

Псевдоэксперимент №6

Хафизов Фанис

27 марта 2021 г.

Определение коэффициентов зависимости 1

Предположение Тейлора:

$$R = t^{\alpha} E^{\beta} \rho^{\gamma}$$

$$[R] = 1 \text{ M}$$

$$[t] = 1 \text{ C}$$

$$[E] = 1 \text{ Ke} \cdot M$$

[E]=1 кг·м $^2/{
m c}^2$

 $[\rho] = 1 \text{ kg/m}^3$

Из метода размерностей получим систему уравнений:

$$\begin{cases} 1 = 2\beta - 3\gamma \\ 0 = \beta + \gamma \\ 0 = \alpha - 2\beta \end{cases}$$

$$\begin{cases} \alpha = \frac{2}{5} \\ \beta = \frac{1}{5} \\ \gamma = -\frac{1}{5} \end{cases}$$
$$R = t^{\frac{2}{5}} E^{\frac{1}{5}} \rho^{-\frac{1}{5}}$$

Оценка выделившейся энергии 2

Для каждой точки посчитаем $t^{\frac{2}{5}},$ чтобы зависимость $R(t^{\frac{2}{5}})$ была линейна.

$N_{\overline{0}}$	t, c	R, км	$t^{\frac{2}{5}}, \mathrm{c}^{\frac{2}{5}}$
1	4	0,55	1,74
2	8	0,70	2,30
3	16	0,95	3,03
4	28	1,25	3,79
5	46	1,50	4,62

Построим график зависимости $R(t^{\frac{2}{5}})$.

R относительно параметра "t^0,4"

Рис. 1: График зависимости $R(t^{\frac{2}{5}})$

Угловой коэффициент наклона равен $k=0,339\cdot 10^3~{\rm m/c^{0,4}}.$ С другой стороны, он также равен $E^{0,2}\rho^{-0,2}$. $E=\rho\cdot k^5=1,3\cdot 10^3\cdot 33,9^5=5,82\cdot 10^{10}$ Дж =58,2 ГДж

$$E=
ho\cdot k^5=1,3\cdot 10^3\cdot 33,9^5=5,82\cdot 10^{10}$$
 Дж $=58,2$ ГДж

3 Ответ

$$E=58,2$$
 ГДж