Agent-based modelling of complex systems

Janusz Szwabiński

Lecture #1: Introduction

Contact data

- janusz.szwabinski@pwr.edu.pl
- office hours (C-11 building, room 5.16):
 - Monday, 9.00-11.00
 - Wednesday, 9.00-11.00
 - preferably make an appointment via email, providing details of your problem
 - http://prac.im.pwr.wroc.pl/~szwabin/index

Course overview

- 1. Introduction to agent-based modelling
- 2. Creating simple models
- 3. Exploring and extending models
- 4. Components of agent-based models
- 5. Analyzing agent-based simulations
- 6. Verification and validation of models
- 7. Computational roots of agent-based modelling
- 8. Examples of interesting models

Reading

- 1. U. Wilensky, W. Rand, "An Introduction to Agent-Based Modeling"
- 2. S. F. Railsback, V. Grimm, "Agent-Based and Individual-Based Modeling: A Practical Introduction"
- 3. R. Siegfried, "Modeling and Simulation of Complex Systems: A Framework for Efficient Agent-Based Modeling and Simulation"

Assessment

- each assignment in the lab will be graded on a 100 point basis
 - submissions that do not run will receive at most 20% of the points
 - in case of not meeting the deadline for the assignment, the score will by reduced by 25% for each day of the delay

Average score	Grade
X < 65	2.0
65 ≤ X < 70	3.0
70 ≤ X < 75	3.5
75 ≤ X < 85	4.0
85 ≤ X < 95	4.5
95 ≤ X ≤ 100	5.0

Assessment

- two quizzes in the lectures: midterm and final
 - closed-book
 - one DIN A4 page of handwritten notes allowed
- final score according to the formula:

$$Score = 0.4 * L + 0.2 * Q_m + 0.4 * Q_f$$

Outlook

- Definition of complex systems
- Notion of emergence
- Agent-based models
- Why model?
- Useful tools

- a system composed of many components which may interact with each other:
 - Earth's global climate
 - human brain
 - ecosystems
 - universe
- their behavior intrinsically difficult to model due to dependencies, relationships or interactions between their parts
- typical properties: nonlinearity, emergence, self-organization, adaptation, feedback loops
- usually whole is more than a sum of parts

- a macro-level phenomenon as a result of local-level interactions
- examples:
 - life
 - path formation (desire paths)
 - traffic jams
 - flocking behavior
 - mexican waves, standing ovation

Models

- simplifications of reality
- many kinds: formal mathematical ones, stories, cartoons etc
- focus on the main characteristics of a problem
- different modelling approaches
- each approach involves its own set of theories, concepts, mathematical techniques and accepted procedures for constructing and testing models

Models: reductionistic vs integrated models

- reductionistic Newtonian approach:
 - deterministic
 - a system (like the solar system) can be described as a machine
 - we can predict its development if we understand all the mechanisms
 - its relative simplicity had a great appeal to scientists
- integrated models:
 - no predictability of the full trajectory of the system
 - the system adjusts constantly to changing context (like a flock of birds)
 - related to changes in our perception of the world (thermodynamics, quantum mechanics, evolution)
 - very often irreversible, stochastic and out-of-equilibrium

Models: deductive vs inductive reasoning

 inductive reasoning – a process where the starting point is the observation of a phenomenon

Observation → **pattern** → **tentative** hypothesis → **theory**

- many social and life scientists use this approach
- useful if one does not know what to look for
- deductive reasoning an approach that follows the opposite direction

Theory → hypothesis → observation → confirmation

Models: deductive vs inductive reasoning

- equally valid methods of deriving knowledge
- one often needs both methods to understand complex processes
- inductive approach from the modelling perspective:
 - data set from a case study as starting point
 - statistics from the data set
 - model that may fit the data → first step towards a theory
- deductive approach from the modelling perspective:
 - start with an abstract model using rules based on existing knowledge
 - what kind of patterns will evolve within the model evolution?
 - test or adjust existing theories based on the results

Agent-based models

- a class of computational models for simulating the actions and interactions of autonomous agents (both individual or collective entities)
- combine elements of game theory, complex systems, emergence, computational sociology, multi-agent systems, and evolutionary programming
- Monte Carlo methods are used to introduce randomness
- often used on non-computing related scientific domains including biology, ecology and social science
- used to search for explanatory insight into the collective behavior of agents obeying simple rules
- a kind of microscale model
- attempt to re-create and predict the appearance of complex phenomena
- K.I.S.S. ("Keep it simple, stupid") principle

Agent-based models

- typical elements:
 - numerous agents specified at various scales
 - decision-making heuristics
 - learning rules or adaptive processes
 - an interaction topology
 - an environment
- usually implemented as computer simulations, either as custom software, or via ABM toolkits
- these simulations are used to test how changes in individual behaviors will affect the system's emerging overall behavior

Why model?

- Predict
- Explain
- Guide data collection
- Illuminate core dynamics
- Suggest dynamical analogies
- Discover new questions
- Promote a scientific habit of mind
- Bound outcomes to plausible ranges
- Illuminate core uncertainties.
- Reveal the apparently simple to be complex and vice versa

- Offer crisis options in near-real time
- Demonstrate tradeoffs/suggest efficiencies
- Challenge the robustness of prevailing theory through perturbations
- Expose prevailing wisdom as incompatible with available data
- Train practitioners
- Discipline the policy dialogue
- Educate the general public

Further reading: J. M. Epstein, "Why Model?", JASSS vol. 11, no. 4 12, http://jasss.soc.surrey.ac.uk/11/4/12.html

Predict

- prediction often presumed to be the goal of modelling
- it might be a goal, particularly if one admits statistical prediction in which stationary distributions (of epidemic sizes for instance) are the regularities of interest

Explanation

- Albert Einstein it does not imply prediction!:

If you can't explain it simply, you don't understand it well enough.

- - plate tectonics
 - electrostatics
 - evolution
- plausible behavioral rules → macroscopic explananda (large scale regularities)

Guided data collection

- collecting a lot of data and then running regressions on it is not the only approach to science
- theory often precedes data collection (e.g. Maxwell's electromagnetic theory, general relativity)
- without models it is not always clear what data to collect

Core dynamics

- even the best models are wrong in an engineering sense
- some of them are fruitfully wrong
 - they illuminate abstractions (Lotka-Volterra ecosystem model, SIR model, Hooke's Law)
 - they capture qualitative behaviors of overarching interest (e.g. predator-prey cycles, epidemic threshold)

Analogies

- a huge variety of seemingly unrelated processes have formally identical models (e.g. Coulomb's Law and gravitational attraction)
- applying a powerful pre-existing theory (model) to an unexplored field may lead to rapid advances

New questions

- new questions produce huge advances
- models can help us to discover them

Tools

- Python (with Numpy/Scipy, Networkx and many others modules) as the course programming language
- Matlab and GNU Octave are reasonable high-level alternatives
- Netlogo, Repast, MASON
- Mesa
- PyCX
- for more advanced models you may resort to compiled programming languages as C/C++ or Fortran

Netlogo

- https://ccl.northwestern.edu/netlogo/
- a multi-agent programmable modeling envir
- open source and freely available
- authored by Uri Wilensky and developed at Northwestern's Center for Connected Learning and Computer-Based Modeling
- designed in the spirit of the Logo programming language, to be "low threshold and no ceiling" → easy to pick up
- designed for multiple audiences in mind, in particular:
 - teaching children in the education community
 - for domain experts without a programming background

Netlogo

- its environment enables exploration of emergent phenomena (supported by the GUI)
- an extensive models library (a variety of domains, such as economics, biology, physics, chemistry, psychology, system dynamics)
- it allows authoring of new models and modification of existing ones
- used in a wide variety of educational contexts: from elementary school to graduate one
- used by researchers worldwide
- an online version available at https://www.netlogoweb.org/

Netlogo

Mesa

- http://mesa.readthedocs.io/en/latest/tutorials/intro_tutorials.l.html
- agent-based modeling framework in Python
- it allows:
 - to quickly create agent-based models using built-in core components (such as spatial grids and agent schedulers) or customized implementations
 - to visualize models using a browser-based interface
 - to analyze the results using Python's data analysis tools
- Python 3-based counterpart to NetLogo, Repast, or MASON

Mesa

PyCX

- http://pycx.sourceforge.net/
- an online repository of simple Python sample codes for dynamic complex systems simulations:
 - iterative maps
 - cellular automata
 - dynamical networks
 - agent-based models
- runs on plain Python
- philosophy:
 - simplicity
 - ♣ readability
 - ¬generalizability
 - •
 † pedagogical values

PyCX

- coding style:
 - one simulation model, one .py file
 - • same three-part structure for all dynamic simulations
 - → initialization, visualization, updating
 - no object-oriented programming
 - • frequent use of global variables
- first steps (provided Python is already installed):
 - download a PyCX sample code of your interest
 - run it
 - read it
 - change it as you like!!!

PyCX

Case study: forest fire model

Case study: forest fire model

- early versions go back to Henley (1989) and Drossel and Schwabl (1992)
- defined as a cellular automaton on a grid with L^d cells (L sidelength of the grid, d dimension of the grid)
- a cell can be:
 - empty
 - occupied by a tree
 - burning
- in the simplest version 2 rules executed simultaneously:
 - 1. A burning cell turns into an empty cell
 - 2. A tree will burn if at least one neighbor is burning

Case study: forest fire model

Demos