Electrons Faking Photons

Stefano Manzoni
INFN - Sezione di Milano, LPNHE - Paris
on behalf of SUSY-Photon+X group

Event Selection

- The measurement is based on selection of candidate Z events
- Selection
 - At least 2 e/ γ with p_T>25 GeV and $|\eta|$ < 2.37, not in the crack region Flectrons:
 - Electrons:
 Di LLH Modium (as in the analysis
 - ID: LLH Medium (as in the analysis)
 - ISO: GradientLoose (as in the analysis)
 - Photons:
 - ID: Tight (as in the analysis)
 - ISO: FixedCutTightCaloOnly (as in the analysis)
 - $\Delta R_{e,\gamma} > 0.4$ (as in the analysis)
 - It is important that the selected objects fulfil the same requests used for define objects in CR and SR in the analysis.

Method

- Consider the pairs with invariant mass inside a 75 -105 GeV window.
- For each event just the closest pair around the Z peak is considered.
- A re-weighting of the events is performed, fitting the invariant mass distribution and evaluating the Signal to Background ratio S/(S+B).
- If the best mass is given by two opposite sign electrons
 - fill a 2D histogram, H_{ee} (η^e , p_T^e)with the variables of both particles.
 - weighting each electron with the $\frac{S}{(S+B)}(m_{\rm ee})$ weight of the pair
- If the best mass is given by electron-photon pair
 - fill a 2D histogram, $H_{e\gamma}$ $(\eta^{\gamma}, p_{T}^{\gamma})$ with the variables of the photon.
 - weighting the photon with the $\frac{S}{(S+B)}(m_{e\gamma})$ weight of the pair
- The "fake rate" is measured as:

$$F_{e
ightarrow\gamma}(\eta,
ho_T)=rac{H_{e\gamma}(\eta,
ho_T)}{H_{ee}(\eta,
ho_T)}$$

- Let f_{ij} be the fraction of Z boson events for which the leading (sub-leading) electron
 falls into the ith (jth) bin of the grid.
- The number of entries N_i^{ee} in the i^{th} bin of the electron-positron grid is

$$\mathcal{N}_i^{ee} = \sum_j \epsilon_i \epsilon_j f_{ij} \mathcal{N} + \sum_j \epsilon_j \epsilon_i f_{ji} \mathcal{N} = \epsilon_i \mathcal{N} \sum_j (\epsilon_j f_{ij} + \epsilon_j f_{ji}).$$

• Similarly, the number of entries $N_i^{e\gamma}$ in the i^{th} bin of the electron-photon grid is

$$N_i^{e\gamma} = \sum_j p_i \epsilon_j f_{ij} N + \sum_j \epsilon_j p_i f_{ji} N = p_i N \sum_j (\epsilon_j f_{ij} + \epsilon_j f_{ji}).$$

• The electron-to-photon fake factor, $F_{e \to \gamma}$, in bins of and η is defined as

$$F_{e o \gamma}(p_{\mathrm{T}}, \eta) \equiv rac{m{N}_{i}^{e \gamma}}{m{N}_{i}^{ee}} = rac{p_{i}}{\epsilon_{i}}$$

 Rather than the misidentification rate p itself, F_{e→γ} is instead the ratio of the misidentification rate and the electron reconstruction-identification efficiency.

Signal to Background ratio: Fit

- Signal: Double Crystal Ball
- Backgrund: template derived from a background only sample obtained reversing ISO and ID requirements
- \bullet The fit is performed for different η categories (barrel-barrel, barrel-endcap, endcap-endcap)

ee pair Endcap-Endcap

 $e\gamma$ pair Endcap-Endcap

 $m_{e\gamma}$ [GeV]

Signal to Background ratio: Weight

- The fit on the different categories leads to different weights distributions
- The reweighting is then performed picking the correct category for each pair.

Systematic Uncertainties

- The systematic uncertainties are estimated considering different sources.
- Changing the size of the mass selection window in which the pairs are selected from [75-105] GeV to [70-110] GeV and to [80-100] GeV
- Varying (independently) the invariant mass range of the fit from [70-110] GeV to [65-115] GeV and to [75-105] GeV (new sets of weights and different fake rates are evaluated)
- Considering the non-closure between the measured fake rate and the truth MC fake rate

$$F_{e
ightarrow\gamma}^{MC}=rac{N_{\gamma(ISO,ID|e_{truth})}}{N_{e(ISO,ID|e_{truth})}}$$

Example: electroweak background in di-photon+ E_T^{miss}

- EW background accounts for SM contributions mainly from W(W \rightarrow e ν) γ , $t\bar{t}\gamma$, Z(W \rightarrow ee/ $\tau\tau$) γ .
- Evaluated rescaling the number of events in a control region defined as SR but which requests to have exactly one photon and at least one electron with $p_T^\gamma > 75$ GeV

$$N_{e
ightarrow\gamma}(p_{\mathrm{T}},\eta)=F_{e
ightarrow\gamma}(p_{\mathrm{T}},\eta) imes N_{e\gamma}(p_{\mathrm{T}},\eta)$$

where $F_{e \to \gamma}(p_T, \eta)$ is measured starting from a $Z \to ee$ data sample as the ratio of the number of the selected ee and $e\gamma$ couples.

• The contribution to SR is 0.03 ± 0.02

$p_T(e)$	$\eta(e)$	$p_T(\gamma)$	$\eta(\gamma)$	H_T	E_T^{miss}	$F_{e ightarrow\gamma}$
113	-0.606	88	-1.849	1606	186	0.019
166	0.581	105	-1.273	1033	586	0.012

Conclusion

- An electron fakes photon rate measurement has been performed using 3.2 fb $^{-1}$ at $\sqrt{s}=13~\text{TeV}$
- Next steps:
 - Repeat the measurement using 2016 data
 - · Improving the fit procedure
 - Better understanding of the non closure systematic
- The Photon ID group is now working to provide a measurement and eventually a tool/database using both 2015 and 2016 data.