrt{2} = \sqrt{8 \times 2} = \sqrt{16} = 4$$
;

$$(2)\sqrt{8} - \sqrt{2} = 2\sqrt{2} - \sqrt{2} = \sqrt{2}$$
.

39.解:原式=
$$2\sqrt{2}$$
- $\sqrt{2}$ = $\sqrt{2}$.故答案为: $\sqrt{2}$.

43.(2010•聊城) 化简:
$$\sqrt{27}$$
 - $\sqrt{12}$ + $\sqrt{\frac{4}{3}}$ = $\frac{5\sqrt{3}}{3}$.

44.解:原式=
$$2\sqrt{2} - \frac{\sqrt{2}}{2} = \frac{3\sqrt{2}}{2}$$
.

45.解:原式=
$$\sqrt{\frac{2}{3}}$$
-($\sqrt{(\frac{1}{6})^2 \times 24}$ - $\sqrt{(\frac{3}{2})^2 \times 12}$)

$$= \sqrt{\frac{2}{3}} - (\sqrt{\frac{2}{3}} - \sqrt{27})$$
$$= \sqrt{\frac{2}{3}} - \sqrt{\frac{2}{3}} + 3\sqrt{3}$$

$$=3\sqrt{3}\approx3\times1.732\approx5.196\approx5.20$$

51.解:
$$5\sqrt{2} - \sqrt{8} = 5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$$
.

52.解:
$$a^2$$
 - a = a (a - 1);
 $5\sqrt{x}$ - $2\sqrt{x}$ = (5 - 2) \sqrt{x} = $3\sqrt{x}$;
(-2 a) • ($\frac{1}{4}a^3$) = $-\frac{1}{2}a^4$.

53.解:
$$x+y=\frac{1}{2}(\sqrt{a}+\sqrt{b})+\frac{1}{2}(\sqrt{a}-\sqrt{b})=\frac{1}{2}(\sqrt{a}+\sqrt{b}+\sqrt{a}-\sqrt{b})=\frac{1}{2}\times2\sqrt{a}=\sqrt{a}$$
.

67. 解:原式=1
$$-\frac{\sqrt{2}}{2}$$
- $(\sqrt{2}-1)$

69.解:
$$\frac{\sqrt{32}-\sqrt{8}}{\sqrt{2}}$$
+2 $^{-1}$ = $\frac{4\sqrt{2}-2\sqrt{2}}{\sqrt{2}}$ + $\frac{1}{2}$ =2+ $\frac{1}{2}$ = $\frac{5}{2}$.

72.解:原式=
$$\frac{1}{9}$$
+2 $\sqrt{2}$ -(2 $\sqrt{2}$ -1)-1= $\frac{1}{9}$ +2 $\sqrt{2}$ -2 $\sqrt{2}$ +1-1= $\frac{1}{9}$.

73.解:原式=1+ (
$$\sqrt{2}$$
-1) - $\frac{1}{2}$ ×2 $\sqrt{2}$ =1+ $\sqrt{2}$ -1 - $\sqrt{2}$ =0.

76.解:原式=
$$\frac{2(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$$
-2 $\sqrt{2}$ +3=2($\sqrt{2}$ -1)-2 $\sqrt{2}$ +3=1.

77.解:原式=
$$3\sqrt{2} - \frac{1}{2} \times 2 + \sqrt{2} - 1 - \sqrt{2} + 1 = 3\sqrt{2} - 1$$
.

78.解:原式=4 -
$$\frac{1}{\sqrt{2}} \times 2\sqrt{2} + 1 = 3$$
.

79.解:原式=
$$\frac{1}{\sqrt{2}-1}$$
-2 $\sqrt{2}$ -1= $\sqrt{2}$ +1-2 $\sqrt{2}$ -1= $-\sqrt{2}$.

80.解:原式=√2+2-1=√2+1.

81.解:原式=5+4-3-2-1=3.

82. 解:(1)原式=2√2+1-2=2√2-1,

(2)原式=a²-b²+2ab-a²=-b²+2ab

当 a=1.5, b=2 时,原式=-2²+2×1.5×2=2. 故答案为 2√2-1、2.

83.解:(1)原式=2+1-(√9-√4)=3-1=2;

(2)原式=
$$\frac{2x^2+6x-x^2+3x}{(x-3)(x+3)}$$
 - $\frac{x^2-9}{x}$ = $\frac{x(x+9)}{x^2-9}$ - $\frac{x^2-9}{x}$ = $x+9$.

84.解:原式=3√2+4+1=5+3√2.

85.解:原式=3√2+√2=4√2.

86.解:原式=2√2+3.

87.解:
$$a=\frac{1}{2+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}=2-\sqrt{3}$$
, $a+b=2-\sqrt{3}+\sqrt{3}-2=0$.

88.解:原式=√2a-(√2-1)a=a.

89.解:原式=√2+2√2-3√2=0.

90.解:2-(-1)=2+1=3.

$$\sqrt{3} - \frac{1}{\sqrt{3}} = \sqrt{3} - \frac{\sqrt{3}}{3} = \frac{2\sqrt{3}}{3}$$
, (a - 1)(a+1) = a² - 1.

91.解:原式=√2+2√2=3√2.

92.解:原式=6√2-√2=5√2.

93.解:折线分为 AB、BC 两段, AB、BC 分别看作直角三角形斜边,

由勾股定理得 $AB=BC=\sqrt{2^2+1^2}=\sqrt{5}$ 光 .

小明沿图中所示的折线从 $A \Rightarrow B \Rightarrow C$ 所走的路程为 $\sqrt{5} + \sqrt{5} = 2\sqrt{5}$ 米 .

94.解:原式=
$$3\sqrt{3}+\frac{2-\sqrt{3}}{(2+\sqrt{3})}$$
 - 1= $3\sqrt{3}+2-\sqrt{3}$ - 1= $2\sqrt{3}+1$.

96.解:
$$3\sqrt{18} + \frac{1}{5}\sqrt{50} - 4\sqrt{\frac{1}{2}} = 9\sqrt{2} + \sqrt{2} - 2\sqrt{2} = 8\sqrt{2}$$
.

97.解:原式=
$$\frac{\sqrt{5}-1}{2}$$
- $\frac{2(\sqrt{5}+1)}{4}$ = $\frac{\sqrt{5}-1}{2}$ - $\frac{\sqrt{5}+1}{2}$ =-1.

98.解:原式=
$$\frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}$$
-2 $\sqrt{2}$ = $\sqrt{2}+1$ -2 $\sqrt{2}$ = $\sqrt{2}+1$.

99.解:
$$a=\frac{1}{2+\sqrt{3}}=\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}=2-\sqrt{3}$$
, $a+b=2-\sqrt{3}+\sqrt{3}-2=0$.

101.解:原式=
$$\sqrt{2}+2\sqrt{2}-3\sqrt{2}=0$$
.

102. 解:2-(-1)=2+1=3,
$$\sqrt{3}$$
- $\frac{1}{\sqrt{3}}$ = $\sqrt{3}$ - $\frac{\sqrt{3}}{3}$ = $\frac{2\sqrt{3}}{3}$,

$$(a-1)(a+1)=a^2-1$$
.

104.解:原式=
$$6\sqrt{2}$$
- $\sqrt{2}$ = $5\sqrt{2}$.

105.解:原式=
$$\sqrt{3\times6}$$
- $\sqrt{2}$ = $3\sqrt{2}$ - $\sqrt{2}$ = $2\sqrt{2}$.故答案为: $2\sqrt{2}$.

106.
$$\mathbf{R}: \sqrt{8} - \frac{4}{\sqrt{2}} + (\frac{1}{2})^{-1} = 2\sqrt{2} - 2\sqrt{2} + 2 = 2$$
.

107.解:
$$(\sqrt{48} + \frac{1}{4}\sqrt{12}) \div \sqrt{27} = (4\sqrt{3} + \frac{\sqrt{3}}{2}) \div 3\sqrt{3} = \frac{9\sqrt{3}}{2} \times \frac{1}{3\sqrt{3}} = \frac{3}{2}$$
.

108 . 解:∵x@y=
$$\sqrt{xy+4}$$
 , ∴ (2@6) @8= $\sqrt{2\times6+4}$ @8=4@8= $\sqrt{4\times8+4}$ =6 ,

故答案为:6.

109 . 解:
$$\frac{\sqrt{3}}{\sqrt{3}+2} - \sqrt{12} = -\sqrt{3}(\sqrt{3}-2) - 2\sqrt{3} = -3 + 2\sqrt{3} - 2\sqrt{3} = -3$$
.

110 . 解:
$$\frac{1}{2-\sqrt{3}}$$
 - $(2\sqrt{3}+2)$ =2+ $\sqrt{3}$ - $2\sqrt{3}$ - 2 = - $\sqrt{3}$.

112.解:∵x=
$$\frac{1}{\sqrt{5}-2}$$
= $\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}$ = $\sqrt{5}+2$, $\frac{1}{x}$ = $\sqrt{5}-2$,∴x - $\frac{1}{x}$ = ($\sqrt{5}+2$) - ($\sqrt{5}-2$) =4.故本题答案为:4.

113.解:矩形内阴影部分的面积是 $(\sqrt{2}+\sqrt{6}) \cdot \sqrt{6} - 2 - 6 = 2\sqrt{3} + 6 - 2 - 6 = 2\sqrt{3} - 2$.

114.解:原式=
$$3\sqrt{3}$$
+ $\frac{2-\sqrt{3}}{(2+\sqrt{3})}$ -1= $3\sqrt{3}$ +2- $\sqrt{3}$ -1= $2\sqrt{3}$ +1.

115.解:原式=(x-3)(x+1),

将 $x=\sqrt{3}+1$ 代入上式得,

原式=
$$(\sqrt{3}+1-3)$$
 $(\sqrt{3}+1+1)$ = $(\sqrt{3}-2)$ $(\sqrt{3}+2)$ = -1.

116.解:
$$\frac{a^2-b^2}{a^2b-ab^2}$$
÷ $(1+\frac{a^2+b^2}{2ab})=\frac{(a+b)-(a-b)}{ab-(a-b)}\div\frac{2ab+a^2+b^2}{2ab}=\frac{2}{a+b}$; 因为 $a=\sqrt{3}-\sqrt{11}$, $b=\sqrt{3}+\sqrt{11}$;所以原式= $\frac{2}{2\sqrt{3}}=\frac{\sqrt{3}}{3}$.

118 . 解:
$$3\sqrt{18} + \frac{1}{5}\sqrt{50} - 4\sqrt{\frac{1}{2}} = 9\sqrt{2} + \sqrt{2} - 2\sqrt{2} = 8\sqrt{2}$$
.

119.解:原式=
$$\frac{\sqrt{5}-1}{2}$$
- $\frac{2(\sqrt{5}+1)}{4}$ = $\frac{\sqrt{5}-1}{2}$ - $\frac{\sqrt{5}+1}{2}$ =-1.

120 . 解:原式=
$$\frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}$$
 - $2\sqrt{2}=\sqrt{2}+1$ - $2\sqrt{2}=-\sqrt{2}+1$.

121 . 原式=3+4 -
$$2\sqrt{3}$$
 - $2+\frac{4(\sqrt{3}-1)}{3-1}$ =5 - $2\sqrt{3}+2\sqrt{3}$ - 2=3 .

123.解:原式=
$$\frac{1}{x-\sqrt{2}}$$
+2 $-\frac{1}{x-\sqrt{2}}$ =2.

124.解:(1)原式=(3-2)×
$$\sqrt{2}$$
+ $\frac{1}{\sqrt{8}}$ = $\sqrt{2}$ + $\frac{\sqrt{2}}{4}$ = $\frac{5\sqrt{2}}{4}$;

∴把 y=3 代入①得:x= - 2 , ∴方程组的解为
$$\begin{cases} x=-2 \\ y=3 \end{cases}$$

$$= 8\sqrt{2} \div 4\sqrt{2} = 2$$
;

$$= (x+2)[(x+4) + (x-2)] = (x+2)(2x+2) = 2(x+2)(x+1).$$

126.解:(1)原式=
$$3\sqrt{2}$$
- $3\sqrt{2}$ -1=-1;

129.解:原式=
$$\frac{x^2+4}{y^2-4}$$
- $\frac{2}{x-2}$ = $\frac{x^2-2x}{y^2-4}$ = $\frac{x}{x+2}$;

当
$$\mathbf{x} = \sqrt{2} - 2$$
 时,原式= $\frac{\sqrt{2} - 2}{(\sqrt{2} - 2) + 2} = 1 - \sqrt{2}$.

当
$$x=\sqrt{2}-2$$
 时,原式= $\frac{\sqrt{2}-2}{(\sqrt{2}-2)+2}$ = $1-\sqrt{2}$.
130.解:原式= $\frac{(x+1)-(x-1)}{(x+1)^2}$ * $\frac{x+1}{x-1}$ - $\frac{x}{x+1}$ = $\frac{1}{x+1}$,

当
$$\mathbf{x} = \sqrt{2} - 1$$
 时,原式= $\frac{1}{\sqrt{2} - 1 + 1} = \frac{\sqrt{2}}{2}$.

131.解:原式=
$$\frac{(x-1)^{-2}}{x(x-1)}$$
+ $\frac{3}{x}$ = $\frac{x-1}{x}$ + $\frac{3}{x}$ = $\frac{x+2}{x}$,当 x= $\sqrt{2}$ 时,原式= $\frac{\sqrt{2}+2}{\sqrt{2}}$ =1+ $\sqrt{2}$.

132.解:原式=
$$\frac{a-1-a+2}{(a+1)-(a-1)}$$
• $\frac{a+1}{1}$ = $\frac{1}{a-1}$,
当 $a=\sqrt{3}+1$ 时,原式= $\frac{1}{\sqrt{3}+1-1}$ = $\frac{\sqrt{3}}{3}$.

133.解:原式=
$$\frac{2x-x-y}{(x+y)-(x-y)}$$
= $\frac{x-y}{(x+y)-(x-y)}$ (2分)= $\frac{1}{x+y}$,
当 $x=3\sqrt{5}-1$, $y=-2\sqrt{5}+1$ 时,
原式= $\frac{1}{3\sqrt{5}-1+(-2\sqrt{5}+1)}$ = $\frac{1}{3\sqrt{5}-2\sqrt{5}}$ = $\frac{1}{\sqrt{5}}$ = $\frac{1}{5}$.

134.解:原式=
$$\frac{m^2}{m-2}$$
- $\frac{4(m+2)}{(m-2)(m+2)}$ = $\frac{m^2-4}{m-2}$ = $\frac{(m-2)(m+2)}{m-2}$ =m+2;因为 m= $\frac{1}{\sqrt{5}+2}$ = $\sqrt{5}$ -2,所以,原式= $\sqrt{5}$ -2+2= $\sqrt{5}$.

135.解:原式=
$$\frac{x+1}{x}$$
÷ $\frac{x^2-1}{x}$ = $\frac{x+1}{x}$ ÷ $\frac{(x+1)(x-1)}{x}$ = $\frac{x+1}{x}$ * $\frac{x}{(x+1)(x-1)}$ = $\frac{1}{x-1}$, 当 x = $\sqrt{2}$ 时,原式= $\frac{1}{\sqrt{2}-1}$ = $\sqrt{2}$ +1.

136.解:原式=
$$\frac{a+1-a+1}{(a-1)(a+1)} \times \frac{(a+1)(a-1)}{a} = \frac{2}{a}$$
,
当 $a=\sqrt{2}$ 时,原式= $\frac{2}{\sqrt{2}} = \sqrt{2}$.

137.解:原式=
$$\frac{a(a+3)}{(a+1)(a+2)}$$
 ÷ $\frac{a+3}{a+1}$ - $\frac{2}{a+2}$ = $\frac{a(a+3)}{(a+1)(a+2)}$ × $\frac{a+1}{a+3}$ - $\frac{2}{a+2}$ = $\frac{a}{a+2}$ - $\frac{2}{a+2}$ = $\frac{a-2}{a+2}$ 当 $a=\sqrt{3}$ 时,原式= $\frac{\sqrt{3}-2}{\sqrt{3}+2}$ = $-(\sqrt{3}-2)^2$ = $-7+4\sqrt{3}$.

138.解:原式=
$$\frac{x+y}{xy}$$
+ $\frac{2}{x+y}$ = $\frac{2}{xy}$; 当 x=2, $y=\sqrt{3}$ 时,原式= $\frac{2}{2\sqrt{3}}$ = $\frac{\sqrt{3}}{3}$.

139.解:原式=
$$\frac{x-2}{(x+3)-(x-3)}$$
 $\times \frac{x-3}{x-2} = \frac{1}{x+3}$,
当 $x=\sqrt{2}-2$ 时,原式= $\frac{1}{\sqrt{2}-2+3} = \frac{(\sqrt{2}-1)}{(\sqrt{2}+1)-(\sqrt{2}-1)} = \sqrt{2}-1$.

140.解:(1)去分母,得x-1+2≥2x

移项,得x-2x≥1-2,解得x≤1;在数轴上表示为:

141.解:
$$\frac{a^2 - ab}{a^2 - b^2} = \frac{a(a - b)}{(a+b)(a-b)} = \frac{a}{a+b}$$
,
当 $a = \sqrt{2}b$ 时,原式= $\frac{\sqrt{2}b}{\sqrt{2}b+b} = \frac{\sqrt{2}b}{(\sqrt{2}+1)b} = \frac{\sqrt{2}}{\sqrt{2}+1} = \frac{\sqrt{2}(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = 2 - \sqrt{2}$.

142.解:原式=
$$\frac{(a-1)^{-2}}{(a+1)(a-1)}$$
- $\frac{a}{a+1}$ = $\frac{a-1-a}{a+1}$ = $-\frac{1}{a+1}$;
当 $a=\sqrt{2}$ 时,原式= $-\frac{1}{\sqrt{2}+1}$ =1 减 $\sqrt{2}$.

143.解:原式=
$$\frac{b}{a-b}$$
- $\frac{b^3}{a(a-b)^2}$ - $\frac{(a+b)(a-b)}{b(a+b)}$ = $\frac{b}{a-b}$ - $\frac{b^2}{a(a-b)}$ = $\frac{ab-b^2}{a(a-b)}$ = $\frac{b}{a}$, 当 $a=\sqrt{12}$, $b=\sqrt{3}$ 时,原式= $\frac{\sqrt{3}}{\sqrt{12}}$ = $\frac{1}{2}$.

144.解:原式=
$$\frac{a-2+4}{(a+2)(a-2)}$$
= $\frac{1}{a-2}$;
当 $a=4+\sqrt{3}$ 时,原式= $\frac{1}{4+\sqrt{3}-2}$ = $2-\sqrt{3}$.

145.解:原式=
$$\frac{1}{x+1}$$
 - $\frac{x+3}{(x+1)(x-1)}$ - $\frac{(x-1)^2}{(x+1)(x+3)}$ = $\frac{1}{x+1}$ - $\frac{x-1}{(x+1)^2}$ = $\frac{x+1-(x-1)}{(x+1)^2}$ = $\frac{2}{(x+1)^2}$ = $\frac{2}{(\sqrt{2}+1)^2}$ = $\frac{2}{2\sqrt{2}+3}$ = $6 - 4\sqrt{2}$.

146.解:
$$\left(\frac{3}{x-1} - \frac{1}{x+1}\right) \cdot \frac{x^2 - 1}{x} = \frac{3x+3-x+1}{x^2 - 1} \cdot \frac{x^2 - 1}{x} = \frac{2x+4}{x}$$
;
 当 $x = \sqrt{2}$ 时,原式= $\frac{2\sqrt{2}+4}{\sqrt{2}} = 2 + 2\sqrt{2}$.

147.解:原式=
$$\frac{1}{x+2}$$
 - $\frac{(x+1)^{-2}}{x+2}$ - $\frac{x-1}{(x+1)(x-1)}$ = $\frac{1}{x+2}$ - $\frac{x+1}{x+2}$ = $-\frac{x}{x+2}$;
当 $x=x=\sqrt{2}-2$ 时,原式= $-\frac{\sqrt{2}-2}{\sqrt{2}-2+2}$ = $\sqrt{2}-1$.

148.解:原式=
$$\frac{1-1+x}{1-x}$$
 • $\frac{1-x^2}{x^2}$ = $\frac{x}{1-x}$ • $\frac{(1-x)(1+x)}{x^2}$ = $\frac{x+1}{x}$;
 当 $x=\sqrt{2}-1$ 时,原式= $\frac{\sqrt{2}-1+1}{\sqrt{2}-1}$ = $2+\sqrt{2}$.

149. 原式=
$$\frac{(x+1)(x-1)}{(x-1)^2}$$
- $\frac{x(x-2)}{(x-1)(x-2)}$ × $\frac{1}{x}$ = $\frac{x+1}{x-1}$ - $\frac{1}{x-1}$ = $\frac{x}{x-1}$, 当 $x=\frac{1}{\sqrt{2}-1}$ = $\sqrt{2}$ +1时,原式= $\frac{\sqrt{2}+1}{\sqrt{2}+1-1}$ = $1+\frac{\sqrt{2}}{2}$.

150.解:原式=
$$\frac{3-x}{x-2}$$
÷ $\frac{x^2-9}{x-2}$ = $-\frac{x-3}{x-2}$ * $\frac{x-2}{(x+3)(x-3)}$ = $-\frac{1}{x+3}$;
当 $x=2\sqrt{2}$ 时,原式= $-\frac{1}{2\sqrt{2}+3}$ = $2\sqrt{2}$ - $\frac{3}{3}$.

152.解:原式=
$$\frac{x-1}{x}$$
× $\frac{x}{(x+1)(x-1)}$ = $\frac{1}{x+1}$,
当 $x=\sqrt{3}-1$ 时,原式= $\frac{1}{\sqrt{3}-1+1}$ = $\frac{\sqrt{3}}{3}$.

153.解:原式=
$$\frac{x+3}{x+1}$$
÷ $\frac{(x^2-9)}{x+1}$ = $\frac{x+3}{x+1}$ × $\frac{(x+1)}{(x-3)(x+3)}$ = $\frac{1}{x-3}$;
不妨取 $x=\sqrt{2}+3$,原式= $\frac{\sqrt{2}}{2}$.

155.解:(
$$\sqrt{6}$$
+3)(3- $\sqrt{6}$)=32-($\sqrt{6}$)²=9-6=3.

(2)原式=

$$\frac{\sqrt{3}-1}{(\sqrt{3}+1)} + \frac{\sqrt{5}-\sqrt{3}}{(\sqrt{5}+\sqrt{3})} + \frac{\sqrt{7}-\sqrt{5}}{(\sqrt{7}+\sqrt{5})} + \frac{\sqrt{2n+1}-\sqrt{2n-1}}{(\sqrt{2n+1}+\sqrt{2n-1})} + \frac{\sqrt{2n+1}-\sqrt{2n-1}}{(\sqrt{2n+1}+\sqrt{2n-1})} + \frac{\sqrt{3}-1}{2} + \frac{\sqrt{5}-\sqrt{3}}{2} + \frac{\sqrt{7}-\sqrt{5}}{2} + \dots + \frac{\sqrt{2n+1}-\sqrt{2n-1}}{2} = \frac{\sqrt{2n+1}-1}{2} .$$

157.解:原式= $\sqrt{2^2}$ =2.故答案为:2

160.解:原式=√3×4=2√3.

161.解:∵x≥0,∴原式=√9•√x=3√x.

162.解:::
$$m < 3$$
,:: $m - 3 < 0$,: $\sqrt{(m-3)^{-2}} = |m - 3| = 3 - m$.

163.解: - (- 3) = 3; 由数轴可知 a < 0, 所以 $\sqrt{a^2}$ = - a.

164.解:由图可得,1<a<2,则a-2<0,a-1>0,

化简|a - 2|+ $\sqrt{\frac{(a-1)}{2}}$ =2 - a+a - 1=1 . 故答案为:1 .

165.解:因为 a < 2,所以 a − 2 < 0,故√_(a − 2) ² =|a − 2|=2 − a.

166.解:∵x>2∴原式=√(x-2)²=|x-2|=x-2.

167.解:原式= 2√3+2 - √3+1= 3+√3.

168.解:原式=2√2-3-√2+1=√2-2.

169.解:原式=2√3-1+2+√3-1=3√3.

170.解:原式=1+2√3+2-√3=3+√3.

171.解:原式=1+2+(√27-5)-2√3=3+3√3-5-2√3=√3-2.

172.解:原式= $1-\frac{\sqrt{2}}{2}-(\sqrt{2}-1)=1-\frac{\sqrt{2}}{2}-\sqrt{2}+1=2-\frac{3\sqrt{2}}{2}$.

173.解:原式= - 9+8 - √3+1+3√3=2√3.

174.解: $\frac{\sqrt{32}-\sqrt{8}}{\sqrt{2}}+2^{-1}=\frac{4\sqrt{2}-2\sqrt{2}}{\sqrt{2}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}$.

175.解:原式=1-2+2=1.

176.解:原式= $1+3+\sqrt{3}+1+\sqrt{3}-1=4+2\sqrt{3}$.

177.解:原式= $\frac{1}{9}$ +2 $\sqrt{2}$ -(2 $\sqrt{2}$ -1)-1= $\frac{1}{9}$ +2 $\sqrt{2}$ -2 $\sqrt{2}$ +1-1= $\frac{1}{9}$.

178.解:原式=1+ ($\sqrt{2}$ -1) - $\frac{1}{2}$ ×2 $\sqrt{2}$ =1+ $\sqrt{2}$ -1 - $\sqrt{2}$ =0.

179.解:原式=8-2√3+2√3=8

180.解:原式=2×(√2+1) - 2√2 - 1=2 - 1=1.

181 . 解:原式= $\frac{2(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$ - $2\sqrt{2}$ +3=2 ($\sqrt{2}$ -1) - $2\sqrt{2}$ +3=1 .

182.解:原式= $3\sqrt{2} - \frac{1}{2} \times 2 + \sqrt{2} - 1 - \sqrt{2} + 1 = 3\sqrt{2} - 1$.

183.解:原式=4 -
$$\frac{1}{\sqrt{2}} \times 2\sqrt{2} + 1 = 3$$
.

184.解:原式=
$$\frac{1}{\sqrt{2}-1}$$
-2 $\sqrt{2}$ -1= $\sqrt{2}$ +1-2 $\sqrt{2}$ -1= - $\sqrt{2}$.

188.解:原式=(20
$$\sqrt{3}$$
-18 $\sqrt{3}$ +4 $\sqrt{15}$)÷ $\sqrt{3}$ =20-18+4 $\sqrt{5}$ =2+4 $\sqrt{5}$.

189.解:(1)当
$$x=\sqrt{3}+1$$
, $y=\sqrt{3}-1$ 时,原式= $(x+y)^2=(\sqrt{3}+1+\sqrt{3}-1)^2=12$;(2)当 $x=\sqrt{3}+1$, $y=\sqrt{3}-1$ 时,原式= $(x+y)(x-y)=(\sqrt{3}+1+\sqrt{3}-1)(\sqrt{3}+1-\sqrt{3}+1)=4\sqrt{3}$.

190 解:原式=
$$a^2$$
 - 3 - a^2 + $6a$ = $6a$ - 3 ,当 $a = \sqrt{5} + \frac{1}{2}$ 时,原式= $6\sqrt{5} + 3$ - $3 = 6\sqrt{5}$.

191.解:原式=
$$\frac{(x+1)^2}{(x+1)(x-1)}$$
- $\frac{x}{x-1}$ = $\frac{x+1-x}{x-1}$ = $\frac{1}{x-1}$,
当 $x=1+\sqrt{2}$ 时,原式= $\frac{\sqrt{2}}{2}$.

$$\begin{split} &192 \cdot \mathbf{m} : \mathbb{E} \exists \left[\frac{\mathbf{x} + \mathbf{y}}{(\mathbf{x} + \mathbf{y})} - \frac{\mathbf{x} - \mathbf{y}}{(\mathbf{x} + \mathbf{y})} \right] \div \frac{2\mathbf{y}}{(\mathbf{x} - \mathbf{y})^{-2}} \\ &= \frac{2\mathbf{y}}{(\mathbf{x} + \mathbf{y}) - (\mathbf{x} - \mathbf{y})} \times \frac{(\mathbf{x} - \mathbf{y})^{-2}}{2\mathbf{y}} = \frac{\mathbf{x} - \mathbf{y}}{\mathbf{x} + \mathbf{y}} ; \\ & \exists \mathbf{x} = \mathbf{1} + \sqrt{2}, \ \mathbf{y} = \mathbf{1} - \sqrt{2}\mathbf{p}, \ \mathbb{E} \exists \frac{\mathbf{1} + \sqrt{2} - (\mathbf{1} - \sqrt{2})}{\mathbf{1} + \sqrt{2} + \mathbf{1} - \sqrt{2}} = \sqrt{2}. \end{split}$$

193.解:甲的解答:
$$a=\frac{1}{5}$$
时, $\frac{1}{a}-a=5-\frac{1}{5}=4\frac{4}{5}>0$,所以 $\sqrt{(\frac{1}{a}-a)^2}=\frac{1}{a}-a$,正确;乙的解答:因为 $a=\frac{1}{5}$ 时, $a-\frac{1}{a}=\frac{1}{5}-5=-4\frac{4}{5}<0$,所以 $\sqrt{(a-\frac{1}{a})^2}\ne a-\frac{1}{a}$,错误;因此,我们可以判断乙的解答是错误的.

194.解:∵
$$x=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}$$
, $y=\frac{1}{2-\sqrt{3}}=2+\sqrt{3}$,

∴原式= $(2 - \sqrt{3})^2 - (2 + \sqrt{3})^2 = [(2 - \sqrt{3}) + (2 + \sqrt{3})][(2 - \sqrt{3}) - (2 + \sqrt{3})] = 4 \times [-2\sqrt{3}] = -8\sqrt{3}$.

195 . 解:原式=
$$\frac{x+3}{3-x}$$
+ $\frac{(x+3)(x-3)}{(x+3)^2}$ = $\frac{x+3}{3-x}$ + $\frac{x-3}{x+3}$
= $\frac{(x-3)^2}{(x+3)(x-3)}$ - $\frac{(x+3)^2}{(x+3)(x-3)}$ = $\frac{-12x}{x^2-9}$ = $\frac{12x}{9-x^2}$,

当 x=√3时,原式= 2√3.

196.解:
$$x=\frac{1}{2}(\sqrt{7}+\sqrt{5})$$
 , $y=\frac{1}{2}(\sqrt{7}-\sqrt{5})$, $xy=\frac{1}{4}\times 2=\frac{1}{2}$, $x-y=\sqrt{5}$
∴原式= $(x-y)^2+xy=5+\frac{1}{2}=5\frac{1}{2}$.

197.解:原式=
$$6\sqrt{xy}+3\sqrt{xy}-4\sqrt{xy}-6\sqrt{xy}=-\sqrt{xy}$$
,
当 $x=\frac{3}{2}$, $y=27$ 时,原式= $-\sqrt{\frac{3}{2}} \cdot 27$ = $-\frac{9}{2}\sqrt{2}$.

198. 原式=
$$\frac{(x-2)^2}{(x+2)(x-2)} = \frac{x-2}{x+2}$$

当 $x=\sqrt{2}-2$ 时,
原式= $\frac{\sqrt{2}-2-2}{\sqrt{2}-2+2} = 1-2\sqrt{2}$.

200.解: v=16√df=16×√20×1.25=16×5=80>70. 肇事汽车当时的速度超出了规定的速度.