Übungsblatt 1

Eric Kunze

Übungsleiter: Dr. F. Legrand

Geometrie

Thema: Gruppen - Ordnung - Index

Übung 6

Ist #G = p eine Primzahl, so ist $G = \langle g \rangle$ für ein $g \in G$.

Lösung. Da $p \geq 2$ ist, existiert ein vom neutralen Element verschiedenes Element $g \in G$. $\Rightarrow \langle g \rangle \leq G$

Nach dem Satz von Lagrange gilt $\operatorname{ord}(g) \mid \#G = p$. Da g nicht das neutrale Element der Gruppe G ist, muss $\operatorname{ord}(g) = \#\langle g \rangle \geq 2$ und damit $\operatorname{ord}(g) = \#\langle g \rangle = p$. Folglich ist also $G = \langle g \rangle$.

Übung 7

Sei $f: G \to H$ ein Epimorphismus endlicher Gruppen. Zeigen Sie, dass $|f^{-1}(h)| = |\operatorname{Ker}(f)|$ für jedes $h \in H$. Schließen Sie, dass $\#G = \#H \cdot \#\operatorname{Ker}(f)$.

Lösung. Es sei $h \in H$.

f surjektiv $\Rightarrow \exists g_0 \in G : f(g_0) = h$ Für $g \in \text{Ker}(f)$ gilt

$$f(g \cdot g_0) = f(g) \cdot f(g_0) = 1 \cdot h = h$$

d.h. die Abbildung $\varphi : \operatorname{Ker}(f) \to f^{-1}(h), g \mapsto \varphi(g) := g \cdot g_0$ ist wohldefiniert.

 $\triangleright \varphi$ ist surjektiv: Sei $g \in f^{-1}(h)$. Dann haben wir

$$f(g \cdot g_0^{-1}) = f(g) \cdot f(g_0)^{-1} = h \cdot h^{-1} = 1,$$

d.h. $g \cdot g_0^{-1} \in \text{Ker}(f)$ und $\varphi(g \cdot g_0^{-1}) = g \cdot g_0^{-1} \cdot g_0 = g$.

- ho φ ist injektiv: Es seien $g_1, g_2 \in \text{Ker}(f)$ mit $\varphi(g_1) = \varphi(g_2)$, d.h. $g_1 \cdot g_0 = g_2 \cdot g_0$ $\Rightarrow g_1 = g_2$.
- \triangleright Dann ist φ bijektiv, d.h. $|f^{-1}(h)| = |\text{Ker}(f)|$.

Die Urbilder von h sind disjunkt, denn: Für $h \neq h' \in H$ haben wir

$$f^{-1}(h) = \{g \in G : f(g) = h\}$$
$$f^{-1}(h') = \{g \in G : f(g) = h'\}$$

Ist $g \in f^{-1}(h) \cap f^{-1}(h')$, so ist h = f(g) = h' im Widerspruch zur Annahme $h \neq h'$.

Aus
$$G = \bigsqcup_{h \in H} f^{-1}(h)$$
 folgt

$$|G| = \left| \bigsqcup_{h \in H} f^{-1}(h) \right| = \sum_{h \in H} \left| f^{-1}(h) \right|$$
$$= \sum_{h \in H} |\operatorname{Ker}(f)|$$
$$= |\operatorname{Ker}(f)| \cdot |H|$$

Übung 8

Zeigen Sie: Für $k, n \in \mathbb{N}$ ist $\operatorname{ord}(k + n\mathbb{Z}) = \frac{\operatorname{kgV}(k, n)}{k} = \frac{n}{\operatorname{ggT}(k, n)}$.

Lösung. Es seien $k \in \mathbb{N}$ und $n \in \mathbb{N} \setminus \{0\}$. Außerdem sei $d = \operatorname{ggT}(k, n)$. Dann existieren $k_1, n_1 \in \mathbb{N}$ mit

$$\begin{array}{ccc} k & = & d \cdot k_1 \\ n & = & d \cdot n_1 \\ \mathrm{ggT}(k_1, n_1) & = & 1 \end{array}$$

Für $m \in \mathbb{N} \backslash \{0\}$ gilt

$$m \cdot (k + n\mathbb{Z}) = n\mathbb{Z} \iff n \mid m \cdot k$$
$$\Leftrightarrow d \cdot n_1 \mid m \cdot d \cdot k_1$$
$$\Leftrightarrow n_1 \mid m \cdot k_1$$
$$\Leftrightarrow n_1 \mid m$$

Dann ist $\operatorname{ord}(k + n\mathbb{Z}) = n_1 = \frac{n}{\operatorname{ggT}(k,n)}$.

Übung 17 (Präsenz)

Zeigen oder widerlegen Sie:

Genau dann kommutieren Zykel $\tau_1, \tau_2 \in S_n$, wenn sie disjunkt sind.

Lösung. Die Rückrichtung ist richtig laut Vorlesung (vgl. 1.13). Für die Hinrichtung verwenden wir folgendes Gegenbeispiel: Sei $\tau_1 = (1 \ 2) = \tau_2$. Dann ist $\tau_1 \circ \tau_2 = \tau_2 \circ \tau_1$ aber offensichtlich ist $\tau_1 \cap \tau_2 = \tau_1 = \tau_2 \neq \emptyset$.

Übung 18 (Präsenz)

Zeigen oder widerlegen Sie:

- a) Sind $K, N \leq G$, so ist $K \cup N \leq G$.
- b) Sind $K, N \leq G$, so ist $K \cdot N \leq G$.

Lösung. a) Die Aussage ist falsch. Sei dazu $K := (2\mathbb{Z}, +)$ und $N := (3\mathbb{Z}, +)$. Dann ist $2 \in 2\mathbb{Z}$ und $3 \in 3\mathbb{Z}$, aber $2 + 3 = 5 \notin K \cup N$ und $K \cup N$ ist somit nicht abgeschlossen bezüglich der Addition.

b) Auch diese Aussage ist falsch. Betrachte dazu $K := \{id, (12)\} \le S_3$ und $N := \{id, (13)\} \le S_3$. Dann ist $K \cdot N = \{id, (12), (12), (12), (13) = (132)\} \nleq S_3$ nach dem Satz von Lagrange, da $|KN| = 4 \nmid 6 = \#S_3$. □

Übungsblatt 2 Geometrie Eric Kunze Übungsleiter: Dr. F. Legrand

Thema: Gruppen

Lösung. Lösung □

Übungsblatt 3

Eric Kunze Übungsleiter: Dr. F. Legrand

ometrie

Thema: Gruppenwirkungen, Sylowgruppen

Übung 47

Für $n \geq 2$ ist $S_n = \langle (12), (12 \dots n) \rangle$.

Lösung. Sei $G = \langle (12), (12 \dots n) \rangle$ und $c = (12 \dots n)$. Nach Ü26 gilt für alle $i \in \{0, \dots, n-2\}$:

$$c \circ (12) \circ c^{-1} = (c^{i}(1) \ c^{i}(2)) = (i+1 \ i+2)$$

Dann gilt $\{(12), (23), (34), \dots, (n-1 \ n)\}\subseteq G$. Aus V44 folgt dann $G=S_n$.

Übung 48

Sei $S \in \text{Syl}_n(G)$. Zeigen Sie: Ist (G:S) < p, so ist $S \leq G$.

Lösung. Schreibe $\#G = p^n \cdot m$ mit $n \ge 0$ und $p \nmid m$. Es sei n_p die Kardinalität von $\operatorname{Syl}_p(G)$. Aus den Sylow-Sätzen folgt $n_p = 1 \mod p$ und $n_p \mid m = (G:S)$ (da $|S| = p^n$ und nach Lagrange ist $(G:S) = |G| : |S| = p^n \cdot m : p^n = m$). Insbesondere gilt $n_p \le (G:S)$ und $p \mid n_p - 1$. Ist $n_p \ne 1$, so ist $p \le n_p - 1 \le n_p \le (G:S)$, was unmöglich ist. Deswegen ist $n_p = 1$, d.h. $S \le G$ (vgl. 8.7: $S \le G \iff \#\operatorname{Syl}_p(G) = 1$)

Übung 49

Seien $H_1, H_2 \leq G$. Die Wirkung von $\Gamma := H_1 \times H_2$ auf $X := H_1 H_2 \subseteq G$ durch $x^{(h_1, h_2)} := h_1^{-1} \cdot x \cdot h_2$ ist transitiv. Bestimmen Sie $\Gamma_1 = \text{Stab}(1)$ und folgern Sie, dass

$$|H_1H_2| = \frac{|H_1| \cdot |H_2|}{|H_1 \cap H_2|}$$

Lösung. ▷ Betrachte die Abbildung

$$\psi \colon \left\{ \begin{array}{ccc} H_1 H_2 \times (H_1 \times H_2) & \to & H_1 H_2 \\ (x, (h_1, h_2)) & \mapsto & h_1^{-1} \cdot x \cdot h_2 \end{array} \right.$$

Für jedes $x \in H_1H_2$ gilt $x = g_1 \cdot g_2$ mit $g_1 \in H_1$ und $g_2 \in H_2$. Dann gilt

$$h_1^{-1} \cdot x \cdot h_2 = \underbrace{h_1^{-1} g_1}_{\in H_1} \cdot \underbrace{g_2 h_2}_{\in H_2} \in H_1 H_2$$

Deswegen ist ψ definiert.

 $\triangleright \psi$ ist Wirkung.

- Für alle $x \in H_1H_2$ ist $X^{(1,1)} = 1^{-1} \cdot x \cdot 1 = x$
- Für alle $(g_1, g_2), (h_1, h_2), (l_1, l_2) \in H_1 \times H_2$ gilt

$$((g_1g_2)^{(h_1,h_2)})^{(l_1,l_2)} = (h_1^{-1}g_1g_2h_2)^{(l_1,l_2)} = l_1^{-1}h_1^{-1}g_1g_2h_2l_2$$

$$= (h_1l_1)^{-1}g_1g_2(h_2l_2) = (g_1g_2)^{(h_1l_1,h_2l_2)}$$

$$= (g_1g_2)^{(h_1,h_2)\cdot(l_1,l_2)}$$

 \triangleright ψ ist transitiv: Es seien $x,y\in H_1H_2$. Schreibe wieder $x=g_1g_2$ mit $g_1\in H_1,g_2\in H_2$ und $y=l_1l_2$ mit $l_1\in H_1,l_2\in H_2$. Dann gilt

$$y = l_1 l_2 = l_1 g_1^{-1} g_1 g_2 g_2^{-1} l_2 = \underbrace{(g_1 l_1^{-1})^{-1}}_{\in H_1} \cdot x \cdot \underbrace{(g_2^{-1} l_2)}_{\in H_2}$$

 \triangleright Es gilt:

$$Stab(1) = \{(g_1, g_2) \in H_1 \times H_2 : 1^{(g_1, g_2)} = 1\}$$

$$= \{(g_1, g_2) \in H_1 \times H_2 : g_1^{-1} \cdot 1 \cdot g_2 = 1\}$$

$$= \{(g_1, g_2) \in H_1 \times H_2 : g_1 = g_2\}$$

$$\cong H_1 \cap H_2$$

▷ Deswegen gilt

$$|H_1 \cdot H_2| \stackrel{\text{transitiv}}{=} \#1^{H_1 \times H_2} \stackrel{6.11}{=} (H_1 \times H_2 : \text{Stab}(1))$$

$$\stackrel{\text{Lagrange}}{=} \frac{|H_1 \times H_2|}{|\text{Stab}(1)|} = \frac{|H_1| \cdot |H_2|}{|H_1 \cap H_2|}$$

Übung 50

Jede Gruppe der Ordnung 20 ist isomorph zu einem semidirekten Produkt $C_4 \ltimes_{\alpha} C_5$ oder $V_4 \ltimes_{\alpha} C_5$.

Lösung. Es sein G eine endliche Gruppe und n_5 die Anzahl der 5-Sylowgruppen von G. Nach den Sylow-Sätzen ist $n_5=1 \mod 5$ und $n_5 \mid 4$. Deswegen gilt $n_5=1$. G hat genau eine 5-Sylowgruppe, die wir mit N_5 bezeichnen. Nach 8.7 ist $N_5 \leq G$. Es sei N_2 eine 2-Sylowgruppe von G; es gilt $|N_2|=4$ (vgl. dazu 8.2: $\#G=p^k\cdot m$ mit $p\nmid m\Rightarrow 20=2^2\cdot 5\Rightarrow H\in \mathrm{Syl}_2(G)\Rightarrow |H|=p^k=4$). Da $\mathrm{ggT}(4,5)=1$ gilt $|N_5\cap N_2|=1$, d.h. $N_5\cap N_2=\{1\}$. Es gilt auch

$$|N_5 \cdot N_2| = \frac{|N_5| \cdot |N_2|}{|N_5 \cap N_2|} = \frac{5 \cdot 4}{1} = 20 = |G|$$

d.h. $N_5 \cdot N_2 = G$. Mit 5.6 bekommen wir $G \cong N_2 \ltimes_{\alpha} N_5$. Aber wegen $N_5 \cong C_5$ und $N_2 \cong C_3$ oder $N_2 \cong V_4$ (vgl. dazu 7.7 und 4.8 und V4) gilt $C_4 \ltimes_{\alpha} C_5$ oder $V_4 \ltimes_{\alpha} C_5$.

Übung 63 (Präsenz)

Geben Sie ein Beispiel einer Gruppe G und einer G-Menge X mit $G_x = \operatorname{Stab}(x) \not \leq G$ für ein $x \in X$.

Lösung. Sei $n \geq 3$. Betrachte die natürliche Wirkung von S_n auf $\{1, \ldots, n\}$

$$\psi \colon \left\{ \begin{array}{ccc} \{1, \dots, n\} \times S_n & \to & S_n \\ (\sigma, i) & \mapsto & i^{\sigma} = \sigma(i) \end{array} \right.$$

Es gilt $\operatorname{Stab}(n) = \{ \sigma \in S_n : \sigma(n) = n \}$. Aber $\operatorname{Stab}(n) \not \leqslant S_n$:

$$(1 \ n) \circ \underbrace{(1 \ 2 \cdots n - 1)}_{\in \operatorname{Stab}(n)} \circ (1 \ n) \stackrel{\text{Ü}26}{=} (n \ 2 \cdots n - 1) \notin \operatorname{Stab}(n)$$

Übung 64 (Präsenz)

Sei G eine endliche Gruppe und p eine Primzahl. Genau dann ist G eine p-Gruppe, wenn ord(g) für jedes $g \in G$ eine p-Potenz ist.

Lösung. Wir betrachten beide Richtungen der Äquivalenz.

- (⇒) Ist G ein p-Gruppe, so ist $\operatorname{ord}(p)$ Teiler der Ordnung von G für jedes $g \in G$ (Lagrange), d.h. $\operatorname{ord}(g)$ ist eine p-Potenz für jedes $g \in G$, da #G eine p-Potenz ist.
- (\Leftarrow) Umgekehrt sei G eine endliche Gruppe mit

$$\forall g \in G \ \exists n \in \mathbb{N} : \operatorname{ord}(g) = p^n \tag{*}$$

Es sei q eine Primzahl, die #G teilt. Nach dem Satz von Cauchy (7.3) gilt: $\exists g \in G$: ord(g) = q. Aus Gleichung (\star) folgt ord(g) = q = p. Deswegen ist G eine p-Gruppe. \square

Übung 65 (Präsenz)

Es seien G eine endliche Gruppe der Ordnung 39 und X eine G-Menge der Kardinalität 23. Zeigen Sie, dass X einen Fixpunkt unter G hat.

Lösung. Aus #G = 39 und |X| = 23, dem Satz von Lagrange und 6.11 gilt $\#x^G \in \{1, 3, 13, 39\}$ für alle $x \in X$. Es seien a die Anzahl der Bahnen der Kardinalität 1, b die Anzahl der Bahnen der Kardinalität 3, c die Anzahl der Bahnen der Kardinalität 13. Dann gilt 23 = a + 3b + 13c, insbesondere gilt $c \in \{0, 1\}$ (da $13 \cdot 2 = 26 > 23$). Ist c = 0, so gilt 23 = a + 3b. Ist a = 0, so ist 23 = 3b, was unmöglich ist, also $a \ge 1$. Ist c = 1, so gilt a + 3b = 10. Ist a = 0, so gilt 3b = 10, was unmöglich ist. Deswegen gilt $a \ge 1$.

Bemerkung: Der Stabilisator G_{x_0} besteht aus den $g \in G$, die x_0 als Fixpunkt haben.

Eric Kunze

Übungsleiter: Dr. F. Legrand

Thema: Sylow-Sätze, einfache Gruppen, auflösbare Gruppen

Übung 66 (Vorbereitung)

Sei $\Delta := \{(g,g) : g \in G\}$. Dann ist $\Delta \leq G \times G$. Ist G abelsch, so ist $\Delta \leq G \times G$ und $(G \times G)/\Delta \cong G$. Ist G nicht abelsch, so ist $\Delta \nleq G \times G$

Lösung. Wir präsentieren hier nur die Lösung für den Teil $(G \times G)/\Delta \cong G$. Betrachte dazu die Abbildung

$$f \colon \left\{ \begin{array}{ccc} G \times G & \to & G \\ (g_1, g_2) & \mapsto & f(g_1, g_2) = g_1 \cdot g_2^{-1} \end{array} \right.$$

Da G abelsch ist, ist f ein Gruppenhomomorphismus:

$$\forall g_1, g_2, g_3, g_4 \in G : f((g_1, g_2) \cdot (g_3, g_4)) = f(g_1 g_3, g_2 g_4)$$

$$= g_1 g_3 \cdot (g_2 g_4)^{-1}$$

$$= g_1 g_2^{-1} g_3 g_4^{-1}$$

$$= f(g_1, g_2) \cdot f(g_3, g_4)$$

Es ist klar, dass f surjektiv ist, da alle $g \in G$ dargestellt werden können als $f(g_1, 1) = g$. Außerdem gilt

$$\operatorname{Ker}(f) = \{ (g_1, g_2) \in G \times G : f(g_1, g_2) = 1 \}$$

$$= \{ (g_1, g_2) \in G \times G : g_1 \cdot g_2^{-1} = 1 \}$$

$$= \{ (g_1, g_2) \in G \times G : g_1 = g_2 \}$$

$$= \Delta$$

Mit 3.9 aus der Vorlesung schließen wir nun $(G \times G)/\operatorname{Ker}(f) \cong \operatorname{Im}(f) \iff (G \times G)/\Delta \cong G.$

Übung 68

Bestimmen Sie die Anzahl der k-Zykel $\sigma \in S_n$ für $k \in \mathbb{N}$.

Lösung. Es seien $n \ge 1$ und $k \ge 1$. Ist k > n, so gibt es keinen k-Zykel in S_n . Ist $k \le n$, so gibt es genau

$$\frac{n \cdot (n-1) \cdot (n-2) \cdot (n-k+1)}{k}$$

k-Zykel in S_n , bzw. in anderer Darstellungsweise ist die Anzahl der k-Zykel in S_n

$$\frac{n!}{(n-k)! \cdot k}$$

Betrachte zur Veranschaulichung

$$(a_1 a_2 \cdots a_k) = (a_2 a_3 \cdots a_k a_1) = (a_3 a_4 \cdots a_k a_1 a_2) = \cdots$$

Übung 69

Ist G endlich und einfach und $H \leq G$ mit $n = (G : H) \geq 2$, so ist $\#G \mid n!$.

Lösung. Betrachte die folgende Abbildung

$$\psi \colon \left\{ \begin{array}{ll} H \backslash G \times G & \to & G \\ (Hg_1, g_2) & \mapsto & (Hg_1)^{g_2} = Hg_1g_2 \end{array} \right.$$

 ψ ist eine Wirkung:

- (i) $\forall g \in G : (Hg)^1 = Hg \cdot 1 = Hg$
- (ii) $\forall g_1, g_2, g_3 \in G$: $((Hg_1)^{g_2})^{g_3} = (Hg_1g_2)^{g_3} = Hg_1g_2g_3 = (Hg_1)^{g_2 \cdot g_3}$

Betrachte den Kern der Wirkung

$$\varphi \colon \left\{ \begin{array}{ll} G & \to & S_{(H \backslash G)} \\ g & \mapsto & \varphi(g) : H \backslash G \to H \backslash G, Hl \mapsto (Hl)^g \end{array} \right. \text{ (vgl. 6.3)}$$

 $mitKer(\varphi) = \{ g \in G \mid \forall l \in G : (Hl)^g = Hl \}$

Da G einfach ist und $\operatorname{Ker}(\varphi) \leq G$, gilt $\operatorname{Ker}(\varphi) = 1$ oder $\operatorname{Ker}(\varphi) = G$. Ist $\operatorname{Ker}(\varphi) = 1$, so ist $G \cong \operatorname{Im}(G)$ nach 3.9, insbesondere gilt $\#G = \#\operatorname{Im}(\varphi)$ und $|S_{H\setminus G}| = (G:H)! = n!$. Ist $\operatorname{Ker}(\varphi) = G$, so gilt H = G:

- $\triangleright H \subseteq G$ ist klar
- $ightharpoonup G \subseteq H$. Es reicht zu zeigen, dass $\operatorname{Ker}(\varphi) \subseteq H$ gilt. Sei $g \in \operatorname{Ker}(\varphi)$, d.h. für alle $l \in G$ ist Hlg = Hl. Insbesondere ist für l = 1 dann Hg = H, d.h. also $g \in H$.

Es ist also G = H, was jedoch falsch ist, da $(G : H) \ge 2$. Somit ist $Ker(\varphi) = G$ nicht möglich. \square

Übung 70

Keine Gruppe der Ordnung 312, 12 oder 300 ist einfach.

Lösung. Wir zeigen die Eigenschaft nicht einfach zu sein für die entsprechenden Gruppen nacheinander.

- (1) Sei G eine Gruppe der Ordnung $312 = 2 \cdot 156 = 2 \cdot 2 \cdot 78 = 2 \cdot 2 \cdot 2 \cdot 39 = 2^3 \cdot 3 \cdot 13$. Sei n_{13} die Anzahl der 13-Sylowgruppen von G. Nach den Sylowsätzen gilt $n_{13} \equiv 1 \mod 13$ und $n_{13} \mid 24$. Die Teiler von 24 sind genau 1, 24, 2, 12, 3, 8, 4, 6. Deswegen ist $n_{13} = 1$, d.h. es gibt genau eine 13-Sylowgruppe N_{13} von G. Mit 8.7 ist $N_{13} \triangleleft G$. Da #G = 312 und $\#N_{13} = 13$, ist $1 \neq N_{13} \neq G$, also ist G nicht einfach.
- (2) Ist G eine endliche Gruppe der Ordnung $12 = 2^3 \cdot 3$. Es seien n_2 die Anzahl der 2-Sylowgruppen von G und n_3 die Anzahl der 3-Sylowgruppen von G. Nach den Sylowsätzen gilt

$$\begin{cases} n_2 \equiv 1 \mod 12 \\ n_2 \mid 3 \end{cases} \quad \text{und} \quad \begin{cases} n_3 \equiv 1 \mod 3 \\ n_3 \mid 4 \end{cases}$$

d.h. $n_2 \in \{1,3\}$ und $n_3 \in \{1,4\}$. Ist $n_3 = 4$, so schreibe N_1 , N_2 , N_3 , N_4 für die vier 3-Sylowgruppen von G. Da $|N_1| = |N_2| = |N_3| = |N_4| = 3$ und $N_i \cap N_j = 1$ für $i \neq j$ (da 3 prim ist), besitzt G mindestens acht Elemente der Ordnung 3:

- $-N_1 = \{1, a_1, b_1\} \text{ mit } \operatorname{ord}(a_1) = 3 = \operatorname{ord}(b_1)$
- $-N_2 = \{1, a_2, b_2\} \text{ mit } \operatorname{ord}(a_2) = 3 = \operatorname{ord}(b_2)$

Ist $a_1 = a_2$, so ist $|N_1 \cap N_2| \ge 2$, was falsch ist. Sei nun $n_2 = 3$. Schreibe K_1, K_2, K_3 für die drei 2-Sylowgruppen von G. Da $|K_1| = |K_2| = |K_3| = 4$, besitzt G mindestens vier Elemente von Ordnung 2 oder 4. Insgesamt gilt $n_3 = 4$ und $n_2 = 3 \Rightarrow 12 = \#G = 8 + 4 + 1 = 13$ (8 Elemente der Ordnung 3, 4 Elemente der Ordnung 2 oder 4 und ein neutrales Element), was falsch ist. Deswegen gilt $n_3 = 1$ oder $n_2 = 1$. In jedem Fall ist G aber nicht einfach.

(3) Es sei G eine endliche Gruppe der Ordnung $300 = 30 \cdot 10 = 5 \cdot 6 \cdot 5 \cdot 2 = 2^2 \cdot 3 \cdot 5^2$. Es sei n_5 die Anzahl der 5-Sylowgruppen von G. Nach den Sylowsätzen gilt $n_5 \equiv 1 \mod 5$ und $n_5 \mid 12$, d.h. auf jeden Fall ist $n_5 \in \{1,6\}$. Es sei N_5 eine 5-Sylowgruppe von G. Ist $n_5 = 6$, so ist $(G: N_G(N_5)) = 6$ (vgl. 8.6). Ist G auch einfach so gilt $\#G = 300 = 2^2 \cdot 3 \cdot 5^2 \mid 6! = 2^4 \cdot 3^2 \cdot 5$ (vgl. Ü49), was falsch ist (vergleiche die beiden Primfaktorenzerlegungen). Deswegen gilt $n_5 = 1$ oder G ist nicht einfach. In jedem Fall aber ist G nicht einfach.

Übung 81 (Präsenz)

Geben Sie ein Beispiel einer endlichen Gruppe G, die

- (i) einfach und auflösbar ist
- (ii) nicht einfach und auflösbar ist
- (iii) einfach und nicht auflösbar ist
- (iv) nicht einfach und nicht auflösbar ist.

Lösung. Wir geben jeweils ein Beispiel an und zeigen, dass die entsprechenden Eigenschaften gelten.

- (i) Die Gruppe $\mathbb{Z}/2\mathbb{Z}$ ist einfach (vgl. 9.3). Dann besitzt $\mathbb{Z}/2\mathbb{Z}$ die Kompositionsreihe $1 \leq \mathbb{Z}/2\mathbb{Z}$ und $(\mathbb{Z}/2\mathbb{Z})/1 = \mathbb{Z}/2\mathbb{Z}$ ist zyklisch. Somit ist $\mathbb{Z}/2\mathbb{Z}$ auflösbar.
- (ii) Die Gruppe $\mathbb{Z}/4\mathbb{Z}$ ist nicht einfach, da $\mathbb{Z}/4\mathbb{Z}$ einen Normalteiler der Ordnung 2 besitzt. Außerdem besitzt $\mathbb{Z}/4\mathbb{Z}$ die Normalreihe $1 \triangleleft \mathbb{Z}/2\mathbb{Z} \triangleleft \mathbb{Z}/4\mathbb{Z}$, die eine Kompositionsreihe ist, da
 - $-(\mathbb{Z}/4\mathbb{Z})/(\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ ist einfach
 - $-(\mathbb{Z}/2\mathbb{Z})/1 \cong \mathbb{Z}/2\mathbb{Z}$ ist einfach

Da die Faktoren dieser Kompositonsreihe zyklisch sind, ist $\mathbb{Z}/4\mathbb{Z}$ auflösbar.

- (iii) Mit 9.11 ist A_5 einfach. Deswegen besitzt A_5 genau eine Kompositonsreihe $1 \triangleleft A_5$. Da $A_5/1 \cong A_5$ nicht zyklisch ist, ist A_5 nicht auflösbar.
- (iv) Die Gruppe S_5 ist nicht einfach, da $(S_5:A_5)=2$ und $A_5 \triangleleft S_5$. Da die Normalteiler der S_5 genau 1, A_5 und S_5 sind und S_5 nicht einfach ist, besitzt die S_5 genau eine Kompositionsreihe, nämlich $1 \triangleleft A_5 \triangleleft S_5$. Es gilt $S_5/A_5 \cong \mathbb{Z}/2\mathbb{Z}$ und $A_5/1 \cong A_5$ ist nicht zyklisch. Deswegen ist die S_5 nicht auflösbar.

Übung 82 (Präsenz)

Für welche $n \ge 1$ ist $S_n \cong A_n \times C_2$?

Lösung. Leider gab es dazu keine Lösung in der Übung.