Mixed effect probit regression Genotypic fungal resistance

Dr. Jarad Niemi

STAT 544 - Iowa State University

April 30, 2024

Outline

- Probit regression
- Bayesian probit regression
 - Data augmentation
- Bayesian mixed effect probit regression
- Extensions
 - Ordinal categorical data
 - Nominal categorical data
 - Bayesian logistic regression

Probit regression

Consider the model

$$Y_i \stackrel{ind}{\sim} Ber(\theta_i)$$

where, for the ith observation,

- \bullet Y_i is binary indicating success and
- θ_i is the probability of success.

A probit regression model assumes

$$\theta_i = \Phi(X_i^{\top} \beta)$$

where

- X_i are the explanatory variables for the *i*th observation,
- ullet Φ is the standard normal cumulative distribution function, and
- β is the vector of parameters to be estimated.

Low birth weight

low	age	lwt	race	smoke	ptl	ht
Min. :0.0000	Min. :14.00	Min. : 80.0	1:96	Min. :0.0000	Min. :0.0000	Min. :0.00000
1st Qu.:0.0000	1st Qu.:19.00	1st Qu.:110.0	2:26	1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:0.00000
Median :0.0000	Median:23.00	Median :121.0	3:67	Median :0.0000	Median :0.0000	Median :0.00000
Mean :0.3122	Mean :23.24	Mean :129.8		Mean :0.3915	Mean :0.1958	Mean :0.06349
3rd Qu.:1.0000	3rd Qu.:26.00	3rd Qu.:140.0		3rd Qu.:1.0000	3rd Qu.:0.0000	3rd Qu.:0.00000
Max. :1.0000	Max. :45.00	Max. :250.0		Max. :1.0000	Max. :3.0000	Max. :1.00000
ui	ftv	bwt				
Min. :0.0000	Min. :0.0000	Min. : 709				
1st Qu.:0.0000	1st Qu.:0.0000	1st Qu.:2414				
Median :0.0000	Median :0.0000	Median:2977				
Mean :0.1481	Mean :0.7937	Mean :2945				
3rd Qu.:0.0000	3rd Qu.:1.0000	3rd Qu.:3487				
Max. :1.0000	Max. :6.0000	Max. :4990				

```
m = glm(low~., family=binomial(link="probit"), data=birthwt[,-10]); summary(m)
Call:
glm(formula = low ~ ., family = binomial(link = "probit"), data = birthwt[,
   -107)
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
age
          -0.09774 0.11482 -0.851 0.39466
lwt
          -0.27281 0.12217 -2.233 0.02555 *
race2
        0.74961 0.31431 2.385 0.01708 *
race3
         0.52183 0.25557 2.042 0.04117 *
         0.56910 0.23469 2.425 0.01531 *
smoke
         0.31968 0.20835 1.534 0.12495
ptl
          1.11161 0.41664
                            2.668 0.00763 **
ht.
11 i
         0.46517 0.27930
                            1.665 0.09581 .
          0.02832 0.10161
                            0.279 0.78050
ftv
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 234.67 on 188 degrees of freedom
Residual deviance: 201.03 on 179 degrees of freedom
AIC: 221.03
Number of Fisher Scoring iterations: 5
```

Bayesian probit regression

Consider the model

$$Y_i \stackrel{ind}{\sim} Ber(\theta_i)$$

$$\theta_i = \Phi(X_i^{\top}\beta)$$

with prior

$$\beta \sim N(b, B)$$

The posterior distribution is

$$p(\beta|y) \propto p(y|\beta)p(\beta) \\ \propto \left[\prod_{i=1}^{n} \Phi(X_{i}'\beta)^{y_{i}} [1 - \Phi(X_{i}'\beta)]^{1-y_{i}} \right] e^{-(\beta-b)^{\top}B^{-1}(\beta-b)/2}$$

But neither $p(\beta|y)$ nor $p(\beta_p|y,\beta_{-p})$ are a known distribution.

Data augmentation

An alternative construction of the model is

$$Y_i = I(\zeta_i > 0)$$

$$\zeta_i \stackrel{ind}{\sim} N(X_i'\beta, 1)$$

Note that

$$\begin{array}{ll} \theta_i &= P(Y_i = 1) \\ &= P(\zeta_i > 0) \\ &= P(X_i'\beta + \epsilon > 0) \quad \epsilon \sim N(0,1) \\ &= P(\epsilon > -X_i'\beta) \\ &= P(\epsilon < X_i'\beta) \qquad \text{symmetry of standard normal} \\ &= \Phi(X_i'\beta) \end{array}$$

Thus, this is equivalent to the probit regression model.

Posterior distribution

Now, the likelihood is

$$p(y|\zeta) \propto \prod_{i=1}^{n} [I(\zeta_i > 0)I(y_i = 1) + I(\zeta_i \le 0)I(y_i = 0)]$$

and

$$\zeta_i \stackrel{ind}{\sim} N(X_i'\beta, 1) \qquad \beta \sim N(b, B)$$

Therefore the complete data likelihood is

$$p(y,\zeta|\beta) \propto \prod_{i=1}^{n} N(\zeta_i|X_i'\beta,1) [I(\zeta_i>0)I(y_i=1) + I(\zeta_i\leq 0)I(y_i=0)]$$

Thus the posterior distribution is

$$p(\beta,\zeta|y) \propto p(y|\zeta,\beta)p(\zeta,\beta) = p(y|\zeta)p(\zeta|\beta)p(\beta) = p(y,\zeta|\beta)p(\beta)$$

and we will derive the full conditionals for $p(\beta|\zeta,y)$ and $p(\zeta|\beta,y)$.

Full conditional for β

The full conditional for β is

$$p(\beta|\ldots) \propto p(y|\zeta)p(\zeta|\beta)p(\beta)$$

$$\propto p(\zeta|\beta)p(\beta)$$

$$= \left[\prod_{i=1}^{n} N(\zeta_{i}|X'_{i}\beta,1)\right]N(\beta|b,B)$$

$$= N(\zeta|X\beta,I)N(\beta|b,B)$$

and thus $eta|\ldots\sim N(\hat{eta},\hat{\Sigma}_{eta})$ with

$$\hat{\Sigma}_{\beta} = [B^{-1} + X^{\top}X]^{-1}$$

$$\hat{\beta} = \hat{\Sigma}_{\beta}[B^{-1}b + X^{\top}\zeta]$$

Full conditional for ζ

The full conditional for ζ is

$$p(\zeta|\ldots) \propto p(y|\zeta)p(\zeta|\beta)p(\beta)$$

$$\propto p(y|\zeta)p(\zeta|\beta)$$

$$= \prod_{i=1}^{n} N(\zeta_i|X_i'\beta,1) \left[I(\zeta_i > 0)I(y_i = 1) + I(\zeta_i \le 0)I(y_i = 0) \right]$$

Thus the ζ_i are conditionally independent with distribution

$$p(\zeta_i|y_i,\beta) = \begin{cases} N(\zeta_i|X_i'\beta,1)I(\zeta_i > 0) & \text{if } y_i = 1\\ N(\zeta_i|X_i'\beta,1)I(\zeta_i \le 0) & \text{if } y_i = 0 \end{cases}$$

These can be drawn using the modified inverse cdf method.

```
mcmc = function(n_iter, y, X, beta0, Sigma_beta) {
  n = nrow(X)
  p = ncol(X)
  # Precalculate quantities
  v = (as.numeric(v)==1)
  n1 = sum(y)
  n0 = sum(!y)
  XX = t(X)%*%X
  Si = solve(Sigma_beta)
  Sib = Si%*%beta0
  # Savina structures
  beta_keep
                 = matrix(NA, n_iter, p)
  zeta_keep
                   = matrix(NA, n_iter, n)
  # Tnitial values
  m = glm(y~X-1, family=binomial("probit"))
  beta = coef(m)
  zeta = rep(NA,n)
  for (i in 1:n_iter) {
    # Sample zeta
    Xb = X%*%beta
    cut = pnorm(0, Xb)
    zeta[v] = gnorm(runif(n1, cut[v], 1), Xb[v], 1)
    zeta[!y] = qnorm(runif(n0, 0, cut[!y]), Xb[!y], 1)
    # Sample beta
    S hat = solve(Si+XX)
    b_hat = S_hat %*% (Sib+t(X)%*%zeta)
    beta = mvrnorm(1, b_hat, S_hat)
    # Record values
    beta_keep[i,] = beta
```

Run the MCMC

```
X = model.matrix(m) # Constructs the design matrix
p = ncol(X)
n_iter = 10000
system.time(out <- mcmc(n_iter, birthwt$low, X, rep(0,p), 3*diag(p)))
user system elapsed
0.679 0.028 0.706</pre>
```


Credible intervals

```
# A tibble: 10 x 4
  variable
           ess
                     1b
                           ub
  <fct>
        <dbl> <dbl> <dbl>
1 (Intercept) 1951 -1.76 -0.81
             2525 -0.33 0.11
2 age
3 lwt
            3012 -0.53 -0.05
4 race2
           3476 0.11 1.32
             2472 0
                         0.98
5 race3
6 smoke
              2110 0.09 1.01
7 ptl
             4769 -0.07 0.72
8 ht
              3293 0.26 1.87
            4056 -0.08 0.98
9 ui
10 ftv
              3215 -0.19 0.22
```

Probit regression with random effects

Consider the probit regression model

$$Y_i = I(\zeta_i > 0)$$

 $\zeta \sim N(\tilde{X}\tilde{\beta}, 1)$

where

$$\tilde{X} = [X \quad Zm] \qquad \tilde{\beta} = (\beta, \alpha)^{\top}$$

where X is the design matrix for fixed effects and Zm is the design matrix for the random effects. A common assumption is that the random effects are $\alpha \sim N(0, \sigma^2 I)$. Thus the distribution on $\tilde{\beta}$ is

$$\tilde{\beta} = \begin{pmatrix} \beta \\ \alpha \end{pmatrix} \sim N \left(\begin{bmatrix} b \\ 0 \end{bmatrix}, \begin{bmatrix} B & 0 \\ 0 & \sigma^2 \mathbf{I} \end{bmatrix} \right)$$

where the precision is

$$\begin{bmatrix} B & 0 \\ 0 & \sigma^2 \mathbf{I} \end{bmatrix}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ 0 & \frac{1}{\sigma^2} \mathbf{I} \end{bmatrix}$$

Full posterior

The full posterior is

$$p(\zeta,\beta,\alpha,\sigma^2|y) \propto p(y|\zeta)p(\zeta|\tilde{\beta})p(\tilde{\beta}|\sigma^2)p(\sigma^2)$$

We have already derived the full conditionals

- $p(\tilde{\beta}|\ldots)$
- $p(\zeta|\ldots)$

but we need the full conditional for σ^2 to implement a Gibbs sampler.

Full conditional for σ^2

If we choose $\sigma \sim Unif(0,10)$ and there are U random effects, then

$$\begin{split} p(\sigma^{2}|\dots) & \propto p(y|\zeta)p(\zeta|\tilde{\beta})p(\tilde{\beta}|\sigma^{2})p(\sigma^{2}) \\ &= p(\tilde{\beta}|\sigma^{2})p(\sigma^{2}) \\ & \propto p(\alpha|\sigma^{2})p(\sigma^{2}) \\ & \propto \prod_{i=1}^{U} N(\alpha_{i}|0,\sigma^{2})\frac{1}{\sigma}\mathrm{I}(0<\sigma^{2}<100) \\ & \propto (\sigma^{2})^{-U/2}e^{-\frac{1}{2\sigma^{2}}\alpha'\alpha}(\sigma^{2})^{-1/2}\mathrm{I}(0<\sigma^{2}<100) \\ &= (\sigma^{2})^{-\frac{U-1}{2}-1}e^{-\frac{\alpha'\alpha}{2\sigma^{2}}}\mathrm{I}(0<\sigma^{2}<100) \end{split}$$

Thus $\sigma^2 \sim IG([U-1]/2, \alpha'\alpha/2)$ truncated to be smaller than 100. This can be drawn using the modified inverse cdf method.

Genotypic resistance to corn fungus

	Х	genotype	block	spore	hypha	prop	pot
1	1	X	1	82	25	0.3048780	X1
6	6	X	2	95	41	0.4315789	X2
11	11	X	3	102	59	0.5784314	ХЗ
16	16	Y	1	83	19	0.2289157	Y1
21	21	Y	2	99	38	0.3838384	Y2
26	26	Y	3	104	58	0.5576923	Y3
31	31	Z	1	102	30	0.2941176	Z1
36	36	Z	2	105	61	0.5809524	Z2
41	41	Z	3	103	37	0.3592233	Z3
46	46	wt	1	140	76	0.5428571	wt1
51	51	wt	2	143	89	0.6223776	wt2
56	56	wt	3	158	123	0.7784810	wt3

Corn fungus data set


```
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
Family: binomial (probit)
Formula: cbind(hypha, spore - hypha) ~ block + genotype + (1 | pot)
  Data: d
Control: glmerControl(optimizer = "bobyga")
    ATC
            BIC logLik deviance df.resid
            98.7 -40.6 81.3
   95.3
Scaled residuals:
    Min
            10 Median
                              30
                                      Max
-1.45760 -0.35765 0.05486 0.36506 1.32376
Random effects:
Groups Name Variance Std.Dev.
pot (Intercept) 0.01773 0.1331
Number of obs: 12, groups: pot, 12
Fixed effects:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.05126 0.12429 0.412 0.680052
block2 0.42497 0.13027 3.262 0.001106 **
block3 0.60818 0.13006 4.676 2.92e-06 ***
genotypeX -0.55654 0.14700 -3.786 0.000153 ***
genotypeY -0.68630 0.14725 -4.661 3.15e-06 ***
genotypeZ -0.62691 0.14500 -4.324 1.53e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation of Fixed Effects:
         (Intr) block2 block3 gntypX gntypY
block2 -0.530
block3 -0.526 0.522
genotypeX -0.520 -0.019 -0.027
genotypeY -0.514 -0.027 -0.035 0.454
```

```
mcmc = function(n_iter, y, X, Zm, beta0, Sigma_beta) {
  require(Matrix)
  n = nrow(X)
  p = ncol(X)
  q = ncol(Zm)
  # Initial values
  m = glm(y~0+X, family=binomial("probit"))
  beta = c(coef(m),rnorm(q))
  zeta = rep(NA,n)
  # Precalculate quantities
  v = (as.numeric(v)==1)
  n1 = sum(y)
  n0 = sum(!y)
  X = cbind(X, Zm)
  XX = t(X)%*%X
  Si = solve(Sigma_beta)
  Sib = Si%*%beta0
  a = (q-1)/2
  # Saving structures
  beta_keep = matrix(NA, n_iter, p)
  alpha_keep = matrix(NA, n_iter, q)
  sigma_keep = rep(NA, n_iter)
  for (i in 1:n_iter) {
    # Sample zeta
    Xb = X%*%beta
    cut = pnorm(0,as.numeric(Xb))
    zeta[ y] = qnorm(runif(n1, cut[ y], 1), Xb[ y], 1)
    zeta[!y] = qnorm(runif(n0, 0, cut[!y]), Xb[!y], 1)
    # Sample sigma
    alpha = beta[p+1:q]
```

```
# Turn into binary data
dd = ddply(d, .(genotype, block, pot), function(x) {
    data.frame(y=c(rep(1, x$hypha), rep(0, x$spore - x$hypha)))
})

m = glmer(y ~ genotype + block + (1|pot), family = binomial("probit"), dd)

X = model.matrix(m)
Z = as.matrix(getME(m,"Z"))
p = ncol(X)
n_iter = 10000
system.time(out <- mcmc(n_iter, dd$y, X, Z, rep(0,p), 10*diag(p)))

user system elapsed
15.596    0.348    15.944</pre>
```


Credible intervals

```
# A tibble: 7 x 4
 variable
                    1h
              ASS
                          11h
 <fct>
            <dbl> <dbl> <dbl>
1 (Intercept) 9036 -0.45 0.55
2 genotypeX 8827 -1.13 0.05
3 genotypeY 9020 -1.25 -0.09
4 genotypeZ 8726 -1.17 -0.04
5 block2
             8970 -0.09 0.94
6 block3
             9376 0.08 1.09
7 sigma
             1667 0.13 0.67
```

Contrasts to compare other genotypes

t priors

Suppose we want $\beta_j \stackrel{ind}{\sim} t_{v_j}(b_j, B_j)$. We can write this prior hierarchically via

$$\beta_j | \tau_j^2 \stackrel{ind}{\sim} N(b_j, \tau_j^2), \qquad \tau_j^2 \sim \text{Inv} - \chi^2(v_j, B_j).$$

Now the MCMC can proceed exactly as before, but with the additional full conditional for $(\tau_1^2,\ldots,\tau_J^2)$ which will be independent inverse χ^2 distributions.

Binary response

Latent variable for binary response

Ordinal response with 3 categories

Latent variable for ordinal response

Unordered categorical response

Suppose Y_i is random variable with support $1, \ldots, K$ and

$$Pr(Y_i = k) = \theta_{ik}$$

where θ_{ik} may depend on explanatory variables for both i and k. For example, an individual is shopping for fruit then perhaps the age of the individual and the price of the fruits will affect the shopper's choice.

We can model this using data augmentation by introducing a latent utility ζ_{ik} for each shopper-fruit combination. Then the response is

$$Y_i = \operatorname{argmax}_k \zeta_{ik}$$

and there is great flexibility in how the ζ_{ik} are modeled.

Bayesian logistic regression

$$Y_i = I(\zeta_i > 0)$$

$$\zeta_i \stackrel{ind}{\sim} Logistic(X_i'\beta, 1)$$

```
[1] "LogitPG: Iteration 2000"
[1] "LogitPG: Iteration 4000"
[1] "LogitPG: Iteration 6000"
[1] "LogitPG: Iteration 8000"
[1] "LogitPG: Iteration 10000"
                2.5 %
                         97.5 %
                                 X1 lb ub
(Intercept) -3.14081600 -1.37637277 (Intercept) -3.29 -1.47
          -0.54965424 0.22294401
                                 age -0.58 0.23
age
                                     lwt -0.97 -0.10
          -0.91079221 -0.07537297
lwt
         0.24166064 2.32608774
                                      race2 0.26 2.41
race2
       0.02661178 1.76511921
                                      race3 0.06 1.85
race3
smoke
       0.16158429 1.74790611
                                      smoke 0.20 1.83
ptl
        -0.12346116 1.24603059
                                        ptl -0.13 1.30
          0.53239257 3.32119843
                                       ht 0.60 3.48
ht.
11 i
          -0.14356295 1.67090307
                                       ui -0.15 1.72
ftv
          -0.28308378 0.39881567
                                      ftv -0.29 0.40
```