FC2018: Exponential smoothing

Samuel Orso

2018-09-25

Slides generously provided by Rob J Hyndman Based on Chapter 7 of *Forecasting: Principles and Practice* by Rob J Hyndman and George Athanasopoulos

Outline

- Simple exponential smoothing
- Trend methods
- Seasonal methods
- Taxonomy of exponential smoothing methods
- Innovations state space models
- 6 ETS in R

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

Simple methods

Time series y_1, y_2, \ldots, y_T .

Random walk forecasts

$$\hat{y}_{T+h|T} = y_T$$

Average forecasts

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

- Want something in between that weights most recent data more highly.
- Simple exponential smoothing uses a weighted moving average with weights that decrease exponentially.

Simple Exponential Smoothing

Forecast equation

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

where $0 \le \alpha \le 1$.

Simple Exponential Smoothing

Forecast equation

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

where $0 \le \alpha \le 1$.

Observation	Weights ass $\alpha = 0.2$	igned to obse $lpha=$ 0.4	rvations for: $\alpha = 0.6$	$\alpha = 0.8$
Ут	0.2	0.4	0.6	0.8
y_{T-1}	0.16	0.24	0.24	0.16
y_{T-2}	0.128	0.144	0.096	0.032
<i>y</i> _{T-3}	0.1024	0.0864	0.0384	0.0064
y_{T-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
<i>YT</i> -5	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$

Samuel Orso FC2018: Exponential smoothing

Simple Exponential Smoothing

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

- ℓ_t is the level (or the smoothed value) of the series at time t.
- $\hat{y}_{t+1|t} = \alpha y_t + (1 \alpha)\hat{y}_{t|t-1}$ Iterate to get exponentially weighted moving average form.

Weighted average form

$$\hat{y}_{T+1|T} = \sum_{i=0}^{T-1} \alpha (1-\alpha)^{i} y_{T-i} + (1-\alpha)^{T} \ell_0$$

Samuel Orso

Optimisation

- Need to choose value for α and ℓ_0
- Similarly to regression we choose α and ℓ_0 by minimising SSE:

SSE =
$$\sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$
.

 Unlike regression there is no closed form solution use numerical optimization.

Example: Oil production

```
oildata <- window(oil, start=1996)
# Estimate parameters
fc <- ses(oildata, h=5)
summarv(fc[["model"]])
## Simple exponential smoothing
##
## Call:
##
    ses(y = oildata, h = 5)
##
     Smoothing parameters:
##
       alpha = 0.8339
##
##
##
     Initial states:
##
     l = 446.5868
##
##
     sigma: 29.83
##
##
     ATC ATCC
                 BIC
```

Example: Oil production

Year	Time	Observation	Level	Forecast
	t	Уt	ℓ_t	$\hat{y}_{t+1 t}$
1995	0		446.59	
1996	1	445.36	445.57	446.59
1997	2	453.20	451.93	445.57
1998	3	454.41	454.00	451.93
1999	4	422.38	427.63	454.00
2000	5	456.04	451.32	427.63
2001	6	440.39	442.20	451.32
2002	7	425.19	428.02	442.20
2003	8	486.21	476.54	428.02
2004	9	500.43	496.46	476.54
2005	10	521.28	517.15	496.46
2006	11	508.95	510.31	517.15
2007	12	488.89	492.45	510.31
2008	13	509.87	506.98	492.45
2009	14	456.72	465.07	506.98
2010	15	473.82	472.36	465.07
2011	16	525.95	517.05	472.36
2012	17	549.83	544.39	517.05
2013	18	542.34	542.68	544.39
	h			$\hat{y}_{T+h T}$
2014	1			542.68
2015	2			542.68
2016	3			542.68

Example: Oil production

```
autoplot(fc) +
   autolayer(fitted(fc), series="Fitted") +
   vlab("Oil (millions of tonnes)") + xlab("Year")
      Forecasts from Simple exponential smoothing
   600 -
Oil (millions of tonnes)
                                                                          level
                                                                              80
   550 -
                                                                              95
   500 -
                                                                          series
                                                                              Fitted
   450 -
    1995
                   2000
                                  2005
                                                 2010
                                                                2015
```

Vaar

Outline

- Simple exponential smoothing
- Trend methods
- Seasonal methods
- Taxonomy of exponential smoothing methods
- Innovations state space models
- 6 ETS in R

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1},$

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1},$

- Two smoothing parameters α and β^* (0 $\leq \alpha, \beta^* \leq 1$).
- ℓ_t level: weighted average between y_t and one-step ahead forecast for time t, $(\ell_{t-1} + b_{t-1} = \hat{y}_{t|t-1})$
- b_t slope: weighted average of $(\ell_t \ell_{t-1})$ and b_{t-1} , current and previous estimate of slope.
- Choose $\alpha, \beta^*, \ell_0, b_0$ to minimise SSE.

Holt's method in R

```
window(ausair, start=1990, end=2004) %>%
holt(h=5, PI=FALSE) %>%
autoplot()
```

Forecasts from Holt's method

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Damped trend method

Component form

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- Damping parameter $0 < \phi < 1$.
- If $\phi = 1$, identical to Holt's linear trend.
- As $h \to \infty$, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.
- Short-run forecasts trended, long-run forecasts constant.

Example: Air passengers

```
window(ausair, start=1990, end=2004) %>%
holt(damped=TRUE, h=5, PI=FALSE) %>%
autoplot()
```

Forecasts from Damped Holt's method

Example: Sheep in Asia

```
livestock2 <- window(livestock, start=1970,
                       end=2000)
fit1 <- ses(livestock2)</pre>
fit2 <- holt(livestock2)</pre>
fit3 <- holt(livestock2, damped = TRUE)</pre>
accuracy(fit1, livestock)
accuracy(fit2, livestock)
accuracy(fit3, livestock)
```

Example: Sheep in Asia

	SES	Linear trend	Damped trend
$\overline{\alpha}$	1.00	0.98	0.97
eta^*		0.00	0.00
ϕ			0.98
ℓ_0	263.90	251.46	251.89
b_0		4.99	6.29
Training RMSE	14.77	13.98	14.00
Test RMSE	25.46	11.88	14.73
Test MAE	20.38	10.71	13.30
Test MAPE	4.60	2.54	3.07
Test MASE	2.26	1.19	1.48

Samuel Orso

Example: Sheep in Asia (con't)

Your turn

eggs contains the price of a dozen eggs in the United States from 1900–1993

- Use SES and Holt's method (with and without damping) to forecast "future" data. [Hint: use h=100 so you can clearly see the differences between the options when plotting the forecasts.]
- Which method gives the best training RMSE?
- Are these RMSE values comparable?
- On the residuals from the best fitting method look like white noise?

Outline

- Simple exponential smoothing
- Trend methods
- Seasonal methods
- Taxonomy of exponential smoothing methods
- Innovations state space models
- ETS in R

Holt-Winters additive method

Holt and Winters extended Holt's method to capture seasonality.

Component form

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-m(k+1)}
\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}
s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m},$$

- k = integer part of (h-1)/m. Ensures estimates from the final year are used for forecasting.
- Parameters: $0 \le \alpha \le 1$, $0 \le \beta^* \le 1$, $0 \le \gamma < 1 \alpha$ and m = period of seasonality (e.g. m = 4 for quarterly data).

Example: Visitor Nights

```
aust <- window(austourists,start=2005)</pre>
fit1 <- hw(aust,seasonal="additive")</pre>
fit2 <- hw(aust,seasonal="multiplicative")</pre>
```


2016

2008

Estimated components

Samuel Orso

Your turn

Apply Holt-Winters' multiplicative method to the gas data.

- Why is multiplicative seasonality necessary here?
- 2 Experiment with making the trend damped.
- Oheck that the residuals from the best method look like white noise.

Outline

- Simple exponential smoothing
- Trend methods
- Seasonal methods
- Taxonomy of exponential smoothing methods
- Innovations state space models
- **6** ETS in R

Exponential smoothing methods

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	(N,N)	(N,A)	(N,M)
Α	(Additive)	(A,N)	(A,A)	(A,M)
A_{d}	(Additive damped)	(A_d,N)	$\left(A_{d},A\right)$	(A_d,M)

(N,N): Simple exponential smoothing

(A,N): Holt's linear method

(A_d,N): Additive damped trend method (A,A): Additive Holt-Winters' method

(A,M): Multiplicative Holt-Winters' method

(A_d,M): Damped multiplicative Holt-Winters' method

There are also multiplicative trend methods (not recommended).

Samuel Orso FC2018: Exponential smoothing 2018-09-25 26 / 51

R functions

- Simple exponential smoothing: no trend. ses(y)
- Holt's method: linear trend. holt(y)
- Damped trend method. holt(y, damped=TRUE)
- Holt-Winters methods
 hw(y, damped=TRUE, seasonal="additive")
 hw(y, damped=FALSE, seasonal="additive")
 hw(y, damped=TRUE, seasonal="multiplicative")
 hw(y, damped=FALSE, seasonal="multiplicative")
- Combination of no trend with seasonality not possible using these functions.

Outline

- Simple exponential smoothing
- Trend methods
- Seasonal methods
- Taxonomy of exponential smoothing methods
- Innovations state space models
- **6** ETS in R

Methods v Models

Exponential smoothing methods

• Algorithms that return point forecasts.

Methods v Models

Exponential smoothing methods

Algorithms that return point forecasts.

Innovations state space models

- Generate same point forecasts but can also generate forecast intervals.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

ETS models

- Each model has an observation equation and transition equations, one for each state (level, trend, seasonal), i.e., state space models.
- Two models for each method: one with additive and one with multiplicative errors, i.e., in total 18 models.
- ETS(Error, Trend, Seasonal):
 - Error = $\{A,M\}$
 - Trend = $\{N,A,A_d\}$
 - Seasonal = $\{N,A,M\}$.

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d , N	A_d , A	A_d , M

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d, N	A_d , A	A_d , M

General notation E T S : Exponen Tial Smoothing

Error Trend Seasonal

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d, N	A_d , A	A_d , M

General notation Exponen Tial Smoothing

Error Trend Seasonal

Examples: Error I rend Seasonal A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

M.A.M: Multiplicative Holt-Winters' method with multiplicative errors

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d, N	A_d , A	A_d , M

General notation Exponen Tial Smoothing

Error Trend Seasonal Examples: A,N,N:

Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

M,A,M: Multiplicative Holt-Winters' method with multiplicative errors

There are 18 separate models in the ETS framework

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters initial states estimated in the model.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where L is the likelihood and k is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

Samuel Orso

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data.
 Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Outline

- Simple exponential smoothing
- Trend methods
- Seasonal methods
- Taxonomy of exponential smoothing methods
- 5 Innovations state space models
- 6 ETS in R

```
ets(h02)
## ETS(M,Ad,M)
##
## Call:
    ets(y = h02)
##
##
     Smoothing parameters:
##
       alpha = 0.1953
       beta = 1e-04
##
##
       gamma = 1e-04
##
       phi
           = 0.9798
##
##
     Initial states:
##
      l = 0.3945
##
       b = 0.0085
##
       s = 0.874 \ 0.8197 \ 0.7644 \ 0.7693 \ 0.6941 \ 1.284
##
               1.326 1.177 1.162 1.095 1.042 0.9924
##
##
     sigma: 0.0676
##
              AICc
                         BIC
##
       AIC
   -122.91 -119.21 -63.18
```

```
ets(h02, model="AAA", damped=FALSE)
## ETS(A,A,A)
##
## Call:
   ets(v = h02, model = "AAA", damped = FALSE)
##
##
     Smoothing parameters:
       alpha = 0.1672
##
    beta = 0.0084
##
##
     gamma = 1e-04
##
##
     Initial states:
##
     1 = 0.3895
##
    b = 0.0116
    s = -0.1058 - 0.1359 - 0.1875 - 0.1803 - 0.2414 0.2097
##
##
              0.2493 0.1426 0.1411 0.0823 0.0293 -0.0033
##
##
     sigma: 0.0642
##
##
      AIC AICc
                    BIC
   -18.26 -14.97 38.14
```

The ets() function

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class "ets".

ets objects

- Methods: coef(), autoplot(), plot(), summary(), residuals(), fitted(), simulate() and forecast()
- autoplot() shows time plots of the original time series along with the extracted components (level, growth and seasonal).

h02 %>% ets() %>% forecast() %>% autoplot() Forecasts from ETS(M,Ad,M) 1.5 -1.2 level 80 0.9 -95 0.6 -

0.3 -

Training set -0.006447 0.0616 0.04949 -1.258 7.142 0.8164 0

The ets() function

ets() function also allows refitting model to new data set.

```
train \leftarrow window(h02, end=c(2004,12))
test <- window(h02, start=2005)
fit1 <- ets(train)
fit2 <- ets(test, model = fit1)</pre>
accuracy(fit2)
##
                    ME
                          RMSE MAE
                                          MPE MAPE MASE
                                                             ACF1
## Training set 0.00144 0.05406 0.04314 -0.4332 5.218 0.6785 -0.4121
accuracy(forecast(fit1,10), test)
##
                      ME
                            RMSE
                                     MAE
                                              MPE MAPE MASE
                                                                  ACF1
## Training set 0.003427 0.04453 0.03290 0.1589 4.364 0.558 0.02236
## Test set
               -0.077245 0.09158 0.07955 -10.0413 10.252 1.349 -0.04361
               Theil's U
##
## Training set
                      NA
```

Test set 0.6333

```
ets(y, model = "ZZZ", damped = NULL,
  additive.only = FALSE,
  lambda = NULL, biasadj = FALSE,
  lower = c(rep(1e-04, 3), 0.8),
  upper = c(rep(0.9999, 3), 0.98),
  opt.crit = c("lik", "amse", "mse", "sigma", "mae"),
  nmse = 3.
  bounds = c("both", "usual", "admissible"),
  ic = c("aicc", "aic", "bic"),
  restrict = TRUE,
  allow.multiplicative.trend = FALSE, ...)
```

- y
 The time series to be forecast.
- model
 use the ETS classification and notation: "N" for none,
 "A" for additive, "M" for multiplicative, or "Z" for
 automatic selection. Default ZZZ all components are
 selected using the information criterion.
- damped
- If damped=TRUE, then a damped trend will be used (either A_d or M_d).
- damped=FALSE, then a non-damped trend will used.
- If damped=NULL (default), then either a damped or a non-damped trend will be selected according to the information criterion chosen.

- additive.only
 Only models with additive components will be considered if additive.only=TRUE. Otherwise all models will be considered.
- lambda
 Box-Cox transformation parameter. It will be ignored if
 lambda=NULL (default). Otherwise, the time series will be
 transformed before the model is estimated. When lambda
 is not NULL, additive.only is set to TRUE.
- biadadj
 Uses bias-adjustment when undoing Box-Cox transformation for fitted values.

- lower, upper bounds for the parameter estimates of α , β^* , γ^* and ϕ .
- opt.crit=lik (default) optimisation criterion used for estimation.
- bounds Constraints on the parameters.
 - usual region "bounds=usual";
 - admissible region "bounds=admissible";
 - "bounds=both" (default) requires the parameters to satisfy both sets of constraints.
- ic=aicc (default) information criterion to be used in selecting models.
- restrict=TRUE (default) models that cause numerical problems not considered in model selection.
- allow.multiplicative.trend allows models with a multiplicative trend.

The forecast() function in R

```
forecast(object,
  h=ifelse(object$m>1, 2*object$m, 10),
  level=c(80,95), fan=FALSE,
  simulate=FALSE, bootstrap=FALSE,
  npaths=5000, PI=TRUE,
  lambda=object$lambda, biasadj=FALSE,...)
```

- object: the object returned by the ets() function.
- h: the number of periods to be forecast.
- level: the confidence level for the prediction intervals.
- fan: if fan=TRUE, suitable for fan plots.

The forecast() function in R

- simulate: If TRUE, prediction intervals generated via simulation rather than analytic formulae. Even if FALSE simulation will be used if no algebraic formulae exist.
- bootstrap: If bootstrap=TRUE and simulate=TRUE, then simulated prediction intervals use re-sampled errors rather than normally distributed errors.
- npaths: The number of sample paths used in computing simulated prediction intervals.
- PI: If PI=TRUE, then prediction intervals are produced; otherwise only point forecasts are calculated. If PI=FALSE, then level, fan, simulate, bootstrap and npaths are all ignored.

The forecast() function in R

- lambda: The Box-Cox transformation parameter.
 Ignored if lambda=NULL. Otherwise, forecasts are back-transformed via inverse Box-Cox transformation.
- biasadj: Apply bias adjustment after Box-Cox?

Your turn

• Use ets() on some of these series:

```
bicoal, chicken, dole, usdeaths, bricksq, lynx, ibmclose, eggs, bricksq, ausbeer
```

- Does it always give good forecasts?
- Find an example where it does not work well. Can you figure out why?