Exercises on Transition Systems

Beau De Clercq

October 2019

Contents

Question

Consider the following two sequential hardware circuits:

- (a) Give the transition systems of both hardware circuits.
- (b) Determine the reachable part of the transition system of the synchronous product of these transition systems. Assume that the initial values of the registers are r1=0 and r2=1.

Answer

(a)

• Circuit one:

• Circuit two:

(b)

• Reachable part:

 \bullet Not reachable: (00,00), (11,11), ...

Question

We are given three (primitive) processes P_1, P_2 , and P_3 with shared integer variable x. The program of process P_i is as follows:

```
Algorithm 1 Process P_i

for k_i = 1, ..., 10 do

LOAD(x);

INC(x);

STORE(x);

od
```

That is, P_i executes ten times the assignment x := x+1. The assignment x := x+1 is realized using the three actions LOAD(x), INC(x) and STORE(x). Consider now the parallel program:

```
Algorithm 2 Parallel program P
x := 0;
P_1 \parallel P_2 \parallel P_3
```

Does P have an execution that halts with the terminal value x = 2?

Answer

The answer to this question depends on how you interpret the question.

- If you allow processess to run completely independent from each other, it is possible to have an execution that halts with x = 2:
 - First load x := 0 in P₁, P₂, P₃
 Then let P₁ finish (x == 10)
 After that, let P₂ run 9 times and store x = 9
 Increment P₃ 1 time and store
 Load x := 1 stored by P₃ in P₂
 - Load x := 1 in P_3
 - Finish P_3 before P_2 to end with x == 2
- If you don't allow this and expect processes to wait until all others have finished their loop then it isn't possible.

Question

Consider the following street junction with the specification of a traffic light as outlined on the right.

- (a) Choose appropriate actions and label the transitions of the traffic light transition system accordingly.
- (b) Give the transition system representation of a (reasonable) controller C that switches the green signal lamps in the following order: A1,A2,A3, A1,A2,A3, \dots .

(Hint: Choose an appropriate communication mechanism.)

(c) Outline the transition system A1||A2||A3||C.

Question

Show that the handshaking operator \parallel that forces two transition systems to synchronize over their common actions (see Definition 2.26 on page 48) is associative. That is, show that $(TS_1 \parallel TS_2) \parallel TS_3 = TS_1 \parallel (TS_2 \parallel TS_3)$ where TS_1, TS_2, TS_3 are arbitrary transition systems.

```
 (TS_1 || TS_2) || TS_3 = (S_1 \times S_2, Act_1 \times Act_2, ->, I_1 \times I_2, AP_1 \cup AP_2, L) || TS_3 
= (S_1 \times S_2 \times S_3, Act_1 \times Act_2 \times Act_3, ->, I_1 \times I_2 \times I_3, AP_1 \cup AP_2 \cup AP_3, L) 
= TS_1 || (S_2 \times S_3, Act_2 \times Act_3, ->, I_2 \times I_3, AP_2 \cup AP_3, L) 
= TS_1 || (TS_2 || TS_3)
```

Question

The following program is a mutual exclusion protocol for two processes due to Pnueli [118]. There is a single shared variable s which is either 0 or 1, and initially 1. Besides, each process has a local Boolean variable y that initially equals 0. The program text for process P_i (i = 0, 1) is as follows:

```
    10: loop forever do
    begin
    11: Noncritical section
    12: (y<sub>i</sub>, s) := (1, i);
    13: wait until ((y<sub>1-i</sub> = 0) ∨ (s ≠ i));
    14: Critical section
    15: y<sub>i</sub> := 0
    end.
```

Here, the statement $(y_i, s) := (1, i)$; is a multiple assignment in which variable $y_i := 1$ and s := i is a single, atomic step.

- (a) Define the program graph of a process in Pnuelis algorithm.
- (b) Determine the transition system for each process.
- (c) Construct their parallel composition.
- (d) Check whether the algorithm ensures mutual exclusion.
- (e) Check whether the algorithm ensures starvation freedom.

- P = $\{CRIT_1, CRIT_2, r_1, r_2\}$ ME is ensured:
- Starvation freedom is not ensured:

Question

Consider a stack of nonnegative integers with capacity n (for some fixed n).

- (a) Give a transition system representation of this stack. You may abstract from the values on the stack and use the operations top, pop, and push with their usual meaning.
- (b) Sketch a transition system representation of the stack in which the concrete stack content is explicitly represented.

Question

Consider the following generalization of Petersons mutual exclusion algorithm that is aimed at an arbitrary number n ($n \ge 2$) processes.

The basic concept of the algorithm is that each process passes through n levels before acquiring access to the critical section. The concurrent processes share the bounded integer arrays y[0..n1] and p[1..n] with y[i] 1, . . . , n and p[i] 0, . . . , n1 .

y[j] = i means that process i has the lowest priority at level j, and p[i] = j expresses that process i is currently at level j. Process i starts at level 0.

On requesting access to the critical section, the process passes through levels 1 through n1. Process i waits at level j until either all other processes are at a lower level (i.e., p[k] < j for all $k \neq i$) or another process grants process i access to its critical section (i.e., $y[j] \neq i$). The behavior of process i is in pseudocode:

```
while true do  \begin{array}{c} \dots \text{ noncritical section } \dots \\ \text{forall } j=1,\dots,n-1 \text{ do} \\ p[i]:=j; \\ y[j]:=i; \\ \text{wait until } (y[j]\neq i) \ \lor \ \left( \bigwedge_{0< k\leqslant n, k\neq i} \ p[k] < j \right) \\ \text{od} \\ \dots \text{ critical section } \dots \\ p[i]:=0; \\ \text{od} \end{array}
```

- (a) Give the program graph for process i.
- (b) Determine the number of states (including the unreachable states) in the parallel composition of n processes.
- (c) Prove that this algorithm ensures mutual exclusion for n processes.
- (d) Prove that it is impossible that all processes are waiting in the foriteration.
- (e) Establish whether it is possible that a process that wants to enter the critical section waits ad infinitum.

Question

Question

Question

Question