

Rafbók

Rafeindafræði 11. hefti CC BJT magnarar Sigurður Örn Kristjánsson Bergsteinn Baldursson

Þetta hefti er án endurgjalds á rafbókinni.

www.rafbok.is

Allir rafiðnaðarmenn og rafiðnaðarnemar geta fengið aðgang án endurgjalds að rafbókinni.

Heimilt er að afrita textann til fræðslu í skólum sem reknir eru fyrir opinbert fé án leyfis höfundar eða Fræðsluskrifstofu rafiðnaðarins. Hvers konar sala á textanum í heild eða að hluta til er óheimil nema að fengnu leyfi höfundar og Fræðsluskrifstofu rafiðnaðarins.

Höfundar eru Sigurður Örn Kristjánsson og Bergsteinn Baldursson. Umbrot í rafbók, uppsetning og teikning Bára Halldórsdóttir.

Vinsamlegast sendið leiðréttingar og athugasemdir til höfundar Sigurðar Arnar sigurdurorn@gmail.com og Báru Halldórsdóttur á netfangið bara@rafmennt.is

Efnisyfirlit 2. Spennumögnun 4 6. Aflmögnun......6

1. Collector-tengdur magnari

Collector-tengdur magnari (*Common collector - CC*) er stundum kallaður emitterfylgja (EF). Inngangur magnarans tengist á base í gegn um þétti og útgangur magnarans er tekinn frá emitter. Spennumögnun A_u í CC magnara er um það bil 1. Aðalkostir magnarans er mjög há inngangsmótstaða og straummögnun. Eftir lestur þessa kafla átt þú að vera fær um að:

- skilja og geta greint virkni collectortengds magnara (CC)
- skírt ac- og dc- aflgildislínurit
- skírt dc- og ac- vinnslu magnarans
- fundið spennumögnun hans
- fundið inngangsmótstöðu magnarans
- fundið útgangsmótstöðu magnarans
- fundið aflmögnun
- skírt út darlington tengingu og kosti hennar.

Mynd 1 sýnir magnara tengdan í collectortengingu (CC) þar sem dc spennufæðing magnarans er með spennudeili. Takið eftir því að inngangsmerkið er tengt á base transistorsins í gegn um þétti C_1 . Útgangsmerkið er tekið frá emitter til jarðar í gegn um þéttinn C_2 . Það er engin fasasnúningur í magnaranum og styrkur útgangsmerkisins er um það bil sama og styrkur inngangsmerkisins.

Mynd 1a. CC-tengdur magnari.

Mynd 1b. dc jafngildismynd $(X_C \rightarrow \infty)$

Mynd 1c. ac jafngildismynd $(X_C \rightarrow 0)$.

2. Spennumögnun

Eins og í öllum mögnurum er spennumögnunin skilgreind sem

$$A_u = \frac{U_{\acute{\mathbf{u}}t}}{U_{inn}}$$

Gert er ráð fyrir að riðstraumsviðnám þétta X_C sé það lítið á þeirri vinnutíðni sem reiknað er við, þannig að horfa megi frá þeim í útreikningum. Reiknað er síðan út frá ac jafngildismynd eins og sýnd er á *mynd 1c*.

$$U_{\text{út}} = I_e \cdot (R_E / / R_L) \quad U_{inn} = I_e \cdot (r'_e + R_E / / R_L)$$

$$\Rightarrow A_u = \frac{U_{\text{út}}}{U_{inn}} = \frac{I_e \cdot (R_E / / R_L)}{I_e \cdot (r'_e R_E / / R_L)}$$

og spennumögnunin verður:

$$A_u = \frac{U_{\text{ú}t}}{U_{inn}} = \frac{R_E//R_L}{(r'_e + R_E//R_L)}$$

algengt er að $(r'_e \ll R_E//R_L) \Rightarrow$ spennumögnunin er ≈ 1

Þar sem útspennan er tekin yfir emitter-mótstöðuna er hún í fasa við base-emitter spennuna. Þar sem að engin fasavending er í rásinni og útgangsspennan eltir inngangsspennuna kallast þessi rás *emitter-fylgja* (*Emitter follower*).

3. Inngangsmótstaða

Eitt af einkennum emitter-fylgju (collector tengds magnara) er há inngangsmótstaða. Vegna þessa miklu inngangsmótstöðu er emitter-fylgjan (common collector) mikið notuð sem "*buffer*" stig til að koma í veg fyrir álagsáhrif á mögnun í magnara ef hann er tengdur lágohms álagsmótstöðu t.d. eins og í hátalara. Inngangsmótstaðan er:

$$Z_{inn} = R_{inn} = R_1 / / R_2 / / h_{FE} \cdot (r'_e + R_E / / R_L)$$

(Varðandi sönnun á þessari jöfnu er vísað á sönnun inngangsmótstöðu CE magnara án C_E þéttis).

4. Útgangsmótstaðan

Þegar álagsmótstaðan er fjarlægð verður útgangsmótstaða CC magnara (sjá mynd lc):

$$Z_{\acute{\mathrm{u}}t}\cong r'_{e}$$

(ath. þessi jafna er fengin með allskyns nálgunum og er þess vegna ekki nákvæm).

5. Straummögnun

Heildarstraummögnun spennufylgis í *mynd 1c* er $A_i = \frac{I_e}{I_{imp}}$

Hægt er að finna strauminn sem $I_{inn} = \frac{U_{inn}}{R_{inn}}$

Ef mótstaða hliðtengingar R_1 og R_2 er miklu hærri en $(R_E//R_L + r'_e)$ rennur mesti hluti straumsins I_{inn} inn í base sem I_b þannig að straummögnun magnarans verður um það bil straummögnun transistorsins:

$$I_{inn} \cong I_h \ og \ I_e \cong I_c = I_h \cdot h_{FE} \Longrightarrow$$

$$A_i \cong \frac{I_e}{I_b} \cong \frac{I_b \cdot h_{FE}}{I_b} = h_{FE}$$

6. Aflmögnun

Aflmögnun í CC magnara (emitter fylgju) er

$$A_p = A_u \cdot A_i = 1 \cdot h_{FE} \Longrightarrow A_p = h_{FE}$$

Sýnidæmi:

Vísað er í mynd 2 og myndir 1a, 1b og 1c.

Gefið er að $U_{CC}=12$ V, $R_1=R_2=18$ k Ω , $R_E=R_L=1$ k Ω , $C_1=C_2=10$ μF og transistorinn er 2N3904 með $h_{FE}=175$.

Reiknið Z_{inn} og $Z_{\acute{u}t}$. Finnið einnig spennu-, straum- og aflmögnun.

Lausn:

Inngangsmótstaðan Zinn fundin:

$$Z_{inn} = R_{inn} = R_1 / / R_2 / / [h_{FE} \cdot (R_E / / R_L)] =$$

 $18k\Omega / / 18k\Omega / / [175 \cdot (1k\Omega / / 1k\Omega)] =$ **8,16k** Ω

Spennumögnun fundin:

$$U_E = U_{R_2} - U_{BE} = \left(\frac{R_2}{R_1 + R_2} \cdot U_{CC}\right) - U_{BE} = \left(\frac{18k\Omega}{18k\Omega + 18k\Omega}\right) \cdot 12 - 0.7 = 5.3V$$

$$I_E = \frac{U_E}{R_E} = \frac{5,3V}{1k\Omega} = 5,3mA$$

$$r'_e \cong \frac{25mV}{I_E} \cong \frac{25mV}{5,3mA} = 4,7\Omega$$

$$A_u = \frac{U_{\acute{\mathrm{u}}t}}{U_{inn}} = \frac{R_E//R_L}{(r'_e + [R_E//R_L])} = \frac{(1k\Omega//1k\Omega)}{(4,7\Omega + [1k\Omega//1k\Omega])} = 0,99$$

Straummögnun $A_i = h_{FE} = 175$

Heildaraflmögnun Ap magnarans er:

$$A_p \cong A_i \cdot A_u = 175 \cdot 0.99 \cong 175$$

7. Darlington-tengdur transistor

Mynd 3. Darlington tengdur transistor.

Straummögnunarstuðull transistors h_{FE} er ráðandi stærð í inngangsmótstöðu magnara og setur hún þess vegna skorður á hámarksstærð mótstöðunnar. Ein leið til að auka inngangsmótstöðuna R_{inn} er að tengja transistor í darlingtontengingu. Sjá $mynd\ 3$. Þessi aðferð eykur verulega inngangsmótstöðu emitterfylgjunnar sem verður:

$$I_{b2} = I_{e1} \cong h_{FE_1} \cdot I_{b1}$$

$$I_{e2} \cong h_{FE_2} \cdot I_{e1} \cong h_{FE_1} \cdot h_{FE_2} \cdot I_{b1} \Longrightarrow$$

$$R_{inn} = Z_{inn} = R_1 / / R_2 / / \left[h_{FE_1} \cdot h_{FE_2} \cdot (r'_e + R_E / / R_L) \right]$$

8. Darlington tengd emitterfylgja (Emitter follower)

Darlington-tengd emitterfylgja er mikið notuð sem tengirás milli rása með háa útgangsmótstöðu og lágs álags. Þegar notkun magnarans er þannig kallast hann "buffer"- magnarastig.

Sýnidæmi:

Gert er ráð fyrir því að transistor sé tengdur með sameiginlegan emitter, þar sem collector mótstaðan $R_{C(CE)}=1$ k Ω og $r'_{e(CE)}=5\Omega$ eigi að skila merki í 8 Ω hátalara ($R_{L(CE)}$). Einnig er gefið að $U_{CC}=12V$, $R_1=10$ k Ω , $R_2=22$ k Ω , $R_E=22\Omega$, $C_1=C_2=10\mu F$ og transistorarnir eru 2N3904 með h_{FE}=100.

- a) Hver er mögnun CE magnarans ef $R_{L(CE)} = 8 \Omega$
- b) Hver er mögnun CE þegar hann tengist Darlington magnarastiginu sjá *mynd 4a* og *mynd 4b*.
- c) Hver er heildarmögnun darlington magnarastigsins ef $R_{L(Darlington)} = 8 \Omega$?
- d) Hver er heildarmögnun samtengdu magnaranna?

Mynd 4a. CE-tengdur magnari.

Mynd 4b. Darlington tengd emitterfylgja.

Lausn:

a) Mögnun CE magnarans við að skila merki í 8Ω álag er:

$$A_u = \frac{R_C//R_L}{r'_e} = \frac{1k\Omega//8\Omega}{5\Omega} = \frac{7,94}{5\Omega} = 1,59$$

b) Til að finna mögnunina fyrri magnarans samkvæmt $mynd\ 4a$ þarf að finna álagið R_L sem er inngangsmótstaða darlington tengda magnarans sem sýndur er á $mynd\ 4b$ eða $R_L = Z_{inn}$.

$$R_{inn} = Z_{inn} = R_1//R_2//[h_{FE_1} \cdot h_{FE_2} \cdot (r'_e + R_E//R_L)]$$

Eina óþekkta í þessari jöfnu er r'_{e(Darlington)} og við finnum hana á hefðbundinn hátt:

$$U_B = \frac{R_2}{R_1 + R_2} \cdot U_{CC} = \frac{22k\Omega}{10k\Omega + 22k\Omega} \cdot 12 = 8,25V$$

$$U_E = U_B - U_{BE(Q1)} - U_{BE(Q2)} = 8,25V - 0,7V - 0,7V = 6,85V$$

$$I_E = \frac{U_E}{R_E} = \frac{6,85V}{22\Omega} = 311mA$$

$$r'_{e}=rac{25mV}{I_{E}}=rac{25mV}{311mA}=80,3m\Omega$$

$$R_{inn}=R_{L}\ ver\delta ur\ \mathrm{b\acute{a}}$$

$$R_{inn}=Z_{inn}=R_{1}//R_{2}//\left[h_{FE_{1}}\cdot h_{FE_{2}}\cdot (r'_{e}+R_{E}//R_{L})\right]=100k\Omega//22k\Omega//[100\cdot 100\cdot (80,3m\Omega+22\Omega//8\Omega)]\cong6,2k\Omega$$

Og mögnun emitter-stigsins verður:

$$A_u = \frac{R_C//R_L}{r'_e} = \frac{(10k\Omega//6,2k\Omega)}{5\Omega} = \frac{7,94}{5\Omega} = 172,2$$

c) Spennumögnun emitter-fylgjunnar samkvæmt mynd 4b er:

$$A_{u(EF)} = \frac{(R_E//R_L)}{(r'_e + R_E//R_L)}$$

$$A_{u(EF)} = \frac{(R_E//R_L)}{(r'_e + R_E//R_L)} = \frac{(22\Omega//8\Omega)}{(80,3m\Omega + 22\Omega//8\Omega)} = 0,998$$

d) Þegar við samtengjum magnarana tvo (punktur X á mynd 4a og mynd 4b) verður álagsmótstaða fyrri magnarans heildarinngangsmótstaða seinni magnarans eða $R_L = R_{inn.}$ Samanlögð mögnun magnaranna verður:

Heildarmögnun magnaranna er þá:

$$A_u = A_{u(CE)} \cdot A_{u(EF)} = 172 \cdot 0,99 = 170$$

Þetta er mun betra en í upphafi þegar CE magnarinn var tengdur álaginu R_L beint. Þá fékkst heildarmögnun $A_u=1,59$

9. Dæmi

1.

- a) Reiknið eftirfarandi gildi fyrir mynd 5. R_{inn} og A_u ef h_{FE} = 100 og R_L ekki tengt.
- b) Hvaða álagsmótstaða í mynd 5 veldur því að spennumögnunin verður 0,9.
- 2. Finndu eftirfarandi fyrir mynd 6 ef $h_{FE1} = 150$ og $h_{FE2} = 100$

- a) Dc spennur skauta transistoranna $U_{C(Q1)},\,U_{C(Q2)},\,U_{E(Q1)},U_{E(Q2)},\,U_{B(Q1)},\,U_{B(Q1)},\,U_{B(Q2)}$?
- b) Heildarstraummögnunarstuðul magnarans h_{FE}?
- c) r'e fyrir hvern transistor fyrir sig?
- d) Heildarinngangsmótstöðu magnarans?

10. Verkleg æfing fyrir CC magnara

Tilgangur:

Skoða magnarastig í SC/CC tengingu með tilliti til samanburðar milli reiknaðar og mældar lykilstærðir kerfisins.

Efni:

Sveifluvaki, sveiflusjá, spennugjafi, spennumælir og íhlutir samkvæmt *mynd* 7 eða setja upp í rásahermi eins og t.d. Multisim eða samsvarandi.

Mynd 7. Tengimynd.

10.1 Framkvæmd 1

a) Tengið rásina og hafið U_{inn} ótengda. Mælið jafnspennurnar $U_{\text{C}},\,U_{\text{B}}$ og U_{E}

 $U_B =$

 $U_E =$

 $U_C =$

b) Reiknið til samanburðar jafnspennurnar U_C , U_B og U_E (sýnið útreikninga).

 $U_B =$

 $U_E =$

 $U_C =$

10.2 Framkvæmd 2

a)	Mælið jafnspennurnar	U _{CE} ,	U_{BE} og	$U_{CB.}$	U_{inn}	á að	vera	ótengd.

 $U_{CE} =$

 $U_{BE} =$

 $U_{CB} =$

b) Reiknið til samanburðar jafnspennurnar U_{CE} , U_{BE} og U_{CE} (sýnið útreikninga).

 $U_{CE} =$

 $U_{BE} =$

 $U_{CB} =$

10.3 Framkvæmd 3

a) Tengið $U_{inn=}$ 0,707 Vac = $1Vac_{(t)}$ og mælið spennumögnunina A_u við 1 kHz.

 $A_u =$

 $A_u(dB) =$

b) Reiknið til samanburðar spennumögnunina A_u (sýnið útreikninga).

 $A_u =$

 $A_u(dB) =$

10.4 Framkvæmd 4

Mælið með sveiflusjá hvert sé fasvik milli inn- og útmerkis magnarans við 1kHz?

 $\theta =$

10.5 Framkvæmd 5

Hvað segja fræðin um fasvik í CC magnara?

 $\theta =$

10.6 Framkvæmd 6

a) Mælið inngangsriðstraumsmótstöðu (inngangsimpedans) Z_{inn} = R_{inn} magnarans.

$$Z_{inn} =$$

b) Reiknið til samanburðar inngangsriðstraumsmótstöðu (inngangsimpedans) $Z_{inn} = R_{inn} \ magnarans.$

$$Z_{inn} =$$

10.7 Framkvæmd 7

a) Mælið útgangsriðstraumsmótstöðu (útgangsimpedans) $Z_{\text{út}} = R_{\text{út}}$ magnarans.

$$Z_{\text{út}} =$$

b) Reiknið til samanburðar útgangsriðstraumsmótstöðu (útgangs impedans) $Z_{\acute{u}\ t} = R_{\acute{u}t}$ magnarans.

$$Z_{\text{út}} =$$

10.8 Framkvæmd 8

Metið niðurstöður mælinga og leitið að verulegum frávikum milli mældra og reiknaðra stærða og skýrið.

10.9 Jöfnur sem gilda fyrir SC/CC tengdan magnara

DC jöfnur

ac jöfnur

$$U_B = \frac{R_2}{R_1 + R_2} \cdot U_{CC}$$

$$r'_e = \frac{25mV}{I_E}$$

$$U_E = U_B - U_{BE}$$

$$R_{inn} = Z_{inn} \cong R_1//R_2//[h_{FE} \cdot (r'_e + R_L)]$$

$$U_C = U_{CC}$$

$$R_{\acute{\mathbf{u}}t} = Z_{\acute{\mathbf{u}}t} \cong \frac{1}{40 \cdot I_E} = r'_e$$

$$I_C \cong I_E = \frac{U_E}{R_E}$$

$$A_{u} = \frac{U_{\text{ú}t}}{U_{inn}} \cong \frac{(R_{E}//R_{L})}{r'_{e} + (R_{E}//R_{L})}$$

$$U_{CE} = U_C - U_E$$

$$A_u(dB) = 20 \cdot log(A_u)$$

$$U_{BE} = U_B - U_E$$

$$U_{CB} = U_C - U_B$$

11. Hvernig mæli ég mögnun

Tengdu sveiflusjá eins og $mynd \ 8$ sýnir. Stilltu síðan U_{inn} þannig að merkið $U_{\acute{u}t}$ sé óbjagað. Mældu U_{inn} og $U_{\acute{u}t}$ með sveiflusjá t.d.með því að ýta á Autoscale og $quick\ meas\ takkana$.

Síðan ýta á takka merktan *Source*, *I*(CH1) og velja *Peak-Peak* og síðan velja takka merktan *Source* 2 (CH2) og velja *Peak-Peak*.

Lesa spennurnar og reikna síðan mögnunina sem $A_u = \frac{U_{\acute{u}t}}{U_{inn}} =$

Mynd 8.

12. Hvernig mæli ég fasvik

Mynd 9.

Mældu tímann á milli rauðu mælistrikanna á *mynd 9* og gefum honum heitið dt. Finndu sveiflutíma bylgjunnar milli bláu strikanna og gefðu honum heitið T(sec)

Reiknaðu síðan fasvikið sem $\theta = \frac{dt}{T} \cdot 360^{\circ} =$

13. Hvernig mæli ég inngangsmótstöðu magnara

Mynd 10.

Settu þekkta mótstöðu (Rx) inn í rásina eins og sýnt er á mynd 10. Veldu mótstöðuna þannig að það verði örugglega marktækur mismunur á spennunni U_1 og U_{inn} . Mældu síðan með sveiflusjá t.d. eins og á mynd 10, spennurnar U_1 og U_{inn} og notaðu meðfylgjandi jöfnu til að finna $R_{inn}=Z_{inn}$.

$$Z_{inn} = R_{inn} = \left[\frac{U_{inn}}{U_1 - U_{inn}}\right] \cdot R_x$$

14. Hvernig mæli ég útgangsmótstöðu magnara

Mynd 11.

Settu þekkta mótstöðu $(Rx) = R_L$ inn í rásina eins og sýnt er á *mynd 11*. Veldu mótstöðuna þannig að það verði örugglega marktækur mismunur á spennunni $U_{\text{út}}$ þegar álagið er tengt eða frátengt og að merkið sé óbjagað.

Mældu síðan með sveiflusjá spennuna Uút með álagið tengt.

Mældu þá spennuna $U_{\text{út}}$ þegar mótstaðan R_X er frátengd og gefðu þeirri spennu nafnið $U\text{út}_{t\text{ómgang}}$.

Notaðu meðfylgjandi jöfnu til að finna $R_{\text{út}} = Z_{\text{út}}$.

$$Z_{\acute{\mathbf{u}}t} = R_{\acute{\mathbf{u}}t} = \left[\frac{U_{\acute{\mathbf{u}}t_{t\acute{\mathbf{o}}mgang}} - U_{\acute{\mathbf{u}}t}}{U_{\acute{\mathbf{u}}t}} \right] \cdot R_{x}$$