

Presentation Python for data analysis

Subject: Diabetes 130 US hospitals for years 1999-2008

Introduction of the dataset

- Shape
 - 50 columns
 - 101766 rows
 - 0 null value
- The data set represents 10 years (1999-2008) of clinical care at 130 US hospitals for diabetic encounters.
- The 50 columns will describe the type of patient, type of stay, the laboratory tests performed, the medications admninistered
- The data have different dtypes: int64 or object.
- The null-values are replaced by «?»

end	counter_id	patient_nbr		race	gender	age	weight	admission_type_i
0	2278392	8222157	Cau	casian	Female	[0- 10)	?	
1	149190	55629189	Cau	casian	Female	[10- 20)	?	
2	64410	86047875	AfricanAm	erican	Female	[20- 30)	?	
3	500364	82442376	Cau	casian	Male	[30- 40)	?	
4	16680	42519267	Cau	casian	Male	[40- 50)	?	
Data columns (total 50 columns): # Column Non-Null Count Dtype								•
0 1 2 3 4 5 6 7 8 9 10	patient race gender age weight admissi dischar admissi time_in payer_c	gender age			101766 non-null 101766 non-null 99493 non-null 101766 non-null 101766 non-null 3197 non-null 101766 non-null 101766 non-null 101766 non-null 101766 non-null 101766 non-null 51817 non-null			t t t t t
12	num lab procedures			101766 non-null			int64	

Target value: Readmitted

The last column of the dataset is readmitted. It is important to know if a patient will be readmitted in some hospital.

In this database, you have 3 different outputs:

- No readmission;
- A readmission in less than 30 days (this situation is not good, because maybe your treatment was not appropriate);
- A readmission in more than 30 days (this one is not so good as well the last one, however, the reason can be the state of the patient.

proportion of readmission states for the diabetic

Variable changement

- To simplify our analyze, we will gather >30 and <30 together in the category "YES". Our comparison will just be if the patient has been readmitted our not.
- 53,4% of encounter with no readmitting
- 46.6% with readmitting

proportion of readmission states for the diabetic

Plan of our study

- Analyse of each variable
- Cleaning the data
- Encoding
- Training the data features to predict the target
- Conclude

→ This studies could be really useful because with this training, we could predict if an encounter (thanks all the inputs) will have a readmission

Analyze of ID value

- Encounter_ID,
 - Identifier of the database
 - Value unique
- patient_nbr
 - Identifier of the patient
- The distribution of encounter by patient is particular.(log squale)
- Mostly patient with 1 encounter

Analyze of Categorical value

- Race, Gender,
 - Same repartition of readmitted
- Age
 - Little correlation
 - Changement in numerical value
- Weight
 - Big correlation
 - Changement in numerical value (kg)
 - Just 3% of the dataset

Analyze of numerical value

- multiple columns of numeric value:
- We use to see their distribution according to the target value 3 types of plot:
 - displot with normal scale (Num_lab_procedures and num_procedures)
 - Countplot with normal scale (num_procedures,number diagnoses)
 - Countplot with log scale (number_outpatient, number_emergency,number_inpatient)

Mapping of Categorical value

- Admission_type_id,discharge_ disposition_id,admission_sour ce_id
- Diag_1,Diag_2,Diag_3

Analyze of the measure

- Have to see the data without the None value (where the parameter is not measured)
- Max_Glu_Serum
 - max_glu_serum greater than 300 there is high chance of Readmission
- A1CResult
 - No big correlation between the result of the measure and the readmission

Analyze of the generic names of medication

- 24 columns for each medication
- 4 different values (No, steady, up and down)
- We useto see their distribution a facetgrid that show the proportion of readmission by value in each column

Machine learning objectives

We chose the variable 'readmitted' as the target feature

We chose all the remaining variables as the explanatory features

Our goal is to predict with the best accuracy if a patient is going to be readmitted to the hospital afterwards.

Since the readmitted column has 3 values: 'no', '<30' and '>30', we chose to use only 'yes' and 'no' for the machine learning, to gain efficiency.

Encoding

Manual encoding

Ordinal encoding

One hot encoding

```
#We replace the No with 0 and Yes with 1
data=data.replace({'No': 0, 'Yes': 1, 'Ch':1, 'Down': 1, 'Steady': 2, 'Up':3})
```

```
#We use ordinal encoder for these 3 columns because there is a hierarchy between its values
#encoding max_glu_serum
max_glu_serum_order = ['None', 'Norm', '>200', '>300']
data['max_glu_serum'] = pd.Categorical(data['max_glu_serum'], categories=max_glu_serum_order, ordered=True)
data = data.sort_values(by='max_glu_serum',ascending=True)
ordinal_encoder = OrdinalEncoder(categories=[max_glu_serum_order])
data['max_glu_serum'] = ordinal_encoder.fit_transform(data[['max_glu_serum']])
```

```
diagnosis_columns = ['admission_type_id','discharge_disposition_id','admission_source_id','race','gender','diag_1', 'diag_2', 'diag_3']

onehot_encoder = OneHotEncoder(sparse=False, drop='first')

# Loop through each diagnosis column

vfor column in diagnosis_columns:

# Fit and transform the diagnosis column

diagnosis_encoded = onehot_encoder.fit_transform(data[[column]])

# Create a DataFrame with the encoded columns

encoded_df = pd.DataFrame(diagnosis_encoded, columns=onehot_encoder.get_feature_names_out([column]))

# Reset the index of the original data

data.reset_index(drop=True, inplace=True)

# Concatenate the original data with the encoded columns

data = pd.concat([data, encoded_df], axis=1)

# Drop the original diagnosis columns

data = data.drop(diagnosis_columns, axis=1)
```

Handling missing values

- Lots of missing values on weight column so we chose to create 2 datasets with 2 different strategies :
 - data_weight : less value but weight column
 - data: more values but no weight column

```
data weight = data.dropna()
   data_weight.info()
<class 'pandas.core.frame.DataFrame'>
Index: 3033 entries, 57 to 98009
Columns: 145 entries, encounter id to diag 3 Symptoms, Signs, and Ill-Defined Conditions
dtypes: float64(109), int32(1), int64(35)
memory usage: 3.4 MB
   data.drop(columns=["weight"],inplace=True)
   data.dropna(inplace=True)
   data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 98053 entries, 0 to 98052
Columns: 144 entries, encounter_id to diag_3_Symptoms, Signs, and Ill-Defined Conditions
dtypes: float64(108), int32(1), int64(35)
memory usage: 107.4 MB
```

Machine learning - Algorithms

- Used 5 different algorithms :
 - Support Vector Classification (SVC)
 - Logistic Regression (LR)
 - Random Forest (RF)
 - XGBoost (XGB)
 - Naive-Bayes (NB)

```
# train test split on data weight
  X = data weight.drop('readmitted', axis=1)
  y = data_weight['readmitted']
  X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42, stratify=y
   scaler = StandardScaler()
  X_train = scaler.fit_transform(X_train)
  X test = scaler.transform(X test)
  svc model = SVC(kernel='linear')
   #Train the model on the training data
   svc model.fit(X train, y train)
   #Make predictions on the testing data
  svc_pred = svc_model.predict(X_test)
   #Evaluate the model
  SVC w accuracy = accuracy score(y test, svc pred)
  print(f"Accuracy: {SVC w accuracy:.2f}")
Accuracy: 0.66
```

Machine learning – 1st results

 Better prediction results on the data_weigth sample, so it's better to have less instances but to keep the weight information.

Machine Learning – Grid search

- We run grid search on the 5 previous algorithms, on the data_weight sample
- Lots of iteration time depending on the algorithm

```
# Grid Search SVC
   # Define the parameter grid
   param grid = {'C': [0.1, 1, 10], 'gamma': [0.01, 0.1, 1], 'kernel': ['linear', 'rbf']}
   # Create the SVC model
   svc_model = SVC()
   # Instantiate the GridSearchCV object
   grid_search = GridSearchCV(svc_model, param_grid, cv=5, scoring='accuracy')
   # Fit the grid search to the data
   grid_search.fit(X_train, y_train)
   # Print the best hyperparameters found by the grid search
   print("Best Hyperparameters:", grid search.best params )
   # Make predictions on the testing data using the best model
   svc pred = grid search.predict(X test)
   # Evaluate the model
   SVC_w_gs_accuracy = accuracy_score(y_test, svc_pred)
   print(f"Accuracy: {SVC_w_gs_accuracy:.2f}")
   # Print additional evaluation metrics
   #print("\nClassification Report:")
Best Hyperparameters: {'C': 0.1, 'gamma': 0.01, 'kernel': 'linear'}
Accuracy: 0.66
```

Machine learning – 2nd results

 Overall, grid search helped us improve our results

Machine Learning – final results

- Best algorithm in this situation is Random Forest, using grid search on the data_weight sample.
- Best accuracy = 0.693575

Conclusion

- Overall, we got pretty good results, and we also confirmed the importance of the weight in detecting diabetes
- To see further, we could try predicting which treatment is more efficient for each case