ZYNQ UltraScale+ FPGA Development Board AXU2CGA/B

User Manual

Version Record

Version	Date	Release By	Description
Rev 1.0	2021-04-08	Rachel Zhou	First Release

Table of Contents

Version Record	2
Part 1: AXU2CGA/B Introduction	4
Part 2: ZYNQ Chip	5
Part 3: DDR4 DRAM	7
Part 4: QSPI Flash	11
Part 5: eMMC Flash (Only for AXU2CGB)	12
Part 6: EEPROM	13
Part 7: DP Display Interface	13
Part 8: USB 3.0 Interface	15
Part 9: Gigabit Ethernet Interface	16
Part 10: USB to Serial Port	17
Part 11: SD Card Slot Interface	18
Part 12: PCIE Interface	19
Part 13: 40-Pin Expansion Header	20
Part 14: MIPI Camera Interface	22
Part 15: JTAG Debug Port	24
Part 16: DIP Switch Configuration	25
Part 17: LEDs	25
Part 18: System Clock	26
Part 19: ALINX Customized Fan Interface	27
Part 20: Power Input	28
Part 21: Form Factors	20

Part 1: AXU2CGA/B Introduction

The AXU2CGA/B Board is characterized by its small size and extensive peripherals. The main chip is Xilinx's Zynq UltraScale+ MPSoCs CG family chip, the model is XCZU2CG-1SFVC784E. The PS side of AXU2CGA is mounted with 2 slices of DDR4 (total 1GB, 32bit) and 1 slice of 256Mb QSPI FLASH. The PS side of AXU2CGB is equipped with 4 DDR4 (total 2GB, 64bit), one 8GB eMMC FLASH memory chip and one 256Mb QSPI FLASH.

Peripheral interfaces include 1 MINI DP interface, 4 USB3.0 interfaces, 1 Gigabit Ethernet interface, 1 USB serial port, 1 PCIE interface, 1 TF card interface, 2 40-pin expansion ports, 2 MIPI Interface, KEYs and LEDs.

The board schematic is as Figure 1-1:

Figure 1-1: Board Schematic

Part 2: ZYNQ Chip

The PS system of the XCZU2CG-1SFVC784E chip integrates two ARM Cortex [™]-A53 processors with a speed of up to 1.2Ghz and supports Level 2 Cache; it also contains two Cortex-R5 processors with a speed of up to 500Mhz. The XCZU2CG Chip supports 32-bit or 64-bit DDR4, LPDDR4, DDR3, DDR3L, LPDDR3 memory chips, with rich high-speed interfaces on the PS side such as PCIE Gen2, USB3.0, SATA 3.1, DisplayPort; it also supports USB2.0, Gigabit Ethernet, SD/SDIO, I2C, CAN, UART, GPIO and other interfaces. The PL end contains a wealth of programmable logic units, DSP and internal RAM. The overall block diagram of the XCZU2CG chip is shown in the figure 2-1:

Figure 2-1: Overall Block Diagram of ZU2CG Chip

The main parameters of the PS system are as follows:

- ➤ ARM dual-core Cortex TM -A53 processor, speed up to 1.2GHz, each CPU 32KB level 1 instruction and data cache, 1MB level 2 cache, shared by 2 CPUs
- ➤ ARM dual-core Cortex-R5 processor, speed up to 500MHz, each CPU 32KB level 1 instruction and data cache, and 128K tightly coupled memory
- External storage interface, support 32/64bit DDR4/3/3L, LPDDR4/3 interface
- > Static storage interface, support NAND, 2xQuad-SPI FLASH
- ➤ High-speed connection interface, support PCIe Gen2 x4, 2xUSB3.0, Sata 3.1, Display Port, 4 x Tri-mode Gigabit Ethernet
- Common connection interface: 2xUSB2.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO
- Power management: support the division of Full/Low/PL/Battery four parts of power
- Encryption algorithm: support RSA, AES and SHA
- System monitoring: 10-bit 1Mbps AD sampling for temperature and voltage detection

The main parameters of the PL logic part are as follows:

➤ Logic Cells: 103K

➤ flip-flops : 94K

Lookup table (LUTs): 47K;

➤ Block RAM: 5.3Mb

Clock Management Unit (CMTs): 3

➤ Multiplier 18x25MACCs: 240

Part 3: DDR4 DRAM

There are two Micron DDR4 chips on the PS side of the AXU2CGA board. which form a 32-bit data bus bandwidth and a total capacity of 1GB. There are 4 Micron DDR4 chips on the PS side of the AXU2CGB board, which form a 64-bit data bus bandwidth and a total capacity of 2GB. The maximum operating speed of DDR4 SDRAM on the PS side can reach 1200MHz (data rate 2400Mbps). The specific configuration of DDR4 SDRAM is shown below.

Among them, U71 and U72 are only AXU2CGB mounted.

Location	Capacity	Manufacturer
U3,U5,(U71,U72)	256M x 16bit	Micron

Table 3-1: DDR4 SDRAM Configuration

The hardware connection of DDR4 on the PS side is shown in Figure 3-1:

Figure 3-1: PS Side DDR4 DRAM Schematic

AXU2CGA PS side DDR4 SDRAM Pin Assignment:

Signal Name	Pin Name	Pin Number
PS_DDR4_DQS0_P	PS_DDR_DQS_P0_504	AF21
PS_DDR4_DQS0_N	PS_DDR_DQS_N0_504	AG21
PS_DDR4_DQS1_P	PS_DDR_DQS_P1_504	AF23
PS_DDR4_DQS1_N	PS_DDR_DQS_N1_504	AG23

PS_DDR4_DQS2_P	PS_DDR_DQS_P2_504	AF25
PS_DDR4_DQS2_N	PS_DDR_DQS_N2_504	AF26
PS_DDR4_DQS3_P	PS_DDR_DQS_P3_504	AE27
PS_DDR4_DQS3_N	PS_DDR_DQS_N3_504	AF27
PS_DDR4_DQ0	PS_DDR_DQ0_504	AD21
PS_DDR4_DQ1	PS_DDR_DQ1_504	AE20
PS_DDR4_DQ2	PS_DDR_DQ2_504	AD20
PS_DDR4_DQ3	PS_DDR_DQ3_504	AF20
PS_DDR4_DQ4	PS_DDR_DQ4_504	AH21
PS_DDR4_DQ5	PS_DDR_DQ5_504	AH20
PS_DDR4_DQ6	PS_DDR_DQ6_504	AH19
PS_DDR4_DQ7	PS_DDR_DQ7_504	AG19
PS_DDR4_DQ8	PS_DDR_DQ8_504	AF22
PS_DDR4_DQ9	PS_DDR_DQ9_504	AH22
PS_DDR4_DQ10	PS_DDR_DQ10_504	AE22
PS_DDR4_DQ11	PS_DDR_DQ11_504	AD22
PS_DDR4_DQ12	PS_DDR_DQ12_504	AH23
PS_DDR4_DQ13	PS_DDR_DQ13_504	AH24
PS_DDR4_DQ14	PS_DDR_DQ14_504	AE24
PS_DDR4_DQ15	PS_DDR_DQ15_504	AG24
PS_DDR4_DQ16	PS_DDR_DQ16_504	AC26
PS_DDR4_DQ17	PS_DDR_DQ17_504	AD26
PS_DDR4_DQ18	PS_DDR_DQ18_504	AD25
PS_DDR4_DQ19	PS_DDR_DQ19_504	AD24
PS_DDR4_DQ20	PS_DDR_DQ20_504	AG26
PS_DDR4_DQ21	PS_DDR_DQ21_504	AH25
PS_DDR4_DQ22	PS_DDR_DQ22_504	AH26
PS_DDR4_DQ23	PS_DDR_DQ23_504	AG25
PS_DDR4_DQ24	PS_DDR_DQ24_504	AH27
PS_DDR4_DQ25	PS_DDR_DQ25_504	AH28
PS_DDR4_DQ26	PS_DDR_DQ26_504	AF28
PS_DDR4_DQ27	PS_DDR_DQ27_504	AG28
PS_DDR4_DQ28	PS_DDR_DQ28_504	AC27
PS_DDR4_DQ29	PS_DDR_DQ29_504	AD27
PS_DDR4_DQ30	PS_DDR_DQ30_504	AD28
PS_DDR4_DQ31	PS_DDR_DQ31_504	AC28

PS_DDR4_DM0	PS_DDR_DM0_504	AG20
PS_DDR4_DM1	PS_DDR_DM1_504	AE23
PS_DDR4_DM2	PS_DDR_DM2_504	AE25
PS_DDR4_DM3	PS_DDR_DM3_504	AE28
PS_DDR4_A0	PS_DDR_A0_504	W28
PS_DDR4_A1	PS_DDR_A1_504	Y28
PS_DDR4_A2	PS_DDR_A2_504	AB28
PS_DDR4_A3	PS_DDR_A3_504	AA28
PS_DDR4_A4	PS_DDR_A4_504	Y27
PS_DDR4_A5	PS_DDR_A5_504	AA27
PS_DDR4_A6	PS_DDR_A6_504	Y22
PS_DDR4_A7	PS_DDR_A7_504	AA23
PS_DDR4_A8	PS_DDR_A8_504	AA22
PS_DDR4_A9	PS_DDR_A9_504	AB23
PS_DDR4_A10	PS_DDR_A10_504	AA25
PS_DDR4_A11	PS_DDR_A11_504	AA26
PS_DDR4_A12	PS_DDR_A12_504	AB25
PS_DDR4_A13	PS_DDR_A13_504	AB26
PS_DDR4_WE_B	PS_DDR_A14_504	AB24
PS_DDR4_CAS_B	PS_DDR_A15_504	AC24
PS_DDR4_RAS_B	PS_DDR_A16_504	AC23
PS_DDR4_ACT_B	PS_DDR_ACT_N_504	Y23
PS_DDR4_ALERT_B	PS_DDR_ALERT_N_504	U25
PS_DDR4_BA0	PS_DDR_BA0_504	V23
PS_DDR4_BA1	PS_DDR_BA1_504	W22
PS_DDR4_BG0	PS_DDR_BG0_504	W24
PS_DDR4_CS0_B	PS_DDR_CS_N0_504	W27
PS_DDR4_ODT0	PS_DDR_ODT0_504	U28
PS_DDR4_PARITY	PS_DDR_PARITY_504	V24
PS_DDR4_RESET_B	PS_DDR_RST_N_504	U23
PS_DDR4_CLK0_P	PS_DDR_CK0_P_504	W25
PS_DDR4_CLK0_N	PS_DDR_CK0_N_504	W26
PS_DDR4_CKE0	PS_DDR_CKE0_504	V28

AXU2CGB PS side DDR4 SDRAM data pin assignment is the same as AXU2CGA, additional data signal assignment is as follows:

Signal Name	Pin Name	Pin Number
PS_DDR4_DQS4_P	PS_DDR_DQS_P4_504	N23
PS_DDR4_DQS4_N	PS_DDR_DQS_N4_504	M23
PS_DDR4_DQS5_P	PS_DDR_DQS_P5_504	L23
PS_DDR4_DQS5_N	PS_DDR_DQS_N5_504	K23
PS_DDR4_DQS6_P	PS_DDR_DQS_P6_504	N26
PS_DDR4_DQS6_N	PS_DDR_DQS_N6_504	N27
PS_DDR4_DQS7_P	PS_DDR_DQS_P7_504	J26
PS_DDR4_DQS7_N	PS_DDR_DQS_N7_504	J27
PS_DDR4_DQ32	PS_DDR_DQ32_504	T22
PS_DDR4_DQ33	PS_DDR_DQ33_504	R22
PS_DDR4_DQ34	PS_DDR_DQ34_504	P22
PS_DDR4_DQ35	PS_DDR_DQ35_504	N22
PS_DDR4_DQ36	PS_DDR_DQ36_504	T23
PS_DDR4_DQ37	PS_DDR_DQ37_504	P24
PS_DDR4_DQ38	PS_DDR_DQ38_504	R24
PS_DDR4_DQ39	PS_DDR_DQ39_504	N24
PS_DDR4_DQ40	PS_DDR_DQ40_504	H24
PS_DDR4_DQ41	PS_DDR_DQ41_504	J24
PS_DDR4_DQ42	PS_DDR_DQ42_504	M24
PS_DDR4_DQ43	PS_DDR_DQ43_504	K24
PS_DDR4_DQ44	PS_DDR_DQ44_504	J22
PS_DDR4_DQ45	PS_DDR_DQ45_504	H22
PS_DDR4_DQ46	PS_DDR_DQ46_504	K22
PS_DDR4_DQ47	PS_DDR_DQ47_504	L22
PS_DDR4_DQ48	PS_DDR_DQ48_504	M25
PS_DDR4_DQ49	PS_DDR_DQ49_504	M26
PS_DDR4_DQ50	PS_DDR_DQ50_504	L25
PS_DDR4_DQ51	PS_DDR_DQ51_504	L26
PS_DDR4_DQ52	PS_DDR_DQ52_504	K28
PS_DDR4_DQ53	PS_DDR_DQ53_504	L28
PS_DDR4_DQ54	PS_DDR_DQ54_504	M28
PS_DDR4_DQ55	PS_DDR_DQ55_504	N28

PS_DDR4_DQ56	PS_DDR_DQ56_504	J28
PS_DDR4_DQ57	PS_DDR_DQ57_504	K27
PS_DDR4_DQ58	PS_DDR_DQ58_504	H28
PS_DDR4_DQ59	PS_DDR_DQ59_504	H27
PS_DDR4_DQ60	PS_DDR_DQ60_504	G26
PS_DDR4_DQ61	PS_DDR_DQ61_504	G25
PS_DDR4_DQ62	PS_DDR_DQ62_504	K25
PS_DDR4_DQ63	PS_DDR_DQ63_504	J25
PS_DDR4_DM4	PS_DDR_DM4_504	R23
PS_DDR4_DM5	PS_DDR_DM5_504	H23
PS_DDR4_DM6	PS_DDR_DM6_504	L27
PS_DDR4_DM7	PS_DDR_DM7_504	H26

Part 4: QSPI Flash

The AXU2CGA/B board has a 256MBit Quad-SPI FLASH chip, the model is MT25QU256ABA1EW9-0SIT. QSPI FLASH is connected to the GPIO port of BANK500 in the PS part of the ZYNQ chip. Figure 4-1 shows the part of QSPI Flash in the schematic.

Figure 4-1: QSPI Flash

Configure Chip Pin Assignment:

Signal Name	Pin Name	Pin Number
MIO0_QSPI0_SCLK	PS_MIO0_500	AG15
MIO1_QSPI0_IO1	PS_MIO1_500	AG16

MIO2_QSPI0_IO2	PS_MIO2_500	AF15
MIO3_QSPI0_IO3	PS_MIO3_500	AH15
MIO4_QSPI0_IO0	PS_MIO4_500	AH16
MIO5_QSPI0_SS_B	PS_MIO5_500	AD16

Part 5: eMMC Flash (Only for AXU2CGB)

There is an eMMC FLASH chip with a capacity of 8GB on the AXU2CGB board. The eMMC FLASH is connected to the GPIO port of the BANK500 of the PS part of ZYNQ UltraScale+. Figure 5-1 is the eMMC Flash schematic.

Figure 5-1: eMMC Flash Schematic

Configure Chip Pin Assignment:

Signal Name	Pin Name	Pin Number
MMC_DAT0	PS_MIO13_500	AH18
MMC_DAT1	PS_MIO14_500	AG18
MMC_DAT2	PS_MIO15_500	AE18
MMC_DAT3	PS_MIO16_500	AF18
MMC_DAT4	PS_MIO17_500	AC18
MMC_DAT5	PS_MIO18_500	AC19
MMC_DAT6	PS_MIO19_500	AE19
MMC_DAT7	PS_MIO20_500	AD19
MMC_CMD	PS_MIO21_500	AC21
MMC_CCLK	PS_MIO22_500	AB20
MMC_RSTN	PS_MIO23_500	AB18

Part 6: EEPROM

The AXU2CGA/B development board has a piece of EEPROM onboard, the model number is 24LC04. The I2C signal of the EEPROM is connected to the MIO port of the ZYNQ PS side. Figure 6-1 is EEPROM schematic:

Figure 6-1: EEPROM Schematic

EEPROM Pin Assignment:

Signal Name	Pin Name	Pin Number
PS_IIC1_SCL	PS_MIO32_501	J16
PS_IIC1_SDA	PS_MIO33_501	L16

Part 7: DP Display Interface

The AXU2CGA/B board has a MINI-type DisplayPort output display interface, which is used for video image display, and supports up to 4K x 2K@30Fps output. The TX signals of LANE0 and LANE1 of ZU2CG PS MGT are connected to the DP connector in a differential signal mode. The DisplayPort auxiliary channel is connected to the MIO pin of the PS. The schematic diagram of the DP output interface is shown in Figure 7-1:

Figure 7-1: DP interface design Schematic

The DisplayPort interface ZYNQ pin assignment is as follows:

Signal Name	al Name ZYNQ Pin Number ZYNQ Pi		Description
		Number	
GT0_DP_TX_P	PS MGTTXP3 505	B23	Low bits of DP Data
010_DI _1X_I	1 0_INIO117XI 0_000	B20	Transmit Positive
GT0_DP_TX_N	PS MGTTXN3 505	B24	Low bits of DP Data
OTO_DI _IX_IV	1 0_ING 1 1XIVO_000	DZ4	Transmit Negative
GT1 DP TX P	PS MGTTXP2 505	C25	High bits of DP Data
011_B1_1X_1	1 0_INIO117XI 2_000	020	Transmit Positive
GT1_DP_TX_N	PS MGTTXN2 505	C26	High bits of DP Data
011_51_1/_1	1 0_INIO117XIV2_000	020	Transmit Negative
505 DP CLKP	PS_MGTREFCLK2P_50	C21	DP Reference Clock
000_BI _0EK	5	021	Positive
505 DP CLKP	PS_MGTREFCLK2N_50	C22	DP Reference Clock
000_D: _02:u	5	022	Negative
DP_AUX_OUT	PS_MIO27	J15	DP Auxiliary Data Output
DP_AUX_IN	PS_MIO30	F16	DP Auxiliary Data Input
DP_OE	PS_MIO29	G16	DP Auxiliary Data Output Enable
DP_HPD	PS_MIO28	K15	DP Insertion Signal Detection

Part 8: USB 3.0 Interface

There are 4 USB3.0 interfaces on the AXU2CGA/B board, the interface is HOST working mode (Type A), and the data transmission speed is up to 5.0Gb/s. The USB3.0 interfaces connect external USB PHY chip and USB3.0 HUB chip through ULPI interface to realize high-speed USB3.0 data communication.

The USB Schematic is shown in Figure 8-1:

Figure 8-1: USB 3.0 Schematic

USB Pin Assignment:

Signal Name	Pin Name	Pin Number	Description
USB_SSTXP	PS_MGTTXP2_505	D23	USB3.0 Data Transmission Positive
USB_SSTXN	PS_MGTTXN2_505	D24	USB3.0 Data Transmission Negative
USB_SSRXP	PS_MGTRXP2_505	D27	USB3.0 Data Receive Positive
USB_SSRXN	PS_MGTRXN2_505	D28	USB3.0 Data Receive Negative

505_USB_CLKP	PS_MGTREFCLK2P_505	E21	USB3.0 Reference Clock Positive
			Positive
FOE LICE CLICAL	DO MOTDEFOLKON FOR	F00	USB3.0 Reference Clock
505_USB_CLKN	PS_MGTREFCLK2N_505	E22	Negative
USB_DATA0	PS_MIO56	C16	USB2.0 Data Bit0
USB_DATA1	PS_MIO57	A16	USB2.0 Data Bit1
USB_DATA2	PS_MIO54	F17	USB2.0 Data Bit2
USB_DATA3	PS_MIO59	E17	USB2.0 Data Bit3
USB_DATA4	PS_MIO60	C17	USB2.0 Data Bit4
USB_DATA5	PS_MIO61	D17	USB2.0 Data Bit5
USB_DATA6	PS_MIO62	A17	USB2.0 Data Bit6
USB_DATA7	PS_MIO63	E18	USB2.0 Data Bit7
USB_STP	PS_MIO58	F18	USB2.0 Stop Signal
USB_DIR	PS_MIO53	D16	USB2.0 Data Direction Signal
USB_CLK	PS_MIO52	G18	USB2.0 Clock Signal
USB_NXT	PS_MIO55	B16	USB2.0 the NEXT Data Signal

Part 9: Gigabit Ethernet Interface

There is 1 Gigabit Ethernet interface on AXU2CGA/B, and the Ethernet interface is on BANK502 of PS connected through GPHY chip. The GPHY chip uses the KSZ9031RNXIC Ethernet PHY chip from Micrel, and the PHY Address is 001. Figure 9-1 is a schematic diagram of the connection of the Ethernet PHY chip on the ZYNQ PS side:

Figure 9-1: ZYNQ PS System and GPHY Schematic

The Gigabit Ethernet pin assignments are as follows:
--

Signal Name	Pin Name	Pin Number	Description
PHY1_TXCK	PS_MIO64	E19	RGMII Transmit Clock
PHY1_TXD0	PS_MIO65	A18	Transmit data bit 0
PHY1_TXD1	PS_MIO66	G19	Transmit data bit1
PHY1_TXD2	PS_MIO67	B18	Transmit data bit2
PHY1_TXD3	PS_MIO68	C18	Transmit data bit3
PHY1_TXCTL	PS_MIO69	D19	Transmit data Enable Signal
PHY1_RXCK	PS_MIO70	C19	RGMII Receive Clock
PHY1_RXD0	PS_MIO71	B19	Receive Data Bit0
PHY1_RXD1	PS_MIO72	G20	Receive Data Bit1
PHY1_RXD2	PS_MIO73	G21	Receive Data Bit2
PHY1_RXD3	PS_MIO74	D20	Receive Data Bit3
PHY1_RXCTL	PS_MIO75	A19	Receive Data Enable Signal
PHY1_MDC	PS_MIO76	B20	MDIO Clock Management
PHY1_MDIO	PS_MIO77	F20	MDIO Management Data

Part 10: USB to Serial Port

There is a Uart to USB interface on the AXU2CGA/B board for system debugging. The conversion chip uses the USB-UAR chip of Silicon Labs CP2102, and the USB interface uses the MINI USB interface. It can be connected to the USB port of the PC with a USB cable for independent power supply of the core board and serial data communication. The schematic diagram of the USB Uart circuit design is shown in Figure 10-1:

Figure 10-1: USB to serial port schematic

USB to serial	port ZYNQ pi	in assignment:
----------------------	--------------	----------------

Signal name	Pin Name	Pin Number	Description
PS_UART1_TX	PS_MIO24	AB19	PL Uart Data Output
PS_UART1_RX	PS_MIO25	AB21	PL Uart Data Input

Part 11: SD Card Slot Interface

The AXU2CGA/B board contains a Micro SD card interface. The SDIO signal is connected to the IO signal of BANK501. The SD card connector schematic is shown in Figure 11-1.

Figure 11-1: SD Card Connector Schematic

SD card slot pin assignment:

Signal Name	Pin Name	Pin Number	Description
SD_CLK	PS_MIO51	l21	SD Clock Signal
SD_CMD	PS_MIO50	M19	SD Command Signal
SD_D0	PS_MIO46	L20	SD Data0
SD_D1	PS_MIO47	H21	SD Data1
SD_D2	PS_MIO48	J21	SD Data2
SD_D3	PS_MIO49	M18	SD Data3
SD_CD	PS_MIO45	K20	SD Card Detection Signal

Part 12: PCIE Interface

There is a PCIE x1 slot on the AXU2CGA/B board for connecting PCIE peripherals, and the PCIE communication speed is up to 5Gbps. PCIE signal is directly connected to LANE0 of BANK505 PS MGT transceiver. The schematic diagram of PCIE x 1 design is shown in Figure 12-1:

Figure 12-1: PCIE Schematic

PCIE Interface ZYNQ Pin Assignment

Signal Name Pin Name		Pin	Description
		Number	
PCIE_TXP	PS_MGTTXP0_505	E25	PCIE Data Transmission Positive
PCIE_TXN	PS_MGTTXN0_505	E26	PCIE Data Transmission Negative
PCIE_RXP	PS_MGTRXP0_505	F27	PCIE Data Receive Positive
PCIE_RXN	PS_MGTRXN0_505	F28	PCIE Data Receive Negative
PCIE_REFCLK_P	PS_MGTREFCLK0P_505	F23	PCIE Data Reference Clock Positive
PCIE_REFCLK_N	PS_MGTREFCLK0N_505	F24	PCIE Data Reference Clock Negative

Part 13: 40-Pin Expansion Header

The AXU2CGA/B board is reserved with two 0.1-inch standard pitch 40-pin expansion ports J12 and J15, which are used to connect the ALINX modules or the external circuit designed by the user. The expansion port has 40 signals, of which 1-channel 5V power supply, 2-channel 3.3 V power supply, 3-channle ground and 34 IOs. Do not directly connect the IO directly to the 5V device to avoid burning the FPGA. If you want to connect 5V equipment, you need to connect level conversion chip.

The IO port of the J15 expansion port is connected to the ZYNQ chip BANK25 and BANK26, and the level standard is 3.3V. The schematic diagram of the design is shown in Figure 13-1:

Figure 13-1: Expansion Header Schematic

J12 Expansion Header ZYNQ Pin Assignment

J12 Pin	Signal Name	Pin Number	J12 Pin	Signal Name	Pin Number
1	GND	-	2	VCC5V	-
3	IO1_1N	F7	4	IO1_1P	G8
5	IO1_2N	F6	6	IO1_2P	G6

7	IO1_3N	D9	8	IO1_3P	E9
9	IO1_4N	F5	10	IO1_4P	G5
11	IO1_5N	E8	12	IO1_5P	F8
13	IO1_6N	D5	14	IO1_6P	E5
15	IO1_7N	C4	16	IO1_7P	D4
17	IO1_8N	E3	18	IO1_8P	E4
19	IO1_9N	F1	20	IO1_9P	G1
21	IO1_10N	E2	22	IO1_10P	F2
23	IO1_11N	D6	24	IO1_11P	D7
25	IO1_12N	B9	26	IO1_12P	C9
27	IO1_13N	A4	28	IO1_13P	B4
29	IO1_14N	В6	30	IO1_14P	C6
31	IO1_15N	A6	32	IO1_15P	A7
33	IO1_16N	B8	34	IO1_16P	C8
35	IO1_17N	A8	36	IO1_17P	A9
37	GND	-	38	GND	-
39	VCC_3V3_BUCK4	-	40	VCC_3V3_BUCK4	-

J15 Expansion Header ZYNQ Pin Assignment

J15 Pin	Signal Name	Pin Number	J15 Pin	Signal Name	Pin Number
1	GND	-	2	VCC5V	-
3	IO2_1N	A11	4	IO2_1P	A12
5	IO2_2N	A13	6	IO2_2P	B13
7	IO2_3N	A14	8	IO2_3P	B14
9	IO2_4N	E13	10	IO2_4P	E14
11	IO2_5N	A15	12	IO2_5P	B15
13	IO2_6N	C13	14	IO2_6P	C14
15	IO2_7N	B10	16	IO2_7P	C11
17	IO2_8N	D14	18	IO2_8P	D15
19	IO2_9N	F11	20	IO2_9P	F12
21	IO2_10N	H13	22	IO2_10P	H14
23	IO2_11N	G14	24	IO2_11P	G15
25	IO2_12N	F10	26	IO2_12P	G11
27	IO2_13N	H12	28	IO2_13P	J12
29	IO2_14N	J14	30	IO2_14P	K14

31	IO2_15N	K12	32	IO2_15P	K13
33	IO2_16N	L13	34	IO2_16P	L14
35	IO2_17N	G10	36	IO2_17P	H11
37	GND	-	38	GND	-
39	VCC_3V3_BUCK4	-	40	VCC_3V3_BUCK4	-

Part 14: MIPI Camera Interface

There are 2 MIPI interfaces on the AXU2CGA/B board for connecting MIPI cameras. The differential signal of MIPI is connected to the HP IO of BANK64 and 65, and the level standard is +1.2V; the control signal of MIPI is connected to BANK24, and the level standard is +3.3V. The schematic diagram of the MIPI port design is shown in Figure 14-1:

Figure 14-1: MIPI Camera Interface Connection

MIPI Interface J23 Pin Assignment

PIN	Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
1	GND	-	-	Ground
2	MIPI1_LAN0_N	IO_L2N_64	AE8	MIPI Data 0 Signal N
3	MIPI1_LAN0_P	IO_L2P_64	AE9	MIPI Data 0 Signal P

4	GND	-	-	Ground
5	MIPI1_LAN1_N	IO_L3N_64	AC8	MIPI Data 1 Signal N
6	MIPI1_LAN1_P	IO_L3P_64	AB8	MIPI Data 1 Signal P
7	GND	-	-	Ground
8	MIPI1_CLK_N	IO_L1N_64	AD9	MIPI Clock Signal N
9	MIPI1_CLK_P	IO_L1P_64	AC9	MIPI Clock Signal P
10	GND	-	-	Ground
11	CAM1_GPIO	IO_L2N_24	AH14	Control Signal IO
12	CAM1_CLK	IO_L3P_24	AG13	Control Signal Clock
13	CAM1_SCL	IO_L3N_24	AH13	Control Signal SCL
14	CAM1_SDA	IO_L4P_24	AE13	Control Signal SDA
15	VCC_3V3	-	-	3.3V Power Supply

MIPI Interface J24 Pin Assignment

PIN	Signal Name	ZYNQ Pin Name	ZYNQ Pin Number	Description
			Humber	
1	GND	-	-	Ground
2	MIPI2_LAN0_N	IO_L2N_65	V9	MIPI Data 0 Signal N
3	MIPI2_LAN0_P	IO_L2P_65	U9	MIPI Data 0 Signal P
4	GND	-	-	Ground
5	MIPI2_LAN1_N	IO_L3N_65	V8	MIPI Data 1 Signal N
6	MIPI2_LAN1_P	IO_L3P_65	U8	MIPI Data 1 Signal P
7	GND	-	-	Ground
8	MIPI2_CLK_N	IO_L1N_65	Y8	MIPI Clock Signal N
9	MIPI2_CLK_P	IO_L1P_65	W8	MIPI Clock Signal P
10	GND	-	-	Ground
11	CAM2_GPIO	IO_L5P_24	AD15	Control Signal IO
12	CAM2_CLK	IO_L6P_24	AC14	Control Signal Clock
13	CAM2_SCL	IO_L5N_24	AD14	Control Signal SCL
14	CAM2_SDA	IO_L6N_24	AC13	Control Signal SDA
15	VCC_3V3	-	-	3.3V Power Supply

Part 15: JTAG Debug Port

The 10-pin JTAG interface is reserved on the AXU2CGA/B board for downloading ZYNQ UltraScale+ programs or firmware programs to FLASH. The pin definition of JTAG is shown in the figure below

Figure 15-1: JTAG Pin Definition

Part 16: DIP Switch Configuration

There is a 4-digit DIP switch SW1 on the FPGA development board to configure the startup mode of the ZYNQ system. The AXU2CGA/B system development platform supports 4 startup modes. The 4 startup modes are JTAG debug mode, QSPI FLASH, EMMC and SD2.0 card startup mode. After ZU3EG chip is powered on, it will detect the level of (PS MODE0~3) to determine the startup mode. The user can select different startup modes through the DIP switch SW1 on the expansion board. The SW1 startup mode configuration is shown in the following table 16-1.

SW1	Dial Position (1, 2, 3, 4)	MODE[3:0]	Start mode
FREE	ON, ON, ON, ON	0000	PS JTAG
ON KE	ON, ON, OFF,ON	0010	QSPI FLASH
1 2 3 4	ON, OFF, ON, OFF	0101	SD Card
1111	ON, OFF, OFF, ON	0110	EMMC

Table 16-1: SW1 startup mode configuration

Part 17: LEDs

There are 4 user indicator lights, 4 user control KEYs and a reset KET on the AXU2CGA/B board. 4 user indicators and 4 user KEYs are all connected to the IO of BANK24. The schematic diagram of the LED light hardware connection is shown in Figure 17-1:

Figure 17-1: LED Schematic

LED and Key Pin Assignment:

Signal Name	Pin Name	Pin Number
LED1	IO_L9N_24	W13
LED2	IO_L12P_24	Y12
LED3	IO_L12N_24	AA12
LED4	IO_L7N_24	AB13
KEY1	IO_L7P_24	AA13
KEY2	IO_L1N_24	AE14
KEY3	IO_L1P_24	AE15
KEY4	IO_L2P_24	AG14

Part 18: System Clock

The board provides reference clocks for the RTC circuit, PS system, and PL logic parts. The RTC clock is 32.768, the PS system clock is 33.3333Mhz, and the PL end clock is 25Mhz. The schematic diagram of the clock circuit design is shown in Figure 18-1:

Figure 18-1: Clock Source

Clock Pin Assignment:

Signal Name	Pin Name	Pin Number
PL_REF_CLK	IO_L8P_44	AB11

The level of PL REF CLK is +1.8V.

Part 19: ALINX Customized Fan Interface

The fan is powered by 12V, and the speed can be adjusted through the FAN_PWM signal. For this board, will come with heatsink in fault, if you need this fan, purchase separately.

Signal Name	Pin Name	Pin Number
FAN_PWM	IO_L11P_24	W12

Part 20: Power Input

The power input of AXU2CGA/B is an adapter with DC12V and current 2A. The power interface is shown in the figure below

Figure 20-1: Power Input Interface

Part 21: Form Factors

Figure 21-1: Form Factors