Set Theory I

Yeheli Fomberg

Contents

1	Permutations 1.1 The symmetric group	4
2	Hall's theorem	5
3	Cantor's theorem	6
4	Equivalence Relations 4.1 Some Terminology	7
5	Kőnig's Theorem	8
6	Partial Orders	ę
7	Partially Ordered Sets 7.1 Extrema	9
8	Cardinals	10
9	Schröder-Bernstein Theorem	11
11 12 13	10.2 Isomorphisms	12 12 12 13 13 13 13 14 14 14 15
	Well Order 15.1 Some Lemmas	16 16
16	Comparison of Well Ordered Sets	17
17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 18 18 18 18 19 19

18	The Well Ordering Theorem	
	18.1 Proof From AC	20
	18.2 Proof of AC using WOT	20
19	The Continuum Conjecture	21
20	Transfinite Induction	22
	$20.1\ \ {\rm Proof\ That\ The\ Only\ Isomorphism\ from\ a\ Well-Ordered\ Set\ to\ Itself\ is\ the\ Identity\ Isomorphism\ }$	22
21	Extras	23
	21.1 A Bit About Constructions	23
	21.1.1 Construction of \mathbb{N}	23
	21.1.2 Construction of \mathbb{Z}	23
	21.1.3 Construction of \mathbb{Q}	23
	21.1.4 About the Construction of \mathbb{R}	23
	21.2 Discrete Functions	
	21.3 More Definitions	
	21.3.1 Saturated Functions	
	21.3.2 Hasse Diagrams	
	21.3.3 Some Denotions	

1 Permutations

A permutation σ is a bijection from a set S onto its self.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix} = (3\ 4)(1\ 2\ 5)$$

- 1. A cycle of one element is call a **fixed point**
- 2. A permutation without fixed points is called a derangement
- 3. A permutation that's an orbit of 2 elements is called a **transposition**

1.1 The symmetric group

A symmetric group defined over a set is the group whose elements are all the permutation over the set, and whose group operation is the composition of functions.

Remark 1.1. A group is an algebraic structure with the following characteristics:

- Associativity
- An idenentity permutation exists
- Every element has an inverse

2 Hall's theorem

Definition 2.1. In a bipartite graph G = (X, Y, E) the **neighborhood** of a subset X' of X denoted $N_G(X')$ is the set of all the vertices in Y that share an edge with some vertex from X'.

Theorem 2.1. Hall's theorem - In a finite bipartite graph G(X,Y,E) a perfect matching exists if and only if for any subset W of X exists an injection from W to $N_G(W)$.

(=)

Suppose we have an X perfect matching. Since for any given W all vertices in W have a distinct matching vertex in Y, we get that the matching function is an injection from W to $N_G(W)$.

 (\Rightarrow)

We will prove by contradiction. Assume an X-perfect matching doesn't exist, we can denote the maximal matching M, and the sets of vertices in X, Y that appear in M as S, T. Since an X-perfect matching doesn't exist we get $X \setminus S \neq \emptyset$, so we can choose a vertex $u_0 \in X \setminus S$ and consider all alternating paths of the form $P = (u_0, v_1, v_2, \ldots)$ such that odd edges are not in M and even edges are in M. Denote:

$$A = \{u \mid u \in P \land u \in X\}$$
$$B = \{v \mid v \in P \land v \in Y\}$$

We know every vertex in B is matched by M to a vertex in A because otherwise we could create a bigger matching by toggling whether each of the edges belong to M or not.

$$\Rightarrow |B| \le |A \setminus \{u_0\}| \Rightarrow |B| < |A|$$

But also for any vertex $a \in A$, all of its neighbors are in B which implies

$$N_q(A) \leq B$$

We can also show that an alternating path to b exists either by removing the matched edge ab from the alternating path to a, or by adding the unmatched edge ab to the alternating path to a.

$$\Rightarrow B = N_g(A)$$
$$\Rightarrow |N_g(A)| < |A|$$

That's a contradiction so an X-perfect matching must exist.

3 Cantor's theorem

Theorem 3.1. Cantor's theorem - for any set A

We can define $f: A \to P(A)$ as such:

$$f(a) = \{a\}$$

This is clearly an injection so we get:

$$|A| \le |P(A)|$$

Assume |A| = |P(A)|. That means there's a bijection $g: A \to P(A)$. Consider the following set:

$$D = \{a : a \notin g(a)\}$$

Since g is a bijection exists $b \in A$ such that f(b) = D. Now consider the different cases:

$$\begin{cases} b \in D, & b \notin g(b) = D \implies \text{contradiction} \\ b \notin D = g(b), & b \in D \implies \text{contradiction} \end{cases}$$

Therefore $|A| \neq |P(A)|$ which implies |A| < |P(A)|

4 Equivalence Relations

An equivalence relation is a binary relation, or a set of ordered pairs that is:

- Reflexive
- Symmetric
- Transitive

4.1 Some Terminology

Suppose we have an equivalnce relation R on a set X.

Definition 4.1. An equivalence class denoted $[a]_R$ is defined as:

$$\{b \in X \mid bRa = 1\}$$

Definition 4.2. A quotient set denoted X / R is defined as such:

$$\{[a]_R \mid a \in X\}$$

Definition 4.3. A projection of R is a function $\pi: X \to X/R$ such that:

$$\pi(x) = [x]_R$$

Definition 4.4. A cut of X is a set with only one element of each equivalence class.

Equivalence relations can be defined by their quotient set. Thus they can also be defined by a function or a partition. The numbers of partitions of a set |X| = n are known as Bell's numbers and can be calculated recursively as such:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

Think why.

5 Kőnig's Theorem

Theorem 5.1. Kőnig's Theorem - For an index set I, if for all $i \in I$ and κ_i, λ_i we know that $\kappa_i < \lambda_i$ then:

$$\sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$$

We will show this by proving that for any:

$$f \colon \sum_{i \in I} B_i \to \prod_{i \in I} C_i$$
 such that $|B_i| = \kappa_i$ and $|C_i| = \lambda_i$

That f is not surjective. Define the function f_i as such:

$$f_i \colon B_i \to C_i$$

 $f_i(x) = f(x)_i$

For all $i \in I$ we have $|B_i| < |C_i|$ which implies that for all $i \in I$ that f_i is not surjective. Therefore for all $i \in I$ exist $c_i \in C_i \setminus \text{Im}(f_i)$. Consider the vector:

$$\hat{c} = \langle c_i \mid i \in I \rangle$$

If $\hat{c} \in \text{Im} f$ then exist $i \in I$ and $b \in B_i$ such that $f(b) = \hat{c}$. This implies that $f(b)_i = c_i$ so $f_i(b) = c_i$ but since $c_i \in C_i \setminus \text{Im} f_i$ we get a contradiction. Therefore:

$$\left| \sum_{i \in I} B_i \right| < \left| \prod_{i \in I} C_i \right| \implies \sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i$$

6 Partial Orders

Definition 6.1. A Weak/Non-Strict Partial Order is a homogeneous relation \leq on a set P that is:

- Reflexive
- Antisymmetric ¹
- Transitive

Definition 6.2. A Strong/Strict Partial Order is a homogeneous relation < on a set P that is:

- Irreflexive
- Asymmetric²
- Transitive

Remark 6.1. We have that $\langle \bigcup \leq_{Id} = \leq$

7 Partially Ordered Sets

Definition 7.1. A Partially Ordered Set also known as a poset is an ordered pair of a set and a partial order (A, \leq) .

Definition 7.2. Two elements $a, b \in A$ are called **comparable** if and only if $a \le b$ or $b \le a$. If two elements are incomparable they are called **linearly independent**.

Definition 7.3. A linear/total order is a partial order under which every pair of elements is comparable. All ordered subsets which are called **chains** are linearly independent of each other.

7.1 Extrema

Definition 7.4. A greatest element is an element that's comparable and greater than all other elements

Definition 7.5. A maximal element is an element that doesn't have a greater element than him.

Definition 7.6. An **upper bound** in A of $B \subseteq A$ is an element $a \in A$ such that for every $b \in B$ we have $b \leq a$. Similarly, a **lower bound** in A of $B \subseteq A$ is an element $a \in A$ such that for every $b \in B$ we have $a \leq b$.

7.1.1 About Lattices

Definition 7.7. A partially ordered set A is a **lattice** if and only if for every $S \subseteq A$ with two elements, $\sup S$, $\inf S$ exist.

 $a \le b \land b \le a \Rightarrow a = b$

 $a < b \Rightarrow \neg b < a$

8 Cardinals

Cardinal numbers are the "numbers" we use to represent the size of sets. We denote the cardinality of \mathbb{N} as \aleph_0 , and the cardinality of \mathbb{R} as \aleph . To get good intuition for cardinals I suggest trying to prove the following:

- 1. $|\mathbb{N}| < |\mathbb{R}|$
- 2. $\aleph_0 = \aleph_0 + n = \aleph_0 \times n = \aleph_0 \times \aleph_0 = |\mathbb{Z}| = |\mathbb{Q}|$
- 3. $\aleph = 2^{\aleph_0} = |(0,1)^{\aleph_0}| = \aleph \times \aleph_0 = \aleph \times \aleph = |(0,1)| = |[0,1]|$
- 4. A plane can't be covered by \aleph_0 lines.
- 5. Let A be an infinte set, $\exists S \subseteq A : |S| = \aleph_0$
- 6. $\aleph = |P(\mathbb{N})| = |P(\mathbb{Q})|$
- 7. let A = {The set of all finite subsets of \mathbb{N} } prove $|A| = \aleph_0$
- 8. $\aleph_0^{\aleph} = \aleph$
- 9. $|\mathbb{R}^{\mathbb{R}}| = |P(\mathbb{R})| = 2^{\aleph}$
- 10. |The disjoint union of \mathbb{N} sets of size $\mathbb{N} = \aleph_0$
- 11. $\aleph_0^{\aleph_0} = \aleph$
- 12. |The set of all invertible functions $\mathbb{R} \to \mathbb{R}|=2^{\aleph}$
- 13. $|A| = |\text{The set of all algebraic numbers}| = \aleph_0$
- 14. $|B| = |\mathbb{R} \setminus A| = |\text{The set of all transcedental number}| = \aleph$
- 15. |All subsets of \mathbb{R} with cardinality \aleph/\aleph_0 |
- 16. Let \aleph_0 people with a natural number of hats on their head guess how many hats they have. How many options are there, given only a finite number of people guessed right/wrong?

9 Schröder-Bernstein Theorem

Theorem 9.1. The Schröder-Bernstein Theorem states that:

$$|A| \le |B| \land |B| \le |A| \iff |A| = |B|$$

The left direction is trivial, to prove the other direction suppose we have two injective functions:

$$f: A \to B$$

 $g: B \to A$

Without loss of generality, assume A, B are disjoint. ¹ Using the partially defined functions f^{-1} , g^{-1} we can construct a sequence for every element of $A \cup B$ in the following way:

$$\dots \to f^{-1}g^{-1}(a) \to g^{-1}(a) \to a \to f(a) \to g(f(a)) \to \dots$$

This sequence can keep going forever to the right, but to the left it may stop eventually since the inverse functions are partial ². We can see that every element in $A \cup B$ has a sequence and that if an element appears in two sequences they'll be identical since they're injective and by our construction. Thus those sequences form a partition of $A \cup B$ so it is sufficient to create bijections for all partitions. Our bijection will be:

$$h(x) = \begin{cases} f(x), & \text{for } x \in A \text{ in an } A\text{-stop} \\ g^{-1}(x), & \text{for } x \in A \text{ in a } B\text{-stop} \\ f^{-1}(x), & \text{for } x \in B \text{ in an } A\text{-stop} \\ g(x), & \text{for } x \in B \text{ in a } B\text{-stop} \end{cases}$$

It's not hard to show that this function is well defined and a bijection for each sequence. Therefore h is a bijection from |A| to |B| as wanted.

¹Why can we do this?

 $^{^{2}}$ We'll call those who stop from the left on an element of A A-stops and the rest B-stops - even though they may not always stop!

10 Homomorphism and Isomorphosm of Ordered Sets

10.1 Homomorphisms

Let $(X, \leq_1), (Y, \leq_2)$ be partially ordered sets.

Definition 10.1. A function between posets F is a homomorphism if and only if for every $x_1, x_2 \in X$

$$x_1 \leq_1 x_2 \Rightarrow F(x_1) \leq_2 F(x_2)$$

10.2 Isomorphisms

Definition 10.2. A function between posets F is an **isomorphism** if and only if it is a bijection and for every $x_1, x_2 \in X$

$$x_1 \leq_1 x_2 \Rightarrow F(x_1) \leq_2 F(x_2)$$

An isomorphism is reflexive, symmetric and transitive so it is an equivalnce relation. If F is an isomorphism and the orders are total orders then F^{-1} is also an isomorphism.

10.3 Lexicographic Order

Also known as a "dictonary order" is an order such that:

$$(x_1, y_1) \le (x_2, y_2) \iff x_1 <_x x_2 \lor (x_1 = x_2 \land y_1 \le_y y_2)$$

It is also a partial order on $X \times Y$.

11 Zorn's Lemma

Lemma 11.1. Zorn's lemma - Let F be a non-empty poset. If for every chain 3 in F exists an upper bound in F, then F has at least one maximal element.

11.1 Proof All Vector Spaces Have a Basis

Let V be a vector space. If $V = \{0\}$ then its basis is \emptyset . If V is finitely generated then we can add vectors from V to \emptyset until it's spanning V. Suppose V is not finitely generated, let's define F as the set of all linearly independant sets of vectors. F is partially ordered by the order of inclusion of sets. Let $C = (A_i)_{i \in I}$ be a chain in F, $A = \bigcup_{i \in I} A_i$. A is clearly a maximal element of the chain. Let's prove it is in F. Assume A isn't in $F \Rightarrow$ there exists a finite series of linearly dependent vectors, each is an element of a finite series of elements of C. Since that series is finite, and linearly ordered as a subset of C, There exists a maximal element that must contain all the vectors in the linearly independent vector series, but that element is in F so it's both linearly dependent and independent at the same time! contradiction! We get that $A \in F$ so by Zorn's lemma F has a maximal element T. That T is our basis.

11.2 Comparing Cardinals

Prove that for every two cardinals α, β other than 0 we get that $\alpha \leq \beta$ or $\beta \leq \alpha$. Let A, B be two sets of cardinality α, β accordingly. Define F to be the set of all ordered pairs (X, f) such that $f: X \to B$ is an injective function $(X \subseteq A)$. Now we'll define an order in the following way:

$$(X_1, f_1) \le (X_2, f_2) \iff X_1 \subseteq X_2 \land f_2|_{X_1} = f_1$$

Let $C = ((X_1, f_1), (X_2, f_2), \ldots)$ be a chain in F, and let $(X, g) = (\bigcup A_i, \bigcup f_i)$ this implies

$$\forall i((X_i, f_i) \leq (X, g))$$

Assume g isn't a function, we get $(x, y), (x, z) \in G$

$$\exists i, j \text{ such that: } f_i(x) = y, \ f_j(x) = z$$

Since C is a chain so we without lose of generality we get:

$$f_i \le f_j$$

$$\Rightarrow f_j|_{X_i} = f_i$$

$$\Rightarrow f_i(x) = f_j(x)$$

$$\Rightarrow y = z$$

That means g is a function, and since it's a union of injective functions, it must also be injective. That means it's in F and using Zorn's lemma we get a maximal element in F, which we denote (D,h). If D=X then h is injective and we get $A \leq B$. If it's not, it must be surjective or we get a contradiction to (D,h)'s maximality and thus $B \leq A$.

We can also prove that $\alpha + \alpha = \alpha$. We know that $\alpha + \alpha = 2\alpha$ so we will just prove $\alpha = 2\alpha$. We'll build F using bijections this time. Denote the maximal element M = (X, g). If $|X| = 2\alpha$ We finished, else we get that there's a set of size \aleph_0 that can be mapped "bijectively" to the set of 2α contradicting M's maximality.

11.3 Corollaries

$$\begin{aligned} \alpha + \beta &= \max\{\alpha, \beta\} \\ |A \setminus B| &= |A| \iff |B| \leq |A| \\ \alpha * \alpha &= \alpha \text{ not a direct corollary} \\ \alpha^{\alpha} &= 2^{\alpha} \end{aligned}$$

³a totally ordered subset

12 More Axioms In ZF

Axiom of extensionality:

$$\forall A \forall B (\forall x (x \in A \iff x \in B) \Rightarrow A = B)$$

Axiom of union:

$$\forall A \exists B \forall c (c \in B \iff \exists D (c \in D \land D \in A))$$

Axiom of infinity:

$$\exists I (\emptyset \in I \land \forall x \in I (x \cup \{x\} \in I))$$

Axiom of power set:

$$\forall x \exists y \forall z [z \in y \iff \forall w (w \in z \Rightarrow w \in x)]$$

Axiom of regularity:

$$\forall x (x \neq \emptyset \to \exists y (y \in x \land y \cap x = \emptyset))$$

Axiom of pairing:

$$\forall A \forall B \exists C \forall D [D \in C \iff (D = A \land D = B)]$$

Axiom schema of specification - any definable subclass of a set is a set.

Axiom schema of replacement - the image of any set under any definable mapping is also a set

13 Axiom of Choice

Definition 13.1. A choice function f is a function from an indexed family of sets $(S_i)_{i \in I}$ to their union such that for every $i \in I$ f satisfies $f(S_i) \in S_i$.

Definition 13.2. The Axiom of Choice in first order logic is:

$$\forall X [\emptyset \notin X \Rightarrow \exists f : X \to \bigcup X \ \forall A \in X (f(A) \in A)]$$

Or in other words, every family of sets that does not include the empty set has a choice function.

13.1 Nomenclature

Z - The first seven axioms

 ${f ZF}$ - Zermelo-Fraenkel set theory. Z + Axiom of replacement

AC - Axiom of Choice

ZFC - ZF extended to include AC

14 Measure

Measure theory is complex and goes well be ond what I can show in this section but let's talk about it anyway. A measure is a way to generalize the length, volume, and such for sets. Let X be a set and Σ a σ -algebra over X. A set function μ from Σ to the extended real number line is called a measure if:

- $\forall E \in \Sigma : \mu(E) \geq 0$
- $\mu(\emptyset) = 0$
- σ -additivity: For all countable collections $\{E_k\}_{k=1}^{\infty}$ of pairwise disjoint sets in Σ ,

$$\mu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k)$$

If the condition of non-negativity is dropped then μ is called a signed measure. The pair (X, Σ) is called a measurable space, and the members of Σ are called measurable sets. A triple (X, Σ, μ) is called a measure space. A probability measure is a measure with total measure $\mu(X) = 1$. A probability space is a measure space with a probability measure.

14.1 Lebesgue Measure

Now we have to simplify things so we'll consider only Lebesgue measure of bounded sets on the real number line. First, if the set is of the form X = (a, b) or X = [a, b] and such the measure must satisfy $\mu(X) = b - a$, if Y = f(X) and f is an isometric function then $\mu(X) - \mu(Y)$. Denote $\mathcal{Y} = (Y_i)_{i \in I}$ such that $|I| < \aleph_0$ and $X \subseteq \bigcup_{i \in I} Y_i$ and each Y_i is an interval on R. Denote $s(\mathcal{Y})$ The sum of lengths of intervals in \mathcal{Y} . The outer measure of X is

$$\mu^*(X) = \inf_{\mathcal{V}} s(\mathcal{Y})$$

And the inner measure is defined with an interval $X \subseteq [a, b]$ and $X' = [a, b] \setminus X$

$$\mu_*(X) = (b-a) - \mu^*(X')$$

It's easy to show that the outer measure is always greater than the inner measure. The Lebesgue measure is defined if they are equal and is equal to

$$\mu_*(X) = \mu^*(X) = \mu(X)$$

15 Well Order

Definition 15.1. A partially ordered set (X, \leq) is well ordered if for every non-empty subset $S \subseteq X$ exists a minimal element $b \in S$

Think about the following theorems:

- 1. Every finite totally ordered set is well ordered.
- 2. If < is a well order then it's a linear order as well.
- 3. Let (X, \leq) be a linearly ordered set. It's well ordered if and only if it doesn't include an infinite decreasing series.

We'll proceed to define two very similar terms.

Definition 15.2. If X is well ordered then $A \subseteq X$ is a **risha** if $x \in A \land y < x \rightarrow y \in A$

Definition 15.3. We denote $I_x(a) = \{x \in X : x < a\}$ the initial segement of a in X

Remark 15.1. The interval [0,0.5] in $[0,1] \in \mathbb{R}$ is a risha but not an initial segment. Prove a risha and an initial segment are equivalent in wosets.

15.1 Some Lemmas

- 1. let X be a woset, $f: X \to X$ a one-to-one homomorphism $\to \forall x \in X (x \le f(x))$
- 2. let $(X, \leq_x) \cong (Y, \leq_y)$ be isomorphic wosets, there's only one unique isomorphism between them (proof using previous theorem)
- 3. in a woset X a risha can't be have an isomorphism with X
- 4. in wosets $I_x(a) \cong I_x(b) \Rightarrow a = b$
- 5. let $f: X \to Y$ be an isomorphism between wosets s.t. $y_0 = f(x_0) \Rightarrow I_x(x_0) = I_y(y_0)$

15.2 A Lemma About Partial Orders

If (X, \leq_x) , (Y, \leq_y) are partial orders, and \leq_x is a total order, then if f is an inversible homomorphism it is also an isomorphism, and \leq_y is a total order.

16 Comparison of Well Ordered Sets

If X, Y are wosets then exactly one of the following is true:

- 1. $(X, \leq_x) \cong (Y, \leq_y)$
- 2. $\exists y_0 \in Y : (X, \leq_x) \cong (I_y(y_0), \leq_y)$
- 3. $\exists x_0 \in X : (Y, \leq_y) \cong (I_x(x_0), \leq_x)$

If $X = \emptyset$ or $Y = \emptyset$ the proof is trivial. Assuming they're not empty we'll define:

$$A = \{x \in X : \exists y \in Y(I_X(x) \cong I_Y(y))\}$$

$$B = \{y \in Y : \exists x \in X(I_X(x) \cong I_Y(y))\}$$

$$\phi : A \to B$$

$$\phi(x) = y : I_X(x) \cong I_Y(y)$$

It is clear why ϕ is a bijection, we will show it's an isomorphism. Consider $a_1 < a_2 \in A$ and $\phi(a_1) = b_1, \phi(a_2) = b_2$. Since $I_X(a_2) \cong I_Y(b_2)$ we'll denote their isomorphism α . We get $a_1 < a_2 \Rightarrow a_1 \in \mathrm{Dom}\alpha \Rightarrow \alpha(a_1) \in \mathrm{Im}\alpha = I_Y(b_2) \Rightarrow \alpha(a_1) < b_2$. By one of our previous lemmas 0 $I_X(a_1) \cong I_Y(\alpha(a_1))$ and we know $I_X(a_1) \cong I_Y(b_1) \Rightarrow b_1 = \alpha(a_1)$. Recall that $\alpha(a_1) < b_2 \Rightarrow b_1 < b_2$. Since ϕ is a bijection and a homomorphism it's an isomorphism $\Rightarrow A \cong B$. By cases we'll get:

- 1. If $A = X, B = Y \Rightarrow (1)$.
- 2. If $B = Y \land A \subset X \neq \emptyset$ denote $A \setminus X$'s minimal element c and then $I_X(c) = A^{-1} \Rightarrow (3)^2$
- 3. If $A = X \wedge B \subset Y \neq \emptyset$ denote $Y \setminus B$ minimal element d and then $I_X(d) = B \Rightarrow (2)$
- 4. If $A \subset X \land B \subset Y \Rightarrow I_X(c) \cong A \land I_Y(d) \cong B.A \cong B \Rightarrow I_X(c) \cong I_Y(d) \Rightarrow c \in A$ but $c \notin A$ by our construction \Rightarrow contradiction.

Now we'll show only one of (1), (2), (3) can be true for any $X,Y:(2)+(3)\Rightarrow \exists \delta:X\to I_Y(d)$ isomorphism \Rightarrow^0 $I_X(c)\cong I_Y(\delta(c))$ and since we know $Y\cong I_X(c)$ we get that $Y\cong I_Y(\delta(c))$ which we know can't be. (1)+(3)/(1)+(2) imply an initial segment of X/Y is isomorphic to X/Y and that can't be!

 $^{^{0}}$ Refer to 15.1.5

¹Think why(two sided inclusion).

 $^{^2}$ since $A \cong B$

17 Ordinals

Ordinals are the generalization of ordinal numerals aimed to extend enumeration to infinite sets. The finite ordinals will be defined as such:

$$k = ord(\{0, 1, \dots, k - 1\}) = ord(I_{\mathbb{N}}(k))$$
$$ord(\emptyset) = 0$$
$$ord(\mathbb{N}) = \omega$$

By the comparability of wosets we can define an order on the ordinals as such:

$$A \cong B \iff ord(A) = ord(B)$$

 $A < B \iff ord(A) < ord(B)$
 $A > B \iff ord(A) > ord(B)$

Now we will define a new set function on ordinals $W(\alpha)$

$$W(\alpha) = \{\beta : \beta < \alpha\}$$

We can show that $W(\alpha)$ is a woset and $ord(W(\alpha)) = \alpha$ by constructing the isomorphism: $\phi: A^1 \to W(\alpha)$

$$\phi(a) = W(ord(I_A(a)))$$

So by our construction, every set of ordinals A is a woset. A proof can be made by showing that every $A' \subseteq A$ has an element a, which if not already minimal, has a $W(a) \bigcup A'$ that contains the minimal element since it's a woset as a subset of a woset.

17.1 Cesare Burali-Forti Paradox

The set of all ordinals can't be well defined. Suppose it were a set, it will be a woset, we'll denote it $O \Rightarrow ord(O) \in O \Rightarrow W(O) \subseteq O$ but we know ord(W(O)) = O and that means $I_O(ord(O)) \cong O$ Thus an initial segment of the set is isomorphic to it which is a contradiction.

17.2 Russell's Paradox

Let R be the set than contains all the sets that don't contain themselves. If R contains itself, it must not contain itself. If R doesn't contain itself, then it must contain itself.

17.3 Kinds of Ordinals

There are two kinds of ordinals:

Definition 17.1. Successor Ordinals - Ordinals that immediatly success another ordinal

Definition 17.2. Limit Ordinals - All the rest of the oridinals.

17.4 Ordinal Arthimetic

17.4.1 addition

Let $(X, \leq_x), (Y, \leq_y)$ be two **disjoint** wosets such that $(ord(A), ord(B) = (\alpha, \beta))$. We denote $(X \mid JY, \leq)$ as:

$$a \le b \iff \begin{cases} a, b \in X & a \le_x b \\ a, b \in Y & a \le_y b \\ a \in X & b \in Y \end{cases}$$

 $^{^{1}|}A| = \alpha$ and A is a woset

As $X \oplus Y$, and by definition $\alpha + \beta = ord(X \oplus Y)$. Originals are associative but not commutative with addition:

- $n + \omega = \omega$
- $\alpha + 0 = \alpha$
- $\omega < \omega + 1 < \omega + 2 < \ldots < \omega + k < \ldots < 2\omega$

17.4.2 multiplication

Let $(X, \leq_x), (Y, \leq_y)$ be two **disjoint** wosets such that $(ord(A), ord(B) = (\alpha, \beta))$. We denote

$$(X \times Y, \leq_{dictionary})$$

as $X \odot Y$, and by definition $\alpha * \beta = ord(X \odot Y)$. It is possible to show $\omega = k\omega$ by constructing an isomorphism

$$\phi \colon \mathbb{N} \to \{0, 1, \dots, k - 1\} \times \mathbb{N}$$
$$\phi(n) = (\lfloor n/k \rfloor, n \bmod k)$$

- $\omega * 0 = 0$
- $\alpha * 1 = \alpha$
- $2\omega = \omega < \omega 2 = \omega + \omega < \omega 3 < \ldots < \omega k < \ldots < \omega^2$

Ordinals are left distributive but not right distributive. Why?

17.4.3 Powers

We define powers of ordinals as such:

$$\alpha^{\gamma} = \begin{pmatrix} 1 & \gamma = 0 \\ \alpha^{\gamma - 1} \alpha & \gamma \text{ is a succesor ordinal} \\ \min_{\delta < \gamma} \{ \mu : \alpha^{\delta} < \mu \} & \gamma \text{ is a limit ordinal} \end{pmatrix}$$

From that we can infer the biggest ordinal so far is ω^{ω} . Ordinals are usually expressed as polynomials of powers of ω with natural coefficients. Also I lied earlier...

$$\omega^{\omega} < \omega^{\omega} + 1 < \omega^{\omega} + 2 < \ldots < \omega^{\omega^{\omega}} < \ldots$$

17.4.4 2^{ω} and ω^{ω}

By our previous definition we can conclude that 2^{ω} is

$$\min_{\delta < \omega} \{ \mu : 2^{\delta} < \mu \}$$
$$= \min\{2^1, 2^2, \dots, 2^k, \dots \}$$

Since this series doesn't have an upper bound the result is the smallest infinite ordinal or $2^{\omega} = \omega$ By our previous definition we can conclude that ω^{ω} is

$$\min_{\delta < \omega} \{ \mu : \omega^{\delta} < \mu \}$$
$$= \min \{ \omega^{1}, \omega^{2}, \dots, \omega^{k}, \dots \}$$

Let's consider

$$X = X_1 \oplus X_2 \oplus X_3 \dots (\forall n \in \mathbb{N}, ord(X_n) = \omega^n)$$

We see that this is what we looked for ¹ thus $ord(X) = \omega^{\omega}$ but also this is a sum of a countable amount of groups of a countable size so surprisingly $|X| = \aleph_0$ and this is the case for sets of ordinals $\omega^{\omega^{\omega}}$ and so on...

¹Verify this is indeed what we looked for

18 The Well Ordering Theorem

The Well Ordering Theorem ⁴ states that any set can be well ordered and is equivalent to Zorn's lemma and AC.

18.1 Proof From AC

Let the set we're trying to well-order be A and let f be a choice function for the family of non-empty subsets of A. Now for every ordinal α define:

$$\begin{cases} a_{\alpha} = f(A \setminus \{a_{\xi} | \xi < \alpha\}), & A \setminus \{a_{\xi} | \xi < \alpha\} \neq \emptyset \\ a_{\alpha} = \text{UNDEFINED}, & \text{otherwise} \end{cases}$$

Then

 $\langle a_{\alpha} | a_{\alpha} \text{ is defined} \rangle$

Is a well order on A.

18.2 Proof of AC using WOT

To make a choice function for a collection of non-empty sets, E, take the union of the sets in E and call it X. There exists a well-ordering of X; let E be such an ordering. The function that to each set E of E associates the smallest element of E, as ordered by (the restriction to E of) E, is a choice function for the collection E.

It's worth noting the difference between choosing this one choice function here (R), and applying the WOT to all the sets $S \in E$ separately, and choosing the minimal element in each set separately. While the first is allowed under ZF since we're only making a single choice, the latter is not allowed when there are infinitely many elements in E without assuming the axiom of choice itself, and thus is not a valid way to prove AC.

⁴sometimes shortened to WOT

 $^{^5{}m This}$ proof was taken straight from wikipedia.

19 The Continuum Conjecture

Suppose X is a set of cardinality \aleph , and consider the set of all risha's with a cardinality greater then \aleph_0^1 , since X can be a woset, that set has a minimal element m and we denote $|m| = \aleph_1$. The conjecture is that $\aleph = \aleph_1$. This was proven to be independent of ZFC. We can also define an \aleph greater than all \aleph of the form \aleph_n where $n \in \mathbb{N}$ by looking at sets $|A_n| = \aleph_n$ and at $B = \bigcup_{i \in \mathbb{N}} \aleph_i$. $|B| > \aleph_n(\forall n \in N) \Rightarrow \exists x \in B : |I_B(x)| > \aleph_n(\forall n \in N)$. We denote the minimal element of the set of all such x's M, and $|M| = \aleph_\omega = \sum_{i \in \mathbb{N}} \aleph_i$ and after all countable ordinals we'll reach \aleph_Ω , the \aleph_1 -th ordinal, and the first uncountable one. The generalized Continuum Conjecture is:

$$2^{\aleph_{\alpha}} = \aleph_{\alpha+1}$$

 $^{^{1}}$ If it's empty define any one element to be maximal

20 Transfinite Induction

Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers. Its correctness is a theorem of ZFC. When given X a set, and P the set of elements who have a certain property, the principle that's derived by the WOT can be written like this:

$$\forall x \in X (\forall y < x (y \in P)) \Rightarrow x \in P$$

The steps of transfinite induction:

- 1. the 0 case $(0 \in P)$
- 2. The succesor ordinal case $(\alpha \in P \Rightarrow \alpha + 1 \in P)$
- 3. The limit ordinal case case $(\forall \beta < \gamma(\beta \in P) \Rightarrow \gamma \in P)$

20.1 Proof That The Only Isomorphism from a Well-Ordered Set to Itself is the Identity Isomorphism

Consider the propety P that "this element is transformed to itself under all iso-morphisms". Now consider an element a such that all elements that are lesser than a are in P. This can always be done by choosing the minimal element by WOT. a can't be transformed to an element lesser than a because than the isomorphism won't be injective, and also not to an element greater than it, because a must also have a source, since the isomorphism is surjective, but then we get a contradiction to the the fact the isomorphism is a homomorphism.

Remark 20.1. transfinite induction works because of WOT but there are of course sets like \mathbb{R} with normal ordering that isn't a woset so we can't use transfinite induction on it. A counter example for our proof may be f(x) = x + 1

21 Extras

21.1 A Bit About Constructions

Constructions of sets are the way to formally define sets like $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$

21.1.1 Construction of \mathbb{N}

There are multiple ways 6 to define $\mathbb N$ one in ZF is recursively defining the natural numbers as such:

$$0 = \{\} = \emptyset$$

$$1 = \{0\} = \{\{\}\}$$

$$2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}$$

And so on defining numbers unsing the successor function $S(n) = n \cup \{n\}$. N is the smallest set containing 0 and closed under S(n)

21.1.2 Construction of \mathbb{Z}

 \mathbb{Z} was constructed as $\mathbb{N} \times \mathbb{N} / R$

$$\langle a, b \rangle R \langle c, d \rangle \iff c - d = a - b$$

For example $-1 = \{\langle 2, 3 \rangle, \langle 5, 6 \rangle, \dots, \langle n, n+1 \rangle\}$ Define $\mathbb{Z}_+, \mathbb{Z}_*$

21.1.3 Construction of \mathbb{Q}

 \mathbb{Z} was constructed as $\mathbb{Z} \times \mathbb{Z}'^7/R$

$$\langle a, b \rangle R \langle c, d \rangle \iff ad = cb$$

For example
$$\frac{1}{2} = \{\langle 1, 2 \rangle, \langle -2, -4 \rangle, \dots, \langle n, 2n \rangle\}$$

Try defining $\mathbb{Q}_+, \mathbb{Q}_*$

21.1.4 About the Construction of \mathbb{R}

The construction of \mathbb{R} is more difficult than you may expect. It should be studied in a number theory course, and is usually very unrigoursly defined as all numbers in the interval $(-\infty, \infty)$

21.2 Discrete Functions

Discrete Function - A function that is defined only for a set of numbers that can be listed, such as the set of whole numbers or the set of integers.

⁶One of them is by isomorphism classes of finite sets

 $^{^7\}mathbb{Z}'=\mathbb{Z}\setminus\{0\}$

21.3 More Definitions

21.3.1 Saturated Functions

For a function $f: X \to Y$

$$\forall A \subseteq X, f_{\star}(A) = \{f(x) : x \in A(A \in P(X))\}\$$
$$\forall B \subseteq X, f^{\star}(A) = \{x : f(x) \in B(B \in P(Y))\}\$$

21.3.2 Hasse Diagrams

Hasse diagrams represent posets. For example the Hasse Diagram of the set $\{1,2,3\} \times \{1,2\}$ with the standard order is:

$$\begin{array}{c}
(3,2) \\
(2,2) \\
(1,2) \\
(1,1)
\end{array}$$

21.3.3 Some Denotions

- A Singleton is a set containing only one element.
- $P(A) = \{B : B \subseteq A\}$
- $A \triangle B = \{A \cup B\} \setminus \{A \cap B\}$
- $|\mathbb{R}| = c = \beth_1 = \aleph$
- $\bullet \ A^c = \{b : b \notin A\}$
- $\prod_{i \in I} X_i = \{ f : I \to \bigcup_{i \in I} X_i | \forall i \in I(f(i) \in X_i) \}$
- A pairing function is a bijection $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- The indicator function of $A \subseteq X$ is $1_A(x) = I_A(x) = \chi_A(x) = 1 \iff x$ is in A and equals 0 otherwise