Distribution	Parameters	CDF	PMF/PDF	Support	Mean	Median	Mode	Variance	MGF
Bernoulli	0	$\begin{cases} 0 & \text{for } k < 0 \\ 1 - p & \text{for } 0 \le k < 1 \\ 1 & \text{for } k \ge 1 \end{cases}$	$\begin{cases} q = (1-p) & \text{for } k = 0\\ p & \text{for } k = 1 \end{cases}$	$k \in \{0,1\}$	p	$\begin{cases} 0 & \text{if } q > p \\ 0.5 & \text{if } q = p \\ 1 & \text{if } q$	$\begin{cases} 0 & \text{if } q > p \\ 0, 1 & \text{if } q = p \\ 1 & \text{if } q$	p(1-p)(=pq)	$q+pe^t$
Binomial	$n \in N_0; \ p \in [o,1]$	$I_{1-p}(n-k,1+k)$	$\binom{n}{k} p^k (1-p)^{n-k}$	$k \in \{0,,n\}$	np	$\lfloor np \rfloor or \lceil np \rceil$	$\lfloor (n+1)p \rfloor or \lceil (n+1)p \rceil - 1$	np(1-p)	$(1-p+pe^t)^n$
Poisson	$\lambda > 0$ (real) - rate	$\frac{\Gamma(\lfloor k+1\rfloor,\lambda)}{\lfloor k\rfloor!}, \text{ or } e^{-\lambda} \sum_{i=0}^{\lfloor k\rfloor} \frac{\lambda^i}{i!}$	$\frac{\lambda^k e^{-\lambda}}{k!}$	$k\in\mathbb{N}\cup\{0\};$	λ	$\approx \lfloor \lambda + 1/3 - 0.02/\lambda \rfloor$	$\lceil \lambda \rceil - 1, \lfloor \lambda \rfloor$	λ	$\exp(\lambda(e^t-1))$
Gamma (rate)	$\alpha>0$ shape, $\beta>0$ rate	$\frac{1}{\Gamma(\alpha)}\gamma(\alpha,\beta x)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$	$x\in(0,\infty)$	$E[X] = \frac{\alpha}{\beta}$	No simple closed form	$\frac{\alpha-1}{\beta} \text{ for } \alpha \ge 1$	$\frac{\alpha}{\beta^2}$	$\left(1 - \frac{t}{\beta}\right)^{-\alpha} \text{ for } t < \beta$
Gamma (scale)	$k > 0$ shape, $\theta > 0$ scale	$\frac{1}{\Gamma(k)}\gamma\left(k,\frac{x}{\theta}\right)$	$\frac{1}{\Gamma(k)\theta^k} x^{k-1} e^{-\frac{x}{\theta}}$	$x \in (0, \infty)$	$E[X] = k\theta$	No simple closed form	$(k-1)\theta$ for $k \ge 1$	$k\theta^2$	$(1-\theta t)^{-k}$ for $t<\frac{1}{\theta}$
Beta	$\alpha>0$ shape, $\beta>0$ shape	$I_{\mathcal{X}}(lpha,eta)$	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$	$x \in [0, 1]$	$E[X] = \frac{\alpha}{\alpha + \beta}$	$I_{\frac{1}{2}}^{[-1]}(\alpha,\beta) \text{ (in general)}$ $\approx \frac{\alpha - \frac{1}{3}}{\alpha + \beta - \frac{2}{3}} \text{ for } \alpha,\beta > 1$	$\frac{\alpha-1}{\alpha+\beta-2}for\alpha,\beta>1$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha + r}{\alpha + \beta + r} \right) \frac{t^k}{k!}$

Exponential