### CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516

Office hours T, Th 11:15-11:45 or by appointment

**Zoom recording here** 

#### **Announcements**

- Written 1 due this week
- Quiz 1 next Thursday, in class, 30-45 minutes, closed book/notes
  - Topics: everything up to and including decision trees
  - Remember to review probability and statistics

#### Recap

- What is the geometry of the tree's decision boundary?
- Tree learners don't need a m\_\_\_\_ s\_\_\_ representation, can represent
  c\_\_\_\_ concepts, are human i\_\_\_\_ and easy to e\_\_\_\_.
- But they have trouble with features that have lots of v\_\_\_\_\_, features that i\_\_\_\_\_, and o\_\_\_\_\_ easily.
- What is goal of learning algorithm performance evaluation?
- Given a finite dataset, we want the training set to an algorithm to be as I\_\_\_\_ as possible. We also want the test sets to be i\_\_\_\_.
- In this procedure, we p\_\_\_\_ the data into f\_\_\_. Each iteration we use \_\_\_ as the train set and \_\_\_\_ as the test set.
- What is leave one out cross validation?
- What is stratified CV?
- What is internal CV?

# Today

Metrics

## **Contingency Table**

Class according to Target Concept / Oracle (Correct Answer)

| ifier                                                   |          | Positive                                   | Negative                                  |  |
|---------------------------------------------------------|----------|--------------------------------------------|-------------------------------------------|--|
| s according to Learned Classifier<br>(Predicted Answer) | Positive | True Positives<br>(TP)                     | False Positives<br>(FP)<br>(Type I error) |  |
|                                                         | Negative | False Negatives<br>(FN)<br>(Type II error) | True Negatives<br>(TN)                    |  |

### Accuracy

 Most commonly used measure for comparing classification algorithms

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

#### **Error Rate**

Inverse of Accuracy

$$ErrorRate = \frac{FP + FN}{TP + TN + FP + FN}$$

### Weaknesses of Accuracy

- Does not account for:
  - Skewed class distributions
  - Differential misclassification costs
  - Confidence estimates from learning algorithms

## Weighted/Balanced Accuracy

Corrects for skewed class distributions

$$WAcc = \frac{1}{2} \left( \frac{TP}{Allpos} + \frac{TN}{Allneg} \right)$$

$$= \frac{1}{2} \left( \frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right)$$
True Positive Rate True Negative Rate

## Measuring one class

- Often, just a single class is "interesting"
  - Call this the "positive" class

|          | Positive                                   | Negative                                  |  |
|----------|--------------------------------------------|-------------------------------------------|--|
| Positive | True Positives<br>(TP)                     | False Positives<br>(FP)<br>(Type I error) |  |
| Negative | False Negatives<br>(FN)<br>(Type II error) | True atives                               |  |

#### Precision

 Of the examples the learner predicted positive, how many were actually positive?

$$Precision = \frac{TP}{TP + FP}$$

## Recall/TP rate/Sensitivity

 Of the examples that were actually positive, how many did the learner predict correctly?

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{Allpos}$$

## Specificity/TN rate

Counterpart of recall for the negative class

$$Specificity = \frac{TN}{TN + FP} = \frac{TN}{Allneg}$$

• So:

$$WAcc = \frac{1}{2} \left( Sensitivity + Specificity \right)$$

## F<sub>1</sub> score

 Combines precision and recall into a single measure, giving each equal weight

$$\frac{1}{F_1} = \frac{1}{2} \left( \frac{1}{Precision} + \frac{1}{Recall} \right)$$

$$F_{1} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$$

### Beyond point estimates

Everything above is a "point estimate"

 Because they will be computed on the basis of a sample, we can also compute variance estimates for each quantity

 Important to show "stability" of solutions, and when comparing across algorithms (later)

## **Learning Curves**

- Often useful to plot each metric as a function of training sample size
- Provides insight into how many examples the algorithm needs to become effective



#### Metrics with Confidence Measures

 Many learning algorithms can produce models that can provide estimates of how confident they are about a prediction

• Example: Pruned Decision Trees

#### Metrics with Confidence Measures

|           | True Class | Confidence<br>On + |
|-----------|------------|--------------------|
| Example 1 | +          | 0.9                |
| Example 2 | -          | 0.8                |
| Example 3 | +          | 0.4                |
| Example 4 | -          | 0.3                |

 We can create multiple classifiers by thresholding the confidence

 In this case, we can plot Precision-Recall (PR) and Receiver Operating Characteristic (ROC) graphs tracking all of the classifiers

## Precision-Recall graphs

|           | True Class | Confidence<br>On + | Recall<br>(x axis) | Precision<br>(y axis) |
|-----------|------------|--------------------|--------------------|-----------------------|
| Example 1 | +          | 0.9                |                    |                       |
| Example 2 | -          | 0.8                |                    |                       |
| Example 3 | +          | 0.4                |                    |                       |
| Example 4 | -          | 0.3                |                    |                       |

## Precision-Recall graphs

|           | True Class | Confidence<br>On + | Recall<br>(x axis) | Precision<br>(y axis) |
|-----------|------------|--------------------|--------------------|-----------------------|
| Example 1 | +          | 0.9                | 0.5                | 1                     |
| Example 2 | -          | 0.8                | 0.5                | 0.5                   |
| Example 3 | +          | 0.4                | 1                  | 0.67                  |
| Example 4 | -          | 0.3                | 1                  | 0.5                   |



## ROC graphs

|           | True Class | Confidence<br>On + | FP Rate<br>(1-Spec.)<br>(x axis) | Sens./Recall<br>(y axis) |
|-----------|------------|--------------------|----------------------------------|--------------------------|
| Example 1 | +          | 0.9                |                                  |                          |
| Example 2 | -          | 0.8                |                                  |                          |
| Example 3 | +          | 0.4                |                                  |                          |
| Example 4 | -          | 0.3                |                                  |                          |

## **ROC** graphs

|           | True Class | Confidence<br>On + | FP Rate<br>(x axis) | Sens./Recall<br>(y axis) |
|-----------|------------|--------------------|---------------------|--------------------------|
| Example 1 | +          | 0.9                | 0                   | 0.5                      |
| Example 2 | -          | 0.8                | 0.5                 | 0.5                      |
| Example 3 | +          | 0.4                | 0.5                 | 1                        |
| Example 4 | -          | 0.3                | 1                   | 1                        |



### Properties of ROC graphs

- Random guessing is a diagonal line
  - Also majority class classifier
  - If your classifier is any good its ROC must lie above the diagonal
- Monotonically increasing
- Often use "AUC" / "AROC" as comparison statistic (later)
- Can be misleading if class distribution is too skewed (use PR graphs instead)