EMBO Practical course Population genomics Background and tools

Gene-genealogy methods for demography & Approximate Bayesian Computation - ABC

May 25, 2017 - Napoli

Mathias Currat

Department of Genetics and Evolution – Anthropology Unit University of Geneva, Switzerland

Outline

- 1. Genetic Diversity and Population Demography
- 2. Demographic Reconstruction
- 3. Coalescent Simulations
- 4. Approximate Bayesian Computation (ABC)
- 5. Practicals

1. Genetic Diversity and Population Demography

Effect of demography on genetic diversity

Evolutionary forces Mutation, recombination Selection Observed genetic diversity

Demography & migration

- Low population size → More genetic drift
- Large population size → Less genetic drift
- Few migrations among populations → High genetic differentiation
- Many migrations among populations → Genetic homogenisation
- Temporal dynamics (growth, bottleneck, etc...) → ...
- Spatial dynamics (population expansion or contraction) → ...

It is possible to make inferences on population demography from genetic data using appropriate tools

Course example: coalescent simulations and ABC

Gene genealogy ≠ Population genealogy

The reconstruction of population demographic history requires to overlap the information from a maximum of genetic loci (portions of DNA).

→ Demography affects the whole genome while selection affects a limited number of loci

2. Demographic reconstruction from genetic/genomic data

Main principles

Modeling/Simulation part

 Many genetic simulation resources available, choose carefully the most adapted to your question.

A (non-exhaustive) list: https://popmodels.cancercontrol.cancer.gov/gsr/packages/

- Two main kinds of genetic simulation approaches:
 - 1. Forward-in-time: i.e. Wright-Fisher (cf Andrew Clark Lecture)
 - Coalescent: i.e. Fastsimcoal

A model is not a reproduction of the reality but a simplified theoritical representation of the main processes and elements that one wants to better understand

3 – Coalescent simulation

fastSimcoal2: example of demographic scenario

Example of input file

100000 2 1 1 1 0 1

```
3 samples to simulate
//Deme sizes (haploid number of genes)
10000
50000
10000
//Sample sizes
2
0
//Growth rates
//Number of migration matrices
//Migration rates matrix 0 :
0.000 0.005 0.000
0.005 0.000 0.005
0.000 0.005 0.000
//Migration rates matrix 1 :
000
000
000
//Historical event: time, source, sink, migrants, new
deme size, new growth rate, new migration matrix
2 historical events
100000 0 1 1 1 0 1
```

fastSimcoal2: A general coalescent program for the simulation of molecular data in interconnected populations with arbitrary demography.

Fastsimcoal: Excoffier et al, PLoS genetics 2013 http://cmpg.unibe.ch/software/fastsimcoal2/

Coalescent implementation

At each generation, 2 kinds of events are possible

Migration

with
$$Prob_m = m/N$$

where m = migration rateN = deme (population) size

Coalescent event

with
$$Prob_c = n(n-1)/N$$

where n = gene number

= neutral gene

Ancient DNA! Past N=50,000 MRCA N=10,000 100.000 generations At each generation, 2 kinds of events are possible Migration *t*-4 with $Prob_m = m/N$ *t*-3 where m = migration rateN = deme (population) size*t*-2 Coalescent event *t*-1 with $Prob_c = n(n-1)/N$ where n = gene numberPresent Deme 2 Deme 3 = neutral gene Deme 1

A stochastic process

Small size

Expanding population

Large size

Expanding Population

Simulation of genetic diversity

Small size

Expanding population

Large size

Expanding Population

 μ = mutation rate

X = mutation

Arlsumstat: computation of summary statistics

Arlsumstat is a Linux version of Arlequin 3.5 which compute summary statistics from arlequin projects in a very efficient way, specifically designed for ABC.

Excoffier & Lischer, Mol Ecol Res 2010 http://cmpg.unibe.ch/software/arlequin35/

Executable name:

arlsumstat3522_64bit

Input data file: *.arp

Input settings files:

arl_run.ars, ssdefs.txt

Associated Script:

LaunchArlSumStatModified.sh

[Profile]							
	Title="A series of simulated samples"						
	NbSamples=1						
	GenotypicDat GameticPhas						
	RecessiveDat						
	DataType=DN						
	LocusSepara						
	MissingData=						
[Data]	•						
	[[Samples]]	CampulaNama "Campula 4"					
		SampleName="Sample 1" SampleSize=25					
		SampleData= {					
1 1	1	TATTCTAATTCAGCTTCTGAACGTAAGG					
_		TAGTAGTCTGCATAGCGGCGTTGTGCGA					
1_2	1	TAGTCGTCTGCGTATTGGGGTTGTGCAG					
		TAGTCGTCTGCGTATTGGGGTTGTGCAG					
1_3	1	TATGCTAATTCAGCTTCTGATCGTAAGG					
		TAGTCGTCTGCATAGTGGCGTTGTGCGA					
1_4	1	AATGCTAATTCAGCTTCTGATCGTAAGG					
1 5	1	TAGTCGTCTGCATAGTGGCGTTGTGCGA TATGCTAATTCAGCTTCTGATCGTAAGG					
1_5	ı	TATTCTAATTCAGCTTCTGATCGTAAGG					
		IATTOTAATTOAGGTTOTGAAGGTAAGG					

Translation of demography to genetics

Advantage of the coalescent approach

Simulation of only the sampled genes ● and their ancestors, not the whole population → huge gain in computational time!

Spatially-explicit coalescent simulation

Currat & Excoffier, PNAS 2011

Comparison between simulated and empirical data

4 – Approximate Bayesian Computation (ABC)

ABC main principles

D → Data (genetic/genomic)

 $M \rightarrow$ Model (evolutionary scenario)

θ → Model Parameter(demographic/biological/...)

model M

Problem: the computation of the likelihood function may be very costly or even impossible for complex models.

The ABC approach has been designed to <u>bypass the computation of the likelihood function</u> by approximating it using stochastic simulation of the model.

Tavaré et al, Genetics (1997), Beaumont et al, Genetics (2002)

Many recent developements and several packages to run ABC (DiyABC, PopABC, Abc R package, etc...)

For the practicals, you will use ABCtoolbox, Wegmann et al, Bioinformatics 2010

Parameter estimation through ABC

Examples of parameter estimation outputs

Prior and posterior distributions

Di et al. BMC Evolutionary Biology (2015)

Point estimates and confidence intervals

Table 1. Demographic Parameters Estimated under the Best Fitting Model (LDDRCop).

Alves et al. Mol. Biol. Evol. (2016)

Parameters	Mode	Mean	Median	95% HPDI ^a
Start of the initial expansion in Africa $(T_{STARTEXP})^b$	80,704	94,903	91,777	80,000-120,916
Out of sub-Saharan Africa expansion time $(T_{OOA})^b$	73,568	65,924	67,477	48,276-80,000
Ancestral size (Ne _{ANC}) ^c	10,327	11,795	11,386	5,000-19,098
Carrying capacity (K) ^c	826	1,036	992	50-1,992
LDD proportion (LDD $_{PROP}$)	0.044	0.038	0.040	0.021-0.050
Growth rate (r)	0.429	0.561	0.545	0.200-0.919
Average number of demes travelled by LDD migrants (μ)	5.357	4.780	4.946	3.074-6.000
Gamma shape parameter – LDD distance (α)	1.209	1.251	1.249	0.567-1.943
Migration rate (m)	0.110	0.155	0.148	0.050-0.268
Number of migrants (Nm) ^c	3	93	76	3-241
Number of LDD migrants (LDDNm) ^c	8	8	8	0-15
Mutation rate (STR _{MUTRATE})	1.74E-04	1.72E-04	1.72E-04	1.07E-04-2.36E-04

Validation techniques: model fit

Is the model plausible? Is it capable to reproduced adequately empirical statistics?

Visual inspection of 2D joint densities for each pair of statistics

Di et al. BMC Evolutionary Biology (2015)

ABCtoolbox provides model fit statistics:

Marginal p-value Tukey p-value.

→ Low p-values indicate poor fit.

Validation techniques: accuracy of estimates

How accurate is the estimation of a parameter?

The **cross-validation** procedure repeats the estimation with the output of one simulation considered as empirical values (pseudo-observed data).

TRUE	Estin	nated		
Pop. Size	Pop. Size Mode	Pop. Size Mean	Pop. Size Quantile	Pop. Size HDI
10070	11987	16920	0	0.75
14386	23494	24055	0.067487	0.749736
46270	29248	31159	0.874571	0.868895
11806	10070	14996	0.001913	0.105752
24072	17741	20153	0.666673	0.689085

Checking for biased posteriors

Kolmogorov-Smirnov test of quantile distribution against an uniform distribution.

Model choice through ABC

Examples of model choice outputs

Table 3 Model comparison using retained simulations. Proportions of simulations (%) under each of the three models among 750, 1,500 and 3,000 best simulations retained from 300,000 simulations (100,000 for each model)

Number of retained simulations	Locus	Southern-origin model	Pincer model	Overlapping model
750	А	2.4	31.2	66.4
	В	0.5	26.3	73.2
	DRB1	0.2	37.5	62.3
1,500	Α	3.8	33.1	63.1
	В	0.7	27.3	71.9
	DRB1	0.3	48.1	51.6
3,000	Α	5.4	47.0	47.6
	В	1.4	40.4	58.2
	DRB1	1.0	48.8	50.2

Di et al. BMC Evolutionary Biology (2015)

Models: □ noLDDnoRC 300 ■ noLDDRC ■ LDDnoRC LDDRC Frequency 200 0 1E-39 1E-19

Model Posterior Probability

1E0

1E-59

Fig. 2. Distributions of the posterior probabilities of the four main scenarios of human expansions (noLDDnoRC, noLDDRC, LDDnoRC, and LDDRC) obtained over the 1,000 bootstrap data sets. Model posterior probabilities were computed using the multivariate logistic regression (Beaumont 2008) on the 2% best simulations (closest to the empirical data) among 100,000 simulations per evolutionary scenario.

Alves et al. Mol. Biol. Evol. (2016)

Validation techniques: cross-validation procedure

Practical difficulties

- 1. Choice of the prior distribution(s)
 - Distribution shape and parameters (uniform, log uniform, normal, etc...)
- 2. Design of the model(s)
 - Reproduce the main elements but avoid unnecessary complexity
 - Model's output sufficiently different to be distinguished
- 3. Choice of the summary statistics
 - Enough to capture the main the characteristics of the model and have sufficient power for the estimation
 - Not too many to avoid incorporating random noise or distorting the estimation procedure
- 4. Choice of the number of simulations to perform
 - Enough simulations to explore the parameter space
- 5. Choice of the tolerance/retained parameter
 - Start between 1% and 5% and check that the results are robust acrosse different values
- 6. Validation of the method
 - Check the capability of the model to reproduce real data and the accuracy of parameter estimation

5. Practicals

Practicals

Practicals

STEP 1: SIMULATION OF DEMOGRAPHIC SCENARIO (fastsimcoal)

STEP 2: COMPUTATION OF SUMMARY STATISTICS (Arlsumstat)

STEP 3: USE A PARAMETER PRIOR DISTRIBUTION (ABCtoolbox)

STEP 4: GENERATE ABC SIMULATION DATASETS

(OPTIONAL STEP 5: GENERATE A NEW DATASET WITH TWO PARAMETERS)

STEP 6: MODEL CHOICE WITH ABC

STEP 7: PARAMETER ESTIMATION WITH ABC

(OPTIONAL STEP 8: EXPLORE AN ADDITIONAL SCENARIO)

Practical: Model choice

EMBO_modelchoicemodelFit.txt

	mod	del1_	model2.	_ model3_	_																
	mar	ginalD	margina	alD margina	ID model1_	model2_	model3_	model1_T	model2_7	model3_1	model1_T	model2_7	Γ model3_1	model1_B	model2_B	model3_B	model1_p	model2_p	model3_p		
	ensi	ityPVa	ensityP'	Va ensityP\	/a margina	ID marginal[D marginal E	ukeydept	ukeydept	ukeydept	ukeyDept	ukeyDept	tukeyDept	ayesFact	ayesFact	ayesFact	osteriorPr	osteriorPr	osteriorPr	chosenM	
dataSet	lue		lue	lue	ensity	ensity	ensity	hPValue	hPValue	hPValue	h	h	h	or	or	or	obability	obability	obability	odel	
	0	0.64	0.	.02	0 13.30	06 0.00093	5 2.05E-17	7 0.67	7) (0.171717	7	0	14228.7	7.03E-05	1.54E-18	0.99993	7.03E-05	1.54E-18	1	1

	Stationary-Small	Stationary-Big	Growing
	model1	model2	model3
Marginal Density PValue	0.64	0.02	0.00
Marginal Density	13.30	0.00	0.00
Tukeydepth PValue	0.67	0.00	0.00
Tukey Depth	0.17	0.00	0.00
Bayes Factor	14228.70	0.00	0.00
Posterior Probability	1.00	0.00	0.00

Model 1 - Stationary population of small effective size - is clearly the best supported model. In fact this is the only one able to reproduce the (pseudo) observed data

Practical: Parameter estimation

EMBO_Stationary-Small-Panmictic-Populationmodel0_MarginalPosteriorCharacteristics.txt

POPSIZE POPSIZ

Population size									
HDI95 HDI95									
Mode	Mean	Median	lower	upper					
6201	6661	6365	1900	12088					

Validation:

POPSIZE Quantiles

Sim number	Marginal Density	POPSIZE	POPSIZE mode	POPSIZE mean
7	23.9526	7312	6391.68	8095.51
15	24.1679	7427	6391.68	8058.82
21	24.0918	4288	6391.68	7214.8

