A spectral clustering algorithm

Ng, Jordan and Weiss [2002]; Walesiak [2010; 2011]

- 1. Form the data matrix $\mathbf{X}_{n \times m}$ (i, k = 1, ..., n the number of object, j = 1, ..., m the number of variable).
- 2. Form the *affinity matrix* $\mathbf{A} = [A_{ik}]$, where $A_{ii} = 0$ and $A_{ik} = \exp(-\sigma \cdot d_{ik})$, where: $\sigma kernel$ width (see algorithm below), d_{ik} distance (e.g. squared Euclidean distance, GDM1 distance for metric data, GDM2 distance for ordinal data, Sokal-Michener distance measure for nominal variables, Bray-Curtis distance measure for ratio data or others distances included in functions dist, dist.GDM and dist.binary).
- 3. Construct the matrix $\mathbf{L} = \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ (\mathbf{D} diagonal matrix whose (i, i)-element is the sum of i-th row of matrix $\mathbf{A} = [A_{ik}]$.
- 4. Find the u (u number of clusters) largest eigenvectors of \mathbf{L} . Form the new data matrix $\mathbf{E} = \left[e_{ij} \right]_{n \times u}$ by stacking the eigenvectors in columns.
- 5. Normalization step: $y_{ij} = e_{ij} / \sqrt{\sum_{j=1}^{u} e_{ij}^2}$ (i = 1, ..., n the number of object, j = 1, ..., u the number of variable, u number of clusters). Each row of matrix $\mathbf{Y} = \left[y_{ij}\right]_{n \times u}$ has unit length.
 - 6. Cluster objects of matrix \mathbf{Y} into u clusters using k-means method.

Algorithm for searching optimal value of σ parameter

Walesiak and Dudek [2009]

Bootstrapping sample **X**' is chosen from data matrix **X** (containing n' objects, where $\frac{1}{2}n \le n' \le \frac{3}{4}n$).

- **Step 0**. σ parameter belongs to interval $S_0 = [0; D]$ (D sum of all distances d_{ik} in distance matrix).
- **Step 1.** The interval S_k (k iteration number; at the beginning $S_k = S_0$) is divided into intervals of equal length: $p_r^k = [\underline{p_r^k}; \overline{p_r^k}], r = 1,...,R$ (R the number of intervals in each iteration: default R = 10).
- **Step 2.** For each interval p_r^k we calculate its centre: $\sigma_r^k = \frac{p_r^k + \overline{p_r^k}}{2}$. Spectral clustering of data set \mathbf{X}' is performed on a fixed number of clusters u for all values σ_r^k .
 - **Step 3**. Chosen is such value of σ_r^k for which sum of within-clusters distances is minimal.
- **Step 4**. With selected interval go to step 1 and continue the procedure until the default number of iterations is reached (default: three iterations).

References

- Karatzoglou, A. (2006), *Kernel methods. Software, algorithms and applications*, Dissertation, Wien, Technical University.
- Ng, A., Jordan, M., Weiss, Y. (2002), *On spectral clustering: analysis and an algorithm*, In: T. Dietterich, S. Becker, Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. MIT Press, 849-856.
- Walesiak, M. (2006), Uogólniona miara odległości w statystycznej analizie wielowymiarowej [The Generalized Distance Measure in multivariate statistical analysis], Wydawnictwo AE, Wro-

claw.

- Walesiak, M. (2010), *Klasyfikacja spektralna z wykorzystaniem odległości GDM*, In: K. Jajuga, M. Walesiak (Eds.), *Klasyfikacja i analiza danych teoria i zastosowania*, Taksonomia 17, Prace Naukowe UE we Wrocławiu no. 107, 161-171.
- Walesiak, M. (2011), Klasyfikacja spektralna a skale pomiaru zmiennych [Spectral clustering and measurement scales of variables], Prace Naukowe UE we Wrocławiu (in preparation).
- Walesiak, M., Dudek, A. (2009), *Odległość GDM dla danych porządkowych a klasyfikacja spektralna*, Prace Naukowe UE we Wrocławiu no. 84, 9-19.