Genetic data in R and GDS format

Jon Chernus

Department of Human Genetics School of Public Health University of Pittsburgh

Document created: November 23, 2024

Location

This slide set is called genetic_data_in_r_gds.pdf and is located in the "28_genetics_data_in_R_gds" folder of our Lectures repository.

How to load big genetics files into R

Without specialized packages?

- read.table?
- data.table::fread?

Advantages of specialized packages

- Process big files faster
- Integrate other data more easily
- Read-to-use analysis tools

Without specialized packages

It's possible to read in text-based files with non-genetics packages

- read.table (or other base R functions)
- data.table::fread (quite fast and flexible try it)

Limitations

- Relatively slow/inefficient, especially for bigger data sets
- Stores the files in working memory
- Not specialized/suited for genetics data structures

Genetics packages

PLINK and VCF files can be read in easily.

Advantages

- Some can handle very large data sets without having to load the entire file into memory
- More effective at handling genetics-specific data structures

The BEDMatrix package

- Easily read in PLINK files with the BEDMatrix function
- Read in VCF by first using plink --recode vcf

Genetic data structure format (GDS)

Several types exist, so you'll need to convert between them (explained later)

- The SeqArray package uses SeqArray GDS
- The SNPRelate package uses SNP GDS
- The GWASTools package has its own GDS formats

Some packages that use GDS

SeqArray has basic utilities for SeqArray GDS files.

It interfaces with other packages such as

- SeqVarTools, a tool set with more GDS utilities
- GWASTools, a tool set for GWAS data cleaning
- SNPRelate, a tool set for relatedness and PCA calculations
- GENESIS, a tool set for GWAS, relatedness, and PCA in family data

GDS files are fast, compact, and flexible

Compare the size of 200 billion genotypes in the 1000 Genomes Project:

File format	Approximate size (Gb)
.vcf.gz	14.4
.bcf	12.3
.gds	2.6-5.7

Some properties of GDS files

- Not human-readable
- Special accessor functions are required to interact with their fields
- Hierarchically and flexibly structured
- Customizable and can hold annotation like VCF
- Support both sample and subject annotation

How to convert to/from GDS

SNPRelate package

GDS scheme

Figure 1: SeqArray framework (source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5860110/)

SeqArray basic utilities

There are several dozen commands, including the most important file conversion commands (mentioned above). Here are a few:

Command	What it does
seqVCF2GDS	Convert from VCF to GDS
seqBCF2GDS	Convert BCF to GDS
seqOpen	Open the GDS file
seqClose	Close it
seqGetData	Get data from a SeqArray file
seqSetFilter	Define subsets of samples or variants
seqSetFilterChrom	Define subsets by regions
seqResetFilter	Reset filtering
seqApply	Apply user-defined functions across samples or variants

Opening a .gds file with SeqArray

library("SeqArray", quietly = TRUE, verbose = FALSE,

```
warn.conflicts = FALSE
gds_path <- paste0(.libPaths(), "/SeqArray/extdata/CEU_Exon.gds")</pre>
g <- seqOpen(gds_path)
Object of class "SegVarGDSClass"
File: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library/SegArray/extdata/CEU_Exon.gds (287.6K)
    F 1 *
|--+ description
|--+ sample.id { Str8 90 LZMA_ra(34.7%), 257B } *
|--+ variant.id { Int32 1348 LZMA_ra(16.7%), 905B } *
|--+ position { Int32 1348 LZMA_ra(64.4%), 3.4K } *
|--+ chromosome { Str8 1348 LZMA ra(4.39%), 157B } *
I--+ allele
           { Str8 1348 LZMA_ra(16.6%), 901B } *
|--+ genotype [ ] *
 |--+ ~data { Bit2 2x1348x90 LZMA_ra(29.2%), 17.3K } *
  |--+ extra.index { Int32 3x0 LZMA_ra, 18B } *
  \--+ extra
             { Int16 0 LZMA_ra, 18B }
--+ phase
  |--+ data { Bit1 90x1348 LZMA_ra(0.86%), 137B } *
 { Bit1 0 LZMA_ra, 18B }
 \--+ extra
--+ annotation
  |--+ id { Str8 1348 LZMA ra(38.3%), 5.5K } *
            { Float32 1348 LZMA_ra(2.11%), 121B } *
  |--+ filter { Int32, factor 1348 LZMA_ra(2.11%), 121B } *
   --+ info
             [ ]
{ Str8 1328 LZMA ra(22.1%), 593B } *
     I--+ AA
              f Int32 1348 LZMA ra(24.1%), 1.3K } *
              f Int32 1348 LZMA ra(19.6%), 1.0K } *
     I--+ DP
              { Int32 1348 LZMA_ra(47.7%), 2.5K } *
     1--+ HM2
             { Bit1 1348 LZMA_ra(145.6%), 253B } *
             { Bit1 1348 LZMA_ra(145.6%), 253B } *
     1--+ HM3
             { Str8 1348 LZMA ra(19.6%), 341B } *
     1--+ OR
              { Str8 1348 LZMA ra(24.3%), 3.8K } *
             { Int32 1348 LZMA_ra(20.7%), 1.1K } *
  \--+ format
     \--+ DP
                  { VL Int 90x1348 LZMA ra(70.8%), 115.2K } *
        \--+ ~data { VL Int 1348x90 LZMA ra(65.1%), 105.9K } *
\--+ sample.annotation [ ]
  \--+ family { Str8 90 LZMA ra(55.0%), 221B } *
```

Exploring a .gds file with SeqArray

```
# Extract some info
var.ids <- seqGetData(g, "variant.id")
samp.ids <- seqGetData(g, "sample.id")
chroms <- seqGetData(g, "chromosome")</pre>
rsids <- seqGetData(g, "annotation/id")
# Look at some of it
length(samp.ids)
Γ17 90
head(samp.ids)
[1] "NA06984" "NA06985" "NA06986" "NA06989" | [5] "NA06994" "NA07000"
table(chroms)
chroms
1 10 11 12 13 14 15 16 17 18 19 2 142 70 16 62 11 61 46 84 100 54 111 59 20 21 22 3 4 5 6 7 8 9 59 23 23 81 48 61 99 58 51 29
length(rsids)
Γ17 1348
head(rsids)
 [1] "rs111751804
[4] "rs2760321"
     "rs111751804" "rs114390380" "rs1320571"
                        "rs2760320"
                                          "rs116230480"
```

Using SeqArray to explore a .gds file (con't.)

```
# Look at alleles
alleles <- seqGetData(g, "allele")
length(alleles)
Γ17 1348
head(alleles)
[1] "T,C" "G,A" "G,A" "T,C" "G,C" "C,T"
# Look at allele counts
allele_counts <- segGetData(g, "annotation/info/AC")
length(allele_counts)
Γ17 1348
head(allele counts)
[1] 4 1 6 128 13 1
# Look at sample family IDs
sample_annot <- seqGetData(g, "sample.annotation/family")</pre>
str(sample annot)
 chr [1:90] "1328" "" "13291" "1328" "1340" ...
```

Using SeqArray to look at genotypes

Genotypes are stored in a 3D array - a little unwieldy

```
# Look at genotypes
genotypes <- seqGetData(g, "genotype")</pre>
str(genotypes)
 int [1:2, 1:90, 1:1348] NA NA NA NA O O NA NA NA NA ...
 - attr(*, "dimnames")=List of 3
  ..$ allele : NULL
  .. $ sample : NULL
  ..$ variant: NULL
dim(genotypes)
```

[1] 2 90 1348

Using SeqArray to look at genotypes (con't.)

Instead, extract genotypes with \$dosage:

```
# Now it's not 3D; look at first 10 samples and
# variants
genotypes <- seqGetData(g, "$dosage")</pre>
str(genotypes)
 int [1:90, 1:1348] NA NA 2 NA NA 2 2 2 2 2 2 ...
 - attr(*, "dimnames")=List of 2
 .. $ sample : NULL
 .. $ variant: NULL
genotypes[1:10, 1:10]
      variant
sample [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
   [1,]
         NA
             NA
       Γ2.1
   Гз.1
   [4,]
   ſ5.1
   Γ6.1
   [7,]
   [8.]
   ſ9.1
 [10,]
```

Subsetting a GDS file with seqArray

```
seqGetData(g, "sample.id")[10] # Get sample 10's ID
[1] "NA07346"
seqGetData(g, "variant.id")[5] # Get SNP 5's ID
[1] 5
seqGetData(g, "annotation/id")[5] # Get SNP 5's rsID
[1] "rs2760320"
seqGetData(g, "allele")[5] # Get REF, ALT alleles for the SNP
[1] "G,C"
seqGetData(g, "$dosage")[10, 5] # Get sample 10's genotype at SNP 5
[1] 2
```

Filtering a GDS file with seqArray

```
seqResetFilter(g) # How many samples/variants to start?
# of selected samples: 90
# of selected variants: 1,348
seqSetFilter(g, sample.sel = c(1, 10:14, 20)) # Select 7 samples
# of selected samples: 7
seqSetFilter(g, variant.sel = c(1, 5, 25, 32)) # Select variants
# of selected variants: 4
seqGetData(g, "$dosage") # Look at genotypes
     variant
sample [,1] [,2] [,3] [,4]
  Γ1.7 NA
 [7,] NA
seqResetFilter(g) # Back to 90 samples and 1348 variants
# of selected samples: 90
# of selected variants: 1.348
```

Applying user-defined functions with seqApply

Calculating allele frequencies two ways:

[5] 0.9269663 0.9943820

```
# Calculate allele frequencies 'manually'
CalcFreq <- function(x) {
    mean(x == 0, na.rm = TRUE)
}
af <- seqApply(gdsfile = g, var.name = "genotype",
    as.is = "double", margin = "by.variant", FUN = CalcFreq)
head(af)
[1] 0.9649123 0.9905660 0.9610390 0.1232877
[5] 0.9269663 0.9943820
# Do it again with built-in function (same
# result)
af2 <- segAlleleFreg(gdsfile = g)
head(af2)
[1] 0.9649123 0.9905660 0.9610390 0.1232877
```

SeqVarTools

warn.conflicts = FALSE)

\--+ DP [] *

library("SeqVarTools", quietly = TRUE, verbose = FALSE.

Expands on SeqArray for dealing with GDS sequencing data. (Examples that follow are from package vignette.)

```
vcffile <- seqExampleFileName("vcf")
gdsfile <- "./data/tmp.gds"
seqVCF2GDS(vcffile, gdsfile, verbose = FALSE)
gds <- seqOpen(gdsfile)
gds
Object of class "SeqVarGDSClass"
File: /Users/jonathanchernus/Documents/Teaching/2024f/HUGEN2071/lectures/live_lectures_github/HuGen2071-Lectures/28_genetics_data_in_R_gds/data/tmp.gds (163.0
+ []*
|--+ description [ ] *
|--+ sample.id { Str8 90 LZMA ra(34.7%), 257B } *
|--+ variant.id { Int32 1348 LZMA ra(16.7%), 905B } *
|--+ position { Int32 1348 LZMA_ra(64.4%), 3.4K } *
|--+ chromosome { Str8 1348 LZMA ra(4.39%), 157B } *
|--+ allele { Str8 1348 LZMA ra(16.6%), 901B } *
|--+ genotype [ ] *
| |--+ extra.index { Int32 3x0 LZMA_ra, 18B } *
| \--+ extra { Int16 0 LZMA_ra, 18B }
I--+ phase [ ]
| |--+ data { Bit1 90x1348 LZMA_ra(0.86%), 137B } *
| |--+ extra.index { Int32 3x0 LZMA_ra, 18B } *
I--+ annotation [ ]
| |--+ id | { Str8 1348 LZMA ra(38.3%), 5.5K } *
| |--+ qual | Float32 1348 LZMA ra(2.11%), 121B } *
| |--+ filter { Int32, factor 1348 LZMA_ra(2.11%), 121B } *
| |--+ info [ ]
| | |--+ AA | { Str8 1328 LZMA ra(22.1%), 593B } *
| | |--+ AC { Int32 1348 LZMA_ra(24.1%), 1.3K } *
  | |--+ AN { Int32 1348 LZMA_ra(19.6%), 1.0K } *
    |--+ DP { Int32 1348 LZMA_ra(47.7%), 2.5K } *
    |--+ HM2 { Bit1 1348 LZMA_ra(145.6%), 253B } *
    |--+ HM3 { Bit1 1348 LZMA_ra(145.6%), 253B } *
| | |--+ OR { Str8 1348 LZMA_ra(19.6%), 341B } *
    |--+ GP { Str8 1348 LZMA_ra(24.3%), 3.8K } *
 | \--+ BN | Int32 1348 LZMA ra(20.7%), 1.1K } *
| \--+ format [ ]
```

SeqVarTools (con't.)

```
head(refChar(gds)) # Look at REF alleles
[1] "T" "G" "G" "T" "G" "C"
head(altChar(gds)) # Alt alleles
[1] "C" "A" "A" "C" "C" "T"
# Is everything bi-allelic? Investigate
table(nAlleles(gds))
  2
multi.allelic <- which(nAlleles(gds) > 2)
altChar(gds)[multi.allelic]
[1] "T,CT" "T,AT"
altChar(gds, n = 1)[multi.allelic]
[1] "T" "T"
altChar(gds, n = 2)[multi.allelic]
[1] "CT" "AT"
# Which are SNVs us indels?
table(isSNV(gds))
FALSE TRUE
    2 1346
isSNV(gds)[multi.allelic]
```

SeqVarTools (con't.)

Looking at genotypes is easier:

```
geno <- getGenotype(gds)
dim(geno)
[1]
      90 1348
geno[1:10, 1:5]
         variant
sample
         1
  NA06984 NA
                NA "0/0" "1/0" "0/0"
  NA06985 NA
                NA
                      "0/0" "1/1" "0/0"
 NA06986 "0/0" "0/0" "0/0" "1/1" "0/0"
 NA06989 NA
                NA
                      "O/O" NA
                                  "0/0"
 NA06994 NA
                NA
                      "0/0" NA
                                  "0/0"
 NA07000 "0/0" "0/0" "0/0" "1/1" "1/0"
 NA07037 "0/0" "0/0" "0/0" "1/1" "0/0"
 NA07048 "0/0" "0/0" "0/0" "1/1" "0/0"
 NA07051 "0/0" "1/0" "0/0" "1/1" "0/0"
 NA07346 "0/0" "0/0" "0/0" "1/1" "0/0"
geno <- getGenotypeAlleles(gds)
geno[1:10, 1:5]
         variant
sample
  NA06984 NA
                NA
                      "G/G" "C/T" "G/G"
  NA06985 NA
                NA
                      "G/G" "C/C" "G/G"
  NA06986 "T/T" "G/G" "G/G" "C/C" "G/G"
 NA06989 NA
                NA
                      "G/G" NA
                                  "G/G"
```

SeqVarTools (con't.)

Some other functions:

Command	What it does
refDosage	Get matrix of dosage for REF allele
altDosage	Get matrix of dosage for ALT allele
variantInfo	Get data frame of variant info
hwe	Hardy-Weinberg equilibrium test
titv	Calculate transition/transversion ratio
missingGenotypeRate	Calculate missing genotype rate by variant or by sample
heterozygosity	Calculate heterozygosity (by variant/ or sample)
pca	Principal component analysis
mendelErr	Detect Mendelian errors
SegVarData	Combine GDS with annotation data
regression	Linear/logistic regression on variants

SeqVarTools examples

```
titv(gds) # Entire dataset
[1] 3.562712
titvs <- titv(gds, by.sample = TRUE) # For each sample
head(titvs)
[1] 4.352941 3.791667 3.439394 3.568966 3.750000
[6] 3.646154
hist(titvs)</pre>
```

Histogram of titvs

Closing gds files

- Use showfile.gds(closeall=TRUE, verbose=TRUE) to close any/all open gds files
- You must close a gds file before opening it a second time
- Using rm(list=ls()) will not close gds files
- Other functions in seqArray and seqVarTools can be used to close gds files, too

GDS files in GWASTools

GWASTools is an R package for cleaning GWAS data.

.gds files in this context can include

- Raw chip intensity data
- Genotype calls
- SNP annotation
- Sample annotation

GWASTools has special data formats and functions for streamlining the cleaning process and reformatting files (see the exercises accompanying this lecture).

GENESIS

In HUGEN 2072, you'll see GDS files can be used in the GENESIS package for

- Generation of principal components of ancestry: GENESIS::pcair
- Generation of kinship matrices: GENESIS::pcrelate
- Association testing, including mixed models: GENESIS::assocTestSingle

Further reading

Try running:

- browseVignettes("SeqArray")
- browseVignettes("SeqVarTools")
- browseVignettes("GENESIS")
- browseVignettes("GWASTools")
- browseVignettes("SNPRelate")