خوارزمية السمبلكس للمرافق (Dual-simplex algorithm)

تطبق خوارزمية السمبلكس للمرافق على جميع البرامج الخطية الأولية (P) تحت الشرطين التاليين

- لايوجد للبرنامج الخطي الأولي (P) حل ممكن للبدء
- يوجد للبرنامج الخطى المرافق (D) حل ممكن للبدء

المخطط التدفقي لخوارزمية السمبلكس للمرافق

نفس الإجراءات، لكن بعد تبديل $-z_0 \ \ \text{and} \ c_j-z_j$ By $z_0 \ \ \text{and} \ z_j-c_j$

خوارزمية السمبلكس للمرافق (أمثلة)

 $\min z = x_1 + x_2$

مثال 1. لنأخذ البرنامج الخطي التالي:

		min		1	1	0	0	0	0
	В	C_B	b	\boldsymbol{x}_1	x_2	t_1	t_2	t_3	t_4
•	$-t_1$	0	-5	-1	-1	1	0	0	0
	t_2	0	2	-2	1	0	1	0	0
	t_3	0	2	1	-1	0	0	1	0
	t_4	0	6	0	1	0	0	0	1
			0	-1	-1	0	0	0	0
					I				
		min		1	1	0	0	0	0
	В	C_B	b	<i>x</i> ₁	x_2	t_1	t_2	t_3	t_4
		1		1	1	1	Λ	Λ	Λ

	111111			1		U	O	U	U
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4
	x_2	1	5	1	1	-1	0	0	0
•	$-t_2$	0	-3	-3	0	1	1	0	0
	t_3	0	7	2	0	-1	0	1	0
	t_4	0	1	-1	0	1	0	0	1
			5	0 🛕	0	-1	0	0	0

		min		1	1	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4
	x_2	1	4	0	1	-2/3	1/3	0	0
	x_1	1	1	1	0	-1/3	-1/3	0	0
•	$-t_3$	0	5	0	0	-1/3	2/3	1	0
	t_4	0	2	0	0	2/3	-1/3	0	1
			5	0	0	-1	0	0	0

الحل المثالي الأول

$$x_1 = 1, x_2 = 4, t_1 = 0, t_2 = 0, t_3 = 5, t_4 = 2$$
 $z = 5$

من أجل الحصول على الحل المثالي الثاني سنطبق خوار زمية السمبلكس

	min		1	1	0	0	0	0
В	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4
x_2	1	3/2	0	1	-1/2	0	-1/2	0
x_1	1	7/2	1	0	-1/2	0	1/2	0
t_2	0	15/2	0	0	-1/2	1	3/2	0
t_4	0	9/2	0	0	1/2	0	1/2	1
5			0	0	-1	0	0	0

الحل المثالي الثاني هو

$$x_1 = \frac{7}{2}, x_2 = \frac{3}{2}, t_1 = 0, t_2 = \frac{15}{2}, t_3 = 0, t_4 = \frac{9}{2}$$
 $z = 5$

الأن سوف نحل المثال السابق بخوار زمية السمبلكس باستخدام طريقة المرحلتين

a) المرحلة الأولى

		min		0	0	0	0	0	0	1
	B	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4	v
	v	1	5	1	1	-1	0	0	0	1
	t_2	0	2	-2	1	0	1	0	0	0
•	$-t_3$	0	2	1	-1	0	0	0	0	0
	t_4	0	6	0	1	0	0	1	1	0
			5	1	1	-1	0	0	0	0

	min			0	0	0	0	0	0	1
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4	v
•	- v	1	3	0	2	-1	0	-1	0	1
	t_2	0	6	0	-1	0	1	2	0	0
	x_1	0	2	1	-1	0	0	1	0	0
	t_4	0	6	0	1	0	0	0	1	0
			3	0	2 🛊	-1	0	-1	0	0
			•			•				

	min		0	0	0	0	0	0	1
B	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4	v
x_2	0	3/2	0	1	-1/2	0	-1/2	0	/
t_2	0	15/2	0	0	-1/2	1	3/2	0	/
<i>x</i> ₁	0	7/2	1	0	-1/2	0	1/2	0	/
t_4	0	9/2	0	0	1/2	0	1/2	1	/
	0		0	0	-1	0	0	0	/

المرحلة الثانية (b

		min		1	1	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	t_4
	x_2	1	3/2	0	1	-1/2	0	-1/2	0
•	- t ₂	0	15/2	0	0	-1/2	1	3/2	0
	x_1	1	7/2	1	0	-1/2	0	1/2	0
	t_4	0	9/2	0	0	1/2	0	1/2	1
			5	0	0	-1	0	0 🛊	0

$$x_1 = \frac{7}{2}, x_2 = \frac{3}{2}, t_1 = 0, t_2 = \frac{15}{2}, t_3 = 0, t_4 = \frac{9}{2}$$
 و $z = 5$ الحل المثالي الأول: $z = 5$

	min		1	1	0	0	0	0
B	$c_{\scriptscriptstyle B}$	b	x_1	x_2	t_1	t_2	t_3	t_4
x 2	1	4	0	1	-2/3	1/3	1	0
t_3	0	5	0	0	-1/3	2/3	0	0
x_1	1	1	1	0	-1/3	-1/3	0	0
t_4	0	2	0	0	2/3	-1/3	0	1
	•	5	0	0	-1	0	0	0

$$x_1 = 1, x_2 = 4, t_1 = 0, t_2 = 0, t_3 = 5, t_4 = 2$$
 و $z = 5$ و $z = 5$

مثال 2. لنأخذ البرنامج الخطي التالي:

		max		-5	-2	1	0	0
	B	C_B	b	x_1	x_2	x_3	t_1	t_2
	x_3	1	2	-4	3	1	0	0
•	- t ₁	0	-3	1	-1	0	1	0
	t_2	0	-1	3	-2	0	0	1
			-2	-1	-5 ↑	0	0	0

الحل الإبتدائي الأول غير ممكن مع وجود جميع $\forall j$ لذلك سوف نطبق خوار زمية السمبلكس للمرافق

		max		-5	-2	1	0	0
	\boldsymbol{B}	C_B	b	x_1	x_2	x_3	t_1	t_2
•	$-x_3$	1	-7	-1	0	1	3	0
	x_2	-2	3	-1	1	0	-1	0
	t_2	0	5	1	0	0	-2	1
			13	-6 ♦	0	0	-5	0

	max		-5	-2	1	0	0
B	C_B	b	\boldsymbol{x}_1	x_2	x_3	t_1	t_2
x_1	-5	7	1	0	-1	-3	0
x_2	-2	10	0	1	-1	-4	0
t_2	0	-2	0	0	1	1	1
55			0	0	-6	-23	0

لا يوجد حل ممكن للمسألة

الأن، سوف نحل نفس المسألة بخوار زمية السمبلكس بتطبيق طريقة المرحلتين

		max		0	0	0	0	0	-1	-1
	В	C_B	b	x_1	x_2	x_3	t_1	t_2	v_1	v_2
	x_3	0	2	-4	3	1	0	0	0	0
	v_1	-1	3	-1	1	0	-1	0	1	0
•	$ v_2$	-1	1	-3	2	0	0	-1	0	1
			4	-4	3 🛉	0	-1	-1	0	0
										_
		max		0	0	0	0	0	-1	-1
	В	C_B	b	x_1	x_2	x_3	t_1	t_2	v_1	v_2
•	$-x_3$	0	1/2	1/2	0	1	0	3/2	0	/
	v_1	-1	5/2	1/2	0	0	-1	1/2	1	/
	x_2	0	1/2	-3/2	1	0	0	-1/2	0	/
			5/2	1/2 ♠	0	0	-1	1/2	0	/
				I						
		max		0	0	0	0	0	-1	-1
	\boldsymbol{B}	C_B	b	x_1	x_2	x_3	t_1	t_2	v_1	v_2
	x_1	0	1	1	0	2	0	3	0	/
	v_1	-1	2	0	0	-1	-1	-1	1	/
	<i>x</i> ₂	0	2	0	1	3	0	4	0	/
			2	0	0	-1	-1	-1	0	/

بما أن $v_1=2$ ، نستنتج بأن ليس للمسألة حل ممكن

الأن، من أجل تطبيق خوار زمية السمبلكس من الضروري معرفة حل قاعدي ممكن للبدء. و من أجل تطبيق خوار زمية السمبلكس للمرافق يجب معرفة حل قاعدي غير ممكن للبدء بحيث يكون جميع خوار زمية السمبلكس للمرافق يجب معرفة في حالة معالجة تعظيم مسألة خطية أو جميع $c_j - z_j \ \forall j = 1,...,n$ سالبة أو معدومة في حال معالجة تقليل مسألة خطية. من أجل حل هذه المشكلة سيتم إدخال طريقة القيد الصنعي و التي هي شبيهه بطريقة M و بطريقة المرحلتين في خوار زمية السمبلكس.

طريقة القيد الصنعى

لنفترض أن جدول السمبلكس الإبتدائي في حالة تعظيم يزودنا بحل قاعدي غير ممكن عندئذ

- أذا كان جميع القيم $c_j z_j$ سالبة أو معدومة ، عندئذ يتم تطبيق خوار زمية السمبلكس للمرافق مباشر تأ
- وإلا، إذا وجد بعض $c_j z_j$ المتعلقة ببعض المتحولات غير القاعدية موجبة تماماً ، في هذه الحالة سوف يتم تطبيق طريقة القيد الصنعي

المخطط التدفقي لطريقة القيد الصنعي

طريقة القيد الصنعي (أمثلة)

مثال 1. لنأخذ البرنامج الخطى التالى:

	max		2	3	0	0	0
B	C_B	b	x_1	x_2	x_3	t_1	t_2
t_1	0	-5	-1	-1	1	0	0
t_2	0	2	-2	1	0	1	0
t_3	0	3	1	0	0	0	1
0			2	3	0	0	0

لا يوجد حل غير ممكن إبتدائي لايحقق معايير الأمثلة ،و عدة $c_j - z_j > 0$ من أجل حل هذا المثال باستخدام خوار زمية السمبلكس للمرافق يجب أن نستخدم طريقة القيد الصنعى

$$x_1 + x_2 \le M \text{ (M)}$$
کبيرهٔ
$$x_1 + x_2 + x_0 = M$$

لنعوض $x_2 = M - x_1 - x_0$ بنجد التالي لنعوض يا بنجد التالي

$$\max z = 2x_1 + 3x_2$$

$$st \qquad t_1 + x_0 = -5 + M$$

$$-3x_1 + t_2 - x_0 = 2 - M$$

$$x_1 + t_3 = 3$$

$$x_1 + x_2 + x_0 = M$$

$$x_1, x_2, t_1, t_2, t_3, x_0 \ge 0$$

		max		2	3	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	x_0
	t_1	0	-5+M	0	0	1	0	0	1
•	- t ₂	0	2-M	-3	0	0	1	0	-1
	t_3	0	3+0	1	0	0	0	1	0
	x_2	3	0+M	1	1	0	0	0	1
		•	0-3M	-1 ♠	0	0	0	0	-3
				1	T	1	1 .	1	T .
		max	Т	2	3	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	x_0
	t_1	0	-5+M	0	0	1	0	0	1
	x_1	2	-2/3+M/3	1	0	0	-1/3	0	1/3
•	- t ₃	0	11/3-M/3	0	0	0	1/3	1	-1/3
	x_2	3	2/3+2M/3	0	1	0	1/3	0	2/3
			-2/3-	0	0	0	-1/3	0	-8/3
			8M/3						<u> </u>
			1						
		max		2	3	0	0	0	0
	В	C_B	b	x_1	x_2	t_1	t_2	t_3	x_0
	t_1	0	6	0	0	1	1	3	/
	x_1	2	3	1	0	0	0	1	/
	x_2	3	8	0	1	0	1	2	/
			-30	0	0	0	-3	-8	/

يعطى الحل المثالي كما يلي:

$$x_1 = 3, x_2 = 8, t_1 = 6, t_2 = 0, t_3 = 0$$
 $z = 30$

مثال 2. لنأخذ البرنامج الخطي التالي:

$$\min z = -x_1 + x_2$$

$$st -2x_1 + x_2 + t_1 = 2$$

$$x_1 - 2x_2 + t_2 = -8$$

$$x_1 + x_2 + t_3 = 5$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

لدينا حل قاعدي هو غير ممكن
$$x_1=0, x_2=0, t_1=2, t_2=-8, t_3=5$$
 و عدة $z_j-c_j>0 \ or<0$

x	$+x_{0}$	= M	$\Rightarrow x$	$_{1}=M$	$-x_{0}$
	' '' ()	111		1	JU ()

		min			1	0	0	0	0
	В	$c_{\scriptscriptstyle B}$	b	x_1	x_2	t_1	t_2	t_3	x_0
	t_1	0	2+2M	0	1	1	0	0	2
	t_2	0	-8-M	0	-2	0	1	0	-1
•	$-t_3$	0	5-M	0	1	0	0	1	-1
	x_1	-1	0+M	1	0	0	0	0	1
			0-M	0	-1 ♠	0	0	0	-1
					<u> </u>				
		min		-1	1	0	0	0	0
	В	$c_{\scriptscriptstyle B}$	b	x_1	x_2	t_1	t_2	t_3	x_0
	t_1	0	-2+3M/2	0	0	1	1/2	0	3/2
	x_2	1	4+M/2	0	1	0	-1/2	0	1/2
•	- t ₃	0	1-3M/2	0	0	0	1/2	1	-3/2
	x_1	-1	0+M	1	0	0	0	0	1
			4-M/2	0	0	0	-1/2	0	-1/2▲

	min		-1	1	0	0	0	0
B	C_B	b	x_1	x_2	t_1	t_2	t_3	x_0
t_1	0	-1	0	0	1	1	1	/
x_2	1	13/3	0	1	0	-1/3	1/3	/
x_1	-1	2/3	1	0	0	1/3	2/3	/
11/3			0	0	0	-2/3	-1/3	/

بما أن $t_1 = -1 < 0$ بما أن $a_{ij} \geq 0$ من أجل كل $t_1 = -1 < 0$ بما أن

مثال 3. لنأخذ البرنامج الخطي التالي:

$$\max z = 5x_1 + 7x_2$$

$$st -x_1 - x_2 + t_1 = -6$$

$$-x_1 + t_2 = -4$$

$$x_2 + t_3 = 3$$

$$x_1, x_2, t_1, t_2, t_3 \ge 0$$

يوجد للمسألة حل قاعدي غير ممكن للبدء

$$x_1 = 0, x_2 = 0, t_1 = -6, t_2 = -4, t_3 = 3$$

$$x_1 + x_2 + x_0 = M \implies x_2 = M - x_0 - x_1$$

		max		5	7	0	0	0	0
	\boldsymbol{B}	C_B	b	x_1	x_2	t_1	t_2	t_3	x_0
	t_1	0	-6+M	0	0	1	0	0	1
	t_2	0	-4+0	-1	0	0	1	0	0
•	- t ₃	0	3-M	-1	0	0	0	1	-1
	x_2	7	0+M	1	1	0	0	0	1
			0-7M	-2 ↑	0	0	0	0	-7

	max		5	7	0	0	0	0
B	C_B	b	x_1	x_2	t_1	t_2	t_3	x_0
t_1	0	-6+M	0	0	1	0	0	1
t_2	0	-7+M	0	0	0	1	-1	1
<i>x</i> ₁	5	-3+M	1	0	0	0	-1	1
x_2	7	3+0	0	1	0	0	1	0
-6-5M			0	0	0	0	-2	-5

الحل المثالي للمسألة

$$x_1=M-3, x_2=3, t_1=M-6, t_2=M-7, t_3=x_0=0$$
و و $z=5M+6$ إذاً، الحل المثالي للمسألة الأصلية غير محدود (لانهاية)

مسائل

أوجد الحلول المثالية للبرامج الخطية التالية باستخدام خوار زمية السمبلكس للمرافق:

 $x_1, x_2 \ge 0$

3.

 $\max z = -5x_1 - 7x_2$ $st \qquad x_1 + x_2 \ge 6$ $x_1 \ge 4$ $x_1 - x_2 \ge 10$ $x_1, x_2 \ge 0$

5.

min $z = 6x_1 + x_2 + 6x_3$ st $3x_1 + x_2 + 2x_3 \ge -2$ $2x_1 - x_3 \ge 3$ $x_1, x_2, x_3 \ge 0$

7.

 $\min z = 4x_1 + 5x_2 + 3x_3$ $st \qquad x_1 + 2x_2 - x_3 \ge 5$ $-x_1 - x_2 + x_3 \ge 1$ $2x_2 + 4x_3 \ge 1$ $x_1, x_2, x_3 \ge 0$

2.

 $\min z = 14x_1 + 12x_2 + 12x_3$ $st \qquad x_1 - 2x_2 + 2x_3 \ge 1$ $x_1 + 3x_2 - x_3 \ge 3$ $x_1, x_2, x_3 \ge 0$

4.

 $\min z = 2x_1 + 2x_2 + 5x_3$ $st \qquad -2x_1 + x_2 + x_3 \ge 1$ $-x_1 + 2x_2 - x_3 \ge 1$ $x_1, x_2, x_3 \ge 0$

6.

 $\max z = -3x_{1} - x_{2}$ $st \qquad x_{1} + x_{2} \ge 1$ $2x_{1} + 3x_{2} \ge 2$ $x_{1}, x_{2} \ge 0$