21.11.2018 Julia_NN_aktuell

M

In [11]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers
import keras as keras
from keras import models
from keras import layers
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.utils.np utils import to categorical
from keras.wrappers.scikit learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.neural_network import MLPClassifier
from keras import metrics
from sklearn.metrics import mean squared error
from math import sqrt
from sklearn.preprocessing import LabelBinarizer
from sklearn.model selection import StratifiedKFold
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
```

M

In [12]:

```
red = pd.read_csv('data/winequality-red1.csv')
white = pd.read_csv('data/winequality-white1.csv')
```

In [13]:

```
red['quality'].replace(to_replace=[0,1,2,3,4,5], value=1, inplace=True)
red['quality'].replace(to_replace=[6], value=2, inplace=True)
red['quality'].replace(to_replace=[7,8,9,10], value=3, inplace=True)
X red = red[
['fixed acidity',
 'volatile acidity',
 'citric acid',
 'residual sugar',
 'chlorides',
 'free sulfur dioxide',
 'total sulfur dioxide',
 'density',
 'pH',
 'sulphates',
 'alcohol']]
Y_red = red[['quality']]
white['quality'].replace(to replace=[0,1,2,3,4,5], value=1, inplace=True)
white['quality'].replace(to_replace=[6], value=2, inplace=True)
white['quality'].replace(to_replace=[7,8,9,10], value=3, inplace=True)
X_white = white[
['fixed acidity',
 'volatile acidity',
 'citric acid',
 'residual sugar',
 'chlorides',
 'free sulfur dioxide',
 'total sulfur dioxide',
 'density',
 'pH',
 'sulphates',
 'alcohol']]
Y white = white[['quality']]
X red = X red.values
Y_red = Y_red.values
X_{white} = X_{white.values}
Y_white = Y_white.values
number_of_features = 11
```

21.11.2018 Julia_NN_aktuell

M

```
In [70]:
```

```
def rsme(targets, outputs):
    return tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(targets, outputs))))
# Create function returning a compiled network
def create_network():
    network = models.Sequential()
    network.add(layers.Dense(units=64, activation='linear', input shape=(number of features
    network.add(layers.BatchNormalization())
    network.add(layers.Dense(3, activation='softmax'))
    #network.compile(loss='binary crossentropy', # Cross-entropy
                     optimizer='rmsprop', # Root Mean Square Propagation
   #
                     metrics=['accuracy']) # Accuracy performance metric
    network.compile(loss='sparse_categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy', rsme])
    # Return compiled network
    return network
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
```

H

In [71]:

In [51]:

```
print("One layer Linear with 64 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Sigmoid with 64 nodes and Softmax Red

		precision	recall	f1-score	support
	1	0.61	0.53	0.57	744
	2	0.44	0.65	0.52	638
	3	0.17	0.00	0.01	217
micro	avg	0.51	0.51	0.51	1599
macro	avg	0.40	0.39	0.37	1599
weighted	avg	0.48	0.51	0.47	1599
White					
White		precision	recall	f1-score	support
White	1	precision 0.45	recall 0.47	f1-score 0.46	support 1640
White	1 2				
White		0.45	0.47	0.46	1640
White micro	2	0.45 0.46	0.47 0.54	0.46 0.50	1640 2198
	2 3 avg	0.45 0.46 0.40	0.47 0.54 0.23	0.46 0.50 0.29	1640 2198 1060

RSME red 0.862720300653466 RSME white 0.987329908897161

In [54]:

```
print("One layer Sigmoid with 64 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Sigmoid with 64 nodes and Softmax Red

Red		precision	recall	f1-score	support
	1	0.58	0.66	0.62	744
	2	0.47	0.55	0.51	638
	3	0.29	0.01	0.02	217
micro	avg	0.53	0.53	0.53	1599
macro	avg	0.45	0.41	0.38	1599
weighted	avg	0.50	0.53	0.49	1599
White					
White		precision	recall	f1-score	support
White	1	precision 0.54	recall 0.45	f1-score 0.49	support 1640
White	1 2	•			
White		0.54	0.45	0.49	1640
	2	0.54 0.48 0.50	0.45 0.77 0.01	0.49 0.59 0.01	1640 2198 1060
White micro macro	2 3 avg	0.54 0.48	0.45 0.77	0.49 0.59	1640 2198

RSME red

0.8868276273259265

RSME white

In [57]:

```
print("One layer Relu with 64 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Relu with 64 nodes and Softmax Red

		precision	recall	f1-score	support
	1	0.59	0.62	0.60	744
	2	0.44	0.54	0.48	638
	3	0.43	0.06	0.11	217
micro	avg	0.51	0.51	0.51	1599
macro	avg	0.49	0.41	0.40	1599
weighted	avg	0.51	0.51	0.49	1599
White					
White		precision	recall	f1-score	support
White	1	precision 0.46	recall 0.63	f1-score 0.54	support 1640
White	1 2				
White		0.46	0.63	0.54	1640
	2	0.46 0.48	0.63 0.46	0.54 0.47	1640 2198
White micro macro	2 3 avg	0.46 0.48 0.45	0.63 0.46 0.25	0.54 0.47 0.32	1640 2198 1060

RSME red

0.8949579333030129

RSME white

H

In [60]:

```
print("One layer Selu with 64 nodes and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Selu with 64 nodes and Softmax Red

		precision	recall	f1-score	support
	1	0.58	0.66	0.62	744
	2	0.45	0.50	0.48	638
	3	0.37	0.06	0.11	217
micro	avg	0.52	0.52	0.52	1599
macro	avg	0.47	0.41	0.40	1599
weighted	avg	0.50	0.52	0.49	1599
White					
White		precision	recall	f1-score	support
White	1	precision 0.50	recall 0.55	f1-score 0.52	support 1640
White	1 2	•			
White		0.50	0.55	0.52	1640
	2	0.50 0.48	0.55 0.54	0.52 0.50	1640 2198
White micro macro	2 3 avg	0.50 0.48 0.46	0.55 0.54 0.26	0.52 0.50 0.33	1640 2198 1060

RSME red 0.9073693082714352 RSME white

In [63]:

```
print("One layer Selu with 64 nodes, BN and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Selu with 64 nodes, BN and Softmax Red

Red		precision	recall	f1-score	support
	1	0.67	0.48	0.56	744
	2	0.46	0.68	0.55	638
	3	0.43	0.24	0.31	217
micro	avg	0.53	0.53	0.53	1599
macro	avg	0.52	0.47	0.47	1599
weighted	avg	0.56	0.53	0.52	1599
White					
White		precision	recall	f1-score	support
White	1	precision 0.62	recall 0.42	f1-score 0.50	support 1640
White	1 2				
White		0.62	0.42	0.50	1640
	2	0.62 0.50 0.45	0.42 0.62	0.50 0.55	1640 2198
White micro macro	2 3 avg	0.62 0.50	0.42 0.62 0.45	0.50 0.55 0.45	1640 2198 1060

RSME red 0.9170552669094418 RSME white 0.9977435948163329 H

In [66]:

```
print("One layer Relu with 64 nodes, BN and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Relu with 64 nodes, BN and Softmax Red

Red		precision	recall	f1-score	support
	1	0.69	0.46	0.55	744
	2	0.46	0.72	0.56	638
	3	0.39	0.21	0.28	217
micro	avg	0.53	0.53	0.53	1599
macro	avg	0.52	0.46	0.46	1599
weighted	avg	0.56	0.53	0.52	1599
White					
White		precision	recall	f1-score	support
White	1	precision 0.59	recall 0.49	f1-score 0.54	support 1640
White	1 2	•			
White		0.59	0.49	0.54	1640
	2	0.59 0.51 0.51	0.49 0.66	0.54 0.57	1640 2198
White micro macro	2 3 avg	0.59 0.51	0.49 0.66 0.33	0.54 0.57 0.40	1640 2198 1060

RSME red 0.9094299325987 RSME white 0.9683374487678897

H

In [69]:

```
print("One layer Sigmoid with 64 nodes, BN and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Sigmoid with 64 nodes, BN and Softmax Red

Neu		precision	recall	f1-score	support
	1	0.58	0.72	0.64	744
	2	0.47	0.42	0.45	638
	3	0.44	0.20	0.28	217
micro	avg	0.53	0.53	0.53	1599
macro	avg	0.50	0.45	0.45	1599
weighted	_	0.52	0.53	0.51	1599
White					
		precision	recall	f1-score	support
	1	0.66	0.28	0.40	1640
	2	0.49	0.72	0.58	2198
	3	0.50	0.45	0.47	1060
micro	avg	0.52	0.52	0.52	4898
macro	avg	0.55	0.49	0.49	4898
weighted	avg	0.55	0.52	0.50	4898

RSME red

0.9505990586093434

RSME white

```
M
```

In [72]:

```
print("One layer Linear with 64 nodes, BN and Softmax")
print("Red")
prediction_red = cross_val_predict(neural_network, X_red, Y_red, cv=cv)
print(classification_report(Y_red, prediction_red))
print("White")
prediction_white = cross_val_predict(neural_network, X_white, Y_white, cv=cv)
print(classification_report(Y_white, prediction_white))
print("RSME red")
print(sqrt(np.mean((Y_red-prediction_red)*(Y_red-prediction_red))))
print('RSME white')
print(sqrt(np.mean((Y_white-prediction_white)*(Y_white-prediction_white))))
```

One layer Linear with 64 nodes, BN and Softmax Red

		precision	recall	f1-score	support
	1	0.70	0.46	0.56	744
	2	0.46	0.71	0.55	638
	3	0.45	0.25	0.32	217
micro	avø	0.53	0.53	0.53	1599
macro	_	0.54	0.47	0.48	1599
weighted	avg	0.57	0.53	0.52	1599

White

	precision	recall	f1-score	support
1	0.51	0.59	0.55	1640
2	0.49	0.46	0.47	2198
3	0.46	0.43	0.44	1060
micro avg	0.49	0.49	0.49	4898
macro avg	0.49	0.49	0.49	4898
weighted avg	0.49	0.49	0.49	4898

RSME red 0.9111397678503141 RSME white 1.0445276763783444

Ы

In []: