line

1. Tiga gaya masing-masing $F_1=20\,$ N, $F_2=15\,$ N, $F_3=12\,$ N bekerja pada batang yang panjangnya L = 40 cm (berat batang diabaikan) seperti pada gambar di bawah

- A. 0,8 N.m
- B. 3,2 N.m
- C. 4,0 N.m
- D. 7,4 N.m
- (E.) 8,0 N.m

jawab

$$\Sigma \tau = \tau_1 + \tau_2 + \tau_3$$

$$\Sigma \tau = 20.0, 1 + 15.\sin(53).0, 2 + 12.0, 3$$

$$\Sigma \tau = 8N$$

- 2. Berikut ini pernyataan tentang faktor-faktor gerak rotasi:
 - (1) kecepatan sudut
 - (2) letak sumbu rotasi
 - (3) bentuk benda
 - (4) massa benda
 - (5) bentuk benda
 - (6) massa benda

Faktor yang mempengaruhi besarnya momen inersia adalah .

- . .
- A. 1,2,3, dan 4
- B. 1,2, dan 3
- C. 1,3, dan 4
- (D.) 2,3, dan 4
- E. 2 dan 4

jawab

Karena rumus inersia adalah $I = k.m.r^2$ maka:

- k konstanta tergantung bentuk benda
- m massa benda
- r letak sumbu rotasi (jari-jari pada benda lingkar)
- 3. Dua buah bola yang dianggap sebagai partikel dihubungkan dengan seutas tali kawat seperti gambar.

Bila massa bola P dan Q masing-masing 600 g dan 400 g, maka momen inersia sistem kedua bola terhadap poros AB adalah . .

- A. 0,008 kg.m²
- B. 0,076 kg.m²
- (C.) 0,124 kg.m²
- D. 0,170 kg.m²
- E. 0,760 kg.m²

jawab

Dari gambar tersebut bahwa $m_1{=}0.6$ kg, $m_2=0.4$ kg. Dan jarak terhadap sumbu rotasi $r_1=0.2$ m, $r_2=0.5$ m. Maka momen inersia sistem terhadap poros AB

$$\Sigma I = m_1 r_1^2 + m_2 r_2^2$$

$$\Sigma I = 0, 6.(0, 2)^2 + 0, 4.(0, 5)^2$$

$$\Sigma I = 0,124 \text{ kgm}^2$$

4. Sebuah katrol dari benda pejal dengan tali yang dililitkan pada sisi luarnya ditampilkan seperti gambar. Gesekan katrol diabaikan. Jika momen inersia katrol $I=\beta$ dan tali ditarik dengan gaya tetap F, maka nila F setara dengan

- A. $F = \alpha . \beta . R$
- B. $F = \alpha . \beta^2 . R$
- C. $F = \alpha . (\beta . R)^{-1}$
- (D.) $F = \alpha.\beta.R^{-1}$
- E. $F = (\alpha . \beta)^{-1} . R$

jawab

$$\tau = I.\alpha$$

$$F.R = \beta.\alpha$$

$$F = \alpha.\beta.R^{-1}$$

5. Katrol yang bermassa 10 kg dan jari-jarinya 25 cm digantungi massa benda 5 kg seperti pada gambar. Mula-mula massa benda diam kemudian dilepaskan maka perceptan sistem katrol adalah . . . $(I_{\rm katrol} = \frac{1}{2}m.r^2)$

- A. $1,0 \text{ m/s}^2$
- B. 2.5 m/s^2
- C. $3,3 \text{ m/s}^2$
- (D.) 5,0 m/s²
- E. $12,5 \text{ m/s}^2$

jawab

$$a = \frac{m.g}{m + k.m_{\text{katrol}}} = \frac{50}{5 + \frac{1}{2}10}$$
 $a = \frac{50}{10} = 5 \text{ m/s}$

- 6. Sebuah silinder penjal $(I=\frac{1}{2}m.r^2)$ bergerak menggelinding tanpa tergelincir mendaki bidang miring kasar dengan kecepatan awal 10 m/s. Bidang miring itu mempunyai sudut elevasi α dengan sin $\alpha=0.60$. Jika percepatan gravitasi g=10 m/s² dan kecepatan benda berkurang menjadi 5 m/s, maka jarak yang ditempuh benda itu adalah . . .
 - A. 7,0 m
 - (B.) 9,4 m
 - C. 12,0 m
 - D. 14,5 m
 - E. 17,0 m

jawab

Pada gambar di samping, menggunakan persamaan kekekalan energi mekanik rotasi pada keadaan di dasar dan saat kecepatan menjadi 5 m/s²

$$EM_1 = EM_2$$

$$\begin{split} mgh + \frac{1}{2}m.v^2 + \frac{1}{2}I.\omega^2 &= mgh_2 + \frac{1}{2}m.v_2^2 + \frac{1}{2}I.\omega_2^2 \\ mgh + \frac{1}{2}m.v_1^2(k+1) &= mgh_2 + \frac{1}{2}m.v_2^2(k+1) \\ \textit{m.g.}0 + \frac{1}{2}\textit{m.}10^2(\frac{1}{2}+1) &= \textit{m.g.}h_2 + \frac{1}{2}\textit{m.}5^2(\frac{1}{2}+1) \\ 50(\frac{3}{2}) - \frac{25}{2}(\frac{3}{2}) &= 10.h_2 \\ h_2 &= \frac{225}{40} \end{split}$$

Maka besarnya jarak yang ditempuh adalah

$$h = R.sin\alpha$$

$$R = \frac{h}{\sin \alpha}$$

$$R = \frac{\frac{225}{40}}{0.6}$$

$$R = 9.4 \text{ m}$$

- 7. Sebuah bendategar berada dalam kesetimbangan rotasi maka
 - A. $\Sigma F_x = 0$
 - B. $\Sigma F_{y} = 0$
 - C. $\Sigma F_z = 0$
 - D. $\Sigma \tau = 0$
 - (E.) $\Sigma F = 0$ dan $\Sigma \tau = 0$

jawab

Pada sistem seimbang syaratnya

$$\Sigma F=0$$
 dan $au=0$

8. Urutkan dari gambar-gambar di bawah ini yang termasuk kesetimbangan labil,stabil, atau netral!

- A. a,b,c
- B. a,c,b
- C. b,c,a
- D. b,a,c
- E. c,a,b

jawab

stabil pada gambar (c) labil(mudah jatuh) (b) netral (a)

9. Perhatikan gambar berikut!

Diketahui panjang batang AB 2,5 m dan berat 200 N serta batang bersandar pada dinding yang licin. Bila sistem batang dalam keadaan setimbang, maka koefisien gesekan batang dengan lantai adalah . . .

- A. $\frac{1}{3}$
- B. $\frac{1}{2}$
- C. $\frac{1}{2}\sqrt{2}$
- $\frac{1}{2}\sqrt{3}$
- E. $\frac{1}{3}\sqrt{3}$

jawab

Untuk tangga menyandar tanpa beban lain pada dinding licin, dan lantai kasar berlaku koefisien gaya gesek

$$\mu = \frac{1}{2tan\theta}$$

$$\mu = \frac{1}{2.tan30}$$

$$\mu = \frac{1}{2.\sqrt{3}}$$

$$\mu = \frac{1}{2}\sqrt{3}$$

10. Perhatikan gambar bidang berikut!

Koordinat titik berat dari benda tersebut adalah

(A.) (10/4; 16/4)

B. (12/4; 12/4)

C. (14/4; 14/4)

D. (16/4; 12/4)

E. (16/4; 10/4)

jawab

Langkah pertama adalah membagi benda menjadi beberapa bagian

$$x_{cm} = \frac{x_1 A_1 + x_2 A_2 + x_3 A_3}{A_1 + A_2 + A_3}$$

$$x_{cm} = \frac{3.12 + 1.8 + 3.12}{12 + 8 + 12}$$

$$x_{cm} = \frac{80}{32} = \frac{10}{4}$$

$$y_{cm} = \frac{y_1 A_1 + y_2 A_2 + y_3 A_3}{A_1 + A_2 + A_3}$$

$$y_{cm} = \frac{1.12 + 4.8 + 7.12}{12 + 8 + 12}$$

$$y_{cm} = \frac{128}{32} = \frac{16}{4}$$

11. Seutas kawat yang luas penampangnya 4 mm² ditarik oleh gaya 3,2 N, sehingga panjangnya bertambah 0,04 mm. Tegangan kawat tersebut adalah

A.
$$8\times 10^6~\text{N/m}^2$$

B.
$$7 \times 10^6 \text{ N/m}^2$$

$$\bigcirc 8 \times 10^5 \text{ N/m}^2$$

D.
$$8\times 10^4~\text{N}/\text{m}^2$$

E.
$$5\times 10^4~\text{N}/\text{m}^2$$

jawab

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{3.2}{4 \times 10^{-6}}$$

$$\sigma = 8 \times 10^{5}$$

12. Seutas kawat baja yang panjangnya 1,0 m dengan luas penampang 2,0 mm² digunakan untuk mendukung beban 100 kg. Jika pertambahan panjang kawat baja 2,5 mm, maka regangan kawat tersebut adalah

$$(A.)$$
 2,5 × 10⁻³

B.
$$2.5 \times 10^{-2}$$

C.
$$2.5 \times 10^{-1}$$

D.
$$4 \times 10^2$$

E.
$$4 \times 10^3$$

jawab

$$e = \frac{\Delta L}{L_o}$$

$$e = \frac{2.5 \times 10^{-3}}{1.0}$$

$$e = 2.5 \times 10^{-3}$$

13. Sebuah specimen baja berukuran 10 cm x 2 cm x 2 cm ditarik dengan gaya 5000 N bertambah panjang 5 mm. Modulus elastisitas Young bahan tersebut adalah

A.
$$2.5 \times 10^9 \text{ N/m}^2$$

(B.)
$$2.5 \times 10^8 \text{ N/m}^2$$

C.
$$2.5 \times 10^6 \text{ N/m}^2$$

D.
$$4 \times 10^9 \text{ N/m}^2$$

E.
$$4 \times 10^8 \text{ N/m}^2$$

jawab

Luas permukaan adalah $2 \text{cm} \times 2 \text{cm} = 4 \text{ cm}^2 = 4 \times 10^{-4}$

$$\begin{array}{l} \mbox{Modulus elastisitas Young} \\ Y = \frac{F.L}{A.\Delta L} = \frac{5000.10 \times 10^{-2}}{4 \times 10^{-4}.5 \times 10^{-3}} Y \\ \end{array} = 2.5 \times 10^{8} \ \mbox{N/m}^{2}$$

14. Kawat P dan Q terbuat dari bahan yangsama. Perbandingan antara diameter P dan Q adalah 2 : 3, sedangkan perbandingan antara panjang kawat P dan Q adalah 3:4. Dari data tersebut perbadingan antara konstanta gaya kawat P dan Q adalah . . .

A. 6:12

B. 8:9

C. 12:6

(D.) 16: 27

E. 27:16

jawab

karena kawat P dan Q adalah bahan sama, maka elastisitas/konstata young sama.

$$\frac{k_p}{k_q} = \frac{\frac{F_p}{\Delta L_p}}{\frac{F_q}{\Delta L_q}}$$

$$\frac{k_p}{k_q} = \frac{\frac{Y_p.A}{L_p}}{\frac{Y_q.A}{L_q}}$$

$$\frac{k_p}{k_q} = \frac{\frac{2^2}{3}}{\frac{3^2}{4}}$$

$$\frac{k_p}{k_q} = \frac{16}{27}$$

- 15. Sebuah pegas panjangnya 50 cm dengan konstanta pegas 200 N/m, dipotong menjadi dua bagian yang sama panjang. Potongan pegas tersebut ditarik dengan gaya 40 N akan bertambah panjang sebesar . . .
 - A. 5 cm
 - (B.) 10 cm
 - C. 15 cm
 - D. 20 cm
 - E. 25 cm

jawab

Saat benda dipotong menjadi dua, pegas yang baru (lebih pendek) mempunyai jenis elastisitas yang sama, namun besarnya konstanta pegas berubah

$$k = \frac{F}{\Delta L}$$

Sedangkan pada rumus elastisitas $E = \frac{FL}{A.\Delta L}$

$$E = \frac{FL}{A.\Delta L}$$

Berarti diperoleh

$$k = \frac{EA}{L}$$

Karena panjang pegas menjadi separuh yakni $\frac{1}{2}L$ maka konstanta pegas menjadi 2k Pertmbahan panjang pegas jika

ditarik dengan gaya 40N adalah . . .
$$\Delta x = \frac{F}{k_{\rm pendek}} = \frac{40}{2k}$$

$$\Delta x = \frac{40}{2.200} = 0.1 \text{ m}$$

16. Grafik hubungan gaya (F) terhadap perubahan panjang dari percobaan elastisitas pegas di bawah ini.

Besarnya konstanta elastisitas pegas tersebut adalah . . .

- A. 0,04 N/m
- B. 0,4 N/m
- C. 4 N/m
- D. 40 N/m
- (E.) 400 N/m

jawab

berdasarkan hukum hooke $F = k.\Delta x$ maka

$$F = k.\Delta x$$

$$k = \frac{F}{\Delta x} = \frac{16}{4 \times 10^{-2}} = 400 \text{ N/m}$$

- 17. Sebuah benda bermassa 5 kg menggantung pada sebuah pegas yang memiliki konstanta pegas sebesar 2.000 N/m. Bila g=10 m/s^2 , pegas tersebut akan bertambah panjang sebesar
 - A. 2,0 cm
 - (B.) 2,5 cm
 - C. 4,0 cm
 - D. 5,0 cm
 - E. 6,5 cm

jawab

$$\Delta x = \frac{F}{k}$$

$$\Delta x = \frac{m \cdot g}{2000} = \frac{50}{2000}$$

$$\Delta x = 2,5 \times 10^{-2} \text{ m} = 2,5 \text{ cm}$$

18. Dua pegas identik dirangkai paralel dengan konstanta gaya pegas 100 N/m. Jika pada ujung susunan pegas diberi beban 10 N, maka pertambahan panjang masing-masing pegas adalah

- A. 1 cm
- B. 2 cm
- C. 3 cm
- D. 4 cm
- E.) 5 cm

jawab

Jumlah konstanta kedua pegas yang paralel adalah

$$k_{\mathsf{total}} = k_1 + k_2 = 200 \; \mathsf{N/m}$$

Pertambahan panjang pegas total adalah
$$\Delta x = \frac{F}{k_{\rm total}}$$

$$\Delta x = \frac{10}{200} = 5 \times 10^{-2} \ {\rm m}$$

Karena pada susunan paralel $\Delta x_t otal = \Delta x_1 = \Delta x_2$ maka pertambahan panjang masing-masing pegas juga 5 cm

19. Tiga pegas tersusun seperti gambar berikut.

Jika tetapan pegas $k_1 = k$ dan $k_2 = 4k$, maka nilai konstanta (k') susunan pegas adalah

- A. $\frac{3}{4k}$
- B. $\frac{3k}{4}$
- D. 3k
- E. 4k

jawab

Paralel pegas atas (kiri dan kanan)

$$k_{\mathsf{paralel}} = k_1 + k_1 = k + k = 2k$$

Hasil paralel diseri dengan
$$k_2$$

$$\frac{1}{k_{\text{total}}} = \frac{1}{k_2} + \frac{1}{k_{\text{paralel}}}$$

$$\frac{1}{k_{\text{total}}} = \frac{1}{4k} + \frac{1}{2k} = \frac{1+2}{4k} = \frac{3}{4k}$$

$$k_{\text{total}} = \frac{4k}{3}$$

20. Tiga buah pegas A,B, dan C yang identik dirangkai seperti gambar di bawah ini!.

Jika ujunga bebas pegas C digantung beban 1,2 N maka sistem mengalami pertambahan panjang 0,6 cm, konstanta masing-masing pegas adalah

- A. 200 N/m
- B. 240 N/m
- (C.) 300 N/m
- D. 360 N/m
- E. 400 N/m

jawab

total konstanta pegas adalah . . .

$$\frac{1}{k_{\text{total}}} = \frac{1}{k} + \frac{1}{2k}$$
$$\frac{1}{k_{\text{total}}} = \frac{3}{2k}$$
$$k_{\text{total}} = \frac{2k}{3}$$

Menurut persamaan hukum hooke

$$F = k.\Delta x$$

1,2 = $k_{\text{total}}.0,6 \times 10^{-2}$

$$k_{\text{total}} = 200 \text{ N/m}$$

Sedangkan k masing-masing pegas adalah

$$k_{\text{total}} = \frac{2k}{3}$$
 $200 = \frac{2k}{3}$
 $k = 300 \text{ N/m}$

- 21. Sebuah partikel bergerak sehingga menghasilkan persamaan posisi: $x = (3t^2 + 5t - 2)$ m. Perpindahan benda dari detik ke 2 sampai dengan detik ke 5 adalah . . .
 - A. 75 m
 - (B.) 78 m
 - C. 87 m
 - D. 57 m
 - E. 68 m

jawab

perpindahan adalah
$$\Delta x = x_2 - x_1$$
 $x_1 = x(2) = 3.2^2 + 5.2 - 2$ $x_1 = 20$ $x_2 = x(5) = 3.5^2 + 5.5 - 2$ $x_2 = 75 + 25 - 2 = 98$ $\Delta x = x_2 - x_1 = 98 - 20 = 78$

- 22. Vektor posisi yang dihasilkan oleh sebuah benda yang bergerak dalam bidang XY adalah $r = (t^3 + 2t^2 - 5t)\hat{i} + (t^2 + 2t + 2)\hat{j}$. Berapakah besar perpindahan yang dihasilkan benda dari awal sampai dengan detik ke-2?
 - A. 4 m
 - B. 6 m
 - C. 8 m
 - (D.) 10 m
 - E. 12 m

jawab

Perpindahan adalah
$$\Delta r = r_2 - r_1 = r(2) - r(0)$$

 $r_1 = r(0) = (t^3 + 2t^2 - 5t)\hat{\imath} + (t^2 + 2t + 2)\hat{\jmath}$

$$r_1 = 2i$$

$$r_2 = r(2) = (2^3 + 2(2)^2 - 5.2)\hat{i} + (2^2 + 2.2 + 2)\hat{j}$$

$$r_2 = 6\hat{i} + 10\hat{j}$$

Jadi perpindahannya adalah

$$\Delta r = r_2 - r_1 = (6\hat{\imath} + 10\hat{\jmath}) - (2\hat{\jmath})$$

$$\Delta r = 6\hat{\imath} + 8\hat{\jmath}$$

$$\Delta r = \sqrt{6^2 + 8^2} = 10 \text{ m}$$