(11) **EP 1 282 244 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 05.02.2003 Bulletin 2003/06

(51) Int CI.7: **H04B 7/06**

(21) Application number: 02250953.3

(22) Date of filing: 12.02.2002

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 30.07.2001 US 918392

(71) Applicant: LUCENT TECHNOLOGIES INC. Murray Hill, New Jersey 07974-0636 (US)

(72) Inventors:

Benning, Roger David
 Long Valley, New Jersey 07853 (US)

Buehrer, Michael R.
 Morristown, New Jersey 07960 (US)

 Polakos, Paul Anthony Marlboro, New Jersey 07746 (US)

Soni, Robert Atmaram
 Morris Plains, New Jersey 07950 (US)

(74) Representative:

Watts, Christopher Malcolm Kelway, Dr. et al Lucent Technologies NS UK Limited, 5 Mornington Road Woodford Green Essex, IG8 0TU (GB)

(54) Symmetric sweep phase sweep transmit diversity

(57) Described herein is a method and apparatus for transmission that provides the performance of space time spreading (STS) or orthogonal transmit diversity (OTD) and the backwards compatibility of phase sweep transmit diversity (PSTD) without degrading performance of either STS or PSTD using a symmetric sweep PSTD transmission architecture. In one embodiment, a pair of signals s_1 and s_2 are split into signals s_1 (a) and s_1 (b) and signals s_2 (a) and s_2 (b), respectively. Signal s_1 comprises a first STS/OTD signal belonging to an STS/

OTD pair, and signal s_2 comprises a second STS/OTD signal belonging to the STS/OTD pair. Signals $s_1(b)$ and $s_2(b)$ are phase swept using a pair of phase sweep frequency signals that would cancel out any self induced interference. For example, the pair of phase sweep frequency signals utilize a same phase sweep frequency with one of the phase sweep frequency signals rotating in the opposite direction plus an offset of π relative to the other phase sweep frequency signal. The resultant phase swept signals $s_1(b)$ and $s_2(b)$ are added to signals $s_2(a)$ and $s_1(a)$ before being amplified and transmitted.

Description

10

15

20

25

30

35

40

45

50

Background of the Related Art

[0001] Performance of wireless communication systems is directly related to signal strength statistics of received signals. Third generation wireless communication systems utilize transmit diversity techniques for downlink transmissions (i.e., communication link from a base station to a mobile-station) in order to improve received signal strength statistics and, thus, performance. Two such transmit diversity techniques are space time spreading (STS) and phase sweep transmit diversity (PSTD).

[0002] FIG. 1 depicts a wireless communication system 10 employing STS. Wireless communication system 10 comprises at least one base station 12 having two antenna elements 14-1 and 14-2, wherein antenna elements 14-1 and 14-2 are spaced far apart for achieving transmit diversity. Base station 12 receives a signal S for transmitting to mobile-station 16. Signal S is alternately divided into signals s_e and s_o , wherein signal s_e comprises even data bits and signal s_o comprises odd data bits. Signals s_e and s_o are processed to produce signals s_o^{14-1} and s_o^{14-2} . Specifically, s_e is multiplied with Walsh code s_o^{14-1} and s_o^{14-2} are insultiplied with Walsh code s_o^{14-1} and a conjugate of signal s_o^{14-1} and s_o^{14-1} are transmitted at substantially equal or identical power levels over antenna elements 14-1 and 14-2, respectively. For purposes of this application, power levels are "substantially equal" or "identical" when the power levels are within 1% of each other.

[0003] Mobile-station 16 receives signal R comprising $\gamma_1(S^{14-2})+\gamma_2(S^{14-2})$, wherein γ_1 and γ_2 are distortion factor coefficients associated with the transmission of signals S^{14-1} and S^{14-2} from antenna elements 14-1 and 14-2 to mobile-station 16, respectively. Distortion factor coefficients γ_1 and γ_2 can be estimated using pilot signals, as is well-known in the art. Mobile-station 16 decodes signal R with Walsh codes w_1 and w_2 to respectively produce outputs:

$$W_1 = \gamma_1 s_\theta + \gamma_2 s_0$$
 equation 1

$$W_2 = \gamma_1 s_o^* - \gamma_2 s_o^*$$
 equation 1a

Using the following equations, estimates of signals s_e and s_o , i.e., s_e^{\wedge} and s_o^{\wedge} may be obtained:

$$\hat{s}_* = \gamma_1^* W_1 - \gamma_2 W_2^* = s_* (|\gamma_1|^2 + |\gamma_2|^2) + noise$$
 equation 2

$$\hat{s}_o = \gamma_2^* W_1 + \gamma_1 W_2^* = s_o (|\gamma_1|^2 + |\gamma_2|^2) + noise'$$
 equation 2a

[0004] However, STS is a transmit diversity technique that is not backward compatible from the perspective of the mobile-station. That is, mobile-station 16 is required to have the necessary hardware and/or software to decode signal R. Mobile-stations without such hardware and/or software, such as pre-third generation mobile-stations, would be incapable of decoding signal R.

[0005] By contrast, phase sweep transmit diversity (PSTD) is backward compatible from the perspective of the mobile-station. FIG. 2 depicts a wireless communication system 20 employing PSTD. Wireless communication system 20 comprises at least one base station 22 having two antenna elements 24-1 and 24-2, wherein antenna elements 24-1 and 24-2 are spaced far apart for achieving transmit diversity. Base station 22 receives a signal S for transmitting to mobile-station 26. Signal S is evenly power split into signals s_1 and s_2 and processed to produce signals s_2^{4-1} and s_2^{24-2} , where $s_1 = s_2$. Specifically, signal s_1 is multiplied by Walsh code w_k to produce $s_2^{24-1} = s_1 w_k$, where $s_1 = s_2 s_3 + s_4 s_4 s_4 + s_4 s_5 + s_4 s_4 s_4 s_4 + s_4 s_5 + s_4 s_4 s_4 s_4 s_4 s_4 s_5 + s$

[0006] Signals S²⁴⁻¹ and S²⁴⁻² are transmitted at substantially equal power levels over antenna elements 24-1 and 24-2, respectively. Note that the phase sweep signal $e^{j2\pi f_s t}$ is being represented in complex baseband notation, i.e., $e^{j2\pi f_s t} = \cos(2\pi f_s t) + j\sin(2\pi f_s t)$. It should be understood that the phase sweep signal may also be applied at an interme-

diate frequency or a radio frequency.

5

10

15

20

25

35

40

45

50

55

[0007] Mobile-station 26 receives signal R comprising $\gamma_1 S^{24-1} + \gamma_2 S^{24-2}$. Simplifying the equation for R results in

$$R = \gamma_1 S^{24-1} + \gamma_2 S^{24-1} e^{j2\pi f_S t}$$
 equation 3

$$R = S^{24-1} \{ \gamma_1 + \gamma_2 e^{j2\pi t s_1} \}$$
 equation 3a

$$R = S^{24-1}\gamma_{eq}$$
 equation 3b

where γ_{eq} is an equivalent channel seen by mobile-station 26. Distortion factor coefficient γ_{eq} can be estimated using pilot signals and used, along with equation 3b, to obtain estimates of signal s_1 and/or s_2 .

[0008] In slow fading channel conditions, both transmit diversity techniques, i.e., STS and PSTD, improve performance (relative to when no transmit diversity technique is used) by making the received signal strength statistics associated wit a slow fading channel at the receiver look like those associated with a fast fading channel. However, PSTD does not provide the same amount of overall performance improvement as STS. Accordingly, there exists a need for a transmission technique that provides the performance of STS and the backwards compatibility of PSTD without degrading performance of either STS or PSTD.

Summary of the Invention

[0009] The present invention is a method and apparatus for transmission that provides the performance of space time spreading (STS) or orthogonal transmit diversity (OTD) and the backwards compatibility of phase sweep transmit diversity (PSTD) without degrading performance of either STS or PSTD using a symmetric sweep PSTD transmission architecture, which involves phase sweeping a pair of signals having a pair of STS/OTD signals. In one embodiment, a pair of signals s_1 and s_2 are split into signals $s_1(a)$ and $s_1(b)$ and signals $s_2(a)$ and $s_2(b)$, respectively. Signal $s_1(a)$ comprises a first STS/OTD signal belonging to an STS/OTD pair, and signal $s_2(a)$ comprises a second STS/OTD signal belonging to the STS/OTD pair. Signals $s_1(b)$ and $s_2(b)$ are phase sweep using a pair of phase sweep frequency signals that would cancel out any self induced interference caused by phase sweeping both signals $s_1(b)$ and $s_2(b)$. For example, the pair of phase sweep frequency signals utilize a same phase sweep frequency with one of the phase sweep frequency signals rotating in the opposite direction plus an offset of π relative to the other phase sweep frequency signal. The resultant phase swept signals $s_1(b)$ and $s_2(b)$ are added to signals $s_2(a)$ and $s_1(a)$ before being amplified and transmitted.

Brief Description of the Drawings

[0010] The features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where

FIG. I depicts a wireless communication system employing space time spreading techniques in accordance with the prior art;

FIG. 2 depicts a wireless communication system employing phase sweep transmit diversity in accordance with the prior art; and

FIG. 3 depicts a base station employing symmetric sweep phase sweep transmit diversity in accordance with one embodiment of the present invention;

FIG. 4 depicts a base station employing symmetric sweep phase sweep transmit diversity in accordance with another embodiment of the present invention; and

FIG. 5 depicts a base station employing symmetric sweep phase sweep transmit diversity in accordance with another embodiment of the present invention.

Detailed Description

[0011] FIG. 3 depicts a base station 30 employing symmetric sweep phase sweep transmit diversity in accordance with the present invention, wherein symmetric sweep phase sweep transmit diversity utilizes code division multiple access (CDMA), phase sweep transmit diversity (PSTD), and space time spreading (STS) or orthogonal transmit diversity (PSTD).

versity (OTD) techniques. CDMA, PSTD, STS and OTD are well-known in the art.

10

15

30

35

40

45

50

[0012] Base station 30 provides wireless communication services to mobile-stations, not shown, in its associated geographical coverage area or cell, wherein the cell is divided into three sectors α , β , γ . Note that the base station could be divided into an arbitrary number of sectors and not change the invention described here. Base station 30 includes a transmission architecture that incorporates STS or OTD and biased PSTD, as will be described herein.

[0013] Base station 30 comprises a processor 32, splitters 34, 35, multipliers 36, 38, 40, 41, adders 42, 43, amplifiers 44, 46, and a pair of diversity antennas 48, 50. Note that base station 30 also includes configurations of splitters, multipliers, adders, amplifiers and antennas for sectors β , γ that are identical to those for sector α . For simplicity sake, the configuration for sectors β , γ are not shown. Additionally, for discussion purposes, it is assumed that signals S_k are intended for mobile-stations k located in sector α and, thus, the present invention will be described with reference to signals S_k being processed for transmission over sector α .

[0014] Processor 32 includes software for processing signals S_k in accordance with well-known CDMA and STS/OTD techniques. The manner in which a particular signal S_k is processed by processor 32 depends on whether mobile-station k is STS/OTD compatible, i.e., mobile-station capable of decoding signals processed using STS/OTD. Processor 32 may also include software for determining whether mobile-station k is STS/OTD compatible. If mobile-station k is not STS/OTD compatible, then signal S_k is processed in accordance with CDMA techniques to produce signal S_{k-1} , which is also referred to herein as a non-STS/OTD signal S_{k-1} . Note that, in another embodiment, processor 32 is operable to process signals S_k in accordance with a multiple access technique other than CDMA, such as time or frequency division multiple access. In this embodiment, when mobile-station k is not STS/OTD compatible, then signal S_k is processed in accordance with such other multiple access technique to produce the non-STS/OTD signal S_k .

[0015] If mobile-station k is STS/OTD compatible, then signal S_k is processed in accordance with CDMA and STS/OTD. Specifically, if mobile-station k is STS compatible, then signal S_k is processed using STS. Such process includes alternately dividing signal S_k into signals s_e and s_o , wherein signal s_e comprises even data bits and signal s_o comprises odd data bits. Signal s_e is multiplied with Walsh code w_1 to produce signal $s_e w_1$, and a conjugate of signal s_e is multiplied with Walsh code w_2 to produce $s_e^* w_2$. Signal s_o is multiplied with Walsh code $s_o^* w_1$ is added to signal $s_o^* w_2$ to produce signal $s_o^* w_1$ is added to signal $s_o^* w_2$ to produce signal $s_o^* w_1$ is added to signal $s_o^* w_2$. Signals $s_o^* w_1$ is a subtracted from signal $s_o^* w_1$ to produce signal $s_o^* w_2$. Signals $s_o^* w_2$. Signals $s_o^* w_2$ is subtracted from signal $s_o^* w_1$ to produce signal $s_o^* w_2$ by a collectively comprise an STS pair.

[0016] If mobile-station k is OTD compatible, then signal S_k is processed using OTD. Orthogonal transmit diversity involves dividing signal S_k into signals s_e and s_o , and multiplying signals s_e and s_o using Walsh codes w_1 , w_2 to produce signals $S_{k-3}(a)$, $S_{k-3}(b)$, i.e., $S_{k-3}(a) = s_e w_1$ and $S_{k-3}(b) = s_o w_2$, respectively. Signals $S_{k-3}(a)$, $S_{k-3}(b)$ are also referred to herein as OTD signals, and together signals $S_{k-3}(a)$, $S_{k-3}(b)$ collectively comprise an OTD pair.

[0017] For illustration purposes, the present invention will be described herein with reference to STS and signals $S_{k\cdot 2}(a)$, $S_{k\cdot 2}(b)$. It should be understood that the present invention is also applicable to OTD and signals $S_{k\cdot 3}(a)$, $S_{k\cdot 3}(b)$. [0018] The output of processor 32 are signals $S_{\alpha\cdot 1}$, $S_{\alpha\cdot 2}$, where signal $S_{\alpha\cdot 1}$ comprises of signals $S_{k\cdot 1}$ and $S_{k\cdot 2}(a)$ and signal $S_{\alpha\cdot 2}$ comprises of signals $S_{k\cdot 2}(b)$, i.e.,

$$s_{\alpha-1} = \sum S_{k-1} + \sum S_{k-2}(a)$$
 and $s_{\alpha-2} = \sum S_{k-2}(b)$.

[0019] That is, signals intended for STS compatible mobile-stations are included in both output signals $s_{\alpha-1}$, $s_{\alpha-2}$ and signals intended for non-STS compatible mobile-stations are included in only signal $s_{\alpha-1}$. Alternately, signal $s_{\alpha-1}$ comprises of signals S_{k-1} and $S_{k-2}(b)$ and signal $s_{\alpha-2}$ comprises of signals $S_{k-2}(a)$.

[0020] Signal $s_{\alpha-1}$ is split by splitter 34 into signals $s_{\alpha-1}(a)$, $s_{\alpha-1}(b)$ and processed along paths A1 and B1, respectively, by multipliers 36, 38, 40, adders 42, 43 and amplifiers 44, 46 in accordance with PSTD techniques. Signal $s_{\alpha-2}$ is split by splitter 35 into signals $s_{\alpha-2}(a)$, $s_{\alpha-2}(b)$ and processed along pathsA2 and B2, respectively, by multipliers 38, 40, 41, adders 42, 43 and amplifiers 44, 46 in accordance with PSTD techniques. Note that signals $s_{\alpha-1}(a)$, $s_{\alpha-2}(a)$ are identical to respective signal $s_{\alpha-1}(b)$, $s_{\alpha-2}(b)$ in terms of data, and that signals $s_{\alpha-1}$, $s_{\alpha-2}(b)$ are unevenly split in terms of power.

[0021] Signals $s_{\alpha-1}(b)$, $s_{\alpha-2}(b)$ are provided as inputs into multipliers 36, 41 where signals $s_{\alpha-1}(b)$, $s_{\alpha-2}(b)$ are frequency phase swept with phase sweep frequency signals (JIMMY: I can't edit the equations, but change all of the "-" signs in the exponents to "+" signs in ALL el terms. Please change this in all of the figures as well. $e^{i\Theta_s(t)}$, $e^{i\Theta_s(t)}$ to produce signals $S_{36} = s_{\alpha-1}(b)e^{i\Theta_s(t)}$, $S_{41} = s_{\alpha-2}(b)e^{i\Theta_s(t)}$, respectively, wherein $\Theta_s = 2\pi f_s t$, $e^{i\Theta_s(t)} = \cos(2\pi f_s t) + i\sin(2\pi f_s t)$, f_s represents a fixed or varying phase sweep frequency and t represents time.

[0022] Note that phase sweep frequency signals $e^{i\Theta_s(\hbar)}$, $e^{i\Theta_{s2}(\hbar)}$ utilize a same phase sweep frequency with one of the

signals, i.e., $e^{i\Theta_{SZ}(l)}$, rotating in the opposite direction plus an offset of π relative to the other signal, i.e., $e^{i\Theta_{S}(l)}$. If the phase sweep frequency signals $e^{i\Theta_{S}(l)}$, $e^{i\Theta_{SZ}(l)}$ were identical, i.e., $\Theta_{S} = \Theta_{SZ}$, self induced interference would be generated by base station 30 that would degrade STS/OTD performance. By configuring the phase sweep signals $e^{i\Theta_{SZ}(l)}$ to have this relationship, the self induced interference is canceled and STS/OTD performance is optimized.

[0023] Signal S_{41} is added to signal $s_{\alpha-1}(a)$ by adder 43 to produce signal $S_{43} = S_{41} + s_{\alpha-1}(a) = s_{\alpha-2}(b)e^{j\Theta_{s2}}(t) + s_{\alpha-1}(a)$. Signal S_{43} and carrier signal $e^{j2\pi f_c t}$ are provided as inputs into multiplier 40 to produce signal S_{40} , where $S_{40} = (s_{\alpha-2}(b)e^{j\Theta_{s2}}(t) + s_{\alpha-1}(a))e^{j2\pi f_c t}$, $e^{j2\pi f_c t} = \cos(2\pi f_c t) + j\sin(2\pi f_c t)$, and f_c represents a carrier frequency.

[0024] Signal S_{36} is added to signal $s_{\alpha-2}(a)$ by adder 42 to produce signal $S_{42} = s_{\alpha-1}$ (b) $e^{i\Theta_3(1)} + s_{\alpha-2}(a)$. Signal S_{42} and carrier signal $e^{j2\pi f_{cl}}$ are provided as inputs into multiplier 38 to produce signal S_{38} , where $S_{38} = (s_{\alpha-1}(b)e^{j\Theta_3(1)} + s_{\alpha-2}(a))$ $e^{j2\pi f_{cl}}$

[0025] Signals S_{40} , S_{38} are amplified by amplifiers 44, 46 to produce signals S_{44} and S_{46} for transmission over antennas 48, 50, where signal $S_{44}=A_{44}((s_{\alpha-2}(b)e^{j\Theta_S\mathcal{A}(t)}+s_{\alpha-1}(a))e^{j2\pi t/ct})$, $S_{46}=A_{46}$ ($s_{\alpha-1}$ ($s_{$

[0026] In one embodiment, the amounts of gain A_{44} , A_{46} are substantially equal. In this embodiment, signals $s_{\alpha-1}$, $s_{\alpha-2}$ are split by splitters 34, 35 such that the power levels of signals $s_{\alpha-1}(a)$, $s_{\alpha-2}(a)$ are substantially equal to the power levels of signal $s_{\alpha-1}(b)$, $s_{\alpha-2}(b)$. Advantageously, equal gain amplifiers can be used, which lowers the cost of base station 30 compared to base station cost when unequal amplifiers are used.

[0027] In another embodiment, the amounts of gain A_{44} , A_{46} are different and related to how splitters 34, 35 split signals $s_{\alpha-1}$, $s_{\alpha-2}$. Specifically, the amounts of gain A_{44} , A_{46} applied to signals S_{40} , S_{38} should be amounts that would cause the power levels of signals S_{44} and S_{46} to be approximately or substantially equal. For purposes of this application, power levels are "approximately equal" when the power levels are within 10% of each other.

[0028] FIG. 5 depicts a base station 70 employing symmetric sweep phase sweep transmit diversity in accordance with one embodiment of the present invention. In this embodiment, a form of PSTD referred to herein as split shift PSTD in also utilized. Spilt shift PSTD involves shifting both signals split from a single signal using phase sweep frequency signals that sweeps both signals in opposite direction. As shown in FIG. 5, signals $s_{\alpha-1}(a)$, $s_{\alpha-2}(a)$ are phase sweep that sweeps both signals in opposite direction. As shown in FIG. 5, signals $s_{\alpha-1}(a)$, $s_{\alpha-2}(a)$ are phase sweep that sweeps symmetric symme

[0029] Although the present invention has been described in considerable detail with reference to certain embodiments, other versions are possible. For example, phase sweeping could be performed on paths A1 and/or A2 instead of paths B1 and/or B2. In another example, the phase sweep frequency signals are interchanged. FIG. 4 depicts another embodiment of the present invention in which phase sweeping is performed along paths A1 and A2 instead of paths B1 and B2 and phase sweep frequency signals $e^{j\Theta_S(l)}$, $e^{j\Theta_S(l)}$ are provided as inputs into multipliers 41, 36, respectively. Therefore, the scope of the present invention should not be limited to the description of the embodiments contained herein.

Claims

10

15

25

30

35

40

45

50

55

1. A method of signal transmission comprising the steps of:

splitting a signal s_1 into signals $s_1(a)$ and $s_1(b)$, wherein signal s_1 comprises a first STS/OTD signal belonging to an STS/OTD pair;

splitting a signal s_2 into signals $s_2(a)$ and $s_2(b)$, wherein signal s_2 comprises a second STS/OTD signal belonging to the STS/OTD pair;

phase sweeping the signal $s_1(b)$ using a first phase sweep frequency signal to produce a phase swept signal $s_1(b)$;

phase sweeping the signal $s_2(b)$ using a second phase sweep frequency signal to produce a phase sweep signal $s_2(b)$, the first and second phase sweep frequency signals being configured to cancel out any self induced interference caused by phase sweeping the signals $s_1(b)$ and $s_2(b)$;

adding the phase swept signal $s_2(b)$ to the signal $s_1(a)$ to produce a summed signal s_3 ; and adding the phase swept signal $s_1(b)$ to the signal $s_2(a)$ to produce a summed signal s_4 .

EP 1 282 244 A1

- 2. The method of claim 1, wherein the first and second phase sweep frequency signals utilize a same phase sweep frequency with the second phase sweep frequency signal rotating in the opposite direction plus an offset of π relative to the first phase sweep frequency signal.
- 3. The method of claim 1, wherein the first and second phase sweep frequency signals utilize a same phase sweep frequency with the first phase sweep frequency signal rotating in the opposite direction plus an offset of π relative to the second phase sweep frequency signal.
 - 4. The method of claim 1 comprising the additional steps of:

5

10

15

20

25

30

35

40

55

transmitting the summed signal s_3 over a first antenna belonging to a pair of diversity antennas; and transmitting the summed signal s_4 over a second antenna belonging to the pair of diversity antennas.

5. The method of claim 1 comprising the additional steps of:

prior to the step of adding the phase swept signal $s_2(b)$ to the signal $s_1(a)$, phase sweeping the signal $s_1(a)$ using a third phase sweep frequency signal to produce a phase swept signal $s_1(a)$ with a different phase from the phase swept signal $s_2(b)$; and

prior to the step of adding the phase swept signal $s_1(b)$ to the signal $s_2(a)$, phase sweeping the signal $s_2(a)$ using a fourth phase sweep frequency signal to produce a phase swept signal $s_2(a)$ with a different phase from the phase swept signal $s_1(b)$.

6. A method of signal transmission comprising the steps of:

splitting a signal s_1 into signals $s_1(a)$ and $s_1(b)$, wherein signal s_1 comprises a first STS/OTD signal belonging to an STS/OTD pair;

splitting a signal s_2 into signals $s_2(a)$ and $s_2(b)$, wherein signal s_2 comprises a second STS/OTD signal belonging to the STS/OTD pair;

phase sweeping the signal $s_1(a)$ using a first phase sweep frequency signal to produce a phase sweep signal $s_1(a)$;

phase sweeping the signal $s_2(a)$ using a second phase sweep frequency signal to produce a phase sweet signal $s_2(a)$, the first and second phase sweep frequency signals being configured to cancel out any self induced interference caused by phase sweeping the signals $s_1(a)$ and $s_2(a)$;

adding the phase swept signal $s_2(a)$ to the signal $s_1(b)$ to produce a summed signal s_3 ; and adding the phase swept signal $s_1(a)$ to the signal $s_2(b)$ to produce a summed signal s_4 .

- 7. The method of claim 6, wherein the first and second phase sweep frequency signals utilize a same phase sweep frequency with the second phase sweep frequency signal rotating in the opposite direction plus an offset of π relative to the first phase sweep frequency signal.
- 8. The method of claim 6, wherein the first and second phase sweep frequency signals utilize a same phase sweep frequency with the first phase sweep frequency signal rotating in the opposite direction plus an offset of π relative to the second phase sweep frequency signal.
- 9. The method of claim 6 comprising the additional steps of:

transmitting the summed signal s_3 over a first antenna belonging to a pair of diversity antennas; and transmitting the summed signal s_4 over a second antenna belonging to the pair of diversity antennas.

10. The method of claim 6 comprising the additional steps of:

prior to the step of adding the phase swept signal $s_2(a)$ to the signal $s_1(b)$, phase sweeping the signal $s_1(b)$ using a third phase sweep frequency signal to produce a phase swept signal $s_1(b)$ with a different phase from the phase swept signal $s_2(a)$; and

prior to the step of adding the phase swept signal $s_2(b)$, phase sweeping the signal $s_2(b)$ using a fourth phase sweep frequency signal to produce a phase swept signal $s_2(b)$ with a different phase from the phase swept signal $s_1(a)$.

EUROPEAN SEARCH REPORT

Application Number EP 02 25 0953

	DOCUMENTS CONSID	ERED TO BE RELEVANT			
Category	Citation of document with i of relevant passe	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
A	EP 1 087 562 A (LUC 28 March 2001 (200) * abstract; figure * column 1, line 28	1,6	H04B7/06		
A	WO 00 51265 A (MOTO 31 August 2000 (200 * page 1, line 27 - figures 1,3 * * page 9, line 1 - 5 *	00-08-31)	1,6		
A	PSTD FOR IS-95 AND WCNC. IEEE WIRELESS NETWORKING CONFEREN	COMMUNICATIONS AND ICE, XX, XX, (1999-09-21), pages	1,6		
	CONFERENCE RECORD C	O systems" ND COMPUTERS, 1999. OF THE THIRTY-THIRD ON OCT. 24-27, 1999, JIEEE, US, 999-10-24), pages	1,6	TECHNICAL FIELDS SEARCHED (Ini.Ci.7) H04B H04L	
	The present search report has b	een drawn up for all claims			
	Place of search	Date of completion of the search		Examiner	
	MUN1CH	7 November 2002	Bur	ghardt, G	
X : partic Y : partic docun A : techn O : non-v	TEGORY OF CITED DOCUMENTS cularly relevant if taken alone aularly relevant if combined with anoth nent of the same category tological background written disclosure nediate document	L : document cited for	ment, but publish the application other reasons	hed an, or	

EPO FORM 1503 03.82 (P04C01)

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 02 25 0953

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

07-11-2002

Patent docume cited in search re		Publication date		Patent family member(s)	Publication date
EP 1087562	А	28-03-2001	US AU BR CN EP JP	6392988 B1 5653200 A 0003995 A 1288295 A 1087562 A2 2001127674 A	21-05-200 15-03-200 17-04-200 21-03-200 28-03-200 11-05-200
WO 0051265	A	31-08-2000	US AU CN EP WO	6317411 B1 2871000 A 1348642 T 1157483 A1 0051265 A1	13-11-200 14-09-200 08-05-200 28-11-200 31-08-200
				Patent Office, No. 12/82	