# CHAPITRE4 : CARACTÉRISTIQUES GÉOMÉTRIQUES DES SECTIONS

#### 1. MOMENTS STATIQUES

Soit une surface plane S dans le repère  $(0,\vec{x},\vec{y})$  (figure 1), considérant sur cette surface un élément dS relative au point M. Le moment statique  $A_{\Delta}$  de S par rapport à un axe  $\Delta$  situé à une distance  $\delta$  de M est défini par :

$$A_{\Delta} = \iint_{S} \delta.dS$$

Si  $\Delta$  est confondu avec l'un des axes  $(0, \vec{x})$  ou  $(0, \vec{y})$  on obtient alors:

- le moment statique de la surface S par rapport à l'axe  $(0, \vec{x})$ 

$$A_{Ox} = \iint_{S} y.dS$$

- le moment statique de la surface S par rapport à l'axe  $(0,\vec{y})$ 

$$A_{Oy} = \iint_{S} x.dS$$

L'unité du moment statique est évidement le m³



#### 2. CENTRE DE GRAVITÉ

Le centre de gravité ou d'inertie de la surface S est le point G défini par ses coordonnées  $X_G$  et  $Y_G$  telles que:

$$X_G = \frac{A_{OY}}{S} = \frac{\iint\limits_{S} x.dS}{S}$$

$$Y_G = \frac{A_{OX}}{S} = \frac{\iint\limits_{S} y.dS}{S}$$

Si une surface S est composée d'un nombre n de surface S<sub>i</sub>, on a alors:

$$X_G = \frac{\sum_{i=1}^{n} X_{Gi} \cdot S_i}{S}$$
 et  $Y_G = \frac{\sum_{i=1}^{n} Y_{Gi} \cdot S_i}{S}$ 

avec:  $X_{Gi}$ : abscisse du centre de gravité  $G_i$  de la surface  $S_i$   $Y_{Gi}$ : ordonnée du centre de gravité  $G_i$  de la surface  $S_i$ 

#### 3. MOMENTS QUADRATIQUES

Soit la surface plane S du repère  $(0, \vec{x}, \vec{y})$  de la figure 1, Le moment quadratique (ou d'inertie)  $I_{\Lambda}$  de S par rapport à un axe  $\Delta$  est défini par :

$$I_{\Delta} = \iint_{S} \delta^{2}.dS$$

Si  $\Delta$  est confondu avec l'un des axes  $(0, \vec{x})$  ou  $(0, \vec{y})$  on obtient alors:

- le moment quadratique de la surface S par rapport à l'axe  $(0, \bar{x})$ 

$$I_{OX} = \iint_{S} y^{2}.dS$$

- le moment statique de la surface S par rapport à l'axe  $(0, \vec{y})$ 

$$I_{Oy} = \iint_{S} \chi^{2}.dS$$

L'unité du moment quadratique est évidement le m<sup>4</sup>

## Théorème de Huygens

Soit l'axe  $\Delta$ ' passant par le centre de gravité G de la surface S, le moment quadratique  $I_{\Delta}$  est calculé à partir du moment quadratique  $I_{\Delta}$ ' par la formule :

$$I_{\Delta} = I_{\Delta'} + S \cdot d^2$$

avec : d : distance entre l'axe  $\Delta$  et  $\Delta$ '

Le théorème de Huygens appliqué aux axes  $(0, \vec{x}')$  et  $(0, \vec{y}')$  donne :



Figure 2

$$\boldsymbol{I}_{Ox} = \boldsymbol{I}_{Gx'} + S.\boldsymbol{Y}_{G}^{2}$$

$$I_{Oy} = I_{Gy'} + S. X_G^2$$

Si une surface S est composée d'un nombre n de surface S<sub>i</sub>, on a:

$$I_{Ox} = \sum_{1}^{n} I_{Oxi}$$
 et  $I_{Oy} = \sum_{1}^{n} I_{Oyi}$ 

avec:  $I_{Oxi}$ : moment quadratique de la surface  $S_i$  par rapport à l'axe  $(0, \vec{x})$ 

 $I_{Oyi}$ : moment quadratique de la surface  $S_i$  par rapport à l'axe  $(0, \vec{y})$ 

### 4. MOMENT QUADRATIQUE POLAIRE

Le moment quadratique polaire d'une surface S par rapport à un point est définit par :

$$I_p = \int_S r^2.ds$$

On trouve après intégration les expressions de l<sub>p</sub> pour les sections les plus utilisées (tableau ci-contre):

| Section               | l <sub>p</sub>            |
|-----------------------|---------------------------|
| ØD                    | $\frac{\pi D^4}{32}$      |
| Arbre plein           |                           |
| Ød ØD Arbre tubulaire | $\frac{\pi(D^4-d^2)}{32}$ |



Figure 3