

Hes-so

Haute Ecole Spécialisée
de Suisse occidentale
Fachhochschule Westschweiz
University of Applied Sciences and Arts
Western Switzerland

Master of Science HES-SO in Engineering Av. de Provence 6 CH-1007 Lausanne

Master of Science HES-SO in Engineering

Orientation: Electrical Engineering (EIE)

Leaf Wetness Sensor

Fait par

Nathan Miéville

Sous la direction de Prof. Marizio Tognolini Dans le groupe de recherche Systèmes embarqués communicants de la HES-SO Valais

Accepté par la HES-SO Master (Suisse, Lausanne) sur proposition de Professeur Prof. Marizio Tognolini, conseiller du projet d'approfondissement

Lausanne, le 2 mai 2023

Prof. Marizio Tognolini Conseiller du PA Philippe Barrade Responsable de la filière Electrical Engineering

Remerciements

...

Table des matières

1 Introduction			6
2		alyse fonctionnel	7
		besoin	
		diagramme pieuvre	
	2.3	Cahier des charges	7
	2.4	diagramme Fast	7
	2.5	diagramme fonctionnel	7
3	Eta	t de l'art	8

1 Introduction

smartfarming, JDC, pluie, humidité, maladies

Nathan Miéville Page 6 / ??

2 Analyse fonctionnel

2.1 besoin

Prévenir le dévlopement de maladie

Il existe des modèle empyrique qui se base sur le temps d'humidité sur la feuille. difficile a déterminer par les donné méto clasique (humidité température vents etc). Le recours à un capteur d'humectation est utile dans ce cas la.

2.2 diagramme pieuvre

2.3 Cahier des charges

	Fonctions	Critères	Niveaux
FP1	Mesurer l'humectation des feuilles	Mesure d'humidité relative d'une	RH de 0% à 100% résolution de 0.5% précision +- 0.25%
		surface	
	S'intégrer dans l'environement Smart Farming JDC	Interface de sortie I2C	Baud rate 100KHz. Adresse configurable
		Structure de registre normalisé,	(voir doc JDC)
FC1		Démarrage de la mesure et acqui-	50ms pour la capture de la mesure
		sition après un temps.	
		Connecteur JDC	Sortie 4 fil avec VCC,GND,SDA,SCL
		Alimentation normalisé	Tesion 3.3V
FC2	Consommer peu d'énergie	Courant maximum établit en	1 mA
		fonctionnement	
FC3	Eviter les faux positifs du à la métérologie	L'humidité de l'aire ne doit pas	L'incidence de RH de l'aire < précision (0.25%)
		influencer la mesure	
FC4	Résister aux milieux extérieur	Le capteur est protégé des intem-	Etanche IP44
		péries et supporte une utilisation	
		extérieur	
FC5	S'intègrer dans les plantations	La taille du capteur ne doit pas	Envergure maximum de 20cm
		gêner l'exploitation des planta-	
		tions	
FC6	Etre facile d'installation	Le capteur doit pouvoir être ins-	Système d'atache et un seul connecteur a brancher
		taller par des agriculteurs sans	
		formation technique	
FC7	Etre Certifié	Le capteur doit être certifié pour	Certification EM,CE
		être proposé sur le marché	

2.4 diagramme Fast

2.5 diagramme fonctionnel

Nathan Miéville Page 7 / ??

3 Etat de l'art

resistif : plusieur constructeur : Davis, Spectrum Caipos Lw grille mesure electrique : + pas cher - ne détecte pas les fine coute -> pe inture faux positif avec l'humidité

Metos : deux électrode et un tissus -> même problème capacitif :

Meter (ancienement DECAGON) PHYTOS31 un des seul du marché beaucoup de revendeur une expérimentation de : Instrumentation, Sensor and Interfaces Group, Universitat Politècnica de Catalunya, BarcelonaTech, Spain

Nathan Miéville Page 8 / ??