## Statistical Constituency Parsing

March 27, 2020

#### vázlat

- 1. Valószínűségi környezetfüggetlen nyelvtan (PCFG)
- 2. A PCFG-k elemzése valószínűségi CKY algoritmussal
- 3. PCFG szabály-valószínűségek felderítése
- 4. PCFG nyelvtanok problémái
- 5. PCFG nyevtanok javítása: nem terminálisok feldarabolása
- 6. Valószínűségi lexikalizált CFG-k
- 7. Valószínűségi CCG elemzés
- 8. Elemzések kiértékelése

## Valószínűségi környezetfüggetlen nyelvtan (PCFG)

#### Mi az a PCFG?

- a mondatok általában többértelműek (pl. attachment vagy mellérendelés értelmében)
- a többértelműségeket a CKY algoritmus képes reprezentálni, de kezelni nem
- ezért: valószínűségek hozzárendelése a környezetfüggetlen nyelvtan (CFG) szabályaihoz
  - · CFG  $\rightarrow$  PCFG
- az elemzett mondat minden reprezentációja kap egy valószínűséget → legvalószínűbb kiválasztása

#### Mi az a PCFG?

- N a set of **non-terminal symbols** (or **variables**)
- $\Sigma$  a set of **terminal symbols** (disjoint from N)
- *R* a set of **rules** or productions, each of the form  $A \to \beta$  [*p*], where *A* is a non-terminal,
  - $\beta$  is a string of symbols from the infinite set of strings  $(\Sigma \cup N)$ \*, and p is a number between 0 and 1 expressing  $P(\beta | A)$
- S a designated start symbol

#### Mi az a PCFG?

A PCFG abban különbözik CFG-től, hogy minden egyes R szabályhoz valószínűséget rendel:  $A \to \beta \; |p|$ 

$$= P(A \rightarrow \beta)$$

vagy:

$$P(A \rightarrow \beta | A)$$

vagy pedig:

Ha veszünk egy nem terminális elemet és annak összes lehetséges derivációját: a valószínűségeik összege 1 lesz (köv. dián megszemlélhető):

$$\sum_{\beta} P(A \to \beta) = 1$$

4

## Mini angol grammatika valószínűségekkel

| Grammar                                                    |       | Lexicon                                                  |
|------------------------------------------------------------|-------|----------------------------------------------------------|
| $S \rightarrow NP VP$                                      | [.80] | $Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$ |
| $S \rightarrow Aux NP VP$                                  | [.15] | $Noun \rightarrow book [.10] \mid flight [.30]$          |
| $S \rightarrow VP$                                         | [.05] | meal [.05]   money [.05]                                 |
| $NP \rightarrow Pronoun$                                   | [.35] | flight [.40]   dinner [.10]                              |
| NP 	o Proper-Noun                                          | [.30] | $Verb \rightarrow book [.30] \mid include [.30]$         |
| $NP \rightarrow Det Nominal$                               | [.20] | <i>prefer</i> [.40]                                      |
| $NP \rightarrow Nominal$                                   | [.15] | $Pronoun \rightarrow I[.40] \mid she[.05]$               |
| $Nominal \rightarrow Noun$                                 | [.75] | me [.15]   you [.40]                                     |
| $Nominal \rightarrow Nominal Noun$                         | [.20] | $Proper-Noun \rightarrow Houston [.60]$                  |
| $Nominal \rightarrow Nominal PP$                           | [.05] | <i>NWA</i> [.40]                                         |
| $VP \rightarrow Verb$                                      | [.35] | $Aux \rightarrow does [.60] \mid can [.40]$              |
| $VP \rightarrow Verb NP$                                   | [.20] | $Preposition \rightarrow from [.30] \mid to [.30]$       |
| $VP \rightarrow Verb NP PP$                                | [.10] | on [.20]   near [.15]                                    |
| $VP \rightarrow Verb PP$                                   | [.15] | through [.05]                                            |
| $\mathit{VP}  	o  \mathit{Verb}  \mathit{NP}  \mathit{NP}$ | [.05] |                                                          |
| $VP \rightarrow VP PP$                                     | [.15] |                                                          |
| $PP \rightarrow Preposition NP$                            | [1.0] |                                                          |

Figure 14.1

#### Egyértelműsétés PCFG-vel

A PCFG egy mondat *S* minden egyes szintaxisfájához *T* rendel egy valószínűséget

Egy fa valószínűsége: a fában használt szabályok valószínűségének szorzata:

$$P(T) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

#### Egyértelműsétés PCFG-vel: példa



#### Egyértelműsétés PCFG-vel: példa

A bal és jobb oldali fa valószínűsége (Book the dinner flight):

$$P(T_{left}) = .05 \times .20 \times .20 \times .20 \times .75 \times .30 \times .60 \times .10 \times .40 = 2.2 \times 10^{-6}$$

$$P(T_{right}) = .05 \times .10 \times .20 \times .15 \times .75 \times .75 \times .30 \times .60 \times .10 \times .40 = 6.1 \times 10^{-7}$$

A legvalószínűbb deriváció kiválasztása:

$$\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T)$$

8

#### PCFG nyelvmodellezéshez

#### A PCFG fontos tulajdonságai nyelvmodellezéshez:

• egy mondat valószínűsége: a mondatból generált szintaxisfák valószínűségének összege:

$$\sum_{T \text{ s.t.S=yield(T)}} P(T)$$

- · hozzá tud rendelni valószínűségeket egy mondat részeihez is
- pl. a következő szó valószínűsége a mondat korábbi szavaiból (PCFG nyelvtanok ezt megengedik):

$$P(w_i|w_1, w_2, ..., w_{i-1}) = \frac{P(w_1, w_2, ..., w_{i-1}, w_i)}{P(w_1, w_2, ..., w_{i-1})}$$

9

# A PCFG-k elemzése valószínűségi

CKY algoritmussal

#### valószínűségi CKY algoritmus

A valószínűségi CKY algoritmus feltételezi, hogy a PCGF Chomsky normál alakban van:

- 1. minden szabályra igaz, hogy a jobb oldalán vagy két nem terminális van vagy egy terminális
- 2.  $A \rightarrow BC$  vagy  $A \rightarrow w$ 
  - a valószínűségi CKY algoritmus kétdimenziós tábla helyett háromdimenziós táblával dolgozik:  $(n + 1) \times (n + 1) \times V$
  - minden cella [i,j,A] az  $(n+1)\times(n+1)\times V$  mátrixban egy A típusú konstituens valószínűségi értéke

#### valószínűségi CKY algoritmus

```
function PROBABILISTIC-CKY(words,grammar) returns most probable parse and its probability
```

```
\begin{aligned} &\textbf{for } j \leftarrow \textbf{from 1 to } \texttt{LENGTH}(words) \textbf{ do} \\ &\textbf{for } \textbf{all } \left\{ A \mid A \rightarrow words[j] \in grammar \right\} \\ & table[j-1,j,A] \leftarrow P(A \rightarrow words[j]) \\ &\textbf{for } i \leftarrow \textbf{from } j-2 \textbf{ downto } 0 \textbf{ do} \\ &\textbf{for } k \leftarrow i+1 \textbf{ to } j-1 \textbf{ do} \\ &\textbf{for } \textbf{ all } \left\{ A \mid A \rightarrow BC \in grammar, \\ &\textbf{ and } table[i,k,B] > 0 \textbf{ and } table[k,j,C] > 0 \right. \right\} \\ &\textbf{ if } (table[i,j,A] < P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]) \textbf{ then} \\ & table[i,j,A] \leftarrow P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C] \\ &back[i,j,A] \leftarrow \{k,B,C\} \end{aligned} \textbf{return } \texttt{BUILD\_TREE}(back[1, \texttt{LENGTH}(words), S]), table[1, \texttt{LENGTH}(words), S] \end{aligned}
```

Figure 14.3 The probabilistic CKY algorithm for finding the maximum probability parse of a string of num\_words words given a PCFG grammar with num\_rules rules in Chomsky normal form. back is an array of backpointers used to recover the best parse. The build\_tree function is left as an exercise to the reader.

#### Mini példa mini grammatikával



#### Mini példa mini grammatikával (kitöltött verzió)



PCFG szabály-valószínűségek

felderítése

#### PCFG szabály-valószínűségek felderítése

De hogyan jussunk hozzá a PCFG szabályainak valószínűségéhez? Két mód áll rendelkezésre:

1. eset: meglévő Treebank-ból való kinyerés

$$P(\alpha \to \beta | \alpha) = \frac{Count(\alpha \to \beta)}{\sum_{\gamma} Count(\alpha \to \gamma)} = \frac{Count(\alpha \to \beta)}{Count(\alpha)}$$

- 2. eset: inside-outside algoritmus
  - induljon monden szabály egyenlő valószínűséggel → mondat elemzése → a megszámlált szabályok súlyozása a kezdeti valószínűségekkel → valószínűségek újrakalkulálása → egész folyamat ismétlése

PCFG: problémák

#### PCFG: problémák

- 1. **Poor independence assumpions**: a CFG környezetfüggetlensége miatt kevésbé jól modellezi a struktúrális függőségeket
- Lack of lexical conditioning: a CFG szabályai nem veszik figyelembe az egyes szavak szintaktikai jellemzőit
   -> grammatikai kategóriák, prepozíciók, mellérendelések kétértelműsége

#### Poor independence assumpions

- a PCFG egyes szabályainak valószínűsége, mint például a NP → Det N, függetlenek a szintaxisfa többi részétől
- · ennek nem kellene így lennie:

|         | Pronoun | Non-Pronoun |
|---------|---------|-------------|
| Subject | 91%     | 9%          |
| Object  | 34%     | 66%         |

- pl. az angolban azok az NP-k, amik szintaktikailag alanyi pozíciót foglalnak el nagyobb eséllyel névmások
- míg a szintaktikailag tárgyi pocícióban: inkább nem névmások (hanem pl. NNP vagy DT NN)

#### Lack of lexical conditioning

A PCFG másik hiányossága, hogy érzéketlen a fában lévő szavakra, pedig:

- 1. egy fa valószínűségébe beleszámít az egyes szavak grammatikai kategóriájának valószínűsége is (pl.  $V \to sleep, NN \to book, stb$ )
- 2. a szavak figyelembevétele hozzásegít annak eldöntéséhez, hogy egy PP-t NP-hez vagy VP-hez kapcsoljunk
- 3. a mellérendelés egyérteműsítésében is segít (pl. *dogs in houses and cats*)

#### Példák PP attachment-re

- 1. példa: Workers dumped sacks into a bin  $\rightarrow$  VP-hez kell csatolni az into-t és nem az NP-hez
- 2. példa: fishermen caught tons of herring  $\rightarrow$  NP-hez kell csatolni a of-ot

Az angolban statisztikailag több esetben kapcsolódik PP NP-hez, de ez nem jó kiindulási pont

A fenti példák jól mutatják, hogy nem érdemes kiválasztani egy preferálandó frázist, amihez kötjük majd a PP-ket

#### PP attachment: workers dumped sack into a bin



**Figure 14.6** Another view of the preposition attachment problem. Should the *PP* on the right attach to the *VP* or *NP* nodes of the partial parse tree on the left?

#### Példák PP attachment-re

Mi határozza meg, hogy míg az 1. példában VP attachment-re van szükségünk, addig a 2. példában az NP attachment-re?

- az 1. példában a dumped és az into között nagyobb az affinitás, mint a sack és az into között → VP attachment
- $\cdot$  viszont a 2. példában a tons és of között nagyobb az affinitás o NP attachment

# PCFG nyevtanok javítása

#### Nem terminálisok tovább bontása (split)

Hogyan lehetne a struktúrális függőségeket (poor independence assumpions) jobban modellezni?

- · split: Non\_Term<sub>subcat\_one</sub> és Non\_Term<sub>subcat\_two</sub>
- így az  $NP_{subject} o PRP$  és  $NP_{object} o PRP$  külön-külön más valószínűséget fog kapni

#### Nem terminálisok tovább bontása: implementáció

Egy lehetséges mód a megvalósítására: parent annotation

· minden csomópontot felcímkézünk a szülője nevével



**Figure 14.8** A standard PCFG parse tree (a) and one which has **parent annotation** on the nodes which aren't pre-terminal (b). All the non-terminal nodes (except the pre-terminal part-of-speech nodes) in parse (b) have been annotated with the identity of their parent.

#### Parent annotaion továbbjavítása

A parent annotation koncepcióját is tovább lehet fejleszteni

 nem csak a nem terminálisokat, hanem preterminálisokat is tovább bontjuk (szülővel való felcímkézés)



Figure 14.9 An incorrect parse even with a parent-annotated parse (left). The correct parse (right), was produced by a grammar in which the pre-terminal nodes have been split, allowing the probabilistic grammar to capture the fact that if prefers sentential complements. Adapted from Klein and Manning (2003b).

#### Hátrányok

#### Azért ennek is vannak hátrányai:

- $\cdot$  a csomópontok felcímkézése növeli a nyelvtan méretét o kevesebb tanítóanyag a nyeltan szabályaihoz
- így vigyázni kell a bontás (split) mértékére, illetve jó algoritmust találni rá (pl. split and merge algoritmus)

- ezekben a modellekben lehetségessé válnak a lexikalizált szabályok (pl. Collins parser vagy Charniak parser)
- · a konstituensek kiegészülnek egy lexikális fejjel
- minden nem terminális mellett fel van tüntetve a feje és a fej part-of-speech tag-je
- a  $VP \rightarrow VBD$  NP PP szabály így lesz kiegészítve:

 $VP(dumped, VBD) \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, P)$ 



Figure 14.10 A lexicalized tree, including head tags, for a WSJ sentence, adapted from Collins (1999). Below we show the PCFG rules needed for this parse tree, internal rules on the left, and lexical rules on the right.

- minden PCFG szabály bal oldala tartalmazza az egyik jobb oldali konstituens headword-jét és head tag-jét
- · csak az internális szabályok probabilitását kell kiszámolni
- mivel túl specifikus szabályokat fog tartalmazni a nyelvtan, az alábbi MLE-t nem érdemes alkalmazni

 $\frac{\textit{Count}(\textit{VP}(\textit{dumped},\textit{VBD}) \rightarrow \textit{VBD}(\textit{dumped},\textit{VBD}) \, \textit{NP}(\textit{sacks},\textit{NNS}) \, \textit{PP}(\textit{into},\textit{P}))}{\textit{Count}(\textit{VP}(\textit{dumped},\textit{VBD}))}$ 

#### **Collins Parser**

Minden lépésnek saját valószínűségi értéke van, amit a végén összeszorzunk:

- 1. a szabály fejének legenerálása
- 2. a fej dependenseinek legenerálása egymás után balról jobbra
- 3. ha bal vagy jobb oldalon nincs dependens, a STOP speciális szimbólumot arra az oldalra

 $P_H \rightarrow$  a fej generálása

 $P_L \rightarrow$  baloldali dependensek generálása

P<sub>R</sub> → jobboldali dependensek generálása

#### **Collins Parser**



#### Collins Parser

```
Tehát a
```

```
P(VP(dumped, VBD) \rightarrow VBD(dumped, VBD) NP(sacks, NNS) PP(into, P))
```

kiszámítása a következőképpen történik:

$$P_H(VBD|VP, dumped) \times P_L(STOP|VP, VBD, dumped) \times P_R(NP(sacks, NNS)|VP, VBD, dumped)$$

 $\times P_R(PP(into, P)|VP, VBD, dumped)$ 

 $\times$  P<sub>R</sub>(STOP|VP, VBD, dumped)

MLE egy kisebb egységre

Count(VP(dumped, VBD) with NNS(sacks) as a daughter somewhere on the right) Count(VP(dumped, VBD))

#### Collins parser

#### A lépések képletekkel

1. fej

$$P_H(H(hw, ht)|P, hw, ht)$$

2. bal konstituensek

$$\prod_{i=1}^{n+1} P_L(L_i(lw_i, lt_i)|P, H, hw, ht)$$

ahol

$$L_n + 1(lw_{n+1}, lt_{n+1}) = STOP$$

3. jobb konstituensek

$$\prod_{i=1}^{n+1} P_R(R_i(rw_i, rt_i)|P, H, hw, ht)$$

ahol

$$R_n + 1(rw_{n+1}, rt_{n+1}) = STOP$$

Valószínűségi CCG elemzés

#### Ismétlés

#### A CCG három részből áll:

- · kategóriák halmaza
- · lexikon, ami szavakhoz kategóriákat rendel
- a szabályok halmaza, ami meghatározza, hogyan lehet a kategóriákat kombinálni

#### Kategóriák lehetnek:

- · atomikus elemek: pl. S vagy NP
- függvények: (S\NP)/NP, ami keres egy NP-t jobb oldalon és visszaad egy (S\NP)-t

## Többértelműség a CCG-ben

CFG: a többértelműség a szabályokból számrazik CCG: elsősorban a lexikonban kiosztott kategóriákból

Vegyük a következő példamondatot:

United diverted the flight to Reno.

A P to-hoz három kategóriát rendelhetünk:

- módosíthatja a the flight-ot  $\rightarrow$  (NP\NP)/NP
- · módosíthatja a VP-t  $\rightarrow$  (S\S)/NP
- $\cdot$  illetve lehet a V *diverted* argumentuma is o PP/NP

#### Többértelműség a CCG-ben



#### **CCG Parsing Frameworks**

PCKY: rögzíti az összes inputból kinyert konstituens helyét, kategóriáját, valószínűségét.

CCG-ben lévő sok lexikai kategória, amit egy szó felvehet + kombinatorikus szabályok → túl sok lehetőség, zombi konstituensek

A fenti probléma szupertaggeléssel (supertagging) orvosolható:

 minden szónak megtalálni a legvalószínűbb kategóriáját és azokat használni

## Supertagging

- · a supertaggelés hasonló a part-of-speech taggeléshez
- · a lexikalizált nyelvtanok esetében használatosak
- CCG supertaggerek olyan treebankokra támaszkodnak, mint a CCGbank
- · a CCGbank több, mint 1000 lexikális kategóriát tartalmaz
- összehasonlításképpen: a Penn Treebank tagset-ben 45 POS típus van.

## Maximum entropy Markov model (MEMM)

A legjobb tag szekvencia Î kiválasztása

$$\begin{split} \hat{T} &= \underset{T}{\operatorname{argmax}} P(T|W) \\ &= \underset{T}{\operatorname{argmax}} \prod_{i} P(t_{i}|w_{i-l}^{i+l}, t_{i-k}^{i-1}) \\ &= \underset{T}{\operatorname{argmax}} \prod_{i} \frac{\exp\left(\sum_{i} w_{i} f_{i}(t_{i}, w_{i-l}^{i+l}, t_{i-k}^{i-1})\right)}{\sum_{t' \in \text{tagset}} \exp\left(\sum_{i} w_{i} f_{i}(t', w_{i-l}^{i+l}, t_{i-k}^{i-1})\right)} \end{split}$$

## Supertagging

A legjobb tag szekvencia  $\hat{\mathsf{T}}$  ált. túl sok nem megfelelően kiválasztott tag-et tartalmazna

- · az összes lehetséges szó-tag pár valószínűségére lenne szükség
- bármely tag valószínűsége: azon supertag-szekvenciák valószínűségének összege, amik tartalmazzák a vizsgált tag-et a tag pocíciójában
- ezeket az értékeket hatékonyan ki lehet számolni a HMM-ekhez használt forward-backward algoritmussal

## CCG parszolás A\* algoritmussal

Az A\* algoritmus célja, hogy minimális lépésben találja meg a legjobb derivációt heurisztikus kereséssel

- minden lépés során a legköltséghatékonyabb részelemzést adja át az agendának és azt bővíti tovább
- f-költségfüggvényt használ
- f-költségnek két része van:
  - g(n), az n állapot költsége
  - h(n), költségbecslése annak ,hogy n állapot felhasználva eljussunk a befejezett elemzésig
- · a legkisebb értékű g(n) + h(n) úton halad tovább az algoritmus

## CCG parszolás A\* algoritmussal

- · állapot  $\rightarrow$  élek(edges) végigjárt konstituensekkel
- · él  $\rightarrow$  konstituens eleje és vége, grammatikai kategóriája, f-költsége

Hogyan állapítsjuk meg egy CCG deriváció minőségét?

- vegyük egy deriváció szavaihoz rendelt supertag-ek valószínűségének szorzatát
- ha van egy mondat S és egy deriváció D, ami tartalmazza a supertag-sekvenciát T (negatív logaritmussal érjük el, hogy az alacsonyabb költség legyen a jobb):

$$P(D,S) = P(T,S)$$

$$= \prod_{i=1}^{n} -\log P(t_{i}|S_{i})$$

Hogyan állípítsuk meg egy él f-költségét?

- az f-költcség g(n) + h(n)
- a h(n)-nek soha nem szabad túlbecsülnie a végső elemzés költségét
- így feltételezi, hogy a következő szavak a legvalószínűbb supertag-gel fognak fendelkezni

Egy él *f-költségének* kiszámolása

$$f(w_{i,j},t_{i,j}) = g(w_{i,j}) + h(w_{i,j})$$

$$= \sum_{k=i}^{j} -\log P(t_k|w_k) + \sum_{k=i}^{j-1} \min_{t \in tags} (-\log P(t|w_k)) + \sum_{k=j+1}^{N} \min_{t \in tags} (-\log P(t|w_k))$$



# Elemzések kiértékelése

#### PARSEVAL mérés

A hipotetikus fában lévő konstituensek mennyi hasonlóságot mutatnak a kézi-annotált gold standard referenciafában lévőkhöz?

- egy hipotetikus konstituens  $C_h$  helyes, ha a referencia fában van egy vele azon konstituens  $C_r$  megegyező kezdő- és végponttal, szimbólummal
- · ezután meg tudjuk mérni a fedést/pontosságot

## Fedés és pontosság meghatározása

- Fedés/pontosság:

labeled recall :=  $\frac{\text{#of correct constituents in hypothesis parse of s}}{\text{#of correct constituents in reference parse of s}}$ 

 $labeled\ precision := \frac{\#of\ correct\ constituents\ in\ hypothesis parse\ of\ s}{\#of\ total\ constituents\ in\ hypothesis\ parse\ of\ s}$ 

- F-mérték → mennyire van ballanszban a kettő:

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

#### Frame Title

- a  $\beta > 1 \rightarrow$  magasabb fedés
- a  $\beta$  < 1  $\rightarrow$  magasabb pontosság
- $\beta = 1 \rightarrow \text{kiegyensúlyozott fedés és pontosság } (F_1)$

$$F_1 = \frac{2PR}{P+R}$$