第六章三維空間繪圖

本章學習目標

- 學習三維繪圖的基本技巧
- · 學習peaks() 函數的用法
- 學習二維與三維等高線圖的繪製
- 學習三維圖形的編修

基本三維繪圖

- 對於函數 f(x,y) 而言,每給一組(x,y),便能計算z=f(x,y)
- · 只要給予(x,y)的組數夠多,即可繪出三維曲面圖

圖 6.1.1

函數圖形於三維空間 的示意圖

繪製三維的網格圖

表 6.1.1 mesh() 函數的使用

函 數	說 明
mesh(x,y,z)	分別以資料點的 $x \times y$ 與 z 座標之集合所組成的矩陣 $xx \times yy$ 與 zz 來繪出三維的網格圖
mesh(z)	設二維矩陣 z 的維度為 $m \times n$,則 $mesh(z)$ 可繪出 x 座標從 1 到 n , y 座標從 1 到 m 的三維的網格圖

圖 6.1.2

具有 12 個資料點 的三維函數圖

	1	2	3	4	5	6	7	8	9	10 4 1 7	11	12
х	2	2	2	2	3	3	3	3	4	4	4	4
у	0	1	2	3	0	1	2	3	0	1	2	3
z	7	7	8	8	7	7	8	8	6	7	9	9

利用mesh()繪製三維的網格圖

mesh()的使用範例

```
>> xx=[2 3 4;2 3 4;2 3 4;2 3 4]
xx =
>> yy=[0 0 0;1 1 1;2 2 2;3 3 3]
>> zz=[7 7 6;7 7 7;8 8 9;8 8 9]
zz =
```

>> mesh(xx,yy,zz)

>> mesh(zz)

meshgrid() 函數

表 6.1.2 meshgrid() 的使用

図 數	說 明
meshgrid(vx,vy)	以向量 vx 代表 x 軸方向資料點的位置,以 vy 代表 y 軸方向資料點的位置,建構出兩個二維矩陣 xx 與 yy ,以供三維繪圖所需

>> vx=2:4			
vx =			
2	3	4	
>> vy=0:3			
vy =	1	0	2
0	1	2	3
>> [xx,yy]=mesh	ngrid((vy,xx
xx =			
2	3	4	
2	3	4	
2	3	4	
2	3	4	
уу =			
0	0	0	
1	1	1	
2	2	2	
3	3	3	

>> zz=sqrt(xx.*yy)
zz =

0 0 0 0

1.4142 1.7321 2.0000
2.0000 2.4495 2.8284
2.4495 3.0000 3.4641

>> mesh(xx,yy,zz)

meshc() 與waterfall() 函數

表 6.1.3 meshc() 與 waterfall() 函數的使用

逐 數	說 明
meshc(xx, yy,zz)	繪出網格圖,但在網格圖下方會附帶繪出等高線圖
waterfall(xx,yy,zz)	以切片的方式來繪製三維的立體圖

- >> meshc(xx,yy,zz) >> x=linspace(-8,8,30); >> waterfall(xx,yy,zz) >> y=x;
- >> expr=sqrt(xx.^2+yy.^2);

[xx,yy]=meshgrid(x,y);

- >> zz=sin(expr)./(expr+eps);

Eps

Floating-point relative accuracy

eps returns the distance from 1.0 to the next largest eps returns the distance from 1.0 to the next largest double-precision number, that is eps = $2^{(-52)}$. $f(x, y) = \frac{\sin(\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}}$, $-8 \le x \le 8$, $-8 \le y \le 8$

$$z = f(x, y) = x \cdot e^{-(x^2 + y^2)}, -2 \le x \le 2, -2 \le y \le 2$$

利用meshgrid()和meshc()繪出f(x,y)三維函數圖形。

```
x = linspace(-2,2,30);
y = linspace(-2,2,30);
[xx,yy]=meshgrid(x,y);
```

$$zz = xx.*exp(-xx.^2-yy.^2);$$

meshc(xx,yy,zz)

三維曲面圖-surf() 與surfc()

表 6.1.4 surf() 與 surfc() 函數的使用

函數	說 明
surf(xx,yy,zz)	分別以資料點的 $x \times y$ 與 z 座標之集合所組成的矩陣 $xx \times yy$ 與 zz 來繪出三維的曲面圖
surfc(xx,yy,zz)	同 surf,但在圖形下方會顯示出函數圖形的等高線圖

- >> x=linspace(-7,7,32);
- >> y=linspace(-6,6,32);
- >> [xx,yy]=meshgrid(x,y);
- >> zz=xx./(xx.^2+yy.^2+1);

>> surfc(xx,yy,zz);
axis tight;

$$f(x,y) = \frac{x}{x^2 + y^2 + 1}, \quad -7 \le x \le 7, \quad -6 \le y \le 6$$

簡易的三維繪圖函數

· 只要給予繪圖的函數與範圍, ezmesh() 與ezsurf() 函數便可快速的繪出三維的圖形

表 6.2.1 簡易三維繪圖函數的使用

函 數	說明
ezmesh (f, [xmin, xmax, ymin, ymax])	根據函數 f (為一字串)以 60×60 個網格數繪出 f 的三維圖形,若繪圖範圍省略,則預設 x 與 y 方向 的範圍均是從 $-2\pi \sim 2\pi$
ezmeshc(f, [xmin, xmax, ymin, ymax])	同 ezmesh,但在圖形下方會顯示出圖形的等高線
ezsurf(f,[xmin,xmax,ymin,ymax])	同 ezmesh,但是網格面會上色
ezsurfc(f, [xmin, xmax, ymin, ymax])	同 ezsurf,但在圖形下方會顯示出圖形的等高線

ezmesh() 與ezsurf() 的使用範例

 $-2\pi \le x \le 2\pi$, $-2\pi \le y \le 2\pi$

>> ezmesh('exp(-0.2*x)*cos(t)') >> ezsurf('y/(x^2+y^2+1)',36)

>> ezmesh('exp(-0.2*x)*cos(t)',... [-pi,2*pi,-2,12],36)

 $>> ezsurfc('y/(x^2+y^2+1)',36)$

 $-\pi \le t \le 2\pi$, $-2 \le x \le 12$ 36x36

三維圖形展示函數—peaks

$$f(x,y) = 3(1-x)^2 e^{-x^2 - (y+1)^2} - 10\left(\frac{x}{5} - x^3 - y^5\right) e^{-x^2 - y^2} - \frac{1}{3}e^{-(x+1)^2 - y^2}$$

表 6.3.1 使用 peaks 函數

函 數	說 明
peaks	以 49×49 個資料點繪製數學函數 $peaks$,範圍 x 與 y 方向同為 $-3 \sim 3$
peaks(n)	同 peaks,但以 $n \times n$ 個資料點來繪圖
zz=peaks	在 x 與 y 方向同為 $-3\sim3$ 的範圍內計算 49×49 個數學函數 peaks 的值,並把結果設定給矩陣 zz 存放
zz=peaks(n)	以 n×n 個資料點計算數學函數 peaks 的值
[xx,yy,zz] = peaks(n)	以 n×n 個資料點計算數學函數 peaks 的值,並把資料點的 x、y 座標值與函數值分別存放在矩陣 xx、yy 與 zz 內

Peaks的語法

>> peaks;

```
z=3*(1-x).^2.*exp(-(x.^2)-(y+1).^2)...

-10*(x/5-x.^3-y.^5).*exp(-x.^2-y.^2)...

-1/3*exp(-(x+1).^2-y.^2)
```


>> peaks(24);

- >> [xx,yy,zz]=peaks(32);
- >> surfc(xx,yy,zz);

空間曲線繪圖

表 6.4.1 空間曲線繪圖函數

函 數	說 明
plot3(x,y,z)	分別以向量 x , y 與 z 代表資料點在每一個座標軸的位置,繪製三維空間曲線
plot3(x,y,z,'str')	以控制字串 str 所指定的格式繪出三維空間曲線

- >> t=linspace(0,30,120);
- >> plot3(t.*sin(t),t.*cos(t),t,'-ro');

 $x(t)=t \sin(t), y(t)=t \cos(t), z(t)=t$

>> plot3(t.*sin(t),t.*cos(t),t,'-ro', t.*sin(t),t.*cos(t),-t,'-bd');

等高線繪圖

· 等高線圖 (contour plot) 是把三維的圖中,高度相等的點 連接起來,即成等高線圖

表 6.5.1 二維等高線繪圖函數

函 數	說 明
contour(xx,yy,zz,n)	分別以資料點的 $x \setminus y$ 與 z 座標之集合所組成的矩陣 $xx \setminus yy$ 與 zz 繪出 n 條等高線。若 n 省略,則 xx Matlab 會自動視情況調整等高線數。
contour(zz,n)	同上,但 x 方向的座標是從 1 到 n , y 方向的座標是從 1 到 m (假設矩陣 z 的維度為 $m \times n$)
contour(xx,yy,zz , [$z_1,z_2,z_3,$])	繪出高度為 z ₁ ,z ₂ ,z ₃ , 的等高線圖
contourf(xx,yy,zz,n)	同 contour(),但會以顏色填滿(fill)等高線圖

等高線繪圖的範例

- >> [xx,yy,zz]=peaks;
- >> contour(xx,yy,zz) >> contourf(xx,yy,zz,20) >> contourf(zz,[-2,0,3,7])

標註等高線的值

表 6.5.2 將等高線加入高度標記的函數

函 數	說 明
clabel(<i>cmat</i>)	在等高線圖內加上高度的標記,其中 cmat 為繪製等高線圖時,contour() 所傳回的矩陣
clabel (cmat, $[z_1, z_2, z_3,]$)	在高度為[z1,z2,z3,]的等高線上加上高度標記
clabel(cmat, 'manual')	可利用滑鼠點選欲標註之等高線,在該等高線旁即會出現等高線的數值 经表源总操作:按Enter
	」 現等高級的製 恒 結束滑鼠操作:按Enter

- >> [xx,yy,zz]=peaks;
- >> cmat=contour(xx,yy,zz);

>> clabel(cmat)

三維的等高線圖

表 6.5.3 三維等高線繪圖函數

図 數	說 明
contour3(xx,yy,zz,n)	分別以矩陣 xx、yy 與 zz 繪出 n 條三維的等高線。若 n 省略,則 Matlab 會自動視情況調整等高線數。
contour3(zz,n)	同上,但 x 方向的座標是從 1 到 n,y 方向的座標是從 1 到 m(假設矩陣 zz 的維度為 m×n)
contour3 $(xx, yy, zz, [z_1, z_2, z_3,])$	指定繪出高度為 z1,z2,z3, 的三維等高線圖

>> zz=peaks;

>> contour3(zz);

繪出2條等高線4
3
2
1
0
1
1
2
40
30
20
10
10
20
30
40

>> contour3(zz,[2]);

>> contour3(zz,[2,2]);

依資料繪出適量的等高線數

三維圖形的基本編修

表 6.6.1 三維繪圖的基本編修指令

指令	說 明	
hidden on/off	預設為 on。設定 off 則會顯示隱藏線,但這個指令只對 mesh() 等函數所繪出的網格圖形有效(隱藏線是指被網格面遮住的線)	
axis on/off	預設為 on。設定 off 則不顯示座標軸與刻度	
box on/off	預設為 off。設定 on 則在圖形的外圍顯示一個外框	
hold on/off	預設為 off。設定 on 時,新產生的圖形不會覆蓋掉原有的圖形	
grid on/off	設定 on 則顯示座標的網格線	

>> zz=peaks;

>> mesh(zz);axis tight; >> hidden off; >> box on; >> axis off;

改變三維圖形的視角

表 6.6.2 改變三維圖形的視角

図 數	說明
view(az,el)	設定圖形的視角,其中方位角為 az,仰角為 el,單位為度
[az,el]=view 傳回目前所使用的視角	

仰角是從x-y平面上數起,往上 為正,往下為負

方位角是從x軸數起,逆時針方 向為正

view()的使用範例

>> view(60,30);

修改三維圖形的曲面顏色

>> colorbar;

>> colormap			
ans =			
0	0	0.5625	
0	0	0.6250	
0	0	0.6875	
0	0	0.7500	
0	0	0.8125	
0	0	0.8750	
0	0	0.9375	
:	:	:	
0.5625	0	0	
0.5000	0		

表 6.6.3 常用的 RGB 颜色

顏色	紅色 (red)	緑色(green)	藍色 (blue)
紅色 (red)	1	0	0
緑色(green)	0	1	0
藍色 (blue)	0	0	1
黃色 (yellow)	1	1	0
洋紅色 (magenta)	1	0	1
青色 (cyan)	0	1	1
灰色(gray)	0.5	0.5	0.5
暗紅色(dark red)	0.5	0	0
黑色 (black)	0	0	0
白色(white)	1	1	1

colormap() 函數的使用

表 6.6.4 colormap() 函數的使用

函 數	說 明
colormap(<i>map</i>)	使用 map 當成目前配色的顏色對應表
colormap('default')	使用預設的顏色對應表
<i>map=</i> colormap	把目前的顏色對應表設定給變數 map
colorbar	在目前的圖形中顯示顏色對應圖

colormap()的使用

>> peaks;

>> colormap(cm);colorbar;

表 6.6.3 常用的 RGB 顏色

顏色	紅色 (red)	緑色(green)	藍色 (blue)
紅色 (red)	1	0	0
緑色 (green)	0	1	0
藍色 (blue)	0	0	1
黃色 (yellow)	1	1	0
洋紅色 (magenta)	1	0	1
青色(cyan)	0	1	1
灰色(gray)	0.5	0.5	0.5
暗紅色(dark red)	0.5	0	0
黑色 (black)	0	0	0
白色 (white)	1	1	1

產生顏色對應表的函數

表 6.6.5 產生顏色對應表的函數

函 數	說明
hsv(m)	建立一個 m×3 的顏色對應矩陣,色系是由紅、橙、黃、綠、藍、靛、紫 等循環色彩所組成
jet(m)	建立一個 m×3 的顏色對應矩陣,色系是暗紅、紅、橙、黃、綠、藍、靛、紫與暗藍等色彩所組成(Matlab 預設的顏色對應表)
spring(m)	建立一個 $m \times 3$ 的春天色系矩陣,它是由粉紅與黃色色系所組成
summer(m)	建立一個 $m \times 3$ 的夏天色系矩陣,它是由綠色與黃色色系所組成
autumn(m)	建立一個 $m \times 3$ 的秋天色系矩陣,它是由黃色與紅色色系所組成
winter(m)	建立一個 $m \times 3$ 的冬天色系矩陣,它是由藍色與綠色色系所組成
hot(m)	建立一個 $m \times 3$ 的暖色系矩陣,由黑、紅、黃、白等顏色所組成
cool(m)	建立一個 $m \times 3$ 的冷色系矩陣,由青色和暗紅色等顏色所組成
gray(m)	建立一個 m×3 的灰階色系矩陣

顏色對應表函數的使用

>> colormap(hot(32));colorbar;

>> colormap spring; colorbar;


```
>> size(spring)
```

```
ans =
```

>> colormap('default');colorbar;

>> size(colormap)

Colormap Editor對話方塊

· 從Edit選單中選擇Colormap來編輯顏色對應表

練習

試依下列條件繪出f(x,y)函數三維函數圖, $f(x,y) = d(x^2 + 3y^2) \cdot e^{-x^2 - y^2},$ $-2.5 \le x \le 2.5, -3 \le y \le 3$

(a)資料點數取曲面平滑,(b)在繪圖視窗1繪出f(x,y)三維函數圖,並設定圖形的視角,方位角為36°,仰角為18°。(c)在繪圖視窗2繪出f(x,y)的等高線圖,顏色對應表使用6個顏色winter colormap,並在圖右側加入顏色對應表。(d)在所有圖中加入適當的座標軸說明,再將各圖存為圖形格式檔。