MASTERY QUIZ DAY 12

Math 237 – Linear Algebra Fall 2017

Version 1

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

V1. Let V be the set of all pairs of real numbers with the operations, for any $(x_1, y_1), (x_2, y_2) \in V$, $c \in \mathbb{R}$,

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $c \odot (x_1, y_1) = (c^2 x_1, c^3 y_1)$

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot ((x_1, y_1) \oplus (x_2, y_2)) = c \odot (x_1, y_1) \oplus c \odot (x_2, y_2).$
- (b) Determine if V is a vector space or not. Justify your answer.

V3. Determine if the vectors
$$\begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 3\\3\\6\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\-1\\3\\-2 \end{bmatrix}$, and $\begin{bmatrix} 7\\-1\\8\\-3 \end{bmatrix}$ span \mathbb{R}^4 .

V4. L	Let W be the set ary (i.e. of the form	of all complex numbers $0 + bi$). Determine	bers that are pure ine if W is a subs	ely real (i.e of the for pace of \mathbb{C} .	orm $a + 0i$) or purely
V1:			V3:		V4: