Contents

1	The	Fundamental Theorem of Arithmetic	3				
	1.1	The series of reciprocals of the primes	3				
2	Arithmetical Functions and Dirichlet Multiplication						
	2.1	Mobius function	7				
	2.2	The Euler totient function	7				
	2.3	The Dirichlet product	8				
	2.4	The Mangoldt function Λ	9				
	2.5	Multiplicative functions	9				
	2.6	Liouville's function λ	10				
	2.7	The divisor function σ_{α}	10				
	2.8	Generalized convolution	10				
	2.9	Formal power series	11				
	2.10	The Selberg theorem	11				
3	Averages of Arithmetical Functions 1						
	3.1	Asymptotic equality of function	13				
	3.2	Euler's summation formula					
	3.3	Some elementary asymptotic formula	13				
	3.4	The average order of $d(n)$	14				
	3.5	The average order of $\sigma_{\alpha}(n)$					
	3.6	The average order $\phi(n)$	14				
	3.7	An application	15				
	3.8	The average order of $\mu(n)$ and $\Lambda(n)$	15				
	3.9	The partial sums of Dirichlet product	15				
	3.10	Applications to $\mu(n)$ and $\Lambda(n)$					
	3 11	Another Identity for the partial sums of a Dirichlet product	16				

Chapter 1

The Fundamental Theorem of Arithmetic

induction, well-ordering principle, divisibility, gcd is commutative, associative, and distributive, relatively prime, primes, fundamental theorem of arithmetic.

1.1 The series of reciprocals of the primes

Theorem 1.1. The infinite series $\sum \frac{1}{p_n}$ diverges.

Proof. Suppose the sum converges instead and let k be such that

$$\sum_{n=k+1}^{\infty} \frac{1}{p_n} \le \frac{1}{2}$$

Let $Q = p_1 \dots p_k$, then for all $r \ge 1$,

$$\sum_{n=1}^{r} \frac{1}{1+nQ} \le \sum_{t=1}^{\infty} \left(\sum_{m=k+1}^{\infty} \frac{1}{p_m} \right)^t$$
$$\le \sum_{t=1}^{\infty} \left(\frac{1}{2} \right)^t$$
$$= 1$$

By allowing $r \to \infty$, we get

$$\sum_{n=1}^{\infty} \frac{1}{1 + nQ} \le 1$$

However, this is a constradiction as the sum diverges as

$$\sum_{n=1}^{\infty} \frac{1}{1 + nQ} \le \sum_{n=1}^{\infty} \frac{1}{Q + nQ} \le \frac{1}{Q} \sum_{n=2}^{\infty} \frac{1}{n}$$

Therefore, $\sum \frac{1}{p_n}$ must diverge.

Euclidean algorithm, division algorithm, gcd algorithm.

Exercises

1. If (a, b) = 1 and if $c \mid a$ and $d \mid b$, then (c, d) = 1.

Solution. Let e = (c, d), since $e \mid c$, then $e \mid a$ and similarly, $e \mid b$. Therefore, $e \mid (a, b)$ which means e = 1.

2. If (a, b) = (a, c) = 1, then (a, bc) = 1.

Solution. Let d = (a, bc) and e = (b, d). Then, $e \mid d$ and hence $e \mid a$, as a result $e \mid (a, b)$ which means e = 1. Note that, $d \mid bc$ but (b, d) = 1 thus, $d \mid c$. Since $d \mid a$, then $d \mid (a, c)$ and hence d = 1.

3. If (a, c) = 1, then (a, bc) = (a, b).

Solution. Let d = (a, bc) and e = (c, d). Then, $e \mid d$ and hence $e \mid a$, as a result $e \mid (a, c)$ which means e = 1. Note that, $d \mid bc$ but (c, d) = 1 thus, $d \mid b$. Since $d \mid a$, then $d \mid (a, b)$. Moreover, $(a, b) \mid d$ since $(a, b) \mid a$ and $(a, b) \mid bc$. Therefore, d = (a, b).

4. If $m \neq n$ compute the $\gcd(a^{2^m} + 1, a^{2^n} + 1)$ in terms of a.

Solution. WLOG assume n < m and note that

$$a^{2^m} - 1 = a^{2^{m-n} \cdot 2^n} - 1 = (a^{2^n} - 1)(a^{2^n} + 1)(a^{2 \cdot 2^n} + 1) \dots (a^{2^{m-n-1} \cdot 2^n} + 1)$$

and hence

$$a^{2^n} + 1 \mid a^{2^m} - 1$$

Therfore,

$$(a^{2^n} + 1, a^{2^m} + 1) = (2, a^{2^n} + 1) = \begin{cases} 1 & a \text{ is even} \\ 2 & a \text{ is odd} \end{cases}$$

5. If a > 1, then $(a^m - 1, a^n - 1) = a^{(m,n)} - 1$.

Solution. If m = n, then the result hold obviously. Suppose n < m and note that

$$a^{m} - 1 = (a^{m-n})(a^{n} - 1) + (a^{m-n} - 1)$$

and therefore, $(a^m - 1, a^n - 1) = (a^{m-n} - 1, a^n)$. By applying the Euclidean algorithm we arrive at the conclusion.

6. Given n > 0, let S be a set whose elements are positive integers $\leq 2n$ such that if a and b are in S and $a \neq b$, then $a \nmid b$. What is the maximum number of integers that S can contain?

Solution. Note that S can not have more than n elements. To see this, consider the sets $\{m2^k \mid k \geq 0, m2^k \leq 2n\}$ for $m = 1, 3, \ldots, 2n - 1$. There are n - 1 such sets and they partition the set $\{1, 2, \ldots, 2n\}$. No two elements of S can come from the same set, and as a result $|S| \leq n - 1$ by pigeonhole principle. However, note that $S = \{n + 1, n + 2, \ldots, 2n\}$ satisfies the conditions and has exactly n - 1 elements. Therefore, the maximum of n - 1 elements is attainable for all n > 0.

7. If n > 1 prove that the sum $\sum_{k=1}^{n} \frac{1}{k}$ is not an integer. Also show that for any signing of the sum $\sum_{k=1}^{n} (-1)^{a_k} \frac{1}{k}$ is not an integer.

Solution. Let p be the largest prime less than or equal to n. Let $r, s \in \mathbb{Z}$ be such that $s \neq 0$ and (r, s) = 1.

$$\frac{r}{s} = \sum_{\substack{k=1\\k \neq p}}^{n} (-1)^{a_k} \frac{1}{k}$$

We claims that $p \nmid s$. For the sake of contradiction suppose there is an integer q such that s = pq. Then,

$$r = s \left(\sum_{\substack{k=1\\k \neq p}}^{n} (-1)^{a_k} \frac{1}{k} \right)$$
$$= \sum_{\substack{k=1\\k \neq p}}^{n} (-1)^{a_k} \frac{pq}{k}$$

Since (p,k)=1 for all $k\leq n$ and $k\neq p$, then it must be the case that the sum

$$\sum_{\substack{k=1\\k\neq p}}^{n} (-1)^{a_k} \frac{q}{k}$$

is an integer. Therefore, we have shown that there is integer t such that r = pt, which contradicts our assumption that (r, s) = 1. Thus, p does not divide s. To conclude, consider the sum

$$\frac{r}{s} + \frac{(-1)^{a_p}}{p} = \frac{pr + (-1)^{a_p}s}{ps}$$

which can not be integer as $p \nmid s$.

 \triangleright

Chapter 2

Arithmetical Functions and Dirichlet Multiplication

Definition: A function $f: \mathbb{N} \to \mathbb{C}$ is an arithmetical function.

2.1 Mobius function

The Mobius function μ , is defined as $\mu(1)=1$ and for n>1 if $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$

$$\mu(n) = \begin{cases} (-1)^k & \alpha_1 = \dots = \alpha_k = 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.1. If $n \geq 1$,

$$\sum_{d|n} \mu(d) = \left\lfloor \frac{1}{n} \right\rfloor = \begin{cases} 1 & n = 1 \\ 0 & \text{otherwise} \end{cases}$$

2.2 The Euler totient function

The Euler totient function ϕ is defined as

$$\phi(n) = \sum_{k=1}^{n} 1 = \left| \left\{ 1 \le k \le n \, \middle| \, (k, n) = 1 \right\} \right|$$

Theorem 2.2. If $n \ge 1$,

$$\sum_{d|n} \phi(d) = n$$

Theorem 2.3. If $n \ge 1$,

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

2.2.1 The product formular for $\phi(n)$

Theorem 2.4. For any $n \geq 1$,

$$\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

Corollary 2.5.

- 1. $\phi(p^{\alpha}) = (p-1)p^{\alpha-1}$.
- 2. $\phi(mn) = \phi(m)\phi(n)\frac{d}{\phi(d)}$ where d = (m, n).
- 3. If $a \mid b$, then $\phi(a) \mid \phi(b)$.
- 4. $\phi(n)$ is even for $n \geq 3$. Moreover, if n has r distinct odd prime factos, then $2^r \mid \phi(n)$.

2.3 The Dirichlet product

Definition: Let f and g be two arithmetical functions, their **Dirichlet product** is defined as

$$(f * g)(n) = \sum_{d|n} f(d)g\left(\frac{n}{d}\right)$$

Then, we can write $\phi = \mu * N$ where N(n) = n.

Theorem 2.6.

- 1. f * g = g * f.
- 2. (f * q) * k = f * (q * k).

Definition: The identity function, $I(n) = \lfloor \frac{1}{n} \rfloor$.

Theorem 2.7. For any arithmetical function f, I * f = f * I = f.

Theorem 2.8. If f is an arithmetical function with $f(1) \neq 0$, there is a unique arithmetical function f^{-1} , called the Dirichlet inverse of f such that

$$f * f^{-1} = f^{-1} * f = I$$

Moreover, f^{-1} is given by $f^{-1}(1) = \frac{1}{f(1)}$ and for n > 1

$$f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d < n}} f\left(\frac{n}{d}\right) f^{-1}(d)$$

Remark 1. The set of all arithmetical functions f with $f(1) \neq 0$ is an Abelian group under Dirichlet multiplication.

Proposition 2.9. $(f * g)^{-1} = f^{-1} * g^{-1}$.

Definition: The unit function u(n) = 1 for all n. Since $\sum_{d|n} \mu(d) = I(n)$, then $\mu * u = I$ and thus by uniqueness of inverse $\mu^{-1} = u$.

Theorem 2.10 (Mobius inversion formula). If

$$f(n) = \sum_{d|n} g(n)$$

then,

$$g(n) = \sum_{d|n} f(d)\mu\left(\frac{n}{d}\right) \tag{2.1}$$

Proof. Since f = g * u, then $g = f * u^{-1} = f * \mu$.

2.4 The Mangoldt function Λ

Definition: For every integer $n \geq 1$, we define

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^m \text{ for some prime } p \text{ and } m \ge 1\\ 0 & \text{otherwise} \end{cases}$$

Theorem 2.11. For $n \geq 1$,

$$\log(n) = \sum_{d|n} \Lambda(n)$$

and

$$\Lambda(n) = \sum_{d|n} \mu(d) \log\left(\frac{n}{d}\right) = -\sum_{d|n} \mu(d) \log(d)$$

2.5 Multiplicative functions

Definition: An arithmetical function f is **multiplicative** if $f \not\equiv 0$ and

$$f(mn) = f(m)f(n)$$

whenver (m, n) = 1. The function f is said to be **completely multiplicative** if for all m, n

$$f(mn) = f(m)f(n)$$

Remark 2. Multiplicative functions for a subgroup under *.

Proposition 2.12. If f is multiplicative, then f(1) = 1.

Theorem 2.13. Given an arithmetical function f with f(1) = 1

- 1. f is multiplicative if and only if $f(\prod p_i^{\alpha_i}) = \prod f(p_i^{\alpha_i})$
- 2. If f is multiplicative, then f is completely multiplicative if $f(p^{\alpha}) = (f(p))^{\alpha}$.

Theorem 2.14. If f and g are both multiplicative, then f * g is multiplicative. If g and f * g are both multiplicative, then f is multiplicative.

2.5.1 Inverse of completely multiplicative functions

Theorem 2.15. Let f be a multiplicative function. Then, f is completely multiplicative if and only if

$$f^{-1}(n) = \mu(n)f(n)$$

Remark 3. Note that $N = \phi * u$ and $\phi = N * \mu$ therefore, $\phi^{-1} = \mu^{-1} * N^{-1} = u * N^{-1}$. Since N is completely multiplicative, $\phi^{-1} = u * \mu N$. That is,

$$\phi^{-1}(n) = \sum_{d|n} d\mu(d)$$

Theorem 2.16. If f is multiplicative,

$$\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p))$$

2.6 Liouville's function λ

Definition: The Liouville function λ is defined as $\lambda(1) = 1$ and if $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, then

$$\lambda(n) = (-1)^{\alpha_1 + \dots + \alpha_k}$$

and also $\lambda^{-1}(n) = |\mu(n)|$.

2.7 The divisor function σ_{α}

Definition: For all $\alpha \in \mathbb{C}$, $\sigma_{\alpha}(n) = \sum_{d|n} d^{\alpha} = u \times N^{\alpha}$

Proposition 2.17. The divisor function σ_{α} is multiplicative. Therefore,

$$\sigma_{\alpha}(p^{k}) = 1 + p^{\alpha} + \dots + p^{k\alpha} = \begin{cases} \frac{p^{(k+1)\alpha} - 1}{p^{\alpha} - 1} & \alpha \neq 0\\ k + 1 & \alpha = 0 \end{cases}$$

Theorem 2.18. For $n \ge 1$, we have

$$\sigma_{\alpha}^{-1}(n) = \sum_{d|n} d^{\alpha} \mu(d) \mu\left(\frac{n}{d}\right)$$

2.8 Generalized convolution

Let $F: [0, \infty) \to \mathbb{C}$ such that F(x) = 0 for 0 < x < 1. Let f be an arithmetical function

$$f \circ F(x) = \sum_{n \le x} f(n) F\left(\frac{x}{n}\right)$$

is a function such that $f \circ F(x) = 0$ for 0 < x < 1 and defined on $]0, \infty[$.

Remark 4. In general, \circ is not commutative nor associative.

Theorem 2.19. Let f and q be two arithmetical functions

$$f \circ (g \circ F) = (f * g) \circ F$$

Theorem 2.20 (Inverse formula). Let f have inverse f^{-1} , then the equation

$$G(x) = \sum_{n \le x} f(x) F\left(\frac{x}{n}\right)$$

implies

$$F(x) = \sum_{n \le x} f^{-1}(x) G\left(\frac{x}{n}\right)$$

Theorem 2.21 (Generalized Mobius inversion). Let f be a completely multiplicative function

$$G(x) = \sum_{n < x} f(n) F\left(\frac{x}{n}\right) \iff F(x) = \sum_{n < x} \mu(n) f(n) G\left(\frac{x}{n}\right)$$

2.9 Formal power series

Definition of formal power series as usual with equality, sum, and multiplication. Therefore, formal power series form a ring with 0 and 1. If the leading coefficient is non-zero, then the formal power series is invertible.

Definition: Let f be an arithmetical function and p be a prime

$$f_p(x) = \sum_{n=0}^{\infty} f(p^n) x^n$$

is the Bell series of f modulo p.

Theorem 2.22. If f and g are multiplicative, then f = g if and only if $f_p = g_p$ for all p.

Example 2.1.

$$\mu_p(x) = 1 - x$$
 $I_p(x) = 1$ $\lambda_p(x) = \frac{1}{1 + x}$ $\phi_p(x) = \frac{1 - x}{1 - px}$ $u_p(x) = \frac{1}{1 - x}$ $N_p^{\alpha}(x) = \frac{1}{1 - p^{\alpha}x}$

Theorem 2.23. Let f and g be two arithmetical functions and h = f * g, then $h_p = f_p g_p$ for all p.

As a result,

$$(\sigma_{\alpha})_{p}(x) = N_{p}^{\alpha}(x)u_{p}(x) = \frac{1}{1 - p^{\alpha}x} \frac{1}{1 - x} = \frac{1}{1 - (p^{\alpha} + 1)x + p^{\alpha}x^{2}} = \frac{1}{1 - \sigma_{\alpha}(p) + p^{\alpha}x^{2}}$$

Definition: The derivative arithmetical function f is defined by

$$f'(n) = f(n)\log(n)$$

Theorem 2.24.

1.
$$(f+g)' = f' + g'$$
.

2.
$$(f * q)' = f' * q + f * q'$$
.

3.
$$(f^{-1})' = -f' * (f * f)^{-1}$$
 provided that $f(1) \neq 0$.

2.10 The Selberg theorem

Theorem 2.25. For $n \geq 1$,

$$\Lambda(n)\log(n) + \sum_{d|n} \Lambda(d)\Lambda\left(\frac{n}{d}\right) = \sum_{d|n} \mu(d)\log^2\left(\frac{n}{d}\right)$$

Chapter 3

Averages of Arithmetical Functions

Arithmetical functions fluctuate a lot, by taking averages we can determine their behaviour

$$\tilde{f}(n) = \frac{1}{n} \sum_{k=1}^{n} f(k)$$

3.1 Asymptotic equality of function

 $f(x) \in O(g(x))$ if there exists M > 0 and a such that for all $x \ge a$, $|f(x)| \le M|g(x)|$. Usually, g is taken to be positive.

Definition: If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$, then f is asymptotic to g as $x\to\infty$ and we write $f(x)\sim g(x)$ as $x\to\infty$.

3.2 Euler's summation formula

Theorem 3.1. If f has a continuous derivative f' on the interval [y, x], where 0 < y < x, then

$$\sum_{y < n \le x} f(n) = \int_{y}^{x} f(t) dt + \int_{y}^{x} (t - \lfloor t \rfloor) f'(t) dt + f(x)(\lfloor x \rfloor - x) - f(y)(\lfloor y \rfloor - y)$$

3.3 Some elementary asymptotic formula

Definition: The Euler-Mascheroni constant is defined as

$$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \log n \right)$$

Definition: The Riemann zeta function is defined as

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

where $s \in \mathbb{C}$ is a complex variable.

Theorem 3.2. If $x \ge 1$ we have

$$\sum_{n \le x} \frac{1}{n} = \log n + \gamma + O\left(\frac{1}{x}\right) \tag{3.1}$$

$$\sum_{n \le x} \frac{1}{n^s} = \frac{x^{1-s}}{1-s} + \zeta(s) + O(x^{-s}) \qquad s > 0 \land s \ne 1$$
 (3.2)

$$\sum_{n > s} \frac{1}{n^s} = O(x^{1-s}) \qquad s > 1 \tag{3.3}$$

$$\sum_{n \le x} n^{\alpha} = \frac{x^{\alpha+1}}{\alpha+1} + O(x^{\alpha}) \qquad \alpha \ge 0$$
 (3.4)

3.4 The average order of d(n)

Theorem 3.3. For all $x \ge 1$,

$$\sum_{n \le x} d(n) = x \log x + (2\gamma - 1)x + O(\sqrt{x})$$

The error term can be improved to $O(x^{12/37+\epsilon})$ for all $\epsilon > 0$.

3.5 The average order of $\sigma_{\alpha}(n)$

Theorem 3.4. For all $x \ge 1$

$$\sum_{n \le x} \sigma_1(x) = \frac{1}{2}\zeta(2)x^2 + O(x\log x)$$
$$\sum_{n \le x} \sigma_{-1}(x) = \zeta(2)x + O(\log x)$$

If $\alpha > 0$ and $\alpha \neq 1$, then

$$\sum_{n \le x} \sigma_{\alpha}(x) = \frac{1}{\alpha + 1} \zeta(\alpha + 1) x^{\alpha + 1} + O(x^{\beta})$$
$$\sum_{n \le x} \sigma_{-\alpha}(x) = \zeta(\alpha + 1) x + O(x^{\delta})$$

where $\beta = \max\{1, \alpha\}$ and $\delta = \max\{0, 1 - \alpha\}$.

3.6 The average order $\phi(n)$

Theorem 3.5. For x > 1 we have

$$\sum_{n \le x} \phi(n) = \frac{3}{\pi^2} x^2 + O(x \log x)$$

3.7 An application

Definition: Two lattice point P and Q are mutually visible if the line segment connecting them contains no other lattice point.

Theorem 3.6. Two lattice point (a, b) and (c, d) are mutually visible if and only if (a - c, b - d) = 1.

Consider the square $C(r) = \{(x,y) \mid |x|, |y| \le r\}$, let N(r) = #C(r) and let N'(r) be the number of visible points from the origin in C(r).

Theorem 3.7. The set of lattice points visible from the origin has density $\frac{6}{\pi^2}$. That is,

$$\lim_{n \to \infty} \frac{N'(r)}{N(r)} = \frac{6}{\pi^2}$$

3.8 The average order of $\mu(n)$ and $\Lambda(n)$

Theorem 3.8. We have

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \mu(n) = 0$$

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \Lambda(n) = 1$$

Both are equivalent to prime number theorem.

3.9 The partial sums of Dirichlet product

Theorem 3.9. If h = f * g, let

$$H(x) = \sum_{n \le x} h(n) \qquad F(x) = \sum_{n \le x} f(n) \qquad G(x) = \sum_{n \le x} g(n)$$

then we have

$$H(x) = \sum_{n \le x} f(n)G\left(\frac{x}{n}\right) = \sum_{n \le x} g(n)F\left(\frac{x}{n}\right)$$

Theorem 3.10. If $F(x) = \sum_{n \le x} f(n)$ we have

$$\sum_{n \le x} \sum_{d|n} f(d) = \sum_{n \le x} f(x) \left\lfloor \frac{x}{n} \right\rfloor = \sum_{n \le x} F\left(\frac{x}{n}\right)$$

3.10 Applications to $\mu(n)$ and $\Lambda(n)$

Theorem 3.11. For $x \ge 1$ we have

$$\sum_{n \le x} \mu(x) \left(\frac{x}{n}\right) = 1$$
$$\sum_{n \le x} \Lambda(x) \left(\frac{x}{n}\right) = \log(\lfloor x \rfloor!)$$

Theorem 3.12. For all $x \ge 1$ we have

$$\left| \sum_{n \le x} \frac{\mu(n)}{n} \right| \le 1$$

with equality hodling if x < 2.

Theorem 3.13 (Legendre's Identity). For all $x \ge 1$

$$\lfloor x \rfloor! = \prod_{p \le x} p^{\alpha(p)}$$

where $\alpha(p) = \sum_{m=1}^{\infty} \left| \frac{x}{p^m} \right|$.

Theorem 3.14. If $x \ge 2$

$$\log(\lfloor x \rfloor!) = x \log x - x + O(\log x)$$

and hence

$$\sum_{n \le x} \Lambda(n) \lfloor (x)n \rfloor = x \log x - x + O(\log x)$$

Theorem 3.15. For $x \ge 2$

$$\sum_{p \le x} \lfloor (x)p \rfloor \log p = x \log x + O(x)$$

3.11 Another Identity for the partial sums of a Dirichlet product

Theorem 3.16. If h = f * g, let

$$H(x) = \sum_{n \le x} h(n) \qquad F(x) = \sum_{n \le x} f(n) \qquad G(x) = \sum_{n \le x} g(n)$$

then we have

$$H(x) = \sum_{n \le x} \sum_{d \mid n} f(d)g\left(\frac{n}{d}\right) = \sum_{qd \le x} f(d)g(q)$$

Theorem 3.17. If a, b are positive real numbers such that ab = x, then

$$\sum_{qd \le x} f(d)g(q) = \sum_{n \le a} f(n)G\left(\frac{x}{n}\right) + \sum_{n \le b} g(x)G\left(\frac{x}{n}\right) - F(a)G(b)$$