Lecture IV: General Probability Theory, Brownian Motion, Information, and Conditioning

Dangxing Chen

Duke Kunshan University

Infinite Probability Spaces

Random Variables and Distributions

Random Walk and Brownian Motion

Conditional Expectation

Motivation

- Go from discrete to continuous
- ▶ Remark: Not rigorous. More serious math will be in measure theory

Difference between discrete and continuous cases

- Two experiments keep in mind:
 - ightharpoonup Choose a number randomly from the unit interval [0,1]
 - Toss a coin infinitely many times
- ▶ Discrete probability space (Ω, \mathbb{P})
 - $ightharpoonup \Omega$ is finite
 - $ightharpoonup \mathbb{P}(\omega)$ is defined
- Continuous probability space, say experiment 1
 - $ightharpoonup \Omega = [0,1]$ contains infinite points
 - $ightharpoonup \mathbb{P}(\omega) =$

Difference between discrete and continuous cases

- Two experiments keep in mind:
 - ightharpoonup Choose a number randomly from the unit interval [0,1]
 - Toss a coin infinitely many times
- ▶ Discrete probability space (Ω, \mathbb{P})
 - $ightharpoonup \Omega$ is finite
 - $ightharpoonup \mathbb{P}(\omega)$ is defined
- Continuous probability space, say experiment 1
 - $ightharpoonup \Omega = [0,1]$ contains infinite points
 - $ightharpoonup \mathbb{P}(\omega) = 0$
 - Not well defined
- For continuous case, consider events instead
 - Discrete case: First toss is head
 - ightharpoonup Continuous case: [0, 0.5]
- Question: What is the space of events?

Sigma algebra

- ▶ **Def:** Let \mathcal{F} be a collection of subsets of Ω . We say that \mathcal{F} is a σ -algebra provided that:
 - 1. $\emptyset \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- ► E.g., flip coin twice

Sigma algebra

- ▶ **Def:** Let \mathcal{F} be a collection of subsets of Ω . We say that \mathcal{F} is a σ -algebra provided that:
 - 1. $\emptyset \in \mathcal{F}$
 - 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$
 - 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$
- ► E.g., flip coin twice

 - $ightharpoonup A_{HH} = ext{The set of all sequences beginning with } HH$
 - $\mathcal{F} = \{\emptyset, \Omega, A_{H}, A_{T}, A_{HH}, A_{HT}, A_{TH}, A_{TT}, A_{HH}^{c}, A_{HT}^{c}, A_{TH}^{c}, A_{TT}^{c}, A_{HH} \cup A_{TH}, A_{HH} \cup A_{TT}, A_{HT} \cup A_{TH}, A_{HT} \cup A_{TT}\}$
- ightharpoonup E.g., continuous case in [0,1]
 - **Borel** σ -algebra: beginning with closed intervals and adding everything else necessary to have a σ -algebra
 - ightharpoonup E.g., (a,b), [a,b], (a,b), [a,b)
 - ► E.g., $[0, \frac{1}{3}] \cup [\frac{2}{3}, 1], \{a\}$

Probability space

- ▶ **Def:** Let Ω be a nonempty set, and let \mathcal{F} be a σ -algebra of subsets of Ω . A probability measure \mathbb{P} is a function that, to every set $A \in \mathcal{F}$, assigns a number in [0,1], call the probability of A and written $\mathbb{P}(A)$. We require:
 - $ightharpoonup \mathbb{P}(\Omega) = 1$
 - Whenever A_1, A_2, \ldots is a sequence of disjoint sets in \mathcal{F} , then

$$\mathbb{P}\left(\cup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a **probability space**.

► E.g., Uniform measure

$$\mathbb{P}([a,b]) = b - a, 0 \le a \le b \le 1.$$

Infinite Probability Spaces

Random Variables and Distributions

Random Walk and Brownian Motion

Conditional Expectation

▶ **Def:** Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A random variable is a real-valued function X defined on Ω with the property that for for every Borel subset B of \mathbb{R} , the subset of Ω given by

$${X \in B} = {\omega \in \Omega; X(\omega) \in B}$$

is in the σ -algebra \mathcal{F} .

- ▶ Ways to describe the probability
 - Continuous case:
 - Cumulative distribution function (CDF): $F(x) = \mathbb{P}(X \leq x)$.
 - Probability density function (PDF): $\mathbb{P}(a \le X \le b) = \int_a^b f(x) \ dx$
 - Discrete case:
 - Probability mass function: $p_i = \mathbb{P}(X = x_i)$.

Example

- ► X: Standard normal variable
- ▶ PDF: $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$
- ► CDF: $N(x) = \int_{-\infty}^{x} \varphi(z) \ dz$
- $lackbox{ }Y$ be a uniformly distributed random variable

Example

- X: Standard normal variable
- ▶ PDF: $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$
- ▶ CDF: $N(x) = \int_{-\infty}^{x} \varphi(z) \ dz$
- Y be a uniformly distributed random variable
- $X = N^{-1}(Y)$

$$\mathbb{P}(\omega \in \Omega; a \le X(\omega) \le b) = \mathbb{P}(\omega \in \Omega; a \le N^{-1}(Y(\omega)) \le b)$$

$$= \mathbb{P}(\omega \in \Omega; a \le N^{-1}(Y(\omega)) \le b)$$

$$= \mathbb{P}(\omega \in \Omega; N(a) \le Y(\omega) \le N(b))$$

$$= N(b) - N(a) = \int_a^b \varphi(x) \ dx$$

Expectation

- ▶ Discrete case: $\mathbb{E}[g(X)] = \sum_{i=1}^{n} g(x_i) \mathbb{P}(X = x_i)$
- ▶ Continuous case: $\mathbb{E}[g(X)] = \lim_{n\to\infty} \sum_{i=1}^n g(x_i) f(x_i) \Delta x$
- ► **THM**: For continuous random variable *X* with the density function *f* , we have

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx.$$

Remark: Textbook has a more rigorous argument.

Jensen's inequality

▶ THM (Jensen's inequality): If f is a convex, real-valued function defined on \mathbb{R} and $\mathbb{E}[|X|] < \infty$, then

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$$

▶ E.g., is $Var(X) \ge 0$?

Jensen's inequality

▶ THM (Jensen's inequality): If f is a convex, real-valued function defined on \mathbb{R} and $\mathbb{E}[|X|] < \infty$, then

$$f(\mathbb{E}[X]) \le \mathbb{E}[f(X)].$$

- ▶ E.g., is $Var(X) \ge 0$?
- $\qquad \qquad \mathbf{Var}(X) = \mathbb{E}[X^2] \mathbb{E}^2[X]$
- $f(x) = x^2$ is convex
- ▶ Jensen's inequality: $f(\mathbb{E}[X]) = \mathbb{E}^2[X] \leq \mathbb{E}[f(X)] = \mathbb{E}[X^2]$
- $\blacktriangleright \ \mathsf{Var}(X) \geq 0$

Infinite Probability Spaces

Random Variables and Distributions

Random Walk and Brownian Motion

Conditional Expectation

Symmetric random walk

▶ Question: Limitation of Binomial model?

Symmetric random walk

- Question: Limitation of Binomial model?
- Discrete time and space
- In real life, both time and space are continuous
- ▶ Denote successive outcomes of the tosses by $\omega = \omega_1 \omega_2 \omega_3 \dots$

- Assume $p = \frac{1}{2}$
- Symmetric random walk: $M_0 = 0$ and

$$M_k = \sum_{j=1}^k X_j, k = 1, 2, \dots$$

Some properties

- $ightharpoonup M_l M_k$ is called increments
- Nonoverlap increments are independent
- $ightharpoonup \mathbb{E}[M_l-M_k]=0$, $\operatorname{Var}(M_l-M_k)=\sum_{j=k}^l\operatorname{Var}(X_j)=l-k$
- ► Martingale: conditional expectation of the future value is equal to the present value

Some properties

- ▶ $M_l M_k$ is called increments
- Nonoverlap increments are independent
- $ightharpoonup \mathbb{E}[M_l-M_k]=0$, $\operatorname{Var}(M_l-M_k)=\sum_{j=k}^l\operatorname{Var}(X_j)=l-k$
- ► Martingale: conditional expectation of the future value is equal to the present value

$$\begin{split} \mathbb{E}[M_l|M_k] &= \mathbb{E}\left[(M_l - M_k) + M_k|M_k\right] \\ &= \mathbb{E}[M_l - M_k|M_k] + \mathbb{E}[M_k|M_k] \\ &= \mathbb{E}[M_l - M_k|M_k] + M_k \\ &= \mathbb{E}[M_l - M_k] + M_k = M_k. \end{split}$$

Scaled symmetric random walk

Scaled symmetric random walk (all indices integers):

$$W^{(n)}(t) = \frac{1}{\sqrt{n}} M_{nt}.$$

- $ightharpoonup \mathbb{E}[W^{(n)}(t) W^{(n)}(s)] = 0$, $Var(W^{(n)}(t) W^{(n)}(s)) = t s$
- $\qquad \qquad \mathbf{Martingale:} \ \mathbb{E}[W^{(n)}(t)|W^{(n)}(s)] = W^{(n)}(s)$
- Quadratic variation:

$$[W^{(n)}, W^{(n)}](t) = \sum_{j=1}^{nt} \left[W^{(n)} \left(\frac{j}{n} \right) - W^{(n)} \left(\frac{j-1}{n} \right) \right]^2$$
$$= \sum_{j=1}^{nt} \left[\frac{1}{\sqrt{n}} X_j \right]^2 = \sum_{j=1}^{nt} \frac{1}{n} = t.$$

▶ **THM**: Fix $t \ge 0$. As $n \to \infty$, $W^{(n)}(t) \to \mathcal{N}(0,t)$.

Verify

- Check moments
- ▶ Suppose $X \sim \mathcal{N}(0, t)$

$$\mathbb{E}[X] = 0,$$

$$\operatorname{Var}(X) = t.$$

$$W^{(n)}(t) = \frac{\sum_{j=1}^{nt} X_j}{\sqrt{n}}$$

Verify

- Check moments
- ▶ Suppose $X \sim \mathcal{N}(0,t)$

$$\mathbb{E}[X] = 0,$$

$$\mathsf{Var}(X) = t.$$

$$W^{(n)}(t) = \frac{\sum_{j=1}^{nt} X_j}{\sqrt{n}}$$

$$\mathbb{E}[W^{(n)}(t)] = \frac{1}{\sqrt{n}} \sum_{j=1}^{nt} \mathbb{E}[X_j] = 0,$$

$$\mathbb{E}[(W^{(n)}(t))^{2}] = \frac{1}{n} \mathbb{E}\left[\left(\sum_{j=1}^{nt} X_{j}\right)^{2}\right] = \frac{1}{n} \mathbb{E}\left[\sum_{j=1}^{nt} X_{j}^{2} + \sum_{j \neq k} X_{j} X_{k}\right]$$
$$= \frac{1}{n} \sum_{j=1}^{nt} \mathbb{E}[X_{j}^{2}] + \frac{1}{n} \sum_{j \neq k} \mathbb{E}[X_{j}] \mathbb{E}[X_{k}] = t.$$

Moment-generating function

- Q: How to find a way to incorporate all moments information?
- ▶ Def: The moment-generating function for a random variable X is

$$M_X(s) = \mathbb{E}[e^{sX}].$$

▶ **Q:** Why moment-generating function contains all moments information?

Moment-generating function

- Q: How to find a way to incorporate all moments information?
- ▶ Def: The moment-generating function for a random variable X is

$$M_X(s) = \mathbb{E}[e^{sX}].$$

▶ Q: Why moment-generating function contains all moments information?

$$M_X^{(n)}(0) = \mathbb{E}[X^n].$$

▶ E.g., $X \sim \mathcal{N}(0, t)$

Moment-generating function

- Q: How to find a way to incorporate all moments information?
- ▶ Def: The moment-generating function for a random variable X is

$$M_X(s) = \mathbb{E}[e^{sX}].$$

▶ Q: Why moment-generating function contains all moments information?

$$M_X^{(n)}(0) = \mathbb{E}[X^n].$$

▶ E.g., $X \sim \mathcal{N}(0, t)$

$$\mathbb{E}[e^{sX}] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} e^{sx} dx = \int_{\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-st)^2}{2t}} \cdot e^{\frac{s^2t}{2}} dx$$
$$= e^{\frac{s^2t}{2}}.$$

Binomial distribution

$$ightharpoonup W^{(n)}(t) = \frac{1}{\sqrt{n}} \sum_{j=1}^{nt} X_j$$

Binomial distribution

 $V^{(n)}(t) = \frac{1}{\sqrt{n}} \sum_{j=1}^{nt} X_j$

$$\begin{split} \mathbb{E}\left[e^{sW^{(n)}(t)}\right] &= \mathbb{E}\left[e^{\frac{s}{\sqrt{n}}\sum_{j=1}^{nt}X_j}\right] = \mathbb{E}\left[\prod_{j=1}^{nt}e^{\frac{sX_j}{\sqrt{n}}}\right] = \prod_{j=1}^{nt}\mathbb{E}\left[e^{\frac{sX_j}{\sqrt{n}}}\right] \\ &= \prod_{j=1}^{nt}\left(\frac{1}{2}e^{\frac{s}{\sqrt{n}}} + \frac{1}{2}e^{-\frac{s}{\sqrt{n}}}\right) \\ &= \left(\frac{1}{2}e^{\frac{s}{\sqrt{n}}} + \frac{1}{2}e^{-\frac{s}{\sqrt{n}}}\right)^{nt}. \end{split}$$

 $\blacktriangleright \text{ HW: } \lim_{n\to\infty} \mathbb{E}[e^{sW^{(n)}(t)}] = e^{\frac{s^2t}{2}}$

Brownian motion

- \blacktriangleright Obtain Brownian Motion (BM) as the limit of the scaled random walks $W^{(n)}(t)$
- ▶ **Definition:** Suppose there is a continuous function W(t) of $t \ge 0$ that satisfies W(0) = 0. Then $W(t), t \ge 0$, is a **Brownian motion** if for all $0 = t_0 < t_1 < \cdots < t_m$, the increments

$$W(t_1) - W(t_0), W(t_2) - W(t_1), \dots, W(t_m) - W(t_{m-1})$$

are independent and each of these increments is normally distributed with

$$\mathbb{E}[W(t_{i+1}) - W(t_i)] = 0,$$

$$Var(W(t_{i+1}) - W(t_i)) = t_{i+1} - t_i.$$

Key difference: Continuous time and space

Drifted Brownian motion

- $ightharpoonup X_t = \mu t + \sigma W_t$
- ▶ Stochastic differential equation: $dX_t = \mu dt + \sigma dW_t$
- ▶ Discrete version: $X_{\Delta t} = \mu \Delta t + \sigma dW_{\Delta t}$
- ► Simulation: $X_{t+\Delta t} X_t \sim \mu \Delta t + \sigma \mathcal{N}(0, \Delta t)$

Q: Why linear drift term μt ?

- **Q**: Why linear drift term μt ?
- ► Log return increases linearly

▶ **Q**: Var(σW_t) = $\sigma^2 t$ reasonable?

▶ **Q**: $Var(\sigma W_t) = \sigma^2 t$ reasonable?

Properties of Brownian motion

ightharpoonup Covariance (t > s):

Properties of Brownian motion

ightharpoonup Covariance (t > s):

$$\begin{split} \mathbb{E}[W(s)W(t)] &= \mathbb{E}[W(s)(W(t) - W(s)) + W^2(s)] \\ &= \mathbb{E}[W(s)] \cdot \mathbb{E}[W(t) - W(s)] + \mathbb{E}[W^2(s)] \\ &= 0 + \mathsf{Var}(W(s)) = s. \end{split}$$

► **THM:** Brownian motion is a martingale.

Properties of Brownian motion

ightharpoonup Covariance (t > s):

$$\begin{split} \mathbb{E}[W(s)W(t)] &= \mathbb{E}[W(s)(W(t) - W(s)) + W^2(s)] \\ &= \mathbb{E}[W(s)] \cdot \mathbb{E}[W(t) - W(s)] + \mathbb{E}[W^2(s)] \\ &= 0 + \mathsf{Var}(W(s)) = s. \end{split}$$

▶ **THM:** Brownian motion is a martingale.

$$\begin{split} \mathbb{E}[W(t)|\mathcal{F}(s)] &= \mathbb{E}[(W(t) - W(s)) + W(s)|W(s)] \\ &= \mathbb{E}[W(t) - W(s)|W(s)] + \mathbb{E}[W(s)|W(s)] \\ &= \mathbb{E}[W(t) - W(s)] + W(s) = W(s). \end{split}$$

Derivative

Question: Is BM W(t) differentiable w.r.t t?

Derivative

Question: Is BM W(t) differentiable w.r.t t?

$$\begin{split} \lim_{\Delta t \to 0} \frac{W(t + \Delta t) - W(t)}{\Delta t} &= \lim_{\Delta t \to 0} \frac{\mathcal{N}(0, \Delta t)}{\Delta t} \\ &= \lim_{\Delta t \to 0} \frac{\mathcal{N}(0, 1)}{\sqrt{\Delta t}} = \mathsf{DNE}. \end{split}$$

Trajectory of the Brownian motion is zigzag

Transition density function

- ▶ **Q:** What is the transition density function of $p(x, y, \tau)$?
- ▶ Given that $W_t = y$, the density function of $W_{t+\tau} = x$

Transition density function

- **Q:** What is the transition density function of $p(x, y, \tau)$?
- Given that $W_t = y$, the density function of $W_{t+\tau} = x$
- $W_{t+\tau}|W_t = (W_{t+\tau} W_t)|W_t + W_t|W_t = \mathcal{N}(0,\tau) + y$

$$p(x, y, \tau) = \frac{1}{\sqrt{2\pi\tau}} e^{-\frac{(x-y)^2}{2\tau}} dx$$

Infinite Probability Spaces

Random Variables and Distributions

Random Walk and Brownian Motion

Conditional Expectation

Conditional Expectation

- **THM:** Let X and Y be independent random variables, then f(X) and g(Y) are independent random variables.
- ▶ **THM:** Let X_t and Y_t be continuous-time random variables with $0 \le s \le t \le T$
 - ▶ Linearity: $\forall c_1, c_2 \in \mathbb{R}$,

$$\mathbb{E}[c_1 X_t + c_2 Y_t | X_s, Y_s] = c_1 \mathbb{E}[X_t | X_s] + c_2 \mathbb{E}[Y_t | Y_s].$$

- ▶ Taking out what is known: $\mathbb{E}[X_sX_t|X_s] = X_s\mathbb{E}[X_t|X_s]$
- ▶ Iterated conditioning: $\mathbb{E}[\mathbb{E}[X_T|X_t]|X_s] = \mathbb{E}[X_T|X_s]$
- ▶ Independence: $\mathbb{E}[W_t W_s | W_s] = \mathbb{E}[W_t W_s]$
- ► Conditional Jensen's inequality: If *f* is a convex function, then

$$f(\mathbb{E}[X_t|X_s]) \le \mathbb{E}[f(X_t)|X_s].$$

▶ **Def:** Consider an adapted stochastic process $X(t), 0 \le t \le T$. $\forall 0 \le s \le t \le T$, $\forall f$, $\exists g$ s.t.

$$\mathbb{E}[f(X(t))|\mathcal{F}_s] = g(X(s)).$$

