

NAVAL POSTGRADUATE SCHOOL

MONTEREY, CALIFORNIA

SP Summary (with Authority Mode)

by

Timothy E. Levin

18 September 2007

Approved for public release; distribution is unlimited.

Prepared for NSF and DARPA

NAVAL POSTGRADUATE SCHOOL Monterey, California 93943-5000

President	Executive Vice President and Provost
This report was prepared for and funded by National Advanced Research Projects Agency.	Science Foundation and the Defense
Reproduction of all or part of this report is authorize	d.
This report was prepared by:	
Timothy E. Levin	
Research Associate Professor	
Reviewed by:	Released by:
Poter I. Donning	Dan C. Dagar
Peter J. Denning Department of Computer Science	Dan C. Boger Interim Vice President and
-	Dean of Research

REPORT DOCUMENTATION PAGE

Form approved

OMB No 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

1. AGENCI USE ONLI (Leave)	ланку	21 November 2007		search; 10/1/06 – 10/1/07			
4. TITLE AND SUBTITLE				5. FUNDING			
SP Summary (with Authority Mod	e)						
6. AUTHOR(S)			Grant number: CNS-0430566				
Timothy E. Levin			and CNS	-0430598			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION				
Naval Postgraduate School Center for Information Systems Sect 1411 Cunningham Rd., Monterey, O			CISR)	REPORT NUMBER NPS-CS-08-007			
9. SPONSORING/MONITORIN ADDRESS(ES)	G AGEN	CY NAME(S) AND		10. SPONSORING AGENCY REPO			
National Science Foundation, 420 DARPA, 3701 Fairfax Drive, Arlin			nVA22230	Not applica	ble		
11. SUPPLEMENTARY NOTES							
The views expressed in this report Department of Defense or the U.S.			not reflect th	ne official policy or p	osition of the		
12a. DISTRIBUTION/AVAILABILITY STATEMENT				12b. DISTRIBUTION CODE			
Approved for public release; distribution is unlimited.							
13. ABSTRACT (Maximum 200	words.)						
This report provides summary of the	e interface	and semantics for the pro	ocessor extens	sions defined by the S	P Processor.		
14. SUBJECT TERMS			15. NUMBER OF				
Operating systems: Hardware: Register-Transfer-Level Implementation: Control design; Security			PAGES 17				
					16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified		ITY CLASSIFICATION IS PAGE sified	19. SECURITOR OF ABST		20. LIMITATION OF ABSTRACT UU		

Technical Report: NPS-CS-08-007

Trustworthy Commodity Computation and Communication

SP Summary (with Authority Mode)

Timothy E. Levin

This material is based upon work supported by the National Science Foundation under Grant No. CNS-0430566 and CNS-0430598 with support from DARPA ATO. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or of DARPA ATO.

Author Affiliations

Naval Postgraduate School:

Timothy E. Levin
Center for Information Systems Security Studies and Research
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Abstract

This report provides summary of the interface and semantics for the processor extensions defined by the SP Processor [1][2] (where SP is the name of the design, which informally stands for "secret protected").

SP Summary (with Authority Mode)

Timothy E. Levin

- A. SP modes, modules and processing verification
 - A processor *mode* is entered via a corresponding SP "begin" instruction
 - SP is <u>in</u> a mode IFF SP is executing the corresponding type of *module*
 - Module instructions checked via inline hashes and corresponding key:

Instruction	Module	Hash Key
BEGIN_A-CEM	A-TSM	DRK
BEGIN_U-CEM	U-TSM	DMK
BEGIN_CIC	I-TSM	DRK

- On return from an interrupt, InterruptHash of previous registers (uses DRK/DMK), and InterruptAddr (previous instruction) are checked; both values can be saved and restored by ring -2 to multiplex modes. Separate hash and addr values may be provided for each mode (A-TSM is not yet decided).
- B. SP-resident master secrets arbitrary values, 2-words¹ each
 - UserMasterKey UMK read by UTSM; written only by lowest ring. Volatile storage
 - DeviceRootKey DRK stored by "secure bios," and locked until the next power cycle.² Non-volatile storage.
 - StorageRootHash—SRH—read and written by ATSM. Non-volatile storage.
 - DeviceMasterKey DMK stored by "secure bios," and locked until the next power cycle.² Non-volatile storage.
- C. SP transformation functions
 - Derive() 2-word to 2-word crypto-hash function available to ATSM
 - i. Based on DRK
 - CEM Load/Store() Available to ATSM/UTSM
 - Encrypt & hash one word on exit from processor cache—decrypt and check hash on load
 - ii. Based on DRK/DMK

Figure 1. Authority Mode Features

² Restriction to lowest ring may also figure into DRK and DMK modifications.

24 March 2005

¹ Word size depends on the architecture: e.g., 32 or 64 bits, and whether multiple load instructions are to be used.

Table 2. SP Instructions and Parameters

Instruction	Description
	tartup SP Instructions (at secure bootup – secure BIOS only)
GRtoDMK R ₁ ,R ₂ , (DMK)	$DMK = R_1 R_2$; Sets Device Master Key register from GRs. (Only in Secure
	bootup BIOS – before any ring protection is established.)
	Existing SP Instructions
BEGIN CEM	Enter CEM for next instruction. Sets CEM mode for next instruction.
END CEM	End CEM for next instruction. Clears CEM mode for next instruction
(only in CEM mode)	End CENT for next instruction. Clears CENT mode for next instruction
UMKtoGR (UMK), R ₁ ,R ₂	$R_1 R_2 = UMK$; Reads User Master Key register into GRs.
(only in CEM mode)	Killing – Olvik, Reads Osei Wasiei Key regisiei into Gres.
SECURE STORE R ₁ , displ.	$M[R_1 + displ] = R_2$; Secure store from R_2 to memory. Sets SecureData cache tag
R ₂	bits in on-chip caches.
(only in CEM mode)	ons in on-emp caches.
SECURE LOAD R ₁ , displ, R ₂	$R_2 = M[R_1 + displ]$; Secure load to R_2 from memory. If hit in on-chip L1 Data
(only in CEM mode)	cache or on-chip L2 cache, checks that SecureData tag bit is set for cache line, if
(cm) m czanineac)	not, evict and treat as a miss. If miss in on-chip caches, activate decryption and
	validation on fetching cache line from memory; raise exception if invalid.
	,,,
New Instructi	ions to Enable Virtualization of SP (Ring -2 ONLY, non-CEM)
Save SPregs	Copies SP.inthash, SP.retaddr and SP.status registers to secure space accessible
	ONLY to LPSK at Ring -2.
(Ring -2 only, non-CEM)	Clears SP inthash and SP retaddr addresses, and sets SP status appropriately.
	Done by LPSK only when LPSK switches between VMs.
Restore SPregs	Restores SP.inthash, SP.retaddr and SP.status registers from secure space for
	this VM accessible ONLY to LPSK at Ring -2.
(Ring -2 only, non-CEM)	Done by LPSK only when LPSK switches between VMs.

Table 3. Authority Mode Instructions and Parameters

Instruction	Operation	Description	
Authority Mode Instructions (new)			
GR_TO_DAK R1,R2,(DAK)	DAK = R1 R2	Sets Device Attestation Key register from GRs.	
DAK_LOCK (DAK_Lock)	DAK_Lock = 1	Sets DAK_Lock register to 1, disabling GR_TO_DAK instruction.	
GR_TO_LSH R1,R2, (LSH)	LSH = R1 R2	Sets Local Storage Hash register from GRs.	
LSH_TO_GR (LSH), R1,R2	R1 R2 = LSH	Reads the Local Storage Hash register into GRs.	
DAK_DERIVE R1,R2,R3,(R4)	$R3 R4 = HMAC_{DAK}(R1 R2)$	Derives a key from the DAK. R1 R2 is the nonce. R3 (R4) is the destination.	
		(R4 is implied even register with R3.)	
	Common Instru	ictions (leveraged from SP)	
BEGIN_CEM	CEM_Status = 01	Enter CEM for next instruction.	
END_CEM	CEM_Status = 00	End CEM for next instruction.	
CEM_STORE R1, displ, R2	M[R1 + displ] = R2	Secure store from GR to memory.	
CEM_LOAD R1, displ, R2	R2 = M[R1 + displ]	Secure load to GR from memory.	
User Mode Instructions in SP (discarded)			
GR_TO_DMK R1,R2, (DMK)	DMK = R1 R2	Sets Device Master Key register from GRs.	
UMK_TO_GR (UMK), R1,R2	R1 R2 = UMK	Reads User Master Key register into GRs.	

Note that Table 3 uses obsolete names "Local Storage Hash" (SRH) and "DAK, which have been changed to "Storage Root Hash" (SRH), and DRK, respectively.

Figure 1. SP State Diagram (User Mode; Auth Mode not yet clear)

Table 4. SP Internal Transformations (User and Authority Mode)

Instruction	Prerequisite	SP actions	Post State	Required	Description
	State			Post-	
				processing	
Request for	Active_CEM	- Encrypt registers in place	Interrupted_	Software	Preserves
execution		- Store hash ⁴ of concatenated,	CEM	indicated by	CEM state on
context		encrypted registers to		interrupt	context switch
change ³		CEM.IntHash		vector saves	to non-TSM
		- Store PC to CEM.RetAddr		PC and GP	code
		 Load and process interrupt 		registers	
		vector			
Request for	- Interrupted_	- If PC matches	Active_ CEM	None	Restores CEM
execution	CEM	CEM.RetAddr ⁶ then (_		state on return
context	- Previous PC	if hash of GP registers			from non-
change ⁵	and GP registers	matches CEM.IntHash then (TSM code
	loaded by	Decrypt registers in place;			
	software	process PC))			

⁶ SP designers intend to introduce a feature to prevent accidental return to the PC address from a different address space, which could be handled in a few different ways, depending on OS support. If hash check fails, SP will raise an exception.

3

³ HW interrupt or software exception

⁴ IV for the register encryption will likely be stored with the hash.

⁵ Any HW Jump or return from interrupt

D. References

- [1] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang, "Architecture for protecting critical secrets in microprocessors," in ISCA '05: *Proceedings of the 32nd annual international symposium on Computer Architecture*, (Washington, DC, USA), pp. 2–13, IEEE Computer Society, 2005.
- [2] J. Dwoskin and R. B. Lee, "Hardware-rooted Trust for Secure Key Management and Transient Trust," *Proc. ACM Conf. Computer Commun. Security*, pp. 389-400, Oct 2007.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Ft. Belvoir, VA	1
2.	Dudley Knox Library Naval Postgraduate School Monterey, CA	1
3.	Lee Badger DARPA Arlington, VA 22203	1
4.	Terry V. Benzel Information Sciences Institute University of Southern California Marina del Rey, CA 90292	1
5.	Ganesha Bhaskara Information Sciences Institute University of Southern California Marina del Rey, CA 90292	1
6.	Paul C. Clark Naval Postgraduate School Monterey, CA	2
7.	Cynthia E. Irvine Naval Postgraduate School Monterey, CA	2
8.	Timothy E. Levin Naval Postgraduate School Monterey, CA	2
9.	Karl Levitt National Science Foundation 4201 Wilson Blvd. Arlington, VA 22230	1
10.	Thuy D. Nguyen Naval Postgraduate School Monterey, CA	2

