Hierarchical Clustering

Overview

- Agglomerative Vs Divisive Clustering
- Contoh Aglomerative
- · Latihan dan diskusi

Hierarchical Clustering

- Hierarchical Clustering adalah metode analisis kelompok yang berusaha untuk membangun sebuah hirarki kelompok data.
- Strategi pengelompokannya umumnya ada 2 jenis yaitu Agglomerative (Bottom-Up) dan Divisive (Top-Down). (Pada bagian ini akan dibatasi hanya menggunakan konsep Agglomerative).

Algoritma Agglomerative Hierarchical Clustering :

- 1. Hitung Matrik Jarak antar data.
- 2. Ulangi langkah 3 dan 4 higga hanya satu kelompok yang tersisa.
- 3. Gabungkan dua kelompok terdekat berdasarkan parameter kedekatan yang ditentukan.
- 4. Perbarui Matrik Jarak antar data untuk merepresentasikan kedekatan diantara kelompok baru dan kelompok yang masih tersisa.
- 5. Selesai.

Rumus Umum

- Membentuk Matrik Jarak,
 - misal dengan Manhattan Distance:
 - atau menggunakan Euclidian Distance:

$$D_{man}(x,y) = \sum_{j=1}^{d} |x_j - y_j|$$

$$D(x_2, x_1) = \sqrt{\sum_{j=1}^{d} |x_{2j} - x_{1j}|^2}$$

- Pengelompokan data secara hierarki:
 - Single linkage:

$$d_{uv} = \min\{d_{uv}\}, d_{uv} \in D$$

· Complete Linkage:

$$d_{uv} = \max\{d_{uv}\}, d_{uv} \in D$$

• Average Linkage:

$$d_{uv} = average\{d_{uv}\}, d_{uv} \in D$$

Contoh Studi Kasus

Data	Fitur x	Fitur y
1	#1	1
2	4	1
3	1	2
4	3	4
5	5	4

Selesaikan hierarchical clustering (agglomerative) dengan menggunakan min linkage, complete linkage, average linkage!

Single Linkage Step 1. Hitung Matrik Jarak antar data.

	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

Data	Fitur x	Fitur y
1 % 6	#1	1
2	4	1
3	1	2
4	3	4
5	5	4

- Jarak masing2 data
 - D(1,2): 3
 - D(1,3):1
 - D(1,4):5
 - D(1,5):7
 - D(2,3):4
 - D(2,4):4
 - D(2,5):4
 - D(3,4):4
 - D(3,5):6
 - D(4,5):2

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

Iterasi 1: (langkah 3) penggabungan 2 jarak terdekat

Dman	1	2	3	4	5
1	0	3		5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Dengan memperlakukan data sebagai kelompok, selanjutnya kita pilih jarak dua kelompok yang terkecil.
- terpilih kelompok 1 dan 3, sehingga kedua kelompok ini digabungkan.
- Langkah 4: perbarui matriks jarak

Single Linkage Step 4. Hitung ulang Matrik Jarak antar data.

	1,3	2	4	5
1,3	0	3	4	?
2		0	4	4
4			0	2
5				0

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Jarak masing2 data (untuk data cluster dengan individu, pakai single linkage)
 - D((1,3),2): min(D(1,2), D(3,2) : Min(3,4) = 3
 - D((1,3),4): min(D(1,4), D(3,4) : Min(5,4) = 4
 - D((1,3),5):): ?
 - D(2,4):4
 - D(2,5):4
 - D(3,4):4
 - D(3,5):2
 - D(4,5)

Single Linkage Step 3. gabungkan 2 kelompok data yg paling dekat

	1,3	2	4	5
1,3	0	3	4	6
2		0	4	4
4			0	2
5				0

Single Linkage Step 4. Hitung ulang Matrik Jarak antar data.

	1,3	2	4,5
1,3	0	3	4
2		0	?
4,5			0

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Jarak masing2 data (untuk data cluster dengan individu, pakai single linkage)
 - D((1,3),2): min(D(1,2), D(3,2) : Min(3,4) = 3
 - D((1,3),(4,5)): min(D(1,4), D(1,5),D(3,4),D(3,
 - Min(5,7,4,6) = 4
 - D(2,(4,5)):

Single Linkage Step 3. gabungkan 2 kelompok data yg paling dekat

	1,3	2	4,5
1,3	0	3	4
2		ø	4
4,5			0

Single Linkage Step 4. Hitung ulang Matrik Jarak antar data.

	1,3,2	4,5
1,3,2	0	4
4,5	4	0

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Jarak masing2 data (untuk data cluster dengan individu, pakai single linkage)
 - D((1,3,2),(4,5)):
- kelompok (132) dan (45) digabung untuk menjadi kelompok tunggal dari lima dat yaitu kelompok (13245) dengan jarak terdekat 4.

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

>	Dman	(13)	2	4	5
	(13)	0	3	4	6
	2	3	0	4	4
	4	4	4	0	2
	5	6	4	2	0

	Dman	(45)	(13)	2
>	(45)	0	4	4
	(13)	4	0	3
	2	4	3	0

	Dman	(132)	(45)
>	(132)	0	4
	(45)	4	0

Complete Linkage Step 1. Hitung Matrik Jarak antar data.

	1	2	3	4	5
1	0				
2		0			
3			0		
4				0	
5					0

Data	Fitur x	Fitur y
1 % 6	#1	1
2	4	1
3	1	2
4	3	4
5	5	4

- Jarak masing2 data
 - D(1,2): 3
 - D(1,3):1
 - D(1,4):5
 - D(1,5):7
 - D(2,3):4
 - D(2,4):4
 - D(2,5):4
 - D(3,4):4
 - D(3,5):6
 - D(4,5):2

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

Iterasi 1: (langkah 3) penggabungan 2 jarak terdekat

Dman	1	2	3	4	5
1	0	3		5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Dengan memperlakukan data sebagai kelompok, selanjutnya kita pilih jarak dua kelompok yang terkecil.
- terpilih kelompok 1 dan 3, sehingga kedua kelompok ini digabungkan.
- Langkah 4: perbarui matriks jarak

Complete Linkage Step 4. Hitung ulang Matrik Jarak antar data.

	1,3	2	4	5
1,3	0	4	5	?
2		0	4	4
4			0	2
5				0

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Jarak masing2 data (untuk data cluster dengan individu, pakai single linkage)
 - D((1,3),2): max(D(1,2), D(3,2): Max(3,4) = 4
 - D((1,3),4): max(D(1,4), D(3,4) : Max(5,4) = 5
 - D((1,3),5):): ?
 - D(2,4):4
 - D(2,5):4
 - D(3,4):4
 - D(3,5):2
 - D(4,5)

Complete Linkage Step 3. gabungkan 2 kelompok data yg paling dekat

	1,3	2	4	5
1,3	0	4	4	6
2		0	4	4
4			0	2
5				0

Complete Linkage Step 4. Hitung ulang Matrik Jarak antar data.

	1,3	2	4,5
1,3	0	4	7
2		0	?
4,5			0

Dman	1	2	3	4	5
1	0	3	1	5	7
2	3	0	4	4	4
3	1	4	0	4	6
4	5	4	4	0	2
5	7	4	6	2	0

- Jarak masing2 data (untuk data cluster dengan individu, pakai single linkage)
 - D((1,3),2): max(D(1,2), D(3,2) : Min(3,4) = 4
 - D((1,3),(4,5)): max(D(1,4), D(1,5),D(3,4),D(3)
 - $\max(5,7,4,6) = 7$
 - D(2,(4,5)):

Complete Linkage Step 3. gabungkan 2 kelompok data yg paling dekat

	1,3	2	4,5
1,3	0	4	7
2		0	4
4,5			0

Complete Linkage Step 4. Hitung ulang Matrik Jarak antar data.

	1,3,2	4,5
1,3,2	0	7
4,5	7	0

Dman	1	2	3	4	5	
1	0	3	1	5	7	
2	3	0	4	4	4	
3	1	4	0	4	6	
4	5	4	4	0	2	
5	7	4	6	2	0	

- Jarak masing2 data (untuk data cluster dengan individu, pakai single linkage)
 - D((1,3,2),(4,5)):
- kelompok (132) dan (45) digabung untuk menjadi kelompok tunggal dari lima dat yaitu kelompok (13245) dengan jarak terjauh 7.

Dendogram

AlternatiV Dendogram

																	-	-		
Dman	1	2	3	4	5		Dman	(13)	2	4	5									
1	0	3	1	5	7		(13)	0	1	5	7		Dman	(45)	(13)	2		Dman	(452)	(13)
2	3	0	4	4	4		2		_	4	Α.		(45)	0	7	4			(452)	(13)
3	1	4	0	4	6	7		4	0	4	4	7	(13)	7	0	4	7	(452)	0	7
4	5	4	4	0	2		4	5	4	0	2		(13)	/	U	4		(13)	7	0
5	7	4	6	2	0	1 _	5	7	4	2	0	╙.	2	4	4	0				

Single Vs Complete

