

## RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. Honours in Chemistry
Fourth Year - Semester II Examination - July 2020

## CHE 4307 - ADVANCED PHYSICAL CHEMISTRY II

Time: Three (03) hours

Answer all questions.

Use of a non-programmable calculator is permitted.

| $h = 6.626 \times 10^{-34} \text{ J S}$                   | $R = 8.314  J  K^{-1} mol^{-1}$                |
|-----------------------------------------------------------|------------------------------------------------|
| Charge of the electron = $1.602 \times 10^{-19}$ Coulombs | $k_b = 1.381 \times 10^{-23} \text{ J K}^{-1}$ |
| Mass of the electron = $9.11 \times 10^{-31}$ kg          | $c = 3 \times 10^8 \mathrm{m  s^{-1}}$         |

1.

a) Molecular partition function and average energy of a molecule are given by  $q = \sum_j e^{-\beta E_j}$  and  $\overline{E} = \sum_j E_j \frac{e^{-\beta E_j}}{q}$  respectively.

Derive a relationship between the molecular partition function and average energy.

- b) Starting from  $q=\sum_j e^{-\beta E_j}$ , show that the average pressure,  $\overline{p}$ , can be given as  $\overline{p}=k_bT\left(\frac{\partial \ln q}{\partial V}\right)_{N,T}$  (30 marks)
- c) If the average energy,  $\overline{E} = k_b T^2 \left( \frac{\partial \ln q}{\partial T} \right)_{N,V}$ Derive an expression for enthalpy  $\Delta$  H, in terms of molecular partition function. (40 marks)
- 2. Rotational contribution for the total molecular partition function,  $q_{\rm r}$  , of a linear molecule can be given as

$$q_r = \frac{T}{\theta_r} \text{ where } \theta_r = \frac{h^2}{8\pi^2 I k_b} \,. \label{eq:qr}$$

Answer the following questions regarding the  $^1H^{35}Cl$  at 25°C, given that the B = 10.591 cm<sup>-1</sup> and r = 1.275 Å.

(Cont'd)

| a) | Define all the terms involve in the above equations.           | (20 marks) |
|----|----------------------------------------------------------------|------------|
| b) | Calculate the reduced mass of <sup>1</sup> H <sup>35</sup> Cl. | (20 marks) |
| c) | Estimate the moment of inertia.                                | (20 marks) |
| d) | Calculate the rotational temperature.                          | (20 marks) |
| e) | Calculate the rotational partition function.                   | (20 marks) |

3. Answer the following questions, assuming the reaction obeys the transition state theory.

$$A + B \rightleftharpoons AB^{\#} \stackrel{k^{\#}}{\rightarrow} P$$

where equilibrium constant and product formation rate constant are  $K_C^{\#}$  and  $k^{\#}$  respectively.

- a) Write down the expression for the equilibrium constant  $K_C^{\#}$  (20 marks)
- b) Give the expression for the rate constant  $k^{\#}$  (20 marks)
- c) Show that  $k_{\text{overall}} = K_{\text{C}}^{\#} \times k^{\#}$  (20 marks) d) If the energy of the activated complex,  $E = hv^{\#}$ , show that the
- d) If the energy of the activated complex,  $E = h\nu^*$ , show that the  $k_{\text{overall}} = K_c^{\#} \times \frac{k_b T}{h}$  (40 marks)

a) Lindemann proposed the following mechanism for a unimolecular gas phase reaction;

$$A + M \xrightarrow{k_1} A^* + M$$

$$A^* + M \xrightarrow{k_2} A + M$$

$$A^* \xrightarrow{k_3} Products$$

Where A is the reactant molecule, A\* is the energized molecule and M is an inert gas molecule.

 $k_1$ ,  $k_2$  and  $k_3$  are the rate constants of the three elementary steps.

- i. State the assumptions made in the above proposed mechanism. (10 marks)
- ii. Show that at low pressures of M, the rate of reaction increases with increase in pressure of M. (20 marks)
- iii. Show that the unimolecular rate constant reaches to a maximum value of

$$\frac{k_1k_3}{k_2}$$
 at infinite pressure.

4.

(20 marks)

(Cont'd)

| b) | Use the collision theory of gas-phase reactions to calculate the theoretical value of the                           |
|----|---------------------------------------------------------------------------------------------------------------------|
|    | second-order rate constant for the reaction $H_2(g) + I_2(g) \longrightarrow 2HI(g)$ at 650 K,                      |
|    | assuming that it is elementary bimolecular and the probability factor is 1. The collision                           |
|    | cross-section is 0.36 nm <sup>2</sup> , the reduced mass is 3.32×10 <sup>-27</sup> kg, and the activation energy is |
|    | 171 kJ mol <sup>-1</sup> . (50 marks)                                                                               |

ii. Born-Oppenheimer approximation

iii. The independent particle approximation

- a) Briefly explain
  - i. Slater Determinant

(15×3 marks)

a) b) The speed of an electron is found to be 1 km s<sup>-1</sup> within an accuracy of 0.02%. Calculate

the uncertainty in its position.

(15 marks)

- c) What do you mean by eigenfunction and eigenvalue? Explain your answer with suitable examples. (10 marks)
- d) Write the Full Hamiltonian for the He atom.

(30 marks)

6. A quantum mechanical particle confined to move in one dimension between x = 0 and x = L
 is found to have a state described by the wave function.

$$\Psi(x) = A sin\left(\frac{2\pi}{L}x\right)$$

- a) Determine the constant A such that the wave function is normalized. (20 marks)
- b) Using the result of part (a), find probability that the particle will be found between x = 0 and x L/3 (20 marks)
- c) What is the difference between the time-dependent Schrodinger equation and the time independent Schrodinger equation? Explain your answer.

Page 3 of 4

(20 marks)

- d) Consider a quantum particle of mass m that is completely free to travel in one-dimension, V(x) = 0.
  - i. Write out the full expression for the time independent Schrödinger equation.
  - ii. Show that  $\Psi(x) = Ae^{ikx} + Be^{ikx}$  is a general solution where k = 2mE  $k = \sqrt{\frac{2mE}{\hbar}}$
  - iii. Consider the two cases where A = 0 and then where B = 0. Determine if these wavefunctions are (separately) eigenfunctions of the momentum operator and, if so, what the eigenvalues are.
  - iv. Are there any restrictions on the total energy for this particle?

(10×4 marks)

- END -