(/course/4/task/8)	24. Tec⊤ №6
9. Tec⊤ №2 (/course/4/task/9)	Срок сдачи 13.03.2023 в 23:00
10. Linear models (unit-tests) (/course/4/task/10)	Тест можно сдать только один раз
11. Linear models (notebook) (/course/4/task/11)	Тест по темам "кластеризация" и "ассоциативные правила". В вопросах на ввод числа, ответ может быть как целочисленным, так и рациональным числом (например 0.1 итп)
12. Тест №3 (/course/4/task/12)	
13. Основы SVM (ML) (/course/4/task/13)	 Рассмотрим метод иерархической кластеризации снизу вверх (аггломеративная кластеризация). Какой метод вычисления расстояний между кластерами наиболее склонен объединять
(/Course/4/lask/13)	непохожие кластера на ранних итерациях при наличии между ними узких цепочек из близко расположенных объектов?
14. Основы SVM (notebook) (/course/4/task/14)	метод средней связи (group average link)
,	✓ метод одиночной связи (single linkage)
15. Тест №4 (/course/4/task/15)	центроидный метод (pair-group method using the centroid
16. Тест №5	average)
(/course/4/task/16)	□ метод полной связи (complete linkage)
17. Зачетный тест (/course/4/task/17)	 Рассмотрим метод иерархической кластеризации снизу вверх (аггломеративная кластеризация) с методом средней связи
18. Зачетный тест	(апломеративная кластеризация) с методом средней связи (group average link) в качестве правила вычисления расстояний между кластерами. Обозначим за r(i,j) - расстояние между
(/course/4/task/18)	кластерами і и ј. Пусть кластер k - результат объединения кластеров і и ј. Тогда расстояние до кластера р вычисляется как
19. Деревья решений (unit- tests) (/course/4/task/19)	
00 Fanan a naucoux (MI)	<pre>max(r(i,p), r(j,p))</pre>
20. Деревья решений (ML) (/course/4/task/20)	✓ взвешенное среднее между r(i,p) и r(j,p)
21. Деревья решений (notebook) (/course/4/task/21)	□ среднее между r(i,p) и r(j,p)
22. Кластеризация	3. Пусть X,Y - подмножества товаров. Уверенность (confidence) ассоциативного правила X->Y измеряет
(notebook) (/course/4/task/22)	 долю транзакций, в которых присутствует Y, среди транзакций, содержащих X
23. Кластеризация (unit- tests) (/course/4/task/23)	долю транзакций, в которых присутствует X или Y
24. Тест №6	□ долю транзакций, в которых присутствует X
(/course/4/task/24)	долю транзакций, в которых присутствует X и Y
Таблица результатов (/course/4/standings)	 долю транзакций, в которых присутствует Y

□ O(N*N*K*I)

O(N*K*K*I)

Отправить решение