Chapter 1

1.2.1 Because B and B^c are disjoint events whose union is the whole sample space, the law of total probability (Section 1.2.1) applies to give the desired formula.

1.2.3 (b)
$$f(x) = \begin{cases} 0 & \text{for } x \le 0; \\ 3x^2 & \text{for } 0 < x < 1; \\ 0 & \text{for } x \ge 1. \end{cases}$$

(c)
$$E[X] = \frac{3}{4}$$
.

(**d**)
$$\Pr\left\{\frac{1}{4} \le X \le \frac{3}{4}\right\} = \frac{26}{64}$$
.

1.2.4 (b)
$$E[Z] = \frac{9}{8}$$
.

(c)
$$Var[Z] = \frac{55}{64}$$
.

1.2.7 (a)
$$F_X(x) = \begin{cases} 0 & \text{for } x < 0; \\ x^R & \text{for } 0 \le x \le 1; \\ 1 & \text{for } 1 < x. \end{cases}$$

(b)
$$E[X] = R/(1+R)$$
.

(c)
$$Var[X] = R/[(R+2)(R+1)^2].$$

1.2.8
$$f(v) = A(1-v)^{A-1}$$
 for $0 \le v \le 1$; $E[V] = 1/(A+1)$; $Var[V] = A/[(A+2)(A+1)^2]$.

$$\mathbf{1.2.9} \ F_X(x) = \begin{cases} 0 & \text{for } x < 0; \\ \frac{1}{2}x^2 & \text{for } 0 \le x \le 1; \\ 1 - \frac{1}{2}(2 - x)^2 & \text{for } 1 < x \le 2; \\ 1 & \text{for } x > 2. \end{cases}$$

$$E[X] = 1$$
; $Var[X] = \frac{1}{6}$.

1.3.1
$$Pr\{X=3\} = \frac{10}{32}$$
.

1.3.2
$$Pr{0 \text{ defective}} = 0.3151.$$
 $Pr{0 \text{ or } 1 \text{ defective}} = 0.9139.$

1.3.3
$$Pr{N = 10} = 0.0315$$
.

1.3.4
$$Pr{X = 2} = 2e^{-2} = 0.2707.$$
 $Pr{X \le 2} = 5e^{-2} = 0.6767.$

1.3.5
$$Pr\{X \ge 8\} = 0.1334$$
.

1.3.6 (a) Mean =
$$\frac{n+1}{2}$$
; Variance = $\frac{n^2-1}{12}$.

(b)
$$\Pr\{Z=m\} = \begin{cases} \frac{m+1}{n^2} & \text{for } m=0,\ldots,n; \\ \frac{2n+1-m}{n^2} & \text{for } m=n+1,\ldots,2n. \end{cases}$$

(c)
$$\Pr\{U=k\} = \frac{1+2(n-k)}{(n+1)^2}$$
 for $k=0,\ldots,n$.

- **1.4.1** $Pr{X > 1.5} = e^{-3} = 0.0498.$ $Pr{X = 1.5} = 0.$
- **1.4.2** Median = $\frac{1}{\lambda} \log 2$; Mean = $\frac{1}{\lambda}$.
- **1.4.3** Exponential distribution with parameter $\lambda/2.54$.
- **1.4.4** Mean = 0; Variance = 1.

1.4.5
$$\alpha^* = \frac{\sigma_Y^2 - \rho \sigma_X \sigma_Y}{\sigma_X^2 + \sigma_Y^2 - 2\rho \sigma_X \sigma_Y}$$
 for $\rho \neq \pm 1$.

1.4.6 (a)
$$f_Y(y) = e^{-y}$$
 for $y \ge 0$.

(b)
$$f_W(w) = \frac{1}{n} \left(\frac{1}{w}\right)^{(n-1)/n}$$
 for $0 < w < 1$.

- **1.4.7** *R* has the gamma density $f_R(r) = \lambda^2 r e^{-\lambda r}$ for r > 0.
- **1.5.1** $Pr\{X \ge 1\} = 0.6835938$ $Pr\{X \ge 2\} = 0.2617188$ $Pr\{X \ge 3\} = 0.0507812$ $Pr\{X \ge 4\} = 0.0039062$.
- **1.5.2** Mean = $\frac{5}{7}$.
- **1.5.3** $E[X] = \frac{1}{\lambda}$.
- **1.5.4** (a) $E[X_A] = \frac{1}{2}$; $E[X_B] = \frac{1}{3}$;
 - **(b)** $E[\min\{X_A, X_B\}] = \frac{1}{5};$
 - (c) $\Pr\{X_A < X_B\} = \frac{2}{5}$;
 - (d) $E[X_B X_A | X_A < X_B] = \frac{1}{3}$.
- **1.5.5** (a) $Pr\{Naomi \text{ is last}\} = \frac{1}{2};$
 - **(b)** $Pr{Naomi is last} = \frac{282}{2500} = 0.1128;$
 - (c) $c = 2 + \sqrt{3}$.

2.1.1
$$Pr\{N = 3, X = 2\} = \frac{1}{16};$$
 $Pr\{X = 5\} = \frac{1}{48};$ $E[X] = \frac{7}{4}.$

- **2.1.2** Pr{two nickel heads|N = 4} = $\frac{3}{7}$.
- **2.1.3** $Pr\{X \ge 1 | X \ge 1\} = 0.122184$. $Pr\{X > 1 | Ace of spades\} = 0.433513$.
- **2.1.4** $Pr{X = 2} = 0.2204$.
- **2.1.5** $E[X|X \text{ is odd}] = \lambda \left(\frac{e^{\lambda} + e^{-\lambda}}{e^{\lambda} e^{-\lambda}}\right).$
- **2.1.6** $\Pr\{U = u, Z = z\} = \rho^2 (1 \rho)^z, \quad 0 \le u \le z;$ $\Pr\{U = u | Z = n\} = \frac{1}{n+1}, \quad 0 \le u \le n.$

- **2.2.1** Pr{Game ends in a 4} = $\frac{1}{4}$.
- **2.2.3** $Pr{Win} = 0.468984$.
- **2.3.1** k $\Pr\{Z=k\}$ $E[Z]=\frac{7}{4}$;
 - 0 0.16406 Var[Z] = 1.604167.
 - 1 0.31250
 - 2 0.25781
 - 3 0.16667
 - 4 0.07552
 - 5 0.02083
 - 6 0.00260

2.3.2
$$E[Z] = \frac{3}{2}$$
; $Var[Z] = \frac{9}{8}$; $Pr\{Z = 2\} = 0.29663$.

2.3.3
$$E[Z] = \mu^2$$
; $Var[Z] = \mu(1 + \mu)\sigma^2$.

2.3.4
$$Pr{X = 2} = 0.2204$$
; $E[X] = 2.92024$.

2.3.5
$$E[Z] = 6$$
; $Var[Z] = 26$.

2.4.1
$$Pr\{X=2\} = \frac{1}{4}$$
.

2.4.2 Pr{System operates} =
$$\frac{1}{2}$$
.

2.4.3 Pr
$$\left\{ U > \frac{1}{2} \right\} = 1 - \frac{1}{2}(1 + \log 2) = 0.1534.$$

2.4.4
$$f_Z(z) = \frac{1}{(1+z)^2}$$
 for $0 < z < \infty$.

2.4.5
$$f_{U,V}(u,v) = e^{-(u+v)}$$
 for $u > 0, v > 0$.

2.5.1
$$x$$
 $\frac{1}{2}$ 1 2
 $Pr\{X > x\}$ 0.61 0.37 0.14
 $\frac{1}{x}E[X]$ 2 1 $\frac{1}{2}$.

2.5.2
$$Pr\{X \ge 1\} = E[X] = p$$
.

- **3.1.1** 0.
- **3.1.2** 0.12, 0.12.
- **3.1.3** 0.03.
- **3.1.4** 0.02, 0.02.
- **3.1.5** 0.025, 0.0075.

3.2.1 (a)
$$\mathbf{P}^2 = \begin{vmatrix} 0.47 & 0.13 & 0.40 \\ 0.42 & 0.14 & 0.44 \\ 0.26 & 0.17 & 0.57 \end{vmatrix}$$
.

- **(b)** 0.13.
- **(c)** 0.16.

3.2.2
$$n$$
 0 1 2 3 4 $Pr\{X_n = 0 | X_0 = 0\}$ 1 0 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{3}{8}$

- **3.2.3** 0.264, 0.254.
- **3.2.4** 0.35.
- **3.2.5** 0.27, 0.27.
- **3.2.6** 0.42, 0.416.

3.3.2
$$P_{ii} = \left(\frac{i}{N}\right)p + \left(\frac{N-i}{N}\right)q;$$

 $P_{i,i+1} = \left(\frac{N-i}{N}\right)p;$
 $P_{i,i-1} = \left(\frac{i}{N}\right)q.$

3.3.5 0 1 2
$$\mathbf{P} = 1 \begin{vmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \\ 2 & 0 & 1 & 0 \end{vmatrix}$$

- **3.4.1** $v_{03} = 10$.
- **3.4.2** (a) $u_{10} = \frac{1}{4}$;
 - **(b)** $v_1 = \frac{5}{2}$.
- **3.4.3** (a) $u_{10} = \frac{40}{105}$;
 - **(b)** $v_1 = \frac{10}{3}$.

3.4.4
$$v_0 = 6$$
.

3.4.5
$$u_{H,TT} = \frac{1}{3}$$
.

3.4.6 (a)
$$u_{10} = \frac{6}{23}$$
; (b) $v_1 = \frac{50}{23}$.

(b)
$$v_1 = \frac{50}{23}$$

3.4.7
$$w_{11} = \frac{20}{11}$$
; $w_{12} = \frac{25}{11}$ $v_1 = \frac{45}{11}$.

3.4.8
$$w_{11} = 1.290$$
; $w_{12} = 0.323$ $v_1 = 1.613$.

3.4.9
$$u_{10} = \frac{9}{22} = 0.40909...;$$

 $P_{10}^{(2)} = 0.17;$
 $P_{10}^{(4)} = 0.2658;$
 $P_{10}^{(8)} = 0.35762...;$
 $P_{10}^{(10)} = 0.40245....$

3.5.3
$$\mathbf{P}^2 = \begin{bmatrix} 0.58 & 0.42 \\ 0.49 & 0.51 \end{bmatrix}$$
.

$$\mathbf{P}^3 = \begin{vmatrix} 0.526 & 0.474 \\ 0.553 & 0.447 \end{vmatrix}.$$

$$\mathbf{P}^{3} = \begin{vmatrix} 0.526 & 0.474 \\ 0.553 & 0.447 \end{vmatrix}.$$

$$\mathbf{P}^{4} = \begin{vmatrix} 0.5422 & 0.4578 \\ 0.5341 & 0.4659 \end{vmatrix}.$$

$$\mathbf{P}^5 = \begin{bmatrix} 0.53734 & 0.46266 \\ 0.53977 & 0.46023 \end{bmatrix}.$$

3.5.4 0 1 2 3
$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix} .$$

3.5.5
$$P_{GG}^{(8)} = 0.820022583.$$

3.5.7
$$u_{10} = 0.3797468$$
.

3.5.8
$$p_0 = \alpha, r_0 = 1 - \alpha;$$

 $p_i = \alpha(1 - \beta), q_i = \beta(1 - \alpha),$
 $r_i = \alpha\beta + (1 - \alpha)(1 - \beta), \text{ for } i \ge 1.$

3.5.9
$$p_0 = 1, q_0 = 0,$$

 $p_i = p, q_i = q, r_i = 0$ for $i \ge 1$.

3.6.1 (a)
$$u_{35} = \frac{3}{5}$$
;

(b)
$$u_{35} = \left[1 - \left(\frac{q}{p}\right)^3\right] / \left[1 - \left(\frac{q}{p}\right)^5\right].$$

- **3.6.2** $u_{10} = 0.65$.
- **3.6.3** v = 2152.777...
- **3.6.4** $v_1 = 2.1518987$.

3.7.1
$$\mathbf{W} = \begin{bmatrix} \frac{20}{11} & \frac{25}{11} \\ \frac{10}{11} & \frac{40}{11} \end{bmatrix}$$
.

- (a) $u_{10} = \frac{9}{22}$;
- **(b)** $w_{11} = \frac{20}{11}$; $w_{12} = \frac{25}{11}$.

3.7.2 W =
$$\begin{vmatrix} \frac{100}{79} & \frac{70}{79} \\ \frac{30}{79} & \frac{100}{79} \end{vmatrix} .$$

- (a) $u_{I0} = \frac{30}{79}$;
- **(b)** $w_{11} = \frac{100}{79}$; $w_{12} = \frac{70}{79}$.
- **3.8.1** M(n) = 1, V(n) = n.

3.8.2
$$\mu = b + 2c$$
; $\sigma^2 = b + 4c - (b + 2c)^2$.

3.8.3
$$n$$
 1 2 3 4 5 u_n 0.5 0.625 0.695 0.742 0.775

3.8.4
$$M(n) = \lambda^n$$
, $V(n) = \lambda^n \left(\frac{1-\lambda^n}{1-\lambda}\right)$, $\lambda \neq 1$.

3.9.1 *n* 1 2 3 4 5
$$u_n$$
 0.333 0.480 0.564 0.619 0.658 u_{∞} = 0.82387.

3.9.2
$$\varphi(s) = p_0 + p_2 s^2$$
.

3.9.3
$$\varphi(s) = p + qs^N$$
.

3.9.4
$$\frac{\varphi(s)-\varphi(0)}{1-\varphi(0)}$$
.

4.1.1
$$\pi_0 = \frac{10}{21}, \pi_1 = \frac{5}{21}, \pi_2 = \frac{6}{21}.$$

4.1.2
$$\pi_0 = \frac{31}{66}, \pi_1 = \frac{16}{66}, \pi_2 = \frac{19}{66}.$$

4.1.3
$$\pi_1 = \frac{3}{13}$$
.

- **4.1.4** 2.94697.
- **4.1.5** $\pi_0 = \frac{10}{29}, \pi_1 = \frac{5}{29}, \pi_2 = \frac{5}{29}, \pi_3 = \frac{9}{29}.$

4.1.6
$$\pi_0 = \frac{5}{14}, \pi_1 = \frac{6}{14}, \pi_2 = \frac{3}{14}.$$

4.1.7
$$\pi_0 = \frac{140}{441}, \, \pi_1 = \frac{40}{441}, \, \pi_2 = \frac{135}{441}, \, \pi_3 = \frac{126}{441}.$$

4.1.8
$$\pi_u = \frac{4}{17}$$
.

4.1.9
$$\pi_0 = \frac{2}{7}, \pi_1 = \frac{3}{7}, \pi_2 = \frac{2}{7}.$$

- **4.1.10** $\pi_{\text{late}} = \frac{17}{40}$.
- **4.2.1** $\pi_s = \frac{8}{9}$.
- **4.2.2** One facility: $Pr\{Idle\} = \frac{q^2}{1+p^2}$; Two facilities: $Pr\{Idle\} = \frac{1}{1+p+p^2}$.
- 4.2.3 (a) 0.02 0.04 0.06 0.08 0.10 p 0 0.10 0.11 AFI 0.12 0.13 0.14 0.16 AOQ 0 0.018 0.036 0.054 0.072 0.090 0.02 0.04 0.06 0.08 0.10
 - (**b**) *p* 0 0.02 0.04 0.06 0.08 0.10 AFI 0.20 0.23 0.27 0.32 0.37 0.42 AOQ 0 0.016 0.032 0.048 0.064 0.080
- **4.2.4** *p* 0.05 0.10 0.15 0.20 0.25 *R*₁ 0.998 0.990 0.978 0.962 0.941 *R*₂ 0.998 0.991 0.981 0.968 0.952
- **4.2.5** $\pi_A = \frac{1}{5}$.
- **4.2.6** $\pi_0 = \frac{1}{3}$.
- **4.2.7** (a) 0.6831;
 - **(b)** $\pi_1 = \pi_2 = \frac{10}{21}, \, \pi_3 = \frac{1}{21};$
 - (c) $\pi_3 = \frac{1}{21}$.
- **4.2.8** $\pi_3 = \frac{8}{51}$.
- **4.3.1** $\left\{ n \ge 1; P_{00}^{(n)} > 0 \right\} = \{5, 8, 10, 13, 15, 16, 18, 20, 21, 23, 24, 25, 26, 28, \ldots \}$ $d(0) = 1, P_{5,7}^{(37)} = 0, P_{i,j}^{(38)} > 0 \quad \text{for all } i, j.$
- **4.3.2** Transient states: {0, 1, 3}. Recurrent states: {2, 4, 5}.
- **4.3.3** (a) {0,2}, {1,3}, {4,5}; (b) {0}, {5}, {1,2}, {3,4}.
- **4.3.4** $\{0\}, d = 1;$ $\{1\}, d = 0;$ $\{2, 3, 4, 5\}, d = 1.$
- **4.4.1** $\pi_k = p^k / (1 + p + p^2 + p^3 + p^4)$ for k = 0, ..., 4.
- **4.4.2** (a) $\pi_0 = \frac{1449}{9999}$.
 - **(b)** $m_{10} = \frac{8550}{1449}$.
- **4.4.3** $\pi_0 = \pi_1 = 0.2, \pi_2 = \pi_3 = 0.3.$
- **4.5.1** $\lim P_{00}^{(n)} = \lim P_{10}^{(n)} = 0.4;$ $\lim P_{20}^{(n)} = \lim P_{30}^{(n)} = 0;$ $\lim P_{40}^{(n)} = 0.4.$

- **4.5.2** (a) $\frac{3}{11}$, (e) $\frac{3}{11}$,
 - **(b)** 0, **(f)** X,
 - (c) $\frac{2}{33}$, (g) $\frac{1}{3}$,
 - (d) $\frac{2}{9}$, (h) $\frac{4}{27}$.

- **5.1.1** (a) e^{-2} ;
 - **(b)** e^{-2} .
- **5.1.2** $(p_k/p_{k-1}) = \lambda/k$, k = 0, 1, ...

5.1.3
$$\Pr\{X = k | N = n\} = \binom{n}{k} p^k (1 - p)^{n - k}, \quad p = \frac{\alpha}{\alpha + \beta}.$$

5.1.4 (a)
$$\frac{(\lambda t)^k e^{-\lambda t}}{k!}$$
, $k = 0, 1, ...;$

(b)
$$\Pr\{X(t) = n + k | X(s) = n\} = \frac{[\lambda(t-s)]^k e^{-\lambda(t-s)}}{k!},$$

 $E[X(t)X(s)] = \lambda^2 t s + \lambda s.$

- **5.1.5** $\Pr\{X = k\} = (1 p)p^k$ for k = 0, 1, ... where $p = 1/(1 + \theta)$.
- **5.1.6** (a) e^{-12} :
 - **(b)** Exponential, parameter $\lambda = 3$.
- 5.1.7 (a) $2e^{-2}$;
 - **(b)** $\frac{64}{3}e^{-6}$;
 - (c) $\left(\frac{6}{2}\right)\left(\frac{1}{3}\right)^2\left(\frac{2}{3}\right)^4$;
 - (d) $\frac{32}{3}e^{-4}$.
- **5.1.8** (a) $5e^{-2}$;
 - **(b)** $4e^{-4}$;
 - (c) $\frac{1-3e^{-2}}{1-e^{-2}}$.
- **5.1.9** (a) 4;
 - **(b)** 6;
 - **(c)** 10.
- **5.2.1** *k* 0 1 2
 - (a) 0.290 0.370 0.225
 - (b) 0.296 0.366 0.221
 - (c) 0.301 0.361 0.217
- **5.2.2** Law of rare events, e.g., (a) Many potential customers who could enter store, small probability for each to actually enter.
- **5.2.3** The number of distinct pairs is large; the probability of any particular pair being in sample
- **5.2.4** Pr{Three pages error free} \approx e⁻¹².
- 5.3.1 e^{-6} .
- **5.3.2** (a) $e^{-6} e^{-10}$;
 - **(b)** $4e^{-4}$.

5.3.3
$$\frac{1}{4}$$
.

5.3.4
$$\binom{5}{2} \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^3 = \frac{80}{243}$$
.

5.3.5
$$\binom{n}{m} \left(\frac{t}{T}\right)^m \left(1 - \frac{t}{T}\right)^{n-m}, \quad m = 0, 1, \dots, n.$$

5.3.6
$$F(t) = (1 - e^{-\lambda t})^n$$
.

5.3.7
$$t + \frac{2}{\lambda}$$
.

5.3.8
$$\binom{12}{5} \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^7$$
.

5.3.9
$$\Pr\{W_r \le t\} = 1 - \sum_{k=0}^{r-1} \frac{(\lambda t)^k e^{-\lambda t}}{k!}.$$

5.4.1
$$\frac{1}{n+1}$$
.

5.4.2
$$\frac{1}{4}$$
.

5.4.3
$$\frac{5}{2}$$
.

5.4.5
$$\left[1 - \frac{1 - e^{-\alpha}}{\alpha}\right]^5$$
.

5.6.2 Mean =
$$\frac{\lambda t}{\theta}$$
, Variance = $\frac{2\lambda t}{\theta^2}$.

5.6.3
$$\frac{e^{-\lambda G(z)t}-e^{-\lambda t}}{1-e^{-\lambda t}}$$
.

5.6.4 (a)
$$\frac{1}{9}$$
;

(b)
$$\frac{11}{27}$$
.

5.6.5
$$\Pr\{M(t) = k\} = \frac{\Lambda(t)^k e^{-\Lambda(t)}}{k!}, \text{ where } \Lambda(t) = \lambda \int_0^t [1 - G(u)] du.$$

6.1.1
$$P_0(t) = e^{-t}$$
;

$$\begin{aligned} P_1(t) &= \frac{1}{2} e^{-t} - \frac{1}{2} e^{-3t}; \\ P_2(t) &= 3 \left[\frac{1}{2} e^{-t} + \frac{1}{2} e^{-3t} - \frac{1}{2} e^{-2t} \right] \\ P_3(t) &= 6 \left[\frac{1}{8} e^{-t} + \frac{1}{4} e^{-3t} - \frac{1}{3} e^{-2t} - \frac{1}{24} e^{-5t} \right]. \end{aligned}$$

6.1.2 (a)
$$\frac{11}{6}$$
;

(b)
$$\frac{25}{6}$$
;

(c)
$$\frac{49}{36}$$
.

6.1.3 X(t) is a Markov process (memoryless property of exponential distribution) for which the sojourn time in state k is exponentially distributed with parameter λk .

6.1.4 (a)
$$Pr\{X = 0\} = (1 - \alpha h)^n = 1 - n\alpha h + o(h);$$

(b)
$$\Pr\{X = 1\} = n\alpha h (1 - \alpha h)^n = n\alpha h + o(h);$$

(c)
$$Pr\{X \ge 2\} = 1 - Pr\{X = 0\} - Pr\{X - 1\} = o(h)$$
.

6.1.5
$$E[X(t)] = \frac{1}{p}$$
, $Var[X(t)] = \frac{1-p}{p^2}$, where $p = e^{-\beta t}$.

6.1.6 (a)
$$P_1(t) = e^{-5t}$$
;

(b)
$$P_2(t) = 5 \left[\frac{1}{2} e^{-3t} - \frac{1}{2} e^{-5t} \right]$$

(c)
$$P_3(t) = 15 \left[\frac{1}{20} e^{-3t} - \frac{1}{16} e^{-5t} + \frac{1}{80} e^{-13t} \right].$$

6.2.1
$$P_3(t) = e^{-5t}$$
;

$$P_2(t) = 5 \left[\frac{1}{3} e^{-2t} - \frac{1}{3} e^{-5t} \right];$$

$$P_1(t) = 10 \left[\frac{1}{6} e^{-5t} + \frac{1}{3} e^{-2t} - \frac{1}{2} e^{-3t} \right];$$

$$P_0(t) = 1 - P_1(t) - P_2(t) - P_3(t)$$
.

6.2.2 (a)
$$\frac{31}{30}$$
;

(b)
$$\frac{29}{15}$$
;

(c)
$$\frac{361}{900}$$
.

6.2.3
$$P_3(t) = e^{-t}$$
;

$$P_2(t) = [e^{-t} - e^{-2t}];$$

$$P_1(t) = 2\left[\frac{1}{2}e^{-t} - e^{-2t} + \frac{1}{2}e^{-3t}\right];$$

$$P_0(t) = 1 - P_1(t) - P_2(t) - P_3(t).$$

6.2.4
$$P_2(t) = 10e^{-4t} (1 - e^{-2t})^3$$
.

6.3.1
$$\lambda_n = \lambda, \, \mu_n = n\mu$$
 for $n = 0, 1, \dots$

6.3.2 Assume that $Pr{Particular patient exits in [t, t+h)|k patients} = \frac{1}{m_t}h + o(h)$.

6.4.2
$$\pi_k = \binom{N}{k} p^k (1-p)^{N-k}$$
, where $p = \frac{\alpha}{\alpha+\beta}$.

6.4.3
$$\pi_k = \frac{\lambda^k e^{-\lambda}}{k!}$$
, where $\lambda = \frac{\alpha}{\beta}$.

6.4.4 (a)
$$\pi_0 = 1 / \left(1 + \frac{\lambda}{\mu} + \frac{1}{2} \left(\frac{\lambda}{\mu}\right)^2\right);$$

(b)
$$\pi_0 = 1 / \left(1 + \frac{\lambda}{\mu} + \left(\frac{\lambda}{\mu}\right)^2\right)$$
.

6.4.5
$$\pi_k = (k+1)(1-\theta)^2 \theta^k$$
.

6.4.6
$$\pi_k = \frac{\theta^k e^{-\theta}}{k!}$$
, where $\theta = \frac{\lambda}{\mu}$.

6.5.1 Use
$$\log \frac{1}{1-x} = 1 + x + \frac{1}{2}x^2 + \cdots + |x| < 1$$
.

6.5.2 Use
$$\frac{K}{K-i} \cong 1$$
 for $K \gg i$.

6.6.1
$$1 - \left(\frac{\beta_A}{\alpha_A + \beta_A}\right) \left(\frac{\beta_B}{\alpha_B + \beta_B}\right)$$
.

6.6.2
$$P_{00}(t) = \left\{ \frac{\mu}{\lambda + \mu} + \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} \right\}^2$$
.

6.7.1
$$f(t) = \frac{2-\sqrt{2}}{4}e^{-(2+\sqrt{2})t} + \frac{2+\sqrt{2}}{4}e^{-(2-\sqrt{2})t}$$
.

6.7.2
$$f_0'(t) = -\frac{\sqrt{2}}{4}e^{-(2-\sqrt{2})t} + \frac{\sqrt{2}}{4}e^{-(2+\sqrt{2})t};$$

 $f_1'(t) = -\frac{2-\sqrt{2}}{4}e^{-(2-\sqrt{2})t} - \frac{2+\sqrt{2}}{4}e^{-(2+\sqrt{2})t}.$

Chapter 7

- **7.1.1** The age δ_t of the item in service at time t cannot be greater than t.
- **7.1.2** $F_2(t) = 1 e^{-\lambda t} \lambda t e^{-\lambda t}$.
- 7.1.3 (a) True;
 - (b) False;
 - (c) False.
- **7.1.4** (a) W_k has a Poisson distribution with parameter λk .

(b)
$$\Pr\{N(t) = k\} = \sum_{n=0}^{t} \frac{e^{-\lambda k} (\lambda k)^n}{n!} - \sum_{n=0}^{t} \frac{e^{-\lambda (k+1)} (\lambda k + \lambda)^n}{n!}.$$

7.2.1
$$\frac{1}{a} + \frac{1}{b}$$
.

- **7.2.2** The system starts from an identical condition at those instants when first both components are OFE
- **7.2.3** n M(n) u(n)
 - 1 0.4 0.4
 - 2 0.66 0.26
 - 3 1.104 0.444
 - 4 1.6276 0.5236
 - 5 2.0394 0.41184
 - 6 2.4417 0.4023
 - 7 2.8897 0.44798
 - 8 3.3374 0.44769
 - 9 3.7643 0.42693
 - 10 4.1947 0.4304
- **7.3.1** $e^{-\lambda s}$; $t + \frac{1}{\lambda}$.
- **7.3.2** The inter-recording time is a random sum with a geometric number of exponential terms and is exponential with parameter λp . (See the example following Chapter 2, (2.34)).

7.3.3
$$\Pr\{N(t) = n, W_{N(t)+1} > t + s\}$$

= $\left\{ \frac{(\lambda t)^n e^{-\lambda t}}{n!} \right\} e^{-\lambda s}$.

- **7.4.1** $M(t) \approx \frac{3}{2}t \frac{7}{16}$.
- 7.4.2 $\frac{3}{8}$.

7.4.3
$$T^* = \sqrt{\frac{\sqrt{273} - 15}{8}}$$
.

7.4.4 c(T) is a decreasing function of T.

```
7.4.5 h(x) = 2(1-x) for 0 \le x \le 1.
```

7.4.6 (a)
$$\frac{\alpha}{\alpha+\beta}$$
;

(b)
$$13\frac{\alpha}{\alpha+\beta}$$
;

(c)
$$\frac{7}{\alpha+\beta}$$
.

7.5.1
$$\frac{\mu\lambda}{1+\mu\lambda}$$
.

7.5.2
$$\frac{2}{9}$$
.

7.5.3
$$T^* = \infty$$
.

7.6.3
$$E[X] = 1$$
; $\Sigma b_k = 1$.

- **8.1.1** (a) 0.8413.
 - **(b)** 4.846.
- **8.1.2** Cov[W(s), W(t)] = min{s, t}.

8.1.3
$$\frac{\partial p}{\partial t} = \frac{1}{2}\varphi(z)t^{-\frac{3}{2}}\left[z^2 - 1\right];$$
$$\frac{\partial p}{\partial x} = \frac{1}{t}z\varphi(z).$$

- **8.1.4** (a) 0.
 - **(b)** $3u^2 + 3uv + uw$.
- **8.1.5** (a) $e^{-|s-t|}$;
 - **(b)** t(1-s) for 0 < t < s < 1;
 - (c) $\min\{s, t\}$.
- **8.1.6** (a) Normal, $\mu = 0$, $\sigma^2 = 4u + v$;
 - **(b)** Normal, $\mu = 0$, $\sigma^2 = 9u + 4v + w$.
- **8.1.7** $\frac{s}{S}$.
- **8.2.1** (a) 0.6826.
 - **(b)** 4.935.
- **8.2.2** If $\tan \theta = \sqrt{s/t}$, then $\cos \theta = \sqrt{t/(s+t)}$.
- **8.2.3** 0.90.

8.2.4 Reflection principle: $\Pr\{M_n \ge a, S_n < a\} = \Pr\{M_n \ge a, S_n > a\} (= \Pr\{S_n > a\}).$ Also, $\Pr\{M_n \ge a, S_n = a\} = \Pr\{S_n = a\}.$

- **8.2.5** $\Pr{\tau_0 < t} = \Pr{B(u) \neq 0 \text{ for all } t \leq u < a} = 1 \vartheta(t, a).$
- **8.2.6** $\Pr{\{\tau_1 < t\}} = \Pr{\{B(u) = 0 \text{ for some } u, b < u < t\}}.$

8.3.1
$$\Pr\{R(t) < y | R(0) = x\}$$

= $\Pr\{-y < B(t) < y | B(0) = x\}$
= $\Pr\{B(t) < y | B(0) = x\} - \Pr\{B(t) < -y | B(0) = x\}.$

- **8.3.2** 0.3174, 0.15735.
- **8.3.3** 0.83995.
- **8.3.4** 0.13534.
- 8.3.5 No. No.
- **8.4.1** 0.05.
- **8.4.2** 0.5125, 0.6225, 0.9933.
- **8.4.3** 0.25, 24.5, 986.6.
- **8.4.4** $\tau = 43.3$ versus E[T] = 21.2
- **8.4.5** 0.3325.

8.4.6 (a)
$$E[(\xi - a)^+] = \int_a^\infty x \varphi(x) dx - a \int_a^\infty \varphi(x) dx$$

= $\varphi(a) - a[1 - \Phi(a)].$

(b)
$$(X - b)^+ = \sigma \left(\xi - \frac{b - \mu}{\sigma} \right)^+$$
.

- **8.5.1** 0.8643, 0.7389, 0.7357.
- **8.5.2** 0.03144, 0.4602, 0.4920.
- **8.5.3** (a) $E[V_n] = (1 \beta)^n v$ $Cov[V_n, V_{n+k}] = (1 - \beta)^k$.
 - (b) $E[\Delta V|V_n = v] = -\beta v$ $Var[\Delta V|V_n = v] = 1.$

- **9.1.1** (a) Probability waiting planes exceed available air space.
 - (b) Mean number of cars in lot.
- **9.1.2** The standard deviation of the exponential distribution equals the mean.
- **9.1.3** $1\frac{1}{2}$ days.
- 9.2.1 $\frac{25}{36}$.
- **9.2.3** L = 1 versus L = 5.
- **9.3.1** $\nu = \frac{1}{\mu}, \tau^2 = \frac{1}{\mu^2}, L = \frac{\rho}{1-\rho}.$

9.3.2
$$L = \rho + \frac{\rho^2(1+\alpha)}{2\alpha(1-\rho)}$$
.

9.3.3
$$3\frac{1}{4}$$
.

9.3.4
$$\frac{27}{36}$$
 versus 3.

9.3.5
$$M(t) = \lambda \int_{0}^{t} [1 - G(y)] dy \rightarrow \lambda \nu.$$

9.4.1 8 per hour.

9.4.2
$$\frac{5}{16}$$
.

9.5.1
$$\frac{1}{5} \left(\frac{4}{5} \right) = \frac{4}{25}$$
.

9.5.2
$$Pr\{Z \le 20\} = 0.9520$$
.