In [1]: import pandas as pd
 df=pd.read_csv("D:\data1.csv")
 df.head(20)

Out[1]:

	Car	Model	Volume	Weight	CO2
0	Toyoty	Aygo	1000	790	99
1	Mitsubishi	Space Star	1200	1160	95
2	Skoda	Citigo	1000	929	95
3	Fiat	500	900	865	90
4	Mini	Cooper	1500	1140	105
5	VW	Up!	1000	929	105
6	Skoda	Fabia	1400	1109	90
7	Mercedes	A-Class	1500	1365	92
8	Ford	Fiesta	1500	1112	98
9	Audi	A1	1600	1150	99
10	Hyundai	I 20	1100	980	99
11	Suzuki	Swift	1300	990	101
12	Ford	Fiesta	1000	1112	99
13	Honda	Civic	1600	1252	94
14	Hundai	130	1600	1326	97
15	Opel	Astra	1600	1330	97
16	BMW	1	1600	1365	99
17	Mazda	3	2200	1280	104
18	Skoda	Rapid	1600	1119	104
19	Ford	Focus	2000	1328	105

```
In [2]: df.shape
Out[2]: (36, 5)
In [3]: df.describe()
Out[3]:
                    Volume
                                Weight
                                             CO2
                  36.000000
                              36.000000
                                        36.000000
          count
                 1611.11111 1292.277778 102.027778
          mean
            std
                 388.975047
                             242.123889
                                         7.454571
```

```
In [4]: X=df[['Weight','Volume']]
X.head()
```

900.000000

25% 1475.000000 1117.250000

50% 1600.000000 1329.000000

min

790.000000

75% 2000.00000 1418.250000 105.000000 **max** 2500.00000 1746.00000 120.000000

90.000000

97.750000

99.000000

Out[4]:

		Weight	Volume
-	0	790	1000
	1	1160	1200
	2	929	1000
	3	865	900
	4	1140	1500

```
In [5]: |y=df['CO2']
        y.head()
Out[5]: 0
              99
        1
              95
        2
              95
        3
              90
        4
             105
        Name: CO2, dtype: int64
In [6]: from sklearn import linear_model
        regr=linear_model.LinearRegression()
        regr.fit(X,y)
Out[6]:
         ▼ LinearRegression
         LinearRegression()
```

predict the CO2 emission of a car where the weight is 2100kg, and the volume is 1100cm3:

```
In [7]: predictedC02=regr.predict([[2100,1100]])
    print(predictedC02)

[104.13749184]
```

C:\Users\kumar\anaconda3\lib\site-packages\sklearn\base.py:420: UserWarning: X does not have valid feature n
ames, but LinearRegression was fitted with feature names
warnings.warn(

REMOVE WARNING

```
In [8]: import warnings
warnings.filterwarnings('ignore')
```

coefficient values of the regression object:

```
In [9]: print(regr.coef_)
      [0.00755095 0.00780526]
```

Explaination of coefficient values of the regression object

```
array represents the coefficient values of weight and volume.

Weight: 0.00755095
Volume: 0.00780526

These values tell us that if the weight increase by 1000kg, the CO2 emission increases by 0.00755095g*1000=7.55095g.

And if the engine size (Volume) increases by 1000cm3, the CO2 emission increases by 0.00780526 g*1000=7.80526g.
```

predict the CO2 emission of a car where the weight is 3100kg, and the volume is 1100cm3:

Predict the CO2 emission of a car where the weight is 3100kg, and the volume is 2100cm3. here emission of co2 is increase by 7.80526g

In [13]:	<pre>predictedCO2=regr.predict([[3100,2100]]) print(predictedCO2)</pre>				
	[119.49369664]				
In []:					