Dillard's Item Return Prediction

•••

Group 3 Wei Wang, Yumin Zhang, Jiayue Tian, Yejoon Han

Client Introduction

- American largest fashion retailers
- Founded in 1938
- 2020 revenue of \$6.34 billion

Background and Business Question

- Products may be returned to different stores at different times.
- Too much transactional data from various system databases.
- Complex compatibility between different databases.

We aim to identifying and categorizing the variables that may affect the return of a product to help our clients company operate better.

Database Acquisition

- Checked and selected important features for each dataset from MLDS PostgreSQL cloud server
- Extracted column names from the cursor description and set them as the columns of the Pandas DataFrame.

```
# TRNSACT
cursor = connection.cursor()
cursor.execute('''SELECT "SKU", "STORE", "TRANNUM", "SALEDATE", "QUANTITY", "STYPE", "ORGPRICE", "SPRICE", "AMT" FROM group_3.trnsact TABLESAMPLE SYSTEM(10);''')
result = cursor.fetchall()
trnsact = pd.DataFrame(result)

column_names = [desc[0] for desc in cursor.description]
trnsact.columns = column_names
trnsact
```

EDA

Counted total discount items for each month and versus with total items amount

```
# Total discount items count for each month
monthlydiscount = trnsact copy['ORGPRICE'] != trnsact copy['SPRICE']].groupby(['SaleYear', 'SaleMonth']).SKU.count()
monthlydiscount = monthlydiscount.reset index().rename(columns={'SKU': 'discount item num'})
# Total items count for each month
monthlysales = trnsact_copy.groupby(['SaleYear', 'SaleMonth']).SKU.count()
monthlysales = monthlysales.reset index().rename(columns={'SKU': 'total item_num'})
# Discount percentage
discount percentage = pd.merge(monthlydiscount, monthlysales, on = ['SaleYear', 'SaleMonth'], how = 'inner')
discount percentage['percentage'] = discount percentage['discount item num'] / discount percentage['total item num']
discount_percentage
    SaleYear SaleMonth discount_item_num total_item_num percentage
 0
        2004
                      8
                                                   770358
                                                              0.531239
                                    409244
        2004
                      9
                                    500144
                                                   834146
                                                              0.599588
        2004
 2
                     10
                                    271798
                                                   776954
                                                              0.349825
```

• Checked if retail price is equal to orgprice and calculated the revenue for the transactions over the date

Data Cleaning and Feature Engineering

- Imputed missing value
- Created markup percentage and number transactions columns

```
# Drop rows that with NA on COST and RETAIL
merged_df.dropna(subset=['COST', 'RETAIL'], inplace=True)
merged_df.head()
```

```
# Create markup percentage columns based on SPRICE and COST
# the cost price too low means item sucks, and it might increase rate to be returned?
merged_df['Markup_Percentage'] = (merged_df['SPRICE'] - merged_df['COST']) / merged_df['COST']

# See total number of transactions per SKU, STORE
# maybe more merchandise defects exist in smaller stores?
# Since 'AMT' represents the total amount of the transaction, counting the occurrences essentially
merged_df['Num_Transactions'] = merged_df.groupby(['SKU', 'STORE'])['AMT'].transform('count')
```

- Achieved log transformation of numerical columns
- Plot a histogram of the variables to better see the correlation.

Random Forest Classification Model

Highest accuracy at RF model with n-estimators= 10

```
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred,average="binary", pos_label='P')
recall = recall_score(y_test, y_pred, average="binary", pos_label='P')
f1score = f1_score(y_test, y_pred,average="binary", pos_label='P')
Accuracy = 0.7993818506409152
Precision = 0.9369829378743069
Recall = 0.8389752118884789
F1 Score = 0.8852747559890259
```

ROI and Conclusion

Main information about t	he Data	Confusion Matrix		
Total Transactions	11230902		Actual Pos	Actual Neg
pct discount	44.47%	Predict Pos	4994382.11	9 1247303.976
pct no discount	55.53%	Predict Neg		0 4989215.904
Discounted Transactions	4994382.119			
NoDiscount Transactions	6236519.881	Unit Cost/Gain Analysis		
Avg NoDiscount Sell	\$ 31.29		Actual Pos	Actual Neg
Avg Discount Sell	\$ 19.02	Predict Pos	\$ 0.10	(0.09)
Avg Discount Sell (NoDis)	\$ 42.00	Predict Neg	\$ (0.41	0.14
Year	2			
		Absolute Cost/Gain Analysis		
Main information about the Model			Actual Pos	Actual Neg
TPR	1	Predict Pos	\$ 518,416.86	\$ (117,084.42)
FPR	0.2	Predict Neg	\$ -	\$ 702,506.55
Business Assumption	on	ROL	Analysis	
Increase Production Rate	0.015	Retail Gain	\$ 1,103,838.99	
Decrease Production Rate	0.01	Cost of Investment	\$ 963,400.00)
Production cost (% to Sell)	0.7	ROI	159	%
% sell discount products without discount	0.05			
Model Infrastructure Cost (annual)	\$ 1,000.00			
Data Support Cost (annual)	\$ 3,200.00			
Data Engineer Salary (annual)	\$ 100,000.00			
Data Scientist Salary (annual)	\$ 125,500.00			
Deployment Cost (annual)	\$ 1,000.00			
Number of Data Scientists	3			
Number of Data Engineers	1			

- 44.7% of the products were discounted resulting in unimpressive gain.
- Discounted items that last too long can lead to a 28% decline in long-term benefits.
- 15% ROI gain at 0.57 sensitivity.