Problem C How Many Meanings?

Input file: testdata.in Time limit: 1 second

Problem Description

Professor Q teaches an ancient language composed of words. A phrase is a sequence of words, and a sentence is a sequence of words and phrases. The phrases are recorded in a dictionary. There could be multiple ways to partition a sentence into words and phrases. For example, if we have phrases "a b c d", "a b c", and "b c", then the sentence "a b c d e" could be partitioned into (a)(b)(c)(d)(e), (a)(b)(d)(e), (a)(b)(d)(e), or (a b c d)(e).

In addition to the number of ways to partition a sentence, we are also interested in the number of meanings of a sentence. Each word has exactly one meaning but a phrase may have more than one meaning, which is also recorded in the dictionary. For example, if the phrase "a b c d" has two meanings, "a b c" has one meaning, and "b c" has three meanings, then sentence "a b c d e" has seven meanings because it could be (a)(b)(c)(d)(e), (a)(b c)(d)(e), (a b c)(d)(e), or (a b c d)(e), each has one, three, one, and two meanings respectively.

Given a dictionary and a sentence please compute the number of possible meanings of the input sentence. Since the answer may be very large please output the answer mod 65535.

Technical Specification

- $1 \le d, s \le 1000$
- $1 < m_i < 10$
- $2 \le n_i \le 10$

- $1 \le \text{the length of words} \le 10$
- Words only contain lower case letters.
- Some words in the input sentence may not appear in the dictionary.
- If a phrase appears multiple times in the dictionary, it is regarded as one phrase with the number of meanings equal to the sum of the numbers of meanings of individual appearances.

Input Format

There are multiple test cases. Each test case begins with two integers - the number of phrases in the dictionary d and the number of words in the input sentence s. The i-th line of the following d lines has the number of meanings of the i-th phrase m_i , the number of the words in the phrase n_i , and the phrase p_i itself. The last line of a test case contains the input sentence.

Output Format

For each test case output the number of the meanings of the input sentence mod 65535 in a line.

Sample Input

```
3 5
2 4 a b c d
1 3 a b c
3 2 b c
a b c d e
```

Sample Output

7