

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

Disciplina: CN					
Professor:					
Semestre:	Turma:	Data:	/	/	

Lista 04: Raizes

Questão 1: Escreva uma função em Python capaz de calcular a aproximação de uma raiz usando o **método da Bisseção**. A sua função deve receber os seguintes parâmetros de entrada:

```
def [aprox, e_rel, e_abs] = bissecao(funcao, xa, xb, int, best_apro)
# funcao : funcao que se deseja localizar a raiz
# xa : valor xa
# xb : valor xb
# int : número de iterações
# best_apro : melhor aproximação
# aprox : raiz encontrada
# e_rel : erro relativo
# e_abs : erro absoluto
```

A função deve também imprimir no terminal a seguinte saída de dados (exemplo ilustrativo):

Metodo da Bissecao

Int xa xb erro_abs erro_rel

1 1.0000000000 0.5372626655 0.02988062487314 0.05268620008102
2 0.5372634545 0.5670096854 0.00013360504487 0.00023557546590
...
i 0.5671423445 0.5671432904 0.00000000000014 0.00000000000055
FIM

Funcao______: math.exp(-x)-x
Raiz encontrada__: 0.56714329005687
Erro absoluto____: 0.00000000000014
Erro relativo___: 0.0000000000000055

a)
$$f(x) = 3x^2 + 2x - 2$$
. Intervalo: $x_1 = 0$ e $x_2 = 1$.

b)
$$f(x) = 2x^3 + x^2 + 2x - 1$$
. Intervalo: $x_1 = 0$ e $x_2 = 1$.

c)
$$f(x) = x^3 + 2x - 30$$
. Intervalo: $x_1 = 2$ e $x_2 = 3$

d)
$$f(x) = 4^{-x} - x$$
. Intervalo: $x_1 = -2$ e $x_2 = 1$.

Questão 2: Escreva uma função em Python capaz de calcular a aproximação de uma raiz usando o **método da Falsa Posição**. A sua função deve receber os seguintes parâmetros de entrada:

```
def [aprox, e_rel, e_abs] = fposicao(funcao,xa,xb,int,best_apro)
# funcao : funcao que se deseja localizar a raiz
# xa : valor xa
# xb : valor xb
# int : número de iterações
# best_apro : melhor aproximação
# aprox : raiz encontrada
# e_rel : erro relativo
# e_abs : erro absoluto
```

A função deve também imprimir no terminal a seguinte saída de dados (exemplo ilustrativo):

Metodo da Falsa Posicao

- a) $f(x) = 2^{x^2} 4x$. Intervalo: $x_1 = -0.5$ e $x_2 = 0.5$.
- b) $f(x) = 3x^2 + 2x 2$. Intervalo $x_1 = 0$ e $x_2 = 1$.
- c) $f(x) = 2x^3 + x^2 + 2x 1$. Intervalo: $x_1 = 0$ e $x_2 = 1$.
- d) $f(x) = x^3 + 2x 30$. Intervalo: $x_1 = 2$ e $x_2 = 3$.
- e) $f(x) = 4^{2x^2 5x} 3$. Intervalo: $x_1 = -0.25$ e $x_2 = 0.15$.

Questão 3: Escreva uma função em Python capaz de calcular a aproximação de uma raiz usando o **método da Secante**. A sua função deve receber os seguintes parâmetros de entrada:

```
def [aprox, e_rel, e_abs] = secante(funcao,xi,xim1,int,best_apro)
# funcao : funcao que se deseja localizar a raiz
# xi : valor xi
# xim1 : valor xim1
# int : número de iterações
# best_apro : melhor aproximação
# aprox : raiz encontrada
# e_rel : erro relativo
# e_abs : erro absoluto
```

A função deve também imprimir no terminal a seguinte saída de dados (exemplo ilustrativo):

Metodo da Secante

Int xi xim1 erro_abs erro_rel

1 1.0000000000 0.5372626655 0.02988062487314 0.05268620008102
2 0.5372634545 0.5670096854 0.00013360504487 0.00023557546590
...
i 0.5671423445 0.5671432904 0.0000000000014 0.0000000000025
FIM

Funcao______: math.exp(-x)-x
Raiz encontrada_: 0.56714329005687
Erro absoluto___: 0.0000000000014
Erro relativo___: 0.000000000000025

- a) $f(x) = 2^{x^2} 4x$. Pontos: $x_0 = -0.5$ e $x_1 = -1$.
- b) $f(x) = 4^{x^2} 6x$. Pontos: $x_0 = 1.5$ e $x_1 = 2$.

Questão 4: Escreva uma função em Python capaz de calcular a aproximação de uma raiz usando o **método da Secante Modificado**. A sua função deve receber os seguintes parâmetros de entrada:

```
def [aprox, e_rel, e_abs] = secantemod(funcao,xi,d,int,best_apro)
# funcao : funcao que se deseja localizar a raiz
# xi : valor xi
# d : valor delta
# int : número de iterações
# best_apro : melhor aproximação
# aprox : raiz encontrada
# e_rel : erro relativo
# e_abs : erro absoluto
```

A função deve também imprimir no terminal a seguinte saída de dados (exemplo ilustrativo):

```
Metodo da Secante Modificado

Int xi erro_abs erro_rel

1 1.000000000 0.02988062487314 0.05268620008102
2 0.5372634545 0.00013360504487 0.00023557546590
...
i 0.5671423445 0.0000000000014 0.0000000000025

FIM

Funcao______: math.exp(-x)-x

Raiz encontrada__: 0.56714329005687

Erro absoluto____: 0.0000000000014

Erro relativo____: 0.00000000000025
```

```
a) f(x) = 2^{x^2} - 4x. Ponto: x_i = -0.5
b) f(x) = 4^{x^2} - 6x. Ponto: x_i = 1.5
```